

Author Index Volume 44

Ajmone Marsan, M., M. Meo and M.M. Munafò,		Chou, C.T., Traffic engineering for MPLS-based	
Editorial: Selected papers from the Second		virtual private networks	(3) 319
International Workshop on QoS in Multiservice		Chou, YT., see Lin, TC.	(4) 441
IP Networks (QoS-IP 2003)	(4) 411	Chu, SI., see Lin, TC.	(4) 441
Ajmone Marsan, M., see Garetto, M.	(2) 153	Costa, L.H.M.K., see Vida, R.	(6) 789
Akan, Ö.B., On the throughput analysis of rate-		Coyle, E.J., see Bandyopadhyay, S.	(1) 1
based and window-based congestion control		Cuomo, F., see Chiasserini, CF.	(4) 545
schemes	(5) 701		
Altman, E. and T. Jiménez, Simulation analysis of		DaSilva, L.A., see Ram, A.	(6) 757
RED with short lived TCP connections	(5) 631	Douligeris, C. and A. Mitrokotsa, DDoS attacks	
Angelopoulos, J.D., see Leligou, HC.	(3) 305	and defense mechanisms: classification and	
Antal, C., see Tóth, G.	(4) 529	state-of-the-art	(5) 643
		Du, D.H.C., see Nelakuditi, S.	(1) 79
Balk, A., M. Gerla, D. Maggiorini and M. Sanadidi,			
Adaptive video streaming: pre-encoded MPEG-		Fdida, S., see Vida, R.	(6) 789
4 with bandwidth scaling	(4) 415	Fernández-Veiga, M., see Herrería-Alonso, S.	(4) 499
Bandyopadhyay, S. and E.J. Coyle, Minimizing	(4) 413	Fidler, M. and V. Sander, A parameter based	
communication costs in hierarchically-clustered		admission control for differentiated services	
networks of wireless sensors	(1) 1	networks	(4) 463
Barbera, M., A. Lombardo and G. Schembra, A	(1)		
fluid-based model of time-limited TCP flows	(3) 275	Garetto, M., R. Lo Cigno, M. Meo and M. Ajmone	
Bengi, K., Access protocols for an efficient and fair	(3) 213	Marsan, Modeling short-lived TCP connections	
packet-switched IP-over-WDM metro network	(2) 247	with open multiclass queuing networks	(2) 153
Bhargava, B., see Habib, A.	(2) 211	Gerla, M., see Balk, A.	(4) 415
Bhargava, B.K., see Hefeeda, M.M.	(3) 353	Giordano, S., M. Listanti, F. Mustacchio, S.	
Bharghavan, V., see Nandagopal, T.	(6) 813	Niccolini, S. Salsano and L. Veltri, Dynamic	
Diaignavan, v., see Manuagopan, 1.	(0) 013	resource configuration in DiffServ networks:	
		control plane mechanisms and performance	
Callegati, F., W. Cerroni, C. Raffaelli and P.		evaluation of a traffic control API	(4) 513
Zaffoni, Wavelength and time domain exploit-		Giuliano, R., G. Guidoni, I. Habib and F. Mazzenga,	
ation for QoS management in optical packet		Coexistence of an ultrawideband spread spec-	
switches	(4) 569	trum system with fixed wireless access systems	(5) 583
Cerroni, W., see Callegati, F.	(4) 569	Givan, R.L., see Savagaonkar, U.	(6) 835
Chang, H., R. Govindan, S. Jamin, S.J. Shenker and		Govindan, R., see Chang, H.	(6)737
W. Willinger, Towards capturing representative		Guidoni, G., see Giuliano, R.	(5) 583
AS-level Internet topologies	(6) 737		
Chang, SC., see Lin, TC.	(4) 441	Habib, A., M. Khan and B. Bhargava, Edge-to-edge	
Chiasserini, CF., F. Cuomo, L. Piacentini, M.		measurement-based distributed network moni-	
Rossi, I. Tinirello and F. Vacirca, Architectures		toring	(2) 211
and protocols for mobile computing applica-		Habib, I., see Giuliano, R.	(5) 583
tions: a reconfigurable approach	(4) 545	Hamdi, M., see Pun, K.	(5) 667
Cho, DH., see Kim, YC.	(5) 599	Hefeeda, M.M., B.K. Bhargava and D.K.Y. Yau, A	
Choi, CH., see Park, EC.	(1) 17	hybrid architecture for cost-effective on-demand	
Chong, E.K.P., see Savagaonkar, U.	(6) 835	media streaming	(3) 353

