New evidence from Bayesian Dynamic Linear Models

Hoang Nguyen

Universidad Carlos III de Madrid

joint work with Jesper Stage, Magnus Lindmark, Huong Nguyen

June 23, 2017

► Choosing sustainable development is an ethical decision.

- ► Choosing sustainable development is an ethical decision.
  - ► However, measuring sustainability is challenge (Hamilton and Bolt 2007) or there is an incomplete treatment of resource issues.

- ► Choosing sustainable development is an ethical decision.
  - However, measuring sustainability is challenge (Hamilton and Bolt 2007) or there is an incomplete treatment of resource issues.
  - ► Even when there is standard statistical measures for environmental-economic accounting (SEEA). It is still not easy to calculate for every countries.

- ▶ Choosing sustainable development is an ethical decision.
  - However, measuring sustainability is challenge (Hamilton and Bolt 2007) or there is an incomplete treatment of resource issues.
  - ► Even when there is standard statistical measures for environmental-economic accounting (SEEA). It is still not easy to calculate for every countries.
- ► Genuine Savings (GS) indicators is a forward-looking measure which has been considered as the leading economic indicator of changes in future well-being.

- ▶ Choosing sustainable development is an ethical decision.
  - However, measuring sustainability is challenge (Hamilton and Bolt 2007) or there is an incomplete treatment of resource issues.
  - ► Even when there is standard statistical measures for environmental-economic accounting (SEEA). It is still not easy to calculate for every countries.
- ► Genuine Savings (GS) indicators is a forward-looking measure which has been considered as the leading economic indicator of changes in future well-being.
  - ► However, there are different forms of GS affect the stream of well-being over time.

- ▶ Choosing sustainable development is an ethical decision.
  - However, measuring sustainability is challenge (Hamilton and Bolt 2007) or there is an incomplete treatment of resource issues.
  - ► Even when there is standard statistical measures for environmental-economic accounting (SEEA). It is still not easy to calculate for every countries.
- ► Genuine Savings (GS) indicators is a forward-looking measure which has been considered as the leading economic indicator of changes in future well-being.
  - ► However, there are different forms of GS affect the stream of well-being over time.
  - ► In this study, we extend Genuine Savings (GS) indicators to account for a wider range of impacts on natural and human capital and study Swedish long-term sustainability.

- ▶ Inconsistent result of GS predictive power for sustainability.
  - ► Relatively short period of time.
  - ► Co-integration problem.

- ▶ Inconsistent result of GS predictive power for sustainability.
  - ► Relatively short period of time.
  - ► Co-integration problem.
- ► The prediction power of GS can not be constant due to measurement error.

- ▶ Inconsistent result of GS predictive power for sustainability.
  - ► Relatively short period of time.
  - ► Co-integration problem.
- ▶ The prediction power of GS can not be constant due to measurement error.
  - ► In this study, we uncover the dynamic effect of GS by introducing Dynamic Linear Model (DLM).
  - ► Apply Bayesian approach to estimate the dynamic process.

### AGENDA

THEORETICAL FRAMEWORK

DYNAMIC LINEAR MODELS

**EMPIRICAL RESULTS** 

**CONCLUSION** 

Consider optimal social planer problem (see Hartwick 1990),

$$W = \int_0^\infty U(C, B)e^{-rs}ds \tag{1}$$

where social welfare W be the present value of utility on the optimal path. It is assumed that the utility of consumers U is a function of consumption C and environmental services B and r is a fixed pure rate of time preference.

Consider optimal social planer problem (see Hartwick 1990),

$$W = \int_0^\infty U(C, B)e^{-rs}ds \tag{1}$$

where social welfare W be the present value of utility on the optimal path. It is assumed that the utility of consumers U is a function of consumption C and environmental services B and r is a fixed pure rate of time preference. By deriving the Hamiltonian function for the optimal path

$$GS = \lambda^{-1} \frac{dW}{dt} \tag{2}$$

where  $\lambda$  is marginal utility of consumption and

Consider optimal social planer problem (see Hartwick 1990),

$$W = \int_0^\infty U(C, B)e^{-rs}ds \tag{1}$$

where social welfare W be the present value of utility on the optimal path. It is assumed that the utility of consumers U is a function of consumption C and environmental services B and r is a fixed pure rate of time preference. By deriving the Hamiltonian function for the optimal path

$$GS = \lambda^{-1} \frac{dW}{dt} \tag{2}$$

where  $\lambda$  is marginal utility of consumption and

$$GS = \sum_{i} p_i \dot{K}_i \tag{3}$$

where  $K_i$  is the stock of assets in the economy and  $p_i$  is the shadow price. (e.g physical assets, human capital, depletion of natural resources, pollutants,..) 

