7. Grafici deducibili

Dal grafico di f(x) al grafico di

- a) f(x)
- b)f(-x)
- c) f(-x)
- d)|f(x)|
- e)f(|x|)
- f) b + f(x a)

Esempio

Sia $f(x)=x^2-4x$, il cui grafico è la parabola di equazione $y=x^2-4x$ con asse di simmetria la retta x=2 ,vertice (2; -4), passante per l'origine O

a) Il grafico di -f(x) è il simmetrico di quello di f(x) rispetto all'asse x, cioè la parabola di equazione $y=-x^2+4x$ con asse di simmetria la retta x=2, vertice (2;4), passante per l'origine O.

b) Il grafico di f(-x) è il simmetrico di quello di f(x) rispetto all'asse y, cioè la parabola di equazione $y=x^2+4x$ con asse di simmetria la retta x=-2, vertice V(-2;-4) passante per l'origine O.

$$y = x^2 + 4x$$

c) Il grafico di -f(-x) è il simmetrico di quello di f(x) rispetto all'origine , cioè la parabola di equazione $y=-x^2-4x$ con asse di simmetria la retta x=-2 , vertice V (-2;4) e passante per l'origine O.

d) Poiché $|f(x)| = \begin{cases} f(x) \ \forall x/f(x) \geq 0 \\ -f(x) \ \forall x/f(x) < 0 \end{cases}$ il suo grafico è formato dalla parte del grafico di f(x) che si trova al di sopra dell'asse x e dal simmetrico rispetto all'asse x per la parte del grafico di f(x) che si trova al di sotto dell'asse x. Ne deriva un grafico collocato interamente nel semipiano $y \geq 0$.

$$y = |x^2 - 4x|$$

e) Poiché $f(|x|) = \begin{cases} f(x) & \forall x \ge 0 \\ f(-x) & \forall x < 0 \end{cases}$ il suo grafico è

formato dalla parte del grafico di f(x) che si trova nel semipiano $x \geq 0$ e dalla parte del grafico di f(-x) che si trova nel semipiano x < 0. Ne deriva un grafico simmetrico rispetto all'asse y.

$$y = x^2 - 4|x|$$

f) II grafico di $y = b + f(x - a) \rightarrow y - b = f(x - a)$

si ottiene dal grafico di f(x) mediante la traslazione $\begin{cases} x \to x - a \\ y \to y - b \end{cases}$ di vettore $\vec{v} \ (a;b)$. Operando per la parabola

 $y = x^2 - 4x$ la traslazione di vettore \vec{v} (-2; 4),

cioè $\begin{cases} x \to x + 2 \\ y \to y - 4 \end{cases}$, che porta il vertice V in O, si ha:

$$y-4=(x+2)^2-4(x+2)$$
, cioè $y=x^2$

$$y = x^2$$
; $y = x^2 - 4x$

Esercizi

1. Dal grafico di $f(x) = x^3$ tracciare il grafico di

a)
$$-x^3$$
 b) $|x^3|$

2. Dal grafico di $f(x) = \log_2 x$ tracciare il grafico di

$$a) - \log_2 x$$
 $b) \log_2(-x)$

3. Dal grafico di $f(x) = \log_{\frac{1}{3}} x$ tracciare il grafico di

$$a) - \log_{\frac{1}{3}} x \qquad b) \left| \log_{\frac{1}{3}} x \right|$$

- **4**. Dal grafico di $f(x) = 2^x$ tracciare il grafico di
 - a) 2^{-x}
- $b)-2^{|x|}$
- **5**. Dal grafico di f(x) = sinx tracciare il grafico di
 - a) -|sinx|
- b) sin|x|
- **6**. Dal grafico di f(x) = arctgx tracciare il grafico di
 - a) arctg(-x)
- b) |arctgx|
- **7**. Dal grafico di f(x) = sinx e g(x)=cosx tracciare il grafico di
 - a)1+ $sin\left(x+\frac{\pi}{4}\right)$ b) 2 cosx
- **8.** Dal grafico di $f(x) = e^x$ tracciare il grafico di
 - a) $e^{x-1} 1$ b) $e^{|x-2|}$
- **9.** Dal grafico di f(x) = logx tracciare il grafico di

 - a) $\log(x + 3)$ b) $1 |\log x|$

Soluzioni

1.

b) $|x^3|$

2.

a)
$$-\log_2 x = \log_{\frac{1}{3}} x$$

b) $\log_2(-x)$

3.

$$a) - \log_{\frac{1}{3}} x = \log_3 x$$

b)
$$\left|\log_{\frac{1}{3}}x\right| = \left|\log_3x\right|$$

4.

a)
$$2^{-x} = \left(\frac{1}{2}\right)^x$$

b)
$$-2^{|x|}$$

5.

a) -|sin(x)|

b) sin|x|

6.

a) arctg(-x) = -arctgx

b) arctg|x| = |arctgx|

7.

a) $1 + \sin\left(x + \frac{\pi}{4}\right)$

b) $2 - \cos x$

8.

 $e^{|x|} = \frac{5}{4} = \frac{e^{|x-2|}}{4} = \frac{1}{2} = \frac{1}{3}$

b) $e^{|x-2|}$

9.

a) $\log(x + 3)$

b) 1 - |log x|