Index

Numbers and Symbols	aggregation, 112
632 bootstrap, 371	bootstrap, 379
δ-bicluster algorithm, 517–518	complex data types and, 166
δ-pCluster, 518–519	cube computation and, 193
	data cube, 110–111
A	at multiple granularities, 230-231
absolute-error criterion, 455	multiway array, 195–199
absolute support, 246	simultaneous, 193, 195
abstraction levels, 281	AGNES. See Agglomerative Nesting
accuracy	algebraic measures, 145
attribute construction and, 105	algorithms. See specific algorithms
boosting, 382	all_confidence measure, 268, 272
with bootstrap, 371	all-versus-all (AVA), 430-431
classification, 377-385	analysis of variance (ANOVA), 600
classifier, 330, 366	analytical processing, 153
with cross-validation, 370-371	ancestor cells, 189
data, 84	angle-based outlier detection (ABOD), 580
with holdout method, 370	angle-based outlier factor (ABOF), 580
measures, 369	anomalies. See outliers
random forests, 383	anomaly mining. See outlier analysis
with random subsampling, 370	anomaly-based detection, 614
rule selection based on, 361	antimonotonic constraints, 298, 301
activation function, 402	antimonotonic measures, 194
active learning, 25, 430, 437	antimonotonicity, 249
ad hoc data mining, 31	apex cuboids, 111, 138, 158
AdaBoost, 380–382	application domain-specific semantics, 282
algorithm illustration, 382	applications, 33, 607-618
TrAdaBoost, 436	business intelligence, 27
adaptive probabilistic networks, 397	computer science, 613
advanced data analysis, 3, 4	domain-specific, 625
advanced database systems, 4	engineering, 613, 624
affinity matrix, 520, 521	exploration, 623
agglomerative hierarchical method, 459	financial data analysis, 607-609
AGNES, 459, 460	intrusion detection/prevention, 614-615
divisive hierarchical clustering versus,	recommender systems, 615–618
459–460	retail industry, 609–611
Agglomerative Nesting (AGNES), 459, 460	science, 611–613
aggregate cells, 189	social science and social studies, 613

applications (Continued)	single-dimensional, 17, 287
targeted, 27–28	spatial, 595
telecommunications industry, 611	strong, 264–265, 272
Web search engines, 28	support, 21, 245, 246, 417
application-specific outlier detection, 548–549	top- <i>k</i> , 281
approximate patterns, 281	types of values in, 281
mining, 307–312	associative classification, 415, 416–419, 437
Apriori algorithm, 248–253, 272	CBA, 417
dynamic itemset counting, 256	CMAR, 417–418
efficiency, improving, 254–256	CPAR, 418–419
example, 250–252	rule confidence, 416
hash-based technique, 255	rule support, 417
join step, 249	steps, 417
partitioning, 255–256	asymmetric binary dissimilarity, 71
prune step, 249–250	asymmetric binary similarity, 71
pseudocde, 253	attribute construction, 112
sampling, 256	accuracy and, 105
transaction reduction, 255	multivariate splits, 344
Apriori property, 194, 201, 249	attribute selection measures, 331, 336–344
antimonotonicity, 249	CHAID, 343
in Apriori algorithm, 298	gain ratio, 340–341
Apriori pruning method, 194	Gini index, 341–343
arrays	information gain, 336–340
3-D for dimensions, 196	Minimum Description Length (MDL),
sparse compression, 198–199	343–344
association analysis, 17–18	multivariate splits, 343–344
association rules, 245	attribute subset selection, 100, 103–105
approximate, 281	decision tree induction, 105
Boolean, 281	forward selection/backward elimination
compressed, 281	combination, 105
confidence, 21, 245, 246, 416	greedy methods, 104–105
constraint-based, 281	stepwise backward elimination, 105
constraints, 296–297	stepwise forward selection, 105
correlation, 265, 272	attribute vectors, 40, 328
discarded, 17	attribute-oriented induction (AOI), 166–178, 180
fittest, 426	algorithm, 173
frequent patterns and, 280	for class comparisons, 175–178
generation from frequent itemsets, 253, 254	for data characterization, 167–172
hybrid-dimensional, 288	data generalization by, 166–178
interdimensional, 288	generalized relation, 172
intradimensional, 287	implementation of, 172–174
metarule-guided mining of, 295–296	attributes, 9, 40
minimum confidence threshold, 18, 245	abstraction level differences, 99
minimum support threshold, 245	behavioral, 546, 573
mining, 272	binary, 41–42, 79
multidimensional, 17, 287–289, 320	Boolean, 41
multilevel, 281, 283–287, 320	categorical, 41
near-match, 281	class label, 328
objective measures, 21	contextual, 546, 573
offspring, 426	continuous, 44
quantitative, 281, 289, 320	correlated, 54–56
redundancy-aware top- <i>k</i> , 281	dimension correspondence, 10
· · · · · · · · · · · · · · · · · · ·	

discrete, 44	sample learning calculations, 404-406
generalization, 169-170	sensitivity analysis, 408
generalization control, 170	sigmoid function, 402
generalization threshold control, 170	squashing function, 403
grouping, 231	terminating conditions, 404
interval-scaled, 43, 79	unknown tuple classification, 406
of mixed type, 75–77	weights initialization, 401
nominal, 41, 79	See also classification
numeric, 43–44, 79	bagging, 379–380
ordered, 103	algorithm illustration, 380
ordinal, 41, 79	boosting versus, 381–382
qualitative, 41	in building random forests, 383
ratio-scaled, 43–44, 79	bar charts, 54
reducts of, 427	base cells, 189
removal, 169	base cuboids, 111, 137–138, 158
repetition, 346	Basic Local Alignment Search Tool (BLAST), 591
set of, 118	Baum-Welch algorithm, 591
splitting, 333	Bayes' theorem, 350–351
terminology for, 40	Bayesian belief networks, 393–397, 436
type determination, 41	algorithms, 396
types of, 39	components of, 394
unordered, 103	conditional probability table (CPT),
audio data mining, 604–607, 624	394, 395
automatic classification, 445	directed acyclic graph, 394–395
AVA. See all-versus-all	gradient descent strategy, 396–397
AVC-group, 347	illustrated, 394
AVC-set, 347	mechanisms, 394–396
average(), 215	problem modeling, 395–396
average(), 213	topology, 396
В	training, 396–397
_	See also classification
background knowledge, 30–31 backpropagation, 393, 398–408, 437	Bayesian classification
activation function, 402	basis, 350
algorithm illustration, 401	Bayes' theorem, 350–351
biases, 402, 404	class conditional independence, 350
case updating, 404	naive, 351–355, 385
efficiency, 404	posterior probability, 351
epoch updating, 404	prior probability, 351
error, 403	BCubed precision metric, 488, 489
functioning of, 400–403	BCubed recall metric, 489
hidden layers, 399	behavioral attributes, 546, 573
input layers, 399	believability, data, 85
input propagation, 401–402	BI (business intelligence), 27
interpretability and, 406–408	biases, 402, 404
learning, 400	biclustering, 512–519, 538
learning rate, 403–404	application examples, 512–515
logistic function, 402	enumeration methods, 517, 518–519
multilayer feed-forward neural network,	gene expression example, 513–514
398–399	methods, 517–518
network pruning, 406–407	optimization-based methods, 517–518
neural network topology definition, 400	recommender system example, 514–515
output layers, 399	types of, 538

biclusters, 511	AdaBoost, 380–382
with coherent values, 516	bagging versus, 381–382
with coherent values on rows, 516	weight assignment, 381
with constant values, 515	bootstrap method, 371, 386
with constant values on columns, 515	bottom-up design approach, 133, 151-152
with constant values on rows, 515	bottom-up subspace search, 510-511
as submatrix, 515	boxplots, 49
types of, 515–516	computation, 50
bimodal, 47	example, 50
bin boundaries, 89	five-number summary, 49
binary attributes, 41, 79	illustrated, 50
asymmetric, 42, 70	in outlier visualization, 555
as Boolean, 41	BUC, 200-204, 235
contingency table for, 70	for 3-D data cube computation, 200
dissimilarity between, 71–72	algorithm, 202
example, 41–42	Apriori property, 201
proximity measures, 70–72	bottom-up construction, 201
symmetric, 42, 70–71	iceberg cube construction, 201
See also attributes	partitioning snapshot, 203
binning	performance, 204
discretization by, 115	top-down processing order, 200, 201
equal-frequency, 89	business intelligence (BI), 27
smoothing by bin boundaries, 89	business metadata, 135
smoothing by bin means, 89	business query view, 151
smoothing by bin medians, 89	1227,
biological sequences, 586, 624	
alignment of, 590–591	C
analysis, 590	C4.5, 332, 385
BLAST, 590	class-based ordering, 358
hidden Markov model, 591	gain ratio use, 340
as mining trend, 624	greedy approach, 332
multiple sequence alignment, 590	pessimistic pruning, 345
pairwise alignment, 590	rule extraction, 358
phylogenetic tree, 590	See also decision tree induction
substitution matrices, 590	
bipartite graphs, 523	cannot-link constraints, 533
BIRCH, 458, 462–466	CART, 332, 385
CF-trees, 462–463, 464, 465–466	cost complexity pruning algorithm, 345
	Gini index use, 341
clustering feature, 462, 463, 464	greedy approach, 332
effectiveness, 465	See also decision tree induction
multiphase clustering technique, 464–465	case updating, 404
See also hierarchical methods	case-based reasoning (CBR), 425–426
bitmap indexing, 160–161, 179	challenges, 426
bitmapped join indexing, 163, 179	categorical attributes, 41
bivariate distribution, 40	CBA. See Classification Based on Associations
BLAST. See Basic Local Alignment Search Tool	CBLOF. See cluster-based local outlier factor
BOAT. See Bootstrapped Optimistic Algorithm for	CELL method, 562, 563
Tree construction	cells, 10–11
Boolean association rules, 281	aggregate, 189
Boolean attributes, 41	ancestor, 189
boosting, 380	base, 189
accuracy, 382	descendant, 189

dimensional, 189	equivalence, 427
exceptions, 231	target, 15
residual value, 234	classification, 18, 327-328, 385
central tendency measures, 39, 44, 45-47	accuracy, 330
mean, 45–46	accuracy improvement techniques, 377-385
median, 46–47	active learning, 433–434
midrange, 47	advanced methods, 393-442
for missing values, 88	applications, 327
models, 47	associative, 415, 416-419, 437
centroid distance, 108	automatic, 445
CF-trees, 462–463, 464	backpropagation, 393, 398-408, 437
nodes, 465	bagging, 379–380
parameters, 464	basic concepts, 327–330
structure illustration, 464	Bayes methods, 350–355
CHAID, 343	Bayesian belief networks, 393–397, 436
Chameleon, 459, 466-467	boosting, 380–382
clustering illustration, 466	case-based reasoning, 425-426
relative closeness, 467	of class-imbalanced data, 383-385
relative interconnectivity, 466–467	confusion matrix, 365-366, 386
See also hierarchical methods	costs and benefits, 373-374
Chernoff faces, 60	decision tree induction, 330–350
asymmetrical, 61	discriminative frequent pattern-based, 437
illustrated, 62	document, 430
ChiMerge, 117	ensemble methods, 378–379
chi-square test, 95	evaluation metrics, 364–370
chunking, 195	example, 19
chunks, 195	frequent pattern-based, 393, 415-422, 437
2-D, 197	fuzzy set approaches, 428-429, 437
3-D, 197	general approach to, 328
computation of, 198	genetic algorithms, 426–427, 437
scanning order, 197	heterogeneous networks, 593
CLARA. See Clustering Large Applications	homogeneous networks, 593
CLARANS. See Clustering Large Applications	IF-THEN rules for, 355–357
based upon Randomized Search	interpretability, 369
class comparisons, 166, 175, 180	k-nearest-neighbor, 423–425
attribute-oriented induction for,	lazy learners, 393, 422–426
175–178	learning step, 328
mining, 176	model representation, 18
presentation of, 175–176	model selection, 364, 370–377
procedure, 175–176	multiclass, 430–432, 437
class conditional independence, 350	in multimedia data mining, 596
class imbalance problem, 384–385, 386	neural networks for, 19, 398–408
ensemble methods for, 385	pattern-based, 282, 318
on multiclass tasks, 385	perception-based, 348–350
oversampling, 384–385, 386	precision measure, 368–369
threshold-moving approach, 385	as prediction problem, 328
undersampling, 384–385, 386	process, 328
class label attributes, 328	process illustration, 329
class-based ordering, 357	random forests, 382–383
class/concept descriptions, 15	recall measure, 368–369
classes, 15, 166	robustness, 369
contrasting, 15	rough set approach, 427-428, 437

classification (Continued)	cluster analysis, 19-20, 443-495
rule-based, 355-363, 386	advanced, 497-541
scalability, 369	agglomerative hierarchical clustering,
semi-supervised, 432-433, 437	459–461
sentiment, 434	applications, 444, 490
spatial, 595	attribute types and, 446
speed, 369	as automatic classification, 445
support vector machines (SVMs), 393,	biclustering, 511, 512–519
408-415, 437	BIRCH, 458, 462–466
transfer learning, 434–436	Chameleon, 458, 466-467
tree pruning, 344–347, 385	CLIQUE, 481–483
web-document, 435	clustering quality measurement, 484, 487-490
Classification Based on Associations (CBA), 417	clustering tendency assessment, 484-486
Classification based on Multiple Association Rules	constraint-based, 447, 497, 532-538
(CMAR), 417–418	correlation-based, 511
Classification based on Predictive Association Rules	as data redundancy technique, 108
(CPAR), 418-419	as data segmentation, 445
classification-based outlier detection, 571-573, 582	DBSCAN, 471–473
one-class model, 571–572	DENCLUE, 476–479
semi-supervised learning, 572	density-based methods, 449, 471-479, 491
See also outlier detection	in derived space, 519–520
classifiers, 328	dimensionality reduction methods, 519–522
accuracy, 330, 366	discretization by, 116
bagged, 379-380	distance measures, 461–462
Bayesian, 350, 353	distance-based, 445
case-based reasoning, 425–426	divisive hierarchical clustering, 459–461
comparing with ROC curves, 373–377	evaluation, 483–490, 491
comparison aspects, 369	example, 20
decision tree, 331	expectation-maximization (EM) algorithm,
error rate, 367	505–508
k-nearest-neighbor, 423–425	graph and network data, 497, 522-532
Naive Bayesian, 351–352	grid-based methods, 450, 479–483, 491
overfitting data, 330	heterogeneous networks, 593
performance evaluation metrics, 364–370	hierarchical methods, 449, 457–470, 491
recognition rate, 366–367	high-dimensional data, 447, 497, 508-522
rule-based, 355	homogeneous networks, 593
Clementine, 603, 606	in image recognition, 444
CLIQUE, 481–483	incremental, 446
clustering steps, 481–482	interpretability, 447
effectiveness, 483	k-means, 451–454
strategy, 481	k-medoids, 454–457
See also cluster analysis; grid-based methods	k-modes, 454
closed data cubes, 192	in large databases, 445
closed frequent itemsets, 247, 308	as learning by observation, 445
example, 248	low-dimensional, 509
mining, 262–264	methods, 448–451
shortcomings for compression, 308–309	multiple-phase, 458–459
closed graphs, 591	number of clusters determination, 484, 486–487
closed patterns, 280	OPTICS, 473–476
top-k most frequent, 307	orthogonal aspects, 491
closure checking, 263–264	for outlier detection, 445
cloud computing, 31	outlier detection and, 543
1 0	, · ·

partitioning methods, 448, 451-457, 491 in small clusters, 570-571 pattern, 282, 308-310 weakness of, 571 probabilistic hierarchical clustering, 467-470 clustering-based quantitative associations, 290-291 probability model-based, 497-508 clusters, 66, 443, 444, 490 PROCLUS, 511 arbitrary shape, discovery of, 446 requirements, 445-448, 490-491 assignment rule, 497-498 scalability, 446 completeness, 488 in search results organization, 444 constraints on, 533 spatial, 595 cuts and, 529-530 spectral, 519-522 density-based, 472 as standalone tool, 445 determining number of, 484, 486-487 STING, 479-481 discovery of, 318 subspace, 318-319, 448 fuzzy, 499-501 graph clusters, finding, 528-529 subspace search methods, 510-511 taxonomy formation, 20 on high-dimensional data, 509 techniques, 443, 444 homogeneity, 487-488 as unsupervised learning, 445 merging, 469, 470 usability, 447 ordering, 474-475, 477 use of, 444 pattern-based, 516 cluster computing, 31 probabilistic, 502-503 cluster samples, 108-109 separation of, 447 cluster-based local outlier factor (CBLOF), 569-570 shapes, 471 clustering. See cluster analysis small, preservation, 488 CMAR. See Classification based on Multiple clustering features, 462, 463, 464 Clustering Large Applications based upon Association Rules Randomized Search (CLARANS), 457 CN2, 359, 363 collaborative recommender systems, 610, 617, 618 Clustering Large Applications (CLARA), 456–457 clustering quality measurement, 484t, 487-490 collective outlier detection, 548, 582 cluster completeness, 488 categories of, 576 cluster homogeneity, 487-488 contextual outlier detection versus, 575 extrinsic methods, 487-489 on graph data, 576 intrinsic methods, 487, 489-490 structure discovery, 575 collective outliers, 575, 581 rag bag, 488 silhouette coefficient, 489-490 mining, 575-576 small cluster preservation, 488 co-location patterns, 319, 595 clustering space, 448 colossal patterns, 302, 320 clustering tendency assessment, 484-486 core descendants, 305, 306 homogeneous hypothesis, 486 core patterns, 304-305 Hopkins statistic, 484-485 illustrated, 303 nonhomogeneous hypothesis, 486 mining challenge, 302-303 nonuniform distribution of data, 484 Pattern-Fusion mining, 302-307 See also cluster analysis combined significance, 312 clustering with obstacles problem, 537 complete-linkage algorithm, 462 clustering-based methods, 552, 567-571 completeness example, 553 data, 84-85 See also outlier detection data mining algorithm, 22 clustering-based outlier detection, 567-571, 582 complex data types, 166 approaches, 567 biological sequence data, 586, 590-591 distance to closest cluster, 568-569 graph patterns, 591-592 fixed-width clustering, 570 mining, 585-598, 625 intrusion detection by, 569-570 networks, 591-592 objects not belonging to a cluster, 568 in science applications, 612

complex data types (Continued)	constraint-based mining, 294-301, 320
summary, 586	interactive exploratory mining/analysis, 295
symbolic sequence data, 586, 588-590	as mining trend, 623
time-series data, 586, 587–588	constraint-based patterns/rules, 281
composite join indices, 162	constraint-based sequential pattern mining, 589
compressed patterns, 281	constraint-guided mining, 30
mining, 307–312	constraints
mining by pattern clustering, 308-310	antimonotonic, 298, 301
compression, 100, 120	association rule, 296-297
lossless, 100	cannot-link, 533
lossy, 100	on clusters, 533
theory, 601	coherence, 535
computer science applications, 613	conflicting, 535
concept characterization, 180	convertible, 299-300
concept comparison, 180	data, 294
concept description, 166, 180	data-antimonotonic, 300
concept hierarchies, 142, 179	data-pruning, 300-301, 320
for generalizing data, 150	data-succinct, 300
illustrated, 143, 144	dimension/level, 294, 297
implicit, 143	hard, 534, 535-536, 539
manual provision, 144	inconvertible, 300
multilevel association rule mining with, 285	on instances, 533, 539
multiple, 144	interestingness, 294, 297
for nominal attributes, 284	knowledge type, 294
for specializing data, 150	monotonic, 298
concept hierarchy generation, 112, 113, 120	must-link, 533, 536
based on number of distinct values, 118	pattern-pruning, 297-300, 320
illustrated, 112	rules for, 294
methods, 117–119	on similarity measures, 533-534
for nominal data, 117–119	soft, 534, 536–537, 539
with prespecified semantic connections, 119	succinct, 298-299
schema, 119	content-based retrieval, 596
conditional probability table (CPT), 394, 395-396	context indicators, 314
confidence, 21	context modeling, 316
association rule, 21	context units, 314
interval, 219–220	contextual attributes, 546, 573
limits, 373	contextual outlier detection, 546-547, 582
rule, 245, 246	with identified context, 574
conflict resolution strategy, 356	normal behavior modeling, 574-575
confusion matrix, 365-366, 386	structures as contexts, 575
illustrated, 366	summary, 575
connectionist learning, 398	transformation to conventional outlier
consecutive rules, 92	detection, 573-574
Constrained Vector Quantization Error (CVQE)	contextual outliers, 545-547, 573, 581
algorithm, 536	example, 546, 573
constraint-based clustering, 447, 497, 532-538, 539	mining, 573–575
categorization of constraints and, 533-535	contingency tables, 95
hard constraints, 535–536	continuous attributes, 44
methods, 535-538	contrasting classes, 15, 180
soft constraints, 536–537	initial working relations, 177
speeding up, 537–538	prime relation, 175, 177
See also cluster analysis	convertible constraints, 299–300

COP k-means algorithm, 536	subset selection, 160
core descendants, 305	See also data cubes
colossal patterns, 306	curse of dimensionality, 158, 179
merging of core patterns, 306	customer relationship management (CRM),
core patterns, 304–305	619
core ratio, 305	customer retention analysis, 610
correlation analysis, 94	CVQE. See Constrained Vector Quantization Error
discretization by, 117	algorithm
interestingness measures, 264	cyber-physical systems (CPS), 596, 623-624
with lift, 266–267	
nominal data, 95–96	D
numeric data, 96–97	data
redundancy and, 94–98	antimonotonicity, 300
correlation coefficient, 94, 96	archeology, 6
numeric data, 96–97	biological sequence, 586, 590-591
correlation rules, 265, 272	complexity, 32
correlation-based clustering methods, 511	conversion to knowledge, 2
correlations, 18	cyber-physical system, 596
cosine measure, 268	for data mining, 8
cosine similarity, 77	data warehouse, 13–15
between two term-frequency vectors, 78	database, 9-10
cost complexity pruning algorithm, 345	discrimination, 16
cotraining, 432–433	dredging, 6
covariance, 94, 97	generalizing, 150
numeric data, 97–98	graph, 14
CPAR. See Classification based on Predictive	growth, 2
Association Rules	linearly inseparable, 413–415
credit policy analysis, 608-609	linearly separated, 409
CRM. See customer relationship management	multimedia, 14, 596
crossover operation, 426	multiple sources, 15, 32
cross-validation, 370–371, 386	multivariate, 556
k-fold, 370	networked, 14
leave-one-out, 371	overfitting, 330
in number of clusters determination, 487	relational, 10
stratified, 371	sample, 219
cube gradient analysis, 321	similarity and dissimilarity measures, 65-78
cube shells, 192, 211	skewed, 47, 271
computing, 211	spatial, 14, 595
cube space	spatiotemporal, 595–596
discovery-driven exploration, 231-234	specializing, 150
multidimensional data analysis in, 227-234	statistical descriptions, 44–56
prediction mining in, 227	streams, 598
subspaces, 228–229	symbolic sequence, 586, 588-589
cuboid trees, 205	temporal, 14
cuboids, 137	text, 14, 596–597
apex, 111, 138, 158	time-series, 586, 587
base, 111, 137–138, 158	"tombs," 5
child, 193	training, 18
individual, 190	transactional, 13–14
lattice of, 139, 156, 179, 188-189,	types of, 33
234, 290	web, 597–598
sparse, 190	data auditing tools, 92

data characterization, 15, 166	full, 189–190, 196–197
attribute-oriented induction, 167-172	gradient analysis, 321
data mining query, 167–168	iceberg, 160, 190–191, 201, 235
example, 16	lattice of cuboids, 157, 234, 290
methods, 16	materialization, 159-160, 179, 234
output, 16	measures, 145
data classification. See classification	multidimensional, 12, 136-139
data cleaning, 6, 85, 88–93, 120	multidimensional data mining and, 26
in back-end tools/utilities, 134	multifeature, 227, 230–231, 235
binning, 89–90	multimedia, 596
discrepancy detection, 91–93	prediction, 227–230, 235
by information network analysis, 592–593	qualitative association mining, 289–290
missing values, 88–89	queries, 230
noisy data, 89	query processing, 218–227
outlier analysis, 90	ranking, 225–227, 235
pattern mining for, 318	sampling, 218–220, 235
as process, 91–93	shell, 160, 211
regression, 90	shell fragments, 192, 210-218, 235
See also data preprocessing	sparse, 190
data constraints, 294	spatial, 595
antimonotonic, 300	technology, 187–242
pruning data space with, 300-301	data discretization. See discretization
succinct, 300	data dispersion, 44, 48-51
See also constraints	boxplots, 49–50
data cube aggregation, 110-111	five-number summary, 49
data cube computation, 156–160, 214–215	quartiles, 48–49
aggregation and, 193	standard deviation, 50–51
average(), 215	variance, 50-51
BUC, 200–204, 235	data extraction, in back-end tools/utilities, 134
cube operator, 157–159	data focusing, 168
cube shells, 211	data generalization, 179–180
full, 189–190, 195–199	by attribute-oriented induction, 166-178
general strategies for, 192-194	data integration, 6, 85-86, 93-99, 120
iceberg, 160, 193–194	correlation analysis, 94–98
memory allocation, 199	detection/resolution of data value conflicts
methods, 194-218, 235	99
multiway array aggregation, 195-199	entity identification problem, 94
one-pass, 198	by information network analysis, 592-593
preliminary concepts, 188–194	object matching, 94
shell fragments, 210-218, 235	redundancy and, 94-98
Star-Cubing, 204–210, 235	schema, 94
data cubes, 10, 136, 178, 188	tuple duplication, 98–99
3-D, 138	See also data preprocessing
4-D, 138, 139	data marts, 132, 142
apex cuboid, 111, 138, 158	data warehouses versus, 142
base cuboid, 111, 137-138, 158	dependent, 132
closed, 192	distributed, 134
cube shell, 192	implementation, 132
cuboids, 137	independent, 132
curse of dimensionality, 158	data matrix, 67–68
discovery-driven exploration, 231-234	dissimilarity matrix versus, 67-68
example, 11–13	relational table, 67–68

