Lecture 14: Krylov subspace methods for least squares problems

School of Mathematical Sciences, Xiamen University

- 1. Conjugate gradient for least squares problems (CGLS)
 - CGLS is an implementation of CG for the normal equations.

Algorithm: CGLS for
$$\min_{\mathbf{x}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2$$

 $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0, \quad \mathbf{p}_0 = \mathbf{A}^*\mathbf{r}_0;$
 $\mathbf{for} \ j = 1, 2, 3, \dots,$
 $\alpha_j = \|\mathbf{A}^*\mathbf{r}_{j-1}\|_2^2/\|\mathbf{A}\mathbf{p}_{j-1}\|_2^2;$
 $\mathbf{x}_j = \mathbf{x}_{j-1} + \alpha_j\mathbf{p}_{j-1};$
 $\mathbf{r}_j = \mathbf{r}_{j-1} - \alpha_j\mathbf{A}\mathbf{p}_{j-1};$
 $\beta_j = \|\mathbf{A}^*\mathbf{r}_j\|_2^2/\|\mathbf{A}^*\mathbf{r}_{j-1}\|_2^2;$
 $\mathbf{p}_j = \mathbf{A}^*\mathbf{r}_j + \beta_j\mathbf{p}_{j-1};$
end

• Assume that **A** has full column rank. We have

$$\mathbf{x}_{j} = \underset{\mathbf{x} \in \mathbf{x}_{0} + \mathcal{K}_{j}(\mathbf{A}^{*}\mathbf{A}, \mathbf{A}^{*}\mathbf{r}_{0})}{\operatorname{argmin}} \|\mathbf{A}^{\dagger}\mathbf{b} - \mathbf{x}\|_{\mathbf{A}^{*}\mathbf{A}}$$
$$= \mathbf{x}_{0} + \underset{\mathbf{x} \in \mathcal{K}_{j}(\mathbf{A}^{*}\mathbf{A}, \mathbf{A}^{*}\mathbf{r}_{0})}{\operatorname{argmin}} \|\mathbf{r}_{0} - \mathbf{A}\mathbf{x}\|_{2}.$$

2. Householder bidiagonalization

Proposition 1 (Case $m \ge n$)

Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ has a bidiagonal decomposition:

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix} \mathbf{V}^* = \mathbf{U} \begin{bmatrix} \beta_1 & \alpha_1 & & & \\ & \beta_2 & \ddots & & \\ & & \ddots & \alpha_{n-1} \\ & & & \beta_n \end{bmatrix} \mathbf{V}^*,$$

where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is bidiagonal, $\alpha_i \geq 0$, $\beta_i \geq 0$, $\mathbf{U} \in \mathbb{C}^{m \times m}$ is unitary, and

$$\mathbf{V} = egin{bmatrix} 1 & \mathbf{0} \ \mathbf{0} & \mathbf{Q} \end{bmatrix} \in \mathbb{C}^{n imes n}$$

is unitary.

• Note that in this proposition and in the rest of this lecture we do not consider the stability issue.

• Another bidiagonalization algorithm: Note that

$$\mathbf{A}^*\mathbf{U}_n = \mathbf{V}\mathbf{B}^*, \qquad \mathbf{A}\mathbf{V} = \mathbf{U}_n\mathbf{B},$$

i.e.,

$$\mathbf{A}^* \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \beta_1 \\ \alpha_1 & \beta_2 \\ & \ddots & \ddots \\ & & \alpha_{n-1} & \beta_n \end{bmatrix}$$

and

$$\mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \beta_1 & \alpha_1 & & & \\ & \beta_2 & \ddots & & \\ & & \ddots & \alpha_{n-1} \\ & & & \beta_n \end{bmatrix}.$$

Equating column i on both sides, we get

$$\mathbf{A}^* \mathbf{u}_i = \beta_i \mathbf{v}_i + \alpha_i \mathbf{v}_{i+1}, \qquad 1 \le i \le n-1;$$

and

$$\mathbf{A}\mathbf{v}_i = \alpha_{i-1}\mathbf{u}_{i-1} + \beta_i\mathbf{u}_i, \qquad 2 \le i \le n.$$

