Vezin Lomàn

Date de rendu : 13/11/2020

Devoir maison 2

THÉORÈME 1:

Les conditions suivantes sont équivalentes pour une application $f \in C^2(\mathbf{R}^n, \mathbf{R}^n)$

 $\star f$ est propre et df_x est inversible pour tout $x \in \mathbf{R}^n$

 $\star\star f$ est un difféomorphisme \mathcal{C}^2 de \mathbf{R}^n dans lui même.

Démonstration. **1.** On montre que ★★ implique ★. Comme f est un C^2 difféomorphisme f^{-1} est en particulier continue, ainsi pour tout compact $K \subset \mathbf{R}^n$, $f^{-1}(K)$ est compact et donc f est propre. Fixons $x \in \mathbf{R}^n$, comme

$$f^{-1} \circ f = Id$$

remarquons que la formule de dérivation d'une fonction composée nous donne

$$d(f^{-1})_{f(x)}df_x = I_n,$$

et ainsi df_x est inversible.

Supposons à présent et pour le reste de l'exercice \star . Montrons dans un premier temps que f est surjective. Pour ce faire montrons que $f(\mathbf{R}^n)$ est un ouvert fermé de \mathbf{R}^n , comme cet ensemble est non vide et que \mathbf{R}^n est connexe on en déduira $f(\mathbf{R}^n) = \mathbf{R}^n$.

Soit $y_0 \in f(\mathbf{R}^n)$ et $x_0 \in \mathbf{R}^n$ satisfaisant $f(x_0) = y_0$. Par hypothèse nous savons que df_{x_0} est inversible, par le théorème d'inversion locale il existe donc deux voisinages ouverts $U \subset \mathbf{R}^n$ et $V \subset f(\mathbf{R}^n)$ contenant respectivement x_0 et y_0 tels que

$$f(U) = V \subset f(\mathbf{R}^n).$$

Nous venons de montrer que $f(\mathbf{R}^n)$ est ouvert. Montrons à présent qu'il est fermé.

Soit $(y_k)_{k \in \mathbb{N}}$ une suite dans $f(\mathbb{R}^n)$, convergente avec pour limite y, et soit $(x_k)_{k \in \mathbb{N}}$ une suite de \mathbb{R}^n satisfaisant

$$f(x_k) = y_k \quad \forall k \in \mathbf{N}.$$

L'ensemble

$$K := \{y_k, k \in \mathbf{N}\} \cup \{y\} \subset \mathbf{R}^n$$

est compact puisque fermé et borné par convergence de $(y_k)_k$ vers y. Comme nous avons supposé f propre $f^{-1}(K)$ est aussi compact et contient chacun des x_k pour $k \in \mathbb{N}$. Nous pouvons alors exhiber une sous suite convergente vers une limite que nous pouvons noter x

$$x_{k_j} \xrightarrow[j\to\infty]{} x$$
.

Par continuité de f et comme la convergence de la suite y_k entraine la convergence vers la même limite de la sous suite extraite y_{k_i} on obtient

$$y = \lim_{j \to \infty} y_{k_j} = \lim_{j \to \infty} f(x_{k_j})$$
$$= f(\lim_{j \to \infty} x_{k_j})$$
$$= f(x).$$

Ainsi $y \in f(\mathbf{R}^n)$ qui est donc fermé. Nous pouvons conclure.

2. On étudie à présent l'injectivité de f. Fixons $z \in \mathbf{R}^n$ et considérons l'ensemble

$$S_z := \{ x \in \mathbf{R}^n \mid f(x) = f(z) \}$$

= $\{ x \in \mathbf{R}^n \mid g(x) = 0 \},$

où g est la fonction auxiliaire donnée par

$$g: \mathbf{R}^n \longmapsto \mathbf{R}^n$$

 $x \longmapsto f(x) - f(z).$

Puisque f est propre on en déduit directement que g l'est aussi. Ainsi S_z est compact comme préimage du singleton $\{0\}$ lui même compact. De plus on voit facilement que f et g ont la même différentielle. Si par l'absurde S_z disposait d'un nombre infini de points il contiendrait un point d'accumulation, a disons. Comme dg_a est inversible nous pouvons appliquer à nouveau le théorème d'inversion locale pour trouver un voisinage ouvert U de a tel que

$$g: U \longmapsto g(U)$$

soit une bijection. Soit $(x_k)_{k \in \mathbb{N}}$ une suite de S_z convergeant vers a, on peut trouver au moins un x_i de cette suite dans U mais alors

$$g(x_i) = 0 = g(a)$$

comme x_i , $a \in S_z$, ce qui contredit l'injectivité de la restriction de g à U. S_z est donc

nécessairement fini.

