El modelo de Goodwin. Ciclos económicos e inversión en Bolivia

The Goodwin's model. Economic Cycles and Investment in Bolivia

Javier Aliaga Lordemann* Raúl Rubín de Celis** Horacio Villegas Quino***

Resumen

Los ciclos económicos en Bolivia son estables en el largo plazo, pero no en el corto plazo; aun así, los ciclos-límite muestran que existe equilibrio. Tanto el acelerador como el tiempo de fabricación de nuevos bienes de capital dependen de las percepciones de las políticas del Gobierno. Si estas políticas permitieran que el tiempo de fabricación de nuevos bienes de capital se redujera o el impacto del acelerador fuera mayor, mejoraría el impacto de la inversión sobre el producto, teniendo como resultado ciclos estables tanto en el corto como en el largo plazo.

Abstract

The economic cycles in Bolivia are stable in the long term but not in the short term. Eventho the cycles-limit show that balance exists. The accelerator as the time of manufacture of new capital assets clearly depends on the perceptions of the policies of the government. If these policies allow that the time of manufacture of new capital assets is reduced or the impact

^{*} Director del Instituto de Investigaciones Socio Económicas (IISEC-UCB), La Paz - Bolivia, jaliaga@ucb.edu.bo

^{**} Investigador Asociado del Instituto de Investigaciones Socio Económicas (IISEC-UCB). La Paz - Bolivia. celis@ucb. edu.bo

^{***} Investigador del Instituto de Investigaciones Socio Económicas (IISEC-UCB). La Paz - Bolivia. hvillegas@ucb.edu. bo

of the accelerator was greater, would improve the impact of the investment on the product, having had as result stable cycles in the short term and length term.

Palabras clave: Ciclos económicos, inversión, equilibrio, estabilidad, corto plazo, largo plazo, acelerador, producto, no linealidad, economía dinámica, inestabilidad.

Keywords: Economic cycles, Investment, Balance, Stability, Short Term, Long Term, Accelerator, Product, non - linearity, Dinamic economy, Instability.

Clasificación / Classification JEL: C62, E22, E32

1. Introducción

El producto de una economía está determinado por diversos factores. Establecer cuáles son estos factores y su importancia relativa, ciertamente no es una tarea sencilla. El producto se mueve en ciclos, pero las causas, regularidad y magnitud pueden diferir mucho entre economías. Por ejemplo, los países fuertemente expuestos al comercio internacional muestran características muy distintas en las fluctuaciones del PIB, con respecto a los países menos dependientes del intercambio. En conclusión, se podría decir que no existe una explicación única de las fluctuaciones económicas.

Ackley (1970) menciona que en casi todas las teorías macroeconómicas se ha asignado una posición de crucial importancia a la inversión, y entre ellas figura la teoría de los ciclos económicos. El papel primordial que tiene la inversión probablemente refleja la gran inestabilidad de ésta.

La inversión en Bolivia en 1982 fue del 10 por ciento del PIB, mientras que el 2009 alcanzó el 17 por ciento del PIB. La inversión ha aumentado con creces desde que Evo Morales asumió el poder.

¿Cuál es la importancia de la inversión sobre el ciclo? Este documento examinará la causalidad de la inversión en los ciclos económicos. Se debe resaltar que la inversión es el componente más difícil de aproximar, dificultando su análisis. En consecuencia, el empleo de un modelo no lineal es mucho más beneficioso, permitiendo estudiar los ciclos en el corto y largo plazo.

La segunda parte explica los fundamentos del modelo de Goodwin y la tercera, el modelo forzado de Van der Pol. La cuarta sección presenta el modelo econométrico, la quinta los resultados y la sexta concluye el documento.

2. Modelo de ciclos económicos de Goodwin

El modelo de Goodwin no predice los ciclos económicos, muestra cómo los ciclos económicos futuros tienden a ajustarse o aproximarse a los ciclos que muestra el modelo; por lo tanto, refleja el equilibrio o desequilibrio de los ciclos económicos en el tiempo. Así como los modelos de crecimiento de Solow, Ramsey y otros muestran cómo sería el nivel de producto *per cápita* en el tiempo, no el producto *per cápita* para cada periodo; el modelo de Goodwin opera respecto de los ciclos económicos.

De acuerdo a Matsumoto (2007) existen varias aproximaciones al modelo de ciclos económicos, desde un modelo básico lineal hasta el modelo no lineal. Goodwin (1951) muestra una aproximación de los ciclos económicos a una forma no lineal.

De acuerdo a Matsumoto (2007), existen varias aproximaciones al modelo de los ciclos económicos, desde un modelo básico lineal hasta el modelo no lineal. Goodwin (1951) muestra una aproximación de los ciclos económicos a una forma no lineal.

Strotz, Mcanulty y Naines (1953) muestran que el modelo de Goodwin parte de los siguientes supuestos:

$$y(t) = c(t) + \dot{k}(t) + l(t)$$

$$c(t) = \alpha y(t) - \in \dot{y}(t) + \beta$$

$$k(t) = \varphi[\dot{y}(t - \theta)]$$
(1)

Donde y(t) es el ingreso, c(t) es el consumo, α es la propensión marginal a consumir, β es el consumo autónomo, $\dot{k}(t)$ es la inversión inducida, l(t) es la inversión autónoma, $\phi[\dot{y}(t-\theta)]$ refleja las decisiones de inversión, \in es el tiempo que se tarda en producir nuevos bienes de consumo $y(\theta)$ es el tiempo que se tarda en la fabricación de bienes de capital. Los valores de $\in y(\theta)$ son expresados en años.

