CLAIMS

1. A compound of formula I

$$R^{5}$$
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

in free or salt form, wherein

R² is hydrogen or C₁-C₄-alkyl, R⁵ is C₁-C₈-alkyl substituted by pyridyl, R³ is R⁶, and R⁴ is fluoro or C₁-C₈-haloalkyl,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by hydroxy or nitrile, R³ is R⁶, and R⁴ is hydrogen or C₁-C₈-haloalkyl,

or Ra is hydrogen or C1-C4-alkyl, Rb is C1-C8-alkyl substituted by nitrile, R3 is fluoro, and R4 is R7,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is C_1 - C_8 -alkyl substituted by hydroxy, R^3 is fluoro, and R^4 is R^7 ,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is C_1 - C_8 -alkyl substituted by di(C_1 - C_8 -alkyl)amino, R^3 is R^6 , and R^4 is C_1 - C_8 -haloalkyl,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is C_1 - C_8 -alkyl substituted by -O- C_1 - C_8 -alkyl-OH, R^3 is R^6 , and R^4 is fluoro or C_1 - C_8 -haloalkyl,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is -CH(CH₃)-CH₂-OH, R³ is R⁶, and R⁴ is fluoro,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is C_1 - C_8 -alkyl substituted by pyrrolidinyl substituted by C_1 - C_8 -alkyl, R^3 is R^6 , and R^4 is C_1 - C_8 -haloalkyl,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by oxazolyl substituted by C₁-C₈-alkyl, R³ is R⁶, and R⁴ is nitrile or imidazolyl,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by imidazolyl, R³ is R⁶, and R⁴ is fluoro,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by benzoimidazolyl, R³ is R⁶, and R⁴ is fluoro,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is C_1 - C_8 -alkyl substituted by isoxazolyl substituted by C_1 - C_8 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is C_1 - C_8 -alkyl substituted by pyrrolyl substituted by C_1 - C_8 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is C_1 - C_8 -alkyl substituted by pyrazolyl substituted by C_1 - C_8 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by -CO-O-CH₃, -CO-O-butyl, -CO-di(C₁-C₈-alkyl)amino, -CO-NH₂, -NH-CO-C₁-C₈-alkyl, -SO₂-C₁-C₈-alkyl, -CO-NH-R^c where R^c is napthyl, or by -CO-NH-C₁-C₈-alkyl optionally substituted by di(C₁-C₈-alkyl)-amino, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is -CH(CH₃)-CO-NH-C₁-C₈-alkyl or -CH(CH₃)-CO-O-C₁-C₈-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by -CH(OH)-CH₂-OH, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is C_1 - C_8 -alkyl substituted by C_1 - C_8 -alkoxy, or by -S- C_1 - C_8 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by a 5- or 6-membered heterocyclic ring having one or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being substituted by oxo, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by a 5- or 6-membered heterocyclic ring having three or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being optionally substituted by C₁-C₈-alkyl,

-C1-C8-alkyl-di(C1-C8-alkyl)amino, or by C3-C8-cycloalkyl, R3 is R6, and R4 is R7,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is C_1 - C_8 -alkyl substituted by oxazolyl substituted by C_3 - C_8 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by imidazolyl substituted by C₁-C₈-alkyl optionally substituted by hydroxy or C₁-C₈-alkoxy, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is C₁-C₈-alkyl substituted by -CO-Het where Het is a 5- or 6-membered heterocyclic ring having two or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being optionally substituted by C₁-C₈-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen or C₁-C₄-alkyl, R^b is a 5- or 6-membered heterocyclic ring having one or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being substituted by oxo, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen or C_1 - C_4 -alkyl, R^b is an aza-bicyclo[3.2.1]oct-3-yl ring optionally substituted by C_1 - C_8 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a and R^b together form an azetidine ring substituted by C₁-C₈-alkoxycarbonyl or nitrile, R³ is R⁶, and R⁴ is R⁷,

or R^a and R^b together form a pyrrolidine ring substituted by -CO-NH₂ or nitrile, R³ is R⁶, and R⁴ is R⁷,

or R^a and R^b together form an imidazo-pyridine ring, R³ is R⁶, and R⁴ is R⁷;

R² is C₁-C₄-alkyl or halogen;

R⁵ is hydrogen, halogen or C₁-C₈-alkyl;

