Exercício - Aula 3

Como já samemos, a base de dados de "produto" [1] foi utilizada para modelos de classificação supervisionados e sabemos qual foi a configuração que gerou um bom resultado. Que tal aplicarmos essas técnicas de pré-processamento que gerou um bom modelo e compararmos? Faça um teste de análise de tópicos com 4 tópicos conse as seguintes configurações:

- Remover registros com valores nulos;
- Contatenar as colunas de nome e descrição;
- Aplicar lematização em verbos;
- Amostra de 20% para teste e random_state = 42;
- Vetorização de contagem dos termos em unigramas removendo stopwords (NLTK + Spacy).

[1] https://dados-ml-pln.s3-sa-east-1.amazonaws.com/produtos.csv

!python -m spacy download pt_core_news_sm --quiet

✓ Download and installation successful You can now load the package via spacy.load('pt_core_news_sm')

⚠ Restart to reload dependencies

If you are in a Jupyter or Colab notebook, you may need to restart Python in order to load all the package's dependencies. You can do this by selecting the 'Restart kernel' or 'Restart runtime' option.

import pandas as pd

df = pd.read_csv("https://dados-ml-pln.s3-sa-east-1.amazonaws.com/produtos.csv", delimiter=";", end

df.dropna(inplace=True)

df["texto"] = df['nome'] + " " + df['descricao']

df.describe()

•	nome	descricao	categoria	texto	
count	2916	2916	2916	2916	
unique	2584	2460	4	2646	
top	Mais Escuro - Cinquenta Tons Mais Escuros Pel	JOGO ORIGINAL. NOVO. LACRADO. PRONTA ENTREGA	livro	Boneco Dragon Ball Z Son Gokou Produto novo	
frea	20	39	838	20	

```
import spacy
nlp = spacy.load('pt_core_news_sm')
def lemmatizer_verbs(text):
 sent = []
 doc = nlp(text)
 for word in doc:
     if word.pos == "VERB":
          sent.append(word.lemma_)
     else:
          sent.append(word.text)
 return " ".join(sent)
df['text_lemma_verbs'] = df.texto.apply(lemmatizer_verbs)
from sklearn.model_selection import train_test_split
df_train, df_test = train_test_split(df,
     test_size = 0.2,
     random_state = 42
 )
from sklearn.feature_extraction.text import CountVectorizer
import nltk
nltk.download('stopwords')
import spacy
nlp = spacy.load('pt_core_news_sm')
# stopwords do SpaCy e NLTK combinadas
stops = list(set(nlp.Defaults.stop_words).union(set(nltk.corpus.stopwords.words('portuguese'))))
from sklearn.feature_extraction.text import CountVectorizer
# verorização
vect = CountVectorizer(ngram_range=(1,1), stop_words=stops)
vect.fit(df_train.text_lemma_verbs)
text_vect_train = vect.transform(df_train.text_lemma_verbs)
from sklearn.decomposition import LatentDirichletAllocation
# modelo
LDA = LatentDirichletAllocation(n_components=4, random_state=42)
LDA.fit(text_vect_train)
     [nltk_data] Downloading package stopwords to /root/nltk_data...
                   Unzipping corpora/stopwords.zip.
                                                            (i) (?)
                    LatentDirichletAllocation
     LatentDirichletAllocation(n_components=4, random_state=42)
```

```
# top palavras dos tópicos
terms = vect.get_feature_names_out()
for index, topic in enumerate(LDA.components_):
   terms_comp = zip(terms, topic)
    sorted_terms = sorted(terms_comp, key= lambda x:x[1], reverse=True)[:15]
   print("THE TOP 15 WORDS FOR TOPIC # "+str(index)+": ")
   #print(sorted_terms)
   print([t[0] for t in sorted_terms])
   print('\n')
→ THE TOP 15 WORDS FOR TOPIC # 0:
     ['mercado', 'produto', 'prazo', 'pagamento', 'produtos', 'entrega', 'envio', 'frete', 'enviar',
    THE TOP 15 WORDS FOR TOPIC # 1:
     ['produto', 'edição', 'livro', 'páginas', 'vida', 'mundo', 'anos', '00', 'história', 'origem',
     THE TOP 15 WORDS FOR TOPIC # 2:
     ['pincel', 'cm', 'maquiagem', 'kit', 'cores', 'cílios', 'produto', 'profissional', 'maleta', 'k
    THE TOP 15 WORDS FOR TOPIC # 3:
     ['jogo', 'the', 'digital', 'compra', 'original', 'frete', 'of', 'vendedor', 'jogar', 'online',
. . .
0 - brinquedo
1 - livro
2 - maquiagem
3 - game
. . .
'\n0 - brinquedo\n1 - livro\n2 - maquiagem\n3 - game\n'
{'brinquedo': 0, 'livro': 1, 'maquiagem': 2, 'game': 3 }
→ {'maquiagem': 2, 'game': 3, 'livro': 1, 'brinquedo': 0}
text_vect_test = vect.transform(df_test.text_lemma_verbs)
```

results = LDA.transform(text_vect_test)

df_test.head()

df_test['topico'] = results.argmax(axis=1)

→		non	ne desc	ricao	catego	ria	texto	text_l	emma_verbs	topico
	2700	Estojo Du Iluminador Bronzer Bel Angel M	E BRONZER I	BELLE	maquiag	llu Jem Bro	Estojo Duo minador E onzer Belle Angel M	•	o lluminador Belle Angel 	
	1297	Patrulh Canir Carrinhos D Fricção	na Kit carrin De Patrulha	canina	brinqu	edo Cal	Patrulha Canina rrinhos De Fricção 6		ulha Canina s De Fricção 6 Perso	0
impor	t nump	y as np								
- {)	_	uedo': 0, '1:	df_test.catego ivro': 1, 'maq de Escov descricao		. 2, 'g		quandade text_len		ιτα quaιισα topico c	
-	2700	Estojo Duo Iluminador E Bronzer Belle Angel M	DUO ILUMINADOR E BRONZER BELLE ANGEL - B0250 D	maquia	llı agem	Estojo Duo uminador E Bronzer Belle Angel M	llu	Estojo Duo ıminador E Belle Angel 	2	2
	1297	Patrulha Canina Carrinhos De Fricção	Kit carrinhos da Patrulha canina Tamanho:	,		Patrulha Canina Carrinhos De Fricção	Ca	ha Canina rrinhos De 6 Perso	0	0
trom	skiear	n.metrics imp	port accuracy_	score,	contusi	on_matrix				

```
print(accuracy_score(df_test.categ_cod, df_test.topico))
```

```
0.78938356164\sidi96
                                  Midia Fisica...
      Fisica ... ORIGINAIS# ...
                            Fisica ...
```

```
import seaborn as sns
import matplotlib.pyplot as plt
matrix = confusion_matrix(df_test.categ_cod, df_test.topico)
df_cm = pd.DataFrame(matrix, index=list('0123'),
                  columns=list('0123'))
```

plt.figure(figsize = (10,7)) sns.heatmap(df_cm, annot=True)

