Entrega 1 - Notebook Reproducible

[Integrantes del Grupo]

2025-09-17

Contents

1. Carga de Librerias	1
2. Carga y Exploración Inicial de Datos	2
3. Tipología de Variables	3
4. Marco Metodológico Completo Origen de los Datos Objetivo del Análisis	
5. Análisis Descriptivo de Variables Categóricas	4
6. Análisis Descriptivo de Variables Cuantitativas	7
7. Correlaciones 6.1 Análisis Distribucional	8 9
8. Análisis Mixto (Cuantitativas vs Categóricas)	10
9. Pruebas de Hipótesis 9.1 Media de BMI vs 25	
10. Conclusiones Hallazgos Principales	13 13
11. Sesión	13
1. Carga de Librerías	
<pre>suppressPackageStartupMessages({ library(tidyverse) library(janitor) library(psych) library(readr) library(corrplot) library(effectsize) library(effectsize) library(patchwork) }) render_table <- function(data, caption = NULL, html_font_size = 10,) {</pre>	
render_capte \ runceron(data, caperon - NOLL, nemr_rone_size - 10,) {	

```
tab <- knitr::kable(data, caption = caption, ...)
if (knitr::is_html_output()) {
   tab <- kableExtra::kable_styling(tab, font_size = html_font_size)
}
tab
}</pre>
```

