Action Space 수정을 위한 필요 사항 정리

2023/2/16

천동초교입구 신호 경우의 수

- ▶ 천동초교입구 신호 정보
 - ❖ 최소 녹색 33:15:33:20
 - ❖ 최대 녹색 70:40:40:40
 - ❖ 현재 신호 63:24:37:26(주기 150)
- 최소, 최대 녹색, 현재 신호의 주기를 만족하는 경 우의 수 → 3,564개
 - DQN/Discrete Action
 - Output의 수가 exponential로 증가.

63:24:37:26

 $\frac{63:24:37:26}{63:24:37:26}$

53:24:37:26 53:24:37:26

녹색 신호 조정 offset 설명

• 현시 수와 주 현시(녹색 신호가 가장 긴 현시)를 입력으로 받아 제어 가능한 조합(action_list) 생성

- 충대농대삼거리 action_list 개수: 19개
- continuous action > discrete action 변환
 - -1~1을 19등분하여 매칭
 - np.digitize와 np.linspace 활용

```
np.linspace(-1, 1, 19) action_list 가수

array([-1. , -0.88888889, -0.77777778, -0.66666667, -0.55555556, -0.44444444, -0.33333333, -0.22222222, -0.111111111, 0. , 0.111111111, 0.222222222, 0.33333333, 0.44444444, 0.55555556, 0.666666667, 0.77777778, 0.88888889, 1. ])
```

```
continuous action

np.digitize(-0.983) bins=np.linspace(-1, 1, 19))

discrete action
```


Source: Page 59, 신호 최적화 코드 리뷰 (2022/03/29)

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0
Action	$-1 \le a_1 \le +1$	$-1 \le a_2 \le +1$	$-1 \le a_3 \le +1$	$-1 \le a_4 \le +1$	$101 \le T \le 190$

$$T = (51.5 + a_1 \times 18.5) + (27.5 + a_2 \times 12.5) + (36.5 + a_3 \times 3.5) + (20.0 + a_4 \times 10.0)$$

- For each intersection, #Action outputs = #Phases
 - 신호 조합이 아닌, #Phases에 선형 비례로 증가.
- Action space를 4차원 vector로 표현
 - 모든 action 조합을 표현할 수 있음.
 - 비슷한 action vector는 실제로도 유사한 제어 신호임.
- 제약 조건
 - 최소/최대 녹색 시간 만족
 - 주기 (T=150)는 만족하지 않음.
 - Penalty 추가 (추후 고려)

천동초교입구

주현시.	최소녹색 (MIN)	맵최대녹색 (MAP MAX)	중앙최대녹색 (HOST MAX)	보행녹색	보행점멸	황색신호	전적색신호	보행전시간	MDS
20:10:10:10 20:10:10:10	33:15:33:20 33:15:33:20	070:040:040:040 070:040:040:040					00:00:00:00	02:00:00:00 02:00:00:00	00:00:00:00

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0

- 제약 조건
 - 최소, 주기 (T=150)는 만족
 - 현시별 최대 시간은 만족하지 않음.

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0

Proposed III

❖ 63:24:37:26(주기 150)

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0

Proposed III

63:24:37:26(주기 150)

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0

현재 신호 시간에서 최소 시간을 보장하고, 나머지 시간을 배분

수정해야할 부분

run.py

https://github.com/etri-city-traffic-brain/traffic-signal-optimization/blob/8ac45baeedda25f78d5343223ac2edee7aa44ee8/atsc-rl/multiagent_tf2/run.py#L359

```
##-- TF 2.x : ppo_continuous_hs,py
action_size = action_space.shape[0]
state_size = (state_space,)
agent = PPOAgentTF2(env.env_name, ppo_config, action_size, state_size, target_sa.strip().replace(' ', '_'))

360
##-- TF 2.x : ppo_continuous_hs,py
action_size = action_space.shape[0]
state_size = (state_space,)
agent = PPOAgentTF2(env.env_name, ppo_config, action_size, state_size, target_sa.strip().replace(' ', '_'))
```

- Proposed I으로 우선 진행
- action_size 결정을 위한 정보
 - Total number of phases in section.
 - 각 교차로마다의 현시 개수

수정해야할 부분

run.py

https://github.com/etri-city-traffic-brain/traffic-signal-optimization/blob/8ac45baeedda25f78d5343223ac2edee7aa44ee8/atsc-rl/multiagent_tf2/run.py#L433

```
###-- convert action : i.e., make discrete action

sa_name = env.sa_name_list[i]

ivertification = env.action_mgmt.convertToDiscreteAction(sa_name, actions[i])

discrete_actions[i] = discrete_action

discrete_actions to env

apply all actions to env

new_states, rewards, done, _ = env.step(discrete_actions)
```

변경된 action이 적용될 수 있도록 함수 수정.

- convertToDiscreteAction()
- Step()

수정해야할 부분

run.py

https://github.com/etri-city-traffic-brain/traffic-signal-optimization/blob/8ac45baeedda25f78d5343223ac2edee7aa44ee8/atsc-rl/multiagent_tf2/run.py#L347

```
state_space = env.sa_obj[target_sa]['state_space']
    346
                      action_space = env.sa_obj[target_sa]['action_space']
• • • 347
                      # # print(f"{target_sa}, state space {state_space} action space {action_space}, action min {action_min}, action
    348
    349
                      # print(f"{target sa}, state space={state space}")
    350
                      # print(f"{target sa}, action space={action space} action space.shape={action space.shape} action space.shape[0]
                      # # SA 101, state space=119
    351
    352
                      # # SA 101, action space=Box(0, [0 0 0 4 3 5 4 3 1 1], (10,), int32)
    353
                      ##
                                   action space.shape=(10,)
                                   action space.shape[0]=10
    354
                      # #
    355
    356
                      ##-- TF 2.x : ppo continuous hs,py
    357
                      action size = action space.shape[0]
    358
                      state size = (state space,)
    359
                      agent = PPOAgentTF2(env.env_name, ppo_config, action_size, state_size, target_sa.strip().replace(' ', '_'))
```

해당 값과 함수는 SaltSappoEnvV3 class에서 관리되고 있음.

- 'gr, offset, gro, kc' 외에 option을 추가하여, 해당 기능을 지원.

Q & A

Action Space 코드 수정

2023/3/8

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0
Action	$-1 \le a_1 \le +1$	$-1 \le a_2 \le +1$	$-1 \le a_3 \le +1$	$-1 \le a_4 \le +1$	$101 \le T \le 190$

$$T = (51.5 + a_1 \times 18.5) + (27.5 + a_2 \times 12.5) + (36.5 + a_3 \times 3.5) + (20.0 + a_4 \times 10.0)$$

- For each intersection, #Action outputs = #Phases
 - 신호 조합이 아닌, #Phases에 선형 비례로 증가.
- Action space를 4차원 vector로 표현
 - 모든 action 조합을 표현할 수 있음.
 - 비슷한 action vector는 실제로도 유사한 제어 신호임.
- 제약 조건
 - 최소/최대 녹색 시간 만족
 - 주기 (T=150)는 만족하지 않음.
 - Penalty 추가 (추후 고려)

천동초교입구

주현시	최소녹색 (MIN)	맵최대녹색 (MAP MAX)	중앙최대녹색 (HOST MAX)	보행녹색	보행점멸	황색신호	전적색신호	보행전시간	MDS
20:10:10:10 20:10:10:10	33:15:33:20 33:15:33:20	070:040:040:040 070:040:040:040					00:00:00:00	02:00:00:00 02:00:00:00	00:00:00:00

