

OSPF: Convergence and Scalability

В этом разделе

- Loop Free Alternate
- Nonstop Forwarding
- Nonstop Routing
- BFD
- Prefix Suppression
- Stub Router

Loop Free Alternate

Loop Free Alternative

- Networking For everyone Ючаться
- OSPF LFA FRR позволяет быстро (в течение ~ 50 мс) переключатыся на резервный путь
- В обычной ситуации, OSPF должен пересчитать весь граф в случае выхода интерфейса из строя
- C LFA FRR, OSPF делает предварительный расчёт
 - Резервный next-hop устанавливается внутрь FIB

Основная идея

- Маршрутизатор А делает всю калькуляцию
- Другие маршрутизаторы не вовлечены в процесс
- Repair Path (LFA):
 - Трафик от В не должен вернуться к А
 - Трафик должен миновать упавший интерфейс

Классический SPF

• Необходимо запустить SPF и в качестве корневого устройства поставить **себя**

Хак SPF для LFA (rSPF)

Networking For everyone

• Необходимо запустить SPF, но в качестве корневого устройства поставить **соседа**

LFA методы

- IGP может запускать LFA в одном из двух режимов
 - Per prefix
 - Резервный путь для каждого префикса считается независимо
 - Per link
 - Резервный путь для всех префиксов через один next-hop
 - Только в IOS-XR

А что если ...

Networking For everyone

- Трафик к D2 передаётся на E от N2
- Трафик к D1 возвращается обратно к S

Per-link vs Per-prefix

Networking For everyone

Per-link

- Простой расчёт, один rSPF для соседа
- Всё или ничего

Per-prefix

• Расчёт для каждого префикса через каждого соседа

Основные блоки

- До аварии
 - Альтернативный NH устанавливается в RIB и IGP local RIB (LRIB)
 - Альтернативный NH устанавливается в FIB (CEF)
- Во время аварии
 - Детектирования потери интерфейса/соседа
 - Триггер для IP-FRR LFA: переключить префиксы в FIB
- После аварии
 - Обычная конвергенция (SPF)

Основные блоки

А если альтернатив несколько?

- Networking <u>For</u> everyone
- Когда OSPF должен выбрать резервный путь, он может смотреть everyone не только на наименьшую метрику, но и учитывать дополнительные параметры
 - SRLG (Shared Risk Link Groups)
 - Interface Protection
 - Broadcast Interface Protection
 - Node Protection
 - Downstream Path
 - Line-Card Disjoint Interfaces
 - Metric
 - Equal-Cost Multipath

Shared Risk Link Group (SRLG)

- Ручная настройка
- Если два интерфейса подключены к одному коммутатору, идут через одну физическую трассу, то логично назначить им одинаковые SRLG

Primary Path

Interface Disjoint

- Networking For everyone
- Предпочесть альтернативный next-hop, который располагается за другим интерфейсом
- Ethernet суб-интерфейсы считаются *разными* интерфейсами

Lowest-Metric

- Предпочесть путь с наименьшей метрикой
- У команды нет ключевого значения "required"
 - Т.к. метрика присутствует всегда 😊

Linecard-disjoint

- Networking For everyone
- Предпочесть путь, который использует интерфейс, находящийся everyone на другой линейной карте
 - В виртуальной лаборатории не удастся эмулировать

Node protecting

Networking For everyone

• Предпочесть путь, который не проходит через тот же маршрутизатор, который используется в качестве основного next-hop

Broadcast interface disjoint

• Понизить приоритет альтернативным маршрутам, которые используют тот же широковещательный домен, что и путь через основной next-hop

Networking

Downstream

- Выключен по-умолчанию
- По сути поведение очень похоже на EIGRP Feasible Condition
- Мне не очень понятно, зачем такая опция вообще нужна в LS протоколе

