Boosting Summarization with Normalizing Flows and Aggressive Training

Yu Yang & Xiaotong Shen

School of Statistics University of Minnesota

Why Variational Models?

Issues with most Transformer-based models

- exposure bias
- lack of model variability
- insufficient capturing of semantic information

Variational Models

Introduce uncertainty by learning a probability distribution over the latent variables.

- smoother output spaces, reducing the exposure bias.
- diverse summaries
- better semantic capturing

Challenges

- 1. Simple Gaussian inflexible to capture the latent intricacies
- 2. Posterior collapse

Proposal

Normalizing Flows + Training Techniques

Normalizing Flows (NF)

Figure 1: Illustration of a Normalizing Flow Model¹

$$z_i = f_i(z_{i-1}) \Leftrightarrow z_{i-1} = f_i^{-1}(z_i)$$

$$z_K = f_K \circ f_{K-1} \circ \cdots \circ f_1(z_0)$$

$$\log p_{K}(z_{K}) = \log p_{0}(z_{0}) - \sum_{i=1}^{K} \log \left| \det \frac{df_{i}}{dz_{i-1}} \right|$$

https://lilianweng.github.io/posts/2018-10-13-flow-models/.

¹Image source:

Variational Encoder Decoder (VED)

Given x, we assume there exists a latent variable $z \sim p(z|x)$ and that $y \sim p(y|x,z)$.

$$p(y \mid x) = \int p(z \mid x)p(y \mid x, z)dz$$

- ullet a variational posterior $q_{\psi}(z|x,y)
 ightarrow p(z|x,y)$
- a model of $p_{\theta}(y|x,z)$

Model: FlowSUM

Figure 2: FlowSUM Model Architecture

Refined Gate Mechanism

Mitigate the saturation problem and allows for better gradient flow (Gu et al., 2020).

$$\left\{ \begin{array}{l} z_{K}' = W^{z} z_{K} \\ f_{j} = \delta \left(W^{f} \left[h_{j}; z_{K}' \right] \right) \\ h_{j}' = (1 - f_{j}) \cdot h_{j} + f_{j} \cdot z_{K}' \end{array} \right. \Rightarrow \left\{ \begin{array}{l} z_{K}' = W^{z} z_{K} \\ f_{j} = \delta \left(W^{f} \left[h_{j}; z_{K}' \right] \right) \\ r_{j} = \delta \left(W^{r} \left[h_{j}; z_{K}' \right] \right) \\ g_{j} = f_{j} + f_{j} (1 - f_{j}) (2r_{j} - 1) \\ h_{j}' = (1 - g_{j}) \cdot h_{j} + g_{j} \cdot z_{K}' \end{array} \right.$$

Objective Function

$$\mathbb{ELBO}_{NF-VED} = \mathbb{E}_{q_{0}(z_{0})} \Big[\log p(y \mid x, z_{K}) + \log p(z_{K} \mid x) \Big] \\
- \mathbb{E}_{q_{0}(z_{0})} \Big[\log q_{0}(z_{0}) - \sum_{k=1}^{K} \log |\det J_{f_{k}}(z_{k-1})| \Big], \tag{1}$$

$$\mathcal{L} = -\sum_{j=1}^{n} \log p(y_{j} \mid \{x_{i}\}_{i=1}^{m}, z_{K}, y_{< j}) - \log p(z_{K} \mid x)$$

where q_0 is the probability density function for z_0 .

 $+\log q_0(z_0) - \sum_{k=1}^{K} \log |\det J_{f_k}(z_{k-1})|$

Mitigating Posterior Collapse

15:

break

Algorithm 1 Controlled Alternate Aggressive Training (CAAT)

Input: number of aggressive training steps n_{agg} ; maximum number of training steps n_{max} ; number of alternating steps n_{alt} .

```
1: \theta, \psi \leftarrow Initialize encoder-decoder parameters
     and variational parameters respectively
 2: for i = 1, 2, \dots, n_{aqq} do
           X \leftarrow Random data minibatch
           if i \mod n_{alt} = 0 then
                 Compute g_{\theta,\psi} \leftarrow \nabla_{\psi,\theta} \mathcal{L}(\mathbf{X};\theta,\psi)
 5:
 6:
                Update \theta, \psi using gradients g_{\theta,\psi}
 7:
           else
                 Compute g_{\psi} \leftarrow \nabla_{\psi} \mathcal{L}(\mathbf{X}; \boldsymbol{\theta}, \boldsymbol{\psi})
 8:
                 Update \psi using graidents g_{\psi}
 9:
10: for i = n_{aqq}, n_{aqq} + 1, \cdots, n_{max} do
           X \leftarrow Random data minibatch
11:
           Compute g_{\theta,\psi} \leftarrow \nabla_{\psi,\theta} \mathcal{L}(\mathbf{X};\theta,\psi)
12:
           Update \theta, \psi using gradients g_{\theta,\psi}
13:
           if early stopping criterion is met then
14:
```

Datasets

CNN/Daily Mail

• 312,085 online news articles paired with multi-sentence summaries.