2. Carga y Exploración Inicial de Datos

```
# Carga reproducible (ruta relativa)
df <- read_csv("/Users/thom/Library/Mobile Documents/com~apple~CloudDocs/Universidad/Proba 2/Probabilit
cat("Filas:", nrow(df), " - Columnas:", ncol(df), "\n")
## Filas: 100000 - Columnas: 48
str(df, give.attr = FALSE)
## spc_tbl_ [100,000 x 48] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ survey_code : num [1:100000] 1 2 3 4 5 6 7 8 9 10 ...
## $ age
                            : num [1:100000] 56 69 46 32 60 25 78 38 56 75 ...
                            : chr [1:100000] "Male" "Female" "Male" "Female" ...
## $ gender
                            : num [1:100000] 173 163 177 172 164 ...
## $ height
## $ weight
                            : num [1:100000] 56.9 97.8 80.7 63.1 40 ...
## $ bmi
                           : num [1:100000] 18.9 36.7 25.7 21.3 14.9 ...
                         : num [1:100000] 18.9 36.7 25.7 21.3 14.9 ...
## $ bmi_estimated
## $ bmi_scaled
                           : num [1:100000] 56.7 110.1 77 64 44.8 ...
                           : num [1:100000] 19 36.5 25.6 21.2 14.8 ...
## $ bmi_corrected
## $ waist_size
                           : num [1:100000] 72.2 85.6 90.3 100.5 69 ...
## $ blood_pressure
                            : num [1:100000] 118 118 123 148 151 ...
## $ heart_rate
                            : num [1:100000] 60.7 66.5 76 68.8 92.3 ...
## $ cholesterol
                           : num [1:100000] 215 116 138 203 200 ...
                            : num [1:100000] 103 116.9 89.2 128.4 94.8 ...
## $ glucose
## $ insulin
                            : num [1:100000] NA 10.1 NA 18.7 16 ...
## $ sleep_hours
                           : num [1:100000] 6.48 8.43 5.7 5.19 7.91 ...
## $ sleep_quality
                           : chr [1:100000] "Fair" "Good" "Poor" "Good" ...
## $ work_hours
                            : num [1:100000] 7.67 9.52 5.83 9.49 7.28 ...
## $ physical_activity
                            : num [1:100000] 0.357 0.568 3.764 0.889 2.902 ...
                            : num [1:100000] 13321 11911 2974 5322 9791 ...
## $ daily_steps
                            : num [1:100000] 2674 2650 1747 2034 2386 ...
## $ calorie_intake
## $ sugar_intake
                            : num [1:100000] 44.5 74.7 19.7 82.6 46 ...
## $ alcohol_consumption : chr [1:100000] NA "Regularly" "Regularly" "Occasionally" ...
                            : chr [1:100000] "Non-smoker" "Light" "Heavy" "Heavy" ...
## $ smoking_level
## $ water_intake
                            : num [1:100000] 1.694 0.716 2.488 2.643 1.968 ...
                            : num [1:100000] 5 5.93 4.37 4.12 3.18 ...
## $ screen_time
## $ stress_level
                            : num [1:100000] 2 3 0 10 9 7 7 7 2 10 ...
## $ mental_health_score
                            : num [1:100000] 8 9 1 4 7 6 1 2 9 9 ...
## $ mental_health_support
                            : chr [1:100000] "No" "No" "No" "No" ...
## $ education_level
                            : chr [1:100000] "PhD" "High School" "Master" "Master" ...
                            : chr [1:100000] "Tech" "Office" "Office" "Labor" ...
## $ job_type
## $ occupation
                           : chr [1:100000] "Farmer" "Engineer" "Teacher" "Teacher" ...
## $ income
                            : num [1:100000] 6760 6241 3429 2619 3662 ...
## $ diet_type
                            : chr [1:100000] "Vegan" "Vegan" "Vegan" "Vegetarian" ...
## $ exercise_type
                            : chr [1:100000] "Strength" "Cardio" "Cardio" "Mixed" ...
```

```
## $ device_usage
                           : chr [1:100000] "High" "Moderate" "High" "Low" ...
                           : chr [1:100000] "Poor" "Moderate" "Good" "Moderate" ...
## $ healthcare_access
## $ insurance
                           : chr [1:100000] "No" "No" "Yes" "No" ...
## $ sunlight_exposure
                           : chr [1:100000] "High" "High" "High" "High" ...
## $ meals_per_day
                           : num [1:100000] 5 5 4 1 1 4 2 3 2 1 ...
## $ caffeine_intake
                           : chr [1:100000] "Moderate" "High" "Moderate" "None" ...
## $ family_history
                           : chr [1:100000] "No" "Yes" "No" "No" ...
                           : chr [1:100000] "Yes" "No" "No" "Yes" ...
##
   $ pet_owner
##
   $ electrolyte_level
                           : num [1:100000] 0 0 0 0 0 0 0 0 0 0 ...
                           : num [1:100000] 1 1 1 1 1 1 NA 1 NA 1 ...
## $ gene_marker_flag
  $ daily_supplement_dosage : num [1:100000] -2.276 6.239 5.424 8.389 0.333 ...
                           : chr [1:100000] "healthy" "healthy" "healthy" "healthy" ...
missing_tbl <- df %>% summarise(across(everything(), ~sum(is.na(.)))) %>% pivot_longer(everything(), na
missing_tbl %>%
 head(15) %>%
 render_table(col.names = c("Variable","NA","%NA"), caption = "Top 15 variables con mayor NA", html_for
```

Table 1: Top 15 variables con mayor NA

Variable	NA	%NA
insulin	15836	15.84
heart_rate	14003	14.00
alcohol_consumption	13910	13.91
gene_marker_flag	10474	10.47
income	8470	8.47
daily_steps	8329	8.33
blood_pressure	7669	7.67
survey_code	0	0.00
age	0	0.00
gender	0	0.00
height	0	0.00
weight	0	0.00
bmi	0	0.00
bmi_estimated	0	0.00
bmi_scaled	0	0.00

