ساختمان داده و الگوريتم ها (CE203)

جلسه چهاردهم: درخت قرمن-سیاه

> سجاد شیرعلی شهرضا پاییز 1401 *دوشنبه، 7 آذر 1401*

اطلاع رساني

• بخش مرتبط كتاب براى اين جلسه: 13

درخت جستجوی متوازن

چگونه درخت جستجو را متوازن نگه داریم؟

SELF-BALANCING SEARCH TREES

There are many different implementations of self-balancing search trees (e.g. Red-black trees, AVL trees, B-tree, 2-3-4 trees)

SELF-BALANCING SEARCH TREES

There are many different implementations of self-balancing search trees (e.g. Red-black trees, AVL trees, B-tree, 2-3-4 trees)

Today, we'll go over a key primitive that's used in these implementations:

ROTATIONS

SELF-BALANCING SEARCH TREES

There are many different implementations of self-balancing search trees (e.g. Red-black trees, AVL trees, B-tree, 2-3-4 trees)

Today, we'll go over a key primitive that's used in these implementations:

ROTATIONS

Note: going forward, we're going to focus on rotations for BINARY search trees (BSTs).

IDEA: locally rebalance a node's subtree in O(1) time while maintaining BST property

LEFT ROTATION

RIGHT ROTATION

IDEA: locally rebalance a node's subtree in O(1) time while maintaining BST property

LEFT ROTATION <A >B

RIGHT ROTATION

IDEA: locally rebalance a node's subtree in O(1) time while maintaining BST property

RIGHT ROTATION

IDEA: locally rebalance a node's subtree in O(1) time while maintaining BST property

IDEA: locally rebalance a node's subtree in O(1) time while maintaining BST property

IDEA: locally rebalance a node's subtree in O(1) time while maintaining BST property

درخت قرمن-سیاه

یک نمونه معروف از درختهای جستجوی متوازن

When and how do we apply these rotations?

Let's explore one type of self-balancing BST:

RED-BLACK TREES!

A **Red-Black Tree (RB tree)** is a **BST** with the following properties:

1. Every node is either **red** or **black**

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

A **Red-Black Tree (RB tree)** is a **BST** with the following properties:

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

Let's look at some examples & non-examples!

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- Every root-NIL path has the same number of **black** nodes on them

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- 3 No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

ارتفاع درخت قرمز-سیاه

مزیت ویژگیهای بیان شده برای درخت قرمز-سیاه چیست؟

- **1.** Every node is either **red** or **black**
- **2.** The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

- 1. Every node is either **red** or **black**
- **2.** The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

Intuitively, these rules are a *proxy* for balance:
The **black** nodes are ~balanced across the tree.
And the **red** nodes might elongate paths but not by much!

- Every node is either **red** or **black**
- The root is a **black** node
- No **red** node has a **red** child
- Every root-NIL path has the same number of **black** nodes on them

Intuitively, these rules are a *proxy* for balance: The **black** nodes are ~balanced across the tree. And the **red** nodes might elongate paths but not by much!

Rules 3 & 4 guarantee that one path can be at most twice as long as another by padding it with red nodes Other internal nodes are in here! (I just didn't draw them)

- Every node is either **red** or **black**
- The root is a **black** node
- No **red** node has a **red** child
- Every root-NIL path has the same number of **black** nodes on them

Intuitively, these rules are a *proxy* for balance: The **black** nodes are ~balanced across the tree. And the **red** nodes might elongate paths but not by much!

Rules 3 & 4 guarantee that one path can be at most twice as long as another by padding it with red nodes Other internal nodes are in here! (I just didn't draw them)

- 1. Every node is either **red** or **black**
- **2.** The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

THEOREM: Any Red-Black Tree with **n** nodes has height **O(log n)**

WHAT'S THE POINT OF THESE RULES?

- 1. Every node is either **red** or **black**
- **2.** The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

THEOREM: Any Red-Black Tree with **n** nodes has height **O(log n)**

PROOF IDEA: We can show that any RB tree with **n** nodes has height $\leq 2 \cdot \log_2(n+1)$

- **1.** Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes.

- **1.** Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob?

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly **2^k - 1** nodes.

- 1. Every node is either **red** or **black**
- 2. The root is a black node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly $2^k - 1$ nodes.

Thus, since there are **n** nodes in the entire RB tree: $n \ge 2^k - 1$

- **1.** Every node is either **red** or **black**
- 2. The root is a black node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly **2^k - 1** nodes.

