```
Patent Family:
                                                   Date
                                                            Week
                                            Kind
                    Date
                             Applicat No
             Kind
Patent No
                                                 19880715
                                                           198904
                   19890125
                             GB 8816917
                                            Α
              Α
GB 2207051
                                             Α
                                                 19880711
                                                           198911
                   19890120
                            FR 889407
FR 2618068
              Α
                                                           198915
              Α
                   19890308
LU 86944
                                                 19880715
                                                           198934
                                             Α
                   19890816
                            BE 88827
BE 1001203
              Α
                                                           199038
                   19900831
              Α
CH 675067
                                                            199137
                   19910911
GB 2207051
              В
                                                 19880715
                                                           199221
                            IT 8867666
                                             Α
IT 1223694
               В
                   19900926
Priority Applications (No Type Date): LU 86944 A 19870717
Patent Details:
Patent No Kind Lan Pg
                                     Filing Notes
                         Main IPC
                    27
GB 2207051
             Α
IT 1223694
                       A61K
              В
Abstract (Basic): GB 2207051 A
        A compsn. suitable for topical application comprises at least one
    hydroxypyridone cpd. of formula (I) or its cosmetically or
    pharmaceutically acceptable salt.
        In (I), R1 = H, 1-17C alkyl, 5-8C cycloalkyl, cycloalkylalkylene
    contg. 1-4C alkylene gp., aryl, aralkyl contg. 1-4C alkyl gp. or
    arylalkenyl contg. 2-4C alkenyl gp. The cycloalkyl and aryl gps. are
    opt. substd. by 1-4C alkyl or alkoxy gps.; R2 = H, 1-4C alkyl, 2-4C
    alkenyl, halogen or benzyl; R3 = H, 1-4C alkyl or phenyl; R4 = H, 1-4C
    alkyl, 2-4C alkenyl, methoxymethyl, halogen or benzyl.
        USE/ADVANTAGE - The compsns. reduce hair loss and are useful for
    treating hair and the scalp. Cpds. (I) were previously used for
    controlling dandruff.
        0/0
Abstract (Equivalent): GB 2207051 B
        A compsn. suitable for topical application comprises at least one
    hydroxypyridone cpd. of formula (I) or its cosmetically or
    pharmaceutically acceptable salt.
        In (I), R1 = H, 1-17C alkyl, 5-8C cycloalkyl, cycloalkylalkylene
    contg. 1-4C alkylene gp., aryl, aralkyl contg. 1-4C alkyl gp. or
     arylalkenyl contg. 2-4C alkenyl gp. The cycloalkyl and aryl gps. are
    opt. substd. by 1-4C alkyl or alkoxy gps.; R2 = H, 1-4C alkyl, 2-4C
     alkenyl, halogen or benzyl; R3 = H, 1-4C alkyl or phenyl; R4 = H, 1-4C
     alkyl, 2-4C alkenyl, methoxymethyl, halogen or benzyl.
         USE/ADVANTAGE - The compsns. reduce hair loss and are useful for
     treating hair and the scalp. Cpds. (I) were previously used for
     controlling dandruff. (27pp Dwg.No.0/0)
Title Terms: COMPOSITION; REDUCE; HAIR; LOSS; CONTAIN; HYDROXY; PYRIDONE;
   DERIVATIVE; ANTIINFLAMMATORY; ANTIBACTERIAL; AGENT
 Derwent Class: B03; D21; E13
 International Patent Class (Main): A61K-031/72
 International Patent Class (Additional): A61K-007/06; C07D-213/89
 File Segment: CPI
 Manual Codes (CPI/A-N): B07-D04D; B12-A07; B12-L05; D08-B03; D08-B09A;
   E07-D04D
 Chemical Fragment Codes (M2):
   *01* F011 F012 F013 F014 F015 F016 F432 G001 G003 G010 G019 G030 G040
        G050 G100 G111 G112 G113 G553 G563 G573 G583 H2 H211 H541 H542 H543
        H561 H581 H600 H608 H621 H622 H715 H721 H722 H723 J5 J521 KO K8 K850
        L9 L941 M113 M115 M116 M119 M123 M125 M126 M129 M132 M133 M135 M139
        M210 M211 M212 M213 M214 M215 M216 M220 M221 M222 M223 M224 M225
        M231 M232 M233 M240 M272 M280 M281 M282 M283 M311 M312 M313 M314
        M320 M321 M322 M323 M331 M332 M333 M340 M342 M373 M391 M413 M431
        M510 M521 M530 M531 M532 M533 M540 M541 M630 M781 M782 M903 M904
```

- P930 O254 8904-18501-M 8904-18501-U 00417
- *03* D014 D022 D601 G013 G100 H2 H211 H5 H541 H6 H602 H641 H8 J0 J012 J1 J171 J3 J331 M210 M211 M240 M272 M281 M311 M321 M342 M372 M391 M412 M431 M511 M520 M531 M540 M782 M903 M904 M910 P420 P930 Q254 R00076-M 00417
- *04* G031 G032 G033 G038 G039 G060 G820 H4 H401 H461 H8 J0 J011 J1 J151 J5 J561 M210 M211 M240 M283 M320 M415 M431 M510 M520 M530 M541 M782 M903 M904 M910 P420 P930 Q254 V0 V796 R01279-M 00417 06384
- *06* G035 G562 H4 H401 H481 H7 H721 H8 M210 M211 M240 M281 M315 M321 M333 M340 M342 M373 M391 M415 M431 M510 M520 M530 M541 M782 M903 M904 P420 P930 Q254 R07127-M 00417 06384
- *08* F012 F013 F014 F015 F016 F017 F019 F123 F130 G036 G038 G039 G562 G599 H1 H103 H121 H4 H402 H403 H404 H422 H423 H424 H5 H523 H722 H723 H725 H8 J011 J012 J221 J222 J5 J522 K0 L8 L817 L818 L821 L831 L834 L9 L942 M1 M126 M129 M141 M149 M210 M211 M212 M225 M231 M240 M262 M272 M273 M281 M282 M283 M316 M320 M321 M322 M333 M342 M372 M391 M392 M413 M431 M510 M523 M530 M540 M541 M542 M640 M650 M782 M903 M904 P220 V0 V051 8904-18503-M 00417 06384 00534
- *10* F011 F012 F013 F014 F015 F016 F019 F123 F423 G036 G038 G562 H1 H181 H2 H201 H4 H403 H404 H422 H423 H481 H5 H592 H725 H8 H9 J0 J011 J012 J221 J3 J311 K0 L8 L818 L821 L834 L835 M210 M211 M213 M231 M240 M271 M273 M281 M283 M313 M316 M321 M331 M333 M342 M343 M372 M373 M391 M413 M431 M510 M522 M530 M540 M541 M640 M650 M782 M903 M904 P220 V0 V122 8904-18504-M 00417 06384 00534
- *12* F011 F012 F013 F014 F015 F016 F019 F123 F423 G036 G038 G562 H1 H181 H2 H201 H4 H402 H403 H422 H423 H5 H592 H6 H602 H682 H725 H8 H9 J0 J011 J012 J221 J3 J311 K0 L8 L818 L821 L834 L835 M210 M211 M213 M231 M240 M271 M273 M281 M283 M313 M316 M321 M331 M333 M342 M343 M352 M372 M391 M413 M431 M510 M522 M530 M540 M541 M640 M650 M782 M903 M904 P220 V0 V030 8904-18502-M 00417 06384 00534

Chemical Fragment Codes (M3):

- *01* F011 F012 F013 F014 F015 F016 F432 G001 G003 G010 G019 G030 G040 G050 G100 G111 G112 G113 G553 G563 G573 G583 H2 H211 H541 H542 H543 H561 H581 H600 H608 H621 H622 H715 H721 H722 H723 J5 J521 K0 K8 K850 L9 L941 M113 M115 M116 M119 M123 M125 M126 M129 M132 M133 M135 M139 M210 M211 M212 M213 M214 M215 M216 M220 M221 M222 M223 M224 M225 M231 M232 M233 M240 M272 M280 M281 M282 M283 M311 M312 M313 M314 M320 M321 M322 M323 M331 M332 M333 M340 M342 M373 M391 M413 M431 M510 M521 M530 M531 M532 M533 M540 M541 M630 M781 M782 M903 M904 P930 Q254 8904-18501-M 8904-18501-U 00417 06384 00534
- *06* G035 G562 H4 H401 H481 H7 H721 H8 M210 M211 M240 M281 M315 M321 M333 M340 M342 M373 M391 M415 M431 M510 M520 M530 M541 M782 M903 M904 P420 P930 Q254 R07127-M 00417 06384 00534
- *09* F012 F013 F014 F015 F016 F017 F019 F123 F130 G036 G038 G039 G562 G599 H1 H103 H121 H4 H402 H403 H404 H422 H423 H424 H5 H523 H722 H723 H725 H8 J011 J012 J221 J222 J5 J522 K0 L8 L817 L818 L821 L831 L834 L9 L942 M1 M126 M129 M141 M149 M210 M211 M212 M225 M231 M240 M262 M272 M273 M281 M282 M283 M316 M320 M321 M322 M333 M342 M372 M391 M392 M413 M431 M510 M523 M530 M540 M541 M542 M640 M650 M782 M903 M904 P220 8904-18503-M 00417 06384 00534
- *11* F011 F012 F013 F014 F015 F016 F019 F123 F423 G036 G038 G562 H1 H181 H2 H201 H4 H403 H404 H422 H423 H481 H5 H592 H725 H8 H9 J0 J011 J012 J221 J3 J311 K0 L8 L818 L821 L834 L835 M210 M211 M213 M231 M240 M271 M273 M281 M283 M313 M316 M321 M331 M333 M342 M343 M372 M373 M391 M413 M431 M510 M522 M530 M540 M541 M640 M650 M782 M903 M904 P220 8904-18504-M 00417 06384 00534
- *13* F011 F012 F013 F014 F015 F016 F019 F123 F423 G036 G038 G562 H1 H181 H2 H201 H4 H402 H403 H422 H423 H5 H592 H6 H602 H682 H725 H8 H9 J0 J011 J012 J221 J3 J311 K0 L8 L818 L821 L834 L835 M210 M211 M213 M231 M240 M271 M273 M281 M283 M313 M316 M321 M331 M333 M342 M343 M352

