On Artin's Conjecture: Pairs of Additive Forms

Miriam Kaesberg

Georg-August Universität Göttingen

April 22, 2021

Artin's Conjecture

Let $f(x_1,\ldots,x_s)\in\mathbb{Z}[x_1,\ldots,x_s]$ be a form (homogeneous polynomial) of degree k. The equation $f(\mathbf{x})=0$ has a non-trivial solution $\mathbf{x}\in\mathbb{Q}_p^s$ for all primes p provided that

$$s > k^2$$
.

Artin's Conjecture

Let $f(x_1,\ldots,x_s)\in\mathbb{Z}[x_1,\ldots,x_s]$ be a form (homogeneous polynomial) of degree k. The equation $f(\mathbf{x})=0$ has a non-trivial solution $\mathbf{x}\in\mathbb{Q}_p^s$ for all primes p provided that

$$s > k^2$$
.

Known for:

•
$$k = 1$$
.

•
$$k = 2$$
 (Meyer),

• k = 3 (Lewis).

Artin's Conjecture

Let $f(x_1,\ldots,x_s)\in\mathbb{Z}[x_1,\ldots,x_s]$ be a form (homogeneous polynomial) of degree k. The equation $f(\mathbf{x})=0$ has a non-trivial solution $\mathbf{x}\in\mathbb{Q}_p^s$ for all primes p provided that

$$s > k^2$$
.

Known for:

•
$$k = 1$$
,

•
$$k = 2$$
 (Meyer),

•
$$k = 3$$
 (Lewis).

Generalisation

Let $f_1, \ldots, f_r \in \mathbb{Z}[x_1, \ldots, x_s]$ be forms of degree (k_1, \ldots, k_r) . The equations $f_1 = \cdots = f_r = 0$ have a non-trivial solution $\mathbf{x} \in \mathbb{Q}_p^s$ for all primes p provided that

$$s > k_1^2 + \cdots + k_r^2.$$

Artin's Conjecture

Let $f(x_1,\ldots,x_s)\in\mathbb{Z}[x_1,\ldots,x_s]$ be a form (homogeneous polynomial) of degree k. The equation $f(\mathbf{x})=0$ has a non-trivial solution $\mathbf{x}\in\mathbb{Q}_p^s$ for all primes p provided that

$$s > k^2$$
.

Known for:

•
$$k = 1$$
,

•
$$k = 2$$
 (Meyer),

•
$$k = 3$$
 (Lewis).

Generalisation

Let $f_1,\ldots,f_r\in\mathbb{Z}[x_1,\ldots,x_s]$ be forms of degree (k_1,\ldots,k_r) . The equations $f_1=\cdots=f_r=0$ have a non-trivial solution $\pmb{x}\in\mathbb{Q}_p^s$ for all primes p provided that

$$s>k_1^2+\cdots+k_r^2.$$

True for:

•
$$k_1 = \cdots = k_r = 1$$
 (linear algebra),

Artin's Conjecture

Let $f(x_1,\ldots,x_s)\in\mathbb{Z}[x_1,\ldots,x_s]$ be a form (homogeneous polynomial) of degree k. The equation $f(\mathbf{x})=0$ has a non-trivial solution $\mathbf{x}\in\mathbb{Q}_p^s$ for all primes p provided that

$$s > k^2$$
.

Known for:

•
$$k = 1$$
,

•
$$k = 2$$
 (Meyer),

•
$$k = 3$$
 (Lewis).

Generalisation

Let $f_1, \ldots, f_r \in \mathbb{Z}[x_1, \ldots, x_s]$ be forms of degree (k_1, \ldots, k_r) . The equations $f_1 = \cdots = f_r = 0$ have a non-trivial solution $\mathbf{x} \in \mathbb{Q}_p^s$ for all primes p provided that

$$s>k_1^2+\cdots+k_r^2.$$

True for:

•
$$k_1 = \cdots = k_r = 1$$
 (linear algebra),

•
$$r = 2$$
, $k_1 = k_2 = 2$ (Dem'yanov).

Counter examples

- 1966: Terjanian: There is a form of degree
 4 in 18 variables with no non-trivial 2-adic solution.
- 1966: Browkin: For all p there exist forms without a non-trivial p-adic solution violating Artin's conjecture.
- 1981: Arkhipov and Karatsuba: Not even true if $s > k^n$ for any fixed $n \in \mathbb{N}$.

Counter examples

- 1966: Terjanian: There is a form of degree
 4 in 18 variables with no non-trivial 2-adic solution.
- 1966: Browkin: For all p there exist forms without a non-trivial p-adic solution violating Artin's conjecture.
- 1981: Arkhipov and Karatsuba: Not even true if $s > k^n$ for any fixed $n \in \mathbb{N}$.

Positive Indications

- Degree: All counter examples are of even degree k.
- Primes: 1965: Ax and Kochen: For a fixed degree k one has a non-trivial p-adic solution for all but finitely many p.
- Forms: 1963: Davenport and Lewis: Artin's conjecture holds for all additive forms.

