Contents	8 Geometry 17
	8.1 Default Code
	8.2 Convex hull*
1 Basic	8.4 Minimum Enclosing Circle*
	8.5 Polar Angle Sort*
	8.6 Intersection of two circles*
	8.7 Intersection of polygon and circle*
1.5 black hagee	8.8 Intersection of line and circle*
2 Graph	8.9 point in circle
- · · ·	8.10Half plane intersection"
	 8.11CircleCover*
	8.13Tangent line of two circles
2.4 MinimumMeanCycle*	8.14minMaxEnclosingRectangle*
•	8.15PointSegDist
	8 16PointInConvex*
, ,	8.17TangentPointToHull*
	8.18VectorInPoly*
	4 8.19Minkowski Sum*
2.9 Minimum Arborescence*	4 8.20RotatingSweepLine
	4 ₅ 9 Else 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 1 Mo's Alogrithm(With modification) 20
2.12NumberofMaximalClique*	9.2 Mo's Alogrithm On Tree
2. Patra Chanatana	9.3 Additional Mo's Algorithm Trick
	9.4 Hilbert Curve
	9.5 DynamicConvexTrick*
3.2 Leftist Tree	9.6 All LCS*
3.3 Heavy light Decomposition	9.7 Matroid Intersection
3.4 Centroid Decomposition*	9.8 AdaptiveSimpson
	9.9 Simulated Annealing
3.6 KDTree	7 9.10 Tree hasii*
	10 Python 22
• • • • •	7 10.1Misc
4.1 Kuhn Munkres*	7
4.2 MincostMaxflow*	B 11 hj84 22
4.3 Maximum Simple Graph Matching*	11.1Aliens
4.4 Minimum Weight Matching (Clique version)*	11.2Bipartite Matching
4.5 SW-mincut	11.3Closest Pair
4.6 BoundedFlow*(Dinic*)	11.4Dijkstra
4.7 Gomory Hu tree*	
4.8 Minimum Cost Circulation*	
4.9 Flow Models	
	11.9Treap
5 String 1	3 11.1@CA
5.1 KMP	a 11.11i Chao Segment Tree
5.2 Z-value*	11.1\(Theorem \) \(
5.3 Manacher*	11.12.Huler's planar graph formula
5.4 Suffix Array	II.12.PICK'S theorem
5.5 SAIS*	11.12.30
5.6 Aho-Corasick Automatan	
5.7 Smallest Rotation	
5.8 De Bruijn sequence*	
5.9 Extended SAM*	
5.10PalTree*	² 1 Basic
6 Math	
6.1 ax+by=gcd(only exgcd *)	T. T VIIII C
6.2 floor and ceil	
6.3 Gaussian integer gcd	Inis tile snould be blaced at ~/.vimrc
6.4 Miller Rabin*	se nu ai hls et ru ic is sc cul
6.5 Fraction	se re=1 ts=4 sts=4 sw=4 ls=2 mouse=a
6.6 Simultaneous Equations	syntax on
6.7 Pollard Rho*	hi cursorline cterm=none ctermbg=237
6.8 Simplex Algorithm	set bg=dark
6.8.1 Construction	inoremap { <cr> {<cr>}<esc>ko<tab></tab></esc></cr></cr>
6.9 chineseRemainder	4
6.10Factorial without prime factor*	set whichwrap+=<,>,h,l,[,]
6.11QuadraticResidue*	set selection=exclusive
6.12PiCount*	3et 3etection-exclusive
6.13Discrete Log*	- More map / /gv
6.14Berlekamp Massey	VIIOI CIII D V V SV
6.15Primes	
6.16Theorem	1 7 maadahan
6.17Estimation	
6.18Euclidean Algorithms	
6.19General Purpose Numbers	
6.20Tips for Generating Functions	<pre>static char buf[bufsize]; static char *p = buf, *end = buf;</pre>
7 Polynomial 1	· · · · · · · · · · · · · · · · · · ·
7.1 Fast Fourier Transform	
7.2 Number Theory Transform*	
7.3 Fast Walsh Transform* 1	
7.4 Newton's Method	

1.3 Black Magic

```
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/assoc_container.hpp> // rb_tree
#include <ext/rope> // rope
using namespace __gnu_pbds;
using namespace __gnu_cxx; // rope
typedef
         __gnu_pbds::priority_queue<<mark>int</mark>> heap;
int main() {
 heap h1, h2; // max heap
  h1.push(1), h1.push(3), h2.push(2), h2.push(4);
 h1.join(h2); // h1 = {1, 2, 3, 4}, h2 = {};
 tree<11, null_type, less<11>, rb_tree_tag,
      tree_order_statistics_node_update> st;
 tree<11, 11, less<11>, rb_tree_tag,
      tree_order_statistics_node_update> mp;
 for (int x : {0, 2, 3, 4}) st.insert(x);
 cout << *st.find_by_order(2) << st.order_of_key(1) <<</pre>
       endl; //31
 rope<char> *root[10]; // nsqrt(n)
 root[0] = new rope<char>();
 root[1] = new rope<char>(*root[0]);
 // root[1]->insert(pos, 'a');
 // root[1]->at(pos); 0-base
 // root[1]->erase(pos, size);
    _int128_t,__float128_t
// for (int i = bs._Find_first(); i < bs.size(); i = bs</pre>
    ._Find_next(i));
```

2 Graph

2.1 BCC Vertex*

```
vector<int> G[N]; // 1-base
vector<int> nG[N * 2], bcc[N];
int low[N], dfn[N], Time;
int bcc_id[N], bcc_cnt; // 1-base
bool is_cut[N]; // whether is av
bool cir[N * 2];
int st[N], top;
void dfs(int u, int pa = -1) {
  int child = 0;
  low[u] = dfn[u] = ++Time;
  st[top++] = u;
  for (int v : G[u])
    if (!dfn[v]) {
      dfs(v, u), ++child;
      low[u] = min(low[u], low[v]);
      if (dfn[u] <= low[v]) {</pre>
        is_cut[u] = 1;
        bcc[++bcc_cnt].clear();
        int t;
        do {
          bcc_id[t = st[--top]] = bcc_cnt;
          bcc[bcc_cnt].push_back(t);
        } while (t != v);
        bcc_id[u] = bcc_cnt;
        bcc[bcc_cnt].pb(u);
    } else if (dfn[v] < dfn[u] && v != pa)</pre>
      low[u] = min(low[u], dfn[v]);
  if (pa == -1 && child < 2) is_cut[u] = 0;</pre>
void bcc_init(int n) { // TODO: init {nG, cir}[1..2n]
  Time = bcc_cnt = top = 0;
  for (int i = 1; i <= n; ++i)</pre>
    G[i].clear(), dfn[i] = bcc_id[i] = is_cut[i] = 0;
void bcc_solve(int n) {
  for (int i = 1; i <= n; ++i)</pre>
    if (!dfn[i]) dfs(i);
  // block-cut tree
  for (int i = 1; i <= n; ++i)</pre>
    if (is_cut[i])
      bcc_id[i] = ++bcc_cnt, cir[bcc_cnt] = 1;
```

```
for (int i = 1; i <= bcc_cnt && !cir[i]; ++i)
    for (int j : bcc[i])
    if (is_cut[j])
        nG[i].pb(bcc_id[j]), nG[bcc_id[j]].pb(i);
}</pre>
```

2.2 Bridge*

```
int low[N], dfn[N], Time; // 1-base
vector<pii> G[N], edge;
vector<bool> is_bridge;
void init(int n) {
  for (int i = 1; i <= n; ++i)</pre>
    G[i].clear(), low[i] = dfn[i] = 0;
void add_edge(int a, int b) {
 G[a].pb(pii(b, SZ(edge))), G[b].pb(pii(a, SZ(edge)));
  edge.pb(pii(a, b));
void dfs(int u, int f) {
 dfn[u] = low[u] = ++Time;
  for (auto i : G[u])
    if (!dfn[i.X])
      dfs(i.X, i.Y), low[u] = min(low[u], low[i.X]);
    else if (i.Y != f) low[u] = min(low[u], dfn[i.X]);
  if (low[u] == dfn[u] && f != -1) is_bridge[f] = 1;
void solve(int n) {
 is_bridge.resize(SZ(edge));
  for (int i = 1; i <= n; ++i)</pre>
    if (!dfn[i]) dfs(i, -1);
```

2.3 2SAT (SCC)*

```
struct SAT { // 0-base
  int low[N], dfn[N], bln[N], n, Time, nScc;
  bool instack[N], istrue[N];
  stack<int> st;
  vector<int> G[N], SCC[N];
  void init(int _n) {
    n = _n; // assert(n * 2 <= N);</pre>
    for (int i = 0; i < n + n; ++i) G[i].clear();</pre>
  void add_edge(int a, int b) { G[a].pb(b); }
  int rv(int a) {
    if (a >= n) return a - n;
    return a + n;
  void add_clause(int a, int b) {
    add_edge(rv(a), b), add_edge(rv(b), a);
  void dfs(int u) {
    dfn[u] = low[u] = ++Time;
    instack[u] = 1, st.push(u);
    for (int i : G[u])
      if (!dfn[i])
         dfs(i), low[u] = min(low[i], low[u]);
      else if (instack[i] && dfn[i] < dfn[u])</pre>
        low[u] = min(low[u], dfn[i]);
    if (low[u] == dfn[u]) {
      int tmp;
      do {
        tmp = st.top(), st.pop();
instack[tmp] = 0, bln[tmp] = nScc;
      } while (tmp != u);
      ++nScc;
    }
  bool solve() {
    Time = nScc = 0;
    for (int i = 0; i < n + n; ++i)
      SCC[i].clear(), low[i] = dfn[i] = bln[i] = 0;
    for (int i = 0; i < n + n; ++i)</pre>
      if (!dfn[i]) dfs(i);
    for (int i = 0; i < n + n; ++i) SCC[bln[i]].pb(i);</pre>
```

```
for (int i = 0; i < n; ++i) {
    if (bln[i] == bln[i + n]) return false;
    istrue[i] = bln[i] < bln[i + n];
    istrue[i + n] = !istrue[i];
    }
    return true;
}
</pre>
```

2.4 MinimumMeanCycle*

```
11 road[N][N]; // input here
struct MinimumMeanCycle {
  11 dp[N + 5][N], n;
  pll solve() {
     11 a = -1, b = -1, L = n + 1;
     for (int i = 2; i <= L; ++i)</pre>
       for (int k = 0; k < n; ++k)
         for (int j = 0; j < n; ++j)</pre>
           dp[i][j] =
              min(dp[i - 1][k] + road[k][j], dp[i][j]);
    for (int i = 0; i < n; ++i) {
   if (dp[L][i] >= INF) continue;
       ll ta = 0, tb = 1;
       for (int j = 1; j < n; ++j)</pre>
         if (dp[j][i] < INF &&</pre>
           ta * (L - j) < (dp[L][i] - dp[j][i]) * tb)
           ta = dp[L][i] - dp[j][i], tb = L - j;
       if (ta == 0) continue;
       if (a == -1 || a * tb > ta * b) a = ta, b = tb;
     if (a != -1) {
       11 g = __gcd(a, b);
       return pll(a / g, b / g);
     return pll(-1LL, -1LL);
  void init(int _n) {
    n = _n;
for (int i = 0; i < n; ++i)</pre>
       for (int j = 0; j < n; ++j) dp[i + 2][j] = INF;
};
```

2.5 Virtual Tree*

```
vector<int> vG[N];
int top, st[N];
void insert(int u) {
 if (top == -1) return st[++top] = u, void();
 int p = LCA(st[top], u);
 if (p == st[top]) return st[++top] = u, void();
 while (top >= 1 && dep[st[top - 1]] >= dep[p])
    vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
   vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
void reset(int u) {
 for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
 top = -1:
 sort(ALL(v),
   [&](int a, int b) { return dfn[a] < dfn[b]; });</pre>
  for (int i : v) insert(i);
 while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
 // do something
 reset(v[0]);
```

2.6 Maximum Clique Dyn*

```
const int N = 150;
struct MaxClique { // Maximum Clique
  bitset<N> a[N], cs[N];
  int ans, sol[N], q, cur[N], d[N], n;
```

```
void init(int _n) {
    n = _n;
    for (int i = 0; i < n; i++) a[i].reset();</pre>
  void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
  void csort(vector<int> &r, vector<int> &c) {
    int mx = 1, km = max(ans - q + 1, 1), t = 0,
        m = r.size();
    cs[1].reset(), cs[2].reset();
    for (int i = 0; i < m; i++) {
      int p = r[i], k = 1;
      while ((cs[k] & a[p]).count()) k++;
      if (k > mx) mx++, cs[mx + 1].reset();
      cs[k][p] = 1;
      if (k < km) r[t++] = p;
    c.resize(m);
if (t) c[t - 1] = 0;
    for (int k = km; k <= mx; k++)</pre>
      for (int p = cs[k]._Find_first(); p < N;</pre>
            p = cs[k]._Find_next(p))
         r[t] = p, c[t] = k, t++;
  void dfs(vector<int> &r, vector<int> &c, int 1,
    bitset<N> mask) {
    while (!r.empty()) {
      int p = r.back();
      r.pop_back(), mask[p] = 0;
      if (q + c.back() <= ans) return;</pre>
      cur[q++] = p;
      vector<int> nr, nc;
      bitset<N> nmask = mask & a[p];
      for (int i : r)
        if (a[p][i]) nr.push_back(i);
      if (!nr.empty()) {
        if (1 < 4) {
           for (int i : nr)
             d[i] = (a[i] \& nmask).count();
           sort(nr.begin(), nr.end(),
             [&](int x, int y) { return d[x] > d[y]; });
        csort(nr, nc), dfs(nr, nc, l + 1, nmask);
      } else if (q > ans) ans = q, copy_n(cur, q, sol);
      c.pop_back(), q--;
    }
  int solve(bitset<N> mask = bitset<N>(
               string(N, '1'))) { // vertex mask
    vector<int> r, c;
    ans = q = 0;
    for (int i = 0; i < n; i++)</pre>
      if (mask[i]) r.push_back(i);
    for (int i = 0; i < n; i++)</pre>
      d[i] = (a[i] & mask).count();
    sort(r.begin(), r.end(),
      [&](int i, int j) { return d[i] > d[j]; });
    csort(r, c), dfs(r, c, 1, mask);
    return ans; // sol[0 ~ ans-1]
} graph;
```

2.7 Minimum Steiner Tree*

```
for (int j = 0; j < n; ++j)</pre>
           dst[i][j] =
             min(dst[i][j], dst[i][k] + dst[k][j]);
  int solve(const vector<int> &ter) {
    shortest_path();
    int t = SZ(ter);
    for (int i = 0; i < (1 << t); ++i)</pre>
      for (int j = 0; j < n; ++j) dp[i][j] = INF;</pre>
    for (int i = 0; i < n; ++i) dp[0][i] = vcost[i];</pre>
    for (int msk = 1; msk < (1 << t); ++msk) {</pre>
      if (!(msk & (msk - 1))) {
        int who = __lg(msk);
         for (int i = 0; i < n; ++i)</pre>
           dp[msk][i] =
             vcost[ter[who]] + dst[ter[who]][i];
      for (int i = 0; i < n; ++i)</pre>
         for (int submsk = (msk - 1) & msk; submsk;
              submsk = (submsk - 1) \& msk)
           dp[msk][i] = min(dp[msk][i],
             dp[submsk][i] + dp[msk ^ submsk][i] -
               vcost[i]);
      for (int i = 0; i < n; ++i) {</pre>
        tdst[i] = INF;
        for (int j = 0; j < n; ++j)</pre>
           tdst[i] =
             min(tdst[i], dp[msk][j] + dst[j][i]);
      for (int i = 0; i < n; ++i) dp[msk][i] = tdst[i];</pre>
    int ans = INF;
    for (int i = 0; i < n; ++i)</pre>
      ans = min(ans, dp[(1 << t) - 1][i]);
    return ans;
  }
};
```

