ASE INC PENNSAUKEN N J
RADIO REMOTE CONTROL SYSTEM FOR AIRPORT VISUAL NAVIGATIONAL AID--ETC(U)
JUL 76 R W HARRALSON

FAN DO 76-00 AD-AU31 879 UNCLASSIFIED FAA-RD-76-42 NL 10F2 AD A031879

Report No: FAA-RD-76-42

RADIO REMOTE CONTROL SYSTEM
FOR
VISUAL NAVIGATIONAL AIDS

Robert W. Harralson

July 1976 Final Report

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

private the contract a detental error and

MTTERS CONTROL OFFICE CHAR

Report to LAN RESTOR

· · · · · · · · · · · · · · · · · · ·	Technical Report Documentation
1. Report No.	3. Recipient's Catalog No.
FAA-RD 76-42	
4. Title and Subtitle	5. Report Data
Radio Remote Control System for	Airmort / (//) Jul 76/a
Visual Navigational Aids,	6. Performing Organization Code
Vapolatina in the second secon	8. Performing Organization Report No.
7. Author(s)	DOT-FATHWA-3433
Robert W./Harralson	9196P.
9. Performing Organization Name and Address	10. Work Unit No. (TRAIS)
ASE, Inc.	11. Contract or Great No.
5090 Central Highway Pennsauken, New Jersey 08109	15 DOT-FA74WA-3433 ME
Pennsauken, New Dersey 00109	13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address	1-1
U.S. Department of Transportation	(9)Final Hepet,)
Federal Aviation Administration	14. Sponsoring Agency Code
Systems Research and Development Ser	vice Proposoring Agency Code
Washington, D.C., 20590 15. Supplementary Notes	
of the state of the state of	
the East East of	
N6. Abstract	
of radio remote control for airp includes radio link dependabilit message security.	
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or rece tion insures that the messages w without inter-station interferenthe airport, and through unfavor weather.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message lex system is so formatted that only eive at any one time. This combina- will be successfully communicated ice, in the noisy EMI environment of table conditions of terrain and
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or rece tion insures that the messages w without inter-station interferent the airport, and through unfavor weather.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power ed to MIL Standards, and the message elex system is so formatted that only eive at any one time. This combina- eill be successfully communicated ece, in the noisy EMI environment of
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or recetion insures that the messages w without inter-station interferent the airport, and through unfavor weather. Modular construction permits grounds.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message lex system is so formatted that only eive at any one time. This combina- will be successfully communicated ice, in the noisy EMI environment of table conditions of terrain and
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or rece tion insures that the messages w without inter-station interferenthe airport, and through unfavor weather. Modular construction permits grounds.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message lex system is so formatted that only eive at any one time. This combina- will be successfully communicated ice, in the noisy EMI environment of table conditions of terrain and
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or rece tion insures that the messages w without inter-station interferenthe airport, and through unfavor weather. Modular construction permits grounds.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message lex system is so formatted that only eive at any one time. This combina- will be successfully communicated ice, in the noisy EMI environment of table conditions of terrain and
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or recetion insures that the messages w without inter-station interferent the airport, and through unfavor weather. Modular construction permits grounds.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message lex system is so formatted that only eive at any one time. This combina- will be successfully communicated ice, in the noisy EMI environment of table conditions of terrain and
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or recetion insures that the messages we without inter-station interferent the airport, and through unfavor weather. Modular construction permits grodiscrete functions per station.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message lex system is so formatted that only eive at any one time. This combina- vill be successfully communicated ece, in the noisy EMI environment of table conditions of terrain and ewth to 10 remote stations with 12
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or recetion insures that the messages we without inter-station interferent the airport, and through unfavor weather. Modular construction permits grodiscrete functions per station.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message elex system is so formatted that only eive at any one time. This combina- vill be successfully communicated ece, in the noisy EMI environment of able conditions of terrain and ewth to 10 remote stations with 12
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or recetion insures that the messages we without inter-station interferent the airport, and through unfavor weather. Modular construction permits grodiscrete functions per station.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message elex system is so formatted that only eive at any one time. This combina- vill be successfully communicated ece, in the noisy EMI environment of able conditions of terrain and ewth to 10 remote stations with 12
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or recetion insures that the messages we without inter-station interferent the airport, and through unfavor weather. Modular construction permits grodiscrete functions per station.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message elex system is so formatted that only eive at any one time. This combina- vill be successfully communicated ece, in the noisy EMI environment of able conditions of terrain and ewth to 10 remote stations with 12
of radio remote control for airp includes radio link dependabilit message security. The radio link is assured by dir margin; the equipment is designe is triple encoded. The half dup one station can transmit or recetion insures that the messages we without inter-station interferent the airport, and through unfavor weather. Modular construction permits grodiscrete functions per station.	ort visual NAVAIDS. Reliability y, equipment dependability, and ectional antennas and large power d to MIL Standards, and the message lex system is so formatted that only eive at any one time. This combina- fill be successfully communicated ece, in the noisy EMI environment of table conditions of terrain and ewth to 10 remote stations with 12

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

408740

put

		lott	233 	r. nl	ineres	il	* N = 8
Approximate Conversions from Metric Mesoise When Yos Keen - Multiply by To Flad	LENGTH	10:1 10:1 10:3		1	5255 <u>,</u> 2	TEMPERATURE (exect) 5/5 (thun Feb	91 -
Approximate Co.		Continuos matera matera matera kilomátera	square continuents square maters square kilometers hectaires (10,000 v	Margania Margania (gal 6001) senion	Pallifornia de la companya de la com	Colsius temperature	8 0 · 0+-
] [2] 22	TZ OZ	5 e e 5	** 6 ° 5 2	- 2 - tt tt ot '		, 	*
ןיין 	 	" " " " " " , .	 	ן יין יין יין יין יין יין יין יין יין י	'''''''''''''''''''''	rrprepija	' '''' '''
	!	Continueters con continueters con meters n kilometers hn	Square centimiters. Square meters. Square kilometers. Macteres.	e de la companya de l		Calsius	- Angeles
Approximate Conversions to Motric Messures	LENGTH	1822 1823		28 0.50 ONLUME	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	TEMPERATURE (exact)	subbracting 32)
Approximents		litt	square inches square y ends square miles	Na 0002)	transpoons tubbespoons fluid outces cups pints parts pallons cubic bet		
		1231	3333		322.2512	١.	

PREFACE

There is a requirement for a radio control link system which can be used to control and provide status information on airport approach and landing aids, including the approach light systems, runway and taxiway lighting, and instrument landing systems. The new control system must be lower in cost than a buried wire system and must be equivalent or better in reliability.

ASE, Inc., under contract to the FAA, has developed a control unit and installed it at NAFEC, Pomona, New Jersey for evaluation. The purpose of this demonstration is to establish that the ASE developed system operates satisfactorily and with sufficient reliability so that the economies of Radio Remote Control may be realized.

ASE, Inc. wishes to express its appreciation to the Visual Aids Section of the Federal Aviation Administration for the guidance and assistance which helped to bring this effort to a successful conclusion. The efforts of Mr. John Goon, Program Manager in the early phases; Mr. J. P. McVicker, Program Manager in the latter phase; and Mr. Walter C. Fisher, Section Chief, are mentioned. Mr. Leon Reamer of NAFEC provided valuable guidance in general and Mr. Bret Castle provided help in the system installation and evaluation at the National Aviation Facilities Experimental Center (NAFEC) at Pomona, New Jersey.

The technical review and advice given by Mr. Carlo Yulo, Assistant Chief of the Navigation Division, was helpful.

July 1976

ARCESSION AU

PTIS White Section []

ONE Buff Section []

ORATROUNCED []

JUSTIFICATION []

DISTRIBUTION/AVAILABILITY CODES

Dist, AVAIL, and/or SPECIAL

TABLE OF CONTENTS

Section		Page No.
1.0	INTRODUCTION	1-1
1.1 1.2 1.3	Background Contract Requirements Report Organization	1-1 1-1 1-2
2.0	SUMMARY	2-1
2.1 2.2 2.3 2.4	General Design and Development Phase Field Evaluation System Conclusions and Recommendations	2-1 2-1 2-2 2-2
3.0	SYSTEM RATIONALE	3-1
3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4	Receiver Antennas Digital Processor Considerations Data Input and Display Transmit/Receive Control Noise/Immunity Noise Immunity Tests	3-1 3-1 3-7 3-7 3-8 3-9 3-10 3-11 3-14 3-15
4.0	DESCRIPTION OF EQUIPMENT	4-1
4.1 4.1.1 4.1.2 4.2 4.3 4.3.1 4.3.2 4.4 4.5	Physical Description Central Control Station Set Remote Control Station Set Digital Processor Transceiver Transmitter Modifications Receiver Modifications Control and Display Unit - Central Remote Display Units Antennas	4-1 4-1 4-3 4-3 4-4 4-4 4-6 4-6 4-9 4-9
4.7	Power Supplies	4-9
4.9	Electromagnetic Interference Control	

TO ADDITION TO ADDITION OF THE PARTY OF THE

TABLE OF CONTENTS (Continued)

	Page No.
SYSTEM OPERATION	J=15-1
Basic Operation Digital Processor Message Flow Timing and Message Control Signals Message Security Control and Alarm Sequence	5-1 5-1 5-1 5-3 5-4 5-5
CONCLUSIONS AND RECOMMENDATIONS	6-1
Conclusions Recommendations MIL Spec Parts FM Frequency Drift Control Interface with NAVAIDS	6-1 6-2 6-2 6-2 6-3
	Basic Operation Digital Processor Message Flow Timing and Message Control Signals Message Security Control and Alarm Sequence CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations MIL Spec Parts FM Frequency Drift

State of the state of the State of

The company of the second control of the control of

indeed, and the way of the rest of a contraction of the said of the

if there is a limit to the school time after the first perfection.

Appendix A FMECA Analysis

LIST OF ILLUSTRATIONS

Figure No.		Page No.
3-1	System Evaluation Unit Inter- connection Diagram	3-2
3-2	Basic System Block Diagram	3-3
3-3	Attenuation Chart	3-5
3-4	System Timing Diagram	3-12
3-5	Message Flow Diagram	3-13
4-1	"E" Box Interconnection Diagram	4-2
4-2	Transmitter Modifications	4-5
4-3	Receiver Modifications	4-7
4-4	Central Control and Display Unit (A5)	4-8
4-5	Remote Indicator Units (A2A6 and A3A7)	4-10
4-6	Directional Antenna	4-11
4-7	Antenna Pattern	4-12
4-8	Power Splitter Schematic	4-13
4-9	Power Supply Configuration	4-15
6-1	Central Control and Display	6-5
Drawing 5D022	Command and Status (Board 3/4) Logic Diagram and Assembly	
Drawing 5D023	Channel Select and Data Control (Board Logic Diagram and Assembly	2)
Drawing 5D024	Bit and Frame Sync Timing (Board 1) Logic Diagram and Assembly	
Attachment	Transceiver Instruction and Service Man	ual

GLOSSARY OF TERMS

- 1. ALARM: A visual or audible indication of faulty operation, requiring operator attention.
- 2. BANDWIDTH: The total number of Hz between the -3dB points of the response-vs-frequency characteristic of a communication channel.
- 3. BIT, BINARY BIT: The elementary unit of information consisting of the two stable states: High-Low: In this equipment High-Low = 1, Low-High = 0.
- 4. BIT RATE: The frequence at which bits are transmitted.
 In this equipment, bit rate = 1000 per second.
- 5. BIT SYNC WORD: See under FRAME (14).
- 6. CENTRAL: Refers to the master unit which generates the master timing and synchronization signals, accepts manually programmed inputs, and delivers Status and Fault signals. It is located in an attended area.
- 7. <u>CLOCK, SYSTEM</u>: The primary source of synchronizing or referencing signals. In this equipment the system clock frequency = 1.MHz.
- 8. CODING: The process of converting information into bits.
- 9. COMMAND: A unit of information.
- 10. CONTROL WORD: The block of signals on a group of 12 pins: pins 1 through 12 or pins 21 through 32. Each group of 12 must be transmitted contiguously by the processor.
- 11. CONTROL FUNCTION: Any one of the signals in a control word.
- 12. FMECA: Failure Mode, Effect and Criticality Analysis.

 This, together with parts list, failure rates of each component, and computation of Mean Time Between Failure (MTBF) is part of the supplier's responsibility.
- 13. FREQUENCY SHIFT KEYING (FSK): A method of modulating the radio frequency carrier in which a digital High is represented by one frequency and a digital Low by another.

GLOSSARY OF TERMS (Continued)

14. FRAME: One transmission period from sync to sync.

BIT SYNC WORD: The first 32 bits transmitted in each Frame (all ones).

FRAME SYNC WORD: The 9 bit and 8 bit words, immediately succeeding the bit sync word, which initiate counting for location of transmit and receive time slots.

- 15. HALF-DUPLEX: The system of data transmission and reception in which information passes in both directions over a single communication channel, being kept separate by a timing and gating function.
- 16. MANCHESTER SPLIT PHASE CODE: An encoding system which distinguishes between ones and zeros by whether they are in phase or 180° out of phase with a reference. See example below.

1 bit period = 1 millisecond

- 17. MESSAGE: A group of encoded digits that represent a complete piece of information.
- 18. REMOTE, REMOTE STATION: One of the stations being controlled by the Central Station.
- 19. REMOTE PROCESSOR: The processor in a remote station.
- 20. REDUNDANCY: The duplication of information to reduce probability of error. In this system, two forms of redundancy are used: the doubling of bits in the data transmission, and the message repeat of three times with majority rule detection (redundancy not used in sync period).

GLOSSARY OF TERMS (Continued)

21. REMOTE SYNCHRONIZATION: (BIT SYNC) Phase locking of the 1KHz timing wave at a remote station to the timing wave of the Central Station. 15 milliseconds of time is allowed for this operation.

REMOTE SYNCHRONIZATION: (FRAME SYNC) Timing of the start of the remote counter to insure proper transmit and receive lock-in among the several stations.

- 22. SCHMIDT TRIGGER: A circuit having two stable states, (1,0) with a dead zone between them to prevent erratic triggering on noisy signals.
- 23. STATUS: The position of the controlled switches at a remote station. These switches generate the same word as the command at the Central Station, and this word is sent back to the Central Station during the remote station's assigned transmit time slot.
- 24. SYNC, SYNCHRONIZATION: See (21) above.

Section 1

the state of the s

Introduction

1.1 Background

With the current expansion of airport facilities and new equipment installation, the need for additional control wiring between the airport tower and the control site has been increasing. The current method of utilizing underground cables for control of airport visual NAVAIDS has presented economic and practical problems. The problem is amplified where new cable routes are required across existing runways and taxiways. The installation and maintenance cost of these cables can be considerable plus inconvenience to the airport community due to construction and runway and taxiway closures.

An alternate approach for transmitting control signals is through a radio remote control system. This system would have to operate in the electronic noise environment of an airport with a reliability approaching that of a wire system, provide flexibility for control of numerous remote control stations, and cost less than an equivalent wire system. The FAA awarded Contract No. DOT-FA74WA-3343 to ASE, Inc. to develop such a system and install it at the FAA NAFEC facility at Pomona, New Jersey for FAA evaluation.

1.2 Contract Requirements

The contract provides for the design, development, test and installation of a radio control link system to control and display status information of remote control stations. The system is to be capable of controlling up to ten remote stations and at least twelve discrete functions at each station. However, the evaluation unit to be installed at NAFEC is to consist of a central control station and two remote control

stations.

The principal design requirements of the system are as follows:

- Frequency modulated transmission in the 162-174 MHz band.
- 2. Operation of equipment up to five miles from the central control station.
- Operation in an airport environment containing spurious electromagnetic radiation (internal and external) and lightning.
- 4. Security methods shall be incorporated to assure integrity of the signal transmission.
- 5. The system shall include monitoring to display the status of the controls at the remote stations.
- 6. The system shall be designed for reliability which shall be demonstrated by a FMECA analysis.
- 7. Operation from a 120V AC power source.
- 8. Provide a battery emergency power supply to maintain normal system operation during a power failure for up to three hours.
- 9. Operational temperature range 10°C to +50°C.
- 10. Operational humidity range 5% to 90%.

1.3 Report Organization

In accordance with contract requirements, this final report describes the accomplishments and status at the completion of the contract. Section 2 summarizes this report. Section 3 discusses the rationale of the system design. Section 4 provides physical and functional descriptions of the system and its elements. Section 5 contains operational details to aid in trouble shooting. Section 6 provides conclusions and recommendations for further work. Appendix A contains the FMECA analysis.

Section 2

Summary

2.1 General

After fifteen months of design, development, analysis, test and fabrication, ASE, Inc. installed the Radio Link Control evaluation system at NAFEC in November 1975. The installation consists of a central control station and two remote control stations (one being approximately five miles from the central station). The system was operated continuously for approximately four weeks with service interrupted only for the normal de-bugging which accompanies new equipment newly installed in the field. One remote unit was then moved to an environmental chamber where it was subjected to temperature and humidity tests by the FAA. The results of these tests will be published by the FAA. The evaluation system has been accepted by the FAA as a contract deliverable equipment and will be subjected to further evaluation tests by the FAA.

2.2 Design and Development Phase

The primary design objectives were to design an operational system with high reliability and high immunity to EMI as found at airport environment. This was achieved and demonstrated in a laboratory breadboard model of the system. This model was subjected to extensive testing and evaluation in the laboratory to assure a sound system approach. The testing included:

- a. parameter variation to determine stability margin,
- b. examination of component stress ratios for reliability,
- c. injection of a variety of noise signals to evaluate the noise immunity of the system.

These tests showed that the system is immune to random noise.

A FMECA analysis was performed which indicated a MTBF of 2340 hours if a conservative approach is taken or 2950 hours if a more optimistic approach is used. The FMECA analysis is contained in Appendix A of this report.

2.3 Field Evaluation System

The more rugged field evaluation system was designed and built, incorporating the modifications and improvements made during the breadboard test and evaluation. To improve the resistance to airport vibration environment, stronger and stiffer printed circuit boards were used, mechanical retainers for the boards were added, and the edge connectors were replaced by more reliable pin connectors.

The system consists of a central control station and two remote control stations. High Reliability and MIL specification components were used in these units wherever possible to enhance reliability. The units were thoroughly tested and debugged in the laboratory including temperature testing. The system was then installed at NAFEC; the central station in Building 161, the remote stations in Building 226 and at the outer marker.

2.4 Conclusions and Recommendations

To date, the Radio Link System has performed successfully in the field installation thus demonstrating the feasibility of the design and the system approach.

Should the FAA decide to pursue the system development further, the following additional effort is recommended for improvement of the system and its capability for controlling airport NAVAIDS.

