# RELATÓRIO DE PROGRAMA

#### Sumário

| 1. | Desc                                                                   | crição do programa2                                                                    |
|----|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|    | 1.1.                                                                   | Plataforma de programação2                                                             |
|    | 1.2.                                                                   | Saída de dados2                                                                        |
|    | 1.3.                                                                   | Dados de entrada2                                                                      |
|    | 1.4.                                                                   | Descrição do algoritmo adotado                                                         |
| 2. | . Resu                                                                 | ultados de saída8                                                                      |
|    | 2.1.                                                                   | Comparação com exercício 1 prova 1, sistema de 4 barras e 6 ramos8                     |
|    | 2.2.                                                                   | Comparação com exercício 2 prova 1, sistema de 8 barras e 13 ramos9                    |
|    | 2.3.                                                                   | Comparação com exercício 2 prova 1, sistema de 8 barras e 12 ramos10                   |
|    | 2.4.<br>e 5 ram                                                        | Comparação com exemplo livro [1] capítulo 6 seção 6.1, sistema radial de 4 barras      |
|    | 2.5.<br>8 ramo                                                         | Comparação com exemplo livro [1] capítulo 6 seção 6.2, sistema anel de 5 barras e s    |
|    | 2.6.<br>ramos                                                          | Comparação com exercício 14 da lista de exercício, sistema anel de 8 barras e 12<br>15 |
|    | 2.7.                                                                   | Comparação com exercício 30 lista de exercício, sistema anel de 8 barras e 15          |
|    | ramos                                                                  | 10                                                                                     |
|    | 2.8.                                                                   | Comparação com sistema exemplo IEEE 13 barras                                          |
| 3. | 2.8.                                                                   |                                                                                        |
| 3. | 2.8.<br>. Con                                                          | Comparação com sistema exemplo IEEE 13 barras                                          |
|    | 2.8.<br>. Con                                                          | Comparação com sistema exemplo IEEE 13 barras                                          |
|    | 2.8.<br>Cond                                                           | Comparação com sistema exemplo IEEE 13 barras                                          |
|    | 2.8.<br>Cond<br>Dade                                                   | Comparação com sistema exemplo IEEE 13 barras                                          |
|    | 2.8. Cond<br>Dadd<br>4.1.<br>4.2.<br>4.3.                              | Comparação com sistema exemplo IEEE 13 barras                                          |
|    | 2.8. Cond<br>Dade<br>4.1.<br>4.2.<br>4.3.<br>4.4.<br>e 5 ram<br>4.5.   | Comparação com sistema exemplo IEEE 13 barras                                          |
|    | 2.8. Cond<br>Dade<br>4.1.<br>4.2.<br>4.3.<br>4.4.<br>e 5 ram<br>4.5.   | Comparação com sistema exemplo IEEE 13 barras                                          |
|    | 2.8. Conc. Dadd 4.1. 4.2. 4.3. 4.4. e 5 ram 4.5. 8 ramo 4.6.           | Comparação com sistema exemplo IEEE 13 barras                                          |
|    | 2.8. Cond Dadd 4.1. 4.2. 4.3. 4.4. e 5 ram 4.5. 8 ramo 4.6. ramos 4.7. | Comparação com sistema exemplo IEEE 13 barras                                          |

#### 1. Descrição do programa

#### 1.1. Plataforma de programação

A plataforma de programação MATLAB versão R2015a foi utilizada para o desenvolvimento deste programa.

#### 1.2. Saída de dados

O programa "CC\_REV8.m", após ser executado na interface do MATLAB, irá avaliar a topologia informada através dos dados de entrada, então retornará ao usuário informações sobre curto-circuito dos tipos monofásico, bifásico (fase-fase) e trifásico.

No console do MATLAB será possível visualizar as seguintes informações por tipo de curto-circuito:

- Corrente de curto-circuito na barra indicada em curto-circuito em kA
- Tensão de fase em todas barras da topologia informada em kV
- Fluxo de corrente entre ramos da topologia informada em kA

As mesmas informações visualizadas no formato de tabela no console do MATLAB serão exportadas para pasta raiz do programa nos arquivos "analise3f.csv", "analise2f.csv" e "analise1f.csv" com os resultados dos tipos de curto-circuito trifásico, bifásico (fase-fase) e monofásico respectivamente.

#### 1.3. Dados de entrada

A topologia da rede a ser analisada pelo programa deve ser organizada em um arquivo de entrada no formato de texto separado por vírgulas (extensão ".csv"). Cada ramo da topologia será representado por uma linha do arquivo de texto que deve ter os seguintes parâmetros separados por vírgula:

| р | q | z+ | z0 | L | Vpb | Vqb | Sb_equip | Vp_equip | Vq_equip | tipo_seq0 |
|---|---|----|----|---|-----|-----|----------|----------|----------|-----------|
|---|---|----|----|---|-----|-----|----------|----------|----------|-----------|

#### Onde:

- p: barra origem do ramo em número [inteiro]
- q: barra destino do ramo em número [inteiro]
- z+: impedância de sequência positiva em  $[\Omega/L]$  ou [pu] entre o ramo pq
- z+: impedância de sequência zero em  $[\Omega/L]$  ou [pu] entre o ramo pq
- L: comprimento entre o ramo pq em [m, ft, mile, etc]
- Vpb: tensão de base da barra p em [kV]
- Vqb: tensão de base da barra q em [kV]
- Sb\_equip: potência aparente base do equipamento entre o ramo pq em [MVA]
- Vp\_equip: tensão de base do equipamento referida a barra p em [kV]
- Vq\_equip: tensão de base do equipamento referida a barra q em [kV]
- tipo\_seq0: tipo de conexão de sequência zero entre o ramo pq em número [inteiro]

Todos os parâmetros de entrada devem estar preenchidos, caso algum parâmetro seja inexistente para o ramo expresso o valor atribuído deverá ser zero.

O ramo formado entre elementos shunt e uma barra da topologia deve ter como origem (p ou q) a barra de número zero, a referência, no arquivo de entrada.

O parâmetro tipo\_seq0 determina como o programa irá interpretar a topologia do ramo relacionado dada sua conexão. Para diferentes tipos de conexão de enrolamentos entre p e q existem diferentes formas de modelar a topologia de sequência zero do ramo, portanto para flexibilizar o modelo interpretado pelo programa é necessário a adição de uma barra fictícia f entre as barras p e q. Em resumo, o parâmetro tipo\_seq0 é interpretado pelo programa como uma ordem para substituição do ramo atual avaliado por 3 novos ramos que ligam p e f, f e a referência e f à barra q. A tabela abaixo apresenta os valores válidos para tipo\_seq0 por conexão e sua interpretação pelo programa.

| Conexão                               | Topologia de sequência zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tipo_seq0 | Topologia de sequência zero interpretada                                                                                                   |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| *Núcleo envolvente                    | p • q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                      |
| △ ↓ *Núcleo envolvente                | p ◆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | p ●                                                                                                                                        |
| *Núcleo<br>envolvente                 | p • • q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3         | p•                                                                                                                                         |
| A A A A A A A A A A A A A A A A A A A | p •—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4         | $p \bullet \qquad $ |
| *Núcleo<br>envolvido                  | $p \bullet \qquad \qquad \downarrow $ | 5         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                     |
| *Núcleo envolvido                     | p ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6         | 0,4z <sub>0</sub> f ∞ q                                                                                                                    |
| △ ↓ *Núcleo envolvido                 | p ◆ 0,85z <sub>a</sub> • q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7         | 0,45z <sub>0</sub> Q                                                                                                                       |

Caso o valor de tipo\_seq0 seja diferente de zero os ramos adicionais na topologia de sequência positiva serão interpretados como na figura abaixo, ou seja, como se não houvesse barra fictícia.



Na interface do MATLAB, após carregado o programa de análise de curto-circuito, o usuário deverá entrar manualmente com os seguintes parâmetros:

- barra\_cc: barra em que ocorrerá o curto-circuito na topologia informada em número [inteiro]
- Sb: potência base do sistema em [MVA]
- rf: resistência de falta em [pu]

#### 1.4. Descrição do algoritmo adotado

O programa de análise de curto-circuito aqui descrito segue os seguintes passos:

• Leitura dos dados de entrada.

```
rf=0; %RESISTÊNCIA DE FALTA [pu]
Sb=100; %DEFINIR POTENCIA DE BASE DO SISTEMA [MVA]
barra_cc=7; %NOME DA BARRA COMO NO ARQUIVO DE ENTRADA
entrada=csvread('./8bar ex30 OK.txt'); %ex 30 lista p1 cc barra 7
```

• Organização dos dados para que o programa não dependa do nome das barras informadas na entrada para a posição de barras na matriz de impedâncias.

```
barraNome=unique(entrada(:,[1 2])); %esta ordenado menor para o maior
devido função unique
barraNum=0:1:length(barraNome)-1; %barra 0 é sempre o primeiro
elemento do vetor
V barra base=[entrada(:,1) entrada(:,6);entrada(:,2) entrada(:,7)];
%tensão de base por barra
barraNum sem barras ficticias=barraNum; %usado para calculo de tensão
nas barras
entrada(:,[1\ 2])=sort(entrada(:,[1\ 2]),2); %ordenar dados de linha
para que p<q
entrada=sortrows(entrada,1); %ordenar dados da barra(:,1) do menor
para o maior
entrada sem ramos ficticios=entrada; %usado para calculo de corrente
nos ramos
for i=1:1:length(entrada(:,1))
    entrada(i,1)=barraNum(find(barraNome==entrada(i,1))); %mapear nome
barra p ao numero
    entrada(i,2)=barraNum(find(barraNome==entrada(i,2))); %mapear nome
barra q ao numero
end
```

