Lecture 2

Fields and Polynomials

2.1 Recall from last class

Example. We showed that $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is prime.

Explanation. We have two cases.

- (i) If n is prime we use Bezout's lemma to find inverses.
- (ii) If n is composite, we get zero-divisors. That is, if n is composite, there exist a,b with $2 \le a \le b \le n-1$ such that n=ab. So then we have $ab \equiv 0 \mod n$ so a and b form a pair of zero divisors; that is, nonzero elements in $\mathbb{Z}/n\mathbb{Z}$ whose product is 0.

Note. This contradiction arises from something we proved in 295. If F is a field and $a, b \in F$ such that ab = 0, then either a = 0 or b = 0. In other words, a field can not have zero divisors.

2.2 Ring Homomorphisms

Lemma 1. Let F be a field. Then there exists a unique $\varphi \colon \mathbb{Z} \to F$ such that for all $n,m \in \mathbb{Z}$

- (i) $\varphi(1) = 1_F$
- (ii) $\varphi(n+m) = \varphi(n) +_F \varphi(m)$, that is φ is a group homomorphism with respect to +
- (iii) $\varphi(n \cdot m) = \varphi(n) \cdot_F \varphi(m)$.

Lingo. A function $\varphi \colon \mathbb{Z} \to F$ (or from any ring) that satisfies (i), (ii), and (iii) is called a ring homomorphism.

Proof. We can construct φ from these properties, building it from the ground up. To satisfy (i), we define $\varphi(i) := 1_F$. Then by (ii), we have $\varphi(2) := \varphi(1+1) = \varphi(1) +_F \varphi(1) = 1_F +_F +1_F$. Naturally, $\varphi(3) :=$

 $1_F +_F 1_F +_F 1_F$ and so forth. So we define

$$\varphi(n) := \underbrace{1_F +_f \cdots +_F 1_F}_{n \text{ times}}.$$

We have that (1) and (2) hold by construction, and by some casework we have $\varphi(\underbrace{1+\cdots+1}_{n\cdot m \text{ times}}) = \underbrace{1_F +_F \cdots +_F 1_F}_{n\cdot m \text{ times}} = \varphi(n) \cdot_F \varphi(m)$, satisfying (3).

This construction is unique since it was completely determined by (1) and (2), and we got (3) as a consequence of using the ring \mathbb{Z} , we can take this as a definition.

Lemma 2. Let F be a field, Let $\varphi \colon \mathbb{Z} \to F$ be the ring homomorphism we just defined. Then either

- (i) $ker(\varphi) = \{0\}$ if and only if φ is injective, or
- (ii) $\ker(\varphi) = p\mathbb{Z}$ for some prime p.

Proof. If φ is injective, then $\ker(\varphi) = \{0\}$ (by homework). Suppose φ is not injective. Then there exists $n \in \mathbb{N}$ such that $\ker(\varphi) = n\mathbb{Z}$. Write n = ab for some integers a,b such that $1 \le a \le b \le n$, so $\varphi(n) = \varphi(a) \cdot_F \varphi(b)$. That is we have $0_F = \varphi(a) \cdot_F \varphi(b)$ so $\varphi(a) = 0$ or $\varphi(b) = 0$ without loss of generality.

2.3 Characteristic

Definition 1 (Characteristic). Let F be a field. Let $\varphi \colon \mathbb{Z} \to F$ be the unique ring homomorphism. If φ is injective, then we say that F has characteristic 0. If φ is not injective, then we say F has characteristic p, where $\ker(\varphi) = p\mathbb{Z}$.

Example. $\operatorname{char}(\mathbb{C}) = 0$

Example. $char(\mathbb{R}) = 0$

Example. $\operatorname{char}(\mathbb{Z}/67\mathbb{Z}) = 67$

Example. There are examples of infinite fields that have prime characteristic. Let's start with $F_p = \mathbb{Z}/p\mathbb{Z}$. Then we have the ring

 $F_p[x] := \{ \text{polynomials with coefficients in } \mathbb{Z}/p\mathbb{Z} \text{ with variable } x \}$

Here are some definitions and theorems that are literally only for the purpose of this example.

Definition 2 (Integral Domain [Hungerford]). A commutative ring R with identity $1_R \neq 0$ and no zero divisors is called an integral domain.

Definition 3 ([Hungerford]). A nonempty subset S of a ring R is multiplicative provided that $a, b \in S$ implies $ab \in S$.

Theorem 1 ([Hungerford]). Let S be a multiplicative subset of a commutative ring R. The relation defined on the set $R \times S$ by

$$(r,s) \sim (r',s')$$
 if and only if $s_i(rs'-r's)=0$ for some $s \in S$

is an equivalence relation. Furthermore if R has no zero divisors and $0 \notin S$, then

$$(r,s) \sim (r',s')$$
 if and only if $rs' - r's = 0$.

Proof. You do it. Not me. Or see Hungerford Chapter III Theorem 4.2. This is not really not part of this class. I will not do it. \Box

Theorem 2 ([Hungerford]). Denote the equivalence class $(r, s) \in R \times S$ by r/s. Let $S^{-1}R$ be the set of all equivalence classes of $R \times S$ under the equivalence relation \sim above.

