Sri Chaitanya IIT Academy.,India.

A right Choice for the Real Aspirant

ICON Central Office - Madhapur - Hyderabad

Sec: Sr.Super60_NUCLEUS & STERLING_BT Paper -1 (Adv-2021-P1-Model Date: 24-09-2023 Time: 09.00Am to 12.00Pm **RPTA-08** Max. Marks: 180

KEY SHEET

PHYSICS

$oxed{1}$	A	2	С	3	В	4	D	5	0.16	6	1.53
7	0.67	8	0.33	9	2.50	10	1.26	11	BD	12	A
13	ABC	14	ABD	15	AC	16	BD	17	7	18	3
19	2			7		4			2		

CHEMISTRY

20	В	21	С	22	D	23	D	24	5	25	4.2
26	2	27	9	28	5	29	3	30	ABCD	31	ABCD
32	BCD	33	BCD	34	ABCD	35	ABCD	36	2	37	4
38	5	1			4-4						

MATHEMATICS

39	В	40	D	41	В	42	A	43	18	44	4
45	0	46	11	47	2	48	3	49	ВС	50	вс
51	ВС	52	ВС	53	ACD	54	ACD	55	0	56	9
57	6										

SOLUTIONS PHYSICS

1) **KEY-A**

Using conservation of mechanical energy

$$mg \frac{L}{2} = \frac{1}{2} \frac{ML^2}{3} \omega_0^2$$

$$\Rightarrow \omega_0 = \sqrt{\frac{3g}{L}}, \ \omega = \sqrt{\frac{3g}{2L}} = \sqrt{\frac{3g}{2\sqrt{2r}}}$$

$$L = \sqrt{2r}$$

Using the definition of e

$$(L-r)\omega_0 = v - \omega(L-r)$$

$$v = (L-r)(\omega_0 + \omega) = (L-r)\omega(\sqrt{2}+1) = r\omega = \sqrt{\frac{3gr}{\sqrt{2}}}$$

$$r = \frac{6\sqrt{2}}{10}m$$

$$v = \sqrt{\frac{3\times10\times6\times\sqrt{2}}{2\sqrt{2}\times10}} = 3m/s$$

Using COAM

$$l\omega_{0} = l\omega + mv (L - r)$$

$$l(\omega_{0} - \omega) = m (\omega_{0} + \omega)(L - r)^{2}$$

$$\frac{ML^{2}}{3}(\omega_{0} - \omega) = m (\omega_{0} + \omega)(L - r)^{2}$$

$$\frac{M}{m} = \frac{3(L - r)^{2}}{L^{2}(\omega_{0} - \omega)} = \frac{3}{2}$$

$$KEY - C$$

2) **KEY-C**

Let a be the acceleration

$$F - \mu mg = ma$$
 -----(1)

Taking torques about 'c'

$$\mu mg \left\lceil \frac{l}{2} \right\rceil + F \left\lceil \frac{l}{2} \right\rceil = N \frac{l}{2} \quad -----(2)$$

And
$$\sum F_{\gamma} = 0 \Rightarrow N = mg$$
 -----(3)

Simplifying 1, 2 and 3 $a = g[1-2\mu]$

3) **KEY-B**

Tangential speed is unchanged $\Rightarrow v_0 \cos 37^\circ = v \cos 30^\circ$

$$\Rightarrow v_0 \times \frac{4}{5} = v \times \frac{\sqrt{3}}{2} \Rightarrow 8v_0 = 5\sqrt{3}v$$

4) **KEY-D**

Angular momentum equation about point of impart.

$$mv_0 \frac{L}{2} \cos \theta = \frac{mL^2}{12} \omega - mv \frac{L}{2} \cos \theta$$

$$\Rightarrow \frac{\omega L}{6} = (v_0 + v)\cos\theta \Rightarrow \omega = \frac{6(v_0 + v)\cos\theta}{L}$$

5) KEY – 0.16 Conceptual

6) KEY - 1.53

Let v_1 and v_2 be the velocities of rod and particle respectively (vertically downward)

Impulse on rod =
$$-3mv_1 + 3mu$$

Impulse on particle = $mv_2 + mu$

Equate eqs (1) and (2) we get

$$2u = 3v_1 + v_2$$
(3)

Angular impulse = change in ang., momentum

$$J \times a = I\omega$$

$$(mv_2 + mu)a = \frac{3m \times (4a)^2}{12}\omega$$

$$v_2 + u = 4a\omega \qquad \dots (4)$$

Also, apply Newton's law on collision along the line of impulse.

