The Complete Treatise on Nuclear Medicine:

Integrating Nuclear Science, Biology, Engineering, and Clinical Practice

Soumadeep Ghosh

Kolkata, India

Abstract

Nuclear medicine unites nuclear physics, radiochemistry, biology, systems engineering, and clinical science to noninvasively probe and modulate human physiology. This article develops a self-contained treatment of foundational physics, radiopharmaceutical biology, instrumentation, image formation and quantification, dosimetry, radiobiology, theranostics, safety, and future directions. Vector graphics illustrate decay kinetics, detector geometry, and system pipelines; mathematical sections formalize activity kinetics, tomographic reconstruction, and dose calculations. A concise reference list is provided for further study.

The treatise ends with "The End"

Contents

1	Foundations of Nuclear Physics for Medicine 1.1 Radioactive Decay and Activity	3
	1.2 Decay Modes Relevant to Imaging and Therapy	3
2	Radiopharmaceutical Chemistry and Biology	3
	2.1 Design Principles	
	2.2 Compartmental Modeling	
3	Instrumentation: From Quanta to Counts 3.1 Gamma Cameras (Planar & SPECT)	4
	3.2 PET Coincidence Detection	
	3.3 Energy Windows and Resolution	
4	Image Formation and Reconstruction	Δ
•	4.1 Projection Models	4
	4.2 Maximum-Likelihood Expectation-Maximization (MLEM)	
	4.3 Regularization	4
5	Dosimetry and Radiobiology	4
	5.1 Time-Integrated Activity	4
	5.2 MIRD Formalism	5
	5.3 Radiobiological Effectiveness	5
6	Theranostics: From Diagnosis to Therapy	5
	6.1 Diagnostic-Therapeutic Pairs	
	6.2 Iodine in Thyroid Disease	5
7	Production, Quality, and Regulation	5
	7.1 Production Routes	
	7.2 Quality Control (QC)	5
8	Attenuation, Scatter, and Corrections	5
	8.1 Photon Attenuation	5
9	Quantification: Calibration and Uncertainty	5
	9.1 System Sensitivity	5
10	Biological Underpinnings of Targeting	6
	10.1 Molecular Targets	6
	10.2 Pharmacokinetics and Organ Dosimetry	6
11	Clinical Applications	6
	11.1 Oncology	6
	11.2 Cardiology	6
	11.3 Neurology	6
12	Safety, Radiation Protection, and Ethics	6
	12.1 ALARA and Practical Shielding	
	12.2 Ethical Considerations	6

13 Tables of Common Radionuclides	6
14 Worked Mini-Example: Patient-Specific Dose	6
15 End-to-End Pipeline	6
16 Future Directions	7

1 Foundations of Nuclear Physics for Medicine

1.1 Radioactive Decay and Activity

Let N(t) be the number of nuclei at time t; the stochastic decay process obeys

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N, \qquad N(t) = N_0 e^{-\lambda t}, \tag{1}$$

with decay constant $\lambda = \ln(2)/T_{1/2}$. Activity $A(t) = \lambda N(t)$ is measured in becquerel (1/s). For biological systems, the effective decay constant combines physical (λ_p) and biological (λ_b) clearance:

$$\lambda_{\text{eff}} = \lambda_p + \lambda_b, \qquad T_{1/2,\text{eff}}^{-1} = T_{1/2,p}^{-1} + T_{1/2,b}^{-1}.$$
 (2)

1.2 Decay Modes Relevant to Imaging and Therapy

- Gamma emission enables external detection (99m Tc, 140 keV).
- Positron (β^+) emission produces 511 keV annihilation photons for PET (18 F, 68 Ga).
- Beta minus (β^-) delivers short-range therapy (177 Lu, 90 Y).
- Alpha particles (²²³Ra, ²²⁵Ac) have high LET, nanometer-scale DNA damage for targeted therapy.

Figure 1: Vector schematic of a generator decay chain: ${}^{99}\text{Mo}/{}^{99m}\text{Tc}$.

