Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich Regression with Infinite Width Neural Networks

Focus and Outline

Approximating (infinitely) wide neural networks

- With randomly initialised parameters, wide NN \approx Gaussian process
- Linearisation of NN with Taylor approximation leads to a kernel model

Outline:

- Neural Network Gaussian process
- Random feature model
- Neural tangent kernel

Recap: Gaussian process

- $\{f(x): x \in \mathbb{R}^p\}$ is a Gaussian process on \mathbb{R}^p if there exist
 - a function $\mu: \mathbb{R}^p \to \mathbb{R}$ and
 - a positive semi-definite kernel $k: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$

such that, for any m and $x_1, \ldots, x_m \in \mathbb{R}^p$,

$$\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_m) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu(x_1) \\ \vdots \\ \mu(x_m) \end{bmatrix}, K \right) \quad \text{where } K_{ij} = k(x_i, x_j)$$

- Example: $f(x) = w^{\top} \phi(x)$ where $\phi : \mathbb{R}^p \to \mathbb{R}^N$ and $w \sim \mathcal{N}(0, I_{N \times N})$
 - Here, $\mu(x) = \mathbb{E}[f(x)] = 0$ and
 - $k(x, x') = \mathbb{E}[f(x)f(x')] = \phi(x)^{\top}\mathbb{E}[ww^{\top}]\phi(x') = \phi(x)^{\top}\phi(x')$

Recap: Gaussian process regression

- Given training $S = \{(x_i, y_i = f(x_i))\}_{i=1,\dots,m}$
- Let x be a test point, $X = [x_1 \dots x_m], y = [y_1 \dots y_m]^\top, k(x, X) = [k(x, x_1) \dots k(x, x_m)]$
- We know $(f(x), f(x_1), \dots, f(x_m))$ is Gaussian with covariance $\begin{pmatrix} k(x, x) & k(x, X) \\ k(X, x) & K \end{pmatrix}$
- Hence, conditioned on $f(x_1) = y_1, ..., f(x_m) = y_m$ $f(x) \mid \{f(X) = y\} \sim \mathcal{N}\left(\frac{k(x, X)K^{-1}y}{v}, k(x, x) - k(x, X)K^{-1}k(X, x)\right)$
- Exercise: If $y_i = f(x_i) + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0, \lambda)$, $\epsilon_1, \dots, \epsilon_m$ iid, then show that $f(x) \mid y \sim \mathcal{N}\left(\frac{k(x, X)(K + \lambda I)^{-1}y}{k(X, X)(K + \lambda I)^{-1}k(X, X)}\right)$

2-layer NN with random initialisation

Theorem InfNN.1 (Infinite width NNs are GPs)

Define 2-layer NN $f: \mathbb{R}^p \to \mathbb{R}$, with hidden layer of width N as

$$f(x) = \frac{1}{\sqrt{N}} v^{\top} \sigma(Wx)$$

 $W \in \mathbb{R}^{N \times p}$ has entries $W^{ij} \sim \mathcal{N}(0,1)$ iid and $v \in \mathbb{R}^N$ has entries $v^1, \dots, v^N \sim_{iid} \mathcal{N}(0,1)$.

As $N \to \infty$, $\{f(x) : x \in \mathbb{R}^p\}$ converges to a Gaussian process with $\mu(x) = 0$ and

$$k(x, x') = \mathbb{E}_{(z, z')}[\sigma(z)\sigma(z')], \quad where \quad \begin{pmatrix} z \\ z' \end{pmatrix} \sim \mathcal{N}\left(0, \begin{pmatrix} \|x\|^2 & x^\top x' \\ x^\top x' & \|x'\|^2 \end{pmatrix}\right)$$

assuming $\sup_{x} k(x,x) < \infty$

• f could also be parameterised as $f(x) = v^{\top} \sigma(Wx)$, where $v^1, \ldots, v^N \sim_{iid} \mathcal{N}(0, \frac{1}{N})$

Proof

• View
$$W = \begin{bmatrix} (w^1)^\top \\ \vdots \\ (w^N)^\top \end{bmatrix}$$
, and for any x , define $z = \begin{bmatrix} z^1 \\ \vdots \\ z^N \end{bmatrix}$ with $z^i = x^\top w^i$

- Given x (or conditioned on x), observe that $z^1, \ldots, z^N \sim_{iid} \mathcal{N}(0, ||x||^2)$ (why are they independent?)
- Since z^1, \ldots, z^N are iid, $\sigma(z^1), \ldots, \sigma(z^N)$ are also iid
- f(x) is a sum of independent random variables. By central limit theorem,

$$f(x) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} v^{i} \sigma(z^{i}) \stackrel{N \to \infty}{\longrightarrow} \mathcal{N}(0, \mathbb{E}_{z}[\sigma^{2}(z)])$$

• Exercise: For $\{x_1, \ldots, x_m\}$, show $\{f(x_1), \ldots, f(x_m)\}$ are jointly Gaussian with covariance k

NN-GP: Deep NNs are also GP

Theorem InfNN.2 (Neural Network Gaussian Process (NN-GP))

Consider a L-layer NN $f_L : \mathbb{R}^p \to \mathbb{R}$, where N_l denotes width of l-th layer $(N_0 = p, N_L = 1)$.

