Assignment 3, ITDS

Amir Parsian, Brigitta Selb, Lingkai Zhu, Weilin Zhang

November 2021

1 Introduction

Q1: Prove lemma 6.7

Consider a congruential generator D on $\mathcal{M} = \{0, 1, ..., M-1\}$ with period M, then for any starting point μ_0 in \mathcal{M} , define $u_i = D(u_{i-1})$ then the sequence $v_i = u_i \mod K$ for $1 \leq K \leq M$ is pseudorandom on $\{0, 1, ..., K-1\}$ if M is a multiple of K.

Solution

To prove this lemma we need to first prove lemma 6.6.

The length of \mathcal{M} is M and the period of the congruential generator is M. This means that all members of \mathcal{M} are included in each period and there is no repetition (otherwise the period becomes less than M). Since the numbers in each period is unique we will have $\frac{N(a)}{n} = \frac{1}{M}$ for one period (note that for one period N(a) = 1 and n = M). In long term the sequence repeat itself by a period of M and therefore $\frac{N(a)}{n}$ approaches $\frac{1}{M}$. From definition of 6.3 this sequence is pseudorandom on \mathcal{M} .

Now, for lemma 6.7, we have:

```
M = i \cdot K where i \in \mathbb{N}.
```

We can partition \mathcal{M} into i subsets $(\mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_i)$. Each of this subsets have a length of K. We partition \mathcal{M} in a way that $\mathcal{M}_1 = \{0, 1, ..., K-1\}$, $\mathcal{M}_2 = \{K, K+1, ..., 2K-1\}$, ...

Note that:

- 1. we obtain elements of \mathcal{M}_1 by subtracting multiples of K from members of \mathcal{M}_2 , \mathcal{M}_3 , ...
- 2. m mod $K = (m + iK) \mod K$

From 1 and 2, we can say that each member of \mathcal{M}_1 is repeated i times when m mod K is calculated for $m \in \mathcal{M}$. This means: $\frac{N(a)}{n} = i\frac{1}{M} \text{ which gives } \frac{N(a)}{n} = \frac{1}{K}$

Note that the sequence of $v_i = u_i \mod K$ has a period of M (since M is multiple of K). Therefore, $\frac{N(a)}{n}$ approaches 1/K which by definition is pseudorandom on \mathcal{M}_1 .

Q2: Theorem 6.13 (Box-Muller)

Suppose that U_1 and U_2 are independent random variables and $U_1, U_2 \sim \text{Uniform}([0,1])$, then

$$Z_0 = \sqrt{-2 \ln U_1} \cos(2\pi U_2)$$
$$Z_1 = \sqrt{-2 \ln U_1} \sin(2\pi U_2)$$

are independent random variables, and $Z_0, Z_1 \sim \text{Normal}(0,1)$.

Solution

Since
$$|Z| = \sqrt{Z_0^2 + Z_1^2}$$
, Let

$$Y = |Z|^2 = Z_0^2 + Z_1^2$$

$$= (\sqrt{-2 \ln U_1} \cos(2\pi U_2))^2 + (\sqrt{-2 \ln U_1} \sin(2\pi U_2))^2$$

$$= -2 \ln U_1 \qquad (1)$$

According to (1), we could get $U_1 = e^{-(Z_0^2 + Z_1^2)/2}$.

Since $Z = (Z_0, Z_1)$, Let

$$W = \frac{Z}{|Z|} = \frac{(Z_0, Z_1)}{\sqrt{Z_0^2 + Z_1^2}}$$

$$= \frac{(\sqrt{-2 \ln U_1} \cos(2\pi U_2), \sqrt{-2 \ln U_1} \sin(2\pi U_2))}{\sqrt{-2 \ln U_1}}$$

$$= (\cos(2\pi U_2), \sin(2\pi U_2))$$
 (2)

According to (1) and (2), Y and W are independent since U_1 , U_2 are independent.

