Data 602 – Final Project Proposal

By: Mubashira Qari

Project Title: Electric Vehicles Data Analysis and Price Prediction Using Machine Learning

Describing Dataset: This dataset is about electric vehicles. It has 103 row and 14 columns.

This dataset requires detailed data cleaning before performing the data manipulation steps.

The metrics for the columns in the dataset are as below:

Vehicle Battery capacity (in KWH)

Acceleration (0-100) in Seconds

Top Speed in Km/hr

Range of Vehicle in km

The efficiency of Vehicle in Wh/km

Fast charge speed in km/hr

Drive Configuration

Number of seats

Price in Germany (Euro)

Price in the UK (Pound)

Data Source Link:

This dataset is acquired from Kaggle website, and the link is provided below:

https://www.kaggle.com/datasets/geoffnel/evs-one-electric-vehicle-dataset?select=ElectricCarData_Norm.csv

Justification for Dataset Selection:

There are multiple reasons for choosing this dataset.

First, I eagerly wanted to do the research about the electric vehicles because I am interested in buying one for myself. In terms of carbon emission, Electric cars are good for the environment by preventing greenhouse gas emission.

The operating and maintenance costs are lot lower for electric vehicles and that makes them more economical and viable in the long run.

Initially, one of the biggest challenges is range anxiety and uncomfortable feeling of not finding the charging stations within the battery range. These concerns are being taken care by the long-range batteries hitting the market and GPS apps, providing the location of the nearest charging station. And people are more likely to buy electric vehicles.

Now there are couple of questions related to electric vehicle that require analysis and those are my research questions.

Research Questions & Objectives:

The research questions for the electric vehicle's dataset are the following:

- 1- Which car has the fastest charging battery capacity?
- 2- Which vehicle has the highest efficiency?
- 3- Does a difference in power train effect the range, top speed, efficiency?
- 4- What is the correlation between the variables.
- 5- Which vehicle has the most range?
- 5- Which manufacturer has the greatest number of vehicles?
- 6- Which factors affect the price of the vehicle?
- 7- Merge the two datasets.

- 8- Upload the dataset in the SQL database for further analysis.
- 9- Predict the price of electric vehicles using machine learning.

Libraries Used for Project Implementation:

- Python Pandas
- Python NumPy
- Python Matplotlib
- SQL Database
- Python sklearn
- Python seaborn

EDA and Summary Statistics:

Below are the images of exploratory data analysis and summary statistics:

```
csv_path = 'resources/electric_car_data_norm.csv'
cars_df = pd.read_csv(csv_path, encoding="utf-8")
cars_df.head(5)
```

:										
		Brand	Model	Accel	Top Speed	Range	Efficiency	FastCharge	RapidCharge	PowerTrain
1	0	Tesla	Model 3 Long Range Dual Motor	4.6 sec	233 km/h	450 km	161 Wh/km	940 km/h	Rapid charging possible	All Wheel Drive
	1	Volkswagen	ID.3 Pure	10.0 sec	160 km/h	270 km	167 Wh/km	250 km/h	Rapid charging possible	Rear Wheel Drive
	2	Polestar	2	4.7 sec	210 km/h	400 km	181 Wh/km	620 km/h	Rapid charging possible	All Wheel Drive
	3	BMW	iX3	6.8 sec	180 km/h	360 km	206 Wh/km	560 km/h	Rapid charging possible	Rear Wheel Drive
	4	Honda	е	9.5 sec	145 km/h	170 km	168 Wh/km	190 km/h	Rapid charging possible	Rear Wheel Drive

cars_df.tail(5)

	Brand	Model	Accel	Top Speed	Range	Efficiency	FastCharge	RapidCharge
98	Nissan	Ariya 63kWh	7.5 sec	160 km/h	330 km	191 Wh/km	440 km/h	Rapid charging possible
99	Audi	e-tron S Sportback 55 quattro	4.5 sec	210 km/h	335 km	258 Wh/km	540 km/h	Rapid charging possible
100	Nissan	Ariya e- 40RCE 63kWh	5.9 sec	200 km/h	325 km	194 Wh/km	440 km/h	Rapid charging possible
101	Nissan	Ariya e- 40RCE 87kWh Performance	5.1 sec	200 km/h	375 km	232 Wh/km	450 km/h	Rapid charging possible
102	Byton	M-Byte 95 kWh 2WD	7.5 sec	190 km/h	400 km	238 Wh/km	480 km/h	Rapid charging possible

```
cars_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 103 entries, 0 to 102
Data columns (total 14 columns):
 #
     Column
                  Non-Null Count
                                   Dtype
     -----
                   -----
                                   ----
 0
     Brand
                  103 non-null
                                   object
 1
     Model
                  103 non-null
                                   object
 2
     Accel
                  103 non-null
                                   object
 3
     TopSpeed
                  103 non-null
                                   object
 4
     Range
                  103 non-null
                                   object
 5
     Efficiency
                  103 non-null
                                   object
 6
     FastCharge
                  103 non-null
                                   object
 7
     RapidCharge
                  103 non-null
                                   object
 8
     PowerTrain
                  103 non-null
                                   object
 9
     PlugType
                  103 non-null
                                   object
 10
     BodyStyle
                  103 non-null
                                   object
 11
     Segment
                  103 non-null
                                   object
 12
     Seats
                  103 non-null
                                   int64
                  103 non-null
 13
    PriceEuro
                                   int64
dtypes: int64(2), object(12)
memory usage: 11.4+ KB
```

cars_df.columns

```
# Find null values
for column in cars_df.columns:
    print(f"Column {column} has {cars_df[column].isnull().sum()} null values")

Column Brand has 0 null values
Column Model has 0 null values
Column Accel has 0 null values
Column TopSpeed has 0 null values
Column Range has 0 null values
Column Efficiency has 0 null values
Column FastCharge has 0 null values
Column RapidCharge has 0 null values
Column PowerTrain has 0 null values
Column PlugType has 0 null values
Column BodyStyle has 0 null values
```

cars_df.describe()

	Seats	PriceEuro
count	103.000000	103.000000
mean	4.883495	55811.563107
std	0.795834	34134.665280
min	2.000000	20129.000000
25%	5.000000	34429.500000
50%	5.000000	45000.000000
75%	5.000000	65000.000000
max	7.000000	215000.000000

Column Segment has 0 null values Column Seats has 0 null values Column PriceEuro has 0 null values

