Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра прикладной математики и искусственого интеллекта

Направление подготовки: 01.03.04 – Прикладная математика

ОТЧЁТ

По дисциплине «Численные методы» на тему:
«Вычисление интеграла с помощью квадратурных формул»

Выполнил: студент группы 09-222 Фаррахова Л. Ф. Проверил: ассистент Глазырина О.В.

Содержание

1	Постановка задачи	3
2	Ход работы	4
3	Выводы	7
4	Листинг программы	8

1 Постановка задачи

Необходимо изучить и сравнить различные способы приближённого вычисления функции

$$Si(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)(2n+1)!}$$
 (1)

1. Протабулировать Si(x) на отрезке [a,b] с шагом b и точностью ε , основываясь на ряде Тейллора, предварительно вычислив его. Получив таким образом таблицу из 11 точек вида:

$$x_0 x_1 x_2 \dots$$

 $f_0 f_1 f_2 \dots$

$$f_i = \text{Si}(x_i), \quad x_i = a + ih, \quad i = 0, \dots, n.$$

2. Вычислить Si(x) при помощи пяти составных квадратурных формул при

$$h = (x_{i+1} - x_i) = \frac{b-a}{n} = \frac{\sin(t)}{t}$$

2.1. Формула правых прямоугольников:

$$J_N(x) = \sum_{i=1}^n hg(x_i) \tag{2}$$

2.2. Формула центральных прямоугольников:

$$J_N(x) = \sum_{i=1}^n hg\left(\frac{x_i + x_{i+1}}{2}\right) \tag{3}$$

2.3. Формула трапеции:

$$J_N(x) = \sum_{i=1}^n h \frac{g(x_i) + g(x_{i+1})}{2}$$
(4)

2.4. Формула Симпсона:

$$J_N(x) = \sum_{i=1}^n \frac{h}{6} \left[g(x_i) + 4g\left(\frac{x_i + x_{i+1}}{2}\right) + g(x_{i+1}) \right]$$
 (5)

2.5. Формула Гаусса:

$$J_N(x) = \sum_{i=1}^n \frac{h}{2} \left[g \left(x_i + \frac{h}{2} \left(1 - \frac{1}{\sqrt{3}} \right) \right) + g \left(x_i + \frac{h}{2} \left(1 + \frac{1}{\sqrt{3}} \right) \right) \right]$$
 (6)

Вычисления проводятся от начала интегрирования до каждой из 11 точек, увеличивая количество разбиений между точками в 2 раза до тех пор, пока погрешность больше ε.

2 Ход работы

Для того чтобы найти значение функции в точке, необходимо протабулировать искомый интеграл на отрезке [a, b] с шагом h = 0.4 и точностью ε .

 $q_n = rac{ ilde{eta}_{n+1}}{a_n}$:

$$a_n = \frac{(-1)^n x^{2n+1}}{(2n+1)(2n+1)!}, \quad a_{n+1} = \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)(2n+3)!}.$$
 (7)

$$q_n = \frac{-x^2(2n+1)}{(2n+2)(2n+3)^2}. (8)$$

Вычислим по ней значения функции в 11 узлах интерполяции (Таблица 1).

x_i	$erf(x_i)$
0,0	0,0000000000
0,4	0,3964614570
0,8	0,7720957994
1,2	1,1080472469
1,6	1,3891806602
2,0	1,6054129601
2,4	1,7524855137
2,8	1,8320965767
3,2	1,8514009714
3,6	1,8219480515
4,0	1,7582031488

Таблица 1 - точки x_i и значения разложения функции $Si(x_i)$

Далее вычислим Si(x) с помощью пяти составных квадратурных формул и составим для каждой формулы таблицу, в которой первый столбец - одиннадцать точек разбиения, второй - значение интеграла, третий - значение интеграла, вычисленного соответсвующим методом. В четвертом столбце находятся значения погрешности. В последнем - количество разбиений, необходимых для подсчета интеграла с заданной точностью.

1. Правые прямоугольники:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,4	0,3964614570	0,3964561820	0,0000052750	1024
0,8	0,7720957994	0,7720555663	0,0000402331	1024
1,2	1,1080472469	1,1079159975	0,0001312494	1024
1,6	1,3891806602	1,3888883591	0,0002923012	1024
2,0	1,6054129601	1,6048804522	0,0005325079	1024
2,4	1,7524855137	1,7516450882	0,0008404255	1024
2,8	1,8320965767	1,8308923244	0,0012042522	1024
3,2	1,8514009714	1,8498086929	0,0015922785	1024
3,6	1,8219480515	1,8199745417	0,0019735098	1024
4,0	1,7582031488	1,7558794022	0,0023237467	1024

