DSCI 572: Supervised Learning II

Muhammad Abdul-Mageed

muhammad.mageed@ubc.ca

Natural Language Processing Lab

The University of British Columbia

Table of Contents

Problems With Gradients

2 Gated Recurrent Units (GRU)

3 Long-Short Term Memory Networks (LSTMs)

Vanishing and Exploding Gradients

Figure: A very long sequence, modelled with an RNN. Gradients can vanish and we will not know which gender a pronoun should be (male or female, e.g., in an MT task), or to which entity the pronoun refers (boy or girl)

Gradient Problems

- Gradients can explode, in which case we can clip them.
- Gadients can also vanish, which is a more serious problem.

Solving Long-Term Dependencies

Solutions For Gradient Problems

- Long-Short Term Memory (LSTM) networks introduced to solve the problem of long-term dependencies
- Gated Recurrent Units (GRU) (Cho et al., 2014; Chung et al., 2014): Simplification of LSTMs.
- We will introduce GRUs first, as they are simpler
- Some notation for LSTM modified from Andrew Ng, for pedagogical simplicity

Introducing a Memory Cell

Figure: We will augment the network with a memory cell

Gradient Problems

- The memory cell will help us retain information over long sequences
- For example, we can still know we need pronoun she, maintaining the female gender (and retaining the correct reference to "the girl")

Simple GRU

1: Simple GRU Cell

$$z_t = \sigma(W_z.[h_{t-1}, x_t])$$

$$\tilde{h}_t = tanh(Wx.[h_{t-1}, x_t])$$

$$h_t = z_t * \tilde{h}_t + (1 - z_t) * h_{t-1}$$

GRU Cells Notation Translation Table

- z: Update gate
- \tilde{h} : New candidate memory
- h_t: GRU output

Relevance Gate in GRU

2: GRU Cell

$$z_{t} = \sigma(W_{z}.[h_{t-1}, x_{t}])$$

$$r_{t} = \sigma(W_{r}.[h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = tanh(W_{x}.[r_{t} * h_{t-1}, x_{t}])$$

$h_t = z_t * \tilde{h}_t + (1 - z_t) * h_{t-1}$

GRU Cells Notation Translation Table

• r: Relevance state (reset gate)

Bias Added to GRU

3: GRU With Bias

$$z_{t} = \sigma(W_{z}.[h_{t-1}, x_{t}] + b_{z})$$

$$r_{t} = \sigma(W_{r}.[h_{t-1}, x_{t}] + b_{r})$$

$$\tilde{h}_{t} = tanh(Wx.[r_{t} * h_{t-1}, x_{t}] + b_{h})$$

$$h_{t} = z_{t} * \tilde{h}_{t} + (1 - z_{t}) * h_{t-1}$$

GRU Cells Notation Translation Table

- z: Update gate
- r: Relevance state (reset gate)
- \tilde{h} : New candidate memory
- h_t: GRU activation (output)

GRU Update Rule

4: Simple GRU Update

$$h_t = z_t * \tilde{h}_t + (1 - z_t) * h_{t-1}$$

GRU Gates

- z: Update gate is result of a a sigmoid (between 0 and 1)
- **z close to zero**: We multiply by \sim zero, so we update candidate \tilde{h} very little (almost keep value of old memory cell h_t)
- \bullet z close to zero: We multiply by \sim 1 and subtract by \sim 1, so old cell becomes almost equal to candidate)

How is LSTM Different?

5: Recall: GRU

$$z_t = \sigma(W_z.[h_{t-1}, x_t] + b_z)$$

$$r_t = \sigma(W_r.[h_{t-1}, x_t] + b_r)$$

$$\tilde{h}_t = tanh(Wx.[r_t * h_{t-1}, x_t] + b_h)$$

$$h_t = z_t * \tilde{h}_t + (1 - z_t) * h_{t-1}$$

$$a_t = h_t$$

Note

- Cell activation a_t is the same as h_t .
- At each step, we start with $h_t = a_t$. They are different in LSTM.

Toward an LSTM

Changes

- Parts in red will change!
- $a_t \stackrel{!}{=} h_t$ and so we will use a_t
- We will also add new parts: forget gate and output gate . . .

