$$R = \{a, b, c, d, e\}$$

$$T = S - \{e, h\}$$

$$Q = \{d, g, h\}.$$

Which of the following events is independent of the event RT?

- (a) TQ
- (b) $\{a, c\}$
- (c) $Q^c R^c$
- (d) R^cQ
- (e) $\{a, b, c\}$
- (f) $\{a, b\}$
- (g) T^c
- (h) $\{a\}$
- (i) R^c
- (j) None of these

$$T = \{a, b, c, d, e\}$$

$$R = S - \{e, h\}$$

$$Q = \{d, g, h\}.$$

Which of the following events is independent of the event TR?

- (a) RQ
- (b) $\{a, c\}$
- (c) Q^cT^c
- (d) T^cQ
- (e) $\{a, b, c\}$
- (f) $\{a,b\}$
- (g) R^c
- (h) $\{a\}$
- (i) T^c
- (j) None of these

$$R = \{a,b,c,d,e\}$$

$$Q = S - \{e,h\}$$

$$T = \{d, g, h\}.$$

Which of the following events is independent of the event RQ?

- (a) QT
- (b) $\{a, c\}$
- (c) $T^c R^c$
- (d) R^cT
- (e) $\{a, b, c\}$
- (f) $\{a, b\}$
- (g) Q^c
- (h) $\{a\}$
- (i) R^c
- (j) None of these

$$T=\{a,b,c,d,e\}$$

$$Q = S - \{e, h\}$$

$$R = \{d, g, h\}.$$

Which of the following events is independent of the event TQ?

- (a) QR
- (b) $\{a, c\}$
- (c) R^cT^c
- (d) $T^c R$
- (e) $\{a, b, c\}$
- (f) $\{a,b\}$
- (g) Q^c
- (h) $\{a\}$
- (i) T^c
- (j) None of these

 $\textbf{Solution} \colon \operatorname{Let}$

$$Q = \{a, b, c, d, e\}$$

$$R = S - \{e, h\}$$

$$T = \{d, g, h\}.$$

Then, $P(QR) = P(\{a,b,c,d\}) = 1/2$ and $P(QR|RT) = P(QRT)/P(RT) = P(\{d\})/P(\{d,g\}) = 1/2 = P(QR)$, so QR is independent of QR. All the other answers are nonempty and either subsets of, or disjoint from QR.