LDAP

RES, Lecture 6

Olivier Liechti

heig-vd

Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud

Agenda

- > Introduction
 - LDAP: history, objectives and overview
 - Tools: servers, browsers, APIs and libraries
- > LDAP: the data model
 - Hierarchical organization, naming
 - Core concepts: DIT, entry, attribute, class, schema
- > LDAP: the protocol
 - Principles, operations and the LDIF data format
- > LDAP: the infrastructure
 - Distribution and replication
 - Commands, filters, etc.
- LDAP with Java: Java Naming & Directory Interface (JNDI)
 - Authentication, query, data manipulation

Références

- > LDAP for Rocket Scientists (ZYTRAX, Inc.)
 - http://www.zytrax.com/books/ldap/
- > Redbook IBM
 - http://www.redbooks.ibm.com/abstracts/sg244986.html
- > Tutorials and presentations
 - http://quark.humbug.org.au/publications/ldap/
 - http://www.it-sudparis.eu/s2ia/user/procacci/ldap/
 - http://www.hawaii.edu/its/brownbags-trainings/ldap/
- > RFCs
 - http://www.mozilla.org/directory/standards.html
- > OpenDJ
 - http://www.forgerock.com/en-us/products/directory-services/
 - http://opendj.forgerock.org/
- > LDAP Clients
 - http://directory.apache.org/studio/
 - http://www-unix.mcs.anl.gov/~gawor/ldap/

Introduction

LDAP: a Directory Service

> Late 70's

- Standardisation of directory service by the UIT (X.500).
- Related to the growing adoption of electronic messaging protocols.
- Directory Access Protocol (DAP).
- > Late 90's
 - Lightweight (simplified) version of the protocol, based on the TCP/IP stack.
 - University of Michigan, IETF
- > Key functions
 - Fast information lookup
 - Authentication

http://flickr.com/photos/gehmflor/375334958/sizes/m/#cc_license

LDAP: Sharing Data in the Enterprise

LDAP: the Data Model

LDAP: the Data Model

heig-vd

Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud

Entrée (entry=

Classe

Attribut

DN: uid=oliechti, ou=staff, ou=people, dc=heigvd, dc=ch

The Directory Information Tree (DIT)

- > Data is organized hierarchically, in a tree:
 - The "root" is also called "suffix" or "base".
 - Each node in the tree is an LDAP "entry".
 - The intermediate nodes are "container" nodes.
- > LDAP entries are named:
 - The Distinguished Name (DN) is used to identify and locate an entry in the tree.
 - The DN provides the path from the root to the entry.
 - The Relative Distinguished Name (RDN)
 uniquely identifies an entry among siblings
 (nodes that are children of the same node)

DN: uid=oliechti, ou=staff, ou=people, dc=heigvd, dc=ch

How to Structure the DIT

- > What can we store in a directory?
 - People (e.g. employees, customers, partners, etc.)
 - Equipment (e.g. printers, file servers, etc.)
 - Software services (e.g. web services, etc.)
 - Configuration parameters (e.g. of the server itself)
- > When storing people, how do we structure the DIT?
 - Do we reflect the org chart, by department?
 - Do we structure by country?
- > Recommendation
 - A flat structure is much move convenient, flexible and evolvable than a deep one.

The Notion of Entry

- > An LDAP "entry" LDAP is an object stored in the directory.
- It is a **node** in the DIT.
- > An entry is uniquely identified by its **Distinguished Name** (DN)
- An entry is locally (among siblings) identified by its Relative Distinguished Name (RDN).
- > The state of an entry is defined by a list of attributes and attribute values.
- > The **structure** of an entry (i.e. the list of attributes) is defined in one or more **classes**. The multi-valued **ObjectClass attribute** of an entry is used to specify which classes it is an instance of.
- > Examples of entries:
 - A person, a group, a department, a printer, an online service, a configuration parameter, etc.