Таблица 2 - таблица значений для формулы правых прямоугольников

2. Центральные прямоугольники:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,4	$0,\!3964614570$	$0,\!3964616656$	0,0000002086	64
0,8	0,7720957994	0,7720960975	0,0000002980	256
1,2	1,1080472469	1,1080478430	0,0000005960	512
1,6	1,3891806602	1,3891806602	0,0000000000	1024
2,0	1,6054129601	1,6054127216	0,0000002384	1024
2,4	1,7524855137	1,7524878979	0,0000023842	1024
2,8	1,8320965767	1,8320971727	0,0000005960	1024
3,2	1,8514009714	1,8514013290	0,0000003576	512
3,6	1,8219480515	1,8219479322	0,0000001192	1024
4,0	1,7582031488	1,7582037449	0,0000005960	512

Таблица 3 - таблица значений для формулы центральных прямоугольников

3. Формула трапеций:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,4	0,3964614570	0,3964614570	0,0000000000	128
0,8	0,7720957994	0,7720955014	0,0000002980	256
1,2	1,1080472469	1,1080472469	0,0000000000	512
1,6	1,3891806602	1,3891803026	$0,\!0000003576$	1024
2,0	1,6054129601	1,6054120064	0,0000009537	512
2,4	1,7524855137	1,7524851561	$0,\!0000003576$	1024
2,8	1,8320965767	1,8320960999	0,0000004768	1024
3,2	1,8514009714	1,8514009714	0,0000000000	1024
3,6	1,8219480515	1,8219457865	$0,\!0000022650$	1024
4,0	1,7582031488	1,7582020760	0,0000010729	1024

Таблица 4 - таблица значений для формулы трапеций

4. Формула Симпсона

4.1. Вывод формулы Симпсона через интегральный полином Лагранжа: Формула для полинома Лагранжа:

$$L_n(x) = \sum_{i=0}^n f(x_i) \prod_{i \neq j, j=0}^n \frac{x - x_j}{x_i - x_j}$$
(9)

По трём узлам
$$(x_1 = a, x_2 = \frac{a+b}{2}, x_3 = b)$$
 : $L_2 = f(a) \left(\frac{x - \frac{a+b}{2}}{a - \frac{a+b}{2}} \right) \left(\frac{x-b}{a-b} \right) + f(b) \left(\frac{x - \frac{a+b}{2}}{a - \frac{a+b}{2}} \right) \left(\frac{x-b}{a-b} \right) + f(b) \left(\frac{x - \frac{a+b}{2}}{b - \frac{a+b}{2}} \right) \left(\frac{x-b}{b-a} \right).$

Проинтегрируем выражение по интервалу [a,b]:

$$\int_{a}^{b} L_{2}(x) dx = f(a)c_{1} + f\left(\frac{a+b}{2}\right)c_{2} + f(b)c_{3}$$
(10)

где
$$c_1 = \frac{b-a}{6}, c_2 = \frac{2}{3}(b-a), c_3 = \frac{b-a}{6}.$$

Тогда:

$$\int_{a}^{b} L_{2}(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$
 (11)

4.2. Значения, полученные для формулы Симпсона:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,4	0,3964614570	0,3964614868	0,0000000298	4
0,8	0,7720957994	0,7720957398	0,0000000596	8
1,2	1,1080472469	1,1080472469	0,0000000000	8
1,6	1,3891806602	1,3891803026	0,0000003576	16
2,0	1,6054129601	1,6054130793	$0,\!0000001192$	16
2,4	1,7524855137	1,7524855137	0,0000000000	16
2,8	1,8320965767	1,8320968151	0,0000002384	16
3,2	1,8514009714	1,8514008522	0,0000001192	32
3,6	1,8219480515	1,8219482899	0,0000002384	16
4,0	1,7582031488	1,7582032681	0,0000001192	16

Таблица 5 - таблица значений для формулы Симпсона

5. Формула Гаусса:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,4	0,3964614570	0,3964614868	0,0000000298	4
0,8	0,7720957994	0,7720956802	0,0000001192	4
1,2	1,1080472469	1,1080472469	0,0000000000	8
1,6	1,3891806602	1,3891805410	0,0000001192	16
2,0	1,6054129601	1,6054128408	0,0000001192	16
2,4	1,7524855137	1,7524856329	0,0000001192	16
2,8	1,8320965767	1,8320965767	0,0000000000	16
3,2	1,8514009714	1,8514007330	0,0000002384	16
3,6	1,8219480515	1,8219481707	0,0000001192	16
4,0	1,7582031488	1,7582032681	0,0000001192	16

Таблица 6 - таблица значений для формулы Гаусса

3 Выводы

В ходе работы были изучены численные методы вычисления интегралов с применением пяти различных квадратурных формул. Анализ результатов показал, что методы Гаусса и Симпсона являются наиболее эффективными. Они обеспечивает высокую точность при минимальном числе разбиений благодаря специально подобранным узлам для приближенного вычисления интеграла.