M372 M391 M413 M431 M510 M522 M530 M540 M541 M640 M650 M782 M903 M904 P220 8904-18502-M 00417 06384 00534 *15* G031 G032 G033 G038 G039 G060 G820 H4 H401 H461 H8 J0 J011 J1 J151 J5 J561 M210 M211 M240 M283 M320 M415 M431 M510 M520 M530 M541 M782 M903 M904 M910 P420 P930 Q254 R01279-M 00417 06384 00534 Chemical Fragment Codes (M5): *02* M431 M782 M903 M904 M910 P420 P930 Q254 S004 S132 S133 S134 S142 S217 S311 S317 S511 S517 S521 S603 S620 U520 R00011-M 00417 06384 *05* M431 M782 M903 M904 M910 P420 P930 Q254 S001 S004 S030 S132 S133 00534 S134 S142 S209 S217 S311 S316 S317 S511 S517 S521 S603 S620 T209 T230 T816 U016 U030 U520 R01242-M 00417 06384 00534 *07* M431 M782 M903 M904 P420 P930 Q254 S001 S004 S030 S132 S133 S134 \$142 \$206 \$209 \$216 \$217 \$311 \$317 \$511 \$516 \$517 \$521 \$603 \$620 T116 T117 T136 T141 T206 T209 T230 T816 U016 U030 U520 R03207-M R10384-M R14703-M 00417 06384 00534 05595 Chemical Fragment Codes (M6): *14* M903 P420 P930 Q252 R210 00417 06384 00534 05595 Ring Index Numbers: $00\overline{4}17$; 06384; 00534; 05595 Derwent Registry Numbers: 0011-U; 0076-U; 0960-U; 1181-U; 1242-U; 1279-U; Specific Compound Numbers: R00076-M; R01279-M; R07127-M; R00011-M; R01242-M ; R03207-M; R10384-M; R14703-M Generic Compound Numbers: 8904-18501-M; 8904-18501-U; 8904-18503-M; 8904-18504-M; 8904-18502-M ?t 3/9/all 3/9/1 DIALOG(R) File 351: Derwent WPI (c) 2001 DERWENT INFO LTD. All rts. reserv. **Image available** 011405082 WPI Acc No: 1997-382989/199735 XRPX Acc No: N97-318806 Object lens drive unit - has yoke auxiliary part which couples with yoke through vertical and horizontal parts Patent Assignee: SHARP KK (SHAF) Number of Countries: 001 Number of Patents: 001 Patent Family: Kind Date Applicat No Date Kind Patent No 199735 B 19951214 19970624 JP 95325488 Α Α JP 9167361 Priority Applications (No Type Date): JP 95325488 A 19951214 Patent Details: Filing Notes Main IPC Patent No Kind Lan Pg JP 9167361 Α Abstract (Basic): JP 9167361 A The object lens drive unit has a base part (1) which is used partially as a pair of yokes (2), when moved. The base part has a magnet (4) which is fixed to the wall surface of each yoke. The drive unit has an object lens (9) and a drive coil, which is arranged between the yokes. The object lens performs a relative displacement with reference to the base member. The end surface of each yoke is attached to the yoke auxiliary part (20), by the vertical and

ADVANTAGE - Avoids generation of leakage flux when strong magnet is

used. Suppresses oscillation of yoke during coil drive. Stabilises

horizontal parts (21,22).

actuation of equipment.

Dwg.1/6

RÉPUBLIQUE FRANÇAISE (19)

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(11) N° de publication :

2 618 068

(21) N° d'enregistrement national :

88 09407

(51) Int Ci*: A 61 K 7/08 # C 07 D 213/89.

12)	DEMANDE DE BRE	VET D'INVENTION AT
<u>-</u> 22	Date de dépôt : 11 juillet 1988.	71) Demandeur(s) : Société anonyme dite : L'OREAL — FR.
30	Priorité : LU. 17 juillet 1987, nº 86944.	
		72) Inventeur(s) : Didier Saint-Léger.
43	Date de la mise à disposition du public de la demande : BOPI « Brevets » nº 3 du 20 janvier 1989.	
6	Références à d'autres documents nationaux appa- rentés :	73 Titulaire(s):
		74) Mandataire(s): Bureau D.A. Casalonga-Josse.

- 64 Composition à base de dérivés d'hydroxypyridone pour diminuer la chute des cheveux.
- (57) Composition à base de dérivés d'hydroxypyridone pour diminuer la chute des cheveux. Composition pour diminuer la chute des cheveux contenant

su moins un composé répondant à la formule :

dans lequelle :

- R, désigne hydrogène, alkyle, cycloalkyle, cycloalkyl-sikylène. aryle, aralkyle, arylalcényle;
 - R₂ désigne hydrogène, alkyle, alcényle, halogène ou benzyle;
- R₃ désigne hydrogène, alkyla, ou phényle:
- R, désigne hydrogène, alkyle, alcényle, méthoxyméthyle, ha-R₄ désigne hydro logène ou benzyle.

618

Composition à base de dérivés d'hydroxypyridone pour diminuer la chute des cheveux.

L'invention est relative à des compositions pour diminuer la chute des cheveux à base de dérivés d'hydroxypyridone.

5

10

15

20

L'homme de l'art sait depuis longtemps que la chute naturelle des cheveux, chez l'homme, reflète globalement l'équilibre des follicules pileux entre les phases alternatives de pousse (anagène) et les phases de chute (télogène). Le rapport moyen du nombre de follicules en phase anagène sur celui en phase télogène est de l'ordre de 9 (90/10). Le pourcentage de follicules en phase de repos (catagène) y apparaît comme étant très faible.

La chute ou perte naturelle des cheveux peut être estimée, en moyenne, à quelques cent cheveux par jour pour un état physiologique normal.

Il est connu, par ailleurs, que certains facteurs tels qu'un déséquilibre hormonal, un stress physiologique, la malnutrition, peuvent accentuer le phénomène.

Dans certaines dermatoses du cuir chevelu à caractéristique inflammatoire telles que par exemple le psoriasis ou les dermatites séborrhéiques, la chute des cheveux peut être fortement accentuée ou entraîner des cycles des follicules fortement perturbés.

5 .

10

15

20

25

30

Les dérivés d'hydroxypyridone sont connus en eux-mêmes. Parmi les composés les plus représentatifs, on peut mentionner le ciclopirox ou 6-cyclohexyl 1-hydroxy 4-méthyl 2-(lH)-pyridone connu comme agent antifongique et l'octopirox ou encore le 1-hydroxy 4-méthyl 6-(2,4,4-triméthylpentyl)-2-(lH)-pyridone connu pour ses propriétés antipelliculaires.

De façon surprenante, la demanderesse a découvert que l'utilisation de ces dérivés permettait de diminuer la chute des cheveux.

réalisation forme de Selon une constaté que préférée, elle particulièrement l'association avec des antiinflammatoires stéroïdiens ou l'hydrocortisone, notamment que. l'indométhacine, l'acide glycyrrhétinique, l' \alphabisabolol, le bétaméthasone, l'acétonide de fluorinolone, la désoxymétasone, permettait encore d'améliorer cet effet.

L'invention a donc pour objet une nouvelle composition pour diminuer la chute à base de dérivés d'hydroxypyridone.

Un autre objet de l'invention est constitué par leur application au traitement des cheveux, et du cuir chevelu.

D'autres objets de l'invention apparaîtront à la lecture de la description et des exemples qui suivent.

La composition conforme à l'invention est essentiellement caractérisée par le fait qu'elle contient, dans un milieu approprié pour une application

topique, au moins un composé répondant à la formule

$$\begin{array}{c}
OH \\
R_4 \\
R_2
\end{array}$$

10 dans laquelle :

5

15

20

25

30

35

R₁ désigne un atome d'hydrogène, un groupement alkyle, linéaire ou ramifié, ayant de 1 à 17 atomes de carbone, cycloalkyle ayant 5 à 8 atomes de carbone, cycloalkyl-alkylène, le groupement alkylène ayant de 1 à 4 atomes de carbone, aryle, aralkyle, le groupement alkyle ayant de 1 à 4 atomes de carbone, aryl-alcényle, le groupement alcényle ayant de 2 à 4 atomes de carbone, les groupements cycloalkyle et aryle pouvant être substitués par un groupement alkyle ayant 1 à 4 atomes de carbone ou bien alcoxy ayant de 1 à 4 atomes de carbone;

 $$\rm R_2$$ désigne hydrogène, alkyle ayant de 1 à 4 atomes de carbone, alcényle ayant de 2 à 4 atomes de carbone, un atome d'halogène ou un radical benzyle;

 $$\rm R_3$$ désigne hydrogène, alkyle ayant de 1 à 4 atomes de carbone ou phényle ; et

R4 désigne hydrogène, alkyle ayant de 1 à 4 atomes de carbone, alcényle ayant de 2 à 4 atomes de carbone, méthoxyméthyle ou un atome d'halogène ou un radical benzyle, ainsi que leurs sels cosmétiquement ou pharmaceutiquement acceptables.

Parmi ces composés, ceux particulièrement préférés sont constitués par le 1-hydroxy 4-méthyl 6-(2,4,4-triméthylpentyl) 2-(1H)-pyridone et la 6-cyclohexyl 1-hydroxy 4-méthyl 2-(1H)-pyridone.

Parmi les sels utilisables, on peut citer les sels d'alcanolamines inférieures tels que l'éthanolamine, la diéthanolamine, les sels d'amine ou d'alkylamine, les sels d'ammonium quaternaires de même que les sels avec des cations inorganiques comme des sels alcalins, d'ammonium, alcalino-terreux.

5

15

20

20

25

30

à l'invention Les compositions conformes réalisation mode de un contienment, selon avec les en association particulièrement préféré, agents des ci-dessus, définis anti-inflammatoires stéroïdiens ou non tels que plus l'indométhacine, l'hydrocortisone, particulièrement cy -bisabolol, 1' glycyrrhétinique, bétaméthasone, l'acétonide de la fluorinolone, désoxymétasone, etc.

