CPM and PERT

- CPM: Critical Path Method
- PERT: Program Evaluation and Review Technique
 - Both are network based methods to assist in <u>planning</u>, <u>scheduling</u>, <u>and</u> <u>control of projects</u>.
- Project can be defined as a collection of interrelated activities and each activity consumes time and resources.
- The objective of CPM and PERT is to provide analytical means for scheduling the activities.

Network Representation

- Rule 1: Each activity is represented by, one and only one, arc.
- Rule 2: Each activity must be identified by two distinct nodes.

Use of dummy activity to produce unique representation of concurrent activities

Network Representation

- Rule 3: To maintain the correct precedence relationships, the following questions must be answered as each activity is added to the network:
 - a) What activities must immediately precede the current activity?
 - b) What activities must follow the current activity?
 - c) What activities must occur concurrently with the current activity?

Example

- Activity C starts immediately after A and B have been completed.
- · Activity E starts only after B has been completed

Example

A publisher has a contract with an author to publish a textbook. The (simplified) activities associated with the production of the textbook are given below. The author is required to submit to the publisher a hard copy and a computer file of the manuscript. Develop the associated network for the project.

Activity	Predecessor(s)	Duration (weeks)
A: Manuscript proofreading by editor	_	3
B: Sample pages preparation	-	2
C: Book cover design		4
D: Artwork preparation		3
E: Author's approval of edited		
manuscript and sample pages	A, B	2
F: Book formatting	E	4
G: Author's review of formatted pages	F	2
H: Author's review of artwork	D	1
1: Production of printing plates	G, H	2
J: Book production and binding	C, I	4

Example...

Activity	Predecessor(s)	Duration (weeks)	
A: Manuscript proofreading by editor	_	3	
B: Sample pages preparation	-	2	
C: Book cover design		4	
D: Artwork preparation	_	3	
E: Author's approval of edited			
manuscript and sample pages	A, B	2	
F: Book formatting	E	4	
G: Author's review of formatted pages	F	2	
H: Author's review of artwork	D	1	
I: Production of printing plates	G, H	2	
J: Book production and binding	C, I	4	

Critical Path Method (CPM)

- Construction of time schedule for the project
 - Total time needed to complete the project.
 - Classification of activities of the project as critical or noncritical.
 - Critical activity: There is no leeway in determining its start and finish time.
 - Noncritical activity: allows some scheduling slack, so that the start time of activity can be advanced or delayed within limits without effecting the completion day of the entire project.
 - Event: A point at which activities are terminated and others are started.
 - · In a network, it corresponds to a node.

```
\Box_j = Earliest occurrence time of event j

\Delta_j = Latest occurrence time of event j

D_{ij} = Duration of activity (i, j)
```

- Two passes in CPM
 - Forward pass for earlier occurrence times
 - Backward pass for latest occurrence times

CPM

Forward Pass (Earliest Occurrence Times, \square). The computations start at node 1 and advance recursively to end node n.

Initial Step. Set $\Box_1 = 0$ to indicate that the project starts at time 0.

General Step j. Given that nodes p, q, \ldots , and v are linked directly to node j by incoming activities $(p, j), (q, j), \ldots$, and (v, j) and that the earliest occurrence times of events (nodes) p, q, \ldots , and v have already been computed, then the earliest occurrence time of event j is computed as

$$\square_j = \max\{\square_p + D_{pj}, \square_q + D_{qj}, \dots, \square_v + D_{vj}\}$$

The forward pass is complete when \square_n at node n has been computed. By definition \square_j represents the longest path (duration) to node j.

CPM

Backward Pass (Latest Occurrence Times, Δ). Following the completion of the forward pass, the backward pass computations start at node n and end at node 1.

Initial Step. Set $\Delta_n = \Box_n$ to indicate that the earliest and latest occurrences of the last node of the project are the same.

General Step j. Given that nodes p, q, \ldots , and v are linked directly to node j by outgoing activities $(j, p), (j, q), \ldots$, and (j, v) and that the latest occurrence times of nodes p, q, \ldots , and v have already been computed, the latest occurrence time of node j is computed as

$$\Delta_j = \min\{\Delta_p - D_{jp}, \Delta_q - D_{jq}, \dots, \Delta_v - D_{jv}\}\$$

The backward pass is complete when Δ_1 at node 1 is computed. At this point, $\Delta_1 = \Box_1 (= 0)$.

