## Завдання №1 РГР

## Тема: «Випадкові події»

- 1. В урні міститься 9 червоних і 5 синіх кульок. Кульки з неї виймаються по одній без повернення. Таким способом вийняли чотири кульки. Обчислити ймовірності таких випадкових подій: 1) *А* чотири червоні кульки; 2) *В* чотири кульки сині; 3) *С* дві червоні й дві сині кульки.
- 2. Задано множину цілих одноцифрових чисел  $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ . Навмання береться одне число, а потім друге, при цьому перше не повертається. Обчислити ймовірності таких випадкових подій: 1) A отримане двоцифрове число виявиться непарним; 2) B отримане двоцифрове число ділиться на 5 або на 2.
- 3. Прилад складається з трьох елементів, які працюють незалежно один від одного. Ймовірність того, що перший елемент не вийде із ладу під час роботи приладу, є величиною сталою і дорівнює  $p_1 = 0.9$ . Для другого і третього елементів ця ймовірність відповідно така:  $p_2 = 0.8$ ,  $p_3 = 0.7$ . Обчислити ймовірність того, що під час роботи приладу з ладу вийдуть: 1) A три елементи; 2) B два елементи; 3) C один елемент; 4) D всі три елементи не вийдуть із ладу. З'ясувати, чи утворюють випадкові події A, B, C, D повну групу?
- 4. Ймовірність безвідмовної роботи блока, що входить в систему упродовж певного часу дорівнює 0,9. Для надійності роботи системи встановлюється такий же блок, що буде знаходитись у резерві. Яка ймовірність безвідмовної роботи системи, якщо при цьому враховувати резервний блок?
- 5. Радіолокаційна система, до якої входять дві станції, що працюють незалежно, виконує деяке завдання з виявлення літака-порушника повітряного простору України на певній ділянці кордону. Для виконання цього завдання необхідно, щоб у справному стані була хоча б одна радіолокаційна станція. Ймовірність безвідмовної роботи першої станції дорівнює 0,95, а другої 0,85. Знайти ймовірність виконання завдання.
- 6. Робітник обслуговує три верстати-автомати, що працюють незалежно один від одного. Ймовірність того, що протягом години перший верстат потребує уваги робітника дорівнює 0,9, для другого та третього верстатів ця ймовірність дорівнює відповідно 0,85 і 0,8. Яка ймовірність того, що протягом години уваги робітника потребують: 1) A два верстати; 2) B хоча б один із трьох?
- 7. Радіоприймач із ймовірностями  $p_1 = 0.9$ ,  $p_2 = 0.1$  може належати до однієї з двох партій. Ймовірність того, що радіоприймач пропрацює заданий проміжок часу без ремонту для цих партій відповідно дорівнює 0.8 і 0.6. Яка ймовірність того, що радіоприймач пропрацює заданий проміжок часу?
- 8. На складання агрегату надходять деталі, які виготовляються двома верстатами-автоматами. Перший верстат виготовляє в середньому 0,2% бракованих деталей,

- а другий 0,1%. Знайти ймовірність надходження бракованої деталі на складання, якщо від першого верстата надійшло 2000 деталей, а від другого 3000.
- 9. В ящику міститься 20 тенісних м'ячів, із них 12 нових і 8, які були в користувані. Із ящика навмання беруть два м'яча і після закінчення гри повертають у ящик. Після цього із ящика навмання вибирають знову два м'яча для наступної гри. Обчислити ймовірності таких випадкових подій: 1) А два м'ячі, що вийняли із ящика, ще не були в користуванні; 2) В два м'ячі вже були в користуванні.
- 10.У першому ящику міститься 6 стандартних і 5 бракованих деталей. Із першого ящика навмання беруть чотири деталі й перекладають у другий, в якому до цього містилося дві стандартні й одна бракована деталі. Яка ймовірність після цього із другого ящика вийняти одну стандартну деталь?
- 11. Задано значення: P(A) = 0.3,  $P(\overline{B}) = 0.6$ ,  $P_B(A) = 0.32$ . Знайти:  $P(A \cdot B)$ , P(A + B),  $P_A(B)$ ,  $P(A \cdot \overline{B})$ .
- 12. В урні міститься 4 зелених і 8 червоних кульок. Кульки із урни виймають по одній без повернення. Таким способом було вийнято три кульки. Обчислити ймовірності таких випадкових подій: 1) A перша кулька буде червоною, друга зеленою, третя червоною; 2) B перша кулька буде зеленою, друга червоною, третя зеленою.
- 13. Електролампочки з'єднані за схемою, зображеною на рис. 11.



