TABLES AND DATA OPTICAL

FOR THE USE OF OPTICIANS

K50332

The

OPTICAL

TABLES AND DATA

FOR THE USE OF OPTICIANS

21

Digitized by the Internet Archive in 2016

https://archive.org/details/b28064732

OPTICAL

TABLES AND DATA

FOR THE USE OF OPTICIANS

₹

SILVANUS P. THOMPSON, D.Sc. F.R.S.

SECOND EDITION, REVISED

E. & F. N. SPON, LIMITED, 57 HAYMARKET moquoi

SPON & CHAMBERLAIN, 123 LIBERTY STREET Dew Bork

1907

WELLCO, HISTORE
LICENSTAN
COII. WEIMOMEC
COII. WIN

428 P821

CONTENTS.

- NOHOW

TABLE	1.6			PAGE
-	Squares, Cubes, Roots, Reciprocals, Inverse Squares, and	Squares,	and	
	Logarithms of Numbers from 1 to 200.		•	1
63	Logarithms		•	9
က	Natural Sines and Natural Cosines .		٠	œ
4	Natural Tangents		•	10
ı0	Versed Sines		•	12
9	Vulgar Fractions as Decimals with Square and Cube Roots	Cube B	coots	13
7	Inch Fractions converted to Decimals .		٠	13
80	Inches and Decimals of Inch to Millimetres		٠	13
8	Inches and Sixteenths of Inch to Millimetres		•	14
10	Feet and Inches to Millimetres		٠	15
11	Millimetres to Inches		•	116
12)				(17
13	Comparison of Metric and British Units .		٠	18
14	Velocity of Light		٠	18
15	Wave-lengths and Frequencies		٠	19
16	Refractive Indices of Jena Glasses		•	50
17	Composition of some Jena Glasses		٠	22
18	Refractive Indices of Chance's Glasses		•	23
19	Refractive Indices of some French Glasses (Baille)	. (el	٠	24

TABLE				PAGE
20	Effect of Temperature on Refractive Index of Gl	Glass .	٠	24
21	Refractive Indices of various Isotropic Solids		٠	25
22	Refractive Indices of various Liquids		٠	26
23	Refractive Indices of Fluor-spar, Calc-spar, Quartz	tz .	٠	28
24	Refractive Indices of Gases			29
25	Atomic Refraction			30
26	Refraction Equivalents			31
27	The Spherometer		٠	32
28	Modern Optical Formulæ		٠	35
30	Tables of Power and Focal Length	٠		<u>+1</u>
31	Effect of Distance on Apparent Power of a Lens			43
32	Neutralisation of Lenses			45
33	Transpositions of Spherical Lenses			46
34	Cardinal Points of Lenses			48
35	Positions of Equivalent Points and Planes		٠	51
36	Formulæ connecting Cardinal Points with Form of	of Lens		52
37	Lens Combinations		٠	53
38	Cardinal Points of Combinations of Lenses			54
39	Formulæ for Combinations of Two Thick Lenses	٠	٠	09
40	Cylindrical Lenses	٠	٠	63
41	Sphero-cylindrical Lenses		٠	65
42	Properties of Crossed Cylinders		٠	29
43	Transposition of Sphero-cylinder Combinations	٠	٠	69
44	Rules for Transposition of Lenses	٠	٠	71
45	Toroidal or Toric Lenses		٠	73
46	Obliquely-crossed Cylindrical Lenses	٠		74
47	Prism Formulæ			22
48	Prisms for Spectacle Work	٠	•	78
49	Prismatic Effect of a Decentred Lens	٠	٠	79
20	To convert Prism-dioptries to Degrees of Arc	٠		85
51	Decentering Equivalents	٠	٠	83
	(vi)			

	es
	and Degree
	and
	Prism-dioptries
	between Pr
	lation
	giving
K	52 Table giving re
TABL	52

PAGE

	· · · · · · · · · · · · · · · · · · ·	#O
53	To convert Prism-dioptries to Prism angle	84
54	Obliquely-crossed Prisms	85
55	Convergence of Vision. Metre-angle	98
99	Table of Metre-angles	98
57	Table and Aberrations in Lenses	87
58	Notes on Aberrations of Lenses. Chromatic Aberration .	88
59	Achromatic Lenses	88
90	Spherical Aberration	93
61	Optical Invariant	96
85	Spherical Aberration for Oblique Pencils	97
63	Entrance Pupil and Exit Pupil	66
64	Aberration due to Aperture	100
95	Linear Magnifying Power	102
99	Apparent Magnification by Magnifying Glass	103
49	Thickness of Disc to be taken for Grinding Lens	105
88	Curvature to be ground on Plano-convex Lens to reduce to 1 Dioptrie .	107
69	Constants and Dimensions of the Eye (Helmholtz) .	108
70	Amplitude of Accommodation at different Ages (Landolt).	109
7.1	Lenses necessary for Presbyopia at different Ages	109
72	Refractive Indices of Fluids commonly used in Microscopy.	110
73	Tube-length of Microscopes	1111
74	Magnifying Power of Microscopes: Standard Screw .	112
75	Numerical Aperture	113
76	Table of Numerical Aperture	114
77	Resolving Power of Microscope Objectives	115
78	Depth of Vision in Microscope	116
79	Penetrating Power and Depth of Vision	116
80	Depth of Focus	111
81	Table of Sizes of Diffraction Disc	118
85	Distance of Optical Lantern from Screen	119
	(VII)	

BLE	62				1000
တ	3 Reduction Table for Figures and Heads			٠	113
4	Enlargement Table			-	120
ຄ	Table of View-Angles for Camera .			٠	122
8	Sensibility of the Eye to light of various colours	olours			123
7	Relative sensation in the Eye by equal units of energy in different parts of Spectrum .	units o	f energ	y in	123
00	Units employed in Photometry .			٠	124
0	Comparison of Photometric units .		٠	•	124
0	Diffuse Reflexion			٠	125
크	Specular reflexive powers		•	•	126
Ç7	Colour, Density, and Hardness of Gems		•	•	127
00	3 Tints of Newton's Colours of Thin Films	۰		۰	130

OPTICAL TABLES.

- Motor

Squares, Cubes, Roots, Reciprocals, Inverse Squares, and Logarithms of Numbers 1 to 200.

Logarithm.	log n	- 8 0.0000 0.3010 0.4771 0.6990 0.7782 0.8451 0.9031 1.0000	$\begin{array}{c} 1.0414 \\ 1.0792 \\ 1.1139 \\ 1.1461 \\ 1.1761 \\ 1.2041 \\ 1.253 \\ 1.253 \\ 1.2788 \\ 1.2788 \\ 1.3010 \end{array}$	1.3222 1.3424 1.3424 1.3807 1.3879 1.4150 1.4314 1.4472 1.4624 1.4771
Inverse Square.	$\frac{1}{n^2}$	1.0000 0.2500 0.1111 0.0250 0.400 0.2778 0.1562 0.1562 0.1562	0.0082645 69444 59172 51020 44444 39062 34602 34602 34602 27701 25000	0.0022675 20661 18908 17361 16000 14791 13717 12755 111111
Reciprocal.	1 1	0.5000 0.5000 0.3333 0.25000 0.16667 0.14286 0.12500 0.10000	0.09091 0.08333 0.07692 0.07143 0.06667 0.06250 0.0556 0.0556	0.04762 0.04545 0.04348 0.04167 0.04000 0.03704 0.03571 0.03571 0.03533
Cube Root.	3/n	0.0000 1.2599 1.54422 1.5874 1.7100 1.9129 2.0000 2.1544	2.2240 2.2894 2.3518 2.4101 2.4662 2.5198 2.5718 2.6207 2.6684	2.7589 2.8020 2.8439 2.9845 2.9240 2.9625 3.0000 3.0366 3.0723
Square Root.	\ n \	0.0000 1.4000 1.4142 1.7321 2.0000 2.2361 2.4455 2.6458 2.6458 2.6458 3.0000 3.1623	3.3166 3.4641 3.6056 3.7417 3.8730 4.0000 4.1231 4.2426 4.3589 4.4721	4 · 5826 4 · 6904 4 · 7958 4 · 8990 5 · 0990 5 · 1962 5 · 3852 5 · 4772
Сире•	n³	0 1 8 8 8 27 64 125 216 343 512 729	1331 1728 2197 2744 3875 4096 4913 5832 6859 8000	9261 10648 12167 13824 15625 17576 19683 21952 24389 27000
Square.		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	121 144 169 196 225 225 226 289 324 400	441 484 529 576 625 676 729 784 841 900
Number.	2	01004001001	122245311860	888488888888888888888888888888888888888

Squares, Cubes, Roots, Reciprocals, Inverse Squares,

	Logarithm.	log n	1.491.4 1.505.1 1.518.5 1.558.1 1.558.1 1.558.1 1.558.1 1.602.1 1.602.2 1.632.2 1.632.2 1.632.2 1.632.2 1.632.2 1.632.2 1.632.2 1.632.2 1.632.2 1.632.2 1.632.2 1.700.0 1.700.	1.8261 1.8261 1.8385 1.8388 1.8451
to 200.	Іпуетѕе .5quare	$\frac{1}{n^2}$	0.000,000,000,000,000,000,000,000,000,0	22277 21626 21004 20408
nbers 1	Reciprocal.	1 n	0.09226 0.03125 0.04303 0.02391 0.02391 0.02303	0.01493 0.01471 0.01449 0.01429
of Numbers	Cube Root.	3 N	3.1411 3.2075 3.2075 3.2075 3.2071 3.2010	4.0615 4.0817 4.1016 4.1213
Logarithms	Square Root.	N n	5-5678 5-7646 5-810 6-0000 6-0000 6-0000 6-0000 6-3240 6-3240 6-3240 6-3240 6-3240 6-3240 7-2111 7-2	8.1854 8.2462 8.3066 8.3666
and Logs	Cube.	n^3	29791 28768 28768 28764 2877 26000 28909 2	300763 314432 328509 343000
ಹ	Square,	n ²	961 1025 1125 1125 1125 1125 1125 1125 112	4489 4624 4761 4900
	Number.	u	10000000000000000000000000000000000000	100

log n	1.8513 1.8573 1.8633 1.8692 1.8751 1.8808 1.8865 1.8956 1.8976	1.9085 1.9138 1.9243 1.9294 1.9345 1.9345 1.9445 1.9444 1.9494	1.9590 1.9638 1.9635 1.9777 1.9823 1.9868 1.9912 1.9956 2.0000	2.0043 2.0086 2.0128 2.0170 2.0212 2.0234 2.0234 2.0334 2.0334 2.0374	2.0453 2.0493 2.0531 2.0569 2.0607 2.0645 2.0645 2.0713 2.0755
$\frac{1}{n^2}$	0.00019837 19290 18765 18765 17778 17778 17778 16866 16436 16023 15625	0.00015242 14872 14512 14172 1841 13521 13521 13521 12625 12625	0.00012076 11815 11562 11317 11080 10851 10628 10412 10203	0.00009803 9612 9426 9245 9245 9070 8734 8573 8417 8333	0.00008116 7972 7831 7831 7696 7560 7432 7305 7182 7062 6944
1 11	0.01408 0.01389 0.01370 0.01351 0.0138 0.01289 0.01289 0.01286	0.01235 0.01220 0.01220 0.01100 0.01176 0.01136 0.01136 0.01136	$\begin{array}{c} 0.01099 \\ 0.01087 \\ 0.01064 \\ 0.01063 \\ 0.01042 \\ 0.01020 \\ 0.01010 \\ 0.01010 \\ 0.01010 \\ \end{array}$	0.00990 0.00980 0.00971 0.00962 0.00952 0.00935 0.00935 0.00917	0.00803 0.00803 0.00805 0.00877 0.00870 0.00862 0.00847 0.00847
3 n	4.1408 4.1602 4.1733 4.2358 4.2358 4.2558 4.2727 4.2727 4.2727 4.2727 4.2908	4.3267 4.3445 4.3445 4.3621 4.3795 4.4140 4.4140 4.4480 4.4480 4.4647 4.4814 4.4814 4.4814 4.4814 4.4814 4.4814	4.4979 4.5144 4.5307 4.5468 4.5629 4.5789 4.5947 4.6104 4.6416	4.6570 4.6723 4.6872 4.7027 4.7177 4.7475 4.7475 4.7769 4.7769	4.8059 4.8203 4.8346 4.8488 4.8629 4.8770 4.9187 4.9187
\ n	8-4261 8-4853 8-5440 8-6033 8-6603 8-7178 8-7750 8-8318 8-8882 8-9443	9.000 9.0554 9.1104 9.1104 9.2195 9.3274 9.3808 9.4340 9.4868	9.5394 9.5917 9.6437 9.6554 9.7468 9.7980 9.8489 9.8995 9.9999	$\begin{array}{c} 10 \cdot 0499 \\ 10 \cdot 0995 \\ 10 \cdot 1489 \\ 10 \cdot 1980 \\ 10 \cdot 2470 \\ 10 \cdot 2956 \\ 10 \cdot 3441 \\ 10 \cdot 3923 \\ 10 \cdot 4403 \\ 10 \cdot 4811 \end{array}$	10-5357 10-5830 10-6301 10-6771 10-7723 10-8167 10-9087 10-9087
e a	357911 373248 389017 405224 421875 438976 456533 474552 474552 493039 512000	531441 551368 571787 592704 614125 636056 658503 681472 704969	753571 778688 804357 830584 857375 884736 912673 941192 970299	1030301 1061208 1092727 1124864 1157625 1191016 1225043 1259712 1295029 1331000	1367631 1404928 1442897 1481544 1520875 160613 160613 1643032 1685159 1728000
n^2	5041 5184 5329 5476 5625 5776 5929 6084 6241	6561 6724 6889 7056 7225 7396 7744 7744 7921 8100	8281 8464 8649 8836 9025 9216 9409 9604 9801	10201 10404 10609 10816 11025 11236 11449 11644 11881 12100	12321 12544 12769 12996 13225 13456 13689 13924 14161 14400
æ	12	83 84 85 86 88 88 89	91 92 93 94 95 96 97 98 99	101 102 103 104 106 107 107 109 109	1112 1123 1144 116 116 117 119 119

8

в 2

Squares, Cubes, Roots, Reciprocals, Inverse Squares, and Logarithms of Numbers 1 to 200.

			_	_			_								_				_																				_
տար	Logarith	log n	2.0828	2.0204	600.0	9.0060	9.1004	2.1038	2.1072	2.1106	2.1139	2.1173	12	≂	2.1271	∵'	2.1335	٠.	٠.	Ţ	007	2.1492	9.1559	2.1584	2.1614	2.1644	2.1673	9.1789	2.1761	9.1700	2.1818	2.1847	2.1875	2.1903	2.1931	2.1939	9.9014	2.2041	
	эгэчлі тяпр2	$\frac{1}{n^2}$	0.00006830	61/9	0100	6404	5669	6200	6104	6009	5917	0.00005827	5739	5653	5568	5487	5407	5951	5175	5102	200	0.00000030	4890	4822	4756	4691	4628	4504	4444	0.00004988	4828	4272	4217	4162	4109	4007	3956	3906	
cal.	porqio9A	z	0.00856	0.00820	0.00013	0.0000	0.00300	0.00787	0.00781	0.00775	0.00769	0.00763	0.00758	0.00752	0.00746	0.00741	0.00735	0.00795	0.00719	.0071	000000	0.00709	*0/00-0	0.00694	06900.0	0.00685	0.00636	0.000.0	29900-0	63300.0	0.00058	0.00654	0.00649	0.00645	0.00641	0.00037	0.00000	0.00625	
oot.	Cube Ro	3 v	4.9461		4.0000		5.0138	5.0265	5.0397	5.0528	5.0658	5.0788	5.0916	5.1045	5.1172	5.1299	5.1551	5.1676	5.1801	5.1925		5.5171				ल्प	5.2776	400		K.99K1	5.3368					7.466.2	5.4175	5.4288	
*30	Square Roo		0000.11	11.0504	11.0909	11.1808		11.2694	11.3137			11.4455						11 - 7478		÷	,	11.0763	11.9588		12.0416	12.0830	12.1244	19.5066			12.3288		12.4097				19.6095	12.6491	
	Cube.	n3	1771561	1000000	10000001	1959195	2000376	2048383	2097152	2146689	2197000	2248091	2299968	2352637	2406104	2460375	2515456	2628072	2685619	2744000	2000000	2808221	9994907	2985984	3048625	3112136	3176523	3307949	3375000	2449051	3511808	3581577	3652264	3723875	8796416	3869893	2164466	4096000	
	Square.	n^2	14641	14004	15876	15695	15876	16129	16384	16641	16900	17161	17424	17689	17956	18225	18496	19044	19321	19600	1000	19881	90449	20736	21025	21316	21609	10666	22500	10866	23104	23409	23716	24025	24336	24649	95981	25600	
r.	Number	æ	121	201	190	195	126	127	128	129	130	131	132	133	134	135	1 20	138	139	140	;	141	143	144	145	146	147	149	150	151	152	153	154	155	156	150	150	160	

log n	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$\frac{1}{n^2}$	0.00003858 3810 3714 3714 3718 3673 3673 3673 3673 3673 3673 3673 367	0-00003052 3013 3013 2036 2032 2032 2032 2032 2739 2057 2057 2057 2057 2057 2057 2057 2057
1 1	0.00621 0.00613 0.00613 0.00603 0.00603 0.00539 0.00539 0.00581 0.00581 0.00573 0.00573 0.00573 0.00573 0.00573 0.00573 0.00573 0.00573 0.00573	0.00532 0.00543 0.00543 0.00543 0.00533 0.00532 0.00523 0.00521 0.00513 0.00503 0.00503 0.00503 0.00503 0.00503 0.00503
n /2	5-4401 5-4514 5-4526 5-4536 5-4536 5-5178 5-5178 5-5505 5-5505 5-5505 5-5505 5-5505 5-5505 5-5505 5-5505 5-5505 5-5618 5-618 5	5. 6567 5. 6567 5. 6577 5. 6887 5. 7188 5. 7188 5. 7188 5. 7287 5. 7739 5. 7739 5. 7739 5. 7739 5. 7739 5. 7880 5. 8188 5. 8285 5. 8285 5. 8388
\sqrt{u}	12.6886 12.7279 12.7279 12.8450 12.8451 12.9281 12.9281 13.0000 13.0000 13.1149 13.1149 13.1152 13.1152 13.1163 13.1163 13.228 1	13-4536 13-4536 13-6015 13-6015 13-6015 13-6015 13-6015 13-744 13-744 13-784 13-826 13-826 13-826 13-826 13-826 13-826 13-826 13-826 13-826 13-826 13-826 13-826 13-826 13-826 14-607 14-607 14-107 14
n^3	417328 4251528 430747 4421125 457426 457426 457426 457426 457426 491300 500844 51777 51777 51777 51777 51777 51777 51777 517777 5177	5929741 6202856 62028487 62028487 6331 625 6453826 6453826 67531263 6751263 677871 7077888 714875 714875 714875 714875 714875 714875 714875 714875 714875 718805 718805 718805 718805 718805 718805 718805 718805 718805 718805 718805 718805 718805 718805 8000000
n ₂	25921 26242 26569 26896 27526 27526 27526 27526 28224 28361 28361 28360 28361 28363 28363 28363 28363 28363 28363 38362	22761 32761 328489 33856 33856 34856 34969 358410 36481 36481 36481 36481 36481 36481 36481 36481 36864 3686
8	162 162 162 163 166 166 166 170 170 171 171 173 174 175 176 177 177 177 177 177 177 177 177 177	181 183 184 188 188 188 188 189 190 190 190 190 190 190 190 190 190 19

0	10 0000 11 0414 12 0792 13 1139 14 1461 15 1761	16 2041 17 2304 18 2553 19 2788 20 3010	21 3222 22 3424 23 3617 24 3802 25 3979	26 4150 27 4314 28 4472 29 4624 30 4771	31 4914 32 5051 33 5185 34 5315 35 5441	36 5563 37 5682 38 5798 39 5911 40 6021	41 6128 42 6232 43 6335 44 6435 45 6532	46 6628 47 6721 48 6812 49 6902 50 6990	51 7076 52 7160 53 7243 54 7324 55 7404	
-	0043 0453 0828 1173 1492 1790	2068 2330 2577 2810 3032	3243 3444 3636 3820 3997	4166 4330 4487 4639 4786	4928 5065 5198 5328 5453	5575 5694 5809 5922 6031	6138 6243 6345 6444 6542	6637 6730 6821 6911 6998	7084 7168 7251 7332 7412	
65	0086 0492 0864 1206 1523 1818	2095 2355 2601 2833 3054	3263 3464 3655 3838 4014	4183 4346 4502 4654 4800	4942 5079 5211 5340 5465	5587 5705 5821 5933 6042	6149 6253 6355 6454 6551	6646 6739 6830 6920 7007	7093 7177 7259 7340 7419	
00	0128 0531 0899 1239 1553 1847	2122 2380 2625 2856 3075	3284 3483 3674 3856 4031	4200 4362 4518 4669 4669 4814	4955 5092 5224 5353 5478	5599 5717 5832 5944 6053	6160 6263 6365 6464 6561	6656 6749 6839 6928 7016	7101 7185 7267 7348 7427	
4	0170 0569 0934 1271 1584 1875	2148 2405 2648 2878 3096	3304 3502 3692 3874 4048	4216 4378 4533 4683 4829	4969 5105 5237 5366 5490	5611 5729 5843 5955 6064	6170 6274 6375 6474 6571	6665 6758 6848 6937 7024	7110 7193 7275 7356 7435	
ю	0212 0607 0969 1303 1614 1903	2175 2430 2672 2900 2900 3118	3324 3522 3711 3892 4065	4232 4548 4548 4698 4698 4843	4983 5119 5250 5378 5502	5623 5740 5855 5966 6075	6180 6284 6385 6484 6580	6675 6767 6857 6946 7033	7118 7202 7284 7364 7443	
9	0253 0645 1004 1335 1644 1981	2201 2455 2695 2923 3139	3345 3541 3729 3909 4082	4249 4409 4564 4713 4857	4997 5132 5263 5391 5514	5635 5752 5866 5977 6085	6191 6294 6395 6493 6590	6684 6776 6866 6955 7042	7126 7210 7292 7372 7451	-
1	0294 0682 1038 1367 1673 1959	2227 2480 2718 2945 3160	3365 3560 3747 3927 4099	4265 4425 4579 4728 4728	5011 5145 5276 5403 5527	5647 5763 5877 5988 6096	6201 6304 6405 6503 6599	6693 6785 6875 6964 7050	7135 7218 7300 7380 7459	(9
00	0334 0719 1072 1399 1703 1987	2253 2504 2742 2967 3181	3385 3579 3766 3945 4116	4281 4440 4594 4742 4886	5024 5159 5289 5416 5539	5658 5775 5888 5999 6107	6212 6314 6415 6513 6609	6702 6794 6884 6972 7059	7143 7226 7308 7388 7466	
6	0374 0755 1106 1430 1732 2014	2279 2529 2765 2989 3201	3404 3598 3784 3962 4133	4298 4456 4609 4757 4757	5038 5172 5302 5428 5551	5670 5786 5899 6010 6117	6222 6325 6425 6522 6618	6712 6803 6893 6981 7067	7152 7235 7316 7396 7474	
н	4400000	@ 61 61 61 61	ଷଷଷଷଷ	2222						
63	881-999	55544	444460	00 00 00 00 00	10000000	01 01 01 01 01	0101010101	ପ୍ରପ୍ରପ୍ର	202222	
00	1101112	8 1 7 7 7 7 6	9000cc	70 10 10 4 4	***	44 00 00 00 00	00 00 00 00 00	00 00 00 00 00	88 81 81 81 81	
44	234831	10668	27.7.8	666	910101010	10101044	***	444400	00 00 00 00 00	
	H 010 11 10 10 H	11222	00000	77888	PF999	000000	10 10 10 10 10	1010 स स स	च च च च च	-
9	252 52 52 113 52 52 52 52 52 52 52 52 52 52 52 52 52	33451	01111	00000	700000	C9	99999	010101010	10 10 10 10 10	1
	202222	20070	7 7 7 7 7 7	HHH00	00000	222222	77777	L9999	99996	
.6	33 37 28 31 26 29 24 27 22 25 22 25	21 24 20 22 19 21 18 20 17 19	6 18 5 17 5 17 4 16 4 15	22 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000 000000	000000	86778	

1		609876	65 65 65	9990	24444 24444	87777	22 82 82 82	900000	99999	966880	1
İ	0	7482 7559 7709 7782	7853 7924 7993 8062 8129	8195 8261 8325 8388 8451	8513 8573 8633 8692 8751	8808 8865 8921 8976 9031	9085 9138 9191 9243 9294	9845 9395 9445 9494 9542	9590 9638 9685 9731 9777	9823 9868 9912 9956 0000	1
	-	7490 7566 7642 7716 7718	7860 7931 8000 8069 8136	8202 8267 8331 8395 8457	8519 8579 8639 8698 8756	8814 8871 8927 8982 9036	9090 9143 9196 9248 9299	9850 9400 9450 9499 9547	9595 9643 9689 9736 9782	9827 9872 9917 9961 0004	1
	es	7497 7574 7649 7723 7723	7868 7938 8007 8075 8142	8209 8274 8338 8401 8463	8525 8585 8645 8704 8762	8820 8876 8932 8987 9042	9096 9149 9201 9253 9304	9355 9405 9455 9504 9552	9600 9647 9694 9741 9786	9832 9877 9921 9965 0009	1
	က	7505 7582 7657 7731 7803	7875 7945 8014 8082 8149	8215 8280 8344 8407 8470	8531 8591 8651 8710 8768	8825 8882 8938 8993 9047	9101 9154 9206 9258 9309	9360 9410 9460 9509 9557	9605 9652 9699 9745 9791	9836 9881 9926 9969 0013	
	4	7513 7589 7664 7738 7810	7882 7952 8021 8089 8156	8222 8287 8351 8414 8416	8537 8597 8657 8716 8714	8881 8887 8943 8998 9053	9106 9159 9212 9263 9315	9365 9415 9465 9513 9562	9609 9657 9703 9750 9750	9841 9886 9930 9974 0017	1
	10	7520 7597 7672 7745 7818	7889 7959 8028 8096 8162	8228 8293 8357 8420 8482	8543 8603 8663 8722 8779	8837 8893 8949 9004 9058	9112 9165 9217 9269 9320	9370 9420 9469 9518 9566	9614 9661 9708 9754 9800	9845 9890 9934 9978 0022	
	9	7528 7604 7679 7752 7752	7896 7966 8035 8102 8169	8235 8299 8363 8426 8488	8549 8609 8669 8727 8785	8842 8899 8954 9009 9063	9117 9170 9222 9274 9825	9375 9425 9474 9523 9571	9619 9666 9713 9759 9805	9850 9894 9939 9983 0026	
	-	7536 7612 7686 7760 7760	7903 7973 8041 8109 8176	8241 8306 8370 8432 8494	8555 8615 8675 8733 8731	8848 8904 8960 9015 9069	9122 9175 9227 9279 9330	9380 9430 9479 9528 9576	9624 9671 9717 9763 9809	9854 9899 9943 9987 0030	
	00	7619 7619 7694 7767 7839	7910 7980 8048 8116 8116	8248 8312 8376 8439 8500	8561 8621 8681 8739 8737	8854 8910 8965 9020 9074	9128 9180 9232 9284 9335	9385 9435 9484 9533 9581	9628 9675 9722 9768 9814	9859 9903 9948 9991 0035	1
	6	7551 7627 7701 7774 7846	7917 7987 8055 8122 8189	8254 8319 8382 8445 8506	8567 8627 8686 8745 8802	8859 8915 8971 9025 9079	9133 9186 9238 9289 9340	9390 9440 9489 9538 9586	9633 9680 9727 9773 9818	9863 9908 9952 9996 0039	
	-							-0000	00000	00000	-
ı	es.	22									
	တ	0101010101	ପ୍ରପ୍ରପ୍ର	88888	ପ୍ରପ୍ରସ	0101010101	0101010101	8			
	5	44444	400000	0000000	000000	000000	000000	800000	00000		1
ı	9	200444	44444	44444	44440	000000	000000	000000	000000	00 00 00 00	-
ı	-	0.00.00.00	10 10 10 10 10	7070444	44444	44444	44444	400000	60 00 00 00 00	0000000	1
ľ	œ	00000	99000	0.00000	10 10 10 10 10	70 44 44	44444	44444	# च च च च	44400	
I	6	61111	99999	00000	50 50 50 50	0.00000	0.00000	10 4 4 4 4	44444	4 4 4 4 4	٦

