Bangladesh University of Engineering and Technology

Department of Computer Science and Engineering

Course No: CSE -306

Course Name: Computer Architecture Sessional

Experiment: Arithmetic Logic Unit(ALU) Design and Implementation.

Date of Submission: 20-12-2022

Group: 2

Subsection: B2

Student ID: 1905092,1905114,1905116,1905117,1905120

1. Introduction:

As part of the assignment, we first designed the algorithmic logic unit for group specified 3 selector bits. We designed and simulated the ALU in logisim software. The ALU has 3 selection bits and 2 sets of 4-bit inputs with 4 output bits and 4 flags to determine the state of the output.

2. Problem Specifications with Assigned instructions:

Group 2(B2) was assigned 6 operations for 3 selector bits which are the following:

cs2	cs1	cs0	Functions:	Operations:
Х	0	0	AND	A and B
0	0	1	Sub	A-B (A+B'+1)
Х	1	0	Decrement A	A-1 (A+1'+1)
0	1	1	Add with carry	A+B+1
1	0	1	NEGA	-A (A'+1)
1	1	1	Complement of A	A'

There are 2 pairs of 4-bit input and 4-bit output with 4 flags: Sign, Carry, Zero, Overflow

2. Detailed Design Steps with K-maps:

The original arithmetic logic unit has 3 selection bits and a carry input but here we have only 3 selection bits. Here we have an extra operation A'+1, so we have to do a logical + arithmetic operation on the first set of input bits for which we use an extra selector bit called A'. We will have 2 selector bits for arithmetic operations s0 and s1 and 1 selector bit called MUX for the 2*1 mux which selects between logical and arithmetic operations. We also used an extra input bit C in.

Truth Table for 3 selectors to 5 selector conversion adapter:

	Α	В	С						
Operation	cs2	cs1	cs0	MUX	s1	s0	A'	Cin	В
AND	0	0	0	0	0	1	0	Х	В
Sub	0	0	1	1	1	0	0	1	B'
Dec A	0	1	0	1	1	1	0	0	All 1
Add with Carry	0	1	1	1	0	1	0	1	В
AND	1	0	0	0	0	1	0	Х	В
NEGA	1	0	1	1	0	0	1	1	All 0
Dec A	1	1	0	1	1	1	0	0	All 1
Comp A	1	1	1`	1	0	0	1	Х	All 0

K map for MUX:

Α	вс	00	01	11	10
0		0	1	1	1
1		0	1	1	1

K map for s1:

Α	вс	00	01	11	10
0		0	1	0	1
1			0	0	1

K map for s0:

Α	ВС	00	01	11	10
0		1	0	1	1
1		1	0	0	1

K map for A':

А	вс	00	01	11	10
0		0	0	0	0
1		0	1	1	0

K map for Cin:

Α	вс	00	01	11	10
0		X	1	1	0
1		X	1	0	0

Equations:

MUX = B + C

s1 = (A+B)'C+BC'

s0 = A'B+C'

A' = AC

C in= B'+A'C

Block Diagram:

Complete Circuit Diagram:

Main:

Adapter:

Full Adder Extender(B):

Adder(IC 7483):

IC used:

Name	Number
7404	2
7408	6
7432	3
7483	1
7486	1
74157	1
Total	14

Simulator Used:

Logisim-win-2.7.1 with Lib 7400

Discussion:

We used 5 V power supply as input which is distributed in the whole board. As a result voltage dropped to 2.5 V in the ICs' situated in the lower portion of the board. IC 7483 or adder requires more than 4 volt in every input to get value 1 so it shows some anomaly while running as it only gets roughly 2.5-3 V in the inputs. Every other place of the circuit works flawlessly.