SaltEnvUtil.py

getSaRelatedInfo(). sa_obj 생성 코드

https://github.com/etri-city-traffic-brain/traffic-signal-optimization/blob/master/atsc-rl/multiagent_tf2/env/SaltEnvUtil.py#L528

```
sa obj[target tl obj[tl obj]['signalGroup']]['crossName list'].append(target tl obj[tl obj]['crossName'])
                          525
                          526
                                        sa_obj[target_tl_obj[tl_obj]['signalGroup']]['tlid_list'].append(tl_obj)
                                        sa_obj[target_tl_obj[tl_obj]['signalGroup']]['state_space'] += target_tl_obj[tl_obj]['state_space']
                          527
                     • • • 528
                                       if args.action=='gro':
                          529
                                            sa_obj[target_tl_obj[tl_obj]['signalGroup']]['action_space'] += 2
                          530
                          531
                                            # todo should check correctness of value : 0..1, ... (# of green phase -1)
                          532
                                            # for offset
                                            sa_obj[target_tl_obj[tl_obj]['signalGroup']]['action_min'].append(0)
                          533
                                            sa obj[target tl obj[tl obj]['signalGroup']]['action max'].append(target tl obj[tl obj]['action space'] - 1)
                          534
                          535
Action space 계산
                          536

    새로운 option 추가 'at'

                                                                     j]['signalGroup']]['action_min'].append(0)
                          537
                                            sa oon carget cr oon cr oo<sup>†</sup>]['signalGroup']]['action max'].append(target tl obj[tl obj]['action space'] - 1)
                          538
                          539
                          540
                                     elif args.action=='gt':
                                         num controllable green signals = target tl obj[tl obj]['action space']
                          541
                                          sa obj[target tl obj[tl obj]['signalGroup']]['action space'] += num controllable green signals
                          542
                                         sa obj[target tl obj[tl obj]['signalGroup']]['action min'] += [-1.0] * num controllable green signals
                          543
                                         sa obj[target tl obj[tl obj]['signalGroup']]['action max'] += [+1.0] * num controllable green signals
```


__getGreenRatioAppliedPhaseArray()를 바탕으로 수정

https://github.com/etri-city-traffic-brain/traffic-signal-optimization/blob/a9038816e570983a604ce14a272ba373d033acc8/atsc-rl/multiagent_tf2/env/SappoActionMgmt.py#L80

```
79
         def __getGreenRatioAppliedPhaseArray(self, curr_sim_step, an_sa_obj, actions):
80
81
             get green-ratio actions applied phase array list
82
83
84
             :param curr_sim_step: current sumulation step
             :param an_sa_obj: object which holds information about an SA
85
             :param actions: actions to apply
86
87
             :return:
88
             tlid list = an sa obj["tlid list"]
89
             # sa_cycle = an sa_obj["cycle list"][0]
90
91
             phase_sum_list = []
92
             phase list = []
93
94
             phase array list = []
95
96
             if DBG_OPTIONS.RichActionOutput:
                 duration list=[]
97
```



```
154
155
       def __setGreenTimePhaseArray(self, curr_sim_step, an_sa_obj, actions):
                                                                                     • 함수 추가
156
157
           set green-time actions applied phase array list
158
159
            :param curr sim step: current sumulation step
            :param an sa obj: object which holds information about an SA
160
           :param actions: actions to apply
161
162
            :return:
163
164
           print('actions')
           print(actions)
165
           tlid list = an sa obj["tlid list"]
166
167
           # sa_cycle = an_sa_obj["cycle_list"][0]
168
           #print('tlid list')
           #print(tlid list)
169
170
           #phase sum list = []
171
172
           #phase list = []
173
           phase array list = []
174
175
           action list = []
176
            start = 0
177
           #rearange actions for each intersection.
           for size in an sa obj["action space list"]:
178
               sub action = actions[start:start+size]
179
180
               start += size
               action_list.append(sub_action)
181
182
183
           print('action list')
184
           print(action list)
185
```


