TRIGONOMETRY - (TEST - 5)

- The value of $\cos 15^{\circ} \sin 15^{\circ}$ is equal to 1.
- (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$ (c) $-\frac{1}{\sqrt{2}}$
- (d) o
- If $\tan \alpha$, $\tan \beta$ are the roots of the equation 2.

$$x^{2} + px + q = 0 \ (p \neq 0)$$
, then

- (a) $\sin^2(\alpha + \beta) + p\sin(\alpha + \beta)\cos(\alpha + \beta) + a\cos^2(\alpha + \beta) = a$
- (b) $\tan(\alpha + \beta) = \frac{p}{q-1}$
- (c) $\cos(\alpha + \beta) = 1 a$
- (d) $\sin(\alpha + \beta) = -p$
- $\tan 5x \tan 3x \tan 2x =$ 3.
 - (a) $\tan 5x \tan 3x \tan 2x$ (b) $\frac{\sin 5x \sin 3x \sin 2x}{\cos 5x \cos 3x \cos 2x}$
 - (c) o (d) None of these
 - If $\tan \alpha$ equals the integral solution of the inequality
 - $4x^2 16x + 15 < 0$ and $\cos \beta$ equals to the slope of the bisector of first quadrant, then $\sin(\alpha + \beta)\sin(\alpha - \beta)$ is equal
 - to

4.

- (a) $\frac{3}{5}$ (b) $-\frac{3}{5}$ (c) $\frac{2}{\sqrt{5}}$

- $\tan \frac{2\pi}{5} \tan \frac{\pi}{15} \sqrt{3} \tan \frac{2\pi}{5} \tan \frac{\pi}{15}$ is equal to

 - (a) $-\sqrt{3}$ (b) $\frac{1}{\sqrt{3}}$ (c) 1

(d) $\sqrt{3}$

10.

- The value of $\cos 12^{\circ} + \cos 84^{\circ} + \cos 156^{\circ} + \cos 132^{\circ}$ is

 - (a) $\frac{1}{2}$ (b) 1 (c) $-\frac{1}{2}$
- The value of $\cos 52^{\circ} + \cos 68^{\circ} + \cos 172^{\circ}$ is
 - (a) o
- (b) 1
- (c) 2

(c) tan 54°

(c) tan 18°

(d) $\frac{3}{2}$

(d) tan 73°

(d) None

- 8. $\frac{\cos 17^{\circ} + \sin 17^{\circ}}{\cos 17^{\circ} \sin 17^{\circ}} =$
 - (a) tan 62° (b) tan 56°
 - $\cos 9^{\circ} + \sin 9^{\circ}$ $\frac{}{\cos 9^{\circ} - \sin 9^{\circ}} =$
 - (a) tan 54° (b) tan 36° $\sin 70^{\circ} + \cos 40^{\circ}$
 - $\cos 70^{\circ} + \sin 40^{\circ}$
- (a) 1 (b) $\frac{1}{\sqrt{2}}$ (c) $\sqrt{3}$
- (d) $\frac{1}{2}$
- 11. If $cos(A B) = \frac{3}{5}$ and tan A tan B = 2, then
 - (a) $\cos A \cos B = \frac{1}{5}$ (b) $\sin A \sin B = -\frac{2}{5}$
 - (c) $\cos A \cos B = -\frac{1}{5}$ (d) $\sin A \sin B = -\frac{1}{5}$
- $\tan 100^{\circ} + \tan 125^{\circ} + \tan 100^{\circ} \tan 125^{\circ} =$ 12.
 - (a) o
- (b) 1/2
- (c) -1
- (d) 1

