

Matemática A

10.º ANO DE ESCOLARIDADE

Duração: 90 minutos | Data: FEVEREIRO 2024

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Num referencial o.n. xOy, está representada a reta r de equação y = -x + 1 e a circunferência de centro C definida pela equação $(x-3)^2 + y^2 = 10$.

Sabe-se que:

- os pontos A e B pertencem aos semieixos positivo Ox e Oy, respetivamente;
- a reta r passa em A e interseta a circunferência nos pontos B e D

- **1.2.** Escreva uma condição que defina a parte sombreada da figura.
- **1.3.** Mostre que a equação reduzida da mediatriz de [AB] é y = x.
- **1.4.** Escreva a equação reduzida da reta perpendicular à reta r e que passa no ponto B.
- 1.5. Quais são as coordenadas do ponto D?

(A)
$$(3,-4)$$

(B)
$$(4,-3)$$
 (C) $(5,-3)$

(C)
$$(5,-3)$$

(D)
$$(5,-4)$$

2. Na figura ao lado, está representado num referencial cartesiano o.n. Oxyz, o prisma reto [ABCDEFGH].

As coordenadas dos pontos B, D e G são iguais a (1,0,1),

(1,2,2) e (1,1,-1), respetivamente.

- **2.1.** Determine as coordenadas do ponto E.
- Determine a equação da superfície esférica de diâmetro $\lceil DG \rceil$. 2.2.
- 2.3. Determine uma equação vetorial da reta que passa no ponto B e é paralela ao eixo Ox.
- **2.4.** Mostre que o ponto $P\left(1, \frac{2}{3}, \frac{4}{3}\right)$ pertence ao segmento de reta [BD].

3. Considere, num referencial o.n. Oxyz, a esfera definida pela inequação

$$(x-1)^2 + y^2 + (z+2)^2 \le 5$$
 e a reta r de equação $(x,y,z) = (3,1,2) + k(1,0,1), k \in \mathbb{R}$

A interseção da esfera com a reta r:

(A) é um ponto.

- **(B)** são dois pontos.
- é um segmento de reta. **(C)**
- é o conjunto vazio. **(D)**
- 4. Na figura seguinte, está representado, em referencial o.n. xOy, o gráfico de uma função f de domínio]-5,5].

- 4.1. Qual é o contradomínio de *f* ?
 -]-5,5]
- **(B)**]-2,4] **(C)** [-5,5]
- **(D)**
- 4.2. Indique todos os números reais cujas imagens, por f, são iguais a -1.
- Resolva a inequação $f(x) \le 2$. 4.3.

Apresente a sua resposta na forma de intervalo de números reais.

- Indique os mínimos da função e os respetivos minimizantes.
- Construa a tabela de variação da função f. 4.5.
- 5. Seja f uma função de domínio \mathbb{R} .

Sabe-se que -1 é o único zero da função f.

Seja g a função definida por g(x) = 2f(x+3).

Qual das opções seguintes é verdadeira?

- (A) g(-4) = 0
- **(B)** g(-2) = 0
- (C) g(-1)=0
- **(D)** g(2) = 0

6. Considere a função g, de domínio \mathbb{R} , definida por $g(x) = x^4 - x^2 - 1$.

O gráfico da função g, num referencial o.n. xOy, interseta a reta de equação y = x - 1 em dois pontos, $A \in B$, sendo o A o que tem menor abcissa.

Determine a área do triângulo [AOB], recorrendo às capacidades gráficas da sua calculadora.

Apresente o resultado arredondado às décimas.

Na sua resposta deve:

- reproduzir, num referencial, a parte do gráfico da função g que visualizou na sua calculadora;
- representar, no mesmo referencial, o triângulo [AOB];
- indicar a abcissa do ponto *B* arredondada às centésimas;
- apresentar a área do triângulo [AOB], com o arredondamento pedido.

FIM

Cotações

1.1.	1.2.	1.3.	1.4.	1.5.	2.1.	2.2.	2.3.	2.4.	3.	4.1.	4.2.	4.3.	4.4.	4.5.	5.	6.	Total
12	14	14	12	10	12	12	12	12	10	10	12	12	12	12	10	12	200

Proposta de resolução

1.

1.1 Determinação do ponto de interseção da reta AB com o eixo Ox: y = 0

$$-x+1=0 \Leftrightarrow x=1$$

Logo, o ponto A tem coordenadas (1,0).

