영어음성학 수업 내용 정리

2018130891 영어영문학과 신여진

1.English consonants and vowels

English consonants: p, t, k, b, d, g, m, n, f, v, θ , δ , s, z, \int , 3. I, w, r, j, h ...

English Vowels: e, ∞ , i, σ , o, u, σ , Λ , σ ei, ai, au, σ , ou, i σ , u σ r ...

모든 소리는 voiced(유성음)과 voiceless(무성음)으로 나눌 수 있다. 모든 모음과 일부 자음은 유성음이고 일부 자음은 무성음이다.

또한 소리는 nasal을 통해 나는 소리와 oral을 통해 나는 소리로 구분할 수 있다.

2.Phonetics 음성학

Ex) "가"라는 소리를 10번 낼 때 phonetics에서는 physical하게 분석하여 다 다른 소리라고 하는 반면 phonology에서는 cognitive하게 분석하여 다 같은 소리라고 할 수 있음

Articulatory phonetics 조음음성학 소리를 만드는 방법, Acoustic phonetic 음향음성학 바람의 원리 Auditory phonetics 청각음성학 귀로 들리는 원리

3.Articulation

Vocal tract에는 크게 네 가지가 있다 Nose, ear pharynx, larynx

그중 vocal tract(upper): lip, teeth, hard palate, soft palate(velum), uvula, pharynx wall, alveolar ridge, pharynx wall larynx,

그중 vocal tract(lower): lip tongue tip, tongue blade, tongue front, tongue back, tongue root, tongue center, epiglottis

vocal tract (upper)부분은 움직일 수 없고 vocal tract (lower)을 움직여서 소리를 낸다

4.Speech에서 아주 중요한 세가지!

4-1 oral nasal process

Nasal sound와 아닌 것을 구분하는 process로, Nasal sound 비음의 경우, nasal tract가 열려있고 velum은 lowered되어있다

반대의 경우 velum이 raised되어있고 nasal tract는 닫혀있다

4-2 phonation process

유성음 무성음을 구분하는 process로 larynxf를 확 열면 무성음 확 닫으면 유성음이다

4-3 articulatory process

Constrictors(Lips, tongue tip, tongue body)를 활용해 소리를 만드는 process이다

5.control of constrictors

Constriction location :어디서 장애가 발생하는가?

- -Lips가 조금 앞으로가면 bilaibial, 조금 뒤로가면 labiodental
- -Tongue body가 조금 앞으로가면 palatal에서, 조금 뒤로가면 velar에서
- -Tongue tip이 조금 앞으로 가면 dental에서 뒤로가면 palate-alveolar에서

Constriction degree: 어느정도로 조음과정에서 장애가 발생하는가

stops ex)p,t,b,d / fricatives ex)s,z,f,v... / approximants ex)m,n... /vowels

6.praat에서

Intensity, Pitch 남녀에 따라 pitch setting 해주는 것 중요 남자 65-200HZ 여자는 보통 145-275HZ Forman 모든 사람이 'a'녹음하면 다들 비슷한 Forman임

이 세상의 모든 sound포함 signal은 여러 sine wave의 결합으로 표현된다. 당연히 반대로, 여러다른 sine wave들의 합은 복잡한 소리가 된다.

-그래프 분석해보기

A,B,C모두 simplex tone, 사인웨이브라고 생각하면 됨

- -B가 A에 비해 두 배 빠르다
- -A를 분석해보자면 magnitude, 진폭 크고 frequency 가 작은 것으로 보아 저음에 해당한다
- -x축은 시간, y축은어떤 value 값으로 보면 됨

-그래프 분석 후 praat을 키고 440의 tone frequency를 가지고 1의 amplitude를 가진 sine wave를 만들었음

여러 다른 simplex tone중 제일 slow한 simplex tone의 frequency가 우리말의 음높이와 비슷하다

-voice source만들기

100,200,300,400...HZ 점점 올리고 1, 0.95, 0.90, 0.85...amplitude 점점 줄여서 10개를 만든 후 shift 키 이용해서 10개 한꺼번에 선택 combine to stereo – convert to mono 후 반복되는 패턴보기

인지심리학적으로 100hz play할 때랑 비슷하게 들림을 알 수 있음

- -등차간격으로 보이던 source spectrum이 우리의 입모양을만나 봉우리 모양으로 변하는 것을 볼수 있었음. 가장 위로 튀어나온게 first formant, 그 다음이 second formant...인 것을 알 수 있었다. 가장 먼저의 막대기는 f0라고 부르는 것이다.
- -또한 같은 모음에 대해서 누구나 비슷한 formant를 가지고 있는 것을 볼 수 있었다.

변수라고 하는 그 그릇에다가 정보를 assign해주기 (variable assignment)
자동화 기계화에서 직관적으로 우리가 떠오르는 것이 —할 때 —하라 이런 조건이 붙는 것은 당연히 필요함 이런 conditioning에 대한 문법이 필요함 (if conditioning)
자동화의 가장 중요한 것 중 하나는 여러 번 반복하는 것이다 이것은 (for loop)
문법에서 가장 중요한 것이 함수이다

variable이라는거 하나의 정보, 정보의 종류 하나는 숫자, 하나는 글자

in 옆에 a=1치고 run 눌러보기 (a에 1을 넣은거임) 컴퓨터 language에서 =은 같다의 표시가 아님. 오른쪽에 있는 정보를 왼쪽의 variable로 assign 한다는 뜻임 문자와 숫자의 순서 역시 바뀌면 안됨

그 밑에 print (a)치고 run 누르면 밑에 1 뜬다

여기서 print 라는 함수는 a(입력)라는 변수를 넣으면 1이 나오는 그런 함수임. 즉, 함수이름을 치고 괄호안에 입력값을 넣어주면됨 print 함수, a 입력값1 프린트된 값

(a=1 줄의 in누르면 파란색으로 변하는데 이때 a를 누르면 위에 칸 만들어지고 b누르면 밑에 칸

이만들어진다 줄을 없애고 싶다면 x (그 줄을 cell이라고 함)

변수를 문자를 넣어보자 문자 양옆에 작은따옴표 넣는거 핵심 shift하고 enter누르면 실행이 됨 그다음 print (b) 하고 run누르면 love 나옴

love=2라고 해보자
love라는 변수에 숫자 2를 넣은거야!
그리고 b=love라고 하면
b라는 변수넣으면 b-love-2메커니즘따라 2나옴

대괄호 해서 안에 많은 숫자 넣어줄 수 있다 그건 list라고 부른다

type (a)하고 run해주면 list라고 나온다 이걸 통해 얘가 단순 문자 숫자인지 list인지 구분할 수 있다 숫자 문자 리스트 변수로 넣을 수 있다

이외에도 type함수를 통해 문자는 str로 실수값은 float로 보안이 더 잘되는 tuple이 나오게 할 수

도, 표제어와 설명에 관련된 dict가 나올수도 있다는 것을 알 수 있었음.

-variable 추가와 string

a[0]에서 괄호의 역할은 a의 내부에 들어가서 무언가를 가져오라는 의미임 즉 어떠한 variable의 내부정보에 들어가려면 반드시 []가 필요하다

a라는 int variable이 a=float(a)의 함수에 들어가면 float으로 바뀜

dict에서 pair의 앞부분을 index로 사용한다 즉 []안에 들어올 것으로 앞부분 표제어를 사용한다는 말

s='abcdef'로 놓고

s[1:3]는 첫번째에서 세번째 직전까지라는 말, s[1:] 첫번째에서 끝까지라는 말, s[:3]은 처음부터 세번째 직전까지라는 말 s[:]전부다라는말

.upper()쓰면 해당 variable이 전부 대문자로 바뀐다

rinex라는 함수는 찾고 싶은 것이 그 문장에서 중복으로 있다면 마지막 것을 기준으로 찾아준다

.strip()함수는 string속에 번잡한 것들을 제거하고 순수한 것들만을 남겨준다

Tokens함수는 ''사이의 것을 기준으로 문장을 쪼개준다

join함수는 '' 사이의 것을 이용하여 token함수로 쪼개진 것을 붙여준다

replace함수의 경우는 문장 속의 특정 단어를 내가 지정하는 단어로 바꿔준다

-for loop

a=1,2,3,4

for I in a:

의 해석 in뒤에 있는 것을 하나씩 돌려서 한번한번 넣을때마다 i로 받아서 무언가를 해라!

-range라는 함수 : 리스트를 만들어주는거임

예를 들어 range(4)이면 함수를 통해 네개의 인덱스를 지닌 리스트를 만들어준 것, i는 0~3까지 차례대로 들어감 결국 a의 0,1,2,3번째가 차례로 나오게 되는 것

-enumerate라는 함수: 번호를 매겨주는 함수, 리스트가 있다면 리스트 안의 것들에 번호를 매겨 주는 함수임

-if conditioning

a=0

if a == 0:

print ("yay")

out yay

만약 if a!=0 인경우 (이때 !는 아니라면 이라는거임) yay가 나오지 않음

Numpy class 9

- -가로는 행 세로는 열
- -직사각형에 각각 넣어놓음
- -숫자가 쭉 나열되어있는 것 벡터, 모든 데이터는 벡터의 모습으로 되어있어야한다
- -영상은 몇차원인가 2차원
- -컬러 이미지는 몇차원인가- 3차원
- -import numpy as np하면 이후부턴 np만 써도 numpy로 역할가능

