アプリケーションのインストール、 データの配布、更新をサポートする グリッドポータル構築ツールキット(PCT4G)の開発

白砂 哲*1鈴村 豊太郎*1中田 秀基*2*1松岡 聡*1*3

- *1東京工業大学
- *2 産業技術総合研究所
- *3 科学技術振興事業団

背景

- グリッドポータル – (1)

- ◆ グリッドポータルとは?
 - 専門の知識なしにグリッド上の資源の利用を可能に するシステム
 - ユーザはWebインタフェースなどを通してグリッド上の アプリケーションを利用

グリッド資源

背景

- グリッドポータル (2)
 - ◆さまざまなアプリケーション独自のポータルが存在
 - NCBI BLAST, GridBLAST etc.
 - →実装は煩雑
 - ◆ いくつかのポータルツールキット認証やアプリケーション起動などの共通部分を提供
 - GridPort (NPACI)
 - Grid Portal Development Kit (NLANR)
 - XCAT Science Portal (Indiana Univ.)
 - → アプリケーションのインストールやWebインタフェース作成はポータル構築者が別個におこなわなければならない

目的

- ◆グリッドポータルを簡便に構築するための ツールキットPCT4Gを作成
 - ポータル構築の際の管理者の負担を軽減
 - ◆ アプリケーションのインストール、データ管理、Web インタフェース生成を自動化
 - ・既存のアプリケーションの変更は不要
 - 複雑な機能や拡張性はある程度犠牲
- ◆実際のアプリケーション(BLAST)用のグリッドポータルの作成

発表のアウトライン

- ◆ PCT4Gが作成するグリッドポータルの概要
- ◆ PCT4Gの概要
 - ポータルバックエンド
 - アプリケーションインストーラ
 - データマネージャ
 - インターフェースジェネレータ
- ◆ PCT4Gを用いたBLASTポータルの構築
- ◆ まとめ
- ◆今後の課題

PCT4Gが作成する グリッドポータルの概要(1)

PCT4Gが作成する グリッドポータルの概要(2)

- ◆ PCT4Gを用い、以下の機能を持つグリッドポータ ルを作成
 - Webフロントエンド
 - ユーザのログイン
 - アプリケーションへの入出力
 - Servlet, JSPを用いて実装
 - ポータルバックエンド
 - グリッド資源の管理
 - * ジョブの起動、管理
 - ◆ Java CoGキットを用いて実装
 - データマネージメント
 - アプリケーションデータの配布、アップデート

発表のアウトライン

- ◆PCT4Gが作成するグリッドポータルの概要
- ◆ PCT4Gの概要
 - ポータルバックエンド
 - アプリケーションインストーラ
 - データマネージャ
 - インターフェースジェネレータ
- ◆ PCT4Gを用いたBLASTポータルの構築
- ◆ まとめ
- ◆今後の課題

PCT4Gの概要

- ◆ PCT4Gの主なコンポーネント
 - ポータルバックエンド
 - ◆ 作成するグリッドポータルに組み込まれる
 - アプリケーションインストーラ
 - グリッド資源への既存のアプリケーションの自動インストール
 - データマネジャ
 - ・ アプリケーションデータの配布、定期的なアップデート
 - インタフェースジェネレータ
 - ◆ Webインタフェースの生成
- ◆使用するグリッド資源上にGlobusツールキットが インストールされていることのみを前提
 - PCT4Gをグリッド資源上にインストールする必要なし

ポータルバックエンド(1)

- ◆ バックエンドであるグリッド資源の管理を行う
 - ジョブ起動、管理
 - ユーザ管理、認証
- ◆ 作成されるグリッドポータルに組み込まれる
- ◆ Globus Java CoGを用いて実装

ポータルバックエンド(2)

- ◈アプリケーションの起動
 - 適切なグリッドリソースを選択
 - GRAMを用いてアプリケーションを起動
 - サイト内部では、サイト内部のジョブスケジューラを利用する
 - e.g. Condor, PBS, etc.

