

Projekt: MSS54 Modul: LA_NK

Seite 1 von 11

Projekt: MSS54

Modul: KAT-Konvertierung

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54

Modul: **LA_NK**

Seite 2 von 11

1. ALLGEMEINES	3
2. DIAGNOSEBEDINGUNGEN	3
2.1. Beschreibung der Einschaltbedingungen	3
2.2. Beschreibung der STOP-Kriterien	4
3. GRAPHISCHE DARSTELLUNG DER KAT-KONVERTIERUNG	6
4. AUSWERTEBESCHREIBUNG - GÜTEMAß DER ALTERUNG	6
4.1. Ermittlung des Amplitudenverhältnisses	6
4.2. Grenzwertfilterung	7
4.3. Graphische Darstellung - Amplitudenverhältnis und Grenzwertfilterung	8
5. DIAGNOSE KAT-KONVERTIERUNG	8
5.1. Adaption des Differenzwertes ((IST - SOLL)-Quotient)	8
5.2. Diagnoseauswertung	8
5.3. Graphische Darstellung der Diagnoseauswertung	9
6. APPLIKATIONSHINWEISE	10
7. VARIABLEN UND KONSTANTEN	10

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54 Modul: LA NK

Seite 3 von 11

1. Allgemeines

Mit dieser Funktion wird die Sauerstoffspeicherfähigkeit des Katalysators geprüft. Ist diese Speicherfähigkeit aufgrund Alterung des Katalysators stark verkleinert, so ist auch die Konvertierung des Katalysators verringert.

Als Gütemaß für die Speicherfähigkeit wird das Lambdasondenamplitudenverhältnis der NKAT-und VKAT-Sonden verwendet. Nennenswerte Lambdasondenamplituden des NKAT-Signals treten bei Alterung des KAT's, aber auch bei momentanen Belastungen innerhalb bestimmter Last- und Drehzahl-Bereichen auf - daher muß eine last- und drehzahlabhängige Auswertung durchgeführt werden.

Die Ermittlung des Gütemaßes und die damit verbundenen Filterungen ect. werden im 100ms-Raster durchgeführt.

2. Diagnosebedingungen

2.1. Beschreibung der Einschaltbedingungen

Die Freigabe der Funktion erfolgt dann, wenn

- in der Applikationskonstante K_LA_OBD_FREIGABE das BIT6 gesetzt ist
- die Lambdaregelung VKAT aktiv und kein Dynamikverhalten vorhanden ist
 B LA1/2
 - => !B LA1/2 DYNAMIK
- die Lambdaregelung NKAT betriebsbereit ist => B_LANK1/2_SONDE_BEREIT
- die n-/rf-Bereichserkennung innerhalb des Auswertebereichs liegt und kein Dynamikverhalten vorliegt
- => !B_N_DYNAMIK
- => !B_RF_DYNAMIK_KAT
- keine allgemeine Ausschaltbedingung vorhanden u. die Wartezeit abgelaufen ist.
 => B_LA_KONV_AKTIV_T1/2
- die Wartezeit K LA KONV AKTIV T abgelaufen ist

Sind alle diese Einschaltbedingungen erfüllt, so wird die Bedingung **B_LA_KONV_AMPL1/2** gesetzt und die Berechnung der Amplitudenverhältnisse und der Grenzwertfilterung wird freigegeben.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54 Modul: LA NK Seite 4 von 11

2.2. Beschreibung der STOP-Kriterien

Die Funktion wird gestoppt, wenn

- die Drehzahl größer einer Schwelle wird $=> n > K_LA_KONV_N_MAX$
- die KAT-Temperatur unter einer bestimmte Schwelle liegt => tkatm < K_LA_KONV_TKAT
- die Temperatur der Ansaugluft unter einem Schwellwert liegt => tan < K_LA_KONV_T_UMG
- der Motor noch nicht eine bestimmte Zeit läuft => (t_start_exit < K_LA_KONV_T_MOT) && B_ML
- die Funktion KAT Ausräumen aktiv ist => B_LA_KA1/2
- nach KAT-Ausräumen eine bestimmte Luftmenge duch den KAT geströmt ist => la_ausr_ml_kat > K_LANK_ML_SCHW => la_ka_ausr_st, BIT4
- eine Tankentlüftung mit hoher Beladung vorliegt => tea1/2_f < K_LA_KONV_TEA_SCHW
- ein **Drosselklappenpoti-Fehler** => !B_WDK_FEHLERFREI_DPR
- ein Sondenheizungsfehler VKAT oder NKAT
 - => B_LSHV1/2_FEHLER => B_LSHN1/2_FEHLER
- ein Aussetzerekennungsfehler