Following WorldBank 2005, the current change in total wealth per capita is defined as,

$$W_0 = \sum_{t=1}^{T} \frac{1}{(1+r)^t} \left( \frac{C_t}{N_t} - \frac{C_{t-1}}{N_{t-1}} \right), \tag{4}$$

where t is time index, T is time period, r is discount rate, C is the consumption and N is total population.

### PVC

Following WorldBank 2005, the current change in total wealth per capita is defined as,

$$W_0 = \sum_{t=1}^{T} \frac{1}{(1+r)^t} \left( \frac{C_t}{N_t} - \frac{C_{t-1}}{N_{t-1}} \right), \tag{4}$$

where t is time index, T is time period, r is discount rate, C is the consumption and N is total population.

 $PVC_t$  is the present value of changes in future consumption per capita at time t (Ferreira, Hamilton, and Vincent 2008)

$$PVC_{t} = \sum_{v=t}^{t+T} \left( \frac{C_{v+1}/N_{v+1} - C_{v}/N_{v}}{\prod_{j=t}^{v} (1 + \rho_{j} - \gamma_{j})} \right)$$
 (5)

where  $\rho_i$  is the consumption discount rate at time j and  $\gamma_i$  is the population growth rate at time j.

THEORETICAL FRAMEWORK

ightharpoonup NETPINV = net domestic investment in physical capital + net exports.

THEORETICAL FRAMEWORK

- $\blacktriangleright$  *NETPINV* = net domestic investment in physical capital + net exports.
- $GREENINV = NETPINV + \Delta$  natural capital (contaminated water and food).

- $\blacktriangleright$  *NETPINV* = net domestic investment in physical capital + net exports.
- $GREENINV = NETPINV + \Delta$  natural capital (contaminated water and food).
- ightharpoonup GS = GREENINV + education expenditures Damages frompollutants.

- $\blacktriangleright$  *NETPINV* = net domestic investment in physical capital + net exports.
- $GREENINV = NETPINV + \Delta$  natural capital (contaminated water and food).
- ightharpoonup GS = GREENINV + education expenditures Damages frompollutants.
- $GREENTFP = GREENINV + \Delta$  technological progress.

- ► NETPINV = net domestic investment in physical capital + net exports.
- $GREENINV = NETPINV + \Delta$  natural capital (contaminated water and food).
- ightharpoonup GS = GREENINV + education expenditures Damages frompollutants.
- $GREENTFP = GREENINV + \Delta$  technological progress. where technological progress is a function of total factor productivity (TFP) series is constructed as follows

$$TFP = GDP/\left(L^{a}K^{1-a}\right), \tag{6}$$

where labour L stands for total employment, capital K is the stock of reproduced capital, a is the elasticity of output with respect to labour.

- ► NETPINV = net domestic investment in physical capital + net exports.
- $GREENINV = NETPINV + \Delta$  natural capital (contaminated water and food).
- ightharpoonup GS = GREENINV + education expenditures Damages frompollutants.
- $GREENTFP = GREENINV + \Delta$  technological progress. where technological progress is a function of total factor productivity (TFP) series is constructed as follows

$$TFP = GDP/\left(L^a K^{1-a}\right), \tag{6}$$

where labour L stands for total employment, capital K is the stock of reproduced capital, a is the elasticity of output with respect to labour.

 $ightharpoonup GSTFP_t = GS_t + \Delta TFP_t.$ 

- ► NETPINV = net domestic investment in physical capital + net exports.
- $GREENINV = NETPINV + \Delta$  natural capital (contaminated water and food).
- ightharpoonup GS = GREENINV + education expenditures Damages frompollutants.
- $GREENTFP = GREENINV + \Delta$  technological progress. where technological progress is a function of total factor productivity (TFP) series is constructed as follows

$$TFP = GDP/\left(L^a K^{1-a}\right) ,$$
(6)

where labour L stands for total employment, capital K is the stock of reproduced capital, a is the elasticity of output with respect to labour.

- $ightharpoonup GSTFP_t = GS_t + \Delta TFP_t.$
- ►  $GSWPOP_t = GS_t$  wealth dilution per capita

see Lindmark and Acar 2013 for details.



### TEST FOR THE PREDICTION OF GS

THEORETICAL FRAMEWORK

$$PVC_t = \beta_0 + \beta_1 GS_t + \varepsilon_t \,, \tag{7}$$

where GS is one of different measures of Genuine saving.

### TEST FOR THE PREDICTION OF GS

THEORETICAL FRAMEWORK

$$PVC_t = \beta_0 + \beta_1 GS_t + \varepsilon_t \,, \tag{7}$$

where GS is one of different measures of Genuine saving.

Ferreira and Vincent 2005 established a theoretical framework for testing the properties of GS under three hypotheses.

