§3. Phương trình bậc hai và quy về bậc hai

A. Lý thuyết

1. Giải biện luận phương trình: $ax^2 + bx + c = 0 (a \ne 0)$

Ta có: $\Delta = b^2 - 4ac$.

- + Δ <0: phương trình vô nghiệm.
- + $\Delta = 0$: phương trình có nghiệm kép $x = -\frac{b}{2a}$.
- + $\Delta > 0$: phương trình có hai nghiệm phân biệt: $x = \frac{-b \sqrt{\Delta}}{2a}$; $x = \frac{-b + \sqrt{\Delta}}{2a}$.

2. Đinh lí Vi-et

Nếu phương trình $ax^2 + bx + c = 0$ $(a \ne 0)$ có 2 nghiệm $x_1; x_2$ thì $\begin{cases} S = x_1 + x_2 = -\frac{b}{a} \\ P = x_1 x_2 = \frac{c}{a} \end{cases}$

Nếu hai số x,y mà $\begin{cases} x+y=S\\ x.y=P \end{cases}$ thì x,y là nghiệm của phương trình $t^2-St+P=0$ (với $S^2 \ge 4P$).

- **3.** Phương trình có 2 nghiệm trái dấu $x_1 < 0 < x_2 \Leftrightarrow \frac{c}{a} < 0$
- **4.** Phương trình có 2 nghiệm dương $0 < x_1 < x_2 \Leftrightarrow \begin{cases} a \neq 0 \\ \Delta > 0 \\ P > 0 \\ S > 0 \end{cases}$
- **5.** Phương trình có 2 nghiệm âm $x_1 < x_2 < 0 \Leftrightarrow \begin{cases} a \neq 0 \\ \Delta > 0 \\ P > 0 \\ S < 0 \end{cases}$

STUDY TIP

Trong trường hợp phương trình có 2 nghiệm trái dấu ta không cần điều kiện $\Delta > 0$ vì $\frac{c}{a} < 0$ nên phương trình luôn có 2 nghiệm.

Dang 1

B. Các dạng toán điển hình

Xác định tham số biện luận số nghiệm của phương trình bậc hai

Ví dụ 1: Có bao nhiều giá trị nguyên của m thuộc đoạn $\begin{bmatrix} -10;10 \end{bmatrix}$ để phương trình $x^2 - x + m = 0$ vô nghiệm?

A. 9.

B. 10.

C. 11.

D. 20.

Lời giải

Phương trình đã cho vô nghiệm khi $\Delta = 1 - 4m < 0 \Leftrightarrow m > \frac{1}{4}$

Vì $m \in [-10;10]$, $m \in \mathbb{Z}$ nên $m \in \{1;2;3;4;5;6;7;8;9;10\}$, có 10 phần tử thỏa mãn.

Đáp án B.

Ví dụ 2: Phương trình $(m-2)x^2 + 2x - 1 = 0$ có nghiệm kép khi:

$$\mathbf{A.} \begin{bmatrix} m=1\\ m=2 \end{bmatrix}$$

B. m = 1.

C. m = 2.

D. m = -1.

Lời giải

Phương trình đã cho có nghiệm kép khi: $\begin{cases} m-2 \neq 0 \\ \Delta' = m-1 = 0 \end{cases} \Leftrightarrow \begin{cases} m \neq 2 \\ m = 1 \end{cases} \Leftrightarrow m = 1$

Đáp án B.

Ví dụ 3: Tìm m để phương trình $mx^2 + 6 = 4x + 3m$ có nghiệm duy nhất.

A.
$$m \in \emptyset$$
.

B.
$$m = 0$$
.

C.
$$m \in \mathbb{R}$$
.

D.
$$m \neq 0$$
.

STUDY TIP

Phương trình

 $ax^2 + bx + c = 0$ có nghiệm duy nhất xảy ra ở 1 trong 2 trường hợp sau:

+ TH1: a = 0, phương trình bx + c = 0 có nghiệm duy

+ TH2: $a \neq 0$, $\Delta = 0$ hoặc $\Delta' = 0$.

Lời giải

Viết lại phương trình: $mx^2 - 4x + (6-3m) = 0$

- Với m=0: Khi đó phương trình có dạng $-4x+6=0 \Leftrightarrow x=\frac{3}{2}$ là nghiệm.
- Với $m \neq 0$: Ta có $\Delta' = (-2)^2 m(6 3m) = 3m^2 6m + 4 = 3(m 1)^2 + 1 > 0 \ \forall m$.

Khi đó phương trình đã cho luôn có 2 nghiệm phân biệt khi $m \neq 0$. Vậy m=0 thỏa mãn.

Đáp án B.

Ví dụ 4: Phương trình $(m-1)x^2 + 6x - 1 = 0$ có hai nghiệm phân biệt khi:

A.
$$m > -8$$

B.
$$m > -\frac{5}{4}$$
.

C.
$$m > -8$$
 và $m \ne 1$.

D.
$$m > -\frac{5}{4}$$
 và $m \ne 1$.

Phương trình đã cho có hai nghiệm phân biệt khi:

$$\begin{cases} m-1\neq 0 \\ \Delta'>0 \end{cases} \Leftrightarrow \begin{cases} m\neq 1 \\ m+8>0 \end{cases} \Leftrightarrow \begin{cases} m\neq 1 \\ m>-8 \end{cases}$$

Đáp án C.

