Содержание

1	Базовые определения	2
2	Вторая теорема о π - и λ -системах. Следствия из неё.	3
3	Независимость событий и систем событий	4
4	Функция распределения вероятностной меры	5
5	Классификация вероятностных мер	7
6	Вероятностные меры на $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$	8
7	Случайные элементы, случайные величины и векторы на вероятностном пространстве	10
8	Характеристики случайной величины и случайного вектора	12
9	Независимости произвольного набора случайных величин	13
10	Теорема о математическом ожидании произведения независимых случайных величин с конечными математическими ожиданиями	15
11	Теорема о замене переменных в интеграле Лебега	16
12	Прямое произведение вероятностных пространств	18
13	Совместное распределение	19
14	Дисперсия, ковариация и коэффициент корреляции	20
15	Сходимости случайных величин	21
16	Достаточное условие сходимости с вероятностью	24
17	Фундаментальность с вероятностью 1	25

1 Базовые определения

Определение 1.1. Система ${\mathcal F}$ подмножеств Ω называется алгеброй, если

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F}$, to $\overline{A} := (\Omega \setminus A) \in \mathcal{F}$
- 3. $A, B \in \mathcal{F}$, to $A \cap B \in \mathcal{F}$

Определение 1.2. Система ${\mathcal F}$ подмножеств Ω называется σ -алгеброй, если

- 1. \mathcal{F} алгебра
- 2. $\forall \{A_n, n \in \mathbb{N}\}, A_n \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

Определение 1.3. P называется вероятностной мерой на (Ω, \mathcal{F}) , если $P: \mathcal{F} \to [0, 1]$, удовлетворяющая свойствам:

- 1. $P(\Omega) = 1$
- 2. Если $\{A_n, n \in \mathbb{N}\}$, то

$$P\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

Определение 1.4. Вероятностное пространство – это тройка (Ω, \mathcal{F}, P) , где

- Ω множество элементарных исходов
- $\mathcal{F}-\sigma$ -алгебра подмножеств Ω , элементы \mathcal{F} называются событиями
- P вероятностная мера на измеримом пространстве (Ω, \mathcal{F})

Определение 1.5. Система \mathcal{M} подмножеств в Ω называется π -системой, если из того, что $A, B \in \mathcal{M}$ следует, что $A \cap B \in \mathcal{M}$

Определение 1.6. Система \mathcal{L} подмножеств в Ω называется λ -системой, если

- 1. $\Omega \in \mathcal{L}$
- 2. $(A, B \in \mathcal{L}; A \subset B) \Rightarrow B \setminus A \in \mathcal{L}$
- 3. $(A_n \uparrow A; \forall n A_n \in \mathcal{L}) \Rightarrow A \in \mathcal{L}$

Теорема 1.1. Первая теорема о π - λ -системах

 $Cucmema~\mathcal{F}~noдмножеств~\Omega~является~\sigma$ -алгеброй $\Leftrightarrow~oнa~является~\pi$ -cucmemoй и λ -cucmemoй.

 \Leftarrow Проверим сначала, что \mathcal{F} – алгебра. Свойства 1), 2) уже есть. По свойству 2) λ -системы $\overline{A} = \Omega \setminus A \in \mathcal{F}$, если $A \in \mathcal{F}$. Значит \mathcal{F} – алгебра.

Пусть $\{A_n, n \in \mathbb{N}\}, \forall n \ A_n \in \mathcal{F}, \forall i \neq j \ A_i \cap A_j = \emptyset$. Рассмотрим $B_n = \bigsqcup_{m=1}^n A_m \in \mathcal{F}$. Тогда $B_n \subset B_{n+1}$ и $\bigcup_{n=1}^{\infty} B_n = \bigsqcup_{n=1}^{\infty} A_n \Rightarrow$ по 3) свойству λ -системы: $B_n \uparrow \bigsqcup_{n=1}^{\infty} A_n \in \mathcal{F}$. \square

Лемма 1.1. Пусть \mathcal{M} – система подмножеств Ω . Тогда существует минимальная (по включению) σ -алгебра (алгебра, π -система, λ -система), обозначаемая $\sigma(\mathcal{M})$ ($\lambda(\mathcal{M})$, $\pi(\mathcal{M})$, $\lambda(\mathcal{M})$), содержащая \mathcal{M} .

Пример. 1. Если $\Omega = \mathbb{R}$, то борелевской σ -алгеброй на \mathbb{R} называется наименьшая σ -алгебра, содержащая все интервалы

$$\mathcal{B}(\mathbb{R}) = \sigma((a; b), a < b)$$

2. Если $\Omega = \mathbb{R}^n, n > 1$.

Борелевской σ -алгеброй в \mathbb{R}^n называется минимальная σ -алгебра, содержащая множества вида $B_1 \times \cdots \times B_n, B_i \in \mathcal{B}(\mathbb{R})$, то есть

$$\mathcal{B}(\mathbb{R}^n) = \sigma(B_1 \times \cdots \times B_n : B_i \in \mathcal{B}(\mathbb{R}))$$

3. Если $\Omega = \mathbb{R}^{\infty}$, то есть Ω содержит все счётные последовательности вещественных чисел.

Для $n \in \mathbb{N}$ и $B_n \in \mathcal{B}(\mathbb{R}^n)$ введём циллиндр:

$$F_n(B_n) = \{ \vec{x} \in \mathbb{R}^\infty : (x_1, \cdots, x_n) \in B_n \}$$

Тогда минимальная σ -алгеьра, содержащая все циллиндры называется борелевской в \mathbb{R}^{∞} , то есть

$$\mathcal{B}(\mathbb{R}^{\infty}) = \sigma(F_n(B_n) : n \in \mathbb{N}, B_n \in \mathcal{B}(\mathbb{R}^n))$$

2 Вторая теорема о π - и λ -системах. Следствия из неё.

Теорема 2.1. Вторая теорема о π - λ -системах.

Если \mathcal{M} – это π -система подмножеств в Ω , то $\sigma(\mathcal{M}) = \lambda(\mathcal{M})$

Доказательство. Заметим, что $\sigma(\mathcal{M}) - \lambda$ -система, содержащая $\mathcal{M} \Rightarrow \lambda(\mathcal{M}) \subset \sigma(\mathcal{M})$.

Проверим, что $\lambda(\mathcal{M})$ – это σ -алгебра. Раз $\lambda(\mathcal{M})$ – это λ -система, то по (1.1) достаточно проверить, что $\lambda(\mathcal{M})$ – это π -система.

Рассмотрим $\mathcal{M}_1 = \{B \in \lambda(\mathcal{M}) : \forall A \in \mathcal{M}, A \cap B \in \lambda(\mathcal{M})\}$. Заметим, что $\mathcal{M} \subset \mathcal{M}_1$. Проверим, что \mathcal{M}_1 – это λ -система:

- 1. $\Omega \in \mathcal{M}_1$ очевидно
- 2. Пусть $B, C \in \mathcal{M}_1, C \subset B$, пусть $A \in \mathcal{M}$. Заметим, что $B \setminus C \in \lambda(\mathcal{M})$ и

$$(B \setminus C) \cap A = \stackrel{\in \lambda(\mathcal{M})}{(B \cap A)} \setminus \stackrel{\in \lambda(\mathcal{M})}{(C \cap A)}$$

Значит по второму свойству λ -систем $(B \setminus C) \cap A \in \lambda(\mathcal{M})$

3. Пусть $B_n \uparrow B, B_n \in \mathcal{M}_1, A \in \mathcal{M} \Rightarrow$

$$B_n \cap A \uparrow B \cap A$$

Тогда по третьем свойству λ -систем $B \cap A \in \lambda(\mathcal{M})$. Но $B_n \in \lambda(\mathcal{M}) \Rightarrow$ по третьему свойству λ -системы получаем, что $B \in \lambda(\mathcal{M}) \Rightarrow B \in \mathcal{M}_1$.

По условию $\mathcal{M} \subset \mathcal{M}_1 \Rightarrow$ в силу минимальности $\lambda(\mathcal{M}) \subset \mathcal{M}_1$. По построению $\mathcal{M}_1 \subset \lambda(\mathcal{M}) \Rightarrow \lambda(\mathcal{M}) = \mathcal{M}_1$, то есть $\forall B \in \lambda(\mathcal{M}) \ \forall A \in \mathcal{M} : A \cap B \in \lambda(\mathcal{M})$.

Далее рассмотрим $\mathcal{M}_2 = \{B \in \lambda(\mathcal{M}) : \forall A \in \lambda(\mathcal{M}) \ A \cap B \in \lambda(\mathcal{M})\}$. В силу доказанного $\mathcal{M} \subset \mathcal{M}_2$. Совершенно аналогично с \mathcal{M}_1 проверяем, что \mathcal{M}_2 – это λ -система. Тогда $\lambda(\mathcal{M}) \subset \mathcal{M}_2$. По построению $\mathcal{M}_2 \subset \lambda(\mathcal{M}) \Rightarrow \lambda(\mathcal{M}) = \mathcal{M}_2 \Rightarrow \lambda(\mathcal{M})$ – это π -система.

Следствие. Пусть \mathcal{M} – это π -система на Ω , и \mathcal{L} – это λ -система на Ω и $\mathcal{M} \subset \mathcal{L}$. Тогда $\lambda(\mathcal{M}) \subset \mathcal{L}$

3 Независимость событий и систем событий

Определение 3.1. События A, B независимые, если

$$P(A \cap B) = P(A) \cdot P(B)$$

Определение 3.2. События A_1, \dots, A_n называются независимыми в совокупности, если

$$\forall k \leqslant n \ \forall 1 \leqslant i_1 < \dots < i_k \leqslant n : P\left(\bigcap_{j=1}^k A_{i_j}\right) = \prod_{j=1}^k P(A_{i_k})$$

Определение 3.3. Пусть $\mathcal{M}_1, \dots, \mathcal{M}_n$ – системы событий на (Ω, \mathcal{F}, P) . Они называются независимыми в совокупности, если

$$\forall A_1 \in \mathcal{M}_1, \cdots, A_n \in \mathcal{M}_n: A_1, \cdots, A_n$$
— независимы в совокупности

Лемма 3.1. Критерий независимости σ -алгебр.

