R参考卡片

英文文档最初由 Tom Short tshort@eprisolutions. com 撰写, 在www.Rpad.org 上可以得到最新文档. 中文版本文档(已获得翻译发布许可) 结构上同原版 类似,局部添加了若干命令.

后续修订以及维护由 刘思喆 负责,如有批评或建议

请联系: sunbjt@hotmail.com, bjt@ruc.edu.cn 中文版本: 1.1 2007-1-23

帮助和基础

大部分R 函数都有在线文档。

help(topic) 关于topic的文档.

?topic 同上

help.search("topic") 搜索帮助系统

apropos("topic") 返回所有在搜索路径下满足正则表达式"topic"的 所有对象名称

help.start() HTML形式的帮助

demo R 功能演示

example(f) 运行在线帮助中的例子

str(a) 显示R 对象的内在属性(*str*ucture)或简要说明对象

summary(a)给出a的概要,通常是一个一般性统计概要;且它对不同属 性的a 有不同的操作方式.

1s() 显示搜索路径下的对象; 指定pat="pat"时,按式样条件搜索

1s.str() str() 搜索路径下的每个变量

dir() 在当前的目录下显示文件

list.files() 同上

getwd() 获得工作路径信息

setwd() 设置工作路径信息

methods (a) 显示a的"S3 methods"

methods(class=class(a))列表所有可以解决属于对象类的方法 options(...) 设置或检验全局参数; 常用参数有: width, digits, error

library(x) 加载宏包(package): library(help=x) 显示宏包x 的函数 和datasets.

require(x) 同上

attach(x)将x指向R的搜索路径;x可以使一个列表,数据框,或者是一 个由save创建的R data file. 使用search()来显示搜索路径.

detach(x) attach的逆过程.

assign(x, value) 将value赋值给x,即"<-"

quit () 退出当前 R 会话(q()或Ctrl_z)

输入与输出

load() 加载由save命令得到的数组

data(x) 加载指定的数组

edit 调用文本编辑器修改 R 对象

fix(x) 'fix' 调用'edit' 修改'x'

data.entry 电子数据表形式的录入编辑器

scan(x) 从控制台或文件中读取数据为向量或列表

read.table(file) 读取表格式的文件并将其创建成数据框:默 认分割符sep=""为任意whitespace:使用header=TRUE 读取第一 行作为列标题:使用as.is=TRUE防止字符向量变为factors:使 用comment.char=""防止"#"被解释为注释;使用skip=n 在读数 据前跳过n 行;详细见帮助关于行命名,NA 处理,和其他

read.csv("filename", header=TRUE) 同上,但默认设置为读取逗 占分割文件

read.delim("filename", header=TRUE) 同上、默认设置为读 取tab 分割文件

read.fwf(file,widths,header=F,sep="\t",as.is=FALSE) 以fixed width formatted形式读取数据至数据框: widths 是整数向 量,用干设置调整宽度字段

save(file, ...) 以不分平台的二进制保存指定的对象

save.image(file)保存所有的对象

dump ("x", "...") 将对象 x 保存在"..."里

cat (..., file="", sep=" ") 强制转化为字符后打印arguments; sep 为arguments间的分割字符

print(a, ...) 显示arguments; 更一般的,它对于不同的对象可以有 不同的表达方式...

format (x,...) 格式化.更好的显示R 对象

write.table(x,file="",row.names= T ,col.names= T , sep="") 在把x转化为数据框后,写到文件; 如果quote 为TRUE, 字符和因子列就会被(")所包围; sep 是字段分隔符; eol 为尾行 分割符; na 为缺失值字符串; 使用col.names=NA 增加列标题以 便干和表格输入一致

sink (file) 输出到文件file, 直到输入命令sink()

大部分 I/O 函数都有file 参量.它经常用一个字符串来命名文件或 连接. file="" 意味着标准输入或输出. 连接(Connections)可以包涵文 件(file),管道(pipes),压缩文件(zipped files)或R变量.

