Introduction to Large Language Models

CSS 100

Sean Trott

Spring 2024

Language models: the basics

A <u>language model</u> assigns a <u>probability</u> to a word or sequences of words, typically in some <u>context</u> and <u>order</u>.

• An *N*-gram language model bases these probabilities on the number of times a given word *w* has been observed in a context of size *N*.

Please turn your homework ____.

$$P("in"|homework) = \frac{C("homework in")}{C("homework")}$$

Is an LLM supervised or unsupervised?

Language models: the basics

A <u>language model</u> assigns a <u>probability</u> to a word or sequences of words, typically in some <u>context</u> and <u>order</u>.

A <u>large language model (LLM)</u> is a neural network with many parameters trained on a word-prediction task—i.e., a language model using a neural network.

- "Large" = lots of parameters + training data.
- Given a context, a language model learns to fill in the blank.
- Like other <u>neural networks</u>, LLMs do this by <u>updating their weights</u>.

An LLM is **self-supervised**: uses structure of language as its own training signal.

Language models: the basics

A <u>language model</u> assigns a <u>probability</u> to a word or sequences of words, typically in some <u>context</u> and <u>order</u>.

A <u>large language model (LLM)</u> is a neural network with many parameters trained on a word-prediction task—i.e., a language model using a neural network.

- "Large" = lots of parameters + training data.
- Given a context, a language model learns to fill in the blank.
- Like other <u>neural networks</u>, LLMs do this by <u>updating their weights</u>.

A brief taxonomy

- Many approaches to language modeling.
- All revolve around statistical learning in some way.

A brief taxonomy

- Many approaches to language modeling.
- All revolve around statistical learning in some way.

How does CSS intersect with LLMs?

- LLMs are poised to impact society.
- LLMs are very impressive—but also <u>hard to interpret</u>.
- LLMs can also accelerate scientific research.

Each of these are related to CSS.

Lecture plan

- Review: <u>embeddings</u>.
- Common <u>architectures</u>:
 - Feedforward language model.
 - Recurrent neural network.
 - Transformer architecture.
- Next time: LLMs in Python!

Lecture plan

- Review: <u>embeddings</u>.
- Common <u>architectures</u>:
 - Feedforward language model.
 - Recurrent neural network.
 - Transformer architecture.
- Next time: LLMs in Python!

Introducing vector semantics

In <u>vector semantics</u>, a word is represented by a <u>vector</u>: an array of numbers that place the word in some N-dimensional space.

Words with similar meanings should be "nearby" in space.

Because vectors are *numbers*, they can also be manipulated and transformed.

But where do the vectors come from?

Word counts: a naïve approach

• Basic premise: we can represent words as <u>vectors</u> reflecting how they <u>distribute</u>.

A **co-occurrence matrix** is a way of representing how often words occur in different contexts.

Term-document matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry IV
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

How often does a given word occur in different Shakespeare plays (our "corpus")?

Introducing word embeddings

A word embedding is a <u>short</u>, <u>dense</u> vector, where "dense" means that most dimensions are non-zero.

- In NLP, dense vectors usually work better than sparse vectors.
 - Easier to fit a classifier to 300-D embeddings than 100000-D vectors.
- Dense vectors also seem to capture <u>synonymy</u> better.
 - Forcing vectors to represent words with fewer dimensions means that each dimension has more information.
- In 2013, the word2vec package was introduced for learning word embeddings.

Note: a key issue is often **context window size**—how many words to include in "context"?

Pt. 1: The word2vec classifier

Goal: we want to train a classifier to learn the probability that some context c is an actual context of word w.

$$P(+|w,c)$$

- Intuition: two words are likely to co-occur if they have **similar embeddings** (i.e., a high dot product).
- So given w and context word(s) c, the classifier should assign a probability based on the similarity of their embeddings.

That means we need to <u>learn</u> an embedding for each word in our vocabulary.

Pt. 2a: Learning—the intuition.

- First, gather training data: examples of (w, c) that do and don't co-occur.
- Then, initialize random embeddings for each word in vocabulary.
- Iteratively **update** embeddings so (+|w,c) are closer, and (-|w,c) are farther apart.

Technically, algorithm learns *two* embeddings for each word:

- W: represents word when it's the target.
- C: represents word when it's the context.

