Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 7C Subdivision

Surface Refinement and Recursive Subdivision

- Can create a sphere by recursive subdivision
 - Begin with a particular shape
 - Repeatedly bisect the faces
 - "Normalize" vertices to specified radius
 - Places the vertices on the surface of the sphere
- Sample lab code contains recursive subdivision of an icosahedron
 - Specify number of levels of subdivision

Bisect the edges of original triangle Forms 4 new triangles (replacing original)

Subdivision Surfaces

Geri's Game (1997)
Pixar Animation Studios
Catmull-Clark Subdivision

http://mrl.nyu.edu/publications/subdiv-course2000

Subdivision Curves and Surfaces

- Relatively new
 - Introduced by Catmull and Clark in 1978
 - Much research in late 1990s
- Integrated into many commercial modeling and rendering systems
 - Pixar's Renderman, Alias's Maya3D, Newtek's Lightwave 3D
 - Used to create characters in Disney/Pixar productions: Geri's Game, Bug's Life, Toy Story 2
- Bridges the gap between discrete surfaces (meshes) and continuous surfaces (parametric)
- Algorithmic definition of curves and surfaces
 - Unlike parametric curves and surfaces
 - Constructed through recursive splitting and averaging
- Supports level of detail control
 - By controlling the level of subdivision

Subdivision Curves

- Example uses corner cutting
 - Insert new vertices along edges and remove existing vertex
 - Curve appears smoother with each successive subdivision
 - Continue subdivision until cannot see a visual difference
 - Limit curve is the curve that results with infinite subdivision
- Method illustrated below is Chaikin's subdivision.
 - Create new vertices ¼ along edge from each vertex
- An approximating subdivision method
 - The limit curve does not generally contain the vertices of the original polygon

$$p_i^0$$
 p_{i+1}^0
 p_{2i+1}^1

$$p_{2i}^{k+1} = \frac{3}{4}p_i^k + \frac{1}{4}p_{i+1}^k$$

$$p_{2i}^{k+1} = \frac{3}{4}p_i^k + \frac{1}{4}p_{i+1}^k$$
 i is the vertex index k is the subdivision level
$$p_{2i+1}^{k+1} = \frac{1}{4}p_i^k + \frac{3}{4}p_{i+1}^k$$

One subdivision – See Figure 17.38 (13.29 in 3rd Edition) for illustration of successive iterations

Interpolating Subdivision Method for Curves

- An interpolating subdivision method keeps all the points from the previous subdivision
 - The curve interpolates the original polygon
- 4 point subdivision method below keeps the original vertex and adds a new vertex between $p_i{}^k$ and $p_{i+1}{}^k$
 - Uses a weight w called a tension parameter
 - w = 0 produces a linear interpolation
 - $w = \frac{1}{16}$ produces a curve like below
 - Weights 0 < w < 1/8 produce curves with C1 continuity

$$p_{2i}^{k+1} = p_i^k$$

i is the vertex index k is the subdivision level

$$p_{2i+1}^{k+1} = \left(\frac{1}{4} + w\right) \left(p_i^k + p_{i+1}^k\right) - w\left(p_{i-1}^k + p_{i+2}^k\right)$$

One subdivision – See Figure 17.39 (13.30 in 3rd Edition) for illustration of successive iterations

Subdivision Surfaces

- Powerful method produces smooth, continuous, crack-less surfaces
- Produces a surface with desired level of detail
 - Can generate as many levels of subdivision as needed from an original, compact representation
- Subdivision rules are generally simple
 - Easily implemented
- Good online descriptions
 - http://www.multires.caltech.edu/teaching/courses/subdivision
 - 1998 Siggraph course
 - https://www.gamedeveloper.com/programming/building-your-own-subdivision-surfaces
 - Aaron Lee

http://mrl.nyu.edu/projects/modeling_simulation/subdivision/Control mesh shown with wireframe

Subdivision Surfaces

- Original polygon mesh is called the control mesh
- Subdivision surfaces are generally a two-phase process
 - Refinement phase
 - Creates new vertices and reconnects to form new, smaller triangles
 - · A triangle or polygon can be split in different ways depending on the subdivision scheme
 - Smoothing phase
 - Computes new positions for some or all of the vertices
 - Choice of subdivision rules in this phase controls the level of continuity and whether the subdivision surface is approximating or interpolating
 - See Figures 17.41-42 (13.32-33 in 3rd Edition)
- Classifying subdivision methods
 - Triangle-based works on triangles and only produces triangles
 - or polygon-based operates on arbitrary polygons
 - Stationary uses the same subdivision rules at each level
 - or non-stationary different rules depending on the subdivision level
 - **Uniform** uses same rules for every vertex or edge
 - or non-uniform not all vertices and edges treated the same

