ZR 2023 赛前20天-day02 (modify)

题目名称	花菖蒲	百日草	黄队	麒麟草
题目类型	传统型	传统型	传统型	传统型
英文题目名称	ensata	elegans	HD	goldenrod
输入文件名	ensata.in	elegans.in	HD.in	goldenrod.in
输出文件名	ensata.out	elegans.out	HD.out	goldenrod.out
每个测试点时限	1s	1.5s	2s	2.5s
内存限制	256MB	1024MB	1024MB	1024MB
提交的源文件名	ensata.cpp	elegans.cpp	HD.cpp	goldenrod.cpp

【C++编译选项】 -lm -std=c++14 -Wl,--stack=1000000000 -02

【试题下载地址】 ftp://172.16.2.202/竞赛资料/20231105.zip 匿名访问即可

【结果上传地址】 ftp://172.16.2.202/20231105文件回收 用户名密码均为test

【赛后补题地址】 http://zhb.wms.edu/d/JH2023/ 训练

【提交文件夹格式】

--准考证号\ **(平时训练用中文姓名)**

T1【题目名称】花菖蒲(ensata)

花菖蒲 (ensata) 需要SPJ

【题目描述】

判断是否存在一棵树,满足它有 a 个一度点和 b 个三度点,如果存在请给出一个节点数不超过 2000 的构造,否则输出 0。

【输入】

第一行输入 a,b 两个数字。

【输出】

如果有解,请输出一棵树,第一行是节点个数n,编号从1~n,接下来 n-1 行两个数字表示一条 边。

若有多个满足条件的树,输出任意一个即可。

否则输出一个数字 0。

【样例】

3 1

4

1 4

2 4

3 4

【样例 23456】

见下发文件

【数据范围】

对于所有数据 0≤a,b≤200。

Subtask 1 (20pts) : a,b≤5。

Subtask 2 (20pts) : b=0.

Subtask 3 (20pts) : b=a-2.

Subtask 4 (30pts) : a,b≥1。

Subtask 5 (10pts) : a,b≤200。

T2【题目名称】百日草 (elegans)

【题目名称】

百日草 (elegans)

【题目描述】

有一张 n 个点 m 条边的有向图,每条边上有一个正整数边权,你要顺着图上的有向边从 1 号点走到 n 号点。

假设你经过的边边权依次为 $w_1,w_2\cdots w_t$,则你的疲惫程度为 $max_{i=1}^tiw_i$ 。你需要找到最小疲惫程度的路径。

【输入】

第一行两个空格分隔的正整数 n,m,表示有向图的点数和边数。有向图的点用 1 到 n 编号。

接下来 m 行每行描述一条有向图的边,一行三个用空格分隔的正整数 a,b,c,表示一条从编号为 a 的点出发,到达编号为 b 的点,边权为 c 的有向边。

可能有重边和/或自环。

【输出】

输出一个正整数,表示路径可能疲惫程度的最小值。

【样例】

3 3

1 2 5

2 3 4

1 3 6

6

【样例解释】

路径1→2→3的疲惫程度为8,路径1→3的疲惫程度为6。可能疲惫程度最小值为6。

样例 2345

见下发文件

【数据范围】

对于所有数据, $2 \leq n, m \leq 3 \times 10^5$, $1 \leq w_i \leq 10^9$,至少有一条从 1 号点到 n 号点的路径。

Subtask 1 (10pts) : n, m < 20 , $w_i < 10^4$.

Subtask 2 (20pts) : $n,m \leq 100$, $w_i \leq 10^4$.

Subtask 3 (10pts) : $n,m \leq 2000$.

Subtask 4 (20pts) : $n, m \leq 5 \times 10^4$.

Subtask 5 (40pts) : $n,m \leq 3 \times 10^5$.

T3 【题目名称】黄队 (HD)

【题目描述】

有一棵 n 个节点的树,其中所有的树边 1 到 n-1 标号。定义 $\delta(v,r)$ 为 v 经过由标号不超过 r 的边构成的路径到达的点集。

现在有 q 个询问,每个询问给你一组点 v_1, v_2, \ldots, v_k ,求 (r_1, r_2, \ldots, r_k) 这样的 k 元组个数,满足 $0 \le r_i \le n-1$ 且 $\delta(v_i, r_i)$ 这些点集两两不交。

由于答案很大,请输出对 10^9+7 取模的值。

【输入格式】

第一行一个整数 n 。

接下来 n-1 行,第 i 行两个整数 u,v 表示标号为 i 的树边。

接下来一行一个整数 q。

接下来 q 行,每行一个整数 k,接下来 k 个整数, v_1,v_2,\cdots,v_k ,保证两两不同。

【输出格式】

q行,每行一个整数,表示答案。

【样例输入】

3

1 2

2 3

2

3 1 2 3

2 1 3

【样例输出】

2

4

【数据范围】

10% 的数据, $n, q \leq 5$ 。

20% 的数据, $n, q \le 10$ 。

40% 的数据, $n, q \leq 100$ 。

60% 的数据, $n,q \leq 1000, \sum k \leq 1000$ 。

另外 20% 的数据,满足 $k \leq 5$ 。

另外 10% 的数据,满足 $q \leq 5$ 。

对于 100% 的数据,满足 $1 \leq n, q, \sum k \leq 2 \times 10^5, k \geq 2$ 。

T4 【题目名称】麒麟草(goldenrod)

【题目名称】

麒麟草 (goldenrod)

【题目描述】

有一个 $r \times c$ 的平面。

有 n 个矩形在平面上和 q 个查询。

每个查询给你一个矩形,询问这个矩形与给定的n个矩形相交的面积之并的面积。也可以认为是这*n*个矩形并的整个图形与给定矩形的交的面积。

矩形的给出方式为四个参数 x_1,y_1,x_2,y_2 ,其中 $(x_1,y_1),(x_2,y_2)$ 表示矩形不相邻的两个顶点。

注意有可能 $x_1>x_2,y_1>y_2$ 或者 $x_1=x_2,y_1=y_2$,后者会退化成一条线,面积会变成 0。

本题强制在线

【输入】

第一行输入 r,c,n,q,分别表示平面大小,矩形个数,查询次数。

接下来 n 行输入 x_1,y_1,x_2,y_2 表示一个矩形。

接下来 q 行输入 $x_1', y_1', x_2', y_2', v$,作为计算查询矩形的参数。

 $x_i = (x_i' + lastans \cdot v) \mod (r+1).$

 $y_i = (y_i' + lastans \cdot v) \mod (c+1).$

第一次询问时lastans = 0,否则lastans为上一次询问的答案。

【输出】

q 行,每行一个整数表示答案。

【样例】

8 11 3 4

1 1 5 5

7 7 5 4

4 6 2 7

1 1 7 8 4

6 6 8 7 2

2 3 5 6 7

11 5 12 6 5

24

0

6

3

样例23456

见下发文件

【数据范围】

 $n,q \leq 100000$.

 $0 \le x_i, x_i' \le r, 0 \le y_i, y_i' \le c, 0 \le v \le 10^9$.

子任务编号	分值	r ≤	$c \leq$	$n,q \leq$	特殊性质
1	5	500	500	500	v = 0
2	5	5000	5000	5000	v = 0
3	30	300000	300000	50000	v = 0
4	10	10 ⁹	200000	50000	v = 0
5	10	10 ⁹	10 ⁹	100000	v = 0
6	20	100000	100000	50000	
7	20	10 ⁹	10 ⁹	100000	