Visualization data structures

CS524: Big Data Visualization & Analytics

Fabio Miranda

https://fmiranda.me

Data structures for visualization

- immense [Liu et al., 2013]
- Nanocube [Lins et al., 2013]
- TopKube [Miranda et al., 2018]
- Time Lattice [Miranda et al., 2019]
- Learned cubes
- •

Visualization requirements

- Visualizations have a specific set of "interaction patterns" and resolutions.
- Data schemes need to be aware of these limitations.

Perceptual and interactive scalability should be limited by the chosen resolution of the visualized data, not number of records.

Data reduction techniques

Different reduction techniques applied on the same dataset

[Liu et al., 2013]

Data reduction techniques

[Liu et al., 2013]

Data binning

Bin

Divide data domain into discrete buckets / cells Aggregate

Aggregate data (count, sum, average, min, max)

Smooth

Smooth aggregates (optional)

Plot

Visualize the aggregate summaries

Binning

- Divide data domain into discrete buckets / cells
 - Categorical data: already discrete
 - Numbers: choose bin intervals
 - Temporal: choose time unit (hour, day, month, ...)
 - Spatial: bin x, y coordinates after cartographic projection

- Aggregate the data to crate a summary, grouped by chosen bins.
- Different classes of aggregation functions:
 - <u>Distributive</u>: functions defined by structural recursion.
 - Algebraic: functions expressed by finite algebraic expressions defined over distributive functions (decomposable aggregate functions).
 - Holistic: all other functions

• Distributive:

$$COUNT(x) = 1$$

$$COUNT(X \uplus Y) = COUNT(X) + COUNT(Y)$$

$$SUM(x) = x$$

$$SUM(X \uplus Y) = SUM(X) + SUM(Y)$$

$$MAX(x) = x$$

$$MAX(X \downarrow Y) = max(MAX(X), MAX(Y))$$

Algebraic:

$$AVG(X \uplus Y) = \frac{SUM(X) + SUM(Y)}{COUNT(X) + COUNT(Y)}$$
$$SUM(X^2 \uplus Y^2) = SUM(X^2) + SUM(Y^2)$$

$$STDDEV(x) = \sqrt{\frac{SUM(x^2)}{COUNT(x)} - AVG(x)^2} - \sqrt{\frac{SUM(X + Y)}{COUNT(X + Y)}} - AVG(X + Y)^2$$

$$STDDEV(X + Y) = \sqrt{\frac{SUM(X + Y)}{COUNT(X + Y)} - AVG(X + Y)^2}$$

- Holistic: all other functions, no bound on the size of the storage needed to describe sub-aggregate.
 - Most frequent
 - Median
 - ...

Smoothing

- Perform smoothing (e.g., KDE)
 on aggregated data to better
 approximate underlying
 continuous density:
 - Large bandwidth: coarse density with little details.
 - Small bandwidth: too much detail and not general enough to cover new or unseen examples.

Visualization designs for binned plots

Temporal

Heatmap

Heatmap

[Liu et al., 2013]

Geographic

Heatmap

Binned

Scatter Plot

Visualization requirements: brushing & linking

Visualization requirements: spatial brushing & linking

Datacube

- A datacube stores all combinations of bins across dimensions.
- Considering the following binning schema:
 - Temporal: 12 (months), 31 (days), 24 (hours)
 - Spatial: 512 x 512
 - Total: ~2.3 billion cells (!!!)

 $12 \times 31 \times 24 \times 512 \times 512 =$ ~2.3 billion cells

Datacube

- Datacube can be viewed as a lattice of cuboids:
 - Top cuboid contains only one cell.
 - Base cuboid contains all cells.
- Materialization:
 - Full: materialize every cuboid.
 - Partial: trade-off between storage space and response time.
 - None: on-the-fly aggregation.

Total number of cuboids: 2^n , with n dimensions

Datacube

- Elements of a dimension can be stored as a hierarchy:
 - Set of parent-child relationships where the parent summarizes its children.
 - Block → City → State → Country

Total number of cuboids: 2^n , with n dimensions

Slice, dice, drill down, roll up

- Slice: selects one particular dimension from a cube, providing a new sub-cube.
- Dice: selects two or more dimensions from a cube, providing a new sub-cube.
- Drill down: descending the hierarchy.
- Roll up: data is aggregated by ascending the hierarchy (e.g., level of a city to the level of a country).

