# 1 Differential Equations

### 1.1 Linear ODE's

A differential equation is said to be linear if F can be written as a linear combination of the derivatives of y:

$$b(x) = \sum_{i=0}^{n} a_i(x) \cdot y^{(i)}$$

where  $a_i(x)$  and b(x) are continuous functions. Why is this called linear?

$$D = \frac{d^{(k)}}{dx^k} + a_{k-1} \frac{d^{(k-1)}}{dx^{k-1}} + \dots + a_0$$
$$D(\alpha f + \beta g) = \alpha D(f) + \beta D(g)$$
$$Df_1 = b_1, Df_2 = b_2 \Rightarrow D(f_1 + f_2) = b_1 + b_2$$

## 1.2 Solution Space

Let  $I \subset \mathbf{R}$  be an open interval and k > 1 an integer, and let

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = 0$$

be a linear ODE over I with continuous coefficients.

- (1) The set S of k-times differentiable solutions  $f: I \to \mathbb{C}$  of the equation is a complex vector space wich is a subspace of the space of complex valued functions on I. (Analogous for real numbers, if all  $a_i$  are real valued)
- (2) The dimension of S is k and for any choice of  $x_0 \in I$  and any  $(y_0, \ldots, y_{k-1}) \in \mathbb{C}^k$  there exists a unique f such that

$$f(x_0) = y_0, f'(x_0) = y_1, \dots, f^{(k-1)}(x_0) = y_{k-1}$$

(Analogous for real numbers, if all  $a_i$  are real)

- (3) For an arbitrary b the solution set is  $S_b = \{f + f_p \mid f \in S_0\}$  where  $f_p$  is a "particular" solution.
- (4) For any initial condition there is a unique solution.

# 1.3 Solving linear ODE's of order 1

y' + ay = b. Here a, b are constant functions.

(1) Find solutions of the corresponding homogenous equation y' + ay = 0. Note that if f is a solution so is  $z \cdot f \quad \forall z \in \mathbb{C}$ . Example:

$$\begin{aligned} y' + ay &= 0 \\ y' &= -ay \\ \frac{y'}{y} &= -a \\ ln(y) &= -\int a + C = -A + C \\ y &= e^{-A+C} = z \cdot e^{-A} \quad z \in \mathbb{C} \end{aligned}$$

(2) Find a particular solution  $f_p: I \to \mathbb{C}$  such that  $f'_p + af_p = b$ . Use educated guess or variation of constants.

Assume we have  $y' + \frac{y}{x} = 2\cos(x^2)$  The homogenous equation  $y' = -\frac{1}{x}y$  has a constant solution  $y_h(x) = 0$ . Otherwise we have:

$$\log(y) = \int \frac{y'}{y} dx = -\int \frac{1}{x} dx = -\log(x) + c$$
$$y = \frac{e^c}{x}$$
$$y = \frac{C}{x}$$

Our educated guess is  $y_p = \frac{C(x)}{x}$ 

$$\frac{C'(x)x - C(x)}{x^2} + \frac{1}{x}\frac{C(x)}{x} = 2\cos(x^2)$$

We solve for C'(x)

$$C'(x) = \frac{g(x)}{y_1(x)} \to C(x) = \int \frac{g(x)}{y_1(x)} dx = \int \frac{2\cos(x^2)}{\frac{1}{x}}$$
$$= \int 2x\cos(x^2) = \sin(x^2)y(x) = \frac{c + \sin(x^2)}{x}$$

### 1.4 Educated Guess

| b(x)                              | Guess                                                                     |
|-----------------------------------|---------------------------------------------------------------------------|
| $ax^2 + bx$                       | $cx^2 + dx + e$                                                           |
| $a \cdot e^{\alpha x}$            | $b \cdot e^{\alpha x}$                                                    |
| $a\sin/\cos(\beta x)$             | $c\sin(\beta x) + d\cos(\beta x)$                                         |
| $ae^{\alpha x}\sin/\cos(\beta x)$ | $e^{\alpha x} \Big( c \sin(\beta x) + d \cos(\beta x) \Big)$              |
| $P_n(x)e^{\alpha x}$              | $R_n(x) \cdot e^{\alpha x}$                                               |
| $P_n(x)e^{\alpha x}\sin(\beta x)$ | $e^{\alpha x} \left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$ |
| $P_n(x)e^{\alpha x}\cos(\beta x)$ | $e^{\alpha x} \Big( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \Big)$    |

#### 1.4.1 Variation of constants

- (1) Assume  $f_p = z(x)e^{-A(x)}$  for some function  $z: I \to \mathbb{C}$
- (2) We plug this into the equation and see what it forces z to satisfy

$$f_p = z(x)e^{-A(x)} = y$$

$$y' = z'(x)e^{-A(x)} - z(x)A'(x)e^{-A(x)}$$

$$y' = e^{-A(x)} \left(z'(x) - z(x)a(x)\right)$$

$$ay = a \cdot z(x)e^{-A(x)}$$

$$y' + ay = z'(x)e^{-A(x)} = b(x)$$

$$b(x) = z'(x)e^{A(x)}$$

$$z(x) = \int \frac{e^{A(x)}}{b(x)}$$

$$y_p = z(x)e^{-A(x)}$$

#### 1.4.2 Solving Linear ODE's with constant coefficients

We want to solve

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_0y = b(x)$$

We assume our solution is  $e^{\lambda x}$ .

$$P(\lambda) = \lambda^k e^{\lambda x} + a_{k-1} \lambda^{k-1} e^{\lambda x} + \dots + a_0 e^{\lambda x} = 0$$
$$= e^{\lambda x} \left( \lambda^k + a_{k-1} \lambda^{k-1} + \dots + a_0 \right) = 0$$
$$\Rightarrow 0 = \lambda^k + a_{k-1} \lambda^{k-1} + \dots + a_0$$

Which can then be solved for  $\lambda$ . Keep in mind that  $\lambda \in \mathbb{C}$  and we might be able to simplify with Euler's formula.

$$e^{ix} = \cos(x) + i\sin(x)$$

If there is a multiple root  $\alpha$  of multiplicity j we have

Solutions: 
$$e^{\alpha x}$$
,  $xe^{\alpha x}$ , ...,  $x^{j-1}e^{\alpha x}$ 

# 1.5 Complex roots

If  $\alpha=\beta+\gamma i$  is a complex root of  $P(\lambda)$ , then so is  $\bar{\alpha}=\beta-\gamma i$ . Hence  $f_1=e^{\alpha x}$  and  $f_2=e^{\bar{\alpha} x}$  are solutions and can be replaced by a linear combination of  $\tilde{f}_1=e^{\beta x}\cos(\gamma x)$  and  $\tilde{f}_2=e^{\beta x}\sin(\gamma x)$ . Further if  $y^{(k)}+a_{k-1}y^{(k-1)}+\cdots+a_0y=0$  has real coefficients, then each pair of complex conjugate roots  $\beta_j\pm\gamma_j i$  with multiplicity  $m_j$  leads to solution

$$x^{l}e^{\beta_{j}x}\left(\cos(\gamma_{j}x)+i\sin(\gamma_{j}x)\right)$$
 for  $0 \le l \le m_{j}$ 

### 1.6 Separation of variables

A differential equation of oder 1 is separable if it is of the form

$$y' = b(x)g(y)$$

$$\frac{dy}{dx} = b(x)g(y)$$

$$\frac{dy}{g(y)} = b(x)dx$$

$$\int \frac{dy}{g(y)} = \int b(x)dx$$

## 2 Differentials in $\mathbb{R}^n$

### 2.1 Monomial

A monomial of degree e is a function

$$(x_1, \dots, x_n) \mapsto \alpha x_1^{d_1} \cdot \dots \cdot x_n^{d_n}$$
  
 $e = d_1 + \dots + d_n$ 

# 2.2 Polynomial

A polynomial in n variables of degree  $\leq d$  is a finite sum of monomials of degree  $e \leq d$ 

# 2.3 Convergence

Let  $(x_k)_{k\in\mathbb{N}}$ ,  $x_k\in\mathbf{R}^n$  and  $x_k=(x_{k,1},x_{k,2},\ldots,x_{k,n})$ . The following equivalently define  $\lim_{k\to\infty}x_k=y$ .

- (1)  $\forall \varepsilon > 0 \ \exists N \ge 1 \ \text{s.t.} \ \forall k \ge N \quad ||x_k y|| < \varepsilon$
- (2) For each  $i, 1 \leq i \leq n$  the sequence  $(x_{k,i})_k$  of real numbers converges to  $y_i$ .
- (3) The sequence of real numbers  $||x_k y||$  converges to 0.

Let  $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}^m$  and  $x_0 \in \mathcal{X}, y \in \mathbf{R}^m$ . We say f has a limit to y as  $x \to x_0$  where  $x \neq x_0$  if any of the following apply

- (1)  $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ \forall x \in \mathcal{X}, \ x \neq x_0 \ \text{such that} \ \|x x_0\| < \delta$  we have  $\|f(x) y\| < \varepsilon$ .
- (2)  $\forall$  sequences  $(x_k)$  in  $\mathcal{X}$  such that  $\lim x_k = x_0$  and  $x_k \neq x_0$  the sequence  $f(x_k)$  converges to y.

# 2.4 Continuity

Let  $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}^m$  and  $x_0 \in \mathcal{X}$ . We say f is continuous at  $x_0$  if any of the following apply

- (1)  $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.}$  if  $x \in \mathcal{X}$  satisfies  $||x x_0|| < \delta$  then  $||f(x) f(x_0)|| < \varepsilon$ .
- (2)  $\forall$  sequences  $(x_k)$  in  $\mathcal{X}$  s.t.  $\lim x_k = x_0$  we have  $\lim f(x_k) = f(\lim x_k)$ .

f is continuous in  $\mathcal{X}$  if f is continuous in every point  $x_0 \in \mathcal{X}$ . The following statements also hold

- (1)  $f(x = x_1, ..., x_n) \mapsto (f_1(x), ..., f_m(x))$  and  $f_i : \mathbf{R}^n \mapsto \mathbf{R}$  is continuous  $\Leftrightarrow f_i \forall i = 1, ..., m$  are continuous.
- (2) Linear functions  $x \mapsto Ax$  are continuous.
- (3) Polynomials are continuous.
- (4) Sums, products of continuous functions are continuous.
- (5) Functions of separated variables are continuous if the factors are continuous.
- (6) Composition of continuous functions are continuous.

#### 2.5 Sandwich lemma

If  $f, g, h : \mathbf{R}^n \to \mathbf{R}$  where  $f(x) < g(x) < h(x) \quad \forall x \in \mathbf{R}^n$ . Let  $a \in \mathbf{R}^n$ .

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \Rightarrow \lim_{x \to a} g(x) = L$$

## 2.6 Polar Coordinates

It is sometimes helpful to use polar coordinates, especially with rational functions  $f: \mathbf{R} \rightarrow \mathbf{R}$ .  $f(x, y) = f(r\cos(\theta), r\sin(\theta))$ 

#### 2.7 Bounded set

A set  $\mathcal{X} \subset \mathbf{R}^n$  is bounded if the set  $\{||x|| \mid x \in \mathcal{X}\}$  is bounded in  $\mathbf{R}$ .

#### 2.8 Closed set

A set  $\mathcal{X} \subset \mathbf{R}^n$  is closed if for every sequence  $(x_k)_{k \in \mathbb{N}} \subset \mathcal{X}$  that converges in  $\mathbf{R}^n$ , converges to a point  $y \in \mathcal{X}$ .

Here it is often helpful to consider a ball. Counterexamples often include  $\frac{1}{k}$  and <.

## 2.9 Compact set

A compact set is a closed and bounded set.

### 2.10 Continuous and closed

If  $f: \mathbf{R}^n \to \mathbf{R}^m$  is continuous, then for every  $Y \subset \mathbf{R}^m$  that is closed the set  $f^{-1}(Y) = \{x \in \mathbf{R}^n \mid f(x) \in Y\} \subset \mathbf{R}^n$  is closed. Careful: Does not imply bounded or compact!

### 2.11 Min-Max theorem

Let  $\mathcal{X} \subset \mathbf{R}^n$  be a compact set,  $f: \mathcal{X} \rightarrow \mathbf{R}$  a continuous function. Then f is bounded and attains its max and min.

$$f(x^+) = \sup_{x \in \mathcal{X}} f(x)f(x^-)$$
 =  $\inf_{x \in \mathcal{X}} f(x)$ 

# 2.12 Open set

A set  $\mathcal{X} \subset \mathbf{R}^n$  is called open if its complement  $\mathbf{R}^n \setminus \mathcal{X}$  is closed. This is equivalent to  $\forall x \in \mathcal{X} \ \exists r > 0 \ \text{s.t.}$  the set  $\{y \in \mathbf{R}^n \mid \|y - x\| < r\} = B_r(x) \subset \mathcal{X}$ .

Here are some examples

- (1)  $(a,b) \subset \mathbf{R}$  is open.
- (2)  $[a,b) \subset \mathbf{R}$  is neither open nor closed.
- (3)  $\mathbf{R}^n$  and  $\emptyset$  are both open.
- (4)  $(a_1, b_1) \times (a_2, b_2) \subset \mathbf{R}^2$  is open.
- (5) Inverse image of open sets under continuous maps are open.

#### 2.13 Derivative

Given  $f: \mathbf{R} \rightarrow \mathbf{R}^n$  the derivative is

$$f'(x_0) = \begin{pmatrix} f'_1(x_0) \\ \vdots \\ f'_n(x_0) \end{pmatrix}$$

## 2.14 Partial derivatives

A partial derivative of a function  $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}$  is obtained by pretending all but one variable are constants and then differentiating the one variable.

$$\frac{\partial f}{\partial x_{0,j}} = \lim_{h \to 0} \frac{f(x_{0,1}, \dots, x_{0,j} + h, \dots, x_{0,n}) - f(x_0)}{h}$$

If  $f: \mathbf{R}^n \to \mathbf{R}^m$  for  $x_0 \in \mathbf{R}^n$  then

$$\frac{\partial f(x_0)}{\partial x_j} := \begin{pmatrix} \partial f_1(x_0)/\partial x_j \\ \vdots \\ \partial f_m(x_0)/\partial x_j \end{pmatrix}$$

Properties include (assuming partial derivatives for f, g exist w.r.t.  $x_j$ )

$$(1) \ \frac{\partial f + g}{\partial x_j} = \frac{\partial f}{\partial x_j} + \frac{\partial g}{\partial x_j}$$

(2) 
$$\frac{\partial f \cdot g}{\partial x_i} = \frac{\partial f}{\partial x_j} \cdot g + \frac{\partial g}{\partial x_j} \cdot f$$

(3) if 
$$g \neq 0$$
:  $\frac{\partial f/g}{\partial x_j} = \frac{\frac{\partial f}{\partial x_j} \cdot g - \frac{\partial g}{\partial x_j} \cdot f}{g^2}$ 

### 2.15 Jacobi Matrix

A Matrix with m rows and n columns where

$$J_f = \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

#### 2.16 Gradient

The Jacobian of a function  $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}$ . Is often denoted as  $\nabla f$ . The geometric interpretation is that it indicates the direction and rate of fastest increase.

Remember:  $curl(\nabla f) = 0$  is a necessary condition for a vector field to be a gradient!

 $Curl \neq 0 \rightarrow \text{not a potential}$ 

#### 2.17 Directional derivative

Let direction  $v = (a, b) \neq (0, 0)$ . Instead of adding +h to one component we add +ah, +bh and so on to all components and find that derivative as we normally would with a limit. Further, we have

$$\frac{df(x_0 + t\vec{\mathbf{v}})}{dt} = J_f(x_0) \cdot \vec{\mathbf{v}}$$

## 2.18 Differentiabiliy

Let  $\mathcal{X} \subset \mathbf{R}^n \to \mathbb{R}^{\triangleright}$  be function and  $x_0 \in \mathcal{X}$ . We say f is differentiable at  $x_0$  if a linear map  $u : \mathbf{R}^n \to \mathbf{R}$  exists such that

$$\lim_{x \to x_0, x \neq x_0} \frac{f(x) - f(x_0) - u(x - x_0)}{\|x - x_0\|} = 0$$

and u is called the total differential of f at  $x_0$ . Further, if f, g are differentiable at  $x_0 \in \mathcal{X}$  we have

- (1) f is continuous at  $x_0$
- (2) f has all partial derivatives at  $x_0$  and the matrix represents the linear map  $df(x_0): x \mapsto Ax$  in the canonical basis is given by the Jacobi Matrix of f at  $x_0$ , i.e.  $A = J_f(x_0)$
- (3)  $d(f+g)(x_0) = df(x_0) + dg(x_0)$
- (4) If m = 1 and  $f, g : \mathbf{R}^n \to \mathbf{R}$  differentiable in  $x_0$  then so is  $f \cdot g$  and if  $q \neq 0$  f/q as well.

