Results

Descriptives

Descriptives

	Training	Dance
N	200	200
Missing	0	0
Mean	0.810	0.380
Median	1.00	0.00
Standard deviation	0.393	0.487
Minimum	0	0
Maximum	1	1

Descriptives

Descriptives

	Training	Dance
N	200	200
Missing	0	0

Plots

Training

Dance

Single Variable

Welcome to Statkat! This tool will help you to find an appropriate statistical method given the measurement level of your data. Make sure you have correctly defined the measurement levels of your variables on the Data tab. You can change the measurement level of a variable via the Setup button on the Data tab, or by double clicking on a column header of interest. To get started, drop a variable in the white box below Variable. Our tool will then come up with a statistical method that may be appropriate for your data! Note: Our advice is based on the measurement level of your data. There can be details related to your data, task, or assignment that may render the advice moot. Always check the assumptions made by the statistical method before interpreting the results. We always try to come up with the least complicated method that might be applicable given your data. Keep in mind that there may be other, more advanced, methods that might be applicable as well.

Scatter Plot

Repeated Measurements

Welcome to Statkat! This tool will help you to find an appropriate statistical method given the measurement level of your data. Make sure you have correctly defined the measurement levels of your variables on the Data tab. You can change the measurement level of a variable via the Setup button on the Data tab, or by double clicking on a column header of interest. You have selected the Repeated Measurements option. This is the place to be if you are interested in differences between related variables. To get started, drop two or more related variables in the white box below Related Variables. Our tool will then come up with a statistical method that may be appropriate for your data! Note: Our advice is based on the measurement level of your data and on the number of related variables entered. There can be details related to your data, task, or assignment that may render the advice moot. Always check the assumptions made by the statistical method before interpreting the results. We always try to come up with the least complicated method that might be applicable given your data. Keep in mind that there may be other, more advanced, methods that might be applicable as well.

Scatter Plot

Relationships, Prediction, and Group Comparisons

You have entered a dichotomous variable for Variable 1 / Dependent Variable and a dichotomous variable for Variable 2 / Independent Variables. Hence, the <u>chi-squared test of association</u> seems to be a good option for you! In order to run this test in jamovi, go to: Frequencies > Independent Samples - χ^2 test of association

 Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns

Click on the link to learn more about this test! Note: since your categorical variables each consist of only two groups, the p value resulting from the chi-squared test is equivalent to the (two sided) p value that would have resulted form the z test for the difference between two proportions.

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Proportion Test (N Outcomes)

Proportions - Training

Level		Count	Proportion
Food as Reward	Observed	38	0.190
Affection as Reward	Expected Observed	100 162	0.500 0.810
	Expected	100	0.500

χ^2	Goodness	of	Fit

X ²	df	р
76.9	1	<.001

Contingency Tables

Contingency Tables

		Dance		
Training		No	Yes	Total
Food as Reward	Observed	10	28	38
	Expected	23.6	14.4	38.0
Affection as Reward	Observed	114	48	162
	Expected	100.4	61.6	162.0
Total	Observed	124	76	200
	Expected	124.0	76.0	200.0

χ² Tests

	Value	df	р
χ²	25.4	1	<.001
Ν	200		

Nominal

	Value
Phi-coefficient	0.356
Cramer's V	0.356

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).