(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-96909

(43)公開日 平成9年(1997)4月8日

(51) Int. Cl. 6		識別記号	庁内整理番号	F I				技術表示箇所
G03F 7	/26	5 1 3		G03F	7/26	5 1 3		次 (13人(14国))
7	/022		-		7/022			
7	/20	5 2 1			7/20	5 2 1		
7	/38	5 1 1			7/38	5 1 1		•
H 0 1 L 21	/3065			H 0 1 L	43/08		D	C12-14
	審査請	求 未請求	請求項の数14	FD			(全21	頁) 最終頁に続く
(21)出願番号	特靡	[平8-215216		(71)出願人	000003	067		
,							イ株式会	·社
(22)出願日	平成	8年(1996)7月	126日]13番1号
				(72)発明者				
(31)優先権主張番号	号 特願	平7-209950			東京都	中央区日	本橋一丁	1目13番1号 ティ
(32)優先日	平7((1995)7月26日	3		ーディ	ーケイ株	式会社内	
(33)優先権主張国	日本	(JP)		(74)代理人	弁理士	石井	陽一	
					<i>*</i>			

(54) 【発明の名称】T形断面のレジストパターンおよびその製造方法ならびに磁気抵抗効果型薄膜素子

(57)【要約】

【課題】 磁気抵抗効果型薄膜素子の電極パターン等を 形成する際の不良品率を極めて低く抑えるために、良好 なコントラストのT形断面を有するレジストパターンを 提供する。

【解決手段】 画像反転対応ポジ型レジストを用いて形成された均質なレジストパターンであって、断面 110 が 110 で 11

【特許請求の範囲】

【請求項1】 アルカリ可溶性フェノール樹脂とナフトキノンジアジドとの混合物を含有するポジ型レジストにネガティブワーキング化剤が添加されて画像反転機能が付与されたレジスト剤を用いて形成された実質的に均質なレジストパターンであり、

断面形状が、基板表面から上に延び実質的にT形の縦バー部を構成する縦バー部分と、この縦バー部分に連続し基板表面に対して間隔を置いた状態で横に延び実質的にT形の横バー部を構成する横バー部分とを備えるT形状 10であり、

前記断面形状において、横バー部分下縁の接線と基板表面とのなす角のうちの最小値をαとし、横バー部分最外側縁から基板表面に下ろした垂線と基板表面との交点Wοと、前記最外側縁側の縦バー部分側縁と基板表面とが接する点Wiとの中間位置における横バー部分下縁と基板表面との間隔をhとしたとき、h-αグラフにおいてαおよびhが

 $A: \alpha = 0$ °, h = 0. $01 \mu m$,

B: $\alpha = 2.0^{\circ}$, $h = 0.01 \mu m$,

 $C: \alpha = 20^{\circ}, h = 0.2 \mu m$

 $D : \alpha = 0$ °, h = 0. $3 \mu m$

の4点をこの順で結んだ四辺形で囲まれた範囲内(辺上を含む)に存在するT形断面のレジストパターン。

【請求項2】 前記 $h-\alpha$ グラフにおいて α およびhが

A: $\alpha = 0$ °, h = 0. $0.1 \mu m$,

 $X : \alpha = 5^{\circ}, h = 0.01 \mu m$

 $Y: \alpha = 5^{\circ}, h = 0.15 \mu m$

 $Z : \alpha = 0$ °, h = 0. 15 μ m

の4点をこの順で結んだ四辺形で囲まれた範囲内(辺上 30 を含む)に存在する請求項1のT形断面のレジストパターン。

【請求項3】 前記 $h - \alpha$ グラフにおいて α およびhが

 $A: \alpha = 0$ °, h = 0. $01 \mu m$,

 $X: \alpha = 5$ °, h = 0. $0.1 \mu m$,

 $G: \alpha = 5$ °, h = 0. $1 \mu m$,

 $H: \alpha = 0^{\circ}, h = 0.1 \mu m$

の4点をこの順で結んだ四辺形で囲まれた範囲内(辺上を含む)に存在する請求項1のT形断面のレジストパターン。

【請求項4】 横バー部分最外側縁から基板表面に下ろした垂線と基板表面との交点Woと、前記最外側縁側の縦バー部分側縁と基板表面とが接する点Wiとの距離をWとしたとき、

W = 0. $0.3 \sim 3 \mu m$

である請求項 $1 \sim 3$ のいずれかのT 形断面のレジストパターン。

【請求項5】 前記横バー部分の最大幅をHwとしたとき、

Hw=0. $1\sim7~\mu$ m

である請求項 $1 \sim 4$ のいずれかのT形断面のレジストパターン。

【請求項6】 前記縦バー部分が基板表面と接している 領域の幅をVwとしたとき、

 $Vw/Hw=0.1\sim0.995$

である請求項5のT形断面のレジストパターン。

【請求項7】 表面が金属材料またはセラミックス材料から構成される基板の表面上に形成されたものである請求項1~6のいずれかのT形断面のレジストパターン。

【請求項8】 アルカリ可溶性フェノール樹脂とナフトキノンジアジドとの混合物を含有するポジ型レジストにネガティブワーキング化剤が添加されて画像反転機能が付与されたレジスト剤を用い、レジスト塗膜の形成、露光、リバーサルベークおよび現像の各段階をこの順で有するパタニング過程によりレジストパターンを製造する際に、

断面が逆台形状のレジストパターンが得られる条件下において、レジスト強膜厚さの減少、露光量の減少、リバーサルベーク温度の低温化、リバーサルベーク時間の短20 縮、現像液温度の高温化および現像時間の延長から選択される少なくとも1種の条件変更を加えることにより、断面がT形状であるレジストパターンを製造可能とするT形断面のレジストパターンの製造方法。

【請求項9】 レジスト塗膜へ露光する際の焦点位置を、レジスト塗膜表面を基準として基板に近寄る方向をマイナスとし基板から遠ざかる方向をプラスとして表示したとき、前記焦点位置が-1~+10 μm である請求項8のT形断面のレジストパターンの製造方法。

【請求項10】 リバーサルベークを100~123℃ の温度で30秒間~13分間行う請求項8または9のT 形断面のレジストパターンの製造方法。

【請求項11】 請求項1~7のいずれかのT形断面の レジストパターンを製造する請求項8~10のいずれか のT形断面のレジストパターンの製造方法。

【請求項12】 請求項1~7のいずれかのT形断面の レジストパターンをレジストカバーとして用いたリフト オフ法により、磁気抵抗効果膜および磁気抵抗効果膜用 電極膜のうち少なくとも1層が形成されたものである磁 気抵抗効果型薄膜素子。

【請求項13】 請求項1~7のいずれかのT形断面の レジストパターンをレジストカバーとして用いたミリン グパタニング法により、磁気抵抗効果膜、磁気抵抗効果 膜用電極膜およびシールド膜の少なくとも1層が形成さ れたものである磁気抵抗効果型薄膜素子。

【請求項14】 請求項1~7のいずれかのT形断面のレジストパターンをレジストカバーとして用い、ミリングパタニング法とリフトオフ法との併用法により、磁気抵抗効果膜と磁気抵抗効果膜用電極膜との連続膜が形成されたものである磁気抵抗効果型薄膜素子。

【発明の詳細な説明】

40

[0001]

【発明の属する技術分野】本発明は、T形断面のレジストパターンおよびその製造方法と、磁気抵抗効果膜、磁気抵抗効果膜用電極膜およびシールド膜の少なくとも1層が前記レジストパターンを用いて形成されたものである磁気抵抗効果型薄膜素子とに関する。

[0002]

【従来の技術】従来、断面形状が逆台形もしくはT形を 示すレジストパターンの形成方法としては、下記に示す 方法が知られている。

【0003】(A)断面が逆台形で、かつ単一のレジストから構成されるパターンを形成する方法

- (a) 1層のネガ型レジストを使用する方法
- (i) ネガ型レジストを、紫外線露光により露光量を低めにする以外は通常の方法で露光しパタニングを行う方法(特開昭61-136226号公報参照)。

