Syntax Analysis: Context-Free Grammars

Lecture 3

Objectives

By the end of this lecture you should be able to:

- 1 Identify the role of syntax analysis in a compiler.
- 2 Construct derivations and parse trees of strings from context-free grammars.
- 3 Design context-free grammars.
- Prove that simple context-free grammars are correct.
- **5** Construct unambiguous grammars (sometimes).
- **6** Eliminate left-recursion from a grammar.
- Left-factor a grammar.

Outline

- The Role of Syntax Analysis
- Context-Free Grammars
- 3 Digression: Correctness of a Grammar
- 4 Writing a Grammar

Outline

- The Role of Syntax Analysis
- 2 Context-Free Grammars
- 3 Digression: Correctness of a Grammar
- 4 Writing a Grammar

What It Does

Main Function

- Determine whether the program is grammatical.
- **②** Generate a parse tree for a stream of tokens.
 - A parse tree may not be explicitly generated.

Auxiliary Function

- Identify syntax errors.
- 2 Recover from common errors to continue processing the input

Side Effects

• Update the symbol table.

What It Does

Main Function

- **1** Determine whether the program is grammatical.
- 2 Generate a parse tree for a stream of tokens.
 - A parse tree may not be explicitly generated.

Auxiliary Function

- Identify syntax errors.
- 2 Recover from common errors to continue processing the input.

Side Effects

• Update the symbol table.

What It Does

Main Function

- Determine whether the program is grammatical.
- **②** Generate a parse tree for a stream of tokens.
 - A parse tree may not be explicitly generated.

Auxiliary Function

- Identify syntax errors.
- 2 Recover from common errors to continue processing the input.

Side Effects

• Update the symbol table.

Connection to the Rest of the System

- A grammar is a formal device used to specify the syntactic structure of a language.
- Regular languages may be specified using so-called regular grammars.
- Most interesting languages are not regular.
- Programming languages are mostly context-free; they are specified using context-free grammars.

- A grammar is a formal device used to specify the syntactic structure of a language.
- Regular languages may be specified using so-called regular grammars.
- Most interesting languages are not regular.
- Programming languages are mostly context-free; they are specified using context-free grammars.

- A grammar is a formal device used to specify the syntactic structure of a language.
- Regular languages may be specified using so-called regular grammars.
- Most interesting languages are not regular.
- Programming languages are mostly context-free; they are specified using context-free grammars.

- A grammar is a formal device used to specify the syntactic structure of a language.
- Regular languages may be specified using so-called regular grammars.
- Most interesting languages are not regular.
- Programming languages are mostly context-free; they are specified using context-free grammars.

- A parser is an algorithm which, given a grammar, produces a parse tree for an input string.
- Context-free parsing may be carried out by the CYK algorithm or the Early algorithm, appropriately modified to produce a parse tree.
- Unfortunately, this is not very efficient.
- Parsers used in compilers are of two main types:
 - top-down—parse trees are constructed from the root down to the leaves.
 - bottom-up—parse trees are constructed from the leaves up to the root.
- Some kind of mixed-mode parsing is often adopted though.

- A parser is an algorithm which, given a grammar, produces a parse tree for an input string.
- Context-free parsing may be carried out by the CYK algorithm or the Early algorithm, appropriately modified to produce a parse tree.
- Unfortunately, this is not very efficient.
- Parsers used in compilers are of two main types:
 - top-down—parse trees are constructed from the root down to the leaves.
 - bottom-up—parse trees are constructed from the leaves up to the root.
- Some kind of mixed-mode parsing is often adopted though.

- A parser is an algorithm which, given a grammar, produces a parse tree for an input string.
- Context-free parsing may be carried out by the CYK algorithm or the Early algorithm, appropriately modified to produce a parse tree.
- Unfortunately, this is not very efficient.
- Parsers used in compilers are of two main types:
 - top-down—parse trees are constructed from the root down to the leaves.
 - bottom-up—parse trees are constructed from the leaves up to the root.
- Some kind of mixed-mode parsing is often adopted though.

