Genome Analysis: Basic sequence classification

Dr. Jared Simpson
Ontario Institute for Cancer Research
&
Department of Computer Science
University of Toronto

Picking up signals

So far, we've focused on how to stitch fragments of evidence into longer units, i.e. genomes

Once the genome is assembled, we can ask more questions:

Where are the genes?

Where/what is the functional DNA?

What's different about the DNA in different tissues?

In what abundance do we find various molecules?

What differences exist between individuals?

Picking up signals

Through many experiments, we know much more about the genome than just its DNA sequence:

Experimentally observed products, e.g. messenger RNAs

Epigenetic marks

Sequence conservation among related species

Sites that vary across individuals

40 K nt region of chromosome 17 http://genome.ucsc.edu/cgi-bin/hgTracks

CpG Islands

A signal we can discern from genome sequence alone: CpG islands

Dinucleotide "CG" (AKA "CpG") is special because the C can possibly have a *methyl group* attached

Proteins involved in gene expression can be repelled or attracted by the methyl group

CpG Islands

CpG island: part of the genome where CG occurs particularly frequently

CpG islands usually regulate expression of nearby genes

http://missinglink.ucsf.edu/lm/genes_and_genomes/methylation.html

Cells from different tissues have different patterns of CpG methylation, in turn giving them different gene expression profiles

Key *epigenetic* phenomenon

Background: Epigenetics

http://en.wikipedia.org/wiki/File:Stem_cells_diagram.png

Background: Epigenetics

http://upload.wikimedia.org/wikipedia/commons/d/dd/Epigenetic_mechanisms.jpg

Background: Epigenetics

Study of how characteristics are inherited across generations without changes to the DNA sequence itself

How does a heart cell know it's a heart cell?

How does a calico cat get its splotches?

Epigenetic changes are important in various diseases: Fragile X, Rett, and Angelman syndromes, cancer

http://en.wikipedia.org/wiki/Calico_cat

CpG Islands

Task: design a method that, given a candidate string, scores it according to how confident we are it came from inside a CpG island

Ideally, scores should be *probabilities*

Scores that aren't probabilities are still useful, mainly for ranking

Probabilities are more interpretable, capturing how likely we are to be right or wrong.

Sample space (Ω) is set of all possible outcomes

E.g. $\Omega = \{$ all possible rolls of 2 dice $\}$

An event (A, B, C, ...) is a subset of Ω

 $A = \{ \text{ rolls where first die is odd } \}, B = \{ \text{ rolls where second die is even } \}$

We're often concerned with assigning a probability to an event

P(A): fraction of all possible outcomes that are in A

$$P(A) = |A| / |\Omega| = 18 / 36 = 0.5$$

P(A, B): fraction of all possible outcomes that are in both A and B

$$P(A, B) = |A \cap B| / |\Omega| = 9 / 36 = 0.25$$

Sometimes written $P(A \cap B)$ or P(AB)

Joint probability of A and B

 $P(A \mid B)$: fraction of outcomes in B that are also in A

$$P(A \mid B) = |A \cap B| / |B| = 9 / 18 = 0.5$$

 $P(A \mid B)$ can be rewritten P(A, B) / P(B)

	A	Ω
В		

Events A and B are independent if $P(A \mid B) = P(A)$

So
$$P(A, B) = P(B) P(A \mid B) = P(A) P(B)$$

Random variable is a variable whose possible values are outcomes of a random phenomenon

E.g. random variable X represents the outcome of a flip of a fair coin: p(X = heads) = p(X = tails) = 0.5.

Sequence model is a probabilistic model that associates probabilities with sequences

Useful for weighing the relative likelihood of seeing certain strings under certain circumstances

What *k*-mers am I likely to see inside versus outside of a CpG island?

Given a genome, where are the genes?

What's the probability of next character being A if previous characters were GATTAC?