__setGreenTimePhaseArray()

start += size

print('action list')

print(action list)

action list.append(sub action)

180

181

182

183 184

185

```
154
155
           def __setGreenTimePhaseArray(self, curr_sim_step, an_sa_obj, actions):
156
157
                 set green-time actions applied phase array list
158
                                                                                                                            • Dim. Of actions = 32
159
                 :param curr sim step: current sumulation step
160
                 :param an sa obj: object which holds information about an SA
                                                                                                                                - SA101의 경우, 10개의 교차로가 있으며,
                 :param actions: actions to apply
161
                                                                                                                                - 총 32개의 조절가능한 녹색 신호가 있음.
162
                 :return:
163
164
                 print('actions')
165
                 print(actions)
                                                                                                                          self.tl_obj[tl_id]['action_space']
                                                                                                                                                       self.tl_obj[tl_id]['minDur']
                                                                                                                                                                                    self.tl_obj[tl_id]['maxDur']
                                                                                                                                                                                                                self.tl_obj[tl_id]['duration']
                                                                                                                                                                                                                                         self.tl_obj[tl_id]['green_idx']
166
                 tlid list = an sa obj["tlid list"]
                                                                      2 cluster 563100016 563103847 563109512 563109513
                                                                                                                                                 1 [48, 77, 3]
                                                                                                                                                                               [48, 187, 3]
                                                                                                                                                                                                            [48, 129, 3]
                                                                       3 cluster_563100866_563103911_563103912
                                                                                                                                                 1 [51, 57, 3]
                                                                                                                                                                               [51, 177, 3]
                                                                                                                                                                                                            [51, 126, 3]
167
                 # sa cycle = an sa obj["cycle list'
                                                                       4 cluster_563102154_563103845_563109514_563109515
                                                                                                                                                 1 [51, 77, 3]
                                                                                                                                                                               [51, 187, 3]
                                                                                                                                                                                                            [51, 126, 3]
168
                 #print('tlid list')
                                                                       5 cluster_563103430_563103601_563103853_563103854_563103855_
                                                                                                                                                 5 [14, 4, 50, 4, 14, 4, 24, 4, 22, 3]
                                                                                                                                                                               [31, 4, 111, 4, 36, 4, 36, 4, 42, 3]
                                                                                                                                                                                                            [18, 4, 72, 4, 18, 4, 28, 4, 25, 3]
                                                                                                                                                                                                                                        [0, 2, 4, 6, 8]
                                                                                                                                                                               [67, 3, 156, 4, 42, 3, 27, 3]
                 #print(tlid list)
                                                                       6 cluster_563103433_563103849_563103871_563103872_563103873_
                                                                                                                                                 4 [40, 3, 23, 4, 24, 3, 14, 3]
                                                                                                                                                                                                            [43, 3, 80, 4, 27, 3, 17, 3]
                                                                                                                                                                                                                                        [0, 2, 4, 6]
169
                                                                       7 cluster 563103437 563103890 563103913 563103914
                                                                                                                                                 6 [23, 3, 25, 22, 3, 23, 3, 20, 3, 20, 3]
                                                                                                                                                                               [42, 3, 60, 57, 3, 42, 3, 37, 3, 37, 3]
                                                                                                                                                                                                            [26, 3, 33, 30, 3, 26, 3, 23, 3, 27, 3]
                                                                                                                                                                                                                                        [0, 2, 3, 5, 7, 9]
170
                                                                       8 cluster_563103599_563103904_563103905_563103906
                                                                                                                                                                                                                                        [0, 1, 2, 4, 6, 8]
                                                                                                                                                 6 [15, 28, 23, 3, 13, 3, 30, 4, 11, 4]
                                                                                                                                                                               [30, 85, 42, 3, 27, 3, 56, 4, 26, 4]
                                                                                                                                                                                                            [18, 56, 27, 3, 16, 3, 34, 4, 15, 4]
                                                                                                                                                 4 [11, 4, 34, 3, 12, 3, 47, 4]
                                                                                                                                                                               [41, 4, 127, 3, 27, 3, 81, 4]
171
                 #phase sum list = []
                                                                      9 cluster_563103641_563103889_563103894_563103895
                                                                                                                                                                                                            [26, 4, 72, 3, 17, 3, 51, 4]
                                                                                                                                                                                                                                        [0, 2, 4, 6]
                                                                                                                                                 2 [37, 3, 53, 45]
                                                                      10 cluster_563103888_563103891
                                                                                                                                                                               [87, 3, 53, 180]
                                                                                                                                                                                                            [57, 3, 53, 67]
                                                                                                                                                                                                                                        [0, 3]
172
                 #phase\ list = []
                                                                      11 cluster_563109510_563109511
                                                                                                                                                 2 [30, 50]
                                                                                                                                                                               [75, 195]
                                                                                                                                                                                                            [50, 130]
                                                                                                                                                                                                                                        [0, 1]
173
                 phase array list = []
174
                 action list = []
175
176
                 start = 0
177
                 #rearange actions for each intersection.
                 for size in an sa obj["action space list"]:
178
                       sub action = actions[start:start+size]
179
```