- A parser is an algorithm which, given a grammar, produces a parse tree for an input string.
- Context-free parsing may be carried out by the CYK algorithm or the Early algorithm, appropriately modified to produce a parse tree.
- Unfortunately, this is not very efficient.
- Parsers used in compilers are of two main types:
 - top-down—parse trees are constructed from the root down to the leaves.
 - 2 bottom-up—parse trees are constructed from the leaves up to the root.
- Some kind of mixed-mode parsing is often adopted though.

- A parser is an algorithm which, given a grammar, produces a parse tree for an input string.
- Context-free parsing may be carried out by the CYK algorithm or the Early algorithm, appropriately modified to produce a parse tree.
- Unfortunately, this is not very efficient.
- Parsers used in compilers are of two main types:
 - top-down—parse trees are constructed from the root down to the leaves.
 - ② bottom-up—parse trees are constructed from the leaves up to the root.
- Some kind of mixed-mode parsing is often adopted though.

- A parser is an algorithm which, given a grammar, produces a parse tree for an input string.
- Context-free parsing may be carried out by the CYK algorithm or the Early algorithm, appropriately modified to produce a parse tree.
- Unfortunately, this is not very efficient.
- Parsers used in compilers are of two main types:
 - top-down—parse trees are constructed from the root down to the leaves.
 - bottom-up—parse trees are constructed from the leaves up to the root.
- Some kind of mixed-mode parsing is often adopted though.

- A parser is an algorithm which, given a grammar, produces a parse tree for an input string.
- Context-free parsing may be carried out by the CYK algorithm or the Early algorithm, appropriately modified to produce a parse tree.
- Unfortunately, this is not very efficient.
- Parsers used in compilers are of two main types:
 - top-down—parse trees are constructed from the root down to the leaves.
 - bottom-up—parse trees are constructed from the leaves up to the root.
- Some kind of mixed-mode parsing is often adopted though.

Outline

- The Role of Syntax Analysis
- Context-Free Grammars
- 3 Digression: Correctness of a Grammar
- 4 Writing a Grammar

What is a Context-Free Grammar?

Definition

A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S) , where

- V is an alphabet, whose symbols are referred to as variables or non-terminals,
- Σ , is an alphabet, disjoint from V, whose symbols are called terminals,
- **3** $R \subseteq V \times (V \cup \Sigma)^*$ is a non-empty finite set of production rules, and
- \bullet $S \in V$ is the start variable.

- Typically only rules are displayed (using an →), each on a separate line.
- Non-terminals are the symbols which appear on the left side of at least one rule; terminals are the other symbols.
- The start variable is the variable appearing on the left side of the top rule.
- Multiple rules with the same left side are combined in one line, using | to separate the right sides.

- Typically only rules are displayed (using an →), each on a separate line.
- Non-terminals are the symbols which appear on the left side of at least one rule; terminals are the other symbols.
- The start variable is the variable appearing on the left side of the top rule.
- Multiple rules with the same left side are combined in one line, using | to separate the right sides.

- Typically only rules are displayed (using an →), each on a separate line.
- Non-terminals are the symbols which appear on the left side of at least one rule; terminals are the other symbols.
- The start variable is the variable appearing on the left side of the top rule.
- Multiple rules with the same left side are combined in one line, using | to separate the right sides.

- Typically only rules are displayed (using an →), each on a separate line.
- Non-terminals are the symbols which appear on the left side of at least one rule; terminals are the other symbols.
- The start variable is the variable appearing on the left side of the top rule.
- Multiple rules with the same left side are combined in one line, using | to separate the right sides.

Example G_1

Example (Arithmetic Expressions 1)

$$E \longrightarrow E + E \mid E * E \mid (E) \mid id \mid number$$

Note that terminals are names of lexical categories.

Terminology

- α is a sentential form of $G = (V, \Sigma, R, S)$ if $\alpha \in (V \cup \Sigma)^*$.
- w is a sentence of $G = (V, \Sigma, R, S)$ if $w \in \Sigma^*$.

