### UNIVERSIDADE FEDERAL DO AMAZONAS FACULDADE DE TECNOLOGIA ENGENHARIA ELÉTRICA

RELATÓRIO DE ESTÁGIO SUPERVISIONADO



# UNIVERSIDADE FEDRAL DO AMAZONAS FACULDADE DE TECNOLOGIA

### RELATÓRIO DE ESTÁGIO SUPERVISONADO

DEPARTAMENTO DE ELETRÔNICA E COMPUTAÇÃO - DTEC

TITULO DE TRABALHO : BANCO DE TESTES EM UMA MATRIZ DE SENSORES DE

**IMAGEM** 

ALUNO : ALEXANDRE KENNEDY PINTO SOUZA

INSTITUIÇÃO : UNIVERSIDADE FEDERAL DO AMAZONAS

PROF° ORIENTADOR : CARLOS AUGUSTO DE MORAES CRUZ

Manaus – AM 2013 LOCAL E DATA

### SUMÁRIO

| INTRODUÇÃO                                  | 4  |
|---------------------------------------------|----|
| 1 ESTRUTURA DA MATRIZ DE PÍXEIS             | 5  |
| 1.1 ESQUEMÁTICO SENSOR DE PIXEL ATIVO (APS) | 6  |
| 1.2 SELETOR DE LINHAS ROWSEL                | 7  |
| 1.3 SELETOR DE COLUNAS                      | 9  |
| 1.4 CIRCUITO CTR_RST                        |    |
| 1.4.1 CIRCUITO GERADOR DO SINAL DE CTR      | 10 |
| 1.4.2 CIRCUITO GERADOR DO SINAL RST         | 11 |
| 1.5 CIRCUITO TGATE                          | 12 |
| 2 SETUP DE TESTES DA MATRIZ DE PIXELS       | 13 |
| 2.1 SIMULAÇÕES E RESULTADOS                 | 15 |
| CONSIDERAÇÕES FINAIS                        | 23 |
| REFERÊNCIAS BIBLIOGRÁFICAS                  | 24 |

### INTRODUÇÃO

Este relatório tem por finalidade demonstrar a estrutura de um sensor de imagem, dando ênfase aos testes e medições para a comprovação de dados teóricos. Na primeira etapa do trabalho está sendo apresentado toda a composição do sensor de imagem e funcionalidades das estruturas auxiliares da Matriz de Sensores de Pixel Ativo (APS), passando assim uma visão por completo do trabalho, posteriormente está sendo apresentado todos os procedimentos de testes e coleta de dados, adquiridos através de um setup de teste, nesta parte do relatório irá ser detalhado todo o processo de medida para o melhor entendimento da estrutura.

### 1 ESTRUTURA DA MATRIZ DE PÍXEIS

Primeiramente temos na figura 1 o seguinte esquemático do circuito elétrico da matriz de sensores de imagem composta de sessenta e quatro Sensores de Pixel Ativo (APS), dispostos em uma matriz quadrada contendo oito linhas e oito colunas.



Figura 1: Circuito Elétrico da Matriz de Sensores de Imagem

Para o esquemático da figura 1, tem-se o seguinte layout projetado e desenvolvido para a matriz de sensores de imagem em forma integrada na tecnologia CMOS exibido na figura 2.



Figura 2: Layout Matriz de Sensores de Imagem

### 1.1 ESQUEMÁTICO SENSOR DE PIXEL ATIVO (APS)

Foi desenvolvido o seguinte esquemático em circuito elétrico para o sensor de pixel ativo. Como pode ser observado na figura 3, o sensor é composto de três transistores NMOS e um fotodiodo juntamente com os terminais de alimentação do sensor e os respectivos terminais de controle do pixel.



Figura 3: Esquemático Circuito Elétrico APS

O layout construído de forma integrada para um sensor de pixel ativo está apresentado na figura 4 com os respectivos terminais I/O assinalados que correspondem a sinais de alimentação e controle.



