Chaîne suspendue

Cas statique

* On prend un élément infinitésimal de corde de longueur $dl = \sqrt{dx^2 + dy^2}$. On note $\alpha(x)$ l'angle de la corde par rapport à l'horizontal à l'abscisse x. On applique le principe fondamental de la statique :

$$\left\{ \begin{array}{l} -T(x)\cdot\cos(\alpha(x))+T(x+dx)\cdot\cos(\alpha(x+dx))=0\\ \\ -T(x)\cdot\sin(\alpha(x))+T(x+dx)\cdot\sin(\alpha(x+dx))-\mu g\sqrt{dx^2+dy^2}=0 \end{array} \right.$$

De la première équation, on voit que $T(x) \cdot \cos(\alpha(x)) = cste = T_0 \cos(\alpha_0)$, où T_0 et α_0 sont la tension et l'angle au début de la corde (par exemple. On a donc $T(x) = T_0 \cos(\alpha_0)/\cos(\alpha(x))$.

La seconde équation s'écrit :

$$\frac{\mathrm{d}}{\mathrm{d}x}T(x)\cdot\sin(\alpha(x)) = \mu g\sqrt{dx^2 + dy^2}$$

Avec la relation trouvée sur la tension, on obtient :

$$dx \frac{\mathrm{d}}{\mathrm{d}x} \left[T_0 \cos(\alpha_0) \tan(\alpha(x)) \right] = \mu g dx \sqrt{1 + \frac{dy^2}{dx^2}}$$

Comme tan(x) = dy/dx, on tombe sur l'équation différentielle :

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{l_c} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

avec $l_c = T_0 \cos(\alpha_0)/\mu g$.

* Avec le changement de variable proposé, on a :

$$\frac{\mathrm{d}p}{\mathrm{d}x} = \frac{1}{l_a}\sqrt{1 + p(x)^2}$$

On obtient alors:

$$\frac{\mathrm{d}p}{\sqrt{1+p(x)^2}} = \frac{\mathrm{d}x}{l_c}$$

On reconnait que la primitive est la fonction inverse du sinus hyperbolique :

$$\sinh^{-1}(p) = \frac{x}{l_c} + \alpha \tag{1}$$

On obtient alors:

$$y(x) = l_c \cosh\left(\frac{x}{l_c} + \alpha\right) + \beta \tag{2}$$

Avec les conditions aux limites (y(-D/2) = y(+D/2) = 0), on a :

$$y(x) = l_c \left[\cosh \left(\frac{x}{l_c} \right) - \cosh \left(\frac{D}{2l_c} \right) \right]$$

* La tension horizontale est constante et vaut $T_h(x) = T_0 \cos(\alpha_0)$. La tension verticale est $T_v(x) = T(x)\sin(\alpha(x)) = T_0\cos(\alpha_0)\tan(\alpha(x)) = T_0\cos(\alpha_0)\frac{dy}{dx}$. On a donc :

$$T_v(x) = T_0 \cos(\alpha_0) \sinh\left(\frac{x}{l_c}\right)$$

* La longueur correspond à l'intégrale curviligne :

$$L = \int_C dl = \int_{-D/2}^{D/2} dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

En utilisant l'équation différentielle trouvée précédemment, on a tout simplement :

$$L = \int_{-D/2}^{D/2} dx \frac{d^2y}{dx^2} = \left[\frac{dy}{dx}\right]_{-D/2}^{D/2} = 2l_c \sinh\left(\frac{D}{2l_c}\right)$$

La flèche correspond tout simplement à la différence entre le point le plus haut et le plus bas, soit -y(0):

$$h = l_c \left[\cosh \left(\frac{D}{2l_c} \right) - 1 \right]$$

On utilise la relation $\cosh^2 - \sinh^2 = 1$:

$$\left(\frac{h}{l_c} + 1\right)^2 - \left(\frac{L}{2l_c}\right)^2 = 1$$

et donc:

$$l_c = \frac{L^2/4 - h^2}{2h}$$

Ainsi, avec simplement une photo d'une chaîne suspendue, on peut connaitre L, h et α_0 , on en déduit l_c qui nous donne l'information sur T_0

Cas dynamique

- \diamond A ce moment là $T_0 \gg \mu g$, et donc $l_c \longrightarrow \infty$ et la corde est horizontale. L'angle $\alpha(x)$ est très petit. On néglige la gravité dans ce cas-là.
- ⋄ On reprend le même raisonnement que précédemment en appliquant le principe fondamental de la dynamique et en négligeant la pesanteur. On trouve une équation d'Alembert, qui correspond à la propagation des ondes dans la corde :

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

avec $c = T_0/\mu$. Les solutions sont de la forme y(x,t) = f(t-x/c) + g(t+x/c): cela correspond à des ondes se propageant suivants les x croissants (f) et les x décroissants (g).

