November 11-15 Notes

Video 27: Conformation of alkanes

Video 28: Functional groups

Video 29: Stereochemistry and isomers

Why do we care about organic chemistry?

Understanding chemistry of life around us!

Metabolism

Plant defense

Conformation

Conformation – The different three-dimensional structures that can be adopted – rotation of atoms about single bonds

Solid Line

Wedged Bond: bond is pointing forward

Dashed Bond: bond is pointing away

Tetrahedral – sp³ geometry

Sawhorse projection

Conformation – The different three-dimensional structures that can be adopted – rotation of atoms about single bonds

within the same molecule

Butane, C₄H₁₀

2-methylpropane, C₄H₁₀ NOT SAME MOLECULE (structural isomer)

Sawhorse projection of butane --- all the SAME molecule!

Newman Projection

Conformation – The different three-dimensional structures that can be adopted – rotation of atoms about single bonds

Butane - skeletal

Butane – showing the conformation

Newman projection of butane

Sawhorse projection of butane

Another Newman Project example

Newman Projection and sawhorse

Conformation Changes and Potential Energy

Rotation along the C-C bond:

staggered

eclipsed

Conformation Changes and Potential Energy

Eclipsed is not stable, it is only a transition state

Structures that are "eclipsed" suffer from steric strain (or eclipsed strain)

Chain alkane can rotate around the bonds to achieve the most stable conformation

The conformations have different energy – lowest energy for the conformation where the two GIANT CH₃ groups are furthest apart from each other

Extra video to help you visualize

Newman projection:

https://www.youtube.com/watch?v=ETqgo9rAO80

And more on youtube ©

Nov 11-15

Video 28: Functional groups

Functional Groups!!!!!!!!

FUNCTIONAL GROUPS IN ORGANIC CHEMISTRY

Functional groups = i.e. give the molecule "function"

Hydrocarbons and electronegativity

Electronegativity – ability of an element to attract bonding electrons

Heteroatoms

INCREASING **X** & DECREASING ATOMIC RADIUS

- Oxygen
- Nitrogen
- Phosphorus

C—F ΔX 2.5 4.0 1.5

Sulfur

Also result in new intermolecular forces

Halides (i.e. H-

(i.e. H-bonds!)

We will look at 10 classes of molecules containing different functional groups

SATURATED R—X Saturated Halide Saturated Alcohol Saturated Alcohol Unsaturated Alcohol Unsaturated Carboxylic Acid

R is a general symbol that represents an **ALKYL** group (i.e. any hydrocarbon)

We do this so we focus on the chemistry happening at the functional group (simplify)

Saturated Functional Groups

Halides:

Br...

We are focusing on the *functional* group, but it is useful to know the different structural groups involved

Functional Groups: 1. Halides

Saturated Functional Groups

HALO R-X

1° halide : Primary Halide (1° carbon)

X = any halogen (i.e. F, Br, I, Cl)

2° halide: Secondary halide (2° carbon)

3° halide: Tertiary halide (3° carbon)

Notice how they are classified as primary, secondary etc based on the carbon they are attached to!

Functional Groups: 1. Halides

Saturated Functional Groups

Naturally occurring organofluorine compounds are rare

-but 20% of all pharmaceuticals contain fluorine, including Prozac.

Functional Groups: 2. Alcohols

I'm sure I don't need to give an example of an alcohol.....

Saturated Functional Groups

HYDROXYL (Alcohol)

1° alcohol : Primary Alcohol
(1° carbon)

Notice again that they are classified as primary, secondary etc based on the carbon they are attached to!

2° alcohol: Secondary Alcohol (2° carbon)

3° alcohol: Tertiary alcohol (3° carbon)

Functional Groups: 3. Ether

Functional Groups: 4. Amines

Saturated Functional Groups

AMINO

NOTE! NOT based on the carbon at all! Focus on the nitrogen! Based on how many carbons the nitrogen is attached TO. So 1 carbon bonded to the nitrogen = primary; 3 carbons on the nitrogen = tertiary

1° amine : Primary Amine (1° nitrogen)

2° amine: Secondary Amine (2° nitrogen)

3° amine: Tertiary amine (3° nitrogen)

Functional Groups: 4. Amines

Saturated Functional Groups

Nitrogens with a double bond are NOT amino groups!

