0.1 正规子群

定义 0.1 (正规子群)

令 (G, \cdot) 是一个群,且 $N \subset G$ 。我们称 N 是个正规子群,记作 $N \triangleleft G$,若

N 是个子群.

 $\forall a \in G, aN = Na.$

注 注意 $aN = Na \Leftrightarrow an = na, \forall n \in N$. 虽然 $an = na, \forall n \in N \Rightarrow aN = Na$, 但是 $aN = Na \Rightarrow an = na, \forall n \in N$. 实际 $\bot, aN = Na \Leftrightarrow \exists n, n' \in N \text{ s.t. } an = n'a$.

引理 0.1

设G是一个群或幺半群,若H < G,则HH = H。

证明 一方面,对 $\forall h_1, h_2 \in H$,根据乘法封闭性,都有 $h_1h_2 \in H$ 。故 $HH \subset H$ 。另一方面,设 $h \in H$,则 $h = he \in HH$ 。故 $H \subset HH$ 。因此HH = H。

命题 0.1

令 (G,\cdot) 是一个群,且 $N \triangleleft G,a,b \in G$,则

 $(aN) \cdot (bN) = (ab)N.$

是良定义的。

结论 元素与群 (其实只要满足结合律的半群就足够了) 的乘积满足广义结合律. 例如: 设 G 是一个群, 若 H,K < $G,a,b\in G,$ 则

$$aHbK = (aH)(bK) = a((Hb)K) = a(H(bK)) = (a(Hb))K = ((aH)b)K.$$

$$abHK = (ab)(HK) = a((bH)K) = a(b(HK)) = ((ab)H)K.$$

.

即两个陪集相乘可以看作一个陪集或两个陪集的乘积的陪集等.

证明 证法一:设 aN = a'N, bN = b'N,则由引理??可知 $a^{-1}a', b^{-1}b' \in N$,我们只须证明 abN = a'b'N,即 $(ab)^{-1}a'b' = b^{-1}a^{-1}a'b' \in N$ 。首先中间这个部分,即 $a^{-1}a'$,是在 N 中的。接着,利用 N 是个正规子群,再结合引理??,我们可以得到 $b^{-1}Nb = N$,因此, $b^{-1}a^{-1}a'b' \in b^{-1}Nb' = N$ 。进一步地,由引理??可得 abN = a'b'N。这就证明了良定义性。

证法二:事实上,这个乘法可以简单地理解成子集乘法,即 $(aN)(bN) = \{xy : x \in aN, y \in bN\}$ 。我们只须说明,这从集合意义上,等于 abN。而这几乎是显然的。由于 Nb = bN 及引理 0.1,我们有 aNbN = abNN = abN. 这样,既然从集合意义上相等,那么自然就是良定义的(因为我们不必选取单位元)。

命题 0.2 (商群)

令 (G,\cdot) 是一个群,且 $N \triangleleft G$,则 $(G/N,\cdot)$ 构成一个群,称为 (G 在 N 上的) **商群**,其中的单位元是 eN=N,每个陪集 aN 的逆元是 $a^{-1}N$ 。

证明 由命题 0.1可知商群 $(G/N, \cdot)$ 的乘法是良定义的.

封闭性: 对 $\forall aN, bN \in (G/N, \cdot)$, 其中 $a, b \in G$, 根据 G 对乘法的封闭性可得 $ab \in G$, 从而 $(aN)(bN) = abN \in (G/N, \cdot)$.

结合律: 令 $a,b,c \in G$,则利用乘法的定义,(aNbN)cN = (abN)(cN) = ((ab)c)N。利用 G 对乘法的结合律,得到这是等于 (a(bc))N 的。类似地,这最终等于 aN(bNcN)。

单位元: 令 $a \in G$, 则 aNeN = (ae)N = aN, 类似地 eNaN = aN。

逆元: 令 $a \in G$, 则 $aNa^{-1}N = (aa^{-1})N = eN$, 类似地 $a^{-1}NaN = eN$ 。 综上, 若 $N \triangleleft G$, 则 G/N 在这个自然的乘法下构成群, 称为一个商群。

引理 0.2 (正规子群的等价条件)

 $\Diamond(G,\cdot)$ 是一个群, 且 N < G, 则下列命题等价

- (1) $N \neq G$ 的正规子群, 即 $\forall a \in G, aN = Na$.
- (2) $\forall a \in G, aNa^{-1} \subset N$.
- (3) $\forall a \in G, \forall n \in N, ana^{-1} \in N$.

