

DOCREACH PREDICTING PHYSICIAN SPECIALTY FROM TEXT DATA

(Data Confidential)
Sushil Sharma - Galvanize Cohort#65
Capstone Project – May'2018
linkedin.com/in/krishnatray
github.com/krishnatray

Business Problem - Summary

A social media marketing firm wants to target doctors / physicians based on their practice area.

Example: A <u>marketing campaign</u> to target **Cardiologists** for heart related news feed.

Business Problem

Sarah Marketing Manager

Marketing Campaign e.g. News Feed, Adv.

Cardiologists

Example: A marketing campaign to target Cardiologists for heart related news feed.

Project Scope

Predict cardiologists vs Non-Cardiologists Multiclass classifier to predict top 5 specialties

Data Source(s)

procedures.csv - contains a list of procedures doctors performed over the past year. The columns of this dataset are as follows:

- physician_id unique physician identifier, joins to id in physicians.csv
- procedure_code unique code representing a procedure
- procedure description of the procedure performed (Text Column)
- number_of_patients the number of patients the doctor performed that procedure on over the past year

physicians.csv - contains a list of doctors and their unique specialty.

Specialty is listed as "Unknown" for the doctors need to be classified.

- physician_id unique physician identifier, joins to id in physicians.csv
- Specialty String e.g. Cardiologist

Text Column

Category Column

Text Processing

Doc 3

0.18 0.18 0.48 0.95 0.48 0.48

Text Processing Summary

"Jenna went back to University."

Results - Best Model (Binary)

Model Selection Method: Highest Profit

Best model: Random Forest

Resulting profit: \$43.64

Accuracy: 80.5%

F1 Score : 0.81

Results: Multiclass

Model Selection Method : Highest F1 Score

Model	Accuracy	Precision	Recall	F1-Score
MultinomialNB	66.5%	0.67	0.67	0.66
GrBoosting	69.8%	0.67	0.70	0.66
RandomForest	70.8%	0.68	0.71	0.68
XGBoost	68.8%	0.65	0.69	0.65

Top features – Binary Classifier		
1	heart	
2	interpretation	
3	study	
4	blood	
5	ekg	

Top features – Multiclass Classifier		
₁ ultrasound		
2	ray	
3	minutes	
4	vaccine	
5	heart	

Next Steps / Future Plans

Unsupervised Machine Learning	Clustering, PCA, T-SNE
Deep Learning	Explore Deep Learning for Text Classification
Model Performance	Find additional Features
renomiance	Custom Ensemble Models
API / APP	Create Flask / Javascript Application /Api

High Dimensionality

- Training is Slow
- Limited features to 1000

No free lunch theorem

 RandomForest outperfomed other algorithms (Binary classification)

Gradient boosting is slow (Sequential)

XGBoost

Data Volume

- Parameter to train on sample
- AWS machine with multiple CPU

SSH session timeouts
/ Process Monitoring

- Tmux
- htop

Technology Used

Sushil Sharma

Linkedin: https://www.linkedin.com/in/krishnatray Github: https://www.github.com/krishnatray

BACKUP SLIDES

Cost Benefit

		Predicted		
		1 0		
	1	TP	FN	
Actual		\$100	= 0	
Act	О	FP	TN	
		-\$10	= O	

Data Summary

- Total Instances: 406,690
- Procedure length varies 6 256; Median 66
- Binary Classes
 - Cardiologists 47%
 - Non-Cardiologist 53%
- Multiclass picked top 5 and combined rest specialty as other
 - Cardiology 47%
 - Diagnostic Radiology 10%
 - Family Practice 7%
 - Internal Medicine 9%
 - Orthopedic Surgery 3%
 - Other 26%

Term Frequency

Normalize counts within a document to frequency

$$tf(t,d) = \frac{total\ count\ of\ term\ t\ in\ document\ d}{total\ count\ of\ all\ terms\ in\ document\ d}$$

document	galvanize	learn	other	student	teach
Doc 1	0	1/4 = 0.25	1/4 = 0.25	2/4 = 0.5	0
Doc 2	1/2 = 0.5	0	0	0	1/2 = 0.5
Doc 3	1/3 = 0.33	1/3 = 0.33	0	1/3 = 0.33	0

Inverse Document Frequency

$$idf(t,D) = log \frac{total\ number\ of\ document\ incorpus\ D}{count\ of\ document\ containing\ term\ t}$$

document	galvanize	learn	other	student	teach
Doc 1		X	X	X	
Doc 2	X				X
Doc 3	X	X		X	
idf(t,D)	log(3/2)	log(3/2)	log(3/1)	log(3/2)	log(3/1)

TF-IDF

$$tfid\!f(t,d,D) = tf(t,d) \cdot id\!f(t,D)$$

document	galvanize	learn	other	student	teach
Doc 1	0	$0.25 \times \log(3/2)$ = 0.101	$0.25 \times \log(3/1)$ = 0.275	0.5xlog(3/2) = 0.203	0
Doc 2	0.5xlog(3/2) = 0.203	0	0	0	0.5xlog(3/1) = .549
Doc 3	0.33xlog(3/2) = 0.135	0.33xlog(3/2) = 0.135	0	0.33xlog(3/2) = 0.135	0

ROC Curve

▶ A plot of the TPR vs. FPR at difference thresholds is called a ROC curve. It is used to visualize the performance of a given binary classifier:

► **Accuracy** - How many observations did I label correctly?

$$\frac{TP + TN}{P + N}$$

► True Positive Rate (TPR), Recall, Sensitivity - Of those observations that are actually positives, which ones did I label as positive?

$$\frac{TP}{TP + FN}$$

► False Positive Rate (FPR) - Of those observations that are actually negatives, which ones did I label as positive?

$$\frac{FP}{FP + TN}$$

▶ Precision, Positive Predictive Value - Of those observations that I labeled as positive, which ones are actually positive?

$$\frac{TP}{TP + FP}$$

► True Negative Rate, Specificity - Of those observations that are actually negative, which ones did I label as negative?

$$\frac{TN}{TN + FP}$$

	Predicted 1	0
Actual 1	TP	FN
0	FP	TN

	physician_id	procedure_code	procedure	number_of_patients
0	0	99202	new_patient_office_or_other_outpatient_visit	14
1	0	99203	new_patient_office_or_other_outpatient_visit	15
2	0	99205	new_patient_office_or_other_outpatient_visit	12
3	0	99212	$established_patient_office_or_other_outpatient$	27
4	0	99213	established_patient_office_or_other_outpatient	16

specialty	id	
General Surgery	0	0
Unknown	1	1
Family Practice	2	2
Emergency Medicine	3	3
Plastic and Reconstructive Surgery	4	4

Common words