Dans une autre forme de réalisation préférée de l'invention, la composition contient en plus des agents antibactériens choisis plus particulièrement parmi les antibiotiques de la famille des macrolides et plus particulièrement l'érythromycine et ses dérivés, les pyranosides tels que la lincomycine et ses dérivés et la clindamycine et ses dérivés.

Parmi les dérivés d'érythromycine, on peut citer plus particulièrement l'érythromycine elle-même et ses dérivés, tels que l'estolate, l'éthylcarbonate, l'éthylsuccinate, le glucoheptonate, le lactobionate, le propionyl laurylsulfate, le propionate, le stéarate, le linoléate, les esters mono-eniques tel que le mono-oléate d'érythromycine A. Parmi les dérivés de clindamycine, on peut citer en plus de la clindamycine elle-même, le chlorhydrate, le palmitate, le phosphate.

Parmi les dérivés de lincomycine, on peut citer le chlorhydrate et la lincomycine elle-même.

D'autres dérivés utilisables conformément à l'invention sont les rétinoates de ces antibiotiques et plus particulièrement des esters d'acide rétinoïque all-trans et 13-cis d'érythomycine A, de lincomycine et de clindamycine et leurs sels pharmaceutiquement acceptables tels que décrits plus particulièrement dans la demande de brevet français n° 86.06528 de la demanderesse. Les esters rétinoïques en position 2' d'érythromycine sont représentés plus particulièrement par la formule:

5

10

30

dans laquelle R représente le radical rétinoyle alltrans ou le radical rétinoyle 13-cis, et R' désigne H. Le radical rétinoyle ayant pour formule :

Les esters rétinoïques en position 3 de 10 lincomycine et de clindamycine peuvent être représentés par les formules :

5

25

30

(IV) (V)

dans lesquelles R a la même signification que celle indiquée ci-dessus.

Ces différents esters rétinoïques peuvent être préparés suivant différents procédés d'estérification et de préférence en milieu solvant organique anhydre, en particulier dans le tétrahydrofuranne seul ou en mélange

avec un autre solvant organique comme la pyridine, en faisant réagir un excès d'anhydride carbonique mixte des acides rétinoïques all-trans ou 13-cis (préparé in situ, par exemple à partir de chloroformiate d'éthyle et d'acide all-trans ou 13-cis) avec l'érythromycine A, la lincomycine ou la clindamycine sous forme de base en présence d'une base organique ou minérale comme la pyridine et/ou l'hydrogénocarbonate de sodium.

5

10

15

20

25

30

35

Un autre procédé d'estérification, notamment de lincomycine et de clindamycine consiste à utiliser des imidazolides des acides rétinoïques dans un solvant anhydre comme le N,N-diméthylformamide, en présence d'une base comme le tertiobutylate de sodium ou de potassium. Selon ce dernier procédé, l'ester en position 7 de la lincomycine est obtenu en majorité avec des esters en position 2, 3 et 4. On obtient de la même façon un mélange de monoesters en positions 2, 3 et 4 de la clindamycine.

D'autres dérivés d'érythromycine A sont représentés par la formule (II) décrits notamment dans FR-A-2 582 000, dans laquelle :

R ou R' représente un radical acyle linéaire C₁₈ bi ou tri-énique de configuration stéréochimique all-cis (Z) et R' ou R restant représente un atome d'hydrogène.

Selon une forme de réalisation préférée, R ou R' représente les radicaux suivants :

Z-9, Z-12-octadécadiénoyle ou linoléoyle
Z-9, Z-12, Z-15-octadécatriénoyle ou

Z-1inolénoyle, et
Z-6, Z-9, Z-12-octadécatriénoyle ou

\[
\sum_{-1}^{\text{inolénoyle}}.
\]

On peut citer notamment l'O-linoleyl-2' érythromycine A, l'O-linoleyl-4" érythromycine A et l'O-Qlinoleyl-4" érythromycine A.

Selon l'invention, les pyridones sont utilisées dans les compositions conformes à l'invention dans des proportions comprises entre 0,01 et 5% en poids par rapport au poids total de la composition. Les agents anti-inflammatoires sont utilisés de préférence dans des proportions comprises entre 0,01 et 5% en poids pour l'hydrocortisone ou l'indométhacine et l' - bisabolol, dans des proportions de l'ordre de 0,001 et 0,02% en poids pour les dérivés de bétaméthasone, de fluorinolone ou de désoxyméthasone.

5 .

10

15

20

25

30

Les agents antibactériens, notamment la clindamycine, l'érythromycine, la lincomycine ou leurs dérivés, sont utilisés de préférence dans des proportions comprises entre 0,01 et 5% en poids et en particulier entre 0,01 et 3% en poids.

Les compositions conformes à l'invention peuvent se présenter sous des formes diverses habituellement utilisées en pharmacie ou en cosmétique pour le traitement du cuir chevelu.

présenter plus se peuvent Elles particulièrement sous forme de lotions, de shampooings, de mousses, de crèmes, de gels, de sticks, de spray, de baumes, de poudres, de savon sous forme de pain ou sous forme liquide. Lorsque la composition est liquide elle peut comprendre un milieu contenant de l'eau ou un mélange d'eau et de solvants organiques acceptables d'un point de vue physiologique. Parmi ces solvants, on peut mentionner des alcools inférieurs tels que l'éthanol, l'alcool isopropylique, l'acétone, de l'éthylène glycol, monoéthylique monométhylique, éthers monobutylique de l'éthylène glycol, le propylène glycol, glycol propylène monoéthyléthers đu dipropylène glycol, les esters d'alkyle en C1-C4 d'acide à chaîne courte et des éthers du polytétrahydrofuranne.

Ces compositions peuvent contenir des agents épaississants tels que la cellulose ou des dérivés de cellulose ainsi que des hétérobiopolysaccharides comme la gomme de xanthane, des acides polyacryliques réticulés par un agent polyfonctionnel tels que les produits vendus sous la dénomination de CARBOPOL.

5

10

15

20

25

Ces compositions peuvent également renfermer d'autres adjuvants habituellement utilisés en cosmétique ou en pharmacie, notamment au niveau du cuir chevelu et plus particulièrement des agents tensio-actifs, des parfums, des agents conservateurs, des régulateurs de pH, des colorants, des polymères cationiques, anioniques, non ioniques ou amphotères.

Un objet de l'invention est également constitué par l'utilisation de dérivés de pyridone tels que définis ci-dessus pour la préparation de compositions pharmaceutiques destinées au traitement de la chute des cheveux.

L'invention a enfin pour objet un procédé de traitement cosmétique des cheveux consistant à appliquer sur les cheveux au moins une des compositions telles que définies ci-dessus, la composition ayant dans ce but un effet essentiellement sur l'aspect de la chevelure.

Les exemples suivants sont destinés à illustrer l'invention sans pour autant présenter un caractère limitatif.

EXEMPLE DE PREPARATION 1

Préparation du O-rétinoyl(13-cis)-2' érythromycine A

Dans un ballon, sous atmosphère inerte, on 5 dissout 5 g (16,6 mmoles) d'acide rétinoïque (13-cis) dans 35 ml de tétrahydrofuranne anhydre; le mélange réactionnel est refroidi à 0°C, puis on verse 3 ml (38 mmoles) de pyridine anhydre et 1,6 ml (16,6 mmoles) de chloroformiate d'éthyle. La solution est agitée 5 10 minutes et on ajoute 2,5 g (30 mmoles) d'hydrogéno-(6,7 4,9 g puis sodium, de carbonate d'érythromycine A préalablement dissous dans 150 ml de tétrahydrofuranne. Le mélange réactionnel est alors laissé sous agitation pendant 10 heures en laissant 15 remonter à température ambiante (chromatographie sur couche mince de gel de silice : chlorure de méthylène/ méthanol 10%). La solution est versée sur 60 ml d'eau, puis extraite à l'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée puis 20 concentrée sous vide partiel. Le produit brut ainsi obtenu est chromatographié sur colonne de gel de silice (HPLC) en utilisant l'éluant : acétate d'éthyle (7)/ hexane (3) pour aboutir à l'isolement de 4,4 g (65% de rendement) de O-rétinoy1(13-cis)-2'-érythromycine A pur. 25 F = 82°C (hexane/acétate d'éthyle)

$$\sum_{D}^{22} = -17^{\circ} (C = 6 \text{ mg/ml dichlorométhane})$$

30 Microanalyse : C57H93NO14 ; M = 1016,4

C H N

Calculé % : 67,36 9,22 1,38

Trouvé % : 67,48 9,32 1,38

Infrarouge : bande à 1735 cm² (ester) RMN du ¹³C (CDCl₃, réf. interne TMS)

Effets (négatifs en l'(-2,2 ppm) et 3'(-2,1 ppm) indiquent la position de l'ester en 2'. Les carbones C"20 (20,94 ppm), C"14 (117,28 ppm) et C"12 (131,9 ppm) de la chaîne rétinoïque sont en accord avec la stéréochimie 13-cis de la chaîne rétinoïque.

EXEMPLE DE PREPARATION 2

10

15

20

25

30

5

Préparation du O-rétinoyl(all-trans)-2'-érythromycine A

Dans un ballon, sous atmosphère inerte, on dissout 5 g (16,6 mmoles) d'acide rétinoïque (all-trans) dans 35 ml de tétrahydrofuranne anhydre, le mélange réactionnel est refroidi à 0°C puis on verse 3 ml (38 mmoles) de pyridine anhydre et 1,6 ml (16,6 mmoles) de chloroformiate d'éthyle; la solution est agitée 5 minutes et on ajoute 2,5 g (30 mmoles) d'hydrogénog (6,7 4,9 carbonate de sodium puis d'érythromycine A préalablement dissous dans 150 ml de tétrahydrofuranne. Le mélange réactionnel est alors laissé sous agitation pendant 10 heures en laissant remonter à température ambiante (chromatographie sur couche mince de gel de silice : chlorure de méthylène/ méthanol 10%). La solution est versée sur 60 ml d'eau puis extraite à l'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée puis concentrée sous vide partiel. Le produit brut ainsi obtenu est chromatographié sur colonne de gel de silice (HPLC) en utilisant l'éluant : acétate d'éthyle (7)/ hexane (3) pour aboutir à l'isolement de 4,1 g (60% de rendement) de O-rétinoyl (all-trans)-2'-érythromycine A pur.

