Erklärung Strukturelle Induktion

Mitschrift aus dem Tutorium von Jens Kosiol

1. November 2013

Beispiel: Induktion in \mathbb{N} : Wir haben einen "Anfang" 1

Wir haben eine Regel, aus Zahlen neue Zahlen zu berechnen: n+1

Strukturelle Induktion:

Wir haben "Anfänge" A_1, A_2, \ldots ,, die atomaren Formeln. Wir haben <u>drei</u> Regeln, um aus Formeln neue Formeln zu bilden.

Idee: Zeige für eine Aussage P dass P für alle atomaren Formeln gilt.

Zeige, dass P beim bilden neuer Formeln durch die drei Regeln erhalten bleibt:

Also: Wenn P für b_1, b_2 gilt, dann auch für $\neg G_1$ $(G_1 \wedge G_2)$

 $(G_1 \vee G_2)$

Beispiel:

Blatt 1, 4a (Hier kommen alle drei Fälle vor)

P: "In jeder semantischen Klasse liegt Formel G, die nur \wedge und \neg benutzt."

 $\underline{I.A.:}$ P gilt für alle atomaren Formeln.

Sei A_i beliebige atomare Formel.

Dann $A_i \equiv A_i$ und A_i verwendet \land und \neg

I.V.: Seien G_1 und G_2 Formeln, für die es semantisch äquivalente Formeln $G_1' \equiv G_1$ und $G_2' \equiv G_2$ gibt, die nur \wedge und \neg benutzen.

 $\underline{\text{I.S.:}}$ Wir müssen zeigen: Die Eigenschaft P bleibt beim Bilden neuer Formeln erhalten.

- 1. Fall: $G = \neg G_1$ (G'_x vorausgesetzt) Nach I.V. existiert $G'_1 \equiv G_1 \Rightarrow \neg G'_1 \equiv G$ und $\neg G'_1$ verwendet nur \land und \neg . \checkmark
- 2. Fall: $G = (G_1 \vee G_2)$ nach I.V. existiert $G_1 \equiv G_1'$ und $G_2 \equiv G_2'$ für die gilt: G_1' und G_2' verwenden nur \wedge und \neg $\Rightarrow G = (G_1' \vee G_2') \equiv \neg \neg (G_1' \vee G_2')$ $\equiv \neg (\neg G_1' \wedge \neg G_2')$ und $\neg (\neg G_1' \wedge G_2')$ verwendet nur \wedge und \neg
- 3. Fall: $G=(G_1\wedge G_2)$ Nach I.V. existiert $G_1'\equiv G_1$ und $G_2'\equiv G_2$, die nur \wedge und \neg verwenden

Damit $G \equiv (G_1' \wedge G_2')$ und $G_1' \wedge G_2'$) verwendet nur \wedge und \neg