Counter examples

- 1966: Terjanian: There is a form of degree
 4 in 18 variables with no non-trivial 2-adic solution.
- 1966: Browkin: For all p there exist forms without a non-trivial p-adic solution violating Artin's conjecture.
- 1981: Arkhipov and Karatsuba: Not even true if $s > k^n$ for any fixed $n \in \mathbb{N}$.

Positive Indications

- Degree: All counter examples are of even degree k.
- Primes: 1965: Ax and Kochen: For a fixed degree k one has a non-trivial p-adic solution for all but finitely many p.
- Forms: 1963: Davenport and Lewis: Artin's conjecture holds for all additive forms.

Additive Form

A form $f \in \mathbb{Z}[x_1, \dots, x_s]$ is called additive if $f(x_1, \dots, x_s) = a_1 x_1^k + a_2 x_2^k + \dots + a_s x_s^k$.

Counter examples

- 1966: Terjanian: There is a form of degree
 4 in 18 variables with no non-trivial 2-adic solution.
- 1966: Browkin: For all *p* there exist forms without a non-trivial *p*-adic solution violating Artin's conjecture.
- 1981: Arkhipov and Karatsuba: Not even true if $s > k^n$ for any fixed $n \in \mathbb{N}$.

Positive Indications

- Degree: All counter examples are of even degree k.
- Primes: 1965: Ax and Kochen: For a fixed degree k one has a non-trivial p-adic solution for all but finitely many p.
- Forms: 1963: Davenport and Lewis: Artin's conjecture holds for all additive forms.

Additive Form

A form $f \in \mathbb{Z}[x_1, \dots, x_s]$ is called additive if $f(x_1, \dots, x_s) = a_1 x_1^k + a_2 x_2^k + \dots + a_s x_s^k$.

Generalisation to system of additive forms:

- 1983: Lewis and Montgomery: Not true for all r-tuples (k_1, k_2, \ldots, k_r) .
- 2015: Wooley: For r = 2 there are already counterexamples.

$$r = 2$$
 and $k_1 = k_2$

Let f,g be two additive forms with integer coefficients in s variables of degree k.

Question

How big does s have to be to ensure a non-trivial p-adic solution f(x) = g(x) = 0 for all primes p?

Expected Bound: $s \ge 2k^2 + 1$ suffices

$$r = 2$$
 and $k_1 = k_2$

Let f, g be two additive forms with integer coefficients in s variables of degree k.

Question

How big does s have to be to ensure a non-trivial p-adic solution f(x) = g(x) = 0 for all primes p?

Expected Bound: $s \ge 2k^2 + 1$ suffices

• 1969: Davenport, Lewis: Expected bound for odd k holds, $s \ge 7k^3$ holds for even k.

$$r = 2$$
 and $k_1 = k_2$

Let f, g be two additive forms with integer coefficients in s variables of degree k.

Question

How big does s have to be to ensure a non-trivial p-adic solution f(x) = g(x) = 0 for all primes p?

Expected Bound: $s \ge 2k^2 + 1$ suffices

- 1969: Davenport, Lewis: Expected bound for odd k holds, $s \ge 7k^3$ holds for even k.
- 2001: Brüdern, Godinho: Expected bound holds unless

$$k = 2^{\tau}, \qquad k = 3 \cdot 2^{\tau} \qquad \text{and} \qquad k = p^{\tau} (p - 1) \qquad (p \ge 3)$$

$$r = 2$$
 and $k_1 = k_2$

Let f,g be two additive forms with integer coefficients in s variables of degree k.

Question

How big does s have to be to ensure a non-trivial p-adic solution f(x) = g(x) = 0 for all primes p?

Expected Bound: $s \ge 2k^2 + 1$ suffices

- 1969: Davenport, Lewis: Expected bound for odd k holds, $s \ge 7k^3$ holds for even k.
- 2001: Brüdern, Godinho: Expected bound holds unless

$$k = 2^{\tau}, \qquad k = 3 \cdot 2^{\tau} \qquad \text{and} \qquad k = p^{\tau} (p - 1) \qquad (p \ge 3)$$

for $\tau \ge 1$. Else $s \ge 8k^2$, $s \ge \frac{8}{3}k^2$ and $s \ge 4k^2$ variables, respectively, are sufficient.

• 2009: Kränzlein: Expected bound holds for $k=2^{\tau}$ for $\tau \geq 16$.

$$r = 2$$
 and $k_1 = k_2$

Let f, g be two additive forms with integer coefficients in s variables of degree k.

Question

How big does s have to be to ensure a non-trivial p-adic solution f(x) = g(x) = 0 for all primes p?

