Non-linear self-interference cancellation on base of mixed Newton method

Graduate student Degtyarev Alexander Andreevich Supervisor: DSc, Dvorkovich Alexander Viktorovich Scientific consultant: PhD, Bakhurin Sergey Alexeyevich

MIPT
Department of Multimedia Technologies and Telecommunications

2023-11-23

Contents

- Introduction
 - In-band full-duplex systems idea
 - Self-interference cancellation issue
- Adaptive compensation of self-interference
 - Non-linear interference model
 - Mixed Newton method
 - Experimental setup
 - Simulation results
- Conclusions and further work

Topic relevance

Requirements:

- Effective resources arrangement among users
- Networks with high reliability, low latency, and high data rates
 In-band full-duplex technology (IBFD) provides:
 - Efficient exploitation of the spectrum, by frequency bandwidth sharing between transmitter and receiver

IBFD systems suffer from undesired self-interference at the receivers path

Self-interference cancellation (SIC) issue

Figure: Full-duplex transceiver simplified scheme {Degtyarev A., draw.io}

- \bullet RF-chipset integral implementation and isolation issues \to TX leakage to RX
- TX signal x is distorted in non-linear components (PA, Duplexer) and TX-RX leakage path
- SIC is an interference identification task:

$$\mathcal{J}(\mathbf{h}) = \mathbb{E}\left(|\mathbf{r} + \mathbf{d} - \mathbf{y}|\right)^{2} \to \min_{\mathbf{h}},\tag{1}$$

Non-linear interference model

Figure: Hammerstein model {Degtyarev A., draw.io}

- Behavioral Hammerstein model describes interference creation physical process → low-complexity
- Hammerstein model output sample:

$$y_n = \sum_{m=-D}^{D} w_m \sum_{k=0}^{P-1} h_k x_{n-m} NL(|x_{n-m}|),$$
 (2)

 $w_m \in \mathbb{C}, h_k \in \mathbb{C}$ – FIR and NL adaptive parameters.

Introduction to mixed Newton method

Mixed Newton method (MNM) – second order method:

$$\mathbf{z}_{k+1} = \mathbf{z}_k - \mu_k (\mathbf{H}_{\mathbf{z},\mathbf{z}^*} J)^{-1} (D_{\mathbf{z}^*} J)^T, \tag{3}$$

$$\mathbf{z}^T = (\mathbf{h}^T \mathbf{w}^T) \in \mathbb{C}^{1 \times K}$$
 – parameter vector, $J = \mathbf{e}^H \mathbf{e}$ – MSE.

• For holomorphic error $\mathbf{e} = \mathbf{d} - \mathbf{y}$: $D_{\mathbf{z}^*}\mathbf{e} = \mathbf{0}$, mixed hessian and gradient are expressed through jacobian:

$$\mathbf{H}_{\mathbf{z},\mathbf{z}^*}J = (D_{\mathbf{z}}\mathbf{y})^H D_{\mathbf{z}}\mathbf{y}; \ (D_{\mathbf{z}^*}J)^T = (D_{\mathbf{z}}\mathbf{y})^H \mathbf{e}$$
 (4)

- For holomorphic error **e** method repulses from saddle points.
- Computational complexity defined by hessian calculation and inversion:

$$\chi_{\mathsf{MNM}} = \mathcal{O}(K^3 + K^2 N) \tag{5}$$

Experimental setup

Figure: Testbench {Degtyarev A., draw.io}

- TX QAM modulated OFDM signal, 60 MHz bandwidth, 480 MHz sample rate
- Average PA output power 20 dBm
- Leakage path is simulated by digital FIR
- Hammerstein model: NL polynomial order 8, FIR 45 taps

Learning curves

- Adam and MNM learning curves on train and test data sets
- (a) BGD with Momentum, BGD with (b) SGD with Momentum, SGD with Adam and MNM learning curves on train and test data sets
 - Mixed Newton achieves final performance in \sim 30 epochs, comparing to gradient-based methods (\sim 10000 epochs)

Algorithm performance

Figure: Power spectral densities of initial and suppressed interference. Signal power distribution along the frequency {Degtyarev A., Python}

Convergence speed comparison

Table: Performance and convergence speed comparison

Algorithm	BGD Moment.	BGD Adam	SGD Moment.	SGD Adam	MNM
Epoch number	10000	10000	10000	10000	30
Time per epoch, 10^{-2} s	3.8	4.0	3.7	4.1	21
Total elapsed tims, s	380	403	386	412	6.2
NMSE, dB	-45.1	-46.7	-46.6	-46.5	-46.9

- ullet MNM step is \sim 5 times longer comparing to gradient methods
- Total convergence time decreased significantly

Conclusions and further work

- Total training time is decreased to 6 s comparing to 380 s for gradient-based methods to achieve ~46.5 dB suppression
- Mixed Newton requires high memory and computation resources due to hessian calculation and inversion
- Mixed Newton can be modified by inverse hessian (or diagonal) estimation to reduce required resources
- Application of modified version to complex-valued NN structures