PROBABILITÉS ET STATISTIQUES

DUREE : 6 Heures

DÉFINITIONS, NOTATIONS, RAPPELS

1º On note 1A la fonction indicatrice d'une partie A d'un ensemble X.

2º L'ensemble des entiers naturels est désigné par \mathbb{N} . La tribu \mathcal{B}_{∞} est la plus petite tribu sur $\mathbb{R}^{\mathbb{N}}$ qui pour tout n rend mesurable la projection canonique de $\mathbb{R}^{\mathbb{N}}$ sur $\mathbb{R}^{\{0, 1, \dots, n\}}$.

3° On note Γ la fonction de $R^{+*} \to \mathbb{R}$ définie par :

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

et pour $a>0,\ b>0$ on appelle loi β $(a,\ b)$ la probabilité de densité

$$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} 1_{10,11}(t)$$

 4° Si $(\mathcal{F}_n)_{n\in\mathbb{N}}$ est une suite croissante de tribus, on note \mathcal{F}_{∞} la plus petite tribu contenant l'anneau $\bigcup_{n\in\mathbb{N}} \mathcal{F}_n$.

5° On convient de poser inf $\emptyset = + \infty$; on notera par ailleurs \underline{x} la suite $(x_n)_{n \in \mathbb{N}}$.

 6° Toutes les variables aléatoires (en abrégé v.a.) introduites dans ce problème sont supposées définies sur un même espace de probabilité (Ω, \mathcal{F}, P) . Une v.a. à valeurs dans \mathbb{R} est appelée v.a. réelle. Le symbole E (X) désigne, quand elle existe, l'espérance mathématique de la v.a. réelle X; σ^2 (X) désigne la variance de X. « Presque sûrement » est noté en abrégé p.s.

 7° Si U est une v.a. réelle intégrable et V une v.a. à valeurs dans \mathbb{R}^n on note E (U | V) la (classe de) v.a. réelles caractérisée par l'égalité

$$E(E(U \mid V) h(V)) = E(U h(V))$$

où h parcourt l'ensemble des fonctions boréliennes bornées de \mathbb{R}^n dans \mathbb{R} .

8° On note \underline{X} la suite de v.a. réelles $(X_n)_{n\in\mathbb{N}}$. On appelle loi de \underline{X} la probabilité sur $(\mathbb{R}^{\mathbb{N}}, \mathcal{B}_{\infty})$ image de P par \underline{X} ; elle est caractérisée par la suite des lois des v.a. (X_0, X_1, \ldots, X_n) , à valeurs dans \mathbb{R}^{n+1} , pour n parcourant \mathbb{N} .

9° Processus d'urne : Soit x_0 un réel $(0 \leqslant x_0 \leqslant 1)$, m un entier positif ou nul, f une fonction de [0, 1] dans [0, 1]. On appelle processus d'urne, associé à f, de composition initiale (x_0, m) une suite X pouvant être définie par les équations de récurrence :

$$\begin{cases} X_{0} = x_{0} \\ (m + k + 1) X_{k+1} = (m + k) X_{k} + 1_{A_{k+1}}, & k \in \mathbb{N} \end{cases}$$

et où la suite d'événements $(A_k)_{k \in \mathbb{N}^*}$ satisfait pour tout $k \in \mathbb{N}$, à :

$$E(1_{A_{k+1}} | X_0, X_1, ..., X_k) = f(X_k)$$
 p.s.

On se propose d'en étudier les propriétés asymptotiques.

10° Pour B élément de \mathfrak{G}_{∞} et \underline{X} processus d'urne de composition initiale (x_0, m) , associé à la fonction fon notera:

 $Q_{x_0, m}^f(B) = P(\underline{X} \in B)$

et, lorsqu'une seule fonction f est considérée, on abrégera

$$Q_{x_0, m}^f$$
 en $Q_{x_0, m}$.

11° On admettra que pour un processus d'urne \underline{X} de composition initiale (x_0, m) associé à une fonction f, on a pour toute fonction borélienne bornée h de $\mathbb{R}^{\mathbb{N}}$ dans \mathbb{R}

$$E(h(X_{n+1}, X_{n+2}, ..., X_{n+k}, ...) | X_1, ... X_n)$$

$$= E(h(X_{n+1}, X_{n+2}, ..., X_{n+k}, ...) | X_n) p.s.$$

$$= \int_{\mathbb{R}^{\mathbb{N}}} h(\underline{x}) dQ_{X_n, n+m}^f(\underline{x}) p.s.$$

12° On posera $S_n = \sum_{i=1}^n 1_{A_i}$.

