- Greedy algorithmsGeneral method
 - ✓ Examples
 - ✓ Control abstraction
 - Fractional Knapsack Problem

General method

- A greedy algorithm refers to any algorithm that follows the problem solving heuristic of making the locally optimal choice at each stage.
- ➤ It is a mathematical process which looks for simple, easy-to-implement solutions in stages.
- > The decision is made to provide the most obvious benefit.
- In many problems, a greedy strategy does not usually produce an optimal solution
- But may still yield locally optimal solutions that approximate a globally optimal solution quickly.

Subset paradigm

- ➤ Given *n* inputs choose a subset that satisfies some constraints.
- > A subset that satisfies constraints is called a feasible solution.
- ➤ A feasible solution that maximises or minimises a given (objective) function is said to be <u>optimal</u>.
- Often it is easy to find a feasible solution but difficult to find the optimal solution.
- ➤ The greedy method suggests that one can devise an algorithm that works in stage. At each stage a decision is made whether a particular is in the optimal solution.
- > This is called subset paradigm.

Examples --- Change problem

- ➤ A child buys candy valued at less than £1 and gives a £1 bill to the cashier.
- The cashier wishes to return change using the fewest number of coins.
- The cashier constructs the change in stages. At each stage increase the total amount of change as much as possible.
- The added coin should not cause the total amount of change given so far to exceed the final desired amount (feasibility).
- ➤ Suppose that 67 pence is due to the child. The first coin selected are 50 pence.
- The second coin cannot be a 50p or 20p as not feasible.
- The second is 10 pence, then a 5 pence, and finally two pence are added to the change.

 Data Structure and Algorithms

Examples --- Knapsack problem

- Your train breaks down in a desert and you decide to walk to nearest town.
- You have a rucksack but which objects should you take with you?
- Feasible: Any set of objects is a feasible solution provided that they are not too heavy, fit in the rucksack and will help you survive (these are constraints).
- ➤ An <u>optimal solution</u> is the one that maximises or minimises something
 - One that minimises the weight carried
 - One that fills the rucksack completely (maximise)
 - One that ensures the most water is taken etc.

Other examples:

- > You want to work out the best way to route a phone message through a mobile phone network.
- ➤ A number of users want to run programmes on a computer. How do you schedule them so they are executed as quickly as possible.
- ➤ A factory use a production line to make several products. How should you schedule the production runs to make the most profit.
- ➤ You run a haulage company and want to workout how to deliver all your products to a set of outlets with the least cost and time.
- ➤ You run an airline and want to work out how best to turn the plane around on landing and get it flying again.

Data Structure and Algorithms

Control abstraction for Greedy Algorithm

```
Algorithm Greedy (A:set; n:integer){
  MakeEmpty(solution);
 for(i=2;i<=n;i++)
  x = Select(A);
  if Feasible(solution, x) then
  solution = Union(solution; \{x\})
  return solution
```

The function *Greedy* describes the essential way that a greedy algorithm will look, once a particular problem is chosen functions *Select, Feasible, and Union* are properly implemented.

- > The function Select selects an input from A whose value is assign to x.
- > Feasible is a Booleanvalued function that determines if x can be included into the solution vector.
- > The function *Union* combines x with the solution, and update the objective function.

 Data Structure and Algorithms

```
Algorithm Greedy (A:set; n:integer){
 MakeEmpty(solution);
 for(i=2;i<=n;i++)
 x = Select(A);
  if Feasible(solution, x) then
  solution = Union(solution; \{x\})
  return solution
```

Kruskal MST

Fractional Knapsack

Greedy Algorithms

Prim MST

Dijkstra shortest path

Fractional Knapsack Problem

- ➤ Given *n* objects and a knapsack (or rucksack) with a capacity (weight) *M*
- \succ Each object i has weight w_i , and profit p_i
- For each object i, suppose a fraction x_i , $0 < x_i \le 1$ (i.e. 1 is the maximum amount) can be placed in the knapsack, then the profit earned is $p_i x_i$

➤ Objective is to maximize profit subject to capacity constraint.