ポータルバックエンド(3)

- ◆ユーザ認証
 - シングルサインオンと呼ばれる認証方式を用いる
 - ◆ 一度のログインですべてのグリッド資源を利用可能
 - ユーザは、Webインタフェースよりユーザ名とパスフレーズを入力
 - MyProxy*1)サーバのレポジトリより、ユーザ代理証明書を所得
 - その後のすべてのグリッド資源へのアクセスは、その 代理証明書を用いて行う
 - *1) MyProxy[NLANR]
 - ◆ 証明書のDelegationを利用した安全な証明書保持機構
 - 秘密鍵をネットワーク越しに転送することなくアイデンティティを 委譲

アプリケーションインストーラ(1)

- 既存のコマンドラインアプリケーションをグリッド 上の各ノードにインストール
 - 設定ファイルによりインストール作業を自動化
 - ◆ アーカイブのダウンロード、各ノードへの配布
 - インストールスクリプトによるインストール
- ◆ 既存のアプリケーションへの変更は必要なし
 - アプリケーションのグリッド化、並列化などのコストを 削減
 - 個々のパフォーマンス向上ではな〈、複数の資源の利用による全体的なスループットの向上を目指す

アプリケーションインストーラ(2)

- ◆ アプリケーションのインストール手順
 - 1. アプリケーションアーカイブのダウンロード(GSI-FTP, FTP, HTTP)
 - 2. グリッド資源上への配布
 - 2.1. 各サイトへの配布(GridFTP)
 - 2.2. サイト内の各ホストへ配布(ローカルプロトコル)
 - 3. インストールスクリプトの実行

アプリケーションインストーラ

Site A

アプリケーションインストーラ(3)

- ◆ アプリケーションインストール設定ファイル
 - XMLベースの設定ファイル
 - ポータル構築者が記述
 - アプリケーションインストール設定内容
 - ◆ アプリケーションアーカイブのURL(FTP, HTTP, etc.)
 - インストールスクリプト
 - 配布先の情報
 - 代表ノードのホスト名
 - ローカルのファイル転送プロトコル(NFS, rcp, scp)
 - サイト内のホスト名のリスト(rcp, scpの場合)

データマネージャ(1)

- ◆ アプリケーションが用いるデータをグリッド資源上 に配布、定期的に更新する
 - 設定ファイルによりインストール作業を自動化
 - データアーカイブのダウンロード、各ノードへの配布
 - ・フォーマットスクリプトにより、データの展開、変換(必要時)
- ◆ バイオインフォマティックス分野のアプリケーションなどに必要な機能
 - タンパク質、DNAなどのデータ
 - データは数十GBで毎日更新

データマネージャ(2)

- ◆ アプリケーションが用いるデータの配布、更新手順
 - 0. データの更新をチェック
 - 1. データアーカイブのダウンロード(GSI-FTP, FTP, HTTP)
 - 2. グリッド資源上への配布
 - 2.1. 各サイトへの配布(GridFTP)
 - 2.2. サイト内の各ホストへ配布(ローカルプロトコル)
 - 3. フォーマットスクリプトの実行(Optional)
 - 4. 0-3を定期的に繰り返す

データマネージャ(3)

- ◆ データマネージメント設定ファイル
 - XMLベースの設定ファイル
 - ポータル構築者が記述
 - 設定内容
 - 更新頻度
 - ◆ アプリケーションデータのURL(FTP, HTTP, etc.)
 - フォーマットスクリプト(オプショナル)
 - 配布先の情報
 - 代表ノードのホスト名
 - ローカルのファイル転送プロトコル(NFS, rcp, scp)
 - サイト内のホスト名のリスト(rcp, scpの場合)

インタフェースジェネレータ

- ◆ Webインタフェースの自動生成
 - Gridspeedプロジェクト[Titech]で開発されたコンポーネントを 利用
 - "Grid Application IDL"にアプリケーションの情報を記述
 - プログラム名、引数情報
 - インタフェースジェネレータがJSPでかかれたWebインタフェースを自動生成

発表のアウトライン

- ◆PCT4Gが作成するグリッドポータルの概要
- ◆ PCT4Gの概要
 - ポータルバックエンド
 - アプリケーションインストーラ
 - データマネージャ
 - インターフェースジェネレータ
- ◆ PCT4Gを用いたBLASTポータルの構築
- ◆ まとめ
- ◆今後の課題

BLASTポータルの構築(1)

- ◆ PCT4Gを用い、BLASTポータルを構築
 - BLAST (Basic Local Alignment Search Tool)
 - ◆ たんぱ〈質、DNAのホモロジ検索
 - ◆ 1日に1回更新されている数GBのデータを用いる
 - グリッド資源としては東京工業大学のTitech Gridを利用
- ◈ 構築手順
 - アプリケーションインストールの設定
 - NCBIのFTPサイトよりBLASTアプリケーションをダウンロード
 - Titech Grid上にインストール
 - データマネージメントの設定
 - ◆ NCBIのFTPサイトよりタンパク質、DNAのデータをダウンロード
 - ◆ Titech Grid上の配布、フォーマット
 - ◆ 24時間ごとに更新をチェック
 - Webインタフェースの生成

