Толегенов Арслан группа 25.Б82 домашнее задание по дискре

9 октября 2025 г.

1.2. Докажите следующие равенства в отношениях

a) $P(A \cap B) \subseteq P(A) \cap P(B)$

Докажем $P(A \cap B) \subseteq P(A) \cap P(B)$:

Пусть
$$X \in P(A \cap B) \to X \subseteq A \cap B$$

Из
$$X \subseteq A \cap B \Rightarrow X \subseteq A \land X \subseteq B$$

Значит, $X \in P(A) \land X \in P(B)$, т.е. $X \in P(A) \cap P(B)$. Докажем $P(A) \cap P(B) \subseteq P(A \cap B)$:

Пусть $X \in P(A) \cap P(B)$. Тогда $X \in P(A) \wedge X \in P(B)$, т.е. $X \subseteq A \wedge X \subseteq B$

Значит, $X \subseteq A \cap B$, т.е. $X \in P(A \cap B)$.

Из 1 и 2 следует равенство.

Пример строго выполнения не требуется, так как это равенство.

6) $P(A \cup B) \supseteq P(A) \cup P(B)$

Доказательство включению:

Пусть
$$X \in P(A) \cup P(B)$$

Тогда
$$X \subseteq A \lor X \subseteq B$$

В любом случае $X \subseteq A \cup B$, значит $X \in P(A \cup B)$.

Пример строгого включения:

$$A = \{1\}, B = \{2\}$$

Тогда $A \cup B = \{1, 2\}$

$$P(A) = \{\emptyset, \{1\}\}\$$

$$P(B) = \{\emptyset, \{2\}\}\$$

$$P(A) \cup P(B) = \{\emptyset, \{1\}, \{2\}\}\$$

$$P(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$$

Множество $\{1,2\} \in P(A \cup B)$, но $\notin P(A) \cup P(B)$. Включение строгое.

B)
$$P(A \backslash B) \subseteq (P(A) \backslash P(B)) \cup \{\emptyset\}$$

Доказательство включения:

Пусть $X \in P(A \backslash B)$ Тогда $X \subseteq A \backslash B$

Из $A \setminus B \subseteq A$ следует $X \subseteq A$, т.е. $X \in P(A)$

- 1) Если $X = \emptyset$, то $X \in \{\emptyset\}$, значит $X \in (P(A) \backslash P(B)) \cup \{\emptyset\}$
- 2) Если $X \neq \emptyset$, то $X \subseteq A \setminus B$ означает, что X не содержит элементов из B, поэтому $X \not\subseteq B$, и $X \notin P(B)$.

Но $X \in P(A)$, значит $X \in P(A) \backslash P(B)$, и тем более $X \in (P(A) \backslash P(B)) \cup \{\emptyset\}$.

В обоих случаях отношение выполняется.

Пример строгого включения:

$$A = \{1, 2\}, B = \{2\}$$

$$A \setminus B = \{1\}$$

$$P(A \setminus B) = \{\emptyset, \{1\}\}\}$$

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\}$$

$$P(B) = \{\emptyset, \{2\}\}\}$$

$$P(A) \setminus P(B) = \{\{1\}, \{1, 2\}\}\}$$

$$(P(A) \setminus P(B)) \cup \{\emptyset\} = \{\emptyset, \{1\}, \{1, 2\}\}$$

Сравниваем:

$$P(A \backslash B) = \{\emptyset, \{1\}\}\$$

Правая часть: $\{\emptyset, \{1\}, \{1,2\}\}$ множество $\{1,2\}$ лежит в правой части, но не лежит в левой. Включение строгое.

1. Доказать следующее

a)
$$A \subseteq B \cap C \iff A \subseteq B$$
 и $A \subseteq C$

Показать в прямую сторону (\Rightarrow) :

Пусть
$$A \subseteq B \cap C$$

Возьмём $\forall x \in A$. Тогда $x \in B \cap C$, значит $x \in B$ и $x \in C$. Так как x произвольный элемент A, получаем $A \subseteq B$ и $A \subseteq C$.

