Задание 3. Теплокровный сферический кот.

Живые организмы могут существовать в достаточно узком температурном диапазоне. Так, например, нормальная температура человека примерно равна 36,5°. повышение температуры всего на 5° свидетельствует о серьезном заболевании. В каждом организме действуют сложные механизмы терморегуляции, позволяющие поддерживать температуру тела постоянной. В данном задании Вам предстоит проанализировать некоторые проблемы, связанные с терморегуляцией живых теплокровных организмов, используя простые модели.

Будем считать, что исследуемое существо имеет форму однородного шара (далее буем называть его сферическим котом). Внутри тела этого кота в результате постоянно происходит выделение теплоты. Теплопроводность тела высока, поэтому можно считать. что температура во всех его точках одинакова, но может изменяться с течением времени.

Во всех задачах этого задания под температурой тела подразумевается установившаяся температура, которую имеет тело кота после установления теплового равновесия.

Теоретическое введение.

1. Мощность теплоты, выделяющейся внутри сферического кота постоянна (т.е. не зависит от температуры тела) и пропорциональна его объему:

$$W = wV. (1)$$

где w - некоторая постоянная величина (<u>тепловыделение</u>), одинаковая для всех котов, независимо от их размеров, $V = \frac{4}{3}\pi R^3$ - объем шара, R - радиус шара. Тепловыделение w живых существ может зависеть от температуры.

2. Мощность теплоты, уходящей в окружающую среду с любой поверхности пропорциональна разности температур поверхности t_x и окружающей среды t_0 , кроме того. она пропорциональна площади поверхности S:

$$q = \beta S(t_x - t_0) \tag{2}$$

где β - известная постоянная величина (называется коэффициент теплоотдачи, зависящей от свойств окружающей среды, т.е. воздуха). Площадь поверхности шара $S=4\pi R^2$.

3. Согласно закону Фурье плотность потока теплоты q (количество теплоты протекающей в единицу времени через площадку площади S) через пластинку пропорциональна разности температур на сторонах пластинки и определяется формулой

$$q = \gamma \, \frac{t_1 - t_2}{h} \, S \,, \tag{3}$$

здесь γ - постоянный коэффициент теплопроводности материала пластинки, h - толщина пластинки

4. Как вам предстоит показать в дальнейшем, что мощность потока теплоты, уходящей в окружающую среду (даже при наличии одежды) пропорциональна разности температур тела и окружающей среды

$$q = \alpha (t - t_0). \tag{4}$$

коэффициент пропорциональности α в данной формуле называется коэффициентом теплопередачи. Для голого кота этот коэффициент равен $\alpha = \beta S$.

9 класс. Теоретический тур. Вариант 1.

Часть 1. Спяшие коты

В этой части будем считать. что мощность тепловыделения w постоянна, т.е. не зависит от температуры и одинакова для котов любых размеров.

Температура окружающей среды равна $t_0 = 20^{\circ}C$, при этом установившаяся температура тела голого кота радиуса R_0 равна $t_1 = 36^{\circ}C$.

1.1 Почему маленькие дети больше мерзнут?

1.1 Рассчитайте, чему будет равна установившаяся температура голого котенка t_2 , радиус которого в два раза меньше, чем R_0 .

1.2 Почему «греет» шуба?

Благодаря одежде, надетой на котенка, коэффициент теплопередачи уменьшился в 2 раза.

1.2.1 Рассчитайте, чему будет равна установившаяся температура t_3 одетого котенка.

Покажите, что одежда действительно может изменить коэффициент теплопередачи.

Обозначим коэффициент теплопередачи голого кота - α_0 . Будем считать, что одежда является тонким слоем теплоизоляционного материала с коэффициентом теплопроводности γ толщины h (которая значительно меньше радиуса кота h << R). Можно считать, что тепловой контакт между телом кота и нижней поверхностью одежды хороший, потому их температуры равны. Температура верхнего слоя одежды отличается от температуры воздуха.

1.2.2 Покажите, что коэффициент теплопередачи одетого кота тоже может быть описан формулой $q = \alpha(t - t_0)$, но с другим коэффициентом пропорциональности α_1 , отличным от α_0 . Выразите значение этого коэффициента через величины α_0, h, γ

Часть 2. «Живая» модель

В данной части Вам необходимо проанализировать жизнь кота, в рамках более реальной модели. Размер кота остается неизменными. Примем, что мощность тепловыделения этого кота зависит от температуры: она принимает максимальное значение, при некоторой оптимальной температуре t_{opt} и монотонно уменьшается при отклонении температуры от оптимального значения (когда становится очень холодно или слишком жарко). Жизнь кота возможна, если его температура лежит в диапазоне от минимальной температуры $t_{min} = 30^{\circ}$ до максимальной температуры $t_{max} = 50^{\circ}$. Если температура кота выходит из этого диапазона, кот умирает.

Зависимость мощности тепловыделения от температуры t в указанном диапазоне описывается функцией

$$W(t) = A(t - t_{\min})(t_{\max} - t), \tag{5}$$

где A - постоянная величина. Вне этого температурного диапазона W=0 .

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

Известно, что при температуре воздуха $t_0^* = 20^\circ$ температура голого кота является оптимальной.

В пунктах задания 2.1-2.5~ кот остается голым, т.е. коэффициент теплоотдачи $\alpha_0~$ остается постоянным.

2.1 Найдите оптимальную температуру кота t_{out} .

Предложите такую нормировку мощностей тепловыделения $\overline{W} = \frac{W}{C}$ и теплоотдачи $\overline{q} = \frac{q}{C}$, чтобы значения $\overline{W}(t)$, $\overline{q}(t)$ можно было рассчитать численно.

- **2.2** Укажите, что следует взять в качестве нормировочной постоянной C. Укажите физический смысл этой постоянной. Запишите формулы для зависимостей $\overline{W}(t)$, $\overline{q}(t)$. Укажите численные значения параметров этих функций.
- **2.3** На одном бланке постройте: точный график зависимости $\overline{W}(t)$ и график зависимости $\overline{q}(t)$ при температурах окружающей среды $t_0^* = 20^\circ$.

Далее в пунктах 2.4 - 2.6 приведите графическую иллюстрацию решения, то есть постройте графики зависимостей $\overline{W}(t)$, $\overline{q}(t)$ при указанных значениях параметров. В этих пунктах допускается численное решение уравнений (без получения окончательной формулы).

- **2.4** Рассчитайте установившуюся температуры голого кота, если температура окружающего воздуха равна а) $t_0 = 35^\circ$; б) $t_0 = 25^\circ$.
- **2.5** Рассчитайте, в каком диапазоне температур воздуха (от $t_{0\min}$ до $t_{0\max}$) может жить голый кот.

Чтобы не замерзнуть, кот начинает одеваться, изменяя коэффициент теплоотдачи α .

- **2.6** Предложите такую зависимость коэффициента теплоотдачи $\alpha(t_0)$ от температуры воздуха t_0 (при $t_0 < 20^\circ$). чтобы температура кота оставалась оптимальной, независимо от температуры воздуха.
- **2.7** Постройте график зависимости $\frac{\alpha(t_0)}{\alpha_0}$ при $0^\circ < t_0 < 20^\circ$.
- **2.8** Оцените, во сколько раз надо изменить коэффициент теплопередачи, чтобы кот смог выжить при температуре воздуха $t_0 = 0^\circ$