Goodwin reduce (1) a una ecuación oscilatoria:

$$\in \theta \ddot{y} + (\in +(1-\alpha)\theta)\dot{y} - \varphi(\dot{y}) + (1-a)y = 0^*(t)$$
 (2)

La ecuación (2) no muestra aún una relación con los ciclos económicos. Goodwin supone que $0^*(t)$ no depende del tiempo y que puede aproximarse a una constante. A partir de ello, estudia las desviaciones de equilibrio del ingreso: $0^*(t)/(1-a)$. Luego, los ciclos económicos pueden aproximarse como:

$$z(t) = y(t) - \frac{0^*}{1-a}$$
 (3)

Reemplazando la ecuación (3) en la ecuación (2) se tiene:

$$\in \theta \ddot{z} + (\in +(1-a)\theta)\dot{z} - \varphi(\dot{z}) + (1-a)z = 0$$
 (4)

La expresión (4) es una ecuación oscilatoria en función de los ciclos económicos.

3. Modelo forzado de Van der Pol

Chian (2007) muestra cómo se puede aproximar la ecuación (2). Luego, la ecuación (4) quedaría como:

$$\ddot{z} + \mu(z^2 - 1)\dot{z} + z = 0$$
 (5)

La ecuación (5) es conocida como la ecuación de Van der Pol. Determinar cómo estará compuesto μ es decisivo para el análisis del modelo de Goodwin.

En la ecuación oscilatoria de Goodwin expresada en la ecuación (4), Matsumoto y Suzuki (2006) demuestran la coexistencia de múltiples ciclos económicos a través de la bifurcación de Hopf.

En el caso de la ecuación de Van der Pol expresada en (5), la bifurcación de Hopf está determinada por el parámetro μ . Matsumoto y Suzuki (2006) muestran que la expresión $v - [\in +(1-a)\theta]$ determina la estabilidad del modelo (el equivalente a μ).

Reemplazando esta expresión en (5) se tiene:

$$\ddot{z} + [v - \in -(1-a)\theta](z^2 - 1)\dot{z} + z = 0$$
 (6)

Donde $v = \frac{d\varphi(0)}{dz}$ mide los cambios de las decisiones de inversión frente a variaciones en los ciclos económicos. También se lo interpreta como el acelerador no lineal.

4. Modelo econométrico

La dificultad de estimar el modelo de Goodwin la constituyen los parámetros α , β , \in y θ . Goodwin no cuantificó estos parámetros, sino simplemente se basó en estudios previos sobre sus valores.

Una aproximación econométrica de los parámetros α , β , \in y θ se puede obtener a partir de la ecuación (2). Considerando un modelo de economía abierta y expresando la ecuación en términos discretos se tendría:

$$y(t) = \frac{1}{(\epsilon + 1 - \alpha)(1 + \theta)} O^*(t) + \frac{1}{(\epsilon + 1 - \alpha)(1 + \theta)} \varphi(\Delta y) + \frac{2_{\epsilon}\theta + \epsilon + (1 - \alpha)\theta}{(\epsilon + 1 - \alpha)(1 + \theta)} y(t - 1) - \frac{\epsilon \theta}{(\epsilon + 1 - \alpha)(1 + \theta)} y(t - 2) + \varepsilon_t$$

$$(7)$$

Donde $O^*(t) = \beta + l(t) + g(t) + x(t) - m(t)$, g(t) es el gasto del Gobierno, x(t) son la exportaciones y m(t) son las importaciones. Esta ecuación muestra un modelo dinámico con rezagos distribuidos. Reexpresando (7) se tiene:

$$y(t) = \beta_0 + \beta_1 \varphi(\Delta y) + \beta_2 y(t-1) - \beta_3 y(t-2) + \varepsilon_t$$
 (8)

El modelo descrito anteriormente es un ARDL (2,0). Debido a la presencia de raíz unitaria en las series, el modelo de corrección de errores asociado es:

$$\Delta y(t) = \beta_0 + \beta_1 \varphi(\Delta y) + \beta_2 \Delta y(t-1) + (\beta_2 + \beta_3) y(t-2) - y(t-1) + \varepsilon_t \tag{9}$$

Sin embargo, no es correcto estimar como constante a β_0 , luego:

$$\Delta y(t) = \beta_1 0(t) + \beta_1 \varphi(\Delta y) + \beta_2 \Delta y(t-1) + (\beta_2 + \beta_3) y(t-2) - y(t-1) + \varepsilon_t \quad (10)$$

Es necesario resaltar que se está buscando una relación de largo plazo, por lo que se tiene $0(t) + \varphi(\Delta y) \cong fbk(t) + g(t) + x(t) - m(t)$, donde fbk(t) es la formación bruta de capital fijo.

Si bien Goodwin define los ciclos económicos a través de la expresión (3), existen metodologías alternativas; por ejemplo el filtro Hodrick–Prescott. Costain (2005) muestra cómo se calcula el componente cíclico del producto. Para ello transforma la serie del producto en logaritmos:

$$y(t) = \log Y(t) \tag{11}$$

El producto está compuesto por su tendencia y su desviación:

$$y(t) = \tau(t) + \delta(t) \qquad (12)$$

donde $\tau(t)$ es la tendencia obtenida a través del filtro Hodrick–Prescott y $\delta(t)$ son los ciclos económicos.

La expresión (12) es análoga a la expresión (3) del modelo de ciclos económicos de Goodwin.

Donde:
$$z(t) = \delta(t) y \tau(t) = \frac{0^*}{1-\alpha}$$

5. Resultados

El estudio abarca el periodo comprendido entre 1980 y 2009. Se emplearon mínimos cuadrados no lineales en la estimación de todos los parámetros, con el fin de estimar un modelo de corrección de errores y poder restringir los parámetros de acuerdo a la teoría económica, sin la necesidad de usar un test de Wald para cada coeficiente.

5.1. Parámetros α, \in , y θ

La expresión (10) nos permite aproximar algunos de los parámetros necesarios para estudiar el Modelo de Goodwin. El Cuadro 1 muestra los resultados de la estimación.

Cuadro 1
Parámetros del modelo de Goodwin en su forma reducida

ß ₁	0.16
B_2	1.54
β_3	-0.57
R ²	0.63
R² ajustado	0.61

Fuente: Elaboración propia

Los parámetros β_1 , β_2 y β_3 no permiten una interpretación directa, por lo que se hace necesario obtener los parámetros estructurales a partir de las expresiones (7) y (10), tal como se obserba en el Cuadro 2.

Cuadro 2
Parámetros del modelo de Goodwin en su forma estructural

α	0.82
\in	0.28
θ	13.06

Fuente: Elaboración propia

Los resultados indican que en Bolivia la propensión marginal a consumir es 0.82. A su vez, el tiempo que se tarda en producir nuevos bienes de consumo en la economía es menor a uno, cercano a 0.25, lo que significa que se tarda aproximadamente un trimestre en producirlos. Por otro lado, el tiempo que se destina a la fabricación de nuevos bienes de capital es muy alto, más de 13 años.

5.2. Acelerador no lineal

Los ciclos se obtuvieron a través del filtro Hodrick–Prescott, para lo cual se seleccionó el parámetro lambda, igual a 6.65. Según Maravall y del Río (2001), se debe usar un lambda entre 6 y 14 para datos anualizados. (ver Cuadro 3).

Cuadro 3
Acelerador no lineal del modelo de Goodwin

V	4.33
R ²	0.77
R² ajustado	0.77

Fuente: Elaboración propia

El acelerador no lineal podría ser interpretado como una variación en años de las decisiones de inversión frente a una variación en el cambio en los ciclos del producto. El valor del acelerador es de 4 años y un trimestre, aproximadamente.

Poder saber la incidencia del acelerador no solo depende de su valor característico, sino de su interacción con α , \in y θ . De acuerdo a los criterios que se señalaron sobre la coexistencia de múltiples ciclos económicos, se puede determinar que la incidencia del acelerador es mayor que la producción de nuevos bienes de consumo y capital; dando como consecuencia la presencia de ciclos económicos.

5.3. Ciclos-límite y ciclos económicos

Una manera de observar la estabilidad de los ciclos económicos es a través del ciclo-límite. Un ciclo-límite es un diagrama en dos dimensiones que muestra trayectorias; si la trayectoria es cerrada sin desviaciones, los ciclos económicos son estables; si presenta desviaciones con respecto a su trayectoria cerrada, los ciclos económicos son inestables; si presenta múltiples trayectorias y desviaciones, los ciclos económicos son caóticos.

Se graficó el ciclo-límite para Bolivia a partir de la ecuación (6). Las condiciones iniciales que se establecieron se tomaron a partir los ciclos obtenidos por el filtro Hodrick-Prescott. Los valores de z(0) corresponden al año 2009 y z'(0) es la diferencia entre los años 2009 y 2008 (ver Gráfico 1).

Gráfico 1: Ciclo-límite

Fuente: Elaboración propia

También se procedió a graficar los ciclos económicos, bajo las condiciones iníciales anteriormente descritas (ver Gráfico 2)

Gráfico 2: Ciclos económicos

Fuente: Elaboración propia

La expresión (6) es una ecuación no lineal, por tanto las condiciones iniciales de z'(0) podrían estar sobredimensionas. En otras palabras, se trata de un modelo continuo, y una

diferencia entre años es demasiado amplia; entonces es necesario volver a ilustrar el ciclo límite y los ciclos económicos, ahora reduciendo el valor de z'(0) (ver Gráficos 3 y 4)

Gráfico 3: Ciclo-límite con variación menor de z'(0)

Fuente: Elaboración propia

Gráfico 4: Ciclos económicos con variación menor de z'(0)

Fuente: Elaboración propia

Las dos situaciones ilustradas anteriormente muestran ciclos-límite estables. Inicialmente, ambos casos presentan ligeras desviaciones que posteriormente desaparecen. Se puede observar esto claramente en los ciclos económicos, especialmente en los ciclos iniciales, que no se comportan de la misma forma que los ciclos posteriores.

6. Conclusiones

Las implicaciones del modelo de Goodwin forzado a una ecuación de Van der Pol son altamente significativas. Muestran que los ciclos económicos son estables en el largo plazo y no así en el corto plazo; aun así, los ciclos-límite muestran que existe equilibrio.

La estabilidad está explicada básicamente por el acelerador. El acelerador, al ser mayor que el tiempo que se destina a producir nuevos bienes de consumo y nuevos bienes de capital corregido por la propensión a ahorrar, explicaría la presencia de ciclos estables en el largo plazo; pero debido a las condiciones iniciales, se tiene una variación en el corto plazo.

El consumo en la economía boliviana es alto; la propensión marginal a consumir es cercana a 0.85, reduciendo el impacto del acelerador debido a que la propensión a ahorrar estaria cerca a 0.25. Por otra parte, el tiempo que se tarda en producir nuevos bienes de consumo es un trimestre. Ambos hechos reflejan una economía que desincentiva a las inversiones en la fabricación de nuevos bienes de capital.

