Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa

Prof. UEK dr hab. Paweł Ulman

Zdarzenie elementarne – wyniki doświadczenia losowego

Własności zdarzeń elementarnych:

- 1. Dane zdarzenie elementarne może zaistnieć lub nie
- 2. Jedno ze zdarzeń elementarnych na pewno zaistnieje
- 3. Zaistnienie jednego zdarzenia elementarnego wyklucza zaistnienie innego.

Przestrzeń zdarzeń elementarnych – oznaczenie E lub Ω

Przestrzeń zdarzeń elementarnych może być:

- 1. Skończona
- 2. Nieskończona, ale przeliczalna
- 3. Nieskończona i nieprzeliczalna
- Ad 1) zbiór wszystkich podzbiorów zbioru E jest mocy 2ⁿ.
- Ad 2) zbiór wszystkich podzbiorów zbioru E jest mocy 2⁸⁰, czyli continuum.
- Ad 3) zbiór wszystkich podzbiorów zbioru E jest mocy $2^c > c$.

W sytuacji Ad 3) należy ograniczyć się do rozważania klasy zbiorów borelowskich (σ ciała – przeliczalnie addytywnym ciałem zbiorów). Jest to niepusta klasa Z podzbiorów przestrzeni zdarzeń elementarnych E spełniająca trzy warunki:

- 1. $E \in Z$
- 2. $A \in Z \Rightarrow \bar{A} \in Z$
- 3. $A_1 \in Z$, $A_2 \in Z$, ... \Rightarrow $(A_1 \cup A_2 \cup ...) \in Z$.

Wybiera się więc spośród wielu możliwych ciał podzbiorów E ciało najmniejsze, które nazywamy σ ciałem. σ ciało istnieje i nie zawiera zbiorów niemierzalnych.

Zdarzenie losowe – każdy element σ ciała podzbiorów przestrzeni zdarzeń elementarnych.

E – zdarzenie pewne; ⊘ - zdarzenie niemożliwe;

Ā – zdarzenie przeciwne do zdarzenia A;

Zdarzenia A i B są parami rozłączne, gdy A ∩ B = ∅;

Jeśli A ⊂ B to zdarzenie A pociąga za sobą zdarzenie B;

Suma zdarzeń A \cup B;

Równość zdarzeń A = B.

Definicja prawdopodobieństwa Laplace'a

Jeśli zdarzenie E rozkłada się na n wykluczających się wzajemnie i jednakowo możliwych zdarzeń elementarnych, spośród których m sprzyja zaistnieniu interesującego nas zdarzenia A, to prawdopodobieństwo zaistnienia zdarzenia A nazywamy ułamek:

$$P(A) = \frac{m}{n}$$

Geometryczna definicja prawdopodobieństwa

Jeśli Q i q są to dwa zbiory w przestrzeni r wymiarowej oraz jeśli q \subseteq Q to prawdopodobieństwo, że dowolny punkt należący do Q będzie również należał do q równa się stosunkowi miary zbioru q do miary zbioru Q.

Statystyczna definicja prawdopodobieństwa

Jeśli przy wielokrotnej realizacji doświadczenia, w wyniku którego może wystąpić zdarzenie A, częstość tego zdarzenia przejawia wyraźną prawidłowość oscylując wokół pewnej nieznanej liczby p i jeśli wahania częstości przejawiają tendencję malejącą w miarę wzrostu liczby doświadczeń to liczba p nazywa się prawdopodobieństwem zdarzenia A.

Aksjomatyczna definicja prawdopodobieństwa (Kołmogorow, 1931)

Niech E będzie przestrzenią zdarzeń elementarnych doświadczenia losowego D, Z – jego zbiorem zdarzeń losowych.

