

Analog/Mixed-Signal Simulation and Modeling

Module 07 Introduction to Phase Locked Loops (PLL)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

2

Why PLLs?

- Practically all digital and radio frequency circuits and most analog/mixed-signal circuits require a precision oscillator
 - Integrated circuit oscillators are not, on their own, suitable for use as frequency- or timereferences
 - PVT variations
 - Jitter
- ☐ Insert the oscillator into a phase locked loop where the operating frequency and phase is continuously compared against a precise external time-reference
- Precise external references are in the 1-200 MHz range
 - Use PLL for synthesizing higher and/or different output frequencies
 - → Clock/Frequency synthesis
 - Other applications exist

07: PLL

PLL Architecture

- Negative feedback loop
 - At steady state: Phase lock condition

•
$$\phi_{in} - \phi_{fb} = \phi_{err} = constant \rightarrow \frac{d\phi_{in}}{dt} - \frac{d\phi_{fb}}{dt} = 0$$

- $f_{fb} = f_{in}$ (no error)
- $f_{out} = N \times f_{in}$

Amplifier vs PLL

- ☐ The op-amp circuit amplifies the input voltage by using voltage divider in the FB path
- ☐ The PLL amplifies the frequency by using frequency divider in the FB path
- The divide ratio M is called the "modulus"

6

Voltage-Controlled Oscillator (VCO)

$$\Box V_{out} = A \sin(\phi) = A \sin(\omega t) \rightarrow \omega = \frac{d\phi}{dt} = K_{VCO}V_{cntl}$$

$$\frac{\phi}{V_{cntl}} = \frac{K_{VCO}}{S}$$

☐ Higher frequency means faster phase accumulation

Voltage-Controlled Oscillator (VCO)

$$\Box V_{out} = A \sin(\phi) = A \sin(\omega t) \rightarrow \omega = \frac{d\phi}{dt} = K_{VCO} V_{cntl}$$

$$\frac{\phi}{V_{cntl}} = \frac{K_{VCO}}{S}$$

Voltage-Controlled Oscillator (VCO)

$$\square$$
 ω_o : free running freq

$$\omega(t) = K_{VCO}V_{cntl}$$
: deviation from ω_o

$$V_{osc}(t) = E \sin[\omega_0 t + \phi(t)]$$

$$\omega_{inst}(t) = \frac{d[\omega_0 t + \phi(t)]}{dt} = \omega_0 + \frac{d\phi(t)}{dt}$$

$$\omega(t) = \omega_{inst}(t) - \omega_0$$

$$\omega(t) = \frac{d\phi(t)}{dt}$$

$$\phi(t) = \phi(0) + \int_0^t \omega(\tau) d\tau$$

$$\phi(s) = \frac{\omega(s)}{s}$$

$$\omega(t) = K_{osc}V_{cntl}(t)$$

Frequency Divider

Ideal Phase Detector

PLL Response to Phase Step

PLL Response to Frequency Step

XOR Phase Detector

VCO output and the reference input are both digital signals or have been converted to digital signals by a limiter

XOR Phase Detector

$$\square K_{PD} = \frac{\Delta V_{out}}{\Delta \phi} = \frac{V_o}{\pi}$$

Simple PLL Example

- The VCO is a negative-Gm LC oscillator tuned by varactors
- PLL order (no. of poles) = loop filter (LF) order + 1 (VCO)
- PLL type = no. of ideal integrators (poles at origin)

Steady State Error

$$\square \quad \frac{v_{out}}{v_{in}} = \frac{A}{1 + \beta A}$$

$$\square \frac{v_{err}}{v_{in}} = \frac{1}{1 + \beta A} \approx \frac{1}{LG}$$

- \square Final value theorem: $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$
- \square Steady state error $= \epsilon_S = v_{err}(t \to \infty) = \lim_{s \to 0} \frac{sV_{in}(s)}{LG(s)}$
- \square No. of poles at s = 0 (at origin) = no. of ideal integrators
- \Box How to get zero ϵ_s ?
 - Step input: $V_{in}(s) = \frac{1}{s} \rightarrow \text{LG must have one ideal integrator}$
 - Ramp input: $V_{in}(s) = \frac{1}{s^2}$ → LG must have two ideal integrators