Lastly we have

All partial derivatives  $\exists$  and cont.  $\Rightarrow$  f is differentiable

## 2.19 Tangent space

The approximation of the function at  $x_0$  using one derivative.

$$\{(x,y) \in \mathbf{R}^n \times \mathbf{R}^m \mid g(x,y) = f(x_0,y_0) + Df(x_0,y_0) + \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$f(x,y) = \sqrt{x^2 + y^2}$$

$$J_f = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$

$$J_f(3,4) = \left(\frac{3}{5}, \frac{4}{5}\right)$$

$$\Rightarrow g(x,y) = 5 + \left(\frac{3}{5}, \frac{4}{5}\right) \begin{pmatrix} x - 3\\ y - 4 \end{pmatrix}$$

#### 2.20 Chain rule

Let  $\mathcal{X} \subset \mathbf{R}^n$  be open,  $\mathcal{Y} \subset \mathbf{R}^m$  be open and let  $f: \mathcal{X} \rightarrow \mathcal{Y}$ ,  $g: \mathcal{Y} \rightarrow \mathbf{R}^p$  be differentiable functions. Then  $g \circ f = g(f): \mathcal{X} \rightarrow \mathbf{R}^p$  is differentiable in  $\mathcal{X}$ . In particular

$$d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$$
$$J_{g \circ f}(x_0) = J_g(f(x_0)) \cdot J_f(x_0)$$
$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$\frac{d}{dt}f(\gamma(t)) = \nabla f(\gamma(t))\gamma'(t)$$

$$\nabla f(-\frac{\sqrt{3}}{2}, \frac{3}{2}, 7) = (6, 2, 0).$$

Compute

$$\frac{\partial f}{\partial r}(\sqrt{3}, \frac{2}{3}\pi, 7)$$

where  $x=r\cos(\theta), y=r\sin(\theta)$  and z are the usual coordinates. We have

$$g(r, \theta, z) = (r\cos(\theta), r\sin(\theta), z)$$

and therefore (by the chain rule)

$$\frac{\partial f}{\partial r} = \frac{\partial f(g(r,\theta,z))}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial g_1}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial g_2}{\partial r} + \frac{\partial f}{\partial z} \frac{\partial g_3}{\partial r} = \cos(\theta) \frac{\partial f}{\partial x} + \sin(\theta) \frac{\partial f}{\partial y}$$

Notice now that

$$(\sqrt{3}\cos\left(\frac{2}{3}\pi\right),\sqrt{3}\sin\left(\frac{2}{3}\pi\right),7)=(-\frac{\sqrt{3}}{2},\frac{3}{2},7)$$

and therefore we obtain

$$\frac{\partial f}{\partial r} = \cos\left(\frac{2}{3}\pi\right) \cdot 6 + \sin\left(\frac{2}{3}\pi\right) \cdot 2$$

That "notice now" is needed because we want to take  $\nabla f$  at  $(-\frac{\sqrt{3}}{2},\frac{3}{2},7)$ , and since we have  $f(g(r,\theta,z))$  we need to find  $r,\theta,z$  such that  $g(r,\theta,z)=(-\frac{\sqrt{3}}{2},\frac{3}{2},7)$ .

# 2.21 Change of variables

We say f is a change of variables around  $x_0$  if there is a radius  $\rho > 0$  s.t. the restriction of f to the Ball  $B = \{x \in \mathbf{R}^n \mid ||xx_0|| < \rho\}$  so that the image Y = f(B) is open in  $\mathbf{R}^n$  and a differentiable map  $g: Y \to B$  exists, such that  $f \circ g = \mathrm{id}_Y$  and  $g \circ f = \mathrm{id}_B$ . I.e.

 $f\Big|_{B(x_0)}$  is a bijection to the image with a differentiable inverse g

#### 2.22 Inverse function theorem

Let  $\mathcal{X} \subseteq \mathbf{R}^n$  be open and  $f: \mathcal{X} \to \mathbf{R}^n$  differentiable. If  $x_0 \in \mathcal{X}$  is such that  $det(J_f(x_0)) \neq 0$ , i.e.  $J_f(x_0)$  is invertible, then f is a change of variables around  $x_0$ . Moreover the Jacobian of g at  $x_0$  is defined by

$$J_g(f(x_0)) = J_f(x_0)^{-1}$$

# 2.23 Higher derivatives

Let  $\mathcal{X} \subset \mathbf{R}^n$ ,  $f: \mathcal{X} \to \mathbf{R}^m$ . We say f is of class C' if f is differentiable on  $\mathcal{X}$  and all of its partial derivatives are continuous. We say  $f \in C^k$  for  $k \geq 2$  if it is differentiable and each  $\partial_{x_i} f$ :  $\mathcal{X} \rightarrow \mathbf{R}^m$  is of class  $C^{k-1}$ . Further, f is smooth or  $C^{\infty}$  if  $f \in C^k \quad \forall k$ . Lastly: mixed partials (up to order k) commute:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

#### 2.24 Hessian

The  $n \times n$  symmetric matrix

$$\operatorname{Hess}_f(x_0) := \left(\frac{\partial^2 f(x_0)}{\partial x_i \partial x_i}\right)$$

## 2.25 Taylor Polynomial

Good for approximation  $\rightarrow$  affine function The Taylor polynomial of f at  $x_0$  of order 1 is

$$T_{1}(\vec{x_{0}}, \vec{y_{0}} := f(\vec{x_{0}}) + \langle \nabla f(\vec{x_{0}}), \vec{y} \rangle$$

$$\vec{y} = \vec{x} - \vec{x_{0}}$$

$$\vec{x_{0}} = (x_{0}, y_{0})$$

$$\vec{x} = (x, y)$$

and the second order

$$T_2(\vec{x_0}, \vec{y_0}) := f(\vec{x_0}) + \langle \nabla f(\vec{x_0}), \vec{y} \rangle$$
$$+ \frac{1}{2} \vec{y} \cdot \operatorname{Hess}_f(\vec{x_0}) \cdot \vec{y}^t$$

Finally, the general form is

$$T_k f(y; x_0) = f(x_0) + \dots + \sum_{m_1 + \dots + m_n = k} \frac{1}{m_1! \dots m_n!} \frac{\partial^k f(x_0) \cdot y_1^{m_1} \dots y_n^{m_n}}{\partial x_1^{m_1} \dots \partial x_n^{m_n}}$$

Lastly if  $f \in C^k$  for  $x_0 \in \mathcal{X}$  we have

$$f(x) = T_k(x - x_0; x_0) + E_k(f, x, x_0)$$

$$\lim_{x \to x_0} \frac{E_k(f, x, x_0)}{\|x - x_0\|^k} \to 0$$

Consider the following function:

$$f(x,y) := e^{x^2 + y^2} + \log(1 + x^2) + \arctan(xy)$$

a) determine the Taylor plynomial of f at (0,0) up to and including third order.

$$\frac{\partial f(x,y)}{\partial x} = 2xe^{x^2+y^2} + \frac{2x}{1+x^2} + \frac{y}{1+x^2y^2}$$
$$\frac{\partial f(x,y)}{\partial y} = 2ye^{x^2+y^2} + \frac{x}{1+x^2y^2}$$

Direct substitution gives us:

$$df(0,0) = (0,0)$$

We now calculate the partial derivatives of second order:

$$\frac{\partial^2 f(x,y)}{\partial x^2} = 2e^{x^2 + y^2} + 4x^2 e^{x^2 + y^2} + \frac{2(1+x^2) - 4x^2}{(1+x^2)^2} - \frac{2xy^3}{(1+x^2y^2)^2}$$
$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = 4xye^{x^2 + y^2} + \frac{1+x^2y^2 - 2x^2y^2}{(1+x^2y^2)^2}$$
$$\frac{\partial^2 f(x,y)}{\partial y^2} = 2e^{x^2 + y^2} + 4y^2e^{x^2 + y^2} - \frac{2x^3y}{(1+x^2y^2)^2}$$

We need the hessian so we have:

$$Hess_f(0,0) = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}$$

We now calculate the partial derivatives of third order. Luckily they all vanish so we have:

$$T_{3}f((0,0);(x,y)) = f(0,0) + \frac{\partial f(0,0)}{\partial x}x + \frac{\partial f(0,0)}{\partial y}y + \frac{1}{2}\frac{\partial^{2}f(0,0)}{\partial x^{2}}x^{2} + \frac{\partial^{2}f(0,0)}{\partial x\partial y}xy + \frac{1}{2}\frac{\partial^{2}f(0,0)}{\partial y^{2}}y^{2} + \frac{1}{6}\frac{\partial^{3}f(0,0)}{\partial x^{3}}x^{3} + \frac{1}{2}\frac{\partial^{3}f(0,0)}{\partial x^{2}\partial y}x^{2}y + \frac{1}{2}\frac{\partial^{3}f(0,0)}{\partial x\partial y^{2}}xy^{2} + \frac{1}{6}\frac{\partial^{3}f(0,0)}{\partial y^{3}}y^{3} = 1 + 2x^{2} + xy + y^{2}$$

# 2.26 Local max/min

Let  $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}$  be differentiable. We say  $x_0 \in \mathcal{X}$  is a local maximum (minimum) if we can find a neighborhood  $B_r(x_0) = \{x \in \mathbf{R}^n \mid ||x - x_0|| < r\} \subset \mathcal{X}$ 

$$\forall x \in B_r(x_0) \quad f(x) \le (\ge) f(x_0)$$

We also have

$$x_0 \in \mathcal{X}$$
 is a local extrema  $\Rightarrow \nabla f(x_0) = 0$ 

### 2.27 Global extrema

If  $f: \mathcal{X} \rightarrow \mathbf{R}$  is differentiable on the interior of  $\mathcal{X}$  and  $\mathcal{X}$  is closed and bounded, then a global extrema of f exists and it is either at a critical point or the boundary of  $\mathcal{X}$ .

Check 
$$= int(\mathcal{X}) \cup bd(\mathcal{X})$$

#### 2.28 Definite

We have the following

- (1) Positive Definite: All eigenvalues are Positive
- (2) Negative Definite: All eigenvalues are Negative
- (3) Indefinite: Positive and Negative Eigenvalues

Eigenvalues can be found with the characteristic polynomial:

$$det \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} -\lambda & 0 \\ 0 & -\lambda \end{pmatrix} \end{pmatrix} = det \begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix}$$
$$\Rightarrow \lambda^2 - 1 = 0$$

# 2.29 Calculating determinates

For 2 dimensions we have

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot d - c \cdot b$$

For 3 dimensions we have

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a \cdot \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \cdot \det \begin{pmatrix} d & f \\ g & i \end{pmatrix} + c \cdot \det \begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

### 2.30 Test critical point

A point is critical:  $x_0 \in \mathcal{X}$  where  $\nabla f(x_0) = 0$ . Let  $f: \mathcal{X} \subseteq \mathbf{R}^n \to \mathbf{R}$  and  $f \in C^2$ . Let  $x_0$  be a non-degenerate critical point of f. Then

- (1) If  $\operatorname{Hess}_f(x_0)$  pos def. then  $x_0$  is a local minimum
- (2) If  $\operatorname{Hess}_f(x_0)$  neg def. then  $x_0$  is a local maximum
- (3) If  $\operatorname{Hess}_f(x_0)$  is Indefinite then  $x_0$  is a saddle point

We cannot use this theorem when  $x_0$  is a degenerate critical point  $(det(Hess_f(x_0)) = 0)$  and must decide on a case by case basis!

# 3 Integrals in $\mathbb{R}^n$

# 3.1 Simple integral

For  $f: \mathbf{R} \rightarrow \mathbf{R}^n$  the integral is

$$\int_{a}^{b} f(t)dt = \begin{pmatrix} \int_{a}^{b} f_{1}(t)dt \\ \vdots \\ \int_{a}^{b} f_{n}(t)dt \end{pmatrix}$$

### 3.2 Curve

The image of a function  $\gamma:[a,b]{\rightarrow} \mathbf{R}^n$  where the function  $\gamma$  is continuous and piecewise  $\in C^1$ .

# 3.3 Line integral

Let  $\gamma:[a,b]{\rightarrow}\mathbf{R}^n$  be a parametrization of a curve and let  $\mathcal{X}\subset\mathbf{R}^n$  be a set which contains the image of  $\gamma$ . Further, let  $f:\mathcal{X}{\rightarrow}\mathbf{R}^n$  be a continuous function. A line integral then is

$$\int_{\gamma} f(s) \ d\vec{\mathbf{s}} = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \ dt$$

The line integral has the following properties

(1) It is independent of orientation preserving reparametrization, i.e.

$$\begin{split} \gamma : [a,\,b] &\rightarrow \mathbf{R}^n \\ \tilde{\gamma} : [c,\,d] &\rightarrow \mathbf{R}^n \\ \varPhi : [c,\,d] &\rightarrow [a,\,b] \\ \tilde{\gamma} &= \gamma \circ \varPhi = \gamma(\varPhi) \\ \Rightarrow &\int_{\gamma} f \; ds = \int_{\tilde{\gamma}} f \; ds \end{split}$$

(2) Let  $\gamma_1 + \gamma_2$  be the path formed by the concatenation of the two curves. Then

$$\gamma_1 + \gamma_2 := \begin{cases} \gamma_1(t) & t \in [a, b] \\ \gamma_2(t) & t \in [b, d+b-c] \end{cases}$$
$$\int_{\gamma_1 + \gamma_2} f \, ds = \int_{\gamma_1} f \, ds + \int_{\gamma_2} f \, ds$$

(3) If  $\gamma : [a, b] \rightarrow \mathbb{R}^n$  is a path, let  $-\gamma$  be the path traced in the opposite direction, i.e.  $(-\gamma)(t) := \gamma(a+b-t)$ . Then

$$\int_{-\gamma} f \, ds = -\int_{\gamma} f \, ds$$

## 3.3.1 Length of curve (Bogenlänge)

The length of a curve (Bogenlänge) from a function f on the interval [a,b] is

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

$$v(x,y) = \begin{pmatrix} x^2 - 2xy \\ y^2 - 2xy \end{pmatrix}$$
 from  $(-1,1)$  to  $(1,1)$  along the curve

The given parametrization of the curve is  $\gamma(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}$ 

and the derivative of  $\gamma(t)$  is  $\gamma'(t) = \begin{pmatrix} 1 \\ 2t \end{pmatrix}$ . The vector

field  $v(\gamma(t))$  is given by  $v(\gamma(t)) = \begin{pmatrix} t^2 - 2t^3 \\ t^4 - 2t^3 \end{pmatrix}$ , and the dot product of  $v(\gamma(t))$  and  $\gamma'(t)$  is

$$[v(\gamma(t))\cdot\gamma'(t) = (t^2 - 2t^3)(1) + (t^4 - 2t^3)(2t) = t^2 - 2t^3 + 2t^5 - 4t^4]$$

The integral of v along the curve  $\gamma$  is

$$\begin{split} \int_{\gamma} v, d\gamma &= \int_{-1}^{1} t^2 - 2t^3 + 2t^5 - 4t^4 dt \\ &= \left[ \frac{t^3}{3} - \frac{t^4}{2} + \frac{t^6}{3} - \frac{4t^5}{5} \right]_{t=-1}^{1} \\ &= \frac{1}{3} - \frac{1}{2} + \frac{1}{3} - \frac{4}{5} - \left( -\frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{4}{5} \right) \\ &= \frac{2}{3} - \frac{8}{5} = -\frac{14}{15}. \end{split}$$

### 3.4 Potential

A differentiable scalar field  $g: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}$  such that  $\nabla g = f, \ f: \mathcal{X} \to R^n$  is called a potential for f. This can make stuff easier:

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, dt$$

$$= \int_{a}^{b} \nabla g(\gamma(t)) \cdot \gamma'(t) \, dt$$

$$= \int_{a}^{b} \frac{d}{dt} (g \circ \gamma) \, dt$$

$$= (g \circ \gamma)(b) - (g \circ \gamma)(a)$$

 $f(x,y)=(2xy^2-5x^4y+5,-7y^6-x^5+2x^2y)$  is conservative and its potential is:

$$g(x,y) = x^2y^2 - x^5y + 5x - y^7$$

We want to compute  $\int_{\gamma} f \cdot ds$  where  $\gamma$  is the parametrised curve:

$$\gamma: \left[\frac{\pi}{4}, \frac{5\pi}{4}\right] \to \mathbb{R}^2$$

$$\phi: \left[\frac{1}{2} + \frac{1}{\sqrt{2}}\cos(t), \frac{1}{2} + \frac{1}{\sqrt{2}}\sin(t)\right]$$

So we have:

$$g\left(\psi\left(\frac{5\pi}{4}\right)\right) - g\left(\psi\left(\frac{\pi}{4}\right)\right) = g(0,0) - g(1,1) = -4$$

It should be noted that not every function has a potential! Example:

$$f(x,y) = (2xy^2, 2x)$$
$$\frac{\partial g}{\partial x} = 2xy^2 \Rightarrow g(x,y) = x^2y^2 + h(y)$$
$$\frac{\partial g}{\partial y} = 2x \neq 2x^2y + h'(y)$$

$$f(x,y) = \begin{pmatrix} 3x^2y \\ x^3 \end{pmatrix}$$

$$\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y}(3x^2y) = 3x^2 \qquad \frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x}x^3 = 3x^2$$

If starshaped, integrability is guaranteed. The potential function is

$$\frac{\partial f}{\partial x} = (3x^2y) \qquad \qquad \frac{\partial f}{\partial y} = x^3$$

We integrate  $\frac{\partial f}{\partial x}$  and we see that the consant can depent on y.

$$f(x,y) = \int \frac{\partial f}{\partial x} dx = \int 3x^2 y dx = x^3 y + K(y)$$

With partiel differentiation with respect of y and under consideration of  $\frac{\partial f}{\partial x} = x^3$  we get

$$\frac{\partial f}{\partial y} = x^3 + K'(y) = x^3 \quad K'(y) = 0 \rightarrow K(y) = const. = C$$

## 3.5 Conservative vector field

Let  $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}^n$  be a continuous vector field. The following are equivalent.

