République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et des Concours Service des Examens

Baccalauréat 2017

Session Complémentaire

Honneur – Fraternité – Justice

Séries : C & TMGM Epreuve: Mathématiques Durée: 4 heures Coefficients: 9 & 6

Exercice 1 (3 points)	
1) On considère l'équation (E): $2017x + 41y = 1$, où x et y sont des entiers relatifs	
a) Vérifier que 2017 est un nombre premier puis montrer que l'équation (E) admet des solutions entières.	(0,75 pt)
b) Vérifier que le couple (- 5; 246) est une solution particulière de (E). Résoudre l'équation (E).	(1 pt)
c) Déduire qu'il existe un unique entier y inférieur ou égal à 2016/tel que/: $41y = 1[2017]$	(0,5 pt)
Pour la suite de l'exercice on rappelle qu'un entier a est l'inverse de b modulo 2017 si ab = $1[2017]$.	
2) Soient a et b deux entiers relatifs	(0.25 - 1)
a) Montrer que : si $ab = 0[2017]$ alors $(a = 0[2017]$ ou $b = 0[2017])$	(0,25 pt)
b) Déduire que : si $a^2 = 1[2017]$ alors $a = 1[2017]$ ou $a = -1[2017]$)	(0,25 pt)
c) Quels sont donc les entiers de l'intervalle [1;4033] qui sont égaux à leurs inverses modulo 2017 ?	(0,25 pt)
Exercice 2 (4 points)	
Le plan complexe est muni d'un repère orthonormé (O; n, v)	
1) On considère l'équation (E): $iz^3 - (1+i)z^2 - (2+2i)z + 8i = 0$	
a) Vérifier que l'équation (E) admet une solution réelle à déterminer.	(0,5 pt)
b) Déterminer les deux autres solutions de l'équation (E).	(0,5 pt)
c) Placer les points A, B et C d'affixes respectives: -2; 2 - 2i et 1 + i . Déterminer la nature du triangle ABC.	(0,75 pt)
2) Soit s l'application du plan dans lui-même qui à tout point $M(x;y)$ associe le point $M'(x';y')$ tel que	
x' = x + y et $y' = -x + y - 2$	
a) Donner l'expression complexe de s.	(0,5 pt)
b) Déduire la nature et les éléments caractéristiques de s. Déterminer $s(C)$	(0,5 pt)
3) On désigne par Z _G l'affixe du point G, centre de gravité du triangle ABC, et pour tout nombre complexe z	
on pose: $f(z) = z + 2 ^2 + z - 2 + 2i ^2 + z - 1 - i ^2$	
on pose : $f(z) = z + 2 ^2 + z - 2 + 2i ^2 + z - 1 - i ^2$ a) Justifier que $z_G = \frac{1}{3} + \frac{1}{3}i$ et que $f(z) = 3 z - \frac{1}{3} + \frac{1}{3}i ^2 + \frac{40}{3}$	(0,75 pt)
b) Déterminer, suivant les valeurs du réel k, l'ensemble Γ_k des points M du plan d'affixes z tels que : $f(z) = k$.	(0 = 1)
Déterminer Γ ensemble Γ_{20} .	(0,5 pt)
Exercice 3 (5 points)	
ABCD est un rectangle direct tel que CB = 2CD et soient E, F et O les milieux respectifs des segments	
[CB], [AD] et [AE]. on pose $I = s_B(A)$.	
1.a) Faire une figure illustrant les données qu'on complétera au fur et à mesure. On prendra (AB) horizontale.	(0,25 pt)
b) Montrer qu'il existe une unique rotation r qui transforme A vers E et E vers D. Préciser le centre et un angle de r.	(0,75 pt)
c) On pose $f = s_{DE} \circ s_{RF} \circ s_{AE}$ déterminer $f(A)$ et $f(B)$ puis montrer que f est une symétrie glissante dont on précisera la forme réduite.	(0,75 pt)
2.a) Montrer qu'il existe une unique similitude directe s qui transforme O vers E et E vers B, déterminer le	
rapport et un angle de s	(0,75 pt)
b) Soit Ω le centre de s, montrer que Ω appartient aux cercles Γ_1 et Γ_2 de diamètres respectifs $[EF]$ et $[EI]$,	(0,5 pt)
construire Ω . 3) Soit M un point de Γ_1 différent de Ω et M' = s(M)	
a) Soient J et K les milieux respectifs des segments $[EF]$ et $[EI]$. Montrer que $s(J) = K$. En déduire que $s(J) = F$	(0,5 pt)
$s(\Gamma_1) = \Gamma_2$ b) Montrer alors que la droite (MM') passe par un point fixe à préciser.	(0,25 pt)
	•

