Unidad VI: Funciones y Cardinalidad

Cardinalidad y enumerabilidad

Clase 17 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Cardinalidad

¿Por qué estos dos conjuntos tienen la misma cardinalidad? ¿Cómo explicaría esto en términos de **funciones**?

Cardinalidad

Existe una biyección entre los conjuntos.

Notación común: biyección = función biyectiva.

Conjuntos equinumerosos

Definición:

Dos conjuntos A y B son equinumerosos, denotado como $A \approx B$, si existe una biyección $f: A \rightarrow B$.

Notación:

■ También diremos que A tiene la misma cardinalidad que B.

OJO: la definición aplica para conjuntos finitos e infinitos.

Ejercicio: Demuestre que la relación \approx es de equivalencia.

Conjuntos equinumerosos: ejemplos

Ejemplos:

Sea $\mathbb{P} = \{ n \in \mathbb{N} \mid n \text{ es par} \}.$

¿Es cierto que $\mathbb{N} \approx \mathbb{P}$? SI!

Podemos tomar la biyección $f : \mathbb{N} \to \mathbb{P}$ tal que $f(n) = 2 \cdot n$.

Ejercicio: verifique que f es biyección.

Conjuntos equinumerosos: ejemplos

Ejemplos:

¿Es cierto que
$$\mathbb{N} \approx \mathbb{Z}$$
?

¿Qué biyección $f : \mathbb{N} \to \mathbb{Z}$ podríamos tomar?

Esto corresponde a la biyección $f : \mathbb{N} \to \mathbb{Z}$:

$$f(n) = \begin{cases} -\frac{n}{2} & \text{si } n \text{ es par} \\ \frac{n+1}{2} & \text{si } n \text{ es impar} \end{cases}$$

Ejercicio: verifique que f es biyección.

Conjuntos equinumerosos: ejemplos

Ejemplos:

¿Es cierto que
$$\mathbb{R} \approx (0,1)$$
?

Podemos tomar la biyección $f : \mathbb{R} \to (0,1)$ definida como:

$$f(x) = \frac{1}{1 + e^{-x}}$$

Comparando cardinalidades

¿Por qué el primer conjunto tiene menor cardinalidad que el segundo? ¿Cómo explicaría esto en términos de **funciones**?

Comparando cardinalidades

Existe una función inyectiva del primer conjunto al segundo.

Comparando cardinalidades

Definición:

Un conjunto A tiene menor o igual cardinalidad que un conjunto B, si existe una función inyectiva $f: A \rightarrow B$.

■ Escribimos $A \leq B$.

Ejemplos:

- $a,b,c,d \} \leq \mathbb{N}.$
- $\mathbb{N} \leq \mathbb{Q}$.
- $\mathbb{Q} \leq \mathbb{R}$.

Definición:

Un conjunto A tiene menor cardinalidad que un conjunto B, si $A \le B$ y **no** se cumple que $B \le A$.

■ Escribimos A < B.

Comparando cardinalidades: preguntas

- 1. Demuestre que la relación \leq es refleja y transitiva.
- 2. ¿Es \leq un orden parcial?
- 3. Demuestre que $A < \mathbb{N}$ para todo conjunto finito A.

Teorema de Schröder-Bernstein

Si $A \approx B$, entonces $A \leq B$ y $B \leq A$.

- Como $A \approx B$, existen biyecciones $f : A \to B$ y $f^{-1} : B \to A$.
- f y f^{-1} en particular son funciones inyectivas.

¿Es la implicancia contraria cierta?

Teorema (Schröder-Bernstein):

 $A \approx B$ si y sólo si $A \leq B$ y $B \leq A$.

- Muy útil para demostrar que $A \approx B$.
- Muchas veces no es fácil definir una biyección $f: A \rightarrow B$.

Teorema de Schröder-Bernstein: ejemplo

Ejemplos:

Sea $\mathbb{X} = \{2^n \cdot 3^m \mid n, m \in \mathbb{N}\}.$

Demuestre que $\mathbb{N} \approx \mathbb{X}$.

