TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/6 9/5
SURFACE ACOUSTIC WAVE MICROWAVE OSCILLATOR AND FREQUENCY SYNTHE--ETC(U) AD-A082 351 JAN 80 M Y HUANG, D J DODSON DAAB07-78-C-2992 UNCLASSIFIED DELET-TR-78-2992-2 NL 1.2

BALLING HER AND BEVORED TWO FRESHMENT STREET

SURFACE ACOUSTIC, HAVE ALCROMANE OSCILLATOR AND PROGRESS SYNTHESIZER

D. J. Dodson, Jr., M. Y. Huang The Inc One Space Park Redondo Beach, CA 90278

January 1980

Second Interim Report for Period 1 Apr 1979 - 1 Oct 1979

Approved for Public Release; Distribution Unlimited SELLEN

Prepared for: ELECTRO::ICS TECHNOLOGY & DEVICES LABORATORY

ERADCOM

US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703

DIC FILE COPY

80 3

24

18

NOTICES

Disclaimers

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

RESEARCH AND DEVELOPMENT TECHNICAL REPORT DELET-TR-78-2992-2

SURFACE ACOUSTIC WAVE MICROWAVE OSCILLATOR AND FREQUENCY SYNTHESIZER

D. J. Dodson, Jr., M. Y. Huang TRW Inc One Space Park Redondo Beach, CA 90278

January 1980

Second Interim Report for Period 1 Apr 1979 - 1 Oct 1979

Approved for Public Release; Distribution Unlimited

Prepared for: ELECTROHICS TECHNOLOGY & DEVICES LABORATORY

ERADCOM

US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Motored)

REPORT DOCUMENTATION	READ INFTRUCTIONS BEFORE COMPLETING FORM	
	2. GOVT ACCESSION NO.	1. RECIPIENT'S CATALOG HUMES
DELET TR-78-2992-2	-	THE OF METOD A PERIOD COLLIED
Surface Acoustic Wave Microwav and Frequency Synthesizer.	e Oscillator	Interim Report April 1980
	en agranda de la companio de la comp	G. BEARGAMING GITG. HER GIT HERSER
7. AUTHORIO		S. CONTRACT OR GRANT NUMBER(s)
M.Y. Huang, D.J. Dodson, Jr	5	DAAB#7-78-C-2992
9. PERFORMING ORGANIZATION NAME AND ADDRESS TRW Inc. DSSG		16. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
One Space Park Redondo Beach, California 902	278	612705.H94.A1.11.01
Director, US Army Electronics Tech	& Devices Lab	DJanuary 1980
ATTN: DELET-MM Fort Monmouth, NJ 07703		MONBER OF FROES
14. MONITORING AGENCY NAME & ADDRESS(II ditterent	from Controlling Office)	18. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)		1111
Approved for Public Release; Distri	Dution Uniimited	1. (12/11)
		·
17. DISTRIBUTION STATEMENT (of the abotract entered i	n Block 20, If different fre	m Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continuo en reverse side II necessary and Surface Acoustic Wave Devices	identity by block number)	
SAW Oscillator		
SAW Synthesizer SAW Bandpass Filters		
20. ABSTRACT (Continue on reverse side if necessary and	I double by block	
The objective of the program is the oscillator and synthesizer technologlows: Task I - Development of SAW wave (L-band) frequencies. Emphasi	e development of ogy. The two year devices for osci	ar effort is planned as fol- illator applications at micro-
capabilities, improved oscillator s quirements. Task II - Investigate best impact on synthesizer performa	tability perform UHF surface acou	mance and reduced power re- ustic wave devices which can
	· · · · · · · · · · · · · · · · · · ·	

DD 1 AN 79 1473 EDITION OF 1 NOV 85 IS OBSOLETE UNCLASSIFIED 449637 SECURITY CLASSIFICATION OF

SECURITY CLASSIFICATION OF THIS PASE(When Date Entered)

minimum frequency step size, total achievable bandwidth, short, medium and long term stability as well as maximum suppression of spurious mode level. Concurrently promising new synthesizer designs will be studied on the basis of these designs to arrive at target specification in a package providing a significant reduction in size, weight and power consumption.

During the second six months of the program, the microwave oscillator design has been completed. A breadboard version of the circuit has been fabricated and is being evaluated. The oscillator design consists of a bank of four selectable SAW delay lines with passbands around 560 MHz, a varactor tuned quadrature hybrid phase shifter, a three stage loop amplifier, a transistor frequency tripler, and a power amplifier. An injection locked oscillator has also been developed to use in place of the power amplifier. An effort has been made to use distributed circuitry through out to minimize parts and assembly costs. The use of a varactor tuned phase shifter is a deviation from the design reported earlier. The varactors have replaced tunable capacitors, and offer the advantage of providing single point tuning and FM capability. Temperature stability of the varactor tuned circuit is inferior to that of the capacitor circuit. A compensation network was incorporated.

Work on the frequency synthesizer was initiated during this six month period. A number of potential synthesizer architectures were identified and compared. The baseline architecture consists of a bank of independent, injection locked, SAW oscillators providing the fundamental synthesizer frequencies of 486, 526.5, 567 and 607.5 MHz. These tones are filtered in a SAW filter bank and used to drive a mix and divide Synthesizer Module. The output of the Synthesizer Module is frequency doubled and amplified in an Output Module. The Synthesizer Module consists of four RF/LSI SP3T switches and four RF/LSI mix and divide circuits. Design of the SP3T switch is complete. Work on the mix and divide circuitry is in progress.

TABLE OF CONTENTS

				Page
	SUM	MARY		1
?.	MIC	ROWAY	E OSCILLATOR	1
	a.	Saw	Delay Line Design	6
	b.	Elec	trical Design	16
		(1)	Phase Shifter	16
		(2)	Oscillator Feedback Amplifier	25
		(3)	Tripler Design	25
		(4)	Output Amplification	32
	c.	0sc1	llator Package	37
	d.	0sc i	llator Results	41
		(1)	P _{OUT} vs Frequency	41
		(2)	Settability	41
		(3)	Temperature Stability	42
		(4)	Spurious Levels	42
•		(5)	Frequency Pulling	42
		(6)	DC Power Consumption	42
		(7)	AM-FM	42
3.	FRI	EQUENC	CY SYNTHESIZER	74
	a.	Syst	em Architecture	74
	b.	Freq	quency Source Generation	79
	c.	RF/L	.SI Design	85
		(1)	SP4T Switch	85
		(2)	Mix-and-Divide Circuitry	94
4.	CO	NCLUSI	IONS .	. 99

<u> </u>
1
┥
J
_
l

1

LIST OF FIGURES

		Page
2-1	Oscillator Block Diagram	3
2-2	SAW Oscillator Configuration	5
2-3	SAW Reflection Coefficient	10
2-4	SAW #1 Passband	11
2-5	SAW #2 Passband	12
2-6	SAW #3 Passband	13
2-7	SAW #4 Passband	14
2-8	SAW Matching Networks	15
2-9	Quadrature Hybrid Phase Shifter	16
2-10	Breadboard Phase Shifter	19
2-11	Phase Shift vs Voltage at -75 ^P C	20
2-12	Phase Shift vs Voltage at +70 ⁰ C	21
2-13	Phase Shift vs Temperature at 533.33 MHz	22
2-14	Phase Shift vs Temperature at 560 MHz	23
2-15	Phase Shift vs Temperature at 566.66 MHz	24
2-16	560 MHz Microwave Oscillator Amplifier Chain	26
2-17	Amplifier Chain Gain vs Frequency	27
2-18	P _O vs P _{IN} , Feedback Amplifier	28
2-19	Amplifier Stages 1 and 2 Reflection Coefficients	29
2-20	Amplifier Output STage Reflection Coefficients	30
2-21	Tripler Schematic	31
2-22	P _{OUT} vs P _{IN} for Tripler	33
2-23	Tripler Output Power vs Frequency (P _{IN} =+15 dBm)	34
2-24	Power Amp Schematic	35
2-25	Output Power vs Frequency, Power Amplifier	36
2-26	Injection Locking Bandwidth vs P _{IN;} , ILO	38
2-27	ILO Schematic	39
2-28	Oscillator Housing	40

LIST OF FIGURES (continued)

	•	Page
2-29	Photograph of Packaged Microwave Oscillator	40a
2-30	SAW Oscillator Board	40b
2-31	Power Amplifier and Control Circuitry Board	40c
2-32	X3 Circuit	40d
2-33	P _{OUT} vs Frequency, Breadboard #1, Channel #1	43
2-34	Settability, Breadboard #1, Channel #1	44
2-35	Temperature Test, Breadboard #1, Channel #1	45
2-36	P _{OUT} vs Frequency, Breadboard #1, Channel #2	47
2-37	Settability, Breadboard #1, Channel #2	48
2-38	Frequency vs Temperature, Breadboard #1, Channel #2	49
2-39	P _{OUT} vs Frequency, Breadboard #1, Channel #3	50
2-40	Settability, Breadboard #1, Channel #3	51
2-41	Frequency vs Temperature, Breadboard #1, Channel #3	52
2-42	P _{OUT} vs Frequency, Breadboard #1, Channel #4	53
2-43	Settability, Breadboard #1, Channel #4	54
2-44	Frequency vs Temperature, Breadboard #1, Channel #4	55
2-45	P _{OHT} vs Frequency, Breadboard #2, Channel #1	57
2-46	Settability, Breadboard #2, Channel #1	58
2-47	Frequency vs Temperature, Breadboard #2, Channel #1	59
2-48	P _{OUT} vs Frequency, Breadboard #2, Channel #2	61
2-49	Settability, Breadboard #2, Channel #2	62
2-50	Frequency vs Temperature, Breadboard #2, Channel #2	63
2-51	P _{OUT} vs Frequency, Breadboard #2, Channel #3	65
2-52	Settability, Breadboard #2, Channel #3	66
2-53	Frequency vs Temperature, Breadboard #2, Channel #3	67
2-54	P _{OUT} vs Frequency, Breadboard #2, Channel #4	69
2-55	Settability, Breadboard #2, Channel #4	70
2-56	Frequency vs Temperature, Breadboard #2, Channel #4	71

