De trigonometrische identiteit is $\sin^2(\theta) + \cos^2(\theta) = 1$.

De trigonometrische identiteit is $\sin^2(\theta) + \cos^2(\theta) = 1$.

```
De trigonometrische identiteit
is $\sin^2(\theta) + \cos^2(\theta) = 1 $.
```

Formule	Code		Formule	Cod	е	
$\sqrt{2}$	<i>\$</i>	<i>\$</i>	$\sqrt[3]{8}$	\$		\$
$\frac{2}{3}$	<i>\$</i>	\$	x_1	\$	<i>\$</i>	
$6 \geq 3$	<i>\$</i>	<i>\$</i>	x_1^2	<i>\$</i>	<i>\$</i>	
$a^2 + b^2$	<i>\$</i>	<i>\$</i>	a^{2+b^2}	<i>\$</i>		<i>\$</i>

Formule	Code		Formule	Coc	le	
$\sqrt{2}$	\$\sqrt	(2) \$	$\sqrt[3]{8}$	<i>\$</i>		\$
$\frac{2}{3}$	<i>\$</i>	<i>\$</i>	x_1	<i>\$</i>	\$	
$6 \geq 3$	<i>\$</i>	\$	x_1^2	<i>\$</i>	<i>\$</i>	
$a^2 + b^2$	<i>\$</i>	<i>\$</i>	a^{2+b^2}	\$		\$

Formule	Code		Formule	Cod	de	
$\sqrt{2}$	<pre>\$ \sqr</pre>	t{2} \$	$\sqrt[3]{8}$	<i>\$</i>		<i>\$</i>
$\frac{2}{3}$	<pre>\$ \fra</pre>	c{2}{3} \$	x_1	<i>\$</i>	<i>\$</i>	
$6 \geq 3$	<i>\$</i>	<i>\$</i>	x_1^2	<i>\$</i>	<i>\$</i>	
$a^2 + b^2$	<i>\$</i>	<i>\$</i>	a^{2+b^2}	\$		\$

Formule	Code	Formule	Code	
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	$\sqrt[3]{8}$	\$	\$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	<i>\$</i>	
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	<i>\$</i>	
$a^2 + b^2$	<i>\$</i>	a^{2+b^2}	<i>\$</i>	<i>\$</i>

```
3 \le 6: $ 3\leq 6 $ | 3 < 6: $ 3 < 6 $ | 6 > 3: $ 6 > 3 $ | 3 \left( 6000): $ 3\left( 11 6000) $ | 6000 \right( 8000) \right( 8000) $ 3 $ $
```


Formule	Code	Formule	Cod	le	
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	√38	<i>\$</i>		\$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$	<i>\$</i>	
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	<i>\$</i>	\$	
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	<i>\$</i>		<i>\$</i>

Formule	Code	Formule	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	$\sqrt[3]{8}$	<pre>\$ \sqrt[3]{8} \$</pre>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	<i>\$</i>
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	<i>\$</i>
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	<i>\$</i>

Formule	Code	Formule	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	$\sqrt[3]{8}$	<pre>\$ \sqrt[3]{8} \$</pre>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	<i>\$</i>
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$

Formule	Code	Formule	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	√3/8	<pre>\$ \sqrt[3]{8} \$</pre>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$

Formule	Code	Formule	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	√3/8	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	<pre>\$ a^{2 + b^2} \$</pre>

Formule	Code	Formule	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	$\sqrt[3]{8}$	<pre>\$ \sqrt[3]{8} \$</pre>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

Formule	Code	Formule	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	√3/8	<pre>\$ \sqrt[3]{8} \$</pre>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^{2} + b^{2}$	\$ a^2 + b^2 \$	a^{2+b^2}	<pre>\$ a^{2 + b^{2} \$</pre>

Formule	Code	Formule	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	3√8	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^{2} + b^{2}$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

$$x^22 \ x^2 \ x^3 \ x^3 \ x^3 \ x^4 \ x^2 \ x^3 \ x^4 \ x^5 \ x^5$$

Formule	Code			Formule	Code	
x_1,\ldots,x_n	<i>\$</i>	<i>\$</i>		5 · 6	<i>\$</i>	\$
$lpha,eta,\gamma$	<i>\$</i>		<i>\$</i>	A,B,Γ	<i>\$</i>	\$
$\epsilon, arepsilon$	<i>\$</i>		<i>\$</i>	${\cal P}$	<i>\$</i>	<i>\$</i>
$\phi, arphi$	\$	\$		\mathbb{P}	<i>\$</i>	<i>\$</i>