Figura 4: Layout Sensor de Pixel Ativo (APS)

### 1.2 SELETOR DE LINHAS ROWSEL

Para ser feita a leitura de toda matriz de pixel, foi desenvolvido estruturas de controle para a seleção de linhas e colunas. Temos abaixo na figura 5 o esquema de circuito elétrico do ROWSEL ou Seletor de Linhas. Esta estrutura funciona basicamente como um decodificador, onde para cada endereço de 3 bits aplicado na sua entrada uma única saída ficará ativa, neste caso sendo igual a uma linha da matriz de sensores de imagem fazendo assim uma varredura de oito linhas.



Figura 5: Esquemático Circuito Rowsel

Temos exibido na figura 6 o layout de forma integrada, desenvolvido para o esquemático do circuito elétrico do Rowsel mostrado acima na figura 5, a tecnologia utilizada para a construção do layout foi o processo CMOS.



Figura 6: Layout Circuito ROWSEL

### 1.3 SELETOR DE COLUNAS

Da mesma forma que foi desenvolvido uma estrutura para seleção de linhas, também foi projetado um controle para a seleção de colunas da matriz denominado de COLSEL, mostrados nas figuras 7 e 8 que evidencia tanto o esquemático do circuito elétrico bem com o respectivo layout integrado.



Figura 7: Esquemático Circuito COLSEL



Figura 8: Layout Circuito COLSEL

O circuito COLSEL funciona de forma semelhante ao seletor de linhas, exercendo a função de codificador de colunas recebendo em sua entrada um conjunto de três bits de endereçamento e ativando uma saída de cada vez dependendo do endereço de entrada.

### 1.4 CIRCUITO CTR\_RST

Para fazer o controle de cada pixel, tem-se a necessidade de gerar dois sinais de controle chamados de **CTR** e **RST**, para este fim, foram desenvolvidos dois circuitos elétricos, **Circuito CTR** e **Circuito RST** mostrados a seguir.

### 1.4.1 CIRCUITO GERADOR DO SINAL DE CTR

O seguinte esquemático em circuito elétrico e layout em forma integrada para a estrutura de controle do circuito **CTR**, foram implementados conforme demonstrado nas figuras 9 e 10, com os devidos terminais de entrada e saída conectados.



Figura 9: Esquemático do Circuito CTR

### 1.4.2 CIRCUITO GERADOR DO SINAL RST

A seguinte estrutura para o circuito gerador do sinal de reset está demonstrada, tanto em esquemático de circuito elétrico, bem como o layout em forma integrada, nas figuras 11 e 12.



Figura 10: Esquemático Circuito RST



Figura 11: Layout Circuito CTR e RST

### 1.5 CIRCUITO TGATE

Conectado a cada coluna da matriz sensores de imagem tem-se um circuito **TGATE**, exercendo a função de uma porta de transmissão chaveada, deixando passar o sinal de tensão gerado por cada pixel da respectiva coluna selecionada, para a saída global denominada **GOUT**, de acordo com o sinal de **COL** desenvolvido no circuito **COLSEL**. Abaixo nas figuras 12 e 13 são exibidos o esquema em circuito elétrico e o layout da estrutura **TGATE**.



Figura 112: Esquemático Circuito TGATE



Figura 13: Layout Circuito TGATE

### 2 SETUP DE TESTES DA MATRIZ DE PIXELS

Para a realização de todos os teste e coleta de dados da matriz, foi montado um setup de teste.

### Componentes do Setup de Teste

- Microcontrolador Arduino Uno
- Breadboards
- Resistores
- Leds Vermelhos
- Potenciômetro de Precisão
- Três CI's **CD4007M**
- Sockets 84 Pinos

Na figura 15 está demonstrado o setup de testes por completo com todos os componentes interligados ao chip de sensores de imagem, localizado na parte inferior da mesma, para o controle e coleta de dados.



Figura 12- Setup de Teste

Para o melhor entendimento da estrutura exibida na figura 15, foi desenvolvido um diagrama esquemático (figura 16), detalhando todas as conexões existentes no circuito de setup de testes.



