The group G is isomorphic to the group labelled by [20, 1] in the Small Groups library. Ordinary character table of $G \cong C5$: C4:

	1a	4a	4b	2a	5a	5b	10a	10b
χ_1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	1	1
χ_3	1	E(4)	-E(4)	-1	1	1	-1	-1
χ_4	1	-E(4)	E(4)	-1	1	1	-1	-1
χ_5	2	0	0	-2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$
χ_6	2	0	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$
χ_7	2	0	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$
χ_8	2	0	0	-2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$

Trivial source character table of $G\cong \mathrm{C5}$: C4 at p=5:

Normalisers N_i	N_1				N_2			
p-subgroups of G up to conjugacy in G	P_1				P_2			
Representatives $n_j \in N_i$	1 <i>a</i>	4a	2a	4b	1a	4a	2a	4b
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	5	1	5	1	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	5	-1	5	-1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	5	E(4)	-5	-E(4)	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	5	-E(4)	-5	E(4)	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	-1	1	-1	1	-1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 12, 4, 16, 8)(2, 14, 6, 18, 10)(3, 15, 7, 19, 11)(5, 17, 9, 20, 13)]) \cong C5$

 $N_1 = Group([(1,2,3,5)(4,18,7,20)(6,19,9,16)(8,14,11,17)(10,15,13,12),(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,20),(1,4,8,12,16)(2,6,10,14,18)(3,7,11,15,19)(5,9,13,17,20)]) \cong C5:C4$ $N_2 = Group([(1,12,4,16,8)(2,14,6,18,10)(3,15,7,19,11)(5,17,9,20,13),(1,2,3,5)(4,18,7,20)(6,19,9,16)(8,14,11,17)(10,15,13,12)]) \cong C5:C4$