Dang 2

Dấu của nghiệm phương trình bậc hai

Ví dụ 1: Phương trình $ax^2 + bx + c = 0$ ($a \ne 0$) có hai nghiệm phân biệt cùng dấu khi và chỉ khi:

A.
$$\begin{cases} \Delta \ge 0 \\ P > 0 \end{cases}$$
 B.
$$\begin{cases} \Delta > 0 \\ P > 0 \end{cases}$$
 C.
$$\begin{cases} \Delta > 0 \\ S > 0 \end{cases}$$
 D.
$$\begin{cases} \Delta > 0 \\ S < 0 \end{cases}$$

$$\mathbf{B.} \begin{cases} \Delta > 0 \\ P > 0 \end{cases}$$

C.
$$\begin{cases} \Delta > 0 \\ S > 0 \end{cases}$$

$$\mathbf{D.} \begin{cases} \Delta > 0 \\ S < 0 \end{cases}$$

STUDY TIP

ĐK để phương trình có 2 nghiệm phân biệt cùng dấu:

$$\begin{cases} \Delta > 0 \\ P > 0 \end{cases}$$

Phương trình có hai nghiệm phân biệt khi $\Delta > 0$.

Khi đó, gọi hai nghiệm của phương trình là x_1 ; x_2 .

Do x_1 ; x_2 cùng dấu nên $x_1.x_2 > 0$ hay P > 0.

Đáp án B.

Ví dụ 2: Phương trình $ax^2 + bx + c = 0$ ($a \ne 0$) có hai nghiệm âm phân biệt khi và chỉ khi:

$$\mathbf{A.} \ \begin{cases} \Delta > 0 \\ P > 0 \end{cases}.$$

B.
$$\begin{cases} \Delta > 0 \\ P > 0. \\ S > 0 \end{cases}$$
 C.
$$\begin{cases} \Delta > 0 \\ P > 0. \\ S < 0 \end{cases}$$
 D.
$$\begin{cases} \Delta > 0 \\ S > 0 \end{cases}$$

$$\mathbf{C.} \begin{cases} \Delta > 0 \\ P > 0. \end{cases}$$

$$\mathbf{D.} \begin{cases} \Delta > 0 \\ S > 0 \end{cases}$$

STUDY TIP

ĐK để phương trình có 2 nghiệm âm phân biệt:

STUDY TIP

ĐK để phương trình có 2

nghiệm dương phân biệt:

 $\Delta > 0$ P > 0S < 0

$$\begin{cases} \Delta > 0 \\ P > 0 \end{cases}$$

S < 0

Lời giải

Phương trình có hai nghiệm âm phân biệt khi và chỉ khi:

$$\begin{cases} \Delta > 0 \\ x_1 + x_2 < 0 \Longrightarrow \begin{cases} \Delta > 0 \\ S < 0 \\ P > 0 \end{cases}$$

Đáp án C.

Ví dụ 3: Phương trình $ax^2 + bx + c = 0$ ($a \ne 0$) có hai nghiệm trái dấu khi và chỉ khi:

A.
$$\begin{cases} \Delta > 0 \\ S < 0 \end{cases}$$
 B.
$$\begin{cases} \Delta > 0 \\ S > 0 \end{cases}$$
 C. $P < 0$.

$$\mathbf{B.} \begin{cases} \Delta > 0 \\ S > 0 \end{cases}.$$

D.
$$P > 0$$
.

Giả sử phương trình có 2 nghiệm trái dấu thì $x_1.x_2 < 0 \Rightarrow P < 0$.

Khi đó $P = \frac{c}{a} < 0 \Rightarrow a,c$ trái dấu nên phương trình đã cho luôn có 2 nghiệm phân biệt.

Đáp án C.

Ví dụ 4: Gọi S là tập tất cả các giá trị nguyên của m thuộc đoạn $\begin{bmatrix} -2;6 \end{bmatrix}$ để phương trình $x^2 + 4mx + m^2 = 0$ có hai nghiệm dương phân biệt. Tổng các phần tử của S bằng:

B. 2.

C. 18.

D. 21.

Phương trình có 2 nghiệm dương phân biệt khi:

$$\begin{cases} \Delta' > 0 \\ S > 0 \Leftrightarrow \begin{cases} 3m^2 > 0 \\ -4m > 0 \Leftrightarrow \begin{cases} m \neq 0 \\ m < 0 \end{cases} \Rightarrow S = \{-2; -1\} \end{cases}$$

$$R > 0$$

Vậy tổng các phần tử của S là -3.

Đáp án A.

Ví dụ 5: Phương trình $(m-1)x^2 + 3x - 1 = 0$ có hai nghiệm trái dấu khi:

A.
$$m > 1$$
.

B.
$$m < 1$$
.

C.
$$m \ge 1$$
.

$$\mathbf{D}$$
. $m \leq 1$.

Lời giải

Phương trình có hai nghiệm trái dấu khi: $\begin{cases} a \neq 0 \\ P < 0 \end{cases} \Leftrightarrow \begin{cases} m - 1 \neq 0 \\ \frac{-1}{m > 1} < 0 \end{cases} \Leftrightarrow \begin{cases} m \neq 1 \\ m > 1 \end{cases} \Leftrightarrow m > 1$

Ví dụ 6: Tìm điều kiện của m để phương trình $x^2 - (2m-1)x + m^2 - m = 0$ có 2 nghiệm phân biệt x_1 ; x_2 thỏa mãn $x_1 > x_2 > 1$.

A.
$$m > 2$$
.

B.
$$m > \frac{3}{2}$$
. **C.** $m < 1$.

Trước hết phương trình đã cho có hai nghiệm phân biệt khi:

$$\Delta = \left(2m-1\right)^2 - 4\left(m^2 - m\right) > 0 \Leftrightarrow 4m^2 - 4m + 1 - 4m^2 + 4m > 0 \Leftrightarrow 1 > 0 \text{ luôn đúng}$$

Vậy phương trình đã cho có hai nghiệm phân biệt.