Пусть $\mathcal{M}_1, \dots, \mathcal{M}_n$ – это π -системы событий на (Ω, \mathcal{F}, P) . Тогда $\mathcal{M}_1, \dots, \mathcal{M}_n$ – независимы в совокупности $\Leftrightarrow \sigma(\mathcal{M}_1), \dots, \sigma(\mathcal{M}_n)$ – независимы в совокупности.

Доказательство. ← очевидно.

Докажем только для n=2, для n>2 всё аналогично.

Рассмотрим $\mathcal{L}_1 = \{A \in \sigma(\mathcal{M}_2) : A \perp \mathcal{M}_1\}$. Проверим, что \mathcal{L}_1 – это λ -система:

- 1. $\forall B \in \mathcal{M}_1 : \Omega \perp \!\!\! \perp B \Rightarrow \Omega \in \mathcal{L}_1$
- 2. Пусть $C \in \mathcal{M}_1$, тогда

$$P((B \setminus A) \cap C) = P((B \cap C) \setminus (A \cap C)) = P(B \cap C) - P(A \cap C) = P(C)(P(B) - P(A)) = P(B \setminus A)P(C) \Rightarrow B \setminus A \in \mathcal{L}_1$$

3. Пусть $A_n \uparrow A, A_n \in \mathcal{L}_1$. По определению σ -алгебры замечаем, что $A \in \sigma(\mathcal{M}_2)$. Пусть $C \in \mathcal{M}_1$. Рассмотрим

$$P(A \cap C) = \lim_{n \to +\infty} P(A_n \cap C) = P(C) \lim_{n \to +\infty} P(A_n) = P(C)P(A) \Rightarrow A \in \mathcal{L}_1$$

Раз \mathcal{L}_1 – это λ -система и $\mathcal{M}_2 \subset \mathcal{L}_1$, по условию, то по (2.1) получим, что $\sigma(\mathcal{M}_2) \subset \mathcal{L}_1 \Rightarrow \sigma(\mathcal{M}_2) \perp \mathcal{M}_1$.

Рассмотрим $\mathcal{L}_2 = \{A \in \sigma(\mathcal{M}_1) : A \perp \sigma(\mathcal{M}_2)\}$. Точно так же доказывается, что \mathcal{L}_2 – это λ -система, $\mathcal{M}_1 \subset \mathcal{L}_2$ по доказанному $\Rightarrow \sigma(\mathcal{M}_1) \subset \mathcal{L}_2 \Rightarrow \sigma(M_1) \perp \sigma(M_2)$

Определение 3.4. Пусть $\{M_{\alpha}, \alpha \in \mathfrak{A}\}$ – набор систем событий. Он называется независимым в совокупности, если независим в совокупности \forall конечный поднабор.

4 Функция распределения вероятностной меры

Определение 4.1. Функцией распределения вероятностной меры P на $\mathbb R$ называется

$$F(x) = P((-\infty, x]), x \in \mathbb{R}$$

Лемма 4.1. Свойства функции распределения.

- 1. F(x) не убывает
- 2. $F(+\infty) = 1, F(-\infty) = 0$
- 3. F(x) непрерывна справа

Доказательство. 1. Пусть y > x. Тогда

$$(-\infty, x] \subset (-\infty, y] \Rightarrow F(x) = P((-\infty, x]) \leqslant P((-\infty, y]) = F(y)$$

2. Если $x_n \uparrow +\infty$, то $(-\infty, x_n] \uparrow \mathbb{R}$. Тогда в силу непрерывности меры

$$F(x_n) = P((-\infty, x_n]) \stackrel{n \to +\infty}{\to} P(\mathbb{R}) = 1$$

Если $x_n \downarrow -\infty$, то $(-\infty, x_n] \downarrow \varnothing$. Тогда в силу непрерывности меры

$$F(x_n) = P((-\infty, x_n]) \stackrel{n \to +\infty}{\to} P(\varnothing) = 0$$

3. Если $x_n \downarrow x$, то $(-\infty, x_n] \downarrow (-\infty, x]$. Тогда в силу непрерывности меры

$$F(x_n) = P((-\infty, x_n]) \stackrel{n \to +\infty}{\to} P((-\infty, x]) = F(x)$$

Определение 4.2. Эквивалентное определение функции распределения.

Функция, удовлетворяющая свойствам 1-3 из предыдущей леммы, называется функцией распределения на P.

Теорема 4.1. О продолжении меры $(6/\partial)$

Пусть \mathcal{A} – алгебра подмножеств Ω . Пусть $P_0: \mathcal{A} \to [0,1]$ с условием, $P_0(\Omega) = 1$ и P_0 счётно-аддитивна на \mathcal{A} . Тогда $\exists !$ продолжение меры P_0 на $\sigma(A)$

Теорема 4.2. О взаимной однозначности функции распределения и вероятностной меры.

Пусть $F(x), x \in \mathbb{R}$ – функция распределения на \mathbb{R} . Тогда $\exists !$ вероятностная мера P на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, для которой F является функцией распределения, то есть

$$\forall x \in \mathbb{R}: F(x) = P((-\infty, x])$$

Доказательство. Рассмотрим на \mathbb{R} алгебру \mathcal{A} , состоящую из конечных объединений непересекающихся интервалов:

$$\forall A \in \mathcal{A} : A = \bigsqcup_{k=1}^{n} (a_k, b_k], -\infty \leqslant a_1 < b_1 < a_2 < b_2 < \dots < b_n \leqslant +\infty$$

Зададим на \mathcal{A} меру P_0 :

$$\forall A \in \mathcal{A}: P_0(A) = \sum_{k=1}^n (F(b_k) - F(a_k))$$

где $F(-\infty) = 0, F(+\infty) = 1.$

По построению $P_0(\mathbb{R}) = 1$ и P_0 будет конечно аддитивна на \mathcal{A} . Если мы проверим, что P_0 счётно аддитивна на \mathcal{A} , то по (4.1) \exists ! продолжение P меры P_0 на $\sigma(A) = \mathcal{B}(\mathbb{R})$. Это и есть искомая мера P, причём

$$P((-\infty, x]) = P_0((-\infty, x]) = F(x)$$

По теореме о непрерывности вероятностной меры, достаточно проверить, что P_0 непрерывна в нуле.

Пусть $A_n \downarrow \varnothing, \forall n: A_n \in \mathcal{A}$. Хотим проверить, что $P(A_n) \stackrel{n \to +\infty}{\longrightarrow} 0$. В силу 2-3 свойств функции распределения:

$$\forall A \in \mathcal{A} \ \forall \varepsilon > 0 \ \exists B \in A : \ \text{cl} \ B \subset A, P_0(A \setminus B) \leqslant \varepsilon$$

Если (a, b] является частью A, то для некоторого a' > a будет выполнено

$$P_0((a, a']) \leqslant \varepsilon$$

Зафиксировав $\forall \varepsilon > 0$, выберем $B_n \forall n \in \mathbb{N} : B_n \in A$, такой что cl $B_n \subset A_n$ и $P_0(A_n \backslash B_n) \leqslant \frac{\varepsilon}{2^n}$. Пусть сначала все A_n лежат внутри [-N,N]. Заметим, что раз $\cap_n A_n = \emptyset$, то \cap_n cl $B_n = \emptyset$. В силу компактости $\exists n_0$:

$$\bigcap_{n=1}^{n_0} \operatorname{cl} B_n = \varnothing \Rightarrow \bigcap_{n=1}^{n_0} B_n = \varnothing$$

Рассмотрим

$$P_0(A_{n_0}) = P_0\left(A_{n_0} \setminus \bigcup_{n=1}^{n_0} B_n\right) \leqslant P_0\left(\bigcup_{n=1}^{n_0} (A_{n_0} \setminus B_n)\right) \leqslant P_0\left(\bigcup_{n=1}^{n_0} (A_n \setminus B_n)\right) \leqslant \sum_{n=1}^{n_0} P_0(A_n \setminus B_n) \leqslant \sum_{n=1}^{n_0} \frac{\varepsilon}{2^n} \leqslant \varepsilon \Rightarrow P(A_n) \overset{n \to +\infty}{\to} 0$$

Если A бесконечно, то возьмём N, такой что $P_0(\mathbb{R}\setminus (-N,N])\leqslant \frac{\varepsilon}{2}$. Рассмотрим $A_n'=A_n\cap (-N,N]$. Тогда по доказанному выше $P_0'(A_n')\stackrel{n\to+\infty}{\longrightarrow} 0\Rightarrow c$ некоторого n_0 :

$$P_0(A_n) \leqslant P(A'_n) + P_0(\mathbb{R} \setminus (-N, N]) \leqslant \varepsilon$$

5 Классификация вероятностных мер

Определение 5.1. Пусть P – вероятностная мера на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Она называется дискретной, если \exists не более чем счётное множество $X \subset \mathbb{R}$, такое, что

$$P(\mathbb{R} \setminus X) = 0, \forall x \in X : P(\{x\}) > 0$$

Говорят, что P сосредоточена на X.

Пусть $X=(x_k,k\in\mathbb{N}),$ обозначим $p_k=P(\{x_k\}).$ Набор (p_1,p_2,\cdots) образует распределение вероятностей на X.