Derivations

Let $G = (V, \Sigma, R, S)$ be a CFG. Let α , β , and γ be sentential forms of G.

- If $(A \longrightarrow \gamma) \in R$, then $\alpha A \beta$ yields $\alpha \gamma \beta$, written $\alpha A \beta \Rightarrow \alpha \gamma \beta$.
- α derives β , written $\alpha \stackrel{*}{\Rightarrow} \beta$, if
 - $\mathbf{0} \quad \alpha = \beta, \text{ or }$
 - 2 there is a sequence $\alpha_1, \alpha_2, \dots, \alpha_k$ for k > 0 such that

$$\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k \Rightarrow \beta$$

• The language of G is the set

$$L(G) = \{ w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w \}$$

• Show that $id+id*(number) \in L(G_1)$.

Derivations

Let $G = (V, \Sigma, R, S)$ be a CFG. Let α , β , and γ be sentential forms of G.

- If $(A \longrightarrow \gamma) \in R$, then $\alpha A \beta$ yields $\alpha \gamma \beta$, written $\alpha A \beta \Rightarrow \alpha \gamma \beta$.
- α derives β , written $\alpha \stackrel{*}{\Rightarrow} \beta$, if
 - $\mathbf{0} \quad \alpha = \beta, \text{ or }$
 - 2 there is a sequence $\alpha_1, \alpha_2, \dots, \alpha_k$ for k > 0 such that

$$\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k \Rightarrow \beta$$

• The language of G is the set

$$L(G) = \{ w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w \}$$

• Show that $id+id*(number) \in L(G_1)$.

Special Derivations

- A derivation $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$ is a leftmost derivation if, for every $1 \leq i < k$, there is some $(A_i \longrightarrow \gamma_i) \in R$, some sentence w_i , and some sentential form β_i such that $\alpha_i = w_i A_i \beta_i$ and $\alpha_{i+1} = w_i \gamma_i \beta_i$.
- A derivation $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$ is a rightmost derivation if, for every $1 \leq i < k$, there is some $(A_i \longrightarrow \gamma_i) \in R$, some sentence w_i , and some sentential form β_i such that $\alpha_i = \beta_i A_i w_i$ and $\alpha_{i+1} = \beta_i \gamma_i w_i$.
- Give leftmost and rightmost derivations of id+id*(number) from E in G_1 .

Special Derivations

- A derivation $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$ is a leftmost derivation if, for every $1 \leq i < k$, there is some $(A_i \longrightarrow \gamma_i) \in R$, some sentence w_i , and some sentential form β_i such that $\alpha_i = w_i A_i \beta_i$ and $\alpha_{i+1} = w_i \gamma_i \beta_i$.
- A derivation $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$ is a rightmost derivation if, for every $1 \leq i < k$, there is some $(A_i \longrightarrow \gamma_i) \in R$, some sentence w_i , and some sentential form β_i such that $\alpha_i = \beta_i A_i w_i$ and $\alpha_{i+1} = \beta_i \gamma_i w_i$.
- Give leftmost and rightmost derivations of id+id*(number) from E in G_1 .

Special Derivations

- A derivation $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$ is a leftmost derivation if, for every $1 \leq i < k$, there is some $(A_i \longrightarrow \gamma_i) \in R$, some sentence w_i , and some sentential form β_i such that $\alpha_i = w_i A_i \beta_i$ and $\alpha_{i+1} = w_i \gamma_i \beta_i$.
- A derivation $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$ is a rightmost derivation if, for every $1 \leq i < k$, there is some $(A_i \longrightarrow \gamma_i) \in R$, some sentence w_i , and some sentential form β_i such that $\alpha_i = \beta_i A_i w_i$ and $\alpha_{i+1} = \beta_i \gamma_i w_i$.
- Give leftmost and rightmost derivations of id+id*(number) from E in G_1 .