	888888	883 138 138 138	75 75 74 75 74 75	82123	65 65 64 64 65	88 62 58 62 63	58 57 56 55 54	53 52 51 50 49	48 45 45 44 44	
5,	555554	44444	44444	44444	14 14 13 13 13	13 13 13 13 13 13 13 13 13 13 13 13 13 1	22222	22111	HHH99	œ́
4	222222	22222	=====	=====	=====	22222	$^{10}_{10}$	66666	တက္ထလ္သ	91
တ်	000000	66666	$\circ\circ\circ\circ\circ$	$\infty \infty \infty \infty \infty \infty$	$\infty \infty \infty \infty \infty \infty$	$\infty \infty \infty \infty \infty \infty$			66664	က်
çs	999999	9999	9999	9999	50 50 50 50	010101010	0000000	505044	चा चा चा चा चा	60
<u> </u>		00000000	000000	0000000	0000000	0000000	ପର୍ଷ୍ଷ୍ଷ	ପ୍ରଧ୍ୟପ୍ର	202020	-i-
54,	0157 0332 0506 0680 0854 1028	1201 1374 1547 1719 1719 1891	2062 2232 2402 2571 2740	2907 3074 3239 3404 3567	3730 3891 4051 4210 4368	4524 4679 4833 4985 5135	5284 5432 5577 5721 5864	6004 6143 6280 6414 6547	6678 6934 7059 7181	9
48,	0140 0314 0488 0663 0837 1011	1184 1357 1530 1702 1874	2045 2215 2385 2554 2723	2890 3057 3223 3387 3551	3714 3875 4035 4195 4352	4509 4664 4818 4970 5120	5270 5417 5563 5707 5850	5990 6129 6266 6401 6534	6665 6794 6921 7046 7169	12,
42,	0122 0297 0471 0645 0819 0998	1167 1340 1513 1685 1685 1857	2028 2198 2368 2538 2706	2874 3040 3206 3371 3535	3697 3859 4019 4179 4387	4493 4648 4802 4955 5105	5255 5402 5548 5693 5835	5976 6115 6252 6388 6388 6521	6652 6782 6909 7034 7157	18,
36,	0105 0279 0454 0628 0802 0976	1149 1323 1495 1668 1668 1840	2011 2181 2351 2521 2689	2857 3024 3190 3355 3518	3681 3843 4003 4163 4321	4478 4633 4787 4939 5090	5240 5388 5534 5678 5821	5962 6101 6239 6374 6508	6639 6769 6896 7022 7145	24′
30,	0087 0262 0436 0610 0785 0958	1132 1305 1478 1650 1650	1994 2164 2334 2504 2672	2840 3007 3173 3338 3502	3665 3827 3987 4147 4305	4462 4617 4772 4924 5075	5225 5373 5519 5664 5807	5948 6088 6225 6361 6494	6626 6756 6884 7009 7133	30,
24'	0070 0244 0419 0593 0767 0941	1115 1288 1461 1633 1805	1977 2147 2317 2487 2656	2823 2990 3156 3322 3486	3649 3811 3971 4131 4289	4446 4602 4756 4909 5060	5210 5358 5505 5650 5793	5934 6074 6211 6347 6481	6613 6743 6871 6997 7120	36,
18,	0052 0227 0401 0576 0750 0924	1097 1271 1444 1616 1616 1788	1959 2130 2300 2470 2639	2807 2974 3140 3305 3469	3633 3795 3955 4115 4274	4431 4586 4741 4894 5045	5195 5344 5490 5635 5779	5920 6060 6198 6334 6468	6600 6730 6858 6984 7108	42,
12,	0035 0209 0384 0558 0732 0906	1080 1253 1426 1599 1771	1942 2113 2284 2453 2622	2790 2957 3123 3289 3453	3616 3778 3939 4099 4258	4415 4571 4726 4879 5030	5180 5329 5476 5621 5764	5906 6046 6184 6320 6455	6587 6717 6845 6972 7096	48,
,9	0017 0192 0366 0541 0715 0889	1063 1236 1409 1582 1754	1925 2096 2267 2436 2605	2773 2940 3107 3272 3437	3600 3762 3923 4083 4242	4399 4555 4710 4863 5015	5165 5314 5461 5606 5750	5892 6032 6170 6307 6441	6574 6704 6833 6959 7083	54'
0,	0000 0175 0349 0528 0698 0871	1045 1219 1392 1564 1736	1908 2079 2250 2419 2588	2756 2924 3090 3256 3420	3584 3746 3907 4067 4226	4384 4540 4695 4848 5000	5150 5299 5446 5592 5736	5878 6018 6157 6293 6428	6561 6691 6820 6947 7071	,09
	01884r	8 8 10	11 12 13 14 15	16 17 18 19 20	22 23 21 25 24 25 21	30 23 23 30 30 30 30 30 30 30 30 30 30 30 30 30	32 33 33 34 35 35	38 38 40 38 40	14 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

lra]
-
Nat

											_
	831138	38 37 38 35 34	33 30 30 30 30	25 25 25 24 24	22 22 13 19	18 17 16 15 14	112 110 9	81-5104	ထရမ္ဝ		l si
2,	01006	000000	20000-	7 6 6 6 6 6	တ္ပက္လူ	70 44 44 44	. co co co co	01010101	HH00	oí.	8
4	∞∞∞∞∞-	44444	99999	9 2 2 2 2	70 4 4 4 4	440000	0000000	22111	нноо	4	Cosine
8	00000	0.00000	10101044	44444	00 00 00 00 00	00000000	202221		1000:	જે	၂ ၓ
çs.	44444	440000	00 00 00 00	60 60 60 60	ରାଷାଷ୍ଟ୍ର	88888		ппппо	0000	çs	ভ
1,	000000	ପାରାରାରାରା	22211				0	00000	0000	<u>``</u>] 3
54'	7302 7420 7536 7649 7760	7869 7976 8080 8181 8281	8377 8471 8563 8652 8738	8821 8902 8980 9056 9128	9198 9265 9330 9391 9449	9505 9558 9608 9655 9659	9740 9778 9813 9845 9845	9900 9923 9943 9960 9974	9985 9998 9999 	9	Natural
48,	7290 7408 7524 7638 7749	7859 7965 8070 8171 8271	8368 8462 8554 8643 8729	8813 8894 8973 9048 9121	9191 9259 9323 9385 9444	9500 9553 9603 9650 9694	9736 9774 9810 9842 9871	9898 9921 9942 9959 9973	9984 9998 9998 9999	13,	
42,	7278 7396 7513 7627 7738	7848 7955 8059 8161 8261	8358 8453 8545 8634 8721	8805 8886 8965 9041 9114	9184 9252 9317 9379 9438	9494 9548 9598 9646 9690	9732 9770 9806 9839 9869	9895 9919 9940 9957 9972	9983 9997 9999	18,	
36′	7266 7385 7501 7615 7727	7837 7944 8049 8151 8251	8348 8443 8536 8625 8712	8796 8878 8957 9033 9107	9178 9245 9311 9373 9432	9489 9542 9593 9641 9686	9728 9767 9803 9836 9866	9893 9917 9938 9956 9971	9982 9991 9999	24,	_
30,	7254 7373 7490 7604 7716	7826 7934 8039 8141 8241	8339 8434 8526 8616 8704	8788 8870 8949 9026 9100	9171 9239 9304 9367 9426	9483 9537 9588 9636 9681	9724 9763 9799 9833 9863	9890 9914 9936 9954 9969	9990 9997 9999	30,	6
24′	7242 7361 7478 7593 7705	7815 7923 8028 8131 8231	8329 8425 8517 8607 8695	8780 8862 8942 9018 9092	9164 9232 9298 9361 9421	9478 9532 9583 9632 9677	9720 9759 9796 9829 9860	9888 9912 9934 9952 9968	 9866 9866 6666 6666	36,] ~
18,	7230 7349 7466 7581 7694	7804 7912 8018 8121 8221	8320 8415 8508 8599 8686	8771 8854 8934 9011 9085	9157 9225 9291 9354 9415	9472 9527 9578 9627 9673	9716 9755 9792 9826 9826	9885 9910 9932 9951 9966	9979 9989 9996 9999	42,	
12,	7218 7337 7455 7570 7683	7793 7902 8007 8111 8211	8310 8406 8499 8590 8678	8763 8846 8926 9003 9078	9150 9219 9285 9348 9409	9466 9521 9573 9622 9668	9711 9751 9789 9823 9854	9882 9907 9980 9949 9965	9978 9988 9995 9999	48,	
,9	7206 7325 7443 7558 7672	7782 7891 7997 8100 8202	8390 8396 8490 8581 8669	8755 8838 8918 8996 9070	9143 9212 9278 9342 9403	9461 9516 9568 9617 9664	9707 9748 9785 9785 9820 9851	9880 9905 9928 9947 9963	9977 9987 9995 9999	54'	
٥,	7193 7814 7431 7547 7660	7771 7880 7986 8090 8192	8290 8387 8480 8572 8660	8746 8829 8910 8988 9063	9135 9205 9272 9336 9397	9455 9511 9563 9613 9659	9703 9744 9781 9816 9848	9877 9903 9925 9945 9962	9976 9986 9994 9998 1 · 000	,09	
	944 648 50	52 53 54 55	50 50 60 60	65 45 65	66 68 69 70	T25245	87 87 8 87 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 88 84 85	88 87 88 90 89 90 89 90 88 88 89 88 89 89 89 89 89 89 89 89 89		

	0 1 8 8 8 8	92860	112 22 42 15 15 15 15 15 15 15 15 15 15 15 15 15	16 17 19 20	22 22 22 22 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	308228	33833	40337 40337 40337	14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
,0	.0000 .0175 .0349 .0524 .0699	.1051 .1228 .1405 .1584 .1763	.1944 .2126 .2309 .2493 .2679	.2867 .3057 .3249 .3443 .3640	.3839 .4040 .4245 .4452 .4663	.4877 .5095 .5317 .5543 .5774	.6009 .6249 .6494 .6745	.7265 .7536 .7813 .8098 .8391	.8693 .9004 .9325 .9657 1.0000	
,9	0017 0192 0367 0542 0717 0892	1069 1246 1423 1602 1781	1962 2144 2327 2512 2698	2886 3076 3269 3463 3659	3859 4061 4265 4473 4684	4899 5117 5340 5566 5797	6032 6273 6519 6771 7028	7292 7563 7841 8127 8421	8724 9036 9358 9691 0035	
12,	0035 0209 0384 0559 0734 0910	1086 1263 1441 1620 1799	1980 2162 2345 2530 2717	2905 3096 3288 3482 3679	3879 4081 4286 4494 4706	4921 5139 5362 5589 5820	6056 6297 6 544 6796 7054	7319 7590 7869 8156 8451	8754 9067 9391 9725 9070	
18,	0052 0227 0402 0577 0752 0928	1104 1281 1459 1638 1817	1998 2180 2364 2549 2736	2924 3115 3307 3502 3699	3899 4101 4307 4515 4727	4942 5161 5384 5612 5844	6080 6322 6569 6822 7080	7346 7618 7898 8185 8481	8785 9099 9424 9759 0105	
24,	0070 0244 0419 0594 0769 0945	1122 1299 1477 1655 1835	2016 2199 2382 2568 2754	2948 8184 8827 8522 8719	3919 4122 4327 4536 4748	4964 5184 5407 5635 5867	6104 6346 6594 6847 7107	7373 7646 7926 8214 8511	8816 9131 9457 9793 01 41	
30,	0087 0262 0437 0612 0787 0963	1139 1317 1495 1673 1853	2035 2217 2401 2586 2773	2962 3158 3346 3541 3739	3939 4142 4348 4557 4770	4986 5206 5430 5658 5890	6128 6371 6619 6873 7133	7400 7673 7954 8243 8541	8847 9163 9490 9827 0176	7
36,	0105 0279 0454 0629 0805 0981	1157 1334 1512 1691 1871	2053 2235 2419 2605 2792	2981 3172 3365 3561 3759	3959 4163 4369 4578 4791	5008 5228 5452 5681 5914	6152 6395 6644 6899 7159	7427 7701 7983 8273 8571	8878 9195 9523 9861 0212	0
42,	0122 0297 0472 0647 0822 0998	1175 1352 1530 1709 1890	2071 2254 2438 2623 2623 2811	3000 3191 3385 3581 3779	3979 4183 4390 4599 4813	5029 5250 5475 5704 5938	6176 6420 6669 6924 7186	7454 7729 8012 8302 8601	8910 9228 9556 9896 0247	
48,	0140 0314 0489 0664 0840 1016	1192 1370 1548 1727 1908	2089 2272 2456 2642 2830	3019 3211 3404 3600 3799	4000 4204 4411 4621 4834	5051 5272 5498 5727 5961	6200 6445 6694 6950 7212	7481 7757 8040 8332 8632	8941 9260 9590 9930 0283	
54'	0157 0332 0507 0082 0857 1033	1210 1388 1566 1745 1926	2107 2290 2475 2661 2849	3038 3230 3424 3620 3819	4020 4224 4431 4642 4856	5073 5295 5520 5750 5985	6224 6469 6720 6976 7239	7508 7785 8069 8361 8662	8972 9293 9623 9965 0319	
2	0000000	00000	00 00 00 00	000000	200044	44444	4 4 4 4 4 00 00 00 00 00	5 9 5 10 5 10 5 10	5 10 5 11 6 11 6 12 6 12	
8	999999	00000	00000	01001	22221	88 27 21 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	98888	44455	16 17 17 18	
41	222222	22222	22222	13 13 13 13 13	13 41 41 41 41	15 15 15 16	16 17 17 18	$\frac{18}{20}$	22222	
10	41 55 55 55 55 55 55 55 55 55 55 55 55 55	15 15 15 15 15	15 15 15 16	16 16 17 17	71 71 18 18	18 19 19 20	88228	22223	25 25 30 30 30	

Natural Tangents.

20	888888	88 83 45 45 45	48 55 56 60 60	68 68 73 78 85	90 90 90 90 90 90 90 90	##000				7
	000000	000444	400000	991-10	99213	144 161 180 203 232				
4	28888	8 8 8 8 8	86 4 6 4 8 4	51 55 58 63 68	74 79 87 95 104	115 129 144 162 186				1
တ	81 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2282323	36 32 33 36 34 35 36 34 35	38 44 44 51	55 60 65 71 78	87 108 139 139				
63	22 8 8 4 4 4	15 16 16 17 17	$\begin{array}{c} 19 \\ 22 \\ 23 \\ 24 \end{array}$	26 27 29 31 34	37 40 43 47 52	$\begin{array}{c} 58 \\ 64 \\ 72 \\ 81 \\ 93 \end{array}$				
-	99777	88866	22112	13 14 15 16 17	82222	23 36 41 46				
54,	0686 1067 1463 1875 2305	2753 3222 3713 4229 4770	5340 5941 6577 7251 7966	$\begin{array}{c} 8728 \\ 9542 \\ \hline 0413 \\ 1348 \\ 2355 \end{array}$	3445 4627 5916 7326 8878	0595 2506 4646 7062 9812	2972 6646 0970 6140 5432	0264 $\overline{0}285$ $\overline{3}572$ $11 \cdot 20$ $13 \cdot 95$	18-46 27-27 52-08 573-0	
48,	0649 1028 1423 1833 2261	2708 3175 3663 4176 4715	5282 5880 6512 7182 7893	8650 9458 0323 1251 2251	3332 4504 5782 7179 8716	$\begin{array}{c} 0415 \\ 2305 \\ 4420 \\ 6806 \\ 9520 \end{array}$	$\begin{array}{c} 2635 \\ 6252 \\ \overline{0}504 \\ 5578 \\ \overline{1}742 \end{array}$	$\begin{array}{c} 9895 \\ 9158 \\ \overline{2}052 \\ 10 \cdot 99 \\ 13 \cdot 62 \end{array}$	17.89 26.03 47.74 286.5	
42,	0612 0990 1383 1792 2218	2662 3127 3613 4124 4659	5224 5818 6447 7113 7820	8572 9375 0233 1155 2148	3220 4383 5649 7034 8556	0237 2106 4197 6554 9232	$\begin{array}{c} 2303 \\ 5864 \\ \hline 0045 \\ 5026 \\ \hline 1066 \end{array}$	8548 8062 0579 10 · 78 13 · 30	17.34 24.90 44.07 191.0	
36,	0575 0951 1343 1750 2174	2617 3079 3564 4071 4605	5166 5757 6383 7045 7747	$\begin{array}{c} 8495 \\ 9292 \\ \hline 0145 \\ 1060 \\ 2045 \end{array}$	3109 4262 5517 6889 8397	0061 1910 3977 6305 8947	1976 5483 9594 4486 0405	7920 6996 9152 10 · 58 13 · 00	16.83 23.86 40.92 143.2	1
30,	0538 0913 1303 1708 2131	2572 3032 3514 4019 4550	5108 5697 6319 6977 7675	8418 9210 0057 0965 1943	2998 4142 5386 6746 8239	9887 1716 3759 6059 8667	1653 5107 9152 3955 9758	6912 5958 7769 10·39 12·71	16.35 22.90 38.19 114.6	
24'	0501 0875 1263 1667 2088	2527 2985 3465 3968 4496	5051 5637 6255 6909 7603	8341 9128 9970 0872 1842	2889 4023 5257 6605 8083	9714 1524 3544 5816 8391	1335 4737 8716 3435 9124	6122 4947 6427 10·20 12·43	15.89 22.02 35.80 95.49	
18,	0464 0837 1224 1626 2045	2482 2938 3416 3916 4442	4994 5577 6191 6842 7532	8265 9047 9883 0778 1742	2781 3906 5129 6464 7929	9544 1334 3332 5576 8118	1022 4374 8288 2924 8502	5350 3962 5126 10·02 12·16	15.46 21.20 33.69 81.85	
12,	0428 0799 1184 1585 2002	2437 2892 3367 3865 4388	4938 5517 6128 6775 7461	8190 8967 9797 0686 1642	2673 3789 5002 6325 7776	9375 1146 3122 5339 7848	0713 4015 7867 2422 7894	4596 3002 3863 9.845 11.91	15.06 20.45 31.82 71.62	
6	0392 0761 1145 1544 1960	2393 2846 3319 3814 4335	4882 5458 6066 6709 7391	8115 8887 9711 0594 1543	2566 3673 4876 6187 7625	9208 0961 2914 5105 7583	0408 3662 7453 1929 7297	3859 2066 2636 9·677 11·66	14·67 19·74 30·14 63·66	
0,	1.0355 1.0724 1.1106 1.1504 1.1918	1.2349 1.2799 1.3270 1.3764 1.4281	$\begin{array}{c} 1.4826 \\ 1.5399 \\ 1.6003 \\ 1.6643 \\ 1.7321 \end{array}$	$1.8040 \\ 1.8807 \\ 1.9626 \\ 2.0503 \\ 2.1445$	2.2460 2.3559 2.4751 2.6051 2.7475	2.9042 3.0777 3.2709 3.4874 3.7321	4.0108 4.3315 4.7046 5.1446 5.6713	6-3138 7-1154 8-1443 9-5144 11-43	14·30 19·08 28·64 57·29	
	44 48 49 50	52 53 54 55	56 57 59 60	22222	18848	15545 16545	878778	81 82 84 85 85	88 88 90 90 90	

0.7244	0.7328 0.7412 0.7496 0.7581 0.750 0.7750 0.7921 0.8006 0.8092 0.8178 0.8264
0	
74	75 75 76 77 77 77 77 78 80 80 80 80 80 80 80 80 80 80 80 80 80
0.4408	0.4554 0.4627 0.4771 0.4775 0.4925 0.5000 0.5000 0.5076 0.5152 0.5228 0.5305 0.5305
56.5 57	57.5 58.5 59.5 60.5 60.5 61.5 62.5
0.2120 0.2174 0.2229 0.2284	0.2340 0.2396 0.2453 0.2569 0.2627 0.2686 0.2807 0.2807
· · · · · ·	20 20 20 20
38 . 39 . 40 . 40 .	1 1 1 2 3 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0.0603 0.0633 0.0664 0.0696 0.0728	0.0795 0.0829 0.0865 0.0900 0.0937 0.0974 0.1012
20 20.5 21 21.5 22 22 22.5	23 · 5 24 · 5 25 · 5 26 · 5
0.0006 0.0010 0.0014 0.0019 0.0024 0.0031	0.0055 0.0055 0.0055 0.0075 0.0075 0.0086
10 10 10 .	8 8 7 5 8 8 9 5 9 5 9 5 9 9 9 9 9 9 9 9 9 9 9

Converted to Decimals, with Roots and Cube Roots. Yulgar Fractions their Square

9

Cube Root.	0.721 0.855 0.956 0.956 0.956 0.763 0.922 0.920 0.961 0.437 0.747 0.747
Square Root.	0.612 0.791 0.935 0.933 0.471 0.667 0.745 0.745 0.943 0.289 0.289 0.645 0.764 0.957
Decimal.	0-8750 0-6250 0-8750 0-1111 0-2222 0-1444 0-5556 0-0838 0-0838 0-167 0-167 0-1667
Fraction	01/10 10/10 10 10/
Cube Root.	0.734 0.633 0.634 0.938 0.550 0.941 0.723 0.659 0.754 0.950 0.950
Square Root.	0.707 0.517 0.816 0.816 0.808 0.408 0.913 0.913 0.655 0.655 0.655 0.926 0.926
Decimal.	(5000 0.333 0.6667 0.2500 0.7500 0.1667 0.833 0.2857 0.4286 0.5714 0.5714 0.8571
Fraction	was only who wip out of other order with

Inch-Fractions Converted into Decimals.

0.765625 0.78125 0.78125 0.8125 0.828125 0.8538125 0.853875 0.853875 0.90625 0.90625 0.953125 0.96875 0.96875	
410 AIC AID AID AID AID DID DID AID AID AID AID	
0-515625 0-53125 0-53125 0-53125 0-5625 0-57625 0-60875 0-60875 0-60875 0-610875 0-6	0.75
	n)+
0.265625 0.28125 0.28125 0.8126 0.828125 0.828125 0.828125 0.858125 0.858125 0.858125 0.858125 0.858125 0.46825 0.46875 0.46875	0.2
	re(ot
0-015625 0-08125 0-08125 0-08875 0-088125 0-08975 0-10875 0-10875 0-15625 0-16025 0-16	0.55
10 00 00 00 00 00 00 00 00 00 00 00 00 0	

Inches and Decimals of 1 Inch to Millimetres.

Ins.	0	·	.2	ę.	4.	9.	9.	4.	œ	6.
0	00.00	.2	5.08	7	10.16	12.70	15.24			
	25.40	27.94	30.48	33.02	35.56	38.10	40.64	43.	45.72	48.56
63	20.80	53.	55.88	58	96.09	63.50	66.04			
00	76.20	78.	81.28	83	96.36		91.44	83		
4	9.101	107	106.68	109	111.76		116.84	119		
10	127.0	129	132.08	134	137.16		142.24	144	147.32	
9	152.4	154	157.48	160	162.56	165.10	167.64			
1	177.8	180	182.88		187.96	190.50	193.04		198.12	
00	203.2	205	208.58	210		215.90	218.44	220	223.52	
6	228.6	231	233.68		238.76	241.30		246.38		
9	254.0	256	259.08		264.16	266.70	269.24	271.78	274.32	276.86
=	279.4	281.94	284.48	287.02	289.26	292.10		297.18	299.72	302.26
					0,	,				

Inches and Sixteenths to Millimetres.

Ins.	0	1 16	1/8	3 16	1/4	5 10	3 8	7 10	1/2	16	5.8	110	3 4	13	7 81	15 10
0	0.0	1.59	3.18	4.76	6.35	7.94	9.53	11.11	12.70	14.29	15.88	17.46	19.05	20.64	22.23	23.81
1	25.4	26.99	28.57	30.16	31.75	33 · 34	34.92	36.51	38.10	39.69	41 · 27	42.86	44.45	46.04	47.62	49.21
2	50.8	52.39	53.97	55.56	57.15	58.74	60.32	60.91	63.50	65.09	66.67	68.26	69.85	71.44	73.02	74.61
3	76.2	77.79	79.37	80.96	82.55	84 · 14	85.72	87.31	88.90	90.49	92.07	93.66	95.25	96.84	98.42	100.0
4	101.6	103.1	104.8	106.4	108.0	109.5	111.1	112.7	114.3	115.9	117.5	119.1	120.7	122.2	123.8	125.4
5	127.0	128.6	130.2	131.8	133 · 4	134.9	136.5	138 · 1	139.7	141.3	142.9	144.5	146.1	147.6	149.2	150.8
6	152.4	154.0	155.6	157.2	158.8	160.5	161.9	163.5	165 · 1	166.7	168.3	169.9	171.5	173.0	174.6	176.2
7	177.8	179.4	181.0	182.6	184.2	185.7	187.3	188.9	190.5	192.1	193.7	195.3	196.9	198.0	200 · 1	201.6
8	203.2	204.8	206.4	208.0	209.6	211.1	212.7	214.3	215.9	217.5	219.1	220.7	222.3	223.8	225.4	227.0
9	228.6	230 · 2	231.8	233 · 4	235.0	236.5	238 · 1	239.7	241.3	242.9	244.5	246.1	247.7	249 · 2	250.8	252.4
10	254.0	255.6	257.2	258.8	260 · 4	261.9	263.5	265.1	266.7	268.3	269.9	271.5	273 · 1	274.6	276.2	277.8
11	279.4	281.0	282.6	284 · 2	285 · 7	287.3	288.9	290.5	292 · 1	293.7	295.3	296.9	298.6	300.0	301.6	303 · 1

Feet and Inches to Millimetres.

Feet.						Inc	ches.					
1000	0	1	2	3	4	5	6	7	8	9	10	11
0	0.00	25.4	50.8	76.2	101.6	127.0	152.4	177.8	203 · 2	228.6	254.0	279 • 4
1	304.8	330.2	355.6	381.0	406.4	431.8	457.2	482.6	508.0	533 · 4	558.8	584.2
2	609.6	635.0	660 • 4	685.8	711 · 2	736 · 6	762.0	787 • 4	812.8	838 • 2	863 • 6	889.0
3	914.4	939.8	965.2	990.6	1016.0	1041 • 4	1066.8	1092 · 2	1117.6	1143.0	1168 · 4	1193 · 8
4	1219 · 2	1244.6	1270 · 0	1295 • 4	1320 · 8	1346.2	1371 · 6	1397.0	1422.4	1447.8	1473 · 2	1498.6
5	1524.0	1549 · 4	1574.8	1600 • 2	1625.6	1651 • 0	1676 • 4	1701 · 8	1727 · 2	1752.6	1778 · 0	1803 • 4
6	1828 · 8	1854 · 2	1879 · 6	1905.0	1930 · 4	1955 · 8	1981 • 2	2006.6	2032.0	2057.4	2082.8	2108 • 2
7	2133 · 6	2159.0	2184 · 4	2209 · 8	2235 · 2	2260.6	2286.0	2311 · 4	2236.8	2362 · 2	2387.6	2413.0
8	2438.4	2463 · 8	2489 · 2	2514.6	2540.0	2565 • 4	2590 · 8	2616 • 2	2641 · 6	2667.0	2692.4	2717.8
9	2743 · 2	2768 · 6	2794.0	2819 • 4	2811.8	2870 · 2	2895.6	2921 • 0	2946.4	2971 · 8	2997 · 2	3022.6

Millimetres to Inches.

Milli- metres.	0	1	2	3	4	5	6	7	8	9
0 .	0.0000	0.03937	0.07874	0.11811	0.15748	0.19685	0.23622	0.27560	0.31497	0.35434
10	•3937	0.43307	0.47244	0.51181	0.55118	0.59055	0.62992	0.66930	0.70867	0.74804
20	.7874	0.82677	0.86614	0.90551	0.94488	0.98425	1.02362	1.06300	1 · 10237	1.13174
30	1.1811	1.22047	1.25984	1.29921	1.33858	1.37795	1.41732	1.45670	1.49607	1.53544
40	1.5748	1.61417	1.65354	1.69291	1.73228	1.77165	1.81102	1.85040	1.88977	1.92914
50	1.9685	2.00787	2.04724	2.08661	2.12598	2 · 16535	2.20472	2.24410	2.28347	2.32284
60	2.3622	2.40157	2.44094	2.48031	2.51968	2.55905	2.59842	2.63780	2.67717	2.71654
70	2.7560	2.79537	2.83474	2.87411	2.91348	2.95285	2.99222	3.03160	3.07097	3.11034
80	3.1497	3.18907	3.22844	3.26781	3.30718	3.34655	3.38592	3.42530	3.46467	3.50404
90	3.5434	3.58277	3.62214	3.66151	3.70088	3.74025	3.77962	3.81900	3.85837	3.89774

The term micron, and symbol μ , are used by microscopists to mean $\frac{1}{1000}$ of a millimetre or 10^{-6} metre. Similarly, the symbol $\mu\mu$ is used to mean $\frac{1}{1000}$ of a micron or $\frac{1}{10000000}$ of a millimetre or 10^{-9} metre.

-	•	•

Milli- metres.	0	10	20	30	40	50	60	70	80	90
0	0.0000	0.3937	0.7874	1.1811	1.5748	1.9685	2.3622	2.7560	3 · 1497	3 · 5434
100	3.937	4.331	4.724	5.118	5.512	5.906	6.299	6.693	7.087	7.480
200	7.874	8.268	8.661	9.055	9 · 449	9.843	10.236	10.630	11.024	11.317
300	11.811	12.205	12.598	12.992	13.386	13.780	14.173	14.567	14.961	15.354
400	15.748	16.142	16.535	16.929	17:323	17.717	18.110	18.504	18.898	19.291
500	19.685	20.079	20 · 472	20.866	21.260	21 · 654	22.047	22.441	22.835	23 · 228
600	23 · 622	24.016	24 · 409	24.803	25 · 197	25.591	25.984	26.378	26.772	27.165
700	27.560	27.954	28:347	28.741	29.135	29 · 529	29.922	30.316	30.710	31.103
800	31 · 497	31.891	32.284	32.678	33 · 072	33.466	33 · 859	34 · 253	34.647	35.040
900	35.434	35.828	36.221	36.615	37.009	37.403	37.796	38.190	38.584	38.977

Units. Comparison of Metric and British

LENGTH

- Inches 39.37043 Inches. Metre = 1000 Millimetres = 89.37043 Inch Millimetre = 0.001 Metre = 0.0387 Incl Inch = 0.0254 Metre = 25.4 Millimetres. Foot = 0.3048 Metre = 304.8 Millimetres.

AREA.

1 Square Millimetre = 0.00155 Square Inch. 1 Square Inch = 645.1 Square Millimetres.

- Kilogramme = 1000 Grammes = 2 · 2046 Pounds = 15432 · 2 Grains.
 - 7000 Grains = 16 Ounces = 453.6 Grammes. 437.5 Grains = 28.35 Grammes. Gramme = 0.001 Kilogramme = 15.432 Grains. Pound =
 - Onnee =

1 Grain = 0·0648 Gramme. N.B.—The legal Grain in Great Britain is $\frac{r_0}{r_0}$ of 1 Pound, and is the same Grain in Troy weight as in Avoirthpois weight.

WEIGHTS JEWELLERS'

1 Ounce (Troy) = 480 Grains = 31 · 1035 Grammes.

- " = 151·5 Diamond Carata = 606 Diamond Grains
 " Diamond Carata = 4 Diamond Grains = 3 + 1886 Grains = 0 2035 Gramme.

 Dismond Grain = 0 792 Grains = 10 + 583 Gramme.

 Gramme = 19 + 488 Diamond Grains = 4 + 871 Diamond Graits.

Welocity of Light.

The velocity of Light in vacuo appears to be almost exactly 300,000 kilometres per second. In mit it is about 80 tilometres words on the second of 184400 miles per second. In mit it is about 80 tilometres or so miles per second allower. In vater, glass and other dense modia the velocity is less, and different of the miles and the per second and the first than it is for red mid or and the first than it is for red and or angle light. The following are velocities for yellow light in several media:—

Slowness relatively to that in Air = μ .	1 1·3337 1·53 1·63
Velocity relatively to that in Air.	1 0·75 0·6536 0·6185
Miles per Second.	186400 139800 121830 114350
Kilometres per Second.	\$00000 225000 196080 184050
Velocity in	Air

N.B.—The slowness of light in any medium, relatively to that in air, is oalled "the refractive index." of that medium. It is the reciprocal of the velocity.

WAVE-LENGTHS AND FREQUENCIES.