Как выглядит функция распределения?

$$F(x) = \sum_{x_k \leqslant x} P(\{x_k\})$$

Она меняется скачками в точках x_k , в них значение увеличивается на

$$p_k = P({x_k}) = \Delta F(x_k) = F(x_k) - F(x_k - 0)$$

Пример. Дискретные распределения:

1. Константы.

$$X = \{x\}; P(\{x\}) = 1$$

2. Распределение Бернулли, $Bern(p), p \in [0, 1]$:

$$X = \{0, 1\}; p_0 = 1 - p, p_1 = p$$

3. Биномиальное распределение, $Bin(n, p), n \in \mathbb{N}, p \in [0, 1]$:

$$X = \{0, \dots, n\}; \ p_k = C_n^k p^k (1-p)^{n-k}; \ k = \overline{0, n}$$

4. Пуассоновское распределение, $Pois(\lambda)$, $\lambda > 0$

$$X = \mathbb{Z}_+; \ p_k = \frac{\lambda^k}{k!} e^{-\lambda}, k \in \mathbb{Z}_+$$

Определение 5.2. Пусть P — вероятностная мера на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, а F — её функция распределения. Она называется абсолютно непрерывной, если $\exists p(t) \geqslant 0$, такая что

$$\int_{\mathbb{R}} p(t)dt = 1; \ \forall x \in \mathbb{R} : \ F(x) = \int_{-\infty}^{x} p(t)dt$$

В этом случае p(t) называется плотностью функции распределения F и меры P.

Замечание. Интегралы понимаются, как интегралы Лебега.

Пример. 1. Равномерное распределение, U(a, b), a < b

$$p(x) = \frac{1}{b-a} \cdot \mathbb{I}_{\{x \in [a,b]\}}(x); \ F(x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, x \in [a,b] \\ 1, x > b \end{cases}$$

2. Нормальное (гауссовское) распределение, $\mathcal{N}(a, \sigma^2), a \in \mathbb{R}, \sigma > 0$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}}; \ \Phi_{a,\sigma^2}(x) = \int_{-\infty}^x p(t)dt$$

3. Экспоненциальное (показательное) распределение, $\text{Exp}(\alpha)$, $\alpha > 0$.

$$p(x) = \alpha e^{-\alpha x} \cdot \mathbb{I}\{x > 0\}; \ F(x) = \begin{cases} 0, x \le 0 \\ 1 - e^{-\alpha x}, x > 0 \end{cases}$$

4. Гамма-распределение, $\Gamma(\alpha, \lambda), \alpha, \lambda > 0$

$$p(x) = \frac{x^{\alpha - 1} \alpha^{\lambda}}{\Gamma(\lambda)} e^{-\lambda x} \mathbb{I}_{\{x > 0\}}(x); \ \Gamma(\lambda) = \int_0^{+\infty} x^{\lambda - 1} e^{-x} dx, \lambda > 0$$

5. Распределение Коши, $K(\sigma), \sigma > 0$

$$p(x) = \frac{\sigma}{\pi(x^2 + \sigma^2)}; \ F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{x}{\sigma}$$

Определение 5.3. Пусть F – функция распределения на \mathbb{R} .

Точка x является точкой роста F, если

$$\forall \varepsilon > 0: F(x+\varepsilon) - F(x-\varepsilon) > 0$$

Определение 5.4. Функция распределения F (и соответствующая ей мера P) называется сингулярной, если F непрерывна и множество её точек роста имеет лебегову норму нуль.

Пример. Канторова лестница.

Мера P сосредоточена на канторовом множестве, оно не счётное, но каждый элемент имеет ненулевую меру.

Теорема 5.1. Лебега о разложении. $(6/\partial)$

Пусть F – функция распределения на \mathbb{R} . Тогда \exists разложение вида

$$F(x) = \alpha_1 F_1(x) + \alpha_2 F_2(x) + \alpha_3 F_3(x), \alpha_i \ge 0, \alpha_1 + \alpha_2 + \alpha_3 = 1$$

nричём F_1 — дискретная функция распределения, F_2 — абсолютно непрерывная, F_3 — сингулярная.

6 Вероятностные меры на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$

Определение 6.1. Функцией распределения вероятностной меры P называется $F(x_1, \dots, x_n), x_i \in \mathbb{R}, i = \overline{1, n}$, где

$$F(x_1, \dots, x_n) = P((-\infty, x_1] \times \dots \times (-\infty, x_n])$$

Замечание. 1. $\vec{x} = (x_1, \dots, x_n)$

2. $\vec{x} \geqslant \vec{y}$, если

$$\forall i = \overline{1, n} : x_i \geqslant y_i$$

3.
$$(-\infty, \vec{x}] = (-\infty, x_1] \times \cdots \times (-\infty, x_n]$$

4. $\vec{x}_{(n)} \downarrow \vec{x}$, если

$$\forall n \in \mathbb{N} : \vec{x}_{(n)} \geqslant \vec{x}_{(n+1)} \geqslant \vec{x}$$

причём $\lim_n \vec{x}_{(n)} = \vec{x}$

Лемма 6.1. Свойства многомерной функции распределения.

Пусть $F(\vec{x})$ – функция распределения вероятностной меры P на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Тогда

1. Ecnu $\vec{x}_{(n)} \downarrow \vec{x}$, mo

$$\lim_{n \to +\infty} F(\vec{x}_{(n)}) = F(\vec{x})$$

то есть непрерывна справа по любой координате

2. Ecau $x_i \to +\infty, \forall i = \overline{1, n}, mo$

$$F(\vec{x}) \to 1$$

Если $x_i \to -\infty, \exists i = \overline{1, n}, mo$

$$F(\vec{x}) \to 0$$

3. Для $\forall i=\overline{1,n}\ u\ a_i < b_i\ введём\ оператор\ \triangle^i_{a_i,b_i},\ который\ действует\ следующим\ образом:$

$$\triangle_{a_i,b_i}^i F(\vec{x}) = F(x_1, \dots, b_i, x_{i+1}, \dots, x_n) - F(x_1, \dots, a_i, x_{i+1}, \dots, x_n)$$

Tог ∂a

$$\forall a_1 < b_1, \dots, a_n < b_n : \triangle_{a_1, b_1}^1 \circ \dots \circ \triangle_{a_n, b_n}^n F(\vec{x}) \geqslant 0$$

 \mathcal{A} оказательство. 1. Если $\vec{x}_{(n)}\downarrow\vec{x}$, то $(-\infty,\vec{x}_{(n)}]\downarrow(-\infty,\vec{x}]$. Тогда по непрерывности меры

$$F(\vec{x}_{(n)}) = P((-\infty, \vec{x}_{(n)}]) \stackrel{n \to +\infty}{\to} P((-\infty, \vec{x}]) = F(\vec{x})$$

2. Если $\vec{x} \uparrow (+\infty, \dots, +\infty)$, то $(-\infty, \vec{x}] \uparrow \mathbb{R}^n$. Тогда по непрерывности меры

$$F(\vec{x}_{(n)}) = P((-\infty, \vec{x}_{(n)}]) \stackrel{n \to +\infty}{\to} P(\mathbb{R}^n) = 1$$

Если $x_i \downarrow -\infty$, то $(-\infty, \vec{x}] \downarrow \varnothing$. Тогда в силу непрерывности меры

$$F(\vec{x}_{(n)}) = P((-\infty, \vec{x}_{(n)})) \stackrel{n \to +\infty}{\to} P(\varnothing) = 0$$

3. Проверим, например для n = 2, что

$$\triangle_{a_1,b_1}^1 \circ \cdots \circ \triangle_{a_n,b_n}^n F(\vec{x}) = P((a_1,b_1] \times \cdots \times (a_n,b_n])$$

Действительно:

$$\Delta_{a_1,b_1}^1 \circ \Delta_{a_2,b_2}^2 F(x_1,x_2) = \Delta_{a_1,b_1}^1 (F(x_1,b_2) - F(x_1,a_2)) = F(b_1,b_2) - F(b_1,a_2) - F(a_1,b_2) + F(a_1,a_2) = P((a_1,b_1] \times (a_2,b_2]) \geqslant 0$$

В общем случае достаточно заметить, что

$$\triangle_{a_i,b_i}^i P(B_1 \times \dots \times B_{i-1} \times (-\infty,x_i] \times \dots \times B_n) = P(B_1 \times \dots \times (a_i,b_i] \times \dots \times B_n)$$

Теорема 6.1. О построении вероятностной меры на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ по функции распределения (δ/∂) .

Пусть $F(\vec{x})$ удовлетворяет всем свойствам из предыдущей леммы. Тогда $\exists !$ вероятностная мера на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, для которой F является функцией распределения.

Определение 6.2. Пусть P – вероятностная мера на $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$.

 $\forall n \in \mathbb{N}$ рассмотрим

$$P_n(B) = P(F_n(B))$$

где $F_n(B) = \{\vec{x} = (x_1, x_2, \cdots) : (x_1 \cdots, x_n) \in B\}$ – циллиндр с основанием B. Тогда P_n будет вероятностной мерой в \mathbb{R}^n . Кроме того, $\forall n : \forall B \in \mathcal{B}(\mathbb{R}^n)$:

$$P_n(B) = P_{n+1}(B \times \mathbb{R})$$

Это свойство согласованности.

Теорема 6.2. Колмогорова о мерах в \mathbb{R}^{∞} (б/д).

Пусть P_1, P_2, \dots – последовательность вероятностных мер в $\mathbb{R}, \mathbb{R}^2, \dots$, обладающая свойством согласованности. Тогда $\exists !$ вероятностная мера P на $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$, такая что

$$\forall n \in \mathbb{N} \ \forall B \in \mathcal{B}(\mathbb{R}^n) : P_n(B) = P(F_n(B))$$

7 Случайные элементы, случайные величины и векторы на вероятностном пространстве

Пусть (Ω, \mathcal{F}, P) – вероятностное пространство, а (E, ξ) – измеримое пространство.

