Retrieve Roads from Aerial Imagery Using Deep Learning

Capstone Project Data Presentation, CPLN 680, Spring 2021, UPenn Jiamin Tan

Object

Learn how to train a neural network to detect roads from high resolution aerial images.

Main Data Source

Dataset Overview

Table 1: SpaceNet imagery and building label details

AOI	Area	# Buildings	GSD	Sensor	Date
	(km^2)	(Polygons)	(cm)		
Rio	2,544	382,534	50	WorldView-2	2011-2014
Las Vegas	216	151,367	30	WorldView-3	2015-10-22
Paris	1,030	23,816	30	WorldView-3	2016-02-29
Shanghai	1,000	92,015	30	WorldView-3	2015-06-06
Khartoum	765	35,503	30	WorldView-3	2015-04-13

The Data – Over 8000 Km of roads across the four SpaceNet Areas of Interest.

See the <u>labeling guide and schema</u> for details about the creation of the dataset

AOI	Area of Raster (Sq. Km)	Road Centerlines (LineString)
AOI_2_Vegas	216	3685 km
AOI_3_Paris	1,030	425 km
AOI_4_Shanghai	1,000	3537 km
AOI_5_Khartoum	765	1030 km

Road Type Breakdown (km of Road)

Road Type	Vegas	Paris	Shanghai	Khartoum	Total
Motorway	115	9	102	13	240
Primary	365	14	192	98	669
Secondary	417	58	501	66	1042
Tertiary	3	11	34	68	115
Residential	1646	232	939	485	3301
Unclassified	1138	95	1751	165	3149
Cart track	2	6	19	135	162
Total	3685	425	3537.9	1030	8677

geojson_roads: ground truth labels

MS: Multi Spectral

PAN: Panchromatic

PS-MS: Pan-Sharpened Multi Spectral Imagery

PS-RGB: Pan-Sharpened RGB Imagery

The testing set does not come with labels

Recreate testing set by splitting the training set

For each pan-sharpened Image:

1300 x 1300 pixels.

Each pixel has a spatial resolution of 0.31m x 0.31m.

Each tile is, therefore, 400m x 400m.

Bit depth is 48, so 16 bit for each band, and the value of a pixel in each band is from 0 to 65535.

.geojson files stores strings (roads) as ground truth.

The number of .geojson files doesn't match the number of images.

Next Steps

Figure out how to import 48-bit images as arrays into Python.

Generate another dataset containing OSM information which can potentially help with the training processes.

Thank you!