	(0.254)
c) En déduire une construction de M' à partir d'une position donnée de M.	(0,25 pt)
4) Soit (P) la parabole de directrice (AD) et de foyer E.	
a) Déterminer le sommet de (P).	(0,25 pt)
 b) Montrer que (P) passe par B et C. c) Déterminer les tangentes à (P) aux points B et C. 	(0,25 pt) (0,25 pt)
d) Montrer que (P) est la seule parabole de directrice (AD) passant par C et B.	(0,25 pt)
Exercice 4 (4 points)	
Pour tout entier naturel n strictement supérieur à 1, on définit la fonction f_n sur $0; +\infty$ par : $f_n(x) = (\ln x)^n$	
et on désigne par (C_n) sa courbe représentative dans un répère orthonorme $(O;i,j)$.	(0,5 pt)
1.a) Calculer $\lim_{x\to +\infty} f_n(x)$ et discuter $\lim_{x\to 0^+} f_n(x)$ suivant la parité de n.	(0,c pt)
b) Calculer $f_n'(x)$ dérivée de $f_n(x)$ et dresser le tableau de variations de f_n (suivant la parité de n)	(0,75 pt)
2.a) Etudier les positions relatives de et (C_2) et (C_3)	(0,25 pt)
b) Construire (C ₂) et (C ₃) dans le même repère.	(0,5 pt)
$(-1)^n$ ce $\sum_{i=1}^n (-1)^k$	(0,25 pt)
b) Construire (C_2) et (C_3) dans le même repère. Pour tout entier naturel n strictement supérieur à 1, on pose : $I_n = \frac{(-1)^n}{n!} \int_1^e f_n(x) dx$ et $u_n = \sum_{k=0}^n \frac{(-1)^k}{k!}$	
3.a) Montrer que $I_2 = \frac{e-2}{2}$ (on procédera par intégration par parties).	
$(-1)^{n+1}$	(0,25 pt)
b) Montrer que pour tout entier naturel n strictement supérieur à 1, on a : $I_{n+1} = \frac{(-1)^{n+1}}{(n+1)!}e + I_n$	
c) Vérifier que $I_2 = -1 + e u_2$	(0,25 pt)
c) En déduire que $\forall n \geq 2$, $I_n = -1 + e.u_n$	(0,25 pt)
4.a) Montrer que : $\forall x \in [1;e], 0 \le f_n(x) \le 1$. Déduire que $ I_n \le \frac{e-1}{n!}$	(0,5 pt)
4.a) Montrer que : $\forall x \in [xe], \forall s \in [n]$	
b) Déduire la limite de (I_n) puis celle de (u_n)	(0,5 pt)
Exercice 5 (4 points)	
$f(x) = \int_{0}^{3x} e^{-t^{2}} dt$	
On considère la fonction f définie sur $[0, +\infty]$ par $\begin{cases} f(x) = \int_{x}^{3x} \frac{e^{-t^2}}{t} dt \\ f(0) = \ln 3 \end{cases}$	
$(\Gamma(0) - \Pi S)$	
1.a) Montrer que: $\forall x \leq 0, e^x \leq 1$ et que: $\forall x \in \mathbb{R}, e^x \geq x+1$	(0,75 pt)
b) Déduire que : $\forall t > 0$, $t = t \le \frac{1}{t}$	(0,25 pt)
b) Dedune que vi vo, t t t	
c) Montrer alors que) $\forall x > 0$, $\ln 3 - 4x^2 \le f(x) \le \ln 3$	(0,25 pt)
d) Déduire que f est continue et dérivable en 0^+ , et que $\mathbf{f}_{\mathrm{d}}'(0) = 0$	(0,5 pt)
$\int_{0}^{x} e^{-t^{2}} dt$	
2) On considere la fonction g, définie sur $]0,+\infty[$ par $g(x) = \int_1^x \frac{e^{-t^2}}{t} dt$	
a) Justifier que g est dérivable sur $]0,+\infty[$ puis déterminer sa dérivée $g'(x)$.	(0,5 pt)
b) Montrer que: $\forall x \in [0,+\infty)$, $f(x) = -g(x) + g(3x)$	(0,25 pt)
$e^{-x^2}/\sqrt{2}$	
c) Déduire que f est dérivable sur $\left]0,+\infty\right[$ et que : $\forall x>0$, $f'(x)=\frac{e^{-x^2}}{x}\left(e^{-8x^2}-1\right)$	(0,5 pt)
3.a) On suppose que x est supérieur à 1; Montrer que : $\forall t \in [x;3x], e^{-9x^2} \le e^{-t^2} \le e^{-x^2}$	(0,25 pt)
b) En déduire que $\forall t \in [x; 3x], e^{-9x^2} \int_{x}^{3x} \frac{1}{t} dt \le \int_{x}^{3x} \frac{e^{-t^2}}{t} dt \le e^{-x^2} \int_{x}^{3x} \frac{1}{t} dt$	(0,25 pt)
c) Déterminer alors $\lim_{x \to \infty} f(x)$	(0,25 pt)
x→+∞ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0.25 pt)

d) Dresser le tableau de variation de f.

Fin.

(0,25 pt)