Lecture 11 Molecular phylogenetics

Course: Practical Bioinformatics (BIOL 4220)

Instructor: Michael Landis

Email: michael.landis@wustl.edu

Lecture 11 outline

Last time: regex

This time: phylogenetics

- interpreting trees
- tree-thinking
- inferring trees
- inference methods

Phylogenetics

Phylogenetics studies the relationships among heritable biological entities (often called **taxa**)

Phylogenies are useful for

- gene annotation
- tracking viral spread
- identifying zoonosis
- reconstructing tumorogenesis
- conservation biology assays
- inferring species relationships

I think

phylogeny sketch by Darwin

Reading a phylogeny

Phylogenetic relationships are hierarchical, and most often represented as bifurcating *trees*

Human and Chimp are more closely related to each other than to Gorilla or Orang

Reading a phylogeny

Phylogenetic relationships are hierarchical, and most often represented as bifurcating *trees*

Human, Chimp and Gorilla are more closely related to each other than to Orang

Reading a phylogeny

Taxa that are most closely related to one another, over any other taxa, are called *clades*

Clade 1: H+C

Clade 2: H+C+G

Clade 3: H+C+G+O

"Tree-thinking"

Taxon	Gene variant	Location	
PT1	ACCGTG	Missouri	
PT2	ACCGTG	Missouri	
PT3	GAGGTA	Texas	
PT4	GCGGTA	Texas	

Four sequences, but no historical context

"Tree-thinking"

Phylogeny informs when and where variation arose, which can guide future biological research

Inferring phylogeny

How are taxa T1, T2, and T3 related?

Which phylogeny generated the observed pattern of molecular variation?

Inferring phylogeny

Phylogenetic inference methods take a matrix of characters (e.g. DNA alignment) as input

Measure how well any possible phylogenetic estimate explains the data matrix pattern by assigning a *cost* to each considered estimate

Methods generally **optimize** the cost to estimate the phylogeny with the lowest cost for the provided data matrix

Tree-space is large

A major challenge: how to efficiently search for trees with optimal scores?

Phylogenetic method types

Most methods used to infer phylogenies compute scores based on

- 1. event counting (*parsimony*)
- 2. event probabilities (*likelihood*)
- 3. pattern distances (e.g. neighbor joining)

Method choice often relates to concerns regarding accuracy, speed, scalability, etc.

Neighbor-joining

	Hu	Ch	Go	Or
Hu	0	1	3	5
Ch	1	0	3	5
Go	3	3	0	2
Or	5	5	2	0

distance matrix for sequence pairs

Select pairs of taxa with short sequence distances, and join them as neighbors

Neighbor-joining

	Hu	Ch	Go	Or
Hu	0	1	3	5
Ch	1	0	3	5
Go	3	3	0	2
Or	5	5	2	0

distance matrix for sequence pairs

Select pairs of taxa with short sequence distances, and join them as neighbors

Newick strings

Taxa in parentheses define clades; commas define divergence events

Newick strings

(((Human: 0.37, Chimp: 0.11) 0.99: 0.21, Gorilla: 0.46) 0.68: 0.24, Orang: 0.30);

Overview for Lab 11