Теортест-1 (Вариант 7)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения:

- 1. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 2. если первообразная дробно-рациональной функции f(x) является дробно-рациональной, то все корни знаменателя f(x) кратные;
- 3. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 4. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F ограничена на [a, b];
- $2. \, \, F$ непрерывна на [a,b];
- 3. $\int_a^b f(x)dx = F(b) F(a);$
- 4. Если f непрерывна на [a,b], то F первообразная для f на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt$;
- 2. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2}$;
- 3. $\int f(x^2)dx = 2 \int f(t)tdt$;
- 4. $\int f(x)dx = \int f(1/t) \frac{dt}{t^2}$;

Задача 4

Пусть функции $f, g: [a, b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если |f| интегрируема на [a,b], то f тоже интегрируема на [a,b];
- 2. Если функция $f \cdot g$ интегрируема на [a, b], то f и g тоже интегрируемы на [a, b];
- 3. Если функция f + g интегрируема на [a, b], то f и g тоже интегрируемы на [a, b];
- 4. Если f > 0 и интегрируема на [a, b], то 1/f тоже интегрируема на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Выберите все верные утверждения:

- 1. Длина спрямляемой кривой конечна;
- 2. Длина любой кривой конечна;
- 3. Длина замкнутой кривой равна нулю;
- 4. Любая кривая имеет бесконечно много различных параметризаций;
- 5. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ – интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ – нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} \varepsilon;$
- 2. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) < s_{\tau} + \varepsilon;$
- 3. $\forall \tau \; \exists \xi \colon S_{\tau} = \sigma_{\tau}(\xi);$
- 4. $\forall \tau : s_{\tau} < S_{\tau}$:

Задача 7

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [0; 100];
- 2. [9; 100];
- 3. [-9; 90];
- 4. [-3; 90];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть функция u = u(x) – первообразная для функции v = v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v' = u + C;
- 2. vdt = du;
- 3. u = v':
- 4. v = u';

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 2. f непрерывна в точке a и f(b) = 1;
- 3. f(a) = f(b) = 1;
- 4. f((a+b)/2) = 1;

Задача 10

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. площадь $A \cup B$ равна сумме площадей A и B;
- 2. площадь графика любой функции равна нулю;
- 3. площадь одной точки равна нулю;
- 4. если $A \subset B$, то площадь A меньше площади B;