

Ionic equilibrium

Ionic equilibrium -> Equilibrium established b/w undissociated molecule and dissociated ions is Kla ionic equilibrium. $AB_{(aq)} \stackrel{\longrightarrow}{\longleftarrow} A^{+}_{(aq)} + B^{-}_{(aq)}$ so eq established b/w AB, A+, B- is termed as Ionic equilibrium classification of substances on the basis of ionisation -> (1) Electrolyles -> The substances which can dissociate into cations and anions in their aa soi are K/a electrolytes. They are capable of conducting electricity in ag. soin. Ex. Nacl, Hcl, Cacl2, Mg Cl2, CH3 COONA, NAOH etc. (2) Non electrolytes -> The substances which cannot dissociate into ions in aq. soin are K/a non electrolytes. They are not capable of conducting electricity in aa. son.

C(H10 (glucose), C12 H22 011 (Sucrose), <u>Εχ.</u> NH2 (Urea) etc. classification of electrolytes -> (1) Strong electrolytes -> The substances which Can ionize Completely (100%) in aq. soin. * Ionization of strong electrolytes is irreversible Rxn. Ex (i) All strong acids \longrightarrow HcI, HBY, HI, HN03, H2SOy, HCIOy etc. Hcl(aa) + cl(aa) $H_2SO_4(aa)$ \longrightarrow $2H_{(aa)}^+ + SO_4^{2-}(aa)$ HC10y (aq) --> H+ C10y (aq) Perchloric acid (ii) All strong bases -> NaOH, KOH, ROOH, CSOH, Ba (OH)2, Sr (OH)2 e+c. $NaOH_{(aa)} \longrightarrow Na_{(aa)}^{\dagger} + OH_{(aa)}^{-}$

$$Ba(OH)_{2}(aq) \longrightarrow Ba_{(aq)}^{2+} + 2OH_{(qq)}^{-}$$

$$(III) \quad \underline{AII \quad soluble \quad salts - Nacl, \quad Kcl, \quad KNO_{3}, \quad CH_{3}COONHy, \quad NH_{4}CN \quad etc. \quad Nacl_{(aa)} \longrightarrow Na_{(aa)}^{+} + Cl_{(aq)}^{-}$$

$$CH_{3}COONa_{(aq)} \longrightarrow CH_{3}COO_{(aa)}^{-} + Na_{(aq)}^{+}$$

$$CH_{3}COONa_{(aq)} \longrightarrow CH_{3}COO_{(aa)}^{-} + Na_{(aq)}^{+}$$

NHucl(ae) -> NHu(ae) + cl(ae)

(2) Weak electrolytes -> The substances which ionise Partially in aq soin.

* ZZI

* Ionisation Rxn of weak electrolytes is

reversible Rxn.

Fy in All weak exists - HCN, H2Pou, H2Po3.

Ex. (i) All weak acids — HCN, H_3PO_4 , H_3PO_3 , H_3PO_2 , CH_3COOH , H_2S , H_2SO_3 , H_2CO_3 , HCOOH, C_6H_5COOH , $H_2C_2O_4$, HF e+C. $HCN(qq) \Longrightarrow H_{(qq)}^{+} + CN_{(qq)}^{-}$

 $HCN_{(aq)} \rightleftharpoons H^{+}_{(aq)} + CN^{-}_{(aq)}$ $H_{3}PO_{4}_{(aq)} \rightleftharpoons 3H^{+}_{(aq)} + PO_{4}^{3-}_{(aq)}$

 $H_3 Po_{3(qa)} \longrightarrow 2H^{+}_{(qa)} + HPo_{3}^{2-}$

 $H_3^{PO_2}(aa) \rightleftharpoons H_{(aa)}^+ + H_2^{PO_2}(aa)$

CH3 COOH (aa) - CH3 COO (aa) + H (aa)

 $H_2^{CO_3(aq)} \Longrightarrow 2H_{(aq)}^+ + CO_{3(aq)}^{2-}$

Benzoic acid

(ii) All weak bases -> Ex. NHyOH, NH3,

LiOH, Mg(OH)2, Fe(OH)3 e+c.