Figura 135- Diagrama Esquemático Setup de Teste

Nas estruturas mostradas nas figuras 15 e 16, tem-se o **Microcontrolador Arduino** fazendo a geração de sinais para o endereçamento de cada pixel contido na matriz de sensores de imagem, localizados internamente no chip que está acoplado no socket de 84 pinos. A outra função realizada pelo Microcontrolador é a de leitura de um sinal analógico proveniente do pino de saída do **GOUT** da matriz de pixel indicando o nível de intensidade luminosa que chega até o sensor.

No breadboard localizado no centro da imagem da figura 15, temos conectado três **CI's** com a seguinte referência do **datasheet CD4007**, realizando a modulação de dois sinais analógicos, **RDR** e **RST**, que possuem a função de controle de cada pixel contido no chip.

Os leds que aparecem na imagem possuem a função de indicadores de estados dos bits de endereçamento que chegam até o chip.

Temos também a presença de dois potenciômetros conectados aos dois inversores lógicos **CD4007**, que ajustam com precisão as tensões que polarizam os pixels contidos na matriz de sensores.

### 2.1 SIMULAÇÕES E RESULTADOS

Após expor nas seções anteriores toda a composição do Setup de Teste bem como a estrutura do Sensor de Imagem (Matriz de APS) e estruturas de controle da matriz, o procedimento seguinte realizado foi o de testes, coleta e análise de dados.

Temos o **Microcontrolador Arduino** sendo usado para a geração de bits de endereçamento, através das saídas digitais **A2, A3, A4, A5, A6 e A7.** Este seis bits de endereçamento fazem a varredura da matriz ativando uma linha de cada vez, lendo todos os pixels da linha selecionada, ou seja, fazendo a varredura das colunas. Este processo se repete para toda matriz nesta ordem, totalizando um número de 64 leituras. Estas leituras correspondem a intensidade de luminosidade que chega a cada pixel da matriz ou nível de tensão desenvolvido na saída de cada pixel, chegando a entrada analógica **A0** do Arduino. As saídas digitais **A8** e **A9** do Arduíno estão sendo utilizadas para gerar os sinais **RDR** e **RST**.

Para realizar o endereçamento e a leitura da matriz foi desenvolvido um código no Arduino apresentado abaixo.