Доказательство в обратную сторону (⇐):

Пусть
$$A \subseteq B$$
 и $A \subseteq C$

Возьмём $\forall x \in A$. Тогда $x \in B$ (т.к. $A \subseteq B$) и $x \in C$ (из $A \subseteq C$), значит $x \in B \cap C$. Следовательно $A \subseteq B \cap C$.

б)
$$A \subseteq B \setminus C \iff A \subseteq B$$
 и $A \cap C = \emptyset$

Доказательство в прямую сторону (\Rightarrow) :

Пусть
$$A \subseteq B \backslash C$$

- 1. Так как $B \setminus C \subseteq B$, то $A \subseteq B$.
 - 2. Предположим, что $A \cap C \neq \emptyset$, тогда $\exists x \in A \cap C$.

Ho $x \in A \to x \in B \setminus C \to x \notin C$, противоречие с $x \in C$.

Значит, $A \cap C = \emptyset$.

Доказательство в обратную сторону (\Leftarrow):

Пусть
$$A \subseteq B$$
 и $A \cap C = \emptyset$

Возьмём $\forall x \in A$. Тогда $x \in B$ и $x \notin C$ (так как если $x \in C$, то $x \in A \cap C$, что неверно). Значит, $x \in B \setminus C$. Следовательно, $A \subseteq B \setminus C$.

Задача 1.9

В Думе 1600 депутатов образовали 16000 комитетов по 80 человек в каждом. Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.

Доказательство

1. Подсчитаем общее число включений депутатов в комитеты (пары «депутат-комитет»):

$$16000 \times 80 = 1280000$$
.

2. Среднее число комитетов на депутата:

$$\frac{1280000}{1600} = 800.$$

3. Рассмотрим тройки (D, A, B), где депутат D входит в комитеты A и B $(A \neq B)$.

Число таких троек равно

$$S = \sum_{i=1}^{1600} {x_i \choose 2},$$

где x_i — число комитетов, в которых состоит депутат i.

4. Оценим S снизу.

Функция $f(x) = {x \choose 2}$ выпукла при $x \ge 0$. По неравенству Йенсена:

$$\frac{S}{1600} \ge \binom{800}{2} = \frac{800 \cdot 799}{2} = 319\,600.$$

Отсюда

$$S \ge 1600 \cdot 319600 = 511360000.$$

5. Предположим противное: любые два комитета имеют не более трёх общих членов.

Всего пар комитетов:

$$\binom{16000}{2} = \frac{16000 \cdot 15999}{2} = 127\,992\,000.$$

Тогда

$$S < 3 \cdot 127992000 = 383976000.$$

6. Противоречие:

$$511\,360\,000 < S < 383\,976\,000$$

неверно. Значит, предположение ложно.

Конечный ответ:

Найдутся два комитета, имеющие не менее четырёх общих членов.

Задача 1.4

Для каждой из функций найти область значений и указать, является ли функция инъективной, сюръективной, биекцией.

- (a) $f : \mathbb{R} \to \mathbb{R}, \ f(x) = 3x + 1;$
- (6) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 + 1;$
- **(B)** $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^3 1;$
- (r) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x$;
- (д) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sqrt{3x^2 + 1};$
- (e) $f: [-\pi/2, \pi/2] \to \mathbb{R}, \ f(x) = \sin x;$
- (ж) $f:[0,\pi]\to\mathbb{R},\ f(x)=\sin x;$
- (3) $f: \mathbb{R} \to [-1, 1], \ f(x) = \sin x;$
- (и) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 \sin x$.

Решение

(a) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 3x + 1$

Область значений: \mathbb{R} (линейная функция с ненулевым угловым коэффициентом).

Инъективность: Да, $3x_1 + 1 = 3x_2 + 1 \implies x_1 = x_2$.

Сюръективность: Да, $\forall y \in \mathbb{R}$ уравнение 3x+1=y имеет решение.

Биективность: Да.

(6) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 + 1$

Область значений: $[1, +\infty)$, так как $x^2 \ge 0$.

Инъективность: Her, f(1) = f(-1) = 2.

Сюръективность: Нет, область значений не совпадает с \mathbb{R} .

Биективность: Нет.