Rubens & Nathab Longest waves 24000		Region	N. C. L.	5	Wave-length.	ngth.	Frequency
Ruthers & Nichole longest waves 24000 542 Infra-red	°	f Spectrum.	Name of Line.	Element.	millimetres.	millionths of inch.	(billions per second).
Infra-red			Rubens' & Nichol	is' longest waves	24000	944	12.5(×10 ¹²)
Infra-red			Langley's los Paschen's los	igest waves	15000 9450	592 370	31.7
Spectrum, or X,		Infra-red	÷-~	: :	2700	106.24	111
Spectrum, or X	pJe.	part of	• °	:	1240	48.73	242
Red	isiv	Sneotrum or	, v	:	£0.668 J	35.36	333.7
Heat-waves	uΙ	Thomas, as	۰ ۵	:	898.65	35.35	334.0
Red A O C F59-14 S3		Heat-waves.	 จํผ์	::	866.14	34.1	346.2
Red A O C759 -4 25			X,	:	854.18	33.63	351.3
Red A			×ī.	:	849.7	33.44	353·3
Red A O C C C C C C C C C			7	:	\$0.779	4c.ze	264.9
Chemes C		Red (۷ı	0	759.4	82.62	395.2
Vellow D ₁ Na Sept 51 Sept 52 Sep			щc	0#	686.74	27.03	436.5
Colorescence Displaying September Colorescence Colorescenc		Orange . {) 	N ₉	589.61	23.21	508.8
Creen D. He S87-06 20 20 20 20 20 20 20		Vollow	Ď,	Na	589.05	23.18	509.1
Creen E. Cre 227 04 20 20	M		, D	He E	587.60	23.13	510.5
Peacock P. P. P. P. P. P. P. P	B	Green .	El El	40	527 09	20.78	2.69.5
Peacock Pa	TO		Ē,	Fe	526.97	20.74	569.3
Peacock Pa	ьЕ		, p,	Mg	518.38	20.40	578.9
Peacock Pa Pa Pa Pa Pa Pa Pa P	S		δ,	F 60	516.99	20.36	580.4
Pine	an	Feacook . {	F ₀	Fe	516.91	20.350	580.4
Colorescence Colo	Œ		ъ.	Fe	516-77	20.306	580.5
Blue G C C S 150	SI.			Mg	516.75	20.305	580.5
Violet R	Λ.	ic		Fe	430.81	16.96	696.3
No No No No No No No No			יי	రి	430.79	16.95	696.4
Violet K			e F	#¢	410.18	16-17	731.3
Ultra-violet		Violet . {	dЯ	ేరి	393.38	15.48	762.7
Ultra-violet M			L	Fe	382.06	15.04	785-1
Part of N Fe 372-71 148 Spectrum, O Fe 384-18 148 O Actinic O Fe Fe 384-18 148 O Actinic O Fe Fe 384-18 148 O Actinic O O Fe Second O O Actinic O O Fe Fe 384-18 O Actinic O O Fe Second O O Actinic O O O O Act		Ultra-violet	M	Fe	372.78	14.676	804.6
Spectrum, OA Fre 235, 151 134		part of	1 2	F9	872.71	14.673	804.9
Variation P Fee 386-12 138		Spectrum,	40	e E	344.11	13.55	871.8
Average Aver	.(၁	1 8	Ы	Fe	336.13	13.23	892.6
Names	idq	5	0	Fe.	328-69	12.94	912.6
Produces Fe Si 146 15 15 Produces Fe Si 146 15 Produces Si Fe Si 10 15 Effects and Fe Si 10 15 Excites both T Fe Si 12 11 Fe Si 12 11 Fe Si 12 11 Fe Si 14 15 Fe Si	sra]		r#	్రి	318·14	12.92	942.9
Profuces S1	3030	_		E E	314.46	12.38	954.1
Photographic S ₂ Fe Sign 101 112	oq.		v.	Fe	310.08	12.207	967.4
effects and c Fe 304.77 112 excites both T Fe 302.07 112 T Fe 302.07 113 Fe 320.07 114 Fe 320.07 114 Fe 320.07 114 Phorescence T 114 Phorescent 114 Ph	I) e		So.	Fe	310.04	12.206	967.6
The excites both The least Fe 100	ldi	_	8	Fe	304.77	66.11	984.5
Fluorescence Free 29/2-45 11	givi		Ŀ	Fe	302.12	11.894	993.0
U Fe 2044-80 Millor's limit, photographic 20/2 Soleer's limit, fluorescent 185 Schumann's highest frequency 100	ΙI	_		Fe Fe	302.07	268.11	1009.0
Miller's limit, photographic 202 Sokes limit, fluorescent 185 Schumann's highest frequency 100		and Phos	ď,	Fe	294.80	11.60	1017.6
Schumann's highest frequency 100 3		Thomas and	Miller's limit,	photographic	202		1485.1
		риогозовное	Schumann's bi	sheet frequency	100		3000

c 2

EFRACTIVE INDICES.

JENA GLASS. Selected Sorts arranged in order of refractivity for equal mean dispersion.

-									
	actory	Description,	Density.	Refractive	Pa	artial Dispersio	n.	Medium Dispersion,	$\nu = \mu - 1$
Nu	mbers.	Description,	Density.	Index for D.	A1 to D.	D to F.	F to G1.	C to F.	Δμ
	O 225 S 40 O 802 O 144 O 599 O 57 O 40 O 337 O 40 O 57 O 40 O 374 O 546 O 546 O 546 O 567 O 20 O 138 O 57 O 20 O 138 O 15 O 211 O 709 O 153 O 15 O 153 O 153 O 154 O 197 O 197 O 197 O 197 O 197 O 608 O 722 O 608	Light ploophate crown Medium plasphate rown Bense barium phosphate crown Bense barium phosphate crown Bense barium phosphate crown Borosilicate crown (very light) Zinc crown Zinc crown Calcium silicate crown Calcium silicate crown of high refractive index Silicate crown of high refractive index Barium silicate crown Ordinary silicate crown Crown of low refractive index Silicate crown Ordinary silicate crown Crown of low refractive for yellow light Silicate crown Dense barium silicate crown Zinc sola crown Dense barium silicate crown Dense barium silicate crown Dense barium silicate crown Dense barium silicate crown Dense lateral par crown Dense	2 - 58 - 3 - 107	1-519 1-509 1-5767 1-5009 1-5066 1-5066 1-5066 1-5066 1-5076 1-5079	0-104-55 0-105-56 0-1	C-063.15 C-063.25 C-0	0-06467 0-101466 0-01506	0 - 10737	700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20

JENA GLASS. Selected Sorts arranged in order of refractivity for equal mean dispersion-continued

ĺ	Factory Numbers.	Description.	Density.	Refractive Index for D.	P	artial Dispersion	n.	Medium Dispersion,	$\nu = \frac{\mu - 1}{\Lambda}$	
					A1 to D.	D to F.	F to G1,	C to F.		
	0 381 0 182 0 583 0 643 0 527 0 164 0 676 0 214 0 652 0 161 0 678 0 378 0 378 0 376 0 306 0 164 0 678 0 164 0 678 0 193 0 93 0 93 0 93 0 93 0 226 0 192	Crown of high dispersion Silicate glase Baryra light dinin Borro-silicate flint Saryra light dinin Baryra light flint Baryra light flint Extra light flint Baryra light flint Cordinary light flint Baryra light flint Light silicate flint Ordinary light flint Baryra light flint Cordinary light flint Ordinary light flint Ordinary silicate flint "" Dense silicate flint "" Dense silicate flint "" " " " " " " " " " " " " " " " " "	2-70 2-76 2-76 3-11 3-11 3-19 3-15 3-16 3-15 3-16 3-16 3-2-27 3-29 3-29 3-29 3-29 3-29 3-29 3-29 3-29	1 - 6262 1 - 5268 1 - 5268 1 - 5268 1 - 5268 1 - 5263 1 -	0 - 00644 0 - 0.0659 0 - 0.0659 0 - 0.0659 0 - 0.0659 0 - 0.0659 0 - 0.0659 0 - 0.0716 0 - 0.0718 0	0.00727 0.00743 0.00743 0.00746 0.00796 0.00798 0.00893 0.00893 0.00893 0.00891 0.0089	F to G1. 0.00596 0.00610 0.00610 0.00610 0.00614 0.00654 0.00652 0.00672 0.00672 0.00677 0.00679 0.00	0.01026 0.01133 0.01142 0.01134 0.01142 0.01144 0.0114	51:3 51:3 55:26 55:04 49:3 48:7 48:27 48:27 48:29 42:4 44:41 41:41	(21)
	0 41 0 113 0 165 0 198 8 67	Very dense silicate flint Densest silicate flint	4·49 4·64 4·78 4·99 6·33	1*7174 1:7371 1:7541 1:7782 1:9626	0.01439 0.01526 0.01607 0.01719 0.02767	0.01749 0.01870 0.01974 0.02120 0.03547	0*01521 0*01632 0*01730 0*01868 0*03252	0.02434 0.02600 0.02743 0.02941 0.04882	29·5 28·4 27·5 26·5 19·7	

Compiled from the circulars of Mesers. Schott & Co., excluding those kinds of glass which experience has shown to be liable to deteriorate in time. The line A^1 is the potassium (red) line of $\lambda = 76.77$ microcentimetres, and the line G^1 the hydrogen line of $\lambda = 43.41$, respectively near to Frauenhofer's lines A and G.

	51.6 10.0 20.0 7.0 11.4		32.7 31.0 25.0 11.3		54.22 1.50 33.00 8.00 8.00 0.08 0.20		28.36 69.0 2.50 0.04 0.10		18 82	
Light Barram Flint.	SiO ₂ PbO BaO ZnO Alkalis	Light Boro-silicate Flint	SiO ₂ B ₂ O ₃ PbO Alkalis & Al ₂ O ₃	Light Silicate Flint.	SiO ₂ B ₃ O ₃ F ₁ O ₃ K ₂ O Na ₂ O Mn ₂ O ₃ As ₂ O ₃	Heavy Silicate Flint.	SiO. PbÔ. K.O Mn.O. As.O.	Densest Silicate Flint.	SiO ₂ PbO	
Light	$ \begin{array}{l} 0.527 \\ \mu_{\text{D}} = 1.5718 \\ \nu = 50.6 \end{array} $	Light B	0 658 $\mu_0 = 1.5452$ $\nu = 50.3$	Ligh	0 154 $\mu_0 = 1.5710$ $\nu = 43.1$	Heav	$ \begin{array}{l} 0.165 \\ \mu_{\rm D} = 1.7545 \\ \mathbf{y} = 27.6 \end{array} $	Denses	$\begin{array}{c} 8.57 \\ \mu_D = 1.9625 \\ \nu = 19 \cdot 7 \end{array}$	
			-							22
	70.5 12 10 7.5		28.0 3.0 9.5		68.24 10.00 10.00 2.00 0.07 0.20		69 18 13 traces	٧b.	48.7 29.0 10.3 12.0	-
Light Phosphate Crown.	P.O. K.O AK.O AK.O AK.O AK.O AK.O AK.O AK	Phosphate Crown.	P ₂ O ₅ BaO DiO B ₂ O ₃ A ₈ ₂ O ₅	Boro-silicate Crown.	$\begin{array}{c} {\rm SiO_2} \\ {\rm B_2O_3} \\ {\rm K_2O} \\ {\rm Na_2O} \\ {\rm ZnO} \\ {\rm Mn_2O_3} \\ {\rm Mn_2O_3} \\ {\rm As_2O_6} \end{array}$	Light Borate Crown.	$\left. \begin{array}{c} B_2 O_3 \\ A I_2 O_3 \\ N a_2 O \\ B a O \\ A S_2 O_5 \end{array} \right\}$	Heavy Barinm-silicate Crown.	$\begin{array}{c} \mathrm{SiO_2} \\ \mathrm{BaO} \\ \mathrm{ZnO} \\ \mathrm{Alkalis} \& \mathrm{B_2O_3} \end{array}$	
Light P	$ \begin{array}{l} 0.225 \\ \mu_{\rm b} = 1.5160 \\ \nu = 70.3 \end{array} $	Phos	$ \begin{array}{c} 8.40 \\ \mu_0 = 1.5619 \\ \nu = 66.5 \end{array} $	Boro-	$ \begin{array}{l} 0.627 \\ \mu_0 = 1.5128 \\ \nu = 63.7 \end{array} $	Light	S 205 $\mu_{\rm p} = 1.5075$ $\nu = 60.6$	Неачу Ваг	0 211 $\mu_{\rm D} = 1.5727$ $\nu = 58$	

Factory	Description of Glass.	Density.	Refractive Index		Partial Dispersion	on,	Medium	$\nu = \mu_D - 1$	
Number.	Description of Glass.	Density.	for D.	C to D.	D to F.	F to G1.	Dispersion, C to F.	Δμ	
B 646	Borosilicate Crown	2.45	1 · 5093	0.00236	0.00552	0.00449	0.00788	64.6	
A 605	Hard Crown	2.48	1.5175	0.00252	0.00604	0.00484	0.00856	60.5	1
A 569	Soft "	2.55	1.5152	0.00264	0.00642	0.00517	0.00906	56.9	ı
B 565	Baryta "	3.17	1.5660	0.00297	0.00709	0.00576	0.01006	56.3	ı
B 555	Densest baryta Crown .	3.58	1.6099	0.00321	0.00779	0.00629	0.01100	55.5	l
B 535	Baryta light Flint .	2 · 94	1 · 5452	0.00298	0.00722	0.00582 -	0.01020	53.5	ľ
A 490	Extra light Flint .	2.78	1.5316	0.00313	0.00772	0.00630	0.01085	49.0	Į,
A 485	,, ,, ,, .	2.80	1.5333	0.00322	0.00777	0.00640	0.01099	48.5	ı
B 468	Baryta light Flint .	3.29	1.5840	0.00362	0.00866	0.00735	0.01248	46.8	١
A 458	Light Flint	2.93	1.5472	0.00348	0.00848	0.00707 -	0.01196	45.8	١
A 432	,, ,, , ,	3.06	1.5610	0.00372	0.00927	0.00770	0.01299	43.2	١
A 410	,, ,,	3.22	1.5760	0.00402	0.01002	0.00840	0.01404	41.0	ı
A 370	Dense Flint	3.57	1.6124	0.00474	0.01176	0.01030	0.01650	37.0	ı
A 361	,, ,,	3.64	1.6214	0.00491	0.01231	0.01046	0.01722	36.1	I
A 360	,, ,,	3.66	1.6225	0.00493	0.01236	0.01054	0.01729	36.0	
A 337	Extra dense Flint .	3.88	1.6469	0.00541	0.01376	0.01170	0.01917	33.7	
A 299	Double extra dense Flint	4.40	1.7129	0.00670	0.01714	0.01661	0.02384	29.9	

Samples Examined	Temp.	.	Refractive	P	artial Dispersio	n.	Medium	$\mu_D = 1$
by Baille.	°C,	Density.	Index for D line,	A to D.	D to F.	F to G.	Dispersion, C to F.	$\nu = \frac{\mu \nu}{\Delta \mu}$
Crown Glass	17°·8 23°·5 21°·2 18°·4 21°·9 23°·2 18°·4 22°·0 19°·5 23°·2 24°·0 13°·7 12°·4 22°·5	2·50 2·49 2·80 2·55 3·00 2·98 3·22 3·24 3·44 3·68 3·68 3·68 4·08 5·00	1:5280 1:5160 1:5192 1:5265 1:5604 1:5715 1:5822 1:6027 1:6109 1:6198 1:6198 1:6858 1:7920		0·0063 0·0062 0·0064 0·0067 0·0086 0·0088 0·0088 0·0102 0·0114 0·0125 0·0123 0·0161 0·0229	0·0054 0·0056 0·0057 0·0060 0·0079 0·0089 0·0089 0·0105 0·0110 0·0120 0·0114 0·0152 0·0219	0·0089 0·0088 0·0090 0·0090 0·0095 0·0122 0·0124 0·0138 0·0141 0·0159 0·0163 0·0174 0·0172 0·0224	59·3 58·6 57·7 55·4 45·9 45·6 41·4 41·3 37·9 37·5 36·2 36·0 30·6 24·5

The Effect of Temperature on the refractive index of glass is small, and may, as a rule, be neglected altogether. The order of magnitude of the effect is given below, from the determinations of Müller for certain specimens of crown and flint glass. Crown Glass between Temp. – 5° and + 23° C. $\mu_{\rm p} = 1.516149 + .00000017 \ t$. Flint Glass between , – 3° and + 21° C. $\mu_{\rm p} = 1.579856 + .00000323 \ t$.

Pulfrich gives following as the coefficients for selected kinds of Jena Glass (see Table 16): S 40, -0:00000305: O527, +0:0000014. 0.154, +0.00000261; S.57, +0.00001447. In all cases, whether the coefficient for yellow light is + or -, the dispersion increases with rise of temperature.

Substa					R	efractive Indi	ces for the li	nes of the SI	ectrum name	d.		$\nu = \frac{\mu_D}{\Delta \mu}$
Substa	nce.			A	В	С	D	E	F	G	н	$v = \frac{1}{\Delta \mu}$
Ammonium chloride .					1.6326	1.6366	1.6422	1.6464	1.6533	1.6613		38.4
Amber			- 1	••	1.5418	1.5296	1.5462	1.5504	1.5543			22.1
Antimony glass . Arsenic tribromide .	•		.	••			[2.013]		••	••		
Arsenic tribromide .	•					1.748	1.755		••	•••		
Barium nitrate	•		:			1.2662	1.5716		1.5825			35.7
Beeswax	•	• •		[1.542]	::	1 3003	1 3/10	::	1 3523	::		
Blende	•	: :	- 11	[1 012]		T2:341657	2:3692			::	::	••
Borax						1.5122	1.5148		1.5207			60.6
Boric acid						1.4624	1.4630		1.4702		1	59.4
Camphor							1.532				1	1
Caoutchouc				[1:524]								
Diamond (colourless) .				2.4024	2.4073	2.4100	2.4173	2 · 4269	2.4354	2.4514	2*4648	16.4
Ebonite					[2.4606]		2.4699	2.4790			•••	
				. 12.	. **.	.*:.	1.6					
Fucbsine				1.73	1.81	1.99	1.547			1.31	1.54	
Horn	•		•	••	•••		1.565	••	••	••	•••	••
Lead chromate				••	::		2.5 to 2.97	::		••		
Mastic				[1:535]			2 0 00 2 31	::		::		••
Obsidian		: :	:	[1 000]	1.4928	1.4939	1:4964	1.4994	1.5017		::	63.6
Pitch		: :		[1:531]								
Phosphorus			(1	2.093)	2.1583				1 ::
	•		1				2.144					1 ::
Quartz (fused) , .				1.454			1.4585		1.4632	1.4669		67.9
Resins—												1
Balsam of copaiba .			• 1				1.549			••		
Canada balsam .			•			1.5124	1.526		1.5351			41.5
Copal			•	1.528				••				
Balsam of Peru .	•			1.535	1.585	••	1.593	1.613	•••	•••		
Resin (colophony) .	•					1.545	1.548				• • • • • • • • • • • • • • • • • • • •	
Shellac	•		:				1.525		:: 1			
Rock salt	•		- :	1.5366	1.5392	1.5405	1.5442	1.5490	1.5532	1.5613	1.5683	42.8
Selenium vitreous				2.653	2.730	2.86	2.98	1 5450	1 0002	1 3013	1 3003	12.8
Silver bromide			- :	2 000	2 100	2	2.2533				1 ::	
" chloride			- 1			1	2.061		1		1	
, iodide						1	2.1816					9.6
Spermaceti				[1:535]								
Tallow				[1.49]							1	

Hallium Islan

200 on su page at end

REFRACTIVE INDICES of Various LIQUIDS.

								_				
	Name of Liquid.			Refrac	tive Indic	es for the	lines of	the Spect	rum named.			μ _D – 1
	Traine of Enquire.	Temp.	A	В	C	D	E	F	G	Н	$\mu_{\rm F} - \mu_{\rm C}$	$\mu_{\rm F} - \mu_{\rm C}$
ı	Acetic acid	20°			1.36985				[1:38017]		•00663	
ł		20°			1.37022			1.37683			*00661	56.3
i	Acetone	100			1.3626	1.3646	• •	1.3694	[1:3732]		*0068	53.6
ı	Alcohol (ethyllic)	15°	1.3600	1.3612	1.3677	1·3695 1·3638	1.0001	1.3683	[1:3773]	1.0751	.0000	FO. 0
ı	Aniline	200			1.3621	1.5863	1.3661	1.6041	[1:3720] [1:6204]	1.3751	·0062 ·0048	58·6 22·1
Ì		100		3	1.4983	1.5029		1.5148	[1.5355]		0165	30:5
ì	Benzine	150	1.4905	1:4937	1 4955	1.5002	1.5000	1.5124	1 · 5234	1.5329	.0169	29.6
ł	Carbon bisulphide	15°	1.6114	1.6177	1.6209	1.6303	1.6434	1.6554	1.6779	1.7035	.0345	18.3
ı	Cinnamic ether		1.5456	1.5507	1.5530	1.5607	1.5816	1.6038	1.6261	1 1000	.0508	11.0
Ì	Chinolin	20°			1.6094	1.6171		1.6361	[1:6497]		.0267	23.1
ı		(10°	1.4438	1.4457	1.4466	1.4490	1.4526		1.4614	1.4661	.0089	50.5
Į	Chloroform , , ,	20°			1.4437	1.4462	1.4525			.,		
ı	.T c	300		1		1.4397				1.4561	1	
İ	Ether Must	15°	1.3529	1.3545	1.3554	1.3566	1.3590	1.3606	1.3646	1.3683	.0042	84.9
ł	Glycerine	15°	1.4661	1.4677	1.4688	1.4711	1.4741	1.4766	[1.4812]	1.4853	.0078	60.3
1	Kreasote			1.5320	1.5335	1.5383	1.5452	1.5515	1.5639	1.5744	.0180	29.9
ı	Metacinnamene	15°			1.592	1.597		1.612	[1.624]		.0200	29.5
ı	Methylalcohol	150			1.3308	1.3326	1.3	1.3362		1.3421	.0054	61.6
ł	Methylene-di-iodide	150			1.732	1.743		1.767	[1.794]	. ::	*035	21.2
ı	Monobromnapthalin	20°	1.6405	1.6464	1.6495	1.6582	1.6705	1.6819	[1.7041]	1.7289	.0324	20.3
İ	Naphthylphenylketone	15°			1.659	1.669		1.697			•038	17.6
ı	Naphthylphenylketone-di-bromide	••	••	(1.700	• • •			• •	• •	
۱	Phenol	100	••		1.040	1.549		1.001	F1 - 70.03		.00#	10.7
ı	Phenyl-thio-carbimide	100			1.646	1.654	• •	1.681	[1.706]		.035	18·7 9·87
ı	Piperine	18°			1.665	1.681		1.734	[1.806]		.069	9,81

REFRACTIVE INDICES of Various LIQUIDS-continued.

-												
ſ	Name of Liquid.			Refrac	tive Indic	es for the	lines of	the Spect	rum named.			μ _D 1
	Name of Liquid.	Temp.	A	686'7	6663	5993	5 27	F 861	430'8	Н	$\mu_{\rm F} - \mu_{\rm C}$	μ _F — μ _C
	Phosphorus in methylene-di-iodide in equal weights	18°			1.929	1.944		1.984	[2.021]		.055	17.2
	Quinidine	15° 16°			1.596	1.602		1.621	[1.639]		.025	24.1
	Sulphur in methylene-di-iodide Toluene	200	::		1.4911	1.778 1.4955	::	1.5070	[1.5170]		0159	31.2
l	Water	16° 18°·75		1.3309	1·3318 1·3317	1·3337 1·3336	1 : 3359	1·3378 1·3378	1:3442	1:3442	·0060	56·6 54·7
1	Xylol	190.7	1.4859		1.4908	1.1495		1.5059	[1.5153]		.0151	32.6
l	Oils (various)											
ı	Almond oil	0°		. ::	1.4755	1.4782		1.4847	. ::		*0092	52.0
l	Aniseed oil	15°·1 21°·4		1.5487	1.5508	1.5573	1.5659	1.5744	1.5912	1.6084	·0236 ·0237	23·6 23·1
l	Bitter almond oil	20°			1.5391			1.5623	[1.5775]		•0232	
ŀ	Cassia oil	10° 15°	::	1.5659	1.6007 1.5690	1.6104	1.5904	1·6389 1·6029	••	1.7039	·0382 ·0339	15·9 17·0
ŀ	Castor oil					1.490			:: · ::			***
ŀ	Cedar-wood oil					1.510				••		
ļ	Cinnamon oil	230.5	1*5967	1.6038	1.6077	1.520	1.6348	1.6508	·:	::	.0431	14.3
L	Clove oil	20 0				1.533						
ŀ	Linseed oil					1.485						
L	Nutmeg oil	25°	1.4594	1.4655	. ::00							
I	Olive oil	00			1.4738	1.4763		1.4825	••	••	*0087	54.7
1	Poppy oil	000		::	1.4345	1.4573	::	1.4644	::	::	• 0299	15.3
I	Turpentine	100.6	· ::	1.4705	1.4715	1.4744	1.4784	1.4817	1.4882	1.4939	.0102	46.5

The values for quartz are those for right-handed crystals. For left-handed quartz crystals both Van der Willigen and Gifford have found the refractive indices very slightly lower. Gifford gives, for D line, ordinary index 1.5383452.

The refractive index of fluorspar, as also those of quartz and rock-salt, decreases with an increase of temperature. In all fluids, increase of temperature lowers the dispersion.

Refractive Index.	1.000139	1.000259	1.000271	1.000298	1.000335	1.000379	1.000444	1.000454	1.000556	1.000723	1.000773	1.000822	1.001132
Kind of Light or Line of Spectrum.	D line			2				£	Red	D line		ı	r
			•								•		
s.													
of Ga													
Name of Gas.	Hydrogen .	Water vapour .	Oxygen	Nitrogen .	Carbon monoxide	Ammonia gas .	Marsh gas (CH,)	Carbon dioxide	Mercury vapour	Oleffant gas (C ₂ H ₄)	Chlorine.	Cyanogen .	Bromine .

The above results are those of Mascart, with the exception of that for Macrav vapour, which is from Le Roax. (for Vacanum = 1.) The most recent determinations by G. W. Walker, in Proc. Roy. Society, Macch 1903, give values mostly slightly higher. These varies are for the standard presents of 200, and 190. At other pressures and temperatures the values of the indices for each gas vary in almost exact proportion with the density.

Air. Dispersion for Dry Atmospheric Refraction and

μ _D – 1		100.7	
Mean	Dispersion.	0.0000029	
on.	F to G.	0.0000019	
Partlal Dispersion.	D to F.	0.0000021	
Par	A to D.	0.0000017	
Index of	for D line.	Dry Air 1.0002932 0.0000017 0.0000021 0.0000019 0.0000029 100.7	
		Dry Air	

When a substance changes its density, in consequence of change of temperature or pressure, it is found that its refractivity changes proportionally (Gladstone's law).

If ρ represent density, then

substance.

 $\mu - 1 = a$ constant, called the specific refractivity of

This law may be applied to calculate the refractivity of mixtures of two substances that do not chemically act on one

Further, the specific refractivity of a compound multiplied by its molecular equivalent is called the molecular refractivity of that compound; and the specific refractivity of an element multiplied by its atomic equivalent is called the atomic refractivity of that element. In the following Table are given the atomic refractivities of most of the elements on the authority of Dr. Gladstone. When compounds are formed out of the elements, the refractivity of the compound depends upon the specific refractivities of the constituent elements, and in many cases can be calculated from them. Certain substances, notably lead, thallium and phosphorus, have high atomic refractive power, and they are useful therefore as constituents of flint glass. Zinc, on the other hand, and calcium, potassium and sodium, have low atomic refractivities, and they are used as constituents in crown glasses of low refracting quality.

the A-line in the red, and for the H-line in the violet part of the spectrum. Gladstone has given the following values for the dispersion equivalents of some of the elements: Phosphorus, 3.0; Sulphur, 2.6 or 1.2; Hydrogen, 0.04; Carbon, 2.6 or 6.6; Oxygen, 0.18 or 0.10; Chlorine, 0.50; Bromine, 1.22; Iodine, The difference between the atomic refractivities of an element for red and for violet light is called its dispersion equivalent, or its atomic dispersivity; the refractivity being determined for 3.65; Nitrogen, 0.10.

Atomic Refractivity.	1.5	3.6	9.9	4.8 or 3.5	* × × ×	3.25 or 2.7	0.62	3.17	4.65	6.9	6.5	7.1 or 5.8	19.5 0.16.0 %	10.0 or 10.7	8.0	10.1	25.0	24.73	15.4	11.5	8.61 Jo 7.11	6.UI	11.7	6.6	14.75	15.0	26.8, &c.	11.4	13.3	17.6	93.03	22.7.	13.1	13.9	17.4	27.6 or 19.2	24.4 or 27.2	i	16.1	19.8	20.03	31.95	95.1	91.5 or 19.8?	21.	26.7? or 24.5	32.07	7.97
Specific Refractivity.	1.488	0.514	0.733	0.456 or 0.317	0.343 &	0.903 or 0.169	0.031	0.159	0.505	0.287	0.352	0.250 or 0.204	#8C.0	0.282 or 0.309, &c.		0.525	0.522	0.481	0.596	0.508	0.203 or 0.355	0.180	0.184	0.151	0.214	0.500	0.339, &c.	0.133	0.152	0.197	0.542	0.513	0.121	0.124	0.153	0.232 or 0.161	0.199 or 0.914	12	0.117	0.143	0.143	0.165	0.102	0.107 0.099		0.129 or 0.119	0.154	0.123
Atomic Weight.	1.008	2.0	0.6	0.11	14.09	16.05	0.61	19.94	23.05	24.3	0.12	4.83	0.18	85.45	36.58	40.04	48.0	51.4	52.1	55.0	0.96	2.02	9.69	65.3	0.69	75.0	79.0	25.00	87.66	89.1	9.06	106.5	107.92	112.0	113.7	0.611	196.95	189.0	137.43	138.2	140.2	193.1	0.001	197.3	204.0	206.95	508.0	232.6
ند																																			•													
Element.	Hydrogen	Lithium	Beryllium .	Boron .	Carbon .	Nitrogen .	Oxygen .	Aron	Sodium	Magnesium .	Aluminium .	Silicon .	Phosphorus .	Sulphur	Chlorine Petersium	Coloinm	Titanium	Vanadium	Chromium .	Manganese .	Iron	Nickel .	Copair .	Zine	Gallium	Arsenic	Selenium .	Bromine .	Strontium	Yttrium .	Zirconium .	Knodlum .	Silver	Cadmium .	Indium .	Tin	Antimony	Communication .	Barium	Lanthanum .	Cerium .	Iridiam .	Platinum .	Gold	Mercury Thellium	Lead	Bismuth .	Thorium .

Of all the instruments with which the optical constructor has to do, the SPHEROMETER is that upon which he is mainly dependent for precision. It is to him what the balance is to the ture and its relation to focal length a word is necessary about The larger the than a bit (equally long)—of a three-inch circle. In fact the latter, having half the radius, is exactly twice as much curved. To explain curvabit-say an inch in length-of a six-inch circle is less curved By doubling the radius we halve the curvature. Or, generalising, the curvature, of a line or surface, is inversely proportional to the radius of curvature. In order to describe, therefore, the curvature of any line or surface, it is necessary and sufficient to state the reciprocal of the radius of that curved line or surface. It only remains to choose what length of radius shall be, for this purpose, taken as a standard. By international agreement the metre (= 1000 millimetres = 39.37 inches) has been so chosen. Hence the curve having unit curvature—one dioptrie, see Art. 28, p.36 radius of a circle, the less curved will be the circle itself. A chemist, and must therefore be thoroughly understood. the measurement of curvature in general. object is to measure the curvature of surfaces.

-is a curve of one metre radius. It follows that a curvature of two dioptries will correspond to a radius of half a metre (= 500 millimetres = 19.69 inches). A curve whose radius is 10 metre will have a cur-As the curvature of a surface is proportional to the reprinciple of the spherometer is based on the calculation of that radius from measureciprocal of its radius of curvature, vature of ten dioptries.

Suppose that we wished to find out we may the length of the radius of the arc P Q of a circle; ment made of the surface. proceed as follows (Fig. 1):-Fig. 1,

Draw any chord CD. Bisect CD in M. Through M draw a perpendicular AMB, meeting the curve in A. Now we know that this line A M B passes through the centre of the circle of which P Q forms part; and that if A M B were to meet the other side of the circle at B, A B would diameter.

$$A M \times MB = (M D)^2$$

$$A M \times (A B - A M) = (M D)^2$$

Substituting, Let the length A M, which is called the sagitta of the curve, If we call the radius of curvature R, then A B = 2R. called h, and let the length M D be called r.

$$h(2R-h)=r^2,$$

whence

we get

$$= \frac{r^2 + h^2}{2h} \cdot \cdot \cdot \cdot [1]$$

If h is small compared with R, this becomes

$$= \frac{r^2}{2h} \cdot \cdot \cdot \cdot \cdot [2]$$

whence

$$\frac{1}{\mathbf{R}} = \frac{2h}{r^2} \quad . \quad . \quad . \quad [3]$$

Now imagine the arc P Q to be rotated about the axis A Bas The linc Then it will generate a spherical surface.

