Motivation on a GPU MPM Approach A Gentle Introduction to the MPM A MPM Guide on GPGPU Pitfalls and Optimizations Delving Deeper: Further Opportunities References

GPU Acceleration of the Material Point Method

Fabian Meyer

University of Koblenz

Kolloquium Computergrafik, 14 February 2019

A Brief MPM Overview: Do You Want to Build a Snowman?

A short historical summary of MPM:

- Belongs to family of particle-in-cell(PIC) techniques [EHB57].
- Initial application to solids [SZS95] → MPM
- ► From research to production in *Disney's* animation film *Frozen* [Sto+13].
- ► Avalanche research [Gau+18]

Video result of my bachelor thesis on the simulation of snow [Mey15].

PIC ideas:

- Combine Lagrangian particles& Eulerian grid
- ► Particles store all information

Typical PIC/MPM roundtrip:

- Particle-to-grid(P2G) transfer to an unmoving grid
- 2. Solve discretized governing equations on grid
- Grid-to-particle(G2P) transfer back to particles & move them
- ⇒ meshfree, non-empirical

Transfers: Interpolation functions are defined over grid nodes.

GPGPU for performance enthusiasts

Why would('nt) you?

Drawbacks:

- Interactivity much easier on CPU, but slow
 PCI-Bus communication
- Code is mostly written against GPU architecture
- ► A lot of strain on the programmer

Benefits:

- Data is already on the GPU for rendering
- Higher parallelization acceleration

Governing Equations: Conservation of Mass & Momentum The Pretty Strong but Mathematically Weak Formulation Discretization of Space and Time Velocity Fields: APIC-Transfers

Governing Equations: Conservation of Mass & Momentum

Conservation of mass, continuum assumption holds.

Lagrangian (moving with a particle $_0x$):

$${}_{0}^{t}J\rho({}_{0}\boldsymbol{x},t)=\rho({}_{0}\boldsymbol{x},0). \tag{1}$$

Eulerian (outside observer $_t x$):

$$\frac{\partial}{\partial t}\rho(t,x,t) = -\vec{\nabla}\cdot(\rho(t,x,t)v(t,x,t)). \tag{2}$$

Lagrangian and Eulerian view measure differently but give same results. Equations are given in the strong form! [Jia+16][Abe12]

Governing Equations: Conservation of Mass & Momentum The Pretty Strong but Mathematically Weak Formulation Discretization of Space and Time Velocity Fields: APIC-Transfers

Conservation of momentum:

Lagrangian (moving with a particle $_0x$):

$$\rho(_0\mathbf{x},0)\mathbf{a}(_0\mathbf{x},t) = \vec{\nabla} \cdot \mathbf{P}(_0\mathbf{x},t) + \mathbf{f}^{\text{body}}(_0\mathbf{x},t)_0^t J. \tag{3}$$

Eulerian (outside observer $_t x$):

$$\rho({}_{t}\boldsymbol{x},t)\boldsymbol{a}({}_{t}\boldsymbol{x},t) = \vec{\nabla}\cdot\boldsymbol{\sigma}({}_{t}\boldsymbol{x},t) + \boldsymbol{f}^{\mathsf{body}}({}_{t}\boldsymbol{x},t) \tag{4}$$

Solving this equation will tell us how the velocity fields $\mathbf{v}(_t\mathbf{x}), \mathbf{v}(_0\mathbf{x})$ change on the whole domain due to acceleration \mathbf{a} . This is important to advect particles accounting for all forces. [Jia+16][Abe12]

The Pretty Strong but Mathematically Weak Formulation

Weak Formulation (or Principle of Virtual Work):

