CONTENTS

Chemistry

Effect of Dilution on the pH of Soils Treated with Various Cations. Alfred T. Perkins	
AND H. H. KING	1
IRVIN H. CURIE	
The Carbon-Organic Matter Factor in Forest Soil Humus. HERBERT A. LUNT	27
The Effect of Various Sources of Organic Matter on the Properties of Soils as Determined	
by Physical Measurements and Plant Growth. H. B. Sprague and J. F. Marrero.	
Exchangeable Cations of the Soil and the Plant: I. Relation of Plant to Certain Cations	
Fully Saturating the Soil Exchange Capacity. K. K. Gedroiz	
Book Review	
On the Decomposition of Hemicelluloses by Microorganisms: I. Nature, Occurrence,	
Preparation, and Decomposition of Hemicelluloses. Selman A. Waksman and	
ROBERT A. DIEHM	
On the Decomposition of Hemicelluloses by Microorganisms: II. Decomposition of	
Hemicelluloses by Fungi and Actinomyces. Selman A. Waksman and Robert	
А. Dieнм	
On the Decomposition of Hemicelluloses by Microorganisms: III. Decomposition of	
Various Hemicelluloses by Aerobic and Anaerobic Bacteria. Selman A. Waksman and Robert A. Diehm.	110
Studies on the Transformations of Iron in Nature: III. The Effect of CO ₂ on the	119
Equilibrium in Iron Solutions. H. O. Halvorson.	141
The Use of Hydrogen Peroxide for Estimating Humification. H. L. RICHARDSON	
The Alcohol Method for Determining Moisture Content of Soils. George Bouyoucos.	
The Moisture Equivalent as a Measure of the Field Capacity of Soils. F. J. Veihmeyer	
AND A. H. HENDRICKSON	181
The Effect of Drying and Ultra-Violet Light on Soils. A. E. MORTENSON AND F. L.	
DULEY	195
A Simple Electrodialysis Cell for the Routine Determination of Exchangeable Bases in Soils. M. L. M. SALGADO AND G. W. CHAPMAN	100
The Influence of Lime on the Recovery of Total Nitrogen in Field Crops. J. G. LIPMAN,	199
A. W. Blair and A. L. Prince.	217
Double Infection of Leguminous Plants with Good and Poor Strains of Rhizobia. D. H.	
DUNHAM AND I. L. BALDWIN	235
The Fixation of Nitrogen by Leguminous Plants Under Bacteriologically Controlled	
	251
Changes in Composition of Soybeans Toward Maturity as Related to Their Use as Green	071
Manure. Wm. A. Albrecht and W. H. Allison	2/1
western Wyoming. James Thorp	283
Soil Profile Studies: III. The Process of Podzolization, J. S. Joffe	303
Book Reviews.	
Field Method for Lime Requirements of Soils. R. H. Bray and E. E. DeTurk	329
The Laws of Soil Colloidal Behavior: VI. Amphoteric Behavior. Sante Mattson	343
Some Influences of the Development of Higher Plants Upon the Microorganisms in the	
Soil: IV. Influence of Proximity to Roots on Abundance and Activity of Microor-	267
ganisms. Robert L. Starkey	307
111	

CONTENTS

Some Influences of the Development of Higher Plants Upon the Microorganisms in the	
Soil: V. Effects of Plants Upon Distribution of Nitrates. ROBERT L. STARKEY	395
Book Reviews	405
Relation of pH Drift to Moisture Content and Base Held in Soils. Alfred T. Perkins	
AND H. H. KING	409
Further Observations Upon the Nature of Capillary Rise Through Soils. H. A.	
Wadsworth	417
Effect of Replaceable Sodium on Soil Permeability. A. EVAN HARRIS	435
Replaceable Iron and Aluminum in Soils. P. E. TURNER	447
The Determination of Lime Requirement by the Direct Addition of Calcium Carbonate.	
G. P. Percival.	459
Effects of Sorghum Plants on Biological Activities in the Soil. ARTHUR D. MCKINLEY.	469
The Longevity of Legume Bacteria on Seed, as Influenced by Plant Sap. NANDOR	
PORGES	481