Abaixo está exibido o código implementado no Microcontrolador ARDUINO UNO para o controle, leitura e pré-processamento de dados do chip, determinando tanto o valor de **FPN** (Fixed Pattern Noise) médio, um parâmetro inerente a matriz, bem como os níveis de tensão de cada pixel da Matriz APS.

```
/*
Este programa rastreia a Matriz de APS para determinar o FPN;
*/
int sensorPin = A0; // select the input pin for the potentiometer
int sensorValue = 0; // variable to store the value coming from the sensor
float leituras [2][64];
float media, FPNfl;
float correct;
int i, j, k, FPN;
byte endereco;
int junk;
void setup ( ) {
 // declare the ledPin as an OUTPUT:
DDRD = B111111111;
Serial.begin(9600);
}
void loop ( ) {
 //Inicialização da media
 media = 0;
 for (i=0;i<8;i++)
    for (j=0;j<8;j++)
     {
      leituras[1][(j+(8*i))]=0;
      }
 }
 //Fim da inicialização da media
 //Espera para pressionar uma tecla para iniciar as k leituras da matriz
 while (Serial.available() == 0)
  delay (100);
 }
```

```
junk = Serial.read ();
   //Fim da espera para pressionar uma tecla para iniciar as k leituras da matriz
     for (k=0;k<10;k++)
      //Leitura dos pixeis da Matriz
      for (i=0;i<8;i++)
      {
         for (j=0;j<8;j++)
         {
          PORTD = (j+(8*i)) << 2; //Atribui o valor de PORTD e desloca os dois primeiros
bits para operar de 3 a 7
          //PORTD = B10000001;
          leituras[0][(j+(8*i))] = analogRead(sensorPin);
         }
      }
      //Fim da leitura dos pixeis da Matriz
      //Impressão da Matriz e Acumulo da Media
      Serial.print ("Leitura: ");
      Serial.println (k+1);
      for (i=0;i<8;i++)
      {
        for (j=0;j<8;j++)
         {
          leituras [1] [(j+(8*i))] = leituras[1][(j+(8*i))] + leituras [0][(j+(8*i))];
          Serial.print (leituras[0][(j+(8*i))]*0.00489, 3);
          //Serial.print (leituras[0][(j+(8*i))]);
          if (j<7) Serial.print ("; ");
         }
         Serial.println ();
```

```
}
 Serial.println();
 //Fim da impressão da Matriz e Acumulo da Media
}
//Impressão da Média
Serial.println ("Matriz de Media da Leituras: ");
for (i=0;i<8;i++)
{
   for (j=0;j<8;j++)
    {
      media = media + (leituras[1][(j+(8*i))]);
     Serial.print ((leituras[1][(j+(8*i))]*0.00489)/k, 3);
       if (j<7) Serial.print ("; ");
    }
    Serial.println();
}
Serial.println ();
Serial.print ("Media dos Pixels: ");
Serial.print ((media/(64*k))*0.00489, 3);
Serial.println();
Serial.println();
//Fim da impressão da Média
//Impressão do FPN
Serial.println ("Mascara de FPN: ");
for (i=0;i<8;i++)
{
   for (j=0;j<8;j++)
    {
     Serial.print((((leituras[1][(j+(8*i))]*0.00489)/k)- (media*0.00489)/(64*k))), 5);
       if (j<7) Serial.print("; ");</pre>
     }
    Serial.println ();
```

```
}
 Serial.println ();
 Serial.println ();
 //Fim da impressão do FPN
 //Impressão do FPN
 Serial.println ("Mascara de FPN calibrada pela precisão do ADC = 0.00489 V: ");
 for (i=0;i<8;i++)
 {
    for (j=0;j<8;j++)
     {
       correct = (((leituras[1][(j+(8*i))])/k)- (media/(64*k)));
       FPN = correct;
       if ((int)(correct*10)-(FPN*10) < 5 && (int)(correct*10)-(FPN*10) > -5)
//Vefifica a precisão decimal para arredondamento x < -0.5 e x > 0.5
       {
        FPN = FPN;
       }
       else
        if ((int)(correct*10)-(FPN*10) >= 5) FPN = FPN + 1;
        else FPN = FPN - 1;
       }
       //Fim do arredondamento;
       FPNfl = FPN;
       Serial.print (FPNfl * 0.00489, 3);
      if (j<7) Serial.print ("; ");</pre>
      }
     Serial.println();
 }
 Serial.println();
 Serial.println ();
 //Fim da impressão do FPN
}
```

Abaixo estão exibidos alguns resultados dos valores de tensão que foram desenvolvidos em cada pixel e a respectiva escala de cinza da máscara para uma melhor análise comparativa da imagem capturada. Percebe-se nitidamente o efeito do FPN em cada pixel, ou seja, sob a influência de uma luminosidade uniforme chegando a cada pixel da matriz APS, os pixels apresentaram níveis de tensão diferentes.

| Níveis de Tensões Máscara 1 |       |       |       |       |       |       |       |  |
|-----------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| 1,574                       | 1,556 | 1,501 | 1,621 | 1,585 | 1,428 | 1,564 | 1,529 |  |
| 1,466                       | 1,603 | 1,458 | 1,513 | 1,553 | 1,407 | 1,536 | 1,493 |  |
| 1,525                       | 1,472 | 1,311 | 1,477 | 1,509 | 1,399 | 1,602 | 1,56  |  |
| 1,51                        | 1,517 | 1,434 | 1,52  | 1,546 | 1,42  | 1,624 | 1,592 |  |
| 1,524                       | 1,523 | 1,426 | 1,567 | 1,528 | 1,422 | 1,597 | 1,608 |  |
| 1,478                       | 1,473 | 1,426 | 1,438 | 1,485 | 1,365 | 1,484 | 1,391 |  |
| 1,444                       | 1,584 | 1,321 | 1,476 | 1,429 | 1,36  | 1,446 | 1,398 |  |
| 1,438                       | 1,423 | 1,369 | 1,422 | 1,457 | 1,31  | 1,415 | 1,373 |  |

