

The Comparison of MX25L12835E/36E/45E and MX25L12835F/33F

1. Introduction

This application note compares Macronix MX25L12835E/36E/45E/35F/33F Serial NOR Flash products. The document does not provide detailed information on individual devices, but highlights the similarities and differences among them. The comparison covers the general features, performance, command sets, and device identification numbers.

The information provided in this document is based on datasheets listed in Section 8 "References". Newer versions of the datasheets may override the contents of this document.

2. General Features

2-1. Feature Comparison

The MX25L12835F/33F products provide a feature rich solution to cover legacy products including MX25L12835E/36E/45E.

In addition, they improve the flexibility of device operation with the addition of a new set of Configuration Registers and the Advanced Sector Protection mode.

The Configuration Register sets the number of dummy clock cycles used for fast read operations, the output drive strength, and selects either the top or bottom of memory to be a Block Protect (BP) area.

The MX25L12835E/36E/45E/35F/33F devices support an individual block protection method as an alternative to the grouped block protection provided with Status Register Block Protection (BP) bits. In addition, the MX25L12835F/33F added additional protection features in the Advanced Sector Protection mode that provide higher levels of protection. These higher levels of protection include:

- 1. Nonvolatile individual sector/block protection.
- 2. A software locking mechanism to prevent modifications to the nonvolatile protection until the next reset cycle or power-up cycle.
- 3. A password protection cycle. (only provided by MX25L12835F)

These additional protection features can be used to prevent accidental or deliberate data corruption in protected memory areas.

For the comparisons of MX25L12835F and MX25L12833F, the differences are listed as below:

- 1. Secured OTP: MX25L12835F/33F have additional 4K-bit/8K-bit secured OTP mode separately.
- 2. Fast Boot Mode: The fast boot mode is only provided by MX25L12835F.
- 3. Password Protection: The password protection is only provided by MX25L12835F.

Please refer to the MX25L12835F and MX25L12833F datasheets for more details.

For additional product differences, please refer to the descriptions and comparison tables below.

Table 2-1. Feature Comparison

Pa	art no.	MX25L12835E	MX25L12836E	MX25L12845E	MX25L12835F	MX25L12833F
Technology		110nm	110nm	110nm	75nm	75nm
Density		128Mb	128Mb	128Mb	128Mb	128Mb
VCC		2.7V-3.6V	2.7V-3.6V	2.7V-3.6V	2.7V-3.6V	2.7V-3.6V
		<u> </u>	Structure	I	1	
	FAST READ (1-1-1)	Yes	Yes	Yes	Yes	Yes
	DREAD (1-1-2)	Yes	Yes	Yes	Yes	Yes
Fast Read	2READ (1-2-2)	Yes	-	Yes	Yes	Yes
I/O Support	QREAD (1-1-4)	Yes	Yes	Yes	Yes	Yes
"O Cupport	4READ (1-4-4)	Yes	-	Yes	Yes	Yes
Ī	QPI (4-4-4)	-	-	-	Yes	Yes
DTR		-	-	Yes	-	-
Configurab	le Dummy Cycles	-	-	-	Yes	Yes
Sector Size	2	4KB/32KB/64KB	4KB/32KB/64KB	4KB/32KB/64KB	4KB/32KB/64KB	4KB/32KB/64KB
Program Bu	uffer Size	256Byte	256Byte	256Byte	256Byte	256Byte
Secured O	ГР	4Kb	4Kb	4Kb	4Kb	8Kb
BP Protect		Тор	Тор	Тор	Top/Bottom	Top/Bottom
		S	oftware Featu	res		
Read Enha	Read Enhance Mode		Yes	Yes	Yes	Yes
Wrap-arour	Wrap-around Read Mode		-	-	Yes	Yes
S/W Reset	Command	Yes	-	-	Yes	Yes
Erase Susp	end & Resume	-	-	-	Yes	Yes
Program St Resume	•	-	-	-	Yes	Yes
Adjustable Strength	Output Driver	-			Yes	Yes
Fast Boot N	Node	-	-	-	Yes	-
Deep Powe		Yes	Yes	Yes	Yes	Yes
Protection	olatile Write	Yes	Yes	Yes	Yes	Yes
Individual/N Protection	Ionvolatile Write	-	-	-	Yes	Yes
Password F	Protection	-		-	Yes	-
		Н	ardware Featu	ıres		
Reset# Pin		Yes (16SOP only)	-	-	Yes	Yes
Hold# Pin		Yes	-	-	-	-
	8SOP (209mil)	-	-	-	Yes	Yes
Package	16SOP (300mil)	Yes	Yes	Yes	Yes	Yes
Solution	8WSON (8x6mm²)	Yes	Yes	Yes	Yes	Yes
	8WSON (6x5mm²)	-	-	-	Yes	Yes