Prawdopodobieństwem nazywamy funkcję P przyporządkowującą każdemu zdarzeniu A ∈ Z liczbę P(A) zgodnie z warunkami:

- 1. $P(A) \ge 0$
- 2. P(E) = 1
- 3. Jeśli A_1 , A_2 , ... jest dowolnym ciągiem parami rozłącznych zdarzeń ze zbioru Z to $P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$

Własności prawdopodobieństwa:

- 1. $P(\bigcirc) = 0$;
- 2. Jeśli A \subseteq B to P(A) \leq P(B);
- 3. $P(A) \le 1$;
- 4. $P(A) + P(\bar{A}) = 1$;
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Przestrzeń probabilistyczna: (E, Z, P)

Prawdopodobieństwo warunkowe:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
; A, B \in Z, P(B)>0.

Prawdopodobieństwo iloczynu zdarzeń:

$$P(A \cap B) = P(A) \cdot P(B \mid A) = P(B) \cdot P(A \mid B)$$
, gdy odpowiednio $P(A) \mid P(B) > 0$

$$P(A \cap B \cap C) = P(A) \cdot P(A \mid B) \cdot P(C \mid A \cap B), \text{ gdy } P(A \cap B) > 0.$$

Niezależność dwóch zdarzeń:

$$P(A \cap B) = P(A) * P(B).$$

Niezależność zespołowa zdarzeń:

Zdarzenia A_1 , A_2 , ..., A_n są niezależne zespołowo, gdy prawdopodobieństwo łącznego zaistnienia dowolnych m \leq n różnych zdarzeń spośród nich jest równe iloczynowi prawdopodobieństwa tych zdarzeń.

```
P(A \cap B \cap C) = P(A) * P(B) * P(C)
oraz P(A \cap B) = P(A) * P(B) oraz P(A \cap C) = P(A) * P(C) oraz P(B \cap C) = P(B) * P(C)
```

Twierdzenie o prawdopodobieństwie zupełnym

Jeśli B jest dowolnym zdarzeniem, zdarzenia A_1 , A_2 , ..., A_n stanowią układ zupełny zdarzeń (wykluczają się parami i wypełniają całą przestrzeń zdarzeń elementarnych) to prawdopodobieństwo zdarzenia B wyraża się wzorem:

$$P(B) = P(A_1) * P(B|A_1) + P(A_2) * P(B|A_2) + ... + P(A_n) * P(B|A_n)$$

Twierdzenie Bayes'a

Jeśli zdarzenie B jest dowolnym zdarzeniem o dodatnim prawdopodobieństwie , zdarzenia A_1 , A_2 , ..., A_n stanowią układ zupełny zdarzeń to:

$$P(A_i|B) = \frac{P(A_i) * P(B|A_i)}{P(B)}$$

Przykład

70 kobiet i 30 mężczyzn; 35 kobiet i 10 mężczyzn uzyskało ocenę 5,0 A_1 – kobieta; A_2 – mężczyzna; B – otrzymanie oceny 5,0

$$P(B) = P(A_1) * P(B|A_1) + P(A_2) * P(B|A_2) =$$

= 70/100 * 35/70 + 30/100 * 10/30 = 45/100

$$P(A_1|B) = \frac{P(A_1) * P(B|A_1)}{P(B)} = \frac{\frac{70}{100} * \frac{35}{70}}{45/100} = 0,78$$

Zmienna losowa – taka wielkość, która w wyniku doświadczenia losowego przyjmuje określoną wartość, znaną po zrealizowaniu doświadczenia, ale nie dającą się przewidzieć przed realizacją tego doświadczenia.

Zmienną losową X nazywa się funkcję X=X(e) określoną na zbiorze zdarzeń elementarnych E, o wartościach ze zbioru liczb rzeczywistych taką, że dla każdej liczby rzeczywistej x zbiór A zdarzeń elemnetarnych $e \in E$, dla których X(e) < x spełnia warunek A $\in Z$.

Zmienna dyskretna i ciągła

Dystrybuanta zmiennej losowej

$$F(x) = P(X < x)$$

Własności:

- 1. $0 \le F(x) \le 1$
- 2. $\lim_{x \to -\infty} F(x) = 0; \lim_{x \to +\infty} F(x) = 1$
- 3. F(x) jest funkcją niemalejącą
- 4. F(x) jest funkcją co najmniej lewostronnie ciągłą
- 5. $P(a \le X < b) = F(b) F(a)$

Rozkład prawdopodobieństwa zmiennej losowej skokowej

$$P(X = x_i) = p_i$$
 $\sum_{i=1}^{n} p_i = 1$

Charakterystyki rozkładu

Wartość oczekiwana -
$$E(X) = \sum_{i=1}^{n} x_i p_i$$

$$E(a) = a$$

$$E(X+a) = E(X) + a; E(X*a) = E(X) * a$$

$$E(X-E(X))=0$$

$$E(X+Y) = E(X) + E(Y)$$
; $E(X*Y) = E(X) * E(Y)$, $gdy X$, $Y sq niezależne$

Wariancja

$$D^{2}(X) = \sum_{i=1}^{n} (x_{i} - E(X))^{2} p_{i} = E(X^{2}) - E(X)^{2}$$

$$D^{2}(a) = 0$$

 $D^{2}(a*X) = a^{2}D^{2}(X)$
 $D^{2}(X+a) = D^{2}(X)$
 $D^{2}(X+Y) = D^{2}(X) + D^{2}(Y)$, gdy X, Y są niezależne

Rozkład jednopunktowy

$$P(X=x) = 1;$$

$$E(X)=x;$$

$$D^2(X)=0$$

Rozkład dwupunktowy

$$P(X=x_1) = p_1; P(X=x_2) = p_2;$$

Rozkład zero-jedynkowy

$$P(X=0) = 1-p=q; P(X=1) = p; E(X)=p;$$

$$D^2(X) = p*q = p*(1-p)$$

Rozkład jednostajny skokowy

$$P(X=x_1) = 1/n; P(X=x_2) = 1/n; ..., P(X=x_n) = 1/n$$

 $E(X) = \frac{1}{n} \sum_{i=1}^{n} x_i; \qquad D^2(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - E(X))^2$

Rozkład Bernoulliego (dwumianowy); X~B(n,p)

Założenia:

- 1. n niezależnych doświadczeń losowych
- 2. każde z tych doświadczeń może zakończyć się sukcesem lub porażką
- 3. prawdopodobieństwo sukcesu jest jednakowe dla każdego doświadczenia i wynosi p

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$E(X) = np.; \qquad D^2(X) = npq$$

Rozkład Poissona; $X \sim P(\lambda)$

Warunki jak w przypadku r. Bernoulliego i jeden dodatkowy Liczba doświadczeń jest duża (zmierza do nieskończoności)

$$P(X = k) = \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$E(X) = \lambda;$$

$$D^{2}(X) = \lambda$$

Rozkłady zmiennej losowej ciągłej

Gęstość prawdopodobieństwa

$$P(x_1 \le X < x_2) = F(x_2) - F(x_1),$$

gdy
$$\Delta x = x_2 - x_1 \rightarrow 0$$
 to $P(x_1 \le X < x_2) = dF(x) + r(x)$

$$dF(x) = F'(x)dx \qquad \text{wiec}$$

$$F'(x) = \lim_{\Delta x \to \infty} \frac{F(x_2) - F(x_1)}{\Delta x} = \lim_{\Delta x \to \infty} \frac{P(x_1 \le X < x_2)}{\Delta x}$$

Jeśli dystrybuanta F(x) ma pochodną w punkcie x to pochodna ta nazywa się gęstością prawdopodobieństwa zmiennej losowej X w punkcie x, więc

Rozkłady zmiennej losowej ciągłej

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Własności:

f(x)
$$\geq 0$$
; P(x₁ $\leq X < x_2$) = $\int_{x_1}^{x_2} f(t) dt$
 $\int_{-\infty}^{+\infty} f(x) dx = 1$ P(X = x) = 0

Rozkłady zmiennej losowej ciągłej

Zmienną losową X przyjmującą wszystkie wartości z pewnego przedziału, dla której istnieje nieujemna funkcja f taka, że dystrybuantę F zmiennej losowej X można przedstawić w postaci $F(x) = \int_{-\infty}^{x} f(t) dt$ nazywamy zmienną losową ciągłą, a funkcję f jej gęstością.

