FTML Exercices 2 solutions

Pour le 13 mars 2025

TABLE DES MATIÈRES

1	Ordinary	least squares	-
	1.0.1	Solution	1
2	Expected	value as a minimization	2
	2.0.1	Enoncé	2
	2.0.2	Solution	2

1 ORDINARY LEAST SQUARES

1.0.1 Solution

1) On connaît déjà le gradient de l'application $f: x \mapsto ||x||^2$, qui vaut 2x. Si on considère l'application r:

$$r = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R}^n \\ \theta \mapsto X\theta - y \end{array} \right.$$

alors $g=f\circ r.$ Comme tout est différentiable, on en déduit qu'en notant L les jacobiennes :

$$L_{\theta}g = L_{X\theta - u}fL_{\theta}r \tag{1}$$

ou bien on considérant le gradient (qui est la transposée de la jacobienne quand l'application est à valeurs dans $\mathbb R$) :

$$\nabla_{\theta} \mathbf{q}(\theta) = (\mathbf{L}_{\theta} \mathbf{r})^{\mathsf{T}} \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{X} \theta - \mathbf{y}) \tag{2}$$

Or $L_{\theta}r = X$. Donc

$$\nabla_{\theta} g(\theta) = 2X^{\mathsf{T}} (X\theta - y) \tag{3}$$

2a) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}^d$.

$$\begin{split} (f \circ s)(\alpha x + (1 - \alpha)y) &= f(s(\alpha x + (1 - \alpha)y)) \\ &= f(\alpha s(x) + (1 - \alpha)s(y)) \\ &\leqslant \alpha f(s(x)) + (1 - \alpha)f(s(y)) \end{split} \tag{4}$$

2b) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}^n$.

$$\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\|$$

$$= \alpha \|x\| + (1 - \alpha)\|y\|$$
(5)

2c) Soit $\alpha \in [0,1]$, et $x,y \in \mathbb{R}$. Since α is convex,

(6)

Since w is increasing,

$$w(a(\alpha x + (1 - \alpha)y)) \le w(\alpha a(x) + (1 - \alpha)a(y)) \tag{7}$$

Since w is convex,

$$w(\alpha a(x) + (1 - \alpha)a(y)) \leqslant \alpha(w(a(x)) + (1 - \alpha)w(a(y))$$
(8)

 $a(\alpha x + (1 - \alpha)y) \le \alpha a(x) + (1 - \alpha)a(y)$

Finally,

$$(w \circ a)(\alpha x + (1 - \alpha)y)) \leqslant \alpha(w \circ a)(x)) + (1 - \alpha)(w \circ a)(y) \tag{9}$$

2d) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}^n$.

$$f(\alpha x + (1 - \alpha)y) = u(\alpha x + (1 - \alpha)y + \beta)$$

$$= u(\alpha x + (1 - \alpha)y + (\alpha + 1 - \alpha)\beta)$$

$$= u(\alpha x + (1 - \alpha)y + \alpha\beta + (1 - \alpha)\beta)$$

$$= u(\alpha (x + \beta) + (1 - \alpha)(y + \beta))$$

$$\leq \alpha u(x + \beta) + (1 - \alpha)u(y + \beta)$$

$$= \alpha f(x) + (1 - \alpha)f(y)$$
(10)

2e) On utilise:

- le point **c)** avec $w: t \mapsto t^2$ et a l'application norme sur \mathbb{R}^n pour montrer que $u: x \mapsto ||x||^2$ est convexe.
- le point **d**) avec $\beta = -y$ pour montrer que $f : x \mapsto \|x y\|^2$ est convexe de \mathbb{R}^n dans \mathbb{R} .
- le point **a**) appliqué à $g = f \circ s$ avec $s : \theta \mapsto X\theta$ linéaire de \mathbb{R}^d dans \mathbb{R} .

2 EXPECTED VALUE AS A MINIMIZATION

2.0.1 Enoncé

Soit X une variable aléatoire réelle ayant un moment d'ordre 2. Montrer que son espérance E(X) est la quantité minimisant la fonction de variable réelle $t\mapsto E((X-t)^2)$

2.0.2 Solution

All expected values are over X. We remark that

$$\begin{split} E\Big[(X-t)^2\Big] &= E\Big[\big(X-E(X)+E(X)-t\big)^2\Big] \\ &= E\Big[\big(X-E(X)\big)^2 + 2\big(X-E(X)\big)\big(E(X)-t\big) + \big(E(X)-t\big)^2\Big] \end{split}$$

By linearity, the expected value is separated in 3 terms.

$$- E[(X-E(X))^{2}]$$

$$- E[2(X-E(X))(E(X)-t)]$$

$$- E[(E(X)-t)^{2}]$$

We note that the first term $E[(X - E(X))^2]$ does not depend on t. Also, $(E(X) - t)^2$, is a fixed scalar, and not a random variable, hence :

$$E\left[\left(E(X)-t\right)^{2}\right]=\left(E(X)-t\right)^{2}$$

We also have that

$$E\Big[2\big(X-E(X)\big)\big(E(X)-t\big)\Big]=2\big(E(X)-t\big)E\Big[\big(X-E(X)\big)\Big]=0$$

As a consequence, the value that minimizes $E[(X-t)^2]$ is t=E(X).

On peut aussi prouver le résultat en développant $(X-t)^2 = X^2 - 2tX + t^2$, comme lors du cours 1.

$$\begin{split} \mathsf{E}[(\mathsf{X}-\mathsf{t})^2] &= \mathsf{E}[(\mathsf{X}^2-2\mathsf{t}\mathsf{X}+\mathsf{t}^2)] \\ &= \mathsf{E}[\mathsf{X}^2]-2\mathsf{t}\mathsf{E}[\mathsf{X}]+\mathsf{E}[\mathsf{t}^2] \\ &= \mathsf{E}[\mathsf{X}^2]-2\mathsf{t}\mathsf{E}[\mathsf{X}]+\mathsf{t}^2 \end{split} \tag{11}$$

La dérivée par rapport à t vaut 2t - 2E[X], qui est négative pour $t \leqslant E[X]$ et positive pour $t \ge E[X]$, ce qui prouve le résultat.