Список сокращений и условных обозначений

К - компрессор

ОК - осевой компрессор

ЦБК - центробежный компрессор

НА - направляющий аппарат

ВУ - входное устройство

ЗУ - заборное устройство

Л - лопатка

ЛТ - линия тока

M - Max

Т - тело

РК - рабочее колесо

КПД - коэффициент полезного действия

ГДФ - газодинамическая функция

3-н - закон

Раб - рабочий

Ср. - средний

СЛ - средняя линия

Относ. - относительный

Ном. - номинальный

Абс. - абсолютный

Коэф. - коэффициент

Св-во - свойство

Ур-е - уравнение

Ф-я - функция

Примечание: при выполнении пользоваться В.С. Бекнев, А.Ф. Куфтов, Р.З. Тумашев "Расчет и проектирование центробежных компрессоров", методические указания, 1996

▼ Исходные данные

Общий адрес вывода вайлов: Adress = "D:\Учеба\ЛМ (Лопаточные машины)\ЛМ Ч1 К\ЛМ Ч1 К ЦБК\"

Рабочее тело: воздух

Показатель адиабаты: k = 1.4

Газовая постоянная рабочего тела (Дж/ кг/К):

Теплоемкость рабочго тела (Дж/кг/К):

Полная температура (К) и давление (Па) на входе:

 $P_{H}^{*} = 101300$

Массовый расход (кг/с):

Степень повышения давления в РК:

Изоэнтропический КПДРК:

Температура среды (К):

 $T_{\text{okp.cp.}} = \overline{273.15 + 5} = 278.15$

Коэф. трения диска РК:

Угол наклона ЛТ в ср. сечении при входе в РК:

Теплообменом с окруающей средой пренебречь:

Угол Л:

Угол потока перед РК:

Относительный диамер втулки на входе в РК:

 $\overline{d} = 0.45$

Относительный диамер периферии на входе в РК:

 $\overline{D} = 0.5$

Сторонность РК:

side = 1

 $(side = 1) \lor (side = 2) = 1$

Степень дискритизации: $N_{dis} = 100$

ГДФ температуры: $\tau_{T}(\lambda) = 1 - \lambda^{2} \cdot \frac{k-1}{k+1}$

 $\pi_{p}(\lambda) = \left(1 - \lambda^{2} \cdot \frac{k-1}{k+1}\right)^{\frac{k}{k-1}}$ $\varepsilon_{\rho}(\lambda) = \left(1 - \lambda^{2} \cdot \frac{k-1}{k+1}\right)^{\frac{1}{k-1}}$ ГДФ давления:

ГДФ плотности:

▲ Исходные данные

Подключаемые библиотеки

Рисунок 1 - Изменение относ. КПД РК

Число Л: $Z_{\prod} = 28$

 $Z_{\Pi,PK} = Z_{\Pi} \cdot \sin(\beta_{\Pi 2}) = 28 \cdot \sin(70 \cdot \circ) = 26.311$ Фактическое числоЛ:

 $Z_{\Pi,PK} = 2 \operatorname{round}(0.5 \cdot Z_{\Pi,PK}) = 26$ Целое четное фактическое число Л:

Оптимальной диапазон числа Л: $16 \le Z_{\Pi.PK} \le 32 = 1$

 $C_{m0.2.oth} = 0.3$ Обобщенный коэф. расхода на выходе из РК:

Диапазон второго обобщенного коэф. расхода на выходе из РК:

 $0.22 \le C_{\text{m}0.2.\text{oth}} \le 0.4 = 1$

Рисунок 2 - Диаграмма изменения политропического КПД ступени и коэф. разгона меридиональной скорости от угла выхода Л

 $\beta_{\text{JI}2} = 70^{\circ}$ $k_{\text{cm}} = 0.95$ Коэф. разгона меридиональной скорости для входного сечения:

Физический коэф. расхода $C_{m2.oth} = C_{m0.2.oth} \cdot \sin(\beta_{\Pi 2}) = 0.3 \cdot \sin(70 \cdot \circ) = 0.282$ на выходе из РК:

 $C_{m1.oth} = \frac{C_{m2.oth}}{k_{cm} \cdot \overline{D}} = \frac{0.282}{0.95 \cdot 0.5} = 0.593$ Физический коэф. расхода на входе в РК:

Коэф. скольжения: $\sigma_{\boldsymbol{\mathcal{V}}} = 1 - \frac{\sqrt{\sin\left(\beta_{\Pi2}\right)}}{Z_{\Pi.PK}^{0.7}} = 1 - \frac{\sqrt{\sin(70\cdot^\circ)}}{26^{0.7}} = 0.901$

Коэф. уменьшения подведенной работы за счет конечного числа Л и реактивности Л:

$$\mu_{\infty} = \frac{\sigma_{\nu} - C_{\text{m0.2.oTH}} \cdot \cos(\beta_{\Pi 2})}{1 - C_{\text{m0.2.oTH}} \cdot \cos(\beta_{\Pi 2})} = \frac{0.901 - 0.3 \cdot \cos(70 \cdot ^{\circ})}{1 - 0.3 \cdot \cos(70 \cdot ^{\circ})} = 0.89$$

Ср. относ. диаметр на входе в РК: $r_{cp} = \sqrt{\frac{1+\overline{d}^2}{2}} = 0.775$

Коэф. эффективного напора:

$$H_{\text{K.OTH}} = \mu_{\infty} + \alpha_{f} - \mu_{\infty} \cdot C_{\text{m2.oTH}} \cdot \cot(\beta_{\text{JI2}}) - C_{\text{m2.oTH}} \cdot \overline{D} \cdot \overline{r_{cp}} \cdot \frac{\cot(\alpha_{1})}{k_{cm}} = 0.785$$

Газодинамический расчет

Адиабатический КПД ступени:

Адиабат ический (изоэнтропический) напор (Дж/кг):

$$H^*_{aд.pk} = Cp \cdot T^*_{H} \cdot \left(\pi^*_{PK} - 1\right) = 160.942 \times 10^3$$

Эффективный напор (Дж/кг):
$$H_{K} = \frac{H^*_{\text{ад.рк}}}{\eta^*_{\text{рК}}} = 190.941 \times 10^3$$

Адиабатическая (изоэнт рапическая) работ а (Дж/кг): $\overline{H} = H_{K,OTH} \cdot \eta^* p_K = 0.661$

Окружная скорость раб. Т
$$u_2 = \sqrt{\frac{H^* \text{ад.рк}}{\overline{H}}} = \sqrt{\frac{160941.894}{0.661}} = 493.298$$

Окружная скорость раб. Т
$$u_1 = u_2 \cdot \overline{D} = 493.298 \cdot 0.5 = 246.649$$
 на входе в РК (м/c):

Меридиональная составляющая абс. скорости раб. Т на выходе из РК (м/с):

$$c_{m2} = C_{m2.0TH} \cdot u_2 = 0.282 \cdot 493.298 = 139.064$$

Меридиональная составляющая абс. скорости раб. Т на входе в РК (м/с):

$$c_{m1} = C_{m1.0TH} \cdot u_1 = 0.593 \cdot 246.649 = 146.384$$

Критическая скорость раб. Т на входе (м/с):

$$a_{Kp1} = \sqrt{\frac{2 \cdot k}{k+1} \cdot R_{\Gamma} \cdot T^*_{H}} = \sqrt{\frac{2 \cdot 1.4}{1.4+1} \cdot 287.4 \cdot 298} = 316.1$$

Абс. скорость раб. T на входе в РК (м/c):
$$c_1 = \frac{c_{m1}}{\sin(\alpha_1)} = \frac{146.384}{\sin(65 \cdot °)} = 161.516$$

Приведенная скорость раб. Т на входе в РК:
$$\lambda_1 = \frac{c_1}{a_{\text{кp1}}} = \frac{161.516}{316.1} = 0.511$$

Коэффициент потерь во входном патрубке:
$$\xi_{BX} = 0.04$$

$$\xi_{\text{Ha}} = 0.01 + 0.5 \cdot \left(\frac{90 - \frac{\alpha_1}{\text{deg}}}{100}\right)^2 = 0.041$$

$$\xi_{\text{By}} = \xi_{\text{BX}} \cdot \left(\frac{c_{\text{m1}}}{c_{\text{1}}}\right)^{2} + \xi_{\text{Ha}} = 0.074$$

Коэф. сохранения полного давления ВУ:
$$\sigma_{BY} = \frac{1}{1 + \xi_{BY} \cdot \frac{k}{k+1} \cdot \varepsilon_{\rho} (\lambda_1) \cdot \lambda_1^{\ 2}} = 0.99$$

Плотность раб. Т на входе в РК (кг/м³):
$$\rho *_1 = \frac{\sigma_B y \cdot P^*_H}{R_r \cdot T^*_H} = \frac{0.99 \cdot 101300}{287.4 \cdot 298} = 1.171$$

Коэф. загромождения на входе в РК: $\mu_{BV} = 0.985$

Диапазон коэф. загромождения на входе в РК: $0.98 \le \mu_{\rm BV} \le 0.99 = 1$

Статическая плотность раб. Т на входе в РК (кг/м³): $\rho_1 = \rho^*_1 \cdot \varepsilon_{\rho} \Big(\lambda_1 \Big) = 1.171 \cdot 0.895 = 1.048$

Давление торможения раб. Т на входе в РК (Па): $P*_{1} = P*_{H} \cdot \sigma_{BY} = 101300 \cdot 0.99 = 100287.268$

Статическое давление раб. Т на входе в РК (Па): $P_1 = P^*_1 \cdot \pi_p(\lambda_1) = 100287.268 \cdot 0.856 = 85826.3$

Площадь на входе в РК (м²): $F_1 = \frac{G}{c_{m1} \cdot \rho^*_1 \cdot \epsilon_{\rho}(\lambda_1) \cdot \mu_{BY}} = 0.026$

▼ Расчет характерных диаметров

Периферийный диаметр на входе в РК:
$$D_{\Pi 1} = \sqrt{\frac{4 \cdot F_1 \cdot \cos\left(\gamma_{cp1}\right)}{\pi \cdot \left(1 - \overline{d}^2\right)}} = 0.205$$

Втулочный диаметр на входе в РК: $D_{BT1} \, = \, D_{\Pi 1} \cdot \overline{d} \, = 0.092$

Ср. диаметр на выходе из РК: $D_2 = \frac{D_{\Pi 1}}{\overline{D}} = 0.41$

Расчет характерных диаметров

Обобщённый коэф. производительноги:
$$\Phi_0 = 4 \cdot \frac{G}{\pi \cdot \rho^*_1 \cdot D_2^2 \cdot u_2 \cdot \sin(\beta_{\Pi 2})} = 0.05$$

Окружная составляющая абс. скорости раб. Т на выходе из РК (м/с):

$$c_{u2} = \mu_{\infty} \cdot \left(u_2 - c_{m2} \cdot \cot(\beta_{\Pi 2}) \right) = 0.89 \cdot (493.298 - 139.064 \cdot \cot(70^{\circ})) = 393.804$$

Абс. скорость раб. Т на выходе из РК (м/с):

$$c_2 = \sqrt{c_{u2}^2 + c_{m2}^2} = \sqrt{393.804^2 + 139.064^2} = 417.636$$

Угол потока раб. Т на выходе в абс. движении на выходе из РК: $\alpha_2 = \text{atan} \left(\frac{c_{m2}}{c_{u2}} \right) = 19.45 \cdot ^{\circ}$

Температура раб. Т на выходе из РК (К):

$$T^*_2 = T^*_H + \frac{H_K}{Cp} = 298 + \frac{190941.24}{1006} = 487.802$$

Критическая скорость звука на выходе из РК (м/с):

$$a_{\text{Kp2}} = \sqrt{\frac{2k}{k+1}} \cdot R_{\Gamma} \cdot T^*_2 = \sqrt{\frac{2 \cdot 1.4}{1.4+1}} \cdot 287.4 \cdot 487.802 = 404.426$$

Приведенная скорость на выходе из РК: $\lambda_2 = \frac{c_2}{a_{Kp2}} = \frac{417.636}{404.426} = 1.033$

Параметры РК на входе

Периферийный радиус РК на входе (м): $r_{\Pi 1} \, = \frac{D_{\Pi 1}}{2} \, = \frac{0.205}{2} \, = \, 0.103$

Ср. радиус РК на входе (м):

$$r_{cp1} = \sqrt{r_{\pi 1}^2 - \frac{F_1 \cdot \cos(\gamma_{cp1})}{2\pi}} = \sqrt{0.103^2 - \frac{0.026 \cdot \cos(5 \cdot \circ)}{2 \cdot \pi}} = 0.08$$

Втулочный радиус РК на входе (м):

$$r_{BT1} = \sqrt{r_{\Pi 1}^2 - \frac{F_1 \cdot \cos(\gamma_{cp1})}{\pi}} = \sqrt{0.103^2 - \frac{0.026 \cdot \cos(5 \cdot \circ)}{\pi}} = 0.046$$

