

Applied Machine Learning with R

Felix Heinrich

Breeding Informatics Group Department of Animal Science Georg-August University Göttingen

Algorithms

- The success of machine learning systems also depends on the algorithms.
- The algorithms control the search to find and build the knowledge structures.
- The learning algorithms should extract useful information from training examples.

The aim of classification

- The goal of data classification is to organize and categorize data into distinct classes
 - A model is first created based on the training data (learning)
 - The model is then validated on the testing data
 - Finally, the model is used to classify the new data

Clustering vs. Classification

Clustering	Classification
Unknown number of groups	Known number of classes
No prior knowledge	Training data is needed
Used to explore data	Used to make new predictions
A form of unsupervised learning	A form of supervised learning

Classification process: Learning the model

Example classification process: Prediction of future cases

Supervised learning

Observation	Outcome
Winter of 2014 was warm	Summer of 2015 was cold
Winter of 2015 was cold	Summer of 2016 was cold
Winter of 2016 was cold	Summer of 2017 was cold
Winter of 2017 was warm	Summer of 2018 was hot
Winter of 2018 was cold	Summer of 2019 was cold
Winter of 2019 was warm	Summer of 2020 was warm
Winter of 2020 was cold	Summer of 2021 was cold
Winter of 2021 was cold	Summer of 2022 was hot
Winter of 2022 was warm	Summer of 2023 will be ?

Example classification process: Prediction of future cases

Supervised learning

Observation	Outcome
Winter of 2014 was warm	Summer of 2015 was cold
Winter of 2015 was cold	Summer of 2016 was cold
Winter of 2016 was cold	Summer of 2017 was cold
Winter of 2017 was warm	Summer of 2018 was hot
Winter of 2018 was cold	Summer of 2019 was cold
Winter of 2019 was warm	Summer of 2020 was warm
Winter of 2020 was cold	Summer of 2021 was cold
Winter of 2021 was cold	Summer of 2022 was hot
Winter of 2022 was warm	Summer of 2023 will be ?

Observation	Outcome
1	0
0	0
0	0
1	2
0	0
1	1
0	0
0	2
1	?

Example classification process: Prediction of future cases

Supervised learning

Observation	Outcome
Winter of 2014 was warm	Summer of 2015 was cold
Winter of 2015 was cold	Summer of 2016 was cold
Winter of 2016 was cold	Summer of 2017 was cold
Winter of 2017 was warm	Summer of 2018 was hot
Winter of 2018 was cold	Summer of 2019 was cold
Winter of 2019 was warm	Summer of 2020 was warm
Winter of 2020 was cold	Summer of 2021 was cold
Winter of 2021 was cold	Summer of 2022 was hot
Winter of 2022 was warm	Summer of 2023 will be ?

Observation	Outcome
1	0
0	0
0	0
1	2
0	0
1	1
0	0
0	2
1	?

Supervised learning: Limitations and opportunities

Observation	Outcome
1	0
0	0
0	0
1	2
0	0
1	1
0	0
0	2
1	?

Mathematical algorithms good at pattern identification, but bad at generalization.

Human brain good at generalization, but bad at pattern identification.

Performance of a classification algorithm:

Typically for supervised learning algorithm a **confusion matrix** is used to measure the performance of the training process

Confusion matrix

- known as an error matrix
- a specific table layout that allows visualization of the performance of an algorithm
- a special kind of contingency table, with two dimensions ("actual" and "predicted")
- reports the number of false positives, false negatives, true positives, and true negatives.

