

Congruent Triangles Ex 10.2 Q1

Answer:

It is given that

RT = TS

 $\angle 1 = 2 \angle 2$

 $\angle 4 = 2 \angle 3$

We have to prove that $\triangle RBT \cong \triangle SAT$

Now

In ΔRTS we have

RT = ST

 $\Rightarrow \angle TSR = \angle TRS$ (Isosceles triangle)(1)

Now we have

 $\angle l = \angle 4$ (Vertically opposite angles)

 $\Rightarrow 2 \angle 2 = 2 \angle 3 \, (\text{Since} \, \angle 1 = 2 \angle 2 \, \, \text{and} \, \, \angle 4 = 2 \angle 3 \, , \, \text{given})$

 $\angle 2 = \angle 3$ (2)

Subtracting equation (2) from equation (1) we have

 $\angle TRS - \angle 3 = \angle TSR - \angle 2$

 $\Rightarrow \angle TRB = \angle TSA$

Now in ΔRBT and ΔSAT we have

 $\angle RTB = \angle STA$

and RT = ST (Given)

So all the criterion for the two triangles $\triangle RBT$ and $\triangle RBT$ are satisfied to be congruent. Hence by $\triangle ASA$ congruence criterion we have $\triangle ASA$ proved.

******* END *******