

TEST REPORT
Report No: KST-FCR-160003(1)
Report No. No 1-1 CN-100003(1)

Applicant	Name	CHANG SHIN INFOTEL CO.,LTD			
	Address	3F, Yonhap News Bldg, 64, Deadeok-Daero, 168beon-gil, seo-gu, Deajeon, South Korea			
Manufacturer Name		CHANG SHIN INFOTEL CO.,LTD			
	Address	3F, Yonhap News Bldg, 64, Deadeok-Daero, 168beon-gil, seo-gu, Deajeon, South Korea			
Equipment	Name	Access Controlled Security System with zigbee & RFID			
	Model No	SG-2000			
	Brand	huinu			
	FCC ID	2ABZV-SG-2000			
Test Standard		47, Part 15. Subpart C-15.247 1 DTS Meas. Guidance v03r04			
Test Date(s)	2016. 03. 28 - 2016. 03. 29				
Issue Date	2016. 03. 31				
Test Result	Compliance	Compliance			
Note	None				

Supplementary Information

The device bearing the brand name and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with measurement procedures specified in <u>ANSI C 63.10-2013</u>.

We attest to the accuracy of data and all measurements reported herein were performed by KOSTEC Co., Ltd. and were made under Chief Engineer's supervision. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by	Mi-Young, Lee	Approved by	Gyeong-Hyeon, Park
Signature	ofmot	Signature	8,

Table of Contents

1. GENERAL INFORMATION	3
1.1 Test Facility	3
1.2 Location	3
2. EQUIPMENT DESCRIPTION	5
3. SYSTEM CONFIGURATION FOR TEST	6
3.1 Characteristics of equipment	
3.2 Used peripherals list	6
3.3 Product Modification	6
3.4 Operating Mode	6
3.5 Test Setup of EUT	6
3.6 Parameters of Test Software Setting	7
3.7 Table for Carrier Frequencies	8
3.8 Used Test Equipment List	9
4. SUMMARY TEST RESULTS	11
5. MEASUREMENT RESULTS	12
5.1 Max. Conducted output power	12
5.2 Power spectral density	
5.3 6 dB spectrum Bandwidth	20
5.4 Band-edge Compliance of RF Conducted emissions	25
5.5 Spurious RF Radiated emissions	28
5.6 Antenna requirement	37
5.7 AC Power Conducted emissions	38

1. GENERAL INFORMATION

1.1 Test Facility

Test laboratory and address

KOSTEC Co., Ltd.

128(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea

Registration information

KOLAS No.: 232

FCC Designation No. : KR0041 FCC Registration No. : 525762 IC Registration Site No. : 8305A

1.2 Location

Report No: KST-FCR-160003(1) Page: 3 / 42

Revision History of test report

Rev.	Revisions	Effect page	Reviewed	Date
-	Initial issue	All	Gyeong-Hyeon, Park	2016.03.31
1	Add Procedure Reference	11	Gyeong-Hyeon, Park	2016.04.22

Page: 4 / 42 KST-FCR-RFS-Rev.0.2 Report No: KST-FCR-160003(1)

2. EQUIPMENT DESCRIPTION

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

Equipment Name	Access Controlled Security System with zigbee&RFID
Model No	SG-2000
Usage	Access Controlled Security System with zigbee&RFID
Serial Number	Proto type
Modulation type	O-QPSK
Emission Type	G1D
Maximum output power	-12.38 dBm
Operated Frequency	2 405 MHz - 2 480 MHz
Channel Number	16
Operation temperature	-20 °C - + 50 °C
Power Source	AC/DC Adaptor, output: DC 12 V PoE, DC 48 V
Antenna Description	Internal PCB antenna, Max gain: 2.04 dBi
Remark	 The device was operating at its maximum output power for all measurements. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test. The radiation measurements are performed in X, Y, Z axis positioning.
	Only the worst case (X) is shown in the report.
	4. The above DUT's information was declared by manufacturer. Please refer to the specifications or user manual for more detailed description.
FCC ID	2ABZV-SG-2000

Report No: KST-FCR-160003(1) Page: 5 / 42

3. SYSTEM CONFIGURATION FOR TEST

3.1 Characteristics of equipment

This equipment is a wireless authentication key that you wirelessly communicate with each other in 2.4GHz zigbee. It is used as a key of access control systems as the product which satisfies users' convenience and security. As it doesn't require users' authentication behaviors like RF-ID or finer scan

3.2 Used peripherals list

Description	Model No.	Serial No.	Manufacture	Remark
Notebook	BCM-1063	2Z7S1Z1	Dell Inc	
Adapter	DA65NM111-00	None	Dell Inc	For notebook

3.3 Product Modification

N/A

3.4 Operating Mode

Constantly transmitting with a modulated carrier at maximum power on the bottom, middle and top channels.

3.5 Test Setup of EUT

The measurements were taken in continuous transmit mode using the test mode which controlled by Tera Term. The test command and the test Jig and cables were provided by the applicant.