Acid -> Substances which can Produce

Ht ions in ag soin.

Base -> Substances Which can Produce

GH5 COOH (aa) → H+ GH5 COO (aa)

(Boric acid)

A.A.

$$\begin{pmatrix}
B(0H)_{4}
\end{pmatrix}$$

$$KOH_{(aa)} \longrightarrow K^{+}_{(aa)} + OH^{-}_{(aa)}$$
A.B.

$$NH_{4}OH_{(aa)} \Longrightarrow NH_{4}^{+}_{(aa)} + OH^{-}_{(aa)}$$

A·B· NH3 + H20 = NH4 + OH-

A·B.

(2) Lewis theory (Electronic Concept) -Lewis acid = lone pair acceptor Lewis base = lone Pair donor Exa. of lewis acid-Cations -> Ht, Nat, Kt, Mg2+ etc. Species having Incomplete octet -> BeF2, Becl2, Alcia, BF3, Bcl3, BBY3, BI3 etc.

species Capable to expand octet → Sifu,

PCIS, SF6, IF7 etc. Species having Polar IT-bond -> CO2,502,503 0 = c = 0 etc

Transition metal ion/atom -> Agt, cu2+ Fe, Ni Diatomic molecules having vacant Molecular

orbitals -> Fz, cl2, By2, Iz etc.

Exa. of Lewis buse -

All anions $\rightarrow H^-, OH^-, CN^-, O^-, HS, NH_2, NH, N$

Neutral molecules in which octet of central atom is complete and having spe-for donation.

EX. H20:, R-OH, R-O-R, NH3, R-NH2,

Bronsted acid = Proton donox

Bronsted base = Proton acceptor.

* This Concept can be used in aq. Phase,

non aq. Phase, Jas Phase.

$$\begin{array}{cccc}
 & Ex. & H_X + H_2O \Longrightarrow x^- + H_3O^+ \\
 & & Proton & Proton \\
 & & donor & acceptor \\
 & & (B.B.)
\end{array}$$

$$(B.A.)$$
 $(B.B.)$
 $X^{-} + H_2O \Longrightarrow HX + OH^{-}$

Proton Proton

acceptor donor

(B.A.)

(B.B.)

 $HC_2O_y^- + NH_3 \rightleftharpoons NH_y^+ + C_2O_y^{2-}$ Proton

donox ACCEPTON(B.A.)

$$HS^{-} + NH_{3} \longrightarrow H_{2}S + NH_{2}^{-}$$

Proton Proton

acceptor donor

(B.B.) (B.A.)

The substances which can act as both (bronsted acid and bronsted base) are Known as

Amphiprotic substances.

H₂0

(A·P·S·)

—H

OH

(A·P·S·)

—H

NH₂

(A·P·S·)

—H

NH₂

Conjugate acid-base Pair
$$\longrightarrow$$
Acid $\xrightarrow{-\mu^{+}}$ Conjugate base

Base H+ , conjugate acid

$$\frac{\text{Ex.}}{C_2O_4^2 + NH_3} \Longrightarrow HC_2O_4^2 + NH_2^2$$

$$(B.B.) \quad (B.A.) \quad (Conjugate \quad (Conjugate \quad base)$$

 $HSO_{4}^{-} + H_{2}O \implies SO_{4}^{2-} + H_{2}O^{+}$ (BA) (BB) (CB) (CA)

Nhich of the following Pair is conjugate acid-base Pair?

(A)
$$(HC_2O_{\overline{4}}, H_2C_2O_4)$$
 (B) (HS_1, S_2^{2-1})

 $(A) (HC_2O_{1} , H_2C_2O_{1})$ (D) (H₂SO₄, SO₄) (c) (HcN, cN^{-}) (F) (H20, H30+)

acid-base Pair?

