AM 2C – Resumo dos Slides

Felipe B. Pinto 61387 - MIEQB

28 de janeiro de 2022

Conteúdo

Sl	ide 0 Cônicas e Qua-		6 Espaço Métrico	17
draticas			• Análise Matemática I .	17
1	Degeneração	2	7 Noções Topológicas	17
2	Expressão geral	3	8 Vizinhança	17
3	Espaço	4	9 Ponto de Acumulação	18
4	Reta	5	10 Ponto interior	18
5	Plano	7	11 Ponto exterior	18
6	Parabolas e Paraboloides .	8	12 Ponto fronterio	19
7	Elipse e Elipsóides	10	13 Ponto Aderente	19
8	Hiperboles e Hiperbolóides	12	14 Caracterização de Conjuntos	20
Slide 1 Revisão			Exemplo $1 \dots \dots$	20
•	Algebra Linear	15	Exemplo 2	22
1	Vetores	15	Exemplo $3 \dots \dots$	22
2	Norma	15	15 Conjuntos Separados	24
3	Desigualdade de Hölder .	15	Exemplo $4 \dots \dots$	25
4	Produto Interno	16	Slide 2	26
5	Desigualdade de Cauchy-		1 Funções de variáveis Reais	26
	Schwarz	16	Exemplo 1	26

2	Curvas de Nível	28	7	30
3	Limite Segundo Cauchy .	28	8 Matrix Jacobiana	31
4	Sucessão	29	Slide 3	32
5	Limite segundo Heine	29	Slide 4	33
6	Proposições para limites .	30	Slide 5	34

Slide 0 Cônicas e Quadraticas

Cônicas

Intersecção de uma superfícies cônica com um plano

1 Degeneração

Quando o plano que intersecta a superfície cônica contem o vértice da superfície cônica está é considerada degenerada

Degeneradas

- Ponto
- Reta
- Módulo

Não Degeneradas

- Parábolas
- Elípses
- Hipérboles

2 Expressão geral

$$\mathcal{C}on_m \subset \mathbb{R}^n: egin{cases} (\lambda^T + (p-p')^TA)(p-p') = k & \wedge \ \wedge \{\lambda, p'\} \subset \mathbb{R}^n & \wedge \ \wedge p \in \mathcal{C}_m & \wedge \ \wedge A \in \mathcal{M}_{n imes n} & \wedge \ \wedge k \in \mathbb{R} \end{cases}$$

Forma canônica

$$\mathcal{C}on_m \subset \mathbb{R}^n: egin{cases} (\lambda^T + p^T A)p = k & \wedge \ \wedge \left\{\lambda, p'
ight\} \subset \mathbb{R}^n & \wedge \ \wedge p \in \mathcal{C}on_m & \wedge \ \wedge A \in \mathcal{M}_{n imes n}: \left\{a_{i,j} = 0 orall \, i
eq j & \wedge \ \end{pmatrix} \ egin{cases} \lambda k \in \mathbb{R} \end{cases}$$

Despresa:

- Ponto central (p')
- Rotações (apenas matrizes A diagonais)

para
$$\mathbb{R}^2$$
 e $p' = 0_2$

$$egin{aligned} \left(egin{bmatrix} d \ e \end{bmatrix}^T + egin{bmatrix} x \ y \end{bmatrix} egin{bmatrix} a & c/2 \ c/2 & b \end{bmatrix}
ight) egin{bmatrix} x \ y \end{bmatrix} = -f \implies \ \implies a \, x^2 + b \, y^2 + c \, x \, y + d \, x + e \, y + f = 0 \end{aligned}$$

Para \mathbb{R}^3 e $p'=0_3$

$$egin{pmatrix} \left(egin{bmatrix} g \ h \ i \end{bmatrix}^T & \left[egin{array}{ccc} x \ d/2 & b & f/2 \ d/2 & b & f/2 \ e/2 & f/2 & c \end{array}
ight) & \left[egin{array}{c} x \ y \ z \end{array}
ight] = -j \implies \ \implies a\,x^2 + b\,y^2 + c\,z^2 + d\,x\,y + e\,x\,z + f\,y\,z + \ +\,g\,x + h\,y + i\,z + j = 0 \ \end{cases}$$

