课程设计指导书

换热器

哈尔滨工程大学 核科学与技术学院 2017年1月

目 录

第1章 绪论	1
1.1 课程设计目的	1
1.2 课程设计内容	1
1.3 课程设计题目	1
1.4 课程设计要求	2
1.5 课程设计时间安排 ······	3
第2章 换热器设计步骤	4
第 3 章 换热器热力计算	6
第4章 换热器水力计算	11
参考文献	13
附录 1 设计说明书封面模板	14
附录 2 壳程摩擦系数	17
附录 3 温差校正系数	18
附录 4 水的结垢热阻	19
附录 5 液体在管内流动时的摩擦系数	19
附录 6 壳程压降结垢影响校正系数	20
附录 7 合理压降的选取	20
附录 8 参考图	21

第1章 绪论

1.1 课程设计目的

- 1、学习管壳式换热器设计与计算,掌握弓形折流板管壳式换热器设计计算的标准方法。
- 2、将所学的工程流体力学、传热学知识,运用到实际的换热器设计当中。综合传热计算、流动计算等过程进行换热器方案设计和比较,对设计方案进行可行性评价和优选,体现创新意识。
- 3、培养查阅文献,利用资料的能力。阅读指导书所提供的文献,查找、学习需要的相 关知识,分析问题,分析所选方案的合理性。
- 4、能够针对换热器设计中的热力计算、水力计算进行编程;能恰当使用计算机软件, 完成工程问题的计算和分析,并能够理解其局限性。
- 5、能够在团队合作中与其他成员进行有效沟通,共享信息,合作共事,在多学科背景下的团队中承担个体、团队成员的角色;能够倾听和综合团队成员意见,合理决策,体现管理能力。
- 6、将所学工程制图的知识,用于换热器设计绘图,用图纸表达换热器的设计问题。
- 7、撰写设计说明书,描述对换热器设计这一核工程问题的理解和认识。
- 8、就换热器设计进行陈述、答辩,能够清晰表达观点,清晰回应指令,能够就核工程 领域换热器设计问题与业界同行进行有效沟通和交流。

1.2 课程设计内容

- 1、编程完成管壳式换热器的热力计算:
- 2、编程完成所设计的换热器管程、壳程的水力计算:
- 3、绘制换热器结构总图。

1.3 课程设计题目

设计一台管壳式换热器,把 18000 kg/h 的热水由温度 t_1 "冷却至 t_1 ",冷却水入口温度 t_2 ",出口温度 t_3 ",设热水和冷却水的运行压力均为低压。

题目中的运行压力和4个温度由同学从以下压力和温度范围中自己任意设定1组,作为设计要求。

热水的运行压力: 0.1MPa-0.3MPa (绝对压力)

冷却水运行压力: 0.1MPa-0.2MPa (绝对压力)

热水入口温度 t_1 ': 75℃-85℃;

热水出口温度 t_1 ": 40℃-50℃;

冷却水入口温度 t₂': 20℃-25℃;

冷却水出口温度 t_2 ": 40℃-45℃;

说明:需要的公式和系数从有关书里查。

1.4 课程设计要求

- 1、分组进行设计,3人1组(抽签确定)。如果余2人,则此2人1组;如果余1人,则抽出另外某一3人的组,4人分成2组。
- 2、每组要讨论出一个相同的设计参数要求。然后按设计参数要求,各成员分别开始设计。设计中间,注意与其他成员沟通,共享信息,倾听、综合意见。设计完成以后,要了解其他组员的设计方案和结果,进行对比、分析、可行性评价、方案优选。
- 3、提交弓形折流板管壳式换热器的设计说明书1册。
- 4、提交弓形折流板管壳式换热器的总图1张。
- 5、设计说明书要求

使用 A4 纸, 左侧装订, 主体部分使用双面。

设计说明书包括

封面(注:使用附录中的统一封面格式。打印)

目录(注:使用附录中的统一目录格式。打印。标明页码。)

正文(注:见附录中说明)

