Encrypted Davies-Meyer and Its Dual: Towards Optimal Security Using Mirror Theory

Bart Mennink, Samuel Neves

Radboud University (The Netherlands), University of Coimbra (Portugal)

> CRYPTO 2017 August 24, 2017

Introduction

PRP PRF

Introduction

Introduction

Xor of Permutations

Xor of Permutations

- First suggested by Bellare et al. [BKR98]
- Secure up to 2^n queries [BI99,Luc00,Pat08]
- Application: CENC, SCT

Xor of Permutations

Xor of Permutations

Xor of Single Permutation

- First suggested by Bellare et al. [BKR98]
- Secure up to 2^n queries [BI99,Luc00,Pat08]
- Application: CENC, SCT
- Single permutation using domain separation

Encrypted (Wegman-Carter) Davies-Meyer

- By Cogliati and Seurin [CS16]
- Secure up to $2^{2n/3}$ queries
- ullet Conjecture: optimal 2^n security

Encrypted (Wegman-Carter) Davies-Meyer

EDM and EWCDM (dashed)

scheme	[CS16]	now
EDM EWCDM	$2^{2n/3} \\ 2^{2n/3}$	$\frac{2^n/n}{2^n/n}$

scheme	[CS16]	now
EDM EWCDM	$2^{2n/3} \\ 2^{2n/3}$	$\frac{2^n/n}{2^n/n}$
EDMD		2^n

[CS16]	now
$2^{2n/3} \\ 2^{2n/3}$	$\frac{2^n/n}{2^n/n}$
	2^n
	$2^{2n/3}$

Earlier proposal

EWCDMD removed after observation by Nandi

Backbone of analysis: mirror theory

System of Equations

- Consider r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- ullet Consider a system of q equations of the form:

$$P_{a_1} \oplus P_{b_1} = \lambda_1$$

$$P_{a_2} \oplus P_{b_2} = \lambda_2$$

$$\vdots$$

$$P_{a_q} \oplus P_{b_q} = \lambda_q$$

for some surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\}\to\{1,\ldots,r\}$

System of Equations

- Consider r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- ullet Consider a system of q equations of the form:

$$P_{a_1} \oplus P_{b_1} = \lambda_1$$

$$P_{a_2} \oplus P_{b_2} = \lambda_2$$

$$\vdots$$

$$P_{a_q} \oplus P_{b_q} = \lambda_q$$

for some surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\} o\{1,\ldots,r\}$

Goal

• Lower bound on the number of solutions to $\mathcal P$ such that $P_a \neq P_b$ for all distinct $a,b \in \{1,\ldots,r\}$

Patarin's Result

• Extremely powerful lower bound

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin Patarin	CRYPTO 2003 CRYPTO 2004	Feistel Feistel	Suboptimal
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feiste	
Patarin	ICISC 2005	Feiste	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	XoP	Concrete bound

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoΡ	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoΡ	Concrete bound
Patarin	ePrint 2010/293	Feistel	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoΡ	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoΡ	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoP	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoP	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	
Volte, Nachef, Marrière	ePrint 2016/136	Feistel	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoP	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	
Volte, Nachef, Marrière	ePrint 2016/136	Feistel	
Iwata, Mennink, Vizár	ePrint 2016/1087	CENC	

System of Equations

- r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- System of equations $P_{a_i} \oplus P_{b_i} = \lambda_i$
- Surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\}\to\{1,\ldots,r\}$

Graph Based View

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- ullet Contradiction: $P_a=P_b$ or $P_b=P_c$ or $P_a=P_c$
- Scheme is degenerate

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a=P_b$ or $P_b=P_c$ or $P_a=P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$
 and $\lambda_1
eq \lambda_2$

• 2^n choices for P_a

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$
 and $\lambda_1
eq \lambda_2$

- 2^n choices for P_a
- Fixes $P_b = \lambda_1 \oplus P_a$ (which is $\neq P_a$ as desired)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$
 and $\lambda_1
eq \lambda_2$