Secondary-Path

- Выключен по-умолчанию
- Предпочесть пусть, который не является частью ЕСМР

Основные шаги конфигурации

- Включить FRR для зоны или глобально
- Включить FRR prefix-priority

```
(config-router)#fast-reroute per-prefix enable prefix-priority { high | low }
```

- Настроить приоритет префиксов (route-map | RPL)
 - /32 = "high" на IOS
 - /32 = "medium" на IOS-XR
 - только match tag | route-type | ip address

```
(config-router)#prefix-priority high route-map { ROUTE-MAP }
```

• Добавить/изменить tie-breakers

```
(config-router)#fast-reroute per-prefix tie-break { TIE } [required] index { INDEX }
```


Пример конфигурации

```
interface Ethernet1/0
srlg gid 100
interface Ethernet6/0
ip ospf fast-reroute per-prefix candidate disable
router ospf 1
prefix-priority high route-map lfa-ospf
fast-reroute per-prefix enable prefix-priority high
fast-reroute per-prefix tie-break srlg index 10
fast-reroute per-prefix tie-break node-protecting index 20
fast-reroute keep-all-paths
ip prefix-list lfa-high seq 5 permit 10.0.0.0/8 ge 30
route-map lfa-ospf permit 10
match ip address prefix-list lfa-high
```


Пример конфигурации

```
R9#show ip cef 5.5.5.5

5.5.5/32

nexthop 10.5.9.5 GigabitEthernet1.59

repair: attached-nexthop 10.9.5.5 GigabitEthernet1.95

nexthop 10.9.5.5 GigabitEthernet1.95

repair: attached-nexthop 10.5.9.5 GigabitEthernet1.59
```

```
R9#show ip route repair-paths 5.5.5.5

Routing entry for 5.5.5.5/32

Known via "ospf 1", distance 110, metric 2, type intra area

Last update from 10.5.9.5 on GigabitEthernet1.59, 00:01:40 ago

Routing Descriptor Blocks:

10.9.5.5, from 5.5.5.5, 00:01:40 ago, via GigabitEthernet1.95

Route metric is 2, traffic share count is 1

Repair Path: 10.5.9.5, via GigabitEthernet1.59

* 10.5.9.5, from 5.5.5.5, 00:01:40 ago, via GigabitEthernet1.59

Route metric is 2, traffic share count is 1

Repair Path: 10.9.5.5, via GigabitEthernet1.95
```


Non-Stop Forwarding (Graceful Restart)

NSF? Wtf?

- Networking For everyone
- Мы уже познакомились с понятием FRR быстрая конвергенц<mark>ия в ver</mark> случае изменения сети
- Часто в ядре стоят устройства, у которых есть два управляющих модуля (Supervisor)
- К чему приведёт переключение SUP?
- Основной идеей NSF (Nonstop Forwarding) является минимизация времени, в течение которого сеть не способна доставлять трафик в место назначение после события переключения SUP
- Основной целью NSF является продолжать пересылку IP-пакетов, после того, как на устройстве произошло переключение SUP

Логика работы NSF

- В случае события переключения SUP (или RP switchover), новый RP перехватывает управление устройством и запускает новый процесс маршрутизации
- Новый процесс OSPF пытается восстановить соседство (adjacency) со всеми предыдущими соседями
- Если NSF настроен для прокола, CEF (FIB) фиксируется (для того, чтобы устройство продолжало пересылку трафика, не смотря на то, что RIB (таблица маршрутизации) пуста
- Во время восстановления соседства, ни одно из устройств не извещает остальную сеть о событии
- Только когда прокол маршрутизации завершает передачу всей необходимой информации, данные попадают в RIB и (оттуда) могут обновить CEF

NSF может таить в себе проблемы

- Падает SW4 (1 мембер)
- длительное переключение вызвано фиксацией CEF на время работы процесса NSF

%LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to down

TACKMGR-4-SWITCH_REMOVED: Switch 1 has been REMOVED from the stack

12:26:03.996: OSPF: IETF NSF complete check for area 0 process 1

OSPF: will poll [count 10] interface status for GigabitEthernet3/0/1

OSPF: Graceful Restart timer expired for process 1, terminating IETF NSF

Основные шаги

- Устройство информирует соседей, что процесс OSPF перегружается
 - Graceful restart mode
- Отправляется grace LSA (LSA 9-го типа)
- Соседи отправляют LS ACK и переходят в Helper Mode
- В течение grace периода, соседи работают так, как если бы restarting router не сообщал об изменениях
- В течение перезагрузки OSPF процесса, RIB/FIB не изменяется
- После перезагрузки, переустанавливается OSPF соседство

Основные шаги

Networking For everyone

- Когда GR завершён, restarting router удаляет Grace LSA
- Пересоздаются все LSA, порождённые маршрутизатором
- Запускается SPF чтобы освежить таблицу маршрутизации

Примечания

- Networking For everyone
- Для работы GR необходима аппаратная поддержка функциона<mark>ла everyone</mark>
- Устройства, которые поддерживают Helper Mode = NSF-aware
- Устройства, которые поддерживают GR = NSF-capable

Non-Stop Routing

Проблемы с GR

- Networking For everyone
- Все маршрутизаторы должны поддерживать механизм GR для строи конкретного протокола
- Switchover может быть наиболее неприятным на PE
 - Маленькие СЕ могут не поддерживать GR
- В некоторых ситуациях GR может замедлить конвергенцию сети

Nonstop Routing, о чём это?

- Networking For everyone
- NSR использует внутренние процессы маршрутизатора для поддержания копии Control Plane на резервном управляющем модуле в актуальном состоянии
- Switchover абсолютно прозрачен для всех соседей

Ограничения

- OSPF NSR может потребовать большого количества памяти
- Переключение между управляющими модулями занимает ~ 2 сек. В течение этого времени OSPF не может отправлять Hello сообщения
 - Аккуратнее с маленькими таймерами

Router# show ip ospf 1 nsr

Standby RP

Operating in duplex mode

Redundancy state: STANDBY HOT

Peer redundancy state: ACTIVE

ISSU negotation complete

ISSU versions compatible

Routing Process "ospf 1" with ID 10.1.1.100

NSR configured

Checkpoint message sequence number: 3290

Standby synchronization state: synchronized

Bidirectional Forwarding Detection

BFD

- Networking For everyone
- BFD очень легковесный и быстрый протокол, предназначенный е е для определения нарушения сетевой связности
- BFD работает независимо
- Может работать в двух режимах
 - асинхронный
 - по-требованию (demand)
 - не уверен, что кто-либо из вендоров его реализовал

Асинхронный режим

- Наиболее классический режим Hello/Holddown
- BFD отправляет Hello. И если не видит сообщений от соседа регистрируется факт недоступности
- Данный триггер передаётся всем протоколам, которые подписаны на BFD
- Возможно включение функционала Echo
 - Сосед не обрабатывает прилетающие BFD Hello, а просто отправляет их обратно

Формат пакета

- Networking For everyone
- Diag код, описывающий причину перехода состояния сессии из everyone UP во что-либо другое
- Дискриминатор мультиплексирование сессий
- Min Interval:
 - desired TX = предпочитаемый интервал
 - required RX = минимально поддерживаемый
- Биты:
 - H = "I Hear You"
 - P = "Poll"
 - F = "Final"