参考文献(注:见附录中说明)

附录(注:附计算程序)

6、换热器总图要求

使用 A2 图纸, 手绘, 按规范折叠(叠成 A4 大小, 露出标题栏)。

总图上包括

换热器总图(注:通过设计已经确定了尺寸的部分按比例画,标注尺寸;未确定尺寸的部分不标注尺寸。)

换热管布置图(注:同上)

标题栏、技术特性表、管口表等

技术要求(注:查参考资料填写。)

1.5 课程设计时间安排

2014 级换热器课程设计时间: 2017 年 1 月 9 日-15 日。

2017年1月9日上午,指导老师讲解课程设计及要求,布置本班答疑时间和地点。

2017年1月9日-13日,学生按要求进行课程设计计算和绘图,编写设计说明书。按指导教师布置的时间和地点去答疑,有特殊问题可随时联系指导老师。

2017年1月13日下午,各班将收齐的设计说明书和图纸,交给指导教师。

2017年1月14日8:00-12:00, 14:00-18:00, 课程设计答辩。以班级为单位, 按组的顺序, 答辩老师为各班指导教师。

未通过的同学按老师要求修改设计说明书和图纸,复习,准备第二次答辩。

2017年1月15日8:00-12:00,第一次答辩没通过的同学,第二次答辩。答辩老师为指导教师组。

第二次答辩未通过的同学,此门课程不及格,跟下一届重修。

课程设计课表

1月	9 日	10 日	11 日	12 日	13 日	14 日	15 日
周		1 1	\equiv	四	五.	六	日
上午	讲解					答辩	二辩
下午		答疑	答疑	答疑	交材料	答辩	

班级	指导教师	讲解	答疑时间	一次答辩	二次答辩
		1月9日 8:00-11:00	1月10日15:00-17:00 1月11日15:00-17:00 1月12日15:00-17:00	1月14日 8:00-12:00, 14:00-18:00	1月15日 8:00-12:00
20141511	谷海峰	11#0126	三甲 213	三甲 213	
20141512	曹夏昕	11#0132	三甲 213	三甲 221	
20141513	丁铭	11#0135	三甲 214	三甲 214	
20141514	高璞珍	11#0141	三甲 212	三甲 212	三甲 219
20141515	张楠	11#0143	三甲 214	三甲 219	
20141816 陈赓班	孟兆明	11#0144	三甲 214	三甲 215	

第2章 换热器设计步骤

换热器计算程序或步骤随着设计任务和原始数据的不同而不同,应根据换热器设计原理和方法灵活编排,要尽量使已知数据和要计算的项目顺次编排,但由于许多项目之间互相关联,无法排定次序,故往往先行根据经验选定一个数据使计算得以进行,等到该项数据通过计算得到后再与初选的数据进行比较,直到达到规定的差额要求,试算才告结束。例如,传热计算和水力计算中,不可避免地要涉及结构数据,为此,在换热器设计中,常先要根据经验资料初选一个传热系数 K_0 ,以便初步计算得到传热面积和确定结构,然后才能进行热力计算,并根据传热理论计算得到传热系数 K_j 。当 K_j = (1.1-1.2) K_0 时,试算方为成功。一般条件下,换热器设计的步骤如下[1]:

- (1) 根据设计任务搜集尽量多的原始资料,包括给定的数据和查得的数据在内,例如:管、壳程的流体名称、温度、压力、允许压降、流量或热负荷等。
 - (2) 确定定性温度,并进而查得两侧流体的密度、粘度、导热系数、比热等。
- (3) 计算换热器的总平均温差。为了决定平均温差的校正系数,需初步决定换热器流程型式。
- (4) 计算热负荷,利用热平衡方程式,并初步估计一个换热器的热效率 η 以估计热量损失 O_s ,即:

热平衡热量:
$$Q_p = G_1 c_{p1} \Delta t_1 = G_2 c_{p2} \Delta t_2 + Q_s$$

设计热负荷:
$$Q_0 = Q_n - Q_s$$

或
$$Q_0 = Q_p \cdot \eta = G_1 c_{p1} \Delta t_1 \cdot \eta$$

式中: G_1 、 G_2 为热、冷流体的质量流量, kg/s;

 c_{p1} , c_{p2} 为热、冷流体的定压比热,kJ/(kg℃);

 Δt_1 , Δt_2 为热、冷流体的进出口温度差, \mathbb{C} ;

- (5) 初选传热系数 K_0 ,初算传热面积 F_0 ,进而利用 F_0 来选择标准型号换热器,或自行设计换热器的结构(包括管程和壳程的初步结构设计)。
- (6) 管程压降及传热计算。选定允许压降 Δp ,假定壁面温度 t'_w ,并根据初选结构计算管程流通截面、流速、粘度校正系数、换热系数和压降,当换热系数远大于传热系数值且压降小于允许压降时,方能进行壳程传热计算,否则要重选 K_0 或进行结构调整。

- (7) 壳程压降及传热计算。根据初选结构和 t'w 计算壳程流通截面、流速,压降和换热系数,并核定压降及换热系数的合理性,不符合要求则改变壳程设计,调整折流板尺寸、间距或壳径,直至满意为止。
- (8) 核算传热系数。根据两侧流体流速和温度决定污垢热阻,进而计得传热系数 K_j , 当 $K_j = (1.1-1.2) K_0$ 即符合要求。也可以进而计算出传热量 Q_j 与传热面积 F_j ,并与 Q_0 和 F_0 相比较,当有 $10\% \sim 20\%$ 的过剩传热面或传热量即符合要求。
 - (9) 核算壁面温度。根据传热系数计得的管壁温度 t_w 与假定的 t'_w 基本相符即可。
- (10) 核算压力降,当 6、7 步未进行压降计算时,对管、壳程的沿程摩擦阻力和局部阻力进行计算,总压降小于允许压降即为满意。
- (11) 详细结构设计,并对管板、壳体进行强度校核,有时尚需核算管、壳热应力和管子接口处的拉脱应力。(本课程设计略)

为计算简明、检查调整方便,常按上述程序列表计算。

第3章 换热器热力计算

	No	计算项目	符号	单位	计算公式或图表	数值	备注
原	1	冷却水 进口温度	t_2^{\prime}	°C	给定		
	2	冷却水 出口温度	$t_2^{\prime\prime}$	°C	给定		
始	3	冷却水 工作压力	\mathcal{P}_2	MPa	给定		绝对压力
数	4	热水 进口温度	$t_1^{ \prime}$	°C	给定		
	5	热水 出口温度	$t_1^{\prime\prime}$	°C	给定		
据	6	热水流量	G_{1}	kg/h	给定		
	7	热水 工作压力	\mathcal{P}_1	MPa	给定		绝对压 力
定	8	冷却水的 定性温度	\overline{t}_2	°C	$\frac{t_2'+t_2''}{2}$		
性	9	冷却水的 密度	$ ho_2^{}$	kg/m ³	查物性表		
温	10	冷却水的 比热	C_{p2}	kJ/(kg·℃)	查物性表		
度	11	冷却水的 导热系数	λ_2	W/(m·°C)	查物性表		
和	12	冷却水的 粘度	$\mu_{\scriptscriptstyle 2}$	kg/(m·s)	查物性表		

