Tutorial 14

Exercise 1 (compulsory)

Show that the class PSPACE is closed under union, intersection, concatenation, Kleene star and complement. **Hint:** You can conveniently use the fact that PSPACE=NPSPACE.

Solution:

Use the same constructions like in Exercise 1, Tutorial 13. It is now easy to argue that these constructions are implementable in polynomial space, provided that the machines M_1 and M_2 use only polynomial space. The construction for complement was presented in Lecture 14, slide 11.

Exercise 2 (compulsory)

Prove that co-NP \subseteq PSPACE.

Solution:

Let $L \in \text{co-NP}$. By definition \overline{L} belongs to NP and so there is a polynomial time nondeterministic TM deciding \overline{L} . Clearly, polynomial time TM cannot scan more then polynomially many tape cells, which implies that \overline{L} is decidable in nondeterministic polynomial space. By Savitch's theorem, \overline{L} is decidable in polynomial space also on a deterministic TM. By swapping the accept and reject states on that deterministic machine, we get a polynomial space deterministic decider for L. This means by definition that $L \in \text{PSPACE}$.

Exercise 3 (compulsory)

Let f be a function such that $f(n) \ge n$. Which of the following claims are true?

- 1. $CLIQUE \in PSPACE$
- 2. VERTEX-COVER ∉ PSPACE
- 3. $CLIQUE \in SPACE(n)$
- 4. $CLIQUE \notin NSPACE(n)$
- 5. $SPACE(f(n)) \subseteq NSPACE(f(n))$
- 6. $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- 7. $NSPACE(f(n)) \subseteq SPACE(f^3(n))$
- 8. SPACE $(f(n)) \subseteq NSPACE(f^2(n))$

Solution:

- 1. True.
- 2. False
- 3. True.
- 4. False.
- 5. True (trivial).

- 6. True (Savitch's Theorem).
- 7. True (weaker statement than Savitch's Theorem).
- 8. True (trivial).

Exercise 4 (compulsory)

Assume a deterministic decider M with space complexity n^3 . How many steps does the machine M at most perform on an input w of length n?

Solution:

If the number of scanned cells (and hence possible positions of the head) is bounded by n^3 , then there are at most $qn^3g^{n^3}$ different configurations where q is the number of states, and g is the number of tape symbols. Because q and g are constants, we get that there are at most $2^{O(n^3)}$ different configurations. A deterministic decider cannot enter the same configuration twice (otherwise it would start looping), which means that $2^{O(n^3)}$ provides also an upper bound on the number of computation steps.

Exercise 5 (compulsory)

Argue that given any TM M, we can without loss of generality assume that M satisfies the unique-accept-configuration condition:

whenever M enters an accepting configuration, then the configuration is exactly this one: $q_{accept} \sqcup$.

In other words, provide a polynomial time reduction from A_{TM} to $A_{TM,unique}$, where

```
A_{TM,unique} \stackrel{\text{def}}{=} \\ \{\langle M,w\rangle \mid M \text{ is a TM which accepts } w \text{ and } M \text{ satisfies the unique-accept-configuration condition } \} \; .
```

Solution:

Assume a TM M and its input w. We will in polynomial time construct a TM M' which satisfies the unique-accept-configuration condition and such that M accepts w if and only if M' accepts w.

In order to construct M' we simply modify the machine M in such a way that any transition in M which enters the q_{accept} state will first enter a newly added control state in which the machine M' is going to completely clean the tape (on every used cell write the symbol \sqcup) and only then enter the q_{accept} state. Such machine M' clearly satisfies our requirement.

Exercise 6 (optional)

Let L be a language that can be decided by a deterministic Turing machine in space f(n) where $f(n) \ge n$ for all n. Prove that for any real number c, 0 < c < 1, L can be decided by a deterministic Turing machine M_c with space complexity cf(n). **Note:** Here we consider the exact space complexity, not an approximation using O-notation, so you cannot simply write that O-notation allows us to disregard constant factors.

Solution:

We introduce a new tape alphabet for M_c . The characters in the new tape alphabet are vectors of length k of symbols from the original tape alphabet. In this way we ensure that M_c will use at most $\lceil \frac{f(n)}{k} \rceil + 1$ tape cells during its computation, where M used f(n) cells. Moreover we must mark where the head would

Figure 1: Original tape of M and its representation in M_c . The arrow indicates the head position.

have been on the original tape; we do this by overlining the symbol in question. Let M have tape alphabet Γ and let $\overline{\Gamma} = \{\overline{a} \mid a \in \Gamma\}$. We choose $k = \lceil \frac{1}{c} \rceil$, and the new tape alphabet is then $\Gamma \cup (\Gamma \cup \overline{\Gamma})^k$.

 M_c starts its computation by rewriting the contents of the input tape so that it contains a string of k-vectors corresponding to the original input. Figure 1 shows an example of the resulting tape content. All we need to do now is to explain the subsequent operation of M_c as it simulates M.

Assume that we consider the tape cell containing the k-vector (x_1, \ldots, x_k) and that M in state q would have its head on symbol x_i . Then we overline x_i . The simulation now depends on x_i :

- If x_i is the leftmost symbol, i.e. i=1, and M would move its head to the left and change state to q'. Here M_c must update two cells: The current cell and the cell to its left. M_c must also move its head left, and the symbol to be overlined is now the rightmost symbol in the cell that the head is now pointing to. Finally, M_c must change its state to q'.
- If i = k, and M would move its head right, and change state to q', M_c must update two cells: the current cell and the cell to its right. M_c must also move its head right, and the symbol to be overlined is now the leftmost symbol in the cell that the head is now pointing to. Finally, M_c must change its state to q'.
- In all other cases M_c only needs to update the vector (x_1, \ldots, x_k) by changing it and overlining a different symbol corresponding to the new head position of M. In this case M_c will mot move its head, only change state to q'.

When M_c moves its head to a blank tape cell, the blank symbol must be replaced by the k-vector(\sqcup, \ldots, \sqcup).