Knowledge Graph and Text Jointly Embedding

이봉석

Author

- Zhen Wang
- Jianwen Zhang
- Jianlin Feng
- Zheng Chen
- •Title of Conference(Journal)
 - EMNLP 2014

$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A \tag{9}$$

where \mathcal{L}_A could be \mathcal{L}_{AA} or \mathcal{L}_{AN} or $\mathcal{L}_{AA} + \mathcal{L}_{AN}$.

이 LOSS를 maximiz하는 방향으로 학습한다.

Vocab_emb : 엔티티와 단어를 임베딩한 공간

Rel_emb: 릴레이션을 임베딩한 공간

Words_aux_emb: auxiliary variables를 임베딩한 공간

(h, r, t)인 triple에 대해서 점수를 $z(h,r,t) = b - \frac{1}{2} \|h + r - t\|^2$ 를 통해 구하고 b는 수치 안정성을 위한 지정된 바이어스에 대한 상수이고 논문에서는 7이 합리적인 선택이라고 한다.

$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A \tag{9}$$

where \mathcal{L}_A could be \mathcal{L}_{AA} or \mathcal{L}_{AN} or $\mathcal{L}_{AA} + \mathcal{L}_{AN}$.

Vocab_emb : 엔티티와 단어를 임베딩한 공간 Rel_emb : 릴레이션을 임베딩한 공간

Words_aux_emb: auxiliary variables를 임베딩한 공간

Knowledge Model

$$z(\mathbf{h}, \mathbf{r}, \mathbf{t}) = b - \frac{1}{2} \|\mathbf{h} + \mathbf{r} - \mathbf{t}\|^{2}$$
$$\Pr(h|r, t) = \frac{\exp\{z(\mathbf{h}, \mathbf{r}, \mathbf{t})\}}{\sum_{\tilde{h} \in \mathcal{T}} \exp\{z(\tilde{\mathbf{h}}, \mathbf{r}, \mathbf{t})\}}$$

$$\mathcal{L}_f(h, r, t) = \log \Pr(h|r, t) + \log \Pr(t|h, r) + \log \Pr(r|h, t)$$

$$\mathcal{L}_K = \sum_{(h,r,t)\in\Delta} \mathcal{L}_f(h,r,t)$$

h, t는 Vocab_emb에서 엔티티부분에서의 벡터값이고 r은 Rel_emb에서의 벡터값이다.

$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A \tag{9}$$

where \mathcal{L}_A could be \mathcal{L}_{AA} or \mathcal{L}_{AN} or $\mathcal{L}_{AA} + \mathcal{L}_{AN}$.

Vocab_emb: 엔티티와 단어를 임베딩한 공간

Rel_emb: 릴레이션을 임베딩한 공간

Words_aux_emb: auxiliary variables를 임베딩한 공간

Text Model

Skip-gram에서 윈도우안에 있는 단어 pair (w, v)에 대해서 이 두 단어사이에는 어떤 r_w 가 있다고 가정하자. 하지만 이렇게 되면 너무 많은 r_w 벡터가 필요하므로 auxiliary variables를 사용하자.

$$w' = w + r_{wv}$$

$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A \tag{9}$$

where \mathcal{L}_A could be \mathcal{L}_{AA} or \mathcal{L}_{AN} or $\mathcal{L}_{AA} + \mathcal{L}_{AN}$.

Vocab_emb: 엔티티와 단어를 임베딩한 공간

Rel_emb: 릴레이션을 임베딩한 공간

Words_aux_emb: auxiliary variables를 임베딩한 공간

Text Model

$$z(\mathbf{w}, \mathbf{r}_{wv}, \mathbf{v}) \triangleq z(\mathbf{w}', \mathbf{v}) = b - \frac{1}{2} \|\mathbf{w}' - \mathbf{v}\|^2$$

$$\Pr(w|r_{wv}, v) \triangleq \Pr(w|v) = \frac{\exp\{z(\mathbf{w}', \mathbf{v})\}}{\sum_{\tilde{w} \in \mathcal{V}} \exp\{z(\tilde{\mathbf{w}}', \mathbf{v})\}}$$

$$\mathcal{L}_T = \sum_{(w,v)\in\mathcal{C}} n_{wv} \log \Pr(w|v).$$

w는 Words_aux_emb에의 벡터값이고 v는 Vocab_emb에서 단어부분의 벡터값이다.

(구현되어 있는 코드에서는 서로 반대였다.)

$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A \tag{9}$$

where \mathcal{L}_A could be \mathcal{L}_{AA} or \mathcal{L}_{AN} or $\mathcal{L}_{AA} + \mathcal{L}_{AN}$.

