GAPD HV System V02

V.Commichau¹ Hp. von Gunten²

IPP/ETHZ

22/02/2010

¹ vcommichau@phys.ethz.ch ² vgunten@phys,ethz.ch

Contents:

System Overview USB Data format Basic HV Modul 32 Channel Motherboard System Controller

Circuit Diagrams, PCB Layout, Parts list, Connectors:

Basic HV Module Circuit Diagram

PCBS

32 Channel Motherboard

Circuit Diagram PLD Diagrams

PCBS

System Controller

Circuit Diagram

PLD Diagrams

PLD sequence

PCBS

Power Supplies (HV Imax 1.6A, Inom 0.75A / 80WDC (20% occupation))

Parts List APDHVNEW

Parts List 32 Channel Motherboard

Parts List System Controller

HV connectors, input & output

System Overview

The GAPD Bias Supply Unit Version 2 delivers 416 high voltage channels with an individual programmable output voltage between 5 to 90 VDC with a 12 bit digital resolution (~20mV step width). The maximal output current of each channel is limited to 4mA for the external circuit connected, 1mA is consumed by the single HV module itself, e.g. Imax = 5mA/channel. An individual current measurement is implemented for each single channel with a 12-bit resolution, which practically results in a 1% accuracy due to the channel regulation noise effects. The complete system is built in a double height VME like crate with 14 subunits (one system controller, thirteen 32 channel motherboard units). Below the crate a fan unit is mounted and delivers the necessary air flow for cooling. As separate part a HV power supply (Umin 95VDC, Imax 2Amp) has to be connected to the GAPD Bias Supply crate.

The programming of the device is done via one USB port connected to a PC. At the very beginning the PC software has to synchronize the USB port. Depending on the unknown number of dummy data transfers, which happens during the connecting and powering up the system between the PC and the bias supply system, one or two bytes may be send and not processed by the system controller, because of the fact, that the controller becomes active only after the third byte received.

A two times three bytes protocol serves for all different modes. A special feature are global commands, e.g. with only a three bytes data set one may make a system reset or loading all 416 channels to a specific output voltage. This way a smooth ramping, during start-up of the consumers connected is possible. Because of the load current for the filter capacitors, part of every GAPD preamplifier circuit, ramping is necessary. After ramping up close to a general set point, every channel may be adjusted to its own exact output voltage. On every access from the control program (three bytes send) the bias supply system responds with a three bytes output. Depending of the command, the data sent back deliver information of the system status. An incrementing wrap counter flags the correct basic device functionality. In case of a voltage write or status read of a single channel, further information of the actual current is sending back. In case of a single channel over current switch off an additional bit will be set, also in case of a manual activated system reset request (emergency shut down all output voltages) a separate data bit is set. The cycle time for a 3 bytes command and the 3 bytes send back from the device is ~50µs. Part of the final application software should be a permanent check of the manual reset/shut down request generated by one simple push button on the system controller front panel. This will be the only chance for an emergency shut down of all HV voltage outputs.

