Introduzione al Machine Learning: Metodi di ottimizzazione

Vincenzo Bonifaci

Ottimizzazione matematica

Problema di minimizzazione: minimize $_{w \in \mathbb{R}^N} g(w)$

Input: Una funzione $g: \mathbb{R}^N \to \mathbb{R}$

Output: $w^* \in \mathbb{R}^N$ tale che $g(w^*) \leq g(w)$ per ogni $w \in \mathbb{R}^N$

w* è un minimo globale della funzione g

Minimi globali

 $w^* \in \mathbb{R}^N$ tale che $g(w^*) \leq g(w)$ per ogni w in \mathbb{R}^N

Minimi locali

 $w^* \in \mathbb{R}^N$ tale che $g(w^*) \leq g(w)$ per ogni w in un intorno di w^*

Due semplici metodi di approssimazione

Due semplici metodi di approssimazione

La maledizione della multidimensionalità

La maledizione della multidimensionalità

3/10

Metodi di ricerca locale

Metodi di ricerca locale

$$w^{(t+1)} = w^{(t)} + d^{(t)}$$

Una condizione desiderabile (non sempre soddisfatta) è che

$$g(w^{(0)}) > g(w^{(1)}) > g(w^{(2)}) > \ldots > g(w^{(t)}) > \ldots$$

Vincenzo Bonifaci

Intro ML: Metodi di ottimizzazione

Lunghezza del passo

Direzione di discesa e passo

Per controllare la lunghezza del passo possiamo porre, più in generale,

$$w^{(t+1)} = w^{(t)} + n d^{(t)}$$

- $d^{(t)}$ è la direzione di discesa all'iterazione t
- $\eta > 0$ è il passo (o tasso di apprendimento)

Poiché

$$\left\| w^{(t+1)} - w^{(t)} \right\| = \left\| \eta d^{(t)} \right\| = \eta \left\| d^{(t)} \right\|$$

la lunghezza dello spostamento è direttamente proporzionale a η

Metodi di ordine 0, 1, 2, ...

Un *metodo di ordine 0* utilizza solo i valori della funzione *g*

Un $metodo\ di\ ordine\ 1$ utilizza, in più, i valori delle derivate prime di g

Un metodo di ordine 2 utilizza, in più, i valori delle derivate seconde di g

Approssimazioni di Taylor: Caso univariato (N = 1)

Approssimazione di ordine 1

$$a_1(w) = g(v) + g'(v)(w - v)$$

Approssimazione di ordine 2

$$a_2(w) = g(v) + g'(v)(w - v) + \frac{1}{2}g''(v)(w - v)^2$$

Esempio

$$g(w) = (w+8)(w+4)w(w-2)(w-8)/1000, v=2$$

Gradiente ed Hessiana

Gradiente di g nel punto v

$$abla_w g(v) \stackrel{ ext{def}}{=} \left[egin{array}{c} rac{\partial g}{\partial w_1}(v) \ rac{\partial g}{\partial w_2}(v) \ \dots \ rac{\partial g}{\partial w_N}(v) \end{array}
ight]$$

Hessiana di g nel punto v

$$\nabla_{w}^{2}g(v) \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial^{2}g}{\partial w_{1}^{2}}(v) & \frac{\partial^{2}g}{\partial w_{1}\partial w_{2}}(v) & \dots & \frac{\partial^{2}g}{\partial w_{1}\partial w_{N}}(v) \\ \frac{\partial^{2}g}{\partial w_{2}\partial w_{1}}(v) & \frac{\partial^{2}g}{\partial w_{2}^{2}}(v) & \dots & \frac{\partial^{2}g}{\partial w_{2}\partial w_{N}}(v) \\ \dots & \dots & \dots & \dots \\ \frac{\partial^{2}g}{\partial w_{N}\partial w_{1}}(v) & \frac{\partial^{2}g}{\partial w_{N}\partial w_{2}}(v) & \dots & \frac{\partial^{2}g}{\partial w_{N}^{2}}(v) \end{bmatrix}$$

Abbreviati in $\nabla g(v)$, $\nabla^2 g(v)$ se le variabili w sono chiare dal contesto

Approssimazioni di Taylor: Caso generale ($N \ge 1$)

Approssimazione di ordine 1

$$a_1(w) = g(v) + \nabla g(v)^{\top}(w - v)$$

Approssimazione di ordine 2

$$a_2(w) = g(v) + \nabla g(v)^{\top}(w - v) + \frac{1}{2}(w - v)^{\top}\nabla^2 g(v)(w - v)$$

 $\nabla g(v)$ è il *gradiente* di g (vettore delle derivate prime) in v $\nabla^2 g(v)$ è l'*Hessiana* di g (matrice delle derivate seconde) in v

Condizione di ottimalità al prim'ordine

$$\nabla g(v) = 0$$

è una condizione necessaria affinché v sia un minimo globale di g

Non è (in generale) sufficiente: identifica solo i punti critici di g:

- minimi/massimi locali
- punti di sella

(anche detti *punti stazionari* della funzione)

Punti critici: Esempi

Un esempio

$$g(w) = \frac{1}{50}(w^4 + w^2 + 10w)$$

Funzioni convesse

Funzione convessa (definizione di ordine 0)

Una funzione $f: \mathbb{R}^N \to \mathbb{R}$ è *convessa* se per ogni $\lambda \in [0,1]$, $a,b \in \mathbb{R}^N$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

Funzioni convesse: definizione alternativa (ordine 1)

Se f è differenziabile, f è convessa se e solo se

$$f(b) \ge f(a) + \nabla f(a)^{\top} (b - a)$$
 per ogni $a, b \in \mathbb{R}^N$

Funzioni convesse: definizione alternativa (ordine 2)

Se f è due volte differenziabile, f è convessa se e solo se l'Hessiana

$$\nabla^2 f(x)$$

ha tutti gli autovalori non-negativi, per ogni $x \in \mathbb{R}^N$

Una matrice con tutti gli autovalori ≥ 0 è detta *semidefinita* positiva

Funzioni convesse vs. non convesse: Esempi

Esempi con N = 1:

- $g(w) = w^3$ non è convessa
- $g(w) = e^w$ è convessa
- $g(w) = \sin(w)$ non è convessa
- $g(w) = w^2$ è convessa
- g(w) = |w|è convessa

Funzioni convesse vs. non convesse: Esempi

Esempi con N > 1:

$$g(w) = \frac{1}{2}w^{\top}Qw + r^{\top}w + b$$

con Q simmetrica

$$\nabla^2 g(w) = Q$$

- con $Q = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ è convessa
- con $Q = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ è convessa
- con $Q = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$ non è convessa

Funzioni convesse vs. non convesse: Esempi

Condizione di ottimalità per funzioni convesse

Se g è convessa e differenziabile, la condizione

$$\nabla g(w) = 0$$

è necessaria e sufficiente affinché w sia un minimo globale.

Infatti, per ogni w',

$$g(w') \geq g(w) + \nabla g(w)^{\top}(w'-w) = g(w)$$

⇒ Nelle funzioni convesse, i minimi locali sono anche globali ←

Alcuni criteri sufficienti di convessità

- Ogni funzione lineare è convessa
- Se f è convessa e $c \ge 0$, $c \cdot f(x)$ è convessa
- Se f e g sono convesse, f(x) + g(x) è convessa
- Se f e g sono convesse, $\max(f(x), g(x))$ è convessa
- Se a è lineare e f è convessa, f(a(x)) è convessa
- Se C è simmetrica con autovalori > 0, $x^{T}Cx$ è convessa
- Se $C = v \cdot v^{\top}$, $x^{\top}Cx$ è convessa
- Se $\nabla^2 f$ è simmetrica con autovalori ≥ 0 , f(x) è convessa

Convessità e funzioni di costo

• La funzione quadrato dell'errore

$$\ell(y) = (y - y^*)^2$$

è convessa

• La funzione costo 0-1

$$\ell(y) = \begin{cases} 0 & \text{se } y = y^* \\ 1 & \text{se } y \neq y^* \end{cases}$$

non è convessa

Discesa del gradiente [Gradient Descent]

Algoritmo di discesa del gradiente (GD)

Algoritmo Gradient Descent (versione generica)

Input: Funzione g, punto iniziale $w^{(1)}$

1 Per t = 1, ..., T:

$$w^{(t+1)} = w^{(t)} - \eta \cdot \nabla g(w^{(t)})$$

2 Restituisci il $w^{(t)}$ col minimo valore di $g(w^{(t)})$, t = 1, ..., T

L'algoritmo ha due parametri: η (passo) e T (numero di passi) (chiamati *iperparametri* per non confonderli con i parametri w del modello da ottimizzare)

Esempio con diversi valori del passo η

Esempio non convesso

Due problematiche di GD

- La direzione del gradiente negativo può oscillare, portando l'algoritmo a muoversi a "zig-zag" e convergere lentamente
- La magnitudine del gradiente negativo si contrae vicino ai punti critici, rallentando la discesa

Per questo motivo le librerie di ML adottano varianti di GD più sofisticate (Momentum, Adam, RMSprop...)