LIST OF FIGURES (Continued)

	·	Page
3-1	Synthesizer with Independent SAW Oscillators	77
3-2	Synthesizer with MLSO	80
3-3	Dual PPL, MTG Circuitry	82
3-4	Dual Passband Oscillator	83
3-5	SP4T Switch Preliminary Block Layout	87
3-6	RF Switch Block Diagram	88
3-7	RF Switch TTL to ECL Buffer	89
3-8	RF Switch Decoder and Level Shifter	90
3-9	RF Switch Amplifier	91
3-10	RF Switch Output Stage	92
3-11	Mix and Divide Circuitry	94
3-12	+3/+4 With 50% Duty Cycle Output	95
3-13	÷3/÷4 Circuit	96
3-14	Analog Multiplier	98

LIST OF TABLES

		Page
2-1	Oscillator Requirements	2
2-2	Performance, Breadboard No. 1, Channel No. 1	46
2-3	Temp. Stability of Breadboard Oscillator No. 1	56
2-4	Performance, Breadboard No. 2, Channel No. 1	60
2-5	Performance, Breadboard No. 2, Channel No. 2	64
2-6	Performance, Breadboard No. 2, Channel No. 3	68
2-7	Performance, Breadboard No. 2, Channel No. 4	72
2-8	Temp. Stability of Breadboard Oscillator No. 2	73
3-1	Contract Specifications	75
3-2	JTIDS Requirements	76
3-3	Comparison of Frequency Source Generator	81
3-4	Injection Lock Test Results	84
3-5	Switch Computer Predicted Performance	93

v

1. SUMMARY

The objectives of this program are to develop SAW devices suitable for use in a low cost, stable, .5 watt, 1680 MHz SAW oscillator and an L-band frequency synthesizer suitable for use in JTIDS Class 3 type terminals. One year after contract start, the SAW stabilized oscillator effort has concluded, while the synthesizer architecture is finished and hardware development of the key building blocks is well underway. This second interim technical report will discuss the technical progress in fulfilling contract objectives, the various problems encountered, proposed solutions, and areas for further development to realize the full potential of the designs employed. Section 2 discusses the oscillator, while the synthesizer is discussed in Section 3.

2. MICROWAVE OSCILLATOR

The goal of the microwave oscillator program is a .5 watt output, SAW stabilized circuit which can be frequency and amplitude modulated. The oscillator is to have its center frequency at 1680 MHz, be tunable over a ±20 MHz range, and operate over relatively severe environmental conditions. Table 2-1 summarizes the key requirements of this oscillator.

Figure 2-1 shows a block diagram of the oscillator configuration which provided the best results. It consists of a SAW oscillator operating at 1/3 of the output frequency. The output of this circuit is tripled and then amplified to the desired output power. Two options exist to provide the amplification: a Class C power amplifier and an injection locked oscillator. Both approaches are being investigated.

Table 2-1. OSCILLATOR REQUIREMENTS AND CAPABILITIES

Comment	Figs. 2-45, 2-48 2-51, 2-54	<20 KHz Typ.	Table 2-8	. Table 2-8		•		Table 2-6
Capability BB #2	1660-1696 MHz	<50 KHz	159-501 ppm	+27.9 dBm Typ.		1.2 MHz/Vrms Typ.	Pulsed	3.50W Nom.
Comment	Figs. 2-33, 2-36, 2-39, 2-42	<20 KHz Typ.	Table 2-3	Table 2-3				Table 2-2
Capability BB #1	1660-1698 MHz	<50 KHz	214-257 ppm	+28 dBm Typ.		1.2 MHz/Vrms Typ.	Pulsed	3.42W Nom.
Requirement	1660-1700 MHz	+250 KHz	<200 ppm (-70°C - +70°C)	.5W (+27 dBm)		>300 KHz/Vrms sensitivity	Pulsed	2.5W
Parameter	Frequency	Frequency Settability	Temperature Stability	Output Power	Modulation Capacity	Æ	АМ	DC Power
Item No.	~	2	m	4	2		2	9

Figure 2-1. OSCILLATOR BLOCK DIAGRAM

The 560 MHz SAW oscillator is achieved by selecting one of four SAW delay lines. These filters cover the range from $555\frac{1}{3}$ to $556\frac{2}{3}$ MHz, $556\frac{2}{3}$ to 560 MHz, 560 to $563\frac{1}{3}$ MHz, and $563\frac{1}{3}$ to $566\frac{2}{3}$ MHz. These SAW filters are cascaded with the phase shifter which is used to tune to any frequency within the passband of the selected SAW filter. A three stage amplifier provides the gain to overcome the filter and phase shifter insertion losses and the closed loop configuration oscillates at a frequency in which the total phase shift around the loop is a multiple of 2π . The two conditions for oscillation can be expressed as:

$$\frac{2\pi f_n \ell}{V} + \phi = 2n\pi \tag{2-1}$$

and

$$L_S(f) + L_I(f) = G(f,A)$$
 (2-2)

where

 f_n = oscillation frequencies

1 = center-to-center transducer separation

V = surface wave velocity

φ = phase shift through all elements except SAW delay line

n = an integer

 $L_s(f)$ = insertion loss of SAW delay line

 $L_T(f)$ = insertion loss of feedback loop components

G(f,A) = amplifier gain as a function of f and output level, A

A = output power level .

Figure 2-2. SAW Oscillator Configuration.

Solving (2-1) for f_n ,

$$f_n = \frac{V}{\ell}(n - \frac{\phi}{2\pi}) \qquad (2-3)$$

For single mode operation, the SAW delay line is designed such that there is only one solution for Equation (2-1) that is in the passband of the delay line. As a general rule, the loss associated with the feedback loop components, $L_{\rm I}(f)$, and the amplifier gain, G(f,A), are slowly varying functions of frequency over a broad range around the frequency for which the oscillator is being designed, and the SAW response, $L_{\rm S}(f)$, is a very strong function of frequency. The SAW oscillator is designed so that the combination of SAW delay line loss plus amplifier gain exceeds unity over a desired frequency band around the desired operating frequency. As long as only one solution to (2-3) falls within the passband response of the SAW delay line, single mode operation of the SAW oscillator is guaranteed.

The phase shifter consists of a quadrature hybrid which produces phase shift when its load impedance is changed. Varactor diodes resonated with shorted stubs are used for the reactive loads of the quadrature hybrid. Two such circuits are used in the current design, although an improved advanced development version should operate satisfactorily with only one phase shifter. FM modulation is achieved by applying the modulating signal to the varactor diodes. Pulse AM modulation is achieved by modulating the bias of the tripler circuit.

a. SAW Delay Line Design

As mentioned above, the 560 MHz SAW oscillator is achieved by selecting one of four SAW filters which cover the range from 553-1/3 to 556-2/3 MHz, 556-2/3 to 560 MHz, 560 to 563-1/3 MHz, and 563-1/3 to 566-2/3 MHz. The SAW delay line is designed to achieve the required passband frequencies and delay times while maintaining a minimum insertion loss and good temperature stability. The delay time is important since it directly determines the mode spacing and thus the tuning range of the SAW oscillator.

The rationale for segmenting the passband into four sub-bands is as follows: The delay line bandwidth or tunability range of a SAW delay line is inversely proportional to its time delay and oscillator Q. In order to achieve a single mode frequency selectability from 1660 to 1700 MHz, a ± 12000 ppm frequency band, the center separation between the input and output transducers must be less than 50 λ_0 . This sort of separation creates two problems. First, the direct feedthrough can enhance the delay time sidelobe levels and if there is sufficient excess gain in the loop will allow more than one mode to oscillate. Secondly, the delay line insertion loss becomes excessive due to the limited number of finger pairs in the transducer.

A-delay line on ST-cut quartz with 40 λ_0 transducer separation was projected to have insertion loss in excess of 40 dB. To reduce this large loss it was decided to divide the 1660 to 1700 MHz frequency range into several channels. By a trade-off analysis considering insertion loss, sidelobe rejection, circuit complexity, and yield, we settled on four channels as the optimum choice.

With the number of channels optimized, the choice of the SAW delay line frequency was considered. Frequencies to be considered include the fundamental oscillator frequency and the various subharmonics. With the present state of the art, it is extremely difficult, if not impossible, to mass produce SAW delay lines operating at the fundamental. Either an embedded transducer finger configuration or an extremely thin interdigital finger metallization layer (200Å) would have to be employed if mode conversion at the surface discontinuities are to be minimized and to assure insertion losses of less than 30 dB. Even using these techniques, the typical variation of delay line frequency due to fabrication tolerance is estimated to be +10 MHz, too large to be of practical use.

Design of the delay line at a subharmonic of 1680 MHz appears a more practical approach for a circuit requiring mass production. Both one-half and one-third output frequencies were considered. Delay lines operating at the one-half frequency can be produced using photolithographic techniques, however, center frequency reproducibility and insertion loss are not easily controlled. Again, this is mainly due to fabrication tolerances and mode conversion which could be improved by using embedded transducers or very thin electrode metallization as mentioned previously, but both of these approaches would lead to increased SAW production costs.

These production problems can be alleviated by lowering the delay line frequency as in this case to the third subharmonic. The device design would be similar to a one half frequency design but with increased line widths. Hence, four delay lines with center frequencies at 555 MHz, 558-1/3 MHz, and 565 MHz were designed on a single substrate. Each of the delay lines consists of two identical interdigital transducers with split electrode configuration. The choice of identical transducer design minimizes or eliminates fabrication errors that can cause the passbands of input and output transducers to differ, resulting in an increase in insertion loss. The split electrode configuration allows the delay line to operate at the 3rd harmonic so that linewidth resolution for the fingers stays above 2.2 μ m. This linewidth can be easily fabricated in quantity using conventional photolithographic techniques.

