Discreteness and dependence: an effective interplay in Bayesian nonparametrics

2022 ISBA World Meeting - Montréal, Canada

Antonio Lijoi

Bocconi University and Institue of Data Science and Analytics, Milano

Outline

- ► DISCRETE PRIORS, RANDOM PARTITIONS AND PREDICTION
- ► PARTIAL EXCHANGEABILITY AND DEPENDENCE
- ► MULTIVARIATE SPECIES SAMPLING PROCESSES
- ► FLEXIBLE DEPENDENCE STRUCTURES & DISCRETENESS
 - ► CORRELATION STRUCTURE
 - ► RANDOM PARTITIONS
 - ► ATOMS
- ► MEASURING DEPENDENCE

Discrete priors, random

partitions and prediction

Exchangeable sequences

- ▶ Sequence $X = (X)_{n>1}$ of observations or latent features
- ► Standard assumption: exchangeability of X

$$\mathbf{X} \stackrel{\mathrm{d}}{=} \pi \mathbf{X} = (X_{\pi(i)})_{i \geq 1}$$
 for any finite permutation π of \mathbb{N}

Exchangeable sequences

- ▶ Sequence $X = (X)_{n>1}$ of observations or latent features
- ► Standard assumption: exchangeability of X

$$extbf{\emph{X}} \stackrel{\mathrm{d}}{=} \pi extbf{\emph{X}} = (X_{\pi(i)})_{i \geq 1}$$
 for any finite permutation π of $\mathbb N$

Conditional i.i.d. characterization

For any $n \geq 1$ and A_1, \ldots, A_n

$$\mathbb{P}[X_1 \in A_1, \dots, X_n \in A_n] = \int_{\mathsf{P}} \prod_{j=1}^n \rho(A_j) \ Q(\mathrm{d}\rho)$$

where P is the space of probability measures on the sample space or, equivalently,

$$X_i | \tilde{p} \stackrel{\text{iid}}{\sim} \tilde{p} \qquad \tilde{p} \sim Q$$

$$Q = \left\{ egin{array}{ll} & ext{probability measure on P} \\ & ext{de Finetti measure of } \textbf{\textit{X}} \ / \ ext{prior distribution} \end{array}
ight.$$

In B. de Finetti's own words

"Exchangeability" is the name and the notion proposed to replace "independent with unknown constant probability". Such terminology is clearly contradictory:
[...] let us think of drawing successively – with replacement – balls from an urn with unknown composition. Are the successive drawings independent?
They would be, for someone informed about the unknown (for other people) composition; for such a people the drawings are not informative, and the probability, for him, does not change. But, for any other observer, independence cannot, obviously, hold: the observed frequency is [...] informative ... [de Finetti (1979)]

In B. de Finetti's own words

"Exchangeability" is the name and the notion proposed to replace "independent with unknown constant probability". Such terminology is clearly contradictory:
[...] let us think of drawing successively – with replacement – balls from an urn with unknown composition. Are the successive drawings independent?
They would be, for someone informed about the unknown (for other people) composition; for such a people the drawings are not informative, and the probability, for him, does not change. But, for any other observer, independence cannot, obviously, hold: the observed frequency is [...] informative ... [de Finetti (1979)]

Notion of "homogeneity" or "analogy" among observations for prediction

In B. de Finetti's own words

"Exchangeability" is the name and the notion proposed to replace "independent with unknown constant probability". Such terminology is clearly contradictory:
[...] let us think of drawing successively – with replacement – balls from an urn with unknown composition. Are the successive drawings independent?
They would be, for someone informed about the unknown (for other people) composition; for such a people the drawings are not informative, and the probability, for him, does not change. But, for any other observer, independence cannot, obviously, hold: the observed frequency is [...] informative ... [de Finetti (1979)]

- Notion of "homogeneity" or "analogy" among observations for prediction
- ▶ In view of the exchangeability assumption, for any $m \ge 1$

$$\mathbb{P}[X_{n+1} \in A_1, \dots, X_{n+m} \in A_m \, | \, X_1, \dots, X_n] = \int_{P_{\mathbb{X}}} \prod_{i=1}^m p(A_i) \, \mathbf{Q}(\mathrm{d}p \, | \, X_1, \dots, X_n)$$

In B. de Finetti's own words

"Exchangeability" is the name and the notion proposed to replace "independent with unknown constant probability". Such terminology is clearly contradictory:
[...] let us think of drawing successively – with replacement – balls from an urn with unknown composition. Are the successive drawings independent?
They would be, for someone informed about the unknown (for other people) composition; for such a people the drawings are not informative, and the probability, for him, does not change. But, for any other observer, independence cannot, obviously, hold: the observed frequency is [...] informative ... [de Finetti (1979)]

- Notion of "homogeneity" or "analogy" among observations for prediction
- ▶ In view of the exchangeability assumption, for any $m \ge 1$

$$\mathbb{P}[X_{n+1} \in A_1, \dots, X_{n+m} \in A_m \, | \, X_1, \dots, X_n] = \int_{P_{\mathbb{X}}} \prod_{i=1}^m p(A_i) \, \frac{Q(\mathrm{d}p \, | \, X_1, \dots, X_n)}{Q(\mathrm{d}p \, | \, X_1, \dots, X_n)}$$

► Most often Q selects discrete distributions

$$Q\Big(\Big\{p: \quad p=\sum_i \omega_i \delta_{\theta_i} \quad \text{for some } (\omega_i)_i \text{ and } (\theta_i)_i\Big\}\Big)=1$$

Species sampling

Species sampling process

- $\theta_i \stackrel{\text{iid}}{\sim} H \text{ with } H(\{x\}) = 0 \text{ for any } x$
- ▶ $(w_i)_{i \ge 1}$ non–negative and such that $\sum_i w_i \le 1$, almost surely
- $ightharpoonup (\theta_i)_{i\geq 1} \bot (w_i)_{i\geq 1}$

The random probability measure

$$\tilde{p} = \sum_{i \ge 1} w_i \, \delta_{\theta_i} + \left(1 - \sum_{i \ge 1} w_i\right) H$$

is a species sampling process (SSP). It is a proper SSP if $\sum_{i>1} w_i = 1$ (a.s.)

Species sampling

Species sampling process

- $\theta_i \stackrel{\text{iid}}{\sim} H \text{ with } H(\{x\}) = 0 \text{ for any } x$
- ▶ $(w_i)_{i\geq 1}$ non–negative and such that $\sum_i w_i \leq 1$, almost surely
- $ightharpoonup (\theta_i)_{i\geq 1} \perp (w_i)_{i\geq 1}$

The random probability measure

$$\tilde{p} = \sum_{i \ge 1} w_i \, \delta_{\theta_i} + \left(1 - \sum_{i \ge 1} w_i\right) H$$

is a species sampling process (SSP). It is a proper SSP if $\sum_{i>1} w_i = 1$ (a.s.)

Species sampling sequence

A sequence $(X_i)_{i>1}$ of random variables such that

$$X_i \mid \tilde{p} \stackrel{\text{iid}}{\sim} \tilde{p}$$
 & $\tilde{p} = \text{SSP}$

is termed a species sampling sequence (SSS).

A characterization

- $X_{1,n}^*,\ldots,X_{k_n,n}^*$ be the k_n distinct values in $X^{(n)}=(X_1,\ldots,X_n)$ with respective frequencies $\mathbf{n}=(n_1,\ldots,n_{k_n})$
- $\blacktriangleright \theta_i \stackrel{\text{iid}}{\sim} H, \text{ with } H(\{x\}) = 0 \text{ for any } x.$

A characterization

- $X_{1,n}^*, \dots, X_{k_n,n}^*$ be the k_n distinct values in $X^{(n)} = (X_1, \dots, X_n)$ with respective frequencies $n = (n_1, \dots, n_{k_n})$
- $\blacktriangleright \theta_i \stackrel{\text{iid}}{\sim} H, \text{ with } H(\{x\}) = 0 \text{ for any } x.$

Theorem (Pitman, 1996)

A sequence $(X_n)_{n\geq 1}$ is a SSS if and only if there exist weights $\{p_{j,n}(n_1,\ldots,n_k):\ 1\leq j\leq k\leq n\}$ such that $X_1=\theta_1$ and for any $n\geq 1$

$$X_{n+1} \mid \boldsymbol{X}^{(n)} = \begin{cases} \theta_{n+1} & \text{with prob } p_{k_n+1,n}(\boldsymbol{n}^+) \\ X_{j,n}^* & \text{with prob } p_{k_n,n}(\boldsymbol{n}^{+j}) \end{cases}$$

where $\mathbf{n}^+=(n_1,\ldots,n_{k_n},1)$ and $\mathbf{n}^{+j}=(n_1,\ldots,n_j+1,\ldots,n_{k_n}).$

A characterization

- $X_{1,n}^*, \dots, X_{k_n,n}^*$ be the k_n distinct values in $X^{(n)} = (X_1, \dots, X_n)$ with respective frequencies $\mathbf{n} = (n_1, \dots, n_{k_n})$
- \bullet $\theta_i \stackrel{\text{iid}}{\sim} H$, with $H(\{x\}) = 0$ for any x.

Theorem (Pitman, 1996)

A sequence $(X_n)_{n\geq 1}$ is a SSS if and only if there exist weights $\{p_{j,n}(n_1,\ldots,n_k):\ 1\leq j\leq k\leq n\}$ such that $X_1=\theta_1$ and for any $n\geq 1$

$$X_{n+1} \mid \boldsymbol{X}^{(n)} = \begin{cases} \theta_{n+1} & \text{with prob } p_{k_n+1,n}(\boldsymbol{n}^+) \\ X_{j,n}^* & \text{with prob } p_{k_n,n}(\boldsymbol{n}^{+j}) \end{cases}$$

where
$${\pmb n}^+=(n_1,\ldots,n_{k_n},1)$$
 and ${\pmb n}^{+j}=(n_1,\ldots,n_j+1,\ldots,n_{k_n}).$

- ▶ Predictive probability function $\implies \{p_{i,n}(n_1,\ldots,n_k): 1 \le j \le k+1, k \le n\}$
- ▶ If one is able to define a predictive probability function, then a SSS *X* is uniquely identified, without the need of specifying a prior *Q*. Very challenging a task!
- See Fortini, Ladelli & Regazzini (2002), Lee, Quintana, Müller & Trippa (2013).

Determining the prediction rule

- ▶ If $(X_n)_{n\geq 1}$ is a SSS, then $\mathbb{P}[X_i = X_j] > 0$ for any $i \neq j$.
- ▶ Random partition Ψ_n of $[n] = \{1, ..., n\}$, namely $i \sim j$ if and only if $X_i = X_j$

Determining the prediction rule

- ▶ If $(X_n)_{n\geq 1}$ is a SSS, then $\mathbb{P}[X_i = X_j] > 0$ for any $i \neq j$.
- ▶ Random partition Ψ_n of $[n] = \{1, ..., n\}$, namely $i \sim j$ if and only if $X_i = X_j$

Exchangeable partition probability function (EPPF)

$$\mathbb{P}[\Psi_n = \{C_1, \dots, C_k\}] = \Phi_k^{(n)}(n_1, \dots, n_k), \qquad n_i = \text{card}(C_i)$$

For example, with n = 4 and k = 2

$$\operatorname{Prob}(\underbrace{x_1}_{x_2}\underbrace{x_3}_{x_3}\underbrace{x_4}) = \Phi_2^{(4)}(\mathbf{n}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix})$$

Determining the prediction rule

- ▶ If $(X_n)_{n\geq 1}$ is a SSS, then $\mathbb{P}[X_i = X_j] > 0$ for any $i \neq j$.
- ▶ Random partition Ψ_n of $[n] = \{1, ..., n\}$, namely $i \sim j$ if and only if $X_i = X_j$

Exchangeable partition probability function (EPPF)

$$\mathbb{P}[\Psi_n = \{C_1, \dots, C_k\}] = \Phi_k^{(n)}(n_1, \dots, n_k), \qquad n_i = \text{card}(C_i)$$

For example, with n = 4 and k = 2

$$\operatorname{Prob}(\underbrace{x_1}_{x_2}\underbrace{x_3}_{x_3}\underbrace{x_4}) = \Phi_2^{(4)}(\mathbf{n}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix})$$

Consistency condition & Symmetry

$$\Phi_k^{(n)}(n_1,\ldots,n_k) = \sum_{j=1}^k \Phi_k^{(n+1)}(n_1,\ldots,n_j+1,\ldots,n_k) + \Phi_{k+1}^{(n+1)}(n_1,\ldots,n_k,1)$$
 (*)

$$\Phi_k^{(n)}(n_1,\ldots,n_k) = \Phi_k^{(n)}(n_{\sigma(1)},\ldots,n_{\sigma(k)}) \quad \text{ for any finite permutation } \sigma \text{ of } [k] \quad (\Delta)$$

Random partitions and prediction

Prediction rule

The weights defined by

$$p_{j,n}(\mathbf{n}^{+j}) = \frac{\Phi_k^{(n+1)}(\mathbf{n}^{+j})}{\Phi_k^{(n)}(\mathbf{n})}, \qquad p_{k+1,n}(\mathbf{n}^+) = \frac{\Phi_{k+1}^{(n+1)}(\mathbf{n}^+)}{\Phi_k^{(n)}(\mathbf{n})}$$

identify the prediction rule of a SSS $(X_n)_{n>1}$.

