Frample) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the map which votates a verter counter clockwise by θ . Find A that represents T with the standard bads.

$$\rightarrow$$
 R has $\{[0], [0]\}.$

Example) Let
$$T: \mathbb{R}_3 \to \mathbb{R}_2$$
 be the map given by
$$T(p(t)) = \frac{d}{dt} p(t)$$

What is the matrix A that represents T w.r.t, the standard basis.

$$\rightarrow$$
 The bases for $H_3=\{1, t, t^3\}$ and $H_2=\{1, t, t^3\}$
 $A \in \mathbb{R}^{3\times 4}$

i)
$$T(1) = 0 \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

"")
$$T(t) = \frac{d}{dt}t = (\rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\text{(ii)} \top (t^2) = \frac{d}{d\epsilon} (2 = 2t) \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$|V| + |V| + |V|$$

* We can to differentiation (of polynomials) with matrix multiplication * Differentiate 7t3-t+3 using A.

* What is the nullspace of A?

$$Nul(A) = span \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \in \mathbb{H}_3 \rightarrow \text{ it corresponds to per = C}$$

$$\rightarrow \frac{d}{de} \left(p(e) \right) = 0$$

· Orthogonality.

The inner product and distances.

Definition) The innerproduct of V, W & R"

$$\overrightarrow{V} \cdot \overrightarrow{W} \triangleq V_1 W_1 + V_2 W_2 + - - + V_n W_n$$

Definition) The norm (or length) of a vector VER

$$\|\overrightarrow{V}\| \triangleq |\overrightarrow{V}.\overrightarrow{V}| = |\overrightarrow{V}.\overrightarrow{V}|$$

distance between v and w

Definition) V, w ER are orthogonal if

Pythagords: \overrightarrow{V} and \overrightarrow{W} are orthogonal $||\overrightarrow{V}||^2 + ||\overrightarrow{W}||^2 = ||\overrightarrow{V} - \overrightarrow{W}||^2$ $|\overrightarrow{V} \cdot \overrightarrow{V} + \overrightarrow{W} \cdot \overrightarrow{W} = (\overrightarrow{V} - \overrightarrow{W}) \cdot (\overrightarrow{V} - \overrightarrow{W}) = \overrightarrow{V} \cdot \overrightarrow{V} + \overrightarrow{W} \cdot \overrightarrow{W} - 2\overrightarrow{V} \cdot \overrightarrow{W}$ $\overrightarrow{V} \cdot \overrightarrow{W} = 0$

Theorem) Suppose that Vii-, Vn are non zero and pairwise orthogonal. Than, they are independent.

⇒ Suppose—that

i) Take the dot product of \vec{V}_1 on (x) with both sides.

(C₁ \vec{V}_1 ' \vec{V}_1 ' + 0+0- = 0

(C₁ $||\vec{V}_1||_2^2 = 0$:. C₁=0

ii) If remains the same for \vec{V}_1 ... \vec{V}_n

$$C_1 ||\nabla_1||^2 + \frac{1}{2} = 0$$

$$C_1 ||\nabla_1||^2 = 0$$

$$C_1 ||\nabla_1||^2 = 0$$

.. Vi, Vz -- , và are linearly independent