

Física Geral I – 2° semestre de 2022

2^{as} e 4^{as} (10:00 às 12:00) – Sala 104 CCT

Cap. 12: Equilíbrio e elasticidade

UENF Física Geral I Prof. André Guimarães

O que torna estas situações possíveis?

Pela 2ª lei de Newton,
$$\sum \vec{F} = \frac{d\vec{P}}{dt}$$
 e $\sum \vec{\tau} = \frac{d\vec{L}}{dt}$ Translação Rotação

Equilíbrio
$$\Rightarrow \sum \vec{F} = \sum \vec{\tau} = \vec{0}$$

Ou seja, \vec{P} e \vec{L} são constantes (não há acelerações)

Equilíbrio estático (análise de estruturas)

Além de
$$\sum \vec{F} = \sum \vec{\tau} = \vec{0}$$
 , \vec{P} e \vec{L} são nulos!

Caso especial → forças no plano xy

$$\vec{F} = F_x \, \hat{i} + F_y \, \hat{j}$$

$$\vec{\tau} = \vec{r} \times \vec{F} \implies \vec{\tau} // \hat{k}$$

Condições de equilíbrio

$$\sum F_{x} = 0$$
; $\sum F_{y} = 0$; $\sum \tau_{z} = 0$

Teste 1 (8^a ed)

Se os módulos das forças são ajustados adequadamente, em que situações a barra pode estar em equilíbrio estático?

$$\sum_{i} \vec{\tau} = \vec{0} \quad \Rightarrow \quad \text{Com relação a qualquer eixo!}$$

O centro de gravidade

Embora a força gravitacional atue sobre todos elementos (átomos) de um corpo, é possível considerar que esta força age efetivamente sobre um único ponto de um corpo, o chamado centro de gravidade (CG).

Se a aceleração da gravidade é a mesma para todos elementos de um corpo

$$\hat{\mathbf{U}}$$

Exemplo 12-1 (8^a ed.)

Na figura abaixo, uma viga uniforme de comprimento L e massa m = 1,8 kg está em repouso sobre duas balanças. Um bloco uniforme de massa M = 2,7 kg está em repouso sobre a viga, com o centro a uma distância L/4 da extremidade esquerda da viga. Quais são as leituras das balanças?

Os átomos de um sólido estão dispostos em uma rede regular tridimensional. As molas representam forças interatômicas.

Elasticidade

Tração e compressão

P/ região de linearidade:

$$\frac{F}{A} = E \frac{\Delta L}{L}$$

$$[E] = \left[\frac{F}{A}\right] = N/m^2$$

Módulo de Young

Elasticidade

Tração e compressão

Some Elastic Properties of Selected Materials of Engineering Interest

Material	Density ρ (kg/m³)	Young's Modulus E (109 N/m ²)	Ultimate Strength S_u (10 ⁶ N/m ²)	Yield Strength S_y (10 ⁶ N/m ²)
Steela	7860	200	400	250
Aluminum	2710	70	110	95
Glass	2190	65	50^b	
Concrete ^c	2320	30	40^b	-
$Wood^d$	525	13	50^b	_
Bone	1900	9^b	170^b	_
Polystyrene	1050	3	48	_

^aStructural steel (ASTM-A36).

^bIn compression.

^cHigh strength.

^dDouglas fir.

Elasticidade

Cisalhamento

$$\frac{F}{A} = G \frac{\Delta x}{L}$$

Módulo de Cisalhamento

$$[G] = \left[\frac{F}{A}\right] = N/m^2$$

Elasticidade

Tensão hidrostática

$$p = B \frac{\Delta V}{V}$$

Módulo de elasticidade volumétrico

$$[B] = [p] = N/m^2$$

Exemplo 12-6 (8^a ed.)

Uma mesa tem três pernas com 1,00 m de comprimento e uma quarta perna com um comprimento adicional d = 0,50 mm, que faz com que a mesa fique ligeiramente bamba. Um cilindro de aço de massa M = 290 kg é colocado sobre a mesa (que tem uma massa muito menor que M), comprimindo as quatro pernas sem envergá-las e fazendo com que a mesa fique nivelada. As pernas são cilindros de madeira com uma área da seção reta $A = 1,0 \text{ cm}^2$; o módulo de Young é $E = 1,3.10^{10} \text{ N/m}^2$. Quais são os módulos das forças que o chão exerce sobre as pernas da mesa?