For l = 1, ..., L - 1, let the output of l-th layer be defined as

$$f_{l} = \sigma(W_{l-1}f_{l-1}), \text{ where } W_{l-1} \in \mathbb{R}^{N_{l-1} \times N_{l}} \text{ with } (W_{l-1})^{ij} \sim \mathcal{N}\left(0, \frac{1}{N_{l-1}}\right)$$

and $f_L = v^{\top} f_{l-1}$ with $v^i \sim \mathcal{N}(0, \frac{1}{N_{L-1}})$

If $\min\{N_1, \ldots, N_{L-1}\} \to \infty$, then $\{f_L(x) : x \in \mathbb{R}^p\}$ converges to a GP, called as a NN-GP, with $\mu(x) = 0$ and covariance kernel $k_L(x, x')$, which is recursively defined as

$$k_0(x, x') = \frac{1}{p} x^{\top} x'$$
 $k_l(x, x') = \mathbb{E}_{(z, z')}[\sigma(z)\sigma(z')]$

where
$$\begin{pmatrix} z \\ z' \end{pmatrix} \sim \mathcal{N} \left(0, \begin{pmatrix} k_{l-1}(x,x) & k_{l-1}(x,x') \\ k_{l-1}(x',x) & k_{l-1}(x',x') \end{pmatrix} \right)$$

Predictive distribution of NN-GP, and implications

- Let $\{f_L(x): x \in \mathbb{R}^p\}$ be NN-GP with covariance kernel $k_L(x, x')$
- Given training data $\{(x_1, y_1), \dots, (x_m, y_m)\}$, predictive distribution for test data x

$$f(x) \mid X, y \sim \mathcal{N}\left(\underbrace{k_L(x, X)(K_L + \lambda I)^{-1}y}_{\text{kernel ridge regression}}, k_L(x, x) - k_L(x, X)(K_L + \lambda I)^{-1}k_L(X, x)\right)$$

kerner ridge regression

- Prediction (from kernel) can be expressed $f(x) = \langle v, \phi_x \rangle$, Why is v, ϕ_x ?
 - $\phi_x = z_{L-1}$, output of last hidden layer
 - v corresponds to trained weights of output layer
- NN-GP corresponds to infinitely wide lazy-trained NNs
 - only output layer is trained, and other layers are only randomly initialised

Random feature model / Lazy-trained NN

- Lazy-trained NN:
 - $f(x) = v^{\top} \sigma(Wx)$, where only v is trainable and W is randomly initialised but not trained
 - One can also define a deep lazy trained NN, with only output layer trained. But such a model can be approximated well by a single hidden layer lazy NN (why?)
- Random feature model:
 - A psd kernel $k: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ has a random feature approximation if there exists a distribution \mathcal{D}_w on \mathbb{R}^p and a nonlinear map $\sigma: \mathbb{R} \to \mathbb{R}^k$ such that, for any $x, x' \in \mathbb{R}^p$,

$$k(x, x') = \mathbb{E}_{w \sim \mathcal{D}_w}[\sigma(w^\top x)\sigma(w^\top x')] = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^N \sigma(w_i^\top x)\sigma(w_i^\top x') \quad w_1, \dots, w_N \sim_{iid} \mathcal{D}_w$$

• Example: Gaussian kernel

$$e^{-\frac{\|x-x'\|^2}{2}} = \mathbb{E}_{w \sim \mathcal{N}(0,I)} \left[\cos \left(w^\top (x-y) \right) \right] = \mathbb{E}_w \left[\left(\begin{array}{c} \cos(w^\top x) \\ \sin(w^\top x) \end{array} \right)^\top \left(\begin{array}{c} \cos(w^\top x') \\ \sin(w^\top x') \end{array} \right) \right]$$

special case of Bochner's theorem

Focus and Outline

Approximating (infinitely) wide neural networks

- With randomly initialised parameters, wide NN \approx Gaussian process
- Linearisation of NN with Taylor approximation leads to a kernel model

