Math 761 HW 3

Jiaxi Huang

Due: September 25

1. Let $M = \mathbb{RP}^1$. Define $f : \mathbb{RP}^1 \to \mathbb{RP}^1$ by

$$f([X,Y]) = [X^{1/3}, Y^{1/3}].$$

Show that $f: M \to M$ is a homeomorphism but not a diffeomorphism.

Proof. First we prove f is a bijection. Let $g([X,Y]) = [X^3,Y^3] : \mathbb{RP}^1 \to \mathbb{RP}^1$, then we have $f \circ g = [X,Y] = g \circ f$. So, f is indeed a bijection. Next, we show f is homeomorphism. (i): f is continuous. Noticing that the smooth charts $\{(U_X,\phi_X),(U_Y,\phi_Y)\}$ of \mathbb{RP}^1 also makes \mathbb{RP}^1 a C^0 manifold. So, if f is continuous make senses as C^0 manifold meaning(Lee's definition), we can show it is continuous. For $p \in U_X$, we can choose U_X,U_X to make sure $f(U_X) \subset U_X$, and $\phi_X^{-1} \circ f \circ \phi_X = r \to r^{\frac{1}{3}}, \ r \in \mathbb{R}$, which is continuous. Similarly, for $p \in U_Y$, we can choose U_Y,U_Y to make sure $f(U_Y) \subset U_Y$, and $\phi_Y^{-1} \circ f \circ \phi_Y = r \to r^{\frac{1}{3}}, \ r \in \mathbb{R}$, which is continuous. So, f is continuous. (ii) g is continuous. Like what we did in (i), we verify this by viewing \mathbb{RP}^1 as C^0 manifold. For $p \in U_X$, we can choose U_X,U_X to make sure $g(U_X) \subset U_X$, and $\phi_X^{-1} \circ g \circ \phi_X = r \to r^3, \ r \in \mathbb{R}$, which is continuous. Similarly, for $p \in U_Y$, we can choose U_Y,U_Y to make sure $fg(U_Y) \subset U_Y$, and $\phi_Y^{-1} \circ g \circ \phi_Y = r \to r^3, \ r \in \mathbb{R}$, which is continuous. So, g is continuous, which means f is homeomorphism. So now we prove this is a homeomorphism. We claim f is not smooth at [0,1]. Since f is continuous, then by the definition from the class, we need to find two charts $(U,\phi),(V,\psi)$ containing [0,1] and f([0,1]), and $\psi \circ f \circ \phi^{-1}$ should be smooth on some resonable domain of $\phi(U)$. Noticing that the only charts containing [0,1], f([0,1]) is $(U_Y,\phi_Y),(U_Y,\phi_Y)$. But $\phi_Y \circ f \circ \phi_Y^{-1} = x^{\frac{1}{3}}$ is not smooth at $0 = \phi_Y([0,1])$. So, f is not smooth, therefore not a diffeomorphism.

2. (Lee 2.7) Let M be a nonempty smooth n-manifold with $n \ge 1$. Show that the vector space $C^{\infty}(M)$ is infinite-dimensional.

Proof. Let $f(t) = \begin{cases} e^{-\frac{1}{t}} & t > 0 \\ 0, & t \le 0 \end{cases}$ From the class we know this is a smooth function. Let $h(t) = f(1 - t^2)$.

Then by leibnize law, it is also a smooth function. Let $h_{a,b}(t) = h(\frac{2}{b-a}t - \frac{a+b}{b-a})$. Then we know $h_{a,b}(t)$ is also smooth. And, its support is [a,b]. We fix a point $p \in M$. Let (U,ϕ) be its chart, and we may assume $\phi(p) = 0$. We can find an open ball $B_r \subset \phi(U)$ with radius r > 0. Then we may as well assume $(U = \phi^{-1}(B_r), \phi = \phi|_{\phi^{-1}(B_r)})$. For every $n > 2, n \in \mathbb{Z}$. We can define some 'annuli' in $\phi(U)$, which are $\Gamma_{n,k} = \{x \in \phi(U)|\frac{r}{n} \cdot k < |x|^2 < \frac{r}{n} \cdot (k+1)\}, 0 \le k \le n-1$. For each these annulus we can define relevant smooth function $H_{n,k}(x) = h_{\frac{r}{n}}(k+\frac{1}{3}), \frac{r}{n}(k+\frac{2}{3})(|x|^2)$. And we can define some smooth function on M through

 $H_{n,k}(x)$. We define $F_{n,k}(x) = \begin{cases} H_{n,k}(\phi(x)), x \in U \\ 0 \text{ elsewhere} \end{cases}$. These are well-defined smooth maps on M. Each of

their support $\phi^{-1}\{|x|\in[\sqrt{\frac{r}{n}(k+\frac{1}{3})},\sqrt{\frac{r}{n}(k+\frac{2}{3})}]\}$ is disjoint. Now we claim for fixed $n,\,F_{n,k}(x)$ are linear independent. If $\sum_i a_i F_{n,i} = 0$, then $\sum_i a_i F_{n,i} = 0$ in $\{|x|\in[\sqrt{\frac{r}{n}(k+\frac{1}{3})},\sqrt{\frac{r}{n}(k+\frac{2}{3})}]\}$ for a fixed k, which actually means $a_k=0$. So, $F_{n,k}$ are linear independely. Noticing n is a random positive integral number, $C^{\infty}(M)$ is infinite-dimensional.

