Proofs

- What is a proof?
- A proof is a valid argument that establishes the truth of a mathematical statement, using the hypotheses of the theorem, if any, axioms assumed tobe true, and previously proven theorems.
- Using these ingredients and rules of inference, the proof establishes thetruth of the statement being proved.

Question: How do we prove the following theorem?

Theorem: Suppose a, b are real numbers. If 0 < a < b then $a^2 < b^2$.

- What is given to us as hypothesis?
- What is the conclusion?

Question: How do we prove the following theorem?

Theorem: Suppose a, b are real numbers. If 0 < a < b then $a^2 < b^2$.

- What is given to us as hypothesis?
 Givens: a, b are real numbers
- What is the conclusion we want to prove?
 - **Goal:** $P \rightarrow Q$ where P is 0 < a < b and Q is $a^2 < b^2$.

- Direct proof technique for P → Q: Add P to the set of hypotheses. Then prove Q.
- Let's apply it! What is given to us as hypotheses now?
- Givens: a, b are real numbers, 0 < a < b
- Goal: Show that $a^2 < b^2$

Let's write the formal proof now.

• **Proof:** Suppose 0 < a < b. Multiplying the inequality a < b by the positive number a we can conclude $a^2 < ab$, and similarly multiplying by b we get $ab < b^2$. Therefore,

$$a^2 < ab < b^2$$
,

so, $a^2 < b^2$ as required. **QED**¹

CAS CS 131 FALL 2019 Combinatoric Struc

 $^{^{1}}$ "quod erat demonstrandum", literally meaning "what was to be shown".

Direct proofs

Prove the following theorems.

- 1 If n is an odd integer, then n^2 is odd.
- 2 Suppose m, n are natural numbers. If m, n are both perfect squares, then nm is also a perfect square.

Solutions on blackboard

Question: How do we prove the following theorem?

Theorem: Suppose a, b, c are real numbers, and a > b. Prove that if ac < bc then c < 0.

- What is given to us as hypothesis?
- What is the conclusion?

Question: How do we prove the following theorem?

Theorem: Suppose a, b, c are real numbers, and a > b. Prove that if $ac \le bc$ then $c \le 0$.

• What is given to us as hypothesis?

Givens: a, b, c are real numbers, a > b

What is the conclusion?

Goal: $P \rightarrow Q$ where P is $ac \leq bc$ and Q is $c \leq 0$.

- **Proof by contraposition** technique for $P \rightarrow Q$: Add $\neg Q$ to the set of hypotheses. Then prove $\neg P$.
- What is given to us as hypothesis?

Givens: a, b, c are real numbers, a > b, c > 0

Goal: ac > bc

So, the proof structure using contraposition would look like this:

Suppose c > 0

[Proof that ac > bc goes here]

Therefore, if ac < bc then c < 0.

This is how the final/formal proof by contrapositive would look like on the paper:

Theorem: Suppose a, b, c are real numbers, and a > b. Prove that if $ac \le bc$ then $c \le 0$.

Proof: We will prove by contrapositive. Suppose c > 0. Then we can multiply both sides of the given inequality a > b by c and conclude that ac > bc. Therefore, if $ac \le bc$, then $c \le 0$.

Important remark!

Even if we have used logic in the scratch work, we have not used them in the final form. While logic is essential to figure out a proof strategy, in the final write-up of the proof, mathematicians avoid using the notation and rules of logic.

Direct vs contraposition

- When do we use a direct proof, and when a proof by contraposition?
- Rule of thumb: Evaluate first if a direct proof looks promising. If it does not seem to go anywhere, try alternative strategies, including proof by contraposition.
- **Example:** Prove that if n is an integer, and 3n + 2 is odd, then n is odd. (Blackboard)

Proof by counterexample

SHORTEST KNOWN PAPER PUBLISHED

COUNTEREXAMPLE TO EULER'S CONJECTURE
ON SUMS OF LIKE POWERS

BY L. J. LANDER AND T. R. PARKIN
Communicated by J. D. Swift, June 27, 1966
A direct search on the CDC 6600 yielded

27⁵ + 84⁵ + 110⁵ + 133⁵ = 144⁵
as the smallest instance in which four fifth powers sum to a fifth power. This is a counterexample to a conjecture by Euler [1] that at least n nth powers are required to sum to an nth power, n> 2.

REFERENCE

1. L. E. Dickson, Histery of the theory of numbers, Vol. 2, Chelsea, New York, 1952, p. 648.

I recently saw a post from OpenCulture, that I explored, and tweeted about: the shortest known paper published in a serious math journal.

Remark

Nowadays computers give us a lot of power. A small piece of C++ code would be able to find the counterexample from that paper.

https://tsourakakis.com/2017/03/22/shortest-known-paper-published/

Proof by contradiction

Exercise: Prove that $\sqrt{2}$ is irrational.

Ideas?

What does it mean to be rational to begin with?

Proof by contradiction [Scratch work]

- Irrational means not rational, so our goal is a negative statement. This fact already suggests that a proof by contradiction might be the right choice.
- What would it mean for $\sqrt{2}$ to be rational? $\frac{p}{q} = \sqrt{2}$, where $p, q \neq 0$ are integers.
- In general a fra
- without loss of generality, we may assume that p, q are both positive (since $\sqrt{2} > 0$), and that the fraction is in lowest terms (i.e., p, q have no common factors)
- What do we infer by squaring?

Proof by contradiction [Scratch work]

- What do we infer by squaring? That both p, q are even!
- By squaring we obtain that $p^2 = 2q^2$.
- This means that p^2 is even, and therefore p = 2a for some integer a, i.e., p is even.
- By substituting p=2a we obtain that q^2 and hence q is also even since $2q^2=4a^2 \rightarrow q^2=2a^2$. Therefore q=2b for some integer b.

Proof by contradiction [Scratch work]

- So we have shown that p, q have to both be even.
- What does this mean?
 - That they share 2 as a common factor
- Therefore, our assumption that 2 is rational $(\neg p)$ leads to the contradiction that
 - 1 2 does not divide p, q (lower terms)
 - **2**p, q are even, so 2 divides both of them
- Thus, $\sqrt{2}$ is rational

Proof by contradiction – $\sqrt{2}$ is irrational

Read carefully the way the proof is also written in Rosen, p. 90, 91

- Remark: Writing nice proofs requires practice
- Additional reading: Mathematical writing (sections 1,2,3)
 http://jmlr.csail.mit.edu/reviewing-papers/knuth_mathematical_writing.pdf