在 windows 操作环境下.文件共享使用可以通过写字板(clipboard)的方 式.读取 Excel 表,可以将 Excel 中数据拷贝至写字板,使用

x <- read.delim("clipboard")方式读取数据.如果要将数据写入到写 字板供 Excel 使用,可以使用

write.table(x, "clipboard", sep="\t", col.names=NA)

数据库方面的交互应用,请见RODBC, DBI,RMySQL, RPgSQL, and ROracle宏 包. 读取其他文件格式参考XML, hdf5, netCDF 宏包.

数据创建

c(...) 常见的将一系列参数转化为向量的函数; 通过recursive=TRUE 降序排列列表并组合所有的元素为向量.

from: to 产生一个序列; ":" 有较高级别的优先级; 1:4+1 得到"2,3,4,5" seq(from, to) 产生一个序列by= 指定间距; length= 指定要求长度 seq(along=x) 产生1, 2, ..., length(along); 常用在循环上

rep(x, times) 重复x times次;使用each=来指定元素x 重复的次数; rep(c(1,2,3),2) 将得到123123; rep(c(1,2,3),each=2) 将 得到112233

data.frame(...) 创建数据框变量可能被命名或未被命名: data.frame(v=1:4,ch=c("a","B","c","d"),n=10): 相对较短 的向量会被填充到最长向量长度

list(...) 创建一个由变量组成的列表,变量可能被命名或未被命名: list(a=c(1,2),b="hi",c=3i):

array(x, dim=) 产生由x组成的数组;使用类似dim=c(3,4,2)指定维 数:如果x不够长度.则x自动循环

matrix(x,nrow=,ncol=) 矩阵:同上

factor (x, levels=) 把向量x 编码成为因子.

ql(n,k,length=n*k,labels=1:n) 通过指定水平方式产生水 平(因子); k 为水平的个数; n 为重复的次数

expand.grid() 提供的向量或因子所有组合构成的数据框

rbind(...) 把以行的形式组合矩阵,数据框,或其他

cbind(...) 同上.以列的形式

数据分割和选取

向量索引

第n个元素 x[n] 除了第n个元素的x x[-n] x[1:n]前n个元素 x[-(1:n)]第n+1 至最后的元素 指定元素 x[c(1,4,2)]x["name"] 名为"name"的元素 x[x > 3]所有大于3的元素 x[x > 3 & x < 5]区间(3,5)的元素

x[x %in% c("a", "and", "the")] 给定组中的元素

列表索引

列表显示元素n x[n] 列表的第n个元素 x[[n]] x[["name"]] 名为"name"的元素 同上. x\$name 矩阵索引

下标为(i,j)的元素 x[i,i] 第i行 x[i,]x[, j] 第一列 x[,c(1,3)] 第1和3列

x["name",] 名为"name"的行 数据框索引(矩阵索引加下述)

x[["name"]] 列名为"name"的列

x\$name 同上.

变量变换

as.array(x), as.data.frame(x), as.numeric(x), as.logical(x), as.complex(x), as.character(x), 等. 转换变量类型;使用如下命令得到全部列表, methods (as)

变量信息

is.na(x), is.null(x), is.array(x), is.data.frame(x), is.numeric(x), is.complex(x), is.character(x), ... 检验变量类型;使用如下命令得到全部列表, methods (is)

length(x) x 中元素的个数

dim(x) 重新设置或设置对象的维数; dim(x) <- c(3,2)

dimnames(x) 重新设置或设置对象的名称

nrow(x) 行的个数; NROW(x) 作用相同,只是它把向量看做一个单行的 矩阵

ncol(x)和NCOL(x)同上.列

class(x) 得到或设置x的类;class(x) <- "myclass"

unclass(x) 删除x的类

names(x) 查看或设置对象名称(names)

unname(x) 删除 R 对象的名称(names)或维名称(dimnames)

unlist(x) 将列表 x 转化为向量

attr(x, which) 得到或设置x的属性类型which

attributes (obj) 得到或设置obj 的属性列表 数据选择和操作

which.max(x) 返回x中最大元素的索引

which.min(x) 返回x中最小元素的索引

rev(x) 颠倒x中所有的元素

rle(x) 返回游程(Runs)信息

sort (x) 升序排列x中的元素;降序排列使用:rev (sort (x))

cut (x, breaks) 将x 分割成为几段(或因子); breaks为分割的段数或 分割点向量.