Высота Л на входе (м): $b_1 = \frac{r_{\Pi 1} - r_{BT1}}{\cos\left(\gamma_{cp1}\right)} = \frac{0.103 - 0.046}{\cos(5 \cdot \circ)} = 0.057$

Ср. относ. диаметр на входе в РК: $d_{cp.oth} = \frac{r_{cp1}}{r_{\pi 1}} = \frac{0.08}{0.103} = 0.775$

Частота вращения РК (об/мин): $n = \frac{60 u_2}{\pi \cdot D_2} = \frac{60 \cdot 493.298}{\pi \cdot 0.41} = 22954.745$

Частота вращения РК (рад/с): $\omega = \frac{2 \cdot \pi \cdot n}{60} = 2403.815$

Ср. окружная скорость потока на входе в РК (м/с):

$$u_{cp1} = \frac{\pi \cdot r_{cp1} \cdot n}{30} = \frac{\pi \cdot 0.08 \cdot 22954.745}{30} = 191.252$$

Окружная составляющая абс. скорости потока (м/с):

$$c_{u1} = \sqrt{c_1^2 - c_{m1}^2} = \sqrt{161.516^2 - 146.384^2} = 68.26$$

Окружная составляющая относ. скорости потока (м/с):

$$w_{u1} = u_{cp1} - c_{u1} = 191.252 - 68.26 = 122.992$$

Относ. скорость потока (м/с):

$$w_1 = \sqrt{w_{u1}^2 + c_{m1}^2} = \sqrt{122.992^2 + 146.384^2} = 191.194$$

Угол входа в РК: $\beta_1 = \operatorname{atan}\!\left(\frac{c_{m1}}{w_{u1}}\right) = \operatorname{atan}\!\left(\frac{146.384}{122.992}\right) = 49.963 \cdot ^{\circ}$

Температура торможения в относ. движении (К):

$$T^*_{W1} = T^*_{H} + \frac{w_1^2 - c_1^2}{2 \cdot Cp} = 298 + \frac{191.194^2 - 161.516^2}{2 \cdot 1006} = 303.203$$

Критическая скорость звука в относ. движении (м/с):

$$a_{WKP} = \sqrt{\frac{2k}{k+1}} \cdot R_{\Gamma} \cdot T^*_{W1} = \sqrt{\frac{2 \cdot 1.4}{1.4+1}} \cdot 287.4 \cdot 303.203 = 318.848$$

Приведенная скорость в относ. движении: $\lambda_{\rm W1} = \frac{\rm ^W1}{\rm a_{\rm WKP}} = \frac{191.194}{318.848} = 0.6$

Диапазон приведеной скорости в относ. движении:

 $\lambda_{\rm w1} < 0.85 = 1$

ГДФ температуры в относ. движении:

$$\tau_{\text{W1}} = \tau_{\text{T}}(\lambda_{\text{W1}}) = 0.94$$

Статическая температура раб. Т (K): $T_1 = T^*_{w1} \cdot \tau_{w1} = 303.203 \cdot 0.94 = 285.032$

Параметры РК на выходе

Окружная составляющая относ. скорости раб. Т за РК (м/с):

$$w_{u2} = u_2 - c_{u2} = 493.298 - 393.804 = 99.494$$

Относительная скорость раб. Т за РК(м/с):

$$w_2 = \sqrt{w_{u2}^2 + c_{m2}^2} = \sqrt{99.494^2 + 139.064^2} = 170.991$$

Торможение относ. скорости: $w_{\text{отн2}} = \frac{w_2}{w_1} = \frac{170.991}{191.194} = 0.894$

Диапазон торможния относ. скорости:

 $w_{OTH2} > 0.6 = 1$

Коэф. отвода теплоты через корпус ступени:

 $\alpha_{\rm q} = 0.6$

Диапазон коэф. отвода теплоты через корпус ступени:

 $0.2 \le \alpha_0 \le 0.6 =$

Потери на трение диска (Дж/кг): $\Delta H_f = \alpha_f \cdot u_2^2 = 9.734 \times 10^3$

Температура раб. Т на выходе из РК (К):

$$T_{2} = \begin{bmatrix} T_{H}^{*} + \frac{w_{1}^{2} - w_{2}^{2} - u_{cp1}^{2} + u_{2}^{2} - c_{1}^{2}}{2 \cdot Cp} + \frac{(1 - \alpha_{q}) \cdot \Delta H_{f}}{Cp} \\ T_{Q}^{*} \cdot \tau_{T}(\lambda_{2}) \end{bmatrix} = 401.104$$

ВОТ ВОПРОС

Температура торможения раб. Т на выходе из РК (К):

$$T^*_{2} = T_2 + \frac{c_2}{2 \cdot Cp} = 401.104 + \frac{417.636}{2 \cdot 1006} = 401.311$$

 $T*_2 = 487.802$

Приведенная скорость на выходе из РК: $\lambda_2 = \frac{c_2}{a_{KD2}} = 1.033$

Давление торможения раб. Т на выходе из РК (Па):

$$P_2^* = P_1 \cdot \pi_{PK}^* = 100287.268 \cdot 4.5 = 451292.706$$

Плотность торможения раб. Т на выходе из РК (кг/м 3):

$$\rho^*{}_2 = \frac{P^*{}_2}{R_{\Gamma} \cdot T^*{}_2} = \frac{451292.706}{287.4 \cdot 401.311} = 3.913$$

Статиеское давление раб. Т на выходе из РК (Па):

$$P_2 = P^*_2 \cdot \pi_p(\lambda_2) = 451292.706 \cdot 0.504 = 227511.546$$

Плотность раб. Т на выходе из РК (Па):

$$\rho_2 = \rho^*_2 \cdot \varepsilon_{\rho}(\lambda_2) = 3.913 \cdot 0.613 = 2.399$$

Коэф. загромождения на выходе из РК:
$$\mu_2 \ = \frac{\sqrt{\eta^*_{PK}} \cdot \tau_T \left(\lambda_2 \right)}{\tau_T \left(\sqrt{\eta^*_{PK}} \cdot \lambda_2 \right)} \ = \ 0.888$$

Высота Л на выходе из РК (м):
$$b_2 \, = \, \frac{G}{\pi \cdot \rho_2 \cdot c_{m2} \cdot D_2 \cdot \mu_2} \, = \, 0.01$$

Относ. высота Л на выходе из РК:
$$b_{\text{OTH2}} = \frac{b_2}{D_2} = 0.026$$

Профиль РК

Осевая протяженность крыльчатки (м): $B_{Kp} = \left[0.1 \cdot (1 - \overline{D}\) + b_{OTH2}\right] \cdot D_2 = 0.031$

