

Multiple UAVs Sensor Optimization

Victor Journé

Dr. H.S Shin Supervisor –

Dr. A Tsourdos

Industrial Supervisor – M. R Theobald

Introduction

My project is about **Detection Theory**:

Several cameras scan a unknown map, to find targets. The detection algorithms extract feature points (edges, corners...) and process a binary representation of the possible targets location. False alarm probabilities and prior number of targets are unknown.

Three sub problems solved:

- Probabilities problem
- Two independent assets with a unknown probability to say the truth focus on the same environment
- *Goal*: How find out the number of targets? How far each observer can be trusted?
- Simultaneous localisation and mapping (SLAM)
- A pltatform moves upon a binary unknown pattern
- Goal: How simultaneously recover the pattern and the platform position?
- Targets tracking
- Three cameras in a cluttered environnent, with occlusion
- Ponctual targets, brownian movment. Targets can appear or disappear
- Goal: Track targets

Approach to Problem

Bird nests counting

- A potential nest by tree at most. Two independant observers with a unknown probability to say the truth report a nest map. Binary map (1 for a nest)
- Assumption on their measures at each tree m_i :
- $m_i = b \oplus e_i = b.\overline{e_i} + \overline{b}.e_i$ (*)
 - b true presence of nest
 - e_i The mistake made if at 1
- Simultaneous localisation and mapping
- Bayesinan Filter:

Targets tracking

At each time step, three reports like that:

- Particle filter

Summary of Results

Bird nest counting

Observer	1	2
Nests counted	178	120

	True value	Estimate (68% of confidence)
Number of nests	50	52±38
Detection probabilities	0.81±0.06	0.8
	0.7±0.04	0.7

Simultaneous localization and mapping

Targets tracking

Conclusions

- Given two measurement sets built as (*), p(b), $p(e_1)$ and $p(e_2)$ are found out.
- SLAM problem: Only translation movements were considered, for fixed patterns. Further work: Relax those assumptions
- Tracking: Add Target shapes and solve out the tracking for cross-path