2.8 Dominator Tree*

```
struct dominator_tree { // 1-base
 vector<int> G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
 int semi[N], idom[N], best[N];
  vector<int> tree[N]; // dominator_tree
 void init(int _n) {
   n = _n;
    for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), rG[i].clear();
  void add_edge(int u, int v) {
   G[u].pb(v), rG[v].pb(u);
 void dfs(int u) {
   id[dfn[u] = ++Time] = u;
    for (auto v : G[u])
      if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
   if (y <= x) return y;</pre>
    int tmp = find(pa[y], x);
    if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
    return pa[y] = tmp;
  void tarjan(int root) {
    Time = ∅;
    for (int i = 1; i <= n; ++i) {</pre>
      dfn[i] = idom[i] = 0;
      tree[i].clear();
      best[i] = semi[i] = i;
    dfs(root);
    for (int i = Time; i > 1; --i) {
      int u = id[i];
      for (auto v : rG[u])
        if (v = dfn[v]) {
          find(v, i);
          semi[i] = min(semi[i], semi[best[v]]);
      tree[semi[i]].pb(i);
      for (auto v : tree[pa[i]]) {
```

```
find(v, pa[i]);
    idom[v] =
        semi[best[v]] == pa[i] ? pa[i] : best[v];
}
    tree[pa[i]].clear();
}
for (int i = 2; i <= Time; ++i) {
    if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
    tree[id[idom[i]]].pb(id[i]);
}
};</pre>
```

2.9 Minimum Arborescence*

```
struct zhu_liu { // O(VE)
   struct edge {
     int u, v;
     11 w;
   vector<edge> E; // 0-base
   int pe[N], id[N], vis[N];
   11 in[N];
   void init() { E.clear(); }
   void add_edge(int u, int v, ll w) {
     if (u != v) E.pb(edge{u, v, w});
   11 build(int root, int n) {
     11 \text{ ans } = 0;
     for (;;) {
       fill_n(in, n, INF);
       for (int i = 0; i < SZ(E); ++i)</pre>
         if (E[i].u != E[i].v && E[i].w < in[E[i].v])</pre>
           pe[E[i].v] = i, in[E[i].v] = E[i].w;
       for (int u = 0; u < n; ++u) // no solution</pre>
         if (u != root && in[u] == INF) return -INF;
       int cntnode = 0;
       fill_n(id, n, -1), fill_n(vis, n, -1);
       for (int u = 0; u < n; ++u) {</pre>
         if (u != root) ans += in[u];
         int v = u;
         while (vis[v] != u && !~id[v] && v != root)
           vis[v] = u, v = E[pe[v]].u;
         if (v != root && !~id[v]) {
           for (int x = E[pe[v]].u; x != v;
                 x = E[pe[x]].u)
             id[x] = cntnode;
           id[v] = cntnode++;
         }
       }
       if (!cntnode) break; // no cycle
       for (int u = 0; u < n; ++u)
  if (!~id[u]) id[u] = cntnode++;</pre>
       for (int i = 0; i < SZ(E); ++i) {</pre>
         int v = E[i].v;
         E[i].u = id[E[i].u], E[i].v = id[E[i].v];
         if (E[i].u != E[i].v) E[i].w -= in[v];
       n = cntnode, root = id[root];
     return ans:
};
```

2.10 Vizing's theorem*

```
namespace vizing { // returns edge coloring in adjacent
    matrix G. 1 - based
const int N = 105;
int C[N][N], G[N][N], X[N], vst[N], n;
void init(int _n) { n = _n;
    for (int i = 0; i <= n; ++i)
        for (int j = 0; j <= n; ++j)
        C[i][j] = G[i][j] = 0;
}
void solve(vector<pii> &E) {
    auto update = [&](int u)
    { for (X[u] = 1; C[u][X[u]]; ++X[u]); };
    auto color = [&](int u, int v, int c) {
        int p = G[u][v];
        G[u][v] = G[v][u] = c;
```

```
C[u][c] = v, C[v][c] = u;
    C[u][p] = C[v][p] = 0;
    if (p) X[u] = X[v] = p;
    else update(u), update(v);
    return p;
 };
  auto flip = [&](int u, int c1, int c2) {
    int p = C[u][c1];
    swap(C[u][c1], C[u][c2]);
    if (p) G[u][p] = G[p][u] = c2;
    if (!C[u][c1]) X[u] = c1;
    if (!C[u][c2]) X[u] = c2;
    return p;
  fill_n(X + 1, n, 1);
  for (int t = 0; t < SZ(E); ++t) {</pre>
    int u = E[t].X, v0 = E[t].Y, v = v0, c0 = X[u], c =
         c0, d;
    vector<pii> L;
    fill_n(vst + 1, n, 0);
    while (!G[u][v0]) {
      L.emplace_back(v, d = X[v]);
      if (!C[v][c]) for (int a = SZ(L) - 1; a >= 0; --a
          ) c = color(u, L[a].X, c);
      else if (!C[u][d]) for (int a = SZ(L) - 1; a >=
          0; --a) color(u, L[a].X, L[a].Y);
      else if (vst[d]) break;
      else vst[d] = 1, v = C[u][d];
    if (!G[u][v0]) {
      for (; v; v = flip(v, c, d), swap(c, d));
      if (int a; C[u][c0]) {
        for (a = SZ(L) - 2; a >= 0 && L[a].Y != c; --a)
        for (; a >= 0; --a) color(u, L[a].X, L[a].Y);
      }
      else --t;
   }
 }
} // namespace vizing
```

2.11 Minimum Clique Cover*

```
struct Clique_Cover { // 0-base, 0(n2^n)
   int co[1 << N], n, E[N];</pre>
   int dp[1 << N];</pre>
   void init(int _n) {
     n = _n, fill_n(dp, 1 << n, 0);
     fill_n(E, n, 0), fill_n(co, 1 << n, 0);
   void add_edge(int u, int v) {
     E[u] |= 1 << v, E[v] |= 1 << u;
   int solve() {
     for (int i = 0; i < n; ++i)</pre>
       co[1 << i] = E[i] | (1 << i);
     co[0] = (1 << n) - 1;

dp[0] = (n & 1) * 2 - 1;
     for (int i = 1; i < (1 << n); ++i) {
       int t = i & -i;
       dp[i] = -dp[i ^ t];
       co[i] = co[i ^ t] & co[t];
     for (int i = 0; i < (1 << n); ++i)</pre>
       co[i] = (co[i] & i) == i;
     fwt(co, 1 << n, 1);
     for (int ans = 1; ans < n; ++ans) {
  int sum = 0; // probabilistic</pre>
       for (int i = 0; i < (1 << n); ++i)</pre>
          sum += (dp[i] *= co[i]);
       if (sum) return ans;
     return n:
  }
};
```

2.12 NumberofMaximalClique*

```
struct BronKerbosch { // 1-base
int n, a[N], g[N][N];
```

```
int S, all[N][N], some[N][N], none[N][N];
   void init(int _n) {
     n = _n;
     for (int i = 1; i <= n; ++i)</pre>
       for (int j = 1; j <= n; ++j) g[i][j] = 0;</pre>
   void add_edge(int u, int v) {
    g[u][v] = g[v][u] = 1;
   void dfs(int d, int an, int sn, int nn) {
     if (S > 1000) return; // pruning
     if (sn == 0 && nn == 0) ++S;
     int u = some[d][0];
     for (int i = 0; i < sn; ++i) {</pre>
       int v = some[d][i];
       if (g[u][v]) continue;
       int tsn = 0, tnn = 0;
       copy_n(all[d], an, all[d + 1]);
       all[d + 1][an] = v;
       for (int j = 0; j < sn; ++j)</pre>
         if (g[v][some[d][j]])
           some[d + 1][tsn++] = some[d][j];
       for (int j = 0; j < nn; ++j)</pre>
         if (g[v][none[d][j]])
           none[d + 1][tnn++] = none[d][j];
       dfs(d + 1, an + 1, tsn, tnn);
       some[d][i] = 0, none[d][nn++] = v;
     }
   int solve() {
     iota(some[0], some[0] + n, 1);
     S = 0, dfs(0, 0, n, 0);
     return S;
| };
```

3 Data Structure

3.1 Discrete Trick

3.2 Leftist Tree

```
struct node {
  11 v, data, sz, sum;
  node *1, *r;
  node(ll k)
    : v(0), data(k), sz(1), l(0), r(0), sum(k) {}
11 sz(node *p) { return p ? p->sz : 0; }
11 V(node *p) { return p ? p->v : -1; }
11 sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a->r = merge(a->r, b);
  if (V(a->r) > V(a->1)) swap(a->r, a->1);
  a -> v = V(a -> r) + 1, a -> sz = sz(a -> 1) + sz(a -> r) + 1;
  a\rightarrow sum = sum(a\rightarrow 1) + sum(a\rightarrow r) + a\rightarrow data;
  return a;
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->1, o->r);
  delete tmp;
```

3.3 Heavy light Decomposition

```
struct Heavy_light_Decomposition { // 1-base
  int n, ulink[N], deep[N], mxson[N], w[N], pa[N];
  int t, pl[N], data[N], dt[N], bln[N], edge[N], et;
  vector<pii> G[N];
  void init(int _n) {
   n = _n, t = 0, et = 1;
for (int i = 1; i <= n; ++i)
      G[i].clear(), mxson[i] = 0;
  void add_edge(int a, int b, int w) {
    G[a].pb(pii(b, et));
    G[b].pb(pii(a, et));
    edge[et++] = w;
  void dfs(int u, int f, int d) {
    w[u] = 1, pa[u] = f, deep[u] = d++;
    for (auto &i : G[u])
      if (i.X != f) {
        dfs(i.X, u, d), w[u] += w[i.X];
        if (w[mxson[u]] < w[i.X]) mxson[u] = i.X;</pre>
      } else bln[i.Y] = u, dt[u] = edge[i.Y];
  void cut(int u, int link) {
    data[pl[u] = t++] = dt[u], ulink[u] = link;
    if (!mxson[u]) return;
    cut(mxson[u], link);
    for (auto i : G[u])
      if (i.X != pa[u] && i.X != mxson[u])
        cut(i.X, i.X);
  void build() { dfs(1, 1, 1), cut(1, 1), /*build*/; }
  int query(int a, int b) {
    int ta = ulink[a], tb = ulink[b], re = 0;
    while (ta != tb)
      if (deep[ta] < deep[tb])</pre>
        /*query*/, tb = ulink[b = pa[tb]];
      else /*query*/, ta = ulink[a = pa[ta]];
    if (a == b) return re;
    if (pl[a] > pl[b]) swap(a, b);
    /*query*/
    return re;
 }
};
```

3.4 Centroid Decomposition*

```
struct Cent_Dec { // 1-base
 vector<pll> G[N];
 pll info[N]; // store info. of itself
  pll upinfo[N]; // store info. of climbing up
  int n, pa[N], layer[N], sz[N], done[N];
 ll dis[__lg(N) + 1][N];
 void init(int _n) {
    n = _n, layer[0] = -1;
   fill_n(pa + 1, n, 0), fill_n(done + 1, n, 0);
    for (int i = 1; i <= n; ++i) G[i].clear();</pre>
 void add_edge(int a, int b, int w) {
    G[a].pb(pll(b, w)), G[b].pb(pll(a, w));
 void get_cent(
   int u, int f, int &mx, int &c, int num) {
   int mxsz = 0;
    sz[u] = 1;
    for (pll e : G[u])
     if (!done[e.X] && e.X != f) {
        get_cent(e.X, u, mx, c, num);
        sz[u] += sz[e.X], mxsz = max(mxsz, sz[e.X]);
    if (mx > max(mxsz, num - sz[u]))
     mx = max(mxsz, num - sz[u]), c = u;
  void dfs(int u, int f, ll d, int org) {
    // if required, add self info or climbing info
    dis[layer[org]][u] = d;
    for (pll e : G[u])
     if (!done[e.X] && e.X != f)
        dfs(e.X, u, d + e.Y, org);
 int cut(int u, int f, int num) {
```

```
int mx = 1e9, c = 0, lc;
     get_cent(u, f, mx, c, num);
     done[c] = 1, pa[c] = f, layer[c] = layer[f] + 1;
for (pll e : G[c])
       if (!done[e.X]) {
         if (sz[e.X] > sz[c])
           lc = cut(e.X, c, num - sz[c]);
         else lc = cut(e.X, c, sz[e.X]);
         upinfo[lc] = pll(), dfs(e.X, c, e.Y, c);
    return done[c] = 0, c;
   void build() { cut(1, 0, n); }
   void modify(int u) {
     for (int a = u, ly = layer[a]; a;
          a = pa[a], --ly) {
       info[a].X += dis[ly][u], ++info[a].Y;
       if (pa[a])
         upinfo[a].X += dis[ly - 1][u], ++upinfo[a].Y;
     }
   11 query(int u) {
     11 \text{ rt} = 0;
     for (int a = u, ly = layer[a]; a;
         a = pa[a], --ly) {
       rt += info[a].X + info[a].Y * dis[ly][u];
       if (pa[a])
           upinfo[a].X + upinfo[a].Y * dis[ly - 1][u];
     return rt;
};
```

3.5 Link cut tree*

```
struct Splay { // xor-sum
  static Splay nil;
  Splay *ch[2], *f;
  int val, sum, rev, size;
  Splay (int _val = 0) : val(_val), sum(_val), rev(0),
      size(1)
  {f = ch[0] = ch[1] = &nil; }
  bool isr()
  { return f->ch[0] != this && f->ch[1] != this; }
  int dir()
  { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d) {
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void give_tag(int r) {
    if (r) swap(ch[0], ch[1]), rev ^= 1;
  void push() {
    if (ch[0] != &nil) ch[0]->give_tag(rev);
    if (ch[1] != &nil) ch[1]->give_tag(rev);
    rev = 0;
  void pull() {
    // take care of the nil!
    size = ch[0] -> size + ch[1] -> size + 1;
    sum = ch[0] -> sum ^ ch[1] -> sum ^ val;
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
  Splay *p = x->f;
  int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
  p->setCh(x->ch[!d], d);
 x->setCh(p, !d);
  p->pull(), x->pull();
void splay(Splay *x) {
  vector<Splay*> splayVec;
  for (Splay *q = x;; q = q \rightarrow f) {
    splayVec.pb(q);
```

```
if (q->isr()) break;
  reverse(ALL(splayVec));
  for (auto it : splayVec) it->push();
  while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir() == x->f->dir())
      rotate(x->f), rotate(x);
    else rotate(x), rotate(x);
  }
Splay* access(Splay *x) {
  Splay *q = nil;
  for (; x != nil; x = x->f)
    splay(x), x \rightarrow setCh(q, 1), q = x;
void root_path(Splay *x) { access(x), splay(x); }
void chroot(Splay *x){
  root_path(x), x->give_tag(1);
  x->push(), x->pull();
void split(Splay *x, Splay *y) {
  chroot(x), root_path(y);
void link(Splay *x, Splay *y) {
  root_path(x), chroot(y);
  x->setCh(y, 1);
void cut(Splay *x, Splay *y) {
  split(x, y);
  if (y->size != 5) return;
  y->push();
  y \rightarrow ch[0] = y \rightarrow ch[0] \rightarrow f = nil;
Splay* get_root(Splay *x) {
  for (root_path(x); x->ch[0] != nil; x = x->ch[0])
   x->push();
  splay(x);
  return x;
bool conn(Splay *x, Splay *y) {
  return get_root(x) == get_root(y);
Splay* lca(Splay *x, Splay *y) {
  access(x), root_path(y);
  if (y->f == nil) return y;
  return y->f;
void change(Splay *x, int val) {
  splay(x), x->val = val, x->pull();
int query(Splay *x, Splay *y) {
  split(x, y);
  return y->sum;
```