Report No: KST-FCR-160003(1) Page: 6 / 42

3.6 Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

■ TX Power setting value during test

Band	Rate		TX Power setting value	
Dallu	Rate	Low CH	Middle CH	High CH
2.4 GHz band	250 kbps	3	3	3

Test Program

```
< Select Mode >
    Common Settings -
 F> Set RF Channel
P> Set RF Power ...
  r- set or Power ...
T> Set Tx Interval Time ..
 -- BaseNode Start / WKEY Settings ---
B> BaseNode(RFID/WKEY Rx) Mode..
  W> W-KEY Set Mode..
  - RF Test -----
  1> Modulation Test Mode.
  2> Demodulation Test Mode...
_____
Select Menu>
 Modulation Mode is selected
 Modulation Mode Started..
 Press Any Key to exit..
T> Tx Mode Start..
R> Rx Mode Start..
Select Menu>
```

Test Program Version

3.7 Table for Carrier Frequencies

Frequency Band	Channel No	Frequency (Mb)	Channel No.	Frequency (Mtz)
	11	2 405	19	2 445
	12	2 410	20	2 450
	13	2 415	21	2 455
2.4 °H band	14	2 420	22	2 460
2.4 ⊞ band	15	2 425	23	2 465
	16	2 430	24	2 470
	17	2 435	25	2 475
	18	2 440	26	2 480

3.8 Used Test Equipment List

No.	Instrument	Model	S/N	Manufacturer	Due to cal date	Cal interval	used
1	T & H Chamber	EY-101	90E14260	TABAI ESPEC	2016.09.17	1 year	
2	T & H Chamber	SH-641	92006831	ESPEC CORP	2017.02.04	1 year	
3	Constant switch Tester	DS-COT	None	Dong sung Ele.	N/A	N/A	
4	Vibration Tester	70UA	L90016	IDEX Co.,Ltd	N/A	N/A	
5	Vibration Neter	VM-6360	N225098	LANDTEK	2016.04.07	1 year	
6	Falling Tester	SWD-8000	None	Sinwoo	N/A	N/A	
7	Spectrum Analyzer	8563E	3846A10662	Agilent Technology	2017.02.02	1 year	
8	Spectrum Analyzer	8593E	3710A02859	Agilent Technology	2017.02.02	1 year	
9	Spectrum Analyzer	FSV30	20-353063	Rohde& Schwarz	2017.02.02	1 year	
10	EMI Test Receiver	ESCI7	100823	Rohde& Schwarz	2017.02.02	1 year	
11	EMI Test Receiver	ESI	837514/004	Rohde& Schwarz	2016.10.08	1 year	
12	Vector Signal Analyzer	89441A	3416A02620	Agilent Technology	2017.02.04	1 year	
13	Network Analyzer	8753ES	US39172348	AGILENT	2016.09.16	1 year	
14	EPM Series Power meter	E4418B	GB39512547	Agilent Technology	2017.02.03	1 year	
15	RF Power Sensor	E9300A	MY41496631	Agilent Technology	2017.02.03	1 year	
16	Microwave Frequency Counter	5352B	2908A00480	Agilent Technology	2017.02.03	1 year	
17	Modulation Analyzer	8901A	3538A07071	Agilent Technology	2017.02.01	1 year	
18	Audio Analyzer	8903B	3514A16919	Agilent Technology	2017.02.03	1 year	
19	Audio Telephone Analyzer	DD-5601CID	520010281	CREDIX	2017.02.01	1 year	片
20	Digital storage Oscilloscope	TDS3052	B015962	Tektronix	2016.09.16	1 year	
21	ESG-D Series Signal Generator	E4436B	US39260458	Agilent Technology	2017.02.03	1 year	
22	ESG Vector Signal Generator	E4438C	MY42083133	Agilent Technology	2016.09.16	1 year	
23	Vector Signal Generator	SMBV100A	257557	Rohde & Schwarz	2010.09.10		
24	Tracking Source	85645A	070521-A1	Agilent Technology	2017.02.03	1 year	
25	SLIDAC	None	0207-4	Myoung sung Ele.	2017.02.02	1 year 1 year	
26	DC Power supply	DRP-5030	9028029	Digital Electronic Co.,Ltd	2017.02.01		
27	DC Power supply	6038A	3440A12674	Agilent Technology	2017.02.01	1 year	
28	DC Power supply DC Power supply	E3610A	KR24104505	Agilent Technology	2017.02.01	1 year	
29	DC Power supply	UP-3005T	68	Unicon Co.,Ltd	2017.02.01	1 year	
30	DC Power Supply DC Power Supply	SM 3004-D	114701000117	DELTA ELEKTRONIKA	2017.02.01	1 year	
31	Dummy Load	8173	3780	Bird Electronic Co., Corp	2017.02.01	1 year 1 year	
32	Attenuator	50FH-030-500	140410 9433	JEW Idustries Inc.	2017.02.03	1 year	
33	Attenuator	765-20	9703	Narda	2017.02.03		
34	Attenuator	8498A	3318A09485	HP	2017.02.03	1 year 1 year	
35		8494B	3308A32809	HP	2017.02.03		
36	Step Attenuator Step Attenuator	8495D	3308A01464	HP	2017.02.03	1 year 1 year	
37	Power divider	11636B	51212	HP	2017.02.02		
38	3Way Power divider	KPDSU3W	00070365	KMW	2016.09.16	1 year 1 year	
39	4Way Power divider	70052651	173834	KRYTAR	2017.02.02		
40	Band rejection filter	WTR-BRF2442-84NN	09020001	WAVE TECH Co.,LTD	2017.02.02	1 year 1 year	
41	White noise audio filter	ST31EQ	101902	SoundTech	2016.09.16	1 year	
42	Dual directional coupler	778D	17693	HEWLETT PACKARD	2017.02.03	1 year	
43	Dual directional coupler	772D	2839A00924	HEWLETT PACKARD	2017.02.03	1 year	
44	Band rejection filter	3TNF-0006	26	DOVER Tech	2017.02.03		
45	Band rejection filter	3TNF-0008	317	DOVER Tech	2017.02.04	1 year	
46	Band rejection filter	3TNF-0008 3TNF-0007	311	DOVER Tech	2017.02.04	1 year 1 year	
47	Highpass Filter	WHJS1100-10EF	1	WAINWRIGHT	2017.02.04	1 year	
48	Highpass Filter	WHJS3000-10EF	1	WAINWRIGHT	2017.02.03	1 year	
49	Radio Communication Alalyzer	MT8815A	6200429622	ANRITSU	2017.02.03		
50	CDMA Mobile Station Test Set	E8285A	US40081298	AGILENT	2017.02.04	1 year	
51	WideBand Radio Communication Tester	CMW500	102276	Rohde & Schwarz	2017.02.04	1 year	
52		CMU 200	112026	Rohde & Schwarz	2017.02.04	1 year	片
<u>ی</u> ∠	Radio Communication Tester	CIVIO 200	112020	NUTICE & SUIWAIZ	2017.02.03	1 year	

