Mod 9: Relational Database Design

Normalization Theory

Designing relations

- What is the right structure for tables?
- How many tables ?
 - Have more smaller or a few large tables ?
- Criteria ?
 - Understandability ?
 - Driven by meaning of data
 - Relatedness of data within a table ?
 - Minimize redundancy ?
 - Enforceability of constraints ?
 - Performance ?
- **■** Theoretical foundations?

Not "good" relation

- **■** Consider :
 - std (rno, name, hno, sdept, head, warden, crdept, crno, grade)
- **■** Has redundancy
- Leading to inconsistencies while making updates : called update 'anomalies'
- Develop theory : achieve separation of data and enforcement of constraints in easy way
- Define good 'normalized' forms for relations based on this theory

First Normal Form (1NF)

- 1NF : attributes are atomic
 - No composite values, no arrays, ...
- Non-atomic values
 - complicates storage
 - query language becomes complex
 - Object-orientation is a possible answer

Goal — Devise a Theory

- **Decide** whether a relation R is in "good" form.
- If no, decompose R into $\{R_1, R_2, ..., R_n\}$ such that
 - each Ris in good form
 - the decomposition is lossless-join
- Our theory is based on:
 - functional dependencies (FDs)
 - multivalued dependencies (MVDs)
 - They capture 'constraints'

Functional Dependencies (FD)

- Notation : $\alpha \rightarrow \beta$
- Means: attributes α determines uniquely value for β
 - \bullet If 2 tuples have same α , they must also have same $\,\beta$
- FD is a generalization of the notion of a *key*
- K is a key (or, superkey) for R if $K \rightarrow R$
- Consider :

Std (rno, sname, dept, dname, head, hno, phone, cpi)

Some FDs here: rno → dept

Functional Dependencies (Cont.)

- **■** FDs need to be explicitly stated : application specific
- Database D satisfies given F (set of FDs)
- Set F holds on D

(note: D varies with time, so F hold for all D's)

Properties of Functional Dependencies

- Armstrong's Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ (reflexivity; trivial FD)
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ (augmentation)
 - if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ (transitivity)
- **■** These rules are
 - o sound (generate FDs that actually hold), and
 - complete (generate all FDs that hold).

Closure of a Set of FDs

- **Given** F: other FDs are logically implied by F.
- F⁺
 - ullet set of all functional dependencies logically implied by F
 - called closure of F

More properties of Fds

- **given** $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$ (union)
- **given** $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ (decomposition)
- If $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$ (pseudotransitivity)

The above rules can be inferred from Armstrong's axioms.

Example

- R = (A, B, C, G, H, I) $F = \{A \rightarrow B \quad A \rightarrow C$ $CG \rightarrow H \quad CG \rightarrow I$ $B \rightarrow H\}$
- some members of F⁺
 - $A \rightarrow H$ by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - \bullet $CG \rightarrow HI$
 - → $CG \rightarrow I$ gives $CG \rightarrow CGI$, and use $CG \rightarrow H$ to infer $CGI \rightarrow HI$,

and then transitivity

Boyce-Codd Normal Form

R is in BCNF wrt *F* if for all non-trivial FDs $\alpha \rightarrow \beta$ in F+

 \blacksquare α is a (super)key for R

Consider :

emp_dept (ID, name, salary, dept_name, building, budget)

This is not in BCNF

because dept_name→ building, budget holds, but dept_name is not a superkey (not a GOOD relation)

What is required to get it into BCNF? What gets achieved?

Decomposing a Schema into BCNF

- Given R and a FD $\alpha \rightarrow \beta$ which violates BCNF decompose R into:
 - R1 with attributes (α U β)
 - R2 with attributes $(R (\beta \alpha))$ (keep α in both)
- In our example,

- emp1 (dept_name, building, budget)
- emp2 (ID, name, salary, dept_name)

Lossless-join Decomposition

- Decomposition using \prod and re-construction using \bowtie $r = \prod_{RI}(r) \bowtie \prod_{R2}(r)$
- A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F⁺:
 - $R_1 \cap R_2 \to R_1$
 - $R_1 \cap R_2 \to R_2$

■ Consider addr(city, street, PIN)

PIN → city

city, street → PIN

(key is city + street)

■ addr not in BCNF but difficult to decompose (2nd FD will span across 2 tables then !)

