

INFS4205/7205 Advanced Techniques for High Dimensional Data

Managing High-Dimensional Data

Semester 1, 2021

University of Queensland

+ Advanced Techniques for High Dimensional Data

- □ Course Introduction
- Introduction to Spatial Databases
- Spatial Data Organization
- Spatial Query Processing
- Managing Spatiotemporal Data
- Managing High-Dimensional Data
- □ Introduction to Multimedia Database
- □ Route Planning in Road Network
- When Al Meets High-Dimensional Data
- □ Trends and Course Review

- Motivation
 - Examples
 - Why
 - What to expect
- Technique
 - X-Tree
 - Pyramid
 - VA-File
 - iDistance
 - Other techniques
- Summary

- Motivation
 - Examples
 - Why
 - What to expect
- Technique
 - X-Tree
 - Pyramid
 - VA-File
 - iDistance
 - Other techniques
- Summary

+ High-Dimensional Feature Space

- Picture elements in digital images
- Represented by <red, green, blue>
 - Black: <0, 0, 0>
 - Orange: <255,165,0>

 $2^8 = 256D$ color space

+ High-Dimensional Feature Space

```
f_1:<\!0.336,\!0.130,\!0.023,\!0.331,\!0.132,\!0.000,\!0.120,\!0.181\!>
```

 f_2 : <0.331,0.123,0.028,0.338,0.008,0.011,0.132,0.181>

 f_3 : <0.331,0.116,0.028,0.345,0.101,0.179,0.133,0.181>

.

 f_n : <0.331,0.102,0.021,0.336,0.009,0.000,0.009,0.192>

High-dimensional data points

High-D Feature Space

Motivation

- Examples
- Why
- What to expect
- Technique
 - X-Tree
 - Pyramid
 - VA-File
 - iDistance
 - Other techniques
- Summary

+ CPU Cost for Indexing is High

- Indexing: to locate the data quickly
 - Query processing time should not increase linearly with the DB size
 - I/O cost: Disk page accesses
 - A balanced tree structure can reduce search time (I/O costs)
- However, for high-dimensional data
 - CPU cost: Computation of similarity/distance
 - The CPU cost for some basic operation is no longer negligible
 - As dimensionality increases, the portion of CPU cost in total response time increases
 - This is different from traditional databases, where only I/O costs are considered

+ Indexing vs. Linear Scan

- The performance of an index degrades rapidly as dimensionality increases, and eventually underperforms linear scan!
- However, linear scan needs to search the whole data file - affected volume is 100%
 - Then query processing time will increase at least linearly with the DB size
- When the size of dataset is very large, loading the whole data into memory is unlikely
 - Even if this is possible, it's still too expensive to scan all the data

+ Overlap in R* Tree

- Aims to minimize the overlap
 - Overlap: more than one branch need to be expanded
- Dimensionality and Overlap

a. Overlap (Uniformly Distributed Data)

b. Weighted Overlap (Real Data)

Figure 2: Overlap of R*-tree Directory Nodes depending on the Dimensionality

- (Overlap: % of space covered by more than one R*-tree node)
- (Weighted Overlap: % of data objects in overlapping space)

+ "Curse of Dimensionality"

- Too many partitions
- Too few points
- The nearest is not near enough

+ Too Many Partitions

- A simple partitioning scheme splits the data space in each dimension into 2 parts
 - Thus, d-dimensions implies 2^d partitions
- For a 1,000,000 (10⁶) data points database:
 - If $d \le 10$, at most 1024 partitions for 1M points
 - If d is large, e.g., d = 100, there are around 2^{100} (about 10^{30}) partitions for 10^6 data points (much more partitions than points!)
- An overwhelming majority of the partitions are empty!

+ Too Few Points (1)

- Assume the data space is a hypercube, where each dimension is within the range of [0,1]
- The probability of a uniformly distributed point p lying within a hypercube range query with side length s is $Pr[p \in \text{QueriedRegion}] = s^d$
- For uniform data, when d = 100, a hypercube range query with s = 0.95 only covers 0.59% of the data points; compared to d = 2, 90.25%

+ Too Few Points (2)

