

ΕΡΓΑΣΤΗΡΙΟ 2

ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ

ПЕРІЕХОМЕНА

Αριθμητικά Κυκλώματα

- Ημιαθροιστής 1-bit
- Πλήρης Αθροιστής 1-bit
- Παράλληλος Αθροιστής 4-bit
- Ημιαφαιρέτης 1-bit
- Πλήρης Αφαιρέτης 1-bit
- Παράλληλος Αφαιρέτης 4-bit
- Κύκλωμα Αθροιστή-Αφαιρέτη 4-bit

Παράσταση Κανονικού Αθροίσματος Γινομένων

Π. χ. H συνάρτηση f(x,y):

	\boldsymbol{x}	y	f
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	1

m_0	m_1	m_2	m_3
$\overline{x} \cdot \overline{y}$	\overline{x} • y	$x \cdot \overline{y}$	<i>x•y</i>
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Παριστάνεται:
$$f(x,y) = m_0(x,y) + m_2(x,y) + m_3(x,y) = \overline{x} \cdot \overline{y} + x \cdot \overline{y} + x \cdot y$$

Παράσταση Κανονικού Γινομένου Αθροισμάτων

Π. χ. H συνάρτηση f(x,y):

	\boldsymbol{x}	y	f
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	1

M_o	M_1	M_2	M_3
x + y	$x + \overline{y}$	$\overline{x} + y$	$\overline{x} + \overline{y}$
0	1	1	1
1	0	1	1
1	_1_	0	1
(1	1	1 (0

Παριστάνεται:
$$f(x,y) = M_1(x,y) = x + \overline{y}$$

$$\Pi.\chi. f_1 = (x + y + z)(x + y' + z)(x' + y + z')(x' + y' + z)$$

= $M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$

Ημιαθροιστής 1-bit

Ημιαθοοιστής 1 bit

Άσκηση: Να σχεδιαστεί το κύκλωμα ημιαθροιστή 1bit

- α) Να βρεθούν οι λογικές συναρτήσεις των εξόδων
- β) Να σχεδιαστεί το κύκλωμα
- γ) Να υλοποιηθεί το κύκλωμα στον προσομοιωτή και να επαληθευτεί η λειτουργία του.
- δ) Να υλοποιηθεί το κύκλωμα ως υποκύκλωμα (chip)

		X+Y		
	s	ΧY	S C	
X -	3	0 0	0 0	
		0 1	1 0	
Y 7_	— <i>C</i>	1 0	1 0	
		1 1	0 1	

Ημιαθοοιστής 1 bit

Απλοποίηση με Karnaugh

Υλοποίηση Ημιαθροιστή σε Breadboard Simulator

Γιατί πέρα από τον Ημιαθροιστή χρειαζόμαστε τον Πλήρη Αθροιστή;

Πλήρης Αθροιστής 1 bit

Άσκηση: Να σχεδιαστεί το κύκλωμα πλήρους αθροιστή 1bit

- α) Να βρεθεί ο πίνακας αληθείας του κυκλώματος και οι λογικές συναρτήσεις των εξόδων
- β) Να σχεδιαστεί το κύκλωμα
- γ) Να υλοποιηθεί το κύκλωμα στον προσομοιωτή και να επαληθευτεί η λειτουργία του.
- δ) Να υλοποιηθεί το κύκλωμα χρησιμοποιώντας υποκυκλώματα (chip) ημιαθροτοτών.