New gAPD HV Supply V02 USB Data Format

19.01.2010 V.Commichau IPP/ETHZ

Data to HV Syste

Byte 1					Byte 2					Byte 3													
Outpu	t																						
D23	D22 Function	D21	D20	D19 Board	D18	D17	D16	D15	D14 Channe	D13	D12	D11	D10	D9	D8 Voltage	D7	D6	D5	D4	D3	D2	D1	D0
Input																							
D23 S	D22 W	D21 W	D20 W	D19 D	D18 D	D17 D	D16 D	D15 D	D14 D	D13 D	D12 D	D11 D	D10 D	D9 D	D8 D	D7	D6	D5 Error	D4	D3	D2 Board	D1	D0
	System																						
D23 0	D22 0	D21 0	D20 X	D19 X	D18 X	D17 X	D16 X	D15 X	D14 X	D13 X	D12 X	D11 X	D10 X	D9 X	D8 X	D7 X	D6 X	D5 X	D4 X	D3 X	D2 X	D1 X	D0 X
	Data from Controller																						
D23	Status D22	S = 0 D21	D20	D19	D18	= WWW	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	W	W	W	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				& Curre																			
D23 0	D22 0	D21 1	D20 A	D19 A	D18 A	D17 A	D16 C	D15 C	D14 C	D13 C	D12 C	D11 X	D10 X	D9 X	D8 X	D7 X	D6 X	D5 X	D4 X	D3 X	D2 X	D1 X	D0 X
	Data fro	om Con	troller				S = 0/1 counter :			rent @			sed DDDDD	DDDD			Board a	adresse	ed = 0	12			
	Case: n	o devi	e			Wrap C	ounter	= wwv	/ (n+1)			Status	S = 0		D=0		Board a	adresse	ed = 0	12			
D23 0	D22 W	D21 W	D20 W	D19 0	D18 0	D17 0	D16 0	D15 0	D14 0	D13 0	D12 0	D11 0	D10 0	D9 0	D8 0	D7 1	D6 1	D5 1	D4 1	D3	D2 Board #	D1	D0
				-		-			-		-	-	-	-		·		•					
	Global	Set										Voltag	e = DDD	DDDDI	DDDDD								
D23 0	D22 1	D21 0	D20 X	D19 X	D18 X	D17 X	D16 X	D15 X	D14 X	D13 X	D12 X	D11 D	D10 D	D9 D	D8 D	D7 D	D6 D	D5 D	D4 D	D3 D	D2 D	D1 D	D0 D
	Data fro		troller			Wrap C	ounter:	= WWV	/ (n+1)														
D23 0	D22 W	D21 W	D20 W	D19 0	D18 0	D17 0	D16 0	D15 0	D14 0	D13 0	D12 0	D11 0	D10 0	D9 0	D8 0	D7 0	D6 0	D5 0	D4 0	D3	D2 0	D1 0	D0 0
						-	-				-	-	-	-			-		-			-	-
				e DDDD			= AAAA		Channe						DDDDDDI								
D23 0	D22 1	D21 1	D20 A	D19 A	D18 A	D17 A	D16 C	D15 C	D14 C	D13 C	D12 C	D11 D	D10 D	D9 D	D8 D	D7 D	D6 D	D5 D	D4 D	D3 D	D2 D	D1 D	D0 D
Data fr	rom Con	troller																					
Status	S = 0/1	ок/ с	ver Cu	rrent @	Chann	el		Wrap (ounter	= WWV	ı	Currer	t = DDD	DDDDI	DDDDD		Board a	adresse	ed = 0	12			
D23	D22 W	D21 W	D20 W	D19 D	D18 D	D17 D	D16	D15 D	D14 D	D13 D	D12 D	D11 D	D10 D	D9 D	D8 D	D7 0	D6 0	D5 0	D4 0	D3	D2 Board #	D1	D0
																				40	Board II		
	Case: n	o devid	e			wrap C	ounter	= VV VV V	/ (n+1)			Status	5=0		D=0			adresse	ea = V	12			
D23 0	D22 W	D21 W	D20 W	D19 0	D18 0	D17 0	D16 0	D15 0	D14 0	D13 0	D12 0	D11 0	D10 0	D9 0	D8 0	D7 0	D6 1	D5 1	D4 1	D3	D2 Board #	D1	D0
	Case: H	IV dow	n reave	st		Wrap C	ounter:	= www	/ (n+1)			Status	S = 0		D=0		Board :	adresse	ed = 0.	12			
P.01					D.: 0					D.:-	D.:			B		D=					B.*	D:	DC
D23 0	D22 W	D21 W	D20 W	D19 0	D18 0	D17 0	D16 0	D15 0	D14 0	D13 0	D12 0	D11 0	D10 0	D9 0	D8 0	D7 1	D6 0	D5 0	D4 0	D3	D2 Board #	D1	D0

 $\ensuremath{\mathsf{HV}}$ down request generated by manual reset push button at controller frontpanel.

Basic HV Module

A high voltage opamp (OPA454) is controlled via a 12-bit Digital Analogue Converter (DAC8043U). The DAC is controlled via a 12-bit serial data protocol. An external precise -10VDC source is connected to the DAC reference voltage input. The DAC delivers, depending on the data loaded, an output current to the inverting input of the opamp. The opamp compensates the input current by raising it output voltage to the corresponding value. The output current of the opamp (sum of internal and consumer depending load current) is measurement by a high side current monitor (HV7800). The output voltage of this current monitor is compared with an external adjustable voltage $(0.1 - 0.5VDC \approx 1 - 5mA)$ by a comparator circuit (MAX4480). The comparator activates, in case of an over current situation, a single flip flop (74LVCG74). The output of this flip-flop is connected to the en/disable input of the opamp. This way the high voltage opamp may be deactivated, e.g. the output voltage is set to zero, independent of the DAC output current. In case the over current situation has gone, an external reset command (by software, no manual reset push button!) to the flip flop reactivates the opamp and the original high voltage value will be recovered. The calibration of a single HV module may be done by loading the full scale value to the DAC, measuring the output voltage with a precise DVM and adjusting the output voltage to the exact value of 90.00VDC.