i.e. Maximize

$$\sum_{i=1}^{n} p_i x_i \tag{1}$$

➤ Subject to

$$\sum_{i=1}^{n} w_i x_i \le M$$

$$p_i \le x_i \le 1$$

$$p_i > 0$$

$$w_i > 0$$
(2)

- \triangleright A feasible solution is any subset $\{x_1 \cdots x_n \}$ satisfying (2) and (3).
- > An optimal solution is a feasible solution that maximize (1)

- ➤ Knapsack problems appear in realworld decision-making processes in a wide variety of fields, such as
 - finding the least wasteful way to cut raw materials
 - selection of investments and portfolios,
 - resources allocation, etc.

Example Let n = 3; M = 20

$$(p_1, p_2, p_3) = (25,24,15)$$

$$(w_1, w_2, w_3) = (18,15,10)$$

Feasible Solutions

$$(x_1, x_2, x_3)$$
 $\sum_{i=1}^{n} w_i x_i$ $\sum_{i=1}^{n} p_i x_i$

Strategy 1: maximise objective function

$$n = 3; M = 20$$

 $(p_1, p_2, p_3) = (25,24,15)$
 $(w_1, w_2, w_3) = (18,15,10)$

$$\sum_{i=1}^{n} p_i x_i = 25 \times 1 + 24 \times \frac{2}{15} + 0 = 28.5$$

$$\sum_{i=1}^{n} w_i x_i = 18 \times 1 + 15 \times \frac{2}{15} + 0 = 20$$

Capacity was quickly exhausted which constrained the profit attained

- Put the object with the greatest profit in the knapsack.
- Figure 7. Then use a fraction of the last object to fill the knapsack to capacity.
- Strategy does not yield an optimal solution.

Strategy 2: maximise capacity

$$n = 3; M = 20$$

 $(p_1, p_2, p_3) = (25,24,15)$
 $(w_1, w_2, w_3) = (18,15,10)$

$$\sum_{\substack{i=1\\n}}^{n} p_i x_i = 0 + 24 \times \frac{2}{3} + 15 \times 1 = 31$$
$$\sum_{i=1}^{n} w_i x_i = 0 + 15 \times \frac{2}{3} + 10 \times 1 = 20$$

Rate of increase of profit was not high enough

- Choose objects according to least weight.
- The idea is that we will get more objects into the knapsack and potentially more profit.
- Solution is still not optimal.

Strategy 3: balancing profit and capacity

$$n = 3; M = 20$$

 $(p_1, p_2, p_3) = (25,24,15)$
 $(w_1, w_2, w_3) = (18,15,10)$

$$\sum_{i=1}^{n} p_i x_i = 0 + 24 \times 1 + 15 \times \frac{1}{2} = 31.5$$

$$w_i x_i = 0 + 15 \times 1 + 10 \times \frac{1}{2} = 20$$

Achieves a balance between rate at which profit increases with the rate at which the capacity is used.

- Find the object to include by maximum profit per unit of capacity. i.e compute $\frac{P_i}{w_i}$.
- Then choose objects starting with the largest and working to smallest ratio.
- > Solution is optimal!

- Input: the objects are in increasing order so that $\frac{P[i]}{w[i]} > \frac{P[i+1]}{w[i+1]}$
- Output: optimal solution vector x
- causes over flow
- greedy choice
- Choose a fraction

```
Algorithm Knapsack(P, W, x:arrayvals; M; n:int)
  for(i=1;i<=n;i++) \ x[i]=0;
  capacity=M;
  for(i=1;i<=n;i++)
    if W[i] > capacity then exit()
    else
       x[i] = 1;
       capacity=capacity-W[i];
  if i \le n then x[i] = capacity/W[i];
```

Greedy algorithms

- Single source shortest path problem
- Dijkstra's shortest path algorithm

Control abstraction for Greedy Algorithm

```
Algorithm Greedy (A:set; n:integer){
  MakeEmpty(solution);
 for(i=2;i<=n;i++)
 x = Select(A);
  if Feasible(solution, x) then
  solution = Union(solution; \{x\})
  return solution
```

