Lecture Notes for

Neural Networks and Machine Learning

Neural Style Transfer Model Optimization

Logistics and Agenda

Logistics

- Next Assignment: Style Transfer
- Next Lecture: "Fast Style Transfer" Student Presentation

Agenda

- A History of Style Transfer (last time)
- Image Optimization Algorithms (last time)
- Student Paper Presentation
- Model Optimization Algorithms (today)
- One Shot Algorithms (today)
- Evaluating Style Transfer Performance
- Extensions in Other Domains

Model Optimization Based Style Transfer

C++ for kids

Paper Presentation

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

Justin Johnson, Alexandre Alahi, Li Fei-Fei {jcjohns, alahi, feifeili}@cs.stanford.edu

Department of Computer Science, Stanford University

Abstract. We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such

One other thought!

- I hate the term perceptual loss!
- It's marketing! Joy!
- ...but not good science verbiage
- …like the term global warming
 - it can introduce subjective opinion, misunderstanding through misleading labeling
- There is nothing perceptual here, its a neural network
- A better description of the loss:
 - Convolutional Gram Loss?
 - Information Distillation Covariance?
 - Weighted Grammian Norm (WGN Loss)?
- Just don't say "perceptual" in this class (so you don't fail)

Johnson Paper Recap (if needed)

- Basic Idea: replace image optimization with single pass, fully convolutional network to perform the transformation
- Loss functions stay identical to Gatys
 - "Content" through activations difference
 - "Style" through Grammian differences
- Instances are normalized along the channel input
- No bias in filters

Specifics of the Architecture

Layer	Activation size		
Input	$3 \times 256 \times 256$		
$32 \times 9 \times 9$ conv, stride 1	$32 \times 256 \times 256$		
$64 \times 3 \times 3$ conv, stride 2	$64 \times 128 \times 128$		
$128 \times 3 \times 3$ conv, stride 2	$128 \times 64 \times 64$		
Residual block, 128 filters	$128 \times 64 \times 64$		
Residual block, 128 filters	$128 \times 64 \times 64$		
Residual block, 128 filters	$128 \times 64 \times 64$		
Residual block, 128 filters	$128 \times 64 \times 64$		
Residual block, 128 filters	$128 \times 64 \times 64$		
$64 \times 3 \times 3$ conv, stride $1/2$	$64 \times 128 \times 128$		
$32 \times 3 \times 3$ conv, stride $1/2$	$32 \times 256 \times 256$		
$3 \times 9 \times 9$ conv, stride 1	$3\times256\times256$		

Methods	Time(s)		Styles/Model	
	256 × 256	512 × 512	1024×1024	
Gatys et al. [10]	14.32	51.19	200.3	∞
Johnson et al. [47]	0.014	0.045	0.166	1

Johnson Paper Extensions

For each Style Image Multi-style transfer: Set of Style Images $\mathcal{L}_{s}(I_{s0}, \dots, I_{sN}, I_{new}) = \sum_{i=1}^{N} \beta_{i} \sum_{i=1}^{N} \|G_{si}^{(l)} - G_{new}^{(l)}\|^{2}$

(a) A Starry Night

(b) 100% / 0%

(c) 75% / 25%

(d) 50% / 50%

(e) 25% / 75%

Great

The Wave

(i) 100% / 0%

(j) 75% / 25%

(k) 50% / 50%

(l) 25% / 75%

(m) 0% / 100%

(n) Rain Princess

Fast Style Paper Extensions

- Color Preservation:
 - Apply style to luminance only
 - Reapply color channels from original image (blurred)
 - HS{V_{transform}}

32

Model Based Optimization Style Transfer

Johnson, et. al Fast Style Transfer

Jake Carlson

Justin Ledford

Luke Wood

Follow Along: LectureNotesMaster/03 LectureStyleTransfer.ipynb Training: https://github.com/8000net/StyleTransfer/blob/master/Style_Transfer_Training.ipynb

One Shot Transfer

There is a cognitive bias call "law of the instrument", as in "if all you have is a hammer, everything looks like a nail."

I propose "dogma of the instrument." It refers to the following reasoning:

"I successfully smashed something with my hammer. It must have been a nail."

The Problem of Training

- One network is only capable of one style transformation
 - Great for trained filters in an app
 - Does not work for generic transfer of one style to another
- How to define a transformation on a content and style image that transfers style into the content?
 - ...without any "per style" training
 - ...but still using the "grammian style losses"
 - ...and allows for infinite customization?
- We need to first cover whitening and coloring transformations

Aside: Whitening and Coloring

- Signal processing terms applied typically to spectra of signals
- Whitening is the process of removing correlation in a signal
 - For a matrix, the whitening transform:
 - makes covariance nearly diagonal (identity)
 - using only linear operations
- Coloring is the process of adding the observed correlation back into a signal
 - For a matrix, the coloring transform
 - makes the covariance of signal A as close as possible to signal B (the target)
 - with only linear operations to A

Aside: Whitening with SVD

- Singular Value Decomposition (SVD) decomposes a matrix into three elements
 - \circ $A = U \sum V^T$
 - U is eig-vec of AA^T and V is eig-vec of A^TA
 - where U and V are orthogonal matrices such that $UU^T=I$ and $VV^T=I$
 - \circ Σ is a diagonal matrix of the singular values
- the matrix $UV^T = A_w$ is a whitened version of the signal A such that

$$A_{w} A_{w}^{T} = I$$

- since the Gram of a layer activation is $A A^T = G$, the whitened signal has $A_w A_w^T = I = G$
 - which would have "no style" according to Gatys

Coloring with SVD

- Suppose we have two activations
 - $A_c = U_c \Sigma_c V_c^T$ and $G_c = A_c A_c^T$
 - $A_s = U_s \Sigma_s V_s T$ and $G_s = A_s A_s T$
- We can transfer the Gram matrix of A_s to A_c using coloring
 - To color the matrix:

$$A_{new} = U_s \Sigma_s V_c^T$$

$$A_{new} A_{new}^T = G_s$$

- But A_{new} is more similar to A_c than A_s
- That is exactly what we want for style transfer!
- Can also achieve coloring and whitening through the Eigen decomposition, but is less numerically stable
 - (but can be faster)

Whitening and Coloring

What does this all mean? Developing an intuition...

Follow Along: 03b WhiteningColoringExample.ipynb

How to use this for style transfer?

- If we can learn to reconstruct an image from VGG...
 - ...we can whiten content activations
 - ...then color with desired style Grammian
- The resulting reconstruction should have largely the same content, but style from the colored activations
- ...One transformation network for any style!

Multi-Staged WCT

Why not go the other way?

- Start at earlier layers and apply WCT as we progress through the network
- Paper does not have good explanation, but results are subjectively poorer:

L-3 > L-2 > L-1 > L

Removing Style? Only Whitening

One Shot Style Transfer

Li, et. al Universal Style Transfer

justinledford

Justin Ledford •

Follow Along: https://github.com/8000net/universal-style-transfer-keras

Lecture Notes for

Neural Networks and Machine Learning

Style Transfer: Model Opt.

Next Time:

Photo Realistic WCT

Reading: None