Dot product equations with arbitrarily 'test functions' \boldsymbol{q} and apply divergence theorem:

$$\int_{\Omega^0} {}_0 \boldsymbol{q} \cdot \left[({}_0 \rho_0) ({}_0 \boldsymbol{a}) - {}_0 \boldsymbol{f}^{\text{body}} {}_0^t \boldsymbol{J} \right] d_0 \boldsymbol{x} =$$

$$\int_{\partial \Omega^{t^n}} {}_t \boldsymbol{q} \cdot \boldsymbol{\sigma} d_t \boldsymbol{A} - \int_{\Omega^{t^n}} \nabla_t \boldsymbol{q} : \boldsymbol{\sigma} d_t \boldsymbol{x}. \tag{5}$$

A strong solution is also a solution to the weak formulation. Leave out body forces(like gravity) and boundary condition (e.g. collisions) for now:

$$\int_{\Omega^0} {}_0 \boldsymbol{q} \cdot ({}_0 \rho_0)({}_0 \boldsymbol{a}) d_0 \boldsymbol{x} = \int_{\Omega^{t^n}} \nabla_t \boldsymbol{q} : \boldsymbol{\sigma} d_t \boldsymbol{x}. \tag{6}$$

Weak Derivative:

$$y = |t|$$
 has weak derivative:

$$v = \begin{cases} -1, & \text{if } t < 0 \\ c, & \text{if } t = 0 \\ 1, & \text{if } t > 0 \end{cases}$$

Heaviside step function has no weak derivate:

$$s = \begin{cases} 0, & \text{if } t < 0 \\ 1, & \text{if } t \ge 0 \end{cases}$$

Allows for point loads, material discontinuities and more. [Bat06]

Discretization of Space and Time

Time discretization with implicit midpoint scheme:

$$\frac{y^{n+1} - y^n}{\Delta t} = f^{n+\frac{1}{2}} = f\left(t^n + \frac{\Delta t}{2}, \frac{1}{2}y^n + \frac{1}{2}y^{n+1}\right) \tag{7}$$

- ▶ implicit requires linear system solve ⇒ more stable, larger time steps
- midpoint as it conserves gov. equations

$$\Rightarrow \int_{\Omega^t} {}_t \boldsymbol{q} \cdot {}_t \rho({}_t \boldsymbol{v}^{n+1} - {}_t \boldsymbol{v}^n) d_t \boldsymbol{x} = \int_{\Omega^t} \nabla_t \boldsymbol{q} : \boldsymbol{\sigma}^{n+\frac{1}{2}} d_t \boldsymbol{x}. \quad (8)$$

Space Discretization is done in a Galerkin/FEM fashion with grid based interpolants w_i with limited support. Here dyadic products

$$w_i(x) = w(x - x_i) = w(\frac{1}{h}(x - x_i))w(\frac{1}{h}(y - y_i)w(\frac{1}{h}(z - z_i))$$
(9)

of cubic b-splines suffice:

$$w(x) = \begin{cases} \frac{1}{2}|x|^3 - |x|^2 + \frac{2}{3} & 0 \le |x| < 1\\ \frac{1}{6}(2 - |x|)^3 & 1 \le |x| < 2\\ 0 & 2 \le |x| \end{cases}$$
 (10)

Governing Equations: Conservation of Mass & Momentum The Pretty Strong but Mathematically Weak Formulation Discretization of Space and Time Velocity Fields: APIC-Transfers

Thus set in:

$$_{t}\boldsymbol{q}(\boldsymbol{x},t^{n})=\sum_{i}\boldsymbol{e}_{i}w_{i}(\boldsymbol{x}),\,_{t}\boldsymbol{v}^{n(+1)}(\boldsymbol{x})=\sum_{i}\boldsymbol{v}_{j}^{n(+1)}w_{j}(\boldsymbol{x}).$$

Combine it with numerical integration where the particles function as quadrature points [SKB08]:

$$g_{i} = \int_{\Omega} g(\mathbf{x}) w_{i}(\mathbf{x}) d\mathbf{x}$$

$$\approx \sum_{p} g_{p} w_{i}(\mathbf{x}_{p}) V_{p}. \tag{11}$$

due to integration by midpoint rule:

$$\int_{\Omega} f(x)dx \approx \sum_{i=1}^{N} f(x_i) h_i.$$
 (12)

