EXERCÍCIOS

A.10 Dê os elementos dos seguintes conjuntos:

A = {x | x é letra da palavra "matemática"}

 $B = \{x \mid x \text{ \'e cor da bandeira brasileira}\}$

 $C = \{x \mid x \text{ \'e nome de estado que começa com "a"}\}$

Solução

 $A = \{m, a, t, e, i, c\}$

B = {branco, azul, amarelo, verde}

C = {amazonas, amapá, acre, alagoas}

A.11 Descreva através de uma propriedade característica dos elementos cada um dos conjuntos seguintes:

 $A = \{0, 2, 4, 6, 8, ...\}$

 $B = \{0, 1, 2, ..., 9\}$

C = {brasília, rio de janeiro, salvador}

Solução

 $A = \{x \mid x \text{ \'e inteiro, par e não negativo}\}$

 $B = \{x \mid x \text{ \'e algarismo ar\'abico}\}$

 $C = \{x \mid x \text{ \'e nome de cidade que já foi capital do Brasil}\}$

- A.12 Escreva com símbolos:
 - a) conjunto dos múltiplos inteiros de 3, entre -10 e +10
 - b) conjunto dos divisores inteiros de 42
 - c) conjunto dos múltiplos inteiros de 0
 - d) conjunto das frações com numerador e denominador compreendidos entre 0 e 3
 - e) conjunto dos nomes das capitais da região centro-oeste do Brasil
- A.13 Descreva por meio de uma propriedade dos elementos

$$A = \{+1, -1, +2, -2, +3, -3, +6, -6\}$$

$$B = \{0, -10, -20, -30, -40, ...\}$$

$$3 = \{0, -10, -20, -30, -40, \dots \}$$

$$C = \{1, 4, 9, 16, 25, 36, ...\}$$

A.14 Quais dos conjuntos abaixo são unitários?

A =
$$\{x \mid x < \frac{9}{4} \text{ e } x > \frac{6}{5}\}$$

B = $\{x \mid 0 \cdot x = 2\}$
C = $\{x \mid x \text{ é inteiro e } x^2 = 3\}$
D = $\{x \mid 2x + 1 = 7\}$

$$B = \{x \mid 0 \cdot x = 2\}$$

$$C = \{x \mid x \text{ \'e inteiro e } x^2 = 3$$

$$D = \{x \mid 2x + 1 = 7\}$$

A.15 Quais dos conjuntos abaixo são vazios?

$$A = \{x \mid 0 \cdot x = 0\}$$

$$B = \{x \mid x > \frac{9}{4} \text{ e } x < \frac{6}{5} \}$$

$$C = \{x \mid x \text{ \'e divisor de zero}\}$$

 $D = \{x \mid x \text{ \'e divisível por zero}\}$

EXERCICIOS

A.16 Dados $A = \{1, 2, 3, 4\}$ e $B = \{2, 4\}$ pede-se:

a) escrever com os símbolos da teoria dos conjuntos as seguintes sentencas:

- 1^a) 3 é elemento de A
- 2ª) 1 não está em B
- B é parte de A
- 4ª) Béiguala A
- 5^a) 4 pertence a B
- b) classificar as sentencas anteriores em falsa ou verdadeira.

Solução

- 1^{a}) $3 \in A$ (V)
- 2^a) 1 ∉ B (V)
- $\mathsf{B} \subseteq \mathsf{A}$ (V)
- 4^a) B = A (F)
- 4 ∈ B (V)

A.17 Sendo $A = \{1, 2\}, B = \{2, 3\}, C = \{1, 3, 4\} \in D = \{1, 2, 3, 4\},$ classificar em V ou F cada sentenca abaixo e justificar:

a) $A \subseteq D$

- b) A ⊂ B
- c) B ⊂ C

d) D ⊃ B

- e) C = D
- f) A ⊄ C

Solução

- a) V pois $1 \in A$, $1 \in D$, $2 \in A$ e $2 \in D$
- b) F pois 1 ∈ A e 1 ∉ B
- c) F pois 2 ∈ B e 2 ∉ C
- d) V pois $2 \in B$, $2 \in D$, $3 \in B$ e $3 \in D$
- e) F pois 2 ∈ D e 2 ∉ C
- f) V pois 2 ∈ A e 2 ∉ C

A.18 Quais das igualdades abaixo são verdadeiras?

