# Multiparameter optimization of a magnetooptical trap using deep learning

A.D. Tranter, H.J. Slatyer, M.R. Hush, A.C. Leung, J.L. Everett, K.V. Paul, P. Vernaz-Gris, P.K. Lam, B.C. Buchler & G.T. Campbell

#### **NATURE COMMUNICATIONS**

Published: 19 OCT 2018

#### **Author**

- Ben Buchler (Advised by Hans A. Bachor)
- Associated Professor @ ANU, Australia
- Research Interest
  - Quantum memory
  - Atom detection
  - Squeezed light generation
  - Squeezing for gravitational wave sensing
- Recent Papers
  - Dynamical observations of self-stabilizing stationary light (2017)
  - Highly efficient optical quantum memory with long coherence time in cold atom (2016)



#### **Magneto-Optical Trapping (MOT)**

 To increase the optical depth(OD) of MOT, compression stage comes after ordinary MOT





(A)

Compression time (ms)

#### **Experimental Scheme**



Your Occasion December 3, 2018

compression

- Equilibrium OD is achieved after 10 cycles

=> SANN's solution will reduce atom loss and maximize the

- Cost function is calculated after that

#### **Artificial Neural Network (ANNs)**



•  $\sim 2^{30} = 10^9$ connections are computed by 2.67 GHz i7-920

#### **Artificial Neural Network (ANNs)**





#### Trained by **Adam algorithm**

$$\begin{split} w_t &= w_{t-1} - \frac{\eta}{\sqrt{\widehat{v_t}} + \varepsilon} \widehat{m_t} \\ \widehat{m_t} &= \frac{m_t}{1 - \beta_1^t} \quad \widehat{v_t} = \frac{v_t}{1 - \beta_2^t} \\ m_t &= \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ v_t &= \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 \end{split}$$

Adaptively change step size by previous information about amount and frequency of change

How to choose training sets?

#### **Differential Evolution**



Each parameter set has its own cost
Choose the parameter sets which have low costs



Chosen sets cross over their parameter at crossover rate(0.7)
Also mutation with random number occurs

## Solutions from Human and ANN (1/2)

- Temporal dark SPOT
- Minimizing absorption of rescattered photons by shelving atoms in a non-absorbing state

Release-capture dynamics in optical lattice(Speculation)





## Solutions from Human and ANN (2/2)

• 
$$\frac{I_t}{I_0} = \exp(OD \frac{\gamma^2/4}{\Delta^2 + \gamma^2/4})$$

- Human : ANN =  $535(\pm 8)$  :  $970(\pm 20)$
- Absorption image using an expanded beam on the repump transition 9 MHz detuned shows higher density of atoms in Machine solution



## **Cost landscape**

Smooth cost landscape suggests that the model is not overfit



