On the Communication Complexity for SK Generation in the Multiterminal Source Model

Manuj Mukherjee, Navin Kashyap

INDIAN INSTITUTE OF SCIENCES

Indian Institute of Science, Bangalore, India

The Multiterminal Source Model

- A set of terminals $\mathcal{M} = \{1, 2, \dots, m\}$, with each terminal possessing a component of a Discrete Memoryless Multiple Source, X_i^n , $\forall 1 \leq i \leq m$.
- ► The terminals are allowed to communicate 'interactively'.
- ▶ $\mathbf{F} = \{F_1, F_2, \dots, F_r\}$ is the interactive communication taking values in \mathcal{F} . Here F_j sent by some terminal i is a function of X_i^n and all the previous communication.
- ightharpoonup Rate of the interactive communication is $\frac{1}{n} \log |\mathcal{F}|$.
- ▶ The terminals compute a secret key (SK) $K = K(X_M^n)$ with the aid of F.
- The secret key K satisfies the following property: for any $\epsilon > 0$ and for all sufficiently large n,
 - $\triangleright \exists$ some function $g_i^{(n)}(X_i^n, \mathbf{F})$ such that
 - $\mathcal{P}(\mathsf{K} \neq g_i^{(n)}(X_i^n, \mathsf{F})) \leq \epsilon, \forall 1 \leq i \leq m. \ (Recoverability)$
 - $\triangleright I(K; F) \leq \epsilon$. (Strong secrecy)
- $\triangleright \log |\mathcal{K}| \mathcal{H}(K) \le \epsilon$, where \mathcal{K} is the range of K. (Uniformity)
- ▶ If $\frac{1}{n}H(K) \to R$ as $n \to \infty$, then **R** is called an achievable secret key rate.
- ► SK capacity $I(X_M) = \sup R$.

Achieving SK Capacity

- ▶ Use a Slepian-Wolf code to recover $X_{\mathcal{M}}^n$ at all terminals.
- ► Such a code is called a communication for omniscience.
- ► The achievable rate region:

$$\mathcal{R}_{CO} = \{ (R_1, R_2, ..., R_m) : R_i \geq 0, \forall 1 \leq i \leq m,$$

$$\sum_{i \in B} R_i \geq H(X_B | X_{B^c}), \forall B \subset \mathcal{M}, B \neq \emptyset \}$$

▶ Use a balanced coloring function on $X_{\mathcal{M}}^n$ to get **K**.

Evaluating SK Capacity

► $I(X_{\mathcal{M}}) = H(X_{\mathcal{M}}) - R_{CO}$, where $R_{CO} = \min_{(R_1, R_2, ..., R_m) \in \mathcal{R}_{CO}} \sum_{i=1}^m R_i$ is the minimum rate of communication for omniscience.

[Csiszár & Narayan, '04] $\mathbf{I}(X_{\mathcal{M}}) = \min_{\mathcal{P}} \Delta(\mathcal{P}),$ where $\Delta(\mathcal{P}) = \frac{1}{\ell-1} [H(X_{A_1}) + H(X_{A_2}) + \cdots + H(X_{A_\ell}) - H(X_{\mathcal{M}})]$ for any partition $\mathcal{P} = \{A_1, A_2, \dots, A_\ell\}$ of \mathcal{M} with $\ell \geq 2$.

We denote by \mathcal{P}^* the finest optimal partition and call it the fundamental partition.

[Chan & Zheng, '10]

Communication Complexity

- $ightharpoonup R_{SK}$ = Communication complexity, is the minimum rate of communication required to achieve SK capacity.
- $ightharpoonup R_{SK} \leq R_{CO}$. [Csiszár & Narayan, 2004]
- ▶ If $R_{SK} = R_{CO}$, we call the source R_{SK} -maximal. These are thus the worst-case sources in terms of communication rates.

Lower Bound on Communication Complexity

- ▶ Result: $R_{SK} \ge Cl(X_{\mathcal{M}}) l(X_{\mathcal{M}})$. [Mukherjee & Kashyap, '16] ▷ $Cl(X_{\mathcal{M}})$ is the minimum rate of interactive common information.
- ▶ Fact: $H(X_M) \ge CI(X_M) \ge I(X_M)$ and hence the lower bound is non-negative.

What is Interactive Common Information?

