Summary of Machine Learning Evaluation Results

Project:

"Customer Churn Prediction - Building a Model to Predict Churn in a Telco Company"

1. Data Preparation

Problems found:

- Missing values in 'Churn Reason'
- Some features with incorrect data types

Actions taken:

- Fill in the missing value with 'not churned'
- Covert features into their correct data types
- A new column called 'Churn Category' was created from 'Churn Reason' col to summarize the main causes of churners:
 - o Attitude
 - Competitor
 - o Dissatisfaction
 - o Price
 - Not Churned

2. Exploratory Data Analysis

Customer Attributes:

- The occurrence of churns mostly happened among those who are:
 - o not senior citizens
 - o no partners
 - o no dependents

Service Subscriptions:

- High number of churners in services:
- Subscribe to a `home phone` service
- Internet services:
 - o Use `fiber optic` as Internet service
 - Don't use additional Internet support services such as `device protection plan` for internet equipment, `online security`, `tech support` and `online backup`
- Entertainment services:
 - Equal churn rate between those who use and do not use `streaming TV` and `streaming movies` services
- Subscribe to `paperless billing`

Continuous Features:

- 50% of the churners had stayed with the company for `less than 10 months`.
- On a monthly basis, churners spent more than non-churners.

Others:

- Other features of the churners:
 - o Most of the churners went to the `competitor` side.
 - o `attitude` is also one of the factors that made them leave.
 - o Mostly were `month-to-month` users.
 - A lot of them used `electronic check` as a payment method.
- Imbalance between the two classes

3. Preprocessing

- Encode categorical features with 'Yes/No' values using a function
- Encoding gender category
- Encoding ordinal variable
- Encoding the other categoric features with more than two categories
- To ensure two or more than two independent variables are highly correlated (`Absence of Multicollinearity`)
 - Use `Variance Inflation Factor` or `VIF` to identify any significant multicollinearity
 - Value below 5 or 10 = small collinearity

4. Model Evaluation

- Use `Cross Validation` to compare and train different models with `default parameters`.
- A pipeline is created to include two steps to loop through StandardScaler() and each algorithm.
- After training the data with the selected algorithms, the one that has highest ROC-AUC score will be used as a baseline model, which is Logistic Regression.

Hyperparameter Tuning:

- To improve the performance of the baseline model, GridSearchCV() will be used to run across possible combinations listed in the parameter grid.
- Pipeline is also used to include steps such as feature transformation (using StandardScaler()) and GridSearchCV().
- After the tuning, changes have been detected as follows:
 - o Accuracy increased by 0.001.
 - o Precision dropped by 0.004.
 - o Recall increased by 0.024.