Átomo Polieletrônico

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Função de Onda e Orbitais Atômicos

1. Interpretação de Born — A densidade de probabilidade de encontrar um elétron é proporcional a ψ^2 .

1.0.1 Habilidades

 a. Comparar funções de onda em função da probabilidade de encontrar um elétron.

Números Quânticos, Níveis e Subníveis

- Número quântico principal, n, tamanho e energia dos orbitais.
- 2. Número quântico secundário, l e o formato dos orbitais.
- Número quântico magnético, m_l e a orientação espacial dos orbitais.
- 4. Experimento de Stern-Gerlach.
- **5.** Número quântico de spin, $m_s = \pm 1/2$.

2.0.2 Habilidades

- a. **Identificar** um orbital dado um conjunto de números quânticos
- b. **Identificar** um conjunto de números quânticos inexistente.

Forma dos Orbitais

- 1. Superfícies nodais angulares e radiais.
- 2. Número de superfícies nodais angulares: l, e radiais: $\mathfrak{n}-\mathfrak{l}-1.$
- 3. Influência da carga nuclear na função de onda.

3.0.3 Habilidades

- a. Calcular o número de nodos radiais e angulares de um orbital.
- b. Comparar orbitais atômicos com base em sua função de onda.

Energias dos Orbitais

- 1. Blindagem.
- 2. Carga nuclear efetiva, Z_{eff}.
- **3.** Grau de penetrabilidade.

4.0.4 Habilidades

- a. Comparar a energia de orbitais atômicos de átomos polieletrônicos.
- b. Estimar a Carga Nuclear Efetiva pela Regra de Slater.

Princípio de Construção

- 1. Princípio da Exclusão de Pauli.
- 2. Regra de Hund.
- 3. Diagrama de construção.
- **4.** Configurações eletrônicas anômalas tipo s¹ d⁵ (Cr, Mo) e s¹ d¹⁰ (Cu, Ag, Au).
- Configurações eletrônicas anômalas tipo s²d¹ (La, Ac) e s²f⁻d¹ (Gd, Cm).
- 6. Camada de valência.
- 7. Relação com a tabela periódica.

5.0.5 Habilidades

- a. Determinar a configuração eletrônica para átomos em seu estado fundamental.
- b. Determinar a configuração eletrônica para íons em seu estado fundamental.
- Determinar se uma dada configuração eletrônica representa um estado fundamental ou excitado.
- d. Explicar a origem de anomalias na configuração eletrônica

A Tabela Periódica

- 1. Número atômico e número de Massa.
- 2. Isotopos, isóbaros, isótonos, isoeletrônicos, e isodiáferos
- 3. Grupos e famílias.
- 4. Períodos.
- 5. Blocos.
- 6. Metais, ametais e semi-metais.

6.0.6 Habilidades

 a. Determinar a posição de um átomo na Tabela Periódica dada sua configuração eletrônica.

Nível I

PROBLEMA 6.1

1B03

Assinale a alternativa com o número máximo de elétrons com número quântico secundário l no átomo de hidrogênio.

- **A** 2l + 1
- **B** 4l + 2
- **c** 2l + 2

- **D** 21
- **E** 4l + 1

Assinale a alternativa com o número máximo de elétrons com número quântico principal n no átomo de hidrogênio.

- **A** 2n + 1
- **B** 4n + 2
- \mathbf{c} n^2

- \mathbf{D} $2n^2$
- \mathbf{E} $3n^2$

PROBLEMA 6.3

1B04

Assinale a alternativa com o orbital que pode existir no átomo de hidrogênio.

- A 2d
- **B** 2f
- **c** 3f

- **D** 4g
- **E** 8f

PROBLEMA 6.4

1B05

Assinale a alternativa com o orbital que não pode existir no átomo de hidrogênio.