Introduction to Machine Learning

Performance of a classification algorithm:

Confusion matrix

Terminology and derivations from the confusion matrix

True condition						
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positive +	y (ACC) = + Σ True negative opulation
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive $\overline{\Sigma}$ Predicted condition positive		y rate (FDR) = positive ndition positive
condition	regative Predicted condition negative Type II error True negative	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative		
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \ False \ positive}{\Sigma \ Condition \ negative}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = Σ True negative Σ Condition negative	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$	= LR+ = LR-	1 Tecision 2

condition positive (P)	condition negative (N)
the number of real positive cases in the data	the number of real negative cases in the data
true positive (TP)	true negative (TN)
eqv. with hit	eqv. with correct rejection
false positive (FP)	false negative (FN)
eqv. with false alarm, Type I error	eqv. with miss, Type II error

Introduction to Machine Learning

Negative (class = 0)

Terminology and derivations from the confusion matrix

sensitivity, recall, hit rate, or true positive rate (TPR)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

specificity, selectivity or true negative rate (TNR)

$$\text{TNR} = \frac{\text{TN}}{N} = \frac{\text{TN}}{\text{TN} + \text{FP}} = 1 - \text{FPR}$$

precision or positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP}$$

negative predictive value (NPV)

$$NPV = \frac{TN}{TN + FN}$$

miss rate or false negative rate (FNR)

$$\text{FNR} = \frac{\text{FN}}{P} = \frac{\text{FN}}{\text{FN} + \text{TP}} = 1 - \text{TPR}$$

fall-out or false positive rate (FPR)

$$\text{FPR} = \frac{\text{FP}}{N} = \frac{\text{FP}}{\text{FP} + \text{TN}} = 1 - \text{TNR}$$

false discovery rate (FDR)

$$FDR = \frac{FP}{FP + TP} = 1 - PPV$$

accuracy (ACC)

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

Matthews correlation coefficient (MCC)

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Positive (class = 1)

Predicted **Predicted**

Positive (class = 1)

Negative (class = 0)

True class

Performance of a regression algorithm:

- Now consider the outcome Y not as an instance of a distinct class, but as a continous value
 - Temperature Example:
 - Stock price
 - Gene expression
- The computation of a confusion matrix is not that easy (no TP, FP, TN, FN)
- Alternative metrics are more informative
- Error-based metrics: deviation of the model output (\hat{Y}) from the target (Y)

 - Mean squared error (MSE): $\frac{1}{n}\sum_{i=0}^{n}(\widehat{y_i}-y_i)^2$ Root Mean Squared Error (RMSD): $\sqrt{\frac{1}{n}\sum_{i=0}^{n}(\widehat{y_i}-y_i)^2}$ Mean absolute error (MAE): $\frac{1}{n}\sum_{i=0}^{n}|\widehat{y_i}-y_i|$
- Correlation-based metrics: $\rho(\widehat{Y}, Y) = \frac{Cov(\widehat{Y}, Y)}{\sqrt{Var(\widehat{Y})Var(Y)}}$

Introduction to Machine Learning

Support Vector Machine (SVM):

Support Vector Machine (SVM):

 Supervised learning models primarily used for binary classification (but extendable to multiple classes)

Analyzing data sets used for classification

SVM Algorithm

- Data
 - Imagine that we have two tags: red and blue,
 - Our data has two features: x and y
 - Aim: Learn a classifier to predict the class based on (x,y)
 - It can identify whether a new data point is red or blue

Support Vector Machine (SVM):

- Based on these data points, a SVM outputs the hyperplane
- Best separation of the tags in the analyzed data sets used for classification

Support Vector Machine (SVM):

Linear Data:

• Determine best hyperplane

What happens, if my data is not like this?

Non-Linear Data

Two sets of data:

One of them occurs in the middle of another set

Hyperplane cannot be used ⊗

Support Vector Machine (SVM):

Non-Linear Data

It is necessary to move away from a 1-D view of the data to a 2-D view

→ Transformation using a Kernel Function

datacamp.com

Support Vector Machine (SVM):

Non-Linear Data

How to perform SVM for this type of data set?

