Some facts about Jónsson cardinals

DAN SAATTRUP NIELSEN

1 A plethora of characterisations

THEOREM 1.1. Let κ be a cardinal. Then the following are equivalent:

- (i) (Jónsson '62) Every algebra of size κ has a proper subalgebra of the same size;
- (ii) (Keisler-Rowbottom '65) Every transitive structure \mathcal{M} of size κ in a countable language has a proper elementary substructure $X \prec \mathcal{M}$ of the same size;
- (iii) (Erdős-Hajnal '66) $\kappa \to [\kappa]_{\kappa}^{<\omega}$; i.e. for every $c : [\kappa]^{<\omega} \to \kappa$ there exists $H \in [\kappa]^{\kappa}$ such that $c^{*}[H]^{n} \neq \kappa$ for every $n < \omega$.
- (iv) (Tryba '84) There exists $\theta > \kappa$ and an elementary embedding $j: M \to H_{\theta}$ such that $j(\kappa) = \kappa$ and crit $j < \kappa$;
- (v) (Tryba '84) For every limit cardinal $\lambda \leq \kappa$, $\delta < \lambda$, $\theta > \kappa$ and $A \subseteq \kappa$ there exists an elementary embedding $j: M \to H_{\theta}$ such that $j(\kappa) = \kappa$, crit $j \in (\delta, \lambda)$ and $A \in \operatorname{ran} j$;
- (vi) For every $A \subseteq \kappa$ there exists a proper $\langle X, \epsilon, A \cap X \rangle < \langle V_{\kappa}, \epsilon, A \rangle$ of size κ ;
- (vii) For every $A \subseteq \kappa$ there exists a proper $\langle X, \in, A \cap X \rangle < \langle L_{\kappa}[A], \in, A \rangle$ of size κ ;

Proof.

Missing

DEFINITION 1.2. A cardinal κ is a **Jónsson cardinal** if it satisfies any of the equivalent properties in Theorem 1.1.

THEOREM 1.3 (Rowbottom-Devlin '73). The least Jónsson cardinal is either singular of countable cofinality or weakly inaccessible.

2 Singular Jónssons

THEOREM 2.1 (Přikrý '70). Every singular limit of measurables is Jónsson.

THEOREM 2.2 (Přikrý '70). Adding a Přikrý sequence to a measurable cardinal makes it singular Jónsson of countably cofinality in the generic extension.

THEOREM 2.3 (Mitchell '79). Assuming there is no inner model with a measurable cardinal, every Jónsson cardinal is Ramsey in K. Consequently, if there exists a singular Jónsson cardinal then there exists an inner model with a measurable cardinal. \dashv

COROLLARY 2.4. The following theories are equiconsistent:

- There exists a singular Jónsson cardinal of cofinality ω ;
- There exists a measurable cardinal.

THEOREM 2.5 (Tryba '84). If κ is a singular Jónsson cardinal of uncountable cofinality then there is a club $C \subseteq \kappa$ consisting of Jónsson cardinals.

THEOREM 2.6 (Koepke '88). The following theories are equiconsistent:

- There exists a singular Jónsson of uncountable cofinality δ ;
- There exist δ measurable cardinals.

Definition 2.7. Say a cardinal κ is an **small Jónsson cardinal** if it's a singular Jónsson cardinal satisfying $\kappa < \aleph_{\kappa}$.

THEOREM 2.8 (Koepke '88). If there exists a small Jónsson cardinal then 0^{long} exists. In particular, there exists an inner model with α measurables for every $\alpha \in On$.

THEOREM 2.9 (Todorčević '85). If \aleph_{ω} is Jónsson then \square_{\aleph_n} fails for some $n < \omega$.

3 Regular Jónssons

3.1 Stationary reflection

DEFINITION 3.2. Refl (λ, κ) is the statement that given any $\leq \lambda$ -sized collection

$${S_{\alpha} \subseteq \kappa \mid \alpha \leqslant \lambda}$$

of stationary sets of κ , there exists $\gamma < \kappa$ such that $S_{\alpha} \cap \gamma$ is stationary in γ for every $\alpha < \kappa$. Such a γ is called a **reflection point**.