BCNF and Dependency Preservation

- **■** FDs are Constraints
 - Easy to enforce using keys
- goal : dependency preserving decomposition in BCNF
- achieving both BCNF decomposition and dependency preservation not always possible
- Define a weaker normal form, called third normal form (3NF).

Third Normal Form

- A relation R is in third normal form (3NF) if for all nontrivial FDs $\alpha \rightarrow \beta$ in F^+ at least one of the following holds:
 - α is a (super)key
 - $m{\delta}$ attributes are contained in a candidate key
- A BCNF relation is in 3NF
- 3NF provides a minimal relaxation of BCNF to ensure dependency preservation.

■ Bank example:

C - cust, B: branch, E: emp

Given R(C,B,E)

FDs present : $E \rightarrow B$ $CB \rightarrow E$

Candidate keys: CB, CE but not EB since E may serve many customers

-- not in BCNF, but in 3NF since B is part of candidate key

Also : addr(<u>city, street</u>, pin) is in 3NF for pin → city, city is part of key

Multivalued Dependencies

Suppose we record names of children, and phone numbers for employees in table:

emp_info (ID, child, phone)

- Example data:
 (99999, David, 1234)
 (99999, David, 4321)
 (99999, William, 1234)
 (99999, William, 4321)
- This relation is in BCNF there are no non-trivial FDs
- Has redundancies; Can lead to insertion anomalies
- Better to decompose it into 2 relations
 - emp1 (ID, child) emp2(ID, phone)
- Need new type of constraint and normal form

Multi-valued Dependency (MVD)

■ Capture 1-to-many relationships :

■ MVD captures the fact that two sets of data within a table are independent of each other.

Fourth Normal Form

- A relation R is in 4NF if for all non-trivial multivalued dependencies $\alpha \rightarrow \rightarrow \beta$,:
 - α is a (super)key for *R* (implying $FD \alpha \rightarrow \beta$)
- Our previous emp1, emp2 decompositions are in 4NF because the two MVDs are trivial
- If a relation is in 4NF it is in BCNF

Overall Theory

- **■** Study properties of FDs
 - Which are redundant FDs? Extraneous attributes?
- develop algorithms to generate lossless decompositions (into BCNF and 3NF : analytical approach)
 - schema synthesis approach also possible
- develop algorithms to test if a decomposition is dependencypreserving

ER Model and Normalization

■ When an E-R diagram is carefully designed, identifying all entities correctly, the tables generated from the E-R diagram should not need further normalization.

More Theory and algorithms

Closure of Attribute Sets

- Given a set of attributes α, define the closure of α under F (denoted by α⁺) as the set of attributes that are functionally determined by α under F
- **Algorithm** to compute α^+ , the closure of α under F

```
result := \alpha;

while (changes to result) do

for each \beta \rightarrow \gamma in F do

begin

if \beta \subseteq result then result := result \cup \gamma

end
```

We can define a BCNF relation on 'result'

Uses of Attribute Closure

- **■** Testing for superkey:
 - To test if α is a superkey, we compute α⁺ and check if α⁺ contains all attributes of R.
- **■** Testing functional dependencies
 - To check if a FD $\alpha \rightarrow \beta$ holds, just check if $\beta \subseteq \alpha^+$.
 - Is a simple and cheap test, and very useful

Example of Attribute Set Closure

```
\blacksquare R = (A, B, C, G, H, I)
```

 $F = \{A \to B \qquad A \to C$ $CG \to H \qquad CG \to I$ $B \to H\}$

■ (AG)⁺

1. result = AG

2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$

3. result = ABCGH $(CG \rightarrow H)$

3. result = ABCGH (CG \rightarrow H) 4. result = ABCGHI (CG \rightarrow I)

- Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Does $AG \rightarrow R$? == Is $(AG)^+ \subseteq R$
 - 3. Is any subset of AG a superkey?
 - Does A → R? == Is (A)+⊆ R
 - 2. Does $G \rightarrow R$? == Is (G)+ \subseteq R

Canonical Cover

- Redundancies in a given F
 - An FD may be redundant :

 $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

• attributes may be redundant (extraneous)

→ on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$ → on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$

- Intuitively, a canonical cover of F is a "minimal" set of FDs equivalent to F, having no redundancies
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique.

