COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code: CSE 2151

Credits: 04

HARDWIRED APPROACH

- Control logic is a clocked sequential circuit.
- So conventional sequential circuit design procedure can be applied to build CU.
- Final circuit is obtained by physically connecting gates and flip flops.
- Cost of control logic increases with system complexity.

- 1. Define task to be performed.
- 2. Propose a trial processing section.
- 3. Provide a register transfer description algorithm based on processing section outlined.
- 4. Validate the algorithm by using trial data.
- 5. Describe the basic characteristics of the hardware elements to be used in the processing section.
- 6. Complete the design of the processing section by establishing necessary control points.
- 7. Propose the block diagram of the controller.
- 8. Specify state diagram of controller.
- 9. Specify the characteristics of the hardware elements to be used in the controller.
- 10. Complete the controller design and draw a logic diagram of final circuit.

Step 1: Task definition.

Design a Booth's multiplier to multiply two 4-bit signed numbers.

Step 2: Trial processing section.

 $\mathbf{q}_1 \, \mathbf{q}_0$

 $0 \quad 0 \rightarrow \text{none}$

 $0 \quad 1 \rightarrow add M$

 $1 \quad 0 \rightarrow \text{sub M}$

 $1 \rightarrow None$

Step 3: Register transfer description of Booth's multiplier procedure based on the processing section outlined in the previous step.

Declare registers A[4], M[4], Q[5], L[3];

Declare buses inbus[4], outbus[4];

Start: $A \leftarrow 0, M \leftarrow \text{inbus}, L \leftarrow 4$;

 $Q[4:1] \leftarrow inbus, Q[0] \leftarrow 0;$

Loop: if Q[1:0] = 01, then go to ADD;

if Q[1:0]=10, then go to SUB;

go to Rshift;

ADD: $A \leftarrow A + M$;

goto Rshift;

SUB: $A \leftarrow A - M$;

Rshift: $ASR(A$Q), L \leftarrow L-1$;

if L>0, then go to Loop

outbus =A;

outbus=Q[4:1];

Halt: go to Halt

clear A and transfer M

transfer O

Step 4: Validate the algorithm by using trial data.

Initial Values	Init		Q ₋₁ 0	Q 0011	A 0000
A A - M } First Shift Cycle	A Shift	0111 0111	0 1	0011 1001	1001 1100
Shift } Second Cycle	Shift	0111	1	0100	1110
A A + M Third Cycle	A Shift	0111 0111	1 0	0100 1010	0101 0010
Shift } Fourth Cycle	Shift	0111	0	0101	0001

Step 5: Processing section includes GPRs, 4-bit adder / subtractor, Tristate buffers

C -	L	R	D	Clock	Action
0 0	0 1 0 0	0 0 1 0 0	0 0 0 1 0	*	Clear Load external data Right shift Decrement by one No change

Storage Register

Step 6: The complete design of processing section establishing control points.

Figure 4.18 Processing Section of the Booth's Multiplier

TOPICS COVERED FROM

- Textbook 3:
 - Chapter 4: 4.2 and 4.3