CD will describe a plane, and the point D will sweep out a "small" circle, of which r is the radius. The centre of curvature O of the sphere is clearly the same as that of the arc; O A (= R) being its radius of curvature. If then, we select two points such as CD on a spherical surface, and by some means measure their distance part,

and also measure the sagitta A M of the curve, we can calculate the radius of curvature of the sphere.

This, in one of its simple commercial forms, is called a lens-measure (Figs. 8 and 9, Art. 28). The dial of the instrument is so graduated that it A spherometer is an instrument for doing this. shall read off the curvature in dioptries directly. For more accurate work a spherometer of greater precision, It has three fixed legs, so that it can stand steadily when placed on a spherical surface with these three legs alone in contact. These three feet form the corners of an equilateral triangle, or may be regarded The distance from any one of these three feet to the central leg is equal to the radius r of this circle. The fourth leg is capable as three equidistant points on the "small" circle CD of Fig. is needed. such as that depicted in Fig. 3,

of being screwed up or down by a micrometer screw, in order to measure the height h of the sagitta of the curvature of the surface. English spherometers usually have 50 threads to the usually have a screw-thread of inch, so that giving one turn raises or lowers the central foot $\frac{1}{50}$ of an Continental micrometers half a millimetre, or twenty head of the micrometer sorew consists of a circle divided into 100 equal parts so as to enable threads to the centimetre. to the central screw

Sometimes length a between any two of the legs is equal to $r\sqrt{3}$, so that case of these spherometers with three fixed equidistant legs, the head is divided into 500 parts for greater accuracy. fractions of one turn to be read off with accuracy. the formulæ become

$$R = a^2 + 3h^2 . . . [1a]$$

or approximately,
$$B = \frac{\omega}{6h} \quad . \quad . \quad . \quad . \quad [2a]$$
 whence
$$\frac{1}{12} = \frac{6h}{3} \quad . \quad . \quad . \quad . \quad [3a]$$

If h, a and r are given in millimetres, the curvature of the surface in dioptries is given by the following formulæ:-

6000 h
$$a^2 + 3 h^2$$
, or approximately $a^2 - a^2$, or $a^2 - a^2$.

Or if h, a and r are given in inches, the curvature in dioptries

$$\frac{236 \cdot 4h}{a^2 + 3h^2}$$
, or approximately $\frac{236 \cdot 4h}{a^2}$, or $\frac{78 \cdot 8h}{r^2}$.

are thus found and added algebraically together, the power of If the dioptries of curvature of the two surfaces of the lens the lens in dioptries is found by multiplying by $(\mu - 1)$.

and the Principles on which they are based. MODERN OPTICAL FORMULÆ,

air or glass, always march at right angles to their own wave-fronts. If the wave-fronts are flat or "plane," then the paths of the waves are parallel. If the wave-fronts have a bulging curvature as in the light which is spreading radially from a fronts have a hollow curvature, then the paths will converge to a focus. All that any lens or system of lenses can do to the waves that pass through it is to imprint upon the wave-fronts a of their focal length, as used to be the case, but in terms of their power, that is to say in terms of the convergivity or divergivity which they exercise upon the light that passes through them. Light consists of waves, which in all ordinary media, such as luminous point, then the paths are divergent. If the wave-In modern optical practice, lenses are described not in terms

new curvature.

fronts. This it does, because, owing to the slower speed of which passes through the thickest part of the lens is or convergivity because they concentrate the waves at a real or positive focus, are accordingly specified as positive lenses or plus (+) lenses; whilst those lenses, -commonly called concave lenses, which are thinner in the middle than at the edges, -imprint a bulging curvature on the wave-front, causing the waves A lens which is thicker in the middle than at the edges, commonly called a convex lens, when placed in the path of a parallel beam of light, causes that light to converge to a focus because it imprints a hollow curvature upon the advancing wavelight when travelling through glass, that part of the waveretarded most. Convex lenses, which thus have a positive power (35)

Hence such lenses, having a negative power or convergivity are properly to diverge as from a negative or virtual focus. described as negative lenses, or minus (-) lenses.

In order to be able to prescribe lenses of the required degree of power, the system of numbering lenses according to their convergivity-i.e. their power to imprint a curvature on the wavesurface of the light-has been adopted by international agreement dating from 1879. In this international system the unit of curvature chosen is named one Dioptrie (sometimes spelled Dioptre).

known formulæ used in lens calculations. It is well-known that the focal length f of a lens, depends partly on the refractivity of the glass of which it is made, and partly on the curvatures of We may apply this principle to illustrate some of the wellits two surfaces. Suppose that both the surfaces are convex, and that one of them has radius r, and the other radius r2. Then the curvature of each surface is found by taking the reciprocal of the radius. The curvature of the first surface is therefore $\frac{1}{r_i^2}$

and that of the second surface $\frac{1}{r_2}$. Adding these together we get

gives values of the refractive index μ of various glasses. Subtracting I (i.e. the refractivity of air) from the refractive index, This must then be multiplied by the refractivity of the glass of the kind used. Table 16, p. 20, gives us $\mu - 1$ the refractivity in air of glass of that kind. If we multiply the total curvature of lens by $\mu-1$, we shall get as the product the curvature that the lens will imprint on the light that passes through it. This curvature will be the reciprocal of its focal length or $\frac{1}{f}$. Putting all these things tofor the total curvature $\frac{1}{r_1} + \frac{1}{r_2}$.

gether into one formula we have

$$\frac{1}{f} = (\mu - 1) \times \left(\frac{1}{r_1} + \frac{1}{r_2}\right). \quad . \quad . \quad (1)$$

Example.—Let a convex lens have as its two radii of curvature 0. 150 metre and 0.200 metre, and let it be made of glass having mean refractive, index 1.52. Then $(\mu-1)$ will be 0.52, $r_1=0.050$, and $r_2=0.200$. Then $\frac{1}{r_1}=20$ dioptries $\frac{1}{r_2}=5$ dioptries; total curvature = 25 dioptries. Multiplying by 0.52 we get 13 dioptries as the convergivity or power The focal length is therefore 13 metre (= 0.0769 metre 3.03 inches) the lens.

N.B .- The curvature of a convex surface is reckoned positive, that In the case of any lens that has a concave face with radius of curvature r, the curvature of that face would of a hollow or concave face, negative.

be reckoned as $-\frac{1}{\tau}$.

A further illustration is afforded by the calculation of the Suppose light to be proceeding from Its wave-surface as it spreads will diverge, the radius of it being the distance back to the point P. distances of conjugate foci. a point P on the left.

At that distance from P the wave-surface will have a curvature $\frac{1}{u}$, which will become smaller as the distance distance u reckoned back to P is 200 milli-# Thus this distance u.

Fig. 5.

metres or 0.200 metre, the curvature of the wave-front will be -5 dioptries. At the distance 0.333 metre the curvature will The negative sign means that this wave has a divergent surface. -3 dioptries, and so forth.

Modern Optical Formula-continued.

Now consider a positive lens having a convergivity or power imprints on waves such a curvature that if the waves were coming straight, along parallel motre (or 0.083 metres) as measured forward to the principal Or, if the wave-front coming to the lens is wave-front distance already curved, the lens will imprint on the curved ಡ it would cause them to converge to +12 dioptries. This means that it an additional curvature of focus on the right. +12 dioptries. paths,

For by the time the wave reaches the lens it has a curvature $\frac{1}{u}$, and the lens adds to this an additional im-Let the light diverge from a point P at a distance u from the lens, and pass through the lens, so that it is brought to a conjugate focus at Q on the right; at what distance will this point be from the lens? The calcutogether these two things. is simple. Now put lation

; consequently the curvature that results Now if the distance from the lens to pressed curvature must be simply

which the waves are converged be called v, it $\frac{1}{v}$ must be the curvature of the wave as it emerges the point Q to is clear that

from the lens, and which results from its initial and the im-Hence the well-known formula pressed curvatures.

$$\frac{1}{v} = \frac{1}{u} + \frac{1}{f}$$
. . . . (2)

The formula (2) above may be read in words thus: the resultant curvature is equal to the algebraic sum of the initial

curvature and the impressed curvature.

In interpreting this formula it must be remembered that distances reckoned back from the lens to the left are negative, the curvature being divergent. In the numerical example given above, where u = -0.200, and f = 0.083, we shall have-

$$\frac{1}{v} = -\frac{1}{0.200} + \frac{1}{0.083},$$

$$\frac{1}{v} = -5 + 12 \text{ (dioptries)},$$

$$\frac{1}{v} = 7 \text{ dioptries},$$

$$v = \frac{1}{2} \text{ metre} = 0.143 \text{ metre}$$

Ö

 $v = \frac{1}{7}$ metre = 0·143 metre. whence

In the optical trade there is used a very simple instrument, in reality a simple spherometer, so constructed that when it is pressed against the surface of a lens, the readings upon its dial are proportional to the amount of curvature of the surface. If it is pressed against the two surfaces successively, and the readings added, we obtain the total curvature. Now, if this were all one would-by using the formula (1), p. 36, need to multiply by the refractivity of the glass (i.e. by $\mu-1$) in order to obtain the number of dioptries of its convergivity or power. But, to save trouble, the instrument makers have so constructed the seale that all the readings are already multiplied by 0.51 (the mean refractivity of crown glass); and what we really read off is the curvature already multiplied by this value. In fact, we read off the values of $(\mu-1) \times \frac{1}{r_1}$ and $(\mu-1) \times \frac{1}{r_2}$; and called a lens-measurer, for measuring the power of lenses.

adding these together gives the total value $(\mu - 1) \times (\frac{1}{r_1} + \frac{1}{r_2})$

which is the convergivity, or power, and is equal to $\frac{1}{f}$.

-continued Modern Optical Formulæ

and It will be values of Powers (Dioptries) For convenience of reference, the next Tables, Nos. 29 Focal Lengths both in metric units and in inches. 30, give the corresponding

noted that in each case the dioptries are simply the reciprocals Thus 16 dioptries corresponds to I'd of a metre, or 0.0625 metre, or 62.5 millimetres. of the lengths in metres.

	Inches.	25 25 25 25 25 25 25 25 25 25 25 25 25 2	
FOCAL LENGTH or Radius of Curve.	Millimetres.	2000 13800 18800 800000 800000 800000 80000 80000 80000 80000 80000 80000 80000 80000	
	Metres.	4.0000 1.0333 1.0333 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.000000 1.000000 1.00000 1.00000 1.00000 1.000000	, ,
POWER or Curedure.	Dioptries.	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	

FOCAL LENGTH AND POWER.

POWER. or Gureature.	Dioptries,	88888888888888888888888888888888888888	
	Metres.	0 - 0254 0 - 08175 0 - 08175 0 - 08175 0 - 081810 0 - 08181 0 - 08181	
FOCAL LENGTH or Radius of Curve.	Millimetres.	25.4 26.44.5 26.80 2	
	Inches.		-

- (I.) To convert Dioptries to Metres. Divide 1 by the number of Dioptries.
 - (IA.) To convert Metres to Dioptries. Divide 1 by the number of Metres.
- (II.) To convert Dioptries to Millimetres. Divide 1000 by the number of Dioptries.
- To convert Millimetres to Dioptries. Divide 1000 by the number of Millimetres.
- (III.) To convert Dioptries to Inches. Divide 40 by the number of Dioptries.
- (IIIA.) To convert Inches to Dioptries. Divide 40 by the number of Inches.
- N.B.—The exact number of inches in the metre is not 40, but 39.3708; but the simple number 40 is sufficiently near in calculations about spectacle lenses.

Effect, on Apparent Power of a Lens, of Distance from place where its effect is to be produced.

It follows from the first principles of propagation of waves that the curvature of any wave-front must alter as it travels An expanding wave (Fig. 10) as it diverges from a point F becomes less curved. On the other hand, a converging onwards.

wave-front becomes more highly curved as it nears its focus at F (Fig. 11). Suppose a beam from a distant object to have passed through a lens of +8 dioptries. The wave-front which emerges will have a curvature (convergent) of +8 dioptries printed upon it, and would converge to a focal point about

Apparent Power of Lenses—continued.

5 inches beyond the lens. But this convergent wave is growing more convergent, and by the time it has passed one inch further along, the convergency is as great as if a lens of about + 10 D (i.e. of 4 inches focal length) had been used. Let the true

rent power at a distance d (in terms of the metre) further along power of a lons, expressed in dioptries, be called p, and its appabe called p', then p may be calculated by the formula

$$p' = p \frac{1}{1 - p} d.$$

If d is given in inches, the rule becomes

$$p' = p \, \frac{40}{40 - p \, d};$$

or, if d is given in millimetres,

$$p' = p \frac{1000}{1000 - p \, d},$$

As an example: the apparent power of a +6.5 D lens at a point 40 millimetres further on

$$= 6 \cdot 5 \times \frac{1000}{1000 - 6 \cdot 5 \times 40} = 6 \cdot 5 \times \frac{1000}{1000 - 260} = \frac{6500}{740} = 8 \cdot 7 \text{ D}.$$

As another example: the apparent power of a -10 D lens at a point 2 inches further on

$$= -10 \times \frac{40}{40 + 10 \times 2} = -10 \times \frac{40}{40 + 20} = -\frac{400}{60} = -6 \cdot 6 \, \mathbb{D}.$$

presbyopia or hypermetropia, and using + lenses, can increase their apparent power, when desiring to read a book, by pulling them down lower upon his nose, and can diminish their apparent power when desiring to view distant objects, by pushing One practical result of this effect is that a person having them up close to his eyes. It is possible to neutralise any lens of low power by com-bining it with one of equal and opposite power; thus, if a + 4D lens is held in contact with a - 4D lens, the magnifying power of the + lens is neutralised by the minifying action of the - lens. The reason that complete neutralisation can be thus effected is because when we are dealing with two thin lenses that are in contact and centred on the same axis, the power of the two jointly is equal to the sum (algebraic) of their individual powers.

Neutralisation, therefore, affords an excellent way of ascertaining the power of a lens of unknown denomination. If the observer is furnished with a trial-case of lenses, both positives and negatives, in a graduated series from 0.25 D to 20 D, he will be able to test the power of any spherical lens by simply combining it with another spherical lens, and trying various lenses until he succeeds in neutralising it. It is easy to ascertain neutralisation by the following method:-

Hold the lens about a foot from the eye, and while looking through it any object-best of all at horizontal objects such as window-bars or lines of large point-move it up and down shrough a distance of half an inch or so. If the lens is a + lens (magnifying lens), then when the lens is moved up, the object scen through it will seem to move down; and when the lens is moved down the object will appear to move up. In other words, in the case of a + lens the object appears to move against the lens. On the other hand, if the lens is a - (concave or minifying) lens, then when the lens is moved up, the object appears to move up; or, in other words, in the case of a – lens the object appears to move with the lens. If the lens is very slightly +, or very slightly -, the motion will be slight; and with a piece of flat glass there will be no motion at all. Hence, in neutralising a lens, one trics it first with one lens and then with another, watching whether, on looking through the combination, the apparent motion of an object is 'with' or 'against.' When perfectly neutralised, there will be no motion.

When, however, thick lenses are in question, it is only if their forms are such as to fit together and give two flat outer possible to neutralise perfectly a + lens with an equal

For example, let a thick plane-convex + 20 D be combined with a thick plano-concave - 20 D. If their curved faces are fitted together they will completely neutralise one another; whereas, if they are combined with their flat faces concave, they will not precisely neutralise one another, but will be slightly positive. In fact, if a lens is made with one face with a curvature $+\frac{1}{r}$, and the other with an equal but together, so that one outer face is convex and the other equally surfaces.

opposite curvature $-\frac{1}{r}$ of a thickness t, and of a glass having a refractive index of 1.5, it will have a power of $t \div 6 r^2$ dioptries (the values of r and t being given in metres). If rand t are given in millimetres, the power of this lens will be $\div\,0.006~r^2$. The reason why the effect of the convex surface on one side is not completely neutralised by the equal concave surface on the other side is that in passing through the thickness of the lens the curvature of the wave-surface is altered [see 31] as it converges or diverges on its way.

33 TRANSPOSITIONS OF SPHERICAL LENSES.

As stated in 16, the convergivity of a lens depends on the refractivity of the glass and on the total curvatures of its two surfaces. In fact, formula 1 on page 36,

$$\frac{1}{f} = (\mu - 1) \times \left(\frac{1}{r_1} + \frac{1}{r_2}\right),$$

may be written:

have total curvature = $\frac{1}{0.600} + \frac{1}{0.600} = \frac{1000}{600} + \frac{1000}{600} = \frac{2000}{600}$ Now the sum of the curvatures might be made up in many different ways to the same value. A bi-convex lens having the radii of curvature of its faces both 600 millimetres, will = 3.33 dioptries; and if the glass had refractivity = 0.52, the power of the lens would be $0.52 \times 3.33 = 1.7$ dioptries. But an exactly equal power would be attained by making the Convergivity = refractivity x sum of the curvatures.

ens plano-convex, provided the amount of the curvature on the bulging face were exactly double that of either of the faces of the bi-convex lens. In other words the radius of curvature In that case the total curvature will be $\left(0+\frac{1}{0\cdot300}\right)$ of the plano-convex must be half as great, viz. 300 milli-

 $=\frac{1000}{300} = 3.33$ dioptries as before.

In choosing spectacles some persons prefer a particular shape the eye-lashes, namely, the kind which is hollow on the surface lens is sometimes described as periscopic. Another name for such a lens is a meniscus. It would be described as a convex meniscus or a positive meniscus, if the convex or positive curvature of the outer surface were stronger than the concave or negative curvature of the inner surface; or as a concave meniscus or negative term "periscopic" is usually applied to positive meniscus lenses only. If the curvatures of the faces of a periscopic lens are chosen so that the total curvature is the same as that of any given lens, it will have the same power. For example, if a periscopic lens were chosen with curvatures of + 5 dioptries on the outer face, and of -1.67 dioptries on the inner face, the algebraic sum of these surface curvatures would be 3.33 as of lens, which has the advantage that it leaves more room for toward the eye, while bulging on the outer surface. Such a meniscus if the inner negative curvature were the stronger.

By using a "lens-measurer" (see p. 39) to measure the curvatures of the faces, it is very easy to verify the rule that the power depends on the total curvature, negative curvatures being of course subtracted.

lenses, there is but one simple rule to remember, namely, that if Any optician who is asked to furnish, say, a + 4 D lens, can furnish either a plano-convex, with all the curvature on one face, or a bi-convex with half the total curvature on each face, or a periscopic lens, with more than + 4 D on its front face, and a negative curvature on the inner face. The calculation for thus finding new curvatures which will produce the same optical effect is called "transposition." In transposing simple spherical you increase the curvature of one face by any particular amount, you must decrease the curvature of the other face by a precisely equal amount.

Transpositions of Spherical Lenses-continued.

the power being 5 D and the index of the glass 1.5? Notice that the lens Example.-What radius of curvature must be given to the front a periscopic lens, the back surface having a radius of 3 cms, being periscopic, the back curvature and radius are negative.

The algebraic sum of the curvatures =
$$\frac{3}{1\cdot5-1}$$
 = 10.

Curvature of the back surface (in the same units) =
$$-\frac{3}{100}$$
 = -83 .

Hence we have—
Front curvature +
$$(-33.3) = 10$$
;

From curvature = 43°3. From curvature = 43°3. The radius of the front surface =
$$\frac{1}{43°3}$$
 metres = $\frac{100}{43°3}$ = 2°3 cms.

CARDINAL POINTS OF LENSES.

In order to treat the problems of thick lenses and systems otherwise be very complicated, the German geometrician Gauss introduced the method of repre-A modifi-Though in senting a lens system by a set of points and planes. cation of that method is here briefly summarised. lenses, which would

the accompanying figure a simple bi-convex lens is shown, a similar system of points and planes can—with certain modifications-be found for any lons or system of lenses.

Their property is that any ray which moves towards one of First Pair of Points.—E, E2 called the "Equivalent" points, points, or "Optical Centres" of the lens. These points and plains are in pairs as follows:-" Principal"

former path, but as if it had passed through the second of them will, after traversing the lens, emerge parallel to them, as in Fig. 13.

Second Pair of Points. - F1 F2 called the principal Foci. Light passing through the lens parallel to its chief axis will be (if the lens is positive) conveyed to one of these two principal foci, according to its direction. The distance from either of the principal fooi, measured back to the corresponding principal point, as from \mathbb{R}_1 to \mathbb{E}_1 (Fig. 12) is the true focal length of the lens, or the equivalent focal length of the lens.

Third Pair of Points.—S1 S2 called the "Symmetric" points. These are situated on the principal axis at double the focal distance from the principal points. They are images of one another: that is, an object placed at S₁ will have its image at S2, and vice versa.

Fourth Pair of Points .- In the rare cases in which the two as for example, a lens with air in front and water behind, the optical centres of the system are no longer at E, E, but are displaced along the axis toward the denser of the two surrounding They are called the "Nodal Points." Thus in the eye itself the nodal points lie further back than the two equivalent points of the crystalline lens. In such cases the property of acting (as described above) as an optical centre is transferred surfaces of a lens are in contact with two different mediafrom the equivalent points to the nodal points.

vision of every optical system is bounded by what he terms the Pupils of the system-the Entrance-pupil on one side, and the These are situated at two points con-Fifth Pair of Points.—Abbe has shown that the field See Art. 63. Exit-pupil on the other. jugate to one another.

The pairs of planes, all being drawn perpendicular to

^{1.} Equivalent Planes or Principal Planes, drawn through the

Cardinal Points of Lenses-continued.

Their property is that any ray of light which meets any point in one of these planes emerges from the lens as though it had been transferred straight across from one plane to the other parallel to the axis, as illustrated in Fig. 14. two equivalent points.

Focal Planes, drawn through the two principal foci. (Fig. 15) in one of these planes will, after passing through the lens, emerge in a parallel beam, parallel to an oblique or secon-Their property is that light starting from any point (such as P) dary axis through that point.

symmetric its way to the lens through any point (such as A), in one of these planes will, after emergence, pass through the corresponding point A' in the other symmetric plane at an equal (but inverted) distance the two Their property is that light passing on through 3. Symmetric Planes, drawn points.

(In Fig. 16, to find where the ray AB goes to, make y, downwards equal to y2 upwards.) sideways from the axis.

Positions of the Equivalent Points, or Principal Points, and Planes.

In simple equi-convex lenses the two equivalent planes and points are situated symmetrically at a distance apart approxitwo faces they are displaced toward the face of greater curva-But those simple convex lenses that are unequally curved on lens. mately equal to one-third the thickness of the

In convex meniscus lenses of deep curvature, they may See Fig. 17. be displaced altogether outside the lens. ture. even

given lenses is sketches for negative A similar series of on next page (Fig. 18).

Positions of the Equivalent Points-continued.

accuracy, The formulæ for finding the positions of the two equivalent points are complicated, but the distance between them (or "equivalent thickness") is, with approximate expressed as follows:the

 $\Delta = t^{\mu} - 1$; where Δ is the distance between the

equivalent points, t the thickness of the lens at its middle, and $(\mu=1\cdot5)$ it follows that Δ is approximately one-third of $t_{\rm c}$ For crown the index of refraction of its material.

Formulæ connecting the Cardinal Points with the Form of the Lens.

second surface of the vertex and the thickness from O1 to O2 be called t, then the The positions of the cardinal points in a thick lens can be calculated when the radii of curvature of its surfaces, and the If r1 is the radius lens, and O1 be the front vertex of the lens, and O2 the back refractive index (μ) of the glass are known. distance of E₁ from O₁ measured inwards is of the first surface, and r2 that of the

$$\frac{r_1 t}{\mu (r_1 + r_2 - t) + t};$$

and the distance of E2 from O2 measured inwards is

$$\frac{r_2^t}{t(r_1 + r_2 - t) + t}$$
.

The width between E₁ and E₂, or "equivalent thickness"

$$\Delta = \frac{t(r_1 + r_2 - t)(\mu - 1)}{\mu(r_1 + r_2 - t) + t}.$$

When t is small compared with $r_1 + r_2$ this reduces to

$$t\frac{(\mu-1)}{\mu}$$
,

as given above.

Or in the case of lenses of crown glass, for which $\mu=1\cdot 5$, the width between E, and E, is approximately one-third of t.

The true focal length or "equivalent focal length" F. E. or E2 F2 is found by the formula

$$f = \frac{\mu}{\mu - 1} \cdot \left\{ \frac{r_1 r_2}{\mu (r_1 + r_2 - t) + t} \right\}.$$

positive, and those of concave surfaces are reckoned negative, These formulæ are the same for all lenses, both positive and negative, including menisous lenses, provided it be remembered that the radii of curvature of convex surfaces are reckoned whichever way they face.

_

LENS COMBINATIONS.

say that so far as focal lengths, &c., are concerned, it is possible to find a single lens which shall have the same power as the defects of spherical and chromatic aberrations, the avoidance of which is one of the objects to be attained by combining ing in thickness and power from either of them. That is to combination. But the single "equivalent" lens would possess If two lenses are placed some distance apart, it is known that the combination is "equivalent" to a single lens differlenses together.

combined with one of +2.25 D, gives it equivalent to a single lens of +5.25 D. Or a lens of +6 D, combined with one of Two Thin Lenses in Contact.—In this case the resultant power is simply the sum of the two. Thus a lens of $+\ 3\ D$ - 3.5 D, gives a single lens of + 2.5 D.

Two Thin Lenses at a Distance Apart.-The rule is that the (53)

Lens Combinations—continued.

would have when close together, less an amount equal to the product got by multiplying together the powers of the two lenses and the distance between them expressed as in decimals equivalent lens will have a power equal to that which the two of a metre.

Or, in symbols, the resultant power is = $P_1 + P_2 - P_1 P_2 w$; where P_1 and P_2 are the powers of the two lenses, and w the width or distance between them. Example: let the two lenses be +3 D and +5 D; and let w=25 millimetres $=\cdot025$ metres. Then the power of the equivalent lens will be = 3 + 5 - $(15 \times .025) = 8 - .375 = 7.625$ dioptries.

As another example, two lenses of + 12 D each, set at 20 millimetres apart, will be equivalent to $12 + 12 - (12 \times 12)$ 0.02 = 24 - 2.88 = 21.12 dioptries.

As a third example, two lenses of +12 D and -8 D at 6 millimetres apart will be equivalent to 12 -8 - (12 \times -8 $\times .006$ = 4 + .576 = 4.576 dioptries.

A Huygenian eye-piece with lenses having respectively + 15 D and + 45 D at 40 millimetres apart, will be equivalent to 15 + 45 - (15 \times 45 \times ·04) = 60 - 27 = 33 dioptries.

CARDINAL POINTS OF COMBINATIONS OF LENSES.

the distance between them, it is easy by geometry to determine the positions of the cardinal points of the system as a whole; structed, even if all aberrations were absent. If the positions of the cardinal points of each separate lens are known, and also and if certain relations connecting the path of the light through a simple lens with the positions of its cardinal points are remembered, the application to the case of any given combination In many optical instruments, two or more spherical lenses at a distance from one another. In such cases the question offen arises: what single lens-if any-would be equivalent to the system? This equivalent lens could not in all cases be conare placed in position, properly centred on the same axis, and of lenses becomes quite simple. a single lens, suppose F1 and F2 are the Let R L be the any plane ray. It is required to find its direction after passing through the lens. Draw OE2, E1 O', as a secondary It meets the focal plane in N. a focal plane, it follows that principal foci, E, and E, the equivalent points. axis parallel to R L. direction of a given by the definition of the case of

join RL Therefore that part of the wave which travels along R L will also it meets this, Clearly t the equivalent plane; transfer it across to M, and the ray wave travelling along O E2 will come to a focus at N. Therefore draw RL until The line M N is the direction in which through the lens. will be directed after passing come to the focus at N.

point N might have been found, without drawing the part O E2 Hence we get the intersects the meets at L, draw equivalent points a line parallel to ray If a first of the equivalent planes which it E₂O' parallel to R.L. construction. the second of the by merely drawing universal following from

-continued. Cardinal Points of Lenses-

(here the ray across the equivalent thickness from L to M, join M to N, thus finding the the focal plane at a point Then having transferred until it meets path taken by the ray. called N).

By using this construction in succession for each lens of

combination, it is possible to show how any incident ray will emerge from the combination.

apart at jo Take first the case of two positive lenses placed either length of distance less than the focal any

In this figure we have used the symbols Fig. 21 gives the construction of the path of the ray as it emerges. being shown at M N.

Fig. 22.

E₂E₁ for the equivalent points of the first lens; and E²E¹ with the numerals affixed to the top, for those of the second lens.

after refraction, cross the axis at the principal focus of the In order to find the cardinal points of the system as a whole, we take rays parallel to the principal axis, since these, system, as in the case of a single lens. Then to find the position of the equivalent planes of the system, the lines repreintersect the positions of these two equivalent planes E2 E1; which are of The reason of this will be made clear by considering the position of the equivalent planes in a simple lens with respect to the initial and final paths of a ray originally parallel senting the initial and final directions of the ray must course represented (as in Fig. 22) by lines perpendicular produced till they meet, giving where they to the axis. the axis.

Let us now take one other case, namely that in which there are two convergent lenses at a distance apart greater than the sum of their focal length. Let the focal length of the first be f, and that of the second f^1 ; f being taken as greater than f.

le, 23,

In this case, though F₁ and F₂ are both real foci, the system acts like a divergent lens; the rays (when only their external parts are considered) apparently being rendered divergent without crossing the axis. It should also be noted that the true focal length F. E, of the system is negative, the equivalent planes lying outside the principal foci.

The following table gives the character of the equivalent foci and of the focal lengths in a number of cases, where the distance between the two lenses (i.e. the distance between their

Cardinal Points of Lenses-continued.

adjacent equivalent planes) is varied, beginning with the lenses in contact:-

Kind of System	which results.	con-		:	ı	:	afocal	divergent none
Parallel Rays, from Lens No. 2 to Lens No. 1.	Equiva- lent Focal Length.	f_1f_2 $f_2 + f_2$	positive	+ f2	positive	positive	positive	negative none
Paralle from Lens Lens	Nature of Focus.	real	real	real, and on centre	virtual	virtual	virtual	real
Parallel Rays, from Lens No. 1 to Lens No. 2.	Equiva- lent Focal Length.	$\frac{f_1f_2}{f_1+f_2}$	positive	positive	positive	+ 7,	positive	negative none
Paralle from Lens Lens J	Nature of Focus.	real	real	real	real	on centre		real
	Distance apare.	0 =	<i><f< i="">;> 0</f<></i>	= f _z	<fi>√1> f₂</fi>	= f1		
	oga g	-	67	ဇ	4	50	9	ж б.

In diverging lenses, the focal lengths being negative, the foci are on opposite sides of the lens with respect to equivalent points.

Thus for a converging lens, F1 is on the same side as E1, as For a diverging The true focal length is E₁F₁. in Fig. 24.

Fig. 24.

lens F1 is on the opposite side of the lens from E1; and the true focal length is still E₁ F₁, and being reckoned backwards from E₁ is negative.

PARTICULAR CASES.

are of interest particular cases arise that connexion with instruments. Several

Two + lenses of equal focal length, at a distance apart equal to double the focal length.-This combination is afocal, it does not magnify or minify, but merely inverts the image. Such a combination can be used as an erector in the tube of a telescope or microscope to re-erect an otherwise inverted image. CASE I.

Two + lenses of unequal focal lengths, at a distance apart equal to the sum of the focal lengths.—This combination is also afocal; that is to say parallel rays entering it emerge as parallel, and rays that are nearly parallel emerge as nearly parallel.

