Table des matières

1	Phé	nomè	nes de résonance dans différents domaines de la physique
	I	Oscilla	ateurs harmoniques forcés
			Résonance en vitesse en régime forcé
		I.2	Equivalent électrocinétique
	II		ateurs couplés
	III	Cavité	é résonante
		III.1	Cavité Fabry Pérot
			Intensité transmise
		III.3	Finesse

Leçon 1

Phénomènes de résonance dans différents domaines de la physique

	Bibliographie de la leço	on:	
Titre	Auteurs	Editeur (année) ISl	3N
Mécanique	J.M Brébec	HPrépa	

Commentaires des années précédentes :

- **2015**: Présenter l'exemple célèbre du pont de Tacoma n'est pas pertinent, sauf s'il s'agit d'effectuer une critique d'une interprétation erronée très répandue,
- 2010 : L'analyse du seul circuit RLC est très insuffisante pour cette leçon. Le phénomène de résonance ne se limite pas aux oscillateurs à un degré de liberté.

Plan détaillé

Niveau choisi pour la leçon : Licence 3

Prérequis :

- Mécanique newtonienne
- Optique ondulatoire

— Electrocinétique

Déroulé détaillé de la leçon :

Introduction

Définition : pour un système auquel qu'on soumet à une excitation sinusoïdale de pulsation ω , la réponse du système est maximale à la pulsation ω_r , appelée fréquence de résonance.

I Oscillateurs harmoniques forcés

I.1 Résonance en vitesse en régime forcé

Attention, faire la discussion sur la phase. Interprétation énergétique possible.

I.2 Equivalent électrocinétique

Démontrer la résonance en tension de la capacité d'un circuit RLC série.

Déterminer la fréquence de résonance et comparer avec les valeurs obtenues pour le RLC-mètre. On peut aussi observer l'évolution de la résonance à le changement de la résistance, le relié au facteur de qualité.

II Oscillateurs couplés

Interprétation en terme d'excitation de mode propre.

Expérience : montrer l'influence du couplage sur la résonance du premier circuit RLC à l'aide d'un deuxième circuit RLC. Intérêt pratique?

III Cavité résonante

III.1 Cavité Fabry Pérot

III.2 Intensité transmise

Calcul possiblement à faire soit hyper rapidement, soit en prérequiss.

III.3 Finesse