Α	В	C_{in}	SUM (S)	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

AB C _{in}	$\overline{C_{in}}$	C _{in}
ĀB		
ĀB		1
ΑВ	1	1
ΑB		1

AB C _{in}	$\overline{C_{in}}$	C _{in}
$\overline{A}\overline{B}$		1
ĀB	1	
ΑВ		1
ΑĒ	1	

$$C_{\rm out} = \overline{A}.B.C_{\rm in} + A.\overline{B}.C_{\rm in} + A.B.\overline{C}_{\rm in} + A.B.C_{\rm in} \qquad S = \overline{A}.\overline{B}.C_{\rm in} + \overline{A}.B.\overline{C}_{\rm in} + A.\overline{B}.\overline{C}_{\rm in} + A.B.C_{\rm in}$$

Α	В	C_{in}	SUM (S)	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$C_{\text{out}} = \overline{A}.B.C_{\text{in}} + A.\overline{B}.C_{\text{in}} + A.B.\overline{C}_{\text{in}} + A.B.C_{\text{in}} \qquad S = \overline{A}.\overline{B}.C_{\text{in}} + \overline{A}.B.\overline{C}_{\text{in}} + A.\overline{B}.\overline{C}_{\text{in}} + A.B.C_{\text{in}}$$

Α	В	C_{in}	SUM (S)	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$C_{\text{out}} = \overline{A}.B.C_{\text{in}} + A.\overline{B}.C_{\text{in}} + A.B.\overline{C}_{\text{in}} + A.B.C_{\text{in}} \qquad S = \overline{A}.\overline{B}.C_{\text{in}} + \overline{A}.B.\overline{C}_{\text{in}} + A.\overline{B}.\overline{C}_{\text{in}} + A.B.C_{\text{in}}$$

Full Adder 1-bit

Πλήρης Αθροιστής 4 bit

Άσκηση: Να σχεδιαστεί το κύκλωμα πλήρους αθροιστή 4bit

- α) Να σχεδιαστεί το κύκλωμα χρησιμοποιώντας τα υποκυκλώματα αθροιστών που σχεδιάστηκαν προηγουμένως
- β) Να υλοποιηθεί το κύκλωμα στον προσομοιωτή
- γ) Να προσομοιωθούν οι πράξεις: 1011+0110, 0111+1010, 0011+0101
- δ) Αν η καθυστέρηση διάδοσης κάθε πύλης είναι 1 μονάδα χρόνου να υπολογιστεί η συνολική καθυστέρηση διάδοσης για το τελικό

κρατούμενο C4

4-bit Full Adder

Υλοποίηση Αθροιστή για 4-bit

Ημιαφαιρέτης 1 bit

Άσκηση: Να σχεδιαστεί το κύκλωμα ημιαφαιρέτη 1bit

- α) Να βρεθούν οι λογικές συναρτήσεις των εξόδων
- β) Να σχεδιαστεί το κύκλωμα
- γ) Να υλοποιηθεί το κύκλωμα στον προσομοιωτή και να επαληθευτεί η λειτουργία του.
- δ) Να υλοποιηθεί το κύκλωμα ως υποκύκλωμα (chip)

Х	Υ	D	В		
0	0	0	0		
0	1	1	1		
1	0	1	0		
1	1	0	0		

Ημιαφαιρέτης 1 bit

Πλήρης Αφαιρέτης 1 bit

Άσκηση: Να σχεδιαστεί το κύκλωμα πλήρους αφαιρέτη 1bit

- α) Να βρεθεί ο πίνακας αληθείας του κυκλώματος και οι λογικές συναρτήσεις των εξόδων
- β) Να σχεδιαστεί το κύκλωμα
- γ) Να υλοποιηθεί το κύκλωμα στον προσομοιωτή και να επαληθευτεί η λειτουργία του.
- δ) Να υλοποιηθεί το κύκλωμα χρησιμοποιώντας: α) υποκυκλώματα (chip) ημιαφαιρετών, β) υποκυκλώματα ημιαθροιστών.

Πίνακας Αληθείας Πλήρους Αφαιρέτη 1bit

х	у	z	D	В
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Πλήρης Αφαιρέτης 1-bit

Πλήρης Αφαιρέτης 4-bit

Άσκηση: Να σχεδιαστεί το κύκλωμα πλήρους αφαιρέτη 4-bit

- Να σχεδιαστεί το κύκλωμα χρησιμοποιώντας τα υποκυκλώματα αθροιστών που σχεδιάστηκαν προηγουμένως.
- Να υλοποιηθεί το κύκλωμα στον προσομοιωτή
- Να προσομοιωθούν οι πράξεις 1011+0110, 0111+1010, 0011+0101.
- Αν η καθυστέρηση διάδοσης της κάθε πύλης είναι 1 μονάδα χρόνου να υπολογιστεί η συνολική καθυστέρηση διάδοσης για

το τελικό κρατούμενο C_4 .

