BAYESUVIUS

a visual dictionary of Bayesian Networks and Causal Inference

ROBERT R. TUCCI

Bayesuvius,

a visual dictionary of Bayesian Networks and Causal Inference

Robert R. Tucci www.ar-tiste.xyz

February 5, 2024

This book is constantly being expanded and improved. To download the latest version, go to https://github.com/rrtucci/Bayesuvius

Bayesuvius

by Robert R. Tucci Copyright ©2020-2023, Robert R. Tucci.

This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License. To view a copy of this license, visit the link https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042.

Figure 1: View of Mount Vesuvius from Pompeii

Figure 2: Mount Vesuvius and Bay of Naples

Contents

Fo	oreword		
Aı	Appendices		
\mathbf{A}	Navigating the ocean of Judea Pearl's Books		
В	CI-2-3 track		
C	Notational Conventions and Preliminaries C.1 Some abbreviations frequently used throughout this book C.2 $\mathcal{N}(!a)$ C.3 Indicator function (a.k.a. Truth function) C.4 One hot vector C.5 L^p norm C.6 Special sets C.7 Kronecker delta function C.8 Dirac delta function C.9 Majority function C.10 Underlined letters indicate random variables C.11 Probability distributions C.12 Discretization of continuous probability distributions C.13 Samples, i.i.d. variables C.14 Expected Value and Variance C.15 Conditional Expected Value C.16 Notation for covariances C.17 Conditional Covariance C.18 Normal Distribution C.20 Softmax function (a.k.a. Boltzmann Distribution) C.21 Sigmoid and log-odds functions		
	C.22 Estimand, Estimator (curve-fit), Estimate, Bias		

	C.26 Bayes Rule, Bayesian Updating And Conjugate Priors	43
	C.27 Linear regression, Ordinary Least Squares (OLS)	44
	C.27.1 LR, assuming x_{σ} are non-random	45
	Derivation of LR From Minimization of Error	46
	Geometry of LR with non-random x_{σ}	47
	LR Goodness of Fit, R^2	48
	C.27.2 LR, assuming x_{σ} are random	51
	Transforming expressions from non-random to random x_{σ}	51
	LR with random x_{σ} , expressed in derivative notation	53
	Double regression of y	57
	R^2 with random x_{σ}	59
	C.28 Logistic Regression (LoR)	60
	C.29 Entropy, Kullback-Leibler divergence, Cross-Entropy	60
	${ m C.30}$ Definition of various entropies used in Shannon Information Theory .	61
	C.31 Mean log likelihood asymptotic behavior	62
	C.32 Arc Strength (Arc Force)	64
	C.33 Pearson Chi-Squared Test	64
	C.34 Demystifying Population and Sample Variances	65
	C.35 Independence of $\widehat{\mu}$ and $\widehat{\sigma^2}$	67
	C.36 Chi-square distribution	68
	C.37 Student's t-distribution	69
	C.38 Hypothesis testing and 3 classic test statistics (Likelihood, Score, Wald	d) 72
	C.39 Error Bars	75
	C.40 Confidence Interval	76
	C.41 Score p-value	78
	C.42 Convex/Concave functions, Jensen's Inequality	80
	C.43 Chebyshev's inequality	81
	C.44 Short Summary of Boolean Algebra	83
	C.45 Laplace transform	84
	C.45.1 Examples	86
	C.45.2 Properties	87
	C.46 Z-transform	93
	C.46.1 Examples	96
	C.46.2 Properties	97
	C.47 Legendre Transformation (dual functions)	100
	C.47.1 Examples	101
	C.47.2 Properties	103
	C.47.3 Connection to Fourier transform and Quantum Mechanics	106
	C.48 Numpy tensor methods	107
D	Definition of a Bayesian Network	113

${f E}$	Bay	esian Networks, Causality and the Passage of Time	117		
	E.1	Unifying Principle of this book	117		
	E.2	You say tomato, I say tomato	118		
	E.3	A dataset is causal model free	118		
	E.4	What is causality?	119		
	E.5	Bayesian Networks and the passage of time	120		
	E.6	Advice for the DAG-phobic	121		
1	Ada	aBoost	122		
	1.1	AdaBoost for general ensemble of w-classifiers	122		
	1.2	AdaBoost for ensemble of tree stumps	126		
2	AN	OVA	128		
	2.1	Law of Total Variance	128		
	2.2	Sum of Squares Estimates	129		
	2.3	F-statistic and hypothesis testing	131		
3	AR	ACNE structure learning	133		
4	Bac	kdoor Adjustment Formula	135		
	4.1	Examples	136		
5	Back Propagation (Automatic Differentiation)				
	5.1	Toy Example	140		
	5.2	General Theory	141		
		5.2.1 Jacobians	141		
		5.2.2 Bnets for function composition, forward propagation and back	1.40		
	r 9	propagation	142		
	5.3	Application to Neural Networks	144		
		5.3.1 Absorbing b_i^{λ} into $w_{i j}$	144		
		propagation for NN	145		
	5.4	General bnets instead of Markov chains induced by layered structure	140		
	0.1	of NNs	148		
6	Bell	and Clauser-Horne Inequalities in Quantum Mechanics	149		
7	Ber	kson's Paradox	150		
8	Bin	ary Decision Diagrams	152		
		· ·			
9	9.1	ow-Liu Trees and Tree Augmented Naive Bayes (TAN) Chow-Liu Trees	156 156		
	9.1	Tree Augmented Naive Bayes (TAN)	160		
	$_{\mathcal{I}}$	The magnetica naive Dayes (11111)	100		

10	Control Theory (linear, deterministic)	162
	10.1 Basic feedback model	163
	10.2 Classical model (analog)	164
	10.3 Modern model (analog)	167
	10.4 Classical model (digital)	171
	10.5 Modern model (digital)	171
	10.5.1 Discretizing derivatives	172
	10.5.2 Solving Difference Equation	173
	10.6 Higher than first order differential (or difference) equations	175
	10.6.1 Differential Equations	175
	10.6.2 Difference Equations	176
	10.7 Time-Invariance, Causality, Stability	177
	10.8 Controllability, Observability	178
	10.9 Signal Flow Graph	178
11	Copula	183
	11.1 Examples	186
12	Counterfactual Reasoning	189
	12.1 The 3 Rungs of Causal AI	189
	12.2 Do operator	190
	12.3 Imagine operator	190
13	Cross-Validation	194
14	DAG Extraction From Text (DEFT)	197
15	Dataset Shift and Batch Normalization	198
	15.1 Covariate Shift	199
	15.2 Concept Shift	199
	15.3 Batch Normalization	200
16	Decision Trees	201
	16.1 Transforming a dtree into a bnet	203
	16.2 Structure Learning for Dtrees	204
	16.2.1 Information Gain, Gini	205
	16.3 Information Gain Ratio	208
	16.3.1 Pseudo-code	209
17	Decisions Based on Rungs 2 and 3: COMING SOON	211

18	Difference-in-Differences	212			
	18.1 John Snow, DID and a cholera transmission pathway	212			
	18.2 PO analysis	214			
	18.3 Linear Regression	216			
19	9 Diffusion Models				
	19.1 Bnet for DM	219			
	19.2 Mean Values $M^{t-1}(x^t)$ and $M_{\theta}^{t-1}(x^t)$	222			
	19.3 Loss function \mathcal{L}	225			
	19.4 Algorithms for training and sampling DM	227			
20	Digital Circuits	229			
	20.1 Mapping any dcircuit to a bnet	229			
	20.1.1 Option A of Fig.20.2	229			
	20.1.2 Option B of Fig.20.2	230			
21	Do Calculus	231			
	21.1 3 Rules of Do Calculus	234			
	21.2 Parent Adjustment Formula	235			
	21.3 Backdoor Adjustment Formula	237			
	21.4 Frontdoor Adjustment Formula	238			
	21.5 Comparison of Backdoor and Frontdoor adjustment formulae	239			
	21.6 Do operator for DEN diagrams	240			
22	Do Calculus proofs	243			
23	D-Separation	261			
24	D-Separation in Quantum Mechanics	264			
25	Dynamical Bayesian Networks	265			
26	Expectation Maximization	267			
	26.1 The EM algorithm:	268			
	26.1.1 Motivation	269			
	26.2 Minorize-Maximize (MM) algorithms	269			
	26.3 Examples	271			
	26.3.1 Gaussian mixture	271			
	26.3.2 Blood Genotypes and Phenotypes	272			
	26.3.3 Missing Data/Imputation	274			
27	Factor Graphs	275			

28	Frisch-Waugh-Lovell (FWL) theorem	278
	28.1 FWL, assuming x^{σ} are non-random	278
	28.2 FWL, assuming x^{σ} are random	279
29	Frontdoor Adjustment Formula	281
	29.1 Examples	282
30	G-formula (Sequential Backdoor Adjustment Formula)	283
31	Gaussian Nodes with Linear Dependence on Parents	287
32	Generalized Linear Model (GLM)	290
	32.1 Exponential Family of Distributions	290
	32.2 GLM	292
33	Generative Adversarial Networks (GANs)	297
34	Goodness of Causal Fit	302
35	Gradient Descent	303
36	Granger Causality	305
37	Hidden Markov Model	308
	37.1 Calculating $P(x_t, v^n)$ and $P(x_t, x_{t+1}, v^n)$	310
	37.2 Calculating \mathcal{F}_t and $\overline{\mathcal{F}}_t$	311
	37.3 Calculating $P(x^n v^n)$	312
	37.4 Calculating $P(v^n A, B, \pi)$	313
	37.5 Calculating \widehat{x}^n (Viterbi algorithm)	314
	37.6 Calculating \widehat{A} , \widehat{B} , $\widehat{\pi}$ (Baum-Welch algorithm)	316
38	Identification of do queries via LDEN diagrams	318
39	Influence Diagrams & Utility Nodes	320
40	Instrumental Inequality and beyond	322
	40.1 I-inequality	322
	40.1.1 I-inequality for binary z,d,y	324
	40.2 Bounds on Effect of IV on treatment outcome y	325
41	Instrumental Variables	328
	41.1 δ with unmeasured confounder	328
	41.2 δ (with unmeasured confounder) can be inferred via IV	329
	41.3 More general bnets with IVs	330
	41.4 Instrumental Inequality	331

42	Jackknife Resampling 42.1 Case $A = A^n(\vec{x}) = \frac{1}{n} \sum_{\sigma} x^{\sigma}$	332 334
43	Junction Tree Algorithm	336
44	Kalman Filter 44.1 Prediction Problem	337 338 339 340 341 341
45	LATE (Local Average Treatment Effect)	343
46	LDEN with feedback loops	349
47	Linear and Logistic Regression 47.1 Generalization to x with multiple components (features) 47.2 Alternative $V(b,m)$ for logistic regression	356 358
48	Linear Deterministic Bnets with External Noise 48.1 Example of LDEN diagram 48.2 LDEN equations and their 2 solutions 48.3 Fully connected LDEN diagrams $48.3.1$ Fully connected LDEN diagram with $nx = 2$ $48.3.2$ Fully connected LDEN diagram with $nx = 3$ $48.3.3$ Fully connected LDEN diagram with arbitrary nx 48.4 Not fully connected LDEN diagrams 48.5 LDEN diagram with conditioned nodes 48.6 SCuMpy 48.7 Non-linear DEN diagrams	360 360 361 362 364 366 368 369 369
4 9	Marginalizer Nodes	371
50	Markov Blankets	373
51	Markov Chain Monte Carlo (MCMC)51.1 Inverse Cumulative Sampling51.2 Rejection Sampling51.3 Metropolis-Hastings Sampling51.4 Gibbs Sampling51.5 Importance Sampling	375 375 377 378 381 382
52	Markov Chains	384