Report No: KST-FCR-160003(1) Page: 9 / 42 KST-FCR-RFS-Rev.0.2

No.	Instrument	Model	S/N	Manufacturer	Due to cal date	Cal interval	used
53	Bluetooth Tester	TC-3000B	3000B6A0166	TESCOM CO., LTD.	2017.02.03	1 year	
54	RF Up/Down Converter	DCP-1780	980901003	CREDIX	2017.02.03	1 year	
55	DECT Test set	8923B	3829U00364	HP	2017.02.04	1 year	
56	DECT Test set	CMD60	840677/005	Rohde& Schwarz	2016.09.16	1 year	
57	Loop Antenna	6502	9203-0493	EMCO	2017.06.04	2 year	\boxtimes
58	Dipole Antenna	HZ-12	100005	Rohde & Schwarz	2016.07.01	2 year	
59	Dipole Antenna	HZ-13	100007	Rohde & Schwarz	2016.07.01	2 year	
60	BiconiLog Antenna	3142B	1745	EMCO	2016.06.16	2 year	\boxtimes
61	Horn Antenna	3115	9605-4834	EMCO	2016.06.16	2 year	
62	Horn Antenna	3115	2996	EMCO	2018.02.12	2 year	\boxtimes
63	Horn Antenna	BBHA9170	BBHA9170152	SCHWARZBECK	2017.04.30	2 year	\boxtimes
64	Antenna Mast(OSA)	AT14	None	Daeil EMC	N/A	N/A	
65	Turn table(OSA)	None	None	Daeil EMC	N/A	N/A	
66	RF Amplifier(OSA)	8447D	2944A07881	AGILENT	2017.02.01	1 year	
67	Antenna Master(3)	AT13	None	AUDIX	N/A	N/A	\boxtimes
68	Turn Table(3)	None	None	AUDIX	N/A	N/A	\boxtimes
69	PREAMPLIFIER(3)	8449B	3008A02577	Agilent	2016.02.05	1 year	\boxtimes
70	Antenna Master(10)	MA4000-EP	None	inno systems GmbH	N/A	N/A	\boxtimes
71	Turn Table(10)	None	None	inno systems GmbH	N/A	N/A	\boxtimes
72	AMPLIFIER(10)	TK-PA6S	120009	TESTEK	2017.02.02	1 year	\boxtimes
73	Vernier Calipers	None	8280373	Mitutoyo	2016.09.17	1 year	

Page: 10 / 42 KST-FCR-RFS-Rev.0.2 Report No: KST-FCR-160003(1)

4. SUMMARY TEST RESULTS

Description of Test	FCC Rule	Reference Clause	Used	Test Result
Max. Conducted output power	15.247(b)(3)	Clause 5.1	\boxtimes	Compliance
Power spectral density	15.247(e)	Clause 5.2	\boxtimes	Compliance
6 dB spectrum Bandwidth	15.247(a)(2)	Clause 5.3	\boxtimes	Compliance
Band edge of RF conducted emissions	15.247(d)	Clause 5.4	\boxtimes	Compliance
Spurious RF radiated emissions	15.247(d), 15.209	Clause 5.5	\boxtimes	Compliance
Antenna requirement	15.203, 15.247	Clause 5.6	\boxtimes	Compliance
AC Conducted emission	15.207	Clause 5.7	\boxtimes	Compliance

Compliance/pass: The EUT complies with the essential requirements in the standard.

Not Compliance: The EUT does not comply with the essential requirements in the standard.

N/A: The test was not applicable in the standard.