Dependency Preservation

- Let F_i be the set of dependencies from F^+ that include only attributes in R_i
 - A decomposition is dependency preserving, if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
 - If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

Testing for Dependency Preservation

■ To check if α → β is preserved in a decomposition of R into R₁, R₂, ..., R_n we apply the following test (with attribute closure done with respect to F)

```
result = \alpha
while (changes to result) do
for each R_i in the decomposition
t = (result \cap R_i)^+ \cap R_i
result = result \cup t
```

whichever table contains α also β in its α +

If result contains all attributes in β , then the FD $\alpha \rightarrow \beta$ is preserved.

Example of BCNF Decomposition

class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)

■Functional dependencies:

course_id→ title, dept_name, credits
building, room_number→capacity
course_id, sec_id, semester, year→building, room_number,
time_slot_id

■A candidate key {course_id, sec_id, semester, year}.

Example of BCNF Decomposition

class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)

■BCNF Decomposition:

- course_id→ title, dept_name, credits holds
 but course_id is not a superkey.
- We replace class by: course(course_id, title, dept_name, credits) class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

Comparison of BCNF and 3NF

- It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 - the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 - the decomposition is lossless
 - it may not be possible to preserve dependencies.

■ SQL does not provide a direct way of specifying functional dependencies other than superkeys.

Even if we had a dependency preserving decomposition, using SQL, we would not be able to efficiently test a functional dependency whose left hand side is not a key.

Multivalued Dependencies (MVDs)

■ Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The multivalued dependency

$$\alpha \rightarrow \rightarrow \beta$$

holds on R if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

$$\begin{array}{ll} t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha] \\ t_3[\beta] = t_1[\beta] \\ t_3[R - \beta] = t_2[R - \beta] \\ t_4[\beta] = t_2[\beta] \\ t_4[R - \beta] = t_1[R - \beta] \end{array}$$

■ Properties of MVDs defined

. .

Theory of MVDs

The closure D^+ of D is the set of all functional and multivalued dependencies logically implied by D.

- We can compute D⁺ from D, using the formal definitions of functional dependencies and multivalued dependencies.
- We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice
- For complex dependencies, it is better to reason about sets of dependencies using a system of inference rules

→

Example

 $\blacksquare R = (A, B, C, G, H, I)$

$$F = \{ A \longrightarrow B \\ B \longrightarrow HI$$

$$CG \rightarrow \rightarrow H$$

 \blacksquare R is not in 4NF since $A \rightarrow \rightarrow B$ and A is not a superkey for R

■ Decomposition

a)
$$R_1 = (A, B)$$

 $(R_1 \text{ is in 4NF})$

b) $R_2 = (A, C, G, H, I)$ decompose into R_3 and R_4) $(R_2 \text{ is not in 4NF},$

c)
$$R_3 = (C, G, H)$$

 $(R_3 \text{ is in 4NF})$

d)
$$R_4 = (A, C, G, I)$$

 $(R_4 \text{ is not in 4NF, decompose } ...)$

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

$$\blacksquare R = (J, K, L)$$

$$F = \{JK \to L$$

$$L \to K$$

Two candidate keys = JK and JL

- \blacksquare *R* is not in BCNF
- \blacksquare Any decomposition of R will fail to preserve

$$JK \rightarrow L$$

This implies that testing for $JK \rightarrow L$ requires a join

Third Normal Form: Motivation

- **■** There are some situations where
 - BCNF is not dependency preserving, and
 - efficient checking for FD violation on updates is important
- Solution: define a weaker normal form, called Third Normal Form (3NF)
 - Allows some redundancy (with resultant problems; we will see examples later)
 - There is always a lossless-join, dependency-preserving decomposition into 3NF.

Redundancy in 3NF

- There is some redundancy in this schema
- Example of problems due to redundancy in 3NF
 - R = (City, street, PIN)
 - $F = \{City, street \rightarrow PIN, PIN \rightarrow City\}$
 - It is in 3NF as City is part of Key (City, Street), and not BCNF because PIN is not its key
- repetition of information
 - PIN, City will repeat for multiple streets

Summary

- **■** Dependencies capture constraints
- Can be used to structure relations to ensure maintaining constraints is possible
- **■** Constraints have formal properties using which
 - We can decompose 'bad' relations
 - Synthesize 'good' relations
- Many normal forms defined to capture desirable structures
- Properly done ER models will produce relations in good normal form
- Theory not much used in practice but gives us formal and useful insight