SECTION 3.8 Matrices

2. We just add entry by entry.

a)
$$\begin{bmatrix} 0 & 3 & 9 \\ 1 & 4 & -1 \\ 2 & -5 & -3 \end{bmatrix}$$

a)
$$\begin{bmatrix} 0 & 3 & 9 \\ 1 & 4 & -1 \\ 2 & -5 & -3 \end{bmatrix}$$
 b)
$$\begin{bmatrix} -4 & 9 & 2 & 10 \\ -4 & -5 & 4 & 0 \end{bmatrix}$$

4. To multiply matrices **A** and **B**, we compute the $(i,j)^{\text{th}}$ entry of the product **AB** by adding all the products of elements from the i^{th} row of **A** with the corresponding element in the j^{th} column of **B**, that is $\sum_{k=1}^{n} a_{ik} b_{kj}$. This can only be done, of course, when the number of columns of A equals the number of rows of B (called n in the formula shown here).

a)
$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & -2 & 1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 4 & -1 & -7 & 6 \\ -7 & -5 & 8 & 5 \\ 4 & 0 & 7 & 3 \end{bmatrix}$$

a)
$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & -2 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 4 & -1 & -7 & 6 \\ -7 & -5 & 8 & 5 \\ 4 & 0 & 7 & 3 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 2 & 0 & -3 & -4 & -1 \\ 24 & -7 & 20 & 29 & 2 \\ -10 & 4 & -17 & -24 & -3 \end{bmatrix}$$

6. First note that A must be a 3×3 matrix in order for the sizes to work out as shown. If we name the elements of A in the usual way as $[a_{ij}]$, then the given equation is really nine equations in the nine unknowns a_{ij} , obtained simply by writing down what the matrix multiplication on the left means:

$$1 \cdot a_{11} + 3 \cdot a_{21} + 2 \cdot a_{31} = 7$$

$$1 \cdot a_{12} + 3 \cdot a_{22} + 2 \cdot a_{32} = 1$$

$$1 \cdot a_{13} + 3 \cdot a_{23} + 2 \cdot a_{33} = 3$$

$$2 \cdot a_{11} + 1 \cdot a_{21} + 1 \cdot a_{31} = 1$$

$$2 \cdot a_{12} + 1 \cdot a_{22} + 1 \cdot a_{32} = 0$$

$$2 \cdot a_{13} + 1 \cdot a_{23} + 1 \cdot a_{33} = 3$$

$$4 \cdot a_{11} + 0 \cdot a_{21} + 3 \cdot a_{31} = -1$$

$$4 \cdot a_{12} + 0 \cdot a_{22} + 3 \cdot a_{32} = -3$$

$$4 \cdot a_{13} + 0 \cdot a_{23} + 3 \cdot a_{33} = 7$$

This is really not as bad as it looks, since each variable only appears in three equations. For example, the first, fourth, and seventh equations are a system of three equations in the three variables a_{11} , a_{21} , and a_{31} . We can solve them using standard algebraic techniques to obtain $a_{11} = -1$, $a_{21} = 2$ and $a_{31} = 1$. By similar reasoning we also obtain $a_{12} = 0$, $a_{22} = 1$ and $a_{32} = -1$; and $a_{13} = 1$, $a_{23} = 0$ and $a_{33} = 1$. Thus our answer is

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} \,.$$

As a check we can carry out the matrix multiplication and verify that we obtain the given right-hand side.

- 8. Since the entries of $\mathbf{A} + \mathbf{B}$ are $a_{ij} + b_{ij}$ and the entries of $\mathbf{B} + \mathbf{A}$ are $b_{ij} + a_{ij}$, that $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$ follows from the commutativity of addition of real numbers.
- 10. a) This product is a 3×5 matrix.
 - b) This is not defined since the number of columns of B does not equal the number of rows of A.
 - c) This product is a 3×4 matrix.
 - d) This is not defined since the number of columns of C does not equal the number of rows of A.
 - e) This is not defined since the number of columns of B does not equal the number of rows of C.
 - f) This product is a 4×5 matrix.
- 12. We use the definition of matrix addition and multiplication. All summations here are from 1 to k.
 - a) $(\mathbf{A} + \mathbf{B})\mathbf{C} = \left[\sum (a_{iq} + b_{iq})c_{qj}\right] = \left[\sum a_{iq}c_{qj} + \sum b_{iq}c_{qj}\right] = \mathbf{AC} + \mathbf{BC}$ b) $\mathbf{C}(\mathbf{A} + \mathbf{B}) = \left[\sum c_{iq}(a_{qj} + b_{qj})\right] = \left[\sum c_{iq}a_{qj} + \sum c_{iq}b_{qj}\right] = \mathbf{CA} + \mathbf{CB}$
- 14. Let **A** and **B** be two diagonal $n \times n$ matrices. Let $\mathbf{C} = [c_{ij}]$ be the product \mathbf{AB} . From the definition of matrix multiplication, $c_{ij} = \sum a_{iq}b_{qj}$. Now all the terms a_{iq} in this expression are 0 except for q = i, so $c_{ij} = a_{ii}b_{ij}$. But $b_{ij} = 0$ unless i = j, so the only nonzero entries of **C** are the diagonal entries $c_{ii} = a_{ii}b_{ii}$.
- 16. The $(i,j)^{\text{th}}$ entry of $(\mathbf{A}^t)^t$ is the $(j,i)^{\text{th}}$ entry of \mathbf{A}^t , which is the $(i,j)^{\text{th}}$ entry of \mathbf{A} .
- 18. We need to multiply these two matrices together in both directions and check that both products are I_3 . Indeed, they are.

