Coping with the overfitting issue: regularizing and pruning irrelevant hidden nodes

國立政治大學 資訊管理學系 蔡瑞煌 特聘教授

Al applications

- Training phase: (training) data + AI model + algorithm & code + setting of network & hyperparameters → AI model/AI system
- Inferencing phase: performance is obtained from model((test) data)
- Goals of training are reasonable inferencing

ideas/concepts →
modules →
learning algorithm →
codes →
intelligent systems

Types of Learning

Supervised: Learning with a labeled training set

Example: email *classification* with already labeled emails

Unsupervised: Discover patterns in unlabeled data

Example: *cluster* similar documents based on text

Reinforcement learning: learn to act based on feedback/reward

Example: learn to *play* Go, reward: *win or lose*

Anomaly Detection Sequence labeling

http://mbjoseph.github.io/2013/11/27/measure.html

. . .

The supervised learning problems: Regression and Classification

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Stopping criteria (also the learning goals) for regression applications

one output node

The learning process should stop when

$$1. L_N(w) = 0$$

2. a tiny
$$L_N(\mathbf{w})$$
 value

$$L_N(\mathbf{w}) \equiv \frac{1}{N} \sum_{c=1}^{N} (f(\mathbf{x}^c, \mathbf{w}) - y^c)^2$$

- 3. $|f(\mathbf{x}^c, \mathbf{w}) y^c| < \varepsilon \ \forall \ c \ with \ \varepsilon \ being \ tiny$
 - Each reasonable learning goal can be used as a stopping criterion.
 - Different stopping criterion results in different length of training time and different model.

The regression applications

The learning goal

$$|f(\mathbf{x}^c, \mathbf{w}) - y^c| \le \varepsilon \ \forall \ c \in \mathbf{I}$$

The inferencing mechanism

The three-class classification applications

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

The three-class classification applications

April 06, 2021

Classification Applications Design (x attributes & y label)

```
X:
   診斷癌症期間
 ✓ Kps (身體功能)
 ✓ gs1-gs22 (22項)症狀 (0:無; 1:有)
y: 疲倦,個案總計 686位,過去一周平均疲倦程度 (f3)
  (0-10分,real-value variable) > 過去一周疲倦分組
  (Gf3) (分成三組,binary variable):
 ✓ 無: 46位
 ✓ 輕度:346 位
```

中至重度:294位

Classification Applications Design (y label)

Output value: real number

SLFN with one output node and linear (output) function

疲倦

- ✓ 無: 46位
- ✓ 輕度:346 位
- ✓ 中至重度:294位

Learning phase:

y (i.e., target output):

- 無: 0
- 輕度: 5
- ✓ 中至重度: 10

Inferencing phase:

f (i.e., actual output): ✓ [-2.5, 2.5) → 無 ✓ [2.5, 7.5) → 輕度

- ✓ [7.5, 12.5) →中至重度 ✓ (-∞, -2.5) OR [12.5, ∞) → unknown

Output value: binary number

SLFN with three output nodes and softmax arrangement

疲倦

- ✓ 無: 46位
- ✓ 中至重度:294位

Learning phase:

y (i.e., target output):

- ✓ 無: (1, 0, 0)
- ✓ 中至重度: (0,0,1)

Inferencing phase:

f (i.e., actual output):

- ✓ (1, 0, 0) → 無
- ✓ 輕度:346 位 ✓ 輕度: (0,1,0) ✓ (0,1,0) → 輕度
 - ✓ (0,0,1) →中至重度

Another classification application Design (x attributes & y label)

