The group G is isomorphic to the group labelled by [32, 1] in the Small Groups library. Ordinary character table of $G \cong C32$:

1	a 32 a	16a	32b	8a	32c	16b	32d	4a	32e	16c	32f	8b	32g	16d	32h	2a	32i	16e	32j	8c	32k	16f	32l	4b	32m	16g	32n	8d	32o	16h	32p
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_3	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
χ_4	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)
χ_5 1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^3$
$ \chi_6 $ 1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^3$
χ_7	$E(8)^3$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^3$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)
χ_8	$-E(8)^3$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)
χ_9	E(16)	E(8)	$E(16)^{3}$	E(4)	$E(16)^{5}$	$E(8)^{3}$	$E(16)^{7}$	-1	-E(16)	-E(8)	$-E(16)^3$	-E(4)	$-E(16)^5$	$-E(8)^{3}$	$-E(16)^7$	1	E(16)	E(8)	$E(16)^{3}$	E(4)	$E(16)^{5}$	$E(8)^{3}$	$E(16)^{7}$	-1	-E(16)	-E(8)	$-E(16)^3$	-E(4)	$-E(16)^5$	$-E(8)^{3}$	$-E(16)^7$
χ_{10}	-E(16)	E(8)	$-E(16)^3$	E(4)	$-E(16)^5$	$E(8)^{3}$	$-E(16)^7$	-1	E(16)	-E(8)	$E(16)^{3}$	-E(4)	$E(16)^{5}$	$-E(8)^3$	$E(16)^{7}$	1	-E(16)	E(8)	$-E(16)^3$	E(4)	$-E(16)^5$	$E(8)^{3}$	$-E(16)^7$	-1	E(16)	-E(8)	$E(16)^{3}$	-E(4)	$E(16)^5$	$-E(8)^3$	$E(16)^{7}$
χ_{11}	$E(16)^5$	-E(8)	$-E(16)^7$	E(4)	-E(16)	$-E(8)^3$	$E(16)^{3}$	-1	$-E(16)^5$	E(8)	$E(16)^{7}$	-E(4)	E(16)	$E(8)^{3}$	$-E(16)^3$	1	$E(16)^5$	-E(8)	$-E(16)^7$	E(4)	-E(16)	$-E(8)^3$	$E(16)^3$	-1	$-E(16)^5$	E(8)	$E(16)^{7}$	-E(4)	E(16)	$E(8)^{3}$	$-E(16)^3$
χ_{12}	$-E(16)^5$	-E(8)	$E(16)^{7}$	E(4)	E(16)	$-E(8)^3$	$-E(16)^3$	-1	$E(16)^{5}$	E(8)	$-E(16)^{7}$	-E(4)	-E(16)	$E(8)^{3}$	$E(16)^{3}$	1	$-E(16)^5$	-E(8)	$E(16)^{7}$	E(4)	E(16)	$-E(8)^3$	$-E(16)^3$	-1	$E(16)^{5}$	E(8)	$-E(16)^7$	-E(4)	-E(16)	$E(8)^{3}$	$E(16)^3$
χ_{13}	$E(16)^3$	$E(8)^{3}$	-E(16)	-E(4)	$-E(16)^7$	E(8)	$E(16)^{5}$	-1	$-E(16)^3$	$-E(8)^3$	E(16)	E(4)	$E(16)^{7}$	-E(8)	$-E(16)^5$	1	$E(16)^{3}$	$E(8)^{3}$	-E(16)	-E(4)	$-E(16)^7$	E(8)	$E(16)^{5}$	-1	$-E(16)^3$	$-E(8)^3$	E(16)	E(4)	$E(16)^{7}$	-E(8)	$-E(16)^5$
