Ejercicios Geomtería Diferencial

Hugo Del Castillo Mola

26 de septiembre de 2022

Índice general

1.		acio de Probabilidad	2
	1.1.	Experimentos aleatorios	2
		Espacio Muestral	
		1.2.1. Tipos de Espacios Muestrales	3
	1.3.	Sucesos	3
	1.4.	Sucesiones de Conjuntos	3
		Límites de una sucesión de conjuntos	
		1.5.1. Sucesión de conjuntos convergente	5
		1.5.2. Sucesiones Monótonas	

Capítulo 1

Espacio de Probabilidad

1.1. Experimentos aleatorios

Definición 1.1 (Experimento Determinista). Experimeto cuyo desarrolo es previsible con certidumbre y sus resultados están perfectamente determinados una vez fijadas las condiciones del mismo.

Ejemplo. Averiguar el espacio recorrido por un cuerpo en caída libre en el vacío al cabo de cierto tiempo t, donde se sabe que $x=\frac{1}{2}gt^2$ con g la gravedad de la Tierra.

Definición 1.2 (Experimento Aleatorio). Experimento en contexto de incertidumbre. Se caracterizan porque su desarrolo no ese previsible con certidumbre.

Ejemplo. Lanzar un dado.

1.2. Espacio Muestral

Definición 1.3 (Espacio Muestral). Dado un experimento aleatorio, Ω es el conjunto de todos los posibles resultados del experimento. Decimos que Ω es el espacio muestral del experimento y los elementos de Ω se llaman sucesos elementales.

Ejemplo. Dado el experiemento "Lanzar un dado y obtener un 6", el espacio muestral es $\Omega = \{1, 2, 3, 4, 5, 6\}$. Si consideramos "Lanzar un dado y obtener un número par", el espacio muestral sería $\Omega = \{ par, impar \}$.

1.2.1. Tipos de Espacios Muestrales

Definición 1.4 (Espacio Muestral Finito). Sea Ω un espacio muestral. Entonces, decimos que Ω es finito si tiene un número finito de elementos.

Ejemplo. Lanzar un dado.

Definición 1.5 (Espacio Muestral Infinito Numerable). Sea Ω un espacio muestral. Entonces, decimos que Ω es infinito numerable si tiene un número infinito y numerable de elementos.

Ejemplo. Lanzar una moneda hasta obtener cara por primera vez. Aquí debemos considerar que se puede dar el caso en el que no se obtenga nunca cara y tiremos la moneda infinitas veces.

Definición 1.6 (Espacio Muestra Continuo). Sea Ω un espacio muestral. Entonces, decimos que Ω es continuo si no hay discontinuidades o cambios abrutos entre los elementos del espacio muestral.

Ejemplo. El nivel del agua de un pantano entre los tiempos t_1, t_2 . El espacio muestral $\Omega = \{f_t; t \in [t_1, t_2]\}$.

1.3. Sucesos

Nota. Sea $A \subset \Omega$. Decimos que se ha presentado el suceso $A \subset A$ si el resultado del experiemento ha sido $w \in A$, un suceso elemental contenido en A.

1.4. Sucesiones de Conjuntos

Definición 1.7 (Sucesión de Conjuntos). Sea Ω espacio muestral, $f: \mathbb{N} \to \mathcal{P}(\Omega)$ una aplicación. Decimos que f es una sucesión de conjuntos y la repesentamos $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$.

1.5. Límites de una sucesión de conjuntos

Definición 1.8 (Límite Inferior). Sea Ω espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$ sucesión de conjuntos. Entoces, el límite inferior de $\{A_n\}_{n\in\mathbb{N}}$ es el conjunto de puntos de Ω cuyos elementos pertenecen a todos los A_n excepto a lo

sumo a un número finito de ellso. lím inf A_n .

