1. We know that f is measurable, then for every $a \in \mathbb{R}^1$, the set $f^{-1}(\{a\})$ is measurable. Use the following function f to show that the converse of this result is not true, where $f: \mathbb{R}^1 \to \mathbb{R}^1$ defined by

$$f(x) = \begin{cases} e^x & \text{if } x \in E, \\ -e^x & \text{if } x \in E^c, \end{cases}$$

where $E \subset \mathbb{R}^1$ is a nonmeasurable set.

- 2. Let $E \subset \mathbb{R}^1$ be measurable. Show that if $f: E \to [-\infty, \infty]$ is increasing, then f is measurable.
- 3. If f is differentiable on [a, b], then f' is measurable. (Note: f' might not be continuous.)
- 4. Prove that the sum and product of two simple functions on E are still simple functions on E.
- 5. Assume that $|E| < \infty$ and f be a measurable function on E which is finite a.e. in E. Show that for every $\varepsilon > 0$, there exists a closed set $F \subset E$ such that $|E F| < \varepsilon$ and that f is bounded on F.
- 6. Assume that $|E| < \infty$ and f is measurable on E. Show that there are at most countably many real number y such that $|f^{-1}(\{y\})| > 0$.
- 7. Problem 4 on Page 76 of the textbook.
- 8. Let f(x,t) be a function on $[a,b] \times \mathbb{R}^1$. Assume that (i) for each fixed $x \in [a,b]$, f(x,t) is continuous as a function of $t \in \mathbb{R}^1$; (ii) for each fixed $t \in \mathbb{R}^1$, f(x,t) is measurable as a function of $x \in [a,b]$. Let g(x) be a measurable function on [a,b]. Show that F(x) = f(x,g(x)) is measurable on [a,b].

Hint: Approximate f by a sequence of simple functions.