

# UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS SOBRAL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E COMPUTAÇÃO INTELIGÊNCIA COMPUTACIONAL APLICADA (2021.2) PROF. DR. MARCIO ANDRE BAIMA AMORA

## KAMILA AMÉLIA SOUSA GOMES RENAN HENRIQUE CARDOSO

APLICAÇÃO DAS REDES MLP E RBF NA BASE DE DADOS: GAS SENSORS FOR HOME ACTIVITY MONITORING

**SOBRAL** 

# LISTA DE ILUSTRAÇÕES

| Figura 1 – Modelo matemático de um neurônio artificial | 7  |
|--------------------------------------------------------|----|
| Figura 2 – Arquitetura de uma MLP                      | 8  |
| Figura 3 – Rede de Função de Base Radial(RBF)          | 9  |
| Figura 4 – Comparação entre as redes RBF e MLP         | 10 |
| Figura 5 – Matriz de Confusão                          | 11 |
| Figura 6 – Leitura e combinação dos dados              | 14 |
| Figura 7 – Remoção de atributos                        | 14 |
| Figura 8 – Normalização dos dados                      | 15 |
| Figura 9 – Quantidade fixa de amostras                 | 15 |
| Figura 10 – Discretização das Saídas                   | 16 |
| Figura 11 – Classes com mesma quantidade de amostras   | 16 |
| Figura 12 – Divisão Treino e Teste                     | 17 |
| Figura 13 – Código MLP - Experimento 1                 | 17 |
| Figura 14 – Código RBF - Experimento 1                 | 18 |
| Figura 15 – Discretização das Saídas                   | 19 |
| Figura 16 – Classes com mesma quantidade de amostras   | 19 |
| Figura 17 – <i>Loop</i> da variável i                  | 20 |
| Figura 18 – <i>loop</i> da variável j                  | 20 |
| Figura 19 – Função Auxiliar                            | 20 |
| Figura 20 – Código MLP - Experimento 2                 | 21 |
| Figura 21 – Código RBF - Experimento 2                 | 22 |
| Figura 22 – Resultados MLP                             | 23 |
| Figura 23 – Matriz de Confusão MLP                     | 24 |
| Figura 24 – Resultados RBF                             | 25 |
| Figura 25 – Matriz de Confusão RBF                     | 25 |
| Figura 26 – Resultados MLP                             | 26 |
| Figura 27 – Média Acurácias MLP                        | 27 |
| Figura 28 – Resultados RBF                             | 28 |
| Figura 29 – Média das Acurácias RBF                    | 28 |

## LISTA DE TABELAS

| Tabela 1 – | Resultados Demais Autores | 29 |
|------------|---------------------------|----|
| Tabela 2 – | Resultados deste Trabalho | 29 |

## LISTA DE ABREVIATURAS E SIGLAS

AI Artificial Intelligence

DANN Deep Autoencoder Neural Network

ML Machine Learning

MLP Multilayer Perceptron

NN Neural Network

RBF Radial Basis Function

RNA Redes Neurais Artificiais

# SUMÁRIO

| 1     | INTRODUÇÃO                                          |
|-------|-----------------------------------------------------|
| 1.1   | Objetivo Geral                                      |
| 2     | FUNDAMENTAÇÃO TEÓRICA 7                             |
| 2.1   | Redes Neurais Artificiais (RNA)                     |
| 2.2   | MLP                                                 |
| 2.3   | <b>RBF</b>                                          |
| 2.3.1 | <i>MLP x RBF</i>                                    |
| 2.4   | Normalização Z-Score e Min-Max                      |
| 2.5   | <b>Métricas</b>                                     |
| 2.5.1 | Matriz de Confusão                                  |
| 2.5.2 | Acurácia                                            |
| 3     | EXPERIMENTOS                                        |
| 3.1   | Descrição da Base De Dados                          |
| 3.2   | Especificações de Hardware e Software               |
| 3.2.1 | <i>Hardware</i>                                     |
| 3.2.2 | Software                                            |
| 3.3   | Preparação dos Dados                                |
| 3.4   | <b>Experimento 1</b>                                |
| 3.4.1 | Treinamento e Teste                                 |
| 3.4.2 | Experimentos MLP                                    |
| 3.4.3 | Experimentos RBF                                    |
| 3.5   | Experimento 2 - abrangendo maior número de amostras |
| 3.5.1 | Treinamento e Teste                                 |
| 3.5.2 | Funções Auxiliares                                  |
| 3.5.3 | Experimentos MLP                                    |
| 3.5.4 | Experimentos RBF                                    |
| 4     | <b>RESULTADOS</b>                                   |
| 4.1   | <b>Experimento 1</b>                                |
| 4.1.1 | Resultados MLP                                      |
| 4.1.2 | <b>Resultados RBF</b>                               |

| 4.2   | Experimento 2 - abrangendo um maior número de amostras | 26 |
|-------|--------------------------------------------------------|----|
| 4.2.1 | Resultados MLP                                         | 26 |
| 4.2.2 | Resultados RBF                                         | 27 |
| 4.3   | Comparação de Resultados com demais autores            | 29 |
| 5     | CONCLUSÕES                                             | 30 |
|       | REFERÊNCIAS                                            | 31 |
| 6     | ANEXO                                                  | 33 |

## 1 INTRODUÇÃO

A Inteligência Artificial (AI) é um ramo da ciência da computação que tem como propósito procurar compreender e desenvolver entidades inteligentes. Assim, dentro da AI, existe uma área denominada de aprendizado de máquina, mais conhecida do inglês como *machine learning* (ML), cujo o objetivo é na utilização de técnicas que adquiram conhecimento automático através de sistemas computacionais (SANTOS; ARAUJO, 2018).

As técnicas de ML têm sido aplicadas em diversos âmbitos reais, como exemplo: predição, detecção, diagnóstico e reconhecimento de fala. Essa nova metodologia têm conquistado gradativamente mais sucesso devido ao desenvolvimento de algoritmos cada vez mais eficientes e com melhor performance, além da transcendente capacidade dos recursos computacionais disponíveis atualmente. Outro fator importante, é sua capacidade de generalização, ou seja, os modelos elaborados são ainda capazes de lidar com situações não apresentadas durante seu desenvolvimento (VINICIUS, 2017).

Dessa forma, o presente trabalho pretende comparar o desempenho de duas abordagens inseridas nas redes neurais, que se configura como uma subárea do aprendizado de máquina. Portanto, as arquiteturas de rede MLP e RBF foram empregadas para realizar uma classificação no conjunto de dados: *Gas Sensors for Home Activity Monitoring*. O *dataset* possui gravações de oito sensores de gás MOX e um sensor de temperatura e umidade. Os dados foram obtidos em três ambientes com condições diversas: presença de vinho, presença de banana e nenhum estimulante.

As redes MLP e RBF são arquiteturas do tipo *feedforward* não-lineares, com várias camadas e consideradas aproximadores universais. Numa comparação geral, a rede RBF tem como principal vantagem a rapidez no processo de treinamento enquanto a rede MLP tem um menor uso de memória (MELO *et al.*, 2014). Assim, para a realização dos experimentos deste trabalho, foi utilizado a *toolbox* de redes neurais artificiais do *software Matlab*, fornecendo todo o ferramental necessário para desenvolvimento e validação dos modelos gerados.

## 1.1 Objetivo Geral

Este trabalho tem como objetivo aplicar as arquiteturas de redes MLP e RBF para classificação do conjunto de dados *Gas Sensors for Home Activity Monitoring* para fins de comparação de desempenho das mesmas através de suas acurácias.

## 2 FUNDAMENTAÇÃO TEÓRICA

Esta seção aborda alguns dos conceitos fundamentais para o desenvolvimento do trabalho.

#### 2.1 Redes Neurais Artificiais (RNA)

As Redes Neurais Artificiais (RNA) são exemplos de algoritmos de aprendizagem de máquina inspirados na rede de neurônios presente no cérebro biológico (SANTOS; ARAUJO, 2018). Apenas um único neurônio biológico é formado pelo corpo da célula, dendritos e o axônio. Os dendritos são os responsáveis por adquirir as informações através dos impulsos nervosos e conduzi-los até o corpo celular, onde essa informação é processada e por fim, acaba produzindo um novo impulso. O axônio é a parte do neurônio responsável pela condução dos impulsos. Com isso, chama-se de sinapse o ponto de contato entre a terminação do axônio de um neurônio e o dendrito de outro, formando-se assim um sistema capaz de executar a maioria das funções do cérebro (BONIFÁCIO, 2010). Através de uma visão matemática, o modelo de um neurônio artificial pode ser observado na Figura 1.

Sinais de entrada

Sinais de entrada

X<sub>10</sub>

W<sub>k1</sub>

Função de ativação  $\sum_{V_k} \phi(.)$ Função aditiva

Função aditiva

Figura 1 – Modelo matemático de um neurônio artificial.

Fonte: (BONIFÁCIO, 2010)

Nota-se na Figura 1, que a informação é recebida pelos sinais de entrada, em seguida é aplicado um peso ou força sináptica, onde seu valor é multiplicado por valores positivos ou negativos. Em seguida, existe um combinador linear, responsável pela adição dos sinais de entrada ponderados pelos respectivos valores dos pesos sinápticos. O valor *bias* tem o efeito de aumentar ou diminuir a entrada da função de ativação. Por fim, a função de ativação define o valor de saída do neurônio, tipicamente com intervalos de [0,1] ou [-1,1] (BONIFÁCIO, 2010).

#### 2.2 MLP

A *Multilayer Perceptron* (MLP) são redes *feedfoward*, ou seja, a propagação dos sinais ocorrem em um único sentido (da entrada para a saída) (TAVARES *et al.*, 2018). Essa rede é caracterizada por um conjuntos de neurônios, no seu estado mais simples apresenta uma camada de entrada, uma ou mais camadas ocultas e uma camada de saída, no qual o sinal é propagado a cada camada. Ela é bastante utilizada em problemas de classificação, regressão, previsão e modelagem de séries temporais (BRITO *et al.*, 2020). Na Figura 2, é mostrada a arquitetura básica de uma MLP.

Camada Primeira Segunda Camada de Camada Camada de Entrada Escondida Escondida Saída

Figura 2 – Arquitetura de uma MLP

Fonte: (BRITO et al., 2020)

Através da Figura 2, percebe-se que a camada de entrada é responsável por adicionar padrões à rede neural e, nas camadas ocultas, é realizada uma grande parcela do processamento, por fim, as camadas de saída apresentam o resultado final (TAVARES *et al.*, 2018).

No treinamento da MLP é empregado o algoritmo denominado *backpropagation*, que ocorre em duas fases: a fase *forward* e a fase *backward*. Na fase *forward*, a entrada é apresentada à primeira camada da RNA, que calcula seus sinais de saída e passa os valores para a próxima camada, ocorrendo dessa forma até a camada de saída onde é calculado a saída final da RNA, onde posteriormente são comparadas com as saídas esperadas do modelo. Durante a fase *backward*, é realizado o caminho contrário, ou seja, os pesos dos neurônios vão sendo ajustados a partir da camada de saída até a camada de entrada, de forma a diminuir os erros. O algoritmo *backpropagation* tem atingindo sua popularidade por ter alcançado sucesso em diversas aplicações, apesar de ainda conter muitos desafios (BONIFÁCIO, 2010).

#### 2.3 RBF

A Rede de Função de Base Radial (RBF) também são do tipo *feedforward* e completamente conectadas (BONIFÁCIO, 2010). Ela é formada na sua forma mais básica, pela camada de entrada, que está ligada às informações iniciais da rede, após, a uma única camada escondida que é formada por funções de ativação de base radial que desempenham uma transformação não linear do espaço de entrada e, por último, a camada de saída linear que proporciona o resultado do que foi aplicado nas entradas (BRITO *et al.*, 2020). A arquitetura da rede RBF é apresentada na Figura 3.

 $x_1$   $x_2$   $x_1$   $x_2$   $x_3$   $x_4$   $x_5$   $x_6$   $x_6$   $x_6$   $x_6$   $x_6$   $x_7$   $x_8$   $x_8$ 

Figura 3 – Rede de Função de Base Radial(RBF)

Fonte: (ZUBEN, 2013)

A camada de entrada é responsável por agrupar os dados em *clusters*, utilizando funções de base radial, convertendo o conjunto dos padrões de entrada não linearmente separáveis em um conjunto de dados linearmente separáveis. Na camada oculta, por sua vez, é aplicada uma transformação não-linear do espaço de entrada para um espaço oculto de alta dimensionalidade. A função da camada de saída é classificar os padrões da camada anterior, através de operações simples por serem linearmente separados. A transformação não-linear seguida de uma transformação linear é baseada no Teorema de Cover, no qual afirma que um problema complexo de classificação de padrões alinhados não-linearmente em um espaço de alta dimensionalidade tem maior probabilidade de ser linearmente separável do que em um espaço de baixa dimensionalidade (BONIFÁCIO, 2010).

Pode-se dizer, que uma função é de base radial quando seus valores funcionais são iguais às normas de seus argumentos, ou seja, quando seu valor funcional depende apenas da distância de seu argumento à origem (MOTA *et al.*, 2011). Em uma RBF, as unidades escondidas

fornecem um conjunto de funções que representam uma base arbitrária para os vetores de entrada, sendo expandidas sobre o espaço oculto. Posteriormente, cada uma dessas funções é centrada em uma coordenada do espaço multidimensional e, essa coordenada, define o centro de uma região de maior aglomeração de pontos (*clusters*), do espaço de dados de entrada (KALMAN, S.D.).

#### 2.3.1 MLP x RBF

A primeira característica que distingue essas duas abordagens diz respeito ao número de camadas, onde a rede RBF possui apenas uma camada oculta, enquanto a MLP possui muitas outras. A RBF geralmente possui mais neurônios na oculta, diferentemente da MLP que pode necessitar de um número maior de parâmetros ajustáveis, dessa forma, se tornando menos sensível a inserção de dados novos. A MLP gera regiões globais de decisão, tendo uma maior capacidade de generalização que a RBF, lidando melhor com *outliers*. A Figura 4 faz uma comparação gráfica entre as redes, mostrando que RBF separa classes por hiperelipsoides e a MLP por hiperplanos (BARRETO *et al.*, 2018).

