

74

AIRCRAFT ICING CLIMATOLOGY FOR THE NORTHERN HEMISPHERE

By
Edward D. Heath, Major, USAF
Luther M. Cantrell, SMSgt, USAF

Approved For Public Release: Distributition Unlimited.

PEJLISHED BY
AIR WEATHER SERVICE (MAC)
UNITED STATES AIR FORCE
JUNE 1972

NATIONAL TECHNICAL INFORMATION SERVICE
US Department of Commerce

UNCLASSIFIED			
Security Classification DOCUMENT CONT	POL DATA D		
(Security classification of title, body of abstract and indexing			verall report in classified)
1 ORIGINATING ACTIVITY (Corporate author)			CURITY CLASSIFICATION
Hq Air Weather Service (MAC)		Unclass:	ified
Scott Air Force Base, Illinois 6222	5	26. GROUP	
3 REPORT TITLE			
Aircraft Icing Climatology for the	Northern H	emispher	9
Alicial leting offine to Logy for the	1101 0110111 11	emic pilor.	_
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
			<u>,</u>
3- AUTHOR(S) (First name, middle initial, last name)			
Edward D. Heath, Major, USAF			
Luther M. Cantrell, SMSgt, USAF			
S. REPORT DATE	7E. TOTAL NO. O	F PACES	75. NO. OF REFS
June 1972	73		5
49. CONTRACT OR GRANT NO	98. CRIGINATOR	REPORT NUME	SER(5)
b. PROJECT NO.	,		ce Technical
B. PROJECT NO.	Report 22	: O	
c.		RT NOIS: Any of	her numbers that may be assigned
	this report)		
d.			
10. DISTRIBUTION STATEMENT			
Approved for public release; distri	bution unl	imited.	
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTI	VITY

This report is an update of the methodology used within the Air Weather Service to determine the climatological probability of aircraft icing throughout the Northern Hemisphere. It presents isopleth charts of the 1000-, 850-, 700-, and 500-mb surfaces for each of the twelve months. A station listing and locator chart gives the extensive areal coverage of the data used in the computerized calculations.

DD FORM 1473

Contraction of the contract

UNCLASSIFIED

Hq Air Weather Service (MAC) Scott AFB, Illinois 62225

Security Classification

Marine to a complete the second of the second state of the second of the

PREFACE

This report was prepared originally by USAFETAC to answer a request from the Air Force Systems Command's Aeronautical Systems Division, through the ówwg Steff Meteorologist, for information on the aircraft icing probabilities from near the surface up to 40,000 feet.

The Aeronautical Systems Division is interested in icing as it affects operational analyses for new systems and subsystems entering the Air Force inventory in the 1970's and teyond. To this end, 6WWg, 0L-A, requested that USAFETAC extend AWSTR 194 from a three-level (5,000, 10,000, 15,000 ft) and seasonal analysis to one that more adequately covers the operational range of Air Force and DOD aircraft. USAFETAC invited 6WWg, 3WWg, and AWS personnel to meet at Washington. D. C. in 2 March 1971 to resolve potential differences of opinion regarding the optimum presentation of icing climatology. The attendeds agreed that the methodology developed at USAFETAC has the advantage of utilizing the computer to picture data by month and for each pressure surface, and compiling potential-icing and probable-icing statistics utilizing techniques discussed in AWSM 105-39.

EDWARD D. HEAFH, Major, USAF LUTHER M. CANTRELL, SMSgt, USAF USAFETAC Washington, D. C. 20333 15 May 1972

Approved for public release; distribution unlimited.

DISTRIBUTION: F + Special

Technical	Report	220
-----------	--------	-----

June 1972

TABLE OF CONTENTS

		Page
	• • • • • • • • • • • • • • • • • • • •	1
Definitions ar	nd Assumptions	1
Procedure		3
Analysis - Pro	obability of Encountering Icing Conditions	5
The Existend	of Results	5 5 6
Summary		8
REFERENCES		9
APPENDIX A - A	AN EXAMPLE OF THE DETERMINATION OF PROBABILITY OF AIRCRAFT	
	ICING	11
APPENDIX B - 0	CHARTS OF ICING PROBABILITY	15
	LIST OF ILLUSTRATIONS	
Figure A-l	Graph of Cumulative Frequencies of Icing Occurrences as Functions of Temperature and Dew-Point Spread	13
	PROBABILITY OF ENCOUNTERING ICING CONDITIONS	
	Station Locator Chart	15
Figure B-1	January, 1000 mb	25
Figure B-2	850 mb	26 27
Figure B-3 Figure B-4	700 mb	58
Figure B-5	February, 1000 mb	29
Figure B-6	850 mb	30
Figure B-7 Figure B-8	700 mb	31 32
Figure B-9	March, 1000 mb	
Figure B-10	850 mb	33 34
Figure B-11 Figure B-12	700 mb	35 36
Figure B-13	April, 1000 mb	37
Figure B-14	650 mb	38
Figure B-15	700 mb	39
Figure B-16	500 mb	40
Figure B-17 Figure B-18	May, 1000 mb	41 42
Figure B-19	700 mb	43
Figure B-20	500 mb	44
Figure B-21	June, 1000 mb	45 46
Figure 6-22 Figure B-23	850 mb	40
Figure B-24	500 mb	47 48
Figure 9-25	July, 1000 mb	49
Figure B-20	850 mb	50 51
Figure B-27 Figure B-28	700 mb	52

eringeneungeiepharripenantankeanflichentenande

Technical Report 220

LIST OF	ILLUSTRATIONS	(Cont'd
---------	---------------	---------

		Page
Figure B-29 Figure B-30 Figure B-31 Figure B-32	August, 1000 mb	53 54 55 56
Figure B-33 Figure B-34 Figure B-35 Figure B-36	September, 1000 mb	57 58 59 60
Figure B-37 Figure B-38 Figure B-39 Figure B-40	October, 1000 mb	61 62 63 64
Figure B-41 Figure B-42 Figure B-43 Figure B-44	November, 1000 mb	65 66 67 68
Pigure B-45 Pigure B-46 Pigure B-47 Pigure B-48	December, 1000 mb	69 70 71 72
	LIST OF TABLES	
Table 1	Sample Computer Output for January and February — Percentage Frequency of Occurrence of Icing	4
Table 2	ETAC Method vs Occurrence of < 5/10 Cloud Cover When Icing Was Predicted	6
Table A-l	Frequency of Aircraft Icing by Air Temperature and Dew-Point Spread	12
Table A-2	Mean Heights of Selected Pressure Surfaces at Sample Locations	14

AIRCRAFT ICING CLIMATOLOGY FOR THE NORTHERN HEMISPHERE

Introduction

Since 1967 the Air Weather Service has been using the procedures set forth in AWSTR 194 and AWSM 105-39 to answer the many requests for the probability of aircraft (airframe) icing within the Northern Hemisphere. These procedures have proved valuable aids in satisfying the needs of our users. The basic concepts employed in the original reports as well as the actual icing observations made during 1952-1955 remain as the best approach to icing probability in the free atmosphere. This report is an update of these procedures encompassing additional data worldwide. This "updated" method was developed by the authors aided by personnel of the Environmental Technical Applications Branch of USA?-ETAC, Washington, D. C. In March 1971, a Conference on Airframe Icing Climatology was held at USA:ETAC in Washington, D. C. This conference, attended by representatives from USA:ETAC, 6WWg CL-A, and 3WWg, made recommendations that led to the adoption of the aircraft icing climatology method presented in this report.

Definitions and Assumptions

In general, the USAFETAC method for determining aircraft-icing probabilities is derived from techniques discussed in Attachment 1 to Air Weather Service Manual (AWSM) 105-39 [1]. Table 8, "Frequency of Aircraft Icing by Air Temperature and Dew-Point Spread, and Figure 16, "Graph of Cumulative Frequencies of Icing Occurrences as Functions of Temperature and Dew-Point Spriad," from this attachment are reproduced in Appendix A of this report and remain an important part of the method used. In order for the reader to clearly understand the method, certain definitions and assumptions must be set forth.