Right: a model for eukaryotic gene finding

Image: Bill Majoros, http://www.genezilla.org/design.html

Sequence models learn from examples

Say we have sampled 100K 5-mers from inside CpG islands and 100K 5-mers from outside

Can we guess whether CGCGC came from a CpG island?

# CGCGC inside	315
# CGCGC outside	12

$$p(inside) = 315/(315 + 12) = 0.963$$

Python example: http://nbviewer.ipython.org/7413873

Let P(x) be the probability of sequence x as assigned by the model

$$P(X) = P(X_k, X_{k-1}, ... X_1)$$
Joint probability of all sequence items appearing as they do

P(x) could be probability that DNA string x is part of a CpG island

To estimate P(x), count # times x appears in the training set labeled inside divided by total # times x appears in training set

But for sufficiently long k, we might not see *any* occurrences of x, or very few. Joint probabilities for rare events are hard to estimate well.

$$P(x) = P(x_k, x_{k-1}, ... x_1)$$

Re-write with conditional probability:

$$= P(X_{k} \mid X_{k-1}, ... X_{1}) P(X_{k-1}, ... X_{1})$$

$$= P(X_{k} \mid X_{k-1}, ... X_{1}) P(X_{k-1} \mid X_{k-2}, ... X_{1}) P(X_{k-2}, ... X_{1})$$
(etc)

Add a simplifying assumption: to know the probability of having a particular item x_k , we only have to know the previous item: x_{k-1}

Formally: random variable x_k is *conditionally independent* of $x_1 \dots x_{k-2}$ given x_{k-1}

Informally: "the future is independent of the past given the present"

Add a simplifying assumption: to know the probability of having a particular item x_k , we only have to know the previous item: x_{k-1}

$$P(x) = P(X_{k}, X_{k-1}, ... X_{1})$$

$$= P(X_{k} | X_{k-1}, ... X_{1}) P(X_{k-1}, ... X_{1})$$

$$= P(X_{k} | X_{k-1}, ... X_{1}) P(X_{k-1} | X_{k-2}, ... X_{1}) P(X_{k-2}, ... X_{1})$$
(etc) drop (bunch more drops once this is expanded)

$$\approx P(X_k \mid X_{k-1}) P(X_{k-1} \mid X_{k-2}) \dots P(X_2 \mid X_1) P(X_1)$$

Markov property / Markov assumption

It's a big assumption, but it's often reasonable and it makes the model much easier to work with

Assigning a probability to a sequence using Markov property:

$$P(x) \approx P(x_k \mid x_{k-1}) P(x_{k-1} \mid x_{k-2}) \dots P(x_2 \mid x_1) P(x_1)$$
Markov property

Say x is a nucleotide k-mer

 $P(x_i \mid x_{i-1})$ probability of seeing nucleotide x_i in i^{th} position given that previous nucleotide is x_{i-1}

Shorthand: P(G I C) = probability of G given previous is C

Say someone gives us the sequences of several CpG islands. How do we estimate, say, P(G I C)?

P(GIC) = # times CG occurs / # times C occurs

Given CpG island sequences from human chromosome 1, count nucleotide and dinucleotide occurrences and estimate all 16 possible $P(x_i \mid x_{i-1})$:

P(AIA) =# times AA occurs / # times A occurs
P(CIA) = # times AC occurs / # times A occurs
P(GIA) = # times AG occurs / # times A occurs
P(TIA) = # times AT occurs / # times A occurs
P(AIC) = # times CA occurs / # times C occurs
(etc)

Given CpG island sequences from human chromosome 1, count nucleotide and dinucleotide occurrences and estimate all 16 possible $P(x_i \mid x_{i-1})$:

```
>>> iTab, nTab = islandTransitionTables(fn, ifn)
        >>> print iTab
           0.18544138
                                               0.13724053]
                       0.27640458
                                   0.40091352
           0.18958227
                                               0.19812684]
                      0.35905063
                                   0.25324026
Xi-1
           0.17268916
                      0.33011349
                                   0.35610656
                                               0.14109079]
           0.09410222 0.34163592
                                   0.37686698
                                               0.18739488]]
                            C
                                        G
              Α
                                    X_{i}
                                                                P(TIG
```