Procedure Reference

FCC CFR 47, Part 15. Subpart C-15.247 558074 D01 DTS Meas. Guidance v03r04 ANSI C 63.10-2013

Report No: KST-FCR-160003(1)

Page: 11 / 42

KST-FCR-RFS-Rev.0.2

5. MEASUREMENT RESULTS

5.1 Max. Conducted output power

5.1.1 Standard Applicable [FCC §15.247(b)(3)]

For systems using digital modulation in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

5.1.2 Test Environment conditions

Ambient temperature : (22 - 23) [°]C
Relative Humidity : (50 - 52) [°]M R.H.

5.1.3 Measurement Procedure

The transmitter output was connected to the spectrum analyzer with an attenuator. The maximum peak output power was measured and recorded with the spectrum analyzer. EUT was programmed to be in continuously transmitting mode.

All conducted power tests were performed using a test receiver in accordance with FCC KDB 558074 v03r04 Section 9.1.1 Measurement Procedure RBW ≥ DTS bandwidth

The spectrum analyzer is set to the as follows:

- Set RBW≥DTS bandwidth
- Set the VBW \geq 3 x RBW.
- Set the span 3 x RBW.
- Sweep time = auto couple.
- Detector = peak.
- Trace mode = max hold.
- · Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level.

5.1.4 Test setup

5.1.5 Measurement Result

Adapter

Channel	Frequency	Conducto	ed Power	Limit	Test Results	
	[MHz]	[dB m]	[mW]	[dB m]		
11	2 405	-12.38	0.06	30	Compliance	
18	2 440	-12.43	0.06	30	Compliance	
26	2 480	-12.91	0.05	30	Compliance	

Report No: KST-FCR-160003(1) Page: 12 / 42

■ PoE

Channel	Frequency	Conducte	ed Power	Limit	Test Results	
Channel	[MHz]	[dB m]	[mW]	[dB m]		
11	2 405	-12.76	0.05	30	Compliance	
18	2 440	-12.89	0.05	30	Compliance	
26	2 480	-13.38	0.05	30	Compliance	

5.1.6 Test Plot

Adapter

CH Low

CH Middle

CH High

■ PoE

CH Low

CH Middle

CH High

5.2 Power spectral density

5.2.1 Standard Applicable [FCC §15.247(e)]

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dB m in any 3 kHz band during any time interval of continuous transmit

5.2.2 Test Environment conditions

• Ambient temperature : (22 - 23) $^{\circ}$ • Relative Humidity : (50 - 52) $^{\circ}$ R.H.

5.2.3 Measurement Procedure

The power spectral density conducted from the intentional radiator was measured with a spectrum analyzer connected to the antenna terminal, while EUT had the highest, middle and the lowest available channels. After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak power spectral density.

All conducted power tests were performed using a test receiver in accordance with FCC KDB 558074 v03r04 Section 10.1

The spectrum analyzer is set to the as follows:

- Set analyzer center frequency to DTS channel center frequency.
- Set the span to 1.5 times the DTS bandwidth.
- Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- Set the VBW \geq 3 x RBW.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- · Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
- If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.2.4 Test setup

5.2.5 Measurement Result

Adapter

Channel	Frequency [Mtz]	Result Value [dBm]	Limit [dB m]	Test Results
11	2 405	-25.18	8	Compliance
18	2 440	-25.58	8	Compliance
26	2 480	-25.70	8	Compliance

Report No: KST-FCR-160003(1) Page: 16 / 42

■ PoE

Channel	Frequency [Mt]	Result Value [dBm]	Limit [dB m]	Test Results
11	2 405	-25.52	8	Compliance
18	2 440	-26.05	8	Compliance
26	2 480	-26.09	8	Compliance

Report No: KST-FCR-160003(1) Page: 17 / 42 KST-FCR-RFS-Rev.0.2

5.2.6 Test Plot

Adapter

CH Low

CH Middle

CH High

■ PoE

CH Low

CH Middle

CH High

5.3 6 dB spectrum Bandwidth

5.3.1 Standard Applicable [FCC §15.247(a)(2)]

Systems using digital modulation techniques may operate in the 902–928 Mtz, 2400–2483.5 Mtz, and 5725–5850 Mtz bands. The minimum 6 dB bandwidth shall be at least 500 ktz.

5.3.2 Test Environment conditions

• Ambient temperature : (22 - 23) $^{\circ}$ C • Relative Humidity : (50 - 52) $^{\circ}$ R.H.

5.3.3 Measurement Procedure

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 100 $\,^{\text{kHz}}$ and the video bandwidth of 100 $\,^{\text{kHz}}$ were used.
- 3. Measured the spectrum width with power higher than 6 dB below carrier.

