Lecture 7 Pushdown Automata

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

Pushdown Automata

Limitation of finite automata

- Finite automata cannot recognize context-free languages
 - Because FA have limited memory and storage
 - E.g., $L = \{a^n b^n \mid n \ge 1\}$
 - * FA cannot count the number of symbols contained in the input string

- Pushdown Automata (PDA)
 - PDA are essentially finite automata
 - PDA have an extra component called a stack
 - A stack, by definition, has infinite length
 - * This overcomes the limitation on finite automata arising from a bounded memory

- (Nondeterministic) Pushdown Automata: Formal definition
 - A pushdown automaton (PDA) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$
 - \diamondsuit Q is a finite set of **internal states**
 - \clubsuit Σ is a finite set of **symbols**
 - $ightharpoonup \Gamma$ is a finite set of symbols called **stack alphabets**
 - \bullet δ is a set of **transition functions**
 - $\delta: Q \times (\Sigma \cup {\lambda}) \times \Gamma \to 2^{(Q \times \Gamma^*)}$
 - $q_0 \in Q$ is the initial state
 - $z \in \Gamma$ is the initial stack alphabet
 - $F \subseteq Q$ is a set of **final states**

Example

$$\bullet M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, z\}, \delta, q_0, z, \{q_2\})$$

$$\delta(q_0, a, z) = \{(q_0, 0z)\}$$

$$\delta(q_0, a, 0) = \{(q_0, 00)\}$$

$$\delta(q_0, b, 0) = \{(q_1, \lambda)\}$$

$$\delta(q_1, b, 0) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \lambda, z) = \{(q_2, z)\}$$

Example

$$\bullet M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, z\}, \delta, q_0, z, \{q_2\})$$

$$\delta(q_0, a, z) = \{(q_0, 0z)\}$$

$$\delta(q_0, a, 0) = \{(q_0, 00)\}$$

$$\delta(q_0, \mathbf{b}, \mathbf{0}) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \mathbf{b}, \mathbf{0}) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \lambda, \mathbf{z}) = \{(q_2, \mathbf{z})\}$$

Example

$$\bullet M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, z\}, \delta, q_0, z, \{q_2\})$$

$$\delta(q_0, a, z) = \{(q_0, 0z)\}$$

$$\delta(q_0, a, 0) = \{(q_0, 00)\}$$

$$\delta(q_1, \lambda, \mathbf{z}) = \{(q_2, \mathbf{z})\}$$

Example

$$\bullet M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, z\}, \delta, q_0, z, \{q_2\})$$

$$\delta(q_0, a, z) = \{(q_0, 0z)\}$$

$$\delta(q_0, \mathbf{a}, \mathbf{0}) = \{(q_0, \mathbf{00})\}$$

$$\delta(q_1, \lambda, \mathbf{z}) = \{(q_2, \mathbf{z})\}$$

PDA for recognizing $L = \{a^n b^n \mid n \ge 1\}$

$$a, z \to 0z$$

$$a, 0 \to 00$$

$$b, 0 \to \lambda$$

$$q_0$$

$$b, 0 \to \lambda$$

$$q_1$$

$$\lambda, z \to z$$

$$q_2$$

- Example
 - E.g., Input string is "aabb"

10

Example

■ E.g., Input string is "aabb"

Theory of Computation

Stack

Example

■ E.g., Input string is "aabb"

0 0 z Stack

Example

■ E.g., Input string is "aabb"

13

Example

■ E.g., Input string is "aabb"

Example

■ E.g., Input string is "aabb"

aabb Accepted!

- Instantaneous description (ID)
 - A notation for describing the configurations of PDA during the processing of a string
 - Represented as (q, w, u)
 - \Leftrightarrow q: current state
 - ❖ w: unread part of the input string
 - $\diamond u$: stack contents (leftmost symbol represents the top of the stack)
 - A move from one ID to another is denoted by the symbol " ⊢ " (turnstile)
 - \Leftrightarrow e.g., $(q_1, aw, bx) \vdash (q_2, w, yx)$

- Instantaneous description (ID): Example
 - Processing "aabb"
 - \blacksquare $(q_0, aabb, z)$

- Instantaneous description (ID): Example
 - Processing "aabb"
 - $(q_0, aabb, z) \vdash (q_0, abb, 0z)$

- Instantaneous description (ID): Example
 - Processing "aabb"
 - \blacksquare (q₀, aabb, z) \vdash (q₀, abb, 0z) \vdash (q₀, bb, 00z)

- Instantaneous description (ID): Example
 - Processing "aabb"
 - $(q_0, aabb, z) \vdash (q_0, abb, 0z) \vdash (q_0, bb, 00z) \vdash (q_1, b, 0z) \vdash (q_1, \lambda, z) \vdash (q_2, \lambda, z)$

- Instantaneous description (ID): Example
 - Processing "aabb"

 - \blacksquare $(q_0, aabb, z) \vdash^* (q_2, \lambda, z)$

- The Language accepted by a PDA
 - Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be a nondeterministic pushdown automaton
 - \blacksquare The language accepted by M is the set

$$L(M) = \{ w \in \Sigma^* : (q_0, w, z) \vdash^* (p, \lambda, u), p \in F, u \in \Gamma^* \}$$

- The Language accepted by a PDA
 - Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be a nondeterministic pushdown automaton
 - The language accepted by *M* is the set

$$L(M) = \{ w \in \Sigma^* : (q_0, w, z) \vdash^* (p, \lambda, u), p \in F, u \in \Gamma^* \}$$

- \blacksquare Set of all strings that can put M into a final state at the end of the string
 - \diamond The final stack contents u is irrelevant to this definition of acceptance

• Another example: Design a PDA for $L = \{ww^R : w \in \{a, b\}^*\}$

- Another example: Design a PDA for $L = \{ww^R : w \in \{a, b\}^*\}$
 - $\bullet M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$

- Another example: Design a PDA for $L = \{ww^R : w \in \{a, b\}^*\}$
 - $\bullet M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$

 $a, z \to 0z$ $b, z \to 1z$ $a, 0 \to 00$ $b, 0 \to 10$ $a, 1 \to 01$ $b, 1 \to 11$ $a, 0 \to \lambda$ $b, 1 \to \lambda$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

Processing "abba"

 $(q_0, abba, z)$

 $\vdash (q_0, bba, 0z)$

 $\vdash (q_0, ba, 10z)$

 $\vdash (q_1, ba, 10z)$

 $\vdash (q_1,a,0z)$

 $\vdash (q_1, \lambda, z)$

 $\vdash (q_2, \lambda, z)$

• Another example: Design a PDA for $L = \{w \in \{a, b\}^* : n_a(w) = n_b(w)\}$

- Another example: Design a PDA for $L = \{w \in \{a, b\}^* : n_a(w) = n_b(w)\}$
 - $\bullet M = (\{q_0, q_1\}, \{a, b\}, \{0, 1, z\}, \delta, q_0, z, \{q_1\})$

• **Practice:** Design a PDA for $L = \{a^n b^{2n} : n \ge 0\}$

• **Practice:** Design a PDA for $L = \{a^n b^{2n} : n \ge 0\}$

Next Lecture

- Convert CFG to PDA
- Convert PDA to CFG