# Probing new physics at the LHC: searches for heavy top-like quarks with the ATLAS experiment

Antonella Succurro

PhD candidate in Physics







Bellaterra, 28th of February, 2014

 $\blacktriangleright \ Why? \ {\it bother with "new physics"}$ 

- lacksquare Why? bother with "new physics"
- ► Where? is all happening

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening
- ▶ What? are we looking at

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening
- ▶ What? are we looking at
- ► How?

## Outline

#### Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for  $T\bar{T}$  decaying to Ht + X

Combined results

Conclusions and outlook

# Standard Model as an effective theory

## Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for  $T\bar{T}$  in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Combined results

Conclusions and outlook

6/61

## The LHC complex



## The LHC complex



| Parameter                               | designed              | 2010                 | 2011                  | 2012                 |
|-----------------------------------------|-----------------------|----------------------|-----------------------|----------------------|
| Beam energy (TeV/c)                     | 7                     | 3.5                  | 3.5                   | 4                    |
| Beta function $\beta *$ (m)             | 0.55                  | 2.0/3.5              | 1.5/1.0               | 0.6                  |
| Max. No. bunches/beam                   | 2808                  | 368                  | 1380                  | 1380                 |
| Max. No. protons/bunch                  | $1.15 \times 10^{11}$ | $1.2 \times 10^{11}$ | $1.45 \times 10^{11}$ | $1.7 \times 10^{11}$ |
| Bunch spacing (ns)                      | 25                    | 150                  | 75/50                 | 50                   |
| Peak luminosity (cm $^{-2}$ s $^{-1}$ ) | $1 \times 10^{34}$    | $2.1 \times 10^{32}$ | $3.7 \times 10^{33}$  | $7.7 \times 10^{33}$ |
| Emittance $\varepsilon_n$ ( $\mu$ rad)  | 3.75                  | 2.0                  | 2.4                   | 2.5                  |
| Max. $<\mu>$                            | 19                    | 4                    | 17                    | 37                   |



LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF—3 Clic Test Facility CTNLS Cern Neutrinos to Gran Seaso CLOLDE Isotope Separator OnLine DEvice
LEIR Low Energy (on Ring LINAC LINear ACCelerator n-TbF- Neutrons Time of Flight

#### The ATLAS Detector



#### The ATLAS Detector



## Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for  $T\bar{T}$  in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Combined results

Conclusions and outlook

## Modelling of hadron collisions

want to do physics at hadron colliders? need a good understanding of incoming hadrons



## Modelling of hadron collisions

Drawings from [1]

$$E(p_1) = 4 \text{ TeV}$$

$$E(p_2) = 4 \text{ TeV}$$





Quarks are distributed according to PDFs inside the proton



intial energy unknown

# Hard scattering of two partons



# Parton showering



## Hadronization



# Underlying event simulation



# Pile-up

## Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for  $T\bar{T}$  in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for  $T\bar{T}$  decaying to Ht + X

Combined results

Conclusions and outlook

# Physics objects puzzle



# One lepton

# Many jets

# Missing transverse energy

#### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

## Searches for $T\bar{T}$ in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for  $T\bar{T}$  decaying to Ht + X

Combined results

Conclusions and outlook

# Available signatures

## Allowed decay modes

| Singlet                                            | Decay modes                                  |
|----------------------------------------------------|----------------------------------------------|
| T(+2/3)                                            | $W^+b$ , $Ht$ , $Zt$                         |
| B(-1/3)                                            | $W^-t$ , $Hb$ , $Zb$                         |
| X(+5/3)                                            | $W^+t$                                       |
| Y(-4/3)                                            | $W^-b$                                       |
| Doublet                                            | Decay modes                                  |
| $\left(\begin{array}{c} T \\ B \end{array}\right)$ | $W^+b$ , $Ht$ , $Zt$<br>$W^-t$ , $Hb$ , $Zb$ |
| $\left(\begin{array}{c} T \\ X \end{array}\right)$ | $Ht, Zt$ $W^+t$                              |
| $\begin{pmatrix} B \\ Y \end{pmatrix}$             | $Hb, Zb$ $W^-b$                              |



 Build a 2-dim plane to scan model mixing





|         | $BR(T \rightarrow Wb)$ | $BR(T \rightarrow Zt)$ | $BR(T \rightarrow Ht)$ |
|---------|------------------------|------------------------|------------------------|
| Chiral  | 1.0                    | 0.0                    | 0.0                    |
| Singlet | 0.494                  | 0.194                  | 0.312                  |
| Doublet | 0.000                  | 0.383                  | 0.617                  |

 Build a 2-dim plane to scan model mixing



|         | $BR(T \rightarrow Wb)$ | $BR(T \rightarrow Zt)$ | $BR(T \rightarrow Ht)$ |
|---------|------------------------|------------------------|------------------------|
| Chiral  | 1.0                    | 0.0                    | 0.0                    |
| Singlet | 0.494                  | 0.194                  | 0.312                  |
| Doublet | 0.000                  | 0.383                  | 0.617                  |

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>



|         | $BR(T \rightarrow Wb)$ | $BR(T \rightarrow Zt)$ | $BR(T \rightarrow Ht)$ |
|---------|------------------------|------------------------|------------------------|
| Chiral  | 1.0                    | 0.0                    | 0.0                    |
| Singlet | 0.494                  | 0.194                  | 0.312                  |
| Doublet | 0.000                  | 0.383                  | 0.617                  |

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>
- Different analyses are sensitive to different areas



|         | $BR(T \rightarrow Wb)$ | $BR(T \rightarrow Zt)$ | $BR(T \rightarrow Ht)$ |
|---------|------------------------|------------------------|------------------------|
| Chiral  | 1.0                    | 0.0                    | 0.0                    |
| Singlet | 0.494                  | 0.194                  | 0.312                  |
| Doublet | 0.000                  | 0.383                  | 0.617                  |

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>
- Different analyses are sensitive to different areas



|         | $BR(T \rightarrow Wb)$ | $BR(T \rightarrow Zt)$ | $BR(T \rightarrow Ht)$ |
|---------|------------------------|------------------------|------------------------|
| Chiral  | 1.0                    | 0.0                    | 0.0                    |
| Singlet | 0.494                  | 0.194                  | 0.312                  |
| Doublet | 0.000                  | 0.383                  | 0.617                  |