- (1) If for any  $x_1, x_2 \in \mathcal{X}$  the line integral  $\int_{\gamma} f \, ds$  is independent of the curve in  $\mathcal{X}$  from  $x_1$  to  $x_2$ , then the vector field f is conservative.
- (2) Any line integral of f around a closed curve is 0.
- (3) A potential for f exists.

We also have the following necessary but not sufficient condition

$$f$$
 is conservative  $\Rightarrow \frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$ 

#### 3.6 Path connected

Let  $\mathcal{X} \subset \mathbf{R}^n$  be open.  $\mathcal{X}$  is said to be path connected if for every pair of points  $x, y \in \mathcal{X}$  a  $C^1$  path  $\gamma : (0, 1] : \to \mathcal{X}$  exists with  $\gamma(0) = x, \gamma(1) = y$ .

# 3.7 Changing the order of integration

Changing the order of integration is sometimes necessary, as in the following example.

$$\int_{0}^{1} \int_{x}^{1} e^{y^{2}} dy dx = \int_{0}^{1} \int_{0}^{y} e^{y^{2}} dx dy$$

$$= \int_{0}^{1} \left( x \cdot e^{y^{2}} \Big|_{x=0}^{x=y} \right) dy$$

$$= \int_{0}^{1} y \cdot e^{y^{2}} dy$$

$$= \frac{e^{y^{2}}}{2} \Big|_{0}^{1}$$

## 3.8 Star shaped

A subset  $\mathcal{X} \subset \mathbf{R}^n$  is called star shaped if  $\exists x_0 \in \mathcal{X}$  such that  $\forall x \in \mathcal{X}$  the line segment joining  $x_0$  to x is contained in  $\mathcal{X}$ . Note

Convex  $\Rightarrow$  Star shaped

Further if  $\mathcal X$  is a star shaped open set of  $\mathbf R^n$  and  $f\in C^1$  is a vector field s.t.

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i} \quad \forall i, j \quad \Rightarrow \quad f \text{ is conservative}$$

$$curl(f) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow f \text{ is conservative}$$

## 3.9 Curl

Let  $\mathcal{X} \subset \mathbf{R}^3$  be open and  $f: \mathcal{X} \to \mathbf{R}^3$  be a  $C^1$  vector field. Then the curl of f is the vector field on  $\mathcal{X}$  defined by

$$curl(f) := \begin{pmatrix} \partial_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix}$$

### 3.10 Partition

A partition P of a closed rectangle  $Q=I_1\times\cdots\times I_n$  where  $I_k=[a_k,\,b_k]$  is a subcollection of rectangular boxes  $Q_1,\ldots,Q_k\subset Q$  such that

- $(1) Q = \bigcup_{j=1}^k Q_j$
- (2) Int  $Q_i \cap \text{int } Q_j = \emptyset \quad \forall i \neq j$ and  $Norm(P) = \delta_P := \max(\text{diam } Q_j) \text{ while } vol(Q) = \prod_{i=1}^n (b_i - a_i)$

### 3.11 Riemann Sum

Riemann sum of f, for partition P, interlude point  $\{\xi_i\}$  is the sum

$$R(f, P, \xi) = \sum_{j=1}^{k} f(\xi_i) \cdot vol(Q_j)$$

For the lower sum instead of  $f(\xi_i)$  use  $\inf_{x\in Q_j} f(x)$  and for upper sum  $\sup_{x\in Q_i} f(x)$ 

# 3.12 Integrable

The lower Riemann sum equals the upper Riemann sum. We have for  $f: \mathbf{R}^n \to \mathbf{R}$ , Q rectangular boxes in  $\mathbf{R}^n$ 

- (1) f is continuous on  $Q \Rightarrow f$  is integrable
- (2)  $f,g:Q\subset {\bf R}^n \to {\bf R}$  integrable,  $\alpha,\beta\in {\bf R}\Rightarrow \alpha f+\beta g$  is integrable and equals

$$\int_{Q} (\alpha f + \beta g) \, dx = \alpha \int_{Q} f \, dx + \beta \int_{Q} g \, dx$$

(3) If  $f(x) \leq g(x) \quad \forall x \in Q$  then

$$\int_{O} f(x) \ dx \le \int_{O} g(x) \ dx$$

(4) if  $f(x) \geq 0$  then

$$\int_{O} f(x) \ dx \ge 0$$

(5) We have

$$\left| \int_{G} f(x) \, dx \right| \le \int_{Q} |f(x)| \, dx$$

$$\le \left( \sup_{Q} |f(x)| \right) \cdot vol(Q)$$

(6) If f = 1 then

$$\int_{Q} 1 \ dx = vol(Q)$$

## 3.13 Fubini's theorem

Let  $Q = I_1 \times \cdots \times I_n$  and f be continuous on Q. Then

$$\int_{Q} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

$$= \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) dx_n \dots dx_1$$

Should the domain of integration be of the type  $D_1 := \{(x,y) \mid a \le x \le b \text{ and } g(x) < y < h(x)\}$ , then

$$\int_D f(x,y) \ dx \ dy = \int_a^b \int_{q(x)}^{h(x)} f(x,y) \ dy \ dx$$

If on the other hand  $D_2 := \{(x,y) \mid c \leq y \leq d \text{ and } G(y) < x < H(y)\}$ , then

$$\int_{D} f(x,y) \, dxdy = \int_{c}^{d} \int_{G(y)}^{H(y)} f(x,y) \, dx \, dy$$

# 3.14 Negligible sets in $\mathbb{R}^n$

If for  $1 \leq m \leq n$  a parametrized m-set in  $\mathbf{R}^n$  is a continuous function

$$\varphi: [a_1, b_1] \times \cdots \times [a_m, b_m]$$

which is  $C^1$  on  $(a_1, b_1) \times \cdots \times (a_m, b_m)$ , then a subset  $Y \subset \mathbf{R}^n$  is negligible if there exist finitely many parametrized  $m_i$ -sets  $\varphi_i : \mathcal{X}_i \to \mathbf{R}^n$  with  $m_i < n$  such that

$$Y \subset \bigcup \varphi_i(\mathcal{X}_i)$$

This means in practice that when we split up an integral we don't need to worry about counting the bounds twice. We also have:

If  $Y \subset \mathbf{R}^n$  closed, bounded and negligible

$$\Rightarrow \int_{V} f dx_1 \dots dx_n = 0 \text{ for any } f$$

# 3.15 Improper Integrals

Let  $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}^n$  be a non compact set and f a function such that  $\int_K f \, dx$  exists for every compact set  $K \subset \mathcal{X}$  and suppose  $f \geq 0$ . Finally we have a sequence of regions  $\mathcal{X}_k$   $k = 1, 2, \ldots$  s.t.