3. (Lee 2.9) Let p(z) be a degree d polynomial in one complex variable. Show that the map $p: \mathbb{C} \to \mathbb{C}$ extends to a smooth map from $\mathbb{CP}^1 \to \mathbb{CP}^1$, where we take $\mathbb{C} \subset \mathbb{CP}^1$ to be a standard coordinate chart.

Proof. Let $U_{z_1}=\{[Z_1,Z_2]\in\mathbb{CP}^1|Z_1\neq 0\}, U_{z_2}=\{[Z_1,Z_2]\in\mathbb{CP}^1|Z_2\neq 0\}.$ Let $\phi_{z_1}=[Z_1,Z_2]\to\frac{Z_2}{Z_1}, \phi_{z_2}=[Z_1,Z_2]\to\frac{Z_1}{Z_2}.$ And, let ϕ be the natural homeomorphism from $\mathbb{C}\to\mathbb{R}^2$. Then we know $(U_{z_1},\phi\circ\phi_{z_1}), (U_{z_2},\phi\circ\phi_{z_2})$ have already made \mathbb{CP}^1 a smooth manifold. But here we add another smooth chart in order to extend this smooth map. Let $p(z)=a_dz^d+\cdots+a_0, p^{'}(z)=a_d+a_{d-1}z+\cdots+a_0z^d.$ Let $U\subset\mathbb{C}$ be an open set containing 0, which makes $p^{'}(U)\neq 0$. Then we know $U^{'}=\{[1,z]|z\in U\}$ is an open subset of \mathbb{CP}^1 , since it is the image of U under $\phi_{z_2}^{-1}$. So, we give \mathbb{CP}^1 an atlas $\{(U_{z_1},\phi\circ\phi_{z_1}),(U_{z_2},\phi\circ\phi_{z_2}),(U^{'},\phi\circ\phi_{z_1})\}$. Now

we define the extension of p(z). Let $P([Z_1,Z_2]) = [a_d Z_1^d + a_{d-1} Z_1^{d-1} Z_2 + \cdots + a_0 Z_2^d, Z_2^d]$, which is well defined. If we view \mathbb{C} as $\phi_{z_2}(U_{z_2})$, then $\phi_{z_2} \circ P \circ \phi_{z_2}^{-1}(z) = \phi_{z_2}([p(z),1]) = p(z)$, which means P is actually an extension. Now, we prove smoothness. For every $[Z_1,Z_2] \in U_{z_2}$, we cam choose U_{z_2},U_{z_2} to make sure $P(U_{z_2}) \subset U_{z_2}$. And $\phi_{z_2} \circ P \circ \phi_{z_2}^{-1} = p(z)$, which is holomorphic, so $\phi \circ \phi_{z_2} \circ P \circ \phi_{z_2}^{-1} \circ \phi^{-1}$ is smooth. Now we need to consider [1,0], which is the only element of \mathbb{CP}^1 but $\notin U_{z_2}$. Now we pick U',U_{z_1} , since $P(U') \subset U_{z_1}$. And $\phi_{z_1} \circ P \circ \phi_{z_1}^{-1} = z^d/p'(z)$. Since $p'(z) \neq 0, z \in U$, we know $z^d/p'(z)$ is holomorphic on U, which means $\phi \circ \phi_{z_1} \circ P \circ \phi_{z_1}^{-1} \circ \phi^{-1}$ is smooth on $\phi(U) \subset \mathbb{R}^2$. Now, we prove P is indeed a smooth from $\mathbb{CP}^1 \to \mathbb{CP}^1$. \square

4.(Lee 2.10) Let M and N be smooth manifolds. Given a continuous map $F: M \to N$, consider the map

$$F^*: C^0(N) \to C^0(M), \quad f \mapsto f \circ F.$$

(a) Show that F^* is a linear map.

Proof.
$$F^*(f_1+f_2)=(f_1+f_2)\circ F=f_1\circ F+f_2\circ F=F^*(f_1)+F^*(f_2)$$
. Also, let $a\in\mathbb{R}$, then we have $F^*(af)=af\circ F=a(f\circ F)=aF^*(f)$. So, F^* is a linear map.