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>
- Different analyses are sensitive to different areas



|         | $BR(T \rightarrow Wb)$ | $BR(T \rightarrow Zt)$ | $BR(T \rightarrow Ht)$ |
|---------|------------------------|------------------------|------------------------|
| Chiral  | 1.0                    | 0.0                    | 0.0                    |
| Singlet | 0.494                  | 0.194                  | 0.312                  |
| Doublet | 0.000                  | 0.383                  | 0.617                  |

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>
- Different analyses are sensitive to different areas
- Set exclusion using  $CL_s$  technique [2, 3]

#### Preselection

Two searches using common analysis framework:

$$ightharpoonup T\bar{T} 
ightarrow Wb + X$$

$$ightharpoonup T\bar{T} 
ightarrow Ht + X$$

ATLAS-CONF-2013-060 [5]

ATLAS-CONF-2013-018 [6]

| Preselection stage | Requirements                                                                     |
|--------------------|----------------------------------------------------------------------------------|
| Single lepton      | One electron or muon matching trigger                                            |
| QCD rejection      | $E_{ m T}^{ m miss} > 20~{ m GeV} \ E_{ m T}^{ m miss} + m_{ m T} > 60~{ m GeV}$ |
| Jet multiplicity   | $\geq$ 4 jets $\geq$ 1 <i>b</i> -tagged jets                                     |

+ "orthogonality" requirements



Yields in the preselection region "blinded" as:  $H_T^{4j} < 800 \ {\rm GeV} \ (*)$ 

| $\geq$ 4 jets, $\geq$ 1 $b$ -tags |
|-----------------------------------|
| $202042 \pm 285$                  |
| $35921 \pm 525$                   |
| $5804 \pm 146$                    |
| $6264 \pm 74$                     |
| $14375 \pm 107$                   |
| $548\pm12$                        |
| $680 \pm 2$                       |
| $220\pm1$                         |
| $265854 \pm 629$                  |
| $36 \pm 2$                        |
| $256993 \pm 507$                  |
|                                   |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- $ightharpoonup tar{t}$  pair production in association with jets generated with MC@NLO+HERWIG
- $m_t = 172.5 \text{ GeV}$
- NNLO theoretical cross section

#### but

MC@NLO does not model well high-jet multiplicity regions!

- ► Additional samples generated with ALPGEN+HERWIG
- Separate samples are generated for \$\tau\tau\ta\text{t}\$+light jets with up to three additional light partons, and for \$t\tar{t}\$+heavy-flavour jets including \$t\tar{t}b\tar{b}\$ and \$t\tar{t}c\tar{c}\$
- $m_t = 172.5 \text{ GeV}$
- NNLO theoretical cross section

Yields in the preselection region "blinded" as:  $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$ 

|                         | $\geq$ 4 jets, $\geq$ 1 $b$ -tags |
|-------------------------|-----------------------------------|
| $t\bar{t}$ MC@NLO       | $202042 \pm 285$                  |
| W+jets                  | $35921 \pm 525$                   |
| Z+jets                  | $5804 \pm 146$                    |
| Multi-jet               | $6264 \pm 74$                     |
| Single top              | $14375 \pm 107$                   |
| Diboson                 | $548\pm12$                        |
| $t\overline{t}V$        | $680 \pm 2$                       |
| $t\bar{t}$ H (125)      | $220\pm1$                         |
| Tot Bkg w/ MC@NLO       | $265854 \pm 629$                  |
| $T\bar{T}$ (600) chiral | $36 \pm 2$                        |
| Data                    | $256993 \pm 507$                  |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

Yields for  $t\bar{t}$  predicted with ALPGEN are  $\sim 3-8\%$  higher than MC@NLO



Yields in the preselection region "blinded" as:  $H_T^{4j} < 800 \text{ GeV (*)}$ 

|                               | $\geq$ 4 jets, $\geq$ 1 $b$ -tags |
|-------------------------------|-----------------------------------|
| tĒ MC@NLO                     | $202042 \pm 285$                  |
| W+jets                        | $35921 \pm 525$                   |
| Z+jets                        | $5804 \pm 146$                    |
| Multi-jet                     | $6264 \pm 74$                     |
| Single top                    | $14375 \pm 107$                   |
| Diboson                       | $548\pm12$                        |
| $t\bar{t}$ V                  | $680 \pm 2$                       |
| $t\bar{t}$ H (125)            | $220\pm1$                         |
| Tot Bkg w/ MC@NLO             | $265854\pm629$                    |
| $Tar{T}$ (600) chiral<br>Data | $36 \pm 2$<br>256993 $\pm$ 507    |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

► W and Z boson production in association with jets generated with up to five additional partons with ALPGEN+HERWIG

#### W+jets:

- ightharpoonup Samples generated separately for W+light jets,  $Wb\bar{b}+$ jets,  $Wc\bar{c}+$ jets, and Wc+jets
- Normalized to data-driven prediction

#### Z+jets:

- Samples generated separately for Z+light jets, Zbb+jets, and Zcc+jets
- ► Inclusive NNLO theoretical cross section

Yields in the preselection region "blinded" as:  $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$ 

|                              | $\geq$ 4 jets, $\geq$ 1 <i>b</i> -tags |
|------------------------------|----------------------------------------|
| tt MC@NLO                    | $202042 \pm 285$                       |
| W+jets                       | $35921 \pm 525$                        |
| Z+iets                       | $5804\pm146$                           |
| Multi-jet                    | $6264 \pm 74$                          |
| Single top                   | $14375 \pm 107$                        |
| Diboson                      | $548\pm12$                             |
| $t \overline{t} { m V}$      | $680 \pm 2$                            |
| $t\bar{t}$ H (125)           | $220\pm1$                              |
| Tot Bkg w/ MC@NLO            | $265854\pm629$                         |
| $T\bar{T}$ (600) chiral Data | $36 \pm 2$<br>256993 $\pm$ 507         |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- QCD multi-jet events have high cross-section
- Data-drive estimation
- Matrix-method



$$N_{\rm fake}^{\rm tight} = \frac{\epsilon_{\rm fake}}{\epsilon_{\rm real} - \epsilon_{\rm fake}} (N^{\rm loose} \epsilon_{\rm real} - N^{\rm tight})$$

