Progetto Finale Task 4

Colella Gianni - M63/670

Guida Ciro – M63/592

Lombardi Daniele – M63/576

Corso: Sistemi Embedded

Anno Accademico: 2016-2017

Prof. Antonino Mazzeo Ing. Mario Barbareschi

Traccia

Si realizzi un IP Core che implementi il raffinamento del calcolo del delay che avviene durante la fase di Tracking, relativamente alla seconda parte durante la quale bisogna effettuare i moduli delle sommatorie, ottenute durante lo step precedente, calcolarne il rapporto e ricavarne la radice quadrata

- Per la realizzazione del task si richiede l'implementazione di
 - 1. Moltiplicatore
 - 2. Sommatore
 - 3. Divisore
 - 4. Radice quadrata

Schema di Principio

MATLAB

```
% Delay Deviation Estimation
64
           for bbb = 1:nr block
65 -
               index P = (1+(bbb-1)*sample in P:bbb*sample in P);
66 -
               Data preConditioned(index P) = Data plus Noise Block(index P).*DRR in P.*DRR in B(bbb)*SS a p(bbb);
67 -
               r(bbb) = abs(sum(Data preConditioned(index P).*S P Early 1))/ ...
68 -
                   abs(sum(Data_preConditioned(index_P).*S_P_Late_1)); % gating
69
70 -
           end
71 -
           r avg(bb) = mean(r);
```

Da Test2_DelayDeviationAndAlignment.m

```
% Compute operations
62
       reE2=real(sigEarly).^2;
63 -
       imE2=imag(sigEarly).^2;
64 -
65 -
       reL2=real(sigLate).^2;
       imL2=imag(sigLate).^2;
66 -
       sE=reE2+imE2;
67 -
       sL=reL2+imL2;
68 -
69 -
       d1=sE./sL;
70 -
       R=sgrt(d1);
```

Da T4_data_generator.m

Realizzazione Task 4 v.1.0

Impiego di soli IP Core Xilinx

Multiplier - Adder/Subtractor - Divider Generator - Cordic

Analisi dell'area occupata

Componente		LUT	Slice Reg.	DSP48
Multiplier	x4	1103	64	0
Adder	x2	63	64	0
Divider Generator	x1	2036	4474	0
Cordic	x1	673	892	0
TOT:	•	(41%) 7248	(16%) 5750	(0%) 0

Name ^1	Slice LUTs (17600)	Slice Registers (35200)	F7 Muxes (8800)	Bonded IOB (100)
⊡· 🙀 Task4	7248	5750	8	160
DIVISOR (DIVISORE)	2036	4474	8	0
	2036	4474	8	0
SQUARE (modulo_quadro)	4538	384	0	0
➡ □ E2 (c_addsub_0)	63	64	0	0
± · IM2E (Square)	1103	64	0	0
IM2L (Square)	1103	64	0	0
	63	64	0	0
⊕· RE2E (Square)	1103	64	0	0
	1103	64	0	0
SQUARE_ROOT (SQRT)	673	892	0	0
1 □ □ □ □ (SQRT_cordic_v6_0	673	892	0	0

Analisi dei Tempi

Si riporta un esempio di simulazione behavioral in cui il clock di ingresso è a 100 MHz. Il risultato è restituito dopo 136 Cicli di Clock.

Analisi soluzione Task 4 v. 1.0

Vantaggi:

- -Velocità e semplicità di implementazione;
- -Riutilizzo dei componenti;

Svantaggi:

- -Gestione dei segnali tvalid di ingresso; -Non interoperabilità con AXI Stream;
- -Area occupata;

Componenti in Analisi

Modulo Quadro

- Due IpCore Multiplier e un IP Core Adder/Subtractor
- 2. Operatori VHDL * e +
- Due Moltiplicatori di Booth e un Ripple Carry Adder
- Due Moltiplicatori MAC e un Ripple Carry Adder

Divisore

- 1. IPCore Divider Generator
- 2. Divisore Non Restoring
- Operatore VHDL /

Radice Quadrata

- 1. IPCore Cordic
- 2. Algoritmo Digit-by-Digit Custom Combinatorio
- 3. Algoritmo Digit-by-Digit Custom Sequenziale

Componente n.1: Modulo Quadro

Il Modulo quadro è suddiviso a sua volta in 3 sotto-componenti: due Square e un Adder.

