Estructures algorísmiques bàsiques: la composició iterativa i l'esquema de recorregut en seqüències

Programació 1 Grau en Enginyeria Informàtica

Problema 1.

Escriure un programa que llegeixi un enter n, sent $n \ge 0$, i calculi n!.

On
$$0!=1$$
 i $n!=\prod_{k=1}^{n} k$.

Problema 2.

Escriure un programa que llegeixi dos valors enters a i b, sent a>=0 i b>=0, i calculi la suma dels valors de l'intèrval [a, b], és a dir, $\sum_{k=a}^{b} k$.

Problema 3.

Calcular el producte de dos valors enters a i b, sent a>=0 i b>=0, utilitzant la suma d'enters.

Problema 4.

Calcular la potència de dos valors enters a i b, sent a > = 0 i b > = 0, utilitzant la multiplicació d'enters. Atenció amb el cas d'indeterminisme 0^0 .

Problema 5.

Calcular el quocient i el residu de la divisió entera de dos valors enters a i b, sent a>=0 i b>0, utilitzant la diferència d'enters.

Problema 6.

Determinar la validesa dels algorismes obtinguts als problemes 3, 4 i 5 en cas de treballar amb enters negatius. Modifiqueu els programes anteriors perquè es consideri el signe.

Problema 7.

Escriure un programa que llegeixi de teclat una constant entera en format seqüència de dígits acabada amb el caràcter de nova línia '\n' i la converteixi en el corresponent valor enter en notació decimal (valor de tipus *int*). El valor resultant s'escriurà a la sortida estàndar amb la funció *printf* i conversió de format %d (valor enter en notació decimal). Si l'entrada és incorrecta, per exemple, '1''h''j''5''\n' donar un missatge d'error.

Problema 8.

Escriure un programa que llegeixi de teclat una sequència de dígits '0' i '1' acabada amb el caràcter de nova línia '\n' i la converteixi en el corresponent valor enter en notació decimal (valor de tipus *int*). El valor resultant s'escriurà a la sortida estàndar

amb la funció *printf* i conversió de format %d (valor enter en notació decimal). Si l'entrada és incorrecta, per exemple, '1''0''3''a''\n' donar un missatge d'error.

Problema 9.

Donat un text acabat en '.' (sequència de caràcters acabada en '.') implementeu un programa que compti quants caràcters conté.

Problema 10.

Donat un text acabat en '.' implementeu un programa que compti quants caràcters blancs, quantes lletres (minúscules i majúscules) i quants dígits conté.

Problema 11.

Donat un text acabat en '.' implementeu un programa que compti quants cops es repeteix el primer caràcter del text.

Problema 12.

Donat un text acabat en '.' implementeu un programa que copiï el text a la sortida estàndard sense caràcters blancs, tabuladors ni noves línies.

Problema 13.

Donat un text acabat en '.' implementeu un programa que copiï el text a la sortida estàndard convertint les lletres majúscules en minúscules i les lletres minúscules en majúscules.

Problema 14.

Donada una seqüència de valors enters acabada en zero, implementeu un programa que compti quants valors positius conté.

Problema 15.

Donada una seqüència de valors reals acabada en 0.0, implementeu un programa que calculi la mitja dels valors de la seqüència.

Problema 16.

El màxim comú divisor (mcd) de dos o més nombres enters és, a excepció del signe, el major divisor possible de tots ells. Si el màxim comú divisor de dos nombres és 1, aleshores aquests nombres es diuen coprimers o primers entre ells.

Escriure un programa que llegeixi dos valors enters a i b, sent a>0 i b>0, i calculi el màxim comú divisor. El màxim comú divisor (mcd) de a i b és el major divisor possible de tots dos valors.

Problema 17.

Escriure un programa que llegeixi dos valors enters a i b, sent a>0 i b>0, i calculi el màxim comú divisor mitjançant l'aplicació del teorema d'Euclides:

```
mcd(a, b) = a, si a = b,

mcd(a,b) = mcd(a-b, b), si a > b,

mcd(a,b) = mcd(a, b-a), si b > a.
```