SBML Model Report

Model name: "Goldbeter2006_weightCycling"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Enuo He¹ at November 24th 2006 at 10:19 a.m. and last time modified at February 25th 2015 at 11:30 a.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	3
events	0	constraints	0
reactions	6	function definitions	5
global parameters	0	unit definitions	2
rules	0	initial assignments	0

Model Notes

This model is according to the paper of *A model for the dynamics of human weight cycling* by A. Goldbeter 2006. The figure 3 (A) and (B) have been reproduced by Copasi 4.0.19(development) and SBMLodeSolver. The writer of the paper did not specify any units for the metabolites, so the creator of the model did not define the units as well. Both Q and R are normalized to vary between 0 and 1.

¹EMBL-EBI, enuo@ebi.ac.uk

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name weeks

Definition 604800 s

2.2 Unit substance

Name dimensionless

Definition dimensionless

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
body	body		3	1	litre	Ø	

3.1 Compartment body

This is a three dimensional compartment with a constant size of one litre.

Name body

4 Species

This model contains three species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
P	P	body	dimensionless dimensionless	8	
R	Q R	body body	dimensionless		

5 Function definitions

This is an overview of five function definitions.

5.1 Function definition function_4

Arguments P, V3, R, k3

Mathematical Expression

$$\frac{P \cdot V3 \cdot (1-R)}{k3 + (1-R)} \tag{1}$$

5.2 Function definition function_3

Arguments V2, R, Q, K2

Mathematical Expression

$$\frac{V2 \cdot R \cdot Q}{K2 + Q} \tag{2}$$

5.3 Function definition function_2

Arguments V1, Q, K1

Mathematical Expression

$$\frac{V1 \cdot (1-Q)}{K1 + (1-Q)} \tag{3}$$

5.4 Function definition function_1

Arguments V, substrate, Km

Mathematical Expression

$$\frac{V \cdot substrate}{Km + substrate} \tag{4}$$

5.5 Function definition function_0

Arguments a, Q

Mathematical Expression

$$a \cdot Q$$
 (5)

6 Reactions

This model contains six reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	reaction_0	Increase of P	$\emptyset \xrightarrow{Q} P$	
2	${\tt reaction_1}$	Decrease of P	$P \longrightarrow \emptyset$	
3	${\tt reaction_2}$	Increase of Q	$\emptyset \longrightarrow Q$	
4	reaction_3	Decrease of Q	$Q \xrightarrow{R} \emptyset$	
5 6	reaction_4 reaction_5	Increase of R Decrease of R	$ \emptyset \xrightarrow{\mathbf{P}} \mathbf{R} \\ \mathbf{R} \longrightarrow \emptyset $	

6.1 Reaction reaction_0

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Increase of P

Reaction equation

$$\emptyset \xrightarrow{Q} P$$
 (6)

Modifier

Table 5: Properties of each modifier.

Id	Name	SBO
Q	Q	

Product

Table 6: Properties of each product.

Id	Name	SBO
Р	P	·

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{body}) \cdot \text{function}_0(a, Q)$$
 (7)

$$function_{-}0(a,Q) = a \cdot Q \tag{8}$$

Table 7: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
a		0.1	

6.2 Reaction reaction_1

This is an irreversible reaction of one reactant forming no product.

Name Decrease of P

Reaction equation

$$P \longrightarrow \emptyset \tag{10}$$

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
Р	P	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{function}_{-1}(V, P, Km)$$
 (11)

$$function_{-}1 (V, substrate, Km) = \frac{V \cdot substrate}{Km + substrate}$$
 (12)

Table 9: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
V		0.1	
Km		0.2	

6.3 Reaction reaction_2

This is an irreversible reaction of no reactant forming one product.

Name Increase of Q

Reaction equation

$$\emptyset \longrightarrow Q$$
 (13)

Product

Table 10: Properties of each product.

Id	Name	SBO
Q	Q	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{function}_2(V1, Q, K1) \tag{14}$$

$$function_{-}2(V1,Q,K1) = \frac{V1 \cdot (1-Q)}{K1 + (1-Q)} \tag{15} \label{eq:15}$$

Table 11: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
V1		1.00	
K1		0.01	

6.4 Reaction reaction_3

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Decrease of Q

Reaction equation

$$Q \xrightarrow{R} \emptyset \tag{16}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
Q	Q	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
R	R	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{function}_3(V2, R, Q, K2) \tag{17}$$

function_3 (V2, R, Q, K2) =
$$\frac{\text{V2} \cdot \text{R} \cdot \text{Q}}{\text{K2} + \text{Q}}$$
 (18)

Table 14: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
V2		1.50	
K2		0.01	\checkmark

6.5 Reaction reaction_4

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Increase of R

Reaction equation

$$\emptyset \xrightarrow{P} R \tag{19}$$

Modifier

Table 15: Properties of each modifier.

Id	Name	SBO
Р	P	

Product

Table 16: Properties of each product.

Id	Name	SBO
R	R	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{function}_4(P, V3, R, k3) \tag{20}$$

$$\text{function_4}\left(P,V3,R,k3\right) = \frac{P\cdot V3\cdot (1-R)}{k3+(1-R)} \tag{21} \label{eq:21}$$

Table 17: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
V3		6.00	$ \overline{\checkmark} $
k3		0.01	

6.6 Reaction reaction_5

This is an irreversible reaction of one reactant forming no product.

Name Decrease of R

Reaction equation

$$R \longrightarrow \emptyset$$
 (22)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
R	R	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{function}_1(V, R, Km)$$
 (23)

$$function_{-}1(V, substrate, Km) = \frac{V \cdot substrate}{Km + substrate}$$
 (24)

Table 19: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
V		2.50	$ \mathcal{L} $
Km		0.01	\checkmark

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species P

Name P

Notes body weight

Initial concentration $0.43 \text{ dimensionless} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_1 and as a product in reaction_0 and as a modifier in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{P} = |v_1| - |v_2| \tag{25}$$

7.2 Species Q

Name Q

Notes dietary intake

Initial concentration $0.8 \text{ dimensionless} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in reaction_3 and as a product in reaction_2 and as a modifier in reaction_0).

$$\frac{\mathrm{d}}{\mathrm{d}t}Q = |v_3| - |v_4| \tag{26}$$

7.3 Species R

Name R

Notes degree of resolution measuring cognitive restraint

Initial concentration $0.55 \text{ dimensionless} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in reaction_5 and as a product in reaction_4 and as a modifier in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R} = |v_5| - |v_6| \tag{27}$$

 $\mathfrak{BML2}^{a}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany