Übung 11: Digitale Schaltkreisfamilie

"Digitaltechnik" WS 2008/09

Aufgabe 1

Abbildung 1: Digitalgatter in Bipolartechnik

- a) Erlätuern Sie die Funktionsweise des in Abbildung 1 dargestellten Gatters.
 - D₁, D₂: Eingangs Kapp Dioden (Schutzdioden)
 - \clubsuit Schützen die Schaltung vor negativen Eingangsspannungen bzw. $U_E <$ 0,7V
 - 1. Fall: $E_1 = "H" \text{ und } E_2 = "L"$
 - \clubsuit Stromfluss über R_1 ; BC_{T_1} ; BE_{T_3} ; R_4

 - \blacksquare T₃ leitet → E_{CE}\≈ U_{CE,sat}

- Pfad E2:
 - \clubsuit Stromfluss über R₂; BE_{T2}
 - **♣** T₄ sperrt, da nicht genug Basis Potential anliegt
 - \downarrow Stromfluss über R_3 ; CE_{T_3} ; R_4
 - **♣** Spannungsabfall über R₄ \rightarrow T₆ leitet; U_{R4} \approx 700mV
 - → A = "L"; T₅ und D₃ leiten nicht, da die Spannung an der Basis von T₅ nur ca. 900mV beträgt → reicht nicht für 2 Diodenstrecken.
- 2. Fall: $E_1 = "L" \text{ und } E_2 = "L"$
 - ♣ Pfad E₁ analog zu Pfad E₂
 - ♣ T₃ und T₄ sperren → kein Spannungsabfall über R₄
 - ♣ T₆ sperrt
 - ♣ T₅ und D₃ leiten
 - → A = "H"

E 1	E ₂	Α	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

b) Um welchen Typ handelt es sich hierbei, und welcher Schaltkreisfamilie gehört es an? Geben Sie die logische Funktion an, die das Verhalten beschreibt.

Standard NOR – Gatter in TTL – Technik (7402)

$$\overline{A} = E_1 + E_2$$
; $A = \overline{E_1 + E_2}$

c) Welche gravierendenNachteile besitzt die Schaltkreisfamilie des hier gezeigten Gatters? Durch welche schaltungstechnischen Maßnahmen lassen sich diese weitgehend reduzieren?

Nachteile:

- Hohe Schaltzeiten infolge der gesättigten Schalttransistoren
- Hohe Verlustleistung durch Dauerströme der leitenden Transistoren

Abhilfe:

Einschub: Fan Out = 10

Die Zahl der Eingänge die den Ausgang maximal belasten dürfen

d) Was ist ein open – collector Ausgang und wozu kann man ihn benutzen?

Aufgabe 2

Differentielle Logik:

Eingangsspannung E als Spannungsdifferenz zwischen Anschluss 1 und 2.

Logische '1' - High – Pegel
$$\Rightarrow$$
 E = +300...800mV
Logische '0' - Low – Pegel \Rightarrow E = -800...-300mV

Abbildung 2: Digitalgatter in Bipolartechnik

a) Erstellen Sie für das in Abbildung 2 dargestellte Gatter eine Wahrheitstabelle und bestimmen Sie daraus die Schaltfunktion. Um welche Schaltung handelt es sich hierbei?

E ₁	\mathbf{E}_2	Ез	A
0	0	0	0
1	0	0	0
0	1	0	1
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	0
1	1	1	1

- \Rightarrow A = E₁ für E₃ = 1
- \Rightarrow A = E₂ für E₃ = 0
- \Rightarrow Funktion: 2 1 Multiplexer
- \Rightarrow E₃: Steuersignal
- ⇒ E₁, E₂: Daten
- b) Welche Schaltungstechnik wurde zur Realisierung gewählt? Geben Sie die Schaltkreisfamilie an! Welche Spannungspegel werden der logischen '1' bzw. '0' zugeordnet?

ECL: <u>E</u>mitter <u>C</u>oupled <u>L</u>ogic logische "1" 300mV...800mV logische "0" - 800mV...- 300mV