Towards Generating Human-Centered Saliency Maps without Sacrificing Accuracy

Vivek Aswal*, Gore Kao*, Seo Young Kim*, and Katelyn Morrison* Carnegie Mellon University

NeuroVision Workshop 2022

Research Question:

What techniques will cause SOTA object detection models to generate saliency maps that are similar to human eye-fixations while maintaining SOTA accuracy?

Proposed Solution:

Data Augmentation

- Selective Erasing
- Selective Inpainting
- Non-trivial transformation

Augmented Dataset Examples

Selective Erasing & Inpainting

Non-trivial Transformations

Evaluation Methods

Object Detection Model

Faster R-CNN

kraliate or product set

Performance on Test Set

mAP = ?? MAE = ?? IoU = ??

Compare Saliency Maps

Saliency Map for Faster **RCNN from** PASCAL

Ground Attention Mask

Predicted Truth Human Saliency Map from DeepGazeIIE

Results

		Compared to Predicted Eye-Fixations		Compared to Human Attention Masks	
Augmentation	mAP	mAE	IoU	mAE	IoU
Selective Erasing	0.754	0.1560	0.1878	0.1561	0.1878
Selective Inpainting	0.763	0.1552	0.1863	0.1572	0.1863
Non-Trivial Transformation	0.781	0.1581	0.1762	0.1600	0.2676
Original	0.787	0.1575	0.1823	0.1583	0.2688

Towards Generating Human-Centered Saliency Maps without Sacrificing Accuracy

Vivek Aswal*, Gore Kao*, Seo Young Kim*, and Katelyn Morrison* Carnegie Mellon University

NeuroVision Workshop 2022

