SESSION 2009

COMPOSITION DE MATHÉMATIQUES

Sujet: INSEE administrateur

DURÉE: 4 heures

L'énoncé comporte 4 pages. L'épreuve est constituée de deux problèmes indépendants

L'usage de la calculatrice est autorisé

L'épreuve est constituée de deux problèmes indépendants.

Problème 1

Dans tout le problème, n est un entier de \mathbb{N}^* fixé. On note $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n, $\mathbb{R}[X]$ celui des polynômes à coefficients réels et I la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

Pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$, on a $M^0 = I$, et pour tout entier naturel k non nul, on pose : $M^k = M \times M \times \ldots \times M$.

Un élément P de $\mathbb{R}[X]$ sera noté indifféremment P ou P(X) et, si P n'est pas le polynôme nul, son degré est noté d°(P). On rappelle le théorème de la division euclidienne dans $\mathbb{R}[X]$: si A et B sont deux éléments de $\mathbb{R}[X]$, B n'étant pas le polynôme nul, alors il existe un unique couple (Q, R) de polynômes réels tels que A = BQ + R avec R = 0 ou $d^{\circ}(R) < d^{\circ}(B)$. De plus, si R est nul, on dit que le polynôme B divise le polynôme A.

Soit P un élément de $\mathbb{R}[X]$ s'écrivant $P(X) = \sum_{k=0}^{m} a_k X^k$ et M une matrice de $\mathcal{M}_n(\mathbb{R})$. On définit alors la matrice P(M) de $\mathcal{M}_n(\mathbb{R})$ par : $P(M) = \sum_{k=0}^{m} a_k M^k$. Par exemple, si $P(X) = X^3 - 5X + 2$, alors $P(M) = M^3 - 5M + 2I$.

$$\mathcal{M}_n(\mathbb{R}) \text{ par } : P(M) = \sum_{k=0}^m a_k M^k. \text{ Par exemple, si } P(X) = X^3 - 5X + 2, \text{ alors } P(M) = M^3 - 5M + 2I.$$

On pourra utiliser sans justification les propriétés suivantes, valables pour tout couple (λ, μ) de réels, pour tout couple (P, Q)de polynômes et pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$:

$$(\lambda P + \mu Q)(M) = \lambda P(M) + \mu Q(M)$$
 et $(P \times Q)(M) = P(M) \times Q(M)$

On dit qu'un polynôme non nul P de $\mathbb{R}[X]$ est un polynôme annulateur d'une matrice M de $\mathcal{M}_n(\mathbb{R})$ si P(M)=0.

Partie I - Polynôme minimal d'une matrice carrée

- 1. Soit M une matrice de $\mathcal{M}_n(\mathbb{R})$.
 - (a) Montrer qu'il existe un entier p de \mathbb{N}^* tel que la famille (I, M, M^2, \dots, M^p) soit une famille liée.
 - (b) En déduire que toute matrice de $\mathcal{M}_n(\mathbb{R})$ admet au moins un polynôme annulateur de degré supérieur ou égal à 1.
- 2. L'ensemble des degrés des polynômes annulateurs de M possède, en tant que partie non vide de \mathbb{N}^* , un plus petit élément noté d.

Établir, à l'aide d'une démonstration par l'absurde, l'existence d'un unique polynôme annulateur de M, de degré d et de coefficient dominant égal à 1.

Ce polynôme s'appelle le polynôme minimal de la matrice M et est noté μ_M .