Определение 7.1. Отображение $X: \Omega \to E$ называтся случайным элементом, если оно измеримо, то есть

$$\forall B \in \xi : X^{-1}(B) = \{\omega : X(\omega) \in B\} \in \mathcal{F}$$

Определение 7.2. Если $(E,\xi)=(\mathbb{R},\mathcal{B}(\mathbb{R})),$ то случайный элемент называется случайной величиной.

Определение 7.3. Если $(E,\xi)=(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n)),$ то случайный элемент называется случайным вектором.

Лемма 7.1. Критерий измеримости отображения.

Пусть $\mathcal{M}\subset\mathcal{E},\ ma\kappa$ чтобы $\sigma(\mathcal{M})=\mathcal{E}.\ Tогда\ X:\ \Omega\to E$ является случайным элементом \Leftrightarrow

$$\forall B \in \mathcal{M}: X^{-1}(B) \in \mathcal{F}$$

Доказательство. ⇒ очевидно.

⇐ Рассмотрим

$$\mathcal{D} = \{ B \in \mathcal{E} : X^{-1}(B) \in \mathcal{F} \}$$

Легко видеть, что \mathcal{D} – это σ -алгебра, так как \mathcal{E} – σ -алгебра, а прообраз сохраняет теоретикомножественные операции.

По условию
$$\mathcal{M} \subset \mathcal{D} \Rightarrow \sigma(\mathcal{M}) = \mathcal{E} \subset \mathcal{D}$$
 в силу минимальности.

Следствие. Следующие утверждения эквивалентны:

- 1. $X:\,\Omega o\mathbb{R}$ случайная величина
- 2. $\forall x \in \mathbb{R}$:

$$\{\omega : X(\omega) < x\} \in \mathcal{F}$$

 $3. \ \forall x \in \mathbb{R}$:

$$\{\omega: X(\omega) \leqslant x\} \in \mathcal{F}$$

Доказательство. Применяем лемму для $\mathcal{M} = \{(-\infty, x), x \in \mathbb{R}\}$ или $\mathcal{M} = \{(-\infty, x], x \in \mathbb{R}\}$. В обоих случаях $\sigma(\mathcal{M}) = \mathcal{B}(\mathbb{R})$

Следствие. $X:=(X_1,\cdots,X_n):\Omega\to\mathbb{R}^n$ – случайный вектор \Leftrightarrow

$$\forall i=\overline{1,n}:~X_i--$$
 случайная величина

Доказательство. \Rightarrow Пусть $B \in \mathcal{B}(\mathbb{R})$. Тогда

$$X_i^{-1}(B) = X^{-1}(\mathbb{R} \times \cdots \times \overset{i}{B} \times \cdots \times \mathbb{R}) \in \mathcal{F}$$

Это верно, так как X – случайный вектор и

$$\mathbb{R} \times \cdots \times \overset{i}{B} \times \cdots \times \mathbb{R} \in \mathcal{B}(\mathbb{R}^n)$$

 \Leftarrow Рассмотрим $\mathcal{M} = \{B_1 \times \cdots \times B_n : B_i \in \mathcal{B}(\mathbb{R})\}$. Тогда $\sigma(\mathcal{M}) = \mathcal{B}(\mathbb{R}^n)$ и проверим условие леммы:

$$X^{-1}(B_1 \times \cdots \times B_n) = X_1^{-1}(B_1) \cap \cdots \cap X_n^{-1}(B_n) \in \mathcal{F}$$

так как $\forall i = \overline{1, n} : X_i$ – случайная величина.

Значит по предыдущей лемме $\Rightarrow X$ – случайный вектор.

8 Характеристики случайной величины и случайного вектора

Определение 8.1. Распределением случайной величины (вектора) ξ называется вероятностная мера P_{ξ} на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ $((\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)))$, определённая по правилу:

$$P_{\xi}(B) = P(\xi \in B), B \in \mathcal{B}(\mathbb{R}) \ (\mathbb{R}^n)$$

Определение 8.2. Функцией распределения случайной величины ξ называется

$$F_{\xi}(x) = P(\xi \leqslant x) = P_{\xi}((-\infty, x])$$

Замечание.

$$P(\xi_1 \leqslant x_1, \xi_2 \leqslant x_2) := P(\{\xi_1 \leqslant x_1\} \cap \{\xi_2 \leqslant x_2\})$$

Определение 8.3. Если $\xi = (\xi_1, \cdots, \xi_n)$ – случайный вектор, то его функцией распределения называется

$$F_{\xi}(x_1, \dots, x_n) = P_{\xi}((-\infty, x_1] \times \dots \times (-\infty, x_n]) = P(\xi_1 \leqslant x_1, \dots, \xi_n \leqslant x_n)$$

Определение 8.4. Случайная величина является

- Дискретной, если таково её распределение
- Абсолютно-непрерывной, если таково её распределение В этом случае ξ имеет плотность $p_{\xi}(t) \geqslant 0$:

$$F_{\xi}(x) = \int_{-\infty}^{x} p_{\xi}(t)dt$$

• Сингулярной, если таково её распределение

Определение 8.5. Случайная величина ξ называется простой, если она принимает конечное число значений. В этом случае ξ имеет вид:

$$\xi = \sum_{k=1}^{n} x_k \mathbb{I}_{A_k}$$

где $x_1,\,\cdots,x_n$ – различные числа, $A_1,\,\cdots,A_n$ – разбиение $\Omega.$

Определение 8.6. Пусть ξ – случайная величина (вектор) на (Ω, \mathcal{F}, P) . Сигма-алгеброй, порождённой ξ , называется

$$\mathcal{F}_{\xi} = \{ \{ \xi \in B \} : B \in \mathcal{B}(\mathbb{R}) \} (\mathbb{R}^n)$$

Заметим, что $\mathcal{F}_{\xi} \subset \mathcal{F}$

Определение 8.7. Случайная величина (вектор) η является \mathcal{F}_{ξ} -измеримое, если $\mathcal{F}_{\eta} \subset \mathcal{F}_{\xi}$

Определение 8.8. Если ξ – это случайная величина, то положим

$$\xi^+ := \max(\xi, 0); \quad \xi^- := \max(-\xi, 0)$$

Тогда, $\xi = \xi^+ - \xi^-$

Определение 8.9. Функция $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ называется борелевской, если

$$\forall B \in \mathcal{B}(\mathbb{R}^m) : \varphi^{-1}(B) = \{x : \varphi(x) \in B\} \in \mathcal{B}(\mathbb{R}^n)$$

Лемма 8.1. η является \mathcal{F}_{ξ} -измеримой $\Leftrightarrow \exists$ борелевская функция φ , такая что $\eta = \varphi(\xi)$.

 \mathcal{A} оказательство. \Leftrightarrow Пусть $\eta = \varphi(\xi)$ и $B \in \mathcal{B}(\mathbb{R})$. Тогда

$$\{\eta \in B\} = \{\xi \in \varphi^{-1}(B)\} \in \mathcal{F}_{\xi} \Rightarrow \mathcal{F}_{\eta} \subset \mathcal{F}_{\xi}$$

Теорема 8.1. О приближении простыми.

1. Пусть $\xi \geqslant 0$. Тогда \exists последовательность \mathcal{F}_{ξ} -измеримых случайных величин $\{\xi_n, n \in \mathbb{N}\}$, такая что

$$0 \leqslant \xi_n \uparrow \xi$$

2. Если ξ – произвольная случайная величина, то \exists последовательность \mathcal{F}_{ξ} измеримых простых случайных величин $\{\xi_n, n \in \mathbb{N}\}$, такая что

$$\forall n \in \mathbb{N} : |\xi_n| \leqslant |\xi|, \lim_{n \to +\infty} \xi_n = \xi$$

Доказательство. 1. Предъявим ξ_n в явном виде:

$$\xi_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbb{I}_{\left\{\frac{k-1}{2^n} \leqslant \xi < \frac{k}{2^n}\right\}}$$

Легко видеть, что $0 \leqslant \xi_n \leqslant \xi_{n+1}$ и $\xi = \lim_{n \to +\infty} \xi_n$. Кроме того, $\forall n : \xi_n$ – борелевская функция от $\xi \Rightarrow \xi_n$ – по (8.1) это \mathcal{F}_{ξ} -измеримая случайная величина.

2. Приближаем ξ^+ и ξ^- по предыдущему пункту, затем берём разность

9 Независимости произвольного набора случайных величин

Определение 9.1. Случайные векторы $\{\xi_{\alpha}, \alpha \in \mathfrak{A}\}$ называются независимыми в совокупности, если независимы в совокупности порождённые ими σ -алгебры.

Следствие. Случайные векторы $\xi_1, \cdots, \xi_n, \xi_i \in \mathbb{R}^{k_i}, i = \overline{1,n}$ независимы в совокупности \Leftrightarrow

$$\forall B_1, \dots, B_n \in \mathcal{B}(\mathbb{R}^{k_i}) : P(\xi_1 \in B_1, \dots, \xi_n \in B_n) = \prod_{i=1}^n P(\xi_i \in B_i)$$

Лемма 9.1. Критерий независимости в терминах функций распределения Случайные величины ξ_1, \dots, ξ_n независимы в совокупности \Leftrightarrow

$$\forall x_1, \dots, x_n \in \mathbb{R} : P(\xi_1 \leqslant x_1, \dots, \xi_n \leqslant x_n) = \prod_{i=1}^n P(\xi_i \leqslant x_i)$$

To есть функция распределения вектора распадается в произведение функций распределения компонент.

Доказательство. ⇒ очевидно из следствия выше.

 \Leftarrow Проверим $\mathcal{M}_j = \{\{\xi_j \leqslant x\}: x \in \mathbb{R}\}$ – подходящая π -система. Очевидно, что \mathcal{M}_j – это π -система и $\sigma(\mathcal{M}_j) \subset \mathcal{F}_{\xi_j}$.