Thus, since there are **n** nodes in the entire RB tree: $n \ge 2^k - 1$

i.e. $k \leq \log_2(n+1)$

- **1.** Every node is either **red** or **black**
- 2. The root is a black node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly **2^k - 1** nodes.

Thus, since there are **n** nodes in the entire RB tree: $n \ge 2^k - 1$

i.e. $k \le \log_2(n+1)$

(RB TREE PROPERTIES)

- **1.** Every node is either **red** or **black**
- 2. The root is a black node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

This means there must exist some root-NIL path that has $\leq \log_2(n+1)$ nodes on it.

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly **2^k - 1** nodes.

Thus, since there are **n** nodes in the entire RB tree: $n \ge 2^k - 1$

i.e. $k \leq \log_2(n+1)$

(RB TREE PROPERTIES)

- **1.** Every node is either **red** or **black**
- 2. The root is a black node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

This means there must exist some root-NIL path that has $\leq \log_2(n+1)$ nodes on it.

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly **2^k - 1** nodes.

Thus, since there are **n** nodes in the entire RB tree: $n \ge 2^k - 1$

i.e. $k \le log_2(n+1)$

(RB TREE PROPERTIES)

- 1. Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

This means there must exist some root-NIL path that has $\leq \log_2(n+1)$ nodes on it. Consequently, this path must have $\leq \log_2(n+1)$ black nodes on it.

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly **2**^k - **1** nodes.

Thus, since there are **n** nodes in the entire RB tree: $n \ge 2^k - 1$

i.e. $k \leq \log_2(n+1)$

(RB TREE PROPERTIES)

- **1.** Every node is either **red** or **black**
- 2. The root is a black node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

This means there must exist some root-NIL path that has $\leq \log_2(n+1)$ nodes on it.

Consequently, this path must have $\leq \log_2(n+1)$ black nodes on it.

By PROPERTY 4: every root-NIL path has $\leq \log_2(n+1)$ black nodes on it.

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly **2^k - 1** nodes.

Thus, since there are **n** nodes in the entire RB tree: $n \ge 2^k - 1$

i.e. $k \leq \log_2(n+1)$

(RB TREE PROPERTIES)

- **1.** Every node is either **red** or **black**
- 2. The root is a black node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

This means there must exist some root-NIL path that has $\leq \log_2(n+1)$ nodes on it.

Consequently, this path must have $\leq \log_2(n+1)$ black nodes on it.

By PROPERTY 4: every root-NIL path has $\leq \log_2(n+1)$ black nodes on it.

By PROPERTY 3: every root-NIL path has $\leq 2 \cdot \log_2(n+1)$ total nodes on it.

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly **2^k - 1** nodes.

Thus, since there are **n** nodes in the entire RB tree: $n \ge 2^k - 1$

i.e. $k \leq \log_2(n+1)$

(RB TREE PROPERTIES)

- **1.** Every node is either **red** or **black**
- 2. The root is a **black** node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

This means there must exist some root-NIL path that has $\leq \log_2(n+1)$ nodes on it.

if all root-NIL paths had > log₂(n+1) nodes, then k wouldn't be upper bounded by log₂(n+1)

By PROPERTY 4: every root-NIL path has $\leq \log_2(n+1)$ black nodes on it.

Consequently, this path must have $\leq \log_2(n+1)$ black nodes on it.

by PROPERTY 4. every root-interpation has $\leq \log_2(11+1)$ black nodes of it.

By PROPERTY 3: every root-NIL path has $\leq 2 \cdot \log_2(n+1)$ total nodes on it.

Red and black nodes must alternate, so the # of red nodes on the path is at most the # of black nodes

First, suppose every root-NIL path has $\geq \mathbf{k}$ nodes. Then the top part of the RB tree must contain a perfectly balanced BST of height $\mathbf{k} - \mathbf{1}$.

How many nodes are in this blob? Exactly **2^k - 1** nodes.

Thus, since there are **n** nodes in the entire RB tree: $n \ge 2^k - 1$

i.e. $k \leq log_2(n+1)$

(RB TREE PROPERTIES)

- **1.** Every node is either **red** or **black**
- 2. The root is a black node
- 3. No red node has a red child
- **4.** Every root-NIL path has the same number of **black** nodes on them

This means there must exist some root-NIL path that has $\leq \log_2(n+1)$ nodes on it.

if all root-NIL paths had > $log_2(n+1)$ nodes, then k wouldn't be upper bounded by $log_2(n+1)$

Consequently, this path must have $\leq \log_2(n+1)$ black nodes on it.

By PROPERTY 4: every root-NIL path has $\leq \log_2(n+1)$ black nodes on it.

