

Theoretische Informatik

Prof. Dr. Juraj Hromkovič Dr. Hans-Joachim Böckenhauer https://courses.ite.inf.ethz.ch/theoInf20

Exemplary Solutions - Sheet 11

Zürich, December 4, 2020

Solution to Exercise 29

We introduce a variable $x_{i,j}$ for each square (i,j) of the $(n \times n)$ chess board. If $x_{i,j}$ is assigned 1, then we interpret this as placing a rook on the square (i,j). Hence, every truth assignment of the n^2 variables corresponds to one possible placing of up to n^2 rooks on the chess board.

In order for the rooks to pairwise not attack each other, each row (rank) and each column (file) can contain at most one rook.

This can be expressed through the following formula:

 \bullet For every row i, we use the subformula

$$Z_i = \bigwedge_{1 \le j_1 < j_2 \le n} (\overline{x_{i,j_1}} \vee \overline{x_{i,j_2}}).$$

This ensures that no two variables at the same row can be simultaneously assigned 1.

• Analogously, we use the following subformula for every column j:

$$S_j = \bigwedge_{1 \le i_1 < i_2 \le n} (\overline{x_{i_1,j}} \vee \overline{x_{i_2,j}}).$$

Then the conjunction

$$F_1 = \bigwedge_{1 \le i \le n} Z_i \wedge \bigwedge_{1 \le j \le n} S_j$$

is a CNF formula which describes the condition that no two rooks may attack each other. To additionally guarantee that exactly n rooks are placed, we observe that this can only be the case if each row contains exactly one rook. As the above formula already guarantees that each row contains at most one rook, it suffices to add a formula making sure that each row contains at least one rook. This can be expressed for row i through the following formula:

$$\bigvee_{1 \le j \le n} x_{i,j} .$$

Overall, this yields the desired formula:

$$F = F_1 \land \bigwedge_{1 \le i \le n} \bigvee_{1 \le j \le n} x_{i,j}.$$

Solution to Exercise 30

(a) Let ϕ be an input for SAT, i.e., a CNF formula $\phi = C_1 \wedge \ldots \wedge C_m$ with the clauses C_1, \ldots, C_m over the variables from $X = \{x_1, \ldots, x_n\}$. We construct from ϕ an input ψ for THREEFOLD-SAT as follows. Let $y_0, y_1 \notin X$ be two new variables that do not occur in ϕ and let $C_{m+1} = (y_0 \vee y_1)$. Then we define $\psi = C_1 \wedge \ldots \wedge C_m \wedge C_{m+1}$. The construction of ψ from ϕ is clearly feasible in polynomial time.

Now we show that ϕ is satisfiable if and only if ψ has at least three satisfying truth assignments.

Assume that ϕ is satisfiable. Then there exists a truth assignment $\alpha \colon X \to \{0,1\}$ that satisfies the clauses C_1, \ldots, C_m . We can extend α to three truth assignments $\beta_i, j \in \{0,1,2\}$, on $X \cup \{y_0,y_1\}$ by setting $\beta_i(x) = \alpha(x)$ for all $x \in X$ and

- $\beta_0(y_0) = 0$ and $\beta_0(y_1) = 1$,
- $\beta_1(y_0) = 1$ and $\beta_1(y_1) = 0$, and
- $\beta_2(y_0) = \beta_2(y_1) = 1$.

All β_j clearly satisfy all clauses C_1, \ldots, C_m , as α satisfies these clauses. The clause C_{m+1} is also satisfied by all β_j , since at least one literal in C_{m+1} is set to 1. Hence, the β_j are three satisfying truth assignments for ψ .

Assume that ϕ is not satisfiable. Then there exists no truth assignment $\alpha \colon X \to \{0,1\}$ that satisfies the clauses C_1, \ldots, C_m and thus neither $\beta \colon X \cup \{y_0, y_1\} \to \{0,1\}$, since the new variables y_0 and y_1 do not occur in C_1, \ldots, C_m . As every clause in ϕ occurs in ψ as well, there exists no truth assignment satisfying ψ .