- a) $\{a, a, a, b, b\} = \{a, b\}$
- b) $\{x \mid x^2 = 4\} = \{x \mid x \neq 0 \text{ e } x^3 4x = 0\}$
- c) $\{x \mid 2x + 7 = 11\} = \{2\}$
- d) $\{x \mid x \leq 0 \text{ e } x \geq 0\} = \emptyset$

A.19 Dizer se é verdadeira (V) ou falsa (F) cada uma das sentenças abaixo.

- a) $0 \in \{0, 1, 2, 3, 4\}$
- f) $a \in \{a, \{a\}\}$

b) $\{a\} \in \{a, b\}$

g) $\{a\} \subset \{a, \{a\}\}$

c) $\emptyset \in \{0\}$

n) Ø⊂{Ø, {a}}

a) $0 \in \emptyset$

i) $\emptyset \in \{\emptyset, \{a\}\}$

el ial C Ø

i) $\{a, b\} \in \{a, b, c, d\}$

A.20 Fazer um diagrama de Venn que simbolize a situação seguinte: A, B, C, D são conjuntos não vazios, $D \subseteq C \subseteq B \subseteq A$.

A.21 Construir o conjunto das partes do conjunto $A = \{a, b, c, d\}$.

VII. REUNIÃO DE CONJUNTOS

47. Definição

Dados dois conjuntos A e B, chama-se reunião de A e B o conjunto formado pelos elementos que pertencem a A ou a B.

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

O conjunto A ∪ B (lê-se "A reunião B" ou "A u B") é formado pelos elementos que pertencem a pelo menos um dos conjuntos A e B.

Notemos que x é elemento de A U B se ocorrer ao menos uma das condições seguintes:

$$x \in A$$
 ou $x \in B$.

Exemplos

- 1) $\{a, b\} \cup \{c, d\} = \{a, b, c, d\}$
- 2) $\{a, b\} \cup \{a, b, c, d\} = \{a, b, c, d\}$
- 3) $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
- 4) $\{a, b, c\} \cup \emptyset = \{a, b, c\}$
- 5) $\emptyset \cup \emptyset = \emptyset$

48. Propriedades da reunião

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:

- 1^a) A \cup A = A (idempotente)
- 2^a) $A \cup \emptyset = A$ (elemento neutro)
- 3^a) A \cup B = B \cup A (comutativa)
- 4^a) (A \cup B) \cup C = A \cup (B \cup C) (associativa)

Demonstração

Fazendo $A = \{x \mid x \text{ tem a propriedade p}\}$ ou, simplesmente $A = \{x \mid p(x)\}\$ e, ainda: $B = \{x \mid q(x)\}\$ C = $\{x \mid r(x)\}\$ e $\emptyset = \{x \mid f(x)\}\$ onde f é proposição logicamente falsa, temos:

$$A \cup A = \{x \mid p(x) \text{ ou } p(x)\} = \{x \mid p(x)\} = A$$

Analogamente, as demais decorrem das propriedades das proposições vistas no exercício A.6.

VIII. INTERSECÇÃO DÈ CONJUNTOS

49. Definição

Dados dois conjuntos A e B, chama-se intersecção de A e B o conjunto formado pelos elementos que pertencem a A e a B.

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}$$

O conjunto $A \cap B$ (lê-se "A inter B") é formado pelos elementos que pertencem aos dois conjuntos (A e B) simultaneamente,

Se $x \in A \cap B$, isto significa que x pertence a A e tamb'em x pertence a B. O conectivo e colocado entre duas condições significa que elas devem ser obedecidas ao mesmo tempo.

Exemplos

1)
$$\{a, b, c\} \cap \{b, c, d, e\} = \{b, c\}$$

2)
$$\{a, b\} \cap \{a, b, c, d\} = \{a, b\}$$

3)
$$\{a, b, c\} \cap \{a, b, c\} = \{a, b, c\}$$

4)
$$\{a, b\} \cap \{c, d\} = \emptyset$$

5)
$$\{a, b\} \cap \emptyset = \emptyset$$

50. Propriedades da intersecção

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:

- 1a) $A \cap A = A$ (idempotente)
- 2ª) $A \cap U = A$ (elemento neutro)
- 3. A \cap B = B \cap A (comutativa)
- 4^a) $A \cap (B \cap C) = (A \cap B) \cap C$ (associativa)

Como mostramos para a operação de reunião, estas propriedades são também demonstráveis com auxílio do exercício A.6.

