Modelling and Identification

Prof. Dr. Ping Zhang
Institute for Automatic Control
WS 2017/18

Organisation of this course

Chapter 1: Introduction

Chapter 2: Theoretical Modelling

Chapter 3: Experimental modelling

Chapter 4: Least-Squares methods

Chapter 5: Prediction error methods

Chapter 6: Instrumental variable methods

Chapter 7: Subspace identification methods (SS model!)

Chapter 8: Some practical aspects

Organisation of this course

Get transfer function from system response

For **simple systems**, it is sometimes possible to read the parameters of transfer functions **directly** from system response to a test signal.

Step response of 1. order system

Given a first order system described by

$$G(s) = \frac{K}{Ts + 1}$$

Under the control input signal $u(t) = a\sigma(t)$, a > 0, the system output is

$$y(s) = \frac{K}{Ts+1} \frac{a}{s} = aK \left(\frac{1}{s} - \frac{1}{s+\frac{1}{T}} \right)$$

$$y(t) = aK\left(1 - e^{-\frac{1}{T}t}\right)$$

$$\frac{dy}{dt}|_{t=0} = \frac{aK}{T}$$

Assume that the system is approximated by a first order system

$$G(s) = \frac{K}{Ts + 1}$$

Step response $(u(t) = a\sigma(t), a = 0.5)$

Read characteristic values:

- \triangleright final value y_{∞}
- \geq time T

Identification procedure:

- Calculate the gain $K = \frac{y_{\infty}}{a}$.
- Draw the tangent line at t = 0.
- 3. Read T

Assume that the system is approximated by a first order system

$$G(s) = \frac{K}{Ts+1}$$

Step response $(u(t) = a\sigma(t), a = 0.5)$

Read characteristic values:

- \triangleright final value y_{∞}
- \succ time $t_{0.63}$: the time at which the output reaches 63% of the final value

Identification procedure:

- Calculate the gain $K = \frac{y_{\infty}}{a}$.
- Read time $t_{0.63}$, i.e. the time at which the output reaches 63% of the final value
- 3. Get $T = t_{0.63}$.

Approximation by a first order system with derivative action

$$G(s) = \frac{K(1 + T_D s)}{1 + T s}$$

Step response $(u(t) = a\sigma(t), a = 0.5)$

Read characteristic values:

$$y(\infty)$$
$$y(0^+)$$
$$T$$

Approximation by a first order system with derivative action

$$G(s) = \frac{K(1 + T_D s)}{1 + T s}$$

Step response $(u(t) = a\sigma(t), a = 0.5)$

According to the initial value theorem,

$$\lim_{t \to 0^+} y(t) = \lim_{s \to \infty} sY(s)$$
$$= \lim_{s \to \infty} K \frac{T_D}{T} a$$

$$T_D = \frac{y(0^+)T}{Ka}$$

Identification procedure:

- Calculate the gain $K = \frac{y_{\infty}}{a}$.
- Draw the tangent at t = 0.
- Read T and $y(0^+)$.
- 4. Calculate $T_D = \frac{y(0^+)T}{\kappa a}$.

Example 1: Approximate the system with the following step response by

$$G(s) = \frac{K(1 + T_D s)}{1 + T s}$$

$$y_{\infty} = 2$$
 \Longrightarrow $K = \frac{y_{\infty}}{a} = 4$

$$T = 0.5$$

$$y(0^+) = 1$$

$$T_D = \frac{y(0^+)T}{Ka} = 0.25$$

$$G(s) = \frac{4(1+0.25s)}{1+0.5s}$$

Example 2: Approximate the system with the following step response by

$$G(s) = \frac{K(1 + T_D s)}{1 + T s}$$

$$y_{\infty} = 2 \quad \Longrightarrow \quad K = \frac{y_{\infty}}{a} = 4$$

$$T = 0.5$$

$$y(0^+) = 6$$

$$T_D = \frac{y(0^+)T}{Ka} = 1.5$$

$$G(s) = \frac{4(1+1.5s)}{1+0.5s}$$

Step response approach – systems with integral action

Approximation by a n-th system with integral action

$$G(s) = \frac{K}{s(1+Ts)}$$

$$\frac{dy}{dt} = Ka$$

$$K = \frac{\frac{dy}{dt}}{a}$$

Step response of 2. order system

Given a second order system described by

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Step response $(u(t) = a\sigma(t), a = 1, K = 2, \omega_n = 1)$