Random partitions and prediction

Prediction rule

The weights defined by

$$\rho_{j,n}(\mathbf{n}^{+j}) = \frac{\Phi_k^{(n+1)}(\mathbf{n}^{+j})}{\Phi_k^{(n)}(\mathbf{n})}, \qquad \rho_{k+1,n}(\mathbf{n}^{+}) = \frac{\Phi_{k+1}^{(n+1)}(\mathbf{n}^{+})}{\Phi_k^{(n)}(\mathbf{n})}$$

identify the prediction rule of a SSS $(X_n)_{n>1}$.

- ▶ If one can directly specify $\Phi_k^{(n)}$ that satisfies the conditions (*)–(Δ), then a SSS $(X_n)_{n\geq 1}$ is identified
- ► A prior Q is not involved in this construction, though it is uniquely identified by the EPPF $\{\Phi_k^{(n)}: 1 \le k \le n\}$
- ▶ Pro: assigning probability to observable events / quantities

An example: Gibbs-type priors (Gnedin & Pitman, 2006)

- ► Array of weights $\{V_{k,n}: 1 \le k \le n\}$ such that $V_{n,k} = V_{n+1,k+1} + (n-k\sigma)V_{n+1,k}$
- σ < 1
 </p>
- $\Phi_k^{(n)}(n_1,\ldots,n_k) = V_{n,k} \prod_{j=1}^k (1-\sigma)_{n_j-1}$, with $(a)_q = \Gamma(a+q)/\Gamma(a)$

An example: Gibbs-type priors (Gnedin & Pitman, 2006)

- ► Array of weights $\{V_{k,n}: 1 \le k \le n\}$ such that $V_{n,k} = V_{n+1,k+1} + (n-k\sigma)V_{n+1,k}$
- σ < 1
 </p>
- $lack \Phi_k^{(n)}(n_1,\ldots,n_k) = V_{n,k} \prod_{i=1}^k (1-\sigma)_{n_i-1}$, with $(a)_q = \Gamma(a+q)/\Gamma(a)$

Prediction rule

$$\begin{aligned} & p_{j,n}(\pmb{n}^{+j}) = \mathbb{P}[X_{n+1} = X_j^* \mid \pmb{X}^{(n)}] = \frac{V_{n+1,k}}{V_{n,k}}(n_j - \sigma) \\ & p_{k+1,n}(\pmb{n}^+) = \mathbb{P}[X_{n+1} = \text{"new"} \mid \pmb{X}^{(n)}] = \frac{V_{n+1,k+1}}{V_{n,k}} \end{aligned}$$

$$p_{k+1,n}(\mathbf{n}^+) = \mathbb{P}[X_{n+1} = \text{"new"} \mid \mathbf{X}^{(n)}] = \frac{v_{n+1,k+1}}{V_{n,k}}$$

An example: Gibbs-type priors (Gnedin & Pitman, 2006)

- ► Array of weights $\{V_{k,n}: 1 \le k \le n\}$ such that $V_{n,k} = V_{n+1,k+1} + (n-k\sigma)V_{n+1,k}$
- σ < 1
 </p>
- $\Phi_k^{(n)}(n_1,\ldots,n_k) = V_{n,k} \prod_{j=1}^k (1-\sigma)_{n_j-1}$, with $(a)_q = \Gamma(a+q)/\Gamma(a)$

Prediction rule

$$\begin{split} & \rho_{j,n}(\pmb{n}^{+j}) = \mathbb{P}[X_{n+1} = X_j^* \mid \pmb{X}^{(n)}] = \frac{V_{n+1,k}}{V_{n,k}}(n_j - \sigma) \\ & \rho_{k+1,n}(\pmb{n}^+) = \mathbb{P}[X_{n+1} = \text{"new"} \mid \pmb{X}^{(n)}] = \frac{V_{n+1,k+1}}{V_{n,k}} \end{split}$$

If K_n is the number of distinct values in X_1, \ldots, X_n and

$$c_n(\sigma) = \begin{cases} 1 & \sigma < 0 \\ \log n & \sigma = 0 \\ n^{\sigma} & \sigma \in (0, 1) \end{cases}$$

then

$$\frac{K_n}{c_n(\sigma)} \stackrel{\text{a.s.}}{\longrightarrow} S_{\sigma}$$

for random variable $S_{\sigma} > 0$

Dirichlet process: $\sigma = 0$ and $V_{n,k} = \theta^k/(\theta)_n$

$$\mathbb{P}[X_{n+1} = "new" \mid \mathbf{X}^{(n)}] = \frac{\theta}{\theta + n}$$

Dirichlet process: $\sigma = 0$ and $V_{n,k} = \theta^k/(\theta)_n$

$$\mathbb{P}[X_{n+1} = "new" \mid \boldsymbol{X}^{(n)}] = \frac{\theta}{\theta + n}$$

Pitman–Yor process: $\sigma \in (0,1)$ and $V_{n,k} = \prod_{i=1}^{k-1} (\theta + i\sigma)/(\theta + 1)_{n-1}$

$$\mathbb{P}[X_{n+1} = "new" \mid \mathbf{X}^{(n)}] = \frac{\theta + K_n \sigma}{\theta + n}$$

Dirichlet process: $\sigma = 0$ and $V_{n,k} = \theta^k/(\theta)_n$

$$\mathbb{P}[X_{n+1} = "new" \mid \mathbf{X}^{(n)}] = \frac{\theta}{\theta + n}$$

Pitman–Yor process: $\sigma \in (0,1)$ and $V_{n,k} = \prod_{i=1}^{k-1} (\theta + i\sigma)/(\theta + 1)_{n-1}$

$$\mathbb{P}[X_{n+1} = "new" \mid \mathbf{X}^{(n)}] = \frac{\theta + K_n \sigma}{\theta + n}$$

Finite-dimensional priors: $\sigma < 0$ and

$$V_{n,k} = \sum_{j \ge k} \frac{|\sigma|^{k-1} \prod_{i=1}^{k-1} (j-i)}{(j|\sigma|+1)_{n-1}} \pi(j) = \text{mixture of Dir}_j(|\sigma|, \dots, |\sigma|)$$

with π a prior on the number of components. See De Blasi, L. and Prünster (2013) for some examples with different choices of π .

Dirichlet process: $\sigma = 0$ and $V_{n,k} = \theta^k/(\theta)_n$

$$\mathbb{P}[X_{n+1} = "new" \mid \mathbf{X}^{(n)}] = \frac{\theta}{\theta + n}$$

Pitman–Yor process: $\sigma \in (0,1)$ and $V_{n,k} = \prod_{i=1}^{k-1} (\theta + i\sigma)/(\theta + 1)_{n-1}$

$$\mathbb{P}[X_{n+1} = "new" \mid \mathbf{X}^{(n)}] = \frac{\theta + K_n \sigma}{\theta + n}$$

Finite-dimensional priors: $\sigma < 0$ and

$$V_{n,k} = \sum_{j \ge k} \frac{|\sigma|^{k-1} \prod_{j=1}^{k-1} (j-i)}{(j|\sigma|+1)_{n-1}} \pi(j) = \text{mixture of Dir}_j(|\sigma|, \dots, |\sigma|)$$

with π a prior on the number of components. See De Blasi, L. and Prünster (2013) for some examples with different choices of π .

- Gibbs-type priors and corresponding prediction rules introduced in BNP by L., Mena and Prünster (2007a, 2007b).
- ► Frequentist large sample properties in De Blasi, L. and Prünster (2013).
- ► Review in De Blasi et al. (2015)

- lacktriangledown In principle, a SSS can be defined without specifying a prior Q
- ▶ Even identifying an EPPF $\Phi_k^{(n)}$ that satisfies the consistency and symmetry conditions is a daunting task.
- ► What if a prior *Q* is specified?

- ► In principle, a SSS can be defined without specifying a prior *Q*
- ▶ Even identifying an EPPF $\Phi_k^{(n)}$ that satisfies the consistency and symmetry conditions is a daunting task.
- ▶ What if a prior Q is specified?

Definition
$$\implies \Phi_k^{(n)}(n_1,\ldots,n_k) = \mathbb{E}\sum_{i_1\neq\cdots\neq i_k} w_{i_1}^{n_1} \cdots w_{i_k}^{n_k}$$

- ▶ In principle, a SSS can be defined without specifying a prior Q
- ▶ Even identifying an EPPF $\Phi_k^{(n)}$ that satisfies the consistency and symmetry conditions is a daunting task.
- ▶ What if a prior Q is specified?

Definition
$$\implies \Phi_k^{(n)}(n_1,\ldots,n_k) = \mathbb{E}\sum_{i_1\neq\cdots\neq i_k} w_{i_1}^{n_1}\cdots w_{i_k}^{n_k}$$

Not helpful for actual evaluation of Φ_k⁽ⁿ⁾

- ▶ In principle, a SSS can be defined without specifying a prior Q
- ▶ Even identifying an EPPF $\Phi_k^{(n)}$ that satisfies the consistency and symmetry conditions is a daunting task.
- ► What if a prior *Q* is specified?

Definition
$$\implies \Phi_k^{(n)}(n_1,\ldots,n_k) = \mathbb{E}\sum_{i_1\neq\cdots\neq i_k} w_{i_1}^{n_1}\cdots w_{i_k}^{n_k}$$

- Not helpful for actual evaluation of $\Phi_k^{(n)}$
- General representation of the EPPF

$$\Phi_k^{(n)}(n_1,\ldots,n_k) = \mathbb{E} \int_{\mathbb{X}^k} \tilde{p}^{n_1}(\mathrm{d}x_1) \cdots \tilde{p}^{n_k}(\mathrm{d}x_k)$$

more convenient if \tilde{p} has a nice probabilistic structure such as with completely random measure based models

- ▶ In principle, a SSS can be defined without specifying a prior Q
- ▶ Even identifying an EPPF $\Phi_k^{(n)}$ that satisfies the consistency and symmetry conditions is a daunting task.
- ▶ What if a prior Q is specified?

Definition
$$\implies \Phi_k^{(n)}(n_1,\ldots,n_k) = \mathbb{E}\sum_{i_1\neq\cdots\neq i_k} w_{i_1}^{n_1}\cdots w_{i_k}^{n_k}$$

- Not helpful for actual evaluation of $\Phi_k^{(n)}$
- General representation of the EPPF

$$\Phi_k^{(n)}(n_1,\ldots,n_k) = \mathbb{E} \int_{\mathbb{X}^k} \tilde{p}^{n_1}(\mathrm{d}x_1) \cdots \tilde{p}^{n_k}(\mathrm{d}x_k)$$

more convenient if \tilde{p} has a nice probabilistic structure such as with completely random measure based models

Symmetry and, more importantly, consistency conditions are automatically satisfied in this case: no need to check their validity!