CPM

Based on the preceding calculations, an activity (i, j) will be *critical* if it satisfies three conditions.

1.
$$\Delta_i = \square_i$$

2.
$$\Delta_j = \square_j$$

3.
$$\Delta_i - \Delta_i = \Box_i - \Box_i = D_{ij}$$

Forward Pass

Node 1. Set
$$\square_1 = 0$$

Node 2.
$$\Box_2 = \Box_1 + D_{12} = 0 + 5 = 5$$

Node 3.
$$\Box_3 = \max\{\Box_1 + D_{13}, \Box_2 + D_{23}\} = \max\{0 + 6, 5 + 3\} = 8$$

Node 4.
$$\Box_4 = \Box_2 + D_{24} = 5 + 8 = 13$$

Node 5.
$$\Box_5 = \max\{\Box_3 + D_{35}, \Box_4 + D_{45}\} = \max\{8 + 2, 13 + 0\} = 13$$

Node 6.
$$\Box_6 = \max\{\Box_3 + D_{56}, \Box_4 + D_{66}, \Box_5 + D_{56}\}\$$

= $\max\{8 + 11, 13 + 1, 13 + 12\} = 25$

Backward Pass

Node 6. Set
$$\Delta_6 = \square_6 = 25$$

Node 5.
$$\Delta_5 = \Delta_6 - D_{56} = 25 - 12 = 13$$

Node 5.
$$\Delta_5 = \Delta_6 - D_{56} - 25 = 12 = 15$$

Node 4. $\Delta_4 = \min\{\Delta_6 - D_{46}, \Delta_5 - D_{45}\} = \min\{25 - 1, 13 - 0\} = 13$

Node 3.
$$\Delta_3 = \min\{\Delta_6 - D_{36}, \Delta_5 - D_{35}\} = \min\{25 - 11, 13 - 2\} = 11$$

Node 3. $\Delta_3 = \min\{\Delta_6 - D_{36}, \Delta_5 - D_{35}\} = \min\{13 - 8, 11 - 3\} = 5$

Node 2.
$$\Delta_2 = \min\{\Delta_6 - D_{36}, \Delta_3 - D_{35}\} = \min\{13 - 8, 11 - 3\} = 5$$

Node 2. $\Delta_2 = \min\{\Delta_4 - D_{24}, \Delta_3 - D_{23}\} = \min\{13 - 8, 11 - 3\} = 5$

Node 2.
$$\Delta_2 = \min\{\Delta_4 - D_{24}, \Delta_3 - D_{25}\}$$

Node 1. $\Delta_1 = \min\{\Delta_3 - D_{13}, \Delta_2 - D_2\} = \min\{11 - 6, 5 - 5\} = 0$

Construction of Time Schedule

- Use information of CPM to make time schedule
- Interval (\Box_i, Δ_j) delineates the (maximum) span during which activity (i,j) may be scheduled without delaying the entire project.
- Critical activities: solid lines
- Noncritical activities: dashed lines
 - · Start as early as possible

Determination of Floats

- Floats are the slack time available within the allotted span of noncritical activity.
 - Total float TF...

$$TF_{ij} = \Delta_j - \Box_i - D_{ij}$$

· Free float

$$FF_{ij} = \square_j - \square_i - D_{ij}$$

By definition, $FF_{ij} \leq TF_{ij}$.

Red-Flagging Rule. For a noncritical activity (i, j)

- (a) If $FF_{ij} = TF_{ij}$, then the activity can be scheduled anywhere within its (\Box_j, Δ_j) span without causing schedule conflict.
- (b) If $FF_{ij} < TF_{ij}$, then the start of the activity can be delayed by at most FF_{ij} relative to its earliest start time (\Box_i) without causing schedule conflict. Any delay larger than FF_{ij} (but not more than TF_{ij}) must be coupled with an equal delay relative to \Box_j in the start time of all the activities leaving node j.

