# **Facial Keypoint Detection**

W207 Final Project

Jeremy Yeung, Simran Sachdev, Gabriel Louis-Kayen, Shanie Hsieh, Amy Jung

### What is facial detection?

Our project focuses on **Facial Keypoints Detection**, detecting and predicting the location of keypoints on face images — the fundamental building block for various applications including:

- Tracking faces in images and videos
- Analyzing facial expressions
- Detecting dysmorphic facial signs for medical diagnosis
- Biometrics / face recognition.

### **Facial Detection in the News**

"Facebook Plans to Shut Down Its Facial Recognition System"

The New York Times

- Delete face scan data of 1 billion+ users
- Facebook's facial-recognition functions:
  - Automatically identify people
  - Flag accounts
  - Described photos to blind users
- NOT eliminate software (ie. DeepFace)
- NOT rule out incorporating facial recognition tech into future products



### **Data**

#### Data source:

https://www.kaggle.com/c/facial-keypoints-detection/overview

The dataset is Facial Keypoints Detection data used to detect the location of keypoints on face images.

#### Size of dataset:

The dataset has 7049 images that each have 30 columns variables.

#### Main features used:

There are 30 columns associated with 15 features.

#### The 15 features:

- left\_eye\_center,
- right\_eye\_center,
- left\_eye\_inner\_corner,
- left\_eye\_outer\_corner,
- right\_eye\_inner\_corner,
- right\_eye\_outer\_corner,
- left\_eyebrow\_inner\_end,
- left\_eyebrow\_outer\_end,
- right\_eyebrow\_inner\_end,
- right\_eyebrow\_outer\_end
- nose\_tip
- mouth left corner
- mouth\_right\_corner
- mouth\_center\_top\_lip,
- mouth\_center\_bottom\_lip

Each of the 15 features has an x-axis column and a y-axis column corresponding to that feature's location on the image, leading to 30 columns overall.



#### Using the 2000+ images with 15 features

- Higher train accuracy
- Prone to overfitting

#### Using the 7000+ images with 4 features

- Easier to generalize
- More training data
- Less accuracy in identifying facial keypoints

# 7000 images have data for 4 facial key points

|                           | count  | mean               | std                |
|---------------------------|--------|--------------------|--------------------|
| left_eye_center_x         | 7000.0 | 66.34940047635854  | 3.377149279603647  |
| left_eye_center_y         | 7000.0 | 37.61810350559417  | 3.0365916551708043 |
| right_eye_center_x        | 7000.0 | 30.303406587113066 | 2.9489464986052036 |
| right_eye_center_y        | 7000.0 | 37.94265611325309  | 2.884111354058055  |
| nose_tip_x                | 7000.0 | 48.372452384140466 | 4.1715876082560435 |
| nose_tip_y                | 7000.0 | 62.68202743453441  | 5.621674878670501  |
| mouth_center_bottom_lip_x | 7000.0 | 48.57167648140966  | 4.237941397514037  |
| mouth_center_bottom_lip_y | 7000.0 | 78.97570952261637  | 5.407682797359353  |

# Of those 7000 images, only 2140 images of those have data for all 15 facial key points

|                           | count  | mean               | std                |
|---------------------------|--------|--------------------|--------------------|
| left_eye_center_x         | 2140.0 | 66.22154868409592  | 2.087683355101556  |
| left_eye_center_y         | 2140.0 | 36.842274165726266 | 2.294027490805707  |
| right_eye_center_x        | 2140.0 | 29.64026856456148  | 2.051575209871264  |
| right_eye_center_y        | 2140.0 | 37.06381489055456  | 2.2343335854467448 |
| left_eye_inner_corner_x   | 2140.0 | 59.27212810062244  | 2.005630683413952  |
| left_eye_inner_corner_y   | 2140.0 | 37.85601445389234  | 2.03450012751805   |
| left_eye_outer_corner_x   | 2140.0 | 73.41247343419627  | 2.701639370765223  |
| left_eye_outer_corner_y   | 2140.0 | 37.6401096830805   | 2.68416217097158   |
| right_eye_inner_corner_x  | 2140.0 | 36.6031065182916   | 1.8227836818129908 |
|                           | count  | mean               | std                |
| right_eye_outer_corner_x  | 2140.0 | 22.36161709895906  | 2.7688040797668125 |
| right_eye_outer_corner_y  | 2140.0 | 38.03457131359977  | 2.654902542892582  |
| left_eyebrow_inner_end_x  | 2140.0 | 56.14799092743679  | 2.819913666924865  |
| left_eyebrow_inner_end_y  | 2140.0 | 29.22230444909996  | 2.8671313510347325 |
| left_eyebrow_outer_end_x  | 2140.0 | 79.61752316513792  | 3.3126467711070138 |
| left_eyebrow_outer_end_y  | 2140.0 | 29.65657017639958  | 3.627186873003011  |
| right_eyebrow_inner_end_x | 2140.0 | 39.27208385866163  | 2.6096476570044818 |
| right_eyebrow_inner_end_y | 2140.0 | 29.41374657993314  | 2.8422186447220557 |
| right_eyebrow_outer_end_x | 2140.0 | 15.76170725407129  | 3.3379012928231457 |
| right_eyebrow_outer_end_y | 2140.0 | 30.452946698618238 | 3.6443422006653514 |
| nose_tip_x                | 2140.0 | 47.95214068998041  | 3.276053208468195  |
| nose_tip_y                | 2140.0 | 57.25392567086902  | 4.528635210886218  |
| mouth_left_corner_x       | 2140.0 | 63.419076094887814 | 3.650131009318928  |
| mouth_left_corner_y       | 2140.0 | 75.88765965132447  | 4.438565027075064  |
| mouth_right_corner_x      | 2140.0 | 32.96736460044271  | 3.5951027258262207 |
| mouth_right_corner_y      | 2140.0 | 76.13406536660167  | 4.259513821121693  |
| mouth_center_top_lip_x    | 2140.0 | 48.081324634435525 | 2.7232735346715224 |
| mouth_center_top_lip_y    | 2140.0 | 72.6811245530104   | 5.108675344728991  |
| mouth_center_bottom_lip_x | 2140.0 | 48.1496539871852   | 3.032388960435935  |
| mouth_center_bottom_lip_y | 2140.0 | 82.63041245065179  | 4.813557334126184  |

# **Example Images and Facial Key Points**



# **OLS: Approach**

- OLS regressing each keypoint feature on the other keypoint features
- Attempted on 4 feature dataframe
  - Could produce predictions for the 15 feature dataframe
  - Could determine location of a facial keypoint based on known locations of other facial features
- Constraints:
  - Test data only has image pixels and does not have keypoints
  - We want predictions for a clean image without prior keypoint detection
  - Other image datasets will not typically have facial keypoints indicated

# **Preprocessing for OLS and CNN**

- Example "Image" column = [238 236 237 238 240 240 239 241 241 243 240 239 231 212 190 173 148 122 104 92 79 73 74...]
  - Image size: 96 x 96 = 9216 columns
  - Extract "Image" into a 2D array with each column an integer from the pixels
  - Convert each pixel into ints
- 80/20 train test split

# **OLS: Approach**

- We want predictions for keypoints based off of image pixels
- OLS regressing each keypoint on the pixels
- Each pixel is a feature
- N different multiple linear regressions, where N is the number of facial

keypoints (8 total)

$$\hat{\mathbb{Y}} = \mathbb{X} heta$$

$$egin{bmatrix} \hat{y_1} \ \hat{y_2} \ \hat{y_3} \ dots \ \hat{y_n} \end{bmatrix} = egin{bmatrix} 1 & x_{11} & x_{12} & x_{13} & \dots & x_{1p} \ 1 & x_{21} & x_{22} & x_{23} & \dots & x_{2p} \ 1 & x_{31} & x_{32} & x_{33} & \dots & x_{3p} \ dots \ dots & dots & dots & dots & dots \ 1 & x_{n1} & x_{n2} & x_{n3} & \dots & x_{np} \end{bmatrix} egin{bmatrix} dext{d} dext{d}$$

# **OLS: Experiment**

Train mae: 0.272

Test mae: 21.935

PCA idea: lessen the number of coefficients so model

can't overfit

Train

Test













#### (All Pixels)

keypoint: left\_eye\_center\_x train mae: 0.2092160820024996 test mae: 26.86020130360977

keypoint: left\_eye\_center\_y train mae: 0.19532846710118398 test mae: 16.145948035968647

#### (PCA)

keypoint: left\_eye\_center\_x train mae: 5.022023809526552 test mae: 605.8114466879618

keypoint: left\_eye\_center\_y
train mae: 4.933190476193213
test mae: 592.4514271495663

**CNN:** Approach



Transform each image to shape (96, 96, 1)

Convolution and pooling to extract features (e.g. eyes, nose, mouth)

Smallest neural network to minimize weights

Metric: Mean Absolute Error

# **CNN** - Model 1 & 2

#### Model 1: Epoch 50/50 - mae: 19.113

```
#create model
model = Sequential()

#add model layers
model.add(Conv2D(256, kernel_size=3, activation='relu', input_shape=(96,96,1)))
model.add(Conv2D(64, kernel_size=3, activation='relu'))
model.add(Flatten())
model.add(Dense(8))

#compile model using accuracy to measure model performance
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])
```



#### Model 2: Epoch 50/50 - mae: 2.980 - val\_mae: 6.087

```
cnn = Sequential([
    Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(96,96,1)),
    MaxPooling2D((2, 2)),

Conv2D(filters=64, kernel_size=(3, 3), activation='relu'),
    MaxPooling2D((2, 2)),

Flatten(),
    Dense(64, activation='relu'),
    Dense(8)

])
cnn.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])
```



