

Marker Tracking with OpenCV (Group: 10)

Rakhil Immidisetti

Marker Tracking - Objective

Marker Detection

Pose Estimation

Integration with Unity

DLL creation

Used as Unity plugin

Pose Conversion

OpenCV to Unity

Camera and Object
Simulation

For virtual object overlay in Unity

Integration with Unity - Pose

Co-ordinate system (Transform from right-hand to left-hand)

Rotation representation
(Axis-angle to quaternion)

Local transformation (Marker to Object Centre for virtual objects to appear on top of marker)

Integration with Unity - Camera

Single camera used for both virtual objects and image

- Simulate unity camera using intrinsic parameters
 - · Distortion is ignored

Marker Tracking - Demo

Markerless AR - Objective

Surface Normals - Computation

Markerless AR - Demo

Markerless AR - Demo

Markerless AR – Non-static Camera

R and T is used for transforming pose of objects in previous frame to current frame

Thank You!

References

- https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html
- https://medium.com/comerge/what-are-the-coordinates-225f1ec0dd78
- https://www.mathworks.com/help/robotics/ref/quaternion.html?s_tid=mwa_osa_a
- https://www.cs.cmu.edu/~./hebert/scale.htm
- https://www.researchgate.net/publication/262290525_Accurate_and_fast_extraction_of_planar_surface_p atches from 3D point cloud
- https://dev.intelrealsense.com/docs/code-samples?_ga=2.150342835.466639750.1619284241-727732183.1617202949

