

VOLUMES BY SLICING DISKS AND WASHERS

VOLUME:

Volume is the quantity of 3D space enclosed by a closed surface

VOLUME (DISK & WASHER):

$$V = A \cdot h = [area of a cross section] \times [height]$$

The volume of a solid can be obtained by integrating the cross-sectional area from one end of the solid to the other.

6.2.2 VOLUME FORMULA Let S be a solid bounded by two parallel planes perpendicular to the x-axis at x = a and x = b. If, for each x in [a, b], the cross-sectional area of S perpendicular to the x-axis is A(x), then the volume of the solid is

$$V = \int_{a}^{b} A(x) \, dx \tag{3}$$

provided A(x) is integrable.

5.2.3 VOLUME FORMULA Let S be a solid bounded by two parallel planes perpendicular to the y-axis at y = c and y = d. If, for each y in [c, d], the cross-sectional area of S perpendicular to the y-axis is A(y), then the volume of the solid is

$$V = \int_{c}^{d} A(y) \, dy \tag{4}$$

provided A(y) is integrable.

SOLIDS OF REVOLUTION

A *solid of revolution* is a solid that is generated by revolving a plane region about a line that lies in the same plane as the region; the line is called the *axis of revolution*. Many familiar solids are of this type (Figure 6.2.8).

6.2.4 PROBLEM Let f be continuous and nonnegative on [a, b], and let R be the region that is bounded above by y = f(x), below by the x-axis, and on the sides by the lines x = a and x = b (Figure 6.2.9a). Find the volume of the solid of revolution that is generated by revolving the region R about the x-axis.

$$V = \int_{a}^{b} \pi [f(x)]^{2} dx$$

Because the cross sections are disk shaped, the application of this formula is called the *method of disks*.

Example 2 Find the volume of the solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [1, 4] is revolved about the x-axis (Figure 5.2.10).

Solution. From (5), the volume is

$$V = \int_{a}^{b} \pi [f(x)]^{2} dx = \int_{1}^{4} \pi x dx = \frac{\pi x^{2}}{2} \bigg]_{1}^{4} = 8\pi - \frac{\pi}{2} = \frac{15\pi}{2}$$

▲ Figure 5.2.10

VOLUME BY DISKS PERPENDICULAR TO THE Y-AXIS

$$V = \int_{c}^{d} \pi [u(y)]^{2} dy$$
Disks

Example 5 Find the volume of the solid generated when the region enclosed by $y = \sqrt{x}$, y = 2, and x = 0 is revolved about the y-axis.

Solution. First sketch the region and the solid (Figure 6.2.16). The cross sections taken perpendicular to the y-axis are disks, so we will apply (7). But first we must rewrite $y = \sqrt{x}$ as $x = y^2$. Thus, from (7) with $u(y) = y^2$, the volume is

$$V = \int_{c}^{d} \pi [u(y)]^{2} dy = \int_{0}^{2} \pi y^{4} dy = \frac{\pi y^{5}}{5} \bigg]_{0}^{2} = \frac{32\pi}{5} \blacktriangleleft$$

Figure 6.2.16

1–8 Find the volume of the solid that results when the shaded region is revolved about the indicated axis. ■

1.

2.

3.

4.

5.

9. Find the volume of the solid whose base is the region bounded between the curve $y = x^2$ and the x-axis from x = 0 to x = 2 and whose cross sections taken perpendicular to the x-axis are squares.

Sol:

9.
$$V = \int_0^2 x^4 dx = 32/5.$$

10. Find the volume of the solid whose base is the region bounded between the curve $y = \sec x$ and the x-axis from $x = \pi/4$ to $x = \pi/3$ and whose cross sections taken perpendicular to the x-axis are squares.

Sol:

$$V = \int_{\pi/4}^{\pi/3} \sec^2 x \, dx = \sqrt{3} - 1.$$

washer

 A washer is a thin plate (typically disk-shaped) with a hole (typically in the middle)

Outer radius: R(x)

Inner radius: r(x)

The washer's area is

$$A(x) = \pi[R(x)]^2 - \pi[r(x)]^2 = \pi([R(x)]^2 - [r(x)]^2).$$

Consequently, the definition of volume gives

$$\begin{pmatrix} Area \\ of \\ Outer \end{pmatrix} - \begin{pmatrix} Area \\ of \\ Inner \end{pmatrix}$$

$$V = \int_a^b A(x) \, dx = \int_a^b \pi([R(x)]^2 - [r(x)]^2) \, dx.$$

6.2.5 PROBLEM Let f and g be continuous and nonnegative on [a, b], and suppose that $f(x) \ge g(x)$ for all x in the interval [a, b]. Let R be the region that is bounded above by y = f(x), below by y = g(x), and on the sides by the lines x = a and x = b (Figure 6.2.12a). Find the volume of the solid of revolution that is generated by revolving the region R about the x-axis (Figure 6.2.12b).

Volume by method of washers

$$V = \int_{a}^{b} \pi([f(x)]^{2} - [g(x)]^{2}) dx$$

$$V = \int_{c}^{d} \pi([w(y)]^{2} - [v(y)]^{2}) dy$$
Washers

Example:

The region R is bounded by the graphs of $f(x) = \sqrt{x}$ and $g(x) = x^2$

between x = 0 and x = 1. What is the volume of the solid resulting when R is revolved about the x-axis?

$$V = \int_{a}^{b} \pi([f(x)]^{2} - [g(x)]^{2}) dx = \int_{0}^{b} \pi(x - x^{4}) dx$$

$$= \pi \left(\frac{x^2}{2} - \frac{x^5}{5} \right) \Big|_0^1 = \frac{3\pi}{10}. = 0.942$$

Example 4 Find the volume of the solid generated when the region between the graphs of the equations $f(x) = \frac{1}{2} + x^2$ and g(x) = x over the interval [0, 2] is revolved about the x-axis.

