Multivariable Calculus Reference

Sidharth Baskaran

January 8, 2021

Table of Contents

1	Paths whose image curve is a circle	2
	1.1 Unit Circle	2
	1.2 Observations	2
2	Paths whose image is a line or line segment in the plane	
	2.1 Line Parametrics	2
	2.2 General Forms	3
3	Paths whose image curve is a line in R3	3
	3.1 R3 parameterization	3

1 Paths whose image curve is a circle

1.1 Unit Circle

Unit circle is set of points in \mathbb{R}^2 defined as $C = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$. Ellipse is $C = \{(x,y) \in \mathbb{R}^2 | \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\}$ Has standard parameterization of $\vec{c}(t) = (\cos(t), \sin(t))$.

Properties

- Image of \vec{c} is a closed curve (has no endpoints, plane is divided into ≥ 2 disjoint regions)
- Image of \vec{c} is a simple curve; no self-intersection
- $\vec{c}(t)$ is an **injective path**; path is considered injective if $\vec{c}(t_1) = \vec{c}(t_2)$, which implies that $t_1 = t_2$ where these are on the open interval (a, b) even if a = b
- Orientation of \vec{c} is counter-clockwise in traversal

1.2 Observations

$$\vec{p}(t) = (a\cos(\pm nt) + x_0, b\sin(\pm nt) + y_0)$$

If -t for t, orientation is CW, CCW is t. If a = b, then curve is a circle of radius a or b, else an ellipse with horizontal and vertical radii. x_0 and y_0 simply shift the center coordinate. $n > 0 \in \mathbb{R}$ determines how many times the circle is traversed given $t \in [0, 2\pi]$, for example.

2 Paths whose image is a line or line segment in the plane

2.1 Line Parametrics

A line is a 1D subspace of \mathbb{R}^2 , so $L = \{t\vec{m}|t \in \mathbb{R}\}$ for $\vec{m} \in \mathbb{R}^2$. $\vec{m} = \begin{bmatrix} m_x \\ m_y \end{bmatrix}$ is the **slope vector**. Path given by image of L:

$$\vec{c}(t) = (m_x t, m_y t), t \in \mathbb{R}$$

Can represent $\vec{c}(t) = t\vec{m}$ as well.

Lines Main Ideas

- Image of a line is a curve (e.g. y = x represents image curve of $\vec{c}(t) = (t, t)$)
- Lines can have nonzero intercepts, so $\vec{c}(t) = t\vec{m}$ represents y = 2x + 1. Line that has intercept vector $P_0 = (x_0, y_0) \parallel \vec{m} = (m_x, m_y)$ can be expressed as:

$$\vec{c}(t) = (x_0 + tm_x, y_0 + m_y t) = \vec{P_0} + t\vec{m}$$

Note endpoint of $\vec{c}(t)$ is on image line (curve).

2.2 General Forms

2 parametric lines **collide** if they intersect and the point of intersection corresponds to the same t in both curves. If you set the parameter vector coordinates equal to each other and solve for t, a solution indicates they collide. Intersection is found by **eliminating** the parameter (solve for t in terms of either x or y and plug into the other).

General form of parameterized curve can be expressed as the following:

$$\vec{c}(t) = (\frac{m_x}{\Delta t}(t-a) + x_0, \frac{m_y}{\Delta t}(t-a) + y_0)$$

where Δt is the domain interval over [a, b] and (x_0, y_0) represents the desired **starting coordinate**. This is important as when going in reverse, other coordinate can be used and slope might be negative. a is used in (t - a) because everything is conventionally done with respect to starting coordinate.

3 Paths whose image curve is a line in R3

3.1 R3 parameterization

If \vec{m} is a nonzero vector along L through origin in \mathbb{R}^3 , then $L = \{t\vec{m}|t \in \mathbb{R}\}$; follows that $\vec{m} = (m_x, m_y, m_z)$, the slope or direction vector of the line. The basic parameterization is:

$$\vec{c}(t) = (m_x t, m_y t, m_z t)$$

Basis vectors in \mathbb{R}^3 are $\vec{i}, \vec{j}, \vec{k}$. Rewriting parameterization:

$$\vec{c}(t) = (x_0 + m_x t)\vec{i} + (y_0 + m_y t)\vec{j} + (z_0 + m_z t)\vec{k}$$

2 lines $\vec{c}_1(t) = P_0 + \vec{m}_1 t$ and $\vec{c}_2(t) = Q_0 + \vec{m}_2 t$ are parallel if direction vectors are parallel $(\vec{m}_1 = k\vec{m}_2)$. Collisions still exist. If neither parallel nor intersecting, considered as skew.

To determine skew, parallel, or coincide, use parameters s,t for each line and solve SOE. If same slope, rule out skew clearly, then check if $s,t \in \mathbb{R}$: if not, then parallel, if so, then they coincide. If intersecting and want to check if collide, some t must satisfy all relations.