How do casual riders and annual members use Cyclistic bikes differently?

— more details about this case study

Chuang, Ya Chu (莊雅竹)

This was a fiction company Cyclistic, a bike-share company in Chicago. It had two types of users,

- 1. Casual riders: single-ride passes and full-day passes
- 2. **Annual members:** annual memberships, according to finance analysts they are **more profitable**

The marketing team had an insight:

"Cyclistic's future success depends on maximizing the number of annual memberships. There is a very good chance to **convert casual riders into members** because they are already aware of the Cyclistic program"

Before designing marketing strategies aimed at converting casual riders into annual members, they needed to know...

"How do casual riders and annual members use Cyclistic bikes differently?"

Materials From

https://divvy-tripdata.s3.amazonaws.com/index.html

Tools I Used

Prepare

BigQuery (GCP) **Process**

Spreadsheet BigQuery

Analyze

BigQuery

Visualiztion

Looker studio Spreadsheet

Ask

- 1. How annual members and casual riders use our Cyclistic bikes differently?
- 2. Why would casual members upgrade to annual memberships?
- How can Cyclistic use digital media to influence casual riders to become members?

Prepare

- 1. Download the previous 12 months (2023/07 2024/06) of trip data
- 2. Browse the file and check the structure of data
- 3. Upload to Google Cloud Platform
- 4. Upload to BigQuery with bq command (combine 12 csv files into one table)

Approximately 5,700,000 data in total, and each had 13 columns, including

STRING:

```
ride_id (=unique to every single trip), rideable_type (=bike type),
started_station_name, start_station_id, end_station_name, end_station_id,
member_casual (=membership type)
```

TIMESTAMP:

started_at, ended_at (=the time when they started or ended their ride)

FLOAT:

start_lat, start_lng, end_lat, end_lng (=where they started or ended their ride)

Process

- 1. Identify distinct value
- Identify relation between columns
- 3. Check if there is a null value
- 4. Check if values are reasonable

Process - Identify distinct value

- ride_id should be unique, but there were 221 duplicates
- 2. Check the difference of data between them:

ride_id	rideable_type	started_at	ended_at	start_station_na	start_station_id	end_station_nan	end_station_id	start_lat	start_Ing	end_lat
011C8EF97AB0	classic_bike	2024-05-31 19:45:38.037000 UTC	2024-06-01 20:45:33.862000 UTC	Clifton Ave & Ar	TA1307000163			41.918216	-87.656936	
011C8EF97AB0	ol classic_bike	2024-05-31 19:45:38.000000 UTC	2024-06-01 20:45:33.000000 UTC	Clifton Ave & Ar	TA1307000163			41.918216	-87.656936	
01406457A85B	Celectric_bike	2024-05-31 23:54:59.000000 UTC	2024-06-01 00:01:47.000000 UTC			Damen Ave & Cl	13132	41.89	-87.67	41.895769
01406457A85B	Celectric_bike	2024-05-31 23:54:59.194000 UTC	2024-06-01 00:01:47.626000 UTC			Damen Ave & C	13132	41.89	-87.67	41.895769
02606FBC7F85	classic_bike	2024-05-31 17:55:01.000000 UTC	2024-06-01 18:54:53.000000 UTC	Pine Grove Ave	TA1307000150			41.94947274	-87.64645278	
02606FBC7F85	classic_bike	2024-05-31 17:55:01.635000 UTC	2024-06-01 18:54:53.970000 UTC	Pine Grove Ave	TA1307000150			41.94947274	-87.64645278	
0354FD075633	7 electric_bike	2024-05-31 23:34:36.273000 UTC	2024-06-01 00:14:29.238000 UTC					41.97	-87.66	41.96
0354FD075633	7 electric_bike	2024-05-31 23:34:36.000000 UTC	2024-06-01 00:14:29.000000 UTC					41.97	-87.66	41.96
048C715F1DE0	0 electric_bike	2024-05-31 23:53:44.401000 UTC	2024-06-01 00:12:26.776000 UTC					41.89	-87.66	41.89
048C715F1DE0	electric_bike	2024-05-31 23:53:44.000000 UTC	2024-06-01 00:12:26.000000 UTC					41.89	-87.66	41.89
05D27072A33A	√ classic_bike	2024-05-31 16:34:46.426000 UTC	2024-06-01 04:12:45.545000 UTC	Dearborn St & E	13045	DuSable Lake S	TA1309000039	41.893992	-87.629318	41.932588