Pt. 2a: Learning—the intuition.

- First, gather training data: examples of (w, c) that do and don't co-occur.
- Then, initialize random embeddings for each word in vocabulary.
- Iteratively **update** embeddings so (+|w,c) are closer, and (-|w,c) are farther apart.

Continue this process until further improvements reach diminishing returns.

Once process is finished, **W** is our final matrix of dense embeddings for each word.

• Technically, word2vec uses a simple neural network.

Input uses one-hot encoding: a vector of length "V" (size of vocabulary), which is all 0s except for a single 1.

• Technically, word2vec uses a simple neural network.

Output contains neurons for each possible word in vocabulary—learn probability distribution over these words.

• Technically, word2vec uses a simple neural network.

Learn weights from each input vector onto hidden layer.

The value of these weights is adjusted according to accuracy of predictions.

- Technically, word2vec uses a simple neural network.
- Skip-gram: goal is to predict context from a word.
- Skip-gram with negative sampling (SGNS): turns skip-gram into a <u>binary classification</u> task.
- Learning is done using stochastic gradient descent (SGD).
 - Keep changing embeddings until loss (error) is minimized.

What do the dimensions of these embeddings "represent"?

- Technically, word2vec uses a simple neural network.
- Skip-gram: goal is to predict context from a word.
- Skip-gram with negative sampling (SGNS): turns skip-gram into a <u>binary classification</u> task.
- Learning is done using stochastic gradient descent (SGD).
 - Keep changing embeddings until loss (error) is minimized.

What do the dimensions of these embeddings "represent"?

They're not directly interpretable! They don't represent anything themselves.

What are embeddings good for?

- The word2vec algorithm is used to produce dense, static embeddings.
- We can use these embeddings for <u>many</u> different tasks.

Measuring word similarity

Finding word analogies

Lecture plan

- Review: <u>embeddings</u>.
- Common <u>architectures</u>:
 - Feedforward language model.
 - Recurrent neural network.
 - Transformer architecture.
- Next time: LLMs in Python!

A **feed-forward neural language model** uses a feed-forward neural network to assign probabilities to word w_t using representations of previous words.

A **feed-forward neural language model** uses a feed-forward neural network to assign probabilities to word w_t using representations of previous words.

How might we use the neural network architecture for the language modeling task?

A **feed-forward neural language model** uses a feed-forward neural network to assign probabilities to word w_t using representations of previous words.

- Neural network tries to predict w_t using context (previous words).
- neural network uses embeddings to represent those contextual words—rather than the words themselves.

How/why might using embedding representations help with the prediction task?

And thanks for all the ____

And thanks for all the ____

To simplify, let's assume "context" is just the previous three words.

What type of *N*-gram model would this be?

And thanks for all the ____

To simplify, let's assume "context" is just the previous three words.

Note: This is a **fixed context window**—we decide ahead of
time how many words we want
to include in the context.

And thanks for all the ____

Words in the context are represented using **one-hot encodings**.

And thanks for all the ____

Words in the context are represented using **one-hot encodings**.

one-hot vectors

The word "for" is the 35th word in our vocabulary (V).

And thanks for all the ____

Words in the context are represented using **one-hot encodings**.

one-hot vectors

The word "all" is the 992nd word in our vocabulary (V).

And thanks for all the ____

Words in the context are represented using **one-hot encodings**.

input layer one-hot vectors The word "the" is the 451st word in our vocabulary (V).

And thanks for all the ____

Words in the context are represented using **one-hot encodings**.

Each one-hot encoding is multiplied by an **embedding matrix** (**E**).

input layer one-hot vectors

And thanks for all the ____

Words in the context are represented using one-hot encodings.

Each one-hot encoding is multiplied by an embedding matrix (E).

vectors

embedding

And thanks for all the ____

Words in the context are represented using **one-hot encodings**.

Each one-hot encoding is multiplied by an **embedding matrix** (**E**).

Embeddings are combined, then multiplied by (learned) weights to obtain hidden layer activations.

And thanks for all the ____

Words in the context are represented using **one-hot encodings**.

Each one-hot encoding is multiplied by an **embedding matrix** (**E**).

Embeddings are combined, then multiplied by (learned) weights to obtain hidden layer activations.

Feed-forward NLMs

And thanks for all the ____

Words in the context are represented using **one-hot encodings**.