Theo định lí Vi-et ta có: $\begin{cases} x_1 + x_2 = 2m - 1 \\ x_1 x_2 = m^2 - m \end{cases}$

Để $x_1; x_2$ thỏa mãn $x_1 > x_2 > 1 \Rightarrow x_1 - 1 > x_2 - 1 > 0$

$$\Rightarrow \text{ Diều kiện: } \begin{cases} (x_1 - 1)(x_2 - 1) > 0 \\ (x_1 - 1) + (x_2 - 1) > 0 \end{cases} \Leftrightarrow \begin{cases} x_1 x_2 - (x_1 + x_2) + 1 > 0 \\ x_1 + x_2 - 2 > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} m^2 - m - (2m - 1) + 1 > 0 \\ 2m - 1 - 2 > 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 3m + 2 > 0 \\ m > \frac{3}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} (m-1)(m-2) > 0 \\ m > \frac{3}{2} \end{cases} \Leftrightarrow m > 2$$

$$\begin{cases} m-1 > 0 \\ m-2 > 0 \\ m > \frac{3}{2} \end{cases} \Leftrightarrow m > 2$$

$$\begin{cases} m-1 < 0 \\ m-2 < 0 \\ m > \frac{3}{2} \end{cases}$$

Đáp án A.

Ví dụ 7: Tìm điều kiện của m để phương trình $x^2 - (2m-1)x + m^2 - m = 0$ có 2 nghiệm phân biệt x_1 ; x_2 thỏa mãn $x_1 < 2 < x_2$.

A.
$$m < 2$$
.

B.
$$m > 3$$
.

C.
$$2 < m < 3$$
.

$$\mathbf{D.} \begin{bmatrix} m < 2 \\ m > 3 \end{bmatrix}.$$

Lời giải

Trước hết phương trình đã cho phải có 2 nghiệm $\Rightarrow \Delta > 0 \Leftrightarrow 1 > 0$ thỏa mãn $\forall m$. Để x_1 ; x_2 thỏa mãn $x_1 < 2 < x_2 \Leftrightarrow x_1 - 2 < 0 < x_2 - 2$ ta đi so sánh hai số $(x_1 - 2)$ và (x_2-2) với số 0.

Vậy điều kiện là:
$$(x_1 - 2)(x_2 - 2) < 0 \Leftrightarrow x_1x_2 - 2(x_1 + x_2) + 4 < 0$$

Theo định lí Vi-et ta có:
$$\begin{cases} x_1 + x_2 = 2m - 1 \\ x_1 \cdot x_2 = m^2 - m \end{cases}$$

$$\Rightarrow m^2 - m - 2(2m - 1) + 4 < 0 \Leftrightarrow m^2 - 5m + 6 < 0$$

$$\Leftrightarrow (m-2)(m-3) < 0 \Leftrightarrow \begin{cases} m-2 < 0 \\ m-3 > 0 \\ m-2 > 0 \end{cases} \Leftrightarrow 2 < m < 3 \\ m-3 < 0 \end{cases}$$

Đáp án C.

Dang 3

STUDY TIP

Việc so sánh x_1, x_2 với 2 số ta đưa về so sánh $2 \text{ số } x_1 - 2$

và $x_2 - 2$ với số 0.

STUDY TIP

 $x_1 > x_2 > 1 \Leftrightarrow x_1 - 1 > x_2 - 1 > 0$ ta đi so sánh hai số với nhau.

Định lí Vi-et và những bài toán về phương trình bậc hai

Ví dụ 1: Giả sử phương trình $x^2 - 3x - m = 0$ (m là tham số) có hai nghiệm là $x_1; x_2$. Tính giá trị của biểu thức $P = x_1^2 (1 - x_2) + x_2^2 (1 - x_1)$ theo m.

A.
$$P = -m + 9$$
.

B.
$$P = 5m + 9$$
. **C.** $P = m + 9$.

C.
$$P = m + 9$$
.

D.
$$P = -5m + 9$$
.

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$$

 $(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2$

STUDY TIP Trong lời giải bên ta nhân 2

vế của P ở đẳng thức (1) với 4 để (2m-1) luôn là số

nguyên với m nguyên.

Ta có:
$$P = x_1^2 (1 - x_2) + x_2^2 (1 - x_1)$$

$$= x_1^2 - x_1^2 x_2 + x_2^2 - x_1 x_2^2 = (x_1 + x_2)^2 - 2x_1 x_2 - x_1 x_2(x_1 + x_2)$$

Theo định lí Vi-et ta có: $\begin{cases} x_1 + x_2 = 3 \\ x_1 \cdot x_2 = -m \end{cases}$ thay vào P ta được:

$$P = 3^2 - 2(-m) - (-m) \cdot 3 = 5m + 9$$
.

Đáp án B.

Ví dụ 2: Giả sử phương trình $2x^2 - 4ax - 1 = 0$ có hai nghiệm $x_1; x_2$. Tính giá trị của biểu thức $T = |x_1 - x_2|$.

A.
$$T = \frac{4a^2 + 2}{3}$$

B.
$$T = \sqrt{4a^2 + 2}$$

A.
$$T = \frac{4a^2 + 2}{3}$$
. **B.** $T = \sqrt{4a^2 + 2}$. **C.** $T = \frac{\sqrt{a^2 + 8}}{2}$. **D.** $T = \frac{\sqrt{a^2 + 8}}{4}$.

D.
$$T = \frac{\sqrt{a^2 + 8}}{4}$$

Lời giải

Vì a và c trái dấu nên phương trình luôn có 2 nghiệm phân biệt x_1, x_2 .

Theo đinh lí Vi-et ta có:

$$\begin{cases} x_1 + x_2 = 2a \\ x_1 \cdot x_2 = \frac{-1}{2} \end{cases} \quad \text{và } T^2 = \left(x_1 - x_2\right)^2 = \left(x_1 + x_2\right)^2 - 4x_1 x_2 = 4a^2 - 4\left(-\frac{1}{2}\right) = 4a^2 + 2 > 0$$

$$\Rightarrow T = \sqrt{4a^2 + 2} > 0$$

Ví dụ 3: Gọi x_1 ; x_2 là hai nghiệm của phương trình $x^2 - (2m+1)x + m^2 + 1 = 0$.