Рис. 11

Ймовірність того, що електролампочка не вийде з ладу при увімкненні схеми в електричну мережу,  $\epsilon$  величиною сталою і дорівню  $\epsilon$  0,9. Яка ймовірність того, що в електричній схемі, наведеної на рис. 11, при увімкненні її в електричну мережу потече електричний струм?

14. Електролампочки з'єднані за схемою, зображеною на рис. 12.



Рис. 12

Ймовірність того, що лампочка не перегорить при увімкненні в електромережу  $\epsilon$  величиною сталою і дорівнює 0,8. Яка ймовірність того, що в схемі, якщо вона увімкнена в електромережу, потече електричний струм?

- 15. Маємо три урни. У першій міститься 8 білих і 2 чорних кульки, у другій 5 білих і 5 чорних, у третій 2 білих і 8 чорних. Навмання підкидають гральний кубик. Якщо випаде на грані число кратне 2, то навмання беруть дві кульки з першої урни, якщо випаде число кратне 3 дві кульки з другої урни, і якщо випаде число, яке не буде кратним ні 2, ні 3 дві кульки з третьої урни. Знайти ймовірність появи двох білих кульок у такому експерименті.
- 16. Прилад складається із двох вузлів № 1, і № 2, що дублюють один одного, і може працювати у двох режимах: сприятливому і несприятливому. У сприятливому режимі надійність кожного із узлів  $q_1 = 0.8$ , а в неспрятливому  $q_2 = 0.5$ . Ймовірність того, що прилад працюватиме в сприятливому режимі  $P_1 = 0.6$ , а в несприятливому режимі  $1 P_1$ . Знайти надійність приладу R.
- 17. Деталь може надійти для обробки на перший верстат із ймовірністю 0,2, на другий верстат із ймовірністю 0,3 і на третій із ймовірностю 0,5. При обробці деталі на першому верстаті ймовірність допустити брак дорівнює 0,01, на другому і третьому верстатах ця ймовірність відповідно дорівнює 0,05 і 0,08. Оброблені деталі складають в одну шухляду. Навмання взята звідти деталь виявилась бракованою. Яка ймовірність того, що її обробляв перший верстат?
- 18. Клапани, виготовлені цехом заводу, перевіряють три контролери. Ймовірність того, що клапан потрапить на перевірку до першого контролера дорівнює 0,3, до другого 0,5 і до третього 0,2. Ймовірність того, що бракована деталь буде виявлена для першого, другого і третього контролерів відповідно дорівнює 0,95, 0,9, 0,85. Під час повторної перевірки відбракованої деталі вона виявилась бракованою. Яка ймовірність того, що цю деталь перевіряв третій контролер?
- 19. Прилад складається із двох вузлів, що працюють незалежно один від одного. Робота кожного вузла необхідна для роботи приладу в цілому. Надійність (ймовірність безвідмовної роботи протягом часу t) першого вузла  $P_1=0.9$ ; другого  $P_2=0.8$ . Прилад випробовувався протягом часу t, і при цьому один з вузлів вийшов з ладу. Знайти ймовірність того, що відмовив у роботі лише перший вузол, а другий був справним.
- 20. При вмиканні запалення мотор автомашини починає працювати із ймовірностю P=0,9. Знайти ймовірності таких випадкових подій: 1) A мотор почне працювати при другому вмиканні запалення; 2) для роботи мотора необхідно увімкнути мотор не більше двох раз.
- 21. В урні міститься 3 червоних, 1 синя і 2 зелених кульок. Із урни кульки виймають по одній без повернення. Кульки виймають до першої появи червоної. Обчислити ймовірність цієї події.
- 22. На вхід радіолокаційного пристрою із ймовірністю P = 0,9 надходить корисний сигнал із завадами, і з ймовірністю 1 P = 0,1 самі лише завади. Коли надходить корисний сигнал із завадами, то пристрій реєструє цей сигнал із

