Computer Graphics

Geometry 3 (Mesh Processing)

Mesh Operations: Geometry Processing

- Mesh subdivision (网格细分)
- Mesh simplification (网格简化)
- Mesh regularization (网格正则化)

Mesh Subdivision (upsampling)

Increase resolution

Mesh Simplification (downsampling)

Decrease resolution; try to preserve shape/appearance

Mesh Regularization (same #triangles)

Modify sample distribution to improve quality

Subdivision

Loop Subdivision

Common subdivision rule for triangle meshes

First, create more triangles (vertices)

Second, tune their positions

Loop Subdivision

Split each triangle into four

- Assign new vertex positions according to weights
 - New / old vertices updated differently

Loop Subdivision — Update

For new vertices:

Update to: 3/8*(A + B) + 1/8*(C + D)

Loop Subdivision — Update

For old vertices (e.g. degree 6 vertices here):

Update to:

(1 - n*u) * original_position + u * neighbor_position_sum

n: vertex degree

u: 3/16 if n=3, 3/(8n) otherwise

Loop Subdivision Results

FYI: Catmull-Clark Vertex Update Rules (Quad Mesh)

Face point

$$f = \frac{v_1 + v_2 + v_3 + v_4}{4}$$

$$e = \frac{v_1 + v_2 + f_1 + f_2}{4}$$

Edge point

Vertex point

$$v = \frac{f_1 + f_2 + f_3 + f_4 + 2(m_1 + m_2 + m_3 + m_4) + 4p}{16}$$

m midpoint of edge*p* old "vertex point"

FYI: Catmull-Clark Vertex Update Rules (Quad Mesh)

Convergence: Overall Shape and Creases

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

Subdivision in Action (Pixar's "Geri's Game")

Mesh Simplification

Mesh Simplification

Goal: reduce number of mesh elements while maintaining the overall shape

How to compute?

Collapsing An Edge

Suppose we simplify a mesh using edge collapsing

Quadric Error Metrics

(二次误差度量)

- How much geometric error is introduced by simplification?
- Not a good idea to perform local averaging of vertices
- Quadric error: new vertex should minimize its sum of square distance (L2 distance) to previously related triangle planes!

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/08_Simplification.pdf

Quadric Error of Edge Collapse

- How much does it cost to collapse an edge?
- Idea: compute edge midpoint, measure quadric error

- Better idea: choose point that minimizes quadric error
- More details: Garland & Heckbert 1997.

Simplification via Quadric Error

Iteratively collapse edges

Which edges? Assign score with quadric error metric*

- approximate distance to surface as sum of distances to planes containing triangles
- iteratively collapse edge with smallest score
- greedy algorithm... great results!

* (Garland & Heckbert 1997)

Quadric Error Mesh Simplification

Quadric Error Mesh Simplification

Thank you!