• Conversão dos parâmetros z+ e z0 para pu e adição de ramos extras a depender do parâmetro tipo seg0. descrito na secão "Dados de entrada".

```
for m=1:1:size(entrada,1) %tratamento de topologia seq pos e zero
    X=entrada(m,:); %para facilitar leitura das variaveis
[p,q,zp,z0,L,Vpb,Vqb,Sequip,Vp equip,Vq equip,t z0]=deal(X(1),X(2),X(3))
), X(4), X(5), X(6), X(7), X(8), X(9), X(10), X(11));
    if(L>0) %LT
        zp=zp*L*(Sb/Vpb^2);
        z0=z0*L*(Sb/Vpb^2);
        entrada aux=[entrada aux;[p q zp z0 L Vpb Vqb Sb Vp equip
Vq equip t z0]];
    elseif(Sequip>0) %TR e UGs
        if(Vp equip==0) %evitar casos ramo p ou q é ref para geradores
            zp=zp*((Vq equip^2)/Sequip)*(Sb/Vqb^2);
            z0=zp;
        else
            zp=zp*((Vp equip^2)/Sequip)*(Sb/Vpb^2);
        end
        if(t z0==0) %gerador
           entrada aux=[entrada aux;[p ficticia zp/2 z0/2 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão geradores
        elseif(t z0==1) %trafo seq zero conexão p-ficticia-0 |q
           barraNum=[barraNum max(barraNum)+1];
           ficticia=barraNum(end);
           entrada_aux=[entrada_aux;[p ficticia zp/2 z0/2 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão p-ficticia
           entrada_aux=[entrada_aux;[0 ficticia 9999 z0/2 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão ficticia-0
           entrada aux=[entrada aux;[ficticia q zp/2 9999 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão ficticia-q
        elseif(t z0==2) %trafo seq zero conexão p| 0-ficticia-q
           barraNum=[barraNum max(barraNum)+1];
           ficticia=barraNum(end);
           entrada aux=[entrada aux;[p ficticia zp/2 9999 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão p-ficticia
           entrada aux=[entrada aux;[0 ficticia 9999 z0/2 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão ficticia-0
           entrada aux=[entrada aux;[ficticia q zp/2 z0/2 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão ficticia-q
        elseif(t z0==3) %trafo seg zero conexão p-ficticia-q e
ficticia-0
           barraNum=[barraNum max(barraNum)+1];
           ficticia=barraNum(end);
           entrada_aux=[entrada_aux;[p ficticia zp/2 z0/2 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão p-ficticia
           entrada aux=[entrada aux;[0 ficticia 9999 z0/2 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão ficticia-0
           entrada_aux=[entrada_aux;[ficticia q zp/2 z0/2 L Vpb Vqb Sb
Vp equip Vq equip t z0]]; %conexão ficticia-q
        end
    else %equivalente de sistemam em pu
        entrada aux=[entrada aux;[p q zp z0 L Vpb Vqb Sb Vp equip
Vq equip t z0]];
    end
end
```

 Construção da matriz de impedâncias de sequência positiva e negativa. Abaixo é reproduzido o código para construção da matriz de impedância de sequência positiva que é o mesmo utilizado para sequência zero.

```
for m=1:1:size(entrada,1)
    p=entrada(m,1);
    q=entrada(m,2);
    z pos lt=entrada(m,3);
    if (p==0) %conexão com barra ref
         if(z pos barra(q,q)==0) %barra é uma nova conexão
             z pos barra(q,q)=z pos lt;
         else
             z pos barra=z pos barra-
(1/(z \text{ pos barra}(q,q)+z \text{ pos lt}))*z \text{ pos barra}(:,q)*z \text{ pos barra}(q,:);
         end
    else
         if (z pos barra(q,q) == 0) %barra q é uma nova conexão
             z_pos_barra(:,q)=z_pos_barra(:,p);
             z_pos_barra(q,:)=z_pos_barra(p,:);
        z_pos_barra(q,q)=z_pos_barra(p,p)+z_pos_lt;
elseif(z_pos_barra(p,p)==0) %barra p é uma nova conexão
             z_pos_barra(:,p)=z_pos_barra(:,q);
             z_pos_barra(p,:)=z_pos_barra(q,:);
             z_pos_barra(p,p) = z_pos_barra(q,q) + z_pos_lt;
         else
             z_pos_barra=z_pos_barra-
(1/(z_pos_barra(q,q)+z_pos_barra(p,p)-
(2*z pos barra(p,q))+z pos lt))*(z pos barra(:,p)-
z pos barra(:,q))*(z pos barra(p,:)-z pos barra(q,:));
    end
end
```

 Cálculo de curto-circuito do tipo trifásico, bifásico e monofásico com saída de dados na console do MATLAB e arquivo de texto.
 Abaixo é reproduzido o código com cálculos referente ao tipo de curto circuito

trifásico. A mesma lógica é utilizada para o cálculo dos demais tipos de curtocircuito, modificado apenas pela formulação como descrito em [1].

```
%Cálculo corrente de curto-circuito
[row,~]=find(V barra base(:,1)==barra cc);
Vbase=V barra base(row(1),2);
Ibase=Sb/(Vbase*sqrt(3));
Icc3f=Ibase/z pos barra(barra cc,barra cc);
Icc3f_abs=abs(Icc3f);
Icc3f angle=radtodeg(angle(Icc3f));
%Cálculo tensão nas barras
V3f=zeros(1,total barras sem ficticias);
for i=1:1:total barras sem ficticias %quantidade de barras menos a
referencia e barras ficticias
    [row, \sim] = find(V barra base(:, 1) == i);
    Vbase=V barra base(row(1),2)/sqrt(3);
    V3f(i) = \overline{V}base*(1-
z pos barra(i,barra cc)/z pos barra(barra cc,barra cc));
    V3f abs(i) = abs(V3f(i));
    V3f angle(i)=radtodeg(angle(V3f(i)));
end
%Cálculo fluxo de corrente nos ramos
Ipq3f=zeros(1,size(entrada sem ramos ficticios,1));
for m=1:1:size(entrada sem ramos ficticios,1)
    X=entrada sem ramos ficticios(m,:); %para facilitar leitura das
variaveis
[p,q,zp,z0,L,Vpb,Vqb,Sequip,Vp equip,Vq equip,t z0]=deal(X(1),X(2),X(3))
), X(4), X(5), X(6), X(7), X(8), X(9), X(10), X(11));
    if(L>0) %LT
        zp=zp*L*(Sb/Vpb^2);
    elseif(Sequip>0) %TR e UGs
        if(Vp equip==0) %evitar casos ramo p ou q é ref para geradores
            zp=zp*((Vq equip^2)/Sequip)*(Sb/Vqb^2);
        else
            zp=zp*((Vp equip^2)/Sequip)*(Sb/Vpb^2);
        end
    end
    if(p==0)
        Ibase=Sb/(Vqb*sqrt(3)); %sempre considerando corrente do ramo
Ipq3f(m)=Ibase*z pos barra(q,barra cc)/(z pos barra(barra cc,barra cc)
*zp);
        Ipq3f abs (m) = abs (Ipq3f (m));
        Ipq3f angle(m) = radtodeg(angle(Ipq3f(m)));
    else
        Ibase=Sb/(Vpb*sqrt(3)); %sempre considerando corrente do ramo
p ao ramo q
        Ipq3f(m) = Ibase*(z pos barra(q, barra cc) -
z pos barra(p,barra cc))/(z pos barra(barra cc,barra cc)*zp);
        Ipq3f abs(m)=abs(Ipq3f(m));
        Ipq3f angle(m) = radtodeg(angle(Ipq3f(m)));
    end
end
for i=1:1:length(entrada sem ramos ficticios(:,1))
```

```
entrada sem ramos ficticios(i,1)=barraNome(find(barraNum==entrada sem
ramos ficticios(i,1))); %mapear numero barra p ao nome
entrada sem ramos ficticios(i,2)=barraNome(find(barraNum==entrada sem
ramos ficticios(i,2))); %mapear numero barra q ao nome
TI3F=array2table([barraNome(find(barraNum==barra cc)) Icc3f abs
Icc3f angle], 'VariableNames', {'Barra', 'I cc kA', 'deg'});
disp(TI3F)
TV3F=array2table([barraNome(2:end) V3f abs.' V3f angle.'],
'VariableNames', { 'Barra', 'Vfase kV', 'deg'});
disp(TV3F)
TIPQ3F=array2table([entrada_sem_ramos_ficticios(:,[1 2]) Ipq3f_abs.'
Ipq3f angle.'], 'VariableNames', {'p', 'q', 'I kA', 'deg'});
disp(TIPQ3F)
writetable(TI3F,'I cc 3F.txt','Delimiter',' ');
writetable(TV3F,'V cc 3F.txt','Delimiter',' ');
writetable(TIPQ3F, 'Ipq cc 3F.txt', 'Delimiter', ' ');
```

#### 2. Resultados de saída

Os dados de entrada utilizados estão disponíveis na seção 4.

Os resultados de saída, após execução do programa no MATLAB, são salvos no mesmo diretório do programa com os nomes: "I\_cc\_3F.txt", "V\_cc\_3F.txt", "Ipq\_cc\_3F.txt", "I\_cc\_2F.txt", "V\_cc\_2F.txt", "Ipq\_cc\_2F.txt", "I\_cc\_1F.txt", "V\_cc\_1F.txt", "Ipq\_cc\_1F.txt". Onde o sufixo indica o tipo de curto circuito, se trifásico, bifásico ou monofásico (3F, 2F e 1F respectivamente) e o prefixo indica a informação armazenada, se corrente de curto circuito, tensão nas barras e fluxo de corrente entre ramos (I, V, Ipq).

