Week 09 IVLE Quiz

- 1. If Ax = b ($b \neq 0$) is a consistent linear system, which of the following statements are definitely true?
 - (I) The column space of \boldsymbol{A} has infinitely many vectors (that is, it is not the zero subspace).
 - (II) The reduced row-echelon form of \boldsymbol{A} has no zero rows.
 - (III) The column space of \boldsymbol{A} is the same as the column space of the augmented matrix $(\boldsymbol{A} \mid \boldsymbol{b})$.
 - (A) (I) only.
 - (B) (I) and (III) only.
 - (C) All three statements are correct.
 - (D) None of the given combinations is correct.

Answer: (B). (I) is true since \boldsymbol{b} is a non zero vector that belongs to the column space of \boldsymbol{A} (since $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ is consistent) then all scalar multiples of \boldsymbol{b} will also be in the column space of \boldsymbol{A} . It is not possible to determine whether (II) is true or not as the reduced row-echelon form of \boldsymbol{A} may or may not have zero rows (we only know that $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ is consistent). (III) is true since \boldsymbol{b} is a linear combination of the columns of \boldsymbol{A} means that in any row-echlon form of $(\boldsymbol{A}\mid\boldsymbol{b})$ the last column will not be a pivot column, so whatever columns of \boldsymbol{A} that forms a basis for the column space of \boldsymbol{A} will also be a basis for the column space of $(\boldsymbol{A}\mid\boldsymbol{b})$.

- 2. \mathbf{R} is the reduced row-echelon form of \mathbf{A} . Suppose \mathbf{R} has k leading entries. How many of the following statements is/are correct?
 - (I) The dimension of the row space of \boldsymbol{A} is k.
 - (II) The dimension of the column space of \boldsymbol{A} is k.
 - (III) The row space of A is the same as the column space of A.
 - (IV) The row space of \boldsymbol{A} is a subspace of the column space of \boldsymbol{A} .
 - (A) None.
 - (B) Exactly one.
 - (C) Exactly two.
 - (D) Three or more.

Answer: (C). (I) and (II) are both correct as the k is the rank of \boldsymbol{A} . (III) is not necessarily correct, for example, when \boldsymbol{A} is not a square matrix, then the column space and row space of \boldsymbol{A} would be subspaces of different Euclidean spaces so they are not comparable. (IV) is incorrect for the same reason as (III).

- 3. Which of the statements below is/are correct about the nullspace of a matrix A?
 - (I) The nullspace of A is equal to the solution space of Ax = 0.
 - (II) The nullspace of \boldsymbol{A} and the nullspace of \boldsymbol{A}^T have the same dimension.
 - (III) The dimension of the nullspace of \boldsymbol{A} is the number of non pivot columns in a row-echelon form of \boldsymbol{A} .
 - (A) (II) and (III) only
 - (B) (I) and (II) only
 - (C) (I) and (III) only
 - (D) None of the given combinations is correct

Answer: (C). (I) is correct by definition. (II) is incorrect, say, for example, when \mathbf{A} is a 4×6 matrix of rank 3. Then the dimension of the nullspace of \mathbf{A} (that is the nullity of \mathbf{A}) would be 3 while the dimension of the nullspace of \mathbf{A}^T would be 1. (III) is correct since the number of non pivot columns in a row-echelon form of \mathbf{A} would give rise to the number of arbitrary parameters in a general solution of $\mathbf{A}\mathbf{x} = \mathbf{0}$. Each of these arbitrary parameters would give rise to one vector in a basis for the nullspace of \mathbf{A} .

- 4. Let \mathbf{A} be a 4×6 matrix with rank 3. How many of the statements below are correct?
 - (I) The nullity of \mathbf{A} is 1.
 - (II) The rank of \mathbf{A}^T is 3.
 - (III) The nullity of $\mathbf{A}^T \mathbf{A}$ is less than or equal to the nullity of \mathbf{A} .
 - (A) Exactly one.
 - (B) Exactly two.
 - (C) All three.
 - (D) None.

Answer: (B). (I) is incorrect since the nullity of \mathbf{A} is 6-3=3. (II) is correct since the ranks of \mathbf{A} and \mathbf{A}^T are the same. (III) is correct since the nullspace of $\mathbf{A}^T\mathbf{A}$ and the nullspace of \mathbf{A} are always the same (see Tutorial 8).

5. Let $S = \{u_1, u_2, \dots, u_k\}$ be an orthonormal basis for a subspace V of \mathbb{R}^n . If \boldsymbol{w} is a vector in V such that $\boldsymbol{w} \cdot \boldsymbol{u_1} > 0$ and

$$\boldsymbol{w} = c_1 \boldsymbol{u_1} + c_2 \boldsymbol{u_2} + \dots + c_k \boldsymbol{u_k},$$

How many statements below regarding c_1 is/are definitely correct?

(I) c_1 is always positive.

- (II) c_1 is always an integer.
- (III) c_1 is always negative.
- (A) Exactly one.
- (B) Exactly two.
- (C) None.

Answer: (A). (I) is correct since c_1 is precisely $\boldsymbol{w} \cdot \boldsymbol{u_1}$. (II) is not necessary correct since $c_1 = \boldsymbol{w} \cdot \boldsymbol{u_1}$ may not be an integer. (III) is incorrect since we have already established that (I) is correct.