3.6 KDTree

```
namespace kdt {
int root, lc[maxn], rc[maxn], xl[maxn], xr[maxn],
 yl[maxn], yr[maxn];
point p[maxn];
int build(int 1, int r, int dep = 0) {
 if (1 == r) return -1;
  function<bool(const point &, const point &)> f =
    [dep](const point &a, const point &b) {
      if (dep & 1) return a.x < b.x;</pre>
      else return a.y < b.y;</pre>
 int m = (1 + r) >> 1;
 nth_element(p + 1, p + m, p + r, f);
 x1[m] = xr[m] = p[m].x;
 yl[m] = yr[m] = p[m].y;
  lc[m] = build(1, m, dep + 1);
 if (~lc[m]) {
   xl[m] = min(xl[m], xl[lc[m]]);
    xr[m] = max(xr[m], xr[lc[m]]);
   yl[m] = min(yl[m], yl[lc[m]]);
   yr[m] = max(yr[m], yr[lc[m]]);
 rc[m] = build(m + 1, r, dep + 1);
```

```
if (~rc[m]) {
    xl[m] = min(xl[m], xl[rc[m]]);
    xr[m] = max(xr[m], xr[rc[m]]);
    yl[m] = min(yl[m], yl[rc[m]]);
    yr[m] = max(yr[m], yr[rc[m]]);
  return m;
bool bound(const point &q, int o, long long d) {
  double ds = sqrt(d + 1.0);
  if (q.x < xl[o] - ds || q.x > xr[o] + ds ||
    q.y < yl[o] - ds || q.y > yr[o] + ds)
    return false;
  return true;
long long dist(const point &a, const point &b) {
  return (a.x - b.x) * 111 * (a.x - b.x) +
    (a.y - b.y) * 111 * (a.y - b.y);
void dfs(
  const point &q, long long &d, int o, int dep = 0) {
  if (!bound(q, o, d)) return;
  long long cd = dist(p[o], q);
  if (cd != 0) d = min(d, cd);
  if ((dep & 1) && q.x < p[o].x ||
    !(dep \& 1) \&\& q.y < p[o].y) {
    if (~lc[o]) dfs(q, d, lc[o], dep + 1);
    if (~rc[o]) dfs(q, d, rc[o], dep + 1);
  } else {
    if (~rc[o]) dfs(q, d, rc[o], dep + 1);
    if (~lc[o]) dfs(q, d, lc[o], dep + 1);
void init(const vector<point> &v) {
  for (int i = 0; i < v.size(); ++i) p[i] = v[i];</pre>
  root = build(0, v.size());
long long nearest(const point &q) {
  long long res = 1e18;
  dfs(q, res, root);
  return res;
} // namespace kdt
```

4 Flow/Matching

4.1 Kuhn Munkres*

```
struct KM { // 0-base
  11 w[N][N], h1[N], hr[N], s1k[N];
  int f1[N], fr[N], pre[N], qu[N], q1, qr, n;
  bool v1[N], vr[N];
  void init(int _n) {
    n = n;
    for (int i = 0; i < n; ++i)</pre>
      fill_n(w[i], n, -INF);
  void add_edge(int a, int b, ll wei) {
    w[a][b] = wei;
  bool Check(int x) {
    if (vl[x] = 1, \sim fl[x])
      return vr[qu[qr++] = fl[x]] = 1;
    while (\sim x) swap(x, fr[fl[x] = pre[x]]);
    return 0;
  void bfs(int s) {
    fill\_n(slk, \ n, \ INF), \ fill\_n(vl, \ n, \ \emptyset), \ fill\_n(vr, \ n
         , 0);
    q1 = qr = 0, qu[qr++] = s, vr[s] = 1;
    for (11 d;;) {
      while (ql < qr)
        for (int x = 0, y = qu[ql++]; x < n; ++x)
           if (!v1[x] \&\& s1k[x] >= (d = h1[x] + hr[y] -
               w[x][y])) {
             if (pre[x] = y, d) slk[x] = d;
             else if (!Check(x)) return;
      d = INF:
```

```
for (int x = 0; x < n; ++x)
        if (!v1[x] && d > s1k[x]) d = s1k[x];
       for (int x = 0; x < n; ++x) {
        if (v1[x]) h1[x] += d;
        else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
       for (int x = 0; x < n; ++x)
        if (!v1[x] && !slk[x] && !Check(x)) return;
    }
  11 solve() {
    fill_n(fl, n, -1), fill_n(fr, n, -1), fill_n(hr, n,
          0);
    for (int i = 0; i < n; ++i)</pre>
      hl[i] = *max_element(w[i], w[i] + n);
    for (int i = 0; i < n; ++i) bfs(i);</pre>
    ll res = 0;
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res;
};
```

4.2 MincostMaxflow*

```
struct MinCostMaxFlow { // 0-base
   struct Edge {
    11 from, to, cap, flow, cost, rev;
   } *past[N];
   vector<Edge> G[N];
  int inq[N], n, s, t;
  11 dis[N], up[N], pot[N];
   bool BellmanFord() {
     fill_n(dis, n, INF), fill_n(inq, n, 0);
     queue<int> q;
     auto relax = [&](int u, ll d, ll cap, Edge *e) {
       if (cap > 0 && dis[u] > d) {
         dis[u] = d, up[u] = cap, past[u] = e;
         if (!inq[u]) inq[u] = 1, q.push(u);
      }
     };
     relax(s, 0, INF, 0);
     while (!q.empty()) {
      int u = q.front();
       q.pop(), inq[u] = 0;
       for (auto &e : G[u]) {
         11 d2 = dis[u] + e.cost + pot[u] - pot[e.to];
         relax(e.to, d2, min(up[u], e.cap - e.flow), &e)
       }
     }
     return dis[t] != INF;
  }
   void solve(int _s, int _t, ll &flow, ll &cost, bool
      neg = true) {
     s = _s, t =
                  _t, flow = 0, cost = 0;
     if (neg) BellmanFord(), copy_n(dis, n, pot);
     for (; BellmanFord(); copy_n(dis, n, pot)) {
       for (int i = 0; i < n; ++i) dis[i] += pot[i] -</pre>
           pot[s];
       flow += up[t], cost += up[t] * dis[t];
       for (int i = t; past[i]; i = past[i]->from) {
         auto &e = *past[i];
         e.flow += up[t], G[e.to][e.rev].flow -= up[t];
    }
   void init(int _n) {
    n = _n, fill_n(pot, n, 0);
     for (int i = 0; i < n; ++i) G[i].clear();</pre>
   void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(Edge{a, b, cap, 0, cost, SZ(G[b])});
G[b].pb(Edge{b, a, 0, 0, -cost, SZ(G[a]) - 1});
};
```

4.3 Maximum Simple Graph Matching*

```
struct GenMatch { // 1-base
  int V, pr[N];
```

```
bool el[N][N], inq[N], inp[N], inb[N];
int st, ed, nb, bk[N], djs[N], ans;
   void init(int _V) {
    V = _V;
for (int i = 0; i <= V; ++i) {</pre>
       for (int j = 0; j <= V; ++j) el[i][j] = 0;</pre>
       pr[i] = bk[i] = djs[i] = 0;
       inq[i] = inp[i] = inb[i] = 0;
   void add_edge(int u, int v) {
    el[u][v] = el[v][u] = 1;
  int lca(int u, int v) {
    fill_n(inp, V + 1, 0);
     while (1)
       if (u = djs[u], inp[u] = true, u == st) break;
       else u = bk[pr[u]];
     while (1)
       if (v = djs[v], inp[v]) return v;
       else v = bk[pr[v]];
    return v;
  void upd(int u) {
     for (int v; djs[u] != nb;) {
      v = pr[u], inb[djs[u]] = inb[djs[v]] = true;
       u = bk[v];
       if (djs[u] != nb) bk[u] = v;
    }
  void blo(int u, int v, queue<int> &qe) {
     nb = lca(u, v), fill_n(inb, V + 1, 0);
     upd(u), upd(v);
     if (djs[u] != nb) bk[u] = v;
     if (djs[v] != nb) bk[v] = u;
     for (int tu = 1; tu <= V; ++tu)</pre>
       if (inb[djs[tu]])
         if (djs[tu] = nb, !inq[tu])
           qe.push(tu), inq[tu] = 1;
  void flow() {
     fill_n(inq + 1, V, 0), fill_n(bk + 1, V, 0);
     iota(djs + 1, djs + V + 1, 1);
     queue<int> qe;
     qe.push(st), inq[st] = 1, ed = 0;
     while (!qe.empty()) {
       int u = qe.front();
       qe.pop();
       for (int v = 1; v <= V; ++v)</pre>
         if (el[u][v] && djs[u] != djs[v] &&
           pr[u] != v) {
           if ((v == st) ||
              (pr[v] > 0 \&\& bk[pr[v]] > 0)) {
             blo(u, v, qe);
           } else if (!bk[v]) {
             if (bk[v] = u, pr[v] > 0) {
               if (!inq[pr[v]]) qe.push(pr[v]);
             } else {
               return ed = v, void();
           }
         }
    }
  void aug() {
     for (int u = ed, v, w; u > 0;)
       v = bk[u], w = pr[v], pr[v] = u, pr[u] = v,
       u = w;
  int solve() {
     fill_n(pr, V + 1, \emptyset), ans = \emptyset;
     for (int u = 1; u <= V; ++u)</pre>
       if (!pr[u])
         if (st = u, flow(), ed > 0) aug(), ++ans;
     return ans;
  }
};
```

4.4 Minimum Weight Matching (Clique version)*

```
struct Graph { // 0-base (Perfect Match), n is even
  int n, match[N], onstk[N], stk[N], tp;
  11 edge[N][N], dis[N];
  void init(int _n) {
    n = _n, tp = 0;
    for (int i = 0; i < n; ++i) fill_n(edge[i], n, 0);</pre>
  void add_edge(int u, int v, ll w) {
    edge[u][v] = edge[v][u] = w;
  bool SPFA(int u) {
    stk[tp++] = u, onstk[u] = 1;
    for (int v = 0; v < n; ++v)
      if (!onstk[v] && match[u] != v) {
        int m = match[v];
        if (dis[m] >
          dis[u] - edge[v][m] + edge[u][v]) {
          dis[m] = dis[u] - edge[v][m] + edge[u][v];
          onstk[v] = 1, stk[tp++] = v;
          if (onstk[m] || SPFA(m)) return 1;
          --tp, onstk[v] = 0;
        }
    onstk[u] = 0, --tp;
    return 0:
  11 solve() { // find a match
    for (int i = 0; i < n; ++i) match[i] = i ^ 1;</pre>
    while (1) {
      int found = 0;
      fill_n(dis, n, 0);
      fill_n(onstk, n, ∅);
      for (int i = 0; i < n; ++i)</pre>
        if (tp = 0, !onstk[i] \&\& SPFA(i))
          for (found = 1; tp >= 2;) {
            int u = stk[--tp];
            int v = stk[--tp];
            match[u] = v, match[v] = u;
      if (!found) break;
    ll ret = 0;
    for (int i = 0; i < n; ++i)</pre>
      ret += edge[i][match[i]];
    return ret >> 1;
  }
};
```

4.5 SW-mincut

```
struct SW{ // global min cut, O(V^3)
 #define REP for (int i = 0; i < n; ++i)
static const int MXN = 514, INF = 2147483647;</pre>
  int vst[MXN], edge[MXN][MXN], wei[MXN];
  void init(int n) {
    REP fill_n(edge[i], n, 0);
  void addEdge(int u, int v, int w){
    edge[u][v] += w; edge[v][u] += w;
  int search(int &s, int &t, int n){
    fill_n(vst, n, 0), fill_n(wei, n, 0);
    s = t = -1;
    int mx, cur;
    for (int j = 0; j < n; ++j) {</pre>
      mx = -1, cur = 0;
      REP if (wei[i] > mx) cur = i, mx = wei[i];
      vst[cur] = 1, wei[cur] = -1;
      s = t; t = cur;
      REP if (!vst[i]) wei[i] += edge[cur][i];
    }
    return mx;
  int solve(int n) {
    int res = INF;
    for (int x, y; n > 1; n--){
      res = min(res, search(x, y, n));
REP edge[i][x] = (edge[x][i] += edge[y][i]);
      REP {
         edge[y][i] = edge[n - 1][i];
         edge[i][y] = edge[i][n - 1];
      } // edge[y][y] = 0;
```

```
|} sw;
```

return res;

```
4.6 BoundedFlow*(Dinic*)
struct BoundedFlow { // 0-base
  struct edge {
    int to, cap, flow, rev;
  vector<edge> G[N];
  int n, s, t, dis[N], cur[N], cnt[N];
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n + 2; ++i)</pre>
      G[i].clear(), cnt[i] = 0;
  void add_edge(int u, int v, int lcap, int rcap) {
    cnt[u] -= lcap, cnt[v] += lcap;
    G[u].pb(edge{v, rcap, lcap, SZ(G[v])});
    G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  void add_edge(int u, int v, int cap) {
    G[u].pb(edge{v, cap, 0, SZ(G[v])});
    G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      edge &e = G[u][i];
      if (dis[e.to] == dis[u] + 1 && e.cap != e.flow) {
        int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df, G[e.to][e.rev].flow -= df;
          return df;
      }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n + 3, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (edge &e : G[u])
        if (!~dis[e.to] && e.flow != e.cap)
          q.push(e.to), dis[e.to] = dis[u] + 1;
    return dis[t] != -1;
  int maxflow(int _s, int _t) {
    s = _s, t = _t;
    int flow = 0, df;
    while (bfs()) {
      fill_n(cur, n + 3, 0);
      while ((df = dfs(s, INF))) flow += df;
    return flow:
  bool solve() {
    int sum = 0;
    for (int i = 0; i < n; ++i)</pre>
      if (cnt[i] > 0)
        add_edge(n + 1, i, cnt[i]), sum += cnt[i];
      else if (cnt[i] < 0) add_edge(i, n + 2, -cnt[i]);</pre>
    if (sum != maxflow(n + 1, n + 2)) sum = -1;
    for (int i = 0; i < n; ++i)</pre>
      if (cnt[i] > 0)
        G[n + 1].pop_back(), G[i].pop_back();
      else if (cnt[i] < 0)</pre>
        G[i].pop_back(), G[n + 2].pop_back();
    return sum != -1;
  int solve(int _s, int
    add_edge(_t, _s, INF);
    if (!solve()) return -1; // invalid flow
    int x = G[_t].back().flow;
```

```
return G[_t].pop_back(), G[_s].pop_back(), x;
|};
```

Gomory Hu tree*

```
MaxFlow Dinic:
int g[MAXN];
void GomoryHu(int n) { // 0-base
  fill_n(g, n, 0);
  for (int i = 1; i < n; ++i) {</pre>
    Dinic.reset();
    add_edge(i, g[i], Dinic.maxflow(i, g[i]));
    for (int j = i + 1; j <= n; ++j)</pre>
      if (g[j] == g[i] && ~Dinic.dis[j])
        g[j] = i;
  }
}
```

