Pretty Charts: Data Viz Options for GIS Developers Bryan Chastain Esri DevSummit March 2017 https://github.com/bchastain/devsummit2017

The Problem...

- These charting options were all designed primarily for non-spatial data
- How well do they handle complex GIS data?
- Let's break this down into two approaches:
 - GUI-based Options
 - Custom Code-based Options

GUI-based Options

Tableau

- Created by a research group from Stanford in early 2000s
- · Easily bring together disparate data to explore and visualize
 - Simple drag & drop UI
- Tableau Public (free) & Online (paid)
 - Cloud-based SaaS version of Tableau
 - Easy to share workbooks from desktop software
- Tableau Server
 - On-prem enterprise solution
 - APIs: REST & JavaScript
 - Can use JS getData() to bring data into other JS-based viz libraries as well
- Server, Public & Online all allow embedding workbooks
 - iframes

CGI

Tableau JS API Example

http://bit.do/tableau_getData

PowerBI

- Cloud-based business analytics service released as part of Office 365 in 2013
- Split off as a separate software package in 2015
- Base package is free, "Pro" version available for a subscription fee
- Popular for creating dashboards
- JavaScript API released last fall

PowerBI

- With the new ArcGIS Maps for Power BI and Shape Map previews, users are able to incorporate enhanced mapping capabilities to PowerBI
 - ArcGIS Maps: point data, standard geographies, reference layers
 - Shape Map: custom polygons
- However, several limitations
 - No ability to geoenrich data
 - Not able to be included in "Publish to web"

CGI

Qlik

- Started as a desktop BI software in Sweden in 1993
- Developed QlikView server-based product in 2005
- Completely rewrote their popular QlikView software in HTML5 as a new product called QlikSense in 2014
 - Gradually moving all functionality over since

QlikSense

- Pros:
 - QlikSense Desktop is free
 - · No direct read of GIS data, but supports KML
 - · Able to map polygons with holes and complex geometry
 - Apps HTML5 based so easily customizable/extensible with Qlik Server
 - Desktop/Server apps identical
- Cons:
 - Maps limited to a single layer
 - E.g. not possible to facilities on top of watersheds
 - QlikCloud free apps limited to 5 viewers
 - not as simple as Tableau Public

13

CGI

QlikSense Example

Custom Coding Options CGI

R Shiny

- Pros:
 - Web application framework for R
 - R already has ability to read/write most GIS data formats
 - Can read data on the fly
 - Uses Leaflet JS to do the web mapping
 - No issues with holes or multiple layers
 - Can directly read existing R scripts and data
 - Free to develop and apps with Shiny Server Open (but not Pro)
- Cons:
 - Many UI Inputs available, but if something custom is needed, may be difficult to add
 - No slick Dev GUI like Tableau/Qlik everything has to be scripted
 - Added time on setup and future customizations
 - Is it Enterprise ready?
 - Works well enough for quick demo, but can it scale up? Load testing needed, especially with Open

CGI

18

Summary

- Which solution is right for you depends on your needs
- Do non-developers need the ability to create their own visualizations, with minor customizations needed?
 - Go with the GUI-based approach
- Is a completely customized solution required?
 - Go with the custom code-based approach

Custom code-based approach considerations

- D3 is by far the most customizable charting option available
 - Comes at a cost many lines of code required to create even simple graphs
- Higher-level D3-based options provide much of the same ability with the messy details abstracted (plotly, High Charts, etc)
- Are you already running data analytics processes in R?
 - Consider Shiny

14.

CGI

GUI-based approach considerations

- All aforementioned GUI options have limitations when it comes to GIS
- All are actively seeking to improve their geospatial capabilities
 - e.g. Qlik's Idevio purchase
- Common issues
 - Does it support multiple layers on a map?
 - Does it support a wide variety of GIS data formats?
 - Does it support multi-part features?
 - Does it support polygons with holes?
 - Does it support complex geometry (e.g. high # of vertices)?
 - Does it support direct-read of GIS services (no copying)?
 - Can GIS data interact with/crossfilter non-spatial data?
 - Does it support all of the above in both desktop and web client?

26

Esri Insights for ArcGIS

- · Could potentially address many of these problems
 - Native handling of GIS data
 - Direct read of GIS data (no copying)
 - Interaction between spatial/non-spatial data
 - Embeddable (iframe)
- Issues:
 - How do the charts compare with other vendors?
 - Is it production-ready?
 - How customizable is that iframe?
 - No API (yet)