Rows sum to 1

Python example: http://nbviewer.ipython.org/7413873

We can do the same for dinucleotides *outside* of CpG islands

```
>>> iTab, nTab = islandTransitionTables(fn, ifn)
           >>> print iTab
                                                  0.13724053]
              0.18544138 0.27640458
                                      0.40091352
                                      0.25324026
                                                  0.19812684]
              0.18958227
                          0.35905063
 Inside
              0.17268916 0.33011349
                                      0.35610656
                                                  0.14109079]
              0.09410222 0.34163592
                                      0.37686698
                                                  0.18739488]]
               print nTab
              0.2948135
                                      0.28696205
                                                  0.22354548]
                          0.19467897
                                                  0.31730697]
              0.32681187 0.29415529
                                      0.06172587
Outside
              0.25713351
                                                  0.21509084]
                          0.23354071
                                      0.29423494
              0.17956538
                          0.23250026
                                      0.29462341
                                                  0.29331096]]
                  Α
                              C
                                           G
```

Notice anything interesting about the outside conditional probabilities?

P(G I C) is low, matching our expectation that there are few CpGs outside islands

Markov chain is a probabilistic automaton

Each edge has a *transition*probability: probability that edge's destination is the next node visited after edge's source

Here, nodes labels are symbols and transition labels are conditional probabilities

Recall how we assign a probability to a single string

$$P(x) \approx P(x_k \mid x_{k-1}) P(x_{k-1} \mid x_{k-2}) \dots P(x_2 \mid x_1) P(x_1)$$

Markov property

For simplicity, drop $P(x_1)$

$$P(x_{k} | x_{k-1}) P(x_{k-1} | x_{k-2}) ... P(x_{2} | x_{1}) P(x_{1})$$

$$P(x) \approx P(x_k | x_{k-1}) P(x_{k-1} | x_{k-2}) ... P(x_2 | x_1)$$

P(x) now equals product of all the Markov chain edge weights on our string-driven walk through the chain


```
>>> iTab, nTab = islandTransitionTables(fn, ifn)
       >>> print iTab
          0.18544138
                      0.27640458
                                  0.40091352 0.13724053
          0.18958227
                      0.35905063
                                  0.25324026
                                               0.19812684]
X<sub>i-1</sub> C
          0.17268916
                      0.33011349
                                  0.35610656
                                               0.14109079]
          0.37686698
                                               0.18739488]]
             Α
                             C
                                              G
                                   X_{i}
                                          x = GATC
                                          P(x) = P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1)
                                          P(x) = P(C \mid T) P(T \mid A) P(A \mid G)
                                                = 0.34163592 *
                                                   0.13724053 *
                                                   0.17268916
                                                = 0.00809675
                                                     of ENGINEERING
```

To avoid repeated multiplies yielding small numbers, we switch to log domain

$$\log P(x) \approx \log \left[P(x_k \mid x_{k-1}) P(x_{k-1} \mid x_{k-2}) \dots P(x_2 \mid x_1) \right]$$

$$= \log P(x_k \mid x_{k-1}) + \log P(x_{k-1} \mid x_{k-2}) + \dots + \log P(x_2 \mid x_1)$$

$$= \sum_{i=2}^{k} \log P(x_i \mid x_{i-1}) \qquad \text{Switching to logs, multiplies become adds}$$

We'll use base-2 logs


```
>>> iTab, nTab = islandTransitionTables(fn, ifn)
        >>> print numpy.log2(iTab)
         [[-2.43096492 -1.85514658 -1.31863704 -2.86522151]
          [-2.39910406 -1.4777408 -1.98142131 -2.33550376]
X<sub>i-1</sub> C G
           -2.53375061 <mark>-1.59896599</mark> -1.48961909 -2.82530423]
          [-3.40962748[-1.54946844]-1.40787269 -2.41584653]]
               Α
                               C
                                            G
                                        X_i
                                                x = GATC
                                                log P(x) = \sum_{i=2}^{3} log P(x<sub>i</sub> | x<sub>i-1</sub>)
                                                           = -1.54946844 +
                                                              -2.86522151 +
                                                              -2.53375061
                                                           = -7.30174249
                                                             of ENGINEERING
```

P(x) given the inside-CpG model is helpful, but we really want to know which model is better, inside CpG or outside CpG?

