1/1

Note: 17.5/20 (score total: 22/25)

+13/1/12+

IPS - S7A - Jean-Matthieu Bourgeot

CC

Contrôle du 20/12/2017

Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. Téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront . être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Exercice Alimentation de Capteurs de Courant

Figure 1: Alimentation du capteur de courant

On dispose d'une batterie composée de 3 éléments LiPo connectés en série, chaque éléments LiPo à une tension nominale de 3.7V. On souhaite utiliser cette batterie pour alimenter un capteur de courant. Pour cela on propose d'utiliser un stabilisateur à diode Zener décrit sur la figure 1. Si le capteur est correctement alimenté, il nous fournit une tension de mesure V_{mes} proportionnelle au courant à mesurer I.

Question 1 • D'après la courbe de décharge d'un élément LiPo donnée en annexe, calculer la plage de tension disponible en sortie de la batterie qui est composée de 3 éléments mis en série?

$V_{batt} \in [7.5 \text{V}; 12.6 \text{V}]$	V_{batt}	$\in [0V; 3.7V]$	$ V_{batt} \in [0] $	V ;11.1V]
$V_{batt} \in [2.5]$	7;4.2V]	$V_{batt} \in [7]$.5V ; 11.1V]	

On souhaite concevoir l'alimentation pour le capteur de courant LEM HAIS 50-P (Notice constructeur donnée en annexe)

	but descent defined on annexely.		
	Question 2 • Quelle est sa tension d'alimentation (V_{alim}) préconisée par le constructeur ?		
1/1	☐ 400A ☐ 18V ☐ 3.3V ☐ 2.5V ☐ 12V ☐ 5V ☐ 50A		
	Question 3 • Quelle est la consommation du capteur?		
1/1	22.10 ⁻³ A 2.5mA 50A 100A		
	Question 4 • Choisir une référence de diode zener qui pourrait convenir dans la serie 1N52XXB donnée en annexe ?		

___ 1N5242B 1N5231B 1N5222B1N5226B 1N5248B 1/1 1N5262B

2/2

0/2

On considère la diode zener idéale (c-a-d résistance dynamique nulle), le courant $i_z min$ qui permet à la diode de fonctionner en zone de stabilisation n'est pas donné dans la notice, pour la suite on l'estime à 2mA.

Pour les deux questions suivantes donnez votre réponse sous forme numérique dans les emplacements indiqués, ne cochez surtout pas la case "La réponse de l'étudiant est incorrecte"!

Question $5 \bullet$ Choisir la valeur de R assurant le bon fonctionnement du capteur tout en minimisant la consommation ?				
Votre réponse en valeur numérique :				
La réponse de l'étudiant est 🔲 incorrecte				
Question 6 • Calculer la puissance dissipée par la zener dans le pire cas (c-a-d si le capteur est débranché de l'alimentation) ?				
Votre réponse en valeur numérique :				
La réponse de l'étudiant est prince incorrecte				
——— Question de Cours ———				
Question 7 • Soit une alimentation classique (c-a-d transformateur, redresseur et filtre capacitif) connectée sur le réseau 230V/50Hz. Le chronogramme suivant correspond à la tension :				
en sortie du redresseur simple alternance en sortie du pont de Graetz aux bornes de la charge au secondaire du transformateur en sortie du redresseur double alternance au primaire du transformateur				
10ms				
Question 8 • condensateur ne peut varier instantanément.				
L'intensité du courant dans un(e) 🔀 La tension aux bornes d'un(e)				
Question 9 • En régime permanent, la valeur moyenne de la tension aux bornes d'un(e) est nulle.				
condensateur bobine				

- Exercice CAN Flash

6/6

0/1

1/1

Soit le convertisseur Flash 2 bits vu en cours donné à la figure 2. La plage d'entrée est fixée à [0; 10V]

Figure 2: Convertisseur Flash vu en cours

Question 10 • Tracer la caractéristique $N = f(V_{in})$ du convertisseur flash vu en cours. Les AOP sont parfait.

centrée, sachant que l'on souhaite que le courant i ne change pas.

La réponse de l'étudiant est incorrecte

Question 11 • Comment modifier le réseau de résistances pour avoir une quantification linéaire

Votre réponse en valeur numérique :

 $R_1 = 0,5$ ks; $R_2 = 1$ ks ; $R_3 = 1$ ks ; $R_4 = 1$ ks

La réponse de l'étudiant est incorrecte

---- Exercice Capteur de Température

Un pont de mesure est utilisé avec un capteur situé à 100m de distance (voir figure 3). La résistance du câble reliant le capteur au pont est de $0.45\Omega/m$. Le pont est équilibré avec R_1

2/2

2/2

 3400Ω , $R_2 = 3445\Omega$ et $R_3 = 1560\Omega$.

Figure 3: Schéma du montage

	Question 12 • Quene est la resistance du capteur :
/2	$\ \ \ \ \ \ \ \ \ \ \ \ \ $
	——— Exercice Capteur LVDT ———
	Un capteur LVDT associé à son électronique de conditionnement est utilisé pour mesurer des déplacements compris entre -20 et +20cm. Sur cette plage de fonctionnement, le capteur est linéaire, sa sensibilité est de 2.5mV/mm. On souhaite interfacer ce capteur avec un CAN. Question 13 • Quelle est la plage de sortie en tension du capteur ?
/1	[-0.5V; 0.5V]
	Question 14 • On souhaite avoir une résolution de 0.5mm, combien de bits doit avoir le CAN au minimum?
/2	8 10