- The frequency drift problem of the transmitter at the temperature extremes should be eliminated by circuit changes, principally automatic frequency control (AFC).
- Appropriate interface units for operating airport visual aids and other NAVAIDS, such as ILS, MLS, etc., should be developed.

- 3. Use of MIL SPEC parts in the transceiver to increase transmission reliability.
- 4. Investigate the applicability of the new generation of transceivers developed by GE and Motorola to the transceiver problem.

Section 3

System Rationale

3.1 System Configuration

The radio control link system consists essentially of a central control station set and one or more remote control station sets. See Figure 3-1. Each set contains an FM transceiver and antenna(s) which provide the radio relay of the control and monitor signals, a digital processor which develops a coded series of pulses to provide EMI resistant control signals, and a power supply for the required power. A battery permits operation for three hours after loss of A. C. power.

3.2 System Considerations

Figure 3-2 is a block diagram of a representative central and remote pair, both capable of transmission and reception. The problem is to keep these two locations in communication with each other without external interference and with cable reliability.

The system features a highly reliable radio link, and a triple encoded message for security. Reliability of radio communication is promoted by using considerable power margin and a narrow channel which is permitted by the low required data rate. The logical system for combining these parameters is half duplex time division multiplex.

Considering system power, charts of attenuation vs distance for free space transmission indicate that a loss of about 97 dB will be incurred in five miles. Assuming a 3dB noise figure for the receiver gives a total loss of 100 dB. The receiver threshold for 3dB N.F. and 15K Hz bandwidth is -129dB, requiring a transmitter power of -29dBM for unity S/N. Therefore, one watt of transmitter power would give a 60dB margin

FIGURE 3-2

for overcoming transmission difficulties. The fact that each remote station will be communicating with only the master station encourages the use of a directional antenna providing additional gain. This provides enough margin to satisfy any reasonable requirement. Additional safety margin accrues from the fact that most commercial telecommunication transmitters deliver 3 to 20 watts of power, enhancing confidence in the radio signal reliability.

The more common causes of signal attenuation are cancellation by interference from reflected waves, scattering by obstacles, such as buildings, in the transmission path, and absorption by lossy objects such as trees. Null depths of 40dB or more due to cancellation have been observed, but these can usually be considerably ameliorated by antenna relocation or some other tactic. Scattering is a function of the size, shape, material, location and number of obstructions, but does not generally prevent communication. Absorption depends on the loss characteristics and depth of the absorbing material, which varies with weather conditions and with the season. The attenuation to be expected can be determined by inspection of the transmission path and corrective action may be taken if it appears that deep nulls or excessive losses are to be expected.

Representative data on the loss to be expected from trees is shown in Fig. 3-3, reproduced from IEEE Transactions on Antennas and Propagation, July 1963. It shows that for average MID-LATITUDE WOODS IN LEAF, the attenuation to be expected at 166 MHz is 100dB per mile, and for jungle, 1000dB per mile, effectively precluding radio communication over any appreciable distance. However, data from other investigators shows that the loss in woods or jungle is not exponential, as indicated above, but reaches a limit of 20 to 40dB from the free space value. (IEEE Transactions on Antennas and Propagation, May 1966 p. 386.)

Neither investigator gave information on the height of antennas relative to tree height. Although the second investigator indicated that the <u>added</u> attenuation due to trees was independent of antenna height, this does not seem reasonable, and

HF and VHF Radio Wave Attenuation Through Jungle and Woods*

Experimental information on loss through woods and jungles has been made available by a number of investigators [1]-[4]. However, analytic substantiation has been lacking. In this communication, a simple extension of the theory developed by Stratton [5] and Wheeler [6] has been applied to HF and VHF radio wave attenuation in the dense jungles.

The theory for the loss in the foliage is essentially the same as that for loss if any medium such as sea water where the field is attenuated exponentially with distance as follows:

Received Field:
$$E = E_0 e^{-d/\delta}$$
, (1)

Skin depth:
$$\delta = \frac{1}{2\pi} \sqrt{\frac{\lambda}{30\sigma}}$$
 meters, (2)

Medium Conductivity:
$$\sigma = Mhos/M$$
,

Loss in db:
$$\alpha = 20 \log_{10} e^{-d/\delta}$$
,

Note: When
$$d = \delta$$
, $\alpha = 8.68$ db.

Table I lists typical skin depths for various lossy media for 3 and 30 Mc.

TABLE I

Medium	Conduc- tivity	Skin Depth at 3Mc	Skin Depth at 30 Mc	
	Mhos/M	Meters	Meters	
Sea Water	4	0.15	0.05	
Wet Soil (CCIR) [7]	3 X10-2	1.6	0.5	
Fertile Soil (CCIR)	1 X10-2	2.9	0.0	
Dry Soil (CCIR)	3 X10-3	5.1	1.6	
Very Dry Soil (CCIR)	1 X10-3	9.1	2.9	
Dry Soil Minimum (Wheeler)	1 X10-4	29	9.2	
Dry Soil Minimum (Stratton)	1 ×10-3	91	29	
Dense Jungle Foliage	1 X10-6	91	29	
Mid-Latitude Woods	3 X10 .	1600	500	

The experimental information on the attenuation of ground wave field strength vs distance at various frequencies for vertically polarized waves through the dense jungles of New Guinea, is derived from [4] and from page 33 of [3]. Fig. 1 shows this information replotted with db per 0.1 mile as a function of frequency together with the new curve of the analytical results. The loss due to mid-latitude woods in leaf also plotted on Fig. 1 shows that a three-fold order of magnitude difference exists in relative conductivity between dense jungle and ordinary mid-latitude woods in leaf. Obviously, one now sees the necessity for specific identification and classification of the physical characteristics of foliage before reasonably close estimates of attenuation are feasible. On the other hand, Fig. 1 is indicative of the upper and lower loss limits and Table I, of the spread of typical physical constants.

SEYMOUR KREVSKY **RCA Surface Communications** Systems Labs. New York, N. Y.

* Received February 11, 1963. The work reported here was supported by the Communication Depart-ment of the U. S. Army Electronic Research and De-velopment Laboratory under Contract No. DA 36-039-AMC-00011(E).

REFERENCES

- H. T. Head, "The influence of trees on TV field strengths at UHF," PROC. IRE, vol. 48, pp. 1016– 1020; June, 1960.
 B. Trevor, "UHF propagation through woods and underbrush," RCA Rev., vol. 5, pp. 97–100; July, 1940.

- underbrush," RCA Rev., vol. S, pp. 97-100; July, 1940.

 [3] "Ground Wave Field Intensities," Singal Corps radio Propagation Agency, Fort Monmouth, N. J., Tech. Rept. No. 3, pp. 9 and 33; revised June, 1949.

 [4] "Radio Propagation Through the New Guinea Rain Forest," New Zealand Department of Scientific and Industrial Research (DSIR), Operational Research Section, Melbourne, Australia, Rept. No. 8; 1944.

 [5] J. A. Stratton, "Electromagnetic Theory," McGraw-Hill Book Co., Inc., New York, N. Y., pp. 297-304, 344, and 345; 1941.

 [6] H. A. Wheeler, "Universal skin effect chart for conducting materials," Electromics, vol. 25, pp. 152-154, November, 1952; "Fundamental limitations of a small VLF antenna for submarines," IRE TRANS. ON ANTENNAS AND PROPAGATION, vol. AP-6, pp. 123-125; January, 1958.

 [7] "Ground Wave Propagation Curves below 10 MC," CCIR, Los Angeles, Calif., recommendation no. 307; 1959.

it may be that the variation (20 to 40dB) is in part a result of antenna height.

The logical explanation of the referenced data is that when the wave is launched, the ground wave is rapidly absorbed, as per the first reference, but the sky wave diffracts through and over the trees, producing an above-the-trees wave, attenuated about 20dB. Because the treetops are a dissipative medium, the lower part of the sky wave will travel more slowly than the free-space velocity and the wave will hug the treetops and continually diffract downward into the trees with a loss of approximately 20dB according to the measured data in the second reference. If both antennas are located in wooded areas, or in built-up areas, the loss to be expected would be 40dB, on the average (see the second reference), with considerable variation depending on other factors which are not enumerated in the above studies, but probably include density of vegetation, size of diffracting objects, rain, wetness of the leaves, etc.

The assigned channel has a bandwidth of 6KHz. If we reserve ‡1KHz for the combined drift of transmitter and receiver, the allowed modulation is ‡2KHz. The desired data rate and the requirement for a half duplex system sets a modulation frequency of 1KHz, which, with the available bandwidth of 4KHz permits FM deviation ratio of two. The data rate referred to is based on human factors and is basically the amount of time the operator would not consider excessive to wait for a reply after throwing a switch. Since several seconds normally elapse after a pilot's verbal request before action by the controller, a few more seconds do not appear to represent an objectionable delay. In this system, the maximum time delay with 10 remote stations for transmit and readback is 1.5 seconds. With 2 remote stations, the time is 324 milliseconds.

Message security requires more than the standard encoding schemes because of the possible serious consequences of incorrect operation of lights or navigational aids. Accordingly, a triple security system is used which rejects all messages that do not conform to the exact format of frame sync, message encoding, and timing.

The multiple transmission scheme used was in preference to error detection and correction codes which have about the same data rate per unit bandwidth, but require much greater circuit complexity. The requirement for continuous monitoring of the remote condition means that the message must be continually repeated, so it is efficient to also use this function as part of the message security technique.

System design is only as effective as permitted by equipment reliability, and to this end the most reliable devices and construction are used, and MIL spec parts invoked where possible. Thorough inspection and testing of all parts and subassemblies, as well as laboratory simulated system tests, helped insure dependability of field performance. The proposed system then is half duplex, narrow band and with high signal-to-noise margin to insure radio link reliability. A triple encoding scheme is used to preserve message security. High reliability parts and construction and thorough testing enhance system reliability.

3.3 Radio Link Considerations

3.3.1 Transmitter

To facilitate the evaluation unit, a commercially available transceiver is used. The transmitter has a nominal power output of 10 watts, but this is reduced to 3 watts by retuning the output matching network to increase the life and reliability. The transmit/receive switch and some filtering, which takes 50 milliseconds to operate, is replaced by electronic switching. Including transient settling time in the receiver, this circuit now operates in 2 milliseconds. Amplitude modulation sideband generation during switching is controlled by a time constant in the T/R switch that limits rate of rise and fall of voltage to the power amplifier stages.

The second transmitter modification is in the modulator. Since the digital input is a square wave, sideband generation must be controlled by low pass filtering. The filter passes 500Hz and 1000Hz without attenuation, but drops sharply above 1.5KHz to prevent generation of sidebands above 2KHz. The modulation consists of 500Hz and 1000Hz square waves which have harmonics at 1500, 2500, 3000Hz and above, all of which are reduced by the filter to keep the radiated signal in the ±2KHz allowable bandwidth.

3.3.2 Receiver

The receiver input is on the same antenna as the transmitter output and therefore requires protection from excess voltage. This is done by inserting a quarter wave coax line between transmitter and receiver and placing diodes across the far end of the line. This gives a shorted quarter wave line during transmission and has no effect during reception. The receiver input is protected by limiting the voltage to 1 volt peak multiplied by the input transformer step up ratio, which gives less than the 10 volt peak allowable voltage on the input F.E.T. During transmission the shorted quarter wave line looks like an open circuit and has no effect on the transmitter.

The second receiver modification is filtering of the output, which has a useful signal bandwidth of only 4KHz in a receiver with an I.F. bandwidth of 15KHz. Therefore, to take care of the excess noise that will be present in low S/N conditions, a low pass filter is placed between the receiver output and the Schmidt trigger which is used to reconstitute the square wave for digital processing.

The reason for not narrowing the receiver bandwidth to 6 KHz is that all common I.F. filters used in communication receivers have non-linear phase shift, and since the I.F. contributes most of the system delay, carrier frequency variations would result in changes in system delay, having a deleterious effect on system phase lock. As it is, the I.F. section has reasonably linear time delay in the center half of its bandwidth and gives satisfactory results without special design or phase equalizers. The small price in S/N ratio paid for

this tolerance is of little consequence in view of the large signal margin provided.

Although operation at low S/N ratios was not part of the design philosophy, some effort was made to provide adequate performance in this region. In addition to the low pass filter on the discriminator output, an adjustable Schmidt trigger was used to reconstitute the output signal, and was set for best performance at levels where the signal was barely usable. character code word puts a first limit on the amount of noise that can be tolerated, and represents a penalty in S/N as a result of the security provisions of the encoding. The signal must be strong enough that all 36 consecutive characters are received without error, or the message will not be admitted. Lab tests indicate that a S/N of at least 6 to 10dB is required depending on other factors such as frequency drift. In this signal strength region, a small drop in signal, such as 2 or 3dB may therefore result in no reply from the remote, with consequent alarm at central even though the message may have been correctly transmitted and received. The uncertainties that exist in this signal region are therefore the reason for operation with a large S/N margin.

3.3.3 Antennas

An omni-directional antenna is not used at the central station because most airport locations will not provide a suitable location for an omni antenna, which should have minimum obstruction in the direction of each remote. This remote control system will not have priority over radar at such a location, and furthermore, it is unlikely that the controlled stations will have 360° orientation with respect to central, making an omni antenna wasteful of power and contributing unnecessarily to possible interference in directions where no remote station exists.

From these considerations, it seems better to study each location and to provide a system of directional antennas so that there will be optimum transmission conditions in each direction. The power to the antennas should be divided to suit the

requirements of remote stations at different distances in the various directions by either a power divider for a single transmitter, or, if long wire runs are involved, several transmitters.

The RF link introduces time delays due to the various filters which require equalization to permit use of a phase sensitive message encoding system (Manchester Split Phase). This equalization is accomplished in the digital processor, and is discussed under that item.

3.4 Digital Processor Considerations

The digital processor, which is the heart of the system, accepts commands in parallel form and transmits them in serial form. It accepts received data in serial form and displays it in parallel. It generates all the timing and sequencing signals required to perform all its functions. It encodes and decodes all the signals required for message security, alarms in case of trouble, and remembers the last message in case of signal interruption. It channels the messages so that the central stations control all the remote stations, but the remote stations cannot affect each other.

It corresponds to the compiler, memory and CPU of a computer. The loading switches "compile" the program and feed it to the first memory, which is stationary storage, and to the second, the recirculating memory used for transmission. These, and their counterparts in the receive section constitute the Random Access Memory (RAM). The code word generator is the Read Only Memory (ROM). Timing signals, error detector, voting, and message cycling are the internal computer program, and correspond to the central processor unit.

3.4.1 Data Input and Display

In airport control tower equipment, special requirements govern with regard to controls and displays. Most important to this equipment is that indicating lights must not be so bright as to distract the operators, but yet the condition of each control must be evident. In controls without readback, the position of a switch handle or knob is used to indicate the state desired, and no lights are used. With readback, as in this equipment,

the indicating lights are readily visible but are not objectionable. Whenever an operator can see the switch, he can see the indicating light.

The data represented by these switch positions are delivered to a register having parallel inputs which are loaded every transmission cycle, or upon operation of a <u>load</u> button, as desired. Once in memory, the data are encoded, formatted and serially transmitted every cycle. When received at the remote station, the commands are executed and an identical reply generated. When this reply is received at central it is displayed as a steady light. If the correct reply is not received, the light blinks, indicating a fault.

3.4.2 Transmit/Receive Control

All the timing signals originate from one source, a crystal oscillator, which is counted down to get phase locked signals for data transfer, modulation, message generation, and phase sensitive demodulation. See Figure 3-4.

Starting at lMHz, the dividers generate the principal frequency of lKHz the bit rate, and also 8KHz, 2KHz, 500Hz, 2Hz, and 0.1Hz which are used in various data processing operations.

The transmit sequence is as follows: First, from central, lKHz reference phase is sent to phase lock the remote clocks. Then the frame sync, or code input is sent, and must be recognized by the remotes before their message timing sequence will start. Next, see Figure 3-5, the message is read out of the registers serially at 500Hz into the modulator which runs at lKHz, encoding each unit of data into two bits. Each message is transmitted three times. After the last transmission of the last channel, the lKHz clock is stopped for two milliseconds plus the time delay of the signal through two transmitter-receiver combinations to allow time for message processing and transient settling. Then, the receive cycle commences. Each unit of data is examined to verify that it is properly encoded, then stored in register. If a bit is improperly encoded, the entire register is dumped. After the three registers are filled, all are simultaneously read out

3-4 FIGURE

SYSTEM TIMING DIAGRAM

3-13

past a voting network which requires two identical bits to pass the data. If this condition is not satisfied for all 12 positions, the entire message is dumped. This technique provides high immunity from false messages.

Since the messages are handled serially, the only basic limitation to the allowable number of remote stations is message cycle time. Allowing 74 milliseconds per message, 10 messages plus sync would require 774 milliseconds transmit time plus 740 milliseconds reply time for a total of 1.5 seconds message cycle time. This seems to be an acceptable delay, and the equipment as presently built has counters and decoders for ten channels although only two are being installed in the evaluation unit. By changing a single wire, the unit will count over only the channels actually installed. For example, the present system with two remotes, cycles about three times per second. For commonality, central and remote digital electronics are identical, the functional difference being enabled by grounding a single terminal at the central unit. This terminal is identified as Remote Select-High, terminal P1-17 on board 2.

3.4.3 Noise Immunity

The chance of noise penetrating the bit error detector is 1/8. The chance of filling an entire register with noise is therefore $(1/8)^{12}$. The chance of entering a noise pulse in the second register is again 1/8, making the chance of noise in two registers $(1/8)^{13}$ or 1.8×10^{-12} /cycle. At one cycle/sec or 31.5×10^{6} /yr, this should happen once per 1.7×10^{4} yrs, indicating that white noise in the data channels will not represent a false alarm problem.

This analysis does not take into account the sync word, which is 17 milliseconds long, giving $(1/2)^{34}$ chance of being actuated by noise every second. This is a false alarm rate of $.6 \times 10^{-10} \times 2 \times 10^{9}$ or .12/yr for a total noise immunity of 2×10^{5} years. A short burst of noise, less than 24 milliseconds during the message period would be outvoted by the other two registers, and therefore also represents no problem. Therefore, neither a long burst of noise nor a short burst or pulse will be a false alarm threat.

Susceptibility to synchronous interference will vary widely with the character of the interference, but this type of radiation would be extremely rare compared to random noise, and so probably does not represent any greater hazard.

3.4.4 Noise Immunity Tests

Various types of noise were transmitted on the system carrier frequency including hash from brush type motors, noise modulation of an auxiliary transmitter on the same frequency, and sine and square wave modulation with on and off keying. After some redesign of the as-received assemblies, none of the interfering signals produced a change at the remote stations, even though sufficiently strong signals could paralyze the system and prevent transmission in either direction. It was concluded that the message encoding technique resulted in a noise immune system up to the overload point, and that noise would never cause erroneous operation of a remote unit.