ILLUSTRATIONS

PLATES

A METHOD FOR THE STUDY OF AZOTOBACTER AND ITS APPLICATION TO FERTILITY SOIL PLOTS
Plate 1. Range of Colony Counts
THE EFFECT OF VARIOUS SOURCES OF ORGANIC MATTER ON THE PROPERTIES OF SOILS AS DETERMINED BY PHYSICAL MEASUREMENTS AND PLANT GROWTH
Plate 1. The Effect on Plant Growth of Incorporating Various Types of Organic Matter with the Soil
Plate 1. Soil Sampling Tubes and Hammers Used in This Investigation
Plate 1. Soil Dispersing Machine Showing the Spring, Cork Stopper, and Bottle 179
A SIMPLE ELECTRODIALYSIS CELL FOR THE ROUTINE DETERMINATION OF EXCHANGEABLE BASES IN SOILS
Plate 1. Ten Cells Mounted and Connected in Parallel to the Main Terminals 215
Double Infection of Leguminous Plants with Good and Poor Strains of Rhizobia
Plate 1. Red Clover Plants Just Before Harvest (123 Days Old) Showing the Growth Following Inoculation at Various Times
THE FIXATION OF NITROGEN BY LEGUMINOUS PLANTS UNDER BACTERIOLOGICALLY CONTROLLED CONDITIONS
Plate 1. Fixation of Nitrogen by Clover in Agar Substrate
THE EFFECTS OF VEGETATION AND CLIMATE UPON SOIL PROFILES IN NORTHERN AND NORTHWESTERN WYOMING
Plate 1. The Gray-Brown Desert Soils of Big Horn Basin
Plate 2. Acid Prairie and Podzolic Soils in the Big Horn Mountains
2. Open prairie with strips of lodgepole pine forest at 8,500 feet elevation, Big Horn Mountains

THE DETERMINATION OF LIME REQUIREMENT BY THE DIRECT ADDITION OF CALCIUM CARBONATE
Plate 1. The Equipment Used to Mix the CaCO ₃ with the Soil Suspension
TEXT-FIGURES
EFFECT OF DILUTION ON THE pH OF SOILS TREATED WITH VARIOUS CATIONS
•
Fig. 1. pH Values at Several Soil-Water Ratios.
A METHOD FOR THE STUDY OF AZOTOBACTER AND ITS APPLICATION TO FERTILITY PLOT SOIL
Fig. 1. Relation of Incubation Period to Number of Colonies 1. 2. Relation of Number of Plates to Per Cent Error 1. 3. Relation of Colony Count to Nitrogen Fixation 1. 4. Relation of Logarithm of Colony Count to Nitrogen Fixation 1. 5. Data for Section C on Corrected Check Basis 2. 6. Data for Section D on Corrected Check Basis 2.
An Improved Soil Sampling Tube
Fig. 1. Longitudinal Section of Soil Sampling Tube Made from 14-Gauge Seamless Steel
Tubing
On the Decomposition of Hemicelluloses by Microorganisms: II. Decomposition of Hemicelluloses by Fungi and Actinomyces
Fig. 1. The Rate of Decomposition of Mannan in Sand Medium by Pure Cultures of Fungi and Actinomyces
Cultures of Fungi and Actinomyces
and Actinomyces
5. The Rate of Decomposition of the Various Hemicelluloses by Actinomyces in a Period of Six Weeks
ON THE DECOMPOSITION OF HEMICELLULOSES BY MICROORGANISMS: III. DECOMPOSITION OF VARIOUS HEMICELLULOSES BY AEROBIC AND ANAEROBIC BACTERIA
Fig. 1. Comparison of the Rate of Decomposition of Certain Hemicelluloses by Aerobic Bacteria
THE MOISTURE EQUIVALENT AS A MEASURE OF THE FIELD CAPACITY OF SOILS
Fig. 1. Field Capacity Plot of Yuba City on Madera and Gridley Loam 4 Days After a Depth of 4 Inches of Water Was Applied
3. Field Capacity Plot at Hughson on Fresno Sandy Loam, 6 Days After a Depth of 4 Inches of Water Was Applied
4. Field Capacity Plot at Hughson on Fresno Sandy Loam, 6 Days After a Depth of 6 Inches of Water Was Applied
5. Field Capacity Plot at Riverside on Hanford Fine Sandy Loam 5 Days After a Depth of 3 Inches of Water Was Applied
6. Field Capacity Plot at Riverside on Hanford Fine Sandy Loam 5 Days After a Depth of 6 Inches of Water Was Applied 189