Коэф. радиуса внутренне го контура проточной части: $k_{r0} = 0.5$

Диапазон коэф. радиуса внутреннего контура проточной части: $0.45 \le k_{r0} \le 0.55 = 1$

Радиус внутреннего контура проточной части (м): $r_0 \, = \, k_{r0} \cdot \left(D_{\pi 1} - D_{BT1} \right) \, = \, 0.056$

Коэф. отрезка, сопрягаемого с окружностью большего радиуса ${
m r}_1$ в точке ${
m A}$: ${
m k}_{10}=0.0435$

Диапазон коэф. отрезка, сопрягаемого с окружностью большего радиуса r_1 в точке A:

 $0.043 \le k_{10} \le 0.44 = 1$

Отрезок, сопрягаемый с окружностью большего радиуса r_1 в точке A(M):

$$l_0 = \frac{k_{10} \cdot D_2}{\overline{D}} = 0.036$$
 $\gamma_{2\pi 2} = 10^{\circ}$

Вспомогательный отрезок (м): $r_{1 \text{ K}} = 0.58 \cdot D_{\pi 1} = 0.119$

Угол Л на выходе ЗУ:
$$\beta_{\Pi.3Y}=$$
 $\begin{vmatrix} 90^\circ & \text{if } 60^\circ \leq \beta_{\Pi2} \leq 90^\circ = 90^\circ \\ 70^\circ & \text{if } 40^\circ \leq \beta_{\Pi2} \leq 60^\circ \\ \text{NaN otherwise} \end{vmatrix}$

Угол атаки: $i = 1.5^{\circ}$

Диапазон угла ат аки: $0^{\circ} \le i \le 2^{\circ} = 1$

 $\beta_{JI1} = \beta_1 + i = 51.463 \cdot ^{\circ}$

Угол поворота в ЗУ:
$$\Delta \beta_{\text{Л}.3\text{Y}} = \beta_{\text{Л}.3\text{Y}} - \beta_{\text{Л}1} = 38.537 \cdot ^{\circ}$$

Угол поворота, отнесенный к углу поворота осевой решетки единичной густоты:

$$\Delta \beta_{\text{Л.3У.отн}} = \frac{\Delta \beta_{\text{Л.3У}}}{0.38 \cdot \beta_{\text{Л.3У}}} = 64.562 \cdot ^{\circ}$$

Рисунок 3 - Оптимальная густота решетки ЗУ от относ. угла поворота

Оптимальная густота решетки 3У: $bt_{OПT} = (b/t)OПT(\Delta\beta_{Л.3У.OTH}) = 1.309$

Коэф. осеой протяженности 3У: $k_{B,3}$ У = 1

Диапазон коэф. осеой протяженности ЗУ: $0.9 \le k_{\text{B.3V}} \le 1.1 = 1$

Осевая протяженность ЗУ (м):

$$B_{3y} = k_{B.3y} \cdot bt_{ont} \cdot \frac{2 \cdot \pi \cdot r_{cp1}}{\frac{Z_{JI.PK}}{2}} \cdot sin\left(\frac{\beta_{JI} + \beta_{JI.3y}}{2}\right) = 0.048$$

Отношение осевой протяженности ЗУ к относ. диаметру РК на выходе:

етру РК на выходе:
$$\frac{B_{3y}}{D_2} = 0.116$$

$$0.15 \le \frac{B_{3y}}{D_2} \le 0.35 = 0$$

Диапазон отношения осевой протяженности ЗУ к относ. диаметру РК на выходе:

Длина хорды (м): $b = \frac{B_{3y}}{\sin\left[0.5\left(\beta_{Л1} + \beta_{Л.3y}\right)\right]} = 0.05$

Радиус СЛ профиля (м): $R_{cp} = \frac{0.5 \cdot b}{\sin \left(0.5 \Delta \beta_{\hbox{J}\mbox{J}$

Радиус изогнутой пластины (Л) (м):

$$R_{II} = \begin{bmatrix} 0.25 \cdot \frac{D_2^2 - D_{II}^2}{D_2 \cdot \cos(\beta_{II})} & \text{if } \beta_{II} < 90^\circ = 0.225 \\ \infty & \text{if } \beta_{II} = 90^\circ \\ \text{NaN otherwise} \end{bmatrix}$$

Угол установки хорды Л: $v = \frac{\beta_{\Pi 1} + \beta_{\Pi.3Y}}{2} = 70.731.^{\circ}$

Коэф. толщины Л радиальной части РК на периферийном контуре:

 $k_{\Delta} = 0.015$

Диапазон коэф. толщины Л радиальной части РК на периферийном контуре:

 $0.01 \le k_{\Delta} \le 0.02 = 1$

Толщина Л радиальной части колеса на периферийном контуре (м):

$$\Delta_2 = k_{\Delta} \cdot D_2 = 6.156 \times 10^{-3}$$

Толщина входной кромки Л (м): $\Delta_1 = 0.01 \cdot D_{\Pi 1} = 2.052 \times 10^{-3}$

Размеры проточной части осерадиального РК ЦБК в СИ

Втулочный диаметр РК на входе: $D_{RT1} = 0.092$

Ср. диаметр и радиус РК на выходе: $D_2 = 0.41$

 $D_{\Pi 1} = 0.205$ Периферийный диаметр РК на входе:

 $r_{cp1} = 0.08$ Ср. радиус РК на входе: Вспомогательный отрезок: $r_{1K} = 0.119$

 $B_{Kp} = 0.031$ Осевая протяженность крыльчатки:

 $B_{3V} = 0.048$ Осевая протяженность ЗУ:

Высота Л на входе в РК: $b_1 = 0.057$ Высота Л на выходе из РК: $b_2 = 0.01$

Отрезок, сопрягаемый с окружностью большего радиуса r_1 в точке A: $l_0 = 0.036$

Радиус внутреннего контура проточной части: $r_0 = 0.056$

Радиус СЛ профиля: $R_{cp} = 0.076$

Угол поворота в ЗУ: $\Delta \beta_{\rm Л.3Y} = 38.5^{\circ}$

Угол Л на входе: $\beta_{\Pi 1} = 51.5$ °

 $\Delta_2 = 6.156 \times 10^{-3}$ Толщина Л радиальной части колеса на периферийном контуре:

Толщина входной кромки Л: $\Delta_1 = 2.052 \times 10^{-3}$

Длина хорды: b = 0.05

 $b_{\rm II} = 5.10^{-3}$

 $d_0 = 20 \cdot 10^{-3}$ Диаметр центрального отв. (м):

