Optimisation - Résumé

October 18, 2023

THEVENET Louis

Table des matières

1.	Rappels	. 1
	1.1. Différentielle d'une composée	
	1.2. Gradient	. 1
	1.3. Convexité	. 2
	Existence de solutions	. 2
	2.1. Problème avec contraintes ${\cal C}$. 2
	2.2. Cas convexe	
3.	Condition nécessaire et suffisante	. 2
	3.1. Premier ordre	. 2
	3.1.1. Cas sans contrainte	. 2
	3.1.2. Cas f convexe sur C	. 2
	3.2. Second ordre	. 3
	3.2.1. Condition nécessaire	. 3
	3.2.2. Condition suffisante	. 3

1. Rappels

1.1. Différentielle d'une composée

Théorème 1.1.1: f,g telles que $g\circ f$ soit dérivable en $x\in\Omega,$ on a :

$$\forall h \in E, (g \circ f)'(x). \cdot h = g'(f(x)) \cdot (f'(x) \cdot h)$$

1.2. Gradient

Définition 1.2.1: $a \in \Omega$, $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ doublement dérivable sur Ω :

$$\Delta f(a) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix}$$

$$\Delta^2 f(a) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(a) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(a) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(a) & \frac{\partial^2 f}{\partial x_n \partial x_2}(a) & \dots & \frac{\partial^2 f}{\partial x_n^2}(a) \end{pmatrix}$$

1.3. Convexité

Théorème 1.3.1: f dérivable sur $D_0 \subset \Omega$ un convexe :

$$f \text{ est convexe} \Longleftrightarrow \forall x,y \in D_0, f(y) - f(x) \geq f'(x)(y-x)$$

$$f \text{ est strictement convexe} \Longleftrightarrow \forall x,y \in D_0, x \neq y, f(y) - f(x) > f'(x)(y-x)$$

$$f \text{ est uniformément convexe} \Longleftrightarrow \forall x,y \in D_0, f(y) - f(x) \geq f'(x)(y-x) + c\|y-x\|_E^2$$

2. Existence de solutions

2.1. Problème avec contraintes C

Théorème 2.1.1: Soit (P) un problème d'opti. sous contraintes C

- Si f est continue et C est un compact non vide, alors (P) admet une solution
- Si $f: \mathbb{R}^n \to \mathbb{R}$ continue et **0-coercive**, C est un fermé non vide, alors (P) admet une solution

2.2. Cas convexe

Théorème 2.2.1: Ici C est un convexe de E EVN

- Si f est **strictement** convexe à valeurs réelles, alors il existe au plus une solution
- Si f est convexe à valeurs réelles, tout minimum local sur C est global sur C

3. Condition nécessaire et suffisante

3.1. Premier ordre

3.1.1. Cas sans contrainte

Théorème 3.1.1.1: f à valeurs réelles, définie sur un ouvert, x^* minimum local et f dérivable en x^* . Alors

$$f'(x^*) = 0$$

3.1.2. Cas f convexe sur C

Théorème 3.1.2.1:

- f définie sur un ouvert convexe C, x^* minimum local sur C et f dérivable en $x^* \Longrightarrow \forall y \in C, f'(x^*)(y-x) \geq 0$
- Si f est dérivable en tout point de C, ces conditions sont équivalentes :
 - 1. x^* minimum local sur C
 - 2. x^* minimum global sur C
 - 3. $\forall y \in C, f'(x^*)(y-x) \ge 0$

3.2. Second ordre

3.2.1. Condition nécessaire

Théorème 3.2.1.1:

 x^* minimum local de f deux fois dérivable en x^* . Alors $f''(x^*)$ est semi-définie positive

3.2.2. Condition suffisante

Théorème 3.2.2.1:

- x^* point critique de f deux fois dérivable en x^* , $f''(x^*)$ uniformément définie positive $\Rightarrow x^*$ est un minimum local de f
- f deux fois dérivable sur Ω et $\exists B(x^*,\eta) \mid f''(x)$ est semi-définie positive et $f'(x^*) = 0 \Longrightarrow x^*$ est un minimum local de f