 \diamond Dans le cas d'ondes stationnaires, on a y(x,t) = F(x)G(t), cad indépendance entre les variables de temps et d'espace. En injectant dans l'équation de propagation, on trouve que la fonction F est une fonction sinusoïdale, qui avec les conditions aux limites est nécessairement :

$$F(x) = F_0 \sin(k_n x), \quad k_n = \frac{n\pi}{L}$$

Et d'autre part :

$$G(t) = G_1 \cos(\omega t) + G_2 \sin(\omega t)$$

En réinjectant les solutions de F(x)G(t) trouvées, on tombe sur la relation de dispersion :

$$\omega = \omega_n = k_n c = \frac{n\pi c}{L}$$

Comme toute superposition des solutions précédentes au mode n vérifient l'équation de propagation, la solution générale est donc une somme des solutions au mode n:

$$y(x,t) = \sum_{n} [A_n \cos(\omega_n t) + B_n \sin(\omega_n t)] \cdot \sin(k_n x)$$

 \diamond On commence par relier les coefficients A_n et B_n avec les conditions initiales :

$$\begin{cases} y(x,0) = \sum_{n} A_n \sin(k_n x) \\ \frac{dy}{dt}(x,0) = \sum_{n} \omega_n B_n \sin(k_n x) \end{cases}$$

On peut inverser les intégrales en utilisant l'orthogonalité des fonctions sinusoïdales :

$$\int_0^1 \mathrm{d}u \sin(n\pi u) \sin(m\pi u) = \frac{\delta_{nm}}{2}$$

On a alors:

$$\begin{cases} A_n = \frac{2}{L} \int_0^L dx \cdot y(x, 0) \sin\left(\frac{n\pi x}{L}\right) \\ B_n = \frac{2}{n\pi c} \int_0^L dx \cdot \frac{dy}{dt}(x, 0) \sin\left(\frac{n\pi x}{L}\right) \end{cases}$$

Avec les conditions initiales données, on a $\frac{dy}{dt}(x,0)=0$, cad $B_n=0$. De la même manière :

$$A_n = \frac{2}{L} \int_0^a \mathrm{d}x \frac{h}{a} x \sin\left(\frac{n\pi x}{L}\right) + \frac{2}{L} \int_a^L \mathrm{d}x \frac{h(L-x)}{L-a} \sin\left(\frac{n\pi x}{L}\right)$$

En intégrant par partie, on obtient :

$$A_n = \frac{2h}{n^2 \pi^2} \frac{L^2}{a(L-a)} \sin\left(\frac{n\pi a}{L}\right)$$

 \diamond Ici, les harmoniques décroissent en $1/n^2$. En fonction des conditions initiales, on peut avoir d'autres décroissances, qui dépendent du type d'instrument de musique. Cela détermine alors le nombre d'harmoniques qui détermine le timbre de l'instrument.

Corde pendue verticalement

* On note le 0 des abscisses z le point où la corde est accrochée, avec les z positifs orientés vers le bas. En appliquant le principe fondamental de la dynamique, on trouve :

$$\begin{cases} T(z+dz) \cdot \cos(\alpha(z+dz)) - T(z) \cdot \cos(\alpha(z)) + \mu g \, dz = 0 \\ \mu \, dz \, \frac{\partial^2 \Psi}{\partial t^2} = T(z+dz) \cdot \sin(\alpha(z+dz)) - T(z) \cdot \sin(\alpha(z)) \end{cases}$$

Si on prend l'hypothèse $\sin(\alpha(z)) \simeq \tan(\alpha(z)) \simeq \alpha(z) \simeq \frac{\partial \Psi}{\partial z}$ et $\cos(\alpha(z)) \simeq 1$, on obtient :

$$\left\{ \begin{array}{l} T(z) = \mu gz \\ \\ \mu \frac{\partial^2 \Psi}{\partial t^2} = \frac{\partial}{\partial z} (T(z)\alpha(z)) \end{array} \right.$$

En rentrant l'expression de la tension, on obtient donc

$$\frac{\partial^2}{\partial t^2} \Psi(z,t) = g \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial z} \Psi(z,t) \right)$$

* Ce sont des solutions stationnaires. En injectant, on trouve :

$$\left[\omega^2 \alpha(z) + g \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial z} \alpha(z, t) \right) \right] \cos(\omega t) + \left[\omega^2 \beta(z) + g \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial z} \beta(z, t) \right) \right] \sin(\omega t) = 0$$

Comme cette équation est vraie $\forall t$, on a nécessairement : trouve :

$$\omega^2 \alpha(z) + g \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial z} \alpha(z, t) \right) = 0$$

 α et β vérifient la même équation différentielle en z.

* Avec le changement de variable, on a $\alpha(z)=\alpha(0)A(Z(z)),\ \alpha'(z)=\alpha(0)\frac{\omega^2}{g}A'(Z(z))$ et $\alpha''(z)=\alpha(0)\frac{\omega^4}{g^2}A''(Z(z))$. L'équation différentielle devient donc :

$$A(z) + A'(Z) + ZA''(Z) = 0 (3)$$

* La série entière s'écrit :

$$A(Z) = 1 + \sum_{k=1}^{\infty} A_k Z^k$$

Injecté dans l'équation différentielle, on trouve :

$$1 + A_1 + \sum_{k=1}^{k} (A_k + (k+1)A_{k+1} + k(k+1)A_{k+2})Z^k = 0$$

On en déduit $A_1=-1$ et $A_{k+1}=-A_k/(k+1)^2,\,\mathrm{donc}$:

$$A_k = \frac{(-1)^2}{(k!)^2}$$

* Comment pourrait-on trouver une relation de dispersion $\omega(k)$?