Expected Bound: $s \ge 2k^2 + 1$ suffices

- 1969: Davenport, Lewis: Expected bound for odd k holds, $s \ge 7k^3$ holds for even k.
- 2001: Brüdern, Godinho: Expected bound holds unless

$$k=2^{\tau}, \qquad k=3\cdot 2^{\tau} \qquad \text{and} \qquad k=p^{\tau}\left(p-1\right) \qquad \left(p\geq 3\right)$$

- 2009: Kränzlein: Expected bound holds for $k=2^{\tau}$ for $\tau \geq 16$.
- 2011, 2013: Godinho, de Souza Neto: For $k=p^{\tau}$ (p-1) it is sufficient if $s>2\frac{p}{p-1}k^2-2k$ holds and either $p\in\{3,5\}$ or $p\geq 7$ and $\tau\geq \frac{p-1}{2}$

$$r = 2$$
 and $k_1 = k_2$

Let f, g be two additive forms with integer coefficients in s variables of degree k.

Question

How big does s have to be to ensure a non-trivial p-adic solution f(x) = g(x) = 0 for all primes p?

Expected Bound: $s \ge 2k^2 + 1$ suffices

- 1969: Davenport, Lewis: Expected bound for odd k holds, $s \ge 7k^3$ holds for even k.
- 2001: Brüdern, Godinho: Expected bound holds unless

$$k=2^{\tau}, \qquad k=3\cdot 2^{\tau} \qquad \text{and} \qquad k=p^{\tau}\left(p-1\right) \qquad \left(p\geq 3\right)$$

- 2009: Kränzlein: Expected bound holds for $k=2^{\tau}$ for $\tau \geq 16$.
- 2011, 2013: Godinho, de Souza Neto: For $k=p^{\tau}$ (p-1) it is sufficient if $s>2\frac{p}{p-1}k^2-2k$ holds and either $p\in\{3,5\}$ or $p\geq 7$ and $\tau\geq \frac{p-1}{2}$
- 2013: Godinho, Knapp and Rodrigues: Expected bound holds for k = 6.

$$r = 2$$
 and $k_1 = k_2$

Let f,g be two additive forms with integer coefficients in s variables of degree k.

Question

How big does s have to be to ensure a non-trivial p-adic solution f(x) = g(x) = 0 for all primes p?

Expected Bound: $s \ge 2k^2 + 1$ suffices

- 1969: Davenport, Lewis: Expected bound for odd k holds, $s \ge 7k^3$ holds for even k.
- 2001: Brüdern, Godinho: Expected bound holds unless

$$k=2^{\tau}, \qquad k=3\cdot 2^{\tau} \qquad \text{and} \qquad k=p^{\tau}\left(p-1\right) \qquad \left(p\geq 3\right)$$

- 2009: Kränzlein: Expected bound holds for $k=2^{\tau}$ for $\tau \geq 16$.
- 2011, 2013: Godinho, de Souza Neto: For $k=p^{\tau}$ (p-1) it is sufficient if $s>2\frac{p}{p-1}k^2-2k$ holds and either $p\in\{3,5\}$ or $p\geq 7$ and $\tau\geq \frac{p-1}{2}$
- 2013: Godinho, Knapp and Rodrigues: Expected bound holds for k = 6.
- 2017: Godinho, Ventura: Expected bound hold for $k = 3^{\tau} \cdot 2$.

Result

Theorem (K.)

For $p \geq 5$ prime, $au \geq 1$ and $k = p^{ au} \, (p-1)$ the pair of additive forms with integers coefficients

$$\sum_{j=1}^{s} a_{j} x_{j}^{k} = \sum_{j=1}^{s} b_{j} x_{j}^{k} = 0$$

have a non-trivial *p*-adic solution if $s \ge 2k^2 + 1$.

Theorem (K.)

For $p\geq 5$ prime, $au\geq 1$ and $k=p^{ au}\left(p-1\right)$ the pair of additive forms with integers coefficients

$$\sum_{j=1}^{s} a_{j} x_{j}^{k} = \sum_{j=1}^{s} b_{j} x_{j}^{k} = 0$$

have a non-trivial *p*-adic solution if $s \ge 2k^2 + 1$.

Missing values of k:

- 2^{τ} with $2 \leq \tau \leq 15$
 - $3 \cdot 2^{\tau}$ with $2 \leq \tau (\leq 15)$

Finding *p*-adic solutions

Let $f(x_1,\ldots,x_s)=\sum_{i=1}^s a_ix_i^k$ and $g(x_1,\ldots,x_s)=\sum_{i=1}^s b_ix_i^k$. For $k=p^\tau k_0$ with $\gcd(p,k_0)=1$ define

$$\gamma := \begin{cases} 1, & \text{if } \tau = 0 \\ \tau + 1, & \text{if } \tau > 0 \text{ and } p > 2 \\ \tau + 2, & \text{if } \tau > 0 \text{ and } p = 2. \end{cases}$$