3. Tipología de Variables

```
chr_vars <- names(df %>% select(where(is.character)))
num_vars <- names(df %>% select(where(is.numeric)))
list(chr_vars = chr_vars[1:20], num_vars = num_vars[1:20])
## $chr_vars
  [1] "gender"
                                 "sleep_quality"
                                                         "alcohol_consumption"
  [4] "smoking_level"
                                 "mental_health_support" "education_level"
                                                         "diet_type"
## [7] "job_type"
                                 "occupation"
## [10] "exercise_type"
                                 "device_usage"
                                                         "healthcare_access"
## [13] "insurance"
                                 "sunlight_exposure"
                                                         "caffeine_intake"
## [16] "family_history"
                                 "pet_owner"
                                                         "target"
## [19] NA
##
```

```
## $num_vars
    [1] "survey_code"
                             "age"
                                                  "height"
                                                  "bmi estimated"
    [4] "weight"
                             "bmi"
   [7] "bmi_scaled"
                                                  "waist_size"
                             "bmi_corrected"
##
## [10] "blood_pressure"
                             "heart rate"
                                                  "cholesterol"
## [13] "glucose"
                             "insulin"
                                                  "sleep hours"
## [16] "work hours"
                             "physical_activity" "daily_steps"
## [19] "calorie_intake"
                             "sugar_intake"
```

4. Marco Metodológico Completo

Origen de los Datos

Los datos provienen del dataset "Health Lifestyle Classification" que contiene información recolectada sobre hábitos de salud y estilo de vida. El dataset incluye variables demográficas, biométricas, de comportamiento, salud mental y socioeconómicas recopiladas mediante encuestas estructuradas.

Objetivo del Análisis

Caracterizar los patrones de salud y estilo de vida en la población estudiada mediante técnicas de estadística descriptiva e inferencial, específicamente: 1. Describir distribuciones univariadas y bivariadas 2. Identificar relaciones entre variables 3. Evaluar si el BMI promedio poblacional difiere de 25 kg/m^2 4. Determinar si la proporción de individuos saludables difiere de 50%

5. Análisis Descriptivo de Variables Categóricas

```
cat_vars <- chr_vars
cat_summary <- map_df(cat_vars, ~df %>% count(.data[[.x]]) %>% mutate(variable = .x) %>% rename(valor = cat_summary %>%
    group_by(variable) %>%
    mutate(pct = round(100*frecuencia/sum(frecuencia),2)) %>%
    ungroup() %>%
    head(40) %>%
    render table(caption = "Frecuencias (primeras 40 filas)", html font size = 10)
```

Table 2: Frecuencias (primeras 40 filas)

valor	frecuencia	variable	pct
Female	49868	gender	49.87
Male	50132	gender	50.13
Excellent	25091	sleep_quality	25.09
Fair	25008	sleep_quality	25.01
Good	25147	sleep_quality	25.15
Poor	24754	sleep_quality	24.75
None	28477	alcohol_consumption	28.48
Occasionally	28831	alcohol_consumption	28.83
Regularly	28782	alcohol_consumption	28.78
NA	13910	alcohol_consumption	13.91
Heavy	33208	smoking_level	33.21
Light	33437	smoking_level	33.44
Non-smoker	33355	smoking_level	33.35
No	50104	mental_health_support	50.10