3. Data in most columns were the same, but slight different in start_at and end_at

⇒ Exclude the duplicates

Process - Identify relation between columns

Was station_id associated with station_name?
 There were multiple station_names with the same station_id!

end_station_id ▼ ↓	end_station_name ▼
TA1309000042	Lincoln Ave & Melrose St
TA1309000042	Lincoln Ave & Belmont Ave (Te
TA1305000030	Wells St & Randolph St
TA1305000030	Clark St & Randolph St
KΔ1503000074	Museum of Science and Industry

- 2. Check the location (lat & lng) of these station, found that:
 - a. Locations were close, I guessed they might change their names at different times
 - b. station_id=15541 and 15541.1.1 should be the same
 - ⇒ Replace station_id=15541.1.1 with 15541

Process - Check if there is null value

1. The station_name, station_id, end_lat and end_lng of 8768 data were null.

Is it acceptable to exclude them?

pe /	started_at /	ended_at	start_statio	on_name	start_station	_id /	end_station_	name /	end_sta	ation_id	start_la	start_li	ng end	_lat	end_lng	memb
:e	2024-05	2024-0	null		null		null		null		42.0	-87.6	57 4	2.0	-87.66	casua
:e	2024-06	2024-0	null		null		null		null		41.99	-87.6	55 4	2.0	-87.66	memt
ie	2024-04	2024-0	null		null		null		null		42.01	-87.6	57 4	2.0	-87.66	casua
ie	2023-10	2023-1	null		null		null		null		42.01	-87.6	58 4	2.0	-87.66	memt
	2024 06	2024 D	null		null		pull		null		42 N	07	N 03	2.0	07 60	000110
											_					
	ation_name 🔻	**	station_id	end_statio	on_name 🗸		station_id 🏅		11	start_lng		nd_lat 🏅		11	member_c	casual
	ation_name •	start_s	station_id	end_statio	on_name 🔻	end_	station_id 🗡	start_l 41.90	11	start_lng -87.6481		nd_lat ✓ nuli	end_lng	11	member_c	casual
lalsted		**	station_id		on_name 🗸		station_id 🕺		9668		28			ılı		casual
lalsted lalsted	St & Clybour	331	station_id	null	on_name 🏅	null	station_id 🔀	41.90	9668 9668	-87.6481	28 28	nuli	nı	ıl)	member	casual

Process - Check if there is null value

2. The distribution of these null-value data throughout the year was similar to total data

⇒ It's fine to exclude them

Process - Check if values are reasonable

end_lat and end_lng of 3 data were zero!

end_station_id ▼	start_lat ▼	start_lng ▼	end_lat ▼	end_lng ▼
653B	41.893992	-87.629318	0.0	0.0
OH Charging Stx - Test	41.796642	-87.625923	0.0	0.0
OH Charging Stx - Test	41.86316583333	-87.6798115	0.0	0.0

- 2. Check their **end_station_id** of these data in the table
 - ⇒ Replace them with the average end_lat and end_lng (proxy the data)

Process - Check if values are reasonable

started_at should be earlier then ended_at, but 434 data showed earlier ended_at than started_at!

ride_id ▼	rideable_type ▼	started_at ▼	ended_at ▼	11
2BFB23CDC9A75AB0	electric_bike	2023-08-26 10:19:36 UTC	2023-08-26 10:16:52 UTC	
7934DBD46A7BB934	electric_bike	2023-12-06 16:07:40 UTC	2023-12-06 16:07:37 UTC	
64BF86DB62A97011	electric_bike	2023-07-22 10:05:44 UTC	2023-07-22 10:05:41 UTC	
01 4 00 47 00 00 0774	alastria biles	2022 00 10 15:22:55 LITO	2022 00 10 15-22-52 HTO	

⇒ Given that they were only a small proportion of the total, exclude these data

Analyze & Visualization

How do casual riders and annual members use Cyclistic bikes differently?