3 Espaço

Equação vetorial

$$E_m \subset \mathbb{R}^n: \left\{P = A + \sum_{i=1}^m \lambda_i \, U_i: \left\{egin{array}{ccc} \{P,A\} \subset E & \wedge \ \wedge & \{i,n,m\} \subset \mathbb{N} & \wedge \ \wedge & m \leq n \end{array}
ight.
ight.$$

Equações paramétricas

$$P_i = A_i + \sum_{j=1}^m \lambda_{j,i} \, U_{j,i}$$

Exemplos

•
$$m = 0 \implies \text{ponto}$$

•
$$m=2 \implies \text{plano}$$

•
$$m = 1 \implies \text{reta}$$

4 Reta

Equação vetorial

$$r \subset \mathbb{R}^n : \left\{ P = A + \lambda \, U : \left\{ egin{array}{ll} \{P,A\} \in r & \wedge \ \wedge \ U \in \mathbb{R}^n ackslash \{0_{\mathbb{R}^n}\} & \wedge \ \end{pmatrix}
ight\}
ight.$$

Definem uma reta:

• 2 Pontos

• 1 Ponto e 1 vetor

Vetor diretor: Vetor não nulo parapelo a reta

Equações cartezianas

(i) Equações paramétricas

$$P_i = A_i + \lambda \, U_i \quad orall \, i \leq n$$

(ii) Equações normais

$$egin{aligned} P_i &= A_i + \lambda \, U_i & \wedge \ \wedge & P_j &= A_j + \lambda \, U_j & \end{pmatrix} \Longrightarrow \ & \Longrightarrow \ \lambda &= rac{P_i - A_i}{U_i} = rac{P_j - A_j}{U_j} \left\{ egin{array}{c} \{i,j\} \leq n & \wedge \ \{U_i,U_j\}
eq 0 \end{array}
ight.$$

(iii) Equações reduzidas

$$r \in \mathbb{R}^n: \left\{ egin{array}{ll} P_i = A_i' + P_j \, U_i': \ \left\{ i,j
brace \in \mathbb{N} & \wedge \ \wedge & \{i,j\} \leq n & \wedge \ \wedge & i
eq j & \wedge \ \wedge & U_i' = U_i/U_j & \wedge \ \wedge & A_i' = A_i - A_j \, U_i' & \wedge \ \wedge & U_j
eq 0 \end{array}
ight\}
ight\}$$

$$\begin{cases}
P_i = A_i + \lambda U_i & \wedge \\
\wedge \lambda = (P_j - A_j)/U_j : U_j \neq 0
\end{cases} \implies P_i = A_i + U_i (P_j - A_j)/U_j = \\
= A'_i + U'_i P_j : \begin{cases}
U'_i = U_i/U_j & \wedge \\
\wedge A'_i = A_i - A_j U'_i & \wedge \\
\wedge U_j \neq 0
\end{cases}$$

Reduzida pois possui uma equação a menos comparando com as equações cartezianas

5 Plano

Equação vetorial

$$\pi \in \mathbb{R}^n : \left\{ P = A + \sum_{j=1}^2 \lambda_j \, U_j : \left\{ egin{array}{ccc} \{P,A\} \in \pi & \wedge \ \wedge & \{n,j\} \in \mathbb{N} & \wedge \ \wedge & n \geq 2 & \wedge \ \wedge & \lambda \in \mathbb{R}^2 & \wedge \ \wedge & U_j \in \mathbb{R}^n \, orall \, j \end{array}
ight\}
ight\}$$

Definem um plano:

• 3 Pontos

- 1 Ponto e 1 Vetor
- 1 Ponto e 2 vetores não paralelos

Vetores diretores: Vetores não nulos e não colineares paralelos ao plano.

Equações cartesianas

(i) Equações paramétricas

$$P_i = A_i + \sum_{j=1}^2 \lambda_{j,i} \, U_{j,i}$$

(ii) Equação geral

$$A + \sum_{i=1}^n \lambda_i \, P_i = 0$$

6 Parabolas e Paraboloides

Definições

Foco e Diretriz

$$\mathcal{P}ar_m \subset \mathcal{C}on_m : egin{bmatrix} |\overrightarrow{pf}| = |\overrightarrow{pL}| & \wedge \ \wedge \ p \in \mathcal{P}ar & \wedge \ \wedge \ f \in \mathbb{R}^n & \wedge \ \wedge \ L \in E_{m-1} & \wedge \ \wedge \ \langle m,n
brace \in \mathbb{N} & \wedge \ \wedge \ 2 \geq m \geq n \end{pmatrix}$$