FIG. 27.

becomes the eye, minified if the longer focus lens is the nearer. eye, if focussed for distant objects, will through this combination see distant objects in focus, magnified if the shorter focus lens is In each case the image will be inverted.

for normal eyes (for which it is convenient that the light that enters the eye should diverge as from the punctum proximum or the object-glass, thus reducing the distance between the lenses case of the simple astronomical telescope, but, as habitually used near point), the eye-piece lens is pushed a little nearer toward to a little less than the sum of the two focal lengths.

Case III. Two + lenses of unequal focal lengths, at a distance apart equal to the difference of their focal lengths. -This is a combination which exists in the case of Huygenian eye-pieces.

Fig. 28.

glass, reduced to its simplest elements, and adjusted for an eye A + lens of long focus, and a - lens of short focus at adistance apart equal to the difference of their focal lengths (i.e. equal to their algebraic sum).-This combination is afocal, having The operasimilar properties to No. II, except that images are not inverted. focussed for distant objects, is the same combination. It is in fact, the case of the Galilean telescope. CASE IV.

COMBINATIONS OF TWO THICK LENSES.

t, t2, the equivalent thicknesses of the two lenses (i.e. the respective p₁ p₂, the powers (in dioptries) of the two lenses respectively. f_1f_2 , the true focal lengths of the two lenses respectively. In this section the following symbols are used:

c, the distance (in metres) between their adjacent planes, or true distances between the equivalent planes of each). distance apart between the lenses.

F, the resultant focal length of the combination.

P, the resultant power (dioptries) of the combination.

d, the resultant equivalent thickness, or distance apart of the two resultant equivalent planes of the system. The following formulæ then hold good:-

$$F = \frac{f_1 f_2}{f_1 + f_2 - c} = \frac{1}{P} \cdot \cdot \cdot \cdot \cdot (1)$$

$$P = p_1 + p_2 - p_1 p_2 c = \frac{1}{F} \cdot \cdot \cdot \cdot \cdot (2)$$

$$d = t_1 + t_2 - \frac{c^2 p_1 p_2}{P} = t_1 + t_2 - \frac{c^2 F}{f_1 f_2}. \quad (3)$$

Further, the distances of the resultant equivalent planes, measured inwards, from the outer equivalent planes of the component lenses f_1 and f_2 are respectively:-

$$\frac{\mathrm{F}\,c}{f_2} = \frac{c\,p_2}{\mathrm{P}}, \quad \text{and} \quad \frac{\mathrm{F}\,c}{f_1} = \frac{c\,p_1}{\mathrm{P}}.$$

bination of two lenses—it must be remembered that divergent In applying these formulæ—and they are applicable to any comlenses have negative focal lengths, and that distances negative signs must be reckoned outwards.

Examples. -(1) Find the equivalent values for a system of two lenses of which the values are as follows: $-f_1=\pm4$ inches, $f_2=\pm3$ inches, $t_1=0.15$ inch; $t_2=0.2$ inch; $t_2=0.2$ inch; $t_2=0.2$ inch; $t_3=0.2$ inch; $t_2=0.2$ inch; $t_3=0.2$ inch; $t_3=$ = -0.059 inch.

(2) Find the equivalent values for a combination of two lenses having following values: $-p_1 = 20$ dioptries, $p_2 = 8$ dioptries; $t_1 = 0.03$ metres, $t_2 = 0.001$ metre, c = 0.020 metre. (N.B.—For dioptric calculations all length measurements should be converted to decimals of the metre.) Answer. P = 24.4 dioptries; d = 0.00138 metre or 1.38 millimetre. It will be noticed, as an obvious deduction from formulæ (1) and (2) above, that if both the lenses are positive, increasing the distance (c) between them always increases the equivalent focal length, and reduces the equivalent power. It also follows from formula (2) that if one of the two component lenses is negative, so that the term $-p_1p_2c$ has a positive value, any increase of cwill increase the power or shorten the equivalent focal length. It is also obvious from (3) that the equivalent thickness of a combination of two positive lenses is reduced by separating them from one another, and that if c is made sufficiently great the resultant equivalent thickness will become zero, or if made still greater may even have a negative value, the two equivalent planes crossing one another. In the case of many camera lenses

the distance between the components which will make the equithe distance to which the two components are separated is often so great as to make the equivalent lens of no thickness, or even An approximate formula for finding of a negative thickness. valent thickness zero is-

$$c = \sqrt{(t_1 + t_2)(f_1 + f_2)} - \frac{1}{2}(t_1 + t_2) \quad . \quad (4)$$

Example. -Two lenses have equivalent thicknesses of 6 mm. and 9 mm. respectively; and their focal lengths are + 200 mm. and + 100 mm. The distance c at which they must be placed apart so as to reduce the equivalent thickness to zero is, by this formula, 36.2 mm.; the equivalent focal length of the combination then being = + 75.8 mm.

40

CYLINDRICAL LENSES.

Cylindrical lenses may be described as lenses having one (or both) of their surfaces shaped as a portion of a cylinder, as ordinary lenses are of a sphere.

Fig. 29 represents, in perspective, four cylindrical lenses away to fit them into before their corners have been ground

except that it has been turned round. Nos. 1, 2, and 3 of this The first one (on the left) is a simple plano-cylindrical The second is a plano-concave (or fourth is a plano-convex cylinder, in fact the same as the first, figure would be described as having their axes vertical, while negative) cylinder. The third is a bi-convex cylinder. (or positive) lens. convex

This term is illustrated in Fig. 30, from which it will be seen that direction (called the axis of a cylindrical lens) is the same as that of the optical effects of a cylindrical lens depend not only on the curvature of its surfaces and on the refractivity of the glass, but also on the axis of the imaginary cylinder, of which it forms a part. No. 4 has been turned so that its axis is horizontal. direction in which its axis is set.

A lens which is cylindrical on one side only and flat on the other, is called a plano-cylinder. If cylindrical on both sides and with cylindricity that acts along the same axis its effect is still simply cylindrical, and it is still called a simple cylindrical lens, or, briefly, a simple cylinder.

Often, however, lenses are ground with a cylindrical curvature (positive or negative, i.e. bulging or hollow) on one face, while the other face, instead of being left flat, is ground with a spherical surface (bulging or hollow) like the face of an ordinary lens. Such lenses are called sphero-cylindrical lenses, or, briefly, sphero-cylinders.

Sometimes, but not often, lenses are ground with a cylindrical surface on each face, the axes on the curvatures on the two faces being set at right angles to each other-if one axis is vertical, Such lenses are described as crossed the other will be horizontal. cylinders.

The optical property of a simple cylindrical lens is, that its power of conveying or diverging the waves of light is exercised unequally in different meridians. For example, if a cylindrical lens is set, as in Fig. 31, with its axis vertical, being equally

Cylindrical Lenses-continued.

in the that passes through the top part to meet the light that passes through the bottom part. On the other hand, it will refract the light from right and from left, converging these rays toward the middle, and therefore causing the rays of a parallel beam to meet and thick from top to bottom, it will produce no refraction cause the light vertical meridian, and will not

the In brief, a + cylinder lens vertical meridian, producing a focal line that is horizontal also. produces a focal line. If the lens were turned about so that its 32, then it will have no re-A parallel beam passing through a simple cylindrical lens profraction in the horizontal meridian, but will refract in cross not at a point but at a line. axis is set horizontal, as in Fig.

Fig. 32.

duces a focal line at its principal focus, the line being parallel to the axis of the lens.

with an opaque screen in which a narrow slit has been cut, it be found that if the screen is laid on the lens so that the If experiments are made by covering up a cylindrical lens slit is parallel to the axis, the lens produces no refraction-it acts merely like a bit of flat glass. If the slit is turned so that it lies across the axis, then the refraction is found to be as great If the slit is set at any intermediate refraction the apparent refracting power of the lens will be of intermediate value. The usual way of stating this is: -- the refracting power of a cylindrical lens is a maximum in a meridian at right angles to the axis, and is zero in the meridian of the axis; while it has Thus, for example, a + 6 D cylindrical lens will have power + 6 D in the meridian at right angles to its axis. It will have no power in the meri-It will have a power of +3 D in a intermediate values at intermediate angles. meridian at 45° to the axis. dian parallel to the axis. as possible.

Similarly in the case of negative or diverging cylindrical If set with axis vertical they diverge lenses, such as Fig. 33.

a virtual focal line, the light diverging as if from a line of the light in the horizontal direction only, having no refractive In this case there is produced power in the vertical meridan. light behind the lens.

SPHERO-CYLINDRICAL LENSES.

The effect of a cylindrical lens upon a converging pencil of light is to be noted. Suppose a beam of parallel light were to fall upon an ordinary converging lens (Fig. 34) of such power that it would thereby be converged to a point F2 as the prin :ipal If now a + cylindrical lens be interposed somewhere axis vertical, seeing that between the lens and F2, with its

Sphero-Cylindrical Lenses-continued.

it has its refracting power greatest in the horizontal meridian, it will bring the light to a focus at a line at some spot, F1, nearer But as this cylindrical lens has no power in the in than F₂.

vertical meridian it cannot prevent all the top and bottom portions of the light from being converged by the lens to the middle level at F2, where therefore there will appear a horizontal focal line.

Combination of Spherical and Cylindrical Lenses. - The effect just noted would still occur if the spherical lens and the also occur if a lens were ground with a + spherical curvature beam of light the effect of giving two foci, both of them lines. There would be a first focal line parallel to the axis of the cylinder, at a distance corresponding to the sum of the powers of the two lenses; and a second focal line, at right-angles to the first, at a distance corresponding to the power of the cylinder cylindrical lens were put close together in contact. It would fact such a lens—a "sphero-cyl"—would produce on a parallel on one face, and a + cylindrical curvature on the other face. alone.

For example, if a + 4 D sph. were compounded with a + 4 D cyl. with its axis vertical, there would be a first focal line (vertical) at a distance of $\frac{4.0}{8}=5$ inches (corresponding to (66) a power of 8 D) and a second focal line (horizontal) at a distance of $\frac{40}{4} = 10$ inches (corresponding to the power of 4 D).

method is to apply the "lens-measurer" (Art. 28), turning it To ascertain the Axis of a Cylindrical Lens. -The simplest round on the cylindrical surface until it reaches the position indicating zero curvature.

line or mark, and shift the lens rapidly to and fro, as in "neutralising" (Art. 32). Whether the cyl. lens be + or -, no lonses first neutralise the spherical part, and then test for axis Another method is to look through the lens at some fixed movement of the object is seen if the line along which the lens is moved is parallel to its own axis. For sphero-cylindrical

PROPERTIES OF CROSSED CYLINDERS.

In dealing with this branch of our subject, we must glance back at the results previously arrived at in connection with simple spherical lenses of low power, namely, that the combined power of two or more lenses on the same axis and close together, is equal to the sum of their respective powers, and the converse that any given lens may be replaced by two or more on the same axis and close together, the sum of whose powers is equal to that of the given lens.

This clearly will apply also to simple cylinders when their axes both vertical, or two cylinders with their axes both axes of figure are parallel, for example two cylinders with

horizontal.

Thus we may replace a + 5 D cylinder with a + 3 D cylinder and a + 2 D cylinder together, or with a + 8 D cylinder and a - 3D cylinder together, or in fact with any two, or more, the sum of whose powers is equal to +5 D.

+ 3 D cyl. be set with axis at 15°, and another + 3 D cyl. be set exactly across it (i.e. axis at 105°), they will together act simply (67°) Now suppose we have two crossed cylinders of equal power (as in Fig. 35); they will act like a sphere; for one will produce a refraction in one meridian, and the other an equal refraction in the meridian at right angles. For example, if a

-continued. Properties of Crossed Cylinders-

two others, one having a power equal to that of the second, and If however the crossed cylinders are not of equal power we may replace the first with same way two crossed equal negative cylinders act merely as ٤ like an ordinary + 3 D sphere having a point focus. negative sphere as is shown in Fig. 36.

the other having a power equal to the difference between those We are thus left with (1) two crossed cylinders each of power equal to that of the second, and (2) a cylinder of power equal to the difference between those of the first and second, and with the same axis as the first; now of the first and second.

equivalent to a sphere with the same power as the second. Hence-

Two crossed cylinders of unequal power may be replaced by a sphere of power equal to that of the second combined with cylinder of power equal to the difference between those of the And moreover either of the two cylinders may be regarded as the first or first and second, with the same axis as the first. second.

The symbol C is used to mean "combined with."

As an example let us take the case of the two cylinders +7 D cyl. axis $70^{\circ} \odot + 4$ D cyl. axis 180. Now the +7 D cyl. axis 70° may be considered as replaced by +4 D cyl. axis 70° $\bigcirc + 3$ D cyl. axis 70° ; we then have for the combination

+4D cyl. axis 70°C+ 4D cyl. axis 160°C+3 D cyl. axis 70° which is equivalent to

Again regarding + 4 D cyl. axis 160° as the first lens, we get the combination equivalent to

+7 D cyl. axis 160° ⊃ −3 D cyl. axis 160° ⊃ +7 D cyl. axis 70°

+ 7 D sph.
$$\bigcirc$$
 - 3 D cyl. axis 160.°

The same rule is applicable to all cylindrical lenses, whether positive or negative.

Angle-reading for Cylindrical Lenses. - It is necessary to agree upon some plan of reading and registering the indication of the axis of cylindrical lenses. All authorities agree in starting from horizontal as the zero position. Some ophthalmic surgeons read always from zeros on the left, others always from zeros on the right; others read angles to the right on one eye of the patient, and to the left on the other eye, counting their degrees from the nose outwards. It is best to read always counterclockwise, i.e. beginning at a zero on the observer's right, to read This is recommended by the Optical Standards' Comupwards. mittee.

TRANSPOSITION OF SPHERO-CYLINDER COMBINATIONS.

finds that he is either unable to do so without a great deal of trouble, because the means of grinding at his disposal are In constructing spectacle lenses to an oculist's prescription, more especially sphero-cylindrical lenses, the optician frequently limited, or that the lens if made exactly as prescribed would not

Sphero-cylinder Combinations—continued.

be unsuitable. The question then arises as to whether or not other curvatures than those prescribed could be substituted, to transpositions are possible, and to explain these we will deal fit neatly into the frames, or for other practical reasons would produce the same optical effect. In a great many cases such briefly with the underlying principles.

The subject has already been touched upon from one point of view when treating with crossed cylinders.

to that of the given cylinder. Now two crossed cylinders of equal and like power may be replaced by a sphere of equal and like power. We are then left with a sphere of power equal to that of the given cylinder, and a cylinder of equal but opposite power on an axis at right angles. Thus we arrive at the first sideration of simple spherical lenses, that two cylindrical lenses of equal and opposite powers, when placed together upon the same optic axes with their axes of figure parallel have, as a whole, no effect as a lens. Suppose then, in front of any given cylinder, we place such a pair of individual power numerically equal to that of the given cylinder, and with their axes perpendicular to its axis. Then the combined effect of the three is the same as that of the given cylinder alone; but we may regard them as two crossed cylinders of equal power, and a third of equal but opposite power with its axis perpendicular I. Transposition of Simple Cylinders.—It is clear from the conguiding principle:-

power, and a cylinder of equal but opposite power on an axis at Any given cylinder may be replaced by a sphere of the same

Now what has been said regarding powers is equally true of curvatures [for the power of any refracting surface is its curvature multiplied by the constant $(\mu - 1)$]. Hence the rule may be paraphrased asright angles.

curvature, and a cylinder of equal but opposite curvature on an axis Any given cylinder may be replaced by a sphere of equal numerical

Example I.—How would you replace a + 6 D cyl. ax 5° by a sphere $\begin{array}{l} + 6 \, D \, {\rm cyl.} \, {\rm ax.} \, \delta^\circ = + 6 \, D \, {\rm cyl.} \, {\rm ax.} \, \delta^\circ \circlearrowleft + 6 \, D \, {\rm cyl.} \, {\rm ax.} \, 9 \delta^\circ \circlearrowleft \\ - 6 \, D \, {\rm cyl.} \, {\rm ax.} \, 9 \delta^\circ = + 6 \, D \, {\rm sph.} \circlearrowleft - 6 \, D \, {\rm cyl.} \, {\rm ax.} \, 9 \delta^\circ \end{split}$ and a negative cylinder?

Example II. -- What are the spherical and cylindrical equivalents of a - 3 D cyl. ax. 34°?

Ecumple III.—It is required to replace a + 9 D cyl. ax. 30° lens by means of another, one surface of which is to be spherical and the other

cylindric. What are their respective curvatures? $\mu=1.5$.

The curvature of the given cylinder = $+\frac{9}{5}$ = +18

Hence the curvature of the spherical surface must be equal

to +18, and its radius of curvature $\frac{100}{18} = 5\frac{5}{9}$ cms.

The above rules supply another way of finding the equiva-The curvature of the cylindrical surface = - 5g cms.

lents of crossed cylinders; thus, to find the equivalents of + 9 D, cyl. ax. 7° \(\to - 4 D, cyl., ax. 97°.

Now we have

+9 D, cyl. ax. $7^{\circ} = +9 D \text{ sph.} - \bigcirc 9 D$, cyl. ax. 97° .

Therefore

+9 D, cyl. ax. 7° ○ -4 D, cyl. ax. 97° = 9 D, sph. ○

- 9 D, cyl. ax. 97° ⊃ - 4 D, cyl. ax. 97° = 9 D, sph. ⊃ - 13 D, cyl. ax. 97°.

For purposes of reference the rules for transposition are given below (together).

TRANSPOSITION RULES.

1. Simple cylindrical Lenses. - Any given cylinder may be replaced by a sphere of the same power, combined with a cylinder of equal but opposite power on an axis at right angles; or,

Any given cylinder may be replaced by a sphero-cylinder, cylindrical surface has an equal but opposite curvature about whose spherical surface has the same curvature, and whose

2. Crossed Cylinders.—Two crossed cylinders of equal power an axis at right angles.

may be replaced by a sphere of the same numerical power, and vice versà.

Two crossed cylinders of unequal power may be replaced by a sphere of power numerically equal to that of the second com- (71) bined with a cylinder, of power equal to the algebraic difference between those of the first and second, with the same axis as the first; or,

by a combination of a sphere and a cylinder in either of two Two crossed cylinders of unequal power may be replaced

(i) A sphere of the same numerical value as the second of the cylinders, combined with a cylinder equal to the algebraic difference between the powers of the first and second cylinders, with the same axis as the first; or,

(ii) A sphere of the same numerical value as the first of the cylinders, combined with a cylinder equal to the algebraic difference between the powers of the second and the first cylinders, with the same axis as the second.

3. Sphero-cylindrical Lenses.—Any given sphero-cylindrical lens may be replaced either by a suitable pair of crossed cylinders or by a different sphero-cylindrical lens. The same principles of transposition will apply; for each spherical curvature may be resolved into a pair of equal crossed cylinders at any angle convenient for calculation.

For example, take the sphero-cyl. lens:-

+ 7.5 D cyl. vert. C + 7.5 D cyl. hor. C 2 D cyl. vert. This is equivalent to

whence, collecting together the vertical components, we find as the equivalent crossed-cylinder lens:-

$$+9.5 D$$
 cyl. vert. $\bigcirc +7.5$ cyl. hor.

And this combination, by the rules just discussed, can again be transposed into

It will be observed that there are always possible three combinations to give any desired effect; and a prescription given in one form can always be transposed into one of the other two.

The three forms are:-

^{3.} Sphere with - cyl. (at a right angle to the former).

To transpose from either of the sphero-cyl. forms to the spherical power (+ or - as the case may be) equal to that of the cyl.; and change the cyl. to an equal cyl. of opposite type other, all that is necessary is: give to the sph. an additional in a meridian at right angles to its former meridian.

 $+2\cdot5$ D sph. $\bigcirc -7\cdot5$ D cyl. hor. transposes into -5 D sph. $\bigcirc +7\cdot5$ D cyl. vert. $-2 \cdot 5 \mathbf{D}$ sph. $\bigcirc + 4 \mathbf{D}$ cyl. 25° transposes into $+1 \cdot 5 \mathbf{D}$ sph. $\bigcirc -4 \mathbf{D}$ cyl. 115° . + 5 D sph. \bigcirc - 1.5 D cyl. 10° transposes into + 6 D sph. \bigcirc + 2 D cyl. 5° transposes into + 8 D sph. \bigcirc - 2 D cyl. 95°. + 3.5 D sph. > + 1.5 D cyl. 100°. Example 1. Example 2. Example 3. Example 4.

As there are always three possible alternatives, the question naturally arises which is the best to choose. Opticians generally avoid crossed cylinders, as sphero-cyls. are cheaper to grind; and, of the two cases of sphero-cyls., the preference seems to be for the form which, on calculation, results in having the smallest numerical curvatures (for instance, in Example 4, the first of the forence is also often given to that transposition which results two), since deep curvatures always involve heavier lenses. Premost nearly in a periscopic form, with + sph. outside and - cyl.

TOROIDAL LENSES OR TORIC LENSES.

Another way to construct lenses so that they have different refracting powers in different meridians, is to use a lens having grind the other with a toroidal surface. A toroidal surface (Fig. 37) is one which has one radius of curvature in one the surface that is nearer to the eye a concave surface, and meridian, and a different radius of curvature in the meridian (73)

Toroidal Lenses or Toric Lenses—continued.

at right angles. "Toroid" like that of a bicycle tyre.

Fre. 37. A Toroidal Solid.

is the scientific name for a surface Suppose a bicycle type 2 feet in diameter and 2 inches in apparent thickness laid down flat. On its outer surface the curvature is such that in the vertical meridian the radius is 1 inch; in the horizontal meridian the radius is 1 foot. If a tool of toroidal form, such as Fig. 37, were used to grind a lons, it would give a concave toroidal curvature, resembling a dish cover

The powers of such lenses in the two meridians of greatest and least curvature would be calculated simply or spoon.

$$\mathbf{D}_1 = (\mu - 1) \frac{1}{r_1}, \quad \text{and} \quad \mathbf{D}_2 = (\mu - 1) \frac{1}{r_2};$$

where $\mu - 1$ is the refractivity of the glass, and r_1 and r_2 the two radii of curvature. Save in the case of periscopic positive lenses for a hypermetropic astigmatic patient, all that any toroidal lens could possibly do could be done equally by using crossed cylinders, or by using the equivalent sphero-cyl. combination. There is, however, the great disadvantage of requiring special costly tools to grind each separate form of toroid. The name "toric" is less accurate than "toroidal" for lenses of this form.

O OBLIGUELY-CROSSED CYLINDRICAL LENSES.

Another useless variation of form is that of using on the two faces of a lens two cylindrical surfaces crossed obliquely. The formulæ for obliquely crossed cylinders are somewhat complicated: but it can be shown that in no case can two barbose which cannot be equally well effected by an ordinary spheroobliquely-crossed cylinder lenses effect any optical cylinder combination.

Sometimes, however, it becomes necessary to transpose into

a sphero-cylinder combination some case of obliquely-crossed cylinders: and for such the following formulæ are correct.

Let A and B be the powers (dioptries) of the given oblique cylinders, and \theta the angle at which they are crossed. It is required to find the power X of the resultant cylinder, \$\psi\$ the angle that its axis makes with the axis of A, and Y the power of the resultant sphere. Then

$$\frac{X}{\sin 2\theta} = \frac{A}{\sin 2(\theta - \phi)} = \frac{B}{\sin 2\phi} \quad . \quad (1)$$

$$X^2 = A^2 + B^2 + 2 A B \cos 2 \theta$$
 . . . (2)

$$\sin 2\phi = \frac{B}{X} \sin 2\theta, \qquad (3)$$

$$X = \frac{A + B - X}{2} \qquad (4)$$

+ 7 D cyl. ax. 20° > + 5 D cyl. ax. 35°. The angle θ between them is evidently 15.° Hence

 $2 \theta = 30^{\circ}$ and $\cos 2 \theta = 0.866$ and $\sin 2 \theta = 0.5$. Then, by formula (2)

$$X^2 = 49 + 25 + 70 \times 0.866 = 134.6,$$

 $X = +11.66$ dioptries cylindrical.

 $\Delta = + 11.00$ dioperies cylin To find ϕ by formula (3) we have

$$\sin 2\phi = \frac{5}{11 \cdot 6} \times 0 \cdot 5 = 0 \cdot 2155,$$

whence, from Table of Sines, Art. 3,

$$2 \phi = 12^{\circ} 26',$$

 $\phi = 6^{\circ} 13';$

or since the first cylinder is already set at angle 20,° the angle of the resultant cylinder must be set at 26° 13.'

Lastly, by formula (3)

$$X = \frac{+7+5-11\cdot6}{2} = +0.2$$
 dioptries spherical,

+ 0.2 D sph. \bigcirc + 11.6 D cyl. ax. 26° 13′. Hence the final result for the equivalent lens is:-

To facilitate calculations of cylinder combinations, following Table is added :--

				0 800
0.000	1.0000	8 H-	0.0000.0	1.00000
0.1736	0.9848	5.6713	0.00757	0.99241
0.3420	0.9397	2.7475	0.03014	0.96983
0.5000	0998-0	1.7321	86990.0	0.93296
0.6428	0.7660	1.1918	96911.0	0.88304
0.7660	0.6428	0.8391	0.17859	0.82138
$0.998 \cdot 0$	0.2000	0.5774	0.52000	0.74996
0.9397	0.3420	0.3640	0.32902	0.67109
0.9848	0.1736	0.1763	0.41319	0.58676
1.0000	0.000.0	0.0000	0.20000	0.20000
0.9848	- 0.1736	- 0.1763	0.58676	0.41319
0.9397	- 0.3420	- 0.3640	0.67109	0.32902
0.8660	- 0.2000	-0.5774	0.74996	0.25000
0.7660	- 0.6428	- 0.8391	0.82138	0.17859
0.6428	- C 7660	- 1.1918	0.88304	0.11696
0.5000	0998.0 -	- 1.7321	0.93296	86990.0
0.3420	- 0.9397	- 2.7475	0.96983	0.03104
0.1736	- 0.9848	- 5.6713	0.99241	0.00757
0.0000	- 1.0000	8	1.00000	0.00000
-0.1736	- 0.9848	5.6713	0.99241	0.00757
-0.3420	- 0.9397	2.7475	0.96983	0.03104
0.2000	0998.0 -	1.7321	0.93296	86990.0
-0.6428	0992.0 -	1.1918	0.88304	0.11696
-0.1660	- 0.6428	0.8391	0.82138	0.17859
0998.0 -	- 0.2000	0.5774	0.74996	0.25000
- 0.9397	- 0.3420	0.3640	0.67109	0.32902
-0.9848	- 0.1736	0.1763	0.58676	0.41319
-1.0000	0.000.0	0.0000	0.20000	0.50000
8‡86.0 -	0.1736	- 0.1763	0.41319	0.58676
-0.9397	0.3420	- 0.3640	0.32902	0.67109
0998-0-	0.2000	- 0.5774	0.52000	0.74996
0994-0 -	0.6428	- 0.8391	0.17859	0.82138
-0.6428	0.7660	- 1.1918	0.11696	0.88304
- 0.2000	0998-0	- 1.7321	86990.0	0.93296
-0.3420	0.9397	- 2.7475	0.03014	0.96983
-0.1736	0.9848	- 5.6713	0.00757	0.99241
0.000	1.0000	8	0.0000	1.00000

The amount of cylindrical effect which a cylinder set with its axis in any given meridian produces in any other meridian can be obtained by multiplying the power of the cylinder by the square of the cosine of the angle between the two directions. For example, if a + 7 D cyl. is set at 35° with the horizontal, the horizontal component of its cylindrical effect will be

$$+7 \times \cos^2 35^\circ = +7 \times 0.671 = +4.7 \,\mathrm{D} \,\mathrm{cyl}$$
. hor.

Similarly its vertical component will be expressed as

$$+7 \times \cos^2 55^\circ = +7 \times 0.329 = +2.3$$
 D cyl. vert.

If angles are reckoned from the horizontal, then horizontal components are proportional to cos2, and vertical components to sin2 of the angle. And the sum of the vertical and horizontal components always equals the original value of the cylinder.

47

PRISM FORMULÆ.

The following formulæ connect together the angle a between the faces of a prism, the angle 8 of the deviation it produces, and μ the refractive index of the material.

CASE I. When the incidence is such that the light either enters or leaves normally to one surface,

$$\sin a = \frac{\sin (a + \delta)}{\mu},$$

whence

$$\mu = \frac{\sin\left(a+\delta\right)}{\sin a}.$$

When the incidence is such that the angles of incidence and emergence are equal, CASE II.

$$\mu = \frac{\sin\frac{1}{2}\left(\alpha + \delta\right)}{\sin\frac{1}{2}a};$$

in this latter case the deviation is a minimum.

Example.—A flint-glass prism having angle 59° 56′ 22″, gave as the angle of minimum deviation, when using blue-green light (Fraunhofar's line F), 47° 35′ 59″. Calculating by the last formula, we find $\mu = 1.61.177$ for that kind of light. In the case of thin prisms with small angles, so that may be substituted for sines, both these formulæ become

$$\mu = \frac{\alpha + \delta}{\alpha}$$

48

PRISMS FOR SPECTACLE WORK.

lations, enabling us to take angles simply instead of sines of The prisms with which ophthalmic opticians are concerned are always thin, that is to say the angle between their refracting surfaces is small. This circumstance much simplifies calcuangles into the calculations.

The one formula, in fact, may then be written-

$$\delta = (\mu - 1) a,$$

the refractivity (in air) of the glass, and 8 the angle of deviation where a is the angle between the two faces of the prism, $\mu-1$ produced by the prism.

Since for crown glass μ is about 1.5, $\mu-1$ is approximately Hence, approximately, the deviation produced by a A prism of 12° produces deviation of about 6°, for example. prism is half its own angle. one-half.

A prism is said to produce a deviation of one prismdioptrie if it is such as to cause a ray to be deviated I centimetre from its original path, at a distance of 1 metre. In fact 1 prismdioptrie means a deviation of one per cent. This is most clearly The " Prism-Dioptrie." -The above simple relation has given rise to a notation for prisms similar to the dioptric system for Unit deviation in this system is called the "prismunderstood by reference to Fig. 38. dioptrie."

lengths A B to see how much the ray has been deviated in Let P A be the path of a ray of light in air. If at Q a thin prism is interposed, this ray will be deviated slightly toward the base of the prism, and will travel say along the path Q B. Measure out from Q along the original path a length of 1 metre -represented here by the line Q A. Then measure the short

If A B is one centimetre, then the prism had a power of one prism-dioptrie. If A B is two centimetres, then the prism had a power of two prismtravelling the distance of 1 metre. dioptries, and so forth.

It is clear then that here is a way of describing the amount of angle of deviation, not expressing it in degrees of arc, but in terms of the length along a tangent scale placed at a distance

of 1 metre. Now the number of degrees of arc that correspond to 1 prism-dioptrie will obviously be such an angle that its natural tangent is equal to 1 per cent, or to 0.01. This is

Prisms are used in spectacles to correct the tendency for the In extreme cases this tendency is called squinting or strabismus: but where the tendency is slight -some weakness of the side-muscles of the eyeballs being the alleviate the tendency of the eyeball to look in a slightly oblique cause - the defect is called diplopia (= double vision). direction, a prism-of suitable angle-may be introduced. instead a decentred lens may be used. eye to look in a wrong direction.

Prismatic Effect of a Decentred Lens.

Let us consider the effect of a positive 1-dioptrie lens; it is diagrammatically represented in Fig. 39. Being a 1-dioptrie lons its principal focus will be I metre away on its axis, say

First take the case of a ray, PQ, entering parallel to the axis and at a distance QO, equal to one centimetre, away from the axis. Then PQ is deviated to B, the principal focus.