51. Conjuntos disjuntos

Quando $A \cap B = \emptyset$, isto é, quando os conjuntos $A \in B$ não têm elemento comum, $A \in B$ são denominados *conjuntos disjuntos*.

IX. PROPRIEDADES

- 52. Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades, que inter-relacionam a reunião e a intersecção de conjuntos:
 - 1^a) $A \cup (A \cap B) = A$
 - 2^{a}) $A \cap (A \cup B) = A$
 - 3ª) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (distributiva da reunião em relação à intersecção)
 - 4ª) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (distributiva da intersecção em relação à reunião).

Demonstremos, por exemplo, a 1ª e a 3ª:

$$A \cup (A \cap B) = \{x \mid p(x) \lor (p(x) \land q(x))\} = \{x \mid (p(x))\} = A$$

$$A \cup (B \cap C) = \{x \mid p(x) \lor (q(x) \land r(x))\} = \{x \mid (p(x) \lor q(x)) \land (p(x) \lor r(x))\} = \{x \mid p(x) \lor q(x)\} \cap \{x \mid p(x) \lor r(x)\} = (A \cup B) \cap (A \cup C)$$

EXERCÍCIOS

- A.22 Dados os conjuntos $A = \{a, b, c\}, B = \{c, d\}$ e $C = \{c, e\},$ determinar $A \cup B$, $A \cup C$, $B \cup C$ e $A \cup B \cup C$.
- **A.23** Provar que $A \subseteq (A \cup B), \forall A$.

Solução

 $x \in A \implies x \in A \text{ ou } x \in B$ é uma implicação verdadeira, $\forall x$, portanto: $A \subseteq (A \cup B)$

A.24 Classificar em V ou F:

a) $\emptyset \subset (A \cup B)$

b) (A ∪ B) ⊂ A

c) $A \in (A \cup B)$

d) $(A \cup B) \subset (A \cup B)$

e) $B \subset (A \cup B)$

f) $(A \cup B) \subset (A \cup B \cup C)$

admitindo que A, B e C são conjuntos quaisquer.

A.25 Determinar a reunião dos círculos de raio $\,$ r, $\,$ contidos num plano $\,$ α e que têm um ponto comum $\,$ 0 \in α .

- A.26 Determinar a reunião das retas de um plano α que são paralelas a uma dada reta rde α.
- A.27 Dados os conjuntos $A = \{a, b, c, d\}$, $B = \{b, c, d, e\}$ e $C = \{c, e, f\}$, pede-se descrever $A \cap B$, $A \cap C$, $B \cap C$ e $A \cap B \cap C$.
- **A.28** Provar que $(A \cap B) \subseteq A, \forall A$

Solução

$$x \in (A \cap B) \Longrightarrow (x \in A \ e \ x \in B) \Longrightarrow x \in A$$

é uma implicação verdadeira, ∀x, portanto (A ∩ B) ⊂ A.

- A.29 Classificar em V ou F
 - a) $\emptyset \subseteq (A \cap B)$

b) $A \subseteq (A \cap B)$

c) $A \in (A \cap B)$

d) $(A \cap B) \subseteq (A \cap B)$

e) $(A \cap B) \subseteq B$

f) $(A \cap B) \supset (A \cap B \cap C)$

admitindo que A. B e C. são conjuntos quaisquer.

A.30 Consideremos os conjuntos:

K = conjunto dos quadriláteros planos

 $P = \{x \in K \mid x \text{ tem lados 2 a 2 paralelos}\}$

 $L = \{x \in K \mid x \text{ tem 4 lados congruentes}\}$

 $R = \{x \in K \mid x \text{ tem 4 ângulos retos}\}$

 $Q = \{x \in K \mid x \text{ tem 2 lados paralelos e 2 ângulos retos}\}$

Pede-se determinar os conjuntos:

- a) L O P
- c) L O R
- e) L ∩ Q

- b) R ∩ P
- d) $Q \cap R$
- f) PUQ
- **A.31** Dados os conjuntos $A = \{1, 2, 3\}, B = \{3, 4\} \in C = \{1, 2, 4\},$ determinar o conjunto X tal que X \cup B = A \cup C e X \cap B = \emptyset .

