기계학습 기반 환경이슈 감성분류기 개발 : 기후변화 중심으로

2018. 10. 04. KEI 사회환경연구본부 김도연

연구 범위 및 흐름도

'17년도 연구

- 연구 주제: 텍스트 마이닝을 이용한 KEI 연구동향 분석
 - KEI 연구보고서와 환경뉴스 데이터를 이용한 분석 결과 '기후변화'가 주요 키워드로 나타남
 - 특히 환경뉴스에서 기후변화 세부 현상(폭염, 한파, 폭우, 태풍 등)에 대한 관심이 높아지고 있음

'18년도 연구

- 연구 주제 : 기계학습 기반 환경이슈 감성분류기 개발 기후변화 중심으로
 - 기후변화 세부 현상에 대한 환경정책 수요자인 국민의 인식 분석 필요 있음
 - SNS 및 댓글로 부터 기후변화 이슈에 대한 국민 인식(감성)을 파악하기 위한 감성분류기 개발

- SNS 및 댓글 데이터 수집
- 7가지 감성 클래스 구축
- 학습데이터에 감성 태깅
- 감성 태깅 크로스 체크

- 형태소 분석
- 정규화
- 말뭉치 생성
- Sparse Terms 및 low TF-IDF 삭제
- 기계학습 기반의 분류분석
 - SVM, Naïve Bayes
- CNN, RNN(LSTM, GRU)
- 분류모델 성능 비교 분석

연구 내용 및 성과

- 연구 목적: 기후변화 주제의 SNS 및 주요 포털 댓글 데이터 기반 감성분류 알고리즘 개발
- 연구 내용: 기후변화 사전 구축, 감성 분류 학습 데이터 구축, 감성분류 알고리듬 개발
 - 기후변화 사전: 기후변화에 따른 현상을 4개의 범주(온도, 강수, 토지, 해양) 분류 후 구축
 - 환경관련 문서에 워드 임베딩 방법(LDA, Word2Vec) 적용 후보군 추출
 - 전문가(최희선,명수정) 및 SNS 이용자 의견 반영
 - **감성분류 기준표** : 기후변화 현상에 자주 나타나는 7개 감성 클래스 구축
 - 7개 감성 카테고리: 황홀/기쁨, 기대/관심, 감탄/존경, 분노/짜증, 두려움/공포, 슬픔/수심, 중립
 - **감성분류 학습데이터** : 약 5만 건 단문 데이터에 감성을 수작업으로 파악
 - 기후변화 사전 기준 5만건을 수집하여 7개의 감성 클래스 태깅
 - **감성분류 알고리즘** : 다양한 기계학습 기반 분류 알고리즘 구축
 - SVM, Naïve bayes, CNN (진행 중)
- 연구 성과: 기후변화 주제의 감성분류기 구축
 - SVM을 이용한 모델의 분류 정확도가 높게 나타남
 - 7개 감성 분류 정확도 : **77.96%** / 3개 감성 분류 정확도: **87.25%**

기후변화 사전 및 감성 클래스

기후변화에 따른 현상 사전

- 기후변화 관련 텍스트 데이터 파악 기준

구분	순번	온도	강수	토지	해양
	1	강추위	대설	가뭄	녹조
	2	결빙	산성비	사막화	라니냐
	3	부더위	우박	산불	쓰나미
	4	열대야	장마	산사태	엘니뇨
	5	열섬	적설	열대림파괴	적조
	6	열파	집중강우	지진	침수
	7	온난	집중호우	토지황폐화	파랑
전문가	8	온실가스	폭설	화산폭발	풍랑
	9	이상고온	폭유	=	풍수해
	10	이상기온	홍수	-	해랑
	11	이상저온	황사비	-	해수면
	12	폭염	-	-	해일
	13	한파	-	=	-
	14	혹서	-	-	-
	15	혹한	-	-	-
	16	까출	눈난리	갈라진땅	괴물파도
	17	쌍덥	눈쓰레기	메마른땅	큰파도
	18	<u> </u>	눈폭탄	산폭팔	-
	19	졸덥	물난리	찢어진땅	-
비카묘의	20	넙덥	비폭탄	혼들리는땅	-
비전문가	21	년출	흫비	-	-
	22	너무춤	흚탕뭂비	-	-
	23	너무덥	-	-	-
	24	개출	-	-	-
	25	개덥	-	-	-

감성분류 기준표 - 기후변화 주제에 적합한 감성 선택

	감성 구분			
	황홀/기쁨	ECS		
긍정	기대/관심	EXP		
	감탄/존경	ADM		
	분노/짜증	RAG		
부정	두려움/공포	TER		
	슬픔/수십	SAD		
	NEU			