- ▶ $J = J(X_M^n)$ is a common randomness if J is recoverable at all terminals using some interactive communication F.
- ▶ (J, F) is an interactive common information (CI) if (J, F) is a Wyner common information for $X_{\mathcal{M}}^n$.
- $ightharpoonup \operatorname{Cl}(X_{\mathcal{M}}) = \min_{(\mathsf{J},\mathsf{F}) \text{ is Cl}} \lim_{n \to \infty} \frac{1}{n} H(\mathsf{J},\mathsf{F}).$

What is Wyner Common Information?

▶ L = L($X_{\mathcal{M}}^n$) is a Wyner common information for $X_{\mathcal{M}}^n$ if $\lim_{n\to\infty}\frac{1}{n}\mathrm{I}(X_{\mathcal{M}}^n|\mathrm{L})=0$ where

$$\mathsf{I}(\mathsf{X}^n_{\mathcal{M}}|\mathsf{L}) riangleq rac{1}{|\mathcal{P}^*|-1} igg[\sum_{\mathsf{A} \in \mathcal{P}^*} \mathsf{H}(\mathsf{X}^n_\mathsf{A}|\mathsf{L}) - \mathsf{H}(\mathsf{X}^n_{\mathcal{M}}|\mathsf{L}) igg].$$

▶ Remark: $I(X_{\mathcal{M}}^n|\mathbf{L}) = \mathbf{0}$ implies conditional independence of $(X_A^n)_{A \in \mathcal{P}^*}$ given \mathbf{L} .

Evaluating $CI(X_M)$: The Hypergraphical Source

- ightharpoonup Consider a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$.
- $\triangleright \mathcal{V} = \mathcal{M}$.
- Associate with each hyperedge $e \in \mathcal{E}$ an i.i.d. sequence of n Bernoulli (1/2) random variables ξ_e^n .
- ightharpoonup Random variables associated with distinct hyperedges in ${\mathcal E}$ are independent.
- ▶ Define a multiterminal source as follows: $X_i^n = (\xi_e^n : e \in \mathcal{E} \text{ such that } i \in e).$
- The multiterminal source $X_{\mathcal{M}}^n$ is known as the hypergraphical source.
- ▶ Result: For a hypergraphical source $Cl(X_{\mathcal{M}}) = |\mathcal{E}_{\mathcal{P}^*}|$, where $\mathcal{E}_{\mathcal{P}^*}$ is the set of hyperedges intersecting with at least two parts of \mathcal{P}^* .

The Lower Bound is Loose

- ► Consider the following binary hypergraphical model.
- $\triangleright m = 4 \text{ and } \mathcal{E} = \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}.$
- $\triangleright \mathcal{P}^* = \{\{1, 2, 3\}, \{4\}\} \text{ and } \mathsf{I}(X_{\mathcal{M}}) = 1.$
- ► Therefore, $CI(X_M) = 1$ and hence, $CI(X_M) I(X_M) = 0$.
- ► However, $R_{SK} > 0$ as (X_1, X_2) is independent of X_4 .

Results on R_{SK}-maximality

- ▶ **Result**: A multiterminal source $X_{\mathcal{M}}$ with fundamental partition \mathcal{P}^* is R_{SK} -maximal if for all $A \in \mathcal{P}^*$ we have $H(X_A|X_{A^c}) = 0$.
- ▶ Result: A hypergraphical source $\mathcal{H} = (\mathcal{M}, \mathcal{E})$ is R_{SK} -maximal iff $\mathcal{E} = \mathcal{E}_{\mathcal{P}^*}$.

Examples of R_{SK} -maximal Sources

- ▶ Hypergraphical source defined on the complete t-uniform hypergraph $K_{m,t}$: $\mathcal{V} = \mathcal{M}$.
 - ${\mathcal E}$ is the set of all t-subsets of ${\mathcal M}$.
- ► Hypergraphical source defined on Harary graphs: These are *k*-regular, *k*-edge-connected graphs (i.e., all hyperedges are of size 2).
- Hypergraphical source defined on Steiner Triple Systems: V = M.

 \mathcal{E} consists of **3**-subsets of \mathcal{M} such that every $\{i,j\}$, $i,j \in \mathcal{M}, i \neq j$, is a subset of exactly one $e \in \mathcal{E}$.