【0004】(b)1層のポジ型レジストを使用する方 法

- (i) プリベーク、ポストベーク時に、レジストの基板 側を表面側よりも低温度にする方法。プリベークに関し 20 ては、特開昭 54-72678 号公報に、ポストベーク に関しては、特開平 3-101218 号公報にそれぞれ 記載されている。
- (ii) ボジ型の電子線用レジスト膜に対して遠紫外線で 露光する方法(特開平1-50423号公報参照)。
- (iii) ノボラック型レジストを塗布後、露光前に高真空中に保持する方法(特開平3-257817号公報参照)。
- (iv) 透明基板上に塗布したレジストの表裏両側から紫外線露光を行う方法(特開平5-37275号公報参照)。
- (v)電子線ビームでポジ型レジストを露光するとき、 一旦、パターン部と非パターン部とを作製し、これらの 上に保護膜を形成し、この保護膜を利用して非パターン 部を除去して、露光時間を短縮する方法(特開昭 5 1 -1 4 7 2 6 1 号公報参照)。
- (vi) レジストのポリマー自体の紫外線吸収係数、またはレジストへの架橋剤の添加量を所定値にする方法(特開昭 58-16527 号公報参照)。
- (vii) 露光光を吸収する染料で着色したフォトレジスト 40 を基板上に塗布し、ついで溶剤に浸して、レジスト中の厚み方向の着色濃度分布を制御する方法(特開平1-2 84851号公報参照)。

【0005】(c)画像反転機能を付与したポジ型レジスト(1層)を使用する方法

(i) レジストとしてHoechst 社製AZ5200Eシリーズを用いる方法

このレジストを用いることにより、逆台形形状の断面を 有するパターンが作製できることが知られている {AZ 5200Eシリーズカタログ、 M. ボルゼン、「ポジ 50

型ホトレジストの画像反転によるサブミクロン加工技術」、電子材料、6、1 (1986)、および M. Spac et al, "Mechanism and lithographic evaluation of im age reversal in AZ5214 photoresist.", Proc. of conference on photopolymers principle processing and materials. Ellenville (1985))。このレジストは、アルカリ可溶性フェノール樹脂とナフトキノンジアジドとの混合物であるボジ型レジストに塩基性アミンなどのネガティブワーキング化剤を添加することにより画像反転機10 能を付与したものである。

【0006】(B) 断面がT形のパターンを形成する方 _注

- (a) 1層レジストを使用する方法
- (i) 飛程の異なる2種類の荷電ビームを用いてネガ型 レジストを感光する方法(特開昭62-105423号 公報参照)。ただし、同公報では、リンスして乾燥した 後の収縮により、断面T字状のパターンが断面長方形状 のパターンに変化している。

【0007】(b)2層レジストを使用する方法

- (i) 2層構造のポジ型レジストに対し、所定パターン形状に対応した所定照射量による露光と同パターン形状中心部への所定照射量による露光との、適切な照射量での2重露光を行う方法(特開昭62-141548号公報参照)。
- (ii) 分離層を介して積層された上下2層の電子ビームレジストに、同時に所定のパターンを露光する方法(特公昭63-55208号公報参照)。
- (iii) 第1のフォトレジスト膜表面に第2のフォトレジスト膜の現像処理に耐性をもつ変成層を形成する方法 (特開平2-65139号公報参照)。
- (iv) 2層構造のレジスト膜を設け、下層レジスト上面のパターン開口幅を上層レジスト下面の開口幅よりも大きくする方法(特開平2-208934号公報参照)。 【0008】以上、種々の従来例を説明したが、その多くがレジストパターンの断面形状が逆台形であり、また、T形断面と認められる場合であっても、レジストを2層用いる必要があったり露光を2回する必要があった

りなどして、形成が非常に困難であり現実性が伴わない

① 【0009】ところで、基板上に電極パターン等を形成する方法としては、リフトオフ法、ミリングパタニング法およびこれらの併用法がある。以下にこれらの方法の概要と断面T字形のレジスト形状が望ましい理由とを述べる。

【0010】ミリングパタニング法

ものであった。

イオンミリングを用いたパターン形成方法の一例を、図2に示す。この方法では、まず、基板全面に被ミリング膜を形成する。次いで、被ミリング膜の表面にレジスト層を形成し、これをパタニングしてレジストカバーとし、このレジストカバーをマスクとして被ミリング膜を

イオンミリングする。その後、レジストカバーを有機溶剤による溶解やアッシングなどにより取り除き、パタニングされた被ミリング膜を得る。

【0011】従来例のようにレジストカバーの断面形状が長方形もしくは逆台形の場合、イオンミリング法を用いて被ミリング膜をエッチングする際に、被ミリング膜から飛散した粒子がレジストカバー側壁に付着して成長し、被ミリング膜の表面にまで達する、すなわち、被ミリング膜に再付着することがある(図3参照)。このため、レジストカバーを取り除いたとき、再付着した部分 10が被ミリング膜の表面に微小突起として残ってしまうということがあった。

【0012】レジストカバーの断面形状がT形の場合でも、エッチングの際に被ミリング膜からの飛散粒子がレジストカバーに付着するが、T形の場合にはレジストカバー下部がくびれているため、くびれ部分の高さが十分であれば、付着層が被ミリング膜の表面と連続するように成長することはない(図4参照)。このため、レジストカバーを取り除いたときに付着層もレジストカバーとともに取り除かれ、再付着部分が被ミリング膜の表面に20残ることなく良好にパタニングされた被ミリング膜が得られる。

【0013】リフトオフ法

次に、リフトオフ法について説明するが、ここでは、上記のパタニングされた被ミリング膜の上にリフトオフ法によりパタニングされた膜を形成する場合について説明する。この方法は、例えば、磁気抵抗効果膜の上にリード層を形成する一連の工程などに用いられる。

【0014】このリフトオフ法の一例を図5に示す。図5に示す方法では、まず、パタニングされた被ミリング30膜を表面に有する基板を用意し、この基板上にレジスト層を形成した後、パタニングすることにより、図示するようなレジストカバーを形成する。次いで、レジストカバーを含む基板表面全面に、金属やセラミックスなどの被パタニング膜を成膜する。次いで、レジストを溶解可能な有機溶媒中にて、被パタニング膜のうちレジストカバー上に存在する領域をレジストカバーとともに取り除き、パタニング膜を得る。

【0015】このプロセスでは、有機溶媒が十分にレジストカバー中に浸透しなくてはならない。しかしながら、従来例のようにレジストカバーの断面形状が逆台形の場合、被パタニング膜を成膜する際に、図6に示したように被パタニング膜がレジストカバー側壁にも付着してレジストカバーを覆ってしまう。このため、有機溶媒が十分にレジストカバー中に浸透することができず、レジストカバーを取り除くことができなくなることがあった。

【0016】一方、レジストカバーの断面形状がT形の場合、図7に示したように、レジストカバー下部のくびれ部分(ひさし部分の下側)の高さが被パタニング膜の 50

厚さ未満であれば、被パタニング膜を成膜する際にレジストカバーひさし部分の上面とその側壁とには成膜されるが、くびれ部分はひさし部分の陰となるため、くびれ部分には成膜されない。したがって、成膜した膜がレジストカバーを完全に覆ってしまうことはなく、くびれ部分から有機溶媒がレジストカバー中に浸透し、レジストカバーとともにその上に成膜された膜を確実に取り除くことができる。

【0017】 <u>ミリングパタニング法とリフトオフ法との</u> 併用法

この併用法の一例を図8に示す。この方法では、まず、基板表面の全面に被ミリング膜を形成した後、レジスト層を形成し、このレジスト層をパタニングしてレジストカバーとする。図示例では、断面が逆台形のレジストカバーを形成している。次いで、イオンミリング法により被ミリング膜をパタニングした後、レジストカバーを取り除くことなく、そのレジストカバーをそのままリフトオフ法のレジストカバーとして使用して、金属やセラミックスなどを成膜する。次いで、レジストカバーとともにその上に存在する金属やセラミックスなどの膜を取り除く。このような工程により、基板表面には、イオンミリング法によりパタニングされた被ミリング膜と、リフトオフ法によりパタニングされた金属やセラミックスなどの膜との連続膜が形成される。

【0018】この併用法において、従来例のようにレジストカバーの断面形状が長方形もしくは逆台形の場合、先に述べた理由により、前記連続膜のイオンミリング法によりパタニングされた膜とリフトオフ法によりパタニングされた膜との境目に微小突起が残ってしまうことがある。また、レジストカバーを取り除くことができない場合もある。

【0019】レジストカバーの断面形状がT形の場合、 先に述べた理由により上記のような問題は発生せずに、 イオンミリング法によりパタニングされた膜とリフトオ フ法によりパタニングされた膜との良好な連続膜を得る ことができる。