Solução

- a) $X \cup B = \{1, 2, 3, 4\}$ então os possíveis elementos de X são: 1, 2, 3 e 4.
- b) $X \cap B = \emptyset \Rightarrow 3 \notin X \in 4 \notin X$

Conclusão $X = \{1, 2\}$

A.32 Determinar o conjunto X tal que

$$\{a, b, c, d\} \cup X = \{a, b, c, d, e\}, \{c, d\} \cup X = \{a, c, d, e\} \in \{b, c, d\} \cap X = \{c\}.$$

- A.33 Assinalar no diagrama ao lado, um de cada vez, os seguintes conjuntos:

 - a) A \(\text{B} \tau \text{C}\) \(\text{C}\) \(\text{B} \tau \text{C}\)
 - b) A \(\text{(B \cup C)}\) d) A \(\text{U B \cup C}\)

X. DIFERENÇA DE CONJUNTOS

53. Definição

Dados dois conjuntos A e B, chama-se diferença entre A e B o conjunto formado pelos elementos de A que não pertencem a B.

$$A - B = \{x \mid x \in A \ e \ x \notin B\}$$

Exemplos ·

1)
$$\{a, b, c\} - \{b, c, d, e\} = \{a\}$$

2)
$$\{a, b, c\} - \{b, c\} = \{a\}$$

3)
$$\{a, b\} - \{c, d, e, f\} = \{a, b\}$$

4)
$$\{a, b\} - \{a, b, c, d, e\} = \emptyset$$

XI. COMPLEMENTAR DE B EM A

54. Definição

Dados dois conjuntos A e B, tais que B ⊂ A, chama-se complementar de B em relação a A o conjunto A - B, isto é, o conjunto dos elementos de A que não pertencem a B.

Com o símbolo

$$\begin{bmatrix} B \\ \Delta \end{bmatrix}$$
 ou \vec{A}

indicamos o complementar de B em relação a A.

Notemos que \bigcap_{A}^{B} só é definido para $B \subset A$ e aí temos:

$$\bigcap_{A}^{B} = A - B$$

Exemplos

1) Se A = {a, b, c, d, e} e B = {c, d, e}, então:
$$\bigcap_{A}^{B} = \{a, b\}$$

2) Se
$$A = \{a, b, c, d\} = B$$
, então:

$$\bigcap^{B} = \emptyset$$

55. Propriedades da complementação

Sendo B e C subconjuntos de A, valem as seguintes propriedades:

1a)
$$C_A^B \cap B = \emptyset$$
 e $C_A^B \cup B = A$

29)
$$C_A^A = \emptyset e C_A^\emptyset = A$$

3a)
$$C_A(C_A^B) = B$$

$$4a) \quad C_A^{(B \cap C)} = C_A^B \cup C_A^C$$

5a)
$$C_A^{(B \cup C)} = C_A^B \cap C_A^C$$

Provemos, por exemplo, a 2ª e a 4ª:

$$\bigcap_{A}^{A} = \{x \in A \mid x \notin A\} = \emptyset$$

$$\bigcap_{A}^{\emptyset} = \{ x \in A \mid x \notin \emptyset \} = A$$

$$\begin{pmatrix}
 (B \cap C) \\
 A
 \end{pmatrix} = \{x \in A \mid x \notin B \cap C\} = \{x \in A \mid x \notin B \text{ ou } x \notin C\} = \{x \in A \mid x \notin B\} \cup \{x \in A \mid x \notin C\} = \{x \in A$$

EXERCÍCIOS

- A.34 Sejam os conjuntos $A = \{a, b, c, d\}$, $B = \{c, d, e, f, g\}$ e $C = \{b, d, e, g\}$. Determinar:
 - a) A B

- c) C B
- e) A (B ∩ C)

b) B – A

- d) (A U C) B
- f) (A UB) (A OC)

A.35 Provar que $(A - B) \subset A \forall A$

Solução

A implicação $x \in (A - B) \Longrightarrow (x \in A \ e \ x \notin B) \Rightarrow x \in A$ é verdadeira para todo x, então $(A - B) \subset A$.