Yields in the preselection region "blinded" as:  $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$ 

|                              | $\geq$ 4 jets, $\geq$ 1 <i>b</i> -tags |
|------------------------------|----------------------------------------|
| tt MC@NLO                    | $202042 \pm 285$                       |
| W+jets                       | $35921 \pm 525$                        |
| Z+jets                       | $5804 \pm 146$                         |
| Multi-jet                    | $6264 \pm 74$                          |
| Single top                   | $14375 \pm 107$                        |
| Diboson                      | $548\pm12$                             |
| ttV                          | $680 \pm 2$                            |
| $t\bar{t}$ H (125)           | $220\pm1$                              |
| Tot Bkg w/ MC@NLO            | $265854\pm629$                         |
| $T\bar{T}$ (600) chiral Data | $36 \pm 2$<br>256993 $\pm$ 507         |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

#### Single top:

- s-channel and Wt production generated with MC@NLO+HERWIG
- ► *t*-channel generated with ACERMC+PYTHIA
- $m_t = 172.5 \text{ GeV}$
- NNLO theoretical cross sections

#### Diboson:

- ► Diboson production generated with HERWIG
- NLO theoretical cross section

Yields in the preselection region "blinded" as:  $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~({\rm *})$ 

|                    | $\geq$ 4 jets, $\geq$ 1 $b$ -tags       |
|--------------------|-----------------------------------------|
| tt MC@NLO          | $202042 \pm 285$                        |
| W+jets             | $35921 \pm 525$                         |
| Z+jets             | $5804 \pm 146$                          |
| Multi-jet          | $6264 \pm 74$                           |
| Single top         | $14375 \pm 107$                         |
| Diboson            | $548\pm12$                              |
| tŦV                | $680 \pm 2$                             |
| $t\bar{t}$ H (125) | $220 \pm 1$                             |
| m . m. / 116001110 | 0.0000000000000000000000000000000000000 |

| Tot Bkg w/ MC@NLO             | $265854\pm629$              |
|-------------------------------|-----------------------------|
| $Tar{T}$ (600) chiral<br>Data | $36 \pm 2$ $256993 \pm 507$ |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

#### $t\bar{t}V$ :

- ► tt̄ produced in association with a W or Z boson generated with

  MADGRAPH+PYTHIA
- $m_t = 172.5 \text{ GeV}$
- ▶ NLO theoretical cross section

#### $t\bar{t}H$ :

- tt̄ produced in association with a Higgs boson generated with PYTHIA
- $m_t = 172.5 \text{ GeV}, m_H = 125 \text{ GeV}$
- ► Higgs decay modes considered:  $H \rightarrow b\bar{b}$ ,  $c\bar{c}$ , gg,  $W^+W^-$
- NLO theoretical cross section

Yields in the preselection region "blinded" as:  $H_T^{4j} < 800 \ {\rm GeV} \ (*)$ 

|                         | $\geq$ 4 jets, $\geq$ 1 <i>b</i> -tags |
|-------------------------|----------------------------------------|
| tt MC@NLO               | $202042 \pm 285$                       |
| W+jets                  | $35921 \pm 525$                        |
| Z+jets                  | $5804 \pm 146$                         |
| Multi-jet               | $6264\pm74$                            |
| Single top              | $14375 \pm 107$                        |
| Diboson                 | $548\pm12$                             |
| $t\bar{t}V$             | $680 \pm 2$                            |
| $t\bar{t}$ H (125)      | $220\pm1$                              |
| Tot Bkg w/ MC@NLO       | $265854 \pm 629$                       |
| $T\bar{T}$ (600) chiral | $36 \pm 2$                             |
| Data                    | $256993 \pm 507$                       |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- ▶  $T\bar{T}$  singlet production generated with PROTOS+PYTHIA
- ▶ Branching ratio to each decay mode (*Wb*, *Zt* and *Ht*) is set to 1/3
- Events are reweighted at the analysis level in order to reproduce any desired branching ratio configuration
- $ightharpoonup m_T$  values generated from 350 GeV to 850 GeV in steps of 50 GeV
- m<sub>H</sub> = 125 GeV, all Higgs boson decay modes are considered
- NNLO theoretical cross section

# Systematic uncertainties - Shape and Norm

| Systematic uncertainty              | $T\bar{T} 	o Wb + X$ |            | $T\bar{T}$ | $\rightarrow Ht + X$ |
|-------------------------------------|----------------------|------------|------------|----------------------|
| -,                                  | Status               | Components | Status     | Components           |
| Luminosity                          | N                    | 1          | N          | 1                    |
| Lepton ID+reco+trigger              | N                    | 1          | N          | 1                    |
| Jet vertex fraction efficiency      | SN                   | 1          | SN         | 1                    |
| Jet energy scale                    | SN                   | 1          | SN         | 8                    |
| Jet energy resolution               | SN                   | 1          | SN         | 1                    |
| b-tagging efficiency                | SN                   | 9          | SN         | 9                    |
| c-tagging efficiency                | SN                   | 5          | SN         | 5                    |
| Light jet-tagging efficiency        | SN                   | 1          | SN         | 1                    |
| $t\bar{t}$ cross section            | N                    | 1          | N          | 1                    |
| $t\bar{t}V$ cross section           | N                    | 1          | N          | 1                    |
| $t\bar{t}H$ cross section           | -                    | -          | N          | 1                    |
| Single top cross section            | N                    | 1          | N          | 1                    |
| Dibosons cross section              | N                    | 1          | N          | 1                    |
| W+jets normalization                | N                    | 5          | -          | -                    |
| Z+jets normalization                | N                    | 1          | -          | -                    |
| V+jets normalization                | -                    | -          | N          | 1                    |
| Multijet normalization              | -                    | -          | N          | 1                    |
| tt modelling                        | SN                   | 3          | SN         | 3                    |
| V+jets modelling                    | SN                   | 1          | -          | -                    |
| $t\bar{t}$ +heavy-flavour fractions | -                    | -          | N          | 1                    |

### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for *TT* in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Combined results