BLASTポータルの構築(2)

◆ アプリケーションインストール設定ファイル

```
<?xml version="1.0" ?>
<data>
  <period>0</period>
  <data files>
    <qlobusurl>
      ftp://ftp.ncbi.nih.gov/blast/executables/blast.linux.tar.Z
    </globusurl>
  </data files>
  <scripts>
    <file>/home/sirasuna/blast/blast-install-script.sh</file>
  </scripts>
  <destinations>
    <site>
      <type>NFS</type>
      <host>tgn003001.g.gsic.titech.ac.jp</host>
      <dir>/usr/local/blast</dir>
    </site>
  </destinations>
</data>
```

```
# /bin/sh
tar -zxf newdate/blast.linux.tar.Z
```

BLASTポータルの構築(3)

◆ データマネージメント設定ファイル

```
<?xml version="1.0" ?>
<data>
  <period>24/period>
  <data files>
    <qlobusurl>ftp://ftp.ncbi.nih.qov/blast/db/alu.a.Z</qlobusurl>
    <qlobusurl>ftp://ftp.ncbi.nih.gov/blast/db/alu.n.Z</qlobusurl>
    ···略···
  </data files>
  <scripts>
    <file>/home/sirasuna/blast/blast-update-script.sh</file>
  </scripts>
  <destinations>
    <site>
      <type>NFS</type>
      <host>tgn003001.g.gsic.titech.ac.jp</host>
      <dir>/usr/local/blast</dir>
    </site>
  </destinations>
</date>
```

```
#!/bin/sh
prefix=`echo $file | sed -e "s/\formatdb -i stdin -o T -n ${prefix}
```

BLASTポータルの構築(4)

◆ ユーザインタフェースの作成

BLASTポータルの構築(5)

◈評価

- 既存のツールキットを用いた方法に比べて、ポータル 構築の負荷がかなり軽減された
- BLASTを利用するための最小限の機能は提供された
- BLASTに特化されたポータルと比べて、BLAST特有の 機能のサポートが少ない
- BLASTに特化されたポータルと比較して、単体の性能 が低い
 - ◆ BLASTに特化されたポータルでは、高性能の計算機をバック エンドに用いているため

発表のアウトライン

- ◆PCT4Gが作成するグリッドポータルの概要
- ◆ PCT4Gの概要
 - ポータルバックエンド
 - アプリケーションインストーラ
 - データマネージャ
 - インターフェースジェネレータ
- ◆ PCT4Gを用いたBLASTポータルの構築
- ◆ まとめ
- ◆今後の課題

まとめ

- ◆ グリッドポータル構築ツールキットPCT4Gを作成
 - アプリケーションインストール
 - データ管理
 - Webインタフェース生成
- ◆ポータル構築ポータルの作成
 - 一般ユーザが即席にグリッドポータルを構築することが可能
- ◆ PCT4Gを用いBLASTポータルを構築
 - PCT4Gによりグリッドポータル構築の負荷が軽減

今後の課題

- ◆さまざまな機能の追加
 - 一般性を保ちながら、個々のアプリケーションの要望 に答える
- ◆より使いやすいWebインタフェースの作成
- ◆ グリッド特有の機能の追加、強化
 - ジョブ管理
 - スケジューリング
 - フォールトトレランス
 - etc.
- ◆一般ユーザによるポータルの構築
 - ポータル構築ポータル

ポータル構築ポータル(1)

- ◆ グリッドポータルを構築するためのポータルサイト
 - Webインタフェースを通じてのポータル構築が可能
 - 一般ユーザが即席にポータルを構築 e.g. 自分専用アプリケーションのポータル
 - 認証にはMyProxyを用いた代理証明書を利用
 - アプリケーションはユーザの権限のあるディレクトリ(ホームディレクトリ)にインストールされる

ポータル構築ポータル(2)

- ◈ポータルの構築
 - ポータル構築ポータルに ログイン
 - ポータル構築に必要な 情報の入力やファイルの アップロード
 - ◆ アプリケーションインス トール
 - ◆ データ管理
 - → 即座に利用可能

謝辞

◆本システムの開発は情報処理振興事業協会(IPA)の平成14年度未踏ソフトウェア創造事業の一環として行った

MyProxy の概要

- ユーザのプロキシ証明書を預ける。この際に パスフレーズを指定
- 2. Webブラウザからユー ザ名とパスフレーズを 入力
- 3. ポータルはMyProxy サーバにアクセス
- 4. ユーザのプロキシ証明 書を取得
- 5. グリッドアプリケーショ ンを起動