实验六 R-L-C 元件的阻抗特性和谐振电路

一. 实验目的

- 1. 通过实验进一步理解 R, L, C 的阻抗特性,并且练习使用信号发生器和示波器
- 2. 了解谐振现象,加深对谐振电路特性的认识
- 3. 研究电路参数对串联谐振电路特性的影响
- 4. 理解谐振电路的选频特性及应用
- 5. 掌握测试通用谐振曲线的方法

二. 实验原理与说明

1. 正弦交流电路中,电感的感抗 $X_L = \omega L = 2\pi f L$,空心电感线圈的电感在一定频率范围内可认为是线性电感,当其电阻值r 较小,有 $r << X_L$ 时,可以忽略其电阻的影响。电容器的容抗 $X_C = 1/\omega C$ = $1/2\pi f C$ 。

当电源频率变化时,感抗 X_L 和 容 抗 X_C 都是频率 f 的函数,称之为频率特性(或阻抗特性)典型的电感元件和电容元件的阻抗特性如图 6-1。

- 2. 为了测量电感的感抗和电容的容抗,可以测量电感和电容两端的电压有效值及流过它们的电流有效值。则感抗 $X_L = U_L/I_L$,容抗 $X_C = U_C/I_C$ 。
- 3. 改变 $L \times C$ 或电源频率 f 都可以实现谐振。本次实验是通过改变外加电压的频率使电路达到谐振的。

串联谐振有以下特征:

(1) 谐振时电路的阻抗最小,而且是纯电阻性的,即

此时谐振电流 \dot{I} 与电压 \dot{U} 同相位,且 I_0 =U/ R 为最大值。本次实验就是依据这种特征来找谐振点的。

(2) 谐振时有UL=Uc, 电路的品质因数Q为

$$Q = \frac{U_L}{U} = \frac{U_C}{U} = \frac{\omega_0 L}{R'} = \frac{1}{\omega_0 C R'} = \frac{\sqrt{L/C}}{R'}$$

三. 实验设备

	714m 94 m		
	名称	数量	型号
1.	信号发生器	1 台	学校自备
2.	示波器	1 台	学校自备
3.	晶体管毫伏表	1 台	学校自备
4.	万用表	1 台	学校自备
5.	电阻	4 只	$1 \Omega *1, 100 \Omega *1$
			$510 \Omega *1$, $2k \Omega *1$
6.	电感	1 只	10mH*1
7.	电容	2 只	1μF*1, 2200pF*1
8.	桥形跨连线和连接导线	若干	P8-1 和 50148
9.	实验用 9 孔方板	1 块	$297\text{mm} \times 300\text{mm}$

四. 实验步骤

1. 测量电阻的阻抗特性

接图 6-6 连线,接表 6-1 所示数据调节交流信号源输出电压的频率(从低到高)分别则量 U_R , I_R 的值记入表 6-1 中。注意每次改变电源频率时,应调节信号发生器使输出电压保持在 5V,测量电流时应正确选择量程。

根据表 6-1 中的实验数据,在上面的坐标平面内绘制 R=F(f)阻抗特性曲线。

2. 测量电感元件的阻抗特性

接图 6-2(a)接线。调节信号发生器输出电压为 5V,选取 L 为 10mH, R_0 仍取 $10\,\Omega$ 。按表 6-2 所示数据改变信号发生器的输出频率。分别测量 U_L , U_0 的值记入表 6-2 中,并注意每次改变电源频率时应调节信号发生器的输出电压保持不变。然后,根据 $I_L=U_0/R_0$, $X_L=U_L/I_L$ 两式将计算结果填入表6-2 中。

VV									
频率 f(KHz)	0.2	0.5	1.0	2.0	5.0	8.0	10	12	
U _L (V)	1.073	1.616	2.383	3.069	3.456	3.521	3.540	3.547	
U ₀ (V)	0.4325	0.4027	0.3328	0.2243	0.1045	0.0688	0.0579	0.0463	
I _L (mA)	43.25	40.27	33.28	22.43	10.45	6.88	5.79	4.63	
$X_L(\Omega)$	24.81	40.13	71.61	136.83	330.72	511.77	611.39	766.09	

表 6-2 测量电感元件阻抗特性实验数据

根据表 6-2 中的实验数据,在下面的坐标平面内X_L=F(f)阻抗特性曲线。

绘制电容阻抗特性曲线

3. 测量电容的阻抗特性

接图 6-2(b)接线。调节信号发生器输出电压为 5V,选取 C 为 1μ F, R_0 不变,取 10Ω 。按表 6-3 所示数据改变信号发生器的输出频率。分别测量 U_C , U_0 的值记入表 6-3 中,相应调节信号源输出电压保持在 5V。再根据 $I_C=U_0/R_0$, $X_C=U_C/I_C$ 两式将计算结果填入表 6-3 中。

表 6-3 测量电容元件阻抗特性实验数据

频率 f(KHz)	0.2	0.5	1.0	2.0	5.0	8.0	10	12
U _C (V)	3.577	3.531	3.429	3.063	1.976	1.482	1.383	0.963
U ₀ (mV)	42.08	103.75	197.6	338.54	508.84	550.36	561.89	567.83
I _C (mA)	4.21	10.38	19.76	33.85	50.88	550.4	56.19	56.78
$X_{C}(\Omega)$	849.64	340.17	173.53	90.48	38.84	26.93	24.613	16.960

