2A: TUTORIAL 7

School of Mathematics and Statistics

Dr. Ana Lecuona and Dr. Daniele Valeri

Semester 1 2020-21

Instructions

Access your tutorial lecture

TU01,TU02,TU03,TU04,TU05: November 9th, 09:00-10:00

TU06,TU07,TU08,TU09,TU10: November 9th, 15:00-16:00

using the Zoom plug-in in the Moodle page of the course.

Please mute yourself when you are in the main room of the meeting.

Be ready to work in groups. Having a method of writing on screen, as mouse, tablet or similar is useful. Screen sharing is allowed!

EX SHEET 6, T4(A) (RELATED)

Describe the region that lies in the first octant and is enclosed by the surface $x^2 + y^2 + z^2 = a^2$ in spherical polar coordinates.

(A)
$$0 \le r \le a, \ 0 \le \theta \le \pi,$$
 (B) $0 \le r \le a, \ 0 \le \theta \le \frac{\pi}{2},$ $0 \le \phi \le \frac{\pi}{4}$

(C)
$$0 \le r \le a, \ 0 \le \theta \le \frac{\pi}{4},$$
 (D) $0 \le r \le a, \ 0 \le \theta \le \frac{\pi}{2},$ $0 \le \phi \le \frac{\pi}{2}$

EX SHEET 6, T4(A) (RELATED)

Describe the region that lies in the first octant and is enclosed by the surface $x^2 + y^2 + z^2 = a^2$ in spherical polar coordinates.

(A)
$$0 \le r \le a, \ 0 \le \theta \le \pi,$$
 (B) $0 \le r \le a, \ 0 \le \theta \le \frac{\pi}{2},$ $0 \le \phi \le \frac{\pi}{4}$

(C)
$$0 \le r \le a, \ 0 \le \theta \le \frac{\pi}{4},$$
 (D) $0 \le r \le a, \ 0 \le \theta \le \frac{\pi}{2},$ $0 \le \phi \le \frac{\pi}{2}$

ANSWER: **(D)** The first octant is that part for which $x \ge 0$, $y \ge 0$ and $z \ge 0$. Using spherical polar coordinates we see that $z \ge 0$ means $r\cos\phi\ge 0$ and as $r\ge 0$ we must have $\cos\phi\ge 0$ too, this is satisfied for $0\le\phi\le\frac{\pi}{2}$ (ϕ must lie in $[0,\pi]$). Now $\sin\phi\ge 0$ and $r\ge 0$ so with $x=r\sin\phi\cos\theta\ge 0$ and $y=r\sin\phi\sin\theta\ge 0$ we must have $\cos\theta\ge 0$ and $\sin\theta\ge 0$ and this is satisfied in the range $0\le\theta\le\pi/2$. Enclosed by the sphere gives $0\le r\le a$.

UNSEEN QUESTION

Let $\mathbf{r} = (x, y, z)$ and \mathbf{c} be a constant vector. Let ϕ be a differentiable function of one variable, calculate

$$abla \phi \left(\mathbf{c} \cdot \mathbf{r} \right)$$

(A)
$$\phi'(\mathbf{c} \cdot \mathbf{r})\mathbf{c}$$

(B)
$$\phi'(\mathbf{c} \cdot \mathbf{r})\mathbf{r}$$

(C)
$$(\mathbf{c} \cdot \mathbf{r}) \phi' (\mathbf{c} \cdot \mathbf{r})$$

(D)
$$\phi'(\mathbf{c} \cdot \mathbf{r})$$

Unseen Question

Let $\mathbf{r} = (x, y, z)$ and \mathbf{c} be a constant vector. Let ϕ be a differentiable function of one variable, calculate

$$abla \phi \left(\mathbf{c} \cdot \mathbf{r} \right)$$

(A)
$$\phi'(\mathbf{c} \cdot \mathbf{r})\mathbf{c}$$
 (B) $\phi'(\mathbf{c} \cdot \mathbf{r})\mathbf{r}$ (C) $(\mathbf{c} \cdot \mathbf{r})\phi'(\mathbf{c} \cdot \mathbf{r})$ (D) $\phi'(\mathbf{c} \cdot \mathbf{r})$

ANSWER: (A) We apply the chain rule to get

$$\frac{\partial}{\partial x} (\phi (\mathbf{c} \cdot \mathbf{r})) = \frac{\partial}{\partial x} (\mathbf{c} \cdot \mathbf{r}) \phi' (\mathbf{c} \cdot \mathbf{r}) .$$

Let $\mathbf{c} = (c_1, c_2, c_3)$. Then

$$\frac{\partial}{\partial x}(\mathbf{c}\cdot\mathbf{r})=\frac{\partial}{\partial x}(c_1x+c_2y+c_3z)=c_1.$$

