A Robust Machine Learning Algorithm for Text Analysis

José L. Montiel Olea James Nesbit Barry Shikun Ke November 16th, 2018

Introduction

Introduction

- Text is an increasingly popular input in empirical economic research
 - Stock market returns using financial news, (Tetlock [07])
 - Political slant of media outlets (Groseclose and Milyo [05])
 - Understand macro policy using records of policy actions (Romer, Romer [04, 10])
- Text is high-dimensional data: need dimensionality reduction
 - FOMC transcripts 1987–2006: 5M words
- Traditional methods manual, modern methods automated
- Popular machine learning algorithm for dimension reduction:

Latent Dirichlet Allocation (LDA)

- Blei, Ng, Jordan [03], 24K+ citations and counting
- Document $\mapsto \Delta^{K-1}$: share devoted to each of K 'latent' topics

Motivation & Question

- LDA is a Bayesian statistical model for text data
- Thus, dimension reduction occurs through likelihood & prior
- The question of interest in this paper is about 'prior robustness'

How does the LDA output change as we change the prior?

- Our goal is to provide a theoretical and algorithmic answer
 - Leverages the theory of Robust Bayes analysis to characterize the range of posterior means over a class of priors
 - Provide an algorithm for evaluate this range

Main Results

Theory:

- Theorem: The parameters in LDA 'likelihood' are set-identified
 - Several document compositions are compatible with the data
 - In general, the id. set does not only contain topic permutations
 - Proof uses Laurberg et al. [08]
- Because the likelihood has flat regions, the prior matters a lot
- 2. **Theorem:** The range of posterior means for functional $\mu \approx$ Non-negative Matrix Factorizations (NMF) of the term-document frequency matrix (Lee & Seung [99])

Algorithm:

 Compute the range of posterior means by taking draws from set of solutions to NMF

Outline

- 1. LDA Model
- 2. Identification: Example
- 3. Range of Posterior Means and Algorithm
- 4. Empirical Application
- 5. Conclusion

LDA Model

LDA for Text Data

- ullet Corpus old W of D documents based on a vocabulary of V terms
 - Transcripts of FOMC meetings; rate, inflat, product $\in V$
- Model for the probability that a term t appears in document d
 - How likely is it that 'rate' shows up in a particular meeting?
 - i) Suppose there are K latent **topics**: $\beta_k \in \Delta^{V-1}$

$$B \equiv (\beta_1, \ldots, \beta_K)$$

ii) Each doc is characterized by a **topic composition**: $\theta_d \in \Delta^{K-1}$

$$\Theta \equiv (\theta_1, \ldots, \theta_D)$$

The statistical model for text assumes that

$$p_d(t|B,\Theta) \equiv \sum_{k=1}^K \beta_{t,k} \theta_{k,d} = (B\Theta)_{t,d}$$

Likelihood and Prior

- Assume words are independent within/across docs given B, Θ
- The likelihood of a corpus W can then be written as

$$\mathbb{P}(\mathbf{W}|B,\Theta) = \prod_{d=1}^{D} \prod_{t=1}^{V} (B\Theta)_{t,d}^{n_{t,d}}$$

 $n_{t,d} \equiv \text{count of term } t \text{ in document } d$: term-document matrix

The usual implementation of the LDA assumes that

$$\beta_k \sim \text{Dirichlet}(\eta), \ \theta_d \sim \text{Dirichlet}(\alpha)$$

- The MCMC Gibbs sampler returns posterior means of B,Θ
- The object of interest is typically a functional $\mu(B,\Theta)$

Identification: Example

(B,Θ) is not identified

Theorem 1

The parameters (B, Θ) in the likelihood

$$\mathbb{P}(\mathbf{W}|B,\Theta) = \prod_{d=1}^{D} \prod_{t=1}^{V} (B\Theta)_{t,d}^{n_{t,d}}$$

are not identified, even beyond topic permutations.

- Any $(B, \Theta) \neq (B', \Theta')$ s.t $B\Theta = B'\Theta'$ yields same distribution over entries of the term-document matrix
- The parameter $P = B\Theta$ is identified, but not the pair (B, Θ) .

7

Example: Two terms, two topics, many documents

- Set V = K = 2 and D large
- The labels of the latent topics can be permuted (obviously)

$$B = \begin{pmatrix} \beta_{1,1} & \beta_{1,2} \\ \beta_{2,1} & \beta_{2,2} \end{pmatrix}, \quad \Theta = \begin{pmatrix} \theta_{1,1} & \dots & \theta_{1,D} \\ \theta_{2,1} & \dots & \theta_{2,D} \end{pmatrix}$$

$$B' = \begin{pmatrix} \beta_{1,2} & \beta_{1,1} \\ \beta_{2,2} & \beta_{2,1} \end{pmatrix}, \quad \Theta' = \begin{pmatrix} \theta_{2,1} & \dots & \theta_{2,D} \\ \theta_{1,1} & \dots & \theta_{1,D} \end{pmatrix}$$

(we flipped the columns of B and the rows of Θ)

- $(B, \Theta) \neq (B', \Theta')$. However, we still have $B\Theta = B'\Theta'$
- But topic permutations are not the only problem ...

K = V = 2, **D = 15**

q

K = V = 2, **D = 15**

Permutations

And more

Range of Posterior Means and

Algorithm

Prior Robustness

- Set identification means that there are regions of the parameter space where the likelihood is flat
 - In these flat regions, the posterior is determined by the prior
- We want to vary the priors on (B,Θ) in a certain class Π_P and study the posterior mean of some functional $\mu(B,\Theta)$
- Fix some prior π_P on P
 - ullet *P* is identified, thus the prior π_P will eventually be irrelevant
- Consider all priors $\pi_{B,\Theta}$ over (B,Θ) such that

$$B\Theta \stackrel{\pi_{B,\Theta}}{\sim} \pi_P$$

- How does the posterior mean of $\mu(B,\Theta)$ vary over Π_P ?
 - ullet μ is some continuous 'functional' of interest
- This is a standard question in the Robust Bayes literature
 - Wasserman [89], Berger [90], GK [18]

Robust Bayes Results

• Let \widehat{P}_{MLE} be rank $\leq K$ matrix that maxs the likelihood

Theorem 2

If the number of words is large enough for every document: the range of posterior means for $\mu(B,\Theta)$ over $\Pi_P \approx$

$$\left[\underline{\mu}(\widehat{P}_{MLE}), \quad \overline{\mu}(\widehat{P}_{MLE})\right],$$

Where $\underline{\mu}(P) = \min_{B,\Theta} \mu(B,\Theta)$ s.t. $B\Theta = P$.

Robust Bayes Results

• Let \widehat{P}_{MLE} be rank $\leq K$ matrix that maxs the likelihood

Theorem 2

If the number of words is large enough for every document: the range of posterior means for $\mu(B,\Theta)$ over $\Pi_P \approx$

$$\left[\underline{\mu}(\widehat{P}_{MLE}), \quad \overline{\mu}(\widehat{P}_{MLE})\right],$$

Where $\underline{\mu}(P) = \min_{B,\Theta} \mu(B,\Theta)$ s.t. $B\Theta = P$.

Sketch of the Proof: Range of posterior means is (GK [18])

$$\left[\int \underline{\mu}(P) d\pi_{P|\mathbf{W}}, \quad \int \bar{\mu}(P) d\pi_{P|\mathbf{W}}\right],$$

P is identified, so $\pi_{P|\mathbf{W}}$ and \hat{P}_{MLE} concentrate around P_0

Quick Aside: Non-negative Matrix Factorization

- Let P be a $V \times D$ non-negative matrix, where $rank(P) \geq K$
- A (rank K) Non-negative Matrix Factorization (NMF) of P is a non negative pair B and Θ s.t.

$$P \approx B\Theta$$

Where *B* is $V \times K$, Θ is $K \times D$

- Set of solutions, $(B, \Theta) \in \mathrm{NMF}(\widehat{P})$ is not a singleton
- NMF is a well studied problem in ML
 - Lots of efficient algorithms

Operationalize Theorem 2 using NMF

- $\underline{\mu}(\widehat{P}_{MLE})$ is just the smallest value of $\mu(B,\Theta)$ in argmax of the likelihood
- argmax of the likelihood = the solutions of the NMF of \widehat{P}
 - ullet \widehat{P} is the term document frequency matrix
- We have that

$$\underline{\mu}(\widehat{P}_{MLE}) = \min_{B,\Theta} \mu(B,\Theta) \text{ s.t. } (B,\Theta) \in \text{NMF}(\widehat{P})$$