PRÉLIMINAIRES

1º Soit U une v.a. de loi β (a, b). Calculer:

a. Pour
$$0 \le k \le n$$
 $\mathbb{E} \left(\mathbb{U}^k \left(1 - \mathbb{U} \right)^{n-k} \right)$

$$E(U^{k}(1-U)^{n-k})$$

b. La variance σ² (U).

2º Soit X un processus d'urne associé à la fonction f et h une fonction borélienne de R dans R. Montrer que, si elle existe,

$$E(h(X_{n+1}) | X_n) = f(X_n) h\left(\frac{(m+n)X_n+1}{m+n+1}\right) + (1-f(X_n)) h\left(\frac{(m+n)X_n}{m+n+1}\right)$$
 p.s.

 3° Montrer que si \underline{X} est un processus d'urne associé à la fonction f, la suite \underline{Y} définie par :

$$Y_n = 1 - X_n$$

est un processus d'urne associé à une fonction qu'on précisera.

4º Montrer qu'on a pour tout X processus d'urne

a.
$$\lim_{n\to\infty} \left(X_n - \frac{S_n}{n} \right) = 0, \quad \text{et si} \quad m = 0, X_n = \frac{S_n}{n}$$

b.
$$|X_{n+1} - X_n| \le \frac{1}{n+1}$$
.

I. URNE DE BERNOULLI ET APPLICATIONS

Soit X un processus d'urne de composition initiale $(x_0, 0)$ et associé à

$$t \longleftrightarrow f(t) = p \qquad (0$$

1º Quelle est la loi de Sn?

2º Étudier :

a.
$$\lim_{n\to\infty} X_n$$

b. pour
$$t \neq p$$
 $\lim_{n \to \infty} \sum_{k < tn} C_n^k p^k (1-p)^{n-k}$.

3° Soit U une v.a. comprise entre 0 et 1, de fonction de répartition F continue. Étudier :

$$\lim_{n\to\infty}\sum_{k< tn}C_n^k \to (U^k(1-U)^{n-k}).$$

II. MARTINGALES ET SOUS-MARTINGALES

Une suite $\underline{\mathbf{M}}$ de v.a. réelles intégrables est une martingale (resp. sous-martingale) s'il existe une suite croissante de sous-tribus $(\mathcal{F}_n)_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}$

.
$$M_n$$
 est \mathcal{F}_n mesurable
.. $E(M_{n+1} \mid \mathcal{F}_n) = M_n$ p.s.
 $(\text{resp} \ge)$

Si de plus $E(M_n^2) < +\infty$ pour tout entier n, M est dite de carré intégrable.

1° Soit \underline{M} une martingale (resp. une sous-martingale); comparer $E(M_n)$ et $E(M_{n+1})$.

2º Montrer que si M est une martingale de carré intégrable, M² est une sous-martingale et que

$$E[(M_{n+1} - M_n)^2] = E(M_{n+1}^2) - E(M_n^2)$$

3° Soit M une sous-martingale positive de carré intégrable.

- a. Montrer que la suite M² est une sous-martingale.
- b. Montrer en considérant la suite M' définie par

$$M'_{n} = \sum_{j=0}^{n} M_{j} - \sum_{j=0}^{n-1} E(M_{j+1} | \mathcal{F}_{j})$$

que M est la somme d'une martingale de carré intégrable et d'une suite croissante.

c. Montrer que pour tout $n \in \mathbb{N}$, on a :

$$E(M_{n+1}^{\prime 2}) - E(M_n^{\prime 2}) \leq E(M_{n+1}^2) - E(M_n^2)$$

4° Soit M une sous-martingale positive et x un nombre strictement positif.

On pose
$$K = \inf \{ n \in \mathbb{N} : M_n > x \}$$

Montrer que pour tout $n \in \mathbb{N}$:

a.
$$E(M_n) \ge E\left(\sum_{k=0}^n M_k 1_{\{K=k\}}\right)$$
b.
$$P(Max(M_0, M_1, \ldots, M_n) > x) \le \frac{E(M_n)}{x}$$

5° Soit $\varepsilon > 0$ et \underline{M} une martingale de carré intégrable. Montrer que pour tous n et k entiers positifs :

$$P\left(\underset{j=1,2,\ldots,k}{\operatorname{Max}}\mid M_{n+j}-M_{n}\mid >\varepsilon\right) \leqslant \frac{\operatorname{E}\left(M_{n+k}^{2}\right)-\operatorname{E}\left(M_{n}^{2}\right)}{\varepsilon^{2}}$$

6° En déduire que si \underline{M} est une martingale pour laquelle la suite $(E(M_n^2))_{n\in\mathbb{N}}$ est bornée, \underline{M} est une suite presque sûrement convergente.