#### 2.1.Comparação com exercício 1 prova 1, sistema de 4 barras e 6 ramos

• Construção da matriz de impedâncias

|         |              | Resultado p  | rograma   |        |        |
|---------|--------------|--------------|-----------|--------|--------|
|         | >> imag(z_po | s_barra)*1   | .00       |        |        |
|         | ans =        |              |           |        |        |
|         | 12.1636      | 1.2701       | 3.0887    | 2.1794 |        |
|         | 1.2701       | 1.9238       | 1.8147    | 1.8692 |        |
|         | 3.0887       | 1.8147       | 4.4129    | 3.1138 |        |
|         | 2.1794       | 1.8692       | 3.1138    | 4.0665 |        |
|         | ı            | Resultado re | eferência |        |        |
|         |              |              |           |        |        |
| j12,16% | j1,279       | %            | j3,09%    |        | j2,18% |
| j1,27%  | j1,929       | %            | j1,81%    |        | j1,87% |
| j3,09%  | j1,819       | %            | j4,41%    |        | j3,11% |
| j2,18%  | j1,879       | %            | j3,11%    |        | j4,06% |

# 2.2.Comparação com exercício 2 prova 1, sistema de 8 barras e 13 ramos

• Construção da matriz de impedâncias

|              |           |        | Resultado | programa   |        |       |        |    |
|--------------|-----------|--------|-----------|------------|--------|-------|--------|----|
| >> imag(z_po | s_barra)* | 100    |           |            |        |       |        |    |
| ans =        |           |        |           |            |        |       |        |    |
| 0.8785       | 0.1465    | 0.0119 | 0.2852    | 0.0626     | 0.5182 | 0.290 | 8 0.11 | 34 |
| 0.1465       | 1.1154    | 0.0550 | 0.7400    | 0.1413     | 0.4505 | 0.529 | 9 0.22 | 77 |
| 0.0119       | 0.0550    | 0.4757 | 0.1107    | 0.4216     | 0.0907 | 0.178 | 0.36   | 74 |
| 0.2852       | 0.7400    | 0.1107 | 5.5606    | 0.7869     | 3.0257 | 3.829 | 8 1.46 | 31 |
| 0.0626       | 0.1413    | 0.4216 | 0.7869    | 3.8875     | 0.6964 |       |        |    |
| 0.5182       | 0.4505    | 0.0907 | 3.0257    | 0.6964     | €.8385 |       |        |    |
| 0.2908       | 0.5299    | 0.1780 | 3.8298    | 1.4843     |        |       |        |    |
| 0.1134       | 0.2277    | 0.3674 | 1.4631    | 3.3535     | 1.3021 | 2.790 | 6.33   | 98 |
|              |           |        | Resultado | referência |        |       |        |    |
| j0,88        | j0,15     | j0,01  | j0,29     | j0,06      | j0,52  | j0,29 | j0,11  |    |
| j0,15        | j1,12     | j0,05  | j0,74     | j0,14      | j0,45  | j0,53 | j0,23  |    |
| j0,01        | j0,05     | j0,48  | j0,11     | j0,42      | j0,09  | j0,18 | j0,37  |    |
| j0,29        | j0,74     | j0,11  | j5,56     | j0,79      | j3,03  | j3,83 | j1,46  |    |
| j0,06        | j0,14     | j0,42  | j0,79     | j3,89      | j0,70  | j1,48 | j3,35  |    |
| j0,52        | j0,45     | j0,09  | j3,03     | j0,70      | j6,84  | j3,42 | j1,30  |    |
| j0,29        | j0,53     | j0,18  | j3,83     | j1,48      | j3,42  | j7,36 | j2,79  |    |
| j0,11        | j0,23     | j0,37  | j1,46     | j3,35      | j1,30  | j2,79 | j6,34  |    |

# 2.3.Comparação com exercício 2 prova 1, sistema de 8 barras e 12 ramos

• Curto-circuito trifásico

|                                                |              | Resultado    | progra | ma |  |  |  |  |  |  |
|------------------------------------------------|--------------|--------------|--------|----|--|--|--|--|--|--|
| ====RESULTADO PARA CURTO-CIRCUITO BARRA 6===== |              |              |        |    |  |  |  |  |  |  |
|                                                |              | CIRCUITO TRI |        |    |  |  |  |  |  |  |
| Bar                                            | arra I_cc_kA |              | deg    |    |  |  |  |  |  |  |
| _                                              |              |              |        |    |  |  |  |  |  |  |
| 6                                              |              | 4.7878       | 0.0    |    |  |  |  |  |  |  |
| 6                                              |              | 4.7878       | -90    |    |  |  |  |  |  |  |
| Bar                                            | ra           | Vfase_kV     | deg    |    |  |  |  |  |  |  |
| _                                              | _            |              | _      |    |  |  |  |  |  |  |
| 1                                              |              | 73.891       | 0      |    |  |  |  |  |  |  |
| 2                                              |              | 76.881       | 0      |    |  |  |  |  |  |  |
| 3                                              |              | 78.938       | 0      |    |  |  |  |  |  |  |
| 4                                              |              | 63.603       | 0      |    |  |  |  |  |  |  |
| 5                                              |              | 73.736       | 0      |    |  |  |  |  |  |  |
| 6                                              |              | 0            | 0      |    |  |  |  |  |  |  |
| 7                                              |              | 50.325       | 0      |    |  |  |  |  |  |  |
| 8                                              |              | 68.534       | 0      |    |  |  |  |  |  |  |
| p                                              | q            | I_kA         | deg    |    |  |  |  |  |  |  |
| -                                              | _            |              |        |    |  |  |  |  |  |  |
| 0                                              | 1            | 3.037        | -90    |    |  |  |  |  |  |  |
| 0                                              | 2            | 0.9778       | -90    |    |  |  |  |  |  |  |
| 0                                              | 3            | 0.77296      | -90    |    |  |  |  |  |  |  |
| 1                                              | 6            | 3.2333       | -90    |    |  |  |  |  |  |  |
| 1                                              | 2            | 0.19629      | 90     |    |  |  |  |  |  |  |
| 2                                              | 4            | 0.87153      | -90    |    |  |  |  |  |  |  |
| 2                                              | 3            | 0.090018     | 90     |    |  |  |  |  |  |  |
| 3                                              | 5            | 0.68294      | -90    | -  |  |  |  |  |  |  |
| 4                                              | 7            | 0.87153      | -90    | _  |  |  |  |  |  |  |
| 5                                              | 8            | 0.68294      | -90    |    |  |  |  |  |  |  |
| 6                                              | 7            | 1.5545       | 90     |    |  |  |  |  |  |  |
| 7                                              | 8            | 0.68294      | 90     |    |  |  |  |  |  |  |

Resultado referência

a) 
$$\hat{I}cc_6 = 100/Z'_{6,6} = -j11,44 \text{ pu} \rightarrow \hat{I}cc_6 \times S_B/(\text{sqrt}(3)*V_B) = -j4786,15A$$

b) 
$$V_5 = 1 - Z_{5,6}^{'}/Z_{6,6}^{'} = 0,924 \text{ pu}$$

c) 
$$\hat{I}_{4-7} = ((Z_{7,6} - Z_{4,6})/Z_{6,6}) \times (100/z_{4-7}) = -j2,07 \text{ pu}$$

<sup>\*</sup>resultado em pu, considerar Vbase do sistema de 138kV e Sbase de 100MVA

# 2.4. Comparação com exemplo livro [1] capítulo 6 seção 6.1, sistema radial de 4 barras e 5 ramos

• Curto-circuito trifásico

| Resultado programa                             | Resultado referência                                        |  |  |
|------------------------------------------------|-------------------------------------------------------------|--|--|
| ====RESULTADO PARA CURTO-CIRCUITO BARRA 4===== |                                                             |  |  |
| *****CURTO-CIRCUITO TRIFÁSICO****              |                                                             |  |  |
| Barra I_cc_kA deg                              |                                                             |  |  |
|                                                | $\hat{I}_{cc3\phi} = 5667,2 \angle -81,9^{\circ} \text{ A}$ |  |  |
| 4 5.6671 -81.89                                |                                                             |  |  |

Curto-circuito bifásico



• Curto-circuito monofásico



# 2.5. Comparação com exemplo livro [1] capítulo 6 seção 6.2, sistema anel de 5 barras e 8 ramos

• Curto-circuito trifásico

|       | 0 0,7 0 | 0 0.                                                                        | ircuito tilia                                                                           | T                                                                  |                                                                                                                                                                                                                                                                                                                                        |
|-------|---------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |         |                                                                             | Resultado                                                                               | programa                                                           | Resultado referência                                                                                                                                                                                                                                                                                                                   |
| ====] | RESULI  | rad(                                                                        | PARA CUR                                                                                | TO-CIRCUITO BARRA 5====                                            |                                                                                                                                                                                                                                                                                                                                        |
| ***   | *CURTO  | O-C                                                                         | IRCUITO TR                                                                              | IFÁSICO****                                                        |                                                                                                                                                                                                                                                                                                                                        |
| 1     | Barra   |                                                                             | I_cc_kA                                                                                 | deg                                                                |                                                                                                                                                                                                                                                                                                                                        |
| -     |         |                                                                             |                                                                                         | _                                                                  |                                                                                                                                                                                                                                                                                                                                        |
|       | 5       |                                                                             | 3.3796                                                                                  | -90                                                                |                                                                                                                                                                                                                                                                                                                                        |
| 1     | Barra   |                                                                             | Vfase_kV                                                                                | deg                                                                |                                                                                                                                                                                                                                                                                                                                        |
| -     |         |                                                                             |                                                                                         | _                                                                  |                                                                                                                                                                                                                                                                                                                                        |
|       | 1       |                                                                             | 185.92                                                                                  | 0                                                                  |                                                                                                                                                                                                                                                                                                                                        |
|       | 2       |                                                                             | 143.57                                                                                  | 0                                                                  | $\hat{I}_{-24} = -i3.379.8 \text{ A}$                                                                                                                                                                                                                                                                                                  |
| _     |         |                                                                             | 125.5                                                                                   | 0                                                                  | $f_{ccs}\phi_{Ak} = f_{ccs}\phi_{Ak}$                                                                                                                                                                                                                                                                                                  |
| . [   | 4       |                                                                             | 117.88                                                                                  | 0                                                                  | $\hat{V}R = 0.408 (500) = 117.8 \text{ LV}$                                                                                                                                                                                                                                                                                            |
| -     | 5       |                                                                             | 0                                                                                       | 0                                                                  | $V_4 = 0,400 \left( \frac{1}{\sqrt{3}} \right) = 117,0 \text{ KV}$                                                                                                                                                                                                                                                                     |
| 1     | p q     | 4                                                                           | I_kA                                                                                    | deg                                                                | $\hat{I}_{cc3\phi_{Ak}} = -j3.379,8 \text{ A}$<br>$\hat{V}_4^R = 0,408 \left(\frac{500}{\sqrt{3}}\right) = 117,8 \text{ kV}$<br>$\hat{I}_{2,4} = -j416,1 \text{ A}$                                                                                                                                                                    |
| -     |         | -                                                                           |                                                                                         | _                                                                  |                                                                                                                                                                                                                                                                                                                                        |
|       | 0 1     | L                                                                           | 1.8106                                                                                  | -90                                                                |                                                                                                                                                                                                                                                                                                                                        |
|       | 0 3     | 3                                                                           | 1.569                                                                                   | -90                                                                |                                                                                                                                                                                                                                                                                                                                        |
|       | 1 2     | 2                                                                           | 0.68587                                                                                 | -90                                                                |                                                                                                                                                                                                                                                                                                                                        |
|       |         | 1                                                                           | 1.1247                                                                                  | -90                                                                |                                                                                                                                                                                                                                                                                                                                        |
|       | 2 4     | 1                                                                           | 0.41611                                                                                 | -90                                                                |                                                                                                                                                                                                                                                                                                                                        |
| :     | 2 3     | 3                                                                           | 0.26976                                                                                 | -90                                                                |                                                                                                                                                                                                                                                                                                                                        |
| ;     | 3 5     | 5                                                                           | 1.8388                                                                                  | -90                                                                |                                                                                                                                                                                                                                                                                                                                        |
|       | 4 5     | 5                                                                           | 1.5409                                                                                  | -90                                                                |                                                                                                                                                                                                                                                                                                                                        |
|       |         | ====RESUL: *****CURTC Barra  5  Barra  1 2 3 4 5  p 0 1 2 1 2 3 1 2 3 3 4 5 | ====RESULTADM *****CURTO-C: Barra  5  Barra  1 2 3 4 5  p q 0 1 0 3 1 2 1 4 2 4 2 3 3 5 | ResultadoRESULTADO PARA CUR: *****CURTO-CIRCUITO TR: Barra I_cc_kA | Resultado programa ====RESULTADO PARA CURTO-CIRCUITO BARRA 5===== ******CURTO-CIRCUITO TRIFÁSICO*****  Barra I_cc_kA deg  5 3.3796 -90  Barra Vfase_kV deg  1 185.92 0 2 143.57 0 3 125.5 0 4 117.88 0 5 0 0  p q I_kA deg  0 1 1.8106 -90 0 3 1.569 -90 1 2 0.68587 -90 1 4 1.1247 -90 2 4 0.41611 -90 2 3 0.26976 -90 3 5 1.8388 -90 |