Figura 4 – Comparação entre as redes RBF e MLP

Fonte: Adaptado de (BARRETO et al., 2018)

#### 2.4 Normalização Z-Score e Min-Max

A normalização é uma técnica comum aplicada durante a preparação dos dados quando se trabalha com aprendizado de máquina, isso porque, ela é responsável por modificar os valores de um conjunto de dados para uma escala comum, sem distorcer as diferenças nos intervalos de valores. Essa técnica só deve ser empregada quando os recursos têm intervalos diferentes (JAITLEY, 2018).

O Z-score, estrutura o dado em uma distribuição cuja média é determinada como 0 e o desvio padrão estabelecido como 1. Ele é definido como a diferença absoluta entre o valor do

dado e sua média, normalizado com o desvio padrão. A finalidade do Z-score é retirar os efeitos da localização e escala do dado, permitindo a comparação direta entre diferentes bases de dados. Esse método é eficiente em bases em que os dados seguem uma distribuição gaussiana, além de sua fácil implementação (TOCCI, 2018).

Por outro lado, a normalização Min-Max é um procedimento de converter valores discrepantes utilizando uma escala que vai de 0,0 a 1,0; onde 0 é para o menor valor e 1,0 para o maior valor. Com isso, a comparação de valores que foram medidos usando diferentes escalas é facilitada. (CARLOS, 2020).

#### 2.5 Métricas

Em problemas de classificação, é necessário aplicar métricas para avaliar a eficiência do seu modelo (RODRIGUES, 2019). Algumas delas será mostrada a seguir.

#### 2.5.1 Matriz de Confusão

A matriz de confusão refere-se a uma tabela que mostra os acertos e erros do seu modelo, comparando com o resultado esperado. A Figura 5 representa a Matriz de Confusão graficamente.

Figura 5 – Matriz de Confusão

|      |            | Detectada           |                     |  |  |  |  |
|------|------------|---------------------|---------------------|--|--|--|--|
|      |            | Sim                 | Não                 |  |  |  |  |
|      | Sim<br>Não | Verdadeiro Positivo | Falso Negativo      |  |  |  |  |
| ਫ਼   |            | (VP)                | (FN)                |  |  |  |  |
| Real |            | Falso Positivo      | Verdadeiro Negativo |  |  |  |  |
|      |            | (FP)                | (VN)                |  |  |  |  |

Fonte: (RODRIGUES, 2019)

- Verdadeiros Positivos(VP): classificação correta da classe Positivo;
- Verdadeiros Negativos(VN): classificação correta da classe Negativo;
- Falsos Negativos (FN): erro em que o modelo previu a classe Negativo quando o valor real era classe Positivo:
- Falsos Positivos (FP): erro em que o modelo previu a classe Positivo quando o valor real era classe Negativo.

## 2.5.2 Acurácia

A Acurácia é uma métrica comum para avaliação de performace do modelo. Ela define dentre todas as classificações, quantas o modelo classificou corretamente (RODRIGUES, 2019). Sua formulação matemática é dada pela Equação 2.1.

$$A = \frac{VP + VN}{VP + VN + FP + FN} \tag{2.1}$$

Onde,

- VP: refere-se a Verdadeiro Positivo;
- VN: refere-se a Verdadeiro Negativo;
- FP: refere-se a Falso Positivo;
- FN: refere-se a Falso Negativo.

#### **3 EXPERIMENTOS**

Nesta seção são apresentadas a descrição do experimento através da análise da base de dados utilizada e a aplicação do algoritmo com as fases de treinamento e teste.

## 3.1 Descrição da Base De Dados

O conjunto de dados utilizado para execução deste trabalho é denominado: *Gas sensors for home activity monitoring*, disponível em: <a href="https://archive.ics.uci.edu/ml/datasets/">https://archive.ics.uci.edu/ml/datasets/</a> Gas+sensors+for+home+activity+monitoring>. Esse conjunto de dados foi criado em 2016, contendo 919438 amostras e 11 atributos reais. Como atributos, existem 8 sensores MOX, um sensor de temperatura e um sensor de umidade, os outros atributos se referem à data e hora no qual foi realizada a gravação. Este *dataset* contém um conjunto de séries temporais em três condições de ambiente diferentes: presença de vinho, presença de banana e nenhum estimulante (denominado pelos autores de atividade de fundo, ou *background*). Ao todo, são 36 gravações onde foi apresentado vinho aos sensores, 33 foram apresentados banana e 31 das gravações com nenhum estimulante (*background*). Uma aplicação de classificação referese a discriminação entre as classes vinho, banana e *background*. Os 8 sensores MOX são: TGS2611(R1), TGS2612(R2), TGS2610 (R3), TGS2600 (R4), TGS2602 (R5), TGS2602 (R6), TGS2620 (R7) e TGS2620(R8). A temperatura e umidade foram medidas usando o sensor Sensirion SHT75.

### 3.2 Especificações de Hardware e Software

#### 3.2.1 Hardware

Os experimentos foram realizados em:

- Um computador equipado com um processador Intel Core i7-9750H, com 16GB de memória RAM, uma placa de vídeo NVIDIA GeForce GTX 1650 (4GB dedicado) e contando com um disco rígido SSD de 512 GB de capacidade.
- Um computador equipado com um processador Intel Core i5-10210U, com 8GB de memória RAM, uma placa de vídeo NVIDIA GeForce MX110 (2 GB dedicado) e contando com armazenamento de disco rígido de 1 TB.

## 3.2.2 Software

O *software* utilizado para simulação dos experimentos foi o MATLAB na versão R2020a no Sistema Operacional *Windows* 10. A escrita do trabalho foi realizada no *Overleaf*, uma plataforma gratuita que possui um editor de LaTex online.

#### 3.3 Preparação dos Dados

O início do processo de desenvolvimento do algoritmo é necessário primeiramente obter a base de dados. O conjunto de dados utilizado é composto por dois arquivos: HT\_sensor\_dataset.dat, onde as séries temporais reais são armazenadas, e HT\_Sensor\_metadata.dat, onde os metadados para cada indução foram armazenados. Cada indução é identificada exclusivamente por um id em ambos os arquivos. Assim, os metadados para uma indução particular podem ser facilmente encontrados combinando o id das colunas entre os arquivos. Dessa forma, a segunda etapa teve foco na realização de uma combinação das tabelas. Como mostrado na Figura 6.

Figura 6 – Leitura e combinação dos dados.

```
%% Importing data
ht_sensor = importdata('HT_Sensor_dataset.dat');
T = array2table(ht_sensor.data, 'VariableNames', ht_sensor.colheaders);
ht_sensor_metadata = readtable('HT_Sensor_metadata.csv');

%% Join tables by id
T = join(T, ht_sensor_metadata);
```

Fonte: Elaborada pelos Autores (2021)

Por se tratar de uma série temporal, a base contém informações não necessárias para a classificação, dessa forma, optou-se pela remoção de algumas colunas indesejadas, como: id, *time*, *date*, etc. Os atributos como temperatura e umidade foram removidos por serem condições do próprio ambiente. Como mostrado na Figura 7.

Figura 7 – Remoção de atributos

```
%% Preparing data
% Removing columns
T.id = [];
T.('Temp.') = [];
T.Humidity = [];
T.('time ') = [];
T.date = [];
T.t0 = [];
T.dt = [];
```

Fonte: Elaborada pelos Autores (2021)

Em seguida, visto que os dados estão em uma escala diferente, é aplicado alguma normalização. Ela é importante para reduzir a redundância de dados, aumentar a integridade e o seu desempenho. Desta maneira, foi decidido a utilização de duas mais conhecidas: Z-Score e Min-Max, afim de testar qual apresenta melhor resultado, como mostrado na Figura 8. Além disso, é proposto utilizar nenhum tipo de normalização.

Figura 8 – Normalização dos dados

Fonte: Elaborada pelos Autores (2021)

## 3.4 Experimento 1

Em busca de obter uma quantidade fixa de amostras, usamos o código apresentado na Figura 9. A função *datasample* é responsável por obter uma subamostra aleatória de um conjunto maior. Logo, são obtidas as mesmas quantidades de amostras para cada classe, o procedimento foi realizado pois a base não é totalmente balanceada entre os rótulos: vinho, banana e *background*.

Figura 9 – Quantidade fixa de amostras

```
% Sub-sampling
samples = 6000
T = datasample(T, samples);
% Get samples by class
banana = T(string(T{:, 9})=='banana', :);
wine = T(string(T{:, 9})=='wine', :);
bg = T(string(T{:, 9})=='background', :);
```

Fonte: Elaborada pelos Autores (2021)

Em seguida foi realizada a discretização das saídas, isso é importante para limitar o número de possíveis estados.

O código é mostrado na Figura 10.

Figura 10 – Discretização das Saídas

```
% Discretizing classes
banana_bin = array2table(ones(size(banana, 1), 3).*[1 0 0], 'VariableNames', {'y1', 'y2', 'y3'});
wine_bin = array2table(ones(size(wine, 1), 3).*[0 1 0], 'VariableNames', {'y1', 'y2', 'y3'});
bg_bin = array2table(ones(size(bg, 1), 3).*[0 0 1], 'VariableNames', {'y1', 'y2', 'y3'});
banana = [banana(:, 1:8) banana_bin];
wine = [wine(:, 1:8) wine_bin];
bg = [bg(:, 1:8) bg_bin];
```

Fonte: Elaborada pelos Autores (2021)

Por fim, para que a base possua a mesma quantidade de amostras, é calculado a quantidade de cada classe e obtido o valor mínimo dentre os 3 tamanhos, isso foi realizado para que a matriz T\_b possua uma quantidade uniforme de amostras aleatórias em cada classe no conjunto total. A função *table2array()* converte a tabela T do tipo *table* em uma matriz do tipo *double* para posterior separação e entrada no modelo. A função *cvpartition* particiona as observações aleatoriamente em um conjunto de treinamento e de teste. O código é mostrado na Figura 11.

Figura 11 – Classes com mesma quantidade de amostras

```
% Data same quantity classes (balanced)
size_classes = [size(banana, 1) size(wine, 1) size(banana_bin, 1)];
n_min = min(size_classes);
T_b = [datasample(banana, n_min); datasample(wine, n_min); datasample(bg, n_min)];
T_b = table2array(T_b);
test_p = 0.15
cv = cvpartition(size(T_b, 1), 'holdout', test_p);
```

Fonte: Elaborada pelos Autores (2021)

#### 3.4.1 Treinamento e Teste

O particionamento dos dados entre treino e teste foi feito através da técnica *Hold-out*. O conjunto de treino (*train*), são os dados que o modelo faz uso para obter a separação dentre as classes e, o conjunto de teste (*test*), são os dados que fazem parte para obter o quão bom esse modelo é executado em dados não conhecidos. Nesse caso, foi utilizado duas formas de divisão a fim de verificar qual apresenta melhor resultado: 85% treino e 15% teste e, 80% treino e 20% teste. Como mostrado na Figura 12.

Figura 12 – Divisão Treino e Teste

```
%% Separate to training and test data

test_data = T_b(cv.test, :);
train_data = T_b(cv.training, :);

train_y = train_data(:, 9:11);
train_x = train_data(:, 1:8);
test_y = test_data(:, 9:11);
test_x = test_data(:, 1:8);
```

Fonte: Elaborada pelos Autores (2021)

#### 3.4.2 Experimentos MLP

Com os dados preparados e a divisão de treinamento já feita, pode-se elaborar o experimento para a primeira técnica, no caso a MLP. O seu código é mostrado na Figura 13.

Figura 13 – Código MLP - Experimento 1

```
%% MLP
 layer1 = 50;
layer2 = 50;
  net = feedforwardnet([layer1, layer2]);
                               Levenberg-Marquardt
                                                                                      % 2 'trainbr'
                                                                                                                   Bayesian Regularization
                                                                                    $ 4 'trainrp' Resilient Backpropagation
$ 6 'trainrgb' Conjugate Gradient with Powell/Beale Restarts
radient $ 8 'trainrgp' Polak-Ribiére Conjugate Gradient
    3 'trainbfg' BFGS Quasi-Newton
   i 3 'trainbg' BFGS Quasi-Newton & 4 'trainrp' Resilient Backpropagation
is 'trainscg' Scaled Conjugate Gradient # 6 'traincgb' Conjugate Gradieht with Pow
is 7 'traincgf' Fletcher-Powell Conjugate Gradient # 8 'traincgp' Polak-Ribiére
is 9 'trainoss' One Step Secant % 10 'traingdx' Variable Learning Rate Gradient Descent
 % 11 'traingdm' Gradient Descent with Momentum % 12 'traingd' Gradient Desc
 net.trainFcn = 'trainlm';
 net.trainParam.epochs = 1000;
 mlp net = train(net, train x', train y');
mlp_net = train(net, train x', train y');
predict_y = mlp_net(test_x');
vec_ind_test = vec2ind(test_y');
vec_ind_pred = vec2ind(predict_y);
hitl = sum(vec_ind_test == 1 & vec_ind_pred == 1);
hit2 = sum(vec_ind_test == 2 & vec_ind_pred == 2);
hit3 = sum(vec_ind_test == 3 & vec_ind_pred == 3);
hits = hitl + hit2 + hit3;
scc_s_birs(size_vec_ind_pred == 2);
 acc = hits/size(vec_ind_pred, 2);
 dlmwrite('test2.csv', [2, 1, samples, test_p, layer1, layer2, 1, 1000, hit], hit2, hit3, hits, aco], 'delimiter', ';', '-append');
```

Fonte: Elaborada pelos Autores (2021)

Para o desenvolvimento da MLP, optou-se por uma arquitetura de duas camadas ocultas contendo 50 neurônios cada uma. Contendo 8 sensores de gás de entrada e camada de saída tem 3 neurônios para as 3 classes. Assim, a rede é iniciada na variável *net* com a função *feedforwardnet*, responsável por retornar uma rede neural *feedforward*. A variável *net.TrainFcn* especifica que o algoritmo *Levenberg-Marquardt* será utilizado para o treinamento. Já a variável *net.trainParam.epochs* informa que são usadas 1000 épocas. Enfim o treino é realizado nas linhas sucessivas. A estrutura da rede e os parâmetros foram definidos através de sucessivos testes, sendo escolhidos aqueles que apresentaram melhores acurácias. A última linha, que utiliza a função *dlmwrite*, é encarregada de gravar as informações de teste em um arquivo separadamente.