	No	计算项目	符号	单位	计算公式或图表	数值	备注
物	13	冷却水的 普朗特数	Pr ₂		计算或直接查得		
性	14	热水的定 性温度	$\overline{t_1}$	°C	$\frac{t_1''+t_1'}{2}$		
参	15	热水密度	$ ho_{\!_1}$	kg/m ³	查物性表		
	16	热水比热	C_{p1}	$kJ/(kg \cdot ^{\circ}C)$	查物性表		
数	17	热水的 导热系数	$\lambda_{_{1}}$	$W/(m\cdot ^{\circ}\mathbb{C})$	查物性表		
计	18	热水粘度	$\mu_{_{\! 1}}$	kg/(m·s)	查物性表		
算	19	热水的普朗特数	Pr ₁		计算或直接查得		
传热	20	换热器 效率	η		取用		
量及	21	设计传 热量	Q_{0}	W	$G_1 c_{p1} (t_1' - t_1') \eta \times 1000 / 3600$		
水流量	22	冷却水流量	G_2	kg/h	$\frac{3600 Q_0}{1000 c_{_{p2}}(t_2''-t_2')}$		
有效	23	逆流平均温差	$\Delta t_{_{N}}$	°C	$\frac{\Delta t_{\pm}^{-} \Delta t_{\pm}}{\ln(\frac{\Delta t_{\pm}}{\Delta t_{\pm}})}$		
平	24	参数	Р		$rac{t_2''-t_2'}{t_1'-t_2'}$		
均温差			R		$\frac{t_1' - t_1''}{t_2'' - t_2'}$		
左		温差 校正系数	φ		附录 3 参考《传热学》		

	No	计算项目	符号	单位	计算公式或图表	数值	备注
	25	有效平均 温差	$\Delta t_{_{\it m}}$	°C	$\varphi\!\Deltat_{_{N}}$		
管	26	试选 传热系数	K_0	W/(m ² ·℃)	参考值: 500~1200		
程	27	初选 传热面积	F_0	m ²	$\frac{{\cal Q}_{_0}}{K_{_0}\Deltat_{_{\it I\! I\! I}}}$		
换	28	管子外径	d_0	m	选换热器管 换热器管参考规格:		
热					Φ25×2.5、Φ19×2、Φ16×1.5 无缝 钢管		
系		管子内径	$d_{_{i}}$	m	<i>d</i> ₀-2×壁厚		
数	29	管子长度	l	m	取换热器管标准长度 参考值: 2、2.5、3、4.5、6 m		
	30	总管子数	N_t		$rac{F_{_0}}{\pi d_{_o} I}$		实际取整
	31	管程 流通截面	a_2	m ²	$(\frac{N_t}{2})\frac{\pi}{4}d_i^2$		按2管程计算
	32	管程流速	w_2	m/s	$\frac{G_2}{\rho_2 a_2 \times 3600}$		
	33	管程 雷诺数	Re ₂		$\frac{ ho_2 w_2 d_i}{\mu_2}$		
	34	管程 换热系数	h_2	$W/(m^2 \cdot {}^{\circ}C)$	$Nu_2 = 0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^n$ $h_2 = \frac{Nu_2 \lambda_2}{d_i}$		
					d_i		

	No	计算项目	符号	单位	计算公式或图表	数值	备注
初	35	管子 排列方式			正三角形		
选结	36	36 管间距 S		m	≥1.25 d _o 为宜。 换热管常用中心距: Φ25 换热管, s = 32 mm; Φ19 换热管, s = 25 mm; Φ16 换热管, s = 22 mm。		正三角形边长
构	37	管束中心处 一排管数	N_c		1. $1\sqrt{N_t}$		
	38	管束外沿与 壳体间距	e	m	$e = 2 d_{\rm o}$		
	39	壳体内径	$D_{\rm s}$	m	$S(N_c - 1) + 4d_o$		
	40	长径比	$l\!/D_{\mathrm{s}}$		参考值: 4~25 最佳值: 6~10		
	41	弓形折流 板弓高	h	m	$0.2D_{\rm s}$		
	42	折流板 间距	В	m	$D_s/3$		
	43	折流板数	n_{B}		(l/ B) - 1		取整
売	44	売程 流通截面	\mathcal{A}_{l}	m ²	$a_1 = BD_s(1 - \frac{d_o}{s})$		
程	45	壳程流速	w_1	m/s	$\frac{G_1/3600}{\rho_1 a_1}$		
换	46	売程 质量流速	W_1	kg/(m ² ·s)	$\rho_{l}w_{l}$		
热	47	売程 当量直径	d_e	m	参考《传热学》		

