

课程 > Unit 7: Bayesian inf... > Problem Set 7a > 3. Hypothesis test ...

3. Hypothesis test with a continuous observation

Problem 3. Hypothesis test with a continuous observation

0/3 points (graded)

Let Θ be a Bernoulli random variable that indicates which one of two hypotheses is true, and let $\mathbf{P}(\Theta=1)=p$. Under the hypothesis $\Theta=0$, the random variable X has a normal distribution with mean 0, and variance 1. Under the alternative hypothesis $\Theta=1$, X has a normal distribution with mean 1 and variance 1.

Consider the MAP rule for deciding between the two hypotheses, given that X=x.

1. Suppose for this part of the problem that p=2/3. The MAP rule can choose in favor of the hypothesis $\Theta=1$ if and only if $x\geq c_1$. Find the value of c_1 .

$$c_1 = (1/2)*ln(2) + 1$$
 X Answer: 0.6534

2. For this part, assume again that p=2/3. Find the conditional probability of error for the MAP decision rule, given that the hypothesis $\Theta=0$ is true.

$$\mathbf{P}(\mathbf{error}|\Theta=0)=$$
 X Answer: 0.2578

3. Find the overall (unconditional) probability of error associated with the MAP rule for p=1/2.

You may want to consult to standard normal table.

Normal Table Show

Solution:

1. For $0 , we can choose in favor of the hypothesis <math>\Theta = 1$ if and only if

$$egin{aligned} f_{X|\Theta}(x\mid 1)p_{\Theta}(1) & \geq f_{X|\Theta}(x|0)p_{\Theta}(0) \ & rac{1}{\sqrt{2\pi}}\mathrm{exp}igg(-rac{1}{2}(x-2)^2igg)\cdot p & \geq rac{1}{\sqrt{2\pi}}\mathrm{exp}igg(-rac{1}{2}x^2igg)\cdot (1-p) \end{aligned}$$

For p=2/3, this threshold corresponds to $c_1=1-(\ln 2)/2pprox 0.6534$.

2. Under the hypothesis $\Theta=0$, an error occurs if we decide $\Theta=1$. Therefore,

$$egin{aligned} \mathbf{P}(ext{error} \mid \Theta = 0) &= \mathbf{P}(X \geq c_1 \mid \Theta = 0) \ &= 1 - \mathbf{P}(X < c_1 \mid \Theta = 0) \ &pprox 1 - \Phi(0.65) \ &pprox 0.2578, \end{aligned}$$

since under $\Theta=0$, X is a standard normal random variable.

3. With p=1/2, the threshold becomes ${\bf 1}$. Therefore, we decide $\Theta=1$, whenever $x\geq 1$, and decide $\Theta=0$, whenever x<1. f

$$egin{aligned} \mathbf{P}(ext{error} \mid \Theta = 0) p_{\Theta}(0) + \mathbf{P}(ext{error} \mid \Theta = 1) p_{\Theta}(1) \ &= \mathbf{P}(X \geq 1 \mid \Theta = 0) rac{1}{2} + \mathbf{P}(X < 1 \mid \Theta = 1) rac{1}{2} \ &= rac{1 - \Phi(1)}{2} + rac{\mathbf{P}(X - 2 < -1 \mid \Theta = 1)}{2} \ &= rac{1 - \Phi(1)}{2} + rac{1 - \Phi(1)}{2} \ &= 1 - \Phi(1) \ &pprox 1 - 0.8413 = 0.1587. \end{aligned}$$

提交

You have used 2 of 3 attempts

Answers are displayed within the problem

显示讨论

Topic: Unit 7 / Problem Set / 3. Hypothesis test with a continuous observation