

Linear Discriminant Functions

软件学院 罗昕

如果用判別函数去分类这些数据的话, How many functions do we need?

A Just one

B Two

Three

Contents

- Introduction
- Linear Discriminant Functions and Decision Surface
- Linear Separability
- Learning
 - Gradient Decent Algorithm
 - Newton' s Method

Decision-Making Approaches

- Probabilistic Approaches
 - Based on the underlying probability densities of training sets.
 - For example, *Bayesian decision rule* assumes that the underlying probability densities were available.
- Discriminating Approaches
 - Assume we know the proper forms for the discriminant functions.
 - Use the samples to estimate the values of parameters of the classifier.

Discriminant Function

$$g_i: R^d \to R(\mathbf{x}) \qquad (1 \le i \le c)$$

- Useful way to represent classifier
- One function per category (c functions)
- Decide ω_i, if

$$g_i(x) > g_j(x)$$
 for all $j \neq i$

Linear Discriminant Functions

- Easy for computing, analysis and learning.
- Linear classifiers are attractive candidates for *initial, trial classifier*.
- Learning by minimizing a criterion function, e.g., training error.

Difficulty: a small training error does not guarantee a small test error.

Example of complexity

Difficulty: a small training error does not guarantee a small test error.

Difficulty: a small training error does not guarantee a small test error.

Which fit is better?

Linear Discriminant Functions

Two-category case

$$g(\mathbf{x}) = \mathbf{w}^{T} \mathbf{x} + w_{0}$$

$$\mathbf{p} = \mathbf{w}^{T} \mathbf{x} + w_{0}$$

$$\mathbf{p} = \mathbf{w}_{1}^{T} \mathbf{x} + w_{10}$$

$$\mathbf{p} = \mathbf{w}_{1}^{T} \mathbf{x} + w_{20}$$
Decide ω_{1} if $g(\mathbf{x}) > 0$

$$\mathbf{p} = \mathbf{w}_{2}^{T} \mathbf{x} + w_{10}$$

Thus, it is suffices to consider only d+1 parameters (w and d) instead of 2(d+1) parameters under two-category case.

Decision Surface

判定面

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

$$g(\mathbf{x}) = 0$$

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|^2} w_0 = 0$$

$$\mathbf{w}^T \left(\mathbf{x} + \frac{w_0}{\|\mathbf{w}\|} \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) = 0$$

Decide ω_1 if $g(\mathbf{x}) > 0$

Decide ω_2 if $g(\mathbf{x}) < 0$

Decision Surface

1. A linear discriminant function divides the feature space by a *hyperplane*.

2. The orientation of the surface is determined by the normal vector w.

3. The location of the surface is determined by the bias w_0 .

Linear Discriminant Functions

d-dimension

Let
$$\mathbf{a} = \begin{bmatrix} w_0 \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_d \end{bmatrix}$$

(d+1)-dimension

增广权向量 增广特征向量

Decision surface: $\mathbf{a}^T \mathbf{y} = 0$

Decide ω_1 if $\mathbf{a}^T \mathbf{y} > 0$

Decide ω_2 if $\mathbf{a}^T \mathbf{y} < 0$

Decide ω_2 if $g(\mathbf{x}) < 0$

Decide ω_1 if $g(\mathbf{x}) > 0$

Augmented feature vector

dimension

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{bmatrix} \quad \overset{\mathbf{O}}{\mathbf{y}} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_d \end{bmatrix}$$

(d+1)-dimension

增广权向量 增广特征向量

Decision surface: $\mathbf{a}^T \mathbf{y} = 0$

Decide
$$\omega_1$$
 if $\mathbf{a}^T \mathbf{y} > 0$

Decide
$$\omega_2$$
 if $\mathbf{a}^T \mathbf{y} < 0$

Decision surface in feature space:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$$
 Pass through the origin only when $w_0 = 0$.

Decision surface in augmented space:

$$g(\mathbf{x}) = \mathbf{a}^T \mathbf{y} = 0$$
 Always pass through the origin.
$$\mathbf{a} = \begin{bmatrix} w_0 \\ \mathbf{w} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$$

By using this mapping, the problem of finding weight wector w and threshold w0 is reduced to finding a single vector a.

