OTA Design

Specifications:

- DC gain ≥ 100 dB
- Output voltage swing $\geq 1 V_{p-p}$
- Phase margin ≥ 60°
- Output load capacitance = 1 pF

- Unity gain frequency ≥ 90 MHz
- Slew rate ≥ 200 V /μs
- Input referred thermal noise \leq 20 nV $/\sqrt{Hz}$

Figure 1: Two Stage Cascode (Telescopic) OTA with high swing

Figure 2: Biasing Circuit

Part I: Hand Calculations

SCL Process Parameters (180 nm)

 $K_n = 263 \, \mu A/V^2$

V_{Tn} 0.48 V

 K_p 63 $\mu A/V^2$

 V_{Tp} 0.4 V

Input Referred Thermal Noise

Input referred thermal noise for cascode amplifier shown in figure 1, is given by:

$$\overline{V_{n,eq}^2} = 2\left(\overline{V_{n,eq}^2} + \frac{g_{m7}^2}{g_{m1}^2}\right)$$

$$= \frac{8kT\gamma}{g_{m1}} \left[1 + \frac{g_{m7}}{g_{m1}}\right]$$

Assuming that $g_{m7} \ll g_{m1}$ for simplification (although not true), the above equation becomes

$$\overline{V_{n,eq}^2} = \frac{16kT}{3} \frac{1}{(10 \times 10^{-9})^2}$$

$$g_{m1} \ge 53.33 \ \mu S$$

Let's assume $g_{m1} = 60 \mu S$.

$$(W/L)_1 = \frac{g_{m1}^2}{I_{ss} \times K_n}$$

= $\frac{60^2}{20 \times 263} = 0.57$

Since we can work with $\binom{W}{L}$ values not smaller than 1, we use $\binom{W}{L}_1 = 1$

Unity Gain Frequency

$$2\pi f_{ug} = DC Gain \times P_D$$

$$= \frac{g_{m1}}{C_C}$$

According to specification,

$$C_C = \frac{g_{m1}}{2\pi \times 90 \times 10^6}$$

$$C_C \le 0.094 \ pF$$

Slew Rate

$$\frac{dV_{out}}{dt} = \frac{I_{ss}}{C_C}$$
 and

$$I_{oss} \ge I_{ss} \left(1 + \frac{C_L}{C_C} \right)$$

According to specification,

$$\frac{I_{ss}}{C_C} \ge 200 \, V/\mu s$$

$$I_{ss} \ge C_C \times 200 \times 10^6 = 18.8 \,\mu A$$

Let's assume I_{ss} = 20 μ A. Therefore

$$I_{oss} \ge 20 \left(1 + \frac{1}{0.09}\right) \mu A = 242 \mu A$$

Let's assume $I_{oss} = 250 \mu A$.

Output Swing

$$V_{Dsat9} = \sqrt{\frac{2 \times I_{oss}}{K_p \times (W/L)_9}}$$

$$= \sqrt{\frac{2 \times 250}{62 \times 75}} = 227 \, mV \, (which \, is \, good \, enough)$$

Similiarly for a V_{Dsat10} of 250 mV, we have

$${\binom{W}_L}_{10} = \frac{2 \times I_{oss}}{V_{Dsat10}^2 \times K_n}$$

= $\frac{2 \times 250}{0.25^2 \times 263} = 30$

Phase Margin

$$\emptyset = 90^{\circ} - tan^{-1} \left(\frac{f_{ug}}{f_{ND}} \right)$$
$$= 90^{\circ} - tan^{-1} \left(\frac{g_{m1}}{g_{m9}} \right)$$

For a phase margin of 60°,

$$g_{m9} \geq 2\pi \times C_L \times f_{ND}$$

 $f_{ND} = 155.88 \, MHz; C_L = 0.09 \, pF$

$$\Rightarrow g_{m9} \ge 1.5 \, mS$$

$$(W/L)_9 = \frac{g_{m9}^2}{2 \times I_{oss} \times K_p}$$

$$= \frac{1500^2}{2 \times 250 \times 62} = 73.4$$

Let's assume $(W/L)_{\rm g}=75$ (It will only result in better PM).

Zero Systematic Offset

Zero systematic offset requires $|V_{gs7}| = |V_{gs9}|$. Therefore

$$(W/L)_7 = \frac{I_{SS}}{2 \times I_{OSS}} \times (W/L)_9 = 2.88$$

We use $(W/L)_7 = 3$.

DC Gain

$$A_v = \frac{2g_{m1}(g_{m4} + g_{m6})g_{m9}}{\lambda^3 \times I_{ss}^2 \times I_{ass}}$$

For L_N = 0.55 μ m, λ = 0.747. That gives $L_P \approx$ 0.35 μ m.

Plugging the value of λ in the gain equation, we get $g_{m4}+~g_{m6}=~215.37~\mu S.$

This can be satisfied by taking $(W/L)_{3,4}$ and $(W/L)_{5,6}$ = 8.