DEFINITION 3.3. Say a cardinal κ is α -reflecting if Refl (α, κ) holds.

Theorem 3.4 (Tryba-Woodin '84). Every regular Jónsson cardinal κ is 1-reflecting.

PROOF. Let $S \subseteq \kappa$ be stationary and fix an elementary $j: \mathcal{M} \to H_{\theta}$ with $\theta \gg \kappa$, $S \in \operatorname{ran} j, j(\kappa) = \kappa$ and $\operatorname{crit} j < \kappa$.

Claim 3.4.1. $\{\alpha \in S \mid j(\alpha) > \alpha\}$ is stationary in κ .

Proof of claim. Assume not and pick a club $C \subseteq \kappa$ such that

$$C \cap S \subseteq \{\alpha \in S \mid j(\alpha) = \alpha\}.$$

In \mathcal{M} partition \bar{S} into \bar{S}_{α} for $\alpha < \kappa$ (using the regularity of κ) and let $\bar{f} \in \mathcal{M} \cap^{\bar{S}} \kappa$ be such that $\bar{f}^{-1}[\{\alpha\}] = \bar{S}_{\alpha}$ for every $\alpha < \kappa$. Fix α such that $j(\alpha) > \alpha$ and note that $C \cap S_{\alpha} \neq \emptyset$. As $S_{\alpha} \subseteq S$ we get that $C \cap S_{\alpha} \subseteq \{\xi \in S \mid j(\xi) = \xi\}$. Fix $\beta \in C \cap S_{\alpha}$ (note that $j(\beta) = \beta$), so that $j(\alpha) = j(\bar{f}(\beta)) = f(\beta) = \alpha, \xi$.

Use now the claim to pick $\delta \in S$ such that $j(\delta) > \delta$ which also without loss of generality satisfies $j[\delta] \subseteq \delta$, as there are club many such. We then claim that $j(\delta)$ is a reflection point for S.

Assume not, so there's a club $C \subseteq j(\delta)$ disjoint from S. By elementarity we may assume that $C \in \operatorname{ran} j$. For any $\alpha < \delta$ we get $j(\alpha) < \delta$ as well, and since \bar{C} is club in δ we can find $\gamma \in \bar{C}$ above $j(\alpha)$, so that $\alpha < j(\gamma) < \delta$. As α was arbitrary, δ is a limit point of C and thus $\delta \in C$. But $\delta \in S$ and $C \cap S = \emptyset$, ξ .

Note that the above proof shows that there are stationarily many reflection points to each stationary $S \subseteq \kappa$. Jónsson successors satisfy a much stronger reflection principle.

THEOREM 3.5 (Eisworth '12). Every successor cardinal ρ^+ is $< \cos(\rho)$ -reflecting.

3.6 Squares and threadables

DEFINITION 3.7. Say a cardinal κ is α -threadable for $\alpha < \kappa$ if $\square(\kappa, \alpha)$ fails, and threadable if it's 1-threadable.

THEOREM 3.8 (Rinot '14). Every regular Jónsson cardinal is threadable.

 \dashv

THEOREM 3.9 (Hayut, Lambie-Hanson '16). For a cardinal λ , every $< \lambda$ -reflecting regular cardinal is $< \lambda$ -threadable.

Corollary 3.10. Every successor Jónsson ρ^+ is $< \cos(\rho)$ -threadable.

THEOREM 3.11 (Welch '98). Assume there's no inner model with a Woodin cardinal. Then

- (i) $\kappa^{+K} = \kappa^{+}$ holds for every Jónsson cardinal κ ;
- (ii) $\lambda^{+K} = \lambda^{+}$ holds for stationarily many regular $\lambda < \kappa$.

 \dashv

Corollary 3.12. If there's no inner model with a Woodin cardinal and κ is regular Jónsson, then

- (i) \square_{κ} holds;
- (ii) \square_{λ} holds for stationarily many regular $\lambda < \kappa$.

 \dashv

3.13 Diamonds

THEOREM 3.14 (Shelah '10). Let κ be uncountable. Then \diamondsuit_{κ^+} holds iff $2^{\kappa} = \kappa^+$.

THEOREM 3.15 (Erdős-Hajnal-Rado). If $\kappa^+ = 2^{\kappa}$ then κ^+ is not Jónsson.

These above two results then gives us some more information about the Jónsson successors.

Corollary 3.16. If κ is a Jónsson successor then \diamondsuit_{κ} fails.

3.17 Sharps

THEOREM 3.18 (Rinot-Steel-Schindler '14). Let κ be regular Jónsson. Then A^{\sharp} exists for every $A \subseteq \kappa$.

PROOF. As every bounded subset of κ has a sharp, it suffices to show that mouse reflection holds at κ . But by Lemma 2.1.6 in Schindler and Steel (2014) it suffices to show that $\kappa \geqslant \aleph_2$ is threadable. But every Jónsson satisfies $\kappa \geqslant \aleph_2$ and by Rinot (2014) every regular Jónsson is threadable.

3.19 Successor Jónssons

THEOREM 3.20 (Mitchell-Steel-Schimmerling '94). If \square_{ρ} fails for a singular ρ then there exists an inner model with a Woodin cardinal.

THEOREM 3.21 (Adolf '17). If \square_{ρ} fails for a singular strong limit ρ then there exists a transitive model containing all the ordinals and reals, and which satisfies ${}^{\Gamma}ZF + AD_{\mathbb{R}} + \Theta$ is regular.

Corollary 3.22. Assume there exists a successor Jónsson ρ^+ . Then there exists an inner model with a Woodin cardinal. If furthermore ρ is a strong limit then there exists a transitive model containing all the ordinals and reals, and which satisfies ${}^{r}ZF + AD_{\mathbb{R}} + \Theta$ is regular.

We have the following restrictions to an eventual Jónsson successor.

THEOREM 3.23. Assume ρ^+ is Jónsson. Then

- (i) (Chang-Rowbottom-Erdős-Hajnal '66) ρ is Jónsson;
- (ii) (Shelah '78) ρ is a limit of weakly inaccessible Jónssons, so ρ is not small;
- (iii) (Tryba-Woodin '84) ρ is singular;
- (iv) (Shelah '94) $\rho^+ \rightarrow [\cos \rho]_{\cos \rho}^2$;
- (v) (Shelah-Abraham-Magidor '10) If $cof(\rho) > \omega$ then there are club many $\lambda < \rho$ such that λ^+ is Jónsson;

 \dashv

- (vi) (Eisworth '12) ρ^+ is $< cof(\rho)$ -reflecting;
- (vii) (Hayut, Lambie-Hanson '16) ρ^+ is $< cof(\rho)$ -threadable.

The Shelah-Abraham-Magidor ('10) result above implies that the first Jónsson successor ρ^+ satisfies $\cot \rho = \omega$, so since $\Box(\rho)$ holds iff $\Box(\cot \rho)$ holds (Lemma 2.1 in Schimmerling '07), we get the following when also coupling it with the result of Hayut and Lambie-Hanson ('16) above.

COROLLARY 3.24. If ρ^+ is the first Jónsson successor cardinal then ρ is threadable and ρ^+ is $< \omega$ -reflecting (in particular also $< \omega$ -threadable).

3.25 Weakly inaccessible Jónssons

THEOREM 3.26 (Shelah '98). Weakly inaccessible Jónsson cardinals are weakly hyper-Mahlo.

THEOREM 3.27 (Mitchell '99). Assume there's no inner model with a Woodin cardinal. Then every weakly inaccessible Jónsson is Ramsey in K.

The above theorem is usually stated for all regular Jónsson cardinals. But given that a successor Jónsson has a lot higher consistency strength than a Woodin, this formulation is equivalent.

COROLLARY 3.28. The following theories are equiconsistent.

- 「ZFC + there exists a Jónsson cardinal";
- 'ZFC + there exists a weakly inaccessible Jónsson cardinal';
- 「ZFC + there exists an inaccessible Jónsson cardinal";
- "ZFC + there exists a Ramsey cardinal".

3.29 Structural Reflection

DEFINITION 3.30 (Bagaria). $SR_{\alpha}(A)$ holds if every $\Sigma_1(A)$ -definable class \mathcal{C} of structures has the property that whenever $\mathcal{M} \in \mathcal{C}$ then there exists $\mathcal{N} \in \mathcal{C} \cap V_{\alpha}$ and an elementary $j: \mathcal{N} \to \mathcal{M}$.

 \dashv

THEOREM 3.31 (N.). A cardinal κ is Jónsson if and only if $SR_{\kappa^+}(\kappa)$ holds.

PROOF. (\Leftarrow): Assume $SR_{\kappa^+}(\kappa)$ and define the class

$$\mathcal{C} := \{ (L_{\kappa}[x], \in, x, \kappa) \mid x \subseteq \kappa \},\$$

which is $\Sigma_1(\kappa)$ -definable. Fix any $x \subseteq \kappa$ and consider $\mathcal{M} := (L_{\kappa}[x], \epsilon, x)$. By $SR_{\kappa^+}(\kappa)$ we get an elementary

$$j: (L_{\kappa}[\bar{x}], \in, \bar{x}, \kappa) \to (L_{\kappa}[x], \in, x, \kappa),$$

so crit $j < \kappa$, which then witnesses Jónssonness.

(⇒): Let κ be Jónsson and \mathcal{C} a $\Sigma_1(\kappa)$ -definable class of structures. Let $\mathcal{M} \in \mathcal{C}$, $\theta \gg 0$ and $j : \mathcal{H} \to H_\theta$ a Jónsson embedding with $\mathcal{M} \in \operatorname{ran} j$; i.e. that $\operatorname{crit} j < \kappa$ and $j(\kappa) = \kappa$. Since κ is fixed we get that $\overline{\mathcal{M}} \in \mathcal{C}$, but we don't know if $|\overline{\mathcal{M}}| < \kappa^+$ yet. Set

$$\mathcal{N} := \mathrm{cHull}^{\mathcal{H}}((V_{\kappa} \cap \mathcal{H}) \cup {\kappa})$$

and let $\pi:\overline{\overline{\mathcal{M}}}\to\overline{\mathcal{M}}$ be the uncollapse, which again fixes κ , so by elementarity $\overline{\overline{\mathcal{M}}}\in\mathcal{C}$, and we now also get that $\left|\overline{\overline{\mathcal{M}}}\right|<\kappa^+$, obtaining $\mathrm{SR}_{\kappa^+}(\kappa)$.

4 Woodin cardinals

PROPOSITION 4.1. If there exists a threadable Woodin δ then every $A \subseteq \delta$ has a sharp, so that $M_1^{\sharp}(A)$ exists for all $A \subseteq \delta$.

PROOF. Woodins are stationary limits of measurables, so every bounded subset of δ immediately has a sharp. But as regular threadable cardinals satisfy mouse reflection, this holds for all subsets of δ . As δ being Woodin is witnessed by extenders $\vec{E} \subseteq \delta$, we immediately get that $M_1^{\sharp}(A)$ exists for every $A \subseteq \delta$.

5 Weakly *n*-Jónssons

DEFINITION 5.1. Say a cardinal κ is weakly n-Jónsson if κ is uncountable and $\kappa \to [\kappa]_{\kappa}^n$. Say κ is weakly Jónsson if it's weakly 2-Jónsson.

Remark 5.2. Every uncountable cardinal κ is weakly 1-Jónsson. Indeed, let $f:\kappa\to\kappa$ be a colouring and define $A:=f^{-1}(\{0\})$. If $|A|=\kappa$ we're done, so assume not. Then $|\neg A|=\kappa$ and $0\notin f$ " $\neg A$, so $\neg A$ works.

Proposition 5.3. Every Jónsson cardinal is weakly n-Jónsson for every $n < \omega$.

