

Geometry Representation

Introduction to Computer Graphics Yu-Ting Wu

Define the 3D World

Description of the 3D World

• 3D coordinate systems

Points in 3D

Vector in 3D Space

Use to represent direction (e.g., movement) in the 3D world

Triangles in 3D

Triangle Mesh

 We can define the geometry of an object by specifying the coordinates of the vertices and their adjacencies

12 triangles

10K triangles

Triangle Mesh (cont.)

- Using more triangles can lead to higher-quality meshes
 - However, takes more time to render

Scene Built with Triangle Mesh

Surface Normal

- A surface normal is a vector that is perpendicular to a surface at a particular position
- Represent the orientation of the face
- The length of a normal should be equal to 1

Point, Triangle, and Surface Normal

Vertex Normal

 Compute by averaging the surface normals of the faces that contain that vertex

Can achieve much smooth shading than using triangle

3D Model Format

- A model is often stored in a file
- Common file format includes
 - Wavefront (*.obj)
 - Polygon file format (*.ply)
 - Filmbox (*.fbx)
 - MAX (*.max)
 - Digital Asset Exchange File (*.dae)
 - STereoLithography (*.stl)

Example: Wavefront OBJ File Format

cube.obj

Texture Coordinate

- A coordinate to look up the texture
 - The way to map a point on the 3D surface to a pixel (texel) on a 2D image texture
- We will introduce texture mapping in the near future

Transformation

World Space and World Coordinate

- Objects are defined in object space individually
- When building a scene, each object is transformed to a global and unique space called world space

The transform is called world transform

World Space and World Coordinate (cont.)

- Advantages for using "transformation"
 - Reuse model: design a model and use it in several scenes
 - Memory saving: store a 4x4 matrix instead of duplication of the entire models

Common Transformations

- Translation
- Scaling
- Rotation

2D Translation

• Given a point p(x, y) and a translation offset $T(t_x, t_y)$, the new point p'(x', y') after translation is p' = p + T

$$x' = x + t_x$$
$$y' = y + t_y$$

Can be represented as Matrix-vector multiplication

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D Scaling

• Given a point p(x, y) and a scaling factor $S(s_x, s_y)$, the new point p'(x', y') after scaling is p' = Sp

$$x' = x * s_x$$
$$y' = y * s_y$$

Matrix-vector multiplication

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D Rotation

• Given a point p(x, y), rotate it with respect to the origin by θ and get the new point p'(x', y') after rotation

• First we define

2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin by θ and get the new point p'(x', y') after rotation

$$x = r\cos(\phi) \qquad y = r\sin(\phi)$$

$$x' = r\cos(\phi + \theta) \qquad y' = r\sin(\phi + \theta)$$

$$x' = r\cos(\phi + \theta)$$

$$= r\cos(\phi)\cos(\theta) - r\sin(\phi)\sin(\theta)$$

$$= x\cos(\theta) - y\sin(\theta)$$

$$y' = r\sin(\phi + \theta)$$

$$= x\sin(\phi)\cos(\theta) + r\cos(\phi)\sin(\theta)$$

$$= y\cos(\theta) + x\sin(\theta)$$

2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin by θ and get the new point p'(x', y') after rotation

$$x' = r\cos(\phi + \theta)$$

$$= x\cos(\theta) - y\sin(\theta)$$

$$y' = r\sin(\phi + \theta)$$

$$= y\cos(\theta) + x\sin(\theta)$$

Matrix-vector multiplication

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D Translation, Scaling, and Rotation

Translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Using a 3x3 matrix allows us to perform all transformations using matrix/vector multiplications
 - We can also pre-multiply (concatenate) all the matrices

Homogeneous Coordinate

 We call the (x, y, 1) representation the homogeneous coordinate for (x, y)

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 If w is not equal to 1, to make the transformed coordinate also homogeneous, we need to divide the x and y components by w

$$x' = x'/w \qquad y' = y'/w \qquad w = 1$$

Revisit 2D Scaling

• The standard scaling matrix will only anchor at (0, 0)

What if we want the object to be scaled w.r.t its center?

Revisit 2D Scaling (cont.)

- Scaling about an arbitrary pivot point $Q(q_x, q_y)$
 - Translate the objects so that Q will coincide with the origin: $T(-q_x, -q_y)$
 - Scale the object: $S(s_x, s_y)$
 - Translate the object back: $T(q_x, q_y)$

Concatenation of matrices

• The final scaling matrix can be written as T(q)S(s)T(-q)

Revisit 2D Rotation

 The standard rotation matrix is used to rotate about the origin (0, 0)

 What if we want the object to be rotated w.r.t a specific pivot?

Revisit 2D Rotation (cont.)

- Rotate about an arbitrary pivot point $Q(q_x, q_y)$ by Θ
 - Translate the objects so that Q will coincide with the origin: $T(-q_x, -q_y)$
 - Rotate the object: $R(\theta)$
 - Translate the object back: $T(q_x, q_y)$
- The final rotation matrix can be written as T(q)R

Translation (3D) and Scaling (3D)

 A 3D transformation is represented as a 4x4 matrix, with homogeneous coordinate

Rotation (3D)

rotation w.r.t x-axis

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

rotation w.r.t y-axis

$$\begin{bmatrix}
\cos\theta & 0 & \sin\theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin\theta & 0 & \cos\theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

rotation w.r.t z-axis

$$\begin{bmatrix}
\cos\theta & -\sin\theta & 0 & 0 \\
\sin\theta & \cos\theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

2D

3D

3D Transformation

- Practice
 - Scale w.r.t a given pivot point
 - Rotate w.r.t a given pivot point

Spoiler

- There are other spaces
- We will introduce camera space, clip space, and NDC in the next slides

rendering

Any Questions?