Deep Learning - Introduction

Dr. Priyank Thakkar
Associate Professor
CSE Department
Institute of Technology
Nirma University

Syllabus

Syllabus

UNIT 1: Review of Visual Perception and Artificial Neural Networks

Overview of Computer Vision, Preprocessing Images for Recognition, Feature Engineering for Conventional Image Classification, K-Nearest Neighbor, Linear Classification, Gradient Descent, Feed Forward Neural Network, Backpropagation, Unstable Gradient Problem

UNIT 2: Convolutional Neural Networks

Introduction to Deep Supervised Learning, Convolution & Pooling, Dropout, LeNet, AlexNet, ZFNet, VGGNet, GoogleNet, ResNet and other State-of-the-art CNNs

UNIT 3: Transfer Learning

Transfer Learning Scenarios, Applications of Transfer Learning, Transfer Learning Methods, Fine Tuning and Data Augmentation, Related Research Areas,

UNIT 4: Convolutional Neural Networks in Action for Computer Vision

Semantic Segmentation, Object Detection, Instance Segmentation, Feature Visualization and Inversion, DeepDream and Style Transfer, Highway Networks, Image Recognition, Real Time CNN, Stereo Siamese Networks, Depth from Single Image, Image Generation, Domain Adaptation

UNIT 5: Review of other Deep Neural Networks

Auto Encoders, Recurrent and Recursive Neural Networks, Boltzmann and Restricted Boltzmann Machine

UNIT 6: Practical Deep Learning and Case Studies

Various Frameworks such as DIGITS, TensorFlow, Caffe and Theano, 2-3 Case Studies based on the Latest Developments in the Field prepared from various sources for teaching

purpose - Priyank Thakkar

Referencess

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press
- 2. Adam Gibson, Josh Patterson, Deep Learning, O'Reilly Media, Inc.
- 3. Duda, R.O., Hart, P.E., and Stork, D.G., Pattern Classification, Wiley.
- 4. Theodoridis, S. and Koutroumbas, K., Pattern Recognition. Academic Press
- 5. Russell, S. and Norvig, N. Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence

 These slides are not original and have been prepared from various sources for teaching

purpose - Priyank Thakkar

References

- 6. Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press.
- 7. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning, Springer
- 8. Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press
- 9. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer

10. Research Papers and Web Links

Blog and Course Site

Blog Link:

https://it7f4pbt.wordpress.com

Course Site:

https://sites.google.com/a/nirmauni.ac.in/it7f4---deep-learning/

Teaching & Evaluation Scheme

Teaching Scheme:

Theory	Tutorial	Practical	Credits
3	0	2	4

Evaluation Scheme:

	LPW	SEE	CE
Exam Duration	Continuous Evaluation + 2 Hrs. End Semester Exam	3.0 Hrs.	Continuous Evaluation
Component Weightage	0.2	0.4	0.4

Teaching & Evaluation Scheme

Breakup of CE

	Unit 1	Unit 2	Unit 3
Exam	Class Test	Sessional Exam	Assignments
Inter Component Weightage	0.3	0.4	0.3
Numbers	1	1	2
Marks of Each	30	40	15

Introduction

> AI, ML and DL

Source: [1]

These slides are not original and have been prepared from various sources for teaching purpose - Priyank Thakkar

Introduction

> Machine Learning vs Deep Learning

- > Four Major Architectures:
 - Unsupervised Pretrained Networks (UPNs)
 - Convolutional Neural Networks (CNNs)
 - Recurrent Neural Networks
 - Recursive Neural Networks

- > Four Major Architectures:
 - Unsupervised Pretrained Networks (UPNs)
 - > Autoencoders
 - Deep Belief Networks (DBNs)
 - > Generative Adversarial Networks (GANs)
 - > Use Cases:

Source: [3]

- Feature Extraction
- > Initialization
- > Synthesizing

- > Four Major Architectures:
 - > Convolutional Neural Networks (CNNs)
 - > Lenet-5
 - > AlexNet
 - > VGGNet
 - GoogleNet (Inception)
 - > ResNet
 - > ResNext
 - > DenseNet
 - > RCNN (Region Based CNN)
 - > YOLO (You Only Look Once)
 - > SqueezeNet
 - > SegNet

- > Four Major Architectures:
 - > Convolutional Neural Networks (CNNs)
 - Use Cases:
 - > Computer Vision
 - Natural Language Processing

- > Four Major Architectures:
 - > Recurrent Neural Networks
 - > Hopfield Network
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Unit (GRU)
 - > Use Cases:
 - Sentiment Classification
 - > Image Captioning
 - Language Translation
 - Video Captioning

- > Four Major Architectures:
 - Recursive Neural Networks
 - > Recursive Autoencoder
 - Recursive Neural Tensor Network
 - Use Cases:
 - > Image scene decomposition
 - > NLP
 - Audio-to-text transcription

Artificial Neural Networks

- > What?
 - Computing Systems inspired by Biological Neural Networks.

