## 1. create a normal probability plot of the sequence of yearly change for Dow index using data form the previous homework. Do you think the sequence looks like from a normal distribution?

- 1. What is the Shapiro-Wilk test value? Does it indicate normality?
- 2. Try square root and log transformation, and give the Shapiro-Wilk test values. Does these transformation improvement in normality based on these tests?

```
In [1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sb
  from scipy import stats
%matplotlib inline
```

```
In [2]: df = pd.read_csv('DJA_o.csv')
    df.head(2)
```

Out[2]:

|   |   | Unnamed: 0 | Date     | DJIA    | Year | Yearly_change |
|---|---|------------|----------|---------|------|---------------|
| ( | ) | 0          | 1/2/1886 | 39.4859 | 1886 | 1.041617      |
| • | 1 | 305        | 1/3/1887 | 41.1292 | 1887 | 0.922094      |

```
In [3]: # Plotting distribution plot to see the distribution of data
x = df['Yearly_change']
sb.distplot(x,color='red')
```

Out[3]: <matplotlib.axes. subplots.AxesSubplot at 0x11bb070f0>



9/14/2017 hw

> In [4]: #dropping the outlier df.drop(df.index[[-1]],inplace=True)

> In [5]: # Plot after dropping outlier x = df['Yearly\_change'] sb.distplot(x,color='red',bins=10)

Out[5]: <matplotlib.axes.\_subplots.AxesSubplot at 0x11eef67f0>



9/14/2017

```
In [6]: #Using stats plot
        #Defining and plotting probability plot
        change = df['Yearly_change']
        stats.probplot(change,plot=plt)
        plt.title('Dow Jones yearly change')
        plt.xlabel('Normal Probability Plot')
        plt.ylabel('Yearly_Change')
        plt.show()
```

hw



```
In [7]:
        # Shapiro test
        stats.shapiro(change)
        # Result looks normal
```

Out[7]: (0.9854334592819214, 0.1807788610458374)

```
In [8]: # Shapiro test after Square root
        change sqrt = np.sqrt(change)
        stats.shapiro(change_sqrt)
        # There is not much impact on normality.
```

Out[8]: (0.9856764078140259, 0.19090750813484192)

| In [9]: | # Shapiro test after taking log                                  |
|---------|------------------------------------------------------------------|
|         | <pre>change_log = np.log(change) stats.shapiro(change_log)</pre> |
|         | # Normality is impacted after taking log and it is < 0.05 now.   |
| Out[9]: | (0.967064619064331, 0.0029979445971548557)                       |
| In [ ]: |                                                                  |
|         |                                                                  |
| In [ ]: |                                                                  |

hw