1) Дан ориентированный граф $(\{V, s, t\}, E)$, где

$$s$$
 — исток,

t — сток,

V – множество промежуточных вершин v_i , $i=1,\ldots,n$,

E – множество ребер $e_i = (v_l, v_k), j = 1, ..., m$,

 c_i – пропускная способность ребра j, j = 1, ..., m,

 E_i^{IN} – множество ребер, входящих в вершину $i, i=1,\dots,n$,

 E_i^{OUT} – множество ребер, выходящих из вершины $i,\,i=1,...$, n,

 E_t^{IN} – множество ребер, входящих в вершину t,

 E_s^{OUT} – множество ребер, выходящих из вершины s.

А) Сформулировать задачу о максимальном потоке.

$$x_i$$
 — поток по ребру j ,

$$\begin{aligned} x_j &\leq c_j, \forall j = 1, \dots, m, \\ \sum_{j \in E_i^{IN}} x_j - \sum_{j \in E_i^{OUT}} x_j &= 0, \forall i \in 1, \dots, n, \\ x_j &\geq 0, \forall j = 1, \dots, m, \\ \sum_{j \in E_s^{OUT}} x_j &\rightarrow max \end{aligned}$$

Б) Сформулировать задачу о минимальном разрезе.

$$x_i$$
 – ребро e_i ,

 y_i – вершина v_i ,

$$\begin{aligned} x_{j} + y_{i} &\geq 1, \forall j, e_{j} = (s, v_{i}) \in E_{s}^{OUT}, \\ x_{j} - y_{i} &\geq 0, \forall j, e_{j} = (v_{i}, t) \in E_{t}^{IN}, \\ x_{j} + y_{l} - y_{k} &\geq 0, \forall j, e_{j} = (v_{k}, v_{l}) \in E \setminus (E_{s}^{OUT} \cup E_{t}^{IN}), \\ x_{j} &\geq 0, \forall j = 1, ..., m, \\ y_{i} &\geq 0, \forall j = 1, ..., n, \\ \sum_{j \in E} c_{j} x_{j} \rightarrow min \end{aligned}$$

Альтернативные постановки

Max-flow (Primal)				Min-cut (Dual)
variables: $ f , \{f_{uv} \mid (u,v) \in E\}$				variables: $\{d_{uv} \mid (u,v) \in E\}, \{p_u \mid u \in V\}$
maximize $ f $				minimize $\sum_{(u,v)\in E} c_{uv} d_{uv}$
subject to $oldsymbol{f_{uv}}$	≤	c_{uv}	$(u,v)\in E$	subject to $d_{uv} - p_u + p_v \ \geq \ 0 \ \ (u,v) \in E$
$\sum_{v:(v,u)\in E} f_{vu} - \sum_{v:(u,v)\in E} f_{uv}$	\leq	0	$u \in V, u \neq s, t$	$p_s-p_t \ \geq \ 1$
$ f + \sum_{v:(v,s) \in E} f_{vs} - \sum_{v:(s,v) \in E} f_{sv}$				$p_u \;\; \geq \;\; 0 \qquad \;\; u \in V$
$- f + \sum_{v:(v,t) \in E} f_{vt} - \sum_{v:(t,v) \in E} f_{tv}$				$d_{uv} \;\; \geq \;\; 0 (u,v) \in E$
f_{uv}	\geq	0	$(u,v)\in E$	