▼ РК ЦБК

Количество сечений: $n_{ceq} = 9$

 $i_{ceq} = 1..n_{ceq}$ Дискритизация сечений:

Радиусы границ (м):

0.5d _o
0.5D _{BT1}
$0.5D_{BT1} + B_{3y} \cdot tan(\gamma_{2\pi 2})$
$0.5 \left[0.5 \cdot D_{\Pi 1} + \left(0.5 D_{BT1} + B_{3} y \cdot \tan \left(\gamma_{2\Pi 2} \right) \right) \right]$
$0.5D_{\Pi 1}$
$0.5(0.5D_{\Pi 1} + r_{1K})$
^r 1к
$0.5D_2 - l_0 \cdot \cos(\gamma_{2\Pi 2})$
0.5D ₂

Толщины границ Толщины границ по периферии (м): по втулке (м):

$$B_{3y} + B_{\kappa p} + b_{\Lambda}$$
 $B_{3y} + B_{\kappa p} + b_{\Lambda}$
 $1.25 \cdot (B_{\kappa p} + b_{\Lambda})$

$$B_{Kp} + b_{\mathcal{I}}$$

 $b_2 + l_0 \cdot \sin(\gamma_{2\pi 2}) + b_{\mathcal{I}}$

$$\frac{b_2 + b_1 \cdot \sin(\gamma_{2\pi 2}) + b_1}{b_2 + b_1}$$

$B_{3Y} + B_{Kp} + b_{Д}$
$B_{3y} + B_{\kappa p} + b_{\Lambda}$
$B_{Kp} + b_{Д}$
$0.25 B_{\rm Kp} + b_{\rm Д}$
ьд

$$\textbf{h}_{\text{cp.\Piep}}(\textbf{l}) = \text{interp} \Big(\text{lspline} \Big(\textbf{r}, \textbf{h}_{\text{\Piep}} \Big), \textbf{r}, \textbf{h}_{\text{\Piep}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\text{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big) \\ \textbf{h}_{\text{cp.BT}}(\textbf{l}) = \text{interp} \Big(\textbf{lspline} \Big(\textbf{r}, \textbf{h}_{\text{BT}} \Big), \textbf{r}, \textbf{h}_{\text{BT}}, \textbf{l} \Big)$$

▲ РК ЦБК

Выбор матрериала Д РК

Напряжения на втулке Д (Па):

Количество эксцентричных отв.:

Радиус нахождения эксцентричных отв. (м):

Диаметр экцентричных отв. (м):

 $b_{OTB} = \left[\left(\frac{2 \cdot \pi \cdot R_{9KC.OTB}}{n_{9KC.OTB}} - d_{OTB} \right) \text{ if } n_{9KC.OTB} \neq 0 \right]$ Расстояние меж ду краями отверстий по окружности, по которой расположены центры отверстий (м):

 ∞ otherwise

Температурные деформации:

Hа втулке: $\theta_1 = \alpha_T \cdot \left(T_1 - T_{\text{окр.cp.}} \right) = 20 \cdot 10^{-6} \cdot (285.032 - 278.15) = 0$

 $_{\text{Ha ободе:}}$ $\theta_2 = \alpha_{\text{T}} \cdot \left(T_2 - T_{\text{окр.cp.}} \right) = 20 \cdot 10^{-6} \cdot (401.104 - 278.15) = 0.002$

 $\theta(r) = \theta_1 + (\theta_2 - \theta_1) \cdot \frac{(r - 0.5d_0)^2}{(0.5 \cdot D_2 - 0.5d_0)^2}$ 3-н изменения температурных деформаций по радиусу Д:

 $T_1(r) = T_1 + (T_2 - T_1) \cdot \left(\frac{r - 0.5d_0}{0.5 \cdot D_2 - 0.5d_0}\right)^2$ 3-н изменения температуры по радиусу Д:

3-н изменения физических св-тв Д по его радиусу:

Коэф. Пуассона:

$$A_{\text{MW}} = \begin{pmatrix} 400 \\ 500 \\ 600 \\ 700 \\ 800 \end{pmatrix}$$

$$E = 10^{11} \cdot \begin{pmatrix} 1.74 \\ 1.66 \\ 1.57 \\ 1.47 \\ 1.32 \end{pmatrix}$$

$$G_{\text{WW}} = 10^{9} \cdot \begin{pmatrix} 62.85 \\ 60.2 \\ 57.25 \\ 54 \\ 49 \end{pmatrix}$$

$$\mu = \frac{E}{2 \cdot G} - 1 = \begin{pmatrix} 0.384 \\ 0.379 \\ 0.371 \\ 0.361 \\ 0.347 \end{pmatrix}$$

E(r) = interp(cspline(A, E), A, E, T(r)) $\mu(r) = interp(cspline(A, \mu), A, \mu, T(r))$

$$\begin{split} A(l) &= interp \Bigg[lspline \Bigg[r, \Big(h_{\Pi ep} - h_{BT} \Big) \cdot \frac{\Delta_1 + \Delta_2}{2} \Bigg], r, \Big(h_{\Pi ep} - h_{BT} \Big) \cdot \frac{\Delta_1 + \Delta_2}{2}, l \Bigg] \\ \rho_{\Pi p \mu B}(r) &= \Bigg[\rho \cdot \Bigg[1 + \frac{side \cdot Z_{\Pi.PK} \cdot A(r)}{2 \cdot \pi \cdot r \cdot b_{\Pi}} \Bigg] \quad \text{if} \quad r \neq 0 \\ \infty \quad \text{otherwise} \end{split}$$

Ср. зн-я радиусов границ (м)

$$r_{cp} \cdot 10^{3} = \begin{vmatrix} 1 & 28.09 \\ 2 & 50.36 \\ 3 & 66.57 \\ 4 & 90.59 \\ 5 & 106.71 \\ 6 & 114.92 \\ 7 & 144.54 \\ 8 & 187.63 \end{vmatrix}$$

