Equivalence of Regular Languages, Expressions, and Automata

CSCI 3136: Principles of Programming Languages

Agenda

- Regular Languages Equivalence Theorem
- Equivalence between RLs and Res
- Equivalence between RE's and NFAs
- Equivalence between NFAs and DFAs
- · Minimization of DFAs (time permitting)

Are these all the same?

- We have discussed a variety of specifications:
 RLs, RE, DFAs, NFAs
 - RLs: a class of languages
 - RE a way to specify RLs
 - DFAs: a way to implement scanners for RLs
 - NFAs: a simpler way to implement scanners for RLs
- · Questions:
 - Are these all of equal power?
 - Are NFAs same as DFAs?
 - Do REs specify only regular languages?

Regular Languages Equivalence Theorem

- Theorem: The following statements are equivalent:
 - i. L is a regular language.
 - ii. L is the language described by a regular expression.
 - iii. L is recognized by an NFA.
 - iv. L is recognized by a DFA.
- · We will prove: (i) \equiv (ii) \equiv (iii) \equiv (iv)

Regular Languages are equivalent to Regular

Expression Squage can be specified by a regular expression.

· Every regular expression specifies a regular

Operation	Regular Language	Regular Expression
Empty Language	A	A
Empty String	{3}	3
Single character	{a}, a Ε Σ	a
Disjunction	L1 v L2	R1 R2
Concatenation	L1L2	R1R2
Kleene-*	LX	R*

Regular Expressions are Equivalent to NFAs

- · Proof: We will show that
 - 1. For each RE R there is an NFA M that recognizes L(R)
 - 2. For each NFA M there is an RE that specifies L(M)
- · We do part 1 first.
 - Idea: For each RE base case and inductive step we can construct a corresponding NFA, hence for any RE, we can construct an NFA.
- · Recall the base cases:
 - Empty Language: A

NFA for each RE Base Case.

Recall: An NFA $M = (Q, \Sigma, \delta, qS, F)$

• Empty Language: \mathbf{A} : $Q = \{q1\}$, F = A, $\delta = A$

• Empty String:
$$\epsilon$$
: Q = {q1} = {q1}, δ = A

• Single character: $a = Q + \frac{\partial}{\partial Q}$, $F = \{q2\}$, $\delta(q1,a) = q2$

NFAs for each RE Inductive Step

- · Notation:
 - $M(R1) = (Q1, \Sigma, \delta 1, q1, F1)$
 - $M(R2) = (Q2, \Sigma, \delta 2, q2, F2)$
- · Disjunction: R1|R2:
 - $M(R1|R2) = (Q, \Sigma, \delta, q0, \mathbf{k})$
 - $Q = Q1 \nu Q2 \nu \{q0\},$
 - $F = F1 \nu F2$,
 - $\delta = \delta 1 \ v \delta 2 \ v \{ \delta(q0,\epsilon) = \{q1,q2\} \}$
- · Concatenation: R1R2:
 - $M(R1R2) = (O.\Sigma.\delta.a1.F2)$

Back to Regular Expressions are Equivalent to NFAs

- Proof: We will show that
 - For each RE R there is an NFA M that recognizes L(R),
 - 2. For each NFA M there is an RE the specifies L(M)
- · Part 2 is a bit trickier.
- · Proof Idea:
 - Treat NFA as a GNFA (Generalized NFA)

Start with the NFA (which is a GNFA)

NFA to RE To Do List

- Normalize NFA by ensuring only one final state.
 - Add ε transitions and a new final state if needed
- Collapse GNFA to a two state start/finish
 - one state at a time
- Transform two the state GNFA to an RF

R4

R1

Collapsing the GNFA

Removing a State from a Path

Example for NFA to RE Process

NFAs are Equivalent to DFAs

- Proof: We will show that
 - For each DFA M that accepts L there is an NFA N that recognizes L
 - For each NFA N that accepts L there is an DFA M that recognizes L
- · We do part 1 first.
 - This is easy. Every DFA is by definition also an NFA.
- The second part is a bit trickier. ©

For each NFA N(L) there is a DFA M(L)

- · Define
 - NFA N = $(Q, \Sigma, \delta, q0, F)$
 - DFA M = $(Q', \Sigma, \delta', q0', F')$
- · Where
 - $q0' = \epsilon$ -close(q0)
 - · ε-close(q) = {p E Q | δ (q, ε) = p}
 - · Set of states form q0 reachable by ε transitions
 - Note: ϵ -close(P) = ν pEP ϵ -close(p)
- Each state in Q' is represented by a subset of O

q4

The δ ' Function for DFA M(L)