- Compute $\mu(\widehat{P}_{MLE})$ by random sampling from $\mathrm{NMF}(\widehat{P})\dots$
 - Use 'learning' guarantees to suggest number of draws

Algorithm for Robust Estimation in LDA

- 1. Compute the term-document frequency matrix \widehat{P}
- 2. 'Draw' a non-negative matrix factorization (B^m, Θ^m) of \widehat{P} .
- 3. Evaluate the function of interest $\mu(B^m, \Theta^m)$
- 4. Repeat this *M* times
 - Set $M=(2/\epsilon)\ln(2/\delta)$ as in Montiel Olea and Nesbit [18], so that $Prob(\text{misclassification error} > \epsilon) \leq \delta$
- 5. Obtain the smallest and largest values over all draws

Empirical Application

FOMC Transcripts

- We revisit effects of increased 'transparency' on 'conformity' of FOMC participants
 - Hansen, McMahon, Prat [QJE, 2018], henceforth HMP
- We look at the FOMC transcripts from Aug 87–Jan 06
 - Greenspan era; 149 meetings; obtained from the Fed website
- Are FOMC member's interjections more 'similar' after 1993 agreement to publish past and future transcripts?
- We only consider the 4 participants / documents per meeting
 - Alan Greenspan, Donald Kohn, Gary Stern, Robert T. Parry

Top 10 Active Participants (1987-2006)

Average Number of Speakers per meeting: 24.7 Total documents: 3702 Greenspan, Kohn, Stern, Parry documents: 583

Vocabulary: 63 words

Term-Document Matrix

- Our term-document matrix P is of dimension 63×583 .
- Set K = 6, thus reducing each document to Δ^{6-1}
- The average number of words per document is 149.94
 - Posterior mean approximations require numbers of words to be large

Functional of Interest $\mu(B,\Theta)$

- $\theta_{i,j}$: topic composition used by speaker i at meeting j
 - $\bar{\theta}_j$: Average topic composition at meeting j
- ullet $HD_{i,j}$: Hellinger distance between $heta_{i,j}$ and $ar{ heta}_{j}$

$$HD_{i,j}^2 \equiv 1 - \sum_{k=1}^K \sqrt{\theta_{i,j}(k)ar{ heta}_j(k)}$$

ullet KL $_{i,j}$: Kullback-Leibler similarity between $heta_{i,j}$ and $ar{ heta}_{j}$

$$\mathit{KL}_{i,j} \equiv \exp \left[-\sum_{k} ar{ heta}_{j}(k) \ln \left(rac{ar{ heta}_{i,j}(k)}{ heta_{j}(k)}
ight)
ight]$$

ullet Consider only \pm 4 years around 93. Functional of interest is regression of similarity measures on Pre/Post 93 dummy, maybe controls

Similarity Measures Difference Regressions

$$Sim_{it} = \alpha_i + \beta D(Trans) + \gamma X_t + \epsilon_{i,t}$$

Sim	HD	HD	KLSim	KLSim
D(Trans)	-0.0051	-0.0122**	0.0050	0.0138**
	(0.0061)	(0.0044)	(0.0064)	(0.0046)
Controls	No	Yes	No	Yes
Speaker FE	No	Yes	No	Yes
Observations	252	252	252	252
Robust Min	-0.0267	-0.0405	-0.0539	-0.0595
Robsust Max	0.0305	0.0383	0.0527	0.0742

 $X_t \equiv \{D(Recession), BloomEPUIndex_t, D(2day), Stems_t\}$ * p < 0.1, *** p < 0.05, *** p < 0.01

Results: Robust Estimation

Results: Robust Estimation

Conclusion

Conclusion

- Text is an increasingly popular input in empirical research
- LDA is a popular ML algorithm for dimension reduction
- LDA parameters are non-trivially set identified, so the prior matters a lot
- Propose a robust LDA algorithm for text analysis by evaluate a functional over all possible NMF of term-doc freq matrix
- The algorithm approximates the set of posterior means of functional of interest for a fixed prior over the model's identified parameter

Thanks for listening!