- **A** 1p
- **B** 5f
- **c** 5g

- **D** 6g
- **E** 9h

PROBLEMA 6.5

1B06

Assinale a alternativa com o conjunto de números quânticos (n, l, m_l, m_s) que pode representar um orbital atômico.

- **A** (2, 2, +1, +1/2)
- (4, 2, -3, -1/2)
- (4,4,+2,-1/2)
- D (5, 0, 0, +1)
- (6,4,+3,+1/2)

PROBLEMA 6.6

1B07

Assinale a alternativa com o conjunto de números quânticos (n, l, m_l, m_s) que pode representar um orbital atômico.

- **A** (1, 1, 0, +1/2)
- **B** (5, 3, -3, -1/2)
- (5,4,-4,-1/2)
- D (5, 5, +4, -1/2)
- (6,4,+5,+1/2)

Assinale a alternativa com a representação correta dos números de *spin* $m_s = 1/2$ e $m_s = -1/2$.

- A Rotação do elétron em sentido horário e anti-horário, respectivamente.
- **B** Rotação do elétron em sentido anti-horário e horário, respectivamente.
- **C** Sentido do vetor momento magnético para cima e para baixo, respectivamente.
- D Sentido do vetor momento magnético para baixo e para cima, respectivamente.
- Não existem análogos clássicos para os números quânticos de *spin*.

PROBLEMA 6.8

PROBLEMA 6.7

1B09

Considere a isosuperfície de um orbital do hidrogênio.

Assinale a alternativa com a identidade desse orbital.

- A $2p_z$
- **B** $3p_z$
- C $3\mathrm{d}_{z^2}$

- $\mathbf{D} \mathbf{4} \mathbf{p}_z$
- \mathbf{E} $4d_{z^2}$

Átomo Polieletrônico | Gabriel Braun, 2022

O gráfico abaixo, mostra a função de onda de um orbital do átomo de hidrogênio.

Assinale a alternativa com a identidade desse orbital.

- **A** 1s
- **B** 2p
- **c** 3s

- **D** 3p
- **E** 4s

PROBLEMA 6.10

1B11

1B10

- A carga nuclear efetiva independe do número de elétrons presentes em um átomo.
- **2.** Os elétrons de um orbital s blindam mais efetivamente da carga do núcleo que os elétrons de outros orbitais devido à maior penetrabilidade dos orbitais s.
- 3. Elétrons com l=2 blindam mais efetivamente que elétrons com l=1.
- A carga nuclear efetiva de um elétron em um orbital p é menor que a de um elétron em um orbital s da mesma camada.

Assinale a alternativa que relaciona as proposições corretas.

Λ .

- B 4
- **C** 2 e 4

- **D** 1, 2 e 4
- E 2,3e4

- 1. A $Z_{\rm eff}$ de um elétron em um orbital 1s é igual à $Z_{\rm eff}$ de um elétron em um orbital 2s.
- 2. A $Z_{\rm eff}$ de um elétron em um orbital 2s é igual à $Z_{\rm eff}$ de um elétron em um orbital 2p.
- **3.** Um elétron em um orbital 2s tem a mesma energia que um elétron no orbital 2p.
- **4.** Elétrons em orbitais 2p não podem possuir o mesmo valor de *spin*.

Assinale a alternativa que relaciona as proposições incorretas.

- **A** 1, 2 e 3
- **B** 1, 2 e 4
- **c** 1, 3 e 4
- **D** 2, 3 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 6.12

1B14

Assinale a alternativa com o número de elétrons com número quântico magnético nulo no estado fundamental do germânio.

- **A** 10
- **B** 12
- **c** 15

- **D** 17
- **E** 19

PROBLEMA 6.13

1B52

Assinale a alternativa com o número de elétrons com número quântico magnético $\mathfrak{m}_s=1$ no estado fundamental do bismuto.

- **A** 9
- **B** 12
- **c** 15

- **D** 17
- **E** 20

PROBLEMA 6.14

1B15

Assinale a alternativa com a configuração eletrônica do estado fundamental do vanádio.