The spectrum analyzer is set to the as follows:

- Set RBW = 100 kHz.
- Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- Detector = Peak.
- Trace mode = max hold.
- Sweep = auto couple.
- · Allow the trace to stabilize.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.4 Test setup

5.3.5 Measurement Result

Adapter

Channel	Frequency 6 dB Bandwidth 99% Bandwidth [Mtz] [Mtz]		Limit [MHz]	Test Results	
11	2 405	1.60	2.65	>0.5	Compliance
18	2 440	1.60	2.63	>0.5	Compliance
26	2 480	1.60	2.63	>0.5	Compliance

■ PoE

Channel	Frequency [Mt]	6 dB Bandwidth [Mtz]	99% Bandwidth [Mtz]	Limit [Mtz]	Test Results
11	2 405	1.61	2.65	>0.5	Compliance
18	2 440	1.61	2.64	>0.5	Compliance
26	2 480	1.62	2.62	>0.5	Compliance

Report No: KST-FCR-160003(1) Page: 20 / 42 KST-FCR-RFS-Rev.0.2

5.3.6 Test Plot (6 dB bandwidth)

Adapter

CH Low

CH Middle

CH High

Test Plot (99 % band width)

CH Low

CH Middle

CH High

■ PoE

CH Low

CH Middle

CH High

Test Plot (99 % band width)

CH Low

CH Middle

CH High

5.4 Band-edge Compliance of RF Conducted emissions

5.4.1 Standard Applicable [FCC §15.247(d)]

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on RF conducted.

5.4.2 Test Environment conditions

• Ambient temperature : (22 - 23) ℃ • Relative Humidity : (50 - 52) % R.H.

5.4.3 Measurement Procedure

- ① Pre-calibration for the spectrum analyzer has to be done first through a reference CW signal from signal generator.
- ② Reference frequency generated from the signal generator is supply to spectrum analyzer input port via RF cable and attenuator, and then, it's apply to offset value on spectrum analyzer.
- ③ Remove the antenna from the EUT and then, connected to spectrum analyzer via a dc Block, suitable low loss RF cable and attenuator.
- 4 Place the EUT on the table and set on the emission at the band-edge,
- ⑤ After the trace being stable, Use the marker-to-peak function to move the marker to the peak of the in-band emission.
- 6 The marker-delta value now displayed must comply with the limit specified in above standard.
- 7) please refer to the detailed procedure method KDB 558074 v03r04.

The spectrum analyzer is set to the as follows:

- Span : Wide enough to capture the peak level of the emission operating on the channel closet to the Band-edge, as well as any modulation products which fall outside of the authorized band of operation
- RBW : 100 kHz (≥ 1 % of the span)

VBW : ≥ RBWSweep : auto

Detector function : peak

· Trace: Max hold

5.4.4 Test setup

Please refer 5.3.4

5.4.5 Measurement Result

Adapter

Sottin	ig Channel		Test Results							
Settil	ig Charmer	Measured value [dB]	Limit [dB]	Result						
CH 11	~ 2 400 MHz	-56.34	< 20 than DCD lavel	Compliance						
CH 24	2 483.5 ₩ ~	-51.36	≤ 20 than PSD level	Compliance						

■ PoE

Setting Channel		Test Results							
Settii	ig Charmer	Measured value [dB]	Limit [dB]	Result					
CH 11	~ 2 400 MHz	-50.78	< 20 than DCD lavel	Compliance					
CH 24	2 483.5 MHz ~	-48.02	≤ 20 than PSD level	Compliance					

Report No: KST-FCR-160003(1)

Page: 25 / 42

KST-FCR-RFS-Rev.0.2

5.4.6 Test Plot (Band-edge)

Adapter

■ PoE

5.5 Spurious RF Radiated emissions

5.5.1 Standard Applicable [FCC §15.247(d)]

All other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10 $\,^{GHz}$, the frequency Range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40 $\,^{GHz}$, Whichever is lower. In addition, radiated emissions which fall in the restricted bands, as defined in Sec.15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a)

§15.209 limits for radiated emissions measurements (distance at 3 m)

Frequency Band [Mt]	DISTANCE[Meters]	Limit [<i>μ</i> V/m]	Limit [dB ≠V/m]	Detector				
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F)	Peak				
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)	Peak				
1.705 ~ 30.0	30	30	29.54	Peak				
30 - 88	3	100 **	Quasi peak					
88 - 216	3	150 **	43.52	Quasi peak				
216 - 960	3	200 **	46.02	Quasi peak				
Above 960	Above 960 3		54.00	Average				
Above 1000	3	74.0dB W/m (Peak), 54.0 dB W/m (Average)						

^{**} fundamental emissions from intentional radiators operation under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz, or 470-806 MHz. However, operation within these Frequency bands is permitted under other sections of this Part Section 15.231 and 15.241

§15.205. Restrict Band of Operation

[MHz]	[MHz]	[MHz]	[GHz]
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505**	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.
4.177 25 - 4.177 75	37.5 -38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 -1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.38 6 75	156.7 - 156.9	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 – 4 400	Above 38.6
13.36 - 13.41			

^{**} Until February 1, 1999, this restricted band shall be 0.490-0.510

Report No: KST-FCR-160003(1) Page: 28 / 42

5.5.2 Test Environment conditions

Ambient temperature : (19 - 21) [°]C
Relative Humidity : (36 - 37) [°]M R.H.

5.5.3 Measurement Procedure

The measurements procedure of the Spurious RF Radiated emissions is as following describe method.