[0020]

【発明が解決しようとする課題】従来の技術では、1層 40 レジストにより断面が逆台形のレジストパターンは得られるものの、T形断面のレジストパターンを形成しようとした場合、良好なコントラストのあるT形断面は得られなかった。例えば、1層レジストでは、図17~20に示されるように、断面が逆台形のレジストパターンしか得られていない(いずれもAZ5200Eカタログより)。パタニングの際の露光光は、図17がエキシマレーザーであり、図18がi線であり、図17がエキシマレーザーであり、図18がi線であり、図19がg線であり、図20がi線、g線およびh線を含む広帯域光であるが、いずれの露光光を用いた場合でも断面がT形とは50 なっていない。

【0021】一方、従来の技術で、2層レジストにより 断面がT形をしているレジストパターンを形成しようと した場合、非常に手間がかかる上、レジスト界面におい てレジスト間のミキシングが起こり、良好なコントラス トのあるT形は得られなかった。

【0022】このように、従来においては良好なコントラストのT形断面のレジストパターンは得られておらず、したがって、この従来のT形断面のレジストパターンを用いて磁気抵抗効果型薄膜素子の磁気抵抗効果膜用電極パターン等を形成した場合、必要な電極パターン以 10外の部分に電極材料が残存してしまうことが多く、製品の不良品率が高かった。

【0023】本発明の目的は、磁気抵抗効果型薄膜素子の電極パターン等を形成する際の不良品率を極めて低く抑えるために、良好なコントラストのT形断面を有するレジストパターンを提供することであり、また、このレジストパターンを用いて電極パターン等が形成された磁気抵抗効果型薄膜素子を提供することである。

[0024]

【課題を解決するための手段】このような目的は、下記 20 $(1) \sim (14)$ のいずれかの構成により達成される。

(1) アルカリ可溶性フェノール樹脂とナフトキノンジアジドとの混合物を含有するポジ型レジストにネガティブワーキング化剤が添加されて画像反転機能が付与されたレジスト剤を用いて形成された実質的に均質なレジストパターンであり、断面形状が、基板表面から上に延び実質的にT形の縦バー部を構成する縦バー部分と、この縦バー部分に連続し基板表面に対して間隔を置いた状態で横に延び実質的にT形の横バー部を構成する横バー部分とを備えるT形状であり、前記断面形状において、横30バー部分下縁の接線と基板表面とのなす角のうちの最小値を α とし、横バー部分最外側縁から基板表面に下ろした垂線と基板表面との交点Woと、前記最外側縁側の縦バー部分側縁と基板表面とが接する点Wiとの中間位置における横バー部分下縁と基板表面との間隔をhとしたとき、 $h-\alpha$ グラフにおいて α およびhが

 $A: \alpha = 0$ °, h = 0. $01 \mu m$,

B: $\alpha = 20^{\circ}$, h = 0. $01 \mu m$,

C: $\alpha = 2 \ 0$ °, h = 0. $2 \ \mu \, \text{m}$,

 $D: \alpha = 0$ °, h = 0. $3 \mu m$

の4点をこの順で結んだ四辺形で囲まれた範囲内(辺上を含む)に存在するT形断面のレジストパターン。

(2) 前記 $h-\alpha$ グラフにおいて α およびhが

 $A: \alpha = 0^{\circ}, h = 0.01 \mu m$

 $X : \alpha = 5^{\circ}, h = 0. 01 \mu m$

 $Y : \alpha = 5^{\circ}, h = 0.15 \mu m$

 $Z : \alpha = 0$ °, h = 0. 15 μ m

の4点をこの順で結んだ四辺形で囲まれた範囲内(辺上を含む)に存在する上記(1)のT形断面のレジストパターン。

(3)前記 $h-\alpha$ グラフにおいて α およびhが

 $A : \alpha = 0^{\circ}, h = 0.01 \mu m$

 $X : \alpha = 5^{\circ}, h = 0.01 \mu m$

 $G: \alpha = 5$ °, h = 0. $1 \mu m$,

 $H: \alpha = 0$ °, h = 0. $1 \mu m$

の4点をこの順で結んだ四辺形で囲まれた範囲内(辺上を含む)に存在する上記(1)のT形断面のレジストパターン。

(4)横バー部分最外側縁から基板表面に下ろした垂線 と基板表面との交点Woと、前記最外側縁側の縦バー部 分側縁と基板表面とが接する点Wiとの距離をWとした とき、

W=0. $0.3\sim3~\mu$ m

である上記(1)~(3)のいずれかのT形断面のレジストパターン。

(5) 前記横バー部分の最大幅をHwとしたとき、

Hw=0. $1\sim7~\mu$ m

である上記(1) \sim (4)のいずれかのT形断面のレジストパターン。

(6)前記縦バー部分が基板表面と接している領域の幅 をVwとしたとき、

Vw/Hw=0. $1\sim0$. 995 である上記(5)のT形断面のレジストパターン。

(7) 表面が金属材料またはセラミックス材料から構成される基板の表面上に形成されたものである上記(1)~(6)のいずれかのT形断面のレジストパターン。

(8) アルカリ可溶性フェノール樹脂とナフトキノンジアジドとの混合物を含有するポジ型レジストにネガティブワーキング化剤が添加されて画像反転機能が付与されたレジスト剤を用い、レジスト塗膜の形成、露光、リバーサルベークおよび現像の各段階をこの順で有するパタニング過程によりレジストパターンを製造する際に、断面が逆台形状のレジストパターンが得られる条件下において、レジスト塗膜厚さの減少、露光量の減少、リバーサルベーク温度の低温化、リバーサルベーク時間の短縮、現像液温度の高温化および現像時間の延長から選択される少なくとも1種の条件変更を加えることにより、断面がT形状であるレジストパターンを製造可能とするT形断面のレジストパターンの製造方法。

40 (9) レジスト塗膜へ露光する際の焦点位置を、レジスト塗膜表面を基準として基板に近寄る方向をマイナスとし基板から遠ざかる方向をプラスとして表示したとき、前記焦点位置が-1~+10μmである上記(8)のT形断面のレジストパターンの製造方法。

(10) リバーサルベークを100~123℃の温度で30秒間~13分間行う上記(8) または(9) のT形断面のレジストパターンの製造方法。

(11)上記(1)~(7)のいずれかのT形断面のレジストパターンを製造する上記(8)~(10)のいず 50 れかのT形断面のレジストパターンの製造方法。 (12)上記(1)~(7)のいずれかのT形断面のレジストパターンをレジストカバーとして用いたリフトオフ法により、磁気抵抗効果膜および磁気抵抗効果膜用電極膜のうち少なくとも1層が形成されたものである磁気抵抗効果型薄膜素子。

(13)上記(1)~(7)のいずれかのT形断面のレジストパターンをレジストカバーとして用いたミリングパタニング法により、磁気抵抗効果膜、磁気抵抗効果膜用電極膜およびシールド膜の少なくとも1層が形成されたものである磁気抵抗効果型薄膜素子。

(14)上記(1)~(7)のいずれかのT形断面のレジストパターンをレジストカバーとして用い、ミリングパタニング法とリフトオフ法との併用法により、磁気抵抗効果膜と磁気抵抗効果膜用電極膜との連続膜が形成されたものである磁気抵抗効果型薄膜素子。

[0025]

【作用】本発明では、1層レジスト、すなわち、全体が 均質であるレジストを利用し、パタニング条件を上記し たように制御することにより、T形断面のレジストパタ ーンを実現した。

【0026】本発明のT形断面のレジストパターンは、全体が均質なレジストで形成され、上記 αおよびhが所定範囲内にある高コントラストのT形断面形状をなしているので、これを用いて磁気抵抗効果型薄膜素子の電極パターン等を形成した場合、不良品率を著しく低減することができ、最良の場合には、100%の良品率を実現できる。

