BITS PILANI, DUBAI CAMPUS ACADEMIC-UNDERGRADUATE STUDIES DIVISION FIRST SEMESTER 2023-2024

Course Handout (Part II)

Date: 28.08.2023

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BITS F464 (3 0 3)
Course Title : Machine Learning
Instructor-in-charge: Dr. Pranav M. Pawar
Co-Instructor : Dr. Pranav M. Pawar

Catalog Description and Objectives:

Machine Learning is an exciting sub-area of Artificial Intelligence which deals with designing machines which can learn and improve their performance from examples/experience. This course introduces the student to the key algorithms and theory that forms the core of machine learning. The course will cover the major approaches to learning namely, supervised, unsupervised, semi-supervised, and reinforcement leaning. The course emphasizes various techniques, which have become feasible with increased computational power and our ability to produce and capture huge volumes of data. The topics covered in the course include regression, decision trees, support vector machines, artificial neural networks, Bayesian techniques, Hidden Markov models etc. Some advanced topics like active, deep & topological learning will also be covered.

Course Pre/Requisite (if any) & Catalogue / Bulletin Description: Please refer Bulletin 2023-2024.

Text Books [TB]

TB1. Tom M. Mitchell, Machine Learning, The McGraw-Hill Companies, 1st edition 2013.

Reference Books [RB]

- RB1. Christopher M. Bhisop, Pattern Recognition & Machine Learning, Springer, 2006.
- RB2. Marsland Stephen, Machine Learning An Algorithmic Perspective, 2e, CRC Press, 2015.
- RB3. Alpaydin Ethem. Introduction to Machine Learning, 3e, PHI, 2014.
- RB4. Andrew Ng, Machine Learning Yearning, Draft Version.
- RB5. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press, 2016.

Prerequisites*

1.	Probability theory	Self Study	Ch.2, Appendix C
2.	Decision theory		-R1
3.	Information theory		
4.	Linear Algebra		
5.	Optimization & Search		

^{*} A good understanding of the above topics is essential

Course Plan

Topic	Topic Details	Lecture #	Chapter Reference
Overview	Introduction to Machine Learning	1	Ch. 1 - TB
Over view	1. Motivation/course objectives	1	Ch.1 – R1,R2,R3
	2. Recipe of a machine learning algorithm		Ch. 5 – R5
Types of Learning	Introduction to different types of Learning:	2	Ch.1 – R2, R3
71 8	1. Supervised, semi-supervised, and		, -
	unsupervised learning		
	2. Bayesian learning		
	3. Instance-based learning		
	4. Reinforcement learning		
	5. Active learning		
	6. Deep learning		
High-dimensional	Characteristics of High-dimensional data,	3	Ch.1 – R1
data & Curse of	Curse of Dimensionality (CoD) problem		
Dimensionality			
Difficusionality			
Supervised Learning	Regression	5-6	Ch. 3 – R1
	1. Polynomial regression		
	a. Model flexibility/selection		
	b. Overfitting/underfitting		
	c. Regularization		
	2. Linear basis function models		
	Hands on Demonstration of Regression and		
Supervised Learning	Multiple Linear Regression Classification		
Supervised Learning	1. Discriminant Functions (two class and	7-9	1. Ch. 4 – R1
	multiclass)	1-7	1. Cn. 4 – Ki
	a. Least Square		
	b. Fisher's Linear Discriminant		
	c. Perceptron Algorithm		
	2. Probabilistic Generative Classifiers		Ch. 10 – R3
	a. Bayes' classifier		2. Ch. $4 - R1$
	3. Probabilistic Discriminative Classifiers		3. Ch. $4 - R1$
	a. Logistic Regression		4. Ch. 3 - TB
	4. Decision Tree Learning	10	Ch. 12 – R2
	5. Artificial Neural Networks		Ch. 9 – R3
	a. McCulloch & Pitts Model	11-12	5. Ch. 4 – TB
	b. Perceptrons		Ch. 5 – R1
	c. Multilayer Perceptrons (MLP)	13-15	Chs. 3,4 – R2
	d. Network training	16-18	Ch. 11 – R3
	e. Error back-propagation		6. Ch. 13 – R2
	Mathematical Model Derivation		Ch. 17 – R3
	Hands on Demonstration of MLP		7. Ch. $8 - R2$
	6. Ensemble Learninga. Boosting		Ch. 13 – R3
	b. Bagging		Cii. 15 K3
	c. Random Forests	19-20	
	7. Support Vector Machines (SVM)		
	Support vector machines (5 vivi)	_	