Em um espaço de n, parabola em m é o conjunto de pontos que possuem a mesma distancia do foco (um ponto, $f \in \mathbb{R}^n$) e de uma diretriz (um espaço, $L \subset \mathbb{R}^{m-1}$)

Equação canônica para \mathbb{R}^2

$$egin{aligned} \left(egin{bmatrix} 0 \ -1 \end{bmatrix}^T + egin{bmatrix} x \ y \end{bmatrix}^T egin{bmatrix} (4\,p)^{-1} & 0 \ 0 & 0 \end{bmatrix}
ight) egin{bmatrix} x \ y \end{bmatrix} = 0 \implies \ rac{x^2}{4\,p} = y \end{aligned}$$

Nota: Diretriz possue equação y = -p

Equação canônica para paraboloide elíptico em \mathbb{R}^3

$$egin{pmatrix} \left(\left[egin{array}{c} 0 \ 0 \ 0 \ -1 \end{array}
ight]^T + \left[egin{array}{c} x \ y \ z \end{array}
ight]^T \left[egin{array}{c} 1/a^2 & 0 & 0 \ 0 & 1/b^2 & 0 \ 0 & 0 & 0 \end{array}
ight] \left[egin{array}{c} x \ y \ z \end{array}
ight] = 0 \implies \ \Rightarrow z = rac{x^2}{a^2} + rac{y^2}{b^2} \end{array}$$

Equação canônica para paraboloide hiperbólico em \mathbb{R}^3

$$egin{pmatrix} \left(\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}^T + \begin{bmatrix} x \\ y \\ z \end{bmatrix}^T \begin{bmatrix} 1/a^2 & 0 & 0 \\ 0 & -1/b^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \implies \\ \Rightarrow z = \frac{x^2}{a^2} - \frac{y^2}{b^2} \end{aligned}$$

6.1 Caracteristicas de uma parabola

7 Elipse e Elipsóides

Definições

 $\overline{ ext{Equaç}}$ ão canônica para \mathbb{R}^2

$$egin{align} \left(egin{bmatrix} x \ y \end{bmatrix}^T egin{bmatrix} a^{-2} & 0 \ 0 & b^{-2} \end{bmatrix}
ight) egin{bmatrix} x \ y \end{bmatrix} = 0 \implies \ rac{x^2}{a^2} + rac{y^2}{b^2} = 1 \end{aligned}$$

Equação canônica para \mathbb{R}^3

$$\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}^T \begin{bmatrix} a^{-2} & 0 & 0 \\ 0 & b^{-2} & 0 \\ 0 & 0 & c^{-2} \end{bmatrix} \end{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \implies$$

$$\implies \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Equações paramétricas

$$\mathcal{E} li_3 \subset \mathbb{R}^3: egin{bmatrix} e = e' + \lambda & egin{bmatrix} \cos(heta) & \cos(\lambda) \ \cos(heta) & \sin(\lambda) \ \sin(heta) \end{bmatrix} & \wedge \ \sin(heta) \end{bmatrix} & \wedge \ \delta(e',\lambda) \subset \mathbb{R}^3 & \wedge \ \delta(heta,\lambda) \subset \mathbb{R} & \wedge \ \delta(heta,\lambda) \subset \mathbb{R} & \wedge \ \delta(heta) \leq \pi/2 & \wedge \ \delta(heta) \leq \lambda \leq 2\,\pi \end{pmatrix}$$

Conjunto de pontos os quais a soma da distancia de qualquer ponto a ambos os focos é igual para qualquer ponto.

7.1 Caracteristicas de um elipsoide

• Focos

• Vértices: Extremos do eixo maior

- Eixo Maior
- Eixo Menor

• Centro: Cruzamento dos eixos

8 Hiperboles e Hiperbolóides

Definições

Equação canônica para \mathbb{R}^2

$$egin{pmatrix} \left(\begin{bmatrix} x \\ y \end{bmatrix}^T \begin{bmatrix} 1/a^2 & 0 \\ 0 & -1/b^2 \end{bmatrix}
ight) \begin{bmatrix} x \\ y \end{bmatrix} = 1 \implies \ rac{x^2}{a^2} - rac{y^2}{b^2} = 1$$

