Cache-Efficient Parallel Partition Algorithms

Alek Westover

MIT PRIMES

October 20, 2019

THE PARTITION PROBLEM

An unpartitioned array:

THE PARTITION PROBLEM

An unpartitioned array:

An array partitioned relative to a pivot value:

WHAT IS A PARALLEL ALGORITHM?

Fundamental primitive: *Parallel for loop*

Parallel-For i from 1 to 4: **Do** X_i

WHAT IS A PARALLEL ALGORITHM?

More complicated parallel structures can be made by combining parallel for loops and recursion.

T_p : Time to run on p processors

Important extreme cases:

Work: T_1 ,

- ► time to run in serial
- ► "sum of all work"

Span: T_{∞} ,

- time to run on infinitely many processors,
- ► "height of the graph"

BOUNDING T_p WITH WORK AND SPAN

Brent's Theorem: [Brent, 74]

$$T_p = \Theta\left(\frac{T_1}{p} + T_\infty\right)$$

Take away: Work T_1 and span T_∞ determine T_p .

THE STANDARD PARALLEL PARTITION ALGORITHM

StepSpanCreate filtered arrayO(1)Compute prefix sums of filtered array $O(\log n)$ Use prefix sums to partition arrayO(1)

Total span: $O(\log n)$

Why is the Standard Algorithm is slow in practice?

Why is the Standard Algorithm is slow in practice?

► Uses extra memory

Why is the Standard Algorithm is slow in practice?

- Uses extra memory
- ► Makes multiple passes over array

Why is the Standard Algorithm is slow in practice?

- Uses extra memoryMakes multiple passes over array"bad cache behavior"

Why is the Standard Algorithm is slow in practice?

- Uses extra memoryMakes multiple passes over array"bad cache behavior"

But fastest algorithms in practice lack theoretical guarantees

Why is the Standard Algorithm is slow in practice?

- ► Uses extra memory
- Uses extra memoryMakes multiple passes over array

\ "bad cache behavior"

But fastest algorithms in practice lack theoretical guarantees

► Lock-based and atomic-variable based algorithms

[Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders, 2017; Philip Heidelberger, Alan

Norton, and John T. Robinson, 1990; Philippas Tsigas and Yi Zhang, 2003]

Why is the Standard Algorithm is slow in practice?

- ► Uses extra memory
- Makes multiple passes over array

\ "bad cache behavior"

But fastest algorithms in practice lack theoretical guarantees

► Lock-based and atomic-variable based algorithms

[Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders, 2017; Philip Heidelberger, Alan Norton, and John T. Robinson, 1990; Philippas Tsigas and Yi Zhang, 2003]

► The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

Why is the Standard Algorithm is slow in practice?

- ► Uses extra memory
- ► Makes multiple passes over array

\ "bad cache behavior"

But fastest algorithms in practice lack theoretical guarantees

► Lock-based and atomic-variable based algorithms

[Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders, 2017; Philip Heidelberger, Alan Norton, and John T. Robinson, 1990; Philippas Tsigas and Yi Zhang, 2003]

► The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

No locks or atomic-variables, but no bound on span

Why is the Standard Algorithm is slow in practice?

- ► Uses extra memory
- ► Makes multiple passes over array

bad cache behavior"

But fastest algorithms in practice lack theoretical guarantees

- ► Lock-based and atomic-variable based algorithms
 - [Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders, 2017; Philip Heidelberger, Alan Norton, and John T. Robinson, 1990; Philippas Tsigas and Yi Zhang, 2003]
- ► The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

No locks or atomic-variables, but no bound on span

Our Question: Can we create an algorithm with theoretical guarantees that is fast in practice?

OUR RESULT: THE SMOOTHED-STRIDING ALGORITHM

The Smoothed-Striding algorithm:

- has linear work and polylogarithmic span (like the Standard Algorithm)
- ► is fast in practice (like the Strided Algorithm)
- has theoretically optimal cache behavior (unlike any past algorithm)

STRIDED VERSUS SMOOTHED STRIDED ALGORITHM

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

- Good cache behavior in practice
- Worst case span is $T_{\infty} \approx n$

► On random inputs span is $T_{\infty} = \tilde{O}(n^{2/3})$

Smoothed-Striding Algorithm

- Provably optimal cache behavior
- Span is $T_{\infty} = O(\log n \log \log n)$ with high probability in n
- Uses randomization inside the algorithm

SPEEDUP OVER SERIAL PARTITION: SMOOTHED-STRIDING ALGORITHM'S PERFORMANCE

The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

Logically partition the array into chunks of adjacent elements:

Form groups P_i that contain the *i*-th element from each chunk:

Perform serial partitions on each P_i in parallel over the P_i 's:

This step is highly parallel.

Define v_i = index of first element greater than the pivot in P_i .

Identify leftmost and rightmost v_i .

- ► Recursion is impossible!
- ► **Final Step:** Partition the subarray *in serial*.

Subproblem Span $T_{\infty} \approx v_{\max} - v_{\min}$

- ► Recursion is impossible!
- ► **Final Step:** Partition the subarray *in serial*.

Subproblem Span $T_{\infty} \approx v_{\text{max}} - v_{\text{min}} \leftarrow n$ in worst case.

The Smoothed-Striding Algorithm Logically partition the array into chunks of adjacent elements:

Key difference: Form groups U_i that contain a random element from each chunk (rather than containing the i-th element from each each chunk every time as the Strided Algorithm's P_i 's do)

Perform serial partitions on each U_i in parallel over the U_i 's:

This step is highly parallel.

Define v_i = index of first element greater than the pivot in U_i .

Identify leftmost and rightmost v_i .

► Recursion is now possible!

Subproblem can be solved with an In-Place algorithm that has span $O(\log n \log \log n)$.

A KEY CHALLENGE

How do we store the U_i 's if they are all random?

Storing which elements make up each U_i takes too much space!

Strided Algorithm P_i .

Smoothed-Striding Algorithm U_i .

AN OPEN QUESTION

Our algorithm: span $T_{\infty} = O(\log n \log \log n)$

Standard Algorithm: span $T_{\infty} = O(\log n)$.

Can we get optimal cache behavior and span $O(\log n)$?

ACKNOWLEDGMENTS

I would like to thank

- ► MIT PRIMES
- ► William Kuszmaul, my PRIMES mentor
- ► My parents