The HV module requires five external supply voltages. +5VDC, -5VDC, -10VDC, +0.1 – 0.5VDC and +95VDC. The HV output may be short circuited for an unlimited time. For maintenance time a SMD LED display on every single HV module a over current event. The HV opamps have their own over temperature monitoring and shut down capability.

32 Channel Motherboard

The 32 channel motherboard is connected via a special defined bus system to the system controller. On the motherboard 32 HV modules are mounted via separate 14 pin single line connectors. All potentiometers for the final adjustment are easily accessible using a bus extender card for this procedure. A PLD (Xilinx XC95108-10-PC84) serves for the local data decoding, serial data transfer, status reading&writing and the ADC control for the current measurement. Every motherboard has its own unique address, set by a 4 bit DIP switch. A specific bus line is activated by the board addressed as an acknowledge to the system controller. This way the correct basic function of a motherboard may be checked. A local xtal oscillator of 10Mhz delivers the clock for the PLD.

The PLD decodes the function control bits sent by the system controller and depending on their settings it will send the serial data to one specific HV module. After the transfer to the DAC the over current status and the actual current of the HV channel addressed, converted by a local 12 bit ADC (AD7476ARTZ), are sent back to the system controller. In case of a global write command the PLD addresses all 32 HV modules and loads all DAC with the same data and does not sent back any data. A system reset command sent by the controller will reset the PLD and clears all over current flip flops of the HV modules. A LED on the font panel displays a board activity (write&read).

The motherboard is fed via a second 96 pin connector with the supply voltages +5VDC, +12VDC and -12VDC. A local voltage regulator produces from the primary negative 12V source the -5V required. The precise -10VDC reference voltage for all 32 HV modules is built around a precision voltage reference circuit (ADR01AR) in addition with a power stage to have low impedance reference voltage source for 32 HV modules. All 32 HV outputs are accessible via this 96 pin connector.

System Controller

The system controller links the USB the 13 port to motherboards. Α local oscillator of drives 10Mhz PLD (XILINX XC95-216 -10-PQ160I The USB port is used separate commercial unit UM245R around

FT245R. On a three byte data transfer via USB the controller reads and stores the bytes. Then a decoding phase is started and depending on the command type the relevant action is started. The special function bits, the motherboard and the HV channel address are set on the bus system. Now the HV data send by the PC program are send as serial data stream to the bus system. Depending on the command, global or single channel, the mother board reacts by sending the data to all or one specific HV channel. In case of a global command the controller does not expect data returned from any board addressed, therefore a local data set is generated, e.g. over current equal zero, wrap counter incremented, manual reset request copied and all other data set to zero. In case of a single channel access, there are two different modes. For a single channel write, the output of the controller delivers information on the over current status, wrap counter increment, actual current, manual reset request, a flag for a non existent board and the board address used. In case of a relevant voltage change, one should keep in mind, the measured current will not be the real final value, because of some time constants in the supply and signal filtering path. For a precise current reading one should use the read single channel command.

All bus signals from and to the controller are isolated via fast opto couplers. This way all 416 HV outputs are floating.

The controller has a single +5VDC supply. One LED at its front panel show a USB/bus activity. A second LED is driven by a special logic, which checks the presence of all low voltages for the 32 channel mother boards. In case one voltage fails, the high voltage output will not be enabled. This function was implemented, because of a possible damage of the HV modules.

Connectors for a mezzanine board to be mounted on the system controller are foreseen. This mezzanine board may have a MCU to handle a different serial protocol (RS485, RS422), which will be used instead of the UM245R USB link. The serial I/O then may be done via a 4 pin rear connector.

Part of the final application software should be a permanent check of the manual reset/shut down request generated by one simple push button on the system controller front panel. This activity could not be implemented in the controller PLD software, because of the absolutely asynchronous data transfer between the controlling PC and the system controller.