Il componente ha ingresso un numero complesso espresso su 64 bit . La parte immaginaria e la parte reale sono rappresentate in complemento a due signed su 32 bit.

32 31 31

s imaginary part s real part

Il componente Square è un moltiplicare che ha in ingresso un signed a 32 bit e in uscita un signed su 64 bit. Il componente Adder è un addizionatore con 64 bit signed in ingresso e 65 bit in uscita, ma di cui viene troncato il MSB in quanto il modulo quadro è sempre positivo.

Modulo Quadro pt.2

Implementazioni analizzate

- 1. Due IpCore Multiplier e un IP Core Adder/Subtractor;
- 2. Operatori VHDL * e +;
- 3. Due Moltiplicatori di Booth e un Ripple Carry Adder;
- 4. Due Moltiplicatori MAC e un Ripple Carry Adder;

Implementazione		Area		Ter	npi
numero	LUT Register	Slice Register	DSP48	Frequenza	Cicli di clock
1	1283	106	0	69.686 MHz	2
2	158	0	8	80.901 MHz	2
3	425	264	0	82.967 MHz	[correggi]
4	5468	128	0	20.927MHz	2

Absolut Square

Si aggiunge compatibilità con AXI Stream

```
data_im2<=data_im*data_im;
data_re2<=data_re*data_re;
data_mod<=data_im2+data_re2;</pre>
```


Componente n.2 : Divisore

Il Divisore deve eseguire l'operazione di divisione tra il modulo quadro di Early e il modulo quadro di Late

Il componente ha ingresso due valori unsigned integer espressi su 64 bit .

In uscita il divisore restituisce una numero unsigned espresso in fixed point su 48 bit, di cui 40 bit usati per la parte decimale e 8 bit per la parte intera.

47 40 39		0
integer	decimal	٠

Divisore pt.2

Implementazioni analizzate

- 1. IpCore Divider Generator
 - 1. Clocks per division: 1
 - 2. Clocks per division: 2
 - 3. Clocks per division: 8
- Operatore VHDL /;
- 3. Divisore non restoring;

Implementazione	3 do	Area		Ter	npi
numero	LUT Register	Slice Register	DSP48	Frequenza	Cicli di clock
1.1	7168	17165	0	163,514 MHz	91
1.2	7089	9144	0	102,776 MHz	91
1.3	1819	2635	0	104,493 MHz	91
2	6850	171	0	2,407 MHz	2
3	5996	428	0	83,198 MHz	104

Componente n.3 : Radice Quadrata

Il componente ha ingresso un valore fixed point espresso su 48 bit: <48,40>. In uscita restituisce una numero signed espresso in fixed point signedsu 24 bit: <24,11>

23 22		11 10	0
S	integer	decima	0

Radice Quadrata pt.2

Implementazioni analizzate

- 1. IpCore Cordic;
- 2. Algoritmo Digit-by-Digit Custom Combinatorio;
- 3. Algoritmo Digit-by-Digit Custom Sequenziale;

Implementazione		Area	Ter	npi	
numero	LUT Register	Slice Register	DSP48	Frequenza	Cicli di clock
1	741	403	0	130,056 MHz	24
2	1917	74	0	13,818 MHz	2
3	202	121	0	120,642 MHz	25

Square_Root

```
int sqrt(int num, int precision){
  int op = num;
  int res = 0;
  int one = 1 << precision;
  while (one > op)
  one >>= 2;
  while (one != 0){
      if (op >= res + one) {
            op -= res + one;
            res += 2 * one;
      }
      res >>= 1;
      one >>= 2;
  }
  return res; }
```