6: Recall: GRU

$$z_t = \sigma(W_z.[h_{t-1}, x_t] + b_z)$$

$$r_t = \sigma(W_r.[h_{t-1}, x_t] + b_r)$$

$$\tilde{h}_t = tanh(Wx.[r_t * h_{t-1}, x_t] + b_h)$$

$$h_t = z_t * \tilde{h}_t + (1 - z_t) * h_{t-1}$$

$$a_t = h_t$$

Alternative Notation (Simpler)

GRU Cells Notation Translation Table

- **z**: Update state $\rightarrow \Gamma_u$
- **r**: Relevance state (reset gate) $\rightarrow \Gamma_r$
- ullet $ilde{h}$: New candidate memory cell state o $ilde{C}_t$
- h_t : GRU output $\to C_t$

LSTM: New Candidate Cell \tilde{h}_t

Updating \tilde{h}_t

• To acquire \tilde{h}_t , instead of h_{t-1} , we use the new a_{t-1} (since a_{t-1} is acquired differently than h_{t-1} , as we explain later)

7: New Candidate \tilde{C}_t

$$\tilde{h}_t = tanh(W_x.[a_{t-1}, x_t])$$

LSTM: New Candidate Cell \tilde{C}_t (New Notation)

Updating \tilde{C}_t

• To acquire \tilde{C}_t , instead of C_{t-1} , we use the new a_{t-1} (since a_{t-1} is acquired differently than C_{t-1} , as we explain later)

8: New Candidate \tilde{C}_t

$$\tilde{C}_t = tanh(W_c.[a_{t-1}, x_t])$$

LSTM: Update and Forget Gates

Changes

- We will not use an relevance gate (Γ_r)
- Instead of using one update gate Γ_u , we will use **two gates** to control cell content: Γ_u (update gate), sometimes called *input gate* f_i , and Γ_f (forget gate)
- Forget gate will give the new memory cell C_t the option to keep or forget the old cell (C_{t-1}) , but just add to it via update gate (Γ_u)

9: LSTM

$$\Gamma_{u} = \sigma(W_{u}.[a_{t-1}, x_{t}])$$

$$\Gamma_{f} = \sigma(W_{f}.[a_{t-1}, x_{t}])$$

$$C_{t} = \Gamma_{u} * \tilde{C}_{t} + \Gamma_{f} * C_{t-1}$$

LSTM: Output Gate

Output Gate

- As mentioned, we will use an **output gate** (Γ_o)
- Output gate will enable us to update our a_t via element-wise multiplication by Γ_o

10: Output Gate

$$\Gamma_o = \sigma(W_o.[a_{t-1}, x_t])$$
 $a_t = \Gamma_o * tanh(C_t)$

LSTM: Putting it All Together

11: LSTM

$$\tilde{C}_t = \tanh(W_c.[a_{t-1}, x_t])$$

$$\Gamma_u = \sigma(W_u.[a_{t-1}, x_t])$$

$$\Gamma_f = \sigma(W_f.[a_{t-1}, x_t])$$

$$\Gamma_o = \sigma(W_o.[a_{t-1}, x_t])$$

$$C_t = \Gamma_u * \tilde{C}_t + \Gamma_f * C_{t-1}$$

$$a_t = \Gamma_o * \tanh(C_t)$$

LSTM: Putting it All Together, With Bias

12: LSTM

$$ilde{C}_t = tanh(W_c.[a_{t-1}, x_t] + b_c)$$
 $\Gamma_u = \sigma(W_u.[a_{t-1}, x_t] + b_u)$
 $\Gamma_f = \sigma(W_f.[a_{t-1}, x_t] + b_f)$
 $\Gamma_o = \sigma(W_o.[a_{t-1}, x_t] + b_o)$
 $C_t = \Gamma_u * \tilde{C}_t + \Gamma_f * C_{t-1}$
 $a_t = \Gamma_o * tanh(C_t)$

LSTM Schematic Illustrated

Figure: LSTM cell. [Inspired by Chris Olah]

Stacking LSTM Cells

Figure: LSTM cell.s stacked. Note: Each cell will need new-indexing (not shown in the Figure)