2. 差分商

関数 g(t)が与えられ、 $g_i=g(\tau_i)$ とする。もしくは、仮想の関数 g(t)を考え、そのうちのパラメータ値 τ_i における関数値 g_i が既知であるとする(これらはデータポイントと呼ばれる)。このとき、関数 g のパラメータ値 τ_0 , ... , τ_{n-1} におけるオーダ n(n-1 次)の差分商は、 $[\tau_0$, ... , τ_{n-1}] g と記述され、次のように定義される:

$$\begin{cases} [\tau_0, ..., \tau_{n-1}]g = \frac{[\tau_1, ..., \tau_{n-1}]g - [\tau_0, ..., \tau_{n-2}]g}{\tau_{n-1} - \tau_0} \\ \vdots \\ [\tau_i, \tau_{i+1}]g = \frac{[\tau_{i+1}]g - [\tau_i]g}{\tau_{i+1} - \tau_i} = \frac{g_{i+1} - g_i}{\tau_{i+1} - \tau_i} \\ [\tau_i]g = g_i \end{cases}$$

 au_0,\dots , au_{n-1} における \mathbf{n} 点 $\mathbf{g}_0,\dots,\mathbf{g}_{n-1}$ を補間するオーダ \mathbf{n} の多項式 $f_n(t)$ を表現するニュートンの内挿公式は、差分商の表現により、(式 2-2)となる。

$$\begin{split} f_n(t) \\ (\not \mathbb{Z}2\text{-}2) &= g_0 + (t - \tau_0)[\tau_0, \tau_1]g + (t - \tau_0)(t - \tau_1)[\tau_0, \tau_1, \tau_2]g + \dots + (t - \tau_0)\dots(t - \tau_{n-2})[\tau_0, \dots, \tau_{n-1}]g \\ &= \sum_{i=0}^{n-1} (t - \tau_0)\dots(t - \tau_{i-1})[\tau_0, \dots, \tau_i]g \end{split}$$

これから、オーダ \mathbf{n} の差分商 $[\tau_0,\ldots,\tau_{n-1}]$ g は τ_0,\ldots,τ_{n-1} における \mathbf{n} 点 g_0,\ldots,g_{n-1} を補間するオーダ \mathbf{n} の多項式 $f_n(t)$ の最高次の多項式 (t^{n-1}) の係数であることがわかる。

差分商を定義する au_0 , ... , au_{n-1} は一般的には単調増加な実数で、 $au_i = au_{i+1}$ を考えないが、 au_i における一次微分値 $s_i = \frac{dg(au_i)}{dt}$ が得られるとして、 $au_i = au_{i+1}$ の時には(式 2-1)は(式 2-3)に拡張される。詳細については C.Deboor:"A Practical Guide to Splines" by Springer Verlag を参照されたい。

(式2-3)
$$[\tau_i, \tau_{i+1}]g = s_i$$
 if $\tau_i = \tau_{i+1}$