PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10166889 A

(43) Date of publication of application: 23.06.98

(51) Int. Cl

B60K 26/04 B60K 28/06 B60R 21/00

(21) Application number: 08338986

(22) Date of filing: 04.12.96

(71) Applicant:

SUZUKI MOTOR CORP

(72) Inventor:

COPYRIGHT: (C)1998,JPO

MIYATA TAKASHI UCHIDA HITOSHI OKITA YUKIHIRO MATSUO NORIYOSHI

(54) ALARM DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To call a driver's attention by properly issuing an alarm to the driver.

SOLUTION: This alarm device is provided with a accelerator pedal 3 to be operated by a driver, a operating amount detecting means 5 for detecting the operating amount of the accelerator pedal 3, a operational speed detecting means 1 for detecting th operational speed of the accelerator pedal 3, a operational reaction variable setting means 9 for variably setting the magnitude of the operational reaction of the accelerator pedal 3, a main control uni 11 for controlling the operation of the operational reaction variable setting means 9, and an inter-vehicl distance detecting means 13 for detection th inter-vehicle distance to a forward vehicle. The mai control unit 11 is operated when the output of the inter-vehicle distance detecting means 13 is not mor than the specified value, and the main control unit is provided with an operational reaction variable control function for variably controlling the operational reaction variable setting means 9 on the basis o information of the operating amount detecting means 5 and the operational speed detecting means 7.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-166889

(43)公開日 平成10年(1998)6月23日

(51) Int.Cl. ⁶		識別記号	ΡI		
B60K	26/04		B60K	26/04	
	28/06			28/06	Α
B 6 0 R	21/00	6 2 0	B 6 0 R	21/00	6 2 0 Z

審査請求 未請求 請求項の数3 FD (全 7 頁)

特願平8-338986	(71) 出願人 000002082
	スズキ株式会社
平成8年(1996)12月4日	静岡県浜松市高塚町300番地
	(72)発明者 宮田 隆
	神奈川県横浜市都筑区桜並木2番1号 ス
	ズキ株式会社技術研究所内
	(72)発明者 内田 仁
	神奈川県横浜市都筑区桜並木2番1号 ス
	ズキ株式会社技術研究所内
	(72)発明者 大北 幸宏
	神奈川県横浜市都筑区桜並木2番1号 ス
	ズキ株式会社技術研究所内
	(74)代理人 弁理士 高橋 勇
	最終頁に続く

(54) 【発明の名称】 警報装置

(57)【要約】

【課題】 運転者に対し適切に警報を発し注意を喚起することができる警報装置を提供すること。

【解決手段】 運転者の操作するアクセルペダル3と、このアクセルペダル3の操作量を検出する操作量検出手段5と、アクセルペダル3の操作速度を検出する操作速度検出手段7と、アクセルペダル3の操作反力の大きさを可変設定する操作反力可変設定手段9と、この操作反力可変設定手段9の動作を制御する主制御部11と、前方車両との車間距離を検出する車間距離検出手段13とを備えている。そして、主制御部11が、車間距離検出手段13の出力が所定値以下の場合に作動し、操作量検出手段13の出力が所定値以下の場合に作動し、操作量検出手段5と操作速度検出手段7の情報に基づいて操作反力可変設定手段9を可変制御する操作反力可変制御機能を有する。

【特許請求の範囲】

【請求項1】 運転者の操作するアクセルペダルと、こ のアクセルペダルの操作量を検出する操作量検出手段 と、前記アクセルペダルの操作速度を検出する操作速度 検出手段と、前記アクセルペダルに対する操作反力の大 きさを可変設定する操作反力可変設定手段と、この操作 反力可変設定手段の動作を制御する主制御部と、前方車 両との車間距離を検出する車間距離検出手段とを備え、 前記主制御部が、前記車間距離検出手段の出力が所定値 以下の場合に作動し、前記操作量検出手段と操作速度検 10 来例には以下のような不都合が生じていた。即ち、視覚 出手段の情報に基づいて操作反力可変設定手段を可変制 御する操作反力可変制御機能を有することを特徴とした 警報装置。

1

【請求項2】 前記主制御部が、前記アクセルペダルの 操作量の増大に伴い操作反力の大きさを増大させる操作 反力増大機能を有することを特徴とした請求項1記載の 警報装置。

【請求項3】 前記主制御部が、前記アクセルペダルの 操作速度の増大に伴い操作反力の大きさを増大させる操 作反力増大機能を有することを特徴とした請求項1又は 20 2記載の警報装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、警報装置に係り、 特に自動車運転中の運転者の居眠りや不適当な運転状態 を検出した場合に、運転者に注意を促すものであり、ア クセルペダルの操作反力を利用した警報装置に関する。 [0002]

