CMT117 Exercises: Nonmonotonic Reasoning

Question 1. Suppose $L = \{p, q, r\}$ and let $R = (V, \preceq)$ be a ranked model with V equal to the set of all valuations and \preceq the normality ordering represented in tabular form as follows:

TFT	TTF	FTF	FTT
TFF	FFF	TTT	
	FFT		

Here, each valuation is represented as a triple abc denoting the truth-values of p, q, r respectively (e.g., FTT is the valuation in which p is false and both q and r are true), and the further to the left a valuation appears in the above table, the more normal it is deemed to be. Let \triangleright_R denote the consequence relation defined by this ordering (see slide 31 of the presentation slides). For each of the following conditionals, determine whether they hold in R:

- (a) $p \sim_R \neg q$
- $(b) \neg p \sim_R \neg q$
- (c) $q \vee \neg r \hspace{0.2em}\sim_{R} q$
- (d) $p \wedge q \sim_R r$
- (e) $p \to (q \land r) \mathrel{\triangleright}_R \neg p$
- $(f) \top \sim_R r$
- $(g) \neg q \lor (p \land q) \mathrel{\triangleright_R} \bot$

Question 2. Assume again $L = \{p, q, r\}$. Assume V is equal to the set of all valuations for L. Write down a normality ordering \preceq in tabular form (as in Question 1 above) such that the rational consequence operator \triangleright_R associated to the ranked model $R = (V, \preceq)$ simultaneously satisfies both the following conditionals:

$$\neg p \hspace{0.2em}\sim_{\hspace{0.5em} R} r, \qquad \neg p \wedge \neg q \not\hspace{0.2em}\sim_{\hspace{0.5em} R} r.$$

[Note: A nice side-effect of your answer will be that it provides a counterexample to show that Monotonicity fails for rational consequence (see slide 12)]

Question 3. Assume $L = \{p, q\}$. For each of the following ranked models R, determine whether the associated rational consequence relation \triangleright_R satisfies the rule CP (Consistency Preservation) (see slide 18). In case it does not satisfy CP, give a sentence A such that $A \not\models \bot$ but $A \triangleright_R \bot$.

(a) $R = (V, \preceq)$, with $V = \{TT, TF\}$ and \preceq given in tabular form below:

(b) $R = (V, \preceq)$, with $V = \{TT, TF, FT, FF\}$ and \preceq given in tabular form below:

Question 4. Show that the following rule holds for all rational consequence relations \sim :

$$\frac{A \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} B \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} A \hspace{0.2em} A \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} C}{B \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} C}$$

(in words, if A and B are consequences of each other, then every consequence C of A is also a consequence of B).

Hint: You have 2 ways to show this: (i) find a derivation of this rule from the KLM rules, or (ii) (by the Representation Theorem for rational consequence relations on slide 35) show that \triangleright_R satisfies this rule for any arbitrary ranked model R.

Question 5. By using the theorem on slide 33, show that the following rule fails for some rational consequence relations (and choice of A, B, C)

$$\frac{A \vee B \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \neg A}{C \wedge B \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \neg A}$$