Proposition 5.4. Every weakly compact cardinal is weakly n-Jónsson for every $n < \omega$.

Theorem 5.5 (Todorčević '87). \aleph_1 is not weakly Jónsson.

A lot of the results concerning Jónssons are really about weakly Jónssons.

THEOREM 5.6. Let κ be a regular weakly Jónsson cardinal. Then

- (i) (Todorčević '81) There exists no κ -Souslin tree, so κ is fully \square -inaccessible;
- (ii) (Todorčević '87) κ is 1-reflecting;
- (iii) (Shelah '94) κ is ω -Mahlo;
- (iv) (Rinot '14) κ is threadable;
- (v) (Schindler-Steel '14) Mouse reflection holds at κ .

THEOREM 5.7 (Todorčević '87). Every uncountable threadable cardinal is weakly compact in L.

 \dashv

Corollary 5.8. Regular weakly Jónssons are weakly compact in L, so that, for every $n < \omega$,

 $Con(\exists weakly\ compact) \Leftrightarrow Con(\exists regular\ weakly\ n\text{-}J\'{o}nsson).$

 \dashv

THEOREM 5.9. If ρ^+ is weakly Jónsson then

- (i) (Erdős-Hajnal-Rado '65) CH_{κ} fails;
- (ii) (Todorčević '90) ρ is a singular limit of regular weakly Jónssons;
- (iii) (Shelah '94) $Pr_1(\rho^+, \rho^+, \operatorname{cof} \rho, \operatorname{cof} \rho)$ fails;
- (iv) (Eisworth '12) ρ^+ is $< cof(\rho)$ -reflecting;
- (v) (Eisworth '13) pp(ρ) > ρ^+ , i.e. $\rho^{\cos \rho} > \rho^+$;
- (vi) (Hayut, Lambie-Hanson '16) ρ^+ is $< cof(\rho)$ -threadable.

We also get a few slightly different results. The following is by tweaking the proof the above Chang-Rowbottom-Erdős-Hajnal result.

Тнеогем 5.10 (Chang-Rowbottom-Erdős-Hajnal '65). If ρ^+ is weakly (n+1)-Jónsson then ρ is weakly n-Jónsson.

6 Open questions

6.1 Regular Jónssons

QUESTION 6.2. Does every regular Jónsson provably have the tree property? As a special case, is every inaccessible Jónsson provably weakly compact? (Conjecture: no)

QUESTION 6.3. Is every regular Jónsson 1.5-reflecting? I.e. given a stationary-co-stationary $A \subseteq \kappa$ for κ a regular Jónsson, do A and $\neg A$ simultaneously reflect?

A negative answer to question 6.2 would motivate a lot of the investigations of properties of regular Jónsson cardinals, as they all follow from the tree property. A positive answer to question 6.3 would unify reflection and threadability of regular Jónssons, as 1.5-reflecting implies both 1-reflecting and threadable, whereas 1-reflecting does not imply threadability.

6.4 Successor Jónssons

QUESTION 6.5. Is the existence of a successor Jónsson consistent, relative to large cardinals?

QUESTION 6.6. Does the existence of a successor Jónsson ρ^+ imply $AD^{L(\mathbb{R})}$? (Conjecture: yes. It already implies PD, and if ρ is a strong limit then it implies $Con(AD_{\mathbb{R}} + \Theta)$ is regular)

Question 6.5 is a major open problem and a positive answer to question 6.6 would shed some more light on question 6.5.

6.7 Small Jónssons

QUESTION 6.8. Is the existence of a small Jónsson consistent, relative to large cardinals?

QUESTION 6.9. Does the existence of a small Jónsson imply 0^{\P} ? (Conjecture: yes)

Question 6.8 is a major open problem, since \aleph_{ω} is small, and a positive answer to question 6.9 would shed some more light on question 6.8.

6.10 Woodins

QUESTION 6.11. Does $Con(Jónsson\ Woodin) \Rightarrow Con(Weakly\ compact\ Woodin)$? (Conjecture: yes)

An answer to question 6.11 would give some more information about the Jónsson Woodins.