#### 3.4.3 Experimentos RBF

Para o experimento da técnica RBF, é utilizado o seguinte treinamento, como mostrado na Figura 14.

Figura 14 - Código RBF - Experimento 1

```
goal = 0; % Error Limit
DF = 25; % Intervals between neurons
MN = 700; % neurons
spread = 40; % raio
rbf_nn = newrb(train_x', train_y', goal, spread, MN, DF);
predict_y = rbf_nn(test_x');
vec_ind_test = vec2ind(test_y');
vec_ind_pred = vec2ind(predict_y);
hit1 = sum(vec_ind_test == 1 & vec_ind_pred == 1);
hit2 = sum(vec_ind_test == 2 & vec_ind_pred == 2);
hit3 = sum(vec_ind_test == 3 & vec_ind_pred == 3);
hits = hit1 + hit2 + hit3;
acc = hits/size(vec_ind_pred, 2);

dlmwrite('test.csv', [1, 0, samples, test_p, MN, spread, hit1, hit2, hit3, hits, acc], 'delimiter', ';', '-append');
```

Fonte: Elaborada pelos Autores (2021)

Para o desenvolvimento da RBF, optou-se por uma arquitetura contendo 8 sensores de gás de entrada, uma camada oculta contendo 700 neurônios (representada pela variável MN) e para a camada de saída existem 3 neurônios para as 3 classes. A variável *goal* é a meta de desempenho do erro que é definida como 0. O parâmetro DF, responsável por definir o intervalo de neurônios para a plotagem do erro, é estabelecido com o valor 25. Já o parâmetro *spread* está relacionado com o tamanho do raio das redes RBF, e ele é definido como 40. A função *newrb* gera uma rede RBF com um neurônio para cada vetor de entrada, com uma largura das funções de base determinada por *spread*. Assim como na rede MLP, a estrutura da rede e os parâmetros também foram definidos através de testes sucessivos. A última linha, que utiliza a função *dlmwrite*, é encarregada de gravar as informações de teste em um arquivo separadamente.

## 3.5 Experimento 2 - abrangendo maior número de amostras

Em busca de obter uma quantidade de amostras por classe, usamos a primeira parte código apresentado na Figura 9. Após separar os dados de banana, vinho e *background*, é realizada a discretização das saídas. Isso é importante para limitar o número de possíveis estados, sua representação é mostrada na segunda parte código da Figura 15.

A Figura 16 mostra a parte do código responsável por obter as amostras de cada classe, randomizá-las e separá-las por treino e teste. Durante esse processo, é usado a função

Figura 15 – Discretização das Saídas

```
% Get samples by class
banana = T(string(T{:, 9})=='banana', :);
wine = T(string(T{:, 9})=='wine', :);
bg = T(string(T{:, 9})=='background', :);

% Discretizing classes
banana = [banana(:, 1:8) array2table(ones(size(banana, 1), 3).*[1 0 0], 'VariableNames', {'y1', 'y2', 'y3'})];
wine = [wine(:, 1:8) array2table(ones(size(wine, 1), 3).*[0 1 0], 'VariableNames', {'y1', 'y2', 'y3'});];
bg = [bg(:, 1:8) array2table(ones(size(bg, 1), 3).*[0 0 1], 'VariableNames', {'y1', 'y2', 'y3'});];
T = [banana; wine; bg];
T = table2array(T);
```

Fonte: Elaborada pelos Autores (2021)

datasample, que é responsável por obter uma subamostra aleatória de um conjunto maior.

Figura 16 – Classes com mesma quantidade de amostras

```
%% Get samples, randomize and separe train-test by class
a1 = 1;
a2 = 50000;
b1 = 50001;
b2 = 1000000:
banana = T(T(:, 9)==1, :);
banana = datasample(banana, size(banana, 1));
train banana = banana(al:a2, :);
test banana = banana(b1:b2, :);
wine = T(T(:, 10)==1, :);
wine = datasample(wine, size(wine, 1));
train wine = wine(al:a2, :);
test wine = wine(bl:b2, :);
bg = T(T(:, 11) == 1, :);
bg = datasample(bg, size(bg, 1));
train_bg = bg(al:a2, :);
test bg = bg(b1:b2, :);
samples class train = 5000;
samples_class_test = 500;
```

Fonte: Elaborada pelos Autores (2021)

#### 3.5.1 Treinamento e Teste

Feito isso, o próximo passo é a execução de 10 ciclos com diferentes dados de treino e teste para cada classe, isso é importante para verificar se a eficácia do algoritmo se mantém quando aplicado diferentes dados. Para os dados de treino *loop* processado com a variável i, já para os dados de teste é utilizado a variável j. O ciclo j é rodado dentro do ciclo i. Exemplificando melhor, temos que são buscadas 15000 amostras para treino e 1500 para teste, isso é feito para que a cada rodada sejam usados diferentes dados para teste. A Figura 17 mostra o *loop* da variável i.

Figura 17 – Loop da variável i

```
for i = 1:10

% Training net

train_lim_inf_class = (samples_class_train * (i-1)) + 1;

train_lim_sup_class = samples_class_train * i;

train_banana_i = train_banana(train_lim_inf_class:train_lim_sup_class, :);

train_banana_i = train_banana(train_lim_inf_class:train_lim_sup_class, :);

train_big i = train_big(train_lim_inf_class:train_lim_sup_class, :);

train_data = (train_banana_i; train_class:train_lim_sup_class, :);

train_data = (train_banana_i; train_wine_i; train_bo_ii;);

train_data = datasample(train_data, size(train_data, 1));

[trained_net, path_model, t_end] = mlp_net(train_data, 1);

{ train_end_net, path_model, t_end] = mlp_net(train_data, 1);

} (trained_net, path_model) = rbf_net(train_data);

[acc, C, hitl, hit2, hit3, hit5] = get_results(train_data, trained_net);

dlms/riet('./loga/results.com', {i, 0, train_lim_inf_class, train_lim_sup_class, t_end, hitl, hit3, hits, acc), 'delimiter', ';', '-append');
```

Fonte: Elaborada pelos Autores (2021)

A Figura 18 mostra o *loop* da variável j.

Figura 18 – *loop* da variável j

```
48 Test trained net
for j = 1:10
test_lim_inf_class = (samples_class_test * (j-l)) + 1;
test_lim_inf_class = ((samples_class_test * (j-l)) + 1;
test_lim_inf_class = ((samples_class_test * (j-l)) + test_lim_inf_class;
test_lim_sup_class = samples_class_test * (j-l)) + test_lim_sup_class;
test_lim_sup_class = ((samples_class_test_lim_sup_class, :);
test_banana j = test_banana(test_lim_inf_class:test_lim_sup_class, :);
test_banana j = test_banana(test_lim_inf_class:test_lim_sup_class, :);
test_banana j = test_banana(test_lim_inf_class:test_lim_sup_class, :);
test_banana j = test_banana j; test_vine j, test_banana, :);
test_data = [test_banana_j; test_vine_j; test_banana_j; test_vine_j; test_data, :);
test_data = [test_banana_j; test_vine_j; test_banana_j; test_vine_j; test_data, :);
load(path_model, 'trained_net');
[acc, C, hitl, hit2, hit3, hits] = get_results(test_data, trained_net);
dimmrite('./logs/results.cov', ', ', '-append');
end
dimmrite('./logs/results.cov', ', ', '-append');
```

Fonte: Elaborada pelos Autores (2021)

## 3.5.2 Funções Auxiliares

A Figura 19 exibe uma função auxiliar que tem como objetivo calcular e plotar os resultados e apresenta como parâmetro: acertos na classe 1 (Hit1), Acertos na classe 2 (Hit2), Acertos na classe 3 (Hit3), soma de acertos das classes(Hits), acurácia(Acc) e a matriz de confusão(C).

Figura 19 – Função Auxiliar

```
%% Aux function to calcule and plot results

function [acc, C, hitl, hit2, hit3, hit5] = get_results(test_data, trained_net)

test_y = test_data(:, 9:11)';

test_x = test_data(:, 1:8)';

predict_y = trained_net(test_x);

vec_ind_test = vec2ind(test_y);

vec_ind_pred = vec2ind(predict_y);

vec_size = size(vec_ind_pred, 2);

hit1 = sum(vec_ind_test == 1 & vec_ind_pred == 1);

hit2 = sum(vec_ind_test == 2 & vec_ind_pred == 2);

hit3 = sum(vec_ind_test == 3 & vec_ind_pred == 3);

hits = hit1 + hit2 + hit3;

acc = hits/vec_size * 100;

C = confusionmat(vec_ind_test, vec_ind_pred);

end
```

Fonte: Elaborada pelos Autores (2021)

## 3.5.3 Experimentos MLP

Com os dados preparados e a divisão de treinamento já feita, pode-se elaborar o experimento para a primeira técnica, no caso a MLP. O seu código é mostrado na Figura 20.

Figura 20 – Código MLP - Experimento 2

```
%% MLP Net
function [trained_net, path_model, t_end] = mlp_net(train_data, i)
     path model = sprintf('./models/mlp %d restore.mat', i);
     laver1 = 50;
     layer2 = 50;
     f training = 'trainlm';
     epochs = 100;
     feedforward = feedforwardnet([layer1, layer2]);
     feedforward.trainFcn = f training;
     feedforward.trainParam.epochs = epochs;
     train y = train data(:, 9:11);
     train x = train data(:, 1:8);
      t start = tic;
     trained net = train(feedforward, train x', train y');
     t end = toc(t start);
      save(path model, 'trained net');
 end
```

Fonte: Elaborada pelos Autores (2021)

Para o desenvolvimento da MLP, optou-se por uma arquitetura de duas camadas ocultas contendo 50 neurônios cada uma. Contendo 8 sensores de gás de entrada e camada de saída tem 3 neurônios para as 3 classes. Assim, a rede é iniciada na variável *net* com a função *feedforwardnet*, responsável por retornar uma rede neural *feedforward*. A variável *net.TrainFcn* especifica que o algoritmo *Levenberg-Marquardt* será utilizado para o treinamento. Já a variável *net.trainParam.epochs* informa que são usadas 1000 épocas. Enfim o treino é realizado nas linhas sucessivas. A estrutura da rede e os parâmetros foram definidos através de sucessivos testes, sendo escolhidos aqueles que apresentaram melhores acurácias.

#### 3.5.4 Experimentos RBF

Para o experimento da técnica RBF, é utilizado o seguinte treinamento, como mostrado na Figura 21.

Para o desenvolvimento da RBF, optou-se por uma arquitetura contendo 8 sensores de gás de entrada, uma camada oculta contendo 700 neurônios (representada pela variável MN)

Figura 21 – Código RBF - Experimento 2

```
%% RBF Net

function [trained_net, path_model, t_end] = rbf_net(train_data, i)
    path_model = sprintf('./models/rbf_%d_restore.mat', i);
    goal = 0;
    DF = 25;
    MN = 100;
    spread = 50;
    train_y = train_data(:, 9:11)';
    train_x = train_data(:, 1:8)';
    t_start = tic;
    trained_net = newrb(train_x, train_y, goal, spread, MN, DF);
    t_end = toc(t_start);
    save(path_model, 'trained_net');
end
```

Fonte: Elaborada pelos Autores (2021)

e para a camada de saída existem 3 neurônios para as 3 classes. A variável *goal* é a meta de desempenho do erro que é definida como 0. O parâmetro DF, responsável por definir o intervalo de neurônios para a plotagem do erro, é estabelecido com o valor 25. Já o parâmetro *spread* está relacionado com o tamanho do raio das redes RBF, e ele é definido como 50. A função *newrb* gera uma rede RBF com um neurônio para cada vetor de entrada, com uma largura das funções de base determinada por *spread*. Assim como na rede MLP, a estrutura da rede e os parâmetros também foram definidos através de testes sucessivos.

#### 4 RESULTADOS

Nesta seção são apresentadas os resultados obtidos através da metodologia aplicada, analisando-os através de métricas para avaliar a eficiência do experimento.

## 4.1 Experimento 1

#### 4.1.1 Resultados MLP

A fim de obter o melhor resultado, o algoritmo precisou ser executados diversas vezes modificando os parâmetros de treinamento. Os melhores resultados serão exibidos na Figura 22.

Figura 22 – Resultados MLP

| Norm | Samples | %Tests | layer1 | layer2 | trainFcn | epochs | Hit1 | Hit2 | Hit3 | Hits: | Acc     |
|------|---------|--------|--------|--------|----------|--------|------|------|------|-------|---------|
| 1    | 15000   | 0.15   | 50     | 50     | 1        | 1000   | 698  | 681  | 766  | 2145  | 0.95887 |
| 1    | 10000   | 0.15   | 50     | 50     | 1        | 1000   | 483  | 443  | 489  | 1415  | 0.93647 |
| 1    | 10000   | 0.15   | 50     | 50     | 1        | 1000   | 452  | 450  | 506  | 1408  | 0.93369 |
| 1    | 6000    | 0.15   | 25     | 25     | 1        | 1000   | 281  | 249  | 281  | 811   | 0.91124 |
| 1    | 6000    | 0.15   | 75     | 75     | 1        | 1000   | 257  | 247  | 282  | 786   | 0.90345 |
| 1    | 6000    | 0.15   | 25     | 25     | 1        | 1000   | 267  | 263  | 267  | 797   | 0.89350 |
| 1    | 6000    | 0.15   | 25     | 25     | 1        | 1000   | 251  | 236  | 308  | 795   | 0.87942 |
| 1    | 8000    | 0.15   | 75     | 75     | 1        | 1000   | 349  | 333  | 372  | 1054  | 0.87542 |
| 1    | 10000   | 0.15   | 25     | 25     | 1        | 1000   | 407  | 370  | 499  | 1276  | 0.86508 |
| 1    | 6000    | 0.15   | 25     | 25     | 1        | 1000   | 230  | 197  | 299  | 726   | 0.80936 |

Fonte: Elaborada pelos Autores (2021)

A descrição das colunas apresentada na Figura 22, será mostrada abaixo:

- 1. Norm: Normalização utilizada. Nenhuma normalização (0), z-score (1) e Min-Max (2);
- 2. Samples: Quantidade total de amostras;
- 3. %Tests: Parcela das amostras em % para teste;
- 4. layer1: Quantidade de neurônios na camada oculta 1;
- 5. layer2: Quantidade de neurônios na camada oculta 2;
- 6. trainFcn: Função de treinamento da rede;
- 7. epochs: Quantidade de épocas;
- 8. Hit1: Acertos na classe 1 (banana);
- 9. Hit2: Acertos na classe 2 (vinho);
- 10. Hit3: Acertos na classe 3 (background ruído do fundo);
- 11. Hits: Acertos total;

## 12. Acc: Porcentagem de acertos.

Para análise e comparação dos resultados optou-se por criar um arquivo do tipo *csv* capaz de armazenar as informações de cada novo teste. Através dessa comparação, nota-se que o algoritmo se comporta melhor com 15000 amostras, com duas camadas ocultas de 50 neurônios e 1000 épocas. Foi utilizada 85% dados para treino e 15% dados para teste e a acurácia alcançou 95.887% com a normalização z-score.

