### CNN & caffe

Jinna

信息科学与工程学院

10.31





### CNN: Convolutional Neural Network







### **Conv Layer**

计算机视觉实验室

局部感知

参数共享

| 1 | 1                      | 1   | 0                      | 0 |
|---|------------------------|-----|------------------------|---|
| 0 | 1                      | 1   | 1                      | 0 |
| 0 | <b>0</b> <sub>×1</sub> | 1,0 | 1,                     | 1 |
| 0 | 0,0                    | 1,  | 1,0                    | 0 |
| 0 | 1,                     | 1,0 | <b>0</b> <sub>×1</sub> | 0 |

**Image** 

| 4 | 3 | 4 |
|---|---|---|
| 2 | 4 | 3 |
| 2 | 3 |   |

Convolved Feature



### **RELU Layer**

### **RELU: Rectified Linear Units layer**

# 计算机视觉实验室

$$f(x) = \max(0, x)$$

优点:

求梯度简单 缓解过拟合



### **Pool Layer**

### 计算机视觉实验点

### POOL: pool层(下采样层)

Max-pooling: 选择pooling窗口中 最大值作为采样值

Mean-Pooling:将所有值相加取 平均,以平均值作为采样值

作用:

降维 提高鲁棒性 Single depth slice

X

| 1 | 1 | 2 | 4 |
|---|---|---|---|
| 5 | 6 | 7 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 2 | 3 | 4 |
|   |   |   |   |

y

max pool with 2x2 filters and stride 2

| 6 | 8 |
|---|---|
| 3 | 4 |



### LeNet - 5

### Caffe定义网络结构:

## 计算机视觉实验室





### 计算机视觉实验点

caffe

Data Layer

**Convolution Layer** 

**Pooling Layer** 

Fully Connected Layer

ReLU Layer

Loss Layer

定义Solver:

定义网络结构:





### 训练与测试:

## 计算机视觉实验室

./train\_lenet.sh

```
convert_mnist_data.cpp:88] A total of 60000 items.
convert_mnist_data.cpp:89] Rows: 28 Cols: 28
convert_mnist_data.cpp:108] Processed 60000 files.
db_lmdb.cpp:35] Opened lmdb examples/mnist/mnist_te

convert_mnist_data.cpp:88] A total of 10000 items.
convert_mnist_data.cpp:89] Rows: 28 Cols: 28
convert_mnist_data.cpp:108] Processed 10000 files.

net.cpp:270] This network produces output accuracy
net.cpp:270] This network produces output loss
net.cpp:283] Network initialization done.
solver.cpp:60] Solver scaffolding done.
caffe.cpp:251] Starting Optimization
solver.cpp:279] Solving LeNet
```

```
1029 18:39:21.661705 30936 sgd_solver.cpp:106] Iteration 8500, lr = 0.00630407 [1029 18:39:25.341925 30936 solver.cpp:228] Iteration 8600, loss = 0.000597327 [1029 18:39:25.341954 30936 solver.cpp:244] Train net output #0: loss = 0.00 [1029 18:39:25.341964 30936 sgd_solver.cpp:106] Iteration 8600, lr = 0.00627864 [1029 18:39:29.113770 30936 solver.cpp:228] Iteration 8700, loss = 0.0022585 [1029 18:39:29.113808 30936 solver.cpp:244] Train net output #0: loss = 0.00 [225845 (* 1 = 0.00225845 loss)]
```

Test net output #0: accuracy = 0.9906
Test net output #1: loss = 0.0293944

Optimization Done.
Optimization Done.



计算机视觉实验室

Thanks for your attention!



计算机视觉实验室

### Q&A