Governing Equations: Conservation of Mass & Momentum The Pretty Strong but Mathematically Weak Formulation Discretization of Space and Time Velocity Fields: APIC-Transfers

Velocity Fields: APIC-Transfers

PIC-transfer

1.
$$(m\mathbf{v})_i^n = \sum_p w_{ip}^n m_p \mathbf{v}_p^n$$

2.
$$\mathbf{v}_{i}^{n} = \frac{(m\mathbf{v})_{i}^{n}}{m_{i}^{n}}$$

3.
$$\mathbf{v}_{p,PIC}^{n+1} = \sum_{i} w_{ip}^{n} \mathbf{v}_{i}^{n+1}$$

APIC-transfers add a local velocity field C_p^n around \mathbf{v}_p^n :

$$(m\mathbf{v})_i^n = \sum_p w_{ip}^n m_p \left(\mathbf{v}_p^n + \mathbf{C}_p^n (\mathbf{x}_i^n - \mathbf{x}_p^n)\right)$$

Layout of the data: SoA vs. AoS

Nvidia Nsight[NVI] now offers metrics to identify bottlenecks:

Metric	Description
VRAM SOL%	memory througput w.r.t. to hardware limit
SM SOL%	instruction throughput
L2 SOL%	L2-cache throughput
Tex SOL%	L1-cache throughput
SM Issue Util.%	amount of cycles an instr. was issued

A simple map(y=length(x)) shader on 1024×1024 Elements SoA vs. AoS differences:

Layout	$\Delta t_c(\mu s)$	Speedup	VRAM	SM	L2	SM Issue Util.
AoS(1 instr.)	243	-	77.7%	7.3%	30.3%	6.8%
SoA(1 instr.)	120	2.26x	75.4%	14.3%	29.4%	14.0%
AoS(2 instr.)	275	-	61.3%	41.8%	53.8%	48.9%
SoA(2 instr.)	240	1.16x	75.4%	29.4%	20.0%	62.3%

 \Rightarrow SoA increases coalescing for non-random access.

Parallel Reduction & Scan

Assuming an associative binary_op(x,y):= $x \circ y$, a neutral element e of the binary_op, and an array of values $[a_0, a_1, ..., a_n]$.

▶ Parallel reduction computes the value:

$$r = a_0 \circ a_1 \circ \dots \circ a_n. \tag{13}$$

(Exclusive) scan computes the array:

$$[e, a_0, (a_0 \circ a_1), (a_0 \circ a_1 \circ a_2), \dots, (a_0 \circ a_1 \circ a_2 \circ \dots \circ a_{n-1})].$$
 (14)

Here, only shared memory approaches without (NVIDIA exclusive) warp shuffle operations.

Shared Memory Bank Conflicts:

Interleaved addressing causes bank conflicts (Short Scoreboard activity) \Rightarrow padding needed.

Method	Δt_c	Speedup	VRAM	SM	Sel. Warp-Stall Reas.
Interl. no padd.	305	-	23.0%	60.9%	S. Scoreb.(17.2%)
Sequential	141	2.16x	49.8%	37.1%	S. Scoreb.(2.0%)

Table: Parallel reduction on 1024×1024 vectors with y=length(x) as input.

More elements than thread group size require pyramid schemes.

Sequential work: multiple elements per thread.

- Memory latency hiding (Long Scoreboard up)
- ► Higher reduction factor each dispatch ⇒ Less global memory indirections
- Unrolling loops can help but adds register pressure.

Method	Δt_c	Speedup	VRAM	SM	Sel. Warp-Stall Reas.
Sequential	141	2.16x	49.8%	37.1%	S. Scoreb.(2.0%)
Seq. (2x)	100	3.05x	69.5%	26.2%	L. Scoreb.(80.1%)
Seq. (128x)	98	3.1x	72.9%	16.9%	L. Scoreb.(84.4%)
Seq. (256x)	101	3.0x	66.4%	14.6%	L. Scoreb.(76.9%)

Table: Parallel reduction on 1024×1024 vectors with y=length(x) as input. Methods have 504, 8, 4 thread groups, respectively. A GTX970 has 13 SMs.