La capacidad de fabricar bienes de capital en Bolivia es baja, puesto que se tarda mucho tiempo en crear estos nuevos bienes. Por lo tanto, en Bolivia la brecha entre el tiempo de producir nuevos bienes de consumo y nuevos bienes de capital es amplia.

Estas consideraciones muestran que actualmente en Bolivia la producción de nuevos bienes de capital tomaría un poco más de trece años; esto podría ser el resultado de la percepción de los inversores y la población boliviana sobre invertir en el país.

Tanto el acelerador como el tiempo de fabricación de nuevos bienes de capital dependen de las percepciones de las políticas del Gobierno. Si éstas permitieran que el tiempo de fabricación de nuevos bienes de capital se redujera o el impacto del acelerador fuera mayor, mejoraría el impacto de la inversión sobre el producto, teniendo ciclos estables tanto en el corto como en el largo plazo.

Artículo recibido en agosto de 2010 Manejado por: ABCE Aceptado en marzo de 2011

Referencias

- 1. Ackley, Gardner (1970). Teoría macroeconómica. The Macmillan Company (1º edición). Unión Tipográfica. Editorial hispano-americana.
- 2. Chian, Abraham C.-L. (2007). Complex Systems Approach to Economic Dynamics. Berlin: Springer-Verlag.
- 3. Costain, James (2005). "Apuntes sobre el PIB y hechos estilizados". Universidad Carlos III de Madrid.
- 4. Hodrick, Robert y Edward C. Prescott (1997). "Postwar U.S. Business Cycles: An Empirical Investigation". Journal of Money, Credit, and Banking.
- 5. Goodwin, R. M. (1951). "The Nonlinear Accelerator and the Persistence of Business Cycles". Econometrica, (19), 1-17.
- 6. Maravall, Agustín, y Ana del Río. 2001. "Time Aggregation and the Hodrick-Prescott Filter". Banco de España.
- 7. Matsumoto, Akio, y Suzuki, Mami (2006). "Coexistence of Multiple Business Cycles in Goodwin's 1951 Model". The Institute of Economic Research. Chuo University.
- 8. Matsumoto, Akio (2007). "Note on Goodwin's 1951 Nonlinear Accelerator Model with an Investment Lag". The Institute of Economic Research. Chuo University.
- 9. Strotz, R.H., J.C. Mcnulty y J.B. Nornal Jr. (1953). "Analysis of types of oscilations in Goodwin's Model of Business Cycles". Econometrica, (21), 330 411.

Anexo 1: PIB en Bs. de 1990 por el lado del gasto

Año	С	G	FBK	VE	Х	M	Υ
1980	10804472085,50	2353886166,22	1963222457,31	-45476438,79	2888765388,41	2703641315,64	15261228343,00
1981	10849053041,03	2551141826,94	1922221076,99	-19461031,53	2926118049,45	2925782175,52	15303290787,35
1982	10414387224,81	2476903599,78	1395659421,27	59743156,16	2542159111,24	2188318244,33	14700534268,94
1983	9937017611,39	2185867426,81	1222858129,62	70418383,99	2590569845,40	1900410569,85	14106320827,35
1984	9934988853,68	2269148975,77	1313044313,06	488416486,86	2433438756,19	2361023105,40	14078014280,15
1985	10330239657,73	2101231951,56	1499459393,06	785208511,02	1977362408,30	2851490034,30	13842011887,35
1986	10844192384,73	1804538000,00	1560451720,82	27395939,22	2355680932,83	3106524447,21	13485734530,38
1987	11181302419,68	1735759000,00	1644120395,39	221846150,43	2381708125,40	3346782565,06	13817953525,84
1988	11280821243,86	1801118000,00	1742299509,97	195149647,14	2541494686,65	3340896485,76	14219986601,86
1989	11482159472,76	1816974000,00	1706846387,00	-62339863,12	3166948934,45	3351646214,02	14758942717,07
1990	11869886151,98	1815415000,00	1939424555,60	-4100535,63	3517480312,12	3694969556,04	15443135928,03
1991	12264367594,82	1876065000,00	2309227550,00	192895314,64	3774038251,18	4160140935,32	16256452775,32
1992	12700433425,95	1945335000,00	2587870423,43	47433705,40	3816036039,01	4572993591,57	16524115002,22
1993	13122712290,37	1994606000,00	2655894506,00	-22412085,82	4018461402,73	4539683683,88	17229578429,41
1994	13507684028,89	2057084000,00	2442940908,98	-88668724,48	4625108480,44	4510420144,83	18033728549,01
1995	13905760375,51	2193477000,00	2780084100,65	-136030388,41	5046839254,42	4912734180,79	18877396161,37
1996	14359906000,00	2250628000,00	3106141000,00	34669000,00	5252178000,00	5302818000,00	19700704000,00
	15139505009,37	,	,	152949103,40	5141345603,39		20676717998,36
	15934817048,92		-	168730375,01	5474629737,93	7364052028,80	21716623479,92
1999	16375000609,15	2492184272,14	4310603475,80	-40284582,37	4773614518,57	6101789723,82	21809328569,48
	16752141623,64	,	,	28275103,27	5491595341,52	6386738253,13	22356265098,94
2001	16964766581,65	2616812380,00	3084701084,58	179626798,69	5951638739,58	6064845593,46	22732699991,04
	17311639084,89			191764922,88	6290479782,22		23297736379,52
2003	17637776001,33	2804003270,00	3259138279,18	94704738,61	7055594224,28	6921799583,74	23929416929,65
2004	18151034792,92	2892281222,37	3222710280,78	-266128069,10	8228272478,08	7300108516,57	24928062188,49
	18755349215,33			313326723,26	8914207156,10		26030239791,22
	19518920682,58			-197120013,59	9924795979,47		27278912672,55
	20332797121,88				10231389604,66		28524027122,89
	21447626610,53				10453874677,08		30277826305,81
2009	22235429361,92	3455978965,66	5167461202,77	143331824,85	9329491578,62	9037440171,52	31294252762,30