학습 데이터 구축: 8개 감성으로 분류된 5만건

기후변화 현상<u>사전</u>

사신								
기후변화에 따른 '현상', 키워드								
구분	no.	온도	강수	토지	해양			
	1	강추위	대설	가뭄	녹조			
	2	결빙	산성비	사막화	라니냐			
	3	무더위	우박	산불	쓰나미			
	4	열대야	장마	산사태	엘니뇨			
	5	열섬	적설	열대림파괴	적조			
	6	열파	집중강우	지진	침수			
	7	온난	집중호우	토지황폐화	파랑			
전문가	8	온실가스	폭설	화산폭발	풍랑			
	9	이상고온	폭우		풍수해			
	10	이상기온	홍수		해랑			
	11	이상저온	황사비		해수면			
	12	폭염			해일			
	13	한파						
	14	혹서						
	15	혹한						
	16	짱춥	눈난리	갈라진땅	괴물파도			
	17	짱덥	눈쓰레기	메마른땅	큰파도			
	18	졸춥	눈폭탄	산폭팔				
	19	졸덥	물난리	찢어진땅				
비전문	20	넙덥	비폭탄	흔들리는땅				
가	21	넘춥	흙비					
	22	너무춥	흙탕물비					
	23	너무덥						
	24	개춥						
	25	개덥						

		감성 태그
	황홀/기쁨	ECS
긍정	기대/관심	EXP
	감탄/존경	ADM
	분노/짜증	RAG
부정	두려움/공포	TER
	슬픔/수심	SAD
	중립	NEU

Char	nel	Keyword	Keyword1	Content	Tag
뉴스	댓글	온도	강추위	난 추울때 겨울 냄새가 넘 좋아	ECS
뉴스	댓글	온도	무더위	밖에서 일하시는 이 세상에 아버지 어머니들 힘내세요!!!	ADM
뉴스	댓글	온도	무더위	더 뜨거워지면 좋겠다	EXP
뉴스	댓글	온도	강추위	동요에 찬바람 불어도 괜찮아요 가사있죠? 이 날씨에 괜찮은 사람 없을듯	RAG
뉴스	댓글	온도	무더위	하루하루가 더위때문에 넘 힘드네요내일은 얼마나 또더울까이런생각에.	TER
뉴스	댓글	온도	너무춥	의정부 -13 너무 춥다ㅠ ㅠ	SAD
뉴스	댓글	온도	강추위	백수라 춥든말든	NEU
Facel	book	온도	열대야	샤워하고먹는아이스아메리카노가 진리임 열대야극복완료 단순해ㅋㅋㅋ	ECS
Facel	book	온도	무더위	밖에 내다 놓은 화초들이 무더위를 견디다니허허튼튼한것들	ADM
Facel	book	온도	열대야	열대야가 이번주가 끝이래요!!!!	EXP
Facel	book	온도	결빙	이젠 눈이 싫어 지네요	RAG
Facel	book	온도	결빙	역대급추위ㄷㄷㄷ올 첫 영산강 결빙현상 발생	TER
Facel	book	온도	무더위	응? 무더위 본격적 시작이라는데 "그리고 10월까지 덥다는데 실화냐 ㅠ	SAD
Facel	book	온도	강추위	이거봐 매일매일이 강추위임	NEU

학습 데이터 전처리

전처리 단계	전처리 내용						
1) 이모지 한글로 변환 2) 이모티콘(특수문자) 전처리 3) 형태소 분석 4) ID 삭제 5) 정규화: 함축어, 신조어, 은어 등	- SNS 특성을 반영한 전처리 단계 - 형태소 분석기 : 은전한닢-Mecab 이용함 - 이모지 전처리: 약 1,200개 이모지 한글로 변환예) 😂 🞧					변환	
6) Document Term Matrix(DTM) 생성 7) 말뭉치(Corpus) 생성 : 단어길이 최소 2글자 이상 8) Sparse Terms 삭제 : 출현빈도가 매우 낮은 단어 삭제 9) Low TF-IDF 삭제	- DTM :	Doc1 Doc2 DocN	Term1 2 0 3	Term2 1 4 1		TermM 0 2 1	
10) 데이터 프레임(Data frame) 형태로 변환	- 기계학습	급 분석(에 적합	한 형티	내로 부	변환	

분류 모델 구축

SVM Modeling

- 커널(Kernel) 트릭을 이용한 비선형 데이터 분류
- 커널 종류 및 파라미터
 - 1) 선형 커널(Linear Kernel): Cost, Gamma
 - 2) RBF 커널(Radial Basis Function Kernel: Cost, Gamma
 - 3) 시그모이드 커널(Sigmoid Kernel): Cost, Gamma, Coefficient
 - 4) 다항식 커널(Polynomial Kernel): Cost, Gamma, Coefficient, Degree

 $Linear\, Kernel:\, K(x_n,x_i)=(x_n,x_i)$

 $RBF \, Kernel : \, K(x_n, x_i) = \exp\left(-\,\gamma \parallel x_n - x_i \parallel^2 + C\right)$