- 13. If $\frac{\pi}{2} < \alpha < \pi$, $\pi < \beta < \frac{3\pi}{2}$; $\sin \alpha = \frac{15}{17}$ and $\tan \beta = \frac{12}{5}$, then the value of $\sin(\beta - \alpha)$ is
 - (a) -171/221 (b) -21/221 (c) 21/221
- If $\cos x + \cos y + \cos \alpha = 0$ and $\sin x + \sin y + \sin \alpha = 0$, then $\cot\left(\frac{x+y}{2}\right) =$
 - (c) $\cot \alpha$ (d) $\sin \left(\frac{x+y}{2} \right)$ (a) $\sin \alpha$ (b) $\cos \alpha$
- If $\sin\theta + \sin 2\theta + \sin 3\theta = \sin \alpha$ 15. and $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha$, then θ is equal to
- $\cos 10^o + \sin 10^o$ $\frac{1}{\cos 10^{\circ} - \sin 10^{\circ}}$
 - (a) $\tan 55^{\circ}$ (b) $\cot 55^{\circ}$ (c) $-\tan 35^{\circ}$ (d) $-\cot 35^{\circ}$

(c) 2α

(d) 75°

- If $\cos P = \frac{1}{7}$ and $\cos Q = \frac{13}{14}$, where P and Q both are acute angles. Then the value of P - Q is
- (a) 30° (b) 60° (c) 45° $\sec 50^{\circ} + \tan 50^{\circ}$ is equal to 18.
 - (a) $\tan 20^{\circ} + \tan 50^{\circ}$ (b) $2 \tan 20^{\circ} + \tan 50^{\circ}$
 - (c) $\tan 20^{\circ} + 2 \tan 50^{\circ}$ (d) $2 \tan 20^{\circ} + 2 \tan 50^{\circ}$
- If $\tan \alpha = (1 + 2^{-x})^{-1}$, $\tan \beta = (1 + 2^{x+1})^{-1}$, then $\alpha + \beta$ 19.
 - (a) $\pi/6$ (b) $\pi/4$ (c) $\pi/3$ (d) $\pi/2$
- If $\frac{\pi}{2} < \alpha < \pi$, $\pi < \beta < \frac{3\pi}{2}$; $\sin \alpha = \frac{15}{17}$ and $\tan \beta = \frac{12}{5}$, then

the value of $sin(\beta - \alpha)$ is

- (a) -171/221 (b) -21/221 (c) 21/221 (d) 171/221
- If $\cos x + \cos y + \cos \alpha = 0$ and $\sin x + \sin y + \sin \alpha = 0$, then $\cot\left(\frac{x+y}{2}\right) =$
- (d) $\sin\left(\frac{x+y}{2}\right)$ (a) $\sin \alpha$ (b) $\cos \alpha$ (c) $\cot \alpha$
- If $\sin\theta + \sin 2\theta + \sin 3\theta = \sin \alpha$ 15. and $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha$, then θ is equal to

(b) α

 $\frac{\cos 10^o + \sin 10^o}{\cos 10^o - \sin 10^o}$ 16.

(a) $\alpha/2$

(b) $\cot 55^{\circ}$ (c) $-\tan 35^{\circ}$ (d) $-\cot 35^{\circ}$

(c) 2α

(d) $\alpha/6$

(d) $\pi/2$

- If $\cos P = \frac{1}{7}$ and $\cos Q = \frac{13}{14}$, where P and Q both are acute angles. Then the value of P - Q is
 - (a) 30° (b) 60° (c) 45° (d) 75°
- $\sec 50^{\circ} + \tan 50^{\circ}$ is equal to 18.
 - (a) $\tan 20^{\circ} + \tan 50^{\circ}$ (b) $2 \tan 20^{\circ} + \tan 50^{\circ}$
 - (c) $\tan 20^{\circ} + 2 \tan 50^{\circ}$ (d) $2 \tan 20^{\circ} + 2 \tan 50^{\circ}$
- If $\tan \alpha = (1 + 2^{-x})^{-1}$, $\tan \beta = (1 + 2^{x+1})^{-1}$, then $\alpha + \beta$ equals
 - (a) $\pi/6$ (b) $\pi/4$ (c) $\pi/3$

