STAT 401A - Statistical Methods for Research Workers Multiple regression inference

Jarad Niemi (Dr. J)

Iowa State University

last updated: November 10, 2014

Multiple regression model

The multiple regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p}, \sigma^2)$$

Scientific questions/hypotheses can typically be written in one of the following forms:

	Estimate	Null Hypothesis
Single coefficient	eta_j	$\beta_j = 0$
Linear combination	$\gamma = C_0 \beta_0 + C_1 \beta_1 + \cdots + C_p \beta_p$	$\gamma = 0$
F-test		a set of β_i 's are zero
Prediction	$\mu = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$	

Echolocation energy cost example

Questions:

- Do body mass or species type have any effect on energy expenditure?
- After accounting for species type, what is the effect of body mass?
- After accounting for body mass, is there any difference in energy expenditure amongst the species types?
- After accounting for body mass, what are the pairwise differences in energy expenditure amongst the species types?
- What would we expect the energy expenditure to be for an echolocating bat with body mass of 50 grams?

Echolocation energy cost example

Echolocation energy cost example

Consider the model

$$Y_i \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$
 $\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3}$

where, for observation i, we have

- Y_i is log energy expenditure (W)
- $X_{i,1}$ is log body mass (g)
- $X_{i,2}$ is 1 if non-echolocating bats and 0 otherwise
- $X_{i,3}$ is 1 if non-echolocating birds and 0 otherwise
- **1** F-test: $\beta_1 = \beta_2 = \beta_3 = 0$
- **2** Coefficient: β_1
- **3** F-test: $\beta_2 = \beta_3 = 0$
- **4** Coefficient: β_2 , β_3 and Contrast: $\beta_2 \beta_3$
- Prediction:

Single coefficient

Hypothesis test:

$$H_0: \beta_j = 0 \vee H_1: \beta_j \neq 0$$

calculate the t-statistic and a (two-sided) pvalue

$$t=rac{\hat{eta}_j}{SE(\hat{eta}_j)} \qquad p=2P(t_{n-p}<-|t|).$$

 $100(1-\alpha)\%$ two-sided confidence interval:

$$\hat{\beta}_j \pm t_{n-p}(1-\alpha/2)SE(\hat{\beta}_j)$$

Linear combination

Let

$$C_0\beta_0+C_1\beta_1+\cdots C_p\beta_p.$$

Hypothesis test:

$$H_0: \gamma = 0 \vee H_1: \gamma \neq 0$$

calculate the t-statistic and a (two-sided) pvalue

$$t = \frac{\hat{\gamma}}{\mathsf{SE}(\hat{\gamma})}$$
 $p = 2P(t_{n-p} < -|t|).$

 $100(1-\alpha)\%$ two-sided confidence interval:

$$\hat{\gamma} \pm t_{n-p}(1-\alpha/2)SE(\hat{\gamma})$$

Testing Composite hypotheses

Comparing two models

- *H*₀ : (reduced)
- *H*₁ : (full)

Do the following

- 1. Calculate extra sum of squares.
- 2. Calculate extra degrees of freedom
- 3. Calculate

$$\text{F-statistic} = \frac{\text{Extra sum of squares} \; / \; \text{Extra degrees of freedom}}{\hat{\sigma}_{\textit{full}}^2}$$

- 4. Compare this to an F-distribution with
 - numerator degrees of freedom = extra degrees of freedom
 - ullet denominator degrees of freedom = degrees of freedom in estimating $\hat{\sigma}^2_{\mathit{full}}$

What do we say about Y when $X_1 = x_1, \dots, X_p = x_p$?

We can estimate

$$\hat{\mu}\{Y|X\} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

Calculation of the standard error is not simple, but it is straight-forward. We'll just refer to it as the standard error of the mean, $SE(\hat{\mu}\{Y|X\})$.

Just like before, we also have a standard error for a prediction:

$$SE(Pred\{Y|X\})^2 = \hat{\sigma}^2 + SE(\hat{\mu}\{Y|X\})^2.$$

SAS Code and Output

```
DATA case1002;
 INFILE 'case1002.csv' DSD FIRSTOBS=2:
 LENGTH Type $ 30;
 INPUT Mass Type $ Energy;
DATA case1002new:
  INPUT Mass Type & $30.;
 DATALINES;
 50 echolocating bats
DATA case1002:
 SET case1002 case1002new:
 lMass = log(Mass) ;
 lEnergy = log(Energy);
 RUN:
PROC PRINT DATA=case1002; RUN;
PROC GLM DATA=case1002 PLOTS=all:
 CLASS Type(REF='echolocating bats');
 MODEL lEnergy = 1Mass Type / SOLUTION CLPARM;
 LSMEANS Type / PDIFF CL;
 ESTIMATE 'neBird - neBat' Type 0 -1 1;
 OUTPUT OUT=case1002reg PREDICTED=predicted LCL=1cl UCL=ucl LCLM=1clm UCLM=uclm:
PROC PRINT DATA=case1002reg;
 WHERE Energy=.;
 RUN:
```

SAS Code and Output - ANOVA

The F-test from the ANOVA table tests the null hypothesis

$$\beta_1 = \cdots = \beta_p = 0.$$

The GLM Procedure

Dependent Variable: lEnergy

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	29.42148268	9.80716089	283.59	<.0001
Error	16	0.55331753	0.03458235		
Corrected Total	19	29.97480021			

R-Square Coeff Var Root MSE 1Energy Mean 0.981541 7.491872 0.185963 2.482201

SAS Code and Output - Parameter Estimates

The parameter estimates table provides tests and confidence intervals for individual β_j 's.

					Stand	lard		
Parameter			Estimate		Er	ror	t Value	Pr > t
Intercept			-1.497696514	В	0.14986	3901	-9.99	<.0001
lMass			0.814957494		0.04454	1143	18.30	<.0001
Туре	non-echolocat	ing bats	-0.078663681	В	0.20267	7926	-0.39	0.7030
Туре	non-echolocat	ing birds	0.023598237	В	0.15760	0050	0.15	0.8828
Туре	echolocating	bats	0.000000000	В				
	Parameter				95% Confide	ence l	Limits	
	Intercept			-:	1.815404627	-1.1	79988400	
	1Mass			(0.720533885	0.9	09381102	
	Туре	non-echolo	cating bats	-(0.508324522	0.3	50997161	
	Type	non-echolo	cating birds	-(0.310499899	0.3	57696373	
	Type	echolocati	ng bats					

SAS Code and Output - LSMEANS

The LSMEANS statement performs pairwise differences.

The GLM Procedure Least Squares Means

```
Least Squares Means for effect Type
Pr > |t| for HO: LSMean(i)=LSMean(j)
```

Dependent Variable: lEnergy

i/j	1	2	3
1		0.3837	0.7030
2	0.3837		0.8828
3	0.7030	0.8828	

Least Squares Means for Effect Type

i	j	Difference Between Means	95% Confidence LSMean(i)-LS	
1	2	-0.102262	-0.344318	0.139794
1	3	-0.078664	-0.508325	0.350997
2	3	0.023598	-0.310500	0.357696

SAS Code and Output - ESTIMATE statement

The ESTIMATE statement can be used for specific comparisons.

The GLM Procedure

Dependent Variable: lEnergy

Standard

Parameter Estimate neBird - neBat -0.02359824

Error t Value Pr > |t| 95% Confidence Limits 0.15760050

-0.15

0.8828 -0.35769637

0.31049990

Jarad Niemi (Iowa State)

SAS Code and Output - Type I and III SS

Type I and III SS tables perform specific F-tests:

- Type I performs sequential tests
- Type III performs conditional tests

In this case, the line for IMass in the

	H_0	H_1
Type I SS	β_{0}	$\beta_0 + \beta_1 X_1$
Type III SS	$\beta_0 + \beta_2 X_2 + \beta_3 X_3$	$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$

