EECS 151/251A Homework 2

Due Friday, Feb 11th, 2022

Problem 1: Moment of Truth Table

Please translate the following expressions/sentence/diagram into a truth table (you don't have to simplify the expressions in your solution)

(a)
$$Y = \overline{AB} + \overline{ABC} + \overline{C}$$

 $Y = \overline{AB} (\overline{ABC}) + \overline{C}$
 $Y = (\overline{A} + B) (A + B + \overline{C}) + \overline{C}$
 $(distribute)Y = \overline{AA} + BA + \overline{AB} + BB + \overline{AC} + B\overline{C}$
 $(A\overline{A} = 0)Y = BA + B + B\overline{C} + \overline{C} = \overline{C}$
 $(absorb)Y = B + \overline{C}$

A	В	C	Out
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

(b) If A, then either both B and C or neither, else not B.

$$Y = A(BC + \bar{B}\bar{C}) + \bar{A}\bar{B}$$

Α	В	C	Out
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(c)

A	В	C	Out
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Problem 2: Boo...lean

Simplify the following expression to minterms (sum of product) expression (Hint: consider starting with De Morgan's Law to simplify the inversions)

(a)
$$Y = \overline{\left(DC + \overline{(DC} + B\overline{A})D\right)} + B\overline{(A + \overline{C})}$$

(de morgan) $Y = (\overline{D} + \overline{C})(\overline{DC} + B\overline{A})D + B\overline{A}C$
(de morgan) $Y = (\overline{D} + \overline{C})(\overline{D} + \overline{C} + B\overline{A})D + \overline{A}BC$
(distribute) $Y = (\overline{D}\overline{D} + \overline{C}\overline{D} + \overline{D}\overline{C} + \overline{C}\overline{C} + \overline{D}B\overline{A} + \overline{C}B\overline{A})D + \overline{A}BC$
 $Y = (\overline{D}D + \overline{C}\overline{D}D + \overline{C}D + \overline{D}B\overline{A}D + \overline{C}B\overline{A}D) + \overline{A}BC$
($D\overline{D} = 0$) $Y = 0 + 0 + \overline{C}D + 0 + \overline{C}B\overline{A}D + \overline{A}BC$
(absorb) $Y = \overline{C}D + \overline{A}BC$

Problem 3: K for Karnaugh Map

Derive the minterm/maxterm expressions for the following K-maps, whichever is simplified the most

(a)				
**	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	0
10	0	0	0	0

Answer: (student not required to draw the kmap in answer)

 $Y = B\bar{C}\bar{D} + AB\bar{C}$

**	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	0
10	0	0	0	0

(b)

Answer:

 $Y = \overline{AD}$

(c)

*	00	01	11	10
00	0	1	0	0
01	0	1	1	1
11	0	1	0	0
10	0	1	0	0

Answer:

$$Y = \bar{C}D + \bar{A}BC$$

*	00	01	. 11	10	
00	0	1	0	0	
01	0	1	1	1	
11	0	1	0	0	
10	0	1	0	0	

Problem 4: Mealy or Moore

Identify whether the following diagram represents a Mealy Machine or a Moore Machine, and then convert it to the other type (mealy to moore, and moore to mealy)

Answer: It's a Mealy machine (output depends on both state and input)
Its Moore Machine form is: (key is to split state B into 2 states based on output value)

