Exemple d'un langage Context Free

- S → "c" | "d" | "n" | **LIST**
- LIST \rightarrow "c" LISTTAIL | "d" LISTTAIL | "n" LISTTAIL
- LISTTAIL \rightarrow "," LIST | "and" "n" | "and" "c" | "and" "d"

Il y a chaque fois un seul element non terminaux dans la partie droite. On remarque donc qu'il sagit d'un langage regulier.

Fabrizio Jonathan 1

Hierarchie de chomsky

Figure 1: Hierarchie de chomsky

- Type 0: → Machine de Turing
- Type 1:
 - Monotonie
 - Contexte Sensitive $a^n b^n c^n$ Automate borne lineaire
- Type 2:
 - Context Free $a^n b^n$ Automate a pile
- Type 3:
 - Grammaire reguliere (langage rationnel) $a^*b^* \rightarrow \text{Automate}$
- Type 4:
 - Contexte Fini
- P: Temps polynomial sur une machine de turing deterministe.
- NP: Templs polynomial sur une machine de turing non deterministe.

Fabrizio Jonathan 2

Compilateur

Analyse lexical (Type 3) \rightarrow Analyse syntaxique (Type 2) \rightarrow Analyse Semantique (Type 1)

Simplification:

• $A \rightarrow \varepsilon$ On ajoute epsilon au context Free (Ca ne change pas son expressivite).

Grammaire ambigue

1.
$$S \rightarrow S$$
 "+" S

On peut faire deux arbres de derivation different.

Dans ce cas on dit que la grammaire est ambigue. On veut donc modifier la grammaire pour regler ce probleme.

1.
$$S \rightarrow S + S_n \mid S_n$$

2.
$$S_n \rightarrow n$$

Ici il n'y a plus d'ambiguite.

Fabrizio Jonathan 3