# **CNN** - Model 3 & 4

#### Model 3

```
cnn = Sequential([
   Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(96,96,1)),
   BatchNormalization(),
   MaxPooling2D((2, 2)),
```

#### Epoch 50/50 - mae: 1.501 - val\_mae: 6.948



#### Model 4

```
cnn = Sequential([
   Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(96,96,1)),
   Dropout(.1),
   MaxPooling2D((2, 2)),
```

Epoch 50/50 - mae: 5.088 - val mae: 20.326



### **CNN** - Model 5 & 6

#### Model 5

Same as model 4 with Dense layers added to each layer

```
Conv2D(filters=64, kernel_size=(3, 3), activation='relu'),
Dropout(.1),
MaxPooling2D((2, 2)),
Dense(30),
```

•

**Epoch 50/50 - mae**: 7.855 - val\_mae: 20.786



#### Model 6

Same as model 5 with BatchNormalization added to each layer

```
Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'),
BatchNormalization(),
Dropout(.1),
MaxPooling2D((2, 2)),
```

•

Epoch 50/50 - mae: 1.597 - val\_mae: 18.612



# **CNN** - Model 7 & 8

#### Model 7

Same as Model 3 but with LeakyReLU(alpha = 0.1) to each layer

```
cnn = Sequential([
    Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(96,96,1)),
    LeakyReLU(alpha = 0.1),
    BatchNormalization(),
    MaxPooling2D((2, 2)),
```

•

•

#### **Epoch 50/50 - mae**: 1.354 - val\_mae: 7.400



#### Model 8

Same as Model 7 but with Dropout(0.1) after dense layer

- •
- •
- •

```
Flatten(),
Dense(512, activation='relu'),
propout(0.1),
Dense(30)
```

Epoch 50/50 - mae: 2.298 - val\_mae: 6.594



### **CNN: Best Model**

#### Model 3 modified

| Model # | Description.                                     | train_acc | val_acc |
|---------|--------------------------------------------------|-----------|---------|
| 1       | first model                                      | 19.113    | nan     |
| 2       | 2 Convolution + 1 Dense                          | 2.980     | 6.078   |
| 3       | 5 Convolution + 1 Dense (with batch norm)        | 1.501     | 6.948   |
| 4       | same as model 3 except using .1 dropout          | 5.088     | 20.326  |
| 5       | same as model 4 with Dense layers                | 7.855     | 20.786  |
| 6       | same as model 5 with batchnorm                   | 1.597     | 18.612  |
| 7       | same as model 3 with LeakyReLU                   | 1.354     | 7.400   |
| 8       | same as model 7 with Dropout(0.1) in Dense layer | 2.298     | 6.594   |

```
best_model = Sequential([
   Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(96,96,1)),
   MaxPooling2D((2, 2)),
    BatchNormalization(),
   Conv2D(filters=64, kernel_size=(3, 3), activation='relu'),
   MaxPooling2D((2, 2)),
    BatchNormalization(),
   Conv2D(filters=96, kernel_size=(3, 3), activation='relu'),
   MaxPooling2D((2, 2)),
   BatchNormalization(),
   Conv2D(filters=128, kernel_size=(3, 3), activation='relu'),
   MaxPooling2D((2, 2)),
    BatchNormalization(),
   Conv2D(filters=256, kernel_size=(3, 3), activation='relu'),
   MaxPooling2D((2, 2)),
    BatchNormalization(),
   Flatten(),
   Dense(512, activation='relu'),
   Dense(8)
```

# **CNN: Best Model**

- Run on the full train set: Train MAE: 1.381 -- Val MAE: 1.942
- Test MAE: 2.897



### **Conclusions**

#### Key Results:

- OLS: test mae of 21.935
- CNN: test mae of 2.897
- CNN had 19.056 improvement over the OLS baseline

#### Learned:

- how to build a convolutional neural network using Keras
- how to adjust the convolution and pooling blocks to improve performance

# **Avenues for Future Work**

"Your Face Is, or Will Be, Your Boarding Pass"

The New York Times

- Biometrics (unique individual traits) can be used to automate + verify identity
- Facial recognition is at least 99.5% accurate
- e.g. Delta Air Lines, CLEAR Health Pass



### References

https://www.kaggle.com/prateek146/facial-keypoints-detection-model-explained

https://www.nytimes.com/2021/12/07/travel/biometrics-airports-security.html?action=click &algo=bandit-all-surfaces-time-cutoff-10&block=more\_in\_recirc&fellback=false&imp\_id=9962 17126&impression\_id=38b8eef0-578a-11ec-afe3-6d88710900cc&index=0&pgtype=Article&pool=more\_in\_pools%2Ftechnology&region=footer&req\_id=471771699&surface=eos-more-in&variant=2\_bandit-all-surfaces-time-cutoff-10

https://www.nytimes.com/2021/11/02/technology/facebook-facial-recognition.html

https://towardsdatascience.com/building-a-convolutional-neural-network-cnn-in-keras-329fb badc5f5

# Thank you!











