Recherche Opérationnelle Programmation linéaire - Dualité

Exercice 1.

Cet exercice permet de comprendre pourquoi la variable duale pour une contrainte du type égalité sera non astreinte en signe (positive, négative ou nulle).

1. Mettre le programme suivant sous forme canonique :

$$\begin{cases} \max & x_1 + 2x_2 \\ 3x_1 + x_2 \le 6 \\ 2x_1 + x_2 = 5 \\ x_1, & x_2 \ge 0 \end{cases}$$

- 2. Formuler le dual du programme transformé. Utiliser y_2' et y_2 " pour les variables duales des deux contraintes obtenues de l'égalité.
- 3. Remplacer $y_2' y_2$ " par y_2 . Vérifier que cette variable duale est bien non astreinte en signe.

Exercice 2.

Cet exercice permet de comprendre pour quoi la variable duale pour une contrainte du type \geq doit être négative dans le dual.

1. Mettre le programme suivant sous forme canonique :

$$\left\{ \begin{array}{ccccc} \max & x_1 & + & 2x_2 \\ & x_1 & + & x_2 & \leq 1 \\ & -x_1 & + & x_2 & \geq 2 \\ & x_1, & & x_2, & \geq 0 \end{array} \right.$$

- 2. Formuler le dual du programme transformé. Utiliser y_2' pour la variable duale de la deuxième contrainte.
- 3. Remplacer y_2' par $-y_2$. Vérifier que cette variable duale est bien négative.

Exercice 3.

1. Formuler le dual de :

$$\left\{ \begin{array}{ll} \min & 15x_1 + 10x_2 + 2x_3 + 9x_5 \\ & -3x_1 + 5x_2 - x_3 - x_4 + 3x_5 \geq 1 \\ & 5x_1 + 2x_2 + x_3 + 2x_4 - x_5 \geq -1 \\ & x_1 \geq 0, x_2 \leq 0, x_3 \geq 0, x_4 \leq 0, x_5 \geq 0 \end{array} \right.$$

- 2. Résoudre graphiquement le problème dual.
- 3. Appliquer le théorème de complémentarité pour calculer la solution du problème primat.

Exercise Complémentaire Trouver le dural de: 2) Forme Standard (max $x_1 + 2x_2 + 3x_3 + 4x_4$ $2x_1 + x_2 + 5x_3 - 3x_4 7, 8$ $3x_1 + x_2 - x_3 + 2x_4 = 10$ $x_1 - 2x_2 + 3x_3 - 4x_4 \le 12$ $x_1 \ne 0$, $x_2 \le 0$, $x_3 \in \mathbb{R}$, $x_4 \ne 0$