- ► In principle, a SSS can be defined without specifying a prior *Q*
- ▶ Even identifying an EPPF $\Phi_k^{(n)}$ that satisfies the consistency and symmetry conditions is a daunting task.
- ► What if a prior *Q* is specified?

Definition
$$\implies \Phi_k^{(n)}(n_1,\ldots,n_k) = \mathbb{E}\sum_{i_1 \neq \cdots \neq i_k} w_{i_1}^{n_1} \cdots w_{i_k}^{n_k}$$

- ▶ Not helpful for actual evaluation of $\Phi_k^{(n)}$
- General representation of the EPPF

$$\Phi_k^{(n)}(n_1,\ldots,n_k) = \mathbb{E} \int_{\mathbb{X}^k} \tilde{p}^{n_1}(\mathrm{d}x_1) \cdots \tilde{p}^{n_k}(\mathrm{d}x_k)$$

more convenient if \tilde{p} has a nice probabilistic structure such as with completely random measure based models

- Symmetry and, more importantly, consistency conditions are automatically satisfied in this case: no need to check their validity!
- Consistency is crucial for prediction and validity of inferential procedures. Lack of it, as in some finitely exchangeable models, only allows exploratory data analysis.

Partial exchangeability and

dependence

Beyond exchangeability: an example

- Exchangeability is a simplistic form of symmetry
- Not a realistic assumption in several applications

Beyond exchangeability: an example

- Exchangeability is a simplistic form of symmetry
- Not a realistic assumption in several applications

- ▶ Nodes: $V = \{1, 2, ..., 8\}$ Layers: $L = \{Green, Blue, Orange\}$
- Edges between nodes in the same layer or across different layers
- Clustering of nodes based on connections

Beyond exchangeability: an example

- Exchangeability is a simplistic form of symmetry
- Not a realistic assumption in several applications

- ▶ Nodes: $V = \{1, 2, ..., 8\}$ Layers: $L = \{Green, Blue, Orange\}$
- ► Edges between nodes in the same layer or across different layers
- Clustering of nodes based on connections
 - ► Bill co-sponsorship (*L* = political parties)
 - ► Criminal networks (*L* = main "clan" affiliation)

Examples:

- ▶ ...
- Francesco Gaffi's talk yesterday & Filippo Ascolani's talk tomorrow

Beyond exchangeability

 Data are recorded under different experimental conditions: multicenter studies, change-point problems, topic modeling,

Beyond exchangeability

 Data are recorded under different experimental conditions: multicenter studies, change-point problems, topic modeling,

- Observations from different samples/groups
- reasonable dependence assumption
 - Homogeneity within each group
 - Heterogeneity across different groups
- lacktriangle Two levels of clustering: samples/groups $ilde{p}_j$ and observations $X_{i,j}$

Multiple samples and partial exchangeability

► Assumption: J samples $X_1 = (X_{1,i})_{i \ge 1}, \dots, X_J = (X_{J,i})_{i \ge 1}$ are partially exchangeable, i.e. for any finite permutations π_1, \dots, π_J of $\mathbb N$

$$(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_J)\stackrel{\mathrm{d}}{=}(\pi_1\boldsymbol{X}_1,\ldots,\pi_J\boldsymbol{X}_J)$$

Multiple samples and partial exchangeability

► Assumption: J samples $X_1 = (X_{1,i})_{i \ge 1}, \ldots, X_J = (X_{J,i})_{i \ge 1}$ are partially exchangeable, i.e. for any finite permutations π_1, \ldots, π_J of $\mathbb N$

$$(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_J)\stackrel{\mathrm{d}}{=}(\pi_1\boldsymbol{X}_1,\ldots,\pi_J\boldsymbol{X}_J)$$

With
$$J = 2$$
 samples (red & green):

$$(X_{1,1}, X_{1,2}, X_{2,1}) \stackrel{\mathrm{d}}{=} (X_{1,2}, X_{1,1}, X_{2,1})$$

$$(X_{1,1}, X_{1,2}, X_{2,1}) \stackrel{\mathrm{d}}{\neq} (X_{1,1}, X_{2,1}, X_{1,2})$$

Multiple samples and partial exchangeability

▶ **Assumption:** J samples $X_1 = (X_{1,i})_{i \ge 1}, \ldots, X_J = (X_{J,i})_{i \ge 1}$ are *partially exchangeable*, i.e. for any finite permutations π_1, \ldots, π_J of $\mathbb N$

$$(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_J)\stackrel{\mathrm{d}}{=}(\pi_1\boldsymbol{X}_1,\ldots,\pi_J\boldsymbol{X}_J)$$

With J = 2 samples (red & green):

$$(X_{1,1}, X_{1,2}, X_{2,1}) \stackrel{d}{=} (X_{1,2}, X_{1,1}, X_{2,1})$$

 $(X_{1,1}, X_{1,2}, X_{2,1}) \stackrel{d}{\neq} (X_{1,1}, X_{2,1}, X_{1,2})$

Conditional independence characterization
$$(J=2)$$

$$\mathbb{P}\left[X_{1,1} \in A_1, \cdots, X_{1,N_1} \in A_{N_1}, \ X_{2,1} \in B_1, \cdots, X_{2,N_2} \in B_{N_2}\right]$$

$$= \int_{P_{\mathbb{X}}^2} \prod_{i=1}^{N_1} p_1(A_i) \prod_{j=1}^{N_2} p_2(B_j) \ Q_2(\mathrm{d}p_1, \mathrm{d}p_2)$$

$$(X_{1,i}, X_{2,j}) \mid (\tilde{p}_1, \tilde{p}_2) \stackrel{\mathrm{iid}}{\sim} \tilde{p}_1 \times \tilde{p}_2, \qquad (\tilde{p}_1, \tilde{p}_2) \sim Q_2$$

de Finetti (1938), Cifarelli & Regazzini (1978), MacEachern (1999, 2000), ...

Range of dependence

 $Q_2(dp_1, dp_2) = Q_1^*(dp_1) Q_2^*(dp_2)$

$$Q_2(\{p_1=p_2\})=1 \Longrightarrow$$

homogeneity across samples (maximal dependence)

unconditional independence (maximal heterogeneity)

Range of dependence

$$Q_2(\{p_1=p_2\})=1$$
 \Longrightarrow homogeneity across samples (maximal dependence)
$$Q_2(\mathrm{d}p_1,\mathrm{d}p_2)=Q_1^*(\mathrm{d}p_1)\,Q_2^*(\mathrm{d}p_2) \Longrightarrow$$
 unconditional independence (maximal heterogeneity)

Intermediate cases: partial exchangeability

In this talk \tilde{p}_i 's are discrete

$$\tilde{p}_1 = \sum_{j \ge 1} w_{1,j} \, \delta_{Z_{1,j}} \qquad \tilde{p}_2 = \sum_{j \ge 1} w_{2,j} \, \delta_{Z_{2,j}}$$

In this talk \tilde{p}_i 's are discrete

$$\tilde{p}_1 = \sum_{j \geq 1} w_{1,j} \, \delta_{Z_{1,j}} \qquad \tilde{p}_2 = \sum_{j \geq 1} w_{2,j} \, \delta_{Z_{2,j}}$$

 $ightharpoonup k \le N_1 + N_2$ distinct values in the samples

$$extbf{X}_1^{(N_1)} = (X_{1,1}, \dots, X_{1,N_1}) \qquad extbf{X}_2^{(N_2)} = (X_{2,1}, \dots, X_{2,N_2})$$

In this talk \tilde{p}_i 's are discrete

$$\tilde{p}_1 = \sum_{j \geq 1} w_{1,j} \, \delta_{Z_{1,j}} \qquad \tilde{p}_2 = \sum_{j \geq 1} w_{2,j} \, \delta_{Z_{2,j}}$$

 $ightharpoonup k \le N_1 + N_2$ distinct values in the samples

$$\mathbf{X}_{1}^{(N_{1})} = (X_{1,1}, \dots, X_{1,N_{1}})$$
 $\mathbf{X}_{2}^{(N_{2})} = (X_{2,1}, \dots, X_{2,N_{2}})$

▶ $\mathbf{n}_1 = (n_{1,1}, \dots, n_{1,k})$ & $\mathbf{n}_2 = (n_{2,1}, \dots, n_{2,k})$ frequency vectors

 $n_{i,j} = \sharp$ elements in sample *i* that equal the *j*th distinct value

In this talk \tilde{p}_i 's are discrete

$$\tilde{p}_1 = \sum_{j \ge 1} w_{1,j} \, \delta_{Z_{1,j}} \qquad \tilde{p}_2 = \sum_{j \ge 1} w_{2,j} \, \delta_{Z_{2,j}}$$

 $ightharpoonup k \le N_1 + N_2$ distinct values in the samples

$$\mathbf{X}_{1}^{(N_{1})} = (X_{1,1}, \dots, X_{1,N_{1}})$$
 $\mathbf{X}_{2}^{(N_{2})} = (X_{2,1}, \dots, X_{2,N_{2}})$

- $ightharpoonup n_1 = (n_{1,1}, \dots, n_{1,k}) \& n_2 = (n_{2,1}, \dots, n_{2,k})$ frequency vectors
 - $n_{i,j} = \sharp$ elements in sample *i* that equal the *j*th distinct value
- $ightharpoonup n_{1,j}n_{2,j} \neq 0$ whenever the jth distinct value is shared across the two samples

In this talk \tilde{p}_i 's are discrete

$$\tilde{p}_1 = \sum_{j \geq 1} w_{1,j} \, \delta_{Z_{1,j}} \qquad \tilde{p}_2 = \sum_{j \geq 1} w_{2,j} \, \delta_{Z_{2,j}}$$

 $ightharpoonup k < N_1 + N_2$ distinct values in the samples

$$\mathbf{X}_{1}^{(N_{1})} = (X_{1,1}, \dots, X_{1,N_{1}})$$
 $\mathbf{X}_{2}^{(N_{2})} = (X_{2,1}, \dots, X_{2,N_{2}})$

- $ightharpoonup n_1 = (n_{1,1}, \dots, n_{1,k}) \& n_2 = (n_{2,1}, \dots, n_{2,k})$ frequency vectors
 - $n_{i,j} = \sharp$ elements in sample *i* that equal the *j*th distinct value
- $ightharpoonup n_{1,j}n_{2,j} \neq 0$ whenever the jth distinct value is shared across the two samples
- ▶ Induced random partition Ψ_N of $[N] = \{1, ..., N_1 + N_2\}$, characterized by the partially exchangeable partition probability function

$$\mathsf{pEPPF} = \mathbb{P}[\Psi_n = \{C_1,\dots,C_k\}] = \Pi_k^{(N)}(\pmb{n}_1,\pmb{n}_2)$$
 where $\mathsf{card}(C_i) = n_{1:i} + n_{2:i} > 1.$

Joint distribution of the induced random partition:

Joint distribution of the induced random partition:

Marginal distribution of the single sample partition:

$$\mathbb{P}(\sqrt[k_{1,1}]{k_{1,2}}\sqrt[k_{1,3}]{k_{1,4}}) = \Phi_2^{(4)}(\textit{\textbf{n}}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix})$$

Evaluating the pEPPF

▶ By definition

$$\Pi_k^{(N)}(\mathbf{n}_1,\mathbf{n}_2) = \mathbb{E} \sum_{\substack{i_1 \neq \cdots \neq i_k \\ j_1 \neq \cdots \neq j_k}} w_{1,i_1}^{n_{1,1}} \cdots w_{1,i_k}^{n_{1,k}} w_{2,j_1}^{n_{2,1}} \cdots w_{2,j_k}^{n_{2,j_k}}$$

which is impossible to evaluate

Evaluating the pEPPF

By definition

$$\Pi_{k}^{(N)}(\textbf{\textit{n}}_{1},\textbf{\textit{n}}_{2}) = \mathbb{E} \sum_{\substack{i_{1} \neq \cdots \neq i_{k} \\ j_{1} \neq \cdots \neq j_{k}}} w_{1,i_{1}}^{n_{1,1}} \cdots w_{1,i_{k}}^{n_{1,k}} w_{2,j_{1}}^{n_{2,1}} \cdots w_{2,j_{k}}^{n_{2,k}}$$

which is impossible to evaluate

The most convenient form for actual evaluation is

$$\Pi_k^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2) = \mathbb{E} \int_{\mathbb{X}_d^k} \prod_{j=1}^k \tilde{\rho}_1^{n_{1,j}}(\mathrm{d}x_j) \, \tilde{\rho}_2^{n_{2,k}}(\mathrm{d}x_k)$$

with closed form expressions available for models based on completely random measures

