

SoC Design

Course Plan

Jiin Lai

Agenda

- Background (course-plan)
- Objectives
- Lab Platform
- Course Schedule
- Course Policy & Grading
- Lab Submission Guideline TA

>----

- Lab Plan (lab-plan)
- Lecture Plan (lecture-plan)
- From Verilog to HLS (verilog-hls)

<u>頼瑾 Jiin Lai</u>

Adjunct Professor at NTU, NTHU, NYCU Co-Founder, ex-CTO, VIA Technologies Inc.

- MSEE, University of Texas, Austin
- **BSEE**, NTU

- Over 30 years of experience in the PC industry
- 12 years in the storage area.
- Co-founded VIA technologies in 1992, remained CTO responsibility including product and architecture development, with an eye toward future computing architecture needs:
 - Developed Intel/ AMD compatible chipsets and x86-compatible processors.
 - Developed the SSD controller
 - Distributed computational storage systems.
- Invented 200+ patents including over 50 US patents.
- Started from 2020 teaching "Application Acceleration with High-Level Synthesis" at NTU, NTHU, and NYCU.
- Founded the Bridge of Life Education Foundation to promote technology education in school.

Background

Background 1: Trend of the World

- Affected by the Sino-US trade war and geopolitics,
 - the world is competing to establish its semiconductor industry supply chain and compete for talents.
 - Chip design centers have been established
- Taiwan government quickly passed the "Regulations on Industry-University Cooperation and Talent Cultivation and Innovation Program".
- Institute of Semiconductors was established in NTU, NTHU, NYCU, and NCKU.
- While increasing the "quantity" in cultivating semiconductor talents, HOW TO IMPROVE TALENT'S QUALITY?

Background 2: Difficult to cultivate IC design talent?

- Why is it more difficult to cultivate IC design talents than software talents?
 - Developing a chip requires many EDA tools
 - Difficult to obtain IP
 - After the chip is designed, tape-out is required before verification can be done
- Google Open Source Silicon Program comes to address the issues
- Chip validation, especially system-level validation, still not addressed.

What is Google Open Source Silicon Program

Google Sponsors a

Fully Open-Source Design

Capability for Chips

Open-source PDK

Open-source EDA Tools

Free Fabrication

Six shuttles, 40 slots per shuttle, free to designers of

fully open-source IC and IP designs.

SkyWater open-source 130nm PDK

System-level Validation not addressed

Importance

- Silicon validation is often the bottleneck for time to market
- Incomplete system validation causes tremendous damage to the company
- Unfortunately, school does not teach it.

Difficulty

- Designer does not design-in necessary observability and controllability
- IC designer lacks of system operation knowledge
- It is difficult to build validation platform
- System debugging is often by software means

Silicon Validation – IC Testing v.s. System Validation

IC Testing

- Testing with Tester, e.g. V93000
- Open-short / electrical test
- Manufacture test
- Function test

System Validation

- System test
- Customized Board design
- Test fixture, control / probe points

Both are difficult to deploy

Objectives

Objectives

Educate a full-stack IC designer with

- IC design
- FPGA design
- Embedded Programming

By Hands-on Labs on SOC-level Platform

One Year Program - SOC Design to train a full-stack Designer (Offered in NTU, NTHU, NYCU)

- Logic Design
- FPGA Design
- Embedded Programming

SOC Design (1st semester)

Objective:

- Learn Verilog and HLS Design Implementation on FPGA and ASIC
- Implement an User Project and Integrate it into Caravel SOC
- Study the SOC design and emulate it in CaravelFPGA

Design & Lecture

- Introduction to HLS and tools.
- 2. Verilog & Logic Design
- 3. Caravel SOC
- 4. Processor
- 5. Memory
- 6. Peripheral
- 7. Embedded Programming
- 8. SOC Interconnect
- 9. Static Timing Analysis
- 10. Synthesis & Optimization
- 11. Verification & Simulation

Design Flow

- 1.Tools Tcl, Perl, Makefile
- 2.FPGA flow Xilinx Vivado
- 3.Simulator
- 4.Synthesis
- 5. Timing analysis
- 6. Verification Methodology

Laboratory

- 1. Vivado Tool Installation
- 2.HLS FIR Filter (AXI master, AXI Stream)
- 3. Caravel SOC Simulation
- 4. Caravel SOC FPGA
- 5.SOC Design Labs
 - 1.Interrupt
 - 2.User RAM
 - 3.UART
 - 4.SDRAM
- 6. Workload Optimized SOC (WLOS) Baseline
- 7. Final Project

Advanced SOC Design (2nd Semester)

Objective:

- 1.Learn Advanced topics in IC Design, SOC chip-level design
- 2. Develop an Application Accelerator
- 3. Complete IC design flow, and be ready for tape out.

