Clustering

1 Unsupervised learning introduction

Supervised learning

Training set: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),(x^{(3)},y^{(3)}),\dots,(x^{(m)},y^{(m)})\}$

Unsupervised learning

Training set: $\{x_{-}^{(1)}, x_{-}^{(2)}, x_{-}^{(3)}, \dots, x_{-}^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Astronomical data analysis

2 K-means algorithm

K-means algorithm

Input:

- *K* (number of clusters) ←
- Training set $\{x^{(1)},x^{(2)},\ldots,x^{(m)}\}$ $\begin{cases} \end{cases}$

 $x^{(i)} \in \mathbb{R}^n$ (drop $\underline{x_0 = 1}$ convention)

K-means algorithm

Mi Mr

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$ Repeat {

for
$$i=1$$
 to m

$$c^{(i)} := index (from 1 to K) of cluster centroid closest to $x^{(i)}$

$$for $k=1$ to K

$$\mu_k := average (mean) of points assigned to cluster k

$$\chi^{(i)} \times \chi^{(i)} \times \chi^{(i)}$$$$$$$$

K-means for non-separated clusters

S,M, L

3 Optimization objective

K-means optimization objective

- $\rightarrow c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned

Optimization objective:

$$J(\underline{c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K}) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{\underline{c^{(i)}}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \Rightarrow \mu_1, \dots, \mu_K}} J(\underline{c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K})$$

$$\sum_{\substack{k \in \mathbb{N} \\ \text{Distortion}}} ||x^{(i)} - \mu_{\underline{c^{(i)}}}||^2$$

K-means algorithm

Andrew Ng

4 Random initialization

Random initialization

For i = 1 to 100 {
$$> \text{Randomly initialize K-means.}$$
 Run K-means. Get $\underline{c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K}$. Compute cost function (distortion)
$$> J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K)$$
 }

Pick clustering that gave lowest cost
$$J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$$

5 Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