Podemos usar el Teorema de Schröder-Bernstein:

- Como $\mathbb{X} \subseteq \mathbb{N}$, la función $f : \mathbb{X} \to \mathbb{N}$ tal que f(k) = k es inyectiva.
- La función $g: \mathbb{N} \to \mathbb{X}$ tal que $f(n) = 2^n \cdot 3^0$ es inyectiva.

Concluimos que $\mathbb{X} \leq \mathbb{N}$ y $\mathbb{N} \leq \mathbb{X}$, y luego $\mathbb{N} \approx \mathbb{X}$.

Conjuntos enumerables

Definición:

Un conjunto A es enumerable si $A \approx \mathbb{N}$.

Comentarios:

- $lue{A}$ es enumerable si tiene la misma cardinalidad que \mathbb{N} .
- En particular, todo conjunto enumerable es infinito.

Ejemplos:

```
\{n \in \mathbb{N} \mid n \text{ es par}\}, \{2^n \cdot 3^m \mid n, m \in \mathbb{N}\} \text{ y } \mathbb{Z} \text{ son enumerables.}
```

¿Por qué se llaman conjuntos enumerables?

Definición:

Una enumeración de un conjunto A es una secuencia $(a_n)_{n\in\mathbb{N}}$ tal que:

- 1. $a_n \in A$ para cada $n \in \mathbb{N}$. $((a_n)_{n \in \mathbb{N}})$ es una secuencia de elementos de A.)
- 2. $a_n \neq a_m$ para cada $n, m \in \mathbb{N}$ tal que $n \neq m$. (todos los elementos de la secuencia son distintos.)
- 3. Para cada $a \in A$, existe un $n \in \mathbb{N}$ tal que $a_n = a$. (cada elemento de A aparece en la secuencia.)

Ejemplo:

De una enumeración de \mathbb{Z} .

Definición:

Una enumeración de un conjunto A es una secuencia $(a_n)_{n\in\mathbb{N}}$ tal que:

- 1. $a_n \in A$ para cada $n \in \mathbb{N}$.
 - $((a_n)_{n\in\mathbb{N}}$ es una secuencia de elementos de A.)
- 2. $a_n \neq a_m$ para cada $n, m \in \mathbb{N}$ tal que $n \neq m$. (todos los elementos de la secuencia son distintos.)
- 3. Para cada $a \in A$, existe un $n \in \mathbb{N}$ tal que $a_n = a$. (cada elemento de A aparece en la secuencia.)

Si $(a_n)_{n\in\mathbb{N}}$ es una enumeración de A, entonces la función $f:\mathbb{N}\to A$ tal que $f(n)=a_n$ es una biyección.

Si $f: \mathbb{N} \to A$ es una biyección, entonces $(f(n))_{n \in \mathbb{N}}$ es una enumeración de A. ¿Por qué se llaman conjuntos enumerables?

Definición:

Una enumeración de un conjunto A es una secuencia $(a_n)_{n\in\mathbb{N}}$ tal que:

- 1. $a_n \in A$ para cada $n \in \mathbb{N}$. $((a_n)_{n \in \mathbb{N}})$ es una secuencia de elementos de A.)
- 2. $a_n \neq a_m$ para cada $n, m \in \mathbb{N}$ tal que $n \neq m$. (todos los elementos de la secuencia son distintos.)
- 3. Para cada $a \in A$, existe un $n \in \mathbb{N}$ tal que $a_n = a$. (cada elemento de A aparece en la secuencia.)

Proposición:

A es enumerable si y sólo si existe una enumeración de A.

$\mathbb{N} \times \mathbb{N}$ es enumerable

Podemos dar una enumeración de $\mathbb{N} \times \mathbb{N}$:

- Ordenamos los pares según la suma de sus valores de menor a mayor.
- Ordenamos los pares con la misma suma según la primera coordenada, de menor a mayor.
- Finalmente, asignamos un natural a cada par según el orden obtenido.

