DATA MINING

WAKE WORKSHOP 2022

JOE LYMAN

J.D.LYMAN@WARWICK.AC.UK

KNOWLEDGE DISCOVERY IN DATA DATA MINING

WAKE WORKSHOP 2022

JOE LYMAN

J.D.LYMAN@WARWICK.AC.UK

CONCEPTS

Data mining is an interdisciplinary field at the intersection of artificial intelligence, machine learning, statistics, and database systems

https://www.kdd.org/

DATA MINING APPLICATIONS

- FINANCIAL
 - PREDICTING WHETHER YOU'LL PAY A LOAN BACK
- RETAIL
 - SHOWING YOU WHAT YOU WANT TO BUY NEXT
- GOVERNMENT
 - DETERMINING IF YOU ARE A SECURITY THREAT
- HEALTHCARE
 - ESTIMATING YOUR RISK OF VARIOUS DISEASES
- SCIENCES
 - KNOWLEDGE DISCOVERY

DATA MINING APPLICATIONS

- FINANCIAL
 - PREDICTING WHETHER YOU'LL PAY A LOAN BACK
- RETAIL
 - SHOWING YOU WHAT YOU WANT TO BUY NEXT
- GOVERNMENT
 - DETERMINING IF YOU ARE A SECURITY THREAT
- Healthcare
 - ESTIMATING YOUR RISK OF VARIOUS DISEASES
- SCIENCES
 - KNOWLEDGE DISCOVERY

.. and anywhere there are large datasets

ASTRONOMICAL OPTICAL SKY SURVEY DATA SETS

Last major photographic plate survey complete

 POSS-II (~3TB whole survey digitized)

Wide-field surveys

 ZTF (~1TB per night, plus 0.5-1 billion photometry measurements)

1990s

2000s

2010s

2020s

First major digital surveys begin

SDSS (~10TB per year)

Next generation surveys

 LSST (~20TB per night, ~200PB whole survey)

DATA RESOURCES – OPTICAL SKY (WIDE)

Survey	Area (fraction of sky)	Filters	Depth (mag)	URL
SDSS	~1/3 (northern)	ugriz	~22 (ugr) ~21 (iz)	https://www.sdss.org/
Legacy Survey	~1/3 (high Galactic latitudes)	grz	~25 (g) ~24 (r) ~23 (z)	https://www.legacysurvey.org
Pan-STARRS	~3/4 (northern)	grizy	~23 (gri) ~22 (z) ~21 (y)	https://panstarrs.stsci.edu/
SkyMapper	~1/2 (southern)	uvgriz	~20 (UZ) ~22 (g,r) ~21 (i)	https://skymapper.anu.edu.au
ATLAS	~1/10 (southern)	ugriz	~22 (ui) ~23 (gr) ~21 (z)	https://astro.dur.ac.uk/Cosmology/vstatlas/
DES	~1/8 (southern)	grizY	~25 (gr) ~24 (iz) ~22 (Y)	https://www.darkenergysurvey.org/
EGaPS (= VPHAS+, IPHAS, UVEX)	~1/15 (Galactic plane)	UgriHα	~21 (gr)	https://www.vphasplus.org/ http://www.iphas.org/ https://www.astro.ru.nl/uvex/

DATA RESOURCES – OPTICAL SKY (NEW)

Resource	Description	Depth (mag)	URL
ZTF brokers	User-friendly interfaces to large data streams of transient alerts (supernovae, novae, outbursts etc.). Will also host LSST alerts	gr~21	e.g. Lasair: https://lasair.roe.ac.uk/ ALeRCE: https://alerce.online/
Gaia Alerts	Alerts are triggered by any Gaia source changing in brightness above some threshold	G~20	http://gsaweb.ast.cam.ac.uk/alerts/home
Transient Name Server (TNS)	IAU-designated repository for all discovery and classification reports of new transients		https://www.wis-tns.org/
Exoplanet Catalogues	Databases of exoplanet discoveries		http://www.openexoplanetcatalogue.com/ http://exoplanet.eu/catalog/

DATA RESOURCES – INFRARED SKY (WIDE)

Survey	Area (fraction of sky)	Filters	Depth (mag)	URL
2MASS	~1	JHK	~16	https://irsa.ipac.caltech.edu/Missions/2mas s.html
UKIDSS	~1/5	JHK	~18	http://wsa.roe.ac.uk/
VHS	~1/2	YJHK	~20	https://www.vista-vhs.org/
WISE	~1	3-22 micron	~17-8	https://wise2.ipac.caltech.edu/docs/release/allsky /

DATA RESOURCES – RADIO/UV/XRAY SKY (WIDE)

Survey	Area (fraction of sky)	Wavelengths	Depth	URL
FIRST	~1/4	~21cm	~1 mJy	https://sundog.stsci.edu/
GALEX	~1 (but significant gaps)	UV (135- 280nm)	~20 mag	https://archive.stsci.edu/missions-and- data/galex
ROSAT	~1	Soft X-ray (~2 keV)	~3x10 ⁻¹² erg/cm ² /s	https://heasarc.gsfc.nasa.gov/docs/rosat/rosat3.h tml
eROSITA (ongoing)	~1 (but practically 1/2 for open data)	Soft and Hard X-ray (2-30 keV)	~10 ⁻¹⁴ erg/cm ² /s	https://www.mpe.mpg.de/eROSITA

DATA RESOURCES – SIMULATIONS

Resource	Content	URL
IllustrisTNS/ EAGLE	Hydrodynamical cosmological simulation	https://www.tng-project.org/ http://icc.dur.ac.uk/Eagle/
BPASS	Binary stellar population synthesised SEDs	https://bpass.auckland.ac.nz/

DATA RESOURCES - MISC

Resource	Content	URL
Filter Profile Service	Standard format filter profiles for all major surveys to compare photometry, generate SEDs etc.	http://svo2.cab.inta-csic.es/theory/fps/
NIST Atomic Spectra Database	Atomic lines database for spectral line identification.	https://physics.nist.gov/PhysRefData/ASD/lines_form.html

ASTRONOMICAL DATA WAREHOUSES (VIRTUAL OBSERVATORIES)

- VIRTUAL OBSERVATORY https://www.ivoa.net/astronomers
 - Sets standards for astronomical data to enable easier data warehousing
 - Links to various VO-compliant software
- STRASBOURG <u>HTTPS://CDS.U-STRASBG.FR</u>
 - SIMBAD EXCELLENT "QUICKLOOK" TOOL FOR FINDING A WEALTH OF INFORMATION ON OBJECTS
 - VIZIER VERY LARGE COLLECTION OF DIVERSE ASTRONOMICAL CATALOGUES
 - OFTEN DATA ASSOCIATED WITH PUBLICATIONS ARE HOSTED HERE
 - ALADIN NICE INTERACTIVE SKY ATLAS WITH PLENTY OF INTEGRATION TO VISUALISE SIMBAD/VIZIER DATA
- IRSA https://irsa.ipac.caltech.edu
 - FRIENDLY INTERFACE TO MANY LARGE (MAINLY US) PROJECTS' DATABASES

DATABASES 101

- Most data resources build on a "relational" database
 - A SCHEMA DEFINES TABLES
 - TABLES DEFINE COLUMNS
 - COLUMNS CAN BE LINKED BETWEEN TABLES
- SQL is the language used to interrogate relational databases.
 - MANY VARIANTS!
 - Reasonably quick to learn enough for most use cases LOTS of resources online
 - E.G. SELECT MJD, MAG, MAG_ERROR, FILTER FROM PHOTOMETRY WHERE NAME = "DELTA_SCUTI";
- Always refer to the schema and usage documentation for the data resource
 - Descriptions of tables and columns
 - Non-SQL (e.g. gui) interfaces to searching
 - EXAMPLE QUERIES
 - E.G. HTTP://SKYSERVER.SDSS.ORG/DR16/EN/TOOLS/SEARCH/SEARCHHOME.ASPX

TOOLS

- TOPCAT http://www.star.bris.ac.uk/~mbt/topcat/
 - Lots of features for querying a whole range of resources
 - BUILT IN ANALYSIS SUCH AS PLOTTING, STATISTICS
- ALADIN <u>HTTPS://ALADIN.U-STRASBG.FR/</u>
 - EXCELLENT QUICK VISUALISATION OF SURVEY IMAGING
 - GOOD CATALOGUE QUERYING TOOLS
- ASTROQUERY <u>HTTPS://ASTROQUERY.READTHEDOCS.IO/EN/LATEST/</u>
 - PROGRAMMATIC ACCESS TO DATABASES IN PYTHON
 - CLOSE RELATION TO ASTROPY VASTLY STREAMLINES RETRIEVAL TO ANALYSIS


```
In [1]: Imaspletib failes

imper: matpletib.pepiot as pit

from matroquery.essay impert Logicom

from matroquery.essay impert EARANY

In [2]: EERANY.list_mmps()

Out[2]: (2]: INTERDAL',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',

0.000-03-07',
```

ANALYSIS (IN PYTHON)

- Pandas DataFrames
 - CLOSE REPRESENTATION OF A DATABASE TABLE IN PYTHON WIDELY USED ACROSS DATA SCIENCE
 - HTTPS://PANDAS.PYDATA.ORG/PANDAS-DOCS/STABLE/USER_GUIDE/DSINTRO.HTML#DATAFRAME

- Human-friendly interfaces to data tables better to work with than raw numpy arrays
- <u>HTTPS://DOCS.ASTROPY.ORG/EN/STABLE/TABLE/</u>

- ASTRO-SPECIFIC MACHINE LEARNING AND DATA-MINING TOOLS
- HTTP://WWW.ASTROML.ORG/
- SCIKIT-LEARN
 - ACCESSIBLE MACHINE LEARNING TOOLKIT VERY EASY TO DIVE INTO
 - HTTPS://SCIKIT-LEARN.ORG/STABLE/
- Tensorflow and Pytorch
 - Deep-learning toolkits significant learning curves but extremely powerful
 - <u>HTTPS://WWW.TENSORFLOW.ORG/</u>
 - HTTPS://PYTORCH.ORG/