Determinação do ponto de interseção da reta AB com o eixo Oy: x = 0

$$y = -0 + 1 \Leftrightarrow y = 1$$

Logo, o ponto B tem coordenadas (0,1).

1.2. A parte sombreada da figura é delimitada pela reta AB, pela circunferência e pela reta de equação y = 0.

Assim, uma condição que define a parte sombreada da figura é:

$$(x-3)^2 + y^2 \le 10 \land -x + 1 \le y \le 0$$

1.3. Mediatriz de [AB]:

Seja P(x, y) um ponto da mediatriz de [AB]:

$$(x-1)^{2} + y^{2} = x^{2} + (y-1)^{2} \Leftrightarrow |d(P,A) = d(P,B)$$

$$\Leftrightarrow x^{2} - 2x + 1 + y^{2} = x^{2} + y^{2} - 2y + 1 \Leftrightarrow$$

$$\Leftrightarrow -2x + 2y = 0 \Leftrightarrow y = x$$

1.4. Seja S a reta perpendicular à reta r e que passa no ponto B.

A reta s é paralela à mediatriz de [AB]. Logo, tem declive 1.

Determinação da equação reduzida da reta s: y = x + b

Como B(0,1) pertence a r, vem b=1.

$$s: y = x + 1$$

1.5. O ponto D, além do ponto B, é o ponto de interseção da reta r com a circunferência, com abcissa positiva.

$$\begin{cases} (x-3)^2 + y^2 = 10 \\ y = -x+1 \end{cases} \Leftrightarrow \begin{cases} (x-3)^2 + (-x+1)^2 = 10 \\ y = -x+1 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = -x+1 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = -x+1 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = -3 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = -3 \end{cases} \Leftrightarrow x = 0 \end{cases} \Leftrightarrow x = 0 \end{cases}$$

$$\Leftrightarrow x^2 - 6x + 9 + x^2 - 2x + 1 = 10 \Leftrightarrow$$
$$\Leftrightarrow 2x^2 - 8x = 0 \Leftrightarrow$$
$$\Leftrightarrow 2x(x - 4) = 0 \Leftrightarrow$$

 $(x-3)^2 + (-x+1)^2 = 10 \Leftrightarrow$

Cálculos auxiliares

Logo, o ponto D tem coordenadas (4, -3).

Resposta: (B)

2. B(1,0,1), D(1,2,2), G(1,1,-1)

2.1.
$$E = D + \overrightarrow{DE} = D + \overrightarrow{BG} =$$
 $|\overrightarrow{BG} = G - B = (1, 1, -1) - (1, 0, 1) = (0, 1, -2)$
= $(1, 2, 2) + (0, 1, -2) = (1, 3, 0)$

O ponto E tem coordenadas (1, 3, 0).

2.2. O centro da superfície esférica é o ponto médio de [DG]:

$$M\left(\frac{1+1}{2}, \frac{2+1}{2}, \frac{2-1}{2}\right) = \left(1, \frac{3}{2}, \frac{1}{2}\right)$$

O raio da circunferência é:

$$r = \frac{\overline{DG}}{2} = \frac{\sqrt{(1-1)^2 + (2-1)^2 + (2+1)^2}}{2} = \frac{\sqrt{0+1+9}}{2} = \frac{\sqrt{10}}{2}$$

Uma equação da superfície esférica pedida é:

$$\frac{10}{4} (x-1)^2 + \left(y - \frac{3}{2}\right)^2 + \left(z - \frac{1}{2}\right)^2 = \frac{5}{2}$$

$$\left|\frac{10}{4} = \frac{5}{2}\right|$$

2.3. Um vetor diretor da reta pedida é (1,0,0).

A reta passa no ponto B(1,0,1).

Logo, uma equação vetorial da reta pedida é:

$$(x, y, z) = (1, 0, 1) + k(1, 0, 0), k \in \mathbb{R}$$

2.4.
$$P\left(1, \frac{2}{3}, \frac{4}{3}\right)$$

 $\overrightarrow{BD} = D - B = (1, 2, 2) - (1, 0, 1) = (0, 2, 1)$
 $\overrightarrow{BP} = P - B = \left(1, \frac{2}{3}, \frac{4}{3}\right) - (1, 0, 1) = \left(0, \frac{2}{3}, \frac{1}{3}\right)$
 $\overrightarrow{BP} = \left(0, \frac{2}{3}, \frac{1}{3}\right) = \frac{1}{3}(0, 2, 1) = \frac{1}{3}\overrightarrow{BD}$
 $P = B + \overrightarrow{BP} = B + \frac{1}{3}\overrightarrow{BD}$

Logo, $P \in [BD]$.

