# COMPSCI 250: Introduction to Computation

Lecture #3: Set Operations and Truth Table Proofs David Mix Barrington and Ghazaleh Parvini 11 September 2023

## Set Operations and Truth Tables

- Venn and Carroll Diagrams
- Set Operations
- Propositions About Sets
- The Setting for Propositional Proofs
- How to Do a Truth Table Proof
- A Truth Table Proof Example

## Venn Diagrams

• Here's a way to describe a group of sets.



## Venn Diagrams

• The three large sets each divide the type into two groups: the elements in it and those not in it.



- This creates  $2^3 = 8$  total groups, from the three choices.
- This **Venn Diagram** has seven colored regions, and an eighth white region in none of the sets.

## Carroll Diagrams

- Lewis Carroll (author of *Alice in Wonderland*) had his own diagrams he liked better than Venn's.
- This diagram represents the four combinations of being in set x or not, and being in set y or not. For example, region 2 is in y but not in x.
- Unlike Venn, he treats the four regions equally.



## More Carroll Diagrams

• In the top diagram we represent three sets, with m the set inside the central box. Region 5 is in m and x but not in y.



- Binary for 5 is 101, with the three bits for yes-m, no-y, yes-x.
- The bottom diagram represents the 16 regions for four sets.



## Set Operations

We have a number of binary
 operations on sets, that take two
 sets as input and give one set as
 output.



• If X and Y are sets, their **intersection**  $X \cap Y$  is the set of all elements in *both*, and their **union**  $X \cup Y$  is the set of all elements in *either*  $X \circ Y$ .



 The relative complement X \ Y is the set of all elements in X but not in Y.



## Two More Set Operations

- The **symmetric difference**  $X \Delta Y$  is the set of elements that are in either  $X \Delta Y$ , but not both.
- XΔY

• The **complement** of X, written as X with a line over it, is the set of all elements in the **universe** (or data type) that are not in X.



X complement

## Practice Clicker Question #1

- Which set does not describe exactly the portions of the diagram with dogs?
- $\bullet$  (a)  $(X \cup Z) \setminus Y$
- $\bullet$  (b)  $(X \setminus Y) \cup (Z \setminus Y)$
- (c)  $(X \Delta Z) \cup ((X \cap Z) \setminus Y)$
- (d) trick question, all three are correct



# Not the Answer

#### Practice Clicker Answer #1

- Which set does not describe exactly the portions of the diagram with dogs?
- $\bullet$  (a)  $(X \cup Z) \setminus Y$
- $\bullet$  (b)  $(X \setminus Y) \cup (Z \setminus Y)$
- (c)  $(X \Delta Z) \cup ((X \cap Z) \setminus Y)$
- (d) trick question, all three are correct



Includes  $(Y \cap Z) \setminus X$  and  $(X \cap Y) \setminus Z$ 

## Propositions About Sets

- Given two sets X and Y, we can form the propositions X = Y and  $X \subseteq Y$ . We can also use the = and  $\subseteq$  operators on more complicated sets formed with the set operators, for example  $(X \setminus Y) \cap (Y \setminus X) = \emptyset$ .
- This last statement is an example of a set identity because it is true no matter what the sets X and Y are. Since every element of X \ Y is in X, and none of the elements of Y \ X are in X, no element could be in both.

## Membership Statements

- Equality and subset statements about sets are actually compound propositions involving **membership statements** for the original sets.
- For example, X = Y means that for any object z of the correct type, the propositions  $z \in X$  and  $z \in Y$  are either both true or both false, so that " $z \in X \Leftrightarrow z \in Y$ " is true.
- Similarly,  $X \subseteq Y$  means that for any  $z, z \in X$  implies  $z \in Y$ , so we have " $z \in X \rightarrow z \in Y$ ".

## Set Identities With Set Operators

- A set statement like  $(X \setminus Y) \cap (Y \setminus X) = \emptyset$ , using set operations and the equality or subset operator, can be translated into a compound proposition.
- We first get  $[z \in (X \setminus Y) \cap (Y \setminus X)] \leftrightarrow z \in \emptyset$ . But the statement on the left of the  $\leftrightarrow$  can be simplified, to  $z \in (X \setminus Y) \land z \in (Y \setminus X)$ .
- Using the definition of  $\setminus$ , this can be further simplified to  $(z \in X \land \neg (z \in Y)) \land (z \in Y \land \neg (z \in X))$ .

