Notes on Grain Boundary Basis Functions

Leila Khalili¹ and Srikanth Patala^{1,*}

ABSTRACT

 $^{^1\}mathrm{Department}$ of Materials Science and Engineering, North Carolina State University, Raleigh, NC $^*\mathrm{spatala@ncsu.edu}$

1 Introduction

The conventions and notes for generating basis function for the five-parameter grain boundary space are listed.

- Should we update symm_orders based on grain exchange symmetry and Laue group symmetry?.
 - 1. Before
- In the function, null_mat_ab, In line 25, why am I dividing C_val by sqrt (2*e+1) and In line 29, how did I define the normalizing constant. Check with Jeremy!!

1.1 Computing the Null Boundary Singularity Matrix

1.1.1 Description of null_mat_ab.m

The matrix mat_ab represents the null-boundary operation for fixed values of (a,b). The operation for null-boundary singularity is:

$$\sum_{ab} \sum_{\alpha\beta\gamma} \left[\Pi_{ab} C^{e-\varepsilon}_{a\alpha b\beta} C^{e0}_{a\gamma b-\gamma} \right] c^{ab}_{\alpha\beta\gamma} = \sqrt{2\pi^3} f_0 \delta_{e0} \delta_{\varepsilon 0}$$

For fixed values of (a,b), the number of coefficients $c^{ab}_{\alpha\beta\gamma}$ is equal to $n_{col}=(2a+1)(2b+1)(2c+1)$, where $c=\min(a,b)$. Therefore, the number of columns of mat_ab is equal to n_{col} . The number of rows of of mat_ab is computed as follows:

- The values of e are constrained to lie between |a-b| and (a+b), i.e. $|a-b| \le e \le (a+b)$. These indices are stored in the variable e_range.
- For a given value of e, ε ranges from -e to e. That is, $-e \le \varepsilon \le e$. This is provided by the variable eps_range.
- Therefore, the total number of rows is given by

$$n_{rows} = \sum_{e=|a-b|}^{a+b} \sum_{e}^{e} \varepsilon$$

This is given by the value in the expression sum (2*e_range+1) in line number 9.

- The Clebsch-Gordan coefficient is given by the function clebsch_gordan(j1, j2, j, m) for possible values of $C_{j1,m1;j2,m2}^{j,m}$. The function returns the coefficients C and the values of m1 and m2 for which $C_{j1,m1;j2,m2}^{j,m} \neq 0$.
- This function, clebsch_gordan(j1, j2, j, m), is used to determine the indices containing non-zero values for a given row, r_ct. This is accomplished using the lines 20 and 23.
 - In line 20, the indices containing non-zero values for any fixed value of γ are computed.
 - In line 23, the non-zero values are repeated for every value of γ . The corresponding indices are computed.
- In line 25, why am I dividing C_val by sqrt (2*e+1) and In line 29, how did I define the normalizing constant. Check with Jeremy!!

1.1.2 Description of generate_gb_null.m

This code computes the Null Boundary Operation for a range of (a,b) values provided in the symm_orders array. The matrix null_mat gives the operation for null-boundary singularity. The function null_mat_ab gives the operation for a fixed (a,b). However, we are interested in the operation for all possible values of (a,b) such that $\max(a+b) \leq N$ (N is denoted by the variable Nmax).

- The array symm_orders contains all the possible values of (a,b) such that symmetrized basis function (symmetrized using crystal rotation point group symmetries) exist.
- The variable nsymm gives the total number of basis functions $M_{\alpha,\beta,\gamma}^{a,b}$ for (a,b) values listed in symm_orders.
- The for-loop in lines 17 to 25 gives the appropriate row-indices (row_inds) and appropriate col-indices (col_inds), where the matrix operation computed using null_mat_ab will be added to the complete null_mat.
- Using the row- and column-indices computed in the previous for-loop, the for loop in lines 29 to 36, calculates the null_mat_ab for each combination of (a,b) listed in symm_orders and add this to the matrix null_mat.

 $\gamma M^a_{\alpha\beta}^{b}$ (1)

References