Herrería-Alonso, S., A. Suárez-González, M.		Nandagopal, T., KW. Lee, JR. Li and V.	
Fernández-Veiga, R.F. Rodríguez-Rubio and		Bharghavan, Scalable service differentiation	
C. López-García, Improving aggregate flow		using purely end-to-end mechanisms: features	
control in differentiated services networks	(4) 499	and limitations	(6) 813
Hierons, R.M., TH. Kim and H. Ural, On the		Nelakuditi, S., ZL. Zhang and D.H.C. Du, On	. ,
testability of SDL specifications	(5) 681	selection of candidate paths for proportional	
Hou, J.C., see Wang, B.	(1) 43	routing	(1) 79
Hou, Y.T., see Pan, J.	(2) 235	Niccolini, S., see Giordano, S.	(4) 513
Huang, X., see Ma, M.	(6) 773		(,,
6,	. ,	Data A Chil D	(2) 225
Jamin, S., see Chang, H.	(6) 737	Pacheco, A., see Salvador, P.	(3) 335
Jiménez, T., see Altman, E.	(5) 631	Pan, J., Y.T. Hou and B. Li, Retrieval and freshness	(4)
	(-)	thresholds in hierarchical caching systems	(2) 235
Kamra, A., H. Saran, S. Sen and R. Shorey, Fair		Park, CS., Authentication protocol providing user	
adaptive bandwidth allocation: a rate control		anonymity and untraceability in wireless mobile	
based active queue management discipline	(2) 135	communication systems	(2) 267
Kasera, S., see Rubenstein, D.	(1) 63	Park, EC., H. Lim, KJ. Park and CH. Choi,	
Khan, M., see Habib, A.	(2) 211	Analysis and design of the virtual rate control	
Kim, TH., see Hierons, R.M.	(5) 681	algorithm for stabilizing queues in TCP net-	
Kim, YC. and DH. Cho, Considering spurious	(3) 001	works	(1) 17
		Park, KJ., see Park, EC.	(1) 17
timeout in proxy for improving TCP perfor-	(5) 500	Pavlou, G., see Wang, N.	(4) 481
mance in wireless networks	(5) 599	Pawlikowski, K., see Rezvan, M.	(2) 189
Kurose, J., see Rubenstein, D.	(1) 63	Piacentini, L., see Chiasserini, CF.	(4) 545
		Plasser, E. and T. Ziegler, A RED function design	
Lam, S.S., see Zhang, X.B.	(6) 855	targeting link utilization and stable queue size	
Lee, DY., see Zhang, X.B.	(6) 855	behavior	(3) 383
Lee, KW., see Nandagopal, T.	(6) 813	Pun, K. and M. Hamdi, Dispatching schemes for	(-)
Leligou, HC., J.D. Angelopoulos, C. Linardakis		Clos-network switches	(5) 667
and A. Stavdas, A MAC protocol for efficient			(0) 00,
multiplexing QoS-sensitive and best-effort traffic		Qiao, C., see Li, J.	(5) 617
in dynamically configurable WDM rings	(3) 305	Quad, C., See Li, G.	(3) 017
Li, B., see Pan, J.	(2) 235	Raffaelli, C., see Callegati, F.	(4) 569
Li, J. and C. Qiao, Schedule burst proactively for	(2) 200	Ram, A., L.A. DaSilva and S. Varadarajan, Admis-	(4) 309
optical burst switched networks	(5) 617	sion control by implicit signaling in support of	
Li, JR., see Nandagopal, T.	(6) 813		(6) 757
Li, MW., see Lin, TC.	(4) 441	voice over IP over ADSL	(6) 757
Lim, H., see Park, EC.	(1) 17	Ramakrishnan, S., see Sarkar, U.K.	(2) 177
Lin, TC., Y.S. Sun, SC. Chang, SI. Chu,	(1) 17	Rezvan, M., K. Pawlikowski and H. Sirisena, A	
		distributed cache architecture with snooping for	(2) 100
YT. Chou and MW. Li, Management of		QoS routing in large networks	(2) 189
abusive and unfair Internet access by quota-	(4) 441	Rodríguez-Rubio, R.F., see Herrería-Alonso, S.	(4) 499
based priority control	(4) 441	Rossi, M., see Chiasserini, CF.	(4) 545
Linardakis, C., see Leligou, HC.	(3) 305	Rubenstein, D., S. Kasera, D. Towsley and J.	
Listanti, M., see Giordano, S.	(4) 513	Kurose, Improving reliable multicast using	
Lo Cigno, R., see Garetto, M.	(2) 153	active parity encoding services	(1) 63
Lombardo, A., see Barbera, M.	(3) 275		
López-García, C., see Herrería-Alonso, S.	(4) 499	Salsano, S., see Giordano, S.	(4) 513
		Salvador, P., A. Pacheco and R. Valadas, Modeling	
Ma, M. and X. Huang, Adaptive scheduling for		IP traffic: joint characterization of packet	
integrated traffic on WDM optical networks	(6) 773	arrivals and packet sizes using BMAPs	(3) 335
Maggiorini, D., see Balk, A.	(4) 415	Sanadidi, M., see Balk, A.	(4) 415
Manimaran, G., see Striegel, A.	(6) 713	Sander, V., see Fidler, M.	(4) 463
Mazzenga, F., see Giuliano, R.	(5) 583	Saran, H., see Kamra, A.	(2) 135
Meo, M., see Ajmone Marsan, M.	(4) 411	Sarkar, D., see Sarkar, U.K.	(2) 177
Meo, M., see Garetto, M.	(2) 153	Sarkar, U.K., S. Ramakrishnan and D. Sarkar,	
Mitrokotsa, A., see Douligeris, C.	(5) 643	Study of long-duration MPEG-trace segmenta-	
Munafò, M.M., see Ajmone Marsan, M.	(4) 411	tion methods for developing frame-size-based	
Mustacchio, F., see Giordano, S.	(4) 513	traffic models	(2) 177
Andrewsking, 1 i, see Giordallo, 5.	(4) 313		(-) -, ,