$\overline{ ext{Equaç}}$ ão canônica para \mathbb{R}^3

Hiperbole de 1 folha

$$egin{aligned} \left(egin{bmatrix} x \ y \ z \end{bmatrix}^T egin{bmatrix} 1/a^2 & 0 & 0 \ 0 & 1/b^2 & 0 \ 0 & 0 & -1/c^2 \end{bmatrix}
ight) egin{bmatrix} x \ y \ z \end{bmatrix} = 1 \implies \ & \Rightarrow rac{x^2}{a^2} + rac{y^2}{b^2} - rac{z^2}{c^2} = 1 \end{aligned}$$

Hiperbole de 2 folha

$$egin{aligned} \left(egin{bmatrix} x \ y \ z \end{bmatrix}^T egin{bmatrix} 1/a^2 & 0 & 0 \ 0 & -1/b^2 & 0 \ 0 & 0 & -1/c^2 \end{bmatrix}
ight) egin{bmatrix} x \ y \ z \end{bmatrix} = 1 \implies \ & \Rightarrow rac{x^2}{a^2} - rac{y^2}{b^2} - rac{z^2}{c^2} = 1 \end{aligned}$$

Equações paramétricas para \mathbb{R}^3

unica folha

$$egin{cases} x = a \cosh(v) \cos(heta) \ y = b \cosh(v) \sin(heta) \ z = c \sinh(v) \ \begin{cases} v \in (-\infty, \infty) \ heta \in [0, 2 \, pi) \end{cases}$$

duas folhas

$$egin{cases} x = a \sinh(v) \cos(heta) \ y = b \sinh(v) \sin(heta) \ z = \pm c \cosh(v) \ \begin{cases} v \in [0, \infty) \ heta \in [0, 2\,pi) \end{cases}$$

Slide 1 Revisão

Algebra Linear

1 Vetores

$$\mathbb{R}^n = \{(x_1,x_2,\ldots,x_n): x_i \in \mathbb{R} \wedge i \in \{1,2,\ldots,n\}\}$$

2 Norma

$$N(X)_p = ||X||_p := \left(\sum_{k=1}^n |x_i|^p
ight)^{1/p} = \sqrt{Xig|X} \quad X \in \mathbb{R}^n \ N(\cdot): E o \mathbb{R}$$

- $N(X) \ge 0 (\land N(X) = 0 \iff x = 0)$
- $N(\lambda X) = |\lambda| N(X) \dots \forall \lambda \in \mathbb{R}$
- $N(X+Y) \le N(X) + N(Y) \dots \forall \{X,Y\} \in E$

3 Desigualdade de Hölder

$$\sum_{k=1}^n |x_k\,y_k| \leq \left(\sum_{k=1}^n |x_k|^p
ight)^{1/p} \left(\sum_{k=1}^n |y_k|^q
ight)^{1/q} egin{cases} q>1 \ p>1 \ p>1 \ p^{-1}+q^{-1}=1 \end{cases}$$

4 Produto Interno

$$p(X,Y) = Xig|Y = \sum_{k=1}^n x_k\,y_k \quad \{X,Y\} \in E$$
 $P: E imes E o \mathbb{R}$

- $X|X \ge 0 \land (X|X=0 \iff X=0)$
- $X|Y = Y|X \dots \forall \{X,Y\} \in E$
- $\lambda X|Y = \lambda (X|Y) \dots \dots \forall \lambda \in \mathbb{R} \land \forall \{X,Y\} \in E$
- $(X+Y)|_{Z} = (X|_{Z}) + (Y|_{Z}) \dots \dots \dots \forall \{X,Y,Z\} \in E$

5 Desigualdade de Cauchy-Schwarz

$$|X|Y| \leq \sqrt{X|X|}\sqrt{Y|Y|}$$

$$\begin{aligned} |X|Y| &\leq \sqrt{X|X}\sqrt{Y|Y} \iff |X|Y|^2 \leq (X|X)(Y|Y) \iff \\ &\iff |X|Y|^2 - (X|X)(Y|Y) = |2X|Y|^2 - 4(X|X)(Y|Y) \leq 0 \iff \\ &\iff \left\{ f(t) := (X+tY)|(X+tY) \right. \\ &\iff \left\{ f(t) = (Y|Y)t^2 + 2(X|Y)t + X|X \geq 0 \right. \end{aligned}$$

