DATASCI 207

Nedelina Teneva, PhD nteneva@berkeley.edu

School of Information, UC Berkeley

Announcements

- Finalize group selections in class
 - <u>Logistics Sheet</u>
- Evaluations: https://course-evaluations.berkeley.edu/
 - What you like about the class + constructive feedback

Cross Validation (CV) Recap

CV

 Is there a difference between the hold out method with a 50/50 train/validation split and 2-fold cross validation?

 We can repeat the hold out methods multiple times (bottom panel). Would that be the same as doing k-fold cross validation?

•••

3 4 5 6 7 8 9 10

Multilayer Neural Networks

Feedforward Neural Networks (FNNs)

- Examples
 - Linear neural network next slide
 - Single Layer Perceptron last week's lecture
 - Multi Layer Perceptron (MLP) XOR example from async
- Fully connected
- No cycles, unlike Recurrent Neural Networks (RNNs)

FNN Examples

Source:

https://github.com/rasbt/machine-learning-book/blob/92e2320709071b4dcc82a 99552aec145536cfbcd/ch02/ch02.jpvnb

Adaptive Linear Neuron (Adaline)

Multilayer Neural Networks

- (Right) Network with 1 input layer, 1
 hidden layer, and 1 output layer. Each layer
 receives its inputs from the previous layer.
- We can add as many hidden layers (deep neural networks), but this becomes very computationally intensive (parameters to be estimated grow exponentially).
- a(): activation function
- Note that there are many activation functions to choose from (earlier we covered linear and sigmoid).
- Use nonlinear activation functions to account for the complexities of data.

Key Concepts

- **Key idea**: use of non-linearities (through the use of activation functions)
- **Optimization**: gradient descent, learning rate, different types of optimizers
- **Computational challenges**: computing the derivatives (forward pass and back propagation)
 - These challenges gave rise to frameworks such as tensorflow and pytorch which take care of the computation graphs and automatic differentiation behind the scenes

Activation function	Equation	Example '	1D graph
Linear	$\phi(z) = z$	Adaline, linear regression	
Unit step (Heaviside $\phi(z)$ = function)	$= \begin{cases} 0 & z < 0 \\ 0.5 & z = 0 \\ 1 & z > 0 \end{cases}$	Perceptron variant	—
Sign $\phi(z)$ =	$= \begin{cases} -1 & z < 0 \\ 0 & z = 0 \\ 1 & z > 0 \end{cases}$	Perceptron variant	
Piece-wise Innear $\phi(z) = \langle z \rangle$	$\begin{cases} 0 & z \le -\frac{1}{2} \\ z + \frac{1}{2} & -\frac{1}{2} \le z \le \frac{1}{2} \\ 1 & z \ge \frac{1}{2} \end{cases}$	Support vector machine	
Logistic (sigmoid) ϕ (z)= 1 1 + e ^{-z}	Logistic regression, multilayer NN	
Hyperbolic tangent $\phi($ (tanh)	$z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multilayer NN, RNNs	
ReLU $\phi($	$z) = \begin{cases} 0 & z < 0 \\ z & z > 0 \end{cases}$	Multilayer NN, CNNs	

Multilayer Neural Network Exercise

- Real Data (multi-class) in class
 - https://github.com/MIDS-W207/nteneva/tree/main/live_sessions_current/week6

	Group 1	Group 2	Group 3
Question 1			
Question 2 (best performance)			

- Synthetic Example (binary, danish dataset) try on your own!
 - https://github.com/MIDS-W207/coursework 2022/blob/main/Demos Santerre/Berkley207-6.ip
 ynb