Lista nr 7 z matematyki dyskretnej

1. Niech A(x) będzie funkcją tworzącą ciągu a_n . Podaj postać funkcji tworzącej dla ciągu

$$s_n = a_0 + a_1 + a_2 + \ldots + a_n$$
.

Wskazówka: Trzeba użyć funkcji tworzącej $\frac{1}{1-x}$.

- 2. Wyznacz funkcje tworzące ciągów:
 - (a) $a_n = n^2$
 - (b) $a_n = n^3$

 $Wskaz \acute{o}wka$: Przyda się funkcja tworząca $\frac{1}{1-x}$.

- 3. (+) Wyznacz funkcję tworzącą ciągu: $\binom{n+k}{k}$. Wskazówka: Odpowiednia potęga funkcji $\frac{1}{1-x}$.
- 4. Oblicz funkcje tworzące ciągów:
 - (a) $a_n = n$ dla parzystych n i $a_n = 1/n$ dla nieparzystych n
 - (b) $H_n = 1 + 1/2 + \ldots + 1/n \ (H_0 = 0).$
- 5. Niech A(x) będzie funkcją tworzącą ciągu a_n . Znajdź funkcję tworzącą ciągu b_n postaci $(a_0, 0, 0, a_3, 0, 0, a_6, \ldots)$, czyli takiego, że dla każdego naturalnego k, $b_{3k} = a_{3k}$ oraz $b_{3k+1} = b_{3k+2} = 0$.

Wskazówka: Użyj zespolonych pierwiastków stopnia 3 z 1.

6. Niech A(x) będzie funkcją tworzącą ciągu a_n . Podaj postać funkcji tworzącej dla ciągu

 $(a_k, a_{k+1}, a_{k+2}, \ldots)$. Tzn. szukamy funkcji tworzącej dla ciągu
 $< b_n > = E^k < a_n >$.

- 7. Na ile sposobów można wybrać zbiór k-elementowy ze zbioru $\{1, 2, \ldots, n\}$ tak, by różnica dowolnych dwóch wybranych liczb wynosiła przynajmniej r?
- 8. Sprawdź prawdziwość następujących relacji:

$$n^2 \in O(n^3); \, n^3 \in O(n^{2.99}); \, 2^{n+1} \in O(2^n); \, (n+1)! \in O(n!); \, \log_2 n \in O(\sqrt{n}); \, \sqrt{n} \in O(\log_2 n).$$

- 9. Niech $f, g, h: N \to R$. Pokaż,
że:
 - (a) jeśli f(n) = O(g(n)) i g(n) = O(h(n)), to f(n) = O(h(n)),
 - (b) f(n) = O(g(n)) wtedy i tylko wtedy, gdy $g(n) = \Omega(f(n))$,
 - (c) $f(n) = \Theta(g(n))$ wtedy i tylko wtedy, gdy $g(n) = \Theta(f(n))$.
- 10. Niech fi gbędą dowolnymi wielomianami o stopniach ki ltakimi, że $k < l\,.$

Pokaż, że wówczas f(n) = o(g(n)).

11. (3p) Przestrzeń R^n to zbiór wszystkich punktów (x_1, x_2, \ldots, x_n) o n rzeczywistych współrzędnych. Hiperpłaszczyzna w R^n zadana jest wzorem $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$, gdzie przynajmniej jedno a_i jest niezerowe. Na ile maksymalnie obszarów można podzielić n-wymiarową przestrzeń R^n za pomocą m hiperpłaszczyzn? Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.