1.3 Activity-Mass-Molar Relationships

For a pure radionuclide with molar mass M, the initial molar amount is $n_0 = N_0/N_A$ and

$$A_0 = \lambda N_0 = \lambda n_0 N_A, \qquad n(t) = n_0 e^{-\lambda t}. \tag{3}$$

For labeled molecules, the molar activity is $A_{\rm m} = A/n_{\rm molecule}$.

2 Radiopharmaceutical Chemistry and Biology

2.1 Design Principles

A radiopharmaceutical couples a radionuclide to a *vector* (small molecule, peptide, antibody) via a chelator or covalent linker, satisfying:

- 1. Target affinity/specificity (e.g., ⁶⁸Ga-DOTATATE for SSTR2).
- 2. Pharmacokinetics compatible with radionuclide half-life.
- 3. Metabolic stability and predictable clearance.
- 4. Radiochemical purity and sterility.

2.2 Compartmental Modeling

Let $C_p(t)$ be plasma concentration, $C_t(t)$ tissue concentration, with exchange rates K_1, k_2 and irreversible trapping k_3 :

$$\frac{\mathrm{d}C_t}{\mathrm{d}t} = K_1 C_p - (k_2 + k_3) C_t,\tag{4}$$

$$\Rightarrow C_t(t) = K_1 \left(C_p * e^{-(k_2 + k_3)t} \right). \tag{5}$$

For PET glucose analog 18 F-FDG, phosphorylation leads to effective $k_3 > 0$, enabling Patlak analysis:

$$\frac{C_t(t)}{C_p(t)} = K_i \frac{\int_0^t C_p(\tau) d\tau}{C_p(t)} + V_0, \tag{6}$$

with influx constant K_i .

2.3 Standardized Uptake Value (SUV)

$$SUV = \frac{C_t(t)}{\frac{\text{Injected Activity}}{\text{Body Mass}}} \quad \left[\frac{\text{Bq/g}}{\text{Bq/kg}}\right]. \tag{7}$$

Normalizations by lean body mass (SUL) mitigate body composition effects.

3 Instrumentation: From Quanta to Counts

3.1 Gamma Cameras (Planar & SPECT)

A gamma camera comprises a collimator, scintillator (NaI(Tl)), optical coupling, and photodetectors. Pinhole or parallel-hole collimators realize geometric selection.

Figure 2: Vector schematic of a gamma camera for planar/SPECT imaging.

3.2 PET Coincidence Detection

Figure 3: PET coincidence along a line of response (LOR).

3.3 Energy Windows and Resolution

Energy discrimination ($[E_{\min}, E_{\max}]$) reduces scatter. Intrinsic resolution is limited by scintillator light yield, photodetector statistics, and collimator geometry.

4 Image Formation and Reconstruction

4.1 Projection Models

For SPECT, a discretized forward model $y = Px + \epsilon$ includes attenuation, scatter, and collimator response. PET models coincidences with system matrix A:

$$y_j \sim \text{Poisson}\left(\sum_i A_{ji} x_i + r_j\right),$$
 (8)

where r_i models randoms and scatter.

4.2 Maximum-Likelihood Expectation-Maximization (MLEM)

$$x_i^{(k+1)} = x_i^{(k)} \frac{\sum_j A_{ji} \frac{y_j}{\sum_{i'} A_{ji'} x_{i'}^{(k)} + r_j}}{\sum_j A_{ji}}.$$
 (9)

Ordered-subsets EM (OSEM) accelerates convergence by cycling subsets of projections.

4.3 Regularization

Penalized likelihood adds smoothness or edge-preserving priors:

$$\hat{x} = \arg\max_{x \ge 0} \left\{ \mathcal{L}(x; y) - \beta \sum_{\langle i, i' \rangle} \rho(x_i - x_{i'}) \right\},\tag{10}$$

with Huber or total-variation $\rho(\cdot)$.

5 Dosimetry and Radiobiology

5.1 Time-Integrated Activity

Time-integrated activity (cumulated activity) in source region i:

$$\widetilde{A}_i = \int_0^\infty A_i(t) dt = \frac{A_{i,0}}{\lambda_{\text{eff},i}}$$
 (for mono-exponential). (11)

5.2 MIRD Formalism

Absorbed dose to target T:

$$D_T = \sum_i \widetilde{A}_i S(i \to T), \qquad S(i \to T) = \sum_r \phi_r(i \to T) \frac{\Delta_r}{m_T}, \tag{12}$$

where ϕ_r is the fraction of energy Δ_r emitted in region i that is absorbed in T.