Type I PLL

 \Box Type I \rightarrow Loop gain has ONE pole at origin (ONE ideal integrator)

$$H(s)|_{\text{open}} = \frac{\Phi_{out}}{\Phi_{in}}(s)|_{\text{open}}$$

$$= K_{PD} \cdot \frac{1}{1 + \frac{s}{\omega_{LPF}}} \cdot \frac{K_{VCO}}{s}$$

$$H(s)|_{\text{closed}} = \frac{K_{PD}K_{VCO}}{\frac{s^2}{\omega_{LPF}} + s + K_{PD}K_{VCO}}$$

Type I PLL

- \Box $\Phi_{in} = \int \omega_{in} dt \rightarrow$ the input phase is <u>ramp input</u>
 - Type I has only one integrator → suffer from static phase error
 - Need two ideal integrators for $\phi_{err}=0$
 - Two poles at origin → Type II PLL
- Other drawbacks of Type I:
 - Trade-off between ω_{LPF} and stability (ζ)
 - Limited acquisition range (solved by using PFD)

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

$$\zeta = \frac{1}{2} \sqrt{\frac{\omega_{LPF}}{K_{PD}K_{VCO}}}$$

$$\omega_n = \sqrt{K_{PD}K_{VCO}\omega_{LPF}}$$

07: PLL 20

07: PLL 21

Type II PLL: Charge Pump (CHP) PLL

- One more ideal integrator in the PD + LF
 - Simply, current source charging a capacitor

CHP Phase/Frequency Detector (PFD)

- ☐ Type I has limited acquisition range: because phase detectors produce little information if they sense unequal frequencies
 - Acquisition range can be widened if a frequency detector is added to the loop
- Three-states: Pu = 1, Pd = 1, and Pu = Pd = 0
- \Box The falling edges of both V_{in} and V_{div} have no effect on Pu and Pd

Charge Pump PFD

Charge Pump PFD

QA: UP

QB: DOWN (DN)

Charge Pump PFD

- A very small input phase error gives growing output
 - Infinite gain → Ideal integrator behavior

CHP PFD Continuous-time (CT) Approx

- ☐ CHP PFD is a non-linear system
 - But the waveform can be approximated as a ramp: CT approx

Loop Filter (LF)

- R introduces a zero necessary for stability
- C_2 introduces a high frequency pole to suppress voltage spikes
 - Current spikes passing through R will cause voltage spikes
- Usually $C_1 \gg C_2$

$$K_{lp}H_{lp}(s) = \frac{V_{cntl}(s)}{I_{pd}(s)} = \frac{1}{s(C_1 + C_2)} \cdot \frac{1 + sRC_1}{1 + sR\left(\frac{C_1C_2}{C_1 + C_2}\right)}$$

$$K_{lp}H_{lp}(s) = \frac{V_{cntl}(s)}{I_{pd}(s)} \cong \frac{1}{C_1} \left(\frac{1 + sRC_1}{s}\right)$$

$$K_{lp} = 1/C_1$$
 $\omega_z = 1/(RC_1)$

Bode Plot

 ω_{t}

Phase Margin

- ☐ Two poles at origin
- ☐ The zero is necessary to achieve stability
- \blacksquare The non-dominant pole due to \mathcal{C}_2 reduces the PM
 - But necessary to filter out voltage spikes

07: PLL [Johns & Martin, 2012] **29**

Linearized Small-Signal Model

$$\begin{split} L(s) &= \frac{K_{pd} \, K_{lp} K_{osc} H_{lp}(s)}{Ns} \\ \frac{\varphi_d(s)}{\varphi_{in}(s)} &= \frac{s}{s + K_{pd} K_{lp} K_{osc} H_{lp}(s)/N} \end{split}$$

07: PLL [Johns & Martin, 2012] **30**

PLL Model

Loop constant (loop resonance frequency)

$$\omega_{\text{pll}} = \sqrt{\frac{K_{\text{pd}}K_{\text{lp}}K_{\text{osc}}}{N}}$$

Loop gain

$$L(s) = \frac{\omega_{pll}^{2}}{s^{2}} \cdot \left(1 + \frac{s}{\omega_{z}}\right)$$