Multi-News

 56k pairs of multi-document news articles and multi-sentence summaries.

arXiv, PubMed

 two scientific paper document datasets from arXiv.org (113k) and PubMed (215k).

XSum

227k BBC articles, each summarized in a single sentence.

SAMSum

16k conversations annotated with summaries by linguists.

Models in Comparison

Deterministic Models

- PG+Cov (See et al., 2017)
- BERT2BERT (Rothe et al., 2020)
- BERTSUM (Liu and Lapata, 2019)
- BART (Lewis et al., 2020)
- PEGASUS (J. Zhang et al., 2020)

Variational Models

- VHTM (X. Fu et al., 2020)
- TAS (Zheng et al., 2020)
- PEGASUS+Flow-NTM (Nguyen et al., 2021)

Proposed Models

- VEDSUM
- FlowSUM

Normalizing Flows Types

- Planar flow (Rezende and Mohamed, 2015)
- Radial flow (Rezende and Mohamed, 2015)
- Sylvester flow (van den Berg et al., 2018)
- RealNVP (Dinh et al., 2017)
- Inverse Autoregressive flow (IAF) (Kingma et al., 2016)
- Rational-Linear Neural Splines flows (RLNSF) (Dolatabadi et al., 2020)
- Rational-Quadratic Neural Spline Flows (RQNSF) (Durkan et al., 2019)

Evaluation Metrics

- ROUGE scores (Lin, 2004)
 - ROUGE-1: overlap of unigrams
 - ROUGE-2: overlap of bigrams
 - ROUGE-L: overlap of the longest common sequence
- BERTScore (T. Zhang et al., 2020)
- Repetition measure rep-w (Z. Fu et al., 2021)
 - the proportions of words that occur in the previous w words

Quantitative Analysis I

Model	ROUGE ↑				
Model	1	2	L		
PG+Cov	39.53	17.28	36.38		
BERT2BERT	41.28	18.69	38.09		
BERTSUM	42.13	19.60	39.18		
BART	44.16	21.28	40.90		
PEGASUS	44.17	21.47	41.11		
VHTM	40.57	18.05	37.18		
TAS	44.38	21.19	41.33		
PEGASUS+NTM	44.52	21.95	41.39		
VEDSUM (BERT2BERT)	40.89	18.28	37.95		
FlowSUM (BERT2BERT)	41.51	18.81	38.56		
VEDSUM (BART)	44.36	21.09	41.37		
FlowSUM (BART)	44.64	21.36	41.65		

Table 1: Comparison with baselines on CNN/DM.

Quantitative Analysis II

Model	ROUGE 1/2/L↑	BERTScore ↑	rep-w \downarrow	Length		
	CNN/DM					
BART	44.16/21.28/40.90	89.40	8.31	84.11		
VEDSUM	44.34/21.09/41.37	89.20	8.43	88.63		
FlowSUM	44.64/21.36/41.65	89.46	8.43	92.24		
	Multi-News					
BART	42.56/15.34/36.67	86.69	9.76	133.42		
VEDSUM	43.91/16.68/38.10	87.04	9.95	128.79		
FlowSUM	44.42/17.01/38.36	87.09	9.91	128.87		
	arXiv					
BART	42.55/15.92/37.89	85.35	17.23	130.68		
VEDSUM	43.05/ 16.34 /38.26	85.44	16.63	130.92		
FlowSUM	43.11 /16.26/ 38.31	85.45	16.55	132.88		
PubMed						
BART	41.57/16.72/36.94	84.65	13.26	136.10		
VEDSUM	44.21/19.20/39.32	85.07	12.76	138.70		
FlowSUM	44.55/19.50/39.59	85.16	12.59	138.09		

Table 2: Comparison of BART, VEDSUM, and FlowSUM on long-summary benchmarks.

Quantitative Analysis III

Model	ROUGE 1/2/L↑	$BERTScore \uparrow$	rep-w ↓	Length	
	XS	Sum			
BART	45.14/22.27/37.25	92.16	4.63	25.54	
VEDSUM	43.62/20.27/35.06	91.75	5.96	31.22	
FlowSUM	45.26 /22.12/37.00	92.13	4.95	28.71	
SAMSum					
BART	53.16 /28.19/ 49.03	92.68	6.71	30.00	
VEDSUM	51.91/26.74/47.41	92.40	7.53	30.92	
FlowSUM	53.13/28.49/49.00	92.67	6.59	29.77	

Table 3: Comparison of BART, VEDSUM, and FlowSUM on short-summary benchmarks.

Effect of NF Types

Model	ROUGE 1/2/L↑	$BERTScore \uparrow$	rep-w ↓
BART	42.56/15.35/36.67	86.69	9.76
VEDSUM	43.91/16.68/38.10	87.04	9.95
FlowSUM (Planar)	43.85/16.61/37.97	87.03	10.04
FlowSUM (Radial)	43.84/16.68/37.98	87.04	9.92
FlowSUM (Sylvester)	44.18/16.71/38.15	87.08	9.80
FlowSUM (RealNVP)	44.19/16.64/38.15	87.05	9.81
FlowSUM (IAF)	44.42/17.01/38.36	87.09	9.91
FlowSUM (RLNSF)	44.25/16.86/38.14	87.06	9.80
FlowSUM (RQNSF)	44.31/16.98/38.27	87.07	9.91

Table 4: Effect of NF Types on Multi-News.

Effect of NF Depth

Model	ROUGE 1/2/L↑	BERTScore ↑	rep-w ↓
FlowSUM (IAF-4)	44.30/ 17.03 /38.22	87.05	9.82
FlowSUM (IAF-6)	44.42/17.01/38.36	87.09	9.91
FlowSUM (IAF-8)	44.18/16.90/38.16	87.04	9.88
FlowSUM (RQNSF-2)	44.15/16.88/38.20	87.04	9.94
FlowSUM (RQNSF-4)	44.31/16.98/38.27	87.07	9.91
FlowSUM (RQNSF-6)	44.15/16.88/38.18	87.06	9.87

Table 5: Effect of NF Depth on Multi-News.

Effect of Training Strategies

Model	Training	ROUGE ↑			KL
-	. 0	1	2	L	Divergence
VEDSUM	standard	43.91	16.68	38.10	0.0117
VEDSUM	β_C -VAE	43.78	16.54	37.96	0.0082
FlowSUM (Planar)	standard	43.85	16.61	37.97	0.2719
FlowSUM (Planar)	β_C -VAE	43.68	16.47	37.85	0.1815
FlowSUM (Radial)	standard	43.63	16.37	37.82	0.0121
FlowSUM (Radial)	β_C -VAE	43.84	16.68	37.98	0.0096
FlowSUM (Sylvester)	standard	43.68	16.51	37.87	0.0841
FlowSUM (Sylvester)	β_C -VAE	44.18	16.71	38.15	0.0348
FlowSUM (RealNVP)	standard	44.19	16.64	38.15	4.7986
FlowSUM (RealNVP)	β_C -VAE	43.71	16.54	37.85	7.8938
FlowSUM (RealNVP)	CAAT	44.12	16.82	38.11	5.2107
FlowSUM (IAF)	standard	43.87	16.62	37.97	3.9146
FlowSUM (IAF)	β_C -VAE	43.81	16.58	37.91	3.9128
FlowSUM (IAF)	CAAT	44.30	17.03	38.22	2.1108
FlowSUM (RLNSF)	standard	44.25	16.86	38.14	104.9667
FlowSUM (RLNSF)	β_C -VAE	44.25	16.86	38.14	104.9667
FlowSUM (RLNSF)	CAAT	44.14	16.82	38.05	95.3774
FlowSUM (RQNSF)	standard	44.18	16.76	38.18	127.8106
FlowSUM (RQNSF)	β_C -VAE	44.18	16.76	38.18	127.8106
FlowSUM (RQNSF)	CAAT	44.31	16.98	38.27	107.0794

NF-enhanced Knowledge Distillation

Knowledge Distillation (Shleifer and Rush, 2020)

- Shrink and Fine-Tune (SFT): shrinks the teacher model and re-finetunes the shrunk model
- Pseudo-labels (PL): initializes the student model with the compressed version produced by SFT and then fine-tunes on the pseudo-labeled data generated by the teacher model

NF-enhanced Knowledge Distillation

- FlowSUM > dBART ⇒ NF helps with SFT
- FlowSUM-PLKD > FlowSUM ⇒ NF boosts further with PL.

Model	ROUGE ↑ 1/2/L	BERT- Score ↑	Length	# Params (MM)	$\begin{array}{c} {\sf Inference} \\ {\sf Time} \; ({\sf MS}) \end{array} \downarrow$		
	dBART-6-6						
dBART-6-6	42.78/20.24/39.72	88.98	67.42	230	170.5		
FlowSUM	43.41/20.33/40.41	89.18	91.25	238	234.9		
FlowSUM-PLKD	43.70/20.71/40.73	89.24	91.10	238	239.7		
dBART-12-3							
dBART-12-3	43.39/20.57/40.44	89.20	85.48	255	199.6		
FlowSUM	43.53/20.61/40.59	89.28	83.74	263	190.7		
FlowSUM-PLKD	44.05/21.06/41.07	89.37	84.48	263	200.4		

Table 6: Knowledge Distillation on DistilBART on CNN/DM.

NF-enhanced Knowledge Distillation

Figure 4: Visualization of the first two dimensions of z_0 , z_K , and N(0, I) from FlowSUM-PLKD on CNN/DM.

Conclusion

- 1. Propose FlowSUM, a normalizing flows-based variational encoder-decoder framework for Transformer-based models.
- 2. Improve the training efficacy with a training strategy and a refined gate mechanism.
- 3. Investigate the operating characteristics of normalizing flows in summarization.
- 4. Identify normalizing flows' benefits for knowledge distillation.

Thank You!