The Notion of Object Class

- The notion of LDAP object class is similar to the notion of class in an object-oriented programming language.
- A class is defined by a list of attributes
 - some of which are mandatory
 - some of which are optional
 - some of which are multivalued
- > A class can **extend** another one (inheritance)
- > The RFC 2252 (LDAPv3 Attribute Syntax Definitions) provides the syntax to define classes.
- > Many classes have been standardized and specified in RFCs, for example:
 - inetOrgPerson, OrganizationalPerson, Person
 - organizationalUnit
 - groupOfUniqueNames

Syntax to Define a Class

Example: inetOrgPerson

```
heig-vd

Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud
```

```
objectClasses: ( 2.16.840.1.113730.3.2.2 NAME 'inetOrgPerson'
SUP organizationalPerson STRUCTURAL MAY ( audio $ businessCategory $
  carLicense $ departmentNumber $ displayName $ employeeNumber $ employeeType $
  givenName $ homePhone $ homePostalAddress $ initials $ jpegPhoto $
  labeledURI $ mail $ manager $ mobile $ o $ pager $ photo $ roomNumber $
  secretary $ uid $ userCertificate $ x500UniqueIdentifier $
  preferredLanguage $ userSMIMECertificate $ userPKCS12 ) X-ORIGIN 'RFC 2798' )
```

The Notion of Attribute

- > Attributes define that state of an entry.
- > Attributes are **referenced in classes**.
- > Attributes have a **type** (String, Binary, etc.).
- Attributes can be multivalued.

```
attributeTypes: ( 0.9.2342.19200300.100.1.41
   NAME ( 'mobile' 'mobileTelephoneNumber' ) EQUALITY telephoneNumberMatch
   SUBSTR telephoneNumberSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.50
   X-ORIGIN 'RFC 4524' )
```

The Notion of Schema

- > When deploying an LDAP directory service, one has to specify the **schema** that defines the rules governing the structure of managed data:
 - What are the classes that are supported and that can be used to create entries?
 - What are the attributes that are supported and used to define classes?
 - etc.
- > There are **standard schemas** and when you install an LDAP server, a default one is available to you. Very often, you do not need more and can create entries based on the standard classes and attributes (InetOrgPerson, OrganizationalUnit, etc.).
- > If you have special needs, then you can **extend the schema** with:
 - custom classes (e.g. heigvdPerson)
 - custom attributes (e.g. gapsIdNumber)
- > The procedure for extending the schema depends on the actual LDAP server (OpenDJ, OpenLDAP, Active Directory, etc.)

LDAP: the Infrastructure

LDAP: Components

http://www.ietf.org/rfc/rfc2849.txt

Interface "ligne de commande"

Client LDAP (browser)

Application

Application

API + Librairie (e.g. C)

API + Librairie (e.g. Java)

LDAPBrowser

Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud

Apache Directory Studio

Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud

OpenDS & OpenDJ

LDAP: the Protocol

LDAP: the Protocol

- LDAP is a client-server protocol
 - Operates on top of TCP
 - Standard port: 389
- Main LDAP commands
 - Bind (authentication and session establishment)
 - Search search for and/or retrieve directory entries
 - Add a new entry
 - Delete an entry
 - Modify an entry
 - Modify Distinguished Name (DN) move or rename an entry
 - Unbind (session termination)

OpenDS

- OpenDS is an LDAP server:
 - developed in Open Source, with the support of Sun Microsystems (now Oracle)
 - 100% Java
 - "Embeddable" in applications
- Installation and setup is very easy
 - via Java WebStart
 - File structure is straightforward
- > Yet, OpenDS is "enterprise-ready"
 - replication
 - performance
- > OpenDS makes it possible to quickly and easily experiment with LDAP
- http://www.opends.org/

OpenDJ

- OpenDJ is a fork of OpenDS:
 - developed in Open Source, by ForgeRock
 - 100% Java
- > Two web sites:
 - Open source project page: http://opendj.forgerock.org
 - ForgeRock product page: https://www.forgerock.com/en-us/products/
 directory-services/

Installing OpenDJ

- Warning: OpenDJ is quite sensitive to the version of the Java environment.
 Make sure to read the release notes and requirements:
 - OpenDJ 2.6 does NOT support Java 8.
 - OpenDJ 2.6.2 does support Java 8, but at this time it is only available to paying customers (subscriptions).
- Note: OpenDJ 2.6 is free, but you need to register in order to download the package.

