

Energía solar térmica, tecnologías y perspectivas del mercado nacional

Mg. Ing. Alejandro Haim; Dr. Ing Federico Nores Pondal

ENERGIA SOLAR FOTOVOLTAICA O TERMICA?

CONSUMOS BASE

Calefones o termotanques a gas:

Llama piloto consume 0,5 m3/dia

<u>Calefones o termotanques a electricidad:</u>

Estado piloto consume 2 Kwh /dia

Eficiencia energética:

encendido eléctrico/electrónico en función de la temperatura

Ahorro posible: 3,5 millones de m3/dia. Equivale a una central de ciclo combinado de 700 MW.

AHORRO ESTIMADO DE ENERGÍA ELECTRICA O GAS CON ENERGÍA SOLAR TERMICA?

Equipos solares: ahorro aproximado del 60 a 80% de gas natural o electricidad

Colector de tubos evacuados

Colector de polipropileno

Colector plásticos (para piletas)

Colector de tubos evacuados de uso directo

Colector de tubos evacuados uso indirecto

(heat pipe)

Colector de tubos evacuados uso indirecto (heat pipe)

Colector de placa plana

Plataforma Solar: banco de ensayos

► Foto y esquema del banco de pruebas de colectores de la Plataforma Solar

del LESES:

Colectores solares térmicos

"Son elementos que transforman la radiación del sol en calor útil para calentamiento de fluidos"

- Se ensayaron 5 colectores, que pueden englobarse en 3 categorías:
 - ► Colector de tubos evacuados (CTE)

De tubo calentador o "heat pipe"

De tubo en U o "U pipe"

- ► Colector Plano (CP)
- ▶ Plano de plástico (CPP)

Sin cubierta

→ Pérdidas: por convección, conducción y radiación.

Caracterización según Norma IRAM 210002

- ▶ Objeto: "Establecer los métodos de ensayo y procedimientos de cálculo para determinar la curva de rendimiento en estado estacionario y cuasiestacionario, como así también la constante de tiempo y características de respuesta angular de los colectores solares que calientan fluidos sin su acumulación"
- > 3 parámetros clave de funcionamiento de un colector:
 - ► Curva de rendimiento
 - ► Factor modificador del ángulo de incidencia
 - ► Constante de tiempo

Resultados

Curva de Rendimiento: obtenidas por regresión lineal para los distintos tipos de colectores ensayados.

$$\eta = \eta_0 - a_1 \cdot T_m^*$$

- → Para incidencias normales y temperaturas de fluido cercana a la temperatura ambiente, los colectores planos poseen mejor rendimiento que los de tubos evacuados. Para situaciones donde la temperatura de fluido es unos 30°C a 40°C mayor que la temperatura ambiente, los colectores de tubos evacuados presentan un mejor rendimiento.
- → Los colectores de plástico, ya sea con o sin cubierta, presentan menor rendimiento que los anteriores. Esto se debe a las dimensiones del colector y a la tecnología constructiva de los mismos.

Resultados

▶ Ensayos de Durabilidad

- Impacto
- Presión Hidráulica Interna
- Choque Térmico interno y externo
- Rotura o colapso
- Estanqueidad
- Exposición
- Penetración de lluvia
- Resistencia a las heladas
- Volumen almacenado
- Carga mecánica
- Medición de caída de presión
- Inspección final

* UTN.BA

COSTOS

*****UTN.BA

COSTOS

Capacidad 200 lts = 4 personas \$ 25.000

Panel solar FV 270Wp \$10.000

PROYECTO DE LEY (S-1262/2016) Aprovechamiento de la energía solar térmica de baja y media Temperatura

Reglamento Técnico del

REQUISITOS TÉCNICOS

Los **colectores solares** deberán cumplir con las especificaciones previstas en la **norma IRAM 210022-1**.

Los **sistemas solares compactos** deberán cumplir con las especificaciones previstas en la **norma IRAM 210015-1**, excepto lo establecido en el apartado 4.1.2. "Predicción del rendimiento térmico anual".

MARCADO Y ROTULADO

Definido en la norma correspondiente.

- + País de origen
- + Sello de Seguridad según Sistema de Certificación
- + "Res. SC N° xx/yyyy"

MANUAL DE INSTALACIÓN USO Y MANTENIMIENTO

- a) Información del marcado y rotulado, excepto sello
- b) Instrucciones de **montaje e instalación**
- c) Instrucciones de seguridad y mantenimiento
- d) Condiciones de **uso recomendadas**
- e) **Información de contacto**: dirección y teléfono del servicio post venta en la Argentina

IMPLEMENTACIÓN

ENSAYOS PARCIALES

A los 6 meses se deberán presentar los informes de ensayo donde se evidencia el cumplimiento de los siguientes requerimientos

COLECTOR SOLAR

IRAM 210022-1

- Resistencia al impacto
- Presión interna
- Fluido caloportador

SISTEMA SOLAR COMPACTO

IRAM 210015-1

- Resistencia al impacto
- · Resist. a la presión interna
- Fluido caloportador
- · Volumen de almacenado
- Pérdidas térmicas

Pueden realizarlos laboratorios:

- Reconocidos o no reconocidos
- Acreditados o no acreditados
- Nacionales o extranjeros

*****UTN.BA

Incentivos

Préstamos Personales para Financiación de Energías Sustentables

Ahorrá en tu consumo energético y contribuí con el cuidado del medioambiente con los préstamos personales para adquisición de paneles solares de uso familiar y artículos del hogar que se alimenten de energías renovables.

MONTO

Hasta la suma de \$1.000.000.

PLAZO

Hasta 72 meses.

INTERÉS

Tasa fija.

Se puede incluir el costo del bien financiado,

- Diversidad de colectores solares: placa plana, tubos evacuados y de plasticos
- Utilización de energía solar térmica para reducir las emisiones de co2
- La curva de rendimiento permite seleccionar el colector adecuado par cada aplicación
- Etiquetado: registrar datos de durabilidad y de rendimiento del colector
- Necesidad de laboratorios que ensayen colectores y sistemas solares termicos bajo Normas (RAM)

Tel.: 4867-7500 int 7137

Mail: leses.utn@gmail.com

