Large-Scale Distributed Private Learning with DPSGD

Tianhao Wang, Litao Yan, Ruoxi Yang, Silin Zou

Project Website: https://yanlitao.github.io/fastDP/

Project Repo: https://github.com/TIANHAO-WANG/fastDP

Overview

Distributed Training

Data Processing: technique

	sex	married	black	asian	collegedegree	employed	militaryservice	uscitizen	disability	englishability
0	1	1	0	0	0	1	0	1	0	1
1	1	1	0	0	0	0	0	1	0	1
2	0	1	0	0	0	0	1	1	0	1
3	0	0	0	0	0	0	0	1	1	1
4	0	1	0	0	0	0	0	1	0	1

Spark vs. MapReduce

- In-Memory vs. I/O on Disk
- Ease of Use
- Suitable for our dataset

Data Processing: Result

MapReduce

	Percentage of Full Dataset	Sequential Time	with 1 core	with 2 cores	with 4 cores
ر0	1%	0.927s	110s	66s	44s
	25%	17.579s	114s	68s	44s
	100%	78.52s	126s	76s	48s

Spark

Percentage of Full Dataset	Sequential Time	with 1 core	with 2 cores	with 3 cores	with 4 cores
100%	78.52s	6.34s	3.61s	3.58s	4.18s

Distributed DPSGD Training: Design

Choices:

Avoid Data

- Model Parallel vs Data Parallel
- Parameter Server vs AllReduce
- CPU vs GPU-accelerated

Algorithm 1 Distributed Parallelization of Differentially private SGD

Input: Training Data $\{x_1,\ldots,x_N\}$, loss function $\mathcal{L}(\theta)=\frac{1}{N}\sum_i\mathcal{L}(\theta,x_i)$. Training hyperparameters: learning rate η_t , noise scale σ , gradient norm bound C, total number of iterations T. Parallelization parameters: individual batch size B, number of workers R.

Communication Size B, number of workers.

Initialize θ_0 randomly with the same seed for all R workers.

Partition training data into R pieces and distribute to each worker. for $t \in [T]$ do

Take a random batch $L_{t,r}$ of size B on the local data for each worker r

Compute local gradient

For each $i \in L_{t,r}$, compute $\mathbf{g}_{t,r}(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$

Clip local gradient

$$\bar{\mathbf{g}}_{t,r}(x_i) \leftarrow \mathbf{g}_{t,r}(x_i) / \max\left(1, \frac{\|\mathbf{g}_{t,r}(x_i)\|_2}{C}\right)$$

Noise Addition

$$\tilde{\mathbf{g}}_{t,r} \leftarrow \frac{1}{B} \left(\sum_{i} \bar{\mathbf{g}}_{t,r}(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$$
Gradient AllReduce

AllReduce = Reduction + Broadcast

Avoid model

synchronization $\sup_{\mathbf{g}_{t,r}} \operatorname{across all of the workers into } \tilde{\mathbf{g}}_{t}$.

Update $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t / R$ on all workers.

Output θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Distributed DPSGD Training: Design

Distributed DPSGD Training: implementation (V1)

DistributedDataParallel automatically handles Gradient Reduction

```
dp_device_ids = [local_rank]
device = torch.device('cuda', local_rank)
model = Network()
model.to(device)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=dp_device_ids)
```

DistributedSampler automatically handles Data Partition

```
train_sampler = torch.utils.data.distributed.DistributedSampler(trainset)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, sampler=tr
```

Distributed DPSGD Training: implementation (V2)

Implemented Data Partition and Gradient AllReduce from scratch, without using built-in library.

AllReduce Algorithm:

- Simple to implement; easy for debugging and analysis.
- Sending unnecessary messages, can be further improved.
- Obtained great performance in the experiment.

Message Passing Illustration:

Baseline Model: Result

- bottleneck for optimization
 - backwards propagation
 - mini-batch in DPSGD

- Model Accuracy:

				1671800 primitive calls) in 991.690 second
uraerea	ı by: Stai	ndard name	-	
ncalls	tottime	percall	cumtime	percall filename:lineno(function)
1	0.000	0.000	0.000	0.000 dpsqd.py:1(<module>)</module>
4	0.000	0.000	0.000	0.000 dpsqd.py:10(make_optimizer_class)
4	0.000	0.000	0.000	0.000 dpsgd.py:11(DPOptimizerClass)
1	0.000	0.000	0.000	0.000 dpsgd.py:12(init)
	a aaa	a aaa	a aaa	0 000 dpsqd py:24(<listcomps)< td=""></listcomps)<>
1109250	4.704	0.000	25.299	<pre>0.000 dpsgd.py:26(zero_minibatch_grad)</pre>
1109250	47.772	0.000	186.898	0.000 dpsgd.py:29(minibatch_step)
13050	0.046	0.000	0.169	0.000 dpsgd.py:43(zero_grad)
13050	1.395	0.000	3.126	0.000 dpsgd.py:49(step)
1	111.532	111.532	989.635	989.635 main.py:103(DPtrain)
100	0.079	0.001	1.965	0.020 main.py:159(test)
1	0.000	0.000	0.000	<pre>0.000 main.py:182(_ConfigDeprecated)</pre>
1	0.000	0.000	0.000	0.000 main.py:19(Network)
1	0.000	0.000	0.001	0.001 main.py:20(init)
1	0.000	0.000	0.000	0.000 main.py:23(ExitCode)
1109350	9.492	0.000	136.543	0.000 main.py:25(forward)
1109350	25.104	0.000	83.242	0.000 main.py:32(binary_acc)

1: Model inversion attack is a famous privacy attack against machine learning models. The access to a model is abused to infer information about the training data, which raised serious concerns given that training data usually contain privacy sensitive information. We use the success rate of model inversion attack as the criteria for the effectiveness of DP training.

Distributed Training: Result

ncalls	tottime		mtime percall filename:lineno(function)
401520	1.866	0.000 27.9	
401520	25.077	0.000 173.1	
19120	0.131	0.000 1.0	036
19120	3.424	0.000 10.4	
1	0.000	0.000 0.00	
1	0.000	0.000 27.0	
401520	66.600	0.000 191.13	118 0.000 dist_scratch_main.py:29(average_gradients)
1	45.675	45.675 1048.28	284 1048.284 dist_scratch_main.py:36(DPtrain)

- Computing parallelism increases speedup
- Different distributions of GPU achieves approximately the same speedup
- intra-node communication VS inter-node communication overhead
- Economy-time tradeoff

Experiment	# GPU	Time (s)	price / hour	Cost
1*g3.4xlarge	1	6300	1.14	1.995
1*g3.8xlarge	2	3205	2.28	2.03
1*g3.16xlarge	4	1813	4.56	2.3
1*g3.4xlarge	4	2144	4.56	2.72
2*g3.8xlarge	4	1937	4.56	2.45
			-	

Discussion & Future Work

Discussion

- Data Processing Speed-up: 21.89
- Distribute DPSGD Speed-up: 3.09

Future Work

- Implement advanced
 All-Reduce algorithms:
 - Tree All-Reduce
 - o Round-robin All-Reduce
 - o Butterfly All-Reduce
- Try to use Ring All-Reduce algorithm

Ring All-Reduce

(a) Tree AllReduce

(b) Round-robin AllReduce

(c) Butterfly AllReduce