A Universal Turing Machine

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

· Reprogrammable machine

· Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Transition:
$$\delta(q_1,a)=(q_2,b,L)$$
 Encoding: 10101101101 separator

Machine Encoding

Transitions:

$$\delta(q_1, a) = (q_2, b, L)$$
 $\delta(q_2, b) = (q_3, c, R)$

Encoding:

10101101101 00 1101101110111011

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine $\,M\,$ as a binary string of 0's and 1's

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is the binary encoding of a Turing Machine

Language of Turing Machines

```
(Turing Machine 1)
L = \{ 010100101,
                           (Turing Machine 2)
     00100100101111,
     111010011110010101,
     ..... }
```

Countable Sets

Infinite sets are either:

Countable

or

Uncountable

Countable set:

There is a one to one correspondence between elements of the set and positive integers

Example: The set of even integers is countable

2n corresponds to n+1

Example: The set of rational numbers is countable

Rational numbers:
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{7}{8}$, ...

Naïve Proof

$$\frac{1}{1}$$
, $\frac{1}{2}$, $\frac{1}{3}$, ...

Correspondence:

Positive integers:

Doesn't work:

we will never count
$$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$$
 numbers with nominator 2: $\frac{1}{1}, \frac{2}{2}, \frac{3}{3}, \dots$

$$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$$

Better Approach

$$\frac{1}{1} \qquad \frac{1}{2} \qquad \frac{1}{3} \qquad \frac{1}{4} \qquad \cdots$$

$$\frac{2}{1}$$
 $\frac{2}{2}$ $\frac{3}{3}$...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \longrightarrow \frac{1}{2} \qquad \frac{1}{3} \qquad \frac{1}{4} \qquad \cdots$$

$$\frac{2}{1} \qquad \frac{2}{2} \qquad \frac{2}{3} \qquad \cdots$$

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

1	1	1	1	
$\overline{1}$	$\sqrt{2}$	3	$\overline{4}$	• • •
2	2	2		
1	2	3	•	

3	3	
		• • •
1	2	

$$\frac{4}{1}$$
 ...

3	3	
		• • •
1	2	

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

Rational Numbers:

 $\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \dots$

Correspondence:

Positive Integers:

1, 2, 3, 4, 5, ...

We proved:

the set of rational numbers is countable by describing an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one

and

Each string is generated in finite time

strings
$$s_1, s_2, s_3, \ldots \in S$$

Enumeration

Enumeration Machine for
$$S$$
 output $S_1, S_2, S_3, ...$ (on tape)

Finite time: t_1, t_2, t_3, \ldots

Enumeration Machine

Configuration

Time 0

Time t_1

Time
$$t_2$$

Time t_3

Observation:

A set is countable if there is an enumeration procedure for it

Example:

The set of all strings $\{a,b,c\}^+$ is countable

Proof:

We will describe the enumeration procedure

Naive procedure:

Produce the strings in lexicographic order:

a

aa

aaa

aaaa

• • • • •

Doesn't work:

strings starting with b will never be produced

Better procedure: Proper Order

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

• • • • • • • •

length 1 b aaab acba length 2 bbbcca cbCCaaa aab length 3 aac

Produce strings in Proper Order:

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumeration Procedure:

Repeat

1. Generate the next binary string of 0's and 1's in proper order

Check if the string describes a
 Turing Machine
 if YES: print string on output tape
 if NO: ignore string

Uncountable Sets

Definition: A set is uncountable if it is not countable

Theorem:

Let S be an infinite countable set

The powerset 2^S of S is uncountable

Proof:

Since S is countable, we can write

$$S = \{s_1, s_2, s_3, \ldots\}$$

Elements of S

Elements of the powerset have the form:

$$\{s_1,s_3\}$$

$$\{s_5, s_7, s_9, s_{10}\}$$

• • • • •

We encode each element of the power set with a binary string of 0's and 1's

Powerset element	Encoding				
	<i>s</i> ₁	s_2	<i>s</i> ₃	s_4	• • •
$\{s_1\}$	1	0	0	0	• • •
$\{s_2,s_3\}$	0	1	1	0	• • •
$\{s_1, s_3, s_4\}$	1	0	1	1	• • •

Let's assume (for contradiction) that the powerset is countable.

Then: we can enumerate the elements of the powerset

Powerset element

Encoding

 t_1

• • •

 t_2

• • •

 t_3

• • •

 t_4

• • •

• • •

Take the powerset element whose bits are the complements in the diagonal

New element: 0011...

(birary complement of diagonal)

The new element must be some t_i of the powerset

However, that's impossible:

from definition of t_i

the i-th bit of t_i must be the complement of itself

Contradiction!!!

Since we have a contradiction:

The powerset 2^S of S is uncountable

An Application: Languages

Example Alphabet: $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
infinite and countable

Example Alphabet: $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
infinite and countable

A language is a subset of S:

$$L = \{aa, ab, aab\}$$

Example Alphabet: $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
 infinite and countable

The powerset of S contains all languages:

$$2^{S} = \{\{\lambda\}, \{a\}, \{a,b\}, \{aa,ab,aab\}, \ldots\}$$

 $L_1 \ L_2 \ L_3 \ L_4 \ \ldots$

uncountable

Languages: uncountable

Turing machines: countable

There are infinitely many more languages than Turing Machines

Conclusion:

There are some languages not accepted by Turing Machines

These languages cannot be described by algorithms