(B) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^3 - 1$

Область значений: \mathbb{R} (кубический многочлен неограничен и непрерывен).

Инъективность: Да, $x_1^3 = x_2^3 \implies x_1 = x_2$.

Сюръективность: Да.

Биективность: Да.

 (Γ) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x$

Область значений: $(0, +\infty)$.

Инъективность: Да, e^x строго возрастает.

Сюръективность: Het, $e^x > 0$ для всех x.

Биективность: Нет.

(д) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sqrt{3x^2 + 1}$

Область значений: $[1, +\infty)$, поскольку $3x^2 + 1 \ge 1$.

Инъективность: Het, f(x) = f(-x).

Сюръективность: Нет.

Биективность: Нет.

(e) $f: [-\pi/2, \pi/2] \to \mathbb{R}, \ f(x) = \sin x$

Область значений: [-1,1] (синус на этом отрезке возрастает).

Инъективность: Да, на $[-\pi/2, \pi/2]$ синус строго возрастает.

Сюръективность: Нет, область значений только [-1, 1].

Биективность: Нет.

 (\mathfrak{R}) $f:[0,\pi]\to\mathbb{R},\ f(x)=\sin x$

Область значений: [0,1].

Инъективность: Het, $\sin x = \sin(\pi - x)$.

Сюръективность: Нет.

Биективность: Нет.

(3) $f: \mathbb{R} \to [-1, 1], \ f(x) = \sin x$

Область значений: [-1,1] (совпадает с кодоменом).

Инъективность: Нет, синус периодичен.

Сюръективность: Да, все значения кодомена достигаются. **Биективность:** Нет.

(u) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 \sin x$

Область значений: \mathbb{R} (функция неограничена по модулю и меняет знак)

Инъективность: Het, $f(n\pi) = 0$ для всех $n \in \mathbb{Z}$.

Сюръективность: Да. Биективность: Нет.

Ответ

$N_{\overline{0}}$	E(f)	Инъективна	Сюръективна	Биективна
(a)	\mathbb{R}	Да	Да	Да
(b)	$[1, +\infty)$	Нет	Нет	Нет
(c)	\mathbb{R}	Да	Да	Да
(d)	$(0,+\infty)$	Да	Нет	Нет
(e)	$[1,+\infty)$	Нет	Нет	Нет
(f)	[-1, 1]	Да	Нет	Нет
(g)	[0, 1]	Нет	Нет	Нет
(h)	[-1, 1]	Нет	Да	Нет
(i)	\mathbb{R}	Нет	Да	Нет

Даны $g:A\to B$ и $f:B\to C$. Рассмотрим композицию $g\circ f:A\to C,\ (g\circ f)(x)=f(g(x)).$ Определить, какие утверждения верны:

- (а) Если g инъективна, то $g \circ f$ инъективна.
- (б) Если f и g сюръективны, то $g \circ f$ сюръективна.
- (в) Если f и g биекции, то $g \circ f$ биекция.
- (г) Если $g\circ f$ инъективна, то f инъективна.
- (д) Если $g \circ f$ инъективна, то g инъективна.
- (e) Если $g \circ f$ сюръективна, то f сюръективна.

Решение задачи 1.5

Примечание: В условии задачи композиция $g \circ f$ определена как $(g \circ f)(x) = f(g(x))$. В стандартной математической нотации это соответствует композиции $f \circ g$. В решении мы будем использовать обозначение $g \circ f$, как в условии, но подразумевая функцию h(x) = f(g(x)), которая отображает $A \to C$.

(0) **а) Утверждение ложно.** Если g инъективна, не обязательно, что $g \circ f$ инъективна.

Контрпример. Пусть множества $A = \{1, 2\}, B = \{3, 4\}, C = \{5\}.$ Определим функции:

- $g: A \to B$ как g(1) = 3, g(2) = 4. Функция g инъективна, так как разным элементам из A соответствуют разные элементы из B.
- $f: B \to C$ как f(3) = 5, f(4) = 5.

