Optimising Compilers 2005 – Paper 9 Question 7 (AM) Solution Notes

[This is a question on strictness analysis (Section 11 of the notes).]

- (a) Bookwork, main points:
 - Apply to lazy languages, to determine when a sub-calculation fails to terminate implies the whole calculation fails to terminate.
 - Lectures restrict to first-order functions; so will we. Given a fin $f: D^k \to D$ we calculate a strictness fin $f^{\sharp}: 2^k \to 2$ where $2 = \{0, 1\}$.
 - For built-in functions we pre-calculate using

$$a^{\sharp}(x_1,\ldots,x_r) = 0$$
 if $(\forall d_1,\ldots,d_r \in Ds.t. (x_i = 0 \Rightarrow d_i = \bot) \ a(d_1,\ldots,d_r) = \bot$
= 1 otherwise

For user functions we deterine strictness fns f^{\sharp} in terms of the same composition and recursion as the definition of f.

• If $f^{\sharp}(1,\ldots,1,0,1,\ldots 1)=0$ then f is strict in its ith argument so we can optimise f to calculate its ith argument before calling f with no change of semantics, i.e. change CBN to CBV.

(b)

- (i) $f^{\sharp}(x) = 1$
- (*ii*) $q^{\sharp}(x) = 0$
- (iii) $h^{\sharp}(y,z) = y \vee z$ (because we've only used the strictness property of f, not its definition).

$$(iv) \ k^{\sharp}(x,y,z) = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) \wedge (y \vee z)$$

(c) One construction is as follows. Given be put it in DNF $t_1 \vee \cdots \vee t_n$. Suppose $t_i = (v_{i1} \wedge \cdots \wedge v_{im_i})$ then put $e_i = v_{i1} + \cdots + v_{im_i}$ to make an expr e_i with strictness t_i (as + is strict). Now define

$$u(x_1, \dots, x_k) =$$
if $f(1)$ then e_1 else
else if $f(2)$ then e_2
...
else e_n

using if-then-else to give 'or' (expoiting b(iii)). The smartest students might notice that cases b(i) and b(ii) above represent the cases when the DNF expression degenerates into is 1 or 0 and hence isn't really covered by the main bit of the answer to part (c)!