	No	计算项目	符号	单位	计算公式或图表	数值	备注
系	48	壳程	Re ₁		$W_1 d_{\underline{e}}$		
· 尔		雷诺数			$rac{ extit{ extit{W}}_{1}d_{e}}{ extit{ extit{μ}}_{1}}$		
数	49	管间距	$rac{S_1}{S_2}$		参考《传热学》		
**		比值	S_2				
	50	努塞尔数	Nu_1		参考《传热学》		
	51	管排	C		参考《传热学》		
		修正系数	\mathcal{E}_n				
	52	壳程	h_1	$W/(m^2 \cdot {}^{\circ}C)$	$h_1 = \varepsilon_n \frac{Nu_1 \lambda_1}{d_0}$		
		换热系数			d_0		
	53	冷却水侧	r_2	$m^2 \cdot {}^{\circ}C /W$	附录 4		自来水
传		污垢热阻					
	54	热水侧	r_1	m²·°C /W	附录 4		
		污垢热阻					
热	55	管壁热阻	r	$m^2 \cdot ^{\circ} C / W$	忽略		
	56	总传热热阻	I_Σ'	m²·°C /W	$\frac{1}{h_1} + r_1 + r_2(\frac{d_o}{d_i}) + \frac{1}{h_2}(\frac{d_o}{d_i})$		
系	57	传热系数	$K_{\rm j}$	W/(m ² ·°C)	$\frac{1}{r_{\scriptscriptstyle \Sigma}}$		
*/r	58	传热系数	$K_{\rm j}/K_{\rm 0}$		参考值: 1.1~1.2		
数		比值大小					
管	59	管外壁			Q_0		
壁		热流密度	q_1	W/m^2	$q_1 = \frac{Q_0}{N_t \pi d_o I}$		
温	60	管外壁	t_{w1}	°C	$\overline{t_1} - q_1(\frac{1}{h_1} + r_1)$		
度		温度	<u>-</u>		$l_1 - q_1 \left(\frac{h_1}{h_1} + I_1 \right)$		
	61	管外壁					
		温度校核					

第4章 换热器水力计算

	No	计算项目	符号	单位	计算公式或图表	数值	备注
	1	壁温下	$\mu_{_{\!w}2}$	Pa·s	查物性表		
管		水的粘度					
	2	管程	$\phi_{\!\scriptscriptstyle 2}$		$\left[rac{oldsymbol{\mu}_2}{oldsymbol{\mu}_{w^2}} ight]^{0.~14}$		
		粘度修正系数			$\lfloor \mu_{_{\!w}2} \rfloor$		
程	3	管程摩擦系数	$oldsymbol{\xi}_i$		附录 5		
压	4	管子沿程压降	$\Delta p_{_{i}}$	Pa	$\left(\frac{W_2^2}{2\rho_2}\right)\left(\frac{l\cdot n_t}{d_i}\right)\left(\frac{\xi_j}{\phi_2}\right)$		n _t 为管 程数
	5	回弯压降	$\Delta p_{_T}$	Pa	$\left(rac{ extit{ extit{W}}_2^{2}}{2 ho_2} ight)4n_t$		
降	6	进、出口管处	W_{N2}	kg/(m ² ·s)	按 ρw^2 <3300 Pa 取用,		
		质量流速			w 为进、出口管流体流速		
	7	进、出口管处 压降	$\Delta p_{_{N2}}$	Pa	$\left(\frac{W_{N2}^{2}}{2\rho_{2}}\right) \times 1.5$		
	8	管程结垢	$\phi_{\!\scriptscriptstyle d2}$		Φ25×2.5 管子, φ _{d2} =1.4;		
		校正系数			Φ 19×2 管子, ϕ_{d2} =1.5;		
					Φ 16×1.5 管子, ϕ_{d2} =1.5;		
	9	管程压降	$\Delta p_{_2}$	Pa	$\left(\Delta p_i + \Delta p_r\right)\phi_{d2} + \Delta p_{N2}$		
	10	当量直径	$d_{_{e}}^{'}$	m	$\frac{{D_s}^2 - N_t {d_o}^2}{D_s + N_t {d_o}}$		
売	11	雷诺数	Re ₁ '		$(\frac{W_1 d_e'}{\mu_1})$		
	12	壳程摩擦系数	ξ ₀		附录 2		

