CSCI 3022-002 Fall 2020 Intro to Data Science

Welcome! Storting @ 4:10

Instructor: Dr. Zachary Mullen / Pld

HELLO AND WELCOME!

Syllabus Material

The course Canvas page will house:

- 1. The course syllabus and schedule
- 2. Annotated lectures and their videos posted after completion of the lecture
- 3. Homework Assignments and their turn-ins locations
- 4. Grades
- 5. Links to In-Class Notebooks, Data sets, and course Piazza page (register!)
- 6. Whatever else is necessary

Piazza: https://piazza.com/colorado/fall2020/csci3022

- 1. Ask questions in Q & A forum (and answer other students' questions!)
- 2. Discuss work, but do not post solutions/vital code
- 3. Send private messages to faculty instead of email (keeps things organized)

Learning Goals

At the end of this class, students should be able to:

- 1. load a data set into Python, clean and munge the data, perform exploratory data analysis, and report on patterns and correlations in the data,
- 2. compute and interpret various measures of central tendency, such as the mean, median, and mode; and measures of dispersion, such as variance, and standard deviation,
- 3. write the axioms of probability theory, prove basic theorems of probability theory, and apply those theorems to solve "real-world" problems involving chance events,
- 4. estimate population parameters of interest by calculating point and interval estimates from a sample/data,
- 5. perform statistical hypothesis tests,
- construct and perform diagnostics on simple linear, multilinear, and logistic regression models to make predictions and inferences about data, and
- 7. construct basic data visualizations in Python and organize analyses, findings, and recommendations into easily interpretable reports in Jupyter Notebooks.

"Other" Courses

This course functions as a survey-level course for material sometimes found in:

- 1. Introduction to Data Science and Programming
- 2. Applied Probability (APPM 3570)
- 3. Introduction to Mathematical Statistics (APPM 4520)
- 4. Statistical Modeling/Regression (APPM 4590)

Coding Overview

- We will use Python 3 and in particular Numpy and Pandas
- 2. Lot's of great data science libraries and decent plotting
- 3. We'll exclusively work in Jupyter Notebooks. We strongly recommend you install local copy
- 4. If not, you can use Microsoft Azure or Google Colab notebooks (Goldward).
- 5. Often work on problems in groups in class
- 6. Bring a laptop or have a buddy with a laptop

Python

What:

Python is free high-level programming language built for flexibility and simple syntax. It is commonly used in statistical computing and graphics.

Why we're using it:

It's widely used - especially in industry - free, and has a healthy repository of packages.

Common Syntax

Function Syntax: Functions use indents to determine the stopping point after a colon. The function def myfunction(x): ends after the indenting stops. Indexing: Python is 0-indexed, and uses square brackets. For an nxm matrix named mydata, mydata[3,2] accesses the entry in the fourth row and third column. Comments: # comment

Favorite Reference: Official Documentation

Jupyter

What:

Jupyter notebook is free web application to combine running live code and visualizations.

Why we're using it:

Statistics is inherently interdisciplinary, and communication of clear results is paramount. The notebook environment encourages replicabile results and a clear workflow.

Common Syntax

Cells: The notebook is divided into cells. For our purpose, expository material will be done in Markdown cells with LATEX compatibility. Computational work will be done in Python 3 code cells, which may also generate plots, histograms, tables, and other output.

Formatting: # (with varying numbers of # signs) can be used to create section headers in markdown cells.

Comments: % comment

What:

LATEX is a typesetting software with a particular emphasis on mathematics, including matrices, greek letters, etc.

Why we're using it:

Microsoft Equation Editor is a pain. It's included in Jupyter for Markdown cells.

Common Syntax

Function Syntax: Functions use curly brackets; " $\text{textit}\{arg\}$ " would italicize the argument

Math mode: inputting "\$ arg \$" will apply mathematical typesetting to the argument.

Comments: % comment

Favorite Reference: https://en.wikibooks.org/wiki/LaTeX

What is Data Science?

- 1. Making the invisible visible
- 2. Recovering insights/trends hiding within the data
- 3. Using data to answer interesting questions
- 4. Catch-all: using data to understand the world around us

Warning Label: we will do a lot of the "science" side of "data science" **Probability!** Statistics! Math!