Тогда $\forall A \in \mathcal{M}_i$ имеет вид

$$A = \{\xi_i \in B\}, B \in \mathcal{B}(\mathbb{R})$$

Тогда введём

$$\mathcal{D} := \{ B \in \mathcal{B}(\mathbb{R}) : \{ \xi_i \in B \} \in \sigma(\mathcal{M}_i) \}$$

Тогда \mathcal{D} – это тоже σ -алгебра:

1.

$$\{\xi_i \in \mathbb{R}\} = \Omega \in \sigma(\mathcal{M}_i) \Rightarrow \mathbb{R} \in \mathcal{D}$$

2.

$$\{\xi_j \in B_1 \cap B_2\} = \{\xi_j \in B_1\} \cap \{\xi_j \in B_2\} \in \sigma(\mathcal{M}_j) \Rightarrow B_1 \cap B_2 \in \mathcal{D}$$

3. Аналогично

$$B \in \mathcal{D} \Rightarrow \overline{B} \in \mathcal{D}$$

4. Аналогично

$$B_i \in \mathcal{D}, i \in \mathbb{N} \Rightarrow \bigcup_{i=1}^{\infty} B_i \in \mathcal{D}$$

По построению все полуинтервалы $(-\infty, x] \in \mathcal{D} \Rightarrow \mathcal{B}(\mathbb{R}) \subset \mathcal{D}$. Значит, $\sigma(M_j) = \mathcal{F}_{\xi_j}$. Тогда, применяя (3.1), получим требуемое.

Замечание. То же самое верно и для случайных векторов.

 ξ_1, \cdots, ξ_n независимы в совокупности \Leftrightarrow

$$\forall \vec{x}_1, \dots, \vec{x}_n : P(\xi_1 \leqslant \vec{x}_1, \dots, \xi_n \leqslant \vec{x}_n) = \prod_{k=1}^n P(\xi_1 \leqslant \vec{x}_1)$$

Лемма 9.2. О независимости борелевских функций от независимых случайных величин. Пусть ξ_1, \dots, ξ_n — независимые случайные векторы, $\xi_i \in \mathbb{R}^{k_i}, k_i \in \mathbb{N}, i = \overline{1, n}$. Пусть $f_i : \mathbb{R}^{k_i} \to \mathbb{R}^{m_i}, i = \overline{1, n}$ — борелевские функции. Положим $\eta_i = f_i(\xi_i)$. Тогда η_1, \dots, η_n — независимые в совокупности.

Доказательство. η_1, \dots, η_n независимы в совокупности $\Leftrightarrow \mathcal{F}_{\eta_1}, \dots, \mathcal{F}_{\eta_n}$ независимы в совокупности.

Но $\mathcal{F}_{\eta_i}\subset\mathcal{F}_{\xi_i}\Rightarrow\mathcal{F}_{\eta_1},\cdots,\mathcal{F}_{\eta_n}$ независимы как подсистемы в независимых σ -алгебрах.

Следствие. $[\xi_1, \cdots, \xi_{n_1}], [\xi_{n_1+1}, \cdots, \xi_{n_1+n_2}], \cdots, [\xi_{n_1+\cdots+n_{k-1}+1}, \cdots, \xi_{n_1+\cdots+n_k}]$ – независимые блоки случайных величин. Пусть $f_j: \mathbb{R}^{n_j} \to \mathbb{R}, j=\overline{1,k}$ – борелевские функции. Тогода $f_1(\xi_1, \cdots, \xi_{n_1}), f_2(\xi_{n_1+1}, \cdots, \xi_{n_1+n_2}), \cdots, f_k(\xi_{n_1+\cdots+n_{k-1}+1}, \cdots, \xi_{n_1+\cdots+n_k})$ – независимые в совокупности случайные величины.

Доказательство. Пускай $\eta_1 := (\xi_1, \cdots, \xi_{n_1}), \cdots, \eta_k := (\xi_{n_1 + \cdots + n_{k-1} + 1}, \cdots, \xi_{n_1 + \cdots + n_k})$. По предыдущей лемме $\eta_i, i = \overline{1, k}$ будут независимы в совокупности.

10 Теорема о математическом ожидании произведения независимых случайных величин с конечными математическими ожиданиями

Теорема 10.1. О математическом ожидании произведения независимых случайных величин с конечными математическими ожиданиями.

Пусть ξ, η – независимые случайные величины, $E\xi, E\eta$ – конечные. Тогда $E\xi\eta$ тоже конечно, причём $E\xi\eta = E\xi \cdot E\eta$.

Доказательство. Пусть сначала ξ, η – простые случайные величины, то есть

$$\xi = \sum_{i=1}^{n} x_i \mathbb{I}\{\xi = x_i\}; \ \eta = \sum_{j=1}^{m} y_j \mathbb{I}\{\eta = y_j\}$$

где x_1, \cdots, x_n – значения ξ , а y_1, \cdots, y_j – значения η . Тогда

$$\xi \eta = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j \mathbb{I}\{\xi = x_i, \eta = y_j\}$$

Берём E от обеих частей:

$$E\xi\eta = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j P(\xi = x_i, \eta = y_j) \stackrel{\perp}{=} \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j P(\xi = x_i) P(\eta = y_j) = \left(\sum_{i=1}^{n} x_i P(\xi = x_i)\right) \left(\sum_{j=1}^{m} y_j P(\eta = y_j)\right) = E\xi \cdot E\eta$$

Далее, пусть $\xi, \eta \geqslant 0$ — неотрицательные случайные величины. Тогда рассмотрим последовательности простых случайных величин $\{\xi_n, n \in \mathbb{N}\}, \{\eta_m, m \in \mathbb{N}\}$, такие что

$$0 \leqslant \xi_n \uparrow \xi; \quad 0 \leqslant \eta_m \uparrow \eta$$

и $\forall n \in \mathbb{N}: \ \xi_n$ является \mathcal{F}_{ξ} -измеримой, $\eta_n - \mathcal{F}_{\eta}$ -измеримой.

Следовательно, $0 \leqslant \xi_n \eta_n \uparrow \xi \eta$ и $\forall n \in \mathbb{N} : \xi_n \perp \!\!\! \perp \eta_n$. По определению мат. ожидания:

$$E\xi\eta = \lim_{n \to +\infty} E\xi_n \eta_n \stackrel{\perp}{=} \lim_{n \to +\infty} E\xi_n \cdot \lim_{n \to +\infty} E\eta_n = E\xi \cdot E\eta$$

Теперь пусть ξ, η — произвольные случайные величины. Тогда $\xi^{\pm} \perp \!\!\! \perp \eta^{\pm}$, как функции от независимых случайных величин. Причём

$$(\xi \eta)^+ = \xi^+ \eta^+ + \xi^- \eta^-; \quad (\xi \eta)^- = \xi^+ \eta^- + \xi^- \eta^+$$

По определению

$$E\xi\eta = E(\xi\eta)^{+} - E(\xi\eta)^{-} = E\xi^{+}\eta^{+} + E\xi^{-}\eta^{-} - E\xi^{+}\eta^{-} - E\xi^{-}\eta^{+} \stackrel{\perp}{=} E\xi^{+} \cdot E\eta^{+} + E\xi^{-} \cdot E\eta^{-} - E\xi^{+} \cdot E\eta^{-} - E\xi^{-} \cdot E\eta^{+} = (E\xi^{+} - E\xi^{-})(E\eta^{+} - E\eta^{-}) = E\xi \cdot E\eta$$

11 Теорема о замене переменных в интеграле Лебега...

Теорема 11.1. О замене переменных в интеграле Лебега.

Пусть ξ — случайный вектор из \mathbb{R}^m на $(\Omega, \mathcal{F}, P), P_{\xi}$ — его распределение. Тогда $\forall g: \mathbb{R}^m \to \mathbb{R}$ — борелевской функции, выполнено

$$Eg(\xi) = \int_{\Omega} g(\xi)dP = \int_{\mathbb{R}^m} g(x)P_{\xi}(dx)$$

Доказательство. Пусть сначала $g(x) = \mathbb{I}_A(x)$, где $A \in \mathcal{B}(\mathbb{R}^m)$. Тогда

$$Eg(\xi) = E\mathbb{I}\{\xi \in A\} = P(\xi \in A) = P_{\xi}(A) = \int_{A} P_{\xi}(dx) = \int_{\mathbb{R}^{m}} \mathbb{I}_{A}(x) P_{\xi}(dx) = \int_{\mathbb{R}^{m}} g(x) P_{\xi}(dx)$$

В формуле из утверждения теоремы обе части линейны по g. Равенство верно для индикаторов \Rightarrow верно для простых функций.

Если $g \geqslant 0$, то рассмотрим последовательность простых функций $0 \leqslant g_n \uparrow g$. Тогда

$$\int_{\mathbb{R}^m} g(x) P_{\xi}(dx) \stackrel{n \to +\infty}{\leftarrow} \int_{\mathbb{R}^m} g_n(x) P_{\xi}(dx) = E g_n(\xi) \stackrel{n \to +\infty}{\rightarrow} E g(\xi)$$

для неотрицательных доказали.

Если g – произвольная функция, то раскладываем $g=g^+-g^-$ и пользуемся линейностью.

Причём все математические ожидания будут конечны, бесконечны и неопределены одновременно. \Box

Следствие. 1. Для вычисления $Eg(\xi)$ достаточно знать распределение P_{ξ} .

2. Если распределение ξ, η совпадают, то \forall борелевской функции g(x) выполнено

$$Eg(\xi) = Eg(\eta)$$

3. $Если \xi$ – случайная величина, то

$$E\xi = \int_{\mathbb{R}} x P_{\xi}(dx)$$

Замечание.

$$dF(x) := P(dx)$$

где F – функция распределения вероятностной меры P.

