0.1. Introducción

Se quiere construir el diagrama de tiempos del MC68HC11 para el programa de la Tabla (1).

	org	\$C000	
	ldaa		#\$A5
L1	staa		\$4000
	$_{ m jmp}$		L1

Tabla 1: Programa a implementar.

Para esto, se construye la Tabla (2) donde se descompone a cada instrucción en los ciclos que la componen.

Instruction	Cycle	Address	Data
LDAA	1	C000	\$86
	2	C001	A5
STAA	3	C002	B7
	4	C003	\$40
	5	C004	\$00
	6	\$4000	A5
JMP	7	C005	\$7E
	8	C006	C0
	9	C007	\$02

Tabla 2: Descomposición en ciclos del programa a implementar.

Finalmente, se construye el diagrama de tiempos teniendo en cuenta el modo extendido del MC68HC11 en el cual el bus de address está compuesto por el puerto C para los ocho bits menos significativos y el puerto B para los ocho bits más significativos. A su vez, el puerto C está multiplexado de manera tal que funcione como bus de datos en el semiciclo bajo de la señal de enable.

Figura 1: Diagrama de tiempos del programa de la Tabla 1.

La señal de ADDR indica el valor del bus de address visto como la concatenación del puerto C latcheado y el puerto B. La señal de LIR es una señal activa baja de ayuda al momento de debuggear y marca el primer semiciclo negativo de cada ciclo de cada nueva instrucción. Esto es útil debido a que, como se puede ver en la Figura (1), la señal LIR tendrá un valor bajo cuando el puerto C retiene el OPCODE, el cual identifica qué instrucción ejecutará el M68HC11.