3. Posons

$$X(x) := (dg_x)^{-1}g(x),$$

et considérons l'équation différentielle donnée par

$$\mathcal{E}_z: \begin{cases} x'(t) = -X(x(t)) \\ x(0) = x_0 \in \mathbf{R}^n \end{cases}$$
.

a. Comme f est \mathcal{C}^2 , g l'est aussi et X est \mathcal{C}^1 . Par Cauchy \mathcal{E}_z admet pour un $\alpha > 0$ une solution maximale x sur $[0, \alpha[$. Montrons que $\alpha = +\infty$ en utilisant le lemme des bouts (Théorème VIII.3.9). Soit $t \in [0, \alpha[$, on a

$$\frac{\mathrm{d}}{\mathrm{d}t}(g(x(t))) = dg_{x(t)}x'(t),$$
 par la formule de dérivation composée
$$= -dg_{x(t)}(dg_{x(t)})^{-1}g(x(t)),$$
 comme x est solution
$$= -g(x(t)).$$

On en déduit que

$$g(x(t)) = e^{-t}g(x_0),$$

et donc comme t > 0 on obtient

$$||g(x(t))|| \le ||g(x_0)||.$$

Comme g est propre $g^{-1}(\overline{B(0, \|g(x_0)\|)})$ est compact et comme

$$x(t) \in g^{-1}(\overline{B(0, \|g(x_0)\|)}), \quad \forall t \in [0, \alpha[,$$

par le lemme des bouts $\alpha = +\infty$.

b. Notons $S_z = \{z_1, \dots, z_m\}.$ Remarquons dans un premier temps par définition de S_z que

$$g(z_i) = 0, \quad \forall i \in \{1, \ldots, m\}.$$

Par hypothèse df_{z_i} est inversible et $dg_x = df_x \ \forall x \in \mathbf{R}^n$. On en déduit par le théorème d'inversion locale l'existence d'un $\delta_i > 0$ et d'un voisinage V de 0, tel que la restriction de g

$$g: B(z_i, \delta_i) \longmapsto V$$

soit un difféomorphisme.

Soit $y \in V$ et $x_0 := g^{-1}(y)$. Considérons l'application

$$h: t \longmapsto g^{-1}(e^{-t}y),$$

montrons qu'il s'agit d'une solution, on pourra conclure par unicité. En effet $h(0)=g^{-1}(y)=x_0$ et

$$h'(t) = d(g^{-1})_{e^{-t}y}(-e^{-t}y)$$

$$= -d(g^{-1})_{g(h(t))}g(h(t))$$

$$= -(dg_{h(t)})^{-1}g(h(t))$$

$$= -X(h(t)).$$

On obtient finalement par unicité de la solution que

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} h(t) = \lim_{t \to \infty} g^{-1}(e^{-t}y) = g^{-1}(0) = z_i.$$

Puisque le choix de $y \in V$ et donc de $x_0 \in B(z_i, \delta_i)$ était arbitraire on a le résultat voulu.

c. Soit $x_0 \in \mathbb{R}^n$ et x une solution de \mathcal{E}_z satisfaisant $x(0) = x_0$. Par a. x reste dans un compact pour tout t > 0 donc l'image de $[0, +\infty[$ par x doit avoir au moins un point d'accumulation, disons l. Soit donc $(t_j)_{j \in \mathbb{N}}$ une suite strictement croissante, $t_j \to_j \infty$, telle que

$$x(t_j) \xrightarrow[j\to\infty]{l}$$
.

Par le point $b. g(x(t)) = e^{-t}g(x_0)$, on en déduit donc par passage à la limite

$$g(l) = \lim_{j \to \infty} g(x(t_j)) = \lim_{j \to \infty} e^{-t_j} g(x_0) = 0.$$

Ainsi $l \in S_z$ et donc $l = z_i$ pour un $i \in \{0, ..., m\}$.

Par convergence de la suite $(x(t_j))_j$, pour le δ_i du point b. on peut trouver J > 0 suffisamment grand de sorte que

$$x(t_j) \in B(z_i, \delta_i), \forall j \geq J.$$

En particulier par le point b. la solution h satisfaisant $h(0) = x(t_J)$ converge vers z_i . Remarquons que la solution

$$\tilde{h}(t) = x(t+t_I),$$

satisfait également $\tilde{h}(0) = x(t_J)$ et donc par unicité globale on obtient

$$x(t+t_J) = h(t)$$
 et $\lim_{t\to\infty} x(t) = z_i$.

d. Chaque A_i est bien défini par unicité globale des solutions, garantie par la proposition VIII.3.1 du cours ¹, puisque C^1 implique localement Lipschitz.

