Saturday, 7 March 2020 6:20 pm

Students may draw logic diagram to determine GIC

ii) Students can use the K-map to find the minterms for F or algebraic expansion

F = D(AC+B) + D(A+AB)

- ACD+BD+AD+ABD

= ACD(B+B)+BD(A+A)(C+E)+AD(B+B)(C+E)+ABD(C+E)

 $F = \sum m(0, 2, 4, 5, 6, 7, 8, 10, 11, 13, 15)$

iti)	А	В	$_{\mathcal{C}}$	D	F	m;
,	0	0	0	0	1	Mρ
	0	0	0	١	٥	mı
	0	0	١	0	ı	M2
	0	0	l	l	٥	M_3
	0	l	0	0	1	Mf
	0	l	0	١	ı	Ms
	O	l	l	0	1	Me
	0	l	l	ı	١	M ₇
	l	0	0	0	l	₩s
	l	0	O	ι	\circ	Mq
	l	0	١	ð	Ţ	Who
	١	0	l	l	ı	WW
	l	١	0	0	0	Mz
	l	١	0	1	ı	M ₁₃
	1	١	l	Q	0	m_{v4}
	ı	l	l	l	١	Wiz

PI : BD, BD, AD, ACD, ABC, AB EPI: BD, BD

F= (A+B+D)(B+C+D)(A+B+D) A-POS

Saturday, 7 March 2020 8:31 pm

a) i)
$$x+y=x\oplus y+xy$$

$$X \oplus X + XX = X + XX + XX$$

= X \(\tau + \times \) + \(\times \) \(\times \)

 $= \times (\overline{Y} + Y) + Y(X + \overline{X})$

* X+Y

$$ii)$$
 $H(A,B,C) = A\overline{B} + AB\overline{C} + \overline{A}B$

- AOB + ABC

X+Y- X0Y+XY

= A@B@ABC + (A@B)(ABC)

= ABBBABE + (AB+AB)(ABE)

= AOBOABC

G=TM(3,4,7,9,11,13,14,15)

 $\sim \Sigma m(0,1,2,5,6,8,10,12)$

* ĀBCD+ĀBCD+ĀBCD+ĀBCD+ĀBCD+ĀBCD+ABCD+ABCD

ABOD + ABOD

 $= \overline{A} \overline{B} \overline{D} (\overline{C} + C) + \overline{A} \overline{C} \overline{D} (\overline{B} + B) + \overline{A} C \overline{D} (\overline{B} + \overline{B}) + \overline{A} \overline{C} \overline{D} (\overline{C} + C) + \overline{A} \overline{C} \overline{D} (\overline{B} + B)$

= ABD+ACD+ACD+ABD+ACD

= BD(A+A) + ACD + ACD + ACD

= BD+ACD+ACD+ACD

CD select

I.= AB

I.= A+B

I.= A+B

I.= NB

I.= I

Note: Using CD as select

would not give the simplest

design.

B

d) Not required!

GIC= 4+ 4×2+ 4×2 +12×2 = 44

12 AND gates

Block diagram

Refer to Week 3 slide 51

- Input n is even, n=4.

Use 2ⁿ AND gates driven

by two decoders of cutput

size 2^{n/z} = 4

Since BCD is only from 0 to X,

IB-X-I AND gates will be

redundant.