

# PHYS-E0412 Computational Physics spring 2020

Emppu Salonen Ville Havu Filippo Zonta

Lecture 3: Monte Carlo integration and error analysis

Tuesday 21.1.2020



#### **NUMERICAL INTEGRATION**



$$F = \int_{a}^{b} f(x)dx$$

N intervals of width

$$\Delta x = \frac{b - a}{N}$$

Various ways of estimating the integral: rectangular and trapezoidal approximations, parabolic approximation (Simpson's rule) etc.

For example, trapezoidal approximation:

$$F \approx \left[\frac{1}{2}f(x_0) + \sum_{i=1}^{N-1} f(x_i) + \frac{1}{2}f(x_N)\right] \Delta x$$

#### NUMERICAL INTEGRATION: d > 1 DIMENSIONS

$$F = V^{(d+1)} = \frac{(b_1 - a_1)(b_2 - a_2)...(b_d - a_d)}{N_1 N_2...N_d} \sum_{i_1}^{N_1} \sum_{i_2}^{N_2} ... \sum_{i_d}^{N_d} f(\vec{x_i})$$

This can be written as  $(N = N_1 N_2 ... N_d)$  being the total number of points)

$$F = V^{(d+1)} = \frac{V^d}{N} \sum_{i_1}^N \sum_{i_2}^N \dots \sum_{i_d}^N f(\vec{x_i}) = V^d \frac{\sum_{i_1}^N \sum_{i_2}^N \dots \sum_{i_d}^N f(\vec{x_i})}{N}$$

$$\Leftrightarrow F = V^d \langle f \rangle$$

This is basically an approximate form of the mean value theorem for integrals.

#### **NUMERICAL INTEGRATION: ERROR**

**Error in 1D** rectangular  $\sim N^{-1}$ 

trapezoidal  $\sim N^2$  parabolic  $\sim N^4$ 

The error depends on the bin width  $\Delta x$ . To which extent (power), depends on the method. See **Gould**, **Tobochnik & Christian**, **Appendix 11A**.

In general, if the error of the method in 1D scales as

$$N^{-a}$$

in d dimensions it scales as

$$N^{-a/d}$$

for *N* points used for evaluating the integral.

**Bottom line**: with high-dimensional integrals we both need a huge number of points for evaluating the integral and the error of the calculation decreases very weakly with N.

#### **LEARNING OBJECTIVES FOR WEEK 3**

**Case study**: Coulomb interaction energy between Gaussian charges in 3D using the Metropolis importance sampling

- 1. Inverse transform sampling (1D)
- 2. Simple Monte Carlo integration and error analysis
- 3. Importance sampling Monte Carlo
- 4. The Metropolis method





## **Inverse transform sampling (1D)**

This topic was covered on the blackboard at the lecture. See this week's lecture notes.

Also: Gould, Tobochnik & Christian 11.5





## **Basic Monte Carlo integration**



#### **MONTE CARLO: HIT AND MISS**

$$F_N = h(b-a)\frac{N_{\text{hit}}}{N}$$





#### **MONTE CARLO INTEGRATION**

According to the mean value theorem

$$F = \int_{a}^{b} f(x)dx = (b - a)\langle f \rangle$$

Plain Monte Carlo integration:



$$F_N = (b - a) \frac{1}{N} \sum_{i=1}^{N} f(x_i) \approx (b - a) \langle f \rangle$$

With N data points, the error of the mean is

$$\frac{\sigma}{\sqrt{N}} \sim N^{-1/2}$$

#### TRADITIONAL INTEGRATION IN MATLAB

$$f(x) = 2x + \sin(8\pi x)\operatorname{erfc}(x)/10$$



#### **SIMPLE MONTE CARLO**



```
mean_error=0;
Ns=10;
for i=1:Ns,
    f_values=feval(f,rand(N,1));
    im=mean(f_values);
    em=std(f_values)./sqrt(N);
    disp(num2str([iq, im, abs(im-iq), em]))
    mean_error=mean_error+abs(im-iq);
end

mean_error=mean_error/Ns
```

| Matlab       | Monte Carlo | Difference | Error estimate |  |
|--------------|-------------|------------|----------------|--|
| 1.0034       | 1.1483      | 0.14498    | 0.054058       |  |
| 1.0034       | 1.0698      | 0.066466   | 0.057181       |  |
| 1.0034       | 1.1045      | 0.10112    | 0.05802        |  |
| 1.0034       | 0.97395     | 0.029412   | 0.057082       |  |
| 1.0034       | 0.98416     | 0.019199   | 0.057364       |  |
| 1.0034       | 0.95521     | 0.048145   | 0.048703       |  |
| 1.0034       | 0.9706      | 0.032755   | 0.053725       |  |
| 1.0034       | 1.0588      | 0.055481   | 0.059431       |  |
| 1.0034       | 1.0219      | 0.018549   | 0.057678       |  |
| 1.0034       | 1.0542      | 0.050853   | 0.055569       |  |
|              |             |            |                |  |
| mean_error = |             |            |                |  |
| 1            |             |            |                |  |
| 0.0567       |             |            |                |  |

Consistent with the error estimate  $\sigma/\sqrt{N}$ 

Can we make the error smaller?



## **Importance sampling Monte Carlo**

This topic was covered on the blackboard at the lecture. See this week's lecture notes.

Also: Gould, Tobochnik & Christian 11.6



## EXAMPLE, g(x) = 2x

g(x)

0.4

0.6



0.0053482

0.0041507

0.99801



0.8

1.0034

The error is an order of magnitude smaller than in the case of standard MC integration



f(x)

0.2

0.5



### The Metropolis method

This topic was covered on the blackboard at the lecture. See this week's lecture notes.

Also: Gould, Tobochnik & Christian 11.7



#### SIMPLE EXAMPLE

$$I = \frac{\int_{-\infty}^{\infty} x^p \exp(-x^2) dx}{\int_{-\infty}^{\infty} \exp(-x^2) dx}$$

"Importance sampling" both with  $g(x) = C \exp(-x^2)$ 

$$g(x) = C \exp(-x^2)$$

We get the integral ratio  $I \approx \frac{\langle x^p \rangle}{\langle 1 \rangle}$ 



| p | Monte Carlo | Exact  |
|---|-------------|--------|
| 1 | 0.0016      | 0      |
| 2 | 0.4915      | 0.5    |
| 3 | -0.0090     | 0      |
| 4 | 0.7044      | 0.75   |
| 5 | -0.0198     | 0      |
| 6 | 1.6418      | 1.8750 |
| 7 | -0.0534     | 0      |