Prismatic Effect of a Decentred Lens-continued.

Now if a plane is drawn through B at right angles to the axis OB, and PQ produced to cut this in A, we see that AB = 0 Q = one centimetre; that is the deviation produced by the lens of 1 dioptrie on a ray entering one centimetre from the axis is the same as that due to a prism of one prism dioptrie.

dioptrie is the angle between the tangent planes to the two faces of a 1-dioptrie lens at points distant one centimetre from Hence the angle of a prism having a power of one prismthe axis, and on the same side of it.

prismatic power for the ray under consideration is shown in The relation between prisms and lenses of numerically equal

Very frequently, and in fact most frequently, patients require not merely simple prisms but combinations of prisms and lenses,

Fro. 40. Fro. 41

because, besides suffering from diplopia, they may also be suffering from short sight, long sight, or astigmatism. To meet such needs, prismatic lenses, such as are shown in an exaggerated form in the accompanying figure, may be used.

curvatures. It therefore becomes a necessity to have some required prismatic lens, from a given spherical lens, in order to Now these prismatic lenses are portions cut from spherical lenses eccentrically; and it is obviously much easier to cut them from ordinary lenses than to go to the trouble of grinding a prism to correct the angle, and then superposing the necessary method of determining the right place from which to cut a obtain the right prismatic effect.

Suppose we take a spectacle lens of one dioptrie (sph.)

power, such as shown diagrammatically in Fig. 42, with its principal axis AOB, and cut out a portion bounded by dotted lines, pq rs, so that its axis of figure, A'O'B', shall be one centimetre from the original principal axis. Then from what has been said about the prism-dioptrie, it is clear that this portion would have a prismatic effect of one prism-dioptrie, the centre of the piece used being one centimetre from the axial

And clearly, whatever the

power of a lens may be, if its axis of figure is decentred one centimetre from its optic centre, its prismatic power in prism - dioptries will be numerically equal to its power in ordinary dioptries. What will be the effect if it is decentre. FIG. 42.

centred by some other amount? Without going into geometrical proofs, it may be stated that to a first approximation, it is accurate to say that the angle between the two tangent planes, and therefore the prismatic effect of decentring is proportional to the distance through which the lens is decentred laterally (i.e. the distances of the points of contact of the tangent planes from the principal-axis).

Let d =the amount of decentring in centimetres. \(\rightarrow\) = the prismatic effect in prism-dioptries. D = the power of the lens in dioptries.

Then if d = 1 cm. and D = 1 dioptrie, we have as previously shown $\Delta = 1$ prism dioptrie.

Again,

If
$$d=1$$
 om, and $D=D$ dioptries $\Delta=D$ prism-dioptries. If $d=2$ om. $\Delta=2$ D prism-dioptries. If $d=d$ oms. $\Delta=d$ D prism-dioptries.

Or, if we wish to find the necessary amount of decentring, we may write the formula

$$d = \frac{\Delta}{1}$$

This formula is approximate only: it may be taken as correct for all lenses under 12 D.

Prismatic Effect of a Decentred Lens-continued.

An example will illustrate the use of the formula:

The visual axes of a certain patient are found to have 4 prism-dioptnies How much must his 5 D divergence, while he requires + 5 D lenses. lenses be decentred to correct the defect?

Clearly each must be decentred enough to produce 2 prism-dioptries.

$$d = \frac{\Delta}{D} = \frac{2}{5} = 0.4 \text{ cm.} = 4 \text{ mm.}$$

That is, the optical centre of each lens when cut must be 4 mm. from the centre of outline. The same laws apply to diverging leases, with the difference - lens gives a deviation with the deviation that while a + lens decentred gives an apparent against the decentring, a decentring.

To Convert Prism-dioptries to Degrees of Arc.

It is important to find a method of at once converting degrees In the first case, the tangent of $1^{\circ} = 0.01745$, which means that at a distance of one metre it subtends a length of 0.01745 metres or 1.745 centimetres on a scale placed square across, as shown of deviation into prism-dioptrie units, and vice versá. in Fig. 43.

Thus, if QA represents 1 metre, and the angle AQB one

degree, then $\tan A Q B = \tan 1^\circ = \frac{A B}{A Q} = 0.01745$.

That is, A B = 0.01745 metres = 1.745 cms. Therefore AB = $0.01745 \times AQ$.

By the definition of a prism dioptrie, if A Q B were equal

Hence, since small angles are proportional to their tangents, we haveto 1 prism-dioptrie, A B would be 1 centimetre.

$$\frac{1 \text{ prism-dioptrie}}{1 \text{ degree}} = \frac{1}{1.745},$$

1 prism-dioptrie =
$$1.745$$
 degrees = 0° 34′ 22″.

 $\begin{array}{ccc} 1^{\Delta} = 1 \cdot 06^{\circ} & = 0 \cdot 57^{\circ} \\ 1^{\delta} = 1 \cdot 745^{\Delta} = 1 \cdot 85^{\circ} \end{array}$ $= 0.54^{\delta}$ $1^{\circ} = 0.94^{\circ}$ If the glass has index 1.54, and if the refractory angle be 1.85°, then $\delta = 1^{\circ}$; and this prism has 1.7454. So we may tabulate thus.

51

DECENTRING EQUIYALENTS.

(From 'Opticians' Handbook.')

Lens.	To be	equivale	To be equivalent to prisms of following edge-angles, decentre by	sms of fo	llowing e	dge-angl	es, decent	tre by
		nama	number of minimetres given below [μ =	merces	Siven per	= m wo	1.04)	
Dioptries.	10	20	30	40	50	09	°8	100
1	9.4	18.8	28.3	37.7	47.2	56.5	75.8	95.2
61	4.7	9.4	14.1	18.8	23.6	28.5	87.9	47.6
က	3.1	6.3	9.4	12.6	15.7	18.8	25.3	31.7
4	2.3	4.1	7.1	9.4	11.8	14.1	18.9	23.8
2	1.9	3.8	2.2	7.5	9.4	11.3	15.2	19.0
9	1.6	3.1	4.7	6.3	6.7	9.4	12.6	15.9
7	1.3	2.7	4.0	5.4	2.9	8.1	10.8	13.5
00	1.2	2.3	3.5	4.7	5.9	7.1	9.5	11.9
6	1.0	2.1	3.1	4.2	5.5	6.3	8.4	10.5
10	6.	1.9	8.7	3.8	4.7	5.6	9.7	9.2
12	8.	9.1	2.4	3.1	3.9	4.7	6.3	4.9
14	1.	1.3	2.0	2.7	3.4	4.0	5.4	8.9
16	9.	1.2	1.8	2.4	3.0	3.5	4.7	0.9
81	.5	1.0	9.1	2.1	5.6	3.1	4.5	5.3
20	ē.	6.	1.4	6.1	2.4	2.8	3.8	4.8
						_		

+ 5 D shall act as a metres by which the lens (of given power) must be decentred in order to act as a prism of the angle mentioned at the top. prism of 2° edge angle it must be decentred 3.8 millimetres. For since 1[△] deviates 10 mm. at 1 metre, 1 D must be decentred 10 mm. to produce the same effect as 12, and therefore must be decentred 9.4 mm, to produce same effect as glass prism having 1° edge angle. this table the numbers given are the number For example:-In order that a lens of

Deviation Angle Degrees.	14-12-13-13-13-13-13-13-13-13-13-13-13-13-13-
Prism- dioptries.	20 28 28 28 28 28 28 28 28 28 28 28 28 28
Deviation Angle Degrees.	0 9 44 222, 10 9 44 47 222, 10 9 44 47 222, 10 9 44 47 222, 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Prism-dioptries,	0-1000-400-0000-00100-400-00-00-00-00-00-00-00-00-00-00-00-

To Convert Prism-dioptries to Prism-angles.

It is also important that the relation between the prismangle itself and its power in prism-dioptries should be known.

Call the number of degrees between the two faces of the prism A.

Then, since we are dealing with prisms of small angle only, we have

$$\delta = \Lambda \ (\mu - 1);$$

the number of degrees in a given angle is approximately equal where & is the number of degrees of deviation produced. to the number of prism-dioptries divided by 1.745.

That is,

Hence

$$A = \frac{\Delta}{1.745 (\mu - 1)}.$$

81

And the formula for decentring may be written:

$$d = \frac{A}{D} \times 1.745 \times (\mu - 1) = \frac{\delta}{D} \times 1.745 = \frac{\Delta}{D}.$$

If μ is taken as about 1.52, we get

$$A^{\circ} = \frac{\Delta}{0.91}.$$

dioptrie. To give a deviation of 1 prism-dioptrie will therefore Or 1º of prism-angle produces a deviation of 0.91 prismneed a prism whose angle is 1.1 degree.

Hence the rule: -To convert prism-dioptries to degrees of prism-angle, divide by 0.91 or multiply by 1.1.

The three units therefore stand in the following relation :-

1 prism-dioptrie =
$$\frac{1 \text{ degree of deviation}}{1.745}$$
 = 0° 34' 22".
= $\frac{1 \text{ degree prism angle}}{0.91}$

The formulæ for decentring may now be written-

$$= \frac{.91 \,\mathrm{A}}{\mathrm{D}} = \frac{1.745 \,\delta}{\mathrm{D}} = \frac{\Delta}{\mathrm{D}}.$$

54

Obliquely-crossed Prisms.

If two (thin) prisms are crossed at an angle 0, they act as a prism of different power at an intermediate angle. Call the the resultant prism be called R prism-dioptries, and let the angle it makes with prism A be called a. Then the values of respective powers of the prisms A and B prism-dioptries; let R and a can be calculated by the following formulæ:-

$$\mathbf{R}^2 = \mathbf{A}^2 + \mathbf{B}^2 + 2 \mathbf{A} \mathbf{B} \cos \theta \qquad (i.)$$

$$\mathbf{B} \qquad \qquad \mathbf{B}$$

 $a=14^{\circ}$. So the answer is that the resultant prism will be one of 9.5 Δ

" metre-Before proceeding to define the metre-angle let us consider Fig. 44. Let E E, represent a pair of eyes, and also their centres. Join E E1, bisect E E1 in O, and consider a plane Side by side with the prism-dioptrie system another method of measurement has been developed from the notion of angular convergence of the two eyes, and its unit is called the

This E E1, then O P is the line plane is called the median plane, and E E¹ the base line, while the two directions in which the eyes look are called the visual of intersection of this plane with the plane of the paper. drawn through O perpendicular to

It is the angle subtended by half the base line at a point on the median plane at distance of one metre from either eye. We can now define a metre-angle.

clearly vary for different patients, and therefore the absolute Thus in the figure if EP is equal to one metre the angle OPE is one metre-angle. The length of the base-line will value of the metre-angle will vary for each individual.

99

Table of Metre-Angles.

Value in Degrees and Minutes.	20 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Sine of Metre- angle.	0 · 025 0 · 025 0 · 027 0 · 028 0 · 028 0 · 031 0 · 031 0 · 032 0 · 033 0 · 033 0 · 033
Base Line in Millimetres.	20 20 20 20 20 20 20 20 20 20 20 20 20 2

87

Any lens which will bring light that emanates from a point on one side of the lens to focus accurately at a single point at the other side of a lens is described as accurately stigmatic (stigma means a point). Any failure of a lens to produce perfectly definite and undistorted images is called an aberration. Table 57.

light. The production of the spectrum colours by glass prisms proves that each kind of colour of light is affected differently. CHROMATIC ABERRATION.—Every single kind of glass has a greater refracting effect on blue light than it has on red For each different colour the refractive index is different. Hence any and every lens made of any single kind of glass will have different powers for lights of different colours, and will therefore have different focal lengths for light of different colours. The focal length is always shorter for blue than for red light.

Let its radii of curvature r_1 and r_2 be each 200 millimetres, or 0.200 metre, i.e. the curvature of each face is 5 dioptries. The total surface curvature is 10 dioptries. If we multiply this by the refractivity we get the power. Now this glass has refractive index 1.8956 for red $(^4A^{-3})$, 17129 for yellow $(^4B^{-3})$, and 1.7466 for blue $(^4G^{-3})$. Its corresponding refractivities will be 0.8865, 0.7129, and 0.7466 respectively. Hence the lens will have the following powers:-for red light 6.9 dioptries; for yellow 7-1 dioptries; and for blue light 7-4 dioptries. So its focal lengths will be for red light $144\cdot9$, for yellow $140\cdot8$, and for blue $135\cdot2$ millibe for red light $144\cdot9$, for yellow $140\cdot8$, and for blue $135\cdot2$ millibe for red light $144\cdot9$, for yellow $140\cdot8$, and for blue $135\cdot2$ millibe for red light $144\cdot9$. metres. The focus for blue light is 9.7 millimetres nearer the lens than Example of Chromatic Aberration.-Consider a biconvex lens, made of the kind of flint glass mentioned last in Table 18 (Chance's glasses). that for red light.

20

ACHROMATIC LENSES.

If the dispersion (i.e. the difference between the refractions for different colours) were always proportional to the refraction there could be no remedy for the chromatic abcration. But inspection of any of the Tables of Refractive Indices will show that this is never so. In these Tables the refractive index for mean light—i.e. yellow light of the sodium "D"-line—is given

This is written $\mu_{\mathbf{r}} - \mu_{\mathbf{c}}$ or for brovity $\Delta \mu$, meaning the difference between the μ 's. Now if this dispersion were always proporunder the heading D, or μ_D . Also the medium dispersion is given, that is to say the difference between μ_O , the refractive index for red light of the quality of the "C"-line, and $\mu_{\mathbb{F}}$, the refractive index for blue-green light of the "F"-line of the spectrum.

tional to the mean refraction $\mu_{\rm b}-1$, the fraction $\frac{\mu_{\rm b}-1}{\mu_{\rm F}-\mu_{\rm c}}$ or

 $\frac{\mu_n-1}{\mu_n}$ would be the same for all glasses.

the case the numbers vary widely. This ratio is all-important in the practical calculation of lenses; it states the amount of by the symbol ν . We see that in the lightest kind of pure glass, Table [16], ν is worth 70, while in the heaviest (flint) kind it is worth 19.7. The values of ν in Chance's glasses range from 64.6 to 29.9. Now it is obvious, on a little thought, that if we want to so combine two lenses that they shall neutralise one another's dispersion, two conditions must be fulfilled: -(a) the lenses must be of opposite kinds, one + the other -; (b) their refracting powers must be so chosen that the refracting lens of greater refracting power shall produce exactly as much dispersion as the lens of lesser refracting power. This last provision clearly implies that the respective powers of the two lenses chosen shall be proportional to their respective values for ν . A glance at the last column of any of the Tables of Refractive Indices will show at once that so far from this being refraction for a given amount of dispersion, and is often denoted

matic lens. For example, in Chance's list of glasses there is a "hard crown" for which v is 60.5, and an "extra dense The crown gives almost exactly twice as much refraction for an equal dispersion as compared with the flint. Hence, if we take a + lens made of this erown, of a power proportional to $60\cdot 5$, and a — lens made of this flint of a power proportional to $29\cdot 9$, they will have equal cement them back to back like Fig. 45. They will make an Again, in Chance's list there is a "dense flint," for which $\nu = 36$. If we were to Understanding this, nothing is easier than to make an achroand opposite dispersions. Let us then take a plano-convex crown of + 6.05 D and a plano-concave flint of - 2.99 D, and achromatic lens of a power of + 3.04 D. flint," for which v is 29.9.

Achromatic Lenses—continued.

use this, instead of the extra-dense flint, along with the hard crown, the refracting powers of the two components must be in

tive achromatic lens having a focal length of to make a positive achromatic lens. For a negative achromatic lens the proportions would have to be :-- crown - 60.5 to fint The difference between 60.5 and 36 Suppose we wished to make a posi-This will be of 1.64 dioptries the proportion of crown + 60.5 to flint - 36, 24 inches. is 24.5.

power. Then the crown must be such that flint must its power is to 1.64 as +60.5 is to 24.5; and the be such that its power is to 1.64 as - 36 is to 24.5.

Crown lons =
$$\frac{+60.5}{24.5} \times 1.64 = +4.08$$
 dioptries

Flint lens =
$$\frac{-36}{24 \cdot 5} \times 1.64 = -2.44$$
 dioptries

If the crown and flint components are both plano-lenses stuck back to back as in Fig. 45, the combination constitutes an lens, which by itself is not Two such lenses, however, placed facing one another a little distance apart (Fig. 46), form an excellent it suffers from spherical aberration achromatic form of cemented distortion of field. very good, since

Fig. 46.

Two other forms, sketched in Figs. 47 and 48, have been preferred in general; for camera lenses, as having less spherical aberration than the form made up of two lens, with very little distortion of field. Fig. 47 for telescope objectives, Fig. 48

They require the calculation of 3 radii of curvature In the case of the lens just calculated, it is easy to find the radii

The formula for the power of any lens (see of curvature. Art. 28) is :-

Power =
$$(\mu - 1) \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$
.

Now, as each of the component lenses has a flat face one of the two curvatures is = 0, and the formula becomes:-

$$Power = (\mu - 1)\frac{1}{r},$$

or

$$r = (\mu - 1) \div \text{power.}$$

18] of The μ here is of course the mean refractive index for the Referring to the Table glass. Chance's glasses we find:particular kind of

Hard crown,
$$\mu_{\mathbf{o}} = 1 \cdot 5175$$
,
Dense flint, $\mu_{\mathbf{o}} = 1 \cdot 6225$,

whence

r for crown lens = $0.5175 \div 4.07 = 0.127$ metre = +5 inches. for flint lens = $0.6225 \div -2.43 = -0.256$ metre

$$= -10.08$$
 inches.

"O 30" in Table 16 for the positive lens along with the flint New Achromats. - A new kind of achromatic combination was devised in 1892 by P. Rudolph. This consists in using for the crown-glass positive lens one of the new Jena glasses having a higher refractive index but a lower dispersion than the flint glass of the negative lens. For example, using the glass called glass called "O 726" in the same Table. These New Achromats give a flatter field than the old achromats.

answer is that they do not accurately come to the same focus as a residual aberration called secondary spectrum. The failure of "O 203"), and below it another silicate crown ("O 598"), which are very similar glasses. But on comparing them for their partial dispersions it will be seen that they do not disperse the colours equally. In the red-orange part of the bination will have very little secondary colour-error. The two Correction of Secondary Spectrum,-In the calculations of achromatic lenses we have taken as the dispersion of the glass its medium dispersion between lines "C" (red) and "F" (blue-green) of the spectrum. The combined lens is thererately to the same focus. But it does not necessarily follow that because these two are brought to one focus that the rays of all other colours will be. There are the yellow and green of intermediate wave-length; and there are of lesser eye is most sensitive to the former; the photographic plate the two rays for which correction has been made; there is the correction is due to the circumstance that in every kind of glass the dispersion is not uniformly distributed in different parts of the spectrum. Look at the Table 16 of Jena glasses and you will find an ordinary silicate crown (Factory number spectrum the "ordinary" sort has a slightly higher dispersion 0.00563 than the other 0.00562; while in the yellow and green part the "ordinary" has a lower dispersion 0.00616 than the other 0.00619. The "ordinary" sort produces a spectrum in which the D-line in the yellow is shifted, relatively, further away from red towards the blue end of the spectrum. This "irrationality of dispersion" runs through the whole of the refracting materials available, and compols a study of the partial dispersions as well as of the dispersion as a whole. When such detailed information is available it is then possible to pick out from the list a pair of kinds of glass such that in whatever irrational way one of them distributes its dispersion the other shall be a glass that shows a very similar irrationality in its dispersion; so that as far as possible the two irrationalities may annul one another. Such a specially chosen achromatic comfore corrected for these two colours, which are brought accuwave-length the blue, violet, and ultra-violet waves. to the latter. Will they all come to the same focus? (blue-green) of the spectrum. The combined

glasses $O\frac{60}{2}$ and $O\frac{164}{2}$ of Table 16 will, for example, if used as a pair, practically give no secondary spectrum.

Another important point in selecting the two kinds of glass to its dispersion; and the flint the lowest possible. In other following this last rule only a very thin flint will be needed to is to see that the crown shall have a high refractivity relatively words, the crown should have the largest possible value of v, and the flint the lowest. That is why these tables are arranged correct the dispersion of the crown; and the whole combination with the materials in the order of their values of v. will be lighter as well as freer from secondary colour-error.

for three regions of the spectrum. Lenses composed thus of for two different colours, are for distinction called apochromatic of dispersion equal to 97, a value higher than that of the Apochromatic Lenses.—An achromatic lens made of two materials can only give perfect colour-correction for two parts of the spectrum. Herschel, Hastings, and others have proposed to construct lenses of three different materials, so as to correct three (or more) different materials, if also spherically corrected lenses. In some of Zeiss's microscope objectives the third material is white fluor spar, which (see Table 23) has a very low dispersivity, making its refractivity for a given relative amount lightest crown glass.

SPHERICAL ABERRATION.

focussing, we should yet find that however perfectly the lens was ground to perfect sphericity of figure, it would still fail to case of parallel light passing through a plano-convex lens. The central rays have their focus at F, the marginal rays at J. bundle. Here they form a small round spot-the "circle of Suppose we were working with light of one colour only, so that no question could arise as to lights of different colours not give perfect focussing; the rays would not all come to one point. those passing through the marginal zones of the lens crossing the axis nearer in than those that come through the central region of the lens. In Fig. 49 is represented, exaggerated, the Between the two is the place where the rays form the narrowest least confusion "-the nearest approach to a point focus.

Spherical Aberration-continued.

sharpen the definition a diaphragm might be introduced to cut off all the marginal light; then the central rays would meet sharply at F. But this involves loss of light. How then, without covering up any part of the lens can all the light be made to converge accurately to F? The marginal parts refract too much. Suppose the curvature flattened at the outer parts by grinding

inseparable from sphericity. In the case of large telescope by hand on the marginal parts, polishing them away wherever A form may be found which will answer be no longer spherical. It will be more nearly ellipsoidal or hyperboloidal. This is one way of altering a lens so as to get rid of aberration necessary to make them perfect in their focussing effect. objectives, they are first ground spherical, then But obviously this form will the requirement. down the curve.

The more that any ray in passing through the surface is The more nearly a ray passes normally through the surface, the less aberration will it suffer. Hence, it toward that surface, the greater is the aberration that ray likely to be. inclined

Fig. 50.

becomes a guiding principle that spherical aberration can be at one surface of the lens and none at the other, but such that at both surfaces about an equal amount of refraction should take By merely turning the plano-convex round so that its flat face is toward the focus, the aberration is considerably reduced to as little as possible by making such arrangements that the rays should not (as in Fig. 49) undergo violent refraction place.

the two surfaces. Of all lenses of equal power that might be designed for carrying parallel light to or from a focus, the best form (if μ be taken at 1 · 5) is a biconvex, but not equiconvex, lens having the curvature of the face nearer the focus, one-sixth as great as that of the other face. Such a lens is called a "crossed" lens. If f be the focal length and y the semi-diameter of the lessened, the work of refraction being now shared between aperture of the lens, the longitudinal aberration is-

In a "crossed" lens =
$$-\frac{15}{14} \frac{y^2}{f}$$
,

In an equiconvex lens = $-\frac{15}{3} \frac{y^2}{f}$.

A lens which has been corrected for spherical aberration for two conjugate points on the axis, if all its zones have equal magnifying power, is called an aplanatic lens.

In the rule given above the amount of the longitudinal aberration is given as proportional to the square of the semidiameter of aperture; but the lateral aberration increases with the cube of the semi-diameter.

also for light not parallel passing from one conjugate focus to another. In the case where the lens is required to produce an A lens that has been made perfectly aplanatic for parallel light passing through it in one direction, will show spherical aberration for parallel light passing in the opposite direction, or inage of equal size to the object, and where therefore the conjugate points of object and image are equidistant from the lens, the shape of lens that will give least spherical aberration is the

convex lens, for example, if of crown glass, the aberration of prismatic colour is sixteen times greater than the aberration of Though it is necessary to correct telescope and other lenses for fine optical work for both spherical and chromatic aberrations, the latter is really much more important. In an equisphericity. If it is of flint glass, the aberration of colour is a large telescope object-glass made by Frauenhofer, laving focal length of 2 metres, and a semi-aperture of 66 millimetres, the longitudinal aberration due to sphericity was 4 millimetres (or might have been as little as 2.2 millimetres if the "crossed" form had been adopted). It was of course an achromatic pair twenty-seven times as great as the aberration of sphericity.

of crown and flint. But had it been of crown alone the chivmatic aberration would have been about 60 millimetres, or if of fint alone about 100 millimetres!

61

OPTICAL INVARIANT.

a definite optical property in respect of the refractive effect which it produces on a ray that meets it. It will be said that the refractive index of the first medium, μ' that of the second medium, r the radius of curvature of the surface separating them; a the angle at which the ray is incident at any point of this surface, and a' the angle at which it passes on through the ture 1/r of the surface, is called by Abbe the Optical Invariant Every spherically curved optical surface, such as the surface of a lens or the cemented surface between two lenses, possesses the refractive effect must vary for rays that strike at different points of the surface or at different angles. This is true. Nevertheless, it is possible to find an expression which holds good for any ray striking at any point of the surface. Let μ be second medium, both being measured from the normal through the point of incidence. Then since $\sin a/\sin a' = \mu'/\mu$, we have $\mu \sin \alpha = \mu' \sin \alpha'$. This expression multiplied by the curvaof the surface, and denoted by the letter Q.

$$Q = \mu \frac{\sin \alpha}{\sin \alpha} = \mu' \frac{\sin \alpha'}{x}.$$

oblique distances from the point where the ray crosses the Apply this to the case of an oblique ray passing from a point on the axis to its conjugate point on the axis in the other points from the vertex of the surface and p and p' the respective medium. Let u and u' be the respective distances of Then the relation becomes:-

$$Q=\mu \ \frac{u-r}{pr}=\mu' \frac{u'-r}{p'r}.$$

If the angle which the radius, at the point where the ray crosses the surface, makes with the axis is small, then, proximately, p = u, and p' = u'; so that for axial rays we may write:-

$$Q_0 = \mu \frac{u-r}{ur} = \mu' \frac{u'-r}{u'r};$$

whence

$$\frac{u'}{u'} - \frac{\mu}{u} = \frac{\mu' - \mu}{r}$$

If the first medium is air, for which $\mu = r$, we have:

$$\frac{\mu'}{z'} - \frac{1}{z} = \frac{\mu' - 1}{z}.$$

Or, the more general formula may be written:-

$$\Delta\left(\frac{\mu}{u}\right) = \frac{1}{r} \Delta\left(\mu\right).$$

Spherical Aberration for Oblique Pencils.

The preceding Article 60 dealt with the effect of spherical aberration upon light passing direct along the principal axis of the lens. But pencils of light which pass obliquely through

Fre. 51.

the lens suffer another kind of spherical aberration which in the case of camera lenses is much more important.

When a parallel beam is sent obliquely through a convex Indeed, the effect of sending light obliquely through a lens is the same as if while general effect is the same as if there had been interposed a the light was going straight the lens had been tilted. lens it is no longer brought to a point focus.

26)

Spherical Aberration for Oblique Pencils-continues.

now two focal lines instead of the one focal point. Suppose ta. screen placed at F will not receive sharp images of any luminous point that lies widely away from the axis. If the screen is pushed forward toward h it will show the image of a bright point as a short tangential line, while if put further away it view-as in a camera-unless this kind of aberration is oblique secondary axis of the beam to slope upwards, as in Fig. 51. The nearer focal line h will be horizontal (or tangential), and the further focal line v will be vertical (or radial). Between them there will be a "circle of least confusion" c, a sort of ill-defined focal patch. The less oblique the beam, the nearer together, and the smaller will be v, c, and h; while, for a beam moving exactly along the principal axis, all three are merged into one focal point at F. These three sorts of foci v, c, and h lie each on its own curved focal surface. A focussing will show it as a short radial line.* Somewhere in between will be the position that gives least blur; but the images will all fuzzy. No lens can be of much service for a wide field cylindrical lens (compare Fig. 34). The result is that there annulled.

This curvature of focal planes and want of definition all by putting a stop in front of the lens; for instance, as at s. And by moving this stop nearer to the lens or further away, the position of c can be altered. By putting s further away, c is choosing the best position for the stop, the focal surface can be made practically a flat plane passing through the principal over the margins of the focussing screen can be partly corrected caused to move slightly further away on the other side.

But now another source of aberration makes itself seen, for the images on the screen appear distorted at the edges. This A stop in front of a the corners not being magnified enough; while a stop behind lens tends to make the image of a square object "barrel-shaped,' also depends on the position of the stop.

^{*} Some writers call this effect "astignatism;" but the term should be "radial astignatism," as it is a votally different thing from the astignatism of the eye. If a lens had the defect of astignatism, it would fall all over the field to show vertical and horizontal lines in foous at the same time.

the lens tends to make the image " cushion-shaped," the corners being unduly extended.

The remedy is not to put stops both in front and behind, but to construct the lens of two separated parts (each an achromatic pair) and put the stop in between them, as in all modern wideangled camera lenses.

ENTRANCE-PUPIL AND EXIT-PUPIL.

It will be at once evident from the figure, that if the stop is placed symmetrically with respect to two similar lenses (on the same axis), any ray which passes through its centre will meet the lenses at the same angle and at corresponding points, and as

Frg. 52.

through it one ray, which is the "chief" ray or core of the oblique pencil as limited by the stop; and therefore the image must be geometrically similar to the object. Such a ray is The use of this central stop has a consequence the portions of its path beyond the outer surfaces of the lenses are similarly situated with respect to the axis, and parallel to each other; hence if each lens is spherically corrected for the centre of the stop, each point of the object will send drawn as a, b, d, e in Fig. 52.

Entrance-Pupil and Exit-Pupil-continued.

been the cause of a new conception, introduced by Professor Abbe, of Jena. It is clear that each lens will form a virtual image of the stop, which may be seen by an eye looking into either lens. If the positions and sizes of these stop-images are ascertained, a simple geometrical construction will enable the position and size of the image of any given object to be predicted. Professor Abbe has given the name Eintritts and Austrittspupille to these stop-images, terms which may be translated as Entrance and Exit-pupils. They are shown (dotted) with their centres at C_1 and C_2 ; C_1 being the image of the actual stop Cdue to component I, and C2 the image due to II. A ray passing through the centre C of the actual stop is lettered abde; the outer portions ab and de being parallel and directed towards the centres c1 and c2 of the entrance and exit pupils. Also pqrs represents a ray grazing the edge of the actual stop; its outer portions pq and rs are not parallel but are directed to corresponding points on the edges of the entrance and exit pupils c₁ and c₂. When the two components I and II are dissimilar the entrance and exit pupils will be neither of the same size nor at equal distances from the actual stop, but the actual values of these quantities may be varied by varying the position of the stop relatively to the two components.

ABERRATION DUE TO APERTURE.