Design

- 1.Selected topics on high-performance Design
- 2. Advanced HLS Topics
- 3. Advanced Static Timing Analysis
- 4.SOC Chip level Design Issues
- 5. Advanced Embedding Programming
- 6.Advanced Design issues

Design Flow

- 1.Catapult (ASIC HLS)
- 2.Floorplan
- 3.Placement
- 4.Clock tree
- 5.Routing
- 6.DFT and Testing
- 7.LVD, DR · ERC
- 8. Post-layout Timing Analysis

Laboratory

- 1. Algorithmic HLS Lab
- 2.FSIC Module Design & Verification
- 3.User Project Development
- 4.FSIC Integration and Simulation
- 5.FSIC Physical Implementation and Tapeout (in June)

Lab Platform – CaravelFPGA©

Caravel Harness

Caravel Simulation Verification System

Zynq Block Diagram (PYNQ-Z2 or KV260)

CaravelFPGA Block Diagram (Based PYNQ-Z2)

Benefits of CaravelFPGA

Can validate your design much faster at hardware speed

Can run real application before tapeout the chip

 Can use FPGA rich peripherals to communicate with outside, e.g. network, HDMI

Lab Platform – FSIC FPGA©

(2nd Semester)

FSIC - IC Validation System

Caravel-FSIC + FPGA-FSIC

User Project Wrapper

Architecture for Application Accelerator Design

Embed Application Accelerator in FSIC

Benefits of FSIC

Build a Full-Stack IC Designer Program to enable

- System/Application level validation
- Scalable deployment Online, remote debugging
- FSIC design lab training system

Online Lab System

Collaborative Learning & Participate in Q & A

HLS and SOC Design is in its evolving development process. It is hard to teach the subject in academic environment where known and matured knowledge is taught. The only way to learn it is through collaborative learning, through a Q & A process.

Subscribe the following Slack, and Github to communicate idea.

- Slack channel: "soclab"
 - https://boledu.slack.com/archives/C05D406JUSX
- Github/Discussion Forum "HLS-SOC-Discussions"
 - https://github.com/bol-edu/HLS-SOC-Discussions
 - https://github.com/bol-edu/HLS-SOC-Discussions/discussions

For topics related to lecture contents, laboratory work and project implementation problems, please use **Github/Discussion** Forum

Lecture & Lab Schedule

week	Date	In Class: Lecture, Presentation	Lab	Lab Due	
1st Semester					
1	13-Sep	Course plan / From Gate to HLS	Lab#1 - Tool installation (1w) - individual	27-Sep	
		PYNQ-Lab2 Software Hardware Codesign / HLS Introduction /			
2	20-Sep	Kernel IO / Structure Design	Lab#2 - FIR (stream/master) (1w) - individual	4-Oct	
3	27-Sep	Verilog and Logic Design	Lab#3- Verilog FIR & XSIM & GTKWave (2w) - individual	18-Oct	
4	4-Oct	Caravel SoC System Introduction			
5	11-Oct	Computer & Microprocessor Architecture - RISC-V	Lab#4-1 Caravel SOC - Management FW (1w) - team	25-Oct	
6	18-Oct	SoC Peripherals - UART, SPI, I2C, GPIO, UserProject IO, DMA	Lab#4-2 Caravel User Project - FIR (1w) - team	1-Nov	
7	25-Oct	SOC Interconnect (Wishbone, AXI, Switch, DMA)	Lab#5 - Caravel FPGA (2w) - team	15-Nov	
8	1-Nov	SOC Memory - Cache/DDR			
9	8-Nov	Caravel SOC Lab Presentation - Lab#4-1, Lab#4-2, Lab#5	Lab#A-E (3w) - team	29-Nov	
10	15-Nov	Midterm			
11	22-Nov	Embedded Programming (ISA, Interrupt, Debugging)			
12	29-Nov	Static Timing Analysis	Lab#6 & Final Project - WLOS (4-6 w) - team	10-Jan	
13	6-Dec	Caravel SOC Lab Presentation - Lab#A-E, Final Project Proposal			
14	13-Dec	Synthesis and Optimization			
15	20-Dec	Verification & Simulation			
16	27-Dec	No Class			
17	3-Jan	No Class			
18	10-Jan	Final Project Presentation			

Grading

Grading

Item	Content	Submission	Weight
Lab#1	Tool installation (individual)	Screen shot	2
Lab#2	HLS-FIR (individual)	Report	4
Lab#3	XSIM & GTKWave Simulation - Individual	Report	10
Lab#4-1	Management FW (team)	Github & Report	6
Lab#4-2	Caravel User Project - FIR (team)	Github & Report	8
Lab#5	Caravel FPGA (team)	Github & Report	8
Lab#A-E	Choose 2, each 8 points (team)		16
	Extra Lab, each 4 points (team)		12
	A: Interrupt Service	Github & Report	
	B: ExMem - User Project Memory	Github & Report	
	C: UART	Github & Report	
	D: WB-SDRAM	Github & Report	
	E: Software Emulation - Bit Banging	Github & Report	
Lab#6	Baseline WLOS (team)	Github & Report	10
Midterm			10
Final Project	WLOS Optimization (team)	Github & Report & ppt	20
Presentation	Selected presentation (extra credit)	ppt	3
StudyJournal	Github & StudyJournal (individual)	Github & StudyJournal.md	4
Soft Skill	Ask question, offer help, sharing	Send link of evidence to TA	2
		Total	115

Study Journal

- It is By you, and For you
- Benefit
 - Thought-starter and planning
 - Note of accomplishments, keep track progress
 - Material for report
 - Space for reflection, Facilitating a breakthrough
 - Maintaining the writing habit
- Reference: https://hackmd.io/@TonyHo?utm_source=preview-mode&utm_medium=rec

Soft Skills

- Participate Q & A in
 - In-class Question & Answer
 - Participate in Slack channel: "soclab" https://boledu.slack.com/archives/C05D406JUSX
 - For general topics of HLS and SOC (e.g., lecture contents, labortory work and project implementation problems), use Github/Discussion Forum
 - https://github.com/bol-edu/HLS-SOC-Discussions
 - https://github.com/bol-edu/HLS-SOC-Discussions/discussions
 - Submit question to Public Forum
- Offer help to solve questions
- Share your findings
- Please provide the link of evidence to TA so that it can be put into record

