Distribuições e Probabilidade

PRI5003 - Lab 4

Instituto de Relações Internacionais - Universidade de São Paulo

27 de Abril de 2017

Outline

Conceitos Básicos

Distribuição Amostral

Erro padrão

Lei dos Grandes Números e Teorema do Limite Central

Revisão

Probabilidade = Área sob a curva

FIGURE 4.2: Probability Distribution of Commuting Time to Work. The area under the curve between two points represents the probability of that interval of values.

Curva normal

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- Simétrica, em forma de sino
- lacktriangle Caracterizada por dois parâmetros: média μ e desvio-padrão σ
- Muito comum em fenômenos naturais, e também muito importante em ciências sociais devido ao TLC
- ▶ Normal padronizada: $\mu = 0$ e $\sigma = 1$

Curva Normal

Distribuição de amostras

- Em ciências sociais, quase nunca as distribuições são normais.
- Pior ainda: muitas vezes, n\u00e3o sabemos como se comporta a distribui\u00e7\u00e3o real
- Nós podemos usar amostras para fazer inferências sobre os parâmetros dessa distribuição
- As estatísticas dessas amostras, quando obtidas repetidamente, seguem uma distribuição conhecida
- Não estamos mais falando de distribuição de valores de uma variável, mas de estatísticas que emergem de diversas amostras
- Exemplo: como se comporta a distribuição da intenção de votos em uma eleição?

Eleição

Distribuição de amostras

- Se fizermos diversas amostras de uma mesma população, podemos esperar variabilidade nos resultados.
- Esse erro é inerente ao fato de que estamos utilizando apenas uma parte da população: a amostra
- Por isso institutos de pesquisas têm números diferentes para uma eleição. Mas essa variação segue um padrão conhecido
- Para o caso da média, podemos calcular a variação esperada de diferentes amostras por meio do desvio-padrão
- Na prática, não precisamos tirar diversas amostras: podemos calcular o erro padrão pela fórmula $\frac{\sigma}{\sqrt{n}}$

Erro padrão

É o erro que esperamos obter se fizermos diversas amostras de uma mesma população

Erro padrão

Maior amostra - menor erro

In summary, error results from estimating μ by \overline{y} , because we sampled only part of the population. This error, which is the **sampling error**, tends to decrease as the sample size n increases. The standard error is fundamental to inferential procedures that predict the sampling error in using \overline{y} to estimate μ .

Lei dos Grandes Números e Teorema do Limite Central

Lei dos Grandes Números

A média amostral converge para o valor esperado da distribuição à medida em que o n cresce. Exemplo: jogar dados repetidas vezes

Teorema do Limite Central

A distribuição amostral da média se aproxima de uma normal, independentemente da distribuição original da variável. Uma aproximação

Teorema do Limite Central

TLC vs Lei dos Grandes Números

TLC vs Lei dos Grandes Números

Questões

- 1. Por que alterar o n de cada amostra (mantendo-se constante a quantidade de amostras) é diferente de alterar a quantidade de amostras (mantendo-se constante o n de cada amostra)?
- 2. Quais são os nomes técnicos dos fenômenos observados para cada caso? Quais são as definições técnicas de cada um deles? Como se distinguem?

Revisão

- Distribuição da população vs distribuição dos dados amostrais
 vs distribuição amostral
- Desvio-padrão vs erro padrão
- Número de amostras **vs** número de observações