yours and columns 60	user interaction and 20, 21
rows and columns, 68	user interaction and, 30–31
as two-mode matrix, 68	visual and audio, 602–607, 624, 625
data migration tools, 93	Web data, 597–598, 624
data mining, 5–8, 33, 598, 623	data mining systems, 10
ad hoc, 31	data models
applications, 607–618	entity-relationship (ER), 9, 139
biological data, 624	multidimensional, 135–146
complex data types, 585–598, 625	data objects, 40, 79
cyber-physical system data, 596	similarity, 40
data streams, 598	terminology for, 40
data types for, 8	data preprocessing, 83–124
data warehouses for, 154	cleaning, 88–93
database types and, 32	forms illustration, 87
descriptive, 15	integration, 93–99
distributed, 615, 624	overview, 84–87
efficiency, 31	quality, 84–85
foundations, views on, 600-601	reduction, 99–111
functionalities, 15–23, 34	in science applications, 612
graphs and networks, 591–594	summary, 87
incremental, 31	tasks in, 85–87
as information technology evolution, 2–5	transformation, 111–119
integration, 623	data quality, 84, 120
interactive, 30	accuracy, 84
as interdisciplinary effort, 29–30	believability, 85
invisible, 33, 618–620, 625	completeness, 84–85
issues in, 29–33, 34	consistency, 85
in knowledge discovery, 7	interpretability, 85
as knowledge search through data, 6	timeliness, 85
machine learning similarities, 26	data reduction, 86, 99-111, 120
methodologies, 29–30, 585–607	attribute subset selection, 103–105
motivation for, 1–5	clustering, 108
multidimensional, 11–13, 26, 33–34, 155–156,	compression, 100, 120
179, 227–230	data cube aggregation, 110–111
multimedia data, 596	dimensionality, 86, 99–100, 120
OLAP and, 154	histograms, 106–108
as pattern/knowledge discovery process, 8	numerosity, 86, 100, 120
predictive, 15	parametric, 105–106
presentation/visualization of results, 31	principle components analysis, 102–103
privacy-preserving, 32, 621–622, 624–625, 626	sampling, 108
query languages, 31	strategies, 99–100
relational databases, 10	theory, 601
scalability, 31	wavelet transforms, 100-102
sequence data, 586	See also data preprocessing
social impacts, 32	data rich but information poor, 5
society and, 618–622	data scrubbing tools, 92
spatial data, 595	data security-enhancing techniques, 621
spatiotemporal data and moving objects,	data segmentation, 445
595–596, 623–624	data selection, 8
statistical, 598	data source view, 151
text data, 596–597, 624	data streams, 14, 598, 624
trends, 622–625, 626	data transformation, 8, 87, 111–119, 120
ubiquitous, 618–620, 625	aggregation, 112

data transformation (Continued)	metadata, 134-135
attribute construction, 112	modeling, 10, 135-150
in back-end tools/utilities, 134	models, 132–134
concept hierarchy generation, 112, 120	multitier, 134
discretization, 111, 112, 120	multitiered architecture, 130-132
normalization, 112, 113-115, 120	nonvolatile, 127
smoothing, 112	OLAP server, 132
strategies, 112–113	operational database systems versus, 128-129
See also data preprocessing	planning and analysis tools, 153
data types	retail industry, 609–610
complex, 166	in science applications, 612
complex, mining, 585–598	snowflake schema, 140–141
for data mining, 8	star schema, 139–140
data validation, 592–593	subject-oriented, 126
data visualization, 56-65, 79, 602-603	three-tier architecture, 131, 178
complex data and relations, 64-65	time-variant, 127
geometric projection techniques, 58–60	tools, 11
hierarchical techniques, 63–64	top-down design approach, 133, 151
icon-based techniques, 60–63	top-down view, 151
mining process, 603	update-driven approach, 128
mining result, 603, 605	usage for information processing, 153
pixel-oriented techniques, 57–58	view, 151
in science applications, 613	virtual, 133
summary, 65	warehouse database server, 131
tag clouds, 64, 66	database management systems (DBMSs), 9
techniques, 39–40	database queries. See queries
data warehouses, 10–13, 26, 33, 125–185	databases, 9
analytical processing, 153	inductive, 601
back-end tools/utilities, 134, 178	relational. See relational databases
basic concepts, 125–135	research, 26
bottom-up design approach, 133, 151–152	statistical, 148–149
business analysis framework for, 150	technology evolution, 3
business query view, 151	transactional, 13–15
combined design approach, 152	types of, 32
data mart, 132, 142	web-based, 4
data mining, 154	data/pattern analysis. See data mining
data source view, 151	DBSCAN, 471–473
design process, 151	algorithm illustration, 474
development approach, 133	core objects, 472
development tools, 153	density estimation, 477
dimensions, 10	density-based cluster, 472
enterprise, 132	density-connected, 472, 473
extractors, 151	density-reachable, 472, 473
fact constellation, 141–142	directly density-reachable, 472
for financial data, 608	neighborhood density, 471
framework illustration, 11	See also cluster analysis; density-based methods
front-end client layer, 132	DDPMine, 422
gateways, 131	decimal scaling, normalization by, 115
geographic, 595	decision tree analysis, discretization by, 116
implementation, 156–165	decision tree induction, 330–350, 385
information processing, 153	algorithm differences, 336
integrated, 126	algorithm illustration, 333

attribute selection measures, 336-344	descendant cells, 189
attribute subset selection, 105	descriptive mining tasks, 15
C4.5, 332	DIANA (Divisive Analysis), 459, 460
CART, 332	dice operation, 148
CHAID, 343	differential privacy, 622
gain ratio, 340–341	dimension tables, 136
Gini index, 332, 341–343	dimensional cells, 189
ID3, 332	dimensionality reduction, 86, 99-100, 120
incremental versions, 336	dimensionality reduction methods, 510,
information gain, 336-340	519–522, 538
multivariate splits, 344	list of, 587
parameters, 332	spectral clustering, 520–522
scalability and, 347–348	dimension/level
splitting criterion, 333	application of, 297
from training tuples, 332–333	constraints, 294
tree pruning, 344–347, 385	dimensions, 10, 136
visual mining for, 348–350	association rule, 281
decision trees, 18, 330	cardinality of, 159
branches, 330	concept hierarchies and, 142–144
illustrated, 331	in multidimensional view, 33
internal nodes, 330	ordering of, 210
leaf nodes, 330	pattern, 281
pruning, 331, 344–347	ranking, 225
root node, 330	relevance analysis, 175
rule extraction from, 357–359	selection, 225
deep web, 597	shared, 204
default rules, 357	See also data warehouses
DENCLUE, 476–479	direct discriminative pattern mining, 422
advantages, 479	directed acyclic graphs, 394–395
clusters, 478	discernibility matrix, 427
density attractor, 478	discovery-driven exploration, 231–234, 235
density estimation, 476	discrepancy detection, 91–93
kernel density estimation, 477–478	discrete attributes, 44
kernels, 478	discrete Fourier transform (DFT), 101, 587
See also cluster analysis; density-based methods	discrete wavelet transform (DWT), 100–102,
dendrograms, 460	587
densification power law, 592	discretization, 112, 120
density estimation, 476	by binning, 115
DENCLUE, 477–478	by clustering, 116
kernel function, 477–478	by correlation analysis, 117
density-based methods, 449, 471–479, 491	by decision tree analysis, 116
DBSCAN, 471–473	by histogram analysis, 115–116
DENCLUE, 476–479	techniques, 113
object division, 449	discriminant analysis, 600
OPTICS, 473–476	discriminant rules, 16
STING as, 480	discriminative frequent pattern-based classification
See also cluster analysis	416, 419–422, 437
density-based outlier detection, 564–567	basis for, 419
local outlier factor, 566–567	feature generation, 420
local proximity, 564	feature selection, 420–421
local reachability density, 566	framework, 420–421
relative density, 565	learning of classification model, 421
	,

dispersion of data 44, 49, 51	officionay
dispersion of data, 44, 48–51	Apriori algorithm 255, 256
dissimilarity	Apriori algorithm, 255–256
asymmetric binary, 71 between attributes of mixed type, 76–77	backpropagation, 404 data mining algorithms, 31
· · · · · · · · · · · · · · · · · · ·	elbow method, 486
between binary attributes, 71–72	
measuring, 65–78, 79 between nominal attributes, 69	email spam filtering, 435
on numeric data, 72–74	engineering applications, 613
between ordinal attributes, 75	ensemble methods, 378–379, 386 bagging, 379–380
	boosting, 380–382
symmetric binary, 70–71 dissimilarity matrix, 67, 68	for class imbalance problem, 385
data matrix versus, 67–68	random forests, 382–383
	types of, 378, 386
<i>n</i> -by- <i>n</i> table representation, 68 as one-mode matrix, 68	enterprise warehouses, 132
distance measures, 461–462	entity identification problem, 94
Euclidean, 72–73	entity-relationship (ER) data model, 9, 139
Manhattan, 72–73	epoch updating, 404
Minkowski, 73	equal-frequency histograms, 107, 116
supremum, 73–74	equal-width histograms, 107, 116
types of, 72	equivalence classes, 427
distance-based cluster analysis, 445	error rates, 367
distance-based outlier detection, 561–562	error-correcting codes, 431–432
nested loop algorithm, 561, 562	Euclidean distance, 72
See also outlier detection	mathematical properties, 72–73
distributed data mining, 615, 624	weighted, 74
distributed privacy preservation, 622	See also distance measures
distributions	evaluation metrics, 364–370
boxplots for visualizing, 49–50	evolution, of database system technology, 3–5
five-number summary, 49	evolutionary searches, 579
distributive measures, 145	exception-based, discovery-driven exploration,
Divisive Analysis (DIANA), 459, 460	231–234, 235
divisive hierarchical method, 459	exceptions, 231
agglomerative hierarchical clustering versus,	exhaustive rules, 358
459–460	expectation-maximization (EM) algorithm,
DIANA, 459, 460	505–508, 538
DNA chips, 512	expectation step (E-step), 505
document classification, 430	fuzzy clustering with, 505-507
documents	maximization step (M-step), 505
language model, 26	for mixture models, 507-508
topic model, 26–27	for probabilistic model-based clustering,
drill-across operation, 148	507–508
drill-down operation, 11, 146–147	steps, 505
drill-through operation, 148	See also probabilistic model-based clustering
dynamic itemset counting, 256	expected values, 97
	cell, 234
_	exploratory data mining. See multidimensional data
E	mining
eager learners, 423, 437	extraction
Eclat (Equivalence Class Transformation) algorithm,	data, 134
260, 272	rule, from decision tree, 357-359
e-commerce, 609	extraction/transformation/loading (ETL) tools, 93
editing method, 425	extractors, 151

F	closed, 247, 248, 262–264, 308
fact constellation, 141	finding, 247
example, 141–142	finding by confined candidate generation,
illustrated, 142	248–253
fact tables, 136	maximal, 247, 248, 262-264, 308
summary, 165	subsets, 309
factor analysis, 600	frequent pattern mining, 279
facts, 136	advanced forms of patterns, 320
false negatives, 365	application domain-specific semantics, 282
false positives, 365	applications, 317–319, 321
farthest-neighbor clustering algorithm, 462	approximate patterns, 307–312
field overloading, 92	classification criteria, 280–283
financial data analysis, 607–609	colossal patterns, 301–307
credit policy analysis, 608-609	compressed patterns, 307–312
crimes detection, 609	constraint-based, 294-301, 320
data warehouses, 608	data analysis usages, 282
loan payment prediction, 608-609	for data cleaning, 318
targeted marketing, 609	direct discriminative, 422
FindCBLOF algorithm, 569-570	high-dimensional data, 301-307
five-number summary, 49	in high-dimensional space, 320
fixed-width clustering, 570	in image data analysis, 319
FOIL, 359, 363, 418	for indexing structures, 319
Forest-RC, 383	kinds of data and features, 282
forward algorithm, 591	multidimensional associations, 287-289
FP-growth, 257–259, 272	in multilevel, multidimensional space, 283-294
algorithm illustration, 260	multilevel associations, 283-294
example, 257–258	in multimedia data analysis, 319
performance, 259	negative patterns, 291–294
FP-trees, 257	for noise filtering, 318
condition pattern base, 258	Pattern-Fusion, 302–307
construction, 257–258	quantitative association rules, 289–291
main memory-based, 259	rare patterns, 291–294
mining, 258, 259	in recommender systems, 319
Frag-Shells, 212, 213	road map, 279–283
fraudulent analysis, 610-611	scalable computation and, 319
frequency patterns	scope of, 319–320
approximate, 281, 307–312	in sequence or structural data analysis, 319
compressed, 281, 307–312	in spatiotemporal data analysis, 319
constraint-based, 281	for structure and cluster discovery, 318
near-match, 281	for subspace clustering, 318–319
redundancy-aware top- <i>k</i> , 281	in time-series data analysis, 319
top-k, 281	top-k, 310
frequent itemset mining, 18, 272, 282	in video data analysis, 319
Apriori algorithm, 248–253	See also frequent patterns
closed patterns, 262–264	frequent pattern-based classification, 415–422, 437
market basket analysis, 244–246	associative, 415, 416–419
max patterns, 262–264	discriminative, 416, 419–422
methods, 248–264	framework, 422
pattern-growth approach, 257–259	frequent patterns, 17, 243
with vertical data format, 259–262, 272	abstraction levels, 281
frequent itemsets, 243, 246, 272	association rule mapping, 280
association rule generation from, 253, 254	basic, 280