A final check was made to verify operation over the specified 5 mile distance. The unit operated satisfactorily over distances of 5 miles, 12 miles, and 17 miles over an average terrain consisting of residential sections with houses and trees, and open areas with some small hills.

Section 4

Description of Equipment and Operation

4.1 Physical Description

The radio control link system configured for the field evaluation unit is comprised of three sets of equipment; one set for a central control station and one set for each of two remote control stations. Figure 3-1 schematically shows these sets and their interconnections. The main elements are the "E" box (A1, A2, A3) which is the heart of the system and contains the Digital Processor, FM Transceiver, and Power Supply; the Control and/or Display Panel (A5, A6, A7); the Battery Unit (A9); and the Antenna (A10).

4.1.1 Central Control Station Set

Figure 3-1 shows the central control station set. It can be seen that the set consists of the following units:

1 Weathertight Enclosure ("E" Box)
 containing the following assemblies:

Digital Processor FM Transceiver Power Supply

- 1 Control and Display Unit, housed in an aluminum transport case
- 1 Battery Unit
- 2 Directional Antennas. (In general one antenna will be required for each remote control station, subject to site considerations)

Figure 4-1 is the "E" box interconnection diagram. The "E" Box, which houses the transceiver, the digital processor, and power supplies, is rain proof but not hermetically sealed.

To handle the condition of moisture entering the box by breathing, replaceable desiccant bags are provided. The transceiver is further protected from the effects of high humidity by its location, directly above the power supplied, which develop most of the heat in the unit. High temperature effects are minimized by painting the box with titanium white to minimize absorption of solar radiation; sizing the box large enough so that the temperature rise is only 6°C; and by protecting it from the sun by a shed roof.

The control and display unit and the battery are relatively insensitive to climatic conditions and each is mounted in its own transport case which protects it from direct contact by the elements.

The metal enclosures afford EMI protection to the equipment inside. A. C. power is filtered and all other cables are shielded to control the electromagnetic radiation in and out of the enclosures.

4.1.2 Remote Control Station Set

For maximum flexibility and minimum spare part provisioning, each remote control station set is similar in configuration and appearance to the central control station set. The main difference is in the digital processor, as described in 4.2.

4.2 Digital Processor

The Digital Processor is mounted in the "E" box and consists of a nest with connectors and plug-in type printed circuit (PC) logic boards. Fourteen and sixteen pin integrated circuit DIP chips are mounted on the PC boards and wire wrap interconnections are used throughout the processor. The evaluation central unit has four boards (Al, A2, A3, A4). The first remote unit has three boards (Al, A2, A3) and the second also has three boards (A1, A2, A4). The system is designed so that the Al boards are interchangeable with each other, the A2 boards are interchangeable with each other, and the A3 and A4 are

are interchangeable with each other.

The essential difference between the central and remote Digital Processors is that the central unit has one type A3/A4 PC board for each remote station, whereas each remote unit has only one type A3/A4 PC board.

The logic diagram and assembly drawing for each of the logic boards are included with this report. Each board has a two sheet drawing which is identified by the following number.

Drawing	5D022	Command and Status (Board 3/4)
		Logic Diagram and Assembly

Drawing 5D023 Channel Select and Data Control (Board 2) Logic Diagram and Assembly

Drawing 5D024 Bit and Frame Sync Timing (Board 1)
Logic Diagram and Assembly

4.3 Transceiver

The transceiver is Model #FM-2101, manufactured by Sonar Radio Corporation of Brooklyn, New York. The Instruction and Service Manual provided by the manufacturer is included with this report. The manual details the specifications, layout, schematic, parts list, etc., of the transceiver.

4.3.1 Transmitter Modifications

Figure 4-2 shows the modifications made by ASE to adapt the transmitter to remote control requirements. These include:

- a. Remove mechanical T/R relay and replace by ASE-built electronic T/R switch. This modification is to reduce the T/R switching time from 50 milliseconds to less than 2 milliseconds required for telemetry operation.
- b. Modify the modulator for square wave input, with sharp cutoff above 1.5 KHz to control sideband radiation.
- c. Add a line receiver interface chip to accept digital input from balanced line and deliver single ended output to T/R switch and modulator.

4-5

- d. Re-tune transmitter output stage to reduce power from 10 watts to 3 watts for longer life of semiconductors.
- e. Change antenna jack from UHF to Type N, MIL version.
- f. Add MIL-type connectors for 12V power, and input and control signals.

4.3.2 Receiver Modifications

Figure 4-3 shows modifications made by ASE to adapt the receiver to remote control requirements. These include:

- a. A quarter wave line with diode termination between the antenna jack and the receiver input to isolate the receiver input from the transmitter output without affecting receiver performance.
- b. Modification of the output amplifier for regeneration of square wave signals.
- c. Addition of a line driver to develop balanced output for driving the digital processor (U17, Board A1).

4.4 Control and Display Unit - Central

Figure 4-4 shows the central control and display schematic. S1 to S7 are the individual panel switches, S8 the rotary switch (brightness). S17 controls the entire channel, Channel A; S18 for Channel B. The 100 OHM resistors limit the L.E.D. current to the 16 milliamps rating of the SN54136 drivers. Switch 1 is reserved as remote battery monitor. When a remote goes on battery, Light No. 1 flashes and the alarm sounds. Throwing Switch 1 on removes the fault signals, and signifies to the operator that the remote unit is on battery power, which is good for three hours minimum. Restoration of AC power again gives a fault indication and the operator is alterted to restore the switch to the off position.

For other than battery alarms, a switch (S19) is provided to silence the beeper. Momentarily throwing it to off silences the alarm until clearing of the fault which restores the alarm

4-7

to the ready condition. If the switch is left off, the audible alarm will not sound.

4.5 Remote Display Units

These units contain only the L.E.D's and current limiting resistors, and are for visual monitoring only. The schematic is shown in Figure 4-5. Note that one wire is different in the A&B versions, requiring that A6 be used in Connector 4, and A7 used in Connector 5, together, of course, with Board A2/A4 in Slot 3, and Board A3/A4 in Slot 4, respectively.

4.6 Antennas

The antennas are YAGI-UDA configuration modified by the manufacturer by shifting the element spacing and lengths to permit matching a 50 OHM line directly. This makes a tee or balun unnecessary, and improves the structural and electrical reliability. See Figure 4-6 and Figure 4-7. This antenna is proprietary with the Phelps-Dodge Company.

The central unit has two directional antennas which are brought into the "E" box through a power splitter which proportions the power to each antenna according to the distance to the remote station. The schematic for the power splitter in the evaluation unit is shown on Figure 4-8.

4.7 Power Supplies

The power supply delivers 12V to the transceiver, 5V to the digital processor, and 6V to the 1 MHz master timing oscillator. An additional requirement is to provide 3 hours of operation in event of A.C. power interruption. These are met by deriving all power from a 14V power supply with a 12V storage battery floating on the line.

Twelve volts is used directly by the transceiver, and 5V is from a 5V regulator which operates from 12V input. Six volts for the oscillator is produced by a resistor-zener combination which is not properly part of the power supply, but is included

FIG 4-5
REMOTE INDICATOR UNITS (A2 A6 AND A3 A7)

4-10

THE ELEMENTS ARE PROGRESSIVE IN LENGTH, THAT IS EACH ELEMENT FROM THE 3RD DIRECTOR TO THE REFLECTOR INCREASES IN LENGTH.

SUPPORT CLAMPS, ALL ANTENNAS ARE ASSEMBLED FOR TEST AND THE ELEMENT SUPPORT CLAMP SET SCREW INDENTATION IN THE ELEMENT WAY BE USED FOR CENTERING. NOTE: ALL ELEMENTS MUST BE CENTERED IN ELEMENT

Unless otherwise specified --- All dimensions are in inches and title block tolerances apply. All thread dimensions to be met after planing where applicable and are to be gauge chacked. Break all sharp edges .010-.015 after finish mochining. All machined surfaces shall be smooth within 63 micro inches.

S.O. 92912 Freq. 166.2 MHz

DIMENSIONAL TOLERANCES TITLE FIELD ASSEMBLY INSTR-

390- M-2		APPROVED BY		dodine
BASIC TENECHONAL ORCHALL CCTIONS FOR CAT.NO.390- M.	DOS TAGI AN ENNA	# 1/64 # OOS DRAWN BY SLD	solado	dipop
DECIMAL	+ .003	\$.00E	# .00e	
PRACTIONAL	00 + 010 + 010	# 1/64	. 24" ± 1/32	LL ANGLES # 1º
BASIC	0". 1"	1	6". 24"	ALL AN
			nal Antenna	
		A.C. Dimontio	4-0 Difectional Antenna	
		-	o-t ainf	

ביופיל ביותר ברצוים ברצוים

2 + 889 01 PNDIS3037 4-10-70 FROM 5 4

HENISION

BASE STATION YAGI ANTENNA

(8.0 db Unidirectional Gain)

CAT. No. 390-509, FREQUENCY RANGE 150-174 MHz*

CAT. No. 390-509 YAGI ANTENNA is designed for point-to-point communication where the half power points must not exceed 80° in horizontal plane. The antenna is a single 5 element Yagi made of 6061-T6 aluminum alloy. It is supplied with hot gal-

vanized steel hardware to fit 11/4" diameter tower legs, 1-5/16" O.D. pipe and 2%" O.D. pipe. Provision is made in the mounting arrangement for either vertical or horizontal polarization.

.50 ohms

1.5:1

... 5.0 MHz

20.0 db

100 MPH

.. 8.0 db

.... 500 watts

* Exact frequency must be specified

3/8" diameter aluminum rod Element material..... Element support....... 1-1/16" diameter aluminum pipe Element support length 80" at 150 MHz Rated wind velocity..... Lateral thrust at rated wind 29 lbs. Weight

SPECIFICATIONS____

Maximum power input

TerminationType N Male with Neoprene housing

Nominal input impedance....

Electrical

Bandwidth

Forward gain

Front-to-back ratio

Mechanical

Horizontal field strength pattern of Cat. No. 390-509 when antenna is horizontally polarized. A dipole pattern is shown for reference.

Horizontal field strength pattern of Cat. No. 390-509 when antenna is vertically polarized. A dipole pat-tern is shown for reference.

CI 26pf DIPPED MICA

C2 18 pf DIPPED MICA

C3 8pt DIPPED MICA

LI 0.55 H 1/4" 0.D., 1/4" LONG 3.5 TURNS NO. 16 WIRE

L2 0.122 HH 1/4" 0.0. 1/2" LONG 6.9 TURNS NO. IS WIRE

FIG 4-8 POWER SPLITTER SCHEMATIC

on Board 1, and accepts 12V input (J1-14). See Figure 4-9. The 5V regulator is provided with a large heat sink. The 14V power supply is convection cooled.

Emergency power is from the 12V battery that floats across the 14V bus, keeping the battery fully charged and making the transition from AC power to battery power instantaneous with no interruption in transmission or operation. No additional circuitry or relays are required to effect the transfer of power.

AC power comes to the unit through a box containing filters for control of electromagnetic radiation in both directions.

All other cables entering the cabinet are shielded for the same reason.

Thermal and overload protection are inherent in both the main power supply and the 5V regulator, and to remove the chance of trouble from flexible cords and plugs, the units are conduit wired into the disconnect switch or distribution panel. No switch is provided on the unit itself.

4.8 Electromagnetic Interference Control

Control of electromagnetic interference is established in two ways: shielding and filtering.

Most of the components are protected by being enclosed in metal containers. Components and wiring not inside the Main Box ("E), are in other metal containers connected to the "E" box by shielded cables.

The only wires that cannot be shielded are the 115V AC power and the antenna. A. C. power (W17) is brought into the unit through line filters FL1, FL2 located in a separate metal box inside the "E" enclosure. The antenna is brought in via coax line which shields all but the radiating elements. Inside the transceiver are additional band pass filters to reject radiation outside the telemetry band.

FIG 4-9 POWER SUPPY CONFIGURATION

Section 5

System Operation

5.1 Basic Operation

To trace the flow of signals in the system, refer to Figure 3-2, the Basic System Block Diagram and Figure 3-5, the Message Flow Diagram. The desired control signal is put into the system via the control and display unit, which passes it to the digital processor for storage, encoding and serial transmission to the transmitter. The signal is relayed via the transmitter and antenna to the remote station receiver, from which it is passed to the digital processor for decoding and storage. From there it passes to the control and readback unit. (In the evaluation system, this unit controls only a display of lights) When the output function is accomplished (in the evaluation system, when the light is turned on or off), a readback signal identical to that at the central control is generated and transmitted back to central to confirm that the command has been properly executed.

Details of message handling are discussed in the following sections.

5.2 Digital Processor

5.2.1 Message Flow

Refer to Logic Diagram 5D022, "Command and Status (A3, A4) Board".

Switch positions in the control unit are communicated to the memory registers U40, U41, and U42 through Pins 17-28 of the connector. These storage registers pass the data in parallel

to registers U28, U29, and U30 from where it is clocked out serially at 500 Hz (Pin 15) to the modulator (on Board 2). All three inputs to U34 must be low for this operation. The data, at 500 Hz rate, are passed from Pin 44, Board 3 to Pin 36, Board 2 where the modulator, which runs at 1000 Hz, converts "1" to "1,1", and "0" to "0,0" for transmission. Modulator output is fed to the transmitter by line driver U23 through Pins 34 and 35.

When received remotely, the message is delivered by the radio receiver to line receiver U17 on Board 1 through Pins 10, 11. It is passed through U46 and out Pin 27 to the voting section U43, U44 and U45. Each message is transmitted three times without delay. The first transmission is stored in Registers U29, U41, Board 2; the second transmission stored in U28, U40, and the third in U27, U39.

The timing diagram, Figure 3-3, shows that at this point there is a 2 millisecond hiatus. The purpose is for message processing, as follows: "pusher pulses" at 8 KHz, from Pin 7, through U17 and U16 feed the stored data past the voting circuits, out to Pin 20, Board 2. The 12 bits of data, at 8 KHz, require 12/8 = 1.5 milliseconds, hence the 2 millisecond processing period. The message moves to board 3/4 via Pin 43, Board 3/4. into the Registers U43, U44, U45. If it is approved by the voting circuit, it is shifted into Registers U31, U32, U33 to drive the display lamps through exclusive-or's U7, U8, U9 and U16, U17, U18. In the central unit these also compare transmitted signal with readback (for "same" or "different") to control error displays.

In remote, the signal that arrives on any pin, for example 35, is fed back to its companion directly above at top of drawing, in this case, Pin 20, for readback to central. This completes the message flow from central to remote and back to central.

5.2.2 Timing and Message Control Signals

All message timing and control derives from a 1.0 MHz crystal oscillator which is counted down in binary to provide the required frequences of 125 KHz, 8 KHz, 2 KHz, 1 KHz, 500 Hz, 2 Hz, and 1 Hz. The last six are binary derivatives 125 KHz, and are rounded off for convenience. (8 KHz is actually 7.8125 KHz, 1 KHz is 976.5625 Hz, etc. The counting is done in the chain U4, U5, U7, U8, U9, U10, and U11.

One KHz is fed into U3, Board 2 to drive the program counter whose basic element is U4 (count to 12). It also generates a stream of 1 KHz "ones" to synchronize the remote clocks. Fifteen "ones" (bit sync) are followed by "frame sync", which is 00011100010101010, all at 1 KHz. At the end of frame sync, the first transmission of Message "A" starts without delay, but although modulated at 1 KHz, is stepped through the system by 500 Hz, "double bitting" each bit for security. After Message "A", there is a two millisecond hiatus in the program control signals, which are generated in U8, U32 and U9, and repeat every 72 milliseconds. 72 milliseconds required to send three messages of 24 milliseconds each. After four such cycles in central (two in each remote, one receive, one transmit) the program control generates "end cycle", a one millisecond pulse which resets registers and restarts the sync, A-XMIT, B-XMIT A-RCV, B-RCV sequence. Note that "end cycle" restarts central in "sync", but remotes restart in "receive", and do not begin message timing until arrival of "frame sync".

After central has transmitted messages A and B, it halts the 1 KHz for 2 milliseconds to permit processing of message at Remote B, and then for another 2.625 milliseconds to allow for transient settling in transmitters and receivers, and for delay equalization. Transit time of a message from central to remote and back through central is 0.625 milliseconds minimum. After Remote A has transmitted, there is another 2 millisecond delay to permit Message A

processing at central, shutdown of Remote A transmitter, and start of Remote B transmitter. There is no delay at end cycle since there is plenty of time during "bit sync" (15 milliseconds) for transient settling.

Selection of proper registers and message sequence is programmed from data XMIT/REC Register U9, Channel Counter U10, Channel Selector U11, and Clock Selector U16, Board 2.

Transmit/Receive steering is generated in the "XMIT/REC Control" Block U8, U32 which also generates the important "End Cycle" signal.

5.2.3 Message Security

Three techniques are used to provide message security: phasing, bit encoding, and frame sync. The first is inherent in the Manchester split phase method of transmission. If an interfering message is not in the proper phase, it will not operate the system. The second, bit encoding is the previously mentioned "double bitting". Thus, a "one" becomes 1, 1, or which is high-low high-low = HLHL. Then "zero" is LHLH, and these are the only combinations permitted by the "Bit Error Detector" U46, U23, U35, U34 on Board 1. The arrival of any of the other fourteen possible combinations results in rejection of the entire 24 milliseconds section of the message.

The third safety technique is the frame sync code word which is 00011100010101010, which, when translated into highs and lows gives a 34 position code with 2³⁴ possible combinations, only one of which will open the message gate U16 Board 1. Decoding is done by the network U18 to U22 plus U30 to U34.

The use of triple transmission and voting works in conjunction with bit encoding to improve the chances of delivering a correct message. At the same time the chance of accepting a false message as a result of random noise is reduced to the vanishing point.

5.3 Control and Alarm Sequence

When a switch is operated, the datum is stored in register and transmitted to the appropriate remote station, and simultaneously the indicating lamp is connected to a 2Hz supply which causes it to blink until the readback signal arrives and gives a steady voltage verifying that the command has been executed at the remote station. If, for any reason, the readback fails to agree with the command, the light blinks for 10 seconds, then lights a fault indicator lamp and sounds an audible warning to alert the operator who can then silence it and take appropriate action. If, during a fault condition, the readback comes into compliance, the alarm circuits are reset to zero. Of the two directions, readback is the weaker link. When central transmits, all remotes synchronize to the received signal regardless of its phase. If the signal is weak or erratic, but a message is once received it is remembered until the next valid transmission. However, if a valid sync is not received, the remote station will not reply at all, creating an alarm condition at central even though the commands may have been correctly executed. Also, the outward transmission is independent of variable time delays and phase shifts, but central reception requires accurate time delay compensation

beside being dependent on successful outward transmission.

