December 27, 2020

```
[4]: import pandas as pd
     import scipy.stats as ss
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import pingouin as pg
     from sklearn.linear_model import LinearRegression
     import statsmodels.api as sm
     from statsmodels.formula.api import ols
     import warnings
     warnings.filterwarnings("ignore")
     demo = pd.read_spss('demo2017 (1).SAV')
     #
     demo = demo.rename(columns={'N_UHC' : 'n_uhc', 'N_UPC' : 'n_upc', 'AGE' : 'age',

     →'SEX' : 'sex'})
     demo.to_csv('demo.csv', sep='\t', index=False)
     health = pd.read_spss('health2017 (1).sav')
     health.to_csv('health.csv', sep='\t', index=False)
     income = pd.read_spss('income2017 (1).SAV')
     income.to_csv('income.csv', sep='\t', index=False)
     buf = demo.merge(health, how='outer', left_on=['n_uhc', 'n_upc'],__
     →right_on=['n_uhc', 'n_upc'], suffixes=('', '_y'))
     buf = buf.drop(buf.filter(regex='_y$').columns.tolist(), axis=1)
     buf = buf.rename(columns={'YEAR' : 'year'})
     buf.to_csv('buf.csv', sep='\t', index=False)
     income = income.rename(columns={'N_UHC' : 'n_uhc', 'RESID' :'resid'})
```

```
df = buf.merge(income, how='outer', left_on=['n_uhc'], right_on=['n_uhc'],

suffixes=('', '_y'))
df = df.drop(df.filter(regex='_y$').columns.tolist(), axis=1)
df.to_csv('df.csv', sep='\t', index=False)
dataset = df.sample(n=2000, random_state=20001227)
dataset.reset_index(drop=True, inplace=True)
dataset = dataset.astype({'n_uhc' : 'Int64', 'n_upc' : 'Int64', 'year' : __

¬'Int64', 'age' : 'Int64', 'nummonth' : 'Int64', \
    'weight' : 'Int64', 'height' : 'Int64', 'HSIZE' : 'Int64', 'ch0_5' : "
→'Int64', 'ch6_12' : 'Int64', 'ch13_17' : 'Int64',\
    'elder' : 'Int64' , 'HH_BLINT' : 'Int64', 'HH_INT1' : 'Int64', 'HH_INT2' : __
→'Int64', 'HH_INT3' : 'Int64', 'HH_INT4' : 'Int64'})
dataset.dtypes.to_csv('dtypes.txt', sep='\t', index=False)
dataset.to_csv('dataset.csv', sep='\t', index=False)
dataset['Yweight'] = np.floor(dataset['Yweight'])
dataset = dataset.astype({'Yweight' : 'int64'})
print(" ")
print()
print(" ")
print("mean", dataset['totalinc'].mean())
print("median", dataset['totalinc'].median())
print("mode", dataset['totalinc'].mode().values)
print("std", dataset['totalinc'].std())
print("skewness", dataset['totalinc'].skew())
print("kurtosis", dataset['totalinc'].kurtosis())
dataset['totalinc'].plot(kind="hist", title='Total income')
print()
plt.show()
print(" ")
print("mean", dataset['totalexp'].mean())
print("median", dataset['totalexp'].median())
print("mode", dataset['totalexp'].mode().values)
print("std", dataset['totalexp'].std())
print("skewness", dataset['totalexp'].skew())
print("kurtosis", dataset['totalexp'].kurtosis())
dataset['totalexp'].plot(kind="hist", title='Total expense')
print()
plt.show()
```

```
print("")
print("mean", dataset['inc_1'].mean())
print("median", dataset['inc_1'].median())
print("mode", dataset['inc_1'].mode().values)
print("std", dataset['inc_1'].std())
print("skewness", dataset['inc_1'].skew())
print("kurtosis", dataset['inc_1'].kurtosis())
dataset['inc_1'].plot(kind="hist", title='Wages')
print()
plt.show()
print("
print("mean", dataset['inc_6'].mean())
print("median", dataset['inc_6'].median())
print("mode", dataset['inc_6'].mode().values)
print("std", dataset['inc_6'].std())
print("skewness", dataset['inc_6'].skew())
print("kurtosis", dataset['inc_6'].kurtosis())
dataset['inc_6'].plot(kind="hist", title='inc_6')
print()
plt.show()
print(" ")
print("mean", dataset['exp_6'].mean())
print("median", dataset['exp_6'].median())
print("mode", dataset['exp_6'].mode().values)
print("std", dataset['exp_6'].std())
print("skewness", dataset['exp_6'].skew())
print("kurtosis", dataset['exp_6'].kurtosis())
dataset['exp_6'].plot(kind="hist", title='exp_6')
print()
plt.show()
print("")
print("mean", dataset['weight'].mean())
print("median", dataset['weight'].median())