- 2^n choices for P_a
- Fixes $P_b = \lambda_1 \oplus P_a$ (which is $\neq P_a$ as desired)
- Fixes $P_c = \lambda_2 \oplus P_b$ (which is $\neq P_a, P_b$ as desired)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_c \\ P_c & \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = egin{array}{ccccc} \lambda_1 & & & P_a \ \hline P_c & & & & P_c \ \hline \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$

• 2^n choices for P_a (which fixes P_b)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_b \\ P_c = \begin{array}{ccc} \lambda_2 & P_c \end{array}$$

If
$$\lambda_1=0$$
 or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1, \lambda_2 \neq 0$$

- 2^n choices for P_a (which fixes P_b)
- For P_c and P_d we require
 - $P_c \neq P_a, P_b$
 - $P_d = \lambda_2 \oplus P_c \neq P_a, P_b$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_t \\ P_c & \lambda_2 & P_c \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If $\lambda_1, \lambda_2 \neq 0$

- 2^n choices for P_a (which fixes P_b)
- For P_c and P_d we require
 - $P_c \neq P_a, P_b$
 - $P_d = \lambda_2 \oplus P_c \neq P_a, P_b$
- At least $2^n 4$ choices for P_c (which fixes P_d)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

• Assume $\lambda_i \neq 0$ and $\lambda_i \neq \lambda_j$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

• Assume $\lambda_i \neq 0$ and $\lambda_i \neq \lambda_j$

If $\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0$

- Contradiction: equations sum to $0=\lambda_1\oplus\lambda_2\oplus\lambda_3$
- Scheme contains a circle

• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

 $P_a \xrightarrow{\lambda_1} P_b$ $\lambda_3 \qquad \lambda_2$

• Assume $\lambda_i \neq 0$ and $\lambda_i \neq \lambda_j$

If $\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0$

- Contradiction: equations sum to $0=\lambda_1\oplus\lambda_2\oplus\lambda_3$
- Scheme contains a circle

If
$$\lambda_1 \oplus \lambda_2 \oplus \lambda_3 = 0$$

One redundant equation, no contradiction

Mirror Theory: Two Problematic Cases

Circle

Degeneracy

Mirror Theory: Main Result

System of Equations

- r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- System of equations $P_{a_i} \oplus P_{b_i} = \lambda_i$
- Surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\} o \{1,\ldots,r\}$

Main Result

If the system of equations is circle-free and non-degenerate, the number of solutions to $\mathcal P$ such that $P_a \neq P_b$ for all distinct $a,b \in \{1,\ldots,r\}$ is at least

$$\frac{(2^n)_r}{2^{nq}}$$

provided the maximum tree size ξ satisfies $(\xi-1)^2 \cdot r \leq 2^n/67$

General Setting

ullet Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Each tuple corresponds to $x_i\mapsto p(0\|x_i)=:P_{a_i}$ and $x_i\mapsto p(1\|x_i)=:P_{b_i}$

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Each tuple corresponds to $x_i\mapsto p(0\|x_i)=:P_{a_i}$ and $x_i\mapsto p(1\|x_i)=:P_{b_i}$
- ullet System of q equations $P_{a_i}\oplus P_{b_i}=y_i$

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Each tuple corresponds to $x_i \mapsto p(0||x_i) =: P_{a_i}$ and $x_i \mapsto p(1||x_i) =: P_{b_i}$
- System of q equations $P_{a_i} \oplus P_{b_i} = y_i$
- Inputs to p are all distinct: 2q unknowns

Applying Mirror Theory

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i
- Maximum tree size 2

Applying Mirror Theory

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i
- Maximum tree size 2
- If $2q \leq 2^n/67$: at least $\frac{(2^n)_{2q}}{2^{nq}}$ solutions to unknowns

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \ \mathsf{transcript} \ \mathsf{for} \ f\right]$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}_{\mathsf{XoP}}^{\mathrm{prf}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } f\right]$

- Bad transcript: if $y_i = 0$ for some i
 - $\bullet \ \mathbf{Pr} \left[\mathsf{bad} \ \mathsf{transcript} \ \mathsf{for} \ f \right] = q/2^n$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } f\right]$

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $f]=q/2^n$
- For any good transcript:
 - ullet $\Pr\left[ext{XoP gives } au
 ight] \geq rac{(2^n)_{2q}}{2^{nq}} \cdot rac{1}{(2^n)_{2q}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } f\right]$