$$\begin{pmatrix} \sigma l_{t} & \sigma l l_{t} \\ \sigma l_{r} & \sigma l l_{r} \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1...n_{\text{ceq}} & 1 \\ & \mu \{r_{cp}\}_{i}^{i} \frac{h_{cp,ur}(r_{i}, 1)}{h_{cp,ur}(r_{i}, 1)} \cdot \sigma l_{i-1,i} + \frac{\Gamma(r_{cp})_{i}}{\Gamma(r_{cp_{i-1}})} \cdot (\sigma l_{i-1,i} - \mu(r_{cp_{i-1}}) \cdot \sigma l_{r_{i-1,i}}) & \text{otherwise} \\ & \sigma l_{r_{i,i}} = \begin{vmatrix} -P_{0} & \text{if } i = 1 \\ & \frac{h_{cp,ser}(r_{i}, 1)}{h_{cp,ur}(r_{i}, 1)} \cdot \sigma l_{r_{i-1,i}} & \text{otherwise} \\ & \left(\frac{C_{1}}{C_{2}} \right) = \frac{1}{2} \begin{pmatrix} \sigma l_{i_{i,i}} + \sigma l_{r_{i,i}} - \left(4 + 4 \cdot \mu(r_{cp_{i}}) \right) \frac{\rho_{npmn}(r_{i}) \cdot \omega^{2}(r_{i})^{2}}{8} + E\{r_{cp_{i}}\} \cdot \theta(r_{i}) \\ & \left(\frac{C_{1}}{C_{2}} \right) = \frac{1}{2} \begin{pmatrix} \sigma l_{i_{i,i}} + \sigma l_{r_{i,i}} - \left(2 - 2 \cdot \mu(r_{cp_{i}}) \right) \frac{\rho_{npmn}(r_{i}) \cdot \omega^{2}(r_{i})^{2}}{8} - \Gamma(r_{cp_{i}}) \cdot \theta(r_{i}) \\ & \left(\frac{\sigma l_{i_{i,i}}}{r_{i+1}} - C_{1} - \frac{C_{2}}{(r_{i-1})^{2}} - \left(3 + \mu(r_{cp_{i}}) \right) \cdot \frac{\rho_{npmn}(r_{i+1}) \cdot \omega^{2}(r_{i+1})^{2}}{8} - \frac{\Gamma(r_{cp_{i}})}{(r_{cp_{i}})^{2}} \left[\theta(r_{i}) - \frac{\theta(r_{i,1}) - \theta(r_{i})}{r_{i-1} - r_{i}} \cdot r_{i} \right] \right) \int_{r_{i}}^{r_{i+1}} r dr + \frac{\theta(r_{i,1}) - \theta(r_{i})}{r_{i+1} - r_{i}} \cdot r_{i} \\ & \sigma l_{i_{i,i+1}} = C_{1} - \frac{C_{2}}{(r_{i+1})^{2}} - \left(1 + 3 \cdot \mu(r_{cp_{i}}) \right) \cdot \frac{\rho_{npmn}(r_{i+1}) \cdot \omega^{2}(r_{i+1})^{2}}{8} + \frac{\Gamma(r_{cp_{i}})}{(r_{cp_{i}})^{2}} \left[\theta(r_{i}) - \frac{\theta(r_{i,1}) - \theta(r_{i})}{r_{i-1} - r_{i}} \cdot r_{i} \right] \cdot \int_{r_{i}}^{r_{i+1}} r dr + \frac{\theta(r_{i,1}) - \theta(r_{i})}{r_{i+1} - r_{i}} \cdot r_{i} \\ & \sigma l_{i_{i,i+1}} = \left[-1 + \frac{C_{2}}{(r_{i+1})^{2}} - \left(1 + 3 \cdot \mu(r_{cp_{i}}) \right) \cdot \frac{\rho_{npmn}(r_{i+1}) \cdot \omega^{2}(r_{i+1})^{2}}{8} + \frac{\Gamma(r_{cp_{i}})}{(r_{i+1})^{2}} \left[\theta(r_{i}) - \frac{\theta(r_{i+1}) - \theta(r_{i})}{r_{i+1} - r_{i}} \cdot r_{i}} \right] \right] \int_{r_{i}}^{r_{i+1}} r dr + \frac{\theta(r_{i+1}) - \theta(r_{i})}{r_{i+1} - r_{i}} \cdot r_{i}} \\ & \int_{r_{i}}^{r_{i+1}} r dr + \frac{\theta(r_{i+1}) - \theta(r_{i})}{r_{i+1} - r_{i}} \cdot r_{i}} + \frac{E(r_{cp_{i}})}{(r_{i+1})^{2}} \left[\frac{\theta(r_{i+1}) - \theta(r_{i})}{r_{i+1} - r_{i}} \cdot r_{i}} \right] - \frac{\theta(r_{i+1}) - \theta(r_{i})}{r_{i+1} - r_{i}} \cdot r_{i}} \\ & \int_{r_{i}}^{r_{i+1}} r dr + \frac{\theta(r_{i+1}) - \theta(r_{i+1})}{r_{i+1} - r_{i}} \cdot r_{i}} + \frac{\theta(r_{i+1}) - \theta(r_{i})}{r_{i+1} - r_{i}} \cdot r_{i}} \\ & \int$$

$$\begin{bmatrix} C_2 \end{bmatrix} & 2 \left\lfloor (r_i)^2 \cdot \left(\sigma II_{t_{i,i}} - \sigma II_{r_{i,i}} \right) \right\rfloor$$

$$\sigma II_{r_{i,i+1}} = C_1 - \frac{C_2}{(r_{i+1})^2}$$

$$\sigma II_{t_{i,i+1}} = C_1 + \frac{C_2}{(r_{i+1})^2}$$

$$\begin{bmatrix} \sigma I_t & \sigma II_t \\ \sigma I_r & \sigma II_r \end{bmatrix}$$

Коэф. Мора:

$$k_{\text{Mop}} = \frac{-\sigma I_{r_{n_{\text{ceq}}}-1, n_{\text{ceq}}}}{\sigma II_{r_{n_{\text{ceq}}}-1, n_{\text{ceq}}}} = 0.1534$$

