Deep Learning for Developers

Julien Simon <@julsimon>
Al Evangelist, EMEA

Questions, questions...

What's the business problem my IT has failed to solve

Should I design and train my own Deep Learning model?

Should I use a pre-trained model?

Should I use a SaaS solution?

Same questions as "Big Data" years ago

Amazon AI for every developer

Neural Networks

The neuron

$$u = \sum_{i=1}^n w_i x_i$$

$$x = [x_{1,} x_{2,} \dots x_{1}]$$

 $w = [w_{1,} w_{2,} \dots w_{1}]$

Activation

The neural network

The training process

- The difference between the predicted output and the actual output (aka ground truth) is called the prediction loss.
- There are different ways to compute it (loss functions).
- The purpose of training is to iteratively minimize loss and maximize accuracy for a given data set.
- We need a way to adjust weights (aka parameters) in order to gradually minimize loss
 - → Backpropagation + optimization algorithm

1974 - Backpropagation

Paul Werbos
Artificial Intelligence pioneer
IEEE Neural Network Pioneer Award

The back-propagation algorithm acts as an error correcting mechanism at each neuron level, thereby helping the network to learn effectively.

Stochastic Gradient Descent (SGD)

Imagine you stand on top of a mountain with skis strapped to your feet. You want to get down to the valley as quickly as possible, but there is fog and you can only see your immediate surroundings. How can you get down the mountain as quickly as possible? You look around and identify the steepest path down, go down that path for a bit, again look around and find the new steepest path, go down that path, and repeat—this is exactly what gradient descent does.

Tim Dettmers

University of Lugano 2015

The « step size » is called the learning rate

There is such a thing as « learning too well »

- If a network is large enough and given enough time, it will perfectly learn a data set (universal approximation theorem).
- But what about new samples? Can it also predict them correctly?
- In other words, does the network generalize well or not?
- To prevent overfitting, we need to know when to stop training.
- The training data set is not enough.

Data sets

set

Training set: this data set is used to adjust the weights on the neural network.

Validation set: this data set is used to minimize overfitting. You're not adjusting the weights of the network with this data set, you're just verifying that any increase in accuracy over the training data set actually yields an increase in accuracy over a data set that has not been shown to the network before.

Testing set: this data set is used only for testing the final weights in order to benchmark the actual predictive power of the network.

Training

Training data set

Learning rate

Trained neural network

Hyper parameters

Validation

Stop training when validation accuracy stops increasing

Saving parameters at the end of each epoch

Convolutional Neural Networks

Le Cun, 1998: handwritten digit recognition, 32x32 pixels Feature extraction and downsampling allow smaller networks

Long Short Term Memory (LSTM) Networks

- A LSTM neuron computes the output based on the input and a previous state.
- LSTM networks have memory
- They're great at predicting sequences, e.g. machine translation

Apache MXNet: Open Source library for Deep Learning

Programmabl

Simple syntax, multiple languages

Portabl

Highly efficient models for mobile and IoT

High

Performance Near linear scaling across hundreds of GPUs

Most Open

Accepted into the Apache Incubator

Best On AWS

Optimized for Deep Learning on AWS

https://mxnet.io

https://www.oreilly.com/ideas/self-driving-trucks-enter-the-fast-lane-using-deep-learning

CPU or GPU: your choice

```
mod = mx.mod.Module(lenet)

mod = mx.mod.Module(lenet, context=mx.gpu(0))

mod = mx.mod.Module(lenet, context=mx.gpu(0))

context=(mx.gpu(7), mx.gpu(8), mx.gpu(9)))
```


Multi-GPU Scaling With MXNet

Speeding up Apache MXNet inference on CPU

- Intel MKL https://software.intel.com/en-us/mkl
- NNPACK https://github.com/Maratyszcza/NNPACK

Optimizing model size

 Complex neural networks are too large for resource-constrained environments (memory, power)

- Networks can shrink without losing accuracy
 - Song Han et al, "<u>Deep Compression: Compressing Deep Neural Network s with Pruning, Trained Quantization and Huffman Coding</u>", 2016
 - Zhu et al, "To prune, or not to prune: exploring the efficacy of pruning for model compression", 2017

Optimizing models with Mixed Precision Training

Almost 2x reduction in memory consumption

No loss of accuracy

Model	Baseline	Mixed Precision
AlexNet	56.77%	56.93%
VGG-D	65.40%	65.43%
GoogleNet	68.33%	68.43%
Inception v1	70.03%	70.02%
Resnet50	73.61%	73.75%