Finding p-adic solutions

Let $f(x_1,\ldots,x_s)=\sum_{i=1}^s a_ix_i^k$ and $g(x_1,\ldots,x_s)=\sum_{i=1}^s b_ix_i^k$. For $k=p^{\tau}k_0$ with $\gcd(p,k_0)=1$ define

$$\gamma := \begin{cases} 1, & \text{if } \tau = 0 \\ \tau + 1, & \text{if } \tau > 0 \text{ and } p > 2 \\ \tau + 2, & \text{if } \tau > 0 \text{ and } p = 2. \end{cases}$$

Hensel's Lemma

If the congruences

$$\sum_{i=1}^s a_i x_i^k \equiv 0 \mod p^\gamma, \qquad \sum_{i=1}^s b_i x_i^k \equiv 0 \mod p^\gamma$$

have a solution in the integers for which the matrix

$$\begin{pmatrix} a_1x_1 & a_2x_2 & \dots & a_sx_s \\ b_1x_1 & b_2x_2 & \dots & b_sx_s \end{pmatrix}$$

has rank 2 modulo p, then the pair of forms f, g has a non-trivial p-adic solution.

Equivalence relation defined via the operations:

- $f'=f\left(p^{\nu_1}x_1,\ldots,p^{\nu_s}x_s\right),\ g'=g\left(p^{\nu_1}x_1,\ldots,p^{\nu_s}x_s\right)$ for integers ν_i
- $f'' = \lambda_1 f + \lambda_2 g$, $g'' = \mu_1 f + \mu_2 g$ for $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{Q}$ with $\lambda_1 \mu_2 \lambda_2 \mu_1 \neq 0$.

Equivalence relation defined via the operations:

- $f'=f\left(p^{\nu_1}x_1,\ldots,p^{\nu_s}x_s\right),\ g'=g\left(p^{\nu_1}x_1,\ldots,p^{\nu_s}x_s\right)$ for integers ν_i
- $f'' = \lambda_1 f + \lambda_2 g$, $g'' = \mu_1 f + \mu_2 g$ for $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{Q}$ with $\lambda_1 \mu_2 \lambda_2 \mu_1 \neq 0$.

p-equivalence classes

A pair (\tilde{f}, \tilde{g}) lies in the same p-equivalence class as (f, g) if it can be obtained by a finite succession of the above operations.

Equivalence relation defined via the operations:

- $f'=f\left(p^{\nu_1}x_1,\ldots,p^{\nu_s}x_s\right),\ g'=g\left(p^{\nu_1}x_1,\ldots,p^{\nu_s}x_s\right)$ for integers ν_i
- $f'' = \lambda_1 f + \lambda_2 g$, $g'' = \mu_1 f + \mu_2 g$ for $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{Q}$ with $\lambda_1 \mu_2 \lambda_2 \mu_1 \neq 0$.

p-equivalence classes

A pair (\tilde{f}, \tilde{g}) lies in the same p-equivalence class as (f, g) if it can be obtained by a finite succession of the above operations.

$$\vartheta\left(f,g
ight) := \prod_{\substack{1 \leq i,j \leq s \ i
eq i}} \left(a_i b_j - a_j b_i
ight)$$

Equivalence relation defined via the operations:

- $f'=f\left(p^{\nu_1}x_1,\ldots,p^{\nu_s}x_s\right),\ g'=g\left(p^{\nu_1}x_1,\ldots,p^{\nu_s}x_s\right)$ for integers ν_i
- $f'' = \lambda_1 f + \lambda_2 g$, $g'' = \mu_1 f + \mu_2 g$ for $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{Q}$ with $\lambda_1 \mu_2 \lambda_2 \mu_1 \neq 0$.

p-equivalence classes

A pair (\tilde{f}, \tilde{g}) lies in the same p-equivalence class as (f, g) if it can be obtained by a finite succession of the above operations.

$$\vartheta(f,g) := \prod_{\substack{1 \leq i,j \leq s \\ i \neq i}} (a_i b_j - a_j b_i)$$

Definition

A p-normalised pair f,g is a pair of forms with integers coefficients and $\vartheta(f,g) \neq 0$, where the power of p dividing $\vartheta(f,g)$ is as small as possible among all pairs of forms in the same p-equivalent class.

Some Notation

Definition

A variable x_i is called at level l if $\begin{pmatrix} a_i \\ b_i \end{pmatrix} = p^l \begin{pmatrix} \tilde{a}_i \\ \tilde{b}_i \end{pmatrix}$ and $p \nmid \begin{pmatrix} \tilde{a}_i \\ \tilde{b}_i \end{pmatrix}$. The vector $\begin{pmatrix} \tilde{a}_i \\ \tilde{b}_i \end{pmatrix}$ is called the level coefficient vector of x_i .

Some Notation

Definition

A variable x_i is called **at level** l if $\begin{pmatrix} a_i \\ b_i \end{pmatrix} = p^l \begin{pmatrix} \tilde{a}_i \\ \tilde{b}_i \end{pmatrix}$ and $p \nmid \begin{pmatrix} \tilde{a}_i \\ \tilde{b}_i \end{pmatrix}$. The vector $\begin{pmatrix} \tilde{a}_i \\ \tilde{b}_i \end{pmatrix}$ is called the **level coefficient vector** of x_i .

