CLASE 6 - 13/03/2025

Semántica proposicional

Veamos la diferencia entre sintáxis, semántica e interpretación de un lenguaje:

- **Sintáxis**: Describe el conjunto de las frases válidas del lenguaje, típicamente como un conjunto inductivo
- **Semántica**: Es el significado de las frases válidas del lenguaje. Usualmente involucra diversos conjuntos y relaciones entre ellos
- **Interpretación**: Es un mecanismo que permite la asociación entre los elementos de la sintaxis (frases del lenguaje) y los elementos de la semántica

Veamos estos conceptos aplicado al lenguaje PROP:

- **Sintáxis**: Se define un conjunto inductivo, con ciertas fórmulas base (letras proposicionales) y ciertos operadores que construyen nuevas fórmulas
- Semántica: El conjunto $\{0,1\}:(\{falso, verdadero\})$
- Interpretación: Función recursiva que para cada elemento de PROP devuelve el valor 0 o 1 en base al valor de las letras proposicionales

Valuación (Intuición)

- La semántica de una palabra (fórmula) de PROP está dada por su valor de verdad (o sea, si es verdadera o falsa).
- Ese valor se obtiene aplicando una función a la fórmula que se desea evaluar
- Cada función representa un estado de la realidad (o mundo).
 - $v(p_0)=0, v(p_1)=1,\dots$ es la representación de un mundo, y $v(p_0)=1,\dots,v(p_2)=1$ es una representación de otro mundo distinto
 - En cada mundo cada proposición de PROP puede representar una afirmación distinta de la realidad

Semántica de PROP (Intuición)

La semántica de una palabra (fórmula) de PROP está dada por su valor de verdad (o sea, si es verdadera o falsa). Ese valor se obtiene aplicando una función a la fórmula que se desea evaluar. Cada función representa un estado del universo que se obtiene de la siguiente forma:

- En cada función, cada una de las letras proposicionales puede tomar un valor de verdad
- \perp es falsa en cualquier función
- Los valores de verdad de las fórmulas atómicas se extienden a las fórmulas no atómicas de acuerdo al significado de los conectivos que la forman
- Las letras proposicionales tienen un valor de verdad conocido
- Se abstraen las proposiciones simples a letras
- La frase "Los perros comen salchichas con tuco" colapsa a, por ejemplo, p_{0}
- Y si esa frase es verdad en una situación v, diremos que $v(p_0)=1$. Y si es falsa, diremos que $v(p_0)=0$.
- PROP está definido inductivamente
- La semántica está dada por los valores de verdad de las proposiciones, ya sean simples o complejas
- Se buscará la forma de construir esa semántica teniendo en cuenta que:

- Las letras proposicionales pueden tomar cualquier valor
- El valor de las letras proposicionales se "transmite", lo que permite calcular el valor de las proposiciones complejas en función del valor de las proposiciones más simples

Significado de algunos conectivos

- El dos es par o impar. **VERDAD**
- El dos es par o natural. **VERDAD**
- Si n es múltiplo de 6, entonces 4 es par. **VERDAD**
- Si 4 es impar, entonces 3 es par. **VERDAD**

Valuación (definición)

Una función $v: PROP \rightarrow \{0, 1\}$ es una valuación si satisface:

- $v(\bot) = 0$
- $v(\alpha \vee \beta) = min\{v(\alpha), v(\beta)\}$
- $v(\alpha \wedge \beta) = max\{v(\alpha), v(\beta)\}$
- $v(\alpha \to \beta) = max\{1 v(\alpha), v(\beta)\}$
- $v(\alpha \leftrightarrow \beta) = 1 \iff v(\alpha) = v(\beta)$
- $v(\neg \alpha) = 1 v(\alpha)$

Teorema

El valor de verdad de los átomos, determina una única valuación (el valor para cualquier fórmula)

- (H) Sea $w: P \to \{0, 1\}$
- (I) Existe una única valuación $v: PROP \rightarrow \{0,1\}$ tal que $v(p) = w(p) \quad \forall p \in P$

Demostración Consideremos una función $v: PROP \rightarrow \{0,1\}$ definida por recursión primitiva tal que:

- v(p) = w(p) para todo $p \in P$
- v es una valuación

Esta función existe, y es única porque fue definida por recursión primitiva. Además es valuación (por su propia definición). ■

Lema

El valor de verdad de una fórmula depende únicamente de los valores de verdad de sus letras proposicionales.

- (H) Sea $\alpha \in PROP$. Sean v,v' dos valuaciones tales que v(p)=v'(p) para todo $p \in P$ que ocurre en α
- (I) Entonces $v(\alpha) = v'(\alpha)$

Tautología y consecuencia lógica (definición)

• Tautología: Decimos que $\alpha \in PROP$ es una tautología sii para cualquier valuación v se cumple que $v(\alpha)=1$

• Consecuencia lógica: Dadas $\Gamma \subseteq PROP$ y $\alpha \in PROP$, decimos que α es consecuencia lógica de Γ sii para cualquier valuación v:

- Si
$$(\forall \gamma \in \Gamma)v(\gamma) = 1$$
, entonces $v(\alpha) = 1$

Notación

- $\Gamma \models \alpha$ se lee " α es consecuencia lógica de Γ "
- $\gamma_1, \dots, \gamma_n \models \alpha$ se lee $\{\gamma_1, \dots, \gamma_n\} \models \alpha$ $\models \alpha$ se lee $\{\} \models \alpha$
- $\models \alpha$ se lee " α es tautología"

Aplicaciones

Investigar $\models (p_0 \rightarrow p_0)$ Sea v una valuación cualquiera, luego:

$$\begin{split} v(p_0 &\to p_0) \\ &= (\text{definición de valuación}) \\ max \big\{ 1 - v(p_0), v(p_0) \big\} \\ &= (v(p_0) \in \{0,1\}) \\ 1 \end{split}$$

Como cualquier valuación v cumple $v(p_0 \to p_0) = 1$, concluimos que $\models (p_0 \to p_0)$

Investigar $\models (\varphi \rightarrow \varphi)$ Sea v una valuación cualquiera, luego:

$$\begin{split} v(\varphi &\to \varphi) \\ &= (\text{definición de valuación}) \\ max\{1 - v(\varphi), v(\varphi)\} \\ &= (v(\varphi) \in \{0,1\}) \end{split}$$

Como cualquier valuación v cumple $v(\varphi \to \varphi) = 1$, concluimos que $\models (\varphi \to \varphi)$