Floats

Floats for noncritical activities End backward

Noncritical activity	Duration	Total float (TF)	TF) Free float (FF)		
E(1;3) C(2;3)	6 3	11 - 0 - 6 = 5 $11 - 5 - 3 = 3$	8 - 0 - 6 = 2 8 - 5 - 3 = 0		
E(3,5)	2	13 - 8 - 2 = 3	13 - 8 - 2 = 3		
F(3, 6)	11	25 - 8 - 11 = 6	25 - 8 - 11 = 6		
G(4,6)	1	25 - 13 - 1 = 11	25 - 13 - 1 = 11		

PERT: Program Evaluation and Review Technique

- Optimistic time estimate, t₀ or a, which occurs when execution goes extremely well.
- Most likely time estimate, t_m or m, which occurs when execution is done under normal conditions.
- Pessimistic time, t_p or b, which occurs when execution goes extremely poorly.
- The range (a, b) encloses all possible estimates of the duration of an activity.
- Average duration time, \overline{D} or t_e and variance, ϑ $\overline{D} = \frac{a+4m+b}{6}$

$$v = \left(\frac{b-a}{6}\right)^2$$

PERT

· Probability distribution

- Assumptions
 - The activity durations are independent, that is, the time required to complete an activity will have no bearing on the completion time of any activity of the project.
 - The activity follows β -distribution with t_e and standard deviation $\sigma_1 = \frac{b-a}{6}$

PERT Procedure

- Draw the project network.
- 2. Compute the expected duration of each activity t_e .
- 3. Compute the expected variance ϑ of each activity.
- Compute the earliest start, earliest finish, latest start, latest finish, and total float of each activity.
- Determine the critical path and identify critical activities.
- Computer the expected variance of the project length (also called the variance of the critical path) which is the sum of the variances of all critical activities.
- 7. Compute the expected standard deviation of the project length σ_c and calculate the normal deviation $\frac{T_S T_E}{\sigma_c}$ where, T_S = specified or scheduled time to complete the project T_E =normal expected duration (duration of the project) σ_c = expected standard deviation of the project length.

- A small project is composed of activities whose time estimate are listed in the table: Activities are identified by their beginning (i) and ending (j) node numbers.
 - a) Draw the project network.
 - b) Find the expected duration and variance for each activity, What is the expected project length?
 - c) Calculate the variance and standard deviation of the project length. What
 is the probability that the project will be completed.
 - i. At least 4 weeks earlier than expected?
 - ii. No more than 4 weeks later than expected?
 - d) If the project due is 19 in weeks, what is the probability of meeting the due date?

$$\overline{D} = \frac{a + 4m + b}{6}$$

$$v = \left(\frac{b-a}{6}\right)^2$$

Activity	Estimated Duration (weeks)			mean	Variance
i-j	Optimistic (a)	Most likely (m)	Pessimistic (b)	t _e or D	θ
1 - 2	1	1	7	2	1
1 - 3	1	4	7	4	1
1 - 4	2	2	8	3	1
2 - 5	1	1	1	1	0
3 - 5	2	5	14	6	4
4 - 6	2	5	8	5	1
5 - 6	3	6	15	7	4

- Duration of project = 17 days
- Variance of the project length = sum of the variances of the critical activities
- σ_c = 3

Calculate the variance and standard deviation of the project length. What is the probability that the project will be completed.

- i. At least 4 weeks earlier than expected?
- ii. No more than 4 weeks later than expected?
- The standard normal deviation is

$$z = \frac{\textit{Due date} - \textit{Expected date of completion}}{\sqrt{\textit{Variance}}}$$

i.
$$T_S = 13$$
, $z = (13-17)/3 = -1.33$
 $P(T_S \le 13) = P(z \le -1.33)$
 $= 0.5 - \phi(1.33) = 0.5 - 0.4082 = 0.0918$ or 9.18%

ii.
$$T_S = 21$$
, $z = (21-17)/3 = 1.33$
 $P(T_S \le 21) = P(z \le 1.33)$
 $= 0.5 + \phi(1.33) = 0.5 + 0.4082 = 0.9082$ or 90.82%

Z	0.5	0.67	1.00	1.33	2.00
p	0.1915	0.2486	0.3413	0.4082	0.4772

- If the project due is 19 in weeks, what is the probability of meeting the due date?
- When due date is 19 weeks, z = 19-17/3 = 0.67 $P(T_S \le 19) = P(z \le 0.67) \\ = 0.5 + \varphi(0.67) = 0.5 + 0.2486 = 0.7486 \text{ or } 74.86\%$
- The probability of not meeting the due date is 1 0.7486 = 0.2514 or 25.14%.

Z	0.5	0.67	1.00	1.33	2.00
p	0.1915	0.2486	0.3413	0.4082	0.4772

