Unofficial answers to M337/M 1995 page 1 of 1

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Part I

Question 1

(a) (i)
$$(1-i)^8$$
 [Put $1-i$ in polar form]
 $1-i=Re^{iq}$, with $R=\sqrt{1^2+1^2}=\sqrt{2}=2^{1/2}$; $q=\tan^{-1}(-1/1)=-p/4$ or $3p/4$.
Since 1-i is in the 4th quadrant, we must have $q=-p/4$
So, $(1-i)^8=\left(2^{1/2}e^{-ip/4}\right)^8=2^{8/2}e^{-i8p/4}=2^4e^{-i2p}=2^4=16$
[Remember $e^{iq}=\cos q+i\sin q$, so if $q=-2p$, we get $e^{-i2p}=\cos(-2p)+i\sin(-2p)=1$]

(a) (ii)
$$(1+i)^8$$
 [Put 1 + *i* in polar form]

 $1+i=\sqrt{2}e^{ip/4}$ [Note it is good to remember some of the common arguments like $Arg(1+i)=\frac{p}{4}$ etc.]

So,
$$(1+i)^8 = (2^{1/2}e^{i\mathbf{p}/4})^{i} = 2^{i/2}e^{i\cdot i\mathbf{p}/4} = e^{-\mathbf{p}/4}2^{i/2}$$
This is real

This needs to be simplified

Now, $2^{i/2} = e^{\frac{i}{2}\mathrm{Log}_e 2} = e^{i\log_e \sqrt{2}} = \cos(\log_e \sqrt{2}) + i\sin(\log_e \sqrt{2})$

Now,
$$2^{i/2} = e^{\frac{i}{2} \text{Log}_e 2} = e^{i \log_e \sqrt{2}} = \cos(\log_e \sqrt{2}) + i \sin(\log_e \sqrt{2})$$

So the answer is $e^{-\mathbf{p}/4} \left(\cos \left(\log_e \sqrt{2} \right) + i \sin \left(\log_e \sqrt{2} \right) \right)$

(b)
$$\tan(2i) = \frac{\sin(2i)}{\cos(2i)}$$
 [Now use the result that $\cos \mathbf{q} = \frac{1}{2} \left(e^{i\mathbf{q}} + e^{-i\mathbf{q}} \right)$, $\sin \mathbf{q} = \frac{1}{2i} \left(e^{i\mathbf{q}} - e^{-i\mathbf{q}} \right)$]

We get
$$\tan(2i) = \frac{e^{i2i} - e^{-i2i}}{i(e^{i2i} + e^{-i2i})} = \frac{e^{-2} - e^2}{i(e^{-2} + e^2)}$$

[Now take e^{-2} out as a factor in numerator and denominator

We get
$$\tan(2i) = \frac{e^{-2} - e^2}{i(e^{-2} + e^2)} = \frac{e^{-2}(1 - e^4)}{ie^{-2}(1 + e^4)} = \frac{1 - e^4}{i(1 + e^4)} = \frac{-i(1 - e^4)}{1 + e^4} = i\frac{e^4 - 1}{e^4 + 1}$$

[Here we have used the result that $\frac{1}{i} = -i$]

Question 2

note boundaries included

- (b) A - B Not a region since not open
 - Compact since bounded and closed
 - $A \cap B$ Not a region since not open
 - $A \cap B$ Not compact since not closed

[If I am right then this is a tricky question since $A \cap B$ is not open and not closed. This is possible since open and closed are not opposites as you might think.]

Unofficial answers to M337/M 1995 page 2 of 2

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Question 3

(a) The line joining 0 to 1 + i has equation z = (1 + i)t $0 \le t \le 1$.

So,
$$\int_{\Gamma} \overline{z}^2 dz = \int_0^1 \left(\overline{(1+i)}t \right)^2 \frac{dz}{dt} dt = \int_0^1 (1-i)^2 (1+i)t^2 dt = (1-i)^2 (1+i) \left[\frac{1}{3}t^3 \right]_0^1 = \frac{(1-i)^2 (1+i)}{2} = \frac{2}{3}(1-i)$$

[Note the equation of a line joining z_1 and z_2 is always given by $z_1 + t(z_2 - z_1)$ $0 \le t \le 1$.]

(b)
$$\left| \int_{\Gamma} \exp(\overline{z}^2) dz \right| \le \max(\left| \exp(\overline{z}^2) \right|) \cdot L$$

Since $\exp(\overline{z}^2)$ is continuous on Γ and where L is the length of Γ . Length of Γ is $\sqrt{2}$ (From Pythagoras). Also,

$$\left| \exp\left(\overline{z}^{2}\right) \right| = \left| \exp\left((1-i)^{2}t^{2}\right) \right| = \left| \exp\left(-2it^{2}\right) \right|$$

and the maximum value of this is 1. [Note $\left|e^{im{q}}\right|$ is always 1 for $m{q}$ real.]

Finally we get
$$\left| \int_{\Gamma} \exp(\overline{z}^2) dz \right| \le 1 \cdot \sqrt{2} = \sqrt{2}$$

[The problem with this question is that you might think you need to use the answer to part (a). You DON'T.]

Question 4

(a) $f(z) = \frac{1}{z^2 - 1}$ [When asked to give the Laurent series about any point 'a' always rewrite f(z) in

$$f(z) = \frac{1}{z^2 - 1} = \frac{1}{(z - 1)(z + 1)} = \frac{1}{(z - 1)((z - 1) + 2)}$$
 [Using $z + 1 = z - 1 + 2$]

Difference of two squares

So here we have z - 1

Now since |z-1| < 2, we must rewrite f(z) as below

$$f(z) = \frac{1}{(z-1)((z-1)+2)} = \frac{1}{2(z-1)\left(1+\frac{(z-1)}{2}\right)} = \frac{1}{2(z-1)}\left(1+\frac{(z-1)}{2}\right)^{-1}$$

[Now use the result that $(1+x)^{-1} = 1 - x + x^2 - x^3 + \cdots$ for |x| < 1]

We get since
$$\left| \frac{z-1}{2} \right| < 1$$

$$f(z) = \frac{1}{2(z-1)} \left(1 - \left(\frac{z-1}{2} \right) + \left(\frac{z-1}{2} \right)^2 + \dots + \left(-1 \right)^n \left(\frac{z-1}{2} \right)^n \right)$$

This is put in to give the alternating sign pattern.

$$\therefore f(z) = \frac{1}{2(z-1)} - \frac{1}{4} + \frac{1}{4} \left(\frac{z-1}{2}\right) + \dots + \frac{1}{4} (-1)^n \left(\frac{z-1}{2}\right)^{n-1} +$$
(general term)

(b) [No need for much algebra here]

$$f(z) = \frac{1}{z^2 - 1} = \frac{1}{z^2 \left(1 - \frac{1}{z^2}\right)} = \frac{1}{z^2} \left(1 - \frac{1}{z^2}\right)^{-1}$$

Since |1/z| < 1, we can expand using $(1-x)^{-1} = 1 + x + x^2 + x^3 + \cdots$ for |x| < 1

We get

$$f(z) = \frac{1}{z^2} \left(1 + \frac{1}{z^2} + \frac{1}{z^4} + \frac{1}{z^6} + \dots + \frac{1}{z^{2n}} + \dots \right) = \frac{1}{z^2} + \frac{1}{z^4} + \frac{1}{z^6} + \dots + \frac{1}{z^{2(n+1)}} + \dots$$
 (general term)

Unofficial answers to M337/M 1995 page 3 of 3

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Question 5

(a) Simple poles when
$$z^3 + 1 = 0$$
 [Solve this equation]
$$z^3 = -1 = e^{i(\mathbf{p} + 2\mathbf{p}n)} \Rightarrow z = e^{i(\mathbf{p} + 2\mathbf{p}n)/3}$$

