Quin-AD(OMe)-FMK M.Wt:389

### FIGURE 1A

Quin-VAD(OMe)-FMK M.Wt:488; C24H19N4O6F

# FIGURE 2

## FIGURE 2A

3/16

|                                                                                             | Caspas                                                                                            | se 9                                                        | FIGURE 8                                         |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|
| inh conc                                                                                    | log of con                                                                                        | % inhib                                                     | Q-(C=O)-VD(OMe)-CH <sub>2</sub> -ASA             |
| 0.005uM<br>0.01uM<br>.025uM<br>.05uM<br>1uM<br>0.5uM<br>1uM<br>2.5uM<br>5uM<br>10uM<br>25uM | -2.301<br>-2<br>-1.602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.398<br>1.6989 | 0<br>0<br>0<br>0<br>0<br>16.2<br>21.8<br>47.4<br>62<br>82.4 | 100<br>80<br>60<br>40<br>20<br>-3 -2 -1 20 0 1 2 |
|                                                                                             |                                                                                                   |                                                             | log of conc. in uM                               |

|                                                                                              | Caspas                                                                                            | e 8                                                                      |                                      |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|
| inh conc                                                                                     | log of con                                                                                        | % inhib                                                                  | Q-(C=O)-VD(OMe)-CH <sub>2</sub> -ASA |
| 0.005uM<br>0.01uM<br>.025uM<br>.05uM<br>.1uM<br>0.5uM<br>1uM<br>2.5uM<br>5uM<br>10uM<br>25uM | -2.301<br>-2<br>-1.602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.398<br>1.6989 | 0<br>0<br>0<br>0<br>4.7<br>5.5<br>21.1<br>45.5<br>73.6<br>96.8<br>= 99.8 | 120<br>100<br>80<br>60<br>40<br>20   |
|                                                                                              |                                                                                                   |                                                                          | log of conc. in uM                   |

Caspase 1

| inh conc | log of con | % inhib |
|----------|------------|---------|
| .025uM   | -1.602     | 0       |
| .05uM    | -1.301     | 0       |
| .1uM     | -1         | 0       |
| 0.5uM    | -0.301     | 18.2    |
| 1uM      | 0          | 34.8    |
| 2.5uM    | 0.3979     | 69.7    |
| 5uM      | 0.6989     | 100     |
| 10uM     | 1          | 100     |
| 25uM     | 1.398      | 100     |
| 50uM     | 1.6989     | 100     |

#### Q-(C=O)-VD(OMe)-CH<sub>2</sub>-ASA



### FIGURE 11

Caspase 3

| inh conc                                                                                     | og of con                                                                                         | % inhib                                                                  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 0.005uM<br>0.01uM<br>.025uM<br>.05uM<br>.1uM<br>0.5uM<br>1uM<br>2.5uM<br>5uM<br>10uM<br>25uM | -2.301<br>-2<br>-1.602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.398<br>1.6989 | 0<br>0<br>2.3<br>9.1<br>6.4<br>29.3<br>45<br>74.8<br>91.5<br>91.5<br>100 |

#### Q-(C=O)-VD(OMe)-CH<sub>2</sub>-ASA



#### Caspase 1

| inh conc | log of con | % inhib |
|----------|------------|---------|
| .0025uM  | -2.602     | 3.14    |
| .005uM   | -2.301     | 2.6     |
| .01uM    | -2         | 1.4     |
| .025uM   | -1.602     | 10.3    |
| .05uM    | -1.301     | 8.3     |
| .1uM     | -1         | 23.7    |
| 0.5uM    | -0.301     | 50.9    |
| 1uM      | 0          | 66.29   |
| 2.5uM    | 0.3979     | 90.3    |
| 5uM      | 0.6989     | 96.3    |
| 10uM     | 1          | 100     |
| 25uM     | 1.3979     | 100     |
| 50uM     | 1.6979     | 100     |

#### Indole-(C=O)-VD(OMe)-CH2-OPh



### FIGURE 13

#### Caspase 1

| inh conc | log of con | % inhib |
|----------|------------|---------|
| .0025uM  | -2.602     | 16 3    |
| .005uM   | -2.301     | 19 4    |
| .01uM    | -2         | 22 6    |
| .025uM   | -1.602     | 42.86   |
| .1uM     | -1         | 44      |
| 0.5uM    | -0.301     | 74      |
| 1uM      | 0          | 87 4    |
| 2.5uM    | 0.3979     | 97.1    |
| 5uM      | 0.6989     | 100     |
| 10uM     | 1          | 100     |
| 25uM     | 1.3979     | 100     |
| 50uM     | 1.6979     | 100     |