2-2. Write Protection Comparison

The E version (MX25L12835E/36E/45E) and F version (MX25L12835F/33F) products provide two write protection modes to easily protect sectors from inadvertent changes.

The default mode is Block Protection Mode, utilizing the nonvolatile Block Protection (BP) bits in the Status Register. The BP bits specify which block groups will be protected.

The second mode uses an individual block protection method. This method utilizes a volatile SRAM lock bit assigned to each block (or sector) and controls its protection status. The Gang Block Lock (GBLK) and Gang Block Unlock (GBULK) commands set or clear all SRAM lock bits simultaneously and these commands are identical for both E and F versions. The E and F versions use different commands to control individual SRAM lock bits, and the details are addressed below.

2-2-1 Block Protection (BP) Mode

Both E and F versions use identical Status Register BP bits to specify which group of blocks to be protected. However, their block group sizes are different. The F version has a finer granularity of protection and has the ability to specify whether block protection begins at the top or bottom of memory. This is controlled by the Top/Bottom (TB) bit in the F version's new Configuration Register. The TB default setting is '0' and specifies the top of the memory as shown in **Table 2-2** and *Table 2-3: Block Protection (BP) Comparison (Bottom memory blocks)*.

Table 2-2: Block Protection (BP) Comparison (Top memory blocks)

St	atus Re	gister B	it		Protect	ed Blocks	
BP3	BP2	BP1	BP0	MX25L12	2835E/36E/45E	MX25L	12835F/33F
0	0	0	0		None	1	None
0	0	0	1	2 blocks	(#254-255)	1 block	(#255)
0	0	1	0	4 blocks	(#252-255)	2 blocks	(#254-255)
0	0	1	1	8 blocks	(#248-255)	4 blocks	(#252-255)
0	1	0	0	16 blocks	(#240-255)	8 blocks	(#248-255)
0	1	0	1	32 blocks (#224-255)		16 blocks	(#240-255)
0	1	1	0	64 blocks (#192-255)		32 blocks	(#224-255)
0	1	1	1	128 blocks	(#128-255)	64 blocks	(#192-255)
1	0	0	0	256 blocks	(all)	128 blocks	(#128-255)
1	0	0	1	256 blocks	(all)	256 blocks	(all)
1	0	1	0	256 blocks	(all)	256 blocks	(all)
1	0	1	1	256 blocks	(all)	256 blocks	(all)
1	1	0	0	256 blocks	(all)	256 blocks	(all)
1	1	0	1	256 blocks	(all)	256 blocks	(all)
1	1	1	0	256 blocks	(all)	256 blocks	(all)
1	1	1	1	256 blocks	(all)	256 blocks	(all)

Table 2-3: Block Protection (BP) Comparison (Bottom memory blocks)

St	atus Re	gister B	it	Protect	ed Blocks
BP3	BP2	BP1	BP0	MX25L1	12835F/33F
0	0	0	0	N	lone
0	0	0	1	1 block	(#0)
0	0	1	0	2 blocks	(#0-1)
0	0	1	1	4 blocks	(#0-3)
0	1	0	0	8 blocks	(#0-7)
0	1	0	1	16 blocks	(#0-15)
0	1	1	0	32 blocks	(#0-31)
0	1	1	1	64 blocks	(#0-63)
1	0	0	0	128 blocks	(#0-127)
1	0	0	1	256 blocks	(all)
1	0	1	0	256 blocks	(all)
1	0	1	1	256 blocks	(all)
1	1	0	0	256 blocks	(all)
1	1	0	1	256 blocks	(all)
1	1	1	0	256 blocks	(all)
1	1	1	1	256 blocks	(all)

2-2-2 Individual Block Protection Mode

Individual block protection is only effective after executing the WPSEL command. This one-time-use command permanently disables the block group protection method (Status Register BP bits) and activates individual block protection. The WPSEL command is common to both E and F versions. E and F version devices implement individual block protection differently and require different commands. The following sections will discuss both implementations.