- A.36 Classificar em V ou F as sentenças:
 - a) (A B) ⊃ Ø

b) (A - B) ∪ (A ∩ B) = A

c) (A - B) ⊂ B

d) $(A - B) \subset (A \cup B)$

admitindo que A e B são conjuntos quaisquer.

- A.37 Dados os conjuntos $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 2, 4, 6, 8\}$ e $C = \{2, 4, 5, 7\}$, obter um conjunto X tal que $X \subseteq A$ e $A X = B \cap C$.
- A.38 Assinalar no diagrama ao lado, um de cada vez, os seguintes conjuntos:
 - a) A B
 - b) Ā A ∪ B
 - c) BUA
 - d) A ∪ B e) A ∩ B
 - f) B \cap A

- A B
- A.39 Provar que A \bar{B} = A \cap B onde A e B são conjuntos quaisquer do universo U.

Solução

A implicação

 $x \in (A - \overline{B}) \Longrightarrow (x \in A \ e \ x \notin \overline{B}) \Longrightarrow x \in A \ e \ x \in \overline{B} \Longrightarrow x \in A \cap \overline{B} \ \text{\'e verdadeira, } \forall x, \text{ portanto, está provado.}$

- A.40 Classificar em V ou F as seguintes sentenças:
 - a) $(A B) \cup (B A) = (A \cup B) (A \cap B)$
 - b) $A \subseteq B \Longrightarrow (\bigcap B) \subseteq (\bigcap A)$
 - c) $(A B) \subseteq (\bigcap A)$
 - d) $(A B) \subseteq (\bigcap B)$

EXERCÍCIOS SUPLEMENTARES

- A.41 Descrever os elementos dos conjuntos abaixo:
 - $A = \{x \mid x^2 5x 6 = 0\}$
 - B = {x | x é letra da palavra "exercício"}
 - $C = \{x \mid x^2 9 = 0 \text{ ou } 2x 1 = 9\}$
 - $D = \{x \mid 2x + 1 = 0 \quad e \quad 2x^2 x 1 = 0\}$
 - $E = \{x \mid x \text{ \'e algarismo do número } 234543\}$

- A.42 Seja E = {a, {a}}. Dizer quais das proposições abaixo são verdadeiras.
 - a) $a \in E$
 - b) $\{a\} \in E$
 - c) a ⊂ E
 - d) $\{a\} \subseteq E$
 - e) Ø ∈ E
 - f) $\emptyset \subset E$
- A.43 Sejam A e B dois conjuntos finitos. Provar que

$$^{n}A \cup B = ^{n}A + ^{n}B - ^{n}A \cap B$$

O símbolo n_{χ} representa o número de elementos do conjunto X.

- A.44 Em uma escola que tem 415 alunos, 221 estudam Inglês, 163 estudam Francês e 52 estudam ambas as línguas. Quantos alunos estudam Inglês ou Francês? Quantos alunos não estudam nenhuma das duas?
- A.45 Sendo A, B e C conjuntos finitos, estabelecer uma fórmula para calcular n_{AUBUC}.
- A.46 Uma população consome três marcas de sabão em pó: A, B e C. Feita uma pesquisa do mercado, colheram-se os resultados tabelados abaixo:

marca	Α	В	С	AeB	BeC	CeA	A, BeC	nenhuma das três
número de consumidores	109	203	162	25	41	28	5	115

Pede-se:

- a) número de pessoas consultadas
- b) número de pessoas que só consomem a marca A
- c) número de pessoas que não consomem as marcas A ou C
- d) número de pessoas que consomem ao menos duas marcas.
- A.47 Determinar os conjuntos A, B e C que satisfazem as seguintes seis condições:
 - 19) A U B U C = $\{z, x, v, u, t, s, r, q, p\}$
 - 2a) A \cap B = {r, s}
 - 39) B \cap C = {s, x}
 - 49) $C \cap A = \{s, t\}$
 - 5a) A U C = $\{p, q, r, s, t, u, v, x\}$
 - 6a) A \cup B = {p, q, r, s, t, x, z}
- A.48 Em certa comunidade há indivíduos de três raças: branca, preta e amarela. Sabendo que 70% são brancos e 210% não são pretos e 50% são amarelos, pergunta-se:
 - a) quantos indivíduos tem a comunidade?
 - b) quantos são os indivíduos amarelos?