Рассмотрим композицию $(g \circ f)(x) = f(g(x))$:

- $(g \circ f)(1) = f(g(1)) = f(3) = 5.$
- $(g \circ f)(2) = f(g(2)) = f(4) = 5.$

Поскольку $(g \circ f)(1) = (g \circ f)(2)$, но $1 \neq 2$, композиция $g \circ f$ не является инъективной.

(0) б)Утверждение верно.

Доказательство. Пусть функции $g: A \to B$ и $f: B \to C$ сюръективны. Мы должны доказать, что композиция $g \circ f: A \to C$ сюръективна. Это значит, что для любого элемента $c \in C$ существует элемент $a \in A$ такой, что $(g \circ f)(a) = c$.

Возьмём произвольный элемент $c \in C$. Так как функция f сюръективна, по определению существует $b \in B$ такой, что f(b) = c. Далее, так как функция g сюръективна, для этого элемента $b \in B$ существует $a \in A$ такой, что g(a) = b.

Теперь рассмотрим значение композиции в точке а:

$$(g \circ f)(a) = f(g(a)) = f(b) = c.$$

Таким образом, для любого $c \in C$ мы нашли $a \in A$, что и доказывает сюръективность композиции $g \circ f$.

(0) в)Утверждение верно.

Доказательство. Биекция — это функция, которая одновременно инъективна и сюръективна.

- 1. Инъективность. Пусть f и g инъективны. Докажем, что $g \circ f$ инъективна. Пусть $(g \circ f)(a_1) = (g \circ f)(a_2)$ для некоторых $a_1, a_2 \in A$. По определению композиции, $f(g(a_1)) = f(g(a_2))$. Поскольку f инъективна, из $f(y_1) = f(y_2)$ следует $y_1 = y_2$. В нашем случае $g(a_1) = g(a_2)$. Поскольку g инъективна, из $g(a_1) = g(a_2)$ следует $a_1 = a_2$. Следовательно, $g \circ f$ инъективна.
- 2. Сюръективность. Как доказано в пункте (б), если f и g сюръективны, то их композиция $g \circ f$ также сюръективна.

Поскольку композиция $g \circ f$ является и инъективной, и сюръективной, она является биекцией.

(0) **г) Утверждение ложно.** Если $g \circ f$ инъективна, не обязательно, что f инъективна.

Контрпример. Пусть $A=\{1\},\ B=\{2,3\},\ C=\{4,5\}.$ Определим функции:

- $g: A \to B \text{ Kak } g(1) = 2.$
- $f: B \to C$ как f(2) = 4, f(3) = 4. Функция f не инъективна, так как f(2) = f(3), но $2 \neq 3$.

Композиция $g \circ f : A \to C$ отображает единственный элемент:

$$(g \circ f)(1) = f(g(1)) = f(2) = 4.$$

Функция, определённая на множестве из одного элемента, всегда является инъективной (тривиальный случай). Таким образом, $g \circ f$ инъективна, но f — нет.

(0) д) Утверждение верно.

Доказательство. Пусть композиция $g \circ f$ инъективна. Докажем, что функция g инъективна. Предположим, что $g(a_1) = g(a_2)$ для некоторых $a_1, a_2 \in A$. Нам нужно показать, что $a_1 = a_2$.

Применим функцию f к обеим частям равенства $g(a_1) = g(a_2)$:

$$f(g(a_1)) = f(g(a_2)).$$

Это по определению означает:

$$(g \circ f)(a_1) = (g \circ f)(a_2).$$

Поскольку по условию композиция $g \circ f$ инъективна, из этого равенства следует, что $a_1 = a_2$. Таким образом, мы показали, что из $g(a_1) = g(a_2)$ следует $a_1 = a_2$, что и доказывает инъективность функции g.

(0) е)Утверждение верно.

Доказательство. Пусть композиция $g \circ f \colon A \to C$ сюръективна. Докажем, что функция $f \colon B \to C$ сюръективна. Это значит, что для любого элемента $c \in C$ существует $b \in B$ такой, что f(b) = c.

Возьмём произвольный элемент $c \in C$. Так как $g \circ f$ сюръективна, существует $a \in A$ такой, что $(g \circ f)(a) = c$. Распишем композицию: f(g(a)) = c.

