МІНІСТЕРСТВО НАУКИ І ОСВІТИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра систем штучного інтелекту

Звіт Лабораторна робота №1 3 дисципліни :

Дискретна Математика

Виконав:

Студент групи КН-113

Стасишин Р. О.

Викладач:

Мельникова.Н.І

Тема Роботи

Моделювання основних логічних операцій. Основні поняття математичної логіки. Логічні операції. Закони логіки висловлювань. Логіка першого ступеня. Предикати і квантори. Закони логіки першого ступеня.

Мета

Засвоїти основні поняття математичної логіки, побудувати складні висловлювання за допомогою логічних операцій та знайти їхні істинностні значення таблицями істинності, використати закони алгебри логіки, та закріпити методи доведень.

Теоретичні Відомості

"∕"-Кон'юнкція

"\/"-Диз'юнкція

"=>"-Імплікація

"⇔"-Рівність

Завдання:

Варіант 15

1.

Формалізувати речення. Якщо не можеш зробити якісно роботу, то вважай що тобі не запропонують вдалу вакансію.

q: "Ти робиш роботу"

t: "Робота зроблена якісно"

z: "Тобі запропонували вакансію"

с : "Вакансія ε вдалою"

Розв'язок:

1)
$$(q \wedge t) \Rightarrow (z \wedge c)$$

2.

Побудувати таблицю істинності для висловлюваня:

$$(x \wedge (y \wedge z)) \Longrightarrow (x \wedge y \wedge z);$$

Розв'язок:

Позначаємо над складним висловлюванням послідовність дій і вносимо данні в табличку істинності. Розвя'зуємо всі випадки.

Послідовність дій: | 3. 1. 5. 4. 2. $| (x \land (y \land z)) => (x \lor y \lor z);$

Формулу можна спростити за допомогою закона асоціативності;

 $(x \land (y \land z)) \Longrightarrow (x \lor (y \lor z));$

	Α	В	С	D	E	F	G	Н
1	x	у	Z	(y ^ z)	(y \(^z\)	(x ^ (y ^ z))	(x \(^ (y \(^ z))	$(x \land (y \land z)) \Longrightarrow (x \lor (y \lor z))$
2	0	0	0	0	0	0	0	1
3	0	0	1	0	1	0	1	1
4	0	1	0	0	1	0	1	1
5	0	1	1	0	1	0	1	1
6	1	0	0	0	0	0	1	1
7	1	0	1	0	1	0	1	1
8	1	1	0	0	1	0	1	1
9	1	1	1	1	1	1	1	1

3. Побудовою таблиць істинності вияснити, чи висловлювання є тавтологією або протиріччям:

$$(\overline{(p \land q)} \lor (\overline{q} \land r)) \lor \overline{(\overline{p} \to r)}$$

Спрощуємо вираз за допомогою законів

$$((\neg (p \land q)) \lor (\neg q \land r)) \lor (\neg (\neg p => r)) = ((\neg p \lor \neg q) \lor (\neg q \land r)) \lor (\neg (p \lor r)) = \\ = ((\neg p \lor \neg q) \lor (\neg q \land r)) \lor (\neg p \land \neg r)$$

Порядок дій :
$$| 1. 4. 2. 5. 3. | ((\neg p \lor \neg q) \lor (\neg q \land r)) \lor (\neg p \land \neg r) |$$

			1 ()		•	_	//	_			
	Α	В	С	D	E	F	G	Н	1	J	К
1	р	q	r	¬p	¬q	¬r	(¬p ^ ¬q)	(¬q ^ r)	(¬p ^ ¬r)	((¬p ^ ¬q) ^ (¬q ^ r))	((¬p ^ ¬q) ^ (¬q ^ r)) ^ (¬p ^ ¬r)
2	0	0	0	1	1	1	1	0	1	1	1
3	0	0	1	1	1	0	1	1	0	1	1
4	0	1	0	1	0	1	1	0	1	1	1
5	0	1	1	1	0	0	1	0	0	1	1
6	1	0	0	0	1	1	1	0	0	1	1
7	1	0	1	0	1	0	1	1	0	1	1
8	1	1	0	0	0	1	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0	0	0

Це висловлювання ϵ нейтральним.

4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання: $(((p \to q) \to p) \land ((\neg (p \to q)) \to r)) \to (p \to q).$

Припустимо що це висловлення ϵ протиріччям.

Тоді:

$$(p \rightarrow q) = F i \mid (((p \rightarrow q) \rightarrow p) \land ((\neg(p \rightarrow q)) \rightarrow r)) = T$$

При q=F висловлювання завжди приймає значення F

Отже: висловлювання є тавтологія.

5.

Довести, що формули еквівалентні:

$$(\bar{q} \wedge r) \rightarrow p \text{ Ta } p \rightarrow (q \wedge r)$$

Спрощуємо формули:

$$(\neg q \land r) \Rightarrow p ; (\neg (\neg q \land r) \lor p ; (\mathbf{q} \lor \neg \mathbf{r}) \lor \mathbf{p})$$

 $p \Rightarrow (q \land r) ; \neg p \lor (q \land r)$

Будуємо таблиці істинності;

	Α	В	С	D	E	F
1	q	р	r	¬r	(q [∨] ¬r)	(q ∨ ¬r) ∨ p
2	0	0	0	1	1	1
3	0	0	1	0	0	0
4	0	1	0	1	1	1
5	0	1	1	0	0	1
6	1	0	0	1	1	1
7	1	0	1	0	1	1
8	1	1	0	1	1	1
9	1	1	1	0	1	1

2 таблиця.

Δ	Α	В	С	D	E	F
1	q	р	r	¬р	(q ^ r)	¬p ^ (q ^ r)
2	0	0	0	1	0	1
3	0	0	1	1	0	1
4	0	1	0	0	0	0
5	0	1	1	0	0	0
6	1	0	0	1	0	1
7	1	0	1	1	1	1
8	1	1	0	0	0	0
9	1	1	1	0	1	1

Порівнявши значення таблиці випливає що формули не еквівалентні.

5.

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях:

15.
$$(x \land (y \land z)) \Rightarrow (x \lor y \lor z);$$

За допомогою формул спрощуємо висловлювання.

$$(x \land (y \land z)) \Longrightarrow (x \lor y \lor z) \quad - \quad ((x \land y) \land z) \Longrightarrow ((x \lor y) \lor z)$$

Результат:

1.Правильні данні

2. Неправильні данні

```
Please enter the variables

Enter x:3
Enter y:4
Enter z:5
Wrong data
```

Висновок

Закріпив зання з теми Висловлювання. Застосував навички у будуванні висловлювань за допомогою логічних операцій .Використав і засвоїв стандартні методи доведень.