Laurea in Informatica A.A. 2024-2025

Corso "Base di Dati"

Metodologie & Modelli Per il Progetto di una Base di Dati

Progettazione di basi di dati

- Attività del processo di sviluppo dei sistemi informativi
- Parte del ciclo di vita dei Sistemi Informativi:
 - Sequenzializzazione delle attività per lo sviluppo e nell'uso dei sistemi informativi
 - Svolte da analisti, progettisti, utenti

Fasi (tecniche) del ciclo di vita

- Studio di fattibilità: definizione costi e priorità
- Raccolta e analisi dei requisiti: studio delle proprietà del sistema
- Progettazione delle funzionalità e dei dati manipolati
- Realizzazione
- Validazione e collaudo: si verificano le funzionalità
- Funzionamento: il sistema diventa operativo

In questo corso:

Requisiti della base di dati

Progettazione concettuale

"CHE COSA": analisi

Schema concettuale

Progettazione logica

Schema logico

"COME": progettazione

Progettazione fisica

Schema fisico

Architettura (semplificata) di un DBMS

I prodotti della varie fasi

Perché uno schema concettuale?

Se iniziassimo dallo schema logico della base di dati (tabelle, chiavi, ecc.), avremmo problemi :

- Non è chiaro come iniziare
- Ci perderemmo subito nei dettagli
- Occorre pensare subito a come correlare le varie tabelle (chiavi etc.)

I vantaggi dei Modelli concettuali

1. servono per ragionare sulla realtà di interesse, indipendentemente dagli aspetti realizzativi

2. permettono di rappresentare le classi di oggetti di interesse e le loro correlazioni

3. prevedono efficaci rappresentazioni grafiche (utili per documentazione e comunicazione)

Modello Entity-Relationship (Entità-Relazione)

- Il più diffuso modello concettuale per Basi di Dati
- I costrutti:
 - Entità
 - Relazione (in inglese Relationship)
 - Attributo
 - Identificatore
 - Generalizzazione
 -

Entità

- Classe di oggetti (fatti, persone, cose) della realtà di interesse con proprietà comuni e con esistenza "autonoma"
- Esempi:
 - studente, corso, impiegato, città, conto corrente, ordine, fattura

Studente

Corso

Relazione

- Legame logico fra due o più entità, rilevante nell'applicazione di interesse
- In inglese è "Relationship"
 - Da non confondere con le "relations" di un DB
 - Purtroppo, "Relationship" and "Relation" si traducono entrambi in "Relazione" (concetto diverso)
- Esempi: Esame (fra studente e corso), Residenza (fra persona e città)

Uno schema E-R, graficamente

Schemi e istanze

In ogni base di dati (nel modello relazionale), esistono:

- lo schema, sostanzialmente invariante nel tempo, che ne descrive la struttura (aspetto intensionale)
- l'istanza, i valori attuali, che possono cambiare anche molto rapidamente (aspetto estensionale)

Studente

Matricola	Cognome	Facoltà	Età
7309	Rossi	Informatica	25
5998	Neri	Matematica	24
9553	Milano	Matematica	24
5698	Neri	Informatica	24

Entità: schema e istanza

Nello schema concettuale rappresentiamo le entità, non le singole istanze ("astrazione")

Impiegato

Dipartimento

Città

Vendita

Entità: commenti

Ogni entità ha un nome che la identifica univocamente nello schema:

- nomi espressivi
- opportune convenzioni (per es. singolare)

Relazioni

Relazioni: commenti

Ogni relazione ha un nome che la identifica univocamente nello schema:

- nomi espressivi
- opportune convenzioni
 - singolare
 - sostantivi invece che verbi:
 - un verbo indica una direzione da un soggetto ad un oggeto;
 - le relazioni non hanno direzione!

Esempi di occorrenze

Relazioni, occorrenze

- Per ogni entità coinvolta X, ogni instanza della relazione coinvolge un'instanza di X.
- Nessuna instanza della relazione è ripetuta: non si possono avere più instanze della relazione che coinvolgono le stesse instanze delle entità coinvolte.

Relazioni corrette?