Fuente: Instituto Nacional de Estadística (INE)

Anexo 2: Prueba de raíz unitaria de la serie del producto

Null Hypothesis: Y has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		5.003680	1.0000
Test critical values:	1% level	-3.679322	
	5% level	-2.967767	
	10% level	-2.622989	

^{*}MacKinnon (1996) one-sided p-values. (falta biblio)

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(Y) Method: Least Squares

Sample (adjusted): 1981-2009

	Coefficient	Std. Error	t-Statistic	Prob.
Y(-1) C	0.078251 -9.56E+08	0.015639 3.11E+08	5.003680 -3.071541	0.0000 0.0048
R-squared	0.481137	Mean dep	endent var	5.53E+08
Adjusted R-squared	0.461919	S.D. dependent var		5.66E+08
S.E. of regression	4.15E+08	Akaike info criterion		42.59253
Sum squared resid	4.65E+18	Schwarz criterion		42.68683
Log likelihood	-615.5917	Hannan-Quinn criter.		42.62206
F-statistic	25.03681	Durbin-Watson stat		0.931620
Prob(F-statistic)	0.000030			

Null Hypothesis: D(Y) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.848118	0.3507
Test critical values:	1% level	-3.689194	
	5% level	-2.971853	
	10% level	-2.625121	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(Y,2) Method: Least Squares

Sample (adjusted): 1982 2009

	Coefficient	Std. Error	t-Statistic	Prob.
D(Y(-1)) C	-0.229469 1.58E+08	0.124163 96171953	-1.848118 1.641480	0.0760 0.1127
R-squared	0.116113	Mean depend	dent var	34798715
Adjusted R-squared	0.082118	S.D. dependent var		3.83E+08
S.E. of regression	3.67E+08	Akaike info criterion		42.34931
Sum squared resid	3.51E+18	Schwarz criterion		42.44447
Log likelihood	-590.8904	Hannan-Quinn criter.		42.37840
F-statistic	3.415540	Durbin-Watson stat		2.145812
Prob(F-statistic)	0.075991			

Null Hypothesis: D(Y,2) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-7.422708	0.0000
Test critical values:	1% level	-3.699871	
	5% level	-2.976263	
	10% level	-2.627420	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(Y,3) Method: Least Squares

Sample (adjusted): 1983 2009

	Coefficient	Std. Error	t-Statistic	Prob.
D(Y(-1),2) C	-1.396262 85091839	0.188107 67297919	-7.422708 1.264405	0.0000 0.2177
R-squared	0.687877	Mean depe	endent var	-3427917.
Adjusted R-squared	0.675392	S.D. dependent var		6.04E+08
S.E. of regression	3.44E+08	Akaike info criterion		42.22228
Sum squared resid	2.96E+18	Schwarz criterion		42.31826
Log likelihood	-568.0007	Hannan-Quinn criter.		42.25082
F-statistic	55.09660	Durbin-Watson stat		2.165549
Prob(F-statistic)	0.000000			

Anexo 3: Prueba de raíz unitaria de la serie del gasto

Null Hypothesis: G has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.607836	0.8524
Test critical values: 1% level		-3.711457	
	5% level	-2.981038	
	10% level	-2.629906	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(G) Method: Least Squares

Sample (adjusted): 1984 2009

	Coefficient	Std. Error	t-Statistic	Prob.
G(-1)	-0.022669	0.037295	-0.607836	0.5498
D(G(-1))	0.358861	0.141663	2.533192	0.0193
D(G(-2))	0.001767	0.144691	0.012209	0.9904
D(G(-3))	0.523970	0.132715	3.948098	0.0007
С	75676252	84997453	0.890336	0.3834
R-squared	0.578698	Mean depen	dent var	48850444
Adjusted R-squared	0.498451	S.D. dependent var		94722544
S.E. of regression	67082651	Akaike info criterion		39.05179
Sum squared resid	9.45E+16	Schwarz criterion		39.29373
Log likelihood	-502.6733	Hannan-Quinn criter.		39.12146
F-statistic	7.211384	Durbin-Watson stat		1.443187
Prob(F-statistic)	0.000809			

Null Hypothesis: D(G) has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.269911	0.6277
Test critical values:	1% level	-3.711457	
	5% level	-2.981038	
	10% level	-2.629906	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(G,2) Method: Least Squares Sample (adjusted): 1984 2009

oa...p.o (aa)ao.oa). . . o . 2007

	Coefficient	Std. Error	t-Statistic	Prob.
D(G(-1)) D(G(-1),2) D(G(-2),2)	-0.199436 -0.472928 -0.492258	0.157048 0.148066 0.120268	-1.269911 -3.194035 -4.093010	0.2174 0.0042 0.0005
C	24716416	13788155	1.792583	0.0868
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.684372 0.641332 66114344 9.62E+16 -502.9000 15.90080	Mean depe S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wats	dent var criterion terion uinn criter.	16084544 1.10E+08 38.99231 39.18586 39.04804 1.411789
Prob(F-statistic)	0.000010			

Null Hypothesis: D(G,2) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic based on SIC, MAXLAG=7)

	t-Statistic	Prob.*
est statistic	-12.43129	0.0000
1% level	-3.711457	
5% level	-2.981038	
10% level	-2.629906	
	5% level	test statistic -12.43129 1% level -3.711457 5% level -2.981038