Suppose (X,Y) is uniformly distributed over the unit circle, then

$$S_{XY} = \{(x, y) : x^2 + y^2 \le 1\}.$$

Since $U_2 \sim \text{Uniform}([0,1])$, we could have $2\pi U_2 \sim \text{Uniform}([0,2\pi])$, in this case,

$$\cos(2\pi U_2) \in [-1, 1], \sin(2\pi U_2) \in [-1, 1]$$

and because

$$\cos^2(2\pi U_2) + \sin^2(2\pi U_2) = 1$$

then with (2) we could say, $W \subseteq S_{XY}$, so W is uniform on the unit circle. To prove Z_0, Z_1 are independent random variables, and $Z_0, Z_1 \sim \text{Normal}(0,1)$, we need to prove they are Gaussian and their covariance is zero. First, to prove Z_0, Z_1 are Gaussian, from

$$\frac{Z_1}{Z_0} = \frac{\sqrt{-2\ln U_1}\sin(2\pi U_2)}{\sqrt{-2\ln U_1}\cos(2\pi U_2)} = \tan(2\pi U_2),$$

we could have

$$U_2 = \frac{1}{2\pi} \arctan(\frac{Z_1}{Z_0})$$

according to the Jacobian of the polar transformation

$$\frac{\partial(U_1, U_2)}{\partial(Z_0, Z_1)} = \begin{vmatrix} \frac{\partial U_1}{\partial Z_0} & \frac{\partial U_1}{\partial Z_1} \\ \frac{\partial U_2}{\partial Z_0} & \frac{\partial U_2}{\partial Z_1} \end{vmatrix} = \frac{\partial U_1}{\partial Z_0} \frac{\partial U_2}{\partial Z_1} - \frac{\partial U_2}{\partial Z_0} \frac{\partial U_1}{\partial Z_1} = -\frac{1}{2\pi} e^{-(Z_0^2 + Z_1^2)/2}$$

since U_1 and U_2 are independent random variables and $U_1, U_2 \sim \text{Uniform}([0,1])$, the probability density function $f(U_1, U_2) = f(U_1)f(U_2) = 1$ by the formula for the random variable transformation, we have

$$f(Z_0, Z_1) = f(U_1, U_2) \left| \frac{\partial(U_1, U_2)}{\partial(Z_0, Z_1)} \right| = \frac{1}{2\pi} e^{-(Z_0^2 + Z_1^2)/2}$$

According to the definition of multivariate normal distribution, (Z_0, Z_1) is two-dimensional normal distribution. Hence $Z_0, Z_1 \sim \text{Normal}(0,1)$. Second, to prove the covariance of Z_0, Z_1 is zero,

$$Cov(Z_0, Z_1) = E[(Z_0 - E(Z_0)(Z_1 - E(Z_1))] = E[Z_0 Z_1] - E[Z_0]E[Z_1]$$
 (3)

since Y and W are independent.

$$E[Z_0 Z_1] = E[\sqrt{-2 \ln U_1} \cos(2\pi U_2) \cdot \sqrt{-2 \ln U_1} \sin(2\pi U_2)]$$

= $E[(-2 \ln U_1) \cdot \cos(2\pi U_2) \cdot \sin(2\pi U_2)]$
= $E[-2 \ln U_1] E[\cos(2\pi U_2) \sin(2\pi U_2)]$

$$E[Z_0]E[Z_1] = E[\sqrt{-2\ln U_1}\cos(2\pi U_2)]E[\sqrt{-2\ln U_1}\sin(2\pi U_2)]$$

= $E[\sqrt{-2\ln U_1}]^2 E[\cos(2\pi U_2)]E[\sin(2\pi U_2)]$

With the definition, if X is a continuous random variable

$$E[g(X)] = \int g(x)f_X(x)dx$$

Because $4\pi U_2 \sim \text{Uniform}(0, 4\pi)$, the probability density function $f(4\pi U_2) = \frac{1}{4\pi}$,

$$E[\cos(2\pi U_2)\sin(2\pi U_2)] = \frac{1}{2}E[\sin(4\pi U_2)]$$

$$= \frac{1}{2}\int_0^{4\pi} \frac{1}{4\pi}\sin(4\pi U_2)d(4\pi U_2)$$

$$= 0$$

then $E[Z_0Z_1] = 0$.

Because $2\pi U_2 \sim \text{Uniform}(0, 2\pi)$, the probability density function $f(4\pi U_2) = \frac{1}{2\pi}$,

$$E[\cos(2\pi U_2)] = \int_0^{2\pi} \frac{1}{2\pi} \sin(2\pi U_2) d(2\pi U_2) = 0$$

then $E[Z_0]E[Z_1] = 0$.

So in (3), $Cov(Z_0, Z_1) = E[Z_0Z_1] - E[Z_0]E[Z_1] = 0$, which means that Z_0 and Z_1 are uncorrelated.