=> B_AUSS_FEHLER

- ein Fehler im Tankentlüftungssystem oder in der Diagnose
 - => B_TEV_FEHLER
 - => B_TE_FEHLER (noch nicht realisiert)
- ein **UBATT Fehler** => B UB FEHLER
- ein Luftmassen-Fehler => B_HFM_FEHLER
- ein Fehler bei der Ansauglufttemperatur => B_TAN_FEHLER
- ein Fehler bei der Motortemperatur => B_TMOT_FEHLER
- ein Fehler im Kraftstoffsystem

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54 Modul: LA NK

Seite 5 von 11

- => B_KSD1/2_FEHLER
- die KAT-Schutzfunktion bei leerem Tank aktiv ist
 B KATS MD RED
- ein Fehler für die VKAT- bzw. NKAT-Sonden bezüglich überschrittener Adaptionsfehlerschwellen
 - => LAA1/2_SCHW
- ein Fehler aufgrund der Lambda-Alterungsüberwachung für die VKAT- bzw. NKAT-Sonden
 - => B_LA_ALT1/2_FEHLER => B_LA_VKAT1/2_HUB_FEHLER

vorliegt.

All diese allgemeinen Ausschaltbedingungen werden zusammengefaßt zu einer Bedingung **B_LA_KONV_AUS1/2** (BIT0/1 in la_konv_st).

Sobald ein STOP-Kritierium für diese Funktion vorliegt, werden alle wichtigen Arbeitsgrößen (nachfolgend beschrieben) eingefroren. Untypische Signalwechsel an den Lambdasonden wirken sich somit nicht auf das Gütemaß aus.

Die eigentliche Diagnose wird allerdings erst dann **aktiv**, wenn außer der **abgelaufenen Wartezeit** auch noch der gemittelte Amplitudenwert der VKAT-Sonde **usv1/2_wb_ft** eine bestimmte Schwelle **K_LA_KONV_WB_VKAT** überschritten hat => **B_LA_KONV_DIAG.**

Sobald sich der Zustand B_LA_KONV_DIAG eingestellt hat, läuft auch die **Diagnosezeit** (la_konv_diag_time) K_LA_KONV_DIAG_T ab.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54 Modul: LA NK

3. Graphische Darstellung der KAT-Konvertierung

4. Auswertebeschreibung - Gütemaß der Alterung

4.1. Ermittlung des Amplitudenverhältnisses

Hier wird zunächst der Quotient der gleichgerichteten Mittelwerte der Wechselspannungsanteile der VKAT- und NKAT-Sonden gebildet.

Die Abtrennung des Wechselspannungsanteils eines Sondensignals wird mit einem Hochpaßfilter (1 - PT1-Filter) realisiert; anschließend erfolgt eine Betragsbildung und Filterung des Signals. Auf diese Weise erhält man einen gleichgerichteten Mittelwert der Wechselspannungsanteile. Diese Funktionsweise läßt man sowohl auf das VKAT- als auch auf das NKAT-Signal wirken und bildet danach das Amplitudenverhältnis NKAT / VKAT. Dieser Quotiont ist nun ein Maß für die Alterung des Katalysators.

Funktion:

VKAT-Spannungen

Mit Hilfe eines Hochpaßfilters (Zeitkonstante K_LA_KONV_FH_TAU) wird von der Sondenspannung usv1/2 der Gleichspannungsanteil abgetrennt. Von diesem Wechselspannunganteil usv1/2_w wird nun der Betrag usv1/2_wb gebildet. Nach der Mittelung mit einem Tiefpaßfilter (Zeitkonstante K_LA_KONV_FT_TAU) erhält man den Wert usv1/2_wb_ft.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54 Modul: LA NK

Seite 7 von 11

NKAT-Spannungen

Mit Hilfe eines Hochpaßfilters (Zeitkonstante K_LA_KONV_FH_TAU) wird von der Sondenspannung usn1/2 der Gleichspannungsanteil abgetrennt. Von diesem Wechselspannunganteil usn1/2_w wird nun der Betrag usn1/2_wb gebildet. Nach der Mittelung mit einem Tiefpaßfilter (Zeitkonstante K_LA_KONV_FT_TAU) erhält man den Wert usn1/2_wb_ft.

Gütemaß der KAT-Konvertierung (wenn Bedingung B_LA_KONV_AMPL1/2 gilt)

la_konv_quot1/2 = usn1/2_wb_ft / usv1/2_wb_ft

4.2. Grenzwertfilterung

Für eine gültige Diagnose müssen Arbeitspunkteinflüsse beachtet werden, da bei großer Belastung auch der KAT-Konvertierungsquotient zunimmt.

