식품 분류기

10조 작위적인공조

김태주, 진소라, 황태희

INDEX

1.	음식분류기 소개
2.	데이터셋
3 .	CNN 설계
4.	이미지 분류
5.	추천기 설계
6.	최종 모델

1. 음식 분류기 소개

Input

Output

1

Deep Learning

추천된 음식

2. Hash Tag #무더위 #혼밥 #몸보신

2. 데이터셋

대분류	소분류	대분류	소분류
구이	갈비구이, 갈치구이, 고등어구이, 곱창구이, 닭갈비, 더덕구이, 떡갈비, 불고기, 삼겹살, 장어구이, 조개구이, 황태구이, 훈제오리	국	계란국, 떡국/만두국, 무국, 미역국, 북엇국, 소고기무국, 시래기국, 육개장, 콩나물국
김치	갓김치, 깍두기, 나박김치, 무생채, 배추김치, 백김치, 부추김치, 열무김치, 오이소박이, 총각김치, 파김치	나물	가지볶음, 고사리나물, 미역줄기볶음, 숙주나물, 시금치나물, 애호박볶음
떡	경단	만두	만두
면	막국수, 물냉면, 비빔냉면, 수제비, 열무국수, 잔치국수, 쫄면, 칼국수, 콩국수, 라면, 자장면, 짬뽕	무침	고추된장무침, 꽈리고추무침, 도토이물, 잡채, 도라지무침, 콩나물무침, 홍어무침
밥	김밥, 김치볶음밥, 비빔밥, 새우볶음밥, 알밥, 잡곡밥, 주먹밥, 유부초밥	볶음	건새우볶음, 오징어채볶음, 감자채볶음, 고추장진미채볶음, 두부김치, 떡볶이, 라뽂이, 멸치볶음, 소세지볶음, 어묵볶음, 제육볶음, 주꾸미볶음
쌈	보쌈	음청류	수정과, 식혜

구이 밥 주 메뉴

1507トスト

93가지로 재 선정

3. CNN 설계

3-2. Pre-Training

Pre-training : 모델의 정확도를 증가시키는 방법으로 pre-trained model의 가중치를 사용하여, 랜덤하게 가중치를 시작하는 것보다 나은 가중치를 받음

CNN 모델	Top-1 정확도	Top-5 정확도	epoch
DenseNet	82.17%	96.69%	32
ResNet	81.05%	95.97%	40
GoogLeNet	78.38%	94.76%	45
VGGNet	33.43%	67.99%	47

논문 '한식 이미지 분류에서의 미리 학습 된 컨볼루셔널 뉴럴 네트워크 간 성능 비교 분석' 참조

Fine-tuning : 모델의 성능을 조금 더 증가시키기 위해서 pre-training 기술 중 fine-tuning(선정된 모델 DenesNet의 상위 2계층의 동결을 풀어Average Pooling, Batch normalization 추가하여 fine-tuning)을 사용

3-4. 모델 선정

CNN를 위해 어떤 Network를 사용할 것인가?

CNN 모델 선정 기준	접근성	정확도
상세 조건	 현재 사용하고 있는 keras 라이 브러리에 삽입 되어 있는가? Tensorflow Hub에 존재하는가? 	 Tensorflow Hub에 학습된 모 델이 있는가? 정확도 비교
선정된 모델	GoogLeNet(InceptionV3) MobileNet ResNet	ResNet

CNN모델 선정 기준표

3-4. 모델 선정

정확도 검출을 위한 조건

- ◆ 입력 데이터: Food Small Data (30개, 카테고리당 이미지 300장, 총 9,000)
- + Pre_training (feature extraction) 사용

Pre_training Model	ResNet	Inception V3	Mobilenet
학습 데이터	ImageNet	=	=
FC	Dens(30, softmax)	=	=
epoch	1	=	=
learning_rate	0.01	=	=
step	282	=	=
Gradient	Adam	=	=
Loss	categorical entropy	=	=
Acc	0.8214	0.6962	0.7143

= 정확도가 82%로 가장 높은 ResNet 선정

3-5. 설계 과정 변경

- ◆ 한식재단의 데이터베이스 150개의 이미지 셋을 가지고 시작하였으나, 추천기를 설계하는 과정에서 주 음식이 될 수 있는 음식을 선정하여 음식 93개로 재선정
- * Tensorflow hub를 이용한 pre-training한 모델 keras.models.save 후 load_model을 통해 h5파일을 불러올 때, 모듈 키워드(*kwag)를 읽지 못해 로드 할 수 없는 오류가 발생
- * 정확도와 접근성을 기준으로 선정한 모델 ResNet대신 DenseNet으로 모델을 변경 (pretraining 모델을 tensorflow hub를 통해 받아왔지만, keras를 통해 trained된 model을 불러옴으로써 DenseNet 모델의 사용이 가능해지었기 때문)
- * 기존 small food data(30개, 각 300장) 대신 big food data (93개, 각 train 900장, validation 100장)로 학습 데이터 변경

3-6. DenseNet

DneseNet을 구성하는 Dense Block

각 계층들은 이전의 계층까지의 정보인 collective knowledge를 다른 계층에게 전달함으로써 모델의 Overfitting과 Vanish gradient을 줄여준다.

