

Scaling Data Science

Lecture 6: Introduction to Hashing

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Outline

Outline:

- Hash tables and hash functions
- Universal hashing
- Chaining
- Multiplicative hashing

Querying

Naïve algorithm: linear in dataset size

Hash Table

- Elements come from universe U, but we need to store only n items, n < |U|
- Hash table
 - array of size m
 - Hash function $h: U \rightarrow \{0,1, ... m-1\}$
- We typically use $m \ll |U|$ as well as m < n
 - Collisions happen when $x \neq y$, but h(x) = h(y)

Hash functions

- In theory, we design for worst-case behaviour of data
 - Need to choose hash function "randomly"
- Hash family $H = \{h_1, h_2, ...\}$
 - When creating hash table, a **single** function $h \in H$ is chosen randomly
 - We then analyse the expected query time
- However...

Hash functions

- In theory, we design for worst-case behaviour of data
 - Need to choose hash function "randomly"
- Hash family $H = \{h_1, h_2, ...\}$
 - When creating hash table, a **single** function $h \in H$ is chosen randomly
 - We then analyse the expected query time
- Since the algo has to carry around the "description" of the hash function, it needs log(|H|) bits of storage
 - |H| cannot too big, in particular, it cannot be the set $[m]^U$, all possible functions

 We need to create small hash families H such that choosing from it gives a function with "good behaviour"

- We need to create small hash families H such that choosing from it gives a function with "good behaviour"
- Uniform: $\Pr_{h \in H}[h(x) = i] = \frac{1}{m}$ for all x and i

- We need to create small hash families H such that choosing from it gives a function with "good behaviour"
- Uniform: $\Pr_{h \in H}[h(x) = i] = \frac{1}{m}$ for all x and i
 - Not enough
- Universal: $\Pr_h[h(x) = h(y)] = \frac{1}{m}$ for all $x \neq y$

- We need to create small hash families H such that choosing from it gives a function with "good behaviour"
- Uniform: $\Pr_{h \in H}[h(x) = i] = \frac{1}{m}$ for all x and i
 - Not enough
- Universal: $\Pr_h[h(x) = h(y)] = \frac{1}{m}$ for all $x \neq y$
- Near Universal: $\Pr_h[h(x) = h(y)] \le \frac{2}{m}$ for all $x \ne y$

Chaining

 When collisions happen, we store elements using a linked list from that location

Chaining

- When collisions happen, we store elements using a linked list from that location
- l(x) = length of chain at position h(x)
- Expected time to query $x = O(1 + E_h[l(x)])$
 - Same for insert and delete

Analyzing chaining

• Need to bound $E_h[l(x)]$

• For
$$x \neq y$$
, define $C_{xy} = \begin{cases} 1 & if \ h(x) = h(y) \\ 0 & else \end{cases}$

Analyzing chaining

• Need to bound $E_h[l(x)]$

• For
$$x \neq y$$
, define $C_{xy} = \begin{cases} 1 & if \ h(x) = h(y) \\ 0 & else \end{cases}$

•
$$E_h[l(x)] = E_h[\sum_y C_{xy}]$$

Analyzing chaining: universal hashing

• Need to bound $E_h[l(x)]$

• For
$$x \neq y$$
, define $C_{xy} = \begin{cases} 1 & if \ h(x) = h(y) \\ 0 & else \end{cases}$

•
$$E_h[l(x)] = E_h[\sum_y C_{xy}] = \sum_y \Pr[h(x) = h(y)] = \frac{n}{m}$$

Multiplicative hashing

- How to design small + universal hash family?
- Prime multiplicative hashing:
 - Fix a prime number p > |U|
 - $H = \{ h_a(x) = (ax \mod p) \mod m, a \in \{1, ... p 1\} \}$
 - Choosing a hash function is same as choosing $a \in \{1, ..., p-1\}$

Multiplicative hashing

- $H = \{ h_a(x) = (ax \bmod p) \bmod m, a \in \{1, ... p 1\} \}$
- This family satisfies $\Pr_{h}[h(x) = h(y)] \le \frac{1}{m}$
- Intuition: $h_a(x) h_a(y) = (a(x y) \mod p) \mod m$
- There are at most $\frac{p-1}{m}$ values in $\{1, \dots p-1\}$ that are divisible by m

Multiplicative hashing

- $H = \{ h_a(x) = (ax \mod p) \mod m, a \in \{1, ... p 1\} \}$
- This family satisfies $\Pr_{h}[h(x) = h(y)] \le \frac{1}{m}$
- Intuition: $h_a(x) h_a(y) = (a(x y) \mod p) \mod m$
- There are at most $\frac{p-1}{m}$ values in $\{1, \dots p-1\}$ that are divisible by m
- What is the probability of choosing a such that $(a(x y) \mod p)$ is one of these numbers?

A property of prime numbers

WLOG
$$x - y \in [1, p - 1]$$

<u>Property</u>: For every $t, z \in [1, p-1]$ there exists unique $a \in [1, p-1]$ such that $az \mod p = t$

This would imply that probability of choosing collision-causing a

$$\leq \frac{p-1}{m} \times \frac{1}{p-1} = \frac{1}{m}$$

A property of prime numbers

WLOG $x - y \in [1, p - 1]$

<u>Property</u>: For every $t, z \in [1, p-1]$ there exists unique $a \in [1, p-1]$ such that $az \mod p = t$

By contradiction. If not, then $\exists a, b \in [1, p-1]$ such that $(a-b)z \bmod p = 0$.

But this cannot be as p is prime.

k-wise universal

• For any distinct $(x_1, ..., x_k)$ and any (not necessarily distinct) $(y_1, ..., y_k)$,

$$\Pr[h(x_1) = y_1 \land \cdots h(x_k) = y_k] = m^{-k}$$

• Needs only $O(k \log n)$ bit of storage

Summary

Hashing

- Simple and versatile
- Main issue is design of good hash functions, much researched area
- (near) universality guarantees small chain sizes
- Other alternatives to chaining exist, e.g. open addressing, cuckoo hashing

References:

- Primary reference for this lecture
 - Algorithms and models of computation by Jeff Erickson: http://jeffe.cs.illinois.edu/teaching/algorithms/
- Others
 - Algorithms, by Cormen, Leiserson and Rivest
 - Randomized Algorithms by Mitzenmacher and Upfal.

Thank You!!