Section 6

Conclusions and Recommendations

6.1 Conclusions

The radio link system designed and built by ASE has been installed at NAFEC and has performed successfully under preliminary evaluation tests by the FAA. These tests have demonstrated the feasibility of a radio remote control system to control and provide status information of electronic NAVAID equipment in an airport environment. Immunity to EMI demonstrates that the reliability of the design and message security system can be compared to message transmission over a wire system.

The cost of a remote radio control system would be less than the cost of material, installation and maintenance of a cable system to a distant remote site that crossed several taxiways or runways. However, as time goes on, cable systems continue to cost more, for both the cable and the trenching, while costs for radio and especially digital control devices continue to decrease. Radio control is more economical in some situations now, and its employment should increase as cost goes down and its many advantages are more widely appreciated. Two of these advantages are described below.

The radio control has an advantage over a cable system for a temporary installation. The cost of a cable installation is irretrievable, but the radio control sets are completely reusable after the temporary requirement has been met.

It is predicted that in the future airport facilities will maintain radio control sets for emergencies due to cable damage and interrupted service. Radio set installation can be measured in terms of hours or days whereas cable replacement

is measured in terms of weeks or months.

6.2 Recommendations

The following recommendations are suggested for improving the system and increasing its utilizing for NAVAID control.

6.2.1 MIL SPEC Parts

The transceiver parts are not all MIL equivalent, nor do all of them have direct MIL replacements. To improve the failure rate (MTBF) the components that contribute significantly to the failure rate should be replaced with a similar MIL part and associated circuitry modifications if necessary. Component burn-in and environmental tests should be performed to verify the modifications.

6.2.2 FM Frequency Drift

Temperature tests of the evaluation system have indicated that the signal transmission has been interrupted when wide temperature variations are encountered. This is due to a loss of available bandwidth resulting from oscillator drift.

The present oscillators use up 2 KHz of the available 6 KHz channel bandwidth. Communication reliability can be improved by incorporating stabilized oscillators into the FM transceivers. Stabilization may be achieved in several ways:

- a. Use temperature stabilized oscillators at all positions.
- b. Use temperature compensated oscillators at all positions.
- c. Use a stabilized oscillator in central transmit, and AFC all other oscillators.
- d. Depend on the central unit being kept in a temperature controlled location, and use one of the above techniques for exposed locations.

Each method has its advantages and disadvantages as described below.

6.2.2.1 Temperature Controlled Oscillators

Temperature controlled oscillators are the most stable, but are the largest, the most expensive, and require extra power for the heaters. They also have a start-up stabilization period of fifteen minutes to one hour and will require extra mounting space outside the transceiver.

6.2.2.2 Temperature Compensated Oscillators

Temperature compensated oscillators are the next most stable, being available in ± 1 ppm over the temperature range -30 to +60°C, which is adequate for the application. They have no start up transient time, and require no extra power. They are sufficiently large that two of them could not be mounted in the available space of the existing transceiver, but would require a separate unit, like the temperature controlled oscillators. However, one could probably be located inside the transceiver if all other oscillators were controlled by AFC.

6.2.2.3 AFC

The availability of varactors, and the presence of a discriminator in the receiver makes the AFC system attractive, requiring however, some development work.

6.2.3 Control Interface with NAVAIDS

The evaluation unit installed at NAFEC displays the control signal received from the central unit by turning a light on or off at the remote station. Although this is adequate for evaluating the radio link system it is recommended that additional equipment be designed to interface with and control various NAVAIDS. This will demonstrate the utility of the radio link system more fully.

Two possible interface systems are described below.

6.2.3.1 Control Interface Using Existing Control and Displays

The signal generated in the evaluation unit could be used to

activate a remote equipment by adding amplifiers and control relays to the present remote display. Twelve discrete functions could be controlled by this modification.

6.2.3.2 Control Interface With New Control and Display

In order to control NAVAIDS such as runway lighting, with on, off and several brightness settings it is necessary to have a relay for each of the desired functions, and provision for wiring the relay assembly into the control cabinet of the present lighting system.

This entails encoding two or three discretes by means of an encoding switch at central, decoding at the remote, and interfacing to the relays by amplifiers. The relay contacts would be made available through a terminal board to facilitate wiring to the other assemblies.

At the central control, a rotary switch with positions off, on, and five brightness settings would encode three wires. At the remote, decoding networks turn the equipment on and close relays to give the desired brightness. Centerline, touchdown zone, edge, and taxiway lights would each have the above described control, using twelve wires, or one channel, for example, Channel "A" at "Remote One" location. By the same technique, approach, VASI and strobes could be controlled by Channel "B", "Remote Two" location. The central control panel for operating these two channels is shown on Figure 6-1.

This modification would require a new central control and display unit which would interface with the present Hoffman Box ("E" Box) by a cable and connector. A new remote display and control unit would be required at each remote location, interfacing with the remote Hoffman Box ("E" Box), but containing relays, terminal boards and provisions for wiring to the controlled equipments.

FIGURE 6-1 Central Control & Display

APPENDIX A

RADIO REMOTE CONTROL SYSTEM FOR VISUAL NAVIGATIONAL AIDS

FAILURE MODES, EFFECTS, AND CRITICALITY ANALYSIS

Prepared by

Robert W. Harralson ASE, Inc.

Prepared for

U. S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

TABLE OF CONTENTS

Section	# #1243 F#		Page No.
	Introduction		i
1.0	Catastrophic Failures		1-1
1.1 1.1.1 1.1.2	Central Transmitter Failure Modes No Radio Frequency Output No Modulation		1-2 1-2 1-3
1.2	Central Processor Catastrophic Failure Modes		1-3
1.2.1 1.2.2 1.2.3	No 1 KHz Carrier One KHz Carrier but no Modulation Message Transmission is Accomplished,	n esta	1-3 1-3 1-3
	Re-transmitted and Received, but Cents Alarms	ral	
1.2.4	Message Transmitted but is not Received at Remote	d	1-3
1.3	Power Supply Failure Central Antennas		1-3 1-4
2.0	Partial Failures		2-1
2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Catastrophic Failure of a Remote Unit No Frame Sync Pulse Message is Received but not Re-transmit Message Received but not Stored or Disp Transmission Drifts into Adjacent Chan Remote Unit Stops at Arbitrary Points in the Timing Cycle	played	2-1 2-1 2-1
3.0	Mean Time Between Failure (MTBF)		3-1 3-2
3.1	System Summary		3-2
Failure Mode	Transmitter	Sheets Sheets Sheets	16-25
Failure Rate	e Data		
	Transceiver Components Digital Processor "E" Box Interconnections Central Control & Display	Sheets Sheets Sheets Sheets Sheets	30-36

Introduction

This analysis was prepared for the Radio Remote Control System installed at NAFEC under Contract No. DOT-FA74WA-3433. This system consists of a Central Control Station and two Remote Control Stations.

This analysis considers failure modes in descending order of severity. First, catastrophic failures of the entire system, and their analysis, followed by partial failures of successively less criticality, and analysis of their causes and effects. As an end product, specific sub-assemblies and components are identified as critical items, and some indication is made of the probable causes of various observed malfunctions.

System Mean Time Between Failure (MTBF) is evaluated by summing the failure rates of all significant parts down to the component level, except where a failure rate has been established for a sub-assembly. The system MTBF was computed at 2340 hours using handbook data of ten years ago, which is very conservative in light of the recent development of semiconductors. The system MTBF could be increased to 2950 hours if a more optimistic approach was used.

The failure rate tables of MIL-HDBK-217A do not separate failures by type, severity or cause, but label everything from parameter shift to catastrophic failure in the same way, making it impossible to substantiate catastrophic failure as being any specific fraction of total failure rate.

1.0 Catastrophic Failures

Failure at the system level can be caused by loss either of the central station, or loss of all the remote stations. Obviously, the most probable is loss of the central station, which may result from any of a variety of subsystem failures:

Central Transmitter
Central Processor
Central Power Supply
Central Antenna

The causes of central station failure will also cover the causes of remote station failures. Therefore, except for criticality evaluation, one analysis will cover both situations.

- a. Central transmitter failure may be either loss of carrier, including out of limit drift, or loss of modulation.
- b. The processor may fail in various ways: Loss of lKHz carrier, loss of modulation, improper formatting, encoder malfunction, register malfunction, or miscellaneous troubles such as broken wires or poor connections.
- c. Central power supply failures may be either temporary, from overheating, or total from some internal catastrophic failure.
- d. Central antenna failure may be from poor contacts in the coax connectors, open connection in the antenna, or mechanical damage or short circuiting of the antenna.

Catastrophic failures are discussed in the following sections:

- 1.1 Central Transmitter
- 1.2 Central Processor
- 1.3 Central Power Supply
- 1.4 Central Antenna

1.1 Central Transmitter Catastrophic Failure Modes

1.1.1 No Radio Frequency Output

Listed on the failure mode sheets are 67 capacitors, of which 58 can cause system failure by an open or short. Also listed are 25 resistors, 21 of which can fail the system by an open or a short, and 15 coils, any of which is a catastrophic failure open or short. The quartz crystal, two varactor diodes and seven transistors are also in this class, for a total of 104 components, the catastrophic failure of any one of which will be a system failure due to loss of carrier.

Causes of failure in capacitors are principally manufacturing defects in ceramic, film, or paper units, plus excessive current, voltage, or temperature in tantalytics.

Resistor failures, beside those due to manufacturing defects, result from excessive heat (the principal cause of shorts) mechanical stress during installation or testing, thermal cycling, and humidity, all of which tend to cause open circuits, which are much more common than shorts.

The quartz crystal, which is hermetically sealed, is most susceptible to mechanical shock or to contact failure in the socket. The other transducer elements are more likely to be destroyed by heat during soldering, or by voltage spikes. Operation above normal rating causes gradual degradation rather than total failure.

Coils are susceptible to the effects of humidity, which may cause either drift by affecting the insulation, or open circuit from electrolytic or chemical action. Short circuit in coils in low voltage stages is relatively rare compared to open circuit.

Unfortunately, the failure rate tables do not separate failures by type, severity or cause, but label everything from parameter shift to catastrophic failure in the same way, making it impossible to substantiate catastrophic failure as being any specific fraction of total failure rate.

1.1.2 No Modulation

Listed on the failure mode sheets are 13 resistors, 9 capacitors and 3 transistors which can cause loss of modulation by their catastrophic failure, open circuit, short curcuit or both. Remarks on the types and causes of failure are the same as for loss of transmitter carrier signal.

1.2 Central Processor Catastrophic Failure Modes

1.2.1 No 1 KHz Carrier

Board 1 of the digital processor generates the 1 KHz carrier from a 1 MHz crystal oscillator and counter chain involving 6 capacitors, 7 resistors and 6 DIP chips. If no 1 KHz is observed at P1-24, Board 1 should be repaired or replaced.

1.2.2 One KHz carrier but no modulation

The central unit continues to transmit as long as it is turned on. If signal is present at J2-36 but not at J2-34 or J2-35, the chips controlling modulation are not functioning properly.

(U20, U23, U34, U35) Board No. 2 should be repaired or replaced.

1.2.3 Message transmission is accomplished, re-transmitted and received, but central alarms.

Remote time advance may be wrong (11 micro-sec per mile), or remote voting circuits or registers on Boards 2 and 3 may be faulty. Repair or replice remote boards 2 and 3. Note: This is not strictly a central catastrophic failure since the trouble is at remote sites.

1.2.4 Message transmitted but is not received at remote

(assume no trouble in RF link or remote units or central transmission system).

Improper formatting on Board 2, or register trouble on Board 3. Replace Board 2 first, then if the problem persists, replace Board 3.

1.3.0 Power Supply Failure

When any catastrophic failure occurs, the power supplies are the first item to be checked. If 5 volts is present 12V must

be present. Operability of the 12V supply may be checked by disconnecting the battery. If 12V and 5V disappear, the 12V power supply is not functioning.

Battery condition should be checked by hydrometer readings.

Operability of the battery circuit is checked by disconnecting the 120V AC supply long enough to see if the unit continues to function without interruption.

1.4.0 Central Antennas

The transmitters have sufficient thermal margin that they can be operated into an open circuit or a short without damage. Therefore, in case of cable or antenna trouble, the central unit may appear to be operating properly, but no signal or a weak signal appears at remote sites.

To check the antenna system, connect a power meter/reflectometer between the transceiver and the power splitter. If it reads low power or high SWR or both, trouble exists in one or both antennas. Each antenna can then be checked for SWR to localize the trouble. The most likely source of failure is in connectors.

2.0 Partial Failures

Certain functions are peculiar to central and remote. Central generates the bit sync and frame sync, but does not decode either of them. The remote does the opposite. Does not generate sync, but does decode it, and uses the acquisition of frame sync to initiate message timing. The following will cover only the remote functions which are different from central.

2.1 Catastrophic Failure of a Remote Unit

2.1.1 No Frame Sync Pulse

If no signal is delivered to J1-11,12 of Board 1, or if the signal is distorted, or noisy, bit sync and frame sync may not be achieved. If no frame sync pulse is generated, message timing and re-transmission will not occur. Repair antenna, receiver, or Board 1 depending on where loss of signal occurs.

2.1.2 Message is Received but not Re-Transmitted

Due to improper timing which may arise from erratic 1 MHz oscillator operation or formatting errors, Boards 1 and 2, or registers on Board 3.

2.1.3 Message is Received but not Stored in Register and not Displayed

Trouble in bit error circuit or voting circuits, or in registers Board 3, or trans/rec data control, Board 2.

2.1.4 Transmission Drifts into Adjacent Channel

The assigned bandwidth is 6KHz, centered at 166.175 MHz. Each transceiver contains two crystal oscillators which have a significant drift plus one with a small, usually negligible effect.

If any of the transmit oscillators drifts more than \pm 1KHz, impaired reception may occur.

Crystal oscillator frequency specification of the transceiver is .0005%, -30°C to +60°C, which means 800 Hz drift. Measured

performance is appreciably worse than this, usually +2KHz at 60°C.

Frequency accuracy is determined by checking central transmit frequency by means of a counter. Central receive and remote transmit may be monitored by the central discriminator. Remote units are adjusted in a similar way: First, set the transmit frequency to 166.175 MHz, then adjust the receive oscillator to center the discriminator.

The 10.7 MHz I.F. and the 455 KHz I.F. are sufficiently broadband that discriminator drift is not a problem.

2.1.5 Remote Unit Stops at Arbitrary Points in the Timing Cycle

It may lock up in receive, or in transmit of carrier only. This latter condition represents the worst failure a remote unit may have, since steady transmit of carrier may block reception in other units. Cause: 1 MHz oscillator stops, freezing all message control and modulation operations. This malfunction results from high humidity or condensation on Board 1, or from failure of whatever components would prevent operation of the counter chain, such as U27, U15, U4, U5, U7 or U8.

3.0 Mean Time Between Failure (MTBF)

Included in this report are tabulations of all significant components; resistors, capacitors, semiconductors, etc. failure rates were obtained from MIL-HDBK-217A December 1965 (10 year old data). While much of the data is undoubtedly still valid, the information on semiconductors is proably pessimistic, and since semiconductor devices contribute about 30% of the total failure rate, any improvement in this data would reflect correspondingly on the total computed reliability. The handbook gives a range of failure rates from .05 to 1.0, but no table of criteria for judging whether the MIL Spec units are nearer the upper or lower limits. Using the handbook recommended failure rate of 0.4 resulted in a system MTBF of 2340 hours. If, instead of using 0.4, which is near the upper limit and probably is representative of good quality commercial units of 10 years ago, we use 0.1, which may be a more nearly accurate measure of present day MIL spec units, the failure rate attributable to digital logic would be 34.8, bringing the system MTBF up to 2950 hours.

In the transceiver area, a safety factor of two was used on failure rates of all parts even though some of the components such as tantalytic capacitors are stressed at 2/3 or 3/4 of their rated voltage. If the resistors and capacitors were replaced by Hi-Rel units, and stressed at lower levels, an improvement of about 2.5 could be made in this unit's computed failure rate, bringing it down from 190 to 76, and the system MTBF up from 2340 hours to 3180 hours. In addition, if the more favorable failure rate is used in the digital section, the MTBF would be further increased to 4450 hours.

Failure rate computations: Nominal MIL R-11 Resistor failure rate was taken from Table of FIG. 7.5.3. B, p. 7.5-11 of MIL HDBK 217A. Although most resistors checked were stressed

below .25, a stress ratio of .5, T=55°C was taken as a working average. This gave a base failure rate of .007, which, with an application K factor of 6 gave a failure rate of .042. The accumulated failure rate for all carbon composition resistors is 4.2.

If this number is adjusted for MIL HDBK 217 B, $\lambda_{\rm b}$ = .0011, $\pi {\rm E} = 1$, $\pi {\rm R} = 1$, $\pi {\rm Q} = 1$, $\lambda_{\rm p} = \lambda_{\rm b}$ ($\pi {\rm E} \times \pi {\rm R} \times \pi {\rm Q}$) = .0011, reducing the resistor contribution to failure by $\frac{.042}{.0011}$ = 38, to 1. This illustrates the reduction in failure rate that could be realized if the latest data (revision B of HDBK 217) was available when this analysis was performed.

3.1 System Summary

A block chart of the system showing failure rate contributions is shown below. It is also tabulated on Sheet 29 of the failure rate data. It is seen that the transceiver is the largest contributor, followed closely by the digital processor.

For a 3 group system, as supplied, $\Sigma\lambda$ = 428 MTBF = $10^6/\Sigma\lambda$ = 2340 hours

			FAILURE	FAILURE MODE EFFECT ANALYSIS	Ŋ	Sheet 1	of	40
	Equip.		Nomen. RADIO REMOTE COUTER Block Dia	Diagram (can be put on	separate sheet	Date		
	Equip.	Spec. RECEIVER	K			Revision	No.	
	Equip. Dwg.	Dwg.				Prepared	- Yq	
						Approved by	by	
	A	В	υ.	۵	ы	ĨΨ	ט	Н
	Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
2	No.	Failure	Causes	Consequences	of Detection		Rate	Class
-	6	SHORT LOPEN	LIGHTNING	NO SIGNAL OR WEARK SIG	TROPERATIVE AT SME			
	C,		TH exchine	REDUCED GAIN	MEHBUREMENT			
	(2	3HORT/OPEN	MPG DEFECT	REDUCED GOIN (10db)	MEAS.			
	62	DRIFT		NO OFFECT				
	(3	STORT LOPEN	MFG DEFECT	REDUCED GAIN	MEAS			
	64		DEFECT	FAILURE	SYSTEM INOPERATIVE			
	Cd	OPEN		REDUCED GAIN	MEAS.			
3-3	6.4	DRIFT		no REFECT				
	6.5	SHORT	DEFECT	LARGE LOSS OF STENAM	SYS. INOP ON WEAK			
	65	CPEN, BRIFT		LOSS OF GAIN	MEAS			
1	Ce	5,4087	DEFICT	0 0 0	,,	,		,
	٥٥	WEGO		LARBE LOSS of GAIN	INOP OF WEAK			
	6,	5 HORT .	6	. " " " "	11			
4	53	NAGO	, , , , , , , , , , , , , , , , , , , ,	LOSS of SELECTIVITY	NEAS.			
	GB .			SAME 115 CS				
	Cq			SAME AS CL				
	610			SAME AS CS	•			
	GII			JAME AS CL				
A	612	5 HORT / OPE		LARGE LOSS OF GAN				
-2	Cis			SAME AS Co	,			
1			The second secon					

•

. "

		FAILURE MODE	MODE EFFECT ANALYSIS	IS	Sheet 2	of	40
Equip.	Nomen.	Block	Diagram (can be put on	n separate sheet	Date		
Equip.	p. Spec. KECEIVER	/ER			Revision	No.	
Equip.	o. Dwg.				Prepared	- Kq	
		•			Approved	by	
A	Д	O	Ω .	ы	Ħ	O	н
Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
No.	Failure	Causes	Consequences	of Detection		Rate	Class
614	SHORT / OPEN	DEFECT	REDUCED GAIN	MEAS,			
615	Short	0	FAILURE	SYST INOP.			
C 15	OPEN	4	REDUCED GAIN	WEAK OF TWOP			
515	DRIFT	TIME - CYCLING	" "	MEAS.			
010	SHORT LOPEN	DEFEC	11. "	MEAS			
. 617	* SHORT	"	FAILURE				
611	0000	11	DE-TUNING	REDUCED SELECTIVITY			
6,7	DRIFT	A61706	" "	MEAS			
618	SHORT/OPEN		SAMP AS CIS				
619		DRFBCT	FAILURE				
to to		//	REDUCED GAIN	MEAS.			
6,94	SHORT	. "	FAILURE				
(20	5HORT .	"	LOSS OF GAIN	SYSTEM WEAK OF INDP			
620	0,000		FAILURE			2	
(2)	NOT USED						
(22	SH08.T	DEFECT	FAILURE				
(22	OPEN	"	REDUCED GAIN	MEAS.			
623			SAME AS CAD				
Cay			SAME AS CLZ				
0,0			7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				

Equip. Nomen. RRC Block Diagram (can be put on separate sheet Date Equip. Spec. Received Revision No.				FAILURE	MODE EFFECT ANALYSIS	S	Sheet 3	of	40
Equip. Spec. ReceiveR Revision No.		Equip.	Nomen.		(can be put	separate	Date		
Equip. Dwg. Page Possible Effects and Prepared by Approved by Approv		Equip.	Spec.	=R			Revision		
A		Equip.					Prepared	by	
Absumed Possible Effects and between the boost of the beaction between the beaction between the beaction between the beaction between the beaction beact							Approved	yd,	
Ttem		A	В	U	Q	ы	Ľų	ຶ່ນ	Н
No. Failure Causes Consequences Of Detection Rate C26 SHORT NEFFCT Repace Gent & Limite Restrict NEFFCT Repace Gent & Limite Restrict C26 SHORT " Repace Gent & Limite Restrict NEFFCT Reservence C27 CFEU " Repace Gent & Limite Restrict NEFFCT NEFFCT C27 CFEU " Repace Gent & Limite Restrict NEFFCT NEFFCT C28 SHORT " Repace Gent & NEFFCT NEFFCT NEFFCT C39 SHORT " REPUCED SIGNATION REPAIRS NEFFCT NEFFCT C39 SHORT " REDUCED SIGNATIONE REPULVEE NEFFCT C34 OPEN SIRECT " REPULVEE RESULVEE NEFFCT C35 SHORT " RESULVEE RESULVEE NEFFCT C34 SPECT " RESULVEE RESULVEE NEFFCT C34 SPECT " RESULVEE RESULVEE NEFFCT <th></th> <td>Item</td> <td>Assumed</td> <td>Possible</td> <td>Effects and</td> <td>Method</td> <td>Remarks</td> <td>Failure</td> <td>Failure</td>		Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
C36 SHORT DRFECT REDUCED GAIN'S LIMITER ACTION MEAS WOISE R C34 OPEN ", REDUCED GAIN'S LIMITER ACTION MEAS WOISE R C35 SHORT ", RALLURE C36 SHORT ", REDUCED DISCRETUITY C36 SHORT ", REDUCED DISCRETUITY C37 SHORT ", REDUCED DISCRETUITY C39 OPEN SHORT ", REDUCED DISCRETUITY C39 SHORT ", REPLUCE C30 OPEN SHORT ", REPLUCE C31 OPEN SHORT ", REPLUCE C32 SHORT ", REPLUCE C33 OPEN SHORT ", REPLUCE C34 OPEN SHORT ", REPLUCE C35 OPEN SHORT ", REPLUCE C36 OPEN SHORT ", REPLUCE C37 OPEN SHORT ", REPLUCE C38 SHORT ", REPLUCE C34 OPEN SHORT ", REPLUCE C35 SHORT ", REPLUCE C36 OPEN SHORT ", REPLUCE C37		No.	Failure	Causes	Consequences	of Detection		Rate	Class
C27 OPEN " REDUCED LIMITER ACTION MERS NOISE C27 5H0ET " PAILUEE C28 3H0ET " REDUCED LIMITER ACTION C28 3H0ET " REDUCED DESCRIUTY C29 OPEN SHEET " REDUCED DESCRIUTY C30 OPEN SHEET " REDUCED DESCRIUTY C32 OPEN SHEET " REDUCED DESCRIUTY C34 OPEN SHEET " RALLUEE C34 OPEN SHEET " RALLUEE C35 OPEN SHEET " RALLUEE C36 OPEN SHEET " RALLUEE C36 OPEN SHEET " RALLUEE C36 OPEN SHEET " RALLUEE C37 OPEN SHEET " RALLUEE C36 OPEN SHE		353	54087	DEFECT	REDUCED GAIN & WAITERS	WEAS GAI			
C2.7 SHOET " FAILURE C2.8 3 Hoet " FAILURE C2.8 3 Hoet " FAILURE C2.8 5 Hoet " FAILURE C2.9 5 Hoet " FAILURE C3.0 5 Hoet " FAILURE C3.0 5 Hoet " FAILURE C3.0 5 Hoet " FAILURE C3.4 5 Hoet " FAILURE C3.5 5 Hoet " FAILURE C3.5 5 Hoet " FAILURE C3.5 5 Hoet " FAILURE C3.6 5 Hoet " FAILURE C3.6 5 Hoet " <		626	OPEN	"	KIMITER	Noise			
C22 C23 C24 C25 AEAS, C28 3H0RT " FALLVEE MEAS, C28 0FEN " FALLVEE MEAS, C29 0FEN SHORT " FALLVEE MEAS C30 0FEN SHORT " FALLVEE FALLVEE C34 0FEN SHORT " FALLVEE FALLVEE C35 NOFEN SHORT " FALLVEE FALLVEE C34 0FEN SHORT " FALLVEE FALLVEE C35 3HORT " FALLVEE " C34 <th></th> <td>627</td> <td>54027</td> <td>"</td> <td>FAILURE</td> <td></td> <td></td> <td></td> <td></td>		627	54027	"	FAILURE				
C28 3HORT " FRALLURE C26 OPEN " FRALLURE C29 SHORT " FRALLURE C30 OPEN / SHORT " FAILURE C31 OPEN / SHORT " FAILURE C32 OPEN / SHORT " FAILURE C34 OPEN / SHORT " FAILURE C35 NOF VSED FAILURE FAILURE C34 OPEN / SHORT " FAILURE C35 NOF VSED " FAILURE C34 OPEN / SHORT " FAILURE C35 SHORT " FAILURE C34 OPEN / SHORT " FAILURE C35 SHORT " FAILURE C36 <th></th> <td>627</td> <td>0 8810</td> <td>"</td> <td></td> <td>MEAS,</td> <td></td> <td></td> <td></td>		627	0 8810	"		MEAS,			
(28 OPEN " REDUCED STREETHUTY METS. (28 OPEN SHEET " REDUCED DISCR. GRADIENT: PROBABLE CS. OPEN SHEET " RELIVEE FAILURE CS. OPEN SHEET " REALLY CE. CS. OPEN SHEET " REALLY CE. CS. OPEN SHEET " REALLY CS. OPEN SHEET " REALLY CE. CS. OPEN SEL COMMENS.	J	62.8	3.4087	,	FAILURE				
C24 SHORT " REDUCED OHM MEAS C24 OPEN SHORT " FAILURE MEAS C30 OPEN SHORT " FAILURE FAILURE C32 OPEN SHORT " FAILURE FAILURE C34 OPEN SHORT " FAILURE " C34 OPEN SHORT " FAILURE " C35 OPEN SHORT " FAILURE " C36 OPEN SHORT " FAILURE " C37 OPEN SHORT " FAILURE " C38 </td <th></th> <td>(28</td> <td>OPEN</td> <td>,</td> <td>1</td> <td>MEAS.</td> <td></td> <td></td> <td></td>		(28	OPEN	,	1	MEAS.			
(239 OPEN SHEET ", PAILUEE (231 OPEN SHEET ", FAILUEE (232 SHEET ", FAILUEE (232 OPEN SHEET ", REDUCED DISCR. GRADIENT: PROBABLE (234 OPEN SHEET ", REALURE (235 SHEET ", REALURE (236 SHEET ", REALURE (236 SHEET ", REALURE	3-	629	54087	"		Mets			
C30 OPEN/SHORT II PAILURE C31 OPEN/SHORT II FAILURE C32 SHORT II REDUCED DISCR.GRADIENT: FAILURE C34 OPEN/SHORT II REDUCED DISCR.GRADIENT: FAILURE C34 OPEN/SHORT II REDUCED DISCR.GRADIENT: FAILURE C34 OPEN/SHORT II RAILURE C35 SHORT II RAILURE C36 SHORT II RAILURE C36 SHORT II RAILURE C36 SHORT II RAILURE C36 SHORT II RAILURE C37 OPEN/SHORT II RAILURE C38 SHORT II RAILURE C38 SHORT II R	5	(29	OPEN	11	PAILURE	9			
C31 OPEN / SHORT " FAILURE C32 SHORT " FAILURE C34 OPEN / SHORT (1) REDUCED DISCR.GRADIENT: PROBABLE C34 OPEN / SHORT (1) REDUCED DISCR.GRADIENT: PROBABLE C34 OPEN / SHORT FAILURE FAILURE C34 OPEN / SHORT " FAILURE C36 SHORT " FAILURE C37 OPEN / SHORT " FAILURE C38 SHORT " FAILURE C37 OPEN / SHORT " FAILURE <th></th> <td>030</td> <td>OPEN SHORT</td> <td>"</td> <td>PAILURE</td> <td></td> <td></td> <td></td> <td>1</td>		030	OPEN SHORT	"	PAILURE				1
C32 SHORT " FAILURE C32 OPEN/SHORT (1) REDUCED DISCR. GRADIENT: PROBABLE C33 OPEN/SHORT (1) REDUCED DISCR. GRADIENT: FAILURE C34 OPEN/SHORT FAILURE FAILURE C35 OPEN/SHORT " FAILURE C34 OPEN/SHORT " FAILURE C35 OPEN/SHORT " FAILURE C36 SHOET " FAILURE C36 SHOET " FAILURE C37 OPEN/SHORT " FAILURE C38 SHOET " FAILURE C38 SHOET " FAILURE C39 OPEN/SHORT " FAILURE C31 OPEN/SHORT " FAILURE C34 OPEN/SHORT " FAILURE C35 SHORT " FAILURE		(3)	OPEN SHORT	"	FAILURE				
C32 OPEN/SHORT (I) REDUCED DISCR. GRADIENT: PROBABLE C34 OPEN/SHORT FAILURE C34 VOT USED FAILURE C34 SHORT DEFECT C34 OPEN/SHORT " C34 OPEN/SHORT " C34 OPEN/SHORT " C35 SHORT NE45 C36 SHORT " C37 OPEN/SHORT " C38 SHORT " C39 OPEC, SEL. ME45 C36 NE45 NE45		(3.2	SHORT	0	FAILURE				-
C34 OPEN/SHORT: FAILURE C34 OPEN/SHORT C35 NOT USED C36 SHORT C36 SHORT C36 SHORT C36 SHORT C36 SHORT C36 SHORT C36 OPEN " PAILURE C37 OPEN/SHORT. " FAILURE C38 SHORT C36 OPEN " PAILURE		(3.2	Open.	(1)	REDUCED DISCR. GRADIE	PROBABLE FAILURE			
C34 OPEN/SHORT FRILURE C35 NOT USED FRILURE C36 SHORT 0PEN " C34 OPEN/SHORT " FAILURE C34 OPEN/SHORT " FAILURE C35 SHORT " FAILURE C36 SHORT " FAILURE C36 SHORT " FAILURE		(33	OPEN/SHORT :		FAILURE.				
(35 NOT USED (36 SHORT (34 SHORT (35 OPEN SHORT (36 SHORT (36 SHORT (36 OPEN SHORT (37 OPEN SHORT (38 SHORT (39 OPEN SHORT (39 OPEN SEL	-	C34	1		FAILURE				
C36 SHORT 0RFELT FAILURE C34 OPEN SHORT. " FAILURE C38 JHORT " FAILURE C36 OFFN " PAILURE		(35	NOT USED						
C36 OPEN SHORT. " PERRENSED SELECTIVITY C38 SHORT " FAILURE C38 SHORT " FAILURE		36	5H0RT	DEFECT	FAILURE				
C31 OPEN SHORT. " FAILURE C38 SHORT " FAILURE C36 OFFN " DEC. SEL.		C36	OPEN	"	DECREASED SELECTIVITY	MEAS			
C38 SHORT " FAILURE		(37		*	FAILURE				
Cab OPEN " DEC, SEL.	A.	638	JH0ET .	"	FAILURE				
	-2	980	OFEN	. "		MEAJ			

		FAILURE MODE	MODE EFFECT ANALYSIS	LS	Sheet 4	4. of	40
Equip.	Nomen. RRC	Block Die	Diagram (can be put on	n separate sheet	Date		
Equip.	Spec. RECEIVER	ER			Revision	No.	
Equip.	. Dwg.				Prepared	γq	
					Approved	yd	
A	В	υ	Q	ជ	F	U	H
Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
No.	Failure	Causes	Consequences	of Detection		Rate	Class
C 39	OPEN/SHORT		FAILVEE				
040	OPEN SHORT		FAILURE				
641	SHORT		PAILURE				
C41	OPEN		FAILURE				
642	OPEN/SHORT		EASTLURE				
END	0	SECTION					
643	SHOKT		FAILURE				
C43	open		OSC FM NOISE	Loss of s/n (Merts)			
777	O PEN/SHORT		FAILURE				
645	OPEN/SHORT		FAILURE				
C45	DRIFT		OSC. DRIFT	MEAS			
C4 40	OPEN/SHORT		FAILURE				
140	0000	DEFFIT	OSCILLATOR NOISE				
. 946	SHORT	"	FAILVRE.				
1 247	OPEN/SHORT		FAIL.VRE .				
248	OPEN / SHOET		FAILURE				
C 48	DRIFT		OSC. DRIFT				
C49-1	OFEW SHORT.		1				
V C49-1	DRIFT		OSC DRIFT				
6.50-1	Town land		300 114 21				

40					н	Failure	Class																			
S of		No.	by	by	5	Failure	Rate																			
Sheet	Date	Revision No	Prepared	Approved	Ħ	Remarks																				
	separate sheet				ы	Method	of Detection	FREG CHECK											GIN OSCILLATIONS		MEAS,					
FAILURE MODE EFFECT ANALYSIS	Diagram (can be put on				Q	Effects and	Consequences	OSC. DRIFT	FAILURE	FAILURE	OSC DRIFT (PRUR)	FAILURE	OSC DRIFT	3 AME AS C. 5-3	FAILVEE	FAILVRE	SAME AS C 55, SE	FAILURE	REDUCED STABLLITY MARGIN	FAILURE	REDUCED S/N	FAILURE .	SAME AS CS9			
FAILURE N	Block Diag	= K			υ	Possible	Causes																	USED	SECTION	
	Nomen. RRC	Spec. RECEIVER	Dwg.		В	Assumed	Failure	DRIFT	OPEN SHORT	OPEN/SHORT	DRIFT	OPEN/SHORT	DRIFT		OPEN/SHORT	COPEN/SHORT		5/10RT	.00EN	SHORT	OPEN	SHORT		69 melunia NOT	END OF RCVR	
	Equip.	Equip.	Equip.		A	Item	No.	C 50-1	153	652	652	653	7-653	454	(55	656	153	6.58	(58	6.58	. 6.59	6.59	900	(61 to 0		-2

£ 40					н	Failure	Class														A CONTRACTOR						
9 of		No.	by	by	U	Failure	Rate																				
Sheet	Date	Revision	Prepared	Approved	ધિ	Remarks		NOT SERIOUS																			
S	separate sheet				ធ	Method	of Detection	MEASUREMENT		MEASUREMENT																	
40DE EFFECT ANALYSIS	gram (can be put on				D	Effects and	Consequences	Loss of 6am 2 5/N	Nowe	REDUCED SAINK SIN	NONE	LARGE GAIN REDUCTION	SMALL GAIN REDUCTION	NONE	LARGE GAIN REDICTION	SNALL LOSS & S/N	NE	SMALL GAIN CHANGE	FAILURE	None	REDUCED GAIN .	FAILURE	None	SMALL GALIN REDUCTION	FAILURE	None	
FAILURE MODE	Block Diagram	ER,		-	υ	Possible	Causes																				
	Nomen. RRC	Spec. RECEIVER.	. Dwg.		ф	Assumed	Failure	OPEN SHORT	DRIFT	OPEN, SHERT	DRILET	OPEN	51487	DRIFT	OPEN	SHOKT	DRIFT	0 9 12 10	SHORT	DRIFT	OPEN	SHOKT	DRIFT	OPEN	STORT	PRIET	
	Equip.	Equip.	Equip.		A	Item	No.	1×	RI	RZ	Rz	R3	3-	1	Ry	Ry	R.	RS	Rs	Rs	Ne.	Re	Re	83	84	-A R2	

of 40					н	Failure	Class																
		No.	by	by	U	Failure	Rate																
Sheet 7	Date	Revision No.	Prepared by	Approved by	Ĺij	Remarks																	
S	separate sheet				ы	Method	of Detection																
FAILURE MODE EFFECT ANALYSIS	Block Diagram (can be put on	TOTAL STAND STANDS			D	Effects and	Consequences	FAILURE	REDUCED GAIN	Nove	FAILURE	NONE	REDUCED GAIN	REDUCED GAIN	NONE	REDUCED GAIN	REDUCED GAIN	2000	FAILURE	REDUCED GAIN		FAILURE	REDUCED GAN
FAILURE M	Block Diag	8			υ	Possible	Causes																
	Nomen. RRC	Spec. RECEIVER	Dwg.		В	Assumed	Failure	OPEN	SHORT	DRIFT	open	SHORT	SHORT	OPEN	DRIFT	0 250	SHORT	DRIFT	OPEN	SHORT	PRIFT	OPEN	Stort
	Equip.	Equip.	Equip.		A	Item	No.	RB	X 8	78	by .	Ra	₹ 10	Rio	Rio	e &	R	R	Riz	RIZ	TPL	K13	17.3