By PROPERTY 3: every root-NIL path has $\leq 2 \cdot \log_2(n+1)$ total nodes on it.

Red and black nodes must alternate, so the # of red nodes on the path is at most the # of black nodes

Thus, the height of the RB tree is at most $2 \cdot \log_2(n+1)$, aka the height of any RB tree is $O(\log n)$.

First, suppose every root-NIL path has ≥ **k** nodes. Then the top part of the RB

(DR TDFF DDODEDTIES)

An ex wher

There's a lot going on, so here's how you should assess your understanding:

Properties 3 and 4 are the non-trivial rules. Their purpose should ~intuitively make sense.

This

Con

By PROPERTY 4. every Tool-INIL patitions > log_(IIIT1) black Houses of it.

By PROPERTY 3: every root-NIL path has $\leq 2 \cdot \log_2(n+1)$ total nodes on it.

so the # of red nodes on the path is at most the # of black nodes

Thus, the height of the RB tree is at most $2 \cdot \log_2(n+1)$, aka the height of any RB tree is O(log n).

ne

m

ouldn't

gຸ(n+1)

تغییر درخت قرمن-سیاه

چگونگی اضافه و حذف کردن در درخت قرمز-سیاه

WHAT HAVE WE LEARNED?

Runtime of **SEARCH** in an BST Tree = **O(height)**

WHAT HAVE WE LEARNED?

The height of an RB Tree is O(log n).

Runtime of **SEARCH** in an RB Tree = **O(height)** = **O(log n)**

WHAT HAVE WE LEARNED?

The height of an RB Tree is O(log n).

Runtime of **SEARCH** in an RB Tree = **O(height)** = **O(log n)**

What about INSERT/DELETE?

These are the two operations that actually modify the RB Tree, so we need to make sure that we insert & delete without violating our precious RB Tree properties...

INSERTING IN AN RB TREE

EXAMPLE: Insert 17.

INSERTING IN AN RB TREE

EXAMPLE: Insert 17.

What do we do with 17?

Do we color it **red**? Do we color it **black**?

Do we need to change the color of other nodes?

What if we insert 16 next?

EXAMPLE: Delete 8.

EXAMPLE: Delete 8.

(replace with immediate successor)

EXAMPLE: Delete 8.

(replace with immediate successor)

Now we've violated Property 4!

(all root-NIL paths must have the same # of black nodes)

How do we fix this up?

EXAMPLE: Delete 8.

(replace with immediate successor)

Now we've violated Property 4!

(all root-NIL paths must have the same # of black nodes)

How do we fix this up?

درج در درخت قرمن-سیاه

چگونگی متوازن نگه داشتن درخت هنگام درج

High-level plan

Insert as normal (same insert as BST), and then fix.

Fix = recolor and/or apply rotations until RB Tree properties are met.

High-level plan

Insert as normal (same insert as BST), and then fix.

Fix = recolor and/or apply rotations until RB Tree properties are met.

INSERT(x):

- Insert x normally (x becomes a leaf)
- Color x red

High-level plan

Insert as normal (same insert as BST), and then fix.

Fix = recolor and/or apply rotations until RB Tree properties are met.

INSERT(x):

- Insert x normally (x becomes a leaf)
- Color x red
- If x's parent y is black, then we're done!

High-level plan

Insert as normal (same insert as BST), and then fix.

Fix = recolor and/or apply rotations until RB Tree properties are met.

INSERT(x):

- Insert **x** normally (**x** becomes a leaf)
- Color x red
- If x's parent y is black, then we're done!
- Otherwise, y is red, so we have two red nodes in a row and need to do some fixing!

FIXING THINGS UP: CASE 1

CASE 1: parent **y** is **red**, and "uncle" **z** is **red** too!

FIXING THINGS UP: CASE 1

CASE 1: parent **y** is **red**, and "uncle" **z** is **red** too!

FIXING THINGS UP: CASE 1

CASE 1: parent **y** is **red**, and "uncle" **z** is **red** too!

Recolor!

Change **w** to **red** & change **y** and **z** both to **black**

One recolor = O(1) time

CASE 1: parent **y** is **red**, and "uncle" **z** is **red** too!

Recolor!

Change **w** to **red** & change **y** and **z** both to **black**

One recolor = O(1) time

This doesn't hurt Property 4!

All root-NIL paths that interact with w, y, or z, all have to go through w and would hit exactly one of y or z.

Before, w contributed one **black** node to each of those paths, and now, **y** (or **z**) still contributes one **black** node (instead of **w**).

CASE 1: parent **y** is **red**, and "uncle" **z** is **red** too!