Micikevicius et al, "Mixed Precision Training", 2017

MXNet supports Mixed Precision Training

- https://devblogs.nvidia.com/parallelforall/mixed-precision-training-deep-neural-networks/
- http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#mxnet

Gluon: Deep Learning gets even easier https://github.com/gluon-api/

- Announced October 11th (yes, that's yesterday)
- Available now in MXNet, soon in Microsoft Cognitive Toolkit

- Developer-friendly high-level API
- Dynamic networks can be modified during training
- No compromise on performance
- Extensive model zoo

Gluon Model Zoo

vgg11	VGG-11 model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.
vgg13	VGG-13 model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.
vgg16	VGG-16 model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.
vgg19	VGG-19 model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.
vgg11_bn	VGG-11 model with batch normalization from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.
vgg13_bs	VGG-13 model with batch normalization from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.
vgg16_bn	VGG-16 model with batch normalization from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.
vgg19_bn	VGG-19 model with batch normalization from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.
VGG	VGG model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.
get_vgg	VGG model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.

resnet18_v1	ResNet-18 V1 model from "Deep Residual Learning for Image Recognition" paper.
resnet34_v1	ResNet-34 V1 model from "Deep Residual Learning for Image Recognition" paper.
resnet50_v1	ResNet-50 V1 model from "Deep Residual Learning for Image Recognition" paper.
resnet101_v1	ResNet-101 V1 model from "Deep Residual Learning for Image Recognition" paper.
resnet152_vl	ResNet-152 V1 model from "Deep Residual Learning for Image Recognition" paper,
resnet18_v2	ResNet-18 V2 model from "Identity Mappings in Deep Residual Networks" paper.
resnet34_v2	ResNet-34 V2 model from "Identity Mappings in Deep Residual Networks" paper.
resnet50_v2	ResNet-50 V2 model from "Identity Mappings in Deep Residual Networks" paper.
resnet181_v2	ResNet-101 V2 model from "Identity Mappings in Deep Residual Networks" paper.
resnet152_v2	ResNet-152 V2 model from "identity Mappings in Deep Residual Networks" paper.
ResNetV1	ResNet V1 model from "Deep Residual Learning for Image Recognition" paper.
ResNetV2	ResNet V2 model from "Identity Mappings in Deep Residual Networks" paper.
BasicBlockV1	BasicBlock V1 from "Deep Residual Learning for Image Recognition" paper.
BasicBlockV2	BasicBlock V2 from "Identity Mappings in Deep Residual Networks" paper.
BottleneckV1	Bottleneck V1 from "Deep Residual Learning for Image Recognition" paper.
BottleneckV2	Bottleneck V2 from "Identity Mappings in Deep Residual Networks" paper.
get_resnet	ResNet V1 model from "Deep Residual Learning for Image Recognition" paper.

mobilenetl_	MobileNet model from the "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" paper, with width multiplier 1.0.	
mobilenet0_	75 MobileNet model from the "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" paper, with width multiplier 0.75.	
mobilenet0_	5 MobileNet model from the "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" paper, with width multiplier 0.5.	
mobilenet0_	25 MobileNet model from the "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" paper, with width multiplier 0.25.	
MobileNet	MobileNet model from the "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" paper.	
densenet121	Densenet-BC 121-layer model from the "Densely Connected Convolutional Networks" paper.	
densenet161	Densenet-BC 161-layer model from the "Densely Connected Convolutional Networks" paper.	
densenet169	Densenet-BC 169-layer model from the "Densely Connected Convolutional Networks paper.	
densenet201	Densenet-BC 201-layer model from the "Densely Connected Convolutional Networks" paper.	
DenseNet	Densenet-BC model from the "Densely Connected Convolutional Networks" paper.	
-	단 : 1 전 :	
inceptio	n_v3 Inception v3 model from "Rethinking the Inception Architecture for Computer Vision" paper.	
	paper.	
inceptio	paper. a3 Inception v3 model from "Rethinking the Inception Architecture for Computer Vision"	

SqueezeNet 1.0 model from the "SqueezeNet: AlexNet-level accuracy with 50x fewer

SqueezeNet model from the "SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size" paper.

parameters and <0.5MB model size" paper.

SqueezeNet 1.1 model from the official SqueezeNet repo.