- ймовірністю  $P_1 = 0.8$ , якщо надходять лише завади, то із ймовірністю  $P_2 = 0.9$ . Відомо, що пристрій зареєстрував наявність якогось сигналу. Яка ймовірність того, що це корисний сигнал?
- 23. Пасажир для придбання квитка може звернутись до однієї з чотирьох кас. Відповідні ймовірності дорівнюють  $p_1=0.2,\ p_2=0.3,\ p_3=0.4,\ p_4=0.1.$  Ймовірність того, що до моменту появи пасажира в касі буде квиток, дорівнює відповідно  $P_1=0.6,\ P_2=0.3,\ P_3=0.8,\ P_4=0.5.$  Пасажир звернувся до однієї із кас і купив квиток. Яка ймовірність того, що квиток пасажир придбав у першій касі?
- 24. Для виготовлення деталі необхідно провести чотири незалежні технологічні операції. Ймовірність припуститись браку при виконанні першої технологічної операції  $q_1 = 0,1$ , і для другої, третьої і четвертої ці ймовірності дорівнюють відповідно  $q_2 = 0,05$ ,  $q_3 = 0,15$ ,  $q_4 = 0,2$ . Яка ймовірність того, що виготовлена деталь виявиться стандартною?
- 25. Маємо k радіолокаційних станцій, кожна із них за один оберт антени може виявити літаючий об'єкт у повітрі із ймовірністю P (незалежно від інших обертів антени й інших станцій). За час t кожна станція здійснить m обертів антени. Знайти ймовірності таких випадкових подій:
- 1) A літаючий об'єкт буде виявлено хоча б один раз;
- 2) B об'єкт буде виявлено кожною станцією.
- 26. Ймовірність появи випадкової події в кожному з незалежних експериментів є величиною сталою і дорівнює 0,8. Скільки необхідно провести експериментів, щоб ймовірність появи випадкової події хоча б один раз дорівнювала 0,992?
- 27. Ймовірність відмови в роботі кожного приладу під час випробовування дорівнює 0,3. Скільки таких приладів необхідно взяти, щоб із ймовірністю 0,9919 отримати хоча б одну відмову в роботі приладу?
- 28. Троє робітників виготовляють однотипні деталі. До того ж, за зміну перший робітник виготовив у 1,5 раза більше, ніж другий, а другий в 1,8 раза менше, ніж третій. У середньому брак становить для першого робітника 4%, для другого і третього 1 і 8%. Виготовлені деталі розміщують в одному ящику. Навмання взята одна деталь із ящика виявилась бракованою. Яка ймовірність того, що її виготовив другий робітник?
- 29. Чотири робітники виготовляють однотипні вироби. При цьому продуктивність праці цих робітників задовольняє такому відношенню: 2 : 1,5 : 4 : 2,5. Відомо, що частка браку для першого, другого, третього та четвертого робітників дорівнює відповідно 1,5, 2,8, 2, 4,5. Після робочої зміни всі виготовлені робітниками вироби вміщують в один бункер. Навмання взятий виріб із бункера виявився стандартним. Яка ймовірність, що його виготував перший або третій робітник?

| 30. Маємо 10 лотерейних білетів. На кожний із них може випасти виграш із певною ймовірністю. Знайти ймовірність такої події — із 10 білетів виграють не більш як три. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |