Skriftlig eksamen på Økonomistudiet Vinteren 2017 - 2018

MATEMATIK A

Torsdag den 18. januar 2018

2 timers skriftlig prøve uden hjælpemidler

Dette sæt omfatter 2 sider med 3 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2018 V-1A ex

Skriftlig eksamen i Matematik A Torsdag den 18. januar 2018

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1. Differentiation.

Lad $I \subseteq \mathbf{R}$ være et åbent, ikke-tomt interval, og lad $a \in I$ være et givet punkt. Lad endvidere $f: I \to \mathbf{R}$ være en given reel funktion.

(1) Forklar, hvad det vil sige, at funktionen f er differentiabel i punktet $a \in I$ med differentialkvotienten

$$f'(a) = \frac{df}{dx}(a).$$

(2) Udregn følgende differentialkvotienter

$$\frac{d}{dx} \left(3^x + 2x^2 - \cos(5x) \right), \quad \frac{d}{dx} \left(\cos(2x^2) - \sin(3x^3) \right), \quad \frac{d}{dx} \left(\frac{x^2}{1 + x^4} \right).$$

(3) Differentier den funktion $f: \mathbf{R} \to \mathbf{R}$, som er defineret ved forskriften

$$\forall x \in \mathbf{R} : f(x) = \begin{cases} e^x, & \text{for } x \ge 0\\ 1+x, & \text{for } x < 0 \end{cases}.$$

(4) Er funktionen f'(x) differentiabel overalt på \mathbb{R} ?

Opgave 2. Vi betragter den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + y^2 - 4x + 2y.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

- (2) Bestem eventuelle stationære punkter for funktionen f.
- (3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (4) Bestem værdimængden for funktionen f.

Opgave 3. Lad a>1 være et fast valgt reelt tal. Vi betragter den uendelige række

$$(\S) \qquad \qquad \sum_{n=0}^{\infty} a^{nx}.$$

(1) Bestem mængden

$$C = \{x \in \mathbf{R} \mid \sum_{n=0}^{\infty} a^{nx} \text{ er konvergent}\}.$$

(2) Bestem en forskrift for sumfunktionen

$$f(x) = \sum_{n=0}^{\infty} a^{nx}, \quad \forall x \in C.$$

- (3) Bestem værdimængden for sumfunktionen f.
- (4) Bestem den afledede funktion f'(x) og elasticiteten $f^{\epsilon}(x)$ for $x \in C$.