Lineær regression

Læsning:

Jens Ledet Jensen kap. 9

Sammenligning af to middelværdier

Testkatalog for sammenligning af to middelværdier (<u>u</u>kendt varians)

Statistisk model

•
$$X_{1,i} \sim N(\mu_1, \sigma^2)$$
, $i = 1, 2, ..., n_1$ og $X_{2,i} \sim N(\mu_2, \sigma^2)$, $i = 1, 2, ..., n_2$

• Parameterskøn:
$$\hat{\delta} = \hat{\mu}_1 - \hat{\mu}_2 = \bar{x}_1 - \bar{x}_2 \ \sim N(\mu_1 - \mu_2, \sigma^2/n_1 + \sigma^2/n_2)$$

$$s^2 = \frac{1}{n_1 + n_2 - 2} \Big((n_1 - 1) s_1^2 + (n_2 - 1) s_2^2 \Big)$$

Hypotesetest

•
$$H: \mu_1 = \mu_2$$

• Teststørrelse:
$$t = \frac{\bar{x}_1 - \bar{x}_2}{s\sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$$

• P-værdi:
$$pval = 2 \cdot |1 - t_{cdf}(|t|, n_1 + n_2 - 2)|$$

95% konfidensinterval

•
$$[\delta_-; \delta_+] = [\bar{x}_1 - \bar{x}_2 - t_0 \cdot s\sqrt{1/n_1 + 1/n_2}; \bar{x}_1 - \bar{x}_2 + t_0 \cdot s\sqrt{1/n_1 + 1/n_2}]$$

• Hvor
$$t_0 = t_{inv}(0.975, n_1 + n_2 - 2)$$

Parrede data

Par nummer	Nyudviklet maskine	Gængs maskine	Forskel
1	8.0 <	→ 5.6	2.4
2	8.4	7.4	1.0
3	8.0	7.3	0.7
4	6.4	6.4	0.0
5	8.6	7.5	1.1
6	7.7	6.1	1.6
7	7.7	6.6	1.1
8	5.6	6.0	-0.4
9	5.6	5.5	0.1
10	6.2	5.5	0.7
			\ /

Testkatalog for parrede data

Statistisk model

•
$$d_i = X_{1i} - X_{2i} \sim N(\delta, \sigma^2), i = 1, 2, ..., n$$

• Parameterskøn:
$$\bar{d} = \frac{1}{n} \sum_{i=1}^n x_{1i} - x_{2i} \sim N(\delta, \sigma^2/n)$$
 $s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (x_{1i} - x_{2i})^2$

Hypotesetest

•
$$H: \delta = 0$$

• Teststørrelse:
$$t = \frac{\bar{d}}{s_d/\sqrt{n}} \sim t(n-1)$$

• P-værdi:
$$pval = 2 \cdot |1 - t_{cdf}(|t|, n-1)|$$

• 95% konfidensinterval

•
$$[\delta_-; \delta_+] = \left[\bar{d} - t_0 \cdot s_d \sqrt{1/n} ; \bar{d} + t_0 \cdot s_d \sqrt{1/n} \right]$$

• Hvor
$$t_0 = t_{inv}(0.975, n-1)$$

Parret vs. uparret test

Parret sammenligning: $H: \delta = 0$

Her er en eventuel "områdeeffekt" fjernet.

Uparret sammenligning: $H: \mu_1 = \mu_2$

Høstudbyttet på 10 marker med nyudviklet maskine.	x1(1)	x1(2)	 x1(10)	$\rightarrow \bar{x}_1$
Høstudbyttet på 10 marker med gængs maskine.	×2(1)	x2(2)	 x2(10)	\bar{x}_2

Her er en eventuel "områdeeffekt" ikke fjernet.

Lineær regression

- Hubbles lov og data er et eksempel på en lineær sammenhæng mellem
 - en responsvariabel x og
 - en forklarende variabel t.
- I Hubbles tilfælde er x hastigheden, hvormed galakserne bevæger sig væk fra hinanden, og t er afstanden mellem galakserne.

Statistisk model

• Data kommer i par (t_i, x_i) , således at responserne

$$X_i \sim N(\gamma + \beta \cdot t_i, \sigma^2), i = 1, ..., n$$

er uafhængige stokastiske variable.

- De forklarende variable (t_i) er <u>ikke</u> stokastiske.
- Middelværdien af x_i er givet ved den lineære sammenhæng, $\gamma + \beta \cdot t_i$.
- Variansen er konstant (afhænger ikke af t_i).

Statistisk model

Parameterskøn

Der indgår tre parametre i modellen:

$$X_i \sim N(\gamma + \beta \cdot t_i, \sigma^2), i = 1, ..., n$$

Hældning

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (t_i - \bar{t})(x_i - \bar{x})}{\sum_{i=1}^{n} (t_i - \bar{t})^2}$$

Skæring

$$\hat{\gamma} = \bar{x} - \hat{\beta} \cdot \bar{t}$$

Empirisk varians

$$\widehat{\sigma^2} = s_r^2 = \frac{1}{n-2} \sum_{i=1}^n \left[x_i - (\widehat{\gamma} + \widehat{\beta} \cdot t_i) \right]^2$$

Likelihood funktionen

Modellen for målingerne

$$X_i \sim N(\gamma + \beta \cdot t_i, \sigma^2), i = 1, ..., n$$

giver følgende model for målefejlen:

$$\varepsilon_i = x_i - \gamma + \beta \cdot t_i \sim N(0, \sigma^2), i = 1, ..., n$$

• Så kan tæthedsfunktionen for data, givet parametrene, skrives

$$f(x|\gamma,\beta,\sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i-\gamma-\beta\cdot t_i)^2/2\sigma^2}$$

Likelihood funktionen

Tæthedsfunktionen kan omskrives således

$$f(x|\gamma,\beta,\sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i - \gamma - \beta \cdot t_i)^2/2\sigma^2}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\sum_{i=1}^{n} (x_i - \gamma - \beta \cdot t_i)^2/2\sigma^2}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-R(\gamma,\beta)/2\sigma^2}$$
At maksimere f mht. γ og β er det samme som

hvor

$$R(\gamma, \beta) = \sum_{i=1}^{n} (x_i - \gamma - \beta \cdot t_i)^2$$

det samme som at minimere R.

Maximum likelihood estimater

• Differentierer vi $R(\gamma, \beta)$ med hensyn til hhv. γ og β , og sætter lig med nul, får vi maximum likelihood estimaterne:

Hældning

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (t_i - \bar{t})(x_i - \bar{x})}{\sum_{i=1}^{n} (t_i - \bar{t})^2}$$

Skæring

$$\hat{\gamma} = \bar{x} - \hat{\beta} \cdot \bar{t}$$

Man kan endvidere vise, at maximum likelihood estimatet af variansen er

$$s_r^2 = \frac{1}{n-2} \sum_{i=1}^n \left[x_i - (\hat{\gamma} + \hat{\beta} \cdot t_i) \right]^2$$

Lineær regression

Udledning af skæringsparameteren (γ)

$$f(t_i, \gamma, \beta) = \gamma + \beta t_i$$

Find $\arg\min_{\varepsilon}(\varepsilon)$, where

$$\varepsilon = \sum_{i=1}^{n} (x_i - f(t_i, \gamma, \beta))^2 = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (x_i - \gamma - \beta t_i)^2$$

To find the global minimum of ε , differentiate w.r.t. γ and β and set to zero 1)

$$\frac{\partial \varepsilon}{\partial \gamma} = 2\sum_{i=1}^{n} r_{i} \frac{\partial r_{i}}{\partial \gamma} = -2\sum_{i=1}^{n} \frac{\partial f(t_{i}, \gamma, \beta)}{\partial \gamma} r_{i} = -2\sum_{i=1}^{n} x_{i} - \gamma - \beta t_{i} = 0$$

 \updownarrow

$$2n\gamma = 2\sum_{i=1}^{n} x_{i} - 2\beta \sum_{i=1}^{n} t_{i} \iff \gamma = \frac{2}{2n} \sum_{i=1}^{n} x_{i} - \frac{2\beta}{2n} \sum_{i=1}^{n} t_{i} = \overline{x} - \beta \overline{t}$$

Hence, $\hat{\gamma} = \overline{x} - \beta \, \overline{t}$.

Lineær regression

• Udledning af hældningsparameteren (β)

$$\begin{split} &\frac{\partial \mathcal{E}}{\partial \beta} = 2\sum_{i=1}^n r_i \frac{\partial r_i}{\partial \beta} = -2\sum_{i=1}^n \frac{\partial f\left(t_i,\gamma,\beta\right)}{\partial \beta} r_i = -2\sum_{i=1}^n t_i \left(x_i - \gamma - \beta t_i\right) = -2\sum_{i=1}^n t_i x_i - t_i \gamma - \beta t_i^2 = \\ &-2\sum_{i=1}^n t_i x_i + 2\gamma\sum_{i=1}^n t_i + 2\beta\sum_{i=1}^n t_i^2 = 0 \\ &\text{Insert } \gamma = \overline{x} - \beta \overline{t} : \\ &-2\sum_{i=1}^n t_i x_i + 2\left(\overline{x} - \beta \overline{t}\right)\sum_{i=1}^n t_i + 2\beta\sum_{i=1}^n t_i^2 = -2\sum_{i=1}^n t_i x_i + 2\overline{x}\sum_{i=1}^n t_i - 2\beta \overline{t}\sum_{i=1}^n t_i + 2\beta\sum_{i=1}^n t_i^2 = \\ &-2\sum_{i=1}^n t_i (x_i - \overline{x}) + 2\beta\sum_{i=1}^n t_i (t_i - \overline{t}) = -2\sum_{i=1}^n (t_i - \overline{t})(x_i - \overline{x}) + 2\beta\sum_{i=1}^n (t_i - \overline{t})^2 = 0 \end{split}$$

Testkatalog for hældningen eta

- Statistisk model
 - $X_i \sim N(\gamma + \beta \cdot t_i, \sigma^2)$, i = 1, ..., n og uafhængige.
 - Parameterskøn: $\hat{\beta} = (\sum_{i=1}^n (t_i \bar{t})(x_i \bar{x}))/(\sum_{i=1}^n (t_i \bar{t})^2)$ $\hat{\gamma} = \bar{x} \hat{\beta} \cdot \bar{t}$ $s_r^2 = \sum_{i=1}^n \left[x_i (\hat{\gamma} + \hat{\beta} \cdot t_i) \right]^2/(n-2)$
- Hypotesetest
 - $H:\beta=\beta_0$
 - Teststørrelse: $t = \frac{\widehat{\beta} \beta_0}{s_r \sqrt{1/\sum_{i=1}^n (t_i \overline{t})^2}} \sim t(n-2)$
 - P-værdi: $pval = 2 \cdot (1 t_{cdf}(|t|, n-2))$
- 95% konfidensinterval
 - $[\beta_-; \beta_+] = [\hat{\beta} t_0 \cdot s_r \sqrt{1/\sum_{i=1}^n (t_i \bar{t})^2}; \hat{\beta} + t_0 \cdot s_r \sqrt{1/\sum_{i=1}^n (t_i \bar{t})^2}]$
 - Hvor $t_0 = t_{inv}(0.975, n-2)$

Testkatalog for skæringen γ

- Statistisk model
 - $X_i \sim N(\gamma + \beta \cdot t_i, \sigma^2)$, i = 1, ..., n og uafhængige.
 - Parameterskøn: $\hat{\beta} = (\sum_{i=1}^n (t_i \bar{t})(x_i \bar{x}))/(\sum_{i=1}^n (t_i \bar{t})^2)$ $\hat{\gamma} = \bar{x} \hat{\beta} \cdot \bar{t}$ $s_r^2 = \sum_{i=1}^n \left[x_i (\hat{\gamma} + \hat{\beta} \cdot t_i) \right]^2/(n-2)$
- Hypotesetest
 - $H: \gamma = \gamma_0$
 - Teststørrelse: $t = \frac{\hat{\gamma} \gamma_0}{s_r \sqrt{1/n + \bar{t}^2 / \sum_{i=1}^n (t_i \bar{t})^2}} \sim t(n-2)$
 - P-værdi: $pval = 2 \cdot (1 t_{cdf}(|t|, n-2))$
- 95% konfidensinterval
 - $[\gamma_{-}; \gamma_{+}] = \left[\hat{\gamma} t_{0} \cdot s_{r} \sqrt{\frac{1}{n} + \frac{\bar{t}^{2}}{\sum_{i=1}^{n} (t_{i} \bar{t})^{2}}}; \hat{\gamma} + t_{0} \cdot s_{r} \sqrt{\frac{1}{n} + \frac{\bar{t}^{2}}{\sum_{i=1}^{n} (t_{i} \bar{t})^{2}}}\right]$
 - Hvor $t_0 = t_{inv}(0.975, n-2)$


```
t = Afstand;
x = Hastighed;
n = length(t)
% Parameterskøn
beta_hat = sum((t-mean(t)).*(x-mean(x)))/sum((t-mean(t)).^2)
lambda_hat = mean(x) - beta_hat*mean(t)
```



```
% 95% konfidensinterval for hældningen
t0 = tinv(0.975,n-2)
beta_nedre = beta_hat - t0*sr*sqrt(1/sum((t-mean(t)).^2))
beta_oevre = beta_hat + t0*sr*sqrt(1/sum((t-mean(t)).^2))
```

Resultat:

```
beta_hat =
    454.1584

beta_nedre =
    298.1262

beta_oevre =
    610.1906
```

```
% 95% konfidensinterval for skæringen
t0 = tinv(0.975,n-2)
lambda_nedre = lambda_hat - t0*sr*sqrt(1/n+mean(t)^2/sum((t-mean(t)).^2))
lambda_oevre = lambda_hat + t0*sr*sqrt(1/n+mean(t)^2/sum((t-mean(t)).^2))
```

Resultat:

```
lambda_hat =
   -40.7836

lambda_nedre =
   -213.8253

lambda_oevre =
   132.2580
```

Pas på!

Lineært fit til en eksponentialfunktion

Residual:

$$r_i = x_i - \left(\hat{\gamma} + \hat{\beta} \cdot t_i\right)$$

-0.5 0.2 0.4 1.2 1.6 1.8 0 0.6 0.8 1.4

Residualerne er ikke tilfældige de afhænger af t!

Residualtegning

Plot

$$t_i$$
 vs. r_i

Hvor

$$r_i = x_i - (\hat{\gamma} + \hat{\beta} \cdot t_i)$$

- Vi kigger efter to ting:
 - Værdierne af residualerne $(x_i \widehat{x_i})$ må ikke afhænge af t_i , men skal ligge tilfældigt omkring 0.
 - Variansen af residualerne må ikke afhænge af t_i .

Residualtegning for Hubbles eksperiment

```
% Residualtegning
figure
scatter(t,x-(lambda hat+beta hat*t))
hold on
plot([t_min t_max], zeros(1,2))
hold off
xlabel('t i')
                                            600 r
ylabel('Residualer (r i)')
                                            500
                                            400
                                            300
                                                               0
                                                                                    0
                                            200 0
                                         Residualer (r)
                                                               0
                                                       8
                                            100
                                                                        0
                                           -100
                                           -200
                                                               0
                                           -300
                                           -400
                                                 0.2
                                                                    1.2
```

Brug af lineær regression til prædiktion

- Vi kan bruge den lineære model til at prædiktere en x-værdi, givet t.
- MEN: Pas på med at prædiktere ud over det interval, du har brugt til at fitte modellen:

Correlation

- How do we estimate the strength of a linear relation?
- The correlation coefficient:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x - \overline{x}}{s_x} \right) \left(\frac{y - \overline{y}}{s_y} \right) = \frac{1}{n-1} \sum_{i=1}^{n} z_x z_y$$

z-scores

- r takes on values from -1 to 1

- Perfect positive linear correlation, r=1
- Perfect negative linear correlation, r=-1
- No correlation, r=0