Minimum Cost Circulation*

```
struct MinCostCirculation { // 0-base
  struct Edge {
    11 from, to, cap, fcap, flow, cost, rev;
  } *past[N];
  vector<Edge> G[N];
  11 dis[N], inq[N], n;
  void BellmanFord(int s) {
    fill_n(dis, n, INF), fill_n(inq, n, 0);
    queue<int> q;
    auto relax = [&](int u, ll d, Edge *e) {
      if (dis[u] > d) {
        dis[u] = d, past[u] = e;
        if (!inq[u]) inq[u] = 1, q.push(u);
      }
    };
    relax(s, 0, 0);
    while (!q.empty()) {
      int u = q.front();
      q.pop(), inq[u] = 0;
      for (auto &e : G[u])
        if (e.cap > e.flow)
          relax(e.to, dis[u] + e.cost, &e);
   }
  }
  void try_edge(Edge &cur) {
    if (cur.cap > cur.flow) return ++cur.cap, void();
    BellmanFord(cur.to);
    if (dis[cur.from] + cur.cost < 0) {</pre>
      ++cur.flow, --G[cur.to][cur.rev].flow;
      for (int i = cur.from; past[i]; i = past[i]->from
          ) {
        auto &e = *past[i];
        ++e.flow, --G[e.to][e.rev].flow;
      }
    }
    ++cur.cap;
  void solve(int mxlg) {
    for (int b = mxlg; b >= 0; --b) {
      for (int i = 0; i < n; ++i)</pre>
        for (auto &e : G[i])
          e.cap *= 2, e.flow *= 2;
      for (int i = 0; i < n; ++i)</pre>
        for (auto &e : G[i])
          if (e.fcap >> b & 1)
            try_edge(e);
   }
  }
  void init(int _n) { n = _n;
   for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(Edge{a, b, 0, cap, 0, cost, SZ(G[b]) + (a)}
        == b)});
    G[b].pb(Edge{b, a, 0, 0, 0, -cost, SZ(G[a]) - 1});
} mcmf; // O(VE * ELogC)
```

4.9 Flow Models

- Maximum/Minimum flow with lower bound / Circulation problem 1. Construct super source ${\cal S}$ and sink ${\cal T}.$

 - 2. For each edge (x,y,l,u), connect $x\to y$ with capacity u-l. 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing
 - lower bounds. 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer.
 - To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge $\stackrel{.}{e}$ is l_e+f_e , where f_e corresponds to the flow of edge \boldsymbol{e} on the graph.
- ullet Construct minimum vertex cover from maximum matching M on bipar-
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise. 2. DFS from unmatched vertices in X. 3. $x \in X$ is chosen iff x is unvisited. 4. $y \in Y$ is chosen iff y is visited.
- Minimum cost cyclic flow

 - 1. Consruct super source S and sink T2. For each edge (x,y,c), connect $x \to y$ with (cost,cap)=(c,1) if c>0, otherwise connect $y \to x$ with (cost,cap)=(-c,1)3. For each edge with c<0, sum these cost as K, then increase

 - d(y) by 1, decrease d(x) by 1 4. For each vertex v with d(v)>0 , connect $S\to v$ with
 - (cost, cap) = (0, d(v))5. For each vertex v with d(v) < 0, connect $v \to T$ with (cost, cap) = (0, -d(v))6. Flow from S to T, the answer is the cost of the flow C+K
- Maximum density induced subgraph

 - 1. Binary search on answer, suppose we're checking answer T 2. Construct a max flow model, let K be the sum of all weights 3. Connect source $s \to v$, $v \in G$ with capacity K 4. For each edge (u,v,w) in G, connect $u \to v$ and $v \to u$ with capacity w
 - 5. For $v \in G$, connect it with sink $v \to t$ with capacity $K+2T-(\sum_{e \in E(v)} w(e))-2w(v)$ 6. T is a valid answer if the maximum flow f < K|V|
- Minimum weight edge cover 1. For each $v \in V$ create a copy v' , and connect $u' \to v'$ with
 - weight w(u,v). 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of
 - the cheapest edge incident to $v\,.$ 3. Find the minimum weight perfect matching on $G'\,.$
- Project selection problem 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise,

 - create edge (v,t) with capacity $-p_v$. 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v.

 3. The mincut is equivalent to the maximum profit of a subset
 - of projects.
- Dual of minimum cost maximum flow
 - 1. Capacity c_{uv} , Flow f_{uv} , Cost w_{uv} , Required Flow difference for vertex b_u .
 - 2. If all w_{uv} are integers, then optimal solution can happen when all p_u are integers.

$$\begin{split} \min \sum_{uv} w_{uv} f_{uv} \\ -f_{uv} &\geq -c_{uv} \Leftrightarrow \min \sum_{u} b_{u} p_{u} + \sum_{uv} c_{uv} \max(0, p_{v} - p_{u} - w_{uv}) \\ \sum_{v} f_{vu} - \sum_{v} f_{uv} &= -b_{u} \end{split}$$

String

5.1 KMP

```
int F[MAXN];
vector<int> match(string A, string B) {
  vector<int> ans;
  F[0] = -1, F[1] = 0;
  for (int i = 1, j = 0; i < SZ(B); F[++i] = ++j) {
    if (B[i] == B[j]) F[i] = F[j]; // optimize
    while (j != -1 \&\& B[i] != B[j]) j = F[j];
  for (int i = 0, j = 0; i < SZ(A); ++i) {
  while (j != -1 && A[i] != B[j]) j = F[j];</pre>
    if (++j == SZ(B)) ans.pb(i + 1 - j), j = F[j];
  return ans;
```

5.2 Z-value*

```
int z[MAXn];
void make_z(const string &s) {
  int l = 0, r = 0;
  for (int i = 1; i < SZ(s); ++i) {
    for (z[i] = max(0, min(r - i + 1, z[i - 1]));
        i + z[i] < SZ(s) && s[i + z[i]] == s[z[i]];
        ++z[i])
    ;
  if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
  }
}
```

5.3 Manacher*

5.4 Suffix Array

```
struct suffix_array {
  int box[MAXN], tp[MAXN], m;
  bool not_equ(int a, int b, int k, int n) {
    return ra[a] != ra[b] || a + k >= n ||
      b + k >= n \mid \mid ra[a + k] != ra[b + k];
  void radix(int *key, int *it, int *ot, int n) {
    fill_n(box, m, 0);
    for (int i = 0; i < n; ++i) ++box[key[i]];</pre>
    partial_sum(box, box + m, box);
for (int i = n - 1; i >= 0; --i)
      ot[--box[key[it[i]]]] = it[i];
  void make_sa(const string &s, int n) {
    int k = 1;
    for (int i = 0; i < n; ++i) ra[i] = s[i];</pre>
    do {
      iota(tp, tp + k, n - k), iota(sa + k, sa + n, ∅);
      radix(ra + k, sa + k, tp + k, n - k);
      radix(ra, tp, sa, n);
      tp[sa[0]] = 0, m = 1;
      for (int i = 1; i < n; ++i) {
        m += not_equ(sa[i], sa[i - 1], k, n);
        tp[sa[i]] = m - 1;
      copy_n(tp, n, ra);
      k *= 2;
    } while (k < n && m != n);</pre>
  void make_he(const string &s, int n) {
    for (int j = 0, k = 0; j < n; ++j) {
      if (ra[j])
        for (; s[j + k] == s[sa[ra[j] - 1] + k]; ++k)
      he[ra[j]] = k, k = max(0, k - 1);
    }
  int sa[MAXN], ra[MAXN], he[MAXN];
  void build(const string &s) {
    int n = SZ(s);
    fill_n(sa, n, 0), fill_n(ra, n, 0), fill_n(he, n,
    fill_n(box, n, 0), fill_n(tp, n, 0), m = 256;
    make_sa(s, n), make_he(s, n);
};
```

5.5 SAIS*

```
namespace sfx {
bool _t[N * 2];
int SA[N * 2], H[N], RA[N];
int _s[N * 2], _c[N * 2], x[N], _p[N], _q[N * 2];
// zero based, string content MUST > 0
// SA[i]: SA[i]-th suffix is the i-th lexigraphically
     smallest suffix.
 // H[i]: Longest common prefix of suffix SA[i] and
     suffix SA[i - 1].
void pre(int *sa, int *c, int n, int z)
{ fill_n(sa, n, 0), copy_n(c, z, x); }
void induce(int *sa, int *c, int *s, bool *t, int n,
     int z) {
   copy_n(c, z - 1, x + 1);
for (int i = 0; i < n; ++i)
     if (sa[i] && !t[sa[i] - 1])
       sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
   copy_n(c, z, x);
   for (int i = n - 1; i >= 0; --i)
     if (sa[i] && t[sa[i] - 1])
       sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
void sais(int *s, int *sa, int *p, int *q, bool *t, int
       *c, int n, int z) {
   bool uniq = t[n - 1] = true;
   int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
        last = -1;
   fill_n(c, z, 0);
   for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;</pre>
   partial_sum(c, c + z, c);
   if (uniq) {
     for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;</pre>
     return;
   for (int i = n - 2; i >= 0; --i)
     t[i] = (s[i] == s[i + 1] ? t[i + 1] : s[i] < s[i +
          1]);
   pre(sa, c, n, z);
   for (int i = 1; i <= n - 1; ++i)
     if (t[i] && !t[i - 1])
       sa[--x[s[i]]] = p[q[i] = nn++] = i;
   induce(sa, c, s, t, n, z);
for (int i = 0; i < n; ++i)
     if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
       bool neq = last \langle 0 \mid | !equal(s + sa[i], s + p[q[
            sa[i]] + 1], s + last);
       ns[q[last = sa[i]]] = nmxz += neq;
   sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz +
        1);
   pre(sa, c, n, z);
   for (int i = nn - 1; i >= 0; --i)
     sa[--x[s[p[nsa[i]]]] = p[nsa[i]];
   induce(sa, c, s, t, n, z);
void mkhei(int n) {
   for (int i = 0, j = 0; i < n; ++i) {
     if (RA[i])
     for (; _s[i + j] == _s[SA[RA[i] - 1] + j]; ++j);
H[RA[i]] = j, j = max(0, j - 1);
   }
}
void build(int *s, int n) {
   copy_n(s, n, _s), _s[n] = 0;
   sais(_s, SA, _p, _q, _t, _c, n + 1, 256);
copy_n(SA + 1, n, SA);
   for (int i = 0; i < n; ++i) RA[SA[i]] = i;</pre>
   mkhei(n);
}}
```

5.6 Aho-Corasick Automatan

```
const int len = 400000, sigma = 26;
struct AC_Automatan {
  int nx[len][sigma], fl[len], cnt[len], pri[len], top;
  int newnode() {
    fill(nx[top], nx[top] + sigma, -1);
    return top++;
  }
  void init() { top = 1, newnode(); }
```

```
int input(
    string &s) { // return the end_node of string
    int X = 1;
    for (char c : s) {
  if (!~nx[X][c - 'a']) nx[X][c - 'a'] = newnode();
  X = nx[X][c - 'a'];
    }
    return X;
  }
  void make_fl() {
    queue<int> q;
    q.push(1), fl[1] = 0;
    for (int t = 0; !q.empty();) {
      int R = q.front();
       q.pop(), pri[t++] = R;
       for (int i = 0; i < sigma; ++i)</pre>
         if (~nx[R][i]) {
           int X = nx[R][i], Z = f1[R];
           for (; Z && !~nx[Z][i];) Z = fl[Z];
           fl[X] = Z ? nx[Z][i] : 1, q.push(X);
    }
  }
  void get_v(string &s) {
    int X = 1;
    fill(cnt, cnt + top, 0);
    for (char c : s) {
      while (X \&\& !\sim nx[X][c - 'a']) X = fl[X];
      X = X ? nx[X][c - 'a'] : 1, ++cnt[X];
    for (int i = top - 2; i > 0; --i)
       cnt[fl[pri[i]]] += cnt[pri[i]];
  }
};
```

5.7 Smallest Rotation

```
string mcp(string s) {
  int n = SZ(s), i = 0, j = 1;
  s += s;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && s[i + k] == s[j + k]) ++k;
    if (s[i + k] <= s[j + k]) j += k + 1;
    else i += k + 1;
    if (i == j) ++j;
  }
  int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```

5.8 De Bruijn sequence*

```
constexpr int MAXC = 10, MAXN = 1e5 + 10;
struct DBSeq {
  int C, N, K, L, buf[MAXC * MAXN]; // K \leftarrow C^N
  void dfs(int *out, int t, int p, int &ptr) {
    if (ptr >= L) return;
    if (t > N) {
       if (N % p) return;
       for (int i = 1; i <= p && ptr < L; ++i)</pre>
         out[ptr++] = buf[i];
    } else {
       buf[t] = buf[t - p], dfs(out, t + 1, p, ptr);
       for (int j = buf[t - p] + 1; j < C; ++j)</pre>
         buf[t] = j, dfs(out, t + 1, t, ptr);
  void solve(int _c, int _n, int _k, int *out) {
    int p = 0;
    C = _c, N = _n, K = _k, L = N + K - 1;
dfs(out, 1, 1, p);
if (p < L) fill(out + p, out + L, 0);</pre>
} dbs;
```

5.9 Extended SAM*

```
| struct exSAM {
| int len[N * 2], link[N * 2]; // maxlength, suflink
| int next[N * 2][CNUM], tot; // [0, tot), root = 0
```

```
int lenSorted[N * 2]; // topo. order
  int cnt[N * 2]; // occurence
  int newnode() {
    fill_n(next[tot], CNUM, 0);
    len[tot] = cnt[tot] = link[tot] = 0;
    return tot++;
  void init() { tot = 0, newnode(), link[0] = -1; }
  int insertSAM(int last, int c) {
    int cur = next[last][c];
    len[cur] = len[last] + 1;
    int p = link[last];
    while (p != -1 && !next[p][c])
      next[p][c] = cur, p = link[p];
    if (p == -1) return link[cur] = 0, cur;
    int q = next[p][c];
    if (len[p] + 1 == len[q]) return link[cur] = q, cur
    int clone = newnode();
    for (int i = 0; i < CNUM; ++i)</pre>
      next[clone][i] = len[next[q][i]] ? next[q][i] :
    len[clone] = len[p] + 1;
    while (p != -1 \&\& next[p][c] == q)
      next[p][c] = clone, p = link[p];
    link[link[cur] = clone] = link[q];
    link[q] = clone;
    return cur;
  void insert(const string &s) {
    int cur = 0:
    for (auto ch : s) {
      int &nxt = next[cur][int(ch - 'a')];
      if (!nxt) nxt = newnode();
      cnt[cur = nxt] += 1;
    }
  void build() {
    queue<int> q;
    q.push(0);
    while (!q.empty()) {
      int cur = q.front();
      q.pop();
      for (int i = 0; i < CNUM; ++i)</pre>
        if (next[cur][i])
          q.push(insertSAM(cur, i));
    vector<int> lc(tot);
    for (int i = 1; i < tot; ++i) ++lc[len[i]];</pre>
    partial_sum(ALL(lc), lc.begin());
    for (int i = 1; i < tot; ++i) lenSorted[--lc[len[i</pre>
         111 = i;
  void solve() {
    for (int i = tot - 2; i >= 0; --i)
      cnt[link[lenSorted[i]]] += cnt[lenSorted[i]];
};
```

5.10 PalTree*

```
struct palindromic_tree {
  struct node {
    int next[26], fail, len;
    int cnt, num; // cnt: appear times, num: number of
                   // pal. suf.
    node(int 1 = 0) : fail(0), len(1), cnt(0), num(0) {
      for (int i = 0; i < 26; ++i) next[i] = 0;</pre>
  };
  vector<node> St:
  vector<char> s;
  int last, n;
  palindromic_tree() : St(2), last(1), n(0) {
    St[0].fail = 1, St[1].len = -1, s.pb(-1);
  inline void clear() {
    St.clear(), s.clear(), last = 1, n = 0;
St.pb(0), St.pb(-1);
    St[0].fail = 1, s.pb(-1);
  inline int get_fail(int x) {
```

