Car pice predictrion Using Linear Regression

This is formatted as code

→ 1) Import Library

import pandas as pd
import numpy as np

→ 2)Import CSV as Dataframe

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Car%20Price.csv')

→ 3) Get first five rows of data Frame

df.head()

	Brand	Model	Year	Selling_Price	KM_Driven	Fuel	Seller_Type	Transmission
0	Maruti	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual
1	Maruti	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual
		Hvundai						
4								•

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4340 entries, 0 to 4339
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Brand	4340 non-null	object
1	Model	4340 non-null	object
2	Year	4340 non-null	int64
3	Selling_Price	4340 non-null	int64
4	KM_Driven	4340 non-null	int64

5	Fuel	4340 non-null	object
6	Seller_Type	4340 non-null	object
7	Transmission	4340 non-null	object
8	Owner	4340 non-null	object

dtypes: int64(3), object(6)
memory usage: 305.3+ KB

df.describe()

	Year	Selling_Price	KM_Driven
count	4340.000000	4.340000e+03	4340.000000
mean	2013.090783	5.041273e+05	66215.777419
std	4.215344	5.785487e+05	46644.102194
min	1992.000000	2.000000e+04	1.000000
25%	2011.000000	2.087498e+05	35000.000000
50%	2014.000000	3.500000e+05	60000.000000
75%	2016.000000	6.000000e+05	90000.000000
max	2020.000000	8.900000e+06	806599.000000

Get catagories and counts of catagorical variables

df[['Brand']].value_counts()

Brand	
Maruti	1280
Hyundai	821
Mahindra	365
Tata	361
Honda	252
Ford	238
Toyota	206
Chevrolet	188
Renault	146
Volkswagen	107
Skoda	68
Nissan	64
Audi	60
BMW	39
Fiat	37
Datsun	37
Mercedes-Benz	35
Mitsubishi	6
Jaguar	6
Land	5
Ambassador	4
Volvo	4
Јеер	3
OpelCorsa	2

```
2
     MG
     Isuzu
                         1
     Force
                          1
     Daewoo
                         1
                         1
     Kia
     dtype: int64
df.columns
     Index(['Brand', 'Model', 'Year', 'Selling_Price', 'KM_Driven', 'Fuel',
            'Seller_Type', 'Transmission', 'Owner'],
           dtype='object')
df[['Model']].value_counts()
     Model
     Maruti Swift Dzire VDI
                                              69
     Maruti Alto 800 LXI
                                              59
     Maruti Alto LXi
                                              47
                                              35
     Hyundai EON Era Plus
     Maruti Alto LX
                                              35
                                              . .
     Mahindra KUV 100 G80 K4 Plus
                                               1
     Mahindra KUV 100 mFALCON D75 K8
                                               1
     Mahindra KUV 100 mFALCON D75 K8 AW
                                               1
     Mahindra KUV 100 mFALCON G80 K2 Plus
                                               1
                                               1
     Volvo XC60 D5 Inscription
     Length: 1491, dtype: int64
df[['Fuel']].value_counts()
     Fuel
     Diesel
                 2153
     Petrol
                 2123
     CNG
                   40
     LPG
                   23
     Electric
     dtype: int64
df.columns
     Index(['Brand', 'Model', 'Year', 'Selling_Price', 'KM_Driven', 'Fuel',
             'Seller_Type', 'Transmission', 'Owner'],
           dtype='object')
df[['Seller Type']].value counts()
     Seller_Type
     Individual
                          3244
     Dealer
                          994
     Trustmark Dealer
                           102
     dtype: int64
df[['Transmission']].value_counts()
```

Transmission Manual 3892 Automatic 448 dtype: int64 df[['Owner']].value_counts() Owner First Owner 2832 Second Owner 1106 Third Owner 304 Fourth & Above Owner 81 Test Drive Car 17 dtype: int64 df.shape (4340, 9)

Get encoding Of categorical features

[] Ц 6 cells hidden

Define independent variable(X) and dependent variable(Y)

[] 以5 cells hidden

Get train test split

[] L, 4 cells hidden

Get model train

[] L, 6 cells hidden

Model Evaluation

[] L, 5 cells hidden

•	Get Visu	alisation	of Actual	Vs Predicte	d Results
,	UCL VIOL	ansauvn	OI ACIUUI	voi icuicic	u ilcouit

[]	L	, 1	C	ell	hic	dde	en																							

Get Future Predictions

Γ 1	→ 6 cells hidden	
	, 0 00.0	