__setGreenTimePhaseArray()

print(action_list)

184 185

```
154
155
       def __setGreenTimePhaseArray(self, curr_sim_step, an_sa_obj, actions):
156
           set green-time actions applied phase array list
157
158
159
            :param curr sim step: current sumulation step

    action list

160
            :param an sa obj: object which holds information about an SA
                                                                                    - 각 교차로별로 action을 재정리
           :param actions: actions to apply
161
162
            :return:
163
164
           print('actions')
                                                                                  [[0.333],
           print(actions)
165
                                                                                   [-0.356],
           tlid list = an sa obj["tlid list"]
166
                                                                                   [0.052],
167
           # sa cycle = an sa obj["cycle list"][0]
                                                                                   [0.317, 0.176, 0.261, -0.446, 0.331],
168
           #print('tlid list')
           #print(tlid_list)
                                                                                   [0.044, -0.474, -0.017, 0.644],
169
                                                                                                                                               10개 교차로
170
                                                                                   [-0.801, 0.259, 0.490, 0.023, -0.142, 0.0668],
171
           #phase sum list = []
                                                                                   [-0.525, -0.620, 0.325, -0.432, -0.239, 0.270],
172
           #phase list = []
                                                                                   [0.155, -0.026, -0.427, 0.43],
173
           phase array list = []
                                                                                   [0.658, 0.178],
174
            action list = []
175
                                                                                   [-0.475, 0.099]]
            start = 0
176
177
            #rearange actions for each intersection.
            for size in an sa obj["action space list"]
178
               sub_action = actions[start:start+size]
179
                                                                                        교차 별 신호 시간 조절을 위한 action
180
               start += size
181
               action list.append(sub action)
182
           print('action list')
183
```



```
189
            #print('tlid', 'green idx', 'min dur', 'max dur', 'curDur')
            #for tlid idx in range(len(tlid list)):
190
                                                                                       • 각 교차로의 신호 시간 조절
           for tlid idx, (tlid, action) in enumerate(zip(tlid list, action list)):
191
192
               tlid = tlid list[tlid idx]
193
               green_idx = an_sa_obj["green_idx_list"][tlid_idx][0]
               minDur = an_sa_obj["minDur_list"][tlid_idx]
194
               maxDur = an sa obj['maxDur list'][tlid idx]
195
               currDur = an_sa_obj['duration_list'][tlid_idx]
196
               #print(tlid, green idx, minDur, maxDur, currDur)
197
198
199
               if DBG_OPTIONS.RichActionOutput:
200
                   new duration = currDur.copy()
201
202
               mpv = libsalt.trafficsignal.getCurrentTLSScheduleByNodeID(tlid).myPhaseVector
203
               mpv = list(mpv)
204
205
               #action_list = an_sa_obj['action_list_list'][tlid_idx]
206
               #action = action list[actions[tlid idx]]
207
               for i in range(len(green idx)):
208
209
                   gi = green idx[i]
                   _m = list(mpv[gi])
