1 Conditions for Shortest Path Algorithms

Suppose that we want to find the shortest path between two nodes in the following graph. Which algorithm can we use?

O BFS

O Dijkstra

O Bellman-Ford

O All of the above

O BFS and Dijkstra

Dijkstra and Bellman-Ford

Correct

We have a graph with negative edge weights. Can we use Dijkstra to find shortest paths?

O Yes

No

Correct

We have an undirected graph with positive edge weights. Can we use Dijkstra to find shortest paths? Yes

• Yes

O No

Correct

We have a directed graph with positive edge weights. Can we use Dijkstra to find shortest paths?

Yes

O No

Correct

2 Dijkstra Forensics

Suppose we run Dijkstra on some graph with nodes A, B, C, D, E, F that has nonnegative (\geq 0) edge weights, starting from the node A. In the middle of the algorithm our computer crashes. We look through the memory dump, and see that the state of d looked as follows when the crash happened:

d[A] = 0, d[B] = 5, d[C] = 4, d[D] = 15, d[E] = 2, d[F] = 20.

Additionally from the memory dump we see that the current node when the crash happened was node C.

What is the minimum possible length of the shortest path from node A to node B?

What is the maximum possible length of the shortest path from node A to node B?

Correct

5

Correct

What is the minimum possible length of the shortest path from node A to node D?

Correct

What is the maximum possible length of the shortest path from node A to node D?

15

2

Correct

What is the maximum possible length of the shortest path from node A to node E?

2

Correct

What is the minimum possible length of the shortest path from node A to node F?

4 Correct

20

What is the maximum possible length of the shortest path from node A to node F?

Correct

If we run the Dijkstra algorithm on the graph of U.S. streets/roads/highways/etc., starting from the Stanford Oval, which of the following locations will become the current node first?

O Times Square in New York

The Hollywood SignTresidder Union

Correct

O The ordering might differ in each run of Dijkstra.

3 Runtime

Suppose that we implement Dijkstra with a red-black tree. What is the asymptotically smallest upper bound on runtime in terms of n (the number of nodes) and m (the number of edges).

$\bigcirc O(n \log n + m)$ $\bigcirc O((n + m) \log n)$

O(n+m)

O(n+m)

Correct

What if we implement Dijkstra with using a Fibonacci heap? What is the asymptotically smallest upper

 $\bigcirc O(n \log n + m)$ $\bigcirc O((n+m) \log n)$

bound on runtime in terms of n (the number of nodes) and m (the number of edges).

Correct
Suppose that we have a heap data structure that does not support updating the keys (many standard

implementations of heaps in various programming languages do not support the update key operation).

Our data structure keeps a collection of items, each of form (key, object), where keys are numbers, and object can be anything (we will store vertices as our objects). Our data structure supports two

Insert a new (key, object) into the collection.
Remove the item with the lowest key currently in the collection and return the key and object

for it.

We run a modification of Dijkstra with the following pseudo-code:

 $d \leftarrow$ array indexed with vertices and filled with ∞ $H \leftarrow$ empty heap Insert (0, starting node) into H

while H is not empty do

Remove (key, vertex) from H with the smallest key.

if key < d[vertex] then

 $d[\text{vertex}] \leftarrow \text{key}$ **for** all neighbors w of vertex **do**

Uhat is the asymptotically smallest upper bound on the runt

Insert (d[vertex] + weight(vertex, w), w) into H.

What is the asymptotically smallest upper bound on the runtime of the above code assuming that both the insert and remove operations on H take $O(\log(\text{size of }H))$ time? Assume that $n-1 \le m \le n^2$ (in particular $\log m = \Theta(\log n)$).

- $O(n \log n + m)$
- $\bigcirc O(m \log n)$ $\bigcirc O(n+m)$

Correct