July 20, 2013

Chapter 4: Linear Algebra Background

Uri M. Ascher and Chen Greif Department of Computer Science The University of British Columbia {ascher,greif}@cs.ubc.ca

Slides for the book A First Course in Numerical Methods (published by SIAM, 2011) http://www.ec-securehost.com/SIAM/CS07.html

Goals of this chapter

- To provide common background (no numerical algorithms) in linear algebra, necessary for developing numerical algorithms elsewhere;
- to collect several concepts and definitions for easy referencing;
- to ensure that those who have the necessary background can easily skip this chapter.

Outline

- Basic concepts: linear systems and eigenvalue problems
- Vector and matrix norms
- Symmetric positive definite and orthogonal matrices
- Singular value decomposition

• Find
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 which satisfies $a_{11}x_1 + a_{12}x_2 = b_1,$ $a_{21}x_1 + a_{22}x_2 = b_2,$ or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$

- Unique solution iff lines are not parallel
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular;
 - $\det(A) \neq 0$
 - A has linearly independent columns or rows
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
 - range $(A) = \mathbb{R}'$
 - $null(A) = \{0\}.$

- Find $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ which satisfies $a_{11}x_1 + a_{12}x_2 = b_1,$ $a_{21}x_1 + a_{22}x_2 = b_2,$ or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$
- Unique solution iff lines are not parallel.
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular:
 - $det(A) \neq 0$
 - A has linearly independent columns or rows
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
 - range $(A) = \mathbb{R}^n$
 - $\text{mull}(A) = \{0\}$

- Find $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ which satisfies $a_{11}x_1 + a_{12}x_2 = b_1,$ $a_{21}x_1 + a_{22}x_2 = b_2,$ or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$
- Unique solution iff lines are not parallel.
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular;
 - $det(A) \neq 0$:
 - A has linearly independent columns or rows
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
 - range $(A) = \mathbb{R}'$
 - $null(A) = \{0\}.$

- Find $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ which satisfies $a_{11}x_1 + a_{12}x_2 = b_1,$ $a_{21}x_1 + a_{22}x_2 = b_2,$ or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$
- Unique solution iff lines are not parallel.
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular;
 - $\det(A) \neq 0$
 - A has linearly independent columns or rows
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$
 - range $(A) = \mathbb{R}^n$
 - $null(A) = \{0\}.$

- Find $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ which satisfies $a_{11}x_1 + a_{12}x_2 = b_1,$ $a_{21}x_1 + a_{22}x_2 = b_2,$ or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$
- Unique solution iff lines are not parallel.
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular;
 - $det(A) \neq 0$;
 - A has linearly independent columns or rows;
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$
 - range $(A) = \mathbb{R}^n$
 - $null(A) = \{0\}.$

- Find $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ which satisfies $a_{11}x_1 + a_{12}x_2 = b_1,$ $a_{21}x_1 + a_{22}x_2 = b_2,$ or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$
- Unique solution iff lines are not parallel.
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular;
 - $det(A) \neq 0$;
 - A has linearly independent columns or rows;
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
 - range $(A) = \mathbb{R}^n$
 - $\operatorname{null}(A) = \{0\}.$

- Find $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ which satisfies $a_{11}x_1 + a_{12}x_2 = b_1,$ $a_{21}x_1 + a_{22}x_2 = b_2,$ or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$
- Unique solution iff lines are not parallel.
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular;
 - $det(A) \neq 0$;
 - A has linearly independent columns or rows;
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
 - range $(A) = \mathbb{R}^n$;

- Find $\mathbf{x}=\begin{pmatrix}x_1\\x_2\end{pmatrix}$ which satisfies $a_{11}x_1+a_{12}x_2 = b_1,$ $a_{21}x_1+a_{22}x_2 = b_2,$
- or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

 Unique solution **iff** lines are not parallel.
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular;
 - $det(A) \neq 0$;
 - A has linearly independent columns or rows;
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
 - range $(A) = \mathbb{R}^n$;
 - $null(A) = \{0\}.$

- Find $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ which satisfies $a_{11}x_1 + a_{12}x_2 = b_1,$ $a_{21}x_1 + a_{22}x_2 = b_2,$ or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$
- Unique solution iff lines are not parallel.
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular;
 - $det(A) \neq 0$;
 - A has linearly independent columns or rows;
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
 - range $(A) = \mathbb{R}^n$;
 - $null(A) = \{0\}.$

Basic concepts: eigenvalue problems

ullet A scalar λ and a vector ${\bf x}$ are an eigenvalue-eigenvector pair (or eigenpair) if

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- For a diagonalizable $n \times n$ real matrix A there are n (generally complex-valued) eigenpairs $(\lambda_j, \mathbf{x}_j)$, with $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ nonsingular, and $X^{-1}AX$ is a diagonal matrix with the eigenvalues on the main diagonal.
- Similarity transformation: Given a nonsingular matrix S, the matrix $S^{-1}AS$ has the same eigenvalues as A. (Exercise: what about the eigenvectors?)

