therefore, $\lambda_1(\mathcal{B} - \omega_0 \mathcal{C}') = \langle V_1(\mathcal{B}), (\mathcal{B} - \omega_0 \mathcal{C}') (V_1(\mathcal{B})) \rangle = 2\mu_1 - \omega_0 \xi$ since $\mathcal{C}' \in \mathfrak{C}$. So the strict inequality is asserting that $2\mu_1 - \omega_0 \xi < \lambda_1(\mathcal{B} - \omega_0 \mathcal{C}^*)$. However, the arguments in Lemmas 4 and 5, that apply to \mathcal{C}^* (since $\mathcal{C}^* \in \mathfrak{C}$), show that $\lambda_1(\mathcal{B} - \omega \mathcal{C}^*)$ is a concave function of ω and that the linear function $2\mu_1 - \omega\xi$ is an upper bound for it. This violates the strict inequality in: $\lambda_1(\mathcal{B} - \omega_0 \mathcal{C}') = 2\mu_1 - \omega_0 \xi < \lambda_1(\mathcal{B} - \omega_0 \mathcal{C}^*) \leq 2\mu_1 - \omega_0 \xi$.

Let S denote the two dimensional subspace spanned by $V_1(\mathcal{B})$ and V and \mathcal{C}'_S denote the restriction of \mathcal{C}' to this subspace (i.e., \mathcal{C}'_S agrees with \mathcal{C}' for any vector in this subspace and assigns $\mathbf{0}$ to any element outside). Also $V_1(\mathcal{B} - \omega_0 \mathcal{C}') \in S$ by the definition of V and $\lambda_1(\mathcal{B} - \omega_0 \mathcal{C}'_S) = \lambda_1(\mathcal{B} - \omega_0 \mathcal{C}')$.

Since $\mathcal{C}' \in \mathfrak{C}$, its restriction to S satisfies $\langle V_1(\mathcal{B}), \mathcal{C}'_S(V_1(\mathcal{B})) \rangle = \xi$. Also, $\mathcal{C}'_S \preccurlyeq \mathcal{B}/2$ since $\mathcal{C}' \preccurlyeq \mathcal{B}/2$. To satisfy the kissing constraint in Properties 2, we can add a component along $V : \mathcal{C}''_S := \mathcal{C}'_S + \delta V \otimes V \in \mathfrak{C}$ for some $\delta \geq 0$. Since $\mathcal{C}''_S \succcurlyeq \mathcal{C}'_S$ we have $\lambda_1(\mathcal{B} - \omega_0 \mathcal{C}''_S) \leq \lambda_1(\mathcal{B} - \omega_0 \mathcal{C}'_S)$. Proposition 3 establishes $\mathcal{C}^* \uparrow \mathcal{C}''_S$, a relationship that applies to all $\omega \in [0, 2]$, that guarantees:

$$\lambda_1(\mathcal{B} - \omega_0 \mathcal{C}^*) \le \lambda_1(\mathcal{B} - \omega_0 \mathcal{C}_S'') \le \lambda_1(\mathcal{B} - \omega_0 \mathcal{C}_S').$$

This is in contradiction with the strict inequality $\lambda_1(\mathcal{B} - \omega_0 \mathcal{C}^*) > \lambda_1(\mathcal{B} - \omega_0 \mathcal{C}')$.

Proof of Theorem 1. Theorem 2 implies $\lambda_1(\mathbf{B}^* - \omega \mathbf{C}^*) = \lambda_1(\mathbf{B} - \omega \mathbf{C}^*) \leq \lambda_1(\mathbf{B} - \omega \mathbf{C})$ for $\omega \in [0, 2]$ that establishes $C(\omega) \geq \lambda_{\max}(\mathbf{A}(\omega))$ based on (14). The covariance Σ_k converges to $\mathbf{0}$ according to the rate given by $\lambda_{\max}(\mathbf{A}(\omega))$ and the expected error at each step is the trace of Σ_k : $\mathbb{E}\left[\|\boldsymbol{\varepsilon}_k\|^2\right] = \operatorname{tr} \Sigma_k$. When i is drawn independently and identically distributed at each step of (1), the geometric rate of convergence is bound by $C(\omega)$ for every $\omega \in [0, 2]$.

4.4 Perron-Frobenius Theory For Positive Linear Maps

The superoperator \mathcal{A} defined in (7) plays the role of the iteration matrix — whose spectrum provides convergence analysis in classical iterative methods [Saad, 2003] — for randomized iterations. In this section we discuss the theoretical foundations that provide necessary properties on the spectrum of \mathcal{A} in the covariance analysis we have seen.

Recall the superoperator \mathcal{A} , for a fixed ω , denotes a linear map over the space of $n \times n$ matrices as:

$$\mathcal{A}(\boldsymbol{X}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{I} - \omega \boldsymbol{P}_i) \boldsymbol{X} (\boldsymbol{I} - \omega \boldsymbol{P}_i).$$

Since orthogonal projection is a symmetric operator, for any symmetric positive semi-definite matrix X the operation $(I - \omega P_i)X(I - \omega P_i)$ preserves its positivity [Bhatia, 2009]. Hence the superoperator A is a positive linear map, leaving the cone of symmetric positive semi-definite matrices invariant.

The spectra of positive linear maps on general (noncommutative) matrix algebras was studied in [Evans and Høegh-Krohn, 1978] that generalized the Perron-Frobenius theorem to this context. The spectral radius of a positive linear map is attained by an eigenvalue for which there exists an eigenvector that is positive semi-definite (see Theorem 6.5 in [Wolf, 2012]). The notion of *irreducibility* for positive linear maps guarantees that the eigenvalue is simple and the corresponding eigenvector is well-defined (up to a sign). What is more is that the eigenvector can be chosen to be a positive definite matrix. This guarantees that the power iterations in (7) converge along this positive definite matrix with the corresponding simple eigenvalue giving the rate of convergence.

For a system of equations in $A\mathbf{x} = \mathbf{b}$, we examine the irreducibility of its corresponding superoperator \mathcal{A} for any given relaxation value ω . The criteria for irreducibility of positive linear maps was developed in [Farenick, 1996] and involve invariant subspaces. A collection S of (closed) subspaces of the vector space of $n \times n$ matrices is called trivial if it only contains $\{\mathbf{0}\}$ and the space itself. Given a bounded linear operator M, let $\mathrm{Lat}(M)$ denote the invariant subspace lattice of M. The following theorem is a specialization of a more general result in [Farenick, 1996] (see Theorem 2) to our superoperator.

Theorem 3 (Irreducibility of the superoperator \mathcal{A}). The positive linear map \mathcal{A} is irreducible if and only if, $\bigcap_{i=1}^{m} \operatorname{Lat}(I - \omega P_i)$ is trivial.

Based on this theorem, we establish the equivalence of the irreducibility of \mathcal{A} , in the sense of positive linear maps, to a geometric notion of irreducibility defined for alternating projections (2) that is inherently a geometric approach to solving a system of equations $A\mathbf{x} = \mathbf{b}$. We recall the Frobenius notion of irreducibility for symmetric matrices. Such a matrix \mathbf{M} is called irreducible if it can not be transformed to block diagonal form by a permutation matrix $\mathbf{\Pi}$:

$$oldsymbol{M} = oldsymbol{\Pi} egin{bmatrix} oldsymbol{M}' & oldsymbol{0} \ oldsymbol{0} & oldsymbol{M}'' \end{bmatrix} oldsymbol{\Pi}^{-1},$$