frequent patterns (Continued)	presentation of, 174
closed, 262–264, 280	threshold control, 170
concepts, 243–244	generative model, 467–469
constraint-based, 281	genetic algorithms, 426–427, 437
dimensions, 281	genomes, 15
diversity, 280	geodesic distance, 525-526, 539
exploration, 313–319	diameter, 525
growth, 257–259, 272	eccentricity, 525
max, 262–264, 280	measurements based on, 526
mining, 243–244, 279–325	peripheral vertex, 525
mining constraints or criteria, 281	radius, 525
number of dimensions involved in, 281	geographic data warehouses, 595
semantic annotation of, 313–317	geometric projection visualization, 58-60
sequential, 243	Gini index, 341
strong associations, 437	binary enforcement, 332
structured, 243	binary indexes, 341
trees, 257–259	CART use of, 341
types of values in, 281	decision tree induction using,
frequent subgraphs, 591	342–343
front-end client layer, 132	minimum, 342
full materialization, 159, 179, 234	partitioning and, 342
fuzzy clustering, 499–501, 538	global constants, for missing values, 88
data set for, 506	global outliers, 545, 581
with EM algorithm, 505–507	detection, 545
example, 500	example, 545
expectation step (E-step), 505	Google
flexibility, 501	Flu Trends, 2
maximization step (M-step), 506-507	popularity of, 619–620
partition matrix, 499	gradient descent strategy, 396-397
as soft clusters, 501	algorithms, 397
fuzzy logic, 428	greedy hill-climbing, 397
fuzzy sets, 428–429, 437, 499	as iterative, 396–397
evaluation, 500–501	graph and network data clustering, 497,
example, 499	522–532, 539
	applications, 523–525
G	bipartite graph, 523
gain ratio, 340	challenges, 523–525, 530
C4.5 use of, 340	cuts and clusters, 529–530
formula, 341	generic method, 530–531
maximum, 341	geodesic distance, 525–526
gateways, 131	methods, 528–532
gene expression, 513–514	similarity measures, 525–528
generalization	SimRank, 526–528
attribute, 169–170	social network, 524–525
attribute, control, 170	web search engines, 523–524
attribute, threshold control, 170	See also cluster analysis graph cuts, 539
in multimedia data mining, 596	graph data, 14
process, 172	graph index structures, 591
results presentation, 174	graph pattern mining, 591–592, 612–613
synchronous, 175	0 1 1
generalized linear models, 599–600	graphic displays data presentation software, 44–45
generalized relations attribute-oriented induction, 172	histogram, 54, 55
attribute-oriented induction, 1/2	mstogram, 24, 33

quantile plot, 51–52	data distribution of, 560
quantile-quantile plot, 52–54	frequent pattern mining, 301–307
scatter plot, 54–56	outlier detection in, 576–580, 582
greedy hill-climbing, 397	row enumeration, 302
greedy methods, attribute subset selection, 104–105	high-dimensional data clustering, 497, 508–522 538, 553
grid-based methods, 450, 479-483, 491	biclustering, 512-519
CLIQUE, 481–483	dimensionality reduction methods, 510,
STING, 479–481	519–522
See also cluster analysis	example, 508–509
grid-based outlier detection, 562-564	problems, challenges, and methodologies,
CELL method, 562, 563	508–510
cell properties, 562	subspace clustering methods, 509,
cell pruning rules, 563	510–511
See also outlier detection	See also cluster analysis
group-based support, 286	HilOut algorithm, 577–578
group-by clause, 231	histograms, 54, 106-108, 116
grouping attributes, 231	analysis by discretization, 115-116
grouping variables, 231	attributes, 106
Grubb's test, 555	binning, 106
	construction, 559
Н	equal-frequency, 107
hamming distance, 431	equal-width, 107
hard constraints, 534, 539	example, 54
example, 534	illustrated, 55, 107
handling, 535–536	multidimensional, 108
harmonic mean, 369	as nonparametric model, 559
hash-based technique, 255	outlier detection using, 558-560
heterogeneous networks, 592	holdout method, 370, 386
classification of, 593	holistic measures, 145
clustering of, 593	homogeneous networks, 592
ranking of, 593	classification of, 593
heterogeneous transfer learning, 436	clustering of, 593
hidden Markov model (HMM), 590, 591	Hopkins statistic, 484–485
hierarchical methods, 449, 457-470, 491	horizontal data format, 259
agglomerative, 459–461	hybrid OLAP (HOLAP), 164–165, 179
algorithmic, 459, 461-462	hybrid-dimensional association rules,
Bayesian, 459	288
BIRCH, 458, 462–466	_
Chameleon, 458, 466-467	
complete linkages, 462, 463	IBM Intelligent Miner, 603, 606
distance measures, 461–462	iceberg condition, 191
divisive, 459–461	iceberg cubes, 160, 179, 190, 235
drawbacks, 449	BUC construction, 201
merge or split points and, 458	computation, 160, 193-194, 319
probabilistic, 459, 467-470	computation and storage, 210-211
single linkages, 462, 463	computation with Star-Cubing algorithm,
See also cluster analysis	204–210
hierarchical visualization, 63	materialization, 319
treemaps, 63, 65	specification of, 190-191
Worlds-with-Worlds, 63, 64	See also data cubes
high-dimensional data, 301	icon-based visualization, 60
clustering, 447	Chernoff faces, 60-61

icon-based visualization (Continued)	OLAP in, 594
stick figure technique, 61–63	role discovery in, 593–594
See also data visualization	similarity search in, 594
ID3, 332, 385	information processing, 153
greedy approach, 332	information retrieval (IR), 26–27
information gain, 336	challenges, 27
See also decision tree induction	language model, 26
IF-THEN rules, 355–357	topic model, 26–27
accuracy, 356	informativeness model, 535
conflict resolution strategy, 356	initial working relations, 168, 169, 177
coverage, 356	instance-based learners. See lazy learners
default rule, 357	instances, constraints on, 533, 539
extracting from decision tree, 357	integrated data warehouses, 126
form, 355	integrators, 127
rule antecedent, 355	intelligent query answering, 618
rule consequent, 355	interactive data mining, 604, 607
rule ordering, 357	interactive mining, 30
satisfied, 356	intercuboid query expansion, 221
triggered, 356	example, 224–225
illustrated, 149	method, 223–224
image data analysis, 319	interdimensional association rules, 288
imbalance problem, 367	interestingness, 21–23
imbalance ratio (IR), 270	assessment methods, 23
skewness, 271	components of, 21
inconvertible constraints, 300	expected, 22
incremental data mining, 31	objective measures, 21–22
indexes	strong association rules, 264–265
bitmapped join, 163	subjective measures, 22
composite join, 162	threshold, 21–22
Gini, 332, 341–343	unexpected, 22
inverted, 212, 213	interestingness constraints, 294
indexing	application of, 297
bitmap, 160–161, 179	interpretability
bitmapped join, 179	backpropagation and, 406–408
frequent pattern mining for, 319	classification, 369
join, 161–163, 179	cluster analysis, 447
OLAP, 160–163	data, 85
inductive databases, 601	data quality and, 85
inferential statistics, 24	probabilistic hierarchical clustering,
information age, moving toward, 1–2	469
information extraction systems, 430	interquartile range (IQR), 49, 555
information gain, 336–340 decision tree induction using, 338–339	interval-scaled attributes, 43, 79
ID3 use of, 336	intracuboid query expansion, 221 example, 223
pattern frequency support versus, 421	method, 221–223
single feature plot, 420	value usage, 222
split-point, 340	intradimensional association rules, 287
information networks	intrusion detection, 569–570
analysis, 592–593	anomaly-based, 614
evolution of, 594	data mining algorithms, 614–615
link prediction in, 593–594	discriminative classifiers, 615
mining, 623	distributed data mining, 615

signature-based, 614	editing method, 425
stream data analysis, 615	missing values and, 424
visualization and query tools, 615	number of neighbors, 424–425
inverted indexes, 212, 213	partial distance method, 425
invisible data mining, 33, 618-620, 625	speed, 425
IQR. See Interquartile range	knowledge
IR. See information retrieval	background, 30–31
item merging, 263	mining, 29
item skipping, 263	presentation, 8
items, 13	representation, 33
itemsets, 246	transfer, 434
candidate, 251, 252	knowledge bases, 5, 8
dependent, 266	knowledge discovery
dynamic counting, 256	data mining in, 7
imbalance ratio (IR), 270, 271	process, 8
negatively correlated, 292	knowledge discovery from data (KDD), 6
occurrence independence, 266	knowledge extraction. See data mining
strongly negatively correlated, 292	knowledge mining. See data mining
See also frequent itemsets	knowledge type constraints, 294
iterative Pattern-Fusion, 306	k-predicate sets, 289
iterative relocation techniques, 448	Kulczynski measure, 268, 272
iterative relocation techniques, 440	negatively correlated pattern based on, 293–294
I	negatively correlated pattern based on, 293-29-
Jaccard coefficient, 71	L
join indexing, 161–163, 179	language model, 26
John macking, 101–103, 177	Laplacian correction, 355
K	lattice of cuboids, 139, 156, 179, 188–189, 234
<i>k</i> -anonymity method, 621–622	lazy learners, 393, 422–426, 437
Karush-Kuhn-Tucker (KKT) conditions, 412	case-based reasoning classifiers, 425–426
k-distance neighborhoods, 565	k-nearest-neighbor classifiers, 423–425
kernel density estimation, 477–478	l-diversity method, 622
kernel function, 415	learning
k-fold cross-validation, 370–371	active, 430, 433–434, 437
k-means, 451–454	backpropagation, 400
algorithm, 452	as classification step, 328
application of, 454	connectionist, 398
CLARANS, 457	by examples, 445
within-cluster variation, 451, 452	by observation, 445
clustering by, 453	rate, 397
drawback of, 454–455	semi-supervised, 572
functioning of, 452	supervised, 330
scalability, 454	transfer, 430, 434–436, 438
time complexity, 453	unsupervised, 330, 445, 490
variants, 453–454	learning rates, 403–404
k-means clustering, 536	leave-one-out, 371
k-medoids, 454–457	lift, 266, 272
absolute-error criterion, 455	correlation analysis with, 266-267
cost function for, 456	likelihood ratio statistic, 363
PAM, 455–457	linear regression, 90, 105
k-nearest-neighbor classification, 423	multiple, 106
closeness, 423	linearly, 412–413
distance-based comparisons, 425	linearly inseparable data, 413–415
± ·	• •

link mining, 594	all_confidence, 272
link prediction, 594	antimonotonic, 194
load, in back-end tools/utilities, 134	attribute selection, 331
loan payment prediction, 608-609	categories of, 145
local outlier factor, 566–567	of central tendency, 39, 44, 45-47
local proximity-based outliers, 564-565	correlation, 266
logistic function, 402	data cube, 145
log-linear models, 106	dispersion, 48-51
lossless compression, 100	distance, 72-74, 461-462
lossy compression, 100	distributive, 145
lower approximation, 427	holistic, 145
	Kulczynski, 272
M	max_confidence, 272
machine learning, 24–26	of multidimensional databases, 146
active, 25	null-invariant, 272
data mining similarities, 26	pattern evaluation, 267–271
semi-supervised, 25	precision, 368–369
supervised, 24	proximity, 67, 68–72
unsupervised, 25	recall, 368–369
Mahalanobis distance, 556	sensitivity, 367
majority voting, 335	significance, 312
Manhattan distance, 72–73	similarity/dissimilarity, 65–78
MaPle, 519	specificity, 367
margin, 410	median, 39, 46
market basket analysis, 244–246, 271–272	bin, smoothing by, 89
example, 244	example, 46
illustrated, 244	formula, 46–47
Markov chains, 591	for missing values, 88
materialization	metadata, 92, 134, 178
full, 159, 179, 234	business, 135
iceberg cubes, 319	importance, 135
no, 159	operational, 135
partial, 159–160, 192, 234	repositories, 134–135
semi-offline, 226	metarule-guided mining
max patterns, 280	of association rules, 295–296
max_confidence measure, 268, 272	example, 295–296
maximal frequent itemsets, 247, 308	metrics, 73
example, 248	classification evaluation, 364–370
mining, 262–264	microeconomic view, 601
shortcomings for compression, 308–309	midrange, 47
maximum marginal hyperplane (MMH), 409	MineSet, 603, 605
SVM finding, 412	minimal interval size, 116
maximum normed residual test, 555	minimal spanning tree algorithm, 462
mean, 39, 45	minimum confidence threshold, 18, 245
bin, smoothing by, 89	Minimum Description Length (MDL), 343–344
example, 45	minimum support threshold, 18, 190
for missing values, 88	association rules, 245
trimmed, 46	count, 246
weighted arithmetic, 45	Minkowski distance, 73
measures, 145	min-max normalization, 114
accuracy-based, 369	missing values, 88–89 mixed-effect models, 600
algebraic, 145	maca-enect mouers, 000

mixture models, 503, 538	multifeature cubes, 227, 230, 235
EM algorithm for, 507-508	complex query support, 231
univariate Gaussian, 504	examples, 230-231
mode, 39, 47	multilayer feed-forward neural networks,
example, 47	398–399
model selection, 364	example, 405
with statistical tests of significance, 372-373	illustrated, 399
models, 18	layers, 399
modularity	units, 399
of clustering, 530	multilevel association rules, 281, 283, 284, 320
use of, 539	ancestors, 287
MOLAP. See multidimensional OLAP	concept hierarchies, 285
monotonic constraints, 298	dimensions, 281
motifs, 587	group-based support, 286
moving-object data mining, 595-596, 623-624	mining, 283–287
multiclass classification, 430-432, 437	reduced support, 285, 286
all-versus-all (AVA), 430-431	redundancy, checking, 287
error-correcting codes, 431–432	uniform support, 285–286
one-versus-all (OVA), 430	multimedia data, 14
multidimensional association rules, 17, 283,	multimedia data analysis, 319
288, 320	multimedia data mining, 596
hybrid-dimensional, 288	multimodal, 47
interdimensional, 288	multiple linear regression, 90, 106
mining, 287–289	multiple sequence alignment, 590
mining with static discretization of quantitative	multiple-phase clustering, 458–459
attributes, 288	multitier data warehouses, 134
with no repeated predicates, 288	multivariate outlier detection, 556
See also association rules	with Mahalanobis distance, 556
multidimensional data analysis	with multiple clusters, 557
in cube space, 227–234	with multiple parametric distributions, 557
in multimedia data mining, 596	with χ^2 -static, 556
spatial, 595	multiway array aggregation, 195, 235
of top-k results, 226	for full cube computation, 195–199
multidimensional data mining, 11–13, 34 155–156,	minimum memory requirements, 198
179, 187, 227, 235	must-link constraints, 533, 536
data cube promotion of, 26	mutation operator, 426
dimensions, 33	mutual information, 315–316
example, 228–229	mutually exclusive rules, 358
retail industry, 610	•
multidimensional data model, 135–146, 178	N
data cube as, 136–139	naive Bayesian classification, 385
dimension table, 136	class label prediction with, 353–355
dimensions, 142–144	functioning of, 351–352
fact constellation, 141–142	nearest-neighbor clustering algorithm, 461
fact table, 136	near-match patterns/rules, 281
snowflake schema, 140–141	negative correlation, 55, 56
star schema, 139–140	negative patterns, 280, 283, 320
multidimensional databases	example, 291–292
measures of, 146	mining, 291–294
querying with starnet model, 149–150	negative transfer, 436
multidimensional histograms, 108	negative transcription
multidimensional OLAP (MOLAP), 132, 164, 179	negatively skewed data, 47
(), 102, 101, 17	