print("mode", dataset['weight'].mode().values)
print("std", dataset['weight'].std())
print("skewness", dataset['weight'].skew())
print("kurtosis", dataset['weight'].kurtosis())
dataset['weight'].plot(kind="hist", title='Weight')
print()
```

```
plt.show()
print("")
print("mean", dataset['height'].mean())
print("median", dataset['height'].median())
print("mode", dataset['height'].mode().values)
print("std", dataset['height'].std())
print("skewness", dataset['height'].skew())
print("kurtosis", dataset['height'].kurtosis())
dataset['height'].plot(kind="hist", title='Height')
print()
plt.show()
print("")
print("mean", dataset['age'].mean())
print("median", dataset['age'].median())
print("mode", dataset['age'].mode().values)
print("std", dataset['age'].std())
print("skewness", dataset['age'].skew())
print("kurtosis", dataset['age'].kurtosis())
dataset['height'].plot(kind="hist", title='Height')
print()
plt.show()
mass_index = dataset['weight'] / (dataset['height']**2)
saved_money = dataset['totalinc'] - dataset['totalexp']
print(" ")
print("mean", mass_index.mean())
print("median", mass_index.median())
print("mode", mass_index.mode().values)
print("std", mass_index.std())
print("skewness", mass_index.skew())
print("kurtosis", mass_index.kurtosis())
mass_index.plot(kind="hist", title='Mass index')
print()
plt.show()
print("")
print("mean", saved_money.mean())
print("median", saved_money.median())
print("mode", saved_money.mode().values)
print("std", saved_money.std())
print("skewness", saved_money.skew())
print("kurtosis", saved_money.kurtosis())
```

```
saved_money.plot(kind="hist", title='Saved money')
print()
plt.show()
sns.histplot(x=dataset['sex'])
plt.show()
fig, ax = plt.subplots(figsize=(30, 4))
sns.histplot(x=dataset['region'], ax=ax)
plt.show()
fig, ax = plt.subplots(figsize=(30, 4))
sns.histplot(x=dataset['HTYPE'].dropna(), ax = ax, hue=dataset['HTYPE'].dropna())
plt.show()
sns.histplot(x=dataset['HSIZE'].dropna())
plt.show()
fig, ax = plt.subplots(figsize=(30, 4))
sns.histplot(x=dataset['Educat'], ax = ax, hue=dataset['Educat'])
sns.histplot(x=dataset['healthev'].dropna())
plt.show()
#
#
weighted_inc_1 = pd.Series([])
for i in range(len(dataset['Yweight'])):
    weighted_inc_1 = weighted_inc_1.append(pd.Series(np.
→repeat(dataset['inc_1'][i], dataset['Yweight'][i])))
print(" ")
print("mean", weighted_inc_1.mean())
print("median", weighted_inc_1.median())
print("mode", weighted_inc_1.mode().values)
print("std", weighted_inc_1.std())
print("skewness", weighted_inc_1.skew())
print("kurtosis", weighted_inc_1.kurtosis())
weighted_inc_1.plot(kind="hist", title='Weighted wages')
print()
plt.show()
weighted_saved_money = pd.Series([])
for i in range(len(dataset['Yweight'])):
    weighted_saved_money = weighted_saved_money.append(pd.Series(np.
 →repeat(saved_money[i], dataset['Yweight'][i])))
```

```
print(" ")
print("mean", weighted_saved_money.mean())
print("median", weighted_saved_money.median())
print("mode", weighted_saved_money.mode().values)
print("std", weighted_saved_money.std())
print("skewness", weighted_saved_money.skew())
print("kurtosis", weighted_saved_money.kurtosis())
weighted_saved_money.plot(kind="hist")
print()
print()
plt.show()
#
log_totalinc = pd.Series(np.log(dataset['totalinc']))
log_totalexp = pd.Series(np.log(dataset['totalexp']))
log_weight = pd.Series(np.log(dataset['weight']))
log_height = pd.Series(np.log(dataset['height']))
print(" ")
print()
print(" ")
print("mean", log_totalinc.mean())
print("median", log_totalinc.median())
print("mode", log_totalinc.mode().values)
print("std", log_totalinc.std())
print("skewness", log_totalinc.skew())
print("kurtosis",log_totalinc.kurtosis())
log_totalinc.plot(kind="hist", title='Total income')
print()
plt.show()
print(" ")
print("mean", log_totalexp.mean())
print("median", log_totalexp.median())
print("mode", log_totalexp.mode().values)
print("std", log_totalexp.std())
