Código: ST245 Estructura de Datos 1

Laboratorio Nro. 2: Notación O grande

Santiago Soto Marulanda

Universidad Eafit Medellín, Colombia ssotom@eafit.edu.co

Andrés Sánchez Castrillón

Universidad Eafit Medellín, Colombia asanchezc@eafit.edu.co

Jamerson Stive Correa

Universidad Eafit Medellín, Colombia jscorreac@eafit.edu.co

3) 3.1

Nota: Estos tiempos fueron tomados usando Delav

	1	2	3	4	5	6	7	8	9	10
Array sum	1001	2005	3010	4000	5000	6002	7000	8000	9001	10016
Array max	1000	2000	3000	4000	5000	6001	7000	8001	9001	10009
Insertion Sort	1000	3000	5000	7000	10002	15001	20026	25022	30003	36103
Merge Sort	0	4002	10007	16008	24003	32018	40158	48176	58107	68037

Código: ST245
Estructura de
Datos 1

3.3 Después de tomar el tiempo que tarda en ejecutarse los ejercicios del laboratorio y compararlos con la notación asintótica O, pudimos observar que los datos experimentales obtenidos de cada ejercicio, en su gran mayoría, coinciden con el orden de complejidad que le corresponde. En el caso de ArraySum y ArrayMasx su notación es O(n) como se ve en las gráficas. en el caso de InsertionSort su notación es O(n^2), en este caso la gráfica no es perfecta a causa de ser datos experimentales y por otros factores que influyen, pero sí se puede observar como crece mas rapido.

MergeSort es O(nlog(n)) la gráfica es muy cercana, se puede ver cómo crece más rápido que la lineal.

- **3.4** Al incrementar de manera notable los valores del tamaño del problema del algoritmo InsertionSort, éste crece más rápido que todos los problemas planteados, por lo tanto su tiempo de ejecucion sera mucho más alto.
- **3.5** Esto se debe a que Array sum tiene una complejidad O(n) y InsertionSort posee complejidad $O(n^2)$, por esto InsertionSort crece mucho más rápido.

Código: ST245 Estructura de Datos 1

3.6 La complejidad de InsertionSort es O(n^2) y la de MergeSort es O(nlog(n)) por esto, y con la siguiente gráfica, podemos ver que para arreglos más grandes es más eficiente MergeSort, y para arreglos pequeños InsertionSort.

Tomado de: https://rootear.com/desarrollo/complejidades-algoritmos

- **3.7** Este algoritmo, analiza un arreglo dado de enteros y si este cumple con la condición de no ser vacío, entonces tendrá un mínimo span de 1, luego busca el valor más a la izquierda en el arreglo que tenga un igual más a la derecha en dicho arreglo y entonces al valor 1 del mínimo le suma la cantidad de elementos que se encuentran entre esta pareja de números iguales.
 - **3.8 Nota:** R.S(Regla de la suma) | R.P(Regla del producto).

no14:

Array-2

T(n) = c + c'*n

Código: ST245 Estructura de Datos 1

$$T(n) = O(c + c*n)$$

$$T(n) = O(c'*n) // R.S$$

$$T(n) = O(n) //R.P$$

• isEverywhere:

$$T(n) = c + c'*n$$

$$T(n) = O(c + c'*n)$$

$$T(n) = O(c'*n) //R.S$$

$$T(n) = O(n) //R.P$$

either24:

$$T(n) = c + c'*n$$

$$T(n) = O(c + c'*n)$$

$$T(n) = O(c'*n) //R.S$$

$$T(n) = O(n) //R.P$$

• has77:

$$T(n) = c + c'*n$$

$$T(n) = O(c + c'*n)$$

$$T(n) = O(c'*n) //R.S$$

$$T(n) = O(n) //R.P$$

• only14:

$$T(n) = c + c'*n$$

$$T(n) = O(c + c'*n)$$

$$T(n) = O(c'*n) //R.S$$

$$T(n) = O(n) //R.P$$

Array-3

• fix34:

$$T(n) = n^*(c+c'^*n)$$

$$T(n) = O(c*n + c*n^2)$$

$$T(n) = O(c*n^2) //R.S$$

$$T(n) = O(n^2) //R.P$$

Código: ST245 Estructura de Datos 1

canBalance:

$$T(n) = c*n + c'*n$$

$$T(n) = O(c^*n + c^{*}n)$$

$$T(n) = O(c*n) //R.S$$

$$T(n) = O(n) //R.P$$

linearln:

$$T(n) = n^*(m + c)$$

$$T(n) = O(n*m + c*n)$$

$$T(n) = O(m*n) //R.S$$

squareUp:

$$T(n) = c + c'*n^2$$

$$T(n) = O(c + c'*n^2)$$

$$T(n) = O(c'*n^2) //R.S$$

$$T(n) = O(n^2) //R.P$$

seriesUp:

$$T(n) = c + c'*n*(n+1)/2$$

$$T(n) = O(c + c'*n*(n+1)/2)$$

$$T(n) = O(c'*n*(n+1)/2) //R.S$$

$$T(n) = O(n^2/2 + 1/2) //R.P$$

$$T(n) = O(n^2*1/2) //R.S$$

$$T(n) = O(n^2) //R.P$$

3.9

Array-2:

- no14: En este caso n establece el tamaño del arreglo dado.
- **isEverywhere:** En este caso n representa la longitud del arreglo dado.
- either24: En este caso n representa la longitud del arreglo dado.
- has77: En este caso n establece el tamaño del arreglo dado.
- only14: En este caso n establece el tamaño del arreglo dado.

Código: ST245 Estructura de Datos 1

Array 3:

- fix34: En este caso n representa la longitud del arreglo dado.
- canBalance: En este caso n representa la longitud del arreglo dado.
- **LinearIn:** En este caso n representa la longitud del arreglo interior y m representa la longitud del arreglo exterior.
- **squareUp:** En este caso n representa la cantidad de subconjuntos solicitada dentro de cada arreglo.
- **seriesUp:** En este caso n representa la cantidad de subconjuntos solicitada dentro de cada arreglo.

4) Simulacro de Parcial

- **1.** *c)* O(n+m)
- **2.** *d)* O(*m*×*n*)
- **3.** *b)* O(ancho)
- **4.** *b)* O(*n*^3)
- **5.** d) O(n^2)

6. Trabajo en Equipo y Progreso Gradual (Opcional)

a) El reporte de cambios del informe de laboratorio

Integrante	Fecha	Hecho	Haciendo	Por Hacer
Santiago Soto	08/09/2017		Modificando codigo taller	Tomar tiempos algoritmos
Jamerson Correa	08/09/2017		Realizando ejercicios de Array-2 codingbat	Sacar complejidad de algoritmos
Santiago Soto	08/09/2017	Modificando	Tomar	Hacer

Código: ST245 Estructura de Datos 1

		codigo taller	tiempos algoritmos	gráficas
Jamerson Correa	09/09/2017	Ejercicios de Array-2 codingbat	Conclusiones datos laboratorio	
Andres Sanchez	09/09/2017		Soluciones Array-3 codingbat	Hallar complejidad problemas Array-3
Jamerson Correa	09/09/2017		Conclusiones datos laboratorio, complejidad ejercicios Array-2	Realizando conclusiones puntos 3.9
Santiago Soto	09/09/217	Tomar tiempos algoritmos	Gráficas	Simulacro parcial
Andres Sanchez	09/09/2017	Algoritmos arraySum, arrayMaximus, Insertion Sort, Merge Sort.	Realizando conclusiones puntos 3.4 y 3.8	Realizando conclusiones puntos 3.9
Jamerson Correa	10/09/2017		Revisión de laboratorio.	
Santiago Soto	10/09/2017	Simulacro parcial	Realizando conclusiones puntos 3.5 - 3.7	

b) Reporte cambios informe.

DOCENTE MAURICIO TORO BERMÚDEZ
Teléfono: (+57) (4) 261 95 00 Ext. 9473. Oficina: 19 - 627
Correo: mtorobe@eafit.edu.co

Código: ST245 Estructura de Datos 1

