

S Nagasundari

Department of Computer Science and Engineering

Unit – 5 Link Layer and LAN Roadmap

- Introduction
- Error detection, correction
- Multiple access protocols
- LANs
 - Addressing, ARP
 - Ethernet
 - Switches
- A day in the life of a web request

- Physical layer
 - Purpose, Signals to Packets
 - Analog Vs Digital Signals
 - Transmission Media
- Wireless LANs: IEEE 802.11

Class 54: Physical layer: Learning Objectives

- Analog Vs Digital Signals
- Transmission Media

Signal

Signal

- function that conveys information
- electromagnetic or electrical current that carries data from one system or network to another.
- Signal may be Analog or Digital

Analog Communication System

- Any information may be conveyed by an analog signal;
- measured response to changes in a physical variable, such as sound, light, temperature, position, or pressure.
- physical variable is converted to an analog signal by a transducer

Analog Vs Digital Signals

- If data is to be transmitted, then it must be transformed to electromagnetic signals.
 - Analog signals infinite number of values in a range;
 - Digital signals can have only a limited number of values.
- Data can be analog or digital.
 - Analog data information that is continuous;
 - Analog data example: voice temperature captured by analog sensor
 - Digital data information that has discrete states.

Digital signal

A digital signal

- is a sequence of voltage pulses that may be transmitted over a copper wire medium;
- for example, a constant positive voltage level may represent binary 0 and
- a constant negative voltage level may represent binary 1.

Analog and Digital signaling

The principal advantages of digital signaling

- generally cheaper
- less susceptible to noise interference.

The principal disadvantage is that digital signals

suffer more from attenuation than do analog signals.

Analog and Digital Data

Analog data

take on continuous values in some interval.

Example:

voice and video are continuously varying patterns of intensity, Most data collected by sensors, such as temperature and pressure

Digital data take on discrete values

Examples: text and integers.

Analog and Digital Data

- Data is defined as entities that convey meaning, or information.
- Signals are electric or electromagnetic representations of data.
- Transmission is the communication of data by the propagation and processing of signals.

Transmission Media

- Transmission medium-the physical path between transmitter and receiver.
- Repeaters or amplifiers may be used to extend the length of the medium.
- Communication of electromagnetic waves is guided or unguided.
 - Guided media: waves are guided along a physical path (e.g, twisted pair, coaxial cable and optical fiber).
 - Unguided media: means for transmitting but not guiding electromagnetic waves (e.g., the atmosphere and outer space).

Types of Physical Transmission Media

- Twisted pair
- Coaxial cable
- Optical fiber
- Wireless communications

Types of Physical Transmission Media

Specification	Media	Maximum Segment Length	Connector
10BASE-T	CAT 3,4 or 5 UTP (4 pair)	100m	RJ-45
100BASE-TX	CAT 5 UTP (2 pair)	100m	RJ-45
100BASE-FX	62.5/125 multimode fiber	2km	
1000BASE-CX	STP	25m	RJ-45
1000BASE-T	CAT 5 UTP (4 pair)	100m	RJ-45
1000BASE-SX	62.5/50 multimode fiber	62.5 – 275m 50 – 550m	
1000BASE-LX	62.5/50 multimode 9-micron single-mode fiber	62.5/50 – 550m 9 –10 km	
1000BASE-ZX	9-micron single-mode fiber	70km	
10GBASE-ZR	9-micron single-mode fiber	80km	

Copper Media

Copper Media

- The colored pairs identify the wires for proper connection at the terminals.
- There are several categories of UTP cable. Each category indicates a level of bandwidth performance as defined by the IEEE.
- Category 3 (Cat 3) to Category 5 (Cat 5), 100-megabit transmissions.
- In 1999, Cat 5e, full-duplex Fast Ethernet gigabit
- In 2002, Category 6 (Cat 6). Allow higher performance and less crosstalk.

Copper Media

Optical fiber

(b) Reflection in optical fiber

Optical fiber

(a) Multimode fiber: multiple rays follow different paths

(b) Single mode: only direct path propagates in fiber

Optical fiber

Three techniques

- 1. Multimode step-index
 - light propagates in the shape of a zigzag along the fiber/core axis according to the principle of total reflection.
 - Light entering the fiber at different angles of incidence will go through different paths.
 - Distance: few kms
- 2. Multimode graded-index
 - light travels forward in the form of sinusoidal oscillation.
 - Like step-index multimode fibers, different lights in a gradedindex multimode fiber travel along different paths
 - Distance: 10-12 kms
 - Better performance

Optical fiber

- 3. Single-mode step-index
 - propagation of only one traverse electromagnetic mode
 - core diameter must be of the order of 2 μm to 10μm.
 - high information carrying capacity.
- Presence of multiple paths → differences in delay → optical rays interfere with each other.
- A narrow core can create a single direct path which yields higher speeds.
- WDM (Wavelength Division Multiplexing) yields more available capacity.

Electromagnetic Spectrum

THANK YOU

S Nagasundari

Department of Computer Science and Engineering

nagasundaris@pes.edu