

INDRAPRASTHA INSTITUTE *of*INFORMATION TECHNOLOGY DELHI

Department of Electronics & Communication Engineering

ECE113|Basic Electronics

Lab:2

Student Name: Dheeraj Roll No.:2020194 Date:27-06-21 Aim: 1) Verify Thevenin's and Norton's equivalent representations using Virtual Labs.

2) To verify maximum power transfer theorem and superposition theorem using Virtual labs.

Components: Power supply, Amperage Multimeter, resistor, wires.

Software/Tools Used:

- TinkerCad
- Virtual Labs

Theoretical Calculation:

Thebenin's circul P= (3.9) 2x320 P= 4.96mb] (a) 1) RL = 209.486 = RTH P= i2xR = (5) 1x 209.401 P= 5.25 m w 7 Prox = Vm = [2.094] 5.24 h.A.
4RTh 4(209.486) Thurs verified you pour is when R+1 x R1 ar equal (as) 80 Rc = 50 Bhy P=ilxx = (B.07)2x50 = 326 ha

Superposition theorem:

Circuit Diagram and Link:

Maximum power transfer Theorem

https://www.tinkercad.com/things/659dOsAblUj-lab22020194/editel?sharecode=Isw58uNqDIZOCjc_Lb9LfqXZMBDM_ustYrafxZMirm8

Superposition Theorem

https://www.tinkercad.com/things/9mROaVRhrbS-funky-crift-kasi/editel?sharecode=uDqcyp2KZE7yMD_ImOHiA9O1qoiHNMNF3TJQI2-

https://www.tinkercad.com/things/aizinutmdsl-copy-of-superposition1/editel?sharecode=1-QF-sndk2MYu7fb5kJ1-n2TgqJzr8OGOqr1DJ6c7xs

https://www.tinkercad.com/things/IGeP86hFOLB-of-superposition3/editel?sharecode=rVnS0mBBxDKWmyZyT7jFaKe5CUCAC_ANpJ48YYBsNLY

V_LAB:

OBSERVATION Table:

Maximum power transfer Theorem:

Sno	RI	IL	Power=IL^2*	Vth
			RL	
1	209.486ohm	5mA	5.25mW	1.05v
2	330ohm	3.88mA	4.96mW	1.28v
3	50ohm	8.07mA	3.26mW	404mV
4	400ohm	3.44mA	4.71mW	1.37v
5	25ohm	8.93mA	1.99mW	223mv

Superposition Theorem:

Sno.	V1	V2	I3	14	I 5
1	5v	5v	10.356mA	8.67mA	-3.22mA
2	5v	0	9.38mA	6.45mA	3.22mA
3	0	5v	-3.22		

V_LAB OBSERVATION TABLE:

Superposition Theorem

Serial no. of		In presence of both V_1 and V_2		In presence of V ₁ only			In presence of V ₂ only			Name of the second		
Z	Observation	Brach current I ₁ (in amps)	Brach current I ₂ (in amps)	Brach current I ₃ (in amps)	Brach current I ₁ (in amps)	Brach current I ₂ (in amps)	Brach current I ₃ (in amps)	Brach current I ₁ (in amps)	Brach current l ₂ (in amps)	Brach current I ₃ (in amps)		
N.	1st	0.39032	-0.10645	0.28387	0.56774	-0.35484	0.21290	-0.17742	0.24839	0.070968		Н₃С
	2nd	0.25385	-0.016923	0.23692	0.33846	-0.16923	0.16923	-0.084615	0.15231	0.067692		
12)	3rd	0.15316	0.041772	0.19494	0.22278	-0.13924	0.083544	-0.069620	0.18101	0.11139		á
	4th	0.62857	-0.23571	0.39286	0.94286	-0.62857	0.31429	-0.31429	0.39286	0.078571		
	5th	0.16923	0.084615	0.25385	0.28205	-0.22564	0.056410	-0.11282	0.31026	0.19744		-

Observations/Results: Maximum power transfer occurs when the Thevenin Resistance (Rth) is equal Load resistance (RL) of the circuit.

The current in each branch of a circuit is equal to the contribution of each voltage source and/or current source taken independently.

We verified max power transfer theorem and superposition theorem

Applications:

• communications systems, maximum power power is always preferred.