210
                   median = 0.5 * (maxDur[gi] + minDur[gi]); time span = maxDur[gi] - median #
211
                   m[0] = int(median + time span * action[ i])
212
213
                   mpv[gi] = tuple(m)
214
215
                   if DBG OPTIONS.RichActionOutput:
                       new_duration[gi]=_m[0]
216
217
               if DBG OPTIONS.RichActionOutput:
218
                   duration list.append(new duration)
               #print('mpv'); print(mpv)
219
220
               scheduleID = libsalt.trafficsignal.getCurrentTLSScheduleIDByNodeID(tlid)
221
222
               libsalt.trafficsignal.setTLSPhaseVector(curr sim step, tlid, scheduleID, mpv)
223
```



```
189
           #print('tlid', 'green idx', 'min dur', 'max dur', 'curDur')
           #for tlid idx in range(len(tlid list)):
190
           for tlid idx, (tlid, action) in enumerate(zip(tlid list, action list)):
191
              tlid = tlid list[tlid idx]
192
193
              green idx = an sa obj["green idx list"][tlid idx][0]
              minDur = an_sa_obj["minDur_list"][tlid_idx]
194
                                                                 • 최소/최대 녹색 신호 시간
195
              maxDur = an sa obj['maxDur list'][tlid idx]
              currDur = an sa obj['duration list'][tlid idx]
196
              #print(tlid, green_idx, minDur, maxDur, currDur)
197
198
199
              if DBG_OPTIONS.RichActionOutput:
200
                  new duration = currDur.copy()
201
202
              mpv = libsalt.trafficsignal.getCurrentTLSScheduleByNodeID(tlid).myPhaseVector
203
               mpv = list(mpv)
204
205
               #action list = an sa obj
                                       • 시간 조정이 가능한 녹색 신호에 대해서만 적용.
206
               #action = action list[ac
207
208
              for i in range(len(green idx)):
209
                  gi = green idx[ i]
                                                                                                녹색 시간 조절
210
                   m = list(mpv[gi])
                                                                                                • 녹색 시간 중간값 계산
                  median = 0.5 * (maxDur[gi] + minDur[gi]); time_span = maxDur[gi] - median #
211
                  m[0] = int(median + time span * action[ i])
                                                                                                • '-1' ~ '+1'→ 'min' ~ 'max' 로 mapping
212
213
                  mpv[gi] = tuple( m)
                                                                                             • 신호 table 작성(mpv)?
214
215
                  if DBG OPTIONS.RichActionOutput:
                      new_duration[gi]=_m[0]
216
217
               if DBG OPTIONS.RichActionOutput:
218
                  duration list.append(new duration)
              #print('mpv'); print(mpv)
219
220
                                                                                               변경된 신호 table 등록
221
               scheduleID = libsalt.trafficsignal.getCurrentTLSScheduleIDByNodeID(tlid)
222
              libsalt.trafficsignal.setTLSPhaseVector(curr sim step, tlid, scheduleID, mpv)
223
```



```
230
231
                tl phase list include y = [x[0] \text{ for } x \text{ in}]
                                            libsalt.trafficsignal.getCurrentTLSScheduleByNodeID(tlid).myPhaseVector]
232
233
234
                phase arr = []
235
                for i in range(len(tl_phase_list_include_y)):
236
                    phase arr = np.append(phase arr, np.ones(tl phase list include y[i]) * i)
237
                phase array list.append(np.roll(phase arr, an sa obj['offset list'][tlid idx]))
238
239
            if DBG_OPTIONS.RichActionOutput:
                return phase array list, duration list
240
241
            else:
                return phase array list
242
```

