310256: Data Science and Big Data Analytics Laboratory

Data Wrangling, I

Perform the following operations using Python on any open source dataset (e.g., data.csv)

- 1. Import all the required Python Libraries.
- 2. Locate an open source data from the web (e.g., https://www.kaggle.com). Provide a clear description of the data and its source (i.e., URL of the web site).
- 3. Load the Dataset into pandas dataframe.
- 4. Data Preprocessing: check for missing values in the data using pandas isnull(), describe() function to get some initial statistics. Provide variable descriptions. Types of variables etc. Check the dimensions of the data frame.
- 5. Data Formatting and Data Normalization: Summarize the types of variables by checking the data types (i.e., character, numeric, integer, factor, and logical) of the variables in the data set. If variables are not in the correct data type, apply proper type conversions.
- 6. Turn categorical variables into quantitative variables in Python.

In addition to the codes and outputs, explain every operation that you do in the above steps and explain everything that you do to import/read/scrape the data set.

1. Import all the required Python Libraries.

import pandas as pd

2. Locate an open source data from the web (e.g., https://www.kaggle.com). Provide a clear description of the data and its source (i.e., URL of the web site).

files.upload()

X

```
✓ 0s completed at 3:14 PM
```

first go to our account page on Kaggle to generate an API token. On the account page, we scroll down to API section.

open a new notebook in colab and run the following command.

```
!pip install -q kaggle
import os
os.environ['KAGGLE_CONFIG_DIR'] = "/content/gdrive/MyDrive/DataSets/Kaggle/"
upload kaggle.json file.
from google.colab import files
```

Choose "kaggle.json" downloaded from Kaggle. We need save this file into a directory named kaggle. Run the following commands to accomplish this task:

```
!mkdir ~/.kaggle
!cp kaggle.json ~/.kaggle/

mkdir: cannot create directory '/root/.kaggle': File exists
```

change the permission of the file using the following command:

!chmod 600 ~/.kaggle/kaggle.json

see the datasets available on kaggle:

!kaggle datasets list

ref	title	
ahsan81/hotel-reservations-classification-dataset	Hotel Reservations Dataset	2
googleai/musiccaps	MusicCaps	7
themrityunjaypathak/most-subscribed-1000-youtube-channels	Most Subscribed 1000 Youtube Channels	
nitishsharma01/olympics-124-years-datasettill-2020	Olympics 124 years Dataset(till 2020)	
thedevastator/medical-student-mental-health	Medical Student Mental Health	
senapatirajesh/netflix-tv-shows-and-movies	Latest Netflix TV shows and movies	
thedevastator/predicting-credit-card-customer-attrition-with-m	Predicting Credit Card Customer Segmentation	Ξ
kane6543/most-watched-stocks-of-past-decade20132023	Most Watched Stocks of Past Decade(2013-2023)	
karkavelrajaj/amazon-sales-dataset	Amazon Sales Dataset	
thedevastator/us-film-industry-top-movies-directors	US Film Industry Top Movies & Directors	2
salimwid/latest-top-3000-companies-ceo-salary-202223	CEO vs Worker Pay in Top 3000 US Companies [2023]	1
tymekurban/new-cars-usa-202223-dataset	New Cars USA 2022/23 dataset	1
abhishek14398/salary-dataset-simple-linear-regression	Salary Dataset - Simple linear regression	
salimwid/technology-company-layoffs-20222023-data	Technology Company Layoffs (2022-2023)	
thedevastator/higher-education-predictors-of-student-retention	Predict students' dropout and academic success	
rhugvedbhojane/fifa-world-cup-2022-players-statistics	FIFA World Cup 2022 Players Statistics	
karimabdulnabi/car-price	Car Price	
rishikeshkonapure/home-loan-approval	Home Loan Approval	
rakkesharv/spotify-top-10000-streamed-songs	Spotify Top 10000 Streamed Songs	2
thedevastator/canine-intelligence-and-size	Dogs Intelligence and Size	

To download a particular one:

!kaggle datasets download -d "name_of_the_dataset"

For instance:

```
!kaggle datasets download -d ahsan81/hotel-reservations-classification-dataset --force
```

```
Downloading hotel-reservations-classification-dataset.zip to /content/gdrive/MyDrive/DataSets/Kaggle 0% 0.00/480k [00:00<?, ?B/s] 100% 480k/480k [00:00<00:00, 46.3MB/s]
```

3.Load the Dataset into pandas dataframe.

```
df=pd.read_csv("/content/gdrive/MyDrive/DataSets/Kaggle/hotel-reservations-classification-dataset.zip")
df.head()
```

We don't have to go through all of these steps everytime. Once these steps are completed, next time we just upload kaggle.json to colab and then download the dataset.

