Jednostruka Linearna Regresija

Tim:

- Marko Vukotić SW-71/2018
- Miloš Popović SW-24/2018

Zadatak:

Skup dobijenih podataka sadrži zavisnost otpornosti broda po jedinice težine tokom pomeraja (Y) u odnosu na njegovu veličinu (dimenzije) i brzinu kretanja broda (X). Potrebno je naći regresioni model koji se najbolje uklapa u skup podataka.

Analiza podataka:

Podaci su dati u formatu:

х	Υ
0.3	4.46
0.35	7.16
0.125	0.2
0.2	0.93

Nakon analize podataka uradili smo vizuelizaciju trening skupa. Vizuelizacija je izgledala ovako:

1) Vizuelizacija train.csv

Kako se vidi na datoj fotografiji postoje očigledni Outlieri (tačke visokog uticaja). Da bi smo poboljšali ponašanje naseg sistema uklonili smo na trening skupu tačke visokog uticaja. U kodu smo napisali metodu koja obeležava kritične tačke koje se nalaze ~0.36-0.40 na X osi i značajno više na Y osi (~30+) od ostalih tačaka u tom regionu X ose.

Metoda

Metoda sa kojom smo radili je *Gradijentni Spust* (Gradient Descent). Važne formule:

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta x^{(i)} - y^{(i)})^{2}$$
 • Funkcija Greške (Cost)

Gradijenti:

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{N} \sum_{i=1}^{N} \left(\theta_1 x^{(i)} + \theta_0 - y^{(i)} \right) \cdot 1$$

Prvi izvod od tete0 (Bias)

$$\frac{\partial J}{\partial \theta_1} = \frac{1}{N} \sum_{i=1}^{N} \left(\theta_1 x^{(i)} + \theta_0 - y^{(i)} \right) \cdot x^{(i)}$$
• Prvi izvod od tete1 (Weight)

Gradijentni spust je iterativni algoritam koji se koristi da minimizuje funkciju tako što traži optimalne parametre.

Maksimalan broj iteracija: 30000

Learning rate: 0.1

Funkcije:

Testirali smo algoritam na nekim od funkcija.

Funkcija e^x

 $Y = t0*e^x + t1$

Linearna x funkcija

$$Y = t0*x^{i} + t1, i = \{1-8\}$$

"i" = 6 - 8 su davala obećavajuća rešenja.

Ovaj model smo koristili za prvi submit, ali imali smo grešku prilikom izbacivanja outlajera (izbačen plavi deo sa slike) tako da smo dobili lošiji rezultat (4.91858265669722).

Logaritamska funkcija (Odabrano rešenje)

Drugi pristup je bio da logaritamujemo y parametar ulaznih podataka za obučavanje, i nad takvim podacima fitujemo pravu (t0 * x + t1) i kao rezultat vraćamo tu funkciju kao stepen baze logaritma.

Logaritmovan ulaz

Stepenovan ulaz (poništen logaritam)

Testiranje modela

Ulazne podatke smo podelili na train, validate i test skup 70% 15% 15% i računali smo RMSE nad test skupom. Validate smo koristili kao odabir najbolje iteracije gradient descent-a kako bi izbegli overfitting, ali nismo primetili neko poboljšanje tako da nismo iskoristili to za konačan model.