Machine-Predictive-Maintenance

In [26]: import pandas as pd import seaborn as sns from sklearn.preprocessing import OrdinalEncoder import matplotlib.pyplot as plt

Importing the dataset

maintenance = pd.read_csv("predictive_maintenance.csv") In [27]:

In [28]: maintenance

Out[28]:

	UDI	Product ID	Туре	Air temperature [K]	Process temperature [K]	Rotational speed [rpm]	Torque [Nm]	Tool wear [min]	Target	Failure Type
0	1	M14860	М	298.1	308.6	1551	42.8	0	0	No Failure
1	2	L47181	L	298.2	308.7	1408	46.3	3	0	No Failure
2	3	L47182	L	298.1	308.5	1498	49.4	5	0	No Failure
3	4	L47183	L	298.2	308.6	1433	39.5	7	0	No Failure
4	5	L47184	L	298.2	308.7	1408	40.0	9	0	No Failure
•••										
9995	9996	M24855	М	298.8	308.4	1604	29.5	14	0	No Failure
9996	9997	H39410	Н	298.9	308.4	1632	31.8	17	0	No Failure
9997	9998	M24857	М	299.0	308.6	1645	33.4	22	0	No Failure
9998	9999	H39412	Н	299.0	308.7	1408	48.5	25	0	No Failure
9999	10000	M24859	М	299.0	308.7	1500	40.2	30	0	No Failure

10000 rows × 10 columns

In [29]: maintenance.info()

```
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 10 columns):
    Column
                            Non-Null Count Dtype
    -----
---
0
    UDI
                            10000 non-null int64
   Product ID
                            10000 non-null object
1
2
   Type
                            10000 non-null object
3 Air temperature [K]
                            10000 non-null float64
4 Process temperature [K] 10000 non-null float64
5 Rotational speed [rpm] 10000 non-null int64
   Torque [Nm]
                            10000 non-null float64
7
    Tool wear [min]
                            10000 non-null int64
8
    Target
                            10000 non-null int64
    Failure Type
                            10000 non-null object
dtypes: float64(3), int64(4), object(3)
```

<class 'pandas.core.frame.DataFrame'>

memory usage: 781.4+ KB

Using the ".info()" methode we found out that there are no null values in our dataset. Due to this we do not have to take any extra steps cleaning the dataset of null values.

In [30]: maintenance.describe()

Out[30]:

	UDI	Air temperature [K]	Process temperature [K]	Rotational speed [rpm]	Torque [Nm]	Tool wear [min]	Target
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	300.004930	310.005560	1538.776100	39.986910	107.951000	0.033900
std	2886.89568	2.000259	1.483734	179.284096	9.968934	63.654147	0.180981
min	1.00000	295.300000	305.700000	1168.000000	3.800000	0.000000	0.000000
25%	2500.75000	298.300000	308.800000	1423.000000	33.200000	53.000000	0.000000
50%	5000.50000	300.100000	310.100000	1503.000000	40.100000	108.000000	0.000000
75%	7500.25000	301.500000	311.100000	1612.000000	46.800000	162.000000	0.000000
max	10000.00000	304.500000	313.800000	2886.000000	76.600000	253.000000	1.000000

Cleaning the dataset of redundant or misleading columns

```
In [31]: maintenance_prepared = maintenance.drop(['UDI', 'Product ID', 'Failure Type'], axis=1)
         maintenance_prepared
```

Out[31]:		Туре	Air temperature [K]	Process temperature [K]	Rotational speed [rpm]	Torque [Nm]	Tool wear [min]	Target
	0	М	298.1	308.6	1551	42.8	0	0
	1	L	298.2	308.7	1408	46.3	3	0
	2	L	298.1	308.5	1498	49.4	5	0
	3	L	298.2	308.6	1433	39.5	7	0
	4	L	298.2	308.7	1408	40.0	9	0
	•••							
	9995	М	298.8	308.4	1604	29.5	14	0
	9996	Н	298.9	308.4	1632	31.8	17	0
	9997	М	299.0	308.6	1645	33.4	22	0
	9998	Н	299.0	308.7	1408	48.5	25	0
	9999	М	299.0	308.7	1500	40.2	30	0