#### • Curto-circuito bifásico

|              |         |                            |                            | sultado pro                                      | grama                               |          |       |         |
|--------------|---------|----------------------------|----------------------------|--------------------------------------------------|-------------------------------------|----------|-------|---------|
| *CUI<br>Barı |         | IfA cc ki                  | IFÁSICO****<br>A deg fA    |                                                  | kA deg_                             | FB TFC   | cc kA | deg     |
| Dari         | _       |                            | - deg_in                   |                                                  |                                     |          |       |         |
| 5            |         | 0                          | 0                          | 2.9269                                           | 180                                 | 2.92     | 69    | 0       |
| _            |         |                            | -                          | 2.5205                                           | 200                                 | 2.72     |       |         |
| Barı         | ra<br>— | VfA_kV                     | VfA_deg                    | VfB_kV                                           | VfB_deg                             | VfC_kV   | VfC_d | eg<br>— |
| 1            |         | 288.68                     | 0                          | 216.24                                           | -131.87                             | 216.24   | 131.8 | 7       |
| 2            |         | 288.68                     | 0                          | 190.51                                           | -139.26                             | 190.51   | 139.2 | 6       |
| 3            |         | 288.68                     | 0                          | 180.68                                           | -143.02                             | 180.68   | 143.0 | 2       |
| 4            |         | 288.68                     | 0                          | 176.79                                           | -144.73                             | 176.79   | 144.7 | 3       |
| 5            |         | 288.68                     | 0                          | 144.34                                           | 180                                 | 144.34   | 18    | 0       |
| р            | p       | IfA_kA                     | deg_fA                     | IfB_kA                                           | deg_fB                              | IfC_kA   | deg_  | fC      |
| -            | -       |                            |                            |                                                  |                                     |          |       | _       |
| 0            | 1       | 0                          | 0                          | 1.568                                            | 180                                 | 1.568    | 0     |         |
| 0            | 3       | 0                          | 0                          | 1.3588                                           | 180                                 | 1.3588   | 0     |         |
| 1            | 2       | 0                          | 0                          | 0.59398                                          | 180                                 | 0.59398  | 0     |         |
| 1            | 4       | 0                          | 0                          | 0.97406                                          | 180                                 | 0.97406  | 0     |         |
| 2            | 4       | 0                          | 0                          | 0.36036                                          | 180                                 | 0.36036  | 0     |         |
| 2            | 3       | 0                          | 0                          | 0.23362                                          | 180                                 | 0.23362  | 0     |         |
| 3            | 5       | 0                          | 0                          | 1.5924                                           | 180                                 | 1.5924   | 0     |         |
| 4            | 5       | 0                          | 0                          | 1.3344                                           | 180                                 | 1.3344   | 0     |         |
|              |         |                            |                            | sultado refe                                     | Acceptable of the second            |          |       |         |
|              |         |                            | $I_c$                      | $c2\phi_{A5} = 0$                                | ,0 A                                |          |       |         |
|              |         | $\hat{I}_{cc2\phi_{BK}} =$ | = -25,34 ( $= 25,34$ (     | 1.000,0.100                                      | (0) = 2.9                           | 26,0∠180 | ° A   |         |
|              |         |                            | (                          | 1 000 0.100                                      | (0)                                 |          |       |         |
|              |         | $I_{cc2\phi_{C5}}$         | = 25,34 (                  | √3.500                                           | = 2.9                               | 26,0Z0°  | A     |         |
|              |         |                            | $\hat{V}_{A4}=1,$          | $O\left(\frac{500}{\sqrt{3}}\right) =$           | = 288,7∠0                           | ° kV     |       |         |
|              |         | $\hat{V}_{B4} =$           | 0,612/21                   | $5,3^{\circ} \left(\frac{500}{\sqrt{3}}\right)$  | = 176,7                             | 7∠215,3° | kV    |         |
|              |         | $\hat{V}_{C4} =$           | 0,612∠14                   | $4.8^{\circ} \left(\frac{500}{.\sqrt{2}}\right)$ | = 176,7                             | 7∠144,7° | kV    |         |
|              |         |                            |                            | $\hat{I}_{A_{2,4}} =$                            | 0,0 A                               |          |       |         |
|              |         | $I_{B_2}$                  | $_{1,4} = -3,12$           | $21\left(\frac{1.000,0}{\sqrt{3}.5}\right)$      | $\left(\frac{100,0}{00}\right) = 3$ | 60,4∠180 | ° A   |         |
|              |         |                            | $\hat{I}_{C_{2,4}} = 3,12$ | 1.000,0                                          | 100,0                               | 860 4700 | Λ     |         |

#### • Curto-circuito monofásico

| h de Carre | DTC : | OTDOUTED NO                |                 | sultado pro                                     | Braina                          |           |       |       |
|------------|-------|----------------------------|-----------------|-------------------------------------------------|---------------------------------|-----------|-------|-------|
| Bar        |       | CIRCUITO MO<br>IfA_cc_kA   |                 | IfB_cc_                                         | _kA deg_                        | fB IfC_   | cc_kA | deg   |
| _          | _     |                            |                 |                                                 |                                 |           |       | _     |
| 5          |       | 2.3583                     | -90             | 0                                               | 0                               | 0         |       | 0     |
| Bar        | ra    | VfA_kV                     | VfA_deg         | VfB_kV                                          | VfB_deg                         | VfC_kV    | VfC_  | deg   |
| 1          | _     | 235.76                     | 0               | 279.76                                          | -116.67                         | 279.76    | 116.  | 67    |
| 2          |       | 196.32                     | 0               | 284.33                                          | -118.45                         | 284.33    | 118.  |       |
| 3          |       | 199.11                     | 0               | 277.32                                          | -115.65                         | 277.32    | 115.  |       |
| 4          |       | 154.26                     | 0               | 296.58                                          | -122.55                         | 296.58    | 122.  |       |
| 5          |       | 0                          | 0               | 340.77                                          | -132.81                         | 340.77    | 132.  |       |
| р          | q     | IfA_kA                     | deg_fA          | IfB_kA                                          | A deg_f                         | B IfC_    | kA    | deg_f |
| -          | -     |                            |                 |                                                 |                                 |           |       |       |
| 0          | 1     | 1.1083                     | -90             | 0.159                                           | 52 90                           | 0.1       | .552  | 90    |
| 0          | 3     | 1.2501                     | -90             | 0.159                                           | 52 -90                          | 0.1       | 552   | -90   |
| 1          | 2     | 0.39333                    | -90             | 0.08527                                         | 73 90                           | 0.085     | 273   | 90    |
| 1          | 4     | 0.71493                    | -90             | 0.06992                                         | 23 90                           | 0.069     | 923   | 90    |
| 2          | 4     | 0.30686                    | -90             | 0.01649                                         | 98 -90                          | 0.016     | 498   | -90   |
| 2          | 3     | 0.086466                   | -90             | 0.1017                                          | 77 90                           | 0.10      | 177   | 90    |
| 3          | 5     | 1.3365                     | -90             | 0.05342                                         | 25 -90                          | 0.053     | 425   | -90   |
| 4          | 5     | 1.0218                     | -90             | 0.05342                                         | 25 90                           | 0.053     | 425   | 90    |
|            |       |                            | Re              | sultado refe                                    | rência                          |           |       |       |
|            |       | $\hat{I}_{cc1\phi_{A5}} =$ | -j20,424        | $\left(\frac{1.000,0.1}{\sqrt{3}.50}\right)$    | $\binom{00,0}{0} = -$           | -j2.358,3 | A     |       |
|            |       | $\hat{V}_{A4}$             | = 0,5344        | $0^{\circ} \left(\frac{500}{\sqrt{3}}\right)$   | = 154,22                        | ∠0° kV    |       |       |
|            |       | $\hat{V}_{B4} = 1$         | ,027∠237,       | $5^{\circ} \left( \frac{500}{\sqrt{3}} \right)$ | = 296,54                        | 237,5° k  | V     |       |
|            |       | $\hat{V}_{C4} = 1$         | ,027∠122,       | $5^{\circ} \left( \frac{500}{\sqrt{3}} \right)$ | =296,54                         | 122,5° k  | V     |       |
|            |       | $\hat{I}_{A_{2,4}}$ :      | =-j2,65'        | $7\left(\frac{100.000}{\sqrt{3}.500}\right)$    | $\left(\frac{0}{0}\right) = -j$ | 306,8 A   |       |       |
|            |       | $\hat{I}_{B_{2,4}}$        | =-j0,14         | $3\left(\frac{100.000}{\sqrt{3}.50}\right)$     | (0.0) = -j                      | 16,5 A    |       |       |
|            |       |                            | $\hat{I}_{C_2}$ | $a_4 = -j16$                                    | 5,5 A                           |           |       |       |

