Asymmetric Ciphers: RSA

2019. 3. 19

Contents

- Introduction to crypto
- Symmetric-key cryptography
 - Stream ciphers
 - Block ciphers
 - Block cypher operation modes
- Asymmetric-key cryptography
 - RSA
 - Diffie-Hellman
 - ECC
 - Digital signature
 - Public key Infrastructure

- Cryptographic hash function
 - Attack complexity
 - Hash Function algorithm
- Integrity and Authentication
 - Message authentication code
 - GCM
 - Digital signature
- Key establishment
 - server-based
 - Public-key based
 - Key agreement (Diffie-Hellman)

Limitation of symmetric key

- Key distribution problem
 - How can keys be exchanged secretly?
- Too many symmetric keys
 - For n users, each user should keep n-1 keys and in total n(n+1)/2 keys are required.
- Alice and Bob may cheat each other.
 - They may deny the use of their keys.
 - Need a way for non-repudiation

Asymmetric key cryptography

Two keys

- Each user generates two keys: public key and private key
- Each user keeps its private key in secret, but lets others know its own public key.
- At key generation time, two keys are computed.

Uses of Public Key Crypto

Encryption

- Suppose we encrypt M with Bob's public key
- Bob's private key can decrypt to recover M

Digital Signature

- Sign by encrypting with sender's private key
- Anyone can verify signature by decrypting with the sender's public key
- Like a handwritten signature, but much better than that.

Key exchange

We will talk about it later.

How to build public key crypto

- Based on "trap door one-way function"
 - "One-way" means easy to compute in one direction, but hard to compute in other direction
 - One-way function f(x)
 - Computing y=f(x) is computationally easy.
 - Computing x=f¹(y) is computationally infeasible.
 - "Trap door" used to create key pairs

3 kinds of public key crypto

- There are 3 kinds of mathematically hard one-way functions on which the public key crypto are based.
 - Factoring integers
 - RSA
 - Discrete Logarithm
 - Diffie-Hellman, Elgamal, DSA
 - Elliptic curve: generalized discrete log
 - ECDH, ECDSA

RSA

History

- Diffie and Hellman published the idea of the public key crypto in 1976.
- The RSA crypto was published by Rivest, Shamir, and Adleman (MIT) in 1977, and Clifford Cocks (GCHQ), independently,
- So far, RSA is the most widely used the public key cypto although ECC is gaining attention recently.

Factoring Integers

- Let p and q be two large prime numbers
- Compute N = pq, which is easy.
- •but, to find p and q from N such that N=pq for large enough p and q is computationally very hard problem.

Encryption and Decryption

- Public key K+=(N,e)
- Private key K⁻= d
- Encryption $y=E_{K+}(x)=x^e \mod N$
- Decryption $x=D_{K-}(y) = y^d \mod N$

keys generation algorithm

At the setup time, the public and private keys are computed as follows:

- 1. Choose two large prime numbers (p, q<2⁵¹²)
- 2. Compute $N=p \cdot q (N < 2^{1024})$
- 3. Compute $\phi(N) = (p-1)(q-1)$
- 4. Choose $e \in \{1,2,3,..., \phi(N)-1\}$ such that $gcd(e, \phi(N)) = 1$
- 5. Compute d such that d·e=1 mod φ(N) (by Extended Euclidean Alg.)
- 6. Return $K^+=(N,e)$ and $K^-=d$

RSA encrypt/decrypt

- Message M is treated as a number ($M \in \{0,1,2,...,N-1\}$)
- To encrypt M, compute
 C = Me mod N
- To decrypt C, compute
 M = C^d mod N
- Recall that N and e are public
- If an attacker can factor N=pq, he can use e to easily find d since ed = 1 mod (p-1)(q-1)
- Factoring the modulus breaks RSA
 - Is the factoring the only way to break RSA?

Does RSA really work?

- Given C = Me mod N we must show
 M = Cd mod N = Med mod N
- We'll use **Euler's Theorem:**If x is relatively prime to n, then $x^{\phi(n)} = 1 \mod n$
- Facts:
 - 1) ed = $1 \mod (p-1)(q-1)$
 - 2) By definition of "mod", ed = k(p-1)(q-1) + 1
 - 3) $\varphi(N) = (p-1)(q-1)$
- Then ed $-1 = k(p-1)(q-1) = k\phi(N)$
- Finally, $M^{ed} = M^{(ed-1)+1} = M \cdot M^{ed-1} = M \cdot M^{k\phi(N)}$ $M \cdot (M^{\phi(N)})^k \mod N = M \cdot 1^k \mod N = M \mod N$

