

Digital signal processing is the mathematical manipulation of an information signal to modify or improve it in some way.

Nyoka Sound Library

Arturo Apú Chinchilla Guillermo Cornejo Suárez José Johel Rodríguez Pineda

Digital signal processing is the mathematical manipulation of an information signal to modify or improve it in some way.

Benefits

- Exact reproduction
 Easy manipulation

Fast Fourier Transform

$$H_n = \sum_{k=0}^{N-1} h_k e^{2\pi i k n/N}$$

Danielson-Lanzczon lemma

$$F_{k} = \sum_{j=0}^{N-1} e^{2\pi i j k/N} f_{j}$$

$$= \sum_{j=0}^{N/2-1} e^{2\pi i k(2j)/N} f_{2j} + \sum_{j=0}^{N/2-1} e^{2\pi i k(2j+1)/N} f_{2j+1}$$

$$= \sum_{j=0}^{N/2-1} e^{2\pi i k j/(N/2)} f_{2j} + W^{k} \sum_{j=0}^{N/2-1} e^{2\pi i k j/(N/2)} f_{2j+1}$$

$$= F_{k}^{e} + W^{k} F_{k}^{o}$$

Sample numbers in normal order			Sample numbers after bit reversal	
Decimal	Binary		Decimal	Binary
0	0000		0	0000
1	0001		8	1000
2	0010		4	0100
3	0011		12	1100
4	0100		2	0010
5	0101		10	1010
6	0110		6	0100
7	0111	$\neg \nu$	14	1110
8	1000		1	0001
9	1001		9	1001
10	1010		5	0101
11	1011		13	1101
12	1100		3	0011
13	1101		11	1011
14	1110		7	0111
15	1111		15	1111

Bit reverse & Butterfly

$$F_k = \frac{1}{2}(f_0 + (-1)^k f_N) + \sum_{j=1}^{N-1} f_j \cos(\pi j k/N)$$

Cosine transform

$$F_{2k} = R_k$$
 $F_{2k+1} = F_{2k-1} + I_k$

$$F_k = \sum_{j=0}^{2N-1} f_j e^{2\pi i jk/2N} = 2i \sum_{j=1}^{N-1} f_j \sin(\pi jk/N)$$

Sine transform

$$F_{2k} = I_k$$
 $F_{2k+1} = F_{2k-1} + R_k$

Pitch filter

Developed by Prof. Arturo Camacho. Ph.D

K-means algorithm

$$\mathbf{C} = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k}{k}$$

1. Select a window size

2. Weight the samples in neighborhood

$$w_N(n'-n) = 1 + \cos\left(\frac{\pi(n'-n)}{N+1}\right)$$

3. Apply K-means

$$c_{1}(n,\mu,N) = \frac{\sum_{n'=-N}^{N} \mu(n'+n)s(n'+n)w_{N}(n')}{\sum_{n'=-N}^{N} \mu(n'+n)w_{N}(n')}$$

$$c_{0}(n,\mu,N) = \frac{\sum_{n'=-N}^{N} \left[1 - \mu(n'+n)\right] s(n'+n)w_{N}(n')}{\sum_{n'=-N}^{N} \left[1 - \mu(n'+n)\right] w_{N}(n')}$$

4. Increase window size geometrically and repeat from 1

Calant the trinderize size that marrimize distance hetricen controlle

4. Increase window size geometrically and repeat from 1

- 5. Select the windows size that maximize distance between centroids
- 6. determine the class membership

$$m(n) = \left[\frac{s(n) - c_0(n, \mu^*(n), N^*(n))}{c_1(n, \mu^*(n), N^*(n)) - c_0(n, \mu^*(n), N^*(n))} > 0.5 \right]$$

Examples

SHUKRANI