Data

x attributes		
x1	性別	
x2	年齡	
х3	國籍	
x4	婚姻狀態	
x5	直系親屬數	
х6	最高學歷	
x7	來台時長	
x8	平均月收入	
x9	剩餘居留時間	

x attributes		
x10	借款時長	
x11	借款金額	
x12	用途	
x13	工作性質	
x14	工作地點	
x15	雇主資訊	
x16	薪資如期撥入	
x17	薪資撥付方式	
x18	薪資結匯方式	

y label		
y (target output,	信用評級	
real number)	有5個等級	

у	信用評級
1	E最差
2	D
3	С
4	В
5	A最好

Another classification application Design (y label)

one output node

- y (target output) ∈ {1, 2, 3, 4, 5}
- At the learning phase, let ε = 0.2. Then the learning goal is to make f (actual output) ∈ {[0.8, 1.2], [1.8, 2.2], [2.8, 3.2], [3.8, 4.2], [4.8, 5.2]}.
- At the inferencing phase, y = 1 if $f \in [0.5, 1.5)$; y = 2 if $f \in [1.5, 2.5)$; y = 3 if $f \in [2.5, 3.5)$; y = 4 if $f \in [3.5, 4.5)$; y = 5 if $f \in [4.5, 5.5)$
- *y* is unknown if f < 0.5 OR $f \ge 5.5$.

Stopping criteria (also the learning goals) for the SLFN with each output node whose output values are real numbers for the two-class classification application

- Two-class classification problems with I ≡ I₁ ∪ I₂, where I₁ and I₂ are the sets of indices of given cases in classes 1 and 2. Furthermore, y² is the target of the cth case, with 1 and 0 being the targets of classes 1 and 2
- When the SLFN with only one output node whose output value is real number, the stopping criteria may be as follows:
 - 1. $|f(\mathbf{x}^c, \mathbf{w}) y^c| < \varepsilon \ \forall c$
 - 2. $f(\mathbf{x}^c, \mathbf{w}) > \nu \ \forall \ c \in \mathbf{I}_1 \text{ and } f(\mathbf{x}^c, \mathbf{w}) \le -\nu \ \forall \ c \in \mathbf{I}_2, \text{ with } 1 > \nu > 0$
 - 3. $\alpha \equiv \min_{c \in \mathbf{I}_1} f(\mathbf{x}^c, \mathbf{w}) > \beta \equiv \max_{c \in \mathbf{I}_2} f(\mathbf{x}^c, \mathbf{w})$ (Linearly separating condition, *LSC*)

Different stopping criterion results in different length of training time and different model.

Stopping criteria (also the learning goals) for the SLFN with each output node whose output values are real numbers for the two-class classification application

learning goal type 1 (also inferencing goal): $|f(\mathbf{x}^c, \mathbf{w}) - y^c| \le \varepsilon \ \forall \ c \in \mathbf{I}_1;$ $|f(\mathbf{x}^c, \mathbf{w}) + y^c| \le \varepsilon \ \forall \ c \in \mathbf{I}_2$

 ϵ Is a hyperparameter regarding the learning!

learning goal type 2 (also inferencing goal): $f(\mathbf{x}^c, \mathbf{w}) \ge v \ \forall \ c \in \mathbf{I}_1;$ $f(\mathbf{x}^c, \mathbf{w}) \le -v \ \forall \ c \in \mathbf{I}_2$

 ν Is a hyperparameter regarding the inferencing!

learning goal type 3: LSC

Stopping criteria (also the learning goals) for the SLFN with each output node whose output values are real numbers for the two-class classification application

$$y^c = 1 \ \forall \ c \in \mathbb{I}_1; y^c = 0 \ \forall \ c \in \mathbb{I}_2$$
 $\times : f(\mathbf{x}^c, \mathbf{w}), \ \forall \ c \in \mathbb{I}_1$ $\circ : f(\mathbf{x}^c, \mathbf{w}), \ \forall \ c \in \mathbb{I}_2$

• $|f(\mathbf{x}^c, \mathbf{w}) - y^c| < \varepsilon \ \forall \ c$

learning goal type 1 (also inferencing goal): $|f(\mathbf{x}^c, \mathbf{w}) - 1| \le \varepsilon \ \forall \ c \in \mathbf{I}_1;$ $|f(\mathbf{x}^c, \mathbf{w})| \le \varepsilon \ \forall \ c \in \mathbf{I}_2$

ε Is a hyperparameter

The inferencing mechanism

Stopping criteria (also the learning goals) for the SLFN with each output node whose output values are real numbers for the two-class classification application

$$y^c = 1 \ \forall \ c \in \mathbb{I}_1; y^c = 0 \ \forall \ c \in \mathbb{I}_2$$
 $\times : f(\mathbf{x}^c, \mathbf{w}), \ \forall \ c \in \mathbb{I}_1$ $\circ : f(\mathbf{x}^c, \mathbf{w}), \ \forall \ c \in \mathbb{I}_2$

