Analyse

Séries Numériques

Question 1/6

Comparaison par dominance

Réponse 1/6

$$u_n = O(v_n)$$

Si $\sum v_n$ converge alors $\sum u_n$ converge Si $\sum u_n$ ou $\sum |u_n|$ diverge alors $\sum v_n$ diverge

Question 2/6

Théorème de comparaison des séries à termes positifs

Réponse 2/6

$$\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ 0 \leqslant u_n \leqslant v_n$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ diverge alors $\sum v_n$ diverge

Question 3/6

Encadrement des sommes par les intégrales f est continue et décroissante sur $[n_0, +\infty[$ avec $n_0 \in \mathbb{Z}$

Réponse 3/6

$$\int_{n_0+1}^{n+1} (f(t)) dt$$

$$\leq \sum_{k=n_0+1}^{n} (f(k)) \leq$$

$$\int_{n_0}^{n} (f(t)) dt$$

Question 4/6

Semi-convergence

Réponse 4/6

Convergence sanc convergence absolue

Question 5/6

Convergence absolue

Réponse 5/6

$$\sum u_n$$
 converge absolument si $\sum |u_n|$ converge
Si $\sum |u_n|$ converge alors $\sum u_n$ converge

Question 6/6

$$\sum u_n$$
 diverge grossièrement

Réponse 6/6

 u_n ne tend pas vers 0