【従来の技術】従来より、自動車等の運転者の注意を喚 起する警報装置としては以下のようなものがあった。即 ち、特開平5-69785号公報には、運転状態の緊急 度を検出して、緊急度が低い場合には運転者に対して触 覚に訴える警報を与え、緊急度が高い場合には聴覚に訴 えて警報を与えるものが開示されている。ここにいう緊 急度は、車両の走行速度及び前方車両との車間距離によ り判断するものである。

【0003】具体的に触覚に訴える警報の方法として は、シートベルトの拘束力を増大させて運転者に知らせ るものであり、運転中の運転者に確実に警報を伝えると とができる。これにより、視覚刺戟時の見落としや聴覚 40 刺戟時の同乗者へのストレスはの問題はない。また、聴 覚に訴えるものとしては、一般的に用いられるスピーカ から警報音を発生させるものである。通常、運転中の運 転者は視覚はもちろんのこと、聴覚で自車両の周囲の交 通状況や自己の運転状況に関連した情報を得る。とのた め、聴覚刺戟としての警報は、通常の自動車運転中の運 転者の注意を喚起するためには有効である。更には、一 般的に行われている警報ランプ等の視覚に訴える警報も 行われている。

【0004】また、特開平3-260900号公報に

は、自車両の車速と前方車両の車速及び前方車両との車 間距離を検出すると共に、前方車両との相対速度が所定 値を超えた場合に警報を発するものが開示されている。 また、当該従来例では更に、運転者の脇見運転や居眠り 運転を検出し、上記した所定値を下げることにより、警 報を通常の場合より早めに発生させる機能を有する警報 装置が開示されている。

[0005]

【発明が解決しようとする課題】しかしながら上記各従 刺戟に訴える場合には、運転中の運転者は車線変更等を する際に視線を脇に向けることがあり、視線の方向によ っては運転者が警報を見落とすことが考えられる。ま た、視覚刺戟が大きすぎると運転中の運転者にとって妨 げになることが考えられる。また、聴覚刺戟の場合、警 報が必要でない状況(例えば、意図的な追い越し動作 中)でも警報がなされてしまい、運転中の運転者はもと より同乗者にも煩わしさを感じさせる、という不都合を 生じていた。

【0006】また、運転者の注意を喚起するための刺戟 として、シートベルトの拘束力の変化を利用した触覚刺 **戟警報装置は、警報の繰り返し作動によって運転中の運** 転者に不快感を与えることになり、運転中の運転者に煩 わしさを感じさせる場合がある、という不都合を生じて

[0007]

【発明の目的】本発明は、かかる従来例の有する不都合 を改善し、特に運転者に対し適切に警報を発し注意を喚 起することができる警報装置を提供することを、その目 30 的とする。

[0008]

【課題を解決するための手段】上記した目的を達成する ために、請求項1記載の発明では、警報装置が、運転者 の操作するアクセルペダルと、このアクセルペダルの操 作量を検出する操作量検出手段と、アクセルペダルの操 作速度を検出する操作速度検出手段と、アクセルペダル に対する操作反力の大きさを可変設定する操作反力可変 設定手段と、この操作反力可変設定手段を制御する主制 御部と、前方車両との車間距離を検出する車間距離検出 手段とを備えている。そして、主制御部が、車間距離検 出手段の出力が所定値以下の場合に動作し、操作量検出 手段と操作速度検出手段の情報に基づいて操作反力可変 設定手段を可変制御する操作反力可変制御機能を有す る、という手段を採っている。

【0009】以上のように構成されたことにより、前方 車両との車間距離が所定値以下となった場合に、主制御 部が操作反力可変制御機能により操作反力可変設定手段 を機能させる。具体的には、運転者の操作するアクセル ベダルの動きを操作量検出手段及び操作速度検出手段が 50 検出する。そして、これらの各検出手段の情報に基づい

て適切な操作反力の大きさを主制御部が演算する。演算 された操作反力が生じるように主制御部が操作反力可変 設定手段に働きかける。とれにより、あらゆる走行状態 に応じて適切な操作反力が発生し、運転者の注意を喚起

【0010】請求項2又は3記載の発明では、主制御部 が、アクセルペダルの操作量又は操作速度の増大に伴い 操作反力の大きさを増大させる操作反力増大機能を有す るという手段を採り、その他の構成は請求項1記載の発 明と同様である。以上のように構成されたことにより、 アクセルペダルが大きく操作された場合には、主制御部 は操作反力増大機能に基づいて操作反力の大きさを増大 させるように操作反力可変設定手段に働きかける。これ により、運転者による急な操作が抑制されると共に、運 転者は操作反力の増大をアクセルペダルから知得して注 意が喚起される。

