Understanding I3C Communication Protocol & Haptic Feedback Driver Design

Introduction: Haptic Feedback and I3C

What is I3C?

- The BOS1921 piezo haptic driver IC provides versatile haptic feedback, commonly used in devices requiring vibration patterns to interact with users.
- While the development board is costly (~240€), the main IC, BOS1921, is more affordable (~4€), making it attractive for project development.
- This project involves creating a breakout board for the BOS1921 and investigating I3C, which is a successor to the I2C communication protocol.

Breakout Board Creation

Designing the Breakout Board

- Step 1: Start by reviewing the datasheet for the IC to gather the schematic, PCB design, and component lists.
- Step 2: Convert the schematic to a PCB design. Using a 4-layer PCB design for optimal component placement—capacitors and coils are placed as close to the IC as possible.
- Step 3: Order PCBs and begin assembly. Use solder paste and a mini hot plate for reflow soldering, adding male headers and terminals for testing.

Troubleshooting Issues

- o After assembly, **no boards worked** initially due to excessive current draw.
- Thermal camera helped identify the issue: a wrongly placed capacitor.
- The capacitor was flipped, causing the issue, but after flipping it, the boards powered up successfully.

Final Test

 The boards were tested by connecting them to the development board, playing back waveforms using the onboard software. The **haptic actuator** performed correctly, confirming the breakout board's functionality.

I2C vs. I3C Communication Protocol

I2C Overview

- I2C allows communication with a maximum frequency of 1 MHz, a widely used communication protocol in electronics.
- o It uses **open collector drivers** with pull-up resistors for signal transitions.

I3C Overview

- o **I3C** allows a **maximum frequency of 12.5 MHz**, offering a much higher data transfer rate than I2C.
- Key differences include the use of push-pull drivers (instead of open collector) for more efficient signal transitions and lower power consumption.

Main Differences Between I2C and I3C

- Timing: I3C offers faster data transfer (12.5 MHz) compared to I2C (1 MHz).
- Dynamic Addressing: I3C assigns dynamic addresses during initialization, preventing address collisions that can occur with I2C.
- Common Command Codes (CCC): Allows for fast commands like resetting addresses or setting new ones.

Advanced I3C Features

- Hot Join: I3C devices can be added or removed without resetting the microcontroller, a feature not supported by I2C.
- o **In-Band Interrupts**: Eliminates the need for an external interrupt pin, allowing interrupts to be communicated through the data stream.

Conclusion and Verdict

I3C Advantages

- Higher Data Transfer Rates: I3C provides faster communication (12.5 MHz vs. 1 MHz).
- Dynamic Addressing: Reduces the risk of address conflicts and simplifies integration.

 Hot Join & In-Band Interrupts: Improve functionality and reduce wiring complexity.

Challenges with I3C

- Complexity: I3C is more complicated and requires special peripherals to implement, which are not widely available in microcontrollers yet.
- Current Microcontroller Support: Only a few microcontrollers currently support I3C.

• I2C Sufficiency

- I2C remains sufficient for many projects, including the BOS1921 haptic driver, which uses I2C for communication on its development board.
- **Future of I3C**: While I3C has potential, it is not yet as widespread as I2C. For now, **I2C** will likely remain the go-to protocol for many applications.

Takeaways

- **I3C** is a powerful successor to **I2C**, offering faster speeds, better addressing, and fewer wires for complex sensor systems.
- The **BOS1921** can work with both I2C and I3C, but for most projects, **I2C** will still be the simpler and sufficient choice.
- **Breakout board** creation and troubleshooting are essential skills in project development, helping to create affordable, customizable solutions.