3. Vamos averiguar se a reta r interseta a superfície esférica da esfera

$$(x-1)^2 + y^2 + (z+2)^2 \le 5$$
 e a reta r de equação $(x,y,z) = (3,1,2) + k(1,0,1), k \in \mathbb{R}$.

Determinemos k de forma que um ponto da reta r, da forma (3+k,1,2+k), $k \in \mathbb{R}$,

pertença à superficie esférica $(x-1)^2 + y^2 + (z+2)^2 = 5$.

$$(3+k-1)^{2}+1^{2}+(2+k+2)^{2}=5 \Leftrightarrow$$

$$\Leftrightarrow (k+2)^{2}+1+(k+4)^{2}=5 \Leftrightarrow$$

$$\Leftrightarrow k^{2}+4k+4+1+k^{2}+8k+16-5=0 \Leftrightarrow$$

$$\Leftrightarrow 2k^{2}+12k+16=0 \Leftrightarrow$$

$$\Leftrightarrow k^{2}+6k+8=0 \Leftrightarrow \Leftrightarrow k=-4 \lor k=-2$$

Cálculos auxiliares
$$k^{2} + 6k + 8 = 0 \Leftrightarrow$$

$$\Leftrightarrow k = \frac{-6 \pm \sqrt{36 - 32}}{2} \Leftrightarrow$$

$$\Leftrightarrow k = \frac{-6 \pm 2}{2} \Leftrightarrow k = -4 \lor k = -2$$

Conclui-se que a reta interseta a superfície esférica em dois pontos:

pontos de coordenadas

$$(3-4,1,2-4)=(-1,1,-2)$$
 e

$$(3-2,1,2-2)=(1,1,0)$$

Logo, a interseção da esfera com a reta é um segmento de reta.

Resposta: (C)

4.

4.1.
$$D'_f = [-2,4]$$

Resposta: (D)

4.2. A reta de equação y = -1 interseta o gráfico de f no ponto de abcissa -4, em todos os pontos cujas abcissas pertencem ao intervalo $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ e o segmento de reta de extremos nos pontos de coordenadas A(2,-2) e B(5,4).

Determinação da equação da reta AB: y = ax + b

$$a = \frac{4 - (-2)}{5 - 2} = \frac{6}{3} = 2$$

Por exemplo, A(2,-2) é um ponto da reta AB, pelo que $-2 = 2 \times 2 + b \Leftrightarrow b = -6$.

Logo, o segmento de reta AB está contido na reta de equação y = 2x - 6.

Para
$$y = -1$$
, vem $-1 = 2x - 6 \Leftrightarrow 5 = 2x \Leftrightarrow x = \frac{5}{2}$.

Logo, os números pedidos são os do conjunto $\left[-1,1\right] \cup \left\{-4,\frac{5}{2}\right\}$.

4.3.
$$f(x) \le 2 \Leftrightarrow x \in]-5,4]$$

 $S = [-5,4]$

4.4. Os mínimos da função são:

$$-2$$
, para $x=2$

$$-1$$
, para $x \in [-1,1[$

4.5. Tabela de variação da função f

x	-5		-2		-1		1		2		5
f(x)	N. D.	7	2	K	-1	\rightarrow	-1	K	-2	7	4

5.
$$f(-1) = 0 \Leftrightarrow f(-4+3) = 0 \Leftrightarrow 2f(-4+3) = 0 \Leftrightarrow g(-4) = 0$$

Resposta: (A)

6. Com recurso à calculadora gráfica, fazendo $y_1 = g(x) = x^4 - x^2 - 1$ e $y_2 = x - 1$, com $x \in [-2, 2]$ e $y \in [-2, 1]$, determinaram-se as abcissas dos pontos de interseção dos dois gráficos.

Foi obtido o seguinte resultado:

Portanto, a abcissa de $A \not\in 0$ e a abcissa de $B \not\in a$ proximadamente igual a 1,32.

A área do triângulo é igual a $A = \frac{b \times a}{2}$, sendo $b = \overline{OA} = 1$ e $a = x_B \approx 1,32$. |g(0) = -1|

$$A \approx \frac{1 \times 1{,}32}{2} \approx 0{,}7$$

Logo, a área do triângulo [AOB] é, aproximadamente, igual a 0,7.