$$\begin{bmatrix} \sigma_r \\ \sigma_t \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1 ... n_{ceq} - 1 \\ \\ \sigma_{r_{i,i}} = \sigma I_{r_{i,i}} + k_{Mop} \cdot \sigma II_{r_{i,i}} \\ \\ \sigma_{r_{i,i+1}} = \sigma I_{r_{i,i+1}} + k_{Mop} \cdot \sigma II_{r_{i,i+1}} \\ \\ \sigma_{t_{i,i}} = \sigma I_{t_{i,i}} + k_{Mop} \cdot \sigma II_{t_{i,i}} \\ \\ \sigma_{t_{i,i+1}} = \sigma I_{t_{i,i}} + k_{Mop} \cdot \sigma II_{t_{i,i}} \\ \\ \sigma_{t_{i,i+1}} = \sigma I_{t_{i,i+1}} + k_{Mop} \cdot \sigma II_{t_{i,i+1}} \\ \\ \begin{pmatrix} \sigma_r \\ \sigma_t \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{l,cp} & \sigma_{ll,cp} & \sigma_{r,cp} \\ \sigma_{l,cp} & \sigma_{ll,cp} & \sigma_{t,cp} \end{pmatrix} = \begin{cases} \text{for } i \in 1...n_{ceq} - 1 \\ \\ \sigma_{l,cp_i} & = \begin{cases} \sigma_{l_{i,i}} & \text{if } i = 1 \\ \\ 0.5 \cdot \left(\sigma_{l_{i-1,i}} + \sigma_{l_{i,i}}\right) & \text{otherwise} \end{cases} \\ \sigma_{l,cp_i} & = \begin{cases} \sigma_{l_{i,i}} & \text{if } i = 1 \\ \\ 0.5 \cdot \left(\sigma_{l_{i-1,i}} + \sigma_{l_{i,i}}\right) & \text{otherwise} \end{cases} \\ \sigma_{ll_{c,cp_i}} & = \begin{cases} \sigma_{l_{i,i}} & \text{if } i = 1 \\ \\ 0.5 \cdot \left(\sigma_{l_{i-1,i}} + \sigma_{l_{i,i}}\right) & \text{otherwise} \end{cases} \\ \sigma_{ll_{c,cp_i}} & = \begin{cases} \sigma_{l_{i,i}} & \text{if } i = 1 \\ \\ 0.5 \cdot \left(\sigma_{l_{i-1,i}} + \sigma_{l_{i,i}}\right) & \text{otherwise} \end{cases} \\ \sigma_{r,cp_i} & = \begin{cases} \sigma_{r_{i,i}} & \text{if } i = 1 \\ \\ 0.5 \cdot \left(\sigma_{l_{i-1,i}} + \sigma_{l_{i,i}}\right) & \text{otherwise} \end{cases} \\ \sigma_{r,cp_i} & = \begin{cases} \sigma_{r_{i,i}} & \text{if } i = 1 \\ \\ 0.5 \cdot \left(\sigma_{l_{i-1,i}} + \sigma_{l_{i,i}}\right) & \text{otherwise} \end{cases} \\ \sigma_{t,cp_i} & = \begin{cases} \sigma_{l_{i,i}} & \text{if } i = 1 \\ \\ 0.5 \cdot \left(\sigma_{l_{i-1,i}} + \sigma_{l_{i,i}}\right) & \text{otherwise} \end{cases} \\ \sigma_{t,cp_i} & = \begin{cases} \sigma_{l_{i,i}} & \text{if } i = 1 \\ \\ 0.5 \cdot \left(\sigma_{l_{i-1,i}} + \sigma_{l_{i,i}}\right) & \text{otherwise} \end{cases} \\ \sigma_{t,cp_i} & = \begin{cases} \sigma_{l_{i,i}} & \text{otherwise} \\ \sigma_{l_{i,i}} & \text{otherwise} \end{cases} \\ \sigma_{t,cp_i} & = \begin{cases} \sigma_{l_{i,i}} & \sigma_{l_{i,i}} & \sigma_{l_{i,i}} \\ \\ \sigma_{l_{i,i}} & \sigma_{l_{i,i}} & \sigma_{l_{i,i}} \end{cases} \\ \sigma_{l_{i,i}} & \sigma_{l_{i,i}} & \sigma_{l_{i,i}} & \sigma_{l_{i,i}} \\ \sigma_{l_{i,i}} & \sigma_{l_{i,i}} & \sigma_{l_{i,i}} \end{cases} \\ \sigma_{l_{i,i}} & \sigma_{l_{i,i}} & \sigma_{l_{i,i}} \\ \sigma_{l_{i,i}} & \sigma_{l_{i,i}} & \sigma_{l_{i,i}} \end{cases} \\ \sigma_{l_{i,i}} & \sigma_{l_{i,i}} & \sigma_{l_{i,i}} \\ \sigma_{l_{i,i}} & \sigma_{l_{i,i}} \\ \sigma_{l_{i,i}} & \sigma_{l_{i,i}} & \sigma_{l_{i,i}} \\ \sigma_{l_$$

$$\sigma_{3KB} = \begin{cases} \text{for } i \in 1 ... n_{ceq} \\ \sigma_{3KB_{\hat{i}}} = \sqrt{\left(\sigma_{t.cp_{\hat{i}}}\right)^2 - \sigma_{t.cp_{\hat{i}}} \cdot \sigma_{r.cp_{\hat{i}}} + \left(\sigma_{r.cp_{\hat{i}}}\right)^2} \\ \sigma_{3KB} \end{cases}$$

$$\begin{pmatrix} \sigma_{\text{max}} \\ \sigma_{\text{min}} \end{pmatrix} = \begin{pmatrix} \max(\sigma_{\text{t.cp}}, \sigma_{\text{r.cp}}, \sigma_{\text{экв}}) \\ \min(\sigma_{\text{t.cp}}, \sigma_{\text{t.cp}}, \sigma_{\text{экв}}) \end{pmatrix} = \begin{pmatrix} 461.4 \times 10^6 \\ -62.2 \times 10^6 \end{pmatrix}$$

$$\sigma_{3KB}(l) \, = \, interp\Big(lspline\Big(r,\sigma_{3KB}\Big),r,\sigma_{3KB},l\Big)$$

Расчет на прочность Д Р

▼ Результаты расчета на прочность

$$1_{w} = 0.5d_{o}, 0.5d_{o} + \frac{0.5 \cdot D_{2} - 0.5d_{o}}{N_{dis}} .. 0.5 \cdot D_{2}$$

Окружное напряжение в расчете II

Эквивалентные напряжения

$$\begin{pmatrix} \sigma_t \! \left(R_{\text{9KC.OTB}} \right) \\ \sigma_r \! \left(R_{\text{9KC.OTB}} \right) \end{pmatrix} = \begin{pmatrix} 202.6 \times 10^6 \\ 200.7 \times 10^6 \end{pmatrix}$$

Теоретический коэф. концентрации напряжений:

$$k_{T} = 3 - \frac{d_{OTB}}{b_{OTB}} - \frac{\sigma_r(R_{9KC.OTB})}{\sigma_t(R_{9KC.OTB})} = 2.0091$$

Местное окружное напряжение заниженное на 10..15 % (Па):

$$\sigma_{\rm tm} = k_{\rm T} \cdot \sigma_{\rm t} (R_{\rm экс.отв}) = 406.95 \times 10^6$$
 ение (Па):
$$\sigma_{\rm tm} = \sigma_{\rm tm} \cdot 1.15 = 467.992 \times 10^6$$

Действительне местное окр. напряжение (Па):