Tìm giá trị nguyên của m sao cho biểu thức $P = \frac{x_1 x_2}{x_1 + x_2}$ có giá trị nguyên.

A.
$$m = -2$$
.

$$\mathbf{R}$$
 $m = -1$

C.
$$m = 1$$
.

D.
$$m = 2$$
.

Ta có
$$\Delta = (2m+1)^2 - 4m^2 - 4 = 4m - 3$$

Để phương trình có hai nghiệm thì $\Delta \ge 0 \Leftrightarrow m \ge \frac{3}{4}$

Theo định lí Vi-et ta có: $\begin{cases} x_1 + x_2 = 2m + 1 \\ x_1 x_2 = m^2 + 1 \end{cases}$

Khi đó $P = \frac{x_1 x_2}{x_1 + x_2} = \frac{m^2 + 1}{2m + 1} = \frac{2m - 1}{4} + \frac{5}{4(2m + 1)} = \frac{1}{4} \left(2m - 1 + \frac{5}{2m + 1} \right)$ (1)

$$\Rightarrow 4P = 2m - 1 + \frac{5}{2m + 1}; \ m \ge \frac{3}{4} \Rightarrow 2m + 1 \ge \frac{5}{2}$$

 $P \in \mathbb{Z}$ thì 2m+1 là ước của $5 \Rightarrow 2m+1=5 \Rightarrow m=2$

Thử lai với $m=2 \Rightarrow P=1$ thỏa mãn.

Đáp án D.

Ví dụ 4: Gọi x_1 ; x_2 là hai nghiệm của phương trình $2x^2 + 2mx + m^2 - 2 = 0$. Tìm giá trị lớn nhất P_{max} của biểu thức $P = \left| 2x_1x_2 + x_1 + x_2 - 4 \right|$.

A.
$$P_{\text{max}} = \frac{1}{2}$$
.

B.
$$P_{\text{max}} = 2$$

A.
$$P_{\text{max}} = \frac{1}{2}$$
. **B.** $P_{\text{max}} = 2$. **C.** $P_{\text{max}} = \frac{25}{4}$. **D.** $P_{\text{max}} = \frac{9}{4}$.

D.
$$P_{\text{max}} = \frac{9}{4}$$
.

Lời giải

Ta có:
$$\Delta' = m^2 - 2(m^2 - 2) = -m^2 + 4$$

Phương trình có hai nghiệm khi và chỉ khi: $\Delta' = 4 - m^2 \ge 0 \Leftrightarrow m^2 \le 4 \Leftrightarrow -2 \le m \le 2$

$$\begin{cases} x_1 + x_2 = -\frac{b}{a} \\ x_1 x_2 = \frac{c}{a} \end{cases}$$

Theo định lí Vi-et ta có:
$$\begin{cases} x_1 + x_2 = -m \\ x_1 x_2 = \frac{m^2 - 2}{2} \end{cases}$$

Khi đó:
$$P = |2x_1x_2 + x_1 + x_2 - 4| = |m^2 - 2 + (-m) - 4|$$

$$= |m^2 - m - 6| = |(m - 2)(m - 3)| = -(m - 2)(m - 3)$$

$$= -m^2 + m + 6 = -\left(m - \frac{1}{2}\right)^2 + \frac{25}{4} \le \frac{25}{4}$$

Do
$$-2 \le m \le 2 \Rightarrow P_{\text{max}} = \frac{25}{4}$$
 khi $m = \frac{1}{2} \in [-2; 2]$.

Đáp án C.

Ví dụ 5: Gọi x_1 ; x_2 là hai nghiệm của phương trình $x^2 - mx + m - 1 = 0$. Tìm m để

biểu thức
$$P = \frac{2x_1x_2 + 3}{x_1^2 + x_2^2 + 2(x_1x_2 + 1)}$$
 đạt giá trị lớn nhất.

A.
$$m = \frac{1}{2}$$
.

B.
$$m = 1$$
.

C.
$$m = 2$$
.

D.
$$m = \frac{5}{2}$$
.

Lời giải

Ta có
$$\Delta = (m-2)^2 \ge 0 \ \forall m$$
.

Do đó phương trình đã cho luôn có 2 nghiệm.

Theo định lí Vi-et ta có:
$$\begin{cases} x_1 + x_2 = m \\ x_1 \cdot x_2 = m - 1 \end{cases}$$

$$\Rightarrow P = \frac{2x_1x_2 + 3}{\left(x_1 + x_2\right)^2 - 2x_1x_2 + 2\left(x_1x_2 + 1\right)} = \frac{2m + 1}{m^2 + 2} \tag{1}$$

$$\Rightarrow P - 1 = \frac{2m + 1}{m^2 + 2} - 1 = \frac{2m + 1 - m^2 - 2}{m^2 + 2} = \frac{-(m - 1)^2}{m^2 + 2} \le 0 \ \forall m \in \mathbb{R}$$

$$\Rightarrow P \le 1$$

Vậy
$$P_{\text{max}} = 1$$
 khi $m-1=0 \iff m=1$.

Đáp án B.

Dang 4

STUDY TIP

Lời giải bên ta đã trừ hai vế của (1) cho số 1 đưa về hằng

đẳng thức $(m-1)^2$ để đánh

giá dễ dàng hơn.

Tìm điều kiện để các nghiệm của phương trình bậc hai thỏa mãn điều kiện cho trước

Ví dụ 1: Giả sử phương trình: $ax^2 + bx + c = 0$ có 2 nghiệm x_1, x_2 . Khi đó hệ thức nào sau đây là điều kiện để phương trình có một nghiệm bằng k lần nghiệm còn lại?