Each one-hot encoding is multiplied by an **embedding matrix** (**E**).

Embeddings are combined, then multiplied by (learned) weights to obtain hidden layer activations.

These hidden units are <u>learned</u>

<u>"representations"</u> of the immediate context that help with the prediction task.

vectors

Lots of work
trying to
interpret
what these
units learn...

Feed-forward NLMs

And thanks for all the ____

Words in the context are represented using **one-hot encodings**.

Each one-hot encoding is multiplied by an **embedding matrix** (**E**).

Embeddings are combined, then multiplied by (learned) weights to obtain hidden layer activations.

Then, multiply hidden layer by weight matrix **U**, and apply **softmax**, to obtain probability distribution over next word.

Feed-forward NLMs

And thanks for all the ____

All these weights are **learned**—i.e., update them to make better and better predictions.

But how does this actually work?

Training feed-forward NLMs

During training, the goal is to learn parameters ("weights") to make the predictions Y' as close as possible to actual values Y.

First, we define a loss function.

- Higher probability to true answer: lower loss
- Lower probability to true answer: higher loss

$$L_{CE}(\hat{\mathbf{y}},\mathbf{y}) = -\log \hat{\mathbf{y}}_c$$

When there's only a single "right answer", we can use the **negative log likelihood** assigned to the true answer.

Training feed-forward NLMs

During training, the goal is to learn parameters ("weights") to make the predictions Y' as close as possible to actual values Y.

First, we define a loss function.

$$L_{CE}(\hat{\mathbf{y}},\mathbf{y}) = -\log \hat{\mathbf{y}}_c$$

And thanks for all the fish

What probability did we assign to **fish**, the true completion?

Basic intuition: a "good" model should've assigned 100% probability to *fish*!

Training feed-forward NLMs

During training, the goal is to learn parameters ("weights") to make the predictions Y' as close as possible to actual values Y.

First, we define a loss function.

Update the **parameters** to minimize this loss.

$$L_{CE}(\hat{\mathbf{y}},\mathbf{y}) = -\log \hat{\mathbf{y}}_c$$

Because neural networks have <u>many</u> <u>parameters</u>, this requires using a technique called "<u>error back-</u> <u>propagation</u>" (or "backprop").

Lecture plan

- Review: <u>embeddings</u>.
- Common <u>architectures</u>:
 - Feedforward language model.
 - Recurrent neural network.
 - Transformer architecture.
- Next time: LLMs in Python!

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.

This

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.

class

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.

is

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.

about

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.

language

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.

models

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.

and

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.

cognitive

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.

science.

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.
- Yet the feed-forward models we've discussed use a fixed window to represent context.

Even though "for all the" unfolds over time, this model has <u>simultaneous access</u> to each word at the same time.

This isn't really how language works!

Also presents other challenges—how big should this window be?

- Language is a <u>temporal</u> phenomenon.
- When we process (hear, see, read) language, it <u>unfolds</u> bit-by-bit.
- Yet the feed-forward models we've discussed use a fixed window to represent context.
- Ideally, we could incorporate the <u>temporal</u> nature of language into the very <u>structure</u> of our neural network.
- This is what recurrent neural networks (RNNs) aim to do.
- "Recurrent" connections are a way to model the role of context without needing fixed-size windows.

Finding Structure in Time

JEFFREY L. ELMAN
University of California, San Diego

Jeff Elman

Recurrent neural networks

A **recurrent neural network (RNN)** is any network with a "cycle" in its connections, i.e., such that the value of some unit depends (directly or indirectly) on its *earlier activity*.

- The **Elman net** (1990) is one very influential implementation.
- In addition to feed-forward weights, the hidden layer contains recurrent connections (i.e., to itself).
- Sequences are presented one unit (e.g., word) at a time.
- This recurrent connection acts as a kind of "memory", connecting current state to previous states.
- No need for fixed context windows!

"Forward inference" refers to mapping an input (x) to a predicted output (y).

Output at time t

y_t

xt

Input at time t

"Forward inference" refers to mapping an input (x) to a predicted output (y).

Multiply input by weight matrix W.

- Multiply input by weight matrix W.
- Multiply *previous* hidden layer activation (h_{t-1}) by weight matrix **U**.