ILLUSTRATIONS

A SIMPLE ELECTRODIALYSIS CELL FOR THE ROUTINE DETERMINATION OF EXCHANGEABLE
Bases in Soils
Fig. 1. a, Diagram of the New Two-Compartment Cell; b, The Anode Used in the
Cell
Double Infection of Leguminous Plants with Good and Poor Strains of Rhizobia
Fig. 1. The Effect of Double Infection with Good and Poor Strains of Rhizobiumlegumino- sarum on the Dry Weights and Nitrogen Content of Peas (Pisum sativum) 243 2. The Effect of Double Infection with Good and Poor Strains of Rhizobium trifolii on the Dry Weights and Nitrogen Content of Red Clover (Trifolium pratense)
THE FIXATION OF NITROGEN BY LEGUMINOUS PLANTS UNDER BACTERIOLOGICALLY CONTROLLED CONDITIONS
Fig. 1. Fixation of Nitrogen in Sterile Agar Cultures (Experiment IV)
Changes in Composition of Soybeans Toward Maturity as Related to Their Use as Green Manure
Fig. 1. Nitrogen Content of Soybeans During the Season as Correlated with Soil Moisture
THE EFFECTS OF VEGETATION AND CLIMATE UPON SOIL PROFILES IN NORTHERN AND NORTHWESTERN WYOMING
Fig. 1. Average Annual Precipitation
SOIL PROFILE STUDIES: III. THE PROCESS OF PODZOLIZATION
Fig. 1. Weakly Podzolized Soil with a Bleached Horizon Below B
FIELD METHOD FOR LIME REQUIREMENT OF SOILS
Fig. 1. Relation of pH Values and Degree of Base-Saturation of the Base-Exchange Capacity in 74 Samples of Surface Soil
RELATION OF pH DRIFT TO MOISTURE CONTENT AND BASE HELD IN SOILS
Fig. 1. Drift of pH at Various Soil-Water Ratios

FURTHER OBSERVATIONS UPON THE NATURE OF CAPILLARY RISE THROUGH SOILS	
Fig. 1. Rise-Time Curve for Glass Tube Over Water	
2. LogRise LogTime for Unscreened Testing Sand	
3. Relation Between Constants for Testing Sand and Grain-Sizes Involved	421
4. LogTime LogRise for Fine Emery, Together with Resulting Moisture	
Distribution	
5. LogRise LogTime Curve for Unwashed Building Sand	
6. LogRise LogTime for Yolo Sandy Loam	424
7. LogRise LogTime Curve for Natural Kunia Soil, Together with Resulting Moisture Distribution	424
8. LogRise LogTime Curve for Heated Kunia Soil, Together with Resulting	
Moisture Distribution	425
9. Moisture Distribution Curve for Santa Clara Soil	
EFFECT OF REPLACEABLE SODIUM ON SOIL PERMEABILITY	
Fig. 1. A and B Typical Time Curves for the Rate of Percolation	437
2. Relation Between Transmission Constant and Percentage of Sodium for Two	
Horizons	440
the Rate of Percolation with the Time	443
REPLACEABLE IRON AND ALUMINUM IN SOILS	
Fig. 1. Relationship Between Hydrogen-Ion Concentration and Content of Replaceable	
Aluminum of Soil.	451
2. Relationship Between Soil Content of Replaceable Hydrogen and Aluminum	
3. Relationship Between pH Value of Soil and Thiocyanate Color	455
4. Relationship Between Soil Content of Replaceable Hydrogen and Thiocyanate	
Color	456
The Determination of Lime Requirement by the Direct Addition of Calcium Carbonate	a.
Fig. 1. The Effect of Aeration on the Titration Curves When CaCO ₃ Is Used	460
2. Titration Curves of Two Soils that Differ in Organic Matter	