- a. This method still employs the empirical icing data gathered by USAF Air Weather Service (AWS) recommaissance flights over the North Atlantic and North Pacific Oceans during May 1952 through June 1954, and over the Arctic Ocean during May 1952 through June 1955 [4]. It is assumed that this continues to be the best accumulated data available on actual aircraft icing in the atmosphere.
- b. Radioscode data from over 380 Northern Hemisphere stations were machineprocessed and hydrostatically checked. These data were input at face value, regardless of the type of radiosonde instrument used or the potential errors inherent in the humidity sensors of these instruments.
- c. The type and severity of the icing are not considered. From climatological records, this report determines only the probability that aircraft icing will occur above a given station during a given month.
 - d. Actual cloud observations are not considered as such. It is assumed

that clouds are present within the particular limits of temperature/dew-point spread as shown in Figure A-1, Appendix A. For purposes of this report, clouds are assumed to occur with the conditions as shown below the 95% curve on Figure A-1.

- e. For icing to occur, free-air temperature must be -3°C or colder but no colder than -30°C. For the upper limit, our assumption considers the heat of friction of the air across the airframe. This friction is assumed to prevent the formation of aircraft ice at temperatures warmer than -3°C. For the lower limit, it is assumed that supercooled water rarely exists at temperatures colder than -30°C even though, under controlled conditions, liquid water is known to exist at temperatures as low as -40°C.
- f. The occurrence of icing above 20,000 feet is assumed to be rare and approximated by the probability at 20,000 feet. Most of the icing that does occur is assumed to be found in the supercooled water droplets of towering cumulus or cumulonimbus cells. Therefore, the probabilities may be reduced even lower by avoiding flight into these clouds.
- g. Probabilities of icing are presented only for the 1000-, 850-, 700-, and 500-mb surfaces because these are the only surfaces for which data were available for Northern Hemisphere analyses.
- h. The probable icing values given in Figures B-1 through $B-4\partial$ are assumed to apply to all aircraft, whether fixed-wing or helicopter¹. These values are considered appropriate for supersonic jet aircraft when operating at subsonic speeds.
- i. Potential icing is defined as the presence of clouds at temperatures of -3°C or colder but .10 colder than -30°C.
- j. Probable icing is defined as icing that should occur (or the chance that icing will occur) at flight level with a known value of potential icing at that level. Probable icing is determined through the application of empirical aircraft-icing data to potential-icing values. The occurrence of probable icing will always be less than that for potential icing under the same cloud and temperature conditions.
- k. Unless otherwise noted, all heights are given in feet above mean sea level (MSL). Since mean sea level is used as the reference for all altitudes in the atmosphere, the station elevation should be subtracted from the height given for icing in feet above MSL in order to determine the height of icing above that station.

General criteria for all rotary-wing aircraft are not available since the conformation and aeronautical characteristics of these craft vary greatly with each make and model. However, icing data determined under this method have been furnished to and used for rutary-wing aircraft with no known adverse effect.

1. Each of the monthly Northern Hemisphere icing charta "Probability of Encountering Icing Conditions" (Figures B-1 through B-48) is presented as one of four pressure surfaces (1000, 850, 700, and 500 mb). Table A-2 in Appendix A gives the conversion of the pressure surfaces to the mean height in feet above MSL depending upon the latitude and month required.

Procedure

The procedure used in determining the probability of aircraft-icing values as indicated above a particular station on the charts, described in subparagraph 1 above, requires the use of figure A-1 and Table A-1, included in Appendix A of this report, and radiosonde temperature/dew-point data. This step-by-step procedure is outlined below:

- a. Using a station's radiosonde observation, enter the air temperature and the temperature/dew-point spread at the desired pressure surface on the diagram in Figure A-1, Appendix A. As previously mentioned, this study considered pressure at 1000, 850, 700, and 500 mb; but the procedure need not be confined to these particular surfaces.
- b. If the values lie under the 95% curve in Figure A-1, the observation is considered a "yes" (Y) for potential iding. If the values lie above the 95% curve, a "no iding" tag is assigned. All available radiosonde observations for a specific station are similarly considered regardless of whether they are taken at 00% or 12%.
- c. Each "yes" observation is assigned a percent frequency of icing (F) from Table A-1. The percent frequencies are summed by pressure surface and month. The "yes" observations are also similarly summed.
- d. Divide the number of "yes" observations (organized by month and pressure surface) by the total number of valid observations for the particular month and pressure surface, i.e., observations with no missing temperature or dew points.
- e. For the desired month and pressure surface divide the total of the percent frequencies of icing by the number of "yes" observations for that month and surface, and by 100.
- f. Multiply the result of d by the result of e. This will represent the probability of icing above the station at the prescribed surface and for the month of interest. Figures B-1 through B-48 are analyzed for specific icing probabilities as derived for individual stations.
- g. The end product of this computation is the determination of specific icing probabilities for individual stations. Figures B-1 through B-48 are the isoline analyses of these calculations.

Represented in mathematical terms, the procedure would be:

Potential Probable Icing Term

$$\overbrace{\left(\frac{\sum_{i=1}^{n} Y}{n}\right)} \quad \overbrace{\left(\frac{\sum_{i=1}^{n} F}{n}\right)}^{n} = P(I)$$
(1)
$$\overbrace{\left(\frac{1}{n}\right)}^{n} \quad \overbrace{\left(\frac{1}{n}\right)}^{n} = P(I)$$

where: Y = a "yes" observation

n = total number of observations considered

F = percent frequency of icing

P(I) = probability of icing

For an example of this procedure, see Appendix A of this report. This procedure has been committed to a computer program that processes radiosonde data tapes for an individual station and prints out the monthly percentage frequencies of icing for every 50 mb, where available. Additional information, such as potential icing and an observation count for each pressure surface, is also part of the output. Table 1 is an abbreviated example of a station printout.

TABLE 1 Sample Computer Output for January and Pebruary - Percentage Frequency of Occurrence of Icing.

OMAHA, NEBRASKA - EL 982'

JAN		PROB*	POT**	NUM OBS***	PEB		PROB*	POT**	NUM OBS***
	1000mb	0.00	0.00	0		1900mb	0.00	0.00	G
	950mb	6.00	22.44	673		95Cmb	3.93	12.54	514
	900mb	5.69	20.94	683		900mb	6.03	18.42	619
	850mb	5.00	16.84	683		850mb	4.70	15.05	618
	8comb	4.31	14.66	682		dm008	5.48	15.99	619
	750mb	3-99	13.93	682		750mb	5.37	16.16	5 19
	700mb	4.01	15.10	682		700mb	5.15	17.45	619
	650mb	3.40	16.01	681		650mb	4.30	17.77	619
	600inb	3.04	17.16	682		600mc	3.51	19.39	619
	550mb	2.63	18.30	633		550mo	2.78	18.93	618
	500mb	2.35	18.44	678		500mb	2.18	17.96	618
	450mb	1.34	12.12	660		450mb	1.14	10.70	598

^{*} Probability of icing in %.

Potential icing in %.
Number of radiosonde observations at the indicated pressure surface.

Analysis - Probability of Encountering Icing Conditions

Over 380 radiosonde station computer tapes, containing at least five years of station data each, were processed and the results plotted. A station listing and locator chart are included in Appendix B. Figures B-1 through B-48 are monthly Northern Hemisphere charts that have been analyzed for every .050 interval of probability of icing for each of the four pressure surfaces previously noted.

