Einführung in die Algebra – Blatt 1

Jendrik Stelzner

24. Oktober 2013

Aufgabe 1.1.

Bemerkung. Sei G eine Gruppe und $H \subset G$ ein Untergruppe mit (G:H)=2. Dann ist H ein Normalteiler in G.

Beweis der Bemerkung. Da (G:H)=2 zerfällt in G in zwei Links- bzw. Rechtsnebenklassen, nämlich je H und H^c . Für alle $g\in H$ ist damit gH=H=Hg und für alle $g\in H^c$ ist $gH=H^c=Hg$.

Es ist $S_3 = \{ \mathrm{id}, \sigma, \sigma^2, \tau_{12}, \tau_{13}, \tau_{23} \}$, wobei in Zykelschreibweise $\sigma = (1, 2, 3), \sigma^2 = (3, 2, 1), \tau_{12} = (1, 2), \tau_{13} = (1, 3)$ und $\tau_{23} = (2, 3)$.

Da ord $S_3=3!=6$ folgt aus dem Satz von Lagrange, dass ord $H\in\{1,2,3,6\}$ für jede Untergruppe $H\subseteq G$. Neben den beiden trivialen Untergruppen $\{\mathrm{id}\}$ und S_3 kann S_3 also nur zwei- oder dreielementige Untergruppen enthalten.

Offenbar sind $\langle \tau_{12} \rangle = \{ \mathrm{id}, \tau_{12} \}$, $\langle \tau_{13} \rangle = \{ \mathrm{id}, \tau_{13} \}$ und $\langle \tau_{23} \rangle = \{ \mathrm{id}, \tau_{23} \}$ Untergruppen der Ordnung 2. Dies sind auch die einzigen Untergruppen dieser Ordnung: Ist $H = \{ \mathrm{id}, a \}$ eine Untergruppe mit ord H = 2, so muss $a^2 = \mathrm{id}$, also a selbstinvers sein. Die einzigen selbstinversen Elemente in S_3 sind aber e, τ_{12}, τ_{13} und τ_{23} (da $\sigma \sigma^2 = \sigma^2 \sigma = \sigma^3 = \mathrm{id}$).

Offenbar ist $\langle \sigma \rangle = \{ \mathrm{id}, \sigma, \sigma^2 \}$ eine Untergruppe der Ordnung 3. Es ist auch die einzige Untergruppe dieser Ordnung: Ist $H = \{ \mathrm{id}, a, b \}$ eine Untergruppe mit ord H = 3, so ist, wie aus der Vorlesung bekannt, H zyklisch und von a und b erzeugt. Insbesondere muss daher ord $a = \mathrm{ord}\,b = \mathrm{ord}\,H = 3$. Die einzigen beiden Elemente in S_3 mit Ordnung 3 sind jedoch σ und σ^2 .

Die Untergruppen von S_3 sind also {id}, $\langle \tau_{12} \rangle$, $\langle \tau_{13} \rangle$, $\langle \tau_{23} \rangle$, $\langle \sigma \rangle$ und S_3 .

 $\{ \mathrm{id} \}$ und S_3 sind trivialerweise Nullteiler in S_3 . Aus der Bemerkung folgt, dass auch $\langle \sigma \rangle$ ein Normalteiler in S_3 ist, da $(S_3:\langle \sigma \rangle)=2$. $\langle \tau_{12} \rangle$, $\langle \tau_{13} \rangle$ und $\langle \tau_{23} \rangle$ sind keine Normalteiler in S_3 , denn

$$\begin{aligned} \tau_{23}\{\mathrm{id},\tau_{12}\} &= \{\tau_{23},\sigma^2\} \neq \{\tau_{23},\sigma\} = \{\mathrm{id},\tau_{12}\}\tau_{23}, \\ \tau_{12}\{\mathrm{id},\tau_{13}\} &= \{\tau_{12},\sigma^2\} \neq \{\tau_{12},\sigma\} = \{\mathrm{id},\tau_{13}\}\tau_{12} \text{ und} \\ \tau_{12}\{\mathrm{id},\tau_{23}\} &= \{\tau_{12},\sigma\} \neq \{\tau_{12},\sigma^2\} = \{\mathrm{id},\tau_{23}\}\tau_{12}. \end{aligned}$$

Aufgabe 1.2.