- 1. The EUT was placed on the top of a rotating table (0.8 meters for below 1 GHz and 1.5 meters for above
- 1 GHz) above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna master.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both Horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotating table was turned from 0 360 degrees to find the maximum reading.
- 5. The measuring receiver was set to peak detector and specified bandwidth with max hold function.
- 6. Low, Middle and high channels were measured, and radiation measurements are performed in X, Y, Z axis positioning. And found the worst axis position and only the test worst case mode is recorded in the report.
- The measurement results are obtained as described below:
 Result(dBμV/m) = Reading(dBμV) + Antenna factor(dB/m)+ CL(dB) + other applicable factor (dB)
- According to §15.33 (a)(1), Frequency range of radiated measurement is performed the tenth harmonic.

5.5.4 Measurement Uncertainty

All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are test receiver, Cable loss, Antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, Antenna frequency interpolation, measurement distance variation, Site imperfection, mismatch, and system repeatability based on NIS 80,81.

Radiated Emission measurement: 30 - 1000 MHz: 4.4 dB (CL: Approx 95 %, k=2) Above 1 GHz: 4.88 dB (CL: Approx 95 %, k=2)

Report No: KST-FCR-160003(1) Page: 29 / 42

5.5.5 Test Configuration

Radiated emission setup, Below 30 MHz

Radiated emission setup, Below 1 000 MHz

Radiated emission setup, Above 1 GHz

Report No: KST-FCR-160003(1)

Page: 30 / 42 KST-FCR-RFS-Rev.0.2

5.5.6 Measurement Result

Adapter

Above 1 GHz

CH11 (2 405 Mb)

Freq.		ding ∀/m)	Table	,	Antenna	a	CL	AMP		Result ⊮/m)		mit <i></i> V/m)	M (d	=	Result
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
2.390*	44.53	35.73	160	1.2	Н	28.88	2.50	-34.35	41.56	32.76	74	54	32.44	21.24	Compliance
2.390*	44.29	34.79	150	1.2	V	28.88	2.51	-34.35	41.33	31.83	74	54	32.67	22.17	Compliance
There a	re no sr	ourious e	emission	S.											

^{*} Restrict band emissions.

CH18 (2 440 Mb)

Freq.		ding V/m)	Table	,	Antenn	а	CL	AMP	Meas Result (dB /₩/m)			mit <i></i>	Mgn. (^{dB})		Dogult
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
-	-	1	-	-	-	1	1	-	1	-	74	54	-	-	Compliance
There a	There are no spurious emissions.														

CH26 (2 480 Mt)

Freq.	Reading (dB μ V/m)		Table	Table Antenna		CL	AMP		Result	Limit (dB ¼V/m)		Mgn. (^{dB})		Result	
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
2.484*	47.82	41.07	160	1.2	Н	29.26	2.58	-34.31	45.35	38.60	74	54	28.65	15.40	Compliance
2.484*	45.22	37.07	160	1.2	V	29.26	2.58	-34.31	42.75	34.60	74	54	31.25	19.40	Compliance
There a	There are no spurious emissions.														

^{*} Restrict band emissions.

₩Note

- Above 1 GHz is measured average and peak detector mode on Spectrum analyzer in accordance with FCC Rule15.35
- It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to measured
- For the below 30 MHz and above 2.484 GHz, measured any other signal is not detected on test receiver
- The transmitter radiated spectrum was investigated from 9 $\,\mathrm{kHz}\,$ to 26.5 $\,\mathrm{GHz}.$

Report No: KST-FCR-160003(1) Page: 31 / 42

■ PoE

Above 1 Hz

CH11 (2 405 Mt)

Freq.	Reading (dB μ V/m)		Table	able Antenna		CL AMP		Meas Result (dB⊬V/m)		Limit (dB≠V/m)		Mgn. (^{dB})		Result	
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
2.390*	44.30	36.49	160	1.2	Н	28.88	2.50	-34.35	41.33	33.52	74	54	32.67	20.48	Compliance
2.390*	44.22	35.11	150	1.2	V	28.88	2.51	-34.35	41.26	32.15	74	54	32.74	21.85	Compliance
There a	There are no spurious emissions.														

^{*} Restrict band emissions.

CH18 (2 440 Mt)

Freq.		ding V/m)	Table	,	Antenna	a	CL	AMP		Result ⊮/m)		mit <i></i> V/m)	M (d	gn. ^B)	Result
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
-	-	-	-	-	-	-	-	-	-	-	74	54	-	-	Compliance
There a	There are no spurious emissions.														

CH26 (2 480 Mb)

Freq.		Reading (dB μ V/m) Table		Antenna		CL	AMP		Result ⊮/m)	Limit (dB <i>µ</i> V/m)		Mgn. (dB)		Result	
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
2.484*	48.47	40.97	160	1.2	Н	29.26	2.58	-34.31	46.00	38.50	74	54	28.00	15.50	Compliance
2.484*	45.02	36.33	160	1.2	V	29.26	2.58	-34.31	42.55	33.86	74	54	31.45	20.14	Compliance
There a	There are no spurious emissions.														

^{*} Restrict band emissions.

₩Note

- ullet Above 1 ${}^{\odot}$ is measured average and peak detector mode on Spectrum analyzer in accordance with FCC Rule15.35
- Limit: 54 $dB \,\mu\text{I/m}(Average)$, 74 $dB \,\mu\text{I/m}(Peak)$, Attenuated more than 20 dB below the permissible value.
- It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to measured.
- For the below 30 MHz and above 2.484 GHz, measured any other signal is not detected on test receiver
- The transmitter radiated spectrum was investigated from 9 $\,$ kHz $\,$ to 26.5 $\,$ GHz.