A.49 Dados dois conjuntos A e B, chama-se diferença simétrica de A com B o conjunto $A \triangle B$ tal que:

$$A\Delta B = (A - B) \cup (B - A)$$

Pede-se:

- a) determinar $\{a, b, c, d\} \Delta \{c, d, e, f, g\}$
- b) provar que $A\Delta \emptyset = A$, para todo A
- c) provar que $A\triangle A = \emptyset$, para todo A
- d) provar que $A\Delta B = B\Delta A$, para A e B quaisquer
- e) assinalar em cada diagrama abaixo o conjunto A∆B:

A.50 Desenhar um diagrama de Venn representando quatro conjuntos A, B, C e D não vazios de modo que se tenha

$$A \not\subset B$$
, $B \not\subset A$, $C \supset (A \cup B)$ e $D \subset (A \cap B)$

80. Os números reais a e b são denominados, respectivamente, extremo inferior e extremo superior do intervalo.

81. Exemplos

- 19)] 2, 5[= $\{x \in \mathbb{R} \mid 2 < x < 5\}$ é intervalo aberto
- 29) $[-1, 4] = \{x \in \mathbb{R} \mid -1 \le x \le 4\}$ é intervalo fechado
- 39) $\left[\frac{2}{5}, 7\right] = \left\{x \in |R| \frac{2}{5} \le x < 7\right\}$ é intervalo fechado à esquerda
- 49)] $\frac{1}{3}$, $\sqrt{2}$] = $\{x \in \mathbb{R} \mid -\frac{1}{3} < x \le \sqrt{2}\}$ é intervalo fechado à direita.

82. Também consideramos intervalos lineares os "intervalos infinitos" assim definidos:

- a)]- ∞ , a[= {x $\in \mathbb{R} \mid x < a$ } que podemos também indicar por - ∞ ——a.
- c)]a, $+ \infty$ [= {x ∈ |R | x > a} que também podemos indicar por a ---- + ∞ .
- d) $[a, + \infty[= \{x \in \mathbb{R} \mid x \ge a\}]$ que também podemos indicar por $a \longmapsto + \infty$.
- e)]-∞, +∞[= IR que também podemos indicar por -∞ ---- +∞.

83. Os intervalos têm uma representação geométrica sobre a reta real como segue:

EXERCÍCIOS

- **A.67** Descrever, conforme a notação da teoria dos conjuntos, os seguintes intervalos: $[-1, 3], [0, 2[,]-3, 4[,]-\infty, 5[$ e $[1, +\infty[$.
- **1.68** Utilizando a representação gráfica dos intervalos sobre a reta real, determinar $A \cap B = A \cup B$ sendo A = [0,3] = B = [1,4]

Solução

4.69 Descrever os seguintes conjuntos:

- a) [0, 2] \cap [1, 3]
- b) [0, 2] ∩]1, 3[
- c)]-1, $\frac{2}{5}$ [\cap]0, $\frac{4}{3}$ [
- d)]- ∞ , 2] \cap [0, + ∞ [
- e) $[-1, + \infty[\cap [-\frac{9}{2}, 2]]$
- f) $[1, 2] \cap [0, 3] \cap [-1, 4]$

1.70 Determinar os seguintes conjuntos:

- a) $[-1, 3] \cup [0, 4]$
- b)]-2, 1] U]0, 5[
- c) $[-1, 3] \cup [3, 5]$
- d) $\left[-\frac{1}{2}, \ 0\right[\ \cup \ \left]-\frac{3}{2}, \ -\frac{1}{4}\right]$
- **i.71 Sendo** A = [0, 5[e B =]1, 3[, determinar]

