

2020

Bras Robots:
2. Caractéristiques et architectures

Bras Robots:

2. Caractéristiques et architectures

Quelques définitions

Terminologie

Organe terminal
= dernier corps mobile

Effecteur/Préhenseur = outil

Corps = segment

Axe = articulation

Actionneur = moteur -

Base -

Datasheet

UNIVERSITÉ SAVOIE MONT BLANC

MODEL	RX160	RX160L	RX160 HD	
Maximum payload	30 kg, 66.1 lb (34 kg, 74.9 lb under conditions)	20 kg, 44.1 lb (28 kg, 61.7 lb under conditions)	30 kg, 66.1 lb (34 kg, 74.9 lb under conditions)	
Nominal payload	20 kg, 44 lb	14 kg, 30.8 lb	20 kg, 44 lb	
Reach (between axis 1 and 6)	1710 mm, 67,3 in	2010 mm	1710 mm	
Number of degrees of freedom	6	6	6	
Repetability – ISO 9283	± 0.05 mm	± 0.05 mm	± 0.05 mm	
Stäubli series controller	CS8C	CS8C	CS8C	
Weight	248 kg, 546.7 lb	250 kg, 551.1 lb	250 kg, 551.1 lb	
MAXIMUM SPEED				
Axis 1	200°/s	200°/s	200°/s	
Axis 2	200°/s	200°/s	200°/s	
Axis 3	255°/s	255°/s	255°/s	
Axis 4	315°/s	315°/s	315°/s	
Axis 5	360°/s	360°/s	360°/s	
Axis 6	870°/s	870°/s	870°/s	
Maximum speed at load gravity center	10.3 m/s	12.3 m/s	10.3 m/s	
Maximum inertia axis 5	4 kg.m ²	2.8 kg.m ²	4 kg.m ²	
Maximum intertia Axis 6	1 kg.m ²	0.7 kg.m ²	1 kg.m ²	
Brakes	All axes			
WORK ENVELOPE				
Maximum reach between axis 1 and 5 (R.M)	1600 mm, 63 in	1900 mm, 74.8 in	1600 mm, 63 in	

Motion range

Bras Robots : 2. Caractéristiques et architectures

Quelques définitions

Résolution

Plus petit incrément de mouvement que le contrôleur peut mesurer.

$$r\'esolution = \frac{\text{distance totale parcourue par l'extr\'emit\'e}}{2^n}$$

où n est le nombre de bits de précision de l'encodeur.

Bras Robots : 2. Caractéristiques et architectures

Quelques définitions

Justesse (accuracy)

Erreur entre la pose désirée et la pose atteinte par l'effecteur, lors d'un seul déplacement.

La précision n'est pas constante sur l'espace de travail

en raison de l'effet de la cinématique, de la géométrie, du jeu d'engrenage (backlash), de la flexion des liaisons sous la gravité et la charge.

Répétabilité (repeatablity)

Erreur maximale de positionnement répété de l'outil en tout point de son espace de travail.

- = capacité d'un mécanisme à revenir plusieurs fois dans la même position dans des conditions identiques.
- ~ 0.03 a 0.1 mm pour les robots de faible et de moyenne envergures peut dépasser les 0.2 mm pour les gros porteurs

Repeatability

- * Desired position
- Obtained position
- Barycenter of obtained positions

Quelques définitions

Charge utile (payload)

Charge maximale que peut porter le robot sans dégrader la répétabilité. (< charge max)

Charge nominale (rated load)

Masse maximale qui peut être transporté par l'interface mécanique dégradation des sans d'aucune performances annoncées.

Bras Robots: 2. Caractéristiques et architectures

Quelques définitions

Volume de travail (workspace)

Ensemble des points atteignables par le préhenseur.

(dépend de la géométrie du robot, de la longueur des segments, des contraintes sur les angles/courses des articulations)

Espace de travail maximal (reachable workspace)

avec une configuration possible a minima

Espace de travail dextre

(dextrous workspace)

avec toutes les orientations possibles du préhenseur.

(i.e points où le robot peut saisir un objet immobile toujours déplacer et ses articulations)

Bras Robots:

2. Caractéristiques et architectures

Quelques définitions

SCARA 4 DDL

Espace des Tâches

Espace dans lequel est définit la position et l'orientation de l'effecteur

Coordonnées opérationnelles

$$q_i = \begin{bmatrix} o_i \\ o_2 \\ o_3 \\ d \end{bmatrix}$$

Espace Articulaire

Espace où sont définis la position et l'orientation des différentes liaisons.

Variables articulaires

2. Caractéristiques et architectures

Bras Robots:

Quelques définitions

Redondance

Un robot est redondant quand le DDL de l'organe terminal est inférieur au nombre de variables de l'espace articulaire.

(i.e. la dimension de l'espace opérationnel est inférieur à la dimension de l'espace articulaire).

C'est le cas notamment si sa structure présente une des propriétés suivantes :

- Plus de 6 articulations,
- Plus de trois articulations pivots d'axes concourants
- Plus de trois articulations pivots d'axes parallèles
- Plus de trois articulations prismatiques
- Deux axes d'articulations prismatiques parallèles,
- Deux axes d'articulations pivots confondus.

espace articulaire (dim=3)

 $egin{bmatrix} heta_1 \ heta_2 \ heta_3 \end{bmatrix}$

espace opérationel (dim=2)

Bras Robots : 2. Caractéristiques et architectures

Modes de déplacement des bras robots

WORLD

C'est le référentiel robot.

Fixe, ce référentiel est prédéfini et ne peut donc être modifié.

JOINT

Utilisé pour spécifier les mouvements des articulations du robot.

On déplace chaque articulation individuellement, une seule à la fois

TOOL

Contrairement au repère universel WORLD, le repère local de l'outil se déplace avec le robot

Origine =TCP (Point de Centre Outil)

USER

Peut être défini à n'importe quel endroit

Les liaisons sont passives ou actives (motorisées).

SYMME

La chaîne peut être simple ou parallèle, ouverte (robot série), hybride ou fermée.

	Architecture série	Architecture parallèle
	Chaîne cinématique ouverte. Architecture	Chaîne cinématique fermée. L'organe est re-
	constituée d'une alternance de corps et de	lié à la base par plusieurs chaînes cinéma-
	liaisons.	tiques indépendantes.
	Polyvalence	Transport de très lourdes charges
+	Espace de travail important	Meilleure précision
	Modélisation simple	Bonnes performances dynamiques
	Rigidité moyenne	Espace de travail plus limité
_	Charge généralement limitées	Modélisation et analyse complexes

- Domaines d'applications des différentes architectures robotiques

Porteurs à chaîne cinématique ouverte (Robots série)

Les robots série possèdent généralement une architecture composée d'articulations dites simples de type liaisons pivots/rotoïde: R et liaisons glissières/prismatique: P

Prismatique P Rotoïde R

FIGURE 9 – Articulation prismatique P:1 ddl en translation T_x . Articulation rotoïde R:1 ddl en rotation R_x .

Porteurs à chaîne cinématique ouverte (Robots série)

Les trois premières articulations d'un robot sont généralement conçues pour effectuer les mouvements grossiers, et les articulations restantes servent à effectuer l'orientation.

→ 3 premiers ddl du robot constituent la structure du porteur.

→ les ddl restants forment le poignet.

Figure 10 - Architecture classique d'un robot manipulateur à 6 DLL. (source : adaptée de [1])

Porteurs à chaîne cinématique ouverte (Robots série)

Les robots industriels peuvent généralement être classifiés en fonction de leur structure mécanique et du type des axes :

Bras Robots:

2. Caractéristiques et architectures

- structure cartésienne (ou robot portique) = PPP (~ 21% du parc des robots industriel)
- structure cylindrique = RPP (~ 7%),
- structure SCARA (bi-cylindrique) = RRP (~ 2%),
- structure sphérique = RRP (~ 13%),
- structure anthropomorphique = RRR (~ 67%)

Bras Robots : 2. Caractéristiques et architectures

Architectures

Bras Robots: 2. Caractéristiques et architectures

Architectures

POLYTECH° ANNECY-CHAMBÉRY

2. Caractéristiques et architectures

Architectures

20

Bras Robots: 2. Caractéristiques et architectures

Architectures

Principe Workspace Chaîne cinématique Exemple RRR Anthropomorphe

21

2. Caractéristiques et architectures

Architectures

Poignet

One-axis wrist

Bras Robots:

Two intersecting-axis wrist

Two non intersecting-axis wrist

Three intersecting-axis wrist (spherical wrist)

Three non intersecting-axis wrist

Pinces

- + + Pneumatique : L'intérêt du pneumatique réside dans sa rapidité. Les préhenseurs pneumatiques sont généralement quasiment 2 fois moins chers qu'en électrique
- -- Pneumatique : Mais c'est du tout ou rien (ouvert ou fermé)

Repeatability & Accuracy

Pourquoi la justesse n'est pas constante partout dans l'espace de travail?

Pour un robot, pourquoi la répétabilité est elle beaucoup plus importante que la justesse?

Sur 4 schémas, illustrez un système :

- non juste et non répétable
- juste, mais non répétable
- répétable, mais non juste
- juste et répétable

Workspace

Resolution

Pourquoi la résolution des axes linéaires est généralement plus élevée que celle des axes de révolution?

Trigonométrie

Soit le triangle quelconque de cotés : a,b,c.

- 1) Exprimez x en fonction de a,b et γ .
- 2) En appliquant le théorème de Pythagore dans le triangle de gauche (cxh), exprimez c² en fonction de a, b et γ.

Bras Robots:

2. Caractéristiques et architectures

Comment s'appelle cette formule?

Trigonométrie

montrer que la distance d est donnée par : $d = l\sqrt{2(1-\cos(\theta))}$

Avec un contrôleur 10 bits et avec $l=1m, \, \theta=90^\circ,$ quelle est la résolution d'un segment linéaire? et d'un segment de rotation?

Trigonométrie

En utilisant la loi des cosinus, exprimer l'angle θ_2 en fonction des coordonnées du point P(x,y), de a_1 et de a_2 . En utilisant l'angle β et en l'exprimant en fonction des coordonnées du point P(px,py), de a_1 et de a_2 , trouver l'angle θ_1 .

2. Caractéristiques et architectures

Solution

Bras Robots:

$$p^{2} = a_{1}^{2} + a_{2}^{2} - 2.a_{1}.a_{2}.cos(\pi - \theta_{2}) \text{ (lois des cosinus)}$$
or, $p = \sqrt{x^{2} + y^{2}}$ et $cos(\pi - x) = -cos(x)$
d'où, $x^{2} + y^{2} = a_{1}^{2} + a_{2}^{2} + 2.a_{1}.a_{2}.cos(\theta_{2})$

$$\theta_{2} = acos\left(\frac{x^{2} + y^{2} - a_{1}^{2} - a_{2}^{2}}{2.a_{1}.a_{2}}\right)$$

$$tan(\theta_{1} + \beta) = \frac{y}{x} \text{ (triangle rectangle)}$$

$$donc, \ \theta_{1} = atan\left(\frac{y}{x}\right) - \beta$$

$$a_{2}^{2} = p^{2} + a_{1}^{2} - 2.p.a_{1}.cos(\pi - \theta_{2}) \text{ (lois des cosinus)}$$

$$\beta = acos\left(\frac{a_{2}^{2} - p^{2} - a_{1}^{2}}{2.p.a_{1}}\right)$$

$$alors, \ \theta_{1} = atan\left(\frac{y}{x}\right) - acos\left(\frac{a_{2}^{2} - x^{2} - y^{2} - a_{1}^{2}}{2.a_{1}.\sqrt{x^{2} + y^{2}}}\right)$$