Seunghoon Hwang, Ph.D.

REHABILITATION ROBOTICS, HUMAN-ROBOT INTERACTION, SAFETY-CRITICAL CONTROL, EXOSKELETON ROBOT

Arizona State University, Tempe, AZ 85281

■ shwang45@asu.edu | ■ hshhln5@gmail.com

Education	
Arizona State University POSTDOCTORAL RESEARCHER • Advisor: Dr. Hyunglae Lee (Arizona State University) and Dr.Sze Zheng Yong (Northeastern University)	USA 2021 - Current
HANYANG UNIVERSITY PHD MECHATRONICS ENGINEERING • Advisor: Dr. Changsoo Han	South Korea 2017 - 2020
HANYANG UNIVERSITY MS Interdisciplinary Engineering Systems • Advisor: Dr. Changsoo Han	South Korea 2015 - 2017
HANYANG UNIVERSITY BS MECHANICAL ENGINEERING	South Korea 2009 - 2015

Publications _____

JOURNAL PAPERS - PUBLISHED

- [J1] **S Hwang**[†], C Dongjune [†], A Saxena, E Oleen, SL Paing, J Atkins, and H Lee. "Characterization of Human Shoulder Joint Stiffness across 3D Arm Postures and its Sex Differences." IEEE Transactions on Biomedical Engineering (2024).
- [J2] **S Hwang**, L Seungchan, S Dongbin, B Inhyuk, H Seoyeon, K Wansoo. 2022. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait. Sensors 22.7 (2022): 2462.
- [J3] Baek, I., Shin, K., Kim, H., **Hwang, S.**, Demeester, E., Kang, M. S. (2021). Pre-grasp manipulation planning to secure space for power grasping. Ieee Access, 9, 157715-157726.
- [J4] D Sun, **Hwang, S. H.**, J Han. 2021. Lever Control for Position Control of a Typical Excavator in Joint Space Using a Time Delay Control Method. Journal of Intelligent and Robotic Systems 102 (3), 1-16 (First author: equally contributed
- [J5] **Hwang, SH**, Sun, DI, Han JK, Kim WS. 2021. Gait pattern generation algorithm for lower-extremity rehabilitation–exoskeleton robot considering wearer's condition. Intelligent Service Robotics (2021): 1-11.
- [J6] D Shin, S Lee, **Hwang, S. H.***. 2021. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors. Sensors 21 (8), 2785 (Corresponding author)
- [J7] D Sun, I Baek, **S Hwang.**, S Lee, SK Lee, S Jang, C Han. 2020. Sensor-based straight-line control of the end-point of a typical retrofitted hydraulic excavator. Automation in Construction 120, 103385.
- [J8] Sun, D., **Hwang, S.**, Kim, B., Ahn, Y., Lee, J., Han, J. (2020). Creation of one excavator as an obstacle in c-space for collision avoidance during remote control of the two excavators using pose sensors. Remote Sensing, 12(7), 1122.
- [J9] **Hwang, S. H.**, et al. 2019. Intuitive gait pattern generation for an exoskeleton robot. International Journal of Precision Engineering and Manufacturing 20.11 (2019): 1905-1913.
- [J10] Sung, J., Choi, S., Kim, H., Lee, G., Han, **Hwang, S. H.**, et al. 2017. Feasibility of rehabilitation training with a newly developed, portable, gait assistive robot for balance function in hemiplegic patients. Annals of rehabilitation medicine, 41(2), 178.
- [J11] Moon, S. B., Ji, Y. H., Jang, H. Y., **Hwang, S. H.**, et al. 2017. Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower-limb robot: A pilot study. International Journal of Precision Engineering and Manufacturing, 18(12), 1773-1781.

In Review

[J12] **Hwang, Seunghoon**, Tarun Pati, Aditya Saxena, Hyunglae Lee, Sze Zheng Yong "Safe Variable Stiffness Control for Shoulder Exoskeleton Robots." IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY (2024).