(b) Show that F is smooth if and only if $F^*(C^{\infty}(N)) \subset C^{\infty}(M)$.

Proof. ⇒: From the lemma of the class, we may assume M,N both have maximal atlas. Let $p \in M, F(p) \in N$. Since f is smooth, we can find a chart $(V^{'},\psi^{'}), F(p) \in V^{'}$ such that $f \circ (\psi^{'})^{-1}$ is smooth on $\psi^{'}(V^{'})$. Since F is smooth, we can find two charts $(U,\phi),(V,\psi),\ p \in U, F(p) \in V, F(U) \subset V$, such that $\psi \circ F \circ \phi$ is smooth. Now let $(F^{-1}(V^{'} \cap V) \cap U,\phi)$ be the new chart of p, and $(V^{'} \cap V,\psi^{'})$ be the new chart of p, and p is smooth on p is a random point of p is smooth on p. Because p is a random point of p, p is smooth on p.

 \Leftarrow : We still assume M,N have maximal atlas, and the dimension of N is n>0. Let (U,ϕ) be the chart containing p, and (V,ψ) the chart containing F(p). We may as well assume $\psi(F(p))=0$. Let $B_r\subset \psi(V)$ be an open ball of radius r, such that $\overline{B_r}\subset V$. Then $(F^{-1}(B_r)\cap U,\phi)$ is a new chart containing p. We may assume $U=F^{-1}(B_r)\cap U$. Now we have partition of unity f_1,f_2 of $V,N\setminus \overline{B_r}$ and $f_1|_{\overline{B_r}}=1$. Let y_i be the projection of \mathbb{R}^n to its i-th coordinate, so y_i is smooth. Now we define a smooth function f on $N: f_i=f_1\cdot y_i\circ \psi$. From the assumption we know $f_i\circ F$ is smooth. Then we can find a chart (U_i,ϕ_i) of p such that $f_i\circ \phi_i^{-1}$ is smooth. Now let $U'=U\bigcap_{i=1}^n U_i$. Let (U',ϕ) be p's new chart. Then $f_i\circ F\circ \phi^{-1}=f_i\circ F\circ \phi_i^{-1}\circ \phi_i\circ \phi^{-1}$ is smooth on $\phi(U')$. Noticing that $f_i\circ F\circ \phi^{-1}=y_i\circ \psi\circ F\circ \phi^{-1}$ on $\phi(U')$. So, $f_i\circ F\circ \phi^{-1}$ is smooth acutually means $\psi\circ F\circ \phi^{-1}$ is smooth on $\phi(U')$. So, we find two smooth charts $(U',\phi),(V,\psi),p\in U',F(p)\in V,F(U')\subset V$, and $\psi\circ F\circ \phi^{-1}$ is smooth. This proves F is smooth.

(c) Suppose that F is a homeomorphism. Prove that F is a diffeomorphism if and only if F^* induces an isomorphism from $C^{\infty}(N)$ to $C^{\infty}(M)$.

Proof. \Rightarrow : From (a),(b) we know F^* is a linear map from $C^{\infty}(N)$ to $C^{\infty}(M)$. We only need to prove F^* is an isomorphism. Since F is a diffeomorphism, we have $F^{'}: N \to M$ which is smooth, and satisfying $F \circ F^{'} = id_N$, $F^{'} \circ F = id_M$. Then from (a),(b) we know $(F^{'})^*$ is a linear map from $C^{\infty}(M)$ to $C^{\infty}(N)$, and $(F^{'})^* \circ F^*(f) = (F^{'})^*(f \circ F) = f \circ F \circ F^{'} = f, f : N \to \mathbb{R}, f$ is smooth. Also, $F^* \circ (F^{'})^*(f) = f \circ F^{'} \circ F = f, f : M \to \mathbb{R}, f$ is smooth. So, F^* is a isomorphism.

 \Leftarrow : Let F^{-1} be F's continuous inverse. Since F^* is an iosmorphism from $C^{\infty}(N)$ to $C^{\infty}(M)$, for every $f \in C^{\infty}(M)$, we have $g \in C^{\infty}(N)$, such that $f = g \circ F$, which indicates $f \circ F^{-1} = g$. So, $(F^{-1})^*(C^{\infty}(M)) \subset C^{\infty}(N)$, then F^{-1} is smooth by (b). In consequence, F is a diffeomorphism. \square

5. (Lee 2-14) Suppose that A and B are disjoint closed subsets of a smooth manifold M. Show that there exists $f \in C^{\infty}(M)$ such that $0 \le f(x) \le 1$ for all $x \in M$, $f^{-1}(0) = A$, and $f^{-1}(1) = B$.