```
while (s[n - St[x].len - 1] != s[n])
      x = St[x].fail;
    return x;
  inline void add(int c) {
  s.push_back(c -= 'a'), ++n;
    int cur = get_fail(last);
    if (!St[cur].next[c]) {
      int now = SZ(St);
      St.pb(St[cur].len + 2);
      St[now].fail =
        St[get_fail(St[cur].fail)].next[c];
      St[cur].next[c] = now;
      St[now].num = St[St[now].fail].num + 1;
    last = St[cur].next[c], ++St[last].cnt;
  inline void count() { // counting cnt
    auto i = St.rbegin();
    for (; i != St.rend(); ++i) {
      St[i->fail].cnt += i->cnt;
  inline int size() { // The number of diff. pal.
    return SZ(St) - 2;
};
```

6 Math

6.1 ax+by=gcd(only exgcd *)

```
pll exgcd(ll a, ll b) {
   if (b == 0) return pll(1, 0);
   ll p = a / b;
   pll q = exgcd(b, a % b);
   return pll(q.Y, q.X - q.Y * p);
}
/* ax+by=res, let x be minimum non-negative
g, p = gcd(a, b), exgcd(a, b) * res / g
if p.X < 0: t = (abs(p.X) + b / g - 1) / (b / g)
else: t = -(p.X / (b / g))
p += (b / g, -a / g) * t */</pre>
```

6.2 floor and ceil

```
int floor(int a, int b)
{ return a / b - (a % b && (a < 0) ^ (b < 0)); }
int ceil(int a, int b)
{ return a / b + (a % b && (a < 0) ^ (b > 0)); }
```

6.3 Gaussian integer gcd

6.4 Miller Rabin*

```
if (x == 1 || x == n - 1) return 1;
while (--t)
  if ((x = mul(x, x, n)) == n - 1) return 1;
return 0;
}
```

6.5 Fraction

```
struct fraction {
  fraction(const 11 &_n=0, const 11 &_d=1): n(_n), d(_d
     11 t = gcd(n, d);
    n /= t, d /= t;
    if (d < 0) n = -n, d = -d;
  fraction operator-() const
  { return fraction(-n, d); }
  fraction operator+(const fraction &b) const
  { return fraction(n * b.d + b.n * d, d * b.d); }
  fraction operator-(const fraction &b) const
  { return fraction(n * b.d - b.n * d, d * b.d); }
  fraction operator*(const fraction &b) const
  { return fraction(n * b.n, d * b.d); }
  fraction operator/(const fraction &b) const
  { return fraction(n * b.d, d * b.n); }
  void print() {
    cout << n;
     if (d != 1) cout << "/" << d;</pre>
};
```

6.6 Simultaneous Equations

```
struct matrix { //m variables, n equations
  int n, m;
  fraction M[MAXN][MAXN + 1], sol[MAXN];
  int solve() { //-1: inconsistent, >= 0: rank
    for (int i = 0; i < n; ++i) {</pre>
      int piv = 0;
      while (piv < m && !M[i][piv].n) ++piv;</pre>
       if (piv == m) continue;
      for (int j = 0; j < n; ++j) {
  if (i == j) continue;</pre>
         fraction tmp = -M[j][piv] / M[i][piv];
         for (int k = 0; k \le m; ++k) M[j][k] = tmp * M[
              i][k] + M[j][k];
      }
    int rank = 0;
    for (int i = 0; i < n; ++i) {</pre>
      int piv = 0;
      while (piv < m && !M[i][piv].n) ++piv;</pre>
      if (piv == m && M[i][m].n) return -1;
       else if (piv < m) ++rank, sol[piv] = M[i][m] / M[</pre>
           i][piv];
    }
    return rank;
};
```

6.7 Pollard Rho*

```
map<ll, int> cnt;
void PollardRho(ll n) {
  if (n == 1) return;
  if (prime(n)) return ++cnt[n], void();
  if (n % 2 == 0) return PollardRho(n / 2), ++cnt[2],
      void();
  11 x = 2, y = 2, d = 1, p = 1;
  #define f(x, n, p) ((mul(x, x, n) + p) % n)
  while (true) {
    if (d != n && d != 1) {
      PollardRho(n / d);
      PollardRho(d);
      return;
    if (d == n) ++p;
    x = f(x, n, p), y = f(f(y, n, p), n, p);
    d = gcd(abs(x - y), n);
}
```

6.8 Simplex Algorithm

```
const int MAXN = 11000, MAXM = 405;
const double eps = 1E-10;
double a[MAXN][MAXM], b[MAXN], c[MAXM];
double d[MAXN][MAXM], x[MAXM];
int ix[MAXN + MAXM]; // !!! array all indexed from 0
// max{cx} subject to {Ax<=b,x>=0}
// n: constraints, m: vars !!!
// x[] is the optimal solution vector
// usage :
// value = simplex(a, b, c, N, M);
double simplex(int n, int m){
  fill_n(d[n], m + 1, 0);
  fill_n(d[n+1], m+1, 0);
  iota(ix, ix + n + m, \theta);
  int r = n, s = m - 1;
  for (int i = 0; i < n; ++i) {</pre>
    for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];</pre>
    d[i][m - 1] = 1;
    d[i][m] = b[i];
    if (d[r][m] > d[i][m]) r = i;
  copy_n(c, m - 1, d[n]);
  d[n + 1][m - 1] = -1;
  for (double dd;; ) {
    if (r < n) {
      swap(ix[s], ix[r + m]);
      d[r][s] = 1.0 / d[r][s];
      for (int j = 0; j <= m; ++j)</pre>
        if (j != s) d[r][j] *= -d[r][s];
      for (int i = 0; i <= n + 1; ++i) if (i != r) {</pre>
        for (int j = 0; j <= m; ++j) if (j != s)
  d[i][j] += d[r][j] * d[i][s];</pre>
        d[i][s] *= d[r][s];
      }
    }
    r = s = -1;
    for (int j = 0; j < m; ++j)
      if (s < 0 || ix[s] > ix[j]) {
        if (d[n + 1][j] > eps ||
             (d[n + 1][j] > -eps && d[n][j] > eps))
    if (s < 0) break;</pre>
    for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {</pre>
      if (r < 0 ||
          (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s])
               < -eps ||
          (dd < eps && ix[r + m] > ix[i + m]))
        r = i;
    if (r < 0) return -1; // not bounded</pre>
  if (d[n + 1][m] < -eps) return -1; // not executable</pre>
  double ans = 0;
  fill_n(x, m, 0);
  for (int i = m; i < n + m; ++i) { // the missing
      enumerated x[i] = 0
    if (ix[i] < m - 1){</pre>
      ans += d[i - m][m] * c[ix[i]];
      x[ix[i]] = d[i-m][m];
    }
  }
  return ans;
```

6.8.1 Construction

Standard form: maximize $\mathbf{c}^T\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$. Dual LP: minimize $\mathbf{b}^T\mathbf{y}$ subject to $A^T\mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq \mathbf{0}$. $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ are optimal if and only if for all $i \in [1,n]$, either $\bar{x}_i = 0$ or $\sum_{j=1}^m A_{ji}\bar{y}_j = c_i$ holds and for all $i \in [1,m]$ either $\bar{y}_i = 0$ or $\sum_{j=1}^n A_{ij}\bar{x}_j = b_j$ holds.

```
1. In case of minimization, let c_i'=-c_i  
2. \sum_{1\leq i\leq n}A_{ji}x_i\geq b_j \to \sum_{1\leq i\leq n}-A_{ji}x_i\leq -b_j  
3. \sum_{1\leq i\leq n}A_{ji}x_i=b_j  
• \sum_{1\leq i\leq n}A_{ji}x_i\leq b_j  
• \sum_{1\leq i\leq n}A_{ji}x_i\geq b_j
```

4. If x_i has no lower bound, replace x_i with $x_i - x_i^\prime$

6.9 chineseRemainder

```
11 solve(ll x1, ll m1, ll x2, ll m2) {
    ll g = gcd(m1, m2);
    if ((x2 - x1) % g) return -1; // no sol
    m1 /= g; m2 /= g;
    pll p = exgcd(m1, m2);
    ll lcm = m1 * m2 * g;
    ll res = p.first * (x2 - x1) * m1 + x1;
    // be careful with overflow
    return (res % lcm + lcm) % lcm;
}
```

6.10 Factorial without prime factor*

```
// O(p^k + Log^2 n), pk = p^k
11 prod[MAXP];
11 fac_no_p(ll n, ll p, ll pk) {
  prod[0] = 1;
  for (int i = 1; i <= pk; ++i)
     if (i % p) prod[i] = prod[i - 1] * i % pk;
     else prod[i] = prod[i - 1];
11 rt = 1;
for (; n; n /= p) {
    rt = rt * mpow(prod[pk], n / pk, pk) % pk;
    rt = rt * prod[n % pk] % pk;
}
return rt;
} // (n! without factor p) % p^k</pre>
```

6.11 QuadraticResidue*

```
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = builtin ctz(a);
    if ((r \& 1) \&\& ((m + 2) \& 4)) s = -s;
    a >>= r;
    if (a \& m \& 2) s = -s;
    swap(a, m);
  return s;
}
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (;;) {
    b = rand() \% p;
    d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 %
           p)) % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
      g0 = tmp;
    tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p
    )) % p;
f1 = (2LL * f0 * f1) % p;
    f0 = tmp;
  }
  return g0;
```

6.12 PiCount*

```
1l PrimeCount(1l n) { // n ~ 10^13 => < 2s
    if (n <= 1) return 0;
    int v = sqrt(n), s = (v + 1) / 2, pc = 0;
    vector<int> smalls(v + 1), skip(v + 1), roughs(s);
    vector<ll> larges(s);
    for (int i = 2; i <= v; ++i) smalls[i] = (i + 1) / 2;</pre>
```

```
for (int i = 0; i < s; ++i) {
  roughs[i] = 2 * i + 1;
  larges[i] = (n / (2 * i + 1) + 1) / 2;</pre>
for (int p = 3; p <= v; ++p) {</pre>
  if (smalls[p] > smalls[p - 1]) {
    int q = p * p;
     ++pc;
    if (1LL * q * q > n) break;
     skip[p] = 1;
     for (int i = q; i <= v; i += 2 * p) skip[i] = 1;
     int ns = 0;
     for (int k = 0; k < s; ++k) {</pre>
       int i = roughs[k];
       if (skip[i]) continue;
       11 d = 1LL * i * p;
       larges[ns] = larges[k] - (d <= v ? larges[</pre>
            smalls[d] - pc] : smalls[n / d]) + pc;
       roughs[ns++] = i;
    }
    for (int j = v / p; j >= p; --j) {
       int c = smalls[j] - pc, e = min(j * p + p, v + p
            1);
       for (int i = j * p; i < e; ++i) smalls[i] -= c;</pre>
  }
}
for (int k = 1; k < s; ++k) {
  const ll m = n / roughs[k];
ll t = larges[k] - (pc + k - 1);
  for (int 1 = 1; 1 < k; ++1) {
    int p = roughs[1];
    if (1LL * p * p > m) break;
    t -= smalls[m / p] - (pc + 1 - 1);
  larges[0] -= t;
return larges[0];
```

6.13 Discrete Log*

```
int DiscreteLog(int s, int x, int y, int m) {
  constexpr int kStep = 32000;
  unordered_map<int, int> p;
  int b = 1;
  for (int i = 0; i < kStep; ++i) {</pre>
   p[y] = i;
y = 1LL * y * x % m;
    b = 1LL * b * x % m;
  for (int i = 0; i < m + 10; i += kStep) {</pre>
    s = 1LL * s * b % m;
    if (p.find(s) != p.end()) return i + kStep - p[s];
  }
  return -1;
int DiscreteLog(int x, int y, int m) {
  if (m == 1) return 0;
  int s = 1;
  for (int i = 0; i < 100; ++i) {</pre>
   if (s == y) return i;
    s = 1LL * s * x % m;
  if (s == y) return 100;
  int p = 100 + DiscreteLog(s, x, y, m);
  if (fpow(x, p, m) != y) return -1;
  return p;
```

6.14 Berlekamp Massey

```
template <typename T>
vector<T> BerlekampMassey(const vector<T> &output) {
  vector<T> d(SZ(output) + 1), me, he;
  for (int f = 0, i = 1; i <= SZ(output); ++i) {
    for (int j = 0; j < SZ(me); ++j)
      d[i] += output[i - j - 2] * me[j];
    if ((d[i] -= output[i - 1]) == 0) continue;
    if (me.empty()) {</pre>
```

```
me.resize(f = i);
    continue;
}
vector<T> o(i - f - 1);
T k = -d[i] / d[f]; o.pb(-k);
for (T x : he) o.pb(x * k);
o.resize(max(SZ(o), SZ(me)));
for (int j = 0; j < SZ(me); ++j) o[j] += me[j];
if (i - f + SZ(he) >= SZ(me)) he = me, f = i;
me = o;
}
return me;
```

6.15 Primes

