

Advanced Databases

1. Module Introduction

O. Module Introduction

- 0.1 Timetable
- 0.2 Assessment Structure
- 0.3 Reading List
- 0.4 Q&A

0.1 Timetable

- Lectures
 - ☐ Monday 3:00pm 5:00pm SCR I
- Labs
 - □ Thursday 10:00am − 11:00am SCR2

0.2 Assessment Structure

ALLOCATION OF MARKS	
Continuous Assessment	50%
Final Examination	50%
Total	100%

CA STRUCTURE & DATES	
CA I – In Class Test – Week 6	20%
CA 2 – Research Paper – Week II	20%
CA 3 – Data- Warehouse Design – Week 12	100%

0.3 Reading List

Required Reading:	Connolly T., Begg C., Strachan A, Database Systems - A Practical Approach to Design, Implementation and Management, Fourth Edition, Addison-Wesley 2005
Supplementary Reading:	Elmasri B., Navathe S., Fundamentals of Database Systems, Fourth Edition, Prentice Hall 2003
	Gillenson, M., L., Fundamentals of Database Management Systems, 2005, Wiley
	Kroenke, D.M., Database Processing, Eight Edition, Prentice Hall 2002
	Manning C., Raghaven, P., & Schutze, H., (2008), Introduction to Information Retrieval, Cambridge University Press
	Rolland F.D., The Essence of Databases, Prentice-Hall 1998
	Riccardi G., Principles of Database Systems with Internet and Java Applications, Prentice Hall 2003

0.4 Q&A

Why Data Bases?

- ▶ A huge amount of information being stored.
- The College, Medical records, Employers, Companies, Government Agencies etc.
- Managing that data is a mammoth task
- Data Base Management Systems (DBMS)
- Storing is easy, managing is the issue
- A number of models available

Data Models

- Hierarchical
- Network

Relational

- Object-Oriented
- Distributed Databases

Benefits of Database Approach

- Data can be shared
- Redundancy can be reduced
- Inconsistency can be avoided
- Transaction support can be provided
- Integrity can be maintained
- Security can be enforced
- Conflicting requirements can be balanced
- Standards can be enforced

Disadvantages of Database

Shared data can be abused

- Controls needed to ensure data quality is maintained
- Data integrity during multi user access must be maintained

- Enterprise vulnerability
- Cost

Models

- First Generation
 - File Based DB
 - Hierarchical DB
 - Network DB
- Second Generation
 - Relational DB
- ▶ Third Generation
 - Object-Oriented DB
 - Deductive DB
 - Distribution

The Relational Model

- Formulated by Codd in 1970
- Commercial RDBMS in 80s

- ▶ 12 Rules specified by Codd
- Most widely used Model at present
 - Access, Oracle, MySQL, SQL Server, Teradata etc

E. F. Codd 1970

- Edgar (Ted) Codd born in Britain, worked for IBM, although Oracle were first to implement his ideas
- Paper : A Relational Model of Data for Large Shared Data Banks
- Data independence was his starting point
- Relation was used in its mathematical sense, i.e. relations between sets of data (domains)
- Introduced normalisation
- Issues of redundancy and consistency

Relational Concepts

- Data is represented as collections of relations
- Each relation is table of values
- Each table consists of rows and columns
- Each row represents an entity or record
- Rows are unordered
- No duplicate rows are allowed
- ▶ Each row has a **primary key** which uniquely identifies the record/entity
- ▶ Each column represents an attribute
- Table name and Column name are used to help interpret the values

Database Terminology

- Relation is a mathematical term for a table
- Row is called a Tuple
- Column is called an Attribute
- Domain is used to describe the types of values that can appear in a column
- **Degree** is the number of attributes
- Atomic Value precisely one value at each row intersection
- Cardinality the number of tuples/rows in a relation
- Null Value Missing, not known or irrelevant data (not the same as zero or blank)

Student Table

Data Independence

- Two types of data independence
 - Physical
 - Logical
- Physical is the idea that applications that use the data should not have to worry about detail of how it is stored
- Data Independence allows database to grow, shrink, add attributes
- Applications deal with the DBMS which in turn deals with the Database
- Differing degrees of success