Nama: Bintang Bahari Kelas: Informatika A2 Npm: 41155050210064

#### **Tugas 1 Machine Learning**

1. Buat screenshot sebagai jawaban nomor 1 di Tugas Pertemuan 1! \*jupyter Notebook



### 3. Buatlah akun Kaggle



#### 4.akun github



5.. Lakukan praktek dari https://youtu.be/mSO2hJln0OY?feature=shared . Praktek tersebut yaitu:

#### 5.1. Load sample dataset



5.2. Metadata | Deskripsi dari sample dataset

```
Jupyter BintangBahari_41155050210064 Last Checkpoint: 22 hours ago
File Edit View Run Kernel Settings Help
🖻 + % 🖺 🖒 ▶ ■ C >> Code ∨
                                                                                                                                      JupyterLab 🖸 🀞 Python 3 (ipyk
      [2]: iris.keys()
     [2]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
            .. _iris_dataset:
           Iris plants dataset
           **Data Set Characteristics:**
            :Number of Instances: 150 (50 in each of three classes)
            :Number of Attributes: 4 numeric, predictive attributes and the class :Attribute Information:
                - sepal length in cm
               - sepal width in cm
- petal length in cm
               - petal width in cm
- class:
                        - Iris-Setosa
                        - Iris-Secosa
- Iris-Versicolour
- Iris-Virginica
            :Summary Statistics:
```

5.3. Explanatory & Response Variables | Features & Target

```
[4]: x = iris.date x.hape

[4]: (150, 4)

[5]: x = iris.date x

[5]: array([[5.1, 3.5, 1.4, 0.2], [4.9, 3., 1.4, 0.2], [4.9, 3., 1.4, 0.2], [4.9, 3., 1.4, 0.2], [4.9, 3., 1.4, 0.2], [4.9, 3., 1.5, 0.2], [5.9, 3.9, 1.7, 0.4], [4.6, 3.4, 1.4, 0.3], [5.9, 3.4, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.1, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 1.5, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.2], [4.9, 3.9, 0.
```

#### 5.4. Feature & Target Names

#### 5.5. Visualisasi Data



## 5.6. Training Set & Testing Set

# 5.7. Load sample dataset sebagai Pandas Data Frame

| [29]: | <pre>iris = load_iris(as_frame=True)</pre> |                                                |                  |                   |                  |  |
|-------|--------------------------------------------|------------------------------------------------|------------------|-------------------|------------------|--|
|       |                                            | iris_feature_df = iris.data<br>iris_feature_df |                  |                   |                  |  |
| 9]:   |                                            | sepal length (cm)                              | sepal width (cm) | petal length (cm) | petal width (cm) |  |
|       | 0                                          | 5.1                                            | 3.5              | 1.4               | 0.2              |  |
|       | 1                                          | 4.9                                            | 3.0              | 1.4               | 0.2              |  |
|       | 2                                          | 4.7                                            | 3.2              | 1.3               | 0.2              |  |
|       | 3                                          | 4.6                                            | 3.1              | 1.5               | 0.2              |  |
|       | 4                                          | 5.0                                            | 3.6              | 1.4               | 0.2              |  |
|       |                                            |                                                |                  |                   |                  |  |
|       | 145                                        | 6.7                                            | 3.0              | 5.2               | 2.3              |  |
|       | 146                                        | 6.3                                            | 2.5              | 5.0               | 1.9              |  |
|       | 147                                        | 6.5                                            | 3.0              | 5.2               | 2.0              |  |
|       | 148                                        | 6.2                                            | 3.4              | 5.4               | 2.3              |  |
|       | 149                                        | 5.9                                            | 3.0              | 5.1               | 1.8              |  |
|       | 150 rd                                     | ows × 4 columns                                |                  |                   |                  |  |

# 6.0. Lakukan praktek dari https://youtu.be/tiREcHrtDLo?feature=shared . Praktek tersebut yaitu:

## 6.1. Persiapan dataset | Loading & splitting dataset

# 6.2. Training model Machine Learning

# 6.3. Evaluasi model Machine Learning

## 6.4. Pemanfaatan trained model machine learning

## 6.5. Deploy model Machine Learning | Dumping dan Loading model

```
[18]: import joblib
    joblib.dump(model, 'iris_classifier_knn.joblib')

[18]: ['iris_classifier_knn.joblib']

[19]: production_model = joblib.load('iris_classifier_knn.joblib')

[ ]: |
```

## 7.0. Lakukan praktek dari

 $https://youtu.be/smNnhEd26Ek? feature = shared \ . \ Praktek \ tersebut \ yaitu:$ 

## 7.1. Persiapan sample dataset

```
[2]: import numpy as np
          from sklearn import preprocessing
          sample_data = np.array([[2.1, -1.9, 5.5],
                                  [-1.5, 2.4, 3.5],
                                  [0.5, -7.9, 5.6],
                                  [5.9, 2.3, -5.8]
          sample_data
     [2]: array([[ 2.1, -1.9, 5.5],
                 [-1.5, 2.4, 3.5],
                 [ 0.5, -7.9, 5.6],
                 [5.9, 2.3, -5.8]])
     [3]: sample_data.shape
     [3]: (4, 3)
7.2. Teknik data preprocessing 1: binarisation
[4]: preprocessor = preprocessing.Binarizer(threshold=0.5)
      binarised_data = preprocessor.transform(sample_data)
      binarised_data
[4]: array([[1., 0., 1.],
            [0., 1., 1.],
             [0., 0., 1.],
             [1., 1., 0.]])
```

## 7.3. Teknik data preprocessing 2: scaling

```
[5]: sample_data
[5]: array([[ 2.1, -1.9, 5.5],
             [-1.5, 2.4, 3.5],
            [ 0.5, -7.9, 5.6],
             [5.9, 2.3, -5.8]])
[8]: preprocessor = preprocessing.MinMaxScaler(feature_range=(0,1))
     preprocessor.fit(sample_data)
     scaled_data = preprocessor.transform(sample_data)
     scaled data
[8]: array([[0.48648649, 0.58252427, 0.99122807],
            [0. , 1. , 0.81578947], [0.27027027, 0. , 1. ],
                                           ],
             [1. , 0.99029126, 0.
                                               ]])
[9]: scaled_data = preprocessor.fit_transform(sample_data)
     scaled data
[9]: array([[0.48648649, 0.58252427, 0.99122807],
            [0. , 1. , 0.81578947], [0.27027027, 0. , 1. ],
             [1. , 0.99029126, 0.
                                               ]])
r 1: I
```

### 7.4. Teknik data preprocessing 3: normalisation

```
[10]: sample_data
[10]: array([[ 2.1, -1.9, 5.5],
             [-1.5, 2.4, 3.5],
             [ 0.5, -7.9, 5.6],
             [5.9, 2.3, -5.8]])
[12]: li_normalised_data = preprocessing.normalize(sample_data, norm='l1')
      li_normalised_data
[12]: array([[ 0.22105263, -0.2
                                   , 0.57894737],
              [-0.2027027 , 0.32432432, 0.47297297],
              [ 0.03571429, -0.56428571, 0.4
             [ 0.42142857, 0.16428571, -0.41428571]])
[13]: l2_normalised_data = preprocessing.normalize(sample_data, norm='l2')
      l2 normalised data
[13]: array([[ 0.33946114, -0.30713151, 0.88906489],
             [-0.33325106, 0.53320169, 0.7775858],
[ 0.05156558, -0.81473612, 0.57753446],
             [ 0.68706914, 0.26784051, -0.6754239 ]])
[]:[]
```