Use ratio: $\frac{P(x) \text{ from inside model}}{P(x) \text{ from outside model}}$

Taking log, we get *log ratio*:
$$S(x) = log \frac{P(x) \text{ inside CpG}}{P(x) \text{ outside CpG}}$$

If inside more probable than outside, fraction is > 1 and log ratio is > 0. Otherwise, fraction is ≤ 1 and log ratio is ≤ 0 .

$$S(x) = log \frac{P(x) inside CpG}{P(x) outside CpG}$$

=
$$log [P(x) inside CpG] - log [P(x) outside CpG]$$

$$= \sum_{i=2}^{k} (\log [P(x_i | x_{i-1}) \text{ inside CpG}]) - \sum_{i=2}^{k} \log ([P(x_i | x_{i-1}) \text{ outside CpG}])$$

$$= \sum_{i=2}^{k} \left(\log \left[P(x_i \mid x_{i-1}) \text{ inside CpG} \right] - \log \left[P(x_i \mid x_{i-1}) \text{ outside CpG} \right] \right)$$

New table: take elementwise log of the inside/outside tables, subtract outside from inside


```
>>> iTab, nTab = islandTransitionTables(fn, ifn)
           >>> print iTab
              0.20328697
                         0.26144423 0.40629367
                                               0.12897512]
  Inside
              0.18175425
                         0.35880255
                                    0.24915835
                                               0.21028485]
              0.17900663 0.32594344 0.35910409
                                               0.13594584]
              0.09718687
                         0.34541934
                                               0.20220973]]
                                    0.35518406
           >>> print nTab
              0.32756059
                         0.17183665 0.24355314 0.25704963]
                         0.25880566
                                    0.04404104
                                               0.34496977]
              0.35218354
 Outside
              0.28883529
                                               0.24347803]
                         0.20906356 0.25862313
              0.21890134
                         0.20417181 0.24903103
                                               0.32789582]]
           >>> lrTab = numpy.log2(iTab) - numpy.log2(nTab)
           >>> print lrTab
             -0.68824404
                         0.6054655 0.73828635 -0.99495413]
             -0.95433841
                         0.471321 2.5001426
                                              -0.71412499]
Log ratio
             -1.17144749
                         0.75856518
                                    0.51224132 -0.69738508]]
                                C
                 Α
                                               G
```


Now, given a string x, we can easily assign it a log ratio "score" S(x):

$$S(x) = \log \frac{P(x) \text{ inside CpG}}{P(x) \text{ outside CpG}}$$

$$\approx \sum_{i=2}^{K} \left(\log \left[P(x_i \mid x_{i-1}) \text{ inside CpG} \right] - \log \left[P(x_i \mid x_{i-1}) \text{ outside CpG} \right] \right)$$


```
>>> iTab, nTab = islandTransitionTables(fn, ifn)
       >>> lrTab = numpy.log2(iTab) - numpy.log2(nTab)
       >>> print lrTab
       [[-0.66883939 0.50568449 0.48243108 -0.70386181]
Xi-1 C G T
        [-0.78563635 0.28760934 2.03655959 -0.67945489]
        [-0.57434013 0.49928806 0.27534041 -0.60832223]
        0.35518335 -0.6463494 ]]
                        C
            Α
                                    G
                                 X_{i}
                                       x = GATC
                                       S(x) = 0.55522735 +
                                              -0.70386181 +
                                              -0.57434013
                                            = -0.72297459
                                          Negative, so probability with
                                          outside model is greater
```

$$S(x) = \log \frac{P(x) \text{ inside CpG}}{P(x) \text{ outside CpG}}$$

S(CGCGCGCGCGCGCGCGCGCGCG) = 32.246609048

S(ATTCTACTATCTATCTATCTTCT) = -9.501209765

Python example: http://nbviewer.ipython.org/7413873

Markov chain: experiment

Drew 1,000 100-mers from inside CpG islands on chromosome 1, and another 1,000 from outside, and calculated log ratios for all