```
/* 12721 13331 14341 75577 123457 222557 556679 999983 1097774749 1076767633 100102021 999997771 1001010013 1000512343 987654361 999991231 999888733 98789101 987777733 999991921 1010101333 1010102101 1000000000039 100000000000037 2305843009213693951 4611686018427387847 9223372036854775783 18446744073709551557 */
```

6.16 Theorem

• Cramer's rule

$$\begin{aligned} ax + by &= e \\ cx + dy &= f \end{aligned} \Rightarrow \begin{aligned} x &= \frac{ed - bf}{ad - bc} \\ y &= \frac{af - ec}{ad - bc} \end{aligned}$$

• Vandermonde's Identity

$$C(n+m,k) = \sum_{i=0}^{k} C(n,i)C(m,k-i)$$

• Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$. The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.
- Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

- Cayley's Formula
 - Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees. Let $T_{n,k}$ be the number of labeled forests on n vertices with
 - Let $T_{n,k}$ be the number of tabeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.
- Erdős-Gallai theorem

A sequence of nonnegative integers $d_1 \geq \cdots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + \cdots + d_n$ is even and $\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$ holds for every $1 \leq k \leq n$.

• Gale-Ryser theorem

A pair of sequences of nonnegative integers $a_1\geq \cdots \geq a_n$ and b_1,\ldots,b_n is bigraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i \leq \sum_{i=1}^n \min(b_i,k)$ holds for every $1\leq k\leq n$.

• Fulkerson-Chen-Anstee theorem

A sequence $(a_1,b_1),\ldots,(a_n,b_n)$ of nonnegative integer pairs with $a_1\geq\cdots\geq a_n$ is digraphic if and only if $\sum_{i=1}^n a_i=\sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i\leq\sum_{i=1}^k \min(b_i,k-1)+\sum_{i=k+1}^n \min(b_i,k)$ holds for every $1\leq k\leq n$.

• Möbius inversion formula

-
$$f(n) = \sum_{d \mid n} g(d) \Leftrightarrow g(n) = \sum_{d \mid n} \mu(d) f(\frac{n}{d})$$

- $f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$
- Spherical cap

 - A portion of a sphere cut off by a plane. r: sphere radius, a: radius of the base of the cap, h: height of the cap, θ : $\arcsin(a/r)$. Volume = $\pi h^2(3r-h)/3 = \pi h(3a^2+h^2)/6 = \pi r^3(2+\cos\theta)(1-\cos\theta)$
 - $\cos heta)^2/3.$ Area $= 2\pi r h = \pi(a^2 + h^2) = 2\pi r^2(1 \cos heta).$
- Lagrange multiplier
 - Optimize $f(x_1,\ldots,x_n)$ when k constraints $g_i(x_1,\ldots,x_n)=0$. Lagrangian function $\mathcal{L}(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_k)=0$
 - $f(x_1,\ldots,x_n)=\sum_{i=1}^k\lambda_ig_i(x_1,\ldots,x_n)$. The solution corresponding to the original constrained optimization is always a saddle point of the Lagrangian function.

6.17 Estimation

- Estimation
 - The number of divisors of n is at most around $100\ {\rm for}$ $n\,<\,5e4$, 500 for $n\,<\,1e7$, 2000 for $n\,<\,1e10$, 200000 for
 - n < 1e19. The number of ways of writing n as a sum of positive integers, disregarding the order of the summands. $1,1,2,3,5,7,11,15,22,30 \text{ for } n=0\sim9, 627 \text{ for } n=20,\\ \sim 2e5 \text{ for } n=50, \sim 2e8 \text{ for } n=100.\\ \text{- Total number of partitions of } n \text{ distinct elements: } B(n)=0$
 - 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597,27644437, 190899322,

6.18 Euclidean Algorithms

- $m = \lfloor \frac{an+b}{c} \rfloor$
- Time complexity: $O(\log n)$

$$\begin{split} f(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)}{2} + \lfloor \frac{b}{c} \rfloor \cdot (n+1) \\ +f(a \bmod c, b \bmod c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ nm - f(c, c-b-1, a, m-1), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} g(a,b,c,n) &= \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ +g(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1)) \\ -h(c, c-b-1, a, m-1)), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ + \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ + h(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ nm(m+1) - 2g(c, c-b-1, a, m-1) \\ - 2f(c, c-b-1, a, m-1) - f(a, b, c, n), & \text{otherwise} \end{cases} \end{split}$$

6.19 General Purpose Numbers

• Bernoulli numbers

$$\begin{split} &B_0-1, B_1^{\pm}=\pm\tfrac{1}{2}, B_2=\tfrac{1}{6}, B_3=0\\ &\sum_{j=0}^m \binom{m+1}{j} B_j=0\text{, EGF is } B(x)=\tfrac{x}{e^x-1}=\sum_{n=0}^\infty B_n \frac{x^n}{n!}\text{.}\\ &S_m(n)=\sum_{k=1}^n k^m=\frac{1}{m+1}\sum_{k=0}^m \binom{m+1}{k} B_k^+ n^{m+1-k} \end{split}$$

ullet Stirling numbers of the second kind Partitions of n distinct elements into exactly k groups.

$$\begin{split} S(n,k) &= S(n-1,k-1) + kS(n-1,k), S(n,1) = S(n,n) = 1 \\ S(n,k) &= \frac{1}{k!} \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} i^n \\ x^n &= \sum_{i=0}^n S(n,i)(x)_i \end{split}$$

• Pentagonal number theorem

$$\prod_{n=1}^{\infty} (1 - x^n) = 1 + \sum_{k=1}^{\infty} (-1)^k \left(x^{k(3k+1)/2} + x^{k(3k-1)/2} \right)$$

• Catalan numbers

$$C_n^{(k)} = \frac{1}{(k-1)n+1} {kn \choose n}$$
$$C^{(k)}(x) = 1 + x[C^{(k)}(x)]^k$$

• Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$. E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)E(n,0) = E(n, n-1) = 1 $E(n,k) = \sum_{j=0}^{k} (-1)^{j} {n+1 \choose j} (k+1-j)^{n}$

6.20 Tips for Generating Functions

• Ordinary Generating Function $A(x) = \sum_{i>0} a_i x^i$

```
\begin{array}{l} - A(rx) \Rightarrow r^n a_n \\ - A(x) + B(x) \Rightarrow a_n + b_n \\ - A(x) B(x) \Rightarrow \sum_{i=0}^n a_i b_{n-i} \\ - A(x)^k \Rightarrow \sum_{i_1 + i_2 + \dots + i_k = n} a_{i_1} a_{i_2} \dots a_{i_k} \\ - x A(x)' \Rightarrow n a_n \\ - \frac{A(x)}{1-x} \Rightarrow \sum_{i=0}^n a_i \end{array}
```

• Exponential Generating Function $A(x) = \sum_{i \geq 0} \frac{a_i}{i!} x_i$

```
- A(x) + B(x) \Rightarrow a_n + b_n

- A^{(k)}(x) \Rightarrow a_{n+k}

- A(x)B(x) \Rightarrow \sum_{i=0}^{k} {n \choose i}a_ib_{n-i}

- A(x)^k \Rightarrow \sum_{i_1+i_2+\cdots+i_k=n}^{k} {n \choose {i_1,i_2,\dots,i_k}}a_{i_1}a_{i_2}\dots a_{i_k}
```

• Special Generating Function

-
$$(1+x)^n = \sum_{i\geq 0} \binom{n}{i} x^i$$

- $\frac{1}{(1-x)^n} = \sum_{i\geq 0} \binom{n}{i} x^i$

Polynomial

7.1 Fast Fourier Transform

```
template<int MAXN>
struct FFT {
  using val_t = complex<double>;
  const double PI = acos(-1);
  val_t w[MAXN];
  FFT() {
    for (int i = 0; i < MAXN; ++i) {</pre>
      double arg = 2 * PI * i / MAXN;
      w[i] = val_t(cos(arg), sin(arg));
  void bitrev(val_t *a, int n); // see NTT
  void trans(val_t *a, int n, bool inv = false); // see
  // remember to replace LL with val_t
};
```

7.2 Number Theory Transform*

```
//(2^16)+1, 65537, 3
//7*17*(2^23)+1, 998244353, 3
//1255*(2^20)+1, 1315962881, 3
//51*(2^25)+1, 1711276033, 29
template<int MAXN, 11 P, 11 RT> //MAXN must be 2^k
struct NTT {
  11 w[MAXN];
  11 mpow(ll a, ll n);
  11 minv(ll a) { return mpow(a, P - 2); }
    ll dw = mpow(RT, (P - 1) / MAXN);
     w[0] = 1;
     for (int i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw
  void bitrev(ll *a, int n) {
     int i = 0;
     for (int j = 1; j < n - 1; ++j) {
  for (int k = n >> 1; (i ^= k) < k; k >>= 1);
       if (j < i) swap(a[i], a[j]);</pre>
```

```
void operator()(ll *a, int n, bool inv = false) { //0
        \langle = a[i] \langle P
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {</pre>
        for (int j = i, x = 0; j < i + dl; ++j, x += dx
           11 \text{ tmp} = a[j + d1] * w[x] % P;
           if ((a[j + d1] = a[j] - tmp) < 0) a[j + d1]
           if ((a[j] += tmp) >= P) a[j] -= P;
      }
    if (inv) {
      reverse(a + 1, a + n);
      11 invn = minv(n);
       for (int i = 0; i < n; ++i) a[i] = a[i] * invn %</pre>
  }
};
```

7.3 Fast Walsh Transform*

```
/* x: a[j], y: a[j + (L >> 1)]
or: (y += x * op), and: (x += y * op)
xor: (x, y = (x + y) * op, (x - y) * op)
invop: or, and, xor = -1, -1, 1/2 */
void fwt(int *a, int n, int op) { //or
  for (int L = 2; L <= n; L <<= 1)
    for (int i = 0; i < n; i += L)</pre>
       for (int j = i; j < i + (L >> 1); ++j)
         a[j + (L >> 1)] += a[j] * op;
const int N = 21;
int f[N][1 << N], g[N][1 << N], h[N][1 << N], ct[1 << N</pre>
    ];
void subset_convolution(int *a, int *b, int *c, int L)
  // c_k = \sum_{i = 0} a_i * b_j
  int n = 1 << L;</pre>
  for (int i = 1; i < n; ++i)</pre>
    ct[i] = ct[i & (i - 1)] + 1;
  for (int i = 0; i < n; ++i)</pre>
    f[ct[i]][i] = a[i], g[ct[i]][i] = b[i];
  for (int i = 0; i <= L; ++i)</pre>
  fwt(f[i], n, 1), fwt(g[i], n, 1);
for (int i = 0; i <= L; ++i)</pre>
    for (int j = 0; j <= i; ++j)</pre>
       for (int x = 0; x < n; ++x)
h[i][x] += f[j][x] * g[i - j][x];</pre>
  for (int i = 0; i <= L; ++i)</pre>
  fwt(h[i], n, -1);
for (int i = 0; i < n; ++i)</pre>
    c[i] = h[ct[i]][i];
```

7.4 Newton's Method

Given ${\cal F}(x)$ where

$$F(x) = \sum_{i=0}^{\infty} \alpha_i (x - \beta)^i$$

for β being some constant. Polynomial P such that F(P)=0 can be found iteratively. Denote by Q_k the polynomial such that $F(Q_k)=0$ (mod ${x^2}^k$), then

$$Q_{k+1} = Q_k - \frac{F(Q_k)}{F'(Q_k)} \pmod{x^{2^{k+1}}}$$

8 Geometry

8.1 Default Code

```
typedef pair<double, double> pdd;
typedef pair<pdd, pdd> Line;
 struct Cir{pdd 0; double R;};
 const double eps=1e-8;
 pdd operator+(pdd a, pdd b)
 { return pdd(a.X + b.X, a.Y + b.Y);}
 pdd operator-(pdd a, pdd b)
 { return pdd(a.X - b.X, a.Y - b.Y);}
 pdd operator*(pdd a, double b)
{ return pdd(a.X * b, a.Y * b); }
 pdd operator/(pdd a, double b)
 { return pdd(a.X / b, a.Y / b); }
 double dot(pdd a, pdd b)
 { return a.X * b.X + a.Y * b.Y; }
 double cross(pdd a, pdd b)
 { return a.X * b.Y - a.Y * b.X; }
 double abs2(pdd a)
 { return dot(a, a); }
 double abs(pdd a)
 { return sqrt(dot(a, a)); }
 int sign(double a)
 { return fabs(a) < eps ? 0 : a > 0 ? 1 : -1; }
 int ori(pdd a, pdd b, pdd c)
{ return sign(cross(b - a, c - a)); }
 bool collinearity(pdd p1, pdd p2, pdd p3)
 { return sign(cross(p1 - p3, p2 - p3)) == 0; }
 bool btw(pdd p1,pdd p2,pdd p3) {
   if(!collinearity(p1, p2, p3)) return 0;
   return sign(dot(p1 - p3, p2 - p3)) <= 0;</pre>
 bool seg_intersect(pdd p1, pdd p2, pdd p3, pdd p4) {
   int a123 = ori(p1, p2, p3);
   int a124 = ori(p1, p2, p4);
   int a341 = ori(p3, p4, p1);
   int a342 = ori(p3, p4, p2);
   if(a123 == 0 && a124 == 0)
   return btw(p1, p2, p3) || btw(p1, p2, p4) ||
btw(p3, p4, p1) || btw(p3, p4, p2);
return a123 * a124 <= 0 && a341 * a342 <= 0;</pre>
 pdd intersect(pdd p1, pdd p2, pdd p3, pdd p4) {
   double a123 = cross(p2 - p1, p3 - p1);
double a124 = cross(p2 - p1, p4 - p1);
   return (p4 * a123 - p3 * a124) / (a123 - a124); // C
        ^3 / C^2
 pdd perp(pdd p1)
 { return pdd(-p1.Y, p1.X); }
 pdd projection(pdd p1, pdd p2, pdd p3)
{ return p1 + (p2 - p1) * dot(p3 - p1, p2 - p1) / abs2(
      p2 - p1); }
```

8.2 Convex hull*

8.3 Heart

8.4 Minimum Enclosing Circle*

```
pdd Minimum_Enclosing_Circle(vector<pdd> dots, double &
    r) {
  pdd cent;
  random_shuffle(ALL(dots));
  cent = dots[0], r = 0;
for (int i = 1; i < SZ(dots); ++i)</pre>
    if (abs(dots[i] - cent) > r) {
       cent = dots[i], r = 0;
       for (int j = 0; j < i; ++j)</pre>
         if (abs(dots[j] - cent) > r) {
           cent = (dots[i] + dots[j]) / 2;
           r = abs(dots[i] - cent);
           for(int k = 0; k < j; ++k)
             if(abs(dots[k] - cent) > r)
                cent = excenter(dots[i], dots[j], dots[k
                    ], r);
         }
     }
  return cent;
|}
```

8.5 Polar Angle Sort*

8.6 Intersection of two circles*

8.7 Intersection of polygon and circle*

8.8 Intersection of line and circle*

```
vector<pdd> circleLine(pdd c, double r, pdd a, pdd b) {
  pdd p = a + (b - a) * dot(c - a, b - a) / abs2(b - a)
  ;
  double s = cross(b - a, c - a), h2 = r * r - s * s /
      abs2(b - a);
  if (h2 < 0) return {};
  if (h2 == 0) return {p};
  pdd h = (b - a) / abs(b - a) * sqrt(h2);
  return {p - h, p + h};
}</pre>
```

8.9 point in circle

```
// return p4 is strictly in circumcircle of tri(p1,p2,
11 sqr(11 x) { return x * x; }
bool in_cc(const pl1& p1, const pl1& p2, const pl1& p3,
      const pll& p4) {
  ll u11 = p1.X - p4.X; ll u12 = p1.Y - p4.Y;
  11 u21 = p2.X - p4.X; 11 u22 = p2.Y - p4.Y;
  11 u31 = p3.X - p4.X; 11 u32 = p3.Y - p4.Y;
  11 u13 = sqr(p1.X) - sqr(p4.X) + sqr(p1.Y) - sqr(p4.Y)
  11 u23 = sqr(p2.X) - sqr(p4.X) + sqr(p2.Y) - sqr(p4.Y)
  11 u33 = sqr(p3.X) - sqr(p4.X) + sqr(p3.Y) - sqr(p4.Y)
      );
   _int128 det = (__int128)-u13 * u22 * u31 + (_
                                                     _int128
      )u12 * u23 * u31 + (__int128)u13 * u21 * u32 - (
__int128)u11 * u23 * u32 - (__int128)u12 * u21 *
      u33 + (__int128)u11 * u22 * u33;
  return det > eps;
```

8.10 Half plane intersection*

```
pll area_pair(Line a, Line b)
{ return pll(cross(a.Y - a.X, b.X - a.X), cross(a.Y - a
     .X, b.Y - a.X)); }
bool isin(Line 10, Line 11, Line 12) {
  // Check inter(l1, l2) strictly in l0
  auto [a02X, a02Y] = area_pair(10, 12);
  auto [a12X, a12Y] = area_pair(l1, l2);
  if (a12X - a12Y < 0) a12X *= -1, a12Y *= -1;</pre>
  return (__int128) a02Y * a12X - (__int128) a02X * a12Y > 0; // C^4
/* Having solution, check size > 2 */
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> arr) {
  sort(ALL(arr), [&](Line a, Line b) -> int {
    if (cmp(a.Y - a.X, b.Y - b.X, 0) != -1)
      return cmp(a.Y - a.X, b.Y - b.X, 0);
    return ori(a.X, a.Y, b.Y) < 0;</pre>
  });
  deque < Line > dq(1, arr[0]);
  for (auto p : arr) {
    if (cmp(dq.back().Y - dq.back().X, p.Y - p.X, 0) ==
          -1)
      continue;
    while (SZ(dq) \ge 2 \&\& !isin(p, dq[SZ(dq) - 2], dq.
         back()))
```

8.11 CircleCover*