Areas are shaded for surface topography above the pressure surface of the particular chart. Since the pressure surface intersects the ground surface around the boundary of these shaded areas, it is impossible to analyze for the pressure surfaces falling within these boundaries. For example, Lander, Wyoming is at 5558' above MSL and at 42°42'N. According to Table A-2, Appendix A, the 850-mb pressure surface at 45°N averages 4800' above MSL. This means that the 850-mb pressure surface lies an average of 700' to 800' below the Lander topography. There will, therefore, be no 1000-mb or 850-mb analysis for icing over Lander. Also from Table A-2, the height of the 700-mb surface averages 10,000' at 45°N. This means that Lander data will appear on the 700-mb and also on the 500-mb analyses.

Verification of Results

The potential icing term in Equation (1) was verified in two ways. One method of verification was a rough match of "yes" forecasts from Figure A-1, Appendix A, to the existence of actual cloud cover. The second method utilized the Chi-square statistical method to show that the potential-icing values that were forecast and accumulated were not likely by chance.

It was felt that in Equation (1) the probable aircraft-icing term could have been verified only by an extensive series of flights similar to the reconnaissance flights of 1952 through 1955. The "?" term (percentage frequency of icing from Table A-1, Appendix A) is based on these flights. Because of the cost and time involved, no attempt was made to verify these values found in Table A-1.

a. The Existence of Clouds vs Occurrence of Potential Icing. Actual cloud observations are not considered in this study since it was felt that the entry of values into Figure A-1, Appendix A, provided adequate estimates of 5/10 or greater cloud cover. In order to determine whether this assumption was reasonable, the "yes" values for icing were compared date-for-date with cloud cover over five selected stations. If the cloud cover was ≥ 5/10 (regardless of cloud height), the occurrence remained a "yes" for icing; if the cloud cover was < 5/10, the value was considered a "No." Table 2 illustrates the results, where:

X = number of predicted potential-icing occurrences.

Y = number of icing occurrences predicted, but where there was < 5/10 cloud cover.

- X-Y = number of icing occurrences predicted after occurrences of < 5/10 cloud cover have been subtracted.</p>
 - $Z = \frac{(X-Y)}{X} \times 100 = Percentage ratio of successfully predicted potential icing.$

Except for the 950- and 550-mb surfaces at Fairbanks, Alaska, the existence of \geq 5/10 cloud cover verified the potential-icing forecasts in at least 80% of the cases.

TABLE 2

ETAC Method vs Occurrence of < 5/10 Cloud Cover
When Icing Was Predicted.

		_			
	No.	of (ceu	rrences	$\frac{X-Y}{X} \times 100$
	Х		Y	X-Y	(in %)
Edwards AFB,	CA,	POR:	195	1-67, El	ev. 2312 ft
850 mb	3		0	3 60	100.0
700 mb	70		10		85.7
500 mb	177		26	151	85.3
Hill AFB, UT	, POF	R: 199	50-6	3, llev.	4788 ft
850 mb 700 mb	33		6	27	81.8
700 mb	811	3	101	71Ò	57.5
500 mb	1957	3	195	1762	90.0
McChord AFB,	WA,	POR:	1950	6-62, El	ev. 332 ft
850 mb	171		10	161	94.2
700 mb	824		54	770	93.4
700 mb 500 mb	1033		58	975	9 4.4
Great Falls,	MT,	POR:	194	8-63, E1	ev. 3657 ft.
850 mb	376		50	326	86.7
700 mb	1038	-	147	891	85.8 88.8
700 mb 500 mb	1918	4	215	1703	88.8
Fairbanks, A	к, р	OR: 19	957-	67, Elev	. 547 ft
950 mb 850 mb	459		186	273	59.5
850 mb	854	- 2	231	623	73.0
700 mb	1536	- 7	262	1274	62.9
500 mb	1158	-	106	1052	90.8
					

b. Application of the Chi-square Statistical Method. During 1968-1969, 6WWg OL-A at Wright-Patterson AFB, OH requested special local flights of a T-33 aircraft [5]. A total of 49 flights were conducted to sample the liquid-water content of clouds, flight-level temperatures, and icing type and intensity, if any, found in the clouds. This was done for flight levels ranging from 2500 to 24,000 feet during the winter and early spring months. Data from these flights are unpublished.

Icing data from these flights were compared date-for-date with forecasts of potential icing that were made using Figure A-1, Appendix A, and Dayton, CH radiosonde data. The flight data indicated that 80% of the forecasts made from

June 1972

Technical Report 220

the radiosonde data correctly said "Yes" or "No." A 2×2 matrix was developed using the following format:

		$^{\mathrm{B}}\mathbf{j}$					
			B ₁	B ₂			
		Aı	^A 1 ^B 1	A ₁ B ₂	Total A ₁		
(2)	Ai	A ₂	A ₂ B ₁	A ₂ B ₂	Total A ₂		
			Total B1	Total B ₂			

Where A_{j} is the icing observed by the aircraft and B_{j} is the icing forecast using the Dayton radiosonde data and applying the potential icing term of Equation (1).

Icing Forecast

$$(4) X^2 = \Sigma_1 \Sigma_J \left[\frac{d_{1J}^2}{(A_1 B_1)_0} \right]$$

where

(5)
$$d_{1j} = (A_1B_j) - (A_1B_j)_0$$

(6)
$$(A_1B_3)_0 = \frac{(A_1)(B_3)}{N}$$

The 2×2 matrix has one degree of freedom derived as follows:

$$(rows - 1) \times (columns - 1)$$

$$(7)$$
 (2-1) × (2-1) = 1

This greatly simplifies our use of Chi-square.

From Chi-square statistical tables we assume the 95th percentile or $x_{.95}^2 = 3.84$ and the 99.5th percentile or $x_{.995}^3 = 7.38$.

An analysis of the 2×2 matrix (Equation 3) reveals the following values for each:

$$\frac{d_{1,j}^{2}}{(A_{1}B_{j})_{0}}:$$

$$\frac{d_{1,1}^{2}}{(A_{1}B_{1})_{0}} = \frac{68.89}{16.7} = 4.125$$

$$\frac{d_{1,2}^{2}}{(A_{1}B_{2})_{0}} = \frac{68.89}{10.3} = 6.688$$

$$\frac{d_{2,1}^{2}}{(A_{2}B_{1})_{0}} = \frac{68.89}{17.3} = 3.982$$

$$\frac{d_{2,2}^{2}}{(A_{2}B_{2})_{0}} = \frac{68.89}{10.7} = 6.438$$

This gives us the following matrix:

	B ₁	B ₂	
A ₁	4.125	3.982	8.107
A ₂	6.688	6.438	13.126
	10.813	10.420	$21.233 = \Sigma_{\mathbf{i}} \Sigma_{\mathbf{j}} \left[\frac{d_{\mathbf{i}\mathbf{j}}^2}{(\mathbf{A}_{\mathbf{i}} \mathbf{B}_{\mathbf{j}})_0} \right]$
Then	$x^2 = 21.23$	3	, 1 J.0

Since X^2 is considerably larger than $X^2_{.95}$ and $X^2_{.995}$, the forecast occurrence of icing is significantly dependent upon the forecast method and the results are not likely by chance. Thus, the potential-icing term for use in determining aircraft icing appears to be valid.

Summary

Certain definitions and assumptions were formulated stipulating criteria for aircraft icing. Then, using radiosonde and empirical aircraft-icing data, it was illustrated that a step-by-step procedure can be developed to determine the probability of occurrence of aircraft icing. The equation that was derived for this procedure has a probable icing and a potential icing term. Combining both the potential- and probable-icing terms gives the probability of encountering icing conditions over a station. Accumulated climatological data from the combined terms have been analyzed for the Northern Hemisphere on monthly charts for the 1000-, 850-, 700-, and 500-mb surfaces. These charts should provide a valuable tool for aircraft design and mission planning.

The development of probable-icing values above a station need not be confined to the surfaces of the monthly charts. Other pressure surfaces can be used provided the temperature and dew point are available.

