A/D conversion

CPE 381 Foundations of Signals & Systems for Computer Engineers

Dr. Emil Jovanov

1

A/D conversion Background

- □ sampling analog signals
- ☐ fs > 2 B
- ☐ signal to noise ratio
- ☐ dynamic range

2

F149 A/D converter

- 8 external inputs
- 4 internal inputs
 - Vref+
 - Vref-
 - Vcc
 - Temperature
- Conversion (CONSEQ)
 - Single channel
 - · Single conversion
 - Multiple conversions
 - Sequence of channels
 - Single conversion
 - Multiple conversions
 - Sequence starts from CStartAdd in ADC12CTL1
- · 200 ksps, on chip RC oscillator
- Sixteen storage registers for conversion results
- Separate power down

6

AD conversion

- n bit AD converter
 - range of values: $0 ... 2^n 1$
- References V_{r+} and V_{r-}
- AD resolution $\Delta = \frac{range}{number\ of\ steps} = \frac{V_{r+} V_{r-}}{2^n 1}$
- AD converter output

$$N_{adc} = \frac{v_{in} - V_{r-}}{\Delta}$$

7

F149 A/D converter #2

- 12-bit converter; values: 0 4095
- Nadc = 4095*(Vin-Vr-)/(Vr+-Vr-)
- 3 LSBs resolved resistively
 - 200 µA from the reference
 - possible problems with external reference
 - Vcc
 - Temperature
- Possible errors
 - Coupling (PCB techniques)
 - Leakage current
 - ± 50 nA (page 43 F149 datasheet)
 - Err=4.096*(leakage_curr[μA]*source_resistance[kΩ])/(Vr+-Vr-)
 - 10 $K\Omega$ source resistance with 1.5V reference gives 1.4LSB error
 - Input switching currents

8