Table 1: Calculated Transistor Parameters [Figures 1 and 2]

	W/L	W(in μm)	L(in μm)	
M1	1	0.35	0.55	
M2	1	0.35	0.55	
M3	8	4.4	0.55	
M4	8	4.4	0.55	
M5	8	2.8	0.35	
M6	8	2.8	0.35	
M7	3	1.05	0.35	
M8	3	1.05	0.35	
M9	75	18	0.35	
M10	30	16.5	0.55	
M11	2	1.1	0.55	
M12	1	0.55	0.55	

Table 2: Other Components

R _Z	4.54338K
C _C	0.09 pF

Part II

Meeting Specifications

It can be immediately observed that the specifications are not met, when simulations are run with the above parameters are plugged into Cadence. As mentioned earlier, the contribution of $M_{7,8}$ to noise is not negligible and needs to be accounted for. To ensure that the input referred noise stays below the limit, the ratio $\binom{W}{l}_1$ is increased. More remarkably, gain and phase margin are off by a huge margin. Also, $\binom{W}{l}_9$ is doubled to double the gain of M_9 . However, I_{oss} is also doubled by doubling $\binom{W}{l}_{10}$ to maintain V_{dsat} of M_9 . To further increase gain, ratio $\binom{W}{l}_3$ and ratio $\binom{W}{l}_5$ are increased. Phase margin is also improved when the gain of M_9 is doubled. To further increase PM, the value of C_C is increased. However, I_{SS} also has to be increased to meet the slew rate condition.

Final Design

Table 3: Transistor parameters

	W/L	W (in µm)	L(in μm)	
M1	6	3.3	0.55	
M2	6	3.3	0.55	
M3	16	8.8	0.55	
M4	16	8.8	0.55	
M5	20	7	0.35	
M6	20	7	0.35	
M7	4	1.4	0.35	
M8	4	1.4	0.35	
M9	150	52.5	0.35	
M10	112	61.6	0.55	
M11	6	3.3	0.55	
M12	2	1.1	0.55	
M13	2	1.1	0.55	
Mx	8	2.8	0.35	
My	20	7	0.35	
Mz	30	10.5	0.35	
MB1	2	1.1	0.55	
MB2	2	1.1	0.55	
MB3	6	2.1	0.35	
MB4	6	2.1	0.35	

 $C_{C} = 0.17 pF$

Simulated Results

Table 4: Simulation Results

DC Gain	100.245 dB	
Unity Gain Frequency	166.69 MHz	
Phase Margin	60.216°	
Slew Rate	223.57 V/μs	
Input Referred Thermal	18.0282 nV	
Noise		
Settling Time	7.22088 ns	
Common Mode Gain	7.714 dB	
Output Swing	1.06 V	
PSRR _{VDD}	100.19 dB	
PSRR _{VSS}	106.094 dB	
CMRR	92.531 dB	
Input Common Mode Range	[709 mV, 1.225 V]	
Power	1.188 mW	

Figure 4: Schematic

Figure 5: DC Analysis

Figure 6: STB Analysis

Dc gain = 100.254 dB, Unity gain Frequency = 166.69 MHz , Phase Margin = 60.216°

Figure 7: Closed-Loop Gain

 $V_{out} = 0$ dB, Phase = 0°. 3 dB Frequency = 351.067 MHz

Figure 8: Closed-Loop Transient Response

Figure 9: Common Mode Gain

 $A_{CM} = 7.714 \text{ dB, So CMRR} = 20 \times (\ln A_{dm} - \ln A_{cm}) = 92.531 \text{ dB}$

Figure 10: Input Common Mode Range

ICR = 708 mV to 1.225 V

(a) Input referred noise PSD from 1Hz to 1GHz

Integrated Noise Summary (in V) Sorted By Noise Contributors Total Summarized Noise = 0.000285944 Total Input Referred Noise = 0.000291275 The above noise summary info is for noise data

(b) Observed integrated noise voltage over the unity gain bandwidth

Figure 11: Input Referred Noise

Figure 12: Power Supply Rejection Ratio

PSRR = 106.094 dB

PSRR⁺ = 100.19 dB

Figure 13: Settling Time

1% Settling Voltage = 1.1615 V, Settling time = 7.22088 ns

Figure 14: Slew Rate

Slew Rate =
$$\max\left(\frac{dV_{out}}{dt}\right) = 223.57 V/\mu s$$

Figure 15: Systematic Offset

Offset by 0.24 μ V.

Power Consumption

Table 6: Current Drawn from Source

M11	30 μΑ
M12	10 μΑ
M13	40 μΑ
M10	560 μΑ
MB1	10 μΑ
MB2	10 μΑ

Total power consumed = Total Current × Operating Voltage

 $= 660 \mu A \times 1.8 V = 1.188 \text{ mW} \le 2 \text{ mW}$

Output Swing

From DC Analysis,

$$VD_{sat9} = |V_{gs9}| - |V_{th9}| = 975.4 \text{ mV} - 431.782 \text{ mV} = 543.618 \text{ mV}$$

$$VD_{sat10} = V_{gs10} - V_{th10} = 645.328 \text{ mV} - 444.323 \text{ mV} = 201.005 \text{mV}$$

$$\therefore$$
 Output Swing = $V_{DD} - V_{Dsat9} - V_{Dsat10} =$

 $1.8 \text{ V} - 543.618 \text{ mV} - 201.005 \text{ mV} = 1055.377 \text{ mV} \approx 1.06 \text{ V}$

Part III: Process Corners

Figure 16: Stability Analysis for SS process variation

Figure 17: Stability Analysis for FF process variation

Table 6: Variation in OTA with Process

Corner	SS		TT	FF	
Temperature (°C)	0	100	27	0	100
DC Gain	97.873 dB	91.925 dB	100.254 dB	104.544 dB	92.98 dB
Unity Gain Frequency	194.45 MHz	140.734 MHz	166.69 MHz	206.685 MHz	160.386 MHz
Phase Margin	53.44°	62.852°	60.216°	57.35°	63.371°