Minterms and Maxterms

Minterms

• A minterm of *n* variables is a product of *n* literals in which each variable appears exactly once in either true or complimented form (but not both)

ABC	Minterms Designator	
000	A'B'C'	= m0
001	A'B'C	= m1
010	A'BC'	= m2
011	A'BC	= m3
100	AB'C'	= m4
101	AB'C	= m5
110	ABC'	= m6
111	ABC	= m7

A Boolean expression such as: F = ABC + A'B'C + AB'C is expressed as a sum of products. In addition, it may be expressed using the designator representation (or mnotation).

$$F(A,B,C) = m1 + m5 + m7$$

OR

$$F(A,B,C) = \sum m(1, 5, 7)$$

When examining a truth table for a given expression, the minterms correspond to the

Maxterms

 A maxterm of n variables is a sum of n literals in which each variable appears exactly once in either true or complimented form (but not both)

 Ω'_{c} in E

ABC	Maxterms Designator	
000	A+B+C	= M0
001	A+B+C'	= M1
010	A+B'+C	= M2
011	A+B'+C'	= M3
100	A'+B+C	= M4
101	A'+B+C'	= M5
110	A'+B'+C	= M6
111	A'+B'+C'	= M7

A Boolean expression such as: F = (A+B+C)(A'+B'+C)(A+B'+C) is expressed as a product of sums. In addition, it may be expressed using the designator representation (or M-notation). F(A,B,C) = M0M2M6OR $F(A,B,C) = \prod M(0, 2, 6)$ When examining a truth table for a given expression, the maxterms correspond to the