Integrador de Contacto para el Disco Controlado que rueda sin deslizamiento

Elias Maciel, Inocencio Ortiz, Christian E. Schaerer

Facultad Politécnica, Universidad Nacional de Asunción

Diciembre 2019

El problema de la integración en el tiempo

Sistemas mecánicos son modelados con ecuaciones diferenciales

Ejemplo: Péndulo

$$\ddot{q} = -\frac{g}{L}\sin q. \tag{1}$$

El problema de la integración en el tiempo

Integrando numéricamente las ecuaciones de movimiento con métodos tradicionales puede resultar en soluciones con fuerzas espurias.

Ejemplo: Euler explícito para el problema del péndulo

$$\begin{cases} \dot{q} = v \\ \dot{v} = -\frac{g}{L}\sin q \end{cases} \longrightarrow \begin{cases} q_{k+1} = q_k + hv_k \\ v_{k+1} = v_k - h\frac{g}{L}\sin q_k. \end{cases}$$

Para obtener buenos integradores se han propuesto métodos derivados de un enfoque variacional de la mecánica (Mecánica Geométrica).

Formulación de Lagrange: $L(q,\dot{q}) = K(\dot{q}) - U(q)$.

Principio de Hamilton: $S(q) = \int_0^T L(q, \dot{q}) dt$.

Euler-Lagrange: $\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0.$

Discretizando el principio variacional se obtienen integradores *simplécticos*.

Euler simpléctico para el problema del péndulo

$$\begin{cases} v_{k+1} = v_k - h \frac{g}{L} \sin q_k \\ q_{k+1} = q_k + h v_{k+1}. \end{cases}$$

Figure: Diagrama de fases integrando con Euler simpléctico, el cual captura la naturaleza periodica del péndulo.

Integradores simplécticos son apropiados para sistemas con restricciones holon'omicas, i.e., # de grados de libertad = # coordenadas requeridas para describir el movimiento.

Ejemplos:

- Péndulo y sus variantes.
- Partículas de cuerpos rígidos.

Problemas con restricciones *no holonómicas* son modelados mediante el principio de Lagrange-d'Alembert.

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = \sum \lambda_j a^j.$$

Con restricciones no holonómicas no se preserva la estructura simpléctica.

A pesar de esto, los integradores no holonómicos conservan energía (Modin et al., 2017).

Sistemas controlados con restricciones no holonómicas

Queremos simular sistemas mecánicos con fuerzas de control sometidos a restricciones no holonómicas.

Ejemplo: Disco rodante controlado que se desplaza sin deslizamiento.

NO es un sistema conservativo.

Integradores de Contacto

Son integradores geométricos que funcionan mejor que su contraparte simpléctica cuando el sistema es dependiente del tiempo, i.e., no conservativo.

- Resulta una estructura geométrica llamada de contacto.
- ► En el trabajo de Vermeeren et al. 2019 se formularon para sistemas con restricciones holonómicas.

Idea y objetivo del trabajo

Buscamos obtener un integrador, i.e., un software que permita capturar mejor la fenomenología de los sistemas con (y sin) fuerzas de control sometidos a restricciones no holonómicas. A tal efecto, averiguar si los integradores de contacto son apropiados para estos casos.

Trabajo propuesto

- Derivar un integrador de contacto para el problema del disco rodante controlado que se desplaza sin deslizamiento, que es un problema benchmark para integradores no holonómicos.
- Determinar si el mapa determinado por el integrador obtenido es reversible.
- ► Comparar los resultados de este integrador contra otros integradores encontrados en la literatura.

Bibliography I

- Bloch, A. M., and Brogliato, B. Nonholonomic mechanics and control. *Appl. Mech. Rev.* 57(1):B3-B3, 2004.
- Modin, K., and Verdier, O. What makes nonholonomic integrators work? arXiv preprint arXiv:1707.04514, 2017.
- Cortés, J., and Martínez, S. Non-holonomic integrators Nonlinearity 14(5):1365, 2001.
- McLachlan, R. and Perlmutter, M. Integrators for nonholonomic mechanical systems Journal of nonlinear science 16(4):283-328, 2006.

Bibliography II

- Jachnik, J.
 Spinning and rolling of an unbalanced disk
 Unpublished report, 2011.
- Vermeeren, M., Bravetti, A., and Seri, M. Contact variational integrators arXiv preprint arXiv:1902.00436, 2019.