M622, Quiz 2, Mar. 30. 28 minutes.

1. (3 points) Suppose S is a splitting field of the polynomial $t(x) \in F[x]$ over F, and J is a subfield of S that contains F (i.e., $F \leq J \leq S$). Show in a couple of sentences that S is also a splitting field of $t(x) \in J[x]$ over J.

Explanation. Observe that $t(x) \in J[x]$, and since K is an s.f. for t(x) over $F, K = F(r_1, \ldots, r_n)$, where $\{r_1, \ldots, r_n\}$ are the roots of t(x). Since r_1, \ldots, r_n are all roots of t(x), and $F \subseteq J \subseteq K$, it follows that S splits $t(x) \in J[x]$. If E is an intermediate field, $J \subseteq E \subseteq S$, then E splits $t(x) \in J[x]$ only if r_1, \ldots, r_n are all contained in E. Since E contains F, and r_1, \ldots, r_n , E must be S. It follows that no proper subfield S over J splits $t(x) \in J[x]$, so S is an s.f. of $t(x) \in J[x]$.

2. (7 points) Suppose $t(x) \in F[x]$ is a monic polynomial of degree $n \ge 1$ over F and S is a splitting field of t(x). Show that $n! \ge [S:F]$. Use induction on $\deg(t(x))$, and also the problem above (Problem 1).

Proof. The proof is by induction on $\deg(t(x))$. If $\deg(t(x)) = 1$, then F = S, and [F : F] = 1 = 1!, completing the base step. Assume $\deg(t(x)) = n$, and the statement holds for all polynomial in F[x] having degree less than n.

Now consider t(x) of degree n. If all roots of t(x) are in F, then S=F, and $[S:F]=1\leq n!$. So suppose γ is a root of t(x) not in F. Then γ is a root of an irreducible factor p(x) of t(x). As we've shown, $[F(\gamma):F]=deg(p(x))\leq deg(t(x))=n$.

As showed above, S is a s.f. of t(x) over $F(\gamma)$. We have $t(x) = (x - \gamma)q(x)$, for some $q(x) \in F(\gamma)[x]$. Notice that S is a s.f. of q(x) over $F(\gamma)$. Of course deg(q(x)) = n - 1 < n. By the induction hypothesis, $[S : F(\gamma)] \neq deg(q(x))! = (n-1)!$.

Now by the Double Extension Lemma, we have $[S:F] = [S:F(\gamma)][F(\gamma):F] \le (n-1)!n = n!$, completing the induction proof.

3. (3 points) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2} + \sqrt{3})$. (Suggestion: Use that the inverse of $\sqrt{2} + \sqrt{3}$ is in $\mathbb{Q}(\sqrt{2} + \sqrt{3})$.)

Solution. $\sqrt{3} - \sqrt{2} = (\sqrt{2} + \sqrt{3})^{-1} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. It follows easily that $\sqrt{2}, \sqrt{3}$ are both in $\mathbb{Q}(\sqrt{2} + \sqrt{3})$.

- 4. (8 points) Let $x^4 2 = p(x) \in \mathbb{Q}[x]$. Let S be the splitting field of p(x).
 - (a) Show that p(x) is irreducible—this is a one-line proof. REASON: Eisenstein.
 - (b) List the roots of p(x) below. ROOTS: $\{2^{1/4}, -2^{1/4}, i2^{1/4}, -i2^{1/4}\}$.

- (c) Determine $[S:\mathbb{Q}]$ —**Explain.** DMENSION, EXPLANATION: Since S is closed under multiplication and inverses, using the roots, it follows readily that $i \in S$. Now $S = \mathbb{Q}(2^{1/4}, i)$. We have $[\mathbb{Q}(2^{1/4}):\mathbb{Q}] = 4 = deg(x^4 2)$, the latter an irreducible polynomial. Observe that $i \notin \mathbb{Q}(2^{1/4})$, the latter a subfield of \mathbb{R} ; thus $x^2 + 1$ $in\mathbb{Q}(2^{1/4})[x]$ is irreducible. Now we have $[S:\mathbb{Q}] = [S:\mathbb{Q}(2^{1/4})][Q(\mathbb{Q}(2^{1/4}):\mathbb{Q}] = 4(2) = 8$.
- (d) Since $Aut(S/\mathbb{Q})$ acts faithfully on the four roots of p(x) in S, $Aut(S/\mathbb{Q})$ is embedded in S_4 . Based on your answers to first three parts ((a), (b), and (c)), briefly explain why there is no element $\sigma \in Aut(S/\mathbb{Q})$ such that σ fixes exactly one root of p(x).
 - ANSWER: Fixing one root means the other three move. In S_4 , this can be done only by a three-cycle. But our group $Aut(S/\mathbb{Q})$ has order 8, and by Lagrange, has no element of order 3.
- (e) +1 EC. Based on your answers to the first three parts, determine a subgroup H of S_4 satisfying $H \cong Aut(S/\mathbb{Q})$. Briefly explain your answer: EXPLANATION.
 - Any 8-element subgroup of S_4 is a Sylow-2 subgroup. The Sylow 2-subgroups are pairwise isomorphic. One of those Sylow-2 subgroups is isomorphic to D_8 , an 8-element subgroup of S_4 . So our group is isomorphic to D_8 .
- 5. (7 points max—2 points each.) True or false? If false, provide a specific counterexample.
 - (a) For any prime p, the group F_p^{\times} is cyclic. (Here the group F_p^{\times} is the group of units of F_p .) TRUE
 - (b) For any positive integer n > 1, if ψ is a primitive nth root of unity, then $\mathbb{Q}(\psi)$ is a splitting field for $\Phi_n(x)$ over \mathbb{Q} . TRUE
 - (c) Let p be a prime, and let $n \in \mathbb{N}$. Consider F_{p^n} , the finite field having p^n elements.
 - If $k \in \mathbb{N}$, and $k|p^n$, then F_{p^n} contains a subfield containing p^k elements
 - FALSE. F_4 is not a subfield of F_8 since 2 doesn't divide 3.
 - (d) If K/F is a field extension with $\beta \in K F$, and $[F(\beta) : F]$ is finite, then $[F(\beta) : F] = |Aut(F(\beta)/F)|$. FALSE: $\mathbb{Q}(2^{1/3})/\mathbb{Q}$ is not Galois, as we've mentioned.