- \mathbf{A} [Ar]3d⁵
- **B** $[Ar]4s^13d^4$
- (Ar) $4s^23d^3$
- \mathbf{E} [Ar]4s²3d⁴

PROBLEMA 6.15

1B20

Assinale a alternativa com a configuração eletrônica do estado fundamental do chumbo.

- **A** $[Xe]4f^{14}5d^{10}6s^2$
- **B** [Xe]4f¹⁴5d¹⁰6s²6p¹
- $[Xe]4f^{14}5d^{10}6s^26p^2$
- **D** $[Xe]4f^{14}5d^{10}6s^{1}6p^{3}$
- E [Xe]4f¹⁴5d¹⁰6p⁴

Assinale alternativa com a espécie cuja configuração eletrônica no seu estado fundamental é $[Ar]4s^23d^{10}$.

A Cu⁺

B Sn²⁺

 \mathbf{C} Cd^{2+}

D Ge²⁺

E Zn⁺

PROBLEMA 6.17

1B21

1B16

Assinale a alternativa com o número atômico do cátion divalente paramagnético que possui, para seu elétron mais energético no estado fundamental, números quânticos: n=3, l=2, m=+2.

- A 24
- **B** 25
- **c** 26

- **D** 27
- **E** 28

PROBLEMA 6.18

1B18

Assinale a alternativa com a configuração eletrônica do estado fundamental do cromo.

- A Caixa
- **B** Caixa
- **c** Caixa
- **D** Caixa
- E Caixa

PROBLEMA 6.19

1B22

Assinale a alternativa com a configuração eletrônica do estado fundamental do cobre.

- \mathbf{A} [Ar] $4d^23d^8$
- **B** $[Ar]4s^23d^9$
- $C [Ar]4s^13d^{10}$
- **D** $[Ar]4s^23d^{10}$
- **E** $[Ar]4s^13d^{10}4p^1$

PROBLEMA 6.20

1B23

Assinale a alternativa com a configuração eletrônica no estado fundamental átomo de paládio, espécie diamagnética.

- **A** [Kr]4d¹⁰
- \mathbf{B} [Kr]5s¹4d⁹
- C [Kr]5s¹4d¹⁰
- $\mathbf{D} \quad [Kr] 5s^2 4d^8$
- $[Kr]5s^24d^{10}$

i

Assinale a alternativa com a configuração eletrônica da espécie com paramagnetismo mais acentuado.

- **B** $1s^22s^22p^1$
- $1s^22s^22p^3$
- $1s^22s^22p^6$
- $[Ar]4s^23d^{10}$

PROBLEMA 6.22

1B25

Considere as espécies **A**, **B**, **C** e **D**, que possuem 9, 11, 20 e 10 prótons e 10, 11, 18, 10 elétrons, respectivamente. **Assinale** a alternativa *correta*.

- A A espécie B é um gás nobre.
- **B** A camada de valência da espécie **A** no estado fundamental é ns² np⁵.
- C A camada de valência da espécie C no estado fundamental é ns² np⁶.
- **D** A espécie **D** é um metal eletricamente neutro.
- E As espécies A e C são cátions.

PROBLEMA 6.23

1B26

Considere composto iônico binário, em que o cátion, de carga +2 possui 12 prótons e o ânion, de carga -3 possui 10 elétrons. **Assinale** a alternativa que mais se aproxima da massa molar desse composto.

A 38 g

B 50 g

c 90 g

- **D** 100 g
- **E** 122 g

PROBLEMA 6.24

1B27

Considere três nuclídeos **A**, **B** e **C**, sendo **A** e **B** isótopos, **A** e **C** isótonos, **B** e **C** isóbaros e o número de massa de **A** é 39. A soma do número de prótons de **A**, **B** e **C** é 58 e a soma do número de nêutrons é 61.

Assinale a alternativa com o número de nêutrons de B.