- ▶ Hypothesis 1.  $\beta_0 = 0$  and  $\beta_1 = 1$
- ▶ *Hypothesis* 2.  $\beta_1 > 0$  and  $\beta_1 \to 1$  as the net investment term includes more types of capital.
- ▶ Hypothesis 3.  $\beta_1 > 0$ .

### DYNAMIC LINEAR MODELS

$$y_t = \alpha_t + x_t \beta_t + \sigma \epsilon_t \tag{8}$$

$$\alpha_t = \alpha_{t-1} + \sigma_\alpha \xi_t \tag{9}$$

$$\beta_t = \beta_{t-1} + \sigma_\beta \eta_t \tag{10}$$

#### where

- $\triangleright$  y<sub>t</sub> is PV of changes in future consumption per capita over T year horizon  $PVC_t$ .
- $\triangleright$   $x_t$  is one of the GS indicators.

### DYNAMIC LINEAR MODELS

$$y_t = \alpha_t + x_t \beta_t + \sigma \epsilon_t \tag{8}$$

$$\alpha_t = \alpha_{t-1} + \sigma_\alpha \xi_t \tag{9}$$

$$\beta_t = \beta_{t-1} + \sigma_\beta \eta_t \tag{10}$$

#### where

- $\triangleright$  y<sub>t</sub> is PV of changes in future consumption per capita over T year horizon  $PVC_t$ .
- $\triangleright$   $x_t$  is one of the GS indicators.

#### Model assumptions:

- $\bullet$   $\epsilon_t \sim iid.N(0,1)$  and  $\xi_t, \eta_t \sim iid.N(0,1)$ .
- ▶ The parameter set of the DLMs is  $\theta = \{\sigma, \sigma_{\alpha}, \sigma_{\beta}, \alpha_{t}, \beta_{t}\}$

### DYNAMIC LINEAR MODELS

$$y_t = \alpha_t + x_t \beta_t + \sigma \epsilon_t \tag{8}$$

$$\alpha_t = \alpha_{t-1} + \sigma_\alpha \xi_t \tag{9}$$

$$\beta_t = \beta_{t-1} + \sigma_\beta \eta_t \tag{10}$$

#### where

- $\triangleright$   $y_t$  is PV of changes in future consumption per capita over T year horizon  $PVC_t$ .
- $\triangleright$   $x_t$  is one of the GS indicators.

### Model assumptions:

- $\bullet$   $\epsilon_t \sim iid.N(0,1)$  and  $\xi_t, \eta_t \sim iid.N(0,1)$ .
- ▶ The parameter set of the DLMs is  $\theta = \{\sigma, \sigma_{\alpha}, \sigma_{\beta}, \alpha_{t}, \beta_{t}\}$
- ▶ Use Rstan package to estimate model with a inverse gamma prior distribution (IG) for  $\sigma^2 \sim IG(0.001, 0.001)$ ,  $\sigma_{\alpha}^2 \sim IG(0.001, 0.001)$  and  $\sigma_{\beta}^2 \sim IG(0.001, 0.001)$ .

### DATA

- ► Time: Swedish series from 1850 to 2000
- ▶ Dependent variables
  - ► PVC20: PV of changes in Consumption from 1850 to 1990
  - ► PVC50: PV of changes in Consumption from 1850 to 1960
- ► Explanatory variables
  - ► NETPINV, GREENINV, GS, GSWPOP: GS measurements from 1850 to 2000
  - ► GREENTFP20, GSTFP20: GS measurements from 1850 to 1980
  - ► GREENTFP30, GSTFP30: GS measurements from 1850 to 1970

### **PVC**



Figure: Present value of future changes in real consumption per capita, 3% per annum discount rate (SEK)

### NETPINV AND GS



Figure: Net investment and GS adjust series per capita (Fixed 1912/13 prices)



Figure: Posterior mean of  $\beta$  in DLMs for the period 1850-2000 corresponding to the dependent variable PVC20.

EMPIRICAL RESULTS

14 / 20



Figure: Posterior mean of  $\beta$  in DLMs for the period 1850-2000 corresponding to the dependent variable PVC20.

### BAYESIAN INFERENCE OF DLMs for PVC50



Figure: Posterior mean of  $\beta$  in DLMs for the period 1850-2000 corresponding to the dependent variable PVC50.

### BAYESIAN INFERENCE OF DLMs for PVC50



Figure: Posterior mean of  $\beta$  in DLMs for the period 1850-2000 corresponding to the dependent variable PVC50.

### **CONCLUSION**

- ► Extended the measure of GS accounting for natural resource, human capital and technological progress.
- ▶ Applied DLM to analyze the dynamic effect of GS to Swedish well-being.
- ▶ The prediction power of GS is improved by the technological progress.
- ▶ The measurement error of GS is reduced and  $\beta_1$  is decreasingly biased toward zero.

