1 Bounded Decision Tree Learner for Horn Samples

Theorem 1.1. If the input set of points X is separable and the input Horn Constraints are satisfiable, then the Learner always terminates with a decision tree consistent with the Horn sample (X, C).[1]

Definition 1.2. Given an Horn sample S = (X, C). Define the equivalence $class \equiv_m m \text{ on } X$:

 $s \equiv_m s' \iff there \ is \ no \ predicate \ of \ the \ form \ a_i \leq c \ with \ |c| \leq m$ that separates s and s'.

Definition 1.3. We can augment a sample S = (X, C) to obtain a m-augmented Horn Sample of S, denoted by $S \oplus m$. To obtain $S \oplus m$, we first construct the set $E = \{(s, s') \mid s \equiv_m s'\}$ and add it to a our Horn Constraints, $(X, C \cup E)$.

Theorem 1.4. The following holds:

- 1. If $S \oplus m$ is not valid, then there is no Boolean formula with absolute maximum threshold m that is consistent with (X,C). In the overall learning loop, we would increment m in this case and restart learning from (X,C).
- 2. If $S \oplus m$ is valid, then calling our Decision Tree Learner for Horn Samples on $S \oplus m$ while restricting it to predicates that use thresholds with absolute values at most m is guaranteed to terminate and return a tree that is consistent with S.

Proof.

- 1. Assume $S \oplus m$ is not valid. This means there exists a horn clause $(s_1 \land s_2 \land \cdots \land s_n \to s) \in C$ where $s_i \in X$ is forced to a positive classification and $s \in X$ is forced to a negative classification for every valuation of X. Now for the sake of contradiction assume that there is a Boolean formula f with absolute maximum threshold m that is consistent with S. Thus, f satisfies all the new horn constraints added and consequently $S \oplus m$. Therefore, f must classify the s_i as positive and s as negative, which doesn't satisfy $s_1 \land s_2 \land \cdots \land s_n \to s$.
- 2. Assume now that $S \oplus m$ is valid. We need to show that the input set of points is separable. For this assume that our bounded Decision Tree Learner for Horn Samples processes a node with the sample of $S \oplus m$ and the nodes contains a point p that is forced to positive and a point n that is forced to negative. For the sake of contradiction assume that the learner can't find an split within a threshold $|c| \leq m$. Thus, p and p are in the same m-equivalence class $p \equiv_m n$. This means $(p,n) \in C$. This is a contradiction with p being consistent since p is forced to positive and p is forced to negative.

Now, we have that the input set of points is separable and that $S \oplus m$ is valid and can use Theorem 1.1 to get that the Learner always terminates with a decision tree consistent with the Horn sample (X, C).

2 Questions

- 1. is forced to positive/negative the right thing? (for ICE it was just positive or negative)
- 2. Bei 2. show is separable for pos/neg? what about unclassified points?

References

[1] Deepak D'Souza, P Ezudheen, Pranav Garg, P Madhusudan, and Daniel Neider. Horn-ice learning for synthesizing invariants and contracts. arXiv preprint arXiv:1712.09418, 2017.