The hyperplane is not optimal ⊗

→ Transformation using a Kernel Function

datacamp.com

Support Vector Machine (SVM):

Data with more than two classes

One-vs-all (one-vs-rest):

- For more than two classes reduce the classification problem into multiple binary classification problems
- To classify k classes we need k different SVMs
- R handles multiple classes automatically

Support Vector Machine (SVM): What is a kernel?

Idea of the kernel trick:

Transform your data to a higher dimensional space

Simple examples:

• 1D -> 2D: Data is one-dimensional; e.g. x = 2; 6; 3

Introduce a function f(x) to create a new variable y: $y = f(x) = x^2$ \longrightarrow y = 4; 36; 9

• 2D -> 3D: Data is two-dimensional; e.g. x = 2; 6; 3 and y = 4; 36; 9

Introduce a function f(x,y) to create a new variable z: $z = f(x,y) = x + y \longrightarrow z = 6$; 42; 12

A kernel is mathematical function

Support Vector Machine (SVM):

Advantages

- <u>High Dimensionality</u>: SVM is an effective tool in high-dimensional spaces, which is particularly applicable to document classification and sentiment analysis where the dimensionality can be extremely large.
- <u>Memory Efficiency:</u> Since only a subset of the training points are used in the actual decision process of assigning new members, just these points need to be stored in memory (and calculated upon) when making decisions.
- <u>Versatility:</u> Class separation is often highly non-linear. The ability to apply new kernels allows substantial flexibility for the decision boundaries, leading to greater classification performance.

Disadvantages

- <u>Kernel Parameters Selection</u>: SVMs are very sensitive to the choice of the kernel parameters. In situations where the number of features for each object exceeds the number of training data samples, SVMs can perform poorly.
- <u>Non-Probabilistic:</u> Since the classifier works by placing objects above and below a classifying hyperplane, there is no direct probabilistic interpretation for group membership. However, one potential metric to determine the "effectiveness" of the classification is how far from the decision boundary the new point is.

Support Vector Machines

Example:

```
Import the data file called "catsData.csv" into the variable mydata
```

```
> mydata= read.table("catsData.csv", header=TRUE, sep=",", stringsAsFactors = TRUE)
# Check the dimensions of the data
# View statistical summary of dataset
# View the complete data
#bwt: body weight (in kg)
#hwt: heart weight (in g)
```

Process the dataset

- Shuffle and divide mydata in two data frames as dfTraining (70%) and dfTest (30%)
- Perform a svm to classify the data based on the sex with dfTraining (function in R: svm)
- Check the number of support vectors that are used
- Verify results of the svm by plotting them
- Create a confusion matrix for the predicted and true sex on dfTest
- Calculate the following values using your own functions:
 - Sensitivity , Specificity
 - Precision, Accuracy

Process the dataset

```
    Divide mydata in two data frames as dfTraining (70%) and dfTest (30%)
```

```
>countTraining = round(nrow(mydata)*0.7)
>randomRows=sample(1:nrow(mydata), size= countTraining, replace=F)
>dfTraining = mydata[randomRows,]
>dfTest = mydata[- randomRows,]
```

Perform a svm to classify the data based on the sex with dfTraining (function in R: svm)

```
>library(e1071) #library containing the svm function
>mySVM = svm(Sex~., dfTraining, scale = TRUE)
#Create a svm with Sex as class attributes and all other attributes as variables
```

Check the number of support vectors that are used

```
>summary(mySVM)
```

Support Vector Machines

Example:

Process the dataset

Verify results of the svm by plotting them

```
>plot(mySVM, data = dfTraining)
#Crosses are the support vectors while circles are normal data points
#Using ggplot2 for svm is possible but far more difficult than the normal plot() function
```

- Use the training model to make predictions based on dfTest(function: predict)
- >myPred = predict(mySVM,dfTest) #Create vector of predicted sex based on the svm
- Create a confusion matrix for the predicted and true sex on dfTest (function: table)

```
>confTable = table(myPred,dfTest$Sex) #Create confusion matrix from predicted and true values >confTable
```

