

UNIVERSIDADE FEDERAL DA BAHIA

Avaliação 2 - Métodos Numéricos - 2025.1

Aluno: Guilherme Rocha Ribeiro Professor: Reiner Requião

Matéria: ENGG03

Questão 1: Modelagem de dois tanques acoplados

$$\begin{cases} \frac{dh_1}{dt} = -a\sqrt{h_1} + b(h_2 - h_1) \\ \frac{dh_2}{dt} = a\sqrt{h_1} - b(h_2 - h_1) \end{cases}$$
 (1)

Baseado nessa modelagem foi possível identificar que esse sistema, ao decorrer do tempo, chega a um estado estacionário.

Resultados

Figura 1: Comparação visual do comportamento das alturas do sistema

A análise do gráfico revela que:

- A altura do tanque 1 (h1), que começa em 2.0 m, diminui com o tempo até chegar a estabilidade.
- A altura do tanque 2 (h2), que começa em 1.0 m, aumenta com o tempo até chegar a estabilidade.

Tabela 1: Alturas nos tanques pelo método Euler

Tempo (s)	h1 (m)	h2 (m)
0.0	2.000000000	1.00000000
0.5	0.71999966	2.28000034
1.0	0.50197444	2.49802556
1.5	0.47439824	2.52560176
2.0	0.47120199	2.52879801
2.5	0.47083620	2.52916380
3.0	0.47079440	2.52920560
3.5	0.47078962	2.52921038
4.0	0.47078908	2.52921092
4.5	0.47078902	2.52921098

Tabela 2: Alturas nos tanques pelo método RK4

Tempo (s)	h1 (m)	h2 (m)
0.0	2.00000000	1.00000000
0.5	0.82346894	2.17653106
1.0	0.54156059	2.45843941
1.5	0.48426581	2.51573419
2.0	0.47332385	2.52667615
2.5	0.47126462	2.52873538
3.0	0.47087821	2.52912179
3.5	0.47080573	2.52919427
4.0	0.47079214	2.52920786
4.5	0.47078960	2.52921040

Conclusão

O método RK4 é mais "suave" em relação ao comportamento do sistema ao decorrer do tempo. Entretanto, o método de Euler atinge o estado estacionário primeiro devido a propagação de erros durante a integração, o que resulta em saltos com baixa precisão, logo esse valor não seria válido físicamente, portanto, não representaria bem o sistema.

Questão 2: Análise de métodos de integração numérica

Resultados

Figura 2: Plotagem da integral da função

- $P(t) = 0.0000 + 10.2500 t 1.6250 t^2 + 0.1250 t^3$
- P(4.5) = 24.6094 W (Watts)
- Área sob o gráfico = 107.9997 ≈ 108 J (Joules)

A interpolação polinomial é amplamente utilizada em problemas de engenharia onde se necessita estimar valores intermediários entre dados experimentais, pois ela permite encontrar um curva que descreve a passagem pelos dados experimentais.

Aplicações na Engenharia Elétrica

Na engenharia elétrica, a interpolação é essencial para a análise de eficiência energética e caracterização de componentes. Dispositivos semicondutores, como diodos e transistores, e fontes de energia, como painéis fotovoltaicos, possuem curvas de operação não lineares (e.g., curvas de Corrente vs. Tensão, I-V). A partir de um conjunto discreto de medições experimentais, a interpolação polinomial permite construir uma função contínua que modela o comportamento do dispositivo em qualquer ponto de operação.

Questão 3: Calculo de esforço total em fundação com integração numérica

Contexto e Metodologia

A integração numérica é fundamental em problemas onde não é possível obter soluções analíticas exatas das EDOs. Neste estudo, foram avaliados os métodos numéricos do Trapézio, Simpson 1/3 e Simpson 3/8 para calcular a $\int (150 + 30 \sin(\frac{\pi x}{3})) dx$ no intervalo [0,3].

Resultados Comparativos

Foram testadas quatro quantidades distintas de subdivisões ($n=4,\,20$ e 100) e seu valor mínimo para convergência para cada método, foram aplicados zooms nos graficos plotados para que fosse possível visualizar o comportamento dos metodos de integração.

