Bases de données

L2 sciences et technologies, mention informatique

union et négation : requêtes relationnelles

ou : comment exprimer "lister les réalisateurs n'ayant pas réalisé un film chaque année" ?

films	titre	réalisateur	année	réalisateur	s nom	nationalité
	starwars	lucas	1977		lucas	américaine
	nikita	besson	1990		lynch	américaine
	locataires	ki-duk	2005		besson	française
	dune	lynch	1984		ki-duk	coréenne

 $patrick.marcel @univ-tours.fr\\ http://celene.univ-tours.fr/course/view.php?id=3131$

plan de la séance

- union quels sont les films réalisés par "lynch" ou "ki-duk"?
- négation
 quels sont les films qui ne sont pas réalisés par "besson"?
 existe-t-il des réalisateurs dans l'instance de "films" qui ne sont pas dans
 l'instance de "réalisateurs"?
- 3. le cas particulier du calcul relationnel

Base de données ∟_{union}

```
quels sont les films réalisés par "lynch" ou "ki-duk"? en algèbre, on aimerait écrire : \pi_{titre}(\sigma_{r\acute{e}alisateur}="lynch"(films))\cup\sigma_{r\acute{e}alisateur}="ki-duk"(films)) ou encore \pi_{titre}(\sigma_{r\acute{e}alisateur}="lynch" \lor r\acute{e}alisateur}="ki-duk"(films))
```

```
quels sont les films réalisés par "lynch" ou "ki-duk"? avec les règles, on aimerait écrire:  \text{résultat}(t) \leftarrow \text{films}(t,\text{"lynch",a})   \text{résultat}(t) \leftarrow \text{films}(t,\text{"ki-duk",a})
```



```
quels sont les films réalisés par "lynch" ou "ki-duk"? avec le calcul, on aimerait écrire: \{t|\exists a_1,a_2, \, \mathsf{films}(t,"\,\mathsf{lynch}",a_1) \,\vee\, \mathsf{films}(t,"\,\mathsf{ki-duk}",a_2)\}
```

union et algèbre

opération ∪ ajoutée à SPC

soit l_1 et l_2 deux instances de relations ayant même arité:

$$I_1 \cup I_2 = \{t | t \in I_1 \text{ ou } t \in I_2\}$$

on obtient l'algèbre SPCU

union et algèbre

opération \cup ajoutée à SPJR

 I_1 et I_2 doivent avoir même sorte

on obtient l'algèbre SPJRU

union et algèbre

la sélection est généralisée aux formules disjonctives

les formes normales pour les requêtes sont définies comme suit :

une requête SPCU (resp., SPJRU) est sous forme normale si elle est l'union de deux requêtes SPC (resp., SPJR) sous forme normale

exemple

$$\pi_{titre}(\sigma_{r\'ealisateur="lynch"} \lor r\'ealisateur="ki-duk"}(films))$$

n'est pas sous forme normale

$$\pi_{\textit{titre}}(\sigma_{\textit{r\'ealisateur}="\textit{lynch}"}(\textit{films})) \cup \pi_{\textit{titre}}(\sigma_{\textit{r\'ealisateur}="\textit{ki}-\textit{duk}"}(\textit{films}))$$

est sous forme normale

union et langage de règles

on peut définir des ensembles de règles ayant le même nom de relation dans la tête

un programme nr-datalog sur un schéma R est un ensemble de n règles où

- ▶ il n'y a pas de nom de relation de R dans la tête
- \triangleright il existe un ordre des règles de r_1 à r_n tel que
- ▶ le nom de relation dans la tête de r_i n'apparait pas dans le corps de de r_i si $j \le i$

évaluation des programmes

soit I une instance de base de données et P un programme $\operatorname{nr-datalog}$

chaque règle est évaluée dans un ordre satisfaisant les critères définis plus haut

l'union des faits est réalisée si 2 règles ont le même nom de relation dans la tête

nr-datalog

le langage obtenu s'appelle nr-datalog

pourquoi "nr"? pour *n*on*r*ecursive

parce que ce genre de règle n'est pas autorisée:

 $anc\hat{e}tre(x,z) \leftarrow parent(x,y)$, $anc\hat{e}tre(y,z)$.

```
Base de données
```

exemple

```
soit le programme suivant :
r_1 résultat(t) \leftarrow films(t,"lynch",a)
r_2 résultat(t) \leftarrow films(t," ki-duk",a)
on ordonne les règles dans l'ordre r_1, r_2 et on évalue les règles dans
cet ordre
évaluation de r_1 { résultat(dune) }
évaluation de r_2: { résultat(dune), résultat(locataires) }
```

union et calcul

```
le problème : on peut écrire \{x,y|R(x) \lor R(y)\}
c'est une requête syntaxiquement correcte, mais...
les variables x et y sont libres
donc la réponse est infinie!
les requêtes de ce type ne sont pas sûres
on règle ça tout à l'heure...
```

théorème

les langages suivants sont équivalents :

- ► l'algèbre SPCU
- l'algèbre SPJRU
- nr-datalog

ces langages expriment:

- les requêtes conjonctives avec union
- qui sont closes par composition

négation

en algèbre

ou

```
quels sont les films qui ne sont pas réalisés par "besson" ? \pi_{\textit{titre}}(\textit{films} - \sigma_{\textit{réalisateur}="besson"}(\textit{films}))
```

 $\pi_{titre}(\sigma_{r\'ealisateur \neq "besson"}(films))$

en algèbre

existe-t-il des réalisateurs dans l'instance de "films" qui ne sont pas dans l'instance de "réalisateurs"?

$$\pi_{r\'{e}alisateur}(films) - \pi_{nom}(r\'{e}alisateurs)$$

en langage de règles

quels sont les films qui ne sont pas réalisés par "besson"?

$$ans(x) \leftarrow films(x,y,z), \neg films(x,"besson",z).$$

existe-t-il des réalisateurs dans l'instance de "films" qui ne sont pas dans l'instance de "réalisateurs"?

```
 \begin{array}{l} \textit{r\'ealisateursFilms(r)} \leftarrow \textit{films(t,r,a)} \\ \textit{r\'ealisateursR\'ealisateurs(r)} \leftarrow \textit{r\'ealisateurs(r,n)} \\ \textit{ans(x)} \leftarrow \textit{r\'ealisateursFilms(x)}, \ \neg \ \textit{r\'ealisateursR\'ealisateurs(x)} \\ \end{array}
```

algèbre

opérateur — défini sur des relations ayant même sorte (SPJRU) ou même arité (SPCU)

la sélection est généralisée pour permettre des formules autorisant la négation

 $\pi_{titre}(\sigma_{ann\acute{e}=1990 \land r\acute{e}alisateur \neq "besson"}(films))$

attention!

la différence ne peut pas être exprimée comme une jointure

exemple: soit
$$A = \{(1),(2)\}\$$
et $B = \{(1),(3)\}\$

$$A - B \neq \pi_1(\sigma_{1\neq 2}(A \times B))$$

algèbre relationnelle

le langage obtenu s'appelle l'algèbre relationnelle

ses propriétés:

- permet d'exprimer des requêtes non monotones
- permet d'exprimer des requêtes non satisfiables
- clos par composition

nr-datalog

nr-datalog : nr-datalog dans lequel des litéraux négatifs sont
permis dans le corps des règles
une règle nr-datalog est de la forme:

$$q:S(u)\leftarrow L_1,\ldots,L_n.$$

- S est un nom de relation
- ► S n'apparait pas dans le corps de q
- u est un tuple libre
- les L_i sont des litéraux de la forme R(v) ou $\neg R(v)$
 - R est un nom de relation
 - v un tuple libre

nr-datalog

$$q: S(u) \leftarrow L_1, \ldots, L_n$$
.

q est à champs restreint si chaque variable apparait au moins une fois dans un literal positif de la forme R(v) du corps

dans ce qui suit on considère uniquement des règles à champs restreint

exemple

$$ans(x) \leftarrow films(x,y,z), \neg films(x,"besson",z).$$

 $ans(x) \leftarrow films(x,y,a), \neg réalisateurs(y,"américaine").$

$$ans(x) \leftarrow \neg films(x, "besson", z).$$

sont à champs restreint

$$\mathsf{ans}(\mathsf{y}) \leftarrow \mathsf{films}(\mathsf{x},\mathsf{y},\mathsf{z}), \ \neg \ \mathsf{films}(\mathsf{w},\mathsf{y},"1991").$$

ne sont pas à champs restreint

nr-datalog

soient

- ▶ q une règle nr-datalog $S(u) \leftarrow L_1, \ldots, L_n$.
- ▶ D un schéma de base de données qui inclut tous les noms de relation apparaissant dans le corps de q
- ▶ I une instance de D

l'image de I par q est :

$$q(I) = \{v(u)|v \text{ est une valuation et pour chaque } i \in [1,n],$$
 $v(u_i) \in I(R_i) \text{ si } L_i = R_i(u_i), \ v(u_i) \not\in I(R_i) \text{ si } L_i = \neg R_i(u_i) \}$

nr-datalog

un programme nr-datalog sur un schéma R est un ensemble de n règles nr-datalog tel que

