# Missing Data in SEM Introduction to SEM with Lavaan



Kyle M. Lang

Department of Methodology & Statistics Utrecht University

### Outline

Missing Data Mechanisms



# What are Missing Data?

Missing data are empty cells in a dataset where there should be observed values.

 The missing cells correspond to true population values, but we haven't observed those values.



# What are Missing Data?

Missing data are empty cells in a dataset where there should be observed values.

 The missing cells correspond to true population values, but we haven't observed those values.

Not every empty cell is a missing datum.

- Quality-of-life ratings for dead patients in a mortality study
- Firm profitability after the company goes out of business
- Self-reported severity of menstrual cramping for men
- Empty blocks of data following "gateway" items

#### A Little Notation

$$Y := An N \times P$$
 Matrix of Arbitrary Data

 $Y_{mis} := \text{The } missing \text{ part of } Y$ 

 $Y_{obs} :=$ The *observed* part of Y

 $R := An N \times P$  response matrix

 $M := An N \times P$  missingness matrix

The R and M matrices are complementary.

- $r_{np} = 1$  means  $y_{np}$  is observed;  $m_{np} = 1$  means  $y_{np}$  is missing.
- $r_{np} = 0$  means  $y_{np}$  is missing;  $m_{np} = 0$  means  $y_{np}$  is observed.
- $M_p$  is the *missingness* of  $Y_p$ .

```
## Load some useful packages:
library(dplyr)
library(naniar)
library(ggmice)
## Read in some data:
bfi <- readRDS("../data/bfi_datasets.rds")$incomplete %>%
   select(-matches("N/d|C/d|E/d|male"))
## Compute the variablewise proportions of missing data:
bfi %>% is.na() %>% colMeans() %>% round(2)
 A1 A2 A3 A4 A5 O1 O2
                             03
                                 04
                                      05
                                         age sex educ
```

Visualize the percentages missing via **naniar**::gg\_miss\_var().

```
gg_miss_var(bfi, show_pct = TRUE)
```





Visualize the missing data patterns via **ggmice**::plot\_pattern().

plot\_pattern(bfi)





In **lavaan**, we can directly fit a model with incomplete data.

```
library(lavaan)

## Specify the measurement model:
mod <- "
agree =~ A1 + A2 + A3 + A4 + A5
open =~ 01 + 02 + 03 + 04 + 05
"

## Estimate the model:
out <- cfa(mod, data = bfi, std.lv = TRUE)</pre>
```

The model will estimate, just fine...

| lavaan 0.6-11 ended normally after 21 iterations |          |         |         |         |  |  |  |  |
|--------------------------------------------------|----------|---------|---------|---------|--|--|--|--|
| Latent Variables:                                |          |         |         |         |  |  |  |  |
|                                                  | Estimate | Std.Err | z-value | P(> z ) |  |  |  |  |
| agree =~                                         |          |         |         |         |  |  |  |  |
| A1                                               | 0.561    | 0.071   | 7.866   | 0.000   |  |  |  |  |
| A2                                               | -0.725   | 0.056   | -13.055 | 0.000   |  |  |  |  |
| A3                                               | -0.901   | 0.063   | -14.383 | 0.000   |  |  |  |  |
| A4                                               | -0.599   | 0.074   | -8.103  | 0.000   |  |  |  |  |
| A5                                               | -0.781   | 0.059   | -13.264 | 0.000   |  |  |  |  |
| open =~                                          |          |         |         |         |  |  |  |  |
| 01                                               | 0.490    | 0.055   | 8.983   | 0.000   |  |  |  |  |
| 02                                               | -0.844   | 0.079   | -10.649 | 0.000   |  |  |  |  |
| 03                                               | 0.786    | 0.058   | 13.574  | 0.000   |  |  |  |  |
| 04                                               | 0.311    | 0.055   | 5.699   | 0.000   |  |  |  |  |
| 05                                               | -0.874   | 0.073   | -11.987 | 0.000   |  |  |  |  |
|                                                  |          |         |         |         |  |  |  |  |