Formule	Code		Formule	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n</pre>	\$	5 · 6	<i>\$</i>	<i>\$</i>
$lpha,eta,\gamma$	<i>\$</i>	<i>\$</i>	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	<i>\$</i>	\$	${\cal P}$	<i>\$</i>	<i>\$</i>
$\phi, arphi$	<i>\$</i>	\$	\mathbb{P}	<i>\$</i>	<i>\$</i>

Formule	Code		Formule	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x</pre>	_n \$	5 · 6	<i>\$</i>	<i>\$</i>
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta</pre>	a,\gamma \$	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	\$	\$	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	<i>\$</i>	<i>\$</i>	\mathbb{P}	<i>\$</i>	<i>\$</i>

Formule	Code	Formule	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$	<i>\$</i>
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta,\ga</pre>	а мма \$ A, B, Г	\$	<i>\$</i>
$\epsilon, arepsilon$	<pre>\$ \epsilon,\vareps</pre>	silon $\$$ ${\cal P}$	\$	<i>\$</i>
$\phi, arphi$	\$	\mathbb{P}	\$	<i>\$</i>

Formule	Code	Formule	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$	<i>\$</i>
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	<i>\$</i>	<i>\$</i>

Formule	Code	Formule	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$	
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<i>\$</i>	<i>\$</i>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$	<i>\$</i>

Formule	Code	Formule	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	\$
ϕ, φ	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$ \$

Formule	Code	Formule	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	<i>\$</i>

Formule	Code	Formule	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	<pre>\$ \mathbb{P} \$</pre>

$$abla imes (
abla imes \mathbf{A}) =
abla (
abla \cdot \mathbf{A}) -
abla^2 \mathbf{A}$$

$$\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, \upsilon, \phi, \chi, \psi, \omega$$

$$A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, \chi, \Psi, \Omega$$

$$\Delta, \varepsilon, \Gamma, \varkappa, \Lambda, \Omega, \Phi, \varphi, \Pi, \varpi, \Psi, \varrho, \Sigma, \varsigma, \Theta, \vartheta, \Upsilon, \Xi$$

$$\mathbb{P}, \mathcal{C}$$
 (1)

$$\forall, \exists, \neg, \land, \lor, \land, \hat{\imath}, \hat{n}, \vec{F}_{tot}, \frac{\partial f}{\partial x}, \frac{\mathrm{d}f}{\mathrm{d}y}, \tag{2}$$

Wiskundige relaties

Formule	Code	Formule	Code
$a \leq b$	\$ a \leq b \$	$a \ge b$	<pre>\$ a \geq b \$</pre>
a < b	\$ a < b \$	a > b	\$ a > b \$
$a\ll b$	\$ a \11 b \$	$a\gg b$	\$ a \gg b \$
a = b	<pre>\$ a = b \$</pre>	$\mathit{a} \simeq \mathit{b}$	<pre>\$ a \simeq b \$</pre>
$a \neq b$	$\$$ a \neq b $\$$	approx b	<pre>\$ a \approx b \$</pre>
$\mathit{a}\sim\mathit{b}$	<pre>\$ a \sim b \$</pre>		

Equation

```
De trigonometrische identiteit is

$\sin^2(\theta) + \cos^2(\theta) = 1. $

De trigonometrische identiteit is
\begin{equation}
   \sin^2(\theta) + \cos^2(\theta) = 1.
\end{equation}
```

De trigonometrische identiteit is $\sin^2(\theta) + \cos^2(\theta) = 1$.

De trigonometrische identiteit is

$$\sin^2(\theta) + \cos^2(\theta) = 1. \tag{1}$$

Align

```
De verdubbelingsformule herschrijven we nu als
\begin{align}
    \cos(2 \theta) = \cos^2(\theta) - \sin^2(\theta)
    = 2 \cos^2(\theta) - 1.
\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. \tag{2}$$

Align

```
De verdubbelingsformule herschrijven we nu als 

\begin{align}
\cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)\\
&= 2\cos^2(\theta)-1.
\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. \tag{2}$$

equation

```
De verdubbelingsformule herschrijven we nu als
\begin{align}
    \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)
    \nonumber\\
    \&= 2 \cos^2(\theta) - 1.
\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= 2\cos^2(\theta) - 1. \tag{1}$$

align

\nonumber

align*

Align

equation

```
De verdubbelingsformule herschrijven we nu als
\begin{align*}
  \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)\\
  &= 2\cos^2(\theta)-1.
\end{align*}
```

$$cos(2\theta) = cos^{2}(\theta) - sin^{2}(\theta)$$
$$= 2 cos^{2}(\theta) - 1.$$

align

Align

equation