Installing OpenDJ - Vagrant

 We have prepared a Vagrant environment for your experiments with OpenDJ, with a JDK 7.

We are not allowed to add the OpenDJ package in a public repository, so you
will have to register with ForgeRock, download the package and install it in

your box.

https://github.com/SoftEng-HEIGVD/ Teaching-HEIGVD-RES-2015-OpenDJ

Installing OpenDJ - Vagrantfile


```
30 lines (22 sloc) 0.905 kb
                                                                                           Raw
                                                                                                  Blame
                                                                                                          History
       # -*- mode: ruby -*-
       # vi: set ft=ruby :
                                                                                             Our usual private IP
       # Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
                                                                                        address (be careful that no
       VAGRANTFILE_API_VERSION = "2"
   6
                                                                                            other box is running!)
       Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
         config.vm.box = "phusion/ubuntu-14.04-amd64"
         config.vm.network "private_network", ip: "192.168.42.42"
   9
  10
         config.vm.provision "shell", path: "provision.sh", privileged: false
  11
  12
         # config.vm.box_check_update = false
  13
         # config.vm.network "forwarded_port", guest: 9907, host: 4207
  14
         # config.vm.network "public_network"
  15
         # config.ssh.forward_agent = true
  16
                                                                                               No port mapping, we will
         # config.vm.synced_folder "../data", "/vagrant_data"
  17
                                                                                              connect on 192.168.42.42
  18
         config.ssh.forward x11 = true
  19
                                                                                                     and not localhost
  20
         # config.vm.provider "virtualbox" do |vb|
  21
            # Don't boot with headless mode
  22
  23
            vb.gui = true
  24
         # # Use VBoxManage to customize the VM. For example to change memory:
  25
            vb.customize ["modifyvm", :id, "--memory", "1024"]
  26
         # end
  27
  28
  29
       end
```

Installing OpenDJ - provision.sh

sudo usermod -aG docker vagrant

heig-vd Haute Ecole d'Ingénierie et de Gestion

du Canton de Vaud

```
# Update the package index
    echo "***************** apt-get update *****************
    sudo apt-get update
10
    # Install util packages
    sudo apt-get install git -y
13
14
    # Install node.js (also remove the "Amateur Packet Radio Node Program" conflicting package)
15
    16
    #sudo apt-get --purge remove node -y
17
    #sudo apt-get install nodejs -y
18
    #sudo ln -s /usr/bin/nodejs /usr/bin/node
19
                                                                                                We use OpenJDK 7
    #sudo apt-get install npm -y
20
    #curl -sL https://deb.nodesource.com/setup | sudo bash -
21
    #sudo apt-get install nodejs -y
22
    #sudo apt-get install build-essential -y
23
24
25
    # Install JDK 8
26
    #echo "********************** install oracle jdk 8 *********************
27
    #echo oracle-java8-installer shared/accepted-oracle-license-v1-1 select true | sudo /usr/bin/deba
28
    #sudo apt-get install oracle-java8-set-default -y
29
30
    # Install OpenJDK 7 - OpenDJ 2.6 does not support Java 8
31
                                                                                          If you need Node.js, maven
    32
                                                                                            or Docker on your box,
    sudo apt-get install openjdk-7-jdk -y
33
34
                                                                                                 uncomment the
    # Install maven
35
    # echo "********************* install maven *****************
36
                                                                                            corresponding sections
37
    # sudo apt-get install maven -y
38
39
   # Install Docker
40
   41
   # wget -q0- https://get.docker.com/ | sh
42
```