- Most of the data lies close to the boundary of the dataspace
- Suppose we have a 50-dimensional hypercube with length of 1
 - Total Volume = $1 \times 1 \times 1 \times \cdots \times 1 = 1^{50} = 1$
 - If we regard the inner 90% of each dimension as the interior region, and the outside of it as boundary region
 - $0.00 < x_1 < 0.90, 0.00 < x_2 < 0.90, ..., 0.00 < x_{50} < 0.90$
 - If the data is uniformly distributed
 - The interior region's volume is $0.9^{50} \approx 0.005$
 - The boundary region's volume is 1-0.005 = 0.995
 - 99.5% of the points are in the boundary region

15

+ Too Few Points (3)

■ The probability of a uniformly distributed point lying within a spherical query Sphere(q, 0.5) is:

•
$$d = 2$$
: $\pi r^2/(2r)^2 = \pi/4 = 0.785$

•
$$d = 3$$
: $(\frac{4\pi}{3} \times r^3)/(2r)^3 = \pi/6 = 0.524$

• ...

•
$$d = 8: (\frac{\pi^4}{24} \times r^8)/(2r^8) = \pi^4/(3 \times 2^{11}) = 0.016$$

 Note that Sphere (q, 0.5) is the largest spherical query that fits within the unit data space

+ The Nearest is not Near Enough

- In some sense, nearly all of the uniformly distributed high-dimensional points are "far away" from the centre
 - The high-dimensional data are almost entirely in the "corners" of the hypercube, with almost nothing in the "middle".
- Low distance contrast: as the dimensionality increases, the distance to the nearest neighbour approaches the distance to the furthest neighbour.
 - For uniformly distributed data, difference between the nearest data point and the furthest data point reduces greatly

+ The Nearest is not Near Enough (2)

Expected NN distance vs.

dimensionality

number of data points

Expected NN-distance (E(nn-dist))

+ Question:

Is the nearest neighbour meaningful in a high-D space?

- It depends on the data distribution
 - Nothing can be done for uniformly distributed data.
 - Generally, real data are not uniformly distributed, but exhibit certain clusters, trends or skewness.

- Motivation
 - Examples
 - Why
 - What to expect
- Technique
 - X-Tree
 - Pyramid
 - VA-File
 - iDistance
 - Other techniques
- Summary

+ Design Principles

Simple

- Simple in design
- Easy to be integrated into existing DBMS
 - It's very hard to add a new indexing structure into a DBMS
 - Better chance to be practically useful if building on top of a mature and commercially available indexing method (e.g., B+-tree & Rtree)

Efficient

- Efficient in disk access (I/O cost) /CPU time
- Must support efficient updates (insert/delete/update operations)

- Motivation
 - Examples
 - Why
 - What to expect
- Technique
 - X-Tree
 - Pyramid
 - VA-File
 - iDistance
 - Other techniques
- Summary

- Motivation
 - Examples
 - Why
 - What to expect
- Technique
 - X-Tree
 - Pyramid
 - VA-File
 - iDistance
 - Other techniques
- Summary

+ X-Tree

- Variation of R-Tree and compromise between the hierarchy and sequential access
- Avoid overlap in the directory, when we cannot find a good partition
 - In high dimensional, linear organization of the directory sometimes is more efficient
 - Due to the high overlap, most of the directory has to be searched
 - So don't split when its overlap is high
- Tree Nodes
 - Data Node
 - Normal Directory Node
 - Super Node
 - Large directory nodes of variable size
 - Arbitrary number of blocks
 - Avoid split in the directory that would result in an inefficient directory

+ X-Tree

- Insertion
 - If no split occurs, update the size of MBR
 - If split is required
 - 1. If the overlap is low
 - Split the node with same techniques as R-tree Based techniques (or other techniques)
 - Otherwise (the overlap is high), do overlap minimal split
 - If the number of MBRs in one of the partitions is below a given threshold (unbalanced)
 - Stop splitting and extend to a Supernode

+ Overlap Minimal Split*

- Split History
 - The dimension according to which an MBR has been split
 - Which new MBRs have been created by this split
- Overlap Minimal Split
 - For point data
 - It is always possible to find an overlap-free split
 - It is not possible to guarantee that the two sets are balanced
 - Determine a dimension according to which all MBRs have been split previously

+ Overlap Minimal Split for Point Data*

- Split Tree
 - Leaf Node: MBR
 - Internal Node: Nodes that have been split into new MBRs
 - Record the dimension that was used to split