20. a) Using Exercise 19, noting that ad - bc = -5, we write down the inverse immediately:

$$\begin{bmatrix} -3/5 & 2/5 \\ 1/5 & 1/5 \end{bmatrix}.$$

- b) We multiply to obtain $\mathbf{A}^2 = \begin{bmatrix} 3 & 4 \\ 2 & 11 \end{bmatrix}$ and then $\mathbf{A}^3 = \begin{bmatrix} 1 & 18 \\ 9 & 37 \end{bmatrix}$. c) We multiply to obtain $(\mathbf{A}^{-1})^2 = \begin{bmatrix} 11/25 & -4/25 \\ -2/25 & 3/25 \end{bmatrix}$ and then $(\mathbf{A}^{-1})^3 = \begin{bmatrix} -37/125 & 18/125 \\ 9/125 & -1/125 \end{bmatrix}$.
- d) Applying the method of Exercise 19 for obtaining inverses to the answer in part (b), we obtain the answer in part (c). Therefore $(A^3)^{-1} = (A^{-1})^3$.
- 22. A matrix is symmetric if and only if it equals its transpose. So let us compute the transpose of $\mathbf{A}\mathbf{A}^t$ and see if we get this matrix back. Using Exercise 17b and then Exercise 16, we have $(\mathbf{A}\mathbf{A}^t)^t = ((\mathbf{A}^t)^t)\mathbf{A}^t = \mathbf{A}\mathbf{A}^t$, as desired.
- 24. a) If we compute the product as $A_1(A_2A_3)$, then by the result of Exercise 23 it will take $50 \cdot 10 \cdot 40$ multiplications for the first product and then 20.50.40 for the second. This is a total of 60,000 multiplications. If we compute the product as $(A_1A_2)A_3$, then it will take $20 \cdot 50 \cdot 10$ multiplications for the first product and then $20 \cdot 10 \cdot 40$ for the second. This is a total of 18,000 multiplications. Therefore the second method is more efficient.
 - b) If we compute the product as $A_1(A_2A_3)$, then by the result of Exercise 23 it will take 5.50.1 multiplications for the first product and then $10 \cdot 5 \cdot 1$ for the second. This is a total of 300 multiplications. If we compute the product as $(\mathbf{A}_1\mathbf{A}_2)\mathbf{A}_3$, then it will take $10\cdot 5\cdot 50$ multiplications for the first product and then $10\cdot 50\cdot 1$ for the second. This is a total of 1000 multiplications. Therefore the first method is more efficient.
- 26. a) We simply note that under the given definitions of A, X, and B, the definition of matrix multiplication is exactly the system of equations shown.
 - b) The given system is the matrix equation AX = B. If A is invertible with inverse A^{-1} , then we can multiply both sides of this equation by A^{-1} to obtain $A^{-1}AX = A^{-1}B$. The left-hand side simplifies to IX, however, by the definition of inverse, and this is simply X. Thus the given system is equivalent to the system $X = A^{-1}B$, which obviously tells us exactly what X is (and therefore what all the values x_i are).
- 28. We follow the definitions.

a)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

- **30.** We follow the definition and obtain $\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- **32.** a) $\mathbf{A} \vee \mathbf{A} = [a_{ij} \vee a_{ij}] = [a_{ij}] = \mathbf{A}$ b) $\mathbf{A} \wedge \mathbf{A} = [a_{ij} \wedge a_{ij}] = [a_{ij}] = \mathbf{A}$
- 34. a) $(\mathbf{A} \vee \mathbf{B}) \vee \mathbf{C} = [(a_{ij} \vee b_{ij}) \vee c_{ij}] = [a_{ij} \vee (b_{ij} \vee c_{ij})] = \mathbf{A} \vee (\mathbf{B} \vee \mathbf{C})$ b) This is identical to part (a), with \land replacing \lor .
- **36.** Since the i^{th} row of I consists of all 0's except for a 1 in the $(i,i)^{\text{th}}$ position, we have $\mathbf{I} \odot \mathbf{A} = \{(0 \land a_{1j}) \lor a_{1j}\}$ $\cdots \vee (1 \wedge a_{ij}) \vee \cdots \vee (0 \wedge a_{nj}) = [a_{ij}] = \mathbf{A}$. Similarly, since the j^{th} column of I consists of all 0's except for a 1 in the $(j,j)^{\text{th}}$ position, we have $\mathbf{A} \odot \mathbf{I} = [(a_{i1} \wedge 0) \vee \cdots \vee (a_{ij} \wedge 1) \vee \cdots \vee (a_{in} \wedge 0)] = [a_{ij}] = \mathbf{A}$.