Conclusions and outlook

## Strategy

 $T\bar{T} o WbWb$ 

like

$$t\bar{t} \rightarrow WbWb$$





### different boosted kinematics

reconstruct the W boson from hadronic decay

$$\Delta R \sim rac{2m}{p_{
m T}}$$

reconstruct heavy quark mass

### W boson reconstruction



 $W_{\text{lep}}$  reconstructed using lepton and "neutrino":  $p_X, p_Y$  from  $E_T^{\text{miss}}, p_Z$  from  $M_W^2 = (P_l + P_\nu)^2$ 

|     | L    | OOSE selection                             |
|-----|------|--------------------------------------------|
| SR0 | Pres | selection + Ortho Cut (*)                  |
| SR1 | +    | $\geq 1 W_{\rm had}$ candidates            |
| SR2 | +    | $H_T^{4j} > 800 \text{ GeV}$               |
| SR3 | +    | $p_{\rm T}(b_1) > 160 \; {\rm GeV}$        |
| SR4 | +    | $p_{\rm T}(b_2) > 80~{ m GeV}$             |
| SR5 | +    | $\Delta R(\ell, \nu) < 1.2$                |
|     |      |                                            |
|     | 1    | NGHT selection                             |
| SR5 | Loc  | SE selection                               |
| SR6 | +    | $\min \Delta R(\ell, b) > 1.4$             |
| SR7 | +    | $\min \Delta R(W_{\mathrm{had}}, b) > 1.4$ |

(\*) reject events with  $\geq 6$  jets and  $\geq 3$  b-jets



|     | L    | OOSE selection                           |
|-----|------|------------------------------------------|
| SR0 | Pres | selection + Ortho Cut (*)                |
| SR1 | +    | $\geq 1 W_{\rm had}$ candidates          |
| SR2 | +    | $H_T^{4J} > 800 \text{ GeV}$             |
| SR3 | +    | $p_{\rm T}(b_1) > 160~{\rm GeV}$         |
| SR4 | +    | $p_{\rm T}(b_2) > 80~{ m GeV}$           |
| SR5 | +    | $\Delta R(\ell, \nu) < 1.2$              |
|     |      |                                          |
|     | 1    | NGHT selection                           |
| SR5 | Loc  | SE selection                             |
| SR6 | +    | $\min \Delta R(\ell,b) > 1.4$            |
| SR7 | +    | $\min \Delta R(W_{\text{had}}, b) > 1.4$ |

(\*) reject events with  $\geq$ 6 jets and  $\geq$ 3 *b*-jets



|     | I    | LOOSE selection                 |
|-----|------|---------------------------------|
| SR0 | Pres | selection + Ortho Cut (*)       |
| SR1 | +    | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +    | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +    | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +    | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +    | $\Delta R(\ell, \nu) < 1.2$     |
|     |      |                                 |

TIGHT selection SR5 LOOSE selection SR6 +  $\min \Delta R(\ell,b) > 1.4$  SR7 +  $\min \Delta R(W_{\rm had},b) > 1.4$ 

(\*) reject events with  $\geq$ 6 jets and  $\geq$ 3 *b*-jets



|     | L    | OOSE selection                      |
|-----|------|-------------------------------------|
| SR0 | Pres | selection + Ortho Cut (*)           |
| SR1 | +    | $\geq 1 W_{\rm had}$ candidates     |
| SR2 | +    | $H_T^{4j} > 800 \text{ GeV}$        |
| SR3 | +    | $p_{\rm T}(b_1) > 160 \; {\rm GeV}$ |
| SR4 | +    | $p_{\rm T}(b_2) > 80~{\rm GeV}$     |
| SR5 | +    | $\Delta R(\ell, \nu) < 1.2$         |
|     |      |                                     |
|     | П    | TIGHT selection                     |
| SR5 | Loc  | SE selection                        |

(\*) reject events with  $\geq$ 6 jets and  $\geq$ 3 *b*-jets

 $\min \Delta R(\ell, b) > 1.4$ 

 $\min \Delta R(W_{\text{had}}, b) > 1.4$ 



SR6

SR7

|     | I   | LOOSE selection                 |
|-----|-----|---------------------------------|
| SR0 | Pre | selection + Ortho Cut (*)       |
| SR1 | +   | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +   | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +   | $\Delta R(\ell, \nu) < 1.2$     |
|     |     | T 1 11                          |

|     | П   | TGHT selection                           |
|-----|-----|------------------------------------------|
| SR5 | Loc | SE selection                             |
| SR6 | +   | $\min \Delta R(\ell, b) > 1.4$           |
| SR7 | +   | $\min \Delta R(W_{\text{had}}, b) > 1.4$ |

(\*) reject events with  $\geq 6$  jets and  $\geq 3$  b-jets



|     | Loose selection                            |
|-----|--------------------------------------------|
| SR0 | Preselection + Ortho Cut (*)               |
| SR1 | + $\geq 1 W_{\rm had}$ candidates          |
| SR2 | + $H_T^{4j} > 800 \text{ GeV}$             |
| SR3 | + $p_{\rm T}^{'}(b_1) > 160 \text{ GeV}$   |
| SR4 | + $p_{\rm T}(b_2) > 80~{\rm GeV}$          |
| SR5 | + $\Delta R(\ell, \nu) < 1.2$              |
|     | TIGHT selection                            |
| SR5 | Loose selection                            |
| SR6 | + $\min \Delta R(\ell, b) > 1.4$           |
| SR7 | + $\min \Delta R(W_{\text{had}}, b) > 1.4$ |

(\*) reject events with  $\geq 6$  jets and  $\geq 3$  b-jets



### Comparison data vs prediction

(before unblinding)
Check agreement between data and
background prediction

Define regions depleted in signal

|                             | Loose but $\Delta R(\ell, \nu) > 1.2$     |
|-----------------------------|-------------------------------------------|
| $t\bar{t'}(600~\text{GeV})$ | $18.47 \pm 1.48  {}^{+1.09}_{-1.64}$      |
| $t\overline{t}$             | $173.13 \pm 8.82 ^{+46.92}_{-48.59}$      |
| W+jets                      | $30.64 \pm 9.78  {}^{+13.74}_{-12.43}$    |
| Z+jets                      | $11.68 \pm 5.93 ^{+5.89}_{-6.96}$         |
| Diboson                     | $0.29 \pm 0.19 ^{+0.17}_{-0.17}$          |
| Single top                  | $21.46 \pm 2.54  {}^{+2.60}_{-2.54}$      |
| $t\bar{t}V$                 | $4.21 \pm 0.16  {}^{+1.33}_{-1.33}$       |
| Multijet                    | $0.49 \pm 0.91 \pm 0.25$                  |
| Total bkg.                  | $241.90 \pm 14.70 ^{\ +53.57}_{\ -55.95}$ |
| Data                        | 250                                       |