Microanalyse : $C57H93NO_{14}, 4H_{2}O$; M = 1088,5

C H N
Calculé %: 62,89 9,35 1,29
Trouvé %: 62,91 8,90 1,29

RMN du 13c (CDCl3, réf. interne TMS)

Effets / négatifs en l'(-2 ppm) et 3'(-1,9 ppm) indiquent la position de l'ester en 2'. Les carbones C"20 (14,1 ppm), C"14 (119,36 ppm) et C"12 (135,19 ppm) sont en accord avec la stéréochimie all-trans de la chaîne rétinoïque.

15

20

25

30

35

10

EXEMPLE DE PREPARATION 3

Préparation du O-rétinoyl(all-trans)-3-clindamycine

Dans un ballon, sous atmosphère inerte, on dissout 5 g (16,6 mmoles) d'acide rétinoïque (all-trans) dans 30 ml de tétrahydrofuranne anhydre; le mélange réactionnel est refroidi à 0°C puis on verse 6 ml (76 mmoles) de pyridine anhydre et 1,6 ml (16,6 mmoles) de chloroformiate d'éthyle; la solution est agitée 5 minutes et on ajoute 1,25 g (15 mmoles) d'hydrogénocarbonate de sodium puis 2,35 g (5,5 mmoles) de clindamycine préalablement dissous dans 100 ml d'un mélange tétrahydrofuranne (8)/pyridine (2). Le mélange réactionnel est alors laissé sous agitation pendant 10 heures en laissant remonter à température ambiante (chromatographie sur couche mince de gel de silice : chlorure de méthylène/méthanol 5%). La solution est versée sur 80 ml d'eau puis extraite à l'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée puis concentrée sous vide partiel. Le produit brut ainsi obtenu est chromatographié sur colonne de gel de silice (HPLC) en utilisant l'éluant : acétate d'éthyle (5)/hexane (5) pour aboutir à l'isolement de 2,15 g (55% de rendement) de O-rétinoyl (all-trans)-3-clindamycine pur.

F = 62°C

5

15

20

25

30

35

$$\sum_{D}^{22} = +50^{\circ} (C = 100 \text{ mg/ml dichlorométhane})$$

10 D
Microanalyse : C₃₈H₅₉N₂SO₆Cl,2,5H₂O ; M = 752,5

C H N

Calculé %: 60,44 8,08 3,23

Trouvé %: 60,66 8,57 3,72

RMN du 13C (CDCl3, réf. interne TMS): effets (négatifs en position 4 (-2,8 ppm) et en position 2 (-1,9 ppm). Les déplacements chimiques du C"14 (117,84 ppm) et du C"20 (14,11 ppm) confirment la stéréochimie all-trans de la chaîne rétinoyle.

EXEMPLE DE PREPARATION 4

Préparation du 0-rétinoyl(13-cis)-3-clindamycine

Dans un ballon, sous atmosphère inerte, on dissout 5 g (16,6 mmoles) d'acide rétinoïque (13-cis) dans 30 ml de tétrahydrofuranne anhydre; le mélange réactionnel est refroidi à 0°C puis 1'on verse 6 ml (76 mmoles) de pyridine anhydre et 1,6 ml (16,6 mmoles) de chloroformiate d'éthyle; la solution est agitée 5 minutes et on ajoute 1,25 g (15 mmoles) d'hydrogénocarbonate de sodium puis 2,35 g (5,5 mmoles) de clindamycine préalablement dissous dans 100 ml d'un mélange tétrahydrofuranne (8)/pyridine (2). Le mélange

réactionnel est alors laissé sous agitation pendant 10 heures en laissant remonter à température ambiante (chromatographie sur couche mince de gel de silice; chlorure de méthylène/méthanol 5%). La solution est versée sur 80 ml d'eau puis extraite à l'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée puis concentrée sous vide partiel. Le produit brut ainsi obtenu est chromatographié sur colonne de gel de silice (HPLC) en utilisant l'éluant : acétate d'éthyle (5)/hexane (5) pour aboutir à l'isolement de 2 g (51% de rendement) de O-rétinoyl(13-· cis)-3-clindamycine pur. F = 95°C (hexane/acétate d'éthyle)

Microanalyse : $C_{38}H_{59}ClN_{2}SO_{6}$; M = 707.4

C

8,41 Calculé % : 64,52 8,45

5

10

20

25

Trouvé % : 64,47

RMN du 13C (CDC13, réf. interne TMS)

La position de l'ester est indiquée par l'effet & positif en 3 (+1,77 ppm) et les effets négatifs en 2 (-1,4 ppm) et 4 (-2,5 ppm). La configuration 13-cis est confirmée par le C*20 (20,93 ppm) et le C"14 (115,94 ppm).

EXEMPLE DE PREPARATION 5

Préparation du O-rétinoyl(13-cis)-3-lincomycine

Dans un ballon, sous atmosphère inerte, on 5 dissout 5 g (16,6 mmoles) d'acide rétinoïque (13-cis) dans 30 ml de tétrahydrofuranne anhydre; le mélange réactionnel est refroidi à 0°C puis l'on verse 6 ml (76 mmoles) de pyridine anhydre et 1,6 ml (16,6 mmoles) de chloroformiate d'éthyle; la solution est agitée 5. minutes et on ajoute 1,25 g (15 mmoles) d'hydrogéno-10 carbonate de sodium puis 2,2 g (5,4 mmoles) de lincomycine préalablement dissous dans 100 ml d'un mélange tétrahydrofuranne (7) / pyridine (3). Le mélange réactionnel est alors laissé sous agitation pendant 10 heures en laissant remonter à température ambiante 15 (chromatographie sur couche mince de gel de silice : chlorure de méthylène/mêthanol 10%). La solution est versée sur 100 ml d'eau puis extraite à l'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée puis concentrée sous vide partiel. Le 20 produit brut ainsi obtenu est chromatographié sur colonne de gel de silice (HPLC) en utilisant l'éluant : acétate d'éthyle (8) / hexane (2) pour aboutir à l'isolement de 1,85 g (50% de rendement) de O-rétinoyl 25 (13-cis)-3-lincomycine pur.

F = 95° (hexane/acétate d'éthyle)

30

Microanalyse : $C_{38}H_{60}N_{2}SO_{7}$, 2, $5H_{2}O$; M = 734, 5

C H
Calculé %: 62,18 9,03
Trouvé %: 62,33 8,64

RMN du 13C (CDCl3, réf. interne TMS)

5

15

20

25

30

La position de l'ester est indiquée par l'effet β positif en 3 (+1,6 ppm) et les effets χ négatifs en position 2 (-2,4 ppm) et 4 (-1,9 ppm). La configuration 13-cis est confirmée par le C"20 (20,98 ppm) et le C"14 (115,83 ppm).

EXEMPLE DE PREPARATION 6

Préparation du mélange de monoesters de O-rétinoyl(alltrans)-7-lincomycine, O-rétinoyl(all-trans)-3 10 mycine et O-rétinoyl (all-trans)-2 lincomycine

Dans un ballon, sous atmosphère inerte, on dissout 30 g (74 mmoles) de lincomycine dans 300 ml de N,N-diméthylformamide anhydre puis 830 mg (7,4 mmoles) de tertiobutylate de potassium sont ajoutés et l'on poursuit l'agitation à température ambiante pendant 90 minutes. On verse alors une solution de 13 g (37 mmoles) de rétinoyl(all-trans)-l imidazole dans 150 ml de N,N-diméthylformamide et le milieu résultant est agité à température ambiante pendant 12 heures (chromatographie sur couche mince de gel de silice : chlorure de méthylène/méthanol 7,5%). La solution est versée sur 500 ml d'eau puis extraite à l'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée puis concentrée sous vide partiel. Le produit brut ainsi obtenu est chromatographié sur colonne de gel de silice en utilisant l'éluant : acétate d'éthyle (7)/hexane (3) pour aboutir à l'isolement de 39 g (77%) d'un mélange de monoesters rétinoïques (all-trans) de lincomycine en positions 2, 3 et 7.

RMN du 13C (CDCl3, réf. interne TMS)

- Effets (négatifs en 8 (-2,5 ppm) et en 6 (-3,8 ppm)
indiquent le lieu d'estérification d'un monoester en
position 7,

5

10

15

25

30

- Effet / négatif en position 1 (-4 ppm) indique le monoester en position 2 et les effets / négatifs en 2 (-2 ppm) et 4 (-2,6 ppm) indiquent la position du monoester en position 3. Les positions du C1 sont à 85,06 ppm pour le monoester en 2, à 88,45 ppm pour le monoester en 7 et à 89,67 ppm pour le monoester en position 3.

La configuration de la chaîne rétinoïque all-trans est indiquée pour le C"14 à 117,78 ppm et pour le C"20 à 14,08 ppm; on note une trace d'isomérisation par la présence d'un pic à 115,2 ppm (C"14) indiquant l'isomère 13-cis.

EXEMPLE DE PREPARATION 7

Préparation du mélange des monoesters de O-rétinoyl (all-trans)-2 clindamycine, O-rétinoyl(all-trans)-3 clindamycine et O-rétinoyl(all-trans)-4 clindamycine

Dans un ballon, sous atmosphère inerte, on dissout 20 g (47 mmoles) de clindamycine dans 250 ml de N,N-diméthylformamide anhydre puis 527 mg (4,7 mmoles) de tertiobutylate de potassium sont ajoutés au milieu réactionnel qui est alors agité à température ambiante pendant 90 minutes. On verse alors une solution de 8,250 g (23,5 mmoles) de rétinoyl(all-trans)-1 imidazole dans 150 ml de N,N-diméthylformamide anhydre et le milieu résultant est agité à température ambiante pendant 12 heures (chromatographie sur couche mince de gel de silice : chlorure de méthylène/méthanol 5%). La solution

est ensuite versée sur 500 ml d'eau puis extraite à l'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée puis concentrée sous vide partiel. Le produit brut ainsi obtenu est chromatographié sur colonne de gel de silice (HPLC) en utilisant l'éluant : acétate d'éthyle (5)/hexane (5) pour aboutir à l'isolement de 28 g (85%) d'un mélange de monoesters rétinoïques (all-trans) de clindamycine en positions 2, 3 et 4.

