姓名

东南大学考试卷(A卷)

课程名	称 相	既率论与	数理统计	考试	学期	11-12	- 3 4	身分	
适用专	亚	全校	考	试形式	闭卷	É	考试时	间长度	120 分钟
题号			=	四	五.	六	七	八	九
得分									
$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt 表示标准正态分布的分布函数,$									
Ф(-1.6	45) = 0.05	j; Φ(0) = 0.5;		$\Phi(1)=0$.8413	*		
Ф(1.3)	= 0.9032;	Φ((1.96) = 0	.975;	$\Phi(2)=0$.9772			
一、填充	E题(每空	格 2',共	38')						
1)	己知 P(B)	=P(A)=0.	2, A 和 B	相互独立	,则 P(A-B	3)=	;P(A	U B)=	o
2)	一盒中有	2 个白球	:,3 个黑	求,每次抽	山取一球,	从中不	放回地抽	中取两次	,则第二
	次取到黑	球的概率	为	,取到两	万个球颜色	色相同的]概率为_	· · · · · · · · · · · · · · · · · · ·	o
3)	设随机变	量 X 服从	正态分布	N(1, 4),	P(X < 1)) =	0	(过程列	在不做)
4)	设 W(t);	是参数为	σ^2 的 W ie	ener 过程,	则随机过	过程 <i>X</i> ($t) = \frac{1}{\sigma\sqrt{t}}$	-W(t),t	>0的一
	维概率密	度函数 <i>f</i>	$(x; t) = \underline{}$			٥	(过程班值	故)	
5)	随机变量 X , Y 独立同分布, 都服从正态分布 $N(1,4)$, 则 $P(X-Y>2\sqrt{2})=$ 。								
6)	随机变量 X, Y 的联合分布律为: P(X=0,Y=0)=0.2; P(X=0,Y=1)=0.3;								
	P(X=1,Y=0)=0.3; P(X=1,Y=1)=0.2. 则 X+Y 分布律为。								
	E[XY]=。(过程班不做)								
7)	随机变量 X, Y 的相关系数为 0.5, 则 5-2X, 和 Y-1 的相关系数为。								
8)	设随机	变量月	序列 {Xn	,n=1,2,}	独立同	司分 有	EX	=2, D	X ₁ =2,则
	$\frac{1}{n}(X_1^2 +$	$X_2^2 +$	$+X_{n}^{2}$)	<i>p</i> →	o				
9)	设总体X	服从正态	分布 N(1,	$(2), X_1, X_2$,,X ₁₀ 是	来此该	总体的样	$\overset{ au}{ au}$ 本, $ar{X}$	$,S^2$ 分别

第1页共5页-6/6/2012

三、(15') 设随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} ae^{-(2x+y)} & x > 0, y > 0 \\ 0 & \text{ 其它} \end{cases}.$$

求 (1) 常数 a; (2)Y 的边缘密度函数; (3) 求条件概率 P(Y<1|X=1)。(过程班不做该题)。

姓名

四、(10')设随机变量 X~U[1,2],Y~U[0,2],X 和 Y 相互独立,令 Z=Y+2X,求随机变量 Z 的概率密度函数 $f_z(z)$ 。(过程班 7').

五、(10')利用中心极限定理求大约至少需要重复投掷一枚硬币多少次才能使得正面出现的 频率和真实的概率之差的绝对值小于 0.05 的概率大于 0.95?

六、(10)设总体 X 服从参数为 λ 的泊松分布,其分布率为

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, ...; \lambda > 0$$

 $X_1,...X_n$ 为来自该总体的样本,(1)求参数 λ 的最大似然估计量 $\hat{\lambda}$,(2) 证明 $\hat{\lambda}$ 为 λ 的 无偏估计量.

北

七、 (7')设总体 X 服从正态分布 N (u, 1), 现有来自该总体样本容量为 25 的样本, 其样本均值为 2.4, 试检验 H_0 : u=2.0 v.s. H_1 : $u\neq 2.0$.(检验水平 $\alpha=0.05$)

(以下两题过程班做)

八、(5')设随机过程 $X(t)=A\cos(t+\Theta)$, $-\infty < t < +\infty$,其中A 是服从参数 λ 的指数

分布
$$e(\lambda)$$
,其概率密度函数为
$$f(a) = \begin{cases} \lambda e^{-\lambda a}, a \ge 0 \\ 0, a < 0 \end{cases}$$

 Θ 是在 $[0,\pi]$ 上服从均匀分布,即 $\Theta \sim U(0,\pi)$;且A与 Θ 独立,求:X(t) 的相关函数 $R_X(s,t)$ 。

作 弊

此 答 卷 无 效

自

九、(15°)设质点在 1,2,3,4 上做随机游动,假设只能在时刻 n=1,2, ··· 移动,且只能停留 在 1,2,3,4 点上。当质点转移到 2,3 点时,它以 1/3 的概率向左,向右移动一个格或停留原 处, 当质点移动到1点时, 以概率1向右移动一个格, 当质点移动到4点时, 以概率1向 左移动一个格。以 X_n 表示时刻 n 质点所处的位置, X_0 表示初始时刻 0 质点所处位置, 则 $\{X_n, n=0,1,2,\cdots\}$ 为齐次马氏链。

- (1) 写出一步转移概率矩阵;
- (2) 若初始时刻质点位于点 1, 求概率 $P(X_2 = 3, X_4 = 2, X_5 = 1)$;
- (3) 证明 $\{X_n, n=0,1,2,\cdots\}$ 具有遍历性,并求出极限分布。

마 小