Aprendizado de Máquina

Aula 8: Algoritmos baseados em proximidade (parte 1)

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos

- Aprendizado baseado em proximidade
 - o Aprendizado baseado em instâncias
- Proximidade
 - o Similaridade e dissimilaridade (distância)
- 1-vizinho mais próximo
- Distância de Minkowski e suas variações
- K-vizinhos mais próximos
 - o Propriedades de medidas de similaridade e de distância
- Variações
- Conclusão

Tópicos

- Aprendizado baseado em proximidade
 - o Aprendizado baseado em instâncias
- Proximidade
 - o Similaridade e dissimilaridade (distância)
- 1-vizinho mais próximo
- Distância de Minkowski e suas variações
- K-vizinhos mais próximos
 - o Propriedades de medidas de similaridade e de distância
- Variações
- Conclusão

Aprendizado baseado em proximidade

- Uso mais comum é em tarefas de aprendizado preditivo (classificação)
 - Utiliza medidas de proximidade para predizer o rótulo de novos objetos
 - Supõe que objetos próximos (parecidos) têm rótulos semelhantes
 - Quando um novo objeto precisa ser classificado, ele recebe o rótulo do objeto (instância) mais próximo
 - Aprendizado baseado em instâncias
 - Instance-based learning

Aprendizado baseado em instâncias

- Não tem uma fase explícita de treinamento
 - o Apenas armazena os exemplos de treinamento
- Fase de teste
 - Para classificar um novo objeto x, compara ele com os demais objetos do "conjunto de treinamento" e selecionar os objetos mais parecidos com x
 - o Escolhe a classe que aparece mais vezes
- Como definir os mais parecidos?
 - Quantos e quais?

Aprendizado baseado em instâncias

- Consideram proximidade entre dados
 - o Medidas de similaridade
 - Medidas de dissimilaridade

Tipos de atributos

- Simbólicos ou qualitativos
 - Nominal ou categórico
 - Ex.: cor, código de identificação, profissão
 - Ordinal
 - Ex.: gosto (ruim, médio, bom), dias da semana
- Numéricos, contínuos ou quantitativos
 - Intervalar
 - Ex.: data, temperatura em Celsius
 - Racional
 - Ex.: peso, tamanho, idade, temperatura em Kelvin

Dissimilaridade x Similaridade

• Sejam a e b valores do atributo para dois objetos de um único atributo

Tipo de atributo

Nominal

Ordinal

Intervalar ou racional

Dissimilaridade

$$d(a,b) = \begin{cases} 1, \text{ se a} \neq b \\ 0, \text{ se a} = b \end{cases}$$

$$d(a,b) = \frac{|pos_a - pos_b|}{n-1}$$
n = #valores
n > 1

$$d(a,b) = |a - b|$$

Similaridade

$$s(a,b) = \begin{cases} 0, \text{ se } a \neq b \\ 1, \text{ se } a = b \end{cases}$$

$$s(a,b) = 1 - \frac{|pos_a - pos_b|}{n-1}$$

$$s(a,b) = -d, \quad s(a,b) = \frac{1}{d} \text{ ou}$$

$$s(a,b) = 1 - \frac{d-mi}{max_d-min_d}$$

Dissimilaridade x Similaridade

• Sejam a e b valores do atributo para dois objetos de um único atributo

Tipo de atributo

Dissimilaridade

Similaridade

Nominal

d(azul, amarelo) = 1

s(azul, amarelo) = 0

Ordinal

d(terça, quinta) = 2/6

s(terça, quinta) = 1 - 2/6

Intervalar ou racional

d(4,9) = 5Supor valores variando de 3 a 10

$$s(4,9) = -5$$
, $s(4,9) = \frac{1}{5}$ ou
 $s(4,9) = 1 - \frac{5-3}{10-3}$

Funções de transformação

- Convertem medida de similaridade em medida de dissimilaridade
 - E vice-versa
- Fazem com que o valor retornado pela medida:
 - o Fique dentro de um dado intervalo
 - Apresente uma dada distribuição

Algoritmo k-vizinhos mais próximos (k-NN)

- Geralmente usado em tarefas de classificação
- Algoritmo de aprendizado lazy (preguiçoso)
 - o Olha os dados de treinamento apenas quando vai classificar um novo objeto
 - Processamento é atrasado até o momento de classificação de um novo exemplo
 - Não constrói um modelo explicitamente
 - o Diferente de um algoritmo eager (ansioso)
 - Olha os dados de treinamento para induzir um modelo, depois usado para classificar novos objetos

Algoritmo 1-vizinho mais próximo

Algoritmo 1-vizinho mais próximo

- Novo exemplo é atribuído a classe do exemplo mais próximo
 - Medida de distância
 - Valores dos d atributos definem coordenadas no espaço d-dimensional
 - Geralmente utiliza a distância euclidiana
 - Superfície de decisão
 - Muito complexas
 - Define poliedros convexos com centro nos exemplos de treinamento
 - Conjunto de poliedros forma um diagrama de Voronoi

- Estudado por René Descartes
 - Filósofo/físico/matemático francês

- Mas nome homenageia o matemático ucraniano Georgy Voronoy (que definiu e estudou o caso d-dimensional)
- Criado pela distribuição aleatória de pontos em um plano euclidiano
 - o Que é dividido em polígonos convexos (tesselações), um em torno de cada ponto

- Estudado por René Descartes
 - Filósofo/físico/matemático francês
 - Mas nome homenageia o matemático ucraniano Georgy Voronoy (que definiu e estudou o caso d-dimensional)
- Criado pela distribuição aleatória de pontos em um plano euclidiano
 - Que é dividido em polígonos convexos (tesselações), um em torno de cada ponto
 - Tesselação: pavimentação, mosaico
 - Define região do plano mais próxima àquele ponto do que a qualquer outro ponto

- Possui várias aplicações (não só na matemática)
 - Modelagem de território animal
 - Navegação de robôs
 - o Modelagem de crescimento de cristais
 - o Usado em 1954 pelo médico John Snow, durante a epidemia da cólera em Londres
 - Criou diagrama para identificar locais em que havia bomba de água
 - Contou o número de mortes em cada polígono para achar a bomba que provocava a infecção

Cólera

Mapa da Cólera em Londres (Snow) 1854

Distribuição da doença permitiu identificar que a fonte da cólera era uma bomba de água pública na Broad Street

Medidas de distância

- Já vimos como calcular similaridade e dissimilaridade entre valores de 1 atributo preditivo
- Supor agora que cada objeto pode ter d atributos preditivos
 - o Para medir dissimilaridade, são utilizadas medidas de distância
 - Existem várias
 - Algumas delas são derivadas da distância de Minkowski

Distância de Minkowski

Medida de distância generalizada

distânciaMinkovsk_i
$$(p,q) = (\sum_{k=1}^{d} |p_k - q_k|^r)^{\frac{1}{r}}$$

- Escolha do valor de r resulta em diferentes medidas de distância:
 - o 1 (L1): Distância bloco cidade (Manhattan, geometria do taxi)
 - Hamming (para valores binários ou cadeias de caracteres)
 - Ex.: 100011 e 011011
 - o 2 (L₂): Distância euclidiana
 - $\circ \infty$ (L_{∞} ou L_{max}): Distância de Chebyshev (máxima, do tabuleiro de xadrez)