Im Folgenden sei $Q := \{E, -E, I, -I, J, -J, K, -K\}$, wobei für die multiplikative Struktur (Q, \cdot) (die sich als Gruppe herausstellen wird), ebenfalls Q geschrieben wird.

(i)

Wie die Multiplikationstabelle verrät, ist für $A, B \in \{E, I, J, K\}$ auch $AB \in Q$, folglich ist sogar für alle $A, B \in Q$ auch $AB \in Q$, Q ist also abgeschlossen bezüglich der Multiplikation.

Die Assoziativität der Multiplikation vererbt sich direkt von $M(2\times 2,\mathbb{C})$ auf Q. Da $E\in Q$ die Einheitsmatrix ist, gibt es in Q ein neutrales Element. Wie mit Aufgabenteil (ii) folgt, ist $E^{-1}=E, (-E)^{-1}=-E, I^{-1}=-I, J^{-1}=-J$ und $K^{-1}=-K$, also gibt es für alle $A\in Q$ ein $A^{-1}\in Q$. Damit ist Q eine Gruppe.

(ii)

Stupides Nachrechnen ergibt, dass

$$I^{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -E,$$

$$J^{2} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -E,$$

$$K^{2} = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -E,$$

sowie, entgegen der falschen Angabe in der Aufgabenstellung,

$$IJK = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$
$$= -K^2 = E, \text{ dafür aber}$$
$$KJI = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= I^2 = -E.$$

(iii)

Da ord Q=8 ist nach dem Satz von Lagrange ord $H\in\{1,2,4,8\}$ für jede Untergruppe $H\subseteq Q$. Neben den trivialen Untergruppen $\{E\}$ und Q kann Q also nur Untergruppen der Ordnung 2 und 4 haben.

Offenbar ist $\{E, -E\}$ eine Untergruppe der Ordnung 2 von Q; dies ist auch die einzige Untergruppe dieser Ordung: Ist $H = \{E, A\} \subseteq Q$ eine Untergruppe mit ord H = 2, so muss $A^2 = E$, also A selbstinvers sein. Aus **Aufgabenteil (ii)** folgt jedoch, dass E und -E die einzige selbstinverse Elemente in Q sind, weshalb A = -E gelten muss. Für alle $A \in \{I, J, K\}$ ist $\{E, -E, A, -A\}$ offenbar eine Untergruppe der Ordnung A von A0. Dies sind auch die einzigen Untergruppen dieser Ordnung: Ist A1 von A2 eine Untergruppe mit ord A3 von A4 so gibt es ein A5 von A5 mit A6 von A6. Es muss

dann auch $E\in H,$ $-E=A^2\in H,$ und $A^{-1}=-A\in H.$ Also muss bereits $H=\{E,-E,A,-A\}.$

Die Untergruppen von Q sind also $\{E\}$, $\{E, -E\}$, $\{E, -E, I, -I\}$, $\{E, -E, J, -J\}$, $\{E, -E, K, -K\}$ und Q. Diese Untergruppen sind sogar alle normal in Q: Für $\{E\}$ und Q ist dies offensichtlich, für die Untergruppen der Ordnung 4, und damit Index 2, folgt es aus der Bemerkung in **Aufgabe 1.1**, und für $\{E, -E\}$ folgt es daraus, dass $A\{E, -E\} = \{A, -A\} = \{E, -E\}A$ für alle $A \in Q$, da E und -E mit allen Matrizen in $M(2 \times 2, \mathbb{C})$ kommutieren.

Aufgabe 1.3.

(i)

Wie aus der Vorlesung bekannt genügt es zu zeigen, dass $gHg^{-1}=H$ für alle $g\in G$. Sei hierzu $g\in G$ beliebig aber fest. Wie aus Lineare Algebra I bekannt ist $\mathrm{inn}_g:G\to G, h\mapsto ghg^{-1}$ ein Gruppenautomorphismus von G. Daher ist insbesondere ord $H=\mathrm{ord}\,\mathrm{inn}_g(H)$. Da aber H nach Annahme die einzige Untergruppe von G mit Ordung ord H ist, muss $gHg^{-1}=\mathrm{inn}_g(H)=H$. Aus der Beliebigkeit von g folgt damit die zu zeigende Aussage.