- ► GM-dependent NRMIs (L., Nipoti and Prünster, 2014)
- ► Hierarchical NRMIs (Camerlenghi et al., 2019)
- ► Latent nested processes (Camerlenghi et al., 2019)
- Bivariate Pitman–Yor process (Leisen and L., 2011)

Approaching dependence

In this talk: general framework

$$(\tilde{p}_1,\ldots,\tilde{p}_J)$$
 multivariate species sampling process

- ► Which dependence is induced among
 - ▶ the random probability measures \tilde{p}_i ?
 - the observations, within and between samples?
- Discreteness is helpful in shaping the dependence structure, which may be characterized through
 - correlation
 - the induced random partition
 - ► the atoms of the \tilde{p}_i 's

Multivariate species sampling

process

Multivariate species sampling processes

Definition

A vector of random probability measures $(\tilde{p}_1,\ldots,\tilde{p}_J)$ is a *multivariate species sampling process* (mSSP) if for any $j\in\{1,\ldots,J\}$

$$\tilde{p}_j = \sum_{h \ge 1} w_{j,h} \, \delta_{\theta_h} + \Big(1 - \sum_{h \ge 1} w_{j,h} \Big) H$$

- lacktriangledown θ_h are iid from the non–atomic probability measure H
- $\blacktriangleright (w_{1,h},...,w_{J,h})_{h\geq 1} \bot (\theta_h)_{h\geq 1}$

If $\sum_{h\geq 1} w_{j,h} = 1$, a.s., for every j, then $(\tilde{p}_1, \dots, \tilde{p}_J)$ is said *proper*.

Multivariate species sampling processes

Definition

A vector of random probability measures $(\tilde{p}_1,\ldots,\tilde{p}_J)$ is a *multivariate species sampling process* (mSSP) if for any $j\in\{1,\ldots,J\}$

$$\tilde{p}_j = \sum_{h \ge 1} w_{j,h} \, \delta_{\theta_h} + \left(1 - \sum_{h \ge 1} w_{j,h}\right) H$$

- \blacktriangleright θ_h are iid from the non–atomic probability measure H
- $\blacktriangleright (w_{1,h},\ldots,w_{J,h})_{h\geq 1}\bot (\theta_h)_{h\geq 1}$

If $\sum_{h\geq 1} w_{j,h} = 1$, a.s., for every j, then $(\tilde{p}_1, \dots, \tilde{p}_J)$ is said *proper*.

Multivariate species sampling sequence

The array of random elements $\{X_j = (X_{j,i})_{i \geq 1}: j = 1, ..., J\}$ is a *multivariate* species sampling sequence (mSSS) if

- ► it is partially exchangeable
- ▶ its de Finetti measure is a mSSP

A predictive characterization (with J = 2)

- Does there exist a predictive characterization that mimics the one seen for SSS?
- ► If yes, does the prediction rule relate to the induced random partition?

A predictive characterization (with J = 2)

- Does there exist a predictive characterization that mimics the one seen for SSS?
- ► If yes, does the prediction rule relate to the induced random partition?

Let $\theta_h \stackrel{\text{iid}}{\sim} H$ and X_1^*, \dots, X_k^* the k distinct values observed in the samples $\mathbf{X}_j^{(N_j)} = (X_{1,j}, \dots, X_{N_j,j})$, for j = 1, 2, with frequencies $\mathbf{n} = (\mathbf{n}_1, \mathbf{n}_2)$.

A predictive characterization (with J = 2)

- Does there exist a predictive characterization that mimics the one seen for SSS?
- ▶ If yes, does the prediction rule relate to the induced random partition?

Let $\theta_h \stackrel{\text{iid}}{\sim} H$ and X_1^*, \dots, X_k^* the k distinct values observed in the samples $X_j^{(N_j)} = (X_{1,j}, \dots, X_{N_j,j})$, for j = 1, 2, with frequencies $n = (n_1, n_2)$.

Predictive characterization

The array of sequences of random variables (X_1, X_2) is a mSSS if an only if there exists weights $\{p_{i,j}: 1 \leq j \leq k+1, \ n \geq k\}$ such that $X_{1,1} = \theta_1$ and

$$X_{1,N+1} \mid (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) = \left\{ \begin{array}{ll} \theta_{N+1} & \quad \text{with prob } p_{1,k+1}(\boldsymbol{n}^+) \\ X_\ell^* & \quad \text{with prob } p_{1,\ell}(\boldsymbol{n}^{+\ell}) \end{array} \right.$$

where $N = N_1 + N_2$ and

$$\mathbf{n}^+ = (n_{1,1}, \dots, n_{k,1}, 1, \mathbf{n}_2), \quad \mathbf{n}^{+\ell} = (n_{1,1}, \dots, n_{\ell,1} + 1, \dots, n_{k,1}, \mathbf{n}_2)$$

Similar expression if the (N + 1)-th observation is from sample 2.

Prediction and random partition

- If one is able to determine a multivariate predictive probability function {p_{i,j}: 1 ≤ j ≤ k + 1 ≤ n + 1; i = 1,2} that satisfies some suitable conditions then a mSSS is identified (Franzolini et al., 2022+).
- ► Is there a connection between the prediction rule and the distribution of the partially exchangeable partition probability function (pEPPF) that extends what is known in the exchangeable case?
- ► Can one deduce a Pólya urn scheme from the pEPPF $\Pi_k^{(N)}$?

Prediction and random partition

- If one is able to determine a multivariate predictive probability function {p_{i,j}: 1 ≤ j ≤ k + 1 ≤ n + 1; i = 1,2} that satisfies some suitable conditions then a mSSS is identified (Franzolini et al., 2022+).
- ► Is there a connection between the prediction rule and the distribution of the partially exchangeable partition probability function (pEPPF) that extends what is known in the exchangeable case?
- Can one deduce a Pólya urn scheme from the pEPPF $\Pi_k^{(N)}$?

$$\begin{split} \rho_{1,k+1}(\textbf{\textit{n}}) &= \frac{\Pi_{k+1}^{(N+1)}(\textbf{\textit{n}}_1^+,\textbf{\textit{n}}_2)}{\Pi_k^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2)} = \mathbb{P}[X_{1,N_1+1} = \text{"new"} \, | \, \textbf{\textit{X}}_1^{(N_1)},\textbf{\textit{X}}_2^{(N_2)}] \\ \rho_{1,\ell}(\textbf{\textit{n}}) &= \frac{\Pi_k^{(N_1+1)}(\textbf{\textit{n}}_1^{+\ell},\textbf{\textit{n}}_2)}{\Pi_k^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2)} = \mathbb{P}[X_{1,N_1+1} = X_\ell^* \, | \, \textbf{\textit{X}}_1^{(N_1)},\textbf{\textit{X}}_2^{(N_2)}] \end{split}$$

Prediction and random partition

- If one is able to determine a multivariate predictive probability function {p_{i,j}: 1 ≤ j ≤ k + 1 ≤ n + 1; i = 1,2} that satisfies some suitable conditions then a mSSS is identified (Franzolini et al., 2022+).
- ► Is there a connection between the prediction rule and the distribution of the partially exchangeable partition probability function (pEPPF) that extends what is known in the exchangeable case?
- Can one deduce a Pólya urn scheme from the pEPPF $\Pi_k^{(N)}$?

$$\begin{split} \rho_{1,k+1}(\textbf{\textit{n}}) &= \frac{\Pi_{k+1}^{(N+1)}(\textbf{\textit{n}}_1^+,\textbf{\textit{n}}_2)}{\Pi_k^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2)} = \mathbb{P}[X_{1,N_1+1} = \text{"new"} \, | \, \textbf{\textit{X}}_1^{(N_1)},\textbf{\textit{X}}_2^{(N_2)}] \\ \rho_{1,\ell}(\textbf{\textit{n}}) &= \frac{\Pi_k^{(N_1+1)}(\textbf{\textit{n}}_1^{+\ell},\textbf{\textit{n}}_2)}{\Pi_k^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2)} = \mathbb{P}[X_{1,N_1+1} = X_\ell^* \, | \, \textbf{\textit{X}}_1^{(N_1)},\textbf{\textit{X}}_2^{(N_2)}] \end{split}$$

► Marginally each X_i is a SSS, for i = 1, 2.

From prediction to prior & viceversa

From prediction to prior & viceversa

Approach (1)

- Assess probabilities related only to observable quantities/events
- ► Very challenging (not clear whether even possible) to implement!

From prediction to prior & viceversa

Predictive
$$p_{j,n}$$
 or pEPPF $\Pi_k^{(N)}$ \Longrightarrow $mSSS(\textbf{\textit{X}}_1,\ldots,\textbf{\textit{X}}_J)$ prior (or de Finetti measure) Q_J

Approach (1)

- Assess probabilities related only to observable quantities/events
- Very challenging (not clear whether even possible) to implement!

Approach (2)

- lt amounts to specifying a probability measure Q_J on an infinite-dimensional space
- It can be actually implemented

Flexible dependence structures

and discreteness

 $Corr(\tilde{p}_i(A), \tilde{p}_j(A))$ is available for several special cases of multivariate species sampling proceses: HDP, HNRMI, NDP, LNP, NCoRM, ...

 $Corr(\tilde{p}_i(A), \tilde{p}_j(A))$ is available for several special cases of multivariate species sampling proceses: HDP, HNRMI, NDP, LNP, NCoRM, ...

Main findings common to all these cases:

For any A

 $\operatorname{Corr}(\tilde{p}_i(A), \tilde{p}_j(A))$ does not depend on A

and it is, then, used as an overall measure of pairwise dependence among random probabilities in $(\tilde{p}_1, \dots, \tilde{p}_J)$.

 $Corr(\tilde{p}_i(A), \tilde{p}_j(A))$ is available for several special cases of multivariate species sampling proceses: HDP, HNRMI, NDP, LNP, NCoRM, ...

Main findings common to all these cases:

For any A

$$\operatorname{Corr}(\tilde{p}_i(A), \tilde{p}_j(A))$$
 does not depend on A

and it is, then, used as an overall measure of pairwise dependence among random probabilities in $(\tilde{p}_1, \dots, \tilde{p}_J)$.

Extreme cases

- ▶ X_i and X_j fully exchangeable \implies Corr $(\tilde{p}_i(A), \tilde{p}_j(A)) = 1$
- **X**_i and X_i unconditionally independent \implies Corr $(\tilde{p}_i(A), \tilde{p}_i(A)) = 0$

 $Corr(\tilde{p}_i(A), \tilde{p}_j(A))$ is available for several special cases of multivariate species sampling proceses: HDP, HNRMI, NDP, LNP, NCoRM, ...

Main findings common to all these cases:

For any A

$$\operatorname{Corr}(\tilde{p}_i(A), \tilde{p}_j(A))$$
 does not depend on A

and it is, then, used as an overall measure of pairwise dependence among random probabilities in $(\tilde{p}_1, \dots, \tilde{p}_J)$.

