Системы искусственного интеллекта

Лекция Ошибки и функционалы качества

Запорожцев Иван Федорович zaporozhtsev.if.work@gmail.com

Определение качества для задач...

Задача нечёткой бинарной классификации

Определение качества для задач...

Задача регрессии

Средний модуль отклонения

Mean Absolute Error (MAE), Mean Absolute Deviation (MAD)

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |a_i - y_i|$$

$$\sum_{i=1}^{m} |a - y_i| \to \min \qquad a = \text{median}(\{y_i\}_{i=1}^m)$$

$$\sum_{i=1}^{m} |a - y_i| \to \min \qquad a = \text{median}(\{y_i\}_{i=1}^m)$$

$$f(x) = |x - 3| + |x| + |x + 3| + |x + 5|$$

Как видим, функция зависит от четырёх модулей. Нанесём на числовую ось точки, в которых выражения под модулем обращаются в ноль.

	I	VII VIII	I V	V	
		-5 -3	0 3		x
	I	II	III	IV	V
	(-∞;-5)	[-5;-3)	[-3;0)	[0;3)	[3;+∞)
x-3	_	_	-	_	+
x	_	_	1	+	+
x +3	_	_	+	+	+
x +5	_	+	+	+	+
	3- <i>x</i> - <i>x</i> - <i>x</i> -	-x + 3 - x - x -	-x + 3 - x + x +	-x + 3 + x + x +	x - 3 + x + x +
f(x)	-3-x-5	-3 + x + 5	+3 + x + 5	+3 + x + 5	+3 + x + 5

$$\sum_{i=1}^{m} |a-y_i| \to \min$$

$$a = \operatorname{median}(\{y_i\}_{i=1}^m)$$

Средний модуль отклонения

Mean Absolute Error (MAE), Mean Absolute Deviation (MAD)

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |a_i - y_i|$$

Если ошибка распределена по Лапласу

$$\alpha = 1$$
 $\alpha = 2$ 0.0 $\alpha = 2$ 0.0 $\alpha = 1$ $\alpha = 2$

$$\frac{1}{m} \sum_{i=1}^{m} |a - y_i| \to \min$$

$$a = \operatorname{median}(\{y_i\}_{i=1}^m)$$

Средний квадрат отклонения

Mean Squared Error (MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^{m} |a_i - y_i|^2$$

Если ошибка нормально распределена

$$\frac{1}{m} \sum_{i=1}^{m} |a - y_i|^2 \to \min$$
 $a = \frac{1}{m} \sum_{i=1}^{m} y_i$

Root Mean Squared Error (RMSE) / Root Mean Square Deviation (RMSD)

RMSE =
$$\sqrt{\frac{1}{m}} \sum_{i=1}^{m} |a_i - y_i|^2$$

Нормированная версия: коэффициент детерминации R²

(Coefficient of Determination)

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} |a_{i} - y_{i}|^{2}}{\sum_{i=1}^{m} |\overline{y} - y_{i}|^{2}} \qquad \overline{y} = \frac{1}{m} \sum_{i=1}^{m} y_{i}$$

Различия MSE и MAE

Устойчивость к выбросам...

Symmetric mean absolute percentage error

SMAPE or sMAPE

SMAPE =
$$\frac{2}{m} \sum_{i=1}^{m} \frac{|y_i - a_i|}{y_i + a_i} = 100\% \cdot \frac{1}{m} \sum_{i=1}^{m} \frac{|y_i - a_i|}{(y_i + a_i)/2}$$

MAPE =
$$\frac{1}{m} \sum_{i=1}^{m} \frac{|y_i - a_i|}{|y_i|}$$

Метрики в регрессии: минутка кода

```
sklearn metrics
                       r2 score
sklearn.metrics
                       mean absolute error
sklearn metrics
                       mean squared error
sklearn.metrics
                       mean squared log error
sklearn.metrics
                       median absolute error
sklearn.metrics
                       explained variance score
 (r2 score(y, a),
  1 - np.mean((y - a) ** 2) / np.mean((y - np.mean(y)) ** 2))
 (mean absolute error (y, a),
 np.mean(np.abs(y - a)))
 (mean squared error (y, a),
 np.mean((y - a) ** 2))
 (mean squared log error(y, a),
 np.mean((np.loglp(y) - np.loglp(a)) ** 2))
 (median absolute error(y, a),
  np.median(np.abs(y - a)))
```

Задача бинарной классификации

Сначала - чёткая классификация

«Confusion Matrix» в задаче классификации с двумя классами


```
tn, fp, fn, tp = confusion_matrix(y, a).ravel()
```

	a=0	<i>α</i> =1
y=O	13599	2600
y=1	898	903

Как запомнить названия ошибок

НЕТ эффекта, но его увидели!

