

Description

The VST20N400 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =200V, I_D =25A $R_{DS(ON)}$ =40m Ω (typical) @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Application

- LED backlighting
- Ideal for high-frequency switching and synchronous rectification

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST20N400-TC	VST20N400	TO-220C	-	-	-

Absolute Maximum Ratings (T_A=25 °Cunless otherwise noted)

Parameter	Symbol	Limit	V V A A	
Drain-Source Voltage	V _{DS}	200		
Gate-Source Voltage	V _{GS}	±20		
Drain Current-Continuous	I _D	25		
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	17.6		
Pulsed Drain Current	I _{DM}	100	А	
Maximum Power Dissipation	P _D 135		W	
Derating factor		0.9	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	320	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Thermal Résistance, Junction-to-Case ^(Note 2)	Rejc	1.11	°C/W
--	------	------	------

Electrical Characteristics (T_A=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	200	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	2.5	3.5	4.5	V
Drain-Source On-State Resistance			-	40	50	mΩ
Forward Transconductance	g Fs	V_{DS} =5 V , I_{D} =20 A	15	-	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}		-	1635		PF
Output Capacitance	C _{oss}	$V_{DS}=100V, V_{GS}=0V,$	-	128		PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	3		PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}	V _{DD} =100V, R _L =7.5Ω	-	7	-	nS
Turn-on Rise Time	t _r		-	9	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	25	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	\/ 400\/ L 00A	-	25	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =100V,I _D =20A,	-	10.6	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	6	-	nC
Drain-Source Diode Characteristics	1					•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	25	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	45	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	160	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t \leq 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

_{lo-} Drain Current (A)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance