Import Modules

```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   import warnings
   warnings.filterwarnings('ignore')
   %matplotlib inline
```

Loading the dataset

```
In [2]: train = pd.read_csv('train.csv')
    test = pd.read_csv('test.csv')
    train.head()
```

Fare	Ticket	Parch	SibSp	Age	Sex	Name	Pclass	Survived	Passengerld	:	out[2]:
7.2500	A/5 21171	0	1	22.0	male	Braund, Mr. Owen Harris	3	0	1	0	
71.2833	PC 17599	0	1	38.0	female	Cumings, Mrs. John Bradley (Florence Briggs Th	1	1	2	1	
7.9250	STON/O2. 3101282	0	0	26.0	female	Heikkinen, Miss. Laina	3	1	3	2	
53.1000	113803	0	1	35.0	female	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	1	4	3	
8.0500	373450	0	0	35.0	male	Allen, Mr. William Henry	3	0	5	4	
•										4	

```
In [3]: train.describe()
```

_				
7	1	-	12	٠.
v	u		יו	۱.

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200
4							•

statistical info

```
In [4]: train.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtvn	مs٠ float64(2) $int64(5)$ ohi	oct(5)

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

datatype info

Exploratory Data Analysis

```
In [5]: sns.countplot(train['Survived'])
```

Out[5]: <AxesSubplot:xlabel='Survived', ylabel='count'>

categorical attributes

```
In [7]: sns.countplot(train['Pclass'])
```

Out[7]: <AxesSubplot:xlabel='Pclass', ylabel='count'>

In [8]: sns.countplot(train['Sex'])

Out[8]: <AxesSubplot:xlabel='Sex', ylabel='count'>


```
In [9]: sns.countplot(train['SibSp'])
```

Out[9]: <AxesSubplot:xlabel='SibSp', ylabel='count'>

In [10]: sns.countplot(train['Parch'])

Out[10]: <AxesSubplot:xlabel='Parch', ylabel='count'>


```
In [11]: sns.countplot(train['Embarked'])
```

Out[11]: <AxesSubplot:xlabel='Embarked', ylabel='count'>

In [12]: sns.distplot(train['Age'])

Out[12]: <AxesSubplot:xlabel='Age', ylabel='Density'>

numerical attributes

```
In [13]: sns.distplot(train['Fare'])
```

Out[13]: <AxesSubplot:xlabel='Fare', ylabel='Density'>


```
In [14]: class_fare = train.pivot_table(index='Pclass', values='Fare')
    class_fare.plot(kind='bar')
    plt.xlabel('Pclass')
    plt.ylabel('Avg. Fare')
    plt.xticks(rotation=0)
    plt.show()
```



```
In [16]: sns.barplot(data=train, x='Pclass', y='Fare', hue='Survived')
```

Out[16]: <AxesSubplot:xlabel='Pclass', ylabel='Fare'>

In [17]: sns.barplot(data=train, x='Survived', y='Fare', hue='Pclass')

Out[17]: <AxesSubplot:xlabel='Survived', ylabel='Fare'>

Data Preprocessing

```
In [18]: train_len = len(train)
    df = pd.concat([train, test], axis=0)
    df = df.reset_index(drop=True)
    df.head()
```

Out[18]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0.0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1.0	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0.0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
	4										•

combine two dataframes

```
In [19]: df.tail()
```

Out[19]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
	1304	1305	NaN	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	
	1305	1306	NaN	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	10
	1306	1307	NaN	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	
	1307	1308	NaN	3	Ware, Mr. Frederick	male	NaN	0	0	359309	
	1308	1309	NaN	3	Peter, Master. Michael J	male	NaN	1	1	2668	2
	4										•

	4			•
In [20]:	df.isnull().su	um()		
Out[20]:	PassengerId	0		
	Survived	418		
	Pclass	0		
	Name	0		
	Sex	0		
	Age	263		
	SibSp	0		
	Parch	0		
	Ticket	0		
	Fare	1		
	Cabin	1014		
	Embarked	2		
	dtype: int64			

find the null values

```
In [21]: df = df.drop(columns=['Cabin'], axis=1)
```

drop or delete the column

```
In [22]: df['Age'].mean()
```

Out[22]: 29.881137667304014

```
In [23]: df['Age'] = df['Age'].fillna(df['Age'].mean())
df['Fare'] = df['Fare'].fillna(df['Fare'].mean())
```

fill missing values using mean of the numerical column

```
In [24]: df['Embarked'].mode()[0]
Out[24]: 'S'
In [25]: df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
```

fill missing values using mode of the categorical column

Log transformation for uniform data distribution

```
In [26]: sns.distplot(df['Fare'])
Out[26]: <AxesSubplot:xlabel='Fare', ylabel='Density'>
```



```
In [27]: df['Fare'] = np.log(df['Fare']+1)
In [28]: sns.distplot(df['Fare'])
```

Out[28]: <AxesSubplot:xlabel='Fare', ylabel='Density'>

Correlation Matrix

```
In [29]: corr = df.corr()
   plt.figure(figsize=(15, 9))
   sns.heatmap(corr, annot=True, cmap='coolwarm')
```

Out[29]: <AxesSubplot:>

In [30]: df.head()

Out[30]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Faı
	0	1	0.0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	2.11021
	1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	4.28059
	2	3	1.0	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	2.18885
	3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	3.99083
	4	5	0.0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	2.20276
	4										•

```
In [31]: df = df.drop(columns=['Name', 'Ticket'], axis=1)
    df.head()
```

Out[31]:		Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1	0.0	3	male	22.0	1	0	2.110213	S
	1	2	1.0	1	female	38.0	1	0	4.280593	С
	2	3	1.0	3	female	26.0	0	0	2.188856	S
	3	4	1.0	1	female	35.0	1	0	3.990834	S
	4	5	0.0	3	male	35.0	0	0	2.202765	S

drop unnecessary columns

Label Encoding

```
In [32]: from sklearn.preprocessing import LabelEncoder
cols = ['Sex', 'Embarked']
le = LabelEncoder()

for col in cols:
    df[col] = le.fit_transform(df[col])
df.head()
```

Out[32]: Passengerld Survived Pclass Sex Age SibSp Parch Fare Embarked 1 22.0 2 0 1 0.0 0 2.110213 1 2 0 38.0 0 1.0 0 4.280593 3 1.0 0 26.0 0 2.188856 2 2 3 4 1.0 0 35.0 0 3.990834 2 5 0.0 3 1 35.0 0 0 2.202765

Train-Test Split

```
In [33]: train = df.iloc[:train_len, :]
test = df.iloc[train_len:, :]
```

In [34]: train.head()

Out[34]:		Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1	0.0	3	1	22.0	1	0	2.110213	2
	1	2	1.0	1	0	38.0	1	0	4.280593	0
	2	3	1.0	3	0	26.0	0	0	2.188856	2
	3	4	1.0	1	0	35.0	1	0	3.990834	2
	4	5	0.0	3	1	35.0	0	0	2.202765	2

```
In [35]: test.head()
```

Out[35]:		Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	891	892	NaN	3	1	34.5	0	0	2.178064	1
	892	893	NaN	3	0	47.0	1	0	2.079442	2
	893	894	NaN	2	1	62.0	0	0	2.369075	1
	894	895	NaN	3	1	27.0	0	0	2.268252	2
	895	896	NaN	3	0	22.0	1	1	2.586824	2

```
In [36]: X = train.drop(columns=['PassengerId', 'Survived'], axis=1)
y = train['Survived']
```

input split

```
In [37]: X.head()
```

_			_ ~	_	_
11	111	-	12	•	
v	u	L	J	' /	т.
			_		4 .

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	1	22.0	1	0	2.110213	2
1	1	0	38.0	1	0	4.280593	0
2	3	0	26.0	0	0	2.188856	2
3	1	0	35.0	1	0	3.990834	2
4	3	1	35.0	0	0	2.202765	2

Model Training

```
In [38]: from sklearn.model_selection import train_test_split, cross_val_score
    def classify(model):
        x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0...)
        model.fit(x_train, y_train)
        print('Accuracy:', model.score(x_test, y_test))

    score = cross_val_score(model, X, y, cv=5)
        print('CV Score:', np.mean(score))
```

classify column

```
In [39]: from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
classify(model)
```

Accuracy: 0.8071748878923767 CV Score: 0.7833971502102819 In [40]: from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
classify(model)

Accuracy: 0.7309417040358744 CV Score: 0.7710752620676667

In [41]: from sklearn.ensemble import RandomForestClassifier
 model = RandomForestClassifier()
 classify(model)

Accuracy: 0.8071748878923767 CV Score: 0.8137342288619672

In [42]: from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
classify(model)

Accuracy: 0.8116591928251121 CV Score: 0.7935157868307073

In [43]: !pip install xgboost

Defaulting to user installation because normal site-packages is not write able

Requirement already satisfied: xgboost in c:\users\kodad\appdata\roaming \python\python39\site-packages (2.1.3)

Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site -packages (from xgboost) (1.21.5)

Requirement already satisfied: scipy in c:\programdata\anaconda3\lib\site -packages (from xgboost) (1.9.1)

In [44]: from xgboost import XGBClassifier
model = XGBClassifier()
classify(model)

Accuracy: 0.7847533632286996 CV Score: 0.8148327160881301

In [45]: !pip install lightgbm

Defaulting to user installation because normal site-packages is not write able

Requirement already satisfied: lightgbm in c:\users\kodad\appdata\roaming \python\python39\site-packages (4.5.0)

Requirement already satisfied: scipy in c:\programdata\anaconda3\lib\site -packages (from lightgbm) (1.9.1)

Requirement already satisfied: numpy>=1.17.0 in c:\programdata\anaconda3 \lib\site-packages (from lightgbm) (1.21.5)

```
In [46]:
         from lightgbm import LGBMClassifier
         model = LGBMClassifier()
         classify(model)
         And if memory is not enough, you can set `force_col_wise=true`.
         [LightGBM] [Info] Total Bins 204
         [LightGBM] [Info] Number of data points in the train set: 713, number
         of used features: 7
         [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.384292 -> initscore=
         -0.471371
         [LightGBM] [Info] Start training from score -0.471371
         [LightGBM] [Warning] No further splits with positive gain, best gain:
         [LightGBM] [Warning] No further splits with positive gain, best gain:
         -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain:
         -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain:
         -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain:
         [LightGBM] [Warning] No further splits with positive gain, best gain:
         -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain:
```

In [47]: |!pip install catboost

Defaulting to user installation because normal site-packages is not write able

Requirement already satisfied: catboost in c:\users\kodad\appdata\roaming \python\python39\site-packages (1.2.7)

Requirement already satisfied: graphviz in c:\users\kodad\appdata\roaming \python\python39\site-packages (from catboost) (0.20.3)

Requirement already satisfied: six in c:\programdata\anaconda3\lib\site-p ackages (from catboost) (1.16.0)

Requirement already satisfied: scipy in c:\programdata\anaconda3\lib\site -packages (from catboost) (1.9.1)

Requirement already satisfied: pandas>=0.24 in c:\programdata\anaconda3\l ib\site-packages (from catboost) (1.4.4)

Requirement already satisfied: numpy<2.0,>=1.16.0 in c:\programdata\anaco nda3\lib\site-packages (from catboost) (1.21.5)

Requirement already satisfied: matplotlib in c:\programdata\anaconda3\lib \site-packages (from catboost) (3.5.2)

Requirement already satisfied: plotly in c:\programdata\anaconda3\lib\sit e-packages (from catboost) (5.9.0)

Requirement already satisfied: pytz>=2020.1 in c:\programdata\anaconda3\l ib\site-packages (from pandas>=0.24->catboost) (2022.1)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\programdata\a naconda3\lib\site-packages (from pandas>=0.24->catboost) (2.8.2)

Requirement already satisfied: pillow>=6.2.0 in c:\programdata\anaconda3 \lib\site-packages (from matplotlib->catboost) (9.2.0)

Requirement already satisfied: fonttools>=4.22.0 in c:\programdata\anacon da3\lib\site-packages (from matplotlib->catboost) (4.25.0)

Requirement already satisfied: packaging>=20.0 in c:\programdata\anaconda 3\lib\site-packages (from matplotlib->catboost) (21.3)

Requirement already satisfied: cycler>=0.10 in c:\programdata\anaconda3\l ib\site-packages (from matplotlib->catboost) (0.11.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\programdata\anacon da3\lib\site-packages (from matplotlib->catboost) (1.4.2)

Requirement already satisfied: pyparsing>=2.2.1 in c:\programdata\anacond a3\lib\site-packages (from matplotlib->catboost) (3.0.9)

Requirement already satisfied: tenacity>=6.2.0 in c:\programdata\anaconda 3\lib\site-packages (from plotly->catboost) (8.0.1)

In [48]:

from catboost import CatBoostClassifier
model = CatBoostClassifier(verbose=0)
classify(model)

Accuracy: 0.8295964125560538 CV Score: 0.8226790534178645

Complete Model Training with Full Data

```
In [49]: model = LGBMClassifier()
         model.fit(X, y)
          [LightGBM] [Info] Number of positive: 342, number of negative: 549
          [LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of
         testing was 0.000531 seconds.
         You can set `force col wise=true` to remove the overhead.
          [LightGBM] [Info] Total Bins 222
          [LightGBM] [Info] Number of data points in the train set: 891, number of
         used features: 7
         [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.383838 -> initscore=-0.
         473288
          [LightGBM] [Info] Start training from score -0.473288
          [LightGBM] [Warning] No further splits with positive gain, best gain: -in
Out[49]: LGBMClassifier()
In [50]: test.head()
Out[50]:
               Passengerld Survived Pclass Sex Age SibSp Parch
                                                                  Fare Embarked
          891
                     892
                             NaN
                                              34.5
                                                            0 2.178064
          892
                     893
                             NaN
                                           0 47.0
                                                            0 2.079442
          893
                     894
                             NaN
                                           1 62.0
                                                            0 2.369075
                                                                              1
          894
                     895
                             NaN
                                       3
                                           1 27.0
                                                            0 2.268252
          895
                     896
                             NaN
                                       3
                                           0 22.0
                                                      1
                                                            1 2.586824
                                                                              2
In [51]: X_test = test.drop(columns=['PassengerId', 'Survived'], axis=1)
```

input split for test data

In [52]:	<pre>X_test.head()</pre>
ın [52]:	x_test.nead()

Out[52]:		Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	891	3	1	34.5	0	0	2.178064	1
	892	3	0	47.0	1	0	2.079442	2
	893	2	1	62.0	0	0	2.369075	1
	894	3	1	27.0	0	0	2.268252	2
	895	3	0	22.0	1	1	2.586824	2

```
In [53]: pred = model.predict(X_test)
pred
```

```
Out[53]: array([0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 1., 0., 1., 1.,
                1., 1., 1., 0., 0., 1., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0.,
         0.,
                1., 0., 0., 0., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 1., 1.,
         1.,
                0., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 1.,
         0.,
                0., 1., 1., 0., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 0., 0.,
         0.,
                0., 1., 1., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1.,
         0.,
                0., 0., 1., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1.,
         1.,
                1., 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
         0.,
                0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 1., 0.,
         0.,
                0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 1.,
         0.,
                0., 1., 0., 0., 0., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0.,
         1.,
                0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 1., 0.,
         1.,
                0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 1., 0.,
         1.,
                0., 1., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0.,
         1.,
                1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0.,
         0.,
                0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0.,
         0.,
                1., 1., 0., 1., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0.,
         0.,
                0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1.,
         1.,
                0., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.,
         0.,
                1., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0.,
         0.,
                0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0.,
         1.,
                0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 1., 0., 0., 1., 0.,
         0.,
                1., 1., 0., 0., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0.,
         0.,
                1., 0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 0., 0.,
         0.,
                1., 1., 1., 1., 0., 0., 1., 0., 0., 1.])
```

Test Submission

```
sub = pd.read_csv('gender_submission.csv')
In [54]:
         sub.head()
Out[54]:
             Passengerld Survived
          0
                   892
                              0
                   893
          1
                              1
          2
                   894
                              0
          3
                   895
                              0
                   896
                              1
In [55]: sub.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 418 entries, 0 to 417
         Data columns (total 2 columns):
          #
              Column
                            Non-Null Count Dtype
              PassengerId 418 non-null
          0
                                            int64
              Survived
                            418 non-null
          1
                                            int64
         dtypes: int64(2)
         memory usage: 6.7 KB
In [56]: sub['Survived'] = pred
         sub['Survived'] = sub['Survived'].astype('int')
In [57]: sub.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 418 entries, 0 to 417
         Data columns (total 2 columns):
              Column
                            Non-Null Count Dtype
                            _____
              PassengerId 418 non-null
          0
                                            int64
              Survived
                            418 non-null
                                            int32
          1
         dtypes: int32(1), int64(1)
         memory usage: 5.0 KB
         sub.head()
In [58]:
Out[58]:
             Passengerld Survived
          0
                   892
                              0
          1
                   893
                              0
                   894
          2
                              0
          3
                   895
                              1
                   896
                              0
```

```
In [59]: sub.to_csv('submission.csv', index=False)
In [60]: df=train.Survived.value_counts()
    df.plot(kind='pie', figsize=(8, 8), autopct='%1.1f%%')
    plt.title("Piechart of Survived")
    plt.ylabel("")
    plt.show()
```

Piechart of Survived


```
In [61]: train=train.Pclass.value_counts()
    train.plot(kind='pie', figsize=(8, 8), autopct='%1.1f%%')
    plt.title("Piechart of Pclass")
    plt.ylabel("")
    plt.show()
```

Piechart of Pclass


```
In [ ]:
```