```
De verdubbelingsformule herschrijven we nu als 

\begin{align*}
\\cos(2\theta) &= \\cos^2(\theta) - \\sin^2(\theta)\\\
&= 2\\cos^2(\theta) -1. \\tag{Alt. verd. form.}
\\end{align*}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

$$= 2\cos^2(\theta) - 1.$$
 (Alt. verd. form.)

equation | align | \nonumber

align*

\tag

Align

```
Dit doen we met de verdubbelingsformule
\begin{align}
  \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta),
\end{align}
die we kunnen herschrijven als
\begin{align}
  &= \cos^2(\theta) - (1 - \cos^2(\theta))\\
  &= 2\cos^2(\theta)-1.
\end{align}
```

Dit doen we met de verdubbelingsformule

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),$$

die we kunnen herschrijven als

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

align

Align

equation

```
Dit doen we met de verdubbelingsformule
\begin{align}
  \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta),
\intertext{die we kunnen herschrijven als}
  &= \cos^2(\theta) - (1 - \cos^2(\theta))\\
  &= 2\cos^2(\theta)-1.
\end{align}
```

Dit doen we met de verdubbelingsformule

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),$$

die we kunnen herschrijven als

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

nonumber

align*

tag

\intertext

\[...

Ook in gebruik

```
AA \(\sqrt{2}\)
BB \[\sqrt{3}\]
CC $$ \sqrt{4} $$
```

```
AA \sqrt{2} BB \sqrt{3} CC \sqrt{4}
```

nonumber

align*

intertext

Left-right

equation

```
\begin{align*}
    &f(\sum_{i=1}^{n}x_i)\\
    &f \left(\sum_{i=1}^{n} x_i \right)
\end{align*}
```

$$f\left(\sum_{i=1}^{n} x_{i}\right)$$

$$f\left(\sum_{i=1}^{n} x_{i}\right)$$

align*

\t

\intertext

\[....

```
\begin{align*}
   A &= \left\{x^2\;\middle|\; x\in\mathbb{Z}\right\}\\
   A &= \left\{x^2\;|\; x\in\mathbb{Z}\right\}\\
   A &= \left\{x^2\;|\; x\in\mathbb{Z}\right\}\\
   A &= \left\{x^2\mid x\in\mathbb{Z}\right\}\\
end{align*}
```

$$A = \left\{ x^2 \mid x \in \mathbb{Z} \right\}$$
$$A = \left\{ x^2 \mid x \in \mathbb{Z} \right\}$$
$$A = \left\{ x^2 \mid x \in \mathbb{Z} \right\}$$

Delimiter point

```
\begin{align*}
  \left.\left[x^2\right]\right|_{x=0}^{x=2} = 4,\quad
  \abs{x} = \left\{\begin{array}{11}\
            x & \mbox{if $ x \geq 0$}\\
            -x & \mbox{if $ x < 0$}
  \end{array}\right.
\end{align*}</pre>
```

$$\left[x^2 \right] \Big|_{x=0}^{x=2} = 4, \quad |x| = \left\{ \begin{array}{ll} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{array} \right.$$

equation | align | \nonumber | align* | \tag | \intertext | \[[\([\]_\)\]\]

```
\begin{align*}
  \abs{x} = \begin{cases}
    x & \mbox{if $ x \geq 0$}\\
    -x & \mbox{if $ x < 0$}
  \end{cases}
\end{align*}</pre>
```

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

equation | align | \nonumber | align* | \tag | \intertext | \[\ll \. \ \ \]

```
\begin{align*}
  R(\theta) = \begin{pmatrix}
    \cos(\theta) & -\sin(\theta)\\
    \sin(\theta) & \cos(\theta)
  \end{pmatrix},\quad
  A = \left|\begin{matrix}
    4 & 3\\
    -1 & 2
  \end{matrix}\right)
\end{align*}
```

$$R(\theta) = egin{pmatrix} \cos(\theta) & -\sin(\theta) \ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad A = egin{pmatrix} 4 & 3 \ -1 & 2 \end{pmatrix}$$


```
\begin{align*}
    I_n = \begin{pmatrix}
        1 & 0 & \cdots & 0 \\
        0 & 1 & \cdots & 0 \\
        \vdots & \vdots & \vdots \\
        0 & 0 & \cdots & 1
    \end{pmatrix}
\end{align*}
```

$$I_n = egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$\int_{x=0}^{x=\infty} e^{-x} dx$$

$$\iint_{S} \mathbf{v} \cdot d\mathbf{S}$$

$$\oint_{I} f(\mathbf{r}) d\mathbf{r} \quad \text{esint}$$