- (1) Each region  $\mathcal{X}_k$  is closed and bounded
- (2)  $\mathcal{X}_k \subset \mathcal{X}_{k+1}$
- (3)  $\bigcup_{k=1}^{\infty} \mathcal{X}_k = \mathcal{X}$

then

$$\int_{\mathcal{V}} f \, dx := \lim_{n \to \infty} \int_{\mathcal{V}} f \, dx$$

6

# 3.16 Change of variables

Let  $\varphi: \mathcal{X} \rightarrow Y$  be a continuous map, where  $\mathcal{X} = \mathcal{X}_0 \cup B$ ,  $Y = Y_0 \cup C$  are closed and bounded sets with  $\mathcal{X}_0$ ,  $Y_0$  open, B, C negligible subsets of  $\mathbf{R}^n$ . Suppose  $\varphi: \mathcal{X}_0 \rightarrow Y_0$  is  $C^1$  and bijective with  $det J_{\varphi}(x) \neq 0 \quad \forall x \in \mathcal{X}_0$ . Let  $Y = \varphi(\mathcal{X})$ . Suppose  $f: Y \rightarrow \mathbf{R}$  is continuous, then

$$\int_Y f(y) \; dy = \int_{\varphi^{-1}(Y)} f(\varphi(x)) \cdot |\det\! J_\varphi(x)| \; dx$$

Here an example with polar coordinates on a quarter circle:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix}$$

$$J = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix}$$

$$\det(J) = r$$

$$dx \, dy = r \, dr \, d\theta$$

$$\int_{\mathcal{X}} \frac{dx \, dy}{1 + x^2 + y^2} = \int_0^{\frac{\pi}{2}} \int_0^1 \frac{1}{1 + r^2} \cdot r \, dr \, d\theta$$

$$= \frac{\log(1 + r^2)}{2} \Big|_0^1$$

Koordinatentransformationen in  $\mathbb{R}^2$ 

|                                         | Polarkoordinaten                                      |                                  |     |    |
|-----------------------------------------|-------------------------------------------------------|----------------------------------|-----|----|
| Definition                              | Maximaler Definitionsbereich                          | Volumenelement                   |     |    |
| $x = r \cos \varphi$ $0 \le r < \infty$ |                                                       | $dxdy = \underline{r}drd\varphi$ |     | _  |
| $y = r \sin \varphi$                    | $0 \le \varphi < 2\pi$                                | را                               | det | Jg |
|                                         | Elliptische Koordinater                               | 1                                | 1   |    |
| Definition                              | efinition Maximaler Definitionsbereich Volumenelement |                                  |     |    |
| 21 - 22 000 va                          | 0 < 5 < 60                                            | Judy b- J- J- J-                 | 1   |    |

Koordinatentransformationen in  $\mathbb{R}^3$ 

 $y = rb \sin \varphi$ 

| Zylinderkoordinaten  |                              |                           |
|----------------------|------------------------------|---------------------------|
| Definition           | Maximaler Definitionsbereich | Volumenelement            |
| $x = r \cos \varphi$ | $0 \le r < \infty$           | $dxdydz = rdrd\varphi dz$ |
| $y = r \sin \varphi$ | $0 \le \varphi < 2\pi$       |                           |
| z = z                | $-\infty < z < \infty$       |                           |

| Kugelkoordinaten                 |                              |                                                |  |
|----------------------------------|------------------------------|------------------------------------------------|--|
| Definition                       | Maximaler Definitionsbereich | Volumenelement                                 |  |
| $x = r \sin \theta \cos \varphi$ | $0 \le r < \infty$           | $dxdydz = r^2 dr \sin \theta d\theta d\varphi$ |  |
| $y = r \sin \theta \sin \varphi$ | $0 \le \theta \le \pi$       |                                                |  |
| $z = r \cos \theta$              | $0 \le \alpha \le 2\pi$      |                                                |  |

#### 3.17 Green's formula

Let  $\mathcal{X}$  be a closed and bounded region in  $\mathbf{R}^2$ . Let  $\gamma$  be a curve forming the boundary of  $\mathcal{X}$ .

$$\int \int_{\mathcal{X}} \left( \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx \, dy = \int_{\gamma} f \, ds$$

where  $f:(x, y) \to \begin{pmatrix} f_1(x, y) \\ f_2(x, y) \end{pmatrix}$ . There are implicit assumptions.

- (1) We assume that the vector field  $f = (f_1, f_2)$  has components  $f_1, f_2$  s.t.  $\frac{\partial f_2}{\partial x}$ ,  $\frac{\partial f_1}{\partial y}$  exist in the region  $\mathcal{X}$ . The usual assumption is that if  $f \in C^1$ , then  $\frac{\partial f_i}{\partial x}$ ,  $\frac{\partial f_i}{\partial y}$  i = 1, 2 exist and are continuous so that curl(f) is continuous. Thus the integral on the left side exists.
- (2) The region  $\mathcal{X}$  needs to be closed and bounded and that its boundary is a simple closed parametrized curve  $\gamma:[a,b]\to\mathbf{R}^2$ . (closed:  $\gamma(a)=\gamma(b)$ , simple: no knots)
- (3)  $\mathcal{X}$  is always to the left hand side of a tangent vector to the boundary (corners no problem).
- (4) Unions of simple closed curves also work (eg. doughnut). Then we would have

$$\int \int_{\mathcal{X}} curl(f) \ dx \ dy = \sum_{i=1}^{k} \int_{\gamma_i} f \ ds$$

If we wanted to calculate the area of a set, then handy functions with  $\operatorname{curl}(f)=1$  are

$$f = (0, x)$$
 or  $f = (-y, 0)$  or  $f = \left(\frac{-y}{2}, \frac{x}{2}\right)$ 

We also have

$$\int_{\gamma} f \ ds = \int_{\gamma_1} f \ ds + \int_{\gamma_2} f \ ds$$

Straight forward application of Green's formula: if  $\gamma$  is a simple closed param. curve. Calculate

$$\int_{\gamma} f \, ds = \int_{b}^{b} \langle f \gamma(t) \rangle, \gamma'(t) \rangle dt$$

 $\gamma$  simple closed parameter curve. Compute:

$$\int_{\partial A} f(x, y) dx dy \text{ for } f(x, y) = f: (x, y) \to \begin{pmatrix} \sqrt{1 + x^3} \\ 2xy \end{pmatrix}$$

 $\partial A = d_1 + d_2 + d_3$  Direct Computation:

$$\int_{\partial} A = \int_{\partial} d_1 + \int_{\partial} d_2 + \int_{\partial} d_3$$

Green's Formula:

$$A = (x, y)|0 \ge x \ge 1, 0 \ge y \ge 3x$$

$$\partial x f_2 - \partial y f_1 = 2y - 0 = 2y$$

$$\int_{\partial A} f ds = \int_{A} 2y dx dy = \int_{0}^{1} \int_{0}^{3x} 2y dy dx = \int_{0}^{1} 9x^{2} dx = 3$$

Calculate the area of  $\Omega:=(x,y)\in\mathbf{R}^2|(x-2)^2-1\leq y\leq 0$  with the Green's formula.

First, calculate intersection points:

$$(x-2)^{2} - 1 = 0$$

$$= x^{2} - 4x + 3$$

$$= (x-3)(x-1)$$

We parametrisize:

$$\gamma_1 : [1, 3] \to \mathbf{R}^2 : t \to (t, (t-2)^2 - 1)$$
  
 $\gamma_2 : [3, 1] \to \mathbf{R}^2 : t \to (t, 0)$ 

Note that is counter clockwise. We consider the vector field  $v: \mathbf{R}^2 \to \mathbf{R}^2: (x,y) \to (0,x)$ . It is

$$curlv(x,y) = \frac{\partial v_y}{\partial x}(x,y) - \frac{\partial v_x}{\partial y}(x,y) = 1$$

$$\begin{split} \int \int_{\Omega} 1 dx dy &= \int \int_{\Omega} curlv dx dy = \int_{\gamma_1} v ds + \int_{\gamma_2} v ds \\ &\int_{1}^{3} v(\gamma_1(t)) \gamma_1'(t) dt + \int_{3}^{1} v(\gamma_2(t)) \gamma_2'(t) dt \\ &= \int_{1}^{3} (0, t) (1, 2(t-2)) dt + \int_{3}^{1} (0, t) (1, 0) (=0) dt \\ &= \int_{1}^{3} 2t^2 - 4t dt = \frac{2}{3} t^3 - 2t^2 |_{1}^{3} \\ &= 18 - \frac{2}{3} - 18 + 2 = \frac{4}{3} \end{split}$$

## 4 Other

# 4.1 Dreiecksungleichung

$$\forall x, y \in \mathbf{R} : ||x| - |y|| \le |x \pm y| \le |x| + |y|$$

# 4.2 Bernoulli Ungleichung

$$\forall x \in \mathbf{R} \ge -1 \text{ und } n \in \mathbf{N} : (1+x)^n \ge 1 + nx$$

# 4.3 Exponentialfunktion

$$exp(z) = \lim_{n \to \infty} (1 + \frac{z}{n})^n$$

Die reelle Exponentialfunktion  $exp: \mathbf{R} \to ]0, \infty[$  ist streng monoton wachsend, stetig und surjektiv.

