

Advances in Machine Learning at Microsoft Threat Protection

5/29/2019

Christian Seifert, Principal Researcher

Security Research Superheroes

Built-in. Cloud-powered.

PRE-BREACH

SMARTSCREEN

Protect against malicious URLs and downloads

ENDPOINT PROTECTION

Protect against all types of emerging threats

POST-BREACH

ENDPOINT DETECTION & RESPONSE

Detect, investigate, and respond to advanced attacks

GOAL

Block at first sight

FP TOLERANCE

SCOPE

www, files, "fileless"

GOAL

Alert on all possible breaches

FP TOLERANCE

Moderate

SCOPE

Same as prebreach + cross-service + bad actor behaviors

Al diversity

Supervised learning

Fast learners

Deep learning

Unsupervised learning

Anomaly detection

Embeddings

New learners/approaches

Active learning

Homomorphic encryption

Deep learning in MDATP

Case Study 1: Deep learning for malicious PowerShell detection

Why PowerShell?

Why Deep learning?

Case Study 1: Deep learning for malicious PowerShell detection

Contextual Embedding - English (NLP)

- Tokens \longrightarrow Vectors (\mathbb{R}^n)
- king man + woman = queen

Contextual Embedding - PowerShell

- High \$false + \$true = Low
- 'Export-CSV' \$csv + \$html = 'ConvertTo-Html'
- 'Get-Process' \$processes + \$services = 'Get-service'

Male-Female

Learning the semantics of PowerShell

allsigned remotesigned bypass unrestricted

> downloadstring downloadfile webclient

> > if -and -or elseif

True Positive rate: +22% improvement

V1 in production (Using ONNX and ML.Net)

-g€^{ié} -in

Paper published

Supervised learners

Case Study 2: Monotonic model

Solution: Monotonic approach only weights malicious features

Incer, Inigo, et al. "Adversarially robust malware detection using monotonic classification." *Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics*. ACM, 2018.

Over the past month...

0.25M additional blocks

Monotonic model

Busine

Market

Worl

Politics

More

TECHNOLOGY NEWS

MARCH 26, 2019 / 8:20 AM / UPDATED 6 HOURS AGO

Norsk Hydro's initial loss from cyber attack may exceed \$40 million

Nerijus Adomaitis

3 MIN READ

OSLO (Reuters) - Norwegian aluminum maker Norsk Hydro may have lost more than \$40 million in the week that followed a cyber attack that paralyzed parts of its operations, and a full recovery of IT systems will take weeks or more, the company said.

Sha256 c97d9bbc80b573bdeeda3812f4d00e5183493

dd0d5805e2508728f65977dda15

Determination Malware
Signer ALISA LTD

Age 0
Prevalence 0
FilePredictV4_Malware 34.4%
FilePredictV4_Clean 27.7%

FilePredictV4_Malware_Monotonic 78

WinningRuleName FilePredictV4_Malware_Monotonic

Monotonic model ignores clean features (certificates with positive rep)

Signature Info ①

Signature Verification

A certificate was explicitly revoked by its issuer.

File Version Information

Copyright Copyright (C) ALISA LTD 2019

Product Service tgytutrc

Description Background Tasks Host

Original Name tgytutrc
Internal Name tgytutrc
File Version 1.5.1.0

Date Signed 2.14 PM 3/21/2019

Signers

ALISA LTD

■ Sectigo RSA Code Signing CA

■ USERTrust Secure™

Anomaly detection

Statistical anomaly detection

Case Study 3: Port scan anomaly detection

Identify internal attack reconnaissance

- Both vertical and horizontal port scanning detector
- 90%+ precision

Identified Emotet and Monero ransomware malware.

Case Study 4: Brute force time series anomaly detection

Model of login behavior

- Sensitive to time of day, day of week
- Custom self-learning model per machine
- Precision of 94%

Tools and platform

Azure ML Experimentation Platform

preparation

Tools of the trade

Experimentation & training

Production scoring

Current

Community

Kaggle data science competition

New 2018-19 Competition: Anticipate malware based on machine state

- Effort started w/ internship, competition running 12/13/18 3/13/19
- https://www.kaggle.com/c/microsoft-malware-prediction

Collaborative!

- Academic partners (Northeastern, Georgia Tech, UW, UW Tacoma)
- Microsoft partners (ILDC, MSRA)
- >2,426 teams & >300 forum discussion threads, > 3,000 posts
- Winning submissions are being reviewed and hold promise for product impact
 - Durability over time is a focus

Newsworthy!

- Our blog
- Academic/MS partner ann.
- ZDNet, Tom's Hardware
- Bleeping Computer, Neowin, ...

Internships

Undergraduate and graduate internships

- 12 weeks paid internship
- Access to real-world attack data
- Work on cool problems
- Often partners with Microsoft Research

Published papers

- Danny Hendler, Shay Kels, and Amir Rubin. "Detecting malicious PowerShell commands using deep neural networks." ACM, 2018.
- Jack W. Stokes, De Wang, Mady Marinescu, Marc Marino, Brian Bussone. "Attack and Defense of Dynamic Analysis-Based, Adversarial Neural Malware Detection Models." MILCOM, 2018.
- Yehonatan Cohen, Danny Hendler, and Amir Rubin. "Detection of malicious webmail attachments based on propagation patterns." Knowledge-Based Systems, 2018.
- Rakshit Agrawal, Jack W. Stokes, Mady Marinescu, Karthik Selvaraj. "Robust Neural Malware Detection Models for Emulation Sequence Learning." MILCOM, 2018.
- Md Amran Siddiqui, Jack W. Stokes, Christian Seifert, Evan Argyle, Robert McCann, Joshua Neil, Justin Carroll. "Detecting Cyber Attacks Using Anomaly Detection with Explanations and Expert Feedback." ICASSP, 2019.
- Rakshit Agrawal, Jack W. Stokes, Mady Marinescu, Karthik Selvaraj. "Neural Sequential Malware Detection with Parameters." ICASSP 2018
- Rakshit Agrawal, Jack Stokes, Karthik Selvaraj, Mady Marinescu. "Attention In Recurrent Neural Networks For Ransomware Detection." ICASSP 2019

Contact:

□ chriseif@microsoft.com

in <u>Linkedin</u>

seifert

Questions