EE5138R: Quiz 1 (13/02/15) Total: 30 points

- 1. (10 points) For which sets of $\alpha \in \mathbf{R}$ are the following functions convex?
 - (a) (2 points) $f(x) = \sin x + \alpha x$ with $\operatorname{dom} f = \mathbf{R}$ Solution: $f''(x) = -\sin x$ which is not positive definite. So no α ensures that f is convex.
 - (b) (3 points) $f(x) = \sin x + \alpha x^2$ with $\operatorname{dom} f = \mathbf{R}$ Solution: $f''(x) = -\sin x + 2\alpha$ which is positive definite if $\alpha \ge \frac{1}{2}$.
 - (c) (5 points) $f(x_1, x_2) = (5 \alpha)x_1^2 + 10x_1x_2 + x_2^2 + 4\alpha x_1$ with **dom** $f = \mathbf{R}^2$ Solution: The Hessian of f is

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} 2(5 - \alpha) & 10\\ 10 & 2 \end{bmatrix}$$

The first entry is non-negative if $\alpha \leq 5$. The determinant is non-negative if $\alpha \leq -20$. So $\nabla^2 f(x_1, x_2)$ is psd, i.e., f is convex, if $\alpha \leq -20$.

2. (10 points) Let $x_i \in (0, 1/2]$ and let $\gamma_i \in (0, 1)$ for i = 1, ..., n be real numbers satisfying $\sum_{i=1}^{n} \gamma_i = 1$. It is known that either

(A)
$$\frac{\prod_{i=1}^{n} x_i^{\gamma_i}}{\prod_{i=1}^{n} (1-x_i)^{\gamma_i}} \le \frac{\sum_{i=1}^{n} \gamma_i x_i}{\sum_{i=1}^{n} \gamma_i (1-x_i)}$$

or

(B)
$$\frac{\prod_{i=1}^{n} x_{i}^{\gamma_{i}}}{\prod_{i=1}^{n} (1-x_{i})^{\gamma_{i}}} \ge \frac{\sum_{i=1}^{n} \gamma_{i} x_{i}}{\sum_{i=1}^{n} \gamma_{i} (1-x_{i})}$$

is true. Which is true and why?

Hint: Consider the convexity/concavity properties of the function $f(x) = \ln x - \ln(1-x)$ with $\operatorname{\mathbf{dom}} f = [0, 1/2]$ and then apply some famous inequality we talked about in class.

Bonus question (5 points): When does equality hold?

Solution: The hint asks us to consider the properties of $f(x) = \ln x - \ln(1-x)$. Upon differentiation, we obtain

$$f''(x) = -\frac{1}{x^2} + \frac{1}{(1-x)^2} = \frac{2x-1}{x^2(1-x)^2} \le 0$$

so the function f is concave. By Jensen's inequality applied to the convex combination $\sum_i \gamma_i x_i$, we obtain

$$f\left(\sum_{i} \gamma_{i} x_{i}\right) \ge \sum_{i} \gamma_{i} f(x_{i})$$

In other words,

$$\ln\left(\frac{\sum_{i} \gamma_{i} x_{i}}{1 - \sum_{i} \gamma_{i} x_{i}}\right) \ge \sum_{i} \gamma_{i} \ln\left(\frac{\sum_{i} x_{i}}{1 - \sum_{i} x_{i}}\right)$$

Upon rearrangement (taking exp on both sides), we obtain

$$\frac{\sum_{i} \gamma_{i} x_{i}}{\sum_{i} \gamma_{i} (1 - x_{i})} \ge \prod_{i} \frac{x_{i}^{\gamma_{i}}}{(1 - x_{i})^{\gamma_{i}}}$$

so inequality (A) is true.

Equality holds if and only if all the x_i , i = 1, ..., n are equal to some common $x \in (0, 1/2]$.

3. (10 points) The *polar* of an arbitrary set $C \subset \mathbf{R}^n$ is defined as the set

$$C^{\circ} := \{ y \in \mathbf{R}^n : y^T x \le 1 \text{ for all } x \in C \}$$

(a) (3 points) Let $C \subset \mathbf{R}^n$ be any set, not necessarily convex. Is C° convex? Justify your answer carefully.

Solution: Yes C° is convex. It can be written as

$$C^{\circ} = \bigcap_{x \in C} \{ y \in \mathbf{R}^n : y^T x \le 1 \}$$

Each set $\{y \in \mathbf{R}^n : y^T x \leq 1\}$ parametrized by $x \in C$ is a halfspace hence convex. Intersection of convex sets is convex.

(b) (5 points) Recall that a *cone* K is such that if $x \in K$ and $\lambda \geq 0$, then $\lambda x \in K$. Recall that the dual cone is defined as

$$K^* := \{ y \in \mathbf{R}^n : y^T x \ge 0 \text{ for all } x \in K \}$$

It is known that the polar of the cone K, denoted as K° , and the dual cone, denoted as K^{*} , are related as follows:

$$K^{\circ} = -cK^*$$

for some positive number c > 0. Find c.

Solution: The answer is c = 1. We prove this in two parts first noting that

$$-K^* := \{ y : y^T x \le 0 \text{ for all } x \in K \}$$

 $K^{\circ} \subset -K^*$: Take $y \in K^{\circ}$. This means that $y^T x \leq 1$ for all $x \in K$. Since K is a cone, if $x \in K$, we have $\lambda x \in K$ for all $\lambda \geq 0$. This means that $y^T x \leq 1/\lambda$ for all $x \in K$ and all $\lambda \geq 0$. Now take $\lambda \to \infty$. Then we conclude that $y^T x \leq 0$ for all $x \in K$. This means that $y \in -K^*$.

 $-K^* \subset K^\circ$: Take $y \in -K^*$. This means that $y^T x \leq 0$ for all $x \in K$. Clearly $y^T x \leq 1$ for all $x \in K$. This means that $y \in K^\circ$ as desired.

(c) (2 points) Show carefully that the polar of the unit ball $\mathcal{B}(0,1) := \{x \in \mathbf{R}^n : ||x||_2 \le 1\}$ is the unit ball. You may find the Cauchy-Schwarz inequality (i.e., $x^T y \le ||x||_2 ||y||_2$) useful.

Solution: We need to show that $\mathcal{B}(0,1)^{\circ} = \mathcal{B}(0,1)$.

Take $x \in \mathcal{B}(0,1)^{\circ}$. This means that $x^T y \leq 1$ for all $y \in \mathcal{B}(0,1)$. Suppose $||x||_2 > 1$. Now let $y = x/||x||_2$. Then the inner product $y^T x = ||x||_2 > 1$, which contradicts $x^T y \leq 1$. This means that $||x||_2 \leq 1$, i.e., $x \in \mathcal{B}(0,1)$.

Now take $x \in \mathcal{B}(0,1)$. This means that $||x||_2 \leq 1$. Fix $y \in \mathcal{B}(0,1)$. We have

$$x^T y < ||x||_2 ||y||_2 < ||y||_2 < 1$$

This means that $x \in \mathcal{B}(0,1)^{\circ}$.