Lineær algebra noter - Ortogonalt komplement og projektion

Lukas Peter Jørgensen, 201206057, DA4

24.juni2014

Indhold

L	Dis	position
2	Not	ser
	2.1	Ortogonalt komplement
	2.2	Theorem 5.2.4
	2.3	Korollar 5.5.9
	2.4	Projektionsmatrix
	2.5	Bevis for unikhed

2 Noter

1. TBD

2.1 Ortogonalt komplement

Det ortogonale komplement W^{\perp} til underrummet W af \mathbb{R}^n er mængden af alle de vektorer der er ortogonale på alle vektorer i W.

$$W^{\perp} = \{ v \in \mathbb{R}^n | v^T u = 0 \forall u \in W \}$$

Dette medfører:

- 1. W^{\perp} er et underrum af \mathbb{R}^n .
- $2. \ dim(W^{\perp}) = n dim(W).$
- 3. $(W^{\perp})^{\perp}$ hvilket betyder det ortogonale komplement af W^{\perp} er W.
- 4. Enhver vektor bi \mathbb{R}^n kan blive udtrykt $b=b_w+b_{w^\perp}$ for $b_w\in W$ og $b_{w^\perp}\in W$

2.2 Theorem 5.2.4

Hvis S er et underrum af \mathbb{R}^n , så er $(S^{\perp})^{\perp} = S$.

Hvis $x \in S$ så er x ortogonal til enhver y i S^{\perp} . Derved er $S \subseteq (S^{\perp})^{\perp}$.

Omvendt, hvis $z \in (S^{\perp})^{\perp}$ kan z skrives som z = u + v, $u \in S, v \in S^{\perp}$ fordi at $\mathbb{R}^n = S \bigoplus S^{\perp}$. Da $v \in S^{\perp}$ er ortogonal til både u og z. Så følger det at:

$$(x^T y = \langle x, y \rangle \text{ for } \mathbb{R})$$

$$0 = v^T z = v^T u + v^T v = v^T v$$

Derved må v=0. Vi får så at $z=u\in S$ derved er $S=(S^\perp)^\perp$

2.3 Korollar 5.5.9

 $\{u_1,\ldots,u_m\}$ er en ortonormal basis for $S\in\mathbb{R}^m$ og $b\in\mathbb{R}^m$. $U=(u_1,\ldots,u_m)$

Theorem 5.5.8 siger at projektionen p af b på S er:

$$p = c_1 u_1 + \dots + c_m u_m = Uc$$

Hvor

$$c = \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix} = \begin{bmatrix} u_1^T \\ \vdots \\ u_m^T \end{bmatrix} = U^T b$$

Derved får vi:

$$p = UU^Tb$$

2.4 Projektionsmatrix

Hvis $\{u_1, u_2, \dots, u_k\}$ er en ortonormal basis for $S \in \mathbb{R}^m$ 0 og $U = (u_1, u_2, \dots, u_k)$ så er projektionen p af $b \in \mathbb{R}^m$ på S givet ved:

$$p = UU^Tb$$

Matricen UU^T er en projektionsmatrix til underrummet S, denne projektionsmatrix er unik.

2.5 Bevis for unikhed

Hvis P er en projektionsmatrix tilhørende et underrum S af \mathbb{R}^m , så er projektionen p af b på S unik.

Hvis Q også er en projektionsmatrix tilhørende S så er:

$$Qb=p=Pb$$

Det følger heraf at:

$$q_j = Qc_j = Pc_jp_j$$