INTRODUCTION TO R & BIOINFORMATICS

Welcome to our first event!

MCGILL MEDICAL STUDENTS' GENOMICS GROUP

- Why did we start this, and why might this be helpful to you?
 - We want to provide medical students with a working understanding of genomics and opportunities for hands-on training in genomic research, computational biology and bioinformatics.
- Who are we?
 - Richie Jeremian (MDCM '24)
 - Marc Henein (MDCM '24)
 - Misha Fotovati (MDCM '26)

WHAT KIND OF QUESTIONS CAN WE ANSWER WITH GENOMICS?

Which **genes/genetic markers** (e.g. SNPs) are associated with a disease of interest?

How are genes differentially expressed or epigenetically modified **compared to** healthy control groups or in response to a certain treatment?

- GWAS = Genome Wide Association Study
- **SNP** = Single Nucleotide Polymorphism
- mRNA = RNA that is necessary for protein production

DNA TECHNOLOGY

RNA Sequencing: Used to quantify the levels of gene expression in a sample, identifying the number and type of genes expressed in a particular tissue or disease.

Sample of interest

Extract total RNA and enrich targets

Extract total RNA and enrich targets

Fragment, reverse transcribe ligate adapters, amplify

CDNA library

Sequencing

**differential expression

**variant calling

**annotation

**novel transcript discovery

**RNA editing

**intron

**genome

**genome

**paired-end reads

SNP Microarray: Involves a small slide with thousands to millions of DNA fragments with known sequence. By hybridizing fluorescently labeled DNA to the microarray, one can genotype individuals at >100K SNP sites.

HYPOTHESIS TESTING & P-VALUE

- The null hypothesis (H0) is a specific hypothesis that we try to disprove.
- The alternative hypothesis (Ha) claims "H0 is false".

So what measure do we use to accept or reject a hypothesis?

The p-value! It measures the probability of obtaining the observed result or a more extreme result, assuming that the null hypothesis is true.

Type I error (a) = probability of rejecting H0 when it is true

Type II error (β) = probability of accepting H0 when it is false

A p-value of $\underline{\alpha}$ =0.05 or lower is considered statistically significant. However, we need to adjust for the <u>number of tests performed</u>.

A study will have greater **power** ($I-\beta$) if we increase the sample size or add more assumptions to the null hypothesis.

Outline

- 1. R basics
- 2. Genetic association study for late-onset Alzheimer disease
- 3. Gene expression profiling of atopic dermatitis

Part I: R Basics

R is a programming language for statistical computing and graphics.

Let's go to R Studio!

- Posit Link: https://posit.cloud/
- GitHub: https://github.com/mss-genomics/first-meeting

Part 2: Genetics of Alzheimer Disease

Early-onset Alzheimer disease (age <65) has a substantial component with autosomal **dominant** inheritance, due to mutations in the genes *PSEN1*, *PSEN2* and *APP*.

Late-onset Alzheimer disease is a **complex** disease with environmental and genetic risk factors. The broad-sense **heritability** of LOAD, i.e., the correlation between monozygotic twins raised independently*, is **between 0.4 and 0.8**.

APOE

ApoE is a component of lipoprotein particles and can be found in $A\beta$ plaques.

Among common variants, the E4 allele (C112R) of *APOE* is the strongest genetic risk factor for LOAD.

human-chimp ancestor	<u>112</u>	<u>158</u>	electrophoretic mobility
ancestral allele (~18%)	R	R	E4
derived allele (~75%)	С	R	E3
derived allele (~7%)	С	С	E2

Genotype	OR
E4/E4	14.9
E3/E4	3.2
E3/E3	1.0
E2/E3	0.6

Genetic Association Study for LOAD around the *APOE* Locus in a Japanese Population

Using a dataset of 547 patients with LOAD and 715 controls genotyped in a 200 kb region including *APOE*, we illustrate the principles of genetic association studies.

Let's go to R Studio!

https://rpubs.com/mss_genomics/1031330

Linkage Peak Around APOE E4

Part 3: Gene Expression Profiling of Atopic Dermatitis

Atopic dermatitis (eczema) is a chronic, inflammatory skin disease characterized by immune dysregulation driven by a type 2 inflammatory phenotype.

Using a publicly available dataset from the Gene Expression Omnibus (GSE224783), we investigate gene expression differences in **chronic skin lesions** vs. **non-lesional skin**.

Overview of Workflow

- 1. Download and import dataset https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224783
- 2. Normalize (log2 transform) dataset
- 3. Visualize data using principal component analysis and hierarchical clustering plots
- 4. Use DESeq2 package to perform differential expression analyses

Additional Resources

Full video tutorial for RNAseq normalization and differential expression

- https://www.youtube.com/watch?v=5z_lziS0-5w
- https://www.youtube.com/watch?v=ZjMfiPLuwN4

Learning Modules

- R/RStudio: https://moderndive.netlify.app/l-getting-started.html ggplot2: https://ggplot2-book.org/introduction.html

General Stats Learning:

StatQuest: https://www.youtube.com/watch?v=tlf6wY]rwKY

Thank You

Please fill out this form if you have a few minutes to help us improve and let us know what went well!

https://forms.gle/YutD2TDV1Ur8KNwG9

Some ideas for future events:

- Making plots/Introduction to ggplot2
- Finding datasets and generating research questions
- Statistical analysis basics
- Epigenetics
- Single cell genomics
- Whole exome sequencing

References

https://www.genome.gov/genetics-glossary/Microarray-Technology

Takei, Norihiro, et al. "Genetic association study on in and around the APOE in late-onset Alzheimer disease in Japanese." *Genomics* 93.5 (2009): 441-448.

https://www.cureffi.org/2016/03/02/what-do-we-know-about-apoe/

Thompson, Robert L., and Margaret W. Thompson. Genetics in Medicine. 8th ed., Elsevier, 2016.