Dokumentace úlohy XTD: XML2DDL v Pythonu do IPP 2012/2013

Jméno a příjmení: Kateřina Zaklová

Login: xzaklo00

1 Zadání

Úkolem bylo vytvořit skript v jazyce Python, který na základě vstupního XML souboru vytvoří sadu SQL příkazů pro vkládání tabulek do databáze. Program obsahuje několik podprogramů a používá dostupné knihovny argparse a XML.dom.minidom.

2 Implementace

Celý program je rozdělený do menších celků, které budou popsány níže.

2.1 Zpracování parametrů

Zpracování argumentů příkazové řádky zajišťuje funkce parseArgs() za pomoci knihovny argparse. Ve funkci jsou rovněž ošetřeny všechny chybové stavy, které mohou při zadávání argumentů nastat.

2.2 Práce se soubory

Manipulace se vstupem a výstupem je zajištěna přímo ve funkci main(), zároveň bylo třeba ošetřit práci s případným vstupním souborem pro rozšíření, to se děje ve funkci validation(), která bude rozebrána dále.

2.3 Zpracování XML

Zpracování vstupu probíhá ve funkci parse_xml() prostřednictvím knihovny XML.dom.minidom. Ta prochází vstup po jednotlivých uzlech a ukládá získanou strukturu elementů, podelementů a atributů do slovníků all_tables a all_attrs. V prvním zmíněném jsou zaznamenány názvy tabulek a v nich počty stejnojmenných podelementů. Ve druhém slovníku jsou uloženy atributy a textové podelementy včetně svých datových typů. V případě, že je zadán přepínač -a, do slovníku all_attrs ukládáme pouze textové podelementy a jejich datové typy a zpracování atributů ignorujeme.

2.4 Přepínač –etc

Pokud je zadán přepínač --etc=n, hned po vytvoření struktury vstupních dat dochází k volání funkce $my_etc()$. Tato funkce má za úkol kontrolovat, zda číslo zadané u parametru je nižší než počet podelementů se stejným jménem ve struktuře. Pokud se tak stane, musí dojít k záměně cizího klíče - tedy, pokud bylo v tabulce A několik odkazů (více, než je zadáno parametrem --etc=n) do tabulky B, nyní bude v tabulce B 1 odkaz do tabulky A. Přepínač --etc=n nesmí být zadán zároveň s přepínačem -b, neboť -b z více podelementů stejného názvu vytváří pouze 1 sloupec tabulky.

2.5 Kontrola názvů

Kontrolu konfliktů v názvech sloupců tabulky zajištuje funkce conflict(). Kontroluje konflikty primárních klíčů, cizích klíčů a atributů. Pokud je v tabulce více stejnojmenných podelementů a není zadán přepínač -b, ještě před kontrolou data projdou funkcí set_counter(), která tyto podelementy očísluje.

2.6 Vztahy mezi tabulkami

Generování vztahů mezi jednotlivými tabulkami obstarává funkce <code>generate_rel()</code>. Tato funkce nejdříve uloží všechny vztahy zjištěné z cizích klíčů do pomocného slovníku <code>tables_g</code> a následně vyhledává vztahy se všemi ostatními tabulkami. Vztahy mezi tabulkami jsou tranzitivní a symetrické, tedy pokud

jsou propojeny tabulky A a B i tabulky B a C, existuje vztah i mezi tabulkami A a C. V případě, že mezi A a B je vztah 1:N a mezi B a C totéž, platí stejný vztah i pro A a C. To stejné platí pro příklad se vztahem N:1. Každá tabulka má relaci sama na sebe s kardinalitou 1:1. Všechny ostatní případy mají kardinalitu N:M. Podle těchto pravidel se vytvoří množina vztahů (pomocí funkce return_rel()), tisk těchto výsledků pak zajišťuje funkce print_rel().

2.7 Výstup

Tisk výsledných tabulek na výstup je zajištěn funkcí print_table(). Data jsou ve struktuře již připravená přímo pro tisk, veškeré úpravy a kontroly se provádí v jiných funkcích před voláním tisku.

2.8 Rozšíření

Součástí programu je rovněž implementace rozšíření VAL. Jedná se o validaci, zda můžeme do již vytvořené struktury tabulek vložit další data zadaná parametrem --isvalid=filename. Ověření probíhá ve funkci validation(). Nejdříve dojde k otevření souboru a zpracování vstupu funkcí parse_xml(). Následně jsou data upravena podle zadaných přepínačů, a nakonec funkce porovná, zda je možné přidat elementy a atributy do již stávající struktury dat. Pokud je to možné, data jsou přidána, v opačném případě program končí s chybovým kódem.

3 Závěr

Skript byl řádně otestován sadou testů přiloženou k zadání projektu a několika vlastními testy. K porovnání výstupů přepínače –g s referenčními výstupy byl použit program JExamXML. Testování proběhlo na operačním systému Linux Ubuntu 10.04 a na školním serveru Merlin s operačním systémem CentOS. Všechny tyto testy dopadly úspěšně.