Movimento a zig-zag: Esempi

Rallentamento vicino ai punti critici: Esempi

Metodi del secondo ordine

GD è un esempio di *metodo del primo ordine* in quanto usa solo:

- i valori della funzione, g(x) (scalari)
- i valori del gradiente, $\nabla g(x)$ (vettori $N \times 1$)

I metodi del secondo ordine utilizzano anche

• i valori dell'Hessiana, $\nabla^2 g(x)$ (matrici $N \times N$)

Il metodo di Newton ne è l'esempio più noto

L'uso di metodi del secondo ordine nel ML è fortemente limitato dal fatto che richiedono la manipolazione esplicita di matrici $N \times N$ (potenzialmente enormi) ad ogni passo dell'algoritmo

Esempio (metodo di Newton)

Minimizzazione iterativa del rischio empirico

Discesa del gradiente (GD): calcolo di un passo

II metodo GD calcola $\nabla g(w)$ ad ogni passo

Per noi, g è il rischio empirico, funzione di tutti gli esempi di training:

$$g(w) = \frac{1}{m} \sum_{i=1}^{m} \ell(h_w, (x^{(i)}, y^{(i)})) = \frac{1}{m} \sum_{i=1}^{m} \ell_i(h_w)$$
$$\nabla g(w) = \frac{1}{m} \sum_{i=1}^{m} \nabla \ell_i(h_w)$$

dove h_w è l'ipotesi codificata dal vettore w e ℓ_i è la funzione di costo sull'esempio i-esimo

Discesa del gradiente (GD) per il Machine Learning

Gradient Descent (Batch GD)

- **1** Poni $w^{(1)} = 0$
- **2** Per t = 1, ..., T:
 - Poni $w^{(t+1)} = w^{(t)} \eta \cdot \frac{1}{m} \sum_i \nabla \ell_i(h_{w^{(t)}})$
- **3** Restituisci il $w^{(t)}$ col minimo valore di $g(w^{(t)})$, t = 1, ..., T

Ogni passo del metodo GD richiede di considerare tutti gli *m* esempi (si parla di metodo *batch*)

Discesa stocastica del gradiente (SGD)

Per dei passi più rapidi, si usa una variante stocastica di GD

Stochastic Gradient Descent (SGD)

- **1** Poni $w^{(1)} = 0$
- **2** Per t = 1, ..., T:
 - Estrai un esempio *i* a caso
 - Poni $w^{(t+1)} = w^{(t)} \eta \cdot \nabla \ell_i(h_{w^{(t)}})$
- **3** Restituisci il $w^{(t)}$ col minimo valore di $g(w^{(t)})$, t = 1, ..., T

Ogni passo del metodo SGD richiede di considerare un solo esempio Grande risparmio computazionale rispetto al metodo GD batch; la localizzazione dell'ottimo diviene meno precisa

Mini-batch SGD

Mini-batch SGD è un compromesso tra GD e SGD

Mini-Batch SGD (per l'apprendimento supervisionato)

- **1** Poni $w^{(1)} = 0$
- **2** Per t = 1, ..., T:
 - Estrai un lotto (batch) B di esempi a caso
 - Poni $w^{(t+1)} = w^{(t)} \eta \cdot \frac{1}{|B|} \sum_{i \in B} \nabla \ell_i(h_{w^{(t)}})$
- **3** Restituisci il $w^{(t)}$ col minimo valore di $g(w^{(t)})$, t = 1, ..., T

Ogni passo di mini-batch SGD richiede di considerare |B| esempi

Batch GD vs. Mini-Batch SGD

Batch GD vs. SGD vs. Mini-Batch SGD

Norme

Una *norma* è una funzione $\|\cdot\|: \mathbb{R}^N \to \mathbb{R}$ con le seguenti proprietà:

- **1** ||x|| = 0 se e solo se x = 0
- $||x|| \ge 0$ per ogni $x \in \mathbb{R}^N$

Esempi:

- norma L_2 (euclidea): $||x||_2 = (\sum_i |x_i|^2)^{1/2}$
- ullet norma L_1 : $\|x\|_1 = \sum_j |x_j|$
- norma L_p : $||x||_p = (\sum_j |x_j|^p)^{1/p}$ $(p \ge 1)$
- ullet norma L_{∞} (uniforme): $\left\|x
 ight\|_{\infty}=\max_{j}\left|x_{j}\right|$

Ogni norma è una funzione convessa (perché?)