Outline:

- Neural Network Gaussian process
- Random feature model
- Neural tangent kernel

Recap: Taylor approximation of multivariate function

- Consider a function $g: \mathbb{R}^k \to \mathbb{R}$
- Let $\theta_0 \in \mathbb{R}^k$ and assume g is twice differentiable on a ball \mathcal{B} around θ_0
- 2^{nd} order Taylor approximation of g: For any $\theta \in \mathcal{B}$,

$$g(\theta) = g(\theta_0) + (\theta - \theta_0)^{\top} \nabla g(\theta_0) + \frac{1}{2} (\theta - \theta_0)^{\top} H(g(\xi)) (\theta - \theta_0)$$

for some ξ that lies on line segment joining θ and θ_0

- $\nabla g(\theta_0) \in \mathbb{R}^k$ is gradient of $g(\cdot)$ computed at θ_0
- $H(g(\xi)) \in \mathbb{R}^{k \times k}$ is Hessian of $g(\cdot)$ computed at ξ

...
$$[H(g(\theta))]^{ij} = \frac{\partial^2 g(\theta)}{\partial \theta^i \partial \theta^j}$$

Linearisation of neural network (w.r.t. parameters)

• Consider 2-layer NN: $f(x) = \frac{1}{\sqrt{N}} v^{\top} \sigma(Wx)$

 $v \in \mathbb{R}^N, W \in \mathbb{R}^{N \times p}$

- We will view f(x) as $f_x(\theta)$, function of parameters $\theta = (\{v^i\}_{i=1,\dots,N}, \{W^{ij}\}_{i=1,\dots,N;j=1,\dots,p})$
- Let $\theta_0 = (v_0, W_0)$ be the parameters at (random) initialisation. By Taylor's theorem

$$f_x(\theta) = f_x(\theta_0) + (\theta - \theta_0)^{\top} \nabla f_x(\theta_0) + \frac{1}{2} (\theta - \theta_0)^{\top} H(f_x(\xi)) (\theta - \theta_0)$$

• Linear approximation of NN (linear w.r.t θ):

$$\tilde{f}_x(\theta) = f_x(\theta_0) + (\theta - \theta_0)^\top \nabla f_x(\theta_0) = \theta^\top \underbrace{\nabla f_x(\theta_0)}_{=: \phi_x} + \underbrace{\left(f_x(\theta_0) - \theta_0^\top \nabla f_x(\theta_0)\right)}_{=: b_{x,\theta_0} \text{ constant w.r.t } \theta}$$

Closer look at $\phi_x = \nabla f_x(\theta_0)$

• $\nabla f_x(\theta) \in \mathbb{R}^{Np+N}$ is a vector with coordinates $\frac{\partial f_x}{\partial y^i}, \frac{\partial f_x}{\partial W^{ij}}, i = 1, \dots, N; j = 1, \dots, p$

$$\frac{\partial f_x}{\partial v^i} = \frac{1}{\sqrt{N}} \underbrace{\sigma \left(\sum_l W^{il} x^l \right)}_{\sigma(x^\top w^i)} \qquad \frac{\partial f_x}{\partial W^{ij}} = \frac{1}{\sqrt{N}} v^i x^j \underbrace{\sigma' \left(\sum_l W^{il} x^l \right)}_{\sigma'(x^\top w^i)}$$

 $\dots \sigma'(z) = \frac{d}{dz}\sigma(z)$, and $(w^i)^{\top} = i$ -th row of W

• Consider the kernel $k(x, x') = \langle \phi_x, \phi_{x'} \rangle = \langle \nabla f_x(\theta_0), \nabla f_{x'}(\theta_0) \rangle$

$$k(x, x') = \sum_{i=1}^{N} \frac{\partial f_x}{\partial v_0^i} \frac{\partial f_{x'}}{\partial v_0^i} + \sum_{i=1}^{N} \sum_{j=1}^{p} \frac{\partial f_x}{\partial W_0^{ij}} \frac{\partial f_{x'}}{\partial W_0^{ij}}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sigma(x^{\top} w_0^i) \sigma(x'^{\top} w_0^i) + \frac{1}{N} \sum_{i=1}^{N} (v_0^i)^2 \sigma'(x^{\top} w_0^i) \sigma'(x'^{\top} w_0^i) \sum_{j=1}^{p} x^j x'^j$$