All MBRs in any split tree have one split dimension in common: the root node

- Motivation
 - Examples
 - Why
 - What to expect

■ Technique

- X-Tree
- Pyramid
- VA-File
- iDistance
- Other techniques
- Summary

- 28
- Divide the data space such that the resulting partitions are shaped like peels of an onion
 - Divide the d-D space into 2d pyramids having the center point (0.5, 0.5, ..., 0.5) of the space as their top
 - Each pyramid is cut into slices parallel to the basis
 - Data is mapped from d-dimensional space to 1-dimensional space
 - B+-tree can then be used

Such that typical window query will not overlap all the nodes as the balanced split

Balanced split

+ Pyramid Numbering

- Pyramid Numbering: a point v belongs to pyramid i
- Determine i
 - j_{max} :The dimensional j that has the maximum deviation $|0.5 v_j|$

$$i = \begin{cases} j_{max}, & \text{if } v_{j_{max}} < 0.5 \\ j_{max} + d, & \text{if } v_{j_{max}} \ge 0.5 \end{cases}$$

$$|v_1 - 0.5| > |v_0 - 0.5|$$

 $j_{max} = 1$
 $v_{j_{max}} = v_1 \ge 0.5$
 $i = j_{max} + d = 1 + 2 = 3$

$$|v_1 - 0.5| < |v_0 - 0.5|$$

 $j_{max} = 0$
 $v_{j_{max}} = v_0 > 0.5$
 $i = j_{max} + d = 2$

+ Point Height in a Pyramid

- Height of v
 - The distance from the point to the center according to

dimension j_{max}

 $h_v = |0.5 - v_{i \, mod \, d}|$

+ Pyramid Value

- Pyramid Value of d-dimensional point v
 - Transform a *d*-dimensional point to a value $pv_v = i + h_v$
 - *i* is an integer
 - h_v is in range [0, 0.5]
 - pv_v is in range [i, i + 0.5]
 - Values covered by different pyramids are disjoint

- Use B⁺-Tree to index
 - Easy to insert, delete, and update

+ Pyramid Technique

- Query is complex
 - Point Query: Compute the pyramid value and query the B⁺-Tree
 - Range Query $[q_{0_{min}}, q_{0_{max}}], \dots, [q_{d-1_{min}}, q_{d-1_{max}}]$
 - 1. Determine the affected pyramids
 - Transform one d-dimensional range query q into an equivalent 2d range queries, one for each pyramid
 - 2. Determine the ranges inside the pyramids
 - $[i + h_{low}, i + h_{high}]$ for each pyramid

+ Pyramid Technique

- The effectiveness is sensitive to query position
 - Query region vs. search region

Non-uniform distribution – design non-uniform pyramid

- Motivation
 - Examples
 - Why
 - What to expect

■ Technique

- X-Tree
- Pyramid
- VA-File
- iDistance
- Other techniques
- Summary

+ Vector Approximation (VA)-File

- In High-D spaces, tree-based indexing structures may examine a very large fraction of leave nodes
 - Since the MBRs heavily overlap if data are distributed uniformly
- Let go of the hierarchies and sequentially scan the whole data set
 - Sequential scan is much faster than random read due to the cost of disk seek operations
- Natural question: how to speed up linear scan?
 - Using approximation to compress vector data
 - Easing the computation and reducing the amount of data to exam during the search

+ Basic Idea

- For each dimension i, a small number of bits b_i is assigned to divide the dimension into 2^{b_i} intervals
- Let b be the sum of all dimensions' b_i 's,
 - The data space is divided into 2^b cells
 - Every point is represented by b bits

- ✓ 1st dim: 2 bits
- ✓ 2nd dim: 2 bits
- ✓ In total $2^2 \times 2^2 = 2^{2+2} = 2^4 = 16$ cells

1st dim

+ Building VA-file and Query

Map objects to cells

- Each cell has a bit representation with length b
- The VA-file itself is simply an array of bits concatenation based on the quantization of the original feature vectors.