## Using Variables for Each Set

- If we define the boolean x to mean  $z \in X$  and the boolean y to mean  $z \in Y$ , we can rewrite the whole statement " $[(z \in X \land \neg (z \in Y)) \land (z \in Y \land \neg (z \in X))] \leftrightarrow (z \in \emptyset)$ " as  $(x \land \neg y) \land (y \land \neg x) \leftrightarrow 0$ , where we use 0 to mean "false".
- This compound proposition is a tautology.
- In the same way we can translate any set statement, because each set operation corresponds exactly to a boolean operation on membership statements.

## Practice Clicker Question #2

- Let r denote " $x \in R$ ", s denote " $x \in S$ ", and t denote " $x \in T$ ". Which statement denotes membership in the set " $(R \cap (S \cup T)) \setminus S$ "?
- $\bullet$  (a)  $r \wedge s \vee t \wedge \neg s$
- (b)  $(r \land (s \lor t)) \land \neg s$
- (c)  $((r \land s) \lor t)) \land \neg s$
- (d)  $r \wedge ((s \vee t) \wedge \neg s)$

# Not the Answer

#### Practice Clicker Answer #2

- Let r denote " $x \in R$ ", s denote " $x \in S$ ", and t denote " $x \in T$ ". Which statement denotes membership in the set " $(R \cap (S \cup T)) \setminus S$ "?
- $\bullet$  (a)  $r \wedge s \vee t \wedge \neg s$
- (b)  $(r \land (s \lor t)) \land \neg s$  (parens must match)
- (c)  $((r \land s) \lor t)) \land \neg s$
- (d)  $r \wedge ((s \vee t) \wedge \neg s)$

## The Setting for PropCalc Proofs

- The propositional calculus lets us form compound propositions from atomic propositions, and then ask questions about them.
- Is a given statement P a **tautology**? If we know that a **premise** statement P is true, does that guarantee that another **conclusion** statement C is also true? Given two statements P and Q, are they **equivalent**?
- Verifying tautologies solves all three of these questions, because they ask whether  $P, P \rightarrow C$ , and  $P \leftrightarrow Q$  respectively are tautologies.

## The Bigger Picture

- In this lecture we'll see how to verify a tautology with a **truth table**.
- Next lecture we'll see how to verify that an implication or an equivalence is a tautology with a deductive sequence proof or an equational sequence proof.
- Sequence proofs can be much shorter than the corresponding truth tables, but they require creativity to produce.

#### How to Do a Truth Table Proof

- The idea of a truth table proof is that if we have k atomic propositions, there are 2<sup>k</sup> possible settings of the truth values of those propositions. If a given compound proposition is true in all of those cases, it is a tautology.
- We need to evaluate the compound proposition systematically, in all the cases. We begin by listing the cases, which we can do by counting in binary from 0 to 2<sup>k</sup> 1, which is from 00...0 to 11...1. (This is much less error-prone than trying to get all the cases in some arbitrary order.)

#### How to Do a Truth Table Proof

- The basic idea is that under each symbol of the compound proposition, we will have a column of 2<sup>k</sup> 0's and 1's to represent the values, in each case, of the compound proposition associated with that symbol.
- We begin with the occurrences of the variables, then calculate new columns in the order that operations are used to evaluate the compound proposition.