- Performing operations over cuboids can be prohibitively expensive.
 - E.g., Aggregating over the month of January will result in performing computation over 1/12th of the cube.

 $31 \times 24 \times 512 \times 512 = ~195$ million cells

[Liu et al., 2013]

- imMens addresses this issue by precomputing image tiles with aggregations.
- Like OSM tiles, but now storing data: multivariate data tiles.
- How to solve the combinatorial explosion of multiple dimensions?

 $31 \times 24 \times 512 \times 512 = ~195$ million cells

- For a pair of binned plots, maximum number of dimensions needed to support brushing & linking is four.
 - Between two binned scatterplots that do not share a dimensions.
- Idea: decompose the full cube into a collection of smaller 3- or 4-dimensional projections.

- Certain dimensions may still require a large number of bins.
 - Spatial dimension: many bins to represent the entire globe.
 - Handle this by breaking up these projections by index ranges (similar to OSM tiles).

- Brightkite example:
 - Four dimensions space, month, day, hour.
 - Space: 4 512x512 tiles.
 - Time: 1 tile each.
 - Supporting brushing & linking:
 - Space month: 4 x 1 tiles
 - Space day: 4 x 1 tiles
 - Space hour: 4 x 1 tiles
 - Month day hour: 1 tile
 - Total: 13 tiles

- Brushing & linking involves aggregating data tiles.
 - User selects a region → compute aggregation → highlight corresponding histograms.

Two-pass approach for parallel data querying and rendering using WebGL fragment shaders.

Constant query time, even for datasets with 1B data points.

Visualization requirements: panning and zooming

Nanocubes

- How to handle different spatial and temporal resolutions?
 - imMens supports "overview first, zoom and filter, details-on-demand", but <u>not</u> inside spatiotemporal dimensions.
- Trade-off:
 - Fine resolution (small bins / cells): high memory consumption, but highly detailed.
 - Coarser resolution (large bins / cells): low memory consumption, but no details.

Nanocubes

- Data structure that supports drilling down both spatial and temporal dimensions, while maintaining manageable memory usage.
- Sparse data structure that bins and counts data points.
- Important trick: allow for shared links across dimensions, and in the same dimension.

Nanocubes hierarchy

latitude	longitude	keyword	device
42.102908	-73.242852	#phoenix	Android
29.617161	-81.636398	#phoenix	iPhone
23.014051	75.120052	#la	iPhone
26.014051	75.120052	#nyc	Android
28.014051	74.120052	#la	iPhone
23.014051	75.120052	#phoenix	iPhone

device		D _
Android	BI	C E
B iPhone		F
© iPhone		
Android		
E iPhone	- (0)	
F iPhone	BFE	AD
	[iPhone]	[Android] /
		T

-73.242852 -81.636398
-81 636308
-01.030380
75.120052
75.120052
74.120052
-81.63638

Nanocubes: shared links

- Important trick: allow for shared links across dimensions, and in the same dimension.
- Sharing is responsible for significant memory savings.

Experiments

- Mean query time was 800μs (less than 1 millisecond!), with a maximum of 12 milliseconds.
- Memory requirements for Twitter dataset (210 million tweets):
 - Without sharing: 37 GB
 - With sharing: 10 GB

Spatiotemporal + keywords data

Spatiotemporal + keywords data

Density map Timeseries

Opportunity to not only explore *where* and *when* things happen, but also *what* is happening

Top Keywords

Top-k queries

- Top-k: k most popular keywords.
 - Compute list of most popular hashtags in a given space and time from a large set of data points.
- How a set of keywords changes over space and time?
 - Where and when certain hashtags are popular.
- How the volume of keywords compare with each other?
 - #patriots vs #giants.

Top-k: what is trending?

latitude	longitude	time	keyword
42.102908	-73.242852	Sept 29 2016 00:00	#patriots
29.617161	-81.636398	Sept 29 2016 00:05	#giants
-21.527420	32.493101	Sept 29 2016 00:10	#jets
26.014051	75.120052	Sept 29 2016 00:22	#patriots
-22.698453	145.080990	Sept 29 2016 00:31	#giants

Top-k: what is trending?

