Institute for Analysis and Scientific Computing

Lothar Nannen, Michael Neunteufel

Numerik partieller Differentialgleichungen: stationäre Probleme - Übung 3

Übungstermin: 11.11.2020 4. November 2020

Aufgabe 11:

- a) Sei $(T_j)_{j\in\mathbb{N}}\subset\mathbb{R}^2$ ein Folge von nicht-degenerierten Dreiecken. Zeigen Sie, dass die shape regularity Konstanten $\sigma(T_j)=h_{T_j}/\rho_{T_j}$ genau dann gegen unendlich divergieren wenn der kleinste Winkel in T_j gegen Null geht.
- b) Eine alternative Definition der shape regularity Konstante ist gegeben durch $\tilde{\sigma}(T) := h_T/r_T$, wobei

$$r_T := \max\{\operatorname{diam}(B) : B \text{ ein Kreis enthalten in } T\}.$$

Wie hängen $\sigma(T)$ und $\widetilde{\sigma}(T)$ zusammen?

Aufgabe 12:

Sei $P_p := \mathcal{L}\{x^i y^j : i, j \geq 0 \land i + j \leq p\}$ für $p \in \mathbb{N}$ der Raum der Polynome vom maximalen Grad p.

- a) Geben Sie eine Basis von P_0 an.
- b) Zeigen Sie, dass die Funktionen

$$\lambda_1(x,y) := 1 - x - y, \qquad \lambda_2(x,y) := x, \qquad \lambda_3(x,y) =: y$$
 (1)

eine Basis des P_1 bilden.

- c) Zeigen Sie, dass die Funktionen $\lambda_1, \lambda_2, \lambda_3, \lambda_1\lambda_2, \lambda_1\lambda_3, \lambda_2\lambda_3$ eine Basis des P_2 bilden.
- d) Zeigen Sie, dass eine Basis des P_p für $p \geq 3$ aus folgenden Funktionen gebildet werden kann:
 - (i) $(x,y) \mapsto \lambda_i(x,y)$ mit 1 < i < 3,
 - (ii) $(x,y) \mapsto p_{ik}(x,y)\lambda_i(x,y)\lambda_k(x,y)$ mit $1 \le k < j \le 3$ und
- (iii) $(x,y) \mapsto p_{123}(x,y) \prod_{j=1}^{3} \lambda_j(x,y)$ und $p_{123} \in P_{p-3}$.

Die folgenden Einschränkungen der Polynome p_{jk} sind dabei jeweils eindimensionale Polynome vom maximalen Grad p-2: $\xi \mapsto p_{12}(\xi,0), \ \xi \mapsto p_{13}(0,\xi)$ und $\xi \mapsto p_{23}(\xi,1-\xi)$.

e) Erklären Sie anhand des Referenzdreiecks mit den Eckpunkten (0,0), (1,0) und (0,1) die Bedeutung dieser Aufgabe auf eine Erweiterung von Proposition 3.1 auf Polynomräume höheren Grades.

Aufgabe 13:

Sei $\hat{Q} := (0,1) \times (0,1)$ und \hat{T} das offene Dreieck mit den Eckpunkten (0,0),(1,0),(0,1). Sei weiters

$$\Psi: \begin{cases} \mathbb{R}^2 & \to \mathbb{R}^2 \\ (x,y) & \mapsto (x,(1-x)y) \end{cases}$$

- a) Zeigen Sie, dass die Abbildung Ψ ein Diffeomorphismus zwischen \hat{Q} und \hat{T} ist.
- b) Seien für $N, M \in \mathbb{N}$ zwei Quadraturformeln Q_N, Q_M der Ordnung N bzw. M auf dem Einheitsintervall gegeben. Konstruieren Sie daraus eine Quadraturformel $Q_{\hat{Q}}$ auf \hat{Q} . Welche Funktionen werden durch $Q_{\hat{Q}}$ exakt integriert?
- c) Verwenden Sie die Abbildung Ψ und die Quadratur aus b) um eine Quadratur $Q_{\hat{T}}$ auf \hat{T} zu konstruieren. Welche Funktionen werden durch $Q_{\hat{T}}$ exakt integriert?

Aufgabe 14:

Formulieren und beweisen Sie das Lemma 3.8 explizit für den Fall m=2.

Aufgabe 15:

Sei $\Omega_{\beta} := \{r(\cos \varphi, \sin \varphi)^{\top} \in \mathbb{R}^2 : r \in (0, 1), \varphi \in (0, \pi/\beta)\}$ für $\beta \in (1/2, 1)$ ein nicht-konvexer Kreissektor.

- a) Verwenden Sie den Ansatz $u(r,\varphi) = (1-r^2)r^{\beta}\sin(\beta\varphi)$ zur Konstruktion einer Lösung $u \in H_0^1(\Omega_{\beta})$ mit $u \notin H^2(\Omega_{\beta})$ der Poisson Gleichung $\Delta u = f$ mit passendem $f \in L^2(\Omega_{\beta})$.
- b) Überprüfen Sie numerisch mit Hilfe des zur Verfügung gestellten Jupyther-Notebooks für $\beta = 2/3$, welche Konvergenzrate h^s mit s > 0 und sich für diese Lösung bei unterschiedlichen Polynomordnungen bei Verfeinerungen von h ergibt.
- c) Testen Sie die Konvergenzrate einer geeigneten Lösung auf dem konvexen Gebiet Ω_{β} mit $\beta = 2$.