- Multiply input by weight matrix W.
- Multiply *previous* hidden layer activation (h_{t-1}) by weight matrix **U**.
- Add these together and pass through activation function.

- Multiply input by weight matrix W.
- Multiply *previous* hidden layer activation (h_{t-1}) by weight matrix **U**.
- Add these together and pass through activation function.
- Multiply h_t by weight matrix V.
- Apply softmax to obtain output probabilities.

What's <u>similar</u> to a feed-forward network? What's <u>different</u>?

Forward inference in RNNs

- Multiply input by weight matrix W.
- Multiply *previous* hidden layer activation (h_{t-1}) by weight matrix **U**.
- Add these together and pass through activation function.
- Multiply h_t by weight matrix V.
- Apply softmax to obtain output probabilities.

What's <u>similar</u> to a feed-forward network?
What's <u>different</u>?

Forward inference in RNNs

"Forward inference" refers to mapping an input (x) to a predicted output (y).

Like a feed-forward network, we multiply $\mathbf{x_t}$ and $\mathbf{h_t}$ by weight matrices (W and V) to obtain hidden and output activations.

What's <u>similar</u> to a feed-forward network? What's <u>different</u>?

Forward inference in RNNs

"Forward inference" refers to mapping an input (x) to a predicted output (y).

Like a feed-forward network, we multiply $\mathbf{x_t}$ and $\mathbf{h_t}$ by weight matrices (W and V) to obtain hidden and output activations.

Unlike a feed-forward network, we "remember" the <u>previous state's</u> activations (h_{t-1}) , and incorporate that into calculation of h_t .

We can also represent this <u>algorithmically</u> (e.g., in pseudo-code).

Forward inference in RNNs

"Forward inference" refers to mapping an input (x) to a predicted output (y).

Like a feed-forward network, we multiply $\mathbf{x_t}$ and $\mathbf{h_t}$ by weight matrices (W and V) to obtain hidden and output activations.

Unlike a feed-forward network, we "remember" the <u>previous state's</u> activations (h_{t-1}) , and incorporate that into calculation of h_t .

"Forward inference" refers to mapping an input (x) to a predicted output (y).

function FORWARDRNN(x, network) returns output sequence y

$$\mathbf{h}_0 \leftarrow 0$$

for $i \leftarrow 1$ to LENGTH(\mathbf{x}) do
 $\mathbf{h}_i \leftarrow g(\mathbf{U}\mathbf{h}_{i-1} + \mathbf{W}\mathbf{x}_i)$
 $\mathbf{y}_i \leftarrow f(\mathbf{V}\mathbf{h}_i)$
return y

"Forward inference" refers to mapping an input (x) to a predicted output (y).

function FORWARDRNN(x, network) returns output sequence y

for
$$i \leftarrow 1$$
 to LENGTH(x) do
$$\mathbf{h}_i \leftarrow g(\mathbf{U}\mathbf{h}_{i-1} + \mathbf{W}\mathbf{x}_i)$$

$$\mathbf{y}_i \leftarrow f(\mathbf{V}\mathbf{h}_i)$$
return y

Process input incrementally.

"Forward inference" refers to mapping an input (x) to a predicted output (y).

function FORWARDRNN(x, network) returns output sequence y

$$\mathbf{h}_0 \leftarrow 0$$

 $\mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ \mathbf{LENGTH}(\mathbf{x}) \ \mathbf{do}$
 $\mathbf{h}_i \leftarrow g(\mathbf{U}\mathbf{h}_{i-1} + \mathbf{W}\mathbf{x}_i)$
 $\mathbf{y}_i \leftarrow f(\mathbf{V}\mathbf{h}_i)$
return y

Current hidden state is a function of current **input** and **previous** hidden state.

It is also helpful to visualize this by "unrolling" the network across time.

Forward inference in RNNs

"Forward inference" refers to mapping an input (x) to a predicted output (y).

function FORWARDRNN(x, network) returns output sequence y

$$\mathbf{h}_0 \leftarrow 0$$

 $\mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ \mathsf{LENGTH}(\mathbf{x}) \ \mathbf{do}$
 $\mathbf{h}_i \leftarrow g(\mathbf{U}\mathbf{h}_{i-1} + \mathbf{W}\mathbf{x}_i)$
 $\mathbf{y}_i \leftarrow f(\mathbf{V}\mathbf{h}_i)$
 $\mathbf{return} \ y$

Current prediction is a function of current hidden state.