#### Melatonin-VD(OMe)-CH2-OPh



Bzl-Melatonin-VD(OMe)-CH2-OPh Caspase 1 log of con % inhib inh conc 0 -2.602 0.0025uM 0 -2.301 120 0.005uM 0 0.01uM -2 0 .025uM -1.602 7.3 .05uM -1.301 80 inhibition 26.8 -1 .1uM -0.301 93.4 0.5uM 99.6 0 1uM 40 100 2 5uM 0.3979 100 0.6989 20 5uM 100 10uM 1.398 100 25uM 1.6989 100 <del>20</del> 0 50uM log of conc. in uM

| Caspase 1         |                  |              | HydroxyTryptophan-VD(OMe)-CH2-OPh       |
|-------------------|------------------|--------------|-----------------------------------------|
| inh conc          | log of con       | % inhib      |                                         |
| 0.0025uM          | -2.602<br>-2.301 | 38.4<br>25.7 | 1_<br>120                               |
| 0.005uM<br>0.01uM | -2.301<br>-2     | 29.6         | 100                                     |
| .025uM            | -1.602           | 23           |                                         |
| .05uM             | -1.301           | 44.3         | inhibition 10                           |
| 0.5uM             | -0.301           | 57.2         | #   ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
| 1uM               | 0                | 91.4         | <b>i</b>                                |
| 2.5uM             | 0.3979           | 95           |                                         |
| 5uM               | 0.6989           | 96.9         | × 20                                    |
|                   |                  |              | 0                                       |
|                   |                  |              | -3 -2 log of conc. in u <b>M</b>        |

#### Caspase 1

100

100

| inh conc | log of con | % inhib |
|----------|------------|---------|
| 0.0025uM | -2.602     | 0       |
| 0.005uM  | -2.301     | 0       |
| 0.01uM   | -2         | 0       |
| .025uM   | -1.602     | 0       |
| .05uM    | -1.301     | 0       |
| .1uM     | -1         | 20.7    |
| 0.5uM    | -0.301     | 42.7    |
| 1uM      | 0          | 81.7    |
| 2.5uM    | 0.3979     | 100     |
| 5uM      | 0.6989     | 100     |
| 10uM     | 1          | 100     |

1.398

1.6989

25uM

50uM

### TRP-VD(OCH<sub>3</sub>)-CH<sub>2</sub>-OPh · TFA



log of conc. in uM

### FIGURE 17A

Caspase 9

| inh cor c      | log of con       | % inhib      |
|----------------|------------------|--------------|
| .025uM<br>05uM | -1_602<br>-1.301 | 33.6<br>43.9 |
| .1uM           | -1               | 58.7         |
| 0 5uM<br>1uM   | -0 301<br>0      | 90.7<br>94.7 |
| 2,5uM          | 0 3979           | 100          |
| 5uM<br>10uM    | 0 6989<br>1      | 100<br>100   |
| 25uM           | 1.3979           | 100          |
| 50uM           | 1.6979           | 100          |

## Q-(C=O)-L-D-(OMe)-CH<sub>2</sub>-F (the FMK)



### FIGURE 17B

Caspase 9

| inn sons | log of con | والإعار وو | Q-(C=O)-L-D-(OMe)-CH <sub>2</sub> -F (the FMK) |  |
|----------|------------|------------|------------------------------------------------|--|
| .025uNt  | -1 502     | 25 7       |                                                |  |
| .05cN!   | -1.301     | 37.3       |                                                |  |
| .t⊒M     | -1         | 58.9       | 120                                            |  |
| 0 5uM    | -0.301     | 88.9       |                                                |  |
| 191.1    | 0          | 94.9       | 100                                            |  |
| 2,5uM    | 0.3979     | 96.1       | 5                                              |  |
| 5uA1     | 0.6989     | 100        | ego 80 kg  |  |
| 10uM     | 1          | 100        | 60                                             |  |
| 25uM     | 1.3979     | 100        |                                                |  |
| 50uM     | 1.6979     | 100        | 30                                             |  |
|          |            |            |                                                |  |
|          |            |            | -2 -1 log of cohc. in uM 1 2                   |  |