2-2-3 Individual Block Protection versus Advanced Sector Protection

The ability to quickly unlock individual blocks is convenient when changes are required, but it also makes the protected areas vulnerable to corrupt or malicious software. To enhance the security of the protection feature, the protection feature, the MX25L12835F and MX25L12833F have added Advanced Sector Protection. Advanced Sector Protection adds nonvolatile protection bits with the ability to lock them until the next reset cycle or power-up cycle. These new features require different commands and the user's application software will need to be modified if the features are desired.

The following sections show the operational differences between E and F version products when using individual sector/block protection.

2-2-4 MX25L12835E/12836E/12845E Individual Block Protection Mode

The Single Block Lock Protection bits are volatile SRAM bits assigned to each protectable sector or block. The bits permit sectors or blocks to be protected individually and independent of any other sector or block. The Single Block Lock Protection bits default to protected mode (set to '1') upon power-up or reset. *Table 2-4: Individually Protectable Sectors/Blocks* illustrates in green, which blocks can be individually protected.

Table 2-4: Individually Protectable Sectors/Blocks

64KB Block #	4KB Sector #	Protectable
255	4095 : : 4080	16 4KB sectors (lock/unlock)
254	4079 4064	
:		254 64KB blocks (lock/unlock)
1	31 16	
0	15 : : : 0	16 4KB sectors lock/unlock

Only the sector and block numbers highlighted in green are individually protectable. The Single Block Lock (SBLK) instruction (36h) enables read only protection for the specified sector

or block of memory. Sector selection is made using address bits A23-A12 and only the top and bottom sixteen 4KB sectors can be individually protected. The remaining sectors are grouped into 64KB blocks. Individual 64KB block selection is made using address bits A23-A16. Use the Single Block Unlock (SBULK) instruction (39h) to cancel the individual sector or block protection state.

Figure 2-1: Single Block Lock/Unlock Protection (SBLK/SBULK) Sequence

2-2-5 MX25L12835F/33F Advanced Sector Protection Mode

Dynamic Protection Bits (DPB) is volatile and similar in purpose to the Single Block Lock Protection bits used by the E version devices. Nonvolatile Solid Protection Bits (SPB) is a new feature. Each protectable sector or block (*Table 2-4: Individually Protectable Sectors/Blocks*) is assigned one DPB and one SPB. This permits sector or block protection to be specified individually and independent of any other sector or block. The DPB default to the protect state (FFh) upon power-up or reset. They work in conjunction with the nonvolatile SPB. Both DPB and SPB states must be cleared to 00h before the associated sector or block can be modified. The SPB are preset to 00h at the factory and there is no need to modify them if you are only migrating from an E version product to the MX25L12835F/33F. Please refer to the MX25L12835F and MX25L12833F datasheets if you need to use the SPB features.

The SPB protection can also temporary unprotect by solid write protect bit (USPB) feature (only provided by MX25L12835F) to temporarily unprotect the sectors protected by SPB.

To modify the DPB status, issue the DPB Program command (WRDPB) including the target sector or block address and set or clear the DPB protection state. All DPB bits can be quickly unlocked by issuing one Gang Block Unlock (GBULK) command (98h). Sector selection is made using address bits A23-A12 and only the top and bottom sixteen 4KB sectors can be individually protected. The remaining sectors are grouped into 64KB blocks. Individual 64KB block selection is made using address bits A23-A16.

Table 2-5: DPB Register

Bit	Description	Bit Status	Default	Type
7 to 0	DPB (Dynamic	00h= Unprotect Sector / Block	FFh	Volatile
7 10 0	Protection Bit)	FFh= Protect Sector / Block	1111	volatile

2-2-5 MX25L12835F/33F Individual Block Protection Mode - Continued

Figure 2-2: Write DPB Register (WRDPB) Sequence

Note: A31-A24 are don't care.

Figure 2-3: Read DPB Register (RDDPB) Sequence

Note: A31-A24 are don't care.