【0027】なお、本出願の基礎出願(特願平7-20 9950号)の前には、1層のレジストを用い、かつ1 回の画像露光でT形断面のパターンを形成できた例はな 30 いが、本出願の基礎出願の出願後に出版された文献「IE EE TRANSACTIONS ON MAGNETICS, VOL. 32 NO. 1, JANUARY 1 996 」の第25~30ページには、T形断面のレジスト パターンが記載されている。同文献では、露光量や露光 後ベーク(本明細書におけるリバーサルベークに相当) 温度の変更により、断面形状や、リフトオフ後に残存す る再付着物の量などがどのような影響を受けるかを測定 しており、その結果が表3に示されている。ただし、同 文献には、露光量やベーク温度の絶対値は記載されてお らず、使用したレジストの種類も記載されていない。同 40 文献の表3に記載されているレジストパターンは、露光 光としてi線カットの広帯域光を用いて形成されたもの であり、断面の全幅(W)が3.6 μm 以上、T形の縦 バー部の高さ(Η)が0.2μω以上である。なお、露 光光の種類は、同文献で使用している露光装置から判断 した。

【0028】同文献では、基板としてSiウエハーを用いている。また、同文献の図4には、基板およびレジストパターンの断面の走査型電子顕微鏡写真が記載されているが、この図4を見るかぎり、レジストパターンはS 50

iウエハー表面上に直接形成されていると思われる。しかし、本発明者らの実験によれば、Siウエハー表面に T形断面のレジストパターンを直接形成することは不可能であった。その具体的理由としては、本発明で用いるレジストはSiウエハーとの接着性が悪く、かつT形断面のレジストパターンは基板との接触面積が狭く、かつ本発明では好ましくはi線を用いて微細なレジストパターンを作製するので、Siウエハーからレジストパターンが剥離しやすいことが考えられる。このため本発明では、パタニング条件を上記のように制御すると共に、SiやSiO2以外の表面を有する基板を用いることにより、微細なT形断面レジストパターンの形成を可能としている。これに対し上記文献には、i線を用いた微細な T形断面レジストパターンについては記載されていない。

10

[0029]

【発明の実施の形態】以下、本発明の実施の形態につい て詳細に説明する。

【0030】本発明のレジストパターンは、画像反転対 20 応ポジ型レジストを後述するような方法でパタニングして形成されたものであり、1層レジストをパタニングしたものなので、実質的に均質である。

【0031】本明細書において画像反転対応ボジ型レジストとは、ボジ型レジストを主剤とし、これにネガティブワーキング化剤が添加されて画像反転機能が付与されたレジスト剤であり、画像露光→加熱 {以下、リバーサルベーク(RB)}→様露光(以下、フラッド露光)→現像という一連の工程によりパタニングした場合には、ネガ型レジストと同様に画像露光部分が残るものである。

【0032】本発明では、アルカリ可溶性フェノール樹脂とナフトキノンジアジドとの混合物を含有するボジ型レジストを主剤とし、これにネガティブワーキング化剤を添加した構成の画像反転対応ボジ型レジストを用いる。

【0033】上記アルカリ可溶性フェノール樹脂とは、フェノールホルムアルデヒドノボラック樹脂、クレゾールホルムアルデヒドノボラック樹脂等である。

【0034】上記ナフトキノンジアジド化合物とは、少なくとも1つのナフトキノンジアジド基を有する化合物で活性光照射によりアルカリ溶液に対する溶解性を増すものである。このような化合物としては、種々の構造の化合物が知られており、特にヒドロキシル化合物の一種や、0-ペンソあるいは0-ナフトキノンジアジドスルホン酸のエステルが好ましい。これらの化合物としては、<math>2, 2, -ジヒドロキシージフェニルービスー[ナフトキノン-1, 2-ジアジド-5-スルホン酸エステル]、2, 2, 4, 4, -テトラヒドロキシジフェニルーテトラ[ナフトキノン-1, 2-ジアジド-5-スルホン酸エステル]、2, 2, 3, 4-トリオキシベンソフェ

ノンービスー[ナフトキノンー1,2ージアジドー5ー スルホン酸エステル]等があり、特に特公昭43-25 403号公報に記載されているアセトンとピロガロール の縮重合により得られるポリヒドロキシフェニルとナフ トキノン-1, 2-ジアジド-5-スルホン酸のエステ ル等を挙げることができる。

【0035】上記ネガティブワーキング化剤としては、 アミン、水酸基を有する芳香族炭化水素、1-ヒドロキ シエチルー2-アルキルイミダゾリンまたはシエラック などが挙げられる。

【0036】上記ネガティブワーキング化剤のアミンと しては、例えばジアルキルアミン、トリアルキルアミ ン、ヒドロキシアルキル基を有する第二アミンまたは第 三アミン(以下、ヒドロキシアルキルアミンとい う。)、ジアルキルアミノ芳香族炭化水素、環状ポリア ミンをあげることができる。ジアルキルアミンの具体例 としては、ジアミルアミン、ジヘプチルアミン、ジデシ ルアミンなどがあり、トリアルキルアミンの具体例とし てはトリプチルアミン、トリアミルアミン、トリヘキシ ルアミン、トリイソアミルアミンを、ヒドロキシアルキ 20 ルアミンの具体例としてはジエタノールアミン、N-メ チルエタノールアミン、N-メチルジエタノールアミ ン、ジブロパノールアミン、トリエタノールアミンを、 ジアルキルアミノ芳香族炭化水素の具体例としてはジエ チルアニリン、ジプロピルアニリンを、環状ポリアミン の具体例としてはヘキサメチレンテトラミンをそれぞれ あげることができる。

【0037】また、水酸基を有する芳香族炭化水素とし ては、エステル化あるいはエーテル化可能な水酸基を1 個以上有する芳香族炭化水素を用いることができる。水 30 酸基を有する芳香族炭化水素の例としては、水酸基を有 するベンゼン環を有する樹脂およびヒドロキシベンゼン 化合物があり、水酸基を有するベンゼン環を有する樹脂 の具体例としては、フェノールホルムアルデヒドノボラ ック樹脂、クレゾールホルムアルデヒドノボラック樹脂 をあげることができる。ヒドロキシベンゼン化合物の具 体例としては、ピロガロール、フロログルシノール、 2, 2-ビス(4-ヒドロキシフェニル)プロパンを、 1-ヒドロシキエチル-2-アルキルイミダゾリンの具 体例としては、アルキル基の炭素原子数が7~17まで 40 の化合物およびそれらの混合物が挙げられる。

【0038】これらネガティブワーキング化剤として好 ましい化合物は、たとえばトリエタノールアミン、N-メチルエタノールアミン、N-メチルジエノールアミ ン、ジエチルアニリン、ヘキサメチレンテトラミン、ト リブチルアミン、トリイソアミルアミン、メタクレゾー ルホルムアルデヒド樹脂、シエラック、1-ヒドロキシ エチルー2-アルキルイミダゾリンなどがある。

【0039】上記ネガティブワーキング化剤の使用量 は、上記レジスト主剤100重量部に対して、アミンの 50~G:lpha=5°、 $h=0.1\,\mu ext{m}$ 、

場合には好ましくは約0.005重量部から約1重量部 の範囲、より好ましくは約0.01重量部から約0.3 重量部の範囲、水酸基を有する芳香族炭化水素またはシ エラックの場合には好ましくは約0.005重量部から 約10重量部の範囲、より好ましくは約0.01重量部 から約3重量部の範囲、1-ヒドロキシルエチル-2-アルキルイミダゾリンの場合には好ましくは約0.00 5 重量部から約0.1 重量部の範囲、より好ましくは約 0.01重量部から約0.07重量部の範囲である。

12

【0040】本発明に用いられる感光性樹脂組成物には 上記成分のほかに各種添加物を加えることができる。例 えば画像強度を高めるためあるいはバインダーとして、 前記成分と均一に混合しうる樹脂、たとえばスチレンー 無水マレイン酸共重合体、スチレン-アクリル酸共重合 体、メタクリル酸ーメタクリル酸メチル共重合体などを 加えることもできる。

【0041】この種のレジストの詳細な組成について は、特公昭55-32088号公報、英国特許第844 039号明細書、および米国特許第4104070号明 細書等に記載されている。

【0042】図1に示すように、本発明のレジストパタ ーンの断面形状110は、基板120の表面122から 上に延び実質的にT形の縦バー部を構成する縦バー部分 112と、この縦バー部分に連続し基板表面に対して間 隔を置いた状態で横に延び実質的にT形の横バー部を構 成する横バー部分114とを備えるT形状である。

【0043】図1に示す断面形状において、横バー部分 下縁116の接線と基板表面122とのなす角のうちの 最小値をαとし、横バ一部分最外側縁118から基板表 面に下ろした垂線と基板表面122との交点Woと、前 記最外側縁118側の縦バー部分112側縁と基板表面 122とが接する点Wi (WoとWiとの距離はW)と の中間位置(Woからの距離がW/2)における横バー 部分下縁116と基板表面122との間隔をhとしたと き、 $\boxtimes 90h - \alpha$ グラフに示されるように α および h は