## A Truth Table Example

• Let's take the formula  $(x \land \neg y) \land (y \land \neg x)$  $\Leftrightarrow 0$ . There are four cases 00, 01, 10, and 11, where the first bit is the truth value of x and the second that of y. We write the correct column under each occurrence of a variable. We also write a column of all 0's under the 0, since this symbol always has the value 0.

| x | У | (x | ∧ ¬ у) | <b>м</b> (у | ∧ ¬ x)<- | > 0 |
|---|---|----|--------|-------------|----------|-----|
| 0 | 0 | 0  | 0      | 0           | 0        | 0   |
| 0 | 1 | 0  | 1      | 1           | 0        | 0   |
| 1 | 0 | 1  | 0      | 0           | 1        | 0   |
| 1 | 1 | 1  | 1      | 1           | 1        | 0   |

## Continuing the Example

Next we fill in the columns for the ¬
operations:

| X | У | (x | ٨ | ¬ | у) | ^ | (у | ٨ | ¬ | x)<-> | 0 |
|---|---|----|---|---|----|---|----|---|---|-------|---|
| 0 | 0 | 0  |   | 1 | 0  |   | 0  |   | 1 | 0     | 0 |
| 0 | 1 | 0  |   | 0 | 1  |   | 1  |   | 1 | 0     | 0 |
| 1 | 0 | 1  |   | 1 | 0  |   | 0  |   | 0 | 1     | 0 |
| 1 | 1 | 1  |   | 0 | 1  |   | 1  |   | 0 | 1     | 0 |

## Continuing the Example

• Then the two A operations inside the parentheses:

| x | У | ( x | ٨ | ¬ | у) | ^ | (у | ^ |   | x)<-> | 0 |
|---|---|-----|---|---|----|---|----|---|---|-------|---|
| 0 | 0 | 0   | 0 | 1 | 0  |   | 0  | 0 | 1 | 0     | 0 |
| 0 | 1 | 0   | 0 | 0 | 1  |   | 1  | 1 | 1 | 0     | 0 |
| 1 | 0 | 1   | 1 | 1 | 0  |   | 0  | 0 | 0 | 1     | 0 |
| 1 | 1 | 1   | 0 | 0 | 1  |   | 1  | 0 | 0 | 1     | 0 |

## Continuing the Example

• Then the last  $\wedge$  operation:

| X | У | (x | ٨ | ¬ | у) | ^ | (у | ٨ | ¬ | x)<-> | 0 |
|---|---|----|---|---|----|---|----|---|---|-------|---|
| 0 | 0 | 0  | 0 | 1 | 0  | 0 | 0  | 0 | 1 | 0     | 0 |
| 0 | 1 | 0  | 0 | 0 | 1  | 0 | 1  | 1 | 1 | 0     | 0 |
| 1 | 0 | 1  | 1 | 1 | 0  | 0 | 0  | 0 | 0 | 1     | 0 |
| 1 | 1 | 1  | 0 | 0 | 1  | 0 | 1  | 0 | 0 | 1     | 0 |

## Finishing the Example

And finally the 
 operation. Since this
 final column is all 1's, we have shown that
 the original compound proposition is a
 tautology.

| x | У | (x | ^ | <b>¬</b> | у) | ^ | (у | ^ | <b>¬</b> | x) | <-> | 0 |
|---|---|----|---|----------|----|---|----|---|----------|----|-----|---|
| 0 | 0 | 0  | 0 | 1        | 0  | 0 | 0  | 0 | 1        | 0  | 1   | 0 |
| 0 | 1 | 0  | 0 | 0        | 1  | 0 | 1  | 1 | 1        | 0  | 1   | 0 |
| 1 | 0 | 1  | 1 | 1        | 0  | 0 | 0  | 0 | 0        | 1  | 1   | 0 |
| 1 | 1 | 1  | 0 | 0        | 1  | 0 | 1  | 0 | 0        | 1  | 1   | 0 |

## Practice Clicker Question #3

- If I construct a truth table for the compound proposition "p  $\wedge$  (q  $\vee$  r)", how many ones will there be in the column for the final " $\wedge$ "?
- (a) 3
- (b) 5
- (c) 7
- (d) none of the above

# Not the Answer

#### Practice Clicker Answer #3

- If I construct a truth table for the compound proposition "p  $\wedge$  (q  $\vee$  r)", how many ones will there be in the column for the final " $\wedge$ "?
- (a) 3 (101, 110, 111 starts with 1 for p, cannot finish with 00 for q and r both false)
- (b) 5
- (c) 7
- (d) none of the above

## One More Venn Diagram