print("skewness", log_totalexp.skew())
print("kurtosis", log_totalexp.kurtosis())
log_totalexp.plot(kind="hist", title='Total expense')
print()
plt.show()
```

```
print("")
print("mean", log_weight.mean())
print("median", log_weight.median())
print("mode", log_weight.mode().values)
print("std", log_weight.std())
print("skewness", log_weight.skew())
print("kurtosis", log_weight.kurtosis())
log_weight.plot(kind="hist", title='Weight')
print()
plt.show()
print("")
print("mean", log_height.mean())
print("median", log_height.median())
print("mode", log_height.mode().values)
print("std", log_height.std())
print("skewness", log_height.skew())
print("kurtosis", log_height.kurtosis())
log_height.plot(kind="hist", title='Height')
print()
plt.show()
sd_totalinc = (dataset['totalinc'] - dataset['totalinc'].mean())/
 →dataset['totalinc'].std()
sd_totalexp = (dataset['totalexp'] - dataset['totalexp'].mean())/

→dataset['totalexp'].std()
sd_inc_1 = (dataset['inc_1'] - dataset['inc_1'].mean())/dataset['inc_1'].std()
sd_inc_6 = (dataset['inc_6'] - dataset['inc_6'].mean())/dataset['inc_6'].std()
sd_exp_6 = (dataset['exp_6'] - dataset['exp_6'].mean())/dataset['exp_6'].std()
sd_weight = (dataset['weight'] - dataset['weight'].mean())/dataset['weight'].
⇒std()
sd_height = (dataset['height'] - dataset['height'].mean())/dataset['height'].
⇒std()
sd_age = (dataset['age'] - dataset['age'].mean())/dataset['age'].std()
sd_totalinc.plot(kind="hist", title='Std Total income')
plt.show()
sd_totalexp.plot(kind="hist", title='Std Total expense')
plt.show()
sd_inc_1.plot(kind="hist", title='Std Wages')
plt.show()
sd_inc_6.plot(kind="hist", title='Std inc_6')
plt.show()
```

```
sd_exp_6.plot(kind="hist", title='Std exp_6')
plt.show()
sd_weight.plot(kind="hist", title='Std Weight')
plt.show()
sd_height.plot(kind="hist", title='Std Height')
plt.show()
sd_age.plot(kind="hist", title='Std Age')
plt.show()
             2017
print("
print(ss.ttest_1samp(dataset['inc_1'], 815.25, nan_policy='omit'))
print(ss.ttest_1samp(weighted_inc_1, 815.25, nan_policy='omit'))
print()
males = dataset.loc[dataset['sex'] == 'Male']
females = dataset.loc[dataset['sex'] == 'Female']
#
print("
print(ss.ttest_ind(males['inc_1'], females['inc_1'], equal_var=True,__
→nan_policy='omit'))
print(ss.ttest_ind(males['inc_1'], females['inc_1'], equal_var=False,__
→nan_policy='omit'))
print()
#,
print("
            ")
print(ss.levene(males['inc_1'].dropna(), females['inc_1'].dropna()))
print()
grodno = dataset.loc[dataset['region'] == 'Grodno oblast']
mogilev = dataset.loc[dataset['region'] == 'Mogilev oblast']
# inc_6 ,
             exp_6
             ")
print("
print()
print(" inc_6")
print(ss.ttest_ind(grodno['inc_6'], mogilev['inc_6'], equal_var=True,__
→nan_policy='omit'))
print(ss.ttest_ind(grodno['inc_6'], mogilev['inc_6'], equal_var=False,__
→nan_policy='omit'))
print(ss.levene(grodno['inc_6'].dropna(), mogilev['inc_6'].dropna()))
print()
print(" exp_6")
```

```
print(ss.ttest_ind(grodno['exp_6'], mogilev['exp_6'], equal_var=True,__
 →nan_policy='omit'))
print(ss.ttest_ind(grodno['exp_6'], mogilev['exp_6'], equal_var=False,__
→nan_policy='omit'))
print(ss.levene(grodno['exp_6'].dropna(), mogilev['exp_6'].dropna()))
print()
#
age = pd.Series([])
for i in range(len(dataset['age'])):
    if dataset['age'][i] >= 18 and dataset['age'][i] < 25:</pre>
        age = age.append(pd.Series(['18-24']), ignore_index=True)
    elif dataset['age'][i] >= 25 and dataset['age'][i] < 35:</pre>
        age = age.append(pd.Series(['25-34']), ignore_index=True)
    elif dataset['age'][i] >= 35 and dataset['age'][i] < 45:</pre>
        age = age.append(pd.Series(['35-44']), ignore_index=True)
    elif dataset['age'][i] >= 45 and dataset['age'][i] < 55:</pre>
        age = age.append(pd.Series(['45-54']), ignore_index=True)
    elif dataset['age'][i] >= 55 and dataset['age'][i] < 65:</pre>
