Search

Go!

HOME

CURRENT ISSUE

CHEMJOBS

JOIN ACS

EMAIL ALERTS

ADVANCED SEARCH

CHEMICAL &

CHEMJOBS

E-mail this article

to a friend

Print this article

E-mail the editor

cen-chemjobs.org

NEWS

ENGINEERING

- Latest News
- Business
- Government & Policy
- Science/Technology
- Career & Employment
- ACS News

September 20, 2004 Vol. 82, Iss. 38 View Current Issue

Back Issues

2004

Go!

SUPPORT

- How to log in
- Contact Us
- Site Map

ABOUT C&EN

- About the Magazine
- How to Subscribe
- How to Advertise

Science Concentrates

September 20, 2004 Volume 82, Number 38 p. 40

- Elusive CO2 binding mode snagged
- Nanotubes as long as desired?
- More evidence for inorganic origin of oil
- Self-assembling molecule for zeolite synthesis
- Toxic iodoacid by-products of clean water

Elusive CO₂ binding mode snagged

University of California, San Diego, chemists have isolated and structurally characterized a synthetic uranium complex that binds CO₂ in an unusual way: CO₂ is linearly coordinated to the metal via one of its oxygen atoms [Science, 305, 1757 (2004)]. This linear metal-CO₂ coordination mode had previously been observed in the crystal structure of an iron enzyme involved in antibiotic synthesis, but until now scientists had not been able to obtain definitive structural evidence for its existence in synthetic systems,

SCIENCE © 2004

according to Karsten Meyer and Ingrid Castro-Rodriguez. In their new synthetic complex, bulky adamantane groups that surround the metal force U-OCO coordination (shown; purple = uranium, red = oxygen, gray = carbon, and blue = nitrogen). From bond lengths, magnetization data, and electronic and vibrational spectra, Meyer and Castro-Rodriguez conclude that upon CO_2 binding, U(III) is oxidized to U(IV), and CO_2 is reduced by one electron. The study of this and other metal complexes that bind and reduce CO_2 may someday lead to the development of simple compounds that can convert excess CO_2 into useful chemicals, they say.