Fahrzeugregelung Antrieb und Antriebsregelung

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Prof. Dr.-Ing S. Müller

Seite 2

Einleitung Motivation

Das für den Antrieb **notwendige Drehmoment** an den Antriebsrädern und die **erforderliche Leistung** werden durch die **Fahrwiderstände** bestimmt. Diese sind bei Geradeausfahrt

- Rollwiderstand
- Luftwiderstand
- Steigungswiderstand
- Beschleunigungswiderstand

Die maximal mögliche Leistung wird durch den Kraftschluss an den Antriebsrädern begrenzt → Antriebsregelung.

Antrieb

Bewegungsgleichung eines 2-achsigen Fahrzeugs

SPS fû die vordere u hintere Achse

$$u_{\lambda}u_{\lambda\lambda} = -\lambda u + F_{\xi\lambda} \qquad (2)$$

$$u_{\lambda}u_{\lambda\lambda} = -\lambda u + F_{\xi\lambda} \qquad (3)$$

Ds fir du voidere u lindere Acerse

Antrieb

Grundgleichung für die Antriebskraft

tut Ux = Uxv = Uxa engibt sich aus (1) mit(2) mod (3) (m+mv+men) ux = -FL-Gysing +FEV+FEN (6) Aus (4) und (5) folgt -F== 1 (3, 9, -M, + Npe, e,) - Fer = 1 (Jerler - Ment Neerler)

Herunt egies side wit (7) und (P) fis (6) - Gy sing Steigningswiderstand Fst + Men Aubrilis Eraft F. - Nguer- Nghen Suffinderstand F.

Prof. Dr.-Ing. S. Müller Seite 5

Antrieb

Rollwiderstand

Physikalische Ursache

Formänderungsarbeit im Reifen beim Abrollen auf ebener Fahrbahn. Bei weichem Untergrund geht auch die Bodenverformung ein.

Antrieb Rollwiderstandszahl

Abhängigkeit von Reifenluftdruck und Hochkraft

Bild 2.2 Abhängigkeit der Rollwiderstandszahl k_R vom Reifenluftdruck p_R und von der Hochkraft F_ζ für die Reifengröße 145 R 13 75 S

Antrieb Rollwiderstandszahl

Abhängigkeit von Fahrgeschwindigkeit

Antrieb

Rollwiderstandszahl bei weichem Untergrund

Tabelle 4.1. Rollwiderstandsbeiwerte k_R von Baumaschinen- und Ackerschlepperreifen auf verschiedenem Untergrund. (Kühn, G.: Der gleislose Erdbau. Berlin, Göttingen, Heidelberg: Springer 1956)

Fahrbahn	Kennzeichnung	k_{R}
fester Erd- und Feldweg, Grasnarbe	praktisch kein Einsinken des Reifens, kaum bleibende Verformung des Untergrundes	0,05
nasser, aufgeweichter, schwerer Boden	starkes Einsinken, starke Verformung	0,35
weicher, schwammiger Untergrund		1,9

Prof. Dr.-Ing. S. Müller

Seite 9

Antrieb Luftwiderstand

Fin den Luftwidesdand gier FL = CW & A vo law. CT A & Noves luftwidersdauds -Tangentialleraft Projertionsduftaicente p: Function von Suffdance und Temper axw, Auhaltswert für T=200 3-1,22 54

Antrieb Luftwiderstandsbeiwerte cw - Beispiele

Fahrzeugtyp	Aufbau	€ _₩	A [m²]	$c_{\rm w} \cdot A$ [m ²]
Alfa Romeo 33 16 V	KL	0,34	1,74	0,592
Audi 80 1,8 I Audi 90 Quattro Audi 100	Li Li Li	0,29 0,31 0,30	1,91 1,91 2,05	0,554 0,592 0,615
Audi 200	Li	0,34	2,06	0,700
BMW 316i BMW 320i/325i BMW M3	Li Li Li	0,29 0,32 0,33	1,94 1,94 1,89	0,563 0,621 0,624
BMW 318i/325i Cabrio BMW 520i/525i BMW 535i/M5	Ca Li Li	0,37 0,31 0,32	1,86 2,07	0,688 0,642
BMW 735 i BMW Z 1 BMW 850 i	Li Ro	0,33 0,36	2,07 2,11 1,83	0,662 0,696 0,659
Ditt it OMI	Co	0,29	2,07	0,600

Antrieb Tangentialkraftbeiwerte c⊤ - Beispiele

Bild 2.11 Verlauf des Tangentialkraftbeiwertes über dem Anströmwinkel für drei typische Fahrzeugkarosserieformen. Der

 c_w -Wert kann bei $\tau = 0$ abgelesen werden. $c_w = c_{\Gamma(\tau = 0)}$ (Messungen im Mercedes-Benz-Windkanal.)

Antrieb Steigungswiderstand

Shaßenstergungen werden in Op angegeben

Antrieb Steigungswiderstand - Fahrbahnneigungen

 Aus "Richtlinien für die Anlage von Straßen, Teil: Linienführung, RAS-L" der Forschungsgesellschaft für Straßen- und Verkehrswesen 1995 (gilt für Neu-, Um- und Ausbau von Straßen)

Entwurfsgeschwindig- keit [km/h]	9 max [%] für anbaufreie Straßen		
	außerhalb bebauter Gebiete	im Vorfeld und innerhalb bebauter Gebiete	
50	9,0	12,0	
60	8,0	10,0	
70	7,0	8,0	
80	6,0	7,0	
90		6,0	
100	5,0 4,5	5,0	
120	4,0	_	

2. Höchste Steigung auf europäischen Alpenstraßen etwa 30 %

Antrieb

Beschleunigungswiderstand

$$F_{B} = \left(m + m_{v} + m_{h} + \frac{J_{v}}{r^{2}} + \frac{J_{h}}{r^{2}}\right) \ddot{u}_{x}$$

Übersetzungsverhältnisse am Beispiel Hinterradantrieb

Antrieb

Beschleunigungswiderstand bezogen auf des Rad, du Achse law.

Fin der gies: der = 2 dr + derr + drr magneitsmoment

tuit tuéfe des Euergie satres folgt

Analog folgt JMR = JM (iGiD)2

Sound

$$F_{b} = \frac{G_{g}}{g} \left(1 + \frac{4 de + dG i d + dM (iG i d)^{2}}{u + dG} \right)$$

$$u_{x}$$

$$u_{x}$$

Antrieb

Antriebskraft und Antriebsleistung

En like bindenny des Fals biders dande ist folgende Antriebskraft no tig

law. folgendes Aubrichsmoment (tinker ad autrie)

Fis die notvendige Antrébréestry, un das Fzy jegen die Falt widerstande mit einer Greschw. No En beurgen, gier

Antrieb Fahrwiderstände eines Mittelklassefahrzeuges

Vielen Dank für Ihre Aufmerksamkeit!