- 1. In terms of riding times
- 2. In terms of their destinations
- 3. In terms of riding duration
- 4. In terms of which day of the week to ride
- In terms of rideable type

Analyze - create new columns

```
TIMESTAMP_DIFF(ended_at,started_at,MINUTE) AS riding_duration (minutes)

EXTRACT(DAYOFWEEK FROM started at) AS weekday (1 for Sun, 2 for Mon, 3 for Tue....)
```

EXTRACT(MONTH FROM started at) AS month (1 for Jun, 2 for Feb, 3 for Mar....)

Analyze - In terms of riding times

Anual members rode 1.8 times more than casual riders!

Analyze - In terms of riding times

Analyze - In terms of riding times (off & peak)

Casual riders used more often **on weekends in busy season**, while aunal members prefered **weekdays** use **in both seansons**.

Analyze - In terms of their destinations

The most visited destinations of annual members and casual riders are different,

So, Where were they?

end_station_id	member	casual
13022	14,079	50,630
13300	11,282	29,723
LF-005	15,688	23,870
13042	14,133	24,303
KA1503000043	26,846	8,079
TA1307000039	24,762	10,012
WL-012	28,686	6,077
TA1308000050	21,148	11,073
13008	8,997	22,194
TA1308000001	12,797	17,620
KA1504000135	20,285	10,037
TA1305000032	24,094	6,022
13137	18,641	8,906

(visit times)

Analyze - In terms of casual riders' destinations

Casual riders tended to visit the suburbans or beach, while

Analyze - In terms of annual members' destinations

Casual riders tended to visit the **suburbans or beach**, while annual members tended to go to **downtown area**.

Analyze - In terms of riding duration

Casaul users rode 2.15 times longer than annual memebers!

Analyze - In terms of riding duration

Casual riders tended to **ride longer in peak season**, while annual members showed no specific pattern.

Analyze - In terms of riding duration (off & peak)

Casual riders tended to ride longer on weekend, while riding durations of annual members were even throughout the week

Analyze - In terms of rideable type

No significant difference between annual members and casual riders. Note that **no annual member used docked_bike** in the past year.

Conclusion

	Casual Rider	Annual Member
Number of times	Fewer overall	Higher overall
Duration	Longer overall, especially in summer	Shorter overall, evenly in every month
Prefer days of use (weekdays / weekends)	Used more often and longer on weekends, especially in summer	Used more often on weekdays
Destination	Mostly tourist area	Mostly downtown
Prefer rideable type	No	preference
Prerfer riding season (peak season)	Summer (Fr	om June to August)

Conclusion

Cacual Ridor

Annual Member

- 1. Riding times were considerable in both types of users, annual members especially. This showed high popularity of Cyclistic.
- 2. **Causual riders** tended to ride **longer**, while **annual members** contributed **more revenue** than casual rider, according to the finance analysts.
- 3. **Annual members** could **create more stable revenue** in terms of weekly usage, compared to casual riders.
 - ⇒ Turn casual riders to annual members to gain more stable revenue!!

But how?

(peak season)

Summer (From June to August)

Conclusion

	Casual Rider	Annual Member
Number of times	Fewer overall	Higher overall

- 4. Casual riders tended to bike on holidays or vacations.
- 5. Annual members tended to bike for regular use (commutation probably).

⇒ Launch campaigns on holidays, encouraging the users commuting by bike.

Destination	Mostly tourist area	Mostly downtown		
Prefer rideable type	No preference			
Prerfer seasons (peak season)	Summer (Fr	om June to August)		

Further things we can do...

- 1. **Comfirm the usage habit** of casual rider and annual member, for example by conducting a survey.
- 2. The survey should also include whether annual members have been casual riders and why they chose to covert to annual.
- Develop marketing strategies after exploring the type of digital media that
 Cyclistic users used, including when to use and how often to use.