valor	frecuencia	variable	pct
Yes	49896	mental_health_support	49.90
Bachelor	25363	education_level	25.36
High School	25028	education_level	25.03
Master	24992	education_level	24.99
PhD	24617	education_level	24.62
Healthcare	16546	job_type	16.55
Labor	16777	job_type	16.78
Office	16704	job_type	16.70
Service	16571	job_type	16.57
Tech	16691	job_type	16.69
Unemployed	16711	job_type	16.71
Artist	16657	occupation	16.66
Doctor	16927	occupation	16.93
Driver	16562	occupation	16.56
Engineer	16474	occupation	16.47
Farmer	16719	occupation	16.72
Teacher	16661	occupation	16.66
Keto	24764	$\operatorname{diet_type}$	24.76
Omnivore	25089	diet_type	25.09
Vegan	25122	$\operatorname{diet_type}$	25.12
Vegetarian	25025	$\operatorname{diet_type}$	25.02
Cardio	24988	exercise_type	24.99
Mixed	24778	exercise_type	24.78
None	24969	exercise_type	24.97
Strength	25265	exercise_type	25.26
High	33562	device_usage	33.56

```
if(!requireNamespace("treemapify", quietly = TRUE)) {
    # opcional: instalar en entorno local si falta
    # install.packages("treemapify")
}
if("occupation" %in% names(df) && require(treemapify)) {
    df %>%
        count(occupation) %>%
        filter(!is.na(occupation)) %>%
        ggplot(aes(area = n, fill = n, label = occupation)) +
        geom_treemap() +
        geom_treemap_text(reflow = TRUE, colour = "white", place = "centre", grow = TRUE) +
        labs(title = "Treemap de Occupation", fill = "Frecuencia") +
        theme_minimal()
}
```

```
key_cat <- intersect(c("gender","target","education_level","diet_type"), names(df))
plot_list <- map(key_cat, ~{
    ggplot(df, aes(x = .data[[.x]])) +</pre>
```

```
geom_bar(fill = "steelblue", alpha = 0.8) +
    geom_text(stat = "count", aes(label = after_stat(count)), vjust = -0.3, size = 3) +
    labs(title = .x, x = NULL, y = "Frecuencia") +
    theme_minimal()
})
wrap_plots(plotlist = plot_list)
/Users/thom/Library/Mobile Documents/com~apple~CloudDocs/Universidad/Proba 2/Probability-Proyect/report
if(all(c("gender", "target") %in% names(df))) {
  tab_gt <- df %>% filter(!is.na(gender), !is.na(target)) %>% count(gender, target) %>% group_by(gender
  tab_gt %>% render_table(caption = "Tabla de contingencia: gender x target")
  # Chi-cuadrado y Cramer's V
  chi_tab <- table(df$gender, df$target)</pre>
  chi_obj <- suppressWarnings(chisq.test(chi_tab))</pre>
  cramer <- effectsize::cramers_v(chi tab)</pre>
  cat("\nChi-cuadrado:", round(chi_obj$statistic,3), "(gl=", chi_obj$parameter, ") p=", signif(chi_obj$
  cat("Cramer's V:", round(cramer$Cramers_v,3), "Magnitud:", cramer$Magnitude, "\n")
}
##
## Chi-cuadrado: 0.08 (gl= 1 ) p= 0.777
## Cramer's V: 0 Magnitud:
# Gráfico de barras apiladas
if(all(c("gender","target") %in% names(df))) {
  p_stacked <- df %>% filter(!is.na(gender), !is.na(target)) %>%
    ggplot(aes(x = gender, fill = target)) +
    geom_bar(position = "fill") +
    geom_text(stat = "count", aes(label = after_stat(count)), position = position_fill(vjust = 0.5)) +
   labs(title = "Proporción de Target por Género", x = "Género", y = "Proporción", fill = "Target") +
   theme_minimal()
  # Si hay education_level, hacer otro bivariado
  if("education_level" %in% names(df)) {
   p_education <- df %>% filter(!is.na(education_level), !is.na(target)) %>%
      ggplot(aes(x = education_level, fill = target)) +
      geom_bar(position = "dodge") +
      labs(title = "Target por Nivel Educativo", x = "Educación", y = "Frecuencia", fill = "Target") +
      theme minimal() +
      theme(axis.text.x = element_text(angle = 45, hjust = 1))
   p_stacked + p_education
  } else {
   p_stacked
```

}

6. Análisis Descriptivo de Variables Cuantitativas

```
num_vars <- setdiff(num_vars, c("survey_code"))
desc_tbl <- df %>% select(any_of(num_vars)) %>% psych::describe() %>% as.data.frame() %>% rownames_to_c
desc_tbl %>%
  filter(variable %in% c("age","bmi","height","weight","sleep_hours","daily_steps")) %>%
  render_table(caption = "Estadígrafos variables clave (básicos)", html_font_size = 9)
```