### FIGURE 18A

Caspase 9

| ·- conc               | log of con             | % inhib              |
|-----------------------|------------------------|----------------------|
| 025uM<br>05uM<br>3 uM | -1.602<br>-1.301<br>-1 | 47 3<br>64 4<br>81 2 |
| 0.5uM                 | -0.30†<br>0            | 97.8<br>99.5         |
| 2 5uM<br>5uM          | 0.3979<br>0.6989       | 100                  |
| 1.0uM                 | 1                      | 100                  |
| 25uM<br>50uM          | 1.3979<br>1.6979       | 100<br>100           |

#### $Q-(C=O)-V-D-(OCH_3)-CH_2-F$ (the FMK)



## FIGURE 18B

Caspase 9

| log of con | % innib                                                                  |
|------------|--------------------------------------------------------------------------|
| -1.602     | 62.2                                                                     |
| -1.301     | 76.3                                                                     |
| -1         | 81.3                                                                     |
| -0 301     | 99.1                                                                     |
| 0          | 100                                                                      |
| 0.3979     | 100                                                                      |
| 0.6989     | 100                                                                      |
| 1          | 100                                                                      |
| 1.3979     | 100                                                                      |
| 1.6979     | 100                                                                      |
|            | -1 502<br>-1.301<br>-1<br>-0 301<br>0<br>0.3979<br>0.6989<br>1<br>1.3979 |

#### Q-(C=O)-V-D-(OCH<sub>3</sub>)-CH<sub>2</sub>-F (the FMK)





Caspase 3

| inh conc                                                                                     | log of con                                                                                  | % inhib                                                                             | Q-(C=O)-VD(OMe)-CH <sub>2</sub> -SA                           |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 0.005uM<br>0.01uM<br>.025uM<br>.05uM<br>.1uM<br>0.5uM<br>1uM<br>2.5uM<br>5uM<br>10uM<br>25uM | -2.301<br>-2<br>-1.602<br>-1.301<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.398<br>1.6989 | 0<br>0<br>0.57<br>2.8<br>18.3<br>32.4<br>54.7<br>87.8<br>97.6<br>99.7<br>100<br>100 | 120<br>100<br>80<br>60<br>40<br>20<br>0<br>10g of conc. in uM |

### Q-(C=O)-L-D-CH<sub>2</sub>-OPh

#### Caspase 1

| inn conc                         | log of con                       | % inhib                        |
|----------------------------------|----------------------------------|--------------------------------|
| .025uM<br>.05uM<br>.1uM<br>0.5uM | -1.602<br>-1.301<br>-1<br>-0.301 | 19<br>22<br>19<br>46.7<br>69.5 |
| 1uM<br>2 5aM<br>5aM<br>10uM      | 0 3979<br>0 6989                 | 92,7<br>98.5<br>87.3           |



### FIGURE 22

### Q-(C=O)-V-D-CH<sub>2</sub>-OPh

#### Caspase 1

| oneo rini                                     | log of con                               | ° a innib                             |
|-----------------------------------------------|------------------------------------------|---------------------------------------|
| 025UM<br>05UM<br>1UM<br>0 5UM<br>1UM<br>2 5UM | -1 602<br>-1.301<br>-1 -0 301<br>-0 3979 | 39 8<br>55.98<br>67.2<br>95.8<br>98.5 |
| 5UM<br>10uM                                   | 0.698 <del>9</del><br>1                  | 100<br>100                            |
|                                               |                                          |                                       |



# FIGURE 25A

Non esterase treated Inhibitor D with Caspase 3

100

100

100

100

| inh cond | log of can | % inhib |
|----------|------------|---------|
| 025UM    | -1.602     | 37.8    |
| 05uM     | -1.301     | 52      |
| 1 LM     | -1         | 73      |
| 0.5314   | -0 301     | 100     |
| 1614     | G.         | 100     |
| 2 561.1  | 0.3979     | 100     |
|          |            |         |

