MAU22101: Exercises Week 4

Problem 1 Complete the proof of the statement that if $N \triangleleft G$ is a normal subgroup then G/N carries a group structure such that the map

$$\pi \colon G \longrightarrow G/N$$
$$x \longmapsto xN$$

is a group homomorphism.

Problem 2 A right action $X \subseteq G$ is a map $\rho: X \times G \to X$ satisfying

- i) $\rho(x,e) = x$
- ii) $\rho(\rho(x,g),h) = \rho(x,gh).$
 - 1. Show a map $\rho: X \times G \to X$ is a right action if and only if the map $\rho_l: G \times X \to X$ defined by $\rho_l(g,x) = \rho(x,g^{-1})$ is a left action.
 - 2. Show that the set of orbits for ρ and ρ_l are the same, i.e.

$$_{G} \setminus^{X} := \{ \rho(G, x) \mid x \in X \} = \{ \rho_{l}(x, G) \mid x \in X \} = : X/_{G}.$$

3. Write down the formulas for the right actions corresponding to three left actions $G \subset G$ (left-/right-regular and adjoint).

Problem 3 Let $N \leq G$ be a subgroup. Show that the following are equivalent

- 1. $N \triangleleft G$
- 2. $gNg^{-1} \subset N$ for all $g \in G$
- 3. $gNg^{-1} = N$ for all $g \in G$
- 4. gN = Ng for all $g \in G$
- 5. For all $g \in G$ there exists $g' \in G$ such that $gN \subset Ng'$
- 6. $G/H = H \backslash G$, i.e. the set or orbits for the right regular and the left regular action coincide.

Problem 4 Let $H \leq G$ be a subgroup of G. We define the normalizer of H in G by

$$N_G(A) := \{ g \in G \mid gHg^{-1} = H \}.$$

- Show that $N_G(H)$ is a subgroup of G, and that H is a normal subgroup of $N_G(H)$.
- Let $K \leq G$ be another subgroup and suppose that $K \subset N_G(H)$. Show that $HK := \{hk \mid h \in H, k \in K\}$ is a subgroup of G and that $H \triangleleft HK$.

Problem 5 Let $N \triangleleft G$ be a normal subgroup of a finite group G and suppose that (|N|, |G/N|) = 1. Prove that N is the unique subgroup of G of order |N|. (Hint: Given a subgroup $K \leq G$ of order |N| consider its image under the map $G \rightarrow G/N$).

Problem 6 Let $N \lhd G$ be a normal subgroup of G, moreover, suppose that N is abelian. Show that the adjoint action induces a group homomorphism

$$\phi \colon G/N \to \operatorname{Aut}(N),$$

defined by $\phi([x])(n) = xnx^{-1}$.

Deduce that if G is a group of order pq, where p and q are both primes such that $p \nmid (q-1)$, and G has a normal subgroup N of order q, then G is abelian.