Vocab_emb: 엔티티와 단어를 임베딩한 공간

Rel_emb: 릴레이션을 임베딩한 공간

Words_aux_emb: auxiliary variables를 임베딩한 공간

Text Model

$$z(\mathbf{w}, \mathbf{r}_{wv}, \mathbf{v}) \triangleq z(\mathbf{w}', \mathbf{v}) = b - \frac{1}{2} \|\mathbf{w}' - \mathbf{v}\|^2$$

$$\Pr(w|r_{wv}, v) \triangleq \Pr(w|v) = \frac{\exp\{z(\mathbf{w}', \mathbf{v})\}}{\sum_{\tilde{w} \in \mathcal{V}} \exp\{z(\tilde{\mathbf{w}}', \mathbf{v})\}}$$

$$\mathcal{L}_T = \sum_{(w,v)\in\mathcal{C}} n_{wv} \log \Pr(w|v).$$

Skip-gram에서는 두 단어의 확률을

$$\Pr(w|v) = \frac{\exp\{\mathbf{w}^{\prime T}\mathbf{v}\}}{\sum_{\tilde{w} \in \mathcal{V}} \exp\{\tilde{\mathbf{w}}^{\prime T}\mathbf{v}\}}$$
 로정의

이것은 inner product에 기반한 것이고 여기서의 모델의 계산은 거리에 기반한 것이다. 만약 각각의 w에 대해서 ||w|| = 1이면 w^Tv = 1-1/2||w'-v||² 이므로 기존의 Skip-gram모델과 동일하다.

$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A \tag{9}$$

where \mathcal{L}_A could be \mathcal{L}_{AA} or \mathcal{L}_{AN} or $\mathcal{L}_{AA} + \mathcal{L}_{AN}$.

Vocab_emb : 엔티티와 단어를 임베딩한 공간 Rel_emb : 릴레이션을 임베딩한 공간

Words_aux_emb: auxiliary variables를 임베딩한 공간

Alignment Model

앞에서 임베딩을 하면 지식 모델과 텍스트 모델이 서로 다른 space에 임베딩 되어 있다. 2개의 공간에 임베딩된 값을 하나로 합쳐주는 역할이 Alignment Model이다.

여기에는 L_{AA}방식과 L_{AN}방식이 있다.

$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A \tag{9}$$

where \mathcal{L}_A could be \mathcal{L}_{AA} or \mathcal{L}_{AN} or $\mathcal{L}_{AA} + \mathcal{L}_{AN}$.

Vocab_emb: 엔티티와 단어를 임베딩한 공간

Rel_emb: 릴레이션을 임베딩한 공간

Words_aux_emb: auxiliary variables를 임베딩한 공간

Alignment Model

L_{AA}방식은 Text Model의 데이터를 이용하여 alignment 하는 방식이다.

$$\mathcal{L}_{AA} = \sum_{(w,v)\in\mathcal{C}, v\in\mathcal{A}} \log \Pr(w|e_v)$$

Word pair (w, v)를 word-entity로 바꿔서 계산한다. w는 Vocab_emb에서 단어부분의 벡터값이고 v는 Vocab_emb에서 엔티티부분의 벡터값이다.

$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A \tag{9}$$

where \mathcal{L}_A could be \mathcal{L}_{AA} or \mathcal{L}_{AN} or $\mathcal{L}_{AA} + \mathcal{L}_{AN}$.

Alignment Model

L_{AN} 방식은 Knowledge Model 의 데이터를 이용하여 alignment 하는 방식이다. 트리플 (h,r,t)에 대해서 h가 V에 있으면 (w_h,r,t)를 만들고 t가 V에 있으면 (h,r,w_t)를 만들고 둘다 있으면 (w_h,r,w_t)를 만든다. Vocab_emb : 엔티티와 단어를 임베딩한 공간 Rel_emb : 릴레이션을 임베딩한 공간 Words_aux_emb : auxiliary variables를 임베딩한 공간

$$\begin{split} \mathcal{L}_{AN} &= \sum_{(h,r,t) \in \Delta} \mathbf{I}_{[w_h \in \mathcal{V} \, \land \, w_t \in \mathcal{V}]} \cdot \mathcal{L}_f(w_h,r,w_t) + \\ \mathbf{I}_{[w_h \in \mathcal{V}]} \cdot \mathcal{L}_f(w_h,r,t) + \mathbf{I}_{[w_t \in \mathcal{V}]} \cdot \mathcal{L}_f(h,r,w_t) \end{split}$$

h, t는 Vocab_emb에서 엔티티부분에서의 벡터값이고 w_h, w_t는 Vocab_emb에서 단어부분에서의 벡터값이고 r은 Rel_emb에서의 벡터값이다.

03. Experiments

Table 5: Words Analogical Reasoning Task.

Method	Accu	Accuracy (%)			Hits@10 (%)		
	Semantic	Syntactic	Total	Semantic	Syntactic	Total	
Skip-gram	71.4	69.0	70.0	90.4	89.3	89.8	
Jointly (anchor)	75.3	68.3	71.2	91.5	88.9	89.9	
Jointly (name)	54.5	54.2	59.0	75.8	86.5	82.1	
Jointly (anchor+name)	56.5	65.7	61.9	78.1	87.6	83.6	

$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A \tag{9}$$

where \mathcal{L}_A could be \mathcal{L}_{AA} or \mathcal{L}_{AN} or $\mathcal{L}_{AA} + \mathcal{L}_{AN}$.

- Jointly(anchor) => L_A = L_{AA}
- Jointly(name) => $L_A = L_{AN}$
- Jointly(anchor + name) => $L_A = L_{AA} + L_{AN}$

감사합니다