"Promuoviamo" la relazione

Con l'entità Esame

Due relazioni sulle stesse entità

Relazione n-aria

Esempi di occorrenze

Relazione ricorsiva: coinvolge "due volte" la stessa entità

Relazione ricorsiva con "ruoli"

Esempi di occorrenze

Relazione ternaria ricorsiva

Esempi di occorrenze

T1 è migliore di T2 su S2

T2 è migliore di T1 su S1

T3 è migliore di T2 su S1

Attributo

- Proprietà elementare di un'entità o di una relazione, di interesse ai fini dell'applicazione
- Associa ad ogni occorrenza di entità o relazione un valore appartenente a un insieme detto dominio dell'attributo

Attributi, rappresentazione grafica

(Caso di 1 studente che fa solo 1 esame per corso)

Esempi di occorrenze

Attributi composti

 Raggruppano attributi di una medesima entità o relazione che presentano affinità nel loro significato o uso

Altri costrutti del modello E-R

- Cardinalità
 - di relazione
 - di attributo
- Identificatore
 - interno
 - esterno
- Generalizzazione

Cardinalità di relazione

Coppia di valori (a,b) associati a ogni entità che partecipa ad una relazione con a ≤ b:

- a = il numero minimo di occorrenze
- **b** = il numero massimo di occorrenze

Esempio di cardinalità

- Ogni impiegato è assegnato ad un numero di incarichi tra 2 e 5
- Ogni incarico può essere assegnato al più a 50 impiegati ma anche a nessuno

Osservazioni sulle cardinalità

- Tipicamente si usano solo i seguenti simboli:
 - 0 e 1 per la cardinalità minima:
 - 0 = "partecipazione opzionale"
 - 1 = "partecipazione obbligatoria"
 - 1 e N per la massima:
 - N non pone alcun limite

Esempio: Cardinalità di Residenza

Tipi di relazione

- Con riferimento alle cardinalità massime, abbiamo relazione:
 - uno a uno
 - uno a molti
 - molti a molti

Relazioni "molti a molti"

Relazioni "uno a molti"

Attenzione alla lettura delle cardinalità nelle relazione

- Vero:
 - Una persona è impiegata in 0 o 1 azienda/e
 - Una azienda ha 1+ persone
- Non è vero che:
 - Una persona è impiegata in 1+ azienda/e
 - Una azienda a 0 o 1 persona/e

Relazioni "uno a uno"

Cardinalità di attributi

- E' possibile associare delle cardinalità anche agli attributi, con due scopi:
 - indicare opzionalità ("informazione incompleta")
 - indicare attributi multivalore

Identificatore di una entità

- Usato per l'identificazione univoca delle occorrenze di un'entità (simile al concetto di «chiave»)
- Costituito da :
 - attributi dell'entità (identificatore interno)
 - entità esterne attraverso relazione (identificatore esterno)

Identificatori interni

Identificatore esterno

Alcune osservazioni sugli identificatori

- Ogni entità deve possedere almeno un identificatore
- Identificazione esterna solo attraverso una relazione con cardinalità (1,1)

Trova gli errori nel diagramma alla prossima slide

Soluzione dell'Esercizio

Una possibile soluzione nella prossima slide

- Alcuni sono errori sintattici
 - Per esempio, identificatori esterni su relazioni con cardinalità diverse da (1,1).
 - Mancanza di identificatori
- Altri sono errori più «semantici»: scelta non ragionevoli rispetto a dominio
 - In generale, interviste con gli attori dell'azienda sono necessari
 - In questo esercizio, andiamo «a senso»
- Nota: è diversa da quella del libro, ma più corretta

Generalizzazione

mette in relazione una o più entità E1, E2, ..., En con una entità E, che le comprende come casi particolari

Proprietà delle generalizzazioni

```
Se E è generalizzazione di E1, E2, ..., En (figlie):
```

- 1.ogni proprietà (attributi, relazioni, ecc.) di E è anche di E1, E2, ..., En;
- 2.ogni occorrenza di E1, E2, ..., En è occorrenza anche di E.