40					H	Failure Failure	Class																
8 of		No.	by	by	O	Failure	Rate																
Sheet	Date	Revision	Prepared by	Approved by	Ĺij	Remarks														18			
S	separate sheet				ы	Method	of Detection														*		
FAILURE MODE EFFECT ANALYSIS	Block Diagram (can be put on				D	Effects and	Consequences	FAITURE	REDUCED GAIN	NONE	THILL BE	REDUCED GAIN	NONE	FAILURE	REDUCED GAIN	NONE.	FAILVRE	FAILURE	REDUCED GAIN	FAILURE	FALURE	REDUCED GAIN & SIN	NonE
FAILURE N	Block Diac	W W			υ	Possible	Causes																
	Nomen. RRC	Spec. RECEIVER	Dwg.		В	Assumed	Failure	OPEN	SHORT	DRIFT	Nado	SHORT	DRIFT	OPEN	S 140R7	DRIFT	OPEN	StoRT	OPEN/SHORT	OPEN SHORT	Nago	S itok 7	PRIFT
	Equip.	Equip.	Equip. Dwg.		K	Item	No.	RIT	Rit	Rit	RIS	RIS	RIS	Ric	7	Ric	Rn	ray.	Rib	R19	200	82	Ru

40					н	Failure	Class											•							
9 of		No.	by	by	Ð	Failure	Rate																		
Sheet	Date	Revision No.	Prepared	Approved by	F	Remarks																			
S	on separate sheet				ы	Method	of Detection																		
FAILURE MODE EFFECT ANALYSIS	(can be put				Ω	Effects and	Consequences	REDUCED GAIN	FAILURE	None		FAILURE.	NONE	FAILURE	NonE	90	FAILURE	Reduced Nois Bunkan	PALLUEE	Reduce o MONS EMARGIN	FAILURE	REDUCED NOISE MARKIN	100.00	Nove	FAILV RE.
FAILURE N	Block Diagram	×	T		υ	Possible	Causes																		
	Nomen. RRC	Spec. RECEIVER	Dwg.		В	Assumed	Failure	OPEN	SHORT	DRIFT	0.000	SHORT		OPEN	SHORT	OPEN /SHOPT	1 2000	DRIFT	OPEN/SHORT	DRIFT	OPEN	SHORT	Deift	OPEN	SHORT
	Equip.	Equip.	Equip. Dwg.		Æ	Item	No.	RZI	R21	127	822	Ru		ET 11-11	823	42		Ru	R25	RZS	××	RX	2	R27	1-2·

		FAILURE	FAILURE MODE EFFECT ANALYSIS	S	Sheet 10	o of	40
Equip.	. Nomen. RRC	Block Dia	Block Diagram (can be put on	separate sheet	Date		
Equip	Equip. Spec. RECEIVER				Revision	No.	
Equip	Equip. Dwg.	T			Prepared by	by	
					Approved by	by	
A	В	J	Q	ы	Ĺť	b	н
Item	Assumed	Possible	Effects and	Method	Remarks	Failure Failure	Failure
No.	Failure	Causes	Consequences	of Detection		Rate	Class
352	OPEN / SHORT		FAILURE				
828	DRIFT		REDUCED NOISE MARGIN				
8 29	OPEN/SHORT		FAILURE				
pe x	DRIFT		REDUIED NOIS MARGIN				
0E ¥ 3-	OPEN/SHORT		FAILURE				
R 30	DRIFT		REDUCED NOISE MAKAIN				
A 31	NOT USED						
R 32	Open Stakt		FAILURE				
K 32			REDUCED NOISE MARGIN				
K33	OPEN SHORT		FAILURE				
R 33	DRIFT		REDUCED NOISE MARGIN				
R34	OPEN/SHORT		FAIL ORE				
R34	DRIFT		REDUCED NOISE MARBIN				
N35	OPEN / SHORT		PAILUEE				
R35	DRIFT		PEDUCED NOISE MARSIN				
K36	open		PAILURE				
.P34	SiteRT		Need the 16 of TRAMSSTORS				

		FALLUKE	FAILURE MODE EFFECT ANALYSIS		Sheet	Jo	40
Equip.	Nomen. RRC	Block Dia	Diagram (can be put on	separate sheet	Date		
lip.	Equip. Spec. RECEIVER				Revision	No.	
uip.	Equip. Dwg.	Т		*.	Prepared by	by	
					Approved	by	
A	В	O	D	ы	Ĺij	ŋ	н
Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
No.	Failure	Causes	Consequences	of Detection		Rate	Class
R 37	OPEN/SHORT		PAILURE				
R37	DRIFT		REDUCED NOISE MARKIN				
R38	NOT USED						
R39	OPEN		FILLURE				
R39	SHORT		ACCFLERATED ATING OF TRANSITORS (OUTPUT)				
840	0920		FAILURE				
1240	Steet		ACCEL AGING, OVERYT TRANS.				
148	Not used						
R 63	OPEN STORT		FAILURE				
R 63	DRIFT	÷.	REDUCED NOISE MAKAIN				
R63 4	. open	•	FAI LURE		chunge		
X 63 A	SHORT		REDUCED NOISE MARBIN		· ^		
500.24	Squaret Not VSFO				n		
7	END OF BEIR						
	10000000000000000000000000000000000000						

		FAILURE MODE	MODE EFFECT ANALYSIS	S	Sheet //	12 of	40
Equip.	Nomen. RRC	Block Di	Block Diagram (can be put on	on separate sheet	Date		
Equip.	Spec. RECEIVER	П			Revision No.	No.	
uip.	Equip. Dwg.	1			Prepared by	by	
					Approved	Yd	
A	В	D.	Q	ш	Ĺij	U	н
Item	Assumed	Possible	Effects and	Method	Remarks	Failure Failure	Failure
No.	Failure	Causes	Consequences	of Detection		Rate	Class
17	OPEN / SHORT		FA1 LURE				
17	DRIFT		S/N DECREASE				
42	DPBN		FAILURE				
77	SHORT		LOSS OF GAIN	SYSTEM WEAKOR DEAD			
20	DELFT		4055 04 54IN, 5/N	MBAS			
L3	SHORT		FAILURE				
k3	OPEN		LOSS OF GAIN				
F3	DRIFT		LOSS of 6AIN, 5/N				
14	SAME AS L3						
15	SAME AS L3						
10	3 7087		PAILU RE				
46	0060		LAFGE 6AIN LOSS				
70	DRIFT		LOSS of 641N, 5/N				
17	OPEN /SHORT		FAILURE				
47	DRIFT		1033 OF GAIN, 5/N				
87	OPEN SHORT		W				
87	DRIFT		4053 OF S/N				
49	open/staet		PAILURE				
10	DRIET		4033 of 5/W				

40				Н	Failure Failure	Class		,													
3 of	No.	by	by	9	Failure	Rate															
Sheet /3	Date	Prepared by	Approved by	Ħ	Remarks																
S	separate sheet			ш	Method	of Detection															
FAILURE MODE EFFECT ANALYSIS	Block Diagram (can be put on			Q	Effects and	Consequences	FAILURE LOSS OF 8/N		900000	1033 of 3/N			FAILUCE	4050 of 5/W	FAILURE	4023 of 5/N	REDUCED GAIN, S/N	FAILURE	REDUCED 6+IN, 5/N	FAILURE	REDUCED GAIN, 5/N
FAILURE M				υ	Possible	Causes															
	Equip. Nomen. RRC Equip. Spec. RECEIVER	Dwg.	STORE OF A CONTRACT	B	Assumed	Failure	OPEN /SHORT DRIFT	2007	OPEN/SHART	DRIFT	SAMEAS FLI	SAME AS FLI	OPEN /SHORT	DRIFT	OPEN/SHORT	DRIFT	Open	3 11087	WEAK	OPEN/SHORT	S FAK
	Equip.	Equip.		A	Item	No.	L 10		FLI	173	FT 2	e 7.4 -15	11	1	72	72	ó	6	è	y.	3 82

		FAILURE MODE	MODE EFFECT ANALYSIS		Sheet 14	of of	40
Equip.	. Nomen. RRC	Block Dia	Diagram (can be put on	separate sheet	Date		
Equip.	. Spec. RECEIVER				Revision No.	No.	
Equip.	Equip. Dwg.	T			Prepared by	by	
					Approved	yd,	
А	В	υ	Q	ш	Ĺ	9	Н
Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
No.	Failure	Causes	Consequences	of Detection		Rate	Class
8	OPEN SHORT		PAILURE				
683	WEAK		REDUCED GAIN, 3/N				
98	OPEN ISHORT		FAILURE				
90	Strue As Q4						
98	strue 43 97						
© 3-16	SHORT		FAILVRE				
97	OPEN		LARGE BAIN LOSS, SIN				
97	WEAK		NONE				
80	OPEN/SHORT		,				
88	WEAR		FAILURE				a spiral
66	OPEN STORT		PAILURE				
8	WAAR		Nor.E				
01 0	OPEN SHORT		30::00				
01 6	WEAK		Now				
3 ::	OPEN/SHORT		FAILURE				
200	WEAK		None				
BR	OPEN/SMORT		FAILURE				
100	WEAK		Nowe				

40					н	Failure Failure	Class															
of of		No.	by	by	9	Failure	Rate															
Sheet 15	Date	Revision No.	Prepared by	Approved by	F	Remarks						,			•							
S	separate sheet					Method	of Detection															
FAILURE MODE EFFECT ANALYSIS	Block Diagram (can be put on separate sheet				О	Effects and	Consequences	FAILURE	NONE	FAILURE	NONE	PAILURE	FAILURE	FAILVRE		FAILURE	1053 of 8/N	FAILURE	1053 of 3/N			
FAILURE N	Block Diag	N. S.			υ	Possible	Causes															
	. Nomen. RRC	. Spec. RECEIVER	Equip. Dwg.		В	Assumed	Failure	OPEN /SHORT	WEAK	OPEN/SHORT	WEAT.	OPEN/SHORT /WEAK	OFEN /SHORT /WEATE	OPEN SHORT / WEAK	918-920 NOT USED	INOPERATIVE	DRIFT	INOPERATIVE	DRIFT			
	Equip.	Equip.	Equip		A	Item	No.	6 13	8/13	71.0	416	51 6	916	7-1		RXI	RXI	īx	×			A-2

Equip.	. Nomen. RRC	Block Dia	Block Diagram (can be put on	put on separate sheet	Date		
Equip.	. Spec. XMTR				Revision No.	No.	
Equip.	. Dwg.				Prepared by	py	
					Approved by	by	
A	В	O	D	ഥ	Ŀ	Ŋ	н
Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
No.	Failure	Causes	Consequences	of Detection		Rate	Class
1-012	OPEN /SHORT		PAILURE	FREG / S/N MEAS.			
270-1	DRIFT		Loss of 8/N				
112	OPEN ISHORT		FAILURE			,	
110	75120		1050 OF 8/W	FREG / 3/2 MEAS			
		,	CAILURE				
C72	OPEN ISHART			1 1/2 WEAS			
18	DRIFT		N/s & 5507	FREG a JN min			
C13	OPEN/SHORT		FAILURE .				
673	DRIFT		NO EFFECT				
577	0820		INCREASED NOISE				
677	SiteRT		FAILURE				
674	DRIFT		NO EFFECT				
1013	OPEN/SHORT						
4161	DRIFT		DECREASED POWER				
2012	OPEN/SHOET		FAILURE				
6102	DRIFT		NO EFFECT				
C 163	GPEN/SMET		FAILURE				
	DRIFT		REDUCED S/N				
7010	OPEN/SWRT		FAILURE				

of 40				н	e Failure	Class												•									
0 41	CN	by	by _	O	Failure	Rate																					
Sheet _	Date	Prepared by	Approved	Ľi,	Remarks																						
8	separate sheet			ы	Method	of Detection																					
FAILURE MODE EFFECT ANALYSIS	Diagram (can be put on			D	Effects and	Consequences	FAILURE	NO EFFECT			2011110	FALURE	REDUCED POWER OUTPUT	REDUCED POWER OUTH	FAITURE	on the prof	REDUCED FOWER OUT	FAILURE	No arrent	FAILURE	REDUCED POWER OUTPUT	FAILURE	REDUCE POWER OUTPOT	FAILURE	NO EFFECT	FAILURE	REDUCED DOWER OUTPY
FAILURE M	Block Diag			O .	Possible	Causes																					
	Nomen. RRC	Dwg.		В	Assumed	Failure	OPEN/SHORT	DRIFT		Not USED	C250/5/4097	OPEN/SHORT	DRIFT	OPEN	SHORT	DRIFT	OPEN	. 3HORT	DRIFT	OPEN/SHORT	DRIFT	open/3ther	DRIFT	OPEN/SHORT	DRIFT	OPEN/SHORT	0067
	Equip.	Equip.	•	A	Item	No.	C 105	C1 05	(1010	C107	6100	0110	0110 m	= 19	CIII	Crit	CILIA	CIIIA	CILLA	6112	C112	6113	6113	6114	tilo .	6115	C.134

		FALLURE MODE EFFECT ANALYSIS	S	Sheet	18 of	4
Nomen. RRC	Block Dia	Block Diagram (can be put on	put on separate sheet	Date		
Spec. XMTR				Revision No.	No.	
Equip. Dwg.				Prepared	by	
				Approved by	by	
Д	υ	О	ы	Ŀ	5	H
Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
Failure	Causes	Consequences	of Detection		Rate	Class
OPEN		INCREASED NOISE				
SHORT		PAHLURE				
DRIFT		None				
OPEN LORIFT		Now				
SHORT		FAILURE				
OPEN/DRIFT		Nowe				
SHORT		FALURE		E .	1	
OPEN		REDUCED POWER OUTPUT				
3 17087		FAILURE				
PRIFT		NONE				
OPEN / SHORT		FAILURE				
DRIFT		REDUCED POWER OUTPUT				
OPEN/SHRY		FAILURE				
DRIFT		REDUCED POWER OUTPUT			Para Cara	
OPEN/SHORT		FAILVRE				
DRIFT		REDUCED POWER OUTPUT				
OPEN/ SHORT		FAILURE .				
DRIFT		REDUCED POWER OUTPUT				
OPEN/SHORT		FAILURE				
DRIFT		NONE				
UPEN/SHORT		FAILURE				
PRIFT		REDUCED POWER OUTPUT				

		FAILURE	FAILURE MODE EFFECT ANALYSIS	S	Sheet	19 of	94
Equip.	p. Nomen. RRC	Block Di	Block Diagram (can be put on separate	separate sheet	Date		
Equip.	Spec.				Revision No.	No.	
Equip.					Prepared by	by	
					Approved by	Yd	
A	В	0	О	ы	Ħ	ŋ	н
Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
No.	Failure	Causes	Consequences	of Detection		Rate	Class
813	OPEN		REDUCED POWER OUT				
5 5	SHORT		FAILURE			•	1
26.3	DRIFT		NowE				
6127	OPEN		REDUCED POWER OUT				
(413)	SHORT		FAILURE				
6127	DRIFT		Now				
Beio	3 AME AS C127						
3	3 AME 43 C127						
08 -21	OPEN/SHORT	:	FAILURE				
C130	DRIFT		REDUCED POWER OUTPUT				
6131	OPEN/ SHORT		FAILURE				
6131	DRIFT		REDUCED POWER OUTPUT				-
6132	NOT USED						
C133	OPEN/SHORT		FAILURE				
6133	-		REDUCE O POWER OUT				
6134	OPEN/SHORT		FAILURE				
6134			REDUCED POWER . OUTPUT				
C134A	OPEN SHORT		FAILVRE				
6135	_		None				
-A 6136	SAME 16 C135						
C (37	SAME AS CIBS						

an ac a a a a a a a

40					н	Failure Failure	Class																			
o of		No.	by	by	b	Failure	Rate																			
Sheet 30	Date	Revision No.	Prepared by	Approved by	Ĺц	Remarks					illes															
ro	on separate sheet				ы	Method	of Detection																			
FAILURE MODE EFFECT ANALYSIS	Diagram (can be put on				Q	Effects and	Consequences		FAILURE		FAILURE AUTPUT	reputer) grant	REDUCED POWER OUTPUT			FAILURE NO EFFECT	•	CAILVEE	No EFFET	FAILURE NO EFFET	FAILURE	REDUCED POWER OUTPUT	FAILURE	REDUCED POWER OUTRY	20	
FAILURE M	Block Diag				υ	Possible	Causes																			
	Nomen. RRC	Equip. Spec. XMTR	Dwg.		æ	Assumed	Failure	NoT USED	OPEW/SHORT	DRIFT	OPEN /START	DRIFT	OPEN / SHOKT	DEIFT	NOT USED	OPEN/SHORT	DRIFT	OPEN/SHORT	OPEN/SHORT DRIFT	OPEN SHORT	OBEN SHORT	PRIFT	OPENSHORT	DRIFT	1000	
	Equip.	Equip.	Equip. Dwg.		A	Item	No.	6138	6139	4139	6140	6140	3-22	17:10	ナルン	2410	वास	C143	4410	0.145	34.5	Shio	CHIS	CHID	a /	

		FAILURE	FAILURE MODE EFFECT ANALYSIS	S	Sheet	2/ of	40
Equip.	Nomen.	Block Diagram	gram (can be put on	separate sheet	Date		
Equip.	Spec. XMIK.			>	Revision No.	No.	
					Approved by	yd	
A	М	S .	Q	ы	E	9	н
Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
No.	Failure	Causes	Consequences	of Detection		Rate	Class
6113	Not USED						
C148A	NOT USED						
6410	Not USED						
6150	NoT USED						
1513	NOT USED						
6152	NOTE USED						
61513	NOT USED					•	
6154	OPEN SHORT						
	DRIFT		KEACED FOWER OFFE				
6155	OPEN/SHORT DRIFT		REDICED POWER OUTPUT				
6156	CISIC THERES CISS						
			#411.11.68				
C157	OPEN		STANSHITY	88.			
C157A	0		NEGH				
01578	100		FAILURE NEGH CAILURE				
,			NEGH				
6 (576			FAILURE				
C158			ENCREASED NOISE				
	1 Hoot		THINK .				