Sua matriz de confusão é dada na Figura 25.

1 693 22 9

43 681 12

3 2 4 766

Figura 23 – Matriz de Confusão MLP

Fonte: Elaborada pelos Autores (2021)

#### 4.1.2 Resultados RBF

A fim de obter o melhor resultado, o algoritmo precisou ser executados diversas vezes modificando os parâmetros de treinamento. Os melhores resultados serão exibidos na Figura 24.

A descrição das colunas apresentada na Figura 24, será mostrada abaixo:

- 1. Norm: Normalização utilizada. Nenhuma normalização (0), z-score (1) e Min-Max (2);
- 2. Samples: Quantidade total de amostras;
- 3. %Tests: Parcela das amostras em % para teste;
- 4. Neurons: Refere-se a quantidade de neurônios utilizados na rede;
- 5. Spread: Distância do raio RBF;
- 6. Hit1: Acertos na classe 1 (banana);
- 7. Hit2: Acertos na classe 2 (vinho);

8. Hit3: Acertos na classe 3 (background - ruído do fundo);

9. Hits: Acertos total;

10. Acc: Porcentagem de acertos.

Figura 24 – Resultados RBF

| Norm | Samples | %Tests | Neurons | Spread | Hit1 | Hit2 | Hit3 | Hits: | Acc     |
|------|---------|--------|---------|--------|------|------|------|-------|---------|
| 0    | 10000   | 0.15   | 700     | 40     | 383  | 313  | 462  | 1158  | 0.79642 |
| 0    | 12000   | 0.15   | 1000    | 40     | 418  | 391  | 581  | 1390  | 0.79202 |
| 0    | 3000    | 0.15   | 500     | 40     | 122  | 99   | 141  | 362   | 0.78867 |
| 0    | 15000   | 0.15   | 1200    | 50     | 545  | 483  | 699  | 1727  | 0.78109 |
| 1    | 6000    | 0.15   | 400     | 40     | 211  | 183  | 292  | 686   | 0.77955 |
| 0    | 10000   | 0.15   | 700     | 60     | 368  | 296  | 469  | 1133  | 0.76866 |
| 0    | 6000    | 0.15   | 500     | 50     | 223  | 173  | 301  | 697   | 0.76678 |
| 0    | 6000    | 0.15   | 800     | 80     | 222  | 191  | 255  | 668   | 0.76169 |
| 0    | 10000   | 0.15   | 400     | 60     | 353  | 320  | 454  | 1127  | 0.75435 |
| 0    | 3000    | 0.15   | 400     | 60     | 108  | 87   | 135  | 330   | 0.74830 |

Fonte: Elaborada pelos Autores (2021)

Através do arquivo *csv* com os testes executados, nota-se que o algoritmo se comportou melhor sem nenhum tipo de normalização, com 10000 amostras, 700 neurônios e um raio de 40. Foi utilizada 85% dados para treino e 15% dados para teste e a acurácia alcançou 79.642%. Sua matriz de confusão é dada na Figura 25.

Figura 25 – Matriz de Confusão RBF



Fonte: Elaborada pelos Autores (2021)

## 4.2 Experimento 2 - abrangendo um maior número de amostras

#### 4.2.1 Resultados MLP

A fim de obter o melhor resultado, o algoritmo precisou ser executado dentro de um *loop* de treinamento. A descrição das colunas apresentadas sobre os resultados, é mostrada abaixo:

- 1. i: Iteração de Treinamento;
- 2. j: Iteração dentro Treinamento (10 testes para cada modelo treinando);
- 3. lim\_inf e lim\_sup: variáveis de verificação do intervalo;
- 4. Hit1: Acertos na classe 1 (banana);
- 5. Hit2: Acertos na classe 2 (vinho);
- 6. Hit3: Acertos na classe 3 (background ruído do fundo);
- 7. Hits: Acertos total;
- 8. Acc: Porcentagem de acertos.

Os melhores resultados da MLP serão exibidos na Figura 26. Os demais resultados podem ser averiguados no final deste trabalho na seção Anexos.

Hit1 lim\_inf lim\_sup Hit2 Hit3 Hits Acc 91.533 91.467 92.8 93.933 93.267 94.667 92,933 92.267 94.267 92.933

Figura 26 – Resultados MLP

Fonte: Elaborada pelos Autores (2021)

Média:

93.030

Para análise e comparação dos resultados optou-se por criar um arquivo do tipo *csv* capaz de armazenar as informações de cada novo teste. Através desse estudo, nota-se que o algoritmo conquista resultados satisfatórios usando 15.000 exemplos de treinamento (onde existem cerca de 5.000 para cada classe), divididos em 10 execuções, ou seja, cada teste existem 1500 exemplos, cerca de 500 para cada classe. Assim, o primeiro experimento com o modelo, apesar de usar uma parte pequena, refletiu bem sobre toda a base. A melhor acurácia atingida

pelo algoritmo foi de 94,667% com a normalização do tipo z-score.

Além disso, o conjunto de dados utilizado nos experimentos contém um número muito elevado de amostras usando muito poder computacional. Dessa forma, para efetuar os experimentos, optou-se por usar apenas uma parte desse conjunto. Para que esta parte faça uma boa representação do todo, optou-se por executar 10 ciclos com diferentes dados a fim de verificar a constância do algoritmo. A Figura 27 exibe a média da acurácia da MLP para cada ciclo de treinamento, mostrando que as médias se mantém com valores constantes ao longo do ciclo.

Figura 27 – Média Acurácias MLP

| MLP                  |                     |  |  |  |  |  |
|----------------------|---------------------|--|--|--|--|--|
| Ciclo de Treinamento | Média das Acurácias |  |  |  |  |  |
| 1                    | 89.733              |  |  |  |  |  |
| 2                    | 89.567              |  |  |  |  |  |
| 3                    | 90.767              |  |  |  |  |  |
| 4                    | 92.533              |  |  |  |  |  |
| 5                    | 92.533              |  |  |  |  |  |
| 6                    | 92.667              |  |  |  |  |  |
| 7                    | 91.533              |  |  |  |  |  |
| 8                    | 90.333              |  |  |  |  |  |
| 9                    | 91.400              |  |  |  |  |  |
| 10                   | 91.533              |  |  |  |  |  |

Fonte: Elaborada pelos Autores (2021)

#### 4.2.2 Resultados RBF

A fim de obter o melhor resultado, o algoritmo precisou ser executado dentro de um *loop* de treinamento. A descrição das colunas apresentadas sobre os resultados, é mostrada abaixo:

- 1. i: Iteração de Treinamento;
- 2. j: Iteração dentro Treinamento (10 testes para cada modelo treinado);
- 3. lim\_inf e lim\_sup: variáveis de verificação do intervalo;
- 4. Hit1: Acertos na classe 1 (banana);
- 5. Hit2: Acertos na classe 2 (vinho);
- 6. Hit3: Acertos na classe 3 (background ruído do fundo);
- 7. Hits: Acertos total;
- 8. Acc: Porcentagem de acertos.

Os melhores resultados da RBF serão exibidos na Figura 28. Os demais resultados podem ser averiguados no final deste trabalho na seção Anexos.

Figura 28 – Resultados RBF

| i  | j  | lim_inf | lim_sup | Hit1 | Hit2 | Hit3 | Hits   | Acc    |
|----|----|---------|---------|------|------|------|--------|--------|
| 1  | 5  | 2001    | 2500    | 356  | 323  | 499  | 1178   | 78.533 |
| 2  | 2  | 5501    | 6000    | 388  | 322  | 475  | 1185   | 79     |
| 3  | 6  | 12501   | 13000   | 352  | 351  | 475  | 1178   | 78.533 |
| 4  | 5  | 17001   | 17500   | 371  | 331  | 493  | 1195   | 79.667 |
| 5  | 1  | 20001   | 20500   | 379  | 298  | 495  | 1172   | 78.133 |
| 6  | 9  | 29001   | 29500   | 394  | 281  | 500  | 1175   | 78.333 |
| 7  | 4  | 31501   | 32000   | 372  | 294  | 502  | 1168   | 77.867 |
| 8  | 1  | 35001   | 35500   | 372  | 330  | 472  | 1174   | 78.267 |
| 9  | 1  | 40001   | 40500   | 351  | 336  | 503  | 1190   | 79.333 |
| 10 | 10 | 49501   | 50000   | 382  | 332  | 463  | 1177   | 78.467 |
|    |    |         |         |      |      |      | Média: | 78.400 |

Fonte: Elaborada pelos Autores (2021)

Através do arquivo *csv* com os testes executados, nota-se que o algoritmo se comportou melhor sem nenhum tipo de normalização, com 10000 amostras, 700 neurônios e um raio de 50. Foi utilizada 85% dados para treino e 15% dados para teste e a acurácia alcançou 79.667%.

Ademais, como a base de dados apresenta um número muito grande de amostras, para efetuar os experimentos viu-se a necessidade de usar apenas uma parte devido ao seu grande processamento computacional. Assim, para que esta parte faça uma boa representação do todo, optou-se por executar 10 ciclos com diferentes dados a fim de verificar a constância do algoritmo. A Figura 29 exibe a média da acurácia da RBF para cada ciclo de treinamento, mostrando que as médias se mantém com valores constantes ao longo do ciclo.

Figura 29 – Média das Acurácias RBF

| RBF                  |                     |  |  |  |  |  |
|----------------------|---------------------|--|--|--|--|--|
| Ciclo de Treinamento | Média das Acurácias |  |  |  |  |  |
| 1                    | 76.467              |  |  |  |  |  |
| 2                    | 76.667              |  |  |  |  |  |
| 3                    | 76.867              |  |  |  |  |  |
| 4                    | 76.667              |  |  |  |  |  |
| 5                    | 76.533              |  |  |  |  |  |
| 6                    | 76.533              |  |  |  |  |  |
| 7                    | 75.133              |  |  |  |  |  |
| 8                    | 76.733              |  |  |  |  |  |
| 9                    | 77.467              |  |  |  |  |  |
| 10                   | 76.000              |  |  |  |  |  |

Fonte: Elaborada pelos Autores (2021)

## 4.3 Comparação de Resultados com demais autores

Sharma (2017) utiliza Regressão Logística para a classificação da base de dados *Gas Sensors for Home Activity Monitoring*. A Regressão Logística é um classificador linear, onde durante seu experimento foi utilizado 70% dos dados para treino e 30% dos dados para teste. Além disso, o modelo obteve uma acurácia de 63%. No trabalho de Kumar Shanur Rahman (2020) utiliza *Random Forest* para classificar a mesma base, utilizando a divisão 67% dos dados para treino e 33% dos dados para teste, obtendo uma acurácia de 87%.

Mihaylova *et al.* (2019) aplicou Deep Autoencoder Neural Network (DANN) e uma rede neural não-profunda (NN). No algoritmo foi aplicado uma normalização de dados (0 e 1), em seguida houve uma redução de espaço de recurso baseado em PCA e também foram aplicados hiper-parâmetros de otimização. No modelo DANN foi utilizada duas camadas de *autoenconder* e para o modelo da NN somente uma única camada oculta, obtendo uma precisão do modelo a acurácia de 65.67% para NN e 55.89% para DANN.

Por fim, em (HUERTA *et al.*, 2016) é usado a técnica SVM's inibitórios (ISVM), um classificador não linear neste mesmo cenário. Ao aplicar a classificação apenas possuindo como entrada os sensores de gás, o modelo apresenta uma acurácia de 78,5%, já quando inclui os sensores de temperatura e umidade há uma queda para 76,5%. Os dados foram divididos em 80% para treino e 20% para teste.

Tabela 1 – Resultados Demais Autores

| Autores                     | Técnicas            | Acurácia        |
|-----------------------------|---------------------|-----------------|
| (SHARMA, 2017)              | Regressão Logística | 63%             |
| (KUMAR SHANUR RAHMAN, 2020) | Random Forest       | 87%             |
| (MIHAYLOVA et al., 2019)    | DANN e NN           | 55,44% e 68,78% |
| (HUERTA et al., 2016)       | SVM's inibitórios   | 78,5%           |

Fonte: Elaborada pelos autores (2021)

Tabela 2 – Resultados deste Trabalho

| Autores                     | Técnicas               | Acurácia                                           |
|-----------------------------|------------------------|----------------------------------------------------|
| Experimento 1 Experimento 2 | MLP e RBF<br>MLP e RBF | <b>95,89</b> % e 79,642% <b>94,667</b> % e 79,667% |

Fonte: Elaborada pelos autores (2021)

#### 5 CONCLUSÕES

O objetivo deste trabalho foi em abordar o uso das redes MLP e RBF, através de implementações no software MATLAB, para classificação da base de dados *Gas Sensors for Home Activity Monitoring*, uma base sobre um conjunto de sensores sob diferentes condições em um ambiente doméstico: *background*, vinho e banana. Incluindo 8 sensores de gás MOX e sensores de umidade e temperatura.

No primeiro experimento, usou-se uma divisão de 85% para treino e 15 % para teste. Nele, observou-se que, a rede MLP se comporta melhor do que a rede RBF quando aplicada nesta base de dados, apresentando uma acurácia de 95.887% e de 79.642%, respectivamente. A rede MLP apresenta melhor desempenho quando se é aplicada 50 neurônios ou mais em suas camadas ocultas e com 15.000 quantidades de amostras, utilizando a normalização z-score. Já a RBF, em seu melhor desempenho, utiliza uma menor quantidade de mostras, cerca de 10.000, e 700 neurônios em sua camada oculta, usando nenhum tipo de normalização. No segundo experimento, quando são usados uma maior quantidade de amostras, a rede MLP atinge uma acurácia de 94,667% e a RBF 79.642%. Nele, são mantidos os mesmos parâmetros do experimento anterior, a alteração é na divisão de dados, onde são executados 10 ciclos (15000 amostras para treino e 1500 amostras para teste) a fim de verificar a constância do algoritmo.