$\mathbb{N} \times \mathbb{N}$ es enumerable

Podemos dar una enumeración de $\mathbb{N} \times \mathbb{N}$:

$$\begin{array}{ccccc} (0,0) & \to & 0 \\ (0,1) & \to & 1 \\ (1,0) & \to & 2 \\ (0,2) & \to & 3 \\ (1,1) & \to & 4 \\ (2,0) & \to & 5 \\ (0,3) & \to & 6 \\ (1,2) & \to & 7 \\ (2,1) & \to & 8 \\ (3,0) & \to & 9 \\ & \dots \end{array}$$

$\mathbb{N} \times \mathbb{N}$ es enumerable

Función biyectiva explícita:

$$f(i,j) = \begin{cases} 0 & i+j=0\\ \left(\sum_{k=0}^{i+j-1} k + 1\right) + i & i+j>0 \end{cases}$$

Es decir:

$$f(i,j) = \begin{cases} 0 & i+j = 0 \\ \frac{(i+j)(i+j+1)}{2} + i & i+j > 0 \end{cases}$$

Por ejemplo: f(1,1) = 4 y f(3,0) = 9.

 \mathbb{N}^k es enumerable

La idea de la enumeración anterior se puede extender a \mathbb{N}^k .

Proposición:

Para cada $k \ge 2$ se tiene que \mathbb{N}^k es enumerable.

Ejercicio: Demuestre la proposición.

Q es enumerable

Basta demostrar que $\mathbb{Q} \leq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$.

- Sabemos que $\mathbb{N} \leq \mathbb{Q}$.
- Si $\mathbb{Q} \leq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, como $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \leq \mathbb{N}$, obtenemos que $\mathbb{Q} \leq \mathbb{N}$.
- Por teorema de Schröder-Bernstein, concluimos que $\mathbb{Q} \approx \mathbb{N}$.

¿Cómo probamos que $\mathbb{Q} \leq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$?

Cada número racional en $\mathbb Q$ se puede representar como una fracción irreducible $\frac{a}{b}$, donde $b \in \mathbb N$.

El 0 es representado por la fracción $\frac{0}{1}$.

Podemos definir la siguiente función $f : \mathbb{Q} \to \mathbb{N} \times \mathbb{N} \times \mathbb{N}$:

$$f\left(\frac{a}{b}\right) = \begin{cases} (a,0,b) & a \ge 0\\ (0,|a|,b) & a < 0 \end{cases}$$

La función $f : \mathbb{Q} \to \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ es inyectiva (verifíquelo).

Algunas propiedades útiles

- 1. Si A y B son conjuntos enumerables, entonces $A \cup B$ es enumerable.
- 2. La unión enumerable de **conjuntos finitos** es enumerable:

Si
$$(A_i)_{i \in \mathbb{N}}$$
 es una secuencia de conjuntos finitos, entonces $\bigcup_{i \in \mathbb{N}} A_i$ es enumerable.

3. La unión enumerable de conjuntos enumerables es enumerable:

Si
$$(A_i)_{i \in \mathbb{N}}$$
 es una secuencia de conjuntos enumerables, entonces $\bigcup_{i \in \mathbb{N}} A_i$ es enumerable.

Propuesto: Demuestre las propiedades.

N es el infinito más pequeño

Teorema:

Si A es un conjunto infinito, entonces existe $B \subseteq A$ tal que B es enumerable.

Ejercicio: Demuestre el teorema.

N es el infinito más pequeño

Corolario:

- 1. Si A es un conjunto infinito, entonces $\mathbb{N} \leq A$.
- 2. Si $A < \mathbb{N}$, entonces A es finito.

Demostración:

1. Si A es infinito, por el teorema anterior, existe un subconjunto $B \subseteq A$ tal que B es enumerable.

Tenemos que $\mathbb{N} \leq B$ y $B \leq A$. Concluimos que $\mathbb{N} \leq A$.

2. Por contradicción, supongamos que $A < \mathbb{N}$ y A es infinito.

Por la parte anterior, tenemos que $\mathbb{N} \leq A$. Esto contradice la hipótesis $A < \mathbb{N}$.

Ejercicios finales

- 1. Sea Σ un alfabeto finito. Demuestre que Σ^+ es enumerable.
 - Σ^+ : conjunto de todas las palabras sobre alfabeto Σ de largo ≥ 1 .
- 2. Demuestre que el conjunto de todos los programas en Python es enumerable.