Biological Neural Networks

- > Nervous System
 - Biological Neural Networks [5]
 - Biological Neurons
 - What?

• Features These slides are not original and have been prepared from various sources for teaching purpose - Priyank Thakkar

Artificial Neuron Model

- ➤ Simple Neuron [6]
 - Weight Function, Net Input Function & Transfer Function

Neuron with Vector Input [6]

Input Neuron w Vector Input

Where

R = number of elements in input vector

$$n = w_{1,1}p_1 + w_{1,2}p_2 + \dots + w_{1,R}p_R + b$$

Activation Functions (Source: Not Known)

Activation Functions [12]

f(net) = max(0, net)

$$0.01*x_i/a_i*x_i$$

$$y_{ji} = \begin{cases} x_{ji} & \text{if } x_{ji} \ge 0\\ a_{ji}x_{ji} & \text{if } x_{ji} < 0, \end{cases}$$

$$y_i = \begin{cases} x_i & \text{if } x_i \ge 0\\ 0 & \text{if } x_i < 0. \end{cases}$$

$$a_{ji} \sim U(l, u), l < u \text{ and } l, u \in [0, 1)$$

 a_{ji} is a random number sampled from a uniform distribution U(l, u).

A Layer of Neurons [6]

Where

R = number of elements in input vector

S = number of neurons in layer

a = f(Wp + b)

Multiple Layers of Neurons [6]

These slides are not original and have been prepared from various sources for teaching purpose - Privank Thakkar

ANN Architectures [5]

> Fully Connected Network (Asymmetric)

> Fully Connected Network (Symmetric)

> Layered Network

> Acyclic Network

> Feedforward Network

Linear Separability

- > 1 D Case
 - > 7/5 Students data Weight Values & Obese/Not Obese
 - > Learning a separating point/line [5]

Linear Separability

- >2 D Case
 - > Learning a separating line

Note: Image source not known

Linear Separability

- > 3 D Case
 - > Learning a separating plane

- > Higher Dimensional Case
 - > Learning a separating hyperplane

Perceptron Model [6]

- > What is Perceptron?
- > What can it do?
 - 2-class linear classification problem
 - What?
 - Process

Perceptron Learning Rule [5, 6]

> Learning Process

R = number of elements in input vector

Some Issues

- > Why to use bias?
- > Termination Criterion
- > Learning Rate
- > Non-numeric Inputs
- > Epoch

Multiclass Discrimination

- > Layer of Perceptron
 - > To distinguish among n classes, a layer of n perceptrons can be used

Linearly Inseparable - Ex Or

world is not that simple...

Ex-OR gate

Р	X_1	X_2	D
1	0	0	-1
2	0	1	+1
3	1	0	+1
4	1	1	-1

Patterns are not linearly separable

prepared from various sources for teaching

Linearly Inseparable - Ex Or

Hidden transformation

$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{for } x < 0 \\ 0 & \text{for } x = 0 \\ 1 & \text{for } x > 0. \end{cases}$$

Pattern	Space	Image	Class	
X ₁	x ₂	o ₁	o ₂	-
0	0	-1	-1	2
0	1	1	-1	1
1	0	-1	1	1
1	1	-1	-1	2

Image space

$$o_1 = sgn(-2x1+x2-1/2)$$

 $o_2 = sgn(x1-x2-1/2)$

These slides are not original and have been prepared from various sources for teaching

Image Space

$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{for } x < 0 \\ 0 & \text{for } x = 0 \\ 1 & \text{for } x > 0. \end{cases}$$

Finally...

Pattern	Space	Image Space		01+02+1	03	Class
x1	x2	o_1	02	-	-	-
0	0	-1	-1	-ve	-1	2
0	1	1	-1	+ve	+1	1
1	0	-1	1	+ve	+1	1
1	1	-1	-1	-ve	-1	2

Two Layer Network

Multilayer Networks - Typical Transfer Functions [6]

These slides are not original and have been prepared was started unating purpose - Priyank Thakkar

An example of a multilayer feed-forward neural network.

Initial input, weight, and bias values.

Class Label: 1

x_1	x_2	<i>x</i> 3	w ₁₄	w ₁₅	w ₂₄	w ₂₅	w 34	w35	w46	W56	θ_4	θ_5	θ6
1	0	1	0.2	-0.3	0.4	0.1 e slides are	-0.5 not ongmal	0.2 and have I		-0.2	-0.4	0.2	0.1

Figure 6.18 An example of a multilayer feed-forward neural network.

Table 6.3 Initial input, weight, and bias values.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	W14	₩15	w24	₩25	W34	W35	w46	₩56	θ4	θ5	θ ₆
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Table 6.4 The net input and output calculations.