The function *Greedy* describes the essential way that a greedy algorithm will look, once a particular problem is chosen functions *Select*, *Feasible*, *and Union* are properly implemented.

```
Algorithm Greedy (A:set; n:integer){
    MakeEmpty(solution);
    for(i= 2; i <=n; i++){
        x=Select(A);
    if Feasible(solution, x) then
        solution=Union(solution;{x})
    }
    return solution
}
```

- ➤ The function *Select* selects an input from *A* whose value is assign to *x*.
- ➤ Feasible is a Boolean-valued function that determines if x can be included into the solution vector.
- The function Union combines x with the solution, and update the objective function Data Structure and Algorithms

Kruskal MST

Fractional Knapsack

Greedy Algorithms

Prim
MST
Dijkstra shortest path

Single source shortest path problem

> In graph theory, the problem of finding the shortest path between two nodes on a graph is called shortest path problem.

The graph type is weighted graph, the number attached to each edge is a weight.

Single source shortest path solves the shortest path from a given vertex

Given a weighted graph, find the Shortest path from h to z?

Graphs naturally represent networks, e.g.
Road/Rail/Air networks, oil pipelines,
electricity grids.

Modern day applications (AA route planner, Sat Nav, Mobile Maps)

Natural questions are

- Find a route or path from city A to city B
- Different paths with lowest cost (e. g least fuel, least distance, least travel time)
- Other applications include plant and facility layout, robotics, transportation, and VLSI design.

 \triangleright Definition: if $P = e_1 e_2 e_3 \cdots e_k$ are edges connecting source (s) to a destination (t), the length/weight of a path is the sum of the weights of its edges, i.e,

 $w(P) = \sum_{i=1}^{k} e_i$

- > Greedy approach: Generate the paths starting from some vertex according to increasing order of path length
 - Feasible: Every sub-path to a particular vertex is a feasible solution
 - Optimal: sum of the lengths of all paths so far generated should be minimal Data Structure and Algorithms

Dijkstra's Shortest Path Algorithm

This is the most important algorithms for solving the single-source shortest path problem with non-negative edge weight.

- Dijkstra's algorithm is based on the property that if a shortest path from s to t goes through vertex e
 - then the sub-path from s to e is a shortest path from s to e.
 - and the sub-path from *e* to *t* is a shortest path from *e* to *t*

Algorithm outline

 \blacktriangleright Maintain a set S of vertices u for which a shortest path distance Dist(u) has been determined from a starting vertex

 $S = \{s, d, b\}$ $S = \{s, d, b$

- This is the "explored" part of the graph
- > Initially $S = \{s\}$ and Dist(s) = 0

- For each vertex w in $\{V-S\}$, determine the shortest path starting from s travelling along path through the explored part s to some vertex s followed by an edge s s.
- \succ The destination w is such that

$$Dist(w) = \min_{u \in S, \ w \in V - S} (Dist(u) + cost(u, w))$$

 \triangleright i.e. Choose the node w for which the quantity Dist(u) + cost(u, w) is minimized

➤ Add w to set S and repeat the above procedure until the destination is reached.

- ➤ Need also an array a shortest path distance Dist(u) has been determined from a starting vertex.
- The algorithm is greedy, with the set *S* increases one element at a time.
- Need an indicator array to record which node is in S
- ➤ The adjacency matrix of weighted graph is used in the algorithm to represent the graph as input for problem solving.

> A Recap: Adjacency matrix for weighted graph

$$A[i,j] = \begin{cases} c & \text{if } edge < i, j > is in } E(G) \\ \infty & \text{otherwise} \end{cases}$$

0	2	6	∞	4 7
2	0	∞	∞	∞
6	∞	0	1	3
∞	∞	1	0	∞
L 4	∞	3	∞	0 7

```
Algorithm ShortestPaths(v:int; Cost:Matrix; Dist: Array[n]; n:int) {
   for(i = 1; i <= n; i++)
    S[i] = 0; Dist[i] = Cost[v, i];
    S[v] = 1; Dist[v] = 0;
    for(j=2;j <=n-1;j++)
    choose u such that Dist[u] = min(Dist[w])
    and S[w] = 0;
    S[u] = 1;
           for all w with S[w] = 0 {
          Dist[w] = min(Dist[w], Dist[u] + Cost[u, w])
```