A.
$$(k+1)^2 ac + kb^2 = 0$$
.

B.
$$(k+1)^2 ac - kb^2 = 0$$
.

C.
$$(k-1)^2 ac - kb^2 = 0$$
.

D.
$$(k-1)^2 ac + kb^2 = 0$$
.

Lời giải

STUDY TIP

Phương trình bậc hai có nghiệm này bằng k lần nghiệm kia thì $\begin{bmatrix} x_1 = kx_2 \\ x_2 = kx_1 \end{bmatrix}$

Khi đó: $P = (x_1 - kx_2)(x_2 - kx_1) = x_1x_2 - k(x_1^2 + x_2^2) + k^2x_1x_2$

$$=x_{1}x_{2}-k\left[\left(x_{1}+x_{2}\right)^{2}-2x_{1}x_{2}\right]+k^{2}x_{1}x_{2}=\frac{c}{a}-k\left[\frac{b^{2}}{a^{2}}-2\frac{c}{a}\right]+k^{2}\frac{c}{a}=\frac{\left(k+1\right)^{2}ac-kb^{2}}{a^{2}}$$

Nếu $(k+1)^2 ac - kb^2 = 0$ thì một trong hai thừa số của P là $\begin{vmatrix} x_1 - kx_2 = 0 \\ x_2 - kx_1 = 0 \end{vmatrix}$ hay nghiệm này bằng k lần nghiệm kia.

Đáp án B.

Ví dụ 2: Cho phương trình: $(m+1)x^2-2(m-1)x+m-2=0$. Xác định m để phương trình có hai nghiệm x_1, x_2 thỏa mãn $4(x_1 + x_2) = 7x_1x_2$.

A.
$$m = -6$$
.

B.
$$m = 1$$
.

C.
$$m = 2$$
.

D. m < 5.

STUDY TIP

PT: $ax^2 + bx + c = 0 \ (a \neq 0)$ có 2 nghiệm x_1 ; x_2 thì:

$$\begin{cases} x_1 + x_2 = \frac{-b}{a} \\ x_1 x_2 = \frac{c}{a} \end{cases}$$

Phương trình có 2 nghiệm $x_1, x_2 \Leftrightarrow \begin{cases} m+1 \neq 0 \\ \Delta' = (m-1)^2 - (m+1)(m-2) > 0 \end{cases}$ $\Leftrightarrow \begin{cases} m \neq -1 \\ 3 - m \ge 0 \end{cases} \Leftrightarrow -1 \neq m \le 3$

Khi đó phương trình có 2 nghiệm x_1, x_2 thỏa mãn $\begin{cases} x_1 + x_2 = \frac{2(m-1)}{m+1} \\ x_1 x_2 = \frac{m-2}{m+1} \end{cases}$

$$\Rightarrow 4\left(x_1+x_2\right) = 7x_1x_2 \Leftrightarrow 4 \cdot \frac{2\left(m-1\right)}{m+1} = 7 \cdot \frac{m-2}{m+1} \Leftrightarrow 8m-8 = 7m-14 \Leftrightarrow m = -6$$

Đáp án A.

Ví dụ 3: Cho hai phương trình $x^2 + ax + bc = 0$ (1) và $x^2 + bx + ca = 0$ (2). Giả sử a, b, c là ba số khác nhau từng đôi một và $c \neq 0$ nếu phương trình (1) và phương trình (2) có đúng một nghiệm chung thì nghiệm khác của hai phương trình trên là nghiệm của phương trình nào sau đây?

A.
$$x^2 + cx - ab = 0$$
.

B.
$$x^2 + cx + ab = 0$$
.

C.
$$x^2 - cx + ab = 0$$
.

D.
$$x^2 - cx - ab = 0$$
.
Lời giải

Giả sử hai phương trình có nghiệm chung x_0 khi đó: $\begin{cases} x_0^2 + ax_0 + bc = 0 \\ x_0^2 + bx_0 + ca = 0 \end{cases}$

Trừ vế theo vế hai đẳng thức trên ta có: $(a-b)(x_0-c)=0 \Leftrightarrow x_0=c$ (vì $a \neq b$)

Phương trình (1) có nghiệm x_1 ; x_0 nên ta có: $\begin{cases} x_0 + x_1 = -a \\ x_0 x_1 = bc \end{cases} \Leftrightarrow \begin{cases} x_1 = b; \ x_0 = c \\ c = -a - b \end{cases}$

Phương trình (2) có nghiệm x_0 ; x_2 nên ta có: $\begin{cases} x_0 + x_2 = -b \\ x_0 x_2 = ca \end{cases} \Leftrightarrow \begin{cases} x_2 = a; \ x_0 = c \\ c = -a - b \end{cases}$

Vậy ta được
$$\begin{cases} x_1 + x_2 = a + b = -c \\ x_1 x_2 = ab \end{cases}$$

Vậy x_1, x_2 là nghiệm của phương trình: $x^2 + cx + ab = 0$ (3)

Và phương trình (3) có $\Delta = c^2 - 4ab = (-a - b)^2 - 4ab = (a - b)^2 > 0 \ \forall a \neq b$

Đáp án B.

Dạng 5

STUDY TIP

 $(x+a)^4 + (x+b)^4 + c = 0$ nếu

đặt $t = x + \frac{a+b}{2}$ thì phương

trình thu được luôn là phương trình bậc 4 trùng

Phương trình:

phương.

