

ITMOx: I2CPx How to win coding competitions: secrets of champions

Help

▶ How To?

Week 2

Week 1

▼ Week 3

Sorting And Search Algorithms

3rd Week **Problems**

due Nov 20, 2016 22:00 CET

3rd Week

Problems: Training

Week 4

Week 5

Week 3 > 3rd Week Problems > Inversions

Inversions

☐ Bookmark this page

Inversions

2.0/2.0 points (graded)

Input file:	inversions.in
Output file:	inversions.out
Time limit:	2 seconds
Memory limit:	256 megabytes

Recall that an inversion in an integer sequence A is a situation when i < j, but $A_i > A_i$.

Given a sequence of integers. Your task is to count the number of inversions in it.

Hint: to make it faster, you may adapt the mergesort algorithm to solve this problem.

Input

The first line of the input file contains an integer n (1 \leq n \leq 100 000) – the number of elements in the sequence. The sequence itself follows in the second line. All numbers in this sequence do not exceed 10⁹ by the absolute value.

Output

Output the number of inversions in the first and only line of the output file.

Example

inversions.in	inversions.out
10 1 8 2 1 4 7 3 2 3 6	17
10214/3230	
<u>Download</u>	<u>Download</u>

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

