# Computer Systems for AI-inspired Cloud Theory & Lab.

SmartX Labs – Mini (MOOC Selection)

Tower (Lab#3)















# **Lab Theory**















SmartX Edge µBoxes



SmartX<br/>Edge Cluster



SmartX
DevOps Tower
Cloud
with DataLake

End Edge Core

**Things** 

μClouds SDN/NFV

Clouds (HPC/BigData)

- Software development technique based on Collection of loosely coupled small-size services (i.e., functions)
- Fine-grained services and lightweight protocols to improve modularity, create applications easier, and helps resiliency against architecture erosion





- Time series data is arrays of numbers indexed by time.
- In some fields these time series are called profiles, curves, or traces.



- Adopts a flexible notification mechanism
- User can configure & watch graph easily via Web GUI

- Consists of structured server and client
  - Client collects the monitoring data and send it to the Zabbix server
  - Server visualizes the data that is collected by the Zabbix Agent





**Zabbix Server Agent structure** 

#### **Ubuntu boot up phases**

1. BIOS

2. Boot loader

The job of the boot loader is to begin the next phase, loading the kernel and an initial ram disk filesystem.

▶ The kernel launches the init script inside the initrd file system, which loads hardware drivers and finds the root partition.

3. Kernel

▶ After the kernel is running, the remainder of the operating system is brought online.

4. Upstart

#### **Remote OS installation targets**



#### **Bare metal**

- OS absent in the hardware
- For remote OS installation, the host doesn't have a decision-making power.



#### Mobile device

- OS already activated in the hardware
- From the standpoint of user, OS is installed automatically by host.



MAAS(Metal As A Service) is

better suited to the bare metal.



puppet









- Region Controller: Deals with operator requests
- Rack Controller: Provide the high bandwidth services to multiple server racks + Cache OS install images



- Bear-metal machines can be quickly provisioned and destroyed; MAAS provides management of a large number of physical machines by creating a single resource pool
- MAAS can act as a standalone PXE services, provides Web GUI, supports various Linux distribution installation, ...



**Reference:** https://docs.maas.io/2.4/en/intro-concepts#controllers



#### Warning!

**Box Hardware Requirements** for Automated Installation

- \*IPMI, Intel AMT, IBM HMC, ...
- PXE bootable with DHCP option
- Two Ethernet interfaces

\*IPMI: The intelligent Platform Management Interface. Remote hardware health monitoring and management system that defines the interfaces for use in monitoring

#### **Remote OS installation Process**

- 1. DHCP server contacted
- 2. Kernel, initrd received over TFTP
- 3. Machine boots
- 4. Initrd mounts a squashfs image over HTTP







#### Enlistment

- 5. cloud-init runs enlistment scripts
- 6. Machine shuts down



#### Commissioning

- 5. cloud-init runs commissioning scripts
- 6. Machine shuts down



#### Deployment

- 5. cloud-init triggers deployment
- Curtin installation script run
- Squashfs image placed on disk





## **Lab Practice**

#### **Wired connection**

**NAME:** Raspberry Pi Model B (Pi)

CPU: ARM Cortex A7 @900MHz

**CORE:** 4

Memory: 1GB

SD Card: 32GB

**NAME**: NUC5i5MYHE (NUC PC)

CPU: i5-5300U @2.30GHz

**CORE:** 4

**Memory:** 16GB DDR3

**HDD:** 94GB

NAME: NT900X3A

**CPU:** i5-2537U @1.40GHz

**CORE:** 2

Memory: 4GB DDR3

**HDD:** 128GB



**NAME:** netgear prosafe 16 port gigabit switch(Switch) **Network Ports:** 16 auto-sensing 10/100/1000 Mbps

**Ethernet ports** 



Are they working?

If you can see logs of resource status on console consumer, go ahead!



- Run InfluxDB Container
  - \$ docker run -d --name=influxdb --net=host influxdb



\$ docker run -p 8888:8888 --net=host chronograf --influxdb-url=http://<NUC IP>:8086



- Install python-pip
  - \$ sudo apt-get install -y libcurl3 openssl curl
  - \$ sudo apt-get install -y python2.7 python-pip
  - \$ sudo apt-get install -y python3-pip



- \$ sudo pip install requests
- \$ sudo pip install kafka-python
- \$ sudo pip install influxdb
- \$ sudo pip install msgpack



Open 'broker\_to\_influxdb.py' code

\$ vi ~/SmartX-mini/ubuntu-kafkatodb/broker\_to\_influxdb.py

- Run python code
  - \$ sudo sysctl -w fs.file-max=100000
  - \$ ulimit -S -n 2048
  - \$ python ~/SmartX-mini/ubuntu-kafkatodb/broker\_to\_influxdb.py

.........

 Open Web browser and connect to Chronograf Dashboard http://<NUC IP>:8888









<u>.....</u>

• We can see the changes of values from database











#### **Requirements for manual Installation**

- DHCP PXE bootable
- USB to ethernet connector

Note: Typical NUC does not have a IPMI port.

- From target NUC, go to BIOS, turn on PXE and set network boot priority
- NUC reboot (to apply BIOS changes)
- Install MAAS server
  - \$ sudo apt update
  - \$ sudo apt install maas
- Initiate MAAS server
  - \$ sudo maas init
- Login to the MAAS UI at: http://<your.maas.ip>:5240/MAAS
- From the MAAS UI, you need to make user configurations
- \*Region name
- Ubuntu images
- Turn on DHCP
- Go to the "Subnets" tab, select the VLAN for which you want to enable DHCP
- From the "Take action" button select "Provide DHCP"



- Fnlist the NUC
- Set all the servers to PXE boot
- NUC reboot (When hardware is initialized, all software operations stop)
- Check the NUC appear in MAAS
- If the NUC does not support IPMI based BMC, edit them and enter their BMC details
- Commission the NUC
- Go to "machine interface", "configuration" and set "power type" to "manual"
- From the "take action" button, select "commission"
- NUC reboot (When a new kernel is installed, the box must be rebooted as to prevent the removed kernel from being loaded which will halt the NUC operation)
- Deploy the NUC
- From the "take action" button, choose "deploy" and click "view this page"
- From SSH keys, choose source and click upload
- Set "id\_rsa.pub" as a public key and click "import"

- Create SSH key
  - \$ sudo ssh-keygen
  - \$ sudo cat ~/.ssh/id\_rsa.pub

Copy the outcome, press "upload" and paste it on "User ID" and import

- Deploy
- From "take action", choose "deploy"
- OS remote Install complete

### **Appendix**

Remaining Lab practice requires special Box resources with IPMI or similar Remote Power Management, PXE Boot support







#### **Requirements for Automated Installation**

- IPMI, Intel AMT, IBM HMC ... and so on.
- DHCP PXE bootable

Note: Typical NUC does not satisfy the above requirement!





#### <BIOS PXE Configuration>

<BIOS IPMI Configuration>

- After then Save Configuration and Exit
- And then the PXE booting sequence is stated





It takes about 10 minutes



- It is a OS Installation procedure
- It takes about 15 minutes





# **Lab Review**

With Tower Lab, you have experimented selected roles of Monitor/Control (관제) Tower

01

Visibility Center function to **enable 'distributed monitoring'** over remote Boxes and to **store** 'monitoring information' to time-size DB.

02

Provisioning Center function to **enable remote** 'installation & configuration (of OS and others)' of distributed Boxes.

# Thank You for Your Attention Any Question?

Mini@smartx.kr

