

Central Limit Theorem

Central Limit Theorem

Central Limit Theorem

$$\overline{x} \sim \text{Normal}(\mu, \frac{\sigma}{\sqrt{n}}) \implies \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} \sim \text{Normal}(0, 1)$$

$$\overline{x} \sim \text{Normal}(\mu, \frac{\sigma}{\sqrt{n}}) \implies \left(\frac{\overline{x} - \mu}{\sigma/\sqrt{n}}\right) \sim \text{Normal}(0, 1)$$

z-statistic =
$$\frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$
 ~ Normal(0, 1)

z-statistic =
$$\frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$
 ~ Normal(0, 1)

z-statistic =
$$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
 ~ Normal(0, 1)

Need to know σ to use the z-statistic

t-statistic =
$$\frac{\overline{x} - \mu}{s/\sqrt{n}}$$
 $\sim t_{n-1}$

z-statistic =
$$\frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$
 ~ Normal(0, 1)

t-statistic =
$$\frac{\overline{x} - \mu}{s/\sqrt{n}}$$
 $\sim t_{n-1}$

z-statistic =
$$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
 ~ Normal(0, 1)

t-statistic =
$$\frac{\overline{x} - \mu}{s/\sqrt{n}}$$
 $\sim t_{n-1}$

z-statistic =
$$\frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$
 ~ Normal(0, 1)

t-statistic =
$$\frac{\overline{x} - \mu}{s/\sqrt{n}}$$
 $\sim t_{n-1}$