Math 624: Homework 6

1. On the Banach space \mathbf{C}^d consider the norm $\|x\|_1 = \sum_{i=1}^d |x_i|$, $\|x\|_2 = (\sum_{i=1}^d |x_i|^2)^{1/2}$, and $\|x\|_{\infty} = \sup_{1 \le i \le d} |x_i|$. Consider a linear map $A : \mathbf{C}^d \to \mathbf{C}^d$, i.e., a $n \times n$ matrix $A = (a_{ij})_{i,j=1}^d$. For $p = 1, 2, \infty$ define

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p},$$

i.e., $||A||_p$ is the operator norm of A as an operator on the Banach \mathbb{C}^n equipped with $||\cdot||_p$. Show that

$$||A||_1 = \max_j \sum_i |a_{ij}| \quad ||A||_\infty = \max_i \sum_j |a_{ij}|.$$

and that $||A||_2$ is the square root of the largest eigenvalue of A^*A .

- 2. Let X be a Banach space and let $\mathcal{L}(X)$ be the set of all bounded operator from X to X.
 - (a) Let $T \in \mathcal{L}(X)$ and suppose that ||I T|| < 1 (I is the identity, i.e. Ix = x). Show that T is invertible with inverse $T^{-1} = \sum_{n=0}^{\infty} (I T)^n$.
 - (b) Let $T \in \mathcal{L}(X)$ be invertible and suppose that $S \in \mathcal{L}(X)$ satisfies $||S T|| \le ||T^{-1}||^{-1}$, then S is invertible. Remark: This shows that the set of invertible operators is an open subset of $\mathcal{L}(X)$.
- 3. Let C([0,1]) be the Banach space of continuous functions on [0,1] equipped with the uniform norm $||f||_u = \sup_{t \in [0,1]} |f(t)|$.
 - (a) Let $k \in C([0,1] \times [0,1])$ be a continuous function. Define $A: C([0,1]) \to C([0,1])$ by

$$Af(t) = \int_0^1 k(t,s)f(s) ds.$$

Show that A is a bounded operator and $||A|| = \max_{t \in [0,1]} \int_0^1 |k(t,s)| ds$.

(b) Let $k \in C([0,1] \times [0,1])$ and $g \in C([0,1])$ be given. Show that the integral equation (f is the unknown)

$$f(t) = g(t) + \int_0^1 k(t, s) f(s) ds,$$

has a unique solution in C([0,1]) if $\int_0^1 |k(t,s)| ds < 1$.

(c) Write the solution in the form $f(t) = g(t) + \int_0^1 r(t,s)g(s) ds$ and determine r(t,s).

Hint: For (b) and (c) use Exercise 2 (a).

- 4. Let k be an integer and let $C^k([0,1])$ denote the space of functions which have continuous derivatives up to order k, including one-sided derivatives at the endpoints.
 - (a) Show that if $f \in C[0,1]$, then $f \in C^k([0,1])$ if and only if f is k-times continuously differentiable on (0,1) and $\lim_{x\to 0+} f^{(j)}(x)$ $\lim_{x\to 1-} f^{(j)}(x)$ exists for $j \leq k$. (Use the mean-value Theorem).
 - (b) Show that if $\{f_n\}$ is a sequence in $C^1([0,1])$ such that $f_n \to f$ uniformly and $f'_n \to g$ uniformly then $f \in C^1([0,1])$ and f' = g. (Show that $f(x) f(y) = \int_y^x g(s) ds$.)
 - (c) Show that $||f|| \equiv \sum_{j=0}^k ||f^{(j)}||_u$ is a norm on $C^k([0,1])$ and that, with this norm $C^k([0,1])$ is a Banach space. (Use (b) and induction on k).
- 5. Consider the operator A which maps f(t) to its derivative f'(t). Show that $A: C^1([0,1]) \to C([0,1])$ is a bounded operator but that $A: C^1([0,1]) \to C^1([0,1])$ is not bounded.
- 6. Let $0 < \alpha \le 1$ and let H_{α} denote the space of all functions satisfying a Lipschitz condition with exponent α , i.e., if $f \in H_{\alpha}$ there exists a constant M such that $|f(x) f(y)| \le M|x y|^{\alpha}$ for all $x, y \in [0, 1]$. Define

$$||f||_{H_{\alpha}} \equiv \sup_{x \in [0,1]} |f(x)| + \sup_{\substack{x,y \in [0,1]\\x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

Show that H_{α} with $\|\cdot\|_{H_{\alpha}}$ is a Banach space.

- 7. Let X be a normed vector space and let M be a closed subspace of X. Define an equivalence relation $x \sim y$ if $x-y \in \mathcal{M}$. The equivalence class of x is denoted by x+M and the set of equivalence classes is denoted by X/M which is a vector space with the operations (x+M)+(y+M)=(x+y)+M and $\alpha(x+M)=\alpha x+M$.
 - (a) Show that $||x+M|| \equiv \inf\{||x+y|| : y \in M\}$ is a norm on the quotient space X/M
 - (b) If X is complete then X/M is complete. Hint: Use the criteria for completeness in terms of absolutely convergent sequences.
- 8. The adjoint of an operator. Suppose X and Y are Banach spaces and $T: X \to Y$ is a bounded operator. We define the adjoint of T, T^* as the operator $T^*: Y^* \to X^*$ given by

$$T^*f(x) = f(Tx)$$

where $f \in Y^*$ and $x \in X$.

- (a) Show that T^* is a well defined bounded operator and $||T^*|| = ||T||$.
- (b) Verify that if X = Y and is a Hilbert space this definition coincides with the definition given in Chapter 4.
- (c) Fix some $g \in X^*$ and some $u \in Y$ and define $S : X \to Y$ by S(x) = g(x)u. Show that S is bounded and ||S|| = ||g|| ||u||. Compute the adjoint S^* of S.