R⁶ is halo, -SO₂-CH₃, -SO₂-CF₃, carboxy, -CO-NH₂, -CO-di(C₁-C₈-alkyl)amino, or a 5- or 6-membered heterocyclic ring having one or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being optionally substituted by halo, cyano, oxo, hydroxy, carboxy, nitro, C₃-C₈-cycloalkyl, C₁-C₈-alkylcarbonyl, C₁-C₈-alkoxy

optionally substituted by aminocarbonyl, or C₁-C₈-alkyl optionally substituted by hydroxy, C₁-C₈-alkoxy, C₁-C₈-alkylamino or di(C₁-C₈-alkyl)amino;

 R^7 is hydrogen, halo, -SO₂-CH₃, nitrile, C₁-C₈-haloalkyl, imidazolyl, C₁-C₈-alkyl, -NR⁸R⁹, or -SO₂-NR⁸R⁹; and

R⁸ and R⁹ are independently hydrogen, amino, C₁-C₈-alkylamino, di(C₁-C₈-alkyl)amino, or C₁-C₈-alkyl optionally substituted by hydroxy,

or R⁸ and R⁹ together form a 5- to 10-membered heterocyclic ring having one or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being optionally substituted by halo, cyano, oxo, hydroxy, carboxy, nitro, C₃-C₈-cycloalkyl, C₁-C₈-alkylcarbonyl, C₁-C₈-alkoxy optionally substituted by aminocarbonyl, or C₁-C₈-alkyl optionally substituted by hydroxy, C₁-C₈-alkoxy, C₁-C₈-alkylamino or di(C₁-C₈-alkyl)amino.

2. A compound according to claim 1, wherein

Ra is hydrogen, Rb is C1-C8-alkyl substituted by pyridyl, R3 is R6, and R4 is fluoro or C1-C8-haloalkyl,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by hydroxy or nitrile, R³ is R⁶, and R⁴ is hydrogen or C₁-C₈-haloalkyl,

or Ra is hydrogen, Rb is C1-C8-alkyl substituted by nitrile, R3 is fluoro, and R4 is R7,

or Ra is hydrogen, Rb is C1-C8-alkyl substituted by hydroxy, R3 is fluoro, and R4 is R7,

or R^a is hydrogen, R^b is C_1 - C_8 -alkyl substituted by di(C_1 - C_8 -alkyl)amino, R^3 is R^6 , and R^4 is C_1 - C_8 -haloalkyl,

or R^a is hydrogen, R^b is C_1 - C_8 -alkyl substituted by -O- C_1 - C_8 -alkyl-OH , R^3 is R^6 , and R^4 is fluoro or C_1 - C_8 -haloalkyl,

or Ra is hydrogen, Rb is -CH(CH3)-CH2-OH, R3 is R6, and R4 is fluoro,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by pyrrolidinyl substituted by C₁-C₈-alkyl, R³ is R⁶, and R⁴ is C₁-C₈-haloalkyl,

or R^a is hydrogen, R^b is C_1 - C_8 -alkyl substituted by oxazolyl substituted by C_1 - C_8 -alkyl, R^3 is R^6 , and R^4 is nitrile or imidazolyl,

or Ra is hydrogen, Rb is C1-C8-alkyl substituted by imidazolyl, R3 is R6, and R4 is fluoro,

or Ra is hydrogen, Rb is C1-C8-alkyl substituted by benzoimidazolyl, R3 is R6, and R4 is fluoro,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by isoxazolyl substituted by C₁-C₈-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by pyrrolyl substituted by C₁-C₈-alkyl, R³ is R⁶, and R⁴ is R⁷,

WO 2005/021519 PCT/EP2004/009586

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by pyrazolyl substituted by C₁-C₈-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by -CO-O-CH₃, -CO-O-butyl, -CO-di(C₁-C₈-alkyl)amino, -CO-NH₂, -NH-CO-C₁-C₈-alkyl, -SO₂-C₁-C₈-alkyl, -CO-NH-R^c where R^c is napthyl, or by -CO-NH-C₁-C₈-alkyl optionally substituted by di(C₁-C₈-alkyl)amino, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is -CH(CH₃)-CO-NH-C₁-C₈-alkyl or -CH(CH₃)-CO-O-C₁-C₈-alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by -CH(OH)-CH₂-OH, R³ is R⁶, and R⁴ is R⁷, or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by C₁-C₈-alkoxy, or by -S-C₁-C₈-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by a 5- or 6-membered heterocyclic ring having one or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being substituted by oxo, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by a 5- or 6-membered heterocyclic ring having three or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being optionally substituted by C₁-C₈-alkyl, -C₁-C₈-alkyl-di(C₁-C₈-alkyl)amino, or by C₃-C₈-cycloalkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by oxazolyl substituted by C₃-C₈-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by imidazolyl substituted by C₁-C₈-alkyl optionally substituted by hydroxy or C₁-C₈-alkoxy, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by -CO-Het where Het is a 5- or 6-membered heterocyclic ring having two or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being optionally substituted by C₁-C₈-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is a 5- or 6-membered heterocyclic ring having one or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being substituted by oxo, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is an aza-bicyclo[3.2.1]oct-3-yl ring optionally substituted by C_1 - C_8 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a and R^b together form an azetidine ring substituted by C₁-C₈-alkoxycarbonyl or nitrile, R³ is R⁶, and R⁴ is R⁷,

or R^a and R^b together form a pyrrolidine ring substituted by -CO-NH₂ or nitrile, R³ is R⁶, and R⁴ is R⁷,

or Ra and Rb together form an imidazo-pyridine ring, R3 is R6, and R4 is R7;

R² is C₁-C₄-alkyl or halogen;

R⁵ is hydrogen;

R⁶ is halo or -SO₂-CH₃; and

R7 is hydrogen, halo, -SO₂-CH₃, nitrile, C₁-C₈-haloalkyl or imidazolyl.

3. A compound according to claim 1 or 2, wherein

Ra is hydrogen, Rb is C1-C4-alkyl substituted by pyridyl, R3 is R6, and R4 is fluoro or C1-C4-haloalkyl,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by hydroxy or nitrile, R³ is R⁶, and R⁴ is hydrogen or C₁-C₄-haloalkyl,

or Ra is hydrogen, Rb is C1-C4-alkyl substituted by nitrile, R3 is fluoro, and R4 is R7,

or Ra is hydrogen, Rb is C1-C4-alkyl substituted by hydroxy, R3 is fluoro, and R4 is R7,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by di(C₁-C₄-alkyl)amino, R³ is R⁶, and R⁴ is C₁-C₄-haloalkyl,

or R^a is hydrogen, R^b is C_1 - C_4 -alkyl substituted by -O- C_1 - C_4 -alkyl-OH , R^3 is R^6 , and R^4 is fluoro or C_1 - C_4 -haloalkyl,

or Ro is hydrogen, Rb is -CH(CH3)-CH2-OH, R3 is R6, and R4 is fluoro,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by pyrrolidinyl substituted by C₁-C₄-alkyl, R³ is R⁶, and R⁴ is C₁-C₄-haloalkyl,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by oxazolyl substituted by C₁-C₄-alkyl, R³ is R⁶, and R⁴ is nitrile or imidazolyl,

or Ra is hydrogen, Rb is C1-C4-alkyl substituted by imidazolyl, R3 is R6, and R4 is fluoro,

or Ra is hydrogen, Rb is C1-C4-alkyl substituted by benzoimidazolyl, R3 is R6, and R4 is fluoro,

or R^a is hydrogen, R^b is C_1 - C_4 -alkyl substituted by isoxazolyl substituted by C_1 - C_4 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a is hydrogen, R^b is C_1 - C_4 -alkyl substituted by pyrrolyl substituted by C_1 - C_4 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by pyrazolyl substituted by C₁-C₄-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by -CO-O-CH₃, -CO-O-butyl, -CO-di(C₁-C₄-alkyl)amino, -CO-NH₂, -NH-CO-C₁-C₄-alkyl, -SO₂-C₁-C₄-alkyl, -CO-NH-R^c where R^c is napthyl, or by -CO-NH-C₁-C₄-alkyl optionally substituted by di(C₁-C₄-alkyl)amino, R³ is R⁶, and R⁴ is R⁷,

or Ra is hydrogen, Rb is -CH(CH3)-CO-NH-C1-C4-alkyl or -CH(CH3)-CO-O-C1-C4-alkyl, R3 is R6, and R4 is R7,