```
const int N = 1021;
struct CircleCover {
  int C;
  Cir c[N];
  bool g[N][N], overlap[N][N];
  // Area[i] : area covered by at least i circles
  double Area[ N ];
  void init(int _C){ C = _C;}
  struct Teve {
    pdd p; double ang; int add;
    Teve() {}
    Teve(pdd _a, double _b, int _c):p(_a), ang(_b), add
        (_c){}
    bool operator<(const Teve &a)const
    {return ang < a.ang;}
  }eve[N * 2];
  // strict: x = 0, otherwise x = -1
  bool disjuct(Cir &a, Cir &b, int x)
  {return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
  bool contain(Cir &a, Cir &b, int x)
  {return sign(a.R - b.R - abs(a.0 - b.0)) > x;}
  bool contain(int i, int j) {
    /* c[j] is non-strictly in c[i]. *,
    return (sign(c[i].R - c[j].R) > 0 || (sign(c[i].R -
         c[j].R) == 0 && i < j)) && contain(c[i], c[j],
          -1);
  void solve(){
    fill_n(Area, C + 2, 0);
    for(int i = 0; i < C; ++i)</pre>
      for(int j = 0; j < C; ++j)</pre>
        overlap[i][j] = contain(i, j);
    for(int i = 0; i < C; ++i)</pre>
      for(int j = 0; j < C; ++j)</pre>
        g[i][j] = !(overlap[i][j] || overlap[j][i] ||
            disjuct(c[i], c[j], -1));
    for(int i = 0; i < C; ++i){</pre>
      int E = 0, cnt = 1;
      for(int j = 0; j < C; ++j)</pre>
        if(j != i && overlap[j][i])
          ++cnt;
      for(int j = 0; j < C; ++j)</pre>
        if(i != j && g[i][j]) {
          pdd aa, bb;
          CCinter(c[i], c[j], aa, bb);
          double A = atan2(aa.Y - c[i].0.Y, aa.X - c[i]
               ].0.X);
          double B = atan2(bb.Y - c[i].0.Y, bb.X - c[i
               ].O.X);
          eve[E++] = Teve(bb, B, 1), eve[E++] = Teve(aa , A, -1);
          if(B > A) ++cnt;
      if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
      else{
        sort(eve, eve + E);
        eve[E] = eve[0];
        for(int j = 0; j < E; ++j){</pre>
          cnt += eve[j].add;
          Area[cnt] += cross(eve[j].p, eve[j + 1].p) *
          double theta = eve[j + 1].ang - eve[j].ang;
          if (theta < 0) theta += 2. * pi;</pre>
          Area[cnt] += (theta - sin(theta)) * c[i].R *
              c[i].R * .5;
        }
      }
```

```
}
| }
|};
```

8.12 3Dpoint*

8.13 Tangent line of two circles

```
vector<Line> go( const Cir& c1 , const Cir& c2 , int
     sign1 ){
  // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret;
  double d_sq = abs2(c1.0 - c2.0);
  if (sign(d_sq) == 0) return ret;
  double d = sqrt(d_sq);
  pdd v = (c2.0 - c1.0) / d;
  double c = (c1.R - sign1 * c2.R) / d;
  if (c * c > 1) return ret;
  double h = sqrt(max(0.0, 1.0 - c * c));
  for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
  pdd n = pdd(v.X * c - sign2 * h * v.Y,
       v.Y * c + sign2 * h * v.X);
    pdd p1 = c1.0 + n * c1.R;
    pdd p2 = c2.0 + n * (c2.R * sign1);
    if (sign(p1.X - p2.X) == 0 and
    sign(p1.Y - p2.Y) == 0)
       p2 = p1 + perp(c2.0 - c1.0);
    ret.pb(Line(p1, p2));
  return ret;
}
```

8.14 minMaxEnclosingRectangle*

```
const double INF = 1e18, qi = acos(-1) / 2 * 3;
pdd solve(vector<pll> &dots) {
#define diff(u, v) (dots[u] - dots[v])
#define vec(v) (dots[v] - dots[i])
  hull(dots);
  double Max = 0, Min = INF, deg;
  int n = SZ(dots);
  dots.pb(dots[0]);
  for (int i = 0, u = 1, r = 1, l = 1; i < n; ++i) {
    pll nw = vec(i + 1);
    while (cross(nw, vec(u + 1)) > cross(nw, vec(u)))
       u = (u + 1) \% n;
    while (dot(nw, vec(r + 1)) > dot(nw, vec(r)))
       r = (r + 1) \% n;
    if (!i) 1 = (r + 1) % n;
    while (dot(nw, vec(1 + 1)) < dot(nw, vec(1)))
      1 = (1 + 1) \% n;
    Min = min(Min, (double)(dot(nw, vec(r)) - dot(nw,
    vec(1))) * cross(nw, vec(u)) / abs2(nw));
deg = acos(dot(diff(r, 1), vec(u)) / abs(diff(r, 1)
         ) / abs(vec(u)));
    deg = (qi - deg) /
    Max = max(Max, abs(diff(r, 1)) * abs(vec(u)) * sin(
         deg) * sin(deg));
  return pdd(Min, Max);
```

8.15 PointSegDist

```
double PointSegDist(pdd q0, pdd q1, pdd p) {
  if (sign(abs(q0 - q1)) == 0) return abs(q0 - p);
```

```
if (sign(dot(q1 - q0, p - q0)) >= 0 && sign(dot(q0 -
        q1, p - q1)) >= 0)
    return fabs(cross(q1 - q0, p - q0) / abs(q0 - q1));
    return min(abs(p - q0), abs(p - q1));
}
```

8.16 PointInConvex*

8.17 TangentPointToHull*

```
/* The point should be strictly out of hull
    return arbitrary point on the tangent line */
pii get_tangent(vector<pll> &C, pll p) {
    int N = SZ(C);
    auto gao = [&](int s) {
        auto lt = [&](int x, int y)
        { return ori(p, C[y % N], C[x % N]) == s; };
        int l = 0, r = N; bool up = lt(0, 1);
        while (r - l > 1) {
            int m = (l + r) / 2;
            if (lt(m, 0) ? up : !lt(m, m + 1)) r = m;
            else l = m;
        }
        return (lt(l, r) ? r : l) % N;
};
return pii(gao(1), gao(-1));
} // return (a, b), ori(p, C[a], C[b]) > 0
```

8.18 VectorInPoly*

```
// ori(a, b, c) >= 0, valid: "strict" angle from a-b to
    a-c
bool btwangle(pll a, pll b, pll c, pll p, int strict) {
   return ori(a, b, p) >= strict && ori(a, p, c) >=
        strict;
}
// whether vector{cur, p} in counter-clockwise order
   prv, cur, nxt
bool inside(pll prv, pll cur, pll nxt, pll p, int
    strict) {
   if (ori(cur, nxt, prv) >= 0)
        return btwangle(cur, nxt, prv, p, strict);
   return !btwangle(cur, prv, nxt, p, !strict);
}
```

8.19 Minkowski Sum*

8.20 RotatingSweepLine

```
void rotatingSweepLine(vector<pii> &ps) {
  int n = SZ(ps), m = 0;
  vector<int> id(n), pos(n);
  vector<pii> line(n * (n - 1));
  for (int i = 0; i < n; ++i)</pre>
    for (int j = 0; j < n; ++j)
      if (i != j) line[m++] = pii(i, j);
  sort(ALL(line), [&](pii a, pii b) {
    return cmp(ps[a.Y] - ps[a.X], ps[b.Y] - ps[b.X]);
  }); // cmp(): polar angle compare
  iota(ALL(id), 0);
  sort(ALL(id), [&](int a, int b) {
    if (ps[a].Y != ps[b].Y) return ps[a].Y < ps[b].Y;</pre>
    return ps[a] < ps[b];</pre>
  }); // initial order, since (1, 0) is the smallest
  for (int i = 0; i < n; ++i) pos[id[i]] = i;</pre>
  for (int i = 0; i < m; ++i) {</pre>
    auto 1 = line[i];
    // do something
    tie(pos[1.X], pos[1.Y], id[pos[1.X]], id[pos[1.Y]])
          = make_tuple(pos[1.Y], pos[1.X], 1.Y, 1.X);
}
```

9 Else

9.1 Mo's Alogrithm(With modification)

```
Mo's Algorithm With modification
Block: N^{2/3}, Complexity: N^{5/3}
struct Query {
  int L, R, LBid, RBid, T;
  Query(int 1, int r, int t):
    L(1), R(r), LBid(1 / blk), RBid(r / blk), T(t) {}
  bool operator<(const Query &q) const {</pre>
    if (LBid != q.LBid) return LBid < q.LBid;</pre>
    if (RBid != q.RBid) return RBid < q.RBid;</pre>
    return T < b.T;</pre>
  }
};
void solve(vector<Query> query) {
  sort(ALL(query));
  int L=0, R=0, T=-1;
  for (auto q : query) {
    while (T < q.T) addTime(L, R, ++T); // TODO
    while (T > q.T) subTime(L, R, T--); // TODO
    while (R < q.R) add(arr[++R]); // TODO</pre>
    while (L > q.L) add(arr[--L]); // TODO
    while (R > q.R) sub(arr[R--]); // TODO
    while (L < q.L) sub(arr[L++]); // TODO</pre>
    // answer query
}
```

9.2 Mo's Alogrithm On Tree

```
Mo's Algorithm On Tree
Preprocess:
1) LCA
2) dfs with in[u] = dft++, out[u] = dft++
3) ord[in[u]] = ord[out[u]] = u
4) bitset<MAXN> inset
*/
struct Query {
  int L, R, LBid, lca;
  Query(int u, int v) {
    int c = LCA(u, v);
    if (c == u || c == v)
      q.lca = -1, q.L = out[c ^ u ^ v], q.R = out[c];
    else if (out[u] < in[v])</pre>
      q.lca = c, q.L = out[u], q.R = in[v];
      q.lca = c, q.L = out[v], q.R = in[u];
    q.Lid = q.L / blk;
```

```
bool operator<(const Query &q) const {</pre>
    if (LBid != q.LBid) return LBid < q.LBid;</pre>
    return R < q.R;</pre>
void flip(int x) {
    if (inset[x]) sub(arr[x]); // TODO
    else add(arr[x]); // TODO
    inset[x] = ~inset[x];
void solve(vector<Query> query) {
  sort(ALL(query));
  int L = 0, R = 0;
  for (auto q : query) {
    while (R < q.R) flip(ord[++R]);</pre>
    while (L > q.L) flip(ord[--L]);
while (R > q.R) flip(ord[R--]);
    while (L < q.L) flip(ord[L++]);</pre>
    if (~q.lca) add(arr[q.lca]);
     // answer query
    if (~q.lca) sub(arr[q.lca]);
}
```

9.3 Additional Mo's Algorithm Trick

• Mo's Algorithm With Addition Only

```
- Sort querys same as the normal Mo's algorithm. - For each query [l,r]: - If l/blk = r/blk, brute-force. - If l/blk \neq curL/blk, initialize curL := (l/blk + 1) \cdot blk, curR := curL - 1 - If r > curR, increase curR - decrease curL to fit l, and then undo after answering
```

• Mo's Algorithm With Offline Second Time

```
- Require: Changing answer \equiv adding f([l,r],r+1). - Require: f([l,r],r+1)=f([1,r],r+1)-f([1,l),r+1). - Part1: Answer all f([l,r],r+1) first. - Part2: Store curR\to R for curL (reduce the space to O(N)), and then answer them by the second offline algorithm. - Note: You must do the above symmetrically for the left
```

9.4 Hilbert Curve

9.5 DynamicConvexTrick*

```
// only works for integer coordinates!! maintain max
struct Line {
 mutable 11 a, b, p;
  bool operator<(const Line &rhs) const { return a <</pre>
      rhs.a; }
 bool operator<(11 x) const { return p < x; }</pre>
struct DynamicHull : multiset<Line, less<>>> {
  static const ll kInf = 1e18;
  ll Div(ll a, ll b) { return a / b - ((a ^ b) < 0 && a
       % b); }
 bool isect(iterator x, iterator y) {
    if (y == end()) { x->p = kInf; return 0; }
    if (x->a == y->a) x->p = x->b > y->b ? kInf : -kInf
    else x -> p = Div(y -> b - x -> b, x -> a - y -> a);
    return x->p >= y->p;
  void addline(ll a, ll b) {
    auto z = insert({a, b, 0}), y = z++, x = y;
```

9.6 All LCS*

```
void all_lcs(string s, string t) { // 0-base
  vector<int> h(SZ(t));
  iota(ALL(h), 0);
  for (int a = 0; a < SZ(s); ++a) {
    int v = -1;
    for (int c = 0; c < SZ(t); ++c)
        if (s[a] == t[c] || h[c] < v)
            swap(h[c], v);
        // LCS(s[0, a], t[b, c]) =
        // c - b + 1 - sum([h[i] >= b] | i <= c)
        // h[i] might become -1 !!
  }
}</pre>
```

9.7 Matroid Intersection

Start from $S = \emptyset$. In each iteration, let

```
• Y_1 = \{x \notin S \mid S \cup \{x\} \in I_1\}
• Y_2 = \{x \notin S \mid S \cup \{x\} \in I_2\}
```

If there exists $x\in Y_1\cap Y_2$, insert x into S. Otherwise for each $x\in S, y\not\in S$, create edges

```
• x \rightarrow y if S - \{x\} \cup \{y\} \in I_1.
• y \rightarrow x if S - \{x\} \cup \{y\} \in I_2.
```

Find a shortest path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \not\in S$. Find the path with the minimum number of edges among all minimum length paths and alternate it.

9.8 AdaptiveSimpson

```
using F_t = function<double(double)>;
pdd simpson(const F_t &f, double 1, double r,
  double fl, double fr, double fm = nan("")) {
  if (isnan(fm)) fm = f((1 + r) / 2);
  return {fm, (r - 1) / 6 * (fl + 4 * fm + fr)};
double simpson_ada(const F_t &f, double 1, double r,
  double f1, double fm, double fr, double eps) {
  double m = (1 + r) / 2,
         s = simpson(f, 1, r, f1, fr, fm).second;
  auto [flm, sl] = simpson(f, 1, m, fl, fm);
  auto [fmr, sr] = simpson(f, m, r, fm, fr);
  double delta = sl + sr - s;
  if (abs(delta) <= 15 * eps)</pre>
    return sl + sr + delta / 15;
  return simpson_ada(f, 1, m, f1, f1m, fm, eps / 2) +
    simpson_ada(f, m, r, fm, fmr, fr, eps / 2);
double simpson_ada(const F_t &f, double 1, double r) {
  return simpson_ada(
    f, l, r, f(1), f((1 + r) / 2), f(r), 1e-9 / 7122);
double simpson_ada2(const F_t &f, double 1, double r) {
  double h = (r - 1) / 7122, s = 0;
for (int i = 0; i < 7122; ++i, l += h)
   s += simpson_ada(f, 1, 1 + h);
  return s;
}
```

9.9 Simulated Annealing

```
double factor = 100000;
const int base = 1e9; // remember to run ~ 10 times
for (int it = 1; it <= 1000000; ++it) {
    // ans: answer, nw: current value, rnd(): mt19937
    rnd()</pre>
```

9.10 Tree Hash*

```
ull seed;
ull shift(ull x) {
    x ^= x << 13;
    x ^= x >> 7;
    x ^= x << 17;
    return x;
}
ull dfs(int u, int f) {
    ull sum = seed;
    for (int i : G[u])
        if (i != f)
            sum += shift(dfs(i, u));
    return sum;
}</pre>
```

10 Python

10.1 Misc

11 hj84

11.1 Aliens