10 RMN du 13C (CDCl3, réf. interne TMS)

- Effet & négatif en position 1 (-3 ppm) indique la position de l'ester en 2,

- Effets & négatifs en position 4 (-2,8 ppm) et 2 (-1,9 ppm) indiquent le monoester en position 3 et effet & négatif faible en position 3 indique le monoester en

Des positions du C₁ sont à 84,63 ppm pour le monoester en 2, à 88,79 ppm pour le monoester en 3 et à 87,98 ppm pour le monoester en 4.

La configuration all-trans de la chaîne rétinoïque est majoritaire (C"14 à 117,5 ppm et C"20 à 14,08 ppm) mais des traces d'isomérisation sont nettes, notamment en C"20 et en C"14.

20

5.

EXEMPLE 1

SHAMPOOING ANTI-CHU'E (à usage fréquent)

5	- Lauryl éther sulfa	ite de sod	iium ·	. 7	g
,	- Hydroxyéthyl cellu	ılose		2	g
				0,4	g
	- Clindamycine			0,5	g
	- Octopirox			0,75	g
	- X-bisabolol- Butylhydroxy tolu	Ane (BHT)		0,3	
10	- ButAluAgroxy corn	(0,05	g
	- Parfum- Triéthanolamine- H2O	qsp qsp	pH = 6,5	100	g
	•				

15

EXEMPLE 2

SHAMPOOING TRAITANT ANTI-CHUTE

20	 Tensio-actif non ionique obtenu par condensation de 3,5 moles de glycidol sur un diol en C₁₁-C₁₄ selon FR 2 091 516 Ester linoléique d'érythromycine 	12,5 1 0,5	g
	- Octopirox	0,5	
25	- Hydrocortisone	0,2	g
	- BHT	100	g
•	- H ₂ O qsp		

EXEMPLE 3

LOTION ANTI-CHUTE (produit non rincé)

5 ·	- Clindamycine - Ciclopirox - Hydrocortisone - Parfum - Eau/éthanol (70/30 V/V) qsp	0,5 g 0,5 g 0,2 g 0,05g
10	EXEMPLE 4	
	GEL MOUSSANT ANTI-CHUTE	
20	- Lauryl éther sulfate de triéthanolamine - Carbopol - Chlorure de sodium - Glycérol - Acide glycyrrhétinique - Octopirox - Ester all trans rétinoïque d'érythromycine - BHT - H2O qsp	8 g 2 g 3 g 1,5 g 0,8 g 0,05g 0,3 g
25		

25

EXEMPLE 5

SPRAY CAPILLAIRE ANTI-CHUTE

		30	g
5	- Ethanol - Gomme de Xanthane vendue sous la dénomina-		
	tion de Keltrol par la société KELCO	2	g
		0,5	g
10	OctopiroxEster linolénique d'érythromycine	0,2	g g
	- BHT	0,0	
	- Parfum - H2O qsp	100	g
15	On conditionne cette composition dispositif aérosol classique en présence de agent propulseur constitué par un mélange de F	6 g (un i'un 2 et

REVENDICATIONS

1. Composition destinée à être utilisée pour particulier cheveux, en traitement des diminuer leur chute, caractérisée par le fait qu'elle contient dans un milieu approprié pour une application topique au moins un composé répondant à la formule :

$$R_4$$
 R_2
 R_3
 R_1
 R_2

dans laquelle : 15

5

10

20

25

30

R1 désigne un atome d'hydrogène, un groupment alkyle, linéaire ou ramifié, ayant l à 17 atomes de carbone, cycloalkyle ayant 5 à 8 atomes de carbone, groupement laquelle le cycloalkyl-alkylène, dans alkylène a l à 4 atomes de carbone, aryle, aralkyle, dans laquelle le groupement alkyle a l à 4 atomes de carbone, arylalcényle, dans laquelle le groupement alcényle a 2 à 4 atomes de carbone, les groupements aryle pouvant être substitués par un groupement alkyle ayant 1 à 4 atomes de carbone ou bien alcoxy ayant 1 à 4 atomes de carbone;

R2 désigne hydrogène, alkyle ayant 1 à 4 atomes de carbone, alcényle ayant 2 à 4 atomes de carbone, un atome d'halogène ou un radical benzyle;

R3 désigne hydrogène, alkyle ayant 1 à 4 atomes de carbone ou phényle; et

R4 désigne hydrogène, alkyle ayant 1 à 4 atomes de carbone, alcényle ayant 2 à 4 atomes de carbone, méthoxyméthyle ou un atome d'halogène ou un radical benzyle, ainsi que les sels cosmétiquement ou pharmaceutiquement acceptables de ces composés.

2. Composition selon la revendication l, caractérisée par le fait qu'elle contient la 1-hydroxy 4-méthyl 6-(2,4,4-triméthylpentyl) 2-(1H)-pyridone et la 6-cyclohexyl 1-hydroxy 4-méthyl 2-(1H)-pyridone.

5

20

25

30

- 3. Composition selon la revendication l ou 2, caractérisée par le fait qu'elle contient également des agents anti-inflammatoires stéroïdiens ou non.
- 4. Composition selon la revendication 3, caractérisée par le fait que les agents antiinflammatoires sont choisis parmi l'hydrocortisone, l'indométhacine, l'acide glycyrrhétinique, l'
 bisabolol, la bétaméthasone, l'acétonide de la fluorinolone, la désoxymétasone.
 - 5. Composition selon l'une quelconque des revendications l a 4, caractérisée par le fait qu'elle contient également des agents antibactériens choisis parmi les macrolides et les pyranosides.
 - 6. Composition selon la revendication 5, caractérisée par le fait que les macrolides sont choisis parmi l'érythromycine ou ses dérivés et que les pyranosides sont choisis parmi la lincomycine et la clindamycine et leurs dérivés.
 - 7. Composition selon l'une quelconque des revendications 5 et 6, caractérisée par le fait que les dérivés d'érythromycine sont choisis parmi l'estolate, l'éthylcarbonate, l'éthylsuccinate, le glucoheptonate, le lactobionate, le priopionyl laurylsulfate, le propionate, le stéarate, le linoléate, les esters mono-éniques, bi- ou tri-éniques d'érythromycine, que les dérivés de clindamycine sont choisis parmi le chlorhydrate, le palmitate, le phosphate, et que le dérivé de lincomycine est un chlorhydrate.

8. Composition selon l'une quelconque des revendications 5 à 7, caractérisée par le fait que les dérivés d'érythromycine, de lincomycine et de clindamycine sont choisis parmi les esters d'acide rétinoïque, all trans et 13-cis d'érythromycine A, de lincomycine et de clindamycine ainsi que leurs sels pharmaceutiquement ou cosmétiquement acceptables.

5

10

15

20

25

30

- 9. Composition selon l'une quelconque des revendications l à 8, caractérisée par le fait que les dérivés de pyridone sont présents dans des proportions comprises entre 0,0l et 5% en poids par rapport au poids total de la composition.
- 10. Composition selon l'une quelconque des revendications 5 à 9, caractérisée par le fait que les agents antibactériens sont présents dans des proportions comprises entre 0,01 et 5% en poids et en particulier entre 0,01 et 3% en poids.
- 11. Composition selon l'une quelconque des revendications 3, 4 ou 9, caractérisée par le fait que les agents anti-inflammatoires sont présents dans des proportions comprises entre 0,01 et 5% en poids pour l'hydrocortisone, l'indométhacine et l' <-bisabolol, dans des proportions de l'ordre de 0,001 et 0,02% en poids pour les dérivés de bétaméthasone, de fluorinolone ou de désoxyméthasone.
- 12. Composition selon l'une quelconque des revendications l à ll, caractérisée par le fait qu'elle se présente sous forme de lotions, de shampooings, de mousses, de crèmes, de gels, de sticks, de spray, de baumes.
- 13. Composition selon l'une quelconque des revendications l à 12, caractérisée par le fait que le milieu approprié pour une application topique est constitué par de l'eau ou un mélange d'eau et de

solvants physiologiquement acceptables.

5

10

15

14. Composition selon l'une quelconque des revendications l à 13, caractérisée par le fait que les compositions contiennent également des agents épaississants, des agents tensio-actifs, des agents conservateurs, des régulateurs de pH, des colorants, des polymères cationiques, anioniques, non ioniques, amphotères, des parfums et tout autre adjuvant utilisé en application topique.

15. Procédé de traitement cosmétique des cheveux, caractérisé par le fait que l'on applique sur ces cheveux au moins une composition telle que définie dans l'une quelconque des revendications l à 14.

16. Utilisation de la composition telle que définie dans l'une quelconque des revendications l à 14, pour la préparation d'une composition destinée au traitement pharmaceutique de la chute des cheveux.

Post Office Box 15646 Pittsburgh, Pennsylvania 15

CERTIFICATE OF ACCURACY

STATE OF <u>Pennsylvania</u>
COUNTY OF <u>Allegheny</u>

<u>Warren T. McClurg</u> deposes and says that the attached English translation of a copy of the original French document of (copy attached):

Patent 2 618 068

is a true and complete translation to the best of my knowledge and belief.

Director

Sworn to and subscribed before me on this 4th day of June 2003.

NOTARY PUBLIC

. Noternal Seel
Jamie Me Shirowedk, Marory Public
Contar Thep., Let Air County
Fig. Commission Explose Oct. 17, 2005
Member Pennsylveria Association of Noteries

18

FRANCE

11 Publication No:

2 618 068

(use only ordering copies)

NATIONAL INSTITUTE OF INDUSTRIAL PROPERTY

21 National Registration No:

88 09407

A1 .

