

Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN

- 구조 **진동 신호**를 활용한 새로운 모델을 제안
- 제안된 모델은
- 세 가지 주요 단계로 구성됨
- 1. 전처리 단계
- L FFT(Fast Fourier Transform)와 웨이블릿 변환을 사용하여 신호의 특성을 추출
- 2. 하이브리드 모델링 단계
- ∟ LSTM과 CNN을 사용하여 잡음을 제거하고 신호의 특성을 압축
- 3. 앙상블 단계
- L Fully-connected Neural Network를 사용하여 최종적으로 잡음이 제거된 신호 생성

1. Background and Introduction

- 해당 논문은 <mark>구조 진동 신호</mark>의 다양한 공학 분야에서의 응용과 함께, 이러한 신호에서 발생하는 노이즈를 효과적으로 제거(denoising)하는 새로운 방법을 제안
- 구조 진동 신호는 시민 공학(건축 및 토목 공학), 기계 공학 및 생물공학과 같은 다양한 분야에서 중요한 역할을 수행
 - 예를 들어, 시민 공학에서는 다리나 건물과 같은 구조물의 동적 행동을 모니터링하고, 이를 통해 지진이나 바람과 같은 하중에 대비
 - 또한, 기계 공학 분야에서는 터빈, 펌프, 엔진과 같은 기계의 건강을 모니터링하여 안전한 운영을 보장하고, 생물공학에서는 활동으로 인한 구조 진동을 통해 동물과

인간의 움직임을 분석하고 건강 상태를 파악

- 그러나 여러 원인에 의해 발생하는 노이즈는 신뢰성 있는 분석을 방해
 - 전기적 간섭, 환경 요인, 측정 오차 등으로 인해 발생 가능
 - 。 이러한 이유로, 정확한 분석을 위해서는 노이즈 제거가 필수적임
- 제안된 모델은 <mark>하이브리드 CNN-RNN stacking ensemble 구조</mark>를 사용하여 신호를 처리하고, 구조 역학을 모델링하기 위해 PDE/ODE를 활용
 - 모델은 복잡한 신호와 높은 노이즈 수준에서도 효과적으로 작동함을 검증하기 위해 다른 방법과의 성능을 비교하여 검증되었음

2. Dataset

- 구조 진동 신호의 실제값 획득은 상당히 어려움
 - PDE(편미분방정식)/ODE(상미분방정식) solver를 사용하여 구조 진동 시계열 데 이터셋을 생성하는 방법을 제안합
- 발걸음으로 인한 구조 진동의 동역학을 중점적으로 다루며, 이를 Kirchhoff-Love 판의 응답으로 모델링
 - ▼ Kirchhoff-Love 판
 - 구조 역학에서 흔히 사용되는 모델 중 하나로, 판 구조물의 동적 행동을 모델링 하는 데 활용
 - 판이 얇고, 그 길이와 너비에 비해 매우 평평하며, 작은 변형에 노출될 때 적합
 - Kirchhoff-Love 판 이론은 판의 변위와 회전을 설명하는 편미분 방정식(PDE) 으로 구성
 - 이 방정식을 풀면 판의 동적 행동을 모델링할 수 있으며, 이를 통해 구조물
 의 진동 특성을 분석할 수 있음

$$D_i \nabla^2 \nabla^2 \underline{\boldsymbol{w}}_i(\boldsymbol{x},t) - T_i \nabla^2 \boldsymbol{w}_i(\boldsymbol{x},t) = \underline{\delta(\boldsymbol{x},t)} - \rho_i h_i \dot{\boldsymbol{w}}_i(\boldsymbol{x},t) - K_i \dot{\boldsymbol{w}}_i(\boldsymbol{x},t), \tag{1}$$

where $w_i(x,t)$ is the transverse deflection, $D_i \sim \mathcal{N}(\mu_D, \sigma_D)$, $T_i \sim \mathcal{N}(\mu_T, \sigma_T)$, $\rho_i h_i \sim \mathcal{N}(\mu_{\rho h}, \sigma_{\rho h})$ and $K_i \sim \mathcal{U}(a_U, b_U)$ are all parameters of the structure, governing the dynamical response subject to impulse $\delta(x, t)$.

수학적 모델링

이를 위해, PDE 시스템의 해를 구함으로써 발걸음에 의해 유발된 진동의 현실적인
 시뮬레이션을 생성

Figure 1: (a) A sample of <u>foot-step induced floor vibration signal</u>, normalized magnitude of vibration as a function of time [23, 24]. (b) An example of the <u>signals generated based on Eqn. [1]</u>, displacement overlaid with a high level of supplemental Gaussian <u>noise</u>, w(t) as a function of time, t [s].

- 노이즈 제거를 위한 기초 데이터로 합성된 시계열을 사용하며, 이를 위해 가우시안 노이 즈를 추가
- 합성 데이터의 신뢰성을 확인하기 위해 이전 연구에서 보고된 실제 측정값과의 비교를 수행
 - 결과적으로, 제안된 방법은 실제 측정값과 일치하는 합성 결과를 생성하는데 성공 하였음

3. Methods, Results and Discussion

• 구조적 진동 신호의 앙상블 및 순환 신경망(RNNs) 및 합성곱 신경망(CNNs) 예측을 결합한 스태킹 앙상블 모델을 제안

Figure 2: A schematic of the architecture for our proposed stacking ensemble of hybrid CNN-RNN model. The input to the model can consist of multiple noisy signals, ranging from \tilde{w}_1 to \tilde{w}_m , while the output is a denoised signal, represented by \hat{y} .