Simple RSA Example

Message M=8

- 1. Select large primes p=11, q=3
- 2. N = pq = 33
- 3. $\varphi(n)=(p-1)(q-1)=20$
- 4. Choose e=3 (relatively prime to 20)
- 5. Find d=7 such that $ed=1 \mod 20$

$$K + = (33,3)$$

$$K - = 7$$

$$Y = M^e \mod 33$$

= $8^3 = 512 = 17 \mod 33$

$$C = 17$$

 $M = C^d \mod N = 17^7 = 410,338,673$ = 12,434,505 * 33 + 8 = 8 mod 33

RSA computation time

- RSA computations are involved in only one arithmetic operation, i.e., modular exponential computation.
- For encryption,C = Me mod N
- For decryption,M = C^d mod N

Fast way of doing modular exponentiation

- Suppose that we compute 5²⁰
 - $5^{20} = 95367431640625 = 25 \mod 35$
- A better way: repeated squaring(Square-and-multiply)
 - o 20 = 10100 base 2
 - (1, 10, 101, 1010, 10100) = (1, 2, 5, 10, 20)
 - o Note that $2 = 1 \cdot 2$, $5 = 2 \cdot 2 + 1$, $10 = 2 \cdot 5$, $20 = 2 \cdot 10$
 - $5^{1}=5 \mod 35$
 - $5^2 = (5^1)^2 = 5^2 = 25 \mod 35$
 - $5^{5} = (5^{2})^{2} \cdot 5^{1} = 25^{2} \cdot 5 = 3125 = 10 \mod 35$
 - $5^{10} = (5^5)^2 = 10^2 = 100 = 30 \mod 35$
 - $5^{20} = (5^{10})^2 = 30^2 = 900 = 25 \mod 35$

Square-and-Multiply

- Compute X²⁶.
- Binary representation of 26 = (1,1,0,1,0)

Step		Binary exponent	Ор	Comment
1	x = x1	(1) ₂		Initial setting, h ₄ processed
1a	$(x^1)^2 = x^2$	(10) ₂	SQ	Processing h ₃
1b	$x^2 * x = x^3$	(11) ₂	MUL	h ₃ = 1
2a	$(x^3)^2 = x^6$	(110) ₂	SQ	Processing h ₂
2b	-	(110) ₂	-	h ₀ = 0
3a	$(x^6)^2 = x^{12}$	(1100) ₂	SQ	Processing h ₁
3b	$x^{12} * x = x^{13}$	(1101) ₂	MUL	h ₁ =1
4a	$(x^{13})^2 = x^{26}$	(11010) ₂	SQ	Processing h ₀
4b	-	(11010) ₂	-	$h_0 = 0$

(source: Understanding of Cryptography)

Fast encryption

- Surprisingly, the very small integers can be chosen for the public key e.
- In practice, three values have particular importance.
 - $3(2^1+1)$, $17(2^4+1)$, $65537(2^{16}+1)$

Fast decryption

- However, small private key d cause security weakness.
 - d must have at least 0.3t bits, where t is the bit length of the modulus n.
- The Chinese Remainder Theorem (CRT) can be used to accelerate exponentiation a little.

Protocol Attacks

- RSA encryption is deterministic.
- Plaintexts M=0, 1, -1 produce ciphertext C=0, 1, -1.
- RSA is malleable, which means attacker can manipulate the plaintext in a predictable way.
- Countermeasure : padding
 - Embeds (concatenate) a random structure into a plaintext before encryption.

Mathematical Attacks

- Factor $\varphi(n)=(p-1)(q-1)$
- It can be prevented by using a sufficiently large n.
 - Currently factoring the number with n=664 bits are recorded. So, n should be at least 1024 bits, and recommended more than that (2048-4096 bits) for long term safety.

Implementation Attacks

- Side-channel analysis
 - When an attacker can have direct access to the RSA implementation, he can obtain some information about a private key which can be leaked though physical channels such as power consumption or EM emanation.
 - One example is that power rate shows the bit information of private key d during computation of square-and-multiply algorithm.

Ex, power trace of an RSA implimentation

(source: Understanding of Cryptography)

Looking back RSA

- Currently RSA is the most widely used public crypto.
- Main uses are digital signature and key exchange.
- Currently 1024bits cannot be factored, but 2048 to 3076 bits are highly recommended for long-term security.
- Ingenuous implementation exposes several attacks.
 Meticulous implementation is required.

Encrypting Large File with RSA?

- time of 1024-bit RSA encryption
 - ~1 ms on 1 GHz Pentium
- time of 1024-bit RSA decryption
 - ~10 ms on 1 GHz Pentium
- time to encrypt 1 Mbyte file?
 - Encrypt 1024 bits / RSA operation = 128 bytes
 - 1 Mbyte = 2^{20} bytes
 - Time: $2^{20} / 2^7 * 1$ ms = 2^{13} ms = 8 seconds!
 - Compare with the time by the symmetric key?

Symmetric-key vs. public-key

- Symmetric crypto
 - 80 bit key for high security (year 2010)
 - ~1,000,000 ops/s on 1GHz processor
 - 10x speedup in HW
- Public-key crypto
 - 2048 bit key (RSA) for high security (year 2010)
 - ~100 signatures/s
 ~1000 verify/s (RSA) on 1GHz processor
 - Limited speedup in HW