1. ($\underline{\hspace{0.2cm}}$ /2 pt) Create a NFA recognizing the language described by $0^*1^*0^+$.

2. (__ /2 pt) Consider the alphabet $\Gamma = \{a, b, \#\}$. Let A be the language of all strings that begin and end with disjoint ## and have no intervening ##. Give a regular expression that describes A.

i.e. ## () ## doesn't contain substance ###

- *# (aubu#au#b)*(#UE) *#
- 3. Let B be the language described by $a*b(a \cup b)*$.
 - (a) ($_$ /2 **pt**) Create a two-state DFA, M, which recognizes B.

(b) ($_$ /2 pt) Convert M into a GNFA in special form.

(c) (__/2 pt) Choose any non-start and non-accept state in your diagram without a Ø-transition to the accept state. Rip that state from the machine and provide the resulting diagram.

NOTE: We're ripping the node w/
E-transition to cocept state.

Resulting GNFA will have
3 nodes, and exactly
4 transition arrows. Fill
them in!