根据表 6-3 中的实验数据,在上面的坐标平面内Xc=F(f)阻抗特性曲线。

4. 寻找谐振频率,验证谐振电路的特点

接图 6-7 接线。R 取510 Ω ,L 取10 mH,C 取2200pF,信号发生器的输出电压保持在 1V。用毫伏表测量电阻 R 上的电压,因为 U_R =RI,当 R 一定时, U_R 与 I 成正比,电路谐振视的电流 I 最大,电阻电压 U_R 也最大。细心调节输出电压的频率,使 U_R 为最大,电路即达到谐振(调节前可先计算谐振频率作为参考)测量电路中的电压 U_R 、 U_L 、 U_C ,并读取谐振频率 f_0 ,记入表 6-4 中,同时记下元件参数 R、L、C 的实际数值

图6-7 串联谐振实验线路

表 6-4

R =510 Ω	L=10mH	C =2200pF
$U_R = 2.790V$	U _L =12.435V	$U_{\rm C} = 12.458 \rm V$
f ₀ =34.2 kHz	$I_0 = U_R/R = 5.47 \text{mA}$	Q =2.487

5. 测定谐振曲线

实验线路同图 6-7,信号发生器输出电压调至 5V,在谐振频率两侧调节输出电压的频率(每次改变频率后均应重新调整输出电压至 2V)分别测量各频率点的 U_R 值,记录于表 6-5 中(在谐振电附近要 多测几组数据)在将图 6-7 实验电路中的电阻 R 更换为 $2k\Omega$,重复上述的测量过程,记录于表 6-6 中。

表 6-5	$U = \underline{5}$	(V)
-------	---------------------	-----

$R=(510\Omega)$, $L=(10mH)$, $C=(2200pH)$, $Q=0.564$								
f ()/kHz	31	32	33	f ₀ =34.2kHz	35	36	37	38
U _R ()/V	2.357	2.536	2.701	2.820	2.759V	2.72	2.545	2.359
I()/mA	4.62	4.98	5.29	5.53	5.41	5.33	4.99	4.63
I / I ₀	0.83	0.90	0.96	1	0.98	0.96	0.90	0.83
f / f ₀	0.90	0.93	0.96	1	1.02	1.05	1.08	1.11

表 6-6 U = 5 (V)

$R=(2k\Omega)$, $L=(10mH)$					C=(2200pH), Q=0.682			,	
f ()/kHz	32	33	34	35	f ₀ =36	37	38	39	40
U _R ()/V	3.212	3.242	3.305	3.359	3.410	3.398	3.360	3.324	3.013
I()/mA	1.606	1.621	1.6525	1.6795	1.705	1.699	1.68	1.662	1.5067
I / I ₀	0.94	0.95	0.96	0.98	1	0.99	0.98	0.97	0.88
f / f ₀	0.89	0.91	0.94	0.97	1	1.02	1.05	1.08	1.11

6. 用示波器观测R-L-C 串联谐振电路中电流和电压的相位关系

接图 6-8 接线,R 取 510 Ω ,电路中A 点的电位送入双踪示波器的YA 通道,它显示出电路中总电压 u 的波形。将 B 点的电位送入双踪示波器的 YB 通道,它显示出电阻 R 上的波形,此波形与电路中电流 i 的波形相似,因此可以直接把它看作电流 i 的波形。示波器和信号发生器的接地端必须连接在一起。信号发生器的输出频率取谐振频率 f_0 ,输出电压取 5V,调节示波器使屏幕上获得 2 至 3 个波形,将电流 i 和电压 u 的波形描绘下来。再在 i 左右各取一个频率点,信号发生器输出电压仍保持5V,观察并描绘 i 和 i 和 i 和 i 和 i 放形。

图 6-8 观测电流和电压间相位差实验线路图

调节信号发生器的输出频率,在 \mathbf{f}_0 左右缓慢变化,观察示波器屏幕上i 和 u 波形的相位和幅度的变化,并分析其变化原因。

i 和u 的波形图:

 $f=f_0$:

 $f < f_0$:

 $f>f_0$:

五. 注意事项

- 1. 谐振曲线的测定要在电源电压保持不变的条件下进行,因此,信号发生器改变频率时应对其输出电压及时调整,保持为 5V。
- 2. 为了使谐振曲线的顶点绘制精确,可以在谐振频率附近多选几组测量数据。

六. 分析与讨论

- 1. 根据表 6-2, 表 6-3 的实验数据计算L 和C 的值,结果与标称值是否一致,为什么?
- 2. 根据表 6-5,表 6-6 的实验数据,以 I/I_0 为纵坐标, f/f_0 为横坐标,绘制两条不同 Q 值的串联谐振曲线,并加以分析。
- 3. 有实验数据或现象说明R-L-C 串联谐振的主要特征

1、与标称值不相等,因为测量仪器及读数均存在误差,但是在误差允许的范围内计算值与标称值近似相等。

在f/f0 = 1 时, I/I0 达到最大值, 即I = I0。 Q值越大,曲线顶部越圆滑,Q越小,曲线顶部越尖

3、电阻、电感、电容两端的电压和电路的频率有关。当频率达到一定值的时候,电路呈现纯电阻状态,此时电阻两端的电压达到最大值,电感和电容两端的电压大小相等、方向相反、为电源电压的Q倍。保持C、L值不变,则电阻R越大,Q值越小。