Πλήρης Αφαιρέτης 4-bit

Συμπλήρωμα ως προς 1 και 2

Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

Συμπλήρωμα ως προς 1 και 2

The subtraction of two *n*-digit unsigned numbers M-N in base *r* can be done as follows:

- 1. Add the minuend M to the r's complement of the subtrahend N. Mathematically, $M + (r^n N) = M N + r^n$.
- 2. If $M \ge N$, the sum will produce an end carry r^n , which can be discarded; what is left is the result M N.
- 3. If M < N, the sum does not produce an end carry and is equal to $r^n (N M)$, which is the r's complement of (N M). To obtain the answer in a familiar form, take the r's complement of the sum and place a negative sign in front.

Συμπλήρωμα ως προς 1 και 2 Παραδείγματα αφαίρεσης ως προς 2

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y and (b) Y - X by using 2's complements.

(a)
$$X = 1010100$$

 2 's complement of $Y = + 0111101$
 $Sum = 10010001$
Discard end carry $2^7 = -10000000$
 $Answer: X - Y = 0010001$
(b) $Y = 1000011$
 2 's complement of $X = + 0101100$
 $Sum = 1101111$

There is no end carry. Therefore, the answer is Y - X = -(2's complement of 1101111) = -0010001.

Παράδειγμα Υπερχείλισης σε δυαδικούς προσημασμένους αριθμούς των 8-bit

carries:	0 1	carries:	1 0
+70	0 1000110	-70	1 0111010
+80	0 1010000	-80	1 0110000
+150	1 0010110	-150	0 1101010

Η σύγκριση του τελικού κρατούμενου εξόδου με το 8° bit του καταχωρητή μας δείχνει εάν έχουμε υπερχείλιση σε προσημασμένους αριθμούς. Εφόσον διαφέρουν, γεγονός που το εξετάζουμε με μια XOR, έχουμε το φαινόμενο της υπερχείλισης.

Σενάρια αφαίρεσης Α-Β

Πρακτική Άσκηση 2

υποχρεωτική υποβολή με αξιολόγηση

Παραδοτέα 2 αρχεία:
1. αρχείο κειμένου με σχήματα (κατά προτίμηση .pdf)
2. αρχείο .circ

1. Να σχεδιαστεί κύκλωμα πλήρους αθροιστή-αφαιρέτη 4-bit με χρήση υποκυκλωμάτων, με τη βοήθεια του υποκυκλώματος πλήρους αθροιστή (1-bit full adder). $A = A_3 A_2 A_1 A_0$ $M = 0 - 2 \cdot 1 \cdot 5 \cdot A \cdot B \cdot 7 \cdot C$

 $A = A_3 A_2 A_1 A_0$ $B = B_3 B_2 B_1 B_0$ $M = 0 \Rightarrow f = S = A + B, Z = C$ $M = 1 \Rightarrow f = D = A - B, Z = B$ $A \xrightarrow{4} f$ $B \xrightarrow{4} f$ M

- 2. Να προσομοιωθεί η λειτουργία του για τις πράξεις: 1011 \pm 0101 και 0110 \pm 0100
- 3. Να εξηγήσετε με ποιο μηχανισμό μετατρέπεται από αθροιστής σε αφαιρέτης και το αντίστροφο.
- 4. Να συμπεριλάβετε στη σχεδίαση και να εξηγήσετε έναν μηχανισμό που να δείχνει πότε έχουμε υπερχείλιση στην περίπτωση των προσημασμένων (signed) αριθμών.

ΤΕΛΟΣ

200 εργαστηρίου

Ερωτήσεις;