Neural tangent kernel

• Assume Gaussian initialisation, $v_0^i \sim \mathcal{N}(0,1), W_0^{ij} \sim \mathcal{N}(0,1)$. Using law of large numbers,

$$\lim_{N \to \infty} k(x, x') = \underbrace{\mathbb{E}_{w \sim \mathcal{N}(0, I)} \left[\sigma(x^{\top} w) \sigma(x'^{\top} w) \right]}_{\text{kernel of NNGP}} + \underbrace{(x^{\top} x') \cdot \mathbb{E}_{w \sim \mathcal{N}(0, I)} \left[\sigma'(x^{\top} w) \sigma'(x'^{\top} w) \right]}_{\text{correction term}}$$

- NNGP kernel = $\langle \nabla_v f_x, \nabla_v f_{x'} \rangle$ corresponds to random feature model (training only output layer)
- correction term = $\langle \nabla_W f_x, \nabla_W f_{x'} \rangle$ arises from training first layer
- Above (limiting) kernel is neural tangent kernel (NTK) For NNs with more layers, NTK is defined recursively over layers

Closer look at b_{x,θ_0}

$$\tilde{f}_x(\theta) = \theta^{\top} \underbrace{\nabla f_x(\theta_0)}_{=: \phi_x} + \underbrace{\left(f_x(\theta_0) - \theta_0^{\top} \nabla f_x(\theta_0) \right)}_{=: b_{x,\theta_0} \text{ constant w.r.t } \theta}$$

- For ReLU, $\sigma(z) = \max\{z, 0\}$, verify that $\sigma'(z) = z\sigma(z)$
 - Exercise: Using above fact, show that $b_{x,\theta_0} = 0$ for all x, θ_0
 - Caveat: ReLU is not differentiable everywhere. So Taylor approx. needs care
- For arbitrary σ , we use Taylor approximation of $f(\theta_0), \nabla f(\theta_0)$ around origin

$$b_{x,\theta_0} = f_x(\theta_0) - \theta_0^\top \nabla f_x(\theta_0) = \left(f(0) + \theta_0^\top \nabla f(0) + \frac{1}{2} \theta_0^\top H(f(\xi_1)) \theta_0 \right) - \theta_0^\top \left(\nabla f(0) + H(f(\xi_2)) \theta_0 \right)$$

for some ξ_1, ξ_2 between 0 and θ_0

Error of NTK approximation

$$f_{x}(\theta) - \underbrace{\theta^{\top} \nabla f_{x}(\theta_{0})}_{\langle \theta, \phi_{x} \rangle} = b_{x,\theta_{0}} + \frac{1}{2} \theta_{0}^{\top} H(f_{x}(\xi)) \theta_{0} = \theta_{0}^{\top} \left(\frac{1}{2} H(f_{x}(\xi_{1})) - H(f_{x}(\xi_{2})) + \frac{1}{2} H(f_{x}(\xi)) \right) \theta_{0}$$
where $\xi_{1} = c_{1}\theta_{0}$; $\xi_{2} = c_{2}\theta_{0}$; $\xi = (c\theta + (1 - c)\theta_{0})$; $c, c_{1}, c_{2} \in [0, 1]$

- Main proof idea:
 - $H(f_x(\xi))$ is sparse and, if σ is "smooth" and ||x|| = O(1), then $||H(f_x(\xi))|| = O\left(\frac{||\xi||_{\infty}}{\sqrt{N}}\right)$
 - In interpolating regime (opt train error = 0), $\|\theta_t \theta_0\| = O(1)$ for all iterations of gradient descent. Hence, $\|\xi\|_{\infty}$, $\|\xi_1\|_{\infty}$, $\|\xi_2\|_{\infty} = O(\|\theta_0\|_{\infty})$.
- Caveat: With $\mathcal{N}(0,1)$ initialisation of θ_0 , we get $\|\theta_0\|_{\infty} = O(\ln N)$, $\|\theta_0\|_2^2 \approx N(p+1)$ Also, above still gives $\theta_0^{\top} H(f_x(\xi))\theta_0 = O(1)$, and not vanishing as $N \to \infty$

ReLU Neural Tangent Kernel

- Relu NTK on $\mathcal{X} = \text{unit sphere in } \mathbb{R}^p$
 - Exact form: $k(x, x') = x^{\top} x' \left(\frac{1}{2} \frac{\arccos(x^{\top} x')}{2\pi} \right)$ (Bietti, Mairal, NeurIPS, 2019)
 - RKHS is same as the RKHS of Laplace kernel $e^{-\gamma ||x-\bar{x}||}$ (Chen, Xu, *ICLR*, 2021) Hence, ReLU NTK is universal kernel on unit sphere in \mathbb{R}^p
- One can use previous generalisation error bounds for kernels to comment on generalisation in infinite width neural networks