Trained markov chain on dinucleotides from chromosome 22

Python example: http://nbviewer.ipython.org/7413873

Markov property made our problem very tractable

P($x_i \mid x_{i-1}$) estimated in single, simple pass through training data Transition probability tables have $|\sum|^2$ cells; fine for DNA & protein Calculating S(x) is O(|x|); just lookups and additions

... and discriminates well between inside & outside examples in CpG island example

Sequence models

Can we use Markov chains to pick out CpG islands from the rest of the genome?

Markov chain assigns a score to a string; doesn't naturally give a "running" score across a long sequence

We could use a *sliding window*

- (a) Pick window size w, (b) score every w-mer using Markov chains,
- (c) use a cutoff to find islands

Smoothing before (c) might also be a good idea

Sequence models

Choosing w involves an assumption about how long the islands are

If w is too large, we'll miss small islands

If w is too small, we'll get many small islands where perhaps we should see fewer larger ones

In a sense, we want to switch between Markov chains when entering or exiting a CpG island

Sequence models

Something like this:

All inside-outside edges

 $p = \{ p_1, p_2, ..., p_n \}$ is a sequence of *states* (AKA a *path*). Each p_i takes a value from set Q. We **do not** observe p.

 $x = \{x_1, x_2, ..., x_n\}$ is a sequence of *emissions*. Each x_i takes a value from set \sum . We **do** observe x.

Like for Markov chains, edges capture conditional independence:

 X_2 is conditionally independent of everything else given p_2

 ρ_4 is conditionally independent of everything else given ρ_3

Probability of being in a particular state at step i is known once we know what state we were in at step i-1. Probability of seeing a particular emission at step i is known once we know what state we were in at step i.

Example: occasionally dishonest casino

Dealer repeatedly flips a coin. Sometimes the coin is *fair*, with P(heads) = 0.5, sometimes it's *loaded*, with P(heads) = 0.8. Dealer occasionally switches coins, invisibly to you.

How does this map to an HMM?

Example: occasionally dishonest casino

Dealer repeatedly flips a coin. Sometimes the coin is *fair*, with P(heads) = 0.5, sometimes it's *loaded*, with P(heads) = 0.8. Dealer occasionally switches coins, invisibly to you.

How does this map to an HMM?

Emissions encode flip outcomes (observed), states encode loadedness (hidden)

States encode which coin is used

 $\mathbf{F} = \text{fair}$

L = loaded

Emissions encode flip outcomes

 $\mathbf{H} = \text{heads}$

T = tails

Example with six coin flips:

$$P(p_1, p_2, ..., p_n, x_1, x_2, ..., x_n) = \prod_{k=1}^{n} P(x_k | p_k) \prod_{k=2}^{n} P(p_k | p_{k-1}) P(p_1)$$

$$|Q| \times |\sum |$$
 emission matrix E encodes $P(x_i | p_i)$ s $E[p_i, x_i] = P(x_i | p_i)$

$$|Q| \times |Q|$$
 transition matrix A encodes $P(p_i | p_{i-1})$ s $A[p_{i-1}, p_i] = P(p_i | p_{i-1})$

|Q| array I encodes initial probabilities of each state $I[p_i] = P(p_1)$

Dealer repeatedly flips a coin. Coin is sometimes fair, with P(heads) = 0.5, sometimes *loaded*, with P(heads) = 0.8. Dealer occasionally switches coins, invisibly to you.