Es gelten weiter folgende Rechenregeln:

1. 
$$exp(x + y) = exp(x) * exp(y)$$

2. 
$$x^a := exp(a * ln(x))$$

3. 
$$x^0 = 1 \quad \forall x \in \mathbf{R}$$

4. 
$$exp(iz) = cos(z) + i * sin(z) \quad \forall z \in \mathbf{C}$$

5. 
$$exp(i * \frac{\pi}{2}) = i$$

6. 
$$exp(i\pi) = -1 \text{ und } exp(2\pi i) = 1$$

7. Für a > 0 ist  $]0, +\infty[\rightarrow]0, +\infty[$  als  $x \to x^a$  eine streng monoton wachsende stetige Bijektion

Merke:  $e^x$  entspricht exp(x).

# 4.4 Natürliche Logaritmus

Der natürliche Logaritmus wir als  $ln:]0,\infty[\to \mathbf{R}$  bezeichnet und ist eine streng monoton wachsende stetige funktion. Es gilt auch, dass

1. 
$$ln(1) = 0$$

2. 
$$ln(e) = 1$$

3. 
$$ln(a * b) = ln(a) + ln(b)$$

4. 
$$ln(a/b) = ln(a) - ln(b)$$

5. 
$$ln(x^a) = a * ln(x)$$

6. 
$$x^a * x^b = x^{a+b}$$

7. 
$$(x^a)^b = x^{a*b}$$

8. 
$$ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n \quad (-1 < x \le 1)$$

# 4.5 Faktorisierungs Lemma

$$a^{n} - b^{n} = (a - b)(a^{n-1} + ba^{n-2} + \dots + b^{n-2}a + b^{n-1})$$

# 4.6 Sinus Abschätzung

Es gilt  $|\sin(x)| \le |x|$  mit folgendem Beweis:

$$f(x) = x - \sin(x), x \ge 0$$

$$f'(x) = 1 - \cos(x) \ge 0$$

Weil f(0) = 0,  $f(x) \ge 0$  für x > 0. Dann  $|\sin(x)| \le |x|$  einfach.

# 4.7 Trigonometrische Funktionen

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
  $r = \infty$ 

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad r = \infty$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
  $r = \infty$ 

$$\ln(x+1) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}$$
  $r = 1$ 

 $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{2!} + \frac{x^4}{4!} + \mathcal{O}(x^5)$ 

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \mathcal{O}(x^7)$$

$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \mathcal{O}(x^7)$$

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \mathcal{O}(x^8)$$

$$\cosh(x) = 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \frac{x^6}{6!} + \mathcal{O}(x^8)$$

$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + \mathcal{O}(x^7)$$

$$\tanh(x) = x - \frac{x^3}{3} + \frac{2x^5}{15} + \mathcal{O}(x^7)$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \mathcal{O}(x^5)$$
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \mathcal{O}(x^4)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \mathcal{O}(x^4)$$

|       | 0°                   | 30°                  | 45°                  | 60°                  | 90°                  | 120°                  | 135°                  | 150°                  | 180°                  |
|-------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| angle |                      |                      |                      |                      | _                    |                       |                       |                       |                       |
|       | 0                    | π/6                  | $\pi/4$              | π/3                  | π/2                  | $2\pi/3$              | $3\pi/4$              | 5π/6                  | π                     |
| sin   | $\frac{\sqrt{0}}{2}$ | $\frac{\sqrt{1}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{4}}{2}$ | $\frac{\sqrt{3}}{2}$  | $\frac{\sqrt{2}}{2}$  | $\frac{\sqrt{1}}{2}$  | $\frac{\sqrt{0}}{2}$  |
| cos   | $\frac{\sqrt{4}}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{1}}{2}$ | $\frac{\sqrt{0}}{2}$ | $-\frac{\sqrt{1}}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | $-\frac{\sqrt{4}}{2}$ |
| tan   | $\sqrt{\frac{0}{4}}$ | $\sqrt{\frac{1}{3}}$ | $\sqrt{\frac{2}{2}}$ | $\sqrt{\frac{3}{1}}$ |                      | $-\sqrt{\frac{3}{1}}$ | $-\sqrt{\frac{2}{2}}$ | $-\sqrt{\frac{1}{3}}$ | $-\sqrt{\frac{0}{4}}$ |
| cot   | -                    | $\sqrt{\frac{3}{1}}$ | $\sqrt{\frac{2}{2}}$ | $\sqrt{\frac{1}{3}}$ | 0                    | $-\sqrt{\frac{1}{3}}$ | $-\sqrt{\frac{2}{2}}$ | $-\sqrt{\frac{3}{1}}$ | •                     |
| csc   | •                    | $\frac{2}{\sqrt{1}}$ | $\frac{2}{\sqrt{2}}$ | $\frac{2}{\sqrt{3}}$ | $\frac{2}{\sqrt{4}}$ | $\frac{2}{\sqrt{3}}$  | $\frac{2}{\sqrt{2}}$  | $\frac{2}{\sqrt{1}}$  | •                     |
| sec   | $\frac{2}{\sqrt{4}}$ | $\frac{2}{\sqrt{3}}$ | $\frac{2}{\sqrt{2}}$ | $\frac{2}{\sqrt{1}}$ |                      | $-\frac{2}{\sqrt{1}}$ | $-\frac{2}{\sqrt{2}}$ | $-\frac{2}{\sqrt{3}}$ | $-\frac{2}{\sqrt{4}}$ |







1. 
$$\cos(z) = \cos(-z)$$

$$2. \sin(-z) = -\sin(z)$$

3. 
$$\cos^2(z) + \sin^2(z) = 1 \quad \forall z \in \mathbf{C}$$

# 4.8 Hyperbol Funktionen

1. 
$$\cosh(x) := \frac{e^x + e^{-x}}{2} : \mathbf{R} \to [1, \infty]$$

2. 
$$\sinh(x) := \frac{e^x - e^{-x}}{2} : \mathbf{R} \to \mathbf{R}$$

3. 
$$\tanh(x) := \frac{e^x - e^{-x}}{e^x + e^{-x}} : \mathbf{R} \to [-1, 1]$$

und es gilt 
$$\cosh^2(x) - \sinh^2(x) = 1$$

# 4.9 Funktionen Verknüpfung

$$x \mapsto (g \circ f)(x) := g(f(x))$$

# 5 Trigonometrie

# 5.1 Regeln

## 5.1.1 Periodizität

- $\sin(\alpha + 2\pi) = \sin(\alpha)$   $\cos(\alpha + 2\pi) = \cos(\alpha)$
- $tan(\alpha + \pi) = tan(\alpha)$   $cot(\alpha + \pi) = cot(\alpha)$

#### 5.1.2 Parität

- $\sin(-\alpha) = -\sin(\alpha)$   $\cos(-\alpha) = \cos(\alpha)$
- $tan(-\alpha) = -tan(\alpha)$   $cot(-\alpha) = -cot(\alpha)$

#### 5.1.3 Ergänzung

- $\sin(\pi \alpha) = \sin(\alpha)$   $\cos(\pi \alpha) = -\cos(\alpha)$
- $tan(\pi \alpha) = -tan(\alpha)$   $cot(\pi \alpha) = -cot(\alpha)$

### 5.1.4 Komplemente

- $\sin(\pi/2 \alpha) = \cos(\alpha)$   $\cos(\pi/2 \alpha) = \sin(\alpha)$
- $\tan(\pi/2 \alpha) = -\tan(\alpha)$   $\cot(\pi/2 \alpha) = -\cot(\alpha)$

### 5.1.5 Doppelwinkel

- $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$
- $\cos(2\alpha) = \cos^2(\alpha) \sin^2(\alpha) = 1 2\sin^2(\alpha)$
- $\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$

#### 5.1.6 Addition

- $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
- $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$
- $\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 \tan(\alpha)\tan(\beta)}$

#### 5.1.7 Subtraktion

- $\sin(\alpha \beta) = \sin(\alpha)\cos(\beta) \cos(\alpha)\sin(\beta)$
- $\cos(\alpha \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$
- $\tan(\alpha \beta) = \frac{\tan(\alpha) \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$

### 5.1.8 Multiplikation

- $\sin(\alpha)\sin(\beta) = -\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{2}$
- $\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{2}$
- $\sin(\alpha)\cos(\beta) = \frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{2}$

### 5.1.9 Potenzen

- $\sin^2(\alpha) = \frac{1}{2}(1 \cos(2\alpha))$
- $\cos^2(\alpha) = \frac{1}{2}(1 + \cos(2\alpha))$
- $\tan^2(\alpha) = \frac{1-\cos(2\alpha)}{1+\cos(2\alpha)}$