 $A: \alpha = 0$ °, $h = 0.01 \mu m$,

B: $\alpha = 2.0^{\circ}$, $h = 0.01 \mu m$,

 $C : \alpha = 2.0^{\circ}, h = 0.2 \mu m$

 $D: \alpha = 0^{\circ}, h = 0.3 \mu m$

の4点をこの順に結んだ四辺形で囲まれた範囲内(辺上 を含む)に存在し、好ましくは、

 $A: \alpha = 0$ °, h = 0. $0.1 \mu m$,

 $X : \alpha = 5^{\circ}, h = 0.01 \mu m$

 $Y : \alpha = 5$ °, h = 0. 15 μ m,

 $Z: \alpha = 0$ °, h = 0. 15 μ m

の4点をこの順で結んだ四辺形で囲まれた範囲内(辺上 を含む)に存在し、より好ましくは

A: $\alpha = 0^{\circ}$, h = 0. $0.1 \mu m$,

 $X : \alpha = 5$ °, h = 0. $0.1 \mu m$,

板表面である。

 $H: \alpha = 0$ °, h = 0. $1 \mu m$

の4点をこの順で結んだ四辺形で囲まれた範囲内(辺上を含む)に存在する。 T形断面のレジストパターンにおいて、 α とhとをこのような範囲内に設定することにより、初めて良好なリフトオフやイオンミリング等を行うことができ、不良品率も20%未満となる。従来、単一のレジストでこのようなT形形状をもつパターンは存在していない。なお、 $\alpha=0$ °とは、横バー部分の下縁116における接線と基板表面122とが平行であることを意味する。

【0044】図1において、点Woと点Wi との距離Wは、好ましくはW=0. 03~3 μ m 、より好ましくはW=0. 1~3 μ m 、さらに好ましくはW=0. 2~1 μ mである。Wをこのような範囲に設定することにより、不良品率がさらに低下する。

【0045】図1において、レジストパターンの高さを Tとしたとき、好ましくはT=0. $3\sim3\,\mu\text{m}$ 、より好ましくはT=0. $4\sim2\,\mu\text{m}$ 、さらに好ましくはT=0. $4\sim1\,\mu\text{m}$ である。Tが大きすぎても小さすぎて も、T形断面の形成が難しくなる。また、Tが小さすぎ 20るとレジストカバーとしての使用に耐えなくなってしまう。また、Tが大きすぎるパターンをミリング時のレジストカバーとして用いた場合、ミリングパターンの端面が寝てしまう、すなわち、基板表面と平行に近くなってしまうので、好ましくない。

【0046】図1において、点Wi で縦バー部分側縁に接し基板上方に延びる半直線と、点Wi から基板表面と平行に縦バー部分内部方向に延びる半直線とのなす角を β としたとき、好ましくは β =10~160°、より好ましくは β =70~110° である。

【0047】図1において、基板表面から延び基板表面からT/3の高さにおいて横バー部分側縁に接する半直線と、この半直線と基板表面との交点から基板表面と平行に縦バー部分から遠ざかる方向に延びる半直線とのなす角を γ としたとき、好ましくは γ =20~120°、より好ましくは γ =60~100°、さらに好ましくは γ =80~90°である。

【0.048】図1において、横バー部分の最大幅をHwとしたとき、好ましくはHw=0. $1\sim7~\mu$ m 、より好ましくはHw=0. $3\sim3~\mu$ mである。

【0049】図1において、縦バー部分が基板表面と接している領域の幅をVwとしたとき、好ましくはVw/Hw= $0.1\sim0.995$ 、より好ましくはVw/Hw= $0.15\sim0.95$ である。

【0050】本発明のT形断面のレジストパターンの上面部は、通常、凹状面をなすが、Hwが小さい場合には、平面状または凸面状となることがある。

【0051】なお、本明細書において基板表面とは、レジストパターンの縦バー部分が接する面のことであり、例えば、被ミリング膜等の表面にレジストパターンが形 50

成されているときには、前記被ミリング膜等の表面が基

【0052】本発明のT形断面のレジストパターンが形成される基板表面の材質は、金属(合金を含む)材料またはセラミックス材料であることが好ましい。金属材料のうち金属単体としては、Cr、Al、W、Te、Mo、Fe、Ni、Co、Mn、Ti、Ta、Au、Ag、Cu等を好ましく用いることができる。合金としては、Fe-Ni、Ni-Mn、Fe-Ni-Co、Fe-Co等を好ましく用いることができる。セラミックス材料としては、NiO、Al₂O₃、ZrO₂等の酸化物、LiNbO₂、LiTaO₃、フェライト等の複合酸化物、AlTiC等の炭化物などを好ましく用いることができる。なお、これらの結晶性は特に限定されない。

14

【0053】このような材質の表面を有する基板を用いることにより、本発明の特徴ある断面形状のレジストパターンを形成することができる。なお、本発明では、半導体装置の製造においてよく使用されているSi単結晶基板は用いない。本発明の発明者の実験によると、Si単結晶基板上には、上記レジスト剤を用いても、本発明の特徴ある断面形状のレジストパターンを形成することができない。また、表面がSiО₂等の酸化ケイ素から構成されている基板も、Si基板と同様に上記のようなレジストパターンを形成できないため、本発明では用いない。

【0054】次に、本発明のT形断面のレジストパターンの形成方法について説明する。

【0055】画像反転対応ポジ型レジストのパタニング 過程を図10に、その各段階においてレジスト中で起こる化学反応の例を図11に示し、このパタニング過程を 各段階ごとに説明する(その詳細については、M. Spacetal, "Mechanism and lithographic evaluation of image reversal in AZ5214 photoresist.", Proc. of conference on photopolymers principle processing and materials, Ellenville (1985) に書かれている)。なお、以下の説明は、ネガティブワーキング化剤として塩基性アミンを用いた例についてのものである。

【0056】(1)第1段階 露光

40 基板1の上面に画像反転対応ポジ型レジスト2を塗布し、プリベーク後、レジスト膜上面に所定のパターンを有するマスク3を介して紫外線A(波長:300~500mm)を照射(露光)する。レジスト2の露光部4において、ジアゾナフトキノンがウォルフ転移してインデンカルボン酸となる(図11の式1参照)。インデンカルボン酸は、ネガティブワーキング化剤である塩基性アミンとの酸ーアルカリ反応により、多少不安定なカルボン酸のアミン塩となる(図11の式2参照)。

【0057】(2)第2段階 リバーサルベーク(R

B)

式2の反応の後、レジストをリバーサルベークする。リバーサルベークの温度は、90~130℃とすることが好ましい。リバーサルベークでの加熱によってカルボン酸のアミン塩は速やかに脱カルボニル反応を起こし、アルカリ水溶液に不溶なインデンとなる(図11の式3参照)。インデンは、アルカリ水溶液に不溶なばかりでなく、その後の紫外線照射や加熱に対しても不活性である。この場合のリバーサルベークは、通常工程のポストベークに相当し、このプロセスではポストベークを施さなくてもよい。

【0058】(3)第3段階 フラッド露光

ここで、レジストは紫外線B照射を受け、最初の露光時に未露光であった未露光部5の感光基であるジアゾナフトキノンがアルカリ水溶液に可溶のインデンカルボン酸となり(式1参照)、続いて、塩基性アミンとの反応によりカルボン酸のアミン塩となる(式2参照)。このカルボン酸のアミン塩もアルカリ水溶液に可溶である。紫外線Bの波長は紫外線Aと同じであってもよいが、紫外線Bはパターン形成とは関係しないので、その波長は特に限定されない。なお、フラッド露光は必ずしも必要と20しないが、用いない場合は、比較的高濃度の現像液を用いる必要があり、また現像中のスカムの発生の可能性がある。

【0059】(4)第4段階 現像

最後に、アルカリ性の水溶液で現像することにより未露 光部5は溶け、露光部4だけが残り、パタニングが完了 する。

【0060】画像反転対応ポジ型レジストのうち市販されているものとしては、ヘキスト(Hoechst)社製レジストAZ5200Eシリーズがある。このレジストの詳 30 細な特性については、M. ボルセン、「ポジ型ホトレジストの画像反転によるサブミクロン加工技術」、電子材料、6、1 (1986)に示されている。

