9311 Assignment2

WENBO ZHU z5172509

Question 1

- 1) No. Because $C^+=\{C\}$ and $J \notin C^+$.
- 2) $F_m = \{A \rightarrow B, A \rightarrow C, E \rightarrow A, E \rightarrow D, E \rightarrow H, BD \rightarrow E, H \rightarrow G, EI \rightarrow J\}$
- 3) Yes.

Given $R_1 = \{ABCDE\}$, $R_2 = \{EGH\}$, $R_3 = \{EIJK\}$ of R, we have:

	Α	В	С	D	Ε	G	Н		J	K
R1	а	а	а	а	а	а	а	Ω	b	മ
R2	а	а	а	а	а	а	а	Ь	Ь	b
R3	а	а	а	а	а	а	а	а	а	а

(PS: The red 'a' means these 'a's change from 'b')

We can see that the R_3 row is full of 'a' which means that this decomposition is lossless-join.

- 4) EIJK, EIK, AEIJK, EGHIJK, ABCDEGHIJK
- 5) No. It is impossible to get the satisfied decomposition of R.

Let
$$R_0 = F_m = (ABCDEGHIJK)$$

- 1. From $A \rightarrow BC \in F_m$, we can delete B,C from R_0 and get $R_1 = (ABC)$ So the R_0 changes to (ADEGHIJK)
- 2. From $E \rightarrow ADH \in F_m$, we can delete A,D,H from R_0 and get $R_2 = (EADH)$ So the R_0 changes to (EGIJK)
- 3. From EI \rightarrow J \in F_m, we can delete J from R₀ and get R₃ = (EIJ) So the R₀ changes to (EGIK)

However, consider these two sets: $BD \rightarrow E$ and $E \rightarrow D$. They can not satisfy the dependency preserving decomposition.

For example, let F_1 = (E \rightarrow D), and R will be decomposed into R_1 = (E, D) and R_2 = (A, B, C, E, G, H, I, J, K). As a result of this, R_2 will not contain 'BD \rightarrow E', which makes it not satisfied. Like the former one, let F_1 = (BD \rightarrow E) will not lead to the dependency preserving decomposition.

Question 2

According to the schedule table, a coordinate system can be drawn like above, and we can get the solutions of recovering the system.

1) T1: UNDO

T2: REDO

T3: UNDO

2) T1: UNDO

T2: No need to modify.

T3: UNDO

Question 3

- 1) Scanning a database which has no redundancy or repetition alphabetically.
- 2) Scanning a database which only a minority of data of it repeat periodically.