Zmienna losowa X jest zmienną ciągłą w danym przedziale, jeśli w tym przedziale gęstość f(x) istnieje i jest funkcją ciągłą względem x w całym przedziale z wyjątkiem co najwyżej skończonej liczby punktów.

Rozkłady zmiennej losowej ciągłej

Wartość oczekiwana

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

Wariancja

$$D^{2}(X) = \int_{-\infty}^{+\infty} (x - E(X))^{2} f(x) dx = E(X^{2}) - E(X)^{2}$$

Rozkłady zmiennej losowej ciągłej

Rozkład jednostajny ciągły

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & poza \ tym \end{cases} \qquad F(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a < x \le b \\ 1 & x > b \end{cases}$$

$$E(X) = \frac{a+b}{2}$$
 $D^2(X) = \frac{(b-a)^2}{12}$

Rozkłady zmiennej losowej ciągłej

Rozkład normalny $X \sim N(\mu, \sigma)$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$E(X) = Mo = Me = \mu$$
 $D^2(X) = \sigma^2$

Rozkłady zmiennej losowej ciągłej

Źródło: Wikipedia

Rozkłady zmiennej losowej ciągłej

Reguła trzech sigm

$$P(\mu - \sigma < X < \mu + \sigma) = 0.6826$$

$$P(\mu-2\sigma < X < \mu+2\sigma) = 0.9545$$

$$P(\mu-3\sigma < X < \mu+3\sigma) = 0.9973$$

Rozkłady zmiennej losowej ciągłej

Standaryzacja: gdy $X^{\sim}N(\mu, \sigma)$

$$U = \frac{X - \mu}{\delta}$$

więc: $U^{N}(0, 1)$

$$P(X < x) = \Phi\left(\frac{x - \mu}{\sigma}\right) = \Phi(u)$$

$$\Phi(-u) = 1 - \Phi(u)$$

Rozkłady zmiennej losowej ciągłej

Tablica 2. Dystrybuanta rozkładu normalnego

и	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	и
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359	0,0
0,1	,5398	,5438	,5478	,5517	,5557	,5596	,5636	,5675	,5714	,5753	0,1
0,2	,5793	,5832	,5861	,5910	,5948	,5987	,6026	,6064	,6103	,6141	0,2
0,3	,6179	,6217	,6255	,6293	,6331	,6368	,6406	,6443	,6480	,6517	0,3
0,4	,6554	,6591	,6628	,6664	,6700	,6736	,6772	,6808	,6844	,6879	0,4
0,5	,6915	,6950	,6985	,7019	,7054	,7088	,7123	,7157	,7190	,7224	0,5
0,6	,7257	,7291	,7324	,7357	,7389	,7422	,7454	,7486	,7517	,7549	0,6
0,7	,7580	,7611	,7642	,7673	,7703	,7734	,7764	,7794	,7823	,7852	0,7
0,8	,7881	,7910	,7939	,7967	,7995	,8023	,8051	,8078	,8106	,8133	0,8
0,9	,8159	,8186	,8212	,8238	,8264	,8289	,8315	,8340	,8365	,8389	0,9
1,0	,8413	,8438	,8461	,8485	,8508	,8531	,8554	,8577	,8599	,8621	1,0
1,1	,8643	,8665	,8686	,8708	,8729	,8749	,8770	,8790	,8810	,8830	1,1
1,2	,8849	,8869	,8888,	,8907	,8925	,8944	,8962	,8980	,8997	,90147	1,2
1,3	,90320	,90490	,90658	,90824	,90988	,91149	,91309	,91466	,91621	,91774	1,3
1,4	,91924	,92073	,92220	,92354	,92507	,92647	,92785	,92922	,93056	,93189	1,4
1,5	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408	1,5
1,6	,94520	,94630	,94738	,94845	,94950	,95053	,95154	,95254	,95352	,95449	1,6
1,7	,95543	,95637	,95728	,95818	,95907	,95994	,96080	,96164	,96246	,96327	1,7
1,8	,96407	,96485	,96562	,96638	,96712	,96784	,96856	,96926	,96995	,97062	1,8
1,9	,97128	,97193	,97257	,97320	,97381	,97441	,97500	,97558	,97615	,97670	1,9
2,0	,97725	,97778	,97831	,97882	,97932	,97982	,98030	,98077	,98124	,98169	2,0