χ_{14}	$-E(16)^3$	$E(8)^{3}$	E(16)	-E(4)	$E(16)^{7}$	E(8)	$-E(16)^5$	-1	$E(16)^3$	$-E(8)^3$	-E(16)	E(4)	$-E(16)^{7}$	-E(8)	$E(16)^{5}$	1	$-E(16)^3$	$E(8)^{3}$	E(16)	-E(4)	$E(16)^{7}$	E(8)	$-E(16)^5$	-1	$E(16)^{3}$	$-E(8)^3$	-E(16)	E(4)	$-E(16)^7$	-E(8)	$E(16)^5$
χ_{15}	$E(16)^{7}$	$-E(8)^3$	$E(16)^{5}$	-E(4)	$E(16)^{3}$	-E(8)	E(16)	-1	$-E(16)^7$	$E(8)^{3}$	$-E(16)^5$	E(4)	$-E(16)^3$	E(8)	-E(16)	1	$E(16)^{7}$	$-E(8)^3$	$E(16)^5$	-E(4)	$E(16)^{3}$	-E(8)	E(16)	-1	$-E(16)^7$	$E(8)^{3}$	$-E(16)^5$	E(4)	$-E(16)^3$	E(8)	-E(16)
χ_{16}	$-E(16)^7$	$-E(8)^3$	$-E(16)^5$	-E(4)	$-E(16)^3$	-E(8)	-E(16)	-1	$E(16)^{7}$	$E(8)^{3}$	$E(16)^{5}$	E(4)	$E(16)^{3}$	E(8)	E(16)	1	$-E(16)^{7}$	$-E(8)^3$	$-E(16)^5$	-E(4)	$-E(16)^3$	-E(8)	-E(16)	-1	$E(16)^{7}$	$E(8)^{3}$	$E(16)^{5}$	E(4)	$E(16)^3$	E(8)	E(16)
χ_{17}	E(32)	E(16)	$E(32)^3$	E(8)	$E(32)^5$	$E(16)^3$	$E(32)^{7}$	E(4)	$E(32)^9$	$E(16)^{5}$	$E(32)^{11}$	$E(8)^3$	$E(32)^{13}$	$E(16)^{7}$	$E(32)^{15}$	-1	-E(32)	-E(16)	$-E(32)^3$	-E(8)	$-E(32)^5$	$-E(16)^3$	$-E(32)^{7}$	-E(4)	$-E(32)^9$	$-E(16)^5$	$-E(32)^{11}$	$-E(8)^{3}$	$-E(32)^{13}$	$-E(16)^{7}$	$-E(32)^{15}$
χ_{18}	-E(32)	E(16)	$-E(32)^3$	E(8)	$-E(32)^5$	$E(16)^{3}$	$-E(32)^{7}$	E(4)	$-E(32)^9$	$E(16)^{5}$	$-E(32)^{11}$	$E(8)^{3}$	$-E(32)^{13}$	$E(16)^{7}$	$-E(32)^{15}$	-1	E(32)	-E(16)	$E(32)^3$	-E(8)	$E(32)^{5}$	$-E(16)^3$	$E(32)^{7}$	-E(4)	$E(32)^{9}$	$-E(16)^{5}$	$E(32)^{11}$	$-E(8)^{3}$	$E(32)^{13}$	$-E(16)^{7}$	$E(32)^{15}$
χ_{19}	$E(32)^9$	-E(16)	$-E(32)^{11}$	E(8)	$E(32)^{13}$	$-E(16)^3$	$-E(32)^{15}$	E(4)	-E(32)	$-E(16)^5$	$E(32)^3$	$E(8)^{3}$	$-E(32)^5$	$-E(16)^{7}$	$E(32)^{7}$	-1	$-E(32)^9$	E(16)	$E(32)^{11}$	-E(8)	$-E(32)^{13}$	$E(16)^3$	$E(32)^{15}$	-E(4)	E(32)	$E(16)^{5}$	$-E(32)^3$	$-E(8)^{3}$	$E(32)^{5}$	$E(16)^{7}$	$-E(32)^7$
χ_{20}	$-E(32)^9$	-E(16)	$E(32)^{11}$	E(8)	$-E(32)^{13}$	$-E(16)^3$	$E(32)^{15}$	E(4)	E(32)	$-E(16)^5$	$-E(32)^3$	$E(8)^{3}$	$E(32)^{5}$	$-E(16)^{7}$	$-E(32)^{7}$	-1	$E(32)^{9}$	E(16)	$-E(32)^{11}$	-E(8)	$E(32)^{13}$	$E(16)^{3}$	$-E(32)^{15}$	-E(4)	-E(32)	$E(16)^{5}$	$E(32)^3$	$-E(8)^{3}$	$-E(32)^5$	$E(16)^{7}$	$E(32)^{7}$