Basic concepts: eigenvalue problems

 \bullet A scalar λ and a vector \boldsymbol{x} are an eigenvalue-eigenvector pair (or eigenpair) if

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- For a diagonalizable $n \times n$ real matrix A there are n (generally complex-valued) eigenpairs $(\lambda_j, \mathbf{x}_j)$, with $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ nonsingular, and $X^{-1}AX$ is a diagonal matrix with the eigenvalues on the main diagonal.
- Similarity transformation: Given a nonsingular matrix S, the matrix $S^{-1}AS$ has the same eigenvalues as A. (Exercise: what about the eigenvectors?)

Basic concepts: eigenvalue problems

• A scalar λ and a vector x are an eigenvalue-eigenvector pair (or eigenpair) if

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- For a diagonalizable $n \times n$ real matrix A there are n (generally complex-valued) eigenpairs $(\lambda_i, \mathbf{x}_i)$, with $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ nonsingular, and $X^{-1}AX$ is a diagonal matrix with the eigenvalues on the main diagonal.
- Similarity transformation: Given a nonsingular matrix S, the matrix $S^{-1}AS$ has the same eigenvalues as A. (Exercise: what about the eigenvectors?)

Outline

- Basic concepts: linear systems and eigenvalue problems
- Vector and matrix norms
- Symmetric positive definite and orthogonal matrices
- Singular value decomposition

Vector norms

A **vector norm** is a function " $\|\cdot\|$ " from \mathbb{R}^n to \mathbb{R} that satisfies:

- **1** $\|\mathbf{x}\| \ge 0$; $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$,

This generalizes absolute value or magnitude of a scalar.

Vector norms

A **vector norm** is a function " $\|\cdot\|$ " from \mathbb{R}^n to \mathbb{R} that satisfies:

- **1** $\|\mathbf{x}\| \ge 0$; $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$,

This generalizes absolute value or magnitude of a scalar.

Famous vector norms

• ℓ_2 -norm

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

• ℓ_{∞} -norm

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

• ℓ_1 -norn

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.$$

Famous vector norms

• ℓ_2 -norm

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

• ℓ_{∞} -norm

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

• ℓ_1 -norm

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.$$

Famous vector norms

• ℓ_2 -norm

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

• ℓ_{∞} -norm

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

• *ℓ*₁-norm

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.$$

Example

• Problem: Find the distance between

$$\mathbf{x} = \begin{pmatrix} 11\\12\\13 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} 12\\14\\16 \end{pmatrix}.$$

Solution: let

$$\mathbf{z} = \mathbf{y} - \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$$

and find |z|.

Calculate

$$\|\mathbf{z}\|_1 = 1 + 2 + 3 = 6,$$

 $\|\mathbf{z}\|_2 = \sqrt{1 + 4 + 9} \approx 3.7417,$
 $\|\mathbf{z}\|_{\infty} = 3.$

Example

Problem: Find the distance between

$$\mathbf{x} = \begin{pmatrix} 11\\12\\13 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} 12\\14\\16 \end{pmatrix}.$$

Solution: let

$$\mathbf{z} = \mathbf{y} - \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$$

and find $\|\mathbf{z}\|$.

Calculate

$$\|\mathbf{z}\|_1 = 1 + 2 + 3 = 6,$$

 $\|\mathbf{z}\|_2 = \sqrt{1 + 4 + 9} \approx 3.7417,$
 $\|\mathbf{z}\|_{\infty} = 3.$

Example

Problem: Find the distance between

$$\mathbf{x} = \begin{pmatrix} 11\\12\\13 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} 12\\14\\16 \end{pmatrix}.$$

Solution: let

$$\mathbf{z} = \mathbf{y} - \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$$

and find $\|\mathbf{z}\|$.

Calculate

$$\|\mathbf{z}\|_1 = 1 + 2 + 3 = 6,$$

 $\|\mathbf{z}\|_2 = \sqrt{1 + 4 + 9} \approx 3.7417,$
 $\|\mathbf{z}\|_{\infty} = 3.$

Matrix norms

Induced matrix norm of $m \times n$ matrix A for a given vector norm:

$$||A|| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||.$$

Then consistency properties hold,

$$||AB|| \le ||A|| ||B||, \quad ||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||,$$

in addition to the previously stated three norm properties

Matrix norms

Induced matrix norm of $m \times n$ matrix A for a given vector norm:

$$||A|| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||.$$

Then consistency properties hold,

$$||AB|| \le ||A|| ||B||, \quad ||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||,$$

in addition to the previously stated three norm properties.