        age = age.append(pd.Series(['55-64']), ignore_index=True)
    else:
        age = age.append(pd.Series(np.nan))
wages = pd.Series([])
for i in range(len(dataset['inc_1'])):
    if dataset['inc_1'][i] > 0 and dataset['inc_1'][i] < 400:</pre>
        wages = wages.append(pd.Series(['0-400']), ignore_index=True)
    elif dataset['inc_1'][i] >= 400 and dataset['inc_1'][i] < 500:</pre>
        wages = wages.append(pd.Series(['400-500']), ignore_index=True)
    elif dataset['inc_1'][i] >= 500 and dataset['inc_1'][i] < 700:</pre>
        wages = wages.append(pd.Series(['500-700']), ignore_index=True)
    elif dataset['inc_1'][i] >= 700 and dataset['inc_1'][i] < 1000:</pre>
        wages = wages.append(pd.Series(['700-1000']), ignore_index=True)
    elif dataset['inc_1'][i] >= 1000:
        wages = wages.append(pd.Series(['>1000']), ignore_index=True)
    elif abs(dataset['inc_1'][i]) < 0.00000001 or np.isnan(dataset['inc_1'][i]):
        wages = wages.append(pd.Series(np.nan))
dataset['cat_wages'] = wages.copy()
dataset['cat_age'] = age.copy()
dataset['id'] = range(1, 2001)
```

```
data = dataset.groupby(['sex', 'cat_wages'], as_index=False)['id'].count()
data = data.rename(columns={'id' : 'count'})
wages_frequencies = data['count'].copy()
pivot = data.pivot_table(values='count',index='sex',columns='cat_wages',u
 \rightarrowaggfunc=lambda x : x)
sns.heatmap(data=pivot, annot=True, fmt='d')
plt.show()
data = dataset.groupby(['cat_age', 'cat_wages'], as_index=False)['id'].count()
data = data.rename(columns={'id' : 'count'})
pivot = data.pivot_table(values='count',index='cat_age',columns='cat_wages',__
 \rightarrowaggfunc=lambda x : x)
sns.heatmap(data=pivot, annot=True)
plt.show()
data = dataset.groupby(['Educat', 'cat_wages'], as_index=False)['id'].count()
data = data.rename(columns={'id' : 'count'})
pivot = data.pivot_table(values='count',index='Educat',columns='cat_wages',u
 \rightarrowaggfunc=lambda x : x)
fig, ax = plt.subplots(figsize=(20, 4))
sns.heatmap(data=pivot, annot=True, fmt='d', ax=ax)
plt.show()
data = dataset.groupby(['Educat', 'sport'], as_index=False)['id'].count()
data = data.rename(columns={'id' : 'count'})
pivot = data.pivot_table(values='count',index='Educat',columns='sport',__
 \rightarrowaggfunc=lambda x : x)
fig, ax = plt.subplots(figsize=(20, 7))
sns.heatmap(data=pivot, annot=True, fmt='f', ax=ax)
plt.show()
data = dataset.groupby(['sex', 'smoker'], as_index=False)['id'].count()
data = data.rename(columns={'id' : 'count'})
pivot = data.pivot_table(values='count',index='sex',columns='smoker',__
 \rightarrowaggfunc=lambda x : x)
sns.heatmap(data=pivot, annot=True, fmt='d')
plt.show()
male_wages_frequencies = pd.Series([])
female_wages_frequencies = pd.Series([])
for i in range(len(wages_frequencies)):
    if i < len(wages_frequencies)/2:</pre>
```

```
female_wages_frequencies = female_wages_frequencies.append(pd.
 →Series([wages_frequencies[i]]), ignore_index=True)
    else:
        male_wages_frequencies = male_wages_frequencies.append(pd.
 →Series([wages_frequencies[i]]), ignore_index=True)
print("-
               ")
print(ss.chisquare(male_wages_frequencies, female_wages_frequencies))
print()
dat = dataset.groupby(['sex', 'Educat'], as_index=False)['id'].count()
dat = dat.rename(columns={'id' : 'count'})
education_frequencies = dat['count'].copy()
male_education_frequencies = pd.Series([])
female_education_frequencies = pd.Series([])
for i in range(len(education_frequencies)):
    if i < len(education_frequencies)/2:</pre>
        female_education_frequencies = female_education_frequencies.append(pd.
 →Series([education_frequencies[i]]), ignore_index=True)
    else:
        male_education_frequencies = male_education_frequencies.append(pd.
 →Series([education_frequencies[i]]), ignore_index=True)
print("-
               ")
print(ss.chisquare(male_education_frequencies, female_education_frequencies))
print()
