实验三 半加半减器和函数发生器

宋渝杰 18340146

一、动态显示学号(之前的实验报告已有)

1. 实验内容

设计思路说明:

通过 74LS197 提供 8 进制计数,使用 38 译码器转换为 0-7 输出,并将对应的 BCD 码传入七段管。数字 8 使用另一个 38 译码器显示。

2. 仿真电路与结果

3、实验结果与分析

结果分析论证:

实验中由于只有一个 38 译码器,数字 8 使用高频率连续显示数字 0-7, 使得显示出了数字 8。其他方面合乎预期。

二、用 74LS151 实现半加半减器

1. 实验内容

真值表构建:

AGARA.				
S	A	В	Y	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

设计思路说明:

通过真值表得到 Y 和 Cout 的对应值之后,分别把 74LS151 的 8 个接口对应接高或者低,在分别传出即可。(74LS151 用 74HC151 代替)

2. 仿真电路与结果

3. 实验结果与分析

结果分析论证:

实验箱中只有一块 74LS151, 只能输出 Y 和 Cout 其中一个数据, 于是分两次测试, 得到两张实验结果图, 其他方面与预期相符。

三、用 74LS151 实现函数发生器

1. 实验内容

真值表构建:

C1		Ι 4	Ъ	v
S1	S0	A	В	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

设计思路说明:

因为 74LS151 只有三个输入口,于是把 S1、S0、A 分别接入到 S2、S1、S0中,然后根据函数的效果直接把函数的结果分别输入进 8 个输入口中,比如 P0、P1 根据函数效果直接接 A,等等。然后分别输出即可。

2. 仿真电路与结果

3. 实验结果与分析

结果分析论证:

实验结果与预期相符。

四、实验总结

实验中遇到的问题:

- 1. 实验箱中只有一块 74LS151,无法同时实现两个输出解决方案:
- 1. 通过两次不同的接线,得到 Y 和 Cout 的输出,进行两次实验得到结果 收获:
 - 1. 按时完成了所有实验
 - 2. 学习了点阵的相关内容