• $f(\mathbf{x}^c, \mathbf{w}) \ge \nu \ \forall c \in \mathbf{I}_1 \text{ and } f(\mathbf{x}^c, \mathbf{w}) \le -\nu \ \forall c \in \mathbf{I}_2 \text{ with } 1 > \nu > 0.$

learning goal type 2 (also inferencing goal): $f(\mathbf{x}^c, \mathbf{w}) \ge v \ \forall \ c \in \mathbf{I}_1;$ $f(\mathbf{x}^c, \mathbf{w}) \le -v \ \forall \ c \in \mathbf{I}_2$

v Is a hyperparameter

The inferencing mechanism

Stopping criteria (also the learning goals) for the SLFN with each output node whose output values are real numbers for the two-class classification application

$$y^c = 1 \ \forall \ c \in \mathbb{I}_1; y^c = 0 \ \forall \ c \in \mathbb{I}_2$$
 $\times : f(\mathbf{x}^c, \mathbf{w}), \ \forall \ c \in \mathbb{I}_1$ $\circ : f(\mathbf{x}^c, \mathbf{w}), \ \forall \ c \in \mathbb{I}_2$

• The LSC (Tsaih, 1993)

$$\alpha \equiv \min_{c \in \mathbf{I}_1} f(\mathbf{x}^c, \mathbf{w}); \ \beta \equiv \max_{c \in \mathbf{I}_2} f(\mathbf{x}^c, \mathbf{w})$$

learning goal type 3: LSC

The inferencing mechanism:

$$f(\mathbf{x}^c, \mathbf{w}) \ge v \ \forall \ c \in \mathbf{I}_1;$$

 $f(\mathbf{x}^c, \mathbf{w}) \le -v \ \forall \ c \in \mathbf{I}_2$

Stopping criteria (also the learning goals) for the SLFN with each output node whose output values are real numbers for the two-class classification application

$$\alpha \equiv \min_{c \in \mathbf{I}_1} f(\mathbf{x}^c, \mathbf{w}); \ \beta \equiv \max_{c \in \mathbf{I}_2} f(\mathbf{x}^c, \mathbf{w})$$

learning goal type 3: LSC

When LSC ($\alpha > \beta$) is true, the inferencing mechanism

$$f(\mathbf{x}^c, \mathbf{w}) \ge v \ \forall \ c \in \mathbf{I}_1 \text{ and } f(\mathbf{x}^c, \mathbf{w}) \le -v \ \forall \ c \in \mathbf{I}_2$$

can be set by directly adjusting \mathbf{w}^o according to the following formula:

$$\frac{2v}{\alpha-\beta}w_i^o \to w_i^o \ \forall \ i,$$

The weight vector between the hidden layer and the output node

then
$$v - \min_{c \in \mathbf{I}_1} \sum_{i=1}^p w_i^o a_i^c \rightarrow w_0^o$$

The threshold of the output node

Learning dilemma of gradient-descentbased learning

Extra stopping criteria for the learning (not the learning goals)

 $\|\nabla_{\mathbf{w}} \mathbf{L}_N(\mathbf{w})\|$ is the length of $\nabla_{\mathbf{w}} \mathbf{L}_N(\mathbf{w})$.

- 1. The learning process should stop when $\|\nabla_{\mathbf{w}} \mathbf{L}_{N}(\mathbf{w})\| = 0$ but a tiny $\mathbf{L}_{N}(\mathbf{w})$ value cannot be accomplished.
- 2. The learning process should stop when $\|\nabla_{\mathbf{w}} \mathbf{L}_N(\mathbf{w})\|$ is tiny but a tiny $\mathbf{L}_N(\mathbf{w})$ value cannot be accomplished.
- 3. The learning process should stop when η (the learning rate) is tiny but a tiny $L_N(\mathbf{w})$ value cannot be accomplished.