Error TF

$$\frac{\phi_{d}(s)}{\phi_{in}(s)} = \frac{1}{\omega_{pll}^{2}} \cdot \frac{s^{2}}{\left(1 + \frac{s}{\omega_{z}} + \frac{s^{2}}{\omega_{pll}^{2}}\right)}$$

Phase TF

$$H(s) = \frac{\phi(s)}{\phi_{in}(s)} = \frac{N(1 + s/\omega_z)}{1 + \frac{s}{\omega_z} + \frac{s^2}{\omega_{pll}^2}}$$

Closed Loop Response

$$H(s) = \frac{\phi(s)}{\phi_{in}(s)} = \frac{N(1 + s/\omega_z)}{1 + \frac{s}{\omega_z} + \frac{s^2}{\omega_{pil}^2}}$$

$$\omega_{\text{pll}} = \sqrt{\frac{K_{\text{pd}}K_{\text{lp}}K_{\text{osc}}}{N}}$$

$$Q = \frac{\omega_z}{\omega_{pll}}$$

$$\zeta = 1/2Q$$

Q = 0.5

- \Box An all-pole system with Q = 0.5 will have no overshoot or peaking
 - But the PLL has a zero which introduces both slight overshoot and peaking (jitter) peaking) even when Q = 0.5
- \square Q = 0.5 gives reasonable LF time constant \rightarrow can be implemented on-chip

$$\omega_z = \omega_{pll}/2$$

$$H(s) = \frac{N(1 + s/\omega_z)}{(1 + s/\omega_{pll})^2}$$

$$\omega_{3dB} = 2.5\omega_{pll}$$

 \square Q = 0.1 offers even better tracking behavior, but generally demands a larger loop-filter time constant for the same loop bandwidth

Resolution-Bandwidth Trade-off

- lacktriangle For integer-N PLL, the tuning resolution is determined by ω_{in}
 - The smaller ω_{in} , the finer the resolution
 - If finer resolution is required, use fractional-N PLL
- ☐ PLL is a discrete time system
 - ω_{in} is the sampling frequency
 - For the PLL CT linear model approximation to be valid

$$\omega_{3dB} \ll \omega_{in}$$
 $\omega_{3dB} < 0.1\omega_{in}$

- Moreover, we need $\omega_{3dB}\ll\omega_{in}$ to filter out the reference spurs (reference transients modulate the VCO)
- The smaller ω_{in} , the slower the loop (longer settling time)
- Also higher loop bandwidths permit the use of smaller components in the loop filter

07: PLL 34

Jitter

Jitter is the random variation in clock transition instants

Phase Noise

- Phase noise is the frequency-domain representation of jitter
- \square Jitter (τ_k) to phase noise (ϕ_k) :

$$t_k = kT_o + \tau_k \qquad \qquad \phi_k = \tau_k \cdot \frac{2\pi}{T_o}$$

- A pure sinusoid will have a single tone at $1/T_o$
- A practical signal will have power in a range of frequencies around the pure tone (the carrier)

Oscillator Response

- The oscillator has a pole at f_o
- Away from the pole the magnitude decays at -20dB/decade

Oscillator Phase Noise

- 1st component: White noise not filtered by the oscillator (e.g., buffer noise)
- 2nd component: White noise up-converted and shaped by the oscillator response
- 3rd component: Flicker noise up-converted and shaped by the oscillator response

PLL Noise Sources

Input and divider phase noise are filtered by the PLL transfer function (LPF) (output follows input within loop bandwidth)

$$H(s) = \frac{K_{pd}K_{lp}K_{osc}H_{lp}(s)/s}{1 + L(s)}$$

VCO phase noise sees a HPF (attenuated within loop bandwidth)

$$H_{osc}(s) = \frac{1}{1 + L(s)}$$

Loop filter phase noise sees a BPF

PLL Noise Sources

- The PLL loop bandwidth sets the cutoff frequency below which VCO phase noise is attenuated and above which input reference (and divider) phase noise is attenuated
- Solve Razavi RF Example 9.26 and 9.27

PLL Output Noise

- The example below ignores VCO white noise component ($h_0 = 0$)
- Assuming a high-quality (low-noise) reference
 - PLL loop bandwidth should be maximized to minimize the contribution of VCO phase noise to the PLL's output jitter

Thank you!

07: PLL 42

Assignments

☐ Read "pll_design.pdf"

Part of my MSc thesis (2010)

07: PLL 43