1 рода – не учил, но сдал (= знает по мнению экзаменатора)

ЕСТЬ эффект, но его НЕ увидели!

2 рода – учил, но не сдал (= не знает по мнению экзаменатора)

Точность

Accuracy

$$Accuracy = \frac{TN + TP}{TN + FN + TP + FP}$$

Полнота

Sensitivity, True Positive Rate, Recall, Hit Rate

	<i>a</i> =0	a=1
y=O	13599	2600
y=1	898	903

Какой процент объектов положительного класса мы правильно классифицировали

$$TPR = R = \frac{TP}{TP + FN}$$

Точность

Precision, Positive Predictive Value

	<i>a</i> =0	a=1
y=O	13599	2600
y=1	898	903

Какой процент положительных объектов (т.е. тех, что мы считаем положительными) правильно классифицирован

$$PPV = P = \frac{TP}{TP + FP}$$

Специфичность

Specificity, True Negative Rate

TNR = Specificity =
$$R_0 = \frac{TN}{TN + FP}$$

Процент правильно классифицированных объектов негативного класса «полнота для негативного класса»!

False Positive Rate

FPR, fall-out, false alarm rate

$$FPR = \frac{FP}{TN+FP} = 1 - TNR = 1 - Specificity$$

Доля объектов негативного класса, которых мы ошибочно отнесли к положительному

$$\frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2}{\frac{1}{TP/(TP + FP)} + \frac{1}{TP/(TP + FN)}} = \frac{2TP}{2TP + FP + FN}$$

F_{β} score

$$F_{\beta} = \frac{1}{\frac{\alpha}{P} + \frac{1 - \alpha}{R}} = \frac{1}{\alpha} \frac{P \cdot R}{R + \left(\frac{1}{\alpha} - 1\right)P} = (1 + \beta^2) \frac{P \cdot R}{R + \beta^2 P}$$

$$\beta^2 = \left(\frac{1}{\alpha} - 1\right)$$

Почему используется F-мера

Почему используется F-мера

Можно сколь угодно улучшать один из показателей (R), если второй не увеличивается (P), то качество ограничено

Сбалансированная точность

Balanced Accuracy

Среднее арифметическое чувствительности и специфичности

$$BA = \frac{R_1 + R_0}{2} = \frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)$$

Если классы примерно равномощны...

$$TP+FN \approx TN+FP \approx m/2$$

Минутка кода

	score
cohen_kappa_score	0.24
accurancy_score	0.81
matthews_corrcoef	0.26
f1_score	0.34
roc_auc_score	0.67
balanced_accuracy_score	0.67

Задача нечёткой бинарной классификации

Теперь выдаём оценку принадлежности к классу 1

$$y \in \{0, 1\}$$

$$a \in [0, 1]$$

Кроме меток {0, 1} возможны промежуточные значения

Log Loss

В задаче классификации с двумя непересекающимися классами (0, 1),

когда ответ - вероятность (?) принадлежности к классу 1

logloss =
$$-\frac{1}{m} \sum_{i=1}^{m} (y_i \log a_i + (1 - y_i) \log(1 - a_i))$$

BCE, Binary Cross Entropy

Bernoulli distribution

$$f(k;p) = \left\{egin{array}{ll} p & ext{if } k=1, \ q=1-p & ext{if } k=0. \end{array}
ight.$$

This can also be expressed as

$$f(k;p) = p^k (1-p)^{1-k} \quad ext{for } k \in \{0,1\}$$

Раздельная форма понятнее...

$$-\begin{cases} \log a_i, & y_i = 1, \\ \log(1 - a_i), & y_i = 0. \end{cases}$$

Нельзя ошибаться!