Crate Controller Bus Signals

Pin	Signal	Source	Function	Destination
C1	CTR_CK	Crate Controller	DAC CLK	HV Boards
C2	CTRL_DATA	Crate Controller	DAC DATA	HV Boards
C3	CTRL_LOAD	Crate Controller	DAC Select	HV Boards
C4	CTRL_A0	Crate Controller	Chann. Adr. A0	HV Boards
C5	CTRL_A1	Crate Controller	Chann. Adr. A1	HV Boards
C6	CTRL_A2	Crate Controller	Chann. Adr. A2	HV Boards
C7	CTRL_A3	Crate Controller	Chann. Adr. A3	HV Boards
C8	CTRL_A4	Crate Controller	Chann. Adr. A4	HV Boards
C9	CTRL_BD0	Crate Controller	Board Adr. B0	HV Boards
C10	CTRL_BD1	Crate Controller	Board Adr. B1	HV Boards
C11	CTRL_BD2	Crate Controller	Board Adr. B2	HV Boards
C12	CTRL_BD3	Crate Controller	Board Adr. B3	HV Boards
C13	CTRL_SPB0	Crate Controller	Spec. Bit 0	HV Boards
C14	CTRL_SPB1	Crate Controller	Spec. Bit 1	HV Boards
C15	CTRL_SPB2	Crate Controller	Spec. Bit 2	HV Boards
C16	CTRL_RESET	Crate Controller	Reset	HV Boards
C17	OUT_LOAD	Active Board	Select	Crate Controller
C18	OUT_CLK	Active Board	Clock	Crate Controller
C19	OUT_DATA	Active Board	Data	Crate Controller
C20	BDACTIVE	Active Board	Board Ackn.	Crate Controller
C21	BDACTIVE_0	Active Board	TBD	Crate Controller
C22	BDACTIVE_1	Active Board	TBD	Crate Controller
C23	BDACTIVE_2	Active Board	TBD	Crate Controller
C24	BDACTIVE_3	Active Board	TBD	Crate Controller
C25	AGND	SLAVE PS	SLAVE GND	HV Boards
C26 - 27	+12V	SLAVE PS	SLAVE +12V	HV Boards
C28 - 29	-12V	SLAVE PS	SLAVE -12V	HV Boards
C30 – 32	+90V	SLAVE PS	SLAVE HV	HV Boards
A1 – 2	AGND	SLAVE PS	SLAVE GND	HV Boards
A3 – 16	+5V	SLAVE PS	SLAVE +5V	HV Boards
A17 – 25	AGND	SLAVE PS	SLAVE GND	HV Boards
A26 –27	+12V	SLAVE PS	SLAVE +12V	HV Boards
A28 - 29	-12V	SLAVE PS	SLAVE –12V	HV Boards
A30 – 32	+90V	SLAVE PS	SLAVE HV	HV Boards

Crate Controller Power Connector

Pin	Voltage	Pin	Voltage	Pin	Voltage
A1	VCC	B1	+5V	C1	VCC
A2	VCC	B2	+5V	C2	VCC
A3	VCC	B3	+5V	C3	VCC
A4	GND	B4	+5V	C4	GND
A5	GND	B5	+5V	C5	GND
A6	GND	B6	+5V	C6	GND
A7	+5V	B7	+5V	C7	+5V
A8	+5V	B8	+5V	C8	+5V
A9	+5V	B9	+5V	C9	+5V
A10	+5V	B10	+5V	C10	+5V
A11	+5V	B11	+5V	C11	+5V
A12	+5V	B12	+5V	C12	+5V
A13	+5V	B13	+5V	C13	+5V
A14	-12V	B14	-12V	C14	-12V
A15	-12V	B15	-12V	C15	-12V
A16	+12V	B16	+12V	C16	+12V
A17	+12V	B17	+12V	C17	+12V
A18	AGND	B18	AGND	C18	AGND
A19	AGND	B19	AGND	C19	AGND
A20	AGND	B20	AGND	C20	AGND
A21	AGND	B21	AGND	C21	AGND
A22	AGND	B22	AGND	C22	AGND
A23	AGND	B23	AGND	C23	AGND
A24	AGND	B24	AGND	C24	AGND
A25	AGND	B25	AGND	C25	AGND
A26	AGND	B26	AGND	C26	AGND
A27	+90VIN	B27	+90VIN	C27	+90VIN
A28	+90VIN	B28	+90VIN	C28	+90VIN
A29	+90VIN	B29	+90VIN	C29	+90VIN
A30	+90VIN	B30	+90VIN	C30	+90VIN
A31	USB_+5	B31	+90VIN	C31	USB_D+
A32	USB_D-	B32	+90VIN	C32	USB_GND