53	Mediation Analysis	385				
54	Mendelian Randomization	392				
55	Message Passing and Bethe Free Energy					
	55.1 2MRFs	394				
	55.2 Message Passing Intuition	395				
	55.3 $-\ln Z_{\theta}$ = Free Energy (FE)	399				
	$55.4 - \ln Z_{\theta^*} = \text{Minimum FE}$	400				
	55.5 $-\ln Z_{\theta}^{tree}$ =Tree FE (a.k.a. Bethe FE)	401				
	55.6 $-\ln Z_{\theta^*}^{tree}$ = Tree Minimum FE, and message passing	402				
56	Message Passing, Pearl's theory	406				
	56.1 Distributed Soldier Counting	406				
	56.2 Spring Systems	408				
	56.3 BP for Markov Chains	408				
	56.4 BP Algorithm for Polytrees	416				
	56.4.1 How BP algo for polytrees reduces to the BP algo for Markov					
	chains	419				
	56.5 Derivation of BP Algorithm for Polytrees	420				
	56.6 Example of BP algo for a Tree	423				
	56.7 Bipartite bnets	427				
	56.8 BP for bipartite bnets (BP-BB)	428				
	56.8.1 BP-BB and general BP agree on Markov chains	430				
	56.8.2 BP-BB and general BP agree on tree bnets	432				
	56.9 BP-BB and sum-product decomposition	434				
57	Message Passing in Quantum Mechanics	435				
58	Meta-learners for estimating ATE	436				
59	Missing Data, Imputation	440				
	59.1 Imputation via EM	441				
	59.2 Imputation via MCMC	444				
	59.3 Multiple Imputations	445				
60	Modified Treatment Policy	446				
	60.1 One time MTP	446				
	$60.2 \ \Delta_{ c} \ \text{estimand} \ \dots $	450				
	60.3 Estimates of $\Delta_{ c}$	453				
	60.3.1 Empirical estimate of $\Delta_{ c}$	453				
	60.3.2 OR estimate of $\Delta_{ c }$	453				
	60.4 Other Estimands besides $\Delta_{ c}$	456				
	60.5 Multi-time MTP	456				

61	Mor	nty Ha	ll Problem	459
62	Multi-armed Bandits			
	62.1	Bnet f	or MAB	462
	62.2	Rewar	d functions	464
	62.3	Regret	functions	466
	62.4	Strate	gies with random exploration	467
		62.4.1	ϵ -greedy algorithm	467
		62.4.2	ϵ_t -greedy algorithm	468
	62.5	Strate	gies with nonrandom exploration	468
		62.5.1	Upper Confidence Bounds (UCB) algorithms	468
			Frequentist UCB (UCB1) algorithm	469
			Bayesian UCB algorithm	469
		62.5.2	Thompson Sampling MAB (TS-MAB) algorithm	471
			Bnet for general TS-MAB algorithm	471
			TS-MAB algorithm with Beta agent and Bernoulli environment	
			TS-MAB algorithm, skeletal reprise	473
		62.5.3	Grad-MAB algorithm	474
63	Nair	ve Bay	res	477
64	Neu	ral Ne	etworks	478
0 1			tion Functions $\mathcal{A}_i^{\lambda}:\mathbb{R} o \mathbb{R}$	479
			t optimization via supervised training and gradient descent	480
		_	ense layers	482
			ncoder NN	484
65	Nois	sy-OR	gate	485
	65.1	3 ways	s to interpret the parameters π_i	486
66	Non	-negat	tive Matrix Factorization	490
	66.1	Bnet i	nterpretation	490
	66.2	Simple	est recursive algorithm	491
67	Obs	ervatio	onally Equivalent DAGs	492
	67.1	Examp	oles	492
68	Om	itted V	Variable Bias	495
69			ed Expected Utility	501
			of PEU Theory	502
			for PEU Theory	503
			s on EU for unspecified bnet	503
	69.4	Bound	s on EU for specific bnet families	506

7 0	Personalized Treatment Effects	507
	70.1 Goal, Strategy and Rationale of PTE theory	508
	70.2 Bnets for PTE theory	510
	$70.3 ATE = PB - PH \dots $	511
	70.4 Probabilities Relevant to PTE theory	512
	70.5 Symmetry	517
	70.6 Linear Programming Problem	518
	70.7 Special constraints	519
	70.8 Matrix representation of probabilities	522
	70.9 Bounds on Exp. Probs. imposed by Obs. Probs	525
	70.10Bounds on $PNS3$ for unspecified bnet	527
	70.11Bounds on $PNS3$ for specific bnet families	533
	70.12Bounds on ATE imposed by Obs. Probs	533
	70.13Bounds on PNS in terms of ATE and Obs. Probs	533
	70.14Numerical Examples	534
/ 71	Dista Natation	F 0.0
71	Plate Notation	536
72	Potential Outcomes and Beyond	538
	72.1 G and G_{den} bnets, the starting point bnets	539
	72.2 G bnet with nodes $y^{\sigma}(0), y^{\sigma}(1)$ added to it	541
	72.3 Expected Values of treatment outcome y^{σ}	543
	72.4 Translation Dictionary	543
	72.5 $\mathcal{Y}_{ d,x} = \mathcal{Y}_{d d,x}$ (SUTVA)	544
	72.6 Conditional Independence Assumption (CIA)	545
	72.7 Treatment Effects	545
	72.8 Insights into what makes treatment effects equal and $\mathcal{Y}_{1 0} = \mathcal{Y}_1$	548
	72.9 G_{do+} bnet	549
	$72.10ACE = ATE \dots \dots$	550
	72.11Good, Bad Controls	551
	72.12PO Confounder Sensitivity Analysis	552
	72.13(SDO, ATE) space	554
	72.14Strata-Matching	557
	72.14.1 Exact strata-matching	557
	Estimates of Treatment Effects	557
	Example, estimation of treatment effects	559
	72.14.2 Approximate strata-matching	561
	72.14.3 Unbiased strata-matching estimates	561
	72.15Propensities	563
	72.16Propensity based estimates of treatment effects	567
	72.17Positivity	568
	72.18Multi-time PO bnets (Panel Data)	569

7 3	Program evaluation and review technique (PERT)	573
	73.1 Example	575
74	Random Forest and Bagging	579
	74.1 Bagging (with fully-featured bags)	579
	74.2 Bagging (with randomly-shortened bags)	581
75	Recurrent Neural Networks	582
. 0	75.1 Language Sequence Modeling	585
	75.2 Other types of RNN	585
	75.2.1 Long Short Term Memory (LSTM) unit (1997)	587
	75.2.2 Gated Recurrence Unit (GRU) (2014)	589
= 0		F01
76	Regression Discontinuity Design	591
	76.1 PO analysis	591
	76.2 Linear Regression	593
77	Regularization of Loss Functions	594
	77.1 L^p norm ROLF	595
	77.1.1 L^1 norm ROLF can lead to sparsity	595
	77.1.2 L^2 norm ROLF for Least Squares	597
	77.2 Proximal functions	598
	77.3 Proximal ROLF	600
	77.4 Unobserved Nodes of a bnet	601
78	Reinforcement Learning (RL)	603
	78.1 Exact RL bnet	606
	78.2 Actor-Critic RL bnet	608
	78.3 Q function learning RL bnet	610
70	Reliability Box Diagrams and Fault Tree Diagrams	612
19	79.1 Minimal Cut Sets	
90	Restricted Boltzmann Machines	620
ou	Restricted Boitzmann Wachines	020
81	ROC curves	622
	81.1 Terminology Table Adapted from Wikipedia Ref.[150]	625
82	Scoring the Nodes of a Learned Bnet	627
	82.1 Probability Distributions and Special Functions	628
	82.2 Single node with no parents	629
	82.3 Multiple nodes with any number of parents	632
	82.4 Bayesian Scores	633
	82.5 Information Theoretic scores	634

83	Selection Bias Removal 83.1 Pre and Post Switch Nodes	635 636 638 640
84	Sentence Splitting with SentenceAx 84.1 Preliminary Conventions 84.1.1 Tensor Notation 84.1.2 PyTorch conventions 84.2 Bayesian Network for this model 84.3 Loss \mathcal{L} for this model	642 642 643 648 650
85	Shannon Information Theory	653
86	Shapley Explainability 86.0.1 Numerical examples of SHAP	654 657
87	Simpson's Paradox 87.1 Pearl Causality	660 662 664
88	Structure and Parameter Learning for Bnets 88.1 Overview	665 665 667 668 669
89	Support Vector Machines And Kernel Method 89.1 Learning Algorithm for SVM Classifier	671 672 673 677 677
90	Survival Analysis 90.1 $S(t)$ estimates	678 680 680 685 685 686 689
91		691 693

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92	Targeted Estimator	695
92.3 Linear Approximation of $\Psi[P_N]$ 699 92.4 ATE estimand 700 92.5 ATE estimands 701 92.5.1 Ψ^E 701 92.5.2 Ψ^G 702 92.5.3 Ψ^{PW} 702 92.5.4 Ψ^{LIPW} 702 92.5.5 Ψ^{LIPW++} (a.k.a. Ψ^{TMLE}) 766 92.6 Ψ^{TMLE} in practice 709 93 Time Scries Analysis: ARMA and VAR 711 93.1 White noise 711 93.2 Backshift operator 712 93.3 Metrics 712 93.4 Definition of $ARMA(p,q)$, $AR(p)$ and $MA(q)$. 714 93.5 Solving $AR(p)$ 716 93.6 Solving $MA(q)$ 717 93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.11Mmpulse Response 723 93.11Processting 726 93.12Forecasting 726 93.13Parameter Learning 732 93.15-2PL of $MA(q)$ 738 93.15-2PL of $MA(q)$ 738 93.15-2PL of $MA(q)$ 736		92.1 Goal, Strategy, and Rationale of TE theory	695
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		92.2 Functional Calculus	697
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		92.3 Linear Approximation of $\Psi[P_N]$	699
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		92.4 ATE estimand	700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		92.5 ATE estimates	701
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$92.5.2 \ \Psi^G$	702
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$92.5.3 \ \Psi^{IPW}$	702
93 Time Series Analysis: ARMA and VAR 711 93.1 White noise 711 93.2 Backshift operator 712 93.3 Metrics 712 93.4 Definition of $ARMA(p,q)$, $AR(p)$ and $MA(q)$. 714 93.5 Solving $AR(p)$ 716 93.6 Solving $ARM(q)$ 717 93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11AR(p) and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p,d,q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.3PL of $ARMA(p,q)$ 741 93.16VAR(p) 742 94 Transfer Learning 743 95 Transformer Networks 745 95. 2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 750 95.3 Vanilla tranet 752		$92.5.4 \ \Psi^{LIPW} \dots \dots$	702
93 Time Series Analysis: ARMA and VAR 711 93.1 White noise 711 93.2 Backshift operator 712 93.3 Metrics 712 93.4 Definition of $ARMA(p,q)$, $AR(p)$ and $MA(q)$. 714 93.5 Solving $AR(p)$ 716 93.6 Solving $ARM(q)$ 717 93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11AR(p) and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p,d,q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.3PL of $ARMA(p,q)$ 741 93.16VAR(p) 742 94 Transfer Learning 743 95 Transformer Networks 745 95. 2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 750 95.3 Vanilla tranet 752		92.5.5 Ψ^{LIPW++} (a.k.a. Ψ^{TMLE})	706
93.1 White noise 711 93.2 Backshift operator 712 93.3 Metrics 712 93.4 Definition of $ARMA(p,q)$, $AR(p)$ and $MA(q)$. 714 93.5 Solving $AR(p)$ 716 93.6 Solving $MA(q)$ 717 93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11AR(p) and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p,d,q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $AR(p)$ 738 93.15.3PL of $ARMA(p,q)$ 741 93.16VAR(p) 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 750 95.3 Vanilla tranet 752		$92.6 \ \Psi^{TMLE}$ in practice	709
93.1 White noise 711 93.2 Backshift operator 712 93.3 Metrics 712 93.4 Definition of $ARMA(p,q)$, $AR(p)$ and $MA(q)$. 714 93.5 Solving $AR(p)$ 716 93.6 Solving $MA(q)$ 717 93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11AR(p) and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p,d,q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $AR(p)$ 738 93.15.3PL of $ARMA(p,q)$ 741 93.16VAR(p) 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 750 95.3 Vanilla tranet 752	93	Time Series Analysis: ARMA and VAR	711
93.2 Backshift operator 712 93.3 Metrics 712 93.4 Definition of $ARMA(p, q)$, $AR(p)$ and $MA(q)$ 714 93.5 Solving $AR(p)$ 716 93.6 Solving $MA(q)$ 717 93.7 Solving $ARMA(p, q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11AR(p) and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p, d, q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $MA(q)$ 738 93.15.3PL of $ARMA(p, q)$ 741 93.16VAR(p) 742 94 Transfer Learning 743 95.2 Recurrent Neural Net with Attention 746 95.2 Recurrent Neural Net with Attention 747 95.2 Multi-Head Attention 750 95.3 Vanilla tranet 752	00	·	
93.3 Metrics 712 93.4 Definition of $ARMA(p,q)$, $AR(p)$ and $MA(q)$ 714 93.5 Solving $AR(p)$ 716 93.6 Solving $MA(q)$ 717 93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11AR(p) and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p,d,q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $MA(q)$ 738 93.15.3PL of $ARMA(p,q)$ 741 93.16VAR(p) 742 94 Transfer Learning 743 95 Transformer Networks 745 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2 Vanilla tranet 752			
93.4 Definition of $ARMA(p,q)$, $AR(p)$ and $MA(q)$. 714 93.5 Solving $AR(p)$. 716 93.6 Solving $MA(q)$ 717 93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11 $AR(p)$ and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p,d,q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $MA(q)$ 738 93.15.3PL of $ARMA(p,q)$ 741 93.16 $VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.5 Solving $AR(p)$ 716 93.6 Solving $MA(q)$ 717 93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11 $AR(p)$ and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p,d,q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $MA(q)$ 738 93.15.3PL of $ARMA(p,q)$ 741 93.16 $VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2 Vanilla tranet 750 95.3 Vanilla tranet 752			
93.6 Solving $MA(q)$ 717 93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11 $AR(p)$ and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p,d,q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $MA(q)$ 738 93.15.3PL of $ARMA(p,q)$ 741 93.16 $VAR(p)$ 742 94 Transfer Learning 743 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.7 Solving $ARMA(p,q)$ 718 93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11 $AR(p)$ and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p,d,q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $MA(q)$ 738 93.15.3PL of $ARMA(p,q)$ 741 93.16 $VAR(p)$ 742 94 Transfer Learning 743 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.8 Auto-correlation and partial auto-correlation 718 93.9 Generating function of auto-correlation 722 93.10Impulse Response 723 93.11 $AR(p)$ and Yule-Walker equations 724 93.12Forecasting 726 93.13Model Learning 732 93.14Differencing and $ARIMA(p, d, q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $MA(q)$ 738 93.15.3 PL of $ARMA(p, q)$ 741 93.16V $AR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752		- \	
93.9 Generating function of auto-correlation 722 93.10 Impulse Response 723 $93.11AR(p)$ and Yule-Walker equations 724 93.12 Forecasting 726 93.13 Model Learning 732 93.14 Differencing and $ARIMA(p,d,q)$ 732 93.15 Parameter Learning 736 $93.15.1$ PL of $AR(p)$ 736 $93.15.2$ PL of $MA(q)$ 738 $93.15.3$ PL of $ARMA(p,q)$ 741 $93.16VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 $95.2.1$ Single Head Attention 747 $95.2.2$ Multi-Head Attention 750 95.3 Vanilla tranet 752		~ \ - \ /	
93.10Impulse Response 723 $93.11AR(p)$ and Yule-Walker equations 724 93.12 Forecasting 726 93.13 Model Learning 732 93.14 Differencing and $ARIMA(p,d,q)$ 732 93.15 Parameter Learning 736 $93.15.1$ PL of $AR(p)$ 736 $93.15.2$ PL of $MA(q)$ 738 $93.15.3$ PL of $ARMA(p,q)$ 741 $93.16VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 $95.2.1$ Single Head Attention 747 $95.2.2$ Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.11AR(p) and Yule-Walker equations 724 93.12 Forecasting 726 93.13 Model Learning 732 93.14 Differencing and $ARIMA(p, d, q)$ 732 93.15 Parameter Learning 736 $93.15.1$ PL of $AR(p)$ 736 $93.15.2$ PL of $MA(q)$ 738 $93.15.3$ PL of $ARMA(p, q)$ 741 $93.16VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 $95.2.1$ Single Head Attention 747 $95.2.2$ Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.12Forecasting 726 93.13 Model Learning 732 93.14 Differencing and $ARIMA(p,d,q)$ 732 93.15 Parameter Learning 736 $93.15.1$ PL of $AR(p)$ 736 $93.15.2$ PL of $MA(q)$ 738 $93.15.3$ PL of $ARMA(p,q)$ 741 $93.16VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 $95.2.1$ Single Head Attention 747 $95.2.2$ Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.13Model Learning 732 93.14Differencing and $ARIMA(p, d, q)$ 732 93.15Parameter Learning 736 93.15.1PL of $AR(p)$ 736 93.15.2PL of $MA(q)$ 738 93.15.3PL of $ARMA(p, q)$ 741 93.16VAR(p) 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.14Differencing and $ARIMA(p,d,q)$ 732 93.15 Parameter Learning 736 $93.15.1$ PL of $AR(p)$ 736 $93.15.2$ PL of $MA(q)$ 738 $93.15.3$ PL of $ARMA(p,q)$ 741 $93.16VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 $95.2.1$ Single Head Attention 747 $95.2.2$ Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.15Parameter Learning 736 $93.15.1$ PL of $AR(p)$ 736 $93.15.2$ PL of $MA(q)$ 738 $93.15.3$ PL of $ARMA(p,q)$ 741 $93.16VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 $95.2.1$ Single Head Attention 747 $95.2.2$ Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.15.1PL of $AR(p)$ 736 $93.15.2PL$ of $MA(q)$ 738 $93.15.3PL$ of $ARMA(p,q)$ 741 $93.16VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 $95.2.1$ Single Head Attention 747 $95.2.2$ Multi-Head Attention 750 95.3 Vanilla tranet 752			
$93.15.3\mathrm{PL}$ of $ARMA(p,q)$ 741 $93.16VAR(p)$ 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 $95.2.1$ Single Head Attention 747 $95.2.2$ Multi-Head Attention 750 95.3 Vanilla tranet 752			
93.16VAR(p) 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752		$93.15.2\mathrm{PL}$ of $MA(q)$	738
93.16VAR(p) 742 94 Transfer Learning 743 95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752		$93.15.3\mathrm{PL}$ of $ARMA(p,q)$	741
95 Transformer Networks 745 95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752		93.16VAR(p)	742
95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752	94	Transfer Learning	743
95.1 Tensor Notation 746 95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752	05	The section of the Netherlands	715
95.2 Recurrent Neural Net with Attention 747 95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752	90		
95.2.1 Single Head Attention 747 95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752			
95.2.2 Multi-Head Attention 750 95.3 Vanilla tranet 752			
95.3 Vanilla tranet			

			758 760
			762
	95.4		764
	50.1	95.4.1 BERT parameter values	764
		95.4.2 BERT Embedding	765
		95.4.3 BERT training	766
96	Trai	nsportability of Causal Knowledge	767
97	Tur	bo Codes	771
	97.1	Decoding Algorithm	774
	97.2	Message Passing Interpretation of Decoding Algorithm	776
98	_	9	777
		V 1	777
		Some Relevant Technical Formulas from Chapter 72	778
		V	779
	98.4	UP Decision Trees	781 786
99	Vari	iational Bayesian Approximation for Medical Diagnosis	787
10	0 Va	riational Bayesian Approximation via D_{KL}	791
	100.	1Free Energy $\mathcal{F}(\vec{x})$	793
10	1 X(${f GBoost}$	796
		0	796
			798
		1 0	801
			801
		<u> </u>	803
		<u> </u>	803 804
10			000
τ0		(1 /	806 807
Ri	hliog	rraphy	809

Appendices

Chapter 95

Transformer Networks

The primary reference for this chapter is Ref.[81]. Ref.[81] is the highly influential 2017 paper entitled "Attention is all you need" that introduced **Transformer Networks** (tranets) and Attention into the AI vernacular. Besides Ref.[81], I also read blog posts such as Ref.[29] and the Wikipedia article on tranet (Ref. [162]). For a complete list of the large number of excellent blog post that I read to learn about this subject, see my open source software texnn (Ref.[80]).

Transformer Networks (tranets) have been taking the fields of Natural Language Processing (NLP) and Large Language Models (LLM) by storm in recent years. They were introduced in 2017 and already are the basis of numerous LLMs. Two famous examples are, BERT (Bidirectional Encoder Representations from Transformers) and ChatGPT (Generative Pre-trained Transformer). Both of these have been trained with huge databases, of which all of the English Wikipedia ($\sim 10^9$ words) is but a small part.

How well ChatGPT works was a huge surprise to most people, including experts in AI/ML. My conjecture is that this surprising LLM performance is due to causality. Let me explain. I believe tranets and the LLM that use them, are just curve-fitters (so are Least Squares, vanilla NNs, Convolutional NNs, etc.). But, we lucked out, because tranets are very good at fitting causal data, and the space of all human generated text, including math equations and computer code, is causally connected (i.e., has a causally connected topology.).

Normally, tranets are drawn as box diagrams that are somewhat cryptic and ambiguous, at least to me. In this chapter, instead of drawing them as box diagrams, I represent them as causal DAGs (bnets). This makes their causal nature more explicit than the box diagrams, and, in my opinion, also makes them less ambiguous and more understandable than the box diagrams.

Recurrent Neural Nets (RNNs) are discussed in Chapter 75. tranets are quickly displacing RNNs, an older method, in NLP. tranets are better than RNNs for doing

¹texnn is Python software that I wrote specifically for drawing the bnets of this chapter, but later I generalized it to a stand-alone app that can draw any bnet (including SCMs, NNs and tranets), not just a tranet bnet.

NLP in several important ways. Whereas RNNs analyze the tokens (words) of a sentence sequentially (like a Kalman Filter), tranets analyze them in parallel, and thus are more amenable to parallel computing. Also, because RNNs analyze the words of a sentence sequentially, they tend to give more importance to the end of a sentence than to its beginning. That's because RNNs start forgetting the beginning of a sentence by the time they reach its end, like a patient with Alzheimer's. tranets do not suffer from this malady.

Dynamical bnets are discussed in Chapter 25. In Chapter 75, we showed that RNNs are dynamical bnets. In this chapter we will show that tranets are dynamical bnets too.

In this chapter, we will use the Numpy-like tensor notation discussed in Section C.48. In particular, note that $[n] = [0:n] = \{0,1,\ldots,n-1\}$ and that $T^{[n],[m]}$ is an $n \times m$ matrix.

95.1 Tensor Notation

Our tensor notation is discussed in Section C.48. Here is a quick review of some of the more salient facts in that section on tensors. Below, we will often accompany an equation in tensor component notation with the equivalent matrix equation, in parenthesis.

We use Greek letters for tensor indices.

Let
$$\alpha \in [a], \beta \in [b], \gamma \in [c], \delta \in [d], \nu \in [n], \Delta \in [D].$$

• reshaping

$$T^{\nu,\delta} \to T^{\Delta} \quad \left(T^{[n_h],[d]} \to T^{[D]}\right)$$
 (95.1)

$$T^{\Delta} \to T^{\nu,\delta} \quad \left(T^{[D]} \to T^{[n_{\underline{h}}],[d]}\right)$$
 (95.2)

concatenation

$$T^{[n]} = (T^0, T^1, \dots, T^{n-1}) = (T^{\nu})_{\nu \in [n]}$$
(95.3)

• Hadamard product (element-wise, entry-wise multiplication)

$$T^{[n]} * S^{[n]} = (T^{\nu} S^{\nu})_{\nu \in [n]}$$
(95.4)

• Matrix multiplication

 $T^{[n]} = T^{[n],[1]}$ is a column vector.

$$(T^{[n]})^T S^{[n]} = \operatorname{scalar} \tag{95.5}$$

$$T^{[a],[b]}S^{[b],[c]} = \left[\sum_{\beta \in [b]} T^{\alpha,\beta}S^{\beta,\gamma}\right]_{\alpha \in [a],\gamma \in [c]}$$
(95.6)

Most treatments of tranets, including the "Attention is all you need" paper, order the operations chronologically from left to right (L2R). So if A occurs before B, they write AB. This is contrary to what is done in Linear Algebra, where one orders the operations chronologically from right to left (R2L), and one writes BA. In this chapter, will adhere to the Linear Algebra convention, since it is so prevalent and is the overwhelming precedent.

Recurrent Neural Net with Attention 95.2

95.2.1Single Head Attention

Let

 ℓ be the maximum number of words allowed in a sentence. Some words might be blanks (padding).

d be the so called **hidden or embedding dimension**.

 $e^t_{\alpha} \in \mathbb{R}^d$ be a d-dimensional column vector for word $\alpha \in [\ell]$ at time t. $W^t_q, W^t_{\underline{k}}, W^t_{\underline{v}} \in \mathbb{R}^{d \times d}$ be the weight matrices for time slice t. The letters Q, K, Vstand for Query, Key and Value, respectively. These matrices are learned by training the net. They transform e_{α}^{t} as follows

$$v_{\alpha}^t = W_{\underline{v}}^t e_{\alpha}^t \tag{95.7}$$

$$q_{\alpha}^t = W_q^t e_{\alpha}^t \tag{95.8}$$

$$k_{\alpha}^{t} = W_{k}^{t} e_{\alpha}^{t} \tag{95.9}$$

Fig. 95.1 represents a tranet of a 3-word sentence as a dynamical bnet. The TPMs (Transition Probability Matrices), printed in blue, for bnet Fig. 95.1, are as follows:

$$P(v_{\alpha}^t|e_{\alpha}^t) = \mathbb{1}(\quad v_{\alpha}^t = W_v^t e_{\alpha}^t \quad) \tag{95.10}$$

$$P(q_{\alpha}^t | e_{\alpha}^t) = \mathbb{1}(\quad q_{\alpha}^t = W_{\underline{q}}^t e_{\alpha}^t \quad) \tag{95.11}$$

$$P(k_{\alpha}^t|e_{\alpha}^t) = \mathbb{1}(\quad k_{\alpha}^t = W_k^t e_{\alpha}^t \quad) \tag{95.12}$$

Figure 95.1: Dynamical bnet with single-head Attention for 3 words. Time-slice t. Note that k_{α}^t for all α points to $\underline{a}_{\alpha'}^t$ for all α' . Likewise, \underline{v}_{α}^t for all α points to $\underline{a}_{\alpha'}^t$ for all α' . However, \underline{q}_{α}^t points only to \underline{a}_{α}^t .

$$P(e_{\alpha}^{t+1}|a_{\alpha}^{t}) = \mathbb{1}(e_{\alpha}^{t+1} = a_{\alpha}^{t})$$
 (95.13)

$$P(a_{\alpha}^{t+1}|v_{.}^{t}, q_{\alpha}^{t}, k_{.}^{t}) = \mathbb{1}(a_{\alpha}^{t+1} = \sum_{\alpha' \in [\ell]} v_{\alpha'}^{t} P(\alpha'|\alpha))$$
(95.14)

where the conditional probability $P(\alpha'|\alpha)$ is called defined as²

²The reason sums over $\delta \in [d]$ are divided by \sqrt{d} is to prevent the argument of the exponential

$$P(\alpha'|\alpha) = \operatorname{softmax} \left[\frac{1}{\sqrt{d}} \sum_{\delta \in [d]} (k^t)^{\delta, [\ell]} (q^t)^{\delta, \alpha} \right] (\alpha'|\alpha)$$
 (95.15)

$$= \frac{\exp\left(\frac{1}{\sqrt{d}}(k_{\alpha'}^t)^T q_{\alpha}^t\right)}{\sum_{\alpha'' \in [\ell]} \exp\left(\frac{1}{\sqrt{d}}(k_{\alpha''}^t)^T q_{\alpha}^t\right)}$$
(95.16)

The right hand side of Eq.(95.14) constitutes an average over all the word vectors $\{\underline{v}_{\alpha}^t : \alpha \in [\ell]\}$ in a sentence. This average is called the **Attention** (for a single head).³

Attention^{$$\delta,\alpha$$} $\left((v^t)^{[d],[\ell]}, (k^t)^{[d],[\ell]}, (q^t)^{[d],[\ell]} \right) = \sum_{\alpha' \in [\ell]} (v^t)^{\delta,\alpha'} P(\alpha'|\alpha)$ (95.17)

On first encounter, the structure of an Attention bnet seems a bit mysterious. Then one realizes that this is an old friend. If the dashed boxes in Fig.95.1 are each "shrunk" to single nodes, then it becomes a TAN Bayes Net. Each of the 3 subgraphs \underline{e}^t , $(\underline{v}^t, \underline{q}^t, \underline{k}^t)$, \underline{a}^t also constitutes a TAN Bayes net. ⁴. ⁵ In broad terms, Fig.95.1 can be described by saying that each word undergoes a special kind of 3-class (q,k,v) Naive Bayes classification, and the results of that classification are sent to the new version of every word (except the q class which only sends info to one word, not all of them).

It's also useful to think of Attention as a filter with input signal $(e^t)^{[d],[\ell]}$ and output signal $(e^{t+1})^{[d],[\ell]}$.

Fig.95.1 can be "folded" (i.e., the 3 words can be represented by as single node). When folded, Fig.95.1 becomes Fig.95.2. Note that in Fig.95.2, we have started indicating the shapes of tensors by a superscript, using the tensor notation explained in Section C.48. We will continue doing this henceforth in this chapter.

The structural equations for Fig.95.2, printed in blue, are as follows.

$$(a^t)^{[d],[\ell]} = \text{Attention}((v^t)^{[d],[\ell]}, (k^t)^{[d],[\ell]}, (q^t)^{[d],[\ell]})$$
(95.18a)

from getting too large.

³Variations of this definition of Attention have been proposed. This particular one is the original one from the "Attention is all you need paper". Some people call it the "scaled dot product Attention".

⁴Tree Augmented Naive (TAN) Bayes nets were introduced in Chapter 9.

⁵A **reverse or upside down tree** is obtained by reversing the directions of all the arrows of a tree directed graph. A TAN Bayes net is normally defined as in Chapter9, as a Naive Bayes net augmented with a tree. In an Attention bnet, the Naive Bayes Net is augmented with a reverse tree (RT) instead of a tree (T), so technically Attention bnets contain RTAN Bayes nets, not TAN Bayes nets.

Figure 95.2: Folded version of Fig.95.1 when $\ell = 3$. Note that all orange nodes have the same tensor shape.

$$(e^t)^{[d],[\ell]} = \text{prior} (95.18b)$$

$$(e^{t+1})^{[d],[\ell]} = (a^t)^{[d],[\ell]}$$
(95.18c)

$$(k^t)^{[d],[\ell]} = W_{\underline{k}}^{[d],[d]}(e^t)^{[d],[\ell]}$$
(95.18d)

$$(q^t)^{[d],[\ell]} = W_q^{[d],[d]} (e^t)^{[d],[\ell]}$$
 (95.18e)

$$(v^t)^{[d],[\ell]} = W_v^{[d],[d]}(e^t)^{[d],[\ell]}$$
(95.18f)

95.2.2 Multi-Head Attention

In this section, we will generalize the single head Attention, as defined in the previous section, to multi-head Attention.

Let

 $n_{\underline{h}} = \text{number of heads. } \nu \in [n_{\underline{h}}].$

 $d = \text{same as before, the hidden, embedding dimension. } \delta \in [d]$

 $D=n_{\underline{h}}d.$ $\Delta\in[D].$ We will do some tensor reshaping: $T^{[n_{\underline{h}}],[d]}\to T^{[D]},$ or, in component form, $T^{\nu,\delta}\to T^{\Delta}.$

Consider weight matrices $W_{\underline{k}}^{[D],[d]}, W_{\underline{q}}^{[D],[d]}$, and $W_{\underline{v}}^{[D],[d]}$ such that

$$(k^t)^{\nu,\delta,\alpha} = \sum_{\delta' \in [d]} W_{\underline{k}}^{\nu,\delta,\delta'}(e^t)^{\delta',\alpha} \tag{95.19}$$

$$(q^t)^{\nu,\delta,\alpha} = \sum_{\delta' \in [d]} W_{\underline{q}}^{\nu,\delta,\delta'}(e^t)^{\delta',\alpha}$$
(95.20)

$$(v^t)^{\nu,\delta,\alpha} = \sum_{\delta' \in [d]} W^{\nu,\delta,\delta'}_{\underline{v}}(e^t)^{\delta',\alpha}$$
(95.21)

We define the **Multi-head Attention** by

Attention^{$$\nu,\delta,\alpha$$} $((v^t)^{[D],[\ell]},(k^t)^{[D],[\ell]},(q^t)^{[D],[\ell]}) = \sum_{\alpha' \in [\ell]} (v^t)^{\nu,\delta,\alpha'} P(\alpha'|\alpha,\nu)$ (95.22)

where

$$P(\alpha'|\alpha,\nu) = \operatorname{softmax} \left[\frac{1}{\sqrt{d}} \sum_{\delta \in [d]} (k^t)^{\nu,\delta,[\ell]} (q^t)^{\nu,\delta,\alpha} \right] (\alpha'|\alpha,\nu)$$
 (95.23)

$$= \frac{\exp\left[\frac{1}{\sqrt{d}}\sum_{\delta\in[d]}(k^t)^{\nu,\delta,\alpha'}(q^t)^{\nu,\delta,\alpha}\right]}{\sum_{\alpha''\in[\ell]}\exp\left[\frac{1}{\sqrt{d}}\sum_{\delta\in[d]}(k^t)^{\nu,\delta,\alpha''}(q^t)^{\nu,\delta,\alpha}\right]}$$
(95.24)

The structural equations, printed in blue, for the bnet Fig.95.3, are as follows. Note that Attention() always has the same tensor shape as its 3 arguments. Note also that the 3 weight matrices $W_{\underline{k}}^{[D],[d]}$, $W_{\underline{q}}^{[D],[d]}$, and $W_{\underline{v}}^{[D],[d]}$ raise the hidden dimension, whereas the weight matrix $W_{\underline{a}}^{[d],[D]}$ lowers it. $W_{\underline{a}}^{[d],[D]}=1$ in the single head case.

$$(a^t)^{[D],[\ell]} = \text{Attention}((v^t)^{[D],[\ell]}, (k^t)^{[D],[\ell]}, (q^t)^{[D],[\ell]})$$
(95.25a)

$$(e^t)^{[d],[\ell]} = \text{prior} (95.25b)$$

$$(e^{t+1})^{[d],[\ell]} = W_a^{[d],[D]}(a^t)^{[D],[\ell]}$$
(95.25c)

$$(k^t)^{[D],[\ell]} = W_k^{[D],[d]}(e^t)^{[d],[\ell]}$$
(95.25d)

Figure 95.3: Dynamical bnet with single-head Attention for ℓ words. Time-slice t. This is a generalization of the single head Attention of Fig.95.2. Note that all orange nodes have the same tensor shape.

$$(q^t)^{[D],[\ell]} = W_{\underline{q}}^{[D],[d]}(e^t)^{[d],[\ell]}$$
(95.25e)

$$(v^t)^{[D],[\ell]} = W_v^{[D],[d]}(e^t)^{[d],[\ell]}$$
(95.25f)

95.3 Vanilla tranet

In this section, we will discuss the tranet of the "Attention is all you need" paper, Ref.[81]. As is common in the literature, we will refer to that tranet as the "Vanilla" tranet. Ref.[81] describes its tranet graphically with Fig.95.4. Our goal is to find a causal DAG (bnet) version of that figure.

