

capacity generated by a measure

Canonical name CapacityGeneratedByAMeasure

Date of creation 2013-03-22 18:47:35 Last modified on 2013-03-22 18:47:35

Owner gel (22282) Last modified by gel (22282)

Numerical id 7

Author gel (22282)
Entry type Theorem
Classification msc 28A05
Classification msc 28A12

Synonym outer measure generated by a measure

Defines outer measure generated by

Any http://planetmath.org/SigmaFinitefinite measure can be extended to a set function on the power set of the underlying space. As the following result states, this will be a Choquet capacity.

Theorem. Let (X, \mathcal{F}, μ) be a finite measure space. Then,

$$\mu^* : \mathcal{P}(X) \to \mathbb{R}_+,$$

 $\mu^*(S) = \inf \{ \mu(A) : A \in \mathcal{F}, A \supseteq S \}$

is an \mathcal{F} -capacity. Furthermore, a subset $S \subseteq X$ is (\mathcal{F}, μ^*) -capacitable if and only if it is in the http://planetmath.org/CompleteMeasurecompletion of \mathcal{F} with respect to μ .

Note that, as well as being a capacity, μ^* is also an outer measure (see http://planetmath.org/ConstructionOfOuterMeasureshere), which does not require the finiteness of μ . Clearly, $\mu^*(A) = \mu(A)$ for all $A \in \mathcal{F}$, so μ^* is an extension of μ to the power set of X, and is referred to as the outer measure generated by μ .

Recall that a subset $S \subseteq X$ is in the completion of \mathcal{F} with respect to μ if and only if there are sets $A, B \in \mathcal{F}$ with $A \subseteq S \subseteq B$ and $\mu(B \setminus A) = 0$ which, by the above theorem, is equivalent to the capacitability of S.