Taller de Analisis

Nombre: Luis Fernando Córdova Carrión

Sucesión de Fibonacci

> Código

```
public class FibonacciRecursivo {
  public static void main(String[] args) {
     int n = 10;
====");
     System.out.println(" SUCESIÓN DE FIBONACCI (Modo
recursivo) ");
====");
     System.out.println("-Resultado de los términos desde F(0) hasta
F(" + n + "):");
     for (int i = 0; i \le n; i++) {
        System.out.printf("F(%d) = %d\n", i, fibonacci(i));
     }
====");
  }
  // Método recursivo para obtener el término n de Fibonacci
  public static int fibonacci(int n) {
     if (n == 0) return 0;
     if (n == 1) return 1;
     return fibonacci(n - 1) + fibonacci(n - 2);
  }
}
```

➤ Recurrencias

La recurrencia que se aplica en el código es:

$$F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1$$

➤ Demostrar

Prueba de escritorio

- Sucesión Fibonacci

Iteración	Llamada a fibonacci(i)	Resultado	Salida
i=0	fibonacci(0)	0	0
i=1	fibonacci(1)	1	1
i=2	<pre>fibonacci(2) → fibonacci(1) + fibonacci(0) fibonacci(1) = 1 fibonacci(0) = 0 1 + 0</pre>	1	1
i=3	<pre>fibonacci(3) → fibonacci(2) + fibonacci(1) fibonacci(2) = 1 fibonacci(1) = 1 1 + 1</pre>	2	2
i=4	<pre>fibonacci(4) → fibonacci(3) + fibonacci(2) fibonacci(3) = 2 fibonacci(2) = 1 2 + 1</pre>	3	3
i=5	<pre>fibonacci(5) → fibonacci(4) + fibonacci(3) fibonacci(4) = 3 fibonacci(3) = 2 3 + 2</pre>	5	5
i=6	fibonacci(6) → fibonacci(5) + fibonacci(4) fibonacci(5) = 5 fibonacci(4) = 3 5 + 3	8	8
i=7	fibonacci(7) → fibonacci(6) + fibonacci(5) fibonacci(6) = 8 fibonacci(5) = 5 8 + 5	13	13

i=8	fibonacci(8) → fibonacci(7) + fibonacci(6) fibonacci(7) = 13 fibonacci(6) = 8 13 + 8	21	21
i=9	fibonacci(9) → fibonacci(8) + fibonacci(7) fibonacci(8) = 21 fibonacci(7) = 13 21 + 13	34	34
i=10	fibonacci(10) → fibonacci(9) + fibonacci(8) fibonacci(9) = 34 fibonacci(8) = 21 34 + 21	55	55

Donde:

$$\varphi$$
 = (1 + $\sqrt{5})$ / 2 \approx 1.61803

$$\psi = (1 - \sqrt{5}) / 2 \approx -0.61803$$

Cálculo de los primeros términos con la fórmula de Binet:

n	F(n) =	Valor
0	(φ^0 - ψ^0)/√5	0
1	$(\phi^1 - \psi^1)/\sqrt{5}$	1
2	(φ^2 - ψ^2)/√5	1
3	(φ^3 - ψ^3)/√5	2
4	(φ^4 - ψ^4)/√5	3
5	(φ^5 - ψ^5)/√5	5
6	(φ^6 - ψ^6)/√5	8
7	(φ^7 - ψ^7)/√5	13
8	(φ^8 - ψ^8)/√5	21
9	(φ^9 - ψ^9)/√5	34
10	(φ^10 - ψ^10)/√5	55