Dessa forma, nota-se em embora a RBF não tenha apresentado um resultado satisfatório, ela apresenta resultados superiores em relação a algumas literaturas, como em Sharma (2017) que apresenta uma acurácia de 63%, Mihaylova *et al.* (2019) que apresenta uma acurácia de 55.44% e 68.78% e Huerta *et al.* (2016) que apresenta uma acurácia de 78,5%. Por sua vez, a MLP consegue os melhores resultados, superando a literatura de Kumar Shanur Rahman (2020) que apresenta uma acurácia de 87%.É importante ressaltar que o ganho de acurácia é fundamental para uma maior eficácia na classificação.

As MLPs podem apresentar melhor performance devido sua capacidade de poder conter mais de uma camada oculta, isso porque, cada camada é uma rede perceptron para cada grupo de entradas linearmente separáveis, o que facilita a tarefa de classificação. Ademais, a MLP apresenta uma maior capacidade de generalização que a RBF, lidando melhor com *outliers*.

## REFERÊNCIAS

- BARRETO, G. de A.; CAMPELLO, R. J. G. B.; ARAúJO, A. F. R.; VASCONCELOS, G. C.; ADEODATO, P. J. **Redes Neurais**. [S.l.], 2018. Disponível em: <chrome-extension: //efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=http%3A%2F%2Fwww.facom.ufu. br%2F~backes%2Fpgc204%2FAula07-RedesNeurais.pdf&clen=1201632&chunk=true>. Acesso em: 14 dez. 2021.
- BONIFÁCIO, F. N. Comparação entre as redes neurais artificiais mlp, rbf e lvq na classificação de dados. **Paraná: Universidade Estadual do Oeste do Paraná**, 2010.
- BRITO, R. X. de; FERNANDES, C. A. R.; AMORA, M. A. B. Análise de desempenho com redes neurais artificiais, arquiteturas mlp e rbf para um problema de classificação de crianças com autismo. iSys-Revista Brasileira de Sistemas de Informação, v. 13, n. 1, p. 60–76, 2020.
- CARLOS, R. **Normalizando dados com R e Python**. [S.1.], 2020. Dados publicados pelo blog Medium. Disponível em: <a href="https://datalivre.medium.com/normalizando-dados-com-r-e-python-fc048dd78ede#:~:text=A%20normaliza%C3%A7%C3%A30%20de%20dados%20Min,0%20para%20o%20maior%20valor.">https://datalivre.medium.com/normalizando-dados-com-r-e-python-fc048dd78ede#:~:text=A%20normaliza%C3%A7%C3%A30%20de%20dados%20Min,0%20para%20o%20maior%20valor.</a> Acesso em: 14 dez. 2021.
- HUERTA, R.; MOSQUEIRO, T.; FONOLLOSA, J.; RULKOV, N. F.; RODRIGUEZ-LUJAN, I. Online decorrelation of humidity and temperature in chemical sensors for continuous monitoring. **Chemometrics and Intelligent Laboratory Systems**, Elsevier, v. 157, p. 169–176, 2016.
- JAITLEY, U. You have 2 free member-only stories left this month. Sign up for Medium and get an extra one. [S.l.], 2018. Dados publicados pelo blog Master of Science Business Analytics. Disponível em: <a href="https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029">https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029</a>. Acesso em: 12 dez. 2021.
- KALMAN, E. E. C. A. À. Rede neural com função de base radial com treinamento usando filtro de. S.D.
- KUMAR SHANUR RAHMAN, N. A. **Aplicação de Random Forest em Gas Sensor for Home Activity Monitoring Dataset**. [S.l.], 2020. Dados publicados pela comunidade online Kaggle. Disponível em: <a href="https://www.kaggle.com/nitinguptadu0621/kernel565f1f2b91">https://www.kaggle.com/nitinguptadu0621/kernel565f1f2b91</a>. Acesso em: 14 dez. 2021.
- MELO, M. P. S. de; MAGALHÃES, M. L. C.; FERREIRA, M. M.; NUNES, H.; OLIVA, P.; MAIA, N. A.; TORCHELSEN, F. T. V.; PEREIRA, D. V. de C. Uma comparação entre as redes neurais artificiais mlp e rbf na classificação de dados. 2014.
- MIHAYLOVA, P.; MANOLOVA, A.; GEORGIEVA, P. Data analytics for home air quality monitoring. In: SPRINGER. **International Conference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures**. [S.l.], 2019. p. 79–88.
- MOTA, J. da; SIQUEIRA, P.; SOUZA, L. de; VITOR, A. Uma rede neural de base radial baseada em computação evolucionária. **XXXII CILAMCE**, 2011.
- RODRIGUES, V. **Métricas de Avaliação**. [S.l.], 2019. Dados publicados pelo blog Medium. Disponível em: <a href="https://vitorborbarodrigues.medium.com/m%C3%A9tricas-de-avalia%">https://vitorborbarodrigues.medium.com/m%C3%A9tricas-de-avalia%</a>

C3%A7%C3%A3o-acur%C3%A1cia-precis%C3%A3o-recall-quais-as-diferen%C3%A7as-c8f05e0a513c>. Acesso em: 12 dez. 2021.

SANTOS, G. S. dos; ARAUJO, A. F. de. Estudo sobre classificacao de lesoes de pele com rnamlp. **Proceeding Series of the Brazilian Society of Computational and Applied Mathematics**, v. 6, n. 2, 2018.

SHARMA, S. Aplicação de Regressão Logística em Gas Sensor for Home Activity Monitoring Dataset. [S.l.], 2017. Dados publicados pelo repositório Github. Disponível em: <a href="https://github.com/shubham0420/Gas-Sensor-for-Home-Activity-Monitoring-Dataset/blob/master/code/main\_code\_notebook.ipynb">https://github.com/shubham0420/Gas-Sensor-for-Home-Activity-Monitoring-Dataset/blob/master/code/main\_code\_notebook.ipynb</a>. Acesso em: 14 dez. 2021.

TAVARES, J. T. S. *et al.* Sistema automático de negociação para a bolsa de valores utilizando redes neurais multilayer perceptron e regressão linear. Universidade Estadual de Feira de Santana, 2018.

TOCCI, A. **Técnicas de Detecção de Anomalias**. [S.l.], 2018. Dados publicados pelo blog oficial da comunidade DP6 Team. Disponível em: <a href="https://blog.dp6.com.br/t%C3%">https://blog.dp6.com.br/t%C3%</a> A9cnicas-de-detec%C3%A7%C3%A3o-de-anomalias-3d9e216bf82e>. Acesso em: 12 dez. 2021.

VINICIUS, A. **Introdução ao Aprendizado de Máquina**. [S.1.], 2017. Dados publicados pelo blog Medium. Disponível em: <a href="https://medium.com/@avinicius.adorno/introdu%C3%A7%C3%A3o-a-aprendizado-de-m%C3%A1quina-e39ec5ef459b">https://medium.com/@avinicius.adorno/introdu%C3%A7%C3%A3o-a-aprendizado-de-m%C3%A1quina-e39ec5ef459b</a>. Acesso em: 12 dez. 2021.

ZUBEN, I.-P. F. J. V. Redes neurais com função de ativação de base radial. 2013.

## 6 ANEXO

**Resultados MLP** 

| i | j  | lim_inf | lim_sup | Hit1 | Hit2       | Hit3 | Hits  | Acc    |
|---|----|---------|---------|------|------------|------|-------|--------|
| 1 | 0  | 1       | 5000    | 4515 | 4469       | 4929 | 13913 | 92.753 |
| 1 | 1  | 1       | 500     | 430  | 437        | 506  | 1373  | 91.533 |
| 1 | 2  | 501     | 1000    | 450  | 411        | 476  | 1337  | 89.133 |
| 1 | 3  | 1001    | 1500    | 409  | 439        | 486  | 1334  | 88.933 |
| 1 | 4  | 1501    | 2000    | 428  | 406        | 494  | 1328  | 88.533 |
| 1 | 5  | 2001    | 2500    | 432  | 382        | 525  | 1339  | 89.267 |
| 1 | 6  | 2501    | 3000    | 437  | 436        | 473  | 1346  | 89.733 |
| 1 | 7  | 3001    | 3500    | 457  | 424        | 474  | 1355  | 90.333 |
| 1 | 8  | 3501    | 4000    | 451  | 414        | 481  | 1346  | 89.733 |
| 1 | 9  | 4001    | 4500    | 423  | 440        | 500  | 1363  | 90.867 |
| 1 | 10 | 4501    | 5000    | 426  | 443        | 481  | 1350  | 90     |
|   |    |         |         |      |            |      |       |        |
| 2 | 0  | 5001    | 10000   | 4691 | 4307       | 4886 | 13884 | 92.56  |
| 2 | 1  | 5001    | 5500    | 473  | 379        | 484  | 1336  | 89.067 |
| 2 | 2  | 5501    | 6000    | 442  | 442        | 480  | 1364  | 90.933 |
| 2 | 3  | 6001    | 6500    | 449  | 392        | 498  | 1339  | 89.267 |
| 2 | 4  | 6501    | 7000    | 455  | 376        | 510  | 1341  | 89.4   |
| 2 | 5  | 7001    | 7500    | 437  | 424        | 496  | 1357  | 90.467 |
| 2 | 6  | 7501    | 8000    | 448  | 400        | 483  | 1331  | 88.733 |
| 2 | 7  | 8001    | 8500    | 431  | 413        | 509  | 1353  | 90.2   |
| 2 | 8  | 8501    | 9000    | 477  | 405        | 463  | 1345  | 89.667 |
| 2 | 9  | 9001    | 9500    | 449  | 403        | 490  | 1342  | 89.467 |
| 2 | 10 | 9501    | 10000   | 463  | 445        | 464  | 1372  | 91.467 |
|   |    |         |         |      |            |      |       |        |
| 3 | 0  | 10001   | 15000   | 4776 | 4474       | 4895 | 14145 | 94.3   |
| 3 | 1  | 10001   | 10500   | 482  | 364        | 511  | 1357  | 90.467 |
| 3 | 2  | 10501   | 11000   | 437  | 433        | 519  | 1389  | 92.6   |
| 3 | 3  | 11001   | 11500   | 439  | 415        | 497  | 1351  | 90.067 |
| 3 | 4  | 11501   | 12000   | 493  | 413        | 480  | 1386  | 92.4   |
| 3 | 5  | 12001   | 12500   | 478  | 394        | 499  | 1371  | 91.4   |
| 3 | 6  | 12501   | 13000   | 475  | 418        | 499  | 1392  | 92.8   |
| 3 | 7  | 13001   | 13500   | 457  | 426        | 503  | 1386  | 92.4   |
| 3 | 8  | 13501   | 14000   | 459  | 430        | 477  | 1366  | 91.067 |
| 3 | 9  | 14001   | 14500   | 457  | 409        | 508  | 1374  | 91.6   |
| 3 | 10 | 14501   | 15000   | 497  | 411        | 474  | 1382  | 92.133 |
|   |    |         |         |      |            |      |       |        |
| 4 | 0  | 15001   | 20000   | 4737 | 4558       | 4976 | 14271 | 95.14  |
| 4 | 1  | 15001   | 15500   | 438  | 434        | 489  | 1361  | 90.733 |
| 4 | 2  | 15501   | 16000   | 508  | 425        | 455  | 1388  | 92.533 |
| 4 | 3  | 16001   | 16500   | 434  | 433        | 514  | 1381  | 92.067 |
| 4 | 4  | 16501   | 17000   | 465  | 434        | 484  | 1383  | 92.2   |
| 4 | 5  | 17001   | 17500   | 459  | 458        | 492  | 1409  | 93.933 |
| 4 | 6  | 17501   | 18000   | 457  | 398        | 530  | 1385  | 92.333 |
| 4 | 7  | 18001   | 18500   | 481  | 441        | 480  | 1402  | 93.467 |
| 4 | 8  | 18501   | 19000   | 432  | 448        | 501  | 1381  | 92.067 |
| 4 | 9  | 19001   | 19500   | 446  | 414        | 534  | 1394  | 92.933 |
| 4 | 10 | 19501   | 20000   | 477  | 447        | 470  | 1394  | 92.933 |
| 4 | 10 | 19501   | 20000   | 446  | 414<br>447 | 470  | 1394  | 92.933 |

