

planetmath.org

Math for the people, by the people.

proof of equivalent definitions of analytic sets for measurable spaces

 $Canonical\ name \qquad Proof Of Equivalent Definitions Of Analytic Sets For Measurable Spaces$

Date of creation 2013-03-22 18:48:41 Last modified on 2013-03-22 18:48:41

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282) Entry type Proof

Classification msc 28A05

- Let (X, \mathcal{F}) be a measurable space and A be a subset of X. For any uncountable Polish space Y with http://planetmath.org/BorelSigmaAlgebraBorel σ -algebra \mathcal{B} , we show that the following are equivalent.
 - 1. A is \mathcal{F} -http://planetmath.org/AnalyticSet2analytic.
 - 2. A is the http://planetmath.org/GeneralizedCartesianProductprojection of a set $S \in \mathcal{F} \otimes \mathcal{B}$ onto X.

Here, $\mathcal{F} \otimes \mathcal{B}$ denotes the http://planetmath.org/ProductSigmaAlgebraproduct σ -algebra of \mathcal{F} and \mathcal{B} .

- (??) implies (??): Let \mathcal{G} denote the paving consisting of the closed subsets of Y. If A is \mathcal{F} -analytic then there exists a set $S \in (\mathcal{F} \times \mathcal{G})_{\sigma\delta}$ such that $A = \pi_X(S)$, where $\pi_X \colon X \times Y \to X$ is the projection map (see proof of equivalent definitions of analytic sets for paved spaces). In particular, $\mathcal{G} \subseteq \mathcal{B}$ implies that S is contained in the σ -algebra $\mathcal{F} \otimes \mathcal{B}$.
- (??) implies (??): This is an immediate consequence of the result that projections of analytic sets are analytic.