match(x, y) 返回一个和X相同长度且和y中元素相等的向量不等则 返回NA

which (x == a) 如果比较操作为真(TRUE),返回向量x的索引.

choose(n, k) 组合数=n!/[(n-k)!k!]

sign 判断变量是否大于0,大于返回"1",小于返回"-1",等于返回

na.omit(x) 去除缺失值(NA)(去除相关行如果x 为矩阵或数据框)

na.fail(x) 返回错误信息如果x包含至少一个NA

unique(x) 如果x为向量或数据框,返回惟一值

duplicated(x) 返回向量或数据框x 重复元素的逻辑值

table(x) 返回一个由x 不同值个数组成的表格(常用于整数或因子),即 频数表

subset (x, ...) 根据条件(...选取x中的元素,如:x\$V1 < 10); 如 果x为数据框,选项select通过使用负号的方式保留或去除变量

sample(x, size) 不放回的随机在向量x中抽取size个元素.选 项replace = TRUE允许放回抽取

prop.table(x, margin=) 根据margin 使用分数表示表格, 无margin 时,所有元素和为1

数学

+,-,×,÷,^,%%,%/%

< > <= >= ==..!=..

sin, cos, tan, asin, acos, atan, atan2, log, log10, exp

max(x) 返回x最大的元素

min(x) 同上.最小

range(x) 返回c(min(x), max(x))

sum(x)x中各元素的加和

diff(x) 向量x的差分

prod(x) x中元素连乘

mean(x) x的均值

abs(x) x的绝对值

 $sqrt(x) x^{0.5}$

median(x)x的中位数

quantile (x, probs=) 满足给定概率的样本分位数 (默认为0,.25,.75,1)

IQR(x) 计算数据中间50%的范围

weighted.mean(x, w) 加权平均

rank(x)x中元素的秩

var(x) or cov(x) 向量x的样本方差; 如果x是矩阵或数据框,协方差矩 阵将被计算

sd(x) x的标准差; sd(x)=sqrt(var(x))

cor(x) 如果x是矩阵或数据框,返回相关阵(1 如果x为向量)

var(x, y) or cov(x, y) x和y间的协方差;如果x,y为矩阵或数据框,返 回X和V各列的协方差

cor(x, y) x和y线性相关系数;或者相关阵,如果x和y为矩阵或数据框 round(x, n) x的约数,精确到n位

log(x, base) 计算x以base为基的对数,默认基为exp(1)

scale(x) 如果x 是一个矩阵,则中心化和标准化数据;若只标准化 则使用选项center=FALSE、若只中心化使用scale=FALSE (默 认center=TRUE, scale=TRUE)

integrate (f, lower, upper) 函数 f 在区间(lower, upper)的面积(积

pmin(x, y, . . .) x[i], y[i] 相比较小者,组成新的向量

pmax(x,y,...) 同上.较大者

cumsum(x) 由x组成的向量,x[i]=sum{x[1]:x[i]}

cumprod(x) 同上. 连乘

cummin (x) 同上.最小

cummax(x) 同上.最大

union (x,y) $x \cup y - x \cap y$

intersect (x,y) $x \cap y$

setdiff(x,y) $x-x\cap y$

setequal(x,y) 返回比较x,y 是否相同的逻辑值(x,y不涉及顺序).

is.element(el,set) 同x %in% y

Re(x) 复数的实部

Im(x) 虚部

Mod(x) 绝对值(模); 同abs(x)

Arg(x) 复数角度(in radians)

Coni(x) 求 x 的共轭复数

convolve(x, v) 计算两个序列的卷积

fft(x) 排列(array)的快速傅立叶变换

mvfft(x) 矩阵各列的快速傅立叶变换

filter (x, filter) 对但变量时间序列或多变量时间序列的单独序 列进行线性过滤

大多数学函数使用逻辑参数na.rm=FALSE来指定是否移除缺失值(NA).

