开放工程3:聚类分析(10′)

- ☑ 任务: 学习经典聚类算法、工程实现、结果分析
- ☑ 数据集: 手写数字图像数据集MNIST
 - ☑数据处理:为每一类随机挑选100个图像,共1000个;
 - ☑ 将图像拉伸为一个向量;
 - ☑将每个数据归一化处理。
- ☑ 要求: KMEANS算法(K=10)和DBSCAN算法
- ☑ 结果分析:
 - ☑ 跟真实类别对比,展示至少1个不正确的结果,猜测原因
 - ☑ 计算带矫正的互信息(AMI)和翦影值(silhouette)

开放工程3:聚类分析(10′)

☑数据集

- ☑ 网址: http://yann.lecun.com/exdb/mnist/
- ☑ 训练集60000
- ☑测试集10000
- ☑ 图像28*28灰度

0	,	2	,	4	5		,		9
0	1	a	3	Y	5	Ь	7	8	9
0	1	2	3	4	5	4	7	8	9
0		2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
Ò	ŧ	2	3	4	5	6	7	8	۶
0	1	T	3	4	5	6	7	8.	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	а	3	4	5	6	7	ક	9

CLASSIFIER	PREPROCESSING	TEST ERROR RATE (%)	Reference					
Linear Classifiers								
linear classifier (1-layer NN)	none	12.0	LeCun et al. 1998					
linear classifier (1-layer NN)	deskewing	8.4	LeCun et al. 1998					
pairwise linear classifier	deskewing	7.6	LeCun et al. 1998					
	K-Nearest Neighbors							
K-nearest-neighbors, Euclidean (L2)	none	5.0	LeCun et al. 1998					
K-nearest-neighbors, Euclidean (L2)	none	3.09	Kenneth Wilder, U. Chicago					
K-nearest-neighbors, L3	none	2.83	Kenneth Wilder, U. Chicago					
K-nearest-neighbors, Euclidean (L2)	deskewing	2.4	LeCun et al. 1998					
K-nearest-neighbors, Euclidean (L2)	deskewing, noise removal, blurring	1.80	Kenneth Wilder, U. Chicago					
K-nearest-neighbors, L3	deskewing, noise removal, blurring	1.73	Kenneth Wilder, U. Chicago					
K-nearest-neighbors, L3	deskewing, noise removal, blurring, 1 pixel shift	1.33	Kenneth Wilder, U. Chicago					
K-nearest-neighbors, L3	deskewing, noise removal, blurring, 2 pixel shift	1.22	Kenneth Wilder, U. Chicago					
K-NN with non-linear deformation (IDM)	shiftable edges	0.54	Keysers et al. IEEE PAMI 2007					
K-NN with non-linear deformation (P2DHMDM)	shiftable edges	0.52	Keysers et al. IEEE PAMI 2007					
K-NN, Tangent Distance	subsampling to 16x16 pixels	1.1	LeCun et al. 1998					
K-NN, shape context matching	shape context feature extraction	0.63	Belongie et al. IEEE PAMI 2002					
large conv. net, random features [no distortions]	none	0.89	Ranzato et al., CVPR 2007					
large conv. net, unsup features [no distortions]	none	0.62	Ranzato et al., CVPR 2007					
large conv. net, unsup pretraining [no distortions]	none	0.60	Ranzato et al., NIPS 2006					
large conv. net, unsup pretraining [elastic distortions]	none	0.39	Ranzato et al., NIPS 2006					
large conv. net, unsup pretraining [no distortions]	none	0.53	Jarrett et al., ICCV 2009					
large/deep conv. net, 1-20-40-60-80-100-120-120-10 [elastic distortions]	none	0.35	Ciresan et al. IJCAI 2011					
committee of 7 conv. net, 1-20-P-40-P-150-10 [elastic distortions]	width normalization	0.27 +-0.02	Ciresan et al. ICDAR 2011					
committee of 35 conv. net, 1-20-P-40-P-150-10 [elastic distortions]	width normalization	0.23	Ciresan et al. CVPR 2012					

开放工程3:聚类分析(10′)

- ☑ 提交材料
 - ☑ 如有问题,请及时联系授课团队
 - ☑ 实验报告,实验流程,实验结论,结果分析(word)
 - ☑讲解音频(不超过3分钟)
 - ☑代码
- ☑ 提交时间
 - ☑ 文件名(同邮件名):工程2+学号+姓名
 - ☑ 课程邮箱:prml2022@yeah.net
 - ☑ 6月8日下周三,24:00