Now, we have $Z_0, Z_1 \sim \text{Normal}(0,1)$ and their covariance is zero, then we could get Z_0, Z_1 are independent random variables.

Q3: Prove Lemma 7.11

For a finite inhomogeneous Markov chain $(X_t)_{t \in \mathbb{Z}_+}$ with state space $\mathbb{X} = \{s_1, s_2, ..., s_k\}$, initial distribution

$$\mu_0 := (\mu_0(s_1), \mu_0(s_2), ..., \mu_0(s_k)),$$

where $\mu_0(s_i) = \mathbb{P}(X_0 = s_i)$, and transition matrices

$$(P_1, P_2, \ldots), P_t := (P_t(s_i, s_j))_{(s_i, s_j) \in \mathbb{X} \times \mathbb{X}}, t \in \{1, 2, \ldots\}$$

we have for any $t \in \mathbb{Z}_+$ that the distribution at time t given by:

$$\mu_t := (\mu_t(s_1), \mu_t(s_2), ..., \mu_t(s_k)),$$

where $\mu_t(s_i) = \mathbb{P}(X_t = s_i)$, satisfies:

$$\mu_t = \mu_0 P_1 P_2 \cdot \cdot \cdot P_t$$

Solution

We know that $\mu_t := (\mu_t(s_1), \mu_t(s_2), ..., \mu_t(s_k))$ is a row vector where

$$\mu_t(s_i) = \mathbb{P}(X_t = s_i)$$

The simulation steps:

Step1: Draw $X_0 \sim \mu_0$. Thus, $\mathbb{P}(X_0 = s_i) = \mu_0(s_i)$.

Step2: Denote the outcome of step 1 by s_i . Draw $X_1 \sim (P_1, P_2, ...)$, which can also be written as $\mathbb{P}(X_1 = s_i | X_0 = s_i) = p_{s_i s_i}$.

Step3: Suppose the outcome of step 2 is S_j . Draw $X_2 \sim (P_1, P_2, ...)$, which can also be written as $\mathbb{P}(X_2 = s_k | X_1 = s_j) = p_{s_j s_k}$.

And so on.

A consequence of the above simulation is the following:

$$\begin{split} \mu_t(s_k) &= \mathbb{P}(X_k = x_k) \\ &= \sum_{s_{k-1}} \mathbb{P}(X_k = s_k | X_{k-1} = s_{k-1}) \mathbb{P}(X_{k-1} = s_{k-1}) \\ &= \sum_{s_{k-1}} p_{s_k s_{k-1}} \mathbb{P}(X_{k-1} = s_{k-1}) \\ &= \sum_{s_{k-1} s_{k-2}} p_{s_k s_{k-1}} \mathbb{P}(X_{k-1} = s_{k-1} | X_{k-2} = s_{k-2}) \mathbb{P}(X_{k-2} = s_{k-2}) \\ &= \sum_{s_{k-1} s_{k-2}} p_{s_k s_{k-1}} p_{s_{k-2} s_{k-1}} \mathbb{P}(X_{k-2} = s_{k-2}) \end{split}$$

Apply until we reach X_0 , we have

$$\mathbb{P}(X_k = x_k) = \sum_{s_{k-1}s_{k-2}...s_1} p_{s_k s_{k-1}} p_{s_{k-2} s_{k-1}}...p_{s_2 s_1} \mathbb{P}(X_0 = s_1)$$
$$= \mu_0 P_1 P_2 \cdots P_t$$

Proof of Theorem 7.14

Theorem 7.14. Let $W_1, ..., \stackrel{IID}{\sim} F$ such that (ρ, W_t) is a RMR for a transition matrix P_t , for all $t \in \mathbb{N}$. Then if $X_0 \sim \mu_0$,

$$X_t := \rho_t(X_{t-1}, W_t), t \in \mathbb{N}$$

is a Markov chain with initial distribution μ_0 and transition matrix P_t at time t

Solution

The simulation steps:

Step1: Draw $X_0 \sim \mu_0$. Thus, $\mathbb{P}(X_0 = x_0) = \mu_0(x_0)$.

