Modale logica en identiteit

Maria Aloni
ILLC-University of Amsterdam
M.D.Aloni@uva.nl

Logica en de Linguistic Turn 2012

11/12/12

Plan voor vandaag

- 1. Modale logica: afronding
- 2. Predikatenlogica met identiteit: vertalingen

Huiswerk:

- Proeftentamen
- ▶ Wiki: stemmen voor het beste lemma via email naar mij deadline vanavond 22 uur (graag "wiki" noemen in mail header)

Definitie van de taal van modale logica

Zij P een verzameling propositieletters.

- 1. Een propositieletter $p \in P$ is een formule van ML;
- 2. als ϕ en ψ formules van ML zijn, dan zijn $\neg \phi$, $\neg \psi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ dat ook;
- 3. als ϕ een formule van ML is dan zijn $\Diamond \phi$ en $\Box \phi$ dat ook;
- niets is een formule van ML als het niet gegenereerd is door de bovenstaande regels.

Kripke modellen voor modale logica

Een Kripke-model K is een viertal $\langle W, R, V, w \rangle$ waarbij:

- 1. W is een verzameling objecten [de mogelijke werelden]
- 2. R is een binaire relatie over W [de modale basis] geeft aan welke wereld v een mogelijkheid is in w
- 3. V is een valuatiefunctie zodanig dat voor elke wereld w, V_w de waarde bepaalt van alle propositieletters in w
 - $V_w(p) = 1$ lezen we dan als 'p is waar in w'
 - $V_w(p) = 0$ lezen we dan als 'p is onwaar in w'

[wereld afhankelijk valuatie]

4. w is een van de elementen van W [de actuele wereld]

Semantiek van de modale propositielogica

- 1. $\langle W, R, V, w \rangle \models p \text{ desda } V_w(p) = 1;$
- 2. $\langle W, R, V, w \rangle \models \neg \phi \text{ desda } \langle W, R, V, w \rangle \not\models \phi$;
- 3. . . .
- 4. $\langle W, R, V, w \rangle \models \Diamond \phi$ desda er is een $v \in W$ zodanig dat Rwv en $\langle W, R, V, v \rangle \models \phi$;
- 5. $\langle W, R, V, w \rangle \models \Box \phi$ desda voor elke $v \in W$ zodanig dat Rwv geldt $\langle W, R, V, v \rangle \models \phi$.

Kripke modellen, modellen en frames

- ▶ Kripke model \mapsto K = (W, R, V, w)
- ▶ Model \mapsto M = (W, R, V)
- ▶ Frame \mapsto F= (W, R)

Geldigheid in een model

Een formule ϕ is geldig in een model $\mathcal{M} = \langle W, R, V \rangle$, $\mathcal{M} \models \phi$, desda $\langle W, R, V, w \rangle \models \phi$ voor alle werelden $w \in W$.

Voorbeeld: $\mathcal{M} \models \Diamond p$, maar $\mathcal{M} \not\models \Box p$, voor \mathcal{M} als in (1):

- (1) $\mathcal{M} = \langle W, R, V \rangle$, voor $L = \{p\}$
 - a. $W = \{w_1, w_2\},\$
 - b. $R = \{\langle w_1, w_1 \rangle, \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle\},$
 - c. $V_{w_1}(p) = 1$ en $V_{w_2}(p) = 0$

Geldigheid op een frame

- ▶ Een structuur $\mathcal{F} = \langle W, R \rangle$ noemen wij een *frame*.
- ▶ Een formule ϕ is geldig op een frame $\mathcal{F} = \langle W, R \rangle$, $\mathcal{F} \models \phi$, desda voor alle valuaties V geldt dat $\mathcal{M} = \langle W, R, V \rangle \models \phi$.
- ▶ Voorbeeld: $\mathcal{F} \models \Box p \rightarrow \Diamond p$, maar $\mathcal{F} \not\models \Box p \rightarrow p$, voor \mathcal{F} als in (2):

$$\begin{array}{ll} \text{(2)} & \mathcal{F} = \langle W, R \rangle \\ & \text{a.} & W = \{w_1, w_2\}, \\ & \text{b.} & R = \{\langle w_1, w_1 \rangle, \langle w_2, w_1 \rangle\} \end{array}$$

Vandaag

Definitie Een formule ϕ karakteriseert een verzameling G van frames als voor alle frames F geldt $F \models \phi$ dan en slechts dan als $\mathcal{F} \in G$ i.e., ϕ is geldig alleen op frames F die element zijn van G.