Dwuwymiarowa i wielowymiarowa zmienna losowa

$$(X, Y)$$
 oraz $(X_1, X_2, ..., X_n)$

Badanie wielowymiarowych zmiennych losowych jest interesujące z powodu zależności między zmiennym składowymi.

Rozkłady brzegowe Rozkłady warunkowe, Korelacja, regresja Wielowymiarowy rozkład normalny.

Centralne twierdzenie graniczne Linderberg'a-Levy'ego

Jeżeli $\{X_n\}$ jest losowym ciągiem niezależnych zmiennych o jednakowym rozkładzie, o wartości przeciętnej μ i skończonej wariancji $\sigma^2>0$ to ciąg (F_n) dystrybuant standaryzowanych średnich arytmetycznych \bar{X}_n (lub standaryzowanych sum $\sum_{i=1}^n X_i$)

$$Y_n = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} = \frac{\sum_{i=1}^n X_i - n\mu}{\sigma \sqrt{n}}$$

jest zbieżny do dystrybuanty ϕ rozkładu N(0, 1).

Twierdzenie graniczne Moivre'a-Laplace'a

Jeżeli $\{X_n\}$ jest losowym ciągiem niezależnych zmiennych o rozkładzie dwumianowym z parametrami n, p to ciąg (F_n) dystrybuant standaryzowanych sum $\sum_{i=1}^n X_i$

$$Y_n = \frac{\sum_{i=1}^n X_i - np}{\sqrt{npq}}$$

jest zbieżny do dystrybuanty ϕ rozkładu N(0, 1).

Przykład: Centralne twierdzenie graniczne Linderberg'a-Levy'ego

Inwestor uważa, że cena akcji pewnej spółki giełdowej (X) wzrośnie jutro o pewną wartość z przedziału [0, 10]. Niech X ma rozkład jednostajny. Jakie jest prawdopodobieństwo, że wartość posiadanych przez inwestora akcji wzrośnie więcej niż o 480 zł, jeśli kupił on dzisiaj 100 akcji tej spółki.

$$E(X) = \frac{0+10}{2} = 5$$
 $D^2(X) = \frac{(10-0)^2}{12} = 0.833$ $D(X) = 0.913$

$$\sum X = N(n\mu, \sigma\sqrt{n}) \qquad \qquad \sum X = N(500, 9,13)$$

$$P(\sum X > 480) = 1 - P(\sum X < 480) = 1 - \Phi\left(\frac{480 - 500}{9,13}\right)$$

$$= 1 - \Phi(-2,19) = 1 - 1 + \Phi(2,19) = 0,986$$

Przykład: Twierdzenie graniczne Moivre'a-Laplace'a

PZU ocenia, że każdego roku 1% ubezpieczonych mężczyzn traci życie w wypadkach. Jakie jest prawdopodobieństwo, że w danym roku PZU będzie musiało wypłacić odszkodowanie więcej niż trzy razy, jeśli ubezpieczyło się od wypadków 100 mężczyzn?

$$X \sim N(np, \sqrt{npq})$$
 $X \sim N(100 * 0,01, \sqrt{100 * 0,01 * 0,99})$
 $X \sim N(1, 0,995)$

P(X>3) = 1- P(X≤3) = 1- Φ
$$\left(\frac{3-1}{0,995}\right)$$
 = 1 − Φ(2,01) = 1 − 0,97778 = 0,02222