choi6301 hw4

2024-09-29

total 86

Question2

- Part A
 - Problem statement: we want to prove logging actually increases the percentage of seedling lost in the time span studied.

 $H_0: distribution of unlogged(U) = distribution of logged(L)$ distribution of unlogged(U) < distribution of logged(L) $\alpha = 0.05$

- Critical Value(left_sided): -1.96
- value of Test Statistic: z = -3.2814
- p-value: 0.0001
- Conclusion: The data provide convincing evidence that logging the burned trees enhances forest recovery after "logged(L)" rather than the "unlogged(U)" method (one-sided, normal approximation with p-value=0.0005, from the rank-sum test). A range of plausible values for how much smaller the "logged(L)" distribution is than the "unlogged(U)" is [-41.2, -18.8]times.(95% confidence interval based on a rank-sum test) with a point-estimate of -28.4 times.

```
crit.value <- qt(0.90, 15, lower.tail=T)
shade(100000, 0.05, 0, t_calc=NULL, sides='both')</pre>
```


knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q1.jpg")

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q1_2.jpg")

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q1_3.jpg")

Hodges-Lehmann Estimation								
	Location	Shift (U - L)	-28.4000					
Туре	90% Confidence Limits		Interval Midpoint	Asymptotic Standard Error				
Asymptotic (Moses)	-42.3000	-18.5000	-30.4000	7.2347				
Exact	-41.2000	-18.8000	-30.0000					

• Part B

```
##Training Data
Logg <- read.csv('C:/Users/choih/OneDrive/Desktop/Logged6301_2024.csv')
Logg$Action <- factor(Logg$Action)
##Note that your grouping variable MUST be a factor</pre>
```

```
##Exact Rank Sum Test
wilcox_test( PercentLost ~ Action, data=Logg, alternative='greater', conf.level=0.90, distribution='exa
##
##
   Exact Wilcoxon-Mann-Whitney Test
## data: PercentLost by Action (L, U)
## Z = 3.3343, p-value = 8.741e-05
## alternative hypothesis: true mu is greater than 0
##Normal Approximation to the Rank Sum Test
wilcox_test(PercentLost ~ Action, data=Logg, alternative='greater', conf.level=0.90, distribution='appr
##
##
   Approximative Wilcoxon-Mann-Whitney Test
## data: PercentLost by Action (L, U)
## Z = 3.3343, p-value < 1e-04
## alternative hypothesis: true mu is greater than 0
##Exact Rank Sum Test w/ confidence interval
wilcox_test(PercentLost ~ Action, data=Logg, alternative='two.sided', conf.int=T, conf.level=0.90, dis
##
   Approximative Wilcoxon-Mann-Whitney Test
##
##
## data: PercentLost by Action (L, U)
## Z = 3.3343, p-value = 1e-04
## alternative hypothesis: true mu is not equal to 0
## 90 percent confidence interval:
## 18.8 41.2
## sample estimates:
## difference in location
##
                     28.4
```

Question3

- Part A
 - Normality: There is enough evidence from the histograms and QQ plots of drastic departures from normality. We will assume that the samples sizes are large enough for CLT to hold.
 - Equal standard deviations: There is enough evidence suggest drastic differences in the population standard deviations, thus we will assume that the standard deviations are not equal
 - Independence: We will assume that the observations are independent both between and within groups.
 - Decision: The two sample t-test and confidence intervals are not appropriate to use for these data.

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q2.jpg")

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q2_2.jpg")

• Part B

- Problem statement: we want to prove from this data set is educated college people(16 years) makes more income than educated high school people(12 years).

$$H_0: \mu_{12} = \mu_{16}$$

 $H_A: \mu_{12} < \mu_{16}$
 $\alpha = 0.05$

Critical Value: -1.646value of Test Statistic: -6.32

- p-value: 2.2e-16

− Conclusion: There is strong evidence to suggest that the mean income of the high school educated people group is less than the mean income of the college educated people group (p=2.2e-16). A95% confidence interval for the difference is $[-\infty, -26278.67]$.

