Atílio Antônio Dadalto Leandro Furlam Turi

Implementação de um jogo de bisca utilizando a linguagem C

Vitória

Atílio Antônio Dadalto Leandro Furlam Turi

Implementação de um jogo de bisca utilizando a linguagem C

Relatório apresentado como requisito parcial para obtenção de nota na disciplina de Estruturas de Dados, pela Universidade Federal do Espírito Santo.

Universidade Federal do Espírito Santo Departamento de Informática

Vitória

Sumário

	Introdução	ŗ
1 1.1	OPERAÇÕES	
	Conclusão	ģ
	APÊNDICE A – TESTES DOS CIRCUITOS	11
A .1	Operações básicas	13

Introdução

Neste projeto, buscamos implementar todas as funções necessárias para a composição de uma Unidade Lógica e Aritmética que opere em 16 bits, além de uma calculadora com seu próprio display hexadecimal de saída, tomando como ferramenta o software utilizado durante o curso, *Logisim*.

Através da modularidade, foi possível utilizar a abordagem de dividir para conquistar, tornando o projeto como um todo mais organizado e manutenível. Isso provou-se notadamente útil na construção do multiplexador 8:1 com entrada de 8 bits (??), por exemplo.

Este relatório documenta a trajetória da construção dessa Unidade Lógica e Aritmética através de portas lógicas básicas, de duas entradas, pontuando as sub-funções elaboradas e como foram integradas, bem como os testes efetuados, estes no Apêndice A.

1 Operações

1.1 ADD bit a bit $\mathrm{A} + \mathrm{B}$

Primeiramente, antes de implementar o somador de duas entradas de 8 bits, estabelecemos um somador completo, para que seja possível o transporte de entrada que um meio somador não é suficiente para realizar. Desse modo, agora temos A, B e o *carry-in*, que resultarão nas saídas S (soma dos algarismos) e *carry-out* (transporte de saída). O *full adder* está representado na ??:

Conclusão

Pelo estudo realizado neste trabalho, fica evidente como podemos chegar a sistemas progressivamente mais complexos, como uma Unidade Lógica e Aritmética, tendo como ponto de partida portas lógicas básicas. Iniciamos o projeto com portas lógicas AND, OR e NOT, de duas entradas, para criar os circuitos aritméticos como o somador completo e o subtrator completo, e, a partir dessas estruturas, utilizamos a modularização e o reuso desses circuitos como caixas pretas para conseguir operar números binários de mais algarismos. Em seguida, também com as portas lógicas básicas, podemos criar as operações lógicas AND, OR e XOR bit a bit, além das instruções de SHIFT LEFT e SHIFT RIGHT.

Posteriormente, apenas com o uso de multiplexadores igualmente construídos com portas lógicas básicas, foi possível integrar todas as operações supracitadas, estruturando, portanto, uma Unidade Lógica e Aritmética de 8 bits. Com esta e o uso de decodificadores, foi possível a implementação de uma calculadora com saída que representa dois dígitos hexadecimais em displays de 7 segmentos. Por outro enfoque, mas lançando mão dos mesmos conceitos, foi possível utilizar a ULA de 8 bits para implementar uma ULA de 16 bits.

APÊNDICE A – Testes dos circuitos

Este apêndice serve como repositório para os testes dos circuitos principais utilizados no projeto.

A.1 Operações básicas

• nada