Now take n = 0, 1, 2 to give 3 roots:

$$\mathbf{n} = \mathbf{0}, \ z = e^{i\mathbf{p}/3}; \ \mathbf{n} = \mathbf{1}, \ z = e^{i(\mathbf{p}+2\mathbf{p})/3} = e^{i\mathbf{p}}; \ \mathbf{n} = \mathbf{2}, \ z = e^{i(\mathbf{p}+4\mathbf{p})/3} = e^{i5\mathbf{p}/3} = e^{-i\mathbf{p}/3}$$

[To find residue, use the result on page 8 of Unit C1 = g/h rule HB1.2 p.28]

So Res at
$$\mathbf{a} = e^{i\mathbf{p}/3}$$
 is $\frac{1}{3(e^{i\mathbf{p}/3})^2} = \frac{1}{3e^{2i\mathbf{p}/3}} = \frac{e^{-2i\mathbf{p}/3}}{3}$

So Res at
$$\mathbf{a} = e^{i\mathbf{p}}$$
 is $\frac{1}{3(e^{i\mathbf{p}})^2} = \frac{1}{3e^{2i\mathbf{p}}} = \frac{1}{3}$

So Res at
$$\mathbf{a} = e^{-i\mathbf{p}/3}$$
 is $\frac{1}{3(e^{-i\mathbf{p}/3})^2} = \frac{1}{3e^{-2i\mathbf{p}/3}} = \frac{e^{2i\mathbf{p}/3}}{3}$

No need to put answers in Cartesian form unless asked.

(b)
$$\int_{-\infty}^{\infty} \frac{1}{t^3 + 1} dt$$
 [Always draw a sketch showing poles]

the integrand $\frac{1}{t^3+1}$ satisfies the conditions for closing the contour in the

I don't know if it is strictly necessary to change to Principal Arg, but I have done

upper half plane. Call this contour Γ .

[See Unit C1 for details page 25 onwards.]

We get

$$\int_{-\infty}^{\infty} \frac{1}{t^3 + 1} dt = \int_{\Gamma} \frac{1}{z^3 + 1} dz = \mathbf{p}i \cdot \text{Res at } -1 + 2\mathbf{p}i \cdot \text{Res at } e^{i\mathbf{p}/3}$$

[note the factors of pi and 2pi. pi is used when the pole is on the real axis. See page 27 of C1] So we get

$$pi \cdot \frac{1}{3} + 2pi \cdot e^{-2pi/3} = \frac{pi}{3} + \frac{2pi}{3} \left(\cos\left(\frac{2p}{3}\right) + i\sin\left(\frac{2p}{3}\right)\right) = \frac{pi}{3} + \frac{2pi}{3} \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = \frac{-2pi \cdot i}{3} \cdot \frac{\sqrt{3}}{2} = \frac{7}{3} = \frac{p}{3}$$

[To help remember if the pole is inside the contour we get a contribution of $2pi \times \text{Residue}$. If we have a simple pole on the contour the contribution is $pi \times \text{Residue}$]

Question 6

When |z|=2, the dominant term is $g_1(z)=z^6$. Both f and g_1 are analytic on (, which is a simply-connect region. $C_1=\left\{z:|z|=2\right\}$ is a simple-closed contour in (.

Now
$$\left| -3iz^4 + 1 \right| \le \left| -48i + 1 \right| = \sqrt{48^2 + 1} < 49 < 2^6 = 64 = \left| g_1(z) \right|$$
 for $z \in C_1 \Rightarrow 6$ zeros in C_1 .

When |z|=1, the dominant term is $g_2(z)=-3iz^4$. Then g_2 is analytic on (. $C_2=\{z:|z|=1\}$ is a simple-closed contour in (. Now $|z^6+1| \le 2 < 3 = |g_2(2)|$ for $z \in C_2 \Rightarrow 4$ zeros in C_2 .

And no zero's on the contours, since the inequalities are strict. So, there are 2 zeros in $\{z:1<|z|<2\}$.