After each flip, dealer switches coins with probability 0.4

		Ш	L
A:	F	0.6	0.4
	L	0.4	0.6

$$|Q| \times |\sum |$$
 emission matrix E encodes $P(x_i | p_i)$ s $E[p_i, x_i] = P(x_i | p_i)$

$$E[p_i, x_i] = P(x_i \mid p_i)$$

$$|Q| \times |Q|$$
 transition matrix A encodes $P(p_i | p_{i-1})$ s $A[p_{i-1}, p_i] = P(p_i | p_{i-1})$

$$A[p_{i-1}, p_i] = P(p_i | p_{i-1})$$

Given A & E (right), what is the joint probability of p & x?

A	ш	L
F	0.6	0.4
L	0.4	0.6

E	I	H
F	0.5	0.5
L	0.8	0.2

p	F	F	F	L	L	_	L	L	E	L	F
X	Т	н	Т	н	н	н	т	н	т	т	н
P(x _i p _i)	0.5	0.5	0.5	0.8	0.8	0.8	0.5	0.5	0.5	0.5	0.5
P(p _i p _{i-1})	-	0.6	0.6	0.4	0.6	0.6	0.4	0.6	0.6	0.6	0.6

If P($p_1 = F$) = 0.5, then joint probability = 0.59 0.83 0.68 0.42 = 0.0000026874

Given flips, can we say when the dealer was using the loaded coin?

We want to find p^* , the most likely path given the emissions.

$$p^* = \underset{p}{\operatorname{argmax}} P(p \mid x) = \underset{p}{\operatorname{argmax}} P(p, x)$$

This is decoding. Viterbi is a common decoding algorithm.

Bottom-up dynamic programming

 S_k , i =score of the most likely path up to step i with $p_i = k$

Start at step 1, calculate successively longer *S*_{k, i} 's

Given transition matrix *A* and emission matrix *E* (right), what is the most probable path *p* for the following *x*?

Initial probabilities of F/L are 0.5

A	H	┙
F	0.6	0.4
Г	0.4	0.6

E	Н	Т
H	0.5	0.5
L	0.8	0.2

p	?	?	?:	?	?	?	?	?	?	?	?
X	_	н	T	н	н	н	Т	Н	Т	Т	н
S Fair, <i>i</i>	0.25	?	?	?	?	?	?	?	?	?	?
S Loaded, i	0.1	?	?	?	?	?	?	?	?	?	?

Viterbi fills in all the question marks

of ENGINEERING

Pick state in step *n* with highest score; *backtrace* for most likely path

Backtrace according to which state *k* "won" the max in:

How much work did we do, given *Q* is the set of states and *n* is the length of the sequence?

$S_{k,i}$ values to calculate = $n \cdot |Q|$, each involves max over |Q| products $O(n \cdot |Q|^2)$

Matrix A has $|Q|^2$ elements, E has $|Q||\sum |$ elements, I has |Q| elements

Hidden Markov Model: Implementation

```
def viterbi(self, x):
                                                                              mat holds the Sk,i's
     ''' Given sequence of emissions, return the most probable path
         along with its joint probability.
                                                                              matTb holds traceback info
     x = map(self.smap.get, x) # turn emission characters into ids
     nrow, ncol = len(self.Q), len(x)
           = numpy.zeros(shape=(nrow, ncol), dtype=float) # prob
                                                                              self. E holds emission probs
     matTb = numpy.zeros(shape=(nrow, ncol), dtype=int)
                                                          # backtrace
     # Fill in first column
                                                                              self. A holds transition probs
     for i in xrange(0, nrow):
                                                                              self. I holds initial probs
         mat[i, 0] = self.E[i, x[0]] * self.I[i]
     # Fill in rest of prob and Tb tables
     for j in xrange(1, ncol):
         for i in xrange(0, nrow):
             ep = self.E[i, x[j]]
                                                               Calculate Sk.i's
             mx, mxi = mat[0, j-1] * self.A[0, i] * ep, 0
             for i2 in xrange(1, nrow):
                 pr = mat[i2, j-1] * self.A[i2, i] * ep
                 if pr > mx:
                     mx, mxi = pr, i2
             mat[i, j], matTb[i, j] = mx, mxi
     # Find final state with maximal probability
     omx, omxi = mat[0, ncol-1], 0
     for i in xrange(1, nrow):
                                                               Find maximal Sk.n
         if mat[i, ncol-1] > omx:
             omx, omxi = mat[i, ncol-1], i
     # Backtrace
     i, p = omxi, [omxi]
     for j in xrange(ncol-1, 0, -1):
         i = matTb[i, j]
         p.append(i)
                                                               Backtrace
     p = ''.join(map(lambda x: self.Q[x], p[::-1]))
     return omx, p # Return probability and path
```