Generalizzazione totale

- Ogni occorrenza dell'entità genitore è anche di almeno una delle entità figlie, altrimenti è parziale
- esclusiva se ogni occorrenza dell'entità genitore è occorrenza di al più una delle entità figlie, altrimenti è sovrapposta
- Consideriamo (senza perdita di generalità) solo generalizzazioni esclusive e distinguiamo fra totali e parziali

Generalizzazione Totale

 Ogni occorrenza dell'entità genitore è anche di una delle entità figlie

Generalizzazione Parziale

 Ci sono occorrenze dell'entità genitore che sono di nessun figlio

- Le persone hanno CF, cognome ed età; inoltre, ci sono persone speciali:
 - Gli uomini anche la posizione militare;
 - Gli impiegati hanno lo stipendio e possono essere: segretari, direttori o progettisti (un progettista può essere anche responsabile di progetto);
 - Gli studenti (che non possono essere impiegati) un numero di matricola;
 - Alcune persone non sono né impiegati né studenti

Documentazione associata agli schemi concettuali

- 1. Dizionario dei dati che forniscono spiegazioni di:
 - entità
 - relazione
- 2. Vincoli non esprimibili nell'ER

Soluzione diversa da quella presentata precedentemente nella slide 57

Dizionario dei dati (Entità)

Entità	Descrizione	Attributi	Identificatore
Impiegato	Dipendente dell'azienda	Codice, Cognome, Stipendio	Codice
Progetto	Progetti aziendali	Nome, Budget	Nome
Dipartimento	Struttura aziendale	Nome, Telefono	Nome, Sede
Sede	Sede dell'azienda	Città, Indirizzo	Città

Dizionario dei dati (Relazione)

Relazioni	Descrizione	Componenti	Attributi
Direzione	Direzione di un dipartimento	Impiegato, Dipartimento	
Afferenza	Afferenza a un dipartimento	Impiegato, Dipartimento	Data
Partecipazione	Partecipazione a un progetto	Impiegato, Progetto	
Composizione	Composizione dell'azienda	Dipartimento, Sede	

Vincoli non esprimibili in ER: Esempio

- Se Impiegato I dirige
 Dipartimento D, allora I afferisce a D
- 2. Se Impiegato I dirige
 Dipartimento D, allora I
 ha uno stipendio più alto
 di tutti gli altri afferenti a
 D
- 3. Non ci sono due dipartimenti con lo stesso nome

Rappresentare le seguenti realtà utilizzando i costrutti del modello Entità-Relazione e introducendo solo le informazioni specificate.

1) In un giardino zoologico ci sono degli animali appartenenti a una specie e aventi una certa età; ogni specie è localizzata in un settore (avente un nome) dello zoo.

Rappresentare le seguenti realtà utilizzando i costrutti del modello Entità-Relazione e introducendo solo le informazioni specificate.

1) In un giardino zoologico ci sono degli animali appartenenti a una specie e aventi una certa età; ogni specie è localizzata in un settore (avente un nome) dello zoo.

2) Una agenzia di noleggio di autovetture ha un parco macchine ognuna delle quali ha una targa, un colore e fa parte di una categoria; per ogni categoria c'è una tariffa di noleggio.

2) Una agenzia di noleggio di autovetture ha un parco macchine ognuna delle quali ha una targa, un colore e fa parte di una categoria; per ogni categoria c'è una tariffa di noleggio.

Esercizio 3 (Noleggio Scooter)

- Ogni scooter ha un identificatore, un modello e la sua cilindrata
- Gli scooter sono in aree di parcheggio designate, ognuna identificata da un indirizzo univoco e la dimensione del parcheggio (numero di spazi disponibili)
- Per ogni noleggio, è di interesse:
- 1. Gli scooter che vengono noleggiati (anche più di uno)
- 2. Il cliente responsabile del noleggio
- 3. L'area in cui vengono presi a noleggio (una per tutti gli scooter)
- 4. L'area in cui vengono resi (può essere diversa da quella in cui vengono presi)
- 5. Le date in cui vengono presi a noleggio e vengono resi.
- Di un cliente, si vuole memorizzare il codice fiscale e la data di registrazione nel sistema di noleggio.
- Alcuni clienti sono "premium" e collezionano punti, di cui si vuole tener traccia per ogni cliente.
- L'area e la data in cui vengono resi non sono noti all'inizio del noleggio.

Esercizio 3: Soluzione

Riferimento

Le prime tre sezioni del Capitolo 6:

- Sezione 6.1
- Sezione 6.2
- Sezione 6.3