2-2-6 Lock Register

Operating individual sector protection feature on MX25L12835F and MX25L12833F is similar. Both MX25L12835F and MX25L12833F have SPB and DPB to implement individual sector protection feature.

To enhance the security of the protection feature, MX25L12833F provide SPB Lock Down feature, once SPBLKDN (bit 6) is set, SPB bit value cannot be changed again and it is read-only. The Lock Register has slight difference. Please refer to the comparison table (*Table 2-6: Lock Register Comparison*) and refer to MX25L12835F and MX25L12833F datasheets for more detailed information.

Table 2-6: Lock Register Comparison

	MX25L12835F	MX25L12833F			
bit 0	Reserved	Reserved			
bit 1	Solid Protection Mode Lock Bit	Reserved			
bit 2	Password Protection Mode Lock Bit	Reserved			
bit 3	Reserved	Reserved			
bit 4	Reserved	Reserved			
bit 5	Reserved	Reserved			
bit 6	Reserved	SPBLKDN			
bit 7-15	Reserved	Reserved			

3. Performance Comparison

The MX25L12835F/33F provide higher Fast Read Program/Erase performance, and lower power consumption than the E version ones.

Table 3-1: Read Performance Comparison

Read Performance	MX25L12835E	MX25L12836E	MX25L12845E	MX25L12835F	MX25L12833F
VCC	2.7V-3.6V	2.7V-3.6V	2.7V-3.6V	2.7V-3.6V	2.7V-3.6V
Normal Read (1-1-1)	50MHz	50MHz	50MHz	50MHz	50MHz
FASTREAD (1-1-1)	104MHz	104MHz	104MHz	104MHz* 133MHz**	104MHz* 133MHz**
DREAD (1-1-2)	70MHz	70MHz	-	104MHz* 133MHz**	104MHz* 133MHz**
2READ (1-2-2)	70MHz	-	70MHz	84MHz* 133MHz**	84MHz* 133MHz**
QREAD (1-1-4)	70MHz	70MHz	-	104MHz* 133MHz**	104MHz* 133MHz**
4READ (1-4-4)	70MHz	-	70MHz	84MHz* 133MHz**	84MHz* 133MHz**
QPI (4-4-4)	-	-	-	84MHz* 133MHz**	84MHz* 133MHz**
Double Transfer Rate	-	-	50MHz	-	-
Configurable Dummy Cycles	-	-	-	Yes	Yes

Notes: * Default ** Maximum

Table 3-2: AC Performance Comparison

AC Perfo	rmance	Condition	MX25L12835E	MX25L12836E	MX25L12845E	MX25L12835F	MX25L12833F
	4KB	typ 60ms		60ms	60ms	30ms	25ms
	4ND	max.	300ms	300ms	300ms	120ms	120ms
	22KB	typ.	0.5s	0.5s	0.5s	0.15s	0.14s
Erase	32KB	max.	2s	2s	2s	0.65s	0.65s
Time	64KB	typ.	0.7s	0.7s	0.7s	0.28s	0.25s
		max.	2s	2s	2s	0.65s	0.65s
	Chip Erase	typ.	80s	80s	80s	50s	26s
		max.	200s	200s	200s	80s	60s
Program	256Puto	typ.	1.4ms	1.4ms	1.4ms	0.5ms	0.33ms
Time	256Byte	max.	5ms	5ms	5ms	1.5ms	1.2ms
Clock Low to Output	15pf	max.	8ns	9.5ns	9.5ns	6ns	6ns
Valid	30pf	max.	8ns	12ns	12ns	8ns	8ns

Table 3-3: DC Performance Comparison

DC Perfor	rmance	MX25L12835E	MX25L12836E	MX25L12845E	MX25L12835F	MX25L12833F
	Read (4I/O)	22mA	22mA	22mA	25mA	25mA
Active Current (max.)	Erase	25mA	25mA	25mA	25mA	25mA
(IIIax.)	Program 25mA 2		25mA	25mA	20mA	20mA
VCC Standby 0	Current	100uA(max.)	100uA(max.)	100uA(max.)	10uA(typ.)/ 50uA(max.)	10uA(typ.)/ 50uA(max.)
Deep Power Do	own Current	40uA(max.)	40uA(max.)	40uA(max.)	2uA(typ.)/ 20uA(max.)	2uA(typ.)/ 20uA(max.)