Extreme cases

- ▶ X_i and X_j fully exchangeable \implies Corr $(\tilde{p}_i(A), \tilde{p}_j(A)) = 1$
- $ightharpoonup X_i$ and X_j unconditionally independent \implies $Corr(\tilde{p}_i(A), \tilde{p}_j(A)) = 0$
- ► For any A

$$\operatorname{Corr}(\tilde{p}_i(A), \tilde{p}_j(A)) \geq 0$$

Open problems of interest

- ▶ Is $Corr(\tilde{p}_i(A), \tilde{p}_j(A))$ not dependent on A a general property that holds true beyond the specific examples of priors studied in the literature?
- ▶ What is the implied correlation for the observables from any two samples, i.e. $Corr(X_{i,i}, X_{\ell,i'})$?
 - ► Can $Corr(X_{i,j}, X_{\ell,j'})$ be either positive or negative?
 - What is the role played by the atoms of the underlying discrete random probability measures?
- Are there models for which
 - ightharpoonup Corr $(\tilde{p}_i(A), \tilde{p}_j(A)) = 1$ if and only if $\tilde{p}_i = \tilde{p}_j$
 - $ightharpoonup \operatorname{Corr}(\tilde{p}_i(A), \tilde{p}_i(A)) = 0$ if and only if $\tilde{p}_i \perp \tilde{p}_i$
- How is dependence reflected by the induced random partitions?
- ▶ Is it possible to provide and overall measure of dependence between \tilde{p}_i and \tilde{p}_j that captures the distance between the actual prior specification and the extremes of exchangeability and unconditional independence?
 - Ideally, an index $\mathcal{I} \in [0,1]$ such that $\mathcal{I}=0$ is equivalent to independence and $\mathcal{I}=1$ identifies the other extreme of exchangeability

Correlation with multivariate species sampling processes

Correlation structure with mSSP's

(1) If $(\mathbf{X}_1, \mathbf{X}_2)$ is a mSSS identified by (P_1, P_2) , then

$$Corr(\tilde{p}_{1}(A), \tilde{p}_{2}(A)) = \frac{\mathbb{P}[X_{1,i} = X_{2,j}]}{\sqrt{\mathbb{P}[X_{1,i} = X_{1,\ell}] \mathbb{P}[X_{2,j} = X_{2,\kappa}]}} \ge 0$$

Hence

$$\operatorname{Corr}(\tilde{p}_i(A), \tilde{p}_J(A)) = 0$$
 if and only if $\mathbb{P}[\text{"ties across samples"}] = 0$

(2) If \tilde{p}_1 and \tilde{p}_2 have the same marginal distribution, then

$$\operatorname{Corr}(\tilde{p}_1(A), \tilde{p}_2(A)) = \frac{\mathbb{P}[X_{1,i} = X_{2,j}]}{\mathbb{P}[X_{1,i} = X_{1,\ell}]} = \frac{\operatorname{Prob}[\text{"tie across samples"}]}{\operatorname{Prob}[\text{"tie within a sample"}]}$$

Correlation with multivariate species sampling processes

Correlation structure with mSSP's

(1) If $(\mathbf{X}_1, \mathbf{X}_2)$ is a mSSS identified by (P_1, P_2) , then

$$Corr(\tilde{p}_{1}(A), \tilde{p}_{2}(A)) = \frac{\mathbb{P}[X_{1,i} = X_{2,j}]}{\sqrt{\mathbb{P}[X_{1,i} = X_{1,\ell}] \mathbb{P}[X_{2,j} = X_{2,\kappa}]}} \ge 0$$

Hence

$$\operatorname{Corr}(\tilde{p}_i(A), \tilde{p}_J(A)) = 0$$
 if and only if $\mathbb{P}[\text{"ties across samples"}] = 0$

(2) If \tilde{p}_1 and \tilde{p}_2 have the same marginal distribution, then

$$\operatorname{Corr}(\tilde{p}_1(A), \tilde{p}_2(A)) = \frac{\mathbb{P}[X_{1,i} = X_{2,j}]}{\mathbb{P}[X_{1,i} = X_{1,\ell}]} = \frac{\operatorname{Prob}[\text{"tie across samples"}]}{\operatorname{Prob}[\text{"tie within a sample"}]}$$

- ► Corr $(\tilde{p}_i(A), \tilde{p}_i(A))$ does not depend on A for the general class of mSSP's
- ▶ $Corr(\tilde{p}_i(A), \tilde{p}_j(A))$ exclusively depends on the probabilities of sharing atoms, regardless of their specific value

$$\mathbb{P}[X_{1,i} = X_{2,j}] = \Pi_1^{(2)}(1,1)$$

$$\mathbb{P}[X_{j,i} = X_{j,\ell}] = \Phi_{1,j}^{(2)}(2) \qquad (j = 1,2).$$

Regular multivariate species sampling processes

A proper mSSP can be further rewritten as

$$\tilde{p}_{j} = \sum_{\ell=1}^{L_{0}} w_{\ell}^{(0)} \, \delta_{\theta_{\ell}} + \sum_{k=1}^{K_{j}} w_{k}^{(j)} \delta_{\eta_{j,k}}$$

- ▶ $\theta_{\ell} \stackrel{\text{iid}}{\sim} H$ are shared atoms
- $\blacktriangleright \eta_{j,k} \stackrel{\text{iid}}{\sim} H$ are sample–specific atoms
- $\qquad \qquad \blacktriangleright \ \ L_0, K_j \in \{0,1,\ldots\} \cup \{\infty\}$

Regular multivariate species sampling processes

A proper mSSP can be further rewritten as

$$\tilde{p}_{j} = \sum_{\ell=1}^{L_{0}} w_{\ell}^{(0)} \, \delta_{\theta_{\ell}} + \sum_{k=1}^{K_{j}} w_{k}^{(j)} \delta_{\eta_{j,k}}$$

- ▶ $\theta_{\ell} \stackrel{\text{iid}}{\sim} H$ are shared atoms
- $\blacktriangleright \eta_{i,k} \stackrel{\text{iid}}{\sim} H$ are sample–specific atoms
- ▶ $L_0, K_i \in \{0, 1, ...\} \cup \{\infty\}$

Regular mSSP

A mSSP $(\tilde{p}_1, \tilde{p}_2)$ is said *regular* if either

 $K_1 = K_2 = 0$ (no sample–specific atoms)

or

 $\blacktriangleright \quad (w_k^{(1)})_{k \geq 1} \bot (w_k^{(2)})_{k \geq 1} \quad \text{(independent frequencies of non--shared atoms)}$

Examples and property

- ► Hierarchical NRMIs & hierarchical Pitman–Yor processes regular mSSP since $K_1 = K_2 = 0$ Teh et al. (2006), Camerlenghi et al. (2019)
- Nested Dirichlet processes and latent nested processes regular mSSP since K₁ = K₂ = 0 Rodríguez et al. (2008), Camerlenghi et al. (2019)
- ▶ **GM–dependent processes:** regular mSSP since $K_1 = K_2 = \infty$ and $(w_k^{(1)})_{k \ge 1} \bot (w_k^{(2)})_{k \ge 1}$ Müller, Quintana and Rosner (2004), L., Nipoti and Prünster (2014)

Examples and property

- ► Hierarchical NRMIs & hierarchical Pitman–Yor processes regular mSSP since $K_1 = K_2 = 0$ Teh et al. (2006), Camerlenghi et al. (2019)
- Nested Dirichlet processes and latent nested processes regular mSSP since K₁ = K₂ = 0 Rodríguez et al. (2008), Camerlenghi et al. (2019)
- ► **GM–dependent processes:** regular mSSP since $K_1 = K_2 = \infty$ and $(w_k^{(1)})_{k \ge 1} \perp (w_k^{(2)})_{k \ge 1}$ Müller, Quintana and Rosner (2004), L., Nipoti and Prünster (2014)

Property

If (P_1, P_2) is a regular mSSP, then

- $\operatorname{Corr}(\tilde{p}_1(A), \tilde{p}_2(A)) = 1$ if and only if $\tilde{p}_1 = \tilde{p}_2$ almost surely
- ► Corr($\tilde{p}_1(A), \tilde{p}_2(A)$) = 0 if and only if $\tilde{p}_1 \perp \tilde{p}_2$

Mixture representation of the pEPPF

$$\Pi_k^{(n)}(\boldsymbol{n}_1,\boldsymbol{n}_2) = \int_{\Lambda} \Pi_k^{(n)}(\boldsymbol{n}_1,\boldsymbol{n}_2;\lambda) \, \pi(\mathrm{d}\lambda)$$

Mixture representation of the pEPPF

$$\Pi_k^{(n)}(\boldsymbol{n}_1,\boldsymbol{n}_2) = \int_{\Lambda} \Pi_k^{(n)}(\boldsymbol{n}_1,\boldsymbol{n}_2;\lambda) \, \pi(\mathrm{d}\lambda)$$

For a large family of discrete priors

- there exists $\lambda^* \in \operatorname{supp}(\pi)$ such that $\Pi_k^{(n)}(\boldsymbol{n}_1,\boldsymbol{n}_2;\lambda^*) = \Phi_k^{(n)}(\boldsymbol{n}_1+\boldsymbol{n}_2)$
- $\pi_1 = \pi(\{\lambda^*\}) > 0$

$$\Pi_k^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2) = \pi_1 \underbrace{\Phi_k^{(N)}(\textbf{\textit{n}}_1 + \textbf{\textit{n}}_2)}_{\text{joint exchangeability}} + (1 - \pi_1) \, f_{k,N_1,N_2}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2)$$

Mixture representation of the pEPPF

$$\Pi_k^{(n)}(\boldsymbol{n}_1,\boldsymbol{n}_2) = \int_{\Lambda} \Pi_k^{(n)}(\boldsymbol{n}_1,\boldsymbol{n}_2;\lambda) \, \pi(\mathrm{d}\lambda)$$

For a large family of discrete priors

- there exists $\lambda^* \in \operatorname{supp}(\pi)$ such that $\Pi_k^{(n)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2;\lambda^*) = \Phi_k^{(n)}(\textbf{\textit{n}}_1+\textbf{\textit{n}}_2)$
- $\pi_1 = \pi(\{\lambda^*\}) > 0$

$$\Pi_k^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2) = \pi_1 \underbrace{\Phi_k^{(N)}(\textbf{\textit{n}}_1 + \textbf{\textit{n}}_2)}_{\text{joint exchangeability}} + (1 - \pi_1) \, f_{k,N_1,N_2}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2)$$

Mixture representation of the pEPPF

$$\Pi_k^{(n)}(\boldsymbol{n}_1,\boldsymbol{n}_2) = \int_{\Lambda} \Pi_k^{(n)}(\boldsymbol{n}_1,\boldsymbol{n}_2;\lambda) \, \pi(\mathrm{d}\lambda)$$

For a large family of discrete priors

- ▶ there exists $\lambda^* \in \text{supp}(\pi)$ such that $\Pi_k^{(n)}(\mathbf{n}_1, \mathbf{n}_2; \lambda^*) = \Phi_k^{(n)}(\mathbf{n}_1 + \mathbf{n}_2)$
- $\pi_1 = \pi(\{\lambda^*\}) > 0$

$$\Pi_{k}^{(N)}(\mathbf{n}_{1},\mathbf{n}_{2}) = \pi_{1} \underbrace{\Phi_{k}^{(N)}(\mathbf{n}_{1} + \mathbf{n}_{2})}_{\text{joint exchangeability}} + (1 - \pi_{1}) f_{k,N_{1},N_{2}}(\mathbf{n}_{1},\mathbf{n}_{2})$$

- ► Nested Dirichlet Process (Rodriguez, Dunson & Gelfand, 2008) and Latent Nested Processes (Camerlenghi et al., 2019)
- ► Semi-Hierarchical Dirichlet Process (Beraha, Guglielmi & Quintana, 2020)

Mixture representation of the pEPPF

$$\Pi_k^{(n)}(\mathbf{n}_1,\mathbf{n}_2) = \int_{\Lambda} \Pi_k^{(n)}(\mathbf{n}_1,\mathbf{n}_2;\lambda) \, \pi(\mathrm{d}\lambda)$$

