Model Evaluation For Humans

About me

Husband and Father Philly data scientist Wrote a haiku once

https://dantegates.github.io/2019/01/07/model-evaluation-for-humans.html (https://dantegates.github.io/2019/01/07/model-evaluation-for-humans.html)

Disclaimers

- most useful for new(er) data scientists
- but there may be take aways for everyone
- oversimplication
- guidelines/examples are not exhaustive
- breadth not depth
- ask me how I know...

Goal of this talk

Discuss guidelines and practices for model evaluation

Motivation: all models are wrong

"All models are wrong, ..."

$$\underset{\theta}{\operatorname{argmin}} L(y, \hat{y})$$

$$MLE := \underset{\theta}{\operatorname{argmax}} \pi(D \mid \theta)$$

$$\hat{y} = f(x) + \epsilon$$

$$P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$$

Ask me how I know...

On a better day... still wrong

The zen of model evaluation

"All models are wrong, some are useful"

The zen of model evaluation summarized

- All models are wrong
- Some are useful
- Others are not
- Usefulness counts

Model evaluation and the product lifecycle

- Before development
 - Business & Data Understanding
- During development
 - Data Preparation → Modeling → Evaluation
- Deployment and beyond
 - Deployment → Evaluation & Monitoring → Iteration

Before development

- Highly context specific
- Essential for rest of project

Hazards of getting this wrong

- Model does not solve POI
- Model indirectly solves POI
- Model cannot be evaluated in prod
 - Reduced confidence in model
- Diminishing returns
- Iteration is impaired

Some things to think about...

Think about framing the problem

- How will this model be evaluated?
- How will success be measured?
- Choose metrics and KPIs
 - Choose metrics carefully (more on this later, ... maybe)

Think about deployment and future iterations

- Prepare for deployment
- Prepare for future iterations
- Nothing is more permanent than temporary
- Example: A/B testing

Think about the feedback loop

- How will outcomes from the model be collected?
- Example: Filtered predictions
- Example: Ad recommendations
- Example: Intervention for hospital readmission

During development

- Most generalizable
- Opportunity adopt and standardize best practices

Test assumptions

- Check distributions of data
- Plot, plot, plot
- Check features against conventional wisdom
- Etc.
- f()

Testing assumptions: Example

Test assumptions: Example

Establish a baseline

A good baseline is

- Easy to implement
- Easy to understand

Examples of baselines

• A simple heuristic

Example: Ratings

Example: Persistency

An interpretable model

■ Example: Comorbidities

- The existing model or methodology
- Acceptance criteria

Sanity Checks

- Inspecting learned parameters
 - Example: Comorbidities
- Examining outliers in the model error
- Algorithm specific assumptions
- Examine range of predictions

Cross validation

Replicate the deployment pattern

- Avoid leakage from future examples
- More like backtesting, less like K-fold CV

```
months = list(df.groupby('month'))
for (m1, df1), (m2, df2) in zip(months, months[1:]):
    X_train, y_train = df1[features], df1[response]
    X_test, y_test = df2[features], df2[response]
```

Train on a cleaner data set

- Validate modeling approach apart from noise in data set
 - Example: Ratings

Deployment and beyond

- This is what really matters (Remember the Zen!)
- Ensure that your model is (and stays) useful!
- Iterate with confidence!

A/B testing

	precision	recall	fl-score	support
0 1	0.93 0.67	0.92 0.70	0.92	804 196
avg / total	0.88	0.88	0.88	1000
	precision	recall	fl-score	support
0	0.96	0.88	0.91	804
1	0.62	0.84	0.72	196
avg / total	0.89	0.87	0.88	1000

A/B testing

Monitoring: Covariate shift

- Check for deviations in run time data
- Keep it simple
- Keep it actionable

Monitoring: Sanity checks

- Remember me?
- Use into QA
- Integrate in automatic training pipelines

A word on metrics

- Conversion to business value
- Comparability
 - Across time, data, iterations, etc.

Conclusion

- Hopefully you have some take aways
- Share your suggestions!

Questions?