(b) Let ϕ be an input for 3SAT, i.e., a 3-CNF formula $\phi = C_1 \wedge \ldots \wedge C_m$ with the clauses C_1, \ldots, C_m over the variables from $X = \{x_1, \ldots, x_n\}$. We seek to translate ϕ into an input ψ for E3SAT. We first modify ϕ so that no variable occurs in a clause multiple times. To this end, we drop all repetitions of a literal within a clause. This has no effect on the satisfiability of the formula. If a clause contains a variable y and its negation \overline{y} as a literal, then the clause is satisfied for an arbitrary truth assignment. We can thus drop such clauses from ϕ without affecting its satisfiability. Without loss of generality, we can thus assume that every variable occurs at most once in every clause of ϕ . Then the literals within a clause correspond to pairwise distinct variables.

Now we can construct ψ as follows: all clauses of ϕ that already contain three literals stay unchanged. A clause $C_i = (l_{i,1} \vee l_{i,2})$ gets replaced by the two new clauses $C_{i,1} = (l_{i,1} \vee l_{i,2} \vee y_i)$ and $C_{i,2} = (l_{i,1} \vee l_{i,2} \vee \overline{y_i})$, where y_i is a new variable that does not occur anywhere else in ψ . A clause $C_i = (l_i)$ gets replaced by the four new clauses $C_{i,1} = (l_i \vee y_{i,1} \vee y_{i,2})$, $C_{i,2} = (l_i \vee y_{i,1} \vee \overline{y_{i,2}})$, $C_{i,3} = (l_i \vee \overline{y_{i,1}} \vee y_{i,2})$, and $C_{i,4} = (l_i \vee \overline{y_{i,1}} \vee \overline{y_{i,2}})$, where $y_{i,1}$ and $y_{i,2}$ are two new variables that do not occur anywhere else in ψ . This construction is clearly feasible in polynomial time and the additional conditions of E3SAT with respect to 3SAT are met.

Now we show that ϕ is satisfiable if and only if ψ is satisfiable.

Let α be a satisfying truth assignment for ϕ . Then α sets at least one literal in each of the clauses C_1, \ldots, C_m to 1. Furthermore, an arbitrary extension of α satisfies every clause of ψ , since these clauses may only contain additional variables.

Let β be a satisfying truth assignment for ψ . Then all clauses in ψ are satisfied by β . We show that the restriction of β on the variables from X satisfies ϕ . Every clause from ϕ of length 3 has been left unchanged in ψ and is thus satisfied by β . For a clause $C_i = (l_{i,1} \vee l_{i,2})$ of length 2 in ϕ , ψ contains the two clauses $C_{i,1}$ and $C_{i,2}$. The variable y_i occurs positive in one of these two clauses and negative in the other one. We first assume that $\beta(y_i) = 1$. Every clause in ψ is satisfied by β by assumption, in particular, $C_{i,2}$ is satisfied although the literal $\overline{y_i}$ is set to 0 here. Hence, $C_i = (l_{i,1} \vee l_{i,2})$ must already be satisfied by β . The case of $\beta(y_i) = 0$ is analogous.

For a clause C_i of length 1 in ϕ , there are four clauses in ψ , such that, for every truth assignment of the two new variables $y_{i,1}$ and $y_{i,2}$, one of these clauses can only be satisfied, if C_i is satisfied as well. Overall, β thus satisfies all clauses in ϕ .

Solution to Exercise 31

We consider the reduction from the task statement and seek to prove that the constructed graph G_{ϕ} contains a vertex cover of size at most 5q if and only if the E3-CNF formula ϕ with q clauses is satisfiable.