"Forward inference" refers to mapping an input (x) to a predicted output (y).

For each input token, we obtain a <u>predicted output</u>—and also a <u>hidden state</u>.

"Forward inference" refers to mapping an input (x) to a predicted output (y).

For each input token, we obtain a <u>predicted output</u>—and also a <u>hidden state</u>.

These <u>hidden states</u> are used to influence hidden states at the *next time step*.

"Forward inference" refers to mapping an input (x) to a predicted output (y).

For each input token, we obtain a <u>predicted output</u>—and also a <u>hidden state</u>.

These <u>hidden states</u> are used to influence hidden states at the *next time step*.

"Forward inference" refers to mapping an input (x) to a predicted output (y).

For each input token, we obtain a <u>predicted output</u>—and also a <u>hidden state</u>.

These <u>hidden states</u> are used to influence hidden states at the *next time step*.

Weight matrices stay the same—but $\mathbf{h_{t-1}}$ will change in <u>context</u>.

Note: applying backprop will require "unrolling" network, because updates should include the effect on *future predictions*.

Forward inference in RNNs

"Forward inference" refers to mapping an input (x) to a predicted output (y).

A conceptually elegant way to capture the **temporal** structure of language.

Also captures the effect of context—"context" is just the state of the system at time t.

RNNs as language models

 RNNs are naturally suited to modeling language—and avoid some issues of feedforward neural networks.

RNNs as language models

 RNNs are naturally suited to modeling language—and avoid some issues of feedforward neural networks.

- Doesn't require fixed context window.
- "Context" is captured by $\mathbf{h_{t-1}}$.

In both cases, "output" is <u>probability</u> <u>distribution</u> over upcoming word token.

RNNs as language models

- RNNs are naturally suited to modeling language—and avoid some issues of feedforward neural networks.
- Like other LMs, RNNs can be trained using self-supervision (language acts as its own training signal).

At each time step, we compute **loss**—the negative log probability assigned to the <u>correct word y</u>t

We also "force" input to be the <u>correct</u> sequence (ignoring model's previous predictions)—this is called **teacher forcing**.

A **generative language model** uses the probabilities assigned to upcoming tokens to actually generate novel sequences of text.

Intuitively, how might this work?

A **generative language model** uses the probabilities assigned to upcoming tokens to actually generate novel sequences of text.

 Start with an initial token/sequence.

<5>

P(w)

A **generative language model** uses the probabilities assigned to upcoming tokens to actually **generate** novel sequences of text.

- Start with an initial token/sequence.
- Run through RNN, obtain probabilities over next word.

The A She

UCSD

...

A **generative language model** uses the probabilities assigned to upcoming tokens to actually generate novel sequences of text.

 Run through RNN, obtain probabilities over next word.

A <u>generative language model</u> uses the probabilities assigned to upcoming tokens to actually <u>generate</u> novel sequences of text.

- Start with an initial token/sequence.
- Run through RNN, obtain probabilities over next word.
- Sample from this distribution.

A **generative language model** uses the probabilities assigned to upcoming tokens to actually generate novel sequences of text.

- Run through RNN, obtain probabilities over next word.
- Sample from this distribution.
- Repeat until </s>.

A **generative language model** uses the probabilities assigned to upcoming tokens to actually generate novel sequences of text.

- Start with an initial token/sequence.
- Run through RNN, obtain probabilities over next word.
- Sample from this distribution.
- Repeat until </s>.

Different sampling strategies.

- Select most likely word.
- Sample proportional to p(w).

Summary

- Neural language models (e.g., using <u>embeddings</u>) allow for more flexible representations of input, facilitating generalization.
 - Learned weights map between <u>context</u> and <u>predictions</u>.
- Feed-forward LMs require a fixed context window.
- Recurrent neural networks (RNNs) model context using recurrent connection.
 - Recurrent connection acts as "memory" of previous hidden state h_{t-1} .
- In RNNs, "context" is folded into representation of previous hidden state.
- Various innovations to RNNs, including LSTMs, which better handle long-distance dependencies.