[0011]

【発明の実施形態】本発明の一実施形態を図面に基づい て説明する。

【0012】先ず、本発明の警報装置1は、図1に示す 20 ように、運転者の操作するアクセルペダル3と、このア クセルペダル3の操作量を検出する操作量検出手段5 と、アクセルペダル3の操作速度を検出する操作速度検 出手段7と、アクセルペダル3の操作反力の大きさを可 変設定する操作反力可変設定手段9と、この操作反力可 変設定手段9の動作を制御する主制御部11と、前方車 両との車間距離を検出する車間距離検出手段13とを備 えている。そして、主制御部11が、車間距離検出手段 13の出力が所定値以下の場合に作動し、操作量検出手 段5と操作速度検出手段7の情報に基づいて操作反力可 変設定手段9を可変制御する操作反力可変制御機能を有 している。

【0013】以下にこれを詳述すると、アクセルペダル 3は運転者が足で操作するものであり、ここでは図示し ない気化器に対して、アクセルワイヤを介して接続され ている。また、操作量検出手段5は、アクセルペダル3 の操作された量を検出するものであり、具体的にはアク セル(図示略)の開度に対応する値を検出する。また、 操作速度検出手段7は、アクセルペダル3の操作速度、 即ちアクセルペダル3の単位時間当たりの操作量を検出 40 するものである。そして、操作量情報5a及び操作速度 情報7aは共に後述する主制御部11に伝達されるよう になっている。操作量検出手段3及び操作速度検出手段 7は、一般的なストロークセンサ15 (図3参照)やポ テンショナルメータ、ロータリーエンコーダ等で検出す る装置である。

【0014】また、アクセルペダル3には、アクセルペ ダル3の操作反力の大きさを可変設定できる操作反力可 変設定手段9が連結されている。この操作反力可変設定 ベダル3の操作反力の大きさを可変設定するものであ る。より具体的には、アクセルペダル3は運転者の足に よる操作力(踏力)によって踏み込まれるものである。 そして、アクセルペダル3を踏み込む場合には、所定の 操作反力が生じており、この操作反力より大きな踏力を 加えた場合にアクセルペダル3が踏み込まれる。即ち、 操作反力可変設定手段9は、アクセルペダル3を踏み込 む時のとの操作反力の大きさを可変設定する機能を有す るものである。

【0015】また上記したように、警報装置1には主制 御部11が備えられている。この主制御部11は、上記 したように操作量検出手段5及び操作速度検出手段7か らの情報を得て、その時の最適な操作反力を生じるよう に操作反力可変設定手段9に対して働きかける操作反力 可変制御機能を有している。また、適切な操作反力を決 定する場合には前方車両との車間距離の情報も有効であ るので、主制御部11に車間距離検出手段13も接続さ れている。車間距離検出手段13は、先行他車に向けて 照射したレーザ光の反射光を受光し、または先行他車に 向けて放射した超音波の反射波を受波し、前方他車の存 在を確認すると共に、自車との車問距離を計測する。ま た、車間距離検出手段13を用いると前方車両の車速度 を計算することもできる。

【0016】次に、本発明にかかる警報装置1の具体的 制御方法について、図1及び図2に基づいて説明する。 図2に示す三次元グラフにおいて、x軸はアクセルペダ ル3の操作量、 y軸は操作速度そして z 軸はアクセルペ ダル3に対して付与される操作反力の大きさをそれぞれ 示し、これらによって制御マップが構成されている。と とで、アクセルペダル3の操作量は、気化器(図示略) に装備されているアクセルスロットルの開度に対応する ものである。そして、図2においては便宜上、アクセル ベダル3の操作量を1から5までとし、5を最高操作量 (ベタ踏み状態) としている。

【0017】また、図2において、アクセルペダル3の 操作速度は、単位時間当たりのアクセルスロットル開度 に対応するものであり、これも相対値として表されてい る。そして、便宜上、操作速度を1から5までとし、5 を最高操作速度としている。更には、アクセルベダル3 の操作反力も、相対的な大きさとして表されている。即 ち、便宜上、反力を0から25までとし、25を最高操 作反力としている。

【0018】当該図2から判るように、アクセルペダル 3の操作量が小さい(x=1,2:アクセルスロットル 開度が小さい)場合には、操作速度が大きい場合(急速 なアクセルペダル操作)がなされた場合でも、操作反力 はz=5またはz=10であり操作反力はそれほど大き くは制御されない。一方、アクセルペダル3の操作量が 大きい(x=5)場合には、操作速度に対する操作反力 手段9は、主制御部11からの指令に基づいてアクセル 50 の増大が著しい。即ち、操作速度が小さい(y=1)の