| 5             | 0  | 20001 | 25000 | 4673 | 4608  | 4913 | 14194 | 94.627 |
|---------------|----|-------|-------|------|-------|------|-------|--------|
| 5             | 1  | 20001 | 20500 | 442  | 478   | 472  | 1392  | 92.8   |
| 5             | 2  | 20501 | 21000 | 463  | 427   | 498  | 1388  | 92.533 |
| 5             | 3  | 21001 | 21500 | 463  | 429   | 493  | 1385  | 92.333 |
| 5             | 4  | 21501 | 22000 | 461  | 438   | 466  | 1365  | 91     |
| 5             | 5  | 22001 | 22500 | 468  | 429   | 465  | 1362  | 90.8   |
| 5             | 6  | 22501 | 23000 | 446  | 453   | 489  | 1388  | 92.533 |
| 5             | 7  | 23001 | 23500 | 461  | 390   | 517  | 1368  | 91.2   |
| 5             | 8  | 23501 | 24000 | 432  | 421   | 528  | 1381  | 92.067 |
| 5             | 9  | 24001 | 24500 | 458  | 407   | 531  | 1396  | 93.067 |
| 5             | 10 | 24501 | 25000 | 487  | 451   | 461  | 1399  | 93.267 |
|               |    |       |       |      |       |      |       |        |
| 6             | 0  | 25001 | 30000 | 4877 | 4631  | 4932 | 14440 | 96.267 |
| 6             | 1  | 25001 | 25500 | 490  | 398   | 493  | 1381  | 92.067 |
| 6             | 2  | 25501 | 26000 | 476  | 459   | 473  | 1408  | 93.867 |
| 6             | 3  | 26001 | 26500 | 457  | 447   | 475  | 1379  | 91.933 |
| 6             | 4  | 26501 | 27000 | 455  | 430   | 513  | 1398  | 93.2   |
| 6             | 5  | 27001 | 27500 | 436  | 480   | 494  | 1410  | 94     |
| 6             | 6  | 27501 | 28000 | 483  | 429   | 510  | 1422  | 94.8   |
| 6             | 7  | 28001 | 28500 | 484  | 419   | 487  | 1390  | 92.667 |
| 6             | 8  | 28501 | 29000 | 487  | 427   | 489  | 1403  | 93.533 |
| 6             | 9  | 29001 | 29500 | 513  | 429   | 453  | 1395  | 93     |
| 6             | 10 | 29501 | 30000 | 493  | 448   | 479  | 1420  | 94.667 |
| 7             | 0  | 30001 | 35000 | 4680 | 4563  | 4882 | 14125 | 94.167 |
| 7             | 1  | 30001 | 30500 | 419  | 427   | 525  | 1371  | 91.4   |
| <i>,</i><br>7 | 2  | 30501 | 31000 | 446  | 428   | 494  | 1368  | 91.2   |
| 7             | 3  | 31001 | 31500 | 452  | 432   | 499  | 1383  | 92.2   |
| 7             | 4  | 31501 | 32000 | 439  | 463   | 483  | 1385  | 92.333 |
| 7             | 5  | 32001 | 32500 | 475  | 443   | 476  | 1394  | 92.933 |
| 7             | 6  | 32501 | 33000 | 418  | 454   | 501  | 1373  | 91.533 |
| 7             | 7  | 33001 | 33500 | 464  | 414   | 502  | 1380  | 92     |
| 7             | 8  | 33501 | 34000 | 446  | 397   | 511  | 1354  | 90.267 |
| 7             | 9  | 34001 | 34500 | 473  | 405   | 485  | 1363  | 90.867 |
| 7             | 10 | 34501 | 35000 | 420  | 439   | 482  | 1341  | 89.4   |
| •             | 10 | 0.501 | 33000 | .20  | .03   | .02  | 10.1  | 03.1   |
| 8             | 0  | 35001 | 40000 | 4619 | 4518  | 4900 | 14037 | 93.58  |
| 8             | 1  | 35001 | 35500 | 440  | 401   | 495  | 1336  | 89.067 |
| 8             | 2  | 35501 | 36000 | 447  | 418   | 480  | 1345  | 89.667 |
| 8             | 3  | 36001 | 36500 | 433  | 440   | 497  | 1370  | 91.333 |
| 8             | 4  | 36501 | 37000 | 476  | 416   | 491  | 1383  | 92.2   |
| 8             | 5  | 37001 | 37500 | 480  | 398   | 481  | 1359  | 90.6   |
| 8             | 6  | 37501 | 38000 | 470  | 419   | 495  | 1384  | 92.267 |
| 8             | 7  | 38001 | 38500 | 427  | 427   | 470  | 1324  | 88.267 |
| 8             | 8  | 38501 | 39000 | 446  | 440   | 482  | 1368  | 91.2   |
| 8             | 9  | 39001 | 39500 | 453  | 444   | 494  | 1391  | 92.733 |
| 8             | 10 | 39501 | 40000 | 457  | 422   | 476  | 1355  | 90.333 |
| 0             | 0  | 40001 | 4E000 | AE71 | AE1.4 | E002 | 14000 | 02.02  |
| 9             | 0  | 40001 | 45000 | 4571 | 4514  | 5003 | 14088 | 93.92  |
| 9             | 1  | 40001 | 40500 | 398  | 436   | 508  | 1342  | 89.467 |

| 9  | 2  | 40501 | 41000 | 454  | 429  | 469  | 1352  | 90.133 |
|----|----|-------|-------|------|------|------|-------|--------|
| 9  | 3  | 41001 | 41500 | 405  | 443  | 515  | 1363  | 90.867 |
| 9  | 4  | 41501 | 42000 | 447  | 424  | 508  | 1379  | 91.933 |
| 9  | 5  | 42001 | 42500 | 448  | 419  | 483  | 1350  | 90     |
| 9  | 6  | 42501 | 43000 | 479  | 428  | 469  | 1376  | 91.733 |
| 9  | 7  | 43001 | 43500 | 453  | 447  | 514  | 1414  | 94.267 |
| 9  | 8  | 43501 | 44000 | 438  | 445  | 483  | 1366  | 91.067 |
| 9  | 9  | 44001 | 44500 | 446  | 448  | 496  | 1390  | 92.667 |
| 9  | 10 | 44501 | 45000 | 451  | 435  | 504  | 1390  | 92.667 |
|    |    |       |       |      |      |      |       |        |
| 10 | 0  | 45001 | 50000 | 4634 | 4549 | 4851 | 14034 | 93.56  |
| 10 | 1  | 45001 | 45500 | 482  | 393  | 481  | 1356  | 90.4   |
| 10 | 2  | 45501 | 46000 | 469  | 413  | 485  | 1367  | 91.133 |
| 10 | 3  | 46001 | 46500 | 429  | 449  | 495  | 1373  | 91.533 |
| 10 | 4  | 46501 | 47000 | 446  | 435  | 499  | 1380  | 92     |
| 10 | 5  | 47001 | 47500 | 486  | 431  | 465  | 1382  | 92.133 |
| 10 | 6  | 47501 | 48000 | 461  | 407  | 509  | 1377  | 91.8   |
| 10 | 7  | 48001 | 48500 | 477  | 411  | 485  | 1373  | 91.533 |
| 10 | 8  | 48501 | 49000 | 464  | 422  | 508  | 1394  | 92.933 |
| 10 | 9  | 49001 | 49500 | 479  | 448  | 451  | 1378  | 91.867 |
| 10 | 10 | 49501 | 50000 | 466  | 446  | 444  | 1356  | 90.4   |

| Resultados RBF |   |         |         |      |      |      |       |        |  |  |
|----------------|---|---------|---------|------|------|------|-------|--------|--|--|
| i              | j | lim_inf | lim_sup | Hit1 | Hit2 | Hit3 | Hits  | Acc    |  |  |
| 1              | 0 | 1       | 5000    | 3759 | 3189 | 4827 | 11775 | 78.5   |  |  |
| 1              | 1 | 1       | 500     | 351  | 291  | 489  | 1131  | 75.4   |  |  |
| 1              | 2 | 501     | 1000    | 351  | 295  | 474  | 1120  | 74.667 |  |  |
| 1              | 3 | 1001    | 1500    | 367  | 299  | 481  | 1147  | 76.467 |  |  |
| 1              | 4 | 1501    | 2000    | 344  | 309  | 495  | 1148  | 76.533 |  |  |
| 1              | 5 | 2001    | 2500    | 356  | 323  | 499  | 1178  | 78.533 |  |  |
| 1              | 6 | 2501    | 3000    | 370  | 314  | 469  | 1153  | 76.867 |  |  |
| 1              | 7 | 3001    | 3500    | 378  | 269  | 478  | 1125  | 75     |  |  |
| 1              | 8 | 3501    | 4000    | 340  | 341  | 465  | 1146  | 76.4   |  |  |

| _ | _  | _     |       |      |      |      |       |        |
|---|----|-------|-------|------|------|------|-------|--------|
| 1 | 2  | 501   | 1000  | 351  | 295  | 474  | 1120  | 74.667 |
| 1 | 3  | 1001  | 1500  | 367  | 299  | 481  | 1147  | 76.467 |
| 1 | 4  | 1501  | 2000  | 344  | 309  | 495  | 1148  | 76.533 |
| 1 | 5  | 2001  | 2500  | 356  | 323  | 499  | 1178  | 78.533 |
| 1 | 6  | 2501  | 3000  | 370  | 314  | 469  | 1153  | 76.867 |
| 1 | 7  | 3001  | 3500  | 378  | 269  | 478  | 1125  | 75     |
| 1 | 8  | 3501  | 4000  | 340  | 341  | 465  | 1146  | 76.4   |
| 1 | 9  | 4001  | 4500  | 338  | 270  | 509  | 1117  | 74.467 |
| 1 | 10 | 4501  | 5000  | 356  | 308  | 449  | 1113  | 74.2   |
|   |    |       |       |      |      |      |       |        |
| 2 | 0  | 5001  | 10000 | 3654 | 3243 | 4757 | 11654 | 77.693 |
| 2 | 1  | 5001  | 5500  | 347  | 324  | 500  | 1171  | 78.067 |
| 2 | 2  | 5501  | 6000  | 388  | 322  | 475  | 1185  | 79     |
| 2 | 3  | 6001  | 6500  | 388  | 273  | 469  | 1130  | 75.333 |
| 2 | 4  | 6501  | 7000  | 351  | 308  | 420  | 1079  | 71.933 |
| 2 | 5  | 7001  | 7500  | 338  | 289  | 484  | 1111  | 74.067 |
| 2 | 6  | 7501  | 8000  | 401  | 270  | 482  | 1153  | 76.867 |
| 2 | 7  | 8001  | 8500  | 320  | 319  | 511  | 1150  | 76.667 |
| 2 | 8  | 8501  | 9000  | 341  | 296  | 485  | 1122  | 74.8   |
| 2 | 9  | 9001  | 9500  | 365  | 336  | 463  | 1164  | 77.6   |
| 2 | 10 | 9501  | 10000 | 372  | 329  | 461  | 1162  | 77.467 |
|   |    |       |       |      |      |      |       |        |
| 3 | 0  | 10001 | 15000 | 3700 | 3061 | 4905 | 11666 | 77.773 |
| 3 | 1  | 10001 | 10500 | 370  | 311  | 472  | 1153  | 76.867 |
| 3 | 2  | 10501 | 11000 | 318  | 344  | 486  | 1148  | 76.533 |
| 3 | 3  | 11001 | 11500 | 371  | 325  | 466  | 1162  | 77.467 |
| 3 | 4  | 11501 | 12000 | 379  | 268  | 495  | 1142  | 76.133 |
| 3 | 5  | 12001 | 12500 | 352  | 309  | 508  | 1169  | 77.933 |
| 3 | 6  | 12501 | 13000 | 352  | 351  | 475  | 1178  | 78.533 |
| 3 | 7  | 13001 | 13500 | 358  | 318  | 491  | 1167  | 77.8   |
| 3 | 8  | 13501 | 14000 | 376  | 306  | 468  | 1150  | 76.667 |
| 3 | 9  | 14001 | 14500 | 370  | 287  | 469  | 1126  | 75.067 |
| 3 | 10 | 14501 | 15000 | 359  | 270  | 502  | 1131  | 75.4   |
|   |    |       |       |      |      |      |       |        |
| 4 | 0  | 15001 | 20000 | 3532 | 3435 | 4770 | 11737 | 78.247 |
| 4 | 1  | 15001 | 15500 | 330  | 317  | 494  | 1141  | 76.067 |
| 4 | 2  | 15501 | 16000 | 357  | 330  | 495  | 1182  | 78.8   |
| 4 | 3  | 16001 | 16500 | 372  | 276  | 485  | 1133  | 75.533 |
| 4 | 4  | 16501 | 17000 | 360  | 328  | 485  | 1173  | 78.2   |
| 4 | 5  | 17001 | 17500 | 371  | 331  | 493  | 1195  | 79.667 |
| 4 | 6  | 17501 | 18000 | 356  | 315  | 464  | 1135  | 75.667 |
| 4 | 7  | 18001 | 18500 | 353  | 292  | 498  | 1143  | 76.2   |
| 4 | 8  | 18501 | 19000 | 358  | 351  | 465  | 1174  | 78.267 |
| 4 | 9  | 19001 | 19500 | 387  | 298  | 473  | 1158  | 77.2   |
| 4 | 10 | 19501 | 20000 | 357  | 305  | 488  | 1150  | 76.667 |
|   |    |       |       |      |      |      |       |        |

