EHD LAB

NAME: Y.V.S HARISH

ROLL NO: 20171402

Video link: https://goo.gl/n3vM4e

Aim:

An arithmetic logic unit (ALU) is a multi-operation, combinational-logic digital function. It can perform a set of basic arithmetic operations and set of logic operations. The ALU has a number of selection lines to select a particular operation in the unit. The two data inputs from A are combined with the four inputs from B to generate an operation at the output F. The modes of operation are selected by using the select lines S[2:0].

SELECT LINE (S)	OPERATION
000	AND (&)
001	XOR ()
010	OR (^)
011	NAND
100	MULTIPLY (*)
101	ADDER(+)
110	SUBTRACT (-)
111	Default

CONSTRAINTS AND WORKING CONDITIONS:

- 1. Operations 0,1,2,3 are logical operations (000, 001, 010, 011).
- 2. Operations 4,5,6 are arithmetic operations (100, 101, 110).
- 3. All the logical operations are done bitwise i.e

$$a \& b => f$$
Where: $f[0] = a[0] \& b[0]$
 $f[1] = a[1] \& b[1]$

4. We are using a 4-bit output, since 4-bits are required to represent the answer in multiplication.

Eg.
$$3*3=9(1001)$$

- 5. In Subtraction we are doing a b.
- 6. In Subtraction the answer comes in 3 bits, as the 4th bit is not required during output and is set to 0. If the answer is negative the third bit (f[2]) will be 1. In this case the output will have magnitude equal to the 2's complement of the 3 bit number, and will be less than 0.

Eg.

1 - 3 will give output as 0110.,but expected output is -2.

Since it is only a 3 bit output we will consider 110.

Since F[2] is 1, it means that the number is negative.

Therefore magnitude = 2's complement(110) = 010 = 2, and it is negative.

Therefore the output will be interpret as -2, which is the expected output.

TEST BENCH OUTPUT

RTL ANALYSIS :(Schematic) Gate level

INSIDE MULTIPLIER

Inside Ripple (2 bit) adder:

Inside Subtractor:

INPUTS AND OUTPUTS:

SYNTHESIS SCHEMATIC:

LUT IMPLEMENTATION

LUT 6 (Ex):

IMPLEMENTATION (PLACE AND ROUTE)

Synthesis and Implementation Report

Start RTL Hierarchical Component Statistics
Hierarchical RTL Component report
Module alu
Detailed RTL Component Info :
+XORs :
2 Input 1 Bit XORs := 2
+Registers :
4 Bit Registers := 1
Module adder
Detailed RTL Component Info :
+XORs :
2 Input 1 Bit XORs := 1
Finished RTL Hierarchical Component Statistics
Start Part Resource Summary
Part Resources:
DSPs: 220 (col length:60)
BRAMs: 280 (col length: RAMB18 60 RAMB36 30)
Finished Part Resource Summary

Start Cross Boundary and Area Optimization
Finished Cross Boundary and Area Optimization : Time (s): cpu = 00:00:17 ; elapsed = 00:00:24 . Memory (MB): peak = 687.617 ; gain = 440.613
Report RTL Partitions:
+-++
RTL Partition Replication Instances
+-++
+-++
Start Applying XDC Timing Constraints
Finished Applying XDC Timing Constraints : Time (s): cpu = 00:00:29 ; elapsed = 00:00:36 . Memory (MB): peak = 687.617 ; gain = 440.613
Start Timing Optimization
Finished Timing Optimization : Time (s): cpu = 00:00:29 ; elapsed = 00:00:36 . Memory (MB): peak 687.617 ; gain = 440.613
Report RTL Partitions:
RTL Partition Replication Instances

+-++
+-+
Start Technology Mapping
Finished Technology Mapping : Time (s): cpu = 00:00:29 ; elapsed = 00:00:36 . Memory (MB): peak = 687.617 ; gain = 440.613
Report RTL Partitions:
RTL Partition Replication Instances
+-++
+-+
Start IO Insertion
Start Flattening Before IO Insertion
Finished Flattening Before IO Insertion
Start Final Netlist Cleanup
Finished Final Netlist Cleanup

Finished IO Insertion : Time (s): cpu = 00:00:30; elapsed = 00:00:37. Memory (MB): peak = 687.617; gain = 440.613

Report Check Netlist: +-----+ | Errors | Warnings | Status | Description Item +----+ |1 |multi_driven_nets | 0| 0|Passed |Multi driven nets | +-----+ **Start Renaming Generated Instances** Finished Renaming Generated Instances: Time (s): cpu = 00:00:30; elapsed = 00:00:37. Memory (MB): peak = 687.617; gain = 440.613 **Report RTL Partitions:** +-+----+ | | RTL Partition | Replication | Instances | +-+----+ +-+----+ **Start Rebuilding User Hierarchy** Finished Rebuilding User Hierarchy: Time (s): cpu = 00:00:30; elapsed = 00:00:37. Memory (MB): peak = 687.617; gain = 440.613 **Start Renaming Generated Ports**

```
Finished Renaming Generated Ports: Time (s): cpu = 00:00:30; elapsed = 00:00:37. Memory (MB):
peak = 687.617; gain = 440.613
Start Handling Custom Attributes
Finished Handling Custom Attributes: Time (s): cpu = 00:00:30; elapsed = 00:00:37. Memory
(MB): peak = 687.617; gain = 440.613
Start Renaming Generated Nets
Finished Renaming Generated Nets: Time (s): cpu = 00:00:30; elapsed = 00:00:37. Memory (MB):
peak = 687.617; gain = 440.613
Start Writing Synthesis Report
Report BlackBoxes:
+-+----+
| |BlackBox name |Instances |
+-+----+
+-+----+
Report Cell Usage:
+----+
| |Cell |Count |
+----+
|1 |BUFG | 1|
|2 |LUT2 | 1|
|3 |LUT4 | 1|
|4 |LUT5 | 1|
|5 |LUT6 | 4|
|6 |FDRE | 4|
|8 |OBUF | 4|
```