Lecture plan

- Review: <u>embeddings</u>.
- Common <u>architectures</u>:
 - Feedforward language model.
 - Recurrent neural network.
 - Transformer architecture.
- Next time: LLMs in Python!

RNNs: recap, and limitations

- A recurrent neural network (RNN) has at least one recurrent connection, which acts
 as a kind of "memory" of the context.
- RNNs work pretty well, but do have limitations.

Limitation #1:

Vanishing/exploding gradient.

Limitation #2:

Training is hard to parallelize.

Recurrent structure makes it hard to process many batches in parallel—harder to take advantage of compute.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

• Often, accurate predictions depend on words from a while ago.

Check the program log and find out whether it ran please.

Check the battery log and find out whether it ran down please.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

• Often, accurate predictions depend on words from a while ago.

Check the **program** log and find out whether it **ran please**.

Check the **battery** log and find out whether it **ran down** please.

...whether it ran ____

Knowing what comes next depends on looking <u>far back</u> in the sequence.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

• Often, <u>accurate predictions</u> depend on words from a while ago.

Check the **program** log and find out whether it **ran please**.

Check the **battery** log and find out whether it **ran down** please.

...whether it ran ____

Knowing what comes next depends on looking <u>far back</u> in the sequence.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

- Often, <u>accurate predictions</u> depend on words from a while ago.
- This also helps identify <u>relationships</u> between elements in the sequence.

The animal didn't cross the street because it was tired.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

- Often, <u>accurate predictions</u> depend on words from a while ago.
- This also helps identify <u>relationships</u> between elements in the sequence.

The animal didn't cross the street because it was tired.

But how does this actually work?

The advent of "attention"

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

- Often, <u>accurate predictions</u> depend on words from a while ago.
- This also helps identify <u>relationships</u> between elements in the sequence.

The animal didn't cross the street because it was tired.

Attention: the origins

- Originally, attention was developed to help with machine translation.
- Traditional, RNN-based translation models had a "bottleneck" in their design.

Encodes source language.

Decodes to target language.

Attention: the origins

- Originally, attention was developed to help with machine translation.
- Traditional, RNN-based translation models had a "bottleneck" in their design.

Encodes source language.

Decodes to target language.

Bottleneck: all the information required to translate a sentence must be packed into this last hidden state.

Attention: the origins

- Originally, attention was developed to help with machine translation.
- Traditional, RNN-based translation models had a "bottleneck" in their design.
- Attention is a mechanism for putting all those hidden states into a <u>single fixed-length</u> vector—by focusing on <u>what's most relevant</u>.

Dot-product attention: implements "relevance" as *embedding similarity.*

To illustrate this, let's look at an example from a domain we're already familiar with—language modeling.

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

The cat sat on ___ "on"

The

cat

sat

on

The cat sat on	"on"			
V1 7	he .			
V2	cat			
V3	sat			
V4	on			

The cat sat on		"on" $w * c$	
V	1 The	.2	
V	2 cat	.1	Numbers made up for illustration
V	3 sat	.1	purposes!
V	4 on	1	

The cat	sat on	" Ol	n" <i>w * c</i>	$\sigma(x)_j = rac{e^{x_j}}{\sum_k e^{x_k}}$	
	V1	The	.2	.2	
	V2	cat	.1	.18	Now, we soft-max these values to
	V3	sat	.1	.18	create a probability distribution.
	V4	on	1	.44	

The cat sat on	"on'	' W * C	$\sigma(x)_j = rac{e^{x_j}}{\sum_k e^{x_k}}$	
V1	The	.2	.2	These are our
V2	cat	.1	.18	attention weights.
V3	sat	.1	.18	Each represents the
V4	on	1	.44	"relevance" of V _n to "on".

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

Now, compute weighted average over all hidden states—using these attention scores as "weights"!

$$\mathbf{c}_i = \sum_j \alpha_{ij} \, \mathbf{h}_j^e$$

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

Attention Layer

Context vector

Global align weights h_t

Now, compute weighted average over all hidden states—using these attention scores as "weights"!

$$\mathbf{c}_i = \sum_j \alpha_{ij} \, \mathbf{h}_j^e$$

Hidden states

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

Compute attention weights

Now, compute weighted average over all hidden states—using these attention scores as "weights"!

$$\mathbf{c}_i = \sum_j \alpha_{ij} \, \mathbf{h}_j^e$$

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

Use attention weights to create new **context vector**.

Now, compute weighted average over all hidden states—using these attention scores as "weights"!

$$\mathbf{c}_i = \sum_j \alpha_{ij} \, \mathbf{h}_j^e$$

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

Predictions are now <u>weighted</u> by different elements of the sequence depending on their "relevance".

Now, compute weighted
average over all hidden
states—using these attention
scores as "weights"!

$$\mathbf{c}_i = \sum_j \alpha_{ij} \, \mathbf{h}_j^e$$

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

In theory, we can do this at <u>each</u> <u>layer</u> of a neural network.

But the dot product is still a pretty coarse measure of attention.

Can we do better?

"RNN + Attention—but throw out the RNN!"

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use **self-attention**.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

What do these aspects of a transformer remind you of?

A traditional **feed-forward neural language model!**

(Note: this is why you often hear about the "context window size" of models like ChatGPT, Claude, etc.)

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

These are new concepts—let's focus on **self-attention** first.

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Query (Q): representation of current word, used to score against all other words in sequence.

Key (K): labels for other words in sequence, which we "match" against in our search.

Value (V): represent the "content" of each word, which are weighed by attention scores.

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Query (Q): representation of current word, used to score against all other words in sequence.

Key (K): labels for other words in sequence, which we "match" against in our search.

Value (V): represent the "content" of each word, which are weighed by attention scores.

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Here, we're looking for words that are relevant to "it".

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Here, we're looking for words that are relevant to "it".

Key for each word is like a <u>label</u> for "folders" in a filing cabinet.

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Here, we're looking for words that are relevant to "it".

Key for each word is like a <u>label</u> for "folders" in a filing cabinet.

Values are the <u>contents</u> of those filing cabinets.

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

To compute **attention score**, multiply <u>query</u> by <u>key</u> vectors for each pair.

$$score(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{q}_i \cdot \mathbf{k}_j$$

(We then **normalize** and **soft-max** these scores to get a probability distribution.)

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

To compute **attention score**, multiply <u>query</u> by <u>key</u> vectors for each pair.

Now, multiply (and sum) attention scores by <u>value vectors</u>.

$$\mathbf{y}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_j$$

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

To compute **attention score**, multiply <u>query</u> by <u>key</u> vectors for each pair.

Now, multiply (and sum) attention scores by <u>value vectors</u>.

$$\mathbf{y}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_j$$

A robot must obey the orders given it...

Word	Value vector	Score	Value X Score
<s></s>		0.001	
a		0.3	
robot		0.5	
must		0.002	
obey		0.001	
the		0.0003	
orders		0.005	
given		0.002	
new conte	xtualized	0.19	

Sum:

This is our new **contextualize embedding** for "it".

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Ν

We compute **attention scores** between each word
w_t and every word that
comes before it.

In an auto-regressive
model, we prevent attention
from "looking ahead" at
future words.

q1•k1	-8	-8	-8	-∞
q2•k1	q2•k2	-∞	-∞	-∞
q3•k1	q3•k2	q3•k3	-∞	-∞
q4•k1	q4•k2	q4•k3	q4•k4	-∞
q5•k1	q5•k2	q5•k3	q5•k4	q5•k5

In terms of compute time, how "efficient" is this process?

It's **quadratic**—we must compute dot product between every pair of tokens in the input.

Suppose we are computing **self- attention** for X_3 .

Suppose we are computing **self- attention** for X_3 .

For each word in sequence, compute **key**, **query**, and **value** vectors.

Suppose we are computing **self- attention** for X_3 .

Suppose we are computing **self- attention** for X_3 .

Suppose we are computing **self- attention** for X_3 .

Suppose we are computing **self- attention** for X_3 .

Suppose we are computing **self- attention** for X_3 .

Soft-max these to get **attention scores**.

Suppose we are computing **self- attention** for X_3 .

Use attention scores to weigh the **value vectors**.

Suppose we are computing **self- attention** for X_3 .

The result is a <u>new embedding Y_3 </u>, which "folds in" the relevant information from X_1 and X_2 into X_3 .

Where do Q, K, V come from?