0.6989

1,3979

1.6979

5uM

10ut1

25uM

50uM

Q-(C=O)-L-D-(OMe)- $CH_2$ -F



## FIGURE 25B

Esterase treated Innib tor D with Caspase 3

 $Q-(C=O)-L-D-(OMe)-CH_2-F$ 

| inh sono                                                                     | log of con                                                               | °₂ inhib                                                          |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|
| C25UM<br>C5UM<br>10M<br>0 5UM<br>10M<br>2 5UM<br>5UM<br>10UM<br>25UM<br>50UM | -1 602<br>-1,301<br>-1<br>-0 301<br>0 3979<br>0,6989<br>1,3979<br>1,6979 | 38.2<br>68.9<br>80.7<br>97.6<br>96.6<br>96.2<br>100<br>100<br>100 |



Esterase treated Innibitor C with Cascase 1

| inh conc       | log of con   | °o inhib     |
|----------------|--------------|--------------|
| .025uM<br>05uM | -1.602       | 40.1         |
| .1uM           | -1.301<br>-1 | 54 9<br>73 2 |
| 0 5uM          | -0.301       | 81.7         |
| 1uM<br>2.5uM   | 0<br>0.3979  | 100          |
| 5uM            | 0.3979       | 100<br>100   |
| 10uM           | 1            | 100          |
| 25uM           | 1.3979       | 100          |
| 50uM           | 1.6979       | 100          |

 $Q-(C=O)-V-D-(OMe)-CH_2-F$ 



## FIGURE 24

Esterase treated Inhibitor D with Caso 1

| TT cond                                              | ing of con                                 | didni E                           |
|------------------------------------------------------|--------------------------------------------|-----------------------------------|
| .025UM<br>.05uM<br>.duM<br>.05uM<br>.0.5uM<br>.2.5uM | -1,602<br>-1 301<br>-1<br>-0,301<br>0 3979 | 0<br>33.8<br>63.4<br>85.2<br>95.2 |
| 50M<br>190M<br>250M<br>500M                          | 0 6989<br>1<br>1 3979<br>1 6979            | 100<br>100<br>100<br>100          |

### $Q-(C=O)-L-D-(OMe)-CH_2-F$



14/16

#### Q-LD-OPh

|         | $\overline{\mathcal{L}}$ |      |
|---------|--------------------------|------|
| 0.05.4  | -1.301                   | 5.5  |
| 0.121   | -1                       | 11   |
| C 5 - M | -0.301                   | 46   |
| ساندا   | 0                        | 68   |
| 2-5-24  | 0.3979                   | 86.8 |
| 5 44    | 0.6989                   | 94.5 |
| C1      | 1                        | 100  |
| 25 4    | 1.3979                   | 100  |
| 50 241  | 1.6989                   | 100  |



Q-VD-OPh





Caspase 3 w/ IE -

| inh conc                                                                | log of con                                                               | % inhib                                            |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|
| .025uM<br>.05uM<br>.1uM<br>0.5uM<br>1uM<br>2.5uM<br>5uM<br>10uM<br>25uM | -1.602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.3979 | 31.85<br>47.1<br>59.2<br>96.2<br>100<br>100<br>100 |
| 50uM                                                                    | 1.699                                                                    | 100                                                |

Q-(C=O)-LD-CH<sub>2</sub>-O-Ph



FIGURE 28

| -           |
|-------------|
| _           |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
| _           |
| ø           |
| 80          |
| DS          |
| 108         |
| 3108        |
| CIDS        |
| CIDS        |
| Acids       |
| Acids       |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
| AMINO ACIDS |

| 29              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |       |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|
| FIGURE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H2C CH2<br>H2C @ CH<br>H2C \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L- Proline        | (Pro) |
|                 | $\begin{pmatrix} 0 & & & \\ & C & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $ | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L - Phenylalanine | (Phe) |
| Acibs           | $ \begin{array}{ccc} 0 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH2<br>CH3<br>CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L · Isoleucine    | (Heu) |
| IMPORTANT AMINO | $H = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СН2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1-1-2<br>1 | L-Leucine         | (160) |
| IM              | 0 = 0 $0 = 0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H <sub>3</sub> C CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L - Valine        | (Nal) |
|                 | $H_{3N-C-H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>(</i> γ <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-Alanine         | (Ala) |
|                 | 1) C=00<br>HyN-CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gycine            | (617) |

I) 
$$C_{-0}^{0} = C_{-0}^{0} =$$