MTH102: Analysis in One variable Home Work No. 02 20 January 2018

- Please do as many problems as possible.
- Please maintain a separate notebook for home work problems.
- Tutors will discuss some of these problems during tutorial sessions.
- N denote the set of natural numbers.
- Z denote the ring of integers.
- O denote the field of rational numbers.
- \bullet \mathbb{R} denote the field of real numbers.
- (1) Determine whether the following sequences are convergent. In either case, prove your claims.

 - (a) $s_n = \frac{3n+1}{5n-2}$. (b) $s_n = \frac{(-1)^n}{n}$. (c) $s_n = \frac{12n^5 + 73n^4 18n^2 + 9}{25n^5 + 2n^3}$. (d) $s_n = \frac{n}{n^2 + 1}$. (e) $s_n = (\sqrt{n^2 + n} n)$.

 - (f) $s_n = \frac{1}{n}\sin(n)$. (g) $s_n = (-1)^n n$.

 - $\begin{array}{ll}
 \text{(h)} & s_n = \cos(\frac{n\pi}{3}).
 \end{array}$
- (2) Prove that every real number is the limit of a sequence of rational numbers.
- (3) Prove that every real number is the limit of a sequence of irrational numbers.
- (4) Let (s_n) be a sequence with $\lim s_n = s$. Let $a \in \mathbb{R}$ such that $s_n \geq a$ for all but finitely many n. Prove that $s \geq a$.
- (5) Give an example of a sequence (s_n) such that $\lim |s_n|$ exists but $\lim s_n$ does not exist. Justify your answer.
- (6) Let $s_1 = 1$ and $s_{n+1} = \sqrt{s_n + 1}$ for all $n \in \mathbb{N}$. Assuming that the sequence (s_n) converges, prove that $\lim s_n = \frac{1+\sqrt{5}}{2}$.
- (7) Let (s_n) and (t_n) be two sequences of real numbers. Suppose that there exists $K \in \mathbb{N}$ such that $s_n \leq t_n$ for all n > K.
 - (a) Prove that if $\lim s_n = +\infty$, then $\lim t_n = +\infty$.
 - (b) Prove that if $\lim t_n = -\infty$, then $\lim s_n = -\infty$.
- (8) Let (s_n) be a sequence of positive real numbers. Prove that $\lim s_n = +\infty$ if and only if $\lim \frac{1}{s_n} = 0.$
- (9) Prove that

$$\lim a^n = \begin{cases} 0 & \text{if } 0 \le |a| < 1\\ 1 & \text{if } a = 1\\ +\infty & \text{if } a > 1\\ \text{Does not exist} & \text{if } a \le -1. \end{cases}$$

(10) Prove that $\lim \frac{2^n}{n^2} = +\infty$.