CLAIMS

1	1. A powered seat assembly for reducing end-play of an associated
2	lead screw interconnecting a pivotally secured seat back to a motor gear box, a
3	motor actuating the lead screw through an input to the motor gear box and in
4	order to pivotally readjust the seat back, said assembly comprising:
5	a base plate, the seat back pivotally securing to a forward location of
6	said base plate, the motor gear box securing to a rearward location of said base
7	plate;
8	a bracket secured to an intermediate location of said base plate, a slot
9	defined in an extending portion of said bracket defining a passage therethrough
10	for the lead screw; and
11	a spacer bushing supported upon the lead screw and adhering against a
12	face of said bracket opposite the pivotally secured seat back, said spacer
13	bushing absorbing tensile loading forces applied axially along the lead screw
14	and in a direction towards the seat back in order to prevent movement of the
15	lead screw in and out of the motor gear box.
1	2. The powered seat assembly as described in claim 1, further
2	comprising said spacer bushing exhibiting a diameter greater than a width
3	associated with said slot, said spacer bushing being constructed of a material
4	different than that associated with said bracket.

1	3.	The powered seat assembly as described in claim 2, said spacer
2	bushing being	g constructed of a nylon material.
1	4.	The powered seat assembly as described in claim 2, further
2	comprising a	threadably engaged retention nut abutting against a facing side of
3	said spacer b	ushing opposite said bracket.
1	5.	The powered seat assembly as described in claim 2, said spacer
2	bushing exhi	ibiting an arcuate shaped contact surface relative to said bracket
3	and slot.	
1	6.	The powered seat assembly as described in claim 2, said spacer
2	bushing furth	her comprising a two-piece nut assembleable from opposite sides
3	of said brack	et and through said slot.
1	7.	The powered seat assembly as described in claim 6, said slot
2	defining an i	nner sidewall passage in said extending bracket portion and which
3	exhibits an e	end-most and enlarged portion for permitting assembly of said two-
4	piece nut.	
1	8.	The powered seat assembly as described in claim 7, said two-
2	piece nut ex	xhibiting a specified shape and size and being constructed of a
3	synthetic ma	aterial.

1	9. The powered seat assembly as described in claim 8, said
2	assembleable nut exhibiting a specified shape and size and further comprising a
3	Nylok nut.
1	10. The powered seat assembly as described in claim 1, further
2	comprising said slotted bracket and a motor gearbox support portion being
3	integrated into a single component secured to said baseplate.
1	11. The powered seat assembly as described in claim 1, said bracket
2	having a specified shape and size and being constructed of a metal, said spacer
3	bushing exhibiting an arcuate shaped contact surface relative to said bracket
4	and associated slot and being constructed of a plastic based synthetic material.
1	12. A powered seat assembly for reducing end-play of an associated
2	lead screw interconnecting a pivotally secured seat back to a motor gear box, a
3	motor actuating the lead screw through an input to the motor gear box and in
4	order to pivotally readjust the seat back, said assembly comprising:
5	a base plate, the seat back pivotally securing to a forward location of
6	said base plate, the motor gear box securing to a rearwardly disposed support
7	portion of said base plate;
8	a bracket secured to an intermediate location of said base plate, a slot
9	defined in an extending portion of said bracket defining a passage therethrough
10	for the lead screw; and

a spacer bushing supported upon the lead screw and adhering against a face of said bracket opposite the pivotally secured seat back, said spacer bushing being constructed of a plasticized synthetic material and exhibiting an arcuate shaped contact surface relative to said bracket and extending slot to absorb tensile loading forces applied axially along the lead screw and in a direction towards the seat back to prevent movement of the lead screw in an out of the motor gear box.

13. A powered seat assembly for reducing end-play of an associated lead screw interconnecting a pivotally secured seat back to a motor gear box, a motor actuating the lead screw through an input to the motor gear box and in order to pivotally readjust the seat back, said assembly comprising:

a base plate, the seat back pivotally securing to a forward location of said base plate, the motor gear box securing to a rearwardly disposed support portion of said base plate;

a component secured to a face of said base plate and comprising a first extending bracket portion proximate an intermediate location of said base plate, a slot defined in said extending portion and defining a passage therethrough for the lead screw, a further extending portion of said component defining a motor gearbox support; and

a spacer bushing supported upon the lead screw and adhering against a face of said bracket opposite the pivotally secured seat back, said spacer bushing being constructed of a plasticized synthetic material and exhibiting an

16	arcuate shaped contact surface relative to said bracket and extending slot, a nut
17	threadably engaging against an opposite facing surface of said spacer bushing
18	and so that said bushing absorbs tensile loading forces applied axially along the
19	lead screw and in a direction towards the seat back to prevent movement of the
20	lead screw in and out of the motor gear box.