Maximum number nodes at level \boldsymbol{l} in a binary tree (levels are 0-indexed):

1	2^l
	$2^{l+1}-1$
	$2^{l-1}+1$
	2^l+1
	2^l-1

Maximum number of nodes in binary tree with height h:

$$2^{h}$$
 $2^{h+1} - 1$
 $2^{h+1} - 1$
 $2^{h+1} + 1$
 $2^{h} + 1$
 $2^{h} - 1$

A binary tree has N nodes. Then height of the tree (choose the most strict one):

```
h \ge \lg N
h > \lg N
h \ge \lg N + 1
h \ge \lg N - 1
h \ge \lg(N+1)
h > \lg(N+1)
h > \lg(N+1) - 1
h \leq 2\lg(N+1)
h \le \lg N + 1
```

_____ traversal of a BST is the elements in sorted order.

Pre-order

n-order

Post-order

None. Because otherwise we would have O(n) sorting which is impossible.

Complexity of for (auto it = s.begin(); it != s.end(); ++it) cout << *it << endl;

Complexity of for (int i = 0; i < N; ++i){ { auto it = median; cout << *(++it) << endl; }

An AVL tree has height 2. Minimum number of nodes it may have:

An AVL tree has height 6. Minimum number of nodes it may have: 33

use Nn = Nn-, + Nn-2+ 1

Maximum number of rotations for an insert in an AVL

two rotations): 2

tree with N nodes and h height is (assume LR, RL is

Minimum number of nodes required to get X rotations for an delete operation is:

N_X N_{X+1} $\overline{N_{2X+1}}$

Maximum height of an AVL tree with 15 nodes: 4N4=12, N5=20, Need 20 modes for h=5.

50 max is 4.

If every node of a binary tree has 0 or 2 children, then height is $O(\lg N)$.

In an AVL tree, the median is either the root node, or one of its two children.

True only height balanced, not size. Look at N/.

N inserts in an AVL tree can be O(N).

True minderth > maxdepth from N2,..., No.

False 50, \(\geq \left(i) \approx o(N19N) \).

Insert N elements into an AVL tree. Total number of rotations is:

At any node in an AVL tree, left and right subtree differ by ≤ 1 height. As a result, any two leaf node differ by ≤ 1 depth.

True look at No

Let X be any node in an AVL tree. $\mathrm{LeftRotate}(X)$ followed by $\mathrm{RightRotate}(X)$ does not change the

AVL tree with height h has at least 2^h nodes.

True N3=778

After an insertion, before doing any rotations the maximum imbalance of a node is:

