2.2 Fixed-Point Iteration

A *fixed point* for a function is a number at which the value of the function does not change when the function is applied.

The number p is a **fixed point** for a given function g if g(p) = p.

In this section we consider the problem of finding solutions to fixed-point problems and the connection between the fixed-point problems and the root-finding problems we wish to solve. Root-finding problems and fixed-point problems are equivalent classes in the following sense:

 Given a root-finding problem f(p) = 0, we can define functions g with a fixed point at p in a number of ways, for example, as

$$g(x) = x - f(x)$$
 or as $g(x) = x + 3f(x)$.

• Conversely, if the function g has a fixed point at p, then the function defined by

$$f(x) = x - g(x)$$

has a zero at p.

Although the problems we wish to solve are in the root-finding form, the fixed-point form is easier to analyze, and certain fixed-point choices lead to very powerful root-finding techniques.

We first need to become comfortable with this new type of problem, and to decide when a function has a fixed point and how the fixed points can be approximated to within a specified accuracy.

Determine any fixed points of the function $g(x) = x^2 - 2$.

A fixed point p for g has the property that

$$p = g(p) = p^2 - 2$$
 which implies that $0 = p^2 - p - 2 = (p+1)(p-2)$.

A fixed point for g occurs precisely when the graph of y = g(x) intersects the graph of y = x, so g has two fixed points, one at p = -1 and the other at p = 2. These are shown in Figure 2.3.

The following theorem gives sufficient conditions for the existence and uniqueness of a fixed point.

- (i) If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$, then g has at least one fixed point in [a,b].
- (ii) If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$,

then there is exactly one fixed point in [a, b]. (See Figure 2.4.)

The equation $x^3 + 4x^2 - 10 = 0$ has a unique root in [1, 2]. There are many ways to change the equation to the fixed-point form x = g(x) using simple algebraic manipulation. For example, to obtain the function g described in part (c), we can manipulate the equation $x^3 + 4x^2 - 10 = 0$ as follows:

$$4x^2 = 10 - x^3$$
, so $x^2 = \frac{1}{4}(10 - x^3)$, and $x = \pm \frac{1}{2}(10 - x^3)^{1/2}$.

To obtain a positive solution, $g_3(x)$ is chosen. It is not important for you to derive the functions shown here, but you should verify that the fixed point of each is actually a solution to the original equation, $x^3 + 4x^2 - 10 = 0$.

(a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 (b) $x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{1/2}$

(c)
$$x = g_3(x) = \frac{1}{2}(10 - x^3)^{1/2}$$
 (d) $x = g_4(x) = \left(\frac{10}{4+x}\right)^{1/2}$

(e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

With $p_0 = 1.5$, Table 2.2 lists the results of the fixed-point iteration for all five choices of g.

n	(a)	(b)	(c)	(d)	(e)
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.732	2.9969	1.402540804	1.367376372	1.365262015
3	-469.7	$(-8.65)^{1/2}$	1.345458374	1.364957015	1.365230014
4	1.03×10^{8}		1.375170253	1.365264748	1.365230013
5			1.360094193	1.365225594	
6			1.367846968	1.365230576	
7			1.363887004	1.365229942	
8			1.365916734	1.365230022	
9			1.364878217	1.365230012	
10			1.365410062	1.365230014	
15			1.365223680	1.365230013	
20			1.365230236		
25			1.365230006		
30			1.365230013		

The actual root is 1.365230013, as was noted in Example 1 of Section 2.1. Comparing the results to the Bisection Algorithm given in that example, it can be seen that excellent results have been obtained for choices (c), (d), and (e) (the Bisection method requires 27 iterations for this accuracy). It is interesting to note that choice (a) was divergent and that (b) became undefined because it involved the square root of a negative number.

Let us reconsider the various fixed-point schemes described in the preceding illustration in light of the Fixed-point Theorem 2.4 and its Corollary 2.5.