Note: All of the data shown in the table are maximum values unless noted as typical.

4. Package and Pinout Comparison

shows the common packages and the pinout assignments for the E and F version devices. It has an internal pull-up and can be left floating if it is not used. On the other devices, it is NC/SIO3.

The MX25L12836E and MX25L12845E support the parallel data input/output mode using pins PO[7:0], whereas the MX25L12835E and MX25L12835F/33F flash do not support this mode. This parallel mode is normally only used by external programmers and should not be a problem for incircuit applications.

The MX25L12835F/33F support the hardware RESET# function in all available packages. RESET# has an internal pull-up and can be left floating if it is not used.

Figure 4-1: Packages and Pinouts

8-PIN SOP (200mil)									
MX25L12835F	MX25L12833F			MX25L12835F	MX25L12833F				
			٦						
CS#	CS#	□ 1 T	₃ þ	VCC	VCC				
SO/SIO1	SO/SIO1	2 7	' E	RESET#/SIO3	RESET#/SIO3				
WP#/SIO2	WP#/SIO2	$\frac{3}{4}$		SCLK	SCLK				
GND	GND	5	`	SI/SIO0	SI/SIO0				
			_						

	16-PIN SOP (300mil)												
MX25L12835E	MX25L12836E	MX25L12845E	MX25L12835F	MX25L12833F					MX25L12835E	MX25L12836E	MX25L12845E	MX25L12835F	MX25L12833F
HOLD#SIO3	NC/SIO3	NC/SIO3	DNU/SIO3	DNU/SIO3]_	1	16	\neg	SCLK	SCLK	SCLK	SCLK	SCLK
VCC	VCC	VCC	VCC	vcc]⊏	2	15	\neg	SI/SIO0	SI/SIO0	SI/SIO0	SI/SIO0	SI/SIO0
RESET#	NC	NC	RESET#	RESET#]⊏	3	14	⊐İ	NC	PO6	PO6	NC	NC
NC	PO2	PO2	NC	NC]⊏	4	13	╗	NC	PO5	PO5	NC	NC
NC	PO1	PO1	NC	NC]⊏	5	12	ا⊏	NC	PO4	PO4	NC	NC
NC	P00	PO0	NC	NC]⊏	6	11	\supset	NC	PO3	PO3	NC	NC
CS#	CS#	CS#	CS#	CS#]⊏	7	10	⊐İ	GND	GND	GND	GND	GND
SO/SIO1	SO/SIO1/PO7	SO/SIO1/PO7	SO/SIO1	SO/SIO1]⊏	8	9	⊐İ	WP#/SIO2	WP#/SIO2	WP#/SIO2	WP#/SIO2	WP#/SIO2
	•		•]					•		•	•

	8-WSON											
MX25L12835E (8x6mm)	MX25L12836E (8x6mm)	MX25L12845E (8x6mm)	MX25L12835F (6x5mm, 8x6mm)	MX25L12833F (6x5mm)				MX25L12835E (8x6mm)	MX25L12836E (8x6mm)	MX25L12845E (8x6mm)	MX25L12835F (6x5mm, 8x6mm)	MX25L12833F (6x5mm)
CS#	CS#	CS#	CS#	CS#	1	\bigcup	8	VCC	VCC	VCC	VCC	VCC
SO/SIO1	SO/SIO1	SO/SIO1	SO/SIO1	SO/SIO1	2		7	HOLD#/SIO3	NC/SIO3	NC/SIO3	RESET#SIO3	RESET#/SIO3
WP#/SIO2	WP#/SIO2	WP#/SIO2	WP#/SIO2	WP#/SIO2	3		6	SCLK	SCLK	SCLK	SCLK	SCLK
GND	GND	GND	GND	GND	4		5	SI/SIO0	SI/SIO0	SI/SIO0	SI/SIO0	SI/SIO0

5. Command Code Comparison

All of the commands are listed in **Table 5-1** below. Most commands are common. Differences are attributted to unsupported or new features.