For a large family of discrete priors

- there exists $\lambda^* \in \text{supp}(\pi)$ such that $\Pi_k^{(n)}(\mathbf{n}_1, \mathbf{n}_2; \lambda^*) = \Phi_k^{(n)}(\mathbf{n}_1 + \mathbf{n}_2)$
- $\pi_1 = \pi(\{\lambda^*\}) > 0$

$$\Pi_k^{(N)}(\mathbf{n}_1, \mathbf{n}_2) = \pi_1 \underbrace{\Phi_k^{(N)}(\mathbf{n}_1 + \mathbf{n}_2)}_{\text{joint exchangeability}} + (1 - \pi_1) f_{k, N_1, N_2}(\mathbf{n}_1, \mathbf{n}_2)$$

- Nested Dirichlet Process (Rodriguez, Dunson & Gelfand, 2008) and Latent Nested Processes (Camerlenghi et al., 2019)
- ► Semi-Hierarchical Dirichlet Process (Beraha, Guglielmi & Quintana, 2020)

An example: Hidden Hierarchical Processes (L. Prünster and Rebaudo, 2022; Fasano, L., Prünster and Rebaudo, 2022+)

Hidden hierarchical Pitman-Yor processes

$$\mathsf{Nested\ component}\ \Rightarrow \left\{ \begin{array}{l} \tilde{p}_j \,|\: G \stackrel{\mathrm{iid}}{\sim} G \\ \\ G \,|\: \tilde{p}_0 \sim \mathsf{PY}(\alpha, \gamma; \mathsf{PY}(\beta, \sigma; \tilde{p}_0)) \end{array} \right.$$
 Hierarchical component $\Rightarrow \quad \tilde{p}_0 \sim Q = \mathsf{PY}(\beta_0, \sigma_0; H)$

Hidden hierarchical Pitman-Yor processes

$$\mathsf{Nested \ component} \ \Rightarrow \left\{ \begin{array}{l} \tilde{p}_j \ | \ G \overset{\mathsf{iid}}{\sim} \ G \\ \\ G \ | \ \tilde{p}_0 \sim \mathsf{PY}(\alpha, \gamma; \mathsf{PY}(\beta, \sigma; \tilde{p}_0)) \end{array} \right.$$

Hierarchical component $\Rightarrow \tilde{p}_0 \sim Q = PY(\beta_0, \sigma_0; H)$

Definition

A vector $(\tilde{p}_1, \dots, \tilde{p}_J)$ is a hidden hierarchical Pitman–Yor process (HHPY) if

$$\begin{split} \tilde{p}_{j}|G &\stackrel{\text{iid}}{\sim} G = \sum_{k \geq 1} \omega_{k} \, \delta_{P_{k}^{*}} & (\omega_{k})_{k \geq 1} \sim \mathsf{GEM}(\alpha, \gamma) \\ \\ P_{k}^{*}|\tilde{p}_{0} &\stackrel{\text{iid}}{\sim} \mathsf{PY}(\beta, \sigma; \tilde{p}_{0}) & \tilde{p}_{0} \sim \mathsf{PY}(\beta_{0}, \sigma_{0}; H) \end{split}$$

$$P_k^* | \tilde{p}_0 \stackrel{\text{iid}}{\sim} \mathsf{PY}(\beta, \sigma; \tilde{p}_0) \qquad \qquad \tilde{p}_0 \sim \mathsf{PY}(\beta_0, \sigma_0; H)$$

Notation: $(\tilde{p}_1, \dots, \tilde{p}_J) \sim \mathsf{HHPY}(\psi; P_0)$, where $\psi = (\alpha, \gamma, \sigma, \beta, \sigma_0, \beta_0)$

Hidden hierarchical Pitman-Yor processes

$$\mathsf{Nested \ component} \ \Rightarrow \left\{ \begin{array}{l} \tilde{p}_j \ | \ G \overset{\mathsf{iiid}}{\sim} \ G \\ \\ G \ | \ \tilde{p}_0 \sim \mathsf{PY}(\alpha, \gamma; \mathsf{PY}(\beta, \sigma; \tilde{p}_0)) \end{array} \right.$$

Hierarchical component $\Rightarrow \tilde{p}_0 \sim Q = PY(\beta_0, \sigma_0; H)$

Definition

A vector $(\tilde{p}_1, \dots, \tilde{p}_J)$ is a hidden hierarchical Pitman–Yor process (HHPY) if

$$\begin{split} \tilde{p}_{j}|G &\overset{\text{iid}}{\sim} G = \sum_{k \geq 1} \omega_{k} \, \delta_{P_{k}^{*}} & (\omega_{k})_{k \geq 1} \sim \mathsf{GEM}(\alpha, \gamma) \\ P_{k}^{*}|\tilde{p}_{0} &\overset{\text{iid}}{\sim} \mathsf{PY}(\beta, \sigma; \tilde{p}_{0}) & \tilde{p}_{0} \sim \mathsf{PY}(\beta_{0}, \sigma_{0}; H) \end{split}$$

$$P_k^* | \tilde{p}_0 \overset{\text{iid}}{\sim} \mathsf{PY}(\beta, \sigma; \tilde{p}_0)$$
 $\tilde{p}_0 \sim \mathsf{PY}(\beta_0, \sigma_0; H)$

Notation: $(\tilde{p}_1, \dots, \tilde{p}_J) \sim \mathsf{HHPY}(\psi; P_0)$, where $\psi = (\alpha, \gamma, \sigma, \beta, \sigma_0, \beta_0)$

 $\gamma = \sigma = \sigma_0 = 0$ \Longrightarrow Hidden hierarchical Dirichlet process (HHDP)

pEPPF

When
$$J=2$$

$$\Pi_k^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2) = \frac{1-\gamma}{\alpha+1} \Phi_{k,1}^{(N)}(\textbf{\textit{n}}_1+\textbf{\textit{n}}_2) + \frac{\alpha+\gamma}{\alpha+1} \Phi_{k,2}^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2)$$

pEPPF

When
$$J=2$$

$$\Pi_k^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2) = \frac{1-\gamma}{\alpha+1}\Phi_{k,1}^{(N)}(\textbf{\textit{n}}_1+\textbf{\textit{n}}_2) + \frac{\alpha+\gamma}{\alpha+1}\Phi_{k,2}^{(N)}(\textbf{\textit{n}}_1,\textbf{\textit{n}}_2)$$

With $\mathscr{C}(n, k; \sigma)$ denoting the generalized factorial coefficient

$$\begin{aligned} \Phi_{k,1}^{(N)}(\mathbf{n}_1 + \mathbf{n}_2) &= \frac{\prod_{r=1}^{k-1} (\beta_0 + r\sigma_0)}{(\beta + 1)_{N-1}} \sum_{\ell} \frac{\prod_{s=1}^{|\ell|-1} (\beta + s\sigma)}{(\beta_0 + 1)_{|\ell|-1}} \\ &\times \prod_{j=1}^{k} \frac{\mathscr{C}(\mathbf{n}_{1,j} + \mathbf{n}_{2,j}, \ell_j; \sigma)}{\sigma^{\ell_j}} (1 - \sigma_0)_{\ell_j - 1} \end{aligned}$$

$$\Phi_{k,2}^{(N)}(\pmb{n}_1,\pmb{n}_2)=$$
 available, though it does not correspond to independence $eq \Phi_{k,1}^{(N_1)}(\pmb{n}_1)\Phi_{k,2}^{(N_2)}(\pmb{n}_2)$

Posterior probability of exchangeability

$$\mathbb{P}[\tilde{p}_1 = \tilde{p}_2 \,|\, \textbf{\textit{X}}_1, \textbf{\textit{X}}_2] = \frac{(1 - \gamma) \, \Phi_{k,1}^{(N)}(\textbf{\textit{n}}_1 + \textbf{\textit{n}}_2)}{(1 - \gamma) \Phi_{k,1}^{(N)}(\textbf{\textit{n}}_1 + \textbf{\textit{n}}_2) + (\alpha + \gamma) \Phi_{k,2}^{(N)}(\textbf{\textit{n}}_1, \textbf{\textit{n}}_2)}$$

Posterior probability of exchangeability

$$\mathbb{P}[\tilde{p}_1 = \tilde{p}_2 \,|\, \textbf{\textit{X}}_1, \textbf{\textit{X}}_2] = \frac{(1 - \gamma) \, \Phi_{k,1}^{(N)}(\textbf{\textit{n}}_1 + \textbf{\textit{n}}_2)}{(1 - \gamma) \Phi_{k,1}^{(N)}(\textbf{\textit{n}}_1 + \textbf{\textit{n}}_2) + (\alpha + \gamma) \Phi_{k,2}^{(N)}(\textbf{\textit{n}}_1, \textbf{\textit{n}}_2)}$$

Number of clusters K_N

▶ Distribution of the number of clusters K_N out of $N = N_1 + N_2$ observations from the two samples

Posterior probability of exchangeability

$$\mathbb{P}[\tilde{p}_1 = \tilde{p}_2 \mid \mathbf{X}_1, \mathbf{X}_2] = \frac{(1 - \gamma) \Phi_{k,1}^{(N)}(\mathbf{n}_1 + \mathbf{n}_2)}{(1 - \gamma) \Phi_{k,1}^{(N)}(\mathbf{n}_1 + \mathbf{n}_2) + (\alpha + \gamma) \Phi_{k,2}^{(N)}(\mathbf{n}_1, \mathbf{n}_2)}$$

Number of clusters K_N

- ▶ Distribution of the number of clusters K_N out of $N = N_1 + N_2$ observations from the two samples
- ► Asymptotics of K_N

▶ If
$$N_1 = N_2 = N/2$$
 and $\sigma, \sigma_0 \in (0, 1)$, as $N \to \infty$

$$K_N \simeq N^{\sigma \sigma_0}$$
 a.s.

Posterior probability of exchangeability

$$\mathbb{P}[\tilde{p}_1 = \tilde{p}_2 \mid \mathbf{X}_1, \mathbf{X}_2] = \frac{(1 - \gamma) \Phi_{k,1}^{(N)}(\mathbf{n}_1 + \mathbf{n}_2)}{(1 - \gamma) \Phi_{k,1}^{(N)}(\mathbf{n}_1 + \mathbf{n}_2) + (\alpha + \gamma) \Phi_{k,2}^{(N)}(\mathbf{n}_1, \mathbf{n}_2)}$$

Number of clusters K_N

- ▶ Distribution of the number of clusters K_N out of $N = N_1 + N_2$ observations from the two samples
- ► Asymptotics of K_N

▶ If
$$N_1 = N_2 = N/2$$
 and $\sigma, \sigma_0 \in (0, 1)$, as $N \to \infty$

$$K_N \simeq N^{\sigma \sigma_0}$$
 a.s.

If
$$N_1 = N_2 = N/2$$
 and $\sigma = \sigma_0 = 0$, as $N \to \infty$

$$K_N \simeq \log \log N$$
 a.s.

Dependence and random atoms: beyond mSSP's

If one sticks to a mSSP for partially exchangeable data ($\textbf{X}_1, \textbf{X}_2$), then

- (1) $\operatorname{Corr}(\tilde{\rho}_1(A), \tilde{\rho}_2(A)) \geq 0$
- (2) $\operatorname{Corr}(X_{1,\ell}, X_{2,\kappa}) \geq 0$

Dependence and random atoms: beyond mSSP's

If one sticks to a mSSP for partially exchangeable data (X_1, X_2) , then

- (1) $Corr(\tilde{p}_1(A), \tilde{p}_2(A)) > 0$
- (2) $Corr(X_1, X_2, X_2) > 0$

How recover a wider range of correlations?

▶ Bivariate SSP on X²

$$p_1^* = \sum_{h \ge 1} w_h^{(1)} \, \delta_{(\theta_h, \phi_h)}, \quad p_2^* = \sum_{h \ge 1} w_h^{(2)} \, \delta_{(\theta_h, \phi_h)}, \quad (\theta_h, \phi_h) \stackrel{\text{iid}}{\sim} G_0$$

Projections

$$\boxed{\tilde{p}_1(\,\cdot\,) = p_1^*(\,\cdot\,\times\mathbb{X}) = \sum_{h \geq 1} w_h^{(1)}\,\delta_{\theta_h}} \boxed{\tilde{p}_2(\,\cdot\,) = p_2^*(\mathbb{X}\times\,\cdot\,) = \sum_{h \geq 1} w_h^{(2)}\,\delta_{\phi_h}}$$

$$\widetilde{p}_2(\,\cdot\,) = p_2^*(\mathbb{X} imes \cdot\,) = \sum_{h \geq 1} w_h^{(2)} \, \delta_{\phi_h}$$

Dependence and random atoms: beyond mSSP's

If one sticks to a mSSP for partially exchangeable data (X_1, X_2) , then

- (1) $\operatorname{Corr}(\tilde{p}_1(A), \tilde{p}_2(A)) \geq 0$
- (2) $\operatorname{Corr}(X_{1,\ell}, X_{2,\kappa}) \geq 0$

How recover a wider range of correlations?