7° Déduire de 3° et 6° qu'une sous-martingale positive $\underline{\mathbf{M}}$ converge presque sûrement vers une v.a. réelle si la suite $(\mathbf{E}(\mathbf{M}_n^2))_{n\in\mathbb{N}}$ est bornée.

8° Soit U une v.a. réelle bornée et (Fn) une suite croissante de sous-tribus.

a. Calculer : A May . (1)

$$\mathrm{E}\left(\lim_{k\to\infty}\;\mathrm{E}\left(\mathrm{U}\mid\mathcal{F}_{k}\right)/\mathcal{F}_{n}\right)$$

b. Soit Z une v.a. réelle de carré intégrable, \mathcal{F}_n - mesurable.

En déduire la valeur de :

$$E[Z(E(U \mid \mathscr{F}_{\infty}) - \lim_{k \to \infty} E(U \mid \mathscr{F}_{k}))]$$

c. Montrer que :

$$E(U \mid \mathcal{F}_{\infty}) = \lim_{k \to \infty} E(U \mid \mathcal{F}_{k})$$
 p.s.

III. DEUX APPLICATIONS AUX PROCESSUS D'URNE

(On n'oubliera pas Préliminaires 4)

1° On considère l'élément $E_{a,b}$ de \mathcal{B}_{∞}

$$E_{a,b} = \left\{ \begin{array}{l} \underline{x} \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to \infty} \inf x_n < a < b < \limsup_{n \to \infty} x_n \end{array} \right\}.$$

Soit X un processus d'urne de composition initiale (x_0, m) , associé à la fonction f.

a. Montrer que :

$$\lim_{n\to\infty} \mathbb{E}\left(1_{\mathbb{E}_{a,b}} \circ \underline{X} \mid X_n\right) = 1_{\mathbb{E}_{a,b}} \circ \underline{X} \qquad \text{p.s.}$$

b. On suppose que $Q_{x_0, m}^f(E_{a, b}) > 0$. Montrer que pour tout $\varepsilon > 0$, pour tous c et d tels que a < c < d < b, il existe, pour une infinité d'entiers n, des compositions initiales (y_n, n) , avec $c < y_n < d$, et telles que

$$Q_{y_n,n}^f(\mathbf{E}_{a,b}) > 1 - \varepsilon.$$

2° Soit f une fonction de [0, 1] dans [0, 1], telle que, pour un po de [0, 1], f vérifie

$$(f(t)-t)(t-p_0)\geqslant 0,$$
 quel que soit $t\in [0,1].$

- a. Montrer que si \underline{X} est un processus d'urne associé à f, la suite $(|X_n p_0|)_{n \in \mathbb{N}}$ est une sousmartingale.
- b. Montrer que X converge presque sûrement.

IV. PROCESSUS DE POLYA

On étudie ici un processus X, de composition initiale (x_0, m) , avec m > 0, associé à la fonction $f: t \longrightarrow f(t) = t$ (processus de Polya).

1° Montrer que pour $0 \le k \le n$:

$$P(S_n = k) = C_n^k \frac{\prod_{j=0}^{k-1} (mx_0 + j) \prod_{j=0}^{n-k-1} (m(1 - x_0) + j)}{\prod_{j=0}^{n-1} (m + j)}$$

et écrire une expression de

$$P(S_n < nt).$$

2º Montrer, à l'aide des préliminaires, de I, et de II ou (III + II), que \underline{X} converge presque sûrement vers une v.a. X de loi β (mx_0 , $m(1-x_0)$).

 3° Montrer que pour tout $\epsilon > 0$

$$P\left(\sup_{n\in\mathbb{N}}\mid X_{n}-x_{o}\mid >\varepsilon\right) \leqslant \frac{\sigma^{2}\left(X\right)}{\varepsilon^{2}}.$$

4° On donne quatre réels a, b, c et d vérifiant a < c < d < b, $0 \le c < d \le 1$ et on pose pour $\underline{x} \in \mathbb{R}^{\mathbb{N}}$: $\tau(x) = \inf \{ n \in \mathbb{N} : x_n \notin [a, b] \}.$

a. Montrer que :

$$\lim_{m \to \infty} \sup_{c \le y \le d} Q_{y,m} \left\{ \underline{x} : \tau(\underline{x}) < \infty \right\} = 0.$$

b. Soit \underline{X}' un processus d'urne associé à une fonction g telle que g(t) = t si $a \le t \le b$ et \underline{X} un processus de Polya. Montrer que si \underline{X} et \underline{X}' ont même composition initiale (y, m) et si c < y < d, les v.a. $\tau(X)$ et $\tau(X')$ ont même loi.