June 1972

Technical Report 220

The potential-icing term was verified, first through a test for the presence of clouds and then through use of Chi-square statistical methods applied to actual test flights.

REFERENCES

- [1] AWSM 105-39: "Forecasters' Guide on Aircraft Icing," Hq Air Weather Service, 53 F., 7 January 1969.
- [2] Bowden, D. T., Gensemer, A. E., and Skeen, C. A.: "Engineering Summary of Airframe Icing Technical Data," <u>Technical Report ADS-4</u>, ederal Aviation Agency, 80 p., March 1964.
- [3] Katz, Lawrence G.: "Climatological Probability of Aircraft Icing,"
 AWSTR 194, Hq Air Weather Service (ETAC), 24 p., January 1967.
- [4] Perkins, P., Lewis, W., and Mulholland, D.: "Statistical Study of Aircraft Icing Probabilities at the 700- and 500-Millibar Levels Over Ocean Areas in the Northern Hemisphere," Technical Note 3984, National Advisory Committee for Aeronautics, 31 p., May 1957.
- [5] 6WWg OL-A: "Transmittal of Liquid Water Content (LWC) Test Data," ltr w/Atch (unpublished data).

Appendix A

AN EXAMPLE OF THE DETERMINATION OF PROBABILITY OF AIRCRAFT ICING

Sample Procedure for Determining Probability of Aircraft Icing

Given: 1200Z, 700-mb radiosonde data for Caribou, ME, 1-16 December 1963.

	T	T _d		Y Appendix A	P Appendix A
Date	Temp (°C)	Dew Pt	T - T _d	Figure A-l	Table A-1
1	-16	-27.2	11.2	No	
2	-26.9	*	*	No	
3	-18.6	*	*	Ю	
4	-12.2	-15.1	2.9	Yes	22.7%
5	-19.4	-26.6	7.2	No	
6	-15.6	-25.1	9.5	No	
7	-16.6	-21.3	4.7	No	
8	-9.4	-14.0	4.6	Ko	
9	-8.0	-15.7	7.7	No	
10	-15.9	-20.4	4.5	No	
11	-17.8	-20.4	2.6	Yes	17.4%
12	-18.1	*	*	No	
13	-21.6	-26.6	5.0	No	
14	-20.5	-23.7	3.2	· Yes	17.4%
15	-18.5	-55.7	3.3	Yes	17.4%
16	-19.9	-23.0	3.1	Yes	17.4%
TOTALS				$\Sigma Y = 5$	ΣF = 92.3

^{*} Indicates that radicsonde instrument was "motorboating" thus implying that the dew point was too low to give a reading.

We use Equation (1) from the text:

(1)
$$\left(\frac{\sum_{i=1}^{n} Y}{n} \right) \left(\frac{\sum_{i=1}^{n} F}{\log \sum_{i=1}^{n} Y} \right) = P(1)$$

n = 16

$$\Sigma Y = 5 \qquad \text{Then P(I)} = (5/16) \left(\frac{92.3}{100 \times 5}\right) = .058$$

$$\Sigma F = 92.3$$

Interpretation: The probability of occurrence of icing over Caribou, ME, at 700 mb during 1-16 December 1963 was .058. The percentage frequency of occurrence was 5.8%. If five to ten Decembers of 700-mb data are handled in like manner, we are able to compile an aircraft icing climatology that can be interpreted as the probability of encountering icing conditions over Caribou, ME, during December. This is the type of data that is analyzed on Figures B-1 through B-18.

As an added bonus, we can find the <u>potential</u> icing over a station by using the potential-icing term or

$$\sum_{i=1}^{n} Y$$

For Caribou, during 1-16 December 1963, the potential icing was 5/16 or 31%. Potential-icing values have been found very useful for guiding the development of and planning missions for helicopter-type aircraft.

TABLE A-1
(From Attachment 1, AWSM 105-39)

Frequency of Aircraft Icing by Air Temperature and Dew-Point Spread (from observations having a dew-point report made in stratiform clouds)

Air Temper	rature (°C)	No. of Obs.	No. of Icing Cases	% Freq of Icing
0 to -2	(With spread = 0°	245	41	16.7
	(With spread > 0°	49	8	16.3
	(Total	294	49	16.7
-3 to -7	(With spread ≤ 1°	1101	563	51.1
	(With spread > 1°	114	37	32.5
	(Total	1215	600	49.4
-8 to -12	(With spread ≤ 2°	1018	418	41.1
	(With spread > 2°	141	32	22.7
	(Total	1159	450	30.8
-13 to -17	(With spread ≤ 3°	1251	237	18.9
	(With spread > 3°	133	15	11.3
	(Total	1384	252	18.2
-18 to -22	(With spread ≤ 4°	772	134	17.4
	(With spread > 4°	77	7	9.1
	(Total	849	141	16.6
-23 to -27	(With spread ≤ 5°	347	38	11.0
	(With spread > 5°	35	5	14.3
	(Total	382	43	11.3
-28 to -32	(With spread ≤ 6°	160	15	9.4
	(With spread > 6°	20	C	0.0
	(Total	180	15	8.3
Grand Total		5463	1550	28.4

TEMP. -28° TO NUMBER OF ICING CASES 15 252 141 5* DEW-POINT SPREAD, 3° 2° . -5° -10* -15* -25° -20* ~30° -35° AIR TEMPERATURE, °C

CUMULATIVE FREQUENCY (PERCENT) OF ICING OCCURRENCES IN EACH TEMPERATURE RANGE WITH INCREASING DEW-POINT SPREAD

(T-Td)=-0.2T - THE "APPLEMAN LINE"

Figure A-1. Graph of Cumulative Frequencies of Icing Occurrences as Functions of Temperature and Pew-Point Spread (from Attachment 1, AWSM 105-33).

		V M O	aaaaaaaaaaaa		aaaaaaaaaaa
		30°N Egiin Afb, fl			
umple Locations	700 mb	45°N Gles- gow, Mi	00000 00000 00000 000000 000000 000000 0000	QE	
		60°N Anchor-	######################################	500	24444444444444444444444444444444444444
8		> 75°N Mould Bay NWT	925099999999999999999999999999999999999		14644499444 74644499944 7469449994 6446449994 64469999999999
			Gentler State of the State of t		Jan Mark Mark Jun Jun Mov Ann Ann
Pr ft	#) **	A 20°N Belboe CZ	ဃဃဖုတ္တတ္တတ္တတ္တတ္တတ္တတ္တလ္တ ဝဝဝ၁သတ္တတ္တတ္တတ္တတ္တလ္တလ္တ ညည်အညာကိုအညာညာကိုအည		44444444444444444444444444444444444444
Mean Heights of Selected		30°N Eglin AFB, FL	たりないない かんしょう かんしょう かんしょう かんしょう かんしゅう しゅうしゅう しゅう		######################################
		45 °N G188- GOW, ME	NN 44 WOWN WARNA ON WOLLD WARNA HAN WOUN WON WINN W	50 mb	120 120 120 120 120 120 120 120 120 120
	ŎŢ	60°N Anchor-		æ	33110001000010 61820002000 7683000000000000000000000000000000000000
		> 75°N Mould Bay NWT	サンジ ひり ひりょうしょう アンジャー ちょう ちょう かん かっとう かららい かん かっとう かん		021300000000000000000000000000000000000
	Heights of Selected Pressure Surfaces at Sample (it above MSL)	Heights of Selected Pressure Surfaces at Sample (ft above MSL)	Mean Heights of Selected Pressure Surfaces at Sample Locations (ft above MSL) 1000 mb 60°N 45°N < 20°N	Mean Heights of Selected Pressure Surfaces at Sample Locations (ft above MSL)	Mean Heights of Selected Pressure Surfaces at Sample Locations 1000 mb 60°N