Unitj	Net input, I_j	Output, Oj
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7})=0.332$
5	-0.3+0+0.2+0.2=0.1	$1/(1+e^{-0.1})=0.525$
6	These slides are not original and have be (-0.3)(0.332) - (0.2)(0.525) + 0.1 = 0.105	$h_{\text{hing}}^{\text{peen}} 1/(1+e^{0.105}) = 0.474$

Class Label: 1

> Backpropagation

x_1	x_2	<i>x</i> ₃	W14	w ₁₅	W24	w ₂₅	W34	₩35	w ₄₆	₩ ₅₆	θ ₄	θ ₅	θ ₆
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

W15

W24

W25

$$Err_j = O_j(1 - O_j)(T_j - O_j),$$

$$Err_j = O_j(1 - O_j) \sum_k Err_k w_{jk},$$

j	O j
4	0.332
5	0.525
6	0.474

5 0.525 6 0.474 x_3 3 w_{35} Table 6.5 Calculation of the error at each node.

Unit j	Err _j
6	(0.474)(1 - 0.474)(1 - 0.474) = 0.1311
5	(0.525)(1-0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1 — 0.332)(0116111)(4-0i3)s ≤ 0087eaching

W56

5

> Backpropagation

x_1	x_2	<i>x</i> ₃	W14	w ₁₅	₩24	w ₂₅	W34	₩35	w ₄₆	w ₅₆	θ_4	θ ₅	θ ₆
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

 $\Delta w_{ij} = (l) Err_j O_i$

$$w_{ij} = w_{ij} + \Delta w_{ij}$$

$$\Delta \theta_j = (l)Err_j$$

$$\theta_j = \theta_j + \Delta \theta_j$$

j	O _j	Err _j	W34
4	0.332	-0.0087	₩35 θ6
5	0.525	-0.0065	θ_5
6	0.474	0.173e1e1slides	s are not original and have been
0	0.171	prepared fr	om various sources for teaching

Table 6.6 Calculations for weight and bias updating.

New value
-0.3 + (0.9)(0.1311)(0.332) = -0.261
-0.2 + (0.9)(0.1311)(0.525) = -0.138
0.2 + (0.9)(-0.0087)(1) = 0.192
-0.3 + (0.9)(-0.0065)(1) = -0.306
0.4 + (0.9)(-0.0087)(0) = 0.4
0.1 + (0.9)(-0.0065)(0) = 0.1
-0.5 + (0.9)(-0.0087)(1) = -0.508
0.2 + (0.9)(-0.0065)(1) = 0.194
0.1 + (0.9)(0.1311) = 0.218
0.2 + (0.9)(-0.0065) = 0.194
-0.4 + (0.9)(-0.0087) = -0.408

purpose - Privank Thakkar

Vanishing Gradient Problem

$$Sigmoid = S(\alpha) = \frac{1}{1 + e^{-\alpha}}$$

$$\frac{1}{1+e^{-\alpha}} \left[1 - \frac{1}{1+e^{-\alpha}} \right]$$

Simply: 5(1-5)

These slides are not original and have been production

prinote on Imagesuare mothoriginal purpose - Priyank Thakkar

Vanishing Gradient Problem

- > How does ReLU solve (delay) the problem?
- > Dead Neuron in case of RELU and its implication
- > Leaky/Parameterized ReLU

Vanishing Gradient Problem

Nane	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x)$ Finders (det x^x) not original and have be prepared from various sources for teachi	$ef'(x) = \frac{1}{1 + e^{-x}}$

- Feature Engineering
- Loss of Structural Information
- Difference in Indented Part, Orientation, Backdrop, Size, Location
- Noise
- Scalability

Loss of Structural Information

purpose - Priyank Thakkar

- Difference in Indented Part, Orientation, Backdrop, Size, Location
- Noise

Scalability

Disclaimer

These slides are not original and have been prepared from various sources for teaching purpose.

References

- 1. https://towardsdatascience.com/the-10-deep-learning-methods-ai-practitioners-need-to-apply-885259f402c1
- 2. https://semiengineering.com/deep-learning-spreads/
- 3. https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/ch04.html

References

- 4. Data mining: concepts and techniques, J. Han, and M. Kamber. Morgan Kaufmann, (2006)
- 5. Elements of Artificial Neural Networks, Kishan Mehrotra, Chilukuri K. Mohan, Sanjay Ranka. MIT Press, (1997)
- 6. Matlab Neural Network Tollbox Documentation
- 7. LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
- 8. Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine Learning Research 15.1 (2014): prepared from various sources for teaching 1929-1958.

References

- 9. https://ayearofai.com/rohan-lenny-2-convolutional-neural-networks-5f4cd480a60b
- 10. http://cs231n.github.io/convolutional-networks/
- 11. https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
- 12. Xu, Bing, et al. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint arXiv:1505.00853 (2015).

Disclaimer

These slides are not original and have been prepared from various sources for teaching purpose.