Um diese Belastung bei verschiedenen Lastbereichen zu berücksichtigen, wird das Gütmaß la_konv_quot1/2 mit einem Grenzwert aus einem last- und drehzahlabhängigen Kennfeld KF_LA_KONV_QUOT_GRENZ verglichen.

Um den Einfluß von Arbeitspunktwechsel zu brücksichtigen, wird vor der Differnzbildung der Grenzwert **KF_LA_KONV_QUOT_GRENZ** mit der gleichen Zeitkonstante **K_LA_KONF_FT_TAU** wie die Amplitudenwerte gefiltert.

la_konv_quot1/2_dif = la_konv_quot1/2 - la_konv_quot_grenz

Dieses Kennfeld KF_LA_KONV_QUOT_GRENZ ist ein 3 x 3-Kennfeld, welches Belastungseinflüße innerhalb eines bestimmten rf/n-Bereiches beschreibt. Der gesamte Diagnosebereich wird über Konstanten aufgespannt. Diese MIN- und MAX-Werte müssen so applizert werden, daß sie das Kennfeld KF_LA_KONV_QOUT_GRENZ umschließen.

Der gesamte Diagnosebereich spannt sich auf über (fließt ein in B_LA_KONV_AMPL):

K_LA_KONV_GR_N_MIN <= n <= K_LA_KONV_GR_N_MAX

K_LA_KONV_GR_RF_MIN <= rf <= K_LA_KONV_GR_RF_MAX

Für die nachfolgende Diagnose wird der jeweils aktuelle Kennfeldbereich benötigt. Deshalb werden über eine Tabellen-Interpolation die Stützstellen nach außen gegeben => la_konv_index_x, la_konv_index_y.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54 Modul: LA_NK

4.3. Graphische Darstellung - Amplitudenverhältnis und Grenzwertfilterung

5. Diagnose KAT-Konvertierung

5.1. Adaption des Differenzwertes ((IST - SOLL)-Quotient)

Die Diagnose erfolgt ebenfalls nach Last- und Drehzahl-Bereichen. Hierfür wird die Differenz la_konv_quot1/2_dif über die vorher ermittelten Stützstellen (la_konv_index_x/y) in 9 Bereich getrennt gefiltert (3 x 3 - Matrix).

Mit der Zeitkonstante **K_LA_KONV_APPL_TAU** dieser Filter wird eine Mittelung über eine längere Aufenthaltszeit innerhalb eines Bereiches erreicht => es ergibt sich somit eine Adaptionsmatrix **Ia_konv1/2_ad[3][3].**

5.2. Diagnoseauswertung

Um eine Fehldiagnose zu vermeiden, muß eine Grenzwertüberschreitung innerhalb eines Driving-Cycles gleichzeitig in mehreren Arbeitsbereichen vorliegen.

Nach Ablauf der Diagnosezeit (es muß auch KAT-Heilung berücksichtigt werden) schließt sich eine Überprüfung der Adaptionsmatrix auf Grenzwertüberschreitung an. Alle **positiven** Bereiche der Matrix **la_konv1/2_ad** werden gezählt => **la_konv_anz_grenz1/2**.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54 Modul: LA_NK

Seite 9 von 11

Ist die Bedingung

la_konv_anz_grenz1/2 > K_LA_KONV_GRENZ_ANZ

erfüllt, so wird der Katalysator als defekt detektiert.

Weiterhin wird nach Ablauf dieser Mindestdiagnosezeit mit der Funktion **ed_report** entweder der Fehler der Art "**Grenzwertüberschreitung durch Alterung"** (SH_TO_UB) oder "**kein Fehler vorhanden**" (NO_FEHLER) in den Fehlerspeicher eingetragen.

Dieser Fehlereintrag findet nur einmalig innerhalb eines Motorlaufes statt (Entprellzähler ect. =1). Die MIL-Lampe wird angesteuert, wenn die Diagnose auf zwei aufeinanderfolgenden Driving-Cycles (DrCy) eine Grenzwertüberschreitung erkennt.

Bei der Initialisierung werden alle Filter/Bereiche der Adaptionsmatrix la_konv1/2_ad auf solch einen Initialisierungswert gesetzt, der einem guten Katalysator entspricht. In jedem Fahrzyklus wird somit der Katalysator unbeeinflußt von seiner Vorgeschichte auf Alterung geprüft.

Es besteht allerdings die Möglichkeit über die Konstante **K_LA_KONV_KF_ADAPT** diese Initialiserung auszuschalten und dafür die nichtflüchtig abgespeicherten Werte **aus dem FLASH** auszulesen.