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}\left[\mathsf{bad}\right]$ transcript for $f=q/2^n$
- For any good transcript:
 - $\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ au
 ight] \geq rac{(2^n)_{2q}}{2^{nq}} \cdot rac{1}{(2^n)_{2q}}$
 - $\mathbf{Pr}\left[f \text{ gives } \tau\right] = \frac{1}{2^{nq}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}_{\mathbf{Y} \circ \mathbf{P}}^{\mathrm{prf}}(q) \leq \varepsilon + \mathbf{Pr} \left[\mathsf{bad} \right]$ transcript for f

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}[\mathsf{bad}]$ transcript for $f] = q/2^n$
- For any good transcript:

•
$$\Pr\left[\mathsf{XoP\ gives\ } au\right] \geq \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$$

• $\Pr\left[f\ \mathsf{gives\ } au\right] = \frac{1}{2^{nq}}$

•
$$\mathbf{Pr}\left[f \text{ gives } au
ight] = rac{1}{2^{nq}}$$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad}\right]$ transcript for f

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}[\mathsf{bad}]$ transcript for $f] = q/2^n$
- For any good transcript:

•
$$\Pr\left[\mathsf{XoP\ gives\ } au\right] \geq \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$$

• $\Pr\left[f\ \mathsf{gives\ } au\right] = \frac{1}{2^{nq}}$

$$\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \le q/2^n$$

General Setting

• Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$

General Setting

• Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Xor of permutations in the middle

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Xor of permutations in the middle
- Each tuple corresponds to $x_i\mapsto p_1(x_i)=:P_{a_i}$ and $y_i\mapsto p_2^{-1}(y_i)=:P_{b_i}$

- Adversary gets transcript $au = \{(x_1, y_1), \dots, (x_q, y_q)\}$
- Xor of permutations in the middle
- Each tuple corresponds to $x_i \mapsto p_1(x_i) =: P_{a_i}$ and $y_i \mapsto p_2^{-1}(y_i) =: P_{b_i}$
- ullet System of q equations $P_{a_i}\oplus P_{b_i}=x_i$

- Adversary gets transcript $au = \{(x_1, y_1), \dots, (x_q, y_q)\}$
- Xor of permutations in the middle
- Each tuple corresponds to $x_i \mapsto p_1(x_i) =: P_{a_i}$ and $y_i \mapsto p_2^{-1}(y_i) =: P_{b_i}$
- System of q equations $P_{a_i} \oplus P_{b_i} = x_i$
- ullet x_i 's all unique, y_i 's may collide

Applying Relaxed Mirror Theory

- Circle-free: no collisions in inputs to p_1
- Non-degenerate: as $x_i \neq x_j$ for all $i \neq j$
- Max tree size $\xi + 1$: provided no $(\xi + 1)$ -fold collision

- Circle-free: no collisions in inputs to p_1
- Non-degenerate: as $x_i \neq x_j$ for all $i \neq j$
- Max tree size $\xi + 1$: provided no $(\xi + 1)$ -fold collision
- If $\xi^2 q \leq 2^n/67$: at least $\frac{(2^n)_s \cdot (2^n-1)_q}{2^{nq}}$ solutions to unknowns

- Circle-free: no collisions in inputs to p_1
- Non-degenerate: as $x_i \neq x_j$ for all $i \neq j$
- Max tree size $\xi + 1$: provided no $(\xi + 1)$ -fold collision
- If $\xi^2 q \leq 2^n/67$: at least $\frac{(2^n)_s \cdot (2^n-1)_q}{2^{nq}}$ solutions to unknowns
- H-coefficient technique: $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{EDM}}(q) \leq q/2^n + \binom{q}{\xi+1}/2^{n\xi}$

General Setting

• Adversary gets transcript $au = \{(
u_1, m_1, t_1), \dots, (
u_q, m_q, t_q)\}$

General Setting

• Adversary gets transcript $au = \{(
u_1, m_1, t_1), \dots, (
u_q, m_q, t_q)\}$

- Adversary gets transcript $au = \{(
 u_1, m_1, t_1), \dots, (
 u_q, m_q, t_q)\}$
- Each tuple corresponds to $\nu_i\mapsto p_1(\nu_i)=:P_{a_i}$ and $t_i\mapsto p_2^{-1}(t_i)=:P_{b_i}$
- ullet System of q equations $P_{a_i}\oplus P_{b_i}=
 u_i\oplus h(m_i)$