In telescopic optics there enter some further considerations as to the dependence of "definition" (i. e. sharpness of focus) upon the aperture and on the wave-length of light as well as upon the figure of the lens. According to Lord Rayleigh, the greatest permissible longitudinal aberration z is connected with the wave-length λ and with the angle of semi-aperture α by the

But for a single lens, in the best case,

$$z = f \times \alpha^2,$$

(100)

$$\alpha^* = \frac{\lambda}{2}$$

or the angle of semi-aperture ought not to exceed the value given by

$$\alpha = \left(\frac{\lambda}{f}\right)^{\frac{1}{4}}.$$

Assume for mean wave-length of light $\lambda = \frac{1}{80000}$ inch. Then a ought not to exceed $(\sqrt{3\pi0000})^4$ or, approximately $\frac{1}{3\pi}$ radian. As f=36 inches, the largest object-glass that will be of service for accurate work will be about 1 inch in semi-aperture, or 2 inches in diameter. With any larger glass of same focal length the interference of the waves will make the definition worse. Example. -- An object-glass of 36 inches focal length,

that reach the same part of the image after traversing paths of The cause of this aberration is the interference of the waves different lengths through different zones of the lens. It is impossible here to enter further upon this complicated topic.

also due to interference. Because of interference between the portions of the wave-fronts that emerge through parts of the last lens-surface that are wide apart from one another, the image which the lens forms of a luminous point is not itself a point, but is a small disc. Let the diameter of this spurious disc be called &, and its distance from the lens be called v, the radius of aperture The diffraction-effects observed in microscopy are essentially of the lens being called r. Then the angle of semi-aperture a will be such that $\tan \alpha = r + v$; and it also can be shown from interference-principles that $\tan \alpha = \lambda + 2 \delta$. It follows that

$$\delta = \frac{\lambda}{2 \tan \alpha} = \frac{v \lambda}{2 r}.$$

This shows that the spurious disc will be smaller if the light to illuminate the object be of shorter wave-length, such as green or Also that the objective if it is to resolve minute points, must have a wide angular aperture, otherwise the images of those See Table 81. points will be overlapping discs.

MAGNI-Distinct POWER of Lenses as of Focal Lengths when used Distance The being 10 inches. MAGNIFYING GLASSES. various Vision FYING LINEAR

	9	17	6	5	es	2.33	2.0	1.80	1.67	1.50	1.40	1.33	1.27	1.20	1.17
ches.	æ	21	==	9	3.5	2.67	2.52	5.00	1.833	1.625	1.50	1.42	1.33	1.25	1.21
Eye in in	44.	25	13	7	41	3.00	2.2	2.50	2.00	1.75	1.60	1.50	1.40	1.30	1.25
Distance of Lens from the Eye in inches.	60	83	15	00	4.5	3.33	2.75	2.40	2.167	1.875	1.70	1.583	1.47	1.35	1.29
ice of Lens	64	33	17	6	20	3.67	3.00	2.60	2.33	2.00	1.80	1.66	1.53	1.40	1.33
Distar	1	37	19	10	5.5	4	3.25	2.80	2.50	2.125	1.90	1.75	1.6	1.45	1.375
	rdes	88	20	10.5	5.75	4.167	3.375	5.6	2.58	2.19	1.95	1.79	1.63	1.475	1.396
Focal	Lens.	.4+	rtes	-	61	co	4	īC	9	œ	10	12	15	20	24

Linear Magnification by a Lens used as a Magnifying Glass.

This table is calculated by the following formula $G = 1 + \frac{1}{f}$, where v is the distance from the lens to the virtual image, f and G the linear magnification (i.e. the ratio of the actual size of the image to that of the object). If p be the distance of the near point of good distinct vision of the eye, and d the distance of the lens from the eye, the focal length of the lens,

$$v = p - d$$
.

	7	21	==	9	3.5	2.67	2.52	2.00	1.83	1.625	1.50	1.42	1.32	1.25	1.21
	9	25	13	7	4.0	က	2.2	2.5	2.0	1.75	1.60	1.50	1.39	1.30	1.25
e Eye.	ro.	29	15	œ	4.50	3.33	2.75	2.4	2.167	1.875	1.70	1.583	1.46	1.35	1.29
Distance of Lens from the Eye.	4	33	17	6	5	3.67	3.00	2.60	2.33	2.00	1.80	1.67	1.53	1.40	1.33
ce of Len	က	37	19	10	5.5	4.00	3.25	2.80	2.50	2.125	1.90	1.75	1.60	1.45	1.375
Distan	63	41	21	11	9	4.33	3.50	3.00	5.66	2.25	2.00	1.83	1.67	1.50	1.42
	1	45	23	12	6.5	4.67	3.75	3.20	2.83	2.375	2.10	1.917	1.73	1.55	1.46
	-401	47	24	12.5	6.75	4.83	3.875	3.30	26.2	2.44	2.15	1.96	1.77	1.575	1.48
Focal	Lens.	-4+	-614	1	2	က	4	5	9	œ	10	12	15	20	24

66 APPARENT MAGNIFICATION by Magnifying Glass.

tinct vision) than the object, the apparent magnification A is Table it is shown that G always decreases if the distance d of glass will show) as the lens is moved away from the eye. The greatest apparent magnification occurs when d is made equal to tion is less than this. The values of A in the Table below are Owing to the circumstances that the virtual image is situated always less than the linear magnification G. In the preceding But the apparent magnification is increased (as the simplest observation with a magnifying g p, and at that position the apparent magnification A has, as that are either greater or less than $\frac{1}{2}p$, the apparent magnificafurther from the eye (at the distance p of the near point of disits maximum value, the value = $1 + \frac{1}{4}\frac{p}{f}$. For all distances calculated in inches from the formula the lens from the eye is increased.

A = 1 +
$$\frac{d(p-d)}{fp}$$
. (103)

Case I.—Distance of Distinct Wision (p) = 10 inches. Apparent Magnification by Magnifying Glass.

	- 11						_									1
	9	10.6	2.8	3.4	2.5	1.8	1.6	1.48	1.40	1.30	1.24	1.20	1.16	1.12	1.10	
	2	0.11	0.9	3.5	2.52	1.833	1.625	1.500	1.417	1.312	1.25	1.208	1.167	1.125	1.104	
om Eye.	4	9.01	2.8	3.4	2.5	1.8	1.6	1.48	1.40	1.30	1.24	1.20	1.16	1.12	1.10	
Distance of Lens from Eye.	80	9.4	5.5	3.1	2.05	1.7	1.525	1.43	1.35	1.263	1.21	1.175	1.13	1.10	1.087	
Distance	61	7.4	4.5	5.6	1.8	1.53	1.40	1.32	1.27	1.20	1.16	1.13	1.107	1.08	1.065	
	1	4.6	8.7	1.9	1.45	1.3	1.225	1.18	1.15	1.112	1.090	1.075	1.060	1.045	1.038	
	r401	2.9	1.95	1.475	1.257	1.158	1.119	1.095	1.079	1.058	1.047	1.040	1.032	1.023	1.020	
Focal	(inches).	-40	-for	1	67	8	4	5	9	80	10	12	15	20	24	_

66a case II.—Distance of Distinct Vision 12 inches.

Focal			Dista	nce of Le	Distance of Lens from Eye.	Eye.		
(inches).	-401	1	2	8	4	zo.	9	7
-	888.6	4.7	7.6	10	11.67	12.7	13.0	12.7
e =0	1.949	2.85	4.33	5.5	29.9	6.85	0.2	6.85
	1.471	1.925	2.67	3.25	3.67	3.925	4.0	3.925
C/I	1.235	1.4625	1.83	2.125	2.33	2.462	2.2	2.462
es	1.157	1.308	1.56	1.72	1.89	1.975	27	1.975
4	1.118	1.231	1.42	1.56	1.67	1.731	1.75	1.731
	1.096	1.183	1.33	1.45	1.53	1.583	1.6	1.583
9	1.078	1.154	1.27	1.37	1.44	1.487	1.5	1.487
00	1.059	1.115	1.202	1.26	1.33	1.365	1.375	1.365
10	1.041	1.092	1.166	1.225	1.27	1.292	1.30	1.292
12	1.039	1.077	1.143	1.19	1.22	1.243	1.25	1.243
15	1.031	1.062	1.111	1.15	1.178	1.195	1.20	1.195
20	1.028	1.046	1.083	1.12	1.133	1.146	1.15	1.146
24	1.019	1.038	1.071	1.09	1:111	1.121	1.125	1.121

Curvature

10

20

40

Radins

100

50

25

0.126 | 0.28 | 0.50 | 0.78 | 1.13

0.251 0.57 1.01 1.59 2.30

0.505 1.31 2.09 3.35 5.00

Diameter of Lens in Millimetres.

105

. .

..

2.02 3.18

4.17 6.70

10:00 25:00

7.30 13.40 21.94 33.80

16.94

.. ..

.. | ..

Table 67 gives the thickness along the axis of lenses of lation of what thickness a disc of glass must be taken to make a plano-convex lens of given curvature. If the power of the lens is given, it must be divided by the refractivity $(\mu - 1)$ of the glass in order to calculate its curvature in dioptries; then, having the curvature and diameter, the minimum thickness will be found in the Table opposite curvature and beneath It is to show without calcuvarious diameters and curvatures. the diameter. Example I.-It is required to make a plano-convex lens of 40 mm. diameter to fit into a collar. What thickness must the disc be from which it is to be ground if its radius of curvature is 100 mm.?

to support it, say 1 mm. This must be added to the 2.02, and the In the table, opposite 100 mm. radius, and underneath 40 mm., we find 2.02 mm.; this is the minimum thickness. Now as the lens is to fit into a collar, a certain thickness at the edge is necessary result 3.02 is the thickness of disc required.

into a 50 mm. collar, with surfaces having radii of curvature of What thickness must the disc Example II.-It is required to make a double convex lens to fit 200 mm. and 100 mm. respectively. chosen possess?

Supposing that 1.5 mm, thickness at the edge is sufficient to hold it, the total thickness of the lens after grinding must be 1.57 + 3.18 + 1.5, that is 6.25 mm,, and this must be the minimum thickness of the disc.

the curvature resulting may then be split into the sum of two If in the above case magnifying power had been given, this must be divided by the refractivity of the glass ($\mu - 1$), and curvatures if a double convex lens is required, and the total thickness due to both curvatures found as above.

Ö TABLE SHOWING RADIUS TO BE GROUND REDUCE TO LENS POWER TO 1 DIOPTRIE. PLANO-CONVEX

A plano-convex lens being given, it is required to bring its focal length to some particular value by grinding another curvature on the plano surface.

Let the radius of curvature of convex lens be called r, then the required radius x for the other face is calculated by the formula

$$x = \frac{rf(\mu - 1)}{r - f(\mu - 1)}$$

where f is the focal length to which the lens is to be brought.

The Table has been calculated with this formula for three kinds of glass. If a 1-dioptrie lens is required, then f = 1000. All the values are given in millimetres.

$\mu = 1.52$	в	520 1049.7 1060.8 1063.8 1063.8 1065.8 1065.8 2022 2022 2020 2000 8000 8000 8000 80
$\mu = 1.51$	8	510 684-5 10020-8 10400-8 10400-8 15800-7 1883-7 1883-7 1882-7 18
$\mu = 1.5$	8	500 668.6 983.0 1000 1000 1000 2168.6 5500 5500 1750 1750 1750 1750 1750 1750
		28 8 200 1000 1000 1000 1000 1000 1000 1

	When accommod	lation adjusted for
	Distant Vision.	Near Vision.
Refractive index of the cornea	(1·3507) 1·3365 1·3365 1·4371	(1·3507) 1·3365 1·3365 1·4371
Radius of curvature of the anterior surface of the cornea Radius of curvature of the anterior surface of the crystalline lens Radius of curvature of the posterior surface of the crystalline lens Distance of the anterior lens surface from the vertex of the cornea Posterior focal length of the cornea Posterior focal length of the cornea Posterior focal length of the cornea Posterior focal length of the lens Distance of anterior principal point of the lens from its anterior surface Distance of posterior principal point from its posterior surface Distance between principal points Posterior focal length of the eye Anterior focal length of the eye Distance of 12 principal point from the vertex of the cornea Distance of 2nd principal point from the vertex of the cornea Distance of 2nd nodal point from the vertex of the cornea Distance of 2nd nodal point from the vertex of the cornea Distance of 2nd nodal point from the vertex of the cornea Distance of the anterior focus from the vertex of the cornea Distance of the noterior focus from the vertex of the cornea Distance of the posterior focus from the vertex of the cornea	mm. inches, 7·8 0·307 10·0 0·394 6·0 0·236 3·6 0·142 7·2 0·234 23·3 0·917 31·1 1·224 50·6 1·992 2·1 0·0827 -1·3 0·0512 20·7 0·815 55·5 0·610 1·75 0·689 2·1 0·6827 7·0 0·288 -13·7 0·589 22·8 0·589	mm. inches; 7·8 0·307 6·0 0·236 5·5 0·217 3·2 0·126 7·2 0·284 23·3 0·917 31·1 1·224 39·1 1·539 2·0 0·0787 -1·8 0·0787 18·7 0·736 14·0 0·551 1·9 0·748 2·3 0·0905 6·6 0·260 7·0 0·276 -12·1 -0·476 21·0 0·827
Distance of the principal focus of the aphakic eye (after removal of the lens)	millimetres, — 63·5 — 73·9*	21·0 0·827 inches, 2·500 2·909*

^{*} Measurement by Dr. Tscherning.

Age in	Amplitude	Distance of Near Point.	Wear Point.
Years,	(Dioptries).	Millimetres.	Inches.
10	14	70	23
15	12	08	37
20	10	100	4
25	8.5	117	45
30	0.2	140	53
35	5.5	180	73
40	4.5	220	88
45	3.2	285	112
20	2.2	400	152
22	1.75	260	22 1
09	1.0	1000	393
65	0.75	:	:
70	0.0	:	:

Lenses necessary for Presbyopia at ages for an eye which in youth had efraction (p.p. taken as 8 inches in refraction practice). different normal English Spectacle

	Inches,	p.p. = 8	52.49	31.50	19.68	13.12	11.26	8.75	7.87	6.97	
Focal Length.	Incl	p.p. = 12	39.37	19.68	13.12	9.84	8.75	7.16	6.56	29.6	
Focal I	Millimetres.	p.p. = 8	1833	800	200	333.3	586	222	200	182	
	Millin	$\mathrm{p.p.}=12$	1000	200	333.3	260	222.2	181.8	166.7	142.9	(109
Domon (Dionémico)	roputes).	If p.p.=8	0.75	1.25	53	က	3.5	4.5	ro.	5.5	
Domost (13401	If p.p. = 12 If p.p. = 8	-	67	89	4	4.5	5.5	9	7	
		45	20	55	09	65	2	75	80		

Substance.	Refractive Index for D line,	Substance.	Refractive Index for D line.
Phosphorus dissolved in CS ₂ . Sulphur in carbon bisulphide Potassium mercury iodide Monobromnaphtalin Balsam of Tolu Styrax Oil of cinnamon Cassia oil Anisced oil Canada balsam (mean) Clove oil Cedar wood oil (hardened) Cedar wood oil	1.950 1.750 1.750 1.717 1.658 1.640 1.630 1.619 1.607 1.557 1.535 1.533 1.520	Olive oil Glycerine I + water I . Glycerine I + water I + alcohol I Sugar solution, 30 per cent. (aq.) Potassium acetate solution (conc. aq.) Absolute alcohol Alcohol, 40 per cent. Albumen Sugar solution, 10 per cent. (aq.) Satt solution, 8·5 per cent. (aq.) Sea water Sugar solution, 5 per cent. (aq.) Distilled water	1·470 1·397 1·394 1·376 1·370 1·367 1·356 1·350 1·347 1·347 1·343 1·341 1·336
Castor oil	1·490 1·473	Air	1.000

MICROSCOPES OF. TUBE-LENGTH

IN MILLIMETRES, AND PARTS INCLUDED IN (Dayis.) OPTICIANS. VARIOUS BY "TUBE-LENGTH" LENGTH

length in Millimetres

Tube-

146 or 200

203 170 235 or 160

254

160-180

254

216 or 160

ر...

220

160-180 or 254

130

165-228.5

160-250

220

254

160-180 160-200 160 - 250

254 254

254

MAGNIFYING POWER OF MICROSCOPES WITH TUBES OF STANDARD LENGTH, i.e. 250 mm.; or, for English-made Microscopes, 10 inches (from Davis's "Practical Microscopy").

Eyepieces.							0	bjective	s.					
Lycpieces.	4"	3"	2"	1"	3"	1/2"	4"	≟"	<u>1</u> "	<u>1</u> "	18"	10"	12"	10"
2 inch (A)	12	18	25	46	50	92	130	210	275	325	400	550	650	800
11 inch (B)	15	23	30	54	70	110	160	250	325	390	490	650	775	980
1 inch (C)	23	30	45	80	90	165	240	375	485	580	750	970	1160	1500
3 inch (D)	30	45	60	108	140	220	320	500	650	780	980	1300	1550	1960

The Royal Microscopical Society's Standard Screw.

"Whitworth thread, i.e. a V-shaped thread, sides of thread inclined to an angle of 55° to each other, one-sixth of the V depth of the thread being rounded off at the top of the thread, and one-sixth of the thread being rounded off at the bottom of the thread. Pitch of screw, 36 to the inch; length of thread on object glass, 0·125 inch; plain fitting above thread of object glass, 0·15 inch long, to be about the size of the bottom of the male thread; length of thread of nose-piece [on the lower end of the tube of the microscope], not less than 0·125 inch; diameter of the object-glass screw at the bottom of the screw, 0·7626 inch; diameter of the nose-piece screw at the bottom of the thread, 0·8 inch."

See also Trans. Roy. Micr. Soc., 1857, pp. 39-41; 1859, pp. 92-97; 1860, pp. 103-104; or Jour. Roy. Micr. Soc., 1896, August. The latter paper contains a very careful and complete description of the later screw, which is almost exactly the same as the original,

its angular aperture as seen from the point; and in the case of intervening between the lower lens of the objective and the cover-glass of the slide, for it is upon the value of this that the A very important consideration in the performance of an objective is the quantity of light that it receives from each point in the object under examination, and this depends upon dry objectives it depends upon nothing else. Since the introduction of oil and homogeneous immersion it has been necessary to take into consideration the refractive index of the medium quantity of light received by a given objective from points in the object depends.

In order to make dry and immersion objectives comparable, Professor Abbe has introduced a new method of measurement which gives the capacity of objectives for receiving light as numerical aperture.

The numerical aperture of any objective may be defined

as the sine of half the angular apperture of an equivalent objective without immersion. It is otherwise the sine of half the actual angular aperture multiplied by the refractive index of the intervening immersion medium. This may be shown as follows. See Fig. 54.

Let L represent the lower lens of an objective, S the slide

and cover-glass, M the immersion medium, P P¹ O Q¹ Q a pencil of rays converging from the on the optic axis; it undergoes refraction at the lower surface of the immersion medium and the convergence of the pencil, so condenser to the point O in the object under examination, and of the slide S as shown. We have taken the refractive index that after refraction into M the pencil just fills up the aperture of the lens. If M had the same index as glass, the rays composing the pencil would have proceeded unrefracted, and the pencil would have spread over an area represented by a_2 b_2 ; if the medium M were replaced by air, the rays would be

sented by a_1 , b_1 , a large amount of light being lost in the latter case. Then for a dry-objective to receive the same a dry-objective to receive the same amount of light as that in the figure, its semi-angular aperture refracted outwards, and the pencil spread over an area reprewould have to be coa, as compared with coa.

Now ob, and oa, are parallel respectively to PP1 Q Q1, and by the law of successive refraction it is easily seen that $\sin c o a_1 \over m_n$, the refractive index of the medium M, or in other words the sine of the semi-angular aperture of the equivalent dry objective is equal to the size of the actual semi-angular diameter multiplied by the refractive index of the immersion medium (which in the case of air is unity).

penetrating and illuminating power. The Resolving Power is the It varies inversely as the numerical aperture, and directly as the square of the focal length for the same relative aperture, or in-Upon the numerical aperture depend also the resolving, Penetrating Power, or "depth of focus," is the ability to bring into focus more than one section or plane of the object at once. versely as the focal length for the same absolute aperture. Illuminating Power varies as the square of the numerical ability a given objective possesses in rendering detail clear. varies directly as the numerical aperture, cateribus paribus. aperture.

Table of Numerical Aperture.

Objective,	Angular Aperture 2α.	Index of Refraction of Immersion Medium μ .	Sine of half Angular Aperture sine a.	Numerical Aperture μ sin α.
1" (dry) 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1	20° 40° 42° 100° 75° 1136° 115° 163° 96° 12' (110° 38'	1 1 1 1 1 1 1 : 52 1 : 52	0.1736 0.3320 0.3583 0.7660 0.6687 0.9272 0.9272 0.7443 0.7443 0.9223	0.1736 0.3420 0.3583 0.7660 0.6087 0.9272 0.9272 0.9839 1.2500 1.4000

77

POWER OF MICROSCOPE OBJECTIVES RESOLVING

မ
Q
Dippe
*
\mathbf{a}
ď
멾
(fro
-24
Œ
_

Direct Light Oblique Light.	olu	_	f Danielaine D
Direct Light, Oblique Width between in Mikrons. Visible in between in Mikrons. Mikrons. 1 '40 7 0 '90 11 0 '90 11 0 '90 11 0 '70 14 0 '68 0 '70 14 0 '68 0 '65 15 0 '55 0 '65 16 0 '55 0 '65 18 0 '45 0 '65 18 0 '45 0 '8 21 0 '88 0 '8 21 0 '88 0 '8 22 0 '88 0 '44 23 0 '89 0 '44 23 0 '89 0 '44 25 0 '20 0 '8 27 0 '20 0 '8 28 0 '20 0 '8 28 0 '20 0 '8 30 0 '21 0 '8 31 0 '20 0 '8 31 0	(ng) amorado to atgra		I Resolving P
With between in Mikrons. Number language Writh between in Mikrons. With between in Mikrons. 1-70 6 1-90 10 0-74 13 0-68 0-76 14 0-66 0-70 14 0-60 0-65 15 0-75 0-66 16 0-75 0-70 14 0-45 0-75 18 0-68 0-65 18 0-75 0-75 19 0-73 0-86 20 0-80 0-44 23 0-38 0-44 23 0-36 0-42 0-42 0-26 0-44 23 0-26 0-44 23 0-26 0-8 26 0-26 0-8 28 0-26 0-8 28 0-26 0-8 31 0-20 0-8 31 0-20 0-8 31<		Direct Light,	Oblique
1.70 6 1.40 7 1.90 110 0.90 111 0.74 13 0.68 0.70 14 0.60 0.58 15 0.55 0.58 19 0.45 0.48 21 0.38 0.44 22 0.38 0.41 22 0.39 0.42 24 0.20 0.41 25 0.20 0.42 24 0.20 0.41 25 0.20 0.42 24 0.20 0.41 25 0.20 0.42 0.43 0.20 0.41 25 0.20 0.42 0.41 25 0.20 0.41 25 0.20 0.42 0.42 0.30 0.41 25 0.20 0.42 0.43 0.20 0.41 0.20 0.41 0.20 0.42 0.43 0.20 0.41 0.20 0.42 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.42 0.30 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.41 0.20 0.42 0.20 0.43 0.20 0.44 0.20 0.45 0.30 0.47 0.30	E ~	Width Number between in visible in Mikrons.	
1.40 7 1.00 110 0.80 111 0.74 18 0.08 0.75 114 0.06 0.65 115 0.55 0.60 16 0.09 0.58 119 0.38 0.41 23 0.39 0.41 23 0.39 0.41 25 0.22 0.38 22 0.23 0.38 27 0.25 0.38 27 0.25 0.38 28 0.21 0.39 0.31 0.20 0.31 20 0.21 0.31 20 0.21 0.32 0.33 0.33 0.33 0.39	:		:
1.00 10 0.90 11 0.74 13 0.68 0.70 14 0.60 0.58 15 0.55 0.56 16 0.50 0.58 19 0.38 0.41 22 0.38 0.41 22 0.30 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.42 0.31 0.20 0.31 2.0 0.21 0.32 0.33 0.21 0.33 31 0.20 0.31 0.30 0.31	:	1.40	:
0.90 111 0.80 12 0.70 14 0.60 0.65 15 0.55 0.58 17 0.45 0.58 21 0.39 0.41 22 0.30 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.41 22 0.20 0.42 24 0.20 0.41 25 0.20 0.42 24 0.20 0.41 25 0.27 0.41 25 0.27 0.41 25 0.27 0.41 25 0.27 0.41 25 0.27 0.41 25 0.27 0.42 24 0.20 0.41 25 0.20 0.42 24 0.20 0.41 25 0.20 0.42 0.20 0.41 25 0.20 0.41 25 0.20 0.42 0.30 0.41 0.20 0.31 29 0.21 0.32 0.33 0.21 0.30 0.31 0.90 0.31 31.43 0.90	:	1.00	:
0.80 1.2 0.74 1.3 0.68 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	:	06.0	:
0.74 113 0.68 0.70 14 0.60 0.60 16 0.50 0.60 16 0.50 0.58 17 0.45 0.48 21 0.38 0.48 22 0.38 0.41 23 0.39 0.41 25 0.20 0.42 24 0.20 0.41 25 0.20 0.30 20 0.20 0.31 20 0.21 0.32 31.32 0.195 0.31 31.32 0.195	:	08.0	:
0.70 14 0.60 0.65 15 0.55 0.65 17 0.45 0.58 19 0.38 0.42 21 0.39 0.44 22 0.38 0.44 22 0.39 0.45 22 0.32 0.41 25 0.27 0.38 27 0.25 0.38 27 0.25 0.38 28 0.22 0.38 29 0.22 0.38 29 0.22 0.38 29 0.22 0.38 29 0.22 0.38 31 0.20 0.39 0.31 0.20	:	0.74 13	89.0
0.65 15 0.55 0.60 16 0.50 0.55 18 0.45 0.55 18 0.45 0.50 20 0.34 0.46 22 0.36 0.41 23 0.20 0.42 24 0.20 0.41 25 0.27 0.38 26 0.26 0.38 27 0.25 0.36 23 0.21 0.37 30 0.21 0.38 31.32 0.21 0.39 31.42 0.90 0.31 31.42 0.19	:	0.70 14	09.0
0.60 16 0.50 0.53 17 0.45 0.53 19 0.42 0.53 19 0.39 0.44 22 0.32 0.41 22 0.32 0.42 24 0.23 0.41 25 0.27 0.73 27 0.25 0.36 28 0.24 0.36 28 0.24 0.37 23 0.23 0.37 31 0.20 0.31 31.32 0.19 0.30 33 0.19	:	0.65 15	0.55
0.55 17 0.45 0.56 18 0.42 0.50 20 0.38 0.48 21 0.34 0.46 22 0.32 0.41 23 0.27 0.42 24 0.27 0.43 26 0.27 0.86 28 0.25 0.86 28 0.25 0.35 28 0.25 0.36 28 0.25 0.37 30 0.21 0.32 31 0.20 0.31 31 0.20 0.30 31 0.20 0.31 33 0.19	:	0.60	0.20
0.55 18 0.42 0.53 19 0.39 0.48 21 0.36 0.46 22 0.36 0.41 23 0.30 0.42 24 0.29 0.43 25 0.27 0.39 27 0.26 0.38 27 0.25 0.36 28 0.21 0.35 28 0.21 0.37 31 0.20 0.31 31.32 0.195 0.30 33 0.19	:	0.58 17	0.45
0.58 19 0.38 0.46 22 0.38 0.41 22 0.30 0.42 24 0.30 0.41 25 0.27 0.41 25 0.27 0.38 27 0.25 0.38 28 0.21 0.38 29 0.22 0.38 29 0.22 0.38 31 0.20 0.31 31.42 0.195 0.30 33 0.19	-:	0.55 18	0.42
0.50 20 0.38 0.48 21 0.34 0.41 22 0.30 0.41 23 0.30 0.42 24 0.20 0.41 25 0.27 0.38 28 0.25 0.38 28 0.25 0.38 28 0.21 0.38 28 0.22 0.38 39 0.22 0.38 39 0.21 0.39 31 0.90 0.315 31.432 0.195	:	0.53 19	0.39
0.48 21 0.34 0.46 22 0.32 0.41 25 0.23 0.83 28 0.25 0.38 28 0.25 0.38 28 0.24 0.38 28 0.23 0.38 28 0.23 0.39 30 0.21 0.31 29 0.22 0.35 31 0.20 0.31 31.32 0.195 0.30 33 0.19	:	0.50 20	98.0
0.46 22 0.30 0.41 23 0.30 0.41 24 0.30 0.41 25 0.20 0.38 27 0.25 0.38 27 0.25 0.38 27 0.25 0.38 28 0.21 0.39 30 0.21 0.31 31.32 0.195 0.30 33 0.30	:	0.48 21	0.34
0.44 22 0.30 0.42 24 0.29 0.42 25 0.29 0.39 27 0.25 0.36 28 0.21 0.35 29 0.22 0.35 29 0.22 0.35 31 0.20 0.31 31.22 0.195 0.30 33 0.19	:	0.46 22	0.32
0.42 24 0.20 0.41 25 0.27 0.88 26 0.26 0.86 28 0.21 0.35 28 0.22 0.35 29 0.22 0.35 31 0.20 0.31 31.42 0.195 0.30 33 0.19	850	0.44 23	0.30
0.41 25 0.27 0.27 0.38 28 0.28 0.28 0.28 0.28 0.24 0.28 0.28 0.24 0.28 0.23 0.24 0.35 31 0.20 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.3	910	0.42 24	0.29
0.39 26 0.26 0.38 27 0.25 0.36 28 0.21 0.31 20 0.23 0.31 0.20 0.32 31 0.20 0.31 31 0.20 0.31 31 0.20 0.31 31 0.20	970	22	0.27
0.38 27 0.25 0.36 28 0.21 0.34 20 0.22 0.35 30 0.21 0.32 31 0.20 0.31 31 0.20 0.31 31 0.20	104°	56	0.26
0.36 28 0.24 0.35 28 0.22 0.335 20 0.22 0.335 31 0.20 0.315 31-32 0.195 0.30 33 0.19	1120	27	0.25
0.35 28 0.23 0.31 20 0.22 0.32 31 0.20 0.31 31.22 0.195 0.30 33 0.19	1190	28	0.24
0.34 29 0.22 0.335 30 0.21 0.32 31 0.20 0.315 31-82 0.195 0.30 33 0.19	128° 1	0.36 28	0.53
0.335 30 0.21 0.32 31 0.20 0.315 31-32 0.135 0.30 33 0.19	1400 1	0.36 28 0.35 28	0.55
0.32 31 0.20 0.315 31-82 0.195 0.30 33 0.19	156°]	0.35 28 0.35 28 0.34 29	-
0.315 31-32 0.195 0.50 33 0.19	:	0.36 28 0.35 28 0.34 29 0.335 30	0.21
0.30 33 0.19	:	0.35 28 0.34 29 0.335 30 0.32 31	0.20
	:	0.35 28 0.35 28 0.34 29 0.335 30 0.92 31 0.92 31	0.20 0.195

List same is caucinated upon the supposition that the mean wave-length of white light amount to 55 microcentimetres (see Table 15), and the value of $a = \mu \sin W = 0.942$; where μ is the refractive index, and W the inclination of the light entering the microscope to the optic axis. From the equation $a = \frac{\lambda}{a} - a$, is obtained the

degrees Table showing DEPTH OF VISION or greatest or in sections visible focus at the same time with various of amplification (Abbe). distance between two

Ratio of a to d. a a a a a d.	11.6 to 1 32.7 " 91.6 " 176.6 " 266 "
$\begin{array}{c} \boldsymbol{d}.\\ \text{Depth of}\\ \text{Vision}\\ \boldsymbol{b}+\boldsymbol{c}. \end{array}$	2·153 0·254 0·0273 0·0047 0·00094 0·00026
e. Focal Depth.	0.073 0.024 0.0073 0.0073 0.00024 0.00073
b. Accommoda- tion Depth.	2.08 0.23 0.02 0.0023 0.00021 0.00021
Diameter of Field.	25·0 8·3 2·5 0·83 0·25 0·083
Amplification with Numerical Aperture = .5.	10 · 30 · 100 · 1000 · 3000

PENETRATING POWER AND DEPTH OF FOCUS.