矩阵

t(x) 转置

diag(x) 对角阵

8*8 矩阵运算

solve(a,b) 运算a %*% x = b 得到x

solve(a) 矩阵的逆

rowsum(x) 矩阵格式对象行加和; rowSums(x) 是一个更快的版本

colsum(x), colSums(x) 同上.列

rowMeans(x) 行平均

colMeans(x) 列平均

dist(x) 计算矩阵x 行间的距离

高级数据处理

apply (X, INDEX, FUN=) 根据数组的下标(INDEX) 应用函数FUN 返回向 量,数组或列表的值

lapply (X, FUN) 应用FUN 到列表X的每个元素

tapply (X, INDEX, FUN=) 根据x 的索引(INDEX) 对不完全(ragged)的 数列应用FUN

sapply 同lapply,比之更友好

by (data, INDEX, FUN) 应用函数FUN 处理数据框data 中由INDEX 定义 的子集

merge(a,b) 根据共有的列或行名把两个数据框合并

xtabs(a b, data=x) 从交叉分类因子得到列联表

aggregate (x, by, FUN) 将数据框x 分割为几个子集, 且计算各个子 集的概要统计, 并且以合适的方式返回结果; by 是分组元素列表

stack(x,...) 将分开列形式的数据框或列表中的数据变量转化为 单列

unstack(x, ...) stack()的逆过程

reshape(x, ...) 对'wide'和'long'格式对数据框进行改造.'wide'格 式是根据基准变量横向扩展数据框; 'long'格式是根据基准变量 纵向扩展数据框. 使用 (direction="wide") 或 (direction="long") 参 数指定格式.

expression (expr) 创建或检验对象是否为'表达'(expression)形式. 参考is.expression(x), as.expression(x, ...)

parse(file = "", n = NULL) 以列表形式返回解析过,但没有经 x11(), windows() 打开一个绘图窗口 过计算的表达(expression)

eval (expr) 在指定的环境下计算 R 表达(expression)

字符

paste(...) 转化为字符后连接向量;sep= 为分割界限(一个空格为默 认); 选择collapse= 可以分割"collapsed"结果

substr(x, start, stop) 提取字符向量的子字段:同样可以赋值.使 用substr(x, start, stop) <- value

strsplit(x,split)在split的位置分割x

grep (pattern,x) 搜索x中满足pattern条件;参见?regex

qsub(pattern, replacement, x) 替换满足正则表达式的字 段,sub() 类似,但至替换第一个出现的字段

tolower(x) 将字母转化为小写

toupper(x) 将字母转化为大写

casefold(x, upper = TRUE) 变化x 为大写(TRUE)或小写(FALSE)

chartr(old, new, x)将x中的字符old变换为字符new

match(x, table) table中匹配x元素位置组成的向量.

x %in% table 同上.返回逻辑向量

pmatch(x,table) table中部分匹配x元素

nchar(x) 字符的个数

日期和时间

Date 只包含日期不包含时间.POSIXct 包括日期时间和时区信息. 相 比而言(如.>),seq() 和difftime() 比较有用.Date 也可以使用+和-. ?DateTimeClasses可以给出更多的信息.详见chron宏包.

as.Date(s)和as.POSIXct(s)转化各自的属性;format(dt)转化为 字符表达.默认的字符格式为"2006-07-24".他们接受一个次要表 达来指定转化的格式.一些常见的格式为:

%a, %A 精简和无精简"星期天"(weekday)名

%b, %B 精简和无精简月名

%d 月份中的日期(01-31).

% 사 时(00-23).

%T 小时(01-12).

%; 年份中的日期(001-366).

%m 月份(01-12).

%M 分钟(00-59).

%p AM/PM 指示.

%S 十进制的秒(00-61).

%U 星期(00-53);第一个星期天作为第一个星期的第一天.

%w 星期天数(0-6,周日为0).

₩ 周(00-53);第一个周一作为第一个星期的第一天.

