AWS SAA + SysOps + Developer + DevOps Course #Day-17

We will start at 8 AM, Stay tuned

Recap:

- S3 Storage Classes
- S3 Life Cycle Rules
 - Demo
- S3 Replication Rules
 - Demo
- S3 Select and Glacier Select
- S3 Event Notifications
- S3 Access Logs
- S3 Object Lock

Today's topics:

- VPC Advanced
 - VPC Sizing
 - Subnet Sizing
 - Internet Gateway
 - Route Tables
 - Custom VPC Demo

Virtual Private Cloud (VPC)

VPC (Housing Example)

VPC Sizing

Private IP is there by default to the machines

Public IP is only needed when you want to connect to Internet

- IPv4 widely used IP version, this version has 4 billion* unique IP addresses
- Internet users are increasing day by day so IPs are running out
- IPv6 is introduced
 - It has around 340 undecillion IPs 340,282,366,920,938,463,463,374,607,431,768,211,456

IPv4

→ 10.0.0.1

4 parts, separated by (.)

- **Each part is Octet**
- Each part is 8 bits of size
- \rightarrow Total size is 8 x 4 = 32 bits

IPv6

2001:0db8:85a3:0000:0000:8a2e:0370:7334

8 parts, separated by (:)

Each part is Segment

Each part is 16 bits of size

Total size is $16 \times 8 = 128$ bits

VPC Sizing (IP Address - Ranges)

10.0.0.1 10.0.0.0,16

IPv6

2001:0db8:85a3:0000:0000:8a2e:0370:7334

Size Formula: 2³²⁻ⁿ

$$= 2^{32-16}$$

$$= 2^{16} = 2 \times 2 \times 2 \times 16 \text{ times}$$

$$= 65,536$$

Example 2: 172.16.0.0/24

$$= 2^{32-24}$$

$$= 28$$

IPv4

- → For VPC
 - Max range is 16 65,536
 - Min range is 28 16
- For Subnet
 - Max range is 16
 - Min range is 28

IPv6

For VPC

Max range is 56

For VPC

Max range is 64

- Subnet size should be between /16 and /28
- ... example for VPC => 10.0.0.0/16
- /24 is the standard subnet size
- Subnet 1 => 10.0.0.0/24

$$= 2^{32-24} = 2^8 = 256$$

$$0 - 255$$

- Subnet 2 => 10.0.0.1/24
- Subnet 2 => 10.0.1.0/24
- Subnet 3 => 10.0.2.0/24
- Subnet 4 => 10.0.3.0/24

10.0.0.0	10.0.1.0
10.0.0.1	10.0.1.1
10.0.0.2	10.0.1.2
10.0.0.3	10.0.1.3
10.0.0.4	10.0.1.4
10.0.0.5	10.0.1.5
10.0.0.6	10.0.1.6
10.0.0.7	10.0.1.7
10.0.0.8	10.0.1.8
10.0.0.9	10.0.1.9
10.0.0.10	10.0.1.10
•	•
•	•
10.0.0.255	10.0.1.255
	7

Subnet Sizing

- 5 IP addresses are reserved for AWS from every subnet
- 1st 4 and last 1 IP are reserved

Subnet Sizing

- Why the minimum size is /28? ←
- IPv4 has 32 bits

•
$$/32 \rightarrow 2^{32-32} = 2^0 = 1 < 5$$

•
$$/31 \rightarrow 2^{32-31} = 2^1 = 2$$
 < 5

•
$$/30 \rightarrow 2^{32-30} = 2^2 = 4 < 5$$

•
$$/29 \rightarrow 2^{32-29} = 2^3 = 8$$
 > 5 but only 3 IPs

•
$$/28 \Rightarrow 2^{32-28} = 2^4 = 16 > 5 \Rightarrow 16 - 5 = 11 \text{ IPs}$$

- •
- •
- $/16 \rightarrow 2^{32-16} = 2^{16} = 65,536$

- Which IP range we can choose for VPC?
- RFC 1918
 - 10.0.0.0 → 10.255.255.255
 - 172.16.0.0 → 172.31.255.255
 - 192.168.0.0 \rightarrow 192.168.255.255

IPs ranges should be different when in hybrid networking

Thank you, will meet in tomorrow's session