- The transition function $\delta'(q',a)$ = p'where
 - p' = ϵ -close(P)
 - $P = \{\delta(q,a) \mid q \in q'\}$
 - Example: $\delta'(\{q0,q1,q2\},0) = \{q3,q4,q5\}$
- Lastly, F' ={q'EQ'|F∩q' ≠ A}
 - Every state in F ' contains a state of an NFA that was in its final set.
 - Example: {q2,q3,q5}EF'

Example L=(0|1)*1(0|1)(0|1)

- $\cdot q0' = \{q0\}$
- Q' = (see table)
- $\delta' = (see)$
- F' = (bolded states)

0,1

State	0	1
{0p}	{q0}	{q0,q1}
{q0,q1}	{q0,q2}	{q0,q1,q2}
{q0,q2}	{q0,q3}	{q0,q1,q3}
{q0.q1,q2}	{q0,q2,q 3}	{q0,q1,q2,q3}
{q0,q3}	{q0}	{q0,q1}
{q0,q1,q3}	{q0,q2}	{q0,q1,q2}
{q0,q2,q3}	{q0,q3}	{q0,q1,q3}
{q0,q1,q2, q3}	{q0,q2,q 3}	{q0,q1,q2,q3}

Example L=(0|1)*1(0|1)(0|1)

State	Q'	0	1
{0p}	q0'	{q0}	{q0,q1}
{q0,q1}	q1 '	{q0,q2}	{q0,q1,q2}
{q0,q2}	q2'	{p,0q3}	{q0,q1,q3}
{q0.q1,q2}	q3'	{q0,q2,q 3}	{q0,q1,q2,q 3}
{q0,q3}	q4'	{q0}	{q0,q1}
{q0,q1,q3}	q5'	{q0,q2}	{q0,q1,q2}
{q0,q2,q3}	q6'	{p,0q3}	{q0,q1,q3}
{q0,q1,q2,q 3}	q7'	{q0,q2,q 3}	{q0,q1,q2,q 3}

Example L=(aa|bb)* | (ab|ba)*(a|b)

- $q0' = \{q0,q1,q4,q7\}$
- \cdot Q' = (see table)

State	a	b
{q0,q1, q4,q7}	{q2,q5,q7}	{q3,q6,q7}
{q2,q5,q7}	{q1,q7}	{q4}
{q3,q6,q7}	{q4}	{q1,q7}
{q1,q7}	{q2}	{q3}
{q4}	{q5,q7}	{q6,q7}
{q2}	{q1,q7}	Α
{p}	Α	{q1,q7}
{q5,q7}	Α	{q4}
{q6,q7}	{q4}	Α

Minimization of Automata

- Motivation: To build a scanner, we need to build a DFA
- · The simpler a DFA is, the more efficient it is.
- · So, we want to build the smallest DFA possible
- · Process:
 - Build a DFA to recognize L,
 - Minimize it.
- A DFA is minimal if it has the minimum number of states necessary to recognize L

Equivalence Classes

- q0 **q3 q2**
- •• Stant with a EAFA= $VO=\Sigma(Qq_0)$, $\delta,q0,F$
- Idea: Divide O into equivalence classes.
 The classes represent the states of the minimal DFA
- Then the sequence of the states the then entirely all the states that the states are the sequence of the sequ
- I.e., If there exists a string σ such that **Definition**: q1 and q2 are equivalent (in the
- same same class. Then the two states are in different classes. Then the two states are in different classes.
- · I.e., If there exists a string, σ such that
 - $\delta(q1,\sigma) EF$
 - $\delta(q2,\sigma)$ F

0,1

Minimization Procedure

- · Initially all states are either accepting or not
- · If there is a class C and character a $E \Sigma$ such that
 - $\{\delta(qi,a)|qi \in C\}$ are in k > 1 equivalence classes
- Then Split C into k classes Cj such that $\delta(qi, a)$, where qi E Ck, are in the same equivalence class.
- · Repeat until no more splits are needed.

Example 1

	Q	0	1
C0	q0	C0	C1
CU	q2	C0	C1
C 1	q1	C1	C0
C1	q3	C1	C0

Example 2

	Q	0	1	0	1	0	1	
	q0	CO	C0	C0	CO			
C0	q2	CO	C0	CO	C2			C3
	q1	CO	C1					
C1	q3							