Unofficial answers to M337/M 1995 page 4 of 4

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Question 7

(a) $q(z) = \overline{z} + i$, so $q(z) = \overline{z - i}$ and z - i is an analytic function. So q is the complex conjugate of an analytic function and a model flow.

(b)
$$\Omega'(z) = \overline{q}(z) = z - i \Rightarrow \Omega(z) = \frac{1}{2}z^2 - iz$$

Stream function is $\operatorname{Im}\Omega = \operatorname{constant}$. So $\operatorname{Im}\left(\frac{x^2 - y^2 + 2ixy}{2} - ix + y\right) = xy - x = \operatorname{constant} = k$

Point 1
$$x = 1, y = 0 \Rightarrow k = -1$$
. So $xy - x + 1 = 0 \Rightarrow y = \frac{x - 1}{x} = 1 - \frac{1}{x}$ (since $x \neq 0$)

Point
$$-1 + i$$
 $x = -1, y = 1 \Rightarrow -1 - (-1) = 0 = k$. So $xy - x = 0 \Rightarrow y - 1 = 0$ (since $x \neq 0$)

(c)
$$q(1) = 1 + i; \quad q(-1+i) = -1 - i + i = -1$$

[The definition of degenerate streamline is given on page 8 of D2. Essentially it is the set of points forming the stagnation point z_0 . That is the stagnation point itself $\{z_0\}$.]

Question 8

(a) [fixed points are solutions to the equation f(z) = z]

From
$$f(z) = z$$
 we have $z^2 + \frac{1}{4} = z \Leftrightarrow z^2 - z + \frac{1}{4} = 0$.

Using the formula for quadratic equations we have

$$z = \frac{1 \pm \sqrt{1 - 4 \times \frac{1}{4}}}{2} = \frac{1}{2}$$

So there is only one fixed point at $z = \frac{1}{2}$.

Now
$$f'(z) = 2z$$

So
$$f'(\frac{1}{2}) = 2 \times \frac{1}{2} = 1$$

So the fixed point is indifferent. [see page 24 of unit D3]

(b) (i) This looks like it lies outside so try to show it is by using Corollary 1 on page 37 of D3.

We have
$$P_c(z) = z^2 - 1 + i \Rightarrow |P_c(0)| = |-1 + i| = \sqrt{2} < 2$$

$$P_c^2(0) = P_c(P_c(0)) = (-1+i)^2 - 1 + i = -2i - 1 + i = -1 - i \Rightarrow \left| P_c^2(0) \right| = \left| -1 - i \right| = \sqrt{2} < 2$$

$$P_c^3(0) = P_c(P_c(P_c(0))) = P_c(-1-i) = (-1-i)^2 - 1 + i = 2i - 1 + i = -1 + 3i \Rightarrow$$

$$\left| P_c^2(0) \right| = \left| -1 + 3i \right| = \sqrt{1+9} = \sqrt{10} > 2$$

Since $|P_c^3(0)| > 2$ c does not belong to the set M by Corollary 1 on page 37.

(b) (ii) $c = -\frac{1}{2} - \frac{1}{2}i$ looks like it does belong to M. Try to show c belongs to main cardiod (page 40 D3).

$$\left(8|c|^2 - \frac{3}{2}\right)^2 + 8\operatorname{Re} c = \left(8 \times \frac{1}{2} - \frac{3}{2}\right)^2 - 8 \times \frac{1}{2} = \left(\frac{5}{2}\right)^2 - 4 = \frac{25}{4} - 4 = \frac{9}{4} = 2\frac{1}{4} < 3$$

So $P_{-\frac{1}{2}-\frac{i}{2}}$ has an attracting fixed point (Theorem 2.4) and so $-\frac{1}{2}-\frac{1}{2}i \in M$ by theorem 4.3.