- ▶ aucune relation de R apparait dans la tête
- ▶ il existe un ordre r_1, \ldots, r_n tel que le nom de relation dans la tête de r_i n'apparait pas dans r_j si $i \ge j$.

exemple

```
r_1 réalisateursFilms(r) \leftarrow films(t,r,a)
r_2 réalisateursRéalisateurs(r) \leftarrow réalisateurs(r,n)
r_3 ans(x) \leftarrow réalisateursFilms(x), \neg réalisateursRéalisateurs(x)
on ordonne les règles, par exemple dans l'ordre r_2, r_1, r_3
et on évalue selon cet ordre:
{ réalisateursFilms(lucas), réalisateursFilms(besson),
réalisateursFilms(ki-duk), réalisateursFilms(lynch),
réalisateursRéalisateurs(lucas), réalisateursRéalisateurs(besson),
réalisateursRéalisateurs(ki-duk), réalisateursRéalisateurs(lynch) }
```

Base de données ∟négation

thèorème

l'algèbre relationnelle et les programmes nr-datalog $\Bar{\ }$ ont la même puissance d'expression

Calcul relationnel

le calcul relationnel

on ajoute au calcul conjonctif:

- ► la négation ¬
- ► la disjonction ∨
- ▶ la quantification universelle ∀

remarque

si φ et ψ sont deux formules :

$$\varphi \lor \psi \quad \equiv \quad \neg(\neg \varphi \land \neg \psi)$$
$$\forall x \varphi \quad \equiv \quad \neg \exists x \neg \varphi$$

exemple

Soit la relation vu[spectateur, titre]

$$\forall s, vu(s, "starwars") \equiv \neg \exists s \neg vu(s, "starwars")$$

syntaxe

soit D un schéma de base de données, $e,e'\in \mathbf{dom}\cup \mathbf{var}$

les formules du calcul relationnel sont :

- 1. un atome sur D
- 2. e = e' ou $e \neq e'$
- 3. $\varphi \wedge \psi$ où φ et ψ sont des formules
- 4. $\varphi \lor \psi$ où φ et ψ sont des formules
- 5. $\neg \varphi$ où φ est une formule
- 6. $\exists x \varphi$ où φ est une formule
- 7. $\forall x \varphi$ où φ est une formule

syntaxe

on utilisera les abréviations suivantes :

$$\varphi \to \psi \quad \equiv \quad \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \quad \equiv \quad (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$$

variable libre/liée

free(f) est l'ensemble des variables libres de f

- ▶ si R est un atome, free(R) = var(R)
- $free(e = e') = free(e \neq e') = \{e,e'\}$
- $free(\varphi \wedge \psi) = free(\varphi) \cup free(\psi)$
- $free(\varphi \lor \psi) = free(\varphi) \cup free(\psi)$
- $free(\neg \varphi) = free(\varphi)$
- $free(\exists x \varphi) = free(\varphi) \{x\}$
- $free(\forall x\varphi) = free(\varphi) \{x\}$

un variable non libre est une variable liée

dans la formule φ suivante

$$\forall z \exists y, films(y,x,z)$$

$$free(\varphi) = \{x\}$$

requêtes

une requête du calcul relationnel est une expression de la forme

$$\{e_1,\ldots,e_n|\varphi\}$$

où φ est une formule du calcul relationnel, et les variables de (e_1,\ldots,e_n) sont exactement $free(\varphi)$

"quels sont les films sortis en 2005 dont le réalisateur n'est pas américain"

```
\{t|\exists r, \textit{films}(t,r,\text{"2005"}) \land \neg r\'{e}\textit{alisateurs}(r,\text{"am\'ericaine"})\}
```