Step2: Denote the outcome of step 1 by x_0 . Draw $X_1 \sim \mathbf{P}$, which can also be written as $\mathbb{P}(X_1 = x_1 | X_0 = x_0) = p_{x_0 x_1} = \mathbf{P}(x_0, x_1) = \mathbb{P}(\{\rho(x_0, W_1) = x_1\}) = \mathbb{P}(X_1 = x_1)$.

Step3: Suppose the outcome of step 2 is x_1 . Draw $X_2 \sim \mathbf{P}$, which can also be written as $\mathbb{P}(X_2 = x_2 | X_1 = x_1) = p_{x_1 x_2} = \mathbf{P}(x_1, x_2) = \mathbb{P}(\{(\rho(x_1, W_2) = x_2\}) = \mathbb{P}(X_2 = x_2)$.

.....

Step t: Suppose the outcome of step t-1 is x_{t-1} . Draw $X_t \sim \mathbf{P}$, which can also be written as $\mathbb{P}(X_t = x_t | X_{t-1} = x_{t-1}) = p_{x_{t-1}x_t} = \mathbf{P}(x_{t-1}, x_t) = \mathbb{P}(\{(\rho(x_{t-1}, W_t) = x_t\}) = \mathbb{P}(X_t = x_t)$

$$\mathbb{P}(\{(\rho(x_{t-1}, W_t) = x_t\})) = \mathbb{P}(X_t = x_t) \\
= \sum_{x_{t-1}} \mathbb{P}(X_t = x_t | X_{t-1} = x_{t-1}) \mathbb{P}(X_{t-1} = x_{t-1}) \\
= \sum_{x_{t-1}} p_{x_{t-1}x_t} \mathbb{P}(X_{t-1} = x_{t-1}) \\
= \sum_{x_{t-1}x_{t-2}} p_{x_{t-1}x_t} \mathbb{P}(X_{t-1} = x_{t-1} | X_{t-2} = x_{t-2}) \mathbb{P}(X_{t-2} = x_{t-2}) \\
= \sum_{x_{t-1}x_{t-2}} p_{x_{t-1}x_t} p_{x_{t-2}x_{t-1}} \mathbb{P}(X_{t-2} = x_{t-2}) \\
= \sum_{x_{t-1}x_{t-2} \dots x_0} p_{x_{t-1}x_t} p_{x_{t-2}x_{t-1}} \dots p_{x_1x_0} \mathbb{P}(X_0 = x_0) \\
= \mu_0 P^t = \mu_0 P_t$$

Q5: Prove Proposition 7.23

(A reversible π is a stationary π). Let $(X_t)_{t \in \mathbb{Z}_+}$ be a Markov chain on $\mathbb{X} = s_1, s_2, ..., s_k$ with transition matrix P. If π is a reversible distribution for $(X_t)_{t \in \mathbb{Z}_+}$ then π is a stationary distribution for $(X_t)_{t \in \mathbb{Z}_+}$.

Solution:

Proof. For a reversible π to be stationary it must satisfy the two conditions given in **Definition 7.20**:

- 1. a probability distribution: $\pi(x) \geq \text{for each } x \in \mathbb{X} \text{ and } \sum_{x \in \mathbb{X}} \pi(x) = 1, \text{ and } x \in \mathbb{X}$
- 2. a fixed point: $\pi P = \pi$ i.e., $\sum_{x \in \mathbb{X}} \pi(x) P(x, y) = \pi(y)$ for each $y \in \mathbb{X}$

The first condition is already satisfied as the definition of a reversibility, **Definition 7.22**, states that π is a probability distribution therefore, $\pi(x) \geq$ for each $x \in \mathbb{X}$ and $\sum_{x \in \mathbb{X}} \pi(x) = 1$

For the second condition we know that for a reversible distribution the following is defined

$$\pi(x)P(x,y) = \pi(y)P(y,x)$$

$$\sum_{x \in \mathbb{X}} \pi(x)P(x,y) = \sum_{x \in \mathbb{X}} \pi(y)P(y,x)$$

$$= \pi(y)\sum_{x \in \mathbb{X}} P(y,x)$$

$$= \pi(y)$$

Thus satisfying the second condition, $\pi P = \pi$.

Therefore, π is reversible and π is stationary.