- 해당 모델은 신호 처리의 세 단계로 구성
 - 1. 전처리 단계
 - 각 신호는 해당 Fast Fourier Transform (FFT) 결과와 결합되고, 각 이미지 는 공간적 및 시간적 특징을 추출하기 위해 웨이블릿 변환을 거침

$$egin{aligned} oldsymbol{y}_{LSTM}^{[1]} &= igcup_{i=1}^m \{ ilde{oldsymbol{w}}_i, \mathcal{F}_{FFT}(ilde{oldsymbol{w}}_i)\}, \ oldsymbol{y}_{CNN}^{[1]} &= igcup_{i=1}^m \{\mathcal{F}_{WT}(ilde{oldsymbol{w}}_i)\}, \end{aligned}$$

- 2. 혼합 모델링 단계
 - 양방향 LSTM 신경망이 FFT 결과와 결합된 노이즈가 있는 신호를 처리하고,
 CNN은 신호의 압축된 특징을 추출

$$egin{aligned} oldsymbol{y}_{LSTM}^{[2]} &= \mathcal{F}_{LSTM} \left(oldsymbol{y}_{LSTM}^{[1]}; oldsymbol{\Theta}_{LSTM}
ight), \ oldsymbol{y}_{CNN}^{[2]} &= \mathcal{F}_{CNN} \left(oldsymbol{y}_{CNN}^{[1]}; oldsymbol{\Theta}_{CNN}
ight), \end{aligned}$$

- 3. 앙상블 단계
 - 세 개의 완전 연결된 신경망 레이어가 최종 노이즈가 제거된 신호를 생성

$$\hat{m{y}} = m{y}^{[3]} = \mathcal{F}_{NN}\left(m{y}_{LSTM}^{[2]}, m{y}_{CNN}^{[2]}; m{\Theta}_{NN}^{Thailedle}
ight),$$

- loss 정의
 - \circ L_2 norm 활용

$$\begin{split} \mathcal{L}\left(\mathbf{\Theta}\right) = & \mathbb{E}_{\boldsymbol{I}} \left\| \hat{\boldsymbol{y}} - \boldsymbol{I} \right\|^{2} + \lambda_{LSTM} \mathbb{E} \left\| \mathbf{\Theta}_{LSTM} \right\| + \lambda_{CNN} \mathbb{E} \left\| \mathbf{\Theta}_{CNN} \right\| + \lambda_{NN} \mathbb{E} \left\| \mathbf{\Theta}_{NN} \right\| \\ + \sum_{i \neq j} \lambda \mathbb{E} \left\| \boldsymbol{y}_{LSTM}^{[2]\langle i \rangle} - \boldsymbol{y}_{LSTM}^{[2]\langle j \rangle} \right\|, \end{split}$$

- 해당 논문의 전처리 접근 방식은 주파수 도메인과 시간 도메인의 특징을 유용하게 활용 하여 구조적 진동 신호를 처리함
 - 이를 통해 다양한 노이즈 수준에서 일관된 성능을 보임
- 실험 결과

Table 1: Comparison of Models

Model	$\sigma_{\epsilon} = 0.1$			$\sigma_{\epsilon} = 0.2$		
	PSNR ↑	SNR↑	WMAPE↓	PSNR †	SNR†	WMAPE↓
	[dB]	[dB]	[%]	[dB]	[dB]	[%]
Ensemble	38.0	25.8	7.6	35.8	23.6	9.7
Total-Variance	31.2	19.0	15.8	24.2	11.8	29.4
Wiener	26.3	13.9	28.2	20.1	7.7	46.2
Savgol	27.6	15.4	24.1	22.2	10.1	40.4
PYWT	24.4	13.4	25.7	21.5	10.4	37.8

 다른 노이즈 제거 알고리즘보다 우수한 성능을 보이며, 구조적 진동 신호의 노이즈 제거에 효과적인 것으로 입증됨

▼ PSNR

- Peak Signal-to-Noise Ratio의 약자
- 영상 또는 신호의 품질을 측정하는 데 사용되는 일반적인 지표
- PSNR은 원본 신호와 노이즈가 추가된 또는 왜곡된 신호 간의 차이를 나타내는 신호와 노이즈 간의 간격을 측정
- 높을수록 더 나은 품질

▼ SNR

- Signal-to-Noise Ratio의 약자
- 신호 대 노이즈 비율을 나타내는 지표
 - 신호의 강도와 노이즈의 강도 사이의 상대적인 크기
- 원본 신호의 신호 성분에 대한 신호의 세기와 추가된 노이즈의 세기 간의 비율 로 정의
- <u>높은</u> SNR 값은 원본 신호에 비해 노이즈가 상대적으로 낮은 것을 나타내며, 이 는 더 나은 신호 품질을 의미

▼ WMAPE

- Weighted Mean Absolute Percentage Error의 약자
- 가중 평균 절대 백분율 오차를 나타내는 지표
 - 。 예측값과 실제값 간의 차이를 백분율로 표시한 후, 이를 가중 평균한 값
- 예측 오차를 상대적인 백분율로 표현하고, 예측값의 크기에 따라 가중치를 적용 하여 오차를 측정
- WMAPE 값이 <u>낮을수록</u> 예측 모델의 정확성이 높다고 판단

4. Conclusion

- 해당 연구는 구조 진동 신호의 노이즈를 제거하기 위해 하이브리드 CNN-RNN 추적 앙 상블 모델을 제안
- 모델은 전처리, CNN-RNN 하이브리드 모델링 및 앙상블 세 단계로 구성됨
- 제안된 모델은 여러 테스트 데이터셋에서 PSNR, SNR 및 WMAPE 측면에서 기존 알고 리즘을 능가하는 성능을 보였음