Inteligência artificial Prof. Allan Rodrigo Leite

- História da teoria
 - Origem relativamente recente (século XVIII) na história da matemática
 - Definição informal
 - Conjunto de pontos (vértices) e pares destes pontos (arestas)
 - Resolução de Euler (1736) para o problema Pontes de Königsberg
 - Atravessar o caminho inteiro passando uma única vez em cada ponte

- História da teoria (cont.)
 - Conclusões de Euler sobre o problema Pontes de Königsberg
 - Transformou os caminhos em arestas e as interseções em vértices
 - Não há solução para este problema
 - Só é possível se tivesse 0 ou 2 vértices com um número ímpar de caminhos
 - A razão é que cada vértice precisa ter um caminho de entrada e saída
 - E os 2 vértices com número ímpar de caminhos seria o inicial e final

- Teoria vastamente aplicada em vários campos de estudo
 - Psicologia
 - Análise de redes sociais
 - Mapeamento do comportamento de interação de indivíduos
 - Ciência da computação
 - Representação de problemas
 - Estrutura de dados
 - Física
 - Sistemas dinâmicos
 - Teoria de redes complexas
 - o ...

- Definição formal
 - \circ Um grafo simples G(V, E) é formado por
 - Conjunto *V* finito e não vazio de vértices
 - Conjunto *E* de arestas
 - Um par de vértices $\{u, v\}$ são adjacentes se $\{u, v\} \in E$
 - Também chamados de vizinhos, isto é, u é vizinho de v e vice-versa
- Grafos completos
 - Grafo simples onde todo vértice é adjacente a todos os outros vértices
 - \circ Também chamado de K_N , onde N é o número de vértices
 - *K* é um grafo completo com *N* vértices
 - \blacksquare K possui (N x (N 1) / 2 arestas

- Grafos completos (cont.)
 - $\circ \quad \text{Seja um grafo } K_N = 4$
 - Número de vértices é V(G) = 4
 - Número de arestas é E(G) = $N \times (N 1)/2 = 4 \times 3/2 = 6$
 - Cada vértice *v* possui *N* 1 vizinhos

- Grau ou valência
 - Grau de um vértice é o número de arestas incidentes sobre ele
 - \blacksquare Representado por deg(v)
 - Grau mínimo de um grafo indica o menor grau entre todos os vértices
 - \blacksquare min{deg(v): $\forall v \in G(V)$ }
 - o Grau máximo de um grafo indica o menor grau entre todos os vértices
 - \blacksquare max{deg(v): $\forall v \in G(V)$ }
 - Exemplo
 - Grau mínimo: 0
 - Grau máximo: 4

- Teorema de Euler
 - Soma dos graus dos vértices é igual ao dobro do número de arestas
 - $\circ 2|E| = \sum_{u \in V} deg(u)$
 - Exemplo
 - Número de arestas: 6
 - Soma dos graus: 12

- Grafos regulares
 - Um grafo G é regular quando todos os vértices tem o mesmo grau
 - Um grafo k-regular possui k vértices, todos com o mesmo grau
 - Um grafo completo é regular, cujos vértices possui grau k = N 1

- Grafos complementares
 - O complemento de um grafo G é um grafo H quando
 - Possuem o mesmo número de vértices
 - Os vértices de *H* são adjacentes se e somente se eles não são em *G*
 - o Dado um grafo G(V, E), H = (V, K / E) é o complemento de G
 - Também representado como Ḡ de G

- Grafos isomórficos
 - Dois grafos G e H podem ser isomórficos quando ambos têm
 - Quantidades iguais de vértices e de arestas
 - \circ Isomorfismo é uma bijeção f de V(G) em V(H) tal que
 - Vértices $\{v, u\}$ são adjacentes em G se f(v) e f(w) também são em H
 - Embora suas representações sejam diferentes
 - São denotados por $f: V(G) \rightarrow V(H)$ ou $G \cong H$

- Subgrafos
 - Um grafo H é um subgrafo de G se V(H) \subset V(G) e E(H) \subset E(G)
 - O grafo H também é chamado um subgrafo de gerador de G
 - Desde que V(H) = V(G)

Grafos bipartidos

 Um grafo G é bipartido quando os vértices estiverem distribuídos em conjuntos disjuntos, não vazios e independentes, isto é, V = V₁ U V₂

Um conjunto é independente quando não houver vértices adjacentes no mesmo conjunto

Representação de grafos

- Matriz de adjacência
 - Forma mais usual para representar grafos
 - \circ Seja um grafo G = (V, E) com |V| = n, a matriz de adjacência será

$$\blacksquare \quad Adj(G) = (a_{ij})_{n \times n}$$

■ Onde
$$a_{ij}$$

$$\begin{cases} 1, & \text{se } i \neq j \text{ e } \{i,j\} \in E \\ 0, & \text{do contrário} \end{cases}$$