χ_{21}	$E(32)^5$	$E(16)^{5}$	$E(32)^{15}$	-E(8)	$-E(32)^9$	$-E(16)^{7}$	$E(32)^3$	E(4)	$E(32)^{13}$	-E(16)	$-E(32)^{7}$	$-E(8)^{3}$	E(32)	$E(16)^3$	$E(32)^{11}$	-1	$-E(32)^5$	$-E(16)^5$	$-E(32)^{15}$	E(8)	$E(32)^9$	$E(16)^{7}$	$-E(32)^3$	-E(4)	$-E(32)^{13}$	E(16)	$E(32)^{7}$	$E(8)^3$	-E(32)	$-E(16)^3$	$-E(32)^{11}$
χ_{22}	$-E(32)^5$	$E(16)^{5}$	$-E(32)^{15}$	-E(8)	$E(32)^9$	$-E(16)^{7}$	$-E(32)^3$	E(4)	$-E(32)^{13}$	-E(16)	$E(32)^{7}$	$-E(8)^{3}$	-E(32)	$E(16)^3$	$-E(32)^{11}$	-1	$E(32)^{5}$	$-E(16)^5$	$E(32)^{15}$	E(8)	$-E(32)^9$	$E(16)^{7}$	$E(32)^3$	-E(4)	$E(32)^{13}$	E(16)	$-E(32)^{7}$	$E(8)^{3}$	E(32)	$-E(16)^3$	$E(32)^{11}$
χ_{23}	$E(32)^{13}$	$-E(16)^5$	$E(32)^{7}$	-E(8)	E(32)	$E(16)^{7}$	$-E(32)^{11}$	E(4)	$-E(32)^5$	E(16)	$E(32)^{15}$	$-E(8)^3$	$E(32)^9$	$-E(16)^3$	$E(32)^{3}$	-1	$-E(32)^{13}$	$E(16)^{5}$	$-E(32)^7$	E(8)	-E(32)	$-E(16)^7$	$E(32)^{11}$	-E(4)	$E(32)^{5}$	-E(16)	$-E(32)^{15}$	$E(8)^{3}$	$-E(32)^9$	$E(16)^{3}$	$-E(32)^3$
χ_{24}	$-E(32)^{13}$	$-E(16)^5$	$-E(32)^7$	-E(8)	-E(32)	$E(16)^{7}$	$E(32)^{11}$	E(4)	$E(32)^5$	E(16)	$-E(32)^{15}$	$-E(8)^3$	$-E(32)^9$	$-E(16)^3$	$-E(32)^3$	-1	$E(32)^{13}$	$E(16)^{5}$	$E(32)^{7}$	E(8)	E(32)	$-E(16)^7$	$-E(32)^{11}$	-E(4)	$-E(32)^5$	-E(16)	$E(32)^{15}$	$E(8)^{3}$	$E(32)^9$	$E(16)^{3}$	$E(32)^3$
χ_{25}	$E(32)^3$	$E(16)^3$	$E(32)^{9}$	$E(8)^{3}$	$E(32)^{15}$	-E(16)	$-E(32)^5$	-E(4)	$-E(32)^{11}$	$-E(16)^{7}$	E(32)	E(8)	$E(32)^{7}$	$E(16)^{5}$	$E(32)^{13}$	-1	$-E(32)^3$	$-E(16)^3$	$-E(32)^9$	$-E(8)^{3}$	$-E(32)^{15}$	E(16)	$E(32)^{5}$	E(4)	$E(32)^{11}$	$E(16)^{7}$	-E(32)	-E(8)	$-E(32)^{7}$	$-E(16)^5$	$-E(32)^{13}$
χ_{26}	$-E(32)^3$	$E(16)^3$	$-E(32)^9$	$E(8)^{3}$	$-E(32)^{15}$	-E(16)	$E(32)^{5}$	-E(4)	$E(32)^{11}$	$-E(16)^{7}$	-E(32)	E(8)	$-E(32)^{7}$	$E(16)^{5}$	$-E(32)^{13}$	-1	$E(32)^3$	$-E(16)^3$	$E(32)^9$	$-E(8)^{3}$	$E(32)^{15}$	E(16)	$-E(32)^{5}$	E(4)	$-E(32)^{11}$	$E(16)^{7}$	E(32)	-E(8)	$E(32)^{7}$	$-E(16)^5$	$E(32)^{13}$