OUTPUT = 0

$$\Pi \text{OUTA} = 10^3. \\ \begin{pmatrix} 0 & 0 & 0 \\ B_{3Y} & 0 & 0 \\ B_{3Y} + B_{Kp} & 0 & 0 \\ B_{3Y} + B_{Kp} & 0.5D_{\Pi 1} & 0 \\ B_{3Y} + B_{Kp} & 0.5D_2 & 0 \\ B_{3Y} + B_{Kp} - b_2 & 0.5D_2 & 0 \\ B_{3Y} + B_{Kp} - b_2 - l_0 \cdot \sin \left(\gamma_{2\Pi 2} \right) & 0.5D_2 - l_0 \cdot \cos \left(\gamma_{2\Pi 2} \right) & 0 \\ B_{3Y} & r_{1K} & 0 \\ 0 & 0.5D_{\Pi 1} & 0 \\ 0 & 0.5D_{BT 1} & 0 \\ \end{pmatrix}$$

		1	2	3
ПОЧТА =	1	0	0	0
	2	47.52	0	0
	3	78.514	0	0
	4	78.514	102.607	0
	5	78.514	205.214	0
	6	68.041	205.214	0
	7	61.841	170.05	0
	8	47.52	119.024	0
	9	0	102.607	0
	10	0	79.562	0
	11	0	46.173	0

	0	$0.5D_{BT1}$	0
	0	r _{cp1}	0
	0	$0.5D_{\Pi1}$	0
	B_{3y}	$0.5D_{BT1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}})$
	B_{3y}	r _{cp1}	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}})$
	B_{3y}	$0.5D_{\Pi1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}})$
	$B_{3y} + B_{kp}$	$0.5D_{BT1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}})$
	$B_{3y} + B_{kp}$	r _{cp1}	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}})$
	$B_{3y} + B_{kp}$	$0.5D_{\Pi1}$	$b - b \cdot \cos(\Delta \beta_{\text{II}.3\text{Y}})$
$\Pi O \Psi T A = 10^3.$	$0.5 \cdot \Delta_1 \cdot \sin(\Delta \beta_{\Pi.3Y})$	$0.5D_{BT1}$	$-0.5 \cdot \Delta_1 \cdot \cos(\Delta \beta_{\text{JI.3Y}})$
	$0.5 \cdot \Delta_1 \cdot \sin(\Delta \beta_{\Pi.3Y})$	r _{cp1}	$-0.5 \cdot \Delta_1 \cdot \cos(\Delta \beta_{\text{JI.3Y}})$
	$0.5 \cdot \Delta_1 \cdot \sin(\Delta \beta_{\Pi.3Y})$	$0.5D_{\Pi1}$	$-0.5 \cdot \Delta_1 \cdot \cos(\Delta \beta_{\text{JI.3Y}})$
	$-0.5 \cdot \Delta_1 \cdot \sin(\Delta \beta_{\text{$JI.3V$}})$	$0.5D_{BT1}$	$0.5 \cdot \Delta_1 \cdot \cos(\Delta \beta_{\text{II}.3\text{Y}})$
	$-0.5 \cdot \Delta_1 \cdot \sin(\Delta \beta_{\text{JI}.3\text{Y}})$	r _{cp1}	$0.5 \cdot \Delta_1 \cdot \cos(\Delta \beta_{\text{II}.3\text{Y}})$
	$-0.5 \cdot \Delta_1 \cdot \sin(\Delta \beta_{\text{Π.3Y}})$	$0.5D_{\Pi 1}$	$0.5 \cdot \Delta_1 \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}})$
	B_{3y}	$0.5D_{BT1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) - 0.5 \cdot \Delta_2$
	B_{3y}	r _{cp1}	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) - 0.5 \cdot \Delta_2$
	B_{3y}	$0.5D_{\Pi1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) - 0.5 \cdot \Delta_2$
	B_{3y}	$0.5D_{BT1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) + 0.5 \cdot \Delta_2$
	B_{3y}	r _{cp1}	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) + 0.5 \cdot \Delta_2$
	B_{3y}	$0.5D_{\Pi1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) + 0.5 \cdot \Delta_2$
	$B_{3y} + B_{kp}$	$0.5D_{BT1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) - 0.5 \cdot \Delta_2$
	$B_{3y} + B_{kp}$	r _{cp1}	$b - b \cdot \cos(\Delta \beta_{\text{Π.}3\text{Y}}) - 0.5 \cdot \Delta_2$
	$B_{3y} + B_{kp}$	$0.5D_{\Pi1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) - 0.5 \cdot \Delta_2$
	$B_{3y} + B_{kp}$	$0.5D_{BT1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) + 0.5 \cdot \Delta_2$
	$B_{3y} + B_{kp}$	r _{cp1}	$b - b \cdot \cos(\Delta \beta_{\text{II}.3\text{Y}}) + 0.5 \cdot \Delta_2$
	$B_{3y} + B_{kp}$	$0.5D_{\Pi1}$	$b - b \cdot \cos(\Delta \beta_{\text{JI}.3\text{Y}}) + 0.5 \cdot \Delta_2$

		1	2	3
	1	0	46.173	0
	2	0	79.562	0
	3	0	102.607	0
	4	47.52	46.173	10.964
	5	47.52	79.562	10.964
	6	47.52	102.607	10.964
	7	78.514	46.173	10.964
	8	78.514	79.562	10.964
	9	78.514	102.607	10.964
	10	0.639	46.173	-0.803
	11	0.639	79.562	-0.803
	12	0.639	102.607	-0.803
ПОЧТА =	13	-0.639	46.173	0.803
110 1111	14	-0.639	79.562	0.803
	15	-0.639	102.607	0.803
	16	47.52	46.173	7.886
	17	47.52	79.562	7.886
	18	47.52	102.607	7.886
	19	47.52	46.173	14.042
	20	47.52	79.562	14.042
	21	47.52	102.607	14.042
	22	78.514	46.173	7.886
	23	78.514	79.562	7.886
	24	78.514	102.607	7.886
	25	78.514	46.173	14.042
	26	78.514	79.562	14.042
	דר	70 E1/	102 607	14 042

| YEO'ET | 100'701 | LTC'01 | 72

output2excel =	if OUTPUT = 1		
	NameOfFile = concat(Adress,"Л ЦБК.xlsx")		
	WRITEEXCEL(ΠΟϤΤΑ, NameOfFile, "A1")		
	NaN otherwise		

▲ Вывод данных для построения Л РК и НА в формате .xlsx

$$\begin{bmatrix} r_{i+1} \\ r_{i} \end{bmatrix} - E(r_{cp_{i}}) \cdot \theta(r_{i+1})$$

1	8