Các phương trình quy về bậc hai

Phương pháp:

- 1. $ax^4 + bx^2 + c = 0$: Đặt $t = x^2$, $t \ge 0$.
- **2.** $a \cdot [P(x)]^2 + b \cdot P(x) + c = 0$: Đặt t = P(x).
- 3. (x+a)(x+b)(x+c)(x+d) = e, a+d=b+c: Đặt t=(x+a)(x+d).
- **4.** $ax^4 + bx^3 + cx^2 + bx + a = 0$: Chia cho $x^2 \neq 0$, đặt $t = x + \frac{1}{x}$.
- 5. $(x+a)^4 + (x+b)^4 + c = 0$: Đặt $t = x + \frac{a+b}{2}$.
- **6.** $a.f(x) + b.\sqrt{f(x)} + c = 0$: Đặt $t = \sqrt{f(x)}$.
- 7. $a. f(x) + b. g(x) = c \sqrt{f(x) \cdot g(x)}$
- + Xét g(x) = 0.
- + Với $g(x) \neq 0$, chia hai vế cho g(x) ta có phương trình: $a \cdot \frac{f(x)}{\sigma(x)} + b = \pm c \sqrt{\frac{f(x)}{\sigma(x)}}$.

Đặt
$$\sqrt{\frac{f(x)}{g(x)}} = t$$
.

Ví dụ 1: Tính tổng tất cả các nghiệm của phương trình: $(x-1)^4 + (x+3)^4 = 256$.

Đặt $y = \frac{-1+3}{2} + x$ hay $y = x+1 \Rightarrow x = y-1$, ta có phương trình:

$$(y-2)^4 + (y+2)^4 = 256 \Leftrightarrow 2y^4 + 48y^2 - 224 = 0$$

Đặt $y^2 = t \ge 0$, phương trình trở thành: $2t^2 + 48t - 224 = 0 \Leftrightarrow \begin{vmatrix} t = 4 \\ t = -28 \ (l) \end{vmatrix}$

Với $t = 4 \Rightarrow y^2 = 4 \Leftrightarrow \begin{bmatrix} y = 2 \\ y = -2 \end{bmatrix} \Rightarrow \begin{bmatrix} x = 1 \\ x = -3 \end{bmatrix} \Rightarrow \text{Tổng các nghiệm là } -3 + 1 = -2.$

Ví dụ 2: Cho phương trình $x^4 - 3x^3 + 4x^2 - 3x + 1 = 0$. Đặt $t = x + \frac{1}{x}$ ta được phương trình nào sau đây?

A.
$$t^2 + 3t + 2 = 0$$
.

B.
$$t^2 - 3t + 2 = 0$$

B.
$$t^2 - 3t + 2 = 0$$
. **C.** $t^2 - 3t - 2 = 0$. **D.** $t^2 - t + 2 = 0$.

D.
$$t^2 - t + 2 = 0$$
.

Với x = 0 không là nghiệm.

 $x \neq 0$ chia 2 vế cho x^2 ta được phương trình:

$$t = x + \frac{1}{x}$$
 thì $x^2 + \frac{1}{x^2} = t^2 - 2$

STUDY TIP

(x+2)(x+3) để sau khi nhân ra ta được những biểu

thức giống nhau là $(x^2 + 5x)$

phương trình ta

và

(x+1)(x+4)

Trong

nhóm

$$x^{2} - 3x + 4 - \frac{3}{x} + \frac{1}{x^{2}} = 0 \Leftrightarrow x^{2} + \frac{1}{x^{2}} - 3\left(x + \frac{1}{x}\right) + 4 = 0$$

Đặt
$$x + \frac{1}{x} = t \Rightarrow x^2 + 2 + \frac{1}{x^2} = t^2 \Rightarrow x^2 + \frac{1}{x^2} = t^2 - 2$$
 ta có phương trình:

$$t^2 - 2 - 3t + 4 = 0 \iff t^2 - 3t + 2 = 0$$

Đáp án B.

Ví dụ 3: Tính tổng tất cả các nghiệm của phương trình:

$$(x+1)(x+2)(x+3)(x+4)=3.$$

A.
$$\frac{-5}{2}$$
.

D.
$$\frac{5}{2}$$
.

Lời giải

Phương trình
$$\Leftrightarrow (x+1)(x+4)(x+2)(x+3) = 3 \Leftrightarrow (x^2+5x+4)(x^2+5x+6) = 3$$

Đặt: $x^2 + 5x = y$ ta có phương trình:

$$(y+4)(y+6) = 3 \Leftrightarrow y^2 + 10y + 21 = 0 \Leftrightarrow \begin{bmatrix} y = -3 \\ y = -7 \end{bmatrix}$$

+ Với
$$y = -3 \Rightarrow x^2 + 5x + 3 = 0 \Leftrightarrow$$

$$\begin{bmatrix} x_1 = \frac{-5 - \sqrt{13}}{2} \\ x_2 = \frac{-5 + \sqrt{13}}{2} \end{bmatrix}$$

+ Với
$$y = -7 \Rightarrow x^2 + 5x + 7 = 0$$
 vô nghiệm.

Vậy tổng
$$x_1 + x_2 = -5$$
.

Đáp án C.

Ví dụ 4: Phương trình $x^2 + \sqrt{x^2 + 11} = 31$ có bao nhiều nghiệm?

A. 1.

B. 2.

C 2

D. 4.

Lời giải

Đặt $\sqrt{x^2 + 11} = t$, $t \ge 0$ ta có phương trình:

$$x^2 + 11 + \sqrt{x^2 + 11} - 11 - 31 = 0$$
 trở thành $t^2 + t - 42 = 0$ có nghiệm $t = 6$

$$\sqrt{x^2 + 11} = 6 \Leftrightarrow x^2 = 25 \Leftrightarrow x = \pm 5$$

Vậy phương trình có 2 nghiệm.

Đáp án B.

Ví dụ 5: Tính tổng các nghiệm của phương trình: $(x+5)(2-x) = 3\sqrt{x^2+3x}$

A. 3.

B. −3

C. $\frac{3}{2}$.

 $\frac{-3}{2}$.