But wait! What if w's W parent was also **red**?

CASE 1: parent **y** is **red**, and "uncle" **z** is **red** too!

But wait! What if w's parent was also red?

We basically just propagated the "double-red" violation upward!
We can recursively do this "fix-up". This propagation can only happen O(log n) times, since the tree was a valid RB Tree before this INSERT operation!

Thus, overall, INSERT in this CASE would be O(log n) still.

CASE 1: parent **y** is **red**, and "uncle" **z** is **red** too!

But wait again!! What if **w** is the root? The root can't be **red**!

CASE 1: parent **y** is **red**, and "uncle" **z** is **red** too!

But wait again!!
What if **w** is the root?
The root can't be **red**!

No stress at all, just color it **black**!

If **w** is the root, then **w** appears once on *every* root-NIL path. Thus, changing **w** to **black** will just add 1 to every root-NIL path and Property 4 is still preserved!

CASE 2: parent **y** is **red**, and "uncle" **z** is **black** (or NIL)!

DISCLAIMER:

This is just one of several sub-cases that fall under this Case 2. To understand all cases and why/how they work **intuitively**, you can read about 2-3-4 trees, which are an **isometry** of RB Trees. 2-3-4 trees are much easier to understand, and operations on 2-3-4 trees map to rotation routines for RB Trees!

CASE 2: parent **y** is **red**, and "uncle" **z** is **black** (or NIL)!

ROTATE & Recolor!

I need to rotate first, because I can't just recolor **x** or **y** to be **black**! That would mess up Property 4 - can you see why?

One rotation + recolor = O(1) time

CASE 2: parent **y** is **red**, and "uncle" **z** is **black** (or NIL)!

ROTATE & Recolor!

I need to rotate first, because I can't just recolor **x** or **y** to be **black**! That would mess up Property 4 - can you see why?

One rotation + recolor = O(1) time

CASE 2: parent **y** is **red**, and "uncle" **z** is **black** (or NIL)!

ROTATE & Recolor!

I need to rotate first, because I can't just recolor **x** or **y** to be **black**! That would mess up Property 4 - can you see why?

One rotation + recolor = O(1) time

After recoloring, Property 4 is maintained, and we have not propagated the "double-red" further up! We're done!

CASE 2: parent **y** is **red**, and "uncle" **z** is **black** (or NIL)!

RO' I need can't black

Prope

Why we rotated this way should feel like magic to you right now. We needed to recolor in a way that maintained the # of black nodes on any root-NIL path, while getting rid of the "double-red".

erty 4 is ave not le-red" one!

On

INSERT IN RB TREES

High-level plan

Insert as normal (same insert as BST), and then fix.

Fix = recolor and/or apply rotations until RB Tree properties are met.

INSERT IN RB TREES

High-level plan

Insert as normal (same insert as BST), and then fix.

Fix = recolor and/or apply rotations until RB Tree properties are met.

You are **not responsible for** the nitty-gritty details of how to insert or delete from RB Trees. And generally, I don't recommend memorizing these rotation/recolor rules. (if you need to code up a RB Tree, just look up the pseudocode in CLRS)

INSERT IN RB TREES

High-level plan

Insert as normal (same insert as BST), and then fix.

Fix = recolor and/or apply rotations until RB Tree properties are met.

You are **not responsible for** the nitty-gritty details of how to insert or delete from RB Trees. And generally, I don't recommend memorizing these rotation/recolor rules. (if you need to code up a RB Tree, just look up the pseudocode in CLRS)

You **should know:**

- The properties of a Red-Black tree
- Why do these properties guarantee that they are balanced?

RED-BLACK TREE HIGHLIGHTS

red-black trees SUPPORT search, Insert, & Delete in O(log n) time

The key is that RB Trees always have height at most $2 \cdot \log(n+1)$.

RED-BLACK TREE HIGHLIGHTS

red-black trees SUPPORT search, Insert, & Delete in O(log n) time

The key is that RB Trees always have height at most 2·log(n+1).

Generally, if you need to use a BST to solve a problem, you should think of using a self-balancing BST like Red-Black Trees! Unbalanced BSTs could have worst case O(n) operations.

RED-BLACK TREE HIGHLIGHTS

OPERATION	SORTED ARRAY	UNSORTED LINKED LIST	BST (WORST CASE)	BST (BALANCED)
SEARCH	O(log(n))	O(n)	O(n)	O(log(n))
DELETE	O(n)	O(n)	O(n)	O(log(n))
INSERT	O(n)	O(1)	O(n)	O(log(n))

(Balanced) Binary Search Trees can give us the best of both worlds!