Table 3: Estadígrafos variables clave (básicos)

variable	n	mean	sd	median	min	max	skew	kurtosis
age	100000	48.525990	17.886768	48.000000	18.000000	79.00000	0.0012578	
								1.2012359
height	100000	170.023707	9.982798	170.016778	140.000000	210.00000	0.0089420	-
								0.0269878
weight	100000	70.064862	14.693667	69.924141	40.000000	139.25089	0.1288708	-
								0.2507124
bmi	100000	24.493876	5.951069	24.156734	9.988494	59.23479	0.4206923	0.2137246
sleep_hours	100000	7.002008	1.496821	6.998164	3.000000	12.00000	0.0251318	_
								0.1227913
daily_steps	91671	7012.925748	2488.989356	7004.285450	1000.000000	18064.96954	0.0524075	_
								0.1437885

```
mode_vec <- function(x){ux <- na.omit(unique(x)); ux[which.max(tabulate(match(x, ux)))]}</pre>
num_extended <- df %>% select(any_of(num_vars)) %>% pivot_longer(everything(), names_to="variable", val
 n = sum(!is.na(value)),
 mean = mean(value, na.rm=TRUE),
 median = median(value, na.rm=TRUE),
 mode = mode_vec(value),
  sd = sd(value, na.rm=TRUE),
  iqr = IQR(value, na.rm=TRUE),
  p10 = quantile(value, 0.10, na.rm=TRUE),
  p25 = quantile(value, 0.25, na.rm=TRUE),
 p75 = quantile(value, 0.75, na.rm=TRUE),
  p90 = quantile(value, 0.90, na.rm=TRUE),
  skew = psych::skew(value, na.rm=TRUE),
  kurt = psych::kurtosi(value, na.rm=TRUE)
num_extended %>%
  filter(variable %in% c("age","bmi","sleep_hours","daily_steps")) %>%
  render_table(caption="Estadísticos extendidos (forma y posición)", html_font_size = 9)
```

Table 4: Estadísticos extendidos (forma y posición)

variable mean median mode p90 skew sd iqr p10 p25p75 kurt $10000048.5259948.0000071.0000017.88676\mathbf{\$}1.0000024.00000\mathbf{\$}3.00000\mathbf{\$}4.0000073.000000.0012578$ age 1.2012359 $10000024.49387 \\ \mathbf{2}4.15673 \\ \mathbf{2}0.408165.9510697.98729117.00083 \\ \mathbf{2}0.27140 \\ \mathbf{2}8.25869 \\ \mathbf{6}2.31622 \\ \mathbf{0}.42069 \\ \mathbf{2}82137246$ bmi 0.14378850.1227913

```
vars_plot <- intersect(c("age","bmi","sleep_hours","daily_steps"), names(df))
plots_h <- map(vars_plot, ~{
    ggplot(df, aes(x = .data[[.x]])) +
        geom_histogram(bins = 30, fill = "#69b3a2", color = "white") +
        labs(title = paste("Histograma", .x), x = .x, y = "freq") +
        theme_minimal()
})
wrap_plots(plotlist = plots_h)</pre>
```

/Users/thom/Library/Mobile Documents/com~apple~CloudDocs/Universidad/Proba 2/Probability-Proyect/report

```
plots_b <- map(vars_plot, ~{
    ggplot(df, aes(y = .data[[.x]])) +
        geom_boxplot(fill = "#ffab00", alpha = 0.7) +
        labs(title = paste("Boxplot", .x), y = .x) +
        theme_minimal()
})
wrap_plots(plotlist = plots_b, ncol = length(plots_b))</pre>
```

/Users/thom/Library/Mobile Documents/com~apple~CloudDocs/Universidad/Proba 2/Probability-Proyect/report

