Admixture graphs

Shyam Gopalakrishnan Aug 8th 2019

Overview

- Recap of our morning
- More than 4 populations, what do I do?
 - Correlations based methods
 - F stats based
- What if a tree is not enough?
 - Incorporating migrations

Recap: F - stats

Recap: F - stats

Recap: F - stats

Similarity vs dissimilarity?

Correlations or distances?

Correlation based methods

Trees induce correlation in allele frequencies

Correlation of AF between A and B: Shared branch lengths!

Using correlations to construct trees

- TreeMix
 - Use correlations between all pairs of populations to construct tree
 - Use difference between estimated correlation and observed correlation to add migration edges.

TreeMix

B. Covariance matrix for tree in A.				
X ₁	C ₂ + C ₆	C ₂	0	0
X_2	C ₂	C ₂ + C ₅	0	0
X ₃	0	0	C ₁ + C ₃	C ₁
X ₄	0	0	C ₁	C ₁ + C ₄
	X ₁	X ₂	X ₃	X ₄

TreeMix on humans

TreeMix on humans

When a Tree is not enough

- Admixture events make the relationship between populations not be a tree anymore – remember the F3 statistic?
- We need to add admixture events to our trees

TreeMix with admixture

How can we use F-stats to make trees and graphs?

- Since a tree induces a correlations structure, it also induces a dissimilarity measure.
 - If we have all pairwise F2 statistics, can we build a first-guess tree?
 - Using the tree, can we make estimate what the F3 and F4 statistics should be?
 - How can we estimate admixture?

Admixture graphs: qpGraph

- Similar in idea to TreeMix, but less automated
 - Estimate a tree (or a graph) first
 - Figure out the F-statistics induced by this tree
 - Find out where the induced F-statistics differ from the observed F-statistics
 - Add migration edges to account for these mismatches

qpGraph on Canids

qpGraph on Canids

What more can we do with admixture graphs?

- Model complicated histories
- Remember Trondheim?
 - If we can model the genetic compostions of multiple populations, can we improve our selection analysis?

Selection on admixture graphs

- Consider a simple tree
 - Are there parts of the genome where the tree has wacky branch lengths?

Can we do this with arbitrarily complex histories?

 GroSS (Graph-aware Retrieval of Selective Sweeps) - program to detect selective sweeps on complex histories.

GRoSS application

Exercise time!!