Proof. From Lee's Level sets theorem of smooth function, we know there are two smooth function $g_A, g_B: M \to [0, +\infty)$, satisfying $g_A^{-1}(0) = A, g_B^{-1}(0) = B$, then clearly we can let $f = \frac{g_A}{g_A + g_B}$, because $g_A + g_B \neq 0, \forall x \in M$, since $A \cap B = \emptyset$. First we know f is smooth, and $0 \leq f \leq 1$. And, f = 0 iff $g_A = 0$, so $f^{-1}(0) = g_A^{-1}(0) = A$. Also, f = 1 iff $g_B = 0$. So, $f^{-1}(1) = g_B^{-1}(0) = B$.

6. Construct a diffeomorphism between $Gr_k(\mathbb{R}^n)$ and $Gr_{n-k}(\mathbb{R}^n)$. (Hint: use an inner product on \mathbb{R}^n .)

Proof. Let Q be a (n-k) dimensional subspace of \mathbb{R}^n , and let P be a k dimensional subspace of \mathbb{R}^n . P^{\perp} is the the orthogonal complement of P, and Q^{\perp} is the orthogonal complement of Q. $U_Q = \{$ all k dimensional subspace which intersects $Q = 0\}$, $U_{Q^{\perp}} = \{$ all n-k dimensional subspace which intersects $Q^{\perp} = 0\}$. Let $F(P) = P^{\perp} : Gr_k(\mathbb{R}^n) \to Gr_{n-k}(\mathbb{R}^n)$, then P is a bijection, since $(p^{\perp})^{\perp} = P$. Noticing that $P \cap Q = 0$, and dim(P) + dim(Q) = n, we know $P + Q = \mathbb{R}^n$. From the knowledge of linear algebra we know $(P + Q)^{\perp} = P^{\perp} \cap Q^{\perp}$, so $P^{\perp} \cap Q^{\perp} = 0$. Then we know $F(U_Q) \subset U_{Q^{\perp}}$. We now have found two charts $(U_Q, \phi_Q), (U_{Q^{\perp}}, \psi_{Q^{\perp}})$ (Here we use the smooth charts definition of Grassmann manifold from class). Let v_1, \cdots, v_k be orthonormal basis of Q^{\perp} , and v_{k+1}, \cdots, v_n be orthonormal basis of Q. Then we have an orthonormal basis v_1, \cdots, v_n of \mathbb{R}^n . Let $A = (a_{ij}), 1 \leq i \leq n-k$; $1 \leq j \leq k$ be a $n-k \times k$ matrix such that $e_i = v_i + \sum_{1 \leq j \leq n-k} a_{ji}v_{k+j}, 1 \leq i \leq k$ form a basis of P. Then we need to find a basis of P^{\perp} . Let

$$v = \sum_{1 \leq i \leq n} x_i v_i. \text{ Then } v \in P^{\perp} \text{ iff } \begin{cases} x_1 + x_{k+1} a_{11} + x_{k+2} a_{21} + \dots + x_n a_{n-k,1} = 0 \\ x_2 + x_{k+1} a_{12} + x_{k+2} a_{22} + \dots + x_n a_{n-k,2} = 0 \\ \vdots \\ x_k + x_{k+1} a_{1k} + x_{k+2} a_{2k} + \dots + x_n a_{n-k,k} = 0 \end{cases}. \text{ We know the solution}$$

space of this system of this linear equations is P^{\perp} . Now we can find its basis. Let $x_{k+1} = \cdots = x_{k+i-1} = 0$, $x_{k+i} = 1$, $x_{k+i+1} = \cdots = x_{k+n-k} = 0$. We can get a solution $v^i = -a_{i1}v_1 - a_{i2}v_2 + \cdots - a_{ik}v_k + v_{k+i}$ of this system. It is easy to see the rank of $\{v^i\}$ is n-k. Also, this basis indicates that P^{\perp} can be viewed as a linear map from Q to Q^{\perp} , whose matrix under v_{k+1}, \cdots, v_n is

$$\begin{pmatrix} -a_{11} & -a_{21} & \cdots & -a_{n-k,1} \\ -a_{12} & -a_{22} & \cdots & -a_{n-k,2} \\ \vdots & \vdots & \cdots & \vdots \\ -a_{1k} & -a_{2k} & \cdots & -a_{n-k,k} \end{pmatrix}$$

, which is exactly $-A^{\top}$ equal to $\psi_{Q^{\perp}} \circ F \circ \phi_Q^{-1}(A)$. So, clearly $\psi_{Q^{\perp}} \circ F \circ \phi_Q^{-1}$ is smooth on $\phi_Q(U_Q)$. For a n-k dimensional subspace P', from before we know $F^{-1}(P') = (P')^{\perp}$. So, symmetrically, F^{-1} is also smooth from $Gr_{n-k}(\mathbb{R}^n)$ to $Gr_k(\mathbb{R})^n$, indicating that F is a diffeomorphism.