Spatial Social Community

Lu CHen

Swinburne University of Technology

luchen@swin.edu.au

June 20, 2016

Lu CHen (FSET) Short title June 20, 2016 1 / 13

Overview

- Preliminary
 - Trusses
 - Triangle connected k-truss
 - K-truss community
 - Finding k-truss communities

Second Section

Lu CHen (FSET) Short title June 20, 2016 2 / 13

Trusses

Definition

A k-truss is a none-trivial, one-component subgraph such that each edge is reinforced by at least k-2 pairs of edges making a triangle with the edge. (Non-trivial here excludes an isolated vertex as a truss)

Lu CHen (FSET) Short title June 20, 2016 3 / 13

Triangle connected k-truss

- k > 3
- Triangle adjacency: given two triangles, they are adjacent if and they share a common edge
- Triangle connectivity: given any two triangles \triangle_s and \triangle_t in G, they are connected if there exist a series of triangles $\triangle_1,...,\triangle_n$ in G, where n ge 2, such that, $\triangle_1=\triangle_s$, $\triangle_n=\triangle_t$ and for $1\leq i < n$, \triangle_i and \triangle_{i+1} are adjacent

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Lu CHen (FSET) Short title June 20, 2016 4 / 13

K-truss community

Definition

K-truss community: 1)k-truss, 2)triangle connected, and 3)maximal subgraph

Basic

- Edge trussness index: running k-truss decomposition
- Query k-truss communities from a vertex v: running BFS search from edges containing v

Better

- TCP index: it is built on top of edge trussness index
- Query k-truss communities from a vertex v: running BFS search from v

Lu CHen (FSET) Short title June 20, 2016 5 / 13

Finding k-truss communities

- Observation: Given a k, a edge e in G = (V, E) can only be contained by at most one k-truss community
- Finding k-truss communities: For each unvisited edge e with trussness no less than k in G = (V, E), we run BFS from it.

 Lu CHen (FSET)
 Short title
 June 20, 2016
 6 / 13

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Lu CHen (FSET) Short title June 20, 2016

Theorem

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Lu CHen (FSET) Short title June 20, 2016 8 / 13

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Lu CHen (FSET) Short title June 20, 2016 9 / 13

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

 Lu CHen (FSET)
 Short title
 June 20, 2016
 10 / 13

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

 Lu CHen (FSET)
 Short title
 June 20, 2016
 11 / 13

References

John Smith (2012)

Title of the publication

Journal Name 12(3), 45 - 678.

 Lu CHen (FSET)
 Short title
 June 20, 2016
 12 / 13

The End

Lu CHen (FSET) Short title June 20, 2016 13 / 1