The center-to-center separation between the input and output transducers determines the time delay for the SAW delay line. The time delay then limits the length of the transducer, which in turn gives a lower bound for the delay line bandwidth. On the other hand, the mode spacing and the tuning range is inversely proportional to the time delay and to ensure wide tuning range and single mode operation, the transducers have to be placed very close to one another and contain the maximum allowable finger pairs. For the present design, this center-to-center separation was set at 98 λ_0 , where λ_0 is the acoustic wavelength at the center frequency of each delay line. The transducers each consist of 29 finger pairs, and the edge-to-edge separation between transducers is only 10 μ m. Fortunately, it was found that with proper packaging, the direct electromagnetic feedthrough at this separation can still be suppressed to below 20 dB of the passband peak. The acoustic aperture for these delay lines was designed to be 200 λ_0 .

With the above design, the SAW delay line oscillator achieves single mode operation and the oscillator frequency can be tuned to the required frequencies using a phase shifter capable of \pm 100° phase tuning. The untuned insertion loss of the delay line is 30 dB, which after tuning becomes less than 23 dB.

In the course of fabricating the delay lines for the first prototype oscillator a significant problem was encountered. Impedance and phase variation measurements among the four segmented bandwidths were found to be non-uniform and staggered, respectively. This in effect required a different set of matching networks for each line and an electrical phase shifting capability in excess of the designed for $\pm 110^{\circ}$ phase capability if one phase shifter was to provide tuning across all four segmented bands. Since time under this program did not permit a redesign, two phase shifters were implemented in the deliverable units so that 360° of phase shift could be achieved.

The problem of reproducibiltiy of the SAW filter response needs to be addressed in subsequent work. The phase shifts experienced are really very small in terms of wave lengths of the surface acoustic wave, but have dramatic impact on the oscillator performance. Even though the same SAW mask was used, it was felt that the combined effects of metallization thickness of the SAW tranducers and the variation in crystal characteristics was sufficient to cause this undesired phase shift.

Figure 2-3 is a plot of the input and output reflection coefficient of one SAW filter in breadboard unit 1. The forward transmission magnitude and phase of all four delay lines of unit 1 are shown in Figures 2-4 through 2-7. Figure 2-8 is a schematic of the matching network for these SAW filters. Note that a completely distributed matching network is used to ease producibility and minimize adjustment costs during production. In fact, its advantage of not requiring tuning might be its downfall if repeatable SAW filter characteristics cannot be achieved.

13

Figure 2-8 SAW Matching Networks

b. Electrical Design

(1) Phase Shifter

The phase shifter forms a key part of the microwave oscillator since by tuning the phase the desired frequency of oscillation can be selected. The design selected for the phase shifter operates by changing the reflection coefficients of the quadrature hybrid as shown in Figure 2-9.

To operate as a phase shifter, a quadrature hybrid is connected to two reflective networks, one on port 2 and one on port 3. Ports 1 and 4 form the input and output ports, respectively. Let $V_{lin} = Ae^{j\omega t}$ be the signal input to port 1. Then, by the operation of the quadrature hybrid, $V_{2out} = \frac{A}{\sqrt{2}}e^{j\omega t}$ and $V_{3out} = \frac{A}{\sqrt{2}}e^{j(\omega t + \pi/2)}$; i.e., half of the power input to port 1 goes to each of ports 2 and 3, with a 90° phase shift between them. If the networks connected to ports 2 and 3 have reflection coefficients of Γ_1 and Γ_2 respectively, then the signals input to ports 2 and 3 are given as

Figure 2-9. QUADRATURE HYBRID PHASE SHIFTER

$$V_{2in} = \frac{A}{\sqrt{2}} e^{j\omega t} r_1 \qquad (2-9)$$

$$V_{3in} = \frac{A}{\sqrt{2}} e^{j(\omega t + \pi/2)} \Gamma_2$$
 (2-16)

Then by operation of the quadrature hybrid the power out of ports 1 and 4 is given by

$$V_{lout} = \frac{A}{2} \left[e^{j\omega t} r_1 + e^{j(\omega t + \pi)} r_2 \right]$$
 (2-11)

$$V_{4out} = \frac{A}{2} \left[e^{j(\omega t + \pi/2)} \Gamma_1 + e^{j(\omega t + \pi/2)} \Gamma_2 \right]$$
 (2-12)

It is now apparent that if $\Gamma_1 = \Gamma_2$, then V_{lout} becomes zero and V_{4out} has all the power and a phase shift of $\pi/2 + L\Gamma$. But what happens when $\Gamma_1 \neq \Gamma_2$. If we let

$$r_1 = 1e^{j\phi_1}$$
 (2-13)

and

$$r_2 = 1e^{j\phi_2}$$
 (2-14)

the equation for V_{4out} becomes

$$V_{4out} = \frac{A}{2} \left[e^{j(\omega t + \pi/2)} e^{j\phi_1} + e^{j(\omega t + \pi/2)} e^{j\phi_2} \right]$$
 (2-15)

or

$$V_{4out} = \frac{A}{2} e^{j(\omega t + \pi/2)} (e^{j\phi_1} + e^{j\phi_2})$$
 (2-16)

Using trigonometric identities on $e^{\int \phi_1} + e^{\int \phi_2}$, we find $V_{4out} = A \cos \frac{\phi_1 - \phi_2}{2} e^{\int (\omega t + \pi/2 + \frac{\phi_1}{2} + \frac{\phi_2}{2})}$ (2-17)

Thus the phase shift from port 1 to port 4 is $\pi/2 + \frac{\phi_1 + \phi_2}{2}$. The cosine term tells us that there can be a variation of 90° between ϕ_1 and ϕ_2 before there is 3 dB additional loss when compared to the $\phi_1 = \phi_2$ case.

This wide allowable variation means that the amplitude variation suffered during tuning of the phase shifter can be almost ignored in the design of the oscillator.

By judicious choice of reflective networks, the required phase shift range can be met. A network of a shorted stub with a variable capacitor was chosen for this application. However, it was pointed out that it is difficult to tune both of these capacitors simultaneously, as would be required for optimum performance. Hence, an improved version was attempted in which varactor diodes were used in place of the mechanically tuned capacitors. Initially, high Q diodes mounted in plastic axial lead packages were used for the capacitors, but it was soon discovered that the package parasitics limited the tuning range to only 20° to 50°. This has now been improved to using diodes in pill packages from Microwave Associates and GHz devices. The phase shifter performance is shown in Figure 2-10. We note that the amplitude variation is less than 2 dB and almost 200° of phase shift can be obtained as the tuning voltage is varied from 0 to 24V.

Figures 2-11 and 2-12 are measured plots of phase shift versus voltage taken at -75°C and +70°C. Note the almost linear tuning characteristics obtained by a compensation of the phase shifter design and the capacitance change characteristic of the varactor diode.

Unfortunately, a major problem with the varactor diode is its sensitivity to temperature. Figures 2-13, -14 and -15 are measured plots of the phase shift versus temperature at $555\frac{1}{3}$, 560, and $566\frac{2}{3}$ MHz, respectively. Note that at 20V one obtains almost 10° of phase variation with temperature. Fortunately, it should be relatively straight-forward to temperature compensate this phase shift by using either a thermistor or sensistor. This task will be completed and the temperature compensation incorporated before delivery of the oscillator will be made.

											: ! ! ! • !	
			1	1 1 1							-	
				3								
 ට							•		-/	, !	8	
11/9/79		151	מיי	57	ð				244			1 1
											26	
VOLTS	·										מנ	
 TO 24												
60											2 Z	
SHIFTER											w Z	
												1 . :
PHASE								II			- 12	
BOARD	<u> </u>								1		2	
8			: .					1				
BREAD		1			·		1				9	
			: .			9					Ŋ	
		3						7		3 		
						NJ W						

One other point needs to be made regarding the use of varactor diodes to achieve the desired phase shift. Because the phase shift is rather sensitive to the biases on the varactors, a well-regulated voltage source is required. Fortunately, since no current is drawn by the diode, the voltage regulation should be easily accomplished with possibly only a zener diode. In fact, it should be possible to design temperature compensation into the regulation circuit.

As mentioned previously, two stages of phase shifters will be cascaded to provide over 360° of phase shift in the deliverable units.

(2) <u>Oscillator Feedback Amplifier</u>

The design of the feedback amplifier is shown in Figure 2-16. This consists of 3 stages of amplification using the Amperex BFR 91 transistor for two stages and the BFR 96 for the output stage. Transistor characteristics are described in the previous semi-annual report and will not be repeated here. Figure 2-17 shows the gain versus frequency of these amplifiers, Figure 2-18 the compression characteristics of the output stage, and Figures 2-19 and 2-20 the matched input and output reflection coefficients. When this amplifier was incorporated with the SAW filters, oscillation was found far out of band (at approximately 170 MHz). This is due to the high reflection coefficient of the SAW filters and the phase conditions set-up in the amplifiers at this frequency. The oscillation problem was solved by sufficiently attenuating the inputs and outputs of the SAW filters to provide an out-of-band quasi-50 ohm load to the amplifiers.

(3) Tripler Design

A schematic of the tripler to multiply the SAW oscillator output to 1680 MHz is shown in Figure 2-21. As will be discussed in Section (4), a tripler is needed regardless of the technique used to amplify the output to .5W. The tripler is a very simple circuit using the BFR 96 transistor.

Figure 2-16. 560 MHz Micro (Sc

MHz Microwave Oscillator Amplifier Chain (Schematic)

MAME

A SEURISMAN

TITLE

AICROSIA RE OSE, AMP CHAN EFR 91 AMP = DWG. NO.

