IN THE SPECIFICATION:

Please amend the specification as follows:

Before the first line in the application, please insert --This is a Divisional of U.S. Application No.: 10/211,365, filed August 5, 2002, which was a Divisional of U.S. Application No. 09/827,246, filed April 6, 2001, and issued as U.S. Patent 6,608,375 on August 19, 2003.--

Page 21, please replace paragraph [0080] with the following replacement paragraph:

--Referring to Fig. 2, a motherboard 9 is manufactured considering organic material, such as glass epoxy, as a base. The motherboard 9 is provided at the inner layer and outer layer with copper wiring patterns. The motherboard 9 is also provided at both upper and lower surfaces with terminals on which semiconductor devices and chips are mounted. A semiconductor device 8 and chips, such as resistances and capacitors, are mounted on the motherboard 9 using solder paste.--

Page 22, please replace paragraph [0084] with the following replacement paragraph:

--The semiconductor chip 103 is mounted on the die pad 101 using conductive paste 102. In the drawings, "P" represents a power supply terminal and "G" represents a ground terminal. The inner leads 105, connected to the power supply terminals P and ground terminals G, are extended inwardly toward the semiconductor chip 103. A chip capacitor mounting pad 111 is formed at the inner ends of the adjacent two extended

Preliminary Amendment

inner leads 105. A chip capacitor 110 is mounted on each of the chip capacitor mounting pads 111 using conductive adhesives 112, such as silver-epoxy system adhesives or solder paste. All of the semiconductor chip 103, chip capacitors 110 and inner leads 105 are molded with the mold resin 106 entirely.--

Page 39, please replace paragraph [0130] with the following replacement paragraph:

--The die pad 901 is expanded at every side to form bonding area 917 for power supply. The semiconductor package further includes a plate 913 of high dielectric constant material provided on the die pad 901. On the plate 913, a metal plate 919 is formed. The high dielectric constant material 913 may be ceramics, such as alumina (aluminum oxide) and titan oxide. The plate 913 may be adhered between the die pad 901 and metal plate 919. The die pad 901 is bent by about 0.1 to 0.3 mm around a chip mounting area 920 so that the inner leads 905 becomes higher in level than the chip mounting area 920. The metal plate 919 is shaped to be slightly (0.5 to 1.0 mm) smaller than the die pad 901.--

Page 64, please replace paragraph [0202] with the following replacement paragraph:

--According to this embodiment, a copper layer is formed on a surface of an organic material substrate 1821, and the copper layer is etched to form a conductive pattern (wiring pattern) 1822. The wiring pattern 1822 (1822p, 1822g) is connected via through holes 1823 to ball mounting pads 1824, formed on the opposite surface of the

Preliminary Amendment

organic material substrate 1821. A solder resist 1826 is selectively formed on the both surface of the organic material substrate 1821.--

Page 68, please replace paragraph [0211] with the following replacement paragraph:

--According to this embodiment, a copper layer is formed on a surface of an organic material substrate 1921, and the copper layer is etched to form a conductive pattern (wiring pattern) 1922. The wiring pattern 1922 (1922p, 1922g) is connected via through holes 1923 to ball mounting pads 1924, formed on the opposite surface of the organic material substrate 1921. A solder resist 1926 is selectively formed on the both surface of the organic material substrate 1921.--