CIFA-10에서의 Test Error를 측정한 것이다. (CIFA-10 ~ 10class x 6,000image) 적은 양의 데 이터 셋에서 ResNet보다 강력한 힘을 발휘하는 것을 볼 수 있다.

-> 한식 이미지 데이터 셋은 클래스 당 1,000장의 이미지를 가지고 있는 적은 양의 데이터 셋이기에 ResNet대신 적은 양의 데이터 셋에 상대적으로 강하 다는 DenseNet을 사용하도록 설계를 변경하였다.

3-1. Augmentation

Augmentation : 원본 이미지를 (224x224)로 변환 후, Overfitting 방지, 성능 개선을 위해 사용

Recale = 1./255	0~255내의 RGB계수를 1/255로 스케일링해 0~1의 범위로 변환시킨다.
rotation_range = 40	주어진 각도 내에서 이미지를 회전시킨다. (입력값이 40이므로 - 40°~40° 내에서 회전)
height_shift_range = 0.2	이미지를 수평으로 랜덤하게 평행 이동시킨다. (0.2는 원본 이미지의 가로, 세로 길이에 대한 비율 값)
width_shift_range = 0.2	이미지를 수직으로 평행 이동시킨다(height_shift_range와 동일한 비율 값)
shear_range = 0.2	이미지를 임의로 전단 변환을 시킨다.
zoom_range = 0.2	이미지를 임의로 확대한다.
horizontal_flip = True	이미지의 좌우를 뒤집는다.
fll_mode = 'nearest'	위의 기능들로 이미지를 이동, 변환시킬 때 생기는 공백을 채울 픽셀의 종류 이다. 사용한 nearest는 공백을 근접한 픽셀로 채운다.

사용한 Augmentation

3-3. Batch-Normalization

Batch-Normalizaion : 훈련 과정 중에 사용된 Batch 데이터의 평균과 분산에 대한 지수 이동 평균을 내부에서 유지하며, 데이터, 가중치 값의 정규화로 학습 속도 증가

Fine-tuning 후 자유 피라미터:

18,321,984

4. 이미지 분류

Pre-trained CNN

Dense201

AveragePooling2D

Flatten

Batch-normalization

Dense

Dropout

DenseNet201을 fine-tuning으로 상위 2계층의 동결을 해제하여 학습을 하였다.

Dropout = 0.5

Gradient = RMSprop

Learning rate = 0.001

Loss = catergorical_crossentropy

Activation = relu

class 분류에서는 softmax를 사용

Step = 839

Epcoh = 32

5. 추천기 설계

기분	음식	선정 이유
좋음	갈비 구이, 육회, 떡갈비, 불고기, 삼겹살, 훈제오리, 닭갈비, 양념치킨, 편육, 닭볶음탕, 제육 볶음, 장조림, 메추리알 장조림, 족 발, 수육, 갈비구이, 갈비찜, 갈비탕, 곱창구이, 곱창전골	단백질(육류)
우울	물 회, 황태구이, 장어구이, 조기구이, 조개구이, 북엇국, 추어탕, 오징어튀김, 새우튀김, 멍게, 산 낙지, 회 무침, 홍어무침, 새우볶음밥, 주꾸미 볶음, 양념게장, 생선전, 코다리조림, 꽁치조 림, 동태찌개, 해물 찜, 양념치킨, 짜장면, 쫄면, 콩국수, 알 밥, 주먹밥, 잡채, 유부초밥, 떡꼬 치, 호박전, 간장게장, 갈치구이, 갈치조림, 고등어구이, 고등어조림, 과메기	단백질(어류)
피곤	육회, 물 회, 장어구이, 삼겹살, 조개구이, 삼계탕, 오징어 튀김, 새우튀김, 멍게, 산 낙지, 피자, 양념치킨, 편육, 만두, 물냉면, 짜장면, 열무국수, 막국수, 라면, 칼국수, 짬뽕, 쫄면, 잔치국수, 수제비, 비빔냉면, 콩국수, 회 무침, 홍어무침, 잡채, 유부초밥, 잡곡밥, 알 밥, 주먹밥, 비빔밥, 새우볶음밥, 누룽지, 두부김치, 제육볶음, 주꾸미 볶음, 떡볶이, 라볶이, 보쌈, 떡꼬치, 호박전, 생선전, 파전, 호박죽, 전복죽, 족발, 순대, 수육, 감자전, 감자탕, 계란국, 계란말이, 계란국, 계란찜, 곰탕_설렁탕, 김밥, 김치볶음밥, 김치찌개	일품음식 + 무 기질이 풍부한 음식
스트레스	황태구이, 닭갈비, 매운탕, 쫄면, 육개장, 양념게장, 비빔냉면, 회 무침, 홍어무침, 두부김치, 제육볶음, 주꾸미 볶음, 감자조림, 고추튀김, 김치전, 떡볶이, 라볶이, 닭볶음탕, 코다리조림, 동태찌개, 해물 찜, 냉면, 콩국수	매운 음식 + 고 당도 음식

기분별 분류된 음식 ('대학생들의 정서에 따른 컴포트 푸드의 차이:성차를 중심으로'참조)

5. 추천기 설계

6. 최종 모델

Input

Output

