(3 Hours) [Total Marks : 80]

- N.B 1) Question **No. 1** is **Compulsory**.
 - 2) Answer any three questions from remaining questions.
 - 3) Figures to the right indicate full marks.
- Q.1 a) Evaluate $\int_0^\infty xe^{-x^4} dx$.
 - b) Find the length of the arc of the curve $r = asin^2 \left(\frac{\theta}{2}\right)$ 3 from $\theta = 0$ to any point $P(\theta)$.
 - c) Solve $(D^4 2D^2 + 1)y = 0$.
 - d) Solve $(x 2e^y)dy + (y + x\sin x)dx = 0$.
 - e) Evaluate $\int_0^1 \int_0^x x^2 y^2 (x + y) dy dx$.
 - f) Solve $\frac{dy}{dx} = x^3 + y$ with initial condition $x_0 = 1$, $y_0 = 1$ by Taylors method. Find the approximate value of y for x=0.1.
- Q.2 a) Solve $\frac{d^2y}{dx^2} 4y = x^2e^{3x} + e^{3x} \sin 2x$.
 - b) Show that $\int_0^\infty \frac{\log(1+ax^2)}{x^2} dx = \pi \sqrt{a}, (a > 0)$
 - c) Change the order of integration and evaluate $\int_0^5 \int_{2-x}^{x+2} dy dx$.
- Q.3 a) Evaluate $\iiint z \, dx \, dy \, dz$ over the volume of tetrahedron 6 bounded by the planes x = 0, y = 0, z = 0 and $\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1.$
 - b) Find the mass of the lamina bounded by the curves 6 $y^2 = 4x$ and $x^2 = 4y$ if the density of the lamina at any point varies as the square of its distance from the origin.
 - c) Solve $x^2 \frac{d^2y}{dx^2} 4x \frac{dy}{dx} + 6y = -x^4 \sin x$.

- Q.4 a) Find by the double integration the area between the 6 curves $y^2 = 4x$ and 2x 3y + 4 = 0.
 - b) Solve $(1 + siny) \frac{dx}{dy} = 2ycosy x(secy + tany)$.
 - Solve $\frac{dy}{dx} = x^2 + y^2$ with initial conditions $y_0 = 1$, 8 $x_0 = 0$ at at x=0.2 in steps of h=0.1 by Runge Kutta method of fourth order.
- Q.5 a) Evaluate $\int_0^1 \frac{x^2}{\sqrt{1-x^4}} dx \cdot \int_0^1 \frac{dx}{\sqrt{1-x^4}}$.
 - b) The distance x descended by a parachute satisfies the 6 differential equation $\left(\frac{dx}{dt}\right)^2 = k^2 \left(1 e^{-2gx/k^2}\right)$ where k and g are constants. If x=0 when t=0, show that $x = \frac{k^2}{g} \log \cosh \left(\frac{gt}{k}\right)$.
 - c) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using i) Trapezoidal ii) Simpsons (1/3)rd and iii) Simpsons (3/8)th rule.
- Q.6 a) Find the volume in the first octant bounded by the cylinder $x^2 + y^2 = 2$ and the planes z = x + y, y = x, z = 0 and x = 0.
 - b) Change to polar coordinates and evaluate $\iint_R \frac{dxdy}{(1+x^2+y^2)^2}$ over one loop of the lemniscates $(x^2+y^2)^2=x^2-y^2$.
 - c) Solve by method of variation of parameters $\frac{d^2y}{dx^2} y = \frac{2}{1 + e^x}.$