Solution. First sketch the region (Figure 6.2.13*a*); then imagine revolving it about the x-axis (Figure 6.2.13*b*). From (6) the volume is

$$V = \int_{a}^{b} \pi([f(x)]^{2} - [g(x)]^{2}) dx = \int_{0}^{2} \pi(\left[\frac{1}{2} + x^{2}\right]^{2} - x^{2}) dx$$
$$= \int_{0}^{2} \pi\left(\frac{1}{4} + x^{4}\right) dx = \pi\left[\frac{x}{4} + \frac{x^{5}}{5}\right]_{0}^{2} = \frac{69\pi}{10} \blacktriangleleft$$

$$V = \int_{a}^{b} \pi([f(x)]^{2} - [g(x)]^{2}) dx$$

Examples: Find the volume(Disk/Washer) when

$$V = \int_{c}^{d} \pi [u(y)]^{2} dy$$

The region is bounded by the curves $y = 3 + 2x - x^2$ and x + y = 3 and is rotated about the *x*-axis.

$$3-x=3+2x-x^2 \implies x=0,3$$

Therefore, $r_{\text{out}} = 3 + 2x - x^2$ and $r_{\text{in}} = 3 - x$,

$$\pi \int_0^3 \left[\left(3 + 2x - x^2 \right)^2 - \left(3 - x \right)^2 \right] dx$$

$$= \pi \int_0^3 \left[\left(x^4 - 4x^3 - 2x^2 + 12x + 9 \right) - \left(9 - 6x + x^2 \right) \right] dx$$

$$= \pi \int_0^3 \left(x^4 - 4x^3 - 3x^2 + 18x \right) dx = \frac{108\pi}{5}$$

Washer method

$$V = \int_{a}^{b} \pi([f(x)]^{2} - [g(x)]^{2}) dx$$

The region is bounded by the curves $x = y^{2/3}$, x = 0, and y = 8 and is rotated about the *y*-axis.

With the limits of integration

$$y = 0$$
 and $y = 8$ and with $g(y) = y^{2/3}$,

$$\pi \int_0^8 (y^{2/3})^2 dy = \pi \int_0^8 y^{4/3} dy$$

$$= \pi \frac{3}{7} y^{7/3} \Big|_0^8$$

$$= \frac{3\pi}{7} (8^{7/3} - 0)$$

$$= \frac{384\pi}{7}$$

Disk Method

$$V = \int_{c}^{d} \pi [u(y)]^{2} dy$$

Example:(washer method)

Self Practice

EXAMPLE 9 A Washer Cross-Section (Rotation About the x-Axis)

The region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved about the x-axis to generate a solid. Find the volume of the solid.

EXAMPLE 9 A Washer Cross-Section (Rotation About the x-Axis)

The region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved about the x-axis to generate a solid. Find the volume of the solid.

1. Draw the region

2. Find the outer and inner radii of the washer

Outer radius:
$$R(x) = -x + 3$$

Inner radius:
$$r(x) = x^2 + 1$$

3. Find the limits of integration

$$x^{2} + 1 = -x + 3$$

$$x^{2} + x - 2 = 0$$

$$(x + 2)(x - 1) = 0$$

$$x = -2, \quad x = 1$$

4-Established the formula and evaluate

$$V = \int_{a}^{b} \pi([R(x)]^{2} - [r(x)]^{2}) dx \qquad \qquad V = \int_{a}^{b} \pi([f(x)]^{2} - [g(x)]^{2}) dx$$

$$= \int_{-2}^{1} \pi((-x+3)^{2} - (x^{2}+1)^{2}) dx$$

$$= \int_{-2}^{1} \pi(8-6x-x^{2}-x^{4}) dx$$

$$= \pi \left[8x - 3x^{2} - \frac{x^{3}}{3} - \frac{x^{5}}{5} \right]_{-2}^{1} = \frac{117\pi}{5} = 73.51$$

- 11–14 Find the volume of the solid that results when the region enclosed by the given curves is revolved about the *x*-axis. ■
- 11. $y = \sqrt{25 x^2}$, y = 3
- **12.** $y = 9 x^2$, y = 0 **13.** $x = \sqrt{y}$, x = y/4
- **14.** $y = \sin x$, $y = \cos x$, x = 0, $x = \pi/4$ [*Hint*: Use the identity $\cos 2x = \cos^2 x \sin^2 x$.]

- 15. Find the volume of the solid whose base is the region bounded between the curve $y = x^3$ and the y-axis from y = 0 to y = 1 and whose cross sections taken perpendicular to the y-axis are squares.
- 16. Find the volume of the solid whose base is the region enclosed between the curve $x = 1 y^2$ and the y-axis and whose cross sections taken perpendicular to the y-axis are squares.

17–20 Find the volume of the solid that results when the region enclosed by the given curves is revolved about the *y*-axis. ■

17.
$$x = \csc y$$
, $y = \pi/4$, $y = 3\pi/4$, $x = 0$

18.
$$y = x^2$$
, $x = y^2$

19.
$$x = y^2$$
, $x = y + 2$

20.
$$x = 1 - y^2$$
, $x = 2 + y^2$, $y = -1$, $y = 1$

Do Questions (1-20) from Ex # 5.2