0.94

0.72

+VA-file 2-Phase NN search

Phase 1: Filtering

- The VA-file is sequentially scanned.
- The lower and upper bounds on the distance for each object's approximation (i.e., VA) is then computed.
- \blacksquare Assume δ is the smallest upper bound so far, eliminate approximations with a lower bound that exceeds δ

vector data			
● 1	0.1 0.9		
O ₂	0.6 0.8		
● 3	0.1 0.4		
● 4	0.9 0.1		

	approximation	LB, UB
0 ₁	00 11	0.67, 0.94
\mathbb{O}_2	10 11	0.81, 1.10
● 3	00 01	0.17, 0.4
● 4	11 00	0.70, 0.9
• 5	10 00	0.45, 0.72

+VA-file 2-Phase NN search

■ Phase 1: Filtering

- The VA-file is sequentially scanned.
- The lower and upper bounds on the distance for each object's approximation (i.e., VA) is then computed.
- Assume δ is the smallest upper bound so far, eliminate approximations with a lower bound that exceeds δ

vector data			
● 1	0.1 0.9		
02	0.6 0.8		
● 3	0.1 0.4		
● 4	0.9 0.1		

	approximation	LB, UB
01	00 11	- 0.67, 0.94
02	10 11	- 0. 84 , 1. 4 6
● 3	00 01	0.17, 0.47
● 4	11 00	· 0.70, 0.97
• 5	10 00	0.45, 0.72

+VA-file 2-Phase NN search

■ Phase 2: Refine

- After the filtering step, a small set of candidates remain
- Candidates are sorted in ascend order by lower bound
- Calculate the current NN distance by iteration through the sorted candidates
 - If a lower bound is encountered that exceeds the nearest distance seen so far, the VA-file method stops

vector data

0.1 0.9

+ What We can Learn from VA File?

How to speed up linear scan ?

Answer: Use approximation!

- Use only b_i bits per dimension
 - Floating points: 32bits per dimension
 - Speed up the scan by a factor of 32/b_i
- Identify all points which <u>could</u> be returned as an answer
- Verify the points by accessing the original feature vectors

+ Limits of VA-file

- The total cost of VA-file also includes the **random** access (I/O) to the candidates. If the candidate set is large, save in linear scan on VA-file will be offset.
- Large *b*_i:
 - Small number of candidates, but
 - Large VA-file
- VA-file performs best in uniformly distribution data. However, real data exhibit certain degree of skewness.
 - Assume the features are independent
 - Because the slices are obtained independently
 - VA-file divides the dimensions either for equal size or for equal population.

+ Outline

- Motivation
 - Examples
 - Why
 - What to expect

■ Technique

- X-Tree
- Pyramid
- VA-File
- iDistance
- Other techniques
- Summary

+ iDistance^[1]

- iDistance is simple, but efficient
- It is a distance and partition based index
- It can be used for approximate search
- The index can be integrated to existing systems easily
- Another representative way to handle high dimensional data

+ Basic Ideas

Observations

- The similarity/dissimilarity between points can be derived with reference to a chose reference point
- Points can be ordered based on their distance to the reference point
- 3. Distance is essentially a single dimensional value
 - Reuse the existing 1-D index like B+ -Tree

+ Basic Ideas

- Data points are partitioned into clusters/partitions
- Points are transformed into 1-D space
 - 1. The high-dimensional space is split into partitions
 - $\blacksquare P_0, P_1, \dots, P_{m-1}$
 - 2. A <u>reference point</u> is identified for each partition
 - 3. A data point $p(x_1, x_2, ..., x_d)$ in the i^{th} partition can be referenced via O_i in terms of the distance from p to O_i
 - Index key y: $y = i \times c + dist(p, O_i)$
 - c: a constant of the data range
 - All points in partition P_i mapped to range $[i \times c, (i+1) \times c]$
- Data points are indexed based on similarity (metric distance) to such a point using a standard B+-tree

+ Indexing Points Based on Similarity

Indexing points based on similarity


```
Assume: Dist(p_1, O_1) = 5, Dist(p_4, O_2) = 5
We set c = 100
iDist(p_1) = 105 and iDist(p_4) = 205
```

+ The range of search NN

■ The triangle inequality

$$dist(O_i,q) - dist(p,q) \leq dist(O_i,p) \leq dist(O_i,q) + dist(p,q)$$

Consider the points within a range around q containing p

$$dist(O_i, q) - query dist(q) \le dist(O_i, p) \le dist(O_i, q) + query dist(q)$$

■ The maximum distance range

$$dist(O_i, p) \leq dist_max_i$$

The final search space are points within the range

$$[dist(O_i, q) - querydist(q), \\ \min(dist_max_i, dist(O_i, q) + querydist(q)]$$

