Computational Physics Project 1: Pendulum

Ben Zager, Remy Wang

February 12, 2017

Part A

Part B

1. Phase space of nonlinear pendulum

As θ_0 approaches π , the trajectories go from an ellipse to a more "lemon" shape, as seen in figure 1.

For $\theta_0 = 0$, varying $\dot{\theta}_0 \in [0, \pi]$, the phase shows two different behaviors. For $\dot{\theta}_0$ between 0 and approximately 0.6π the phase space appears similar to the previous one, as seen in figure 2a. If $\dot{\theta}_0$ is greater than that, the motion is no longer periodic, and θ increases indefinitely, as seen in figure 2b.

Figure 1: Plots of trajectory $(\theta, \dot{\theta})$, for many values of $\theta_0 \in [0, \pi]$

2. Phase space of linear pendulum

For the linear pendulum, the phase space trajectory remains elliptical for all values of θ_0 , as seen in figure 3

Figure 2: Trajectory for various $\dot{\theta}$

Figure 3: Plots of linearized trajectory $(\theta, \dot{\theta})$, for many values of $\theta_0 \in [0, \pi]$

3. Pendulum with driving force, $\gamma k^2 cos(\omega t)$

If a periodic driving force with $\omega = k$ is added, the frequency stays the same, but the ampltude varies periodically, as seen in figure 4.

4. Exploration of driven system

For fixed θ and θ , how do the real and phase space trajectories vary with γ .

5. Identifying (θ_0, γ) for which the motion diverges

Figure 6 shows the phase plot for (θ_0, γ) for $\theta_0 \in [0, \pi]$, and $\gamma \in [0, 6]$, after a time interval of 8π seconds. The white regions indicate values for which the motion remained periodic. The blue regions indicate values for which the motion diverged. The darker the color, the greater the value of θ at the end of the time interval.

6. Driven pendulum with damping $\ddot{\theta} + 2\beta\dot{\theta} + k^2sin\theta = \gamma k^2cos(\omega t)$

Figure 4: Solution for driven undamped pendulum

Figure 5:

Figure 6: Phase plot for (θ_0, γ) . On the left is the actual data that was calculated, and on the right is an interpolated contour plot.

As γ increases, the pendulum exhibits a transition to chaos, as seen in figure 7

7. Fourier analysis

Part C

- 1. Visualization
- 2. Lyapunov exponent

Figure 7: Plots of driven damped pendulum for various values of $\gamma \in [0,2]$

3. Transition to Chaos

4. Time for Pendulum to Flip