INTEGRALE DUBLE

• Să se reprezinte grafic următoarele domenii (determinând și coordonatele punctelor de intersecție):

- **1.** D este domeniul mărginit de parabolele $y = x^2$ și $y^2 = x$
- **2.** D este domeniul mărginit de dreptele x=2, y=x și hiperbola xy=1
- **3.** D este domeniul mărginit de curbele y = 0, x + y 6 = 0, $y^2 = 8x$
- **4.** $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 2y \}$
- **5.** $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le x, y \ge 0 \}$
- **6.** $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 2x + 2y 1 \}$

Indicație: La domeniile 4 – 6 se fac artificii pentru a ajunge la ecuații de cerc, cu centrul diferit de origine.

• Să se calculeze următoarele integrale duble $\iint_D f(x,y) dxdy$, cu reprezentare grafică a lui D:

- 7. $D = [0,1] \times [2,3]$, $f(x,y) = xy^2$.
- **8.** $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 2x \le y \le x^2 + 1\}$, f(x,y) = x; Calculați și aria(D).
- **9.** D este domeniul mărginit de curbele y=x și $y=x^2$, f(x,y)=3x-y+2; Calculați și aria(D).
- **10.** $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le a^2, \ a > 0, \ x \ge 0, \ y \ge 0 \}, \ f(x,y) = \frac{1}{\sqrt{1 + x^2 + y^2}}.$
- **11.** $D = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le a^2, \ 0 \le \frac{x}{\sqrt{3}} \le y \le x\sqrt{3} \right\}, \ f(x, y) = x^2 + y^2.$
- **12.** $D = \{(x, y) \in \mathbb{R}^2 \mid 2 \le x^2 + y^2 \le 4, \ x + y \ge 0 \}, \ f(x, y) = \sqrt{x^2 + y^2}.$
- **13.** D este domeniul mărginit de curbele $y=x^2+1$, $y=-x^2$, x=-1, x=3, f(x,y)=x+3y

1

- **14.** $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$, $f(x, y) = e^{x^2 + y^2}$; Calculați și aria(D).
- **15.** $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le x, y \ge 0\}$, f(x, y) = xy; Calculați și aria(D).
- **16.** D este domeniul mărginit de curbele $x^2+y^2=e^2$, $y=x\sqrt{3}$, $x=y\sqrt{3}$, $x\geq 0$, $f\left(x,y\right)=\ln\left(1+x^2+y^2\right)$.

17.
$$D = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0\}, f(x, y) = e^{-2(x^2 + y^2)}.$$

18. Calculați aria(D), unde D este domeniul situat în interiorul curbei de ecuație: $(x-2y+3)^2 + (3x+4y-1)^2 = 100 \ (fără reprezentare grafică).$

Indicații și soluții:

7.
$$D = [0,1] \times [2,3]$$
, $\iint_D f = \int_0^1 \left(\int_2^3 xy^2 dy \right) dx = (...) = \frac{19}{6}$.

8.
$$D$$
 este intergrafic, $\iint_D f = \int_0^1 \left(\int_{2x}^{x^2+1} x dy \right) dx = (...) = \frac{1}{12}$; $aria(D) = \int_0^1 \left(x^2 + 1 - 2x \right) dx = \frac{1}{3}$.

9.
$$D$$
 este intergrafic (se reprezintă grafic),
$$\iint_D f = \int_0^1 \left(\int_{x^2}^x (3x - y + 2) dy \right) dx = (\dots) = \frac{31}{60};$$
 $aria(D) = \int_0^1 (x - x^2) dx = \frac{1}{6}.$

10. Se reprezintă grafic D, apoi se trece la coordonate polare: $x=r\cos t$, $y=r\sin t$, domeniul de integrare devine de tip dreptunghi cu $r\in \left[0,a\right]$ și $t\in \left[0,\frac{\pi}{2}\right]$ iar jacobianul este $J\left(r,t\right)=r$; Obținem

$$\iint_{D} f(x,y) dx dy = \int_{0}^{\frac{\pi}{2}} \left(\int_{0}^{a} \frac{r}{\sqrt{1+r^{2}}} dr \right) dt = (...) = \frac{\pi}{2} \left(\sqrt{1+a^{2}} - 1 \right).$$

11. Se reprezintă grafic D, apoi se trece la coordonate polare: $x = r\cos t$, $y = r\sin t$, domeniul de integrare devine de tip dreptunghi cu $r \in \left[0,a\right]$ și $t \in \left[\frac{\pi}{6},\frac{\pi}{3}\right]$ iar jacobianul este $J\left(r,t\right) = r$; Obținem

$$\iint_{D} f(x,y) dx dy = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\int_{0}^{a} r^{3} dr \right) dt = (...) = \frac{a^{4}\pi}{24}.$$

12. Se reprezintă grafic D, apoi se trece la coordonate polare: $x = r\cos t$, $y = r\sin t$, domeniul de integrare devine de tip dreptunghi cu $r \in \left[\sqrt{2}, 2\right]$ și $t \in \left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$ iar jacobianul este $J\left(r, t\right) = r$;

Obţinem
$$\iint_D f(x,y) dx dy = \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} \left(\int_{\sqrt{2}}^2 r^2 dr \right) dt = (...) = \frac{\pi}{3} \left(8 - 2\sqrt{2} \right).$$

13.
$$D$$
 este integrafic cu $x \in [-1,3]$ și $-x^2 \le y \le x^2 + 1$; $\iint_D f = \int_{-1}^3 \left(\int_{-x^2}^{x^2 + 1} (x + 3y) dy \right) dx = (...) = 68$.