Unofficial answers to M337/M 1995 page 5 of 5

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Part II

Question 9

(a)
$$f(z) = (x+iy)^2 + ax^2 + iby^2 = \underbrace{(a+1)x^2 - y^2}_{u(x,y)} + i\underbrace{(2xy+by^2)}_{v(x,y)}$$

The Cauchy Riemann equations are satisfied in any region in which f(z) is analytic.

The C.R. equations are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Now $u = (a+1)x^2 - y^2$, $v = 2xy + by^2$.

$$\frac{\partial u}{\partial x} = 2(a+1)x; \quad \frac{\partial v}{\partial y} = 2x + 2by; \quad \frac{\partial u}{\partial y} = -2y; \quad \frac{\partial v}{\partial x} = 2y$$

which are all continuous

So we arrive at the following C.R. equations

$$2(a+1)x = 2x + 2by \Rightarrow a = 0$$
 and $b = 0, \forall x, y$

-2y = -2ywhich is true for all y

So by C.R. Theorem and its converse f is analytic at (if and only if a = b = 0

- Using HB A4.4.6 p. $g'(z) \neq 2z \neq 0 \Leftrightarrow z \neq 0$. So g is conformal on $(-\{0\})$ (b) (i) (or it's not conformal at 0 since the angle between the positive and negative real axis is not preserved.)
- The paths meet when $1+2e^{it_1}=it_2 \Leftrightarrow \cos t_1=-\frac{1}{2}$ and $2\sin t_1=t_2 \Rightarrow t_1=\frac{2}{3}\boldsymbol{p},t_2=\sqrt{3}$, so they meet at $\sqrt{3}i$. Now $g(\sqrt{3}i) = 5$; $g'(\sqrt{3}i) = 2\sqrt{3}i = 2\sqrt{3}e^{i\mathbf{p}/2}$.

So maps a small disc round $\sqrt{3}i$ to a small disc round -5, rotated over p/direction, and scaled by $2\sqrt{3}$

- e^x is entire, $\frac{1}{1-z}$ has a single singularity at 1, so it is analytic on ($\{1\}$). So the composition (a) $f(z) = e^{\left(\frac{1}{1-z}\right)}$ is analytic on (- {1}) by the Composition Rule (HB 23.1 p. 19) $f(z) = 1 - \frac{1}{z-1} + \frac{1}{2!(z-1)^2} - \frac{1}{3!(z-1)^3} + \cdots$, so the singularity is essential by HB 2.8(c) p.27.
- (b) (i) 0, by Cauchy's theorem, HB 1.4 p.22, since f is analytic inside $R = \{z : |z| = \frac{3}{4}\}$ (a simply-connected region and C_1 is inside R.
- (b) (ii) $\frac{f(z)}{(4z-1)^2} = \frac{f(z)}{16(z-1)^2}$. So by Cauchy's *n*th Derivative Formula (with n=1) (HB p.22)

$$\frac{1}{16}f'\left(\frac{1}{4}\right) = \frac{1}{2\mathbf{p}i} \int_{C_1} \frac{f(z)/16}{\left(z - \frac{1}{4}\right)^2} dz \iff \frac{1}{8}\mathbf{p}if'\left(\frac{1}{4}\right) = \int_{C_1} \frac{f(z)/16}{\left(z - \frac{1}{4}\right)^2} dz = \frac{1}{8} \cdot \frac{16}{9}\mathbf{p}ie^{4/3} = \frac{2}{9}\mathbf{p}ie^{4/3}, \text{ since } f'(z) = \frac{e^{\frac{1}{1-z}}}{(1-z)^2}$$

(b) (iii) 2pi, since the singularity 1 is inside C_2 . So by Cauchy's Residue Theorem HB p. 28 and HB 4.2 p.28

Unofficial answers to M337/M 1995 page 6 of 6 Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own

Typed by I.R. van de Stadt BSc. (Hons)