5.3. Graphische Darstellung der Diagnoseauswertung

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54 Modul: LA NK

Seite 10 von 11

6. Applikationshinweise

Die Applikation der "KAT-Konvertierungs"-Funktion ist erst dann sinnvoll, wenn die Applikation der Lambdaregler VKAT / NKAT abgeschlossen ist und die FTP-Ergebnisse des Fahrzeuges nahe am Zielwert liegen; erst dann ist die Auswahl eines Grenz-Katalysators, der als schlecht erkannt werden muß, möglich. Bei der Applikation sollte zunächst eine Nenn-Regelsonde verwendet werden.

Applikation des Kennfeldes KF_LA_KONV_QUOT_GRENZ

Die n-/rf-Grenzen müssen so gewählt werden, daß während eines FTP72 die aufsummierte Aufenthaltsdauer in mehreren Bereichen jeweils mindesten 50-60s beträgt. Es müssen auf jeden Fall LL- bzw. LL-nahe Bereiche und Lastspitzen bei den Anfahrvorgängen ausgeschlossen werden.

Achtung: Wird die untere Grenze der Auswertung auf einen häufig auftretenden Wert gelegt, so kann die Auswertezeit erheblich verlängert werden, da bei jedem Unterschreiten der Auswertegrenze eine Wartezeit ablaufen muß.

Der Initialisierungswert darf nicht zu weit im Negativen (zu guter KAT) liegen, da sonst die zur Verfügung stehende Auswertezeit zum Einschwingen der Filter nicht genügt.

7. Variablen und Konstanten

Bit-Stelle	la_konv_st
Bit0	Ausschaltbedingung Bank1 ist vorhanden
Bit1	Ausschaltbedingung Bank2 ist vorhanden
Bit2	Diagnosezeit Bank1 ist abgelaufen
Bit3	Diagnosezeit Bank2 ist abgelaufen
Bit4	Diagnosebedingungen sind erfüllt (Bank1)
Bit5	Diagnosebedingungen sind erfüllt (Bank2)
Bit6	n-/rf-Bereichserkennung Bank1 ist aktiv
Bit7	n-/rf-Bereichserkennung Bank2 ist aktiv

Variablen:

Name	Bedeutung	Тур	Auflösung
la_konv_st	Statusvariable für KAT-Konvertierung	uc	
la_konv_quot_grenz_of	Genzwert für das Gütemaß, ungefiltert	uc	
la_konv_quot_grenz	Grenzwert für das Gütemaß, gefiltert	uw	
usv/n_w[2]	Wechselspannungsanteil d. Sondenspannung	sw	mV
usv/n_wb_ft[2]	gefilteter Betragswert d. Wechselspannungsanteils	uw	mV
la_kon_quot[2]	Gütemaß d. KAT-Konvertierung	uw	

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05

Projekt: MSS54 Modul: LA_NK

la_konv_quot_dif[2]	nv_quot_dif[2] Differenz zwischen tat. Gütemaß u. theor. Güteßmaß		
la_konv_diag_time[2]	laufende Diagnosezeit		S
la_konv_index_x/y	Indizes der Matrix bzw. KF_LA_KONV_DIAG_TIME		
la_konv_anz_grenz[2]	Anzahl d. fehlerhaften Bereiche in d. Adaptionsmatrix	uc	
la_konv1/2_ed	Fehlerstatusvariable	uc	

Applikationsdaten:

Typ	Bedeutung
· · ·	
	momentane Motorlaufzeit
	Wartezeit nach STOP-Bedingung
	Drehzahlschwlle für STOP-Kriterium
Konstante	KAT-Temperatur für STOP-Kriterium
Konstante	Diagnosezeit der KAT-Konvertierung
Konstante	Filterkonstante Hochpassfilter
Konstante	Filerkonstante Tiefpassfilter
Konstante	Schwelle VKAT für Diagnosefreigabe
Konstante	untere N-Schwelle fuer Freigabe
Konstante	obere N-Schwelle fuer Freigabe
	_
Konstante	untere RF-Schwelle fuer Freigabe
Konstante	obere RF-Schwelle fuer Freigabe
Konstante	Schwelle, abh. von d. Umgebungstemperatur
Konstante	Schwelle für Fehlereintrag
	·
Konstante	Konstante zum Umschalten zwischen INIT- bzw.
	Flash-Werten d. Applikationsmatrix
Konstante	Filterkonstante für Matrix
Kennfeld	Grenzwert für Diagnose guter/schlechter KAT
	, ,
Konstante	Init-Wert für Adaptionsmatrix
	Konstante

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013		5.05