VACACIONES DIVERTIÚTILES

TRIGONOMETRÍA

Chapter 3

Razones trigonométricas de un ángulo agudo II

TRIGONOMETRÍA

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

03. HelicoPractice

04. HelicoWorshop

 \bigcirc

Existencia y unicidad

MOTIVATING STRATEGY

¿Dados TRES grien os de li recta, siempre construirse nángul ?

6cm

8cm

10*cm*

En este caso deberá elegirse uno de los segmentos, por ejemplo el mayor.

Usando una regla y compás, trazar un iángulo.

Repite⁵estos pasos con otros segmentos, como por ejemplo: 10 cm, 4 cm y 3 cm. Coméntame tus resultados en la próxima clase!

Resumen

HELICO THEORY

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Es el cociente entre las longitudes de los lados de un triángulo rectángulo, respecto de uno de sus ángulos agudos.

$$\cot \alpha = \frac{\text{Cateto adyacente}}{\text{Cateto opuesto}} = \frac{\text{C. } A}{\text{C. } O}$$

$$\sec \alpha = \frac{\text{Hipotenusa}}{\text{Cateto adyacente}} = \frac{\text{H}}{\text{C. A}}$$

$$csc\alpha = \frac{Hipotenusa}{Cateto opuesto} = \frac{H}{C. O}$$

 \bigcirc

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Problema 01

Del gráfico, halle las razones trigonométricas de φ.

cotφ	
secφ	
cscφ	

RECORDEMOS

$$H^2 = a^2 + c^2$$

$$\cot \alpha = \frac{C. A}{C. O}$$

$$sec\alpha = \frac{H}{C.A}$$

$$\csc\alpha = \frac{H}{C. O}$$

Por el teorema de Pitágoras.

$$H^2 = 3^2 + 4^2$$
 $H = \sqrt{25}$

$$H^2 = 9 + 16$$
 $H = 5$

$$H^2 = 25$$

> Hallamos las R.T

$$cot\phi = \frac{4}{3}$$

$$\sec \varphi = \frac{5}{4}$$

$$csc\phi = \frac{5}{3}$$

RECORDEMOS

Para la cotangente:

$$\cot \alpha = \frac{C. A}{C. O}$$

$$\cot^2 \beta = \left(\frac{10n}{5n}\right)^2$$

$$\cot^2\beta = \frac{100(p^2)}{25(p^2)}$$

$$\cot^2\beta = \frac{100}{25}$$

Respuesta

$$\cot^2 \beta = 4$$

Del gráfico, efectúe $K = sec^2 \varphi + 1$

$$H^2 = a^2 + c^2$$

$$sec\alpha = \frac{H}{C.A}$$

$$H^2 = 1^2 + 4^2$$

$$H^2 = 1 + 16$$

$$H^2 = 17$$

$$H = \sqrt{17}$$

Reemplazamos:

$$K = \sec^2 \phi + 1$$

$$\mathsf{K} = \left(\frac{\sqrt{17}}{1}\right)^2 + 1$$

$$K = 17 + 1$$

Respuesta

$$K = 18$$

Desde lo alto de un acantilado de 24 m de altura se observa un bote en el mar, tal como muestra la gráfica. Si la distancia entre el bote y la base del acantilado es de 12 m, calcule la cotangente del ángulo que forma la línea visual y el acantilado.

RECORDEMOS

Para la cotangente:

$$\cot \alpha = \frac{CA}{CO}$$

$$\cot \alpha = \frac{24}{12}$$

Respuesta

 $\cot \alpha = 2$

Una escalera descansa sobre una pared (observe el gráfico), formándose un ángulo a entre la escalera y la pared. Sabiendo que la longitud de la escalera es 5 m y la altura de la pared es 4 m, calcule el producto de la secante y cosecante de dicho ángulo.

$$sec\alpha = \frac{H}{C.A}$$

$$csc\alpha = \frac{H}{C.O}$$

Por el teorema de Pitágoras.

$$5^{2} = 4^{2} + CO^{2}$$
 $CO^{2} = 9$
 $25 = 16 + CO^{2}$ $CO = \sqrt{9}$
 $CO^{2} = 25 - 16$ $CO = 3$

$$E = sec\alpha . csc\alpha$$

$$\mathbf{E} = \frac{5}{4} \times \frac{5}{3}$$

$$E = \frac{25}{12}$$

 \bigcirc

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

Problema 06

M

Problema 07

Problema 08

Del gráfico, halle las razones trigonométricas de β .

Del gráfico, calcule $\cot^2 \beta$

Del gráfico, efectúe $\mathbf{K} = \mathbf{sec^2}\boldsymbol{\varphi} + \mathbf{1}$

Una escalera descansa sobre una pared (observe el gráfico), formándose un ángulo a entre la barra metálica y la pared. Sabiendo que la longitud de la barra metálica es 6 m y la altura de la pared es 4 m, calcule la secante de dicho ángulo.

Desde lo alto de un acantilado de 12 m de altura se observa un bote en el mar, tal como muestra la gráfica. Si la distancia entre el bote y la base del acantilado es de 5 m, calcule la suma de la secante y tangente del ángulo que forma la línea visuado el acantilado.