# 2.6.Comparação com exercício 14 da lista de exercício, sistema anel de 8 barras e 12 ramos

• Curto-circuito trifásico

|     |       |       | Resultado    |                         | Resultado referência                      |
|-----|-------|-------|--------------|-------------------------|-------------------------------------------|
| === | =RESI | ULTAI |              | O-CIRCUITO BARRA 7===== |                                           |
| *** |       |       | CIRCUITO TRI |                         |                                           |
|     | Bar   |       | I_cc_kA      | deg                     |                                           |
|     |       |       |              |                         |                                           |
|     |       |       |              |                         |                                           |
|     | 7     |       | 5.5905       | -90                     |                                           |
|     |       |       |              |                         |                                           |
|     | Bar   | ra    | Vfase_kV     | deg                     |                                           |
|     |       |       |              |                         |                                           |
|     | _     |       |              | _                       |                                           |
|     | 1     |       | 76.739       | 0                       |                                           |
|     | 2     |       | 74.009       | 0                       |                                           |
|     | 3     |       | 77.707       | 0                       |                                           |
|     | 4     |       | 37.004       | 0                       | <b>14a.</b> -j5.590,5 A                   |
|     | 5     |       | 64.272       | 0                       |                                           |
|     | 6     |       | 43.851       | 0                       | <b>14b.</b> 76,73 kV, 37,00 kV e 64,27 kV |
|     | 7     |       | 0            | 0                       | <b>14c.</b> -j1.370,6 A e -j1.906,7 A     |
|     | 8     |       | 50.836       | 0                       |                                           |
|     |       |       |              |                         | *atentar que o resultado do fluxo         |
|     | р     | q     | I_kA         | deg                     | de corrente depende da                    |
|     | -     | -     |              |                         | referência do ramo                        |
|     | 0     | 1     | 1.5413       | -90                     |                                           |
|     | 0     | 2     | 1.9833       | -90                     |                                           |
|     | 0     | 3     | 2.0659       | -90                     |                                           |
|     | 1     | 2     | 0.17068      | -90                     |                                           |
|     | 1     | 6     | 1.3706       | -90                     |                                           |
|     | 2     | 3     | 0.15919      | 90                      |                                           |
|     | 2     | 4     | 2.3132       | -90                     |                                           |
|     | 3     | 5     | 1.9067       | -90                     |                                           |
|     | 4     | 7     | 2.3132       | -90                     |                                           |
|     | 5     | 8     | 1.9067       | -90                     |                                           |
|     | 6     | 7     | 1.3706       | -90                     |                                           |
|     | 7     | 8     | 1.9067       | 90                      |                                           |
|     |       |       |              |                         |                                           |

# 2.7.Comparação com exercício 30 lista de exercício, sistema anel de 8 barras e 15 ramos

• Curto-circuito trifásico

|             | Resultado    | programa                | Resultado referência                     |
|-------------|--------------|-------------------------|------------------------------------------|
| ====RESULTA |              | O-CIRCUITO BARRA 7===== |                                          |
| *****CURTO- | CIRCUITO TRI | FÁSICO****              |                                          |
| Barra       | I_cc_kA      | deg                     |                                          |
|             |              | -                       |                                          |
|             |              |                         | Trifásico: 9.491,7 ∠ −72, 43° A          |
| 7           | 9.5087       | -72.39                  |                                          |
|             |              |                         |                                          |
| Barra       | Vfase_kV     | deg                     |                                          |
|             |              |                         |                                          |
|             |              |                         |                                          |
| 1           | 63.361       | -4.4251                 | Barra 7:                                 |
| 2           | 41.999       | -4.5198                 |                                          |
| 3           | 51.968       | -5.0146                 | Trifásico: $0,0 \angle 0,0^o$ pu         |
| 4           | 19.581       | -4.5175                 | Barra 6:                                 |
| 5           | 50.595       | -4.9538                 |                                          |
| 6<br>7      | 48.958       | -4.5708                 | Trifásico: 0,615 ∠ −4,57° pu             |
| 8           | 42.066       | -5.4559                 | Barra 2:                                 |
|             | 42.000       | -0.4009                 |                                          |
| n           | I_kA         | deg                     | Trifásico: 0,527 ∠ −4,50° pu             |
| p q         | 1_44         | aeg                     | *resultado em pu, considerar Vbase       |
|             |              |                         | do sistema de 500kV                      |
| 0 1         | 1.7084       | -73.498                 | ac closeling ac cooks                    |
| 0 6         | 2.7553       | -72.795                 |                                          |
| 0 3         | 0.64134      | -75.748                 |                                          |
| 0 5         | 4.406        | -71.219                 | Linha 7-6:                               |
| 1 2         | 1.0629       | -73.657                 |                                          |
| 1 6         | 0.64555      | -73.237                 | Trifásico: 3.097,0 ∠ 106.99° A           |
| 2 3         | 0.51613      | 104.46                  | Linha 6-1:                               |
| 2 4         | 1.8824       | -73.826                 |                                          |
| 2 6         | 0.30386      | 108.49                  | Trifásico: 645,6 \( \text{106.77}^o \) A |
| 3 5         | 0.12523      | -76.616                 | Linha 0-1:                               |
| 4 7         | 1.8824       | -73.826                 |                                          |
| 5 8         | 2.1928       | -71.563                 | Trifásico: 1.707,8 ∠ −73,51° A           |
| 5 7         | 2.3379       | -71.186                 |                                          |
| 6 7         | 3.0971       | -73.013                 |                                          |
| 7 8         | 2.1928       | 108.44                  |                                          |

#### • Curto-circuito monofásico

|                                   |    |            |                | ultado progra    | ma                 |                  |                  |
|-----------------------------------|----|------------|----------------|------------------|--------------------|------------------|------------------|
| ***CURTO-CIRCUITO MONOFÁSICO***** |    |            |                |                  |                    |                  |                  |
| Bar                               | ra | IfA_cc_kA  | deg_fA         | IfB_cc_kA        | deg_fB             | IfC_cc_kA        | deg_fC           |
| 7                                 |    | 5.7563     | -74.209        | 0                | 0                  | 0                | 0                |
|                                   |    |            |                |                  |                    |                  |                  |
| Bar                               | ra | VfA_kV     | VfA_deg        | VfB_kV           | VfB_deg            | VfC_kV           | VfC_deg          |
| ,                                 |    | 67.225     | -2.7612        | 01.426           |                    | 00.417           | 121 72           |
| 2                                 |    | 46.38      | -2.7612        | 81.436<br>86.006 | -121.28<br>-125.74 | 80.417<br>84.702 | 121.72<br>126.38 |
| 3                                 |    | 57.998     | -2.6314        | 82.539           | -125.74            | 81.783           | 128.38           |
| 4                                 |    | 21.61      | -2.5665        | 93.319           | -122.71            | 91.542           | 132.2            |
| 5                                 |    | 53.566     | -2.7847        | 84.605           | -131.22            | 83.75            | 125.15           |
| 6                                 |    | 56.344     | -2.7847        | 82.59            | -124.74            | 81.582           | 123.03           |
| 7                                 |    | 2.4399e-15 | -2.4074<br>-90 | 100.29           | -135.31            | 98.164           | 136.58           |
| 8                                 |    | 44.58      | -2.9626        | 86.914           | -126.78            | 85.94            | 127.27           |
| р                                 | q  | IfA_kA     | deg_fA         | IfB_kA           | deg_fB             | IfC_kA           | deg_fC           |
| -                                 | -  |            |                |                  |                    |                  |                  |
| 0                                 | 1  | 0.93063    | -75.423        | 0.10361          | 105.63             | 0.10361          | 105.63           |
| 0                                 | 6  | 1.8062     | -74.28         | 0.13857          | -70.259            | 0.13857          | -70.259          |
| 0                                 | 3  | 0.4744     | -75.718        | 0.087257         | -67.463            | 0.087257         | -67.463          |
| 0                                 | 5  | 2.5457     | -73.434        | 0.12293          | 115.2              | 0.12293          | 115.2            |
| 1                                 | 2  | 0.6045     | -75.393        | 0.038943         | 103.24             | 0.038943         | 103.24           |
| 1                                 | 6  | 0.32613    | -75.477        | 0.064725         | 107.07             | 0.064725         | 107.07           |
| 2                                 | 3  | 0.3217     | 104            | 0.011906         | 142.35             | 0.011906         | 142.35           |
| 2                                 | 4  | 1.1407     | -75.193        | 0.0090831        | 6.9746             | 0.0090831        | 6.9746           |
| 2                                 | 6  | 0.21468    | 106.58         | 0.030734         | 106.07             | 0.030734         | 106.07           |
| 3                                 | 5  | 0.15271    | -75.12         | 0.077153         | -71.863            | 0.077153         | -71.863          |
| 4                                 | 7  | 1.1407     | -75.193        | 0.0090831        | 6.9746             | 0.0090831        | 6.9746           |
| 5                                 | 8  | 1.3082     | -73.677        | 0.020473         | 125.89             | 0.020473         | 125.89           |
| 5                                 | 7  | 1.3902     | -73.391        | 0.02685          | 127.42             | 0.02688          | 127.42           |
| 6                                 | 7  | 1.9176     | -74.58         | 0.043528         | -63.682            | 0.043528         | -63.682          |
| 0                                 |    | 2.02.0     |                | 0.010020         | 00.002             | 0.010000         |                  |

Resultado referência Monofásico: 5.752,1 ∠ -74, 22° A

Monofásico: 0,0  $\angle$  0,0° pu, 1,2578  $\angle$  -135,29° pu e 1,2214  $\angle$  136,54° pu Monofásico: 0,7067  $\angle$  -2,4° pu, 1,0359  $\angle$  -122,55° pu e 1,0233  $\angle$  123,00° pu Monofásico: 0,5822  $\angle$  -2,57°, 1,0793  $\angle$  -125,75° pu e 1,0630  $\angle$  126,38° pu

\*resultado em pu, considerar Vbase do sistema de 500kV

Monofásico: 1.918,6 ∠ 105.43° A

Monofásico: 326,4 ∠ 104.54° A

Monofásico:  $931,0 \angle -75,42^o$  A

#### 2.8. Comparação com sistema exemplo IEEE 13 barras

O sistema exemplo IEEE 13 barras é dado pela topologia apresentada na figura abaixo. A resolução do problema pelo programa aqui apresentado seria trivial se não fosse pelos seus ramos apresentarem impedância mútua entre as fases desequilibradas, o que resulta em impedâncias de sequência não desacopladas. Além deste problema, parte dos ramos da topologia é bifásica ou monofásica, o que impede sua correta resolução pelo algoritmo descrito na seção 1.4.