Определение 11.1. Пусть P – вероятностная мера на $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$, μ – σ -конечная мера на $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$. Мера P имеет плотность $p(t) \geqslant 0$ по мере μ , если

$$\forall B \in \mathcal{B}(\mathbb{R}^m) : P(B) = \int_B p(t)\mu(dt)$$

Теорема 11.2. О плотности.

Пусть случайный вектор $\xi \in \mathbb{R}^m$ имеет распределение P_{ξ} , и P_{ξ} имеет плотность p(t) по σ -конечной мере на $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$. Тогда \forall борелевской функции $g(x) : \mathbb{R}^m \to \mathbb{R}$ выполнено

$$Eg(\xi) = \int_{\mathbb{R}^m} g(x) P_{\xi}(dx) = \int_{\mathbb{R}^m} g(x) p(x) \mu(dx)$$

Доказательство. Пусть сначала $g(x) = \mathbb{I}_A(x)$, где $A \in \mathcal{B}(\mathbb{R}^m)$. Тогда

$$Eg(\xi) = P(\xi \in A) = P_{\xi}(A) = \int_{A} p(x)\mu(dx) = \int_{\mathbb{R}^{m}} \mathbb{I}_{A}(x)p(x)\mu(dx) = \int_{\mathbb{R}^{m}} g(x)p(x)\mu(dx)$$

Обе части доказываемого равенства линейны по $g\Rightarrow$ формула верна для простых функний.

Если $g \geqslant 0$, то рассмотрим последовательность простых функций $\{g_n, n \in \mathbb{N}\}$, такую что $0 \leqslant g_n(x) \uparrow g(x)$. Тогда по определению интеграла Лебега:

$$Eg(\xi) = \lim_{n \to +\infty} Eg_n(\xi) = \lim_{n \to +\infty} \int_{\mathbb{R}^m} g_n(x)p(x)\mu(dx) = \int_{\mathbb{R}^m} g(x)p(x)\mu(dx)$$

(по теореме о монотонной сходимости)

Для произвольной g раскладываем $g(x) = g^+ - g^-$ и пользуемся линейностью. \square

Следствие. Пусть ξ – дискретная случайная величина, сосредоточенная на X. Тогда

$$Eg(\xi) = \sum_{x \in X} g(x)P(\xi = x)$$

 \mathcal{A} оказательство. Мы знаем, что $p(x)=P_{\xi}(\{x\})=P(\xi=x)$. Тогда

$$Eg(\xi) = \int_{\mathbb{R}} g(x)p(x)\mu(dx) = \sum_{x \in X} g(x)P(\xi = x)$$

Следствие. Пусть ξ – абсолютно непрерывная случайная величина с плотностью p(x). Тогда

 $Eg(\xi) = \int_{\mathbb{R}} g(x)p(x)dx$

Следствие. Пусть ξ – случайный вектор из \mathbb{R}^m с плотностью p(x). Тогда

$$Eg(\xi) = \int_{\mathbb{R}^m} g(\vec{x}) p(\vec{x}) d\vec{x}$$

12 Прямое произведение вероятностных пространств

Определение 12.1. Пусть $(\Omega_1, \mathcal{F}_1, P_1)$ и $(\Omega_2, \mathcal{F}_2, P_2)$ – два вероятностных пространства. Их прямым произведением называется вероятностное пространство (Ω, \mathcal{F}, P) , где

- 1. $\Omega = \Omega_1 \times \Omega_2$
- 2. $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma(B_1 \times B_2: B_i \in \mathcal{F}_i)$ σ -алгебра, порождённая прямоугольниками.
- 3. $P = P_1 \times P_2$ вероятностная мера на (Ω, \mathcal{F}) , такая, что $P(B_1 \times B_2) = P_1(B_1)P_2(B_2)$

Лемма 12.1. Такая вероятностая мера P существует u единственна.

Доказательство. Рассмотрим \mathcal{A} – конечное объединение непересекающихся прямоугольников. Тогда \mathcal{A} – алгебра и $\sigma(\mathcal{A}) = \mathcal{F}$. Определим P на \mathcal{A} по конечной аддитивности. Остаётся проверить, что P – счётно-аддитивна на \mathcal{A} .

Пусть $C = \sqcup_i C_i$; $C_i, C \in \mathcal{A}$. Надо проверить, что

$$P(C) = \sum_{i=1}^{\infty} P(C_i)$$

Достаточно проверить для прямоугольников:

$$C = A \times B, C_i = A_i \times B_i$$

Представим в виде индикаторов:

$$\mathbb{I}_{A\times B}(\omega_1,\omega_2) = \sum_{i=1}^{\infty} \mathbb{I}_{A_i\times B_i}(\omega_1,\omega_2)$$

или

$$\mathbb{I}_{A}(\omega_{1}) \cdot \mathbb{I}_{B}(\omega_{2}) = \sum_{i=1}^{\infty} \mathbb{I}_{A_{i}}(\omega_{1}) \mathbb{I}_{B_{i}}(\omega_{2})$$

Зафиксируем $\omega_1 \in \Omega_1$ и возьмём E от обеих частей неравенства в $(\Omega_2, \mathcal{F}_2, P_2)$:

$$\mathbb{I}_A(\omega_1)P_2(B_2) = \sum_{i=1}^{\infty} \mathbb{I}_{A_i}(\omega_1)P_2(B_i)$$

Теперь берём E в $(\Omega_1, \mathcal{F}_1, P_1)$:

$$P_1(A)P_2(B) = \sum_{i=1}^{\infty} P_1(A_i)P_2(B_i)$$

Теорема 12.1. Фубини $(6/\partial)$.

Пусть (Ω, \mathcal{F}, P) – это прямое произведение $(\Omega_1, \mathcal{F}_1, P_1)$ и $(\Omega_2, \mathcal{F}_2, P_2)$. Пусть случайная величина $\xi: \Omega \to \mathbb{R}$ такова, что

$$\int_{\Omega} \xi dP < +\infty$$

Тогда

$$\int_{\Omega_i} \xi(\omega_1, \omega_2) P_i(d\omega_i)$$

конечен почти наверное по мере P_{3-i} , является \mathcal{F}_{3-i} измеримой функцией и, кроме того,

$$\int_{\Omega} \xi(\omega_1, \omega_2) P(d\omega_1, d\omega_2) = \int_{\Omega_1} \left(\int_{\Omega_2} \xi(\omega_1, \omega_2) P_2(d\omega_2) \right) P_1(d\omega_1) = \int_{\Omega_2} \left(\int_{\Omega_1} \xi(\omega_1, \omega_2) P_1(d\omega_1) \right) P_2(d\omega_2)$$

13 Совместное распределение...

Утверждение 13.1. Если случайные величины ξ, η – независимые, то

$$P_{(\xi,\,\eta)} = P_{\xi} \times P_{\eta}$$

Доказательство.

$$P_{(\xi,\eta)}(B_1 \times B_2) = P((\xi,\eta) \in B_1 \times B_2) = P(\xi \in B_1, \eta \in B_2) \stackrel{\perp}{=} P_{\xi}(B_1)P_{\eta}(B_2)$$

Лемма 13.1. О свёртке распределений.

Пусть ξ, η – это независимые случайные величины с функциями распределения F_{ξ}, F_{η} . Тогда $\xi + \eta$ имеет следующую функцию распределения:

$$F_{\xi+\eta}(z) = \int_{\mathbb{R}} F_{\xi}(z-x)dF_{\eta}(x) = \int_{\mathbb{R}} F_{\eta}(z-x)dF_{\xi}(x)$$

Доказательство.

$$F_{\xi+\eta}(z) = P(\xi+\eta\leqslant z) = \int_{\mathbb{R}^2} \mathbb{I}\{x+y\leqslant z\} P_{(\xi,\,\eta)}(dx,dy) \overset{\text{Фубини}}{=} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \mathbb{I}\{x+y\leqslant z\} P_{\xi}(dx)\right) P_{\eta}(dy) = \int_{\mathbb{R}} F_{\xi}(z-y) dF_{\eta}(y)$$

Следствие. Формула свёртки.

Пусть $\xi \perp \eta$ с плотностями p_{ξ}, p_{η} . Тогда $\xi + \eta$ тоже имеет плотность, причём

$$p_{\xi+\eta}(z) = \int_{\mathbb{R}} p_{\xi}(z-x)p_{\eta}(x)dx = \int_{\mathbb{R}} p_{\eta}(z-x)p_{\xi}(x)dx$$

Доказательство. По лемме о свёртке:

$$F_{\xi+\eta}(z) = \int_{\mathbb{R}} F_{\xi}(z-x) dF_{\eta}(x) = \int_{\mathbb{R}} \left(\int_{-\infty}^{z-x} p_{\xi}(y) dy \right) p_{\eta}(x) dx \stackrel{y':=y+x}{=}$$

$$\int_{\mathbb{R}} \left(\int_{-\infty}^{z} p_{\xi}(y'-x) dy' \right) p_{\eta}(x) dx \stackrel{\Phi \text{убини}}{=} \int_{-\infty}^{z} \left(\int_{\mathbb{R}} p_{\xi}(y'-x) p_{\eta}(x) dx \right) dy' =$$

$$\int_{-\infty}^{z} p_{\xi+\eta}(y') dy'$$

14 Дисперсия, ковариация и коэффициент корреляции

Определение 14.1. Дисперсией случайной величины ξ называется

$$D\xi = E(\xi - E\xi)^2$$

если $E\xi$ конечно.

Определение 14.2. Ковариацией случайных величин ξ, η называется

$$cov (\xi, \eta) = E(\xi - E\xi)(\eta - E\eta)$$

если $E\xi$, $E\eta$ конечны.