40					н	Failure	Class											1000000				
22 of		No.		Yd	v	Failure	Rate															
Sheet	Date	Revision	Prepared by	Approved	E	Remarks																
S	separate sheet				ы	Method	of Detection															
FAILURE MODE EFFECT ANALYSIS	Block Diagram (can be put on				Q	Effects and	Consequences	TACKFASEN NOISE	FAILURE	INCREASED NOISE	FAILVRE	NO SPECT (CONOR!		NO FFFET (FRANCE)	PAKE MARKIN)							
FAILURE M	Block Diag	T			0	Possible	Causes															
	Nomen.	Spec. AMIK	Dwg.		В	Assumed	Failure	o perv	SHORT	OPEN	34087	Nado	5 HORT	OPEN	SHORT							
	Equip.	Equip.	Equip. Dwg.		A	Item	No.	6159		C160		C175	7	\$ C176								-2

.

23 of 40		Revision No.	Prepared by	ved by	Э	ks Failure Failure	Rate Class				•							
Sheet	Date	Revis	Prepa	Approved	F	Remarks												
Ŋ	separate sheet				ш	Method	of Detection										-	
FAILURE MODE EFFECT ANALYSIS	gram (can be put on				О	Effects and	Consequences	FAILURE NEOL.	FAILURE NEGL	FA JURE	FAILURE	FAILURE.	NEGL		NEGL	NEGL	FAILURE FERCEO MODULATION	FAILURE REACED MODINATION
FAILURE	Block Diagram				U	Possible	Causes						;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	- USED .				
	. Nomen. RRC	. Spec. XMTR	Equip. Dwg.		М	Assumed	Failure	OPEN/SHORT DOEIFT	OPEN/SHORT PRIFT	OPEN/SHORT PRIFT	OPEN SHORT / DRIFT	open Startores	OPEN /DRIFT SHORT	RTO THRY R 100 - NOT	SHORT PRIET	SHORT/DRIFT OPEN	OPEN/SHORT	OPEN/SHORT
	Equip.	Equip.	Equip		A	Item	No.	x64 x64	1265	1986	79 3.	25	R69	- RTO 7	1018	RIOZ	R103	N 104

					Sheet	24 of	40
Equip.	Nomen. RRC	Block Dia	Diagram (can be put on	separate sheet	Date		
Equip.	Spec. XMTR				Revision	No.	
Equip.	Dwg.				Prepared	by	
14-14		-			Approved	by	
-	В	υ	D	ш	Ę	U	н
	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
-	Failure	Causes	Consequences	of Detection		Rate	Class
	OPEN/SHORT		PALLURE				
	DRIFT		NEGH.				
	NOT USED						
-	OPEN (SPORT		FA LURE				
	DRIET		Repecto power				
	Nado		EAILVRE				
3-26	SHORTLORKT		REDUCED POWER				
	OPEN		FAILURE.				
	SHORT/DRIFT		REWCED STABLITY				
RHO	OPEN		FAILURE				
RIIO	SHERT DRIFT		REDUCED POWER				
R107A	OPEN JORIET		NEGL				
	SHORT .		FAILURE				
	NEGO		FAILURE				
	SHORT		REDUCED STABILITY.				
RIII	DRIFT		NEGL,				
R112	OPEN		FAILURE				
	SHORT		Reducen power				
-	DRIFT		NE6L				
T							

.

40				н	Failure	Class																	
25 of	No.	hy Yd	by	b	Failure	Rate																	
Sheet	Date Revision	Prepared	Approved	Ē	Remarks	•																	
W	separate sheet			М	Method	of Detection															, ,		
ODE EFFECT ANALYSIS	ram (can be put on			Q	Effects and	Consequences	FAILURE	Prover 3 TABLETY	FAILURE	REUCED STABILITY MARGIN	REDUCED 374811174	REDUCED STHONITY			NO PILOT LIGHT	BURN OUT PILOT LIGHT	NEGL,	FAILVRE	NEGH,				
FAILURE MODE	Block Diagram			υ	Possible	Causes																	
	Nomen. RRC. Spec. XMTR			ф	Assumed	Failure	OPEN	SHORT DRIFT	OPENSHORT	DRIFT	OPEN/SHORT LORIET	OPEN SHORT LORIFT		NOT USED	OPEN	SHORT	DRIFT	OPEN/SHORT	DRIFT :	(
	Equip.	Equip. Dwg.		A	Item	No.	TR113		R 1134		RIIT		-27	R116	18117			R118					-2

RRC Block D	FAILURE MODE EFFECT ANALYSIS	51	Sheet	36 of	40
26	Diagram (can be put on	separate sheet	Date		
			Revision No	No.	
T			Prepared	by	
			Approved	l by	
υ	Ω	ы	Œ	5	н
Possible	Effects and	Method	Remarks	Failure	Failure
Causes	Consequences	of Detection		Rate	Class
	FAILURE				
	NE64.				
	FALURE				
	N.76L				
	FAILURE				
	ENCKETSE SIDE GANDS				
	FAILURE				
	INCREMSE SIDE BANDS				
	FAILURE				
	THEREAGE SIDE BANDS				
	FAILURE				
	NEGL				
	FAILURE				
	NEGL				
	FAILURE				
	INCREMSE SIDE BANDS				
	FAILURE				
	REDUCED 3/N				

				1				
			FAILURE MODE	MODE EFFECT ANALYSIS	S	Sheet 2	27 of	40
	Equip.	. Nomen. Mobulator	Block	Diagram (can be put on	separate sheet	Date		
	Equip.	. Spec.				Revision	No.	
	Equip.	. Dwg.				Prepared	by	
						Approved	by	
	A	ф	υ	О	ធ	Ē4	ŋ	н
	Item	Assumed	Possible	Effects and	Method	Remarks	Failure	Failure
	No.	Failure	Causes	Consequences	of Detection		Rate	Class
	R 119	OPEN /SHORT	*	FAILURE	No MOD.			
	R 130	OPEN / SHORT		FAILURE	NO MOD.			
	1212	CPENSTORT		FAILU RR.	NO MOD.			
	R 122	OPEN		FAILURE	NO MOD,			
	RILL	SHORT LORIET		INCREIBED SIDE BANDS	CHECK MOD GAIN			
3-	RI23	OPEN		FAILURE	NO MOD.		ì	
	R123	SITORY DRIET		INCREHSE SIDE BANDS	CHECK NOD GAIN			T
	RIZY	OPEN		FAILURE	NO 40D			
1	R 124	SHORT LURIET		INCRE 456 5108 BANDS	CHECK NOD GAIN			T
7	8125	OPEN/SIMRT		FAILURE	No MOD			1
	Rish	SHORT		PALURE	NO MOD			-
	RIN	OPEN LORIET		INCREASE \$100 BANDS	,			
	R127	SHORT		FAILURE	No moo			
	R 127.	OPEN/DRIFT		I'ME ENSE SIDE BANDS	200			1
,	R128	3H0R7		FAILURE				
1	R128	OPEN/ DRIFT		INCATASE SIDE DANUS				
	R 139	OPBW/SitORT		FALLVEE				
	R 130	SHORT		FALLURE				
A-	R 130	OPEN LORIET	4	INCREASE SIDE BANDS				
- North Control	R 131	5 4087		FAILURE				
1						-		

40					H	Failure	Class	*															
of of		No.	by	by	ŋ	Failure	Rate																
Sheet 38	Date	Revision	Prepared	Approved	ſij	Remarks																	
S	separate sheet				ы	Method	of Detection	CHECK NOD GAIN	NO MODULATURA	CHECK MOD GAIN	NO MODULATION	CHECK NOD, GAIN	NO MO DULITION	CHECK MOD SAIN	NO NOBULATION	CHOCK MOD GAIN		NO MODULATION	NO MODULATION	NO NO DULM TOON			
MODE EFFECT ANALYSIS	ram (can be put on				Q	Effects and	Consequences	PACREME SIDE BANDS	FAILURE	NEGL.	FAILURE	DE BANDS	FAILURE	INCREMSE SIDE BANDS	FAILURE	INCREASE SIDE BANDS		FAILURE	FAILURE	FAILURE			
FAILURE N	Block Diagram				υ	Possible	Causes																
	Nomen: Mc Dura TOK	Spec.	Dwg.		М	Assumed	Failure	OPEN / DRIFT	SHORT LOPEN	CRIFT	open	SHORT LARIET	SHORT	OPEN LORIET	OPEN	SHORT LURIET		OPEN STORT	OPEW/SMORT	OPEN / SHORT			
	Equip.	Equip.	Equip.		A	Item	No.	R131	R (3 14	R 13, A	R 132	* 132	1 R 133		R 134	R134	-	101 8	30105	6016			

	FAILURE KATE DATA	TA FORM NO. 0100		7	ASE Inc.		67	+
EQUIPMENT	Radio Remote Control	1 DWG NO						
ASSEMBLY	System Summary	DWG NO						
SUBASSEMBLY	LY	DWG NO			REV DATE	E		
REFERENCE DESIGNATION	COMPONENT/PART NUMBER	COMPONENT/PART NAME	Nom. Failure Rate	STRESS	FAILURE RATE F/10 HRS	QTY	FR x QTY	NOTES
		Transceiver	63.3	1.0	63.13	3	190.	
		Digital Processor	41.3	1.0	41.3	3	125.	
		Power Supply, 12V	10.	.5	5.	3	15.	
		Voltage Regulator 5V	10.	89	8	3	24	
-31		Battety	12.	.08	1.0	3	3.	
		Antenna	10.	1.0	10.	4	40.	
		Control Unit	11.	1.0	11.	1	11.	
		Display Unit	4.4	1.0	4.4	2	8.8	
		Cables, 37 Wire	0					
		Connectors, 37 Wire	.16	1.0	0.16	4	.64	
		"E" Box Interconnections	ns				10.55	
0		$MTBF = \frac{10^6}{10^6} = 2340 \text{ Hours}$	S					
-		428						
A-								
DESIGN ENGINEER	INEER	PHONE LOC	LOCATION			TOTAL	428.	
BEI IABII ITY FNGB	ENGD	Lie						

ASE INC PENNSAUKEN N J
RADIO REMOTE CONTROL SYSTEM FOR AIRPORT VISUAL NAVIGATIONAL AID--ETC(U)
JUL 76 R W HARRALSON
DOT-FA74WA-3433 XD-AU31 879 UNCLASSIFIED FAA-RD-76-42 NL 20F2 END AD31879 FILMED 77 100

	2. 3. c. m							
ASSEMBLY	Radio Remote Control Transceiver Components	ts DWG NO	ON ON					
8	Y Summary				REV DATE	E		
REFERENCE DESIGNATION	COMPONENT/PART NUMBER	COMPONENT/ PART NAME	Nom. Failure Rate	STRESS	FAILURE RATE F/10 HRS	QTY	FR x QTY	NOTES
	Sheet 31	Resistors			2.82	3	8.46	
*	32	Resistors			4.0	3	12.0	Teg :
	33	Capacitors			3.2	3	9.6	
	34	Capacitors			3.47	3	10.41	
	35	Capacitors, Transistor	ors		9.8	3	25.8	
	36	Crystals, Coils			9.58	3	28.74	
							95.01	
3-3		Factor of 2 to account	ne					
		for commercial quality	t,					
		components					190.02	
			4					
	and the second s							
			-			5000		
			1					
A-								
DESIGN ENGINEER	NEER	PHONE	LOCATION			TOTAL	190.02	

Before Conversion to Hi Rel Components

New Real		FAILURE RATE DATA	. FORM NO. 0100		ASE	m		SHEET NO.31	0F40
TYANS-CGIVE. Y TYANS-CGIVE. Y TYANS-CGIVE. Y TYANS-CGIVE. Y TYANS-CGIVE. DWG NO REV. DATE 12/12/194 COMPONENT/PART Railure RATIO FING TY FR x GTY OI-477-35 Mile.R.11 Resister. Frail Conf. H.7.7.022 1014 150 1014	EQUIPMENT	R. R. C.	DWG	0,	 				
COMPONENT/PART Railure RATIO RESS FALLIRE RATE COMPONENT/PART Railure RATIO E100 HS COMPONENT/PART RAILURE RATE COMPONENT/PART	ASSEMBLY	Trans-Ceiver	DWG	ON ON	٠.				
COMPONENT/PART NAME OL-477-35 Mr. R11 Resister, Every Cent. H.7 alpiz, e.14 .50 b = .042 .042 OL-620-351 - Mr. R11 Resister, Every Cent. H.7 alpiz, e.14 .50 b = .042 .042 OL-620-351 - Mr. R11 stranger, c.14 .50 stranger, c.14 stranger, c.16 s	SUBASSEMBI	trans-Caiver	Swents DWG		REV			Velzi1.	ů,
01-120-331 Mr. R-11 Resister, Erest, Cent, H-70, 12%, olty SO	REFERENCE	COMPONENT/PART NUMBER		Failure Rate	STRESS FAIL RATIO, F/	URE RATE			NOTES
01-120-331 Mir.R.11 Resistor, Frashcam, 12.0.4, 50 M	THE CHARLES	01-477-331 MK.R-11	RESISTOR, Frank Comt. 4.7 210)	0,		=,042	_	. 042	
01-270-331	Rin	33/	Resistor, Forest Come 125 "					200.	
01 - 560-331 Mr.R-1	R 68,69				05"		2	480.	
01-101-331 M1.R-1) 01-101-331 M1.R-1) 01-101-331 M1.R-1) 01-121-331 M1.R-1) 01-121-331 M1.R-1) 01-121-331 M1.R-1) 01-132-331 M1.R-1) 01-132-331 M1.R-1) 01-222-331 M1.R-1) 01-222-331 M1.R-1) 01-222-331 M1.R-1) 01-222-331 M1.R-1) 01-222-331 M1.R-1) 01-222-331 M1.R-1) 01-372-331 M1.R-1] 01-372-331 M1	RYS	61- 560-331			150		1	240.	
01-121-331 M1LR-11 01-121-331 M1LR-11 01-121-331 M1LR-11 01-121-331 M1LR-11 01-131 M1LR-11 01-131 M1LR-11 01-131 M1LR-11 01-131 M1LR-11 01-102-331 M1LR-11 01-152-331 M1LR-11 01-222-331 M1LR-11 01-222-331 M1LR-11 01-322-331	113, 116, 117	01-620-331	., .,		,50		7	2294	
01-121-33 Mil R-1 '' '120-4' '014 '50 1 01-271-33 Mil R-1 '' '220-4' '014 '50 2 01-271-33 Mil R-1 '' '' '104 '50 1 01-821-33 Mil R-1 '' '' '15K-4' '014 '50 1 01-821-33 Mil R-1 '' '' '15K-4' '014 '50 1 01-372-33 Mil R-1 '' '' '3.3K' '014 '50 3 01-372-33 Mil R-1 '' '' '3.3K' '014 '50 3 01-372-33 Mil R-1 '' '' '3.3K' '014 '50 3 01-372-33 Mil R-1 '' '' '' '' '' '' 01-372-33 Mil R-1 '' '' '' '' '' '' 01-372-33 Mil R-1 '' '' '' '' '' '' 01-362-33 Mil R-1 '' '' '' '' '' '' 01-362-33 Mil R-1 '' '' '' '' '' '' '' 01-682-33 Mil R-1 '' '' '' '' '' '' '' 01-682-33 Mil R-1 '' '' '' '' '' '' '' 01-682-33 Mil R-1 '' '' '' '' '' '' '' '' 01-682-33 Mil R-1 '' '' '' '' '' '' '' '' 01-682-33 Mil R-1 '' '' '' '' '' '' '' '' '' 01-682-33 Mil R-1 '' '' '' '' '' '' '' '' '' '' '' 01-682-33 Mil R-1 '' '' '' '' '' '' '' '' '' '' '' '' ''	Rz8 5967, 112	01- 101-331	C. 001" "		020		4	.168	
01-271-33, Mic R-1; '' 220 A' Oly SO E 01-271-33, Mic R-1; '' 470-A' Oly SO E 01-471-33, Mic R-1; '' 470-A' Oly SO E 01-821-33, Mic R-1; '' 15KA' Oly SO E 01-152-33, Mic R-1; '' 15KA' Oly SO E 01-222-33, Mic R-1; '' 3.3 K' Oly SO E 01-372-33, Mic R-1; '' 3.3 K' Oly SO E 01-372-33, Mic R-1; '' 3.3 K' Oly SO E 01-372-33, Mic R-1; '' 5.c K' Oly SO E 01-562-33, Mic R-1; '' 5.c K' Oly SO	8110	01-121-33)	., ., ., .,		,50			240.	
01-821-33) MILR-11 "270 A 014 2 01-821-33, MILR-11 "880-3" .0/4 50 01-102-33, MILR-11 188 a 014 50 01-152-33, MILR-11 188 a 014 50 01-222-33, MILR-11 2.28 A 61-222-33, MILR-11 2.38 014 50 01-392-33, MILR-11 3.38 014 50 01-522-33, MILR-11 3.38 014 50 01-522-33, MILR-11 5.68 014 50 01-103-33, MILR-11 108 1084	R 47 49		220.4		.50		2	480.	
01-821-331 M.L.R11 01-821-333 M.L.R11 01-10E-333 M.L.R11 01-10E-331 M.L.R11 01-10E-331 M.L.R11 01-222-331 M.L.R11 01-322-331 M.L.R11 01-472-351 M.L.R11 01-652-331 M.L.R11 01-652-331 M.L.R11 01-652-331 M.L.R11 01-652-331 M.L.R11 NENGR	R. 8		•		. 50		7	680.	
01-821-33; M.c.R-11 '' '' '' '' '' '' '' '' '' 01-102-33; M.c.R-11 '' '' '' '' '' '' '' '' 01-222-33; M.c.R-11 '' '' '' '' '' '' '' 01-322-33; M.c.R-11 '' '' '' '' '' '' '' 01-322-33; M.c.R-11 '' '' '' '' '' '' '' 01-322-33; M.c.R-11 '' '' '' '' '' '' '' '' 01-322-33; M.c.R-11 '' '' '' '' '' '' '' '' 01-322-33; M.c.R-11 '' '' '' '' '' '' '' '' 01-322-33; M.c.R-11 '' '' '' '' '' '' '' '' 01-322-33; M.c.R-11 '' '' '' '' '' '' '' '' 01-322-33; M.c.R-11 '' '' '' '' '' '' '' '' 01-322-33; M.c.R-11 '' '' '' '' '' '' '' '' '' 01-682-33; M.c.R-11 '' '' '' '' '' '' '' '' '' '' '' 01-183-33; M.c.R-11 '' '' '' '' '' '' '' '' '' '' '' '' 01-183-33; M.c.R-11 '' '' '' '' '' '' '' '' '' '' '' '' '	R. 22, 37, 41	471-331	or y		8.50		+	7168	
01-102-33, M.(R-1) """" 15KA" 10/4 50 7 7 01-222-33, M.(R-1) """" 2.28KA" 10/4 50 8 01-222-33, M.(R-1) """"""""" 3.3K" 10/4 50 8 01-392-33, M.(R-1) """"""""""""""""""""""""""""""""""""	RIOS	DEVELOPMENT	" 820-7		.50		-	249,	
01-152-33; M; CR-1; " " 1.5Ka"; ONY SO F. S.	R 34.48.53.61	01-108-331	., ., IKA		,50		7	.294	
01-372-337 Mil R-11 '' '3.3 K' 1014 '.50 8	R 23, 52, 56,	188-251 -10	•	100.	95'		+	.168	
01-372-351 M1. (R-1) " "3.3 K" 1014 50 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R. 3 15, 20, 43	222- 337	Z, EKS		,50		8	, 334	
01-392-33/ Mil R-11 " "3.7 E" 014 "50 P O1-472-33 Mil R-11 " " "5.6 E" 014 "50 P 3 O1-562-33 Mil R-11 " " " 6.8 K" 014 "50 3 O1-682-33 Mil R-11 " " " 6.8 K" 014 "50 P S O1-163-33 Mil R-11 PHONE LOCATION TOTAL 2	Riv 17, 60	372 341	» 15	h/0 '	150		3	127	
01-472-331 mit R-11 " " " " " " " " " " " " " " " " " "	862	01- 392- 35, MILR-11	" "3. P.		,50		-	.672	
01-562-33) m, (R-1) " 5.ck" 1011 SO 3 01-682-33, m, (R-1) " 10k" Ory SO 2 2 01-183-33, m, (R-1) " 10k" Ory SO 2 2 SINEER TOTAL PHONE LOCATION	R33 46-1		· · · · · ·	· 61d ·	،ځه		ત્ય	780,	
01- 682- 331 mil R-11 6-8K" 014 50 3 G1- 103-33, mil R-11 10k 004 50 V 2 SINEER Y FNGR 0	R4A, 107		·, 5.ek		05.		3	22/.	
01- 103-33, m, LR-1, " 10K " 10H Co V R Z SINEER TOTAL 2 YENGR 2 PHONE LOCATION	R 19, 30,634	682- 33/	" " 6.8K		.50		8	.126	
PHONE LOCATION TOTAL	R8A, 26	- 33,			→ 00.	>	2	680.	
PHONE	DESIGN ENGI	INEER		CATION			TOTAL		
	RELIABILITY	ENGR. P.10	PHONE LO	CATION					