- **A** 17
- **B** 18
- **C** 1

- **D** 20
- **E** 21

PROBLEMA 6.25

1B28

Considere três nuclídeos, **A**, **B** e **C**, com números atômicos consecutivos. **B** e **C** são isóbaros, **A** e **C** são isodiáferos, **B** possui 32 nêutrons e o número de massa de **A** é 38.

Assinale a alternativa com o número atômico de B.

- A 17
- **B** 18
- **c** 19

- **D** 20
- **E** 21

Considere um elétron no orbital 1s de um átomo de hidrogênio, cuja função de onda é

$$\psi_{1s}(r) = \frac{1}{\sqrt{\pi} a_0^{3/2}} e^{-\frac{r}{\alpha_0}}$$

Em que a_0 é o raio de Bohr.

Assinale a alternativa com a razão entre a probabilidade de encontrar o elétron em um pequeno volume muito próximo do núcleo e a probabilidade de encontrá-lo em um volume de mesmo tamanho a uma distância a_0 do núcleo.

- **A** 0
- **B** 1
- C

- **D** e
- $\mathbf{E} e^3$

PROBLEMA 6.27

1B02

Considere um elétron no orbital 2s de um átomo de hidrogênio, cuja função de onda é

$$\psi_{1s}(r) = \frac{1}{4\sqrt{2\pi}\alpha_0^{3/2}} \left(2 - \frac{r}{\alpha_0}\right) e^{-\frac{r}{\alpha_0}}$$

Em que a_0 é o raio de Bohr.

Assinale a alternativa com a razão entre a probabilidade de encontrar o elétron a uma distância a_0 do núcleo e a probabilidade de encontrá-lo a uma distância $3a_0$ do núcleo.

- A
- **B** $e^2/3$
- c e^2

- **D** $e^4/9$
- $\mathbf{E} \quad \mathbf{e}^4$

PROBLEMA 6.28

1B50

Considere a função de onda para um orbital átomo de hidrogênio:

$$\psi(r,\theta) = \frac{1}{64\sqrt{5\pi}a_0^{3/2}} \left(20 - 10\frac{r}{a_0} + \frac{r^2}{a_0^2}\right) \frac{r}{a_0} e^{-\frac{r}{2\alpha_0}} \cos\theta$$

Em que a_0 é o raio de Bohr.

- a. Determine a posição dos nodos desse orbital.
- b. **Esboce** a isosuperfície desse orbital.
- c. **Determine** a identidade desse orbital

Considere a função de distribuição radial para dois orbitais do átomo de hidrogênio.

Assinale a alternativa *correta*.

- \mathbf{A} ψ_a e ψ_b podem ser o 3p e 3s, respectivamente.
- **B** ψ_a e ψ_b podem ser o 3p e 4p, respectivamente.
- \mathbf{c} ψ_a e ψ_b podem ser o 4p e 4d, respectivamente.
- ϕ_b possui menor penetrabilidade que o orbital ψ_a .
- ψ_a é mais energético que ψ_b .

PROBLEMA 6.30

1B17

Considere as seguintes configurações eletrônicas de espécies no estado gasoso:

- 1. $1s^22s^22p^1$
- 2. $1s^22s^22p^3$
- 3. $1s^22s^22p^4$
- 4. $1s^22s^22p^5$

Assinale a alternativa com as configurações que podem representar estados excitados de átomos neutros.

A 2

D '

C 2 e 3

- **D** 1, 2 e 3
- **E** 2, 3 e 4

Considere as seguintes afirmações:

- 1. O nível de energia de um átomo, cujo número quântico principal é igual a 4, pode ter, no máximo, 32 elétrons.
- 2. A configuração eletrônica $1s^22s^22p_x^22p_y^2$ representa um estado excitado do átomo de oxigênio.
- **3.** O estado fundamental do átomo de fósforo contém três elétrons desemparelhados.
- **4.** A energia necessária para excitar um elétron do estado fundamental do átomo de hidrogênio para o orbital 3s é igual àquela necessária para excitar este mesmo elétron para o orbital 3d.