Log Loss

Оптимальная константа для конечной выборки

$$-\frac{1}{m} \sum_{i=1}^{m} (y_i \log a + (1 - y_i) \log(1 - a)) \to \min_{a}$$

$$-\frac{m_1}{m}\log a - \frac{m_0}{m}\log(1-a) \to \min_a$$

$$\frac{\partial \ln loss}{\partial a} = 0 \underset{m,a>0,a\neq 1}{\Leftrightarrow} -\frac{m_1}{ma} + \frac{m_0}{m(1-a)} \bigg|_{a(x,w)=const(x,w)} = 0 \underset{m,a>0,a\neq 1}{\Leftrightarrow} a = \frac{m_1}{m}$$

ROC u AUC ROC

ROC = receiver operating characteristic

Функционал зависит не от конкретных значений, а от их порядка

	оценка	класс
0	0.5	0
1	0.1	0
2	0.2	0
3	0.6	1
4	0.2	1
5	0.3	1
6	0.0	0

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
0	0.0	0	0


```
df['ormer'] = (df['oqenka'] > 0.25).astype(int)
df.sort_values('oqenka', ascending=2000)
```

ROC u AUC ROC

Наилучший (AUC=1), случайный (AUC-0.5) и наихудший (AUC=0) алгоритм

AUC = area under the curve

```
fpr, tpr, thresholds = roc_curve(y_test, a)
plt.plot(fpr, tpr, lw=3, c='#0000099')
```

Смысл AUC

AUC ~ число правильно отсортированных пар (на рис. «кирпичики»)

Это сложно объяснить заказчику!

$$AUC = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j] I[a_i < a_j]}{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j]}$$

Чем хороша эта запись?

Что неправильно (требует пояснения) в формуле?

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
0	0.0	0	0

Смысл AUC

AUC ~ число правильно отсортированных пар (на рис. «кирпичики»)

Это сложно объяснить заказчику!

$$AUC = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j] I[a_i < a_j]}{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j]}$$

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
0	0.0	0	0

GINI в машинном обучении

Кривая Лоренца (или CAP – Cumulative Accuracy Profile Curve)

PR = Positive Rate – процент объектов, которые при определённом выборе порога, отнесены к классу 1

Коэффициент Джини – отношение площадей

$$gini = 2 AUCROC-1$$

GINI в задаче регрессии

Суммы страховых случаев:

5, 2, 10, 3, 0, 5, 0, 0

Так упорядочил алгоритм

Идеальный алгоритм: 10, 5, 5, 3, 2, 0, 0, 0

gini ≈ 0.57

AUC ROC

в задачах, где важен порядок учитывает разную мощность классов (не зависит от пропорций) не важны значения, важен порядок можно использовать для оценки признаков «завышает» качество оценивает не конкретный классификатор, а регрессию сложно объяснить заказчику не путать классификацию и регрессию

	оценка	класс
01	0.5	0
1	0.1	0
2	0.2	0
3	0.6	1
4	0.2	1
5	0.3	1
6	0.0	0

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1.	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
0	0.0	0	0

Порог =0.25 Точность = Полнота =

	оценка	класс		оценка	класс	отв
o I	0.5	0	3	0.6	1	(1
1	0.1	0	o	0.5	0	1
2	0.2	0	5	0.3	1	1
3	0.6	1	2	0.2	0	0
4	0.2	1	4	0.2	1	0
5	0.3	1	1	0.1	0	0
6	0.0	0	0	0.0	0	0

Порог =0.25 Точность = 2/3 Полнота = 2/3

	оценка	класс
01	0.5	0
1	0.1	0
2	0.2	0
3	0.6	1
4	0.2	1
5	0.3	1
6	0.0	0

	оценка	класс
3	0.6	1
0	0.5	0
5	0.3	1
2	0.2	0
4	0.2	1
1	0.1	0
0	0.0	0

Порог =0.4 Точность = Полнота =

Ī	оценка	класс		оценка	класс	отве
0 1	0.5	0	3	0.6	0	1
1	0.1	0	o	0.5	0	1
2	0.2	0	5	0.3	1	0
3	0.6	1	2	0.2	0	0
4	0.2	1	4	0.2	1	0
5	0.3	1	1	0.1	0	0
6	0.0	0	0	0.0	0	0

