デジタル信号処理の基礎-例題と Python による図で説く-

共立出版

正誤情報

最終更新: 2018年11月12日

	<u> </u>		
ページ	行数, 図・表・式番号	誤	正
17	1 行目	時刻 0 のときだけ値 1 をとり, そのほかのすべて時刻	時刻 0 のときだけ値 1 をとり, そのほかのすべて <u>の</u> 時刻
44	図 3.19 (c)	$X[n]$ q^{-1} b q^{-1} d q^{-1} d d d d	x[n] a
67	図 5.2	$f(x_k) \Delta x$ $x_0 = a \qquad x_k = k\Delta x \qquad x_n = b$	$f(x_k) \Delta x$ $x_0 = a$ $x_k = \underbrace{a + k\Delta x} \qquad x_n = b$
71	下から9行目	信号処理では、(5.5) とともに その補足条件も成り立つとして 話をすすめるのがふつうである。 そのときには、フーリエ変換の 反転公式により、連続時間非周 期信号 x(t) とその逆フーリエ変 換が 1 対 1 に対応する。	その補足条件とともにフーリエ 反転公式の厳密な表た. ところが, 信号処理でよく出てくる $\frac{\sin x}{x}$ などは (5.5) を満たさない. ディリクレ関数 $\frac{\sin x}{x}$ のような 2 乗和可積分 * とよばれる関数 に対しても, 適切な距離を導入し, (5.5) を満たす関数の列の極限を考えることによりフーリエ変換を定義できることが知り エ変換をによっとがの関数とフーリエ変換には $1:1$ の対応がある.
71	T& 2 1 전 및		脚注追加 $\int_{-\infty}^{\infty} f(x) ^2 dx < \infty \text{ のとき } f(x) \text{ は}$ 2 垂和可養人ととばれる
71	下から1行目		2 乗和可積分とよばれる.

ページ	行数, 図・表・式番号	誤	正
77	3 行目	$\cdots = \sum_{n=-\infty}^{\infty} (ae^{-j\omega})^n = \cdots$	$\cdots = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \cdots$
		= x[0] + x[1] + x[2]	= x[0] + x[1] + x[2]
88	下から5行目	$\cdots + x[N-1],$	$\underline{+}\cdots+x[N-1],$
89	下から 5 行目	$f(u) = a_0 + a_2 u^2 + a_4 u^4$ $\cdots + a_{N-2} u^{N-2} + \cdots$	$f(u) = a_0 + a_2 u^2 + a_4 u^4$ $+ \dots + a_{N-2} u^{N-2} + \dots$
116	6 行目	インパルス応答は右側系列で なければない.	インパルス応答は右側系列で なければ <u>ならない</u> .
142	下から 10 行目	が発散するので,フーリエ変換の 存在条件(5.5)が満たされず, 本来の意味での	が発散するので(5.5) が満 たされず, また, 本来の意味 での
186	3 行目	また, ω_0 は	また, $\underline{\omega_c}$ は
190	図 Ex.1 (3)	$ \begin{array}{c c} 1 & & x[2n] \\ \hline & & \\ 0 & & n \end{array} $	$ \begin{array}{c c} 1 & & x[2n] \\ \hline & & \\ 0 & & n \end{array} $
191	図 Ex.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h[n] 1.00 0.50 0.25 0.00 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
		$(1) \ a_0 = \frac{1}{2} \cdot \frac{2}{2\pi} \int_0^{2\pi} t dt$	$(1) \ a_0 = \frac{2}{2\pi} \int_0^{2\pi} t dt$
193	下から1行目	$=\frac{1}{2\pi}\left[\frac{t^2}{2}\right]_0^{2\pi}=\pi.$	$= \frac{1}{\pi} \left[\frac{t^2}{2} \right]_0^{2\pi} = 2\pi.$
194	7 行目	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{1}{k} \sin(kt)$.	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{2}{k} \sin(kt)$.
194	8 行目	$a_0 = \frac{1}{2} \cdot \frac{2}{T} \int_0^T t dt = \frac{1}{T} \left[\frac{t^2}{2} \right]_0^T = \frac{T}{2}.$	$a_0 = \frac{2}{T} \int_0^T t dt = \frac{2}{T} \left[\frac{t^2}{2} \right]_0^T = T.$

ページ	行数, 図・表・式番号	誤	正
		$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$	$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$
		$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$	$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$
194	10 行目	$-\frac{2\pi}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$	$-\frac{2T}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$
194	11 行目	$= \frac{2T}{2\pi kT} \int_0^T \cos\left(\frac{2\pi k}{T}t\right) dt = 0.$	$= \frac{2T}{2\pi kT} \left[\cos \left(\frac{2\pi k}{T} t \right) \right]_0^T = 0.$