| 5         1         20001         20500         379         298         495         1172         78.33           5         2         20501         21000         368         311         492         1171         78.067           5         3         21001         21500         389         292         480         1161         77.4           5         4         21501         22000         328         301         496         1125         75           5         5         22001         22500         367         306         475         1148         76.533           5         6         22501         23000         352         311         495         1158         77.230           5         7         23001         23500         343         329         488         1160         77.333           5         9         24001         24500         346         328         447         1121         74.733           6         0         25001         30000         3806         3052         4751         1160         77.393           6         1         25001         25000         395         267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _             | 0  | 20001 | 25000 | 2702 | 2161 | 4705 | 11650 | 77 72  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|-------|-------|------|------|------|-------|--------|
| 5         2         20501         21000         368         311         492         1171         78.067           5         3         21001         21500         389         292         480         1161         77.4           5         4         21501         22000         328         301         496         1125         75           5         5         22001         22500         367         306         475         1148         76.533           5         6         22501         23000         352         311         495         1158         77.2           5         7         23001         23000         343         329         488         1160         77.333           5         9         24001         24500         346         328         447         1121         74.733           5         10         24501         25000         342         329         477         1148         76.533           6         0         25001         30000         3806         3052         4751         1160         77.393           6         1         25001         30000         3806         3052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br><b>-</b> | 0  | 20001 | 25000 | 3702 | 3161 | 4795 | 11658 | 77.72  |
| 5         3         21001         21500         389         292         480         1161         77.4           5         4         21501         22000         328         301         496         1125         75           5         5         22001         22500         367         306         475         1148         76.533           5         6         22501         23000         352         311         495         1158         77.2           5         7         23001         23500         343         329         488         1160         77.333           5         9         24001         24500         346         328         447         1121         74.733           5         10         24501         25000         392         4751         11609         77.393           6         0         25001         30000         3806         3052         4751         11609         77.393           6         0         25001         3000         3806         3052         4751         1160         75.567           6         1         25001         380         267         465         1127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |    |       |       |      |      |      |       |        |
| 5         4         21501         22000         328         301         496         1125         75           5         5         22001         22500         367         306         475         1148         76.533           5         6         22501         23000         352         311         495         1158         77.2           5         7         23001         23500         343         329         488         1160         77.333           5         8         23501         24000         350         333         462         1145         76.333           5         9         24001         24500         346         328         447         1121         74.733           6         0         25001         30000         3806         3052         4751         11609         77.393           6         0         25001         30000         3806         3052         4751         11609         77.393           6         1         25001         25000         395         267         465         1127         75.133           6         2         25501         27000         371         273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |       |       |      |      |      |       |        |
| 5         5         22001         22500         367         306         475         1148         76.533           5         6         22501         23000         352         311         495         1158         77.23           5         7         23001         23500         343         329         488         1160         77.333           5         9         24001         24500         346         328         447         1121         74.733           5         9         24001         24500         346         328         447         1121         74.733           5         9         24001         24500         346         328         447         1121         74.733           6         0         25001         3000         3806         3052         4751         11609         77.393           6         1         25001         26000         400         295         455         1150         76.667           6         1         25001         2600         375         292         490         1157         77.133           6         2         2501         2700         371         273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |    |       |       |      |      |      |       |        |
| 5         6         22501         23000         352         311         495         1158         77.23           5         7         23001         23500         343         329         488         1160         77.333           5         8         23501         24000         350         333         462         1145         76.335           5         9         24001         24500         346         328         447         1121         74.733           5         10         24501         25000         3806         3052         4751         11609         77.393           6         0         25001         30000         3806         3052         4751         11609         77.393           6         0         25001         25000         395         267         465         1127         75.133           6         1         25001         26000         470         295         455         1150         76.667           6         3         26011         27500         372         316         476         1164         77.6           6         5         27901         27500         372         316<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |    |       |       |      |      |      |       |        |
| 5         7         23001         23500         343         329         488         1160         77.333           5         8         23501         24000         350         333         462         1145         76.333           5         9         24001         25000         346         328         447         1121         74.733           5         10         24501         25000         342         329         477         1148         76.533           6         0         25001         30000         3806         3052         4751         11609         77.393           6         1         25001         25500         395         267         465         1127         75.133           6         2         25501         26000         400         295         455         1150         76.667           6         3         26001         26500         375         292         490         1157         77.133           6         4         26501         27000         371         273         485         1129         75.667           6         5         27001         27500         372         316 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                  |               |    |       |       |      |      |      |       |        |
| 5         8         23501         24000         350         333         462         1145         76.333           5         9         24001         24500         346         328         447         1121         74.733           5         10         24501         25000         342         329         477         1148         76.533           6         0         25011         30000         3806         3052         4751         11609         77.393           6         1         25001         25000         400         295         455         1150         76.667           6         2         25501         26000         400         295         455         1150         76.667           6         3         26001         26500         375         292         490         1157         77.133           6         4         26501         27000         372         316         476         1164         77.6           6         2         2501         2800         322         316         478         1148         76.533           6         7         28001         28500         380         284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |    |       |       |      |      |      |       |        |
| 5         9         24001         24500         346         328         447         1121         74.733           5         10         24501         25000         342         329         477         1148         76.533           6         0         25001         30000         3806         3052         4751         11609         77.393           6         1         25001         25500         395         267         465         1127         75.133           6         2         25501         26000         400         295         455         1150         76.667           6         3         26001         26500         375         292         490         1157         77.133           6         4         26501         27000         371         273         485         1129         75.267           6         6         27501         28000         322         316         489         1127         75.133           6         7         28001         28500         380         284         484         1148         76.333           6         8         28501         29000         387         284 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                  |               |    |       |       |      |      |      |       |        |
| 5         10         24501         25000         342         329         477         1148         76.533           6         0         25001         30000         3806         3052         4751         11609         77.393           6         1         25001         25500         395         267         465         1127         75.133           6         1         25001         26500         375         292         490         1157         77.133           6         4         26501         27000         371         273         485         1129         75.267           6         5         27001         27500         372         316         476         1164         77.6           6         6         27501         2800         380         284         488         1127         75.133           6         7         28001         28500         380         284         474         1145         76.333           6         9         29001         29500         387         284         474         1145         76.333           6         9         29001         29500         394         281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |       |       |      |      |      |       |        |
| 6 0 25001 30000 3806 3052 4751 11609 77.393 6 1 25001 25500 395 267 465 1127 75.133 6 2 25501 26000 400 295 455 1150 76.667 6 3 26001 26500 375 292 490 1157 77.133 6 4 26501 27000 371 273 485 1129 75.267 6 5 27001 27500 372 316 476 1164 77.6 6 6 6 27501 28000 322 316 489 1127 75.133 6 7 28001 28500 380 284 484 1148 76.533 6 8 28501 29000 387 284 474 1145 76.333 6 9 29001 29500 394 281 500 1175 78.333 6 10 29501 30000 361 275 483 1119 74.6 7 0 30001 35000 3670 3095 4783 11548 76.987 7 1 30001 30500 3670 3095 4783 11548 76.987 7 1 30001 30500 371 290 466 1127 75.133 7 3 31001 31500 379 310 477 1166 77.733 7 4 31501 32000 372 294 502 1168 77.867 7 5 32001 32500 374 293 503 1170 78 7 6 32501 33000 364 295 469 1128 77.867 7 7 33001 33500 369 379 283 475 1097 73.133 7 7 3 3001 33500 364 295 469 1128 75.2 7 9 34001 34500 389 273 465 1127 75.133 7 7 3 3001 33500 364 295 469 1128 75.2 8 0 35001 34500 369 3217 4788 11674 77.827 8 1 35001 35500 372 330 472 1174 78.267 8 2 35501 36000 350 367 301 455 1123 74.867 8 0 35001 40000 3669 3217 4788 11674 77.827 8 1 35001 35500 372 330 472 1174 78.267 8 2 35501 36000 350 367 301 455 1123 74.867 8 4 36501 37000 368 339 482 1151 76.733 8 3 36001 36500 350 367 445 1162 77.467 8 4 35501 33000 366 306 478 1150 76.667 8 7 38001 38500 348 291 477 1116 74.4 8 8 38501 39000 347 295 488 1130 75.333 8 6 37501 38000 366 306 478 1150 76.667 8 7 38001 38500 340 347 295 488 1130 75.333 8 9 39001 39500 369 304 501 1174 78.267 8 1 3 3001 37500 367 315 442 1124 74.933 8 6 3 35001 37500 367 315 442 1124 74.933 8 6 3 35001 37500 369 304 501 1174 78.267 |               |    |       |       |      |      |      |       |        |
| 6         1         25001         25500         395         267         465         1127         75.133           6         2         25501         26000         400         295         455         1150         76.667           6         3         26001         26500         375         292         490         1157         77.133           6         4         26501         27000         371         273         485         1129         75.267           6         5         27001         27500         372         316         476         1164         77.66           6         6         27501         28000         322         316         476         1164         77.5133           6         7         28001         28500         380         284         484         1145         76.333           6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         30000         3670         3095         4783         1146         76.4           7         0         30001         35000         3670         3095 <td>J</td> <td>10</td> <td>24301</td> <td>23000</td> <td>342</td> <td>323</td> <td>4//</td> <td>1140</td> <td>70.555</td>                                                                                                                                                                                                                                                                                                                                                                                        | J             | 10 | 24301 | 23000 | 342  | 323  | 4//  | 1140  | 70.555 |
| 6         1         25001         25500         395         267         465         1127         75.133           6         2         25501         26000         400         295         455         1150         76.667           6         3         26001         26500         375         292         490         1157         77.133           6         4         26501         27000         371         273         485         1129         75.267           6         5         27001         27500         372         316         476         1164         77.66           6         6         27501         28000         322         316         476         1164         77.5133           6         7         28001         28500         380         284         484         1145         76.333           6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         30000         3670         3095         4783         1146         76.4           7         0         30001         35000         3670         3095 <td>6</td> <td>0</td> <td>25001</td> <td>30000</td> <td>3806</td> <td>3052</td> <td>4751</td> <td>11609</td> <td>77.393</td>                                                                                                                                                                                                                                                                                                                                                                                     | 6             | 0  | 25001 | 30000 | 3806 | 3052 | 4751 | 11609 | 77.393 |
| 6         2         25501         26000         400         295         455         1150         76.667           6         3         26001         26500         375         292         490         1157         77.133           6         4         26501         27000         371         273         485         1129         75.267           6         5         27001         27500         372         316         476         1164         77.66           6         6         27501         28000         322         316         489         1127         75.133           6         7         28001         28500         380         284         484         1148         76.533           6         8         28501         29000         387         284         474         1145         76.333           6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         30000         3670         3095         4783         11548         76.987           7         1         30001         35000         3670         3095<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |    |       |       |      |      |      |       |        |
| 6         3         26001         26500         375         292         490         1157         77.133           6         4         26501         27000         371         273         485         1129         75.267           6         5         27001         27500         372         316         476         1164         77.6           6         6         27501         28000         322         316         489         1127         75.133           6         7         28001         28500         380         284         484         1148         76.533           6         8         28501         2900         397         284         474         1145         76.333           6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         3000         3670         3095         4783         11548         76.987           7         1         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         35000         3670         3095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |    |       |       |      |      |      |       |        |
| 6         4         26501         27000         371         273         485         1129         75.267           6         5         27001         27500         372         316         476         1164         77.6           6         6         27501         28000         322         316         489         1127         75.133           6         7         28001         28500         380         284         484         1148         76.533           6         9         29001         29500         394         281         500         1175         78.333           6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         30000         3670         3095         4783         11154         76.987           7         1         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         35000         371 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |       |       |      |      |      |       |        |
| 6         5         27001         27500         372         316         476         1164         77.6           6         6         27501         28000         322         316         489         1127         75.133           6         7         28001         28500         380         284         484         1148         76.533           6         8         28501         29000         387         284         474         1145         76.333           6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         30000         361         275         483         1119         74.6           7         0         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         30500         397         296         453         1146         76.4           7         2         30501         31000         371         290         466         1127         75.133           7         4         31501         32000         372         294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |    |       |       |      |      |      |       |        |
| 6         6         27501         28000         322         316         489         1127         75.133           6         7         28001         28500         380         284         484         1148         76.533           6         8         28501         29000         387         284         474         1145         76.333           6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         30000         361         275         483         1119         74.6           7         0         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         30500         397         296         453         1146         76.4           7         2         30501         31000         371         290         466         1127         75.133           7         3         31001         31500         379         310         477         1166         77.733           7         4         31501         32500         374         293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |    |       |       |      |      |      |       |        |
| 6         7         28001         28500         380         284         484         1148         76.533           6         8         28501         29000         387         284         474         1145         76.333           6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         30000         361         275         483         1119         74.6           7         0         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         30500         397         296         453         1146         76.4           7         2         30501         31000         371         290         466         1127         75.133           7         3         31001         31500         379         310         477         1166         77.733           7         4         31501         32000         372         294         502         1168         77.867           7         5         32001         32500         374         293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |    |       |       |      |      |      |       |        |
| 6         8         28501         29000         387         284         474         1145         76.333           6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         30000         361         275         483         1119         74.6           7         0         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         30500         397         296         453         1146         76.4           7         2         30501         31000         371         290         466         1127         75.133           7         4         31501         32000         372         294         502         1168         77.867           7         5         32001         32500         374         293         503         1170         78           7         6         32501         33000         339         283         475         1097         73.133           7         7         33001         34500         366         305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |    |       |       |      |      |      |       |        |
| 6         9         29001         29500         394         281         500         1175         78.333           6         10         29501         30000         361         275         483         1119         74.6           7         0         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         30500         397         296         453         1146         76.4           7         2         30501         31000         371         290         466         1127         75.133           7         3         31001         31500         379         310         477         1166         77.733           7         4         31501         32000         372         294         502         1168         77.867           7         5         32001         32500         374         293         503         1170         78           7         6         32501         33000         339         283         475         1097         73.133           7         7         330301         34500         364         295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |    |       |       |      |      |      |       |        |
| 6         10         29501         30000         361         275         483         1119         74.6           7         0         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         30500         397         296         453         1146         76.4           7         2         30501         31000         371         290         466         1127         75.133           7         3         31001         31500         379         310         477         1166         77.733           7         4         31501         32000         372         294         502         1168         77.867           7         5         32001         32500         374         293         503         1170         78           7         6         32501         33000         339         283         475         1097         73.133           7         7         33001         33500         356         305         493         1154         76.933           8         33501         34500         389         273         465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |    |       |       |      |      |      |       |        |
| 7         0         30001         35000         3670         3095         4783         11548         76.987           7         1         30001         30500         397         296         453         1146         76.4           7         2         30501         31000         371         290         466         1127         75.133           7         3         31001         31500         379         310         477         1166         77.733           7         4         31501         32000         372         294         502         1168         77.867           7         5         32001         32500         374         293         503         1170         78           7         6         32501         33000         339         283         475         1097         73.133           7         7         33001         33500         356         305         493         1154         76.933           8         33501         34000         364         295         469         1128         75.2           7         9         34001         34500         389         273         465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |    |       |       |      |      |      |       |        |
| 7         1         30001         30500         397         296         453         1146         76.4           7         2         30501         31000         371         290         466         1127         75.133           7         3         31001         31500         379         310         477         1166         77.733           7         4         31501         32000         372         294         502         1168         77.867           7         5         32001         32500         374         293         503         1170         78           7         6         32501         33000         339         283         475         1097         73.133           7         7         33001         33500         356         305         493         1154         76.933           7         8         33501         34000         364         295         469         1128         75.2           7         9         34001         34500         389         273         465         1127         75.133           7         10         34501         35000         3669         3217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |    |       |       |      |      |      |       |        |
| 7         2         30501         31000         371         290         466         1127         75.133           7         3         31001         31500         379         310         477         1166         77.733           7         4         31501         32000         372         294         502         1168         77.867           7         5         32001         32500         374         293         503         1170         78           7         6         32501         33000         339         283         475         1097         73.133           7         7         33001         33500         356         305         493         1154         76.933           7         8         33501         34000         364         295         469         1128         75.2           7         9         34001         34500         389         273         465         1127         75.133           7         10         34501         35000         367         301         455         1123         74.867           8         1         35001         3669         3217         4788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7             | 0  | 30001 | 35000 | 3670 | 3095 | 4783 | 11548 | 76.987 |
| 7         3         31001         31500         379         310         477         1166         77.733           7         4         31501         32000         372         294         502         1168         77.867           7         5         32001         32500         374         293         503         1170         78           7         6         32501         33000         339         283         475         1097         73.133           7         7         33001         33500         356         305         493         1154         76.933           7         8         33501         34000         364         295         469         1128         75.2           7         9         34001         34500         389         273         465         1127         75.133           7         10         34501         35000         367         301         455         1123         74.867           8         1         35001         3669         3217         4788         11674         77.827           8         1         35001         350         372         330         472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7             | 1  | 30001 | 30500 | 397  | 296  | 453  | 1146  | 76.4   |
| 7         4         31501         32000         372         294         502         1168         77.867           7         5         32001         32500         374         293         503         1170         78           7         6         32501         33000         339         283         475         1097         73.133           7         7         33001         33500         356         305         493         1154         76.933           7         8         33501         34000         364         295         469         1128         75.2           7         9         34001         34500         389         273         465         1127         75.133           7         10         34501         35000         367         301         455         1123         74.867           8         1         35001         36000         369         3217         4788         11674         77.827           8         1         35001         35000         350         319         482         1151         76.733           8         2         35501         36000         350         367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7             | 2  | 30501 | 31000 | 371  | 290  | 466  | 1127  | 75.133 |
| 7         5         32001         32500         374         293         503         1170         78           7         6         32501         33000         339         283         475         1097         73.133           7         7         33001         33500         356         305         493         1154         76.933           7         8         33501         34000         364         295         469         1128         75.2           7         9         34001         34500         389         273         465         1127         75.133           7         10         34501         35000         367         301         455         1123         74.867           8         0         35001         40000         3669         3217         4788         11674         77.827           8         1         35001         35000         372         330         472         1174         78.267           8         2         35501         36000         350         319         482         1151         76.733           8         3         36001         36500         350         367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7             | 3  | 31001 | 31500 | 379  | 310  | 477  | 1166  | 77.733 |
| 7         6         32501         33000         339         283         475         1097         73.133           7         7         33001         33500         356         305         493         1154         76.933           7         8         33501         34000         364         295         469         1128         75.2           7         9         34001         34500         389         273         465         1127         75.133           7         10         34501         35000         367         301         455         1123         74.867           8         0         35001         40000         3669         3217         4788         11674         77.827           8         1         35001         35500         372         330         472         1174         78.267           8         2         35501         36000         350         319         482         1151         76.733           8         3         36001         36500         350         367         445         1162         77.467           8         4         36501         37000         368         339 <td>7</td> <td>4</td> <td>31501</td> <td>32000</td> <td>372</td> <td>294</td> <td>502</td> <td>1168</td> <td>77.867</td>                                                                                                                                                                                                                                                                                                                                                                                          | 7             | 4  | 31501 | 32000 | 372  | 294  | 502  | 1168  | 77.867 |
| 7         7         33001         33500         356         305         493         1154         76.933           7         8         33501         34000         364         295         469         1128         75.2           7         9         34001         34500         389         273         465         1127         75.133           7         10         34501         35000         367         301         455         1123         74.867           8         0         35001         40000         3669         3217         4788         11674         77.827           8         1         35001         35500         372         330         472         1174         78.267           8         2         35501         36000         350         319         482         1151         76.733           8         3         36001         36500         350         367         445         1162         77.467           8         4         36501         37000         368         339         469         1176         78.4           8         5         37001         37500         367         315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7             | 5  | 32001 | 32500 | 374  | 293  | 503  | 1170  | 78     |
| 7       8       33501       34000       364       295       469       1128       75.2         7       9       34001       34500       389       273       465       1127       75.133         7       10       34501       35000       367       301       455       1123       74.867         8       0       35001       40000       3669       3217       4788       11674       77.827         8       1       35001       35500       372       330       472       1174       78.267         8       2       35501       36000       350       319       482       1151       76.733         8       3       36001       36500       350       367       445       1162       77.467         8       4       36501       37000       368       339       469       1176       78.4         8       5       37001       37500       367       315       442       1124       74.933         8       6       37501       38000       366       306       478       1150       76.667         8       7       38001       38500 <t< td=""><td>7</td><td>6</td><td>32501</td><td>33000</td><td>339</td><td>283</td><td>475</td><td>1097</td><td>73.133</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7             | 6  | 32501 | 33000 | 339  | 283  | 475  | 1097  | 73.133 |
| 7       9       34001       34500       389       273       465       1127       75.133         7       10       34501       35000       367       301       455       1123       74.867         8       0       35001       40000       3669       3217       4788       11674       77.827         8       1       35001       35500       372       330       472       1174       78.267         8       2       35501       36000       350       319       482       1151       76.733         8       3       36001       36500       350       367       445       1162       77.467         8       4       36501       37000       368       339       469       1176       78.4         8       5       37001       37500       367       315       442       1124       74.933         8       6       37501       38000       366       306       478       1150       76.667         8       7       38001       38500       348       291       477       1116       74.4         8       8       38501       39000 <t< td=""><td>7</td><td>7</td><td>33001</td><td>33500</td><td>356</td><td>305</td><td>493</td><td>1154</td><td>76.933</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7             | 7  | 33001 | 33500 | 356  | 305  | 493  | 1154  | 76.933 |
| 7       10       34501       35000       367       301       455       1123       74.867         8       0       35001       40000       3669       3217       4788       11674       77.827         8       1       35001       35500       372       330       472       1174       78.267         8       2       35501       36000       350       319       482       1151       76.733         8       3       36001       36500       350       367       445       1162       77.467         8       4       36501       37000       368       339       469       1176       78.4         8       5       37001       37500       367       315       442       1124       74.933         8       6       37501       38000       366       306       478       1150       76.667         8       7       38001       38500       348       291       477       1116       74.4         8       8       38501       39000       347       295       488       1130       75.333         8       9       39001       39500 <t< td=""><td>7</td><td>8</td><td>33501</td><td>34000</td><td>364</td><td>295</td><td>469</td><td>1128</td><td>75.2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7             | 8  | 33501 | 34000 | 364  | 295  | 469  | 1128  | 75.2   |
| 8         0         35001         40000         3669         3217         4788         11674         77.827           8         1         35001         35500         372         330         472         1174         78.267           8         2         35501         36000         350         319         482         1151         76.733           8         3         36001         36500         350         367         445         1162         77.467           8         4         36501         37000         368         339         469         1176         78.4           8         5         37001         37500         367         315         442         1124         74.933           8         6         37501         38000         366         306         478         1150         76.667           8         7         38001         38500         348         291         477         1116         74.4           8         8         38501         39000         347         295         488         1130         75.333           8         9         39001         39500         369         304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7             | 9  | 34001 | 34500 | 389  | 273  | 465  | 1127  | 75.133 |
| 8         1         35001         35500         372         330         472         1174         78.267           8         2         35501         36000         350         319         482         1151         76.733           8         3         36001         36500         350         367         445         1162         77.467           8         4         36501         37000         368         339         469         1176         78.4           8         5         37001         37500         367         315         442         1124         74.933           8         6         37501         38000         366         306         478         1150         76.667           8         7         38001         38500         348         291         477         1116         74.4           8         8         38501         39000         347         295         488         1130         75.333           8         9         39001         39500         369         304         501         1174         78.267           8         10         39501         40000         358         324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7             | 10 | 34501 | 35000 | 367  | 301  | 455  | 1123  | 74.867 |
| 8         1         35001         35500         372         330         472         1174         78.267           8         2         35501         36000         350         319         482         1151         76.733           8         3         36001         36500         350         367         445         1162         77.467           8         4         36501         37000         368         339         469         1176         78.4           8         5         37001         37500         367         315         442         1124         74.933           8         6         37501         38000         366         306         478         1150         76.667           8         7         38001         38500         348         291         477         1116         74.4           8         8         38501         39000         347         295         488         1130         75.333           8         9         39001         39500         369         304         501         1174         78.267           8         10         39501         40000         358         324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |    |       |       |      |      |      |       |        |
| 8       2       35501       36000       350       319       482       1151       76.733         8       3       36001       36500       350       367       445       1162       77.467         8       4       36501       37000       368       339       469       1176       78.4         8       5       37001       37500       367       315       442       1124       74.933         8       6       37501       38000       366       306       478       1150       76.667         8       7       38001       38500       348       291       477       1116       74.4         8       8       38501       39000       347       295       488       1130       75.333         8       9       39001       39500       369       304       501       1174       78.267         8       10       39501       40000       358       324       427       1109       73.933         9       0       40001       45000       3769       3099       4833       11701       78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8             | 0  | 35001 | 40000 | 3669 | 3217 | 4788 | 11674 | 77.827 |
| 8       3       36001       36500       350       367       445       1162       77.467         8       4       36501       37000       368       339       469       1176       78.4         8       5       37001       37500       367       315       442       1124       74.933         8       6       37501       38000       366       306       478       1150       76.667         8       7       38001       38500       348       291       477       1116       74.4         8       8       38501       39000       347       295       488       1130       75.333         8       9       39001       39500       369       304       501       1174       78.267         8       10       39501       40000       358       324       427       1109       73.933         9       0       40001       45000       3769       3099       4833       11701       78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8             | 1  | 35001 | 35500 | 372  | 330  | 472  | 1174  | 78.267 |
| 8       4       36501       37000       368       339       469       1176       78.4         8       5       37001       37500       367       315       442       1124       74.933         8       6       37501       38000       366       306       478       1150       76.667         8       7       38001       38500       348       291       477       1116       74.4         8       8       38501       39000       347       295       488       1130       75.333         8       9       39001       39500       369       304       501       1174       78.267         8       10       39501       40000       358       324       427       1109       73.933         9       0       40001       45000       3769       3099       4833       11701       78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8             | 2  | 35501 | 36000 | 350  | 319  | 482  | 1151  | 76.733 |
| 8       5       37001       37500       367       315       442       1124       74.933         8       6       37501       38000       366       306       478       1150       76.667         8       7       38001       38500       348       291       477       1116       74.4         8       8       38501       39000       347       295       488       1130       75.333         8       9       39001       39500       369       304       501       1174       78.267         8       10       39501       40000       358       324       427       1109       73.933         9       0       40001       45000       3769       3099       4833       11701       78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8             | 3  | 36001 | 36500 | 350  | 367  | 445  | 1162  | 77.467 |
| 8       6       37501       38000       366       306       478       1150       76.667         8       7       38001       38500       348       291       477       1116       74.4         8       8       38501       39000       347       295       488       1130       75.333         8       9       39001       39500       369       304       501       1174       78.267         8       10       39501       40000       358       324       427       1109       73.933         9       0       40001       45000       3769       3099       4833       11701       78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8             | 4  | 36501 | 37000 | 368  | 339  | 469  | 1176  | 78.4   |
| 8       7       38001       38500       348       291       477       1116       74.4         8       8       38501       39000       347       295       488       1130       75.333         8       9       39001       39500       369       304       501       1174       78.267         8       10       39501       40000       358       324       427       1109       73.933         9       0       40001       45000       3769       3099       4833       11701       78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8             | 5  | 37001 | 37500 | 367  | 315  | 442  | 1124  | 74.933 |
| 8       8       38501       39000       347       295       488       1130       75.333         8       9       39001       39500       369       304       501       1174       78.267         8       10       39501       40000       358       324       427       1109       73.933         9       0       40001       45000       3769       3099       4833       11701       78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8             | 6  | 37501 | 38000 | 366  | 306  | 478  | 1150  | 76.667 |
| 8     9     39001     39500     369     304     501     1174     78.267       8     10     39501     40000     358     324     427     1109     73.933       9     0     40001     45000     3769     3099     4833     11701     78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8             | 7  | 38001 | 38500 | 348  | 291  | 477  | 1116  | 74.4   |
| 8     10     39501     40000     358     324     427     1109     73.933       9     0     40001     45000     3769     3099     4833     11701     78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8             | 8  | 38501 | 39000 | 347  | 295  | 488  | 1130  | 75.333 |
| 9 0 40001 45000 3769 3099 4833 11701 78.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8             | 9  | 39001 | 39500 | 369  | 304  | 501  | 1174  | 78.267 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8             | 10 | 39501 | 40000 | 358  | 324  | 427  | 1109  | 73.933 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |    |       |       |      |      |      |       |        |
| 9 1 40001 40500 351 336 503 1190 79.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9             | 0  | 40001 | 45000 | 3769 | 3099 | 4833 | 11701 | 78.007 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9             | 1  | 40001 | 40500 | 351  | 336  | 503  | 1190  | 79.333 |