Portanto, para adaptar o problema a resolução solicitada foram adotadas as seguintes hipóteses simplificadoras:

- Ramos bifásicos e monofásicos são considerados como circuito aberto.
- Impedâncias de sequências são consideradas perfeitamente desacopladas, logo são considerados iguais os valores de impedância mútua entre fases.
- O programa não consegue interpretar equivalentes de sistema conectados diretamente a transformadores sem antes passar por uma barra, portanto foi adicionado uma barra fictícia (99) manualmente através dos dados de entrada.
- A seccionadora "SWITCH" foi considerada fechada entre os ramos 671-692, devido os resultados de referência apresentarem valores de corrente de curtocircuito diferentes de zero para barras 692 e 657, o que seria impossível com a seccionadora aberta.

As informações sobre parâmetros de conexão entre as barras foram obtidas de [2] e os resultados de referência para comparação foram obtidos de [3, 4].

As simplificações resultam na seguinte topologia:



|             | Resultado programa                           |            |              |            |           |        |  |  |
|-------------|----------------------------------------------|------------|--------------|------------|-----------|--------|--|--|
| *****CURTO- | *****CURTO-CIRCUITO MONOFÁSICO*****          |            |              |            |           |        |  |  |
| Barra       | IfA_cc_kA                                    | deg_fA     | IfB_cc_kA    | deg_fB     | IfC_cc_kA | deg_fC |  |  |
|             |                                              |            |              |            |           |        |  |  |
| 650         | 8.3036                                       | -82.865    | 0            | 0          | 0         | 0      |  |  |
| *****CURTO- | CIRCUITO BIFÁ                                | SICO*****  |              |            |           |        |  |  |
| Barra       | IfA_cc_kA                                    | deg_fA     | IfB_cc_kA    | deg_fB     | IfC_cc_kA | deg_fC |  |  |
|             |                                              |            |              |            |           |        |  |  |
| €50         | 0                                            | 0          | 7.0665       | -172.86    | 7.0665    | 7.139  |  |  |
|             | ****CURT                                     | O-CIRCUITO | TRIFÁSICO*** | **         |           |        |  |  |
|             | Barra                                        | I_c        | cc_kA        | deg        |           |        |  |  |
|             |                                              |            |              |            |           |        |  |  |
|             | 650                                          | 8.15973    | 3304602825   | -82.861026 | 9592763   |        |  |  |
|             | Resultado referência                         |            |              |            |           |        |  |  |
|             | Bus Name followed by fault values in Amperes |            |              |            |           |        |  |  |
|             | 650 L-G B-C A-B-C                            |            |              |            |           |        |  |  |
|             | Ph-A Max , 8479.3, 0.0, 8416.8               |            |              |            |           |        |  |  |
|             | Ph-B Ma:                                     | x , 8479   | .3, 7289.2,  | 8416.8     |           |        |  |  |
|             | Ph-C Max                                     | x , 8479   | .3, 7289.2,  | 8416.8     |           |        |  |  |

|                                              | Res                                                                              | ultado program                                                                                                                                                          | а                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| CIRCUITO MONO                                |                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                   |  |  |
| IfA_cc_kA                                    | deg_fA                                                                           | IfB_cc_kA                                                                                                                                                               | deg_fB                                                                                                                                                | IfC_cc_kA                                                                                                                                                                                                                                                                                                                                                                                         | deg_fC                                              |  |  |
|                                              |                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
| 3.4391                                       | -76.299                                                                          | 0                                                                                                                                                                       | 0                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                   |  |  |
| CIRCUITO BIFÁ                                | SICO*****                                                                        |                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
| IfA_cc_kA                                    | deg_fA                                                                           | IfB_cc_kA                                                                                                                                                               | deg_fB                                                                                                                                                | IfC_cc_kA                                                                                                                                                                                                                                                                                                                                                                                         | deg_fC                                              |  |  |
|                                              |                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
| 0                                            | 0                                                                                | 3.9315                                                                                                                                                                  | -168.33                                                                                                                                               | 3.9315                                                                                                                                                                                                                                                                                                                                                                                            | 11.672                                              |  |  |
| akr si                                       | ****CURTO-C                                                                      | IRCUITO TRIF                                                                                                                                                            | SICO****                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
|                                              | Barra                                                                            | I_cc_kA                                                                                                                                                                 | deg                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
|                                              |                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
|                                              | 632                                                                              | 4.5397 -                                                                                                                                                                | -78.328                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
| Resultado referência                         |                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
| Bus Name followed by fault values in Amperes |                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
| 632                                          | L-G                                                                              | B-C A                                                                                                                                                                   | ∖-B-C                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
| Ph-A Max                                     | x , 3495                                                                         | .5, 0.0,                                                                                                                                                                | 4801.3                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
|                                              | •                                                                                |                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
|                                              | •                                                                                |                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |  |  |
|                                              | IfA_cc_kA  3.4391 CIRCUITO BIFÁ IfA_cc_kA  0  **  Bus Name 632 Ph-A Ma: Ph-B Ma: | IfA_cc_kA deg_fA  3.4391 -76.299 CIRCUITO BIFÁSICO****  IfA_cc_kA deg_fA  0 0  *****CURTO-C Barra  632  Resc  Bus Name followed 632 L-G Ph-A Max , 3495 Ph-B Max , 3444 | IfA_cc_kA deg_fA IfB_cc_kA  3.4391 -76.299 0 CIRCUITO BIFÁSICO******  IfA_cc_kA deg_fA IfB_cc_kA  0 0 3.9315  *****CURTO-CIRCUITO TRIFÉ Barra I_cc_kA | IfA_cc_kA         deg_fA         IfB_cc_kA         deg_fB           3.4391         -76.299         0         0           CIRCUITO BIFÁSICO******         IfB_cc_kA         deg_fB           0         0         3.9315         -168.33           *****CURTO-CIRCUITO TRIFÁSICO*****         Barra I_cc_kA         deg           632         4.5397         -78.328           Resultado referência | IfA_cc_kA deg_fA IfB_cc_kA deg_fB IfC_cc_kA  3.4391 |  |  |

|             |                                              | Res         | ultado program   | а        |           |        |  |  |
|-------------|----------------------------------------------|-------------|------------------|----------|-----------|--------|--|--|
| *****CURTO- | CIRCUITO MONO                                | FÁSICO****  | * *              |          |           |        |  |  |
| Barra       | IfA_cc_kA                                    | deg_fA      | IfB_cc_kA        | deg_fB   | IfC_cc_kA | deg_fC |  |  |
|             |                                              |             |                  |          |           |        |  |  |
| 633         | 2.9066                                       | -73.388     | 0                | 0        | 0         | 0      |  |  |
| *****CURTO- | CIRCUITO BIFÁ                                | SICO*****   |                  |          |           |        |  |  |
| Barra       | IfA_cc_kA                                    | deg_fA      | IfB_cc_kA        | deg_fB   | IfC_cc_kA | deg_fC |  |  |
|             |                                              |             |                  |          |           |        |  |  |
| 633         | 0                                            | 0           | 3.3974           | -164.55  | 3.3974    | 15.451 |  |  |
|             | *                                            | ****CURTO-0 | IRCUITO TRIFÁ    | SICO**** |           |        |  |  |
|             |                                              | Barra       | I_cc_kA          | deg      |           |        |  |  |
|             |                                              |             |                  |          |           |        |  |  |
|             |                                              | 633         | 3.9229 -         | 74.549   |           |        |  |  |
|             |                                              | Resu        | ultado referênci | ia       |           |        |  |  |
|             | Bus Name followed by fault values in Amperes |             |                  |          |           |        |  |  |
|             |                                              |             | B-C              |          |           |        |  |  |
|             | Ph-A Max                                     | x , 2950    | .6, 0.0,         | 4150.2   |           |        |  |  |
|             |                                              | •           | .3, 3298.5,      |          |           |        |  |  |
|             |                                              | •           | .8, 3298.5,      |          |           |        |  |  |

| Resultado programa                           |                              |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------------------|------------------------------|-------------------------------|-----------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| *****CURTO-CIRCUITO MONOFÁSICO*****          |                              |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| a IfA_cc_kA                                  | deg_fA                       | IfB_cc_kA                     | deg_fB                                                    | IfC_cc_kA                           | deg_fC                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                              |                              |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                              |                              | 0                             | 0                                                         | 0                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| ro-circuito bif                              | ÁSICO*****                   |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| a IfA_cc_kA                                  | deg_fA                       | IfB_cc_kA                     | deg_fB                                                    | IfC_cc_kA                           | deg_fC                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                              |                              |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 0                                            | 0                            | 12.942                        | -157.02                                                   | 12.942                              | 22.981                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| ,                                            | *****CURTO-(                 | CIRCUITO TRIF                 | ÁSICO****                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                              | Barra                        | I_cc_kA                       | deg                                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                              |                              |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                              | 634                          | 14.944                        | -67.019                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                              | Resi                         | ultado referênc               | ia                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Bus Name followed by fault values in Amperes |                              |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 634                                          | L-G                          | B-C                           | A-B-C                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Ph-A Max , 13046.2, 0.0, 15275.9             |                              |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                              | -                            |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                              | •                            |                               |                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                              | Bus Name 634 Ph-A Ma Ph-B Ma | TO-CIRCUITO MONOFÁSICO****  a | TO-CIRCUITO MONOFÁSICO*****  a IfA_cc_kA deg_fA IfB_cc_kA | A IfA_cc_kA deg_fA IfB_cc_kA deg_fB | TO-CIRCUITO MONOFÁSICO******  a IfA_cc_kA deg_fA IfB_cc_kA deg_fB IfC_cc_kA  12.951 -67.426 0 0 0  TO-CIRCUITO BIFÁSICO******  a IfA_cc_kA deg_fA IfB_cc_kA deg_fB IfC_cc_kA  0 0 12.942 -157.02 12.942  *****CURTO-CIRCUITO TRIFÁSICO*****  Barra I_cc_kA deg  634 14.944 -67.019  Resultado referência  Bus Name followed by fault values in Amperes 634 L-G B-C A-B-C  Ph-A Max , 13046.2, 0.0, 15275.9  Ph-B Max , 12961.4, 12782.0, 15134.9 |  |  |  |