6 Espaço Métrico

$$d(X,Y) := egin{cases} \sqrt{\sum\limits_{k=1}^n (x_i-y_i)^2} & \{X,Y\} \in \mathbb{R}^n \ & ||X-Y|| & \{X,Y\} \in E \end{cases}$$

- $d(X,Y) \ge 0 \land (d(X,Y) = 0 \iff X = Y)$
- d(X,Y) = d(X,Y) $\forall \{X,Y\} \in E$
- $d(X,Y) \le d(X,Z) + d(Z,Y) \dots \dots \dots \forall \{X,Y,Z\} \in E$

Análise Matemática I

7 Noções Topológicas

- $A \in \mathcal{A} \land \emptyset \in \mathcal{A}$
- $\bigcap_{k=i}^{j} a_k \in \mathcal{A} \dots$ $a_k \in \mathcal{A}$

8 Vizinhança

$$B(X_0,r):=\{X\in\mathbb{R}^n: d(X,X_0)=||X-X_0||_2< r\}$$

$$B(X_0, r) = \begin{cases} \mathcal{V}_r(x_0) = \{ x \in \mathbb{R} : |x - x_0| < r \} = (X_0 - r, X_0 + r) & x_0 \in \mathbb{R} \\ \{ X \in \mathbb{R}^2 : \sqrt{(x_1 - x_{01})^2 + (x_2 - x_{02})^2} < r \} & X_0 \in \mathbb{R}^2 \end{cases}$$

9 Ponto de Acumulação

$$X_0 \in \mathbb{R}^n : (B(X_0,r)ackslash \{X_0\}) \cap A
eq \emptyset$$

Conjunto derivado

$$A'\subset \mathbb{R}^n: (B(a_k',r)ackslash \{a_k'\}\cap A
eq \emptyset \quad orall\, k\in \mathbb{K} \wedge r>0$$

10 Ponto interior

$$X_0 \in \mathbb{R}^n: B(X_0,r) \subset A$$

Interior

$$\operatorname{int} A = igl(\ igr) X_k : B(X_k, r) \subset A \quad orall \, k \in \mathbb{K}$$

11 Ponto exterior

$$X_0 \in \mathbb{R}^n: B(X_0,r) \cap A = \emptyset$$

Exterior

$$\operatorname{ext} A = \left[ig | X_k : B(X_k, r) \cap A = \emptyset \ | orall \, k \in \mathbb{K} \wedge r > 0
ight.$$

12 Ponto fronterio

$$X_0 \in \mathbb{R}^n: X_0
otin \operatorname{int} A \cup \operatorname{int} A$$

Fronteira

$$\operatorname{fr} A = \delta A = igl | X_k : X_k
otin \operatorname{int} A \cup \operatorname{ext} A \quad orall \, k \in \mathbb{K}$$

13 Ponto Aderente

$$X_0 \in \mathbb{R}^n : B(X_0,r) \cap A
eq \emptyset$$

Fecho (ou Aderencia)

$$egin{aligned} ar{A} = igcup X_k : B(X_k, r) \cap A
eq \emptyset & orall \, k \in \mathbb{K} \wedge r > 0 \ &= \operatorname{int} A \cup \operatorname{fr} A \end{aligned}$$

14 Caracterização de Conjuntos

C. Aberto

C. Limitado

$$A\subset B(0_n,r)$$
 $r>0$

C. Fechado

C. Compacto

Exemplo 1

$$A = \left\{ X \in \mathbb{R}^2 : 0 < ||X|| < 1
ight\} \cup \left\{ (0,2)
ight\}$$

(i) int *A*

$$= \{X \in \mathbb{R}^2 : 0 < ||X|| < 1\}$$

 $\overline{\text{(ii)}}$ fr A

$$= \left\{ X \in \mathbb{R}^2 : ||X|| = 1 \right\} \\ \cup \left\{ (0,0), (0,2) \right\}$$

(iii) \bar{A}

$$= \operatorname{int} A \cup \operatorname{fr} A =$$

$$= \left\{ X \in \mathbb{R}^2 : ||X|| \le 1 \right\}$$

$$\cup \left\{ (0, 2) \right\}$$

(iv) A'

$$= \left\{ X \in \mathbb{R}^2 : ||X|| \le 1 \right\}$$

(v) Caracterização

- A não é Aberto : $A \neq \text{int } A$
- A não é Fechado : $A \neq \bar{A}$
- A não é Compacto : A não é Fechado
- A é Limitado : $A \subset B(0_2, 3)$