| 9  | 2  | 40501 | 41000 | 360  | 287  | 495  | 1142  | 76.133 |
|----|----|-------|-------|------|------|------|-------|--------|
| 9  | 3  | 41001 | 41500 | 371  | 290  | 470  | 1131  | 75.4   |
| 9  | 4  | 41501 | 42000 | 373  | 306  | 462  | 1141  | 76.067 |
| 9  | 5  | 42001 | 42500 | 347  | 281  | 497  | 1125  | 75     |
| 9  | 6  | 42501 | 43000 | 355  | 320  | 488  | 1163  | 77.533 |
| 9  | 7  | 43001 | 43500 | 369  | 292  | 474  | 1135  | 75.667 |
| 9  | 8  | 43501 | 44000 | 380  | 319  | 463  | 1162  | 77.467 |
| 9  | 9  | 44001 | 44500 | 354  | 343  | 440  | 1137  | 75.8   |
| 9  | 10 | 44501 | 45000 | 360  | 301  | 502  | 1163  | 77.533 |
|    |    |       |       |      |      |      |       |        |
| 10 | 0  | 45001 | 50000 | 3733 | 3029 | 4736 | 11498 | 76.653 |
| 10 | 1  | 45001 | 45500 | 367  | 303  | 481  | 1151  | 76.733 |
| 10 | 2  | 45501 | 46000 | 353  | 301  | 478  | 1132  | 75.467 |
| 10 | 3  | 46001 | 46500 | 338  | 305  | 505  | 1148  | 76.533 |
| 10 | 4  | 46501 | 47000 | 389  | 301  | 433  | 1123  | 74.867 |
| 10 | 5  | 47001 | 47500 | 348  | 313  | 449  | 1110  | 74     |
| 10 | 6  | 47501 | 48000 | 349  | 284  | 506  | 1139  | 75.933 |
| 10 | 7  | 48001 | 48500 | 366  | 285  | 453  | 1104  | 73.6   |
| 10 | 8  | 48501 | 49000 | 374  | 309  | 458  | 1141  | 76.067 |
| 10 | 9  | 49001 | 49500 | 321  | 281  | 519  | 1121  | 74.733 |
| 10 | 10 | 49501 | 50000 | 382  | 332  | 463  | 1177  | 78.467 |