SMITH CHART FORM 82-85PR19-56) KAY ELECTRIC COMPANY, PINE BROOK, N. J. 61966. PRINTED IN U.S.A.

DATE 1/7/79

IMPEDANCE OR ADMITTANCE COORDINATES

MAME, ACCURSION	TITLE	osc	AMPLIFIER	*3	EF2	96	DWG. NO.
SMITH CHART FORM 92-BSPR (9-66)	KAY	ELECT	RIC COMPANY,	PINE BROC	K, N J, \varTheta 19	66. P	PRINTED IN USA. DATE 11/7/75

IMPEDANCE OR ADMITTANCE COORDINATES

Figure 2-21. TRIPLER SCHEMATIC

Figure 2-22 is a plot of the power out versus power in for the tripler, and Figure 2-23 is tripler output power versus frequency at the 1680 MHz frequency.

(4) Output Amplification

Two basic methods exist to amplify the output of the tripler to the desired .5W level. These are by amplifying the tripler output in a power amplifier, or by injection locking a .5W oscillator to the tripler output. The amplifier approach, assumed to be a class C amplifier for power efficiency purposes, is very straight-forward. However, because of the frequency of operation and the power level desired, the necessary transistor is relatively expensive (\$30-\$50). The injection locked oscillator (ILO) can make use of very low-cost readily available devices, but suffers from the problem of holding lock over a relatively wide bandwidth, temperature range, and load impedances.

Power Amplifier

The schematic for the power amplifier is shown in Figure 2-24. Because of the desired gain and frequency of operation, the TRW 54601 was selected and biased to operate in a class C condition. The amplifier's measured response is shown in Figure 2-25. We note that it provides a minimum of 525 mW at 1700 MHz, increasing up to 661 mW at 1660 MHz.

ILO

Injection locking tests were performed on both the existing radiosonde oscillators (VIZ Industries design, 200 mW output), and a second oscillator design developed by TRW for this program. The original oscillator design,

K-E 10 x 10 TO THE INCH - / X 10 INCHES

Figure 2-24. POWER AMP SCHEMATIC

KS 10 X 10 TO THE CENTIMETER 18 X 25 C M.

	:	<u> </u>										
	: -:-	1.000										
						1						f
-												
					1							
			===									
	1.5											
	1-11-1											
				-			 	24		2 6		

described in the previous semi-annual report, exhibited unreliable locking characteristics and was therefore discarded. Figure 2-26 shows the injection locking characteristics of the TRW oscillator with the injection locking signal at the fundamental. It is seen that the TRW design with a fundamental injection lock signal at about +17 dBm provides over 80 MHz of locking bandwidth, which is considered adequate over the desired temperature and load characteristics in which this oscillator must operate.

The schematic of the TRW injection locked oscillator is shown in Figure 2-27. Note that a pecularity of this oscillator is that the output is the most optimum locking point. This is contrary to intuition and makes the output sensitive to load VSWRs. This is an area of design which must be further studied during the advanced development phase.

c. <u>Oscillator package</u>

Figure 2-28 is a sketch of the package and Figure 2-29 is a photograph of one of the actual deliverable breadboard oscillators. These units contain two PC boards housed inside the 3" x 5" x 1.75" metal container. For breadboard purposes, any of the four SAW filters may be selected by lifting the cover off the box and resoldering the jumper wire at the input and output of the SAW filter. For the advanced development models, a technique such as plugging the desired filter into the correct socked is envisioned. Again, this area should be further developed in the next phase of the program. Figure 2-30 shows a photograph of the top board containing the SAW oscillator. Figures 2-31 and 2-32 show the top and bottom sides of the second board containing the power amplifier and control circuitry and the X3 circuit, respectively.

Figure 2-27. ILO SCHEMATIC

Figure 2-28. Oscillator Housing

Figure 2-29. PHOTOGRAPH OF PACKAGED MICROWAVE OSCILLATOR

Figure 2-30. SAW OSCILLATOR BOARD

Figure 2-31. POWER AMPLIFIER AND CONTROL CIRCUITRY BOARD 40c

Figure 2-32. X3 CIRCUIT

d. Oscillator Results

Completed oscillator test data compiled in this section for evaluation of unit performance was measured on both deliverable prototype oscillators.

The compiled data consists of the following individual test categories:

- o P_{OUT} vs Frequency (Tuning Range)
- o Settability (Frequency Settability)
- o Temperature Stability
- o Spurious Levels
- o Frequency Pulling (Loading Effects)
- o DC Power Consumption
- o AM-FM

In the data that follows, each of the above seven measurements can be found in sequence, progressing from prototype breadboard No. 1, Channels 1-4, to prototype breadboard No. 2, Channels 1-4.

The test methods employed in compiling the representative oscillator test data are as follows:

1) POUT vs Frequency

Adjustment of phase shifter tuning voltage over full in-band range, measurement of output power, and fundamental frequency. (+25°C ambient temperature, nominal line voltages.)

2) Settability

After a one-minute power-off condition, measurement of the output fundamental frequency as a function of increasing time following turn-on.

Drift of oscillator due to initial thermal and electrical transients. (+25°C ambient temperature, nominal line voltages.)

3) Temperature Stability

Upon setting the oscillator output signal midway in one of each of the four SAW bands, the drift of the carrier frequency is monitored over the temperature range of -70° C to $+70^{\circ}$ C. (2.0 MHz frequency span resolution, nominal line voltages.)

4) Spurious Levels

Signal spectrum of output carrier is viewed from DC to 5.0 GHz. Spurious signals present due to SAW oscillator and oscillator output components were noted. (+25°C ambient temperature, nominal line voltages.)

5) Frequency Pulling

The effect of an oscillator load consisting of a 6 dB pad placed at the end of a variable phase shifter is viewed through a directional coupler as the load is varied through 360° of phase. The corresponding carrier frequency variation is noted by a specirum analyzer. (+25°C ambient temperature, nominal line voltages.)

6) DC Power Consumption

The input line voltage levels of the oscillator are varied from nominal (+24V and +13V), to maximum (+26.4V and +14.3V), and minimum (+21.6V and +11.7V). The corresponding nominal, maximum and minimum line currents are measured. (+25°C ambient temperature.)

7) AM-FM

Measurement of 0-100% amplitude modulation signal levels at fundamental output frequency. (Fundamental signal output on/off isolation upon application of AM signal input.)

Verification of 10-100 KHz FM signal bandwidth around carrier fundamental. (+25°C ambient temperature, nominal line voltages.)

K-E 10 X 10 TO THE INCH+7 X 10 INCHES KEUFFEL & ESSER CO. MAN M # 15A

K. 10 X 10 TO THE INCH. 7 X 10 INCHES KEUPPEL & ESSEN CO. MAIN 10 3A

一日の大人 はないの 火ま

Figure 2-35, TEMPERATURE TEST, BREADBOARD NO. 1, CHANNEL NO. 20 Ó 10 TEMPERATURE (°C)

Table 2-2. PERFORMANCE

BREADBOARD #1

CHANNEL #1

A) SPURIOUS LEVEL

FREQUENCY (MHZ)	ORIGIN	TOOT	⊨l
		(DBM)	(DBM)
555.0	SAW FREQUENCY	-25.5	54.5
0111	2X SAW FREQ	-25.5	54.5
3330	2X Four	+9.5	19.5
5071	3X Four	-28.0	57.0

B) FREQUENCY PULLING

 $\Delta F = 286 \text{ KHz } (\pm 143 \text{ MHZ})$

c) BIAS

(M)						
I (MA)					•	
>1	13	24	11.3	21.6	14.	7 96

D) AM $(V_{IN} = 1.414V)$

$$P_{ON} = +28.9 \text{ dBm}$$

 $P_{OFF} = -10.0 \text{ dBm}$

K. 10 X 10 TO THE INCH. 7 X 10 INCHES KEUFFEL & ESSER CO. MAIN WAY.

K. 10 X 10 TO THE INCH . / X 10 IN 111 3

S POWER (W) 3

9.0

46 0780

K-E 10 X 10 TO THE INCH-/ X 10 INCHES

.794

.316

K-E 10 X 10 TO THE INCH . / X 10 INCHES KEUFEL & ESSER CO. MALL IN U.S.A.

KAE 10 X 10 TO THE INCH + 7 X 10 INCHES KEIFFEL & ESSER CO MAN IN U.S.

Table 2-3. TEMPERATURE STABILITY OF BREADBOARD OSCILLATOR NO. 1

1.

f (PPM)	242	257	214	222
POUT (DBM)	+28.60	+28.40	+28.20	+27.80
	+28.40	+28.60	+28.10	+28.10
	+28.10	+28.60	+28.00	+28.00
FREG MHZ	1664.662	1674.527	1684.764	1694.687
	1665.066	1674.957	1685.124	1695.061
	1664.950	1674.921	1684.904	1695.785
TEMP OC	+70	+70	+70	+70
	+ 5	+23	+ 5	+23
	-70	-70	-70	-70
CHANNEL #	-1	2	3	4
BREADBOARD OSCILLATOR #1				

POWER (W)

46 078C

0.794

8.

0.631

0.50

KSE 10 X 10 TO THE INCH . 1 X 10 INCHES

Table 2-4. PERFORMANCE

CHANNEL #1

#2	
BREADBOARD #	

(DBC)	52.0 48.0 17.9 48.0
POUT (DBM)	-22.5 -19.0 +11.6 -19.0
ORIGIN	SAW FREQUENCY 2X SAW FREQ 2X F _{OUT} 3X F _{OUT}
SPURIOUS LEVELS FREQUENCY (MHZ)	554.8 1110 3330 4995.5
₹	

B) FREQUENCY PULLING

$$\Delta F \approx 1$$
 MHZ (+500 KHZ) 12 dB RETURN LOSS

	P(W) 2.093 2.784	1.554	2.302
	^I (MA) 161.0 116.0	132.8	161.0 136.0
7 - 1 - 1 T	V 13 24	11.7 21.6	14.3
•	BIAS		
	Û		
	60		

0) AM
$$(V_{1N} = 1.414V)$$

$$P_{ON} = +29.4 \text{ dBm}$$

 $P_{OFF} = -10.0 \text{ dBm}$

46 U78C

THE WEST OF THE INCH.