%√ 无世纪的年(00-99).不要使用.

%Y 有世纪的年.

%z(只输出.)格林威治补偿;-0800为格林威治西8小时.

%2(只输出.)时区作为字符串(无效为空).

weekdays(x) 返回日期x的"星期几"

months(x) 返回日期x的月份

quarters (x) 返回日期x 的季节(Q1-Q4)

在输出时会碰到,显示数字前存在零的问题,但输入时可以选择性写零或 无零.参见?strftime.

图形装置(Graphics Devices)

dev.list()图形窗口列表

dev.set()指定图形窗口

plot.new() 为绘制新图形结束当前图形窗口

postscript (file) 为创建 PostScript 图形 开启图形装置 下面的参数经常用于一般绘图函数 驱动; 使用horizontal = FALSE, onefile =FALSE, paper = "special" 指定EPS 格式文件; family=指定字体(AvantGarde, Bookman, Courier, Helvetica, Helvetica-Narrow, NewCenturySchoolbook, Palatino, Times, or ComputerModern); width= 和height=指定以inches 为单位的区域大小: paper=指定纸张类

ps.options() 辅助函数,设置或查看(如果没有参数)postscript参数 的缺省值

pdf, png, jpeg, bitmap, xfig, pictex; 参看?Devices dev.off() 关闭指定(默认当前)图形装置;也可以参考dev.cur, dev.set

绘图

plot(x) 在x轴上顺次地绘制x值(y轴上)

plot (x, y) 双变量绘图(散点图)

hist (x) x的频数直方图

barplot (x) x的频数的条型图:使用horiz=FALSE改变绘图水平或垂直 dotchart (x) 如果x为数据框,绘制 Cleveland dot 图(stacked plots lineby-line and column-by-column)

pie(x) 饼图

boxplot(x) 箱线图

sunflowerplot(x, y) 同上.是以相似坐标的点作为花朵, 其花瓣 数目为点的个数

coplot (x~y | z) 根据z 值或值间隔绘制x 和y 的双变量图

interaction.plot (f1, f2, y) 如果f1和f2是因子,作y的均值 图,以f1的不同值作为x轴,而f2的不同值对应不同曲线:可以 用选项fun指定v 的其他的统计量(缺省计算均值、fun=mean)

matplot(x,y) 二元图,其中x 的第一列对应y的第一列, x 的第二列对 应∨的第二列,依次类推。

fourfoldplot(x) 用四个四分之一圆显示2×2列联表情况(x必须 $\operatorname{Edim}(2, 2, k)$ 的数组, 或者是 $\operatorname{dim}(2, 2)$ 的矩阵, 如果k = 11)

assocplot(x) Cohen-Friendly图,显示在二维列联表中行,列变量偏离 独立性的程度

mosaicplot(x) 列联表的对数线性回归残差的马赛克图

pairs(x) 如果x 是矩阵或是数据框,作x 的各列之间的二元图

plot.ts(x) 如果x是类ts 的对象,作x 的时间序列曲线,x可以是多元 的, 但是序列必须有相同的频率和时间

ts.plot(x) 同上,但如果x是多元的,序列可有不同的时间但须有相 同的频率

qqnorm(x) 正态分位数-分位数图

qqplot(x, y) 对x的分位数-分位数图

contour(x, v, z) 绘制等高线图(画曲线时使用内插替换 补充空白的值), x 和y 必须为向量,z 必须为矩阵,使 得dim(z)=c(length(x),length(v))(x 和v 可以省略)

filled.contour(x, v, z) 同上、等高线之间的区域是彩色的.并且 绘制彩色对应的值的图例

image(x, v, z) 同上.但是实际数据大小用不同色彩表示

persp(x, y, z) 同上,但为透视图

stars(x) 如果x 是矩阵或者数据框,用星形和线段画出,星代表x 的每 一行线段代表列的长度.