Crate Controller Signal Functions

Signal	Function	Source/Destination		
Ã0	Slave DAC Adr. A0	To Bus		
A1	Slave DAC Adr. A1	To Bus		
A2	Slave DAC Adr. A2	To Bus		
A3	Slave DAC Adr. A3	To Bus		
A4	Slave DAC Adr. A4	To Bus		
Load	Slave DAC load	To Bus		
Data	Slave DAC Data	To Bus		
CK	Slave DAC Clock	To Bus		
MAN Res	Manuel Reset	=> PLD		
BUSY	Activity Display	PLD =>Timer & LED		
CLOCK	Main Oscillator	=> PLD		
RES	Reset	=> PLD		
WR#	USB Write	UM245R		
RST#	NC	UM245R		
TXE#	USB Empty Flag	UM245R		
RXF#	USB Data Flag	UM245R		
RD#	USB Read	UM245R		
PWE#	NC	UM245R		
DB0 – DB7	USB Data I/O	PLD ó UM245R		
BDACTIVE 0	From active Slave	=> PLD		
BDACTIVE 1	From Slave (TBD)	=> PLD		
BDACTIVE 2	From Slave (TBD)	=> PLD		
BDACTIVE 3	From Slave (TBD)	=> PLD		
BDACTIVE LOW	Slave Acknowledge	=> PLD		
SL_LOAD	From active Slave	LOAD to PLD		
SL_CLK	From active Slave	CLOCK to PLD		
SL_DATA	From active Slave	DATA to PLD		
RESET	To all Slaves	Bus		
SPB 0	To all Slaves	Bus		
SPB 1	To all Slaves	Bus		
SPB 2	To all Slaves	Bus		
BD 0	Slave Board Adr. 0	Bus		
BD 1	Slave Board Adr. 1	Bus		
BD 2	Slave Board Adr. 2	Bus		
BD 3	Slave Board Adr. 3	Bus		

Crate Controller link to optional MCU

J4

Pin	Signal
1	RESET, low active
2	GND
3	VCC
4	VCC
5	VCC
6	GND
7	GND
8	GND

J5

Signal	Function	Source/Destination
MCU_0	TBD	PLD Ó MCU
MCU_1	TBD	PLD Ó MCU
MCU_2	TBD	PLD Ó MCU
MCU_3	TBD	PLD Ó MCU
MCU_4	TBD	PLD Ó MCU
MCU_5	TBD	PLD Ó MCU
MCU_6	TBD	PLD Ó MCU
MCU_7	TBD	PLD Ó MCU
MCU_8	TBD	PLD Ó MCU
MCU_9	TBD	PLD Ó MCU
MCU_10	TBD	PLD Ó MCU
MCU_11	TBD	PLD Ó MCU
MCU_12	TBD	PLD Ó MCU
MCU_13	TBD	PLD Ó MCU
MCU_14	TBD	PLD Ó MCU
MCU_15	TBD	PLD Ó MCU

J6

Pin	Signal
1	USB_+5
2	USB_D-
3	USB_D+
4	USB GND

HV Board Bus Signals

Pin	Signal	Source	Function	Destination	
C1	CTR_CK	Crate Controller	DAC CLK	HV Boards	
C2	CTRL_DATA	Crate Controller	DAC DATA	HV Boards	
C3	CTRL_LOAD	Crate Controller	DAC Select	HV Boards	
C4	CTRL_A0	Crate Controller	Chann. Adr. A0	HV Boards	
C5	CTRL_A1	Crate Controller	Chann. Adr. A1	HV Boards	
C6	CTRL_A2	Crate Controller	Chann. Adr. A2	HV Boards	
C7	CTRL_A3	Crate Controller	Chann. Adr. A3	HV Boards	
C8	CTRL_A4	Crate Controller	Chann. Adr. A4	HV Boards	
C9	CTRL_BD0	Crate Controller	Board Adr. B0	HV Boards	
C10	CTRL_BD1	Crate Controller	Board Adr. B1	HV Boards	
C11	CTRL_BD2	Crate Controller	Board Adr. B2	HV Boards	
C12	CTRL_BD3	Crate Controller	Board Adr. B3	HV Boards	
C13	CTRL_SPB0	Crate Controller	Spec. Bit 0	HV Boards	
C14	CTRL_SPB1	Crate Controller	Spec. Bit 1	HV Boards	
C15	CTRL_SPB2	Crate Controller	Spec. Bit 2	HV Boards	
C16	CTRL_RESET	Crate Controller	Reset	HV Boards	
C17	OUT_LOAD	Active Board	Select	Crate Controller	
C18	OUT_CLK	Active Board	Clock	Crate Controller	
C19	OUT_DATA	Active Board	Data	Crate Controller	
C20	BDACTIVE	Active Board	Board Ackn.	Crate Controller	
C21	BDACTIVE_0	Active Board	TBD	Crate Controller	
C22	BDACTIVE_1	Active Board	TBD	Crate Controller	
C23	BDACTIVE_2	Active Board	TBD	Crate Controller	
C24	OUT Status	Active Board	HV Status	Crate Controller	
C25	AGND	SLAVE PS	SLAVE GND	HV Boards	
C26 – 27	+12V	SLAVE PS	SLAVE +12V	HV Boards	
C28 – 29	-12V	SLAVE PS	SLAVE –12V	HV Boards	
C30 - 32	+90V	SLAVE PS	SLAVE HV	HV Boards	
A1 – 2	AGND	SLAVE PS	SLAVE GND	HV Boards	
A3 – 16	+5V	SLAVE PS	SLAVE +5V	HV Boards	
A17 – 25	AGND	SLAVE PS	SLAVE GND	HV Boards	
A26 – 27 +12V		SLAVE PS	SLAVE +12V	HV Boards	
A28 – 29	-12V	SLAVE PS	SLAVE -12V	HV Boards	
A30 – 32	+90V	SLAVE PS	SLAVE HV	HV Boards	