Functional Groups: 4. Amines

Amines are super important!

WHAT DO YOU CALL AN ACID WITH AN ATTITUDE?

Functional Groups

Unsaturated Functional Groups

CARBONYL

Functional Groups: 5. Aldehyde

Unsaturated Functional Groups

Cinnamaldehyde

$$HO$$
 OCH_3

Vanillin

Functional Groups: 6. Ketone

Unsaturated Functional Groups

Ketone: RCOR

Ketosis

Functional Groups

Unsaturated Functional Groups

CARBOXYL

Carboxylic acid

ester

Functional Groups: 7. Carboxylic Acid

Unsaturated Functional Groups

CARBOXYL

Carboxylic Acid: RCOOH

Functional Groups: 8. Ester

Unsaturated Functional Groups

CARBOXYL

Carboxylic Acid: RCO₂H

Acetic acid (ethanoic acid)

Ester: RC(O)OR

Examples:

-fruity smells

-see page 916

Functional Groups: 9. Amide

Unsaturated Functional Groups

AMIDO

Amides: RCONR₂

unsubstituted amides

substituted amides

Functional Groups: 10. Nitriles

Unsaturated Functional Groups

Nitrile RCN

Functional Groups in Biological Compounds: PRACTICE

Circle and name the functional groups

Vitamin B5 (pantothenic acid)

Vitamin A1 (retinol)

Functional Groups in Biological Compounds: PRACTICE

Vitamin B5 (pantothenic acid)

Functional Groups in Biological Compounds: PRACTICE

Circle and name the functional groups

Vitamin A1 (retinol)

November 13-17

Video 29: Stereochemistry and isomers

Different kinds of structural isomers

Same chemical formula different arrangement of carbon atoms – SKELETAL ISOMERS

Same chemical formula different position of functional group – POSITIONAL ISOMERS

Same chemical formula different functional groups – FUNCTIONAL ISOMERS

Isomers!

Chem 110

Conformation Changes and Potential Energy

Reminder these are all <u>conformational</u> isomers of each other (really just the same molecule in different conformation)

eclipsed

Conformation Changes in Alkanes

Conformation – The different three-dimensional structures that can be adopted – rotation of atoms about single bonds

 π -bond – above and below C-C σ -bond axis (nodal plane)

- unpaired electrons from p₂ orbitals overlap side-to-side
- two electrons can move over new π -bonding molecular orbital
- no C-C bond rotation, would have to break π -bond

Also can't rotate bonds in a cyclic molecule without breaking bonds

Isomers!

Chem 110

Geometrical isomers of organic molecules are distinguished by the prefixes cis- (same side) and trans- (across)

Cis = majority of **CARBON** chain on the same side Trans = majority of the carbon chain on opposite sides

The more correct and common nomenclature is "E/Z".

E = entgegen (opposite)

Z = zusammen (together)

E/Z based on "priority" not based on carbon chain length!
-priority = "heaviest" i.e. highest atomic number

Chem 110

Cis = majority of chain on the same side Trans = majority of the carbon chain on opposite sides

Not always the same!!!

E = entgegen (opposite)

Z = zusammen (together)

E/Z based on "priority" not based on chain length!

Cis = majority of chain on the same side Trans = majority of the carbon chain on opposite sides

Not always the same!!!

E = entgegen (opposite)

Z = zusammen (together)

E/Z based on "priority" not based on chain length!

Chem 110

Cis = majority of chain on the same side Trans = majority of the carbon chain on opposite sides

Not always the same!!!

E = entgegen (opposite)

Z = zusammen (together)

E/Z based on "priority" not based on chain length!

Highest priority is on the same side (Z)

Chem 110

opposite (E)

Geometric Isomers (more examples)

Same chemical formula same bonding different orientation of atoms – STEREOISOMERS

Same chemical formula same bonding different rotation around a bond (not mirror images) – GEOMETRIC ISOMERS

Isomers!

