Report: Analysis of Text Columns for ML Project

Introduction

This report comprehensively analyses the selected text columns in a dataset, focusing on their importance, variance, and correlation with the target variable (`review_scores_rating`). The goal is to identify the most predictive features and how they contribute to the model. The selected columns are:

- `house_rules`
- `host_about`
- `host_response_time`
- `neighbourhood_cleansed`
- `property_type`
- `room_type`
- `cancellation_policy`

The analysis uses importance scores, TF-IDF variance, word clouds, and correlation metrics to evaluate the relevance and predictive power of these features.

1. Importance Scores

Key Findings:

The importance scores indicate the relative significance of each feature in predicting the target variable. Below are the key observations:

- `cancellation_policy' has the highest importance score (0.09209), making it the most influential feature.
- `room_type` follows closely with an importance score of 0.07663, highlighting its substantial impact.
- `host_response_time` ranks third with an importance score of **0.0312**, indicating moderate significance.
- Other features like `property_type`, `neighbourhood_cleansed`, and `house_rules` have moderate importance scores ranging from 0.01111 to 0.01766.
- Features such as `host_about` have lower importance scores (0.01007).

Insights:

- The high importance of **`cancellation_policy**` suggests that guests' preferences regarding cancellation policies significantly influence the target variable.
- `room_type` and `host_response_time` further emphasize the importance of guest experience factors, such as room category and host responsiveness.

Neighbourhood-related features (**`neighbourhood_cleansed**`) indicate that location plays a role but is less critical than other factors.

Visualization: Top Text Columns by Importance Score

2. Word Cloud Analysis

Key Findings:

Word clouds provide qualitative insights into the content of each feature. Below are the key observations for each feature:

- `house_rules`: Common terms include "quiet hour," "smoking allowed," and "guest must," indicating rules related to noise, smoking, and guest behaviour.
- `host_about`: Terms like "San Diego," "within day," and "vacation rental" suggest hosts often describe their location, availability, and rental type.
- `host_response_time`: Words such as "hour within" and "day within" highlight typical response times.
- `neighbourhood_cleansed`: Location-specific terms like "Pacific Beach," "East Village," and "Mission Pay" dominate, emphasizing neighbourhood names.
- `property_type`: Words like "condominium," "house," and "apartment" reflect common property types.
- `room_type`: Terms such as "entire home/apt," "private room," and "shared room" indicate room categories.
- 'cancellation_policy`: Phrases like "strict14withgraceperiod" and "flexible" reveal specific policy types.

Insights:

- Word clouds confirm the thematic focus of each feature, providing context for the data (e.g., rules, host descriptions, locations, property types, etc.).

Visualization: Word Clouds

Word Cloud: house rules

Word Cloud: host_abandor

inhomed: neighbourhood_cle/

ansetcloud: property type

d Cloud: host_resp**Moed**t@ day within

Neord Cloud: cancellation policy

Word Cloud: room_typeord

www.room_private
homeapt private
entire homeapt
homeapt entire
private room
room entire

3. TF-IDF Variance per Feature

Key Findings:

TF-IDF variance measures the diversity and informativeness of each feature. Below are the key observations:

- `cancellation_policy` exhibits the highest variance across feature indices, indicating diverse and informative content
- `room_type` shows consistent variance, reflecting structured and meaningful data.
- `host_response_time` demonstrates moderate variance, suggesting variability in host response times.
- Features like `house_rules` and `host_about` show lower variance, implying more uniform or less discriminative content.

Insights:

- High variance in `cancellation_policy` and `room_type` suggests these features contain rich information that can differentiate between instances effectively.
- Lower variance in `house_rules` and `host_about` indicates these features may not contribute as much to distinguishing between different listings.

Visualization: TF-IDF Variance per Feature

4. Correlation with Target Variable (`review_scores_rating`)

Key Findings:

Correlation analysis measures the strength and direction of the relationship between each feature and the target variable. Below are the key observations:

- `cancellation_policy` shows the strongest positive correlation with `review_scores_rating`, peaking at approximately **0.12**.
- 'host response time' also exhibits a strong positive correlation, reaching around 0.10.
- `room_type` displays moderate correlation, with peaks around 0.07.
- Features like `neighbourhood_cleansed` and `property_type` show fluctuating correlations, indicating mixed impacts.
- `house_rules` and `host_about` generally exhibit weaker correlations, suggesting limited direct influence on review scores.

Insights:

- The strong correlation of `cancellation_policy` and `host_response_time` with `review_scores_rating` reinforces their significance in predicting guest satisfaction.
- `room_type` contributes moderately, highlighting the importance of room categories in shaping reviews.
- Neighbourhood-related features have varying impacts, suggesting location-specific nuances in guest experiences.

Visualization: Correlation with Target Variable

5. Summary and Recommendations

Summary:

- Most Important Features: `cancellation_policy`, `room_type`, and `host_response_time` are the most critical predictors based on importance scores, variance, and correlation.
- Moderate Impact: `property_type` and `neighbourhood_cleansed` contribute moderately to the model.
- Least Impactful: `house_rules` and `host_about` have lower importance and weaker correlations, suggesting they may be less influential.

Conclusion

The analysis reveals that guest-centric features such as `cancellation_policy`, `room_type`, and `host_response_time` are the most influential in predicting `review_scores_rating`. Location-based features play a secondary role, while descriptive features like `house_rules` and `host_about` require further refinement. By focusing on the most impactful features and leveraging their unique characteristics, the predictive model can achieve higher accuracy and better interpretability.