	 a. Maximum margin hyperplanes b. Structural risk minimization c. VC dimension/Shattering d. Duality e. Kernels f. Regression Mathematical Model Derivation 	21-22
	Hands on Demonstration of SVM and	
Kernel Methods	Bagging Boosting 1. Kernels	23-24 Ch. 6 – R1
ixerner witchious	2. Kernel trick	Ch. 13 – R3
	3. Kernel-based Machine Learning	Cii. 13 K3
	Algorithms	
Bayesian Learning	1. Bayesian Probability	25-26 Ch. 6 – TB
•	2. Bayesian linear regression	Ch. 16 – R3
	3. Bayes optimal classifier	
	4. Gibbs Algorithm	
	5. Naïve Bayes Learning Algorithm	
Instance-based	1. Rote classifiers	27-28 Ch. 8 - TB
Learning	2. Case-based Reasoning	Ch. 8 – R3
Dear ming	3. K-NN	
	Hands on Demonstration of K-NN	
Probabilistic	1. Bayesian Belief Networks (BBN)	29-31 Ch. 6 - TB
Graphical Models	2. Markov Random Fields (MRF)	Ch. 8 – R1
(PGM)	3. Hidden Markov Models (HMM)	Ch. 16 – R2
(1 01/1)	Application and Case Study	Ch. 14,15 – R3
Unsupervised Learning		32-33 Ch. 9 – R1
	1. <i>K</i> -means Clustering	Ch. 14 – R2
	2. Mixture of Gaussians	Ch. 7 – R3
	3. Expectation Maximization	
	(EM) Clustering	
	4. Self-organized Maps (SOM)	24.25 CL 6 D2 D2
	Dimensionality Reduction	34-35 Ch. 6 – R2, R3
	1. LDA 2. PCA/SVD	
	2. PCA/SVD 3. ICA	
	4. Factor Analysis	
	Hands on Demonstration of LDA, PCA	
Reinforcement	1. Motivation	36-37 Ch. 13 – TB
Learning	2. Exploration vs. Exploitation tradeoff	Ch. 11 −R2
ð	3. Markov Decision Process (MDP)	Ch. 18 – R3
	4. Action and state spaces	
	5. Q Learning Algorithm	
	6. Sarsa Algorithm	
	Introduction to Deep Reinforcement	
	Learning	

Active Learning	3. 4.	Motivation Types of Active Learning a. Version space b. Membership query synthesis c. Pool-based sampling d. Stream-based sampling Query Strategy Frameworks a. Uncertainty sampling i. Least confident ii. Margin sampling iii. Entropy b. Query by committee (QBC) i. Vote entropy ii. KL divergence Analysis of Active Learning	38-40	Class Notes
Introduction to Advanced Learning Techniques	1. 2. Ha	Deep Learning (Introduction to RNN and CNN) Topological Learning ands on Demonstration of CNN	41-42	 R5 Class Notes

Course Learning Outcomes (CLOs)

Upon successful completion of this course, students should be able to:

- **CLO1** To study the basic theory of machine learning and how computers can learn from experience.
- **CLO2** To be able to formulate machine learning problems corresponding to different applications and understand the different applications of machine learning with their strength and weaknesses.
- **CLO3** To know the various supervised learning algorithm for regression and classifications and how to solve real world problems by using them.
- **CLO4** To understand the structure of unlabeled data and working of unsupervised learning to be applied to unlabeled data.
- **CLO5** To learn advanced machine learning techniques such as reinforcement learning, active learning and deep learning, and also understand applications of it.

Evaluation Scheme [Legends: OB - Open Book, CB - Closed Book, TBA - To Be Announced]

Component	Duration	Weightage	Date (Time)	Venue
Mini Project – Part I (Problem definition, Literature survey) (OB)	Take home	10 %	On or Before 15-10-23	
Mid-sem Test (CB)	90 Mins.	30 %	03-11-23 FN	
Mini Project – Part II (Design, Implementation, presentation and demonstration) (OB)	Take home	20 %	On or Before 10-12-23	TBA
Comprehensive Exam (CB)	3 Hours	40 %	09-01-24 FN	

^{*}Only prescribed text book(s) and hand-written notes are permitted

Labs. on R/python: No structured lab sessions, but students will be provided with lab applications on

important topics.

Objective of Mini Project

To understand application of ML algorithms in different areas like IoT, cloud computing, and other recent areas and write a detailed research article over a real time project.

Mapping of CLOs, PLOs, and CECs

CLOs	PLOs	Evaluation Components (ECs)			
CLOS	FLOS	EC1	EC2	EC3	EC4
CLO1	1,2		✓		✓
CLO2	2,3,5,6,7,8	✓	✓	✓	✓
CLO3	2,3,4,5,8	✓	✓	✓	✓
CLO4	2,3,4,5,8	√		✓	✓
CLO5	2,3,5			√	√

^{*} Please refer the link for the PLOs of the B.E. Computer Science programme

Mid-Semester grading

Mid-semester grading will be displayed after two evaluation components or earlier when-ever about 40% of evaluation components are completed.

NOTE: A student will be likely to get "NC", if he/she doesn't appear / appear for the sake of appearing for the evaluation / scoring zero in comprehensive examination

Make up and attendance policies

Make-ups are not given as a routine. It is solely dependent upon the genuineness of the circumstances under which a student fails to appear in a scheduled evaluation component. In such circumstances, prior permission should be obtained from the Instructor-in-Charge (I/C). The decision of the course committee in the above matter will be final.

Attendance: Every student is expected to be responsible for regularity of his/her attendance in class rooms, to appear in scheduled tests and examinations and fulfill all other tasks assigned to him/her in this course. A student should have a **minimum of 60% of attendance** in a course to be eligible to appear for the Comprehensive Examination in the course. For the students under the purview of Academic Counseling Board (ACB), the Board shall prescribe the minimum attendance requirement on a case-to-case basis. Attendance in the course will be a deciding factor in judging the seriousness of a student which may be directly / indirectly related to grading.

General timings for consultation

CCH for Regular class: Wednesday hour-9, 02:50 pm -03:40 pm

Contact Details

Dr. Pranav M. Pawar, Room no: 238, Contact No: +9714-2753700 Ext: 304, email: pranav@dubai.bits-pilani.ac.in

General Instructions

Students should come prepared for classes and carry the materials that are prescribed by the Instructor.

Notices

All notices concerning the course will be displayed on the respective Notice Boards. Optionally, if there is a need, email to your BITS mail would be used on short notice and therefore you should activate your BITS mail. All official communications will be sent to your BITS email only.

Instructor-in-charge BITS F464