

Polynomial regression without overfitting

NSM 2024

Jonas Moss (jonas.moss@bi.no)

Polynomial regression

Source: sklearn

- Polynomials with high degree have a reputation for overfitting.
- Usually, we're advised to use local polynomials or smoothing splines.
- Why? Runge's phenomenon, inherent unsophistication of polynomials.
- But polynomials are great!

Setting

- Polynomials with high degree think 10000 if you will.
- Ridge regression on polynomial basis functions, but other objectives and regularization methods will work.

My claims

- 1. High-order polynomial (ridge) regression doesn't work unless you choose your polynomials wisely.
- Well-chosen polynomials may outperform smoothing splines. And may be easier to interpret, implement, and compute.
- 3. I propose to use a polynomial basis for $H^2([0,1])$ in practice.

Ridge regression with polynomials

Let $\{q_k\}_{k=1}^{\infty}$ be a sequence of linearly independent polynomials.

$$\hat{\beta}_{\lambda,p} = \underset{\beta}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \left(\sum_{k=0}^{p} \beta_k q_k(x_i) - y_i \right)^2 + \lambda \beta^T \beta \right]. \tag{1}$$

Alternatively, let H_p be the span of $\{q_k\}_{k=1}^p$ with the inner product $\langle q_i, q_j \rangle = \delta_{ij}$.

$$\hat{f}_{\lambda,p} = \underset{f \in H_p}{\operatorname{argmin}} \left[\sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda ||f||_{H_p}^2 \right]. \tag{2}$$

- Formulation (1) and (2) are equivalent.
- 2. The space H_p is a reproducing kernel Hilbert space.
- 3. Computed in $O(np^2)$ time.

Kernel regression

$$\hat{f}_{\lambda} = \underset{f \in H}{\operatorname{argmin}} \left[\sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda ||f||_H^2 \right].$$

- Let *H* be a reproducing kernel Hilbert space.
- Then H has a unique positive semi-definite kernel k.
- The solution has closed form, computed in $O(n^3)$ time. ($O(np^2)$ for polynomials.)

$$\hat{f}_{\lambda}(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i),$$

$$K(i,j) = k(x_i, x_j).$$

$$\alpha = (K + \lambda I)^{-1} y,$$

Kernel of H_p

- Let H_p be the span of $\{q_k\}_{k=1}^p$ with the inner product $\langle q_i, q_j \rangle = \delta_{ij}$.
- The kernel of H_p is $k_p(x,y) = \sum_{k=0}^p q_k(x)q_k(y)$.
- Define $k(x,y) = \lim_{p \to \infty} \sum_{k=0}^{p} q_k(x) q_k(y)$.

The behaviour of $\hat{f}_{\lambda,p}$ as $p\to\infty$ is decided by $\lim_{p\to\infty} k_p(x,y)$.

When $k_p(x, y)$ diverges

• Legendre polynomials, orthonormal on $L_2[-1,1]$.

•
$$k_p(x,y) \to \begin{cases} \infty, & x = y \\ 0, & \text{otherwise.} \end{cases}$$

- Solution converges to $\sum y_i 1[x=x_i]$ irrespective of λ .
- Discrete orthogonal polynomials have similar behaviour.
- Standard polynomials $(1, x, x^2, ...)$ on [a, b] with $a \le -1$ or $b \ge 1$ diverge too.

Legendre polynomials ($\lambda = 10^{-7}$; n = 100)

1.5 1.0 0.5 -0.5-1.0-1.5-1.00 -0.75-0.50-0.250.25 0.50 0.75 1.00

p = 50. Looks excellent away from the boundary.

p = 10000. Catastrophic overfitting.

When $k_p(x, y)$ converges

- Define $\hat{f}_{\lambda,\infty}$ as the kernel regression estimator of k(x,y).
- Then $\hat{f}_{\lambda,p} \to \hat{f}_{\lambda,\infty}$.
- If the polynomials are defined on a compact set, e.g., [0,1], they attain the minimax rate for functions living the reproducing kernel Hilbert space with kernel k(x, y). (++)
- Standard polynomials have limit kernel $\frac{1}{1-xy}$, $x, y \in (-1,1)$.

Standard polynomials ($\lambda = 10^{-23}$)

p=50. Poor boundary behaviour, but good fit in the middle.

p=10000. Yes, these are different plots!