Assinale a alternativa que relaciona as proposições corretas.

- A 1, 2 e 3
- B 1, 2 e 4
- **c** 1, 3 e 4
- **D** 2, 3 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 6.32

1B30

Considere um átomo com configuração eletrônica é $1s^22s^22p^53s^1$. **Assinale** a alternativa *incorreta*.

- A O átomo está em um estado excitado.
- O átomo emite radiação eletromagnética ao passar a $1s^22s^22p^6$.
- C O átomo deve receber energia ao passar a $1s^22s^22p^6$.
- **D** Os orbitais 1s e 2s estão completamente preenchidos.
- E Na configuração mais estável o átomo é diamagnético.

PROBLEMA 6.33

1B13

- 1. $|E_{2s}| = |E_{2p}|$ para átomo de hidrogênio.
- 2. $|E_{2s}| = |E_{2p}|$ para o íon de hélio carregado com uma carga positiva.
- **3.** $|E_{2s}| > |E_{2p}|$ para o átomo de hélio.
- **4.** $|E_{2s}| > |E_{2p}|$ para o ânion de hélio.

Assinale a alternativa que relaciona as proposições *corretas*.

- A 1, 2 e 3
- **B** 1, 2 e 4
- **c** 1, 3 e 4
- **D** 2, 3 e 4
- **E** 1, 2, 3 e 4

Assinale a alternativa incorreta.

- A Nas espécies He⁺, Li²⁺ e Be³⁺, os orbitais 3s, 3p e 3d têm a mesma energia.
- **B** No átomo de hidrogênio, os orbitais 3s, 3p e 3d têm a mesma energia.
- No átomo de carbono, os orbitais 3s, 3p e 3d têm valores de energias diferentes.
- A densidade de probabilidade de encontrar um elétron num átomo de hidrogênio no orbital 2p é nula num plano que passa pelo núcleo.
- As frequências das radiações emitidas pelo íon He⁺ são iguais às emitidas pelo átomo de hidrogênio.

PROBLEMA 6.35

1B32

Assinale a alternativa com a degenerescência, desconsiderando *spin*, do átomo de hidrogênio em seu segundo estado excitado.

- **A** 1
- **B** 3
- C

- **D** 9
- E 12

PROBLEMA 6.36

1B33

Assinale a alternativa com a degenerescência, desconsiderando *spin*, do ânion hidreto em seu segundo estado excitado.

- **A** 1
- **B** 3
- C

- D
- **E** 12

PROBLEMA 6.37

1B34

O titânio-48 e vanádio-51 são, respectivamente, isóbaro e isótono de um nuclídeo ${\bf X}$.

Assinale a alternativa com os números quânticos (n, l, m_l , m_s) do elétron mais energético do íon \mathbf{X}^{-1} .

- **A** (3, 2, -2, -1/2)
- **B** (3, 2, -2, +1/2)
- (3,2,+2,-1/2)
- \mathbf{D} (4,0,0,-1/2)
- (4,0,0,+1/2)

Considere o elemento **X**, que possui dois isótopos estáveis. Um desses isótopos é isótono do nuclídeo $_{46}\mathbf{Q}^{108}$ e isóbaro do nuclídeo $_{48}\mathbf{Z}^{109}$.

- a. Determine o número atômico de X.
- b. Determine o grupo da Tabela Periódica a que pertence esse elemento.
- Determine a configuração eletrônica de X no estado fundamental.
- d. **Determine** os números quânticos do elétron mais externo de **X** no estado fundamental.

PROBLEMA 6.39

1B36

1B35

Considere os elementos cobre e cromo.

- a. Apresente a configuração eletrônica do cobre.
- b. Apresente a configuração eletrônica do cromo.
- Explique porque as configurações eletrônicas diferem do esperado.

