Кластеризация

Задача

- Имея множество
 неаннотированных данных,
 разделить их на такие группы
 (кластеры), чтобы элементы
 внутри каждой группы были
 похожи друг на друга, а элементы
 разных групп были разными.
- Кластеризация задача обучения без учителя (unsupervised learning).

KMeans

K средних / K means

Алгоритм:

- Выбор К центров кластеров (К задается пользователем);
- Распределение остальных объектов по кластерам по критерию близости к центру;
- Центр масс каждого кластера (среднее арифметическое векторов признаков) становится новым центром кластера;
- Остальные объекты заново распределяются вокруг нового центра.

Повторяется, пока кластеры не перестанут меняться.

K средних / K means

K средних / K means

The K-means clustering algorithm on Airbnb rentals in NYC.

Заметки о выборе центров

- Вначале центры выбираются из объектов выборки, чтобы не попасть в те точки пространства, где нет признаков;
- Начальные положения точек выбираются таким образом, чтобы они были как можно дальше друг от друга.

Иерархическая кластеризация

Иерархическая кластеризация

Может быть агломерационной или дивизионной.

Agglomerative Hierarchical Clustering

Divisive Hierarchical Clustering

Картинка: https://education.yandex.ru/handbook/ml/article/klasterizaciya

Окончание работы алгоритма

- Все элементы объединены в один кластер;
- Выполняется некое условие расстояния между кластерами: например, расстояние сливаемых кластеров значительно выросло по сравнению с прошлой итерацией.

Как определить, сколько кластеров на самом деле?

По дендрограмме:

- По горизонтали номера объектов;
- По вертикали расстояния между кластерами в момент слияния.

DBSCAN

DBSCAN

Density-based spatial clustering of applications with noise: кластеризация на основе связных компонент.

DBSCAN сам определяет количество кластеров и может выявлять также вложенные кластеры.

UPD:

Картинки отсюда

https://machinelearningknowledge.ai/tutorial-for-dbscan-clustering-in-python-sklearn/

DBSCAN: алгоритм

Типы данных:

- **Внутренние/основные** точки: точки, в окрестности радиуса ерѕ которых больше min_samples объектов выборки;
- **Граничные** точки: точки, в окрестности которых есть основные, но общее количество точек в окрестности меньше min_samples;
- **Шумовые** точки: точки, в окрестности которых нет основных точек и в целом содержится менее min_samples объектов выборки.

Гиперпараметры: epsilon/eps, min_samples/min_points.

DBSCAN: алгоритм

- 1. Шумовые точки убираются из рассмотрения и не приписываются ни к какому кластеру;
- 2. Основные точки, у которых есть общая окрестность, соединяются ребром;
- 3. В полученном графе выделяются компоненты связности (максимальные связные подграфы);
- 4. Каждая граничная точка относится к тому кластеру, в который попала ближайшая к ней основная точка.

Визуализация: https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Оценка качества кластеризации

Оценка качества кластеризации

Без размеченной выборки:

- **Коэффициент силуэта:** мера расстояния между кластерами и их "разделенности".
- Фиксированная шкала: принимает значения от –1 до +1 и максимизируется, когда кластеры кучные и хорошо отделены друг от друга.
 - Ближе к +1: данная точка находится далеко от ближайших кластеров (к которым она не относится);
 - Ближе к 0: точка находится около границы кластеров;
 - Ближе к -1: точка ближе к объектам ближайших кластеров, чем к объектам своего.

Источники

- https://education.yandex.ru/handbook/ml/article/klasterizaciya
- https://github.com/esokolov/ml-course-hse/blob/master/2018-fall/seminars/se
 m11_clustering%2Bpca.ipynb
- https://github.com/ischurov/math-ml-hse-2018/blob/master/sem14_clustering/ sem14_clustering.ipynb
- https://github.com/nstsj/ML_for_NLP/blob/main/5_clustering/dimred%2Bclustering.ipynb