Leyes fundamentales de los circuitos y sus aplicaciones

- Leyes de Kirchhoff
- Resolución sistemática de los circuitos
- Conexiones de elementos: serie y paralelo
- Conexiones de elementos: conversión estrella-triángulo
- Aplicaciones de las conexiones: divisor de tensión, divisor de corriente

Definiciones

Nodo

Rama

Definiciones

Lazo

Malla

Ley de kirchhoff de las corrientes (LKC) o Ley de los nodos

$$\sum_{\text{todas}} i_{entrantes} = 0$$

$$\sum i_{entrantes} = \sum i_{salientes}$$

Consecuencia

Ley de kirchhoff de las tensiones (LKT) o Ley de las mallas

En un lazo

$$\sum_{\text{todas}} v = 0$$

Resolución

En un circuito con N nodos y R ramas:

Incógnitas:

- En cada rama sin generador de corriente una corriente de rama
- En cada rama con generador de corriente una tensión en el generador

Ecuaciones:

- En todos los nodos menos en uno LKC
- En R-N+1 lazos LKT (deben aparecer todas las ramas)
 Si se usan las mallas, siempre se cumple que M=R-N+1
 donde M es el nº de mallas del circuito

Conexión de elementos en serie

Por todos los elementos pasa la misma corriente

Conexión de elementos en paralelo

En todos los elementos hay la misma tensión

Resistencias en serie

$$v_1 = R_1 i \qquad \qquad v_2 = R_2 i$$

$$v_{AB} = v_1 + v_2 = R_1 i + R_2 i = (R_1 + R_2)i$$

Resistencia equivalente

$$v_{AB} = R_{es}i$$

$$R_{es} = R_1 + R_2$$

$$R_{es} = \sum_{i} R_{i}$$

Resistencias en paralelo

$$v_{AB} = R_1 i_1$$
 $v_{AB} = R_2 i_2$

$$i = i_1 + i_2 = \left(\frac{v_{AB}}{R_1}\right) + \left(\frac{v_{AB}}{R_2}\right) = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)v_{AB}$$

$$\frac{1}{R_{ep}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Resistencia equivalente

$$A \circ \underbrace{i}_{P} \bigwedge_{Rep} \underbrace{i}_{B}$$

$$+ v_{AB} -$$

$$i = \frac{v_{AB}}{R_{ep}}$$

$$\frac{1}{R_{ep}} = \sum_{i} \frac{1}{R_{i}}$$

Condensadores en serie

$$i = C_1 \frac{dv_1}{dt} \qquad i = C_2 \frac{dv_2}{dt}$$
$$\frac{dv_{AB}}{dt} = \frac{dv_1}{dt} + \frac{dv_2}{dt} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)i$$

$$\frac{1}{C_{es}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Capacidad equivalente

$$\frac{dv_{AB}}{dt} = \frac{i}{C_{es}}$$

$$\frac{1}{C_{es}} = \sum_{i} \frac{1}{C_{i}}$$

Condensadores en paralelo

$$C_{ep} = C_1 + C_2$$

Capacidad equivalente

$$i = C_{ep} \frac{dv_{AB}}{dt}$$

$$C_{ep} = \sum_{i} C_{i}$$

Generadores de tensión en serie

$$v_1 = V_1 \qquad v_2 = V_2$$
$$v_{AB} = V_1 + V_2$$

$$v_{AB} = V_{es}$$

$$V_{es} = V_1 + V_2$$

$$V_{es} = \sum_{i} V_{i}$$

Generadores de tensión en paralelo

Si $V_1 \neq V_2$ IMPOSIBLE

$$v_{AB} = V_{ep}$$

$$V_{ep} = V_1 = V_2$$

$$V_{ep} = V_i$$

Generadores de corriente en serie

$$i = I_1$$
 $i = I_2$

Si $I_1 \neq I_2$ IMPOSIBLE

$$i = I_{es}$$

$$I_{es} = I_1 = I_2$$

$$I_{es} = I_i$$

Generadores de corriente en paralelo

$$i = I_{ep}$$

$$I_{ep} = I_1 + I_2$$

$$I_{ep} = \sum_{i} I_{i}$$

Conversión estrella-triángulo de resistencias

Conexión en estrella

$$R_a = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3}$$

$$\nabla \rightarrow \Upsilon$$

$$R_b = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3}$$

$$R_c = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3}$$

$$R_1 = \frac{R_a R_b + R_a R_c + R_b R_c}{R_c}$$

$$Y\!\to\!\! \nabla$$

$$R_2 = \frac{R_a R_b + R_a R_c + R_b R_c}{R_b}$$

$$R_3 = \frac{R_a R_b + R_a R_c + R_b R_c}{R_a}$$

Divisor de tensión

$$I = \frac{V}{R_1 + R_2 + R_3} = \frac{V}{R_{es}}$$

$$V_i = \frac{R_i}{R_{es}} V$$

$$V_1 = \frac{R_1}{R_{as}} V$$

$$V_2 = \frac{R_2}{R_{es}} V$$

$$V_3 = \frac{R_3}{R_{es}} V$$

Divisor de corriente

$$I_i = \frac{V}{R_i} = \frac{R_{ep}}{R_i} I$$

$$V = R_{ep}I$$

$$I_{1} = \frac{V}{R_{1}} = \frac{R_{ep}}{R_{1}}I$$

$$I_2 = \frac{V}{R_2} = \frac{R_{ep}}{R_2} I$$

$$I_3 = \frac{V}{R_3} = \frac{R_{ep}}{R_3}I$$

Voltímetro

- Mide la tensión entre los puntos a y b
- Conectar el Voltímetro supone modificar el circuito y por tanto el valor de tensión que queremos medir
- En un voltímetro ideal:

$$R_V = \infty$$

$$I_{V} = 0$$
 $I' = I$

$$I' = I$$

$$V_{abM} = V_{ab}$$

En un voltímetro real:

$$R_V >>> R$$

Amperimetro

- Mide la corriente por la rama entre a y b
- Conectar el Amperímetro supone modificar el circuito y por tanto el valor de corriente que queremos medir
- En un amperímetro ideal:

$$R_{A}=0$$

$$V_A = 0$$

$$R_A = 0 V_A = 0 V'_{ab} = V_{ab}$$

$$I_{M} = I$$

En un amperímetro real:

$$R_A <<< R$$