Claims

- 1. Novel compounds of substituted calix(4) pyrroles namely tetraspiro cycloheptyl calix (4) pyrrole, tetraspiro cyclooctyl calix (4) pyrrole and tetraspiro (2-methyl cyclohexyl) calix(4) pyrrole as shown in structural formulae 6a, 7a and 8a of the accompanying drawings, for use in many industrial applications particularly in biological applications.
- 2. Novel compounds as claimed in claim 1, wherein the compounds having following properties.
 - i) tetraspiro cycloheptyl calix (4) pyrrole (6a): 1 HNMR (200 MHz, CDCl₃): δ = 1.45-1.72 (m, 32H, cycloheptyl), 1.94-2.12 (m,16H, Cycloheptyl), 5.83 (br, d,8H, pyrrole- β H), 6.78-6.88 (br,s,4H,NH),; HR-MS (EI) for C₄₄H₆₀N₄: calcd: 644.4817, found: 644.4752;
 - ii) tetraspiro cyclooctyl calix (4) pyrrole (7a), ¹HNMR (200 MHz, CDCl₃): δ =1.18-1.82 (m, 56H, cyclooctyl), 5.93 (br,d,8H, pyrrole- β H), 6.91-6.99 (br,s,4H, pyrrole-NH); HR-MS (EI) for C₄₈N₆₈N₄: calcd; 700.5443, found: 700.5456; and
 - iii) tetraspiro (2-methyl cyclohexyl) calix(4)pyrrole (8a): HR-MS (EI) for $C_{44}H_{60}N_4$: calcd: 644.4817, found 644.4847.
- 3. A method for preparing substituted calix (4) pyrroles, said method comprising reacting a pyrrole with a acyclic and cyclic ketones over a mesoporus molecular sieve solid acid catalyst in presence of a solvent, at reflux temperature of about 100°C for period ranging from 10 to 72 hours, recovering the solid products by filtration, washing with deionized water and drying in air and calcined at 773K in air.
- A method as claimed in claim 3 wherein, the catalyst is selected from MCM-41, HZSM-5 (30), Hβ, HY and SAPO-5.
- 5. A method as claimed in claim 3 wherein, the amount of catalyst used is ranging from 0.1 g to 1.0 g.
- 6. A method as claimed in claim 3 wherein, the catalysts used are having the following surface area and pore size as given below.

Catalyst	Surface area (m ² /g)	Pore size (°A)
MCM-41	980-1200	30-100
HY	525 –625	6-8
HZSM-5 (30)	275-340	5-7.5
SAPO-5	175-240	6.5-8.4
Нβ	600-680	5.5 x 6.6 to 7.5 x 8.5

7. A method as claimed in claim 3 wherein, the pore size and surface area of the catalysts used in the reaction are given in the following table.

Catalyst	Surface area (m ² /g)	Pore size (°A)
HY	593	7.3
HZSM-5 (30)	310	5.6
SAPO-5	207	7.4
Нβ	640	6.5 x 7.6
l .	· •	1

- 8. A method as claimed in claim 3 wherein, the solvent used for refluxing is selected from dichloromethane, methanol, and acetonitrile.
- 9. A method as claimed in claim 3 wherein, the molar ratio of pyrrole to ketone is selected in between 1:1 to 1:4.
- 10. A method as claimed in claim 3 wherein, the cycloketone is selected from the group comprising cyclohexanone, cycloheptanone, cyclopentanone and cyclooctanone.
- 11. A method as claimed in claim 3 wherein acyclic ketone is selected from the group comprising methyl ethyl ketone and 3-pentanone.
- 12. A method as claimed in claim 3 wherein, acyclic products are obtained using the catalyst HY.
- 13. A method as claimed in claim 3 wherein, major amounts of liner products are obtained using catalyst HZSM-5 (30).
- 14. A method as claimed in claim 3 wherein, the yield of the calix (4) pyrrole is up to 70%.

- 15. A method as claimed in claim 3 wherein, the selectivity of the calix (4) pyrrole is up to 90%.
- 16. A method as claimed in claim 3 wherein, the calix (4) pyrrole obtained are:
 - i) octamethyl calix (4) pyrrole (1a);
 - ii) Tetraethyl Tetra methyl calix (4) pyrrole (2a);
 - iii) octaethyl calix (4) pyrrole (3a);
 - iv) tetraspiro cyclohexyl calix (4) pyrrole (4a);
 - v) tetraspiro cyclopentyl calix (4) pyrrole (5a);
 - vi) tetraspiro cycloheptyl calix (4) pyrrole (6a),
 - vii) tetraspiro cyclooctyl calix (4) pyrrole (7a);
 - viii) (2-methyl cyclohexyl) calix (4) pyrrole (8a) and
 - ix) dimer, trimer and tetramers of pyrroles
- 17. A method for preparing calix (4) pyrroles or tetraspiro calix (4) pyrroles, said method comprising mixing a pyrrole with a acyclic or cyclic ketones over a molecular sieve solid acid catalyst and subjecting the mixture to microwave radiation for 3 to 10 minutes and optionally, refluxing using a solvent for extracting the compounds.
- 18. A method as claimed in claim 17 wherein, the solvent used for refluxing is selected from dichloromethane, methanol, and acetonitrile.
- 19. A method as claimed in claim 17 wherein, the molar ratio of pyrrole to ketone is 1:1.
- 20. A method as claimed in claim 17 wherein, in the reaction of equimolar ratio of pyrrole and cyclohexanone, dichloromethane is used as a solvent for refluxing to obtain cyclic products.
- 21. A method as claimed in claim 17 wherein, the catalyst used is mesoporus molecular sieve catalyst (MCM-41).
- 22. A method as claimed in claim 17 wherein, the mesoporus catalyst used in the reaction is having surface area ranging between 980 -1200 m²/g.
- 23. A method as claimed in claim 17 wherein, the mesoporus catalyst used in the reaction is having pore size ranging between 30-100°A.
- 24. A method as claimed in claim 17 wherein, the microwave heating is carried out for a period ranging from 2 minutes to 15 minutes, more preferably 3 to 10 minutes.

- 25. A method as claimed in claim 17 wherein, the microwave radiation level is at about 2450 MHz.
- 26. A method as claimed in claim 17 wherein, the acyclic ketone used is acetone.
- 27. A method as claimed in claim 17 wherein, the cyclic ketone used is cyclohexanone.
- 28. A method as claimed in claim 17 wherein, the preparation of calix (4) pyrroles or tetraspiro calix (4) pyrroles is a solvent free process.
- 29. A method as claimed in claim 17 wherein, the calix (4) pyrrole obtained are:
 - i) octamethyl calix (4) pyrrole (1a);
 - ii) Tetraethyl Tetra methyl calix (4) pyrrole (2a);
 - iii) octaethyl calix (4) pyrrole (3a);
 - iv) tetraspiro cyclohexyl calix (4) pyrrole (4a);
 - v) tetraspiro cyclopentyl calix (4) pyrrole (5a);
 - vi) tetraspiro cycloheptyl calix (4) pyrrole (6a),
 - vii) tetraspiro cyclooctyl calix (4) pyrrole (7a);
 - viii) (2-methyl cyclohexyl) calix (4) pyrrole (8a); and
 - ix) dimer, trimer and tetramers of pyrroles