29) Dada a relação $y = -\frac{n^3}{6} + \frac{3n^2}{2} - \frac{7n}{3} + 3$, definida para todo $n \in \mathbb{N}^*$, temos:

$$n = 1 \implies y = -\frac{1^3}{6} + \frac{3 \cdot 1^2}{2} - \frac{7 \cdot 1}{3} + 3 = \frac{-1 + 9 - 14 + 18}{6} = 2$$

$$n = 2 \implies y = -\frac{2^3}{6} + \frac{3 \cdot 2^2}{2} - \frac{7 \cdot 2}{3} + 3 = \frac{-8 + 36 - 28 + 18}{6} = 3$$

$$n = 3 \implies y = -\frac{3^3}{6} + \frac{3 \cdot 3^2}{2} - \frac{7 \cdot 3}{3} + 3 = \frac{-27 + 81 - 42 + 18}{6} = 5$$

$$n = 4 \implies y = -\frac{4^3}{6} + \frac{3 \cdot 4^2}{2} - \frac{7 \cdot 4}{3} + 3 = \frac{-64 + 144 - 56 + 18}{6} = 7$$

Poderíamos tirar a conclusão precipitada: "y é número primo, ∀ n ∈ N*". Esta inducão também é falsa pois:

n = 5
$$\Rightarrow$$
 y = $-\frac{5^3}{6} + \frac{3 \cdot 5^2}{2} - \frac{7 \cdot 5}{3} + 3 = \frac{-125 + 225 - 70 + 18}{6} = 8$

88. É necessário, portanto, dispor de um método com base lógica que permita decidir sobre a validade ou não de uma indução vulgar.

Consideremos, por exemplo, a igualdade:

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$
 $(n \in N^*)$

que expressa a propriedade: "a soma dos $\,$ n $\,$ primeiros números ímpares positivos $\,$ é $\,$ n 2 ."

Vamos verificar se ela é verdadeira:

$$n = 1 \Longrightarrow 1 = 1^{2}$$
 (V)
 $n = 2 \Longrightarrow 1 + 3 = 4 = 2^{2}$ (V)
 $n = 3 \Longrightarrow 1 + 3 + 5 = 9 = 3^{2}$ (V)
...
 $n = 10 \Longrightarrow 1 + 3 + 5 + ... + 19 = 100 = 10^{2}$ (V)

Mesmo que continuemos o trabalho fazendo a verificação até $n = 1\,000\,000$ não estará provado que a fórmula vale para todo n natural, pois poderá existir um $n > 1\,000\,000$ em que a fórmula falha.

89. Para provarmos que a relação é válida para todo n ∈ N* empregamos o princípio da indução finita (P.I.F.) cujo enunciado segue:

Uma proposição P(n), aplicável aos números naturais n, é verdadeira para todo $n \in \mathbb{N}$, $n \ge n_0$, quando:

- 19) $P(n_0)$ é verdadeira, isto é, a propriedade é válida para $n = n_0$, e
- 20) Se $k \in \mathbb{N}, k \geqslant n_0$ e P(k) é verdadeira, então P(k+1) também é verdadeira.
- 90. Provemos, por exemplo, que:

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$
 $(n \in N^*)$

- 19) Verifiquemos que P(1) é verdadeira $n = 1 \Longrightarrow 1 = 1^2$
- 29) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira: $1 + 3 + 5 + ... + (2k - 1) = k^2$ (hipótese da inducão)

e provemos que decorre a validade de P(k + 1), isto é:

$$1 + 3 + 5 + \ldots + (2k-1) + [2(k+1)-1] = (k+1)^2$$

Temos

$$\underbrace{1 + 3 + 5 + \ldots + (2k - 1)}_{1} + (2k + 1) = k^{2} + (2k + 1) = k^{2} + 2k + 1 = (k + 1)^{2}$$

EXERCICIOS

Demonstrar usando o princípio da indução finita.