| Covariances: |          |         |         |         |  |
|--------------|----------|---------|---------|---------|--|
|              | Estimate | Std.Err | z-value | P(> z ) |  |
| agree ~~     |          |         |         |         |  |
| open         | -0.254   | 0.060   | -4.204  | 0.000   |  |
|              |          |         |         |         |  |
| Variances:   |          |         |         |         |  |
|              | Estimate | Std.Err | z-value | P(> z ) |  |
| .A1          | 1.662    | 0.114   | 14.593  | 0.000   |  |
| .A2          | 0.781    | 0.067   | 11.650  | 0.000   |  |
| .A3          | 0.865    | 0.086   | 10.050  | 0.000   |  |
| .A4          | 1.776    | 0.122   | 14.517  | 0.000   |  |
| .A5          | 0.863    | 0.075   | 11.430  | 0.000   |  |
| .01          | 0.880    | 0.064   | 13.823  | 0.000   |  |
| .02          | 1.704    | 0.133   | 12.776  | 0.000   |  |
| .03          | 0.658    | 0.072   | 9.150   | 0.000   |  |
| .04          | 0.976    | 0.065   | 15.020  | 0.000   |  |
| .05          | 1.288    | 0.112   | 11.460  | 0.000   |  |
|              |          |         |         |         |  |

### But not everything is as it seems.

| Estimator Optimization method Number of model parameters     | ML<br>NLMINB<br>21    |               |
|--------------------------------------------------------------|-----------------------|---------------|
| Number of observations Model Test User Model:                | Used<br>492           | Total<br>2800 |
| Test statistic<br>Degrees of freedom<br>P-value (Chi-square) | 79.928<br>34<br>0.000 |               |

# Default Approach

Like most software packages, **lavaan** will default to *complete case* analysis when asked to analyze incomplete data.

- In the absence of user input, this is a sensible option.
- That doesn't mean you should actually use deletion to treat the missing data in your analysis.



# Default Approach

Like most software packages, **lavaan** will default to *complete case* analysis when asked to analyze incomplete data.

- In the absence of user input, this is a sensible option.
- That doesn't mean you should actually use deletion to treat the missing data in your analysis.

Complete case analysis has two major problems.

- 1. Throws out useful information (potentially a lot of information)
- 2. Probably biases parameter estimates.

To understand the second point, we need to discuss *missing data mechanisms*.

# MISSING DATA MECHANISMS



# Missing Data Mechanisms

Missing Completely at Random (MCAR)

- $P(R|Y_{mis}, Y_{obs}) = P(R)$
- Missingness is unrelated to any study variables.

Missing at Random (MAR)

- $P(R|Y_{mis}, Y_{obs}) = P(R|Y_{obs})$
- Missingness is related to only the observed parts of study variables.

Missing not at Random (MNAR)

- $P(R|Y_{mis}, Y_{obs}) \neq P(R|Y_{obs})$
- Missingness is related to the unobserved parts of study variables.

# Simulate Some Toy Data

```
nObs <- 5000 # Sample Size
pm <- 0.3 # Proportion Missing
sigma \leftarrow matrix(c(1.0, 0.5, 0.3,
                   0.5, 1.0, 0.0,
                   0.3. 0.0. 1.0).
                 ncol = 3
tmp <- rmvnorm(n0bs, c(0, 0, 0), sigma)
x0 \leftarrow tmp[, 1]
y0 <- tmp[ , 2]
z0 \leftarrow tmp[, 3]
cor(y0, x0) # Check correlation between X and Y
[1] 0.4997145
```

# MCAR Example

# MCAR Example



# MAR Example

# **MAR Example**



# MNAR Example

# MNAR Example



#### Effects of Deletion

As we saw in the preceding plots, excluding incomplete cases usually alters the variables' distributions.

