# Discovering Causal Structure with the PC-algorithm CRG and MSDSlab Meeting

Discussant: Oisín Ryan

February 23, 2018

#### What is a DAG?



- ► DAG = Directed Acyclic Graph
- ► **Nodes** or **Vertices** = {Author, Bar, V5.. }
- ightharpoonup Directed **Edges** ightharpoonup
- No cycles
  - ▶ Cannot have  $A \rightarrow B \rightarrow C \rightarrow A$

## Why DAGs?

- 1. DAGs can be used to represent joint probability distributions
  - Often called Bayesian networks
  - ► Nodes represent variables
  - Edges represent dependencies between pairs of variables
    - ightharpoonup A 
      ightharpoonup B means  $A \not\perp\!\!\!\perp B$
  - Read off conditional dependency relationships

# Why DAGs?

- 1. DAGs can be used to represent joint probability distributions
  - Often called Bayesian networks
  - Nodes represent variables
  - Edges represent dependencies between pairs of variables
    - ightharpoonup A 
      ightharpoonup B means  $A \not\perp\!\!\!\perp B$
  - Read off conditional dependency relationships

- 2. DAGs + probability distribution used for **causal inference** 
  - Edges represent direct causal links
    - ightharpoonup A 
      ightharpoonup B means A causes B
  - Counterfactual causality (Pearl, Rubin, Spirtes & Glymour)
  - Account for typical ideas about causality
    - Forward in time acyclical
    - Explains "paradoxes" Simpsons, Lords

# Some graph terminology



- **▶ Parents**(B) = {*A*, *D*}
- **▶ Children**(B) = {*C*}
- A is an ancestor of C
- C is a descendant of A
- ▶ Path = sequence of edges

#### DAGs and Probability distributions

DAGs can be used to represent a joint density function using the **Markov Condition** 

$$P(\mathbf{V}) = \prod_{V \in \mathbf{V}} P(V|\mathbf{Parents}(V)) \tag{1}$$

## DAGs and Probability distributions

DAGs can be used to represent a joint density function using the **Markov Condition** 

$$P(\mathbf{V}) = \prod_{V \in \mathbf{V}} P(V|\mathbf{Parents}(V))$$
 (1)



### DAGs and Probability distributions

DAGs can be used to represent a joint density function using the **Markov Condition** 

$$P(\mathbf{V}) = \prod_{V \in \mathbf{V}} P(V|\mathsf{Parents}(V)) \tag{1}$$



We can also read off **conditional (in)dependence** relationships not directly implied by the Markov Condition

# DAGs and conditional dependencies



## DAGs and conditional dependencies



#### DAGs and conditional dependencies



General rules to read off conditional (in)dependencies from DAGs are known as **d-seperation** rules

## What use is having a DAG?

- Representation of causal relations amongst variables
- Estimation of causal effects
- ▶ Identify sufficient conditioning set to control for confounding
  - ▶ I may not need to condition on **all** possible ancestors
  - ▶ I shouldn't condition on colliders

## Discovering DAGs from Data

PC algorithm (Peter Spirtes & Clark Glymour)

#### Assuming:

- The set of observed variables is sufficent
  - ▶ No common causes not present in the dataset
  - Extensions that account for latent variables do exist!
- ▶ The distribution of the observed variables is faithful to a DAG

#### PC algorithm

#### Two simple principles

- 1. There is an edge X Y if and only if X and Y are dependent conditional on **every possible subset** of the other variables
  - ► For a graph *G* with vertex set *V*:
  - ▶ X Y iff  $X \not\perp\!\!\!\perp Y | S$ , for all  $S \subseteq V \setminus \{X, Y\}$

#### PC algorithm

#### Two simple principles

- 1. There is an edge X Y if and only if X and Y are dependent conditional on **every possible subset** of the other variables
  - ▶ For a graph G with vertex set V:
  - ▶ X Y iff  $X \not\perp\!\!\!\perp Y | S$ , for all  $S \subseteq V \setminus \{X, Y\}$
- 2. If X-Y-Z, we can orientate the arrows as  $X\to Y\leftarrow Z$  if and only if X and Z are dependent conditional on every set containing Y
  - ▶ We only orientate arrows if we can identify a collider





#### Step 0

Start with a fully connected undirected graph



#### Step 1a

- ► Test marginal dependencies for each pair
- ► E.g. correlation between X and Z
- ► If not significant, delete the edge
- repeat for all pairs



#### Step 1a

- ► Test marginal dependencies for each pair
- ► E.g. correlation between X and Z
- If not significant, delete the edge
- repeat for all pairs



#### Step 1b

- Take the result of step 1a as input
- ► For each adjacent pair in this graph (e.g., A, B)
- ► Form the **adjacency set** of *A* and *B*: set of variables connected to **either** *A* or *B*, Adj(A, B)
- ► Test CI of A and B for each size=1 subset of Adj(A, B)



#### Step 1b

- Take the result of step 1a as input
- ► For each adjacent pair in this graph (e.g., A, B)
- ► Form the **adjacency set** of *A* and *B*: set of variables connected to **either** *A* or *B*, Adj(A, B)
- ► Test CI of A and B for each size=1 subset of **Adj**(A, B)
- Record the variables that seperate A from B



#### Step 1c

- ► Take the result of step 1b as input
- ► Repeat previous step but for subset of size =2



#### Step 1c

- ► Take the result of step 1b as input
- ► Repeat previous step but for subset of size =2



#### Step 1c

- ► Take the result of step 1b as input
- ► Repeat previous step but for subset of size =2
- ► In general, keep increasing the number of variables you condition on until this is larger than the size of Adj(A, B)



- ► This is an estimate of the skeleton of the DAG
- An estimate of the undirected version of the DAG



#### Step 2

- ► For each triplet (open triangle) A B C
- Prient A → B ← C if we did not condition on B to seperate A and C
- We now have a Complete Partially-Oriented DAG (CPDAG)



#### Step 2

- For each triplet (open triangle) A B C
- Prient A → B ← C if we did not condition on B to seperate A and C
- We now have a Complete Partially-Oriented DAG (CPDAG)