symbols(x, y, ...) 在由x 和y 给定坐标画符号(圆, 正方形, 长 方形,星,温度计式或者盒形图),符号的类型、大小、颜色等 由另外的变量指定

termplot (mod.obj) 绘制回归模型(mod.obj)的(偏)影响图

add=FALSE 如果TRUE,在前一个图上(如果存在)添加绘图

axes=TRUE 如果FALSE,不绘出坐标轴和盒子

type="p" 指定绘制图的类型,"p": 点,"1": 线,"b" 用线连接的点, "o": 同上.但线穿过点,"h": 垂直的线, "s": 阶梯,但数据由垂直线的顶 端代表, "S": 阶梯,但数据由垂直线的底端代表

xlim=, ylim= 指定坐标轴的最小和最大限制

xlab=, ylab= 注释坐标轴

main= 主标题

sub= 副标题(小号字体)

低水平绘图命令

points(x, y)添加点(选项type=可以使用)

lines(x, y) 同上.但用线

text(x, y, labels, ...) 在坐标点(x, y) 加入文字;

典型的使用方法:plot(x, y, type="n"); text(x, y, names) mtext(text, side=3, line=0, ...) 在指定的side添加文 字(参考axis); line指定添加文字的绘图区域

segments(x0, y0, x1, y1) 从点(x0,y0) 划线至点(x1,y1) arrows(x0, y0, x1, y1, angle= 30, code=2) 同上.

> 当code=2以点(x0,y0)为基原点的箭头, 当code=1以点(x1,y1)为原 点的箭头,当code=3双箭头; angle 控制箭头张开的角度

abline (a,b) 以截距为a 斜率为b 的斜线

abline (h=v) 在v点的垂线

abline (v=x) 在x点的水平线

abline (lm.obj) 根据lm.obj做出回归线

curve 根据给定函数或表达在区间'[from.to]'上绘制曲线

rect (x1, y1, x2, y2) 做出左,右,底,高限制为x1, x2, y1, and y2的 四边形

polygon(x, y) 多边形作图

legend(x, y, legend) 在点(x,y)添加图例

title()添加标题

axis(side, at) 添加坐标轴,底部(side=1), 左侧(2), 顶部(3)或右 侧(4); 可选参数at 指定画刻度线的位置坐标

box() 在当前图形周围加一个盒子

rug(x) 在x-轴上用短线画出数据x的位置

locator(n, type="n", ...) 在用户使用鼠标在图上点击n次后 返回n次点击的坐标(x,y); 并可以在点击处绘制符号(type="p")或线(type="1"), 缺省情况下不画符号或连线(type="n")

绘图参数

可以使用par(...) 来永久性改变绘图参数;很多参数也可以作为绘图 命令的选项.

adj 控制文字对齐方式(0 左对齐, 0.5 居中对齐, 1 右对齐)

ba 指定背景颜色(如: ba="red", ba="blue", ... 用colors()可以显 示657种可用颜色名)

bty 控制图形边框形状,可使用的值为:"o", "l", "7", "c", "u" 或"]"(边 框和字符想像);如果btv="n"则不绘制边框

cex 控制缺省状态下符号和文字大小的值;下面的参数有同样的功能: cex.axis, 坐标轴刻度, cex.lab, 坐标轴标签, cex.main, 标题, cex.sub,副标题

col 控制符号和连线的颜色;使用颜色名称: "red", "blue" 参 考colors() 或作为"#RRGGBB"; 参考rgb(), hsv(), gray(), 和rainbow(); 同参数cex 类似: col.axis, col.lab, col.main, col.sub

font 控制文本字体的整数(1: 正常, 2: 斜体, 3: 粗体, 4: 斜粗体); 还可以 使用font.axis, font.lab, font.main, font.sub

las 控制坐标轴刻度数字标记方向的整数(0: 平行于轴, 1: 横排, 2: 垂直 干轴, 3: 竖排)

1ty 控制连线的类型, 可以是整数或字符(1: "solid", 2: "dashed", 3: "dotted", 4: "dotdash", 5: "longdash", 6: "twodash"),或不超 过8个字符的字符串("0"至"9"间的数)交替指定线和空白的长 度),单位为磅("points")和像素,如lty="44" 和lty=2 一样

