Control Automático 2

Práctica 0: Repaso de Herramientas Algebraicas

1. (a) Sabiendo que A, B y C son matrices cuadradas e invertibles del mismo orden, despejar B

$$\left[\left(A^{-1} \bar{C}^T A^T \bar{B}^{-1} C \bar{A} \right)^{-1} \right]^T = \mathbb{I},$$

donde I = matriz identidad.

- (b) Sabiendo que det(A) = -4 2i y det(C) = i, calcular det(B).
- 2. Sea $A = \begin{pmatrix} 2 & -2 \\ 1 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & -2 & -1 & 1 \\ 2 & 1 & 1 & -1 \end{pmatrix} 2B$, con $B = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}$.
 - (a) Hallar A.
 - (b) Resolver $A \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -6 \\ -3 \\ 3 \end{pmatrix}$ y en caso de tener infinitas soluciones mostrar 2.
 - (c) Resolver el sistema homogéneo asociado al punto (a).
 - (d) Hallar $det(BB^T) tr(BB^T)$.
- 3. Dada una matriz $A \in \mathbb{C}^{n \times n}$, se llaman autovalores de A a los $\lambda \in \mathbb{C}$ para los cuales existen vectores $v \in \mathbb{C}^{n \times 1}$ no nulos tales que $Av = \lambda v$ y los vectores v se llaman autovectores de A asociados al autovalor λ .
 - (a) Demostrar que la expresión $Av = \lambda v$ es equivalente a la expresión $(A \lambda \mathbb{I}) v = 0$, donde \mathbb{I} es la matriz identidad de $n \times n$ (observe que resulta un sistema de ecuaciones lineales homogéneo).
 - (b) Teniendo en cuenta que el sistema de ecuaciones tiene que tener soluciones no triviales, justificar adecuadamente por qué es necesario que $\det(A \lambda \mathbb{I}) = 0$. NOTA: $P(\lambda) = \det(A \lambda \mathbb{I})$ se llama polinomio característico de A, y sus raíces son los autovalores de A.
 - (c) Obtenga los autovalores de $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$.
- 4. Decimos que una matriz $A \in \mathbb{C}^{n \times n}$, es diagonalizable si existe una matriz $M \in \mathbb{C}^{n \times n}$ invertible tal que $D = M^{-1}AM$ es una matriz diagonal.
 - (a) Demuestre que para el caso general det(A) = det(D).
 - (b) Muestre que $A = \begin{pmatrix} 5 & 5 & -1 \\ -5 & -9 & -1 \\ 11 & 25 & 5 \end{pmatrix}$ es diagonalizable con $M = \begin{pmatrix} -2 & -1 & 5 \\ 1 & 1 & -3 \\ -1 & -2 & 5 \end{pmatrix}$.
 - (c) Sea $X_i \in \mathbb{C}^{3\times 1}$, con i=1,2,3, las columnas de M. Sabiendo que los autovectores de A son los vectores $v \in \mathbb{C}^{3\times 1}$ para los cuales $Av = \lambda v$, donde λ son los autovalores de A, mostrar que los X_i son autovectores de A.
- 5. Decimos que $T: V \to W$, con V, W espacios vectoriales definidos sobre el cuerpo de escalares K, es una transformación lineal si para todo $v_1, v_2 \in V$ y $\alpha \in K$ se cumple que:
 - (I) $T(v_1 + v_2) = T(v_1) + T(v_2)$
 - (II) $T(\alpha v_1) = \alpha T(v_1)$

 $con T(v_1), T(v2) \in W.$

- (a) Demostrar que si $A \in \mathbb{R}^{m \times n}$ y $X \in \mathbb{R}^{n \times 1}$, entonces T(X) = AX es una transformación lineal.
- (b) Si $A = \begin{pmatrix} 2 & 1 \\ 4 & 0 \end{pmatrix}$, calcular $T \begin{pmatrix} 2 \\ 6 \end{pmatrix}$.
- (c) Hallar $X \in \mathbb{R}^{2 \times 1}$ tal que $T(X) = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$.