Actively Cooled Ceramic Matrix Composite Concepts for High Heat Flux Applications

Andrew J. Eckel*, Martha H. Jaskowiak* and Kevin Dickens*

*National Aeronautics and Space Administration Glenn Research Center 21000 Brookpark Road Cleveland, Ohio 44135

> [†]ZIN Technologies 3000 Aerospace Parkway Brook Park, OH 44142

ABSTRACT

High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches, challenges and test results are presented, along with a status of recent government-funded projects.

Actively Cooled Ceramic Matrix Composite Concepts for High Heat Flux Applications

Andrew J. Eckel,
Martha H. Jaskowiak
and
Kevin Dickens

Glenn Research Center Cleveland, Ohio

Actively Cooled Composites

What are actively cooled ceramic matrix composites?

- ▶ Heat exchanger with coolant contained within structure.
- Distinctly different than back-side cooled, film cooled, or transpiration cooled structures

Why Actively Cooled Ceramic Matrix Composites?

- ► Lighter weight than metallic designs
- up to 50% weight reductions calculated
- ► Lower coolant flow requirements
- ► May eliminate re-entry cooling requirements
- Can provide higher fuel injection temperatures
- Enables vehicle and engine designs/cycles and missions
- Increased operational margin -- translates to enhanced range and/or system payload

Actively-Cooled Ceramic Composites

Silicon Carbide/Silicon Carbide (SiC/SiC)

Actively-Cooled Ceramic Composites

Structural Concepts

Co-processed Metallic Tubes

Actively-Cooled Ceramic Composites

Silicon Carbide/Silicon Carbide (SiC/SiC)

Actively-Cooled Ceramic Composites

Actively-Cooled Composite Focused Projects

Objectives

- > Each project has focused on specific goals, though system weight is a common driver Preliminary designs result in ~ 50% weight savings projections, for most projects.
- Applications generally target hot-flow path propulsion components for either rocket or scramjet
- ▶ Many projects have been terminated prematurely, for programmatic reasons, but collectively, have: Developed and demonstrated actively-cooled ceramic matrix composites heat exchanger designs that meet a range of thermal and structural requirements, for future vehicles.

Potential Cooled Composite Components

Demonstrated Geometry and Scale

Key Parameters Driving Structural Concept and Materials Selection

► Heat Flux

Range from 10's of kW/m² to 10's of MW/m²

► Coolant Properties

Chart of SSME heat flux

(to be inserted)

Coolant: hydrogen, hydrocarbon, water Pressure: 10's to 10,000's of kPa

► Mission requirements

Single Use or Multiple Cycles (reusable?)

Geometry

Axisymmetric or "flat"

Structural Concepts Simplified 1-D Thermal Analysis

Q_g = heat flux

T_h = hot surface temperature

T_b = backside surface temperature

h_s = hot side heat transfer coefficient

h_c = backside heat transfer coefficient

t_c = composite wall thickness

Structural Concepts Composite with Metal Tube

T_c = cool metallic surface temperature
T_g = gap metallic surface temperature
h_g = gap heat transfer coefficient
h_c = backside heat transfer coefficient
t_g = gap thickness
t_m = metal tube thickness

Cooled Composite Structural Concepts

Other Examples of Cooled Composite Structural Concepts

All Composite

00000000

Metallic Tube

Materials Selection

Properties for Cooled Composite Materials

► High Thermal Conductivity

► Hermiticity

► Oxidation Resistance

► High Temperature Strength

► High Specific Strength

► Compatibility with Coolant

▶ Thermal Expansion Coefficient Compatible with Interfacing Materials

Materials Selection Prioritization

	Metal	2/2	C/SiC	C/Sic Sic/Sic
High Thermal Conductivity	_	7	4	ო
Hermiticity	_	ന	4	2
Oxidation Resistance	7	4	ო	_
High Temperature Strength	4	~	7	ო
High Specific Strength	4	~	2	က
Compatibility with Coolant	2	4	ო	-
Thermal Expansion Match	_	4	ო	7

Materials - and Structural Concept -- Selection Dependent Upon Application

Oxidation Resistance of Composites

Time

Concept Screening and Validation

Four concepts evaluated at 3" x 10" scale in rocket engine exhaust

Propellants- Gaseous O₂/H₂

Coolant – H₂O,

Coolant pressure, 1200psi

· Coolant flow, 300gpm

Run Durations –

Cycles –

Cooled Panel Concepts Evaluated in Cell22

	P&W , Non-bonded, rolled Inco 625 tubes, Maintainable design	C/C-P25, ICC-P30X SiC surface coating
00000000	RSC, Woven CMC tube design, No metallic tubes	PIP C/SiC, T300 fibers
	GEPS, RCI, MoRe tubes coprocessed with composite	CVI C/SiC, K321, T300, PyC interface
2 SR SR SR SR S	Snecma, Non-bonded C263 tubes w/superalloy spring clips	C/SiC, Novoltex

Cooled Composite Subelement Test at NASA GRC

Panel Arrangement at Thrust Cell Exit

LEFT FENCE & ABLATIVE SHIELDING NOT SHOWN

Top View During Test

Heat fluxes to 14 MW/m²
Outer surface temperatures to 2800 F

3" x 10" Test Panel Results

- Four different structural concepts tested all of the panels completed the test matrix which was tailored to their design requirements
- > Issues identified with each panel all panels tested would require modification before further scale up
- ► Primary issues identified for panels
- eliminate or seal microcracking of current C/SiC or concentrate on other systems - permeability through panel of either coolant or combustion gases, need to either
- low thermal conductivity due to processing flaws, need more uniform densification - low thermal conductivity due to increased thermal contact resistance, need better contact between tubes and hot face sheet
- lack of high temperature durability for extended times
- Lessons learned in testing
- seals pose considerable challenge to long duration runs,
- need to strategically instrument panel and backside air to determine when data may reflect erroneous heat loads / heat fluxes due to backside heating
- streaking issues caused early retirement of 1st two panels, need to remedy this situation earlier in the future if same situation occurs

ASSA

6" x 30" Panel Test

- To address the needs of a scramjet engine, a 6" x 30" panel was fabricated of a a "maintainable panel" design.
- ► Inco 625 tubes press-fit on backside of silicon carbide coated carbon/carbon composite.
- ▶ Tests conducted in United Technologies Research Center scramjet facility. hydrocarbon coolant

3" x 10" panel

NAS AN

UTRC Scramjet Facility

6"x30" Cooled Ceramic Matrix Composite Panel

Largest cooled CMC panel ever Represents:

fabricated

First cooled CMC panel to be tested in scramjet engine

Testing of Cooled CMC Panel in UTRC Scramjet Rig

Summary of Scramjet Panel Testing

- Panel tested in the UTRC direct connect scramjet combustor facility using JP-7 fuel as the coolant.
- Overall objectives of the test were to provide data to evaluate heat exchanger performance and validate analytical tools used to predict heat exchanger behavior under simulated engine conditions.
- ► Cooled composite panel survived M6.5, Q 750 psf scramjet conditions for a maximum possible run duration of 30 seconds with no damage to the C/C
- ► Degradation of surface coating which was evident near injector ports did not cause any detectable structural damage to the C/C substrate.
- ▶ Maximum temperature of C/C panel, measured with TC embedded below the panel surface was 2533°F with the surface temperature estimated at ~ 2800°F (within the predicted range of 3000°F.

Summary

► While individual programs/tasks are focused on specific technical challenges, they all contribute synergistically to advancing the technology base for actively cooled composites.