- Check that all your Vagrant boxes are stopped (e.g. use the VirtualBox GUI).
- Clone the repo and fire up the box; this will trigger the execution of the provision.sh script (including the download of OpenJDK 7...)

```
$ git clone git@github.com:SoftEng-HEIGVD/Teaching-HEIGVD-RES-2015-OpenDJ.git
$ cd Teaching-HEIGVD-RES-2015-OpenDJ
$ vagrant up
$ vagrant ssh
$ java --version
```


- · Go to OpenDJ home page and click on the Download link.
- Register

- Go to OpenDJ <u>home page</u> and click on the **Download** link.
- Register and get your ForgeRock account.
- Select OpenDJ / OpenDJ
 Enterprise / 2.6.0 / OpenDJ
 2.6.0 Debian package.
- Save the file in your clone, in the directory containing the Vagrantfile.

drwxr-xr-x 11 root root

-rwxr-xr-x 1 root root

-rwxr-xr-x 1 root root

Go back to your box. The debian package should be available in /vagrant.

```
cd /vagrant
   ls -al
   sudo dpkg -i opendj_2.6.0-1_all.deb
   cd /opt/opendj
   ls -al
vagrant@ubuntu-14:/opt/opendj$ ls -al
total 600
drwxr-xr-x 17 root root
                       4096 Jun 2 14:41 .
drwxr-xr-x 4 root root
                       4096 Jun 2 14:20 ...
drwxr-xr-x 2 root root
                       4096 Jun 2 14:23 bak
                                                                    - This is where you find the interesting stuff!
drwxr-xr-x 3 root root
                       4096 Jun 2 14:20 bin
drwxr-xr-x 2 root root
                       4096 Jun 2 14:23 changelogDb
drwxr-xr-x 2 root root
                       4096 Jun 2 14:23 classes
                                                                    export PATH=$PATH:/opt/opendj/bin
drwxr-xr-x 8 root root
                       4096 Jun 2 14:51 config
drwxr-xr-x 3 root root
                       4096 Jun 2 14:41 db
-rw-r--r 1 root root 509529 Jun 26 2013 example-plugin.zip
drwxr-xr-x 2 root root
                       4096 Jun 2 14:41 import-tmp
                          2 Jun 26 2013 instance.loc
-rw-r--r-- 1 root root
                       4096 Jun 2 14:23 ldif
drwxr-xr-x 2 root root
drwxr-xr-x 2 root root
                       4096 Jun 2 14:24 Legal
                       4096 Jun 2 14:20 legal-notices
drwxr-xr-x 2 root root
                       4096 Jun 2 14:24 lib
drwxr-xr-x 3 root root
drwxr-xr-x 2 root root
                       4096 Jun 2 14:41 locks
drwxr-xr-x 2 root root
                       4096 Jun 2 14:51 logs
-rw-r--r-- 1 root root
                       9669 Jun 26 2013 opendj_logo.png
-rw-r--r-- 1 root root
                       1801 Jun 26 2013 README
                       1889 Jun 26 2013 setup
-rwxr-xr-x 1 root root
drwxr-xr-x 3 root root
                       4096 Jun 2 14:20 snmp
```

4096 Jun 2 14:20 template

1926 Jun 26 2013 uninstall 1213 Jun 26 2013 upgrade

You can now run the "quick install procedure"

```
$ sudo /opt/opendj/setup --cli
```

- Make sure to remember the admin password!!
- Use default values, except for
 - "Provide the base DN for the directory data". Enter "dc=heigvd, dc=ch".
 - "Options for populating the database". Pick "4) Load automatically..."
- Note: if you need to start from scratch and get rid of the previous config:

```
$ cd /opt/opendj
$ sudo rm -fr db/
$ sudo rm -fr config/
$ sudo rm -fr locks/
$ sudo rm -fr logs/
```