#### 5.1.10 Diverse

- $\sin^2(\alpha) + \cos^2(\alpha) = 1$
- $\cosh^2(\alpha) \sinh^2(\alpha) = 1$
- $\sin(z) = \frac{e^{iz} e^{-iz}}{2}$  und  $\cos(z) = \frac{e^{iz} + e^{-iz}}{2i}$
- $\tan(x) = \frac{\sin(x)}{\cos(x)} \quad \forall z \notin \{\frac{\pi}{2} + \pi k\}$
- $\cot(x) = \frac{\cos(x)}{\sin(x)}$
- $\arcsin(x) = \sin(x)\cos(x)$
- $\cos(\arccos(x)) = x$
- $\sin(\arccos(x)) = \frac{1}{\sqrt{1-x^2}}$
- $\sin(\arctan(x)) = \frac{x}{\sqrt{x^2+1}}$
- $\cos(\arctan(x)) = \frac{1}{\sqrt{x^2+1}}$
- $\sin(x) = \frac{\tan(x)}{\sqrt{1+\tan(x)^2}}$
- $\cos(x) = \frac{1}{\sqrt{1+\tan(x)^2}}$

# 6 Tabellen

## 6.1 Ableitungen

| $\mathbf{F}(\mathbf{x})$             | $\mathbf{f}(\mathbf{x})$ | $\mathbf{f'}(\mathbf{x})$             |
|--------------------------------------|--------------------------|---------------------------------------|
| $(x-1)e^x$                           | $xe^x$                   | $(x+1)e^x$                            |
| $\frac{x^{-a+1}}{-a+1}$              | $\frac{1}{x^a}$          | $\frac{a}{x^{a+1}}$                   |
| $\frac{x^{a+1}}{a+1}$                | $x^a \ (a \neq -1)$      | $a \cdot x^{a-1}$                     |
| $\frac{1}{k\ln(a)}a^{kx}$            | $a^{kx}$                 | $ka^{kx}\ln(a)$                       |
| $\ln  x $                            | $\frac{1}{x}$            | $-\frac{1}{x^2}$                      |
| $\frac{2}{3}x^{3/2}$                 | $\sqrt{x}$               | $\frac{1}{2\sqrt{x}}$                 |
| $-\cos(x)$                           | $\sin(x)$                | $\cos(x)$                             |
|                                      | $\frac{\sin(x)^2}{2}$    | $\sin(x)\cos(x)$                      |
| $\sin(x)$                            | $\cos(x)$                | $-\sin(x)$                            |
| $\frac{1}{2}(x-\frac{1}{2}\sin(2x))$ | $\sin^2(x)$              | $2\sin(x)\cos(x)$                     |
| $\tan(x) - x$                        | $\tan(x)^2$              | $2\sec(x)^2\tan(x)$                   |
| $-\cot(x)-x$                         | $\cot(x)^2$              | $-2\cot(x)\csc(x)^2$                  |
| $\frac{1}{2}(x+\frac{1}{2}\sin(2x))$ | $\cos^2(x)$              | $-2\sin(x)\cos(x)$                    |
| $-\ln \cos(x) $                      | $\tan(x)$                | $\frac{1}{\cos^2(x)}$ $1 + \tan^2(x)$ |
| $\cosh(x)$                           | $\sinh(x)$               | $\cosh(x)$                            |
| $\log(\cosh(x))$                     | tanh(x)                  | $\frac{1}{\cosh^2(x)}$                |
| $\ln \sin(x) $                       | $\cot(x)$                | $-\frac{1}{\sin^2(x)}$                |
| $\frac{1}{c} \cdot e^{cx}$           | $e^{cx}$                 | $c \cdot e^{cx}$                      |
| $x(\ln x -1)$                        | $\ln  x $                | $\frac{1}{x}$                         |
| $\frac{1}{2}(\ln(x))^2$              | $\frac{\ln(x)}{x}$       | $\frac{1 - \ln(x)}{x^2}$              |
| $\frac{x}{\ln(a)}(\ln x -1)$         | $\log_a  x $             | $\frac{1}{\ln(a)x}$                   |

| $\mathbf{F}(\mathbf{x})$                                       | $\mathbf{f}(\mathbf{x})$                       |
|----------------------------------------------------------------|------------------------------------------------|
| $\arcsin(x)/\arccos(x)$                                        | $\frac{1/-1}{\sqrt{1-x^2}}$                    |
| $\arctan(x)$                                                   | $\frac{1}{1+x^2}$                              |
| $x\arcsin(x) + \sqrt{1-x^2}$                                   | $\arcsin(x)$                                   |
| $x \arccos(x) - \sqrt{1 - x^2}$                                | $\arccos(x)$                                   |
| $x \arctan(x) - \frac{1}{2} \ln(1+x^2)$                        | $\arctan(x)$                                   |
| $\ln(\cosh(x))$                                                | $\tanh(x)$                                     |
| $x^x \ (x>0)$                                                  | $x^x \cdot (1 + \ln x)$                        |
| $f(x)^{g(x)}$                                                  | $e^{g(x)ln(f(x))}$                             |
| $f(x) = cos(\alpha)$                                           | $f(x)^n = \sin(x + n\frac{\pi}{2})$            |
| $f(x) = \frac{1}{ax+b}$                                        | $f(x)^n = (-1)^n * a^n * n! * (ax + b)^{-n+1}$ |
| $-\ln(\cos(x))$                                                | $\tan(x)$                                      |
| $\ln(\sin(x))$                                                 | $\cot(x)$                                      |
| $\ln \left( 	an \left( rac{x}{2}  ight)  ight)$               | $\frac{1}{\sin(x))}$                           |
| $\ln\left(\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right)$ | $\frac{1}{cos(x)}$                             |

| $\mathbf{f}(\mathbf{x})$                        | $\mathbf{F}(\mathbf{x})$                                         |
|-------------------------------------------------|------------------------------------------------------------------|
| $\int f'(x)f(x)  \mathrm{d}x$                   | $\frac{1}{2}(f(x))^2$                                            |
| $\int rac{f'(x)}{f(x)} \; \mathrm{d}x$         | $\ln  f(x) $                                                     |
| $\int_{-\infty}^{\infty} e^{-x^2}  \mathrm{d}x$ | $\sqrt{\pi}$                                                     |
| $\int (ax+b)^n  \mathrm{d}x$                    | $\frac{1}{a(n+1)}(ax+b)^{n+1}$                                   |
| $\int x(ax+b)^n  \mathrm{d}x$                   | $\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$ |
| $\int (ax^p + b)^n x^{p-1}  \mathrm{d}x$        | $\frac{(ax^p+b)^{n+1}}{ap(n+1)}$                                 |
| $\int (ax^p + b)^{-1}x^{p-1}  \mathrm{d}x$      | $\frac{1}{ap}\ln ax^p+b $                                        |
| $\int \frac{ax+b}{cx+d}  \mathrm{d}x$           | $\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $                 |
| $\int \frac{1}{x^2 + a^2}  \mathrm{d}x$         | $\frac{1}{a} \arctan \frac{x}{a}$                                |
| $\int \frac{1}{x^2 - a^2}  \mathrm{d}x$         | $\frac{1}{2a} \ln \left  \frac{x-a}{x+a} \right $                |
| $\int \sqrt{a^2 + x^2}  \mathrm{d}x$            | $\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$                   |

### 6.1.1 Potenzen der Winkelfunktion

$$sin^{2}(x) = \frac{1}{2}(1 - cos(2x))$$
$$cos^{2}(x) = \frac{1}{2}(1 + cos(2x))$$

## 6.1.2 Funktionen Verknüpfung

$$x \mapsto (g \circ f)(x) := g(f(x))$$

### 6.1.3 Häufungspunkt

 $x_0 \in \mathbf{R}$  ist ein **Häufungspunkt** der Menge **D**, falls  $\forall \delta > 0$  (] $x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) \cap \mathbf{D} \neq \emptyset$ 

### 6.1.4 Ordinary differential equations (ODE's)

Given F, a function of x,y, and derivatives of y. Then an equation of the form

$$F(x, y, y', \dots, y^{(n)}) = 0$$

is an implicit ODE of order n. Order is determined by the highest derivative. Implicit means the equation equals 0.

## 6.1.5 Homogenous

A linear ODE is homogenous when b(x)=0. Inhomogenous otherwise.

#### 6.1.6 Vector Field

A function  $f: \mathbf{R}^n \rightarrow \mathbf{R}^n$ .

#### 6.1.7 Kritische Stelle

Eine **kritische Stelle** einer Funktion ist ein  $x_0$  an der  $f'(x_0)$  null oder undefiniert ist.

# 6.2 Important

1. The function  $f: \mathbf{R}^2 \to \mathbf{R} f(x,y) = |xy|$  is differentiable in (0,0)