多元积分学

重积分

二重积分

若 f(x,y) 是平面中一个有界闭区域 D 上的有界函数。若存在 $L \in \mathbb{R}$,使得对 D 的任意分划 D_1, \cdots, D_n ,及任意 $(x_i,y_i) \in D_i$,记 $\Delta \sigma_i$ 为 D_i 的面积, $\lambda = \max_i \operatorname{diam}(D_i)$ 为分区的最大直径,有

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i) \Delta \sigma_i = L,$$

则称 f 在 D 上可积,称 L 为 f 在 D 上的二重积分,记做

$$\iint_D f(x,y)d\sigma.$$

三重积分

若f(x,y,z) 是空间中一个有界闭区域 Ω 上的有界函数。若存在 $L \in \mathbb{R}$,使得对 Ω 的任意分划 Ω_1,\cdots,Ω_n ,及任意 $(x_i,y_i,z_i)\in\Omega_i$,记 ΔV_i 为 Ω_i 的体积, $\lambda=\max_i \operatorname{diam}(\Delta V_i)$ 是分区的最大直径,有

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta V_i = L,$$

则称 f 在 Ω 上可积,称 L 为 f 在 Ω 上的二重积分,记做

$$\iiint_{\Omega} f(x, y, z) dV.$$

性质

和一元定积分一样, 重积分满足

- 线性
- 积分区域可加性
- 保序性
- 积分中值定理

需要掌握的计算技巧

- 化为累次积分
- 交换积分次序
- 利用对称性

• 变量代换

$$\iint_{D} f(x, y) dx dy = \iint_{D'} f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv$$

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega'} f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du dv dw$$

应用

- 体积
- 曲面面积
- 质心
- 转动惯量
- 引力
-

曲线与曲面积分

第一类(标量场)曲线积分

若 f(x,y) 在平面内一光滑曲线段 C 上有界。若存在 $L \in \mathbb{R}$,使得对曲线的任意划分 C_1, \dots, C_n ,及任意 $(x_i, y_i) \in C_i$,记 Δs_i 为曲线段 C_i 的弧长, $\lambda = \max_i \Delta s_i$,有

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i) \Delta s_i = L,$$

则称 f(x,y) 在曲线 C 上可积,称 L 为 f 在 C 上的(第一类)曲线积分,记为

$$\int_C f(x,y)ds.$$

第一类(标量场)曲面积分

若 f(x, y, z) 在空间内一光滑曲面 Σ 上有界。若存在 $L \in \mathbb{R}$,使得对曲线的任意划分 $\Sigma_1, \dots, \Sigma_n$,及任意 $(x_i, y_i, z_i) \in \Sigma_i$,记 ΔS_i 为曲线段 Σ_i 的面积, $\lambda = \max_i \operatorname{diam}(\Sigma_i)$ 为分区最大直径,有

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta S_i = L,$$

则称 f(x, y, z) 在曲线 Σ 上可积,称 L 为 f 在 Σ 上的(第一类)曲面积分,记为

$$\iint_{\Sigma} f(x, y, z) dS.$$

第二类(向量场)曲线积分

设向量场 $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ 在有向曲线 C 上有界, $\mathbf{t}(x,y)$ 是曲线上(取向一致)的单位切向量。则

$$\int_C [\mathbf{F}(x,y) \cdot \mathbf{t}(x,y)] ds = \int_C P(x,y) dx + Q(x,y) dy = \int_C \mathbf{F}(x,y) \cdot d\mathbf{s}$$

为 **F** 在曲线 *C* 上的(第二类)曲线积分。以上 $d\mathbf{s} = \mathbf{t} ds$.

第二类(向量场)曲面积分

设向量场 $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$ 在有向曲面 Σ 上有界, $\mathbf{n}(x, y, z)$ 是曲线上(取向一致)的单位切向量。则

$$\iint_{\Sigma} [\mathbf{F}(x, y, z) \cdot \mathbf{n}(x, y, z)] dS = \iint_{\Sigma} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy = \iint_{\Sigma} \mathbf{F}(x, y, z) \cdot d\mathbf{S}$$

为 **F** 在曲面 Σ 上的(第二类)曲面积分。以上 $d\mathbf{S} = \mathbf{n} ds$.

第二类曲线和曲面积分要注意取向!

斯托克斯定理(们)

• Newton-Leibniz 公式

$$\int_{a}^{b} df(x) = \left(\int_{A} df(x) = \int_{\partial A} f(x) = \right) f(b) - f(a)$$

• Green 公式

$$\oint_{\partial D} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

• Gauss 公式(散度公式)

$$\oint_{\partial\Omega} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\Omega} (\nabla \cdot \mathbf{F}) dV.$$

• Stokes 公式(旋度公式)

$$\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{s} = \iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$