Département Sciences du numérique - 1SN Cours Réseaux locaux

TD1 - ETHERNET

Emmanuel Chaput

Exercice 1

Paramètres limites d'Ethernet La norme IEEE 802.3 définit les limites suivantes pour un réseau Ethernet 10BASE5, c'est-à-dire sur support RG8 (support coaxial de 0.4 pouce d'impédance 50 Ohms) :

- 5 segments maximum, séparés par 4 répéteurs, 3 segments maximum étant peuplés
- 500 mètres maximum par segment
- débit d'émission de 10 Mbit/s

Les caractéristiques techniques des équipements sont les suivantes :

- le temps de traversée d'un répéteur est de 3μ s.
- la vitesse de propagation du signal est de 200 000 km/s.
- 1. Calculer la borne maximale du temps d'aller-retour sur un tel réseau.
- 2. En déduire une borne minimale pour la taille des trames Ethernet.

Exercice 2

Etude de l'algorithme d'Ethernet Considérons un réseau Ethernet à 10 Mbit/s sur lequel les stations A, B, C et D sont séparées, dans cet ordre, de 400 mètres (il y a 400 mètres entre A et B, puis entre B et C, puis entre C et D). Un répéteur est situé entre B et C. Les stations réalisent les émissions suivantes :

- à t=0, A envoie une trame de 1223 octets à destination de C puis aussitôt deux trames de 1268 octets,
- à $t=5\mu s$, D envoie une trame de 64 octets à destination de B qui lui répond 999,6 μs après l'avoir reçue, par une trame de 756 octets,
- à $t = 1114 \mu s$, C émet une trame de 512 octets.

Dans cet exercice, on prendra les valeurs suivantes :

- un temps inter-trame de $9.6\mu s$,
- un temps de traversée des répéteurs de 3μ s
- une vitesse de propagation de 200000km/s.

La Table 1 donne, pour chaque station, la séquence des nombres qu'elle tire (c'est une valeur réelle entre 0.0 inclus et 1.0 exclus) à chaque fois qu'elle fait appel au générateur aléatoire. On notera cet aléa α . Le calcul du backoff K peut se résumer par la formule :

$$K = \lfloor \alpha.2^n \rfloor$$

avec n le nombre de tentatives d'émission et $\lfloor \rfloor$ la partie entière immédiatement inférieure. Ansi, lors du premier envoi, K peut prendre la valeur 0 ou la valeur 1. Si $\alpha \leq 0.5$, alors K vaut 0, sinon K vaut 1. A la seconde tentative, K prend des valeurs entre 0 et 3, etc..

- 1. Décrire précisément sur un chronogramme ce qui se passe au cours du temps, depuis t=0 jusqu'à ce que toutes les trames aient été transmises.
- 2. Donner le taux d'utilisation du support.

Station A	0.51	0.89	0.65	0.32	0.72	0.53
Station B	0.11	0.42	0.17	0.35	0.39	0.57
Station C	0.23	0.54	0.40	0.91	0.64	0.69
Station D	0.01	0.87	0.18	0.93	0.63	0.11

Table 1 – Valeurs aléatoires tirées par les stations au cours du temps