- A parse tree is a graphical representation of a derivation starting by a non-terminal symbol.
- Each internal node of the tree is a non-terminal.
- Each leaf is a terminal or a non-terminal.
- Consider a derivation $\alpha_1 (\in V) \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$. The following is true for every $1 \leq i < k$.
 - α_1 is the root of the tree.
 - if $\alpha_i = \beta_i A_i \delta_i$ and $\alpha_{i+1} = \beta_i \gamma_i \delta_i$ and $(A_i \longrightarrow \gamma_i) \in R$, then nodes for symbols of the occurrence of γ_i following the prefix β_i occur at depth $j+1 \le i$ and are children of the corresponding A_i node at depth i.
- Give a parse tree for a derivation of id+id*(number) from E in G_1 .

- A parse tree is a graphical representation of a derivation starting by a non-terminal symbol.
- Each internal node of the tree is a non-terminal.
- Each leaf is a terminal or a non-terminal.
- Consider a derivation $\alpha_1 (\in V) \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$. The following is true for every $1 \leq i < k$.
 - α_1 is the root of the tree.
 - if $\alpha_i = \beta_i A_i \partial_i$ and $\alpha_{i+1} = \beta_i \gamma_i \partial_i$ and $(A_i \longrightarrow \gamma_i) \in R$, then nodes for symbols of the occurrence of γ_i following the prefix β_i occur at depth $j+1 \le i$ and are children of the corresponding A_i node at depth j.
- Give a parse tree for a derivation of id+id*(number) from E in G_1 .

- A parse tree is a graphical representation of a derivation starting by a non-terminal symbol.
- Each internal node of the tree is a non-terminal.
- Each leaf is a terminal or a non-terminal.
- Consider a derivation $\alpha_1 (\in V) \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$. The following is true for every $1 \leq i < k$.
 - α_1 is the root of the tree.
 - if $\alpha_i = \beta_i A_i \delta_i$ and $\alpha_{i+1} = \beta_i \gamma_i \delta_i$ and $(A_i \longrightarrow \gamma_i) \in R$, then nodes for symbols of the occurrence of γ_i following the prefix β_i occur at depth $j+1 \le i$ and are children of the corresponding A_i node at depth j.
- Give a parse tree for a derivation of id+id*(number) from E in G_1 .

- A parse tree is a graphical representation of a derivation starting by a non-terminal symbol.
- Each internal node of the tree is a non-terminal.
- Each leaf is a terminal or a non-terminal.
- Consider a derivation $\alpha_1 (\in V) \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$. The following is true for every $1 \leq i < k$.
 - α_1 is the root of the tree.
 - if $\alpha_i = \beta_i A_i \delta_i$ and $\alpha_{i+1} = \beta_i \gamma_i \delta_i$ and $(A_i \longrightarrow \gamma_i) \in R$, then nodes for symbols of the occurrence of γ_i following the prefix β_i occur at depth $j+1 \le i$ and are children of the corresponding A_i node at depth j.
- Give a parse tree for a derivation of id+id*(number) from E in G_1 .

Parse Trees

- A parse tree is a graphical representation of a derivation starting by a non-terminal symbol.
- Each internal node of the tree is a non-terminal.
- Each leaf is a terminal or a non-terminal.
- Consider a derivation $\alpha_1 (\in V) \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$. The following is true for every $1 \leq i < k$.
 - α_1 is the root of the tree.
 - if $\alpha_i = \beta_i A_i \delta_i$ and $\alpha_{i+1} = \beta_i \gamma_i \delta_i$ and $(A_i \longrightarrow \gamma_i) \in R$, then nodes for symbols of the occurrence of γ_i following the prefix β_i occur at depth $j+1 \le i$ and are children of the corresponding A_i node at depth j.
- Give a parse tree for a derivation of id+id*(number) from E in G_1 .

