ĐẠI HỌC QUỐC GIA TP. HCM TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

BÁO CÁO ĐỒ ÁN

BIỂU DIỄN VÀ TÍNH TOÁN SỐ NGUYÊN LỚN

Danh sách thành viên:

Mã số sinh viên	Tên	Phân công
1712352	Chu Nguyên Đức	Chuyển các hệ cơ số, NOT, dịch phải, quay phải, operator=.
1712357	Nguyễn Huỳnh Đức	Góp phần làm chuyển các hệ cơ số sang hệ thập phân, làm toán tử AND, OR, XOR, dịch trái, quay trái.
1712405	Nguyễn Trường Giang	Góp phần làm chuyển các hệ cơ số sang hệ thập phân, làm operator+, operator-, operator

Môi trường lập trình:

Visual Studio 2013

Ý tưởng thiết kế và thực hiện đồ án:

- Biểu diễn bằng mảng bool 128 phần tử, mỗi bool tượng trưng cho 1 bit
- Phạm vi biểu diễn:

Hệ	Max	Min
Thập phân	1701411834604692317316873037 15884105727	- 1701411834604692317316873037 15884105728
Nhị phân	11111111111111111111111111111111111111	10000000000000000000000000000000000000
Thập lục phân	7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	800000000000000000000000000000000000000

Các chức năng:

- 1) Chuyển đổi số từ hệ thập phân sang hệ nhị phân, hệ thập lục phân
- ✓ Chuyển đổi số thập phân sang hệ nhi phân: thực hiện phép chia 2 rồi lấy số dự ghép lại.
- ✓ Chuyển đổi số thập phân sang hệ thập lục phân: chuyển số sang hệ nhị phân rồi gom từng
 4 bit lại chuyển thành thập lục phân.

- Dòng 1: Chuyển số thập phân dương sang số nhị phân
- Dòng 2: Chuyển số thập phân âm sang số nhị phân
- Dòng 3: Chuyển số thập phân dương sang số thập lục phân
- Dòng 4: Chuyển số thập phân âm sang số thập lục phân

2) Chuyển đổi số từ hệ nhị phân sang hệ thập phân, hệ thập lục phân

- ✓ Chuyển đổi số nhị phân sang hệ thập lục phân: gom mỗi 4 bit lại đổi thành nhị phân.
- ✓ Chuyển đổi số nhị phân sang hệ thập phân: tính tổng của 2 lũy thừa các vị trí. Trong quá trình tính có thể sẽ gặp số quá lớn (2¹²⁷) nên tạo thêm 2 hàm cong() và tinhMu() để thao tác với chuỗi số thập phân.

- Dòng 1: Chuyển số nhị phân dương sang số thập phân
- Dòng 2: Chuyển số nhị phân âm sang số thập phân
- Dòng 3: Chuyển số nhị phân dương sang số thập lục phân
- Dòng 4: Chuyển số nhị phân âm sang số thập lục phân
- 3) Chuyển đổi số từ hệ thập lục phân sang hệ nhị phân, thập phân

- ✓ Chuyển số thập lục phân sang số nhị phân: đổi từng bit thập lục phân thành 4 bit nhị phân.
- ✓ Chuyển số thập lục phân sang số thập phân: chuyển sang số nhị phân rồi chuyển sang thập phân.

- Dòng 1: Chuyển số thập lục phân dương sang số nhị phân
- Dòng 2: Chuyển số thập lục phân âm sang số nhị phân
- Dòng 3: Chuyển số thập lục phân dương sang số thập phân
- Dòng 4: Chuyển số thập lục phân âm sang số thập phân
- 4) Operator+, operator-, operator*, operator/
- ✓ Operator+: Cộng từng bit lại với nhau.

- Dòng 1: Cộng hai số nhị phân.
- Dòng 2: Cộng hai số thập phân.
- Dòng 3: Cộng hai số thập lục phân.
- ✓ Operator-: Chuyển số trừ về dạng bù 2. Lấy số bị trừ cộng cho số trừ.

Dòng 1: Trừ hai số nhị phân.

Dòng 2: Trừ hai số thập phân.

Dòng 3: Trừ hai số thập lục phân.

✓ Operator*: Đặt tính và tính

Dòng 1: Nhân hai số nhị phân.

Dòng 2: Nhân hai số thập phân.

Dòng 3: Nhân hai số thập lục phân.

✓ Operator/: Áp dụng thuật toán "Restoring division algorithm"

Dòng 1: Chia hai số nhị phân.

Dòng 2: Chia hai số thập phân.

Dòng 3: Chia hai số thập lục phân.

5) Toán tử AND, OR, XOR, NOT, dịch trái, dịch phải, quay trái, quay phải

- ✓ Toán tử AND: So sánh từng bit trong QInt. Kết quả trả về true nếu các bit cùng bằng 1.
- ✓ Toán tử OR: So sánh từng bit trong QInt. Kết quả trả về 0 khi các bit cùng bằng 0.
- ✓ Toán tử XOR: So sánh từng bit trong QInt. Kết quả trả về 0 khi các bit giống nhau.
- ✓ Toán tử NOT: Đảo từng bit trong QInt.
- ✓ Phép dịch trái: Dịch các bit qua trái 1 vị trí. Bit sau cùng là 0.
- ✓ Phép dịch phải: Dịch các bit qua phải 1 vị trí. Bit ngoài cùng gán bằng 1 nếu là số âm, 0 nếu ngược lại.
- ✓ Phép quay trái: Dịch trái sau đó gán bit cuối bằng bit đầu cũ
- ✓ Phép quay phải: Dịch phải sau đó gán bit đầu bằng bit cuối cũ

Dòng 1: AND 2 số nhị phân.

Dòng 2: AND 2 số thập phân.

Dòng 3: OR 2 số thập lục phân.

Dòng 4: OR 2 số thập phân.

Dòng 5: Quay trái số thập phân.

Dòng 6: XOR 2 số nhị phân.

Dòng 7: XOR 2 số thập phân.

Dòng 8: XOR 2 số thập lục phân.

Dòng 1: NOT số thập phân.
Dòng 2: NOT số thập lục phân.
Dòng 3: Dịch trái số thập phân
Dòng 4: Dịch trái số thập lục phân
Dòng 5: Dịch phải số thập lục phân
Dòng 6: Dịch phải số thập phân
Dòng 7: Quay phải số thập phân
Dòng 8: Quay phải số thập phân.
Dòng 9: Quay phải số thập lục phân.

Các chức năng đã làm được: Tất cả

Mức độ hoàn thành: 100%

Nguồn tài liệu tham khảo:

- http://www.cplusplus.com/
- https://stackoverflow.com/
- https://www.geeksforgeeks.org/
- Slide bài giảng Kiến trúc máy tính & Hợp ngữ của cô Chung Thuỳ Linh