neighborhoods	null-transactions, 270, 272
density, 471	number of, 270
distance-based outlier detection, 560	problem, 292–293
k-distance, 565	numeric attributes, 43–44, 79
nested loop algorithm, 561, 562	covariance analysis, 98
networked data, 14	interval-scaled, 43, 79
networks, 592	ratio-scaled, 43-44, 79
heterogeneous, 592, 593	numeric data, dissimilarity on, 72–74
homogeneous, 592, 593	numeric prediction, 328, 385
information, 592–594	classification, 328
mining in science applications, 612–613	support vector machines (SVMs) for, 408
social, 592	numerosity reduction, 86, 100, 120
statistical modeling of, 592–594	techniques, 100
neural networks, 19, 398	toominques, 100
backpropagation, 398–408	0
as black boxes, 406	object matching, 94
for classification, 19, 398	
disadvantages, 406	objective interestingness measures, 21–22 one-class model, 571–572
fully connected, 399, 406–407	
learning, 398	one-pass cube computation, 198
multilayer feed-forward, 398–399	one-versus-all (OVA), 430
pruning, 406–407	online analytical mining (OLAM), 155, 227
1 0	online analytical processing (OLAP), 4, 33, 128, 179
rule extraction algorithms, 406, 407 sensitivity analysis, 408	
three-layer, 399	access patterns, 129
•	data contents, 128
topology definition, 400	database design, 129
two-layer, 399	dice operation, 148
neurodes, 399	drill-across operation, 148
Ng-Jordan-Weiss algorithm, 521, 522	drill-down operation, 11, 135–136, 146
no materialization, 159	drill-through operation, 148
noise filtering, 318	example operations, 147
noisy data, 89–91	functionalities of, 154
nominal attributes, 41	hybrid OLAP, 164–165, 179
concept hierarchies for, 284	indexing, 125, 160–163
correlation analysis, 95–96	in information networks, 594
dissimilarity between, 69	in knowledge discovery process, 125
example, 41	market orientation, 128
proximity measures, 68–70	multidimensional (MOLAP), 132, 164, 179
similarity computation, 70	OLTP versus, 128–129, 130
values of, 79, 288	operation integration, 125
See also attributes	operations, 146–148
nonlinear SVMs, 413–415	pivot (rotate) operation, 148
nonparametric statistical methods,	queries, 129, 130, 163–164
553–558	query processing, 125, 163–164
nonvolatile data warehouses, 127	relational OLAP, 132, 164, 165, 179
normalization, 112, 120	roll-up operation, 11, 135–136, 146
data transformation by, 113–115	sample data effectiveness, 219
by decimal scaling, 115	server architectures, 164–165
min-max, 114	servers, 132
z-score, 114–115	slice operation, 148
null rules, 92	spatial, 595
null-invariant measures, 270–271, 272	statistical databases versus, 148-149

user-control versus automation, 167	multivariate, 556
view, 129	novelty detection relationship, 545
online transaction processing (OLTP), 128	proximity-based methods, 552, 560–567, 581
access patterns, 129	semi-supervised methods, 551
customer orientation, 128	statistical methods, 552, 553–560, 581
data contents, 128	supervised methods, 549–550
database design, 129	understandability, 549
OLAP versus, 128–129, 130	univariate, 554
view, 129	unsupervised methods, 550
operational metadata, 135	outlier subgraphs, 576
OPTICS, 473–476	outliers
cluster ordering, 474–475, 477	angle-based, 20, 543, 544, 580
core-distance, 475	collective, 547–548, 581
density estimation, 477	contextual, 545–547, 573, 581
reachability-distance, 475	density-based, 564
structure, 476	distance-based, 561
terminology, 476	example, 544
See also cluster analysis; density-based methods	global, 545, 581
ordered attributes, 103	high-dimensional, modeling, 579–580
ordering	identifying, 49
class-based, 358	interpretation of, 577
dimensions, 210	local proximity-based, 564–565
rule, 357	modeling, 548
ordinal attributes, 42, 79	in small clusters, 571
	types of, 545–548, 581
dissimilarity between, 75	* *
example, 42 proximity measures, 74–75	visualization with boxplot, 555
	oversampling, 384, 386
outlier analysis, 20–21	example, 384–385
clustering-based techniques, 66	Р
example, 21	<u>-</u>
in noisy data, 90	pairwise alignment, 590
spatial, 595	pairwise comparison, 372 PAM. See Partitioning Around Medoids algorithm
outlier detection, 543–584 angle-based (ABOD), 580	parallel and distributed data-intensive mining
<u> </u>	
application-specific, 548–549	algorithms, 31
categories of, 581	parallel coordinates, 59, 62
CELL method, 562–563	parametric data reduction, 105–106
challenges, 548–549	parametric statistical methods, 553–558
clustering analysis and, 543	Pareto distribution, 592 partial distance method, 425
clustering for, 445 clustering-based methods, 552–553, 560–567	
chistering-based methods, 55%-555, 560-567	•
	partial materialization, 159–160, 179, 234
collective, 548, 575-576	partial materialization, 159–160, 179, 234 strategies, 192
collective, 548, 575–576 contextual, 546–547, 573–575	partial materialization, 159–160, 179, 234 strategies, 192 partition matrix, 538
collective, 548, 575–576 contextual, 546–547, 573–575 distance-based, 561–562	partial materialization, 159–160, 179, 234 strategies, 192 partition matrix, 538 partitioning
collective, 548, 575–576 contextual, 546–547, 573–575 distance-based, 561–562 extending, 577–578	partial materialization, 159–160, 179, 234 strategies, 192 partition matrix, 538 partitioning algorithms, 451–457
collective, 548, 575–576 contextual, 546–547, 573–575 distance-based, 561–562 extending, 577–578 global, 545	partial materialization, 159–160, 179, 234 strategies, 192 partition matrix, 538 partitioning algorithms, 451–457 in Apriori efficiency, 255–256
collective, 548, 575–576 contextual, 546–547, 573–575 distance-based, 561–562 extending, 577–578 global, 545 handling noise in, 549	partial materialization, 159–160, 179, 234 strategies, 192 partition matrix, 538 partitioning algorithms, 451–457 in Apriori efficiency, 255–256 bootstrapping, 371, 386
collective, 548, 575–576 contextual, 546–547, 573–575 distance-based, 561–562 extending, 577–578 global, 545 handling noise in, 549 in high-dimensional data, 576–580, 582	partial materialization, 159–160, 179, 234 strategies, 192 partition matrix, 538 partitioning algorithms, 451–457 in Apriori efficiency, 255–256 bootstrapping, 371, 386 criteria, 447
collective, 548, 575–576 contextual, 546–547, 573–575 distance-based, 561–562 extending, 577–578 global, 545 handling noise in, 549 in high-dimensional data, 576–580, 582 with histograms, 558–560	partial materialization, 159–160, 179, 234 strategies, 192 partition matrix, 538 partitioning algorithms, 451–457 in Apriori efficiency, 255–256 bootstrapping, 371, 386 criteria, 447 cross-validation, 370–371, 386
collective, 548, 575–576 contextual, 546–547, 573–575 distance-based, 561–562 extending, 577–578 global, 545 handling noise in, 549 in high-dimensional data, 576–580, 582 with histograms, 558–560 intrusion detection, 569–570	partial materialization, 159–160, 179, 234 strategies, 192 partition matrix, 538 partitioning algorithms, 451–457 in Apriori efficiency, 255–256 bootstrapping, 371, 386 criteria, 447 cross-validation, 370–371, 386 Gini index and, 342
collective, 548, 575–576 contextual, 546–547, 573–575 distance-based, 561–562 extending, 577–578 global, 545 handling noise in, 549 in high-dimensional data, 576–580, 582 with histograms, 558–560	partial materialization, 159–160, 179, 234 strategies, 192 partition matrix, 538 partitioning algorithms, 451–457 in Apriori efficiency, 255–256 bootstrapping, 371, 386 criteria, 447 cross-validation, 370–371, 386

