Semana-02

Created	@March 2, 2023 4:49 PM
⊙ Class	Desenho e análise de Algoritmos
⊙ Туре	FICHA
Materials	https://www.dcc.fc.up.pt/~pribeiro/aulas/daa2223/praticas/aula02.html

Exercício 1) Comparando Funções

Em cada afirmação indicar verdadeiro e falso:

$$f(n) \in O(g(n))$$
 $f(n) \in \Omega(g(n))$ $f(n) \in \Theta(g(n))$

(a)
$$f(n) = 2n^3 - 10n^2$$
 $g(n) = 25n^2 + 37n$
(b) $f(n) = 56$ $g(n) = \log_2 30$
(c) $f(n) = \log_3 n$ $g(n) = \log_2 n$
(d) $f(n) = n^3$ $g(n) = 3^n$
(e) $f(n) = n!$ $g(n) = 2^n$
(f) $f(n) = n!$ $g(n) = n^n$
(g) $f(n) = n \log n + n^2$ $g(n) = n^2$
(h) $f(n) = \log_3(\log_3 n)$ $g(n) = \log_3 n$
(i) $f(n) = \log_3(\log_3 n)$ $g(n) = \log_3 n$

$$O(g(n)) \ " <= " \ || \ \Omega(g(n) \ " >= " \ || \ \Theta(g(n) \ " == "$$

Resposta:

	$f(n) \in O(g(n))$	$f(n)\in\Omega(g(n))$	$f(n)\in\Theta(g(n))$
(a) $f(n) = 2n^3 - 10n^2$; $g(n) = 25n^2 + 37n$	falso	verdadeiro	falso
(b) $f(n) = 56$; $g(n) = \log_2 30$	verdadeiro	verdadeiro	verdadeiro
(c) $f(n) = \log_3 n$; $g(n) = \log_2 n$	verdadeiro	verdadeiro	verdadeiro
(d) $f(n) = n^3$; $g(n) = 3^n$	verdadeiro	falso	falso
(e) $f(n) = n!$; $g(n) = 2^n$	falso	verdadeiro	falso

Exercício 2) Taxa de crescimento e previsão de tempo de execução

Algoritmo	n=100	n=200	n=300	n=400	n=500
Α	0.003s	0.024s	0.081s	0.192s	0.375s
В	0.040s	0.160s	0.360s	0.640s	1.000s

- a. Qual algoritmo é mais eficiente? Justifique a sua resposta.
- b. Indique uma estimativa do tempo que cada algoritmo iria demorar para N=5000

Resposta a)

Resposta b)

$$t(n2) = f(n2)/f(n1)*t1$$

 $n2 = 5000$
 $A: t(500) = 5000^3/100^3*0.003$

Exercício 3) Complexidade de ciclos

Para cada um dos seguintes pedaços de código a seguir indicados, indique qual a complexidade temporal:

a)

```
for (int i=0; i<n; i++)
  for (int j=0; j<n; j++)
     count++;
for (int i=0; i<n; i++)
     count++;</pre>
```

 $Resposta: heta(n^2)$

b)

```
for (int i=0; i<n/2; i++)
  for (int j=0; j<42; j++)
  for (int k=n; k<n+5; k++)
     count++;</pre>
```

 $Resposta:\theta(n)$

c)

```
for (int i=0; i<n; i+=2)
  for (int j=1; j<n; j*=2)
    count++;</pre>
```

 $Resposta: \theta(n log n)$

Exercício 4) Complexidade de funções recursivas

Master Theorem - Uma versão prática

Uma recorrência $\mathbf{aT}(\mathbf{n}/\mathbf{b}) + \mathbf{cn^k}$ ($a \ge 1, b > 1, c$ e k são constantes positivas) resolve para:

(1)
$$T(n) = \Theta(n^k)$$
 se $a < b^k$

(2)
$$T(n) = \Theta(n^k \log n)$$
 se $a = b^k$

(1)
$$T(n) = \Theta(n^k)$$
 se $a < b^k$
(2) $T(n) = \Theta(n^k \log n)$ se $a = b^k$
(3) $T(n) = \Theta(n^{\log_b a})$ se $a > b^k$

Se pensarem na árvore de recursão, intuitivamente, estes 3 casos correspondem a:

- (1) O tempo é dominado pelo primeiro nível
- (2) O tempo está (uniformemente) distribuído por todos os níveis
- (3) O tempo é dominado pelo último nível

a)

```
int f1(int v[], int a, int b) {
 if (a>=b) return v[a];
 int m = (a+b) / 2;
  return v[b] + f1(v, a, m);
}
```

$$egin{aligned} T(n) &= T(n/2) + heta(1) \ a &= 1; b = 2; k = 0 \ a &= b^k \; (1 = 2^0) \ T(n) &= heta(n^k \log n) = heta(\log n) \end{aligned}$$

b)

```
int f2(int v[], int a, int b) {
 if (a>=b) return v[a];
  int m = (a+b) / 2;
```

$$egin{aligned} T(n) &= 2T(n/2) + heta(1) \ a &= 2; b = 2; k = 0 \ a &> b^k \ T(n) &= heta(n\log b^a) = heta(n\log 2^2) = heta(n) \end{aligned}$$

. . . .