Let Δ_s be the triangle consisting of the vertices $V_{s,1}$, $V_{s,2}$, and $V_{s,3}$ for $1 \leq s \leq q$. Let H_i be the cycle in G_{ϕ} consisting of the vertices $T_{i,1}, F_{i,1}, T_{i,2}, F_{i,2}, \ldots, T_{i,m(i)}, F_{i,m(i)}$ for $i \in \{1, \ldots, n\}$. We first observe that each of the cycles H_i contains exactly two vertex covers of size m(i), i.e., $\{T_{i,1}, T_{i,2}, \ldots, T_{i,m(i)}\}$ and $\{F_{i,1}, F_{i,2}, \ldots, F_{i,m(i)}\}$. Furthermore, there exists no vertex cover of H_i with less than m(i) vertices.

Let α be a satisfying truth assignment for ϕ . From α , we construct a vertex cover S of G_{ϕ} as follows:

- For every variable x_i with $\alpha(x_i) = 1$, we take all the vertices $T_{i,1}, T_{i,2}, \ldots, T_{i,m(i)}$ into the vertex cover S,
- for every variable x_i with $\alpha(x_i) = 0$, we take all the vertices $F_{i,1}, F_{i,2}, \ldots, F_{i,m(i)}$ into S, and
- for every clause C_s , we take exactly two vertices of the triangle Δ_s into S, such that a vertex corresponding to a literal that is set to 1 by α is not taken. There always exists such a vertex, since α is a satisfying truth assignment.

The set S contains exactly 2q vertices from the clause triangles Δ_s and exactly 3q vertices from the cycles, as the cycles have a total length of 6q: every clause contains exactly three occurrences of a variable and for each such occurrence, there are exactly two vertices in the cycles.

The vertices from S cover all edges of the cycles H_i and all edges of the clause triangles Δ_s . It remains to prove that all edges from the sets E_1 and E_2 are covered as well. Let $\{T_{i,j}, V_{s,t}\} \in E_1$. If $V_{s,t} \in S$, then this edge is covered. Otherwise, by construction of S, the vertex $V_{s,t}$ corresponds to a literal that is set to 1 by α , i.e., $T_{i,j} \in S$. The argument for edges from E_2 is analogous.

Now let S be a vertex cover for G_{ϕ} of size 5q. At least 2q vertices are necessary to cover all clause triangles Δ_s and at least 3q vertices are necessary to cover all cycles H_i . Hence, S contains in every clause triangle Δ_s exactly two vertices and (by the above observation) in every cycle H_i either all the vertices $T_{i,1}, T_{i,2}, \ldots, T_{i,m(i)}$ or all the vertices $F_{i,1}, F_{i,2}, \ldots, F_{i,m(i)}$. We define a truth assignment α as $\alpha(x_i) = 1$, if $T_{i,1} \in S$, and $\alpha(x_i) = 0$, if $F_{i,1} \in S$.

It remains to show that α satisfies the formula ϕ . Assume that there is a clause C_s in ϕ that is not satisfied by α . For the sake of simplicity, we assume that C_s only contains positive literals. In all other cases, the argument is analogous. Let $C_s = (x_{i_1} \vee x_{i_2} \vee x_{i_3})$, which is the j_1 -th, j_2 -th, and j_3 -th occurrence of the respective variable. As C_s is not satisfied, we have $\alpha(x_{i_1}) = \alpha(x_{i_2}) = \alpha(x_{i_3}) = 0$. Hence, the vertices T_{i_1,j_1}, T_{i_2,j_2} , and T_{i_3,j_3} are not contained in S by construction. The three edges $\{T_{i_1,j_1}, V_{s,1}\}, \{T_{i_2,j_2}, V_{s,2}\}$, and $\{T_{i_3,j_3}, V_{s,3}\}$ must thus be covered by the three vertices $V_{s,1}, V_{s,2}$, and $V_{s,3}$, but only two of them are contained in S by construction. This is a contradiction to the fact that S is a vertex cover. Hence, our assumption was false, C_s is satisfied by α , and α is a satisfying truth assignment for ϕ .