1 Econometrics: Answer 3 out of 4 questions. Each question is equally weighted.

1. Let

$$y = X\beta + u,$$

$$u \sim (0, \Omega).$$

Show that the OLS estimator of β is consistent, and derive its asymptotic distribution.

2. Consider the model,

$$y_{1i} = \beta_0 + \beta_1 y_{2i} + \beta_2 x_{1i} + u_{1i},$$

$$y_{2i} = \alpha_0 + \alpha_1 y_{1i} + \alpha_2 x_{2i} + u_{2i},$$

$$\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix} \sim \begin{pmatrix} 0, \begin{pmatrix} \sigma_{11} & \sigma_{21} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} \end{pmatrix}.$$

Let $\widehat{\beta}$ be the OLS estimator of $\beta = (\beta_0, \beta_1, \beta_2)'$. Let t_{OLS} be a t-statistic with a 5% size to test $H_0: \beta_1 = 3$ vs. $H_A: \beta_1 \neq 3$ using $\widehat{\beta}$ and ignoring the fact that y_{2i} is endogenous. Show how to compute \Pr [Reject $H_0 \mid H_0$ is true] using the flawed t-statistic.

3. Consider the model,

$$\begin{array}{rcl} g\left(y_{i}, X_{i}, \theta\right) & = & u_{i}, \\ u_{i} & \sim & iidF\left(\cdot\right), \\ i & = & 1, 2, \dots, n. \end{array}$$

Sketch a proof that the MLE of θ is consistent, and derive its asymptotic distribution.

4. Let

$$u_{t} = \begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix},$$

$$u_{t} = Au_{t-1} + \varepsilon_{t},$$

$$\varepsilon_{t} \sim iidN(0, \sigma^{2}I).$$

Derive the marginal distribution of u_t . Be specific about any assumptions you need to make about A and/or σ^2 .