Alessya Visnjic

CEO @ WhyLabs.ai

Engineer, architect, aspiring data scientist Traveler, Beat Saber fan, aspiring baker

Past: Allen Institute for AI, Amazon/AWS

Connect: <u>Linkedin</u>, <u>Twitter</u>, <u>Virtual Coffee</u>

Goals:

- 1. Develop an intuition for ML/AI observability systems
- 2. Explore a logging component of an observability system

Agenda

- **1.** Monitoring production ML applications
- 2. From monitoring to observability
- **3.** Designing an ML monitoring system
- **4.** From monitoring to observability
- 5. ML Observability system architecture
- **6.** ML Telemetry (whylogs demo)
- **7.** ML Observability system overview (WhyLabs' AI Observatory demo)

Monitoring production ML applications: simple task?

Simple task: Detect and root cause changes in the behavior of an ML application

Monitoring production ML applications: systems considerations

The ML application is part of a greater software system and this system is alive...

- State over time: tracking past, current, and future states of the application
- Upstream systems: what changes your state/behavior?
- Downstream system: how do you change the state/behavior of others?

Monitoring production ML applications: scalability considerations

Monitoring an ML application shouldn't cost more than running the ML application...

- Latency: how much time do you have to measure and notify?
- Scale: how measurements will be processed?
- Cost: how much should you spend per measurement?

Monitoring production ML applications: ownership considerations

Monitoring solutions in any team setting require long term ownership...

- Automation: how much can be automated?
- Maintenance: how would the system be maintained over time and by who?

Monitoring production ML applications: real world considerations!

- State over time: tracking past, current, future states of the application
- Upstream systems: what changes your state/behavior?
- Downstream system: how do you change the state/behavior of others?
- Latency: how much time do you have to measure and notify?
- Scale: what is the volume of the measurements to be made?
- Cost: how much should you spend per measurement?
- Automation: how much can be automated?
- Maintenance: how would the system be maintained over time?

Monitoring production ML applications: a few design principles

- Decouple the process of capturing telemetry from the process of acting upon it
- Put telemetry capturing as close to the data & model as possible
- Make telemetry capturing support both batch and streaming systems
- Make telemetry capturing processes platform and model agnostic
- Design telemetry artifacts to be lightweight (support formats for storage & consumption)
- Design telemetry artifacts to be extensible & configurable
- Design telemetry to be megrable (over time and across instances/partitions)
- Design telemetry storage to support massive cardinality
- Design monitoring system to support a wide range of forecasting & anomaly detection methods
- Design monitoring system to support correlation and lineage artifacts

Telemetry design matters A LOT.

From monitoring to observability: how different are the systems*?

Monitoring:

- Capture metrics
- Measure change
- Notify

Telemetry is at the root of the difference between the two

Observability:

- Capture internal state (including metrics)
- Measure change
- Notify
- Root cause

* Extremely simplified view of the world

From monitoring to observability: unknown unknowns!

From monitoring to observability: detection is not enough!

ML Observability system architecture: high level overview

^{*} Monitoring toolbox components from the perspective of users. Source: <u>Data Distribution Shifts and Monitoring</u>.

ML Telemetry (Logs)

Telemetry = information that captures the state of an ML application

One "unit" of telemetry = profile

What to capture:

- Lineage Metadata
- Schema
- Counts
- Summary statistics
- Distributions
- Stratified samples

ML Telemetry: standardizing ML and data telemetry

ML Telemetry: profiling during training and during inference

Use training profiles as baseline for production

Capture meaningful ranges of data: over a batch or over a time period Profile inputs, outputs, and ground truth

ML Telemetry: best practices, one profile at a time

It better be easy, cheap, and fast to capture these profiles

ML Telemetry: easy to capture - no configuration necessary

```
from whylogs import get_or_create_session
import pandas as pd
session = get_or_create_session()
df = pd.read_csv("path/to/file.csv")
with session.logger(dataset_name="my_dataset") as logger:
    #dataframe
    logger.log_dataframe(df)
    #dict
    logger.log({"name": 1})
    #images
    logger.log images("path/to/image.png")
```

ML Telemetry: cheap to capture & cheap to store

whylogs captures statistics using stochastic streaming algorithms, which enables a few important properties:

Dataset	Size	No. of Entries	No. of Features	Est. Memory Consumption	Output Size (uncompressed)
Lending Club	1.6GB	2.2M	151	14MB	7.4MB
NYC Tickets	1.9GB	10.8M	43	14MB	2.3MB
Pain pills in the USA	75GB	178M	42	15MB	2MB 🔪
	Scales w/ the nu "eatures/statisti		•	Jear-constant nemory footprint	Tiny output, even smal when compressed

ML Telemetry: accurate statistics, density functions, and error bars

eature name	count	max	min	stddev	nunique	null_count	quantile_0.0000	 quantile_1.0000
chlorides	1199.0	0.611	0.012	0.044	134.0	0.0	0.012	 0.611
quality	1199	8.000	3.000	0.785	6.0	0.0	3.000	 8.000
alcohol	1199	14.900	8.400	1.060	65.0	0.0	8.400	 14.900
density	1199	1.004	0.997	0.001	390.0	0.0	0.990	 1.004
рН	1199	4.010	2.890	0.153	82.0	0.0	2.890	 4.010
All the stats you need! Unless you need more Then customize!					0.6 - 111 q 0.5 - 0.3 - 0.2 - 0.1 - 0	5 10 15	 25 30 35	

ML Telemetry: capture more accurate insights than sampling

Whylogs profiles 100% of the data to accurately capture distributions. Capturing distributions from sampled data is significantly less accurate. This chart presents median errors for distributions estimated with whylogs vs. from sampled data.

Sampling isn't enough, profile your ML data instead

Production logging approaches for Al and data pipelines

By Isaac Backus and Bernease Herman

ML Telemetry: whylogs simple demo

```
pip install -U whylogs
```


Follow along with this <u>interactive notebook</u> (bit.ly/CS329s-whylogs)

ML Observability system architecture: what's next after telemetry

^{*} Monitoring toolbox components from the perspective of users. Source: <u>Data Distribution Shifts and Monitoring</u>.

ML Telemetry: Observatory demo

Follow along with this <u>interactive notebook</u> (bit.ly/CS329s-whylogs)

Final thoughts:

- ★ Production ML applications are evolving rapidly and monitoring requirements evolve along
- ★ Observability is yet to be fleshed out for ML/Al applications
- ★ A lot of big, interesting, and important problems yet to be solved
- ★ We are at the very inception of the MLOps toolchain:
 - Great area for establishing expertise/career
 - Great area for new startups

Help define the telemetry standard for ML & data applications:

github.com/whylabs/whylogs join.slack.whylabs.ai

Thank you!

alessya@whylabs.ai

@zalessya

linkedin.com/in/alessya