Roll No.:....

National Institute of Technology, Delhi

Name of the Examination: B. Tech. End Semester Examination (November-December, 2019)

Branch

: EEE

Semester

: 3rd

Title of the Course

: Ordinary Differential

Course Code : MAL 201

Equations and Transforms

Time: 3 Hours

Maximum Marks: 50

Note: Read instructions on each section carefully.

Section A [10 Marks]

Note: Questions 1-4 carries 1 mark. Questions 5-7 carries 2 marks.

- 1. The solution to the integral-differential equation $\frac{dy}{dt} \frac{1}{2} \int_{0}^{t} (t-\tau)^{2} y(\tau) d\tau = t$, y(0) = 1, is
 - $(A) \sin t$

- (B) $\cos t$ (C) $\cos 2t \sin 2t$ (D) $\frac{1}{2} \left(e^t e^{-t} \right)$ (E) $\frac{1}{2} \left(e^t + e^{-t} \right)$
- **2.** The Legendre's polynomial $P_5(x) = \lambda (63x^5 70x^3 + 15x)$, where λ is equal to

- (A) $\frac{1}{2}$ (B) $\frac{1}{5}$ (C) $\frac{1}{8}$ (D) $\frac{1}{10}$ (E) $\frac{1}{3}$

- 3. The auxiliary equation of $4x^2 \frac{d^2y}{dx^2} + y = 0$ is

- (A) $4m^2 + 4m + 1 = 0$ (B) $4m^2 + 1 = 0$ (C) $4m^2 4m + 1 = 0$ (D) $4m^2 4m 1 = 0$
- **4.** By method of undetermined coefficient, the choice of particular integral for $\frac{d^2y}{dx^2} 4y = 5e^{-2x}$ is

- (A) Ce^{-2x} (B) Cxe^{-2x} (C) Cx^2e^{-2x} (D) Cx^3e^{-2x} (E) Ce^{2x}
- **5.** Determine the constants $\alpha, \beta, y_0, and y_0'$ so that $Y(s) = \frac{2s-1}{s^2+s+2}$ is the Laplace transform of the solution to the initial value problem $y'' + \alpha y' + \beta y = 0$, $y(0) = y_0$, $y'(0) = y_0'$.
- 6. What are the Dirichlet conditions for the expansion of a function as a Fourier series?
- 7. State and Prove Modulation theorem for complex Fourier transform.

Section B [20 Marks]

Note: Attempt any 4 questions. Each question carries 5 marks.

- **8.** Solve the differential equation by the method of variation of parameters $\frac{d^2y}{dx^2} y = \frac{2}{1 + e^x}$.
- 9. Solve the differential equation $(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} 2y = 8x^2 2x + 3$.
- **10.** Find the power series solution for $\frac{d^2y}{dx^2} x\frac{dy}{dx} y = 0$ about the point x=1. Find polynomial solution of at least 4th order.
- 11. Obtain the Fourier series expansion of $f(x) = x \sin x$ as a cosine series in $(0,\pi)$. Hence show that $\frac{1}{1,3} \frac{1}{3,5} + \frac{1}{5,7} \dots = \frac{\pi-2}{4}$.
- 12. An inductor of 2 Henrys, a resistor of 16 Ohms and a capacitor of 0.02 Farads are connected in series with an e.m.f. of E volts. At t = 0 the charge on the capacitor and current in the circuit are zero. Find the charge and current at any time t > 0 if $E = 100\sin 3t$ (volts) using Laplace transform.

Section C [20 Marks]

Note: Attempt any 2 questions. Each question carries 10 marks.

- Q.13. Write the Bessel's Differential equation of order n. Describe all solutions of Bessel's differential equation using power series.
- **Q.14.** (A) Find the Fourier sine transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}, m > 0.$
- **(B)** Use appropriate Fourier transform to solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, in a square plate of length $L = \pi$ with conditions u(0, y) = 0, $u(\pi, y) = 0$ and u(x, 0) = 0, $u(x, \pi) = x^2$.
- **Q.15.** (A) Use appropriate Fourier transform to solve the diffusion equation $\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$, if u(0,t) = 0, $u(x,0) = e^{-x}$ for x > 0 and u(x,t) is bounded where x>0, t>0.
 - **(B)** Find the Laplace transform of the function $f(t) = t \int_0^t \frac{e^{-t} \sin t}{t} dt$.