

WHAT IS CLAIMED IS:

1. A compound of Formula I:

Formula I

or Formula II:

Formula II

wherein X¹, X², X³, X⁴, X⁵, X⁶, X⁷, and X⁸, are independently O or S; and preferably at least two and up to all four of X¹, X², X³ and X⁴, and at least two and up to all four of X⁵, X⁶, X⁷, and X⁸ are sulfur;

Z is -C_mR²_{2m-} wherein m = 1 to 4; -C(R²)₂SC(R²)₂₋, -C(R²)₂SSC(R²)₂₋, or -C(R²)₂OC(R²)₂;

n is from 0 to 4;

M is selected from CH_2Cl , $\text{CH}_2\text{SC(O)R}^1$, $\text{CH}_2\text{SC(S)R}^1$, $\text{CH}_2\text{S(CH}_2\text{CH}_2\text{S)}_q\text{H}$ wherein q is 0, 1 or 2; $-\text{CR}^2=\text{CH}_2$, $-\text{CH}_2\text{OC(O)CR}^2=\text{CH}_2$, $\text{CH}_2\text{N=C=S}$, $\text{CH}_2\text{N=C=O}$, $\text{CH}_2\text{NR}^2\text{H}$, CH_2OH , $\text{CH}_2\text{SCH}_2\text{CH}_2\text{CR}^2=\text{CH}_2$, phenyl, $\text{C(R}^2)_2$ phenyl, furan, thiophene, halogen, $\text{C}_3\text{-C}_6$ cycloalkyl, $\text{C}_3\text{-C}_6$ heterocyclics, thiol, H,

or

A is O, S or phenyl and x is 0 or 1;

wherein R^1 is $\text{C}_1\text{-C}_{22}$ alkyl; and

R^2 is H or $\text{C}_1\text{-C}_{22}$ alkyl,

except that if the compound is a STOC or SOTOC, at least one M substituent cannot be H and n must be 1, 2, 3 or 4.

2. The compound of claim 1, further defined as having Formula I:

wherein X^1 , X^2 , X^3 and X^4 are O or S, wherein at least two and up to all four of X^1 , X^2 , X^3 and X^4 are S.

3. The compound of claim 1, further defined as having Formula II:

wherein n is 1, 2, 3 or 4.

4. The compound of claim 1, further defined as:

2-(Mercaptomethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane;

2,7-Bis(mercaptomethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane;

2-(S-methyl)-7-vinyl-1,4,6,9-tetrathiaspiro[4.4]nonane thiolacetate;

2-(Mercaptomethyl)-7-vinyl-1,4,6,9-tetrathiaspiro[4.4]nonane;

7-(Mercaptomethyl)-2-(S-methyl)-1,4,6,9-tetrathiaspiro[4.4]nonane thiolacetate;

2-Mercaptomethyl-1-oxa-4,6,9-trithiaspiro[4.4]nonane; or

2,7-Bis(mercaptomethyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane.

5. The compound of claim 1, further defined as:
2-(Chloromethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane;
2-(S-Methyl)-1,4,6,9-tetrathiaspiro[4.4]nonane thiolacetate;
4-(S-Methyl)-1,3-dithiolane-2-thione thiolacetate;
2-(Chloromethyl)-7-(S-methyl)-1,4,6,9-tetrathiaspiro[4.4]nonane
thiolacetate;
2,7-Bis(S-methyl)-1,4,6,9-tetrathiaspiro[4.4]nonane thiolacetate;
2-(S-methyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane thiolacetate;
2-(Mercaptomethyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane;
2-(Chloromethyl)-7-(S-methyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane
thiolacetate; or
2,7-Bis(S-methyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane thiolacetate.

6. A method for manufacturing optical lenses comprising:

Polymerizing STOC or SOTOC compound of Formula I :

or a bisSTOC or bisSOTOC compound of Formula II :

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 , are independently O or S; and preferably at least two and up to all four of X^1 , X^2 , X^3 and X^4 , and at least two and up to all four of X^5 , X^6 , X^7 , and X^8 are sulfur;

Z is $-C_mR^{2m}-$ wherein $m = 1-4$; $-C(R^2)_2SC(R^2)_2-$, $-C(R^2)_2SSC(R^2)_2-$, or $-C(R^2)_2OC(R^2)_2$;

n is from 0 to 4, except that if the compound is a STOC or SOTOC, n must be 1, 2, 3 or 4; and

M is selected from CH_2Cl , $CH_2SC(O)R^1$, $CH_2SC(S)R^1$, $CH_2S(CH_2CH_2S)qH$ wherein q is 0, 1 or 2; $-CR^2=CH_2$, $-CH_2OC(O)CR^2=CH_2$, $CH_2N=C=S$, $CH_2N=C=O$, CH_2NR^2H , CH_2OH , $CH_2SCH_2CH_2CR^2=CH_2$, phenyl, $C(R^2)_2$ phenyl, furan, thiophene, halogen, C_3-C_6 cycloalkyl, C_3-C_6 heretocyclics, thiol, H, except that if the compound is a STOC or SOTOC, at least one M moiety cannot be H;

or

wherein A is S, O or phenyl and x is 0 or 1;
 R^1 is C_1-C_{22} alkyl; and
 R^2 is H or C_1-C_{22} alkyl to form a polymer, and
forming an optical lens with said polymer.

7. A method for manufacturing an optical lens comprising:
polymerizing a STOC or SOTOC compound of Formula I:

or a bisSTOC or bisSOTOC compound of Formula II

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 , are independently O or S; and
preferably at least two and up to all four of X^1 , X^2 , X^3 and X^4 , and at least two and
up to all four of X^5 , X^6 , X^7 , and X^8 are sulfur;

Z is $-C_mR^2_{2m}-$ wherein $m = 1-4$; $-C(R^2)_2SC(R^2)_2-$, $-C(R^2)_2SSC(R^2)_2-$, or
 $-C(R^2)2OC(R^2)_2$;

n is from 0 to 4, except that if the compound is a STOC or SOTOC, n must
be 1, 2, 3 or 4; and

M is selected from CH_2Cl , $\text{CH}_2\text{SC(O)R}^1$, $\text{CH}_2\text{SC(S)R}^1$, $\text{CH}_2\text{S(CH}_2\text{CH}_2\text{S)}_q\text{H}$ wherein q is 0, 1 or 2; $-\text{CR}^2=\text{CH}_2$, $-\text{CH}_2\text{OC(O)CR}^2=\text{CH}_2$, $\text{CH}_2\text{N}=\text{C=S}$, $\text{CH}_2\text{N}=\text{C=O}$, $\text{CH}_2\text{NR}^2\text{H}$, CH_2OH , $\text{CH}_2\text{SCH}_2\text{CH}_2\text{CR}^2=\text{CH}_2$, phenyl, $\text{C(R}^2)_2$ phenyl, furan, thiophene, halogen, $\text{C}_3\text{-C}_6$ cycloalkyl, $\text{C}_3\text{-C}_6$ heterocyclics, thiol, H, except that if the compound is a STOC or SOTOC, at least one M moiety cannot be H;

or

wherein A is S, O or phenyl and x is 0 or 1;

R^1 is $\text{C}_1\text{-C}_{22}$ alkyl; and

R^2 is H or $\text{C}_1\text{-C}_{22}$ alkyl to form a polymer forming all or part of the optical lens.

8. The method of claim 7, wherein the polymer forms the body of the lens.
9. The method of claim 7, wherein the polymer forms a coating of the lens.
10. A (co)polymer comprising (co)polymerized monomers of Formula I:

or Formula II:

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 , are independently O or S; and preferably at least two and up to all four of X^1 , X^2 , X^3 and X^4 , and at least two and up to all four of X^5 , X^6 , X^7 , and X^8 are sulfur;

Z is $-C_mR_{2m}^2$ wherein $m = 1-4$; $-C(R^2)_2SC(R^2)_2-$, $-C(R^2)_2SSC(R^2)_2-$, or $-C(R^2)2OC(R^2)_2$;

n is from 0 to 4, except that if the compound is a STOC or SOTOC, n must be 1, 2, 3 or 4; and

M is selected from CH_2Cl , $CH_2SC(O)R^1$, $CH_2SC(S)R^1$, $CH_2S(CH_2CH_2S)qH$ wherein q is 0, 1 or 2; $-CR^2=CH_2$, $-CH_2OC(O)CR^2=CH_2$, $CH_2N=C=S$, $CH_2N=C=O$, CH_2NR^2H , CH_2OH , $CH_2SCH_2CH_2CR^2=CH_2$, phenyl, $C(R^2)_2$ phenyl, furan, thiophene, halogen, C_3-C_6 cycloalkyl, C_3-C_6 heretocyclics, thiol, H., except that if the compound is a STOC or SOTOC, at least one M moiety cannot be H;

or

wherein A is S, O or phenyl and x is 0 or 1;

R¹ is C₁-C₂₂ alkyl; and

R² is H or C₁-C₂₂ alkyl

wherein X¹, X², X³, X⁴, X⁵, X⁶, X⁷, and X⁸ are independently O or S;

n is 0 to 4

Z is -C_mR²_{2m-} wherein m = 1-4; -C(R²)₂SC(R²)₂₋, -C(R²)₂SSC(R²)₂₋, or
-C(R²)₂OC(R²)₂₋;

M is CH₂Cl, CH₂SC(O)R¹, CH₂SC(S)R¹, CH₂S(CH₂CH₂S)_qH wherein q is
0, 1 or 2; -CR²=CH₂, -CH₂OC(O)CR²=CH₂, CH₂N=C=S, CH₂N=C=O, CH₂NR²H,
CH₂OH, CH₂SCH₂CH₂CR²=CH₂, phenyl, C(R²) phenyl, furan, thiophene, halogen,
C₃-C₆ cycloalkyl, C₃-C₆ heretocyclics, thiol,

or

wherein A is S, O or phenyl and x is 0 or 1;

wherein R¹ is C₁-C₂₂ alkyl; and

R² is H or C₁-C₂₂ alkyl to form the polymer.