UNSEEN QUESTION

Let $\mathbf{r} = (x, y, z)$ and \mathbf{c} be a constant vector. Let ϕ be a differentiable function of one variable, calculate

$$\nabla \phi \left(\mathbf{c} \cdot \mathbf{r} \right)$$

(A)
$$\phi'(\mathbf{c} \cdot \mathbf{r})\mathbf{c}$$
 (B) $\phi'(\mathbf{c} \cdot \mathbf{r})\mathbf{r}$ (C) $(\mathbf{c} \cdot \mathbf{r})\phi'(\mathbf{c} \cdot \mathbf{r})$ (D) $\phi'(\mathbf{c} \cdot \mathbf{r})$

Similarly for the other partial derivatives.

Hence, we see that

$$\operatorname{grad}\,\phi\left(\mathbf{c}\cdot\mathbf{r}\right)=\left(c_{1},c_{2},c_{3}\right)\phi'\left(\mathbf{c}\cdot\mathbf{r}\right)=\phi'\left(\mathbf{c}\cdot\mathbf{r}\right)\mathbf{c}.$$

TUTORIAL QUESTIONS

EX SHEET 7, T8(A)

Find the directional derivative of $f(x, y, z) = \exp(2x - y + z)$ at (x, y, z) = (1, 1, -1) in the direction $\mathbf{d} = (-1, -3, -5)$.

UNSEEN QUESTION

Let $\mathbf{r} = (x, y, z)$ and $r^2 = x^2 + y^2 + z^2$. Let f be a differentiable scalar function of one variable. Compute $\operatorname{div} f(r)\mathbf{r}$.

TUTORIAL QUESTIONS

EX SHEET 7, T8(A)

Find the directional derivative of $f(x, y, z) = \exp(2x - y + z)$ at (x, y, z) = (1, 1, -1) in the direction $\mathbf{d} = (-1, -3, -5)$.

The unit vector in the direction of **d** is $\hat{\mathbf{d}} = (-1, -3, -5)/\sqrt{35}$ and $\nabla f(x, y, z) = e^{2x - y + z}(2, -1, 1)$. Hence, $\nabla f(1, 1, -1) = (2, -1, 1)$. Therefore the directional derivative is

$$\nabla f \cdot \hat{\mathbf{d}} = \frac{1}{\sqrt{35}} (2, -1, 1) \cdot (-1, -3, -5) = \frac{-2 + 3 - 5}{\sqrt{35}} = -\frac{4}{\sqrt{35}}.$$

TUTORIAL QUESTIONS

UNSEEN QUESTION

Let $\mathbf{r} = (x, y, z)$ and $r^2 = x^2 + y^2 + z^2$. Let f be a differentiable scalar function of one variable. Compute

 $\operatorname{div} f(r)\mathbf{r}$.

The divergence is

$$\operatorname{div} f(r)\mathbf{r} = \frac{\partial}{\partial x} (xf(r)) + \frac{\partial}{\partial y} (yf(r)) + \frac{\partial}{\partial z} (zf(r))$$

$$= 3f(r) + \left(x \frac{\partial r}{\partial x} + y \frac{\partial r}{\partial y} + z \frac{\partial r}{\partial z} \right) f'(r)$$

$$= 3f(r) + \left(x \frac{x}{r} + y \frac{y}{r} + z \frac{z}{r} \right) f'(r)$$

$$= 3f(r) + rf'(r).$$

TUTORIAL QUESTION

BONUS QUESTION

This is Pac-Man, a very famous influencer from the 80's.

Its head is the sphere $x^2 + y^2 + z^2 = a^2$ and the angle formed by its mouth is $2\pi b$. What is the volume of Pac-Man?

TUTORIAL QUESTION

Let V_a be the interior of the sphere of radius a. If you do not remember the formula for its volume you may use a triple integral and spherical coordinates to get

$$Vol(V_a) = \iiint_{V_a} dxdydz = \left(\int_0^a r^2 dr\right) \left(\int_0^{2\pi} d\theta\right) \left(\int_0^{\pi} \sin\phi d\phi\right)$$
$$= \left[\frac{r^3}{3}\right]_0^a [\theta]_0^{2\pi} \left[-\cos\phi\right]_0^{\pi} = \frac{4\pi}{3}a^3.$$

The mouth of Pac-Man takes away $\frac{2\pi b}{2\pi} Vol(V_a) = bVol(V_a)$ from the volume of the sphere. The remaining part is the volume of Pac-Man. Hence,

$$Vol(\operatorname{Pac-Man}) = \frac{4\pi}{3}a^3(1-b)$$
.

For example, when eating a ghost, Pac-Man's mouth opens by an angle of $\frac{\pi}{2}$. Then its volume is πa^3 .