Numpy class 10

-Numpy 라는 라이브러리 속에는 package A,B,C,,그리고 그 안에 a,b,c더 들어있을 수 있다 Ex)import Numpy.a.d 여기서 .의 의미는 '~의 안의'라는 것 From numpy import a 이렇게도 사용가능

```
numpy
In [2]: import numpy as np import matplotlib.pyplot as plt
         이렇게 as를 사용해서 간단히 표현해줄 수 있다는 것 from matplotlib.import pyplot as plt 로도 표현가능하다는 것
In [3]: np.empty([2,3],dtype='int')
Out[3]: array([[ 0, 1072168960, [1072168960, 0,
         좀 크긴하지만 data type int로 정해놨기에 int가 data값으로 나옴
In [6]: np.zeros([2,3])
Out [6]: array([[0., 0., 0.], [0., 0., 0.]])
         zeros로 안에 채울거 이미 정해져있음 함수를 해석하자면 np안에 zeros를 활용해서 2열 3행 만들어라
In [7]: np.array([[0,0,0],[0,0,0]])
Out[7]: array([[0, 0, 0], [0, 0, 0]])
In [8]: np.ones([2,3])
Out [8]: array([[1., 1., 1.], [1., 1., 1.]])
In [9]: np.ones([2,3], dtype=int)
Out [9]: array([[1, 1, 1], [1, 1, 1]])
In []: dtype=int해줌으로써 뒤에 .을빼준것이다
```

```
이건 삼차원임 골호의 개수에 따라 차원수 차이남
Out[11]: array([0, 1, 2, 3, 4])
                                                                                                                                      In [25]: x-mp.array([[1,2],[4,5],[8,9]])
In [12]: np.arange(0,10)
Out [12]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
                                                                                                                                     In [26]: x.ndin
In [13]: np.arange(0,10,2)
Out [13]: array([0, 2, 4, 6, 8])
                                                                                                                                     In [27]: x.shape
     뒤에붙은 2는 증가분을얘기하는 것이다
in [14]: np.linspace(0,10,6)
Out[14]: array([ 0., 2., 4., 6., 8., 10.])
                                                                                                                                     In []: 직사각형의 모양을 말해주는 것
                                                                                                                                      In [30]: x.astype(np.float64)
   0부터 10까지 사이를 6개로 똑같이 나누어준다. 처음과 끝을 포함해서 . 리니어라는 말은 똑같이라는 의미를 지니고있음 그래서 차이를 똑같이해서 나눠라 이
런것
In [15]: np.linspace(0,10,7)
                                                                                                                                                  [[1., 2.],
[4., 5.],
[8., 9.]]])
Out[15]: array([ 0. , 1.66666667, 3.33333333, 5. 8.33333333, 10. ])
In [19]: x-np.array([[1,2,3],[4,5,6]])
                                                                                                                                     Out[19]: array([[1, 2, 3], [4, 5, 6]])
In [29]: x-np.array([[[1,2],[4,5],[8,9]],[[1,2],[4,5],[8,9]]])
                                                                                                                                                   [[0, 0],
[0, 0],
[0, 0]]])
Out [29]: array([[[1, 2], [4, 5], [8, 9]],
                                                                                                                                             0을가지고 아까 x처럼 만들어라
```

```
In [23] with a series of the content of the content
```

```
In [45]: a=no, randow, randow (1,00,15) hon, savez("test", a, b)

In [45]: del a, b, cash and and (2,00,15) hon, savez("test", a, b)

In [45]: not lesmo, load' test, not')

In [45]: not lesmo, load' test, not')

In [46]: a = no, araboe(1, 10), reshace(3,3) b = no, araboe(1, 10), re
```

11..5

Sound를 직접 만들어보자, Sinusoidal phasal

싸인하고 코사인에 들어가는 입력값은 degree가 아니라 radian이 들어가야한다

Degree 0 180 360.....720

Radian 0 π 2π 4π (2파이랑 4π 는 똑같음)

Ex) $\cos (1.5 \pi) = 0$

1(θ) = 6 ₀₁ = co2(θ) + εω(θ) = α+ργ Τη με Τραί εμ
€L) θ = 0,
年3世 张元 1,
$\theta = \frac{Z}{2}$,
0+ λ = i
어= 7, 이런 나는 게면 됨

X값에	0	0.5π	π	1.5π	2π
따라					
Cos값	1	0	-1	0	1
Sine값	0	1	0	-1	0

-오일러 공식

-가장 많은 수를 포함하는 수체계는 복소수 a+bi

-지금까지 sine(θ)값은 전부 실수였기에 표기에 문제가 없었지만 이런경우 허수가 있는 복소수는 어떻게 표시해줄까?