The neighborhood of undesired attractors, where $\|\nabla_{\mathbf{w}} \mathbf{L}_N(\mathbf{w})\| \approx 0$ but a tiny $\mathbf{L}_N(\mathbf{w})$ value cannot be accomplished:

- a) the local minimum, the saddle point, or the plateau.
- b) the global minimum of the defective network architecture.

The flowchart of weight-tuning algorithms for 2-layer neural networks in CS231n

The flowchart of weight-tuning module_EU

Hyperparameters:

- n
- Optimizer
- **•** E
- 50
- η

The flowchart of weight-tuning module_EU_LG that indicate either an unacceptable SLFN or an acceptable SLFN

The flowchart of weight-tuning module_EU_LG

The flowchart of weight-tuning module_EU_LG_UA

The flowchart of weight-tuning module_LG_UA

Performance differences amongst weight-tuning modules

- There are four weight-tuning modules
 - ✓ the weight-tuning module_EU

 The simplest and the learning time length is expected
 - ✓ the weight-tuning module_EU_LG

 Shorter learning time length than the weight-tuning module_EU
 - ✓ the weight-tuning module_EU_LG_UA

 The learning time length may be longer than the weight-tuning module_EU_LG
 - ✓ the weight-tuning module_LG_UA

 The learning time length is not an issue

Algorithm representation and development

(Algorithm - Wikipedia)

- Algorithms can be expressed in many kinds of notation, including natural languages, pseudocode, flowcharts, drakon-charts, programming languages or control tables (processed by interpreters).
 - ✓ Natural language expressions of algorithms tend to be verbose and ambiguous, and are rarely used for complex or technical algorithms.
 - ✓ Pseudocode, flowcharts, drakon-charts and control tables are structured ways to express algorithms that avoid many of the ambiguities common in the statements based on natural language.
 - ✓ Programming languages are primarily intended for expressing algorithms in a form that can be executed by a computer, but are also often used as a way to define or document algorithms.
- Typical steps in the development of algorithms:

 - ✓ Development of a model ← 2-layer net, 4-layer net, or deep neural networks
 - ✓ Specification of the algorithm ← The learning algorithm
 - ✓ Designing an algorithm ← The gradient-descent-based learning algorithm
 - ✓ Checking the correctness of the algorithm ← The math proof of the proposed learning algorithm
 - ✓ Analysis of algorithm ← The amount of parameters, the (learning and inferencing) time scale, ...
 - ✓ Implementation of algorithm ← The coding
 - ✓ Program testing
 - ✓ Documentation preparation

Program testing -Performance of Al Applications

 How do Al professionals evaluate the performance of the Al applications?

← effectiveness & efficiency

- However, there are learning dilemma and overfitting when evaluating the effectiveness & efficiency.
- You need to deal with learning dilemma and overfitting, not only for the purposes of learning, but also of inferencing.

overfitting

Generalization

- Learned hypothesis may fit the training data very well, even noises (or outliers) in the training data, but fail to generalize to new examples (test data)
- In machine learning and statistical regression, the generalization error (also known as the out-of-sample error) is a measure of how accurately an algorithm is able to predict outcome values for previously unseen data.

Learning curves

- Because learning algorithms are evaluated on finite samples, the evaluation of a learning algorithm may be sensitive to sampling error.
- As a result, measurements of prediction error on the current data may not provide much information about predictive ability on new data.
- The performance of a learning algorithm is measured by plots of the generalization error values through the learning process, which are called learning curves.
- Generalization error can be minimized by avoiding overfitting in the learning process.

Learning curve and overfitting

Overfitting

In statistics, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably."

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data too well so we don't fit noise in the data

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 3 - 41

April 06, 2021

Overfitting

An **over-fitted model** is a model that contains more parameters than can be justified by the data.

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data *too* well so we don't fit noise in the data

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 3 - 41

April 06, 2021

Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

<u>L2 regularization</u>: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$

L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc

Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Why regularize?