Lời giải

ĐКХӘ: $\begin{bmatrix} x \le -3 \\ x \ge 0 \end{bmatrix}$. Khi đó phương trình đã cho tương đương với:

$$-x^2 - 3x + 10 - 3\sqrt{x^2 + 3x} = 0 \Leftrightarrow x^2 + 3x + 3\sqrt{x^2 + 3x} - 10 = 0$$

Đặt
$$\sqrt{x^2 + 3x} = t$$
, $t \ge 0$ ta có phương trình: $t^2 + 3t - 10 = 0 \Leftrightarrow \begin{bmatrix} t = -5(l) \\ t = 2 \end{bmatrix}$

$$\Rightarrow \sqrt{x^2 + 3x} = 2 \Leftrightarrow x^2 + 3x - 4 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -4 \end{bmatrix}$$

Vậy tổng các nghiệm bằng −3.

Đáp án B.

Ví dụ 6: Số nghiệm của phương trình: $\frac{x}{x+1} - 2\sqrt{\frac{x+1}{x}} = 3$ là:

A. vô nghiệm.

B. 1.

D. 4.

Lời giải

ĐKXĐ: x < -1 hoặc x > 0

Đặt $\sqrt{\frac{x+1}{x}} = t$, t > 0 ta có phương trình:

$$\frac{1}{t^2} - 2t - 3 = 0 \Leftrightarrow -2t^3 - 3t^2 + 1 = 0 \Leftrightarrow (t+1)(2t^2 + t - 1) = 0 \Leftrightarrow \begin{bmatrix} t = -1 & (l) \\ t = \frac{1}{2} \end{bmatrix}$$

Với
$$t = \frac{1}{2} \Rightarrow \sqrt{\frac{x+1}{x}} = \frac{1}{2} \Leftrightarrow \frac{x+1}{x} = \frac{1}{4} \Leftrightarrow 4x + 4 = x \Leftrightarrow 3x = -4 \Leftrightarrow x = \frac{-4}{3}$$
 (TMĐK)

Vậy phương trình đã cho có 1 nghiệm.

Đáp án B.

Ví dụ 7: Cho phương trình: $2(x^2+2)=5\sqrt{x^3+1}$. Đặt $t=\sqrt{\frac{x+1}{x^2-x+1}}; t \ge 0$ ta có

phương trình nào sau đây?

A.
$$t^2 - 5t + 2 = 0$$
.

B.
$$t^2 + 5t + 2 = 0$$
.

C.
$$2t^2 - 5t + 2 = 0$$
.

D.
$$2t^2 - 5t - 2 = 0$$
.

Lời giải

Để ý
$$x^3 + 1 = (x+1)(x^2 - x + 1)$$
 nên ta tách: $2(x^2 + 2) = a(x+1) + b(x^2 - x + 1)$ bằng cách đồng nhất hệ số và ta được: $2(x^2 + 2) = 2(x+1) + 2(x^2 - x + 1)$

Điều kiện: $x \ge -1$

STUDY TIP

 $x^3 + 1 = (x+1)(x^2 - x + 1)$

Ta có:
$$2(x^2+2)=5\sqrt{x^3+1} \Leftrightarrow 2(x+1)+2(x^2-x+1)=5\sqrt{(x+1)(x^2-x+1)}$$

Chia hai vế cho
$$x^2 - x + 1 > 0$$
 ta được: $2 \cdot \frac{x+1}{x^2 - x + 1} + 2 = 5 \sqrt{\frac{x+1}{x^2 - x + 1}}$

Đặt
$$t = \sqrt{\frac{x+1}{x^2-x+1}}$$
 ta có phương trình: $2t^2-5t+2=0$

Đáp án C.

Ví dụ 8: Cho phương trình:
$$\sqrt{x+3} + \sqrt{6-x} - \sqrt{(x+3)(6-x)} = 3$$

Đặt $t = \sqrt{x+3} + \sqrt{6-x}$ ta được phương trình nào sau đây?

A.
$$t^2 - 2t - 1 = 0$$
. **B.** $t^2 - 2t + 3 = 0$.

B.
$$t^2 - 2t + 3 = 0$$

C.
$$2t^2 - t - 1 = 0$$
.

C.
$$2t^2 - t - 1 = 0$$
. D. $t^2 - 2t - 3 = 0$.

Lời giải

ĐKXĐ:
$$-3 \le x \le 6$$

Đặt
$$t = \sqrt{x+3} + \sqrt{6-x} \implies t^2 = 9 + 2\sqrt{(x+3)(6-x)}$$

$$\Leftrightarrow \sqrt{(x+3)(6-x)} = \frac{t^2-9}{2}$$
 thay vào phương trình đã cho ta có:

$$t - \frac{t^2 - 9}{2} = 3 \Leftrightarrow 2t - t^2 + 9 = 6 \Leftrightarrow t^2 - 2t - 3 = 0$$

Đáp án D.

Ví dụ 9: Cho phương trình: $\sqrt{7x+7} + \sqrt{7x-6} + 2\sqrt{49x^2 + 7x - 42} = 181 - 14x$ và $t = \sqrt{7x+7} + \sqrt{7x-6}$, khi đó t nhận giá trị nào sau đây?

A. 19

B. 13.

C. 11

D. 27.

Lời giải

ĐKXĐ:
$$x \ge \frac{6}{7}$$

Ta có:
$$\sqrt{49x^2 + 7x - 42} = \sqrt{(7x + 7)(7x - 6)}$$

Khi đó:
$$t^2 = 14x + 1 + 2\sqrt{49x^2 + 7x - 42} \implies t^2 - 1 = 14x + 2\sqrt{49x^2 + 7x - 42}$$

Thay vào phương trình đã cho ta có:

$$t+t^2-1=181 \Leftrightarrow t^2+t-182=0 \Leftrightarrow \begin{bmatrix} t=-14 & (l) \\ t=13 \end{bmatrix}$$

Đáp án B.