A.72
$$1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$
, $\forall n \in \mathbb{N}^*$
A.73 $2 + 5 + 8 + \ldots + \ldots + (2 + 3n) = \frac{n(4+3n)}{2}$, $\forall n \in \mathbb{N}$
A.74 $2^0 + 2^1 + 2^2 + \ldots$ 2^{n-1} $2^n = 1$ $\forall n \in \mathbb{N}^*$
A.75 $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$, $\forall n \in \mathbb{N}^*$

A.76
$$1^3 + 2^3 + 3^3 + \ldots + n^3 = \left[\frac{n(n+1)}{2}\right]^2, \forall n \in \mathbb{N}^*$$

A.77 $8 \mid (3^{2n} - 1), \forall n \in \mathbb{N}^*$

Solução

19) P(1) é verdadeira pois $8 | (3^2 - 1)$

29) Admitamos que P(k), $k \in \mathbb{N}^*$, seja verdadeira $8 \mid (3^{2k}-1) \quad \text{(hipótese da indução)}$

e provemos que $8 | (3^{2(k+1)} - 1)$:

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1 = 3^{2k} \cdot 3^2 - 1 = 3^{2k}(8+1) - 1 = 8 \cdot 3^{2k} + (3^{2k}-1)$$

então

$$8 + 8 \cdot 3^{2k}$$

$$8 + (3^{2k} - 1)$$

$$\Rightarrow 8 + (8 \cdot 3^{2k} + 3^{2k} - 1) \Rightarrow 8 + (3^{2(k+1)} - 1)$$

A.78 6 | $n(n + 1) (n + 2), \forall n \in \mathbb{N}$

A.79 $2 \mid (n^2 + n), \forall n \in \mathbb{N}$

A.80 $3 \mid (n^3 + 2n), \forall n \in \mathbb{N}$

A.81
$$(1 + 1)(1 + \frac{1}{2})(1 + \frac{1}{4}) \cdot \dots \cdot (1 + \frac{1}{n}) = n + 1, \forall n \in \mathbb{N}^*$$

A.82
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
, $\forall n \in \mathbb{N}^*$

A.83
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
, $\forall n \in \mathbb{N}^*$

A.84 $2n \geqslant n + 1, \forall n \in \mathbb{N}^*$

Solução

19) P(1) é verdadeira pois 2 • 1 ≥ 1 + 1

2º) Admitamos que P(k), k ∈ N*, seja verdadeira:
 2k ≥ k + 1 (hipótese da indução)

e provemos que $2(k + 1) \ge (k + 1) + 1$

Temos:

$$2(k + 1) = 2k + 2 \ge (k + 1) + 2 > (k + 1) + 1$$

A.85 $2^n > n$, $\forall n \in \mathbb{N}$

A.86
$$1^3 + 2^3 + 3^3 + \ldots + n^3 > \frac{n^4}{4}, \ \forall \ n \in \mathbb{N}^*.$$

A.87
$$(1 + a)^n \ge 1 + na. \forall n \in \mathbb{N}^*. \forall a \in \mathbb{R}. \ a \ge -1$$

A.88 O número de diagonais de um polígono convexo de n lados é $d_n = \frac{n(n-3)}{2}$

Solução

19) P(3) é verdadeira pois:

$$n = 3 \implies d_3 = \frac{3(3-3)}{2} = 0$$

e isto é verdade porque um triângulo não tem diagonais.

2º) Supondo válida a fórmula para um polígono de kilados (k ≥ 3):

$$d_k = \frac{k(k-3)}{2}$$
 (hipótese da indução)

provemos que ela vale para um polígono de k + 1 lados:

$$d_{k+1} = \frac{(k+1)[(k+1)-3]}{2} = \frac{(k+1)(k-2)}{2}$$

Quando passamos de um polígono com k vértices para um de -k+1 vértices, acrescentando mais um vértice, ocorre o seguinte:

- (i) todas as diagonais do primeiro polígono continuam sendo diagonais do segundo;
- (ii) um lado do primeiro se transforma em diagonal do segundo;
- (iii) no segundo há k 2 novas diagonais (as que partem do novo vértice)

Vejamos, por exemplo, a passagem de um quadrilátero para um pentágono

Então:

$$d_{k+1} = d_k + 1 + (k-2) = \frac{k(k-3)}{2} + k-1 = \frac{k^2 - 3k + 2k - 2}{2} = \frac{(k+1)(k-2)}{2}$$

A.89 A soma das medidas dos ângulos internos de um polígono convexo de n lados é $S_n = (n-2) \cdot 180^\circ$.

A.90 Se A é um conjunto finito com n elementos, então $\mathscr{S}(A)$, conjunto das partes de A, tem 2^{Π} elementos.