10000 rows × 7 columns

Casting text-based Columns into float

```
In [32]: maintenance_prepared['Type'].unique()
Out[32]: array(['M', 'L', 'H'], dtype=object)
In [33]: type_encoder = OrdinalEncoder(categories=[['L','M','H']])
    maintenance_prepared['Type'] = type_encoder.fit_transform(maintenance_prepared[['Type']])
    maintenance_prepared
```

Out[33]:

	Туре	Air temperature [K]	Process temperature [K]	Rotational speed [rpm]	Torque [Nm]	Tool wear [min]	Target
0	1.0	298.1	308.6	1551	42.8	0	0
1	0.0	298.2	308.7	1408	46.3	3	0
2	0.0	298.1	308.5	1498	49.4	5	0
3	0.0	298.2	308.6	1433	39.5	7	0
4	0.0	298.2	308.7	1408	40.0	9	0
•••							
9995	1.0	298.8	308.4	1604	29.5	14	0
9996	2.0	298.9	308.4	1632	31.8	17	0
9997	1.0	299.0	308.6	1645	33.4	22	0
9998	2.0	299.0	308.7	1408	48.5	25	0
9999	1.0	299.0	308.7	1500	40.2	30	0

10000 rows × 7 columns

```
In [34]: maintenance_prepared['Target'].unique()
Out[34]: array([0, 1], dtype=int64)
In [35]: maintenance_prepared['Target'].value_counts().plot(kind='pie')
Out[35]: <AxesSubplot: ylabel='Target'>
```


Not that great ...

Let's visualize

```
In [36]: sns.pairplot(data=maintenance_prepared, hue='Target')
plt.figure()
```

Out[36]: <Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>

Way to much info...

Let's try a heatmap instead

```
In [43]: maintenance_prep = maintenance_prepared.corr(numeric_only='True')
sns.heatmap(maintenance_prep, annot=True)
```

Out[43]: <AxesSubplot: >

Tool wear [min]

```
In [38]: sns.kdeplot(data=maintenance_prepared, x='Tool wear [min]', hue='Target')
```

Out[38]: <AxesSubplot: xlabel='Tool wear [min]', ylabel='Density'>

Negative Toolwear?? => No, just the wrong diagram

```
In [39]: sns.histplot(data=maintenance_prepared, x='Tool wear [min]', hue='Target', bins=20)
```

Out[39]: <AxesSubplot: xlabel='Tool wear [min]', ylabel='Count'>

Torque [Nm]

In [40]: sns.kdeplot(data=maintenance_prepared, x='Torque [Nm]', hue='Target')

Out[40]: <AxesSubplot: xlabel='Torque [Nm]', ylabel='Density'>

Torque => Drehmoment

```
In [41]: sns.histplot(data=maintenance_prepared, x='Torque [Nm]', hue='Target', bins=20)
```

Out[41]: <AxesSubplot: xlabel='Torque [Nm]', ylabel='Count'>

- => Machines with a Torque around 15-45 Nm have a really low chance to break
- => Machines with a high Torque 65+ Nm have a really high chance to break

Let's look at the others

```
In [45]: sns.histplot(data=maintenance_prepared, x='Type', hue='Target', bins=20)
   plt.figure()
   sns.histplot(data=maintenance_prepared, x='Air temperature [K]', hue='Target', bins=20)
   plt.figure()
   sns.histplot(data=maintenance_prepared, x='Process temperature [K]', hue='Target', bins=20)
   plt.figure()
   sns.histplot(data=maintenance_prepared, x='Rotational speed [rpm]', hue='Target', bins=20)
   plt.figure()
```

Out[45]: <Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>

In [42]: maintenance_prepared.to_csv('predictive_maintenance_prepared.csv')