► Bivariate SSP on X²

$$p_1^* = \sum_{h \ge 1} w_h^{(1)} \, \delta_{(\boldsymbol{\theta_h}, \phi_h)}, \quad p_2^* = \sum_{h \ge 1} w_h^{(2)} \, \delta_{(\boldsymbol{\theta_h}, \phi_h)}, \quad (\boldsymbol{\theta_h}, \phi_h) \stackrel{\text{iid}}{\sim} G_0$$

Projections

$$\boxed{\tilde{p}_1(\,\cdot\,) = p_1^*(\,\cdot\,\times\,\mathbb{X}) = \sum_{h\geq 1} w_h^{(1)}\,\delta_{\theta_h}} \quad \boxed{\tilde{p}_2(\,\cdot\,) = p_2^*(\mathbb{X}\times\,\cdot\,) = \sum_{h\geq 1} w_h^{(2)}\,\delta_{\phi_h}}$$

$$(\tilde{p}_1, \tilde{p}_2)$$
 is a bivariate SSP iff: **(1)** $G_0 = P_0^2$ (independence) or **(2)** $G_0(\{\theta_h = \phi_h, \text{ for any } h\}) = 1$ (shared atoms)

Correlations with any sign

Probability of a tie within sample 1 or sample 2

$$\beta = \mathbb{P}[X_{1,i} = X_{1,j}] = \mathbb{P}[X_{2,i'} = X_{2,j'}] = \sum_{k \ge 1} \mathbb{E}\{w_k^{(1)}\}^2$$

Probability of a hyper–tie between sample 1 and sample 2

$$\gamma = \mathbb{P}[(X_{1,1}, X_{2,1}) = (\theta_k, \phi_k) \text{ for some } k] = \sum_{k \ge 1} \mathbb{E} w_k^{(1)} w_k^{(2)}$$

Correlations with any sign

Probability of a tie within sample 1 or sample 2

$$\beta = \mathbb{P}[X_{1,i} = X_{1,j}] = \mathbb{P}[X_{2,i'} = X_{2,j'}] = \sum_{k \ge 1} \mathbb{E}\{w_k^{(1)}\}^2$$

Probability of a hyper-tie between sample 1 and sample 2

$$\gamma = \mathbb{P}[(X_{1,1}, X_{2,1}) = (\theta_k, \phi_k) \text{ for some } k] = \sum_{k \ge 1} \mathbb{E} w_k^{(1)} w_k^{(2)}$$

Ties vs hyper-ties

Correlations with any sign

Probability of a tie within sample 1 or sample 2

$$\beta = \mathbb{P}[X_{1,i} = X_{1,j}] = \mathbb{P}[X_{2,i'} = X_{2,j'}] = \sum_{k \ge 1} \mathbb{E}\{w_k^{(1)}\}^2$$

Probability of a hyper–tie between sample 1 and sample 2

$$\gamma = \mathbb{P}[(\mathbf{X}_{1,1}, X_{2,1}) = (\theta_k, \phi_k) \text{ for some } k] = \sum_{k \geq 1} \mathbb{E} w_k^{(1)} w_k^{(2)}$$

Ties vs hyper-ties

- ▶ $0 \le \gamma \le \beta$ ▶ $\gamma = \beta$ if and only if $w_k^{(1)} \stackrel{\text{a.s.}}{=} w_k^{(2)}$, for any k.

How do the probabilities of tie (β) and of hyper–tie (γ) relate to correlations within and between samples?

Ties and hyper-ties probabilities

Correlations and ties/hyper-ties

$$\mathsf{Corr}(X_{1,i},X_{1,j}) = \mathsf{Corr}(X_{2,i'},X_{2,j'}) = \beta$$

$$\operatorname{Corr}(X_{1,1}, X_{2,1}) = \gamma \rho_0$$
 where $\rho_0 = \operatorname{Corr}(\theta_1, \phi_1)$

Ties and hyper-ties probabilities

Correlations and ties/hyper-ties

$$\begin{split} \operatorname{Corr}(X_{1,i},X_{1,j}) &= \operatorname{Corr}(X_{2,i'},X_{2,j'}) = \beta \\ & \operatorname{Corr}(X_{1,1},X_{2,1}) = \gamma \rho_0 \qquad \text{where} \quad \rho_0 = \operatorname{Corr}(\theta_1,\phi_1) \end{split}$$

Corollary

- **1)** $Corr(X_{1,1}, X_{2,1}) \in [-\beta, \beta]$
- **2)** $|\text{Corr}(X_{1,1}, X_{2,1})| = \beta$ if and only if: **2.1)** $\omega_k^{(1)} \stackrel{\text{a.s.}}{=} \omega_k^{(2)}$ for any k **2.2)** $|\rho_0| = 1$

Ties and hyper-ties probabilities

Correlations and ties/hyper-ties

$$\begin{split} \operatorname{Corr}(X_{1,i},X_{1,j}) &= \operatorname{Corr}(X_{2,i'},X_{2,j'}) = \beta \\ & \operatorname{Corr}(X_{1,1},X_{2,1}) = \gamma \rho_0 \qquad \text{where} \quad \rho_0 = \operatorname{Corr}(\theta_1,\phi_1) \end{split}$$

Corollary

- **1)** $Corr(X_{1,1}, X_{2,1}) \in [-\beta, \beta]$
- **2)** $|\text{Corr}(X_{1,1}, X_{2,1})| = \beta$ if and only if: **2.1)** $\omega_k^{(1)} \stackrel{\text{a.s.}}{=} \omega_k^{(2)}$ for any k **2.2)** $|\rho_0| = 1$

Full Range of Borrowing Information (FuRBI): independence shrinkage repulsion / negative correlation

An effective proposal: nFuRBI priors

Completely random vector

$$(\tilde{\mu}_1, \tilde{\mu}_2) = \Big(\sum_{h \geq 1} J_h \, \delta_{(\theta_h, \phi_h)}, \sum_{h \geq 1} W_h \, \delta_{(\theta_h, \phi_h)}\Big)$$

where $(J_h, W_h, \theta_h, \phi_h)_{h>1}$ are points of a Poisson process with Lévy intensity

$$\nu(\mathrm{d}s_1,\mathrm{d}s_2,\mathrm{d}\theta,\mathrm{d}\phi) = \rho(s_1,s_2)\mathrm{d}s_1\mathrm{d}s_2\ G_0(\mathrm{d}\theta,\mathrm{d}\phi)$$

and
$$G_0(\cdot \times \mathbb{X}) = G_0(\mathbb{X} \times \cdot) = P_0(\cdot)$$

▶ Projections of $(\tilde{\mu}_1, \tilde{\mu}_2)$

$$\mu_1(\,\cdot\,) = \tilde{\mu}_1(\,\cdot\,\times\,\mathbb{X}), \quad \mu_2(\,\cdot\,) = \tilde{\mu}_2(\mathbb{X}\times\,\cdot\,)$$

An effective proposal: nFuRBI priors

Completely random vector

$$(\tilde{\mu}_1, \tilde{\mu}_2) = \Big(\sum_{h \geq 1} J_h \, \delta_{(\theta_h, \phi_h)}, \sum_{h \geq 1} W_h \, \delta_{(\theta_h, \phi_h)}\Big)$$

where $(J_h, W_h, \theta_h, \phi_h)_{h>1}$ are points of a Poisson process with Lévy intensity

$$\nu(\mathrm{d}s_1,\mathrm{d}s_2,\mathrm{d}\theta,\mathrm{d}\phi) = \rho(s_1,s_2)\mathrm{d}s_1\mathrm{d}s_2 G_0(\mathrm{d}\theta,\mathrm{d}\phi)$$

and
$$G_0(\cdot \times \mathbb{X}) = G_0(\mathbb{X} \times \cdot) = P_0(\cdot)$$

▶ Projections of $(\tilde{\mu}_1, \tilde{\mu}_2)$

$$\mu_1(\cdot) = \tilde{\mu}_1(\cdot \times \mathbb{X}), \quad \mu_2(\cdot) = \tilde{\mu}_2(\mathbb{X} \times \cdot)$$

nFuRBI priors

If ho is such that $\int_{\mathbb{R}^2_+}
ho(s_1,s_2) \, \mathrm{d} s_1, \mathrm{d} s_2 = \infty$, then

$$(\tilde{p}_1, \tilde{p}_2) = (\mu_1/\mu_1(\mathbb{X}), \, \mu_2/\mu_2(\mathbb{X}))$$

is a normalized FuRBI CRM or, in short, nFuRBI prior.

With $k_i \leq N_1$ and $k_2 \leq N_2$, let

- (1) $X_{1,1}^*, \dots, X_{1,k_1}^*$ distinct values in $X_1^{(N_1)}$
- (2) $X_{2,1}^*, \dots, X_{2,k_2}^*$ distinct values in $\mathbf{X}_2^{(N_2)}$

Predictive distribution

Conditional on samples $\boldsymbol{X}_1^{(N_1)}$ and $\boldsymbol{X}_2^{(N_2)}$ as in (1)–(2), one has

$$X_{1,N_{1}+1} | (\boldsymbol{X}_{1}^{(N_{1})}, \boldsymbol{X}_{2}^{(N_{2})}) \sim \xi_{0} P_{0} + \sum_{i=1}^{k_{1}} \xi_{1,i} \delta_{X_{1,i}^{*}} + \sum_{i=1}^{k_{2}} \xi_{2,i} P_{X_{2,i}^{*}}$$

$$X_{2,N_2+1} | (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) \sim \eta_0 P_0 + \sum_{i=1}^{k_2} \eta_{2,i} \, \delta_{X_{2,i}^*} + \sum_{i=1}^{k_1} \eta_{1,i} P_{X_{1,i}^*}$$

With $k_i \leq N_1$ and $k_2 \leq N_2$, let

- (1) $X_{1,1}^*, \dots, X_{1,k_1}^*$ distinct values in $X_1^{(N_1)}$
- (2) $X_{2,1}^*, \dots, X_{2,k_2}^*$ distinct values in $\mathbf{X}_2^{(N_2)}$

Predictive distribution

Conditional on samples $\mathbf{X}_1^{(N_1)}$ and $\mathbf{X}_2^{(N_2)}$ as in (1)–(2), one has

$$X_{1,N_1+1} | (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) \sim \xi_0 P_0 + \sum_{i=1}^{k_1} \xi_{1,i} \delta_{X_{1,i}^*} + \sum_{i=1}^{k_2} \xi_{2,i} P_{X_{2,i}^*}$$

$$X_{2,N_2+1} | (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) \sim \eta_0 P_0 + \sum_{i=1}^{k_2} \eta_{2,i} \, \delta_{X_{2,i}^*} + \sum_{i=1}^{k_1} \eta_{1,i} P_{X_{1,i}^*}$$

With $k_i \leq N_1$ and $k_2 \leq N_2$, let

- (1) $X_{1,1}^*, \dots, X_{1,k_1}^*$ distinct values in $X_1^{(N_1)}$
- (2) $X_{2,1}^*, \dots, X_{2,k_2}^*$ distinct values in $\mathbf{X}_2^{(N_2)}$

