Algorithms: K Nearest Neighbors

Simple Analogy...

• Tell me about your friends(who your neighbors are) and I will tell you who you are.

Instance-based Learning

KNN – Different names

- K-Nearest Neighbors
- Memory-Based Reasoning
- Example-Based Reasoning
- Instance-Based Learning
- Lazy Learning

What is KNN?

- A powerful classification algorithm used in pattern recognition.
- K nearest neighbors stores all available cases and classifies new cases based on a similarity measure (e.g distance function)
- One of the top data mining algorithms used today.
- A non-parametric lazy learning algorithm (An Instancebased Learning method).

KNN: Classification Approach

- An object (a new instance) is classified by a majority votes for its neighbor classes.
- The object is assigned to the most common class amongst its K nearest neighbors.(measured by a distant function)

Distance Measure

Distance measure for Continuous Variables

Distance functions

Euclidean $\sqrt{\sum_{i=1}^{k} (x_{i} - y_{i})^{2}}$

Manhattan $\sum_{i=1}^{n} |x_i - y_i|$

Minkowski $\left(\sum_{i=1}^{k} (|x_i - y_i|)^q\right)^{1/q}$

Distance Between Neighbors

Calculate the distance between new example
 (E) and all examples in the training set.

Euclidean distance between two examples.

$$-X = [X_1, X_2, X_3, ..., X_n]$$

$$-Y = [y_1, y_2, y_3, ..., y_n]$$

- The Euclidean distance between X and Y is defined as:

$$D(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

K-Nearest Neighbor Algorithm

- All the instances correspond to points in an n-dimensional feature space.
- Each instance is represented with a set of numerical attributes.
- Each of the training data consists of a set of vectors and a class label associated with each vector.
- Classification is done by comparing feature vectors of different K nearest points.
- Select the K-nearest examples to E in the training set.
- Assign E to the most common class among its K-nearest neighbors.

3-KNN: Example(1)

Customer	Age	Income	No. credit cards	Class
George	35	35K	3	No
Rachel	22	50K	2	Yes
Steve	63	200K	1	No
Tom	59	170K	1	No
Anne	25	40K	4	Yes
John	37	50K	2	YES

Distance from John
sqrt [(35-37) ² +(35-50) ² +(3- 2) ²]=15.16
sqrt [(22-37) ² +(50-50) ² +(2- 2) ²]=15
sqrt [(63-37) ² +(200-50) ² +(1- 2) ²]=152.23
sqrt [(59-37) ² +(170-50) ² +(1- 2) ²]=122
sqrt [(25-37) ² +(40-50) ² +(4- 2) ²]=15.74

How to choose K?

- If K is too small it is sensitive to noise points.
- Larger K works well. But too large K may include majority points from other classes.

Rule of thumb is K < sqrt(n), n is number of examples.

K-nearest neighbors of a record x are data points that have the k smallest distance to x

KNN Feature Weighting

 Scale each feature by its importance for classification

$$D(a,b) = \sqrt{\sum_{k} w_{k} (a_{k} - b_{k})^{2}}$$

- Can use our prior knowledge about which features are more important
- Can learn the weights $\mathbf{w_k}$ using cross-validation (to be covered later)

Feature Normalization

- Distance between neighbors could be dominated by some attributes with relatively large numbers.
 - e.g., income of customers in our previous example.

$$a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i}$$

- Arises when two features are in different scales.
- Important to normalize those features.
 - Mapping values to numbers between 0 1.

Nominal/Categorical Data

• Distance works naturally with numerical attributes.

Binary value categorical data attributes can be regarded as 1

or 0.

Ha	mming Di	tance
D_{H}	$=\sum_{l=1}^{k}\left x\right $	$y_i - y_i$
x =	$y \Rightarrow L$	0 = 0
X ≠	$y \Rightarrow I$)=1
v	v	Distance
X Male	Y Male	Distance 0

KNN Classification

KNN Classification – Distance

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Υ ←	8000
		1	
48	\$142,000	?	

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
Euclidean Distance

KNN Classification — Standardized Distance

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	N ←	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Υ	0.4437
1	0.41	Υ	0.3650
0.7	1.00	Υ	0.3861
0.325	0.65	Υ	0.3771
0.7	0.61	, ·	

$$X_{s} = \frac{X - Min}{Max - Min}$$

Strengths of KNN

- Very simple and intuitive.
- Can be applied to the data from any distribution.
- Good classification if the number of samples is large enough.

Weaknesses of KNN

- Takes more time to classify a new example.
 - need to calculate and compare distance from new example to all other examples.
- Choosing k may be tricky.
- Need large number of samples for accuracy.