HV Board Power Connector

Pin	Voltage	Pin	Voltage	Pin	Voltage
A1	+5V	B1	+5V	C1	HVOUT_31
A2	+5V	B2	+5V	C2	HVOUT_30
A3	+5V	B3	+5V	C3	HVOUT_29
A4	+5V	B4	+5V	C4	HVOUT_28
A5	+5V	B5	+5V	C5	HVOUT_27
A6	+5V	B6	+5V	C6	HVOUT_26
A7	+5V	B7	+5V	C7	HVOUT_25
A8	+5V	B8	+5V	C8	HVOUT_24
A9	+5V	B9	+5V	C9	HVOUT_23
A10	+5V	B10	+5V	C10	HVOUT_22
A11	+5V	B11	+5V	C11	HVOUT_21
A12	+5V	B12	+5V	C12	HVOUT_20
A13	AGND	B13	AGND	C13	HVOUT_19
A14	AGND	B14	AGND	C14	HVOUT_18
A15	AGND	B15	AGND	C15	HVOUT_17
A16	AGND	B16	AGND	C16	HVOUT_16
A17	AGND	B17	AGND	C17	HVOUT_15
A18	AGND	B18	AGND	C18	HVOUT_14
A19	AGND	B19	AGND	C19	HVOUT_13
A20	AGND	B20	AGND	C20	HVOUT_12
A21	AGND	B21	AGND	C21	HVOUT_11
A22	AGND	B22	AGND	C22	HVOUT_10
A23	AGND	B23	AGND	C23	HVOUT_9
A24	AGND	B24	AGND	C24	HVOUT_8
A25	+12V	B25	+12V	C25	HVOUT_7
A26	+12V	B26	+12V	C26	HVOUT_6
A27	-12V	B27	-12V	C27	HVOUT_5
A28	-12V	B28	-12V	C28	HVOUT_4
A29	AGND	B29	AGND	C29	HVOUT_3
A30	AGND	B30	AGND	C30	HVOUT_2
A31	AGND	B31	AGND	C31	HVOUT_1
A32	AGND	B32	AGND	C32	HVOUT_0

Page 1 of 1 (22-Feb-2010)

JTAG PORT

SCHAFMATTSTR.20 CH-8093 ZUERICH

22.06.2009

FILE:CTRL.SCH

OF: 8

6

PAGE: 6

ADDRESS:

COUNTRY:

INITIAL

100nF

3

100nF

100nF

100nF

2

100nF

100nF

1

3

2

1

5

OF: 4

6

PAGE: 1

7

INITIAL

8

30.06.2009

HV CONTROL DAQ & ADC SEQUENCE

A.) Three BYTES INPUT SEQUENCE

- 1. Wait RXF goes to low
- 2. if: no WAIT, no SHIFT, no WAIT_DONE => set DAQBUF =1
- 3. DAQBUF & next SYSCK set LOAD = 1
- 4. DAQ_SYNC on next system clock (sysck)
- 5. WAIT = 1, by DAQ_SYNC
- 6. STROBE high on next sysck
- 7. Byte counter =1
- 8. STROBE & D1 => STR1
- 9. next sysck DAQ_DONE =1
- 10. DAQBUF = 0, => STROBE = 0, DAQ_DONE = 0
- 11. RXF goes to high, clears WAIT
- 12. Sequence #1 to #11 for STR2
- 13. Squence #1 to #8 for STR3
- 14. STR3 sets WAIT_DONE, stays high until ALL_DONE =1
- 15. STR3 clocks data into DAC shift register