	No	计算项目	符号	单位	计算公式或图表	数值	备注
	13	管束压降	Δp_0	`	$\left(\frac{W_1^2}{2\rho_1}\right) \left[\frac{D_s(n_B+1)}{d_e'}\right] \frac{\xi_0}{\phi_1}$		
程	14	管嘴处	W_{N1}	kg/(m ² ·s)	按 $ ho w^2 < 2200$ 取用		
		质量流速					
	15	进、出口管	$\Delta p_{_{N1}}$	Pa	$\frac{W_{_{N1}}^{2}}{2\rho_{_{1}}} \times 1.5$		
		压降			$2\rho_{_{1}}$ $\stackrel{\wedge}{\sim}$ 1.5		
压	16	导流板	${\cal E}_{ip}$		由实测决定, 缺乏实测数据时,		
		阻力系数			取 ε_{ip} = 5~10 估算。		
	17	导流板压降	$\Delta p_{ip}^{}$	Pa	$rac{{{ extstyle W}_{N1}^{-2}}}{2{oldsymbol{ ho}_{1}}} imes {oldsymbol{arepsilon}_{ip}}$		
	18	壳程结垢	$oldsymbol{\phi}_{do}$		附录 6		
降		修正系数					
	19	壳程压降	$\Delta p_{_{1}}$	Pa	$\Delta p_0 \phi_{do} + \Delta p_{ip} + \Delta p_{N1}$		
	20	管程允许压降	$\left[\Delta p_{_{2}} ight]$	Pa	附录 7		
	21	壳程允许压降	$\left[\Delta p_{_{1}} ight]$	Pa	附录 7		
	22	压降校核					

参考文献

- [1] 朱聘冠. 换热器原理及计算. 清华大学出版社, 1987年
- [2] 史美中, 王中铮. 热交换器原理与设计(第四版). 东南大学出版社, 2009年
- [3] 杨世铭, 陶文铨. 传热学(第四版). 高等教育出版社, 2011年
- [4] 钱颂文, 换热器设计手册. 化学工业出版社, 2006 年
- [5] 潘继红, 田茂诚. 管壳式换热器的分析与计算. 科学出版社, 1996年
- [6] GB151-1999 管壳式换热器
- [7] GB151-2012《热交换器》征求意见稿

换热器课程设计说明书

专业名称:核工程与核技术

姓 名:

班 级:

学号:

指导教师:

哈尔滨工程大学 核科学与技术学院 2017 年 1 月 13 日

目 录

1	设计题目
	1.1 设计题目
	1.2 团队成员
	1.3 设计题目的确定过程
2	设计过程
3	热力计算
4	水力计算
5	分析与总结
	5.1 可行性评价和方案优选
	5.2 技术分析
	5.3 总结与体会
参	。 考文献
肾	付录 计算程序

目 录

1 设计题目

- 1.1 设计题目 (注:按每组所选定的设计参数写)
- 1.2 团队成员 (注: 写清楚成员的编号(如6组2号)、姓名和学号)
- 1.3 设计题目的确定过程 (注:说明讨论过程和如何确定的设计参数)

2 设计过程

(注: 另起一页, 简要说明设计过程。手写)

3 热力计算

(注:可参考本课程设计指导书,使用提供的表格。打印提供的表格及其中的项目和公式;表格中缺少的公式或者步骤由同学自行手写加上。手写填表,写清代数的过程及计算得到的数据结果。如果有反复或者迭代,要写清楚迭代过程。)

4 水力计算

(注:同上)

