Dynamic Systems in Two Variables

# International Macroeconomics Supplemental Lecture: Solving Dynamic Systems Graphically

Zachary R. Stangebye

University of Notre Dame

Oct 6th, 2015

## Dynamic Systems

• Many economic models yield law of motion for two variables over time:  $(x_t, y_t)$ 

$$x_{t+1} = f(x_t, y_t)$$
$$y_{t+1} = g(x_t, y_t)$$

f and g could be linear or nonlinear

#### Dynamic Systems

• Many economic models yield law of motion for two variables over time:  $(x_t, y_t)$ 

$$x_{t+1} = f(x_t, y_t)$$
$$y_{t+1} = g(x_t, y_t)$$

- f and g could be linear or nonlinear
- Want some notion of how these variables jointly evolve and to where they travel
  - Can evaluate iteratively to find out from some initial conditions

$$x_{t+2} = f(x_{t+1}, y_{t+1})$$
  
 $y_{t+2} = g(x_{t+1}, y_{t+1})$ 

• Starting from initial  $(x_0, y_0)$ , can iterate to determine trajectory as  $t \to \infty$ 

#### Steady States

First solve model for differences in variables

$$\Delta x_{t+1} = x_{t+1} - x_t = f(x_t, y_t) - x_t$$
$$\Delta y_{t+1} = y_{t+1} - y_t = g(x_t, y_t) - y_t$$

#### Steady States

• First solve model for differences in variables

$$\Delta x_{t+1} = x_{t+1} - x_t = f(x_t, y_t) - x_t$$
$$\Delta y_{t+1} = y_{t+1} - y_t = g(x_t, y_t) - y_t$$

• Solve for steady state lines:  $\{(\hat{x}, \hat{y})\} \rightarrow \Delta x = \Delta y = 0$ 

$$\hat{x} = f(\hat{x}, \hat{y})$$

or

$$\hat{y} = g(\hat{x}, \hat{y})$$

#### Steady States

• First solve model for differences in variables

$$\Delta x_{t+1} = x_{t+1} - x_t = f(x_t, y_t) - x_t$$
$$\Delta y_{t+1} = y_{t+1} - y_t = g(x_t, y_t) - y_t$$

• Solve for steady state lines:  $\{(\hat{x}, \hat{y})\} \rightarrow \Delta x = \Delta y = 0$ 

$$\hat{x} = f(\hat{x}, \hat{y})$$

or

$$\hat{y} = g(\hat{x}, \hat{y})$$

System steady states satisfies both simultaneously

$$\bar{x} = f(\bar{x}, \bar{y})$$

and

$$\bar{y} = g(\bar{x}, \bar{y})$$

### **Trajectories**

Trajectories can be backed out in relation:

$$x_t < f(x_t, y_t) \rightarrow \Delta x_{t+1} < 0$$

$$x_t > f(x_t, y_t) \rightarrow \Delta x_{t+1} > 0$$

$$y_t < g(x_t, y_t) \rightarrow \Delta y_{t+1} < 0$$

$$y_t > g(x_t, y_t) \rightarrow \Delta y_{t+1} > 0$$

#### Trajectories

Trajectories can be backed out in relation:

$$x_t < f(x_t, y_t) \to \Delta x_{t+1} < 0$$
  
 $x_t > f(x_t, y_t) \to \Delta x_{t+1} > 0$   
 $y_t < g(x_t, y_t) \to \Delta y_{t+1} < 0$   
 $y_t > g(x_t, y_t) \to \Delta y_{t+1} > 0$ 

- Example: Neoclassical Growth Model  $(k_t, c_t)$ 
  - 1. Resource Constraint:  $k_{t+1} = f(k_t) + k_t c_t$
  - 2. Euler Equation:  $c_{t+1} = \beta^{\sigma} [1 + f'(k_{t+1})]^{\sigma} c_t$

# NCG Example: SS Lines and Trajectories



• Can start from any initial  $(x_0, y_0)$  and compute trajectory as  $t \to \infty$ 

- Can start from any initial  $(x_0, y_0)$  and compute trajectory as  $t \to \infty$
- Not all trajectories will satisfy stability requirements e.g. Transversality Condition

- Can start from any initial  $(x_0, y_0)$  and compute trajectory as  $t \to \infty$
- Not all trajectories will satisfy stability requirements e.g.
   Transversality Condition
- Most models of interest exhibit Saddle-Path Stability
  - There is a unique set of initial paths along which dynamic system converges to steady state

- Can start from any initial  $(x_0, y_0)$  and compute trajectory as  $t \to \infty$
- Not all trajectories will satisfy stability requirements e.g.
   Transversality Condition
- Most models of interest exhibit Saddle-Path Stability
  - There is a unique set of initial paths along which dynamic system converges to steady state
  - Any points that do not start on this path will explode to infinity along some dimension

- Can start from any initial  $(x_0, y_0)$  and compute trajectory as  $t \to \infty$
- Not all trajectories will satisfy stability requirements e.g. Transversality Condition
- Most models of interest exhibit Saddle-Path Stability
  - There is a unique set of initial paths along which dynamic system converges to steady state
  - Any points that do not start on this path will explode to infinity along some dimension
- Often only  $x_0$  or  $y_0$  (or their ratio) initially determined by economic theory
  - Determine other variable by placing it on saddle path to satisfy stability

- Can start from any initial  $(x_0, y_0)$  and compute trajectory as  $t \to \infty$
- Not all trajectories will satisfy stability requirements e.g. Transversality Condition
- Most models of interest exhibit Saddle-Path Stability
  - There is a unique set of initial paths along which dynamic system converges to steady state
  - Any points that do not start on this path will explode to infinity along some dimension
- Often only  $x_0$  or  $y_0$  (or their ratio) initially determined by economic theory
  - Determine other variable by placing it on saddle path to satisfy stability
  - Example:  $k_0$  given;  $c_0$  determined by saddle path

# NCG Example: Saddle-Path Stability



# NCG Example: Solution

