Microprocessor and Computer Architecture Laboratory <u>UE19CS256</u>

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUHAI	N B REVANKAR	SRN:PES2UG19CS412	Section G	
Week#	2	Program Number:	1	

Title of the Program:

Based on the value of the number in R0, Write an ALP to store 1 in R1 if R0 is zero, Store 2 in R1 if R0 is positive, Store 3 in R1 if R0 is negative. (Program shown in class)

```
File Edit Format View Help
.TEXT

@BASED ON THE VALUE IN RØ STORE 1,2,3 IN R1 IF RØ HAS ZERO,POSITIVE,NEGATIVE NUMBER
RESPECTIVELY

MOV RØ,#Ø
CMP RØ,#Ø
MOVEQ R1,#1
BEQ L1
MOVMI R1,#3
BMI L1
MOV R1,#2

L1:
SWI Øx1011
```

```
File Edit Format View Help
.TEXT

@BASED ON THE VALUE IN RØ STORE 1,2,3 IN R1 IF RØ HAS ZERO,POSITIVE,NEGATIVE NUMBER
RESPECTIVELY

MOV RØ,#102
CMP RØ,#0
MOVEQ R1,#1
BEQ L1
MOVMI R1,#3
BMI L1
MOV R1,#2

L1:
SWI Øx1011
```

```
ENE Edit Fyrmat Yiew Help
.TEXT

@BASED ON THE VALUE IN RØ STORE 1,2,3 IN R1 IF RØ HAS ZERO,POSITIVE,NEGATIVE NUMBER
RESPECTIVELY

MOV RØ,#-20
CMP RØ,#0
MOVEQ R1,#1
BEQ L1
MOVMI R1,#3
BMI L1
MOV R1,#2

L1:
SWI Øx1011
```


CASE 1	RO		0x00	
	R1	After compare		1
CASE 2	RO		0x66	
	R1	After compare		2
CASE 3	RO			0xec
	R1	After compare		3

<u>Microprocessor and Computer Architecture Laboratory</u> <u>UE19CS256</u>

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUF	HAN B REVANKAR	SRN:PES2UG19CS41	.2	Section G
Week#	2	Program Number:	2	

Title of the Program:

Write an ALP to compare the value of R0 and R1, add if R0 = R1, else subtract (Program shown in class)

```
@Comparing the value in R0 and R1, add if R0=R1 else subtract

.TEXT
MOV R0,#7
MOV R1,#11
CMP R0,R1
BEQ L1
SUB R2,R1,R0
B L2
L1:
    ADD R2,R0,R1

L2:
    SWI 0x011

.END
```


CASE 1	R1=0x29, R0=0x29 R2=R1+R0=0x52
CASE 2	R1=0x07,R0=0x0b R2=R1-R0=0x04

Microprocessor and Computer Architecture Laboratory <u>UE19CS256</u>

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUHA	N B REVANKAR	SRN:PES2UG19CS412	Section G	
Week#	2	Program Number:	3	

Title of the Program:

Write an ALP to find the factorial of a number stored in R0. Store the value in R1 (without using LDR and STR instructions). Use only registers. (Program shown in class)

1 st Iteration	R1=0x04
	R0=0x03
	R2=0X0C=Decimal 12
2 nd	R1=0x0C
Iteration	R0=0X02R2=0x18=Decimal 24
3rd	R1=0x18
Iteration	R0=0X01
	R2=0x18

<u>Microprocessor and Computer Architecture Laboratory</u> UE19CS256

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUHAN B REVANKAR	SRN:PES2UG19CS412	Section G
Week#2	Program Number:4a_	

Title of the Program:

Write an ALP to add two 32 bit numbers loaded from memory and store the result in memory.

```
DIE Edit Format View Jeho
ADDING TWO 32-BIT NUMBERS LOADED FROM MEMORY AND STORING THE RESULT BACK IN MEMORY

.TEXT

LDR R0,=A
LDR R1,=B
LDR R2,=C
LDR R3,[R1] @ LOADING SECOND NUMBER IN R3
LDR R4,[R0] @LOADING FIRST NUMBER IN R4
ADD R5,R3,R4
STR R5,[R2] @STORING THE RESULT IN C

.DATA

A:.WORD 22
B:.WORD 33
C:.WORD 0
```