(b) (iv)
$$\operatorname{Res}\left(\frac{f}{z},0\right) = f\left(0\right) = e$$
 (By the Cover-up Rule) and Laurent series for $\frac{f}{z}$ about $z=1$ is
$$\frac{1}{1+w}\left(1-\frac{1}{1!w}+\frac{1}{2!w^2}-\frac{1}{3!w^3}\right) = \left(1-w+w^2+\cdots\left(1-\frac{1}{1!w}+\frac{1}{2!w^2}-\frac{1}{3!w^3}+\cdots\right) \quad |w|<1 \text{ , where }$$
 $w=z-1$. So, $\operatorname{Res}\left(\frac{f}{z},1\right) = -\sum_{n=1}^{\infty}\frac{1}{n!} = -e+1$, and hence by Cauchy's Residue Theorem the contour integral equals $2\mathbf{p}i(e-e+1) = 2\mathbf{p}i$

Question 11

(a)
$$\mathbf{f}(z) = \frac{1}{9z^2 + 1}$$
 is analytic on $(-\frac{1}{2} + \frac{1}{3}i)$, so by HB 4.3 p.30 Res $(f,0) = \mathbf{f}(0) = 1$

By the Cover-up Rule
$$\operatorname{Res}(f, \frac{1}{3}i) = \frac{\boldsymbol{p} \operatorname{cosec}(\frac{1}{3}i\boldsymbol{p})}{9(\frac{1}{3}i + \frac{1}{3}i)} = \frac{\boldsymbol{p}}{9(\frac{2}{3}i)\sinh(\frac{1}{3}i\boldsymbol{p})} = \frac{-\boldsymbol{p}}{6\sinh(\frac{1}{3}\boldsymbol{p})}$$

And Res
$$\left(f, -\frac{1}{3}i\right) = \frac{\boldsymbol{p} \operatorname{cosec}\left(-\frac{1}{3}i\boldsymbol{p}\right)}{9\left(-\frac{1}{3}i - \frac{1}{3}i\right)} = \frac{\boldsymbol{p}}{-9\left(\frac{2}{3}i\right)\sinh\left(-\frac{1}{3}i\boldsymbol{p}\right)} = \frac{-\boldsymbol{p}}{6\sinh\left(\frac{1}{3}\boldsymbol{p}\right)}$$

(b) f(z) is even and is analytic on $\left(-\frac{1}{2} \pm \frac{1}{3}i\right)$

Also, if S_N is the square contour with vertices at $\left(N + \frac{1}{2}\right) (\pm 1 \pm i)$, then

 $\left|\operatorname{cosec} \boldsymbol{p}z\right| \le 1$, for $z \in S_N$, and $\left|z\right| \ge N + \frac{1}{2}$, so that by the Estimation Theorem,

$$\left| \int_{S_N} f(z) dz \right| \le \frac{\mathbf{p}}{9(N + \frac{1}{2})^2 + 1} \cdot 8(N + \frac{1}{2}) < \frac{\mathbf{p}}{9(N + \frac{1}{2})^2} \cdot 8(N + \frac{1}{2}) = \frac{8\mathbf{p}}{9(N + \frac{1}{2})} \to 0 \text{ as } N \to \infty$$

Hence, By HB C1 4.3 p.30

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{9n^2 + 1} = -\frac{1}{2} \left(1 - \frac{2\mathbf{p}}{6\sinh\left(\frac{1}{3}\mathbf{p}\right)} \right) = \frac{\mathbf{p}}{6\sinh\left(\frac{1}{3}\mathbf{p}\right)} - \frac{1}{2}$$

(c)
$$f(z) = \frac{1}{k^2 z^2 + 1}$$
 is analytic on $\left(-\frac{1}{2} \pm \frac{1}{k}i\right)$, so by HB 4.3 p.30 Res $(f,0) = f(0) = 1$

By the Cover-up Rule
$$\operatorname{Res}(f, \frac{1}{k}i) = \frac{\boldsymbol{p} \operatorname{cosec}(\frac{1}{k}i\boldsymbol{p})}{k^2(\frac{1}{k}i + \frac{1}{k}i)} = \frac{-\boldsymbol{p}}{2k \sinh(\frac{1}{k}\boldsymbol{p})}$$

And
$$\operatorname{Res}(f, -\frac{1}{3}i) = \frac{\boldsymbol{p} \operatorname{cosec}(-\frac{1}{k}i\boldsymbol{p})}{k^2(-\frac{1}{k}i - \frac{1}{k}i)} = \frac{-\boldsymbol{p}}{2k \sinh(\frac{1}{k}\boldsymbol{p})}$$

Now

f(z) is even and is analytic on $\left(-\frac{1}{k}i\right)$

Also, if S_N is the square contour with vertices at $\left(N + \frac{1}{2}\right)(\pm 1 \pm i)$, then

 $|\csc \mathbf{p}z| \le 1$, for $z \in S_N$, and $|z| \ge N + \frac{1}{2}$, so that by the Estimation Theorem,

$$\left| \int_{S_N} f_k(z) dz \right| \le \frac{\mathbf{p}}{k^2 \left(N + \frac{1}{2} \right)^2 + 1} \cdot 8 \left(N + \frac{1}{2} \right) < \frac{\mathbf{p}}{k^2 \left(N + \frac{1}{2} \right)^2} \cdot 8 \left(N + \frac{1}{2} \right) = \frac{8\mathbf{p}}{k^2 \left(N + \frac{1}{2} \right)} \to 0 \text{ as } N \to \infty$$

Hence, By HB C1 4.3 p.30

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{k^2 n^2 + 1} = -\frac{1}{2} \left(1 - \frac{2\mathbf{p}}{2k \sinh\left(\frac{1}{k}\mathbf{p}\right)} \right) = \frac{\mathbf{p}}{2k \sinh\left(\frac{1}{k}\mathbf{p}\right)} - \frac{1}{2}$$

It is probably not necessary to copy every line in the derivation

Unofficial answers to M337/M 1995 page 7 of 7

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Question 12

(a) This is the standard triple (HB 2.11 p.36) with $\mathbf{a} = i$, $\mathbf{b} = \frac{1}{2}(1+i)$, $\mathbf{g} = 1$. Hence

$$\hat{f}_1(z) = \frac{(z-i)(\frac{1}{2} + \frac{1}{2}i - 1)}{(z-1)(\frac{1}{2} + \frac{1}{2}i - i)} = \frac{(z-i)(-\frac{1}{2} + \frac{1}{2}i)}{(z-1)(\frac{1}{2} - \frac{1}{2}i)} = \frac{(z-i)(-1+i)}{(z-1)(1-i)} = -\frac{(z-i)}{(z-1)}$$

(b) (i)

S

(b) (ii) To determine the image of R use the three point trick:

 $i \to 0, \frac{1}{2}(1+i) \to 1, \quad 1 \to \infty$, with the domain and image to the left

 $-1 \rightarrow -\frac{-1-i}{2} = \frac{1}{2}(1+i), i \rightarrow 0, 1 \rightarrow \infty$, with the domain and image to the right, so we get

So, $\hat{f}_1(R) = \{z_1 : 0 < \text{Arg } z < \frac{1}{4} p \}$

(b) (iii) The quadratic doubles the argument, so $w = z_1^2$ maps $\hat{f}_1(R)$ to S. 1-1 and conformal, since $0 \notin \hat{f}_1(R)$.

Thus
$$\hat{f}(z) = \left(-\frac{z-i}{z+1}\right)^2$$

(b) (iv) Since all components are 1-1 and conformal and $h=z^2$; $\hat{f}=\hat{h}\circ\hat{f}_1$, so that $\hat{f}^{-1}=\hat{f}_1^{\,1}\circ\hat{h}^{-1}$ Now by HB 2.6 p. 36

$$\hat{f}_1^{-1}(w) = \frac{w+i}{w+i}$$

So, $\hat{f}^{-1}(w) = \frac{\sqrt{w+i}}{\sqrt{w+i}}$, since in *R* we only had positive arguments, and hence the inverse of