- (a) Soit P un polynôme non nul de $\mathbb{R}[X]$. Montrer que si le polynôme μ_M divise le polynôme P, alors P est un polynôme annulateur de M.
 - (b) En utilisant le théorème de la division euclidienne, montrer réciproquement que μ_M divise tout polynôme annulateur de M.
 - (c) Déduire de ce qui précède une caractérisation des polynômes annulateurs de M.
- (a) Montrer, à l'aide d'une démonstration par l'absurde, que toute racine de μ_M est valeur propre de M.
 - (b) Établir que les valeurs propres de M sont exactement les racines de μ_M .
- 5. (a) Établir, pour toute matrice inversible R de $\mathcal{M}_n(\mathbb{R})$ et tout polynôme Q de $\mathbb{R}[X]$, l'égalité suivante : $Q(R^{-1}MR) = R^{-1}Q(M)R.$
 - (b) En déduire que deux matrices semblables ont le même polynôme minimal.
- 6. (a) Quel est le polynôme minimal de la matrice nulle?
 - (b) Quel est le polynôme minimal de la matrice identité?
 - (c) Soit p un entier naturel non nul et A une matrice de $\mathcal{M}_n(\mathbb{R})$, nilpotente d'indice p, c'est-à-dire vérifiant $A^p=0$ et $A^{p-1} \neq 0$. Déterminer le polynôme minimal de A.
- 7. On considère la matrice A, élément de $\mathcal{M}_3(\mathbb{R})$, définie par : $A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
 - (a) Calculer $(A-I)^2$.
 - (b) En déduire le polynôme minimal de A et l'ensemble des valeurs propres de la matrice A.
- (a) Déterminer le polynôme de $\mathbb{R}[X]$, de degré supérieur ou égal 1 et de coefficient dominant égal à 1, qui est un diviseur commum des polynômes P et Q définis par : $P(X) = X^3 - X^2$ et $Q(X) = X^3 + X^2 + X$.

(b) Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ vérifiant $A^3 - A^2 = 0$ et $A^3 + A^2 + A = 0$. Déterminer la matrice A.

Partie 2 - Trace d'une matrice carrée

Dans cette partie, on note E un espace vectoriel réel de dimension n et on note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E. Si A est une matrice de $\mathcal{M}_n(\mathbb{R})$ de terme général $(a_{i,j})$, on définit la trace de A par : $\operatorname{tr}(A) = \sum_{i=1}^n a_{i,i}$.

- 1. (a) Montrer que l'application qui à une matrice associe sa trace, est une application linéaire de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} .
 - (b) Montrer, pour tout couple (A, B) de matrices de $\mathcal{M}_n(\mathbb{R})$, la relation suivante : $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
 - (c) En déduire que deux matrices semblables ont la même trace.
 - (d) En déduire que, pour tout élément f de $\mathcal{L}(E)$, on peut définir la trace de f et que l'application $f \longmapsto \operatorname{tr}(f)$ est une application linéaire de $\mathcal{L}(E)$ dans \mathbb{R} .
- 2. (a) Montrer que, pour tout couple (f,g) de $\mathcal{L}(E) \times \mathcal{L}(E)$, $\operatorname{tr}(f \circ g g \circ f) = 0$.
 - (b) On note N le noyau de l'application linéaire trace. Déterminer $\dim(N)$.
 - (c) Montrer que $\mathcal{L}(E) = N \oplus \mathbb{R} Id_E$, où $\mathbb{R} Id_E$ désigne l'ensemble des homothéties de E.

Partie 3 - Algorithme de Fadéev

On considère dans cette partie une matrice A de $\mathcal{M}_n(\mathbb{R})$ possédant n valeurs propres distinctes, $\lambda_1, \lambda_2, \dots, \lambda_n$

On note
$$\mu_A$$
 le polynôme minimal de A et on pose : $\mu_A(X) = X^n + \sum_{k=0}^{n-1} a_k X^k$.

Pour tout entier naturel k on pose : $S_k = \sum_{i=0}^n \lambda_i^k$ et on considère le système (S), d'inconnues les n réels u_1, u_2, \dots, u_n :

$$(S) \begin{cases} S_1 + u_1 = 0 \\ \forall k \in [2, n], \quad S_k + u_1 S_{k-1} + u_2 S_{k-2} + \dots + u_{k-2} S_2 + u_{k-1} S_1 + k u_k = 0 \end{cases}$$

- 1. Montrer que, pour tout entier naturel k, $S_k = tr(A^k)$.
- 2. Justifier que le système (S) admet une unique solution.
- 3. (a) Vérifier que $u_1 = a_{n-1}$.
 - (b) Montrer que $S_2 = S_1^2 2a_{n-2}$, puis en déduire que $u_2 = a_{n-2}$.

