

Laboratorios Electrónica de Potencia Rectificador Trifásico de 6-Pulsos

Prof. Jesús Peña-Rodríguez

Introducción

Los rectificadores trifásicos se usan comúnmente en la industria para producir tensión continua para grandes cargas. En el rectificador de seis pulsos se producen seis transiciones por cada periodo de la tensión del generador, es decir, la frecuencia fundamental de la tensión de salida es 6ω [1]. Los rectificadores trifásicos son más eficientes y pueden manejar grandes potencias, ya que en su salida presentan menor rizado de la señal, sin embargo, en muchas aplicaciones el factor de potencia y la distorsión armónica total de la línea se ven afectados, por lo que se requiere el uso de filtros de armónicos.

Objetivos

- Comprender el funcionamiento del rectificador trifásico de seis pulsos
- Implementar un generador trifásico
- Implementar un rectificador trifásico de seis pulsos con carga R y RL
- Entender el comportamiento del rectificador trifásico con cargas R y RL
- Analizar las componentes espectrales del voltaje de salida del rectificador trifásico

Materiales

- () C	വി	osco	n_{10}
- '	$\mathcal{O}_{\mathcal{O}}$		JSCO	DIO

Genedador

Multímetro

Protoboard

 \bullet 6 diodos rectificadores (1N4001 - 1N4004)

■ Inductancia 10 mH

■ Condensador $1 \mu F$

 \blacksquare Resistencia de $4.7\,\mathrm{k}\Omega$

■ 10 resistencias de $10 \,\mathrm{k}\Omega$

■ Amplificador operacional LM324

Para el correcto funcionamiento de la practica se deben usar los valores exactos de los componentes

1. Montaje

El montaje del rectificador trifásico de seis pulsos se basa en el esquema mostrado en la Fig. 1. El recuadro de línea punteada muestra el generador trifásico. Este tiene como entrada una señal sinusoidal monofásica (V_s) de $9\,V_{peak}$ a $60\,\mathrm{Hz}$. Esta señal es desfasada a 120° y 240° mediante un arreglo de amplificadores operacionales con el fin de generar los tres voltajes de línea $(V_{an},\,V_{bn}$ y $V_{cn})$. El rectificador trifásico se compone de seis diodos $(D_1,\,D_2,\,D_3,\,D_4,\,D_5\,\mathrm{y}\,D_6)$. La carga contiene un elemento resistivo R_L $(10\,\mathrm{k}\Omega)$ y otro inductivo L $(10\,\mathrm{mH})$. Las resistencias de R_1 a R_9 son de $10\,\mathrm{k}\Omega$. La red de desfase contiene un condensador C de $1\,\mathrm{\mu}\mathrm{F}$ y una resistencia R de $4.7\,\mathrm{k}\Omega$.

3ϕ Generator R4 R1 R3 V_{an} D5 R7 V_{bn} R5 V_o U3 R6 D4 D6 D2 V_{cn} C R9

Figura 1: Esquema del rectificador trifásico con carga RL. El generador trifásico (línea punteada) se emula mediante una señal monofásica desfasada en 0° (V_{an}), 120° (V_{bn}) y 240° (V_{cn}) [2].

2. Actividades

- \blacksquare Conecta la carga resistiva. Grafique las señales de salida del generador trifásico $V_{an},\ V_{bn}$ y $V_{cn}.$
- \bullet Grafique las formas de onda de V_{out} y V_{D1} .

- Registre los valores de V_m , ω , el voltaje medio de salida V_{out} y la corriente media de salida I_{out} .
- Grafique el espectro de Fourier de la tensión de salida e identifique la frecuencia fundamental y las primeras 3 componentes armónicas.
- Conecte el inductor a la carga. Mida los valores de V_m , ω , V_{out} e I_{out} .
- \bullet Grafique las formas de onda de $V_{out},\,V_{D1},\,V_{R}$ y $V_{L}.$
- Grafique el espectro de Fourier de la tensión de salida e identifique la frecuencia fundamental y las primeras 3 componentes armónicas.
- Calcule $I_{s,rms}$, $V_{L-L,rms}$ y la potencia aparente S teniendo en cuenta que $I_{o,rms} \approx I_{out}$

El informe de laboratorio debe contener las mediciones, metodología, resultados, análisis de resultados y conclusiones.

Referencias

- [1] P.D. Daniel W. Hart. Power Electronics. McGraw-Hill Education, 2010.
- [2] Swagatam. 3-Phase Signal Generator Circuit using Opamp. https://www.homemade-circuits.com/three-phase-signal-generator-circuit/, 2019. [Online; accessed 28-September-2021].