KOTE 10 X 10 TO THE INCHAT X 10 IN 18.5

Table 2-5. PERFORMANCE

#5
OARD
EADB
8K

CHANNEL #2

LEVELS
SPUR10US

F

	(DBC)	56.4	53.4	17.9	48.4
TOO	(M80)	-27.0	-24.0	+11.5	-19.0
ORIGIN		SAW FREQUENCY	2X SAW FREQ.	2X Fair	3X Four
EBECHENCY (MHZ)	עבלסדונים ליווד	558 3	7 9111	3350.0	5025.0

B) FREQUENCY PULLING

 $\Delta F = 350 \text{ KHz} (\pm 175 \text{ KHz})$ 12 DB RETURN LOSS

C) BIAS

P	7#	2.00	2.68	1.46	1.95	2.18	3.40
	(MA)	154.5	111.7	124.8	90.4	152.3	128.7
	> 1	13	24	11.7	21.6	14.3	26.4
2							
3							

D) AM
$$(V_{IN} = 1.414V)$$

$$P_{ON} = +29.20 \text{ dBm}$$

 $P_{OFF} = -10.00 \text{ dBm}$

TIME (MIN)

46 0780

K.E. KEUFFEL & ESSER CO MAN MUSA

TEMPERATIRE OC

Table 2-6. PERFORMANCE

_	
ទ	ì
c	_
Ē	Y
Š	ŝ
2	
Š	:
ē	Y
ē	1

CHANNEL #3

₹

		(DBC)	48.00	45.80	44.50	18.10
c	TOOL	(DBM)	-19	-16.8	-15.5	+10.9
	ORIGIN		SAW FREQUENCY	2X SAW FREQ	4X SAW FREQ	2X F _{OUT}
SPURIOUS LEVELS	FREQUENCY (MHZ)		561.65	1123.38	2246.80	3370.15

FREQUENCY PULLING 8

L0SS
RETURN
æ
12
KHZ)
(+225
KHZ
450
11
ΔF

BIAS ဌ

(M)	2.340	1.645	2.634
I (MA)	180.0	140.6	184.2 117.26
> I	. 13 24	21.6	14.3

D) AM
$$(V_{IN} = 1.414 \text{ V})$$

$$P_{ON} = +29.0 \text{ dBm}$$

$$P_{OFF} = -10.0 \text{ dBm}$$

Table 2-7. PERFORMANCE

#2
8
8
图
BR

CHANNEL #4

A) SPURIOUS LEVELS

(dBm) (dBc)	-17.60 45.70		
(ZHA)	564.36 SAW FREQUENCY		3386.17 2X F _{QUT}

B) FREQUENCY PULLING

$$\Delta F = 300 \text{ KHZ} (+150 \text{ KHZ})$$
 12 dB RETURN LOSS

C) BIAS

I (MA)	175.7	150.7	132.4
>	13	11.7	14.3
,	• ·		
3			

2.284

S S 1.763 1.506 1.893 2.466

$$P_{ON} = +28.0 \text{ dBm}$$

$$0_{\rm OFF}$$
 = -20.4 dBm

Table 2-8. TEMPERATURE STABILITY OF BREADBOARD OSCILLATOR NO. 2

f (PPM)		501			159				486			178	
POUT (DBM)	+28.00	+28.00	+28.10	+27.80	+27.80	+27.90	+27.90	+27.80	+27.80	+27.70	+28.00	+28.00	+26.20
FREQ MHZ	1664.921	1665.161	1664.326	1674.900	1675.045	1674.779	1674.968	1684.678	1685.094	1684.274	1691.673	1691.975	1691.721
TEMP. OC	+70	+23	-70	+70	+	-47	-70	+70	+	-70	0/+	-23	-50
CHANNEL #						2			က			4	
BREADBOARD OSCILLATOR #2								73					

3. FREQUENCY SYNTHESIZER

The requirements for the frequency synthesizer, as described in the contract statement-of-work, are shown in Table 3-1. Based on the JTIDS system study which is described in detail in the first interim report, the requirements for a JTIDS class 3 frequency synthesizer are shown in Table 3-2. The current synthesizer design is based on meeting the objectives defined in Table 3-1, with the exception of the frequency range, which shall be 1296-1533 MHz. It is also felt that the power goal of 5W will be extremely difficult to meet. In fact, our current estimate is a power consumption of 9.5W, which could be lowered to perhaps 7W with the optimization of the RF/LSI chips.

a. System Architecture

Figure 3-1 is a detailed block diagram of the synthesizer architecture. The design utilizes a mix-and-divide scheme whereby four mix-and-divide monolithic RF/LSI chips are used to switch, divide, and add or subtract three selectable frequencies to provide the required output tones.

An external reference source of 40.5 MHz is used to lock the three SAW oscillators. The reference is also used to injection lock the reference 486 MHz SAW oscillator. This provides frequency coherency for the synthesizer. If such coherency were not required, an obvious simplification would to to allow the SAW oscillators to be free-running oscillators. The 526.5, 567, and 607.5 MHz SAW oscillators are filtered by a single stage bank of SAW filters which have the effect of eliminating the undesired tones present because of the injection locking signal. These filter outputs are then selected by their respective RF/LSI chips. Each RF/LSI circuit consists of two chips comprising driver, an amplifier, a frequency divider, and an analog multiplier (mixer).

Table 3-1. CONTRACT SPECIFICATIONS

Parameter	Requirement
Frequency Range	950-1202 MHz
Step Size	3 MHz
Spurious Suppression	-68 dBc
Frequency Stability	1 x 10 ⁻⁹ /sec 1 x 10 ⁻⁸ /month
Phase Noise	65 dBc/Hz @ 100 Hz Offset 80 dBc/Hz @ 1 KHz Offset >120 dBc/Hz @ Noise Floor
Switching Speed	<1.0 µs
Settling Time	<0.1 μs
Output Level	10 dBm <u>+</u> 1 dBm
Size	10 in. ³
Power	<5W
Voltages	N/S
Digital Control Levels	N/S

Table 3-2. JTIDS REQUIREMENTS

Parameter	Requirement
Frequency Range	1296-1533 MHz
Step Size	3 MHz
Spurious Suppression	-64 dBc @ 1296-1327 -42 dBc @ 1347-1352, 1362-1367, 1407-1412, 1422-1427 -62 dBc @ 1352-1354, 1360-1362, 1412-1414, 1420-1422 -82 dBc @ 1357 <u>+</u> 3 and 1417 <u>+</u> 3 -40 dBc @ rest of band
Frequency Stability	$\pm 1 \times 10^{-5}$ (approximately ± 15 KHz)
Phase Noise	60 dBc/Hz@ 100 Hz 74 dBc/Hz @ 1 KHz >120 dBc/Hz @ Noise Floor
Settling Time	200 nS
Output Level	10 dBm
Size	10 in. ³
Power	. <5W
Voltages	+5 y , <u>+</u> 15 y
Digital Control Levels	TTL

BPF-88-768 SYNTHESIZER MODULE 364.5 - 481.5 +10 dBm -01296 to 1536 MHz BPF FIGURE 3-1. SYNTHESIZER WITH INDEPENDENT SAN OSCILLATORS 378-486 BPF OUTPUT MOD ida T 364.5-445.5 SINGLE STAGE SAW FILTER BPF 526.5 567.0 607.5 SP3T 園 2 2 3 3 3 3 **77**

On the last three chips, when one of the three frequencies is chosen, it is mixed with the output of the previous chip which has been filtered, amplified, and divided by 3. On the first chip the selected frequency is mixed with 162 MHz, derived from the output of the phase-locked loop by dividing by 3. In this fashion, each chip provides several possible output tones: the first outputs from 364.5 to 445.5 in 40.5 MHz steps; the second from 378 to 486 in 13.5 MHz steps; the third in 4.5 MHz steps from 367.5 to 481.5 MHz; and finally, 1.5 MHz steps are provided from 648 to 768 MHz. When this output is multiplied by 2, the desired 3 MHz steps from 1296 to 1536 MHz are generated. It should be noted that on all but the last chip, the difference frequency in the mixer is selected.

Frequency selection is provided by controlling the switches. Due to the fact that subtraction is used, the algorithm becomes complex. Since 3 MHz steps are employed, and each switch is an SP3T, a base 3 number system is indicated to provide the algorithm. Let the switches be numbered, from the left, as 0, 1, 2, 3, and in switches 0, 2 and 3 let 0 select 526.5, 1 select 567, and 2 select 607.5 In switch 1, the reverse order must be used: 0 must select 607.5, 1 must select 567, while 2 selects 526.5. To select a desired frequency, n must be determined, where n is given by

f_{desired} = 1296 + 3n

or

$$n = \frac{f_{desired} - 1296}{3}$$

Next n is converted from base 10 to base 3. The switch position for each switch is given by this number, according to the switch number and the column number.

For example, suppose the desired frequency is 1389 MHz. This means n=31. In base 3 this number becomes 1011. According to the algorithm, switches 0, 1, and 3 are set to 567 and switch 2 is set to 526.5. If those numbers are run through the operations indicated in Figure 3-1, we find that the output frequency is 1389 MHz.

b. <u>Frequency Source Generation</u>

The current architecture of the frequency synthesizer differs from the design discussed in the previous interim report, which is shown for reference in Figure 3-2. The differences are primarily in the generation of the 526.5, 567, and 607.5 MHz frequencies. Several approaches were considered in addition to the multimode locked SAW oscillator discussed previously. These are the injection locked SAW oscillator approach discussed in Figure 3-1 (our current baseline) and dual phase-locked-loop/multitone generator approach. Table 3-3 summarizes the comparison of these methods of generating the desired sources.