Soit $i \in \{1, ..., m\}$ et soit $x_0 \in A_i$. Soit x la solution de condition initiale x_0 . En reprenant le δ_i du point b. par définition de A_i il existe un T > 0 tel que pour tout $t \ge T$

$$|x(t)-z_i|\leq \frac{\delta_i}{2}.$$

Comme les solutions sont continues par rapport au conditions initiales, il existe $\epsilon > 0$ tel que si $|x_0 - y_0| < \epsilon$ et si y est solution de condition initiale y_0

$$|x(t)-y(t)|\leq \frac{\delta_i}{2}.$$

On conclut par inégalité triangulaire

$$|y(t) - z_i| \le |y(t) - x(t)| + |x(t) - z_i| \le \delta_i.$$

Par le point *b*. il en découle que

$$\lim_{t\to\infty}y(t)=z_i.$$

Ainsi $y_0 \in A_i$. Comme le choix de i et de x_0 étaient arbitraires, nous venons de montrer que A_i est ouvert pour tout $i \in \{1, ..., m\}$

e. On a par le point c. que

$$\mathbf{R}^n = \bigcup_{i=1}^m A_i.$$

Par le point d. nous savons de plus que chaque A_i est un ouvert non vide de \mathbf{R}^n . Il est clair par unicité des limites dans \mathbf{R}^n que les A_i sont deux à deux disjoints. Par connexité de \mathbf{R}^n on doit donc nécessairement avoir m=1. Ainsi g ne s'annule qu'en un unique point, c'est à dire par définition de g qu'il existe un unique $x \in \mathbf{R}^n$ tel que f(x) = f(z). Puisque le choix de $z \in \mathbf{R}^n$ était arbitraire nous avons bien montré l'injectivité de f.

Nous pouvons en conclure avec le point **1.** que f est une bijection de \mathbf{R}^n dans lui même et cela conclut la preuve.

4. Une application *a.* Soit $g : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ continue avec

$$\lim_{\|x\|\to\infty}\|g(x)\| = +\infty. \tag{1}$$

^{1.} C'est de cette proposition dont on se sert tout du long pour l'unicité globale

Soit $K \subset \mathbf{R}^n$ un compact. Par Borel Lebesgue K est fermé et borné. Par continuité de g, $g^{-1}(K)$ est fermé. Par un argument ensembliste on a de plus

$$g(g^{-1}(K)) \subset K$$
.

En particulier comme K est borné, par (1) $g^{-1}(K)$ doit aussi être borné. $g^{-1}(K)$ est donc fermé borné, par Borel Lebesgue c'est donc un compact et g est propre.

b. Par équivalence des normes sur \mathbf{R}^n nous pouvons considérer la norme 2 afin de faciliter les calculs. L'application

$$\|.\|^2 : \mathbf{R}^n \longmapsto \mathbf{R}^n$$

$$x \longmapsto \langle x, x \rangle = \sum_{i=1}^n x_i^2$$

est \mathcal{C}^{∞} . L'application induite par $A \in GL_n(\mathbf{R})$ est linéaire donc \mathcal{C}^{∞} On en déduit que f est \mathcal{C}^{∞} comme somme de compositions de fonctions \mathcal{C}^{∞} .

f est en particulier continue, nous appliquons le critère précédent pour montrer qu'elle est propre. Dès que $\|x\|>\sqrt{2}$ on a

$$\varphi(\|x\|^2) = 0$$
 donc, $f(x) = x$.

Ainsi

$$\lim_{\|x\|\to\infty}\|f(x)\|=+\infty,$$

et f est propre.

On calcule à présent la différentielle df_x de f pour tout $x \in \mathbf{R}^n$.

Pour $x \in B(0,1)$ il est facile de voir que f = A + a et donc

$$df_x = A \in Gl_n(\mathbf{R})$$
, est inversible.

Pour $x \in \mathbb{R}^n \setminus B(0,2)$ on obtient aussi facilement $f = I_n$. f est donc linéaire et

$$df_x = I_n \in GL_n(\mathbf{R})$$
 est aussi inversible.

Finalement pour $x \in B(0,2) \setminus B(0,1)$, comme $\tilde{\varphi} := \varphi(\|.\|)$ est \mathcal{C}^{∞} sur $\overline{B(0,2) \setminus B(0,1)}$ compact on a l'existence d'un M > 0 tel que

$$|\tilde{\varphi}(x)|, ||d\tilde{\varphi}_x|| \leq M, \quad \forall x \in B(0,2) \setminus B(0,1).$$

Pour un tel x on a donc par inégalité triangulaire en calculant la différentielle de f

$$||df_x(h)|| \ge ||h|| - 2M||h|||A - I_n|| - ||h|||a||M$$

$$\ge ||h||(1 - 2M||A - I_n|| - M||a||).$$

En prenant $\varepsilon>0$ suffisamment petit par exemple $\varepsilon=\frac{1}{4M}$ on obtient

$$||a|| \le \varepsilon$$
, $||A - I_n|| \le \varepsilon \implies 1 - 2M||A - I_n|| - M||a|| > 0$.

On en déduit que sous ces conditions le noyau de l'application df_x est nul. Cette dernière est injective donc bijective comme nous travaillons en dimension finie par le théorème du rang. df_x est donc bien inversible.

c. Nous venons de montrer que f est propre et sa différentielle est inversible en tout $x \in \mathbf{R}^n$. Par le théorème de Hadamard que nous venons de démontrer f est un \mathcal{C}^{∞} difféomorphisme de \mathbf{R}^n dans lui même.