++
Report Instance Areas:
++++
Instance Module Cells
++
1 top 24
++
Finished Writing Synthesis Report : Time (s): cpu = 00:00:30 ; elapsed = 00:00:37 . Memory (MB): peak = 687.617 ; gain = 440.613
Table of Contents
1. Slice Logic
1.1 Summary of Registers by Type
2. Memory
3. DSP
4. IO and GT Specific
5. Clocking
6. Specific Feature
7. Primitives
8. Black Boxes
9. Instantiated Netlists
1. Slice Logic

```
1
   Site Type | Used | Fixed | Available | Util% |
+----+
| LUT as Memory | 0 | 0 | 17400 | 0.00 |
| Slice Registers | 4 | 0 | 106400 | <0.01 |
| Register as Flip Flop | 4 | 0 | 106400 | <0.01 |
| Register as Latch | 0 | 0 | 106400 | 0.00 |
| F7 Muxes | 0 | 0 | 26600 | 0.00 |
| F8 Muxes | 0 | 0 | 13300 | 0.00 |
+-----+
* Warning! The Final LUT count, after physical optimizations and full implementation, is typically
lower. Run opt_design after synthesis, if not already completed, for a more realistic count.
1.1 Summary of Registers by Type
| Total | Clock Enable | Synchronous | Asynchronous |
+-----+
|0 | _| -| -|
| 0 | _ | - | Set |
        _ | - | Reset |
|0 |
| 0 | _ | Set | - |
0 |
        _ |
             Reset |
                    - |
|0 |
       Yes |
             - |
                    - [
0 |
        Yes | - | Set |
0 |
        Yes | - |
                   Reset |
0 |
        Yes | Set | - |
|4 |
       Yes |
             Reset | - |
```

2. Memory -----+ | Site Type | Used | Fixed | Available | Util% | +----+ | Block RAM Tile | 0 | 0 | 140 | 0.00 | | RAMB36/FIFO* | 0 | 0 | 140 | 0.00 | | RAMB18 | 0 | 0 | 280 | 0.00 | +----+ * Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate only one FIFO36E1 or one FIFO18E1. However, if a FIFO18E1 occupies a Block RAM Tile, that tile can still accommodate a RAMB18E1 3. DSP -----+ | Site Type | Used | Fixed | Available | Util% | +-----+ DSPs | 0 | 0 | 220 | 0.00 | +----+ 4. IO and GT Specific +----+ Site Type | Used | Fixed | Available | Util% | 1 +-----+ | Bonded IOB | 12 | 0 | 200 | 6.00 | | Bonded IPADs | 0 | 0 | 2 | 0.00 | | Bonded IOPADs | 0 | 0 | 130 | 0.00 | | 0 | 0 | 4 | 0.00 | | PHY_CONTROL | PHASER_REF | 0 | 0 | 4 | 0.00 | | OUT_FIFO | 0 | 0 | 16 | 0.00 |

```
| IBUFDS
          | 0 | 0 | 192 | 0.00 |
| 0 | 0 | 200 | 0.00 |
| ILOGIC
| OLOGIC | 0 | 0 | 200 | 0.00 |
5. Clocking
-----+
| Site Type | Used | Fixed | Available | Util% |
+-----+
| BUFGCTRL | 1 | 0 | 32 | 3.13 |
| BUFIO | 0 | 0 | 16 | 0.00 |
| MMCME2_ADV | 0 | 0 | 4 | 0.00 |
| PLLE2_ADV | 0 | 0 | 4 | 0.00 |
| BUFMRCE | 0 | 0 | 8 | 0.00 |
| BUFHCE | 0 | 0 | 72 | 0.00 |
| BUFR | 0 | 0 | 16 | 0.00 |
+-----+
6. Specific Feature
| Site Type | Used | Fixed | Available | Util% |
+-----+
| BSCANE2 | 0 | 0 | 4 | 0.00 |
| CAPTUREE2 | 0 | 0 | 1 | 0.00 |
```

```
| DNA_PORT | 0 | 0 | 1 | 0.00 |
| EFUSE_USR | 0 | 0 | 1 | 0.00 |
| FRAME_ECCE2 | 0 | 0 | 1 | 0.00 |
| ICAPE2 | 0 | 0 | 2 | 0.00 |
| STARTUPE2 | 0 | 0 | 1 | 0.00 |
+----+
7. Primitives
-----+
| Ref Name | Used | Functional Category |
+----+
| IBUF | 8 | IO |
| OBUF | 4 | IO |
| LUT6 | 4 | LUT |
| FDRE | 4 | Flop & Latch |
| LUT5 | 1 | LUT |
|LUT4 | 1 | LUT |
| LUT2 | 1 | LUT |
```

| BUFG | 1 | Clock |

POWER REPORT

Reference for Video:

