เคมี ม.6

กรดคาร์บอกซิก (Carboxylic)

โดย..มิสเพ็ญนภา ดีจรัส

Carboxylic; สูตรโครงสร้าง

สารที่มีหมู่คาร์บอกซิล (—COH) เป็นหมู่ฟังก์ชัน

Carboxylic : การอ่านชื่อ

กำหนดให้คาร์บอนของ - COOH เป็นตำแหน่งที่ 1 และ เรียกโซ่เหลักด้วยชื่อของ แอลเคน (- ane) แต่ตัดอักษรตัวท้ายของแอลเคน คือ e ออก แล้วลงท้ายด้วย - oic acid โดยไม่ต้องระบุตำแหน่งของหมู่ฟังก์ชัน ในส่วนของคำนำหน้า ให้ระบุตำแหน่ง และ ชื่อของหมู่แทนที่ (ถ้ามี)

Carboxylic : การอ่านชื่อ

Carboxylic; จุดเดือด และสภาพการละลาย

ชื่อ	สูตรโครงสร้าง	จุดเดือด (°C)	สภาพละลายได้ในน้ำที่ 20 °C (g/น้ำ 100 g)
กรดเมทาในอิก (methanoic acid)	НСООН	101.0	ละลายได้ดีมาก
กรดเอทาในอิก (ethanoic acid)	CH₃COOH	117.9	ละลายได้ดีมาก
กรดโพรพาโนอิก (propanoic acid)	CH₃CH₂COOH	141.2	ละลายได้ดีมาก
กรดบิวทาโนอิก (butanoic acid)	CH ₃ (CH ₂) ₂ COOH	163.8	ละลายได้ดีมาก
กรดเพนทาในอิก (pentanoic acid)	CH ₃ (CH ₂) ₃ COOH	186.1	2.4
กรดเฮกซาในอิก (hexanoic acid)	CH ₃ (CH ₂) ₄ COOH	205.2	1.1

Carboxylic ; จุดเดือด และสภาพการละลาย

ชื่อ	สูตรโครงสร้าง	จุดเดือด (°C)	สภาพละลายได้ในน้ำที่ 20 ℃ (g/น้ำ 100 g)
เมทานอล (methanol)	CH₃OH	64.6	ละลายได้ดีมาก
เอทานอล (ethanol)	CH₃CH₂OH	78.3	ละลายได้ดีมาก
1–โพรพานอล (1–propanol)	CH ₃ (CH ₂) ₂ OH	97.2	ละลายได้ดีมาก
1–บิวทานอล (1–butanol)	CH ₃ (CH ₂) ₃ OH	117.7	7.7
1–เพนทานอล (1–pentanol)	CH ₃ (CH ₂) ₄ OH	138.0	2.2

ชื่อ	สูตรโครงสร้าง	จุดเดือด (°C)	สภาพละลายได้ในน้ำที่ 20°C (g/น้ำ 100 g)
กรดเมทาในอิก (methanoic acid)	НСООН	101.0	ละลายได้ดีมาก
กรดเอทาในอิก (ethanoic acid)	CH₃COOH	117.9	ละลายได้ดีมาก
กรดโพรพาโนอิก (propanoic acid)	CH₃CH₂COOH	141.2	ละลายได้ดีมาก
กรดบิวทาโนอิก (butanoic acid)	CH ₃ (CH ₂) ₂ COOH	163.8	ละลายได้ดีมาก
กรดเพนทาในอิก (pentanoic acid)	CH ₃ (CH ₂) ₃ COOH	186.1	2.4
กรดเฮกซาโนอิก (hexanoic acid)	CH ₃ (CH ₂)₄COOH	205.2	1.1

Carboxylic: ความแรงกรด

สมบัติความเป็นกรด

กรดแก่: กรดอนินทรีย์หลายชนิด เช่น HCl, H_2SO_4 , HNO $_3$ เมื่อละลายน้ำ แตกตัวแบบสมบูรณ์ให้ H_3O^+

$$HCI_{(aq)} + H_2O_{(I)} \longrightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$$

กรดอ่อน: แตกตัวได้เพียงบางส่วน

$$CH_3COOH(aq) + H_2O(I) \xrightarrow{K_a} CH_3COO^-(aq) + H_3O^+(aq)$$

$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]} = 1.8 \times 10^{-5}$$

Carboxylic : ปฏิกิริยา

ทำปฏิกิริยากับ NaHCO $_3$

$${
m CH_3COOH} + {
m NaHCO_3} -----> {
m CH_3COONa} + {
m H_2O} + {
m CO_2}$$
กรดอะซิติก โซเดียมไฮโดรเจนคาร์บอเนต โซเดียมอะซิเตต น้ำ คาร์บอนไดออกไซด์