• At the end of the procedure, the directory server should be running and listening on port 389 (if you used sudo and picked the default option).

```
$ telnet localhost 389
```

Run a few queries (and interpret the results):

```
$ ldapsearch -p 389 -b "dc=heigvd, dc=ch" "objectClass=*"
$ ldapsearch -p 389 -b "dc=heigvd, dc=ch" "objectClass=*" cn mail
$ ldapsearch -p 389 -b "dc=heigvd, dc=ch" "l=Tucson" cn mail l
$ ldapsearch -p 389 -b "dc=heigvd, dc=ch" "!(l=Tucson)" cn mail l
$ ldapsearch -p 389 -b "dc=heigvd, dc=ch" "(&(givenName=Bogdan)(sn=Billing))"
$ ldapsearch -p 389 -b "dc=heigvd, dc=ch" "(|(givenName=Bogdan))"
$ ldapsearch -p 389 -b "dc=heigvd, dc=ch" "(|(givenName=Bogdan))"
```

Also check from your host

```
$ telnet 192.168.42.42 389
```

Warning!

- > Many operating systems (Mac OS, Solaris, Linux, etc.) include LDAP commands natively:
 - Example: Mac OS provides /usr/bin/ldapsearch
 - These commands are typically in the path
- LDAP servers, such as OpenDJ, provide their own commands. They may use the same name (e.g. Idapsearch) but accept different options and their own syntax!!!
 - Exemple: \${OPEN_DJ_INSTALL_PATH}/bin/ldapsearch
 - These commands are not in the path by default
- > For that reason, when you use LDAP commands:
 - Be careful of which command you are using:
 - cd \${OPEN_DJ_INSTALL_PATH}/bin/
 - ./ldapsearch
 - Is different from:
 - cd \${OPEN_DJ_INSTALL_PATH}/bin/
 - ldapsearch

Idapsearch (1)

- > This command is used to submit queries and extract data from the directory
- > Syntax:
 - Idapsearch [options] [filter] [attributes]
- > Key options:

-	-h,host	à quel serveur veut-on se connecter?
-	-p,port	sur quel port écoute-t-il?
-	-D,bindDN	avec quel identité veut-on se connecter?
-	-w,bindPassword	avec quel mot de passe (à éviter, penser à `ps`!!)
-	-b,baseDN	à partir d'où veut-on faire la recherche?
-	-a,searchScope	avec quelle profondeur?
_	-T,dontWrap	pour éviter les ruptures de lignes (LDIF)
_	propertiesFilePath	pour éviter de saisir toutes les options

> Documentation:

- http://opendj.forgerock.org/opendj-server/doc/admin-guide/index/ldapsearch-1.html

Idapsearch (2)

- Syntax for LDAP filters
 - Defined in RFC 2254
 - Operators for filters:

&, |, !

- > Examples:
 - Entries for which the attribute cn is equal to "Babs Jensen":
 - → (cn=Babs Jensen)
 - Entries for which the attribute cn is different from "Tim Howes":
 - → (!(cn=Tim Howes))
 - People whose family name is "Jensen" or whose first name is "Babs" and family name starts with "J":
 - → (&(objectClass=Person)(|(sn=Jensen)(cn=Babs J*))

Idapsearch (3)

> Return all entries

- ldapsearch -h hostname -p 389 -b dc=example,dc=com "(objectclass=*)"

dn: dc=example,dc=com
objectClass: domain
objectClass: top

dc: example

dn: ou=Groups,dc=example,dc=com
objectClass: organizationalunit

objectClass: top

ou: Groups

dn: cn=Directory

Administrators, ou=Groups, dc=example, dc=com

objectClass: groupofuniquenames

objectClass: top

ou: Groups

cn: Directory Administrators

uniquemember: uid=kvaughan, ou=People, dc=example,dc=com

uniquemember: uid=rdaugherty, ou=People,

dc=example,dc=com

uniquemember: uid=hmiller, ou=People, dc=example,dc=com

dn: uid=scarter,ou=People,dc=example,dc=com

telephonenumber: +1 408 555 4798

> Return only some attributes:

- ldapsearch -h hostname -p 389 -b dc=example,dc=com "(cn=Sam Carter)" telephoneNumber

Idapmodify (1)

- > This command is used to update data in the directory
- > Syntax:
 - Idapmodify [options] [filter] [attributes]
- > Key options:

-	-h,host	what is the IP address of the server?
-	-p,port	on which port is it listening?
_	-D,bindDN	what is the DN of the user connecting to the server?
_	-w,bindPassword	and his password? (bad practice!! think about the `ps` command!!)
-	-f,filename	the file containing the LDIF data

- > Two ways to provide LDIF data to the server
 - provide LDIF via the command line + CTRL-D (*nix) ou CTRL-Z (Win)
 - Use the -f option and capture the LDIF data in a file (strongly recommended)
- > Documentation:
 - http://opendj.forgerock.org/opendj-server/doc/admin-guide/index/ldapmodify-1.html

- LDAP Data Interchange Format
- http://tools.ietf.org/html/rfc2849

Abstract

This document describes a file format suitable for describing directory information or modifications made to directory information. The file format, known as LDIF, for LDAP Data Interchange Format, is typically used to import and export directory information between LDAP-based directory servers, or to describe a set of changes which are to be applied to a directory.

Background and Intended Usage

There are a number of situations where a common interchange format is desirable. For example, one might wish to export a copy of the contents of a directory server to a file, move that file to a different machine, and import the contents into a second directory server.

Additionally, by using a well-defined interchange format, development of data import tools from legacy systems is facilitated. A fairly simple set of tools written in awk or perl can, for example, convert a database of personnel information into an LDIF file. This file can then be imported into a directory server, regardless of the internal database representation the target directory server uses.

The LDIF format was originally developed and used in the University of Michigan LDAP implementation. The first use of LDIF was in describing directory entries. Later, the format was expanded to allow representation of changes to directory entries.

Example: LDIF to add an entry


```
dn: uid=john.doe,ou=People,dc=example,dc=com
changetype: add
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
uid: john.doe
givenName: John
sn: Doe
cn: John Doe
mail: john.doe@example.com
userPassword: password
```

Example: LDIF to modify an entry


```
dn: uid=john.doe,ou=People,dc=example,dc=com
changetype: modify
replace: description
description: This is the new description for John Doe
-
add: mailAlternateAddress
mailAlternateAddress: jdoe@example.com
```

Example: LDIF to delete an entry

dn: uid=john.doe,ou=People,dc=example,dc=com

changetype: delete

Object IDentifier (OID)

- > An OID is an **alphanumeric value** that **uniquely identifies** a particular element in a directory schema, such as a **class** or an **attribute**.
- > There are different ways to obtain an OID for a schema element:
 - If the schema and directory data is used only for internal purposes, then
 you can freely define the OID value (as an analogy, think of a private IP
 network where you can decide for the addressing scheme yourself).
 - If the data is shared with external organizations, then a globally unique
 OID must be obtained (think of public IP addresses).
- OIDs are managed by the IANA; the procedure to obtain an OID is easy and simple.

Q 26027

Find:

Done

Request Private Enterprise Number (PEN) | Modify Private Enterprise Number (PEN) | Enterprise Numbers | Contact IANA | IANA

Application Information Confirmation

Please verify that the information you have provided is correct and click the "Confirm" button to submit the application for IANA review. If you would like to make corrections to the application you are submitting, click "Make Changes". Click "Cancel" to exit without submitting the information to IANA.

Highlight all

Previous

Match case

i 🖷

How to Manage Your OIDs?