Appendix B

CHARTS OF ICING PROBABILITY

Station Locator Chart

WMO	WBAN	NAME	LATITUDE	LONGI TUDE	FLEVATION
01001		JANMAYENIS	N7161	E00828	128
01030		TROMSO NORMAY	N6942	E01901	79
01384		GARDERMOEN NORWAY	N6012	E01105	669
C1415		SOLA NORWAY	N5853	E00538	43
02062		FROSON/OSTEP JUND SWEDEN	N6311	EG1437	1014
02077		STOCKHOLM SWEDEN	N5921	E. 1757	48
02084		GOTEBURG SWEDEN	N5743	EU1147	23
02935		JYVASKLA FINLAND	N6224	E02540	459
02953		JOKIDINEN FINLAND	N6349	EL2329	338
G4018	16251		N6358	WC2236	164
04292	17652	THULE AB GREENLAND	N7633	Wu6849	251
	16435	NARSARSSUAK GREENLAND	N6111	H4525	136
06011		THORSHAVN FAROE ISLAND	N62L3	E01645	79
£6180		COPENHAGEN DENMARK	N5538	E01240	16
≎6447		UCCLE BELGIUM	N5048	E0C42;	341
	34352	CHAUMONT FRANCE	N48C6	E00503	1988
	14010	ZARAGOSA SPAIN	N4141	E22164	846
08221		BARAJAS/MADRID SPAIN	N4328		1988
08521		FUNCHAL MADIERA IS	N3238	W01654	1 9 0
08536		LISBOA PORTUGAL	N3846	MCD908	347
08594		SAL CAPE VEPOF IS	N1644	W02257	18C
10184		GREIFSWALD & GERMANY	N5406	E01323	16
10393		LINDENBERG E GERMANY	N5213	E61407	328
19486		DRESDEN E GERMANY	N5157		758
	35010		N5005	E00815	482
	34174	MUNICH W GERMANY	N4809	E01135	1670
11035		VIENNA AUSTRIA	N4815	Eu1622	696
11934		POPRAD CZECH	N4904	E02015	2320
12374		LEGIONOWO POLAND	N5225	EC2058	34C
12425		WROCLAW I POLAND	N5108	E01659	407
12843 13130		BUDAPEST HUNGARY	N4726	E01911	473
13276		MAKSIMAR/ZAGREB YUGOSLAVIA BEOGRAD YUGOSLAVIA		E01600	400 707
16716		ATHENS GREECE	N4447	E02032	797
	33208	IRAKLION CRETE	N3754 N3519	E62344 E62515	33
17030	33200	SAMSUN TURKEY	N4117		43
17130		ANKARA TURKEY	N3957		:44 2933
17220		IZMIR TURKEY	N3826	E02710	82
17606		NICOSIA CYPRUS	N3529	E03317	734
23646		DRUZHNYY OSTROV	N8937	E05757	66
20069		OSTROV VIZE USSR	N793G	E07659	59
23107		BARENTSBURG USSR	N7804	E01413	66
20274		OSTRO VEDINENIYA USSR	N7730	E08214	30
20297		CHELYUSKIN MYS SIBERIA	N7743	E10417	43
20353		MYS ZHELANIYA USSR	N7657	E06835	26
23667		BELLY OSTROV USSR	N7320	E07002	20
- -		 -			

MMG	WBAN	NAME	LATITUCF	LONGI TUDE	FLEVATION
21504		OSTROV PREJBRAZHENIYA SIBF	N744C	E11256	20
21647		MYS SHALAUROVA SCA	N7311	E14356	33
21824		BUKHTA TIKSI SIBFRIA	N7135	E12855	26
21965		CHETYREKJSTOLBOVOY OSTROV	N7338	E26224	20
21982		WRANGEL OSTROV SIBERIA	N7058	E17832	10
22113		MURMANSK USSR	N6858	E03303	151
22165		KANIN NOS USSR	N6839	E04318	157
22527		KEM USSR	N6457	E63439	30
22550		ARKHANGEL*SK USSR	N6434	E04032	43
22867		SORTAVALA USSR	N6143	E03043	59
23627		AMDERMA SIBERIA	N6945	E06139	48
23074		DUDINKA SIBERIA	N6924	E08610	94
23146		KAMENNYY MYS SIBERIA	N6828	E07336	ŠĹ
23205		NARYAN-MAR USSR	N6739	E05301	23
23274		IGARKA SIBERIA	N6728	E68634	98
23330		OBDORSK/SALEMHARD SIB	N6632	E06632	115
23418		PECHORÁ SIBERIA	N6508	E05714	UNK
23472		MONASTYRSKOYE/TURUKHANSK		E38757	1::5
		SYKTYVKAR SIBERIA	N6547		UNK
23864 23884		PODKAMENNAYA TUNGUSKA STR	N614C	505051	197
			N6136	E09000	
24125		OLFNEK SIB	N683C	E11276	417
24266		VERKHOYANSK SIB	N6733	E13323	449
24343		ZHIGANSK SIB	N6646	E12374	196
24507		TURA SIB	N6417	E10015	459
24641		VILJUJSK SIBERIA	N6346	E12137	351 220
24759		YAKTUSK OBSV SIBERIA	N6201	E12943	338
24817		ERBOGACHEN/YERBOGACHEN SIB	N6116	E10801	912
24959		JAKUTSK/YAKUTSK SIBERIA	N6205	E12945	338
25173		MYS SHMIDTA SIBERIA	N6855	E17929	23
25399		MYS UELEN SIBERIA	N661C	E16950	23
25428		ULYGA /ULIAGAI SIBERIA	N6505	E16037	UNK
25551		MARKOVO SIBERIA	N6441	E17025	108
25594		BUKHTA PROVIDENIA SIB	N6426	E17314	10
25677		BUKHTA UGOLNAYA SIBERIA	N63J3	E17919	3
25703		SFYMCHAN SIBERIA	N6255	E15225	679
25913		NAGAYEVO SIBERIA	N5935	E15F47	387
25954		KORF SIB	N6C21	E16600	UNK
26038		TALLIN USSR	N5925	E02443	144
26063		LENINGRAD USSR	N5958	E03018	13
26298		BFLOGOYE USSR	N5754	E63403	584
26427		RIGA LATVIA USSR	N5658	E02204	10
26629		KAUNAS LITHUANIA USSR	N5453	E02353	246
26781		SMOLENSK USSR	N5445	E93204	791
26850		MINSK USSR	N5352	Eú2732	692
27196		KIROV USSR	N5836	E04937	657
27553		STRINGINO USSR	N5613	E04349	269

TO SE

WMG	WBAN	NAME	LATITUDE	LONGTTUDE	FLEVATION
27612		MOSCOW USSR	N5545	EG3734	512
28440		SVERKLOVSK STBERTA	N5648	EG6738	788
28698		OMSK SIBERIA	N5456		308
28900		KUIBYSHEV USSR	N5315		144
28952		KUSTAWAY SIBERIA	N5313		561
29231		KILPASHEVO SIBERIA	N5818	Eu8254	249
29287		BOGUCHANY SIBERIA	N5825	Eu9724	440
29574		KRASNOYARS SIBERIA	N569C	Fu9253	UNK
30521		ZHIGALOVO SIS	N5448	E10510	1362
33673		HOGOCHA SIS	N5344		2031
30935		KRASNYY CHIKOY SIB	N5022	E13845	7526
30955		BORZYA SIB	N5023	E11831	7244
31004		ALDAN SIBERIA	N5837		2238
31088		OKHOTSK SIBERIA	N5922	E14312	20
31329		EKIMCHAN SIBERIA	N53C4	F13256	1782
31369		NIKOLAYEVSK-NA-AHURE SIB	N5309	E14642	UNK
31510		BLAGOVESHCHENSK SIBERIA	N5"16	E12730	449
31707		EKATER NIKOLSKOE/YEKAT NIK	N4744	E13058	243
31909		TERNEY SIB	N4502	E13640	36
31960		VEADIVOSTOK SIB	N4307	E13145	453
32099		MYSPOVORCTNYY/TIRUE SAKH	N4853	E14438	UNK
32165		YUZHNO-KURILISK KURIL IS	N44C1	E14549	131
32217		MYS VASILEVA KURIL IS	N5JGC	E15523	53
32389		KLYUCHI SIB	N5619	E1605	82
33345		KIFV USSR	N5024	£63627	587
33658		CHERNOVTSY USSR	A4816	£02558	787
33837		ODESSA USSR	N4629	E03:44	214
34139		KAMFNNAYA JSSR	R5103	E14042	636
34300		KHAR*KGV USSR	N4958	EG3615	499
34731		ROSTOV-NA-DNOU USSR	N4715	En3949	157
34880		ASTRAKHAN USSR	N4621	E34813	-82
35229		AKTUYBINSK USSR	N5017	E05709	745
35394		KARAGANDA SCA	N4948	E67338	1821
37985		LENKORAN USSR	N3844	Et.4852	-36
38392		TASHAU7 SCA	N4650	EG5959	UNK
38457		TASHKENT SCA	N4116	E56916	1434
38687		CHARDZHOU SCA	N3905	CC 6336	633
38750		GASAN-KULI SCA	N37.18	E/ 5358	~75
38836		STALINARAD SCA	N3835	£96847	2703
38989		TAKHTA-BAZAR USSR	N3558	E06255	UNK
40067		ALEPO SYRI4	N3611	£43713	1276
4316:		BFIRUT/BEYROUTH LEBANON	N3349	E03529	79
40183		BFER-YA AQDV ISRAEL	N3156	E113450	207
40427		BAHRAIN/MUHARRAG ARABIA	N2616	E05037	6
43597		ADEN/KHORMAKSAR ARABIA	N125.	E04502	10
40648		HABBANIYA IRAO	N3322	E04334	147

OMW	WBAN	NAME	LATITUDE	LONGITUDE	FLEVATION
41536		PESHAWAR PAKISTAN	N3401	E67133	1177
41640		LAHORE PAKISTAN	N3135	E37418	762
41780		KARACH PAKISTAN	N2455	E06709	73
41917		DACCA PAKISTAN	N2346	E69023	255
42187		DFLHI/NEW DELHI INDIA	N2853	E07712	710
42339		JODHPUR INDIA	N2618	E073G1	736
42410		GAUHATI INDIA	N2605	EC9143	178
42475		ALLAHABAD INDIA	N3^ 23	E07642	892
42809		CALCUTTA INDIA	N2239	E38827	33
42867		NAGPUR INDIA	001SN	EG7903	1018
42909		VERAVAL INDIA	N2054		26
43063		POGNA INDIA	N1832		1835
43149		VISAKHAPATYAM INDIA	N1742	E38318	11
43279		MADRA/MINAMBAKKAM INDIA	N1300	E58011	51
43333		PORT BLAIR ANDAMAN	N1140	E: 9743	259
43371		TRIVANDRUM INDIA	N9829	E07655	211
43466		COLONBO CEYLON	N0656	E07951	2G
44354		SAINSHAND/SAYN SHANDA	N4454		3571
450∵5		HONG KONG	N2218		109
46697		TAOYUAN TAIWAN	N2525	E12123	165
47127		OSAN-NI S KOREA	N3706	E12702	48
47187	43263	MOSULPO S KOREA	N3312	E12313	43
47431		WAKKANAI JAPAN	N4525	E14141	24
47412		SAPPORO JAPAN	N4303		59
47587		AKITA JAPAN	N3943	£140C6	49
47600		NAGAL AMILAW	N3723	E13654	22
47646		TATENO JAPAN	N36J3	E14308	89
47678		HACHIJOJIMA JAPAN	N3306	E13947	299
47744		MEHD AB JAPAN	N3526	E13321	15
47778		SHIONOMISAKI JAPAN	N3327	E13546	246
47807		FUKUOKA JAPAN	N3335	£13023	22
47909		NAZE JAPAN	N2823	E12930	14
47931		KADENA AB RYUKYU IS	N2621	E12745	142
47981	42451	IND JIMA VOLCAND IS	N2447	E14119	353
48327		CHAING MAI THAILAND	N1847	£09859	1100
48455		BANGKOK THAILAND	N1344	£12030	39
48568		SINGORA/SONGKHLA THAILAND	NO711	E14337	13
48900		SAIGDN RYN	N1:49	F10640	33
51431		INING CHINA	N4355	E08117	2198
517.9		KASHGAR/SU-LO CHINA	N3924	E07603	UNK
51777		CHARKHLIK/NOCHIANG CHINA	N3905	Eu8403	3117
51828		HOTIEN/KHOTAN CHINA	N3767	EC7955	4558
522.3		HAMI CHINA	N425C	E69327	2411
52267		SOH-KUO-NOR CHINA	N4215	E19113	2884
52533		CHIA-YU-KUAN/CHIUCHUAN	N3950	EG9815	5061
52818		KARMU CHINA	N3612	E59438	9350

MMO	WBAN	NAME	LATITUDE	LONGTTUDE	FLEVATION
52889		IKAOLAN/LANCHOW CHINA	N3603	E10347	4987
53546		CHASAKOCHI CHINA	N3917	E10945	UNK
54102		PANTEGAGA SUME CHINA	N4351	E11605	3169
54161		CHANGCHUN CHINA	N4352	E12576	709
54511		PFI-CHING/PEIPING CHINA	N3956	E11626	168
54667		CHOM-SHUI-TZ/TALTEN CHINA	N3854	E12138	312
54857		CHING-TAD CHINA	N3604	E12019	256
55299		AGAG MAMAR CHINA	8CSEN	EC9216	13123
55591		LASA/LHASA CHINA	N2943	E09102	12001
56137		CHANGTU CHINA	N3113	EC9716	10499
56294		CHENG TU CHINA	N3341	E10404	1634
56571		HSI CHANG CHINA	N2753	£10218	5246
56739		TENG CHUNG CHINA	N2507	EC9879	5338
56989		HO KOU CHINA	N2227	E10354	439
57036		HSI-KUAN/HSI-AN CHINA	N3415	E10655	1312
57083		CHENG-HSEIN/CHENGCHOW CHINA	N3443	E11343	UNK
57461		I CHANG CHINA	N3740	E11127	230
57745		CHIHCHIANG CHINA	N2727	E13938	879
57993		KANHSIEN CHINA	N255C	E11450	361
58027		HSU-CHOU/SUCHOW CHINA	N3415	E11715	148
58238		NAN-CHING/VANKING CHINA	N3205	E11845	236
58367		HUNG-CHA/SHANGHAT CHINA	N3112	E12126	15
58606		NANCHANG CHINA	N284G	E11558	161
58847		FONCHOU/FU CHOU CHINA	N2605	E11918	289
59211		PAISE CHINA	N235\$	E10632	650
59265		WUCHOU CHINA	N233C	E11125	391
59316		SWATOW CHINA	N2321	E11643	17
59559		HENG-CHUN/HENGCHUNG FORMOSA	N220C	£12345	72
59758		HAIKOU CHINA	N2COC	E11025	46
59981		HSI SHA CHINA CHINA	N1651	E11270	7
62119	13017	PORT LYAUTEY MOROCCO	N3416	W DE656	39
63390		ALGERYMAISON BLANCHE ALGERIA	N3643	E00315	82
63625		ANULEF ALGERIA	N2658	E00105	951
61052		NIAMEY NIGER	N1329	E00210	768
61471		FORT TRINGUET MAURITANIA	N2514	WG1137	1181
61647		DAKAR/DUAKAM SERFGAL	N1440	WG1726	128
62011	33123	WHEFLUS AB/TRIPOLI LIBYA	N3254	EG1317	82
62062		EL ADEM AF/TOBRUK LIBYA	N3205	E42359	47
62378		HFLWAN UAR	N2952	E03120	463
62414		ASWAN UAR	N2405	E03253	636
62721		KHARTOUM SJDAN	N1536	E03233	1247
73026	275.2	BARROW WBAS ALASKA	N7118	W15647	13
70086		BARTER IS ALASKA	N7598	W14338	5 0
70133	26616	KOTZEBUE AŁASKA	N6652	h16238	16
70200	26617	NOME ALASKA	N643:	W16576	22
70231	26519	MC GRATH WBAS ALASKA	N6258	W15537	337