Fore Conversion to Hi Re Compensor

FAILURE RATE DATA FORM NO. 0100

ASE Inc. SHEET NO. 32 OF 40

EQUIPMENT	RRC				- DWG NO		-					
ASSEMBLY	Trans - Coiver				OW DWG -			and the	eri eri	•		L .
SUBASSEMBLY	, , , , , , , , , , , , , , , , , , ,	Components		# ·	DWG NO			REV	DATE	ברושו ושו	7.4	
REFERENCE DESIGNATION	COMPONENT/PART NUMBER			COMPONENT/PART NAME	PART	Nom. Failure Rate	STRESS	FAILUR F/10	FAILURE RATE	01.7	FR x OTY	NOTES
R 28, 64, 122, 123, 127, 130	01-153-33,	M.L. R. 11	Berister	Fixed, Comp	Comp 14 15 Km 102	6101	05'	9	240,	9	,252,	
R.7.	01 223 - 381	4, 1, 4	, ,	" "	" 22Ks.	,	$\pm n$	1	1,	,	2,0%	
R 121, 125,132	01-223-331	14 14 14	7.	, , , , , , , , , , , , , , , , , , ,	" ZZK.5%	4	.,	,,	"	3	, 120	
RS, 24, 25.	01-273-331				. 27 10%	"	.,	"	•	3	.12 5.	
R1, 27, 32, 35, 51, 63, 126	61 - 333- 331		ų		. 33	,,	11	- 0		7	, 294	
R.2, 14, 16, 18,	01-473-33		, n		" (h "	Ŋ	•	c,	.,	80	,336	
	61-823-			4 . 4	, 28 "		¥	.,	"	یم	780,	
WR2. 21, 57, 58	01-104-331	,	ų	, ,	,, 001 .,			,,	•	٦	,2/0	
8,0,131	156-151-10	4 4 1		4 4 6	1 051 ,	7	97.4	- 4		2	480'	
Re	128-452-10				220 5%		•	,,	,,,		2,00	
R103 104	125-4C4-10	s			201 OCh	,,	4	.,		2	480.	
R 133	01-152-531	1 11 11		" " "	126 1,TE	,,	- 14 M	•	•	1	260.	
. R 118	01-221-631			1 - 4 "	16,220.01	410.	"		•	1	.072	
R 29 40	122 - 812-50	Mil R 26	1	ധബ	" 275, W/ WW	040.	•	10		٤.	.800	
Res	63-104-0594			VATIBLE CONT	Cont 100 K	011.		10	•	1	1.10	
8119	03-103-095 MILR 94	MLR 94		, , ,	, 10K"	. 160	"		•		1/2	
C 578 121,	64-276-001 MILE 11015	MILETIOIS	CAPOCIA	CAPACITOR, Ceremit	F.	,085	•	1	,,	3	. 252	
- C17, 45A	720-386-40	MIL & 11015		s ', ',	Sant Nipo 10%	.085	••	1	2	2	061.	
	04-566- 028 P MILEHOIS	MILEHOIS		Z	5000 S.UPF.	\$80'	•	1.	•	2	170	
2 C 444,446 52	d 102 - 501 40	027 P 1141 C 11015		8 ;	5000 AIPO 10%	,085		7		5	. 425	
					רסכי	COCATION				T0141	4.0	
RELIABILITY ENGR.	FNGR. DHP			PHONE	LOC	LOCATION						
		+										

Before Converse to Hi Rel Components

EQUIPMENT	R. R.C.	OWG NO	0					
ASSEMBLY .	Trans-Coiver	DWG NO	0					
UBASSEMBL	SUBASSEMBLY TVAMS - CALLEY CO	Components DWG NO			REV DATE	E 12/12/54	.tov	
REFERENCE DESIGNATION	COMPONENT/PAR NUMBER	8	Failure Rate	STRESS RATIO	FAILURE RATE F/10 HRS	QTY	FR x OTY	NOTES
C.45	04-125-019 Micc 110 \$5	CAPACI	280	۶,	.0425	-		
CIIS	31011 21W (24-291-40	1. 1. 1000 JON	2801	'ک	Ψ.	1		
C 125. 1564	" " " FIS-011 " "	Per Call Gial	250,	٠٤		7		
£ 147	\$20-552-40		240,	٠.		2	man speak	
, 7,		% 7.5000 dd35	, 015	ابل		1		
C. 155, ICE	, " (50-308-40.	" 3016 5000 10to 4%	.086	. \$.		2		
2 175	:	" SOPF 1KU, 5" N750	280.	۶′ ا		/		
51, 1578		-	.085	3.		5		
C 10h, 117 ff 8.	" " pro-422-40.	1,60,10	1.80°	۲,		0/		
Sales Control	bzo-hch- ho	1601	.085	'ک		"		
C 1c4	" " 620-405-60	1,40,	,08F	٦.				
2012	: :	1,40	710,	اد.				
C 102 104 132	804-024 "	1,0,1	.015	b		3		
では、他	04-103-064A	100	530'	٠,		1		
C17 119,129	04-203-037 P	"	280'	۲:		4		
32, 56,65,116	04-503.00 SP "	,005 men 1000, -20+80%	350.	۲,		۵		
" " " " " " " "	San Service	" , 01 med . 1000, 480-20%	.086	٠.	>	6		
5413	., ., £00-101-ha'	" . 1 mfd 1000, 180-20%	1085	۲,	.0425	7		
DESIGN ENGINEER	NEER	- PHONE - LO	LOCATION		(.0425) X (75)		3.2	
A	2011 1011 100	7:0:0	CONTINE			•		

Before Conversion to Hist Rol Confound.

			はないに こうかんしょ のれをある					
EQUIPMENT	RRC	OWG NO						
ASSEMBLY	TTANS - Celver	OWG NO		1				
SUBASSEMBLY	LY " Comfosests	OWG NO			REV DAT	DATE 12/12/24	200	
REFERENCE DESIGNATION	COMPONENT/ NUMBEI	r/PAR	Nom. Failure Rate	STRESS RATIO	FAILURE RATE F/10 HRS	YTO	FR x OTY	NOTES
Cb, 9, 11	04- 307-007 MIL-6-11015	CAPACHON, FXAL COLOME.	,085	اح ا	.043	3	352	
C 524. 103	" " coo-901 -ho	1,000,000	.085	٠, ح		2	.170	
021 2	····· 400 - 907 - 40	2PF, 10%	.085.	3		1	0,43	
C. 50-1	400.989-40	6, eff, 10%	bes	١,		1	640'	+
111 3	05-102-039 MILC 19978	Politerbounds	,055	،۶	.023	/	620,	
CH SENI DI	" " " " OFO-2C+ -SO	047 WF	.055	٠٩.	. 623	4	280.	
C 22 39 61	" 1	. I MF "	*50°	٠٢.	.023	3	p 0/0.	
	150 239	1800 P	.055	با		1	.013	
5715	05-274.052	27000 PF	,055	S		1	620'	
C162 169	06-570-106	IMF. 15V. 20% TANTSILE	.12	۲	٠٥٥.	2	715	
						,,		
C34. 97. 40. 165	290 - 025 - 905	SMF 15V	.12	3,	, 06	ک	•3	
See 172	06-570-103	10mf 15V 20% tantalum	.12	۲,	,00,	1	90'	
650.60	06-530-118	1506	0.7	بز	٠,	2	0.1	
8517	06-530-064	20 mg 154 47 mgg, 154	.50	نا	,عر	1	,25	
	u ·							
10,00	66 530 673	SOOME ISV CSB 470	.50	رۍ	, 25	1	کد. ر	
6,57	Col OEI 30	SoowF ISV	1.0	کر	٠, ۶	,	٤,	
- C,550 /	66 530 1.9	- 157	.50	٠٤.	125	,		
		PHONE	LOCATION			TOTAL	3.471	,)-
		anono	CONTINE					

Before Conversion to High Pol Confered

EQUIPMENT.	R.R.C.	OWG NO	0						
ASSEMBLY .	trens - Caives .	OW DWG	0						
SUBASSEMBLY	Y Composats	DWG NO			REV	DATE			
REFERENCE DESIGNATION	COMPONE	COMPONENT/ PART.	Failure Rate	STRESS	FAILURE RATE F/10 HRS	RATE	QT.Y	FR x OTY	NOTES
Cree 15"	07-205-002A MIL-C-5	CAPACHOY, FIRM, DU, MIC.	-	.5	ਕ	-	الح	7.	
6	7-505-007	30		+	2	1.	2	7:	
C.St	5-2-11M M200-101-CO	*** Jeon			E	1	, ,	.2	
673		1, 5%	,,		8		/	- /•	
e in c	07-124-002A MILES	10 56 55001.	- /		B		/		
C 11	07- 154-0094 MILC.S.	1, 30 PF 100V			P	.) .		. , , ,	i
C 31 Mar. Mar	07- 254-608A MI-C-S	STE			2		3	.3	
£11 C1	07-444-062 Mit C-5,	"100 jd00h" ", ", ", ",	- 19		2		2	1.5	
ر دع	800-108	000191008,	<i> </i> •	→	N		/	• / •	V
Cues Jos M.	09-310-033	Cafacites Varabe, Ceremit	- 7	٠٤.		.2.	ع	9.	
CMJ	PACHEL IN DECISION	VATABLE C	1.0	1.0	_	6.7		/. 0	
CIVE	04-210-031		07	0"/		1.0	,	1.0	
0 /6	940-020-81	TRANSISHOF RCA-40235/38246	.3	6.1		.3	-	6.	
Q1.2	19-020-099	40673	£:	4	<	4	2	9,	
Q3 8, 15,17,21	121-020-61	1, Supag 398	6.				5	1.5.	
9,,	19-028-100	" RCA PAMES/61244	3				1	6.	
Ø,M	\$01-020-61	" Rea th 7741/61239	6				1	£,	
818	19-020-101	" RCA-TARTII/61242	ĸ.				1	6,	
Q 101, 102, 103	L90-020-61	" Ren 40637/41317	.3	>	>	>	3	6.	
777	160 -020-61	" RCA ENSTIBLISTES	£:	1.0		.3	_	e,	
DESIGN ENGINEER	NEER	PHONE LO	LOCATION				TOTAL	8.6	

EQUIPMENT	ر ا ا	ON SMC	ç					
ASSEMBLY	TRANSCEIVER	ON 9MG	ON	11				
SUBASSEMBLY		OM DWG			REV DATE			
REFERENCE DESIGNATION	COMPONENT/PART NUMBER	COMPONENT/PART NAME	Nom. Failure Rate	STRESS	FAILURE F	QTY	FR x OTY	NOTES
TXI	٠	GUARTZ URYSTAL	70.	1.0		,	200	
RX1		***************************************	701	1,0		1	20.	
/X		"	20'	7.0		/	201	
41-110		400	6.			20	3.0	
FL1, FL2		CRYSTAL FILTER	90.			7	2/5	
F43		UBRAMIC PILTER	1.			,	0/1	
7/01		RF TRANSFORMER	.3	7.0		/	06,	
2011		"	رع	0//		-/-	. 30	
Lici - 105		7107	۲,	1		5	50	
4167 - 169			. 61			3	060	
711 - 1117			۲,			4	1.20	
RPC1-RK7		CHOKE , R.F.	6	4		7	2.10	
110						•		
			•					
DESIGN ENGINEER	IEER		LOCATION			TOTAL	9.58	
DE! IABII ITY FACE					e de la companya de l			•

ю

ASSEMBLY	DISITAL PROCESSOR	ON 9MG NO						
SUBASSEMBLY		DWG NO			REV DATE			
REFERENCE DESIGNATION	COMPONENT/PART NUMBER	COMPONENT/PART.	Nom. Failure Rate	STRESS	FAILURE RATE F/10 HRS	orr	FR x OTY	NOTES
		SEMICENDUCTOR D.L.P.	•4	1.0	4.0	100	. 40.	
		CRYSTAL	,02	1.0	1.02	/	0.05	
		RESISTOR	10.	1.0	101	12	0.12	
3		DIODE	.4	1.5	. 6	7	1,2	
		TANTHUTIC CAP	101	1.0	90.	4	0.24	
		MICA CAPPELTORS	1000	0"	1001	43	40.0	
							41.6	
				•				
								i.
U								
					•			
DESIGN ENGINEER	NEER	PHONE LOC	LOCATION			TOTAL		

NOTES SHEET NO. 38 OF 40 10.55 X OTY 4 48 102 90. 8 .03 ,06 103 8 60 3 3 FR TOTAL OTY 4 3 3 m -3 3 ASE Inc. STRESS FAILURE RATE RATIO F/10 HRS . 03 500 10 40. .04 1/: 10. , 03 03 0, 0: . 03 0') . ' 0. 0.7 97 0" 1:0 0.1 0% (,0 1.0 0 ./ Failure Rate . 03 60 40. 103 701 20. 0.7 0:1 1.0 . 03 10: LOCATION 0 LOCATION DWG NO DWG NO. DWG NO 130 PIN 120 Pm Nidoel 200 3 PIN 9 PIN 15 PIN NI3 6 37618 3 811 N/0 6 COAX COAX 37 PIN COMPONENT/ PART COAX BOARD 2 CONN BOARD She coun FAILURE RATE DATA FORM NO. 0100 CONN NAME POWER CONN. PHONE PHONE CONTROL/DISP. CUNTROL DIE 3 PARE BOARD 1 Power BATT 8477 PATA ANT. ANT ANT ASSEMBLY "E" BOX INTER CONNECTIONS EQUIPMENT RADIO REMOTE GONTROL COMPONENT/PART NUMBER 43 1 42 0 - 1 42 13 A2 J2 42 1 43 H 4 43 4 PELIABILITY ENGR. DESIGN ENGINEER SUBASSEMBLY REFERENCE

	FAILURE RATE DATA	TA FORM NO. 0100		•	ASE Inc.			
EQUIPMENT			0					
SUBASSEMBLY SUBASSEMBLY	Y	TWO BISPLAY DWG NO DWG NO	0 0		REV DATE	i lu		
REFERENCE DESIGNATION	COMPONENT/PART NUMBER	COMPONENT/PART NAME	Nom. Failure Rate	STRESS	FAILURE F/10	QTY	FR x OTY	NOTES
		DED	1.0	ų	ત,	25	5.0	
170		SWITCH , TOGGLE	,,	1.	•/•	18	8"	
		V	410.	٠.	1000	25	21.5	
		Socket	//	1.0		25	3.5	
		CONNECTOR	0.7	1.0	.7	3	1.4	
		SWITCH, ROTARY	20	7.0	20	ત	40.	
						2.64		
41								
1								
			+					
				1 7				
DESIGN ENGINEER	NEER	PHONE LO	LOCATION			TOTAL	8:1	
DEI IABII ITY ENGO	FARE	O. JNONG	LOCATION					

NOTES SHEET NO. 40 OF 49 GPO 908-708 FR x OTY 4.4 80.0 2.4 007 TOTAL 4 3 OTY 12 ASE Inc. DATE STRESS FAILURE RATE RATIO F/10 HRS 200 4 4.0 REV 0% .5 4.0 Failure Rate +10. 1:0 7.0 LOCATION LOCATION DWG NO. DWG NO. DWG NO NTVPARTFAH: CONVECTOR RESISTOR FAILURE RATE DATA FORM NO. 0100 PHONE SOCKET PHONE KED PISPLAY COMPONENT/PART NUMBER REMOTE RRC RELIABILITY ENGR. DESIGN ENGINEER SUBASSEMBLY REFERENCE DESIGNATION A-3