4. Data Preprocessing:

check for missing values in the data using pandas isnull(), describe() function to get some initial statistics. Provide variable descriptions. Types of variables etc. Check the dimensions of the data frame.

df.head(5)

df.tail(5)

df.describe()

df.describe(include="all")

```
df.size
     689225
df.shape
     (36275, 19)
df.columns
     Index(['Booking_ID', 'no_of_adults', 'no_of_children', 'no_of_weekend_nights',
            'no_of_week_nights', 'type_of_meal_plan', 'required_car_parking_space',
            'room_type_reserved', 'lead_time', 'arrival_year', 'arrival_month',
            'arrival_date', 'market_segment_type', 'repeated_guest',
            'no_of_previous_cancellations', 'no_of_previous_bookings_not_canceled',
            'avg_price_per_room', 'no_of_special_requests', 'booking_status'],
           dtype='object')
df['Booking ID']
     0
              INN00001
     1
              INN00002
     2
              INN00003
     3
              INN00004
              INN00005
```

• •

36270 INN36271 36271 INN36272 36272 INN36273 36273 INN36274 36274 INN36275

Name: Booking_ID, Length: 36275, dtype: object

df[0:2]

df.loc[0:2]

df.iloc[0:2]

df.loc[0:2,"Booking_ID":"type_of_meal_plan"]

df.iloc[0:2,1:5]

check for missing values in the data using pandas isnull()

df.isnull()

df.isna()

df.isnull().any()

Pooling ID	False
Booking_ID	
no_of_adults	False
no_of_children	False
<pre>no_of_weekend_nights</pre>	False
<pre>no_of_week_nights</pre>	False
<pre>type_of_meal_plan</pre>	False
required_car_parking_space	False
room_type_reserved	False
<pre>lead_time</pre>	False
arrival_year	False
arrival_month	False
arrival_date	False
market_segment_type	False
repeated_guest	False
<pre>no_of_previous_cancellations</pre>	False
<pre>no_of_previous_bookings_not_canceled</pre>	False
avg_price_per_room	False
<pre>no_of_special_requests</pre>	False
booking_status	False
dtype: bool	

df.isnull().sum()

Booking_ID	0
no_of_adults	0
no_of_children	0
no_of_weekend_nights	0

no_of_week_nights	0
<pre>type_of_meal_plan</pre>	0
required_car_parking_space	0
room_type_reserved	0
<pre>lead_time</pre>	0
arrival_year	0
arrival_month	0
arrival_date	0
market_segment_type	0
repeated_guest	0
no_of_previous_cancellations	0
<pre>no_of_previous_bookings_not_canceled</pre>	0
avg_price_per_room	0
no_of_special_requests	0
booking_status	0
dtype: int64	

count of missing values of a specific column.

```
df.Booking_ID.isnull().sum()
     0
```

5. Data Formatting and Data Normalization:

Summarize the types of variables by checking the data types (i.e., character, numeric, integer, factor, and logical) of the variables in the data set. If variables are not in the correct data type, apply proper type conversions.

Data Formatting:

df.dtypes

Booking_ID	object
no of adults	int64

no_of_children	int64
<pre>no_of_weekend_nights</pre>	int64
no_of_week_nights	int64
type_of_meal_plan	object
required_car_parking_space	int64
room_type_reserved	object
<pre>lead_time</pre>	int64
arrival_year	int64
arrival_month	int64
arrival_date	int64
market_segment_type	object
repeated_guest	int64
no_of_previous_cancellations	int64
<pre>no_of_previous_bookings_not_canceled</pre>	int64
avg_price_per_room	float64
<pre>no_of_special_requests</pre>	int64
booking_status	object
dtype: object	
utype. object	

df.arrival_date=df.arrival_date.astype("float")

df.dtypes

Booking_ID	object
no_of_adults	int64
no_of_children	int64
<pre>no_of_weekend_nights</pre>	int64
no_of_week_nights	int64
type_of_meal_plan	object
required_car_parking_space	int64
room_type_reserved	object
<pre>lead_time</pre>	int64
arrival_year	int64
arrival_month	int64
arrival_date	float64
market_segment_type	object
repeated_guest	int64
no_of_previous_cancellations	int64
<pre>no_of_previous_bookings_not_canceled</pre>	int64
ave price per room	float64

```
no_of_special_requests
                                         int64
booking_status
                                        object
dtype: object
```

Data Normalization

```
from sklearn import preprocessing
```

```
df.arrival_date
```

```
2.0
0
1
         6.0
2
         28.0
3
         20.0
         11.0
36270
         3.0
36271
        17.0
36272
        1.0
36273
         21.0
36274
         30.0
Name: arrival_date, Length: 36275, dtype: float64
```

```
min_max_scaler = preprocessing.MinMaxScaler()
```

x=df.arrival_date

```
x_scaled = min_max_scaler.fit_transform(x)
```

df_normalized = pd.DataFrame(min_max_scaler.fit_transform(x))

df_normalized

6. Turn categorical variables into quantitative variables in Python.

There are many ways to convert categorical data into numerical data. Here the three most used methods are discussed.

i. Label Encoding:

Label Encoding refers to converting the labels into a numeric form so as to convert them into the machine-readable form. It is an important preprocessing step for the structured dataset in supervised learning.

ii. One-Hot Encoding:

```
iii. Replace()
```

df.head(5)

*Conclusion- *

In this way we have explored the functions of the python library for Data Preprocessing, Data Wrangling Techniques and How to Handle missing values on Iris Dataset.

In addition to the codes and outputs, explain every operation that you do in the above steps and explain everything that you do to import/read/scrape the data set.

Colab paid products - Cancel contracts here