Sapienza Università di Roma

Facoltà di Ingegneria – Corso di Laurea Magistrale in Ingegneria Informatica

Metodi Formali per il Software e i Servizi

AA 2009/10 – *Appello del* **11/02/2010**

Tempo per completare la prova: 2 ore

Parte 1. Sia dato il seguente diagramma delle classi UML.

- i. Esprimere tale diagramma in logica del prim'ordine.
- ii. Esprimere tale diagramma come una TBox nella logica descrittiva ALCQI o SHIQ.
- iii. Esprimere tale diagramma come una TBox nella logica descrittiva DL-lite_A, mettendo in evidenza eventuali aspetti del diagramma non esprimibili.
- iv. Verificare che il diagramma sia consistente o meno con ciascuna delle seguenti ABox:

$$ABox1 = \{D(d)\}$$
 $ABox2 = \{A(a)\}$

Si ricorda che per verificare la consistenza di detto diagramma con una ABox basta verificare (attraverso l'applicazione dell'algoritmo di riscrittura delle query congiuntive di DL-lite_A) che la seguente query booleana

$$q() : - B(x), C(x).$$

restituisca false nella ABox.

Parte 2. Sia dato il transition system T in figura. Verificare, applicando l'algoritmo di model checking di CTL, se le formule $EG(AF \neg a)$ e $EG(\neg a \rightarrow EF a)$ sono vere nello stato sI di T.

Parte 3. È noto che ogni formula CTL è esprimibile con una formula del mu-calculus, ma non il viceversa.

- (a) Tradurre in mu-calculus le due formule CTL riportate nella Parte 2.
- (b) Scrivere una formula del mu-calculus che non è esprimibile in CTL, argomentando il perché.