【0061】次に、図12に、先に示した画像反転対応 ボジ型レジストのパタニング過程における他の条件が同 一のときの各段階の条件がレジストの断面形状に与える 影響について示し、それらについて以下に説明する。

【0062】(1)基板表面

これらのパタニング条件と得られるレジストの断面形状 との関係は、基板表面の材質や基板表面処理(HMDS 40 気相処理など)の有無にはよらない。好ましくは、基板 の表面処理はしない方がよい。

【0063】(2) レジストの塗布膜厚、プリベーク温度、時間

レジストの塗布膜厚を薄くしていくと、逆台形の基板接地部分にくびれ(スリット)が形成され、くびれの幅が広くなって断面が逆台形からT形に変化していく。好ましくは、レジストの塗布膜厚は $3 \mu m$ (プリベーク後)以下がよい。レジストの塗布膜厚の下限は、通常 0.3 ~ $0.5 \mu m$ 程度が好ましい。プリベーク温度とその時 50

間とはレジストの断面形状にはほとんど影響を与えないが、プリベーク温度はリバーサルベーク温度以下とする ことが好ましい。

16

【0064】(3)露光量

露光量を減らしていくと逆台形の基板接地部分にくびれ (スリット) が形成され、断面が逆台形からT形に変化 していく。好ましい露光量は、露光機の種類、露光光 {紫外線、レーザー光(エキシマなど)、X線、電子線 などを含む」の波長分布などにより異なるが、本発明に 10 至る実験では、10~500mJ/cm²が好ましかっ た。より詳細に説明すると、露光光としてi線(波長3 65nm)カットの広帯域光やg線(波長436nm)を用 いる場合、好ましくは100~500mJ/cm²、よ り好ましくは100~400mJ/cm²、さらに好ま しくは100~330mJ/cm²であり、i線を用い る場合、好ましくは10~100mJ/cm²、より好 ましくは30~60mJ/cm2である。なお、磁気抵 抗効果(MR)型薄膜素子においてMR膜のパターンを 微細なものとするためには、露光光にi線またはそれ以 下の波長の光または電子線を用いることが好ましい。i 線を用いて形成される微細なレジストパターンでは、従 来、良好なT形断面のものは得られていない。

【0065】また、露光光の焦点位置を制御することにより、レジストパターンの基板接地部分に形成されるくびれの高さを調整することができる。具体的には、焦点位置を基板側に移動させると前記くびれの高さは低くなり、焦点位置を基板と反対側に移動させると前記くびれの高さは高くなる。レジスト塗膜表面を基準として基板に近寄る方向をマイナスとし基板から遠ざかる方向をプラスとして焦点位置を表示したとき、焦点位置は、好ましくは $-1\sim+10~\mu{
m m}$ 、より好ましくは $-1\sim+6~\mu{
m m}$ である。焦点位置をこのような範囲とすることにより、前記hを本発明範囲とすることが容易にできる。

【0066】(4)リバーサルベーク(RB)温度、RB時間

R B温度を下げていくと逆台形の基板接地部分にくびれ (スリット) が形成され、くびれの幅が広くなり断面が 逆台形から T 形に変化していく。 R B温度は、 $100\sim123$ ℃、特に $100\sim118$ ℃が好ましい。また、所 定 R B 時間以上であれば、 R B 時間を短くすると逆台形 の基板接地部分にくびれ(スリット)が形成され断面が 逆台形から T 形に変化する傾向を助長する。この R B 時間は、30 秒間 ~13 分間が好ましい。なお、 R B 時間 が短すぎると、図 11 に示すような反応が生じなくなってしまう。

【0067】(5)フラッド露光量

フラッド露光量はレジストの断面形状にほとんど影響を 与えないが、通常、100~600mJ/cm² とする ことが好ましい。

【0068】(6)現像条件およびリンス条件

現像液はアルカリ性の水溶液であればレジストの断面形 状にほとんど影響を与えない。例えば、燐酸塩水溶液、 TMAHなどでよい。現像液の温度が高いほど、また、 現像時間が長いほど逆台形の基板接地部分にくびれ(ス リット)が形成されやすくなり、くびれの幅が広くなっ て断面がT形に変化していく。現像液としてはリン酸塩 (NanH₃ - n PO₄) 1~3%水溶液を用いること が好ましく、現像温度は室温(20~25℃)とするこ とが好ましく、現像時間は30~90秒間とすることが 好ましい。リンス液は純水であればリンス液の温度とリ 10 ンス時間とによらずレジストの断面形状にほとんど影響 を与えない。リンス液としては超純水を用いることが好 ましく、リンス温度は室温(20~25℃)とすること が好ましく、リンス時間は10~180秒間とすること が好ましい。

【0069】(7)現像後ベーク

現像後に乾燥等のためにベーキング工程を設けてもよい が、現像後ベークの条件はレジストの断面形状にはほと んど影響を与えない。

【0070】このように、画像反転対応ポジ型レジスト 20 のパタニング過程における各段階の条件のさまざまな組 み合わせ時に断面がT形を有するレジストパターンが得 られる。すなわち、例えば、あるリバーサルベーク条件 と現像条件との組み合わせ時にレジスト断面が逆台形と なる最小露光量未満の露光量で露光したとき、T形断面 のレジストパターンを形成することができる。また、あ る露光条件と現像条件との組み合わせ時にレジスト断面 が逆台形となる最低リバーサルベーク温度未満の温度で リバーサルベークしたときにも、T形断面のレジストパ ターンを形成することができる。T形断面のレジストパ 30 ターンを形成するには、このように露光量またはリバー サルベーク温度の制御、特にリバーサルベーク温度の制 御が有効であるが、上記したように、この他の各種条件 を制御することによっても望ましい形状のT形断面を得 ることができる。

【0071】以上に説明した本発明のレジストパターン を用いることにより、好ましい磁気抵抗効果(MR)型 薄膜素子を得ることができる。

【0072】本発明の磁気抵抗効果型薄膜素子の一例で ある磁気抵抗効果型薄膜再生ヘッドとインダクティブ型 40 薄膜記録ヘッドとを備えた複合型薄膜磁気ヘッドの層構 造の一例を図13に示した。この図において、符号10 は磁気抵抗効果型薄膜再生ヘッド、11は基板、12は 絶縁膜、13は下部シールド層、14は絶縁膜、15は 磁気抵抗効果膜、16はMRリード層(磁気抵抗効果膜 用電極膜)、17は絶縁膜である。そして、このような 磁気抵抗効果型薄膜再生ヘッド10は、従来から知られ た構造のインダクティブ型薄膜記録ヘッド20と組み合 わされて、複合型のヘッドとされる。インダクティブ型 薄膜記録ヘッド20は、通常、下部磁極21、絶縁膜2 50 グ法により形成することができる。

18 2、絶縁膜23、コイル24、上部磁極25および保護 層26を備えている。

【0073】基板11には、通常、AlTiC等のセラ ミックス材料を用いる。

【0074】絶縁膜12は、膜厚が 1~20μm程度 で、Al₂O₃、SiO₂等で形成されることが好まし

【0075】下部シールド層13は、FeAlSi、N iFe, CoFe, CoFeNi, FeN, FeZr N、FeTaN、CoZrNb、CoZrTa等で形成 されることが好ましく、そして、その膜厚は、0.1~ $5 \mu m$ 、特に $0.5 \sim 3 \mu m$ が好ましい。

【0076】絶縁膜14は、膜厚が100~2000A 程度で、Al2O3、SiO2等で形成されることが好 ましい。

【0077】磁気抵抗効果膜15は、磁性層1層で構成 してもよいが、通常、磁性層と非磁性層とを積層した多 層膜構造とすることが好ましい。磁性層の材料として は、例えば、NiFe、NiFeRh、FeMn、Ni Mn、Co、Fe、NiO、NiFeCr等が好まし い。また、非磁性層の材料としては、例えば、Ta、C u、Ag等が好ましい。上記多層膜構造としては、例え ば、NiFeRh/Ta/NiFeの3層構造や、Ni Fe/Cu/NiFe/FeMn, NiFe/Cu/C o/FeMn, Cu/Co/Cu/NiFe, Fe/C r、Co/Cu、Co/Agといった複数層構造を1ユ ニットとして複数ユニットを繰り返し積層した構造とす ることが好ましい。さらに、このような多層膜構造とす る場合、磁性層の膜厚は、5~500A、特に10~2 50A とすることが好ましい。非磁性層の膜厚は、5~ 500A、特に $10\sim250A$ とすることが好ましい。 上記ユニットの繰り返し数は、1~30回、特に1~2 0回が好ましい。そして、磁気抵抗効果膜全体の厚さ は、50~1000A、特に100~600Aが好まし 11