Ví dụ 10: Cho phương trình: $\sqrt{x+1} + \sqrt{3-x} - \sqrt{(x+1)(3-x)} = n$. Tìm tất cả các giá trị của n để phương trình đã cho có nghiệm.

A.
$$n \in [2\sqrt{2} - 2; 2]$$
.

D.
$$n \le 2\sqrt{2} - 2$$
.

Lời giải

ĐKXĐ: -1 ≤ x ≤ 3.

Dăt:
$$t = \sqrt{x+1} + \sqrt{3-x} \implies t^2 = 4 + 2\sqrt{-x^2 + 2x + 3}$$

Xét
$$f(x) = -x^2 + 2x + 3$$
 trên $\begin{bmatrix} -1; 3 \end{bmatrix} \Rightarrow 2 \le t \le 2\sqrt{2}$

Khi đó: $\sqrt{(x+1)(3-x)} = \sqrt{-x^2+2x+3} = \frac{t^2-4}{2}$ phương trình đã cho trở thành:

$$t - \frac{t^2 - 4}{2} = n$$

$$\Leftrightarrow 2t - t^2 + 4 = 2n \Leftrightarrow t^2 - 2t + 2n - 4 = 0$$
 có $\Delta' = 5 - 2n$.

Nếu $\Delta' = 5 - 2n \ge 0 \Rightarrow n \le \frac{5}{2}$ thì phương trình có 2 nghiệm $\begin{bmatrix} t_1 = 1 + \sqrt{5 - 2n} \\ t_2 = 1 - \sqrt{5 - 2n} \end{bmatrix}$

- Với
$$t_2 = 1 - \sqrt{5 - 2n}$$
 (không thỏa mãn).

- Với
$$t_1 = 1 + \sqrt{5 - 2n}$$
 (thỏa mãn) thì: $2 \le 1 + \sqrt{5 - 2n} \le 2\sqrt{2} \iff 2\sqrt{2} - 2 \le n \le 2$

Đáp án A.

Ví dụ 11: Cho phương trình: $mx^4 - 2(m-3)x^2 + 4m = 0$ (1). Tìm m để phương trình có 4 nghiệm phân biệt.

A.
$$-3 < m < 1$$
. **B.** $\begin{cases} -3 < m < 1 \\ m \neq 0 \end{cases}$. **C.** $-3 < m < 0$. **D.** $m > 0$.

STUDY TIP

Phương trình: $t^2 - 2t + 2n - 4 = 0$ $\Leftrightarrow t^2 - 2t - 4 = -2n$ Lập bảng biến thiên cho

hàm số $g(t) = t^2 - 2t - 4$ ta cũng tìm được n.

Lời giải

Đặt
$$x^2 = t$$
, $t \ge 0$ ta có phương trình: $mt^2 - 2(m-3)t + 4m = 0$ (2)

Phương trình (1) có 4 nghiệm phân biệt khi phương trình (2) có 2 nghiệm dương

$$\text{phân biệt} \Leftrightarrow \begin{cases} m \neq 0 \\ \Delta' > 0 \\ S > 0 \\ P > 0 \end{cases} \Leftrightarrow \begin{cases} m \neq 0 \\ \left(m - 3\right)^2 - 4m^2 > 0 \\ \frac{2\left(m - 3\right)}{m} > 0 \\ 4 > 0 \end{cases} \Leftrightarrow \begin{cases} m \neq 0 \\ -3\left(m - 1\right)\left(m + 3\right) > 0 \\ m < 0 \\ m > 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} m \neq 0 \\ -3 < m < 1 \Leftrightarrow -3 < m < 0 \end{cases}$$

$$\begin{bmatrix} m < 0 \\ m > 3 \end{cases}$$

Đáp án C.

Ví dụ 12: Tìm m để phương trình: $2x^2 - 2mx + 1 = 3\sqrt{2x^3 + x}$ có hai nghiệm thực phân biệt. Khi đó có bao nhiều giá trị nguyên của $m \in [0;20]$ thỏa mãn.

A. 10.

B. 11.

C. 21.

D. 20.

Lời giải

ĐKXĐ: x ≥ 0

Phurong trình $\Leftrightarrow 2mx = 2x^2 + 1 - 3\sqrt{2x^3 + x}$

Ta thấy x = 0 không là nghiệm.

Với $x \neq 0$, phương trình $\Leftrightarrow 2m = 2x + \frac{1}{x} - 3\sqrt{2x + \frac{1}{x}}$

Đặt
$$t = \sqrt{2x + \frac{1}{x}}$$
, $t \ge \sqrt{2\sqrt{2}} = \sqrt[4]{8}$ ta có phương trình: $m = \frac{1}{2}t^2 - \frac{3}{2}t$

Vì mỗi $t > \sqrt[4]{8}$ thì có 2 nghiệm x nên bài toán trở thành tìm m để phương trình $m = \frac{1}{2}t^2 - \frac{3}{2}t$ có một nghiệm lớn hơn $\sqrt[4]{8}$.

Xét hàm số
$$g(t) = \frac{1}{2}t^2 - \frac{3}{2}t$$

Bảng biến thiên:

$$\begin{array}{c|c}
t & \sqrt[4]{8} & +\infty \\
g(t) & & +\infty \\
\frac{1}{2} \left(\sqrt{8} - 3\sqrt[4]{8} \right)
\end{array}$$

Vì
$$\frac{1}{2} \left(\sqrt{8} - 3\sqrt[4]{8} \right) \approx -1.1$$
 nên $m \in \{-1; 0; 1; 2; ...\}$

Vì $m \in [0;20]$ nên có 21 giá trị của m thỏa mãn.

Đáp án C.

STUDY TIP

Bảng biến thiên của hàm số $y = ax^2 + bx + c(a > 0)$