Occasionally dishonest casino setup

What happened? Underflow!

Python example: http://nbviewer.ipython.org/7460513

When multiplying many numbers in (0, 1], we quickly approach the smallest number representable in a machine word. Past that we have *underflow* and processor rounds down to 0.

Switch to log space. Multiplies become adds.

Python example: http://nbviewer.ipython.org/7460513

Hidden Markov Model: Implementation

```
def viterbiL(self, x):
    ''' Given sequence of emissions, return the most probable path
        along with log2 of its joint probability.
    x = map(self.smap.get, x) # turn emission characters into ids
    nrow, ncol = len(self.Q), len(x)
          = numpy.zeros(shape=(nrow, ncol), dtype=float) # prob
    matTb = numpy.zeros(shape=(nrow, ncol), dtype=int)
                                                         # backtrace
    # Fill in first column
    for i in xrange(0, nrow):
        mat[i, 0] = self.Elog[i, x[0]] + self.Ilog[i]
    # Fill in rest of log prob and Tb tables
    for j in xrange(1, ncol):
        for i in xrange(0, nrow):
            ep = self.Elog[i, x[j]]
            mx, mxi = mat[0, j-1] + self.Alog[0, i] + ep, 0
            for i2 in xrange(1, nrow):
                pr = mat[i2, j-1] + self.Alog[i2, i] + ep
                if pr > mx:
                    mx, mxi = pr, i2
            mat[i, j], matTb[i, j] = mx, mxi
    # Find final state with maximal log probability
    omx, omxi = mat[0, ncol-1], 0
    for i in xrange(1, nrow):
        if mat[i, ncol-1] > omx:
            omx, omxi = mat[i, ncol-1], i
    # Backtrace
    i, p = omxi, [omxi]
    for j in xrange(ncol-1, 0, -1):
        i = matTb[i, j]
        p.append(i)
    p = ''.join(map(lambda x: self.Q[x], p[::-1]))
    return omx, p # Return log probability and path
```

log-space version

Task: design an HMM for finding CpG islands?

Idea 1: Q = { inside, outside }, Σ = { A, C, G, T }

of ENGINEERING

Idea 1: Q = { inside, outside }, Σ = { A, C, G, T }

Example 1 using HMM idea 1:

A	I	0
I	0.8	0.2
0	0.2	0.8

E	Α	С	G	T
I	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

x: ATATATACGCGCGCGCGCGCGATATATATATA

(from Viterbi)

Python example: http://nbviewer.ipython.org/7460513

Example 2 using HMM idea 1:

A	I	0
	8.0	0.2
0	0.2	0.8

E	Α	С	G	H
ı	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

x: ATATCGCGCGCGATATATCGCGCGCGATATATAT

p: 0000IIIIIII000000IIIIII100000000

(from Viterbi)

Python example: http://nbviewer.ipython.org/7460513

Example 3 using HMM idea 1:

A		0
I	0.8	0.2
0	0.2	0.8

E	Α	С	G	H
I	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

x: ATATATACCCCCCCCCCCCCATATATATATA

(from Viterbi) Oor

Oops - not a CpG island!