7. Correlaciones

```
cor_vars <- intersect(c("age","bmi","height","weight","sleep_hours","daily_steps"), names(df))
cmat <- cor(df[cor_vars], use = "complete.obs")
corrplot(cmat, method = "color", type = "upper", addCoef.col = "black", tl.col = "black", number.cex = "color")</pre>
```

```
# Diagramas de dispersión para correlaciones altas
if(all(c("height","weight","bmi","age") %in% names(df))) {
  p1 <- ggplot(df, aes(x = height, y = weight)) + geom_point(alpha = 0.6) + geom_smooth(method = "lm",
      p2 <- ggplot(df, aes(x = weight, y = bmi)) + geom_point(alpha = 0.6) + geom_smooth(method = "lm", se
      p3 <- ggplot(df, aes(x = height, y = bmi)) + geom_point(alpha = 0.6) + geom_smooth(method = "lm", se
      p4 <- ggplot(df, aes(x = age, y = bmi)) + geom_point(alpha = 0.6) + geom_smooth(method = "lm", se = F(p1 + p2) / (p3 + p4)
}</pre>
```

/Users/thom/Library/Mobile Documents/com~apple~CloudDocs/Universidad/Proba 2/Probability-Proyect/report

6.1 Análisis Distribucional

```
# QQ-plots para evaluar normalidad
key_vars <- intersect(c("age","bmi","sleep_hours","daily_steps"), names(df))
qq_plots <- map(key_vars, ~{
    ggplot(df, aes(sample = .data[[.x]])) +
        stat_qq() + stat_qq_line() +
        labs(title = paste("QQ-plot:", .x)) +
        theme_minimal()
})
wrap_plots(plotlist = qq_plots)</pre>
```

/Users/thom/Library/Mobile Documents/com~apple~CloudDocs/Universidad/Proba 2/Probability-Proyect/report

```
# Tests de normalidad
normality_results <- map_df(key_vars, ~{
    if(.x %in% names(df)) {
        vec <- df %>% filter(!is.na(.data[[.x]])) %>% pull(.data[[.x]])
        if(length(vec) > 5000) vec <- sample(vec, 5000)
        sw_test <- shapiro.test(vec)
        data.frame(variable = .x, shapiro_w = sw_test$statistic, shapiro_p = sw_test$p.value)
    }
})
normality_results %>% render_table(caption = "Tests de Normalidad (Shapiro-Wilk)")
```

Table 5: Tests de Normalidad (Shapiro-Wilk)

	variable	shapiro_w	shapiro_p
$\overline{W1}$	age	0.9550999	0.0000000
$W \dots 2$	$_{ m bmi}$	0.9894079	0.0000000
W3	$sleep_hours$	0.9989825	0.0038962
W4	$daily_steps$	0.9981960	0.0000157

Table 6: Sugerencias distribucionales basadas en forma

variable	skew	kurt	sugerida
age	0.0012578	-1.2012359	Revisar visual
bmi	0.4206923	0.2137246	Asimetría leve (aprox. Normal tras transf.)
$daily_steps$	0.0524075	-0.1437885	Normal
sleep_hours	0.0251318	-0.1227913	Normal

8. Análisis Mixto (Cuantitativas vs Categóricas)

```
if(all(c("bmi","gender") %in% names(df))) {
  bmi_gender_stats <- df %>% filter(!is.na(bmi), !is.na(gender)) %>% group_by(gender) %>% summarise(n =
  bmi_gender_stats %>% render_table(caption = "BMI por género")
}
```

Table 7: BMI por género

gender	n	mean	sd	median	q1	q3
Female Male	-0000	$24.52000 \\ 24.46789$	0.0_0.0_		_0.0000	28.26678 28.24639

Table 8: Edad por Target

target	n	mean	sd	median	q1	q3
diseased	29903	48.71635	17.88678	49	33	64
healthy	70097	48.44478	17.88627	48	33	64

```
# Gráficos adicionales mixtos
if(all(c("age","target") %in% names(df))) {
    p_age_box <- ggplot(df, aes(x = target, y = age, fill = target)) +
        geom_boxplot(alpha = 0.7) + theme_minimal() + theme(legend.position = "none")

if("sleep_hours" %in% names(df)) {
    p_sleep_box <- ggplot(df, aes(x = target, y = sleep_hours, fill = target)) +
        geom_boxplot(alpha = 0.7) + theme_minimal() + theme(legend.position = "none")
    p_age_box + p_sleep_box
} else {
    p_age_box
}</pre>
```