1wd 控制连线宽度的数字.默认1

mar 控制图形边空的有4个值的向量c(bottom, left, top, right),默 认值为c(5.1, 4.1, 4.1, 2.1)

mex 声明图形同边缘协调程度的字符大小的附加变量。注意,它并不 改变字体的大小。

mfcol 用c(nr,nc) 向量分割绘图窗口为nr 行和nc 列.按列使用子窗口 mfrow 同上.但按行使用子窗口

pch 控制符号的类型,可以是由1 至25 的整数,或者是"" 里的单个字符 1 ○ 2 △ 3 + 4 × 5 ◇ 6 ▽ 7 図 8 ★ 9 ◆ 10 ⊕ 11 双 12 ⊞ 13 図 14 △ 15 ■ 16 ● 17 ▲ 18 ◆ 19 ● 20 ● 21 ○ 22 □ 23 ♦ 24 △ 25 ▽ * * . · XX aa ??

ps 控制文字大小的整数,单位为磅(points)

pty 指定绘图区域类型的字符, "s": 正方形, "m": 最大利用

tck 指定轴上刻度长度的值,单位是百分比,以图形宽、高中最小一 个作为基数;如果tck=1则绘制grid

tcl 同上.但以文本行的高度为基数(默认为tcl=-0.5)

xaxt 如果xaxt="n"则设置x-轴但不显示(有助于和axis(side=1, ...) 一起使用)

yaxt 同上. y-轴

网格(Lattice)绘图

xyplot (y~x) 双变量图

barchart (y~x) y 对x 的直方图

dotplot (y~x) Cleveland 点图(逐行逐列累加图)

densitvplot(~x) 密度函数图

histogram(~x) x的频率直方图

bwplot (y~x) 盒形图

qqmath(~x) x 关于某理论分布的分位数-分位数图

stripplot (y~x) 一维图,x必须是数值型,y可以是因子

 $qq(y^*x)$ 比较两个分布的分位数, x必须是数值型, y可以是数值,字符或 者是因子,但必须是两个"水平"

splom(~x) 二维图矩阵

parallel (~x) 平行坐标图

levelplot(z~x*y|q1*q2) 在x, y 坐标点的z 值的彩色等值线图 (x, y和z等长)

wireframe(z~x*y|q1*q2) 3d 透视图(面)

cloud(z~x*y|q1*q2) 3d透视图(点)

在一般性Lattice 公式中, y~x|q1*q2 有可选择条件变量q1 和q2 组合 绘制在单独的"panels"上. Lattice 函数使用了很多相同的参量作为基 础附加绘图,如data=,subset=. 使用panel= 来定义定制"panel"函数(参 考apropos("panel")和?llines). Lattice 函数返回一个trellis 类型的对 象并且是"print-ed"来生成图形. 内部使用print(xyplot(...))函数 时,自动绘图并无效果. 使用lattice.theme 和lset 来改变Lattice 默认

模型拟和

optim(par, fn, method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN") 用于求多元函数的最值.基 于Nelder-Mead, quasi-Newton and conjugate-gradient算法. 同时,也 可以求区间内的最值.par 为函数初值, fn 是求最值的函数(通常 为最小)

nlm(f,p) 根据初始值通过使用牛顿(Newton-type)算法的最小化函数 lm(formula) 拟和线性模型; formula的典型形式为

> response ~ termA + termB + ...; 使用I(x*y) + I(x^2) 来 构成非线性成分

qlm(formula, family=) 通过指定线性预测模型和残差分布来拟 和广义线性模型; family为残差分布的描述且同模型整合;详 见.?family

nls(formula) 非线性最小二乘估计

approx(x,y=) 线性插值;

approxfun(x,y) 线性插值函数

spline(x, y=) 立方(曲线)差值

splinefun(x,y) 立方(曲线)插值函数

loess (formula) 局部近似回归。利用局部加权回归进行一个非参回 归。这种回归对显示一组凌乱数据的趋势和描述大数据集的整 体情况非常有用。

很多以公式为基础的模型函数有很多通用的参量: data= 公式变量 的数据框, subset= 满足条件的子集; na.action= 缺失值处理方式: "na.fail", "na.omit", 或一个函数. 下面常用于模型拟和函数:

predict (fit,...) 通过拟和模型fit 计算预测值

df.residual(fit)返回残差的自由度

coef(fit) 返回被估计的系数 (有时候还包括他们的标准差)

residuals(fit) 返回残差值

deviance (fit) 返回方差

fitted(fit) 返回拟和值

logLik (fit) 计算对数似然值和参数数目

AIC(fit) 计算 Akaike 信息准则 (Akaike information criterion or AIC)

统计

aov(formula) 方差分析

anova(fit,...) 一个或多个模型对象的方差表(或残差平方和表) 分析

density(x) x的核密度估计

kmeans(x) k均值聚类

hclust(d, method = "complete") 层次聚类分析, d 由函 数 dist 构造,method可参考?hclust

prcomp(x, ...) 主成分分析

factanal (x, factors, data) 因子分析

cancor(x, y, xcenter = TRUE, ycenter = TRUE) 计算两个 矩阵的卡农相关(canonical correlations)

检验

t.test t检验

wilcox.test Wilcoxon 检验

prop.test(x,n,p) n次试验中,出现的x的概率是否以概率 p 出现的 假设检验

binom.test(x,n) 贝努力试验检验

chisq.test(x,p) χ^2 检验

fisher.test(x ,y = NULL) Fisher 精确性检验

ks.test(x,y="name",) Kolmogorov-Smirnov检验,检验向量数据是 否服从"name"分布

shapiro.test(x) Shapiro-Wilk正态分布检验 PP.test(x, lshort = TRUE) PP (Phillips-Perron) 检验 quada.test(x) quade 检验 friedman.test(x) Friedman 秩和检验 pairwise.t.test(), power.t.test() help.search("test")

分布

rnorm(n, mean=0, sd=1) 高斯(正态) rexp(n, rate=1) 指数 rgamma(n, shape, scale=1)γ分布 rpois(n, lambda) Poisson 分布 rweibull (n, shape, scale=1) Weibull 分布 rcauchy (n, location=0, scale=1) Cauchy 分布 rbeta(n, shape1, shape2) β 分布 rt (n, df) t分布 rf (n, df1, df2) F 分布 rchisq(n, df) χ^2 分布 rbinom(n, size, prob) 二项 rgeom(n, prob) 几何 rhyper(nn, m, n, k) 超几何 rlogis(n, location=0, scale=1) logistic 分布 rlnorm(n, meanlog=0, sdlog=1) 对数正态 rnbinom(n, size, prob) 负二项分布 runif(n, min=0, max=1) 均匀分布 rwilcox(nn, m, n), rsignrank(nn, n) Wilcoxon 分布 所有的函数都可以使用d, p or q 来替换r 分别得到概率密度(dfunc(x, ...)), 累积概率密度(pfunc(x, ...)), 分位数(qfunc(p, ...), 0 < p

编程

function(arglist) expr 定义函数 return (value) if(cond) expr if (cond) cons.expr else alt.expr for(var in seq) expr while(cond) expr repeat expr break next

使用表达(statements)使用大括号{}

ifelse (test, yes, no) 如果满足条件test返回yes,反之返回no do.call(funname, args) 根据函数名和表达式(arguments)执行调 用函数.

R内嵌常数

letter[x] 返回26个小写英文字母, x 为1: 26的数字 LETTERS[x] 同上(大写) month.abb[x] 返回3个字母缩写的月份名 month.name[x] 返回月份名 $pi \pi$

其他

sessionInfo() 显示关于 R 的版本信息和关联的 Packages all.equal(x,v) 检验两个对象是否(渐进)相等,相等返回TRUE,否则 返回abs(x-v)/x

identical(x,y) 严格检验对象是否相等

memory.size() 返回当前使用的内存大小

RSiteSearch() 搜索http://search.r-project.org上的结果,包括 邮件列表,手册和帮助页