Let

 $\ell=$, context window, maximum number of words in a sentence segment. $\alpha\in[\ell],\ \ell\sim100$

 $L = \text{number of words in vocabulary}, \beta \in [L], L >> \ell$

 $d = d_q = d_{\underline{k}} = d_{\underline{v}} = 64$, hidden dimension per head, $\delta \in [d]$.

 $n_h = \bar{8}$, number of heads, $\nu \in [n_h]$

 $D = n_h d = 8(64) = 512$, hidden dimension for all heads, $\Delta \in [D]$

 $\Lambda = 6$, number copies, connected in series, of boxed bnet, $\lambda \in [\Lambda]$

Before we present the bnet version of Fig.95.4, we discuss some of the definitions needed to understand and motivate Fig.95.4.

Figure 95.4: Vanilla tranet

• Encoder Input $x^{\beta,\alpha}$

$$x^{\beta,\alpha} = \delta(\beta, \beta(\alpha)) \left(x^{[L],[\ell]} \text{ has one hot columns.} \right)$$
 (95.26)

• Embedding (a.k.a. encoding) Matrix $\mathcal{E}^{\delta,\beta}$

$$e^{\delta,\alpha} = \sum_{\beta} \mathcal{E}^{\delta,\beta} x^{\beta,\alpha} \quad \left(e^{[d],[\ell]} = \mathcal{E}^{[d],[L]} x^{[L],[\ell]} \right) \tag{95.27}$$

 \bullet Weight matrices $W_{\underline{q}}, W_{\underline{k}}, W_{\underline{v}}$

$$Q^{\nu,\delta,\alpha} = \sum_{\delta'} W_{\underline{q}}^{\nu,\delta,\delta'} e^{\delta',\alpha} \quad \left(Q^{[D],[\ell]} = W_{\underline{q}}^{[D],[d]} e^{[d],[\ell]} \right) \tag{95.28}$$

$$K^{\nu,\delta,\alpha} = \sum_{\delta'} W_{\underline{k}}^{\nu,\delta,\delta'} e^{\delta',\alpha} \quad \left(K^{[D],[\ell]} = W_{\underline{k}}^{[D],[d]} e^{[d],[\ell]} \right) \tag{95.29}$$

$$V^{\nu,\delta,\alpha} = \sum_{\delta'} W^{\nu,\delta,\delta'}_{\underline{v}} e^{\delta',\alpha} \quad \left(V^{[D],[\ell]} = W^{[D],[d]}_{\underline{v}} e^{[d],[\ell]} \right)$$
(95.30)

• Multi-head Attention

$$B^{\nu,\alpha',\alpha} = \frac{1}{\sqrt{d}} \sum_{\delta} K^{\nu,\delta,\alpha'} Q^{\nu,\delta,\alpha} \quad \left(B^{[n_h],[\ell],[\ell]} = \left[\frac{1}{\sqrt{d}} (K^{\nu,[d],[\ell]})^T Q^{\nu,[d],[\ell]} \right]_{\nu \in [n_h]} \right)$$
(95.31)

$$A^{\nu,\delta,\alpha} = \sum_{\alpha'} V^{\nu,\delta,\alpha'} \underbrace{\operatorname{softmax}(B^{\nu,[\ell],\alpha})(\alpha'|\alpha,\nu)}_{P(\alpha'|\alpha,\nu)}$$
(95.32)

$$\sum_{\alpha' \in [\ell]} P(\alpha' | \alpha, \nu) = 1 \tag{95.33}$$

$$A^{\nu,\delta,\alpha} \to A^{\Delta,\alpha} \left(A^{[n_{\underline{h}}],[d],[\ell]} \to A^{[D],[\ell]} \right) \tag{95.34}$$

Column vector notation:

$$B^{\nu,\alpha',\alpha} = \frac{1}{\sqrt{d}} (K^{\nu,[d],\alpha'})^T Q^{\nu,[d],\alpha}$$
 (95.35)

Important: Note that the softmax() makes the α' component a probability, not the α one!

For example, suppose $\nu=1$ (one head), $\ell=2$ (a 2 word segment), and d=3 (hidden dimension is 3). The $Q^{[3],[2]},K^{[3],[2]},V^{[3],[2]}$ are 3×2 matrices (i.e., two 3-dim column vectors). One uses the $Q^{[3],[2]}$ and $K^{[3],[2]}$ to arrive at a 2×2 matrix $P(\alpha'|\alpha)$ of probabilities. Then one uses that matrix of probabilities to replace

$$\left[V^{[3],0},V^{[3],1}\right] \to \left[V^{[3],0}P(0|0) + V^{[3],1}P(1|0),V^{[3],0}P(0|1) + V^{[3],1}P(1|1)\right] \tag{95.36}$$

• Positional Embedding Matrix $\mathcal{E}_{pos}^{\delta,\beta}$

$$\mathcal{E}_{pos}^{\delta,\beta} = \begin{cases} \sin\left(2\pi \frac{\beta}{(2\pi)10^{4\delta/d}}\right) = \sin(2\pi \frac{\beta}{\lambda(\delta)}) & \text{if } \delta \text{ is even} \\ \cos\left(2\pi \frac{\beta}{(2\pi)10^{4(\delta-1)/d}}\right) = \cos(2\pi \frac{\beta}{\lambda(\delta)}) & \text{if } \delta \text{ is odd} \end{cases}$$
(95.37)

 $\mathcal{E}_{pos}^{\delta,\beta}$ changes in phase by $\pi/2$ every time δ changes by 1. Its wavelength λ is independent of β , but increases rapidly with δ , from $\lambda(\delta=0)=2\pi*1$ to $\lambda(\delta=d)=2\pi*10^4$.

Total Embedding equals initial embedding plus positional embedding:

$$\mathcal{E}^{\delta,\beta} = \mathcal{E}_0^{\delta,\beta} + \mathcal{E}_{pos}^{\delta,\beta} \tag{95.38}$$

The purpose of positional embedding is to take $e^{\beta,\alpha}$ to $e^{\delta,\alpha} = \sum_{\beta} \mathcal{E}_{pos}^{\delta,\beta} e^{\beta,\alpha}$ where $e^{\delta,\alpha}$ changes quickly as δ (i.e., position) changes.

• ReLU

For a tensor T of arbitrary shape,

$$ReLU(T) = (T)_{+} = max(0, T)$$
 (95.39)

max element-wise.

• Feed Forward Neural Net

$$F(e^{\delta,\alpha}) = \sum_{\Delta \in [n_{ff}]} W_2^{\delta,\Delta} ReLU \left(\sum_{\delta' \in [d]} W_1^{\Delta,\delta'} e^{\delta',\alpha} + b_1^{\Delta,\alpha} \right) + b_2^{\delta,\alpha}$$
(95.40)

 n_{ff} is called the intermediate_size in BERT.

• Softmax

softmax() takes a vector and returns a vector of probabilities of the same length

$$e^{[n]} \to P^{[n]}$$
 (95.41)

where

$$P^{\alpha} = \frac{\exp(e^{\alpha})}{\sum_{\alpha \in [n]} \exp(e^{\alpha})} \quad \left(P^{[n]} = \frac{\exp(e^{[n]})}{\|\exp(e^{[n]})\|_{0}}\right)$$
(95.42)

For example,

$$(1,0,0) \to (e,1,1)/norm$$
 (95.43)

$$(10,0,0) \to (e^{10},1,1)/norm \approx (1,0,0)$$
 (95.44)

For any $a \in \mathbb{R}$,

$$(a, a, a) \to \frac{1}{3}(1, 1, 1)$$
 (95.45)

• Skip Connection (Add & Normalize)

A skip connection is when you split the input to a filter into two streams, one stream goes through the filter, the other doesn't. The one that doesn't is then merged with the output of the filter via a add & normalize node. The reason

for making skip connections is that the signal exiting a filter is usually full of jumps and kinks. By merging that filter output with some of the filter input, one smooths out the filter output to some degree. This makes back-propagation differentiation better behaved.

The filter might be a Multi-Head Attention or a Feed Forward NN.

Add & Normalize just means (A + B)/norm where A and B are the two input signals and "norm" is some norm of A + B (for instance, $||A + B||_2$).

Normalization keeps the signal from growing too big and saturating the signal that will enter components upstream. Normalization can also involve subtracting the mean $\langle X \rangle$ of the signal X so as to get a signal $X - \langle X \rangle$ that has zero mean.

Redundancy

For better results, the Encoder and Decoder both contain Λ copies, connected in series, of the boxed bnet.

Redundancy (see Chapter 79) has been used to avoid catastrophic failure at least as early as the dawn of the age of rocketry, when it was used to avoid the all too common occurrence of exploding rockets. There are 2 basic types of redundancy: in series connection (as in the layers in a feedforward NN), and in parallel connection (as in tranet heads, and the plates in a bnet (see Chapter 71)).

• Right Shifted Outputs

"Outputs (Shifted Right)" in Fig.95.4 refers to what is called **forced teaching** in the RNN (recurrent neural net) literature. We explain forced teaching in Fig.95.5.

INFERENCE

TRAINING (forced teaching)

$$A \rightarrow enc$$
 $AB \rightarrow enc$ $ABC \rightarrow enc$ $ABC \rightarrow enc$ $ABC \rightarrow enc$ $\# \rightarrow dec \rightarrow ab$ $\# AB \rightarrow dec \rightarrow abc$ $\# ABC \rightarrow dec \rightarrow abc$.

Figure 95.5: Training and Inference for vanilla transformer. "enc" and "dec" denote the encoder and decoder, respectively. A hash character represents the SOS (start of sentence) token, and a period represents the EOS (end of sentence) token. Capital letters represent ground truth tokens, and lower case ones represent predictions.

• Masked Attention

$$P(\alpha'|\alpha,\nu) = 0 \quad \text{if } \alpha' < \alpha \tag{95.46}$$

 α , and α' are sentence positions and α' is in the future (downstream) compared to α . So as to not violate causality, this condition enforces the constraint that no attention is paid to sentence positions in the future of α .

95.3.1 Single Head Attention

Fig.95.6 gives a bnet representation of the "Single Head Attention" portion of Fig.95.4. The structural equations for that bnet, printed in blue, are as follows.

Figure 95.6: Single Head Attention. (Scaled Dot Product)

$$A^{[d],[\ell]} = V^{[d],[\ell]} P^{[\ell],[\ell]} \left(\text{Note that } \sum_{\alpha \in [\ell]} P^{\alpha,[\ell]} = 1 \right)$$
 (95.47a)

$$B^{[\ell],[\ell]} = (K^{[d],[\ell]})^T Q^{[d],[\ell]}$$
 (95.47b)

$$K^{[d],[\ell]} = \text{prior} \tag{95.47c}$$

$$M^{[\ell],[\ell]} = \text{mask}(S^{[\ell],[\ell]})$$
 (95.47d)

$$P^{[\ell],[\ell]} = \operatorname{softmax}(M^{[\ell],[\ell]}) \quad \left(\text{Note that } \sum_{\alpha \in [\ell]} P^{\alpha,[\ell]} = 1 \right)$$
 (95.47e)

$$Q^{[d],[\ell]} = \text{prior} \tag{95.47f}$$

$$S^{[\ell],[\ell]} = \frac{B^{[\ell],[\ell]}}{\sqrt{d}}$$
 (95.47g)

$$V^{[d],[\ell]} = \text{prior} \tag{95.47h}$$

95.3.2 Multi-Head Attention

Fig.95.7 gives a bnet representation of the "Multi-Head Attention" portion of Fig.95.4. The structural equations for that bnet, printed in blue, are as follows.

$$A^{[D],[\ell]} = [A_0^{[d],[\ell]} | A_1^{[d],[\ell]}]$$
(95.48a)

$$A_0^{[d],[\ell]} = \text{Attention}(V_0^{[d],[\ell]}, K_0^{[d],[\ell]}, Q_0^{[d],[\ell]}) \tag{95.48b}$$

$$A_1^{[d],[\ell]} = \text{Attention}(V_1^{[d],[\ell]}, K_1^{[d],[\ell]}, Q_1^{[d],[\ell]})$$
(95.48c)

$$K^{[D],[\ell]} = W_k^{[D],[d]} e^{[d],[\ell]}$$
 (95.48d)

$$K_0^{[d],[\ell]} = \operatorname{linear}(K^{[D],[\ell]})$$
 (split, then project a component) (95.48e)

Figure 95.7: Multi-head Attention with 2 heads. Note that the orange nodes all have the same tensor shape.

$$K_1^{[d],[\ell]} = \operatorname{linear}(K^{[D],[\ell]})$$
 (split, then project a component) (95.48f)

$$O^{[d],[\ell]} = W_{\underline{a}}^{[d],[D]} A^{[D],[\ell]}$$
 (95.48g)

$$Q^{[D],[\ell]} = W_{\underline{q}}^{[D],[d]} e^{[d],[\ell]}$$
 (95.48h)

$$Q_0^{[d],[\ell]} = \operatorname{linear}(Q^{[D],[\ell]}) \text{ (split, then project a component)}$$
 (95.48i)

$$Q_1^{[d],[\ell]} = \operatorname{linear}(Q^{[D],[\ell]}) \text{ (split, then project a component)}$$
 (95.48j)

$$V^{[D],[\ell]} = W_{\underline{v}}^{[D],[d]} e^{[d],[\ell]}$$
 (95.48k)

$$V_0^{[d],[\ell]} = \operatorname{linear}(V^{[D],[\ell]}) \text{ (split, then project a component)}$$
 (95.48l)

$$V_1^{[d],[\ell]} = \operatorname{linear}(V^{[D],[\ell]})$$
 (split, then project a component) (95.48m)

$$e^{[d],[\ell]} = \text{prior} \tag{95.48n}$$

95.3.3 Encoder

Fig.95.8 gives a bnet representation of the "Encoder" portion of Fig.95.4. The structural equations for that bnet, printed in blue, are as follows.

$$A^{[D],[\ell]} = \text{Attention}(Q^{[D],[\ell]}, K^{[D],[\ell]}, V^{[D],[\ell]})$$
(95.49a)

$$e^{[d],[\ell]} = \mathcal{E}^{[d],[L]} x^{[L],[\ell]}$$
 (95.49b)

$$F^{[d],[\ell]} = \text{feed_forward_nn}(N^{[d],[\ell]})$$
(95.49c)

$$K^{[D],[\ell]} = W_k^{[D],[d]} e^{[d],[\ell]}$$
 (95.49d)

Figure 95.8: Encoder of Vanilla Transformer Net. Λ copies of the boxed part are connected in series.

$$n^{[d],[\ell]} = \text{normalize}(N^{[d],[\ell]} + F^{[d],[\ell]})$$
 (95.49e)

$$N^{[d],[\ell]} = \text{normalize}(e^{[d],[\ell]} + W_{\underline{a}}^{[d],[D]} A^{[D],[\ell]})$$
 (95.49f)

$$Q^{[D],[\ell]} = W_{\underline{q}}^{[D],[d]} e^{[d],[\ell]}$$
 (95.49g)

$$V^{[D],[\ell]} = W_{\underline{v}}^{[D],[d]} e^{[d],[\ell]}$$
 (95.49h)

$$x^{[L],[\ell]} = \text{prior} \tag{95.49i}$$

95.3.4 Decoder

Fig.95.9 gives a bnet representation of the "Decoder" portion of Fig.95.4. The structural equations for that bnet, printed in blue, are as follows.

$$a^{[D],[\ell]} = \text{Attention}(v^{[D],[\ell]}, k^{[D],[\ell]}, q^{[D],[\ell]})$$
 (95.50a)

$$A^{[D],[\ell]} = \text{Attention}(Q^{[D],[\ell]}, K^{[D],[\ell]}, V^{[D],[\ell]})$$
(95.50b)

$$e^{[d],[\ell]} = \mathcal{E}^{[d],[L]} x^{[L],[\ell]}$$
 (95.50c)

$$F^{[d],[\ell]} = \text{feed_forward_nn}(j^{[d],[\ell]})$$
(95.50d)

$$I^{[L],[\ell]} = W_{fin}^{[L],[d]} Y^{[d],[\ell]}$$
 (95.50e)

$$j^{[d],[\ell]} = \text{normalize}(U_a^{[d],[D]} a^{[D],[\ell]} + J^{[d],[\ell]})$$
 (95.50f)

$$J^{[d],[\ell]} = \text{normalize}(W_{\underline{a}}^{[d],[D]}A^{[D],[\ell]} + e^{[d],[\ell]}) \tag{95.50g}$$

$$K^{[D],[\ell]} = W_k^{[D],[d]} e^{[d],[\ell]}$$
 (95.50h)

$$k^{[D],[\ell]} = U_k^{[D],[d]} n^{[d],[\ell]}$$
 (95.50i)

$$n^{[d],[\ell]} = \text{Prior coming from Encoder.}$$
 (95.50j)

Figure 95.9: Decoder of Vanilla Transformer Net. Λ copies of the boxed part are connected in series.

$$P^{[L],[\ell]} = \text{softmax}(I^{[L],[\ell]}) \ (\sum_{\alpha \in [\ell]} P^{[L],\alpha} = 1)$$
 (95.50k)

$$q^{[D],[\ell]} = U_q^{[D],[d]} J^{[d],[\ell]}$$
(95.501)

$$Q^{[D],[\ell]} = W_{\underline{q}}^{[D],[d]} e^{[d],[\ell]}$$
 (95.50m)

$$V^{[D],[\ell]} = W_{\underline{v}}^{[D],[d]} e^{[d],[\ell]}$$
 (95.50n)

$$v^{[D],[\ell]} = U_v^{[D],[d]} n^{[d],[\ell]}$$
(95.50o)

$$x^{[L],[\ell]} = \text{prior, right shifted output}$$
 (95.50p)

$$Y^{[d],[\ell]} = \text{normalize}(F^{[d],[\ell]} + J^{[d],[\ell]})$$
 (95.50q)

95.4 BERT

I used the Wikipedia article on BERT, Ref[94] to write this section.

BERT (Bidirectional Encoder Representations from Transformer) is a realization of the Encoder half of the Vanilla tranet. One can either add a smaller NN to the output of BERT (this is called **fine-tuning**), or one can add a de-embedding layer to its output so that the total device takes word lists to word lists.

In the language of Bayesian Networks, fine-tuning is the same as using BERT as a prior probability. See Chapter 84 on sentence splitting for an example of BERT fine-tuning.

95.4.1 BERT parameter values

BERT comes in two sizes, base and large. See Table 95.1 for a listing of some BERT parameter values.

	BERT base	BERT large
ℓ , context window	512	512
L , vocab_size	30,522	30,522
d , hidden_size	768	1024
$n_{\underline{h}}, \mathtt{num_attention_heads}$	12	16
Λ , num_hidden_layers	12	24
D' , intermediate_size	3,072	3,072
number of parameters	110M	340M

Table 95.1: Some hyper-parameter values for BERT base and BERT large

95.4.2 BERT Embedding

So far, we have described the embedding step as a single step from tokenization into words, to 1 hot vectors, to embedding vectors. There are other additional steps in the embedding process that we haven't described so far (namely, tokenization into subwords, adding special tokens, and padding). We would like to describe those additional steps now, in the context of the BERT model. Here is an example.

Let's consider a short sentence: "The cat is on the mat."

1. **Tokenization into words:** Tokenize the sentence into individual words: "The", "cat", "is", "on", "the", "mat", "."

2. **Tokenization into subwords:** Further tokenize words into subword units using WordPiece tokenization or a similar method. For example:

$$The \rightarrow The$$

$$cat \rightarrow ca, t$$

$$is \rightarrow is$$

$$on \rightarrow on$$

$$the \rightarrow the$$

$$mat \rightarrow mat$$

$$. \rightarrow .$$

Any subword not appearing in BERTs vocabulary is replaced by [UNK] for "unknown".

3. Adding Special Tokens: Add special tokens, such as [CLS] (classification) at the beginning and [SEP] (separator) at the end:

4. **Padding:** If necessary, pad or truncate the sequence to a fixed length. Add padding tokens "[PAD]" to reach a specified sequence length.

5. Embedding Matrix: Create a tensor with 1-hot columns

$$x^{\beta,\alpha} = \delta(\beta, \beta(\alpha)) \tag{95.51}$$

where $\alpha \in [\ell]$, $\beta \in [L]$ and where $\beta(\alpha)$ is the location in the BERT vocab corresponding to token α in the padded string. Now multiply x times the previously discussed embedding matrix \mathcal{E} to get

$$e^{[d],[\ell]} = \mathcal{E}^{[d],[L]} x^{[L],[\ell]} \in \mathbb{R}^{d \times \ell}$$
 (95.52)

This gives a vector in \mathbb{R}^d for each token α in the padded string. The matrix \mathcal{E} is pre-trained and captures contextual information and word similarities. It can also include positional embedding, as discussed before.

95.4.3 BERT training

BERT was trained⁶ simultaneously on two tasks.⁷

- 1. language modeling: 15% of tokens were selected for prediction. Those tokens selected for prediction were replaced by the [MASK] token 80% of the time, by a random word 10% of the time, and not replaced at all 10% of the time. The training objective was to predict the selected token given its context.
- 2. **next sentence prediction:** Given two spans of text, the model predicts if these two spans appeared sequentially in the training corpus, outputting either [IsNext] or [NotNext]. For example,
 - Given "[CLS] my dog is cute [SEP] he likes playing" the model should output token [IsNext].
 - Given "[CLS] my dog is cute [SEP] how do magnets work" the model should output token [NotNext]

⁶Sometimes this is called "pre-training" to distinguish it from the "training" of the smaller NN that is attached to the output of BERT when doing fine-tuning.

⁷This section on BERT training quotes Wikipedia Ref. [94] heavily.