Sigmoid Kernel: $K(x_n, x_i) = \tanh(\gamma(x_n, x_i) + r)$

 $Polynomial \, Kernel \, : \, K(x_n, x_i) = (\gamma(x_n, x_i) + r)^d$

분류 모델 구축

NaiveBayes Modeling

- 파라미터 : 라플라스 추정기(fL)
 - 각 예측 범주에서 발생 확률이 0이 되지 않도록 하기 위해 기본적으로 주는 작은 값 (최소한 1의 값을 줌)
 - 라플라스 추정기는 어떠한 값이든 설정 가능하나 실제로 충분히 큰 Training data를 가지고 있다면 가장 작은 단위의 값을 설정하면 됨

감성분류 분석 : 교차표 (일부)

SVM_Model_1: 3개 감성분류 교차표

	1.POS	2.NEG	3.NEU	Row Total I
1.POS	6467	276	511	7254 I
ı	0.892	0.038	0.070	0.372
ı	0.917	0.034	0.120	I
I	0.331	0.014	0.026	I
				I
2.NEG I	263	7603	l 778 l	8644 I
I	0.030	0.880	0.090	0.443
I	0.037	0.926	0.183	1
I	0.013	0.389	0.040	1
				I
3.NEU I	325	335	l 2962 l	3622 I
I	0.090	0.092	0.818	0.186 I
I	0.046	0.041	0.697	I
I	0.017	0.017	0.152	I
				I
Column Total I	7055	8214	l 4251 l	19520 I
ı	0.361	0.421	0.218	1

SVM_Model_1: 7개 감성분류 교차표

1	1.ECS	2.EXP	I 3.ADM	4.RAG	5.TER	6.SAD	7.NEU	Row Total
1.ECS	1864	54	l 197	 41	l 21	l 15	I 341	2533
1.603 1	0.736							
i	0.796							
i	0.095							
i								
2.EXP I	69 1	1736	1 70	1 26	I 89	17	146	2153
1	0.032	0.806	0.033	0.012	0.041	0.008	0.068	0.110
1	0.029	0.831	0.027	0.010	0.032	0.006	0.034	I
1	0.004	0.089	0.004	0.001			0.007	
3.ADM I	 152	104	 2148	 26	l 34		 64	2544
3.70-1	0.060							
i	0.065							
i	0.008							
·I			l	l	I	l	l	
4.RAG I	61							
1	0.021							
!	0.026							
 l	0.003	0.001	l 0.002	0.108	0.011	0.005	0.022	
5.TER I	27	35	I 24	I 203	2061	I 159	I 115	2624
1	0.010	0.013	0.009	0.077	0.785	0.061	0.044	0.134
1	0.012			0.076	0.730	0.059	0.027	I
!	0.001	0.002	0.001	0.010	0.106	0.008	0.006	!
6.SAD	40	32	21	 79	297	l 2348	268	3085
1	0.013							
1	0.017	0.015	0.008	0.030	0.105	0.877	0.062	1
1	0.002							
7.NEU I	 128			•		l 32		3610
7.1000	0.035							
i	0.055							
i	0.007							
			I	l	I	I	I	l
	2341	2090	2610	2657	1 2825	2677	4320	19520
olumn Total I	0.120							

전체 데이터: 감성분류 정확도

(단위: %)

Model	Sentiment Class			
iviodei	7 Class	3 Class		
svm_Model_1	77.96	87.25		
svm_Model_2	68.71	76.25		
svm_Model_3	76.85	86.31		
svm_Model_4	75.04	84.08		
nb_Model	50.57	65.73		

매체별 데이터: 감성분류 정확도

(단위: %)

			(단귀: %)
Chanel	Model	Sentime	ent Class
Chanei	iviodei	7 Class	3 Class
	svm_Model_1	80.70	88.53
	svm_Model_2	53.94	69.94
Facebook	svm_Model_3	77.59	86.41
	svm_Model_4	81.43	87.69
	nb_Model	35.25	57.89
	svm_Model_1	78.79	87.47
	svm_Model_2	52.23	70.44
Twitter	svm_Model_3	79.86	86.43
	svm_Model_4	79.94	86.48
	nb_Model	38.60	63.09
	svm_Model_1	75.19	86.37
	svm_Model_2	41.10	71.33
Instagram	svm_Model_3	73.68	84.44
	svm_Model_4	75.30	85.41
	nb_Model	42.30	54.06
	svm_Model_1	77.05	88.43
	svm_Model_2	42.47	66.28
News comment	svm_Model_3	76.99	86.50

향후 계획

- 딥러닝 기반 분류기 구축

 - Pytorch를 이용한 CNN 기반 분류 알고리듬 구축 분류 정확도 성능 평가를 통해 최종 분류모델 선정
 - 감성분류를 위한 CNN 모델