Definition

Define

$$\mathscr{L}_0 := \left\{ c \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mid 1 \leq c \leq p-1 \right\} \quad \text{and} \quad \mathscr{L}_{\nu} := \left\{ c \begin{pmatrix} \nu \\ 1 \end{pmatrix} \mid 1 \leq c \leq p-1 \right\}$$

for all $1 \le \nu \le p$. One says that the variable x_i is of colour ν , if $\binom{\tilde{a}_i}{\tilde{b}_i} \in \mathscr{L}_{\nu} \mod p$.

ullet There are no variables at level k or higher.

• There are no variables at level k or higher.

$$f = f_0 + pf_1 + \dots + p^{k-1}f_{k-1},$$
 $f_i = \sum_{x_j \text{ at level } i} \tilde{a}_j x_j^k$ $g = g_0 + pg_1 + \dots + p^{k-1}g_{k-1},$ $g_i = \sum_{x_i \text{ at level } i} \tilde{b}_j x_j^k$

• There are no variables at level k or higher.

$$\begin{split} f &= f_0 + p f_1 + \dots + p^{k-1} f_{k-1}, \qquad f_i = \sum_{x_j \text{ at level } i} \tilde{a}_j x_j^k \\ g &= g_0 + p g_1 + \dots + p^{k-1} g_{k-1}, \qquad g_i = \sum_{x_j \text{ at level } i} \tilde{b}_j x_j^k \end{split}$$

• Let there be m_i variables at level i.

$$m_0 + \dots + m_j \ge \frac{(j+1)s}{k}$$
 for $j = 0, 1, \dots, k-1$

• There are no variables at level k or higher.

$$egin{aligned} f &= f_0 + p f_1 + \dots + p^{k-1} f_{k-1}, & f_i &= \sum_{x_j ext{ at level } i} ilde{a}_j x_j^k \ g &= g_0 + p g_1 + \dots + p^{k-1} g_{k-1}, & g_i &= \sum_{x_j ext{ at level } i} ilde{b}_j x_j^k \end{aligned}$$

• Let there be m_i variables at level i.

$$m_0 + \dots + m_j \ge \frac{(j+1)s}{k}$$
 for $j = 0, 1, \dots, k-1$

• Let q_i be the number of variables at level i which are not in the biggest colour.

$$m_0 + \dots + m_{j-1} + q_j \ge \frac{\left(j + \frac{1}{2}\right)s}{k}$$
 for $j = 0, 1, \dots, k-1$

Goal:

$$\sum_{i=1}^s a_i x_i^k \equiv 0 \mod p^\gamma, \qquad \sum_{i=1}^s b_i x_i^k \equiv 0 \mod p^\gamma$$
 (solve)

 $\begin{pmatrix} a_1x_1 & a_2x_2 & \dots & a_sx_s \\ b_1x_1 & b_2x_2 & \dots & b_sx_s \end{pmatrix} \qquad \text{(rank 2 modulo p)}$

Goal:

$$\sum_{i=1}^s a_i x_i^k \equiv 0 \mod p^\gamma, \qquad \sum_{i=1}^s b_i x_i^k \equiv 0 \mod p^\gamma$$
 (solve)

$$\begin{pmatrix} a_1x_1 & a_2x_2 & \dots & a_sx_s \\ b_1x_1 & b_2x_2 & \dots & b_sx_s \end{pmatrix} \qquad \text{(rank 2 modulo } p\text{)}$$

ullet Setting a variable at level at least γ to 1 and all other 0 solves the equation.

Goal:

$$\sum_{i=1}^s a_i x_i^k \equiv 0 \mod p^\gamma, \qquad \sum_{i=1}^s b_i x_i^k \equiv 0 \mod p^\gamma \qquad \text{(solve)}$$

$$\begin{pmatrix} a_1x_1 & a_2x_2 & \dots & a_sx_s \\ b_1x_1 & b_2x_2 & \dots & b_sx_s \end{pmatrix} \qquad (\text{rank 2 modulo } p)$$

- \bullet Setting a variable at level at least γ to 1 and all other 0 solves the equation.
- Setting two variables at different colour at level 0 to a value not divisible by p takes care of the rank condition.

Goal:

$$\sum_{i=1}^s a_i x_i^k \equiv 0 \mod p^\gamma, \qquad \sum_{i=1}^s b_i x_i^k \equiv 0 \mod p^\gamma$$
 (solve)

$$\begin{pmatrix} a_1x_1 & a_2x_2 & \dots & a_sx_s \\ b_1x_1 & b_2x_2 & \dots & b_sx_s \end{pmatrix} \qquad \text{(rank 2 modulo } p\text{)}$$

- ullet Setting a variable at level at least γ to 1 and all other 0 solves the equation.
- Setting two variables at different colour at level 0 to a value not divisible by p takes care of the rank condition.