Table 5-1: Command Code Comparison

Command	Symbol	Description	MX25L12835E	MX25L12836E	MX25L12845E	MX25L12835F	MX25L12833F
	RDID	Read Identification	9Fh	9Fh	9Fh	9Fh	9Fh
ID Read	RES	Read Electronic ID	ABh	ABh	ABh	ABh	ABh
	REMS	Read Electronic Manufacturer & Device ID	90h	90h	90h	90h	90h
	REMS2	2 x I/O Read ID	EFh	EFh	EFh	-	-
	REMS4	4 x I/O Read ID	DFh	DFh	DFh	-	-
	QPIID	QPI ID Read	-	-	-	AFh	AFh
	READ	Read Data	03h	03h	03h	03h	03h
	FAST READ	Fast Read	0Bh	0Bh	0Bh	0Bh	0Bh
	2READ	2 x I/O Fast Read	BBh	-	BBh	BBh	BBh
	DREAD	1I 2O Fast Read	3Bh	3Bh	-	3Bh	3Bh
	4READ	4 x I/O Fast Read	EBh	-	EBh	EBh	EBh
Read	QREAD	1I 4O Fast Read	6Bh	6Bh	-	6Bh	6Bh
read	W4READ	4 x I/O Fast Read with 4 dummy clock cycles	E7h	-	-	-	-
	FASTDTRD	Fast DT Read	-	-	0Dh	-	-
	2DTRD	Dual I/O DT Read	-	-	BDh	-	-
	4DTRD	Quad I/O DT Read	-	-	EDh	-	-
	RDSFDP	-	5Ah	5Ah	5Ah	5Ah	5Ah
	SE	Sector Erase	20h	20h	20h	20h	20h
Erase	BE (64K)	Block Erase 64KB	D8h	D8h	D8h	D8h	D8h
Liase	BE (32K)	Block Erase 32KB	52h	52h	52h	52h	52h
	CE	Chip Erase	60h or C7h	60h or C7h	60h or C7h	60h or C7h	60h or C7h
	PP	Page Program	02h	02h	02h	02h	02h
Program	4PP	Quad Page Program	38h	38h	38h	38h	38h
	СР	Continuously Program Mode	ADh	ADh	ADh	-	-
	WREN	Write Enable	06h	06h	06h	06h	06h
	WRDI	Write Disable	04h	04h	04h	04h	04h
	DP	Deep Power Down	B9h	B9h	B9h	B9h	B9h
	RDP	Release from Deep Power Down	ABh	ABh	ABh	ABh	ABh
	EQIO	Enable QPI	-	-	-	35h	35h
	RSTQIO	Reset (Exit) QPI	-	-	-	F5h	F5h
	SBL	Set Burst Length	77h	-	-	C0h	C0h
	WPSEL	Write Protect Selection	68h	68h	68h	68h	68h
Mode	ESRY	Enable SO to Output RY/BY#	70h	70h	70h	-	-
	DSRY	Disable SO to Output RY/BY#	80h	80h	80h	-	-
	ENPLM	Enter Parallel Mode	-	55h	55h	-	-
	EXPLM	Exit Parallel Mode	-	45h	45h	-	-
	HPM	High Performance Mode Enable	-	-	A3h	-	-
	ENSO	Enter Secured OTP	B1h	B1h	B1h	B1h	B1h
	EXSO	Exit Secured OTP	C1h	C1h	C1h	C1h	C1h
	PGM/ERS Suspend	Suspend Program/ Erase	-	-	-	B0h	75h or B0h
	PGM/ERS Resume	Resume Program/ Erase	-	-	-	30h	7Ah or 30h