【0078】MRリード層16は、W、Cu、Au、A g、Ta、Mo、CoPt等で形成されることが好まし く、その膜厚は、100~5000A 、特に500~3 000A が好ましい。

【0079】上記絶縁膜17は、Al₂O₃、SiO₂ 等で形成されることが好ましく、その膜厚は、50~5 000A、特に100~2000Aが好ましい。

【0080】磁気抵抗効果型薄膜ヘッドを構成する各層 のうち、絶縁膜12、14、17、磁気抵抗効果膜15 およびMRリード層16は、前述した本発明のレジスト パターンを用いて、前述のリフトオフ法およびミリング パタニング法のいずれでも形成することができる。一 方、膜厚の厚い下部シールド層13は、前述した本発明 のレジストパターンを用いて、前述のミリングパタニン

【0081】また、磁気抵抗効果膜15とMRリード層16との連続膜を形成する場合には、前述した本発明のレジストパターンを用いて、前述のリフトオフ法とミリングパタニング法との併用法を利用すればよい。

【0082】本発明のレジストパターンを用いれば、上記のような磁気抵抗効果型薄膜ヘッドを効率よく、しかも歩留まりよく製造することができる。

[0083]

【実施例】以下、本発明の具体的実施例について説明す ~

【0084】以下に説明する実施例においては、画像反転対応ポジ型レジストとして、レジストAZ5214E (アルカリ可溶性フェノール樹脂とナフトキノンジアジドとの混合物を含有するポジ型レジストに、ネガティブ* *ワーキング化剤として塩基性アミンが添加され、主溶媒としてプロピレングリコールモノメチルエーテルアセテートを用いたレジストであって、固形分含有率が28.3%のもの)を用いた。

20

【0085】<実施例1>表2に示すレジストパターンサンブルNo. 1~8を作製した。各サンブルの作製条件を表1および表2に示す。表1には、すべてのサンブルに共通の条件を、表2には、サンブルによって異なる露光量、焦点位置およびRB温度を示してある。各サンプルは、それぞれの作製条件の範囲内に入るように1000値ずつ作製した。

【0086】 【表1】

....

1

表

基板 : 表面にAl2O3層を設けたAlTiC

基板表面処理 : なし

レジスト : ヘキスト (Hoechst) 社製A Z 5 2 1 4 E

レジスト膜厚: 約1.8μm (プリベーク後)

プリベーク温度、時間 :95℃、6分間(ダイレクトホットプレート)

露光機 : ステッパー (ウルトラテック(Ditratech) 社製、Ultrastep Model 1500)

NA=0.28、焦点位置 (表2に示す)

UV:広域幅(i線カット)

露光量: 表2に示す(マスク幅: 2.0 µm)

RB温度 : 表2に示す (ホットプレート)

R B時間 : 5分間

フラッド露光機 : PLA (パラレルライトアライナー) (キヤノン(Canon) 社製PLA-501F)

フラッド露光量 : 500m J/cm²

現像液、温度、時間 : シブレー(Shipley) 社製、マイクロ ポジット デベロッパ (Micro Posit Developer)

(:He O=1:1)、23℃、70秒間 (パドル:水たまり状の現像液に接触させて現像)

リンス液、温度、時間 : 超純水、23℃、60秒間 (パドル)

現像後ベーク:なし

[0087]

【表2】

				\$	1			ı
サンブル No.		露光量(m)/cm²)	焦点位置 (μm)	R B 温度 (℃)	a (*)	η (μm)	不良品率 (外観検査および電磁) 変換特性によるもの)	1
1 (比較)		000 ~330	据\+-~0I-	100 ~118 米蒲	膨米 5~0	0~0.01米潮*	40%以上	ı
2	100	$100 \sim 330$	据米1-~7-	100 ~118 未満	粳米 9~0	0.01-0.03 未満	20%以上40%未满	
m	100	100 ~330	態长9+~Ⅰ・	100 ~118 米潘	粳米 5~0	0.03-0.1	10%未満	21
4	100	$100 \sim 330$	+ 6~+10	100 ~118 米谢	框长 5~0	0.1 超~0.2	10%以上 20 %米瀬	
<u> </u>	校) 100	100 ~330	+10個	100 ~118 米瑞	2.5超~5 未満	0.3超*	40%以上	_
9	330	330 ~400	拠米9+~1 -	118 ~123 未谢	5超~20	0.03-0.1	10%以上 20 %未満	
t	330	330 ~400	+ 6~+10	118 ~123 未満	5超~20	$0.1 \sim 0.2$	10%以上 20 %未満	
₩ 3	校) 5	200	惩光₹~~01-	130	20超*	0~0.01米那*	40%以上	
				-	*)本怨	*)本発明範囲外] -

【0088】 これらのサンプルについて、日立社製電界放射電子ビーム式SEM(日立ULSI高精度外観寸法評価装置S-7000)を用い、上記 α 、れを測定した。これらの結果を上記表2に示した。また、サンプルNo. 3について上記W、T、 β 、 γ 、Hw、Vwを測定 40したところ、Wは約0. 75μ m、Tは約1. 8μ m、 β は約135°、 γ は約90°、Hwは約2. 4μ m、Vw/Hwは約0. 3であった。なお、他のサンブルについても同様な測定を行った結果、同等の結果が得られた

【0089】また、上記SEMを用いて撮影したサンプルNo. 3断面の写真を、図14に示した。この写真から分かるように、良好なコントラストのT形断面のレジストパターンが得られている。なお、図14に示すレジストパターンの形成には、切断の容易なSi基板(表面に 50

A 12 O3 層を形成したもの)を用いた。

【0090】また、上記各サンブルは、金属酸化物であるAl2O3(基板自体はAlTiCであるが、基板表面はAl2O3である)上に形成したが、基板表面を、金属であるNi、Cr、Ta、合金であるFe-Ni、Fe-Ni-Co、複合金属酸化物であるLiNbO3とし、これ以外は上記サンブルNo.3と同様にしてレジストパターンを形成したところ、表2のα、hの値とほぼ同等の値が得られ、この場合にも良好なコントラストのT形断面のレジストパターンが得られることが確認された。

【0091】各サンプルのレジストパターンを用いてミリングパタニングを行ったときの効果を調べるため、つぎのような実験を行なった。

【0092】表面にAI₂O₃膜を有するAITiC基板の表面上に、膜厚0.06μmのNiFeをスパッタ法により均一に成膜した。ついで、上記サンブルNo.1~8のレジストパターンをマスクパターンとするリフトオフ法(条件については下記した)、ミリングパタニング法(イオンミリング条件については下記した)および併用法(条件については下記した)を用い、各サンプルについてそれぞれ1000個づつ磁気抵抗効果型薄膜磁気ヘッドを作製した。これらの磁気ヘッドの層構成は、図13に示すものとした。

【0093】 リフトオフ条件

有機溶媒:アセトン

有機溶媒浸漬時間:30分間

【0094】 <u>イオンミリング条件</u>

イオンの種類:Ar*

30 ガス圧力: 1. 5×10⁻¹Torr

加速電圧: 300V 加速電流: 250mA

ミリング角度:90°(基板表面に対して)

時間:8分

【0095】<u>併用法条件</u>

上記イオンミリング条件とリフトオフ条件との併用 【0096】得られた磁気抵抗効果型薄膜磁気ヘッドに ついて、外観検査と電磁変換特性とに基づいた不良品率 を調べた。その結果を上記表2に示した。上記表2か ら、αおよびhが所定範囲にある本発明サンプルを用い て作製された磁気ヘッドは、不良品率が著しく低いこと がわかる。

【0097】なお、これらの磁気ヘッドの作製に際し、図13に示される各層のうちシールド層はミリングパタニング法により形成し、磁気抵抗効果膜と磁気抵抗効果膜用電極膜との連続膜は併用法により形成した。ただし、磁気抵抗効果膜をミリングパタニング法により形成し、かつ磁気抵抗効果膜用電極膜をリフトオフ法により形成した場合でも、同等の結果が得られた。