Definition

Let x_{i_1},\dots,x_{i_n} variables at level I and $y_1,\dots,y_n\in\mathbb{Z}\backslash p\mathbb{Z}$ such that

$$\sum_{j=1}^n a_{i_j} y_j^k \equiv \sum_{j=1}^n b_{i_j} y_j^k \equiv 0 \mod p^{l+1},$$

then the variables x_{i_i} contract to a variable at level at least l+1.

Procedure

Primary variables

A variable which can be "traced back" to two different colours at level 0 is called primary.

Procedure

Primary variables

A variable which can be "traced back" to two different colours at level 0 is called primary.

Goal: Create a primary variable at level at least γ .

Procedure

Primary variables

A variable which can be "traced back" to two different colours at level 0 is called primary.

Goal: Create a primary variable at level at least $\gamma.$

• Use the variables at level 0 to create primary variables: Davenport and Lewis: One can contract at least min $\left(\left\lfloor\frac{m_0}{2p-1}\right\rfloor,\left\lfloor\frac{q_0}{p}\right\rfloor\right)$ primary variables at level at least 1.

Procedure

Primary variables

A variable which can be "traced back" to two different colours at level 0 is called primary.

Goal: Create a primary variable at level at least γ .

- Use the variables at level 0 to create primary variables: Davenport and Lewis: One can contract at least min $\left(\left\lfloor\frac{m_0}{2p-1}\right\rfloor, \left\lfloor\frac{q_0}{p}\right\rfloor\right)$ primary variables at level at least 1.
- Lift the primary variables to higher levels.

Lemma (Olson)

A set of 2p-1 variables at level at least I contains a contraction to a variable at level at least $\mathit{I}+1$.

Lemma (Olson)

A set of 2p-1 variables at level at least I contains a contraction to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^2\right)=2p-1$$

Lemma (Olson)

A set of 2p-1 variables at level at least I contains a contraction to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^2\right) = 2p-1 \Rightarrow \sum_{i=1}^{2p-1} {\tilde{a}_i \choose \tilde{b}_i} x_i^k \equiv 0 \mod p$$

Lemma (Olson)

A set of 2p-1 variables at level at least I contains a contraction to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^2
ight)=2p-1\Rightarrow \sum_{i=1}^{2p-1}inom{\tilde{s}_i}{\tilde{b}_i}x_i^k\equiv 0\mod p$$

Lemma (Olson)

A set of 3p-2 variables at level at least I contains a contraction of at most p variables to a variable at level at least l+1.

Lemma (Olson)

A set of 2p-1 variables at level at least I contains a contraction to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^2\right) = 2p-1 \Rightarrow \sum_{i=1}^{2p-1} {\tilde{a}_i \choose \tilde{b}_i} x_i^k \equiv 0 \mod p$$

Lemma (Olson)

A set of 3p-2 variables at level at least I contains a contraction of at most p variables to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^3\right)=3p-2\Rightarrow ext{ It exists }\emptyset
eq J\subset\{1,\ldots,3p-2\}, ext{ s. t. } \sum_{j\in J}inom{ ilde{s}_j}{ ilde{b}_j}\equiv 0 \mod p.$$

Lemma (Olson)

A set of 2p-1 variables at level at least I contains a contraction to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^2
ight)=2p-1\Rightarrow \sum_{i=1}^{2p-1}inom{\tilde{s}_i}{\tilde{b}_i}x_i^k\equiv 0\mod p$$

Lemma (Olson)

A set of 3p-2 variables at level at least I contains a contraction of at most p variables to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^3\right)=3p-2\Rightarrow ext{ It exists }\emptyset
eq J\subset\{1,\ldots,3p-2\}, ext{ s. t. } \sum_{j\in J}inom{ ilde{s}_j}{ ilde{b}_j}\equiv 0 \mod p.$$

If |J| = 2p it exists a contraction $\tilde{J} \subset J$ with $|\tilde{J}| \leq 2p - 1$.

Lemma (Olson)

A set of 2p-1 variables at level at least I contains a contraction to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^2\right) = 2p - 1 \Rightarrow \sum_{i=1}^{2p-1} {\tilde{a}_i \choose \tilde{b}_i} x_i^k \equiv 0 \mod p$$

Lemma (Olson)

A set of 3p-2 variables at level at least I contains a contraction of at most p variables to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^3
ight)=3p-2\Rightarrow ext{ It exists }\emptyset
eq J\subset\{1,\ldots,3p-2\}, ext{ s. t. }\sum_{j\in J}inom{ ilde{s}_j}{ ilde{b}_j}\equiv 0 \mod p.$$

If |J|=2p it exists a contraction $\tilde{J}\subset J$ with $|\tilde{J}|\leq 2p-1$.

