OpenLapSim

The Open Source Lap Time Simulation Software

Documentation

Autor: Davide Strassera First release: 21th December 2019

Abstract

The aim of this project is to build an open source Lap Time Simulation software, which can be used as structure for further improvements and give an understanding of the main functionality of such a tool.

The software as it is can be used for preliminary study related to race car and help to compare some of the main trade off of setup configurations or design (aero, power, mass, grip), but as a community project can be further developed to a more advanced tool.

Intro

The *OpenLapSim* is a quasi-static Lap Time Simulator for a point mass vehicle, with aerodynamics forces, engine map, gear ratios and tire friction ellipse, written in Python.

The program simulates the maximum performance (accelerations and velocity) of the given vehicle-setup on all the sections of the circuit, computing the fastest lap time and highest speed trace over the lap the car could theoretically have.

Methodology

For the development of this Software it has been used Python 3.7 and Spyder as IDE, which allows to easily visualize the variable space (explorer). Python is a free programming language very powerful for mathematical modelling. The libraries used are NumPy, SciPy and Matplotlib.

Theory

The structure of the Lap time simulator is divided mainly in two components: the Acceleration Envelope calculator and the Lap Time Simulation calculator for the speed trace and lap time computations.

The *Acceleration Envelope*, also called GGV diagram [1], describes the maximum accelerations of the vehicle on the axis of velocity, from 0 to max speed, for positive (ax acc), negative (ax dec), which is braking phase and lateral direction (ay).

To calculate it the program uses the setup parameters (defined by the user) and calculates the forces equilibrium for both longitudinal and lateral directions for each point of the speed vector.

The *Lap Time Simulator* uses both the results from the previous routine and the track file.

The TrackFile.txt is a two columns matrix which contains the distance [m] and curvature (1/corner radius) of the circuit.

This routine calculates for each segment of the circuit (row of the track file) the maximum lateral acceleration the car could performed based on the GGV diagram, and then integrates it over the distance to compute the fastest speed trace (in this phase for the corner) over the circuit [2].

The same calculation is computed for the longitudinal, in both acceleration (positive) and deceleration (negative) phases. On the Long calculation we have to consider the amount of lateral acceleration the vehicle has, which means the car has a "combination" of accelerations and it is moving out from the pure longitudinal point of the GGV, if not in straightline.

In this tool the combined performance between long and lateral accelerations is calculated with the equation of the ellipse (simple ellipse of adherence).

Below in the chart we can see all the velocity traces calculated during the Lap Time Sim process: max corner speed (vxcor), max acceleration speed (vx acc) and max braking speed (vxdec).

Finally, for each segment of the circuit, it is taken the minimum value between the three speed traces calculated.

Below it is plotted the fastest car velocity (vcar) over the circuit distance.

Software Guide

The structure of the code inside OpenLapSim/src is as following:

AccEnvCalc.py
LapTimeSimCalc.py
PostProc.py
RunOpenLapSim.py
SetupFile.py
TrackFile.txt

The file needed to run the simulation is RunOpenLapSim.py, where the user needs to specify two files: SetupFile.py and TrackFile.txt

```
Select Files
"""
# TrackFile.txt
TrackFile = 'TrackFile.txt'
# SetupFile.py
from SetupFile import*
```

On the SetupFile.py the user can modify the parameters of the vehicle as needed, while the TrackFile is a .txt file with distance in meters and curvature (1/R) of the specific circuit.

Still on the RunOpenLapSim.py, below the selection there are the objects instantiation for the AccEnv (aE) the LapTimeSim (11 and 12 for first and second iteration), and finally the PostProc (pP) for plotting and data print.

When run the RunOpenLapSim you should see on the console these lines:

```
AccEnvCalc completed
LapSimTimeCalc completed
LapSimTimeCalc completed
PostProc completed
LapTime: 121.836 [s]
TopSpeed: 299.2 [Km/h]
```

Conclusions

This Project does not want to be an advanced tool for simulation given the large amount of assumption and simplifications (up to this first release). It is anyway a ready to use tool which can be furthermore developed or be used as an education software for passioned engineers and universities projects (such as Formula Students).

It is important to remember that the simulation results in general are both a combination of model approximation and correctness of the input data, especially in a Formula type car, where aerodynamics and tire model heavily modify the results.

Links

The source code is available on GitHub and is licensed under GNU General Public License: https://github.com/dstrassera/OpenLapSim

References

- [1] W. F. Milliken, D. L. Milliken, *Race Car Vehicle Dynamics*. Warrendale, Pa: SAE, 1995
- [2] J. Hakewill, *Lap Time Simulation*. 2000 [Online], available: http://www.jameshakewill.com/Lap_Time_Simulation.pdf