- Express preferences over weights
- Make the model *simple* so it works on test data
- Improve optimization by adding curvature

Regularization - In practice

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout
Batch Normalization
Data Augmentation

DropConnect
Fractional Max Pooling
Stochastic Depth

Cutout / Random Crop Mixup

- Consider dropout for large fully-connected layers
- Batch normalization and data augmentation almost always a good idea
- Try cutout and mixup especially for small classification datasets

Summary: the overfitting may be due to big weights

Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_k \sum_l W_{k,l}^2$$

L1 regularization:
$$R(W) = \sum_k \sum_l |W_{k,l}|$$

Elastic net (L1 + L2):
$$R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc

Summary: the overfitting may be due to too many hidden nodes

https://www.neuraldesigner.com/images/learning/selection_error.svg

Recipe for Deep Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Inferencing Issues

Developing a new Al system is like playing with Lego – lots of (pre-built or self-built) modules

Neural Network

This image is CC0 1.0 public domain

Dealing with the overfitting due to big weights – the regularizing module

The flowchart of weight-tuning module_LG_UA

The flowchart of regularizing module_LG_UA that tries to further regularize weights of an acceptable SLFN

$$L_N(\mathbf{w}) \equiv \frac{\sum_c (f(\mathbf{x}^c, \mathbf{w}) - y^c)^2}{N} + \frac{0.001}{p+1+p(m+1)} \left(\sum_{i=0}^p (\mathbf{w}_i^o)^2 + \sum_{i=1}^p \sum_{j=0}^m (\mathbf{w}_{ij}^H)^2\right)$$

The flowchart of regularizing module EU LG UA

The regularizing module

- The weight-tuning module helps tune up the weights to decrease the data error to obtain an acceptable SLFN.
- After obtaining an acceptable SLFN, the regularizing module helps further regularize weights of the acceptable SLFN while keeping the learning goal satisfied.
- A well-regularized SLFN can alleviate the overfitting tendency.

Q: Which optimizer does better in the regularizing module?

A: Need to conduct experiments to get the better optimizer.

The overfitting due to big weights

Adopt a regularization term in the loss function to penalize big weights:

$$\mathbf{L}_{N}(\mathbf{w}) \equiv \frac{1}{N} \sum_{c=1}^{N} (f(\mathbf{x}^{c}, \mathbf{w}) - y^{c})^{2} + \lambda ||\mathbf{w}||^{2}$$

- Decay coefficient: tiny λ
- Regularization strength: arbitrary λ
- The regularization strength (RS) λ determines how dominant the regularization is during gradient computation: Bigger $\lambda \rightarrow$ bigger penalty for big weights
- Maybe there should be a RS scheduling like the LR scheduling. The RS should be enlarged from a tiny value.

Learning Rate Decay

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0\left(1+\cos(t\pi/T)\right)$$

Linear:
$$lpha_t=lpha_0(1-t/T)$$

Inverse sqrt:
$$lpha_t=lpha_0/\sqrt{t}$$

 $lpha_0$: Initial learning rate $lpha_t$: Learning rate at epoch t

/aswani et al, "Attention is all you need", NIPS 2017

Performance differences amongst regularizing modules

- There are two regularizing modules
 - √ the regularizing module_EU_LG_UA
 - √ the regularizing module_LG_UA
 - ✓ the regularizing module_EU

 What are the differences amongst these regularizing modules?

Performance differences amongst regularizing modules

- There are two regularizing modules
 - ✓ the regularizing module_EU_LG_UA

 The regularizing time length is expected
 - ✓ the regularizing module_LG_UA
 - The regularizing time length may be much longer
 - ✓ the regularizing module_EU

The simplest and the regularizing time length is expected

Regularization - In practice

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Mixup

Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop

- Consider dropout for large fully-connected layers
- Batch normalization and data augmentation almost always a good idea
- Try cutout and mixup especially for small classification datasets

The regularizing module_DO

More common: "Inverted dropout"