B.) DAC SHIFT SEQUENCE

- 1. Byte counter = 3, STROBE = 0, DAQ_SYNC = 0 set SHIFT = 1
- 2. LOAD cleared by SHIFT = 1
- SHIFT clock counter toggles to 12, sets CLR_DNE
- 4. Next sysck CLEAR = 1, clears SHIFT
- DAC_LOAD generated by CLR_DNE&CLEAR on next sysck

C.) ADC SEQUENCE

1. On DAC_LOAD 0/1 ADC_EN = 1

- 2. Slave ADC_SEL & ADC_EN enable serial input to shift register
- 3. ADC_CLOCK 0/1 clock data to shift register
- 4. GLOBAL or BD_ACTIVE_L = 1 clears shift register (all zeros)
- 5. Normal case: On ADC_SEL 0=>1 ADC_DONE = 1
- 6. Special case: Global or BD_ACTIVE_L = 1 generate ADC_DONE = 1

D.) THREE BYTES OUTPUT

- 1. ADC_DONE ...next sysck sets BYTES_OUT = 1
- 2. Byte counter = 0, $EN1 = 1 \Rightarrow EN_1 = 0$, byte one low Z
- 3. On TEX_L = 0 & WAIT_TXE_L = 1, next sysck generates GO_B = 1
- 4. $WAIT_TEX_L = 0$
- 5. Write strobe generator enabled => WRITE_H = 1, byte one transferred
- 6. Next sysck NEXT = 1, WRITE_H = 0
- 7. Byte counter incremented to 1, => byte two low Z
- 8. TXE_L goes to one, WAIT_TXE_L = 1
- 9. Sequence continued until byte counter points to byte 4
- 10. ALL_DONE = 1, BYTES_OUT = 0, write sequencer stopped
- 11. ALL_DONE = 1 clears WAIT_DONE => enables next input byte(s)
- 12. On next sysck FINISHED = 1, ALL_DONE = 0
- 13. Next sysck FINISHED = 0

E.) RESET & SPECIAL SIGNALS

- 1. On SPB 0-2 = ZERO & DAC_LOAD = 0 => SYSTEM_RESET = ONE
- 2. Local RESET or SYSTEM_RESET = 1, => CLEAR = 1

GAPDHV02	Crate Power Supplies			
				TRACO
32 Channel Bo	pard	13 Units		
+5V	0,40	5.2A	26W	TML40105C
+12V	0,01	0.2A	12W	TML20112C
-12V	0,25	4A	48W	TMT50112C
Controller		1 Unit		
+5V		0.5A	2.5W	TIW 06-105
90-100VDC	0,005	2A	180W (Crate)	HP extern

	APDHVNEW Parts List	
Quantity	Value	Shape
1	10UF	R/C1206
1	BAV99	SOT23
1	RED	R/C1206
1	HDR_14	RM 2.54
2	22K	R/C1206
1	100K	R/C1206
1	100	R/C1206
1	10K	3266X POTI
1	39K	R/C1206
1	1K	R/C1206
1	BC817-40	SOT23
3	TESTPIN	
1	74LVCG74	VSSOP8
1	MAX4480	5SOT23
1	HV7800	5SOT23
1	OPA454	SO8P
1	DAC8043U	SO8
1		