recursive, 335 tuples, 334 Partitioning Around Medoids (PAM) algorithm, 455–457 partitioning methods, 448, 451–457, 491 centroid-based, 451–454 global optimality, 449 iterative relocation techniques, 448 k-means, 451–454 k-medoids, 454–457 k-medoids, 454–457 See also cluster analysis path-based similarity, 594 pattern dustering, 308–310 pattern dustering, 308–310 pattern wealuation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based clustering, 282, 516 Pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 shortcuts identification, 304 See also colosal patterns patterns actionable, 22 co-location, 319 colossal, 301–307, 320 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 expected, 22 suppressed, 309 frequent, 17 hidden meaning of, 314 interesting, 21–23, 33 metric space, 303 negatively, correlated, 292, 293 rare, 280, 291–294, 320 negatively correlated, 292, 293 rare, 280, 291–294, 320 redundancy between, 312 relative significance, 312 representative, 309 search space, 303 search space, 303 strongly negatively correlated, 292 structural, 282 type specification, 15–23 unexpected, 22 See also frequent, 282 type specification, 19–23 strongly negatively correlated, 292 structural, 282 type specification, 15–23 unexpected, 22 See also frequent, 282 percentiles, 48 perception-based sassification (PBC), 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pobl-based approach, 433 positive correlation, 55, 56 positive type data, 47 possibility theory, 428 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pobl-based approach, 433 positive correlation, 55, 56 positive type data, 47 possibility the		
tuples, 334 Partitioning Around Medoids (PAM) algorithm, 455–457 partitioning methods, 448, 451–457, 491 centroid-based, 451–454 global optimality, 449 iterative relocation techniques, 448 k-means, 451–454 k-medoids, 454–457 k-modes, 454 object-based, 454–457 See also cluster analysis path-based similarity, 594 pattern dustering, 308–310 pattern custraints, 297–300 pattern discovery, 601 pattern evaluation, 8 pattern evaluation, 8 pattern evaluation, 8 max.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 mull-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 304 See also colossal patterns pattern-guided mining, 30 patterns-guided mining, 30 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 evaluation methods, 264–271 hidden meaning of, 314 interesting, 280, 291–294, 320 negatively correlated, 292, 293 rare, 280, 291–294, 320 negatively correlated, 292, 293 rare, 280, 291–294, 320 negatively correlated, 292, 293 rare, 280, 291–294, 320 negatively correlated, 292 relative significance, 312 representative, 309 search space, 303 strongly regatively correlated, 292 structural, 282 type specification, 312 representative, 309 search space, 303 strongly regatively correlated, 292 structural, 282 type specification, 312 representative, 309 search space, 303 strongly regatively correlated, 292 structural, 282 type specification, 312 representative significance, 312 representative significance, 312 representative sig	partitioning (Continued)	expressed, 309
Partitioning Around Medoids (PAM) algorithm, 455–457 partitioning methods, 448, 451–457, 491 centroid-based, 451–454 global optimality, 449 iterative relocation techniques, 448 k-means, 451–454 k-medoids, 454–457 k-modes, 454 object-based, 454–457 See also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern dustering, 308–310 pattern constraints, 297–300 pattern evaluation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-space dassification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 316 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns sactionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 evaluation methods, 264–271 eitherided, 292, 293 rare, 280, 291–294, 320 negatively correlated, 292, 293 rare, 280, 291–294, 320 negatively correlated, 292, 293 rare, 280, 291–294, 320 negatively pertuend, 292, 293 rare, 280, 291–294, 320 redundancy between, 312 relative significance, 312 representiaed, 292 redundancy between, 312 relative significance, 312 representiaed, 39 search space, 303 strongly negatively correlated, 292 structural, 282 type specification, 292 serus requent patterns pattern space, 303 strongly negatively correlated, 292 structural, 282 type specification, 15–23 unexpected, 22 See also frequent patterns patterniters, 390 school patterns pace, 303 strongly negatively correlated, 292 structural, 282 type specification, 292 structural, 282 type specifi		•
455–457 partitioning methods, 448, 451–457, 491 centroid-based, 451–454 global optimality, 449 iterative rolocation techniques, 448 k-means, 451–454 k-medoids, 454–457 k-modes, 454 object-based, 454–457 See also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern discovery, 601 pattern outstraints, 297–300 pattern discovery, 601 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 316 Pattern-Faced clustering, 282, 516 Pattern-Faced classification, 304 See also oclossal patterns actionable, 22 co-location, 309 evaluation methods, 264–271 metric space, 306, 291–294, 320 redundancy between, 312 relative significance, 312 representative, 309 search space, 303 strongly negatively correlated, 292 structural, 282 structural, 282 structural, 282 yespecification, 15–23 unexpected, 22 See also frequent patterns pattern-ties, 266 pattern-spaced classification (PBC), 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 348–349 split screen, 349 tree comparison, 350 phylogenetic trees, 590 pivot (rotate) operation, 148 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 positive truples, 364 positively skewed data, 47 positive cyrelated, 292 strougly negatively correlated, 292 structural, 282 type specification, 15–23 unexpected, 22 See also frequent patterns pattern-trees, 264 perason's correlation coefficient, 222 percentiles, 48 perception-based classification, 590 pivot (rotate) operation, 590 pivot (rotate) operation, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 positive truples, 364 positively skewed data, 47 positive correlated, 292 structural, 282 structural, 282 percen	* '	
partitioning methods, 448, 451–457, 491 centroid-based, 451–454 global optimality, 449 iterative relocation techniques, 448 k-means, 451–454 k-medoids, 454–457 k-modes, 454 object-based, 454–457 See also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern clustering, 308–310 pattern constraints, 297–300 pattern evaluation, 8 pattern evaluation measures, 267–271 all.confdence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 redundancy between, 31		
centroid-based, 451–454 global optimality, 449 literative relocation techniques, 448 k-means, 451–454 k-medoids, 454–457 k-medoids, 454–457 See also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern clustering, 308–310 pattern discovery, 601 pattern evaluation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based clustering, 282, 516 pattern-based clustering, 287, 506 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 evaluation methods, 264–271 with naive Bayesian classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355		<u>.</u> .
global optimality, 449 iterative relocation techniques, 448 k-means, 451–457 k-modes, 454 object-based, 454–457 See also cluster analysis path-based similarity, 594 pattern constraints, 297–300 pattern constraint, 297–300 pattern evaluation, 8 pattern evaluation, 8 pattern evaluation mesures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern space pruning, 295 pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 shortcuts identification, 304 See also colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 evaluation methods, 264–271 evaluation, 312 rediative, 309 evaluation, 312 representative, 309 search spacs, 303 strongly negatively correlated, 292 structural, 282 type specification, 15–23 unexpected, 22 See also frequent patterns, 284 type specification, 15–23 unexpected, 22 See also frequent patterns, 284 pattern-trees, 264 person's correlation, 292 evaluation coefficient, 222 percentiles, 28 perception-based classification, 292 percentiles, 28 perception-based classification, 379 pistern-trees, 264 person's correlation coefficient, 292 percentiles, 28 perception-based classification, 359 pistern-tre		<u> </u>
iterative relocation techniques, 448 k-means, 451–454 k-medoisd, 454–457 k-modes, 454 object-based, 454–457 see also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern clustering, 308–310 pattern discovery, 601 pattern evaluation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max_confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core patterns, 306 shortcuts identification, 304 See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 relative significance, 312 representative, 309 search space, 303 strongly negatively correlated, 292 See also frequent patterns pattercut, 282 See also frequent patterns pattern space dlassification (PBC), 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 348–349 split screen, 349 tree comparison, 359 pivot (rotate) operation, 148 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pol-based approach, 433 positive correlation, 55, 56 positive tuples, 364 positive luples, 364 positively skewed data, 47 possibility theory, 428 posterior probability, 351 postpruning, 344–345, 346 power law distribution, 592 precision measure, 368–369 predicate sets frequent, 288–289 k, 289 requical proach, 322 constraint, 328 link, 593–594 loan payment, 608–609 evaluation methods, 264–271 with naive Bayesian classification, 353–355		
k-means, 451–454 k-medoids, 454–457 k-modose, 454 object-based, 454–457 See also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern constraints, 297–300 pattern discovery, 601 pattern evaluation, 8 pattern evaluation messures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 mul-invariant, 270–271 See also measures pattern space pruning, 295 pattern-based clustering, 282, 318 pattern-based clustering, 282, 318 pattern-based clustering, 282, 516 pattern-based clustering, 306 core pattern, 304 serats pace, 268 phylogenetic trees, 590 pivot (rotate) operation, 148 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 point queries, 216, 217, 220 positive correlation, 55, 56 positive types, 364 positively skewed data, 47 positive		
k-medoids, 454—457 k-modes, 454 object-based, 454-457 See also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern clustering, 308–310 pattern constraints, 297–300 pattern evaluation, 8 pattern evaluation, 8 pattern evaluation measures, 267–271 all_confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max_confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based clastering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 wire representative, 309 search space, 303 strongly negatively correlated, 292 structural, 282 trope search space, 303 strongly negatively correlated, 292 structural, 282 type specification, 15–23 unexpected, 22 See also frequent patterns pattern-trees, 264 Pearson's correlation coefficient, 222 percentiles, 48 perception-based classification (PBC), 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented visual proach, 607 pixel-oriented visualization, 50 phylogenetic trees, 590 pivot (rotate) operation, 148 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 poslively operation, 55, 56 positive tuples, 364 positive tuples, 36	iterative relocation techniques, 448	
k-modes, 454 object-based, 454–457 See also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern clustering, 308–310 pattern discovery, 601 pattern evaluation, 8 pattern evaluation messures, 267–271 all_confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max_confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based clustering, 282, 516 positive tuples, 364 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 serucked, 282 structural, 282 type specification, 15–23 unexpected, 22 See also frequent patterns patterneries, 264 Pearson's correlation, 5–24 percentiles, 48 perception-based classification (PBC), 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 348–349 split screen, 349 as interactive visual approach, 607 pixel-oriented approach, 348 preception-based paproach, 438 price comparison, 250 pivot (rotate) operation, 148 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 positive correlation, 55, 56 positively skewed data, 47 possibility theory, 428 posterior probability, 351 positively skewed data, 47 possibility theory, 428 posterior probability, 351 posterior probability, 351 posterior probability, 351 posterior probability, 351 postively skewed data, 47 possibility theory, 428 precicate sets fre	k-means, 451–454	relative significance, 312
object-based, 454–457 See also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern custering, 308–310 pattern constraints, 297–300 pattern onstraints, 297–300 pattern discovery, 601 pattern evaluation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based clustering, 282, 516 pattern-based clustering, 282, 516 pattern-based clustering, 282, 516 pattern-based clustering, 282, 516 pattern-based clustering, 280, 516 shortcuts identification, 304 See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 core, 304–305 distance, 309 evaluation methods, 264–271 structural, 282 type specification, 15–23 unexpected, 22 see also frequent patterns patterntrees, 264 paperspecification, 12–23 unexpected, 22 see also frequent patterns patternnteres, 264 paperspecification, 292 pattern-these classification (PBC), 348 illustrated, 349 allustrated, 349 allustrat	k-medoids, 454–457	representative, 309
See also cluster analysis path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern clustering, 308–310 pattern constraints, 297–300 pattern discovery, 601 pattern evaluation, 8 pattern evaluation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern space pruning, 295 pattern-based clustering, 282, 318 pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 merging subpatterns, 306 merging subpatterns pattern-guided mining, 30 patterns pattern-guided mining, 30 patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 winespectation, 15–23 unexpected, 22 See also frequent patterns pattern-trees, 264 Pearson's correlation coefficient, 222 percentiles, 48 perception-based classification (PBC), 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 607 pixel-oriented approach, 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 607 pixel-oriented approach, 607 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 point queries, 216, 217, 220 positive correlation, 55, 56 positive tuples, 364 positive tuple		search space, 303
path-based similarity, 594 pattern analysis, in recommender systems, 282 pattern clustering, 308–310 pattern clustering, 308–310 pattern discovery, 601 pattern evaluation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern evaluation measures, 267–271 pattern based classification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 316 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 type specification, 15–23 unexpected, 22 See also frequent patterns pattern-trees, 264 Pearson's correlation coefficient, 222 percentiles, 48 perception-based classification (PBC), 348 iillustrated, 349 as interactive visual approach, 607 pixel-oriented approach,	object-based, 454–457	strongly negatively correlated, 292
pattern analysis, in recommender systems, 282 282 See also frequent patterns pattern clustering, 308–310 pattern constraints, 297–300 pattern discovery, 601 pattern evaluation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 516 Pattern-yeusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 wienexpected, 22 See also frequent patterns patterntrees, 264 Pearson's correlation coefficient, 222 percentiles, 48 perception-based classification (PBC), 348 illustrated, 249 as interactive visual approach, 607 pixel-oriented approach, 607 pixel-oriented approach, 348–349 split screen, 349 tree comparison, 350 phylogenetic trees, 590 phylogenetic trees, 590 phylogenetic trees, 590 phylogenetic trees, 590 pivot (rotate) operation, 148 point queries, 216, 217, 220 pool-based approach, 433 point queries, 216, 217, 220 pool-based approach, 433 positive correlation, 55, 56 positive tuples, 364	See also cluster analysis	structural, 282
pattern clustering, 308–310 pattern clustering, 308–310 pattern constraints, 297–300 pattern discovery, 601 pattern discovery, 601 pattern evaluation, 8 pattern evaluation measures, 267–271 all_confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max_confidence, 268 mull-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 316 pattern-based classification, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 See also colosal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 See also frequent pattern corefiction coefficient, 222 percentiles, 48 perception-based classification (PBC), 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 607 positive tropes, 500 positive orrelation, 55, 56 positive tropes, 500 positive tuples, 64 positive tropes, 500 positive t	path-based similarity, 594	type specification, 15–23
pattern clustering, 308–310 pattern constraints, 297–300 pattern discovery, 601 pattern evaluation, 8 pattern evaluation measures, 267–271 all_confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max_confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 316 pattern-fractiented approach, 348 pattern-fractiented approach, 348 phylogenetic trees, 590 pivot (rotate) operation, 148 pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based classification, 282, 316 pattern-fractiented, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 See also colosal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 pattern-trees, 204 Pearson's correlation coefficient, 222 perception-based classification (PBC), 348 perception-based classification (PBC), 348 procreption-based classification (PBC), 348 pillustrated, 349 as interactive visual approach, 607 pixel-oriented approach,	pattern analysis, in recommender systems,	unexpected, 22
pattern constraints, 297–300 pattern discovery, 601 pattern evaluation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 shortcuts identification, 304 See also colossal patterns patterns actionable, 22 co-location, 319 colossal, 301–307, 320 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 Pearson's correlation coefficient, 222 percentiles, 48 perception-based classification (PBC), 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 607 pixel-oriented approach, 349 se interactive visual approach, 607 pixel-oriented visualaperoach, 607 pixel-oriented approach, 607 pixel-oriented visualaperoach, 607 pixel-oriented approach, 607 pixel-oriented visualaperoach, 607 pixel-oriented visualapero	282	See also frequent patterns
pattern discovery, 601 pattern evaluation, 8 pattern evaluation measures, 267–271 all_confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max_confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 304 See also clossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 percentiles, 48 perception-based classification (PBC), 348 iillustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 348—349 split screen, 349 tree comparison, 350 pixel coretation, 148 pixel-oriented visualization, 57 pixel-oriented approach, 439 pivel (rotate) operation, 148 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 positive crrelation, 55, 56 positive tuples, 364 core pattern, 304—305 positive tuples, 364 positive probability, 351 postpruning, 344–345, 346 power law distribution, 592 predicate sets frequent, 288–289 k, 289 predicates variables, 295 predication, 19 classification, 328 link, 593–594 loan payment, 608–609 evaluation methods, 264–271 with naive Bayesian classification, 353–355	pattern clustering, 308–310	pattern-trees, 264
pattern evaluation, 8 pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based classification, 282, 318 pattern-based clustering, 282, 516 pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 merging subpatterns, 306 shortcuts identification, 304 See also colossal patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 perception-based classification (PBC), 348 illustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 348–349 split screen, 349 as interactive visual approach, 607 pixel-oriented approach, 607 pixel-oriented approach, 348–349 split screen, 349 as interactive visual approach, 607 pixel-oriented approach, 348–349 split screen, 349 as interactive visual approach, 607 pixel-oriented approach, 607 pixel-oriented approach, 348–349 split screen, 349 tree comparison, 350 phylogenetic trees, 590 pivot (rotate) operation, 148 pivel-oriented visualianproach, 607 pivel-oriented approach, 348–349 split screen, 349 tree comparison, 350 phylogenetic trees, 590 pivot (rotate) operation, 148 pivel-oriented approach, 437 pivel-oriented approach, 348–349 pivel oriented approach, 348 pivel-oriented approach, 348 pivel-oriented approach, 348 pivel-oriented approach, 349 pivel oriented approach, 436 positive trees, 590 pool-based approach, 433 positive correlation, 55, 56 positive tuples, 364 positive correlation, 55, 56 positive tuples, 364 positive correlation, 55, 56 positive tuples, 364 positive correlation, 25, 56 positive tuples, 364 po	pattern constraints, 297-300	Pearson's correlation coefficient, 222
pattern evaluation measures, 267–271 all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 shortcuts identification, 304 See also colossal patterns actionable, 22 co-location, 319 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 illustrated, 349 as interactive visual approach, 607 pixel-oriented approach, 348–349 spikel-oriented approach, 348–349 spikel-oriented approach, 348–349 spikel-oriented approach, 350 phylogenetic trees, 590 phylogenetic trees, 590 pivot (rotate) operation, 148 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 point queries, 216, 217, 220 pool-based approach, 333 positive correlation, 55, 56 positive tuples, 364 positive tuples, 364 positive typles, 364 positive typles, 364 positive typles, 364 positive tuples, 364 p	pattern discovery, 601	percentiles, 48
all.confidence, 268 comparison, 269–270 cosine, 268 Kulczynski, 268 max_confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based clustering, 282, 516 pattern-based clustering, 282, 516 pattern-based clustering, 282, 516 pattern-based clustering, 282, 516 pattern-based clustering, 280, 506 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 See also colossal patterns actionable, 22 co-location, 319 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 as interactive visual approach, 607 pixel-oriented approach, 348–349 spitter-oriented approach, 348–349 spittercen, 349 tree comparison, 349 tree comparison, 350 pivel-oriented approach, 348–349 spittercen, 349 tree comparison, 350 pivel-oriented approach, 348–349 spittercen, 349 tree comparison, 350 pivel-oriented approach, 348–349 spitteres, 349 tree comparison, 350 pivel-oriented approach, 348–349 spittercen, 349 tree comparison, 350 pivel-oriented approach, 348–349 spitteres, 349 tree comparison, 350 pivel-oriented approach, 348–349 spitteres, 349 tree comparison, 350 pivel-oriented visualization, 148 pivel-oriented visualization, 148 pivel-oriented visualization, 157 pivot (rotate) operation, 148 pivel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 p	pattern evaluation, 8	perception-based classification (PBC), 348
comparison, 269–270 cosine, 268 Kulczynski, 268 max.confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 shortcuts identification, 304 See also colosal, 301–307, 320 combined significance, 312 core, 304–305 distance, 309 evaluation methods, 264–271 pixel-oriented approach, 348–349 split screen, 349 tree comparison, 350 phylogenetic trees, 590 phylogenetic	pattern evaluation measures, 267–271	illustrated, 349
cosine, 268 Kulczynski, 268 max_confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based clustering, 282, 516 pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 merging subpatterns actionable, 22 co-location, 319 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 split screen, 349 tree comparison, 350 phylogenetic trees, 590 phylogenetic trees, 590 tree comparison, 350 phylogenetic trees, 590 phylogenetic tree, 502 phylogenetic tree, 502 phylogenetic tree, 502 p	all_confidence, 268	as interactive visual approach, 607
Kulczynski, 268 max_confidence, 268 null-invariant, 270–271 See also measures pattern-based classification, 282, 318 pattern-based clustering, 282, 516 pool-based approach, 433 positive correlation, 55, 56 characteristics, 304 core pattern, 304–305 initial pool, 306 shortcuts identification, 304 See also colossal patterns actionable, 22 co-location, 319 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 tivot (rotate) operation, 148 phylogenetic trees, 590 pivot (rotate) operation, 148 specification, 57 phylogenetic trees, 590 pivot (rotate) operation, 148 specification, 57 phylogenetic trees, 590 pivot (rotate) operation, 148 specification, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 positive correlation, 55, 56 positive tuples, 364 positive orrelation, 525 point queries, 216, 217, 220 positive tuples, 364 positive tuples, 36	comparison, 269–270	pixel-oriented approach, 348-349
max.confidence, 268 null-invariant, 270–271 See also measures pattern space pruning, 295 pattern-based classification, 282, 318 pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 shortcuts identification, 304 See also colossal patterns actionable, 22 co-location, 319 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 pivot (rotate) operation, 148 pivot (rotate) operation, 157 plantant analysis tools, 153 point (queries, 216, 217, 220 point queries, 216, 217, 220 point queries, 216, 217, 220 point queries, 216, 216, 216 point queries, 216, 217, 220 point queries, 216, 216, 216 point queries, 216, 217, 220 point queries, 216, 216, 216 point queries, 216, 217, 220 point queries, 216, 217, 220 point queries, 216, 216, 216 point queries, 216, 217, 220 point queries, 216, 216, 216 point queries, 216, 216 point queries, 216, 217, 220 point queries, 216, 217, 220 point queries, 216, 217, 220 point queries, 216, 216 point queries, 216, 217, 220 point queries, 216, 216 point queries, 216, 217, 220 point queries, 216, 216 point queries, 216, 217, 220 poin	cosine, 268	split screen, 349
null-invariant, 270–271 See also measures pattern space pruning, 295 pattern-based classification, 282, 318 pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 See also colossal patterns actionable, 22 co-location, 319 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 pivot (rotate) operation, 148 pixel-oriented visualization, 57 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 point queries, 216, 217, 220 pool-based approach, 433 positive correlation, 55, 56 characteristics, 304 positive tuples, 364 posit	Kulczynski, 268	tree comparison, 350
pattern space pruning, 295 pattern-based classification, 282, 318 pattern-based clustering, 282, 516 pattern-based clustering, 282, 516 pattern-based clustering, 282, 516 pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 context modeling of, 314–315 core, 304 pattern space pruning, 295 pattern space pruning, 295 planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 point queries, 216, 217, 220 pool-based approach, 433 positive correlation, 55, 56 positive tuples, 364 positive tuples, 264 positive tu	max_confidence, 268	phylogenetic trees, 590
pattern space pruning, 295 pattern-based classification, 282, 318 pattern-based clustering, 282, 516 pattern-based clustering, 282, 516 pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 shortcuts identification, 304 pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304 patterns planning and analysis tools, 153 point queries, 216, 217, 220 pool-based approach, 433 positive correlation, 55, 56 positive tuples, 364 positive tuples, 26 positive tuples, 364 positive tuples, 28 positive tuples, 364 positive tuples, 28 positive	null-invariant, 270–271	pivot (rotate) operation, 148
pattern-based classification, 282, 318 pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 See also colossal patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 conext modeling of, 314–315 core, 309 evaluation methods, 264–271 point queries, 216, 217, 220 pool-based approach, 433 positive tuples, 364 positive tu	See also measures	pixel-oriented visualization, 57
pattern-based clustering, 282, 516 Pattern-Fusion, 302–307 characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 pool-based approach, 433 positive tuples, 364 positive t		
Pattern-Fusion, 302–307	pattern-based classification, 282, 318	point queries, 216, 217, 220
characteristics, 304 core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 309 evaluation methods, 264–271 positive tuples, 364 positive tuples, 264 positive tuples, 264 positive tuples, 264 positive tuples, 268 positive tuples, 268 positive tuples, 264 positive to a to	pattern-based clustering, 282, 516	pool-based approach, 433
core pattern, 304–305 initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 power law distribution, 592 See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 positively skewed data, 47 possibility theory, 428 posterior probability, 351 postpruning, 344–345, 346 power law distribution, 592 precision measure, 368–369 predicate sets frequent, 288–289 k, 289 predicates repeated, 288 variables, 295 prediction, 19 classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355	Pattern-Fusion, 302–307	positive correlation, 55, 56
initial pool, 306 iterative, 306 merging subpatterns, 306 shortcuts identification, 304 power law distribution, 592 See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 possibility theory, 428 possibility theory, 428 possibility theory, 428 posterior probability, 351 postpruning, 344–345, 346 power law distribution, 592 precision measure, 368–369 predicate sets frequent, 288–289 k, 289 predicates repeated, 288 variables, 295 prediction, 19 classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355	characteristics, 304	positive tuples, 364
iterative, 306 merging subpatterns, 306 shortcuts identification, 304 shortcuts identification, 304 power law distribution, 592 See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 posterior probability, 351 postpruning, 344–345, 346 power law distribution, 592 precision measure, 368–369 predicate sets frequent, 288–289 k, 289 predicates repeated, 288 variables, 295 prediction, 19 classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355	•	• •
merging subpatterns, 306 shortcuts identification, 304 See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 prower law distribution, 592 precision measure, 368–369 predicate sets frequent, 288–289 k, 289 predicates repeated, 288 variables, 295 prediction, 19 classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355	initial pool, 306	
shortcuts identification, 304 See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 procession measure, 368–369 predicate sets frequent, 288–289 k, 289 predicates repeated, 288 variables, 295 prediction, 19 classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355		
See also colossal patterns pattern-guided mining, 30 patterns actionable, 22 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 precision measure, 368–369 predicate sets frequent, 288–289 k, 289 predicates repeated, 288 variables, 295 prediction, 19 classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355	merging subpatterns, 306	postpruning, 344–345, 346
pattern-guided mining, 30 predicate sets frequent, 288–289 k, 289 co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 predicates repeated, 288 variables, 295 prediction, 19 classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355		
patterns frequent, $288-289$ k , 289 $co-location, 319 predicates colossal, 301-307, 320 repeated, 288 combined significance, 312 variables, 295 constraint-based generation, 296-301 prediction, 19 context modeling of, 314-315 classification, 328 core, 304-305 link, 593-594 loan payment, 608-609 evaluation methods, 264-271 with naive Bayesian classification, 353-355$	<u>*</u>	1
actionable, 22 k, 289 co-location, 319 predicates colossal, 301–307, 320 repeated, 288 combined significance, 312 variables, 295 constraint-based generation, 296–301 prediction, 19 context modeling of, 314–315 classification, 328 core, 304–305 link, 593–594 distance, 309 loan payment, 608–609 evaluation methods, 264–271 with naive Bayesian classification, 353–355	pattern-guided mining, 30	predicate sets
co-location, 319 colossal, 301–307, 320 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 predicates repeated, 288 variables, 295 prediction, 19 classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355	•	<u> </u>
colossal, 301–307, 320 repeated, 288 combined significance, 312 constraint-based generation, 296–301 context modeling of, 314–315 core, 304–305 distance, 309 evaluation methods, 264–271 repeated, 288 variables, 295 prediction, 19 classification, 328 link, 593–594 loan payment, 608–609 with naive Bayesian classification, 353–355	actionable, 22	
combined significance, 312 variables, 295 constraint-based generation, 296–301 prediction, 19 context modeling of, 314–315 classification, 328 core, 304–305 link, 593–594 distance, 309 loan payment, 608–609 evaluation methods, 264–271 with naive Bayesian classification, 353–355	co-location, 319	predicates
constraint-based generation, 296–301 prediction, 19 context modeling of, 314–315 classification, 328 core, 304–305 link, 593–594 distance, 309 loan payment, 608–609 evaluation methods, 264–271 with naive Bayesian classification, 353–355		
context modeling of, 314–315 classification, 328 link, 593–594 link, 593–594 loan payment, 608–609 evaluation methods, 264–271 with naive Bayesian classification, 353–355		
core, 304–305 link, 593–594 loan payment, 608–609 evaluation methods, 264–271 with naive Bayesian classification, 353–355		
distance, 309 loan payment, 608–609 evaluation methods, 264–271 with naive Bayesian classification, 353–355	5	
evaluation methods, 264–271 with naive Bayesian classification, 353–355		
•		
expected, 22 numeric, 328, 385		•
	expected, 22	numeric, 328, 385