nal Institutions

$$v_2 - (v_1 - a\omega) = 2u$$

$$v_2 - v_1 + a\omega = 2u \qquad \dots (5)$$

Solving, we get

$$v_1 = \frac{3}{19}u; \quad v_2 = \frac{29}{19}u; \quad \omega = \frac{12u}{19a}$$

7) KEY - 0.67

Applying conservation of angular momentum

$$(I+2I)\omega' = I.2\omega + 2I.\omega \text{ or } \omega' = \frac{I(2\omega) + 2I(\omega)}{3I} = \frac{4\omega}{3}$$
-----(i)

Now
$$\omega = \omega + \frac{\tau}{2I}t$$
 ----(ii)

From equation (i) and (ii) $\tau = 2I\omega/3t$

If τ is the average frictional torque and the relative motion occurs for time t, then τ is the angular impulse imparted to each disc but in the opposite sense

Now, we can write that $\tau t = I(\omega - 2\omega)$ or $\tau t = 2I(\omega - \omega)$

Each of the above equation gives $\tau = 2I\omega/3t$

8) KEY - 0.33

Loss in the kinetic energy $\Delta K = K_i - K_f$

$$= \left[\frac{1}{2} \times I \times (2\omega)^{2} + \frac{1}{2} \times 2I \times \omega^{2}\right] - \frac{1}{2} (I + 2I) \left(\frac{4\omega}{3}\right)^{2} = \frac{I\omega^{2}}{3}$$

9) KEY - 2.50

Conceptual

10) KEY - 1.26

11) **KEY-BD**

For P: About A or B

$$L_{_{i}}=L_{_{f}} \Longrightarrow mv\frac{\ell}{2}=\frac{m\ell^{2}}{3}\omega_{_{P}} \Longrightarrow \omega_{_{P}}=\frac{3v}{2\ell}$$

For Q: About A

$$L_{i} = L_{f} \Rightarrow mv \frac{\ell}{2} + \frac{m\ell^{2}}{12}\omega = \frac{m\ell^{2}}{3}\omega_{1} \Rightarrow \omega_{1} = \left(\frac{v}{2} + \frac{\omega\ell}{12}\right)\frac{3}{\ell} = \frac{3v}{2\ell} + \frac{\omega}{4}$$

 $\therefore \omega_1 > \omega_P \Rightarrow \text{Option (A) is wrong and (B) is correct.}$

About B

$$L_i = L_f \Rightarrow \omega_2 = \frac{3v}{2\ell} - \frac{\omega}{4}$$

$$\omega_2$$
 is +ve as $\omega < \frac{6v}{\ell}$

 $\therefore \omega_2 < \omega_P \Rightarrow \text{Option (C)}$ is wrong and (D) is correct.

12) As hinges are smooth the disc continue to rotate at ω so by work energy theorem we use

$$\frac{1}{2} \left(\frac{1}{3} m (2R)^2 \right) \omega^2 + \frac{1}{2} m (2R\omega)^2 = \left(mg (2R) + mgR \right) \frac{1}{2}$$

$$\Rightarrow 2R^2 \omega^2 + \frac{2R^2 \omega^2}{3} = \frac{3gR}{2} \Rightarrow \frac{8R\omega^2}{3} = \frac{3g}{2} \Rightarrow \omega = \sqrt{\frac{9g}{16R}}$$

13) KEY-ABC

The ball has V' component of its velocity perpendicular to the length of the rod immediately after the collision. u is the velocity of CM of the rod and ω is angular velocity of the rod just after collision. The ball strikes the rod with speed $v \cos 53^0$ in perpendicular direction and its component along the length of the rod after the collision is unchanged.

Using for the point of collision.

Velocity of separation = Velocity of approach

$$\frac{3V}{5} = \left(\frac{\omega l}{4} + u\right) + V'$$

.....(1)

Conserving linear momentum (of rod + particle) in the direction \perp to the rod,

$$mV\frac{3}{5} = mu - mV' \qquad \dots (2$$

$$0 = 0 + \left[u \frac{l}{4} - \frac{ml^2}{12} \omega \right] \Rightarrow u = \frac{\omega l}{3}$$

$$\Rightarrow u = \frac{24V}{55}, W = \frac{72V}{55l}$$

Cational Institutions

Time taken to rotate by π angle, $t = \frac{\pi}{\omega}$

In the same time, distance travelled = $u_2 t = \frac{\pi l}{3}$

Using angular impulse-angular momentum equation,

$$\int Ndt \frac{l}{4} = \frac{ml^2}{4} \cdot \frac{72V}{55l} \omega \qquad \left\{ \because \int Ndt \frac{l}{4} = \frac{24mV}{55} \right\}$$