【0098】〈実施例2〉下記表3に示す条件で、レジ

23

*【表3】

3

ストパターンサンプルを作製した。

[0099]

表

:表面にAlaO。層を設けたSi

基板表面処理

:なし

レジスト

: ヘキスト (Hoechst) 社製A Z 5 2 0 6 E

レジスト膜厚

:約0. 7 µm (プリペーク後)

プリベーク温度、時間

:95℃、6分間 (ダイレクトホットプレート)

露光機

基板

:ステッパー (キヤノン(Canon) 社製、FPA-3000i4)

NA=0.45、焦点位置=±0.00μm

UV:i線

露光量

:50mJ/cm² (マスク幅:0.55μm)

RB温度

:113℃ (ホットプレート)

RB時間

:3分間

フラッド露光機

:PLA (パラレルライトアライナー) (キヤノン(Canon) 社製PLA-501F)

フラッド露光量

: 200 m J/cm²

現像液、温度、時間

:シブレー(Shipley) 社製、マイクロ ポシット デベロッパ (Micro Posit Developer)

(40%水溶液)、23℃、50秒間(パドル:水たまり状に現像液を接触させて現像)

リンス液、温度、時間

:超純水、23℃、60秒間 (パドル)

現像後ベーク

:なし

【0100】このサンブルの断面を実施例1と同様にし て上記SEMにより測定したところ、αは約0°、hは 約0.02 μm、Wは約0.26 μm、Tは約0.5 μ m、 β は約80°、 γ は約70°、Hwは約0.65 μ m、Vw/Hwは約0.21であった。

【0101】このサンブルのSEM写真を図15に示 す。

【0102】このレジストパターンサンブルを用いて膜 30 のパタニングを行ったときの効果を調べるため、つぎの ような実験を行なった。

【0103】表面にAl₂O₃膜を有するAlTiC基 板の表面上に、多層膜構造の磁気抵抗効果膜(MR膜) をスパッタ法により成膜した。MR膜の組成および膜厚

NiFeRh/Ta/NiFe/Ta=130/100/200/50 (A)

とした。次いで、MR膜上に上記レジストパターンサン ブルをレジストカバーとして設け、ミリング法によりパ 40 タニングを行った。続いて、レジストカバーを除去せず に、リフトオフ法により多層膜構造の磁気抵抗効果膜用 電極膜(MRリード層)を形成し、MR膜とMRリード 層との連続膜を得た。MRリード層の組成および膜厚は $T i W/C \circ P t/T i W/T a = 100/500/1$ 0.0 / 1.0.00 (A)

とした。上記SEMによるこの連続膜の写真を図16に 示す。この連続膜において、MR膜の幅(磁気ヘッドに 適用した場合のトラック幅)は0.36μmであった。

磁気ヘッドを1000個作製し、実施例1と同様にして 不良品率を調べたところ、10%以下であった。この結 果から、本発明によれば、狭トラック幅の磁気抵抗効果 型薄膜磁気ヘッドを安定して製造できることがわかる。

[0105] 【発明の効果】

(A) 従来、逆台形しか得られていなかったパタニング 過程の条件を本発明にしたがって制御することにより、

1層レジストでも断面がコントラストのあるT形をして いるレジストパターンを容易に形成できるようになっ

【0106】(B)レジストパターンのT形断面の幅、 基板接地部分の幅(図1におけるVw)、基板接地部分 でのくびれの幅(図1におけるW)、くびれ高さを再現 性よくある程度の範囲でコントロールできる。

【0107】(C)本発明にしたがってパタニングした T形断面のレジストパターンをリフトオフやドライエッ チング時のマスクパターンとする場合、前記(B)項の 効果により、マスクパターンの断面形状を被パタニング 膜の厚さやそのパタニング幅などに応じて最適化するこ とができるため、リフトオフやドライエッチングの際の 歩留まりが向上する。

【0108】(D) レジストパターン断面の幅が1μm 以下のパターンも形成することができる。これにより、 幅が1μω以下のリフトオフパターン、ドライエッチン グパターンの形成ができる。

【0109】(E)紫外線による露光で、断面がT形を 【0104】この方法と同様にして磁気抵抗効果型薄膜 50 したレジストパターンが得られ、エキシマレーザーなど

の高価な設備を用いる必要がないので、設備費が安価で すむ。

【0110】(F)従来、T形断面のレジストパターンを形成するためには、マスクの位置合わせを必要とする露光作業と湿式の現像作業とを複数回行うなどの必要があり、非常に煩雑であったが、本発明では、露光作業と現像作業とがそれぞれ一回で済むのでパタニング作業が簡単になり、作業時間の短縮を図ることができる。

【0 1 1 1】 (G) 前記(E) 項と(F) 項の効果により、リフトオフパターンとドライエッチングパターンと 10 を安価に形成することができる。

【図面の簡単な説明】

【図1】本発明のT形断面のレジストパターンの断面の 構成を説明するための断面図である。

【図2】ミリング工程の説明図である。

【図3】レジストパターン(レジストカバー)の断面が 逆台形の場合のミリング工程における被ミリング材のレ ジストパターンへの付着状態を説明する説明図である。

【図4】レジストパターン(レジストカバー)の断面が T形の場合のミリング工程における被ミリング材のレジ 20 ストパターンへの付着状態を説明する説明図である。

【図5】リフトオフ工程の説明図である。

【図6】レジストパターン(レジストカバー)の断面が 逆台形の場合のリフトオフ工程における被パタニング材 のレジストパターンへの付着状態を説明する説明図であ る

【図7】レジストパターン(レジストカバー)の断面が T形の場合のリフトオフ工程における被パタニング材の レジストパターンへの付着状態を説明する説明図であ ス

【図8】ミリング法とリフトオフ法との併用法の説明図である。

【図 9】本発明のレジストパターンにおける α およびhの範囲を示すグラフである。

【図10】画像反転対応ポジ型レジストのパタニング過程を説明する説明図である。

【図11】画像反転対応ポジ型レジストのパタニング過程においてレジスト中で起こる化学反応の例を説明する

図である。

【図12】画像反転対応ポジ型レジストのパタニング過程における他の条件が同一のときの各段階の条件がレジストの断面形状に与える影響を説明するための説明図である。

26

【図13】本発明のレジストパターンを用いて製造される磁気抵抗効果型薄膜ヘッドの層構造を示す断面図である。

【図14】基板上に形成された微細なパターンを表わす 図面代用写真であって、本発明の実施例サンブルNo. 3 のレジストパターンの断面構造を示すSEM写真である。

【図15】基板上に形成された微細なパターンを表わす 図面代用写真であって、実施例2で作製したレジストパ ターンの断面構造を示すSEM写真である。

【図16】基板上に形成された微細なパターンを表わす 図面代用写真であって、実施例2のレジストパターンを 用い、ミリングとリフトオフとの併用法により作製した MR膜とMRリード層との連続膜を示すSEM写真であ る。

【図17】基板上に形成された微細なパターンを表わす 図面代用写真であって、従来のレジストパターンの断面 構造を示すSEM写真である。

【図18】基板上に形成された微細なパターンを表わす 図面代用写真であって、従来のレジストパターンの断面 構造を示すSEM写真である。

【図19】基板上に形成された微細なパターンを表わす 図面代用写真であって、従来のレジストパターンの断面 構造を示すSEM写真である。

【図20】基板上に形成された微細なパターンを表わす 図面代用写真であって、従来のレジストパターンの断面 構造を示すSEM写真である。

【符号の説明】

1 基板

30

- 2 画像反転対応ポジ型レジスト
- 3 マスク
- A、B 紫外線

[図4]

【図6】

逆台形 リフトオフ

【図1】

[図8]

ミリング+リフトオフ工程

【図9】

【図13】

【図12】

画像反転対応ボジ型レジストのパタニング過程における他の条件が 同一のときの各段階の条件がレジストの断面形状に与える影響

【図14】

図面代用写真

----- 1.0 μ m

【図15】

図面代用写真

0.4 µ m

【図16】

図面代用写真

【図17】

図面代用写真

[図18]

図面代用写真

【図19】

図面代用写真

【図20】

図面代用写真

フロントページの続き

(51) Int. Cl. 6

H 0 1 L 21/306

43/08

識別記号

庁内整理番号

FΙ

H 0 1 L 21/302

21/306

技術表示箇所

С D