14. Schimbare de variabilă cu coordonate polare: $x = r \cos t$, $y = r \sin t$, domeniul de integrare devine de tip dreptunghi cu $r \in [0,1]$ și $t \in [0,2\pi)$ iar jacobianul este J(r,t) = r; Obținem $\iint_D e^{x^2+y^2} dx \, dy = \int_0^{2\pi} \left(\int_0^1 r \cdot e^{r^2} dr \right) dt = (\ldots) = \pi \left(e-1\right); \ aria\left(D\right) = \text{ aria unui cerc centrat în origine, de rază 1, deci } aria\left(D\right) = \pi \ .$

15. Schimbare de variabilă $x = \frac{1}{2} + r \cos t$, $y = r \sin t$, domeniul de integrare devine de tip dreptunghi cu $r \in \left[0, \frac{1}{2}\right]$ și $t \in \left[0, \pi\right]$ iar jacobianul este $J\left(r, t\right) = r$; Obținem:

$$\iint_D xy dx dy = \int_0^\pi \Biggl(\int_0^{\frac{1}{2}} \Biggl(r^2 \sin t \cos t + \frac{1}{2} r \sin t \Biggr) \cdot r dr \Biggr) dt = (...) = \frac{1}{24}; \quad \text{Conform} \quad \text{reprezent `aria} (D) = \text{aria unui semi-cerc centrat `in} \left(\frac{1}{2}, 0 \right), \text{ de rază } \frac{1}{2}, \text{ deci } aria \left(D \right) = \frac{\pi}{8}.$$

16. Schimbare de variabilă cu coordonate polare: $x = r \cos t$, $y = r \sin t$, domeniul de integrare devine de tip dreptunghi cu $r \in \left[0,e\right]$ și $t \in \left[\frac{\pi}{6},\frac{\pi}{3}\right]$ iar jacobianul este $J\left(r,t\right) = r$; Obţinem:

$$\iint_{D} xy dx dy = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\frac{1}{2} \int_{0}^{e} 2r \ln(1+r^{2}) dr \right) dt = (...) = \frac{\pi}{12} (1+e^{2}) \left[\ln(1+e^{2}) - 1 \right] + \frac{\pi}{12}.$$

17. Schimbare de variabilă cu coordonate polare: $x = r\cos t$, $y = r\sin t$, domeniul de integrare devine de tip dreptunghi cu $r \in \left[0, +\infty\right)$ și $t \in \left[0, \frac{\pi}{2}\right]$ iar jacobianul este $J\left(r, t\right) = r$; Obținem:

$$I = \iint_D e^{-2\left(x^2 + y^2\right)} dx \, dy = \int_0^{+\infty} \left(\int_0^{\frac{\pi}{2}} e^{-2r^2} r \, dt \right) dr = \frac{\pi}{2} \int_0^{+\infty} e^{-2r^2} r dr \; ; \quad \text{Deoarece} \quad \left(e^{-2r^2} \right)' = -4r \, e^{-2r^2} \; , \quad \text{vom avea:} \quad I = -\frac{\pi}{8} e^{-2r^2} \bigg|_0^{+\infty} = \frac{\pi}{8} \; .$$

18. Schimbare de variabilă datorată formei ecuației curbei: x-2y=u, 3x+4y=v, domeniul de integrare devine $D^* = \left\{ (u,v) \in \mathbb{R}^2 \,\middle|\, (u+3)^2 + (v-1)^2 \le 100 \right\}$, adică interiorul unui cerc de centru $\left(-3,1 \right)$ și rază 10. Din schimbarea de variabilă făcută obținem $x = \frac{2}{5}u + \frac{1}{5}v$ și respectiv $y = -\frac{3}{10}u + \frac{1}{10}v$ iar

jacobianul este $J^*(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{2}{5} & \frac{1}{5} \\ -\frac{3}{10} & \frac{1}{10} \end{vmatrix} = \frac{1}{10}$ și astfel $aria(D) = \frac{1}{10} \iint_{D^*} du \, dv$. Pentru a rezolva

această integrală dublă pe domeniul $D^* = \left\{ \left(u,v\right) \in \mathbb{R}^2 \left| \left(u+3\right)^2 + \left(v-1\right)^2 \le 100 \right\}$, trecem la coordonate polare cu $u+3 = r\cos t$, $v-1 = r\sin t$, domeniul de integrare devine de tip dreptunghi cu $r \in \left[0,10\right]$ și $t \in \left[0,2\pi\right)$ iar jacobianul este $J\left(r,t\right) = r$. Obținem:

$$aria(D) = \frac{1}{10} \iint_{D^*} du \, dv = \frac{1}{10} \int_0^{10} \left(\int_0^{2\pi} r \, dt \right) dr = \frac{2\pi}{10} \int_0^{10} r \, dr = 10\pi.$$