# Module 5 (Wireless LAN)

(Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back — N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA, CSMA/CD,CDMA/CA; Wired LAN, Wireless LANs, Connecting LANs and Virtual LANs)

Dr. Nirnay Ghosh

**Assistant Professor** 

Department of Computer Science & Technology IIEST, Shibpur

## Wireless LAN

- Major components
  - Wireless hosts
  - Wireless links
  - Base station



#### 4G: LTE 54 Mbps 802.11a,g 802.11a,g point-to-point 802.11b 5-11 Mbps Enhanced 3G: HSPA 4 Mbps 802.15.1 1 Mbps 384 Kbps 3G: UMTS/WCDMA, CDMA2000 2G: IS-95, CDMA, GSM Indoor Outdoor Mid range Long range outdoor 10-30m 50-200m 200m-4Km 5Km-20Km

#### Link Characteristics of Selected Wireless Standards

• Types of networks:

802.11n

200 Mbps

- Single-hop infrastructure-based (802.11 networks, 3G/4G, etc.)
- single-hop infrastructure-less (Bluetooth networks, 802.11 networks in ad hoc mode)
- multi-hop infrastructure-based (Wireless sensor networks)
- multi-hop infrastructure-less (MANET, VANET)
- Replacing a wired LAN (Ethernet) with wireless LAN (802.11 networks)
  - Wireless network interface → wired Ethernet interface
  - Access point → Ethernet switch
- No change needed at the network layer or above

- Several 802.11 standards: 802.11b, 802.11a, and 802.11g
  - CSMA/CA medium access protocol
  - Same frame structure for link-layer frames
  - Reduces transmission rates to reach out over greater distances
  - New standard: 802.11n
    - MIMO antennas: enables transmitting/receiving different signals
    - Transmission rate: few hundred mbps
- Architecture: basic service sets (BSS)

   wireless stations and base station
   (access point), interconnection
   device (switch/router), Internet

| Standard | Frequency Range (United States) | Data Rate     |
|----------|---------------------------------|---------------|
| 802.11b  | 2.4-2.485 GHz                   | up to 11 Mbps |
| 802.11a  | 5.1-5.8 GHz                     | up to 54 Mbps |
| 802.11g  | 2.4-2.485 GHz                   | up to 54 Mbps |

### **Summary of IEEE 802.11 Standards**



**IEEE 802.11 LAN Architecture** 

- Access point (AP):
  - Service Set Identifier (SSD): administrator assigned name
  - Channel number
- Wi-Fi jungle: location where a wireless station receives signals from two or more APs.
  - Different IP subnets
  - Independently assigned channels
- Wireless station associates with exactly one AP
  - AP sends periodic beacon frames (containing SSID + MAC)
  - Wireless station scans 11 channels and listens for beacon frames from the APs
    - Scanning: passive; active
  - Selects one of the APs for association





#### a. Passive scanning

- Beacon frames sent from APs
- Association Request frame sent: H1 to selected AP
- Association Response frame sent:
   Selected AP to H1

#### a. Active scanning

- Probe Request frame broadcast from H1
- 2. Probes Response frame sent from APs
- Association Request frame sent: H1 to selected AP
- Association Response frame sent: Selected AP to H1

## **Active and Passive Scanning for APs**

- Wireless station sends discovery message to the DHCP server via the AP
  - IP address of the subnet
- Authentication: AP relays credentials to a separate authentication server
  - MAC address, Username/Password

- Multiple stations may transmit data frames at the same time over the same channel
- Medium access control (MAC) protocol: coordinates transmissions
- Access method: CSMA/CA
  - Wireless channels: relatively high bit error rates
    - Link-layer acknowledgment/retransmission (ARQ) scheme.
- Protocol:
  - Distributed Inter-frame Space (DIFS)
  - Generates a random back-off value using the binary exponential back-off algorithm
  - Channel busy: counter value remains frozen.
  - Channel idle: counter value starts to diminish
  - Counter reaches zero (note that this can only occur while the channel is sensed idle) - station transmits the entire frame and then waits for an acknowledgment.
  - Receiving station: computes CRC; If passes, it waits a short period of time known as the Short Inter-frame Spacing (SIFS); sends the acknowledgement



**802.11** uses Link-layer Acknowledgements

- Acknowledgment received: frame is correctly received at the destination station.
- Acknowledgment not received: transmitting station reenters the back-off phase in with the random value chosen from a larger interval.

- Exposed station problem
  - Two stations in the transmission range of the third station
  - Third station transmits frame to one of these stations
  - Other senses channel; stops sending frames to the fourth one

# Hidden station problem

- A station may not be aware of another station's transmission
  - Obstacles or out of transmission range
- Cannot detect any collision that may occur





 Stations B and C are hidden from each other.

#### **Hidden Station Problem**

- Stations use Request to Send (RTS) and Clear to Send (CTS) control frames to reserve access to the channel
- Network Allocation Vector (NAV)
  - Timer created by nontransmitting stations
  - Valid till the duration of time given in RTS frame
  - Checks NAV to determine if the physical medium to be sensed.



## • IEEE 802.11 Frame

- Payload: consists of IP datagram or ARP packet maximum size 2312 bytes – typically of 1500 bytes
- CRC: 32-bit CRC to detect bits errors in the received frames
- Address fields:
  - Address 2: sender's address (wireless station or AP)
  - Address 1: receiver's address (wireless station or AP)
  - Address 3: router's interface
  - Address 4: next AP's address (ad-hoc mode)
- Sequence number: allows the receiver to distinguish between a newly transmitted frame and the retransmission of a previous frame
- Duration: time for which the channel will be reserved for transmitting frame and acknowledgement
- Frame control: consists of multiple subfields
  - Type and Subtype: distinguishes between RTS, CTS, ACK, and data frames
  - To and From: indicates different address fields
  - WEP: encryption used or not



#### Frame control field expanded (numbers indicate field length in bits):



#### The IEEE 802.11 Frame



#### Use of Address Fields in 802.11 frames

- Mobility in the Same IP Subnet
  - Interconnection device: switch
  - Wireless stations, APs: belong to the same IP subnet
  - BSS1 →BSS2: IP address, TCP connection are retained
  - Scenario: H1 moves from BSS1 to BSS2
    - AP1's signal weakens; H1 scans for stronger signal
    - Receives beacon frames from AP2
    - Handoff process: disassociates from AP1, associates with AP2 – same IP address, ongoing TCP session.
    - Switch updates forwarding table: pairing of *H1*'s MAC address with the outgoing interface
      - Self-learning

Broadcast message from AP2 following association Computer Networks (Module 2)



#### **Mobility in the Same Subnet**

- Advanced Features in 802.11
  - Rate adaptation: select physical layer modulation technique based on current or recent characteristics
  - Power management:
    - Sensing, transmitting, receiving consumes power
    - Alternates between sleep and wake states
    - Sleep state set the power-management bit in IEEE 802.11 frame
    - AP refrains from sending data frames to stations with the power management bit set high – stores the frames in its buffer
    - Timer wakes up the station before AP sends beacon frame (typically after every 100 ms) in 250 μs
    - AP sends the list of stations whose frames are buffered in the beacon frame
    - Station go back to sleep if it has no buffered frames otherwise requests for the frame by sending polling message