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q3.jpg")

			ine	TTEST	Proce	dure					
			Vari	able: In	come	2005					
Educ Me	thod	1	1	Mean	Std	Dev	Std E	rr	Minim	um	Maximum
12		1020) 40	297.0	389	43.8	1219	.4	104	1.4	405216
16		406	3 75	841.5	110	574	5487	.7	247	8.0	1285898
Diff (1-2) Po	oled		-35	5544.5	675	47.4	3963	.7			
Diff (1-2) Sat	terthwaite		-35	5544.5			5621	.5			
'											
Educ Met	thod	N	lean	95%	6 CL N	lean	St	d De	v 9	5% C	L Std Dev
12		402	97.0	37904	.2 4	2689	.8 38	3943.	8 37	324.1	40711.5
16		758	41.5	65053	.6 8	86629	.5 1	1057	4 1	03456	118752
Diff (1-2) Poo	oled	-355	44.5	-Inf	ty -2	9020	.5 67	7547.	4 65	155.3	70123.1
Diff (1-2) Sat	terthwaite	-355	44.5	-Inf	ty -2	6278	.7				
	Method		Varia	ances	1	OF 1	t Value	F	r <t< td=""><td></td><td></td></t<>		
	Pooled		Equa	al	14	24	-8.97	<.(0001		
	Satterth	waite	Une	qual	445.	55	-6.32	<.0	0001		
			Equ	ality of	Varia	nces					
	Metho	d I	Equ Num C		Varia en DF		alue	Pr>	F		

```
crit.value <- qt(0.95, 1425, lower.tail=T)
shade(1425, 0.05, 0, t_calc=NULL, sides='left')</pre>
```


• Part C

- There is little detail about the randomness of the sample although it is doubtful that it was a random sample. We must limit the inference gained from this study to only the subject of this sample.
- Part D

```
## mean in group 12 mean in group 16
## 40296.99 75841.53
```

- Part E
 - Compared to log transformed and Welch's analysis I think Welch's analysis is more appropriate. Since we have enough sample size to invoke the CLT. It is robust to different standard deviations even when the sample size is not equal.

Question4

- Part A
- the data provide convincing evidence that trauma patients could have higher metabolic expenditures than other reasons patients(p=0.0006).

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q4_1.jpg")

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q4_2.jpg")

	Wilco	xon S				or Variable I e trauma	Metapolic	
	trauma	N	Sum of Scores	50000	ected der H0	Std Dev Under H0	Me: Sco	
	NT	8	38.0		64.0	8.633269	4.7500	00
	Т	7	82.0		56.0	8.633269	11.7142	86
		A	verage so	ores	were us	sed for ties.		
Candinain (C)	z	Pr	Z Pr>	Z	t Appro			Exact Pr >= S-Mean
Statistic (S)		0.00	16 00	031	0.0052	0.0105	0.0006	0.0012
82.0000	2.9537	0.00	0.0	001	0.0052	0.0100		0.0012
	2.9537				0.0002	rrection of ().5.	0.0012
	2.9537		ludes a c	ontir	0.0002	rrection of ().5.	0.0012
	2.9537		ludes a c	ontir	uity co	rrection of ().5.	0.5012

• Part B

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q4_2.jpg")

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q4_3.jpg")

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q4_4.jpg")

	Hodges-	Lehmann E	stimation		
	Location	Shift (T - NT	Γ) 5.3000		
Туре	95% Confidence Limits		Interval Midpoint	Asymptotic Standard Error	
Asymptotic (Moses)	1.9000	16.7000	9.3000	3.7756	
Exact	1.9000	16.7000	9.3000		

The TTEST Procedure

Variable: Metapolic

trauma	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
NT		8	20.9625	1.3794	0.4877	18.8000	22.9000
Т		7	28.7714	6.8354	2.5835	22.0000	38.5000
Diff (1-2)	Pooled		-7.8089	4.7528	2.4598		
Diff (1-2)	Satterthwaite		-7.8089		2.6292		

trauma Method		Mean 95% CL Mean		Mean	Std Dev	95% CL Std Dev		
NT		20.9625	19.8093	22.1157	1.3794	0.9120	2.8074	
Т		28.7714	22.4498	35.0931	6.8354	4.4047	15.0520	
Diff (1-2)	Pooled	-7.8089	-13.1230	-2.4949	4.7528	3.4455	7.6569	
Diff (1-2)	Satterthwaite	-7.8089	-14.1398	-1.4781				

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	13	-3.17	0.0073
Satterthwaite	Unequal	6.4282	-2.97	0.0230

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	6	7	24.56	0.0005			

• Part C

 Problem statement: We want to prove from this data set is the trauma patients has more higher metabolic than none trauma patients.