MMO	WBAN	NAME	LATITUCF	LONGITUDE	FLEVATION
70261	26411	FAIRBANKS ALASKA	N6449	W1475	411
70273	264.59	ANCHORAGE ALASKA	N6113	W14950	135
70308	25713	ST PAUL I ALASKA	N5709	W17013	
72316	25624	COLD BAY ALASKA	N5512	W16243	133
70350	25501	KODIAK ALASKA	N5744	W15231	112
70361	25339	FAIRBANKS ALASKA ANCHORAGE ALASKA ST PAUL I ALASKA COLD BAY ALASKA KODIAK ALASKA YUKUTAT ALASKA	N5931 N5502 N5243	W1394C	36
72398	25338	ANNETTE IS WBAS ALASKA	N5502	w13134	119
75414	457.8	SHEMYA IS ALASKA	N5502 N5243	W17406	95
73454	25734	ANNETTE IS WBAS ALASKA SHEMYA IS ALASKA ADAK ALASKA CHICO AAFCALIF TATOOSH IS WASH SFATTLE FWC WASH AKLAVIK NWT CANADA SILVER HILL ORS MD KEY WEST FLA	N5153	W17638	18
72	232.1	CHICO AAFCALIF	N3947	W12151	237
72	24240	TATOOSH IS WASH	N4823		
72	24244	SFATTLE FWC WASH	N4741	W12216	37
72	26317	AKLAVIK NWT CANADA	N6814	W13500	3)
72	93722	SILVER HILL ORS MD	N6814 N385C N2435	W07657 W58147	291
72201	12850	KFY WEST FLA	N2435	W58147	22
72202	12839	MTAMA WBAS FLA	N2549	W08317	24
	13889	JACKSONVILLE FLA	N3025		
72208	13880	CHARLESTON WBAS S C	N3254	W080G2	46
72211	12842	TAMPA WBAS FLA	N2758	WC8232	36
	13858	TAMPA WBAS FLA EGLIN AFB FLA CADE SAN BLAS FLA			66
	12879	CAPE SAN BLAS FLA	N3J29 N2941	W08521	10
	13895	CAPE SAN BLAS FLA MONTGOMERY WBAS ALABAMA	N3218	W. 8624	211
	13956	JACKSON MISSI	N3220	W09013	332
	03937	JACKSON MISSI LAKE CHARLES LA	N3507		
	13957	SHREVEPORT WBAS LA	N3228	WG9349	
72250	12919	RROUNSVILLE USUR TEXAS	N2630	W39726	17
72251	12926	CORPUS CRISTI NAS TEXAS	N2742	w39716	19
72253	12921	SAN ANTOIL TX	N2932	WC9828	794
72259	13911	SAN ANTOWNO TX CARSWELL AFB TEXAS LAUGHLIN AFB TEXAS	N3246	W: 9725	65€
72261	22051	LAUGHLIN AFB TEXAL	N2922	W19947	1081
72263	23017	GOODFFLLOW AFB TEXAS	N3124		
	23023	MIDLAND TX	N3156	W10212	2858
	23.44	EL PASO WBAS TEXAS	N3148	W13624	3956
		FT HUACHUCA SIG CORPS AEPG	N3134	W11323	4674
	23160	TUCSON ARIZ	N3297	W11056	2558
	€3125	TEST STA YUMA WBAS EL CENTRO CA SAN DIEGO CA	N3251	W11474	
	03146	EL CENTRO CA	N3249		58
	03131	SAN DIFGO CA	N3249	W11768	408
72304	93729	CAPE HATTERAS NC	N3516	WC7533	11
	13737	NORFOLK WBAS VA	N3653	W47612	15
	13873	ATHENS ATLANTA GEORGIA	N3357	E08319	801
	13723	GREENSBORO WBAS N C	N3605	WG7957	926
	13897	NASHVILLE WBAS TENN	N3607	WG8641	60 1
72340	13963	LITTLE ROCK FAA/WBAS AKK	N3455	W092C9	311
?2353	13919	TINKER AFB OKLA CITY	N3525	₩09724	1260
72363	23947	AMARILLO TX	N3514	W13142	3694

UMW	WBAN	NAME	LATITUDE	I ONG I TUDE	FLEVATION
72365	23050	KIRTLAND WBAS N MEXICO	N3503	W10636	5352
	23114	EDWARDS AFB CALIF	N3455	W11754	
	23169	LAS VEGAS NEV	N3605	W11510	2171
	14780	LAKEHURST NAS N J	N4302	W07421	103
72429		DAYTON OHID	N3952		974
	13983	COLUMBIA WBAS MISSOURI		W09222	
72451		DODGE CITY WBAS KANSAS	N3746	W09958	2594
72456	13996	T00544 44144	4.2000	W09537	885
72469	23062	DENVER WBAS COLORADO GRAND JUNCTION WBOZWBAS ELY WBAS NEVADA	N3946	W10453	5332
72476	23066	GRAND JUNCTION WROTWBAS	N3907	N10832	4839
72436	23154	ELY WBAS NEVADA	N3917	W1145	6262
72493	23230	DAKLAND WBAS CALIF	N3744	W12212	18
	14756	NANTUCKET WBAS MASS	N4115	W07004	47
72518	14735	ALBANY WBAS NEW YORK BUFFALD WBAS NEW YORK PEORIA WBAS ILL	N4245	W07348	277
	14733	BUFFALD WBAS NEW YORK	N4256	WG7843	705
	14842	PEORIA WBAS ILL	N4346	W58941	622
	24323	NORTH PLATTE IBAS NEB	N41G8	W1J742	2787
	24127	SALT LAKE CITY WHAS UTAH	N4347	W11158	
	24128	UINNEMHICCA WRAS NGVADA	N4'54	W11746	4339
	14764	PORTLAND MA	N4339	WJ7519	63
_	14898	GREENBAY WBAS WIS	N4429 N4107	₩08808 ₩11158	255
	24101	HILL AFB UTAH	N4107	H11158	4788
	24C21	PORTLAND MA GREENBAY WHAS WIS HILL AFB UTAH LANDER WYOMING	N4248	W10843	5558
72597	24225	MEDEORD WBAS OREGON	N4223		
	14926	LANDER WYOMING MEDEORD WBAS OREGON ST CLOUD MINN RAPID CITY SD BOISE WRAS IDAHO SALEM WBAS OREGON CARIBOU MAINE MANIMAKI QUEBEC	N4535		
	24090	RAPID CITY SD	N4403	W10304	
	24131	BOISE WRAS IDAHO	N4334	W11613	
	24232	SALEM WBAS ORFGON	N4455	W12305	207
	146,7	CARIBOU MAINÉ	N4653	W36758	58
	04734	MANIWAKI QUEBEC	N4622	¥67559	
72734	14847	AMULIC 31 TRAIL MILL	1270/0		
72747	14918	INTERNATIONAL FALLS MINN	N4836	WU9324	1126
72764	24C11	INTERNATIONAL FALLS MINN BISMARK N DAK GREAT FALLS MONT GLASGOW MONT SPOKANE WBAS WASH	N4146	W10045	1677
72775	24143	GREAT FALLS MONT	N4729 N4811	h11122	3657
7276R	24L34	GLASGOW MONT	N4811	W10638	2169
72785	24157	SPOKANE WBAS WASH	N4737		
12853	145.78	ARGENTIA CANADA	N4/18		51
	15613	SEPT-ILES QUEBEC	NS 13	W-6616	-
	145)3			W05832	44
72816		GOOSE DOT NELD	N5318	WC6027	156
	15793	NITCHEOUON OUEBEC	N5312	W07054	1759
	158.3	MODSONEE OUT DOT CANADA	N5116	¥08039	34
	15836	TROUT LAKE ONT	N5350	W28115	729
	250.4	THE PAS MAN USAAF CANADA	N5358	W10106	889
	15635	FORT CHIMO QUEBEC CANADA	N58C6	WC-6826	122
72937	15734	PORT HARRISON OUF CANADA	N5827	W478C8	66