- Adversary gets transcript $au = \{(
 u_1, m_1, t_1), \dots, (
 u_q, m_q, t_q)\}$
- Each tuple corresponds to $\nu_i\mapsto p_1(\nu_i)=:P_{a_i}$ and $t_i\mapsto p_2^{-1}(t_i)=:P_{b_i}$
- System of q equations $P_{a_i} \oplus P_{b_i} = \nu_i \oplus h(m_i)$
- Extra issue: $u_i \oplus h(m_i)$ may collide

EWCDM

EWCDM

Applying Relaxed Mirror Theory

- ullet Circle-free: no collisions in inputs to p_1
- Non-degenerate: provided $u_i \oplus h(m_i) \neq
 u_j \oplus h(m_j)$ in all trees
- Max tree size $\xi+1$: provided no $(\xi+1)$ -fold collision

EWCDM

Applying Relaxed Mirror Theory

- ullet Circle-free: no collisions in inputs to p_1
- Non-degenerate: provided $u_i \oplus h(m_i) \neq
 u_j \oplus h(m_j)$ in all trees
- Max tree size $\xi + 1$: provided no $(\xi + 1)$ -fold collision
- If $\xi^2 q \leq 2^n/67$: $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{EWCDM}}(q) \leq q/2^n + \binom{q}{2}\epsilon/2^n + \binom{q}{\xi+1}/2^{n\xi}$

- EDMD is at least as secure as XoP
- If $q \le 2^n/67$: $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{EDMD}}(\mathcal{D}) \le q/2^n$

Single-Key Variants?

$\begin{array}{c|c} \hline & E(WC)DM \\ x & \hline & p_1 \\ \hline & h(m) & \hline \end{array}$

- "XoP in the middle" relies on inverting p₂
- Trick fails if $p_1 = p_2$

Single-Key Variants?

- "XoP in the middle" relies on inverting p₂
- Trick fails if $p_1 = p_2$

- $ullet p_1, p_2$ independent: cascading has limited influence
- Sliding issues if $p_1 = p_2$

Single-Key Variants?

- "XoP in the middle" relies on inverting p₂
- Trick fails if $p_1 = p_2$

- p_1, p_2 independent: cascading has limited influence
- Sliding issues if $p_1 = p_2$

Conjecture: optimal 2^n security

Conclusion

Mirror Theory

- Powerful but underestimated technique
- Implies (almost) optimal security of E(WC)DM
- Implies optimal security of EDMD

Conclusion

Mirror Theory

- Powerful but underestimated technique
- Implies (almost) optimal security of E(WC)DM
- Implies optimal security of EDMD

Open Questions

- Single-key variants?
- Dual of EWCDM?
- Further applications

Thank you for your attention!

Supporting Slides

SUPPORTING SLIDES

 \bullet Two oracles: E_k (for secret random key k) and p

- ullet Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\mathcal D}$ has query access to either E_k or p

- ullet Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\mathcal D}$ has query access to either E_k or p
- ullet ${\cal D}$ tries to determine which oracle it communicates with

- Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\cal D}$ has query access to either E_k or p
- ullet ${\cal D}$ tries to determine which oracle it communicates with

$$\mathbf{Adv}_{E}^{\mathrm{prp}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{E_{k}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{p} = 1 \right] \right|$$

Pseudorandom Function

- ullet Two oracles: F_k (for secret random key k) and f
- ullet Distinguisher ${\mathcal D}$ has query access to either F_k or f
- ullet ${\cal D}$ tries to determine which oracle it communicates with

$$\mathbf{Adv}_F^{\mathrm{prf}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{F_k} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^f = 1 \right] \right|$$

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prp}}_{E}(\sigma) + \binom{\sigma}{2}/2^{n}$$

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prp}}_{E}(\sigma) + \binom{\sigma}{2}/2^{n}$$