Predictive distribution

Conditional on samples $\mathbf{X}_{1}^{(N_{1})}$ and $\mathbf{X}_{2}^{(N_{2})}$ as in (1)–(2), one has

$$X_{1,N_1+1} | (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) \sim \xi_0 P_0 + \sum_{i=1}^{k_1} \xi_{1,i} \delta_{X_{1,i}^*} + \sum_{i=1}^{k_2} \xi_{2,i} P_{X_{2,i}^*}$$

$$X_{2,N_2+1} | (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) \sim \eta_0 P_0 + \sum_{i=1}^{k_2} \eta_{2,i} \, \delta_{X_{2,i}^*} + \sum_{i=1}^{k_1} \eta_{1,i} P_{X_{1,i}^*}$$

With $k_i \leq N_1$ and $k_2 \leq N_2$, let

- (1) $X_{1,1}^*, \dots, X_{1,k_1}^*$ distinct values in $X_1^{(N_1)}$
- (2) $X_{2,1}^*, \dots, X_{2,k_2}^*$ distinct values in $X_2^{(N_2)}$

Predictive distribution

Conditional on samples $\mathbf{X}_1^{(N_1)}$ and $\mathbf{X}_2^{(N_2)}$ as in (1)–(2), one has

$$X_{1,N_1+1} | (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) \sim \xi_0 P_0 + \sum_{i=1}^{k_1} \xi_{1,i} \delta_{X_{1,i}^*} + \sum_{i=1}^{k_2} \xi_{2,i} P_{X_{2,i}^*}$$

$$X_{2,N_2+1} | (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) \sim \eta_0 P_0 + \sum_{i=1}^{k_2} \eta_{2,i} \, \delta_{\boldsymbol{X}_{2,i}^*} + \sum_{i=1}^{k_1} \eta_{1,i} P_{\boldsymbol{X}_{1,i}^*}$$

With $k_i \leq N_1$ and $k_2 \leq N_2$, let

- (1) $X_{1,1}^*, \dots, X_{1,k_1}^*$ distinct values in $X_1^{(N_1)}$
- (2) $X_{2,1}^*, \dots, X_{2,k_2}^*$ distinct values in $X_2^{(N_2)}$

Predictive distribution

Conditional on samples $\mathbf{X}_1^{(N_1)}$ and $\mathbf{X}_2^{(N_2)}$ as in (1)–(2), one has

$$X_{1,N_1+1} \mid (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) \sim \xi_0 P_0 + \sum_{i=1}^{k_1} \xi_{1,i} \delta_{X_{1,i}^*} + \sum_{i=1}^{k_2} \xi_{2,i} P_{X_{2,i}^*}$$

$$X_{2,N_2+1} | (\boldsymbol{X}_1^{(N_1)}, \boldsymbol{X}_2^{(N_2)}) \sim \eta_0 P_0 + \sum_{i=1}^{k_2} \eta_{2,i} \, \delta_{X_{2,i}^*} + \sum_{i=1}^{k_1} \eta_{1,i} P_{X_{1,i}^*}$$

Posterior distribution

Posterior distribution

If $\mathbf{X}_1^{(N_1)}$ and $\mathbf{X}_2^{(N_2)}$ are samples as in (1)–(2), conditional on a suitable set of latent variables, the posterior distribution of P_1 equals the distribution of the random probability measure

$$w_{1,n}P_1^* + w_{2,n} \sum_{i} \pi_{1,i} \, \delta_{X_{1,i}^*} + (1 - w_{2,n} - w_{3,n}) \sum_{j} \pi_{2,j} \delta_{Z_{X_{2,j}^*}}$$

where $Z_{X_{2,j}^*} \stackrel{\text{ind}}{\sim} P_{X_{2,j}^*}$. Similar representation holds true for P_2 .

Posterior distribution

Posterior distribution

If $\mathbf{X}_1^{(N_1)}$ and $\mathbf{X}_2^{(N_2)}$ are samples as in (1)–(2), conditional on a suitable set of latent variables, the posterior distribution of P_1 equals the distribution of the random probability measure

$$w_{1,n}P_1^* + w_{2,n} \sum_i \pi_{1,i} \, \delta_{X_{1,i}^*} + (1 - w_{2,n} - w_{3,n}) \sum_j \pi_{2,j} \delta_{Z_{X_{2,j}^*}}$$

where $Z_{X_{2,j}^*} \stackrel{\text{ind}}{\sim} P_{X_{2,j}^*}$. Similar representation holds true for P_2 .

Mixture of

- ► an updated nFURBI (P₁*)
- a weighted empirical distribution of the sample data
- ▶ a weighted empirical distribution of a transformation of the other sample's data $\Rightarrow G_0\{\theta_k = \phi_k, \text{ for any } k\} = 1, \text{ then } Z_{X_{2,j}^*} = X_{2,j}^*$: standard posterior characterization of random measure—beased models.
- ► Talk by Beatrice Franzolini (Monday)

Measuring dependence

Several priors for partially exchangeable data are transformations of completely random vectors $\tilde{\mu} = (\tilde{\mu}_1, \dots, \tilde{\mu}_J)$, i.e.

$$\tilde{p}_j = T(\tilde{\mu}_j), \qquad i = 1, \dots, J$$

ightharpoonup Several priors for partially exchangeable data are transformations of completely random vectors $\tilde{\mu}=(\tilde{\mu}_1,\ldots,\tilde{\mu}_J)$, i.e.

$$\tilde{p}_j = T(\tilde{\mu}_j), \qquad i = 1, \dots, J$$

- ► Two extreme situations
 - lacktriangle Complete dependence or co-monotonicity $ilde{\mu}^{ extsf{CO}}$

$$\tilde{\mu}_1 = \cdots = \tilde{\mu}_J$$
 (a.s.)

▶ Independence $\tilde{\mu}^{\perp}$, with independent components of $\tilde{\mu} = (\mu_1, \dots, \mu_j)$

Several priors for partially exchangeable data are transformations of completely random vectors $\tilde{\mu}=(\tilde{\mu}_1,\ldots,\tilde{\mu}_J)$, i.e.

$$\tilde{p}_j = T(\tilde{\mu}_j), \qquad i = 1, \dots, J$$

- ► Two extreme situations
 - ightharpoonup Complete dependence or co-monotonicity $ilde{\mu}^{ extsf{CO}}$

$$\tilde{\mu}_1 = \cdots = \tilde{\mu}_J$$
 (a.s.)

▶ Independence $\tilde{\mu}^{\perp}$, with independent components of $\tilde{\mu} = (\mu_1, \dots, \mu_j)$

A possible index

For some distance d and completely random vector $ilde{oldsymbol{\mu}}$

$$\mathcal{I}_{d}(\tilde{\boldsymbol{\mu}}) = 1 - \frac{d^{2}(\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\mu}}^{CO})}{\sup_{\boldsymbol{\mu}'} d^{2}(\boldsymbol{\mu}', \tilde{\boldsymbol{\mu}}^{CO})}$$

Several priors for partially exchangeable data are transformations of completely random vectors $\tilde{\mu} = (\tilde{\mu}_1, \dots, \tilde{\mu}_J)$, i.e.

$$\tilde{p}_j = T(\tilde{\mu}_j), \qquad i = 1, \ldots, J$$

- Two extreme situations
 - ightharpoonup Complete dependence or co-monotonicity $\tilde{\mu}^{\text{CO}}$

$$\tilde{\mu}_1 = \cdots = \tilde{\mu}_J$$
 (a.s.)

▶ Independence $\tilde{\mu}^{\perp}$, with independent components of $\tilde{\mu} = (\mu_1, \dots, \mu_j)$

A possible index

For some distance d and completely random vector $ilde{\mu}$

$$\mathcal{I}_{\textit{d}}(\tilde{\mu}) = 1 - \frac{\textit{d}^2(\tilde{\mu}, \tilde{\mu}^{\text{CO}})}{\sup_{\mu'} \textit{d}^2(\mu', \tilde{\mu}^{\text{CO}})}$$

Which d? Based on an extended Wasserstein distance d_W between the corresponding Lévy intensities ν^1 and ν^2

$$\mathcal{W}(\tilde{\mu}_1, \tilde{\mu}_2) = \sup_A d_W(\nu_A^1, \nu_A^2)$$

The Wasserstein based index of dependence

If for some completely random vector $\tilde{\mu}$, a prior is defined through $\tilde{p}_i = T(\tilde{\mu}_i)$, how close is such a specification from the exchangeability extreme?

For any completely random vector $ilde{m{\mu}}, \mathcal{I}_{\mathcal{W}}(ilde{m{\mu}}) \in [0,1].$ Moreover

- $lacksquare \mathcal{I}_{\mathcal{W}}(ilde{\mu}) = 1$ if and only if $ilde{\mu} = ilde{\mu}^{\mathsf{CO}}$
- $lackbox{} \mathcal{I}_{\mathcal{W}}(ilde{m{\mu}}) = \mathbf{0}$ if and only if $ilde{m{\mu}} = ilde{m{\mu}}^\perp$

The Wasserstein based index of dependence

If for some completely random vector $\tilde{\mu}$, a prior is defined through $\tilde{p}_i = T(\tilde{\mu}_i)$, how close is such a specification from the exchangeability extreme?

For any completely random vector $\tilde{\mu}, \mathcal{I}_{\mathcal{W}}(\tilde{\mu}) \in [0, 1]$. Moreover

- $ightharpoonup \mathcal{I}_{\mathcal{W}}(\tilde{\mu}) = 1$ if and only if $\tilde{\mu} = \tilde{\mu}^{\mathsf{CO}}$
- lacksquare $\mathcal{I}_{\mathcal{W}}(ilde{oldsymbol{\mu}})=0$ if and only if $ilde{oldsymbol{\mu}}= ilde{oldsymbol{\mu}}^{\perp}$

- ► Evaluation for some classes of priors
 - $\tilde{\mu}$ a completely random vector with an additive structure (L., Nipoti and Prünster, 2014)
 - Compound random measures (Griffin and Leisen, 2017)
- Possible extension to posterior distribution would allow testing for distributional homogeneity

The Wasserstein based index of dependence

If for some completely random vector $\tilde{\mu}$, a prior is defined through $\tilde{p}_i = T(\tilde{\mu}_i)$, how close is such a specification from the exchangeability extreme?

For any completely random vector $\tilde{\mu}, \mathcal{I}_{\mathcal{W}}(\tilde{\mu}) \in [0, 1]$. Moreover

- $ightharpoonup \mathcal{I}_{\mathcal{W}}(ilde{\mu}) = 1$ if and only if $ilde{\mu} = ilde{\mu}^{CO}$
- $lacksquare \mathcal{I}_{\mathcal{W}}(ilde{oldsymbol{\mu}}) = 0$ if and only if $ilde{oldsymbol{\mu}} = ilde{oldsymbol{\mu}}^\perp$

- ► Evaluation for some classes of priors
 - $\tilde{\mu}$ a completely random vector with an additive structure (L., Nipoti and Prünster, 2014)
 - Compound random measures (Griffin and Leisen, 2017)
- Possible extension to posterior distribution would allow testing for distributional homogeneity

Talks by Marta Catalano (Wednesday) and Hugo Lavenant (Tuesday)

References

ASCOLANI, FRANZOLINI, LIJOI and PRÜNSTER (2022). Nonparametric priors with full-range borrowing of information. *Under revision*.

CATALANO, LIJOI and PRÜNSTER (2021). Measuring dependence in the Wasserstein distance for Bayesian nonparametric models. *Ann. Statist.* **49**, 2916–2947.

CATALANO, LAVENANT, LIJOI and PRÜNSTER (2022). A Wasserstein index of dependence for random measures. *arxiv.2109.06646* [math.ST], under revision.

DURANTE, GAFFI, LIJOI and PRÜNSTER (2022). Partially—exchangeable multilayer stochastic block models. *In progress*.

FASANO, LIJOI, PRÜNSTER and REBAUDO (2022+). Prediction in species sampling problems via hidden hierarchical Pitman—Yor processes. *In progress*.

FRANZOLINI, LIJOI, PRÜNSTER and REBAUDO (2022+). Multivariate species sampling proceses. *In progress*.

LIJOI, PRÜNSTER and REBAUDO (2022). Flexible clustering via hidden hierarchical Dirichlet priors. *Scand. J. Statist.*, to appear.