- (a) For $g_1(x) = x x^3 4x^2 + 10$, we have $g_1(1) = 6$ and $g_1(2) = -12$, so g_1 does not map [1, 2] into itself. Moreover, $g'_1(x) = 1 3x^2 8x$, so $|g'_1(x)| > 1$ for all x in [1, 2]. Although Theorem 2.4 does not guarantee that the method must fail for this choice of g, there is no reason to expect convergence.
- (b) With $g_2(x) = [(10/x) 4x]^{1/2}$, we can see that g_2 does not map [1, 2] into [1, 2], and the sequence $\{p_n\}_{n=0}^{\infty}$ is not defined when $p_0 = 1.5$. Moreover, there is no interval containing $p \approx 1.365$ such that $|g_2'(x)| < 1$, because $|g_2'(p)| \approx 3.4$. There is no reason to expect that this method will converge.
- (c) For the function $g_3(x) = \frac{1}{2}(10 x^3)^{1/2}$, we have

$$g_3'(x) = -\frac{3}{4}x^2(10 - x^3)^{-1/2} < 0$$
 on [1, 2],

so g_3 is strictly decreasing on [1, 2]. However, $|g_3'(2)| \approx 2.12$, so the condition $|g_3'(x)| \leq k < 1$ fails on [1, 2]. A closer examination of the sequence $\{p_n\}_{n=0}^{\infty}$ starting with $p_0 = 1.5$ shows that it suffices to consider the interval [1, 1.5] instead of [1, 2]. On this interval it is still true that $g_3'(x) < 0$ and g_3 is strictly decreasing, but, additionally,

$$1 < 1.28 \approx g_3(1.5) \le g_3(x) \le g_3(1) = 1.5,$$

for all $x \in [1, 1.5]$. This shows that g_3 maps the interval [1, 1.5] into itself. It is also true that $|g_3'(x)| \le |g_3'(1.5)| \approx 0.66$ on this interval, so Theorem 2.4 confirms the convergence of which we were already aware.

(d) For $g_4(x) = (10/(4+x))^{1/2}$, we have

$$|g_4'(x)| = \left| \frac{-5}{\sqrt{10}(4+x)^{3/2}} \right| \le \frac{5}{\sqrt{10}(5)^{3/2}} < 0.15, \text{ for all } x \in [1,2].$$

The bound on the magnitude of $g'_4(x)$ is much smaller than the bound (found in (c)) on the magnitude of $g'_3(x)$, which explains the more rapid convergence using g_4 .

(e) The sequence defined by

$$g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

converges much more rapidly than our other choices. In the next sections we will see where this choice came from and why it is so effective.

From what we have seen.

 Question: How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem?

might have

Answer: Manipulate the root-finding problem into a fixed point problem that satisfies the
conditions of Fixed-Point Theorem 2.4 and has a derivative that is as small as possible
near the fixed point.

Solved Example of Fixed Point iteration Method:

EXAMPLE 6.1 Simple Fixed-Point Iteration

Problem Statement. Use simple fixed-point iteration to locate the root of $f(x) = e^{-x} - x$.

Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as $x_{i \perp 1} = e^{-x_i}$

Starting with an initial guess of $x_0 = 0$, this iterative equation can be applied to compute:

i	\mathbf{x}_{t}	ε _σ , %	$ \varepsilon_t $, %	$ \varepsilon_t _i/ \varepsilon_t _{i-1}$
0	0.0000		100.000	
1	1.0000	100.000	76.322	0.763
2	0.3679	171.828	35.135	0.460
3	0.6922	46.854	22.050	0.628
4	0.5005	38.309	11.755	0.533
5	0.6062	17.447	6.894	0.586
6	0.5454	11.157	3.835	0.556
7	0.5796	5.903	2.199	0.573
8	0.5601	3.481	1.239	0.564
9	0.5711	1.931	0.705	0.569
10	0.5649	1.109	0.399	0.566

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

FIGURE 6.2

Two alternative graphical methods for determining the root of $f(x) = e^{-x} - x$. (a) Root at the point where it crosses the x axis; (b) root at the intersection of the component functions.