- $\mathsf{CTR}[E]$ is secure as long as:
 - E_k is a secure PRP
 - Number of encrypted blocks $\sigma \ll 2^{n/2}$

- $m_i \oplus c_i$ is distinct for all σ blocks
- Unlikely to happen for random string

- $m_i \oplus c_i$ is distinct for all σ blocks
- Unlikely to happen for random string
- Distinguishing attack in $\sigma \approx 2^{n/2}$ blocks:

$$\binom{\sigma}{2}/2^n \lesssim \mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(\sigma)$$

Counter Mode Based on Pseudorandom Function

Counter Mode Based on Pseudorandom Function

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[F]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prf}}_F(\sigma)$$

Counter Mode Based on Pseudorandom Function

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[F]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prf}}_F(\sigma)$$

- $\mathsf{CTR}[F]$ is secure as long as F_k is a secure PRF
- Birthday bound security loss disappeared

Counter Mode Based on XoP

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[\mathsf{XoP}]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(\sigma)$$

Counter Mode Based on XoP

$$\begin{aligned} \mathbf{Adv}^{\text{cpa}}_{\mathsf{CTR}[\mathsf{XoP}]}(\sigma) &\leq \mathbf{Adv}^{\text{prf}}_{\mathsf{XoP}}(\sigma) \\ &\leq \mathbf{Adv}^{\text{prp}}_{E}(2\sigma) + \sigma/2^{n} \end{aligned}$$

Counter Mode Based on XoP

• Security bound:

$$\mathbf{Adv}_{\mathsf{CTR}[\mathsf{XoP}]}^{\mathsf{cpa}}(\sigma) \leq \mathbf{Adv}_{\mathsf{XoP}}^{\mathsf{prf}}(\sigma)$$
$$\leq \mathbf{Adv}_{E}^{\mathsf{prp}}(2\sigma) + \sigma/2^{n}$$

ullet Beyond birthday-bound but 2x as expensive as $\mathsf{CTR}[E]$

 \bullet One subkey used for $w \geq 1$ encryptions

- ullet One subkey used for $w\geq 1$ encryptions
- ullet Almost as expensive as $\mathsf{CTR}[E]$

- One subkey used for $w \ge 1$ encryptions
- ullet Almost as expensive as $\mathsf{CTR}[E]$
- 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]

- One subkey used for $w \ge 1$ encryptions
- $\bullet \ \mathsf{Almost} \ \mathsf{as} \ \mathsf{expensive} \ \mathsf{as} \ \mathsf{CTR}[E] \\$
- 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]
- 2016: $2^n/w$ security [IMV16]

Applying Mirror Theory

- ullet Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i and $y_i \neq y_j$ within all w-blocks
- Maximum tree size w+1

Applying Mirror Theory

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i and $y_i \neq y_j$ within all w-blocks
- Maximum tree size w+1
- If $2w^2q \leq 2^n/67$: at least $\frac{(2^n)_r}{2^{nq}}$ solutions to unknowns

Applying Mirror Theory

- ullet Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i and $y_i \neq y_j$ within all w-blocks
- Maximum tree size w+1
- If $2w^2q \leq 2^n/67$: at least $\frac{(2^n)_r}{2^{nq}}$ solutions to unknowns
- H-coefficient technique: $\mathbf{Adv}_{\mathsf{CENC}}^{\mathsf{cpa}}(q) \leq q/2^n + wq/2^{n+1}$

Naive PRP-PRF Conversion

PRP-PRF Switch

ullet Simply view E_k as a PRF

Naive PRP-PRF Conversion

PRP-PRF Switch

- Simply view E_k as a PRF
- E_k does not expose collisions but f does
- ullet E_k can be distinguished from f in $pprox 2^{n/2}$ queries

$$\binom{q}{2}/2^n \lesssim \mathbf{Adv}_E^{\mathrm{prf}}(q) \leq \mathbf{Adv}_E^{\mathrm{prp}}(q) + \binom{q}{2}/2^n$$

Beyond Birthday Bound PRP-PRF Conversion: Truncation

Truncation

- First suggested by Hall et al. [HWKS98]
- ullet Secure up to $2^{3n/4}$ queries [Sta78,BI99,GG16]
- Application: GCM-SIV