证明 显然第二个条件和第三个条件等价。我们只要证明第一个条件与第二个条件等价即可。

一方面,设 N 是 G 的正规子群。令 $a \in G$,则 aN = Na。同时右乘 a^{-1} 并取一半的包含关系,我们得到了 $aNa^{-1} \subset N$ 。

另一方面,设第二个条件成立。令 $a \in G$,则由 $aNa^{-1} \subset N$ 及引理??得到 $aN \subset Na$,由 $a^{-1}N(a^{-1})^{-1} \subset N$ 及引理??得到得到 $Na \subset aN$ 。因此,aN = Na。

命题 0.3 (正规子群的任意交还是正规子群)

令 $(N_i)_{i\in I}$ 是一族 G 的正规子群,则它们的交集仍然是 G 的正规子群,即

$$\bigcap_{i\in I}N_i\lhd G.$$

证明 首先,由子群的任意交仍是子群可知 $\bigcap_{i \in I} N_i < G$. 因此我们只需证明正规性。利用正规子群的等价条件 (3)可知,对 $\forall a \in G, \forall n \in \bigcap_{i \in I} N_i$,我们只须证明 $ana^{-1} \in \bigcap_{i \in I} N_i$ 即可. 任取 $i \in I$,则 $n \in N_i$ 。由于 $N_i \triangleleft G$,我们有 $ana^{-1} \in N_i$ 。因此,由 i 的任意性可知 $ana^{-1} \in \bigcap_{i \in I} N_i$ 。这就证明了 $\bigcap_{i \in I} N_i \triangleleft G$ 。

命题 0.4

$$\{e\} \triangleleft G$$
,

 $G \lhd G$.

证明 平凡群:怎么乘都是单位元,所以对乘法封闭;包含单位元;唯一的元素的逆元还是单位元;在这个群中,a的左右陪集都是 $a\{e\}=\{e\}a=\{a\}$ 。因此, $\{e\} \triangleleft G$ 。

整个群: 子群是显然的; 在整个群 G 中,每个元素的左右陪集都是全集,即 aG = Ga = G,这是因为 $a \in G$ 。 因此, $G \triangleleft G$ (推论??).

推论 0.1

- 1. 若 G 是一个群, e 是其单位元, 则 $G/\{e\}$ 同构于 G, 即 $G/\{e\} \simeq G$ 。
- 2. 若G是一个群,则G/G是平凡群,即 $G/G = \{e\}$ 。

证明

1. 令

$$f: G \to G/\{e\}, a \mapsto a\{e\} = \{a\}.$$

显然 f 是双射。对 $\forall a,b \in G$, 我们都有

$$f(ab) = \{ab\} = ab\{e\} = (a\{e\})(b\{e\}) = \{a\}\{b\} = f(a)f(b).$$

因此 f 也是同态映射。于是 f 是同构映射。故 $G/\{e\} \simeq G$ 。

2. 由命题 0.2 及命题 0.4 可知 G/G 是一个群。注意到 $\forall a \in G$,都有 $aG = G$ 。因此 $G/G = G$ 故 $G/G = \{e\}$ 。	G。于是 G/G = 1。
令(G,·)是个阿贝尔群,则子群就是正规子群,正规子群也就是子群,即	
$H < G \iff H \lhd G$	•
证明 根据阿贝尔群满足交换律可知, $aH = \{ah : h \in H\} = \{ha : h \in H\} = Ha$ 。	
定理 0.1	\Diamond
<mark>证明</mark>	
定义 0.2	
◆B 0 €	*
命题 0.6	•
<mark>证明</mark>	
定理 0.2	
证明	\heartsuit
定义 0.3	*
命题 0.7	•
证明	
定理 0.3	\Diamond
<mark>证明</mark>	
定义 0.4	
命题 0.8	*
明皮 0.0	•
<mark>证明</mark>	

定理 0.4

0

证明