0								1										2									3		
0 1 2	3 4	1 5	6	7	8	9	0	1 2	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	
+-+-+	-+-	+-	+	+-	+-	+-	+-	+-	+-	-+		+-	+-	+-	+-	+-	-+	-+	-+	-+	-+		+-	+-	+-	+-	+-	-+-	+
Vers	1	Dia	ag		H	ID	P	F		Rs	vo	i	1	1	Det	te			ct	. 1	iul	t		ĺ		Le	ng	th	1
+ -+-+	-+-	-+-	+-	+-	+-	+-	+-	+-	+	-+	-	+-	+-	+-	+-	-+	-+	-+	-+	-+		+-	+-	+-	+-	+-	+	-+-	+
1								1	чу	D)is	3C	ri	mi	nat	to													1
+ -+-+	+-															+													
J	Your Discriminator																												
+															+														
Desired Min TX Interval															1														
+-+-+	-+-	-+-	+-	+-	+-	+-	+-	+-	+	-+		+-	+-	+-	+-	-+	-+	-+	-+	-+		+-	+-	+-	+-	+-	-+-	-+-	+
1							Re	qu:	ir	ed	1 1	111	n I	RX	II	nte	er	va.	1.										1
+ -+-+	-+-	-+-	+-	+-	+-	+-	+-	+-	+	-+		+-	+-	+-	+-	-+	-+	-+	-+			+-	+-	+-	+-	+-	-+-	-+-	+
1						Re	qu	ire	ed	M	iir	1 1	Ecl	ho	R	()	Int	tei	cva	al									1
+++++	+++	++-	+++	++	++	++	++	++-	++	++	++	++-	++-	++	++-	++-	++-	++-	+++	+++	+++	+	+++	++	+++	++	++	+++	++

Настройка

Networking For everyone

(config-if)#bfd interval 300 min_rx 600 multiplier 3

- interval = как часто устройство отправляет BFD пакеты
- min_rx = как часто ожидаем приём BFD пакетов

Установление сессии

Networking For everyone

- BFD не изучает IP адреса соседей
 - их сообщает привязанный протокол (напр. OSPF)
- Все пакеты передаются с помощью UDP
- Зарезервированный Destination Port
- Если видим Н бит и Your Disc поле, то сессия установлена

Изменение таймеров

Networking For everyone

- При изменении таймеров, устройство выставляет Р бит
- Если удалённый маршрутизатор увидел Р бит, в ответном сообщении выставляется F бит
 - это не подтверждение принятия изменений
- Не требует переустановления

- Если не приходит контрольный пакет в течение detect-timer [(Required Minimum RX Interval) * (Detect Multiplier)], то сосед помечается как потерянный
- Сам BFD на это никак не реагирует
- Факт потери соседа передаётся привязанному протоколу, который реагирует на данное событие

BFD на модульных платформах

- Networking For everyone
- На RSP располагается BFD сервер, а на линейной карте BFD агент
- BFD сервер получает информацию об IP адресах соседей
- BFD агент создаёт все сессии
- Все BFD пакеты отправляются на CPU линейной карты
 - если включен HW Offload, то BFD обрабатывается на Network Processor (NP)
 - позволяет увеличить количество поддерживаемых BFD сессий

Сокрытие транзитных сетей

Сокрытие транзитных сетей

• Штатно в OSPFv2 префиксы транзитных сетей попадают в RIB

- RFC 6860 позволяет OSPF сократить количество записей в RIB
 - На интерфейсах P2P и P2MP не анонсируются connected-сети
 - B LSA1 создается point-to-point link до RID, но не создается stub-запись для адреса
 - Ha broadcast и NBMA интерфейсах адреса анонсируются в LSA2
 - В LSA2 отправляется DR IP с маской /32
 - Новые роутеры не устанавливают в RIB маршруты из LSA2 с маской /32

Тупиковый маршрутизатор

Тупиковый маршрутизатор

- Иногда (напр. во время проведения миграционных работ) необходимо отвести трафик от маршрутизатора
- Сделать это можно, выставив максимальную метрику для OSPF интерфейсов
- В определённых ситуациях надо дождаться конвергенции BGP

R1(config-router)#max-metric router-lsa on-startup?

<5-86400> Time, in seconds, router-LSAs are originated with max-metric

wait-for-bgp Let BGP decide when to originate router-LSA with normal metric

Networking For everyone