Python example: http://nbviewer.ipython.org/7460513

Idea 2: Q = { A_i , C_i , G_i , T_i , A_o , C_o , G_o , T_o }, Σ = { A, C, G, T }

Idea 2: Q = { A_i , C_i , G_i , T_i , A_o , C_o , G_o , T_o }, Σ = { A, C, G, T }

All inside-outside edges

Idea 2: Q = { A_i , C_i , G_i , T_i , A_o , C_o , G_o , T_o }, Σ = { A, C, G, T }

Α	Ai	Ci	Gi	Ti	Ao	Co	Go	To
Ai								
Ci								
Gi								
Ti		•						
Ao			Estimate P(C _i I T _i) as fraction of all					
Co				dinucleotides where first is an inside T,				
Go			second is an inside C					
To								

E	Α	С	G	T
Ai	1	0	0	0
Ci	0	1	0	0
Gi	0	0	1	0
Ti	0	0	0	1
Ao	T	0	0	0
Co	0	τ-	0	0
Go	0	0	1	0
To	0	0	0	1

Actual trained transition matrix A:

```
A:
   1.85152516e-01
                                    4.00289017e-01
                                                    1.37026750e-01
                  2.75974026e-01
                                    6.38090233e-04
                                                    2.81510397e-04]
   3.19045117e-04 3.19045117e-04
   1.89303979e-01 3.58523577e-01 2.52868527e-01
                                                    1.97836007e-01
   4.28792308e-04 5.72766368e-04 3.75584503e-05
                                                    4.28792308e-04]
   1.72369088e-01 3.29501650e-01 3.55446538e-01
                                                    1.40829292e-01
   3.39848138e-04 4.94038497e-04 7.64658311e-04
                                                    2.54886104e-041
   9.38783432e-02
                  3.40823149e-01
                                    3.75970400e-01
                                                    1.86949063e-01
   2.56686367e-04 5.57197235e-04 1.05804868e-03
                                                    5.07112091e-04]
   0.00000000e+00 3.78291020e-05
                                    0.00000000e+00
                                                    0.00000000e+00
   2.94813496e-01 1.94641138e-01 2.86962055e-01
                                                    2.23545482e-01]
   0.00000000e+00
                                    0.00000000e+00
                                                    0.00000000e+00
                  7.57154865e-05
   3.26811872e-01
                   2.94079570e-01
                                    6.17258712e-02
                                                    3.17306971e-01]
   0.00000000e+00 5.73810399e-05
                                    0.00000000e+00
                                                    0.00000000e+00
   2.57133507e-01 2.33483327e-01 2.94234944e-01
                                                    2.15090841e-01]
   0.00000000e+00 3.11417347e-05
                                    0.00000000e+00
                                                    0.00000000e+00
                   2.32469115e-01
                                                    2.93310958e-01]]
   1.79565378e-01
                                    2.94623408e-01
```


Actual trained transition matrix A: Red & orange: low probability

Yellow: high probability

White: probability = 0

Viterbi result; lowercase = *outside*, uppercase = *inside*:

Viterbi result; lowercase = *outside*, uppercase = *inside*:

Many of the Markov chains and HMMs we've discussed are *first order*, but we can also design models of higher orders

First-order Markov chain:

Second-order Markov chain:

For higher-order HMMs, Viterbi $S_{k, i}$ no longer depends on just the previous state assignment

Can sidestep the issue by expanding the state space...

Now *one* state encodes the last *two* "loadedness"es of the coin

After expanding, usual Viterbi works fine.

We also expanded the state space here:

$$Q = \{ I, O \}$$
 $Q = \{ I, O \} \times \{ A, C, G, T \}$

Gene Structure

Image: wikipedia https://en.wikipedia.org/wiki/gene

Image: Bill Majoros, http://www.genezilla.org/design.html

Summary

- After sequencing a genome, we need to annotate genes and other functional elements
- Can try to infer functional elements from experiments or directly from primary sequence
- Hidden Markov Models are suited to many of these tasks (e.g. CpG Island and gene finding)
- Next week: guest lecture from Michael Hoffman (PMCC) on more advanced genome annotation