CONFERENCE PAPERS

- [C1] **Hwang, S.** et al. "CHARACTERIZATION OF HUMAN SHOULDER JOINT STIFFNESS ACROSS VARIOUS ARM POSTURES AND ITS SEX DIFFERENCES", American Society of Biomechanics, ASB, 2024.
- [C2] **Hwang, S.**, Edward Chan, Hyunglae Lee. "Quantification of Shoulder Joint Impedance during Dynamic Motion: A Pilot Study Using a Parallel-Actuated Shoulder Exoskeleton Robot", 21st International Conference on Ubiquitous Robots (UR), IEEE, 2024.
- [C3] Pati, T.⁺, **Hwang, S.**⁺ and Yong, S.Z. Control Barrier Functions for Linear Continuous-Time Input-Delay Systems with Limited-Horizon Previewable Disturbances. 2024 American Control Conference (ACC). IEEE, 2024. (First author equally contributed)
- [C4] Tarun Pati⁺, **Hwang, S.H.**⁺, Sze Zheng Yong. 2023. Preview Control Barrier Functions for Linear Continuous-Time Systems with Previewable Disturbances. 2023 European Control Conference (ECC). IEEE, 2023. (First author equally contributed)
- [C5] **S. Hwang**, D. Chang, A. Saxena, H. Lee, "Feasibility study for the quantification of intact human shoulder joint stiffness in various 3D arm postures with relaxed muscles," NSF DARE Conference, Los Angeles, CA, April 2023
- [C6] Seoyeon Ham, Brian Byunghyun Kang, Jihoo Kim, **Seunghoon Hwang**, Wansoo Kim. Development of soft variable stiffness actuator with tendon-driven layer jamming mechanism. 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob)

In Review

- [C7] **Hwang, S.**, Pati, T., Lee H., Yong, S.Z. "Preventing Ankle Sprain: Integrating Preview Control Barrier Functions with Human Movement Primitive Prediction" IFAC Workshop on Cyber-Physical Human Systems (CPHS). IFAC, 2024.
- [C8] Pati, T.+, **Hwang, S.**+ and Yong, S.Z. "Robust Control Barrier Functions with Limited-Horizon Preview for Linear Continuous-Time Input-Delay Systems" 2024 Conference on Decision and Control (CDC). IEEE, 2024. (First author equally contributed)
- [C9] Pati, T., **Hwang, S.** and Yong, S.Z. "Limited Preview Control Barrier Functions for Linear Continuous-Time Nonlinear Systems with Input Delays" 2024 Conference on Decision and Control (CDC). IEEE, 2024.

WORKSHOP PAPERS

- [W1] **Hwang, S.**, Tarun Pati, Aditya Saxena, Hyunglae Lee, Sze Zheng Yong. "Safe Variable Stiffness Control for Shoulder Exoskeleton Robot", 6th Ergonomic Physical Human-Robot Collaboration: Harnessing Advancements in Robot Learning at IROS 2023.
- [W2] **Hwang, S.**⁺, Donggyu Lee⁺, Aditya Saxena, Wansoo Kim. Generation of Human Motion Trajectories Maintaining Overloading Joint Torque Within Safe Limits", 6th Ergonomic Physical Human-Robot Collaboration: Harnessing Advancements in Robot Learning at IROS 2023.

PATENTS

- [P5] Crain Type of Mobile Robot System for Gait Assist of Lower Paralytic(P201707810P)
- [P4] Development of Assist Mechanism of Passive Upper Limb Exoskeleton for Lifting a Particular Weight(P20170262OP)
- [P3] Exoskeleton Passive Mechanism for Support of Ankle Strength(P20170865OP)
- [P2] Linkage Type of Mobile Robot System for Gait Assist of Lower Paralytic(P20170783OP)
- [P1] SEA Module Type of Mobile Robot System for Gait Assist of Lower Paralytic(P20170782OP)