 $H_0: \mu_{\text{None trauma}} = \mu_{\text{Trauma}}$

 $H_A: \mu_{ ext{None trauma}} < \mu_{ ext{Trauma}}$

 $\alpha = 0.1$

- Test Statistic: = \pm 2.9511

- p-value: 0.00016

- Conclusion: the data provide convincing evidence that trauma patients could have higher metabolic expenditures than other reasons patients (p=0.00016). A range of plausible values

for how much higher the "trauma patients" distribution is than the "None trauma patients" us $[2.1000,\,15.6000]$ with a point-estimate of 5.3000.

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q4_5.jpg")

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q4_6.jpg")

shade(14, 0.1, 0, t_calc=NULL, sides='both')

Question5

• Part A

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q5.jpg")

• Part B

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q5_2.jpg")

```
1 data child;
 2 input child before after;
 3 datalines;
 4 1 85 75
 5 2 70 50
 6 3 40 50
 7 4 65 40
 8 5 80 20
 9 6 75 65
10 7 55 40
11 8 20 25
12 9 70 30
13;
14
15 data child2;
16 set child;
17 diff = before - after;
18 run;
19
20 proc univariate data = child2;
21 var diff;
22 run;
23
```

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q5_3.jpg")

The UNIVARIATE Procedure Variable: diff

Moments							
N	9	Sum Weights	9				
Mean	18.3333333	Sum Observations	165				
Std Deviation	21.6506351	Variance	468.75				
Skewness	0.7310904	Kurtosis	0.5328254				
Uncorrected SS	6775	Corrected SS	3750				
Coeff Variation	118.094373	Std Error Mean	7.21687836				

Basic Statistical Measures								
Location Variability								
Mean	18.33333	Std Deviation	21.65064					
Median	15.00000	Variance	468.75000					
Mode	10.00000	Range	70.00000					
		Interquartile Range	15.00000					

Tests for Location: Mu0=0								
Test		Statistic	p Value					
Student's t	t	2.540341	Pr > t	0.0347				
Sign	M	2.5	Pr >= M	0.1797				
Signed Rank	S	18.5	Pr >= S	0.0313				

```
before <- c(85,70,40,65,80,75,55,20,70)
after <- c(75,50,50,40,20,65,40,25,30)
wilcoxsign_test(before ~ after, distribution = "exact", alternative = "greater")</pre>
```

```
##
## Exact Wilcoxon-Pratt Signed-Rank Test
##
## data: y by x (pos, neg)
## stratified by block
## Z = 2.1994, p-value = 0.01562
## alternative hypothesis: true mu is greater than 0
```

• Part C

- Problem statement: We want to prove the fact from this data set is yoga treatment affects autism children that reduce the time to puzzling

 H_0 :

The median difference in yoga treatment between before and after is zero

 H_A :

The median difference in yoga treatment between before and after is greater than zero

- Test Statistic: z = 2.1324
- p-value: 0.01565
- Conclusion: There is strong evidence that the median difference in yoga treatment between "before" and "after" is greater than 0(normal approximation sign test one-sided p = 0.0313). this mean yoga treatment was effective in reducing the time.
- Part D

```
knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q5_4.jpg")
```

```
data child_p;
input before after @@;
datalines;
4 85 75 70 50 40 50 65 40 80 20
5 75 65 55 40 20 25 70 30
6;
run;
8

proc ttest data= child_p alpha= 0.01 side=L;
paired before*after;
11
12 run;
13
```

knitr::include_graphics("C:/Users/choih/OneDrive/Desktop/hw4q5_5.jpg")

• Part E

```
yoga_t <- read.csv("C:/Users/choih/OneDrive/Desktop/yoga_t.csv")
yoga_t$diff <- with(yoga_t, before-after)

t.test(yoga_t$diff, alternative='less')</pre>
```

```
##
## One Sample t-test
##
## data: yoga_t$diff
## t = 2.5403, df = 8, p-value = 0.9827
## alternative hypothesis: true mean is less than 0
## 95 percent confidence interval:
## -Inf 31.75347
## sample estimates:
## mean of x
## 18.33333
hist(yoga_t$diff)
box()
```

Histogram of yoga_t\$diff


```
qqnorm(yoga_t$diff)
qqline(yoga_t$diff)
```

Normal Q-Q Plot

- Part F
- I think the sign test is most appropriate for this data. it is one sample and the normality is not good because the sample size is too small for hold to CLT. Also if we see the histogram and Q-Q plot , those distribution symmetric is not looks good. This all reason why I said the Sign test is good for this study