Tabela de Vida e padrões de História de Vida

Cap. 5

Cap. 4

Sumário

- Tabela de vida: dinâmica e estática
- Curvas de Sobrevivência e Mortalidade
- Histórias de vida: alocação de recursos e demandas conflitantes
- Seleção r x K

Tabelas de Vida: dinâmica x estática

Table 5.1
A simplified cohort life table for the annual plant *Phlox drummondii*. The columns are explained in the text.

AGE INTERVAL (DAYS) x-x'	NUMBER SURVIVING TO DAY X a _x	PROPORTION OF ORIGINAL COHORT SURVIVING TO DAY X	SEEDS PRODUCED IN EACH STAGE F _x	SEEDS PRODUCED PER SURVIVING INDIVIDUAL IN EACH STAGE m _x	SEEDS PRODUCED PER ORIGINAL INDIVIDUAL IN EACH STAGE $l_x m_x$
0–63	996	1.000	0.0	0.00	0.00
63-124	668	0.671	0.0	0.00	0.00
124-184	295	0.296	0.0	0.00	0.00
184–215	190	0.191	0.0	0.00	0.00
215-264	176	0.177	0.0	0.00	0.00
264-278	172	0.173	0.0	0.00	0.00
278-292	167	0.168	0.0	0.00	0.00
292-306	159	0.160	53.0	0.33	0.05
306-320	154	0.155	485.0	3.13	0.49
320-334	147	0.148	802.7	5.42	0.80
334-348	105	0.105	972.7	9.26	0.97
348-362	22	0.022	94.8	4.31	0.10
362–	0	0.000	0.0	0.00	0.00
Total			2408.2		2.41

$$R_0 = \sum I_{\rm x} m_{\rm x} = \frac{\sum F_{\rm x}}{a_0} = 2.41.$$

Tabela de Vida

x: idade ou classe etária

 $\mathbf{a}_{\mathbf{x}}$: número sobrevivendo até \mathbf{x}

 $\mathbf{l}_{\mathbf{x}}$: proporção da coorte original sobrevivendo até \mathbf{x}

 $\mathbf{F}_{\mathbf{x}}$: número de prole produzida em \mathbf{x}

 $\mathbf{m}_{\mathbf{x}}$: prole produzida por sobrevivente em \mathbf{x}

Table 5.1
A simplified cohort life table for the annual plant *Phlox drummondii*. The columns are explained in the text.

	AGE INTERVAI (DAYS) x-x'	NUMBER SURVIVING TO DAY X	G SURVIVING	HORT PROD	JCED PER SURVI ACH INDIVIDUA GE EACH STA	VING PER ORIGINAL L IN INDIVIDUAL IN	
	0–63	996	1.000	(0.00	0.00	
	63-124	668	0.671		0.00	0.00	
	124-184	295	0.296	(0.00	0.00	
	184-215	190	0.191	(0.00	0.00	
	215-264	176	0.177	(0.00	0.00	
	264-278	172	0.173	(0.00	0.00	
	278–292	167	0.168	(0.00	0.00	
	292–306	159	0.160	53	3.0 0.33	0.05	
	306–320	154	0.155	485		0.49	
	320–334	147	0.148	802		0.80	
V	334–348	105	0.105	972		0.97	
١	348–362	22	0.022		1.8 4.31	0.10	
	362–	0	0.000		0.00	<u>0.00</u>	
	Total			2408	3.2	2.41	

$$R_0 = \sum I_x m_x = \frac{\sum F_x}{a_0} = 2.41.$$

Curvas de sobrevivência

Toda curva de sobrevivência tem seus pontos inicial e final fixos...

...pois a curva sempre começa com 100% dos indivíduos vivos ...

...e termina com 100% dos indivíduos mortos.

Os 3 tipos clássicos de curvas de sobrevivência:

Por convenção, sobrevivência é log:

O risco de mortalidade depende do tipo de curva de sobrevivência

O risco de mortalidade aumenta com a idade no Tipo I

O risco de mortalidade diminui com a idade no Tipo III

O risco de mortalidade INDEPENDE da idade no Tipo II

Tabela de vida em números

Table 4.1 A cohort life table for Phlox drummondii. The columns are explained in the text. (After Leverich & Levin, 1979.)

Age interval (days) x – x'	Number surviving to day x a _x	Proportion of original cohort surviving to day x	Proportion of original cohort dying during interval d _x	Mortality rate per day q _x	Log ₁₀ <i>I_x</i>	Daily killing power k _x	F_x	m_x	$l_x m_x$
0-63	996	1.000	0.329	0.006	0.00	0.003	_	_	_
63-124	668	0.671	0.375	0.013	-0.17	0.006	_	_	_
124-184	295	0.296	0.105	0.007	-0.53	0.003	_	_	_
184-215	190	0.191	0.014	0.003	-0.72	0.001	_	_	_
215-264	176	0.177	0.004	0.002	-0.75	0.001	_	_	_
264-278	172	0.173	0.005	0.002	-0.76	0.001	_	_	_
278-292	167	0.168	800.0	0.004	-0.78	0.002	_	_	_
292-306	159	0.160	0.005	0.002	-0.80	0.001	53.0	0.33	0.05
306-320	154	0.155	0.007	0.003	-0.81	0.001	485.0	3.13	0.49
320-334	147	0.148	0.043	0.025	-0.83	0.011	802.7	5.42	0.80
334-348	105	0.105	0.083	0.106	-0.98	0.049	972.7	9.26	0.97
348-362	22	0.022	0.022	1.000	-1.66	_	94.8	4.31	0.10
362-	0	0.000	-	-	-	-		-	_
							2408.2		2.41

$$R_0 = \sum I_x m_x = \frac{\sum F_x}{a_0} = 2.41.$$

Mortalidade e sobrevivência de *Phlox drumondii*

Como sabemos se uma população está crescendo ou diminuindo de tamanho?

Número de indivíduos da próxima geração / coorte inicial

ou

Para permanecer constante, cada indivíduo da coorte tem que ser **reposto** na próxima geração

A Taxa de Reposição tem que ser igual a um.

Table 4.1 A cohort life table for Phlox drummondii. The columns are explained in the text. (After Leverich & Levin, 1979.)

Age interval	Number surviving to day x a _x	Proportion of original cohort surviving	Proportion of original cohort dying during interval d _x	Mortality rate per day q _x	$\log_{10} I_x$	Daily killing power k _x	F_{x}	mx	$I_x m_x$
0-63	996	1.000	0.329	0.006	0.00	0.003	_	_	-
63-124	668	0.671	0.375	0.013	-0.17	0.006	_	_	-
124-184	295	0.296	0.105	0.007	-0.53	0.003	-	_	-
184-215	190	0.191	0.014	0.003	-0.72	0.001	_	_	-
215-264	176	0.177	0.004	0.002	-0.75	0.001	_	_	-
264-278	172	0.173	0.005	0.002	-0.76	0.001	-	_	-
278-292	167	0.168	0.008	0.004	-0.78	0.002	-	_	-
292-306	159	0.160	0.005	0.002	-0.80	0.001	53.0	0.33	0.05
306-320	154	0.155	0.007	0.003	-0.81	0.001	485.0	3.13	0.49
320-334	147	0.148	0.043	0.025	-0.83	0.011	802.7	5.42	0.80
334-348	105	0.105	0.083	0.106	-0.98	0.049	972.7	9.26	0.97
348-362	22	0.022	0.022	1.000	-1.66	-	94.8	4.31	0.10
362-	0	0.000	-	-	-	-	_	-	<u> </u> -
							2408.2		2.41

$$R_0 = \sum I_x m_x = \frac{\sum F_x}{a_0} = 2.41.$$

- 1. Classe etária: x
- 2. Proporção da coorte sobrevivente: Ix
- 3. Produção média de filhotes: mx

Table 4.1 A cohort life table for Phlox drummondii. The columns are explained in the text. (After Leverich & Levin, 1979.)

, 1 (days)	Number surviving to day x	Prop ing ing	Proportion of original cohort dying during interval	Mortality rate per day		Daily killing power	3	3	
X - X'	a_x	I_x	d_x	q_x	$\log_{10}I_x$	k_x	F_x	m_x	$I_x m_x$
0-63	996	1.000	0.329	0.006	0.00	0.003	_	_	_
63-124	000	0.671	0.375	0.013	-0.17	0.006	-	-	_
124-184	295	0.296	0.105	0.007	-0.53	0.003	-	-	_
184-215	190	0.191	0.014	0.003	-0.72	0.001	_	_	_
215-264	176	0.177	0.004	0.002	-0.75	0.001	_	_	_
264-278	172	0.173	0.005	0.002	-0.76	0.001	_	_	_
278-292	167	0.168	0.008	0.004	-0.78	0.002	_	_	_
292-306	159	0.160	0.005	0.002	-0.80	0.001	53.0	0.33	0.05
306-320	154	0.155	0.007	0.003	-0.81	0.001	485.0	3.13	0.49
320-334	147	0.148	0.043	0.025	-0.83	0.011	802.7	5.42	0.80
334-348	105	0.105	0.083	0.106	-0.98	0.049	972.7	9.26	0.97
348-362	22	0.022	0.022	1.000	-1.66	-	94.8	4.31	0.10
362-	0	0.000	-	_	_	-	_	_	_
							2408.2		2.41

$$R_0 = \sum I_x m_x = \frac{\sum F_x}{a_0} = 2.41$$

- 1. Classe etária: x
- 2. Proporção da coorte sobrevivente: **Ix**
- 3. Produção média de filhotes: mx

Table 4.1 A cohort life table for Phlox drummondii. The columns are explained in the text. (After Leverich & Levin, 1979.)

- $R_0 = \sum l_x m_x = \sqrt{\frac{\sum F_x}{a_0}} = 2.41.$ 1. Classe etária
 - 2. Proporção sobrevivente
 - 3. Produção média de filhotes

Table 4.1 A cohort life table for Phlox drummondii. The columns are explained in the text. (After Leverich & Levin, 1979.)

, 1 (days)	Number surviving to day x	Prop iginal control ing to day x	Proportion of original cohort dying during interval	l Mortality rate per day		Daily killing power	3	3	
X - X'	a_{x}	I_x	d_x	q_x	$\log_{10} I_x$	k _x	F_x	m_x	$I_x m_x$
0-63	996	S Cal	culadora			0.003	_	_	_
63-124	668					0.006	_	_	_
124-184	295		7	2,41787	1486	0.003	_	_	_
184-215	190			•	•	0.001	_	_	_
215-264	176					0.001	-	_	_
264-278	172	7	3 8 ÷	4	×	0.001	_	-	_
278-292	167	4	6 ×			0.002	-	-	-
292-306	159	4	· <u>/</u>			0.001	53.0	0.33	0.05
306-320	154	1 1	2 3 -	. X2	√	0.001	485.0	3.13	0.49
320-334	147					0.011	802.7	5.42	0.80
334-348	105	9	, % +	· :	=	0.049	972.7	9.26	0.97
348-362	22	· · · · ·	U.U.E.		1.00	_	94.8	4.31	0.10
362-	0	0.000	-	-	_	-	_	-	-
							2409.2		2.41

 $R_0 = \sum I_x m_x = \frac{\sum F_x}{a_0} = 2.41.$

- 1. Classe etária
- 2. Proporção sobrevivente
- 3. Produção média de filhotes

Taxa reprodutiva líquida (taxa de reposição)

$$R_0 = \sum F_x / a_0 \qquad R_0 = \sum l_x m_x$$

$$R_0 = \lambda$$
 (lambda)

