Date:
$\frac{1}{\sqrt{(x-2)(x+5)}} dx =$
$\frac{A}{x+2} + \frac{B}{x+5} = \frac{A}{x+5}$
J(x+2 x+S)
1) Ax+A5 + Bx - B12
$\int \frac{A \times + A + B \times - B \cdot 2}{(x-2)(x+5)} dx =$
J (x-z)(x+s)
$\times (A+B)+(5A-2B)$
$\frac{2}{(A+D-2)} = A=1$
$\int A + B = 2$ $A = 1$ $\int 5A - 2B = 3$ $B = 1$
1/1 dx=
$\frac{1}{2} + \frac{1}{x-2} dx =$
= In1x-21+ In1x+51+C

2.
$$\int e^{2x} \cos 3x \, dx =$$

$$U = \cos 3x \qquad du = -3\sin(3x) dx$$

$$dv = e^{2x} dx \qquad v = e^{2x}/2$$

$$= \frac{1}{2} e^{2x} \cos(3x) + \frac{3}{2} \int e^{2x} \sin(3x) \, dx =$$

$$U = \sin(3x) \qquad du = 3\cos(3x) \, dx$$

$$dv = e^{2x} dx \qquad v = e^{2x}/2$$

$$= \frac{3}{4} e^{2x} \sin(3x) + \frac{1}{2} e^{2x} \cos(3x) - \frac{9}{4} e^{2x} \cos(3x) + C$$

$$= \frac{3}{13} e^{2x} \sin(3x) + \frac{2}{13} e^{2x} \cos(3x) + C$$

$$= \frac{2x}{13} \left(3\sin(3x) + 2\cos(3x)\right) + C$$