Bibliography

- [1] Alan Agresti. An introduction to categorical data analysis. John Wiley & Sons, 2018.
- [2] Data Analytics and IIT Delhi Intelligence Research (DAIR) Group. Openie6. https://github.com/dair-iitd/openie6.
- [3] Elias Bareinboim, Jin Tian, and Judea Pearl. Recovering from selection bias in causal and statistical inference. In *Twenty-Eighth AAAI Conference on Artificial Intelligence*, 2014. https://ftp.cs.ucla.edu/pub/stat_ser/r425.pdf.
- [4] Dan Bendel. Metropolis-Hastings: A comprehensive overview and proof. https://similarweb.engineering/mcmc/.
- [5] David Benkeser and Antoine Chambaz. A ride in targeted learning territory. https://achambaz.github.io/tlride/tlride-book.pdf.
- [6] Alexandra M Carvalho. Scoring functions for learning Bayesian networks. http://www.lx.it.pt/~asmc/pub/talks/09-TA/ta_pres.pdf.
- [7] Bo Chang. Copula: a very short introduction, article in Bo's Blog. https://bochang.me/blog/posts/copula/.
- [8] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. https://arxiv.org/abs/1603.02754.
- [9] Victor Chernozhukov, Carlos Cinelli, Whitney Newey, Amit Sharma, and Vasilis Syrgkanis. Long story short: Omitted variable bias in causal machine learning. https://www.nber.org/system/files/working_papers/w30302/w30302.pdf.
- [10] Carlos Cinelli, Andrew Forney, and Judea Pearl. A crash course in good and bad controls. https://ftp.cs.ucla.edu/pub/stat_ser/r493.pdf.
- [11] Carlos Cinelli and Chad Hazlett. Making sense of sensitivity: Extending omitted variable bias. https://carloscinelli.com/files/Cinelli%20and%20Hazlett%20(2020)%20-%20Making%20Sense%20of%20Sensitivity.pdf.

- [12] Scott Cunningham. Causal inference: The mixtape. Yale University Press, 2021. https://mixtape.scunning.com/index.html.
- [13] Robin J. Evans. Graphical methods for inequality constraints in marginalized DAGs. https://arxiv.org/abs/1209.2978.
- [14] Matheus Facure Alves. Causal Inference for The Brave and True. 2021. https://matheusfacure.github.io/python-causality-handbook/landing-page.html.
- [15] George Fei. Modeling uplift directly: Uplift decision tree with kl divergence and euclidean distance as splitting criteria. https://www.aboutwayfair.com/tech-innovation/modeling-uplift-directly-uplift-decision-tree-with-kl-divergence-and-euclidean-distance-as-splitting-criteria.
- [16] Charles Fox, Neil Girdhar, and Kevin Gurney. A causal Bayesian network view of reinforcement learning. https://www.aaai.org/Papers/FLAIRS/2008/FL AIRS08-030.pdf".
- [17] Bruno Gonçalves. Model testing and causal search. blog post https://medium.com/data-for-science/causal-inference-part-vii-model-testing-and-causal-search-536b796f0384.
- [18] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, David Warde-Farley Bing Xu, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. https://arxiv.org/abs/1406.2661.
- [19] Pierre Gutierrez and Jean-Yves Gérardy. Causal inference and uplift modelling: A review of the literature. In *Proceedings of The 3rd International Conference on Predictive Applications and APIs*, pages 1–13, 2017. http://proceedings.mlr.press/v67/gutierrez17a.html.
- [20] James Douglas Hamilton. *Time series analysis*. Princeton University Press, 2020.
- [21] Sebastian Haneuse and Andrea Rotnitzky. Estimation of the effect of interventions that modify the received treatment. Statistics in medicine, 32(30):5260-5277, 2013. Main:https://sci-hub.se/10.1002/sim.5907, Supplement: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fsim.5907&file=sim5907-sup-0001-Appendix.pdf.
- [22] Christina Heinze-Deml. Causality, spring semester 2019 at ETH Zurich. https://stat.ethz.ch/lectures/ss19/causality.php#course_materials.
- [23] MA Hernán and J Robins. Causal inference: What if. Boca Raton: Chapman & Hill/CRC, https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/.

- [24] Katherine Hoffman. An illustrated guide to modified treatment policies, part 1: Introduction and motivation, article in KHstats blog. https://www.khstats.com/blog/lmtp/lmtp/.
- [25] Katherine Hoffman. An illustrated guide to TMLE, article in KHstats blog. https://www.khstats.com/blog/tmle/tutorial/.
- [26] Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural guide. *International journal of approximate reasoning*, 15(3):225-263, 1996. http://www.ar-tiste.com/Huang-Darwiche1996.pdf.
- [27] Tommi S. Jaakkola and Michael I. Jordan. Variational probabilistic inference and the QMR-DT network. http://arxiv.org/abs/1105.5462.
- [28] Michael I. Jordan. course: Stat260-Bayesian modeling and inference, lecture date: February 8-2010, title: The conjugate prior for the Normal distribution. https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/lectures/lecture5.pdf.
- [29] Chaitanya K. Joshi. Transformer (machine learning model). https://graphdeeplearning.github.io/post/transformers-are-gnns/.
- [30] Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal, Mausam, and Soumen Chakrabarti. Openie6: Iterative grid labeling and coordination analysis for open information extraction. https://arxiv.org/abs/2010.03147.
- [31] Chung-Ming Kuan. Introduction to time series analysis, Fall 2014 lectures given at the Department of Finance, National Taiwan University. https://homepage.ntu.edu.tw/~ckuan/pdf/2014fall/Lec-TimeSeries_slide-Fall2014.pdf.
- [32] Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. *Journal of the Royal Statistical Society: Series B (Methodological)*, 50(2):157–194, 1988. http://www.eecis.udel.edu/~shatkay/Course/papers/Lauritzen1988.pd f.
- [33] Sergey Levine. Course CS 285 at UC Berkeley, Deep reinforcement learning. http://rail.eecs.berkeley.edu/deeprlcourse/.
- [34] Ang Li. Ph.D. Thesis, UCLA 2021. https://ftp.cs.ucla.edu/pub/stat_ser/r507.pdf.
- [35] Dimitris Margaritis. Learning Bayesian network model structure from data (thesis, 2003, Carnegie Mellon Univ). https://apps.dtic.mil/sti/citations/ADA461103.

- [36] Adam A Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo Dalla Favera, and Andrea Califano. Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. In *BMC bioinformatics*, volume 7, page S7. Springer, 2006. https://link.springer.com/article/10.1186/1471-2105-7-S1-S7.
- [37] Samuele Mazzanti. Black-box models are actually more explainable than a logistic regression. https://towardsdatascience.com/black-box-models-are-actually-more-explainable-than-a-logistic-regression-f263c22 795d.
- [38] Samuele Mazzanti. SHAP values explained exactly how you wished someone explained to you. https://towardsdatascience.com/shap-explained-the-way-i-wish-someone-explained-it-to-me-ab81cc69ef30.
- [39] Robert J. McEliece, David J. C. MacKay, and Jung-Fu Cheng. Turbo decoding as an instance of Pearl's belief propagation algorithm. http://authors.library.caltech.edu/6938/1/MCEieeejstc98.pdf.
- [40] Scott Mueller, Ang Li, and Judea Pearl. Causes of effects: Learning individual responses from population data. arXiv preprint arXiv:2104.13730, 2021. https://arxiv.org/abs/2104.13730.
- [41] Brady Neal. Introduction to causal inference, Fall 2020, lectures and book. https://www.bradyneal.com/causal-inference-course.
- [42] Richard E Neapolitan. Learning Bayesian networks. Pearson Prentice Hall, 2004.
- [43] Andrew Ng. Lecture at deeplearning.ai on recurrent neural networks. http://www.ar-tiste.com/ng-lec-rnn.pdf.
- [44] Gregory Nuel. Tutorial on exact belief propagation in Bayesian networks: from messages to algorithms. https://arxiv.org/abs/1201.4724.
- [45] paperspace.com. PyTorch 101, Part 1: Understanding graphs, automatic differentiation and autograd. https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/.
- [46] Judea Pearl. Linear models: A useful microscope for causal analysis. https://ftp.cs.ucla.edu/pub/stat_ser/r409-corrected-reprint.pdf.
- [47] Judea Pearl. Mediating instrumental variables. https://ftp.cs.ucla.edu/pub/stat_ser/r210.pdf.
- [48] Judea Pearl. On the testability of causal models with latent and instrumental variables. https://arxiv.org/abs/1302.4976.

- [49] Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. https://www.aaai.org/Papers/AAAI/1982/AAAI82-032.pdf, 1982.
- [50] Judea Pearl. Probabilistic Inference in Intelligent Systems. Morgan Kaufmann, 1988.
- [51] Judea Pearl. The causal mediation formula—a guide to the assessment of pathways and mechanisms. *Prevention science*, 13(4):426–436, 2012. https://apps.dtic.mil/sti/pdfs/ADA557663.pdf.
- [52] Judea Pearl. Causality: Models, Reasoning, and Inference, Second Edition. Cambridge University Press, 2013.
- [53] Judea Pearl. Causal and counterfactual inference. The Handbook of Rationality, pages 1-41, 2019. https://ftp.cs.ucla.edu/pub/stat_ser/r485.pdf.
- [54] Judea Pearl and Elias Bareinboim. Transportability of causal and statistical relations: A formal approach. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 25, 2011. https://ojs.aaai.org/index.php/AAAI/article/view/7861.
- [55] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics: A primer. John Wiley & Sons, 2016.
- [56] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic Books, 2018.
- [57] Judea Pearl and James M Robins. Probabilistic evaluation of sequential plans from causal models with hidden variables. arXiv preprint arXiv:1302.4977, 2013. https://arxiv.org/abs/1302.4977.
- [58] Ashwin Rao and Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance. https://stanford.edu/~ashlearn/RLForFinanceBook/book.pdf.
- [59] ReliaSoft. System analysis reference. http://reliawiki.org/index.php/System_Analysis_Reference.
- [60] Piotr Rzepakowski and Szymon Jaroszewicz. Decision trees for uplift modeling with single and multiple treatments. Knowledge and Information Systems, 32(2):303-327, 2012. https://link.springer.com/content/pdf/10.1007/s10115-011-0434-0.pdf.
- [61] Scholarpedia. Granger causality. http://www.scholarpedia.org/article/Granger_causality.

- [62] Marco Scutari. bnlearn. https://www.bnlearn.com/.
- [63] Marco Scutari, Catharina Elisabeth Graafland, and José Manuel Gutiérrez. Who learns better Bayesian network structures: Accuracy and speed of structure learning algorithms. *International Journal of Approximate Reasoning*, 115:235–253, 2019. https://arxiv.org/abs/1805.11908.
- [64] Nitish Srivastava, G E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.
- [65] StatQuest. XGBoost Parts 1-4 (videos). https://statquest.org/video-index/.
- [66] Russell Stuart and Norvig Peter. Artificial intelligence-a modern approach 3rd ed, 2016.
- [67] Masayoshi Takahashi. Statistical inference in missing data by MCMC and non-MCMC multiple imputation algorithms: Assessing the effects of betweenimputation iterations. *Data Science Journal*, 16, 2017. https://datascience.codata.org/articles/10.5334/dsj-2017-037/.
- [68] theinvestorsbook.com. Pert analysis. https://theinvestorsbook.com/pert-analysis.html.
- [69] Jin Tian and Judea Pearl. Probabilities of causation: Bounds and identification. Annals of Mathematics and Artificial Intelligence, 28(1):287–313, 2000. https://ftp.cs.ucla.edu/pub/stat_ser/r271-A.pdf.
- [70] Robert R. Tucci. Bayesian networks (a.k.a. causal models, DAGs) and the passage of time. blog post in blog Quantum Bayesian Networks, https://qb nets.wordpress.com/2021/07/16/bayesian-networks-aka-causal-model s-dags-and-the-passage-of-time/.
- [71] Robert R. Tucci. Bell's inequalities for Bayesian statisticians. blog post in blog Quantum Bayesian Networks, https://qbnets.wordpress.com/2008/09/19/bells-inequaties-for-bayesian-statistician/.
- [72] Robert R. Tucci. Goodness of causal fit. https://github.com/rrtucci/DAG_Lie_Detector.
- [73] Robert R. Tucci. JudeasRx. https://github.com/rrtucci/JudeasRx.
- [74] Robert R. Tucci. Mappa Mundi. https://github.com/rrtucci/mappa_mundi.
- [75] Robert R. Tucci. Quantum d-separation and quantum belief propagation. ht tps://arxiv.org/abs/2012.09635.