R₀ = 1 ⇒ nascimentos = número inicial: a população se repõem em uma geração

 $R_0 = \lambda = 1 \Rightarrow População constante$

λ: taxa de crescimento geométrico ou taxa de crescimento *per capita* em um intervalo de tempo discreto

$$N(t) = N(t-1)$$

Taxa reprodutiva menor que 1

$$0 < R_0 < 1 (0 < \lambda < 1)$$

- Nascimentos < número inicial
- Cada indivíduo não se repõem na próxima geração
- População diminui

Taxa reprodutiva maior que 1

$$R_0 > 1 (\lambda > 1)$$

- Nascimentos > número inicial
- Cada indivíduo é substituído por mais do que um na próxima geração
- População aumenta

O que é Teoria de Histórias de Vida?

 A Teoria de Histórias de Vida busca explicar a diversidade de características demográficas (reprodução, sobrevivência, tamanho corporal, ciclos de vida) de uma espécie.

O que são Histórias de Vida?

 História de Vida é o conjunto de características demográficas da espécie: complementa o conceito de nicho ecológico.

Princípio de Alocação de Recursos

- Alocar energia para um aspecto da história de vida implica em reduzir energia disponível para outros aspectos.
- Assim, há demandas conflitantes (trade-offs) entre características como:
 - reprodução x longevidade,
 - tamanho corporal dos descendentes x número de descendentes

Alocação de recursos e demandas conflitantes

Aprendizagem ativa: 3 min

- Em grupos de até 3 (três) colegas, discuta:
- Quais pressões seletivas favorecem maior número de filhotes de menor tamanho corporal ?
- Quais pressões seletivas favorecem menor número de filhotes, com maior corporal e cuidado parental?

Aprendizagem ativa

- Muitos filhotes pequenos: alta mortalidade de filhotes (predação, parasitas, condições extremas), colonização de ambientes vazios (=sem competidores), imprevisibilidade de recursos
- Poucos filhotes grandes + cuidado parental: recursos previsíveis, muitos competidores (ambiente preenchido)

Como detectar permutas?

 Correlação negativa entre caracteres que "competem" pelos recursos dentro do mesmo organismo.

Seleção de espécies r e K estrategistas

(Mac/	Arthur	& Wilson.	1967
-------	--------	-----------	------

	(IVIACATUTUL & VIISOT, 1907)
Seleção r	Seleção K
maturidade cedo	maturidade tardia
pequeno tamanho	grande tamanho
semélparos (reproduz e morre)	 iteróparos (vários eventos de reprodução)
	pequena prole de grandes indivíduos
pouco investimento em sobrevivência	cuidado parental
habitat imprevisível e efêmero	6 ambiente estável, saturado
períodos de crescimento populacional rápidos, sem competição	intensa competição entre os adultos determina sobrevivência e/ou fecundidade

Demandas conflitantes (trade-offs)

Quanto maior o crescimento anula (diâmetro do anel de crescimento), MENOR o número de sementes

Demandas conflitantes (trade-offs)

Quanto maior o crescimento anula (diâmetro do anel de crescimento), MENOR o número de sementes

Demandas conflitantes (trade-offs)

Abordagem manipulativa

Quanto maior o tamanho corporal, maior a longevidade,

Quanto maior o tamanho corporal, maior a longevidade, mas

... quanto maior o número de fêmeas oferecidas para copular com o macho, MENOR a longevidade do macho.

... quanto maior o número de fêmeas oferecidas para copular com o macho, MENOR a longevidade do macho.

• À medida em que reduzimos, experimentalmente, o acesso de machos a fêmeas, reduzimos seu gasto com reprodução, o que leva a um aumento na longevidade desses machos.

 Para avaliar se há permuta, devemos manipular uma das variáveis, para verificar se a outra responde com uma correlação negativa.

Nem sempre correlações mostram as permutas entre alocações de recurso:

- O ambiente pode gerar correlações relacionadas a diferenças locais/temporais/individuais, como disponibilidade de recursos, que geram correlações positivas entre caracteres com permuta.
- Ex: se medimos número de filhotes e longevidade em insetos que ocorrem na natureza, podemos encontrar uma correlação positiva entre alocação de energia para reprodução e para longevidade, porque esses insetos tem diferenças no acesso a recursos: os insetos mais privilegiados, que consomem maior quantidade de recursos, terão tamanho corporal maior, maior longevidade e maior reprodução, doque insetos com menos recursos, com tamanho corporal menor e menor longevidade.

Padrões r x K

 A dinâmica populacional pode resultar dos efeitos da seleção natural sobre as Histórias de Vida, de tal forma que algumas características de História de Vida se relacionam a outras características

Estratégia (ou seleção) r:

- "r" vem de reprodução
- A seleção r favorece investimento em Reprodução (daí a letra "r")
- Isto leva a um crescimento populacional exponencial (explosivo), sem limites:

Tamanho populacional (N)

Tempo (t)

Exemplos de espécies rselecionadas:

Espécies colonizadores, pioneiras, utilizam nichos vazios, sem competidores.

Estratégia (ou seleção) K

- Há uma capacidade suporte do ambiente (K), que é o número (densidade) de indivíduos que aquele ambiente suporta.
- Isto leva a crescimento limitado, populações variam pouco de tamanho, são limitadas por competição.

Estratégia (ou seleção) K

 Espécies K-selecionadas são características de hábitats ocupados, com muitas interações biológicas, especialmente competidores

Exemplo:

O ser humano pode ser classificdo como estrategista K, em comparação com aves e árvores.

Crescimento exponencial, Ilimitado: r

Crescimento logístico, limitado: **K**

Figura 1 - Padrões de crescimento populacional no tempo.

a) crescimento exponencial, onde a população aumenta sem limites ao infinito; b) crescimento logístico, onde a população cresce rapidamente no início e desacelera e se mantém estável quando o número de indivíduos (N) atinge o número máximo (K) que os recursos disponíveis no ambiente podem suportar.

Seleção de espécies r e K estrategistas

(Mac/	Arthur	& Wilson.	1967
-------	--------	-----------	------

	(IVIACATUTUL & VIISOT, 1907)
Seleção r	Seleção K
maturidade cedo	maturidade tardia
pequeno tamanho	grande tamanho
semélparos (reproduz e morre)	 iteróparos (vários eventos de reprodução)
	pequena prole de grandes indivíduos
pouco investimento em sobrevivência	cuidado parental
habitat imprevisível e efêmero	6 ambiente estável, saturado
períodos de crescimento populacional rápidos, sem competição	intensa competição entre os adultos determina sobrevivência e/ou fecundidade

Seleção r x K

Seleção r

- espécies invasoras
- espécies oportunistas
- pragas e epidemias
- colonizadoras
- ciclo de vida curto
- herbáceas, insetos, bactérias

Seleção K

- espécies perenes
- espécies competitivas
- características de momentos tardios de sucessão
- ciclo de vida longo
- árvores, grandes mamíferos

Contínuo r x K

- O conceito de seleção r x K é relativo, deve ser usado ao se comparar duas espécies.
- A mesma espécies pode ser classificada com r, em comparação com uma segunda espécie,
- e classificada com K em comaração com outra.

A **Seleção Natural** molda as histórias de vida

 A seleção natural favorece as características demográficas que aumentem o Valor Adaptativo (fitness) dos fenótipos, dentro da população, porém...