(ii)

Bemerkung. Seien G und G' Gruppen, G endlich, und $\varphi:G\to G'$ ein Gruppenhomomorphismus. Dann ist ord $G=\operatorname{ord}\operatorname{Ker}\varphi\cdot\operatorname{ord}\operatorname{Im}\varphi.$

Beweis der Bemerkung. Wie aus der Vorlesung bekannt ist $G/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$, also insbesondere $(G:\operatorname{Ker} \varphi)=\operatorname{ord} G/\operatorname{Ker} \varphi=\operatorname{ord} \operatorname{Im} \varphi$. Nach dem Satz von Lagrange gilt ord $G=\operatorname{ord} \operatorname{Ker} \varphi\cdot (G:\operatorname{Ker} \varphi)$. Einsetzen ergibt, dass ord $G=\operatorname{ord} \operatorname{Ker} \varphi\cdot \operatorname{ord} \operatorname{Im} \varphi$.

Sei F eine Untergruppe von G mit ord F= ord H. Es gilt zu zeigen, dass F=H. Hierzu betrachte man die kanonische Abbildung $\pi:G\to G/H$. Da F eine Untergruppe von G ist, ist $\pi(F)$ eine Untergruppe von $\pi(G)=G/H$, insbesondere ist nach dem Satz von Lagrange daher ord $\pi(F)$ ein Teiler von ord G/H=(G:H). Betrachtet man die Komposition

$$\varphi: F \hookrightarrow G \xrightarrow{\pi} G/H$$

so ist diese ein Homomorphismus mit Ker $\varphi=F\cap H$ und Im $\varphi=\pi(F),$ nach der Bemerkung also

$$\operatorname{ord} H = \operatorname{ord} F = \operatorname{ord} F \cap H \cdot \operatorname{ord} \pi(F).$$

Es ist also ord $\pi(F)$ auch ein Teiler von ord H. Da ord H und (G:H) teilerfremd sind, muss ord $\pi(F)=1$, also $\pi(F)=\{1\}$ und daher $F\subseteq \operatorname{Ker} \pi=H$. Da ord $F=\operatorname{ord} H$ gilt schon F=H.

Aufgabe 1.4.

(i)

Da, wie aus der Vorlesung bekannt, $\langle g \rangle$ für alle $g \in G$ eine Untergruppe von G ist, ist nach dem Satz von Lagrange ord $g = \operatorname{ord} \langle g \rangle$ für alle $g \in G$ ein Teiler von ord G, und

somit ebenfalls ungerade.

Da $aba = b \Leftrightarrow b = a^{-1}ba^{-1}$ ist für alle $n \in \mathbb{N}$

$$b^{2n+1} = a(baa^{-1}ba^{-1}a)^n ba = ab^{2n+1}a.$$

Da ord b ungerade ist, ist damit insbesondere

$$e = b^{\operatorname{ord} b} = ab^{\operatorname{ord} b}a = aea = a^2,$$

also a selbstinvers. Da damit $\langle a \rangle = \{e,a\}$, aber orda ungerade ist, muss a=e.

(ii)

Da c=abcba ist $cb=abcbab=ab\cdot cb\cdot ab$, nach Aufgabenteil (i) also ab=e.

Aufgabe 1.5.

Es ist

$$U \cong U/\{1\} = U/(U \cap N) \cong UN/N,$$

wobei die letzte Isomorphie aus dem ersten Isomorphiesatz folgt. Analog ergibt sich, dass $V\cong VN/N$. Um zu zeigen, dass $U\cong V$ genügt es daher zu zeigen, dass UN=VN=G. Dies ergibt sich durch Fallunterscheidung:

Ist $N=\{1\}$, so ist $N\subset U$ und $N\subset V$, wegen der Maximalitätseigenschaft von N daher U=V=G und damit insbesondere UN=VN=G.

Ist $N \neq \{1\}$, so ist gibt es wegen $U \cap N = \{1\}$ ein $u \in U$ mit $u \notin N$. Es ist dann $uN \subseteq UN$ aber $uN \cap N = \emptyset$, da $aN \in N \Leftrightarrow a \in N$ für alle $a \in G$. Daher ist $UN \neq N$, also $N \subset UN$ und damit UN = G. Analog ergibt sich, dass auch VN = G.