Science!

From towardsdatascience

- 1. Hypothesis
- 2. Observations
- 3. Analysis
- 4. Conclusions
- 5. Refinements (repeat!)

Foundations

Realms	Topics		
Probability	EDA, null models and hypotheses, Markov		
	models		
Statistical Inference averages, regression models, MLEs			
Optimization and Calculus	model fitting, computational shortcuts		
Linear Algebra	Many many matrices		
CS	data structures, rapid estimations, simula-		
	tion		

The Plan

Week	Date	nb	txt	Topic	Slides	Hmwk
1	8.27			Course & Computing Introduction EDA and Summary Statistics	انی	5
	8.29		16.1-3	EDA and Summary Statistics	λa.	
	1.26		2	Introduction to Pulse lity		
2	9.03			LANDE DAW NO CLASS		
	9.05	-1	aral'	EDA and Data Visualization		hw1 posted
	Bary	יק	0.	Introduction to Print Its Land R Dia No CLASS EDA and Data Visualization Data Wrangling		
3	9.10		2,3	How to Python		
	9.12		6	Axioms and Theorems of Probability		
	9.14		3	Stochastic Simulation		hw1 due
4	9.17		4	Bayes' Rule and Intro to PDFs		hw2 posted
	9.19		4,5	Discrete RVs, PMFs, CMFs		lan
	9.21			Discrete RVs Strike Back	,,,,,	
5	9.24		5	Stochastic Simulation Bayes' Rule and intro to PDFs Discrete RVs, PMFs, CMFs Discrete RVs Strike Back Return of the Discrete RVs Continings NYT Awaken, PDFs, CDFs		
	9.26		- 115	Continuous Rvs Awaken, PDFs, CDFs		
	9.28	No.	اااطذ	The Last Continuous RVs		hw2 due
6	OT	o_r	abili	Expectation		hw3 posted
	0.03			Variance		
	10.05		5.5	More Expectation & Variance		
7	10.08			The Normal Distribution		
	10.10		14	MIDTERM EXAM REVIEW		
	10.10			The Central Limit Theorems		
	10.12			MIDTERM EXAM (PM)		hw2de6
8	10.15		23,24	The Central Limit Theorem and You	.fer	posted
	10.17		23,24	MIDTERM EXAM (PM) The Central Limit Theorem and You Inference and Cl Intgo Two-Sepples 5	11.	
	10.19			Two-Saspine S the Wild Hypothesis Testing Intro p-Values		
9	10.22		25,26	the Wild		
	10,24	n	Mile.	Hypothesis Testing Intro		
	MX	Ъ.		p-Values		hw4 due

10	10.29	27	Practical HT & p	hw5 posted
	10.31		Small-sample HT	
	11.02		TBD	
11	11.05	18,23.3	Bootstrap Intro	
	11.07		Bootstrap and Small n HT	
	11.09	27	OLS/SLR Regression	hw5 due
12	11.12		Inference in SLR	hw6 posted
	11.14		Hands on inference in SLR	oibar
	11.16		MLR	DLEC
13	11.19		Inference in SLR Hands on inference in SLR MLR FALL BREAK - NO CLASS FALL BREAK - NO CLASS FALL BREAK - NO CLASS	
	11.21		FALL BREAK - NO BILLS	
	11.23		FALL BREW NO CLASS	
14	11.26	ISI PER	FALTER O WO CLASS Ofference in MLR More MLR and ANOVA I	practicum posted
	MOC	ISL Ch3	More MLR and ANOVA I	
	11:30	ISL Ch3	ANOVA II	hw6 due
15	12.03		ANOVA + Inference in MLR	
	12.05		Logistic Regr. & Classification	
	12.07		Logistic Regr. & Classification	
16	12.10		Solution Techniques and SGD	
	12.12		FINAL EXAM REVIEW	practicum due
x	12.XX		**FINAL EXAM **	

Evaluations

Workload:

- ► (48%) Homework assignments (every 2 weeks, lowest dropped, late days)
- ► (13%) Midterm exam

 ► (13%) Final exam (cumulative)

 + ke home
- ► (10%) Practicum 1 (midterm)
- ► (10%) Practicum 2 (final)
- ► (6%) Participation (Canvas) > Angle Agree (
- $\geq 55\%$ exam average required to earn a C- or higher in the class Let me know about any special needs in a timely manner Read the syllabus! More details can be found there regarding course policies (see: Late days!)