The dual PLL/multitone generator approach is shown in Figure 3-3. It consists of two phase-locked-loop chips to generate the 526.5 and 567 MHz tones, and by passing through a nonlinear amplifier device its intermodulation products can be used to generate the 607.5 MHz tone. However, this method consumes considerably more power (approximately 1W more) and does not utilize SAW devices.

The major difficulty with the multimode locked SAW oscillator (MLSO) approach is an injection locking problem. The MLSO shown in Figure 3-2 was breadboarded and characterized and injection locking properties investigated This investigation has led to an understanding of multimode oscillators which differs from that discussed in the literature. 1,2 Measurements

M. Gilden, T.M. Reeder, A.J. Demaria, "The Mode-Locked SAW Oscillator", Ultrasonics Symposium Proceedings, 1975, pp. 251-254.

²M. Gilden, "Stablilized SAW Comb Spectrum Generators", Ultrasonics Symposium Proceedings, 1977, pp. 1-5.

FIGURE 3-2. SYNTHESIZER WITH MLSO

TABLE 3-3.

COMPARISON OF FREQUENCY SOURCE GENERATOR

TYPE: DA (TONE GENERATOR)	DC POWER	SIZE	RISK	COMMENTS
INJECTION LOCKED SAW OSCILLATORS 9.5W*	9.5W*	11 CU. IN.	204	OPTION OF PREE RUNNING OSCILLATION
MULTIMODE LOCKED SAM OSCILLATOR	10/4	13.5 CU. IN	HIGH	INJECTION LOCKING PROBLEM
DUAL PLL/MULTIMODE GENERATOR	10,58#	14.5 CU. IN.	R OR	AMPLIFIER POWER COMPOSITION

* RF/LSI DESIGN MODIFICATIONS ARE REQUIRED TO LOWER POWER.

M_i = Reference divider ratio
N_i = VCO divider ratio
K_{di} = detector gain (volts/rad)
K_{0i} = VCO gain (rad/sec)

F(s) = filter response (volt/volt)

FIGURE 3-3. Dual PPL, MTG Circuitry

indicate that multimode oscillations result from the generation of intermodulation products in the circuit non-linearities. For proper frequency ratios, the intermodulation products add energy to the loop at frequencies of oscillation which are normally suppressed, and thereby maintain oscillations at more than one frequency. One line of evidence which supports this view resulted from the construction of a multimode oscillator using tunable BPFs as shown below.

Figure 3-4. Dual Passband Oscillator

The circuit demonstrated multimode oscillations when the filters were set such that IM products of the two possible frequencies of oscillation fell in the filter passbands. Multimode oscillations did not generally occur when this was not the case. When multimode oscillations were present each

output frequency could be identified as a harmonic or an IM product of the two passband frequencies.

Injection locking tests on a breadboard NLSO indicated that the 4 output frequencies could not simultaneously be injection locked to a single input frequency. The breadboard utilized a multi-passband SAM filter with filter passbands. at 480, 512, 544, and 576 MHz. Tests were performed with injection locking frequencies of 480, 512, 544, 576 and 32 MHz. In no case did the four outputs become simultaneously locked to the input. The results of the injection locking tests are briefly summarized in the table below. The table shows the relative change in the output frequencies vs change in injection locking frequency ($\Delta f_{OUT}/\Delta f_{INj}$) for four injection locking frequencies.

Table 3-4. INJECTION LOCKED TEST DATA

		Δf _{OUT} /Δf	inj	•
finj (MHz)	<u>480</u>	<u>512</u>	<u>544</u>	<u>576</u>
480	1.0	∿.6 1	∿ 0	~0
512	∿1.66	1.0	~ 0	~0
544	~2.66	∿1.85	1.0	~0
576	∿-2.33	∿-1.25	~ 0	1.0

This data suggests that the frequencies most likely to free run in this loop are the 544 MHz and 576 MHz. The other tones are likely sustained by IM products of these two. Possibly 480 MHz is obtained by 3(544 MHz)-2(576 MHz), and 512 MHz by 2(544 MHz) - 576 MHz. Since stability of the reference tones could not be derived by injection locking one of the modes, the injection locked SAM oscillator approach was selected as the baseline design.

The injection locked SAW oscillator approach consists of generating a comb of frequencies from the reference 40.5 MHz. This signal is then introduced to each of four free-running SAW oscillators at 486, 526.5, 567, and 607.5 MHz, as shown in Figure 3-1. Preliminary experiments have indicated that when these tones are inserted at a low power point, a relatively low power tone can be used for injection lock. The problem with this technique is that the adjacent tones which are not injection locked will appear as spurious components to the desired frequency. Therefore, additional filtering after the SAW oscillator is required to reject the unwanted components to 70 dB. Because these spurious components are expected to be 30-40 dB below the desired signal, an easily obtainable low sidelobe SAW filter should be all that is required. Work is currently in progress on the design of the RF/LSI chips and the SAW filters.

c. RF/LSI Design

Because of the very stringent isolation requirements and to allow for maximum flexibility in the testing and investigation of the synthesizer, the LSI chip design has been segregated into two functions; that of the switch and that of the divide-and-mix function. An SP4T switch (rather than an SP3T switch) and a universal +3/+4 (user selectable) divide and mix was designed.

(1) SP4T Switch

The SP4T switch provides 70 dB of isolation of the unselected inputs relative to the selected input, as measured at the switch output. This is a difficult requirement, and a number of features are being included in the circuit design to specifically address the isolation problem. To avoid coupling through power supply or ground impedances, all circuitry is differential. The input signal as supplied is single ended, so the complimentary side of each differential input is brought out and grounded at the ground terminal of the transmission line supplying that input. Also, the selected channel has gain,

so that less attenuation is required in the channels not selected. Power supplies are +5 volts for VCC and-5 volts for VEE. The select inputs accept TTL levels between 0 and +5 volts. The overall block layout of the SP4T switch is shown in Figure 3-5.

Figures 3-6 through -10 show the block diagram and detailed schematics for each section of the circuit. Note that the four switch input sections (Figure 3-9) have a differential connection to the output section, and each has its own power supply connections. The output section (Figure 3-10) also has its own power supply connections. In this manner, stray coupling is reduced since signal currents in power supply lines do not have common bond wire and package lead impedances.

When the switch channel shown in Figure 3-9 is selected, the select input is pulled low, allowing the current sources for the differential pairs to be turned on. In the on state, the selected signal is amplified through two differential common-emitter/common-base cascade stages. The first stage includes diode peaking to flatten the overall frequency response. The gain is stabilized by emitter degeneration resistors and should be about 20 dB overall in the selected channel. The second common-base stage serves also to combine the channels. In the off state, the isolation from input to output is primarily obtained from the two common-base stages, which have provision to reverse-bias their emitter-base junctions when they are not selected. It is assumed that both the inputs and the output will be capacitor coupled.

Input impedance of a switch should be in excess of 200 ohms exclusive of the package capacitance. A level of -40 dBm at the input should provide -20 dBm at the output to drive the mixer; to allow some margin in design, the provisional system specification will provide -35 dBm at the switch input.

Figure 3-5. Sp4T SNITCH PRELIMINARY BLOCK LAYOUT

Figure 3-6. RF SWITCH BLOCK DIAGRAM

RESISTOR VALUES ARE IN OHMS AT 200 OPS

1. RI=2.4K 2.R2,R6=1.2K

3.R3,R7,R8=IK 4.R4=2K 5.R5=1.8K

NOTES:

L VEE =- 5.0 VDC 2. ALL TRANSISTORS ARE 2TILI2W4

3 VCC++5.0 VOC

4. PD= 20 mw

Figure 3-8.

R.F. Swiich

DECODER AND LEVEL SHIFTER

RESISTOR VALUES ARE IN OHMS AT 200 OPS.

LRIR3-800
2 R2=528K
3.R4,R9=24K
4.R5,R6,R8,R9,R18=1200
5.R7=600
6.R0,R12,R14,R16=4.66K
7.R1,R13,R15,R17,R2=475
8.R20=50K

NOTES !VEE = 50 VDC 2ALL TRANSISTORS ARE 2TILIZWA 3.P₀ = 23.0mw 4. 50 Si SELECT 0 0 SWO 0 1 SW3 1 0 SWI

AESISTOR VALUES ARE IN OHMS
AI 200 OPS
R1,2=200
R3=165K
R4=4,2K
R5,8=1,5K
R6,7=1K
C1=2.0 PF

Figure 3-10. RF SWITCH OUTPUT STAGE

NOTES:
1. ALL TRANSISTORS ARE 2TILI2W4
2.VCC0=5.0+VDC
3. CAPACITOR IS BURIED LAYER
TO ISOLATION DIODE.
4. OUTPUT PADS ARE 4 MILS
IN DIAMETER.
5.PD=19.6 mw

Extensive computer simulations, using SPICE 2, were performed to investigate frequency performance and temperature stability of the switch. The circuit was simulated in two sections: (1) digital select circuitry; and (2) RF switch amplifier. A transient analysis was used for the digital circuitry, and an AC analysis was performed on the switch amplifier. The computer predicted performance is summarized below in Table 3-5.