data.drop([0, 3], inplace=True)
table = np.array([[data['count'][1], data['count'][2]], [data['count'][4],
→data['count'][5]]])
print("-
print(ss.chi2_contingency(table))
print()
good = dataset.loc[dataset['healthev'] == 'Good']['inc_1'].dropna()
bad = dataset.loc[dataset['healthev'] == 'Bad']['inc_1'].dropna()
so_so = dataset.loc[dataset['healthev'] == 'Not very good, but not_
→bad']['inc_1'].dropna()
```

```
print("
              ")
print(ss.levene(good, bad, so_so))
print(ss.f_oneway(good, bad, so_so))
print(ss.kruskal(good, bad, so_so))
print()
minsk = dataset.loc[dataset['region'] == 'Minsk city']['inc_1'].dropna()
minsk_obl = dataset.loc[dataset['region'] == 'Minsk oblast']['inc_1'].dropna()
grodno_obl = dataset.loc[dataset['region'] == 'Grodno oblast']['inc_1'].dropna()
brest_obl = dataset.loc[dataset['region'] == 'Brest oblast']['inc_1'].dropna()
gomel_obl = dataset.loc[dataset['region'] == 'Gomel oblast']['inc_1'].dropna()
vitebsk_obl = dataset.loc[dataset['region'] == 'Vitebsk oblast']['inc_1'].
mogilev_obl = dataset.loc[dataset['region'] == 'Mogilev oblast']['inc_1'].
 →dropna()
print("
print(" ")
print(ss.levene(minsk, minsk_obl, grodno_obl, brest_obl, gomel_obl, vitebsk_obl,_
→mogilev_obl))
print(ss.f_oneway(minsk, minsk_obl, grodno_obl, brest_obl, gomel_obl,_u
→vitebsk_obl, mogilev_obl))
print(ss.kruskal(minsk, minsk_obl, grodno_obl, brest_obl, gomel_obl,_u
→vitebsk_obl, mogilev_obl))
print()
print(" ")
print(ss.levene(minsk_obl, grodno_obl, brest_obl, gomel_obl, vitebsk_obl,_u
 →mogilev_obl))
print(ss.f_oneway(minsk_obl, grodno_obl, brest_obl, gomel_obl, vitebsk_obl,_u
 →mogilev_obl))
print(ss.kruskal(minsk_obl, grodno_obl, brest_obl, gomel_obl, vitebsk_obl,_u
→mogilev_obl))
print()
      p-value
features = ['cashinc', 'InKind', 'Privlg']
```

```
X = dataset[dataset['region'] == 'Grodno oblast'][features]
Y = dataset[dataset['region'] == 'Mogilev oblast'][features]
print(" ")
print(pg.multivariate_ttest(X, Y))
print()
features = ['inc_6', 'cashinc', 'InKind', 'Privlg', 'totalinc', 'exp_6', _
corr = dataset[features].corr()
print(" ")
print(corr)
print()
X = dataset[dataset['region'] == 'Grodno oblast'][features].corr()
Y = dataset[dataset['region'] == 'Mogilev oblast'][features].corr()
print("
          ")
print()
print(X)
print()
print("
          ")
print(Y)
print()
      0.9
r_inc_exp = (corr['totalinc']['totalexp'] -__
→corr['totalinc']['cashinc']*corr['totalexp']['cashinc'])/ \
    (((1 - corr['totalinc']['cashinc']**2)*(1 -__

→corr['totalexp']['cashinc']**2))**0.5)
r_inc_cash = (corr['totalinc']['cashinc'] -__
→corr['totalinc']['totalexp']*corr['totalexp']['cashinc'])/ \
    (((1 - corr['totalinc']['totalexp']**2)*(1 -___
→corr['totalexp']['cashinc']**2))**0.5)
r_exp_cash = (corr['totalexp']['cashinc'] -__
 →corr['totalinc']['totalexp']*corr['totalinc']['cashinc'])/ \
    (((1 - corr['totalinc']['totalexp']**2)*(1 -___
→corr['totalinc']['cashinc']**2))**0.5)
print(" ")
```

```
print('totalinc and totalexp without cashinc', r_inc_exp)
print('totalinc and cashinc without totalexp', r_inc_cash)
print('totalexp and cashinc without totalinc', r_exp_cash)
print()
#///
dataset.dropna(inplace=True)
features = ['inc_6', 'InKind', 'Privlg']
X = dataset[features]
y = dataset['exp_6']
X2 = sm.add\_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(" exp_6: ")
print()
print(est2.summary())
print()
print()
features = ['inc_6', 'InKind', 'Privlg', 'exp_6']
X = dataset[features]
y = dataset['totalexp']
X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(" totalexp: ")
print()
print(est2.summary())
print()
print()
print(" ")
print("
print(pg.anova(dv='inc_1', between=['cat_age', 'sex', 'Educat'], data=dataset,__
→ss_type=1))
print(pg.anova(dv='inc_1', between=['cat_age', 'sex', 'Educat'], data=dataset,__

ss_type=2))
print(pg.anova(dv='inc_1', between=['cat_age', 'sex', 'Educat'], data=dataset,__
 →ss_type=3))
```

