Topics: Normal distribution, Functions of Random Variables

- 1. The time required for servicing transmissions is normally distributed with $\mu=45$ minutes and $\sigma=8$ minutes. The service manager plans to have work begin on the transmission of a customer's car 10 minutes after the car is dropped off and the customer is told that the car will be ready within 1 hour from drop-off. What is the probability that the service manager cannot meet his commitment?
 - A. 0.3875
 - B. 0.2676
 - C. 0.5
 - D. 0.6987

Ans: We have to find the probability that the service manager cannot meet his commitment i.e probability of work done on car greater than 50(as work begins after 10 min, so 60-10=50).

$$P(X>50)= 1-P(X<50)$$

= 1-0.73
= **0.26**

- 2. The current age (in years) of 400 clerical employees at an insurance claims processing center is normally distributed with mean $\mu = 38$ and Standard deviation $\sigma = 6$. For each statement below, please specify True/False. If false, briefly explain why.
 - A. More employees at the processing center are older than 44 than between 38 and 44.
 - B. A training program for employees under the age of 30 at the center would be expected to attract about 36 employees.

Ans: Both the statements are true.

- a) There are about 63 employees older than 44 and 137 employees between 38 and 44. So the statement is true.
- b) The training program under the age of 30 has approximately 36 employees. So this statement is also true.

3. If $X_1 \sim N(\mu, \sigma^2)$ and $X_2 \sim N(\mu, \sigma^2)$ are *iid* normal random variables, then what is the difference between $2 X_1$ and $X_1 + X_2$? Discuss both their distributions and parameters.

Ans: Distributions:

a)
$$2 X_1$$

Mean=
$$2\mu$$

Varaince =
$$4\sigma^2$$

b)
$$X_1 + X_2$$

Mean=
$$2\mu$$

Variance =
$$2\sigma^2$$

Both a) and b) have same mean but variance differ. The Varaince of a) is twice than the b).

4. Let $X \sim N(100, 20^2)$. Find two values, a and b, symmetric about the mean, such that the probability of the random variable taking a value between them is 0.99.

A. 90.5, 105.9

B. 80.2, 119.8

C. 22, 78

D. 48.5, 151.5

E. 90.1, 109.9

Ans: D. Mean=100

Variance=20

a= Mean-Z(Variance)

b=Mean+Z(Variance)

As the confidence interval is 99% so value of z is 2.576

hence
$$a = 100-2.576(20) = 48.5$$

b=100+2.576(20)=151.5

5. Consider a company that has two different divisions. The annual profits from the two divisions are independent and have distributions $Profit_1 \sim N(5, 3^2)$ and $Profit_2 \sim N(7, 4^2)$ respectively. Both the profits

are in \$ Million. Answer the following questions about the total profit of the company in Rupees. Assume that \$1 = Rs. 45

A. Specify a Rupee range (centered on the mean) such that it contains a 95% probability for the annual profit of the company.

Ans. As both the divisions are independent, the sum of independent normal random variables results in a normal random variable with mean equal to the sum of the individual means and variance equal to the sum of the individual variances.

So, Total for profits

Mean =
$$5+7=12*45=540$$
 million rupees
Variance = $9+15=25$
Std Deviation = $5*45=225$ million rupees
For 95% probability, z= 1.960
Range= 99 to 981 million rupees
 $540-1.96(225)=99$
 $540+1.96(225)=981$

B. Specify the 5th percentile of profit (in Rupees) for the company

Ans. for
$$5^{th}$$
 percentile, $z=1.675$
Profit = $540-1.675(225) = 169.875$ million rupees

C. Which of the two divisions has a larger probability of making a loss in a given year?

Ans. As both the divisions have profit mean greater than 0 so neither divisions have the probability of mking loss in a given year.