Moritz Ruge & Lennard Bachelor Informatik Freie Universitäten Berlin

09 Mai 2025

ASSIGNMENT 2 — Algorithmen und Datenstrukturen

Problem 1. Induktion und binäre Bäume Ein binärer Baum heißt vollständig, falls jeder Knoten entweder null oder zwei Kinder besitzt.

- (a) Zeichnen Sie einen binären Suchbaum, der vollständig ist, und einen binären Suchbaum, der nicht vollständig ist.
- (b) Beweisen Sie durch eine geeignete Induktion: In jedem vollständigen binären Suchbaum ist die Anzahl der Blätter genau um eins größer als die Anzahl der inneren Knoten.
- (c) Formulieren Sie eine ähnliche Aussage für allgemeine binäre Suchbäume und beweisen Sie sie.

Problem 2. Binäre Suchbäume

- (a) Angenommen, wir haben einen binären Suchbaum T , welcher die Zahlen von 1 bis 1000 als Schlüssel speichert. Wir suchen in T nach dem Schlüssel 363. Bestimmen Sie für jede der folgenden Schlüsselfolgen, ob sie als Folge der Einträge auf dem Suchpfad nach 363 auftreten kann. Begründen Sie jeweils Ihre Antwort.
 - i. 2, 252, 401, 398, 330, 344, 397, 363.

Schritt	Aktueller Knoten	Vergleich mit Ziel 363	Nächster Schritt	Intervall für nächsten Knoten
1	2	$363 > 2 \Rightarrow \text{rechts}$	252	[3, 1000]
2	252	$363 > 252 \Rightarrow \text{rechts}$	401	[253, 1000]
3	401	$363 < 401 \Rightarrow links$	398	[253, 400]
4	398	$363 < 398 \Rightarrow ext{links}$	330	[253,397]
5	330	$363 > 330 \Rightarrow \text{rechts}$	344	[331, 397]
6	344	$363 > 344 \Rightarrow \text{rechts}$	397	[345,397]
7	397	$363 < 397 \Rightarrow ext{links}$	363	[345, 396]
8	363	Ziel erreicht	_	<u> </u>

 $\longrightarrow \mathcal{A}$ nswer

ii. 924, 220, 911, 244, 898, 258, 362, 363.

Schritt	Aktueller Knoten	Vergleich mit Ziel 363	Nächster Schritt	Intervall für nächsten Knoten
1	924	$363 < 924 \Rightarrow links$	220	[1, 923]
2	220	$363 > 220 \Rightarrow \text{rechts}$	911	[221, 923]
3	911	$363 < 911 \Rightarrow links$	244	[221, 910]
4	244	$363 > 244 \Rightarrow \text{rechts}$	898	[245,910]
5	898	$363 < 898 \Rightarrow links$	258	[245,897]
6	258	$363 > 258 \Rightarrow \text{rechts}$	362	[259,897]
7	362	$363 > 362 \Rightarrow \text{rechts}$	363	[363, 897]
8	363	Ziel erreicht	_	

 $\longrightarrow \mathcal{A}$ nswer

iii. 925, 202, 911, 240, 912, 245, 363.

Schritt	Aktueller Knoten	Vergleich mit Ziel 363	Nächster Schritt	Intervall für nächsten Knoten
1	925	$363 < 925 \Rightarrow \mathrm{links}$	202	[1,924]

 $\longrightarrow \mathcal{A}$ nswer

- iv. 2, 399, 387, 219, 266, 382, 381, 278, 363.
- v. 935, 278, 347, 621, 299, 392, 358, 363.
- (b) Sei T ein binärer Baum mit n Knoten, und sei K eine total geordnete Menge von n Schlüsseln. Zeigen Sie, dass es genau eine Möglichkeit gibt, die Schlüssel aus K auf die Knoten von T zu verteilen, so dass die binäre Suchbaumeigen- schaft erfüllt ist.

Problem 3. AVL-Bäume

- (a) Fügen Sie die Schlüssel A, L, G, O, D, T, S, X, Y, Z in dieser Reihenfolge in einen anfangs leeren AVL-Baum ein. Löschen Sie sodann die Schlüssel Z, A, L. Zeichnen Sie den Baum nach jedem Einfüge- und Löschvorgang, und zeigen Sie die Rotationen, welche durchgeführt werden. Annotieren Sie dabei auch die Knoten mit ihrer jeweiligen Höhe.
- (b) Beweisen Sie: Beim Einfügen in einen AVL-Baum wird höchstens eine (Einfach- oder Doppel-)Rotation ausgeführt. Gilt das auch beim Löschen (Begründung)?

Submitted by Moritz Ruge & Lennard on 09 Mai 2025.