Обозначим b=g(a). Поскольку $g\colon A\to B$, элемент b принадлежит множеству B. Мы получили, что для произвольного $c\in C$ существует $b\in B$ (а именно, b=g(a)) такой, что f(b)=c. Это по определению означает, что функция f сюръективна.

Итог

Верными являются утверждения: (6), (B), (D), (D).

Задача $1.8~\rm V$ каждого из жителей города N число знакомых составляет не менее 30% населения города. Житель идёт на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей.

Доказательство

Рассмотрим граф, где вершины — жители города, рёбра — знакомства. По условию, степень каждой вершины не меньше 0.3n, где n— число жителей.

Стратегия выбора кандидатов:

- 1. Выберем первого кандидата а произвольно.
- 2. Множество жителей, не знакомых с a, обозначим U. Так как степень a не меньше 0.3n, то $|U| \leq 0.7n$.
- 3. Будем выбирать второго кандидата b среди всех жителей, кроме a.

Оценка числа проголосовавших:

Житель v придет на выборы, если знаком хотя бы с одним из a или b. То есть не придут только те, кто не знаком ни с a, ни с b.

- Не знакомы с a это множество U, $|U| \le 0.7n$.
- Для $v \in U$: чтобы v не пришел, нужно, чтобы b также не был знаком с v. У v степень $\geq 0.3n$, значит, незнакомых с v не более 0.7n (включая a).

Фиксируем a. Для каждого $v \in U$ число жителей, не знакомых с v, не больше 0.7n, причем a уже среди них. Значит, других незнакомых с v — не более 0.7n-1.

Вероятностное рассуждение:

Выберем b случайно равновероятно из n-1 жителей (кроме a). Для $v \in U$:

$$\mathbb{P}(v$$
 не знаком с $b) \leq \frac{0.7n-1}{n-1}$.

При $n \ge 10$ это меньше 0.7.

Ожидаемое число жителей, не пришедших на выборы:

$$\mathbb{E}$$
[не пришли] $\leq \sum_{v \in U} \mathbb{P}(v \text{ не знаком с } b) \leq 0.7n \cdot 0.7 = 0.49n.$

Следовательно, ожидаемое число пришедших:

$$\mathbb{E}[\text{пришли}] \ge n - 0.49n = 0.51n.$$

Заключение:

Существует хотя бы один выбор b, при котором число пришедших не меньше матожидания, то есть не меньше $0.51n > \frac{n}{2}$.

Конечный ответ:

Можно так провести выборы мэра из двух кандидатов,

что в них примет участие не менее половины жителей.

Задача 1.6 Учащиеся одной школы часто собираются группами и ходят в кафе-мороженое. После такого посещения они ссорятся настолько, что никакие двое из них после этого вместе мороженое не едят. К концу года выяснилось, что в дальнейшем они могут ходить в кафе-мороженое только поодиночке. Докажите, что если число посещений было к этому времени больше 1, то оно не меньше числа учащихся в школе.

Решение задачи 1.6

Доказательство. Пусть $S = \{s_1, s_2, \dots, s_n\}$ — множество из n учащихся. Каждое посещение группы — это подмножество $G_j \subseteq S$.

Условия: 1. После посещения никакие двое из группы не могут быть вместе в другой группе. 2. K концу года учащиеся могут ходить только поодиночке.

Это означает, что каждая пара учащихся побывала вместе ровно в одной группе.

Требуется доказать, что если k — количество посещений, и k>1, то $k\geq n.$

Рассмотрим следующее:

1. Для каждого ученика s_i , быть в группе G_j означает, что он поссорился с другими участниками этой же группы. 2. Рассмотрим все пары учащихся: $\binom{n}{2} = \frac{n(n-1)}{2}$ пар. 3. Каждая пара учащихся появляется ровно в одной из k групп. 4. Если предположить, что k < n, то в каждой группе будет меньше n человек.

Теперь использовать принцип Дирихле: - Если k < n, у нас не хватает «ячей» (групп) для уникальных пар. Это означает, что некоторые пары должны были бы встретиться более одного раза, что противоречит условиям задачи.

Следовательно, $k \geq n$.