Math 504, 10/31

Continuing where we left off last time, let M, N be left R-modules. Last time we constructed a projective resolution of $M: \cdots P_n \cdots \to P_0 \to M \to 0$; applying hom(--,N) and omitting the first term, we have a sequence $0 \rightarrow$ $hom(P_0, N) \to hom(P_1, N) \to \cdots$ which is such that if we let d_i denote the map from hom (P_i, N) to hom (P_{i+1}, N) , then $d_{i+1}d_i = 0$. We call such a sequence C a cochain complex. We may form the quotient K_i/I_{i-1} of the kernel K_i of d_i by the image I_{i-1} of d_{i-1} ; the elements of K_i are called *i-cocycles* and those of I_{i-1} (i-1)-coboundaries. The quotient K_i/I_i-1 is then called the ith cohomology group $H^i(C)$ of C; in this particular setting it is denoted $\operatorname{Ext}^i_R(M,N)$ and called the *i*th Ext group of M and N (as R-modules). (This group is only an abelian group, not an R-module.) Here "Ext" should be thought of as standing for "extension"; it turns out that $\operatorname{Ext}_{R}^{1}(M,N)$ measures extensions of M by N, that is, all short exact sequences $0 \to N \to P \to M \to 0$ of R-modules (up to an equivalence defined later). We call the functors $\operatorname{Ext}_R^i(--,N)$ (higher (right) derived functors of hom, since the functor hom(--, N) is left but not right exact; we will later see that a short exact sequence of R-modules gives rise to a long exact sequence whose first three nonzero terms are hom groups and whose remaining terms are Ext groups. It also turns out that the groups $\operatorname{Ext}_{R}^{i}(M,N)$ do not depend on our choice of projective resolution of M. We now give some examples.

Suppose first that $R = \mathbf{Z}, M = \mathbf{Z}_n$. Then a projective resolution of M is given by $0 \to \cdots \to 0 \to \mathbf{Z} \to \mathbf{Z} \to \mathbf{Z}_n \to 0$, where the map from **Z** to **Z** is multiplication by n; in effect this is a finite resolution. Taking Ext groups, we find that $\operatorname{Ext}^0_{\mathbf{Z}}(M,N)$ consists of all homomorphisms from **Z** to N vanishing on multiples of n, or equivalently homomorphisms from \mathbf{Z}_n to N, while $\operatorname{Ext}^1_{\mathbf{Z}}(M,N)$ is hom(\mathbf{Z}, N) modulo hom($n\mathbf{Z}, N$), which is isomorphic to N/nN. The higher Ext groups $\operatorname{Ext}_{\mathbf{Z}}^{i}(M,N)$ are 0 (for $i \geq 2$). For a more interesting, but more complicated example, take $R = \mathbf{Z}_n, M = \mathbf{Z}_d$, where d is a divisor of n, say n = dm. Now a projective resolution of M is given by $\cdots \mathbf{Z}_n \to \mathbf{Z}_n \to \cdots \to \mathbf{Z}_n$ $Z_n \to Z_d \to 0$, where the maps from one copy of \mathbf{Z}_n to the next are alternately given by multiplying by m and multiplying by d, the rightmost map from \mathbf{Z}_n to \mathbf{Z}_n is multiplication by d, and the map from \mathbf{Z}_n to \mathbf{Z}_d is the canonical one (thought of as multiplication by m). Here we have $\operatorname{Ext}_{\mathbf{Z}_n}^0(\mathbf{Z}_d, N) = \operatorname{hom}(\mathbf{Z}_d, N)$ (as before; this is a general fact holding for left modules over any ring R), but now the other Ext groups toggle: $\operatorname{Ext}_{\mathbf{Z}_n}^i(\mathbf{Z}_d, N) = {}_m M/dM$ if i is odd, where ${}_{m}M$ denotes $\{x \in M : mx = 0\}$, while $\operatorname{Ext}_{\mathbf{Z}_{m}}^{i}(\mathbf{Z}_{d}, N) = {}_{d}M/mM$ if i is even. Many Ext groups exhibit this periodic behavior; many others vanish in high degrees, as we saw in the first example. We also see from these two examples that $\operatorname{Ext}_R(M,N)$ depends on R as well as M and N, as indicated by the notation.

More generally, as noted above, $\operatorname{Ext}_R^0(M,N) \cong \operatorname{hom}_R(M,N)$ for any Rmodules M,N and any ring R. If R is a PID and M is finitely generated, then
we have seen that M is the quotient of R^n for some n be a free submodule which
is the column span of an $n \times n$ matrix A over R. If we make A act on N^n via

left multiplication (regarding N^n as consisting of column vectors over N), then $\operatorname{Ext}^1_R(M,N) \cong n^n/AN^n$, while the Ext groups $\operatorname{Ext}^i_R(M,N)$ are 0 for $i \geq 2$.

Why don't the Ext groups depend on the choice of projective resolution of M? To answer this, we begin by noting that, given an R-module map f from M to N and projective resolutions $\{P_i\}$ and $\{Q_i\}$ of M, N, respectively, an easy inductive argument yields maps $f_i: P_i \to Q_i$ making the obvious diagram combining the two resolutions commute; applying $\hom_R(--,P)$ to this diagram, we get a map from $\operatorname{Ext}^i_R(M,P)$ to $\operatorname{Ext}^i_R(N,P)$ (so that $\operatorname{Ext}^i_R(--,P)$ is indeed a covariant functor). Using something you will construct in homework called a sl cochain homotopy, you will show that the induced map on Ext groups is always 0 if f=0; whence it will follow that any two projective resolutions of M give rise to isomorphic Ext groups with a fixed module N.