PROBLEMA 6.40

1B37

Considere os primeiros lantanídeos no estado fundamental.

- a. Explique porque a configuração eletrônica do estado fundamental lantânio é [Xe]6s²5d¹.
- Explique porque a configuração eletrônica do estado fundamental do cério é [Xe]4f¹6s².
- Explique porque a configuração eletrônica do estado fundamental do praseodímio é [Xe]4f³6s².

PROBLEMA 6.41

.B39

Superactinídeos são elementos teóricos, do oitavo período da tabela periódica, cujo orbital mais energético é o 5g ou 6f, e o primeiro elemento cujo orbital mais energético é o 7d.

- a. Determine a faixa de números atômicos dos elementos superactinídeos.
- b. Apresente a configuração eletrônica do primeiro superactinídeo.

Considere o elemento de número atômico Z = 79.

- a. Apresente a configuração eletrônica desse elemento no estado fundamental.
- b. Determine o período da Tabela Periódica a que pertence esse elemento.
- c. **Determine** o grupo da Tabela Periódica a que pertence esse elemento.

PROBLEMA 6.43

1B41

Quando um elétron sofre uma transição no átomo de hidrogênio, os estados inicial e final obedecem à regra de seleção $\Delta l=\pm 1$.

Assinale a alternativa com a transição que não é permitida.

B
$$3p \rightarrow 1s$$

$$\mathbf{C}$$
 3d \rightarrow 4f

E
$$5g \rightarrow 4f$$

PROBLEMA 6.44

1B42

Os níveis de energia de um átomo de hidrogênio sujeito à ação de um campo magnético uniforme B são

$$E(n, l, m) = E(n) + m_l \mu B$$

Sendo μ , o momento magnético do elétron, é uma constante. Transições eletrônicas nesse sistema devem obedecer à regra de seleção $\Delta m_1=0,\pm 1.$

- a. Apresente as transições eletrônicas permitidas do nível n=3 para o nível n=2.
- b. **Determine** o número de comprimentos de onda diferentes que podem ser emitidos do nível n=3 para o nível n=2.

Considere a energia dos orbitais 5s e 4d em função do número atômico, a seguir.

Assinale a alternativa *incorreta*.

- **A** $ψ_a$ representa o subnível 4d e $ψ_b$ o subnível 5s.
- B O gráfico mostra que o aumento de carga nuclear diminui a energia dos orbitais atômicos, reduzindo mais a energia do orbital 5s, por ser mais penetrante que o 4d.
- **c** A configuração eletrônica para o zircônio é [Kr]5s²4d².
- A configuração eletrônica para o ródio é [Kr]5s¹4d⁸.
- A configuração eletrônica para o paládio é [Kr]4d¹⁰.

Nível III

PROBLEMA 6.46

1B43

O momento magnético, μ , é uma medida da força com que uma substância paramagnética é atraída por um campo magnético externo.

$$\mu = \mu_B \sqrt{n(n+2)}$$

Sendo n o número de elétrons desemparelhados e $\mu_B,$ o magneton de Bohr, é uma constante.

- a. **Determine** a configuração eletrônica do nióbio, que possui $\mu=5,92\mu_B$ no estado fundamental.
- b. **Determine** o número atômico do elemento do quinto período que possui $\mu = 5,92\mu_B$ no estado fundamental.
- c. **Determine** o número atômico do elemento do sexto período que possui $\mu=8,94\mu_B$ no estado fundamental.

PROBLEMA 6.47 1B45

Considere o elemento X, de número atômico Z = 119.

- a. Determine a configuração eletrônica do estado fundamental de X.
- b. Determine os números quânticos do elétron mais energético de X.
- c. **Determine** a configuração eletrônica de **X**, supondo que o número quântico de *spin* possa assumir três valores.