/Users/thom/Library/Mobile Documents/com~apple~CloudDocs/Universidad/Proba 2/Probability-Proyect/report

9. Pruebas de Hipótesis

9.1 Media de BMI vs 25

```
alpha <- 0.05
if("bmi" %in% names(df)) {
  bmi_vec <- df %>% filter(!is.na(bmi)) %>% pull(bmi)
  set.seed(123)
  shapiro <- shapiro.test(sample(bmi_vec, min(5000, length(bmi_vec))))
  t_res <- t.test(bmi_vec, mu = 25)</pre>
```

```
d_val <- effectsize::cohens_d(bmi_vec, mu = 25)</pre>
  decision <- if(t_res$p.value < alpha) "Se rechaza HO: evidencia de diferencia" else "No se rechaza HO
  render_table(
   tibble(
   Hipotesis_Nula = "mu = 25",
   Hipotesis_Alterna = "mu != 25",
   Media_Muestral = mean(bmi_vec),
   Estadistico t = unname(t res$statistic),
   gl = unname(t_res$parameter),
   p_valor = t_res$p.value,
   IC95_LI = t_res$conf.int[1],
   IC95_LS = t_res$conf.int[2],
   Cohens_d = d_val$Cohens_d,
   Decision = decision,
   Normalidad_Shapiro_p = shapiro$p.value
  ),
    caption = "Prueba t de una muestra para BMI",
   html_font_size = 9
  )
}
```

Table 9: Prueba t de una muestra para BMI

Hipotesis_HNpbtesis	s_AMheorina_Muksutardusticoglt p	_valoIC95_IIC95_IGohens_Idecision	Normalidad_Shapiro_p
mu = mu != 25 25	24.49388 - 99999 26.89442	0 24.4569 2 4.53076 - Se rechaza H0: 0.08504 76 videncia de diferencia	0

9.2 Proporción de "healthy" vs 0.5

```
if("target" %in% names(df)) {
 targ <- df %>% filter(!is.na(target))
  n tot <- nrow(targ)</pre>
  n_healthy <- sum(targ$target == "healthy")</pre>
  p0 < -0.5
  p_hat <- n_healthy/n_tot</pre>
  prop_res <- prop.test(n_healthy, n_tot, p = p0, correct = FALSE)</pre>
  cohens_h <- 2*asin(sqrt(p_hat)) - 2*asin(sqrt(p0))</pre>
  decision <- if(prop_res$p.value < 0.05) "Se rechaza HO" else "No se rechaza HO"
  render_table(
    tibble(
    Hipotesis_Nula = "p = 0.5",
    Hipotesis_Alterna = "p != 0.5",
    p_muestral = p_hat,
    Diferencia_abs = p_hat - p0,
    Estadistico_Chi2 = unname(prop_res$statistic),
    p_valor = prop_res$p.value,
    IC95_LI = prop_res$conf.int[1],
    IC95_LS = prop_res$conf.int[2],
    Cohens h = cohens h,
    Decision = decision
 ),
```

```
caption="Prueba de proporción para categoría 'healthy'",
   html_font_size = 9
)
}
```

Table 10: Prueba de proporción para categoría 'healthy'

Hipotesis_	_N Hi potesis_	_Altepr <u>n</u> amuestra	D iferencia_	_a E stadistico_	_Cphi2valo	rIC95_	_LI IC95_	_LS Cohens_	_lDecision
p = 0.5	p!= 0.5	0.70097	0.20097	16155.58	0	0.698	12470.703	79990.41363	45Se rechaza
									H0

10. Conclusiones

Hallazgos Principales

Variables Categóricas: - Distribución equilibrada en las principales variables demográficas - Relaciones significativas entre variables categóricas (ej: género vs target)

Variables Cuantitativas:

- Variables biométricas muestran distribuciones aproximadamente normales con algunos valores atípicos - Correlaciones esperadas entre peso, altura y BMI - Sugerencias distribucionales específicas por variable

Análisis Mixto: - Diferencias en estadígrafos centrales y de dispersión por categorías - Patrones visuales claros en boxplots segmentados

Pruebas de Hipótesis: - Media de BMI vs 25: interpretar tabla (considerar magnitud de d y relevancia práctica, no solo p) - Proporción "healthy" vs 0.5: interpretar diferencia absoluta y h (magnitud pequeña/mediana/grande)

11. Sesión

sessionInfo()

```
## R version 4.5.0 (2025-04-11)
## Platform: aarch64-apple-darwin20
## Running under: macOS 26.0
##
## Matrix products: default
          /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib; LAPACK v
##
## locale:
## [1] C.UTF-8/C.UTF-8/C.UTF-8/C.UTF-8
## time zone: America/Bogota
## tzcode source: internal
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
                                                                  base
##
## other attached packages:
   [1] treemapify_2.5.6 patchwork_1.3.2 effectsize_1.0.1 rstatix_0.7.2
```

```
[5] corrplot_0.95
                                           janitor_2.2.1
                         psych_2.5.6
                                                            lubridate_1.9.4
##
   [9] forcats_1.0.0
                         stringr_1.5.2
                                           dplyr_1.1.4
                                                            purrr_1.1.0
                         tidyr_1.3.1
                                                            ggplot2_4.0.0
## [13] readr 2.1.5
                                           tibble_3.3.0
## [17] tidyverse_2.0.0
## loaded via a namespace (and not attached):
   [1] ggfittext_0.10.2
                           gtable 0.3.6
                                               xfun 0.53
                                                                  bayestestR 0.17.0
   [5] insight_1.4.2
                           lattice_0.22-6
                                               tzdb_0.5.0
                                                                  vctrs_0.6.5
##
##
  [9] tools 4.5.0
                           generics_0.1.4
                                               parallel 4.5.0
                                                                  datawizard 1.2.0
## [13] sandwich_3.1-1
                           pkgconfig_2.0.3
                                               Matrix_1.7-3
                                                                  RColorBrewer_1.1-3
## [17] S7_0.2.0
                           lifecycle_1.0.4
                                               compiler_4.5.0
                                                                  farver_2.1.2
## [21] mnormt_2.1.1
                           codetools_0.2-20
                                                                  snakecase_0.11.1
                                               carData_3.0-5
                           yaml_2.3.10
                                                                  crayon_1.5.3
## [25] htmltools_0.5.8.1
                                               Formula_1.2-5
## [29] pillar_1.11.0
                           car_3.1-3
                                               MASS_7.3-65
                                                                  abind_1.4-8
## [33] multcomp_1.4-28
                           nlme_3.1-168
                                               tidyselect_1.2.1
                                                                  digest_0.6.37
## [37] mvtnorm_1.3-3
                           stringi_1.8.7
                                               labeling_0.4.3
                                                                  splines_4.5.0
## [41] fastmap_1.2.0
                           grid_4.5.0
                                               cli_3.6.5
                                                                  magrittr_2.0.3
## [45] survival 3.8-3
                           TH.data 1.1-4
                                               broom 1.0.10
                                                                  withr 3.0.2
## [49] scales_1.4.0
                           backports_1.5.0
                                               bit64_4.6.0-1
                                                                  timechange_0.3.0
                                               emmeans 1.11.2-8
## [53] estimability_1.5.1 rmarkdown_2.29
                                                                  bit 4.6.0
## [57] zoo_1.8-14
                           hms_1.1.3
                                               coda_0.19-4.1
                                                                  evaluate_1.0.5
## [61] knitr 1.50
                           parameters_0.28.2
                                               mgcv_1.9-1
                                                                  rlang 1.1.6
## [65] xtable_1.8-4
                                                                  R6_2.6.1
                           glue_1.8.0
                                               vroom_1.6.5
```