CS 370 - Numerical Computation

Fall 2018

Stability and Truncation Error

Lecturer: Christopher Batty

Notes By: Harsh Mistry

6.1 Stability of Time-Stepping Schemes

- 1. Apply a given time stepping scheme to out test equation.
- 2. Find the closed form of its numerical solution.
- 3. Find the conditions on the timestep h that ensures stability (error approaching zero)

6.2 Determining Local Truncation Error

Recall that local truncation error is

$$LTE = y(t_{n+1}) - y_{n+1}$$

where $y(t_{n+1})$ is exact solution and y_{n+1} is approximate solution. Assuming exact right-hand-side data, this is the error from taking one step.

6.2.1 Process

Given a time-stepping scheme, $y_{n+1} = RHS$

- 1. Replace approximations on RHS with exact versions
- 2. Taylor expand all RHS quantities about time t_n (if necessary)
- 3. Taylor expand the exact solution $y(t_{n+1})$ to compare against.
- 4. Compute difference $y(y_{n+1}) y_{n+1}$. Lowest degree non-cancelling power of h gives the local truncation error