Report No: KST-FCR-160003(1) Page: 32 / 42

Test Plot

^{*} Worst case only.

Below 1 Hz

Adapter

Freg.	Reading	Table		Antenna		CL	AMP	Meas	Limit	Mgn	
(Mlz)			Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	Result (dB≠V/m)	(dBμV/m)	(dB)	Result
35.75	49.77	160	1.6	V	13.97	0.97	-40.87	23.83	40.00	16.17	Compliance
40.56	58.95	150	1.6	V	10.68	1.01	-40.51	30.13	40.00	9.87	Compliance
449.55	56.66	160	1.6	V	18.32	2.83	-40.71	37.10	46.02	8.92	Compliance
526.66	50.46	160	1.6	V	19.68	3.03	-40.33	32.85	46.02	13.17	Compliance
675.20	44.96	170	2.0	Н	22.63	3.45	-39.42	31.63	46.02	14.39	Compliance

■ PoE

Freg.	Reading	Table		Antenna		CL	AMP	Meas	Limit	Mgn	
(Mb) (dB _/ W/m)		(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	Result (dB≠V/m)	(dBμV/m)	(dB)	Result
40.56	54.03	160	3.0	Н	10.68	1.01	-40.51	25.21	40.00	14.79	Compliance
251.18	62.84	150	2.5	Н	13.17	2.25	-41.40	36.86	46.02	9.16	Compliance
299.31	48.91	160	1.5	V	14.23	2.36	-41.27	24.23	46.02	21.79	Compliance
354.18	50.00	160	1.5	V	16.08	2.52	-41.08	27.52	46.02	18.50	Compliance
374.62	54.95	170	2.0	Н	16.69	2.58	-41.02	33.20	46.02	12.82	Compliance
462.34	55.74	160	1.2	V	18.53	2.86	-40.66	36.47	46.02	9.55	Compliance
502.90	49.16	150	1.5	Н	19.19	2.98	-40.48	30.85	46.02	15.17	Compliance

Freq.(M^{\dagger}): Measurement frequency, Reading(d^{\dagger} μ^{\prime} /m): Indicated value for test receiver, Table (Deg): Directional degree of Turn table Antenna (Height, Pol, Fctr): Antenna Height, Polarization and Factor, Cbl(d^{\dagger} B): Cable loss, Pre AMP(d^{\dagger} B): Preamplifier gain(d^{\dagger} B) Meas Result (d^{\dagger} μ^{\prime} /m): Reading(d^{\dagger} μ^{\prime} /m)+ Antenna factor.(d^{\dagger} B/m) + CL(d^{\dagger} B) - Pre AMP(d^{\dagger} B)

Limit(dB,\mu/m): Limit value specified with FCC Rule, Mgn(dB): FCC Limit (dB,\mu/m) - Meas Result(dB,\mu/m)

Test Plot

^{*} Worst case only.

Report No: KST-FCR-160003(1)

Page: 34 / 42 KST-FCR-RFS-Rev.0.2

Test Plot (Conducted spurious emissions)

Adapter

CH Low

CH Middle

CH High

Note: It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits

PoECH Low

CH Middle

CH High

Note: It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits

5.6 Antenna requirement

5.6.1 Standard applicable [FCC §15.203, §15.247(4)(1)]

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that user a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The manufacturer may design the unit So that broken antenna can be replaced by the user, but the Use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(4)(1), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

5.6.2 Antenna gain

Frequency Band	Antenna Type	Gain [dBi]	Limit [dBi]	Results
2.4 GHz	Internal PCB Antenna	2.04	≤ 6	Compliance

Report No: KST-FCR-160003(1) Page: 37 / 42

5.7 AC Power Conducted emissions

5.7.1 Standard Applicable [FCC §15.207(a)]

For intentional radiator that is designed to be connected to the public utility(AC)power line, the radio frequency. Voltage that is conducted back onto the AC power line on any frequencies hopping mode within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 uH/50 ohms line Impedance stabilization network(LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

§15.207 limits for AC line conducted emissions;

Frequency of Emission(Mb)	Conducted Limit (dB ∠W)						
Frequency of Emission(Miz)	Quasi-peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

^{*} Decreases with the logarithm of the frequency

5.7.2 Test Environment conditions

Ambient temperature : (19 - 21) °C
Relative Humidity : (36 - 37) % R.H.

5.7.3 Measurement Procedure

EUT was placed on a non-metallic table height of 0.8 m above the reference ground plane. Cables connected to EUT were fixed to cause maximum emission. Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the Maximum signal strength.