Norms

ℓ₂-norm

$$||A||_2 = \sqrt{\rho(A^T A)},$$

$$\rho(B) = \max\{|\lambda|; \ \lambda \text{ is an eigenvalue of } B\}.$$

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{i=1}^{n} |a_{ij}|.$$

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

Norms

ℓ₂-norm

$$||A||_2 = \sqrt{\rho(A^T A)},$$

where ρ is spectral radius

$$\rho(B) = \max\{|\lambda|; \ \lambda \text{ is an eigenvalue of } B\}.$$

• ℓ_{∞} -norm

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{i=1}^{n} |a_{ij}|.$$

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

Norms

ℓ₂-norm

$$||A||_2 = \sqrt{\rho(A^T A)},$$

where ρ is spectral radius

$$\rho(B) = \max\{|\lambda|; \ \lambda \text{ is an eigenvalue of } B\}.$$

ℓ_∞-norm

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

• ℓ₁-norm

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

Norms

ℓ₂-norm

$$||A||_2 = \sqrt{\rho(A^T A)},$$

where ρ is spectral radius

$$\rho(B) = \max\{|\lambda|; \ \lambda \text{ is an eigenvalue of } B\}.$$

ℓ_∞-norm

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{i=1}^{n} |a_{ij}|.$$

ℓ₁-norm

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

Outline

- Basic concepts: linear systems and eigenvalue problems
- Vector and matrix norms
- Symmetric positive definite and orthogonal matrices
- Singular value decomposition

Symmetric positive definite matrices

Extend notion of positive scalar to matrices:

$$A = A^T$$
, $\mathbf{x}^T A \mathbf{x} > 0$, all $\mathbf{x} \neq \mathbf{0}$.

A symmetric matrix is positive definite if and only if all its eigenvalues are positive

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n > 0.$$

Symmetric positive definite matrices

Extend notion of positive scalar to matrices:

$$A = A^T$$
, $\mathbf{x}^T A \mathbf{x} > 0$, all $\mathbf{x} \neq \mathbf{0}$.

A symmetric matrix is positive definite if and only if all its eigenvalues are positive:

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0.$$

Orthogonal vectors

Two vectors ${\bf u}$ and ${\bf v}$ of the same length are orthogonal if

$$\mathbf{u}^T\mathbf{v}=0.$$

Orthonormal vectors: if also $\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1$

Square matrix Q is ${f orthogonal}$ if its columns are pairwise orthonormal, i.e.,

$$Q^T Q = I$$
. Hence also $Q^{-1} = Q^T$.

Important property: for any orthogonal matrix Q and vector \mathbf{x}

$$\|Q\mathbf{x}\|_2 = \|\mathbf{x}\|_2$$

$$||Q||_2 = ||Q^{-1}||_2 = 1$$

Orthogonal vectors

Two vectors ${\bf u}$ and ${\bf v}$ of the same length are orthogonal if

$$\mathbf{u}^T\mathbf{v}=0.$$

Orthonormal vectors: if also $\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1$.

Square matrix Q is ${f orthogonal}$ if its columns are pairwise orthonormal, i.e.,

$$Q^T Q = I$$
. Hence also $Q^{-1} = Q^T$.

Important property: for any orthogonal matrix Q and vector \mathbf{x}

$$\|Q\mathbf{x}\|_2 = \|\mathbf{x}\|_2$$

$$||Q||_2 = ||Q^{-1}||_2 = 1$$

Orthogonal vectors

Two vectors ${\bf u}$ and ${\bf v}$ of the same length are orthogonal if

$$\mathbf{u}^T\mathbf{v} = 0.$$

Orthonormal vectors: if also $\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1$.

Square matrix Q is orthogonal if its columns are pairwise orthonormal, i.e.,

$$Q^T Q = I$$
. Hence also $Q^{-1} = Q^T$.

Important property: for any orthogonal matrix Q and vector \mathbf{x}

$$||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$$

$$||Q||_2 = ||Q^{-1}||_2 = 1$$

Orthogonal vectors

Two vectors ${\bf u}$ and ${\bf v}$ of the same length are orthogonal if

$$\mathbf{u}^T\mathbf{v}=0.$$

Orthonormal vectors: if also $\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1$.

Square matrix Q is **orthogonal** if its columns are pairwise orthonormal, i.e.,

$$Q^T Q = I$$
. Hence also $Q^{-1} = Q^T$.

Important property: for any orthogonal matrix Q and vector \mathbf{x}

$$||Q\mathbf{x}||_2 = ||\mathbf{x}||_2.$$

$$||Q||_2 = ||Q^{-1}||_2 = 1.$$

Outline

- Basic concepts: linear systems and eigenvalue problems
- Vector and matrix norms
- Symmetric positive definite and orthogonal matrices
- Singular value decomposition

Singular value decomposition

Let A be real $m \times n$ (rectangular in general). Then there are orthogonal matrices $U,\ V$ such that

$$A = U\Sigma V^T,$$

where

$$\Sigma = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}, \quad S = \operatorname{diag}\{\sigma_1, \dots, \sigma_r\},$$

with the singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, $\sigma_{r+1} = \cdots = \sigma_n = 0$.

Connection to eigenvalues: $\sigma_i = \sqrt{\lambda_i}$, where λ_i are eigenvalues of $A^T A$.

Singular value decomposition

Let A be real $m \times n$ (rectangular in general). Then there are orthogonal matrices $U,\ V$ such that

$$A = U\Sigma V^T$$
,

where

$$\Sigma = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}, \quad S = \operatorname{diag}\{\sigma_1, \dots, \sigma_r\},$$

with the singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, $\sigma_{r+1} = \cdots = \sigma_n = 0$.

Connection to eigenvalues: $\sigma_i = \sqrt{\lambda_i}$, where λ_i are eigenvalues of $A^T A$.