Remote Materials

All lectures for this class will be hosted remotely via Zoom. Our section is section 2, and meets from 4:10-5:00pm on MWF. The zoom link is https://cuboulder.zoom.us/j/93996501704, and will be open around 4pm most days. All lectures will be recorded and posted to the course schedule.

There will be a warmup/intro problem to complete if you arrive between 4-4:10pm.

I will try to make Zoom as interactive as possible: use Zoom reactions, raise your hand if you have questions, and answer polls as I put them out.

It is my *strong* preference to have cameras on if your bandwidth can support it. It helps people feel invested and engaged in the process!

Fridays will typically be coding/application based - you are highly encouraged to follow along and attempt the exercises *before* class. M/W will be heavier on theory: pen-and-paper exercises and annotations on slides.

Attend!

Correlation...

is not Causation

Try to stay engaged! Take minute papers seriously, and ask questions through any/all mediums available (Zoom, Piazza, minute papers)

The curse of Laptops

http://www.sciencedirect.com/science/article/pii/S0360131506001436 Also: http://journals.sagepub.com/doi/pdf/10.1177/0956797616677314 And: http://www.sciencedirect.com/science/article/pii/S0272775716303454

"Results showed that students who used laptops in class spent considerable time multitasking and that the laptop use posed a significant distraction to both users and fellow students. Most importantly, the level of laptop use was negatively related to several measures of student learning, including self-reported understanding of course material and overall course performance."

16/23

If at first you don't succeed...

- 1. When you're asking for help, be sure to explain...
- 2. what you're trying to do
- 3. what you think should happen
- 4. what you get instead (copy/pastes or screenshots work well)
- 5. what all you have tried
- 6. if you haven't tried anything, try something first

everything

Learning New Software

There are 3 major tools to use in learning new software:

- 1. Pirating similar code found from course materials, etc.
- 2. Official documentation
- 3. Google searches, often directed to sites like stackexchange. (Don't Copy/Paste! Write from pseudo code, and *cite any sources* if you use them!)
- Use (1.) and (2.) often, but be very careful with #3..., and don't hesitate to
 - 1. Ask your instructor or peers for ideas on how to write specific routines, or for their syntax knowledge. Piazza is made for exactly this sort of thing!

Academic Integrity

- 1. See the CU Academic Integrity Policy for more details. Here are some highlights. "Examples of cheating include: copying the work of another student during an examination or other academic exercise (includes computer programming)"
- 2. "Examples of plagiarism include: ... copying information from computer-based sources"

(c,+e 12,101 45K)

Integrity Examples

Example 1: For an assignment, Chris searches the internet for relevant codes and copy-pastes them into his Jupyter Notebook. He properly cites the source of the codes.

Example 2: For an assignment, Maciej and Felix work together to figure out how to implement the codes, but each works on their own computer and develops their own software.

Example 3: For an assignment, Rhonda has a plan for how to implement an algorithm, but isn't sure how to manipulate a Python list in a particular way that she needs to. She searches the internet, finds a fix, and implements it in her code without copying it.

A Modern Introduction to Probability and Statistics (MIPS)

by Dekking (et al.)

International, older, and PDF editions will work: just make sure to match any section numbers that changed.

Free PDF edition through CU (CU network, or VPN):

https:

//www.springer.com/us/book/9781852338961 Additional reading will be linked to the course calendar as needed

Other Texts

Probability and Statistics for Programmers

Think Stats by Downey ("TS")

An Introduction to Statistical Learning ("ISL")

Mullen: Day 1 Intro Fall 2020 22 / 23

Moving Forward

Let's get to work!

- Before next class:
 - 1. Make sure you can access the Canvas page and read the syllabus
 - 2. Set up some way to back up your work
 - (orda-> Jupyter -> Python 3 3. Install Anaconda (or other reliable Jupyter notebook method)
 - 4. Review and complete Numpy/Pandas tutorial

Mullen: Day 1 Intro