

FYS3400: Spring 2021

Module III: Obligatory assignment

Electrons I (FEG)

- 1. Implications of the Fermi-Dirac distribution $(f_{\rm FD})$ on the energies (ϵ) reachable by the FEFG in 3D, and the magnitude of the chemical potential (μ) .
 - (a) Show that $\mu = \epsilon_{\rm F}$ at T = 0 K in the in FEFG model. Tips: Recall that, at T = 0 K, the Gibbs energy $G = N\mu$, where N is the number of particles; on the other hand, at T = 0 K, this expression may be compared with G = E + pV, where E, p and V are the total energy, pressure and volume of the system. E at T = 0 K can then be readily calculated by integrating $DOS(\epsilon) \cdot f_{\rm FD} \cdot \epsilon$. Further, calculate the pressure by choosing an appropriate thermodynamic relation, e.g., $p = -(\partial E/\partial V)$; the anticipated result is $N\mu = E + pV = N\epsilon_{\rm F}$, i.e. $\mu = \epsilon_{\rm F}$.
 - (b) Further, assume that this FEFG is heated up to T>0 K. Continue assuming that $\mu=\epsilon_{\rm F}$, i.e., not changing with T. Plot $f_{\rm FD}$ as a function of $\epsilon/\epsilon_{\rm F}$ for $T=0.01~T_{\rm F},\,0.1~T_{\rm F},\,0.5~T_{\rm F},\,1.0~T_{\rm F}$ and 1.2 $T_{\rm F}$. Compare the result with literature data, e.g., Fig. 3 on p.136 in Kittel. Up to what temperatures, approximately, is the assumption of $\mu=\epsilon_{\rm F}$ reasonable?
 - (c) Now investigate the true temperature dependence of μ and plot $\mu/\epsilon_{\rm F}$ as a function of $T/T_{\rm F}$. Tips: Remember that the total number of FEFG particles (N) is not changing with temperature. In other words, the integral of DOS at T=0 K (see Eqs. 19 and 20 on p.140 in Kittel) and the integral of DOS· $f_{\rm FD}$ at T>0 K are both equal to N; from here it only remains to evaluate the integral of DOS· $f_{\rm FD}$ numerically, and to plot $\mu/\epsilon_{\rm F}$ as a function of $T/T_{\rm F}$.
 - (d) Replot $f_{\rm FD}$ as a function of $\epsilon/\epsilon_{\rm F}$ for $T=0.01~T_{\rm F},\,0.1~T_{\rm F},\,0.5~T_{\rm F},\,1.0~T_{\rm F}$ and 1.2 $T_{\rm F}$ using the μ values found in part (c).
 - (e) Make an estimate for the electronic heat capacity, taking into account that only a fraction of the electrons those in the vicinity of $\epsilon_{\rm F}$ may contribute to an increase in the total energy due to heating. Explain why.

Electrons II (FEFG)

1. Solve the time-independent Schrödinger equation (TISE) using a potential energy in the form of a delta function having a magnitude of V_0 between the atomic sites of a 1D periodic lattice, as shown in Fig. 1 below (often referred as Kronig-Penney model in the literature). Illustrate, e.g., using a graph, that the discontinuities in the solution correlate with the idea of forbidden energy states. Further, using this solution, investigate limits of $V_0 = 0$ and $V_0 \to \infty$.

Figure 1: Potential consisting of delta functions with magnitude V_0 .

Disordered systems (Relaxation of energy)

1. The DOS for TLS is:

$$gTLS(E) \approx \frac{P_0}{2} ln(4t_0/\tau_{min}(E))$$

- (a) Explain that this gives a time-dependent heat capacity $C(t_0) = Aln(4t_0/\tau_{min})$ where t_0 is the measurement time and A is some constant.
- (b) Use this to explain the time dependence of the released power $\dot{q} \sim 1/t_0$ as observed in the experimental results below. (Hint: assume good thermal contact to the reservior, so that all energy stored in TLS with $\tau < t_0$ is equilibrated at each time).

Fig. 2. The specific power released in specimen I $(Fe_{80}B_{14}Si_6)$ after cooling from various T_1 (3.12 $\leq T_1 \leq$ 292 K) to $T_0 = 1.3$ K, as a function of the time. Straight lines: $\dot{q} \sim t^{-1}$.