### Signal to background discrimination

|                   |                                                          | Loose                                                                                | TIGHT                                                                               |
|-------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $\left\{ \right.$ | $tar{t}$ $tar{t}V$ W+jets Z+jets Single top Dibosons     | $264 \pm 80 \\ 5.1 \pm 1.8 \\ 16 \pm 11 \\ 1.1 \pm 1.4 \\ 30 \pm 7 \\ 0.21 \pm 0.15$ | $10 \pm 6 \\ 0.5 \pm 0.2 \\ 6 \pm 5 \\ 0.2 \pm 0.5 \\ 4.4 \pm 1.6 \\ 0.06 \pm 0.05$ |
|                   | Tot.Bkg.<br>Data                                         | $317 \pm 90$<br>348                                                                  | $\begin{array}{c} 21\pm 9 \\ 37 \end{array}$                                        |
| -                 | $T\bar{T}(600 \text{ GeV})$<br>Chiral $t'$<br>T  Singlet | $88 \pm 10$ $41 \pm 4$                                                               | $54 \pm 7$ $20.3 \pm 2.2$                                                           |
|                   |                                                          |                                                                                      |                                                                                     |





|     | I   | LOOSE selection                 |
|-----|-----|---------------------------------|
| SR0 | Pre | selection                       |
| SR1 | +   | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +   | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +   | $\Delta R(\ell,  u) < 1.2$      |
|     |     |                                 |

|     | 1   | NIGHT selection                          |
|-----|-----|------------------------------------------|
| SR5 | Loc | SE selection                             |
| SR6 | +   | $\min \Delta R(\ell, b) > 1.4$           |
| SR7 | +   | $\min \Delta R(W_{\text{had}}, b) > 1.4$ |



|     | L    | OOSE selection                   |
|-----|------|----------------------------------|
| SR0 | Pres | selection                        |
| SR1 | +    | $\geq 1 W_{\rm had}$ candidates  |
| SR2 | +    | $H_T^{4j} > 800 \text{ GeV}$     |
| SR3 | +    | $p_{\rm T}(b_1) > 160~{\rm GeV}$ |
| SR4 | +    | $p_{\rm T}(b_2) > 80~{ m GeV}$   |
| SR5 | +    | $\Delta R(\ell, \nu) < 1.2$      |
|     |      |                                  |
|     | 1    | NGHT selection                   |
| SR5 | Loc  | SE selection                     |
| SR6 | +    | $\min \Delta R(\ell, b) > 1.4$   |

 $\min \Delta R(W_{\text{had}}, b) > 1.4$ 



SR7

|     | I   | LOOSE selection                 |
|-----|-----|---------------------------------|
| SR0 | Pre | selection                       |
| SR1 | +   | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +   | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +   | $\Delta R(\ell, \nu) < 1.2$     |
|     |     |                                 |
|     | ,   | Гібнт selection                 |
| SR5 | Loc | OSE selection                   |

 $\min \Delta R(\ell, b) > 1.4$ 

 $\min \Delta R(W_{\text{had}}, b) > 1.4$ 



SR6

SR7

|     | ]   | Loose selection                 |
|-----|-----|---------------------------------|
| SR0 | Pre | eselection                      |
| SR1 | +   | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +   | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +   | $\Delta R(\ell, \nu) < 1.2$     |

TIGHT selection SR5 LOOSE selection SR6 +  $\min \Delta R(\ell,b) > 1.4$  SR7 +  $\min \Delta R(W_{\rm had},b) > 1.4$ 



|     | ]   | LOOSE selection                 |
|-----|-----|---------------------------------|
| SR0 | Pre | eselection                      |
| SR1 | +   | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +   | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +   | $\Delta R(\ell,  u) < 1.2$      |
|     |     |                                 |

 $\begin{array}{ccc} & \text{Tight selection} \\ \text{SR5} & \text{Loose selection} \\ \text{SR6} & + & \min \Delta R(\ell,b) > 1.4 \\ \text{SR7} & + & \min \Delta R(W_{\text{had}},b) > 1.4 \end{array}$ 



|     | Ι            | LOOSE selection                 |  |
|-----|--------------|---------------------------------|--|
| SR0 | Preselection |                                 |  |
| SR1 | +            | $\geq 1 W_{\rm had}$ candidates |  |
| SR2 | +            | $H_T^{4j} > 800 \text{ GeV}$    |  |
| SR3 | +            | $p_{\rm T}(b_1) > 160~{ m GeV}$ |  |
| SR4 | +            | $p_{\rm T}(b_2) > 80~{ m GeV}$  |  |
| SR5 | +            | $\Delta R(\ell, \nu) < 1.2$     |  |

 $\begin{array}{c|cccc} & \text{TIGHT selection} \\ \text{SR5} & \text{Loose selection} \\ \hline \text{SR6} & + & \min \Delta R(\ell,b) > 1.4 \\ \text{SR7} & + & \min \Delta R(W_{\text{had}},b) > 1.4 \\ \end{array}$ 



|     | L    | OOSE selection                  |
|-----|------|---------------------------------|
| SR0 | Pres | selection                       |
| SR1 | +    | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +    | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +    | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +    | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +    | $\Delta R(\ell, \nu) < 1.2$     |
|     |      |                                 |
|     |      |                                 |

 $\begin{array}{lll} \text{SR5} & \text{Loose selection} \\ \text{SR6} & + & \min \Delta R(\ell,b) > 1.4 \\ \text{SR7} & + & \min \Delta R(W_{\text{had}},b) > 1.4 \end{array}$ 