Parse Trees

- A parse tree is a graphical representation of a derivation starting by a non-terminal symbol.
- Each internal node of the tree is a non-terminal.
- Each leaf is a terminal or a non-terminal.
- Consider a derivation $\alpha_1 (\in V) \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$. The following is true for every $1 \leq i < k$.
 - α_1 is the root of the tree.
 - if $\alpha_i = \beta_i A_i \delta_i$ and $\alpha_{i+1} = \beta_i \gamma_i \delta_i$ and $(A_i \longrightarrow \gamma_i) \in R$, then nodes for symbols of the occurrence of γ_i following the prefix β_i occur at depth $j+1 \le i$ and are children of the corresponding A_i node at depth j.
- Give a parse tree for a derivation of id+id*(number) from E in G_1 .

Parse Trees

- A parse tree is a graphical representation of a derivation starting by a non-terminal symbol.
- Each internal node of the tree is a non-terminal.
- Each leaf is a terminal or a non-terminal.
- Consider a derivation $\alpha_1 (\in V) \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k$. The following is true for every $1 \leq i < k$.
 - α_1 is the root of the tree.
 - if $\alpha_i = \beta_i A_i \delta_i$ and $\alpha_{i+1} = \beta_i \gamma_i \delta_i$ and $(A_i \longrightarrow \gamma_i) \in R$, then nodes for symbols of the occurrence of γ_i following the prefix β_i occur at depth $j+1 \le i$ and are children of the corresponding A_i node at depth j.
- Give a parse tree for a derivation of id+id*(number) from E in G_1 .

Observations

- For every derivation, there is a unique corresponding parse tree.
- For every parse tree, there are possibly many corresponding derivations.
- For every parse tree, there is exactly one corresponding leftmost (rightmost) derivation.

Observations

- For every derivation, there is a unique corresponding parse tree.
- For every parse tree, there are possibly many corresponding derivations.
- For every parse tree, there is exactly one corresponding leftmost (rightmost) derivation.

Observations

- For every derivation, there is a unique corresponding parse tree.
- For every parse tree, there are possibly many corresponding derivations.
- For every parse tree, there is exactly one corresponding leftmost (rightmost) derivation.

Example (Arithmetic Expressions 2)

$$\begin{array}{ccc} E & \longrightarrow & E+T \mid T \\ T & \longrightarrow & T*F \mid F \end{array}$$

 $F \longrightarrow (E) \mid id \mid number$

Example (Arithmetic Expressions 3)

$$\begin{array}{cccc} E & \longrightarrow & T \ E' \\ E' & \longrightarrow & + T \ E' \ | \ \varepsilon \\ T & \longrightarrow & F \ T' \\ T' & \longrightarrow & * F \ T' \ | \ \varepsilon \\ F & \longrightarrow & (E) \ | \ \mathbf{id} \ | \ \mathbf{number} \end{array}$$

```
Example (If Statement 1)

stmnt \longrightarrow \mathbf{if} \ bexpr \ \mathbf{then} \ stmnt

stmnt \longrightarrow \mathbf{if} \ bexpr \ \mathbf{then} \ stmnt \ \mathbf{else} \ stmnt

stmnt \longrightarrow \dots

\vdots \qquad \vdots \qquad \vdots

bexpr \longrightarrow \dots

\vdots \qquad \vdots
```

```
Example (If Statement 2)
        stmnt
                      open | matched
        open \longrightarrow if bexpr then stmnt
                \longrightarrow if bexpr then matched else open
        open
        matched
                  → if bexpr then matched else matched
        matched
        bexpr
```

Outline

- The Role of Syntax Analysis
- Context-Free Grammars
- 3 Digression: Correctness of a Grammar
- Writing a Grammar

Correctness of a Grammar

- A grammar G is correct simply if L(G) is what it is supposed to be.
- More precisely, given a CFG G and a language L (which may be inductively defined), we need to prove that L(G) = L.
- This is done by proving two claims:
 - Claim 1 $L(G) \subseteq L$ (Soundness).
 - Typically proved by strong induction on the length of derivations of sentences in *G*.
 - Claim 2 $L \subseteq L(G)$ (Completeness).
 - Typically proved by strong induction on the length (or structure) of strings in *L*.