During training, we also <u>learn weight</u>

matrices W^Q, W^K, and W^V, which we
multiply by input X.

$$\mathbf{Q} = \mathbf{X}\mathbf{W}^{\mathbf{Q}}; \ \mathbf{K} = \mathbf{X}\mathbf{W}^{\mathbf{K}}; \ \mathbf{V} = \mathbf{X}\mathbf{W}^{\mathbf{V}}$$

Learned just like standard weights—by iteratively updating through **back-propagation**.

But self-attention is just **one component** of the Transformer...

A **Transformer** "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

Self-attention: used to compute new, context-dependent representations for each token.

A **Transformer** "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

The **"residual connection"** projects directly from a lower layer to a higher layer, without passing through the intermediate layer.

To implement, <u>add</u> a layer's *input* to its *output* before passing it forward.

"dog" + Self-Attention("dog")

A **Transformer** "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

"Layer normalization" keeps the values of a hidden layer within a range that facilitates gradient-based training—similar to a z-score.

In GPT-2 and GPT-3, this FFN has two layers.

The Transformer "block"

A **Transformer** "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

These vectors are then passed to a **feed- forward network**.

Schematic of FFN in GPT-3.

A **Transformer** "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

A Transformer "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

DECODER

DECODER

DECODER

DECODER

DECODER

A **Transformer** "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

E.g., GPT-2 "small" has **12 layers** (blocks).

SMALL

DECODER

DECODER

Model Dimensionality: 768

Model Dimensionality: 1024

has 48 layers!

EXTRA
LARGE

ABOUT - 2
LARGE

DECODER

Model Dimensionality: 1280

Model Dimensionality: 1600

But GPT-2 "XL"

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use **self-attention**.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

We've now covered self-attention but what's "multi-head" attention? When we discuss **probing** and **mechanistic interpretability**, we'll talk about research trying to figure out what these heads actually do!

Multi-head attention

In <u>multi-head attention</u>, each layer has multiple attention "heads", each with their own set of learnable weights for producing queries, keys, and values.

Each "head" might learn to track different kinds of <u>relationships</u>.

Over-simplified example:

- Maybe one head tracks syntax.
- Another head tracks proper names.
- Another head tracks events...

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use **self-attention**.
- Have multiple attention "heads"
 (multi-head self-attention)
- Use positional embeddings.

Okay, but what about the **order** of tokens?

With RNNs, order is built into the structure of the network.

Transformers use **positional embeddings** to track order.

Positional embeddings track order

To represent order, input embeddings are combined with **positional embeddings** specific to each position in a sequence.

To learn, begin with random embeddings representing each "position" in a sequence (1, 2, 3, ...)

Positional embeddings track order

To represent order, input embeddings are combined with **positional embeddings** specific to each position in a sequence.

To learn, begin with random embeddings representing each "position" in a sequence (1, 2, 3, ...)

Once learned, we add <u>positional</u> embeddings with <u>word</u> embeddings.

Now, <u>composite</u> embeddings reflect both word and its position.

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

These are very complicated systems! Still lots to learn about why this architecture works.

One practical benefit is (so far) transformers are easier to train than RNNs.

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

Under the hood, ChatGPT uses a **transformer** model (plus some other stuff).

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

Under the hood, Chat**GPT** uses a **transformer** model (plus some other stuff).

GPT = **G**enerative **P**re-trained **T**ransformer

So what's that "pre-trained" word mean...?

Pre-trained language models

A **pre-trained language model** is a (<u>large</u>) language model that's already been <u>trained</u> on a large corpus using self-supervision.

- "Pre-training" just means training without a specific end goal in mind (besides word prediction).
- A "pre-trained" LM can then be adapted for specific purposes.
- Practically, it's helpful so we don't have to train from scratch!

Pre-trained language models

A **pre-trained language model** is a (<u>large</u>) language model that's already been <u>trained</u> on a large corpus using self-supervision.

Next time, we'll discuss how to <u>use</u> <u>pre-trained models</u> in Python, using a library called **transformers**.

Summary

- Self-attention is a mechanism that allows each word to "look for" other words that are relevant in the input.
- This process creates new context-dependent vectors that share relevant information across the words in the input.
- Self-attention a key part part of the "transformer block", which also has other features
 like a feed-forward network.
- So far, transformers tend to work better than other models like RNNs, and are easier and faster to train.
- "Pre-training" involves training a model (like a transformer) on a large corpus to learn the "basics" of how language works.