χ_{27}	$E(32)^{11}$	$-E(16)^3$	E(32)	$E(8)^{3}$	$-E(32)^{7}$	E(16)	$E(32)^{13}$	-E(4)	$E(32)^3$	$E(16)^{7}$	$-E(32)^9$	E(8)	$E(32)^{15}$	$-E(16)^5$	$E(32)^5$	-1	$-E(32)^{11}$	$E(16)^3$	-E(32)	$-E(8)^{3}$	$E(32)^{7}$	-E(16)	$-E(32)^{13}$	E(4)	$-E(32)^3$	$-E(16)^{7}$	$E(32)^9$	-E(8)	$-E(32)^{15}$	$E(16)^{5}$	$-E(32)^{5}$
χ_{28}	$-E(32)^{11}$	$-E(16)^3$	$-\dot{E}(32)$	$E(8)^{3}$	$E(32)^{7}$	E(16)	$-E(32)^{13}$	-E(4)	$-E(32)^3$	$E(16)^{7}$	$E(32)^{9}$	E(8)	$-E(32)^{15}$	$-E(16)^{5}$	$-E(32)^5$	-1	$E(32)^{11}$	$E(16)^3$	E(32)	$-E(8)^{3}$	$-E(32)^{7}$	-E(16)	$E(32)^{13}$	E(4)	$E(32)^{3}$	$-E(16)^{7}$	$-E(32)^9$	-E(8)	$E(32)^{15}$	$E(16)^{5}$	$E(32)^{5}$
χ_{29}	$E(32)^{7}$	$E(16)^{7}$	$-E(32)^{5}$	$-E(8)^3$	$E(32)^{3}$	$E(16)^{5}$	$-\dot{E}(32)$	-E(4)	$-E(32)^{15}$	$E(16)^3$	$E(32)^{13}$	$-\dot{E}(8)$	$-E(32)^{11}$	E(16)	$E(32)^{9}$	-1	$-\dot{E}(32)^{7}$	$-\dot{E}(16)^{7}$	$E(32)^{5}$	$E(8)^3$	$-E(32)^3$	$-E(16)^{5}$	E(32)	E(4)	$E(32)^{15}$	$-E(16)^3$	$-E(32)^{13}$	E(8)	$E(32)^{11}$	$-\dot{E}(16)$	$-\vec{E}(32)^9$
χ_{30}	$-\dot{E}(32)^{7}$	$E(16)^{7}$	$E(32)^{5}$	$-E(8)^{3}$	$-E(32)^3$	$E(16)^{5}$	E(32)	-E(4)	$E(32)^{15}$	$E(16)^{3}$	$-E(32)^{13}$	-E(8)	$E(32)^{11}$	E(16)	$-E(32)^9$	-1	$E(32)^{7}$	$-E(16)^{7}$	$-\dot{E}(32)^{5}$	$E(8)^{3}$	$E(32)^3$	$-E(16)^{5}$	$-\vec{E}(32)$	E(4)	$-E(32)^{15}$	$-E(16)^3$	$E(32)^{13}$	E(8)	$-\dot{E}(32)^{11}$	-E(16)	$E(32)^{9}$
χ_{31}	$E(32)^{15}$	$-E(16)^{7}$	$E(32)^{13}$	$-E(8)^{3}$	$E(32)^{11}$	$-E(16)^{5}$	$E(32)^{9}$	-E(4)	$E(32)^{7}$	$-\dot{E}(16)^3$	$E(32)^{5}$	-E(8)	$E(32)^3$	$-\dot{E}(16)$	E(32)	-1	$-E(32)^{15}$	$E(16)^{7}$	$-E(32)^{13}$	$E(8)^{3}$	$-E(32)^{11}$	$E(16)^{5}$	$-E(32)^{9}$	E(4)	$-E(32)^{7}$	$E(16)^{3}$	$-\dot{E}(32)^{5}$	E(8)	$-E(32)^3$	E(16)	$-\dot{E}(32)$
χ_{32}	$-E(32)^{15}$	$-E(16)^{7}$	$-E(32)^{13}$	$-E(8)^{3}$	$-E(32)^{11}$	$-E(16)^{5}$	$-E(32)^9$	-E(4)	$-E(32)^{7}$	$-E(16)^3$	$-E(32)^{5}$	-E(8)	$-E(32)^3$	-E(16)	-E(32)	1	$E(32)^{15}$	$E(16)^{7}$	$E(32)^{13}$	$E(8)^{3}$	$E(32)^{11}$	$E(16)^{5}$	$E(32)^{9}$	E(4)	$E(32)^{7}$	$E(16)^3$	$E(32)^{5}$	E(8)	$E(32)^{3}$	E(16)	E(32)