4 Листинг программы

```
#include <algorithm>
2 #include <cmath>
3 #include <iostream>
# #include < vector >
6 using namespace std;
8 namespace constans {
9 const int STEPS = 1024;
const float LEFT_BORDER = 0;
const float EPSILON = 1e-6;
12 const float E = 2.71828182846;
13 } // namespace constans
14
float Tfunc(float x) {
   int n = 0;
16
   float node_0 = x;
17
   float ans = x;
18
   while (fabs(node_0) > 1e-6) {
19
      float q = ((-1) * x * x * (2 * n + 1)) / ((2 * n + 2) * (2 * n + 1)) / ((2 * n + 2) * (2 * n + 2))
20
         3) * (2 * n + 3));
      node_0 *= q;
21
      ans += node_0;
22
      n++;
23
    }
24
    return ans;
25
26 }
27
28 float func(float t) {
     if (t != 0) {
29
          return sin(t) / t;
30
      }
31
      return 1;
32
33 }
34
float leftRectangles(float (*func)(float), const float &a, float b,
                         int steps) {
36
   float result = 0.0;
37
    float stepSize = (b - a) / steps;
38
    for (int i = 0; i < steps; i++) {</pre>
39
      float x_i = a + stepSize * i;
40
```

```
result += stepSize * func(x_i);
41
    }
42
    return result;
^{43}
44 }
^{45}
  float rightRectangles(float (*func)(float), const float &a, float b,
46
                           int steps) {
47
    float result = 0.0;
48
    float stepSize = (b - a) / steps;
49
    for (int i = 1; i <= steps; i++) {</pre>
50
      float x_i_1 = a + stepSize * i;
51
      result += stepSize * func(x_i_1);
52
    }
53
    return result;
54
55 }
56
 float middleRectangles(float (*func)(float), const float &a, float b,
57
                            int steps) {
58
    float result = 0.0;
59
    float stepSize = (b - a) / steps;
60
    for (int i = 0; i < steps; i++) {</pre>
61
      float x_i = a + stepSize * i;
62
      float x_i_1 = a + stepSize * (i + 1);
63
      result += stepSize * func((x_i + x_i_1) / 2);
64
    }
65
    return result;
66
67 }
68
 float trapezeFormula(float (*func)(float), const float &a, float b,
69
                          int steps) {
70
    float result = func(a) + func(b);
71
    float stepSize = (b - a) / steps;
72
    for (int i = 1; i < steps; i++) {</pre>
73
      float x_i_1 = a + stepSize * i;
74
      result += 2 * func(x_i_1);
75
    }
76
    result *= stepSize / 2;
77
    return result;
78
79 }
80
81 float SypmsonsFormula(float (*func)(float), const float &a, float b,
                           int steps) {
82
    float stepSize = (b - a) / steps;
```

```
float result = 0;
    float x = a;
85
     for (int i = 0; i < steps; i++)</pre>
86
     {
87
         result += (func(x) + 4 * func(x + stepSize / 2) + func(x +
88
             stepSize)) * stepSize / 6;
         x += stepSize;
89
     }
90
     return result;
91
92 }
93
94 float GaussFormula(float (*func)(float), const float &a, float b, int
       steps) {
    float stepSize = (b - a) / steps;
95
     float ad1 = (1 - 1.0 / sqrt(3)) * stepSize / 2;
96
    float ad2 = (1 + 1.0 / sqrt(3)) * stepSize / 2;
97
    float result = 0;
98
    float x = a;
99
    for (int i = 0; i < steps; i++)</pre>
100
101
         result += (func(x + ad1) + func(x + ad2)) * stepSize / 2;
102
         x += stepSize;
103
104
    return result;
105
106 }
107
  void CalculateFunc(vector<float> points,
108
                        float (*function)(float (*)(float), const float &,
109
                                             float, int)) {
110
     for (auto point : points) {
111
       int steps = 1;
112
       float lastResult = 0.0;
113
       float currentResult = 0.0;
114
       do {
115
         steps *= 2;
116
         lastResult = currentResult;
117
         currentResult = function(func, constans::LEFT_BORDER, point,
118
             steps);
       } while (abs(lastResult - currentResult) > constans::EPSILON &&
119
          steps < constans::STEPS);</pre>
120
       float difference = abs(Tfunc(point) - currentResult);
121
122
```

```
printf(
123
            "x_i = %.11f | J_o = %.101f | J_n = %.101f | |J_o - J_n| =
124
               %.10lf | N "
           " = %d \ n "
125
           point, Tfunc(point), currentResult, difference, steps);
126
     }
127
  }
128
129
  int main() {
130
     vector<float> points = {0.0, 0.4, 0.8, 1.2, 1.6,
131
                                 2.0, 2.4, 2.8, 3.2, 3.6, 4.0};
132
     cout << "Правые прямоугольники \n";
133
     CalculateFunc(points, rightRectangles);
134
     cout << "Левые прямоугольники\n";
135
     CalculateFunc(points, leftRectangles);
136
     cout << "Центральные прямоугольники\n";
137
     CalculateFunc(points, middleRectangles);
138
     cout << "Трапеции\n";
139
     CalculateFunc(points, trapezeFormula);
140
     cout << "Cummcom\n";
141
     CalculateFunc(points, SypmsonsFormula);
142
     cout << "Tayc\n";
143
     CalculateFunc(points, GaussFormula);
144
     return 0;
145
146 }
```