Example (I)

Example (Grammar with a single variable)

Consider the following CFG *G*.

$$S \longrightarrow aSb|\varepsilon$$

Prove that $L(G) = \{a^m b^m | m \in \mathbb{N}\}.$

Example (II)

Example (Claim 1)

We use induction on the length n of derivations.

Basis (n = 1). Only such derivation is $S \Rightarrow \varepsilon$, and $\varepsilon \in L$.

Hypothesis. For every k < n+1, if $S \stackrel{k}{\Rightarrow} w$ ($w \in \Sigma^*$), then $w \in L$.

Step. Let $w \in L(G)$ where $S \stackrel{n+1}{\Longrightarrow} w$. Thus, $S \Rightarrow aSb \stackrel{n}{\Rightarrow} aub = w$. Hence, $S \stackrel{n}{\Rightarrow} u$. By the induction hypothesis, $u = a^lb^l \in L$, for some $l \in \mathbb{N}$. Thus, $w = a^{l+1}b^{l+1} \in L$.

Example (III)

Example (Claim 2)

We use induction on the length n of $w \in L$.

Basis
$$(n = 0)$$
. $w = \varepsilon$ and $\varepsilon \in L(G)$ (given $S \longrightarrow \varepsilon$).

Hypothesis. For every
$$k < n + 1$$
, if $|w| = k$ and $w \in L$, then $w \in L(G)$.

Step. Let
$$|w| = n + 1$$
 and $w \in L$. Thus, there is some $m \in \mathbb{N}^+$ with $w = a^m b^m = a a^{m-1} b^{m-1} b$. Now, since $|a^{m-1}b^{m-1}| < n + 1$, it follows by the induction hypothesis that $S \stackrel{*}{\Rightarrow} a^{m-1}b^{m-1}$. Hence, $S \Rightarrow aSb \stackrel{*}{\Rightarrow} aa^{m-1}b^{m-1}b = a^m b^m$.

Outline

- The Role of Syntax Analysis
- 2 Context-Free Grammars
- 3 Digression: Correctness of a Grammar
- 4 Writing a Grammar

Useful Grammar Transformations

When writing a grammar, it might be useful to carry out the following transformations.

- $G \rightarrow \text{unambiguous } G'$.
- $G \rightarrow \text{non-left-recursive } G'$.
- $G \rightarrow \text{left-factored } G'$.

Ambiguity

Definition

A CFG G is ambiguous if there is some $w \in L(G)$ with more than one parse tree (leftmost (rightmost) derivation).

- Unfortunately, there is no algorithm for transforming any ambiguous grammar to an equivalent unambiguous grammar.
- There are some common cases, though, in programming languages.

Ambiguity

Definition

A CFG G is ambiguous if there is some $w \in L(G)$ with more than one parse tree (leftmost (rightmost) derivation).

- Unfortunately, there is no algorithm for transforming any ambiguous grammar to an equivalent unambiguous grammar.
- There are some common cases, though, in programming languages.

- Operators with higher precedence occur in strings which are derivable from variables that appear *deeper* in the grammar (and, hence, in a parse tree).
- Left associative operators occur on the right-side of left-recursive rules.
- Right associative operators occur on the right-side of right-recursive rules.
- Compare G_1 and G_2 •.

- Operators with higher precedence occur in strings which are derivable from variables that appear *deeper* in the grammar (and, hence, in a parse tree).
- Left associative operators occur on the right-side of left-recursive rules.
- Right associative operators occur on the right-side of right-recursive rules.
- Compare G_1 and G_2 •.

- Operators with higher precedence occur in strings which are derivable from variables that appear *deeper* in the grammar (and, hence, in a parse tree).
- Left associative operators occur on the right-side of left-recursive rules.
- Right associative operators occur on the right-side of right-recursive rules.
- Compare G_1 and G_2 •.