 \rightarrow Lifting primary variables one level higher, one loses about a factor p.

Lemma (Olson)

A set of 2p-1 variables at level at least I contains a contraction to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^2
ight)=2p-1\Rightarrow \sum_{i=1}^{2p-1}inom{\tilde{s}_i}{\tilde{b}_i}x_i^k\equiv 0\mod p$$

Lemma (Olson)

A set of 3p-2 variables at level at least I contains a contraction of at most p variables to a variable at level at least l+1.

$$D\left((\mathbb{Z}/p\mathbb{Z})^3\right)=3p-2\Rightarrow ext{ It exists }\emptyset
eq J\subset\{1,\ldots,3p-2\}, ext{ s. t. } \sum_{j\in J}inom{ ilde{s}_j}{ ilde{b}_j}\equiv 0 \mod p.$$

If |J|=2p it exists a contraction $\tilde{J}\subset J$ with $|\tilde{J}|\leq 2p-1$.

- \rightarrow Lifting primary variables one level higher, one loses about a factor p.
- \rightarrow Gives at best the bound $s > 2 \frac{p}{p-1} k^2 2k$.

Lemma

A set of 2p-2 variables at level l (p-1 of some colour ν and p-1 not of colour ν) contract together with a primary variable at level at least l to a primary variable at level at least l+1.

Lemma

A set of 2p-2 variables at level I (p-1 of some colour ν and p-1 not of colour ν) contract together with a primary variable at level at least I to a primary variable at level at least I + 1.

$$m_0 + \dots + m_j \ge rac{(j+1)\,s}{k}$$
 for $j=0,1,\dots,k-1$ $m_0 + \dots + m_{j-1} + q_j \ge rac{(j+rac12)\,s}{k}$ for $j=0,1,\dots,k-1$

Lemma

A set of 2p-2 variables at level I (p-1 of some colour ν and p-1 not of colour ν) contract together with a primary variable at level at least I to a primary variable at level at least I+1.

$$m_0+\cdots+m_j\geq rac{(j+1)\,s}{k}\qquad ext{ for } \qquad j=0,1,\ldots,k-1$$
 $m_0+\cdots+m_{j-1}+q_j\geq rac{(j+rac12)\,s}{k}\qquad ext{ for } \qquad j=0,1,\ldots,k-1$

Extreme cases:

Big m_0 and q_0 .

At least
$$m_i \ge 2p-1$$
 and $q_i \ge p$ for all i .

Lemma

A set of 2p-2 variables at level l (p-1 of some colour ν and p-1 not of colour ν) contract together with a primary variable at level at least l to a primary variable at level at least l+1.

$$m_0+\cdots+m_j\geq rac{(j+1)\,s}{k}\qquad ext{for}\qquad j=0,1,\ldots,k-1$$
 $m_0+\cdots+m_{j-1}+q_j\geq rac{(j+rac12)\,s}{k}\qquad ext{for}\qquad j=0,1,\ldots,k-1$

Extreme cases:

Big m_0 and q_0 .

At least $m_i \geq 2p-1$ and $q_i \geq p$ for all i.

Big m_0 but only small q_0 .

Lemma

A set of 2p-2 variables at level l (p-1 of some colour ν and p-1 not of colour ν) contract together with a primary variable at level at least l to a primary variable at level at least l+1.

$$m_0 + \dots + m_j \ge \frac{(j+1)s}{k}$$
 for $j = 0, 1, \dots, k-1$ $m_0 + \dots + m_{j-1} + q_j \ge \frac{(j+\frac{1}{2})s}{k}$ for $j = 0, 1, \dots, k-1$

Extreme cases:

Big m_0 and q_0 .

At least $m_i \ge 2p-1$ and $q_i \ge p$ for all i.

Big m_0 but only small q_0 .

ightarrow Take unused variables at lower levels to create helpful variables along the way.

Level and colour control

Define

$$\mathcal{L}_{0\mu} := \left\{ c \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ p \end{pmatrix} \right) \mid c \in \left(\mathbb{Z}/p^2 \mathbb{Z} \right)^* \right\}$$

$$\mathcal{L}_{\nu\mu} := \left\{ c \left(\begin{pmatrix} \nu \\ 1 \end{pmatrix} + \mu \begin{pmatrix} p \\ 0 \end{pmatrix} \right) \mid c \in \left(\mathbb{Z}/p^2 \mathbb{Z} \right)^* \right\}$$

for all $0 \le \nu \le p$ and $0 \le \mu \le p-1$. One says that the variable x_i is of colour nuance (ν,μ) , if $\begin{pmatrix} \tilde{a}_i \\ \tilde{b}_i \end{pmatrix} \in \mathscr{L}_{\nu\mu} \mod p^2$.