# Thank you

### REFERENCES I



Ferreira, S., K. Hamilton, and J.R. Vincent (2008). "Comprehensive wealth and future consumption: Accounting for population growth". In: World Bank Economic Review 22.2, pp. 233–248. DOI: 10.1093/wber/lhn008.



Ferreira, S. and J.R. Vincent (2005). "Genuine Savings: Leading Indicator of Sustainable Development?". English. In: *Economic Development and Cultural Change* 53.3, pp. 737-754. ISSN: 00130079.



Hamilton, K. and K. Bolt (2007). Genuine saving as an indicator of sustainability. cited By 5, pp. 292–306. URL:

https://www.scopus.com/inward/record.uri?eid=2s2.0-42149103568&partnerID=40&md5= ab31f4e7c30f2e9b5d1dad477a9b94b5.



Hartwick, John M. (1990). "Natural resources, national accounting and economic depreciation". In: Journal of Public Economics 43.3, pp. 291–304. ISSN: 0047-2727. DOI:

http://dx.doi.org/10.1016/0047-2727(90)90002-Y.

### REFERENCES II



Lindmark, Magnus and Sevil Acar (2013). "Sustainability in the making? A historical estimate of Swedish sustainable and unsustainable development 1850–2000". In: *Ecological Economics* 86. Sustainable Urbanisation: A resilient future, pp. 176–187. ISSN: 0921-8009. DOI:

http://dx.doi.org/10.1016/j.ecolecon.2012.06.021.



WorldBank (2005). Testing genuine savings. Washington DC: World Bank Research Working Paper 3577.

### BAYESIAN ESTIMATION OF DLM MODELS

$$PVC20_t = \alpha_t + GS_t\beta_t + 1.902\epsilon_t \tag{11}$$

$$\alpha_t = \alpha_{t-1} + 29.429\xi_t \tag{12}$$

$$\beta_t = \beta_{t-1} + 0.038\eta_t \tag{13}$$

| $y_t$             | PVC20   | PVC50   | PVC20    | PVC50   | PVC20   | PVC50   | PVC20   | PVC50   |
|-------------------|---------|---------|----------|---------|---------|---------|---------|---------|
| $x_t$             | NETPINV |         | GREENINV |         | GS      |         | GSWPOP  |         |
| $\sigma$          | 0.92    | 0.577   | 2.109    | 1.272   | 1.902   | 0.831   | 1.855   | 0.614   |
|                   | (1.305) | (0.517) | (1.757)  | (0.598) | (1.746) | (0.746) | (1.545) | (0.622) |
| $\sigma_{\alpha}$ | 23.365  | 8.065   | 29.889   | 9.178   | 29.429  | 9.586   | 29.482  | 9.6     |
|                   | (2.645) | (0.802) | (4.294)  | (0.941) | (3.784) | (0.922) | (3.77)  | (0.935) |
| $\sigma_{\beta}$  | 0.024   | 0.019   | 0.045    | 0.036   | 0.038   | 0.028   | 0.039   | 0.028   |
|                   | (0.004) | (0.003) | (0.011)  | (0.006) | (0.008) | (0.004) | (0.008) | (0.004) |

Table: Posterior mean of the parameters in the Swedish DLMs for the periods  $1850-2000\,$ 

### BAYESIAN ESTIMATION OF DLM MODELS

| $y_t$             | PVC20      | PVC50   | PVC20      | PVC50   | PVC20   | PVC50   | PVC20   | PVC50   |
|-------------------|------------|---------|------------|---------|---------|---------|---------|---------|
| $x_t$             | GREENTFP20 |         | GREENTFP30 |         | GSTFP20 |         | GSTFP30 |         |
| $\sigma$          | 4.753      | 1.563   | 4.299      | 1.467   | 4.891   | 1.696   | 5.629   | 1.755   |
|                   | (2.166)    | (0.836) | (2.422)    | (0.865) | (2.469) | (0.815) | (1.957) | (0.848) |
| $\sigma_{\alpha}$ | 7.978      | 2.798   | 7.58       | 2.739   | 7.862   | 2.69    | 6.752   | 2.384   |
|                   | (2.563)    | (1.022) | (2.853)    | (1.049) | (2.745) | (1.02)  | (2.587) | (1.04)  |
| $\sigma_{\beta}$  | 0.013      | 0.008   | 0.012      | 0.007   | 0.013   | 0.008   | 0.012   | 0.007   |
|                   | (0.001)    | (0.001) | (0.001)    | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) |

Table: Posterior mean of the parameters in the Swedish DLMs for the period  $1850-2000\,$