Teoria de la Informació GCED-UPC curs 2019/20 Problemes; full número 5

26 de novembre de 2019

- **5.1.** Calculeu la capacitat d'un canal amb entrada X a valors en $\mathcal{X} = \{0, 1\} \subset \mathbb{R}$ i sortida Y = X + Z a valors en un subconjunt $\mathcal{Y} \subset \mathbb{R}$, on Z és una variable que pren valors a $\{0, a\} \subset \mathbb{R}$ amb distribució uniforme. Fixeu-vos que la capacitat del canal depèn de quin sigui el nombre $a \in \mathbb{R}$.
- **5.2.** Es considera un canal que transforma una variable d'entrada X amb valors a $\mathcal{X} = \mathbb{Z}_{12}$ en una variable de sortida Y a valors en el mateix alfabet a través de la igualtat $Y = X + Z \pmod{12}$, on Z representa el "soroll" i és una variable (independent de X) que pren valors al conjunt $\mathcal{Z} = \{0, 1, 2\} \subset \mathbb{Z}_{12}$ amb distribució uniforme.
 - 1. Digueu quina és la matriu d'aquest canal i quina propietat important té com a matriu de canal.
 - 2. Calculeu la capacitat del canal i per a quina distribució de X s'assoleix.
 - 3. Digueu com es pot usar el canal a la pràctica per assolir la capacitat amb codis de qualsevol longitud amb ratio igual a la capacitat i amb probabilitat d'error igual a zero.
 - 4. Discutiu la situació si s'agafen variables X, Y a valors a \mathbb{Z}_{13} amb la mateixa relació entre elles però ara vista mòdul 13.
- **5.3.** Donats dos canals $(\mathcal{X}_1, p(y_1|x_1), \mathcal{Y}_1)$ i $(\mathcal{X}_2, p(y_2|x_2), \mathcal{Y}_2)$ es considera el canal

$$(\mathcal{X}_1 \times \mathcal{X}_2, p(y_1, y_2 | x_1, x_2), \mathcal{Y}_1 \times \mathcal{Y}_2)$$

amb probabilitats $p(y_1, y_2|x_1, x_2) = p(y_1|x_1)p(y_2|x_2)$. Calculeu la capacitat d'aquest canal producte en funció de les capacitats dels dos canals de què es parteix.

5.4. Es construeix un canal que consisteix en una successió de n canals binaris simètrics independents tots amb probabilitat d'error p. Comproveu que aquest canal és un canal binari simètric amb probabilitat d'error $\frac{1}{2}(1-(1-2p)^n)$. Quina capacitat té aquest canal quan n creix molt?

5.5. Es considera un canal binari amb matriu de transició de probabilitats

$$\begin{array}{c|cccc} p(y|x) & 0 & 1 \\ \hline 0 & 1 & 0 \\ 1 & \frac{1}{2} & \frac{1}{2} \end{array}$$

Calculeu la seva capacitat i digueu per a quina distribució de la variable d'entrada s'assoleix.

5.6. Es considera un canal ternari amb alfabets d'entrada i sortida $\mathcal{X} = \{x_1, x_2, x_3\}$ i matriu de transició de probabilitats

$$\begin{array}{c|ccccc} p(y|x) & x_1 & x_2 & x_3 \\ \hline x_1 & \frac{2}{3} & \frac{1}{3} & 0 \\ x_2 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ x_3 & 0 & \frac{1}{3} & \frac{2}{3} \end{array}$$

Calculeu la seva capacitat i digueu per a quina distribució de la variable d'entrada s'assoleix.

Interpreteu el fet que aquesta distribució té $Pr(X = x_2) = 0$ per comparar aquest canal amb un altre tipus de canal ben conegut.

5.7. Es considera un canal binari on es produeixen errors (amb probabilitat p) i també esborralls (amb probabilitat ϵ).

- 1. feu un diagrama que representi el canal;
- 2. doneu la seva matriu de transició de probabilitats;
- 3. calculeu la seva capacitat;
- 4. compareu-la amb les capacitats calculades a teoria en els casos p = 0 (canal sense errors amb esborralls) i $\epsilon = 0$ (canal binari simètric);
- 5. calculeu la capacitat en el cas $p = \frac{1}{4}$ i $\epsilon = \frac{1}{4}$.

5.8. Considereu un canal amb alfabets d'entrada i sortida els parells de dígits binaris $\mathcal{X} = \mathcal{Y} = \{0,1\}^2$ que transmet aquestes lletres sense errors de la manera següent: $00 \mapsto 01$, $01 \mapsto 10$, $10 \mapsto 11$, $11 \mapsto 00$.

Les variables d'entrada i sortida es poden considerar com a parells $X = (X_1, X_2)$ i $Y = (Y_1, Y_2)$ on cadascuna de les quatre variables X_i i Y_j és binària.

- 1. Calculeu I(X;Y) per a una distribució de probabilitats donada $X \sim (p_1, p_2, p_3, p_4)$.
- 2. Calculeu la capacitat del canal.
- 3. Calculeu $I(X_1; Y_1)$ i $I(X_2; Y_2)$.

5.9. Es considera un canal de comunicació amb alfabet d'entrada $\mathcal{X} = \{a, b, c, d\}$, alfabet de sortida $\mathcal{Y} = \{0, 1, 2\}$ i matriu de canal

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}$$

Calculeu la capacitat d'aquest canal en bits/símbol transmès i digueu per a quina distribució de probabilitat de la variable d'entrada s'assoleix aquesta capacitat.

Feu el mateix si la matriu de canal és

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

5.10. Calculeu la capacitat d'un canal ternari amb esborrall de probabilitat α : un canal amb alfabet d'entrada $\{1,2,3\}$, alfabet de sortida $\{1,2,3,e\}$ i matriu de probabilitats

p(y x)	1	2	3	e
1	$1-\alpha$	0	0	α
2	0	$1-\alpha$	0	α
3	0	0	$1-\alpha$	α

i digueu per a quina distribució de probabilitat d'entrada s'assoleix aquesta capacitat.