Московский государственный университет имени М.В. Ломоносова Химический факультет Кафедра электрохимии Лаборатория химии высоких энергий

Лукьянова М. А.

Радиационно-индуцированные превращения изолированных молекул бензола в матрицах твёрдых благородных газов

Дипломная работа

Научный руководитель: к.х.н., с.н.с. Саночкина Е. В.

Полициклические ароматические углеводороды

- ПАУ обнаружены в межзвёздном пространстве. Вероятно, что ключевыми интермедиатами в их образовании являются C₆H₅, C₆H₅+, C₆H₇+
- При фотолизе бензола происходит изомеризация
- Бензол считается радиационностойким (G(H₂) = 0.04 молек. / 100 эВ)

Основные задачи

- определение состава радикальных и молекулярных продуктов радиолиза бензола в матрицах твёрдых благородных газов
- установление основных каналов радиационнохимических превращений молекул бензола в матрицах
- выявление влияния характеристик инертной матрицы на эффективность и механизм радиолиза бензола
- установление влияния изотопозамещения на основные каналы радиационно-химических превращений бензола в условиях матричной изоляции

Методика эксперимента

Приготовление газовой смеси* бензол/Ng 1:1000

Осаждение смеси на охлаждаемую KBr подложку

Облучение рентгеновским излучением при 6 K

Регистрация ИК спектров при 6 K

бензол C_6H_6 , C_6D_6 Ng: Ar, Kr, Xe

ИК-спектр осаждённого образца

Расходование бензола при радиолизе

Расходование бензола при радиолизе

Ar $G(-C_6H_6) = 2.6$ молек. / 100 эВ Kr $G(-C_6H_6) = 0.4$ молек. / 100 эВ Xe $G(-C_6H_6) = 0.4$ молек. / 100 эВ

Основные продукты радиолиза

В результате радиолиза образцов C₆H₆/Ng в ИК-спектрах появляются новые полосы поглощения

Основными продуктами являются фульвен и фенильный радикал

Накопление основных продуктов радиолиза

Вторичные продукты радиолиза

В результате облучения образцов C₆H₆/Ng в ИК-спектрах появляются полосы поглощения (наиболее интенсивные около 3300 см⁻¹), соответствующие гексадиен-1,3-ину-5

Расходование C₆D₆ при радиолизе

Поглощённая доза, кГр

Ar
$$G(-C_6D_6) = 1.5$$
 молек. / 100 эВ Kr $G(-C_6D_6) = 0.3$ молек. / 100 эВ Xe $G(-C_6D_6) = 0.3$ молек. / 100 эВ

Фотолиз (254 нм) системы C_6D_6/Ar

Возможный механизм радиолиза

Ng
$$\longrightarrow$$
 Ng⁺⁻, e⁻, Ng*

Ng⁺⁻ + C₆H₆ \rightarrow C₆H₆⁺⁻ + Ng

Ng* + C₆H₆ \rightarrow C₆H₆* + Ng

C₆H₆* + e⁻ \rightarrow C₆H₆* (S_n, T_n)

Аргон: $G(-C_6H_6) = 2.6$ молек./100 эВ (сравнимо с алканами)

$$C_6H_6^*$$
 (S₁, S_n?) \to (+другие изомеры?) фульвен

$$C_6H_6^*$$
 $(T_n) \rightarrow C_6H_5^{\cdot} + H^{\cdot}$

Ксенон: $G(-C_6H_6) = 0.4$ молек./ 100 эВ

 $C_6H_6^*$ (S_1 , S_n ?) \to C_6H_6 (S_0) + hv, kT (эффективная электронная релаксация вследствие высокой поляризуемости окружения)

 $C_6H_6^*$ (S_1 , S_n ?) \to C_6H_6 (T_n) (эффективная ИКК из-за эффекта тяжёлого атома)

 $C_6H_6^*$ (S₁, S_n?) \to фульвен (+другие изомеры?)

$$C_6H_6^* (T_n) \to C_6H_5^+ + H^-$$

Результаты и выводы

- Показано, что бензол и бензол- d_6 эффективно разлагаются в матрицах твёрдых благородных газовпри температуре 6 К. При этом радиационно-химический выход разложения бензола в матрице аргона значительно выше, чем в матрицах криптона и ксенона.
- Определён состав основных первичных продуктов радиолиза бензола и бензола- d_6 (фульвен и фенильный радикал) в матрицах благородных газов, предложена схема их образования. Состав продуктов принципиально отличается от состава продуктов, образующихся при фотолизе бензола.
- Установлено, что дейтерирование не оказывает существенного влияния на соотношение основных каналов радиолиза бензола. Впервые получены ИК-спектроскопические характеристики дейтерированных изомеров бензола (фульвена- d_6 , бензвалена- d_6 , бензола Дьюара- d_6).
- Показано, что матрица оказывает сильное влияние на соотношение каналов радиолиза изолированных молекул бензола: при переходе от матрицы аргона к матрице ксенона резко увеличивается относительный вклад канала радиационно-индуцированного распада бензола на атом водорода и фенильный радикал.
- Зафиксировано образование молекул с открытой цепью (*цис* и *транс*-гексадиен-1,3-ина-5) непосредственно при радиолизе бензола в матрицах твердых инертных газов. Предложены возможные механизмы их образования.

Спасибо за внимание!

Вторичные продукты радиолиза

 $C_6H_6/Xe 1:1000$

Определение выходов расходования

$$G = \frac{\Delta c}{1000MtI}$$

- Δ*c* изменение относительной концентрации бензола
- 1000 мольное отношение бензола и матрицы
- М молярная масса матрицы
- t время облучения
- / мощность поглощённой дозы