

CS 182 Final Project 陈睦尧 夏鸣飞 张飏

Introduction

Not only for movies!

Not only for movies!

Figure from <u>medium</u>

Dataset

Movies: 3883 x 3

```
data > III movies.csv > 🗋 data
           movie_id title genres
          1 Toy Story (1995) Animation | Children's | Comedy
               Jumanji (1995) Adventure | Children's | Fantasy
               Grumpier Old Men (1995) Comedy Romance
               Waiting to Exhale (1995) Comedy | Drama
               Father of the Bride Part II (1995) Comedy
               Sabrina (1995) Comedy|Romance
               Tom and Huck (1995) Adventure | Children's
                                                                Users: 6040 x 5
                                                data > III users.csv > 13 data
                                                                          age occupation zipcode age_desc
              Dracula: Dead and Loving It (1995
               Cutthroat Island (1995) Action | Ad
                                                                                         executive/managerial
              Casino (1995)
               Sense and Sensibility (1995)
                                                                                                                  Ratings: 1000209 x 3
           18 Four Rooms (1995) Thriller
                                                                                          academic/educator
           19 Ace Ventura: When Nature Calls (1
                                                                                  25-34
                                                                                         programmer
                                                                                                         data > III ratings.csv > 1 data
                                                                                          academic/educat
                                                                                          academic/educat
                                                                                          academic/educat
                                                                                         clerical/admin
```

3105

Our approach I: SVD

Assumption: there exists a low dimensional latent space of features in which we can represent both users and items and such that the interaction between a user and an item can be obtained by computing the dot product of corresponding dense vectors in that space.

SVD decomposes this matrix into three components:

$$M = U \cdot \Sigma \cdot V^*$$

U: A left singular vectors matrix representing user latent factors.

Σ: A diagonal matrix containing the singular values, which capture the importance of each latent factor.

V^T: A right singular vectors matrix representing item latent factors.

We **keep only the top 30 latent factors**, which capture the most important patterns in the data.

We then **reconstruct** the matrix using these factors \rightarrow this gives us **predicted ratings** for movies the user hasn't rated yet.

Result

Test RMSE: 0.8736

Our approach II: Deep Learning (baseline)

Core Approach: Discover feature matrices for users and movies

Network Architecture: Embedding Layer → Dot Product Layer

- Each user and movie is assigned an embedding layer, representing their feature vectors

- Parameters are updated through training

By learning low-dimensional vector representations:

- 1. Similar users have close vectors; similar items have close vectors
- 2. High dot product between user and item vectors indicates preference

SVD Comparison:

- Finds global optimum but is static
- May not yield optimal predictions

Result

Test RMSE: 0.8616

Better captures inherent characteristics of users and movies for prediction

Our approach III: Time-aware Model

Timestamp Utilization:

We explicitly leverage timestamp data recording when users rate movies

Objective:

Capture temporal distribution patterns in users' movie preferences

Model Architectures:

- 1. Time-Feature Additive Model:
- Processes time features separately
- Adds result to user-movie dot product
 - 1. User Temporal Preference Model
- Adds time-attention layer on user embeddings
- Learns temporal biases (e.g., higher ratings on weekends/evenings)
 - 1. User & Movie Temporal Preference Model
- Adds movie-specific time layer
- Captures preference shifts across eras
 - 1. LSTM Temporal Evolution Model
- Incorporates LSTM to track preference trajectories
- Models sequential effects (e.g., action movie after action movie)
- Challenge: High complexity and computational cost (20 min for a training epoch)

Timestamp Processing:

Implemented three-tier hierarchical categorization:

- 1. Year level
- 2. Week level (weekday/weekend)
- 3. Day period (daytime/evening/early morning)

Result

Model 1 Test RMSE: 0.8530

Model 2 Test RMSE: 0.8532

Model 3 Test RMSE: 0.8480

Methods Comparison

Methods Comparison

Model	Accuracy (RMSE)	Pros	Cons
SVD	Worst 0.8736	Simple, efficient	Ignores nonlinear interactions
Deep Learning CF	Good 0.8616	Models nonlinear interactions, more expressive	Still lacks explicit time- awareness
Time-Aware CF	Best 0.8480	Captures evolving user preferences, best accuracy	More complex, needs user history data

Thank you