"quelles sont les nationalités des réalisateurs ayant sorti un film uniquement en 2000?"

```
\{\textit{n}| \exists \textit{r}, \textit{r\'ealisateurs}(\textit{r},\textit{n}) \land \exists \textit{tfilms}(\textit{t},\textit{r},2000) \land \neg (\exists \textit{a},\textit{t}'(\textit{films}(\textit{t}',\textit{r},\textit{a}) \land \textit{a} \neq 2000))\}
```

les problèmes (1)

```
q = \{x | \neg films(x,"lucas","1977")\} ou q = \{x,y | films(x,"lucas","1977") \lor films("starwars","lucas",y)\} q(I) \text{ infinie quelle que soit } I... car x et y prennent leurs valeurs dans \mathbf{dom}, qui est infini!
```

donc il existe une infinité de valeurs possibles pour x et y qui satisfont ces expressions

```
q = \{x | \neg films(x,"lucas","1977")\}
I(films) = \{films(starwars,lucas,1977)\}
q(I) = \{ET,2001,Dune,...\}
```

solutions

- 1. les variables prennent leurs valeurs dans adom(q,l) ou
- 2. interdire (syntaxiquement) les requêtes non sûre

on étudiera la première solution, le langage CALCadom

les problèmes (2)

$$q = \{x | \forall y, R(x,y)\}$$

si y prend ses valeurs sur **dom**, $q(I) = \emptyset$ quelle que soit I

si y prend ses valeurs sur un ensemble fini, q(I) peut être non vide

cette requête est dépendante du domaine sur lequel elle est interprétée

```
Soit la relation vu[spectateur, titre]
q = \{t \mid \forall s, vu(s,t)\}
I(vu) = \{vu(s1,t1), vu(s2,t1), vu(s1,t2)\}
si s prend ses valeurs sur \{s1\} alors q(I) = \{t1,t2\}
si s prend ses valeurs sur \{s1,s2\} alors q(I) = \{t1\}
si s prend ses valeurs sur \{s1, s2, s3\} alors q(I) = \emptyset
```

solutions

- fixer le domaine d'interprétation ou
- ▶ interdire (syntaxiquement) ce type de requêtes

on étudiera la première solution, le domaine d'interprétation est fixé à adom(q,l)

sémantique domaine actif

 $q=\{e_1,\ldots,e_n|arphi\}$ une requête et I une instance on se restreind aux valuations de free(arphi) dans adom(q,I)

dans la suite:

- v est une valuation satisfaisant cette restriction
- ightharpoonup on note adom = adom(q, l)

sémantique domaine actif

I satisfait φ pour v relativement à adom(q, l), noté $l \models_{adom} \varphi[v]$ si

- 1. $\varphi = R(u)$ est un atome et $v(u) \in I(R)$
- 2. $\varphi = (s = s')$ où $s,s' \in \text{dom} \cup \text{var} \text{ et } v(s) = v(s')$ 3. $\varphi = (\psi \land \xi)$ et $I \models_{adom} \psi[v|_{free(\psi)}]$ et $I \models_{adom} \xi[v|_{free(\xi)}]$
- 4. $\varphi = (\psi \vee \xi)$ et $I \models_{adom} \psi[v|_{free(\psi)}]$ ou $I \models_{adom} \xi[v|_{free(\xi)}]$
- 5. $\varphi = \neg \psi$ et $I \not\models_{adom} \psi[v]$
- 6. $\varphi = \exists x \psi$ et il existe $c \in adom$, $I \models_{adom} \psi[v \cup \{x/c\}]$
- 7. $\varphi = \forall x \psi$ et pour tout $c \in adom$, $I \models_{adom} \psi[v \cup \{x/c\}]$

image d'une requête

soit D un schéma de base de données, $q=\{e_1,\ldots,e_n|\varphi\}$ une requête sur D, et I une instance de D

l'image de I par q, notée q(I), est :

$$q(I) = \{v((e_1, \dots, e_n)) | I \models_{adom} \varphi[v] \text{ et} \\ v \text{ est une valuation sur } free(\varphi) \\ dont l'image \subseteq adom(q, I)\}$$

```
Base de données

Calcul relationnel
```

```
soit l'instance 1:
I(films) = \{films(starwars, lucas, 1977)\}
I(vu) = \{vu(s1,t1), vu(s2,t1), vu(s1,t2)\}
et les requêtes:
q_1 = \{x | \neg films(x," lucas"," 1977")\}
q_2 = \{t \mid \forall s, vu(s,t)\}
adom = {starwars, lucas, 1977, s1, s2, t1, t2 }
q_1(I) = \{lucas, 1977, s1, s2, t1, t2\}
q_2(I) = \emptyset
```

théorème

les langages suivants sont équivalents :

- ► algèbre relationnelle
- ► nr-datalog¬
- ► CALC_{adom}