Si aggiunge compatibilità con AXI Stream

Realizzazione Task 4 v.2.0

Modulo Quadro con Operatori VHDL – Divider Generator – Algoritmo Custom Sequenziale

Analisi dell'area occupata

Component		LUT	Slice Reg.	DSP48
Absolute_Square	x2	165	66	8
Divider Generator	x1	2036	4474	0
Square_Root	x1	223	124	0

TOT:

(15%) 2600 (14%) 4730 (20%) 16

		The second secon			SANCORA CONTRACTO		
	Name 1	Slice LUTs (17600)	Slice Registers (35200)	F7 Muxes (8800)	DSPs (80)	Bonded IOB (100)	BUFGCTRL (32)
A		2600	4730	8	16	160	1
	◆ ■ ABS_SQR_EARLY (AXI4)	165	66	0	8	0	C
1/6	◆ ■ ABS_SQR_LATE (AXI4	166	66	0	8	0	C
% X	◆ ■ DIVIDER (AXI4_Stream	2036	4474	8	0	0	C
A.	SQUARE ROOT (AXI4	233	124	0	0	0	C

Tempi

Si riporta un esempio di simulazione behavioral in cui il clock di ingresso è a 100 MHz. Il risultato è restituito dopo 144 Cicli di Clock.

Criticità superate rispetto alla versione 1.0:

Tutti i componenti sono interfacciati con AXI Stream;

Ottimizzazione dell'area occupata;

0	v1.0	v2.0
LUT	7248	2600
Slice Register	5750	4730

-179% -22%

Valutazione Tempi tra le due soluzioni:

	v1.0	v2.0
Cicli di Clock	137	144

4,86%

Realizzazione Task 4 v.2.1

Si adatta la cardinalità della parte frazionaria del valore di uscita del Divider Generator

Analisi dell'area occupata

Component		LUT	Slice Reg.	DSP48
Absolute_Square	x2	165	66	8
Divider Generator	x1	1735	3806	0
Square_Root	x1	223	124	0

TOT:

(13%) 2300 (12%) 4062 (20%) 16

Name 41	Slice LUTs (17600)	Slice Registers (35200)	F7 Muxes (8800)	DSPs (80)	Bonded IOB (100)	BUFGCTRL (32)
P-N Task4 m	2300	4062	8	16	160	1
ABS_SQR_EARLY (AXI4	165	66	0	8	0	C
ABS_SQR_LATE (AXI4	166	66	0	8	0	C
ABS_SQR_LATE (AXI4 Parameter and AXI4_Stream SOUARE ROOT (AXI4	1736	3806	8	0	0	C
SQUARE ROOT (AXI4	233	124	0	0	0	C

Tempi

Si riporta un esempio di simulazione behavioral in cui il clock di ingresso è a 100 MHz. Il risultato è restituito dopo 128 Cicli di Clock.

Miglioramenti rispetto alla versione 2.0:

Ottimizzazione dell'area occupata;

	v2.0	v2.1
LUT	2600	2300
Slice Register	4730	4062

Valutazione Tempi tra le due soluzioni:

	v2.0	v2.1
Cicli di Clock	144	128

-12,50%

Testing

Si è generato un testbench che prende in ingresso i file da imputEarly.txt e imputLate.txt generati su MATLAB R2017.a© a partire dallo script 'T4_data_generator.m'.

Tutti i valori di r calcolati da Vivado 2016.3 sono stati successivamente salvati in un file testuale così da poter fare delle valutazioni in termini di errore relativo e di errore assoluto rispetto alla soluzione calcolata da MATLAB.

	r
Errore Relativo*	0
Errore Assoluto*	0

$$*\epsilon = 2^{-12}$$

Numero di campioni generati: 1000

Link repository

https://github.com/F3CDG/Task-4