V. THÉORÈMES DE CONVERGENCE

1° Soit m un entier positif ou nul, y un réel compris entre 0 et 1, h_1 et h_2 deux fonctions définies sur [0, 1] et vérifiant, pour tout t dans [0, 1], $0 \le h_1(t) \le h_2(t) \le 1$. Soit $(U_n)_{n \in \mathbb{N}}$ une suite indépendante de v.a. uniformes sur [0, 1]. On définit deux processus V et W, par les relations de récurrence :

$$\begin{cases} V_{0} = W_{0} = y \\ (m+n+1) V_{n+1} = (m+n) V_{n} + 1_{\{U_{n+1} \le h_{1}(V_{n})\}} \\ (m+n+1) W_{n+1} = (m+n) W_{n} + 1_{\{U_{n+1} \le h_{2}(W_{n})\}} \end{cases}$$

$$n \in \mathbb{N}$$

Montrer que les processus \underline{V} et \underline{W} sont deux processus d'urnes de compositions initiales (y, m) associés respectivement à h_1 et h_2 et satisfont à :

$$V_n \leq W_n$$
 quel que soit $n \in \mathbb{N}$

2° Soit f une fonction de [0, 1] dans [0, 1] telle que pour tout intervalle non vide $]\alpha$, $\beta[$ inclus dans [0, 1], il existe un intervalle [a, b], (avec $\alpha < a < b < \beta$) sur lequel f(t) - t ne change pas de signe. \underline{X} désigne un processus d'urne associé à f, de composition initiale (x_0, m) . On définit $E_{a, b}$ comme en III.1°, et τ comme en IV.4°; on pose :

$$g(t) = f(t) \qquad \text{si} \qquad t \notin [a, b]$$

$$= t \qquad \text{si} \qquad t \in [a, b].$$

a. Soit $\epsilon > 0$. Montrer que si $Q_{x_0, m}^f(E_{\alpha, \beta}) > 0$ il existe pour a < c < d < b, pour une infinité d'entiers n, des compositions initiales (y_n, n) satisfaisant à $c < y_n < d$ et à

$$Q_{y_n,n}^g\left(\underline{x}\in\mathbb{R}^{\mathbb{N}}:\tau\left(\underline{x}\right)<+\infty\right)\geqslant Q_{y_n,n}^f\left(\mathbf{E}_{a,b}\right)>1-\varepsilon.$$

b. Montrer que pour tous $\alpha < \beta$, $Q_{x_0, m}^f(E_{\alpha, \beta}) = 0$ et en déduire que tout processus d'urne \underline{X} associé à f, de composition initiale (x_0, m) converge presque sûrement.

3° On suppose dans ce 3° que f est une fonction continue de [0, 1] dans [0, 1] et \underline{X} un processus d'urne de composition initiale (x_0, m) associé à f.

a. Montrer que la suite X converge presque sûrement.

On pose pour $\varepsilon > 0$ et pour \underline{x} suite de $[0, 1]^{\mathbb{N}}$:

$$A_{\varepsilon} = \{ t \in [0, 1] : f(t) > t + \varepsilon \}$$

$$T(\underline{x}) = \inf \{ n \ge 0 : x_n \notin A_{\varepsilon} \}$$

$$T_k(\underline{x}) = \min (T(\underline{x}), k) \qquad k \in \mathbb{N}^*.$$

b. Montrer que si $x_0 \in A_{\epsilon}$, pour tout $j \in N^*$:

$$\mathbb{E}\left(\left(X_{j}-X_{j-1}\right) 1_{\left\{j \leqslant T_{k}(\underline{X})\right\}}/X_{0}, X_{1}, \ldots, X_{j-1}\right) \geqslant \frac{\varepsilon}{m+j} 1_{\left\{j \leqslant T_{k}(\underline{X})\right\}} \quad \text{p.s.}$$

c. En déduire que pour tout m dans $\mathbb N$ et tout $x_{\scriptscriptstyle 0}$ dans $\mathbf A_{\scriptscriptstyle \varepsilon}$,