Table 3-5. SWITCH COMPUTER PREDICTED PERFORMANCE

Switch Amplifier Voltage Gain	17 dB
Temperature Variation of Gain (-55°C to 125°C)	<u>+</u> 1 dB
3 dB Bandwidth	600 MHz
Temperature Variation of Bandwidth (-55°C to 125°C)	<u>+</u> 50 MHz
Switch Amplifier ON/OFF Ratio	>70 dB
Digital Select Circuitry Propagation Delay	10 ns
Temperature Variation of Propagation (-55°C to 125°C)	<u>+</u> 2 ns

Some comments on the interpretation of computer simulation are in order. A very pessimistic model for the OAT (Oxide Aligned Transistor) device was used in all simulations, therefore it is expected that the computer predictions will be an accurate representation of worst case performance. The gain of the switch amplifier in the OFF state was predicted to be well below -100 dB. This result does not inloude substrate coupling. The substrate coupling was minimized by careful circuit layout and is not expected to be a problem. Chip size is 71 x 85 mils.

(2) RF/LSI Mix-and-Divide Circuitry

The configuration of the divider/mixer chip suitable for integration is shown in Figure 3-11. The mix-and-divide circuitry is a monolithic IC consisting of a programmable (+3/+4) frequency divider, an analog multiplier, and the associated level setting and buffering circuitry. All internal circuitry is differential, so that buffer amplifiers are required on both the input and the output that interface with bandpass filters. The mixer input from the SP4T switch is differential, since the SP4T switch output is differential.

The +3/+4 uses low level differential logic, which interfaces well with the rest of the circuitry. A block diagram of the divider is shown in Figure 3-12. The logic is somewhat unconventional, but allows the counter to be implemented with gates with only two inputs, which permits the full speed capability of the differential logic to be realized. This insures that up to 800 MHz divider operation can be routinely achieved without the need to select chips and possibly suffer a yield loss. The additional AND gate shown on the output is optional; in the +3 mode, it provides a 50% duty cycle output rather than the 1/3 or 2/3 duty cycle normally obtained from a +3, and thus suppresses the DC and even harmonic components fed to the mixer. Figure 3-13 shows the schematic of the +3/+4 circuit. This circuit utilizes five latches and one AND gate. The divider could be implemented with only four latches, but it is likely that maximum operating speed would be under 800 MHz. Computer simulations of the divider have begun. Emitter follower level shifters that prevent saturation may be necessary in each latch to insure the specified operating frequency. Power dissipation is expected to be in the 150-250 mW range.

Figure 3-11. Mix and Divide Circuitry

Figure 3-12. +3/+4 WEEN 50% DUTY CYCLE OUTPUT

Figure 3-13. / *3/+4 Circuit

A schematic of the mixer is shown in Figure 2-14. This circuit is a variable transconductance four-quadrant multiplier. Similar devices have been built in the past at TRW and a dynamic range of greater than 70 dB is expected from this device.

- K - _

RESISTOR VALUES ARE IN OHMS

RI-6.15-18-100 R7.8 = 2K R9=400 RI9=1.3K R20=3.3K R21=i.5K R22,23=1K R24=1.1K R19=400 R10=3K R11=5.2K R12=4K R13=2.4K R14=23K NOTES:

LVCC=+12.0 VDC

2.VEE=-6.0 VDC

3.RIS-IB ARE LASER TRIMMABLE (L = 3GRIDS+ 3,COMP, W=6 GRIDS)

4.INPUT & OUTPUT PADS ARE 4 MILS IN DIAMETER. 5.Pp - 158 76W

_ Figure 3-14.. Analog Multiplier

012,3,19 = 2T2L17W3

96-09,012-016=2TIL12W3 945,10,1 L17,18=2T2L12W3

4. CONCLUSIONS AND PROJECTED PLANS

The microwave oscillator development is essentially complete. All that remains is the two contractual models. A series of unexpected difficulties was experienced during translation of the breadboard designs into the deliverable hardware units. These problems included:

- o Non-reproducibility of a phase shift through the SAW filters between the breadboard and deliverable units.
- o Oscillations in the loop amplifiers.
- o Non-reproducibility of .5W oscillators.

In addition, a desire was expressed to have one device control the phase shifter. This required experimentation with varactor diodes instead of manually adjustable capacitors. Tests to demonstrate phase shifts were successful with the diodes but temperature compensation to correct for capacitance change due to temperature will be required. At this time, all the technical issues appear to be well-defined and no further problems are anticipated. Delivery of the two units is expected by January 1980.

The synthesizer architecture was revised following experimental investigation of the MLSO. An alternate design has been completed. Fabrication of the RF/LSI chips are well underway and design of the SAW filters and oscillators has begun.

During the next reporting period (after delivery of the oscillators), the synthesizer phase of the program will be addressed. Tasks which will be accomplished include:

- o Breadboard and prove out the revised design for the frequency sources in the synthesizer.
- o Begin tests and characterization of the RF/LSI chips.
- o Complete the design of the SAW filters and oscillators.
- o Fabricate the SAW devices and test their performance.

ELECTRONICS TECHNOLOGY AND DEVICES LABORATORY

CONTRACT DISTRIBUTION LIST

101	Defense Technical Information Center ATTN: DTIC-TCA	579	Cdr, PM Concept Analysis Centers ATTN: DRCPM-CAC
	Cameron Station (Bldg 5)		Arlington Hall Station
012	Alexandria, VA 22314	001	Arlington, VA 22212
	_	602	Cdr, Night Vision & Electro-Optics
203	GIDEP Engineering & Support Dept	•	ERADCOM
	TE Section		ATTN: DELNY-D
	PO Box 398	001	Fort Belvoir, VA 22060
001	NORCO, CA 91760		
		603	Cdr, Atmospheric Sciences Lab
205	Director	003	ERADCOM
	Naval Research Laboratory		ATTN: DELAS-SY-S
	ATTN: CODE 2627	001	White Sands Missile Range, NM 886
001	Washington, DC 20375	001	military and a second of the s
			At the Bir and Labourtonian
201	Rome Air Development Center	607	- Cdr, Harry Diamond Laboratories
301	ATTH: Documents Library (TILD)		ATTN: DELHD-CO, TD (In Turn)
001	Griffiss AFB, NY 13441	001	2800 Powder Mill Road
001	GITITISS AID, III 19441	001	Adelphi, MD 20783
			•
437	Deputy for Science & Technology	609	Cdr, ERADCON
	Office, Asst Sec Army (R&D)		ATTN: DRDEL-CG, CD, CS (In Turn)
001	Washington, DC 20310		2800 Powder Mill Road
	work (paul AD7 D/Dy E D Vondonamo)	001	Adelphi, MD 20783
438	HQDA (DAMA-ARZ-D/Dr. F. D. Verderame)		
001	Washington, DC 20310	612	Cdr, ERADCOM
		•••	ATTN: DRDEL-CT
482	Director		2800 Powder Mill Road
	US Army Materiel Systems Analysis Actv	001	Adelphi, MD 20783
	ATTN: DRXSY-\$MP		
0 01	Aberdeen Proving Ground, MD 21005	680	Commander
		000	US Army Electronics R&D Command
563	Commander, DARCOM	000	Fort Monmouth, NJ 07703
	ATTN: DRCDE	•	TOTE MOTERIOS CHI THE STATE OF THE
	5001 Eisenhower Avenue		1 DELEW-D
001	Alexandria, VA 22333		1 DELET-DD
			1 DELSD-L (Tech Library)
ECA	Cdr, US Army Signals Warfare Lab		2 DELSD-L-S (STINFO)
564	ATTN: DELSW-OS		20 DELET-MM
	Vint Hill Farms Station		•
001	Warrenton, VA 22186	CO3	Commandon
U U I		681	Commander US Army Communications R&D Command
705	Advisory Group on Electron Devices		ATTH: USMC-LNO
	201 Varick Street, 9th Floor	001	Fort Monmouth, NJ 07703
002	New York, NY 10014	001	tote nothing cut and arras

	•		
103	DCA Defense Comm Engrg Ctr 1800 Wiehle Ave	475	ATTN: Library 2800 Powder Mill Road
001	Reston, VA 22090	100	Adelphi, MD 20783
104	Defense Communications Agency Technical Library Center Code 205 (P. A. Tolovi)	477	Director US Army Ballistic Research Labs ATTN: DRXBR-LB
001		001	Aberdeen Proving Ground, MD 21005
206	Commander Naval Electronics Laboratory Center ATTN: Library	422	Commander US Army Yuma Proving Ground ATTN: STEYP-MTD (Tech Library)
001		001	Yuma, AZ 85364
207	Cdr, Naval Surface Weapons Center White Oak Laboratory ATTN: Library Code WX-21	455	Commandant US Army Signal School
001		001	ATTN: ATSH-OD-MS-E Fort Gordon, GA 309C5
314	liq, Air Force Systems Command	507	Cdr, AVRADCOM ATTN: DRSAV-E
100	Andrews Air Force Base Washington, DC 20331	001	PO Box 209 St Louis, MO 63166
403	Cdr, MICOM Redstone Scientific Info Center ATTN: Uhief, Document Section	511	Commander, Picatinny Arsenal ATTN: SARPA-FR-5, -ND-A-4, -TS-S (In Turn)
001	Redstone Arsenal, AL 35809	001	
406	Commandant US Army Aviation Center	515	Project Manager, REMBASS ATTN: DRCPM-RBS
001	ATTN: ATZQ-D-MA Fort Rucker, AL 36362	001	Fort Monmouth, NJ 07703
407	Director, Ballistic Missile Defense	517	Commander US Army Satellite Communications Age
001	Advanced Technology Center ATTN: ATC-R, PO Box 1500	001	ATTN: DRCPM-SC-3 Fort Monmouth, NJ 07703
001	Huntsville, AL 35807	518	TRI-TAC Office
418	Commander HQ, Fort Huachuca	001	ATTN: TT-SE Fort Monmouth, NJ 07703
001	ATTH: Technical Reference Div Fort Huachuca, AZ 85613	519	Cdr, US Army Avionics Lab
		001	ATTR: DAVAA-D Fort Monmouth, NJ 07703