Table 5-1: Command Code Comparison - Reset/Register/Protection

Command	Symbol	Description	MX25L12835E	MX25L12836E	MX25L12845E	MX25L12835F	MX25L12833F
Reset	NOP	No Operation	00h	-	-	00h	00h
	RSTEN	Reset Enable	66h	-	-	66h	66h
	RST	Reset Memory	99h	-	-	99h	99h
	CLSR	Clear SR Fail Flags	30h	30h	30h	-	-
	WRSR	Write Status Register	01h	01h	01h	01h	01h
	RDSR	Read Status Register	05h	05h	05h	05h	05h
	RDSCUR	Read Security Register	2Bh	2Bh	2Bh	2Bh	2Bh
	WRSCUR	Write Security Register	2Fh	2Fh	2Fh	2Fh	2Fh
Register	RDCR	Read Configuration Register	-	-	-	15h	15h
	RDFBR	Read Fast Boot Register	-	-	-	16h	-
	WRFBR	Write Fast Boot Register	-	-	-	17h	-
	ESFBR	Erase Fast Boot Register	-	-	-	18h	-
	SBLK	Single Block Lock	36h	36h	36h	-	-
	SBULK	Single Block Unlock	39h	39h	39h	-	-
	RDBLOCK	Block Protect Read	3Ch	3Ch	3Ch	-	-
	GBLK	Gang Block Lock	7Eh	7Eh	7Eh	7Eh	7Eh
	GBULK	Gang Block Unlock	98h	98h	98h	98h	98h
	WRLR	Write Lock Register	-	-	-	2Ch	2Ch
	RDLR	Read Lock Register	-	-	-	2Dh	2Dh
	RDPASS	Read Password Register	-	-	-	27h	-
Protection	WRPASS	Write Password Register	-	-	-	28h	-
	PASSULK	Password Unlock	-	-	-	29h	-
	RDSPB	Read SPB Status	-	-	-	E2h	E2h
	WRSPB	SPB bit Program	-	-	-	E3h	E3h
	ESSPB	All SPB bit Erase	-	-	-	E4h	E4h
	SPBLK	SPB Lock Set	-	-	-	A6h	-
	RDSPBLK	Read SPB Lock Register	-	-	-	A7h	-
	RDDPB	Read DPB Register	-	-	-	E0h	E0h
	WRDPB	Write DPB Register	-	-	-	E1h	E1h

6. Device ID Code Comparison

The Manufacturer and Device IDs are not changed, as shown in Table 6-1.

Table 6-1: ID Code Comparison

Electron	ic Identification	MX25L12835E	MX25L12836E	MX25L12845E	MX25L12835F	MX25L12833F
	Manufacturer ID	C2h	C2h	C2h	C2h	C2h
RDID	Туре	20h	20h	20h	20h	20h
	Density	18h	18h	18h	18h	18h
RES	Electronic ID	17h	17h	17h	17h	17h
REMS/ REMS2/ REMS4	Manufacturer ID	C2h	C2h	C2h	C2h	C2h
	Device ID	17h	17h	17h	17h	17h

7. Summary

The MX25L12835F/33F is backwards compatible with most of the common commands and features of the earlier E versions.

The MX25L12835F has additional 4K-bit secured OTP mode while MX25L12833F has additional 8K-bit secured OTP mode. Futhermore, MX25L12833F does not provide fast boot mode and password protection.

8. References

Table 8-1 shows the datasheet versions used for comparison in this application note. For the most current Macronix specification, please refer to the Macronix Website at http://www.macronix.com

Table 8-1: Datasheet Version

Datasheet	Location	Date Issued	Versions
MX25L12833F	Macronix Website	October 17, 2017	1.0
MX25L12835F	Macronix Website	July 22, 2016	1.6
MX25L12845E	Macronix Website	September 06, 2013	1.9
MX25L12836E	Macronix Website	August 01, 2012	1.7
MX25L12835E	Macronix Website	May 28, 2012	1.3

9. Revision History

Table 9-1: Revision History

Revision No.	Description	Page	Date
Rev. 1	Initial Release	ALL	September 06, 2017
Rev. 2	Updated MX25L12833F Program and Erase values	9, 13	October 17, 2017
Rev. 3	Updated datasheet issued date	13	October 19, 2017
Rev. 4	Revised DC Performance Comparison Added "Macronix Proprietary" footnote	9, ALL	July 10, 2018

Except for customized products which have been expressly identified in the applicable agreement, Macronix's products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe property damages. In the event Macronix products are used in contradicted to their target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its actual use in accordance with the applicable laws and regulations; and Macronix as well as its suppliers and/or distributors shall be released from any and all liability arisen therefrom.

Copyright© Macronix International Co., Ltd. 2017-2018. All rights reserved, including the trademarks and tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, Nbit, Macronix NBit, HybridNVM, HybridFlash, HybridXFlash, XtraROM, KH Logo, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE, Macronix MAP, RichBook, Rich TV, OctaRAM, OctaBus, OctaFlash, and FitCAM. The names and brands of third party referred thereto (if any) are for identification purposes only.

For the contact and order information, please visit Macronix's Web site at: http://www.macronix.com

MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.