DOCKET NO.: CELL-0086 PATENT

$$Ar^{1}(Alk^{a})_{r}L^{1}Ar^{2}CH(R^{1})C(R^{a})(R^{a})R \qquad (1)$$

wherein

Ar¹ is an optionally substituted aromatic or C_{1.9} heteroaromatic group containing one to four heteroatoms seleted from oxygen, nitrogen, and sulfur;

 L^1 is a covalent bond or a linker atom or group selected from -CON(R^2)-, -S(O)₂N(R^2)-, -N(R^2)-, and -O-;

R² is a hydrogen atom or a C₁₋₃ alkyl group;

Ar² is an optionally substituted phenylene group;

 R^1 is a group selected from -NHCOR³, -NHSO₂R³, -NHR³, -NHC(O)OR³, -NHCSR³, -NHCON(R³)(R^{3a}), -NHSO₂N(R³)(R^{3a}), and -NHCSN(R³)(R^{3a});

 R^3 is an optionally substituted C_{3-10} cycloaliphatic group, an optionally substituted C_{7-10} polycycloaliphatic group, an optionally substituted C_{3-10} heterocycloaliphatic group containing one, two, three or four heteroatoms or heteroatom-containing groups selected from $-O_-$, $-S_-$, $-C(O)_-$, $-C(O)_-$, $-C(O)_-$, $-C(S)_-$, $-S(O)_-$, $-S(O)_2$, $-N(R^8)_-$, $-C(O)_-$,

DOCKET NO.: CELL-0086 PATENT

optionally substituted aromatic group, or an optionally substituted C_{1.9} heteroaromatic group containing one, two, three or four heteroatoms seleted from oxygen, nitrogen, and sulfur;

 R^{3a} is a hydrogen atom, an optionally substituted C_{1-6} aliphatic group, an optionally substituted C_{1.6} heteroaliphatic group containing one, two, three or four heteroatoms or heteroatom-containing groups selected from -O-, -S-, -C(O)-, -C(O)O-, OC(O)-, -C(S)-, -S(O)-, $-S(O)_{2}$, $-N(R^{8})$ -, $-C(O)NR^{8}$ -, $-OC(O)N(R^{8})$ -, $-CSN(R^{8})$ -, $-N(R^{8})CO$ -, $-N(R^{8})C(O)O$ -, $-N(R^{8})CS$ -, $-S(O)_2N(R^8)$ -, $-N(R^8)S(O)_2$ -, $-N(R^8)CON(R^8)$ -, $-N(R^8)CSN(R^8)$ - and $-N(R^8)SO_2N(R^8)$ -; an optionally substituted C₃₋₁₀ cycloaliphatic group, an optionally substituted C₇₋₁₀ polycycloaliphatic group, an optionally substituted C₃₋₁₀ heterocycloaliphatic group containing one, two, three or four heteroatoms or heteroatom-containing groups selected from -O-, -S-, -C(O)-, -C(O)O-, -C(O)-, -C(S)-, -S(O)-, -S(O)₂-, $-N(R^8)$ -, $-C(O)NR^8$ -, $-OC(O)N(R^8)$ -, $-CSN(R^8)-$, $-N(R^8)CO-$, $-N(R^8)C(O)O-$, $-N(R^8)CS-$, $-S(O)_2N(R^8)-$, $-N(R^8)S(O)_2-$, $-N(R^8)CON(R^8)$, $-N(R^8)CSN(R^8)$ and $-N(R^8)SO_2N(R^8)$; an optionally substituted C_{7-10} heteropolycycloaliphatic group containing one, two, three or four heteroatoms or heteroatomcontaining groups selected from -O-, -S-, -C(O)-, -C(O)O-, OC(O)-, -C(S)-, -S(O)-, -S(O)₂-, $-N(R^8)$ -, $-C(O)NR^8$ -, $-OC(O)N(R^8)$ -, $-CSN(R^8)$ -, $-N(R^8)CO$ -, $-N(R^8)C(O)O$ -, $-N(R^8)CS$ -, $-S(O)_2N(R^8)$ -, $-N(R^8)S(O)_2$ -, $-N(R^8)CON(R^8)$ -, $-N(R^8)CSN(R^8)$ - and $-N(R^8)SO_2N(R^8)$ -; an optionally substituted aromatic group, or an optionally substituted C_{1.9} heteroaromatic group containing one, two, three or four heteroatoms seleted from oxygen, nitrogen, and sulfur;

DOCKET NO.: CELL-0086 PATENT

 R^a and $R^{a'}$, which may be the same or different, are each independently selected from a hydrogen or halogen atom or an optionally substituted straight or branched alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, haloalkoxy, alkylthio or -(Alk^b)_mR^b group (in which Alk^b is a C_{1-3} alkylene chain, m is zero or the integer 1, and R^b is -OH, -SH, -NO₂, -CN, -CO₂H, -CO₂R^c (where R^c is an optionally substituted straight or branched C_{1-6} alkyl group), -SO₃H, -SOR^c, -SO₂R^c, -SO₃R^c, -OCO₂R^c, -C(O)H, -C(O)R^c, -OC(O)R^c, -C(S)R^c, -NR^dR^e (where R^d and R^e , which may be the same or different, are each a hydrogen atom or an optionally substituted straight or branched C_{1-6} alkyl group), -CON(R^d)(R^e), -OC(O)N(R^d)(R^e), -N(R^d)C(O)R^e, -CSN(R^d)(R^e), -N(R^d)C(S)R^e, -S(O)₂N(R^d)(R^e), -N(R^d)SO₂R^e, -N(R^d)CON(R^e)(R^f) (where R^f is a hydrogen atom or an optionally substituted straight or branched C_{1-6} alkyl group), -N(R^d)C(S)N(R^e)(R^f) or -N(R^d)SO₃N(R^e)(R^f) group);

Alk^a is an optionally substituted $C_{1.6}$ aliphatic or $C_{1.6}$ heteroaliphatic chain containing one, two, three or four heteroatoms or heteroatom-containing groups selected from -O-, -S-, -C(O)-, -C(O)O-, OC(O)-, -C(S)-, -S(O)-, -S(O)₂-, -N(R⁸)-, -C(O)NR⁸-, -OC(O)N(R⁸)-, -C(SN(R⁸)-, -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)₂N(R⁸)-, -N(R⁸)S(O)₂-, -N(R⁸)CON(R⁸)-, -N(R⁸)CSN(R⁸)-, and -N(R⁸)SO₂N(R⁸)-;

r is zero or the integer 1;

R is a carboxylic acid (CO₂H), a carboxylic ester group, or carboxylic amide group;

and the salts, solvates, hydrates and N-oxides thereof.