prediction cubes, 227-230, 235	for nominal attributes, 68-70
example, 228–229	for ordinal attributes, 74-75
Probability-Based Ensemble, 229–230	proximity-based methods, 552, 560-567, 581
predictive analysis, 18–19	density-based, 564–567
predictive mining tasks, 15	distance-based, 561-562
predictive statistics, 24	effectiveness, 552
predictors, 328	example, 552
prepruning, 344, 346	grid-based, 562–564
prime relations	types of, 552, 560
contrasting classes, 175, 177	See also outlier detection
deriving, 174	pruning
target classes, 175, 177	cost complexity algorithm, 345
principle components analysis (PCA), 100, 102–103	data space, 300-301
application of, 103	decision trees, 331, 344–347
correlation-based clustering with, 511	in k-nearest neighbor classification, 425
illustrated, 103	network, 406–407
in lower-dimensional space extraction, 578	pattern space, 295, 297–300
procedure, 102–103	pessimistic, 345
prior probability, 351	postpruning, 344–345, 346
privacy-preserving data mining, 33, 621, 626	prepruning, 344, 346
distributed, 622	rule, 363
k-anonymity method, 621–622	search space, 263, 301
<i>l</i> -diversity method, 622	sets, 345
as mining trend, 624–625	shared dimensions, 205
randomization methods, 621	sub-itemset, 263
results effectiveness, downgrading, 622	pyramid algorithm, 101
probabilistic clusters, 502–503	pyranna aigoriann, 101
probabilistic hierarchical clustering, 467–470	0
agglomerative clustering framework, 467,	quality control, 600
469	± .
algorithm, 470	quantile plots, 51–52
	quantile-quantile plots, 52
drawbacks of using, 469–470	example, 53–54
generative model, 467–469	illustrated, 53
interpretability, 469	See also graphic displays
understanding, 469	quantitative association rules, 281, 283, 288,
See also hierarchical methods	320
probabilistic model-based clustering, 497–508, 538	clustering-based mining, 290–291
expectation-maximization algorithm, 505–508	data cube-based mining, 289–290
fuzzy clusters and, 499–501	exceptional behavior disclosure, 291
product reviews example, 498	mining, 289
user search intent example, 498	quartiles, 48
See also cluster analysis	first, 49
probability	third, 49
estimation techniques, 355	queries, 10
posterior, 351	intercuboid expansion, 223–225
prior, 351	intracuboid expansion, 221–223
probability and statistical theory, 601	language, 10
Probability-Based Ensemble (PBE), 229–230	OLAP, 129, 130
PROCLUS, 511	point, 216, 217, 220
profiles, 614	processing, 163-164, 218-227
proximity measures, 67	range, 220
for binary attributes, 70–72	relational operations, 10

queries (Continued)	redundancy-aware top-k patterns, 281, 311, 320
subcube, 216, 217–218	extracting, 310–312
top-k, 225–227	finding, 312
query languages, 31	strategy comparison, 311-312
query models, 149-150	trade-offs, 312
query-driven approach, 128	refresh, in back-end tools/utilities, 134
querying function, 433	regression, 19, 90
	coefficients, 105-106
D	example, 19
R	linear, 90, 105–106
rag bag criterion, 488	in statistical data mining, 599
RainForest, 385	regression analysis, 19, 328
random forests, 382–383	in time-series data, 587–588
random sampling, 370, 386	relational databases, 9
random subsampling, 370	components of, 9
random walk, 526	mining, 10
similarity based on, 527	relational schema for, 10
randomization methods, 621	relational OLAP (ROLAP), 132, 164, 165, 179
range, 48	relative significance, 312
interquartile, 49	relevance analysis, 19
range queries, 220	repetition, 346
ranking	replication, 347
cubes, 225–227, 235	illustrated, 346
dimensions, 225	representative patterns, 309
function, 225	retail industry, 609-611
heterogeneous networks, 593	RIPPER, 359, 363
rare patterns, 280, 283, 320	robustness, classification, 369
example, 291–292	ROC curves, 374, 386
mining, 291–294	classification models, 377
ratio-scaled attributes, 43–44, 79	classifier comparison with, 373-377
reachability density, 566	illustrated, 376, 377
reachability distance, 565	plotting, 375
recall measure, 368–369	roll-up operation, 11, 146
recognition rate, 366–367	rough set approach, 428-429, 437
recommender systems, 282, 615	row enumeration, 302
advantages, 616	rule ordering, 357
biclustering for, 514–515	rule pruning, 363
challenges, 617	rule quality measures, 361-363
collaborative, 610, 615, 616, 617, 618	rule-based classification, 355-363, 386
content-based approach, 615, 616	IF-THEN rules, 355–357
data mining and, 615–618	rule extraction, 357–359
error types, 617–618	rule induction, 359–363
frequent pattern mining for, 319	rule pruning, 363
hybrid approaches, 618	rule quality measures, 361–363
intelligent query answering, 618	rules for constraints, 294
memory-based methods, 617	
use scenarios, 616	c
recursive partitioning, 335	S
reduced support, 285, 286	sales campaign analysis, 610
redundancy	samples, 218
in data integration, 94	cluster, 108–109
detection by correlations analysis, 94–98	data, 219