+ The range of search NN

■ The triangle inequality

$$dist(O_i,q) - dist(p,q) \leq dist(O_i,p) \leq dist(O_i,q) + dist(p,q)$$

Consider the points within a range around q containing p

 $dist(O_i, q) - query dist(q) \le dist(O_i, p) \le dist(O_i, q) + query dist(q)$

■ The maximum distance range

$$dist(O_i, p) \leq dist_max_i$$

The final search space are points within the rage

$$[dist(O_i, q) - querydist(q), \\ \min(dist_max_i, dist(O_i, q) + querydist(q)]$$

+ The range of search NN

■ The triangle inequality

$$dist(O_i,q) - dist(p,q) \leq dist(O_i,p) \leq dist(O_i,q) + dist(p,q)$$

Consider the points within a range around q containing p

$$dist(O_i, q) - query dist(q) \le dist(O_i, p) \le dist(O_i, q) + query dist(q)$$

■ The maximum distance range

$$dist(O_i, p) \leq dist_max_i$$

The final search space are points within the rage

$$[dist(O_i, q) - querydist(q), \\ \min(dist_max_i, dist(O_i, q) + querydist(q)]$$

+ Example

- Notice: all points along the same radius have the same value after transformation to distance
 - Points with the same values are not necessarily close to each other

+ kNN Search

- Query distance r = querydist is enlarged incrementally
- For each query distance r, search is conducted around the query point q and overlapped partition until kNN is found
- For each partition, its **minimal** and **maximal** distance to the Reference Point are recorded in the auxiliary structure
 - The auxiliary structure: {(O, min, max)}
- Scanning the auxiliary structure to identify the partitions whose data space overlaps with the query sphere (q, r)

+ Graphical Illustration of kNN search

A range in B+-tree

✓ Searching region is enlarged until getting kNN

+ Formation of Clusters/Partitions

Equal Partitioning:

- Effective if data is uniformly distributed
- However, data points are often non-uniformly distributed

Number of Clusters:

- Small number: More points are likely to have similar distance to a given reference point
- Large number: More circles are likely to overlap and incurs additional traversal and searching

+ Outline

- Motivation
 - Examples
 - Why
 - What to expect

■ Technique

- VA-File
- X-Tree
- Pyramid
- iDistance
- Other techniques...
- Summary

+ List of techniques

- Hierarchical Tweaking
 - X-Tree [VLDB'96]
 - SS-Tree, SR-Tree, Ball-Tree
- Transformation based
 - Pyramid Technique [SIGMOD'98]
 - iDistance [VLDB'01]
 - Optimal one-dimensional distance B+ tree [SIGMOD'05]
- Dimensionality reduction
 - Local Dimensionality Reduction (LDR)
 - Multi-level Mahalanobis based Dimensionality Reduction (MMDR)
- Data compression based
 - Vector Approximation (VA-File) [VLDB'98]

- Hybrid of tree-like structure and data compression
 - Independent Quantization (IQ-tree)
 - Local Digital Coding (LDC)
- Approximate search
 - Locality Sensitive Hashing (LSH)
 - Vector Quantization (VQindex)
 - Spatial Approximation Sample Hierarchy (SASH)

+ Outline

- Motivation
 - Examples
 - Why
 - What to expect
- Technique
 - VA-File
 - X-Tree
 - Pyramid
 - iDistance
 - Other techniques...
- Summary

+ Summary

- "Curse of Dimensionality" is a real problem which is very difficult to solve
- It is counter-intuitive that similarity search can be meaningless with more information captured
- It is also counter-intuitive that sophisticated indexing structures may not even be as efficient as a linear scan over the entire database
- People often use pivot-points based indexing and data compression to deal with high dimensional data
- This is still an open problem, with most solutions which are either data dependent or domain specific

+ Readings

- Christian Böhm, Stefan Berchtold and Daniel Keim: "Searching in High-dimensional Spaces: Index Structures for Improving the Performance of Multimedia Databases", ACM Computing Surveys 33 (3), 2001.
- Other papers on X-Tree, Pyramid Technique, VA-file and iDistance.

+ Advanced Techniques for High Dimensional Data

- □ Course Introduction
- Introduction to Spatial Databases
- Spatial Data Organization
- Spatial Query Processing
- Managing Spatiotemporal Data
- Managing High-Dimensional Data
- Introduction to Multimedia Database-next week
- □ Route Planning in Road Network
- When Al Meets High-Dimensional Data
- □ Trends and Course Review