Diszkrét matematika I. feladatok Komplex számok II

Hatodik alkalom (2025.03.17-21.)

Bemelegítő feladatok

1. Számítsa ki a következő kifejezéseket a trigonometrikus alak felhasználásával:

a) $(1+i)(1+\sqrt{3}i)$; b) $i(\sqrt{3}+i)$; c) $(1-i)^3$.

- 2. Az alábbi geometriai transzformációk a komplex számsík mely műveleteivel írhatóak le:

a) origó körüli forgatás $\pi/4$ -gyel; b) origó körüli forgatás $5\pi/6$ -tal és 3-szoros nyújtás.

Gyakorló feladatok

3. Számítsa ki a következő kifejezéseket a trigonometrikus alak felhasználásával:

a) $\frac{(1+i)^9}{(1-i)^7}$; b) $\frac{(\sqrt{3}+i)^{11}}{(1+i\sqrt{3})^{13}}$; c) $\frac{(1-i)^{13}}{(\sqrt{3}+i)^5}$.

4. Vonjon harmadik gyököt a következő számokból:

a) 1; b) -1; c) $\frac{-4}{(1+i)^2}$.

Érdekes feladatok

- 5. A sík mely geometriai transzformációinak felelnek meg a komplex számok halmazának alábbi leképezései: $z \mapsto 3z, z \mapsto (1+i)z, z \mapsto (1/2+i\sqrt{3}/2)z$.
- 6. Tekintsük az $R = \{(z^4, z) : z \in \mathbb{C}\}$ relációt a komplex számok halmazán.
 - a) Mi lesz $R^{-1}(\{2\})$, $R(\{16\})$, rng(R), dmn(R)?
 - b) Határozza meg az $R^{-1} \circ R$ és $R \circ R^{-1}$ kompozíciókat!
 - c) Tekintsük az $R(\{0,1,16\})$ halmazt! Véges lesz-e? Ha igen, mennyi lesz $|R(\{0,1,16\})|$?

Beadandó házi feladatok

7. Számítsa ki a következő kifejezéseket a trigonometrikus alak felhasználásával (**részenként** 1/3 pont):

a) $(1-i)^2(1-\sqrt{3}i)$; b) $\frac{(\sqrt{3}+i)^5}{-1-i}$; c) $(1-i)^{100}$.

- 8. Számítsa ki a $(\sqrt{3}+i)^5/(1-i)^7$ komplex szám harmadik gyökeit! (1 pont)
- 9. Tekintsük az $R=\{(z^3,z):z\in\mathbb{C}\}$ relációt a komplex számok halmazán. Mi lesz $R^{-1}(\{1\}),$ $R(\lbrace 8 \rbrace), (R \circ R)(\lbrace -1 \rbrace)$? (részenként 1/3 pont)

Nevezetes szögek trigonometrikus értéke

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin x$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0