. 1 1 100	. 1: 6 215 216
simple random, 108	mutual information, 315–316
stratified, 109–110	task definition, 315
sampling	Semantic Web, 597 semi-offline materialization, 226
in Apriori efficiency, 256 as data redundancy technique, 108–110	semi-supervised classification, 432–433,
methods, 108–110	437
oversampling, 384–385	alternative approaches, 433
random, 386	cotraining, 432–433
with replacement, 380–381	self-training, 432
uncertainty, 433	semi-supervised learning, 25
undersampling, 384–385	outlier detection by, 572
sampling cubes, 218–220, 235	semi-supervised outlier detection, 551
confidence interval, 219–220	sensitivity analysis, 408
framework, 219–220	sensitivity measure, 367
query expansion with, 221	sentiment classification, 434
SAS Enterprise Miner, 603, 604	sequence data analysis, 319
scalability	sequences, 586
classification, 369	alignment, 590
cluster analysis, 446	biological, 586, 590–591
cluster methods, 445	classification of, 589–590
data mining algorithms, 31	similarity searches, 587
decision tree induction and, 347–348	symbolic, 586, 588-590
dimensionality and, 577	time-series, 586, 587–588
k-means, 454	sequential covering algorithm, 359
scalable computation, 319	general-to-specific search, 360
SCAN. See Structural Clustering Algorithm for	greedy search, 361
Networks	illustrated, 359
core vertex, 531	rule induction with, 359-361
illustrated, 532	sequential pattern mining, 589
scatter plots, 54	constraint-based, 589
2-D data set visualization with, 59	in symbolic sequences, 588-589
3-D data set visualization with, 60	shapelets method, 590
correlations between attributes, 54-56	shared dimensions, 204
illustrated, 55	pruning, 205
matrix, 56, 59	shared-sorts, 193
schemas	shared-partitions, 193
integration, 94	shell cubes, 160
snowflake, 140-141	shell fragments, 192, 235
star, 139–140	approach, 211–212
science applications, 611–613	computation algorithm, 212, 213
search engines, 28	computation example, 214–215
search space pruning, 263, 301	precomputing, 210
second guess heuristic, 369	shrinking diameter, 592
selection dimensions, 225	sigmoid function, 402
self-training, 432	signature-based detection, 614
semantic annotations	significance levels, 373
applications, 317, 313, 320-321	significance measure, 312
with context modeling, 316	significance tests, 372–373, 386
from DBLP data set, 316-317	silhouette coefficient, 489-490
effectiveness, 317	similarity
example, 314–315	asymmetric binary, 71
of frequent patterns, 313–317	cosine, 77–78

similarity (Continued)	sparse data cubes, 190
measuring, 65-78, 79	sparsest cuts, 539
nominal attributes, 70	sparsity coefficient, 579
similarity measures, 447–448, 525–528	spatial data, 14
constraints on, 533	spatial data mining, 595
geodesic distance, 525–526	spatiotemporal data analysis, 319
SimRank, 526–528	spatiotemporal data mining, 595, 623–624
similarity searches, 587	specialized SQL servers, 165
in information networks, 594	specificity measure, 367
in multimedia data mining, 596	spectral clustering, 520–522, 539
simple random sample with replacement	effectiveness, 522
(SRSWR), 108	framework, 521
simple random sample without replacement	steps, 520–522
(SRSWOR), 108	speech recognition, 430
SimRank, 526–528, 539	speed, classification, 369
computation, 527–528	spiral method, 152
random walk, 526–528	split-point, 333, 340, 342
structural context, 528	splitting attributes, 333
simultaneous aggregation, 195	splitting criterion, 333, 342
single-dimensional association rules, 17, 287	splitting rules. See attribute selection measures
single-linkage algorithm, 460, 461	splitting subset, 333
singular value decomposition (SVD), 587	SQL, as relational query language, 10
skewed data	square-error function, 454
balanced, 271	squashing function, 403
negatively, 47	standard deviation, 51
positively, 47	example, 51
wavelet transforms on, 102	function of, 50
slice operation, 148	star schema, 139
small-world phenomenon, 592	example, 139–140
smoothing, 112	illustrated, 140
by bin boundaries, 89	snowflake schema versus, 140
by bin means, 89	Star-Cubing, 204–210, 235
by bin medians, 89	algorithm illustration, 209
for data discretization, 90	bottom-up computation, 205
snowflake schema, 140	example, 207
example, 141	for full cube computation, 210
illustrated, 141	ordering of dimensions and, 210
star schema versus, 140	performance, 210
social networks, 524–525, 526–528	shared dimensions, 204–205
densification power law, 592	starnet query model, 149
evolution of, 594	example, 149–150
mining, 623	star-nodes, 205
small-world phenomenon, 592	star-trees, 205
See also networks	compressed base table, 207
social science/social studies data mining,	construction, 205
613	statistical data mining, 598–600
soft clustering, 501	analysis of variance, 600
soft constraints, 534, 539	discriminant analysis, 600
example, 534	factor analysis, 600
handling, 536–537	generalized linear models, 599–600
space-filling curve, 58	mixed-effect models, 600
sparse data, 102	quality control, 600

regression, 599	subcube queries, 216, 217–218
survival analysis, 600	sub-itemset pruning, 263
statistical databases (SDBs), 148	subjective interestingness measures, 22
OLAP systems versus, 148–149	subject-oriented data warehouses, 126
statistical descriptions, 24, 79	subsequence, 589
graphic displays, 44–45, 51–56	matching, 587
measuring the dispersion, 48–51	subset checking, 263–264
statistical hypothesis test, 24	subset testing, 250
statistical models, 23–24	subspace clustering, 448
of networks, 592–594	frequent patterns for, 318–319
statistical outlier detection methods, 552, 553–560,	subspace clustering methods, 509, 510–511,
581	538
computational cost of, 560	biclustering, 511
for data analysis, 625	correlation-based, 511
effectiveness, 552	examples, 538
example, 552	subspace search methods, 510–511
nonparametric, 553, 558–560	subspaces
parametric, 553–558	bottom-up search, 510–511
See also outlier detection	cube space, 228–229
statistical theory, in exceptional behavior disclosure,	outliers in, 578–579
291	top-down search, 511
statistics, 23	substitution matrices, 590
inferential, 24	substructures, 243
predictive, 24	sum of the squared error (SSE), 501
StatSoft, 602, 603	summary fact tables, 165
stepwise backward elimination, 105	superset checking, 263
stepwise forward selection, 105	supervised learning, 24, 330
stick figure visualization, 61–63	supervised outlier detection, 549-550
STING, 479–481	challenges, 550
advantages, 480–481	support, 21
as density-based clustering method, 480	association rule, 21
hierarchical structure, 479, 480	group-based, 286
multiresolution approach, 481	reduced, 285, 286
See also cluster analysis; grid-based methods	uniform, 285–286
stratified cross-validation, 371	support, rule, 245, 246
stratified samples, 109–110	support vector machines (SVMs), 393, 408-415,
stream data, 598, 624	437
strong association rules, 272	interest in, 408
interestingness and, 264–265	maximum marginal hyperplane, 409, 412
misleading, 265	nonlinear, 413–415
Structural Clustering Algorithm for Networks	for numeric prediction, 408
(SCAN), 531–532	with sigmoid kernel, 415
structural context-based similarity, 526	support vectors, 411
structural data analysis, 319	for test tuples, 412-413
structural patterns, 282	training/testing speed improvement, 415
structure similarity search, 592	support vectors, 411, 437
structures	illustrated, 411
as contexts, 575	SVM finding, 412
discovery of, 318	supremum distance, 73–74
indexing, 319	surface web, 597
substructures, 243	survival analysis, 600
Student's t-test, 372	SVMs. See support vector machines

symbolic sequences, 586, 588	time-variant data warehouses, 127
applications, 589	top-down design approach, 133, 151
sequential pattern mining in, 588-589	top-down subspace search, 511
symmetric binary dissimilarity, 70	top-down view, 151
synchronous generalization, 175	topic model, 26-27
_	top-k patterns/rules, 281
Т	top-k queries, 225
tables, 9	example, 225–226
attributes, 9	ranking cubes to answer, 226-227
contingency, 95	results, 225
dimension, 136	user-specified preference components,
fact, 165	225
tuples, 9	top-k strategies
tag clouds, 64, 66	comparison illustration, 311
Tanimoto coefficient, 78	summarized pattern, 311
target classes, 15, 180	traditional, 311
initial working relations, 177	TrAdaBoost, 436
prime relation, 175, 177	training
targeted marketing, 609	Bayesian belief networks, 396-397
taxonomy formation, 20	data, 18
technologies, 23-27, 33, 34	sets, 328
telecommunications industry, 611	tuples, 332–333
temporal data, 14	transaction reduction, 255
term-frequency vectors, 77	transactional databases, 13
cosine similarity between, 78	example, 13-14
sparse, 77	transactions, components of, 13
table, 77	transfer learning, 430, 435, 434–436, 438
terminating conditions, 404	applications, 435
test sets, 330	approaches to, 436
test tuples, 330	heterogeneous, 436
text data, 14	negative transfer and, 436
text mining, 596-597, 624	target task, 435
theoretical foundations, 600-601, 625	traditional learning versus, 435
three-layer neural networks, 399	treemaps, 63, 65
threshold-moving approach, 385	trend analysis
tilted time windows, 598	spatial, 595
timeliness, data, 85	in time-series data, 588
time-series data, 586, 587	for time-series forecasting, 588
cyclic movements, 588	trends, data mining, 622-625, 626
discretization and, 590	triangle inequality, 73
illustrated, 588	trimmed mean, 46
random movements, 588	trimodal, 47
regression analysis, 587–588	true negatives, 365
seasonal variations, 588	true positives, 365
shapelets method, 590	<i>t</i> -test, 372
subsequence matching, 587	tuples, 9
transformation into aggregate approximations,	duplication, 98-99
587	negative, 364
trend analysis, 588	partitioning, 334, 337
trend or long-term movements, 588	positive, 364
time-series data analysis, 319	training, 332–333
time-series forecasting, 588	two sample <i>t</i> -test, 373

two-layer neural networks, 399	frequent itemset mining with, 259-262,
two-level hash index structure, 264	272
	video data analysis, 319
U	virtual warehouses, 133
ubiquitous data mining, 618-620, 625	visibility graphs, 537
uncertainty sampling, 433	visible points, 537
undersampling, 384, 386	visual data mining, 602-604, 625
example, 384–385	data mining process visualization, 603
uniform support, 285–286	data mining result visualization, 603
unimodal, 47	data visualization, 602-603
unique rules, 92	as discipline integration, 602
univariate distribution, 40	illustrations, 604–607
univariate Gaussian mixture model, 504	interactive, 604, 607
univariate outlier detection, 554-555	as mining trend, 624
unordered attributes, 103	Viterbi algorithm, 591
unordered rules, 358	
unsupervised learning, 25, 330, 445, 490	W
clustering as, 25, 445, 490	warehouse database servers, 131
example, 25	warehouse refresh software, 151
supervised learning versus, 330	waterfall method, 152
unsupervised outlier detection, 550	wavelet coefficients, 100
assumption, 550	wavelet transforms, 99, 100-102
clustering methods acting as, 551	discrete (DWT), 100–102
upper approximation, 427	for multidimensional data, 102
user interaction, 30–31	on sparse and skewed data, 102
	web directories, 28
V	web mining, 597, 624
values	content, 597
exception, 234	as mining trend, 624
expected, 97, 234	structure, 597–598
missing, 88–89	usage, 598
residual, 234	web search engines, 28, 523–524
in rules or patterns, 281	web-document classification, 435
variables	weight arithmetic mean, 46
grouping, 231	weighted Euclidean distance, 74
predicate, 295	Wikipedia, 597
predictor, 105	WordNet, 597
response, 105	working relations, 172
variance, 51, 98	initial, 168, 169
example, 51	World Wide Web (WWW), 1–2, 4, 14
function of, 50	Worlds-with-Worlds, 63, 64
variant graph patterns, 591	wrappers, 127
version space, 433	7
vertical data format, 260	Z
example, 260–262	z-score normalization, 114–115