AM

Topics

- Introduction
- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Thread Scheduling
- Multiple-Processor Scheduling
- Real-Time CPU Scheduling
- Operating Systems Examples
- Algorithm Evaluation

Real-Time CPU Scheduling

- Can present obvious challenges
- Soft real-time systems
 - No guarantee as to when critical real-time processes will be scheduled DETERMINIS
- Hard real-time systems
 - Task must be serviced by its deadline

AM

Priority Based Scheduling

- For real-time scheduling, scheduler must support preemptive, priority-based scheduling
 - This only guarantee a soft real-time
- Hard real-time must also provide ability to meet deadlines
- Processes have a new characteristic: periodic ones require CPU at constant intervals
 - Has processing time t, deadline d, period p
 - 0 ≤ t ≤ d ≤ p
 - Rate of periodic tasks is 1/p

Public Page 1

Slide10

Round-Robin Scheduling

Lets Assume 2 processes

$$-P_1 = (3,4,4)$$

$$-P_2 = (2,8,8)$$

Single Processor System

Rate-Monotonic Scheduling

- Priority is assigned based on the inverse of its period
 - Shorter Periods = Higher Priority
 - Longer Periods = Lower Priority
- P₁ is assigned a higher priority than P₂.

Rate-Monotonic (cont.)

- Considered Optimal
 - If a set of processes cannot be scheduled by this algorithm, it cannot be scheduled by any other algorithm that assigns static priorities.
- Lets Assume 2 processes
 - $-P_1 = (25, 50, 50)$
 - $-P_2 = (35, 80, 80)$

AM

Slide15

Other Fixed Priority Schemes

- Least Compute Time (LCT)
 - Assigns priorities in reverse order of compute time
 - Less compute intensive tasks get higher priority
 - These tasks will finish quickly, leaving cycles for more CPU intensive tasks
- Lets assume 2 processes
 - $-P_1 = (3, 4, 4)$
 - $-P_2 = (2, 8, 8)$

Slide17

Dynamic Priority

- Dynamic Priority
 - Priority of a task will change dependent on scheduler logic throughout the execution cycle of the system
 - Can be a combination of static and dynamic where priorities are fixed except for some well-defined places that require dynamic changes.
- Three Common Dynamic schemes
 - Shortest Completion Time (SCT)
 - Earliest Deadline First (EDF)
 - Least Slack Time (LST)

Shortest Completion Time (SCT)

- Keeps track of process compute time X
- Keeps track of amount of time a task has currently consumed – x
- Dynamically adjust priorities based on (X x)
- The process with the smallest (X x) gets to run next

SCT (cont)

Lets assume another example

$$-$$
 P1 = (3, 4, 4)

$$-$$
 P2 = (2, 8,8)

· Can This Be Scheduled?

Earliest Deadline-First (EDF) Scheduling

- · Priorities are assigned according to deadline
 - Earlier the deadline, the higher the priority
 - Later the deadline, the lower the priority
- When a process gets to the ready state it must
 - Announce its deadline requirements
 - Priorities may have to be adjusted to deal with the new process

EDF Scheduling

- · Lets look at our old friend
 - $-P_1 = (3, 4, 4)$
 - $-P_2 = (2, 8, 8)$

Another EDF Example

•
$$P1 = (2, 4, 4)$$

•
$$P2 = (5, 10, 10)$$

Least Slack Time (LST)

- Examines amount of free or slack time for each process
 - Slack time for a process is defined as
 - (d − t) -c'
 - d = deadline
 - t = real time since start of current cycle
 - c' = remaining compute time
- Smallest slack time is given highest priority

LST Example Example: Pa = (3, 4, 4), Pb = (2,8,8), T = 1Pa - (4-0)-3 = 1 X Pb - (8-0)-2 = 6ST2: Pa - (4-1)-2 = 1 X Pb - (8-1)-2 = 5ST3: Pa - (4-2)-1 = 1 X Pb - (8-2)-2 = 4ST4: Pa -Pb - (8-3)-2 = 3 XST5: Pa - (4-0)-3 = 1 X Pb - (8-4)-1 = 3ST6: Pb Pa - (4-1)-2 = 1 X5 Pb - (8-5)-1 = 2ST7: Pa - (4-2)-1 = 1 X Pb - (8-6)-1 = 1