場合には操作反力もz=5程度に抑えられているが、操作速度がy=3の場合には操作反力がz=15程度となり、更に操作速度がy=5の場合には、操作反力がz=25に制御される。

【0019】以上を換言すれば、アクセルペダル3の操作量が大きくなり、且つアクセルペダルの操作速度が大きい場合には、操作反力が増大制御されアクセルペダルを踏み込むためにより大きな踏力が必要になるということである。また、操作速度に対する操作反力の増大割合がアクセルペダル3の操作量の増大に応じて増大する(傾斜が急になる)ということである。ここで、操作速度yに対する操作反力zの関係は直線状に増大するものとなっているが、本発明はこれに限定されるものではなく、操作速度の増大に伴って二次曲線的に操作反力を増大させるようにしてもよい。

【0020】次に、上記した制御マップに基づく警報装置1の動作について説明すると、先ず、車間距離検出手段13によって前方車両(図示略)との車間距離が検出された場合には、この検出値が主制御部に送信される(図1参照)。これに伴い、車間距離検出手段13の出 20力が所定値以下の場合には、主制御部11は、アクセル

ペダル3の操作量及び操作速度の検出指令5b,7bを操作量検出手段5及び操作速度検出手段7に送信する。操作量検出手段5及び操作速度検出手段7はそれぞれ操作量及び操作速度についての情報5a,5bを主制御部11に供給する。

【0021】続いて、主制御部11は操作反力可変制御機能に基づいて操作反力可変設定手段9に働きかけて、操作反力の大きさを可変設定する。操作反力の値は上記した制御マップ(図2参照)によって決定されるものが30用いられる。これにより、一定条件下でアクセルペダル3の操作反力の大きさが増大し、運転者にアクセルペダル3を通して警報を伝達するようになっている。特に、本発明の警報装置1では、主制御部11が、アクセルペダル3の操作量及び操作速度の増大に伴って操作反力の大きさを増大させる操作反力増大機能を有しているので、運転者に対し適切に注意を喚起するように機能する。

【0022】とこで、実際にアクセルベダル3の操作反力の大きさを可変制御するための操作反力可変設定手段 40 9について図3ないし図4を参照して説明する。

【0023】先ず、図3(A)に示すように、操作反力可変設定手段9はアクセルペダル3を回動自在に支持するブラケット19と、当該ブラケット19とアクセルペダル3との相互間に配設される二本のバネ部材21,23はアクセルペダル3の回転軸25を中心として両側に固定されている。

【0024】そして、第1のバネ部材21はアクセルペ には所定の中空円筒状部材27aが装備され、との中ダル3の回転軸25より下方に固定されている。この第 50 円筒状部材27a内にピストン29aが嵌合されてい

1のパネ部材21は、圧縮パネであって、アクセルペダル3の操作に対して操作反力を生じる側に弾性力を付勢するようになっている。また、第1のパネ部材21の一方端は、ブラケット19に形成されたシリンダ27に嵌合されるピストン29と係合されている。このピストン29は、第1のパネ部材21に対して近接離間することにより、第1のパネ部材21の弾性力を可変設定するように機能する。

【0025】第1のバネ部材21の弾性力を変化させる 10 機構としては、ピストン29の後方に備えられたラック 31、ピニオン33と駆動モータ35とからなる。即 ち、駆動モータ35が回転することにより、ピニオン3 3が回転し、これに伴ってラック31が左右に移動す る。ラック31の移動が伝達部材37を介してピストン 29に伝達され、第1のバネ部材21の弾性力の大きさ が変更される。

【0026】また、アクセルペダル3の回動軸25を介して第1のバネ部材21の反対側には第2のバネ部材23が固定されている。この第2のバネ部材23は、第1のバネ部材21の弾性力が変更された場合にもアクセルペダル3の位置が余り変化しないようにするためのものである。このため、第2のバネ部材23のバネ定数は第1のバネ部材21のバネ定数より大きく設定されている。また、アクセルペダルの上端部には、気化器(図示略)にまで延設されるアクセルワイヤ39が接続されている。尚、アクセルワイヤは所定の力で気化器側に引っ張られているので、第1のバネ部材21の弾性力とアクセルワイヤの引っ張り力の和より第2のバネ部材の弾性力を小さく設定しておけば、アクセルペダルは常時無操作状態の位置に復帰する。