Algorithm: Golub-Kahan bidiagonalization for A

$$\beta_1 = \|\mathbf{a}_1\|_2, \quad \mathbf{u}_1 = \mathbf{a}_1/\beta_1, \quad \mathbf{v}_1 = \mathbf{e}_1$$
for $i = 1, 2, 3, \dots$,
$$\mathbf{v}_{i+1} = \mathbf{A}^* \mathbf{u}_i - \beta_i \mathbf{v}_i$$

$$\alpha_i = \|\mathbf{v}_{i+1}\|_2$$

$$\mathbf{v}_{i+1} = \mathbf{v}_{i+1}/\alpha_i$$

$$\mathbf{u}_{i+1} = \mathbf{A}\mathbf{v}_{i+1} - \alpha_i \mathbf{u}_i$$

$$\beta_{i+1} = \|\mathbf{u}_{i+1}\|_2$$

$$\mathbf{u}_{i+1} = \mathbf{u}_{i+1}/\beta_{i+1}$$
end

3. LSQR

• LSQR is based on Golub–Kahan bidiagonalization for [b A]:

$$\mathbf{U}^* \begin{bmatrix} \mathbf{b} & \mathbf{A} \end{bmatrix} \mathbf{V} = \begin{bmatrix} \mathbf{U}^* \mathbf{b} & \mathbf{U}^* \mathbf{A} \mathbf{Q} \end{bmatrix} = \begin{bmatrix} \beta_1 \mathbf{e}_1 & \widetilde{\mathbf{B}} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$
$$= \begin{bmatrix} \beta_1 & \alpha_1 & & \\ & \beta_2 & \ddots & \\ & \ddots & \alpha_n \\ & & \beta_{n+1} \end{bmatrix}.$$

We can write the least squares problem as

$$\min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 = \min_{\mathbf{x} \in \mathbb{C}^n} \left\| \begin{bmatrix} \mathbf{b} & \mathbf{A} \end{bmatrix} \begin{bmatrix} 1 \\ -\mathbf{x} \end{bmatrix} \right\|_2 = \min_{\mathbf{y} \in \mathbb{C}^n} \left\| \beta_1 \mathbf{e}_1 - \widetilde{\mathbf{B}}\mathbf{y} \right\|_2.$$

Algorithm: Golub–Kahan bidiagonalization for $\begin{bmatrix} \mathbf{b} & \mathbf{A} \end{bmatrix}$ $\beta_1 = \|\mathbf{b}\|_2, \quad \mathbf{u}_1 = \mathbf{b}/\beta_1, \quad \mathbf{q}_0 = \mathbf{0}$ for $i = 1, 2, 3, \dots$, $\mathbf{q}_i = \mathbf{A}^* \mathbf{u}_i - \beta_i \mathbf{q}_{i-1},$ $\alpha_i = \|\mathbf{q}_i\|_2$ $\mathbf{q}_i = \mathbf{q}_i/\alpha_i$ $\mathbf{u}_{i+1} = \mathbf{A}\mathbf{q}_i - \alpha_i \mathbf{u}_i$ $\beta_{i+1} = \|\mathbf{u}_{i+1}\|_2$ $\mathbf{u}_{i+1} = \mathbf{u}_{i+1}/\beta_{i+1}$

Proposition 2

end

Assume that all α_i and β_i for $1 \leq i \leq k$ in the above algorithm are nonzero. Then the sets $\{\mathbf{u}_i\}_{i=1}^k$ and $\{\mathbf{q}_i\}_{i=1}^k$ are orthonormal bases for $\mathcal{K}_k(\mathbf{A}\mathbf{A}^*, \mathbf{b})$ and $\mathcal{K}_k(\mathbf{A}^*\mathbf{A}, \mathbf{A}^*\mathbf{b})$, respectively.

The proof is left as an exercise.

• Define the matrices

$$\mathbf{U}_k = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{bmatrix}, \qquad \mathbf{Q}_k = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_k \end{bmatrix},$$

and

$$\widetilde{\mathbf{B}}_{k+1} = \begin{bmatrix} \alpha_1 & & & \\ \beta_2 & \ddots & & \\ & \ddots & \alpha_k \\ & & \beta_{k+1} \end{bmatrix} \in \mathbb{C}^{(k+1)\times k}.$$

We have

$$\mathbf{AQ}_k = \mathbf{U}_{k+1}\widetilde{\mathbf{B}}_{k+1}.$$

At step k, LSQR seeks the best approximate solution in the subspace, $\mathcal{K}_k(\mathbf{A}^*\mathbf{A}, \mathbf{A}^*\mathbf{b}) = \text{range}(\mathbf{Q}_k)$, that is

$$\begin{split} \min_{\mathbf{y} \in \mathbb{C}^k} \|\mathbf{b} - \mathbf{A} \mathbf{Q}_k \mathbf{y}\|_2 &= \min_{\mathbf{y} \in \mathbb{C}^k} \|\mathbf{b} - \mathbf{U}_{k+1} \widetilde{\mathbf{B}}_{k+1} \mathbf{y}\|_2 \\ &= \min_{\mathbf{y} \in \mathbb{C}^k} \|\beta_1 \mathbf{e}_1 - \widetilde{\mathbf{B}}_{k+1} \mathbf{y}\|_2. \end{split}$$

• The least squares problem with bidiagonal structure can be solved using a sequence of Givens rotations. Consider the matrix

$$\begin{bmatrix} \widetilde{\mathbf{B}}_{k+1} & \beta_1 \mathbf{e}_1 \end{bmatrix} = \begin{bmatrix} \alpha_1 & & & & \beta_1 \\ \beta_2 & \alpha_2 & & & 0 \\ & \beta_3 & \alpha_3 & & 0 \\ & & \ddots & \ddots & & \vdots \\ & & & \beta_k & \alpha_k & 0 \\ & & & & \beta_{k+1} & 0 \end{bmatrix}.$$

In the first step we zero β_2 by using a Givens rotation:

$$\begin{bmatrix} \widehat{\alpha}_1 & \widehat{\beta}_1 & & & \gamma_1 \\ 0 & \widehat{\alpha}_2 & & & \widehat{\gamma}_2 \\ & \beta_3 & \alpha_3 & & 0 \\ & \ddots & \ddots & & \vdots \\ & & \beta_k & \alpha_k & 0 \\ & & & \beta_{k+1} & 0 \end{bmatrix}.$$

In the next step, we zero β_3 by using a Givens rotation:

$$\begin{bmatrix} \widehat{\alpha}_1 & \widehat{\beta}_1 & & & \gamma_1 \\ 0 & \widehat{\alpha}_2 & \widehat{\beta}_2 & & \gamma_2 \\ & 0 & \widehat{\alpha}_3 & & \widehat{\gamma}_3 \\ & & \beta_4 & \ddots & & \vdots \\ & & & \ddots & \alpha_k & 0 \\ & & & & \beta_{k+1} & 0 \end{bmatrix}.$$

The final result after k steps is

$$\begin{bmatrix} \widehat{\alpha}_1 & \widehat{\beta}_1 & & & \gamma_1 \\ & \widehat{\alpha}_2 & \widehat{\beta}_2 & & \gamma_2 \\ & \ddots & \ddots & & \vdots \\ & & \ddots & \widehat{\beta}_{k-1} & \gamma_{k-1} \\ & & & \widehat{\alpha}_k & \gamma_k \\ & & & \widehat{\gamma}_{k+1} \end{bmatrix} := \begin{bmatrix} \widehat{\mathbf{B}}_k & \boldsymbol{\gamma}_k \\ \boldsymbol{0} & \widehat{\gamma}_{k+1} \end{bmatrix}.$$