Correlation

Recall that

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x - \bar{x}}{s_x} \right) \left(\frac{y - \bar{y}}{s_y} \right) = \frac{1}{n-1} \sum_{i=1}^{n} z_x z_y$$

X	У	Z _x	\mathbf{z}_{v}	Z Z V
0.9490	0.6982	1.1671	1.5141	(1.7671)
0.1996	0.3499	0.2506	0.7715	0.1934
0.4997	0.3819	0.6176	0.8397	0.5187
-0.7936	-0.4946	-0.9639	-1.0292	0.9920
-0.7832	-0.3331	-0.9513	-0.6848	0.6514
-1.5193	-0.4773	-1.8515	-0.9921	(1.8368)
0.3533	0.1733	0.4386	0.3950	0.1732
-0.0291	-0.3031	-0.0291	-0.6207	0.0180
-0.4422	-0.2400	-0.5343	-0.4862	0.2598
0.0653	-0.1616	0.0864	-0.3190	-0.0276
-0.7394	-0.2227	-0.8977	-0.4494	0.4034

The large $\mathbf{z}_{\mathbf{x}}\mathbf{z}_{\mathbf{y}}$ score indicates that these points contribute a considerable amount to the correlation coefficient

Correlation

Watch out!

- Points with a high $\mathbf{z}_{\mathbf{x}}\mathbf{z}_{\mathbf{y}}$ score are separated from the rest of the data and are *potentially influential* (i.e., outliers).
- Outliers can have a dramatic effect on the correlation coefficient.
- The extent of influence of any point can be judged in part, by computing the correlation coefficient with and without that point.

Outliers

Outliers

- Data points that have a very strong influence.
- Can mask linear relationships
- ... or give a false impression of a linear relationship
- How to handle outliers?
 - Exclude them from the analysis
 - In regression analysis, use a "robust" technique that is less sensitive to outliers
 - "RANdom SAmple Consensus" (RANSAC) achieves this by iteratively working on a random subset of the original data.

RANSAC

A data set with many outliers for which a line has to be fitted.

Fitted line with RANSAC*, outliers have no influence on the result.

^{*} Source: http://en.wikipedia.org/wiki/RANSAC

RANSAC

- RANSAC* achieves its goal by iteratively selecting a random subset of the original data. These data are hypothetical inliers and this hypothesis is then tested as follows:
 - A model is fitted to the hypothetical inliers, i.e. all free parameters of the model are reconstructed from the inliers.
 - All other data are then tested against the fitted model and, if a point fits well to the estimated model, also considered as a hypothetical inlier.
 - The estimated model is reasonably good if sufficiently many points have been classified as hypothetical inliers.
 - The model is re-estimated from all hypothetical inliers, because it has only been estimated from the initial set of hypothetical inliers.
 - Finally, the model is evaluated by estimating the error of the inliers relative to the model.

Correlation

- Using the correlation coefficient to explore relationships
- Ex. 2.10: pollutant data of 15 US cities in year 2000

	СО	O ₃	PM ₁₀	SO ₂
СО	1	0.87	0.36	0.17
O ₃	0.87	1	0.20	0.098
PM ₁₀	0.36	0.20	1	0.091
SO ₂	0.17	0.098	0.091	1

Correlation coefficients

- All four pollutants are positively correlated
- However, the levels of CO are most strongly correlated with O₃ levels
- A word of caution
 - Do not infer a causal relationship on the basis of high correlation!

Functional MRI (fMRI)

MRI – Magnetic Resonance Imaging

Visual fMRI

Magnetic Resonance in Medicine 68:252-260 (2012)

Correlation Between Single-Trial Visual Evoked Potentials and the Blood Oxygenation Level Dependent Response in Simultaneously Recorded Electroencephalography— Functional Magnetic Resonance Imaging

Dan Fuglø,¹* Henrik Pedersen,² Egill Rostrup,¹ Adam E. Hansen,^{1,3} and Henrik B. W. Larsson^{1,4,5}

Visual fMRI

- Measured

Predicted

fMRI volume

Visual fMRI