$$P(T(\underline{X}) = + \infty) = 0.$$

$$\left(\text{on pourra considérer }\sum_{j=1}^{\infty}\left(\mathbf{X}_{j}-\mathbf{X}_{j-1}\right)\ \mathbf{1}_{j\leqslant \mathbf{T}_{k}\left(\underline{\mathbf{X}}\right)}\right).$$

d. Soit X = $\lim_{n\to\infty} X_n$ p.s. Montrer que pour toute composition initiale (x_0, m)

$$P(X \in A_{\epsilon}) = 0;$$

puis en se souvenant des préliminaires 3°, établir que :

$$P(X \in \{t : t = f(t)\} = 1.$$

 4° On suppose dans ce 4° que f est une fonction de [0, 1] dans [0, 1] telle qu'il existe g, fonction continue de [0, 1] dans [0, 1], et $p_{\circ}(0 < p_{\circ} < 1)$ satisfaisant à

.
$$(f(t) - g(t)) (p_0 - t) \ge 0$$
 pour tout $t \in [0, 1]$
.. $\{p_0\} = \{t : g(t) = t\}$.

Soit X un processus d'urne associé à f et de composition initiale (x_0, m) .

a. Montrer que pour tout $\delta > 0$:

P (
$$\lim_{n\to\infty} \inf X_n > p_0 - \delta$$
) = 1

(Utiliser la fonction Inf (g, h_{δ}) , où h_{δ} est la fonction affine par morceaux, continue, et égale à 1 si $t < p_0 - \delta$, égale à 0 si $t > p_0$).

b. Montrer que la suite $\underline{\mathbf{X}}$ converge presque sûrement vers p_{o} .

5° On suppose dans ce 5° que f est une fonction de [0, 1] dans [0, 1] telle que pour un p_0 , $(0 < p_0 < 1)$, et pour tout $t \in [0, 1]$:

$$(f(t) - t) (t - p_0) \ge 0.$$

Soit X la limite d'un processus d'urne \underline{X} associé à f et de composition initiale (x_0, m) avec $0 < x_0 < 1$ et m > 0. On pose pour $\lambda > 0$ et $z \in]0, 1[$:

$$\varphi_{n}(z) = \int_{0}^{1} \frac{\Gamma(\lambda + 2) \Gamma(n) t^{\lambda p_{0} + nz - 1} (1 - t)^{\lambda(1 - p_{0}) + n(1 - z) - 1}}{\Gamma(\lambda p_{0} + 1) \Gamma(\lambda(1 - p_{0}) + 1) \Gamma(nz) \Gamma(n(1 - z))} dt.$$

a. Montrer que :

$$E\left(\varphi_{n+m+1}(X_{n+1})/X_{n}\right) = \frac{\varphi_{n+m}(X_{n})}{\lambda + m + n} \left[\frac{f(X_{n})}{X_{n}} (\lambda p_{0} + (m+n)X_{n}) + \frac{1 - f(X_{n})}{1 - X_{n}} (\lambda (1 - p_{0}) + (m+n)(1 - X_{n})) \right]$$

- b. En déduire que $[E(\varphi_{n+m}(X_n))]_{n\in\mathbb{N}}$ est une suite décroissante.
- c. Montrer que si $\lambda_n + \mu_n \to +\infty$ et si $\frac{\lambda_n}{\lambda_n + \mu_n} \to q$, la loi $\beta(\lambda_n, \mu_n)$ converge étroitement vers la mesure de Dirac en q, et que le maximum de sa densité est atteint en $\frac{\lambda_n 1}{\lambda_n + \mu_n 2}$, si 0 < q < 1 et n assez grand.
- d. Montrer que :

$$\lim_{n\to\infty} \mathbb{E}\left(\varphi_{n+m}\left(X_{n}\right)\right) \geqslant \mathbb{E}\left(\frac{\Gamma\left(\lambda+2\right)X^{\lambda p_{0}}\left(1-X\right)^{\lambda\left(1-p_{0}\right)}}{\Gamma\left(\lambda p_{0}+1\right)\Gamma\left(\lambda\left(1-p_{0}\right)+1\right)}\right).$$

e. Montrer que :

$$\lim_{\lambda \to \infty} \varphi_{m}(x_{0}) = \frac{\Gamma(m) p_{0}^{mx_{0}-1} (1 - p_{0})^{m(1-x_{0})-1}}{\Gamma(mx_{0}) \Gamma(m(1-x_{0}))}$$

en déduire que :

$$P(X = p_0) = 0.$$