Определение постоянных Стефана-Больцмана и Планка из анализа теплового излучения накаленного тела*

Иван Едигарьев Московский Физико-Технический Институт Факультет Общей и Прикладной Физики, 526т

При помощи модели абсолютно черного тела (АЧТ) проводятся измерения температуры оптическим пирометром с исчезающей нитью и термопарой, исследуется излучение накаленных тел с различной испускательной способностью, определяются постоянные Планка и Стефана-Болымана.

1. Изучение работы оптического пирометра

Определим по шкале пирометра значение яркостной температуры модели АЧТ (она равна его термодинамической температуре).

$$T_{\rm spk} = T_{\rm AYT} = 1280 \pm 30^{\rm stat} \pm 1^{\rm syst} \ K$$

Одновременно измерим температуру модели АЧТ при помощи хромель-алюмелевой термопары и цифрового вольтметра.

$$T_{
m термопары} = 1317 \pm 1^{
m syst} \ K,$$
 $\varepsilon = 3\%$

Значения температуры, получаемые обоими способами, мало отличаются друг от друга, следовательно, можно судить об исправной работе пирометра.

2. Измерение яркостной температуры накаленных тел

Этот эксперимент предполагает показать, что различные тела, накаленные до одинаковой термодинамической температуры, имеют различную яркостную температуру.

Постараемся измерить яркостную температуру поверхности трубки и каждого из колец.

$$T_{
m правого\ кольца} = 1030 \pm 1^{
m syst}\ K$$

Во время эксперимента измерить температуры нескольких колец, а также температуру поверхности трубки не удалось.

3. Проверка закона Стефана-Больцмана

Для каждого значения измеренной яркостной температуры найдём термодинамическую температуру вольрамовой нити лампы, пользуясь графиком $T=f_1(T_{\rm ярк})$, где T - абсолютная температура. Данный график можно с достаточной точностью апроксимировать линейной зависимостью

$$T = 1.057 * T_{\text{ярк}} - 34.95K.$$

Вычислим для каждого значения термодинамической температуры мощность, потребляемую нитью лампы. Результаты представим в виде графика $W=f_2(T)$

Для проверки закона Стефана-Больцмана построим в логарифмическом масштабе график зависимости

$$W = \ln(\varepsilon_T B) + n \ln(T).$$

В общем случае $\varepsilon_T = \varepsilon_T(T)$, и так как в наших измерениях присутствуют значения температуры с шагом в 50 K, которые не даны в табличных данных, интерполируем значения до необходимых и построим график зависимости $\varepsilon_T = \varepsilon_T(T)$.

Теперь построим регрессионную модель для зависимости

$$W - \ln(\varepsilon_T B) \sim \ln(T)$$

и получим оценку и доверительный интервал для параметра показателя степени температуры

$$n = 4.6 \pm 0.4^{\text{stat}}$$
.

Теперь найдём величину постоянной Стефана-Больцмана по формуле

$$\sigma = \frac{W}{\varepsilon_T S T^4}$$

для каждого измеренного значения T.

По найденным значениям $\sigma = \sigma(T)$ определим оценку и доверительный интервал для σ , как параметра, не зависящего от температуры T.

$$\sigma = (5.4 \pm 0.1) \cdot 10^{-8} \ W \cdot m^{-2} \cdot K^{-4}.$$

Определим величину постоянной Планка h, оценим точность её определения, а также сравним с табличной

$$h = (6.9 \pm 0.2) \cdot 10^{-34} J \cdot s,$$

$$h_{\text{\tiny Ta6,I}} = 6.62 \cdot 10^{-34} J \cdot s.$$

4. Измерение "яркостной температуры" неоновой лампочки

Направим пирометр на неоновую лампочку и измерим пирометром "яркостную температуру" неоновой лампочки. Дотронувшись до лампочки рукой, убедимся, что термодинамическая температура лампочки не соответствует измеренной яркостной температуре нагретого тела.

$$T_{\mathrm{HeoH}} = 1300 \pm 1^{\mathrm{syst}} K$$

Данный факт легко объяснить другим механизмом излучения отличным от механизма теплового излучения.