Figura 3: Comparação visual dos métodos de integração para n=4

Figura 4: Comparação visual dos métodos de integração para n=20

• n = 100:

Comparação entre Métodos de Integração

Figura 5: Comparação visual dos métodos de integração para n=100 $\,$

• n mínimo para convergência com precisão de 1e-5 do valor numérico

Figura 6: Comparação visual dos métodos de integração para n específicos de cada método

Tabela 3: Comparativo das áreas calculadas para diferentes métodos e subdivisões.

n	Método	Tensão (kPa)
4	Trapézio Simpson 1/3 Simpson 3/8 (n=6)	504.319805153 507.426406871 507.353357378
20	Trapézio Simpson 1/3 Simpson 3/8 (n=21)	507.177921313 507.295973873 507.296140154
100	Trapézio Simpson 1/3 Simpson 3/8 (n=99)	507.291067047 507.295779823 507.295780240
268 32 42	Trapézio Simpson $1/3$ Simpson $3/8$	507.295123409 507.295809117 507.295801963

Análise de Convergência

Foi utilizado a seguinte função para identificar os valores de n mínimo para atingir a convergência com uma tolerancia de 1e-5. Com ele foi possível encontrar os valores de n, os quais mostram que, para essa função $f(x) = 150 + 30\sin(\frac{\pi x}{3})$ o método de Simpson 1/3 precisou de uma quantidade menor de passos para atingir o valor númerico da integral dentro do intervalo.

```
def find_min_steps(
            func,
2
            method,
3
            lower_bound,
            upper_bound,
5
            tolerance=1e-5,
6
            max_steps=1e4) -> int:
                if method == simpsons_3_8:
                     steps = 3
9
                     prev_area = method(func, lower_bound, upper_bound, steps)
                     while steps <= max_steps:</pre>
11
                         steps += 3
12
                          current_area = method(func, lower_bound, upper_bound, steps)
13
14
                          if abs(current_area - prev_area) < tolerance:</pre>
                              return steps
16
17
18
                         prev_area = current_area
19
                     return None
                else:
20
                     steps = 2
                     prev_area = method(func, lower_bound, upper_bound, steps)
23
                     while steps <= max_steps:</pre>
24
                         steps += 2
25
                          current_area = method(func, lower_bound, upper_bound, steps)
26
                          if abs(current_area - prev_area) < tolerance:</pre>
                              return steps
29
30
                          prev_area = current_area
31
                     return None
```

Listing 1: Função para encontrar o número mínimo de passos para convergência.

Eficiência Numérica

- Trapézio: Demonstrou ser o método menos eficiente, exigindo 268 subdivisões para atingir a convergência. Embora sua aproximação melhore com o aumento de n, a taxa de convergência é notavelmente lenta, confirmando que este método requer um esforço computacional significativamente maior para alcançar alta precisão em funções com curvatura.
- Simpson 1/3: Apresentou um desempenho muito superior, convergindo com apenas 32 subdivisões. Isso indica que o método é mais de 8 vezes mais rápido que o método do Trapézio para atingir a mesma precisão. Sua eficiência deriva da aproximação da função por polinômios de grau 2 (parábolas), que modelam a geometria da função senoide de forma muito mais eficaz que as retas do método do Trapézio.
- Simpson 3/8: Atingiu a convergência com 42 subdivisões, um resultado também drasticamente superior ao do Trapézio e competitivo com o de Simpson 1/3. Embora neste caso específico tenha exigido um pouco mais de passos que o Simpson 1/3, sua eficiência é da mesma ordem de magnitude. A principal restrição do método continua sendo a necessidade de um número de subintervalos múltiplo de 3.

Discretização e Confiabilidade

- Passo pequenos: os erros são significativos pois a quantidade de passos para a convergência é muito baixa, fazendo com que os metodos não atijam a precisão desejada
- A escolha do Simpson 1/3 com n ≥ 32 garante precisão e eficiência, evitando superdimensionamento ou falhas. Já o método do Trapézio, mesmo com n=100, ainda tem erro residual, enquanto os métodos de Simpson atingem tolerância desejada com menos passos.

Conclusão

A precisão no cálculo da força total em fundações é essencial para segurança, economia e conformidade normativa. O método de Simpson 1/3 mostrou-se o mais confiável para a função analisada, equilibrando precisão e eficiência. Já a discretização inadequada (ex.: n=4 no Trapézio) compromete a confiabilidade, evidenciando a necessidade de critérios rigorosos na seleção do método e do número de subdivisões.

Os métodos de Simpson mostraram-se mais eficientes para esta função, especialmente quando o número de subdivisões é pequeno. O trapézio, embora mais simples, exige mais avaliações para atingir a mesma precisão. A escolha do método deve considerar:

- Natureza da função (suavidade, periodicidade)
- Custo computacional de cada avaliação da função
- Precisão requerida na aplicação prática