STATS 3006 Mathematical Statistics III Assignment 4 2018

Assignment 4 is due by 23:59 Tuesday 15th May 2018.

Assignments are to be submitted as a single pdf file online on MyUni.

1. Consider a sequence of independent random variables, X_1, X_2, X_3, \ldots , with $E(X_i) = \mu$ and $var(X_i) = \sigma_i^2$. Let

$$\tilde{X}_n = \sum_{i=1}^n w_{in} X_i$$
 where $w_{in} = \frac{1/\sigma_i^2}{\sum_{i=1}^n 1/\sigma_i^2}$.

- (a) Show for each n that \tilde{X}_n is an unbiased estimator for μ .
- (b) Find $var(\tilde{X}_n)$.
- (c) Show that $\tilde{X}_n \to \mu$ in probability if

$$\sum_{i=1}^{n} 1/\sigma_i^2 \to \infty \text{ as } n \to \infty.$$

(d) Construct a counter example to demonstrate that

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

will not necessarily converge to μ in quadratic mean under the assumption

$$\sum_{i=1}^{n} 1/\sigma_i^2 \to \infty \text{ as } n \to \infty.$$

2. Consider a Poisson random variable $X \sim Po(\mu)$ and let

$$Z = \mu^{-1/2}(X - \mu).$$

Use moment generating functions to show that

$$\mathcal{L}(Z) \to N(0,1)$$
 as $\mu \to \infty$.

Hint: Use the fact that

$$e^{a} = 1 + a + a^{2}/2 + r(a)$$
 where $\lim_{h \to 0} \frac{r(h)}{h^{2}} = 0$.

- 3. Suppose T is an unbiased estimator for the scalar parameter, θ .
 - (a) Show that $E(T^2) \ge \theta^2$.
 - (b) Show that $E(T^2) = \theta^2$ can occur only if $P(T = \theta) = 1$.
 - (c) Suppose $X_1, X_2, ..., X_n$ are IID $N(\mu, \sigma^2)$ and let $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.
 - i. Deduce that the sample standard deviation $S = \sqrt{S^2}$ is a biased estimator for σ .
 - ii. Is the bias positive or negative?
- 4. Suppose X_1, X_2, \ldots, X_n are independent Poisson observations with probability function

$$p(x; \mu) = \frac{\mu^x e^{-\mu}}{x!}$$
 for $x = 0, 1, 2, 3, \dots$

- (a) Find E(X) and var(X).
- (b) Write down the log-likelihood function, the score and the Fisher information.
- (c) Verify that

$$\mathcal{I}(\mu) = E\left(-\frac{\partial^2 \ell}{\partial \mu^2}\right)$$

in this case.

- (d) Prove that \bar{X} is the MVUE for θ .
- 5. Suppose X_1, X_2, \ldots, X_n are IID exponential random variables with common PDF

$$f(x) = e^{-x/\theta} \text{ for } x > 0$$

and let $T = \sum_{i=1}^{n} X_i$. Note that the exponential distribution was defined in lectures by the PDF

$$f(x) = \lambda e^{\lambda x}$$

so, for this question, the parameter is $\theta = 1/\lambda$.

- (a) Prove that T is sufficient for θ .
- (b) Prove that X_1 is an unbiased estimate for θ and find its variance.
- (c) i. Let $Y = X_2 + X_3 + \ldots + X_n$. State the distribution of Y and the joint PDF, $f_{X_1,Y}(x_1,y)$, of (X_1,Y) .
 - ii. State the distribution of T and its PDF.
 - iii. Find the conditional density $f_{X_1|T}(x_1|t)$.

Hint: You may use the fact that, since $T = X_1 + Y$, the joint pdf is

$$f_{X_1,T}(x_1,t) = f_{X_1,Y}(x_1,t-x_1)$$
 for $0 < x_1 < t$.

(d) Use the Rao-Blackwell theorem to obtain an unbiased estimator, T^* , with smaller variance than X_1 .

Honours Questions

The following questions are compulsory for Honours and Masters students and may be attempted for bonus marks by all students.

6. Extend the counter-example from question 1(d) to show that \bar{X}_n need not converge to μ in probability under the assumption

$$\sum_{i=1}^{n} 1/\sigma_i^2 \to \infty \text{ as } n \to \infty.$$

- 7. Justify the hint in question 5c(iii).
- 8. Suppose $X \sim B(n, p)$ and let

$$\theta = \log \frac{p}{1 - p}.$$

Show that no unbiased estimator for θ exists.

* * * * * * *