VGG ResNet **AlexNet** DenseNet SqueezeN Inception **MobileNet**

AWS Deep Learning AMI

- Deep Learning Frameworks 5 popular Deep Learning Frameworks (mxnet, Caffe, Tensorflow, Theano, and Torch) all prebuilt and pre-installed
- Pre-installed components Nvidia drivers, cuDNN, Anaconda, Python2 and Python3
- AWS Integration Packages and configurations that provide tight integration with Amazon Web Services like Amazon EFS (Elastic File System)
- Amazon Linux & Ubuntu

Apache MXNet demos

- 1. Image classification: using pre-trained models Imagenet, multiple CNNs, MXNet
- 2. Image classification: fine-tuning a pre-trained model CIFAR-10, ResNet-50, Keras + MXNet
- 3. Image classification: learning from scratch MNIST, MLP & LeNet, MXNet
- 4. Machine Translation: translating German to English News, LSTM, Sockeye + MXNet
- 5. Al! IoT! Robots!

Demo #1 – Image classification: using a pre-trained model

```
VGG16
[(0.46811387, 'n04296562 stage'), (0.24333163,
'n03272010 electric quitar'), (0.045918692, 'n02231487
walking stick, walkingstick, stick insect'),
(0.03316205, 'n04286575 spotlight, spot'),
(0.021694135, 'n03691459 loudspeaker, speaker, speaker
unit, loudspeaker system, speaker system')]
[(0.8726753, 'n04296562 stage'), (0.046159592,
'n03272010 electric quitar'), (0.041658506, 'n03759954
microphone, mike'), (0.018624334, 'n04286575 spotlight,
spot'), (0.0058045341, 'n02676566 acoustic guitar')]
*** Inception v3
[(0.44991142, 'n04296562 stage'), (0.43065304,
'n03272010 electric quitar'), (0.067580454, 'n04456115
torch'), (0.012423956, 'n02676566 acoustic guitar'),
```

(0.0093934005, 'n03250847 drumstick')]

Demo #2 – Image classification: fine-tuning a model

- CIFAR-10 data set
 - 60,000 images in 10 classes
 - 32x32 color images
- Initial training
 - Resnet-50 CNN
 - 200 epochs
 - 82.12% validation
- Cars vs. horses
 - 88.8% validation accuracy

Demo #2 – Image classification: fine-tuning a model

- Freezing all layers but the last one
- Fine-tuning on « cars vs. horses » for 10 epochs
- 2 minutes on 1 GPU
- 98.8% validation accuracy

Demo #3 – Image classification: learning from scratch data set

- 70,000 hand-written digits
- 28x28 grayscale images

Multi-Layer Perceptron vs. Handmade-Digits-From-Hell™

784/128/64/10, Relu, AdaGrad, 100 epochs \rightarrow 97.51% validation accuracy

LeNet vs. Handmade-Digits-From-Hell™

ReLu instead of tanh, 20 epochs, AdaGrad \rightarrow 99.20% validation accuracy

Demo #4 – Machine Translation: German to English

- AWS Open Source project https://github.com/awslabs/sockeye
- Sequence-to-sequence models with Apache MXNet
- 5.8M sentences (news headlines), 5 hours of training on 8 GPUs

```
./translate.sh "Chopin zählt zu den bedeutendsten Persönlichkeiten der Musikgeschichte Polens ."
```

Chopin is one of the most important personalities of Poland's history

```
./translate.sh "Hotelbetreiber müssen künftig nur den Rundfunkbeitrag bezahlen, wenn ihre Zimmer auch eine Empfangsmöglichkeit bieten ."
```

in the future , hotel operators must pay only the broadcasting fee if their rooms also offer a reception facility .

Demo #5 – Al! IoT! Robots!

https://medium.com/@julsimon/johnny-pi-i-am-your-father-part-0-1eb537e5a36

Device domain IoT domain Robot domain Internet domain

Anything you dream is fiction, and anything you accomplish is science, the whole history of mankind is nothing but science fiction.

Ray Bradbury

Resources

https://aws.amazon.com/ai/

https://aws.amazon.com/blogs/ai/

https://mxnet.io

https://github.com/gluon-api/

https://github.com/awslabs/sockeye

https://medium.com/@julsimon/getting-started-with-deep-learning-and-apache-mxnet-34a978a854b4

Thank you!

https://aws.amazon.com/evangelists/julien-simon@julsimon

