元学习——从MAML到MAML++

作者: 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

Few-shot learning领域最近有了实质性的进展。这些进步大多来自于将few-shot learning作为元学习问题。Model-Agnostic Meta-Learning (MAML)是目前利用元学习进行few-shot learning的最佳方法之一。MAML简单,优雅,功能强大,但是它有很多问题,比如对神经网络结构非常敏感,经常导致训练时不稳定,需要费力的超参数搜索来稳定训练和实现高泛化,并且在训练和推理时间上都非常昂贵的计算。在文"How to train your MAML"中,对MAML进行了各种改进,不仅稳定了系统,而且大幅度提高了MAML的泛化性能、收敛速度和计算开销。所提方法称之为MAML++。本博文首先介绍什么是元学习,经典的Model-Agnostic Meta-Learning的定义与执行过程,进而说明MAML面临的缺点与挑战,针对这些问题,进行相应改进,从而得到MAML++。

1. Meta Learning (Learn to Learn)

➤ Meta Learning

Supervised Learning: Inputs: \mathbf{x} Outputs: \mathbf{y} $\mathbf{y} = f(\mathbf{x}; \theta)$

Data: $\{(\mathbf{x}, \mathbf{y})_i\}$

Meta-Supervised Learning:

Inputs: $\mathcal{D}_{\mathrm{train}}$ $\mathbf{x}_{\mathrm{test}}$ Outputs: $\mathbf{y}_{\mathrm{test}}$ $\{(\mathbf{x}, \mathbf{y})_{1:K}\}_{\mathbf{y}_{\text{test}} = f(\mathcal{D}_{\text{train}}, \mathbf{x}_{\text{test}}; \theta)}$

Data: $\{\mathcal{D}_i\}$

 $\mathcal{D}_i : \{(\mathbf{x}, \mathbf{y})_i\}$

training data

test set

meta-testing

meta-training

➤ Why Learn to Learn?

- effectively reuse data on other tasks
- replace manual engineering of architecture, hyperparameters, etc.
- learn to quickly adapt to unexpected scenarios (inevitable failures, long tail)
- learn how to learn with weak supervision

Finn, C., Abbeel, P. & Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

2. Black-Box Adaption vs Optimization-Based Approach

➤ Black-Box Adaptation

$$p(\phi_i|\mathcal{D}_i^{\mathrm{tr}},\theta)$$

- 1. Sample task \mathcal{T}_i (or mini batch of tasks)
- 2. Sample disjoint datasets $\mathcal{D}_i^{\mathrm{tr}}, \mathcal{D}_i^{\mathrm{test}}$ from \mathcal{D}_i
- 3. Compute $\phi_i \leftarrow f_\theta(\mathcal{D}_i^{\mathrm{tr}})$
- 4. Update θ using $\nabla_{\theta} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{test}})$

➤ Optimization-Based Approach

$$\max_{\phi_i} \log p(\mathcal{D}_i^{\mathrm{tr}}|\phi_i) + \log p(\phi_i|\theta)$$

$$y^{ ext{ts}} = f_{ ext{MAML}}(\mathcal{D}_{i}^{ ext{tr}}, x^{ ext{ts}})$$
 $\theta \longrightarrow \nabla_{\theta} \mathcal{L} \longrightarrow \theta$
 $= f_{\phi_{i}}(x^{ ext{ts}})$
 (x_{1}, y_{1})
 (x_{2}, y_{2})
 (x_{2}, y_{2})

where $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$

1. Sample task \mathcal{T}_i (or mini batch of tasks)

 (x_3, y_3)

- 2. Sample disjoint datasets $\mathcal{D}_i^{\mathrm{tr}}, \mathcal{D}_i^{\mathrm{test}}$ from \mathcal{D}_i
- 3. Compute $\phi_i \leftarrow f_{\theta}(\mathcal{D}_i^{\text{tr}})$ Optimize $\phi_i \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$
- 4. Update θ using $\nabla_{\theta} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{test}})$

2

3. MAML

> MAML

Meta-Train

3:

4:

5:

6:

7:

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

1: randomly initialize θ

2: **while** not done **do**

Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

for all \mathcal{T}_i do

Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples

Compute adapted parameters with gradient de-

scent: $\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

Support Set

end for

Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ Query Set

9: **end while**

- □ 无论是meta-train还是fine-tune阶段,每个task都包括两部分,support set和query set。
- □ 不同的是,在meta-train阶段,support set参与第一次参数更新。这里的参数更新并没有直接作用于原模型,我们可以理解为先copy了一下模型,用来计算新参数。利用第一轮更新后的参数,通过query set计算第二轮梯度,这一轮的梯度才是模型真正用于更新参数的梯度;
- □ 在fine-tune阶段,support set参与第一次参数更新,更新结果直接作用于原模型,此时没有第二次参数更新,因为query set相当于测试集。
- □ 作者: 徐不知, 链接: https://www.zhihu.com/question/292959709/answer/605504088

Finn, C., Abbeel, P. & Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

4. MAML Problems

How to train your MAML

➤ MAML->MAML++

$$\mathbf{y}_{\text{test}} = f(\mathbf{x}_{\text{test}}; \theta - \alpha \nabla_{\theta} \mathcal{L}(\mathcal{D}_{\text{train}}))$$

MAML Problems:

- ➤ Training Instability
- ➤ Second Order Derivative Cost
- ➤ Absence of Batch Normalization Statistic Accumulation
- Shared (across step) Batch Normalization Bias
- ➤ Shared Inner Loop (across step and across parameter) Learning Rate
- Fixed Outer Loop Learning Rate

Antoniou, A., Edwards, H., & Storkey, A. How to train your MAML. ICLR 2019.

epoch

,

5. MAML++

➤ MAML->MAML++

• Gradient Instability->Multi-Step Loss Optimization (MSL)

- ☐ Minimizing the target set loss computed by the base-network after every step towards a support set task.
- More specifically, the loss minimized is a weighted sum of the target set losses after every support set loss update.

$$\theta = \theta - \beta \nabla_{\theta} \sum_{b=1}^{B} \sum_{i=0}^{N} v_{i} \mathcal{L}_{T_{b}}(f_{\theta_{i}^{b}})$$
task b, step i

Antoniou, A., Edwards, H., & Storkey, A. How to train your MAML. ICLR 2019.

➤ MAML->MAML++

- Absence of Batch Normalization Statistic Accumulation->Per-Step Batch Normalization Running Statistics (BNRS)
- Shared (across step) Batch Normalization Bias->Per-Step Batch Normalization Weights and Biases (BNWB)

Improves:

Training Stability

Convergence Speed Generalization Performance

Given Input x at step i with shape (b, f, h, w) and N inner loop optimization steps

MAML Batch Normalization

aton nonnanzation

Running Mean μ shape:(f)

Scaling Parameters γ shape:(f)

Running Std Deviation σ shape:(f)

Shift Parameters β shape:(f)

$$bn(x, i) = \beta + \gamma \left(\frac{x - \mu}{\sigma}\right)$$

Per-Step Batch Normalization

Running Mean μ shape:(N, f)

Running Std Deviation σ _

shape: (N, f)

shape: (N, f)

Scaling Parameters

Shift Parameters β shape: (N, f)

$$bn(x,i) = \beta_i + \gamma_i \left(\frac{x - \mu_i}{\sigma_i}\right)$$

- □ Collecting statistics in a perstep regime. Instantiating N sets of running mean and running standard deviation for each batch normalization layer in the network and update the running statistics respectively with the steps being taken during the optimization.
- Learning a set of biases perstep within the inner-loop update process.

Antoniou, A., Edwards, H., & Storkey, A. How to train your MAML. ICLR 2019.

6

➤ MAML->MAML++

 Shared Inner Loop (across step and across parameter) Learning Rate->Learning Per-Layer Per-Step Learning Rates and Gradient Directions (LSLR)

Improves:

Training Stability

Convergence Speed

Generalization Performance

- ☐ Learning a learning rate and direction for each layer in the network.
- Learning different learning rates for each adaptation of the basenetwork.

Antoniou, A., Edwards, H., & Storkey, A. How to train your MAML. ICLR 2019.

➤ MAML->MAML++

- Second Order Derivative Cost->Derivative-Order Annealing (DA)
 - □ Using first-order gradients for the first 50 epochs of the training phase, then switching to second-order gradients for the remainder of the training phase.
- Fixed Outer Loop Learning Rate->Cosine Annealing of Meta-Optimizer Learning Rate (CA)
 - □ Applying the cosine annealing scheduling on the meta-model's optimizer (i.e. the meta-optimizer).

$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})}$	$\mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
---	--

	Accuracy			
	Omniglot 20-way		Mini-ImageNet 5-way	
Approach	1-shot	5-shot	1-shot	5-shot
Siamese Nets	88.2%	97.0%	-	-
Matching Nets	93.8%	98.5%	43.56%	55.31%
Neural Statistician	93.2%	98.1%	-	-
Memory Mod.	95.0%	98.6%	-	-
Meta-SGD	95.93±0.38%	98.97±0.19%	50.47±1.87%	64.03±0.94%
Meta-Networks	97.00%	_	49.21%	-
MAML (original)	95.8±0.3%	98.9±0.2%	48.70±1.84%	63.11±0.92%
MAML (local replication)	91.27±1.07%	98.78%	48.25±0.62%	64.39±0.31%
MAML++	$97.65{\pm}0.05\%$	$99.33{\pm}0.03\%$	$52.15{\pm}0.26\%$	$68.32{\pm}0.44\%$

MAML++ Few-Shot Results

Antoniou, A., Edwards, H., & Storkey, A. How to train your MAML. ICLR 2019.

The results of the approach indicate that learning per-step learning rates, batch normalization parameters and optimizing on per-step target losses appears to be key for fast, highly automatic and strongly generalizable few-shot learning.

MAML with Multi-Step Loss Computation Graph

6. 参考文献

 $i \leq N$ True

[1] Finn, C., Abbeel, P. & Levine, S. <u>Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks</u>. ICML 2017. Code: https://github.com/cbfinn/maml, https://github.com/cbfinn/maml</a

Finn个人主页: https://ai.stanford.edu/~cbfinn/

 $L_{0..N}^T = \sum_{i=1}^N w_i L_i^T$

[2] Antoniou, A., Edwards, H., & Storkey, A. How to train your MAME. ICLR 2019. Code: https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch

[3] How to train your MAML: A step by step approach · BayesWatch https://www.bayeswatch.com/2018/11/30/HTYM/

[4] CS 330: Deep Multi-Task and Meta Learning http://web.starford.edu.locks/cs330/

[5] Meta-Learning: Learning to Learn Fast https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html