Level and colour control

Define

$$\mathcal{L}_{0\mu} := \left\{ c \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ p \end{pmatrix} \right) \mid c \in \left(\mathbb{Z}/p^2 \mathbb{Z} \right)^* \right\}$$

$$\mathcal{L}_{\nu\mu} := \left\{ c \left(\begin{pmatrix} \nu \\ 1 \end{pmatrix} + \mu \begin{pmatrix} p \\ 0 \end{pmatrix} \right) \mid c \in \left(\mathbb{Z}/p^2 \mathbb{Z} \right)^* \right\}$$

for all $0 \le \nu \le p$ and $0 \le \mu \le p-1$. One says that the variable x_i is of colour nuance (ν, μ) , if $\begin{pmatrix} \tilde{a}_i \\ \tilde{b}_i \end{pmatrix} \in \mathscr{L}_{\nu\mu} \mod p^2$.

Lemma

A set of 3p-2 variables at level I and colour nuance (ν,μ) contains a contraction of at most p variables to a variable a level I + 1 and colour ν .

Creating primary variables is expensive: 2p-1 variables at level 0, from which p are not in the biggest colour.

Creating primary variables is expensive: 2p-1 variables at level 0, from which p are not in the biggest colour.

Alternative way if $m_0 - q_0$ is big:

The variables at level 0 not in the biggest colour take the place of primary variables.

Creating primary variables is expensive: 2p-1 variables at level 0, from which p are not in the biggest colour.

Alternative way if $m_0 - q_0$ is big:

- The variables at level 0 not in the biggest colour take the place of primary variables.
 - ightarrow Goal: Create a variable at level γ which traces back to one of those.

Creating primary variables is expensive: 2p-1 variables at level 0, from which p are not in the biggest colour.

Alternative way if $m_0 - q_0$ is big:

- The variables at level 0 not in the biggest colour take the place of primary variables.
 - ightarrow Goal: Create a variable at level γ which traces back to one of those.
- Use the (many) variables at level 0 in the biggest colour to create helpful variables.

$$m_0+\cdots+m_j\geq rac{(j+1)\,s}{k}\qquad ext{for}\qquad j=0,1,\ldots,k-1$$
 $m_0+\cdots+m_{j-1}+q_j\geq rac{(j+rac12)\,s}{k}\qquad ext{for}\qquad j=0,1,\ldots,k-1$

$$m_0 + \dots + m_j \ge rac{(j+1)\,s}{k} \qquad ext{for} \qquad j = 0, 1, \dots, k-1$$
 $m_0 + \dots + m_{j-1} + q_j \ge rac{(j+rac{1}{2})\,s}{k} \qquad ext{for} \qquad j = 0, 1, \dots, k-1$ $f = f_0 + pf_1 + p^2f_2 + \dots + p^{k-1}f_{k-1}$ $g = g_0 + pg_1 + p^2g_2 + \dots + p^{k-1}g_{k-1}$

$$m_0 + \dots + m_j \ge \frac{(j+1)\,s}{k}$$
 for $j = 0, 1, \dots, k-1$
 $m_0 + \dots + m_{j-1} + q_j \ge \frac{(j+\frac{1}{2})\,s}{k}$ for $j = 0, 1, \dots, k-1$
 $f = f_0 + pf_1 + p^2f_2 + \dots + p^{k-1}f_{k-1}$
 $g = g_0 + pg_1 + p^2g_2 + \dots + p^{k-1}g_{k-1}$
 $\downarrow \downarrow$
 $f = p^k f_0 + pf_1 + p^2f_2 + \dots + p^{k-1}f_{k-1}$
 $g = p^k g_0 + pg_1 + p^2g_2 + \dots + p^{k-1}g_{k-1}$

$$m_0 + \dots + m_j \ge \frac{(j+1)\,s}{k}$$
 for $j = 0, 1, \dots, k-1$
 $m_0 + \dots + m_{j-1} + q_j \ge \frac{(j+\frac{1}{2})\,s}{k}$ for $j = 0, 1, \dots, k-1$
 $f = f_0 + pf_1 + p^2f_2 + \dots + p^{k-1}f_{k-1}$
 $g = g_0 + pg_1 + p^2g_2 + \dots + p^{k-1}g_{k-1}$
 $\downarrow \downarrow$
 $f = p^k f_0 + pf_1 + p^2f_2 + \dots + p^{k-1}f_{k-1}$

$$\downarrow f = p^{k-1} f_0 + f_1 + p f_2 + \dots + p^{k-2} f_{k-1}$$

$$g = p^{k-1} g_0 + g_1 + p g_2 + \dots + p^{k-2} g_{k-1}$$

 $g = p^{k}g_{0} + pg_{1} + p^{2}g_{2} + \cdots + p^{k-1}g_{k-1}$

Summary

- Produce primary variables (or work with the altenative, if $m_0 q_0$ is big enough).
- Lift them to higher level, trying to minimise the factor which is lost with each lifting.
- \bullet Either reach at least level γ or gather information about the distribution of the variables at low levels.
- If necessary use level rotation to expand the knowledge to higher levels.

Thanks for your attention!