5.7.4 Used equipment

Equipment	Model No.	Serial No.	Manufacturer	Next cal date	Cal interval	Used
Test receiver	ESCS30	100111	Rohde & Schwarz	2017. 02. 02	1 year	•
LICN	ESH2-Z5	100044	R&S	2017. 02. 02	1 year	•
LISN	ESH3-Z5	100147	R&S	2017. 02. 02	1 year	•

^{*}Test Program: "ESXS-K1 V2.2" Measurement uncertainty

Conducted Emission measurement: 3.5 dB (CL: Approx 95%, k=2)

Report No: KST-FCR-160003(1) Page: 38 / 42

5.7.5 Measurement Result

Line. Live

Kostec Co., Ltd. 29 Mar 2016 16:55 Conducted Emission

EUT: SG-2000 Manuf:

CHANGSHIN INFORTEL CO.,LTD A.C. 120V / 60 Hz Op Cond:

Operator: LEE Test Spec: FCC Comment:

Final Measurement:

Result File: ZIGBEE_L.dat : New Measurement

Scan Settings (1 Range) Frequencies Receiver Settings Start Stop Step IF BW Detector M-Time Atten Preamp OpRge 150kHz 30MHz PK+AV 10msec 15 dB

Transducer No. Start Name 30MHz 12 9kHz CNEFactor

X QP / + AV

Detectors:

Meas Time: 1sec Subranges: 25 50 dB Acc Margin:

PAGE 1

Line. Live

Kostec Co., Ltd. 29 Mar 2016 16:55

Conducted Emission

EUT: SG-2000

Manuf: CHANGSHIN INFORTEL CO.,LTD

Op Cond: A.C. 120V / 60 Hz

Operator: LEE
Test Spec: FCC
Comment: L

Result File: ZIGBEE_L.dat : New Measurement

Scan Settings (1 Range)

Receiver Settings -Frequencies Start IF BW Stop Step Detector M-Time Preamp OpRge Atten 150kHz 30MHz 3.9063kHz 9kHz PK+AV 15 dB OFF 60dB 10msec

 Transducer
 No.
 Start
 Stop
 Name

 12
 9kHz
 30MHz
 CNEFactor

Final Measurement: Detectors: X QP / + AV Meas Time: 1sec Subranges: 25

Acc Margin: 50 dB

Final Measurement Results

Frequency	QP Level	QP Limit	QP Delta
MHz	dΒμV	dBµV	dB
0.17343	42.73	64.79	22.06
0.2164	38.43	62.96	24.53
0.25937	34.03	61.45	27.42
0.54453	30.25	56.00	25.75
7.41562	27.35	60.00	32.65
16.31796	23.81	60.00	36.19

Frequency MHz	AV Level dBμV	AV Limit dΒμV	AV Delta dB
0.17343	28.08	54.79	26.71
0.2164	26.86	52.96	26.10
0.25937	22.08	51.45	29.37
0.54453	26.07	46.00	19.93
7.41562	22.15	50.00	27.85
16.31796	19.29	50.00	30.71

PAGE 2

^{*} limit exceeded

Line. Neutral

Kostec Co., Ltd. 29 Mar 2016 17:00

Conducted Emission

EUT: SG-2000

Manuf: CHANGSHIN INFORTEL CO.,LTD

Op Cond: A.C. 120V / 60 Hz

Operator: LEE
Test Spec: FCC
Comment: N

Result File: ZIGBEE_N.dat : New Measurement

Scan Settings (1 Range) Frequencies Receiver Settings Start Stop Step IF BW Detector M-Time Atten Preamp OpRge 150kHz 30MHz 3.9063kHz 9kHz PK+AV 10msec 15 dB OFF 60dB

 Transducer
 No.
 Start
 Stop
 Name

 12
 9kHz
 30MHz
 CNEFactor

Final Measurement: Detectors: X QP / + AV Meas Time: 1sec

Subranges: 25 Acc Margin: 50 dB

PAGE 1

Line. Neutral

Kostec Co., Ltd. 29 Mar 2016 17:00

Conducted Emission

EUT: SG-2000

Manuf: CHANGSHIN INFORTEL CO.,LTD

Op Cond: A.C. 120V / 60 Hz

Operator: LEE
Test Spec: FCC
Comment: N

Result File: ZIGBEE_N.dat : New Measurement

Scan Settings (1 Range)

Receiver Settings -Frequencies Start IF BW Stop Step Detector M-Time Preamp OpRge Atten 150kHz 30MHz 3.9063kHz 9kHz PK+AV 15 dB OFF 60dB 10msec

 Transducer
 No.
 Start
 Stop
 Name

 12
 9kHz
 30MHz
 CNEFactor

Final Measurement: Detectors: X QP / + AV

Meas Time: 1sec Subranges: 25 Acc Margin: 50 dB

Final Measurement Results

Frequency	QP Level	QP Limit	QP Delta
MHz	dΒμV	dΒμV	dB
0.17343	41.56	64.79	23.23
0.18906	39.55	64.08	24.53
0.24375	34.48	61.97	27.49
0.57187	27.49	56.00	28.51
7.41562	27.81	60.00	32.19
18.24375	26.56	60.00	33.44

Frequency	AV Level	AV Limit	AV Delta
MHz	dBμV	dΒμV	dB
0.17343	26.07	54.79	28.72
0.18906	23.32	54.08	30.76
0.24375	23.12	51.97	28.85
0.57187	22.61	46.00	23.39
7.41562	22.78	50.00	27.22
18.24375	22.64	50.00	27.36

PAGE 2

^{*} limit exceeded