mean 1062.4172252122141
median 961.2480087499999
mode [1156.26068958 1278.85764167 2131.73807917]
std 604.1450053990342
skewness 4.1654086557333905
kurtosis 39.69806415891949

mean 1033.7273549132296
median 901.5729166666666
mode [963.75416667 1293.09791667 2445.29]
std 644.0220783835128
skewness 3.5101625084956645
kurtosis 23.54865183381775

mean 627.8884079896326 median 570.0454166666666 mode [0.] std 545.1554789499738 skewness 1.724278727441116

kurtosis 7.158471888324931

mean 19.68769706445797 median 0.0 mode [0.] std 93.1020026748384 skewness 10.328334977332863 kurtosis 155.26143367139073

mean 80.2368455600631
median 69.0741666666666
mode [0.]
std 49.98299627189684
skewness 2.926749156418027
kurtosis 13.398822013249607

mean 77.0724832214765
median 76.0
mode <IntegerArray>
[80]

Length: 1, dtype: Int64 std 15.41200834469597

skewness 0.4783974214918843 kurtosis 0.31446811078435655

mean 168.53557046979867
median 168.0
mode <IntegerArray>
[164]

Length: 1, dtype: Int64 std 8.44054841019285

skewness 0.2986055965042523 kurtosis -0.0920117714571087

mean 40.9395 median 43.0

mode <IntegerArray>

[60, 62]

Length: 2, dtype: Int64

std 22.70761232668

skewness -0.14659718021726592 kurtosis -1.0475493406701586

mean 0.0027113183574392634 median 0.002657312925170068 mode [0.00297442] std 0.0005008738683704255 skewness 0.6339346375324817 kurtosis 0.6724687599406525

mean 28.689870298984406
median 48.04007291666642
mode [-313.55192083 -14.240275
std 229.98657369682442

skewness -4.4055094421554255 kurtosis 46.123287453033576 192.50652292]

mean 735.7465187965693
median 661.1458333333334
mode [0.]
std 613.7362776378013
skewness 1.4103980798170492
kurtosis 3.7565191622449716

mean 11.502298818794205
median 41.09142041666661
mode [-14.240275]
std 278.4133297885361
skewness -5.420171708580864
kurtosis 45.89559296325041

mean 6.847886693139559
median 6.868232448193947
mode [7.05294653 7.15372249 7.66469293]
std 0.49268781531114125
skewness -0.3370689886291935
kurtosis 2.9796806124014905

mean 6.8012831434914185
median 6.804140923084792
mode [6.87083625 7.1647961 7.801919]
std 0.5186757341791384
skewness 0.09558239389779825
kurtosis 0.8888831389351228

mean 4.32486363815217
median 4.330733340286331
mode [4.38202663]
std 0.20017245106974269
skewness -0.10031748056408972
kurtosis -0.07175754627325759

mean 5.125901618739775
median 5.123963979403259
mode [5.09986643]
std 0.04985390909357499
skewness 0.1643306665116516
kurtosis -0.1850469475973595

Ttest_1sampResult(statistic=-15.262077060148469, pvalue=8.565056071191949e-50)
Ttest_1sampResult(statistic=-145.99305571029743, pvalue=0.0)

Ttest_indResult(statistic=4.866517399106725, pvalue=1.2261113675186157e-06) Ttest_indResult(statistic=4.842274212068753, pvalue=1.3950954655164872e-06)

LeveneResult(statistic=0.06985812305064411, pvalue=0.7915711118681439)

inc_6 Ttest_indResult(statistic=0.5300294937207857, pvalue=0.5963494617937921) Ttest_indResult(statistic=0.5313065424467125, pvalue=0.5954714837844448) LeveneResult(statistic=0.2809312642139124, pvalue=0.5963494617937921)

exp_6
Ttest_indResult(statistic=0.6514030508470554, pvalue=0.5151144835274278)
Ttest_indResult(statistic=0.653017963720647, pvalue=0.5140825093913611)
LeveneResult(statistic=1.2402812426644139, pvalue=0.26600353900125434)

Power_divergenceResult(statistic=43.99127026273706, pvalue=6.44261894933452e-09)

-

Power_divergenceResult(statistic=159.98572731382302, pvalue=3.2300260433465685e-31)

-

(229.90213277680573, 6.2616071037989236e-52, 1, array([[670.14899329, 215.85100671],

[456.85100671, 147.14899329]]))

LeveneResult(statistic=3.099958169054358, pvalue=0.04534693854530934)
F_onewayResult(statistic=52.32411222110441, pvalue=1.1255287459711753e-22)
KruskalResult(statistic=152.40859724222173, pvalue=8.033293077261647e-34)

LeveneResult(statistic=12.82407341807755, pvalue=2.953438885691872e-14)
F_onewayResult(statistic=7.891051890311205, pvalue=2.0208025016642814e-08)
KruskalResult(statistic=23.817905901387288, pvalue=0.0005641022956407008)

