Разработка алгоритмов прогнозирования индивидуального поведения на основе визуального распознавания эмоций

Леонид Ивановский, аспирант

Постановка задачи

• <u>Разработка кроссплатформенной библиотеки для</u> классификации эмоций человека по изображению лица

Основные требования

- Работа в режиме реального времени
- Поддержка видеопотоков и статических изображений
- Распознавание спонтанных выражений лица под разными углами обзора камеры
- Устойчивость алгоритма в зависимости от различной степени освещенности сцены, разрешения и пр.

Области применимости

• Медицина

(клиническая психология, психиатрия)

(охранные системы для поиска злоумышленников, борьба с преступностью и терроризмом)

• Сбор статистики

(в масштабах ТЦ, города, в местах массового скопления людей)

• Ритейл (в сфере развлекательных услуг)

Бизнес-логика

30 – 50 тыс. ₽

Наша команда

Ивановский Леонид

аспирант/научный сотрудник ЯрГУ им. П.Г. Демидова/НЦЧ РАН

Разработчик ПО

Хрящев Владимир Вячеславович

доцент, кандидат техн. наук ЯрГУ им. П.Г. Демидова

Консультант из области бизнеса, эксперт по нейросетевым технологиям

Инструменты разработки

Caffe

Архитектура сверточной нейронной сети

Обучение и тестирование алгоритма

Суперкомпьютер NVIDIA-DGX-1 с 8 ускорителями NVIDIA Tesla V100 Центра Искусственного Интеллекта и Цифровой Экономики ЯрГУ

• Обучение: ~45 мин

Тестирование: ~9-10 мин.

Обучение и тестирование алгоритма

Суперкомпьютер NVIDIA DGX-1

- 960 TFLOPS | 8x GPU Tesla V100
- Заменяет **400** традиционных серверов в задачах ИИ

Оценка производительности NVIDIA DGX-1 на классическом примере работы сети ResNet-50

NVIDIA DGX-1 Delivers 96X Faster Training

База изображений Multi-PIE

- ~750000 цветных картинок
- 337 различных людей
- различные углы обзора камеры (не более 90°)
- разный уровень освещения сцены

Виды эмоций

а) Спокойствие

г) Заинтересованность

б) Улыбка

д) Презрение

в) Удивление

е) Крик

Формирование выборок

- 35000 снимков, отобранных случайным образом, для каждого класса
- Разметка: 6 классов для задачи классификации эмоций,
 2 класса для задачи детектирования улыбки
- Угол обзора камеры: [-45, 45]
- Тренировочный и тестовый наборы данных: 80/20 (не содержали одинаковых изображений, а также снимков одного и того же субъекта)

Результаты численных экспериментов

- Доля правильных ответов: 92.29% (около 38800 из 420000 картинок тестовой выборки были классифицированы правильно).
- Согласно графику изменения функции потерь, алгоритм сходится, переобучения не происходит.

Результаты численных экспериментов

Классы		Фактический класс						
		Улыбка	Удивление	Презрение	Заинтересова нность	Крик	Спокойствие	
Предсказанный класс	Улыбка	6471	48	68	8	4	136	
	Удивление	87	6715	3	1	47	30	
	<u>Презрение</u>	102	28	<u>6006</u>	<u>556</u>	34	61	
	Заинтересова <u>нность</u>	143	20	<u>749</u>	<u>6112</u>	12	184	
	Крик	53	98	48	22	6903	26	
	Спокойствие	144	91	126	301	0	6563	

Результаты численных экспериментов

Анализ ошибок		Метрики качества					
		Точность	Полность	F- мера			
Классы	Улыбка	0,96	0,82	0,94			
	Удивление	0,98	0,96	0,97			
	<u>Презрение</u>	<u>0,89</u>	<u>0,86</u>	<u>0,87</u>			
	<u>Заинтересованность</u>	<u>0,85</u>	<u>0,87</u>	0,86			
	Крик	0,97	0,99	0,98			
	Спокойствие	0,91	0,92	0,92			

Труднораспознаваемые классы эмоций

а) Заинтересованность

б) Презрение

Предварительные результаты работы

- Разработаны алгоритмы определения лица человека, детектирования улыбки и распознавания эмоций
- Доля правильных ответов алгоритма классификации эмоций: 92.29%.
- Значение F-меры превысило 0.85 для каждого класса, что говорит о высоком качестве работы алгоритма.
- Наиболее трудно распознаваемые типы эмоций «Заинтересованность» и «Презрение». Это объясняется схожестью многих представленных базе экземпляров этих классов.

Развитие работы

• Апробация алгоритма на снимках, полученных с реальных камер видеонаблюдения