- Operators with higher precedence occur in strings which are derivable from variables that appear *deeper* in the grammar (and, hence, in a parse tree).
- Left associative operators occur on the right-side of left-recursive rules.
- Right associative operators occur on the right-side of right-recursive rules.
- Compare G_1 and G_2 •.

The Dangling *else*

• The form

if e1 then if e2 then s2 else s3

is ambiguous.

- Common policy: An occurrence of else is associated with the lexically closest if.
- Compare G_4 and G_5 •.

The Dangling *else*

• The form

if e1 then if e2 then S2 else S3

is ambiguous.

- Common policy: An occurrence of else is associated with the lexically closest if.
- Compare G_4 and G_5 •.

The Dangling *else*

• The form

if e1 then if e2 then s2 else s3

is ambiguous.

- Common policy: An occurrence of else is associated with the lexically closest if.
- Compare G_4 and G_5 •.

Left-Recursion

Definition

A CFG $G = (V, \Sigma, R, S)$ is left-recursive if, for some $A \in V$, $A \stackrel{+}{\Rightarrow} A\alpha$, for some sentential form α .

Definition

A CFG $G = (V, \Sigma, R, S)$ has immediate left-recursion if, $(A \longrightarrow A\alpha) \in R$, for some $A \in V$ and sentential form α .

Left-recursion may cause some parsers to get into infinite loops.

Left-Recursion

Definition

A CFG $G = (V, \Sigma, R, S)$ is left-recursive if, for some $A \in V$, $A \stackrel{+}{\Rightarrow} A\alpha$, for some sentential form α .

Definition

A CFG $G = (V, \Sigma, R, S)$ has immediate left-recursion if, $(A \longrightarrow A\alpha) \in R$, for some $A \in V$ and sentential form α .

Left-recursion may cause some parsers to get into infinite loops

Left-Recursion

Definition

A CFG $G = (V, \Sigma, R, S)$ is left-recursive if, for some $A \in V$, $A \stackrel{+}{\Rightarrow} A\alpha$, for some sentential form α .

Definition

A CFG $G = (V, \Sigma, R, S)$ has immediate left-recursion if, $(A \longrightarrow A\alpha) \in R$, for some $A \in V$ and sentential form α .

Left-recursion may cause some parsers to get into infinite loops.

Eliminating Immediate Left-Recursion

From

$$A \longrightarrow A \alpha_1 |A \alpha_2| \cdots |A \alpha_m| \beta_1 |\beta_2| \cdots |\beta_n|$$

where

 \bigcirc β_i does not start with A.

To

$$\begin{array}{cccc} A & \longrightarrow & \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A' \\ A' & \longrightarrow & \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \varepsilon \end{array}$$

Compare $G2 \bigcirc$ and $G_3 \bigcirc$.

Eliminating Immediate Left-Recursion

From

$$A \longrightarrow A \alpha_1 | A \alpha_2 | \cdots | A \alpha_m | \beta_1 | \beta_2 | \cdots | \beta_n$$

where

 \bigcirc β_i does not start with A.

To

$$\begin{array}{ccccc}
A & \longrightarrow & \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A' \\
A' & \longrightarrow & \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \varepsilon
\end{array}$$

Compare $G2 \bigcirc$ and $G_3 \bigcirc$.

Eliminating Immediate Left-Recursion

From

$$A \longrightarrow A \alpha_1 |A \alpha_2| \cdots |A \alpha_m| \beta_1 |\beta_2| \cdots |\beta_n|$$

where

 \bullet β_i does not start with A.

To

$$\begin{array}{ccccc}
A & \longrightarrow & \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A' \\
A' & \longrightarrow & \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \varepsilon
\end{array}$$

Compare $G2 \bigcirc$ and $G_3 \bigcirc$.

Eliminating Left-Recursion

Algorithm 4.19: Eliminating left recursion.

INPUT: Grammar G with no cycles or ϵ -productions.

