Linear Algebra Olympiad Problems

February 2025

Problem 1. Given the matrix

$$A_n = \begin{pmatrix} 1 & \frac{2}{n} & \frac{6}{n} \\ \frac{3}{n} & 1 & 0 \\ -\frac{1}{n} & 0 & 1 \end{pmatrix}$$

Calculate $\lim_{n\to\infty} A_n^n$.

Problem 2. Let A and B be nonzero matrices of size $n \times n$, where $n \ge 2$. It is known that ABA = A. Does it follow that BAB = B?

Problem 3. Suppose that for matrices A and B, the equality

$$AB = \alpha A + \beta B$$

holds, where α and β are some nonzero numbers. Prove that BA = AB.

Problem 4. Let A, B, C be square matrices of the same size, where A is non-singular. Prove that if

$$(A-B)CA = B$$
,

then

$$AC(A-B)=B.$$

Problem 5. Let A and B be distinct real square matrices. If

$$A^3 = B^3$$
 and $A^2 B = B^2 A$.

can the matrix $A^2 + B^2$ be invertible?

Problem 6. All elements of a determinant of order three are squares of odd numbers. Prove that the determinant is divisible by 64.

Problem 7. Let A and B be square matrices such that

$$A^2 = A$$
, $B^2 = B$, $AB = BA$.

What values can the determinant of the matrix A - B take?

Problem 8. The matrices A and B do not commute, i.e., $AB \neq BA$. Can it happen that the matrices A^2 and B^2 commute?

Problem 9. Compute the determinant of the matrix $A = (a_{i,j})$ of size $n \times n$ with the general term $a_{i,j} = \max(i,j)$.

Problem 10. Compute the determinant:

$$\begin{vmatrix} 0 & 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & \frac{1}{2} & 0 & \dots & 0 \\ 1 & 0 & 0 & \frac{1}{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & \dots & \frac{1}{n} \end{vmatrix}$$

1