:3טיווג מסמכים סיווג מסמכים Document Classification

SLP 4-5, Eisenstein 2-4 פרקים:

מיני-הודעות

● להגיד שם כשמשתתפיםות בשיעור

... קורס מבוא לבלשנות - מיד אחרינו באותה כיתה בימי רביעי... ●

פתרון הבוחן

NLTK שאריות - טוקניזציה עם

ביקורות על מחשבים ניידים

חוות דעת

מחשב מצויין וחזק !!

חוות דעת

מחשב מושלם לכל סוג עבודה. מסך מעולה, חיי סוללה מדהימים, ספיקרים איכותיים, בנוי טוב, קל וחזק, לא מתחמם, דק וקל לנשיאה.

חוות דעת

מוצר טוב מאוד ומוצלץ לכל אהובי אפל

חוות דעת

מחשב מעולה. מהיר מאד, נוח לתפעול, מסך רמקולים ומיקרופון מצוינים, המעבד החדש שלהם עובד מצויין

ביקורות על מחשבים ניידים

חוות דעת

כמה ימים אחרי הקנייה הפסיק להיתחבר לאינטרנט וכל מה שניסיתי לעשות לא עזר עד שהגיעו מהחברה והחליפו את כרטיס הרשת האלחוטי.

חוות דעת

מחשב בסיסי בעל יחס עלות/תועלת מצויין.

מתאים לגלישה/זום/אפיס ושאר שימושים בייתיים ועסקיים קלים ולסטודנטים (לא למדעי המחשב). זה לא מחשב גיימינג וככזה יש להתייחס אליו.

> המקלדת קצת קטנה, אין כניסת רשת, אבל מי צריך רשת כשיש WIFI 5GHZ. לי המחשב התחמם (הגיע ל-100C), הוחלף ולא חזרה התקלה.

חוות דעת

למחשב יש בעיית רעש נוראית, שריקות וצפצופים, גם לאחר שחזר מהמעבדה של HP. לא קיבלתי מענה משירות לקוחות ונשארתי עם מחשב יקר ומרעיש. תחסכו לעצמכם את עגמת הנפש.

חוות דעת

מחשב מצוין, יעיל וזריז! נראה טוב.

זיהוי סנטימנט (sentiment) מתוך אתרי ביקורת

• פעולה שאינה תמיד פשוטה גם לבני אדם

```
"תיוג" אנושי, אבל סובייקטיבי(*-**** ⇒ +/-)
```

- לפי מאפיינים לשוניים אולי ייתן קירוב טוב (rule-based) פתרון באמצעות חוקים
 - מילים מסוימות?
 - ?מילים בעלות אופי מסוים
 - ?אורך המסמך
 - ?סימני פיסוק
 - (Supervised Learning) השיטות שנלמד יהיו גישות לימוד מבוקר •

עוד סוגים של סיווג מסמכים

(opinion mining, stance detection) זיהוי דיעה, זיהוי עמדה

```
olkת המסמך (genre)
```

- מתוך אתר חדשות, נתייג מאמרים לפי המדור ממנו הגיעו
- (איזה "אופי" של הבדל בין מילים נחפש כאן, אל מול סנטימנט?) 🌼
 - זיהוי ספאם
 - (authorship) זיהוי מחבר

סיווג מסמכים - הגדרה פורמלית

- פרווים d, שהוא רצף תווים •
- $C = \{c_1, ..., c_k\}$ קלט: אוסף תגים
 - c∈C פלט: תג רצוי

confusion matrix מטריצת בלבול

-	+	אמיתי /// חזוי
20	60	+
10	10	-

confusion matrix מטריצת בלבול

-	+	אמיתי /// חזוי
20	60	+
10	10	-

confusion matrix מטריצת בלבול

	· (347	-2}	کر ډ در ۰۰ م	
7		-	+	אמיתי /// חזוי
	FN	20	60 TP	+
	TN	10	10 FP	-

-	+	אמיתי /// חזוי
20 FN	60 TP	+
TN 10	10 FP	-

- אמיתי חלקי הכל = accuracy אמיתי = accuracy דיוק (TP+TN)/(TP+TN+FP+FN)
 - ?מתי מאוד לא כדאי להשתמש במטריקת דיוק
 - (+) נניח שמעניין אותנו התג החיובי
- כמה המודל פוגע ← Precision = TP/(TP+FP) כמה המודל פוגע
- כמה המודל תופס ← Recall = TP/(TP+FN) ← כמה
- שתי מטריקות שמתארות רצונות סותרים, ולכן נרצה מערכתש"די טובה" בשתיהן

	+	אמיתי /// חזוי
20 FN	60 TP	+
TN 10	10 FP	-

Precision = $TP/(TP+FP) \leftarrow$ כמה המודל פוגע Recall = $TP/(TP+FN) \leftarrow$ כמה המודל תופס

?מה הערך המאזן

?R איך מחזקים את

F מטריקת

- R-ס ממוצע הרמוני בין P ל- ■
- "פרמטר β קובע כמה כל חלק β פרמטר •
- יותר תפיסה זה חשוב, אבל פגיעה הרבה יותר ○
- (לא נל"פ) איתור וירוס קורונה בבדיקה מהירה תפיסה יותרחשובה
 - כמעט תמיד נשתמש במטריקה המאוזנת בכל-זאת. ○

הנוסחה:

$$F_{\beta} = \frac{\left(\beta^2 + 1\right)PR}{\beta^2 P + R}$$

?מה קורה כשיש יותר משני תגים

Т	ړ	ב	Ж	/// חזוי אמיתי ///
5	5	20	120	א
20	30	60	60	ב
20	5	0	5	ړ
10	10	10	10	Т

Т	ړ	ב	Ж	ווי /// /// אמיתי
5	5	20	120	א
20	30	60	60	ב
20	5	0	5	λ
10	10	10	10	Т

הערכת סיווג מרובה-תגים

- P, R, F עבור כל תג אפשר לחשב בנפרד
- אנחנו רוצים לדווח מספר אחד למערכת שלנו●
 - בין התגים F אפשרות א': למצע ●
 - (macro-averaging) מיצוע מאקרו
 - למי הוא נותן יותר משקל?
- אחד F על הכל ולחשב P, R אחד P, R אפשרות ב': לחשב
 - (micro-averaging) מיצוע מיקרו
 - מי מקבל כאן יותר משקל?

לימוד מכונה

- מתוך נתונים (model) אמצעי ללמוד מודל
- o (training) המתעדכנים/נלמדים תוך כדי תהליך **אימון** (parameters) המתעדכנים/נלמדים הוך כדי הליך **אימון**
 - (test set) ומבחן (training set) מחלקים את הדאטא לאימון
 - שלב המבחן לפעמים ייקרא הסקה (inference)
 לרוב נוסיף סט שלישי בשם פיתוח (development, dev)
 - (features) לאופן הייצוג של הנתונים נקרא פיצ'רים
 - חומר עזר במודל

פיצ'רים במערכת סיווג

- (Bag of words) ספירת מילים
 - (Lexicons) לקסיקונים
- רשימות מילים מקוטלגות כבעלות "אופי" או "תכונה" ניתן לספור הופעות ⊙
 - (surface features) "צורת המסמך"
 - מספר מילים
 - types מספר
 - סימני פיסוק \circ
 - ס מבנים תחביריים
 - פיצ'רים חוץ-טקסטואליים •
 - ס (לביקורות) שם המשתמש
 - ס זמן הפרסום

בייז התם (Naive Bayes) - לוח