1.3.6.1.4.1.xxx.n.n.n

Prefix: iso.org.dod.internet.private.enterprise (1.3.6.1.4.1)

Prefix assigned by the IANA to the HEIG-Vd

You define the rules for the suffix of the OIDs

```
.1.*: test
```

.2.*: teaching .2.1.*: PDA 2.2.*: RES

```
.3.*: research
```

.4.*: prod

Replication

- > What is LDAP "replication"?
 - Several LDAP servers are deployed to provide the directory service:
 - in the same data center (scalability, availability)
 - in different data centers, possibly in different countries (performance, latency)
 - Data are replicated (copied when updated) between the servers.
 - Clients can connect to the "most appropriate" server (either directly or via an LDAP proxy)

Principles

- > Reasons for using LDAP replication
 - To ensure systemic qualities!
 - Performance
 - Scalability
 - Availability
- > Different topologies are possible:
 - Single Master (1 server accepts write operations)
 - Muli Master (write operations can be submitted to multiple servers)

https://www.opends.org/wiki/page/SmallTopologies

Replication in OpenDS


```
$ lsof -P -i TCP | grep 89 | grep LISTEN
java
         6145 oliechti
                         33u IPv6 0x7a4c46c
                                                  0t0 TCP *:1389 (LISTEN)
java
         9527 oliechti
                             IPv6 0x798da24
                                                      TCP *:2389 (LISTEN)
                         40u
                                                  0t0
java
                                                       TCP *: 8989 (LISTEN)
         9527 oliechti
                         46u IPv6 0x79beaf0
                                                  0t0
                                                       TCP *:3389 (LISTEN)
java
                                                  0t0
         9617 oliechti
                         41u IPv6 0x7a2f174
java
                                                       TCP/*:9989 (LISTEN)
         9617 oliechti
                         46u IPv6 0x7a2dde8
                                                  0t0
```

replication ports

Multi-Site Topology

LDAP with Java Java Naming & Directory Interface (JNDI)

Java Naming and Directory Interface (JND Latte Ecole d'Ingénierie et de Gestion de Vaud

- > LDAP is one of the application-level protocols that deals with data organized in a hierarchical data structure.
- > Java developers would like:
 - a standard API that they can use for any protocol used to access hierarchical data (LDAP and others)
 - to be able to use this API to interact with any of the LDAP implementation (Active Directory, OpenDJ, OpenLDAP, etc.)
- In other words, they would like to have the equivalent of JDBC (used to talk to different relational database management systems in the same way), but for LDAP servers.
- > JNDI is an answer to this need. The API provides a standardized API to interact with naming and directory services.

Java Naming and Directory Interface (JND diversional de Vaud

http://java.sun.com/products/jndi/tutorial/getStarted/overview/index.html

How do I use JNDI?

- > The first step consists of establishing a connection with the directory server.
- This is done with the InitialDirContext class:

```
// Set up the environment for creating the initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
    "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL,
    "ldap://localhost:389/o=JNDITutorial");
DirContext ctx = new InitialDirContext(env);
```

How do I use the API?

- Once connected, the API provides abstractions to interact with the naming service.
- It is possible to navigate in the hierarchy, to access the entries and their attributes. It is also possible to submit LDAP filters via the API.

```
// Create the default search controls
SearchControls ctls = new SearchControls();

// Specify the search filter to match
// Ask for objects that have the attribute "sn" == "Geisel"
// and the "mail" attribute
String filter = "(&(sn=Geisel)(mail=*))";

// Search for objects using the filter
NamingEnumeration answer = ctx.search("ou=People", filter, ctls);
```

How do I use the API?

Here is an example for iterating over all attributes of an entry, and then over all values of each attribute (remember that LDAP attributes can be multivalued).

```
// Search for objects using the filter
NamingEnumeration answer = ctx.search("ou=People", filter, ctls);
for (NamingEnumeration ae = answer.getAll(); ae.hasMore();) {
   Attribute attr = (Attribute)ae.next();
   System.out.println("attribute: " + attr.getID());

   /* Print each value */
   for (NamingEnumeration e = attr.getAll(); e.hasMore();
        System.out.println("value: " + e.next()));
}
```