Exemplo 2

$$B=\left\{X\in\mathbb{R}^2:||X||\geq 1
ight\}$$

(i) int *B*

$$= \{X \in \mathbb{R}^2 : ||X|| > 1\}$$

(iii) \bar{A}, A'

$$\bar{A} = A' = A$$

(ii) fr *B*

$$= \{X \in \mathbb{R}^2 : ||X|| = 1\}$$

(iv)

- B é Fechado : $\bar{A} = A' = A$
- B é Ilimitado ∵ não é compacto

Exemplo 3

$$C = \left\{X \in \mathbb{R}^2 : ||X|| < 1 \wedge X \in \mathbb{Q}
ight\} \cup \left\{(3,2)
ight\}$$

(i) int *C*

$$=\emptyset$$

(ii) fr *C*

$$= \left\{X \in \mathbb{R}^2 : ||X|| \le 1\right\}$$

$$\cup \left\{(3,2)\right\}$$

 \bar{C}

$$= \operatorname{fr} C$$

(iv) C'

$$= \left\{ X \in \mathbb{R}^2 : ||X|| \le 1 \right\}$$

- (v) Caracterização
 - C não é aberto : $C \neq \text{int} C$
 - C não é fechado (nem compacto) : $C \neq \bar{C}$
 - C é limitado : $C \subset B(0,4)$

15 Conjuntos Separados

$$ar{A}\cap B=\emptyset\wedge A\cap ar{B}=\emptyset$$

Conjunto Desconexo

$$A\subset \mathbb{R}^n: egin{cases} A_i\cup A_j=A & \wedge \ \wedge ar{A}_i\cap A_j=\emptyset & \wedge \ \wedge A_i\cap ar{A}_j=\emptyset & \end{pmatrix} \quad \{A_i,A_j\}\subset \mathbb{R}^n$$

Conjunto Conexo

$$A\subset \mathbb{R}^2: \left\{egin{array}{ccc} A=A_i\cup A_j & & \wedge \ & ar{A}_i\cap A_j &=\emptyset \wedge \ & \wedge ar{A}_i\cap ar{A}_j &=\emptyset \end{array}
ight) \ \end{array}
ight\} \left\{A_i,A_j
ight\}\subset \mathbb{R}^n$$

Domínio

$$A\subset \mathbb{R}^n: \left\{egin{array}{cccc} A=A_i\cup A_j & & & \wedge \ & & igg(ar{A_i}\cap A_j &=\emptyset & \wedge \ & & ig(\wedge A_i\cap ar{A_j} &=\emptyset & \end{pmatrix} & igcap \ & & & ig(A_i,A_jig)\subset \mathbb{R}^n \end{array}
ight.$$

Exemplo 4

$\overline{\mathbf{E4.1}}$ $A \cup B$

$$A=\left\{X\in\mathbb{R}^2:||X||<1
ight\} \ B=\left\{X\in\mathbb{R}^2:x_1=1
ight\}$$

 $A \cup B$ Não é separado

 $:: \bar{A} \cap B = \{(1,0)\}$

E4.2) $C \cup D$

$$C = \left\{X \in \mathbb{R}^2: ||X|| \leq 1
ight\} \ D = \left\{X \in \mathbb{R}^2: x_1 \geq 1.1
ight\}$$

 $C \cup D$ é separado

E4.3) S

$$S = \left\{ X \in \mathbb{R}^2 : ||X|| < 1
ight\} \cup \left\{ (0,2)
ight\}$$

S é desconexo

 $\overline{\mathbf{E4.4})}$ $S \setminus \{(0,\underline{2})\}$

é um domínio pois é aberto e conexo

1 Funções de variáveis Reais

$$f:D\subset\mathbb{R}^n o\mathbb{R} \ x\in\mathbb{R}^n o y=f(x)$$

1.1 Graf *f*

$$\operatorname{Graf} f \subset \mathbb{R}^{n+1} : egin{cases} p = (x_1, \dots, x_n, y) & \wedge \ \wedge \, x \in D & \wedge \ \wedge \, y = f(x) \end{cases}$$

Exemplo 1

$$f(x) = \sqrt{16 - 2\,x^2 - y^2}$$

(i) Domínio

$$Df = \left\{ x \in \mathbb{R}^2 : 16 - 2x^2 - y^2 \ge 0 \right\} = \left\{ x \in \mathbb{R}^2 : \frac{x^2}{(2\sqrt{2})^2} + \frac{y^2}{4^2} \le 1 \right\}$$

o domínio descreve uma elípse nos pontos dos divisores.

