ADC

(chapter 13)

MBSD, 6th Semester DCSE, UET Peshawar

Bilal Habib

We live in an analog world

- Everything in the physical world is an analog signal
 - Sound, light, temperature, pressure
- Need to convert into electrical signals
 - Transducers: converts one type of energy to another
 - Electro-mechanical, Photonic, Electrical, ...
 - Examples
 - Microphone/speaker
 - Thermocouples
 - Accelerometers

Many other common sensors (some digital)

Force

- strain gauges foil, conductive ink
- conductive rubber
- rheostatic fluids
 - · Piezorestive (needs bridge)
- piezoelectric films
- capacitive force
 - · Charge source

Sound

- Microphones
 - Both current and charge versions
- Sonar
 - Usually Piezoelectric

Position

- microswitches
- shaft encoders
- gyros

Acceleration

- MEMS
- Pendulum

Monitoring

- Battery-level
 - voltage
- Motor current
 - Stall/velocity
- Temperature
 - Voltage/Current Source

Field

- Antenna
- Magnetic
 - Hall effect
 - Flux Gate

Location

- Permittivity
- Dielectric

Going from analog to digital

What we want

How we have to get there

ADC Devices

- ADCs (analog-to-digital converters) are among the most widely used devices for data acquisition
 - A physical quantity, like temperature, pressure, humidity, and velocity, etc., is converted to electrical (voltage, current) signals using a device called a *transducer*, or *sensor*
- We need an analog-to-digital converter to translate the analog signals to digital numbers, so microcontroller can read them

ADC804 Chip

- ADC804 IC is an analog-to-digital converter
 - It works with +5 volts and has a resolution of 8 bits
 - Conversion time is another major factor in judging an ADC
 - Conversion time is defined as the time it takes the ADC to convert the analog input to a digital (binary) number
 - In ADC804 conversion time varies depending on the clocking signals applied to CLK R and CLK IN pins, but it cannot be faster than 110 μs

ADC804 Chip (cont')

CLK IN and CLK R

- CLK IN is an input pin connected to an external clock source
- To use the internal clock generator (also called self-clocking), CLK IN and CLK R pins are connected to a capacitor and a resistor, and the clock frequency is determined by

$$f = \frac{1}{1.1RC}$$

- Typical values are R = 10K ohms and C = 150 pF
- We get f = 606 kHz and the conversion time is 110 μs

ADC804 Chip (cont')

Vref/2 = 2 => Vref = 4V

□ Vref/2

- > It is used for the reference voltage
 - If this pin is open (not connected), the analog input voltage is in the range of 0 to 5 volts (the same as the Vcc pin)
 - If the analog input range needs to be 0 to 4 volts, V_{ref}/2 is connected to 2 volts

V_{ref}/2 Relation to V_{in} Range

	Vref/2(v)	Vin(V)	Step Size (mV)	_	l
	Not connected*	0 to 5	5/256=19.53	_	l
>	2.0	0 to 4	4/255=15.62	→ Should	be
	1.5	0 to 3	3/256=11.71	256	l
	1.28	0 to 2.56	2.56/256=10	_	
	1.0	0 to 2	2/256=7.81	_	
	0.5	0 to 1	1/256=3.90		
					ı

Step size is the smallest change can be discerned by an ADC

Choosing the range

- Fixed # of bits (e.g. 8-bit ADC)
- Span a particular input voltage range
- What do the sample values represent?
 - Some fraction within the range of values
 - → What range to use?

ADC804 Chip (cont')

D0-D7

- The digital data output pins
- These are tri-state buffered
 - The converted data is accessed only when CS = 0 and RD is forced low
- To calculate the output voltage, use the following formula

$$D_{out} = \frac{V_{in}}{step \, size}$$
 5V/255 = step size

- Dout = digital data output (in decimal),
- Vin = analog voltage, and
- step size (resolution) is the smallest change

ADC804 Chip (cont')

- Analog ground and digital ground
 - Analog ground is connected to the ground of the analog V_{in}
 - Digital ground is connected to the ground of the V_{cc} pin
- To isolate the analog V_{in} signal from transient voltages caused by digital switching of the output D0 – D7
 - This contributes to the accuracy of the digital data output

ADC804 Chip (cont')

- The following steps must be followed for data conversion by the ADC804 chip
 - Make CS = 0 and send a low-to-high pulse to pin WR to start conversion
 - Keep monitoring the INTR pin
 - If INTR is low, the conversion is finished
 - If the INTR is high, keep polling until it goes low
 - After the INTR has become low, we make CS = 0 and send a high-to-low pulse to the RD pin to get the data out of the ADC804

Representing an analog signal digitally

- How do we represent an analog signal (e.g. continuous voltage)?
 - As a time series of discrete values
 - \rightarrow On MCU: read ADC data register (counts) periodically (T_s)

Choosing the sample rate

- What sample rate do we need?
 - Too little: we can't reconstruct the signal we care about
 - Too much: waste computation, energy, resources

Shannon-Nyquist sampling theorem

• If a continuous-time signal f(x) contains no frequencies higher than f_{\max} , it can be completely determined by discrete samples taken at a rate:

$$f_{\text{samples}} > 2f_{\text{max}}$$

- Example:
 - Humans can process audio signals 20 Hz 20 KHz
 - Audio CDs: sampled at 44.1 KHz

Converting between voltages, ADC counts, and engineering units

Converting: ADC counts ⇔ Voltage

$$Dout = \frac{Vin}{Step_size}$$

$$Step_size = Range/(2^8 - 1)$$

$$Range = V_{r+} - V_{r-}$$

Example:

ADC is 8bit

Dout = N_{ADC} = ?,

if Vin = 2.5V, $V_{r+} = 5V$, $V_{r-} = 0V$.

Step size = 5/256=19.53mV

Dout = 2.5V/19.53mV = 128

Interfacing ADC 0804


```
while(1)
{

RD_n = 1;
WR_n = 0;
WR_n = 1;
    Start conversion
    while(INTR==1);    Wait till conversion is done
RD_n = 0;
    writecmd(0x2);    // Bring cursor to home
    display_ADC_result();
    delay(100);
}
```

Interfacing ADC 0804