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + k2)
 U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
                                                                      test time is unchanged!
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 out = np.dot(W3, H2) + b3
```

The regularizing module_BN

Batch Normalization

[loffe and Szegedy, 2015]

- Makes deep networks **much** easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very common source of bugs!

The regularizing module_BN

In the regularizing module_BN, the batch normalization operation is inserted after the FC layer and before the nonlinearity layer.

Homework 3_1

- Rewrite the code of weight-tuning module_LG_UA stated in page 46 to make the coding of regularizing module_LG_UA stated in page 47.
- Rewrite the code of regularizing module_LG_UA stated in page 47 to make the coding of regularizing module_EU_LG_UA stated in page 48.
- Make the coding of regularizing module_DO stated in page 54.
- Make the coding of regularizing module_BN stated in page 56.

Overfitting due to too many hidden nodes

https://www.neuraldesigner.com/images/learning/selection_error.svg

Dealing with the overfitting due to big weights and too many hidden nodes – the reorganizing module

Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Occam's Razar: Among multiple competing hypotheses, the simplest is the best, William of Ockham 1285-1347

irrelevant hidden nodes & potentially irrelevant hidden nodes

- Develop the reorganizing module that helps regularize weights of an acceptable SLFN while keeping the learning goal satisfied as well as identify and remove the *potentially irrelevant hidden node*.
- The hidden node that can be pruned without making the learning goal unsatisfied is an *irrelevant hidden node*. (Tsaih, 1993)
- For the SLFN with the **w**, the k^{th} hidden node is *potentially irrelevant* if the learning goal can be accomplished via minimizing $L_N(\mathbf{w}_k')$, where $\mathbf{w}_k' = \mathbf{w} \{w_k^o, w_{k0}^H, \mathbf{w}_k^H\}$ and $f(\mathbf{x}^c, \mathbf{w}_k') = w_0^o + \sum_{i \neq k} w_i^o a_i^c \ \forall \ c$. (Tsaih, 1993)

W

$$\mathbf{w}_k' \equiv \mathbf{w} - \left\{ w_k^o, w_{k0}^H, \mathbf{w}_k^H \right\}$$

The reorganizing module that helps regularize weights of an acceptable SLFN and examines its hidden nodes one by one

The reorganizing module_ALL_r_EU_LG_UA_w_EU_LG_UA

More ideas for the reorganizing module that examines merely some hidden nodes one by one

- 1. The reorganizing module_R3_r_EU_LG_UA_w_EU_LG_UA that randomly picks up 3 hidden nodes and examines whether they are potentially irrelevant. Remove potentially irrelevant hidden nodes identified within the process.
- 2. The reorganizing module_MAW_r_EU_LG_UA_w_EU_LG_UA that uses $k = \arg\min_i |w_i^o|$ to pick up a hidden node and examines whether it is potentially irrelevant. If yes, remove it and then repeat the process; otherwise, stop the process.
- 3. The reorganizing module_PCA_r_EU_LG_UA_w_EU_LG_UA that uses PCA to pick up a hidden node and examines whether it is potentially irrelevant. If yes, remove it and then repeat the process; otherwise, stop the process.
- 4. The reorganizing module_ETP_r_EU_LG_UA_w_EU_LG_UA that calculates the entropy of each hidden node and then, based on the obtained entropy, picks up a hidden node and examines whether it is potentially irrelevant. If yes, remove it and then repeat the process; otherwise, stop the process.
 - In information theory, the **entropy** of a random variable is the average level of "information", "surprise", or "uncertainty" inherent in the variable's possible outcomes. Given a discrete random variable **X**, with possible outcomes $x_1, ..., x_n$, which occur with probability $P(x_1), ..., P(x_n)$, the entropy of **X** is formally defined as: $H(\mathbf{X}) = -\sum_{i=1}^n P(x_i) \log(P(x_i))$. (Entropy Wikipedia)
- 5. Your idea?

The weight-tuning module and the reorganizing module

Note that there are two weight-tuning modules: one for the pruning purpose and another for accomplishing the learning goal.

Will you use different weight-tuning modules for the pruning purpose and for accomplishing the learning goal?

Homework 3

Make the coding of AI system stated in page 67 without the module for coping with the learning dilemma.
Use the reorganizing module_ALL_r_EU_LG_UA_w_EU_LG_UA

stated in page 65.

You may pick up one of the following weight-tuning modules:

✓ the weight-tuning module_EU

✓ the weight-tuning module_EU_LG
✓ the weight-tuning module_EU_LG_UA
✓ the weight-tuning module_LG_UA

• Note that the learning goals used in the weight-tuning module, the regularizing module, and the reorganizing module should be the same.