TIGHT selection



### Most relevant systematic uncertainties

|                                        | $T\bar{T}$ (600 GeV) | $t\bar{t}$ | Non- $t\bar{t}$ |
|----------------------------------------|----------------------|------------|-----------------|
| Total [%]                              | +14/-15              | +59/-59    | +42/-35         |
| Main contributions [%]                 |                      |            |                 |
| Jet energy scale                       | +6.6/-8.4            | +15/-15    | +33/-22         |
| $t\bar{t}$ modelling: NLO MC generator |                      | +48/-48    | -               |
| $t\bar{t}$ modelling: PS and fragm     |                      | +25/-25    | -               |
| $t \bar t$ modelling: ISR/FSR          | _                    | +8.8/-8.8  | -               |





### Benchmark results

Chiral T/Vector-like Y(-4/3)



observed (expected) 95% CL limit  $m_T > 740 (770)$  GeV

Singlet T



observed (expected) 95% CL limit  $m_T > 505 (630)$  GeV

### Model independent results



### ... updating 7 TeV results

First model-independent search *Phys.Lett.* **B718** (2012) [4]



### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for  $T\bar{T}$  decaying to Ht + X

Combined results

Conclusions and outlook

# Strategy

$$T\bar{T} \rightarrow Ht + X$$



SM Higgs boson w/  $m_H = 125$  GeV  $\Downarrow$ BR( $H \rightarrow bb$ ) = 60%

BR(
$$H \rightarrow bb$$
) = 60%  
BR( $H \rightarrow WW$ ) = 20%

$$T \rightarrow Ht \stackrel{>}{\searrow} bbWb \rightarrow bbbl\nu + \bar{T} \rightarrow Wb/Zt/Ht$$

as a minimum 6 total jets in the event  $(T\bar{T} \to HtWb)$ 

$$H_{\mathrm{T}} = p_{\mathrm{T}}(l) + E_{\mathrm{T}}^{\mathrm{miss}} + \sum_{j=1}^{\mathrm{Njets}} p_{\mathrm{T}}(j)$$

peak  $\sim 2m_T$ 

good signal/bkg discriminant for all Ht + X modes





 $\geq$  6 jets,  $\geq$  4 *b*-jets

#### maximize signal acceptance

| "2 b-tagged jets"      | $\geq$ 6 jets<br>=2 <i>b</i> -tagged jets<br>orthogonality cut:<br>$H_{\rm T} <$ 700 GeV |  |
|------------------------|------------------------------------------------------------------------------------------|--|
| "3 b-tagged jets"      | ≥ 6 jets<br>=3 <i>b</i> -tagged jets                                                     |  |
| " $≥4~b$ -tagged jets" | $\geq$ 6 jets $\geq$ 4 <i>b</i> -tagged jets                                             |  |

 $\rightarrow$  b-tagging by TRF in MC  $\leftarrow$ 



heavy flavor component not well predicted

simultaneous fit to data of  $H_T$  variable (good to have background enriched channels)

# Scale of $t\bar{t}$ components

 $t\bar{t}$ +light: 0.87  $\pm$  0.02 (stat.)  $t\bar{t}$ +HF: 1.35  $\pm$  0.11 (stat.)



Maximum yields discrepancy below 5%

# Scale of $t\bar{t}$ components





Maximum yields discrepancy below 5%

### Comparison data vs prediction

Blinding cut:  $H_{\rm T} < 700 \text{ GeV}$ 

Define special blinded regions to check  $H_T$  modeling:

at most two jets with  $p_{\rm T} > 60$  GeV,  $H_{\rm T} < 1.2$  TeV 2 b-tagged jets 3 b-tagged jets





## Most relevant systematic uncertainties

|                        | $T\bar{T}$  | $t\bar{t}$ H (125) | $t\bar{t}	ext{-HF}$ | $t\bar{t}$ -Light | W+jets      | Z+jets      | Single top  | Diboson     | $t\bar{t}V$ | Multijet    |
|------------------------|-------------|--------------------|---------------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Total [%]              | +21.9/-24.0 | +25.2/-30.0        | +57.3/-58.4         | +42.0/-44.1       | +60.0/-61.0 | +65.2/-66.2 | +31.7/-32.9 | +68.2/-70.2 | +37.6/-38.8 | +50.0/-50.0 |
| Main contributions [%] |             |                    |                     |                   |             |             |             |             |             |             |
| BTAGBREAK8             | +20.4/-22.7 | +18.7/-21.6        | +15.8/-17.8         | +12.2/-13.1       | +13.5/-15.0 | +13.0/-13.9 | +15.9/-17.8 | +22.0/-27.4 | +16.4/-18.6 | -           |
| JES "baseline"         | +3.1/-3.1   | +7.3/-7.3          | +10.5/-10.5         | +13.7/-13.7       | +18.1/-18.1 | +18.2/-18.2 | +19.9/-19.9 | +5.2/-5.2   | +8.4/-8.4   | -           |
| ttbar iqopt2           | -           | _                  | +6.9/-6.9           | +20.1/-20.1       | _           | -           | _           | _           | -           | -           |
| ttbar ktfac            | _           | _                  | +7.5/-9.2           | +13.8/-17.0       | _           | _           | _           | _           | _           | _           |
| ttbar ofac             | _           | _                  | +0.7/-0.7           | +1.6/-1.6         | _           | _           | _           | _           | _           | _           |
| ttbarHF                | _           | _                  | +50.0/-50.0         | +13.0/-13.0       | _           | _           | _           | _           | _           | _           |



Introduce the scaling factors as nuisance parameters



total uncertainty on  $t\bar{t}$ +HF reduced by  $\sim 20\%$ 

## Yields in signal regions





#### Benchmark results

#### Doublet



observed (expected) 95% CL limit  $m_T > 790 (745)$  GeV

#### Singlet



observed (expected) 95% CL limit  $m_T > 640 \, (615) \, \text{GeV}$ 

### Model independent results



### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Combined results

Conclusions and outlook

# Combination of $T\bar{T} \rightarrow Wb + X$ and $T\bar{T} \rightarrow Ht + X$



The search channels do not overlap

can be combined in the statistical analysis (consistent syst unc treatment)

