

. INGENIERÍA DE COMPUTACIÓN Y SISTEMAS
. INGENIERÍA INDUSTRIAL
. INGENIERÍA ELECTRÓNICA
. INGENIERÍA CIVIL
. INGENIERÍA EN INDUSTRIAS ALIMENTARIAS
. ARQUITECTURA
. CIENCIAS AERONAÚTICAS

SILABO ACTIVIDADES II: FÚTBOL

ÁREA CURRICULAR: HUMANIDADES

CICLO: II SEMESTRE ACADÉMICO: 2018-I

I. CÓDIGO DEL CURSO : TR000602010

II. CRÉDITOS : 01

III. REQUISITOS : TR000501010 Actividades I

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso forma parte de la formación deportiva mediante la disciplina del futbol, en su relación en las diversas esferas de la actividad humana y en el ejercicio de su profesión. Mediante el aprendizaje teórico—práctico; el propósito del curso es complementar el trabajo intelectual con el trabajo motor.

VI. FUENTES DE CONSULTA

Bibliográficas:

- Fragua, L. y Pinto, D. (1999). Sistemas de juego en la iniciación en el futbol. Revista de Educación Física.
- Giménez, F. (1999). Fundamentos básicos de la iniciación deportiva en la escuela. Wuanceulen. seville
- Guian, N., Ferreyra N. y Peixoto, C. (2004). La eficiencia del proceso ofensivo en el futbol. O incremento del rendimiento técnico. Revista Digital-10. Buenos Aires http://www.efdeportes.com
- Lago, C. (2004). La enseñanza del futbol. Wanceulen. Sevilla
- Matvelev. (1997). Periodización del entrenamiento. Universidad Nacional de Educación Física.
 Madrid.
- · Pila. A. Manual de Educación Física y Deportes España. Editorial Océano. Barcelona

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: DESARROLLO DE LAS CAPACIDADES FÍSICAS GENERALES

OBJETIVOS DE APRENDIZAJE:

- Desarrollar las capacidades físicas generales
- Desarrollar las capacidades coordinativas
- Desarrollar y optimizar la resistencia, fuerza y velocidad

PRIMERA SEMANA

Presentación del silabo. Prueba de entrada

SEGUNDA SEMANA

Acondicionamiento para la resistencia aeróbica

TERCERA SEMANA

Resistencia aeróbica - larga distancia

UNIDAD II: ENTRENAMIENTO ESPECÍFICO TÉCNICO

OBJETIVOS DE APRENDIZAJE:

- Lograr el rendimiento físico aplicado al futbol.
- Optimizar el control del balón en el juego

CUARTA SEMANA

Trabajos intercalados de fundamentos técnicos con coordinación deportiva

QUINTA SEMANA

Conducción del balón con marca pasiva y marca activa. Pases de balón sin y con marca activa y pasiva.

SEXTA SEMANA

Recepción del balón con los diferentes segmentos del cuerpo. Remate del balón con diferentes partes del pie.

SÉPTIMA SEMANA

Movimientos con y sin balón en situación de juego, aplicando los fundamentos técnicos

UNIDAD III: TRABAJOS TÁCTICOS

OBJETIVOS DE APRENDIZAJE:

- Reconocer la estructura de juego
- Construir un esquema de juego organizado.

OCTAVA SEMANA

Examen parcial.

NOVENA SEMANA

Examen parcial del curso

DÉCIMA SEMANA

Juegos de estructura menor (1 vs 1, 2 vs 2, etc.)

UNDÉCIMA SEMANA

Juegos de estructura menor en desigualdad numérica en ataque y defensa

UNIDAD IV: PRINCIPIOS OFENSIVOS Y DEFENSIVOS

OBJETIVOS DE APRENDIZAJE:

- Aplicar en el juego los principios ofensivos en el juego
- Optimizar su nivel ofensivo en el juego
- Aplicar en el juego los principios defensivos. Optimizar su nivel defensivo en el juego.

DUODÉCIMA SEMANA

Conceptualizar y poner en práctica los principios ofensivos (ampliación, penetración).

DECIMOTERCERA SEMANA

Principios ofensivos (movilidad e improvisación).

DECIMOCUARTA SEMANA

Aplicación de los principios ofensivos en situación de juego.

UNIDAD V: PRINCIPIOS DEFENSIVOS

OBJETIVOS DE APRENDIZAJE:

Aplicar en el juego los principios defensivos. Optimizar su nivel defensivo en el juego.

DECIMOQUINTA SEMANA

Conceptualizar y poner en práctica los principios defensivos (concentración, anticipación, relevo, retardación).

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y ciencias básicas
b. Tópicos de ingeniería
c. Educación General
1

IX. PROCEDIMIENTOS DIDÁCTICOS

Método Expositivo – interactivo. Disertación docente, exposición del estudiante.

Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

Método de Demostración – Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Infraestructura: coliseo (campo de futbol)

Materiales: Balones, conos, sogas, platillos, aros, steps, etc.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF = (PE + EP + EF)/3 PE = (P1 + P2 + P3)/3

Donde: Donde:

PF: Promedio final P1: Práctica sobre aplicación de los fundamentos (práctica

EP: Examen parcial (práctico) procedimental)

EF: Examen final (práctico) **P2**: Práctica sobre condición física (práctica procedimental)

P3: Práctica sobre juego en equipo (práctica procedimental).

XII.- APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Industrial, Ingeniería Civil e Ingeniería de Industrias Alimentarias, se establece en la tabla siguiente:

	K = clave	R= relacionado	Recuadro vacío = no aplica		
(a)	Habilidad para aplicar conocimientos de matemáticas, ciencia e ingeniería				
(h)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los				
(b)	datos obtenidos				
(0)	Habilidad para diseñar y	/ sistemas, componente	s o procesos que satisfagan las		
(c)	necesidades requeridas				
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario		R		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería				
(f)	Comprensión de lo que es la responsabilidad ética y profesional				
(g)	Habilidad para comunicarse con efectividad				
(h)	Una educación amplia n	necesaria para entender	el impacto que tienen las soluciones		
(h)	de la ingeniería dentro d	de un contexto social y g	lobal.		
(i)	Reconocer la necesidad	l y tener la habilidad de	seguir aprendiendo y capacitándose a	K	
(i)	lo largo de su vida.				
(j)	Conocimiento de los principales temas contemporáneos				
(14)	Habilidad de usar técnic	as, destrezas y herrami	entas modernas necesarias en la		
(k)	práctica de la ingeniería				

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

a. Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.

	b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	
	C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	
	d.	d. Habilidad para trabajar con efectividad en equipos para lograr una meta común.	
e.		Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
	f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	
	g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	
	h.	n. Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	
	i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	
	j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	

XIII. HORAS, SESIONES, DURACION

a) Horas de clases

TEORIA	PRÁCTICA	LABORATORIO
0	2	0

b) Sesiones por semana: Una sesión.c) Duración: 2 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Lic. Vásquez Jara, Rubén Felipe.

XV. FECHA

La Molina, marzo de 2018.