- Calculate the following values using your own functions
 - Sensitivity, Specificity
 - Precision, Accuracy

Support Vector Machines

Example:

Process the dataset

Calculate the following values using your own functions

#We need the values for True_Positives, True_Negatives, False_Positives and False_Negatives

#These can be read from the confusion matrix

#In this case we assume that female equals true and male equals false

>truePos = confTable[1,1] #True Positives

>trueNeg = confTable[2,2] #True_Negatives

>falsePos = confTable[1,2] #False Positives

>falseNeg = confTable[2,1] #False_Negatives

sensitivity, recall, hit rate, or true positive rate (TPR)

$$ext{TPR} = rac{ ext{TP}}{ ext{P}} = rac{ ext{TP}}{ ext{TP} + ext{FN}} = 1 - ext{FNR}$$

specificity, selectivity or true negative rate (TNR)

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = 1 - FPR$$

precision or positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP}$$

accuracy (ACC)

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

Process the dataset

Calculate the following values using your own functions

sensitivity, recall, hit rate, or true positive rate (TPR)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

specificity, selectivity or true negative rate (TNR)

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = 1 - FPR$$

Process the dataset

#Precision

Calculate the following values using your own functions

#Accuracy >calcAcc = function(truePos,trueNeg,falsePos,falseNeg){

acc = (truePos + trueNeg) / (truePos + trueNeg + falsePos + falseNeg)
return(acc)

precision or positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP}$$

accuracy (ACC)

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

Process the dataset

Calculate the following values using your own functions

```
>sens = calcSens(truePos,falseNeg)
>cat("Sensitivity:", sens)
>spec = calcSpec(trueNeg,falsePos)
>cat("Specificity:", spec)

>prec = calcPrec(truePos,falsePos)
>cat("Precision:", prec)
>acc = calcAcc(truePos,trueNeg,falsePos,falseNeg)
>cat("Accuracy:", acc)
```

Support Vector Machines

Exercise:

Import the data file called "plantData.csv" into the variable mydata

Process the dataset

- Shuffle and divide mydata in two data frames as dfTraining (70%) and dfTest (30%)
- Create a svm for classifying the data based on the species with dfTraining (function in R: svm)
- Check the number of support vectors that are used
- Verify results of the svm by plotting them
- Create a confusion matrix for the predicted and true species on dfTest
- Calculate the following values using your own functions:
 - Accuracy

Exercise:

```
Import the data file called "plantData.csv" into the variable mydata
>mydata = read.table("plantData.csv", header = TRUE, sep = ",", stringsAsFactors = TRUE)

Process the dataset
```

Divide mydata in two data frames as dfTraining (70%) and dfTest (30%)

```
>countTraining = round(nrow(mydata)*0.7)
>randomNumbers= sample(1:nrow(mydata), size = countTraining, replace = F) #randomSamples
>dfTraining =mydata[randomNumbers, ]
>dfTest = mydata[-randomNumbers, ]
```

Create a svm for classifying the data based on the species with dfTraining (function in R: svm)

```
>mySVM = svm(Species~., dfTraining)
```

Check the number of support vectors that are used

>summary(mySVM)

Exercise:

Process the dataset

Verify results of the svm by plotting them

#The plot has become a bit more difficult since we have more than 2 dimensions in our data
#Here we plot the points based on 2 dimensions while we fix the values for the other dimensions
>plot(mySVM, data = mydata, Petal.Width~Petal.Length,
+ slice = list(Sepal.Width = 3, Sepal.Length = 4))

#The points are plotted according to their values in Petal.Width and Petal.Length #The values of Sepal.Width and Sepal.Length are fixed to 3 respectively 4

Create a confusion matrix for the predicted and true species on dfTest

```
# perform a svm classification using the training model
>myPred = predict(mySVM,dfTest)
# confusion matrix
>confTable = table(myPred,dfTest$Species)
```