That is the distance between the extreme planes in focus at the same time with various objectives used with an A eye-piece (Davis).

Total Depth of Focus in Mikrons.	2602 2342 316 289 287 287 287 287 287 287 287 3 88 3 88 3 88 3 88 3 88 3 88 3 88 3
Depth of Accomoda- tion in Mikrons,	2080 2080 2080 2080 2380 2380 2380 2380
Depth of Focus in Mikrons.	522 262 86 69 69 60 60 60 60 60 60 60 60 60 60 60 60 60
Penetrating Power 1 N.A.	14:30 7:19 7:19 7:19 7:19 8:10 1:22 1:22 1:23 1:23 1:23 1:23 1:23 1:23
N.A. Numerical Aperture = \mu \sin \alpha.	0.1 1.10 1.10 1.10 1.10
Air Angle or Angular Aperture 2 a.	88 116° 220° 224° 40° 710° 110° 110° 110° 110° 110°
Objective.	# #

distinct when the the object do not subtend more than an angle of 1 minute at the eye, when it is held at the Under these conditions considered distance of distinct vision, say, 10 inches. photograph is generally images of the various points in

Fig. 55.

graphic plate is less than a south of 1 inch. Now in Fig. 55 let POQ reinch these images on the photoa pencil of rays emanating from a point, but converging to O after a lens, and let B C. of the pencil be supfrom plate placed anywhere between A and B will receive an diameters posed equal to 300 what has been said a the cross-sections A D, of the pencil posed equal to 3 actual traversing present the

The distance AB is called from the figure that the the aperture ratio; that It is also clear depth of focus is smaller, the greater apparently sharp image of the point, the "depth of focus." It is also cle

is to say, the greater the angle included by the cone of rays. The following tables give the distances beyond which all objects are in focus, because of "depth of focus," when the lens is adjusted for infinity.

MINIMUM CAMERA-DISTANCES FOR SHARP PICTURES WITH GIVEN APERTURE-RATIOS (from Miethe).

					Foc	Focal Length.	gth.	1			
Apert itsA	50 mm.	75 mm.	100 mm.	125 mm.	150 mm.	175 mm.	200 mm.	250 mm.	300 mm.	350 mm.	400 mm.
f/10 f/15 f/25 f/30 f/40 f/40	2:10 0:00 0:00 0:00 0:00 0:00 0:00 0:00	5.6 1.9 1.1 0.9 0.7	10.0 3.3 3.3 2.0 1.6 1.2	15.5 8.0 8.0 5.1 4.0 3.0 2.5 2.5 1.5	22.5 8.0 8.0 5.5 4.5 5.5 2.5 2.5 2.5	30.7 15.0 10.0 7.5 6.0 5.0 3.5	20 40 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	62.0 31.0 21.0 115.0 10.0 7.5 6.0	90.0 30.0 30.0 22.0 115.0 11.0 9.0	122.0 61.0 41.0 31.0 24.0 20.0 15.5	160.0 80.0 53.0 40.0 32.0 26.0 20.0

This table gives the distances in metres at which the depth-aberration is ammled of any given stop for leases of different foral lengths. It is computed on the assumption that an image may be considered sharp when the image of a point in the object does not exceed 0.1 mm. in diameter.

-			
	10,,		209.1 11.99.6 11.99.6 11.99.8 11.99.8 76.6 55.9 42.4 76.6 119.8 119.8
	7 <u>1</u> 6		188 8 135 0 108 2 108 2 108 2 108 2 108 2 108 2 108 2 108 2 109 2 100 2
	6	Hed.	169.3 1131.2 1137.2 977.2 875.2 667.3 667.3 14.4 14.5 11.1 11.1
	8±"	is annu	151.0 101.0 101.0 86.7 76.0 60.9 555.4 555.4 28.1 119.5 119.5
	**	Distance in feet at which depth aberration is annulled.	133.9 96.0 96.0 76.9 67.9 67.9 54.0 23.6 23.6 23.6 21.3 25.0 21.3 36.0 21.3 36.0 21.3 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36
ength.	7 100	pth abe	117.8 84.3 78.8 67.6 67.6 67.6 79.2 31.9 24.0 21.9 21.9 115.3
Focal Length.	1.1	hich de	102.6 73.4 568.6 568.6 568.6 568.6 568.6 57.7 7.7 13.7 13.4 1.0 13.4 1.0
	63"	t at w	888.7 633.5 50.8 88.7 118.2 118.2 8.6 8.6
	,,9	in fee	75.5 54.1.5 64.1.5 7.3 38.8 38.8 30.5 119.2 119.2 14.1 14.1 14.1 14.1 15.5
	27	stance	63.6 4.5.6 332.1 332.1 332.1 117.4 117.4 111.9 111.9 6.2 4.4
	2,4	j.	22.5 30.7.6 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30
	47"		228.5 228.5 228.5 224.5 217.5 117.5 110.9 8.8 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
	4"		233.7 24.1 119.5 1
oite?	tare-F	ıəđγ	7/220 1/110 1/120 1/144 1/442

This table is calculated from the formula

$$d = f\left(\frac{100f}{b} + 1\right)$$

where d = distance in feet at which depth aberration is annulled, measured from the lens.

f= focal length of the camera lens. b= ratio of focal length to the diameter of the stop, the aperture ratio being $\frac{f}{b}$ according to the usual nomenclature.

TABLE OF SIZES OF THE DIFFRACTION DISC (from Miethe).

Diffraction Disc Ratio.	0.0002788 0.0003482 0.0004645 0.000598 0.0013931
Linear Aperture.	m. 4 % % 1
Diffraction Disc Ratio.	0.0000189 0.0000280 0.0000897 0.0001890 0.0001742
Linear Aperture.	mm. 100 50 20 10 8

the objective. The figures in column 2 give the ratio which the diameter of the corresponding diffraction-disc (see in Table 57 Aberrations due to In column 1 are set down values of the diameters of the aperture of Aperture) bears to the focal length of the lens.

DISTANCE OF OPTICAL LANTERN FROM SCREEN TO PRODUCE REQUIRED SIZE OF DISC.

	30		feet, 30 30 50 50 60 80 80 120
	24		16et. 16 24 32 32 440 440 48 64 48 96 96
i.	20	Distance of Lantern from Screen.	104. 105. 105. 105. 105. 105. 105. 105. 105
Size of Screen.	15	Lantern fr	100 110 120 120 120 120 120 120 120 120
Siz	12	istance of	feet. 200 112 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	6	Q	feet. 6 9 112 115 124 224 36
	9		feet. 4 4 6 6 6 12 12 12 16 18 18 18 18 18 18 18 18 18 18 18 18 18
Poss	Length of Lens.		inches, 22, 33, 44, 44, 66, 66, 99, 122, 122, 122, 123, 124, 125, 125, 125, 125, 125, 125, 125, 125

REDUCTION TABLE FOR FIGURES AND HEADS. 83

The actual Size of the Image of a Head.	1.2 1.2 1.3 2.1 1.3 2.1 1.3 2.1 1.3 2.1 1.3 2.1 1.3 2.1 1.3 2.1 1.3 2.1 1.3 2.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1
The actual Size of the Image of a Man.	# 25
Ratio of the Size of the Image to that of the Object.	法法法法法法法法法法法法法法法法法法
The actual Size of the Image of a Head.	mm. 2100 105 707 708 82 85 82 82 82 82 83 84 84 84 85 86 87 88 88 88 88 88 88 88 88 88 88 88 88
The actual Size of the Image of a Man.	mm., 1750 875 883 437 330 292 250 219 117 117 88 88
Ratio of the Size of the Image to that of the Object.	여 여 시의 여 시의 시의 시킬 시킬 시킬 시킬

ţ.												Ra	tio of S	Size of	Image	to Size	of Obj	ect.								
Focal Length.	1	1/2	1 5	1 1	1 5	1 0	à.	1 8	10	10	16	1 20	25	1 30	10	1 50	1 60	10	1 50	केंद्र	100	120	110	1 150	180	200
FOCE												Dista	nces o	f Objec	t and l	Image i	rom th	ne Lens								
ı	2 2	3	4	5	6	7	8	9	10	11	15 1·1	21	26 1·0	31	41	51 1 · 0	51 1·0	71	81	91	101	121	141	161	181 1·0	201
5	3	4.5	6 2	7.5	9	10.2	12 1·7	13.5		16·5 1·7	24 1.6	31.2 1.2	39 1·6	46·5 1·5	61.5	76·5 1·5	91·5 1·5	105.5	121.5	135.5	151.5	181·5 1·5	211·5 1·5	241·5 1·5	271·5 1·5	301.
2	4	5 3	8 2·7	10 2·5	12 2·4	14 2·3	15 2·3	18 2·3	20 2·2	22	$\frac{32}{2 \cdot 1}$	42 2·1	52 2·1	62 2·1	82 2·1	102 2.0	122 2·0	142 2·0	162 2·0	182 2·0	202 2·0	242 2·0	282 2·0	322 2·0	362 2·0	402 2·0
5	5 5	7·5 3·8		12.5	3.0 12.0	17·5 2·9	20.0	22·5 2·8	25·0 2·8	27.5 2.8	40 2·7	52·5 2·6	55·0 2·6	77.5	102.5	127·5 2·6	152·5 2·5	177·5 2·5	202.5	227·5 2·5	252·5 2·5	302·5 2·5	352·5 2·5	402·5 2·5	452·5 2·5	502
	6	9	12 4·0	15 3·8	3·6	21	24 3·4	27 3·4	30	33	48 3·2	63 3·2	78 3·1	3·1	123 3·1	153 3·1	183 3·1	213 3·0	243 3·0	273 3·0	303	363 3.0	423 3.0	483 3·0	543 3·0	603 3·0
5	7	10.5		17.5	21 4·2	24·5 4·1	28 4·0	31.5	35	38.5	56 °	73.5	3·6	3.6 3.6	143·5 3·6	178·5 3·6	3.6 213.5	248·5 3·6	283·5	318.5	353·5 3·5	423·5 3·5	493·5 3·5	3.2 563.2	633·5	3.1
	8 8	12 6	16 5·3	20 5	24 4.8	28 4·7	32 4·6	35 4·5	40 4·4	44 4·4	64 4·3	84 4·2	104 4·2	124 4·1	164 4·1	204 4·1	244 4·1	280 4·1	324 4·1	364 4·0	404	484 4*0	564 4·0	644 4·0	720 4·0	804
5	9	13.5		22·5 5·6		31·5 5·3	36 5·1	40·5 5·1	45 5	49·5 5	72 4·8	94·5 4·7	117	139·5 4·7	184·5 4·6	229·5 4·5	274·5 4·5	319·5 4·6	354·5 4·6	409·5 4·6	454·5 4·5	544·5 4·5	634·5 4·5	724·5 4·5	814·5 4·5	904
	10 10	15 7·5	20 5·7	25 5·3	9.0 30	35 5·8	40 5·7	45 5·6	50 5·5	55 5·5	80 5·3	105 5·3	130 5·2	155 5·2	205 5·1	255 5·1	305 5·1	355 5·1	405 5·1	455 5·1	505 5·1	605 5·0	705 5·0	805 5·0	905 5·0	100 5·0
	12 12	18 9	24 8	30 7·5	35 7 • 2	42 7·0	48 6·9	54 6*8	60 5·6	6·6	96 6·4	126 6·3	155 5·2	186 5·2	246 6·2	306 6·1	366 6·1	425 6·1	485 6·1	545 6·1	606 6·1	725 6·1	845 6·0	965 6·0	1085 6.0	120 6·0
	14 14	21 10·5	28 9·3	35 8·7	42 8·4	49 8·2	56 8·0	63 7·9	70 7·7	77	112 7·5	147 7·4	182 7·3	217 7·2	287 7·2	357 7·1	427 7·1	497 7·1	557 7·1	637 7•1	707 7•1	847 7·1	987 7·1	1127 7·0	1267 7·0	140 7·6

This Table may be used for Inches, or for any other unit of length. If the focal length of the lens is given in inches, then the figures in the Table will give in inches, also, the distances of object and image, which are conjugate one to the other. For Example:—Given an 8-inch lens it is desired to find the positions of object and image.

ENLARGEMENT AND REDUCTION TABLE-continued.

ą												Ra	tio of 8	Size of	Image	to Size	of Ob	ject.								
Focal Length.	ż	3	1	1	1	à	3	à	3	10	18	30	र्केट	30	10	1,0	30	₹0	1 80	100	100	120	240	100	180	300
Focal												Dista	nces of	Object	and I	mage f	rom th	e Lens								
8	16	24	32	40	48	65	64	72	80	88	128	158	208	248	328	408	488	668	648	728	808	958	1128	1288	1448	1608
9	16	27	36	45	9.6	9.3	9.1	9 81	90	99	8·5 144	8·4 189 9·5	8·3 234	8+3 279	369	8·2 469	8·1 549	639	8·1 729	819	909	1089	8·1 1259 9·1	8·1 1449 9·1	8·0 1629	1809
10	18 20 20	30 16	40	60	10·8 60 12	70	80	90 10.1	9·9 100	9·9 110 11	9·6 160 10·7	210 10·5	9.4 260 10.4	9·3 9·3	9·2 410 10·3	9·2 610 10·2	9·2 610 10·2	9·1 710 10·1	9·1 810 10·1	9°1 910	9·1 1010 10·1	9·1 1210 10·1	1410	1610	9·1 1810 10·1	9·0 2010 10·1
12	24 24	36 18	48	60	72	84	95		120	132	192	252 12·6	312	372 12·4	492 12·3	612	732	852 12·2	972	1092	1212	1452 12·1	1592 12·1	1932	2172 12·1	2412 12·1
14	28 28	42	55 18·7	70	84	98	112	126 16·8	140	154	224 15·0	294 14·7	364 14·6	434 14·6	574 14·4	714	854 14·2	994 14·2	1134 14·2	1274 14·2	1414 14·1	1694 14·1	1974 14·1	2254 14·1	2534 14·1	2812 14·1
16	32 32	48 24	54 21·3	80 20	96	112 18·7		144 18·0			266 17	335 16·8	416 16*5	495 16·5	556 16•4	815 16·3	976	1136 15•2	1296 16·2	1456 15·2	1616 15·2	1935 16·1	2256 16·1	2576 15·1	2896 15·1	3216 15·1
18	35 36	54 27	72 24	90 90	108 21.6	21	20.6	152 20·3	20	198 19·8	288 19·2	378 18·9	468 18•7	558 18·6	738 18·6	918 18·3	1098 18°3	1278 18·3	1458 18°2	1638 18·2	1818 18·2	2178 18·2	2538 18*1	2898 18·1	3258 18·1	3618 18·1
20	40 40	0.	80 26·7		24	23.3	22.9	180 22.6	22.2		320 21·3	420 21	620 20.8	620 20·7	820 20·6	1020 20.4	1220 20·3	1420 20·3	1620 20·3	1820 20·2	2020	2420 20·2	2820 20·1	3220 20·1	3520 20·1	4020 20·1
25	1	76 87·6	33.3		30	29 . 2	28*6	226 28·1	27.8		400 26·7	626 25·3	650 25	775 25·8	1025 25·6	1275 26·6	1525 25·4	1776 26·4	2025	25.3	2525	3026	3525 25·2	4026 25·2	4525 25·1	5025 25·1
30	60	90 46		37·6				270 33·8		330 33	480 32	31.6 630	780 31·2	930 31	1230 30·8	30·6 1630	30.6 1830	2130	2430 30·4	2730 30·3	30.3	30.3	4230 30·2	4830 30·2	5430 30·2	5030 30·2

to produce a reduction of \(\frac{1}{2}\) in size. Looking down the column headed with the ratio \(\frac{1}{2}\) we find opposite the focal length of s inches, that the object must be 40 inches in front, and the image 10 inches behind. If, on the other hand, with the same lens we wished to produce an enlargement of 4 times, i.e. in the ratio of \(\frac{1}{2}\); the same figures must be taken in the inverse way; the image being produced at 40 inches behind, when the object is place-410 inches in front of the lens.

CAMERA VIEW-ANGLES FOR (after Woodman). OF 85 TABLE

f Lens.	View Angle,	6.6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
equivalent) o	Quotient.	1.8 1.8 1.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
Divide the Width of Plate by Focal Length (equivalent) of Lens.	View Angle.	\$\frac{1}{2}\$
of Plate by E	Quotient.	7.18 7.88 8.88 8.89 8.25 8.41 8.71 9.71 1.00
e the Width	View Angle.	0.000 0.000
Divic	Quotient.	9.82 817 817 818 818 818 818 818 818

sizes of photographic Example.-The following are the principal plates.

Quarter Plat	Half Plate.	William Dlate
4,	4	01
×	×	>
33	$6\frac{1}{2}$	G

ě

 $6\frac{1}{8} \times 8\frac{1}{8}$ Whole Plate, 5×4 $7\frac{1}{8} \times 5$ 10×8

Given a lens of 9 inches focal length, find the view angle included by it on a half plate.

The greatest width of a half plate is 64 inches. Honce the quotient is 64+9=0.722. Comparing this with the table, we see that this value is intermediate between 708 and 728. Hence the view angle will be between 39° and 40°. 86 Table of Sensibility of the Normal Eye to Light from different parts of the Spectrum (compiled from Abney).

Fovea Centralis.	က	20.6	77	100	86	90	99	40	18	4.7	0	0
Yellow Spot.	တ	17.6	65	66	100	97	75	20	24	6.3	0.20	0.14
Outside Yellow Spot.	1.5	10.5	35	0.17	42	82	72.5	52	33.5	17.5	2.0	0.5
λ (see Table 15.)	686-7	656.3	624.2	589.6	585.0	572.0	548.1	527.0	504.3	486.1	430-8	410.18
Frauenhofer Line, and Colour.	Full red B	Orange red C	Mid orange	Full yellow D	Mid yellow	Primrose	Mid green	Green E	Peacock	Blue F	Deep Blue G	Violet h

the Relative Sensations produced in the Eye by equal parts of different Quantities of Energy in Spectrum (from Palaz). 87

Relative Luminous Sensation.	1	1200	14000	28000	100000	62000	1600
See Table 15.	759	656	009	280	530	470	400
			•		•		
i			٠				
Colour.						٠	•
	Dull red	Red .	Orange.	Yellow .	Green .	Blue .	Violet .

UNITS. PHOTOMETRIC

The bougie decimale is 1 Violle unit; it therefore equals 0.925 British

candles, or 0.945 Hefner units.

The unit of illumination of a surface is the amount of illumination of that surface produced by one longs decimals at the distance of one metre. British engineers often take as unit of illumination the illumination produced by one canale at the distance of one fool. The Geneva Congress of 1896 adopted, however, the former unit, together with the following.

NAME OF CORRESPONDING UNIT.	Bougie decimale.	$ \begin{cases} 1 \ Lux = 1 \ \text{Bougie decimale at distance} \\ \text{of } 1 \ \text{metre.} \end{cases} $	/1 Lomes = the flux due to 1 bougie decimals within a solid angle equal to unity. Hence the total flux all round from a light of 1 bougle decimale = 4 m lumens. I Lumen spread over 1 square metre gives an illumination of 1 lux.	[1] Bougie decimale per square centimetre. [1] Iumen-hour.
QUANTITY TO BE EXPRESSED.	Intrinsic Light Intrinsic Brilliancy Candle-power	Illumination of Surface	Quantity of Light Total light in a pencil Luminous Flux	Brilliancy of flame Luminosity of flame Specific luminosity Quantity of Lighting

STANDARDS. PHOTOMETRIC Q.F. COMPARISON

Hefner Lamp.	18.9 9.08 1.17 1.15 1.02 1.00
English Candles.	18.5 8.91 1.15 1.00 0.98
German Candles,	16.4 7.89 1.02 1.00 0.886 0.869
Star Candles.	16·1 7·75 1·00 0·984 0·870 0·853
Carcel Lamp.	2.08 1.00 0.130 0.127 0.112 0.114
Violle Units.	1.000 0.481 0.062 0.061 0.054 0.053
	Violle unit . Carcel Star candle . German candle English candle Hefner Lamp.

Electric Arc = from 110 to 160 candles per square millimetre of crater according surface; according to Blondel, 138 bougie decimales per sq. mm.; accor to Recrael, 147 bougie decimales per sq. mp. pattone, the Harourf's Pentane Lamp, burning pure partone, under standard Harourf's Pentane Lamp, burning pure partone, under standard dittions, is constructed in several sizes from 1 to 10 British candles.

The Heiner Lamp, burning any acctate, with a rather redish flame, is Booked in Germany as a standard, acctate, with a rather redish flame, is Booked has proposed a whiter standard lamp of equal total power, burning a mixture of 84 parts by volume of absolute alcohol with 16 parts of pure crystallizable benzel. Flame standards may vary as much as 4 per cent. with humidity of air. The Reflective power of a surface of given area is the ratio of The Brightness of a diffusing surface is its candle-power per the quantity of light reflected to the quantity incident upon it.

unit area in a direction normal to its surface.

The Illumination of a surface is the quantity of light falling on it per second per unit of area.

If η is the reflective power of a surface, B the brightness, I the illumination, then π B = η I.

In an enclosed space containing sources of light, let I' be the average illumination of the walls, I the illumination of the walls due to the direct light of the sources alone.

Then
$$\Gamma = \frac{1}{1-\eta}I$$
.

DIFFUSE REFLECTIVE POWER OF VARIOUS MATERIALS.

$\frac{1}{1-\eta}$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
" (per cent.)	88 88 88 88 89 89 89 89 89 89 89 89 89 8
	(98)
Material.	White blothing paper actridge paper actridge paper paper actridge paper actridge paper actridge paper actridge paper actridge paper actridge actrid

incident light; $\frac{1}{1-\eta}$ is the coefficient by which the ulumination or wans on a room by direct light from the source of illumination must be multi lied in order to obtain the average illumination. In the above table η is the reflective power expressed as percentage of

91 Reflective Power in Percentage of Incident Light (Hagen & Rubens).

magarr)	ಕ	vanaens).			
	Blue	Green	$Yellow\\\lambda = 550$	Orange	Red λ=700
A. CLEAN METALS.	%	%	%	%	%
Silver	9.06	91.8	92.2	93.0	94.6
Platinum	55.8	58.4	61.1	64.2	70.1
Nickel	58.5	8.09	62.6	64.9	8.69
Steel, hardened	9.89	9.69	59.4	0.09	2.09
Steel, unhardened	56.3	55.5	55.1	96.0	59.3
Gold	8.98	47.3	74.7	9.58	92.3
Copper	48.8	53.3	59.5	83.5	2.06
B. Sproulum Metals.					
Rosse's alloy-					
68.2 % Cu + 31.8 % Sn.	65.9	63.2	64.0	64.3	67.3
Brashear's alloy—					
68.2 % Cu + 31.8 % Sn.	6.19	63.3	64.0	64.4	68.5
Schröder's alloy No. 6-					
60 % Cu + 30 % Sn + 10 % Ag	61.5	62.5	9.89	65.2	9.89
Ludwig Mach's alloys—					
No. 1 (2 pts. Al + 1 pt. Mg) .	83.4	83.3	82.7	88	83.3
No. 7 (1 pt. Al + 1.5 pts. Mg)	83.4	82.5	82.1	83.8	84.4
No. 12 (1 pt. Al $+ 2.75$ pts. Mg)	83.4	84.5	83.8	84.5	83.8
C. GLASS MIRRORS.					
Backed with silver	82.5	84.1	85.4	85.3	87.1
Backed with mercury amalgam .	72.8	6.02	71.2	6.69	72.8

Sheet glass reflects, at perpendicular incidence, about 8.7 per cent, and transmits about 91.3 per cent, of the light that falls upon it. A transparent substance laving refractive index μ reflects the fraction of it represented by $(\mu-1)^2$ $(\mu+1)^2$.

	Name and Tint.	Density.	Hardness.	Crystal System.	Twin Colours seen in Dichroïscope.
RED STONES.	Ruby; pink to deep red: best tint pigeon's blood. Spinel; pink to deep crimson. Rubellite (Fink Tourmaline); rose or rose pink. Pink Topas; pale pink. Red Diamond; pink or ruby red Garnet (Almandine; "Cape Ruby"); dark red, brownish red, or purplish red. Jacinth; dark sherry. Rose Quartz; pale rose.	3·95 3·5 3·15 3·5 3·52 3·6 to 4·2 4·5 2·66	8–9 · 8 7–8 8 10 7 7–8 7	II III IV I I II III	Darker and more purple red; paler and redder tint. Both alike. Pink or red; white or pale red. Pale rose; yellow. Both alike. Both alike. Red-brown; greenish.
ORANGE OR BROWN.	Jacinth; brown red or cinnamon . Garnet; brown red Diamoud; cinnamon or brown Tourmaline; brown or deep orange	4.5 3.6 to 4.2 3.52 3.15 3.3	7-8 7 10 7-8 6-7	II I III V	Bed-brown; brownish green. Both alike. Brown; straw. Dark brown; pale brown.
YELLOW.	Topaz; full yellow to pale yellow Cairngorm (Yellow Quartz) Yellow Sapphire; bright yellow Yellow Beryli (Emon yellow Chrysoberyl; lemon yellow Yellow Diamond; canary Amber; pale yellow to orange	3.5 2.66 3.95 2.71 3.7 3.52 1.03	8 7 9 7–8 8–9 10 Soft	IV III III IV I I	Deep yellow; pale yellow. Yellow; greenish. Straw yellow; greenish yellow. Both alike. Both alike.

107

COLOURS, DENSITY AND HARDNESS OF GEMS-continued.

	· · · · · · · · · · · · · · · · · · ·					_
	Name and Tint.	Density.	Hardness.	Crystal System.	Twin Colours seen in Dichroïscope.	
GREEN.	Emerald; emerald green Hiddenite; fuller green than emeralds Green Garnet; gooseberry green Green Sapphire; dull green Olivine (Peridot, Chrysolite); sage green Tourmaline; darker green than emerald. Moroxite (Apatitle); sage green Green Diamond; pale grass Chrysoprase; turbid green Alexandrite; dull emerald by daylight; mulberry red by candle light. Jargoon; dirty yellowish	2·71 3·15 3·5 3·95 3·95 3·15 3·26 3·52 2·66 3·7 4·5	8 6½-7 8 9 6-7 7-8 5 10 7 8-9	III V I II III III III III III III III	Blue green; yellow green. Green; yellow green. Both alike. Blue green; yellowish green. Pea green; dull yellow. Blue green; yellow or straw. Both alike. Mulberry red; dull green. Dull green; whitish.	
BLUE.	Sapphire; pale blue to deep blue . Blue Diamond; pale blue . Blue Topaz; sea blue . Blue Berl; greenish blue . Aquamarine; pale sea blue . Indicolite (Tourmaline); indigo .	4·0 3·52 3·5 2·7 3·15	9 10 8 8 8 7–8	II IV III	Darker blue; paler and greener blue. Both alike. Blue; pale yellow green. Blue; green. Pale blue-green; pale yellowish green. Indigo; greyish blue.	
VIOLET.	Violet Sapphire (Oriental Amethyst) Violet Spinel; violet or mauve Violet Tournaline; slaty violet Amethyst; amethyst Iolite (Cordierite); dull violet or lavender Kunzite; lilae	4·0 3·5 3·15 2·66 2·63 3·17	9 8 7-8 7 7-7½ 6½-7	II I III III IV V	Violet blue; duller blue. Both alike. Violet; grey blue. Deep blue; buff. Lilac; pale lilac.	

128

	Name and Tint.	Density.	Hardness.	Crystal System.	Twin Colours seen in Dichroïscope.	Ħ
BLACK.	Black Diamond . Tourmaline very dark brown or green . {	3·52 3·15 3·3	10 7-8 7-6	I III V	Both alike. Differently dark. Differently dark.	
WHITE STONES.	Diamond White Sapphire White Topaz faint bluish tint White Beryl faint bluish tint Phenskite Jargoon (White Jacinth); often dirty white. Andalusite: greyish white or reddish Quartz (Rock Crystal) White Spinel	3·52 3·95 3·5 2·7 2·97 4·5 3·15 2·66 3·5	10 9 8 7-8 7-8 7-8 7-8	I II III III II IV III IV	Both alike, Both alike, Both alike, Both alike, Both alike, Both alike, Grey and white, Blood red; grey white, Both alike, Both alike,	(129)
OPAQUE.	Heliotrope (Bloodstone); dark green with red flecks. Malachite; full green Lapis Lazuli; ultramarine Turquoise; sky blue Nephrite (Jade); dull emerald	2·6 3·8 2·4 2·75 3·33	7 3½ 5 6 6½-7	Noble Opal of blues, with red other tin The Chato (Krokido	density of 2.6 and a hardness of 6.7.11. is transparent, but shot with brilliant streaks greens and reds. Fire Ogal is yellowish, shot. Milk Ogal turbid white, shot with red or some Gens, such as Cat's Eye, Tiger's Kye lite), Moonstone (Felspar) and the like, are ecognised by their shimmer.	

In the above Table the Density means the Specific Gravity as compared with water as 1.

The Hardness is on the ordinary empirical scale as follows:—10 Diamond; 9 Corundum; 8 Topaz; 7 Quartz; 6 Felspar; 5 Apatite; 4 Fluorspar; 3 Calespar; 2 Gypsum; 1 Talc.

The Crystalline Systems are as follows:—I Cubical; II Tesseral or Square Prismatic; III Hexagonal; IV Right Rhombic or Trimstric; IV Monoclinic; VI Trickinic. Of these I has no optic axis; II and III have one optic axis; while IV, V and VI have two optic axes. Those of class I are monochroic, all others are dichroic. The Dichroicope affortis one of the most useful of tests in distinguishing gems. Thus garnets and spinels are monochroic, and can instantly be distinguished from rubles and rubelities, which are dichroic. Reconstructed rubles are dichroic, become visit in the natural gem.

93 TINTS OF NEWTON'S COLOURS OF THIN FILMS (AIR).

Tint in Reflected Light.	Black. Grey. Whitish. Straw. Orange. Brick Red. Dark Purple.	Violet, Blue, Peacock, Yellow, Orange, Red, Violet,	Bine. Peacock. Green. Yellowish Green. Rose. Crimson.	Violet. Peacock. Green. Yellowish Green. Rose.	Pale Green, Pale Rose, Rose. Pale Peacook,	Pale Rose. Rose Pale Green. Pale Rose.
Film Thickness, in millionths of 1 inch.	0 8.5 8 10 10	111.5 118 118 119.5 22	24 25·5 27 29·5 31 32·5	34.5 38 40 44	48 52 55 60	64 66 71 74
Order,	ri .	п		IV.		VI.

PRINTED BY WILLIAM CLOWES AND SONS, LIMITED, GREAT WINDMILL STREET W., AND DUKE STREET, STAMFORD STREET, S.E. LONDON

NOUN

Liqueds

Steptiane 1:29. Carten tetrocklor 1:46 Notes Brougene 1:55 Bronofone 1:59.

Solids

godeni alumin alum	1:439
Oct " "	1.456
ON chlorida	1'49
Tool "	1.544
Od- Born	1.559
aurum Chlor	1640
Oot Dodid	1.867
an men I orlect	1'700
Cesium Ioded	1.788
ON Mercurie Toslede	

E Pot Boolide aurung OA 90d Zui Gulph oce 1'56 Yum Asakii Sugas 156 5 ulplus