Components	GAPDHV Board				
Quantity	Value	Shape	Distrelec	Farnell	
-					
-					
32	1NF	R/C1206			
16	100NF	R/C1206			
5	10UF	R/C1206			PRECI-DIP,CH
32	HDR_14	HDR1X14SP			714-87-114-31-018101
4	HDR_9	DB9FL	12 45 56		
1	HDR_6	HDR1X6	12 28 30		
2	DIN_64AC	DIN41612AC	12 10 74		
1	LED 3mm green	LED3R2_5H	63 21 25		
64	100K	R/C1206			
32	15K	R/C1206			
34	10K	R/C1206			
9	4K7	R/C1206			
2	680K	R/C1206			
1	10K	TRIM-3296Y	74 24 32		
1	39K	R/C1206			
1	680	R/C1206			
1	DIPSWITCH	DIP2X4	20 08 06		
1	BC807-40	SOT23	60 23 67		
33	AD8628	SOT23_5		13 194 76	
1	MAX6701LKA	SOT23-8			MAXIM
1	VX3_10MHZ	VX3E-1000	64 48 31		
1	XC95108-10-PC84C	\$PLCC84			XILINX
1	74HCT221D	SO16	64 97 21		
1	ADR01AR	SO8		13 193 15	
1	LM321MF	SOT23 5	66 22 09		
3	SN74LS645-DW	SOL20		15 17 582	
1	LM79L05ACM	SO8	64 49 38		
1	REF195FSZ	SO8		13 195 22	
2	ADG706BRU	RU-28		90 04 332	
1	AD7476ARTZ	MO-178-AB		16 512 42	
4	74HCT151D	SO16	64 96 97		
2	74HCT154D	SOL24	64 97 01		
8	74HCT08D	SO14	64 96 53		

GAPDHV C	ontroller Parts List				
Qantity	Value	Shape	Farnell	Distrelec	Other
1	DIP connector	DIP24	11 038 36		
5	100NF	R/C1206			
3	10UF	R/C1206			
1	DIN_64AC	DIN41612AC		12 63 33	
1	DIN_96ABC	DIN41612ABC		12 63 34	
1	HDR_6	HDR1X6		12 28 30	
1	HDR_8	HDR1X8			
1	HDR_16	HDR1X16			
1	HDR_4	HDR1X4			
2	LED	LED3R2_5H			
24	4K7	R/C1206			
1	680	R/C1206			
2	680K	R/C1206			
2	68K	R/C1206			
4	22K	R/C1206			
1	12K	R/C1206			
3	100K	R/C1206			
1	47K	R/C1206			
1	2K2	R/C1206			
1	0	R/C1206			
4	1K	R/C1206			
3	BC817-40	SOT23			
6	SN74LS645-1DW	SOL20	12 362 56		
6	HCPL-090J	NBSOIC16	16 113 23		
1	XC95216-10PQ160I	\$PQ160			XILINX
1	MAX6701LKA	SOT23-8			MAXIM
1	VX3E-1000	10 MHz		64 48 31	
2	74HCT221	SO16	10 853 13		
1	UM245R	UM245R			Reselec AG
2	IRF6216	SO8	12 984 88		
2	IRF7451	SO8	10 134 60		
2	74HCT74	SO14	10 853 04		

HV Input Connector

Pin	Signal		
1	+95VDV		
2	AGND		
3			
4	Protective Ground		

78 DSUB HV Output Connector

Board N	Pin	HV Connector	HV Connector	Board N +1	Pin
HV0	C32	1	40	A13	AGND
HV1	C31	2	41	A14	AGND
HV2	C30	3	42	A15	AGND
HV3	C29	4	43	A16	AGND
HV4	C28	5	44	A17	AGND
HV5	C27	6	45	A18	AGND
HV6	C26	7	46	A19	AGND
HV7	C25	8	47	C32	HV0
HV8	C24	9	48	C31	HV1
HV9	C23	10	49	C30	HV2
HV10	C22	11	50	C29	HV3
HV11	C21	12	51	C28	HV4
HV12	C20	13	52	C27	HV5
HV13	C19	14	53	C26	HV6
HV14	C18	15	54	C25	HV7
HV15	C17	16	55	C24	HV8
HV16	C16	17	56	C23	HV9
HV17	C15	18	57	C22	HV10
HV18	C14	19	58	C21	HV11
HV19	C13	20	59	C20	HV12
HV20	C12	21	60	C19	HV13
HV21	C12	22	61	C18	HV14
HV22	C10	23	62	C17	HV15
HV23	C10	24	63	C17	HV16
HV24	C8	25	64	C15	HV17
HV25	C7	26	65	C14	HV18
HV26	C6	27	66	C14	HV19
HV27	C5	28	67	C13	HV20
HV28	C4	29	68	C12	HV21
HV29	C3	30	69	C10	HV22
HV30	C2	31	70	C10	HV23
HV31	C1	32	71	C8	HV24
AGND	A13	33	71	C7	HV25
AGND		34	73	C6	HV26
AGND	A14		73		
	A15	35		C5 C4	HV27
AGND	A16	36	75 76		HV28
AGND	A17	37	76	C3 C2	HV29
AGND	A18	38	77		HV30
AGND	A19	39	78	C1	HV31