Q6: Prove Proposition 7.25 by directly showing that π is reversible

The random walk on a connected undirected graph $\mathbb{G} = (\mathbb{V}; \mathbb{E})$, with vertex set $\mathbb{V} := \{v_1, v_2, ..., v_k\}$ and degree sum $d = \sum_{i=1}^k deg(v_i)$ is a reversible Markov

chain with the reversible distribution π given by:

$$\pi = (\frac{deg(v_1)}{d}, \frac{deg(v_2)}{d}, ..., \frac{deg(v_k)}{d})$$

Solution:

From definition 7.22, we need to show that:

$$\pi(v_i)P(v_i,v_j) = \pi(v_j)P(v_j,v_i)$$

From Model 6 we have:

 $P(v_i, v_j) = \frac{1}{deg(v_i)}$ for $(v_i, v_j) \in \mathbb{E}$. Therefore:

$$\pi(v_i)P(v_i,v_j) = \frac{1}{deg(v_i)} \cdot \frac{deg(v_i)}{d} \Rightarrow \pi(v_i)P(v_i,v_j) = \frac{1}{d}$$

$$\pi(v_j)P(v_j,v_i) = \frac{1}{deg(v_j)} \cdot \frac{deg(v_j)}{d} \Rightarrow \pi(v_j)P(v_j,v_i) = \frac{1}{d}$$

which is independent from i and j and therefore, $\pi(v_i)P(v_i, v_j) = \pi(v_j)P(v_j, v_i)$.

Q7:

Part1: In the above we are mentioning that R needs to be nice enough, Why is that? Does 0-1 loss work? Why?

We define $\hat{\phi}$ the empirical risk minimizer on the training dataset as

$$\hat{R}_n(\hat{\phi}) = \min_{\phi \in \mathbb{M}} \hat{R}_n(\phi)$$

which comes from definition of the empirical risk:

$$\hat{R}_n = \hat{R}_n(Z;g) = \frac{1}{n} \sum_{i=1}^{n} L(Y_i, g(X_i))$$

This means that any plug in estimator of a linear functional is actually the sum of independent RVs. If $L(Y_i, g(X_i))$ is nice enough, such as sub-Gaussian or

sub-exponential, then we can utilize the concentration inequalities described in notebook section 3.1.

We know that 0-1 loss is defined as

$$\mathbb{1}_{y \neq g(x)} = \begin{cases} 1 & if \ y \neq g(x) \\ 0 & if \ y = g(x) \end{cases}$$

which means that the loss is 1 if y is the wrong value and 0 if it is correct. Then the pattern recognition problem is equivalent to the problem of minimizing the functional

$$R(g) = \int L(y, g(x)) dF(x, y) = \mathbb{E}[L(Y, g(X))] = \frac{1}{n} \sum_{i=1}^{n} L(Y_i, g(X_i)) = \mathbb{P}(\{Y \neq g(X)\})$$

The above equation shows that 0-1 loss function works.

Part2: Furthermore, we used the tower property to derive 8.4 from 8.3, how does this work?

We know that given training set T_n , the probability of empirical risk over the test dataset deviating from ground truth is bounded by:

$$\mathbb{P}(|\hat{R}_m(\hat{\phi}) - R(\hat{\phi})| > \epsilon |T_n) < 2e^{-C\epsilon^2 n}$$

We know from Theorem 2.50 that the tower property can be written as:

$$\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$$

Suppose we are using 0-1 loss function, then Then 8.3 can be re-written as

$$\mathbb{P}(|\hat{R}_m(\hat{\phi}) - R(\hat{\phi})| > \epsilon | T_n) = \mathbb{E}[\mathbb{1}_{\{|\hat{R}_m(\hat{\phi}) - R(\hat{\phi})| > \epsilon\}} | T_n]$$

Then we can apply tower property to the above equation and get

$$\mathbb{E}[\mathbb{E}[\mathbb{1}_{\{|\hat{R}_{m}(\hat{\phi}) - R(\hat{\phi})| > \epsilon\}} | T_{n}]] = \mathbb{E}[\mathbb{1}_{\{|\hat{R}_{m}(\hat{\phi}) - R(\hat{\phi})| > \epsilon\}}]$$

Because the the expectation of the RHS is itself, we get

$$\mathbb{E}[\mathbbm{1}_{\{|\hat{R}_m(\hat{\phi}) - R(\hat{\phi})| > \epsilon\}}] < 2e^{-C\epsilon^2 n}$$

which is

$$\mathbb{P}(|\hat{R}_m(\hat{\phi}) - R(\hat{\phi})| > \epsilon) < 2e^{-C\epsilon^2 n}$$