(ii) Contradomínio

$$D'f = [0, 4]$$

(iii) Gráfico

Graf
$$f = \left\{ x \in \mathbb{R} : (x, y) \in D \ f \land x_3 = \sqrt{16 - 2 x^2 - y^2} \right\} =$$

$$= \left\{ x \in \mathbb{R} : (x, y) \in D \ f \land x_3 \ge 0 \land \frac{x^2}{(2\sqrt{2})^2} + \frac{y^2}{4^2} + \frac{x_3^2}{4^2} = 1 \right\}$$

Que descreve um semielipsóide acima do plano $x \circ y$

2 Curvas de Nível

$$x \in Df : f(x) = c$$

3 Limite Segundo Cauchy

$$\lim_{x o A}f(x)=B$$

(i) Standalone

$$\implies \forall \, \delta > 0 \,\exists \, \varepsilon > 0 : ((\forall \, x \in \mathbb{D} \land ||x - A|| < \varepsilon) \implies |f(x) - b| \le \delta)$$

(ii) Usando vizinhança

$$\implies \forall \, \delta > 0 \, \exists \, \varepsilon > 0 : ((\forall \, x \in \mathbb{D} \cap B(A, \varepsilon) \implies f(x) \in \mathcal{V}_{\delta}(b))$$

4 Sucessão

$$f: \mathbb{N} \mapsto \mathbb{R}^n \quad f(m) = Y_m$$

Limite de uma sucessão

$$\lim Y_m = Y \iff \lim ||Y_m - Y|| = 0$$

$$\exists p \in \mathbb{N} : ||y_m - y|| < \delta \quad \forall \, \delta > 0 \land \forall \, m \ge p$$

5 Limite segundo Heine

$$\lim_{x o a}f(x)=b\quadegin{cases} f:\mathbb{D}\subset\mathbb{R}^n\mapsto\mathbb{R}\ a\inar{\mathbb{D}} \end{cases}$$

6 Proposições para limites

- $\nexists \lim f(x) : \lim_{x \to x_0} f(x) \neq \lim_{x \to x_0} f(x)$
- $\lim_{x\to x_0} f(x) = c : (f(x) = c \,\forall \, x \in \mathcal{V} x_0)$

Limites finitos

$$\{f,g\}: \mathbb{D} \subset \mathbb{R}^n \mapsto \mathbb{R}$$

- $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$
- $\lim_{x\to x_0} (\overline{f(x)} g(x)) = \lim_{x\to x_0} f(x) \overline{\lim_{x\to x_0} g(x)}$
- $\lim_{x \to x_0} (f(x)/g(x)) = \lim_{x \to x_0} f(x)/\lim_{x \to x_0} g(x)$

7

$$f:A\subset\mathbb{R}^2\mapsto\mathbb{R}$$

$$arphi:B\subset\mathbb{R}\mapsto\mathbb{R}$$

8 Matrix Jacobiana

$$(f\circ g)'(x)\in \mathcal{M}_{p imes n}: (f\circ g)'(x)_{(i,j)}=rac{\partial \left(f(g(x))_i
ight)}{\partial \left(x_j
ight)} \ f: B\subset \mathbb{R}^m\mapsto \mathbb{R}^p \ g: A\subset \mathbb{R}^n\mapsto \mathbb{R}^m$$

Produto de matrizes

$$(f \circ g)'(x) = \frac{\partial (f(x_f))}{\partial (x_f)} \frac{\partial (g(x_g))}{\partial (x_g)}$$

$$: \begin{cases} \frac{\partial (f(x_f))}{\partial (x_f)} \in \mathcal{M}_{p \times m} : \left(\frac{\partial (f(x_f))}{\partial (x_f)}\right)_{(i,j)} = \frac{\partial (f(x_f)_i)}{\partial ((x_f)_j)} \\ \frac{\partial (g(x_g))}{\partial (x_g)} \in \mathcal{M}_{m \times n} : \left(\frac{\partial (g(x_g))}{\partial (x_g)}\right)_{(i,j)} = \frac{\partial (g(x_g)_i)}{\partial ((x_g)_j)} \end{cases}$$