Valor Adaptativo (fitness) é relativo

- Aos demais membros da mesma população
- ou seja, o valor adaptativo depende do fenótipo dos demais indivíduos da população

Pontos mais importantes

- Tabela de Vida: instrumento para registrar e analisar demografia
- Como construir um Tabela de Vida: dinâmica x estática
- idade ou classe etária: x, sobrevivência: lx, prole produzida: mx
- Curvas de sobrevivência: dois pontos fixos, formato indica em que idade ocorre maior mortalidade
- Como sabemos se a população está crescendo? Taxa reprodutiva líquida = Taxa de Reposição
- Alocação de recursos e demandas conflitantes: custo de reprodução e longevidade
- Seleção r e K: padrões comparativos, síndromes extremas de um contínuo

Pontos importantes da aula

- Teoria de Histórias de vida busca explicar as características demográficas de uma espécie
- Princípio de Alocação de Recursos: demandas conflitantes (longevidade x reprodução, tamanho corporal x número de filhotes)
- Para detectar demandas conflitantes é necessário manipulação experimental
- Seleção natural favorece ter mais descendentes do que os outros membros da mesma população: bode dentuço
- Seleção r x K: espécies colonizadoras, oportunistas x competidoras, de final de sucessão
- Seleção r: maior investimento em reprodução, menor em longevidade
- Seleção K: maior investimento em tamanho corporal, cuidado à prole, sobrevivência

Dúvidas?

Coloque suas dúvidas no PVAnet: PERGUNTAS E RESPOSTAS

Verifique se sua pergunta já não foi feita, ou até respondida

Nesse caso temos uma pergunta sem resposta ainda:

Se você não encontrou sua pergunta, clique aqui

Disciplinas Matriculadas → Disciplina (BIO 131) → PERGUNTAS E RESPOST.	AS
ÚVIDAS	← W
MÓDULO: PERGUNTAS E RESPOSTAS	GERENCIAMENTOS
	GERENCIAR PERGUNTAS E RESPOSTAS
ESCOLHA UMA OPÇÃO: Nicho Ecológico	SISTEMA DE BUSCA:
Crescimento populacional	Buscar por palavra-chave:
Ecologia Evolutiva	
Estratégias de História de Vida	Procurar por palavra em:
Metapopulações	Ambos Pergunta Resposta
Metodologia científica	Tipo de pesquisa:
Pra que serve Ecologia?	Busca Parcial Busca Exata
Tabela de Vida	

Talvez você encontre uma pergunta parecida com a sua ...

ropico.	NICHO ECOLOGICO	•	Cauasirai

rdenar Ativ	Perguntas	Tópico	Data / Hora	(*) P e P&R
	Qual a diferença entre nicho fundamental do nicho realizado?	Nicho Ecológico	13-03-2019 13:13:38	P&R
	Como uma população pode apresentar crescimento negativo?	Crescimento populacional	13-03-2019 13:05:13	P&R
	O que são Oscilações acopladas?	Crescimento populacional	13-03-2019 13:06:16	P&R
	O que significa a expressão lambda?	Crescimento populacional	13-03-2019 13:05:40	P&R
•	Populações r-selecionadas poderiam vir a ser populações invasoras?	Crescimento populacional	13-03-2019 13:07:09	P&R
•	Quais são as forças que alteram a taxa de crescimento populacional?	Crescimento populacional	13-03-2019 13:07:35	P&R
	As flutuações populacionais acontecem tanto no modelo exponencial quanto no logístico?	Crescimento populacional	16-05-2019 17:43:10	P&R
•	Como avaliar o crescimento populacional quando ele não é monotônico (ou seja, a população aumenta e depois diminui, ou o reverso)?	Crescimento populacional	13-03-2019 13:04:36	P&R
	Como funcionam as fórmulas dos modelos de crescimento populacional?	Crescimento populacional	07-11-2017 23:48:21	P&R

Se você não encontrou sua pergunta, digite a pergunta aqui

e escolha a aula (tópico) a que se refere sua dúvida