Savagaonkar, U., E.K.P. Chong and R.L. Givan,		Ural, H., see Hierons, R.M.	(5) 681
Online pricing for bandwidth provisioning in multi-class networks	(6) 925	Vacirca, F., see Chiasserini, CF.	(4) 545
Schembra, G., see Barbera, M.	(6) 835 (3) 275	Valadas, R., see Salvador, P.	(3) 335
	(3) 2/3	Varadarajan, S., see Ram, A.	(6) 757
Seibert, C.H. and F.A. Tobagi, Assessment and optimization of schemes for tracking and rout-		Varghese, G., see Warkhede, P.	(3) 289
ing to mobile users in packet-based networks	(1) 103	Veltri, L., see Giordano, S.	(4) 513
Sen, S., see Kamra, A.	(2) 135	Vida, R., L.H.M.K. Costa and S. Fdida, Mobile	
Shenker, S.J., see Chang, H.	(6) 737	hop-by-hop multicast routing	(6) 789
Shorey, R., see Kamra, A.	(2) 135	Wang, B. and J.C. Hou, An efficient QoS routing	
Sirisena, H., see Rezvan, M.	(2) 189	algorithm for quorumcast communication	(1) 43
Stavdas, A., see Leligou, HC.	(3) 305	Wang, N. and G. Pavlou, An overlay framework for	(1)
Striegel, A. and G. Manimaran, DSMCast: a		provisioning differentiated services in Source	
scalable approach for DiffServ multicasting	(6) 713	Specific Multicast	(4) 481
Suárez-González, A., see Herrería-Alonso, S.	(4) 499	Warkhede, P., S. Suri and G. Varghese, Multiway	()
Sun, Y.S., see Lin, TC.	(4) 441	range trees: scalable IP lookup with fast updates	(3) 289
Suri, S., see Warkhede, P.	(3) 289	Willinger, W., see Chang, H.	(6) 737
Tinirello, I., see Chiasserini, CF.	(4) 545	Yau, D.K.Y., see Hefeeda, M.M.	(3) 353
Tobagi, F.A., see Seibert, C.H.	(1) 103	Zaffoni, P., see Callegati, F.	(4) 569
Tóth, G. and C. Antal, Comparison of link-layer segmentation methods for UMTS terrestrial	. ,	Zhang, X.B., S.S. Lam and DY. Lee, Group rekeying with limited unicast recovery	(6) 855
radio access networks	(4) 529	Zhang, ZL., see Nelakuditi, S.	(1) 79
Towsley, D., see Rubenstein, D.	(1) 63	Ziegler, T., see Plasser, E.	(3) 383
rousiej, Di, see Rubenstein, D.	(1) 03	Linglet, 1., See I lasset, L.	(3) 303

