华中科技大学研究生课程考试试卷

课程名称	矩阵论	课程类别 <u>□公共课</u> □专业课	考核形式 口用卷
		_ \ <u></u> \	

学生类别 研究生 考试日期 2022.12.03 学生院系 班级

题号	_	=	三	四	五	六		总分
分数								

分 数		
评卷人	一、	填空题(15分)(每小题3分,共5小题)

- 1. 设 T 为 \mathbb{R}^2 上的线性变换,且 $T((x_1,x_2)^T) = (x_1,0)^T$,则 N(T) = ______.
- 2. 矩阵 $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ 的 M-P 广义逆为______.

$$\lim_{n\to\infty} \left(I_3 + \frac{A}{n}\right)^n = \underline{\qquad}.$$

5.
$$A = \begin{bmatrix} -2 & 7 & -2 \\ 1 & 6 & 1 \\ 5 & 1 & -3 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 2 & 0 \\ 3 & 2 & 1 & 5 \\ 1 & -1 & 2 & 4 \\ 1 & -1 & 0 & 1 \end{bmatrix}, \text{ M Tr}(A \otimes B) =$$

____∘

分 数	二、(15分)设 A=		0	0	0]	
评卷人	二. (15分)设 A =	-1	2	1	1	. 录可
VI ETC	二、(13 月 / 仅 11 —	0	0	3	1	, 40.0
			0	-1	1	

逆矩阵 P 及 Jordan 阵 J_A ,使得 $P^{-1}AP = J_A$.

分 数	Ξ 、(15 分)设 $T: P_3[x] \rightarrow P_3[x]$,且 $T(p(x))$
评卷人	$xp'(x) + p''(x), \forall p(x) \in P_3[x].$

=

- (1)求在基 $\{1, x, x^2\}$ 下的矩阵A;
- (2)求在基 $\{1, x, 1 + x^2\}$ 下的矩阵B;
- (3)求一个方阵P,使 $B = P^{-1}AP$;
- (4)对于 $p(x) = a_0 + a_1 x + a_2 (1 + x^2), \quad \bar{x} T^n(p(x)).$

分数 评卷人

四、 $(10 \ \beta)$ 计算矩阵 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ 的奇异值(SVD)分解 $A = U \sum V^H$ (请给出 U, \sum, V 具体矩阵形式)。

分 数 评卷人

五、计算题 (1) (15分) 给定向量 $\alpha_1 = (1,1,0,1)^T$, $\alpha_2 = (0,0,1,0)^T$ 并定义 \mathbb{R}^4 中的子空间 $V = L\{\alpha_1,\alpha_2\}$ 。求 V 的正交补子空间 V^\perp 中距离 $b = (3,3,2,1)^T$ 最近的向量。

(2) (15 分) 设
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$
, 求解微分方程组 $x'(t) = Ax(t)$,

$$x(0) = (1 \ 1 \ 1)^T.$$

分数	六、 (1) (8 分)设 $U \in C^{n \times n}$ 为酉矩阵,证明存在 Hermite
评卷人	矩阵 A , 使得 $U=e^{\mathrm{i}A}$ 且 $UA=AU$, 这里 i 为虚数单位.

(2) (7 分) 设 A 和 C 为 n 阶方阵,A 的特征值 λ_i , $i=1,2,\cdots n$ 都是实数,求证:下面的矩阵方程有唯一解 $X + A^2 X A^2 = C.$