On admet dans la suite que, pour tout élément k de [1, n], on a $u_k = a_{n-k}$.

4. On définit la suite de matrices (B_k) et la suite de réels (d_k) par :

$$\begin{cases} d_1 = -\text{tr}(A) \text{ et } B_1 = A + d_1 I \\ \forall k \in [[2, n]], \ d_k = -\frac{1}{k} \text{tr}(B_{k-1}A) \text{ et } B_k = B_{k-1}A + d_k I \end{cases}$$

- (a) Établir, pour tout entier k élément de $[\![1,n]\!]$, la relation suivante : $B_k = A^k + \sum_{i=1}^k d_i A^{k-i}$.
- (b) Exprimer, pour tout k de [2, n], d_k en fonction de $\operatorname{tr}(A), \operatorname{tr}(A^2) \dots \operatorname{tr}(A^k)$ et de d_1, d_2, \dots, d_{k-1} .
- (c) En déduire, pour tout entier k de [1, n], que $d_k = a_{n-k}$, puis que $B_n = 0$.
- (d) Montrer que A est inversible si et seulement si $d_n \neq 0$ et exprimer dans ce cas A^{-1} en fonction de B_{n-1} et de d_n .
- 5. On pose $A = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 3 & 2 \\ 0 & 1 & 3 \end{pmatrix}$
 - (a) Déterminer les valeurs propres de A.
 - (b) Utiliser la méthode de cette partie pour calculer A^{-1} ainsi que le polynôme minimal de A.

Problème 2

On se propose dans ce problème d'étudier les intégrales de Wallis et d'en déduire quelques applications.

Dans tout le problème on note $\binom{n}{k}$ le coefficient du binôme défini par : $\binom{n}{k} = 0$ si k < 0 ou k > n, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ sinon .

Partie 1 - Intégrales de Wallis

On pose, pour tout entier naturel n, $w_n = \int_0^{\pi/2} \cos^n(x) dx$.

- 1. (a) Calculer w_0 et w_1 .
 - (b) Montrer que la suite $(w_n)_{n\in\mathbb{N}}$ est décroissante.
 - (c) Montrer que, pour tout entier naturel $n, w_n > 0$.
- 2. (a) Montrer, pour tout entier naturel n, la relation : $(n+2)w_{n+2} = (n+1)w_n$.
 - (b) En déduire, pour tout entier naturel n, l'égalité : $w_{2n} = \frac{(2n)!}{(2^n \times n!)^2} \times \frac{\pi}{2}$.
 - (c) Calculer, pour tout $n ext{ de } \mathbb{N}$, $(n+1)w_{n+1}w_n$.
 - (d) En déduire la valeur de w_{2n+1} en fonction de n.
- 3. Calculer $\lim_{n \to +\infty} \frac{w_{n+2}}{w_n}$.
- 4. En déduire, que $\lim_{n\to+\infty} \frac{w_{n+1}}{w_n} = 1$.
- 5. Montrer que : $w_n \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.
- 6. En déduire la formule de Wallis : $\binom{2n}{n} \underset{+\infty}{\sim} \frac{4^n}{\sqrt{n\pi}}$

Partie 2 - Une série utile pour la suite

- 1. Soit $(a_n)_{n\in\mathbb{N}}$ une suite décroissante de limite nulle. On pose, pour tout entier naturel n non nul, $S_n = \sum_{k=1}^n (-1)^k a_k$.
 - (a) Montrer que la suite $(S_{2n})_{n\in\mathbb{N}^*}$ est décroissante et que la suite $(S_{2n+1})_{n\in\mathbb{N}}$ est croissante.
 - (b) En déduire que ces deux suites sont convergentes.
 - (c) Montrer qu'elles convergent vers une même limite.
- 2. Pour tout entier naturel n non nul, on pose : $b_n = (-1)^n \ln \left(1 + \frac{1}{n}\right)$. Montrer que la série de terme général b_n est convergente.
- 3. On pose, pour tout entier naturel n non nul, $S_n = \sum_{k=1}^n b_k$.
 - (a) Expliciter, pour tout p de \mathbb{N}^* , S_{2p} en fonction de p.
 - (b) En utilisant la fin de la partie 1, montrer que $\lim_{p \to +\infty} S_{2p} = \ln\left(\frac{2}{\pi}\right)$ et en déduire la valeur de $\sum_{n=1}^{+\infty} b_n$.