PARIS

51 Int Cl4: A 61 K 7/06// C 07 D 213/80

12 71 Applicant(s): L'OREAL, S.A. - FR 22 Date of deposition: Jul 11, 1988 30 Priority: LU, Jul 17, 1987, No. 88894 72 Inventor(s): Didier Saint-Léger 43 Date published: BOPI "Patents" No. 3, Jan 20, 1989

PATENT APPLICATION

60 References to other related national documents:

73 Patentee(s):

74 Representative(s): Bureau D.A. Casalonga-Josse

- Composition Based on Derivatives of Hydroxypyridone to Diminish Hair Loss 54
- Composition based on derivatives of Hydroxypyridone to diminish hair loss. 57 Composition to diminish hair loss contains at least one compound having the formula:

See original

where:

R₁ denotes hydrogen, alkyl, cycloalkyl, cycloalkyl-alkylene;

R₂ denotes hydrogen, alkyl, alkenyl, halogen or benzyl;

R₃ denotes hydrogen, alkyl or phenyl;

R4 denotes hydrogen, alkyl, alkenyl, methoxymethyl, halogen or benzyl.

Composition Based on Derivatives of Hydroxypyridone to Diminish Hair Loss.

The invention relates to compositions to diminish hair loss based on derivatives of hydroxypyridone

It has been known for a longtime to those skilled in the art that natural hair loss in men, reflects an overall hair follicle equilibrium between the alternate phases of growing (anagene) and falling out (telogen). The average ratio of the number follicles in the anagene phase to that in the telogen phase is of the order of 9 (90/10). The percentage of follicles in the at rest phase (catagen) appears to be very low.

The natural loss of hair can be estimated, on the average, at several hundred hairs per day for a normal physiological state.

It is known, moreover, that certain factors such as hormonal imbalance, physiological stress, malnutrition, can accentuate the phenomenon.

:In certain characteristically inflammatory dermatoses of the scalp such as for example psoriasis, or dysseborrhoeic dermatitis, hair loss can be greatly increased or bring about greatly disturbed follicle cycles.

The hydroxypyridone derivatives are known already. Among the most representative compounds, one may mention the ciclopirox or 6-cyclohexyl 1-hydroxy 4-methyl, 2-(1H)-pyridone known as an antifungal agent and octopirox, or also the 1-hydroxy 4-methyl 6-(2,4,4-trimethylpentyl)-2-(1H)-pyridone known for its antipellicular properties.

Surprisingly, the applicant has now discovered that the utilization of these derivatives allows one to diminish hair loss.

According to one particularly preferred embodiment, it has been established that, whether or not associated with anti-inflammatory steroids such as, in particular, hydrocortisone, indomethacin, glycyrrhetinic acid, 1^{α} -bisabolol, betamethasone, fluoronilone acetonide, desoxymethasone, permits further enhancement of this effect.

The object of the invention is thus a new composition based on hydroxy pyridone for diminishing hair loss.

A further object of the invention consists of their application to treatment of the hair, and the scalp.

Other objects of the invention will be apparent upon reading the description and the examples that follow.

The composition conforming to the invention is essentially characterized by the fact that it contains, in an appropriate medium for topical treatment, at least one compound corresponding to formula (I).

see original (I)

where,

R₁ denotes a hydrogen atom, a linear or branched alkyl group, having 1 to 17 carbon atoms, cycloalkyls having 5 to 8 carbon atoms, cycloalkyl-alkylene, an alkylene group having 1 to 4 carbon atoms, aryl, aralkyl, an alkyl group having 1 to 4 carbon atoms, aryl-alkenyl, the alkenyl group having 2 to 4 carbon atoms, the cycloalkyl and aryl groups capable of being substituted by an alkyl group having 1 to 4 carbon atoms, as well as an alkoxy group having 1 to 4 carbon atoms.

R₂ denotes hydrogen, alkyl having 1 to 4 carbon atoms, alkenyl having 2 to 4 carbon atoms, a halogen atom or a benzyl group.

R₃ denotes hydrogen, alkyl having 1 to 4 carbon atoms or phenyl, and

R₄ denotes hydrogen, alkyl-having 1 to 4 carbon atoms, alkenyls having 2 to 4 carbon atoms, methoxymethyl or a halogen atom or a benzyl group such that their salts are cosmetically or pharmaceutically acceptable.

Among these compounds, those that are particularly preferred are the 1-hydroxy 4-methyl 6-(2,4,4-trimethylpentyl) 2-(1H)-pyridone and the 6-cyclohexyl 1-hydroxy 4-methyl 2-(1H)-pyridone.

Among the utilizable salts one may cite the lower alkanolamine salts such as ethanolamine, diethanolamine, amine or alkylamine salts, quaternary ammonium salts as well as salts with inorganic cations, alkaline, ammonium and alkaline earth salts.

Compositions conforming to the invention contain according to a particularly preferred embodiment, in association with the pyridones defined above, steroid anti-inflammatory agents such as more particularly, hydrocortisone, indomethacin, glycyrrhetinic acid, 1' α -bisabolol, betamethasone, fluorinolone acetonide, desoxymethasone, etc.

In another preferred form of the invention, the composition additionally contains antibacterial agents selected in particular from antibiotics of the macrolide family and more particularly erythromycin and its derivatives, the pyranosides such as linomycin and its derivatives and clindamycin and its derivatives.

Among the erythromycin derivatives, one may cite in particular erythromycin itself and its derivatives, such as the estolate, the ethyl carbonate, the ethyl succinate, the glucoheptonate, the lactobinate, the propionyl lauryl sulfate, the propionate, the stearate, the linoleate, the mono-enic esters such as the mono-oleate of erythromycin A. Among the derivatives of clindamycin, one may additionally cite clindamycin itself, the hydrochloride, the palmitate, and the phosphate. Among linomycin derivatives, one may cite the hydrochloride and linomycin itself.

Other utilizable derivatives within the scope of the invention are the retinoates of these antibiotics and in particular the a11-trans and 13-cis retinoic acid esters of erythromycin and clindamycin and their pharmaceutically acceptable salts such as described in particular in the applicant's French patent application No. 86.06528. The retinoic esters in position 2 'of erythromycin are represented in particular by the formula:

see original

where R denotes the 11-trans or the 13-cis retinyl group, and R' denotes H, the retinyl group having the formula:

see original (III)

The retinoic esters in position 3 of linomycin and clindamycin may be represented by the formulas:

see original see original

(IV) (V)

where R has the same meaning as above.

These different retinoic esters may be prepared by different esterification processes and preferably in an anhydrous organic solvent, in particular in trahydrofuran alone or mixed with another organic solvent such as pyridine, causing an excess of carbon dioxide mixed with all-trans or 13-cis retinoic acid (prepared in situ, for example from ethyl chloroformate and all-trans or 13-cis acid) to react with erythromycin A, linomycin or clindamycin in the form of a base, in the presence of an organic or mineral base such as pyridine and/or sodium bicarbonate.

Another esterification procedure, in particular of linomycin and clindamycin consists of utilizing the imidazolides of retinoic acids in an anhydrous solvent like N, N-dimethylformamide, in the presence of a base like sodium or potassium tertiobutylate. According to the latter procedure, the ester in position 7 of linomycin is obtained mostly with esters in position 2, 3 or 4. In the same manner one obtains a mixture of monoesters in positions 2, 3 and 4 of clindamycin.

Other erythromycin A derivatives are represented by formula (II) described in particular in FR-A-2 582 000 in which:

R or R' denotes a linear bi- or tri-enic C_{18} acyl group having an all-cis (Z) stereochemical configuration and the remaining R or R' denotes a hydrogen atom.

According to one preferred embodiment, R or R' represent the following groups:

Z-9, Z-12-octadecadienyl or linolyl

Z-9, Z-12, Z-15-octadecatrienyl or α -linelyl and

Z-6, Z-9, Z-12-octadecatrienyl or γ-linolenyl.

One may cite in particular l'o-linolyl-2' erythromycin A, l'o-linolyl-4" erythromycin A, and l'o- α -linolyl-4" erythromycin A.

According to the invention, the pyridones are utilized in compositions conforming to the invention in proportions between 0.01 and 5 wt % in relation to the total composition weight. Anti-inflammatory agents are utilized preferably in proportions between 0.01 and 5 wt % for hydrocortisone or indomethacin and $1^{\circ}\alpha$ -bisabolol, in proportions of the order of 0.001 and 0.02 wt % for the derivatives of betamethasone, fluorinolone or desoxymethasone.

The antibacterial agents, in particular clindamycin, erythromycin, linomycin or their derivatives, are preferably utilized in proportions between 0.01 and 5 wt % in particular between 0.01 and 3 wt %.

The compositions conforming to the invention can be provided in diverse forms customarily utilized in pharmacy or cosmetics for treatment of the scalp.

They can be provided more particularly in the form of lotions, shampoos, mousses, creams, gels, sticks, spray, baumes, powders, stick or liquid soap. When the composition is liquid it can include an aqueous component or a mixture of water and acceptable physiologically acceptable organic solvents.. Among solvents, one can mention the lower alcohols such as ethanol, isopropyl alcohol, acetone, ethylene glycol, monomethyl, monoethyl or monobutyl ethers of ethylene glycol, propylene glycol, monoethyl ethers of propylene glycol and dipropylene glycol, alkyl esters of short chain C₁₋₄ acids and ethers of polytetrahydrofuran.

These compositions can contain thickening agents such as cellulose or cellulose derivatives such as heterobiopolysaccharides like xanthane gum, polyacrylic acids reticulated by a polyfunctional agent such as the products sold under the tradename CARBOPOL.

These compositions may also include other additives customarily utilized in cosmetics and pharmacy in particular surface-active agents, perfumes, preservatives, pH regulators, colorings, cationic anionic non-ionic or amphoteric polymers.

Another object of the invention consists of the utilization of pyridone derivatives such as defined above for preparation of pharmaceutical compounds intended for treatment of hair loss.

Finally the invention has the object of providing a cosmetic hair treatment process that consists of applying to the hair at least one of the compositions defined above, the composition essentially having an affect on the hair's appearance.

The following examples are intended to illustrate the invention without being limiting in any way.