5.3 Radiobiological Effectiveness

High-LET α -emitters exhibit increased relative biological effectiveness (RBE). The linear quadratic survival model

$$S(D) = \exp(-\alpha D - \beta D^2) \tag{13}$$

captures cell kill, with α/β tissue-specific.

6 Theranostics: From Diagnosis to Therapy

6.1 Diagnostic-Therapeutic Pairs

- Somatostatin receptor: 68 Ga-DOTATATE (PET) \leftrightarrow 177 Lu-DOTATATE (therapy).
- PSMA: 68 Ga/ 18 F-PSMA (PET) \leftrightarrow 177 Lu-PSMA; emerging 225 Ac-PSMA (α -therapy).

6.2 Iodine in Thyroid Disease

 123 I (diagnostic SPECT) and 131 I (therapy, β^-) exploit the sodiumiodide symporter (NIS) expression in thyroid tissue.

7 Production, Quality, and Regulation

7.1 Production Routes

- Cyclotrons: ${}^{18}O(p, n){}^{18}F$ for ${}^{18}F$.
- Generators: ⁶⁸Ge/⁶⁸Ga, ⁹⁹Mo/^{99m}Tc.
- Reactors: Neutron activation for ¹⁷⁷Lu, ¹³¹I.

7.2 Quality Control (QC)

Typical QC includes radiochemical purity (ITLC/HPLC), pH, endotoxin (LAL), sterility, residual solvents, and half-life/identity confirmation (gamma spectroscopy).

8 Attenuation, Scatter, and Corrections

8.1 Photon Attenuation

For a monoenergetic beam:

$$I(x) = I_0 e^{-\mu x}, \qquad \mu = \mu_{\text{pe}} + \mu_{\text{Compton}} + \mu_{\text{pair}}. \tag{14}$$

CT-based attenuation maps enable PET/SPECT correction.

9 Quantification: Calibration and Uncertainty

9.1 System Sensitivity

Sensitivity S (counts per Bq) links activity in a standard to observed counts. Cross-calibration ensures SUVs are comparable across scanners and time.

Figure 4: Exponential clearance (illustrative) for timeactivity curve in soft tissue.

10 Biological Underpinnings of Targeting

10.1 Molecular Targets

Examples include glucose metabolism (¹⁸F-FDG), amino acid transport (¹⁸F-FET), integrins (RGD), SSTR (NETs), PSMA (prostate carcinoma), GRPR, and FAP.

10.2 Pharmacokinetics and Organ Dosimetry

Hepatobiliary vs. renal clearance shapes organ doses; bone marrow receives dose via blood-borne activity and crossfire.

11 Clinical Applications

11.1 Oncology

Staging, restaging, response assessment (PERCIST for PET). Radiotracers differentiate viable tumor from treatment effect.

11.2 Cardiology

Myocardial perfusion (SPECT: ^{99m}Tc-sestamibi/tetrofosmin; PET: ⁸²Rb, ¹³N-ammonia), flow quantification, viability (¹⁸F-FDG).

11.3 Neurology

Dopaminergic imaging (123I-FP-CIT), amyloid/tau PET, epilepsy focus localization, neuroinflammation.

12 Safety, Radiation Protection, and Ethics

12.1 ALARA and Practical Shielding

Time, distance, and shielding principles minimize staff and public exposure. Patient-specific considerations include pregnancy, breast-feeding, and renal impairment.

12.2 Ethical Considerations

Indication appropriateness, incidental findings, data privacy, and equitable access are integral to practice.

13 Tables of Common Radionuclides

Table 1: Common radionuclides in nuclear medicine (illustrative values).

