

SECTION 11.2

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

fire station

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.

- dist(x, y) = distance between x and y.
- dist(s_i , C) = min $c \in C$ dist(s_i , c) = distance from s_i to closest center.
- $r(C) = \max_i dist(s_i, C) = smallest covering radius.$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

```
dist(x, x) = 0 (identity)
dist(x, y) = dist(y, x) (symmetry)
dist(x, y) \le dist(x, z) + dist(z, y) (triangle inequality)
```

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

Ex: each site is a vertex in undirected weighted graph, a center can be any vertex, dist(x, y) = (weighted) distance in G between x and y.

Ex: each site is a vertex in undirected weighted graph, a center can be any vertex, dist(x, y) = (weighted) distance in G between x and y.

Ex: each site is a vertex in undirected weighted graph, a center can be any vertex, dist(x, y) = (weighted) distance in G between x and y.

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s<sub>1</sub>, s<sub>2</sub>,...,s<sub>n</sub>) {
    C = \( \phi \)
    repeat k times {
        Select a site s<sub>i</sub> with maximum dist(s<sub>i</sub>, C)
        Add s<sub>i</sub> to C
    }
        site farthest from any center
    return C
}
```

Observation. Upon termination all centers in C are pairwise at least r(C) apart.

Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

balls are disjoint since all centers in C are pairwise at distance at least r(C)

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2} r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it.
- Exactly one c_i* in each ball;
 - each ball with center $c_i \in C$ must contain a center in C^* (otherwise dist $(c_i, C^*) \ge \frac{1}{2} r(C) > r(C^*)$);
 - balls are disjoint and $|C| = |C^*|$.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2} r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it.
- Exactly one c_i^* in each ball; let c_i be the site paired with c_i^* .
- $_{\text{o}}$ Consider any site s and its closest center c_i^* in C^* .
- dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i*) + dist(c_i*, c_i) \leq 2r(C*).
- Thus $r(C) \leq 2r(C^*)$. Δ -inequality $\leq r(C^*)$ since c_i^* is closest center

Center Selection

Theorem. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

e.g., points in the plane

Question. Is there hope of a better approximation?

...very unlikely:

Theorem. Unless P = NP, there no ρ -approximation for center-selection problem for any ρ < 2.