 $T\bar{T} \rightarrow Ht + X$  only: 640 GeV



# Combination of $T\bar{T} \rightarrow Wb + X$ and $T\bar{T} \rightarrow Ht + X$



The search channels do not overlap

can be combined in the statistical analysis (consistent syst unc treatment)

#### combination: 670 GeV



Individual analyses probe different areas

▶  $T\bar{T} \rightarrow Wb + X$  analysis alone very optimized for the bottom right corner



Individual analyses probe

- ▶  $T\bar{T} \rightarrow Wb + X$  analysis alone very optimized for the bottom right corner
- ▶  $T\bar{T} \rightarrow Ht + X$  gives general good coverage, brings complete exclusion up to 450 GeV and almost excludes 650 GeV singlets



Individual analyses probe

- ▶  $T\bar{T} \rightarrow Wb + X$  analysis alone very optimized for the bottom right corner
- ▶  $T\bar{T} \rightarrow Ht + X$  gives general good coverage, brings complete exclusion up to 450 GeV and almost excludes 650 GeV singlets
- full combination reaches complete exclusion up to almost 600 GeV and excludes 650 GeV singlets



Individual analyses probe

- ▶  $T\bar{T} \rightarrow Wb + X$  analysis alone very optimized for the bottom right corner
- ▶  $T\bar{T} \rightarrow Ht + X$  gives general good coverage, brings complete exclusion up to 450 GeV and almost excludes 650 GeV singlets
- ▶ full combination reaches complete exclusion up to almost 600 GeV and excludes 650 GeV singlets

... but there's more from ATLAS Exotics!



# ATLAS "worst case scenario" coverage



# ATLAS "worst case scenario" coverage



# ATLAS "worst case scenario" coverage



### Comparison to CMS results

Inclusive  $T\bar{T}$  searches CMS-PAS-B2G-12-015 [7]



### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Combined results

Conclusions and outlook

#### Conclusions and outlook

both searches are being updated with the full  $20 \text{ fb}^{-1}$  statistics



- y poor MC bkgs statistical population in the TIGHT channel
- → larger MC samples available
- $\nearrow$  possible optimization of the  $H_T^{4j}$  cut  $\nearrow$  explorable option: larger anti- $k_t$  jets

Best up-to-date 95% CL obs limit on chiral *T* and vector-like *Y* (740 GeV)

- $\searrow$  poor modeling of  $t\bar{t}$ +HF by ALPGEN
- $\searrow$  *b*-tagging calibration sub-optimal for analyses with high- $p_T$  objects
- $\nearrow t\bar{t}$ -based calibrations being developed
- > potential high gain in sensitivity with profiling
- $\nearrow$  easily optimizable for a  $B\bar{B} \to Hb + X$  analysis

Best up-to-date 95% CL obs limit on doublet T



#### Outlook

all four ATLAS searches are being updated with the full 20 fb<sup>-1</sup> statistics, plus two new channels:  $B\bar{B} \to Wt + X$  and  $B\bar{B} \to Hb + X$ 

#### LHC Run-II:

 $\sqrt{s}$ =14 TeV  $\sqrt{\sim}$  100fb<sup>-1</sup> in 3 years  $\sqrt{\sim}$  higher pile-up

#### To-do:

- continue on the road of full combination
- design searches for single production



plots from [8]

# Thank you!

### Thank you for your attention!



### References I

[1] S. Gieseke.

Parton shower monte carlos.

[2] Thomas Junk.

Confidence level computation for combining searches with small statistics.

Nucl.Instrum.Meth., A434:435-443, 1999.

[3] Alexander L. Read.

Presentation of search results: The CL(s) technique.

J.Phys., G28:2693-2704, 2002.

[4] ATLAS Collaboration.

Search for pair production of heavy top-like quarks decaying to a high- $p_T$  W boson and a b quark in the lepton plus jets final state at  $\sqrt{s}=7$  TeV with the ATLAS detector.

Phys.Lett., B718:1284-1302, 2012.

### References II

[5] ATLAS Collaboration.

Search for pair production of heavy top-like quarks decaying to a high- $p_T$  W boson and a b quark in the lepton plus jets final state in pp collisions at  $\sqrt{s}=8$  TeV with the ATLAS detector.

ATLAS-CONF-2013-060, Jun 2013.

[6] ATLAS collaboration.

Search for heavy top-like quarks decaying to a higgs boson and a top quark in the lepton plus jets final state in pp collisions at  $\sqrt{s} = 8$  tev with the atlas detector.

ATLAS-CONF-2013-018, Mar 2013.

- [7] Inclusive search for a vector-like T quark by CMS. Technical Report CMS-PAS-B2G-12-015, CERN, Geneva, 2013.
- [8] J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Perez-Victoria. A handbook of vector-like quarks: mixing and single production. 2013.
- [9] M. Lamont.

The First Years of LHC Operation for Luminosity Production. *in* Proceedings of 4th International Particle Accelerator Conference (IPAC 2013), 2013.

#### Backup

#### **BACKUP SLIDES**

## LHC parameters

| Parameter                                                                                                                                                                                                              | designed                                                                           | 2010                                                                                                                | 2011                                                                                          | 2012                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Beam energy (TeV/c) Beta function $\beta*$ (m) Max. No. bunches/beam Max. No. protons/bunch Bunch spacing (ns) Peak luminosity (cm <sup>-2</sup> s <sup>-1</sup> ) Emittance $\varepsilon_n$ ( $\mu$ rad) Max. $<\mu>$ | $7 \\ 0.55 \\ 2808 \\ 1.15 \times 10^{11} \\ 25 \\ 1 \times 10^{34} \\ 3.75 \\ 19$ | $\begin{array}{c} 3.5 \\ 2.0/3.5 \\ 368 \\ 1.2 \times 10^{11} \\ 150 \\ 2.1 \times 10^{32} \\ 2.0 \\ 4 \end{array}$ | 3.5<br>1.5/1.0<br>1380<br>1.45×10 <sup>11</sup><br>75/50<br>3.7×10 <sup>33</sup><br>2.4<br>17 | $\begin{array}{c} 4 \\ 0.6 \\ 1380 \\ 1.7 \times 10^{11} \\ 50 \\ 7.7 \times 10^{33} \\ 2.5 \\ 37 \end{array}$ |

Table: Overview of some parameters for the LHC performance comparing the design values with their time evolution during the first long run operation in 2010-2013 [9].