- [76] Robert R. Tucci. Quantum Fog. https://github.com/artiste-qb-net/quantum-fog.
- [77] Robert R. Tucci. SCuMpy. https://github.com/rrtucci/scumpy.
- [78] Robert R. Tucci. SentenceAx. https://github.com/rrtucci/SentenceAx.
- [79] Robert R. Tucci. Shannon information theory without shedding tears over delta & epsilon proofs or typical sequences. https://arxiv.org/abs/1208.2737.
- [80] Robert R. Tucci. texnn. https://github.com/rrtucci/texnn.
- [81] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. https://arxiv.org/abs/1706.03762.
- [82] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault tree handbook nureg-0492. https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/.
- [83] Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational inference (book). https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf.
- [84] Lilian Weng. The multi-armed bandit problem and its solutions. lilianweng.github.io/lil-log, http://lilianweng.github.io/lil-log/201 8/01/23/the-multi-armed-bandit-problem-and-its-solutions.html, 2018.
- [85] Lilian Weng. What are diffusion models? lilianweng.github.io/lil-log, https://lilianweng.github.io/posts/2021-07-11-diffusion-models/, 2021.
- [86] Wikibooks. Control systems. https://en.wikibooks.org/wiki/Control_S ystems.
- [87] Wikipedia. AdaBoost. https://en.wikipedia.org/wiki/AdaBoost.
- [88] Wikipedia. Autoregressive model. https://en.wikipedia.org/wiki/Autoregressive_model.
- [89] Wikipedia. Autoregressive moving-average model. https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model.
- [90] Wikipedia. Baum-Welsh algorithm. https://en.wikipedia.org/wiki/Baum %E2%80%93Welch_algorithm.
- [91] Wikipedia. Belief propagation. https://en.wikipedia.org/wiki/Belief_p ropagation.

- [92] Wikipedia. Berkson's paradox. https://en.wikipedia.org/wiki/Berkson% 27s_paradox.
- [93] Wikipedia. Bernoulli distribution. https://en.wikipedia.org/wiki/Bernoulli_distribution.
- [94] Wikipedia. BERT language model. https://en.wikipedia.org/wiki/BERT _(language_model).
- [95] Wikipedia. Beta distribution. https://en.wikipedia.org/wiki/Beta_distribution.
- [96] Wikipedia. Beta function. https://en.wikipedia.org/wiki/Beta_function.
- [97] Wikipedia. Binary decision diagram. https://en.wikipedia.org/wiki/Binary_decision_diagram.
- [98] Wikipedia. Boolean algebra. https://en.wikipedia.org/wiki/Boolean_algebra.
- [99] Wikipedia. Bootstrap aggregating. https://en.wikipedia.org/wiki/Bootstrap_aggregating.
- [100] Wikipedia. Categorical distribution. https://en.wikipedia.org/wiki/Categorical_distribution.
- [101] Wikipedia. Chi-square distribution. https://en.wikipedia.org/wiki/Chi-square_distribution.
- [102] Wikipedia. Chow-Liu tree. https://en.wikipedia.org/wiki/Chow%E2%80%9 3Liu_tree.
- [103] Wikipedia. Cochran's theorem. https://en.wikipedia.org/wiki/Cochran% 27s_theorem.
- [104] Wikipedia. Conjugate prior. https://en.wikipedia.org/wiki/Conjugate_prior.
- [105] Wikipedia. Copula. https://en.wikipedia.org/wiki/Copula_(probability_theory).
- [106] Wikipedia. Cramer-Rao bound. https://en.wikipedia.org/wiki/Cram%C3% A9r%E2%80%93Rao_bound.
- [107] Wikipedia. Cross-validation. https://en.wikipedia.org/wiki/Cross-validation_(statistics).

- [108] Wikipedia. Data processing inequality. https://en.wikipedia.org/wiki/Data_processing_inequality.
- [109] Wikipedia. Dirichlet distribution. https://en.wikipedia.org/wiki/Dirichlet_distribution.
- [110] Wikipedia. Errors in variables models. https://en.wikipedia.org/wiki/Errors-in-variables_models.
- [111] Wikipedia. Expectation maximization. https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm.
- [112] Wikipedia. F-distribution. https://en.wikipedia.org/wiki/F-distribution.
- [113] Wikipedia. Frisch-Waugh-Lovell theorem. https://en.wikipedia.org/wiki/Frisch%E2%80%93Waugh%E2%80%93Lovell_theorem.
- [114] Wikipedia. Functional derivative. https://en.wikipedia.org/wiki/Functional_derivative.
- [115] Wikipedia. Gamma distribution. https://en.wikipedia.org/wiki/Gamma_d istribution.
- [116] Wikipedia. Gamma function. https://en.wikipedia.org/wiki/Gamma_function.
- [117] Wikipedia. Gated recurrent unit. https://en.wikipedia.org/wiki/Gated_r ecurrent_unit.
- [118] Wikipedia. Gibbs sampling. https://en.wikipedia.org/wiki/Gibbs_sampling.
- [119] Wikipedia. Granger causality. https://en.wikipedia.org/wiki/Granger_c ausality.
- [120] Wikipedia. Hidden Markov model. https://en.wikipedia.org/wiki/Hidden_Markov_model.
- [121] Wikipedia. Hoeffding's inequality. https://en.wikipedia.org/wiki/Hoeffding%27s_inequality.
- [122] Wikipedia. Importance sampling. https://en.wikipedia.org/wiki/Importance_sampling.
- [123] Wikipedia. Instrumental variables estimation. https://en.wikipedia.org/wiki/Instrumental_variables_estimation.

- [124] Wikipedia. Inverse transform sampling. https://en.wikipedia.org/wiki/Inverse_transform_sampling.
- [125] Wikipedia. Jackknife resampling. https://en.wikipedia.org/wiki/Cross-validation_(statistics).
- [126] Wikipedia. Junction tree algorithm. https://en.wikipedia.org/wiki/Junction_tree_algorithm.
- [127] Wikipedia. k-means clustering. https://en.wikipedia.org/wiki/K-means_clustering.
- [128] Wikipedia. Kalman filter. https://en.wikipedia.org/wiki/Kalman_filter.
- [129] Wikipedia. Kernel method. https://en.wikipedia.org/wiki/Kernel_method.
- [130] Wikipedia. Kernel perceptron. https://en.wikipedia.org/wiki/Kernel_perceptron.
- [131] Wikipedia. Laplace transform. https://en.wikipedia.org/wiki/Laplace_transform.
- [132] Wikipedia. Least squares. https://en.wikipedia.org/wiki/Least_squares.
- [133] Wikipedia. Legendre transformation. https://en.wikipedia.org/wiki/Legendre_transformation.
- [134] Wikipedia. Likelihood-ratio test. https://en.wikipedia.org/wiki/Likelihood-ratio_test.
- [135] Wikipedia. Linear regression. https://en.wikipedia.org/wiki/Linear_regression.
- [136] Wikipedia. Long short term memory. https://en.wikipedia.org/wiki/Long_short-term_memory.
- [137] Wikipedia. Markov blanket. https://en.wikipedia.org/wiki/Markov_blanket.
- [138] Wikipedia. Metropolis-Hastings method. https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm.
- [139] Wikipedia. Minimum spanning tree. https://en.wikipedia.org/wiki/Minimum_spanning_tree.
- [140] Wikipedia. Monte Carlo methods. https://en.wikipedia.org/wiki/Category:Monte_Carlo_methods.

- [141] Wikipedia. Moving-average model. https://en.wikipedia.org/wiki/Moving-average_model.
- [142] Wikipedia. Multinomial distribution. https://en.wikipedia.org/wiki/Multinomial_distribution.
- [143] Wikipedia. Multinomial theorem. https://en.wikipedia.org/wiki/Multinomial_theorem.
- [144] Wikipedia. Multivariate normal distribution. https://en.wikipedia.org/wiki/Multivariate_normal_distribution.
- [145] Wikipedia. Natural experiment. https://en.wikipedia.org/wiki/Natural_experiment.
- [146] Wikipedia. Non-negative matrix factorization. https://en.wikipedia.org/wiki/Non-negative_matrix_factorization.
- [147] Wikipedia. Ordinary least squares. https://en.wikipedia.org/wiki/Ordinary_least_squares.
- [148] Wikipedia. Program evaluation and review technique. https://en.wikipedia.org/wiki/Program_evaluation_and_review_technique.
- [149] Wikipedia. Random forest. https://en.wikipedia.org/wiki/Random_forest.
- [150] Wikipedia. Receiver operating characteristic. https://en.wikipedia.org/wiki/Receiver_operating_characteristic.
- [151] Wikipedia. Rejection sampling. https://en.wikipedia.org/wiki/Rejection_sampling.
- [152] Wikipedia. Score test. https://en.wikipedia.org/wiki/Score_test.
- [153] Wikipedia. Signal flow graph. https://en.wikipedia.org/wiki/Signal-flow_graph.
- [154] Wikipedia. Simple linear regression. https://en.wikipedia.org/wiki/Simple_linear_regression.
- [155] Wikipedia. Simpson's paradox. https://en.wikipedia.org/wiki/Simpson's_paradox.
- [156] Wikipedia. Spring system. https://en.wikipedia.org/wiki/Spring_syste

- [157] Wikipedia. Student's t-distribution. https://en.wikipedia.org/wiki/Student%27s_t-distribution.
- [158] Wikipedia. Support vector machine. https://en.wikipedia.org/wiki/Support-vector_machine.
- [159] Wikipedia. Survival analysis. https://en.wikipedia.org/wiki/Survival_a nalysis.
- [160] Wikipedia. Time series. https://en.wikipedia.org/wiki/Time_series.
- [161] Wikipedia. Transfer learning. https://en.wikipedia.org/wiki/Transfer_learning.
- [162] Wikipedia. Transformer (machine learning model). https://en.wikipedia.org/wiki/Transformer_(machine_learning_model).
- [163] Wikipedia. Uplift modelling. https://en.wikipedia.org/wiki/Uplift_modelling.
- [164] Wikipedia. Variational Bayesian methods. https://en.wikipedia.org/wiki/Variational_Bayesian_methods.
- [165] Wikipedia. Vector autoregression. https://en.wikipedia.org/wiki/Vector_autoregression.
- [166] Wikipedia. Viterbi algorithm. https://en.wikipedia.org/wiki/Viterbi_algorithm.
- [167] Wikipedia. Wald test. https://en.wikipedia.org/wiki/Wald_test.
- [168] Wikipedia. Z-transform. https://en.wikipedia.org/wiki/Z-transform.
- [169] Hao Wu and Zhaohui Steve Qin. course notes, BIOS731: Advanced statistical computing, 2016 Emory Univ. http://web1.sph.emory.edu/users/hwu30/teaching/statcomp/statcomp.html.
- [170] Ronghui (Lily) Xu. Lecture notes, MATH 284, Spring 2020, Survival analysis. https://mathweb.ucsd.edu/~rxu/math284/.
- [171] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Understanding belief propagation and its generalizations, Mitsubishi Technical Report tr-2001-22. https://merl.com/publications/docs/TR2001-22.pdf.