Two-Category Case

Linearly Separable

线性可分/不可分

Not Linearly Separable

Two-Category Case

Linearly Separable

线性可分/不可分

Not Linearly Separable

Two-Category Case

Linearly Separable

Given a set of samples $y_1, y_2, ..., y_n$, some labeled ω_1 and some labeled ω_2 ,

if there exists a vector a such that

$$\mathbf{a}^T \mathbf{y}_i > 0$$
 if \mathbf{y}_i is labeled $\mathbf{\omega}_1$

$$\mathbf{a}^T \mathbf{y}_i < 0$$
 if \mathbf{y}_i is labeled $\mathbf{\omega}_2$

then the samples are said to be

Linearly Separable

Two-Category Case

Withdrawing all labels of samples and replacing the ones labeled ω_2 by their *negatives*, it is equivalent to find a vector **a** such that

$$\mathbf{a}^T \mathbf{y}_i > 0 \quad \forall i$$

normalization

Given a set of samples $y_1, y_2, ..., y_n$, some labeled ω_1 and some labeled ω_2 ,

if there exists a vector a such that

$$\mathbf{a}^T \mathbf{y}_i > 0$$
 if \mathbf{y}_i is labeled $\mathbf{\omega}_1$

$$\mathbf{a}^T \mathbf{y}_i < 0$$
 if \mathbf{y}_i is labeled $\mathbf{\omega}_2$

then the samples are said to be

Linearly Separable

Solution Region in Feature Space

Separating Plane:

$$a_1 y_1 + a_2 y_2 + \dots + a_n y_n = 0$$

Normalized Case

Solution Region in Feature Space

Separating Plane:

$$a_1 y_1 + a_2 y_2 + \dots + a_n y_n = 0$$

normalization

Normalized Case

Solution Region in Feature Space

分离平面

Separating Plane:

$$a_1 y_1 + a_2 y_2 + \dots + a_n y_n = 0$$

normalization 规范化

Normalized Case

Solution Region in Weight Space

Solution Region in Weight Space

Shrink solution region by margin 边沿裕量/间隔

$$b/\|\mathbf{y}_i\|, b>0$$

Linear Discriminant Functions

Criterion Function

- To facilitate learning, we usually define a scalar *criterion* function.
- It usually represents the penalty or cost of a solution.
- Our goal is to minimize its value.
- Function optimization.

$$J(\mathbf{w}, b) = -\sum_{i=1}^{n} \operatorname{sign}[\omega_i \cdot g(\mathbf{x}_i)]$$

$$J(\mathbf{w}, b) = -\sum_{i=1}^{n} \omega_i \cdot g(\mathbf{x}_i)$$

$$J(\mathbf{w}, b) = \sum_{i=1}^{n} (g(\mathbf{x}_i) - \omega_i)^2$$
.....

How to minimize the criterion function?

■ Our goal is to go *downhill*

Example

$$J(\theta) = \theta^2$$

$$\nabla J(\theta) = 2\theta$$

$$\alpha = 0.4 \ \theta_0 = 1$$

$$\theta_1 = \theta_0 - \alpha \nabla J(\theta)$$

$$\theta_1 = 0.2$$
 $\theta_2 = 0.04$
 $\theta_3 = 0.008$

Taylor Expansion

$$f(x + \Delta x) = f(x) + \nabla f(x)^{\mathrm{T}} \cdot \Delta x + O(\Delta x^{\mathrm{T}} \cdot \Delta x)$$

 $f: \mathbb{R}^d \to \mathbb{R}$: A real-valued d-variate function

 $x \in \mathbb{R}^d$: A point in the d-dimensional Euclidean space

 $\Delta x \in \mathbb{R}^d$: A small shift in the d-dimensional Euclidean space

 $\nabla f(x)$: gradient of f(.) at x

 $O(\Delta x^T \cdot \Delta x)$: The big oh order of $\Delta x^T \cdot \Delta x$

Taylor Expansion

$$f(x + \Delta x) = f(x) + \nabla f(x)^{\mathrm{T}} \cdot \Delta x + O(\Delta x^{\mathrm{T}} \cdot \Delta x)$$

