Applied/Numerical Qualifier Solution: January 2012

Bennett Clayton

Texas A&M University

July 21, 2021

Problem 1. Let $\Omega = (0,1) \times (0,1)$, $f \in C^0(\Omega)$ and $q \in \mathbb{R}$ with $q \geq 0$. Consider the boundary value problem

$$-\Delta u + qu = f \text{ in } \Omega; \tag{1}$$

$$u = 0 \text{ on } \partial\Omega.$$
 (2)

We are interested in approximating the quantity $\alpha \coloneqq \int_{\partial\Omega} \mathbf{n} \cdot \nabla u$ where \mathbf{n} is the outward unit normal of Ω .

a. The boundary problem has a weak formulation: Find $u \in V$ such that $\forall v \in V$

$$a(u,v) = L(v). (3)$$

Identify V, a(u, v) and L(v). Show that there exists a unique solution $u \in V$ satisfying the above weak formulation.

Solution: We multiply equation (1) by some $v \in V$ and integrate over Ω . So we have,

$$\int_{\Omega} -\Delta uv + quv \, dx = \int_{\Omega} \nabla u \cdot \nabla v + quv \, dx - \int_{\partial \Omega} (\mathbf{n} \cdot \nabla u) v \, ds.$$

Since we don't know anything about the normal derivative on the boundary, we require $v|_{\partial\Omega}=0$. Then our space is $V=H^1_0(\Omega)$ with the usual H^1 -norm and

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v + quv \, dx$$
$$L(v) = \int_{\Omega} fv \, dx$$

It is easy to check that a and L are both continuous. To prove coercivity, we invoke a Poincarè inequality: $||u||_{L^2(\Omega)} \le C|u|_{H^1(\Omega)}$, without proof as we have that $u|_{\partial\Omega} \equiv 0$. Coercivity follows,

$$a(u,u) = \int_{\Omega} |\nabla u|^2 + qu^2 dx$$

$$\geq \frac{1}{2} |u|_{H^1(\Omega)}^2 + \frac{1}{2} |u|_{H^1(\Omega)}^2$$

$$\leq \frac{1}{2} \min\{1, \frac{1}{C}\} ||u||_{H^1(\Omega)}^2$$

So by the Lax-Milgram lemma, there exists a unique solution $u \in V$ to our variational equation.

b. Let $\{\mathcal{T}_h\}_{0 < h < 1}$ be a sequence of conforming shape-regular subdivisions of Ω such that $\operatorname{diam}(T) \leq h$, for all $T \in \mathcal{T}_h$ and define

$$V_h := \{ v \in C^0(\Omega) \cap V \mid \forall T \in \mathcal{T}_h, \ v|_T \text{ is linear } \}$$
 (4)

Write the weak formulation satisfied by the finite element approximation $u_h \in V_h$ of u. Prove that the function u_h exists and is unique.

Solution: The weak formulation is, find $u_h \in V_h$ such that $a(u_h, v_h) = L(v_h)$ for all $v_h \in V_h \cap H_0^1(\Omega)$. Since V_h is a subspace of V, Lax-Milgram applies again.

c. Assume from now that $u \in H^2(\Omega)$. Derive the error estimate

$$||u - u_h||_{H^1(\Omega)} \le c_1 h ||u||_{H^2(\Omega)},$$
 (5)

where c_1 is a constant independent of h and u. Hint: you can use without proof the fact that there exists a constant C independent of h such that for any $v \in H^2(\Omega)$

$$\inf_{v_h \in V_h} ||v - v_h||_V \le Ch||v||_{H^2(\Omega)}. \tag{6}$$

Solutions: By Cea's lemma, we have

$$||u - u_h||_{H^1(\Omega)} \le \inf_{v_h \in V_h} ||u - v_h||_{H^1(\Omega)} \le Ch||u||_{H^2(\Omega)}.$$
 (7)

You will need to actually prove Cea's lemma. ■

d. Show that for the constant function w(x) = 1 we have

$$\alpha = a(u, w) - L(w). \tag{8}$$

Now let $\alpha_h := a(u_h, w) - L(w)$. Using the previous parts, show that when q > 0 there holds

$$|\alpha - \alpha_h| \le c_2 h^2 ||u||_{H^2(\Omega)},\tag{9}$$

where c_2 is a constant independent of h and u. What can you say about $|\alpha - \alpha_h|$ when q = 0?

Solution: Note that $w \notin H_0^1(\Omega)$. Additionally, since $u \in H^2(\Omega)$, u will also be a strong solution, i.e., $-\Delta u + qu = f$ in Ω . So to start, consider,

$$a(u,1) - L(1) = \int_{\Omega} \nabla u \cdot \nabla 1 + qu \, dx - \int_{\Omega} f \, dx$$
$$= \int_{\Omega} qu - f \, dx$$
$$= \int_{\Omega} \Delta u \, dx$$
$$= \int_{\partial \Omega} \mathbf{n} \cdot \nabla u \, ds.$$

Note that a straightforward method will not get the correct degree of h, consider,

$$|\alpha - \alpha_h| = |a(u, w) - L(w) - a(u_h, w) + L(w)|$$

$$= |a(u - u_h, w)|$$

$$\leq ||u - u_h||_{H^1(\Omega)} ||w||_{H^1(\Omega)}$$

$$\leq Ch||u||_{H^2(\Omega)}.$$

So we need to look closer at the expressions of α and α_h . So consider,

$$\begin{aligned} |\alpha - \alpha_h| &= \Big| \int_{\partial \Omega} \mathbf{n} \cdot \nabla u \, ds - \int_{\Omega} \nabla u_h \cdot \nabla 1 + q u_h \, dx + \int_{\Omega} f \, dx \Big| \\ &= \Big| \int_{\Omega} \Delta u \, dx - \int_{\Omega} q u_h \, dx + \int_{\Omega} f \, dx \Big| \\ &= \Big| \int_{\Omega} q u \, dx - \int_{\Omega} q u_h \, dx \Big| \\ &\leq q \int_{\Omega} |u - u_h| \, dx \\ &\leq q ||u - u_h||_{L^2(\Omega)}. \end{aligned}$$

Now we need to prove an L^2 error estimate which we will do so using the Aubin-Nitsche trick. Consider the dual problem, find $z \in H_0^1(\Omega)$ such that

$$a(v,z) = (u - u_h, v),$$

for all $v \in H_0^1(\Omega)$. We assume full regularity, that is, $||u||_{H^2(\Omega)} \leq C||f||_{L^2(\Omega)}$. So in our dual problem, we have $||z||_{H^2(\Omega)} \leq C||u-u_h||_{L^2(\Omega)}$. Now, in our dual problem, take $v = u - u_h$ and apply Galerkin orthogonality to write,

$$||u-u_h||_{L^2(\Omega)}^2 = (u-u_h, u-u_h) = a(u-u_h, z) = a(u-u_h, z-v_h)$$

for all $v_h \in V_h$. So in particular, we can take $v_h := \Pi_h z$ (the projection of z onto the space V_h). Then applying the continuity of a the result from part c. and the regularity assumption, we have,

$$||u - u_h||_{L^2(\Omega)}^2 \le ||u - u_h||_{H^1(\Omega)} ||z - \Pi_h z||_{H^1(\Omega)}$$

$$\le Ch||u||_{H^2(\Omega)} \cdot h||z||_{H^2(\Omega)}$$

$$\le Ch^2 ||u||_{H^2(\Omega)} ||u - u_h||_{L^2(\Omega)},$$

where we have used the inequality, $||z - \Pi_h z||_{H^1(\Omega)} \le Ch||z||_{H^2(\Omega)}$. You might want to prove this projection inequality just to be on the safe side. But I don't want to repeat this proof which I've done in the other exams. Dividing both sides by $||u - u_h||_{L^2(\Omega)}$, and combining all of our results, we have,

$$||u - u_h||_{L^2(\Omega)} \le Ch^2 ||u||_{H^2(\Omega)}.$$

Hence

$$|\alpha - \alpha_h| \le Ch^2 ||u||_{H^2(\Omega)}.$$

Now if q = 0, then our bilinear form becomes, $a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx$. Computing $|\alpha - \alpha_h|$, we have.

$$|\alpha - \alpha_h| = |a(u, 1) - L(1) - a(u_h, 1) + L(1)| = 0,$$

since $\nabla 1 = 0$. Thus $\alpha = \alpha_h$ for q = 0.

Problem 2. Let K be a polyhedron in \mathbb{R}^d , $d \ge 1$. Let $h = \operatorname{diam}(K)$ and define

$$\hat{K} = {\hat{\mathbf{x}} = \mathbf{x}/\text{diam}(K), \mathbf{x} \in K}. \tag{10}$$

Show that there exists a constant c solely depending on \hat{K} such that for any $v \in H^1(K)$,

$$||v||_{L^{2}(\partial K)} \le c \left(h^{-1/2} ||v||_{L^{2}(K)} + h^{1/2} ||\nabla v||_{L^{2}(K)} \right). \tag{11}$$

Proof: We start by defining the map $T_K: \widehat{K} \to K$ defined by $\mathbf{x} = T_K(\hat{\mathbf{x}}) = h\hat{\mathbf{x}}$. Let $T_{e_K}: \hat{e} \to e_K$, with \hat{e} and e_K being d-1 dimensional face of the elements \widehat{K} and K, respectively. Specifically, T_{e_K} is defined by $T_K|_{\hat{e}}$. Let $\widehat{\mathcal{F}}$ and \mathcal{F}_K denotes the faces of \widehat{K} and K, respectively.

Then we separate the boundary of K into its d-1 dimensional sides, and perform a change of variable,

$$||v||_{L^{2}(\partial K)}^{2} = \int_{\partial K} |v(s)|^{2} ds$$

$$= \sum_{e \in \mathcal{F}_{K}} \int_{e} |v(s)|^{2} ds$$

$$= \sum_{\hat{e} \in \widehat{\mathcal{F}}} \int_{\hat{e}} |(v \circ T_{e_{K}})(\hat{s})|^{2} \frac{|e|}{|\hat{e}|} d\hat{s}.$$

Note that $|K| \leq Ch^d$ and $|e| \leq Ch^{d-1}$. Hence $|\partial K| = \sum_{e \in \mathcal{F}_K} |e| \leq Ch^{d-1}$. Now let $\hat{v} := v \circ T_K$, and since $v \in H^1(K)$, we can apply the trace inequality, $(||v||_{L^2(\partial \widehat{K})} \leq C||v||_{H^1(\widehat{K})})$, therefore,

$$\begin{split} ||v||^2_{L^2(\partial K)} & \leq C h^{d-1} \sum_{\hat{e} \in \widehat{\mathcal{F}}} ||\hat{v}||^2_{L^2(\hat{e})} \\ & = C h^{d-1} ||\hat{v}||^2_{L^2(\partial \widehat{K})} \\ & \leq C h^{d-1} ||\hat{v}||^2_{H^1(\widehat{K})} \\ & = C h^{d-1} \left(\int_{\widehat{K}} |\hat{v}|^2 d\hat{\boldsymbol{x}} + \int_{\widehat{K}} |\widehat{\nabla} \hat{v}|^2 d\hat{\boldsymbol{x}} \right) \\ & \leq C h^{d-1} \frac{|\widehat{K}|}{|K|} \Big(\int_{K} |v|^2 d\boldsymbol{x} + \int_{K} h^2 |\nabla v|^2 d\boldsymbol{x} \Big) \\ & \leq C h^{-1} \Big(\int_{K} |v|^2 d\boldsymbol{x} + \int_{K} h^2 |\nabla v|^2 d\boldsymbol{x} \Big) \\ & = C (h^{-1} ||v||^2_{L^2(K)} + h|v|^2_{H^1(K)}). \end{split}$$

Note the change of variables for the gradient uses the fact that $\frac{\partial}{\partial \hat{x}_i} = \frac{\partial x_i}{\partial \hat{x}_i} \frac{\partial}{\partial x_i} = ch \frac{\partial}{\partial x_i}$ for $i = 1, \dots, d$ and some constant c. Taking the square root of both sides, and using the inequality, $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$, we have the final result. Note that we have simply used C to represent every constant rather than keeping track of each unique constant.

Problem 3: Let $u_0:(0,1)\to\mathbb{R}$ be a given smooth initial condition and T>0 be a given final time. Let $u:[0,T]\times\Omega\to\mathbb{R}$ be a smooth function satisfying u(t,0)=u(t,1)=0 for any $t\in[0,T]$ and $\forall v\in C_c^\infty([0,T)\times(0,1))$:

$$-\int_{0}^{T} \int_{0}^{1} u(t,x)v_{t}(t,x) dxdt - \int_{0}^{1} u_{0}(x)v(0,x) dx + \int_{0}^{T} \int_{0}^{1} u_{x}(t,x)v_{x}(t,x) dxdt + \int_{0}^{T} \int_{0}^{1} u(t,x)v(t,x) dxdt = 0$$
(12)

Here $C_c^{\infty}([0,T)\times(0,1))$ is the space of functions belonging to $C^{\infty}([0,T]\times[0,1])$ and compactly supported in $[0,T)\times(0,1)$.

a. Derive the corresponding strong formulation.

Solution: We integrate the two integrals in (12) which contain derivatives in them, by parts. This gives us

$$\int_0^T \int_0^1 (u_t(t,x) - u_{xx}(t,x) + u(t,x))v(t,x) dx dt = 0.$$

By the fundamental theorem of variational calculus, our strong formulation becomes,

$$\begin{cases}
 u_t - u_{xx} + u = 0, & \text{for } (t, x) \in (0, T] \times (0, 1) \\
 u(0, x) = u_0(x) \\
 u(t, 0) = u(t, 1) = 0.
\end{cases}$$
(13)

b. Let N > 0 be an integer, h = 1/N and $x_n = nh$, n = 0, ..., N. Derive the semi-discrete approximation of (12) using continuous piecewise linear finite elements.

Solution: Define our discrete space by,

$$V_h := \{v_h \in C^0(0,1) : v_h|_{[x_{i-1},x_i]} \in \mathbb{P}_1, i = 1,2,\ldots,N, v_h(0) = v_h(1) = 0\},\$$

and equip it with the H^1 -norm. Note that $V_h = \operatorname{span}\{\varphi_i\}_{i=1}^N$, where φ_i are the usual Lagrange shape functions. Define,

$$a(u,v) := \int_0^T \int_0^1 u_x(t,x)v_x(t,x) + u(t,x)v(t,x) dx dt$$

and if we integrate the first integral in (12), we can formulate problem in a nicer way. Thus (12) becomes, $((u_h)_t, v_h) + a(u_h, v_h) = 0$.

Now for t > 0, we can write our semi-discrete solution as

$$u_h(t) = \sum_{i=1}^{N} U_i(t)\varphi_i(x), \tag{14}$$

where the $U_i(t)$ are the unknown time dependent coefficients. Thus our semi-discrete problem becomes: for t > 0, find $u_h(t) \in V_h$ such that

$$((u_h)_t, v_h) + a(u_h, v_h) = 0 (15)$$

for all $v_h \in V_h$.

find $u_h \in L^2(0,T;V_h)$ such that

$$((u_h)_t, v_h) + a(u_h, v_h) = 0 (16)$$

for all $v_h \in L^2(0,T;V_h)$.

Note quite sure how to formulate the problem statement.

c. In addition, let M > 0 be an integer, $\tau = T/M$ and $t_m = m\tau$ for m = 0, ..., M. Write the fully discrete schemes corresponding to backward Euler and forward Euler methods, respectively.