- The statistics upon which we base our analyses generally summarize these distributions.
- Problems with the distributions show up as bias in the results of our anlayses.



```
diabetes1 %>% select(bmi, glu, bp) %>% cor()
         bmi glu bp
bmi 1.0000000 0.38868 0.3954109
glu 0.3886800 1.00000 0.3904300
bp 0.3954109 0.39043 1.0000000
diabetes2 %>% select(bmi, glu, bp) %>% cor(use = "complete")
         bmi glu bp
bmi 1.0000000 0.2566595 0.2052338
glu 0.2566595 1.0000000 0.3011547
bp 0.2052338 0.3011547 1.0000000
```

```
mean(diabetes1$glu)
[1] 91.26018
mean(diabetes2$glu, na.rm = TRUE)
[1] 88.86424
var(diabetes1$glu)
[1] 132.1657
var(diabetes2$glu, na.rm = TRUE)
[1] 115.8254
```

#### Multiple Imputation (MI)

- ullet Replace the missing values with M plausible estimates
  - Essentially, a repeated application of stochastic regression imputation (with a particular type of regression model)
  - Produces unbiased parameter estimates and predictions
  - Produces "correct" standard errors, CIs, and prediction intervals
  - Very, very flexible
  - Computationally expensive



#### Full Information Maximum Likelihood (FIML)

- Adjust the objective function to only consider the observed parts of the data
  - Models are directly estimated in the presence of missing data
  - The predictors of nonresponse must be included in the model, somehow
  - Unless you write your own optimization program, FIML is only available for certain types of models
  - In linear regression models, FIML cannot treat missing data on predictors (if the predictors are taken as fixed)

What happens when we apply MI to our previous MAR example?

The MI-based parameter estimate looks good.

 MI produces unbiased estimates of the parameter when data are MAR.



What about applying MI to our MNAR example?

The MI-based parameter estimate is still biased.

 MI cannot correct bias in parameter estimates when data are MNAR.



# MI Example

### MI Example

```
## Complete data:
diabetes1 %>% select(bmi, glu, bp) %>% cor()
         bmi
              glu
bmi 1.0000000 0.38868 0.3954109
glu 0.3886800 1.00000 0.3904300
bp 0.3954109 0.39043 1.0000000
## MT:
pooledCorMat(miceOut, c("bmi", "glu", "bp"))
         bmi glu bp
bmi 1.0000000 0.3135162 0.3954109
glu 0.3135162 1.0000000 0.3563903
bp 0.3954109 0.3563903 1.0000000
```

### MI Example

```
mean(diabetes1$glu)
[1] 91.26018
with(miceOut, mean(glu)) analyses %>% unlist() %>% mean()
[1] 90.61747
var(diabetes1$glu)
[1] 132, 1657
with(miceOut, var(glu))$analyses %>% unlist() %>% mean()
[1] 123.3748
```

### FIML Example

```
fit <- diabetes2 %>%
    select(bmi, glu, bp) %>%
   lavCor(missing = "fiml", output = "sampstat")
## Complete data:
diabetes1 %>% summarize(mean = mean(glu), var = var(glu))
     mean var
1 91.26018 132.1657
## FTMT. .
fit %$% c(mean = mean[["glu"]], var = cov["glu", "glu"])
    mean
          var
 90.82487 125.27146
```

### FIML Example

```
diabetes1 %>% select(bmi, glu, bp) %>% cor() %>% round(3)
     bmi glu bp
bmi 1.000 0.389 0.395
glu 0.389 1.000 0.390
bp 0.395 0.390 1.000
fit$cov %>% cov2cor()
   bmi glu bp
bmi 1.000
glu 0.357 1.000
bp 0.395 0.386 1.000
diabetes2 %>% select(bmi, glu, bp) %>% cor(use = "complete") %>% round(3)
     bmi glu bp
bmi 1.000 0.257 0.205
glu 0.257 1.000 0.301
bp 0.205 0.301 1.000
```

### References