Definición 1.9 (Límite Superior). Sea Ω espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(\Omega)$ sucesión de conjuntos. Entoces, el límite superior de $\{A_n\}_{n\in\mathbb{N}}$ es el conjunto de puntos de Ω cuyos elementos pertenecen a infinitos A_n . Y se denota $\lim\sup A_n$.

Observación. $A \in \{A_{2n}\}_{n \in \mathbb{N}} \Rightarrow A \in \limsup A_n \text{ pero } A \notin \liminf A_n$

Proposición 1.1. Sea Ω espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$ una sucesión de conjuntos. Entonces,

- (I) lím ínf $A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$,
- (II) $\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$.

Demostración.

(I) (\Rightarrow) Sea $w \in \liminf A_n$. Entonces, $\exists k \in \mathbb{N} : w \in A_n, \forall n \geq k$. Por tanto,

$$w \in \bigcap_{n=k}^{\infty} A_n \Rightarrow w \in \bigcup_{n=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$$

- (\Leftarrow) Sea $w \in \bigcup_{n=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$. Entonces, $\exists k \in \mathbb{N} : w \in \bigcap_{n=k}^{\infty} A_n \Rightarrow w \in A_k \cap A_{k+1} \cap \cdots \Rightarrow w$ pertenece a infinitos A_n salvo a lo sumo a un número finito de ellos.
- (II) (\Rightarrow) Sea $w \in \limsup A_n$. Entonces, $w \in A_n, \forall n \in \mathbb{N}$

$$\Rightarrow w \in \bigcup_{n=k}^{\infty} A_n \Rightarrow w \in \bigcap_{n=1}^{\infty} \bigcup_{n=k}^{\infty} A_n.$$

(\Leftarrow) Sea $w \in \bigcap_{n=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$. Entonces, $w \in \bigcup_{n=1}^{\infty} A_n \Rightarrow w \in A_n$, $\forall n \in \mathbb{N} \Rightarrow w \in \limsup A_n$.

Proposición 1.2. $\forall \{A_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(\Omega)\Rightarrow \liminf A_n\subset \limsup A_n$.

Demostración. Sea $w \in \liminf A_n$. Entonces, $w \in \bigcup_{n=1}^{\infty} \bigcap_{n=k}^{\infty} A_n \Rightarrow \exists k \in \mathbb{N} : w \in \bigcap_{n=k}^{\infty} A_n \Rightarrow w \in A_n, \forall n \geq k \Rightarrow w \in \bigcup_{n=k}^{\infty} A_n \Rightarrow w \in \bigcap_{n=1}^{\infty} \bigcup_{n=k}^{\infty} A_n \Rightarrow w \in \limsup A_n$.

1.5.1. Sucesión de conjuntos convergente

Definición 1.10 (Covergencia). Sea Ω un espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(\Omega)$ una sucesión. Entonces, decimos que $\{A_n\}_{n\in\mathbb{N}}$ es convergente si y solo si $\liminf A_n = \limsup A_n$.

1.5.2. Sucesiones Monótonas

Definición 1.11 (Sucesión Monótona). Sea Ω un espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(\Omega)$ una sucesión. Entonces, decimos que $\{A_n\}_{n\in\mathbb{N}}$ es monótona creciente si y solo si $\forall n\in\mathbb{N}, A_n\subset A_{n+1}$. Y decimos que $\{A_n\}_{n\in\mathbb{N}}$ es monótona decreciente si y solo si $\forall n\in\mathbb{N}, A_{n+1}\subset A_n$.

Notación.

- (I) $\uparrow A_n$ sucesión monótona creciente,
- (II) $\downarrow A_n$ sucesión monótona creciente.

Proposición 1.3. Sea Ω un espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$ una sucesión monónota. Entonces, $\liminf A_n=\limsup A_n$.

Demostración. (I) Sea $\downarrow A_n$. Entonces, $A_{n+1} \subset A_n \Rightarrow$

$$\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n = \bigcap_{k=1}^{\infty} A_k$$

y

$$\liminf A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

Por tanto, $\liminf A_n = \limsup A_n$.

(II)