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(G,3) Method: Least Squares

Sample (adjusted): 1984 2009

	Coefficient	Std. Error	t-Statistic	Prob.
D(G(-1),2) D(G(-1),3) C	-2.162474 0.569639 18861038	0.173954 0.105061 13166286	-12.43129 5.422010 1.432525	0.0000 0.0000 0.1654
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.894314 0.885124 66989131 1.03E+17 -503.8196 97.31309	Mean depe S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wat:	dent var criterion terion uinn criter.	8410382. 1.98E+08 38.98613 39.13129 39.02793 1.427279
Prob(F-statistic)	0.000000	Duibii - Wai.	3011 3101	1.42/2/7

Anexo 4: Prueba de raíz unitaria de la serie de la inversión

Null Hypothesis: FBK has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.162559	0.9328
Test critical values:	1% level	-3.679322	
	5% level	-2.967767	
	10% level	-2.622989	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBK)
Method: Least Squares

Sample (adjusted): 1981 2009

	Coefficient	Std. Error	t-Statistic	Prob.
FBK(-1)	-0.012284 1.45E+08	0.075568 2.27E+08	-0.162559 0.638719	0.8721 0.5284
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000978 -0.036023 4.53E+08 5.53E+18 -618.0995 0.026425 0.872076	Mean depe S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wat:	dent var criterion iterion uinn criter.	1.10E+08 4.45E+08 42.76548 42.85978 42.79501 1.627535

Null Hypothesis: D(FBK) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.282010	0.0024
Test critical values:	1% level	-3.689194	
	5% level	-2.971853	
	10% level	-2.625121	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBK,2)

Method: Least Squares

Sample (adjusted): 1982 2009

	Coefficient	Std. Error	t-Statistic	Prob.
D(FBK(-1)) C	-0.825088 96791390	0.192687 88223537	-4.282010 1.097115	0.0002 0.2826
R-squared Adjusted R-squared S.E. of regression	0.413564 0.391009 4.53E+08	Mean depe S.D. depend Akaike info	dent var criterion	6646345. 5.81E+08 42.77097
Sum squared resid Log likelihood F-statistic Prob(F-statistic)	5.34E+18 -596.7936 18.33561 0.000223	Schwarz cri Hannan-Qu Durbin-Wat	uinn criter.	42.86613 42.80006 1.969548

Anexo 5: Prueba de raíz unitaria de la serie de las exportaciones

Null Hypothesis: X has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.508634	0.9841
Test critical values:	1% level	-3.679322	
	5% level	-2.967767	
	10% level	-2.622989	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(X)
Method: Least Squares
Sample (adjusted): 1981 2009

	Coefficient	Std. Error	t-Statistic	Prob.
X(-1) C	0.018713 1.29E+08	0.036790 2.04E+08	0.508634 0.633350	0.6151 0.5318
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.009491 -0.027195 4.94E+08 6.59E+18 -620.6324 0.258709	Mean depe S.D. depend Akaike info Schwarz crit Hannan-Qu Durbin-Wats	dent var criterion terion inn criter.	2.22E+08 4.87E+08 42.94016 43.03446 42.96970 1.298997
Prob(F-statistic)	0.615140			

Null Hypothesis: D(X) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.075696	0.0401
Test critical values:	1% level	-3.689194	
	5% level	-2.971853	
	10% level	-2.625121	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(X,2) Method: Least Squares

Sample (adjusted): 1982 2009

	Coefficient	Std. Error	t-Statistic	Prob.
D(X(-1))	-0.684101 1.43E+08	0.222421 1.10E+08	-3.075696 1.306155	0.0049 0.2029
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.266778 0.238577 4.86E+08 6.14E+18 -598.7353 9.459908 0.004894	Mean depe S.D. depend Akaike info Schwarz crii Hannan-Qu Durbin-Wats	dent var criterion erion inn criter.	-41490563 5.57E+08 42.90967 43.00482 42.93876 1.805078

Anexo 6: Prueba de raíz unitaria de la serie de las importaciones

Null Hypothesis: M has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.078332	0.9429
Test critical values:	1% level	-3.679322	
	5% level	-2.967767	
	10% level	-2.622989	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(M)
Method: Least Squares
Sample (adjusted): 1981 2009

Included observations: 29 after adjustments

Coefficient Std. Error t-Statistic Prob. M(-1) -0.003722 0.047516 -0.078332 0.9381 С 0.890755 2.38E+08 2.67E+08 0.3809 R-squared 0.000227 Mean dependent var 2.18E+08 Adjusted R-squared -0.036801 S.D. dependent var 5.63E+08 Akaike info criterion S.E. of regression 5.73E+08 43.23797 Sum squared resid 8.87E+18 Schwarz criterion 43.33227 Log likelihood -624.9506 Hannan-Quinn criter. 43.26750 F-statistic 0.006136 **Durbin-Watson stat** 2.131868 Prob(F-statistic) 0.938142

Null Hypothesis: D(M) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.582747	0.0001
Test critical values:	1% level	-3.689194	
	5% level	-2.971853	
	10% level	-2.625121	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(M,2) Method: Least Squares

Sample (adjusted): 1982 2009

	Coefficient	Std. Error t-Statistic		Prob.
D(M(-1))	-1.191620 2.69E+08	0.213447 -5.582747 1.22E+08 2.195547		0.0000 0.0372
R-squared	0.545193	Mean dependent var		-44631596
Adjusted R-squared	0.527700	S.D. depende	S.D. dependent var	
S.E. of regression	5.75E+08	Akaike info cri	terion	43.24769
Sum squared resid	8.61E+18	Schwarz criter	ion	43.34285
Log likelihood	-603.4676	Hannan-Quinn criter.		43.27678
F-statistic	31.16706	Durbin-Watson stat		1.750658
Prob(F-statistic)	0.000007			