Trivial source character table of $G \cong C32$ at p = 2:

Normalisers N_i	N_1	N_2	$N_3 \mid N_4$	N_5	N_6
p-subgroups of G up to conjugacy in G	P_1	P_2	$P_3 \mid P_4$	P_5	P_6
Representatives $n_j \in N_i$	1a	1a	$1a \mid 1a$	$\sqrt{1a}$	$\overline{1a}$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{20} + 1 \cdot $	32	0	0 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	16	16	0 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	8	8	8 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	4	4	4 4	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	2	2	2 2	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	1	1	1 1	1	1

 $P_2 = Group([(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)]) \cong C2$

 $P_3 = Group([(1, 9, 17, 25)(2, 10, 18, 26)(3, 11, 19, 27)(4, 12, 20, 28)(5, 13, 21, 29)(6, 14, 22, 30)(7, 15, 23, 31)(8, 16, 24, 32)]) \cong C4$

 $P_4 = Group([(1,5,9,13,17,21,25,29)(2,6,10,14,18,22,26,30)(3,7,11,15,19,23,27,31)(4,8,12,16,20,24,28,32)]) \cong \mathbb{C}8$

 $P_5 = Group([(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31)(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32)]) \cong C16$

 $N_1 = Group([(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32)]) \cong C32$

 $N_2 = Group([(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32)]) \cong C32$

 $N_3 = Group([(1,9,17,25)(2,10,18,26)(3,11,19,27)(4,12,20,28)(5,13,21,29)(6,14,22,30)(7,15,23,31)(8,16,24,32),(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32),(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]) \cong C32 \\ N_4 = Group([(1,5,9,13,17,21,25,29)(2,6,10,14,18,22,26,30)(3,7,11,15,19,23,27,31)(4,8,12,16,20,24,28,32),(1,9,17,25)(2,10,18,26)(3,11,19,27)(4,12,20,28)(5,13,21,29)(6,14,22,30)(7,15,23,31)(8,16,24,32),(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32),(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]) \cong C32 \\ N_4 = Group([(1,5,9,13,17,21,25,29)(2,6,10,14,18,22,26,30)(3,7,11,15,19,23,27,31)(4,8,12,16,20,24,28,32),(1,9,17,25)(2,10,18,26)(3,11,19,27)(4,12,20,28)(5,13,21,29)(6,14,22,30)(7,15,23,31)(8,16,24,32),(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32),(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]) \cong C32 \\ N_5 = \frac{1}{2} \frac{1}{2$