## $T\bar{T} \rightarrow Wb + X$ 7 TeV vs 8 TeV

| 7 TeV                                                                                      | 8 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| One electron or muon <sup>(+)</sup>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| $E_{ m T}^{ m miss} > 35(20)$ GeV for electron (muon) channel                              | $E_{\mathrm{T}}^{\mathrm{miss}} > 20 \; \mathrm{GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| $E_{ m T}^{ m miss}+m_{ m T}>60~{ m GeV}$                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| $\geq 3$ jets for $W_{ m had}^{ m type~II}$<br>$\geq 4$ jets for $W_{ m had}^{ m type~II}$ | $\geq 4~{ m jets}^{(*)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| $\geq 1$ b-tagged jets <sup>(**)</sup>                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                            | orthogonality cut reject events with $\geq 6$ and $\geq 3$ <i>b</i> -tagged joint for the bound of the boun |  |  |  |
|                                                                                            | One electron or $E_{ m T}^{ m miss} > 35(20)$ GeV for electron (muon) channel $E_{ m T}^{ m miss} + m_{ m T} > 6$ $\geq 3$ jets for $W_{ m had}^{ m type\ II}$ $\geq 4$ jets for $W_{ m had}^{ m type\ II}$ $\geq 1$ $b$ -tagged j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |

 $\begin{aligned} & & \text{Preselection} \\ & \geq 1 \ \textit{W}_{\text{had}} \ \text{candidates}^{(x)} \end{aligned}$ 

#### Neutrino reconstruction

Neutrino 4-momentum unknown



 $E_{\rm T}^{\rm miss}$  X and Y components + a bit of algebra:

$$(P_l + P_{\nu})^2 = P_W^2 = M_W^2$$

two possible  $p_{Z_{\nu}}$  solutions for the Z component of the neutrino momentum:

$$p_{Z_
u} = rac{\lambda \pm \sqrt{\delta}}{2}$$

Choose the solution giving min $|m_{\text{reco}}^{\text{had}} - m_{\text{reco}}^{\text{lep}}|$  (this implies also *b*-jets association!)

▶ If no real solution,  $\nu \sim$  collinear to  $l \Rightarrow \eta_{\nu}$  set equal to  $\eta_{l}$ 

$$\begin{array}{lclcrcl} \lambda & = & 2\beta \frac{p_{Z_l}}{E_l^2 - p_{Z_l}^2}; \\ \delta & = & \lambda^2 - 4\gamma; & \beta & = & \alpha + p_{X_\nu} p_{X_l} + p_{Y_\nu} p_{Y_l}; \\ \gamma & = & -\frac{\beta^2 - E_l^2(p_{X_\nu}^2 + p_{Y_\nu}^2)}{E_l^2 - p_{Z_l}^2}; & \alpha & = & \frac{1}{2}(M_W^2 - M_l^2). \end{array}$$

### Statistical analyses

In the 7 TeV analysis three configurations have been tested:

- ▶ Loose selection using  $m_{\text{reco}}$  and profiling of overall  $t\bar{t}$  yield ("Loose")
- ▶ Tight selection using  $m_{reco}$  ("Tight")
- ▶ Tight selection considering just the overall yield and not the shape of  $m_{\text{reco}}$  ("Tight cut-and-count")

Look at expected value of  $\mathit{CL}_s$  as a function of  $m_T$  for best performance:



### Generator choice for $t\bar{t}$

Comparison data to background prediction w/ different  $t\bar{t}$  generators e.g. in SDR3 (loose selection with reversed b-jet  $p_T$  cuts)







# $t\bar{t}$ modeling systematic uncertainties







### Doublet vs singlet

MC simulated for singlet T with BR = 1/3 for every decay mode

▶ Mixing between SM quarks and T is left-handed for singlets, right-handed for doublets



Discrepancies in yields below 5% in ">4 b-TAGGED JETS"

# Treatment of sys unc in combination

|                      | Systematic uncertainty              | $T\bar{T}$ | $\rightarrow Wb + X$ | $T\bar{T} 	o Ht + X$ |            |
|----------------------|-------------------------------------|------------|----------------------|----------------------|------------|
|                      |                                     | Status     | Components           | Status               | Components |
|                      | Luminosity                          | N          | 1                    | N                    | 1          |
|                      | Lepton ID+reco+trigger              | N          | 1                    | N                    | 1          |
|                      | Jet vertex fraction efficiency      | SN         | 1                    | SN                   | 1          |
| İ                    | Jet energy resolution               | SN         | 1                    | SN                   | 1          |
|                      | b-tagging efficiency                | SN         | 9                    | SN                   | 9          |
| I                    | c-tagging efficiency                | SN         | 5                    | SN                   | 5          |
|                      | Light jet-tagging efficiency        | SN         | 1                    | SN                   | 1          |
| Freller Connellete d | $t\bar{t}$ cross section            | N          | 1                    | N                    | 1          |
| Fully Correlated (   | $t\bar{t}V$ cross section           | N          | 1                    | N                    | 1          |
|                      | $t\bar{t}H$ cross section           | =-         | -                    | N                    | 1          |
|                      | Single top cross section            | N          | 1                    | N                    | 1          |
| I                    | Dibosons cross section              | N          | 1                    | N                    | 1          |
|                      | W+jets normalization                | N          | 5                    | -                    | -          |
|                      | Z+jets normalization                | N          | 1                    | -                    | -          |
| i                    | V+jets normalization                | =-         | -                    | N                    | 1          |
| (                    | Multijet normalization              | =-         | -                    | N                    | 1          |
| (                    | $t\bar{t}$ modelling                | SN         | 3                    | SN                   | 3          |
| Uncorrelated         | V+jets modelling                    | SN         | 1                    | -                    | -          |
| 1                    | $t\bar{t}$ +heavy-flavour fractions | =-         | -                    | N                    | 1          |
| Correlate            | -                                   |            |                      |                      |            |
| JES w/ BASELINE      | Jet energy scale                    | SN         | 1                    | SN                   | 8          |