Figura 16-Níveis de Tensão em Cada Pixael da Matriz APS

# Escala de Cinza Máscara 1

Figura 147- Escala de Cinza Máscara 1

As figuras 17 e 18 representam o comportamento do sensor em baixa luminosidade. Temos nas figuras 19, 20, 21 e 22 outros resultados experimentais para altas luminosidades que chegam até a matriz.

| Níveis de Tensões Máscara 2 |       |       |       |       |       |       |       |
|-----------------------------|-------|-------|-------|-------|-------|-------|-------|
| 0,925                       | 0,944 | 0,891 | 0,982 | 0,944 | 0,826 | 0,92  | 0,9   |
| 0,909                       | 0,901 | 0,856 | 0,915 | 0,978 | 0,813 | 0,934 | 0,895 |
| 0,925                       | 0,911 | 0,78  | 0,891 | 0,909 | 0,822 | 0,939 | 0,886 |
| 0,896                       | 0,876 | 0,801 | 0,905 | 0,924 | 0,802 | 0,949 | 0,994 |
| 0,939                       | 0,899 | 0,832 | 0,934 | 0,942 | 0,83  | 0,913 | 0,924 |
| 0,909                       | 0,905 | 0,861 | 0,884 | 0,899 | 0,779 | 0,922 | 0,882 |
| 0,904                       | 0,914 | 0,818 | 0,924 | 0,919 | 0,848 | 0,915 | 0,874 |
| 0,906                       | 0,874 | 0,824 | 0,913 | 0,923 | 0,792 | 0,895 | 0,866 |

Figura 18- Níveis de Tensões em cada Pixel da Matriz APS

# Escala de Cinza Máscara 2



Figura 19- Escala de Cinza Máscara 2

| Níveis de Tensões Máscara 3 |       |       |       |       |       |       |       |
|-----------------------------|-------|-------|-------|-------|-------|-------|-------|
| 0,818                       | 0,838 | 0,787 | 0,88  | 0,878 | 0,886 | 1,059 | 1,018 |
| 0,806                       | 1,377 | 0,758 | 0,817 | 0,881 | 0,78  | 1,031 | 0,989 |
| 0,826                       | 0,811 | 0,689 | 0,793 | 0,821 | 0,923 | 1,37  | 1,381 |
| 0,798                       | 0,782 | 0,714 | 0,829 | 0,899 | 0,903 | 1,464 | 1,495 |
| 0,841                       | 0,802 | 0,745 | 0,86  | 0,865 | 0,857 | 1,362 | 1,467 |
| 0,806                       | 0,801 | 0,763 | 0,799 | 0,835 | 0,752 | 0,938 | 0,914 |
| 0,801                       | 1,283 | 0,721 | 0,828 | 0,849 | 0,816 | 0,913 | 0,848 |
| 0,806                       | 0,776 | 0,729 | 0,816 | 0,848 | 0,813 | 1,007 | 0,974 |

Figura 20- Níveis de Tensões em Cada Pixel da Matriz dde APS

## Escala de Cinza Máscara 3



Figura 21- Escala de Cinza Máscara 3

### **CONSIDERAÇÕES FINAIS**

No presente trabalho observou-se um fluxo completo de atividades de um projeto e desenvolvimento de um circuito integrado, ou seja, foram apresentados esquemas de circuitos elétricos e layouts em forma integrada das diversas estruturas que compõem o sensor de Imagem, dando ênfase aos testes e coleta de dados e montagem de uma estrutura de setup de teste para este propósito.

As atividades realizadas neste trabalho promoveram experiências práticas a respeito das atividades referentes à área de engenharia elétrica agregando conhecimentos para a vida profissional.

### REFERÊNCIAS BIBLIOGRÁFICAS

Carlos A. de Moraes Cruz, Davies W. de Lima Monteiro, Gilles and Alexandre K. P. Souza, "Simple Technique to Reduce FPN in a linear-logarithm APS", "In 2013 Internacional Image Sensor Workshop (IISW)", Snowbird, Utah, USA, June, 2013.