- Dist updates the shortest path lengths to each vertex from v.
- initially no vertices are in set S and cost of shortest path is for the weight of edge (v, i) Data Structure and Algor
- start with vertex v put it in S
- determine (n-1) paths from v
 - add it to S
 - update path lengths for vertices not

- > Paths from vertex 1 to vertex 6
 - (1,2)(2,3)(3,4)(4,6) 2 + 2 + 7 + 3 = 14
 - (1,3)(3,4)(4,6) 8 + 7 + 3 = 18
 - (1,4)(4,6) 6+3=9

$$Cost = \begin{bmatrix} 0 & 2 & 8 & 6 & \infty & \infty \end{bmatrix}$$

Initialise
$$v = 1$$
, $S[1] = 1$, $Dist[1] = 0$

$$S[2] = 0$$
, $Dist[2] = 2$

$$S[3] = 0$$
; $Dist[3] = 8$

$$S[4] = 0$$
; $Dist[4] = 6$

$$S[5] = 0$$
; $Dist[5] = \infty$

$$S[6] = 0$$
; $Dist[6] = \infty$

$$Dist = [0, 2, 8, 6, \infty, \infty]$$

$$Cost = \begin{bmatrix} 0 & 2 & 8 & 6 & \infty & \infty \\ \infty & 0 & 2 & \infty & \infty & \infty \end{bmatrix}$$

$$j=2; u=2; S[7] = 1, Dist[1] = 0$$

$$S[2] = 1$$
, $Dist[2] = 2$

$$S[3] = 0$$
, $Dist[3] = min(8, 2 + 2) = 4$

$$S[4] = 0$$
, $Dist[4] = min(6, 2 + \infty) = 6$

$$S[5] = 0$$
, $Dist[5] = min(\infty, 2 + \infty) = \infty$

$$S[6] = 0$$
, $Dist[6] = min(\infty, 2 + \infty) = \infty$

Data Structure and

Dist= $[0, 2, 4, 6, \infty, \infty]$

$$Cost = \begin{bmatrix} 0 & 2 & 8 & 6 & \infty & \infty \\ \infty & 0 & 2 & \infty & \infty & \infty \\ \infty & \infty & 0 & 7 & \infty & \infty \end{bmatrix}$$

$$j=3;\ u=3;\ S[1]=1,\ Dist[1]=0$$

$$S[2]=1,\ Dist[2]=2$$

$$S[3]=1,\ Dist[3]=4$$

$$S[4]=0,\ Dist[4]=min(6,\ 4+7)=6;$$

$$S[5]=0,\ Dist[5]=min(\infty,4+\infty)=\infty$$
 Data Structure and Algorithms
$$S[6]=0,\ Dist[6]=min(\infty,4+\infty)=\infty$$

$$Dist = [0, 2, 4, 6, \infty, \infty]$$

$$j=4, u=4, S[1]=1, Dist[1]=0$$
 $S[2]=1, Dist[2]=2$
 $S[3]=1, Dist[3]=4$
 $S[4]=1, Dist[4]=6$
 $S[5]=0, Dist[5]=\min(\infty;6+9)=15$

Dist= [0, 2, 4, 6, 15, 9]

$$Cost = \begin{bmatrix} 0 & 2 & 8 & 6 & \infty & \infty \\ \infty & 0 & 2 & \infty & \infty & \infty \\ \infty & \infty & 0 & 7 & \infty & \infty \\ \infty & 6 & \infty & 0 & 9 & 3 \\ \infty & \infty & 4 & \infty & 0 & 5 \\ \infty & \infty & 4 & \infty & \infty & 0 \end{bmatrix}$$

$$j=5,\,u=6,\,S[1]=1,\,Dist[1]=0$$
 $S[2]=1,\,Dist[2]=2$ $S[3]=1,\,Dist[3]=4$ $S[4]=1,\,Dist[4]=6$ $S[5]=1,\,Dist[5]=15$ Data Structure and Algorithms $S[6]=1,\,Dist[6]=9$

