Nuclear Engineering 150 – Discussion Section Team Exercises #3

Problem 1

A reactor is operating for a long time at some known power density P_0 . Then, it instantaneously changes power to some power density P_1 . One fission product of interest is 135 Xe, though it has a neglible yield from the initial fission reaction. 135 Xe precursors 135 Te and 135 I are produced with a combined yield of approximately 6%, before decaying via β^- decay to 135 I and 135 Xe respectively. Find the number density of 135 Xe as a function of time after the power change. (Your solution may be left as variables)

Nucleus	Half-life	Thermal $\sigma_{\rm a}$
$^{135}\mathrm{Te}$	19.0 s	~ 0
^{135}I	$6.6~\mathrm{hr}$	~ 0
$^{135}\mathrm{Xe}$	$9.2 \mathrm{\ hr}$	$2.6 \times 10^6 \text{ barns}$

Problem 2

- a) Find the excitation energy in ²³⁶U when a neutron with zero kinetic energy is absorbed by ²³⁵U.
- b) Find the excitation energy in ²³⁹U when a neutron with zero kinetic energy is absorbed by ²³⁸U.
- c) The activation energy for 236 U is 6.2 MeV and the activation energy for 239 U is 6.6 MeV. Will fission occur in each of these cases? Identify 235U and 238U as fissile or fissionable and explain.
- d) A 238 U nuclei absorbs a 2 MeV neutron and fissions into 132 Sn, 106 Mo, and a neutron. If the neutron is produced with 2.5% of the total energy released in the reaction, does it have enough energy to fission another 238 U atom?

Nucleus	Mass
n	1.00866492 amu
$^{106}\mathrm{Mo}$	105.918137 amu
$^{132}\mathrm{Sn}$	131.917816 amu
$^{235}{ m U}$	235.043930 amu
$^{236}\mathrm{U}$	236.045568 amu
$^{238}{ m U}$	238.050788 amu
$^{239}\mathrm{U}$	239.054293 amu