|             |                                              | Res             | ultado program | ia        |           |        |  |  |
|-------------|----------------------------------------------|-----------------|----------------|-----------|-----------|--------|--|--|
| *****CURTO- | *****CURTO-CIRCUITO MONOFÁSICO*****          |                 |                |           |           |        |  |  |
| Barra       | IfA_cc_kA                                    | deg_fA          | IfB_cc_kA      | deg_fB    | IfC_cc_kA | deg_fC |  |  |
|             |                                              |                 |                |           |           |        |  |  |
| 671         | 2.164                                        | -74.592         | 0              | 0         | 0         | 0      |  |  |
| *****CURTO- | CIRCUITO BIFÁ                                | SICO*****       |                |           |           |        |  |  |
| Barra       | IfA_cc_kA                                    | deg_fA          | IfB_cc_kA      | deg_fB    | IfC_cc_kA | deg_fC |  |  |
|             |                                              |                 |                |           |           |        |  |  |
| 671         | 0                                            | 0               | 2.7187         | -166.59   | 2.7187    | 13.415 |  |  |
|             | ak a                                         | ****CURTO-C     | CIRCUITO TRIF  | ÁSICO**** |           |        |  |  |
|             |                                              | Barra           | I_cc_kA        | deg       |           |        |  |  |
|             |                                              |                 |                |           |           |        |  |  |
|             |                                              | 671             | 3.1393 -       | -76.585   |           |        |  |  |
|             | Resultado referência                         |                 |                |           |           |        |  |  |
|             | Bus Name followed by fault values in Amperes |                 |                |           |           |        |  |  |
|             | 671                                          | L-G             | B-C            | A-B-C     |           |        |  |  |
|             | Ph-A Max                                     | <b>, 21</b> 96. | .4, 0.0,       | 3350.4    |           |        |  |  |
|             | Ph-B Max                                     | , 2156          | .9, 2599.6,    | 3271.6    |           |        |  |  |
|             | Ph-C Max                                     | , 2173          | .9, 2599.6,    | 2964.7    |           |        |  |  |

| Resultado programa                           |                                                                              |                                             |                                |                                   |                                                     |  |  |
|----------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|-----------------------------------|-----------------------------------------------------|--|--|
| *****CURTO-CIRCUITO MONOFÁSICO*****          |                                                                              |                                             |                                |                                   |                                                     |  |  |
| IfA_cc_kA                                    | deg_fA                                                                       | IfB_cc_kA                                   | deg_fB                         | IfC_cc_kA                         | deg_fC                                              |  |  |
|                                              |                                                                              |                                             |                                |                                   |                                                     |  |  |
| 1.8253                                       | -74.138                                                                      | 0                                           | 0                              | 0                                 | 0                                                   |  |  |
| D-CIRCUITO BIFÁ                              | SICO*****                                                                    |                                             |                                |                                   |                                                     |  |  |
| IfA_cc_kA                                    | deg_fA                                                                       | IfB_cc_kA                                   | deg_fB                         | IfC_cc_kA                         | deg_fC                                              |  |  |
|                                              |                                                                              |                                             |                                |                                   |                                                     |  |  |
| 0                                            | 0                                                                            | 2.355                                       | -166.06                        | 2.355                             | 13.936                                              |  |  |
| *                                            | ****CURTO-0                                                                  | CIRCUITO TRIFA                              | ÁSICO****                      |                                   |                                                     |  |  |
|                                              | Barra                                                                        | I_cc_kA                                     | deg                            |                                   |                                                     |  |  |
|                                              |                                                                              |                                             |                                |                                   |                                                     |  |  |
|                                              | 680                                                                          | 2.7194 -                                    | -76.064                        |                                   |                                                     |  |  |
|                                              | Resi                                                                         | ultado referênc                             | ia                             |                                   |                                                     |  |  |
| Bus Name followed by fault values in Amperes |                                                                              |                                             |                                |                                   |                                                     |  |  |
| 680                                          | L-G                                                                          | B-C                                         | A-B-C                          |                                   |                                                     |  |  |
| Ph-A Max , 1851.9, : 0.0, 2909.9             |                                                                              |                                             |                                |                                   |                                                     |  |  |
|                                              | -                                                                            | -                                           | -                              |                                   |                                                     |  |  |
|                                              | •                                                                            | •                                           | •                              |                                   |                                                     |  |  |
|                                              | IfA_cc_kA  1.8253 D-CIRCUITO BIFÁ IfA_cc_kA  0  Bus Name 680 Ph-A Ma Ph-B Ma | D-CIRCUITO MONOFÁSICO****  IfA_cc_kA deg_fA | IfA_cc_kA   deg_fA   IfB_cc_kA | IfA_cc_kA deg_fA IfB_cc_kA deg_fB | IfA_cc_kA   deg_fA   IfB_cc_kA   deg_fB   IfC_cc_kA |  |  |

| CIRCUITO MONO |                                                                |                                                                                 | ıa                                                                                                                                                                                                                                                   |           |        |  |  |
|---------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--|--|
|               | FASICO***                                                      | * *                                                                             |                                                                                                                                                                                                                                                      |           |        |  |  |
| IfA_cc_kA     | deg_fA                                                         | IfB_cc_kA                                                                       | deg_fB                                                                                                                                                                                                                                               | IfC_cc_kA | deg_fC |  |  |
|               |                                                                |                                                                                 |                                                                                                                                                                                                                                                      |           |        |  |  |
| 2.164         | -74.592                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                    | 0         | 0      |  |  |
| CIRCUITO BIFÁ | SICO*****                                                      |                                                                                 |                                                                                                                                                                                                                                                      |           |        |  |  |
| IfA_cc_kA     | deg_fA                                                         | IfB_cc_kA                                                                       | deg_fB                                                                                                                                                                                                                                               | IfC_cc_kA | deg_fC |  |  |
|               |                                                                |                                                                                 |                                                                                                                                                                                                                                                      |           |        |  |  |
| 0             | 0                                                              | 2.7187                                                                          | -166.59                                                                                                                                                                                                                                              | 2.7187    | 13.415 |  |  |
| *             | ****CURTO-(                                                    | CIRCUITO TRIFA                                                                  | ÁSICO****                                                                                                                                                                                                                                            |           |        |  |  |
|               | Barra                                                          | I_cc_kA                                                                         | deg                                                                                                                                                                                                                                                  |           |        |  |  |
|               |                                                                |                                                                                 |                                                                                                                                                                                                                                                      |           |        |  |  |
|               | 692                                                            | 3.1393 -                                                                        | -76.585                                                                                                                                                                                                                                              |           |        |  |  |
|               | Res                                                            | ultado referênc                                                                 | ia                                                                                                                                                                                                                                                   |           |        |  |  |
|               |                                                                |                                                                                 |                                                                                                                                                                                                                                                      |           |        |  |  |
|               |                                                                | •                                                                               |                                                                                                                                                                                                                                                      |           |        |  |  |
|               |                                                                |                                                                                 |                                                                                                                                                                                                                                                      |           |        |  |  |
|               | -                                                              |                                                                                 |                                                                                                                                                                                                                                                      |           |        |  |  |
|               | •                                                              |                                                                                 |                                                                                                                                                                                                                                                      |           |        |  |  |
|               | 2.164 CIRCUITO BIFÁ IfA_cc_kA  0  Bus Name 692 Ph-A Ma Ph-B Ma | 2.164 -74.592 CIRCUITO BIFÁSICO*****  IfA_cc_kA deg_fA  0 0  *****CURTO-( Barra | 2.164 -74.592 0 CIRCUITO BIFÁSICO*****  IfA_cc_kA deg_fA IfB_cc_kA  0 0 2.7187  *****CURTO-CIRCUITO TRIFF Barra I_cc_kA  692 3.1393  Resultado referênc Bus Name followed by fault va 692 L-G B-C Ph-A Max , 2193.0, 0.0, Ph-B Max , 2153.7, 2594.2, | 2.164     | 2.164  |  |  |

|             | Resultado programa       |            |                 |           |           |         |  |  |
|-------------|--------------------------|------------|-----------------|-----------|-----------|---------|--|--|
| *****CURTO- | -CIRCUITO MONO           | FÁSICO***  | r w w           |           |           | <u></u> |  |  |
| Barra       | IfA_cc_kA                | deg_fA     | IfB_cc_kA       | deg_fB    | IfC_cc_kA | deg_fC  |  |  |
|             |                          |            |                 |           |           |         |  |  |
|             | 2.0511<br>CIRCUITO BIFÁS |            |                 | 0         | 0         | 0       |  |  |
| Barra       | IfA_cc_kA                | deg_fA     | IfB_cc_kA       | deg_fB    | IfC_cc_kA | deg_fC  |  |  |
|             |                          |            |                 |           |           |         |  |  |
| 675         | 0                        | 0          | 2.5528          | -164.07   | 2.5528    | 15.931  |  |  |
|             | **                       | ***CURTO-0 | IRCUITO TRIF    | ÁSICO**** |           |         |  |  |
|             |                          | Barra      | I_cc_kA         | deg       |           |         |  |  |
|             |                          |            |                 |           |           |         |  |  |
|             |                          | 675        | 2.9477 -        | -74.069   |           |         |  |  |
|             |                          | Res        | ultado referênc | ia        |           |         |  |  |
|             | Bus Name                 | followed   | by fault v      | alues in  | Amperes   |         |  |  |
|             | 675                      | L-G        | B-C             | A-B-C     |           |         |  |  |
|             | Ph-A Max                 | x , 2074   | .0, 0.0,        | 3114.4    |           |         |  |  |
|             | Ph-B Max                 | x , 2047   | .1, 2450.9,     | 3082.1    |           |         |  |  |
|             | Ph-C Max                 | x , 2054   | .7, 2450.9,     | 2772.9    |           |         |  |  |