Порог =0.4 Точность = 1/2 Полнота = 1/3

Площадь под кривой.. «Average Precision» (есть и другой смысл)

100	класс
0.5	0
0.1	0
0.2	0
0.6	1
0.2	1
0.3	1
0.0	0
	0.1 0.2 0.6 0.2

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
0	0.0	0	0


```
sklearn.metrics is precision_recall_curve
precision, recall, thresholds = precision_recall_curve(y_test, a)
plt.plot(recall, precision)

sklearn.metrics is auc
auc(recall, precision)

sklearn.metrics is auc
auc(recall, precision)
```

Многоклассовая задача

«Multi-label»

E

Матрица классификаций

$$\parallel y_{ij} \parallel_{m \times l}$$

	class 1	class 2	class 3
0	1	0	0
1.	0	1	0
2	0	0	1
3	1	1	0

Матрица ответов

$$\|a_{ij}\|_{m\times l}$$

	class 1	class 2	class 3
0	0.75	0.00	0.25
1	0.00	0.50	0.25
2	0.25	1.00	0.25
3	0.00	0.25	0.75

По сути, надо сравнить матрицы на похожесть

микро-подход	можно сравнивать матрицы как векторы
макро-подход	можно сравнивать столбцы матриц
по объектам	можно сравнивать строки матриц и усреднять

Многомерный AUC: минутка кода

```
sklearn.metrics
                            roc auc score
roc auc score(y, a, average='macro')
auc pclass = [roc auc score(y[:,j], a[:,j]) to j trange(1)]
auc pclass, mean (auc pclass)
roc auc score (y, a, average='micro')
roc auc score(y.ravel(), a.ravel())
roc auc score(y, a, average='weighted')
w = y.sum(axis=0)
sum(np.array(auc pclass) * w) / sum(w)
roc auc score(y, a, average='samples')
auc pinstance = [roc auc score(y[i,:], a[i,:]) i range(m)]
auc pinstance, mean(auc pinstance)
```

Многомерный AUC ROC

Матрица классификаций

	class 1	class 2	class 3
0	1	1	0
1	0	1	1
2	0	1	0
3	1	0	0

Матрица ответов

	class 1	class 2	class 3
0	0.7	0.6	0.5
1	0.3	0.4	0.6
2	0.5	0.9	0.2
3	0.4	0.5	0.1

ma	cro	weighted		micro		samples	
0.8	106	0	.75	0.8	833	0.87	
class 1	0.750		P_{I}	0.50		X_{I}	1.0
class 2	0.667		P_2	0.75		x_2	1.0
class 3	1.000		$P_{\mathcal{I}}$	0.25		X3	1.0
						X_4	0.5

Многоклассовая задача: Log Loss

Cross-entropy

Естественное обобщение логистической ошибки

$$a_{ij} \in [0,1]$$

$$\log \log = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{l} y_{ij} \log a_{ij}$$

тонкость: лучше для непересекающихся классов, $\left\{a_{ij}\right\}_{j=1}^{l}$ ~ распределение

В задаче с пересекающимися классами (multi-label)

$$\log \log_{\text{multi-label}} = -\frac{1}{l} \frac{1}{m} \sum_{j=1}^{l} \sum_{i=1}^{m} (y_{ij} \log a_{ij} + (1 - y_{ij}) \log(1 - a_{ij}))$$

 $a_{ii} \in [0,1]$ макроусреднение logloss по классам

Сбалансированная точность «Balanced accuracy»

Макро-усреднение полноты

Сбалансированная точность (accuracy) не есть усреднение точностей (precision)

$$BA = \frac{1}{l} \sum_{j=1}^{l} R_j = \frac{1}{l} \sum_{j=1}^{l} \frac{\sum_{t=1}^{m} I[y(x_t)_{[j]} = 1] I[a(x_t)_{[j]} = 1]}{\sum_{t=1}^{m} I[y(x_t)_{[j]} = 1]}$$

from sklearn.metrics import balanced_accuracy_score

Другие (неэквивалентные) определения:

$$BA = \frac{1}{l} \sum_{j=1}^{l} \min[P_j, R_j]$$

$$BA = \frac{1}{l} \sum_{j=1}^{l} \min[\text{sens}_{j}, \text{spec}_{j}]$$