Source	DF	Type I SS	Mean Square	F Value	Pr > F
1Mass	1	29.39190909	29.39190909	849.91	<.0001
Type	2	0.02957359	0.01478680	0.43	0.6593
Source	DF	Type III SS	Mean Square	F Value	Pr > F
1Mass	1		11.57700181	334.77	<.0001
Туре	2	0.02957359	0.01478680	0.43	0.6593

SAS Code and Output - OUTPUT statement

PRINTing the data set constructed in the OUTPUT statement provides the predictions and uncertainties

```
        Obs
        Type
        Mass Energy 1 Mass
        Energy predicted
        lcl
        ucl
        lclm
        uclm

        21 echolocating bats
        50
        .
        3.91202
        .
        1.69044
        1.23358
        2.14729
        1.45956
        1.92132
```

Now exponentiate since we used log(Energy).

R Code and Output - ANOVA Table

For F-tests in R, fit both models and then use anova to compare them.

```
m0 = lm(log(Energy)^1, case1002)
m1 = lm(log(Energy)^log(Mass)+Type, case1002)
anova(m0,m1)

Analysis of Variance Table

Model 1: log(Energy)^1
Model 2: log(Energy)^1 log(Mass) + Type
Res.Df RSS Df Sum of Sq F Pr(>F)
1 19 29.9748
2 16 0.5533 3 29.422 283.59 4.464e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

R Code and Output - Parameter estimates

```
summary(m1)
Call:
lm(formula = log(Energy) ~ log(Mass) + Type, data = case1002)
Residuals:
    Min
             10 Median
                        30
                                    Max
-0.23224 -0.12199 -0.03637 0.12574 0.34457
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      -1.49770 0.14987 -9.993 2.77e-08 ***
                       log(Mass)
Typenon-echolocating bats -0.07866 0.20268 -0.388 0.703
Typenon-echolocating birds 0.02360 0.15760 0.150 0.883
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.186 on 16 degrees of freedom
Multiple R-squared: 0.9815, Adjusted R-squared: 0.9781
F-statistic: 283.6 on 3 and 16 DF, p-value: 4.464e-14
confint(m1)
                            2.5 %
                                     97.5 %
(Intercept)
                        -1.8154046 -1.1799884
```

0.7205339 0.9093811

Typenon-echolocating bats -0.5083245 0.3509972

log(Mass)

R Code and Output - LSMEANS

Compared to the SAS output, these pvalues are adjusted.

```
library(lsmeans)
lsmeans(m1, 'Type', contr='pairwise')
$1smeans
Type
                                        SE df lower.CL upper.CL
echolocating bats 3.042364 0.16031730 16 2.702507 3.382222
non-echolocating bats 2.963701 0.09593823 16 2.760321 3.167081
non-echolocating birds 3.065963 0.05580097 16 2.947670 3.184255
Confidence level used: 0.95
$contrasts
                                                                  SE df t.ratio p.value
 contrast
                                                  estimate
                                                                          0.388 0.9207
echolocating bats - non-echolocating bats
                                                0.07866368 0.2026793 16
echolocating bats - non-echolocating birds
                                               -0.02359824 0.1576005 16 -0.150 0.9877
non-echolocating bats - non-echolocating birds -0.10226192 0.1141826 16 -0.896 0.6507
P value adjustment: tukey method for a family of 3 means
```

R Code and Output - F-tests

Type III SS F-tests, i.e. drop 1 term

R Code and Output - F-tests

or you could fit the models and compare them using anova

```
anova(lm(log(Energy) Type, case1002),
                                   m1)
Analysis of Variance Table
Model 1: log(Energy) ~ Type
Model 2: log(Energy) ~ log(Mass) + Type
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 17 12 1303
     16 0.5533 1 11.577 334.77 3.758e-12 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
anova(lm(log(Energy)~log(Mass), case1002), m1)
Analysis of Variance Table
Model 1: log(Energy) ~ log(Mass)
Model 2: log(Energy) ~ log(Mass) + Type
 Res.Df RSS Df Sum of Sq F Pr(>F)
    18 0.58289
     16 0.55332 2 0.029574 0.4276 0.6593
```

R Code and Output - Predictions