Loop Subdivision

- Charles Loop's subdivision method
 - Was first subdivision method for triangles approximating
 - Updates each existing vertex and creates new vertex along each edge
- Each triangle is subdivided into 4 triangles
- Notation
 - Vertex p^k is a vertex after k subdivisions

$$p^0 \rightarrow p^1 \rightarrow p^2 \rightarrow \dots \rightarrow p^n$$

- Valence of pⁿ is the number of neighboring vertices
 - Vertex with valence = 6 is called regular or ordinary
 - Otherwise the vertex is called irregular or extraordinary

Control mesh

See Figure 17.43 (13.34 in 3rd Edition) for next subdivision

Loop Subdivision

$$p^{k+1} = (1 - n\beta)p^k + \beta(p_0^k + \dots + p_{n-1}^k), i = 0, \dots, n-1$$

Rule for updating an existing vertex: $p^k \rightarrow p^{k+1}$

$$p^{k+1} = \frac{3p^k + 3p_i^k + 3p_{i-1}^k + 3p_{i+1}^k}{8}, i = 0, ..., n-1$$

Rule for creating a new vertex along an edge

- Assume indices are modulo n
 - For i=n-1, i+1 will use index =0
- Subdivision rules can be visualized as masks
 - Simple illustration to describe the subdivision scheme
 - Weights sum to 1
- β is a function of n

$$\beta(n) = \frac{1}{n} \left(\frac{5}{8} + \frac{3 + 2\cos\left(\frac{2\pi}{n}\right)^2}{64} \right)$$

- C² continuity at every regular vertex
- C¹ elsewhere

Vertex mask

Edge mask

Loop Subdivision (cont.)

• Two "limit" tangents for a vertex p^k can be computed by weighting neighboring vertices:

$$t_{u} = \sum_{i=0}^{n-1} \cos\left(\frac{2\pi i}{n}\right) p_{i}^{k} \qquad t_{v} = \sum_{i=0}^{n-1} \sin\left(\frac{2\pi i}{n}\right) p_{i}^{k}$$

- Normal is: $n = t_u \times t_v$
 - Often more efficient than computing an average vertex normal based on normals of triangles sharing the vertex
 - Gives the exact normal at the point
- Advantages to Loop subdivision
 - Produces a fair surface
 - Fairness relates to how smoothly a surface bends
 - Converge faster than interpolating subdivision schemes
- Disadvantage
 - Shape often shrinks compared to the control mesh

Other Triangular Subdivision Methods

- Modified Butterfly Subdivision
 - Interpolating scheme
 - Once a vertex exists in the mesh its location never changes
 - Quality is highly model dependent
 - Uses 4 different rules for creating new vertices between existing vertices
 - Regular setting: create a new vertex between 2 regular vertices
 - Semi-regular setting: one vertex is regular and the other is irregular
 - Irregular setting: both existing vertices are irregular
 - Boundaries: when an edge has only one triangle connected to it
 - See Figure 17.47 (13.38 in 3rd Edition) for comparison between Loop and Modified Butterfly Subdivision
 - Good discussion:
 - https://www.gamedeveloper.com/programming/implementing-subdivision-surface-theory
- $\sqrt{3}$ Subdivision
 - Creates only 3 new triangles per subdivision step
 - Creates a new vertex in the middle of the triangle
 - Called a mid-vertex
 - To improve uniformity of triangles edges are flipped
 - Old edge is changed to connect 2 neighboring mid-vertices
 - https://people.eecs.berkeley.edu/~sequin/CS284/PAPERS/root3subdiv.pdf

Catmull-Clark Subdivision

- Subdivision of a polyhedron
 - New vertices (face points) are placed at the center of each original face
 - New edge points are placed at the center of each original edge
 - New edges are added to connect the new edge points to the new adjacent face points.
- The positions of the new vertices are calculated as follows:
 - Face points are positioned as the average of the positions of the face's original vertices
 - Edge point locations are the average of the center point of the original edge and the average of the locations of the two new adjacent face points
- The old vertices are repositioned according to the equation

$$\frac{Q}{n} + \frac{2R}{n} + \frac{S(n-3)}{n}$$

- Q is the average of the new face points surrounding the old vertex
- R is the average of the midpoints of the edges that share the old vertex
- S is the old vertex point
- n is the number of edges that share the old vertex.

Catmull-Clark Subdivision

Original Polyhedron

Subdivision 1

Subdivision 2

Subdivision 3

http://symbolcraft.com/pjl/graphics/subdivision/ - (Link no longer found)