11. The (co)polymer of claim 10, further defined as comprised in an optical lens.
12. A method of preparing a bisSTOC or bisSOTOC compound, comprising using either one of the following reactions schemes :

Reaction scheme 2

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 are independently O or S ; n' is independently 0, 1 or 2 ;

n is 0 to 4,

Z is $-C_mR^{2m-}$ wherein $m = 1-4$; $-C(R^2)_2SC(R^2)_{2-}$, $-C(R^2)_2SSC(R^2)_{2-}$, $-C(R^2)_2OC(R^2)_{2-}$;

M is independently selected from CH_2Cl , CH_2SH , $CH_2SC(O)R^1$, $CH_2SC(S)R^1$, $CH_2S(CH_2CH_2S)qH$ wherein q is 0, 1 or 2, $-CR^2=CH_2$, $-CH_2OC(O)CR^2=CH_2$, $CH_2N=C=S$, $CH_2N=C=O$, CH_2NR^2H , CH_2OH , $CH_2SCH_2CH_2CR^2=CH_2$, phenyl, $C(R^2)_2$ phenyl, furan, thiophene, halogen, C_3-C_6 cycloalkyl, C_3-C_6 heterocyclics, thiol, H,

or

wherein A is S, O or phenyl and x is 0 or 1;

R¹ is C₁-C₂₂ alkyl; and

R² is H or C₁-C₂₂ alkyl.

13. The method of claim 12, comprising reacting a substituted ethylenetriithiocarbonate with a bis-methylthiirane sulphide or a bis-methylthiirane disulphide, in the presence of a catalytic amount of tetrafluoroboric acid to produce the bisSTOC as shown in the reaction below:

wherein

M is selected from CR₂SR', CR₂=CH₂, R = H, or C₁-C₄ alkyl; and R' = H, acetyl, allyl, acrylate, or methacrylate and n = 1 or 2.

14. The method of claim 12, comprising reacting a bis-ethylenetriithiocarbonate sulfide or a bis-ethylenetriithiocarbonate, with substituted thiirane in the presence of a catalytic amount of tetrafluoroboric acid to produce the bisSTOC according to the following reaction:

wherein M is CR₂Cl, CR₂SR', or CR₂=CH₂;

R is H, alkyl C₁-C₄,

R' is H, allyl, acrylate, or methacrylate and

n = 1 or 2.

15. The method of claim 12, comprising reacting a substituted ethylenedithiocarbonate with bis-methylthiirane sulphide or bis-methylthiirane disulphide in the presence of a catalytic amount of tetrafluoroboric acid to produce the bisSOTOC according to the reaction

wherein M = CR₂SR', CR₂=CH₂;

R = H, C₁-C₄ alkyl,

R' = H, acetyl, allyl, acrylate, or methacrylate, and

n = 1 or 2.

16. The method of claim 12, further defined as a method wherein at least one of bis-ethylenetrithiocarbonate sulfide or bis-ethylenetrithiocarbonate is reacted with a substituted oxirane, in the presence of a catalytic amount of tetrafluoroboric acid to produce the bisSOTOC according to the reaction

wherein M = CR₂Cl, CR₂OR' or CR₂=CH₂;

R = H, C₁-C₄ alkyl;

R' = H, allyl, acrylate or methacrylate); and

n = 1 or 2.

17. The method of preparing a polythiourethane polymer having a high refractive index which comprises reacting at least one polyisocyanate or prepolymer thereof, preferably a diisocyanate, with a STOC, SOTOC, bisSTOC or bisSOTOC compound having at least one, preferably two, SH bearing substituent(s) as set forth in anyone of claims 1 to 5 or a mixture thereof.

18. The method of preparing a polymer having a high refractive index which comprises reacting a monomer having at least one unsaturated reactive group or a mixture thereof and/or one or more polyepisulfides with a STOC, SOTOC, bisSTOC or bisSOTOC compound having at least one, preferably two, SH bearing substituent(s) as set forth in anyone of claims 1 to 5 or a mixture thereof.

19. The method of preparing a polymer having a high refractive index which comprises reacting a monomer having at least one and preferably 2 SH groups or a mixture thereof and/or one or more polyepisulfides with a STOC, SOTOC, bisSTOC or bisSOTOC compound having at least one, preferably two episulfide bearing substituent(s) as set forth in claims 1 to 5, or a mixture thereof.

20. The method of preparing a polymer having a high refractive index which comprises reacting one or more of copolymerizable monomers as in claim 18 or 19 and/or one or more polythiol monomer(s) and/or polyepisulfide monomer(s) or prepolymer(s) thereof with a STOC, SOTOC, bisSTOC or bisSOTOC compound having at least one unsaturated group or mixtures thereof.

21. The method of claim 17, further defined as comprising:
preparing a mixture of m-xylylene diisocyanate (m-XDI) and 2,7
bis(mercaptomethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane;
adding a catalyst solution comprising KSCN and a crown-ether; and
curing the mixture at a temperature above 20°C.
22. The method of claim 17, further defined as comprising:
dissolving SnBu₂Cl₂ in m-xylylene diisocyanate (m-XDI);
adding 2,7-Bis(mercaptomethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane;
stirring; and
curing at a temperature above 30°C.