Actually, we have the QR factorization for $\begin{bmatrix} \widetilde{\mathbf{B}}_{k+1} & \beta_1 \mathbf{e}_1 \end{bmatrix}$:

$$\begin{bmatrix} \widetilde{\mathbf{B}}_{k+1} & \beta_1 \mathbf{e}_1 \end{bmatrix} = \widehat{\mathbf{Q}} \begin{bmatrix} \widehat{\mathbf{B}}_k & \gamma_k \\ \mathbf{0} & \widehat{\gamma}_{k+1} \end{bmatrix},$$

i.e.,

$$\widetilde{\mathbf{B}}_{k+1} = \widehat{\mathbf{Q}} \begin{bmatrix} \widehat{\mathbf{B}}_k \\ \mathbf{0} \end{bmatrix}, \text{ and } \beta_1 \mathbf{e}_1 = \widehat{\mathbf{Q}} \begin{bmatrix} \boldsymbol{\gamma}_k \\ \widehat{\boldsymbol{\gamma}}_{k+1} \end{bmatrix}.$$

Then we have

$$\arg\min_{\mathbf{y}\in\mathbb{C}^k} \|\beta_1 \mathbf{e}_1 - \widetilde{\mathbf{B}}_{k+1} \mathbf{y}\|_2 = \widehat{\mathbf{B}}_k^{-1} \gamma_k$$

and

$$\min_{\mathbf{y} \in \mathbb{C}^k} \|\beta_1 \mathbf{e}_1 - \widetilde{\mathbf{B}}_{k+1} \mathbf{y}\|_2 = |\widehat{\gamma}_{k+1}|.$$

• Define the matrix

$$\mathbf{W}_k := \mathbf{Q}_k \widehat{\mathbf{B}}_k^{-1} = \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \end{bmatrix}.$$

We have

$$\mathbf{Q}_k = \mathbf{W}_k \widehat{\mathbf{B}}_k,$$

which implies $\mathbf{w}_k = (\mathbf{q}_k - \widehat{\beta}_{k-1} \mathbf{w}_{k-1})/\widehat{\alpha}_k$. We have the recurrence

$$\mathbf{x}_{k} = \mathbf{Q}_{k} \widehat{\mathbf{B}}_{k}^{-1} \boldsymbol{\gamma}_{k} = \mathbf{W}_{k} \boldsymbol{\gamma}_{k} = \begin{bmatrix} \mathbf{W}_{k-1} & \mathbf{w}_{k} \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma}_{k-1} \\ \boldsymbol{\gamma}_{k} \end{bmatrix}$$
$$= \mathbf{W}_{k-1} \boldsymbol{\gamma}_{k-1} + \boldsymbol{\gamma}_{k} \mathbf{w}_{k}$$
$$= \mathbf{x}_{k-1} + \boldsymbol{\gamma}_{k} \mathbf{w}_{k}.$$

• C. C. Paige and M. A. Saunders.

LSQR: An algorithm for sparse linear equations and sparse least squares.

ACM Trans. Math. Software, 8(1):43-71, 1982.

4. Other methods

• D. C.-L. Fong and M. Saunders.

LSMR: An iterative algorithm for sparse least-squares problems. SIAM J. Sci. Comput., 33(5):2950–2971, 2011.

• R. Estrin, D. Orban, and M. A. Saunders.

LSLQ: An iterative method for linear least-squares with an error minimization property.

SIAM J. Matrix Anal. Appl., 40(1):254–275, 2019.

• R. Estrin, D. Orban, and M. A. Saunders.

LNLQ: An iterative method for least-norm problems with an error minimization property.

SIAM J. Matrix Anal. Appl., 40(3):1102-1124, 2019.

 \bullet Craig's method (also called CGNE): E. J. Craig. 1955 The N-step iteration procedures. J. Math. and Phys., 34:64–73.