Partie 3 - Calcul d'une intégrale

Pour tout entier naturel a, on note [a] la partie entière de a, c'est-à-dire l'unique entier n tel que $n \le a < n+1$.

3

Le but de cette partie est de montrer que l'intégrale $K = \int_0^1 \frac{(-1)^{\left\lfloor \frac{1}{x} \right\rfloor}}{x} dx$ converge et de trouver sa valeur.

Pour tout ε de]0,1[, on pose : $K_{\varepsilon} = \int_{\varepsilon}^{1} \frac{(-1)^{\left\lfloor \frac{1}{x} \right\rfloor}}{x} dx$.

- 1. Déterminer, en fonction de ε , l'entier n tel que $\frac{1}{n+1} < \varepsilon \leqslant \frac{1}{n}$.
- 2. Montrer l'égalité : $K_{\varepsilon} = \int_{\varepsilon}^{1/n} \frac{(-1)^n}{x} dx + \sum_{k=1}^{n-1} \int_{1/(k+1)}^{1/k} \frac{(-1)^k}{x} dx$.

3. En utilisant la partie 2, donner la valeur de K.

Partie 4 - La formule de Stirling

Pour tout entier naturel n non nul, on pose : $u_n = \frac{n^{n+\frac{1}{2}}e^{-n}}{n!}$ et $v_n = \ln{(u_{n+1})} - \ln{(u_n)}$.

- 1. (a) Montrer la relation : $\frac{u_{n+1}}{u_n} = \frac{1}{e} \left(1 + \frac{1}{n}\right)^{n + \frac{1}{2}}$.
 - (b) En déduire l'existence d'une suite (ε_n) qui tend vers 0 quand n tend vers l'infini telle que : $v_n = \frac{1}{12n^2} + \frac{\varepsilon_n}{n^2}$.
 - (c) Établir que la série de terme général v_n est convergente.
 - (d) Montrer que la suite (u_n) converge vers une limite ℓ strictement positive.
 - (e) En déduire que : $n! \underset{+\infty}{\sim} \frac{\sqrt{n}}{\ell} \left(\frac{n}{e}\right)^n$.
- 2. (a) En utilisant l'équivalent précédent et le résultat de la dernière question de la partie 1, montrer que : $\ell = \frac{1}{\sqrt{2\pi}}$.
 - (b) En déduire l'équivalent suivant :

$$n! \underset{+\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Partie 5 - Calcul de l'intégrale de Gauss

On pose $I = \int_0^{+\infty} e^{-x^2} dx$ et, pour tout entier naturel n non nul, $I_n = \int_0^{\sqrt{n}} \left(1 + \frac{x^2}{n}\right)^{-n} dx$ et $J_n = \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n dx$.

- 1. Montrer la convergence de l'intégrale I.
- 2. (a) Montrer, pour tout réel x positif, l'encadrement suivant : $1-x \le e^{-x} \le \frac{1}{1+x}$.
 - (b) En déduire, pour tout entier naturel n non nul, la double inégalité : $J_n \leqslant \int_0^{\sqrt{n}} e^{-x^2} dx \leqslant I_n$.
- 3. (a) En effectuant dans I_n le changement de variable $x = \sqrt{n} \tan(t)$, montrer que $I_n \leqslant \sqrt{n} w_{2n-2}$.
 - (b) Montrer, à l'aide d'un autre changement de variable, l'égalité : $J_n = \sqrt{n}w_{2n+1}$.
 - (c) Déduire des résultats précédents l'égalité suivante :

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$