$$CH_3CH_2OH + NaHCO_3 ------/--->$$
 กรดอะซิติก โซเดียมไฮโดรเจนคาร์บอเนต

ทำปฏิกิริยากับ Na

$$2 \text{ CH}_{3}\text{COOH} + 2 \text{ Na} -----> 2 \text{ CH}_{3}\text{COONa} + \text{H}_{2}$$
 กรดอะซิติก โซเดียมไฮโดรเจนคาร์บอเนต โซเดียมอะซิเตต แก๊สไฮโดรเจน

$$2 \text{ CH}_3 \text{CH}_2 \text{OH} + 2 \text{ Na} -----> 2 \text{ CH}_3 \text{CH}_2 \text{ONa} + \text{H}_2$$
กรดอะซิติก โซเดียมไฮโดรเจนคาร์บอเนต โซเดียมอะซิเตต แก๊สไฮโดรเจน

การเปลี่ยนสีกับกระดาษลิตมัส

Carboxylic : ประโยชน์

O H-C-OH formic acid methanoic acid

ช่วยให้เนื้<mark>อยาง</mark>ในน้ำยางดิบรวมตัวกันเป็นก้อน อุตสาหกรรม<mark>ฟอกหนั</mark>งและอุตสาหกรรม<mark>ย้อมผ้</mark>า O H₃C-C-OH acetic acid ethanoic acid

ตัวทำละลายในการผลิตพลาสติก และเส้นใยสังเคราะห์

Carboxylic : ประโยชน์

กรดแอลฟาไฮดรอกซี (alpha hydroxy acid, AHA)

กรดเบตาไฮดรอกซี (beta hydroxy acid, BHA)

CH — CH — CH —
$$\overset{\circ}{\overset{\circ}{\text{C}}}$$
 — OH γ 3 β 2 α 2

1. เขียนสมการเคมีแสดงการละลายในน้ำของกรดคาร์บอกซิลิกต่อไปนี้

HCOOH

CH₃CH₂COOH

2. สารประกอบอินทรย์แต่ละคู่ต่อไปนี้ ชนิดใดมีจุดเดือดสูงกว่ากัน เพราะเหตุใด

1) กรดโพรพาโนอิก กับ กรดเฮกซาโนอิก

2) กรดเมทาโนอิก กับ เอทานอล

3) เฮกไซน์ กับ กรดอะซิติก

3. สารประกอบที่มีสูตรโครงสร้างต่อไปนี้ จะมีสมบัติเป็นอย่างไร

$$H - H H H H O$$
 $H - C - C - C - C - C - OH$
 $H H H H H$

- 1) ฟอกสีสารละลายโบรมีน
- 2) ฟอกสีสารละลาย KMnO4
- 3) ทำปฏิกิริยากับสารละลาย NaHCO3 ได้แก๊สไม่มีสี
- 4) ทำปฏิกิริยากับโลหะโซเดียม

ข้อใด**ถูก**ต้อง

- ก. ข้อ 1 และ 2
- ข. ข้อ 1 , 2 และ 3
- ค. ข้อ 3 และ 4
- ง. 1, 2, 3 และ 4

4. ในการทดสอบสมบัติของเอทานอลและกรดอะซิติก หลังจากใส่ของเหลวทั้งสองลงใน หลอดทดลองขนาดเล็กแล้ว ปรากฏว่ามีการสลับหลอดจนไม่ทราบว่าเป็นของเหลวใดใน หลอดทดลอง วิธีใดต่อไปนี้ นำมาใช้บอกความแตกต่างระหว่างสารทั้งสอง ไม่ได้

- ก. ดมกลิ่น
- ข. เติมเฮกเซน
- ค. ใส่โลหะโซเดียม
- ง. ท<u>ดสอบด้วยกระดา</u>ษลิตมัตสีน้ำเงิน
- จ. เติมสารละลายโซเดียมไฮโดรเจนคาร์บอเนต

5 . นำสารชนิดต่าง ๆ มาทดสอบ ได้ผลดังนี้

สาร	การละลายน้ำ	การฟอกสีโบรมีนในที่มืด	โลหะโซเดียม	สารละลายโซเดียมไฮดรอกไซด์
Α	ไม่ละลาย	ไม่ฟอก	ฟองแก๊ส	ละลาย
В	ไม่ละลาย	ไม่ฟอก	ฟองแก๊ส	ไม่ละลาย
С	ไม่ละลาย	ไม่ฟอก	ไม่มีปฏิกิริยา	ไม่ละลาย

สาร A – C ควรเป็นสารใด

n. A = cyclohexanol B = benzoic acid C = cyclohexane

ข. A = benzoic acid B = butanol C = benzene

ค. A = benzoic acid l B = cyclohexanol C = cyclohexane

A = propanoic B = cyclohexanol C = benzene