3. Select this Spike and Observe Top-10 Hashtags

4. Select Charlie Hebdo's Top Hashtags and Observe its Temporal Volume Pattern

latitude	longitude	keyword	device
42.102908	-73.242852	#phoenix	Android
29.617161	-81.636398	#phoenix	iPhone
23.014051	75.120052	#la	iPhone
26.014051	75.120052	#nyc	Android
28.014051	74.120052	#la	iPhone
23.014051	75.120052	#phoenix	iPhone
lati	itude long	itude	
A 42.1	02908 -73.2	42852	
B 29.6	317161 -81.6	36398	7
© 23.0	14051 75.1	20052	(C)
D 26.0	14051 75.1	20052	C
E 28.0	14051 74.1	20052	
(F) 29.6	61161 -81.6	63638	

- Following data cube model, aggregate every record along a hierarchy of bins.
- The data structure is a mapping of bins to a precomputed summary (e.g. count, timeseries).
- In this case, use a ranking summary.

	latitude	longitude
A	42.102908	-73.242852
B	29.617161	-81.636398
C	23.014051	75.120052
D	26.014051	75.120052
E	28.014051	74.120052
F	29.61161	-81.63638

latitude	longitude	keyword
42.102908	-73.242852	#phoenix
29.617161	-81.636398	#phoenix
23.014051	75.120052	#la
26.014051	75.120052	#nyc
28.014051	74.120052	#la
23.014051	75.120052	#phoenix

	K	С	р
, >	0	10	1
<u> </u>	1	22	2
	2	15	0

- Following data cube model, aggregate every record along a hierarchy of bins.
- The data structure is computed summary
- In this case, use a ra

A 42.102908 -73.2428 B 29.617161 -81.6363 C 23.014051 75.12009	52
© 23.014051 75.12005	
_	98
♠ 00 0440E4 7E 4000	52
D 26.014051 75.12008	52
E 28.014051 74.12005	52
(F) 29.61161 -81.6363	

CF			- → 0 1	
BED	23.014051	75.120052	#phoenix	
anking summary.	28.014051	74.120052	#la	
	26.014051	75.120052	#nyc	
s a mapping of bins to a pre- / (e.g. count, timeseries).	23.014051	75.120052	#la	
f bins.	29.617161	-81.636398	#phoenix	

longitude

-73.242852

latitude

42.102908

keyword

#phoenix

- Spatial and temporal selections usually result in several (thousands) ranking summaries.
- How to efficiently merge them?

Top-k from ranked lists

Threshold Algorithm [Fagin et al., 2003]

Ideal scenario:

- A key is in almost all lists
- Low number of misses

Most common scenario:

- A key is in very few lists
- Large number of misses

Top-k from ranked lists

TopKube:

- Run Sweep on α smallest (easiest) problems.
- Run Fagin's Threshold Algorithm on the denser (harder) problems.

Goal:

- Increase key density.
- Decrease the number of wasted searches.

TopKube

Sensor data

45 sensors3 boroughs34 years of high-resolution decibel data (if combined)

Time Lattice

- Support queries having constraints at multiple time resolutions:
 - Average decibel at each hour of the day.
 - Average decibel at day of the week.
 - Average decibel at each day of the week, between 8am 6pm.
- Support range queries at multiple resolutions:
 - Average decibel between March 1st and March 15th, at hour resolution.
- Support updates from new data
- Small memory overhead.
- Allow low latency queries over large time series (< 500 ms).

Time Lattice

- Data structure that supports multiple resolution queries at interactive rates.
- Makes use of the implicit hierarchy present in temporal resolutions to materialize a sub-lattice of a data cube.

[Miranda et al., 2019]

Time Lattice

- Data structure that supports multiple resolution queries at interactive rates.
- Makes use of the implicit hierarchy present in temporal resolutions to materialize a sub-lattice of a data cube.

[Miranda et al., 2019]

Card height

650

End date/time 2017-12-31 23:59

THU FRI

Percentile

Max Value 10

0.9

MAY

NOV

Aggregation

Average

DEC

