Les automates et les langages reconnaissables

1 Définition

Un automate fini sur un alphabet Σ est un quintuplet $M = (\Sigma, Q, \delta, I, T)$ où :

- Q est un ensemble fini d' états,
- δ est un ensemble fini de transitions ou flèches $\delta \subseteq Q \times \Sigma \times Q$
- I est l'ensemble des états initiaux $I \subseteq Q$
- T est l'ensemble des états terminaux ou états finaux $T \subseteq Q$

Exemple 1:

FIGURE 1 – Automate M_1

$$\Sigma = \{a, b\}, Q = \{q_1, q_2, q_3, q_4\}, I = \{q_1, q_4\}, T = \{q_2, q_3\},$$

 $\delta = \{(q_1, a, q_1), (q_1, a, q_2), (q_1, b, q_2), (q_2, a, q_3), (q_2, b, q_1), (q_2, b, q_3), (q_3, a, q_3), (q_3, a, q_4), (q_4, b, q_2)\}.$
Dans la transition $(1, a, 1)$, a est appelée la trace ou l'étiquette de la transition.

On peut représenter δ à l'aide d'une table appelée table de transitions :

	a	b
$\rightarrow q_1$	$\{q_1,q_2\}$	$\{q_2\}$
$\leftarrow q_2$	$\{q_3\}$	$\{q_1,q_3\}$
$\leftarrow q_3$	$\{q_3,q_4\}$	Ø
$\rightarrow q_4$	Ø	$\{q_2\}$

Exemple 2:

$$q_1$$
 lettre, _ lettre, chiffre, _

FIGURE 2 – Automate M_2

$$\Sigma = \{ \texttt{lettre}, \texttt{chiffre}, _ \}, \ Q = \{q_1, q_2\}, \ I = \{q_1\}, \ T = \{q_2\} \\ \delta = \{(q_1, \texttt{lettre}, q_2), (q_2, \texttt{lettre}, q_2), (q_2, \texttt{chiffre}, q_2) \}$$

On appelle *chemin* dans l'automate une suite de flèches consécutives : $q_2 \xrightarrow{a} q_3 \xrightarrow{a} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_2$ est un chemin de M_1 , sa *trace* est la suite des traces de ses flèches soit aaab et sa longueur, la longueur de sa trace, soit 4 ici.

 $q_1 \xrightarrow{\text{lettre}} q_2 \xrightarrow{\text{lettre}} q_2 \xrightarrow{\text{chiffre}} q_2$ est un chemin de M_2 de trace lettre lettre chiffre et de longueur 3. $p \xrightarrow{\varepsilon} p$ est un chemin de longueur 0 et de trace ε .

Un *chemin réussi* est un chemin qui , partant d'un état initial, se termine dans un état final. Le chemin $q_1 \xrightarrow{\mathtt{lettre}} q_2 \xrightarrow{\mathtt{chiffre}} q_2$ de M_2 est un chemin réussi.

On appelle langage reconnu par un automate M et on note L(M) l'ensemble des traces des chemins réussis.

L'automate M_2 reconnait les mots qui sont formés d'une suite non vide de lettres, de chiffres et de _ commençant par une lettre ou _. Autrement dit, cet automate donne la règle de construction des identificateurs de variables pour le langage ${\tt C}$ et reconnaît l'ensemble des identificateurs dans ce langage de programmation.

Exemple 3:

FIGURE 3 – Automate M_3

$$L(M_3) = \{a\}^* \cdot \Sigma \cdot (\{b\}^+ \cup \{a\} \cup \{a\} \cdot \{b\}^+)$$

$$= \{a\}^* \cdot \Sigma \cdot (\{b\}^+ \cup \{a\} \cdot (\{\varepsilon\} \cup \{b\}^+))$$

$$= \{a\}^* \cdot \Sigma \cdot (\{b\} \cdot \{b\}^* \cup \{a\} \cdot \{b\}^*)$$

$$= \{a\}^* \cdot \Sigma \cdot \{a, b\} \cdot \{b\}^*$$

$$= \{a\}^* \cdot \Sigma^2 \cdot \{b\}^*$$

Exemple 4:

FIGURE 4 – Automate M_4

$$L(M_4) = \{a\}^* \cdot \Sigma \cdot \Sigma^* = \{a\}^* \cdot \Sigma^+$$

Deux automates sont dits équivalents s'ils reconnaissent le même langage. On dit qu'un langage est reconnaissable si il existe un automate qui le reconnait et on note $Rec(\Sigma^*)$ l'ensemble des langages reconnaissables sur Σ .