Prácticas de Aprendizaje Automático Grupo 1

Trabajo 3: Ajuste de Modelos Lineales

Francisco Javier Baldán Lozano
Universidad de Granada
Departamento de Ciencias de la Computación e Inteligencia Artificial

Recordatorio normas (1). Informe.

.zip = Código (.py) + Informe (.pdf)

- •Presentar un informe escrito con las valoraciones y decisiones adoptadas en cada apartado.
 - -No es solo hacer algo → hay que argumentar el por qué
- •Incluir en el informe los **gráficos** generados.
- •Incluir una valoración/discusión de los resultados obtenidos.

- •El informe debe presentarse en PDF
- •Si no hay informe \rightarrow se considera que el trabajo no se ha presentado.

Recordatorio normas (2). Código.

- Un script de Python por ejercicio.
 - Los distintos ejercicios van en diferentes ficheros .py.

- Todos los resultados numéricos o gráficas serán mostrados por pantalla, parando la ejecución después de cada apartado.
 - No escribir nada en el disco.

- El path que se use en la lectura de cualquier fichero auxiliar de datos debe ser siempre "datos/nombre_fichero".
 - Crear directorio llamado "datos" dentro del directorio donde se desarrolla y se ejecuta la práctica.

Recordatorio normas (3). Código.

- El código debe ejecutarse de principio a fin sin errores.
- No es válido usar opciones en las entradas.
 - Fijar al comienzo los parámetros por defecto que considere óptimos.
- El código debe estar obligatoriamente comentado explicando lo que realizan los distintos apartados.
 - Id comentando el código que hagáis: sirve para que entendáis mejor lo que habéis hecho, y facilita mi trabajo a la hora de corregir los ejercicios.
- Entregar solo el código fuente, nunca los datos.

Recordatorio normas (y 4)

.zip = Código (.py) + Informe (.pdf)

Subir el zip en la correspondiente entrega en PRADO.

Fecha de entrega: 30 de Mayo

SE VALORARÁ ENORMEMENTE LA **JUSTIFICACIÓN** DE LAS DECISIONES TOMADAS Y LA **DISCUSIÓN** DE LOS RESULTADOS OBTENIDOS.

 Ajuste y selección del mejor modelo lineal, y estimación del error E_{out} del modelo final

- Casuística (relativamente) real: te llega un problema y...
 ¿cómo lo resuelves?
 - Análisis del Problema, Exploración de los Datos,
 Formulación de Hipótesis, Entrenamiento, Validación, y
 Discusión de Resultados

- Problema de clasificación
 - https://archive.ics.uci.ed u/ml/datasets/optical+rec ognition+of+handwritten +digits

- Problema de regresión
 - http://archive.ics.uci.edu/ ml/datasets/Communitie s+and+Crime

Optical Recognition of Handwritten Digits Data Set

Download: Data Folder, Data Set Description

Abstract: Two versions of this database available; see folder

Data Set Characteristics:	Multivariate	Number of Instances:	5620	Area:	Computer
Attribute Characteristics:	Integer	Number of Attributes:	64	Date Donated	1998-07-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	268110

Communities and Crime Data Set

Download: Data Folder, Data Set Description

Abstract: Communities within the United States. The data combines socio-economic data from the 1990 US Census, law of

Data Set Characteristics:	Multivariate	Number of Instances:	1994	Area:	Social
Attribute Characteristics:	Real	Number of Attributes:	128	Date Donated	2009-07-13
Associated Tasks:	Regression	Missing Values?	Yes	Number of Web Hits:	278205

- 1) (1 Punto) Comprender el problema a resolver → ¡Visualizar datos!
- 2) (1.5 Puntos) Selección de clases de **funciones a usar** → combinaciones lineales/cuadráticas/etc. de los valores observados
- 3) (1.5 Puntos) Definición de los conjuntos de **training**, **validación y test** usados en su caso → ¿uso de cross-validation?
- 4) (2.5 Puntos) Preprocesado los datos: codificación, normalización, proyección, etc. Es decir, todas las manipulaciones sobre los datos iniciales hasta fijar el conjunto de vectores de caraterísticas que se usarán en el entrenamiento.
- 5) (1.5 Puntos) Fijar y discutir la idoneidad de la **métrica** usada en el ajuste → MSE, MAE, Cross-Entropy,...
- 6) (1.5 Puntos) Discutir la técnica de ajuste elegida.
- 7) (2.5 Puntos) Discutir la necesidad de regularización y, en su caso, la función usada para ello.
- 8) (2.5 Puntos) Definir los modelos LINEALES a usar.
- 9) (1 Punto) Estimación de hiperparámetros y selección del mejor modelo
- 10) (1.5 Puntos) Estimación por validación cruzada del error E_{out} del modelo. Compárela con E_{test}, ¿que conclusiones obtiene?
- 11) (3 Puntos) Suponga que Ud ha sido encargado de realizar este ajuste para una empresa. ¿Qué modelo les propondría y que error Equit les diría que tiene?. Justifique las decisiones

- En la práctica:
 - Solamente se pide emplear modelos lineales (regresión lineal, regresión logística y perceptrón+pocket), junto con las transformaciones en los datos, técnicas de regularización y preprocesado que consideréis más conveniente
 - Si alguien quiere probar a mayores SVM, MLP, RF ¡Perfecto!
 Que compare con los modelos lineales y justifique su uso.
 ¡Pero hay que usar modelos lineales!

Bibliografía

Transparencias realizadas y actualizadas a partir del trabajo de Pablo Mesejo.