Solution: We define $u_h^m := u_h(t_m, x)$ where $u_h(t, x)$ is the semi-discrete representation of as in part b. So for the backward Euler, we have

$$\begin{cases} & \text{Find } u_h^{m+1} \in V_h \text{ such that} \\ & \left(\frac{u_h^{m+1} - u_h^m}{\tau}, v_h\right) + a(u_h^{m+1}, v_h) = 0 \quad \forall v_h \in V_h \\ & \text{where } u_h^0 = u_{h,0} \end{cases}$$

The forward Euler, is defined similarly,

$$\begin{cases} & \text{Find } u^{m+1} \in V_h \text{ such that} \\ & \left(\frac{u_h^{m+1} - u_h^m}{\tau}, v_h\right) + a(u_h^m, v_h) = 0 \quad \forall v_h \in V_h \\ & \text{where } u_h^0 = u_{h,0} \end{cases}$$

d. Prove that the backward (implicit) Euler scheme is unconditionally stable while the forward (explicit) Euler method is stable provided $\tau \leq ch^2$, where c is a constant independent of h and τ .

Solution: To show unconditional stability of the backward Euler scheme, we test the scheme with $v_h = u_h^{m+1} - u_h^m$. So consider,

$$\left(\frac{u_h^{m+1} - u_h^m}{\tau}, u_h^{m+1} - u_h^m\right) + a(u_h^{m+1}, u_h^{m+1} - u_h^m) = 0$$

$$\|u_h^{m+1} - u_h^m\|_{L^2}^2 + \tau a(u_h^{m+1}, u_h^{m+1} - u_h^m) = 0$$

Then, since $||u_h^{m+1} - u_h^m||_{L^2}^2 \ge 0$, we can drop that term and we are thus left with

$$\tau a(u_h^{m+1}, u_h^{m+1} - u_h^m) \le 0 \quad \Leftrightarrow \quad a(u_h^{m+1}, u_h^{m+1}) \le a(u_h^{m+1}, u_h^m)$$

Using continuity of $a(\cdot,\cdot)$ and the definition of $a(\cdot,\cdot)$ we have the following

$$||u_h^{m+1}||_{H^1}^2 \le ||u_h^{m+1}||_{H^1} ||u_h^m||_{H^1}$$

Therefore we can conclude that $||u_h^{m+1}||_{H^1} \le ||u_h^m||_{H^1} \le \cdots \le ||u_{0,h}||_{H^1}$. I.e. the backward Euler is unconditionally stable.

For the forward Euler, we will test with $v_h = u_h^{m+1}$, so we have,

$$\left(\frac{u_h^{m+1} - u_n^m}{\tau}, u_h^{m+1}\right) + a(u_h^m, u_h^{m+1}) = 0.$$

Rearranging this, we then apply Cauchy-Schwarz and the inverse inequality to get,

$$\begin{split} \|u_h^{m+1}\|_{L^2(0,1)}^2 &= (u_h^m, u_h^{m+1}) - \tau a(u_h^m, u_h^{m+1}) \\ &= (1-\tau)(u_h^m, u_h^{m+1}) - \tau ((u_h^m)_x, (u_h^{m+1})_x) \\ &\leq |1-\tau| \|u_h^m\|_{L^2(0,1)} \|u_h^{m+1}\|_{L^2(0,1)} + \tau |u_h^m|_{H^1(0,1)} |u_h^{m+1}|_{H^1(0,1)} \\ &\leq |1-\tau| \|u_h^m\|_{L^2(0,1)} \|u_h^{m+1}\|_{L^2(0,1)} + \frac{C}{h^2} \tau \|u_h^m\|_{L^2(0,1)} \|u_h^{m+1}\|_{L^2(0,1)}. \end{split}$$

Thus we have,

$$||u_h^{m+1}||_{L^2(0,1)} \le (|1-\tau| + \frac{C}{h^2}\tau)||u_h^m||_{L^2(0,1)}.$$

Therefore, we will have stability if $|1 - \tau| + C\tau/h^2 \le 1$, hence if $0 \le |1 - \tau| \le 1 - C\tau/h^2$. Which confirms the CFL condition that,

$$\tau < Ch^2$$
.