- 17. Let S be a set of n elements.
- (a) How many (binary) operations can be defined on S?
- (b) How many of them are commutative?
- (c) How many of them have an identity?
- **18.** Prove the following propositions:
- (a) An operation can have at most one identity.
- (b) If an associative operation has an identity, then every element can have at most one inverse.
- (c) If an associative operation on S has an identity and every element has an inverse, then the equations ax = b and ya = b have unique solutions x and y in S for every $a, b \in S$.
- (d) If an operation on S is associative and the equations ax = b and ya = b have solutions x and y in S for every $a, b \in S$, then there is an identity and every element has an inverse. Remark: From (c) and (d) we infer that subtraction can be performed iff there is a zero element and every element has a negative, and division can be performed iff there is an identity (for multiplication) and every element has a reciprocal.
- 19. Let X be any (finite or infinite) set and S the set of all $X \to X$ functions with the composition as an operation. Show that this operation is associative and has an identity. Which functions have a left inverse and which have a right inverse?
- 20. Consider an associative operation with identity. True or false:
- (a) If each of two elements has an inverse, then also their product has an inverse.
- (b) If the product of two elements has an inverse, then also each of the factors has an inverse.
- 21. Which of the following sets are rings under the given addition and multiplication? Are the rings commutative, do they have an identity, which elements have a left or right inverse, and which are left or right zero divisors? Which rings are fields?
- (a) The set \mathbf{Z}_n of the remainders under division by n under the natural addition and multiplication. (E.g. if n=8, then 3+7=2 and $3\cdot 7=5$.)
- (b) The even remainders under division by (b1) 10; (b2) 12; (b3) 15 under the natural addition and multiplication.
- (c) The following sets of 2×2 real matrices under the usual matrix addition and multiplication:
 - (c1) diagonal matrices $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$;
 - (c2) upper-triangular matrices $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$;
 - (c3) symmetric matrices $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$, i.e. $A^T = A$;
 - (c4) skew-symmetric matrices $\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$, i.e. $A^T = -A$;
 - $(c5) \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}; (c6) \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}; (c7) \begin{pmatrix} a & b \\ a & b \end{pmatrix}; (c8) \begin{pmatrix} a & b \\ b & a \end{pmatrix}; (c9) \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$

- (d) The real numbers under addition \oplus and multiplication \odot defined below:
 - (d1) \oplus is the usual addition and $a \odot b = 2ab$;
 - (d2) $a \oplus b = 2(a+b)$ and \odot is the usual multiplication;
 - (d3) $a \oplus b = a + b + 2$ and \odot is the usual multiplication;
 - (d4) $a \oplus b = \sqrt[3]{a^3 + b^3}$ and \odot is the usual multiplication;
 - (d5) $a \oplus b = a + b + 2$ and $a \odot b = ab + 2a + 2b + 2$.
- (e) The set of all subsets of a set X where addition is the symmetric difference and multiplication is the intersection, i.e. $A + B = A \triangle B = (A \cup B) \setminus (A \cap B)$ and $AB = A \cap B$.
- (f) The following sets of polynomials f with real coefficients under the usual polynomial addition and multiplication:
 - (f1) $\deg f$ is even or f = 0;
 - (f2) every term in f has an even degree;
 - (f3) $\deg f \le 10 \text{ or } f = 0;$
 - (f4) $\deg f \ge 10 \text{ or } f = 0;$
 - (f5) 2019 is a root of f;
 - (f6) the sum of coefficients of f is 0;
 - (f7) the constant term of f is an integer.
- (g) The following sets of real numbers where $a,b,c\in\mathbf{Q}$ with the usual addition and multiplication:
 - (g1) $\{a+b\sqrt{5}\};\ (g2)\ \{a+b\sqrt[3]{5}\};\ (g3)\ \{a+b\sqrt[3]{5}+c\sqrt[3]{25}\}.$
- (h) All $f: \mathbf{R} \to \mathbf{R}$ functions with the usual addition and (h1) with the usual multiplication (fg)(x) = f(x)g(x); (h2) with composition $(f \circ g)(x) = f(g(x))$ as multiplication.
- **22.** Prove the following propositions for rings:
- (a) The left cancelation law $(ab = ac \Rightarrow b = c)$ holds iff $a \neq 0$ and a is not a left zero divisor.
- (b) If an element c has a left inverse, then c is not 0 and is not a left zero divisor, but the converse is false.
- (c) If a finite commutative ring has no zero divisors, then it is a field.
 - Remark: It can be proved that (c) holds even without assuming the ring to be commutative.
- **23.** Prove that if $a^2 = a$ holds for every element a in a ring, then the ring is commutative and every element is its own negative. Exhibit examples for such rings.
- **24.** Show that the commutative law for addition does not follow from the other ring axioms, but it follows for rings with identity.
- *25. Prove that if 1-ab has an inverse in a ring (with identity 1), then so does also 1-ba.
- **26.** Can we turn the set **Z** of integers into a field, if
- (a) multiplication is as usual and we can define an addition \oplus arbitrarily;
- (b) addition is as usual and we can define a multiplication ⊙ arbitrarily;
- (c) we can define both an addition \oplus and a multiplication \odot arbitrarily?