(A)
$$(HC_2O_4)$$
, $H_2C_2O_4$) (B) (HS_7, S^2)

(C) (HCN, CN^-) (P) (H_2SO_4, SO_4)

(E) (HS_7, CI^-) (F) (H_2O_7, H_3O_7)

(E) (HST, CT) SOI-

HC204 - H+ H2C204 (C. A.)

base $\begin{array}{ccc} HS^{-} & \xrightarrow{-H^{+}} & S^{2-} \\ acid & (c \cdot B \cdot) \end{array}$

HCN
$$\frac{-H^{\dagger}}{\text{Acid}}$$
 (C.B.)

 H_2SO_4 $\frac{-2H^{\dagger}}{\text{H}^2}$ SO_4
 $HS^ \Rightarrow$ CI⁻
 H_2O $\frac{H^{\dagger}}{\text{H}^3}$ H_3O^{\dagger}

base (CA.)

(4) On the basis of no of transfer of

 H^+ or OH^- ions \Rightarrow

Acid

Monoprotic acid Dibasic tribasic or acid or Tetra or acid or Tetra triprotic acid protic

 HCI_1 HBY_1 HI_2 HI_2SO_4 HI_3PO_3 HI_3PO_4 $HI_4P_2O_7$ HI_2SO_4 HI_3PO_4 $HI_4P_2O_7$ HI_3PO_4 $HI_4P_2O_8$ $HI_$

monoacidic base

LioH, NaoH, KOH, RbOH, CSOH, NH3, NHUOH etc.

Diacidic base

Mg(0H)₂
Ba(0H)₂
Sr(0H)₂
Ca(0H)₂

Triacidic base Fe (OH)₃

13. Morphine $(C_{17}H_{19}NO_3)$, which is used medically to relieve pain is a base. What is its conjugate acid?

(A)
$$C_{17}H_{18}NO_3^+$$

(B)
$$C_{17}H_{18}NO_3$$

$$\mathrm{C}_{17}\mathrm{H}_{20}\mathrm{NO}_{3}^{\scriptscriptstyle{-}}$$

$$C_{17}H_{20}NO_3^+$$

$$\begin{array}{ccc} C_{17} H_{19} NO_3 & \xrightarrow{H^+} & C_{17} H_{20} NO_3^+ \\ & base & (C \cdot A \cdot) \end{array}$$

2. Three reactions involving $H_2PO_4^-$ are given below: \odot

- $H_3PO_4 + H_2O \longrightarrow H_3O^+ + H_2PO_4^-$
- $H_2PO_4^- + H_2O \longrightarrow HPO_4^{2-} + H_3O^+$ II.
- $H_2PO_4^- + OH^- \longrightarrow H_3PO_4 + O^{2-}$ III.

In which of the above does $H_2PO_4^-$ act as an acid?

- (A) II only
- (B) I and II
- (C) III only
- (D) I only

62. Conjugate base of HO₂ is:

- (A) 0_{2}^{-}
- (B)
- H_2O_2
- (C)
- (D)

 0_{2}^{+}

acid

(C. B.)

74. In the reaction, $I_2 + I^- \longrightarrow I_3^-$ the Lewis base is :

(A)

(B)

 I_3^-

(C)

(D)

None of these

$$I_2 + I^- \longrightarrow I_3^-$$
(L.A.) (L.B.) (Salt)

- 2. Species acting as both Bronsted acid and base is:
 - (A) HSO_{4}^{-}
- (B)

 Na_2CO_3

- (C) NH_3
- (D)
- OH^-
- (1992) \odot

(A)
$$H_2$$
 (B) HCO_3^- (C) NH_3 (D) $NH_2^ N H_3 + H_2 O \longrightarrow N H_4^+ + O H^ (A \cdot B \cdot)$
 $N H_2^- + H_2 O \longrightarrow N H_3 + O H^ (A \cdot B \cdot)$

Which is Bronsted lowry acid as well as Arrhenius acid.

83.

$$(A \cdot B \cdot)$$

$$(A \cdot B \cdot)$$

$$NH_{3}, NH_{2}^{-} \longrightarrow A \cdot P \cdot S \cdot$$

$$H(O_{3}^{-} + H_{2}O \longrightarrow CO_{3}^{2-} + H_{3}O^{+} \begin{pmatrix} A \cdot A \cdot \\ B \cdot A \cdot \end{pmatrix}$$