Scan is similar but cannot profit as much from sequential work having to keep multiple elements in register memory.

Binning & Counting Sort: Where Are You?

Grid node does not know its neighboring particles \Rightarrow Binning.

Binning combines nicely with **Counting Sort:**

- 1. Binning: Per node counting.
- 2. **Scan**: Computes new memory offset for particles.
- Reordering: Give back indexing list or do deep copy.

Sorting can dramatically increase workload performance of subsequent steps for neighboring queries:

- 1. Deep sorted accesses are now **coalesced**.
- 2. **Data reuse** due to L2-Cache and/or shared memory.

Double buffer particles to use last sorted state as input for new sorting to profit from item 1 and 2!

Ordering	$\Delta t_c(\mu s)$	Speedup	VRAM	SM	L2	L2-Hit
Random	1,516	-	25.0%	3.4%	9.1%	10.8%
Deep sorted	218	6.95x	75.3%	24.4%	35.0%	37.8%

Table: Order dependency of binning of 1024 \times 1024 randomly positioned particles in a 128 \times 128 \times 128 grid.

The MPM Specific Transfers

All MPM operations belong to one of those parallelization schemes:

- ▶ 1 thread : 1 particle: $\Box_p = \Box_p \circ \Box_p \circ ... \circ \Box_p$.
- ▶ 1 thread : 1 node: $\Box_p = \Box_p \circ \Box_p \circ ... \circ \Box_p$.
- ▶ P2G-transfer: $\Box_i = \sum_p \Box_p \circ \Box_{ip}$.
- ▶ G2P-transfer: $\Box_p = \sum_i \Box_i \circ \Box_{ip}$.

MPM-Transfers are executed **multiple times per physical frame** with varying numbers of variables and mathematical operations.

 \Rightarrow Preprocessing steps only need to be done **once per physical frame**. Sorting already introduced as one of these.

hi

Rohan Abeyaratne. Volume II of Lecture Notes on, The Mechanics of Elastic Solids: Continuum Mechanics.

http:

//web.mit.edu/abeyaratne/Volumes/RCA_Vol_II.pdf. [Online; accessed 08-November-2018]. MIT Department of Mechanical Engineering, 2012.

Klaus-Jürgen Bathe. *Finite element procedures*. Klaus-Jürgen Bathe, 2006.

Martha W Evans, Francis H Harlow, and Eleazer Bromberg. *The particle-in-cell method for hydrodynamic calculations*. Tech. rep. LOS ALAMOS NATIONAL LAB NM, 1957.

Johan Gaume et al. "Unified modeling of the release and flow of snow avalanches using the Material Point Method". In: Aug. 2018.

Chenfanfu Jiang et al. "The material point method for simulating continuum materials". In: ACM SIGGRAPH 2016 Courses. ACM. 2016, p. 24.

Fabian Meyer. "Simulation von Schnee". Bachelor's Thesis. Universität Koblenz-Landau, Institut für Computervisualistik, 2015.

NVIDIA Corporation. *NVIDIA Nsight*. https://docs.nvidia.com/nsight-visual-studio-edition/Content/Performance_Markers_OGL.htm. [Online; accessed 5-December-2018].

Michael Steffen, Robert M Kirby, and Martin Berzins. "Analysis and reduction of quadrature errors in the material point method (MPM)". In: *International journal for numerical methods in engineering* 76.6 (2008), pp. 922–948.

Alexey Stomakhin et al. "A material point method for snow simulation". In: *ACM Transactions on Graphics* (*TOG*) 32.4 (2013), p. 102.

Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. "Application of a particle-in-cell method to solid mechanics". In: *Computer physics communications* 87.1-2 (1995), pp. 236–252.