	A=0x16, B=0x21
RO	Address of A=0x28
R1	Address of B=0x2c
R2	Address of C=0x30
R3	0x21=Decimal 33 =Content of Location B
R4	0x16=Decimal 22= Content of Location A
R5	0x37=Decimal 55
Location C	0x30=Decimal 55

<u>Microprocessor and Computer Architecture Laboratory</u> UE19CS256

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUF	IAN B REVANKAR	SRN:PES2UG19CS41	2	Section G
Week#	2	Program Number:	4b	

Title of the Program:

Write an ALP to add two 16 bit numbers loaded from memory and store the result in memory.

```
@ ADDING TWO 32-BIT NUMBERS LOADED FROM MEMORY AND STORING THE RESULT BACK IN MEMORY

.TEXT

LDR R0,=A
LDR R1,=B
LDR R2,=C
LDRH R3,[R1] @ LOADING SECOND NUMBER IN R3
LDRH R4,[R0] @LOADING FIRST NUMBER IN R4
ADD R5,R3,R4
STRH R5,[R2] @STORING THE RESULT IN C

.DATA

A:.HWORD 21
B:.HWORD 0
```


	A=0x15, B=0x11
RO	Address of A=0x28
R1	Address of B=0x2a
R2	Address of C=0x2c
R3	0x11=Decimal 17=Content of
	Location B
R4	0x15=Decimal 21= Content of Location A
R5	0x26=Decimal 38
Location C	0x2c=Decimal 38

<u>Microprocessor and Computer Architecture Laboratory</u> UE19CS256

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUHAN B REVANKAR	SRN:PES2UG19CS412	Section G
Week# 2	Program Number:5a_	

Title of the Program:

Write an ALP to find GCD of two numbers (without using LDR and STR instructions). Both numbers are in registers.

```
@ GCD OF TWO NUMBERS
.TEXT
MOV R0, #77
MOV R1,#77
MOV R2, R0
MOV R3,R1
GCD:
        CMP R2,R3
        BEQ L1
        SUBGT R2,R2,R3
                               @if r2 is greater than r3 then perform subtraction r2=r2-r3
        SUBLT R3,R3,R2
                                @ else if r2 is lesser than r3 then perform r3=r3-r2
BNE GCD
L1:
SWI 0x011
. END
```


CASE 1	RO	0x4d
	R1	0x4d
1 st	R2=0x4d	
iteration	R3=0x4d	
	R3=0x4d GCD=77	

<u>Microprocessor and Computer Architecture Laboratory</u> UE19CS256

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUF	HAN B REVANKAR	SRN:PES2UG19CS41	2	Section G
Week#	2	Program Number:	5b	

Title of the Program:

Write an ALP to find the GCD of given numbers (both numbers in memory). Store result in memory.

```
@ GCD OF TWO NUMBERS
.TEXT
LDR RØ,=A
LDR R1,=B
LDR R2,[R0]
LDR R3, [R1]
GCD:
        CMP R2,R3
        BEQ L1
        SUBGT R2, R2, R3
                                 @if r2 is greater than r3 then perform subtraction r2=r2-r3
        SUBLT R3,R3,R2
                                @ else if r2 is lesser than r3 then perform r3=r3-r2
BNE GCD
L1:
SWI 0x011
.DATA
A:.WORD 15
B:.WORD 55
. END
```


CASE 1	A=0x0F,B=0x37
1 st iteration	R2=0x0f=Decimal 20 R3=0x28 R2=0x14-0x04=0x10
2 nd iteration	R2=0x10=Decimal 15 R3=0x04 R2=0x10-0x04=0xA
3 rd iteration	R2=0x0f=Decimal 15 R3=0x0a R2=0x0f-0x0a=0x05
4th iteration	R2=0x05 R3=0x0a R2=0x05-0x0a=0x05
5th iteration	R2=0x05 R3=0x05 R2=0x05-0x05=0x00
6 [™] iteration	R2=0x05 R3=0x05

Microprocessor and Computer Architecture Laboratory <u>UE19CS256</u>

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUHAN B REVANKAR	SRN:PES2UG19CS412	Section G
Week#2	Program Number:6a	

Title of the Program:

Write an ALP to add an array of ten 32 bit numbers from memory.

```
@ ADDING ARRAY OF 10 32 BIT NUMBERS FROM MEMORY
.TEXT
LDR RØ,=A
MOV R1,#10
MOV R3,#0
LOOP:
        LDR R2, [R0], #4 @POST INDEXING
        ADD R3,R2,R3
        SUB R1, R1, #1
        TEQ R1,#0
                   @ TEST FOR EQUALITY
        BNE LOOP
        SWI 0x011
.DATA
A:.WORD 10,20,30,40,50,60,70,80,90,11
. END
```