PROBLEMA 6.48

1B49

Considere um universo paralelo em que o número quântico azimutal é sempre igual ao número quântico principal. Nesse universo, o número quântico magnético pode assumir os valores -1, 0 e +1, independentemente dos valores dos outros números quânticos.

Determine o número de orbitais nos primeiros três níveis dos átomos desse universo.

PROBLEMA 6.49

1B47

Considere um universo paralelo quadridimensional, em que os átomos possuem um orbital s e quatro orbitais p em cada nível.

- a. Determine o número de elementos nos primeiros três períodos da tabela periódica desse universo.
- Determine o número atômico dos primeiros dois gases nobres desse universo.

PROBLEMA 6.50

1B48

Considere um universo paralelo em que existe uma regra análoga ao princípio da exclusão, que permite que no máximo dois elétrons no mesmo átomo possam ter o mesmo conjunto de quatro números quânticos.

- a. **Apresente** a configuração eletrônica do elemento com número atômico Z=5 nesse universo.
- b. **Determine** a carga íon mais estável formado pelo elemento com número atômico Z=7 nesse universo.
- Determine o número atômico dos primeiros dois gases nobres desse universo.

PROBLEMA 6.51

1B46

Considere um universo em que o *spin* eletrônico é dado por:

$$s = \frac{l+1}{2}$$

Sendo l é o número quântico azimutal. O número quântico magnético de spin pode assumir os valores: -s, -s+1, ..., s-1, s

- a. **Determine** o número máximo de elétrons que podem existir simultaneamente em cada um dos orbitais s, p, d e f.
- b. Determine quantidade de máxima de elétrons com número quântico azimutal l para um dado número quântico principal em um átomo.

Gabarito

Nível I

- 1. B
 - 2. D
- 6. **C** 7.
- 3. E
- 4. A 9. D
- 5. E

- 6. C
- 7. **E** 12. **C**
- 13. D
- 14. C
- 15. C

- 16. D
- 17. D
- 18. B
- 19. C
- 15. C

- 21. C
- 22. C
- 23. D
- 24. E
- 25. C

Nível II

- 1. D
- 2. D
- **3.** a. Dois nodos radiais em $r=(5-\sqrt{5})\alpha_0$ e $r=(5+\sqrt{5})\alpha_0$ e um nodo angular em $\theta=\pi/2$.
 - b. Esboço.
 - c. 4p.
- 4. A
- 5. C
- 6. E
- 7. C
- 8. E
- 9. E
- · •
- 10. D
- 11. B
- 12. A13. a. 47
- b. Grupo 11
 - c. $_{47}X:1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^14d^{10}$
 - d. $5s^1$, n = 5, l = 0, m = 0
- **14.** a. $[Ar]3d^{10}4s^1$
 - b. $[Ar]3d^54s^1$
 - c. Simetria.
- **15.** a. Penetrabilidade.
 - b. Repulsão e Penetrabilidade.
 - c. Repulsão.
- **16.** a. 121 a 153
 - b. $[Og]8s^25g^1$
- **17.** a. $_{79}E : [Xe]6s^14f^{14}5d^{10}$.
 - b. Sexto período.
 - c. Grupo 11.
- 18. D
- 19. a. Diagrama.
 - b. 3
- 20. B

Nível III

- **1.** a. $[Kr]5s^16d^4$
 - b. 43
 - c. 64
- **2.** a. $[Og]8s^1$
 - b. n = 8, l = 0, m = 0
 - c. $1s^32s^32p^93s^33p^94s^33d^{15}4p^95s^34d^{15}5p^96s^34f^{21}5d^{14}$
- **3.** 9 orbitais
- **4.** a. 2, 10, 10
 - b. 2, 12
- 5. a. $1s^42s^1$
 - b. +2
 - c. 20
- **6.** a. $N_s = 2$, $N_p = 3$, $N_d = 4$, $N_f = 5$
 - b. $(2l+1)(l+2) = 2l^2 + 5l + 2$