MA439: Functional Analysis Tychonoff Spaces: Exercises 1-6 on p.36, Ben Mathes

Huan Q. Bui

Due: Wed, Sep 30, 2020

Due. Wed, Sep 30, 2020
Exercise 1 (Ex 1, p.36). Let \mathcal{X} be a topological space. Prove that if d is a continuous pseudometric, then the sets $\{y \in \mathcal{X} : d(x,y) > \delta\}$ are open, where $x \in \mathcal{X}$ and $\delta \in \mathbb{R}$.
Proof. Let $O = \{y \in \mathcal{X} : d(x,y) > \delta\}$. We want to show that each $y \in O$ is an interior point of O . Let $y \in O$ be given, then $d(x,y) > \delta$. This means that $d(x,y) \geq \delta + \epsilon$ for some $\epsilon > 0$. d is a continuous pseudometric, so every d -ball is an open subset of \mathcal{X} . In particular, $B_d(y, \epsilon/2)$ is an open subset of \mathcal{X} . By the triangle inequality, for any $z \in B_d(y, \epsilon/2)$, $z \in O$. Thus, $B_d(y, \epsilon/2) \subseteq O$. So, O is open as desired.
Exercise 2 (Ex 2, p.36). Let \mathcal{X} be a topological space. Prove that d is a continuous pseudometric on \mathcal{X} if and only if the function $f_x^d = d(x, \cdot)$ is continuous for every $x \in \mathcal{X}$.
<i>Proof.</i> (\Longrightarrow) Suppose that d is a continuous pseudometric on \mathcal{X} . Let $\epsilon > 0$, then for $\delta = \epsilon$, $\left f_x^d(y) - f_x^d(z) \right = d(x,y) - d(x,z) \le d(y,z) \le \epsilon$ whenever $d(y,z) \le \delta$. So f_x^d is continuous for all $x \in \mathcal{X}$.
$x \in \mathcal{X}$. (\longleftarrow) Let d be a pseudometric and suppose that $f_x^d = d(x, \cdot)$ is continuous for every $x \in \mathcal{X}$. We want to show that every d -ball is open in \mathcal{X} . To this end, let $x \in \mathcal{X}$ and $\delta > 0$ be given and consider $B_d(x, \delta) = \{y \in \mathcal{X} : d(x, y) < \delta\} = \{y \in \mathcal{X} : f_x^d(y) < \delta\}$ then what???
Exercise 3 (Ex 3, p.36). Let \mathcal{X} be a Tychonoff space whose topology is generated by the family of pseudometrics \mathcal{G} . Prove that the topology on \mathcal{X} is the same as the weak topology induced by the family of functions f_x^d where $x \in \mathcal{X}$, $d \in \mathcal{G}$.
<i>Proof.</i> This follows from the proof from
Exercise 4 (Ex 4, p.36). Assume \mathcal{X} is a Tychonoff space with generating family \mathcal{G} . If E is a subset of \mathcal{X} , let \mathcal{G}_E denote the set of restrictions of elements of \mathcal{G} to E . Prove that the resulting Tychonoff Topology on E generated by the family \mathcal{G}_E is the same as the topological subspace topology that E inherits from the topology on \mathcal{X} .
Proof. blah
Exercise 5 (Ex 5, p.36). Give an example of a continuous pseudometric on $(0,1)$ that is not the restriction of a continuous pseudometric on \mathbb{R} to $(0,1)$.
Proof. blah
Exercise 6 (Ex 6, p.36). Prove that a bounded continuous pseudometric on $(0,1)$ is the restriction of a continuous pseudometric on \mathbb{R} to $(0,1)$. (?CHECK?)

Proof. blah