5 分析与总结

5.1 可行性评价和方案优选

(注:对每位成员的设计方案和结果进行对比、分析,作可行性评价,说明3个设计方案各有什么优点和缺点。设计方案号为成员编号(如6组2号方案)。)

5.2 技术分析

(注:列举自己在设计、计算、绘图过程中,什么地方参考了哪篇参考文献(列出参考文献标号)的什么内容,解决了什么问题,参考文献的内容起到了什么作用。说明编程所用的语言,编程过程。手写)

5.3 总结

(注:说明团队怎么工作的,本人在团队中起了什么作用;此次课程设计的收获。手写)

参考文献

[1]

[2]

附录 计算程序

(注: 把程序排好版, 打印)

附录 4

水的结垢热阻 10⁵ r_d, m²·℃/W

	热流体温度	热流体温度 ≤ 115℃ 热流体				
	水温≤	≤ 50°C	水温> 50℃			
	水速≤1 m/s	水速> 1 m/s	水速≤1 m/s	水速> 1 m/s		
蒸馏水	8.6	8.6	8.6	8.6		
海水	8.6	8.6	17.2	17.2		
干净软水	17.2	17.2	34.4	34.4		
自来水	17.2	17.2	34.4	34.4		
井水	17.2	17.2	34.4	34.4		
洁净湖水	17.2	17.2	34.4	34.4		
洁净河水	34.4	17.2	51.6	34.4		
一般河水	60.2	34.4	68.8	60.2		
凉水塔或洁水池						
用净化水补充	17.2	17.2	34.4	34.4		
用未净化水补充	51.6	51.6	86.0	68.8		
锅炉给水 (净化后)	17.2	8.6	17.2	17.2		
锅炉废水	34.4	34.4	34.4	34.4		
硬水(>0.25 g/l)	51.6	51.6	86.0	86.0		
城市河水 (极浊)	146.2	146.2	172.0	146.2		

注: 若热流体温度超过 200℃, 结垢热阻乘以 1.5~2.0。

附录 5

流体在管内流动时的摩擦系数

壳程压降结垢影响校正系数

层流区(Re。<10)

$D_{ m s}/B$		1.0	1.5	2.0	3.0	4.0	5.0
r_{do} m ² ·°C/W	0	1.00	1.00	1.00	1.00	1.00	1.00
	0.000172	1.06	1.11	1.15	1.20	1.24	1.28
	0.000344	1.13	1.22	1.29	1.39	1.48	1.55
	0.000516	1.19	1.32	1.44	1.59	1.72	1.83
	0.000688	1.25	1.43	1.58	1.79	1.96	2.11
	≥0.000860	1.32	1.54	1.73	1.99	2.20	2.35

过渡区(Re。= 10 ~100)及湍流区(Re。≥100)

$D_{ m s}/B$		1.0	1.5	2.0	3.0	4.0	5.0
r _{do} m²·°C/W	0	1.00	1.00	1.00	1.00	1.00	1.00
	0.000172	1.12	1.20	1.28	1.38	1.47	1.55
	0.000344	1.24	1.42	1.58	1.82	2.03	2.21
	0.000516	1.37	1.65	1.92	2.31	2.66	2.96
	0.000688	1.50	1.90	2.28	2.85	3.36	3.82
	≥0.000860	1.64	2.17	2.68	3.44	4.14	4.77

注:表中 Re_o 、 r_{do} ,表示壳程流体的 Re_o 及结垢热阻, D_s 为壳体内径,B 为折流板间距。

附录 7

合理压降的选取

运行情况	运行压力 bar (绝压)	合理压降 bar	
负压运行	$p = 0 \sim 1$	$\Delta p = p/10$	
低压运行	$p = 1 \sim 1.7$	$\Delta p = p/2$	
IW/F/\&1\	1.7 ~ 11	0.35	
中压运行 (包括用泵输运的流体)	<i>p</i> = 11 ~ 31	$\Delta p = 0.35 \sim 1.8$	
较高压运行	p=31~81 bar (表压)	$\Delta p = 0.7 \sim 2.5$	

附录 8