복소평면으로 표시해줄 수 있음. X축을 a, y 축을 b로 놓고 보자.

$f(\theta)$,

- ¬. θ=0일때 1, a=1, b=0
- ∟. θ=0.5π일 때 I, a=0, b=1
- □. θ=π일 때 -1 a=-1, b=0
- ㄹ. θ=1.5 π일 때 -i a=0, b=-1

벡터의 정의: 숫자열! a+bi도 결국 다 벡터임 위의 복소평면의 그래프. θ 값의 증가에 따라 시계반 대방향으로 뱅뱅 돈다

프로젝션! 위에서 보면 엑스축에서의 실수의변화만을 볼 수 있고

오른쪽에서 와이축만 보면 허수의 변화만을 볼 수 있음

실수만 볼때는 코사인만 보면되고 허수만 볼때는 사인만 보면 됨

(b축이 0부터 올라갔다가 내려가는 것 보면 딱 사인그래프 a축이 1부터 내려가는 것을 보면 딱 코사인그래프)

-소리라는 개념 그안에 반드시 시간의 개념 들어가 있어야한다!

```
]: # parameter setting
amp = 1 # range [0.0, 1.0]
sr = 10000 # sampling rate, Hz
dur = 0.5 # in seconds
freq = 100.0 # sine frequency, Hz

amp 진폭 1 1 에서 -1 까지를 얘기하는 것 sampling rate 음질상 얼마나 고해상도로 할것인가
duration 기간, frequency 1 초에 몇번 진동하나
```

<타임만들기>

t 0.0001 0.0002 0.0003 ...0.5000하는거 시간이 너무 오래걸리니까

sampling rate맞추기 위해선 10000000개의 t를 만들어야하는데 그건 너무 힘들지 그래서 다음의 것을 배운다

in t = np.arange(1,st*dur+1)/sr

1부터 5001바로 전까지를 다시 10000분의 1로 나누어주면 시간등장

<타임과 연동시켜서 각도값 만들기>

```
theta = t * 2*np.pi * freq
time에 2파이 곱한다고 생각해보기
```

그다음에 s=np.sin(세타)값 넣어주기

11.7

(저번시간 더욱 자세히 복습)

-Parameter setting 해두면 변경하고 싶을 때 쉽게 할 수 있음

```
- fig = plt.figure()
ax = fig.add_subplot(221)
```

Figure은 밑에 out되는 그래프 화면 전체를 말하는 것임

subplot으로 화면 분리 가능 subplot(221)은 두열 두줄 그중에 첫번째거로 선택한다라는 말임

```
- theta = np.arange(0,2*np/pi,0.1)
```

해주면 훨씬 촘촘한 그래프 됨

지금 위는 2파이까지 도는걸로 한정해놨는데 이를 10파이까지 해놓으면 훨씬 더 많은 굴곡을 볼 수 있음

-시간부터 만드는 것이 중요

위의 설정을 기반으로 1초라면 sampling rate만큼의 time을 만들면 됨 1초가 아닌 sr보다 적은 타임을 만들어야 됨

그래서 sr*dur해줘야함

그리고 초로 만들기 위해서 최종적으로 sr으로 나누어줘야 time으로 제대로 변환한 것

-Theta 에 time을 입히는 과정

T=2*np.pi

해준다는 것 1초만에 2파이만큼 돌아라

100바퀴 돌리고 싶으면 100파이 곱해주면 되고 이는 frequency

- -time association안시키고 theta그냥 만들고싶으면 쪼개서 하나하나 만들어주어야함
- -우리는 time 연동 theta를 만든거임
- -#generate signal by complex-phasor

C=np.exp(theta*1j) -i나j나 같게본다

이렇게하면 time만들었고 time연동 theta해두었으니 theta 값만 넣어주면 되는 것

실행해보면 하나의 값들 전부 a+bi형식으로 되어있음

[e-01은 -01이 10분의 1 -02는 10의 제곱분의 1 : array이후 숫자 읽는 법, 이런식으로 쓰면 아무리 큰수여도 정보량이 똑같아지기 때문임]

-3차원 그래프 만들어서 방향에 따라 일정 축만 집중해서 보며 나오는 그림 분석해보기

Real, time imag으로 해봄

-ipd import 꼭 해주고

lpd.Audio(c.real, rate*sr) 을 통해 소리 생성해보기