- tl_phase_listinclude_y와 phase_array_list 생성 부분은 변경하지 않았음.
- phase_array_list를 참조하는 SappoActionMgmt.applyCurrentTrafficSignalPhaseToEnv()에서 error가 발생함

applyCurrentTrafficSignalPhaseToEnv()

https://github.com/etri-city-traffic-brain/traffic-signal-optimization/blob/a9038816e570983a604ce14a272ba373d033acc8/atsc-rl/multiagent_tf2/env/SappoActionMgmt.py#L254

```
253
              def applyCurrentTrafficSignalPhaseToEnv(self, current_sim_step):
• • • 254
    255
                  apply actions for all TLs : offset, gr, gro
    256
    257
    258
                  :param current_sim_step:
    259
                  :return:
                  ...
    260
                  num sa = len(self.sa name list)
    261
    262
                  for sa_i in range(num_sa):
    263
    264
                      sa = self.sa_name_list[sa_i]
                      tlid list = self.sa obj[sa]['tlid list']
    265
                                                                                IndexError: index 179 is out of bounds for axis 0 with size 149
    266
                      tlid i = 0
    267
    268
                      sa_cycle = self.sa_obj[sa]['cycle_list'][0]
    269
                      phase_arr = self.apply_phase_array_list[sa_i]
    270
                      for tlid in tlid list:
    271
                          #t_phase = int(phase_arr[tlid_i][current_sim_step % sa_cycle])
    272
                          t_phase = int(phase_arr[tlid_i][(current_sim_step-1) % sa_cycle])
    273
                          scheduleID = libsalt.trafficsignal.getCurrentTLSScheduleIDByNodeID(tlid)
    274
                          libsalt.trafficsignal.changeTLSPhase(current sim step, tlid, scheduleID, t phase)
    275
    276
                          tlid i += 1
    277
    278
                  return 0
```

Q & A

Action Space Modeling

2023/5/17

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0
Action	$-1 \le a_1 \le +1$	$-1 \le a_2 \le +1$	$-1 \le a_3 \le +1$	$-1 \le a_4 \le +1$	$101 \le T \le 190$

$$T = (51.5 + a_1 \times 18.5) + (27.5 + a_2 \times 12.5) + (36.5 + a_3 \times 3.5) + (20.0 + a_4 \times 10.0)$$

- For each intersection, #Action outputs = #Phases
 - 신호 조합이 아닌, #Phases에 선형 비례로 증가.
- Action space를 4차원 vector로 표현
 - 모든 action 조합을 표현할 수 있음.
 - 비슷한 action vector는 실제로도 유사한 제어 신호임.
- 제약 조건
 - 최소/최대 녹색 시간 만족
 - 주기 (T=150)는 만족하지 않음.
 - Penalty 추가 (추후 고려)

천동초교입구

주현시	최소녹색 (MIN)	맵최대녹색 (MAP MAX)	중앙최대녹색 (HOST MAX)	보행녹색	보행점멸	황색신호	전적색신호	보행전시간	MDS
20:10:10:10 20:10:10:10	33:15:33:20 33:15:33:20	070:040:040:040 070:040:040:040					00:00:00:00	02:00:00:00 02:00:00:00	00:00:00:00

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0

	Phase 1	Phase 2	Phase 3	Phase 4	Total
Min	33.0	15.0	33.0	20.0	101.0
Median	51.5	27.5	36.5	30.0	145.5
Max	70.0	40.0	40.0	40.0	190.0

- 제약 조건
 - 현시 별 최소 녹색 시간 만족. 주기(T=150) 만족.
 - 현시 별 최대 녹색 시간은 만족하지 않음.

Proposed II

Fig. 3. Overview of the neural network architectures.

Dirichlet distribution

Q & A