(i) $S^{-1}R$ is a commutative ring with identity, where addition and multiplication are defined by

$$r/s + r'/s' = (rs' + r's)/ss'$$
 and $(r/s)(r'/s') = rr'/ss'$.

- (ii) If R is a nonzero ring with no zero divisors and $0 \in S$, then $S^{-1}R$ is an integral domain.
- (iii) If R is a nonzero ring with no zero divisors and S is the set of all nonzero elements of R, then $S^{-1}R$ is a field.

Proof. You do this one too. Not me. Or see Hungerford Chapter III Theorem 4.3. This is still not part of this class. \Box

Definition 4 (Ring of Quotients [Hungerford]). The ring $S^{-1}R$ is called the ring of quotients (often ring of fractions or quotient ring) of R by S. In the case where S is the set of all nonzero elements in an integral domain R, then $S^{-1}R$ is a field called the quotient field (often field of fractions) of the integral domain R.

Remark. This is the same construction we used to create \mathbb{Q} from \mathbb{Z} .

Let R(x) be the quotient field of R[x]. To make this more understandable,

$$R(x) = \{ p/q \mid p \in R[x], q \in R[x] \setminus \{0\} \}.$$

We call R(x) the field of rational functions over R. This is an infinite field. So the field of rational functions $F_p(x)$ over F_p forms an infinite field with characteristic p.

Explanation. It is up to you to prove all the assumptions above. That is, you should prove that the polynomials in one variable over a field form a ring, and further, an integral domain. You should verify the aforementioned theorems. You should show that R(x) is indeed infinite. You should prove that the characteristic of $F_p(x)$ is p. It really is not part of this class. It is just a good example. I will not do it. I will not do it. I will not do it.

Lemma 3. Suppose F is a finite field, then $\varphi \colon \mathbb{Z} \to F$ can not be injective, so F has prime characteristic.

Lemma 4. If
$$F$$
 has characteristic p , then $\underbrace{1_F + \dots + 1_F}_{p \text{ times}} = 0$ and if $\underbrace{1_F + \dots + 1_F}_{p \text{ times}} = 0$ then $p \mid n$.

2.4 Polynomials

Definition 5 (Polynomial). A polynomial over a finite field F is a formal expression of the form $a_n x^n + \cdots + a_1 x + a_0$ where $n \in \mathbb{N} \cup \{0\}$ and $a_i \in F$ for all $0 \le i \le n$, and x is a formal variable.

Note. This is not a function like in 295.

Definition 6. The set of all polynomials with coefficients in F is denoted F[x].

Definition 7. The 0 polynomial is called the trivial polynomial.

Definition 8 (Degree of a Polynomial). A nontrivial polynomial can be written as $b(x) = b_0 + b_1 x + \cdots + b_{\ell} x^{\ell}$ with $b_{\ell} \neq 0$. In this case, we say b has degree ℓ .

Remark. What should the degree of the trivial polynomial be? Some say -1. Others $-\infty$ to heuristically satisfy that for all $p, q \in F[x]$

$$\deg(p \cdot q) = \deg(p) + \deg(q)$$

Definition 9 (Polynomial Function). A polynomial function is a function $F \to F$ that can be defined by evaluating a polynomial in F[x].

Example. To make the distinction between polynomials and polynomial functions clear, consider $f, g: \mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ where $f(x) = x^3 + x$ and g(x) = 2x. These are different polynomials, but the same function.

Lemma 5. If $p, q \in F[x]$ and $c \in F$, then

- (i) $p + q \in F[x]$
- (ii) $p \cdot q \in F[x]$
- (iii) $c \cdot p \in F[x]$.

Lemma 6 (Descartes). Let $\alpha \in F$ and let $p \in F[x]$ be nonzero. Then $p(\alpha) = 0$ if and only if there exists $q \in F[x]$ with $\deg(p) = \deg(q) + 1$ such that $p(x) = (x - \alpha)q(x)$.

Proof. The backwards implication is immediate from evaluating the expression. For the forward implication, since p is nonzero and $p(\alpha) = 0$ we must have $\deg(p) \geq 1$. Write $p(x) = c_m x^m + \cdots + c_1 x + c_0$ with $c_i \in F$. Then $p(\alpha) = c_m \alpha^m + \cdots + c_1 \alpha + c_0$. So we have $p(x) = p(x) - 0 = p(x) - p(\alpha) = c_m (x^m - \alpha^m) + \cdots + c_1 (x - \alpha)$. Then from homework this is $= (x - \alpha) \sum_{i=1}^m c_i G_{i-1}(\alpha, x)$ where we apply $x^i - \alpha^i = (x - \alpha) \cdot G_{i-1}(x, \alpha)$

where $G_n(\alpha, x) = \sum_{k=0}^n x^n \alpha^{n-k}$ to each term and factor out $(x - \alpha)$, leaving us with q(x) with $\deg(q) = m - 1$.

Definition 10 (Root of a Polynomial). Let $p \in F[x]$ be nonzero. The field element $\alpha \in F$ is called a root or a zero of p provided that $p(\alpha) = 0$.

Corollary. Let $p \in F[x]$ be nonzero. Then p has $\leq \deg(p)$ roots in F.

Proof. Note that the statement holds if $\deg(p)=0$. We will use induction on $\deg(p)$. Let our candidate inductive set be $S:=\{n\in\mathbb{N}\mid \text{if }q\in F[x]\text{ is nonzero and has }\deg(q)\leq n, \text{ then }q\text{ has }\leq \deg(q)\text{ roots}\}.$ We have that $1\in S$, since polynomials of degree one are of the form q(x)=ax+b with $a,b\in F$ and $a\neq 0$, so we can just solve for the root. Suppose $k\in S$ and let $q\in F[x]$ be nonzero with degree k+1. If q has no roots we are done. If q does have a root, we can use Descartes to write $q(x)=(x-\alpha)\cdot r(x)$ where $\deg(r)=\deg(q)-1=k$, and so our statement holds by the inductive hypothesis and $k+1\in S$.

Lingo. A field F is algebraically closed provided that every nonconstant polynomial in F[x] has a root.

Remark. \mathbb{C} is algebraically closed by the Fundamental Theorem of Algebra. We can build the closure of any field by "throwing in the roots", like $\overline{\mathbb{Q}}$.

Example. Is $\mathbb{Z}/2\mathbb{Z}$ algebraically closed? No, we have that $x, x+1, x-1, x^2+1, x^2-1$ all have roots, but x^2+x+1 has no root in $\mathbb{Z}/2\mathbb{Z}$. What does $\mathbb{Z}/2\mathbb{Z}$, the smallest algebraically closed field containing $\mathbb{Z}/2\mathbb{Z}$ look like?

Lecture 3

Vector Spaces

3.1 Recall from last class

Last time we explored F[x], the ring of polynomials over a field F. We arrived at some interesting results about their roots, specifically

Lemma 7 (Descartes). Let $\alpha \in F$ and let $p \in F[x]$ be nonzero. Then $p(\alpha) = 0$ if and only if there exists $q \in F[x]$ with $\deg(q) = \deg(p) - 1$ such that $p(x) = (x - \alpha)q(x)$.

Corollary (still ask sarah, can't we just take q=1, what are we really saying here?). Let $p\in F[x]$ be nonzero. Suppose $\alpha_1,\ldots,\alpha_k\in F$ are roots of p. Then

- (i) There exists $q \in F[x]$ such that $q(\alpha_i) \neq 0$ for all $1 \leq i \leq k$, and
- (ii) There exist $m_1, \ldots, m_k \in \mathbb{N}$ such that $p = (x \alpha_1)^{m_1} (x \alpha_2)^{m_2} \cdots (x \alpha_k)^{m_k} \cdot q$.

Remark. m_i is called the multiplicity of α_i .

Fun Fact. Let F be a finite field with characteristic p. Then $|F| = p^n$.

3.2 Vectors and Vector Spaces

What is a vector? A quantity? A scalar? Something with magnitude and direction? Starts at the origin? - 296ers.

Definition 11 (Vector). A vector \overline{v} is an element of a vector space.

Definition 12 (Vector Space). Let F be a field (often called the field of scalars or the ground field). A vector space over the field F is a set V equipped with two operations

- (i) + from : $V \times V \rightarrow V$ called vector addition
- (ii) · from : $F \times V \rightarrow V$ called scalar multiplication

such that

- (i) (V,+) is an abelian group. So + is commutative and associative, there exists a unique identity element $\overline{0} \in V$, and we have unique additive inverses.
- (ii) For all $c \in F$ for all $\overline{v}_1, \overline{v}_2 \in V$, we have $c \cdot (\overline{v}_1 + \overline{v}_2) = c \cdot \overline{v}_1 + c \cdot \overline{v}_2$
- (iii) For all $c_1, c_2 \in F$ for all $\overline{v} \in V$, we have $(c_1 + c_2) \cdot \overline{v} = c_1 \cdot \overline{v} + c_2 \cdot \overline{v}$.
- (iv) For all $c_1, c_2 \in F$ for all $\overline{v} \in V$, we have $(c_1c_2) \cdot \overline{v} = c_1 \cdot (c_2 \cdot \overline{v})$.
- (v) For all $\overline{v} \in V$, we have $1_F \cdot \overline{v} = \overline{v}$.

Example. $V = \mathbb{R}^n$ is a vector space over $F = \mathbb{R}$ where

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

defines vector addition, and for all $c \in \mathbb{R}$, scalar multiplication is defined as

$$c \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} cx_1 \\ \vdots \\ cx_n \end{pmatrix}.$$

Example. $V = \mathbb{C}^n$ is a vector space over $F = \mathbb{R}$.

Question. Given a field F, is F a vector space over itself?

Explanation. Yes TODOTODOTODO