البراهين الرياضية والنماذج النظرية لنظرية الفتيلة

مقدمة

في هذا القسم، سنطور براهين رياضية صارمة للمفاهيم الأساسية في نظرية الفتيلة، مع تجنب الاستدلال الدائري والاعتماد على مبادئ أولى واضحة.

1. برهان رياضي صارم لعامل الانقلاب

1.1 المبادئ الأساسية

نبدأ من المبادئ الأساسية التالية:

المبدأ الأول (الانبعاث من الصفر):

Plain Text

مجموع خصائصہ = 0 کیان أولي ∀

المبدأ الثاني (الثنائية المتعاكسة):

Plain Text

 $K = \{m, s\}$ حيث $m \perp s$ (متعامدان)

المبدأ الثالث (الحفظ الصفري):

Plain Text

خاصية + (s) = 0

1.2 الاشتقاق الرياضي

الخطوة 1: تعريف الخصائص الهندسية

لنعرف الخصائص الهندسية للماهيتين:

نصف قطر الماهية المنكمشة : r_m

• r_s : نصف قطر الماهية المتسعة

الخطوة 2: تطبيق مبدأ الحفظ الصفري

من المبدأ الثالث، يجب أن يكون:

Plain Text

$$f(r_m) + g(r_s) = 0$$

حيث f و g دالتان تمثلان "الخاصية" لكل ماهية.

الخطوة 3: استبعاد العلاقات الخطية

إذا كانت f(r) = ar و g(r) = br فإن:

Plain Text

$$ar_m + br_s = 0$$

 $r_s = -(a/b)r_m$

هذا يعطي علاقة خطية بمعامل ثابت -(a/b) . لكن هذا يتطلب وجود معاملين مستقلين a و b ، مما يكسر مبدأ الوحدة الأصلية.

الخطوة 4: البحث عن العلاقة الوحدوية

لكي نحافظ على الوحدة الأصلية، يجب أن تكون العلاقة من الشكل:

Plain Text

$$f(r_m) = -f(r_s)$$

أبسط دالة تحقق هذا الشرط مع الحفاظ على التناظر هي:

Plain Text

$$f(r) = ln(r) + C$$

حیث:

Plain Text

النتيجة:

Plain Text

$$r_s = 1/r_m$$

1.3 تبرير اختيار الدالة اللوغاريتمية

لماذا اللوغاريتم؟

- 1. **الوحدوية:** ln(ab) = ln(a) + ln(b) تحول الضرب إلى جمع
 - 2. التناظر: $\ln(1/x) = -\ln(x)$ التناظر المطلق حول الصفر
- 3. **البساطة:** أبسط دالة غير خطية تحقق الشروط المطلوبة

2. برهان رياضي لعامل الواحد (k=1)

2.1 مبدأ التكافؤ الديناميكي الأولي

التعريف:

في اللحظة التأسيسية، حيث لا توجد مقاييس خارجية، فإن:

Plain Text

 $\alpha = m_{\Theta}$

حيث:

- معامل القوة الاستعادية : α
- معامل القصور الذاتي : m₀

2.2 الاشتقاق من معادلة الحركة

معادلة الحركة الأساسية:

Plain Text

 $m_0 d^2r/dt^2 = -\alpha r$

تطبيق مبدأ التكافؤ:

Plain Text

$$m_0$$
 $d^2r/dt^2 = -m_0$ r $d^2r/dt^2 = -r$

الحل العام:

Plain Text

```
r(t) = A cos(\omega t + \varphi)
                                                                                        تعويض في المعادلة:
Plain Text
-A\omega^2 \cos(\omega t + \varphi) = -A \cos(\omega t + \varphi)
\omega^2 = 1
\omega = 1
                                                                                                     النتيجة:
                                                التردد الزاوي الأساسي \omega=1 ينبع طبيعياً من مبدأ التكافؤ.
                                                                    2.3 العلاقة مع المحاثة والسعة
                                                                                     من التناسب الفيزيائي:
Plain Text
L = k_1 r_m
C = k_2 r_s
                                                                                    من مبدأ التناظر الأولي:
Plain Text
k_1 = k_2 = k (idem)
                                                                                       من العلاقة الهندسية:
Plain Text
r_s = 1/r_m
                                                                                                        إذن:
Plain Text
L \cdot C = k \cdot r_m \cdot k \cdot (1/r_m) = k^2
                                                                                         من التردد المشتق:
Plain Text
```

```
\omega = 1/\sqrt{(L \cdot C)} = 1
\sqrt{(L \cdot C)} = 1
L \cdot C = 1
```

النتيجة:

Plain Text

$$k^2 = 1$$

 $k = 1$

3. نموذج انكسار التناظر

3.1 النموذج التطوري

الفرضية:

التكافؤ α=m₀ يحدث فقط في t=0 . مع تطور الزمن، يظهر عامل انكسار التناظر.

النموذج الرياضي:

Plain Text

$$\alpha(t) = m_0 \cdot \epsilon(t)$$

حيث:

Plain Text

$$\epsilon(0)=1$$
 (التكافؤ الأولي) $\epsilon(t\to\infty)=\epsilon_-\infty \neq 1$ (الحالة النهائية)

$\epsilon(t)$ اقتراح للدالة 3.2

الشكل المقترح:

Plain Text

$$\varepsilon(t) = 1 + A(1 - e^{(-\lambda t)})$$

الخصائص:

- $\epsilon(0) = 1 \checkmark$
- $\varepsilon(\infty) = 1 + A$

- معدل الانكسار يحدده ٥
- شدة الانكسار تحددها A

3.3 معادلة الحركة المعممة

المعادلة:

Plain Text

 $d^2r/dt^2 = -\epsilon(t) \cdot r$

التعويض:

Plain Text

 $d^2r/dt^2 = -[1 + A(1 - e^{(-\lambda t))}] \cdot r$

هذه معادلة تفاضلية بمعاملات متغيرة مع الزمن، وحلها يتطلب طرق عددية.

الخلاصة الجزئية

لقد طورنا براهين رياضية صارمة تظهر أن:

- 1. علاقة المقلوب $r_s = 1/r_m$ تنبع من مبدأ الحفظ الصفري والوحدة الأصلية
 - 2. **عامل الواحد** k=1 ينتج من مبدأ التكافؤ الديناميكي الأولى
 - 3. **التردد الأساسي** $\omega = 1$ يظهر طبيعياً من معادلة الحركة
 - 4. **نموذج انكسار التناظر** يفسر كيفية تطور النظام من الحالة المثالية

المرحلة التالية ستتضمن تطوير حلول عددية وتطبيقات حاسوبية لهذه النماذج.