

A Linear-Time Algorithm For Finding Tree-Decompositions Of Small Treewidth

Maximilian F. Göckel - uzkns@student.kit.edu

Institut für Theoretische Informatik - Proseminar Algorithmen für NP-schwere Probleme

Tree-decomposition

Eine Baumzerteilung eines Graphen G = (V, E) ist ein Tupel (X, T) wo T = (I, F) ein Baum ist und $X = \{X_i | i \in I\}$ eine Familie von Teilmengen von V wobei jedes X_i einen Knoten in T darstellt.

- 1. $\bigcup_{i \in I} X_i = V$
- 2. $\forall (v, w) \in E : \exists i \in I : v, w \in X_i$
- 3. $\forall w \in X_i, X_j$: Jedes X_k im Pfad zwischen X_i, X_j enthält w

Tree-decomposition

Veranschaulichung

Figure: 1

Treewidth

Definition

Jede Baumzerteilung hat eine "Baumweite" (treewidth).

- **Baumweite einer Zerteilung:** $\max(|X_i|_{i \in I} 1)$ ("Zerteilungsweite")
- Baumweite eines Graphen: Minimale Zerteilungsweite aller Zerteilungen

k-Trees

Karkruher Institut für Technolog

Definition

Die folgenden Aussagen zu k-Bäumen sind äquivalent:

- 1. G = (V, E) ist ein k-Baum
- 2. G ist verbunden und hat eine k-Clique, aber keine (k+2)-Clique und
 - Jeder minimale Seperator von G ist eine k-Clique oder
 - \forall nicht-adjazenten Knotenpaare $x, y \in V \exists k$ Wege $x \rightarrow y$
- 3. *G* ist verbunden, $|E| = k|V| \frac{1}{2}k(k+1)$ und jeder minimale Seperator von *G* ist eine *k*-Clique
- 4. *G* hat Knoten *v* mit 3 Eigenschaften:
 - \bullet deg(v) = k und
 - Nachbarknoten von v formen eine k-Clique und
 - G v ist k-Baum

Jeder komplette Graph mit k Knoten ist damit auch ein k-Baum.

k-Trees Erstellung

Andersherum: Ein k-Baum-Graph G mit $n \ge k$ Knoten kann aus einem k-Baum-Graph H mit n-1 Knoten wie folgt erstellt werden:

- **2** Zu H einen Knoten u hinzufügen ($|V| = (n-1) \rightarrow |V| = n$)
- Knoten *u* mit Knoten *v*₁, ..., *v*_k verbinden

Damit wird Aussage 4 erfüllt.

Partial k-Trees

Definition

Graph G = (V, E) ist partieller k-Baum \Leftrightarrow

- *G* ist Teilgraph eines *k*-Baumes
- G hat Baumweite max. k

Baumzerteilung

Anwendungen

- Maximum-Weight Independent Set in Linearzeit lösbar
- Hohe Baumweite ⇔ Hohe Komplexität in der Systemanalyse

Knotentypen

Simplizial, freundlich, low- und highdegree

Ein Knoten v ist ...

- lacksquare ... "von niedrigem Grad" wenn deg(v) < d
 - $d = 2k^3 \cdot (k+1) \cdot (4k^2 + 12k + 16)$
 - Analog: Hoher Grad \Leftrightarrow deg(v) > d
 - Auch "low-deg.-" und "high-deg.-Knoten" genannt
- ... "Freundlich" wenn er low-deg. und adjazent zu einem weiteren low-deg.-Knoten ist
- ... "Simplizial" wenn alle Nachbarn in einer Clique sind
- \blacksquare ... "I-Simplizial" wenn simp. in G' und $\deg(v) \le k$ in G

Verbesserter Graph G'

Erstellung und Eigenschaften

$$G' = (V, E')$$
 ist $G = (V, E)$ mit Kanten $(v, w) \in E' \forall v, w \in V$ sodass v, w min. $k + 1$ gem. Nachbarn mit Grad max. k haben.

LEMMA 4.1.: $tw(G) \le k \Leftrightarrow tw(G') \le k$.

Außerdem ist jede k-Zerteilung von G auch eine k-Zerteilung von G' und umgekehrt.

Maximum Matching $M \subseteq E$

 $M \subseteq E$ ist Maxmimum Matching in $G = (V, E) \Leftrightarrow$ Keine 2 Kanten aus M haben gemeinsamen Endknoten und |M| maximal

Ein Maximal Matching kann in O(|V|) gefunden werden, wenn die Baumweite durch ein k gebunden ist.

Anzahl an Friendly-Knoten in G

LEMMA 4.2.: *G* hat Baumweite max. $k \Rightarrow 1$ von 2 muss min. gelten:

- G hat min. $\frac{|V|}{4k^2+12k+16}$ =: λ Friendly-Knoten
- G' hat min. $\frac{1}{8k^2+24k+32} \cdot |V|$ I-simp.-Knoten

Algorithmus hat eine Fallunterscheidung ab λ Friendly-Knoten.

Algorithmus

Fall: Min. λ Friendly-Knoten

- 1. Maximum-Matching $M \subseteq E$ finden
- 2. Jede Kante in M kontrahieren um Graphen \widetilde{G} zu erhalten
- 3. Wenn Baumweite von $\widetilde{G} > k \Rightarrow \text{STOP}$
- 4. Kompletten Algorithmus auf \widetilde{G} ausführen um Baumzerteilung (Y, T) von \widetilde{G} auszugeben
- 5. Mit LEMMA 3.3. Zerteilung (X, T) aus (Y, T) erstellen
- 6. Mit THEOREM 2.4. prüfen ob Weite von G > k ist \Rightarrow STOP
- 7. Zerteilung von G errechnen und ausgeben

Hauptidee

Viele NP-schwere Probleme sind in Linearzeit lösbar, wenn die Baumweite des Graphen konstant ist. \rightarrow Kann man die Baumweite (für bel., festes $k \in \mathbb{N}$) in Linearzeit errechnen?

 Z_2 : $\forall k \in \mathbb{N}$: ∃ Linearzeitalgorithmus welcher für G = (V, E) prüft ob die Baumweite max. k ist und eine Zerteilung ausgibt.

Für k = 1, 2, 3, 4 existieren schon Linearzeitalgorithmen.

Algorithmus

2 Schritte:

- 1. Für gegebenen Graph G = (V, E) und geg. $k \in \mathbb{N}$ eine Zerteilung mit max. Baumweite linear in k finden
- 2. Graph-Zugehörigkeit zur Klasse "Graphen mit Baumweite k" prüfen

Problem "Für einen Graph G = (V, E) und ein $k \in \mathbb{N}$: Ist die Baumweite von G maximal k?" ist NP-Vollständig für bel. k