Определение 14.3. ξ и η называются некоррелированными, если

$$cov(\xi, \eta) = 0$$

Определение 14.4. Коэффициентом корреляции случайных величин ξ, η называется

$$\rho(\xi, \eta) = \frac{\text{cov } (\xi, \eta)}{\sqrt{D\xi \cdot D\eta}}$$

если $D\xi$, $D\eta$ положительная и конечная.

Лемма 14.1. Свойства дисперсии и ковариации.

- 1. Ковариация билинейна
- 2. $\forall c \in \mathbb{R} : D(c\xi) = c^2 D(\xi), D(\xi + c) = D(\xi)$
- 3. $cov(\xi, \eta) = E\xi\eta E\xi \cdot E\eta$. В частности $D\xi = E\xi^2 (E\xi)^2$
- 4. Неравенство Коши-Буняковского:

$$|E\xi\eta| \leqslant \sqrt{E\xi^2 \cdot E\eta^2}$$

причём равенство достигается $\Leftrightarrow \xi, \eta$ линейно зависимы.

5. $|\rho(\xi,\eta)| \leqslant 1$ и равен $1 \Leftrightarrow \xi - E\xi, \eta - E\eta$ линейно зависимы почти наверное

 $\ \ \, \mathcal{A}$ оказательство. 1-3 следуют из свойств математического ожидания. 4 было доказано на OBИТМе.

Для последнего свойства рассмотрим

$$\xi' := \frac{\xi - E\xi}{\sqrt{D\xi}}, \eta' := \frac{\eta - E\eta}{\sqrt{D\eta}} \Rightarrow \rho(\xi, \eta) = E\xi'\eta'$$

По неравенству КБ:

$$|\rho(\xi,\eta)| \leqslant \sqrt{E(\xi')^2 E(\eta')^2} = 1$$

Равенство достигается $\Leftrightarrow \xi', \eta'$ линейно зависимы почти наверное.

Следствие. Если ξ_1, \dots, ξ_n – попарно некоррелированные случайные величины с конечными дисперсиями, то

$$D(\xi_1 + \dots + \xi_n) = \sum_{k=1}^n D\xi_k$$

Доказательство.

$$D(\xi_1 + \dots + \xi_n) = \cos(\xi_1 + \dots + \xi_n, \xi_1 + \dots + \xi_n) = \sum_{i,j=1}^n \cos(\xi_i, \xi_j) = \sum_{i=1}^n \cos(\xi_i, \xi_i) = \sum_{i=1}^n \cot(\xi_i, \xi_i) = \sum_{i=1}^n D\xi_i$$

Следствие. Если ξ_1, \dots, ξ_n – независимые случайные величины с конечными дисперсиями, то

$$D(\xi_1 + \dots + \xi_n) = \sum_{k=1}^n D\xi_k$$

Доказательство. Независимые \Rightarrow некоррелированные

Определение 14.5. Пусть $\xi=(\xi_1,\cdots,\xi_n)$ – случайный вектор. Тогда $E\xi$ называется вектор из матожиданий компонент:

$$E\xi = (E\xi_1, \cdots, E\xi_n)$$

Определение 14.6. Дисперсией (матрицей ковариаций) вектора ξ называется матрица:

$$D\xi = (\text{cov }(\xi_i, \xi_j); i, j = \overline{1, n})$$

Утверждение 14.1. *Матрица ковариаций – симметричная и неотрицательно определённая матрица.*

Доказательство. cov $(\xi_i, \xi_j) = \text{cov } (\xi_j, \xi_i)$ по определению ковариации \Rightarrow симметричная. Пусть $\xi \in \mathbb{R}^n$, возьмём $\vec{x} \in \mathbb{R}^n$:

$$\langle D\xi \cdot \vec{x}, \vec{x} \rangle = \sum_{i,j=1}^{n} \operatorname{cov} (\xi_i, \xi_j) x_i x_j = \sum_{i,j=1}^{n} \operatorname{cov} (x_i \xi_i, x_j \xi_j) = \operatorname{cov} \left(\sum_{i=1}^{n} x_i \xi_i, \sum_{j=1}^{n} x_j \xi_j \right) = D \left(\sum_{i=1}^{n} x_i \xi_i \right) \geqslant 0$$

15 Сходимости случайных величин

Определение 15.1. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}$ сходится к случайной величине ξ :

1. С вероятностью 1 (почти наверное), если

$$P\left(\lim_{n\to+\infty}\xi_n=\xi\right)=1$$

Обозначение: $\xi_n \stackrel{\text{п.н.}}{\to} \xi$

2. По вероятности, если:

$$\forall \varepsilon > 0: P(|\xi_n - \xi| \geqslant \varepsilon) \stackrel{n \to +\infty}{\to} 0$$

Обозначение: $\xi_n \stackrel{P}{\to} \xi$

3. В среднем порядка p > 0 (в L^p), если

$$E|\xi_n - \xi|^p \stackrel{n \to +\infty}{\to} 0$$

Обозначение: $\xi_n \stackrel{L^p}{\to} \xi$

4. По распределению, если $\forall f: \mathbb{R} \to \mathbb{R}$ – непрерывных ограниченных функций выполнено

$$Ef(\xi_n) \stackrel{n \to +\infty}{\to} Ef(\xi)$$

Обозначение: $\xi_n \stackrel{d}{\to} \xi$

Теорема 15.1. Критерий сходимости с вероятностью 1.

Cлучайные величины $\xi_n \stackrel{n.н.}{\to} \xi \Leftrightarrow$

$$\forall \varepsilon > 0: P\left(\sup_{k \ge n} |\xi_k - \xi| > \varepsilon\right) \stackrel{n \to +\infty}{\longrightarrow} 0$$

Доказательство. Рассмотрим

$$A_k^{\varepsilon} = \bigcup_{k \ge n} \{ |\xi_k - \xi| > \varepsilon \} = \{ \sup_{k \ge n} |\xi_k - \xi| > \varepsilon \}$$

Тогда

$$\{\xi_n \not\to \xi\} = \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} A_n^{\frac{1}{m}}$$

Значит

$$P(\xi_n \not\to \xi) = 0 \Leftrightarrow P\left(\bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} A_n^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall m \in \mathbb{N} : P\left(\bigcap_{n=1}^{\infty} A_n^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall m \in \mathbb{N} : \lim_{n \to +\infty} P\left(A_n^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 : \lim_{n \to +\infty} P(A_n^{\varepsilon}) = 0$$

Теорема 15.2. О взаимоотношении различных видов сходимостей.

1.
$$\xi_n \stackrel{n.n.}{\to} \xi \Rightarrow \xi_n \stackrel{P}{\to} \xi$$

2.
$$\xi_n \stackrel{L^p}{\to} \xi \Rightarrow \xi_n \stackrel{P}{\to} \xi$$

3.
$$\xi_n \stackrel{P}{\to} \xi \Rightarrow \xi_n \stackrel{d}{\to} \xi$$

Доказательство. 1. $\forall \varepsilon > 0$ выполняется:

$$P(|\xi_n - \xi| \geqslant \varepsilon) \leqslant P\left(|\xi_n - \xi| > \frac{\varepsilon}{2}\right) \leqslant P\left(\sup_{k \geqslant n} |\xi_k - \xi| > \frac{\varepsilon}{2}\right) \stackrel{n \to +\infty}{\to} 0$$

в силу критерия сходимости с вероятностью 1.

2. $\forall \varepsilon > 0$ выполняется:

$$P(|\xi_n - \xi| \geqslant \varepsilon) = P(|\xi_n - \xi|^p \geqslant \varepsilon^p) \overset{\text{H-BO Mapkoba}}{\leqslant} \frac{E|\xi_n - \xi|^p}{\varepsilon^p} \overset{n \to +\infty}{\to} 0$$

3. Пусть $f: \mathbb{R} \to \mathbb{R}$ — произвольная ограниченная непрерывная функция. Возьмём $\varepsilon > 0$. Пусть $|f(x)| \leq M, \forall x \in \mathbb{R}$. Пусть N > 0 таково, что $P(|\xi| > N) \leq \frac{\varepsilon}{2}$. В силу равномерной непрерывности f на отрезках выберем $\delta > 0$, такое, что

$$\forall x \in [-N, N] \ \forall y, |x - y| < \delta : |f(x) - f(y)| \le \frac{\varepsilon}{4M}$$

Рассмотрим разбиение Ω :

$$A_1 = \{ |\xi_n - \xi| \le \delta, |\xi| \le N \}; \quad A_2 = \{ |\xi_n - \xi| \le \delta, |\xi| > N \}; \quad A_3 = \{ |\xi_n - \xi| > \delta \}$$

Значит можем оценить

$$|Ef(\xi_n) - Ef(\xi)| \le E|f(\xi_n) - f(\xi)| = \sum_{i=1}^3 E(|f(\xi_n) - f(\xi)| \cdot \mathbb{I}_{A_i})$$

На A_1 выполнено $|f(\xi_n)-f(\xi)|\leqslant \frac{\varepsilon}{2}\Rightarrow E|f(\xi_n)-f(\xi)|\mathbb{I}_A\leqslant \frac{\varepsilon}{2}$. На A_2,A_3 выполнено $|f(\xi_n)-f(\xi)|\leqslant 2M$. Тогда

$$\sum_{i=2}^{3} E|f(\xi_n) - f(\xi)|\mathbb{I}_{A_i} \le 2M(P(A_2) + P(A_3)) \le 2M(P(|\xi| > N) + P(|\xi_n - \xi| > \delta)) \le \varepsilon$$

в силу сходимости по вероятности.

В итоге получили, что

$$\overline{\lim_{n \to +\infty}} |Ef(\xi_n) - Ef(\xi)| \leq \varepsilon$$

В силу произвольности $\varepsilon > 0$ получаем, что $Ef(\xi_n) \stackrel{n \to +\infty}{\to} Ef(\xi)$

16 Достаточное условие сходимости с вероятностью...