5 20	Project Manager, FIREFINDER ATTN: DRCPM-FF	619	Cdr, ERADCOM ATTN: DRDEL-PA, - ILS, - ED (In Turn)
00]		001	2800 Powder Mill Road Adelphi, HD 20783
521	Project Manager, SOTAS	701	MIT - Lincoln Laboratory ATTN: Library (R:1 A-082)
0 01	ATTN: DRCPH-STA Fort Monmouth, NJ 07703	002	PO Box 73 Lexington, MA 02173
5 31	ATTN: DRXRO-PH (Dr. Lontz)	703	MASA Scientific & Tech Info Facility Baltimore/Mashington Intl Airport
007	DRXRO-IP (In Turn) PO Box 12211	001	PO Box 8757, MD 21240
0 01 5 56	•	704	National Bureau of Standards Bldg 225, Rm A-331
	Technical Information Center ATTN: Mrs. Ruth Reynolds	001	ATTN: Mr. Leedy Washington, DC 20231
001	Fort Hood, TX 76544	707	TACTEC
5 68	Commander US Army Mobility Eqp Res & Dev Cmd ATTN: DRDME-R	001	Batelle Memorial Institute 505 King Avenue Columbus, OH 43201
001		212	Command, Control & Communications Div
. 604	Ofc of Missile Electronic Warfare	001	Development Center Marine Corps Development & Educ Cmd Quantico, VA 22134
001	Electronic Warfare Lab, ERADCOM White Sands Missile Range, NM 88002	306	Cdr. Air Force Avionics Laboratory
60 6	Chief Intel Materiel Dev & Support Ofc	001	ATTN: AFAL/RWF (Mr. J. Pecqueux) Wright-Patterson AFB, OH 45433
001	Electronic Warfare Lab, ERADCOM	404	Cdr, MICOM ATTN: DRSMI~RE (Mr. Pittman)
6 08		001	Redstone Arsenal, AL 35809
·	ARRADCON DRDAR-TSB-S	474	Commander US Army Test & Evaluation Command
001	Aberdeen Proving Ground, MD 21005	001	Aberdeen Proving Ground, MD 21005
614	Cdr, ERADCOM ATTN: DRDEL-LL, -SB, -AP (In Turn)	498	Cdr, TARADCOM ATTN: DRDTA-UL, Tech Library
0 01	2800 Powder Mill Road	001	Warren, MI 48090
617	Cdr, ERADCOM	529	Cdr, US Army Research Office ATTN: Dr. Horst Wittmann PO Box 12211
	ATTN: DRDEL-AQ 2800 Powder Mill Road	001	Research Triangle Park, NC 27709
001	Adelphi, MD 20783	543	Division Chief Meteorology Division
		001	Counterfire Department Fort Sill, OK 73503

571	Dir, Applied Technology Lab US Army Rsch & Technology Labs	Commander, US Army Signals Warfare ATTN: DELSW-OS	Lab
	AVRADCOM	Arlington Hall Station	
001	ATTN: Technical Library Fort Eustis, VA 23604	Arlington, VA 22212	(1)
		D. Chrissotimos, Code 763	
575	Commander	National Aeronautics and Space Adm	in
•••	TRADOC	Goddard Space Flight Center	•••
	ATTN: ATDOC-TA	Greenbelt, MD 20771	(1)
001	Fort Monroe, VA 23561	dicement, in 2077	(',
001	TOTE HOMOE, VA ESSOT	Naval Research Laboratories	
680	Commander	Code 5237	
000	US Army Electronics R&D Command	Washington, DC 20375	
000	Fort Monnouth, NJ 07703	ATTN: Dr. D. Webb	(1)
000	TOTE PIOTINIOUEN, NO 07703	ATTR. DI. D. WEDD	(1)
	1 DRDEL-SA	HQ ESD (DRI)	
	1 DELCS-D	L.G. Hanscom AFB	
	1 DELET-DT	Bedford, MA 01731	(1)
	1 DELSD-D	beatora, MA 01/31	(1)
	I DELOU-D	Commander	
681	Commandon	+ • · · · · · · · · · · · · · · · · · ·	
001	Commander	US Army Missile Command	
000	US Army Communications R&D Command	ATTN: DRSMI-RE (Mr. Pittman)	/21
000	Fort Monmouth, NJ 07703	Redstone Arsenal, AL 35809	(1)
	1 DRDCO-COM-RO	Army Makawiala and Machanica	
		Army Materials and Mechanics	
	1 ATFE-LO-EC	Research Center (AMMRC)	
600	0	Watertown, MA 02172	/53
682	Commander	ATTN: DMXMR-EO	(1)
	US Army Communications & Electronics		
	Material Readiness Command	Commander, Picatinny Arsenal	
000	Fort Monmouth, NJ 07703	ATTN: SARPA-FR-S	
		Building 350	
	1 DRSEL-PL-ST	Dover, NJ 07801	(2)
	1 DRSEL-MA-MP		
	3 DDCCI DA		

Coordinated Science Laboratory University of Illinois Urbana, Illinois 61801		Andersen Laboratories, Inc. 1280 Blue Hills Ave ATTN: Tom A. Martin	
ATTN: Dr. Bill J. Hunsinger	(1)	Bloomfield, Conn. 06002	(1)
Dr. J.S. Bryant		Mr. Henry Friedman	
OCRD		RADC/OCTE	/- 1
ATTN: DARD-ARP	(2)	Griffiss AFB, NY 13440	(1)
Washington, DC 20310	(1)	A L. Ali Britalia AC Navala	
Du D LaDaga		Autonetics, Division Of North	
Dr. R. LaRosa		American Rockwell	
Hazeltine Corporation	(1)	P.O. Box 4173	
Greenlawn, New York 11740	(1)	3370 Miraloma Avenue	
General Electric Co.		Anaheim, CA 92803 ATTN: Dr. G. R. Pulliam	(1)
Electronics Lab		Alin: Ur. G. R. Pulliam	(1)
Electronics Park		General Dynamics, Electronics	
Syracuse, N.Y. 13201		Division	
ATTN: Dr. S. Wanuga	(1)	P.O. Box 81127	
ATTN: DE S. Natiuga	(1)	San Diego, CA 92138	
Air Force Cambridge Labs		ATTN: Nr. R. Badewitz	(1)
ATTN: CRDR (Dr. P. Carr		Mills III W Dudchioz	(' /
& Dr. A.J. Slobodnik)		Texas Instruments, Inc.	
Bedford, MA 01730	(2)	P.O. Box 5936	
	(-)	13500 N. Central Expressway	
Mr. R. Weglein		Dallas, Texas 75222	
Hughes Research Laboratories		ATTN: Mr. L.T. Clairborne	(2)
3011 Malibu Canyon Road			
Malibu, California 90265	(1)	Raytheon Company	
		Research Division	
Mr. H. Bush CORC		28 Seyon Street	
RADC		Waltham, Massachusetts 02154	
Griffiss Air Force Base		ATTN: Dr. M.B. Schulz	(1)
New York 13440	(1)	•	
		Sperry Rand Research Center	
Dr. Tom Bristol	•	100 North Road	
Hughes Aircraft Company	•	Sudbury, Massachusetts 01776	/=>
Ground Systems Group		ATTN: Dr. H. Van De Vaart	(1)
Bldg 600/MS D235		Michaela Laboratore	
1901 W. Malvern	(2)	Microwave Laboratory	
Fullerton, CA 92634	(2)	W.W. Hansen Laboratories of Physics	
Commander, AFAL	•	Stanford University	
ATTN: Mr. W.J. Edwards, TEA		Stanford, CA 94305	
Wright-Patterson AFB, Ohio 454	33 (1)	ATTN: Dr. H.J. Shaw	(2)

Polytechnic Institute of Brooklyn Route No. 110 Farmingdale, NY 11735 ATTN: Dr. A.A. Oliner	(1)	H.F. Teirsten C/O Rensselaer Polytechnic Institute Troy, NY 12181	(1)
	\	McGill University	
Westinghouse Electric Corp. Research & Development Center Beulah Road		ATTN: G.W. Farnell Montreal 110, Canada	(1)
Pittsburgh, PA 15235		Advanced Technology Center,	
ATTN: Dr. J. DeKlerk	(1)	Inc.	
		Subsidiary of LTV Aerospace	
Stanford Research Institute		Corp.	
Menlo Park, CA 94025		P.O. Box 6144	
ATTN: Dr. A. Bahr	(1)	Dallas, Texas 75222	
		ATTN: Mr. A.E. Sobey	(1)
International Business Mackine	es :		
Corp.		United Aircraft Research Labs	
Research Division		ATTN: Mr. Thomas W. Grudkowski	
P.O. Box 218		East Hartford, Conn. 06108	(1)
Yorktown Heights, NY 10598			
ATTN: Dr. F. Bill	(1)	Science Center	
***	•	Rockwell International	
TRW		Thousand Oaks, CA 91360	
Defense and Space Sys Group		ATTN: Dr. T. C. Lim	(1)
One Space Park			
Redondo Beach, CA 90278	453	University of Southern CA	
ATTN: Dr. R.S. Kagiwada	(1)	Electronic Science Lab	
	•	School of Engineering	
Tektronix Inc.		University Park, Los Angeles	
P.O. Box 500		California 900	
Beaverton, OR 97077	4-1	ATTN: Dr. K. Lakin, SSC 303	(1)
ATTN: Dr. R. Li	(1)	A.A.—du. B	
		SAWTEK, Inc.	
Dr. Fred S. Hickernell	•	P.O. Box 7756	
Integrated Circuit Facility	•	2451 Shader Road	
Motorola Govt.	•	Orlando, Florida 32854	/
Electronics Div.		ATTN: Mr. S. Miller	(1)
8201 East McDowell Road	(-)	•	
Scottsdale, AZ 85257	(1)		