Available online at www.sciencedirect.com

SCIENCE DIRECT

COMPUTER NETWORKS

Computer Networks 44 (2004) 875-876

www.elsevier.com/locate/comnet

Subject Index Volume 44

4G communication systems, 583 Abuse reduction, 441 Access arbitration, 305 Access priorities, 305 Active flows, 135 Active queue management, 17, 383 Active services, 63 Adaptive flows, 135 Adaptive video streaming, 415 Admission control, 463 AIMD, 701 Anonymity, 267 Arbitration algorithms, 667 ARED, 383 Assured services, 499 Authentication, 267

Bandwidth, 135 Bandwidth broker, 463 Bandwidth estimation, 415 BGP routing tables, 737 BMAP, 335 Buffer management, 135, 631

Cache snooping, 189
Clos-network switches, 667
Clustering methods, 1
Completion time, 153
Congestion avoidance, 135, 383
Congestion control, 17, 813
Congestion resolution, 569
Control theory, 383
COPS, 513

DDoS attacks, 643
Defenses, 643
Denial of service, 211
Differentiated services, 135, 463, 481, 499, 513, 713, 773
Dispersion algorithms, 353
Distributed cache, 189
DoS attacks, 643
Dynamic DSCPs, 713

End-to-end congestion control, 415 Error-correcting codes, 267 Experiment on production network, 441 Extended finite state machine, 681

Fairness, 135, 441, 499, 631, 813 Fast updates, 289 Fault tolerance, 43 Fluid-flow analysis, 275 Forward error correction, 63 Frame-size traffic model, 177

Gamma distribution, 177 GRED, 383 Group communication, 789

Heterogeneous QoS, 713

Infeasible path problem, 681
Infinitesimal perturbation analysis, 835
Ingress node, 617
Integrated traffic, 773
Internet, 235, 275
Internet access control, 441
Internet topology, 737
Inter-protocol fairness, 415
Intrusion detection, 643
IP lookups, 289
IP QoS, 513
IP traffic modeling, 335

MAC protocol, 305
Markov decision processes, 835
Media streaming, 353
Medium access control (MAC) protocols, 247
Member join/leave, 713
Metropolitan rings, 305
Mobile computing, 545
Mobility management, 545
MPEG, 177
MPEG-4, 415
MPLS, 319
Multicast, 43