A:.word 10,20,30,40,50,60,70,80,90,11										
R1	10	9	8	7	6	5	4	3	2	1
RO	Α	A+ 4	A+ 8	A+ 12	A+1 6	A+2 0	A+ 24	A+2 8	A+3 2	A+3 6
R2	10	20	30	40	50	60	70	80	90	11
R3	0	10	30	60	100	150	21 0	280	360	450
R3 (After Executio n)	10	30	60	10	150	210	28	360	450	461
Values in hex	0x0 A	0x 1E	0x 4C	0x 64	0x 96	0x D2	0x 11 8	0x 168	0x 1C2	0x 1CD

<u>Microprocessor and Computer Architecture Laboratory</u> UE19CS256

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUF	IAN B REVANKAR	SRN:PES2UG19CS41	2	Section G
Week#	2	Program Number:	6b	

Title of the Program:

Add array of ten 8 bit numbers taking data from memory location (use .byte to store the data instead of .word)

```
@ ADDING ARRAY OF 5 ,8 BIT NUMBERS FROM MEMORY
.TEXT
LDR RØ,=A
MOV R1,#5
MOV R3,#0
LOOP:
        LDRB R2, [R0], #1 @POST INDEXING
        ADD R3,R2,R3
        SUB R1, R1, #1
                    @ TEST FOR EQUALITY
        TEQ R1,#0
        BNE LOOP
        SWI 0x011
.DATA
A:.BYTE 1,2,3,4,5
. END
```


A:.byte 1,2,3,4,5					
R1	5	4	3	2	1
RO	Α	A+1	A+2	A+3	A+4
R3	0	1	3	6	10
R4	1	2	3	4	5
R3 (After Execution)	1	3	6	10	15
Values in hex	0x 01	0x 03	0x 06	0x 0A	Ox OF

Microprocessor and Computer Architecture Laboratory <u>UE19CS256</u>

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUHAN B REVANKAR	SRN:PES2UG19CS412	Section G
Week#2	Program Number:7_	

Title of the Program:

Write an ALP to multiply 35*R0
*Use LSL instruction for multiplication

```
Tile Edit Format View Help

.text

MOV R0, #75

ADD R0, R0, R0, LSL #2

MOV R1, R0, LSL #3

SUB R0, R1, R0
.END
```


	Decimal	Hexadecimal
R0(1 st line of the Program)	75	4b
R0(2 nd	4R0=300	12C
line of the Program	4R0+R0= 5R0=750	2EE
R0(3 rd line of the Program	8R0=750*8=6000	0x1770
	8R0-R0=5250	1482

<u>Microprocessor and Computer Architecture Laboratory</u> UE19CS256

4th Semester, Academic Year 2020-21

Date:03/02/2021

Name: SUHAN B REVANKAR	SRN:PES2UG19CS412	Section G
Week# 2	Program Number:8	

Title of the Program:

Write an ALP to evaluate the expression (A+B) + (5*B), where A and B are available in memory location.

* Use LSL instruction for multiplication

```
File Edit Format View Help
. TEXT
LDR RØ,=A
LDR R1,=B
LDR R2,=C
LDR R3, [R0]
LDR R4, [R1]
ADD R5, R3, R4
MOV R6, R4
MOV R4, R4, LSL#2
ADD R4, R4, R6
ADD R7, R5, R4
STR R7,[R2]
. DATA
A:.WORD 50
B:.WORD 19
C:.WORD 0
. END
```


A=Decimal 50,B=Decimal 19				
	Decimal	Hexadecimal		
R3	50	32		
R4	19	13		
R5	69	45		
=R3+R4				
=A+B				
Calculate 4*B	19*4=76	4C		
Calculate 5*B	76+19=95	5F		
Calculate (A+B)+5*B	69+95=164	A4		

Disclaimer:

- The programs and output submitted is duly written, verified and executed by me.
- I have not copied from any of my peers nor from the external resource such as internet.
- If found plagiarized, I will abide with the disciplinary action of the University.

Signature: suhanb

Name:SUHAN B REVANKAR

SRN:PES2UG19CS412

Section: G

Date:03/02/2021