STEREOISOMERS 2.Enantiomers

Same chemical formula same bonding nonsuperimposable mirror images – Enantiomers

ENANTIOMERS AND CHIRALITY

CHIRAL OBJECT — one with a non-superimposable mirror image Enantiomers are a pair of chiral objects

CHIRALITY

CHIRAL OBJECT – one with a non-superimposable mirror image

WATCH this video: https://www.khanacademy.org/science/organic-chemistry/stereochemistry-topic/chirality-r-s-system/v/chiral-achiral-jay

WHAT MAKES A MOLECULE CHIRAL?

CHIRAL MOLECULE

- 1. No plane of symmetry (can't cut it in half, or thirds etc, and get the same on one side as the other side!)
- 2. Must have a chiral center- 4 different groups (sp³ hybridized)

2-propanol

ACHIRAL

SUPERIMPOSABLE MIRROR IMAGES

CHIRAL

NON-SUPERIMPOSABLE MIRROR IMAGES

Chem 110

CHIRALITY AND ENANTIOMERS

Why do we care?

CHIRALITY AND ENANTIOMERS

Enantiomers also show **similar chemical properties** <u>until</u> they react with another chiral compound!

Chiral molecules in the human body

Amino acids are chiral!

L-amino acids (common in nature)

D-amino acids (rare in nature)

Proteins are chiral!

DNA is chiral

Right-handed helix: Correct

helix: Incorrect

Carbohydrates (sugars) are chiral!

Found in nature

Drugs have to (sometimes) be enantiopure

R-Thalidomide (sleep-inducing) S-Thalidomide (teratogenic)

Chem 110

CHIRAL MOLECULE

- 1. No plane of symmetry
- 2. Must have a chiral center- 4 different groups (sp³ hybridized)

If you flip it, they will line up and look the same!

3 of the same substituent – these are superimposable mirror images - they are the same molecule; not enantiomers

CHIRAL MOLECULE

- 1. No plane of symmetry
- 2. Must have a chiral center- 4 different groups (sp³ hybridized)

If you flip it, they will line up and look the same!

2 of the same substituent – these are superimposable mirror images - <u>they are the same molecule</u>; <u>not enantiomers</u>

CHIRAL MOLECULE

- 1. No plane of symmetry
- 2. Must have a chiral center- 4 different groups (sp³ hybridized)

All four different substituents – these are nonsuperimposable mirror images – <u>these</u> <u>are enantiomers</u>

CHIRAL MOLECULE

- 1. No plane of symmetry
- 2. Must have a chiral center- 4 different groups (sp³ hybridized)

If you flip it, they do not ever match ©

All four different substituents – these are nonsuperimposable mirror images – <u>these</u> <u>are enantiomers</u>

CHIRALITY AND ENANTIOMERS

Enantiomers differ in one physical property: chiral molecules are optical activity, they can rotate plane polarized light. If a chiral molecule rotates light clockwise, then its mirror image rotates it counterclockwise.

PHYSICAL PROPERTIES OF ENANTIOMERS

Enantiomers differ in one physical property: they are optically active i.e. can rotate plane polarized light. If a chiral molecule rotates light clockwise, then its mirror image rotates it counterclockwise to the same extent

PHYSICAL PROPERTIES OF ENANTIOMERS

Based on optical rotation data: Enantiomers can be classified as dextrorotatory or levorotatory

Enantiomers are OPTICALLY ACTIVE

RACEMIC MIXTURES

Specific rotation data

Clockwise rotation +

Counterclockwise rotation

-

RACEMIC MIXTURES

1:1 mixture of enantiomers

Racemic Mixture: Optically inactive

Naming Enantiomers: "R" or "S"

Only for Chiral centres:

- 1. Assign priority (1:highest to 4:lowest) to all substituents to the chiral center based on atomic number
- 2. Point the lowest priority substituent to the back
- 3. Draw a curved arrow to show decreasing order of priority (from 1 to 3)-ignore the lowest priority substituent

"R": If the curved arrow is drawn clockwise

"S": If the curved arrow is drawn counter-clockwise

Isomers!

66

How many chiral carbons does this compound have?

How many chiral carbons does this compound have? 2

Same chemical formula same bonding non-mirror images stereoisomers - Diastereomers

Congrats you made it!