Программа экзамена по курсу ML

- 1. Постановка основных задач (07.09 14.09)
 - Целевая функция, объект, метка, пространство объектов, признаковое пространство, функция ошибки, эмпирический риск, обучающая выборка
 - Обучение с учителем, типы задач обучения с учителем
 - Алгоритм, модель алгоритмов, обобщая способность
 - Схема решения задачи машинного обучения
- 2. Математика в машинном обучении (14.09 21.09)
 - Основы теории вероятностей и матстатистики: распределения, формулы пересчёта вероятностей, математическое ожидание, дисперсия
 - Точечное оценивание, оценка максимального правдоподобия
 - Оценка плотности: непараметрический и параметрический подходы
 - Сингулярное разложение матриц
- 3. Метрические алгоритмы (28.09 05.10, семинар 28.09)
 - Понятие метрического алгоритма (distance-based)
 - Метод ближайшего центроида (Nearest centroid algorithm)
 - Метод k ближайших соседей (kNN) для классификации и регрессии
 - Весовые обобщения kNN
 - Примеры функций расстояния в методе kNN
 - Регрессия Надарая-Ватсона
 - LSH для быстрого поиска ближайших соседей
- 4. Контроль качества и выбор модели (05.10-12.10)
 - Проблема контроля качества
 - Общие правила разбиения выборки
 - Отложенный контроль (held-out data, hold-out set)
 - Скользящий контроль / перекрёстная проверка (cross-validation)
 - Бутстреп (bootstrap)
- 5. Оптимизация в машинном обучении (12.10 19.10)
 - Типы методов оптимизации: нулевого, первого, второго порядков
 - Градиентный спуск (GD) и стохастический градиентный спуск (SGD)
 - Критерии останова
 - Обучение: пакетное, онлайн, по минибатчам

- 6. Линейная и логистическая регрессии (19.10 26.10, семинар 19.10)
 - Линейная регрессия, прямой метод нахождения решения
 - Проблема вырожденности матрицы
 - Регуляризация. Гребневая регрессия (Ridge Regression). LASSO. Elastic Net.
 - Селекция признаков при использовании LASSO
 - Устойчивая регрессия (Robust Regression), RANSAC (RANdom SAmple Consensus)
 - Логистическая регрессия, нахождение решения через SGD
 - Многоклассовая логистическая регрессия
- 7. Линейные модели классификации (02.11 09.11, семинар 09.11)
 - Линейный классификатор, использование суррогатных функций (surrogate loss functions)
 - Персептронный алгоритм (perceptron)
 - Hinge Loss
 - Метод опорных векторов (SVM), постановка задачи
 - Решения задач условной оптимизации. Условия Каруша-Куна-Такеера.
 - SVM: решение прямой задачи
 - SVM: решение обратной задачи
 - Soft-Margin SVM: разделение допуская ошибки
- 8. Нелинейные методы (16.11 23.11)
 - Проблема линейности
 - Полиномиальная модель, базисные функции, радиально-базисная функция (RBF)
 - Ядерные методы (Kernel Tricks), опредление ядра, примеры ядер
 - Ядерный SVM
 - Ядерная Rige регрессия
 - Операции над ядрами
- 9. Деревья решений (23.11 30.11)
 - Деревья решений (CART). Построение дерева.
 - Критерии расщепления в задачах классификации (missclassification criteria, энтропийный, Джини) и регрессии
 - Критерии остановки при построении деревьев
 - Проблема переобучения для деревьев. Подрезка (post-pruning).
 - Подсчёт важности признаков на основе решающего дерева
 - Учёт пропусков (Missing Values)

10. Ансамбли алгоритмов (30.11)

- Ансамбли алгоритмов: примеры и обоснование
- Способы повышения разнообразия в ансамбле
- Бэгинг (bootstrap aggregating)
- OOB-prediction и OOB-estimation
- Стекинг (stacking) и блендинг
- Бустинг
- AdaBoost (алгоритм, вывод формул)

11. Случайный лес (07.12)

- Случайный лес
- Настройка параметров методов
- Extreme Random Trees

12. Градиентный бустинг (21.12)

- Градиентный бустинг над решающими деревьями
- Настройка параметров методов
- Продвинутые методы оптимизации бустинга
- Современные реализации градиентного бустинга (XGBoost, LightGBM, CatBoost) и их особенности
- Способы работы с категориальными признаками

13. Сложность алгоритмов, переобучение, смещение и разброс (10.02)

- Проблема обобщения алгоритмов
- Bias-variance decomposition для задачи регрессии и квадратичного функционала
- Способы борьбы с переобучением

14. Функции ошибки / функционалы качества (17.02 - 24.03)

- Базовые функции ошибки в задаче регрессии (средний модуль отклонения (MAE), средний квадрат отклонения (MSE) и его производные, вероятностное и невероятностное обоснование RMSE)
- Базовые функционалы качества в задаче классификации (матрица ошибок (Confusion Matrix), точность (Accuracy, MCE), ошибки 1 и 2 рода, полнота (Recall, TPR), специфичность (TNR), точность (Precision), FPR(False Positive Rate), F1-мера)
- Базовые скоринговые ошибки (Log Loss, AUROC)
- Качество в многоклассовых задачах. Разные виды усреднения качества: макро, микро, весовое, по объектам.