Nuclide	Half-life	Decay	Main Emission	Typical Use
99mTc 18F 68Ga 131I 177Lu 90Y 223Ra	6.0 h 109.8 min 67.7 min 8.0 d 6.7 d 64 h 11.4 d	$ \begin{array}{c} \operatorname{IT} \\ \beta^{+} \\ \beta^{+} \\ \beta^{-}/\operatorname{IT} \\ \beta^{-}/\operatorname{IT} \\ \beta^{-} \\ \alpha \end{array} $	γ (140 keV) Annihilation γ (511 keV) Annihilation γ (511 keV) γ (364 keV) γ (113208 keV) $E_{\beta,\text{max}} \approx 2.3 \text{MeV}$ High LET α	SPECT general PET (FDG, PSMA) PET (SSTR, PSMA) Thyroid therapy PRRT/PSMA therapy Microspheres Bone metastases

14 Worked Mini-Example: Patient-Specific Dose

Suppose liver region receives mono-exponential activity $A_L(t) = A_{L,0}e^{-\lambda_{\text{eff}}t}$. Then

$$\widetilde{A}_L = \frac{A_{L,0}}{\lambda_{\text{eff}}}, \qquad D_L = \widetilde{A}_L S(L \to L).$$
 (15)

Uncertainty propagation (first order) for $D_L = f(A_{L,0}, \lambda_{\text{eff}}, S)$:

$$u^{2}(D_{L}) \approx \left(\frac{\partial f}{\partial A_{L,0}} u_{A}\right)^{2} + \left(\frac{\partial f}{\partial \lambda_{\text{eff}}} u_{\lambda}\right)^{2} + \left(\frac{\partial f}{\partial S} u_{S}\right)^{2}.$$
 (16)

15 End-to-End Pipeline

Figure 5: System-level view from isotope production to clinical decision.

16 Future Directions

- Total-body PET for high sensitivity and ultra-low-dose dynamic imaging.
- Novel targets (e.g., FAP, CXCR4), bispecific vectors, and click chemistry.
- Quantitative SPECT with Monte Carlo correction and parametric imaging.
- AI-assisted reconstruction, kinetic modeling, protocol optimization, and reporting

Conclusion

Nuclear medicine is intrinsically interdisciplinary: the physics of unstable nuclei, the chemistry of labeling, the biology of targeting, the engineering of detection, and the clinical science of decision-making. Unified models and robust quality systems enable precise diagnostics and effective, individualized therapy.

Notation

A Activity (Bq) λ Decay constant (1/s) $T_{1/2}$ Half-life (s, min, h, d) D Absorbed dose (Gy) $S(i \to T)$ S-value (Gy/Bqs) K_1, k_2, k_3 Kinetic rate constants (1/min)

SUV Standardized Uptake Value (unitless)

Acknowledgments

The author thanks the broader scientific community for advances in radiochemistry, detector physics, and clinical trials that made this synthesis possible.

References

- [1] S. R. Cherry, J. A. Sorenson, and M. E. Phelps, *Physics in Nuclear Medicine*, 4th ed., Elsevier, 2012.
- [2] W. R. Hendee and E. R. Ritenour, Medical Imaging Physics, 4th ed., Wiley-Liss, 2002.
- [3] ICRP, The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, Ann. ICRP 37(2-4), 2007.
- [4] MIRD Committee, MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry, J. Nucl. Med. 50, 477–484 (2009).
- [5] H. Zaidi and I. Buvat (eds.), Quantitative Analysis in Nuclear Medicine Imaging, Springer, 2005.
- [6] M. N. Wernick and J. N. Aarsvold (eds.), Emission Tomography: The Fundamentals of PET and SPECT, Elsevier, 2004.
- [7] D. L. Bailey, D. W. Townsend, P. E. Valk, and M. Nutt (eds.), Positron Emission Tomography: Basic Sciences, Springer, 2005.
- [8] G. B. Saha, Fundamentals of Nuclear Pharmacy, 7th ed., Springer, 2018.
- [9] W. E. Bolch et al., ICRU Report 67: Absorbed-Dose Specification in Nuclear Medicine, J. ICRU 5(2), 2005.
- [10] T. K. Lewellen, Recent Developments in PET Detector Technology, Phys. Med. Biol. 53, R287–R317 (2008)
- [11] R. L. Wahl et al., PERCIST: PET Response Criteria in Solid Tumors, J. Nucl. Med. 50, Suppl 1 (2009).

The End