Step response of 2. order system

Step response of the **underdamped system** ($0 < \xi < 1$)

Final value:

$$y_{\infty} = Ka$$

Half period of the oscillation:

$$T = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}}$$

Overshoot:

$$M_p = \frac{y_p - y_\infty}{y_\infty} = e^{\frac{-\xi \pi}{\sqrt{1 - \xi^2}}} \times 100\%$$

Step response $(u(t) = a\sigma(t))$

$$y(t) = aK \left(1 - \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} \sin(\sqrt{1 - \xi^2} \omega_n t + \arccos \xi) \right)$$

Assume that the system is approximated by a second order system

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Step response $(u(t) = a\sigma(t))$

Read characteristic values:

- \triangleright final value y_{∞}
- \triangleright peak value y_p
- \succ time T

Identification procedure:

- Calculate the gain $K = \frac{y_{\infty}}{a}$.
- Read the overshoot M_{v} and the period T from the step response
- Calculate the damping ratio ξ based on M_p .
- Calculate ω_n based on T and ξ .

$$y_{\infty} = 2 \implies K = \frac{y_{\infty}}{a} = 4$$

$$y_{\infty} = 2$$
, $y_p = 2.5$ \longrightarrow $M_p = \frac{y_p - y_{\infty}}{y_{\infty}} = 25\%$

$$\xi = \frac{1}{\sqrt{1 + \left(\frac{\pi}{\ln M_p}\right)^2}} = 0.4037$$

$$T = 6.8$$
 $\omega_n = \frac{\pi}{T\sqrt{1-\xi^2}} = 0.5050$

$$G(s) = \frac{4 \times 0.5050^2}{s^2 + 2 \times 0.4037 \times 0.5050s + 0.5050^2}$$

Review: Step response of 2. order system

Step response of the **overdamped system** ($\xi > 1$)

$$T_a = T_1 \left(\frac{T_2}{T_1}\right)^{\frac{T_2}{T_2 - T_1}}$$

$$\frac{T_a}{T_1} = \mu^{\frac{\mu}{\mu - 1}}$$

$$\frac{T_a}{T_u} = \frac{1}{\mu^{\frac{-\mu}{\mu-1}} \left(1 + \mu + \frac{\mu}{\mu - 1} \ln \mu \right) - 1}$$

Key of identification: Nomogram for the calculation of T_1 , T_2

Identification procedure:

- Calculate the gain $K = \frac{y_{\infty}}{a}$.
- Determine the inflection point and the tangent line in the step reponse
- Read T_u and T_a 3.
- Determine μ based on $\frac{T_a}{T_{cc}}$ according to the Nomogram (see the blue curve)
- Determine T_1 according to the Nomogram (see the red curve) 5.
- Calculate $T_2 = \mu T_1$. 6.

$$y_{\infty} = 1.5 \quad \Longrightarrow \quad K = \frac{y_{\infty}}{a} = 3$$

$$T_u = 1.95, T_a = 18.95$$

$$\frac{T_a}{T_u} = 9.72$$

$$\mu = 1.3$$

$$\frac{T_a}{T_1} = 3.2$$

$$y_{\infty} = 1.5 \quad \Longrightarrow \quad K = \frac{y_{\infty}}{a} = 3$$

$$T_u = 1.95, T_a = 18.95$$

$$\frac{T_a}{T_u} = 9.72$$

$$\mu = 1.3$$

$$\frac{T_a}{T_1} = 3.2$$

$$T_1 = \frac{T_a}{3.2} = 5.92$$

$$T_2 = \mu T_1 = 7.70$$