Comparando os resultados do programa com a referência observa-se que o desvio dos resultados se acentua quanto mais afastado o curto-circuito da fonte, devido as hipóteses simplificadoras adotadas. Portanto, na barra 650 é esperado o menor desvio e na barra 672 o maior desvio dentre os três tipos de curto-circuito em relação a referência.

|              |          | Programa Icc [A] | Referência Icc [A] | Desvio máx. |
|--------------|----------|------------------|--------------------|-------------|
| Darra        | C.C. 1φ  | 8303             | 8479               |             |
| Barra<br>650 | C.C. 2 φ | 7066             | 7289               | -3,05%      |
| 650          | C.C. 3 φ | 8159             | 8416               |             |
| Darra        | C.C. 1φ  | 2051             | 2074               |             |
| Barra<br>675 | C.C. 2 φ | 2552             | 2450               | -5,36%      |
| 0/3          | C.C. 3 φ | 2947             | 3114               |             |

#### 3. Conclusão

Analisando os resultados apresentados na seção 2 observa-se que o programa funciona corretamente para o que foi proposto: análise de curto-circuito em topologias de ramos trifásicos e em que as impedâncias de sequência são perfeitamente desacopladas, ou seja, possuem impedâncias mútuas entre fases iguais para cada ramo. Para os demais casos é necessário adotar hipóteses simplificadoras para se obter qualquer solução. As hipóteses simplificadoras adotadas na solução do problema teste IEEE 13 barras, na seção 2.8, se apresentaram como adequadas para abordagem do problema de topologias desequilibradas e acopladas, a considerar uma margem de erro de um digito. Portanto, concluo como satisfatório o programa elaborado.

#### 4. Dados de entrada

Para utilizar basta salvar os valores separados por vírgula em um arquivo de texto. Em todos os exemplos foi utilizado os parâmetros Sb e rf iguais a 100 e zero respectivamente.

# 4.1.Comparação com exercício 1 prova 1, sistema de 4 barras e 6 ramos 0,1,0.3333j,0,0,0,13.8,0,0,0,0 0,2,0.02j,0,0,0,138,0,0,0,0

1,3,0.1429j,0,0,13.8,138,0,0,0,0

3,4,0.0315j,0,0,138,138,0,0,0,0

3,2,0.0525j,0,0,138,138,0,0,0,0

4,2,0.0315j,0,0,138,138,0,0,0,0

## 4.2.Comparação com exercício 2 prova 1, sistema de 8 barras e 13 ramos

0,1,0.01j,0,0,0,138,0,0,0,0

0,2,0.015j,0,0,0,138,0,0,0,0

0,3,0.005j,0,0,0,138,0,0,0,0

1,6,0.12j,0,0,138,138,0,0,0,0

1,2,0.08j,0,0,138,138,0,0,0,0

2,4,0.08j,0,0,138,138,0,0,0,0

2,3,0.12j,0,0,138,138,0,0,0,0

3,5,0.04j,0,0,138,138,0,0,0,0

4,6,0.14j,0,0,138,138,0,0,0,0

4,7,0.08j,0,0,138,138,0,0,0,0

5,8,0.04j,0,0,138,138,0,0,0,0

6,7,0.17j,0,0,138,138,0,0,0,0

7,8,0.14j,0,0,138,138,0,0,0,0

## 4.3. Comparação com exercício 2 prova 1, sistema de 8 barras e 12 ramos

0,1,0.01j,0,0,0,138,0,0,0,0

0,2,0.015j,0,0,0,138,0,0,0,0

0,3,0.005j,0,0,0,138,0,0,0,0

1,6,0.12j,0,0,138,138,0,0,0,0

1,2,0.08j,0,0,138,138,0,0,0,0

2,4,0.08j,0,0,138,138,0,0,0,0

2,3,0.12j,0,0,138,138,0,0,0,0

3,5,0.04j,0,0,138,138,0,0,0,0

4,7,0.08j,0,0,138,138,0,0,0,0

5,8,0.04j,0,0,138,138,0,0,0,0

6,7,0.17j,0,0,138,138,0,0,0,0

7,8,0.14j,0,0,138,138,0,0,0,0

### 4.4. Comparação com exemplo livro [1] capítulo 6 seção 6.1, sistema radial de 4 barras e 5 ramos

0,1,0.0036+0.0204j,0.0055+0.0309j,0,0,138

1,2,0.1902+0.4808j,0.4414+1.7452j,10,138,138

2,3,0.0868j,0.0868j,0,138,11.95,15,138,11.95,2

3,4,0.1903+0.3922j,0.4359+1.8540j,0.8,11.95,11.95

4,5,0.05j,0.05j,0,11.95,0.22,0.5,11.95,0.22,2

## 4.5. Comparação com exemplo livro [1] capítulo 6 seção 6.2, sistema anel de 5 barras e 8 ramos

0,1,0.0227j,0.0077j,0,500,500,0,0,0,0

0,3,0.0416j,0.0105j,0,500,500,0,0,0,0

1,2,0.0247j,0.1063j,0,500,500,0,0,0,0

2,4,0.0247j,0.1063j,0,500,500,0,0,0,0

2,3,0.0268j,0.1148j,0,500,500,0,0,0,0

1,4,0.0242j,0.1040j,0,500,500,0,0,0,0

5,4,0.0306j,0.1304j,0,500,500,0,0,0,0

5,3,0.0273j,0.1170j,0,500,500,0,0,0,0

## 4.6.Comparação com exercício 14 lista de exercício, sistema anel de 8 barras e 12 ramos

0,1,0.01j,0,0,138,138,0,0,0,0

0,2,0.015j,0,0,138,138,0,0,0,0

1,2,0.084j,0,0,138,138,0,0,0,0

0,3,0.005j,0,0,138,138,0,0,0,0

2,3,0.122j,0,0,138,138,0,0,0,0

2,4,0.084j,0,0,138,138,0,0,0,0

3,5,0.037j,0,0,138,138,0,0,0,0

1,6,0.126j,0,0,138,138,0,0,0,0

6,7,0.168j,0,0,138,138,0,0,0,0

4,7,0.084j,0,0,138,138,0,0,0,0

5,8,0.037j,0,0,138,138,0,0,0,0

7,8,0.140j,0,0,138,138,0,0,0,0

## 4.7. Comparação com exercício 30 lista de exercício, sistema anel de 8 barras e 15 ramos

0,1,0+0.0529j,0+0.1305j,0,0,138,0,0,0,0

0,6,0.0103+0.0584j,0.0144+0.0815j,0,0,138,0,0,0,0

1,2,0.0371+0.0988j,0.1007+0.3521j,0,138,138,0,0,0,0

0,3,0.0202+0.2306j,0.0443+0.2513j,0,0,138,0,0,0,0

2,3,0.0373+0.0944j,0.0981+0.3387j,0,138,138,0,0,0,0

2,4,0.0221+0.0585j,0.0603+0.2085j,0,138,138,0,0,0,0

4,7,0.0193+0.0511j,0.0525+0.1818j,0,138,138,0,0,0,0

3,5,0.0203+0.0539j,0.0554+0.1917j,0,138,138,0,0,0,0

1,6,0.0414+0.1096j,0.1128+0.3903j,0,138,138,0,0,0,0

6,7,0.0305+0.0772j,0.0802+0.2769j,0,138,138,0,0,0,0

5,8,0.0073+0.0191j,0.0191+0.0661j,0,138,138,0,0,0,0

7,8,0.0408+0.0921j,0.0948+0.3301j,0,138,138,0,0,0,0

0,5,0.0063+0.0347j,0.0184+0.0965j,0,0,138,0,0,0,0

2,6,0.0477+0.1104j,0.1136+0.3930j,0,138,138,0,0,0,0

5,7,0.0458+0.104j,0.1085+0.3752j,0,138,138,0,0,0,0

#### 4.8. Comparação com sistema exemplo IEEE 13 barras

0,99,0.0113+0.0877j,0.0362+0.1595j,0,115,115,0,0,0,0

99,650,0.01+0.08j,0.01+0.08j,0,115,4.16,5,115,4.16,2

650,632,0.1860+0.5968j,0.6535+1.9070j,0.378788,4.16,4.16,0,0,0,0

632,633,0.5921+0.7602j,1.0596+2.0704j,0.094697,4.16,4.16,0,0,0,0

633,634,0.011+0.02j,0.011+0.02j,0,4.16,0.48,0.5,4.16,0.48,3

632,671,0.1860+0.5968j,0.6535+1.9070j,0.378788,4.16,4.16,0,0,0,0

671,680,0.1860+0.5968j,0.6535+1.9070j,0.189394,4.16,4.16,0,0,0,0

671,692,0,0,0,4.16,4.16,0,0,0,0

692,675,0.4874+0.4151j,1.4107+0.4664j,0.094697,4.16,4.16,0,0,0,0

#### 5. Referências

- [1] Sato, Fujio; Freitas, Walmir; Análise de Curto-circuito e Princípios de Proteção em Sistemas de Energia Elétrica Fundamentos e Prática, Elsevier/Campus, 2015
- [2] http://site.ieee.org/pes-testfeeders/files/2017/08/feeder13.zip, acessado em 10/11/19
- [3] Short Circuit Analysis of IEEE Test Feeder, W. H. Kersting, Life Fellow, IEEE, Greg Shirek, Senior Member, IEEE Milsoft Utility Solutions
- [4] http://site.ieee.org/pes-testfeeders/files/2017/08/Short-Circuit-Test-Case.zip, acessado em 10/11/19