MIPT Data Visualization Course

Data Visualization in Modern Machine Learning

Ashuha Arseniy^{1,2}

Bayesian Research Group¹, MIPT²

ars.ashuha@gmail.com

November 9, 2016

Motivation

Motivation

- ▶ It's a little bit sad, but we can plot only 2D data, isn't it?
- ▶ A goal of data visualization is to understand of inner data structure.
- Or represent data in much more interpretable form.

Two way to get this goal:

- Low Rank Way (SVD, Auto-encoders, LDA, etc.)
- Generative Models Way (GAN, Image Capturing, etc.)

Low Rank idea

- We have matrix $X_{items \times features}$
- Let's try to represent each item's vector as a smaller dimension ones
- ▶ What should we do?

Principal component analysis is a matrix decomposition, minimize \mathcal{L}_2 norm

Intuition save maximum data variance decomposition, minimize \mathcal{L}_2 norm

SVD: Faces dataset

Main components:

Plot in 2d:

Non-linear Expansion

- ▶ What did we do wrong? Our picture mix different classes and so on.
- ▶ Let's try non-linear generalization.

- ▶ How to find W_n ?
- ▶ Define loss function $L(Y, \hat{Y})$ and use your favourite opt method.

Auto encoders example

 $http://dpkingma.com/sgvb_mnist_demo/demo.html$

Stochastic Neighbor Embedding

X – high dimensional obj and Y – low dimensional ones, σ – width params

$$p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)} \quad q_{j|i} = \frac{(-\|\mathbf{y}_i - \mathbf{y}_j\|^2)}{\sum_{k \neq i} (-\|\mathbf{y}_i - \mathbf{y}_k\|^2)}$$
$$KL(P||Q) = \sum_{j} \sum_{i} p_{i|j} \log \frac{p_{i|j}}{q_{i|j}} \to \min_{q}$$

Deep Neural Nets + t-SNE (modification of SNE with Student test): http://cs.stanford.edu/people/karpathy/cnnembed/

DNN Metric Learning Triplet Loss

The loss that is being minimized is then

$$\sum_{i}^{N} \left[\left\| f(x_{i}^{a}) - f(x_{i}^{p}) \right\|_{2}^{2} - \left\| f(x_{i}^{a}) - f(x_{i}^{n}) \right\|_{2}^{2} + \alpha \right]_{+}$$

DNN Metric Learning Triplet Face and Music

High level

- We have mapped each object into vector
- Let's train this vector for match complex object like words

Word2Vec

Shallow Neural Net

Operations on embeddings are great

Image2Text

- ▶ Ok, we have a picture and want to represent in lower dim space
- lets try map picture om a word sentence space

construction worker in orange safety vest is working on road.

two young girls are playing with lego toy.

boy is doing backflip on wakeboard.

http://cs.stanford.edu/people/karpathy/deepimagesent/ http://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/

Generative Adversarial Networks

- Image Generation is a lintel bit hardcore
- Most modern idea is like this

Text2Image

https://arxiv.org/pdf/1511.02793v2.pdf

References