Anexo 7: Prueba de raíz unitaria de los ciclos de producto

Null Hypothesis: Z has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.181160	0.0029
Test critical values:	1% level	-3.679322	
	5% level	-2.967767	
	10% level	-2.622989	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(Z) Method: Least Squares

Sample (adjusted): 1981 2009

	Coefficient	Std. Error t-Statistic		Prob.
Z(-1) C	-0.781871 0.000168	0.186999 0.001874	-4.181160 0.089580	0.0003 0.9293
R-squared	0.393014	Mean dependent var		0.000103
Adjusted R-squared	0.370533	S.D. depen	dent var	0.012717
S.E. of regression	0.010089	Akaike info	criterion	-6.288195
Sum squared resid	0.002748	Schwarz cr	iterion	-6.193899
Log likelihood	93.17883	Hannan-Quinn criter.		-6.258663
F-statistic	17.48210	Durbin-Watson stat		1.634937
Prob(F-statistic)	0.000274			

Anexo 8: Prueba de raíz unitaria del componente no lineal de la tendencia del producto

Null Hypothesis: CICLOS has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic based on SIC, MAXLAG=7)

			Prob.*
Augmented Dickey-Fuller test statistic		-0.581655	0.8584
Test critical values:	1% level	-3.711457	
	5% level	-2.981038	
	10% level	-2.629906	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(CICLOS)

Method: Least Squares

Sample (adjusted): 1984-2009

	Coefficient	Std. Error t-Statistic		Prob.
CICLOS(-1)	-0.003214	0.005525	-0.581655	0.5670
D(CICLOS(-1))	2.350422	0.142265	16.52141	0.0000
D(CICLOS(-2))	-2.002550	0.255836	-7.827465	0.0000
D(CICLOS(-3))	0.611149	0.129253	4.728332	0.0001
С	0.000373	0.000224	1.666331	0.1105
			1	
R-squared	0.997462	Mean depend	lent var	0.001399
Adjusted R-squared	0.996979	S.D. depender	it var	0.017674
S.E. of regression	0.000971	Akaike info criterion		-10.86457
Sum squared resid	1.98E-05	Schwarz criterion		-10.62262
Log likelihood	146.2394	Hannan-Quinn criter.		-10.79490
F-statistic	2063.614	Durbin-Watson	stat	1.747711

Null Hypothesis: D(CICLOS) has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.628832	0.1007
Test critical values:	1% level	-3.724070	
	5% level	-2.986225	
	10% level	-2.632604	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(CICLOS,2)

Method: Least Squares

Sample (adjusted): 1985 2009

	Coefficient	Std. Error t-Statistic		Prob.
D(CICLOS(-1)) D(CICLOS(-1),2) D(CICLOS(-2),2) D(CICLOS(-3),2) C	-0.043821 1.524652 -0.867144 0.167084 0.000348	0.016670 0.210001 0.331545 0.179402 0.000244	-2.628832 7.260196 -2.615463 0.931340 1.423820	0.0161 0.0000 0.0166 0.3628 0.1699
R-squared	0.967197	Mean dependent var		0.002619
Adjusted R-squared S.E. of regression	0.960637 0.000981	Akaike info d	S.D. dependent var Akaike info criterion	
Sum squared resid Log likelihood F-statistic	1.92E-05 140.4905 147.4266	Schwarz criterion Hannan-Quinn criter.		-10.59546 -10.77163 1.907155
Prob(F-statistic)	0.000000	Durbin-Watson stat		1.70/100

Null Hypothesis: D(CICLOS,2) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic based on SIC, MAXLAG=7)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.511964	0.0158
Test critical values:	1% level	-3.711457	
	5% level	-2.981038	
	10% level	-2.629906	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(CICLOS,3)

Method: Least Squares

Sample (adjusted): 1984 2009

	Coefficient	Std. Error t-Statistic		Prob.
D(CICLOS(-1),2) D(CICLOS(-1),3)	-0.166241 0.840911	0.047336 -3.511964 0.105833 7.945617		0.0019
C	0.000328	0.000256	1.281204	0.2129
R-squared	0.743970	Mean dependent var		-7.78E-05
Adjusted R-squared	0.721706	S.D. depend	lent var	0.002123
S.E. of regression	0.001120	Akaike info	Akaike info criterion	
Sum squared resid	2.89E-05	Schwarz crit	erion	-10.49761
Log likelihood	141.3560	Hannan-Quinn criter.		-10.60097
F-statistic	33.41660	Durbin-Watson stat		1.689708
Prob(F-statistic)	0.000000			

Anexo 9: Estimación de parámetros modelo del multiplicador acelerador lineal

a) Estimando como modelo de rezagos distribuidos en economía cerrada:

Source	SS	df		MS				
Model Residual	1.1995e+16 5.0412e+12	2 26		973e+15 889e+11	Number of obs = R-squared = Adj R-squared = Root MSE =		28 0.9996 0.9995 440331.6	
Total	1.2000e+16	28	4.28	356e+14		. dev. =	805.1214	
Υ	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]	
/c /a	.8791784 1.146344	.0070		125.47 5.36	0.000 0.000	.8647748 .7070165	.893582 1.585672	

b) Estimando como modelo de corrección de errores en economía cerrada:

Source	ss	df		MS	Number of obs		20
Model Residual	1.2789e+13 5.0412e+12	2 26		943e+12 889e+11	R-	28 0.7173 0.6955 440331.5	
Total	1.7830e+13	28	6.36	578e+11	Root MSE = Res. dev. =		805.1214
DY	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
/c /a	.8791784 .073172	.0070		125.47 0.68	0.000 0.500	.8647748 1464918	.893582 .2928358

c) Estimando la tasa de crecimiento del gasto como modelo de corrección de errores:

Source	SS	df		MS		mber of obs =	
Model Residual	3.9342e+10 3.3723e+11	1 27		42e+10 90e+10	R- Ad	28 0.1045 0.0713 111757.9	
Total	3.7657e+11	28	1.34	49e+10		ot MSE = s. dev. =	729.3913
DG	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
/g	.0155537	.0087	636	1.77	0.087	0024277	.0335351

d) Estimando como modelo de rezagos distribuidos en economía abierta:

Source	ss	df		MS			
Model Residual	1.1981e+16 1.9127e+13	2 26		03e+15 65e+11	R-S Adj	nber of obs = squared = i R-squared = of MSF =	0.9984 0.9983 857699
Total	1.2000e+16	28	4.2856e+14		Root MSE Res. dev.		842.458
Y	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
/c /a	.8909585 .9092615	.013		65.28 2.23	0.000 0.035	.8629025 .0709469	.9190144 1.747576

e) Estimando como modelo de corrección de errores en economía abierta:

Source	ss	df	MS			
Model Residual	-1.2971e+12 1.9127e+13	2 -6.48 26 7.35		R- Ad	mber of obs = squared = j R-squared = ot MSE =	28 -0.0727 -0.1553 857699
Total	1.7830e+13	28 6.36	78e+11		s. dev. =	842.458
DY	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
/c /a	.8909585 0453692	.013649 .203917	65.28 -0.22	0.000 0.826	.8629025 4645266	.9190145 .3737881

Anexo 10: Estimación de parámetros modelo del multiplicador acelerador no lineal

a) Estimación de parámetros en su forma reducida:

Dependent Variable: D(Y) Method: Least Squares

Sample (adjusted): 1982 2009

Included observations: 28 after adjustments

D(Y) = C(2)*D(Y(-1)) + (C(2) + C(3))*Y(-2) + C(4)*(X-M+FBK+G) - Y(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(2)	1.541187	0.186478	8.264712	0.0000
C(2)	1.541107	0.100476	0.204712	0.0000
C(3)	-0.568760	0.171675	-3.313007	0.0028
C(4)	0.155903	0.127028	1.227310	0.2311
R-squared	0.634342	Mean depend	Mean dependent var	
Adjusted R-squared	0.605089	S.D. depende	S.D. dependent var	
S.E. of regression	3.57E+08	Akaike info cr	Akaike info criterion	
Sum squared resid	3.18E+18	Schwarz criterion		42.46617
Log likelihood	-589.5281	Hannan-Quin	n criter.	42.36707
Durbin-Watson stat	1.807747			

b) Estimación del acelerador:

Dependent Variable: D(Z,2) Method: Least Squares

Sample (adjusted): 1982 2009

Included observations: 28 after adjustments

 $D(Z,2)=(D(Z)^*(1-(Z^*Z)))^*(C(1)-2.30989079196846-(1-0.8231377586274)$

*1.5793719051819)-Z

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	4.329768	0.157040	27.57107	0.0000
R-squared	0.756387	Mean depend	Mean dependent var	
Adjusted R-squared	0.756387	S.D. depende	S.D. dependent var	
S.E. of regression	0.009663	Akaike info criterion		-6.405868
Sum squared resid	0.002521	Schwarz criterion		-6.358289
Log likelihood	90.68215	Hannan-Quinn criter.		-6.391322
Durbin-Watson stat	1.827811			

c) Estimación de la tendencia lineal:

Dependent Variable: LNY_HP Method: Least Squares Date: 09/28/10 Time: 19:19 Included observations: 30

	Coefficient	Std. Error	t-Statistic	Prob.
С	23.24889	0.025628	907.1508	0.0000
@TREND	0.028927	0.001518	19.06046	0.0000
R-squared	0.928444	Mean dependent var		23.66833
Adjusted R-squared	0.925888	S.D. dependent var		0.264289
S.E. of regression	0.071949	Akaike info crit	Akaike info criterion	
Sum squared resid	0.144945	Schwarz criterion		-2.267972
Log likelihood	37.42078	Hannan-Quinn criter.		-2.331502
F-statistic	363.3011	Durbin-Watson stat		0.113203
Prob(F-statistic)	0.000000			

d) Estimación del componente no lineal con respecto a una función con seno:

Dependent Variable: D(CICLOS,2)

Method: Least Squares

Sample (adjusted): 1982 2009

Included observations: 28 after adjustments Convergence achieved after 16 iterations

D(CICLOS,2)=-C(1)*C(2)*C(2)*SIN(C(2)*@TREND+C(3))

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	0.051158	0.008519	6.005156	0.0000
C(1)				
C(2)	0.346230	0.017181	20.15213	0.0000
C(3)	2.116640	0.287978	7.350011	0.0000
R-squared	0.549920	Mean dependent var		0.002553
Adjusted R-squared	0.513913	S.D. depend	S.D. dependent var	
S.E. of regression	0.003302	Akaike info	Akaike info criterion	
Sum squared resid	0.000273	Schwarz criterion		-8.344660
Log likelihood	121.8235	Hannan-Quinn criter.		-8.443760
Durbin-Watson stat	0.190563			