LeveneResult(statistic=1.2399729578033607, pvalue=0.28779263975345054)
F_onewayResult(statistic=1.5087764803933286, pvalue=0.18386734203321184)
KruskalResult(statistic=10.109658058867403, pvalue=0.07218709449772381)

	inc_6	cashinc	InKind	Privlg	totalinc	exp_6	totalexp
inc_6	1.000000	0.191813	0.157950	0.166847	0.214077	0.172870	0.223615
cashinc	0.191813	1.000000	0.038320	0.074791	0.993071	0.337626	0.939652
InKind	0.157950	0.038320	1.000000	0.035987	0.143264	0.062995	0.040092
Privlg	0.166847	0.074791	0.035987	1.000000	0.129783	0.072478	0.079945
totalinc	0.214077	0.993071	0.143264	0.129783	1.000000	0.342947	0.934071
exp_6	0.172870	0.337626	0.062995	0.072478	0.342947	1.000000	0.379241
totalexp	0.223615	0.939652	0.040092	0.079945	0.934071	0.379241	1.000000

	inc_6	cashinc	InKind	Privlg	totalinc	exp_6	totalexp
inc_6	1.000000	0.259942	-0.011367	0.438367	0.280644	0.143984	0.271221
cashinc	0.259942	1.000000	-0.017465	0.172118	0.986343	0.407829	0.900762
InKind	-0.011367	-0.017465	1.000000	-0.057972	0.134825	0.062419	-0.021148
Privlg	0.438367	0.172118	-0.057972	1.000000	0.223619	0.131439	0.169346

<pre>totalinc exp_6 totalexp</pre>	0.280644 0.143984 0.271221	0.986343 0.407829 0.900762	0.134825 0.062419 -0.021148	0.223619 0.131439 0.169346	1.000000 0.417021 0.888538	0.417021 1.000000 0.389518	0.888538 0.389518 1.000000
cocarexp	0.2/1221	0.900102	-0.021140	0.103540	0.000000	0.303310	1.000000
	inc_6	cashinc	InKind	Privlg	totalinc	exp_6	totalexp
inc_6	1.000000	0.074005	0.004341	0.018588	0.074103	-0.039339	0.041574
cashinc	0.074005	1.000000	0.038876	0.010336	0.991932	0.333700	0.963748
${\tt InKind}$	0.004341	0.038876	1.000000	0.222631	0.161955	0.027083	0.032383
Privlg	0.018588	0.010336	0.222631	1.000000	0.065666	0.151763	-0.010247
totalinc	0.074103	0.991932	0.161955	0.065666	1.000000	0.337021	0.954783
exp_6	-0.039339	0.333700	0.027083	0.151763	0.337021	1.000000	0.351460
${\tt totalexp}$	0.041574	0.963748	0.032383	-0.010247	0.954783	0.351460	1.000000

totalinc and total exp without cashinc 0.02312050103037548 totalinc and cashinc without total exp 0.9443277715773899 total exp and cashinc without totalinc 0.2872354141110042

exp_6:

OLS Regression Results

Dep. Variable:			exp_6 R-squared:				0.033		
Model:		OLS		OLS	Adj.	R-squared:		0.030	
Method:		Least Squares		ares	F-st	atistic:		11.72	
Date:		Sun, 27	Dec 2	2020	<pre>Prob (F-statistic):</pre>		:	1.49e-07	
Time:			20:26:01		Log-	Likelihood:		-5542.7	
No. Observati	ons:			1040	AIC:			1.109e+04	
Df Residuals:				1036	BIC:			1.111e+04	
Df Model:				3					
Covariance Ty	pe:	1	nonrol	bust					
========							=======		
	coei	std	err		t	P> t	[0.025	0.975]	
const	81.7179) 2	. 267	36	.049	0.000	77.270	86.166	
inc_6	0.1060	0	.021	5	.059	0.000	0.065	0.147	
InKind	0.0056	0	.024	0	. 232	0.817	-0.042	0.053	
Privlg	0.1206	0	.061	1	. 987	0.047	0.001	0.240	
Omnibus:			650	. 334	Durb	======== in-Watson:		1.913	
Prob(Omnibus):			0	.000	Jarque-Bera (JB):			7685.147	
Skew:			2	.718	Prob	(JB):		0.00	
Kurtosis:			15	. 158	Cond	. No.		141.	
=========	=======	:======	====:	=====	====	==========	========	========	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

totalexp:

OLS Regression Results

========				=====			=======	
Dep. Variable:		to	otalexp	R-sq	uared:		0.129	
Model:		OLS		Adj.	Adj. R-squared:		0.126	
Method:		Least S	Least Squares		atistic:		38.40	
Date:		Sun, 27 De	Sun, 27 Dec 2020		Prob (F-statistic):		5.41e-30	
Time:					Likelihood:		-8186.1	
No. Observat	tions:		1040	AIC:			1.638e+04	
Df Residuals	S:		1035	BIC:			1.641e+04	
Df Model:			4					
Covariance 5	Tvpe:	noi	robust					
=========	=======:			=====	========		========	
	coe	f std e	rr	t	P> t	[0.025	0.975]	
					0.000			
inc_6	1.238	1 0.2	70	4.593	0.000	0.709	1.767	
InKind	-0.727	3 0.30)9 -	2.357	0.019	-1.333	-0.122	
Privlg	1.729	3 0.7	73	2.238	0.025	0.213	3.246	
exp_6	3.900	6 0.39	95	9.880	0.000	3.126	4.675	
Omnibus:	======	:=======: ?	======= 912.580	===== Durb	======== in-Watson:		2.011	
Prob(Omnibus	s):		0.000	Jarg	ue-Bera (JB):		36575.538	
Skew:			3.862		Prob(JB):		0.00	
Kurtosis:			31.007		. No.		273.	
========	=======		======	=====			========	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	Source	SS	DF	MS	F	\
0	cat_age	1.117669e+07	4.0	2.794172e+06	12.294292	
1	sex	1.612329e+06	1.0	1.612329e+06	7.094209	
2	Educat	2.109862e+07	7.0	3.014089e+06	13.261921	
3	cat_age * sex	2.276488e+06	4.0	5.691221e+05	2.504124	
4	cat_age * Educat	1.219562e+07	28.0	4.355580e+05	1.916445	
5	sex * Educat	1.245204e+06	7.0	1.778863e+05	0.782696	
6	<pre>cat_age * sex * Educat</pre>	3.765653e+06	28.0	1.344876e+05	0.591742	
7	Residual	2.254557e+08	992.0	2.272739e+05	NaN	

```
np2
          p-unc
0 9.235143e-10
                 0.047232
  7.858666e-03
                 0.007101
1
2
   2.018230e-16
                 0.085574
   4.082883e-02
3
                 0.009996
   2.984190e-03
                 0.051317
4
5
   6.018932e-01
                 0.005493
6
   9.552497e-01
                 0.016428
7
            NaN
                      NaN
                                             DF
                                                            MS
                   Source
                                      SS
                                            4.0 -1.970467e-06 -8.670012e-12
0
                  cat_age -7.881870e-06
1
                           2.256873e-08
                                            1.0
                                                 2.256873e-08
                                                                9.930188e-14
                      sex
2
                                            7.0
                   Educat
                           1.202096e+09
                                                 1.717281e+08
                                                               7.555995e+02
3
                                            4.0
            cat_age * sex 7.071979e-08
                                                 1.767995e-08
                                                               7.779137e-14
4
         cat_age * Educat
                           3.027316e+07
                                           28.0
                                                 1.081184e+06
                                                                4.757187e+00
5
             sex * Educat
                           5.007504e+06
                                            7.0
                                                 7.153577e+05
                                                               3.147558e+00
6
   cat_age * sex * Educat
                           5.568907e+06
                                           28.0
                                                 1.988895e+05
                                                               8.751094e-01
7
                                          992.0 2.272739e+05
                 Residual
                           2.254557e+08
                                                                         NaN
           p-unc
                           np2
    1.000000e+00 -3.495973e-14
0
                 1.001027e-16
1
    9.999997e-01
2
   2.801742e-299 8.420683e-01
3
    1.000000e+00 3.136749e-16
4
    2.772006e-10 1.183799e-01
5
    1.385415e-02 2.172800e-02
                  2.410525e-02
6
    6.246594e-01
7
             NaN
                            NaN
                                             DF
                                                            MS
                   Source
                                                                         F
0
                  cat_age 1.460496e+06
                                            4.0
                                                 3.651240e+05
                                                                  1.606537
1
                       sex 3.723947e+05
                                            1.0
                                                 3.723947e+05
                                                                  1.638528
2
                   Educat 3.811696e+08
                                            7.0
                                                 5.445280e+07
                                                                239.591090
3
                                            4.0
            cat_age * sex 1.045254e+06
                                                 2.613135e+05
                                                                  1.149774
4
         cat_age * Educat
                           2.223961e+07
                                                 7.942718e+05
                                                                  3.494778
                                           28.0
5
             sex * Educat 5.837126e+05
                                            7.0
                                                 8.338752e+04
                                                                  0.366903
6
   cat_age * sex * Educat
                           5.568907e+06
                                           28.0
                                                 1.988895e+05
                                                                  0.875109
7
                 Residual
                           2.254557e+08
                                          992.0 2.272739e+05
                                                                       NaN
           p-unc
                       np2
    1.704283e-01
0
                 0.006436
    2.008268e-01
                 0.001649
1
2
   4.866696e-189
                  0.628344
3
    3.316519e-01
                  0.004615
4
    2.034673e-07
                  0.089786
5
    9.000727e-01
                  0.002582
6
    6.246594e-01
                  0.024105
7
             NaN
                       NaN
```