PREPARATION EXAMPLE 1

Preparation of o-retinyl (13-cis)-2' erythromycin A

One dissolves in a flask, in an inert atmosphere, 5g (16.6 mmoles) of retinoic acid (13-cis) into 35 ml of anhydrous tetrahydrofuran; the reaction mixture is cooled to 0 °C, then 3 ml (38 mmoles) of anhydrous pyridine and 1.6 ml (16.6 mmoles) of ethyl chloroformate are added. The solution is stirred for 5 minutes and one then adds 2.5 g (30 mmoles) of sodium bicarbonate, then 4.9 g (6.7 mmoles) of erythromycin A previously dissolved in 150 ml of tetrahydrofuran. The reaction mixture is then stirred for 10 hours while allowing the temperature to rise to ambient (thin layer of silica gel chromatography; methylene chloride/methanol 10%). The solution is poured into 60 ml of water, then extracted with ethyl acetate. The organic phase is dried with magnesium sulfate under partial vacuum. The raw product thus obtained is chromatographed with a silica gel column (HPLC) utilizing as eluant: ethyl acetate (7)/hexane (3) resulting in the recovery of 4.4 g (65 % yield) of pure o-retinyl (13-cis)-2'-erythromycin A.

F = 82 °C (hexane/ethyl acetate)

 $[\alpha]_D^{22} = 17^{\circ} (C = 6 \text{ mg/ml dichloromethane})$

Microanalysis: $C_{57}H_{93}NO_{14}$: M = 1016.4

	·C	H	N
Calculated %:	67.36	9.22	1.38
Found %:	67.48	9.32	1.38

Infrared: band at 1735 cm⁻¹ (ester)
NMR of ¹³C (CDCl₃, internal ref. TMS)

Negative γ effects in 1' (-2.2 ppm) and 3' (-2.1 ppm) indicate the position of the ester at 2'. The carbons C''_{20} (20.94 ppm), C''_{14} (117.28 ppm) and C''_{12} (131.9 ppm) of the retinoic chain are in agreement with the 13-cis stereochemistry of the retinoic chain.

PREPARATION EXAMPLE 2

Preparation of o-retinyl (a11-trans)-2'-erythromycin A

One dissolves in a flask in an inert atmosphere 5g (16.6 mmoles) of retinoic acid (13-cis) into 35 ml of anhydrous tetrahydrofuran; the reaction mixture is cooled to 0 °C, then one adds 3 ml (38 mmoles) of anhydrous pyridine and 1.6 ml (16.6 mmoles) of ethyl chloroformate. The solution is stirred for 5 minutes and one adds 2.5 g (30 mmoles) of sodium bicarbonate, then 4.9 g (6.7 mmoles) of erythromycin A previously dissolved in 150 ml of tetrahydrofuran. The reaction mixture is then stirred for 10 hours while allowing the temperature to rise to ambient (thin layer of silica gel chromatography; methylene chloride/methanol 10%). The solution is poured into 60 ml of water, then extracted with ethyl acetate. The organic phase is dried with magnesium sulfate under partial vacuum. The raw product thus obtained is chromatographed with a silica gel column (HPLC) utilizing as eluant: ethyl acetate (7)/hexane (3) resulting in the recovery of 4.1 g (60% yield) of pure oretinyl (a11-trans)-2'-erythromycin A.

$$[\alpha]_D^{22} = -65^\circ$$
 (C = 2 mg/ml dichloromethane)
Microanalysis: C₅₇H ₉₃NO₁₄.4H₂O: M = 1088.5

	·C	H	N
Calculated %:	62,89	9.35	1.29
Found %:	62.91	8.90	1.29

NMR of ¹³C (CDCl₃, internal ref. TMS)

Negative γ effects in 1' (-2 ppm) and 3' (-1.9 ppm) indicate the position of the ester at 2'. The carbons $C"_{20}$ (14.21 ppm), $C"_{14}$ (119.36 ppm) and $C"_{12}$ (135.19 ppm) are in agreement with the all-trans stereochemistry of the retinoic chain.

PREPARATION EXAMPLE 3

Preparation of o-retinyl (a11-trans)-3-clindamycin

One dissolves in a flask in an inert atmosphere 5g (16.6 mmoles) of retinoic acid (a11-trans) into 30 ml of anhydrous tetrahydrofuran; the reaction mixture is cooled to 0 °C, then one adds 6 ml (76 mmoles) of anhydrous pyridine and 1.6 ml (16.6 mmoles) of ethyl chloroformate. The solution is stirred for 5 minutes and one adds 1.25 g (15 mmoles) of sodium bicarbonate, then 2.35 g (5.5 mmoles) of clindamycin previously dissolved in 100 ml of a mixture of tetrahydrofuran (8)/pyridine (2). The reaction mixture is then stirred for 10 hours while allowing the temperature to rise to ambient (thin layer of silica gel chromatography; methylene chloride/methanol 5%). The solution is poured into 80 ml of water, then extracted with ethyl acetate. The organic phase is dried with magnesium sulfate, filtered then concentrated under partial vacuum. The raw product thus obtained is chromatographed with a silica gel column (HPLC) utilizing as eluant: ethyl acetate(5)/hexane (5) resulting in the recovery of 2.15 g (55% yield) of pure o-retinyl (a11-trans)-3-clindamycin.

F = 62 °C

 $[\alpha]_D^{22} = +50^{\circ} (C = 100 \text{ mg/ml dichloromethane})$

Microanalysis: $C_{38}H_{59}N_2$ SO₆Cl.2.5H₂O: M = 752.5

	C	Ή	N
Calculated %:	60.44	8.08	3.23
Found %:	60.66	8.57	3.72

NMR of ¹³C (CDCl₃, internal ref. TMS): Negative γ effects in position 4 (-2.8 ppm). and in position 2 (-1.9 ppm). The chemical displacement of the C"₁₄ (117.84 ppm) and of C"₂₀ (14.11 ppm) confirm the (a11-trans) stereochemistry of the retinyl chain.

PREPARATION EXAMPLE 4

Preparation of o-retinyl (13-cis)-3-clindamycin

One dissolves in a flask under in an inert atmosphere 5g (16.6 mmoles) of retinoic acid (13-cis) into 30 ml of anhydrous tetrahydrofuran; the reaction mixture is cooled to 0 °C, then one adds 6 ml (76 mmoles) of anhydrous pyridine and 1.6 ml (16.6 mmoles) of ethyl chloroformate. The solution is stirred for 5 minutes and one adds 1.25 g (15 mmoles) of sodium bicarbonate, then 2.35 g (5.5 mmoles) of clindamycin previously dissolved in 100

ml of a mixture of tetrahydrofuran (8)/pyridine (2). The reaction mixture is then stirred for 10 hours while allowing the temperature to rise to ambient (thin layer of silica gel chromatography; methylene chloride/methanol 5%). The solution is poured into 80 ml of water, then extracted with ethyl acetate. The organic phase is dried with magnesium sulfate, filtered then concentrated under partial vacuum. The raw product thus obtained is chromatographed with a silica gel column (HPLC) utilizing as eluant: ethyl acetate (5)/hexane (5) resulting in the recovery of 2 g (51% yield) of pure o-retinyl (13-cis)-3-clindamycin.

F = 95 °C (hexane/ethyl acetate)

 $[\alpha]_D^{20} = +111^{\circ} (C = 15 \text{ mg/ml dichloromethane})$

Microanalysis: $C_{38}H_{59}ClN_2SO_6$: M = 707.4

C H
Calculated %: 64.52 8.41
Found %: 64.47 8.45

NMR of ¹³C (CDCl₃, internal ref. TMS):

The position of the ester is indicated by the positive β effect in 3 (+1.77 ppm) and the negative γ effects in 2 (-1.4 ppm) and 4 (-2.5 ppm). The 13-cis configuration is confirmed by the C"₂₀ (20.93 ppm) and the C"₁₄ (115.94 ppm) values.

PREPARATION EXAMPLE 5

Preparation of o-retinyl (13-cis)-3-linomycin

One dissolves in a flask in an inert atmosphere 5g (16.6 mmoles) of retinoic acid (13-cis) in 30 ml of anhydrous tetrahydrofuran; the reaction mixture is cooled to 0 °C, then one adds 6 ml (76 mmoles) of anhydrous pyridine and 1.6 ml (16.6 mmoles) of ethyl chloroformate. The solution is stirred for 5 minutes and one adds 1.25 g (15 mmoles) of sodium bicarbonate, then 2.2 g (5.4 mmoles) of licomycin previously dissolved in 100 ml of a mixture of tetrahydrofuran (7)/pyridine (3). The reaction mixture is then stirred for 10 hours while allowing the temperature to rise to ambient (thin layer of silica gel chromatography; methylene chloride/methanol 10%). The solution is poured into 100 ml of water, then extracted with ethyl acetate. The organic phase is dried with magnesium sulfate, filtered then concentrated under partial vacuum. The raw product thus obtained is chromatographed with a silica gel column (HPLC) utilizing as eluant: ethyl acetate(8)/hexane (2) resulting in the recovery of 1.85 g (50% yield) of pure o-retinyl (13-cis)-3-lincomycin.

F = 95 °C (hexane/ethyl acetate)

 $[\alpha]_D^{20} = +103^{\circ} (C = 7 \text{ mg/ml dichloromethane})$

Microanalysis: $C_{38}H_{60}N_2 SO_7 .2.5H_2 O$: M = 734.6

C H
Calculated %: 62.18 9.03
Found %: 62.33 8.64

NMR of ¹³C (CDCl₃, internal ref. TMS):

The position of the ester is indicated by the positive β effect in 3 (+1.6 ppm) and the negative γ effects in position 2 (-2.4 ppm) and 4 (-1.9 ppm). The 13-cis configuration is confirmed by the C"₂₀ (20.98 ppm) and the C"₁₄ (115.83 ppm) values.