OUTPUT: An equivalent grammar with no left recursion.

```
    arrange the nonterminals in some order A<sub>1</sub>, A<sub>2</sub>,..., A<sub>n</sub>.
    for ( each i from 1 to n ) {
    for ( each j from 1 to i − 1 ) {
    replace each production of the form A<sub>i</sub> → A<sub>j</sub>γ by the productions A<sub>i</sub> → δ<sub>1</sub>γ | δ<sub>2</sub>γ | ··· | δ<sub>k</sub>γ, where A<sub>j</sub> → δ<sub>1</sub> | δ<sub>2</sub> | ··· | δ<sub>k</sub> are all current A<sub>j</sub>-productions
    }
    eliminate the immediate left recursion among the A<sub>i</sub>-productions
```

© Aho et al. (2007)

Example (I)

Example (Problem)

Eliminate left-recursion from the grammar

$$\begin{array}{ccc} S & \longrightarrow & A \text{ a } | \text{ b} \\ A & \longrightarrow & A \text{ c } | S \text{ d } | \varepsilon \end{array}$$

Example (II)

Example (Eliminating ε rule)

$$S \longrightarrow A a \mid b \mid a$$

 $A \longrightarrow A c \mid S d \mid c$

Example (III)

Example (After iteration 1 •)

$$S \longrightarrow A a \mid b \mid a$$

$$A \longrightarrow A c \mid S d \mid c$$

Example (IV)

Example (After inner loop in iteration 2 •)

$$S \longrightarrow A a | b | a$$

$$A \longrightarrow A c | A a d | b d | a d | c$$

Example (V)

Example (Finally)

$$S \longrightarrow A \text{ a} \mid \text{b}$$

$$A \longrightarrow \operatorname{bd} A' \mid \operatorname{ad} A' \mid \operatorname{c} A'$$

$$A' \longrightarrow cA' \mid a dA' \mid \varepsilon$$

Left Factoring

Definition

A CFG $G = (V, \Sigma, R, S)$ is left-factored if, for every $\{A \longrightarrow \alpha, A \longrightarrow \beta\} \subseteq R$, $(\alpha \neq \beta)$, the longest common prefix of α and β is ε

Left-factored grammars allow us to construct more efficient parsers

Left Factoring

Definition

A CFG $G = (V, \Sigma, R, S)$ is left-factored if, for every $\{A \longrightarrow \alpha, A \longrightarrow \beta\} \subseteq R$, $(\alpha \neq \beta)$, the longest common prefix of α and β is ε

Left-factored grammars allow us to construct more efficient parsers.

Left-Factoring a Grammar

From

$$A \longrightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_m \mid \gamma_1 \mid \gamma_2 \mid \cdots \mid \gamma_n$$

where

- \bullet γ_i does not start with α .

To

$$\begin{array}{cccc} A & \longrightarrow & \alpha A' \mid \gamma_1 \mid \gamma_2 \mid \cdots \mid \gamma \\ A' & \longrightarrow & \beta_1 \mid \beta_2 \mid \cdots \mid \beta_m \end{array}$$

Left-Factoring a Grammar

From

$$A \longrightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_m \mid \gamma_1 \mid \gamma_2 \mid \cdots \mid \gamma_n$$

where

 $\mathbf{0}$ γ_i does not start with α .

To

$$\begin{array}{ccc} A & \longrightarrow & \alpha A' \mid \gamma_1 \mid \gamma_2 \mid \cdots \mid \gamma_n \\ A' & \longrightarrow & \beta_1 \mid \beta_2 \mid \cdots \mid \beta_m \end{array}$$

Example (I)

Example (G_1)

Left-factor the following grammar.

$$E \longrightarrow E + E \mid E * E \mid (E) \mid id \mid number$$

Example (II)

Example (Result)

$$\begin{array}{ccc} E & \longrightarrow & E\,E'|\;(\;E\;)\;|\; {\bf id}\;|\; {\bf number}\\ E' & \longrightarrow & +\,E\;|*E \end{array}$$