A matriz de adjacência é simétrica e a diagonal principal sempre será 0

Representação de grafos

- Matriz de adjacência (cont.)
 - \circ Seja um grafo G = (V, E) com |V| = n e n = 6

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	1	1
0	0	1	0	1	0
0	1	1	1	0	1
0	0	1	0	1	0

Adj(G)

- Passeio
 - É uma sequência de vértices $(v_1, v_2, ..., v_k)$ com comprimento k que
 - V_{i-1} é adjacente V_{i} para $1 \le i \le k$
 - Os vértices não são necessariamente distintos
 - Um passeio é fechado quando $v_1 = v_k$
 - Também chamado de ciclo ou circuito
 - Um grafo é conexo se existir um passeio entre dois quaisquer vértice
 - Do contrário, o grafo é desconexo

Passeio

- Caminho
 - É um passeio onde todos os vértices distintos
 - Todo caminho é um passeio
 - Mas nem todo passeio é um caminho
 - Se há um passeio entre dois vértices, também haverá um caminho
- Caminho Euleriano
 - Caminho em um grafo conexo que usa cada aresta do grafo uma só vez
 - Deve ter exatamente zero ou dois vértices de grau ímpar
 - Problema das pontes de Königsberg

- Caminho Hamiltoniano
 - Ciclo que passa por todos os vértices do grafo
 - Permite passar por todos os vértices, mas sem repetí-los
 - Um grafo é Hamiltoniano se for conexo e contiver um ciclo Hamiltoniano
 - Problema do caixeiro viajante
 - Encontrar uma rota que passe por todas as cidades uma única vez, retornando a cidade de origem

- Cliques
 - \circ Subconjunto de vértices $C \subseteq V$ que formam um subgrafo completo
 - Um clique máximo é o maior clique possível em um dado grafo

Grafo com cliques

Árvores

- Uma árvore T(V, E) é um grafo conexo e acíclico
 - Pode possuir um vértice chamado raiz
 - Possui um conjunto de vértices de grau 1 chamado folhas
 - Possui um conjunto de vértices de grau maior que um chamado nós

Propriedades

- Se T(V, E) é uma árvore, então T(E) = T(V) 1
- Árvores possui uma definição recursiva
- Cada nó da árvore forma uma subárvore
- Grau de um nó representa a quantidade de ligações com nós vizinhos

- Árvores (cont.)
 - Propriedades
 - Té uma árvore, há exatamente um caminho entre dois vértices quaisquer
 - Uma árvore que não possui raiz é denominada livre

Grafos dirigidos e ponterados

- Grafos dirigidos
 - Também conhecidos como digrafos
 - Diferencia-se de grafos normais devido às arestas serem direcionadas
 - Uma aresta $\{v, u\}$ descreve uma ligação com origem em v e destino em y
 - Um digrafo G é simétrico se cada aresta tem uma invertida que pertence à G
 - Grafos orientados são grafos dirigidos que não tem pares simétricos

Grafo orientado

Grafos dirigidos e ponterados

- Grafos dirigidos (cont.)
 - Grau de entrada de um vértice v é o número de arestas convergentes a v
 - Representado por $deg^-(v)$
 - Grau de saída de um vértice v é o número de arestas divergentes a v
 - \blacksquare Representado por $deg^+(v)$
 - O digrafo é balanceado quando $deg^{-}(v) = deg^{+}(v)$

Digrafo não balanceado

Grafos dirigidos e ponterados

- Grafos ponderados
 - Grafo cujas arestas são rotuladas um peso numérico
 - Representação na matriz de adjacência aceita valores diferentes de 0 e 1
 - Usualmente utiliza-se o valor $a_{ij} = -1$ para identificar a ausência de aresta
 - Qualquer valor $a_{ij} >= 0$ representa o peso da aresta
 - o Problema do caminho mais curto faz uso de grafos ponderados

Digrafo ponderado

Exercícios

- 1. Crie um grafo regular com 10 vértices e indique quantas arestas são necessárias para desenhá-lo.
- 2. Crie um grafo para representar os estados do Brasil. Cada vértice deve representar um estado e as arestas devem descrever as fronteiras em comum. Em seguida, identifique os estados com o menor e maior número de estados vizinhos, respectivamente.
- 3. A partir do grafo do exercício 2, identifique se há cliques e qual é o clique máximo do grafo. Além disso, encontre o maior ciclo Hamiltoniano existente no grafo.
- 4. A partir do grafo do exercício 2, resolva o problema de coloração de grafos. O problema consiste em pintar cada vértice com uma cor, de modo que nenhum vértice vizinho possua a mesma cor. Devem ser utilizadas 4 de cores distintas para pintar os vértices.

Exercícios

5. A partir do grafo do exercício 2, altere o grafo para prever a distância entre as capitais por meio de um grafo ponderado. Em seguida, resolva o problema do caminho mais curto (shortest-path) entre Santa Catarina e Ceará.

Inteligência artificial Prof. Allan Rodrigo Leite