```
long long Alien() {
  long long c = kInf;
  for (int d = 60; d >= 0; --d) {
    // cost can be negative, depending on the problem.
    if (c - (1LL << d) < 0) continue;
    long long ck = c - (1LL << d);
    pair<long long, int> r = check(ck);
    if (r.second == k) return r.first - ck * k;
    if (r.second < k) c = ck;
}
pair<long long, int> r = check(c);
return r.first - c * k;
}
```

11.2 Bipartite Matching

```
struct Bipartite_Matching { // 0-base
  int 1, r;
  int mp[MAXN], mq[MAXN];
  int dis[MAXN], cur[MAXN];
  vector<int> G[MAXN];
  bool dfs(int u) {
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      int e = G[u][i];
      if (!\sim mq[e] \mid | (dis[mq[e]] == dis[u] + 1 \&\& dfs(
          mq[e])))
        return mp[mq[e] = u] = e, 1;
    dis[u] = -1;
    return 0;
  bool bfs() {
    int rt = 0;
    queue<int> q;
    fill_n(dis, 1, -1);
    for (int i = 0; i < 1; ++i)</pre>
      if (!~mp[i]) q.push(i), dis[i] = 0;
```

```
while (!q.empty()) {
      int u = q.front();
       q.pop();
      for (int e : G[u])
        if (!~mq[e])
          rt = 1;
         else if (!~dis[mq[e]]) {
           q.push(mq[e]);
           dis[mq[e]] = dis[u] + 1;
    return rt;
  int matching() {
    int rt = 0;
    fill_n(mp, 1, -1);
    fill_n(mq, r, -1);
    while (bfs()) {
      fill_n(cur, 1, 0);
      for (int i = 0; i < 1; ++i)</pre>
        if (!~mp[i] && dfs(i)) ++rt;
    return rt;
  void add_edge(int s, int t) { G[s].pb(t); }
  void init(int _l, int _r) {
         _l, r = _r;
    for (int i = 0; i < 1; ++i) G[i].clear();</pre>
  }
};
```

11.3 Closest Pair

```
pair<double, double> p[50007], t[50007];
double solve(int 1, int r) {
  if (1 == r) return INF;
  int mid = (1 + r) >> 1;
  double x = p[mid].first;
  double d = min(solve(1, mid), solve(mid + 1, r));
  int i = 1, j = mid + 1, id = 1;
  while (i <= mid || j <= r) {</pre>
    if (i <= mid && (j > r \mid\mid p[i].second < p[j].second
        )) t[id++] = p[i++];
    else t[id++] = p[j++];
  for (int i = 1; i <= r; i++) p[i] = t[i];</pre>
  vector<pair<double, double> > v;
  for (int i = 1; i <= r; i++) if (abs(p[i].first - x)</pre>
       < d) v.push_back(p[i]);</pre>
  for (int i = 0; i < v.size(); i++) {</pre>
    for (int j = i + 1; j < v.size(); j++) {</pre>
      if (v[j].second - v[i].second >= d) break;
      d = min(d, sqrt((v[i].first - v[j].first) * (v[i
           ].first - v[j].first) + (v[i].second - v[j].
           second) * (v[i].second - v[j].second)));
    }
  }
  return d:
main(){
    sort(p + 1, p + n + 1);
    solve(1, n);
```

11.4 Dijkstra

```
// Luogu4779
vectorvectorvei> edge[100020];
int dis[100020];
int vis[100020];
void dijkstra(int s) {
    CLR(dis, 0x3f);
    dis[s] = 0;
    priority_queuevectorvectorvpi, greatervpi, pq.emplace(0, s);
while (pq.size()) {
    int now = pq.top().Y;
    pq.pop();
    if (vis[now]) continue;
    vis[now] = 1;
    for (pii e : edge[now]) {
```

```
if (!vis[e.X] && dis[e.X] > dis[now] + e.Y) {
    dis[e.X] = dis[now] + e.Y;
    pq.emplace(dis[e.X], e.X);
    }
}
}
```

11.5 Dinic

```
struct MaxFlow { // 0-base
  struct edge {
    int to, cap, flow, rev;
  vector<edge> G[MAXN];
  int s, t, dis[MAXN], cur[MAXN], n;
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < (int)G[u].size(); ++i) {</pre>
      edge &e = G[u][i];
      if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
        int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
          G[e.to][e.rev].flow -= df;
          return df;
      }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int tmp = q.front();
      q.pop();
      for (auto &u : G[tmp])
        if (!~dis[u.to] && u.flow != u.cap) {
          q.push(u.to);
          dis[u.to] = dis[tmp] + 1;
    return dis[t] != -1;
  int maxflow(int _s, int _t) {
    s = _s, t = _t;
    int flow = 0, df;
    while (bfs()) {
      fill_n(cur, n, 0);
while ((df = dfs(s, INF))) flow += df;
    return flow;
  void init(int _n) {
    n = _n;
for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void reset() {
    for (int i = 0; i < n; ++i)</pre>
      for (auto &j : G[i]) j.flow = 0;
  void add_edge(int u, int v, int cap) {
    G[u].pb(edge{v, cap, 0, (int)G[v].size()});
    G[v].pb(edge{u, 0, 0, (int)G[u].size() - 1});
};
```

11.6 Kosaraju

```
vector<pii>edge[100020], redge[100020];
int vis[100020], scc[100020];
void dfs1(int x, vector<int>&stk){
    vis[x]=1;
    for(pii i:edge[x])
        if(!vis[i.X])dfs1(i.X, stk);
    stk.emplace_back(x);
}
void dfs2(int x, int id){
```

```
scc[x]=id;
  for(pii i:redge[x])
      if(!scc[i.X])dfs2(i.X,id);
}
void kosaraju(){
  int nscc=0;
  vector<int>stk;
  for(int i=1;i<=n;i++)
      if(!vis[i])dfs1(i,stk);
  while(stk.size()){
      if(!scc[stk.back()])
            dfs2(stk.back(),++nscc);
      stk.pop_back();
  }
}</pre>
```

11.7 Segment Tree with Tag

```
void push(int id, int l, int r) {
  int mid = (1 + r) >> 1;
  seg[id * 2] += tag[id] * (mid - 1 + 1);
  seg[id * 2 + 1] += tag[id] * (r - mid);
  tag[id * 2] += tag[id];
  tag[id * 2 + 1] += tag[id];
  tag[id] = 0;
void modify(int id, int 1, int r, int q1, int qr, int
    val) {
  if (q1 > r || qr < 1) return;</pre>
  if (ql <= 1 && r <= qr) {</pre>
     seg[id] += val * (r - l + 1);
     tag[id] += val;
    return;
  if (1 == r) return;
  push(id, 1, r);
  int mid = (1 + r) >> 1;
modify(id * 2, 1, mid, ql, qr, val);
  modify(id * 2 + 1, mid + 1, r, ql, qr, val);
seg[id] = seg[id * 2] + seg[id * 2 + 1];
int query(int id, int l, int r, int ql, int qr) {
  if (ql > r || qr < l) return 0;</pre>
  if (ql <= 1 && r <= qr) return seg[id];</pre>
  push(id, 1, r);
  int mid = (1 + r) >> 1;
return query(id * 2, 1, mid, ql, qr) + query(id * 2 +
        1, mid + 1, r, ql, qr);
```

11.8 Slope DP

```
struct L {
   mutable lld a, b, p;
   bool operator<(const L &r) const {</pre>
     return a < r.a; /* here */ }</pre>
   bool operator<(lld x) const { return p < x; }</pre>
lld Div(lld a, lld b) {
   return a / b - ((a ^ b) < 0 && a % b); };</pre>
 struct DynamicHull : multiset<L, less<>>> {
   static const lld kInf = 1e18;
   bool Isect(iterator x, iterator y) {
     if (y == end()) { x->p = kInf; return false; }
     if (x->a == y->a)
       x->p = x->b > y->b ? kInf : -kInf; /* here */
     else x->p = Div(y->b - x->b, x->a - y->a);
     return x->p >= y->p;
   void Insert(lld a, lld b) {
     auto z = insert({a, b, 0}), y = z++, x = y;
     while (Isect(y, z)) z = erase(z);
     if (x!=begin()&&Isect(--x,y)) Isect(x, y=erase(y));
     while ((y = x) != begin() && (--x)->p >= y->p)
       Isect(x, erase(y));
  11d Query(11d x) { // default chmax
     auto 1 = *lower_bound(x); // to chmin:
     return 1.a * x + 1.b;
                                // modify the 2 "<>"
|};
```

11.9 Treap

```
struct node {
  int data, sz;
  node *1, *r;
  \mathsf{node}(\mathbf{int}\ k)\ :\ \mathsf{data}(k),\ \mathsf{sz}(1),\ l(\emptyset),\ \mathsf{r}(\emptyset)\ \{\}
  void up() {
   sz = 1;
    if (1) sz += 1->sz;
    if (r) sz += r->sz;
  }
  void down() {}
};
int sz(node *a) { return a ? a->sz : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (rand() % (sz(a) + sz(b)) < sz(a))
    return a->down(), a->r = merge(a->r, b), a->up(),
                        a;
  return b->down(), b->l = merge(a, b->l), b->up(), b;
void split(node *o, node *&a, node *&b, int k) {
  if (!o) return a = b = 0, void();
  o->down();
  if (o->data <= k)
    a = o, split(o->r, a->r, b, k), <math>a->up();
  else b = o, split(o->1, a, b->1, k), b->up();
void split2(node *o, node *&a, node *&b, int k) {
  if (sz(o) <= k) return a = o, b = 0, void();</pre>
  o->down();
  if (sz(o\rightarrow 1) + 1 \leftarrow k)
   a = 0, split2(o->r, a->r, b, k - <math>sz(o->l) - 1);
  else b = o, split2(o->1, a, b->1, k);
  o->up();
node *kth(node *o, int k) {
  if (k <= sz(o->1)) return kth(o->1, k);
  if (k == sz(o->1) + 1) return o;
  return kth(o\rightarrow r, k - sz(o\rightarrow 1) - 1);
int Rank(node *o, int key) {
  if (!o) return 0;
  if (o->data < key)</pre>
    return sz(o->1) + 1 + Rank(o->r, key);
  else return Rank(o->1, key);
bool erase(node *&o, int k) {
  if (!o) return 0;
  if (o->data == k) {
    node *t = o;
    o->down(), o = merge(o->1, o->r);
    delete t:
    return 1;
  node *&t = k < o->data ? o->l : o->r;
  return erase(t, k) ? o->up(), 1 : 0;
void insert(node *&o, int k) {
  node *a, *b;
  split(o, a, b, k),
    o = merge(a, merge(new node(k), b));
void interval(node *&o, int 1, int r) {
 node *a, *b, *c;
  split2(o, a, b, 1 - 1), split2(b, b, c, r);
  // operate
  o = merge(a, merge(b, c));
}
```

11.10 LCA

```
#define MAXN 500010
#define MAX_LOG 19  // 2^MAX_LOG >= MAXN
int pa[MAX_LOG + 1][MAXN];
int dep[MAXN];
vector<int> G[MAXN];
void dfs(int x, int fa) {
  pa[0][x] = fa;
  for (int i = 0; i + 1 <= MAX_LOG; i++) {
    pa[i + 1][x] = pa[i][pa[i][x]];
  }</pre>
```

```
for (auto i : G[x]) {
    if (i == fa) continue;
    dep[i] = dep[x] + 1;
    dfs(i, x);
}

}
int find_lca(int a, int b) {
    if (dep[a] > dep[b]) swap(a, b);
    for (int i = dep[b] - dep[a], k = 0; i; i >>= 1) {
        if (i & 1) b = pa[k][b];
        ++k;
    }
    if (a == b) return a;
    for (int i = MAX_LOG; i >= 0; i--) {
        if (pa[i][a] != pa[i][b]) {
            a = pa[i][a];
            b = pa[i][b];
        }
    return pa[0][a];
}
```

11.11 Li Chao Segment Tree

```
struct LiChao_min {
  struct line {
    LL m, c;
    line(LL _m = 0, LL _c = 0) {
      m = _m;
      c = _c;
    LL eval(LL x) { return m * x + c; }
  struct node {
    node *1, *r;
    line f;
    node(line v) {
      f = v;
      1 = r = NULL;
    }
  };
  typedef node *pnode;
  pnode root;
  int sz;
#define mid ((1 + r) >> 1)
  void insert(line &v, int 1, int r, pnode &nd) {
    if (!nd) {
      nd = new node(v);
      return;
    LL trl = nd->f.eval(1), trr = nd->f.eval(r);
    LL vl = v.eval(1), vr = v.eval(r);
    if (trl <= vl && trr <= vr) return;</pre>
    if (trl > vl && trr > vr) {
      n\dot{d} \rightarrow f = v;
      return:
    if (trl > vl) swap(nd->f, v);
    if (nd->f.eval(mid) < v.eval(mid))</pre>
      insert(v, mid + 1, r, nd->r);
    else swap(nd->f, v), insert(v, 1, mid, nd->1);
  LL query(int x, int 1, int r, pnode &nd) {
    if (!nd) return LLONG_MAX;
    if (1 == r) return nd->f.eval(x);
if (mid >= x)
      return min(
        nd->f.eval(x), query(x, 1, mid, nd->1));
    return min(
      nd->f.eval(x), query(x, mid + 1, r, nd->r));
  /* -sz <= query_x <= sz */
  void init(int _sz) {
    sz = _sz + 1;
    root = NULL;
  void add_line(LL m, LL c) {
    line v(m, c);
    insert(v, -sz, sz, root);
  LL query(LL x) { return query(x, -sz, sz, root); }
};
```

11.12 Theorem

11.12.1 Euler's planar graph formula

V-E+F=C+1. $E\leq 3V-6$ (when $V\geq 3$)

11.12.2 Pick's theorem

For simple polygon, when points are all integer, we have $A=\#\{\text{lattice points in the interior}\}+\frac{\#\{\text{lattice points on the boundary}\}}{2}-1$

11.12.3 SG

有向图游戏是一个经典的博弈游戏-实际上,大部分的公平组合游戏都可以转换为有向图游戏。在一个有向无环图中,只有一个起点,上面有一个棋子,两个玩家轮流沿着有向边推动棋子,不能走的玩家判负。

对于状态 x 和它的所有 k 个后继状态 y_1,y_2,\ldots,y_k ,定义 SG 函数:

$$\mathrm{SG}(x) = \max\{\mathrm{SG}(y_1), \mathrm{SG}(y_2), \dots, \mathrm{SG}(y_k)\}$$

而对于由 n 个有向图游戏组成的组合游戏,设它们的起点分别为 s_1, s_2, \ldots, s_n ,则有定理:

對且仅当 $\mathsf{SG}(s_1) \oplus \mathsf{SG}(s_2) \oplus \ldots \oplus \mathsf{SG}(s_n) \neq 0$ 时,这个游戏是先手必胜的。同时,这是这一个组合游戏的游戏状态 x 的 SG 值。

这一定理被称作 **Sprague-Grundy 定理** (Sprague-Grundy Theorem)。

11.13 DP condition

11.13.1 totally monotone (concave/convex)

 $\begin{array}{l} \forall i < i', j < j', \ B[i][j] \leq B[i'][j] \implies B[i][j'] \leq B[i'][j'] \\ \forall i < i', j < j', \ B[i][j] \geq B[i'][j] \implies B[i][j'] \geq B[i'][j'] \end{array}$

11.13.2 monge condition (concave/convex)

 $\begin{array}{l} \forall i < i', j < j' \text{, } B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j' \text{, } B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \end{array}$