Stellingen

- (3) $\Box p \rightarrow p$ karakteriseert reflexieve frames
 - a. $\Box p \rightarrow p$ is geldig op alle reflexieve frames
 - b. $\Box p \rightarrow p$ is ongeldig op alle niet-reflexieve frames
- (4) $\Diamond \Diamond p \rightarrow \Diamond p$ karakteriseert transitieve frames
 - a. $\Diamond \Diamond p \rightarrow \Diamond p$ is geldig op alle transitieve frames
 - b. $\Diamond\Diamond p \to \Diamond p$ is ongeldig op alle niet-transitieve frames
- (5) $p \rightarrow \Box \Diamond p$ karakteriseert symmetrische frames
 - a. $p \rightarrow \Box \Diamond p$ is geldig op alle symmetrische frames
 - b. $p \to \Box \Diamond p$ is ongeldig op alle niet-symmetrische frames

Opgave

Voor $P = \{p, q\}$, beschouw het Kripke model $K = \{W, R, V, w\}$

- $V = \{w, w_1, w_2, w_3\}$
- $V_w(p) = 1, V_{w_1}(p) = 1, V_{w_2}(p) = 0, V_{w_3}(p) = 0,$ $V_w(q) = 1, V_{w_1}(q) = 0, V_{w_2}(q) = 1, V_{w_3}(q) = 0.$

Teken dit model, en ga nu na of de volgende formules waar zijn in K. Licht dan uw antwoord kort toe:

- (6) a. $\Box p \lor \Diamond q$ b. $\Box \Diamond p \land \Diamond \Box q$ c. $\Diamond p \rightarrow \Box q$
 - d. $\Diamond(p \leftrightarrow \Box p)$

Opgave

Voor $P = \{p, q\}$, beschouw het model $M = \{W, R, V\}$ met

- $V = \{w_1, w_2, w_3\}$
- $V_{w_1}(p) = 1, V_{w_2}(p) = 0, V_{w_3}(p) = 0,$ $V_{w_1}(q) = 0, V_{w_2}(q) = 1, V_{w_3}(q) = 0.$

Laat zien dat de volgende formules niet geldig zijn in \mathcal{M} :

(7) a.
$$\neg p \rightarrow \Box q$$
 b. $p \lor \diamondsuit \Box q$

Onthoud: Om te laten zien dat een formule ϕ *niet geldig is in een model* $\mathcal{M} = \langle W, R, V \rangle$ moet een wereld $w \in W$ worden gegeven waarvoor de formule onwaar is, *i.e.*, $\langle W, R, V, w \rangle \not\models \phi$.

Opgave

Beschouw de frame $F = \{W, R\}$ met

- $V = \{w_1, w_2, w_3\}$

Laat zien dat de volgende formules niet geldig zijn op \mathcal{F} :

(8) a.
$$\Diamond \Diamond p \rightarrow \Diamond p$$

b. $p \rightarrow \Box \Diamond p$

Onthoud: Om te laten zien dat een formule ϕ *niet geldig is op een frame* $\mathcal{F} = \langle W, R \rangle$ moet een valuatie V en een wereld $w \in W$ worden gegeven waarvoor de formule onwaar is, *i.e.*,

$$\langle W, R, V, w \rangle \not\models \phi.$$

Vertalingen van NL naar PredL, en andersom

Van NL naar PredL:

- (9) Er zijn ten misten twee vragen die alleen Maria heeft beantwoord.
- (10) Er zijn hooguit twee vragen die iedereen heeft beantwoord.

Van PredL naar NL:

- $(11) \qquad \exists x \forall y (Sy \leftrightarrow x = y)$
- $(12) \qquad \exists x \exists y (x \neq y \land \forall z (Sz \leftrightarrow (z = x \lor z = y)))$
- (13) $\forall x \forall y \forall z \forall w ((Px \land Py \land Pz \land Pz) \rightarrow (x = y \lor x = z \lor x = w \lor y = z \lor y = w \lor z = w))$
- $(14) \qquad \neg \exists x \exists y (Rxy \land \forall z (Rxz \rightarrow z = y))$