[using impulse-momentum equation on the rod $\int Ndt = mu = \frac{24mV}{55}$]

14) **KEY-AD**

$$mg\frac{l}{2}\sin\theta - T l\sin\theta = 0$$

$$\Rightarrow T = mg / 2, N_1 = mg / 2$$

$$mg\frac{l}{2}\sin\theta = \frac{ml^2}{3} \propto$$

$$\Rightarrow \quad \propto = \frac{3g\sin\theta}{2l}$$

$$\Rightarrow \quad \propto = \frac{3g\sin\theta}{2l} \qquad a_{cm} = \frac{l}{2} \propto = \frac{3g\sin\theta}{4}$$

$$mg - N_2 = m(a_{cm})_y = m\frac{3g}{4}\sin^2\theta$$

$$N_2 = mg \left[1 - \frac{3}{4} \sin^2 \theta \right] = \frac{Tmg}{16}$$

15) KEY-AC

The FBD of the rod and the ball are shown. Applying $\tau = I\alpha$ about the C.M. of the rod,

we have,
$$N\left(\frac{l}{2}\right) = \left(\frac{Ml^2}{12}\right)\alpha$$

Writing Newton's IInd law in the vertical direction on the CM of the rod we have T - N - 2mg = 0 and writing Newton's II law in the vertical direction on the ball we have,

$$mg - N = m\left(\frac{l}{2}\right)\alpha$$
.

16) KEY-BD

$$mg - N = m \left(\frac{1}{2}\right) \alpha.$$
KEY - BD

$$ma_c = F_{fr} \qquad I \propto = rF_{fr} = rma_c$$

$$a - a_c = \alpha r = \frac{rma_c}{I} r \quad \text{or, } a - a_c = \frac{mr^2 a_c}{mr^2} = 2a_c$$

or,
$$3a_c = a$$
, $a_c = \frac{a}{3} = \frac{6}{3} = 2m/s^2$

So, $f_{FR} = \frac{ma}{3}$ so maximum value of this force is equal μmg

Hence
$$\mu mg = \frac{ma_{lim}}{3}$$
 or, $a_{lim} = 3\mu g = 3 \times 0.3 \times 10 = 9m/s^2$

$$I_{1}\omega_{1} = I_{2}\omega_{2} \Rightarrow 2\left[\frac{ML^{2}}{12}\omega_{0}\right] = \left[\frac{ML^{2}}{12} + \frac{ML^{2}}{12} + ML^{2}\right]\omega_{2}$$

$$\Rightarrow \frac{\omega_{0}}{6} = \frac{7}{6}\omega_{2}$$

$$\Rightarrow \omega_{2} = \frac{\omega_{0}}{7}$$

$$\int F\Delta t = mV_{cm} - (1)$$

$$&\frac{l}{2}\int Fdt = I_{cm}\omega - (2)$$

$$\Rightarrow \frac{l}{2}.mV_{cm} = \frac{ml^2}{12}\omega$$

$$\Rightarrow V_{cm} = \frac{l\omega}{6}$$

Set 'T' be the time for one rotation

$$\therefore d_{cm} = V_{cm}T = \frac{l(2\pi/T)}{6}.T = \frac{l\pi}{3}$$

19) **KEY-2**

Loss in PE=gain in KE

$$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

$$\Rightarrow mgh = \frac{1}{2}m(\omega r)^2 + \frac{1}{2}\left(\frac{2}{3}mr^2\right)\omega^2$$

$$m \times 10\left(\frac{3}{100}\right) = m\frac{5}{6} \times \left(\frac{30}{100}\right)^2 \omega^2 \Rightarrow \omega = 2rad/s$$

CHEMISTRY

(20) KEY - B

Both reactant and product having same number of unpaired electrons, no change in the magnetic moment. (NCERT, MOT, Based).

21) KEY – C

Both reactantKHF₂ contain ionic, covalent, and H – bonding.

22) KEY – D

Highest EA element is Cl (NCERT orders table)

23) KEY - D

In isoelectronic ions increases the nuclear charge decrease the ionic radius order is $O^{-2} > F^- > Na^+ > Mg^{+2}$

 $1.26A^{0}$, $1.19A^{0}$, $1.16A^{0}$, $0.72A^{0}$.

24) KEY – 5

$$A^{+}+e^{-}$$
 A^{0} A^{+} A^{0} A^{+} A^{0} A^{+} A^{+}

 \therefore IE₁ of A_(g)=350 KJ / mole

 \therefore IE of A⁺=950 – 350 = 600 KJ / mole

$$A^{+}_{(g)} \longrightarrow A^{+2}_{(g)} \Delta H = 600 \text{ KJ/mole}, A^{+2}_{(g)} + e^{-} \longrightarrow A^{+}_{(g)} \Delta H_{eg} = -600 \text{ KJ/mole}$$

-a = -600 \Rightarrow a = 600 KJ/mole

$$\frac{a}{120} = \frac{600}{120} = 5KJ / mole$$

24) KEY - 4.2

According to the Hee's law

 $1400 = 950 + IE_1 \text{ of } A^{-1}$

IE₁ of A⁻ = 1400-950 =
$$\frac{450}{(x)}$$

IE of A⁺ = 600 KJ / mole = y $\Delta H_2 = IE_1 + IE_1 + \Delta H$ of hydration

 \therefore \triangle H of hydration = $700 - 950 = -250 = -z \therefore z = 250$ KJ/mole

$$\therefore \frac{600 + 450}{250} = 4.2$$

25) KEY-2

$$O_2, O_2^-, O_2^{\oplus}$$
 B.O = 2.5

$$O_2(B.O = 2 \ \mu = 2.83Br)$$

$$O_2^- B.O = 1.5 \ \mu = 1.73Br$$

26) KEY – 9

$$H_2^+, H_2^-, He_2^+, O_2^+, O_2^-, O_3, BF_3, CO_3^{-2}, C_6H_6$$

27) KEY-5

$$ClO_4^-, SO_4^{-2}, BeCl_2, {}^{\oplus}CH_3, NH_4^{\oplus}$$

The species with out any lone pair of electron

- 28) KEY-3
- 29) KEY = ABCD

In NO one e^- in π^* 2py

In O₂ two unpaired e^- in $\pi^*2py = \pi^*2pz$

30) KEY = ABCD

Hybridization (H) =
$$\frac{1}{2}[V + M - c]$$

For

(A)
$$H = \frac{1}{2}[8+4] = 6sp^3d^2$$
 without L.P

(B)
$$H = \frac{1}{2}[3+4+1] = 4sp^3$$
 without L.P

(C)
$$H = \frac{1}{2}[6+4] = 5sp^3d$$
 withone L.P

(D)
$$H = \frac{1}{2}(7+2+1) = 5$$
 with three L.P

31) KEY = BCD

Properties of ionic compounds

32) KEY = BCD

B C – Due to diagonal relationship

D – Due to Lanthanide contraction.

33) KEY = ABCD

 $B.E \propto Bond \ order \propto bond \ polarity \propto \frac{1}{radius} \propto (S - character \ of \ hybrid \ orbitals)$

34) KEY = ABCD

Amphoteric metal oxides are amphoteric oxides.

35) KEY - 2

37) KEY - 4

% I C =
$$\frac{\mu_{obs}}{\mu_{cal}} \times 100 = \frac{6.004 \times 10^{-30}}{9.17 \times 10^{-11} \times 1.6022610^{-19}} \times 100 = 40.9\% = x$$

 $\frac{x}{10} = \frac{40.9}{10} = 4.09 = 4$

38) KEY - 6

83, 54, 34, 17, 48, 08.

l + m + n + p = 0

MATHEMATICS

$$\lambda = -1$$

$$3\overline{OA} + 2\overline{OB} \qquad 4\overline{OC} + \overline{OD}$$

$$\frac{3\overrightarrow{OA} + 2\overrightarrow{OB}}{3+2} = \frac{4\overrightarrow{OC} + \overrightarrow{OD}}{4+1}$$

Apply
$$S(\alpha, \beta, \gamma)$$
, $SA = SB = SC$, Also SA , SB , SC Coplanar

- 41) CONCEPTUAL
- **42)** Conceptual

43) KEY - 18

$$a + b + c = 0$$
, cases: $a, b, c = -2, 1, 1; -2, 0, 2; -1, 0, 1; -1, -1, 2$

$$a = b = c$$

45) KEY – 0

Given
$$b \times c = \overline{c} - \overline{a}$$

$$O = b.c - b.a$$

$$b.c = 0, b \times c.c = (c-a).c$$

$$a.c = |c|^2, |b \times c|^2 = |c - a|^2$$

$$|b|^2 \times |c|^2 = 11 - |c|^2$$

46) **KEY-11**

Given
$$\overline{b \times c} = \overline{c} - \overline{a}$$

$$O = b.c - b.a, b.c = 0$$

$$b \times c.c = (c-a).c, a.c = |c|^2$$

$$|b \times c|^2 = |c - a|^2, |b|^2 \times |c|^2 = 11 - |c|^2$$

47) KEY-2

Conceptual

48)
$$KEY-3$$

$$V = \frac{1}{3} \left(Area \ of \ base \right) height = \frac{1}{3} \left(\frac{\sqrt{3}}{4} \right) \sqrt{1 - \frac{1}{3}}$$