Smoothing splines

- Let the Sobolev space $H^m = \{f: [0,1] \to \mathbb{R} \mid \int \left(f^{(m)}(x)\right)^2 dx < \infty \}$ be equipped with the inner product
- $||f|| = \sum_{k=0}^{m-1} (f^{(k)}(0))^2 + \int_0^1 (f^{(m)}(x))^2 dx$.

The smoothing spline estimator (Wahba, 1990) is obtained by

$$\hat{f}_{\lambda} = \underset{f \in H}{\operatorname{argmin}} \left[\sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda ||Pf||_H^2 \right],$$

Where P is the orthogonal projection on $\{f \mid f^{(k)} = 0, k = 0, ..., m\}$.

We drop the projection when talking about smoothing splines.

Constructing a basis

Smoothing splines are kernel regressions on H^m .

If $\{q_{m,k}(x)\}_{k=0}^{\infty}$ is an orthonormal polynomial basis for H^m , then $\hat{f}_{\lambda,p} \to \hat{f}_{\lambda,\infty}$, the smoothing spline.

Transforming bases of $L_2[0,1]$

Let be $q_k(x)$ an orthonormal basis for $L_2([0,1])$.

$$q_{m,k}(x) = \begin{cases} \frac{x^k}{k!}, & k < m, \\ \frac{1}{(m-1)!} \int_0^x (x-t)^m q_{k-m}(t) dt, & k \ge m. \end{cases}$$

Then $q_{m,k}$ is an orthonormal basis for $H^m([0,1])$. (Sharapudinov, 2018; van der Vaart and Zanten, 2008).

- Polynomial basis: Transform the normalized and shifted Legendre polynomials.
- Cosine basis: Transform the $\{1, \cos \pi x, \cos 2\pi x, \dots\}$
- Sine basis: $\{\sqrt{2}\sin \pi x, \sqrt{2}\sin 2\pi x, ...\}$
- Wavelet bases etc.

A polynomial basis for $H^2([0,1])$

$$p_{2,0}=1, \qquad p_{2,1}=x,$$

$$p_{2,k} = \int_0^x (x-t)p_{k-m}(t)dt.$$

Unique orthonormal polynomial basis for $H^2([0,1])$.

Observe: The term $x^2(1-x)^2$ occurs for all polynomials with $k \ge 4$.

Can be computed efficiently using a recursive formula.

k	Polynomial
0	1
1	$\boldsymbol{\mathcal{X}}$
2	$\frac{1}{4}x^2$
3	$\frac{1}{4\sqrt{3}}x^2(2x-3)$
4	$\frac{\sqrt{5}}{4}(1-x)^2x^2$
5	$\frac{\sqrt{7}}{4}(1-x)^2x^2(2x-1)$
6	$\frac{1}{4}(1 - x)^2 x^2 (14x(x-1) + 3)$

A polynomial basis for $H^2([0,1])$

When $p \ge 4$, we have:

- 1. The maximum value is on the order p^{-2} .
- 2. Even polynomials are even (around 0.5), odd polynomials are odd.
- 3. The polynomials have "period" $\frac{p-3}{2}$.

Example: Bone mineral density

- Polynomial of degree 10000 works just fine.
- Indistinguishable from smoothing spline.
- Polynomial of degree 10 is very close.
- The other two (3,5) may not be flexible enough.
- (λ was chosen at random.)

$H^2([0,1])$ polynomials ($\lambda = 10^{-7}$)

ві

Other bases for $H^m([0,1])$

Polynomials.

- The polynomials for $H^m([0,1])$, $m \neq 2$, have similar properties.
- They are decreasing with order p^{-m} instead.

Sine basis.

- Decreasing with order p^{-m} ,
- Have non-negative derivatives of exactly m-1 orders.
- Promising basis for shape-constrained estimation. (?)

Transformed sine basis for H^3 .

The AIC_{C_1} as a function of λ and p

- Hurvich et al. (1998)
 proposed AIC variants
 for smoothed
 regression models.
- Let's us choose λ , p.
- Asymptote corresponds to smoothing spline.
- Smaller p allows smaller λ , which may increase performance.
- Good p allows many good λ s and vice versa.

Conclusion

- High-order polynomial (ridge) regression doesn't work unless you choose your polynomials wisely by looking at the limiting kernel function.
- 2. Well-chosen polynomials may outperform smoothing splines. And may be easier to interpret, implement, and compute.
- 3. I propose to use a polynomial basis for $H^2([0,1])$ in practice.

BI

