

WHAT IS CLAIMED IS:

1 1. An address lookup structure comprising:
2 at least one hash table storing prefixes for
3 address lookups; and
4 a content addressable memory storing at least
5 some prefixes for which a collision occurs within the at
6 least one hash table.

1 2. The address lookup structure according to claim
2 1, wherein the at least one hash table is contained within
3 a smallest number of memory blocks sufficient to hold all
4 required prefixes for which no collision occurs within the
5 at least one hash table.

1 3. The address lookup structure according to claim
2 1, wherein the at least one hash table is contained within
3 a predetermined limited number of memory blocks.

1 4. The address lookup structure according to claim
2 1, wherein the at least one hash table contains prefixes
3 hashed by one of two hash functions, a second of the two
4 hash functions employed when a collision occurs with a
5 first of the two hash functions.

1 5. The address lookup structure according to claim
2 1, wherein the at least one hash table comprises a
3 plurality of hash tables, each hash table containing
4 different length prefixes.

1 6. The address lookup structure according to claim
2 5, further comprising:

3 a priority encoder selecting a longest prefix
4 when a plurality of matches occur between different length
5 portions of a prefix and prefixes in each of two or more of
6 the plurality of hash tables.

1 7. The address lookup structure according to claim
2 5, wherein the plurality of hash tables contain only a
3 subset of different length prefixes possible under an
4 addressing scheme, and wherein a remainder of the different
5 length prefixes are stored in the content addressable
6 memory.

1 8. A network router including the address lookup
2 structure according to claim 1, the network router further
3 comprising:

4 a network search engine containing the at least
5 one hash table and coupled to the content addressable
6 memory, the network search engine performing address
7 lookups using the at least one hash table; and

8 an external memory coupled to the network search
9 engine and containing per route information indexed by a
10 next hop index generated by the network search engine.

1 9. A network including a plurality of interconnected
2 network routers according to claim 8.

1 10. An address lookup structure comprising:
2 a plurality of hash tables each containing
3 prefixes of a different length than prefixes within other
4 hash tables within the plurality, the hash tables
5 collectively containing only a subset of different prefix
6 lengths less than or equal to an address length; and
7 an additional address lookup facility handling a
8 remainder of the different address lengths not accommodated
9 by the plurality of hash tables.

1 11. The address lookup structure according to claim
2 10, wherein the additional address lookup facility
3 comprises a content addressable memory.

1 12. The address lookup structure according to claim
2 10, wherein each of the plurality of hash tables in
3 contained in one or more memory blocks allocated based on
4 hashing of each prefix contained in the respective hash
5 table using at least a first hash function,

6 wherein a number of memory blocks allocated to
7 the respective hash table does not exceed a predefined
8 number, and

9 wherein a remainder of prefixes of a length
10 corresponding to prefixes within the respective hash table
11 are handled by the additional address lookup facility.

1 13. The address lookup structure according to claim
2 10, further comprising:

3 a priority encoder selecting a longest prefix
4 match from matches identified within the plurality of hash
5 tables.

1 14. A method of operating an address lookup
2 comprising:

3 storing at least some address prefixes in at
4 least one hash table; and

5 storing address prefixes for which a collision
6 occurs within the at least one hash table in a content
7 addressable memory.

1 15. The method according to claim 14, further
2 comprising:

3 maintaining the at least one hash table within a
4 smallest number of memory blocks sufficient to hold all
5 required prefixes for which no collision occurs within the
6 at least one hash table.

1 16. The method according to claim 14, further
2 comprising:

3 maintaining the at least one hash table within a
4 predetermined limited number of memory blocks.

1 17. The method according to claim 14, further
2 comprising:

3 hashing prefixes in the at least one hash table
4 with one of two hash functions, a second of the two hash
5 functions employed when a collision occurs with a first of
6 the two hash functions.

1 18. The method according to claim 14, further
2 comprising:

3 storing, in each of a plurality of hash tables,
4 prefixes of a different length than prefixes contained in
5 any other of the plurality of hash tables.

1 19. The method according to claim 18, further
2 comprising:

3 selecting a longest prefix when a plurality of
4 matches occur between different length portions of a prefix
5 and prefixes in each of two or more of the plurality of
6 hash tables.

1 20. The method according to claim 18, further
2 comprising:

3 storing prefixes corresponding to only a subset
4 of different prefix lengths possible under an addressing
5 scheme in the plurality of hash tables;,, and

6 storing a remainder of prefixes in the content
7 addressable memory.