Лемма 16.1. Достаточное условие сходимости с вероятностью 1. Ecnu

$$\forall \varepsilon > 0 : \sum_{n=1}^{\infty} P(|\xi_n - \xi| \geqslant \varepsilon) < +\infty$$

 $mo \ \xi_n \stackrel{n.h.}{\to} \xi$

Доказательство. Рассмотрим

$$P(\sup_{k\geqslant n}|\xi_k - \xi| > \varepsilon) = P\left(\bigcup_{k=n}^{\infty} \{|\xi_k - \xi| > \varepsilon\}\right) \leqslant \sum_{k=n}^{\infty} P(|\xi_k - \xi| > \varepsilon) \leqslant \sum_{k=n}^{\infty} P(|\xi_k - \xi| > \varepsilon) \stackrel{n \to +\infty}{\to} 0$$

В силу стремления остатка сходящегося ряда к нулю.

Тогда по критерию $\xi_n \stackrel{\text{п.н.}}{\to} \xi$

Следствие. Если $\xi_n \stackrel{P}{\to} \xi$, то \exists подпоследовательность $\{\xi_{n_k}, k \in \mathbb{N}\}$, такая что

$$\xi_{n_k} \stackrel{n.h, k \to +\infty}{\to} \xi$$

$$P(|\xi_{n_k} - \xi| \geqslant \frac{1}{k}) \leqslant 2^{-k}$$

выбор возможен в силу сходимости по вероятности.

Проверим достаточное условие: пусть $\varepsilon > 0$, выберем $k_0 > \frac{1}{\varepsilon}$. Тогда

$$\sum_{k=k_0}^{\infty} P(|\xi_{n_k} - \xi| \geqslant \varepsilon) \leqslant \sum_{k=k_0}^{\infty} P(|\xi_{n_k} - \xi| \geqslant \frac{1}{k}) \leqslant \sum_{k=k_0}^{\infty} 2^{-k} < +\infty \Rightarrow \xi_{n_k} \overset{\text{\tiny I.H.}, k \to +\infty}{\to} \xi$$

Теорема 16.1. УЗБЧ в форме Кантелли.

 $\Pi y cmb \ \{\xi_n, n \in \mathbb{N}\}$ – это независимые случайные величины, такие, что

$$\exists c > 0 \ \forall n \in \mathbb{N} : \ E(\xi_n - E\xi_n)^4 \leqslant c$$

Обозначим $S_n = \xi_1 + \dots + \xi_n$. Тогда

$$\frac{S_n - ES_n}{n} \stackrel{n.n., n \to +\infty}{\to} 0$$

Доказательство. Без ограничения общности считаем, что $\forall n \in \mathbb{N}: E\xi_n = 0$, иначе рассмотрим

$$\xi_n' = \xi_n - E\xi_n$$

Хотим проверить достаточное условие. Для $\varepsilon > 0$:

$$P\left(\left|\frac{S_n}{n}\right|\geqslant\varepsilon\right)=P\left(\frac{S_n^4}{n^4}\geqslant\varepsilon^4\right)\overset{\text{H-BO Mapkoba}}{\leqslant}\frac{ES_n^4}{\varepsilon^4n^4}$$

Но

$$ES_n^4 = \sum_{i,j,k,l=1}^n E\xi_i \xi_j \xi_k \xi_l = \sum_{i=1}^n ES_i^4 + 6\sum_{i < j} ES_i^2 ES_j^2$$

По условию $\forall i \in \mathbb{N}: ES_i^4 \leqslant c \Rightarrow \forall i \in \mathbb{N}: E\xi_i^2 \leqslant \sqrt{E\xi_i^4} \leqslant \sqrt{c} \Rightarrow$

$$ES_n^4 \leqslant n \cdot c + 6 \cdot c \cdot c_n^2 = O(n^2) \Rightarrow \frac{ES_n^4}{\varepsilon^4 n^4} = O\left(\frac{1}{n^2}\right)$$

Значит ряд сходится и работает достаточно условие сходимости с вероятностью 1.

Замечание. Смысл УЗБЧ.

Теоретическое обоснование принципа устойчивых частот. Пусть

$$\xi_i = \mathbb{I}\{A$$
 произошло в i -ом эксперименте $\}$

Тогда частота появления A стремится κ :

$$\nu_n(A) = \frac{\xi_1 + \dots + \xi_n}{n} \stackrel{\text{\tiny II.H.}}{\to} E\xi_1 = P(A)$$

17 Фундаментальность с вероятностью 1

Определение 17.1. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}$ фундаментальна с вероятностью 1, если

$$P(\{\xi_n, n \in \mathbb{N}\}\$$
фундаментальна $) = 1$

Утверждение 17.1. Последовательность $\{\xi_n, n \in \mathbb{N}\}$ сходится почти наверное \Leftrightarrow она фундаментальна с вероятностью 1.

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

$$P(\{\xi_n, n \in \mathbb{N}\}\$$
фундаментальна $)\geqslant P(\xi_n \to \xi)=1$

 \Leftarrow Обозначим $A = \{\{\xi_n, n \in \mathbb{N}\}$ фундаментальна $\}$. Тогда $\forall \omega \in A : \{\xi_n(\omega), n \in \mathbb{N}\}$ имеет предел $\xi(\omega)$. Положим $\xi(\omega) = 0, \forall \omega \notin A$. Тогда

$$\forall \omega \in \Omega : \ \xi(\omega) = \lim_{n \to +\infty} (\xi_n(\omega) \mathbb{I}_A(\omega))$$

Причём ξ – это случайная величина, как предел случайных величин.

Наконец,
$$P(\xi_n \to \xi) \geqslant P(A) = 1$$

Теорема 17.1. Неравенство Колмогорова.

Пусть ξ_1, \dots, ξ_n — независимые случайные величины, $E\xi_k = 0, E\xi_k^2 < +\infty, \forall k = \overline{1,n}.$ Обозначим $S_k = \xi_1 + \dots + \xi_k$. Тогда

$$\forall \varepsilon > 0 : P\left(\max_{1 \le k \le n} |S_k| \ge \varepsilon\right) \le \frac{ES_n^2}{\varepsilon^2}$$

Доказательство. Введём обозначения

$$A := \{ \max_{1 \le k \le n} |S_k| \ge \varepsilon \}; \ A_k := \{ |S_k| \ge \varepsilon, |S_i| < \varepsilon \ \forall i = \overline{1, k - 1} \}$$

Тогда $A = \bigsqcup_{i=1}^n A_i$. Продолжим рассуждения:

$$ES_n^2 \geqslant E(S_n^2 \cdot \mathbb{I}_A) = \sum_{k=1}^n E(S_n^2 \mathbb{I}_{A_k}) = \sum_{k=1}^n E((S_k + \xi_{k+1} + \dots + \xi_n)^2 \mathbb{I}_{A_k}) = \sum_{k=1}^n \left[ES_k^2 \cdot \mathbb{I}_{A_k} + E\left((\xi_{k+1} + \dots + \xi_n)^2 \cdot \mathbb{I}_{A_k}\right) + 2E(S_k \cdot \mathbb{I}_{A_k}(\xi_{k+1} + \dots + \xi_n)) \right]$$

Причём последнее слагаемое будет равно нулю, так как $(S_k \mathbb{I}_{A_k}) \perp (\xi_{k+1} + \cdots + \xi_n)$, как функции от неперескающихся наборов независимых случайных величин, и $E(\xi_{k+1} + \cdots + \xi_n) = 0$. Но $S_k^2 \mathbb{I}_{A_k} \geqslant \varepsilon^2 \mathbb{I}_{A_k}$. Тогда получим

$$ES_n^2 \geqslant \sum_{k=1}^n \varepsilon^2 E \mathbb{I}_{A_k} = \varepsilon^2 \sum_{k=1}^n P(A_k) = \varepsilon^2 P(A)$$

Теорема 17.2. Колмогорова-Хинчин о сходимости почти наверное ряда из случайных величин.

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – независимые случайные величины, $E\xi_n = 0, D\xi_n < +\infty, \forall n \in \mathbb{N}.$ Если $\sum_{n=1}^{\infty} D\xi_n < +\infty$, то ряд $\sum_{n=1}^{\infty} \xi_n$ сходится почти наверное.

Доказательство. Введём $S_n := \xi_1 + \dots + \xi_n$. Используя критерий сходимости почти наверное, хотим получить

$$\forall \varepsilon > 0 : P\left(\sup_{k \geqslant n} |S_k - S_n| > \varepsilon\right) \stackrel{n \to +\infty}{\to} 0$$

Распишем меру этого события более подробно:

$$P\left(\sup_{k\geqslant n}|S_k-S_n|>\varepsilon\right)=P\left(\bigcup_{k\geqslant n}\{|S_k-S_n|>\varepsilon\}\right)=\lim_{N\to +\infty}P\left(\bigcup_{k=n}^N\{|S_k-S_n|>\varepsilon\}\right)=\lim_{N\to +\infty}P\left(\max_{1\leqslant k\leqslant N-n}|S_{n+k}-S_n|>\varepsilon\right)^{\text{H-BO KOJMOPOPOBA}}\leq\lim_{N\to +\infty}\frac{E|S_N-S_n|^2}{\varepsilon^2}=\lim_{N\to +\infty}\frac{D(\xi_{n+1}+\dots+\xi_N)}{\varepsilon^2}=\lim_{N\to +\infty}\frac{1}{\varepsilon^2}\sum_{k=n+1}^ND\xi_k=\frac{1}{\varepsilon^2}\sum_{k=n+1}^\infty D\xi_k\stackrel{n\to +\infty}{\to}0$$

Последний переход обусловлен тем, что остаток сходящегося ряда стремится к нулю.