- 20. The sum $S = \sin\theta + \sin 2\theta + \dots + \sin n\theta$, equals
 - (a) $\sin \frac{1}{2}(n+1)\theta \sin \frac{1}{2}n\theta / \sin \frac{\theta}{2}$
 - (b) $\cos \frac{1}{2}(n+1)\theta \sin \frac{1}{2}n\theta / \sin \frac{\theta}{2}$
 - (c) $\sin \frac{1}{2}(n+1)\theta \cos \frac{1}{2}n\theta / \sin \frac{\theta}{2}$
 - (d) $\cos \frac{1}{2}(n+1)\theta \cos \frac{1}{2}n\theta / \sin \frac{\theta}{2}$
- The value of $\cot 70^{\circ} + 4 \cos 70^{\circ}$ is
 - (a) $\frac{1}{\sqrt{3}}$ (b) $\sqrt{3}$ (c) $2\sqrt{3}$
- The expression $2\cos\frac{\pi}{13}.\cos\frac{9\pi}{13}+\cos\frac{3\pi}{13}+\cos\frac{5\pi}{13}$ is equal
 - (a) -1(c) 1 (b) o
- 23. If $\sin \theta = \frac{12}{13}$, $(0 < \theta < \frac{\pi}{2})$ and $\cos \phi = -\frac{3}{5}$, $\left(\pi < \phi < \frac{3\pi}{2}\right)$.

Then $\sin(\theta + \phi)$ will be

- (a) $\frac{-56}{61}$ (b) $\frac{-56}{65}$ (c) $\frac{1}{65}$
- If $\tan A \tan B = x$ and $\cot B \cot A = y$, then $\cot(A B) =$
 - (a) $\frac{1}{r} + y$ (b) $\frac{1}{ry}$ (c) $\frac{1}{r} \frac{1}{y}$ (d) $\frac{1}{r} + \frac{1}{y}$
- $\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ} =$ 25. (b) 1/32(c) 1/8(a) 1/16 (d) 1/4
- 20. The sum $S = \sin\theta + \sin 2\theta + + \sin n\theta$, equals
 - (a) $\sin \frac{1}{2}(n+1)\theta \sin \frac{1}{2}n\theta / \sin \frac{\theta}{2}$
 - (b) $\cos \frac{1}{2}(n+1)\theta \sin \frac{1}{2}n\theta / \sin \frac{\theta}{2}$
 - (c) $\sin \frac{1}{2}(n+1)\theta \cos \frac{1}{2}n\theta / \sin \frac{\theta}{2}$
 - (d) $\cos \frac{1}{2}(n+1)\theta \cos \frac{1}{2}n\theta / \sin \frac{\theta}{2}$
- The value of $\cot 70^{\circ} + 4 \cos 70^{\circ}$ is
 - (a) $\frac{1}{\sqrt{2}}$ (b) $\sqrt{3}$ (c) $2\sqrt{3}$
- The expression $2\cos\frac{\pi}{13} \cdot \cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13}$ is equal

(a) -1

- (b) o (c) 1
- 23. If $\sin \theta = \frac{12}{13}$, $(0 < \theta < \frac{\pi}{2})$ and $\cos \phi = -\frac{3}{5}$, $\left(\pi < \phi < \frac{3\pi}{2}\right)$.

Then $\sin(\theta + \phi)$ will be

- (a) $\frac{-56}{61}$ (b) $\frac{-56}{65}$ (c) $\frac{1}{65}$
- If $\tan A \tan B = x$ and $\cot B \cot A = y$, then $\cot(A B) =$
 - (a) $\frac{1}{x} + y$ (b) $\frac{1}{xy}$ (c) $\frac{1}{r} - \frac{1}{v}$ (d) $\frac{1}{r} + \frac{1}{v}$
- $\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ} =$ 25.
 - (a) 1/16 (b) 1/32 (c) 1/8(d) 1/4