PREPARATION EXAMPLE 6

<u>Preparation of the mixture of monoesters of o-retinyl (a11-trans)-7-3-lincomycin, o-retinyl (a11-trans)-3, lincomycin and o-retinyl (a11trans)-2 lincomycin</u>

One dissolves in a flask in an inert atmosphere 30 g (74 mmoles) of lincomycin in 300 ml of anhydrous N,N-dimethylformamide then 830 mg (7.4 mmoles) of potassium tertiobutylate are added and it is then stirred for 90 minutes at ambient temperature. A solution of 13 g (37 mmoles) of retinyl (a11-trans)-1 imidazole is added to 150 ml of N,N-dimethylformamide and the resultant mixture is stirred at ambient temperature for 12 hours (thin layer of silica gel chromatography; methylene chloride/methanol 7.5%). The solution is then poured into 500 ml of water, and extracted with ethyl acetate. The organic phase is dried with magnesium sulfate, filtered then concentrated under partial vacuum. The raw product thus obtained is chromatographed with a silica gel column (HPLC) utilizing as eluant: ethyl acetate (7)/hexane (3) resulting in the recovery of 39 g (77% yield) of a mixture of retinoic monoesters (a11-trans) of lincomycin in positions 2, 3 and 7.

NMR of ¹³C (CDCl₃, internal ref. TMS)

- Negative γ effects in 8 (-2.5 ppm) and in 8 (-3.8 ppm) indicate the position of esterification of a monoester in position 7.
- A negative γ effect in position 1 (-4 ppm) indicates the monoester in position 2 and the negative γ effects in 2 (-2 ppm) and 4 (-2.6 ppm) indicate the position of the monoester in position 3. The positions of C_1 are at 95.06 ppm for the monoester in 2 and 88.45 ppm for the monoester in 7 and at 89.67 ppm for the monoester in position 3.

The configuration of the a11-trans retinoic chain is indicated for the C"₂₀ at 14.08 ppm a trace of isomerization is noted by the presence of a peak at 115.2 ppm (C"₁₄) indicating the 13-cis isomer

PREPARATION EXAMPLE 7

<u>Preparation of the mixture of monoesters of o-retinyl (a11-trans)-2 clindamycin, o-retinyl(a11-trans)-3 clindamycin and o-retinyl(a11-trans)-4 clindamycin</u>

One dissolves in a flask in an inert atmosphere 20 g (47 mmoles) of clindamycin into 250 ml of anhydrous N,N-dimethylformamide then 527 mg (4.7 mmoles) of potassium tertiobutylate are added to the reaction mixture that is then stirred at ambient temperature for 90 minutes. A solution of 8.250 g (23.5 mmoles) of retinyl (a11-trans)-1 imidazole is added to 150 ml of anhydrous N, N-dimethylformamide and the resultant mixture is stirred at ambient temperature for 12 hours (thin layer of silica gel chromatography; methylene chloride/methanol 5%). The solution is then poured into 500 ml of water, and extracted with ethyl acetate. The organic phase is dried with magnesium sulfate, filtered then concentrated under partial vacuum. The raw product thus obtained is chromatographed with a silica gel column (HPLC) utilizing as eluant: ethyl acetate (5)/hexane (5) resulting in the recovery of 28 g (85%) of a mixture of retinoic monoesters (a11-trans) of clindamycin in positions 2, 3 and 4.

NMR of ¹³C (CDCl₃, internal ref. TMS)

- Negative y effect in position 1 (-3 ppm) indicates the position of the ester in 2,
- Negative γ effects in position 4 (-2.8 ppm) and 2 (-1.9 ppm) indicate the monoester in position 3 and the weak negative γ effect in position 3 indicates the monoester in 4.

The positions of C_1 are at 84.63 ppm for the monoester in 2, at 8.79 ppm for the monoester in 3 and at 87.98 ppm for the monoester in 4.

The all-trans configuration of the retinoic chain is in the majority (C"14 at 117.5 ppm and C"20 a 14.08 ppm, but there are clear traces of isomerization, in particular in C"₂₀ and in C"₁₄.

EXAMPLE 1

ANTI-LOSS SHAMPOO (for frequent use)

- Sodium lauryl ethe	er sulfate	7 g
- Hydroxyethyl cellu	ilose	2 g
- Clindamycin		0.4 g
- Octopirox		0.5 g
- α-bisabolol		0.75 g
- Butylhydroxy toluc	ene (BHT)	0.3 g
- Perfume	•	0.05 g
- Triethanolamine	quantity sufficient for $pH = 6$	·
- H ₂ O	quantity sufficient for	100 g

EXAMPLE 2

SHAMPOO TO TREAT HAIR LOSS

- Non-ionic surf	actant obtained by condensation of	
3.5 moles of g	lycidol with a $C_{11-14}\alpha$ -diol following	3
FR 2 091 516		12.5 g
- Linoleic ester of erythromycin		1 g
- Octopirox		0.5 g
- Hydrocortisone		0.5 g
- BHT		0.2 g
- H ₂ O	quantity sufficient for	100 g

EXAMPLE 3

ANTI-LOSS LOTION (non-rinse product)

- Clindamycin	0.5 g
- Ciclopirox	0.5 g
- Hydrocortisone	0.2 g
- Perfume	0.05 g
- Water/ethanol (70/30 v/v) quantity sufficient for	100 g

EXAMPLE 4

ANTI-LOSS FOAMY GEL

- Lauryl ether sulfate of triethanolamine		8 g
- Carbopol		2 g
- Sodium chloride		2 g
- Glycerol		3 g
- Glycyrrhetinic acid		1.5 g
- Octopirox		0.8 g
- Retinic all trans ester of erythromycin		0.05 g
- BHT	• •	0.3 g
- H ₂ O	quantity sufficient for	100g

EXAMPLE 5

ANTI-LOSS CAPILLARY SPRAY

- Ethanol		20 g
- Xanthane gum	sold under the tradename	
Keltrol by the firm Kelco		2 g
- Octopirox		0.5 g
- BHT		0.2 g
- Perfume		$0.05\mathrm{g}$
- H ₂ O	quantity sufficient for	100 g

This composition is put into a classical aerosol device with 6 g of a propellant consisting of a mixture of FREON 12 and 114 (40/60).

CLAIMS

1. Composition intended to be utilized for treatment of hair, in particular to diminish its loss, characterized by the fact that it contains, in a medium suitable for topical application, at least one compound that corresponds to the formula:

see original (I)

where:

R₁ denotes a hydrogen atom, a linear or branched alkyl group, having 1 to 17 carbon atoms, cycloalkyl having 5 to 8 carbon atoms, cycloalkyl-alkylene, in which the alkylene group has 1 to 4 carbon atoms, aryl, aralkyl, in which the alkyl group has 1 to 4 carbon atoms, arylalkenyl group in which the alkenyl group has 2 to 4 carbon atoms, the aryl groups being able to be substituted by an alkyl group having 1 to 4 carbon atoms or by an alkoxy group having 1 to 4 carbon atoms.

R₂ denotes hydrogen, alkyl having 1 to 4 carbon atoms, alkenyl having 2 to 4 carbon atoms, a halogen atom or a benzyl group.

R₃ denotes hydrogen, alkyl having 1 to 4 carbon atoms or phenyl, and

R₄ denotes hydrogen, alkyl having 1 to 4 carbon atoms, alkenyl having 2 to 4 carbon atoms, methoxymethyl or a halogen atom or a benzyl group such that the salts are cosmetically or pharmaceutically acceptable.

- 2. Composition according to claim 1 characterized by the fact that it contains the 1-hydroxy 4-methyl 6-(2,4,4-trimethylpentyl)-2-(1H)-pyridone and the 6-cyclohexyl 1-hydroxy 4-methyl 2-(1H)-pyridone.
- 3. Composition according to claim 1 or 2, characterized by the fact that it may or may not contain anti-inflammatory steroids.
- 4. Composition according to claim 3, characterized by the fact that the antiinflammatory agents are selected from among hydrocortisone, indomethacin, glycyrrhetinic acid, 1'α-bisabolol, betamethasone, fluorinolone acetonide, desoxymethasone.
- 5. Composition according to any of claims 1 to 4, characterized by the fact that it also contains antibacterial agents selected from the macrolides and the pyranosides.
- 6. Composition according to claim 5, characterized by the fact that the macrolides are selected from erythromycin or its derivatives and that the pyranosides are selected from linomycin and clindamycin and their derivatives.

- 7. Composition according to any of claims 5 and 6, characterized by the fact that the erythromycin derivatives are selected the estolate, the ethyl carbonate, the ethyl succinate, the glucoheptonate, the lactobionate, the propionyl lauryl sulfate, the propionate, the stearate, the linoleate, the mono-anic esters, bi or tri-anics of erythromycin, that the derivatives of clindamycin are selected from the hydrochloride, the palmitate, the phosphate, and that the derivative of lincomycin is a hydrochloride.
- 8. Composition according to any of claims 5 to 7, characterized by the fact that the derivatives of erythromycin, of lincomycin and of clindamycin are selected from the esters of retinoic acid, all trans and cis-trans erythromycin A, lincomycin and clindamycin as well as pharmaceutical and cosmetically acceptable salts.
- 9. Composition according to any of claims 1 to 8, characterized by the fact that the pyridone derivatives are present in proportions between 0.01 and 5 wt % relative to the total weight of the composition.
- 10. Composition according to any of claims 5 to 9, characterized by the fact that the antibacterial agents are present in the proportion between 0.01 and 5 wt % and in particular from 0.01 and 3 wt %.
- 11. Composition according to any of claims 3,4 and 9, characterized by the fact that the anti-inflammatory agents are present in the proportion between 0.01 and 5 wt % for the hydrocortisone, the indomethacine and the 1'\alpha-bisabolol, in proportions of the order of 0.001 and 0.02 wt % for the derivatives of betamethasone, fluorolinolone or desoxymethasone.
- 12. Composition according to any of claims 1 to 11, characterized by the fact that it is provided in the form of lotions, shampoos, mousses, creams, sticks, spray or baumes.
- 13. Composition according to any of claims 1 to 12, characterized by the fact that the medium suitable for topical application consists of water or a mixture of water and physiologically acceptable solvents.
- 14. Composition according to any of claims 1 to 13, characterized by the fact that the application medium also contain thickening agents, surface-active agents, preservatives, pH regulators, colorings, cationic, anionic, non-ionic or amphoteric polymers, perfumes and any other additive suitable for topical application.
- 15. Cosmetic treatment method for the hair, characterized by the fact that at least one composition such as defined in any of clams 1 to 14 is applied to the hair.
- 16. Utilization of composition such as defined in any of claims 1 to 14, for the preparation intended for pharmaceutical treatment of hair loss.