Awards,	Fel	lowsi	nips.	, & (Grants

2021 2016	Development Institute Graduate School of Convergence Systems Department Creative Convergence	\$ 81,000
2015	Scholarship, Hanyang University Graduate School of Convergence Systems Department Creative Convergence	ce Talent
Researc	n Project Experiences	
OBJECTIVE: DATA-ENABL	User-Effective Data-Enabled (SUEDE) Shoe for Ankle Injury Prevention. DESIGN AND EVALUATE A SMART SHOE SYSTEM CALLED "SMART USER- EFFECTIVE ED (SUEDE) SHOE" FOR ANKLE INJURY PREVENTION. Dr. Hyunglae Lee and Dr. Sze Zheng Yong	United States, Sponsor: NIH 2023-
	daptive and Safe Control of a Wearable Upper-Extremity Exoskeleton	United States, Sponsor: NSF
POTENTIAL F	DEVELOP AN EXOSKELETON ROBOT FOR THE UPPER EXTREMITY FOR ALLEVIATING THE FOR FATIGUE-RELATED INJURIES DURING HIGHLY REPETITIVE MOTIONS. Dr. Hyunglae Lee and Dr. Sze Zheng Yong	2022-2023
	y on the framework for improving the mutual stability of humans and	KOREA SOUTH
WORK-RELAT	obots. Develop the robotic controller considered ergonomics metric to prevent red musculoskeletal disorders Dr. Wansoo Kim	2021
[R5] Develo	opment of artificial intelligence-based stability and active walking	Gyeonggi Provincial
OBJECTIVE: PRIOR TO A I	Technology. DEVELOP A METHODOLOGY TO IMPROVE GAIT STABILITY BY IDENTIFYING CONDITIONS FALL WHILE WALKING. Dr. Jeakweon Han	Government, KOREA SOUTH 2019 - 2020
[R4] Collab	orative research to develop integrated precision rehabilitation solutions	KISTEP, KOREA SOUTH
OBJECTIVE: THE LIVES O	RESEARCH ASSIGNMENT TO DESIGN A GOVERNMENT RESEARCH GRANT TO IMPROVE F PEOPLE THROUGH REHABILITATION. Dr. Changsoo Han	2017-2018
	opment of exoskeleton robots capable of gait rehabilitation/assistance for	COMPA, KOREA SOUTH
OBJECTIVE:	DESIGN THE LOWER-EXTREMITY EXOSKELETON ROBOT AND IMPLEMENT A CONTROL TO ASSIST GAIT FOR STROKE PATIENTS. Dr. Changsoo Han	2016-2017
[R2] Develo	opment of a Lightweight Knee Rehabilitation Device.	National Research Foundation of Korea, KOREA SOUTH
REHABILITAT	DEVELOPING A LIGHTWEIGHT KNEE REHABILITATION DEVICE FOR KNEE TION IN A VARIETY OF SITUATIONS. : Dr. Changsoo Han	2015-2016
[R1] Developations fo	opment of rehabilitation ankle module robots to prevent hemipleic ot drop.	Korea Association of University, Research Institute and Industry, KOREA SOUTH
	DEVELOP A TENDON-DRIVEN ANKLE MODULE ROBOT TO PREVENT FOOT DROP IN ENTS DURING WALKING.	2015-2016

Supervisors: Dr. Mijeong Kim, Dr. Changsoo Han

Teaching	Experience	
Fall 2018	Research Assistant, ABEEK (Accreditation Board for Engineering Education of Korea) Assistant	Hanynag University
Spring 2018	Research Assistant, ABEEK Assistant	Hanynag University
Fall 2017	Teaching Assistant, Robotics Capstone Design	Hanynag University
Spring 2017	Teaching Assistant, Introduction to Robotics	Hanynag University
Fall 2016	Teaching Assistant, Basic Robotics Experiments	Hanynag University
Spring 2016	Teaching Assistant, Introduction to Basic Robotics	Hanynag University
Mentorin	g	
2024	Edward Chan , Project title: Quantification of Shoulder Joint Impedance During Dynamic Motion: A Pilot Study Using a Parallel-Actuated Shoulder Exoskeleton Robot. (Mentor)	Arizona State University
2024	Ellory Oleen , Thesis title: Patient-Adaptive Robotic Balance Training for Lower-Extremity Stroke Rehabilitation. (2nd Committee)	Arizona State University
2022-2023	Aditya Saxena (now at Carl Zeiss Group), Thesis title: Quantification of Shoulder Stiffness	Arizona State
2021	at Various Arm Postures using a 4-Bar Parallel Exoskeleton Robot. (Mentor) Seoyeon Ham (now at UIUC), Paper title: Development of soft variable stiffness actuator with tendon-driven layer jamming mechanism. (Mentor)	University Hanyang University
Invited Ta	alks	
Sep, 2023 June, 2021	Safety Impedance Controller for Exoskeleton Robot User, Hanyang University Introduction to Rehabilitation Exoskeleton Robot Control, Yonsei Severance Hospital	South Korea South Korea
PROFESS	IONAL ACTIVITIES	
Reviewer		
IEEE Internat	ional Conference on Robotics and Automation (ICRA)	
IEEE/RSJ Inte	ernational Conference on Intelligent Robots and Systems (IROS)	
IEEE Confere	nce on Decision and Control (CDC)	
Internationa	Conference on Biomedical Robotics and Biomechatronics (BioRob)	
IEEE Internat	ional Conference on Robotics and Biomimetics (ROBIO)	
IEEE Internat	ional Conference on Advanced Robotics and Its Social Impacts (ARSO)	
IEEE Transac	tions on Human-Machine Systems	
Skills		