Medidas de distância

- Distância bloco cidade (Manhattan)
 - Medida de menor complexidade (e exatidão)

$$distancia_{Bloco}(p,q) = \sum_{k=1}^{d} |p_k - q_k|$$

- Distância euclidiana
 - Sistemas de coordenadas cartesianas

$$dist \hat{a}ncia_{Euclidiana}(p,q) = \sqrt{\sum_{k=1}^{d} (p_k - q_k)^2}$$

Distância máxima (Chebyshev)

$$dist \hat{a}ncia_{M\acute{a}xima}(p,q) = MAX(|p_k - q_k|)$$

Distância euclidiana

Matriz de distâncias entre os objetos Coordenadas dos objetos

Objeto	X	У
pl	0	2
p2	2	0
р3	3	1
p4	5	1

	pl	p2	р3	р4
pl				
p2				
р3				
p4				

Distância euclidiana

Matriz de distâncias entre os objetos Coordenadas dos objetos

Objeto	X	У
pl	0	2
p2	2	0
рЗ	3	1
р4	5	1

	p1	p2	р3	p4
pl	0,00	2,828	3,162	5,099
p2	2,828	0,00	1,414	3,162
р3	3,162	1,414	0,00	2,000
p4	5,099	3,162	2,000	0,00

Distância euclidiana

- Medida de distância mais utilizada
- Atributos com escalas de valores diferentes
 - Pode ser necessário padronização ou re-escala
- O cálculo da raiz quadrada tem um custo elevado
 - Que pode ser evitado por outras medidas
 - Distância bloco cidade (Manhattan)
 - Distância máxima

Medidas de distância

Distância euclidiana

Distância bloco cidade (Manhattan)

Distância máxima

- Também conhecida como distância de Chebyshev, distância quadrática ou do tabuleiro de xadrez
 - o Distância de menor complexidade
 - E de menor precisão
 - \circ Supor p = [1, 2, -4] e q = [2, 0, 3]
 - Retorna maior distância entre os atributos
 - Distâncias entre atributos:
 - |1-2|=1
 - | 2-0 | = 2
 - | -4-3 | = 7

Distância máxima

- Quantas casas o rei percorre entre sua posição inicial e sua posição alvo
 - o Em uma ou mais jogadas
- Ex.: mover de f6 para b4

Distância máxima

- Quantas casas o rei percorre entre sua posição inicial e sua posição alvo
 - Em uma ou mais jogadas
 - Ex.: mover de f6 para b4
 - $Max (|x_{alvo} x_{inicial}|, |y_{alvo} y_{inicial}|)$
 - \blacksquare Max (4, 2) = 4

Chebychev versus Manhattan

Chebychev

Manhattan

Chebychev versus Manhattan

Chebychev

Veículo voador

Manhattan

Veículo terrestre

Distância de Minkowski

Coordenadas dos objetos

Objeto	X	У
pl	0	2
p2	2	0
р3	3	1
p4	5	1

Matriz de distâncias entre os objetos

		1 5559 5 U / 1	415155 /0 4	186 0 1 7984
L ₁	pl	p2	р3	p4
pl				
p2				
рЗ				
p4				
L ₂	pl	p2	р3	p4
pl				
p2				
р3				
p4				
$L_{\!\scriptscriptstyle{\infty}}$	pl	p2	р3	p4
pl				
p2				
р3				
p4				

Distância de Minkowski

Coordenadas dos objetos

Objeto	X	У
pl	0	2
p2	2	0
р3	3	1
p4	5	1

Matriz de distâncias entre os objetos

L ₁	pl	p2	р3	p4
pl	0	4	4	6
p2	4	0	2	4
рЗ	4	2	0	2
p4	6	4	2	0
L ₂	p1	p2	р3	р4
pl	0,00	2,828	3,162	5,099
p2	2,828	0,00	1,414	3,162
рЗ	3,162	1,414	0,00	2,000
p4	5,099	3,162	2,000	0,00
$L_{\!\scriptscriptstyle{\infty}}$	p1	p2	р3	p4
pl	0	2	3	5
p2	2	0	1	3
рЗ	3	1	0	2
p4	5	3	2	0

Medidas de distância

 Onde se situam os pontos equidistantes de um objeto representado por um vetor

Continua na próxima aula

