4/26/23, 3:09 PM 4.DecisionTree

4. Decision Tree

```
In []: from sklearn.tree import DecisionTreeClassifier
    import pandas as pd
    from sklearn import tree
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    import matplotlib.pyplot as plt
In []: iris = load_iris()
    iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)
```

```
In [ ]: iris = load_iris()
    iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)
    iris_df['species'] = iris.target
    iris_df
```

Out[]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
	•••	•••		•••		•••
•	145	6.7	3.0	5.2	2.3	2
	146	6.3	2.5	5.0	1.9	2
	147	6.5	3.0	5.2	2.0	2
	148	6.2	3.4	5.4	2.3	2
	149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

```
In [ ]: X = iris_df.drop(['species'], axis = 1)
    y = iris_df['species']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_s
    print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

(120, 4) (30, 4) (120,) (30,)

In [ ]: model = DecisionTreeClassifier(random_state = 13)
    model.fit(X_train, y_train)
    predicted = model.predict(X test)
```

4/26/23, 3:09 PM 4.DecisionTree

```
In [ ]: fig = plt.figure(figsize = (10, 7))
    tree.plot_tree(model, feature_names = iris.feature_names, class_names = iris.target
    plt.show()
```


In []: