ГОСТ 28147-89

Стандарт криптографической защиты данных (СКЗД), принятый в СССР в 1989 году, предусматривает шифрование 64-битовых блоков открытых данных под управлением 256-битового секретного ключа, представленного в виде массива из восьми 32-битовых подключей $K = (k_0, k_1, ..., k_7)$. ГОСТ 28147-89 определяет три режима шифрования данных (простая замена, гаммирование и гаммирование с обратной связью) и режим выработки имитовставки.

1. *Режим простой замены* (режим электронной кодовой книги). Процедура шифрования соответствует итеративной схеме Фейстеля (см. рис. 1), в которой раундовая функция F(R,k) задается операциями побитового сложения по модулю $2 \, (\bigoplus)$, арифметического сложения по модулю $2^{32} \, (\boxplus)$ и циклического сдвига влево на 11 битов (rol_{11}) , выполняемыми над 32-битовыми подблоками (словами), а также табличными подстановками. Число раундов шифрования равно 32.

Табличные подстановки над 32-битовым блоком V выполняются следующим образом. Блок V разбивается на восемь полубайтов (4-битовых подблоков): $V = v_7 \parallel v_6 \parallel v_5 \parallel v_4 \parallel v_3 \parallel v_2 \parallel v_1 \parallel v_0$. Для каждого полубайта v_i выполняется операция подстановки (замены), задаваемая таблицей S_i , i=0,1,...,7. Каждая из таблиц S_i (их называют -блоками) представляет собой перестановку чисел (полубайтов) 0,1,...,15. В результате операции подстановки блок V заменяется на блок

 $S(V)=S_7(v_7)\parallel S_6(v_6)\parallel S_5(v_5)\parallel S_4(v_4)\parallel S_3(v_3)\parallel S_2(v_2)\parallel S_1(v_1)\parallel S_0(v_0),$ где $S_i(v_i)$ — результат замены v_i на соответствующее значение с использованием таблицы S_i , $i=0,1,\ldots,7$. Например, если $S_1=(10,7,0,8,14,3,6,13,5,2,9,4,11,15,12)$, то $S_1(0000)=1010$, $S_1(0001)=0111,\ldots,S_1(1111)=1100$.

ГОСТ 28147-89 не определяет способ задания -блоков. Их можно считать секретными элементами, что является дополнительным секретным ключом. Набор -блоков, приведенный в табл.1, рекомендован уже позднее ГОСТом Р 34.11-9 (см. Приложение 1).

Таблица 1

	i	S-блоки ГОСТ 28147-89														
v_i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S_0	4	10	9	2	13	8	0	14	6	11	1	12	7	15	5	3
S_1	14	11	4	12	6	13	15	10	2	3	8	1	0	7	5	9
S_2	5	8	1	13	10	3	4	2	14	15	12	7	6	0	9	11
S_3	7	13	10	1	0	8	9	15	14	4	6	12	11	2	5	3
S_4	6	12	7	1	5	15	13	8	4	10	9	14	0	3	11	2
S_5	4	11	10	0	7	2	1	13	3	6	8	5	9	12	15	14
S_6	13	11	4	1	3	15	5	9	0	10	14	7	6	8	2	12
S_7	1	15	13	0	5	7	10	4	9	2	3	14	6	11	8	12

Функция F(R,q), аргументами и значением которой являются 32-битовые блоки, определяется как

$$V := R \coprod q; \ V := S(V); \ F := rol_{11}(V)$$
.

Алгоритм зашифрования

Bxod: D = (L, R) – 64-битовый блок открытых данных, разбитый на левую и правую половины L и R.

```
for i:=0 to 30 do {

if i \le 23 then j:=i \mod 8 else j:=31-i;

V:=R;

R:=L \oplus F(R,k_j);
```

$$L:=V$$
 }; $L:=L \oplus F(R,k_0)$. $\pmb{Buxoo}: C=(L,R)-64$ -битовый блок шифртекста.

Расшифрование выполняется точно так же, как и зашифрование. Единственное отличие состоит в том, что ключи k_i используются в обратном порядке:

if
$$i \le 7$$
 then $j := i$ *else* $j := 7 - (i \mod 8)$.

$${V:=R; R:=L \oplus rol_{11}(S(R+k_j)); L:=V}.$$

Рис. 1. Один цикл преобразования ГОСТ 28147 — 89

Рис. 2. а) Зашифрование в режиме гаммирования. Расшифрование осуществляется по той же схеме. ДПСЧ – датчик псевдослучайных чисел, используемых для выработки гаммы. б) Зашифрование и в) расшифрование в режиме гаммирования с обратной связью.

2. *Режим гаммирования*. Открытый текст P, разбитый на 64-битовые блоки P_1 , P_2 ,..., P_{m} , преобразуется в шифртекст по правилу:

$$C_i := P_i \oplus \mathcal{E}_k(\Gamma_i), i = 1, 2, ..., m$$
.

Другими словами, на текст P накладывается гамма $\mathcal{E}_k(\Gamma_1) \parallel \mathcal{E}_k(\Gamma_2) \parallel \ldots \parallel \mathcal{E}_k(\Gamma_m)$. Здесь \mathcal{E}_k – криптографическое преобразование ГОСТ 28147-89 в режиме простой замены под управлением 256-битового секретного ключа К (см. п. 1). Последовательность 64-битовых псевдослучайных блоков Γ_i , представленных в виде двух 32-битовых подблоков Y_i и Z_i , т.е. $\Gamma_i = (Y_i, Z_i)$, определяется итеративно:

$$Y_i := Y_{i-1} \coprod const_0;$$

 $Z_i := ((Z_{i-1} + const_1 - 1) \mod (2^{32} - 1)) + 1,$

 Z_i := $((Z_{i-1}+const_1-1)\ mod\ (2^{32}-1))+1$, где $const_0=0$ х01010101, $const_1=0$ х01010104 — 32-битовые константы. Значение $\Gamma_0 = (Y_0, Z_0)$, исходя из которого вычисляются последующие Γ_i , получаются зашифрованием 64-битового блока S, т.е. $\Gamma_0 = \mathcal{E}_k(S)$. Блок S, называемый *синхропосылкой*, передается в от-

крытом виде вместе с зашифрованным сообщением \mathcal{C} . Синхропосылка меняется от сообщения к сообщению. Расшифрование осуществляется по той же схеме, что и зашифрование:

$$P_i := C_i \oplus \mathcal{E}_k(\Gamma_i), i = 1, 2, \dots, m$$
.

Процесс шифрования в режиме гаммирования показан на рис. 2а.

Отметим, что при вычислении Z_i операция сложения по модулю $2^{32}-1$ может быть заменена на сложение по модулю 2^{32} :

$$\mathbf{Z}_i = \begin{cases} \mathbf{Z}_{i-1} \boxplus \mathsf{const}_1, & \mathsf{если} \ \mathbf{Z}_{i-1} \leq (2^{32}-1) - \mathsf{const}_1, \\ \mathbf{Z}_{i-1} \boxplus \mathsf{const}_1 \boxplus 1, \mathsf{в} \ \mathsf{противном} \ \mathsf{случае}, \end{cases}$$
 причем значение $(2^{32}-1) - \mathsf{const}_1$ имеет блок not $\mathsf{const}_1 = \mathsf{\$fefefefe}$.

3. Режим гаммирования с обратной связью. Открытый текст P, разбитый на 64битовые блоки $P_1, P_2, ..., P_m$, преобразуется в шифртекст $C = C_1, C_2, ..., C_m$ по правилу:

$$C_1:=P_1\oplus \mathcal{E}_k(S);$$

$$C_i := P_i \oplus \mathcal{E}_k(C_{i-1}), i = 2,3,...,m,$$

- где S-64-битовая синхропосылка (с использованием которой получается первый блок шифртекста), а \mathcal{E}_k – криптографическое преобразование ГОСТ 28147-89 в режиме простой замены под управлением 256-битового секретного ключа К. Расшифрование осуществляется по той же схеме, что и зашифрование. Процесс зашифрования и расшифрования показан на рис. 2б и 2в.
- 4. Режим выработки имитовставки. В ГОСТ 28147 89 подлинность зашифрованных сообщений во всех режимах шифрования может дополнительно подтверждаться с использованием протокола сверки имитовставки.

 $\mathit{Имитовставкa}$ – это блок I_p из p битов, который вычисляется либо перед зашифрованием, либо параллельно с зашифрованием отдельных блоков. Параметр p ($1 \le p \le 64$) выбирается в соответствии с установленным уровнем имитозащищенности (с учетом того, что вероятность навязывания ложного сообщения равна $(1/2)^p$).

Пусть $\mathcal{E}_{k}^{(16)}$ обозначает процедуру зашифрования ГОСТ 28147 — 89 с 16 раундами (вместо стандартных 32 раундов) в режиме простой замены под управлением того же ключа, что и для шифрования данных. Тогда вычисление имитовставки I_p для исходного открытого текста P, разбитого на 64-битовые блоки P_1 , P_2 ,..., P_m (если P_m — неполный блок, то он дополняется нулями), осуществляется по схеме:

$$B := \mathcal{E}_k^{(16)}(P_1);$$

for
$$i := 2$$
 to m **do** $B := \mathcal{E}_k^{(16)}(B \oplus P_i)$.

Из 64-битового блока B выбирается p битов (из заранее оговоренных позиций), которые и образуют имитовставку I_p .

Имитовставка присоединяется к шифртексту. Получатель сообщения расшифровывает шифртекст и аналогичным способом вычисляет имитовставку. Если вычисленная получателем имитовставка не совпадает с полученной, то сообщение считается ложным.