$$PA^2 + PB^2 + PC^2 + PD^2 = 8r^2$$

49) **KEY-BC**

$$l + m + n + p = 0$$

$$\Rightarrow Tan \alpha + 2Tan \beta + 2Tan \gamma = 1$$

$$\Rightarrow \overline{u} \, \overline{v} \leq |\overline{u}|.|\overline{v}$$

$$1 \le \sqrt{9} \cdot \sqrt{\varepsilon Tan^2 \alpha}$$

al Institutions

$$\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \Delta = 0$$
 Solutions along a line $a = b = c$ solutions lie across a plane

51) KEY-BC

Take
$$P = (0\ 0\ 0)$$

$$PQ = i, PR = i + j, PS = j$$

$$Q' = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

$$Q = \left(1\ 0\ 0\right)$$

$$PQ' \equiv \overline{r} = \overline{o} + t\left(i + j + \sqrt{2}k\right)$$

$$\overrightarrow{RS} \equiv \overline{r} = i + j + \alpha(i), S.D = \frac{\sqrt{2}}{\sqrt{3}}$$

52) KEY-BC

Consider (0 0 0), (1 1 1) are opp – vertices of a pri – Diagonal of a cube

53) KEY-ACD

$$\overrightarrow{AN} = \lambda \overrightarrow{c} + (1 - \lambda) \overrightarrow{b} - \overrightarrow{a}$$

$$\overrightarrow{BP} = \lambda \overrightarrow{a} + (1 - \lambda) \overrightarrow{c} - \overrightarrow{b}$$

$$\overrightarrow{CM} = \lambda . \overrightarrow{b} + (1 - \lambda) \overrightarrow{a} - \overrightarrow{c}$$

Area form by above three vectors

$$0 = \frac{1}{2} |\vec{s_1} \times \vec{s_2}|$$

$$= \frac{1}{2} |(\lambda \vec{c} + (1 - \lambda) \vec{b} - \vec{a}) \times (\lambda \vec{a} + (1 - \lambda) \vec{c} - \vec{b})|$$

$$= \frac{1}{2} |\lambda^2 - \lambda + 1| (Area \ \Delta ABC)$$

$$= \frac{1}{2} |\lambda^2 - \lambda + 1|$$

$$KEY - AC$$

$$P(3r_1 + 5, -r_1 + 7, r_1 - 2)$$

$$Q(-3r_2 - 3, 2r_2 + 3, 4r_2 + 6)$$

$$D.R.S. of PQ$$

54)

$$P(3r_{1} + 5, -r_{1} + 7, r_{1} - 2)$$

$$Q(-3r_{2} - 3, 2r_{2} + 3, 4r_{2} + 6)$$

$$D.R.S of PQ$$

$$\equiv 2:7:-5$$

$$\Rightarrow r_{1} = -1, r_{2} = -1$$

KEY-0**55**)

$$a \times (a \times b) = (a.b)\overline{a} - (a.a)\overline{b}$$
$$a \times (a \times (a \times b)) = -|a|^{2} (a \times b)$$

.....

56) **KEY-9**

$$\begin{aligned} & | \overline{a} + \overline{b} + \overline{c} |^2 \ge 0 \\ & \Rightarrow 2 \sum \overline{a} \, \overline{b} \ge -3 \\ & \Rightarrow | \overline{a} - \overline{b} |^2 + | \overline{b} - \overline{c} |^2 + | \overline{c} - \overline{a} |^2 \le 9 \end{aligned}$$

57) **KEY-6**

Let lx + my + nz = p

Be a variable plane

$$\Rightarrow \frac{1}{6} \begin{vmatrix} \frac{p}{l} & 0 & 0 \\ 0 & \frac{p}{m} & 0 \\ 0 & 0 & \frac{p}{n} \end{vmatrix} = 64$$

Also G(x y z) =
$$\left(\frac{p}{4l}, \frac{p}{4m}, \frac{p}{4n}\right) \Rightarrow xyz = 6$$

ri Chaitanya Educational Institutions