【0027】以上のように構成された操作反力可変設定 手段9が主制御部11の操作反力可変制御機能により作 動した場合には、図1(B)に示すように、第2のバネ 部材23が圧縮されてアクセルペダル3の操作反力が増 大する。

【0028】以上のような制御がなされると、運転者は 運転中にアクセルペダル3の操作反力が増大したことを アクセルペダル3によって知得して注意が喚起されると 共に、アクセルペダル3が戻される側に作用するので、 運転者の運転動作を適切に補助する警報装置となる。

尚、操作反力の可変制御に際して自車両の車速を考慮 し、特に車速が高い場合に操作反力をより増大させるよ うな制御も有効である。

【0029】次に、操作反力可変設定手段の他の例について図4に基づいて説明する。当該操作反力可変設定手段9 aは、基本的な構成要素を上記したものと同一としている。しかしながら、第1のパネ部材21の弾性力を変化させる機能が異なっている。即ち、ブラケット19には所定の中空円筒状部材27a内にピストン29aが安合されている。

る。そして、ピストン29aの一方端には上記した操作 反力可変設定手段9と同様に第1のパネ部材21が係合

【0030】一方、ピストン29aの他方端は曲面で構 成されており、この曲面に所定のカム部材31aが当接 して配設されている。カム部材31aは駆動モータ(図 示略) に係合されて回動可能になっており、主制御部1 1 (図1参照)が駆動モータの回転制御を行う。即ち、 図4 (B) に示すように、カム部材31aが回転するこ とによりピストン29aを左方に押し、これによって第 10 ことになる、という優れた効果を生じる。 1のバネ部材21が圧縮される。との結果、アクセルベ ダル3の操作反力の大きさが増大する。 当該操作反力可 変設定手段9aでは、カム部材31aのプロフィールを 適切に設定することにより、カム部材31aの回動角に 対する操作反力の可変制御を自由に設定することができ る。

【0031】以上は、運転者に警報を与える機能とし て、アクセルペダル3の操作反力をバネ部材によって増 大させる場合について説明した。しかしながら本発明は これに限定されるものではなく、アクセルペダルの踏み 20 である。 込み量(ストローク)を運転状況に応じて制限するよう な構造であってもよい。即ち、前方車両との車間距離が 所定値以下となった場合に、気化器(図示略)に配設さ れているスロットル (図示略) の回動角を制限するもの や、アクセルペダルと気化器との間に連結されるアクセ ルワイヤの移動を制限するものであってもよい。とのよ うに構成することによっても、運転者に対して容易に警 報を与え注意を喚起することができる。

[0032]

【発明の効果】以上説明したように、本発明の警報装置 30 5 操作量検出手段 によれば、主制御部が、車間距離が所定値以下の場合に 操作量検出手段と操作速度検出手段の情報に基づいて、 操作反力可変設定手段を可変制御する操作反力可変制御 機能を有している。このため、走行状態に応じて適正な アクセルペダルの操作反力可変制御がなされ、運転者は米

* アクセルペダルの反力によって適切に警報を知得するこ とができる、という優れた効果を生じる。

【0033】また、操作反力の決定に際して主制御部 は、アクセルペダルの操作量や操作速度の増大に伴い操 作反力の大きさを増大させるような操作反力増大機能を 有している。このため、運転者による急なアクセルペダ ル操作がなされた場合でも、主制御部がこれを抑制する ように機能するので、より適切な走行を実現することが できる。従って、運転者へのストレスが一層軽減される

【0034】更には、視覚による警報でないため運転者 の視線の位置に拘わらず確実に注意を喚起できると共 に、 聴覚に訴える警報でないため同乗者はなんら警報に 気づくことなく煩わしい思いもさせられることがない、 という優れた効果を生じる。

【図面の簡単な説明】

【図1】本発明の第一の実施形態を示す制御ブロック図 である。

【図2】本発明にかかる警報装置の制御マップを示す図

【図3】本発明の操作反力可変設定手段を示す図であ り、図3(A)は通常の制御状態を示し、図3(B)は 操作反力が増大制御されている状態を示す。

【図4】本発明の他の操作反力可変設定手段を示す図で あり、図4(A)は通常の制御状態を示し、図4(B) は操作反力が増大制御されている状態を示す。

【符号の説明】

- 1 警報装置
- 3 アクセルペダル
- 7 操作速度検出手段
- 9 操作反力可変設定手段
- 1 1 主制御部
- 13 車間距離検出手段

【図1】

【図4】

フロントページの続き

(72)発明者 松尾 典義 神奈川県横浜市都筑区桜並木2番1号 ス

ズキ株式会社技術研究所内