WMO	WBAN	NAME	LATITUCF	LONGI TUDE	FLEVATION
72909	166.3	FROBISHER BAY CANADA	N6345	W06833	110
72913	15901	CHURCHILL MANITURA	N5845		94
72917	18801	EURFKA NWT DOT CANADA	N8313		8
72918	17872	ARCTIC BAY NWT	N7305	_	33
72924	17931	RESOLUTE NWT DOT CANADA	N7443	W03459	221
	169,3	BAKER LAKE CANADA	N6418	W69600	5 0
	26152	FORT SMITH NWT DOT CANADA	N6300	w11152	665
	261,7		N6749	W11505	28
	25218	FORT NELSON BC CANADA	N585C	W12235	1235
	26316	WHITEHORSE YT AAR CANADA	N6343		2305
	26272	NORMAN WELLS NWT	N6517		209
	271:1	MOULD BAY NWT DOT CANADA	N7617	W11928	66
	16895	HALL BEACH NWT	N6847		2)
	18631	ALERT NWT	N8233		237
	17661		N7.27	W: 6833	1.
	25111		N5334		7219
	94789	KENNEDY INT APT N Y	N4039		32
	12868	CAPE KENNEDY FLA	N2829		9
	22009	MAZALTAN MEXICO	N2312		36
	12878	MERIDA YUC INT APT MEXICO	N2056		30
	11903	MEXICO CITY/TACUBAYA MEX	N1924		7564
	11934	VFRA CRUZ MEX	N1911		43
	13651	KINDLEY AFB BERMUDA	N3222		82
	12712	GOLD ROCK CREEK BAHAMAS	N2637		19
	12/13	COFFIN HILLS BAHAMAS	N2516		33
	12716	SAM SALVADAR AFB BAMAS	N2404		UNK
	12714	GRAND TURK AAFB TURKS CAIC	N2127		30
	12864	HAVANA CUBA	N23J9		UNK
	12711	CAMAGUEY CJBA	N2125		4.2
	11736	GUANTANAMO, BAY CUBA	N1954		54
	11813	GRANDCAYMAN BWI	N1+18		10
	11715	KINGSTON JAM	N1756		24
	11646	SABANA DE LA MAR DR	N1933	W36923	36
	0524	SWAN IS WI	N1724		35
	11641	SAN JUAN PUERTO RICO	N1826	MU64CO	72
	11701		NG857	W-7934	41
	11647	ANTIGUA LEEWARD IS BR	• • • •		12
	11642	RATZET F LEEWARD IS	N1616		26
78967		TRINIDAD/USNS BWT	N1 :41	Wi/61 37	42
	11643	WILLEMSTAD CURACAO NWI	N1212	W: 6858	27
	11814	SAN ANDRES IS COLUMBIA	N1235	W08142	30
	227:1	MIDNAY NAS HAW IS	N2813	W17723	13
	22536	LIHUE WBAP 'AUAI HAW IS	N2159	W15921	147
	41415	TAGUAC GUAM POLYNESIA	N1333	E14450	364
	416.6	WAKE IS INT APT WAG	N1917	W16639	14
71720	416.1	ENIWETOK MARSHALI IS	N1121	E16271	12

MMO	WBAN	NAME	LATITUDE	LONGI TUDE	ELEVATION
91275	21601	JOHNSTON IS AFB	N1644	W16931	7
91285	21554	HILO WBAP HAWAIIAN IS	N1943	W15504	116
91334	41535	TRUK WBO CAROLINF IS	NC728	E15151	118
91348	4C5J4	PONAPE CAROLINE IS	N0658	E15813	1υ
91408	40309	PALAU/KOROR CAROLINE IS	N072C	E13429	371
91413	8ر 433	YAP NAV CAROLINE IS POLY	166GN	E138C8	51
98327	41257	CLARK AFB PHILIPPINES	N1511	E12033	478
99007	J2C J2	SHIP 4YB	N563C	W051 00	
99008	00003	SHIP 4YC	N5245	WC3530	
990-9	0.234	SHIP4YD	N440C	WG4100	
99010	03035	SHIP 4YE	N3501	W54800	
99016	0.011	SHIP 4YK	N4500	W01600	
99021	00017	SHIP 4YP	N530-	W14500	
99027	00025	SHIP 4YV	N340G	E16400	

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 1000 MB JANUARY

Figure B-1

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 850 MB JANUARY

Figure B-2

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
700 MB JANUARY

Figure B-3

Figure B-4

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 1000 MB FEBRUARY

Figure B-5

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 850 MB FEBRUARY

Figure B-6

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
700 MB FEBRUARY

Figure B-7

Figure B-8

PROBABILITY OF ENCOUNTERRIG ISING CONDITIONS 1000 MB MARCH

Figure B-9

SECTION OF THE PROPERTY OF THE

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
850 MB MARCH

Figure B-10

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
700 MB MARCH

Figure B-11

SERVICE STREET THE SERVICE SER

Figure B-12

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 1000 MB APRIL

Figure B-13

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 950 MB APRIL

Figure B-14

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 700 MB AFRIL

Figure B-15

CAMPAGE AND ASSESSED OF THE PROPERTY OF THE PR

Figure B-16

PROBABILITY OF ENCOUNTERING ICING CONDITIONS ICOO MB MAY

Figure B-17

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 850 MB MAY

Figure B-18

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 700 MB MAY

Figure B-19

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 500 MB MAY

Figure B-20

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 1000 MB JUNE

Figure B-21

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
850 MB JUNE

Figure B-22

AND STANDARD HANDERS STANDARD STANDARD

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
700 MR. JUME

Figure B-23

Figure F-24

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 1000 MB JULY

Figure B-25

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
850 MB JULY

Figure B-26

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 700 MB JULY

Figure B-27

Figure B.28

PROBABILITY OF ENCOUNTERING ICING CONDITIONS IOOO MB AUGUST

Figure B-29

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 850 MB AUGUST

Figure B-30

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
700 MB AUGUST

Figure B-31

Figure B-32

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 1000 MB SEPTEMBER

Figure B-33

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
#SO MB SEPTEMBER

Figure 3-34

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 700 MB SEPTEMBER

Figure B-35

Figure B-36

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 1000 MB OCTOBER

Figure B-37

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
800 MB OCTOBER

Figure B-38

THE THE PARTY OF T

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 700 MB OCTOBER

Figure B-39

Figure B-40

and the state of t

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 1000 MB NOVEMBER

Figure B-41

1/ROBABILITY OF ENCCUNTERING ICING COMDITIONS 850 Mg NOVEMBER

Figure 8-42

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 700 MS NOVEMBER .

Figure 8-43

Figure B-44

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
1000 MB DECEMBER

Figure B-45

PROBABILITY OF ENCOUNTERING ICING CONDITIONS
850 MB DECEMBER

Figure B-46

PROBABILITY OF ENCOUNTERING ICING CONDITIONS 700 MB DECEMBER

Figure B-47

Figure E-48