What happens if we set Δx to be negatively proportional to the gradient at x, i.e.,

$$\Delta x = -\eta \cdot \nabla f(x)$$
 (η being a small positive scalar)

$$f(x + \Delta x) = f(x) - \eta \nabla f(x)^{t} \cdot \nabla f(x) + O(\Delta x^{t} \cdot \Delta x)$$

being non-negative

ignored when it is small

There, we have $f(x+\Delta x) < =f(x)$

- Basic strategy
 - To minimize some function f(.), the general gradient descent techniques work in the following iterative way:
 - 1. Set learning rate >0, and a small threshold >0.
 - 2. Randomly initialize $x_0 \in R^d$ as the starting point; set k=0.
 - 3. do k=k+1
 - $x_k = x_{k-1} \eta \cdot \nabla f(x_{k-1})$
 - 5. until
 - 6. Return x_k and $f(x_k)$

Why the negative gradient direction?

$$\nabla_{x} = \left(\frac{\partial}{\partial x_{1}} \quad \frac{\partial}{\partial x_{2}} \quad \cdots \quad \frac{\partial}{\partial x_{d}}\right)^{T}$$

$$df = (\nabla_x f)^T dx \begin{cases} \text{steepest if } \overrightarrow{dx} = \overline{\nabla_x} f \\ = 0 \text{ if } \overrightarrow{dx} \perp \overline{\nabla_x} f \end{cases}$$

steepest decent if $\overrightarrow{dx} = -\overrightarrow{\nabla}_{x} \overrightarrow{f}$

How long a step shall we take?

If improper *learning rate* (η_k) is used, the convergence rate may be poor.

Global minimum of a Paraboloid

Paraboloid
$$f(\mathbf{x}) = c + \mathbf{a}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}$$

We can find the global minimum of a paraboloid by setting its gradient to zero.

$$\nabla_{\mathbf{x}} f(\mathbf{x})|_{\mathbf{x}=\mathbf{x}_k} = \mathbf{a} + \mathbf{Q}\mathbf{x}_k = 0$$

$$\mathbf{x}^* = -\mathbf{Q}^{-1}\mathbf{a}$$

Taylor Series Expansion

All smooth functions can be approximated by paraboloids in a sufficiently small neighborhood of any point.

$$\mathbf{g}_k = \nabla_{\mathbf{x}} f(\mathbf{x}) \Big|_{\mathbf{x} = \mathbf{x}_k}$$

黑塞矩阵 海森矩阵 海瑟矩阵 海塞矩阵

Hessian Matrix

$$\mathbf{Q}_{k} = \frac{\partial^{2} f}{\partial \mathbf{x} \partial \mathbf{x}^{T}} \bigg|_{\mathbf{x} = \mathbf{x}_{k}} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} x_{d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{d} x_{1}} & \dots & \frac{\partial^{2} f}{\partial x_{d}^{2}} \end{bmatrix}_{\mathbf{x} = \mathbf{x}_{k}}$$

Set
$$\nabla_{\Delta \mathbf{x}} f = \mathbf{g}_k + \mathbf{Q}_k \Delta \mathbf{x} = 0$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{Q}_k^{-1} \mathbf{g}_k = 0$$

Comparison

Comparison

- Newton' s Method will usually give a greater improvement per step than the simple gradient decent algorithm, even with optimal value of η_k .
- However, Newton's Method is not applicable if the Hessian matrix Q is singular.
- Even when **Q** is nonsingular, compute **Q** is time consuming $O(d^3)$.
- It often takes less time to set η_k to a constant (small than necessary) than it is to compute the optimum η_k at each step.

Summary

- Discriminant functions
- Linear Discriminant Functions and Decision Surface
 - The general setting, one function for each class
 - The two-category case
 - Minimization of criterion/objection function
- Linear Separability

Summary

- Learning
 - Gradient descent

$$x_k = x_{k-1} - \eta \cdot \nabla f(x_{k-1})$$

Newton's method

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{Q}_k^{-1} \mathbf{g}_k = 0$$

Machine Learning 机器 学习

感谢同学们!