or Ra is hydrogen, Rb is C1-C4-alkyl substituted by -CH(OH)-CH2-OH, R3 is R6, and R4 is R7,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by C₁-C₈-alkoxy, or by -S-C₁-C₄-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by a 5- or 6-membered heterocyclic ring having one or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being substituted by oxo, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by a 5- or 6-membered heterocyclic ring having three or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being optionally substituted by C₁-C₈-alkyl, -C₁-C₈-alkyl-di(C₁-C₄-alkyl)-amino, or by C₃-C₅-cycloalkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C_1 - C_4 -alkyl substituted by oxazolyl substituted by C_3 - C_5 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by imidazolyl substituted by C₁-C₄-alkyl optionally substituted by hydroxy or C₁-C₄-alkoxy, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is C₁-C₄-alkyl substituted by -CO-Het where Het is a 5- or 6-membered heterocyclic ring having two or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being optionally substituted by C₁-C₄-alkyl, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is a 5- or 6-membered heterocyclic ring having one or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, that ring being substituted by oxo, R³ is R⁶, and R⁴ is R⁷,

or R^a is hydrogen, R^b is an aza-bicyclo[3.2.1]oct-3-yl ring optionally substituted by C_1 - C_4 -alkyl, R^3 is R^6 , and R^4 is R^7 ,

or R^a and R^b together form an azetidine ring substituted by C₁-C₄-alkoxycarbonyl or nitrile, R³ is R⁶, and R⁴ is R⁷,

or R^a and R^b together form a pyrrolidine ring substituted by -CO-NH₂ or nitrile, R³ is R⁶, and R⁴ is R⁷,

or Ra and Rb together form an imidazo-pyridine ring, R3 is R6, and R4 is R7;

R² is C₁-C₄-alkyl or halogen;

R⁵ is hydrogen;

R6 is halo or -SO2-CH3; and

R7 is hydrogen, halo, -SO2-CH3, nitrile, C1-C4-haloalkyl or imidazolyl.

4. A compound of formula I that is also a compound of formula XIII

where R^3 , R^4 and R^6 are as shown in the following table:

R³	R ⁴	Rb
-SO₂CH₃	· F	
		, n
-SO₂CH₃	F	O_CH ₃
-SO₂CH₃	F	O CH ₃
-SO₂CH₃	F	
-SO ₂ CH₃	F	
-SO₂CH₃	F	S_CH ₃
-SO₂CH₃	F	ОМОН
-SO₂CH₃	F	CH ₃
-SO ₂ CH₃	F	H ₃ C

R³	R ⁴	Rb
-SO ₂ CH ₃	F	
		NH NH
1		
-SO₂CH₃	F	i γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ
302013	1	
		O CH ₃
-SO₂CH₃	F	CH ₃
302013	1	O CH ₃
50.077		VO VO 13
-SO ₂ CH ₃	F	H₃C OU
		CH ₃
	1	O CH ₃
-SO₂CH₃	F	
		CH ₃
		N-N
-SO ₂ CH ₃	F	, CH3
-3O ₂ CF13	F	H
	<u> </u>	H3CIIII CH3
-SO₂CH₃	, F	l n
-SO ₂ CH₃	F	
		H³C _{IIII}
		он
-SO₂CH₃	F	ÇH₃
-SO₂CH₃	F	CH ₃
·		\ \N\
		CH ₃
-SO-CH	F	Ö
-SO ₂ CH₃	r	CH₃ U
		N_CH₃
	,	
		استبرتنست سيست

R ³	R ⁴	R ^b
-SO ₂ CH₃	F	O CH ₃
-SO₂CH₃	F	H ₃ C NH ₂
-SO₂CH₃	F	NH ₂
-SO₂CH₃	F	CH ₃ H ₃ C CH ₃
-SO₂CH₃	-CF ₃	N N
-SO₂CH₃	-CF₃	NH CH ₃
-SO₂CH₃	-CF₃	N
-SO₂CH₃	-CF ₃	O_CH ₃
-SO ₂ CH ₃	-CF ₃	ОН
-SO₂CH₃	-CF ₃	ОН
-SO₂CH₃	-CF₃	O CH ₃
-SO ₂ CH ₃	-CF₃	
-SO₂CH₃	-CF₃	CH ₃

R ³	R ⁴	R ^b
-SO₂CH₃	-CF ₃	S_CH3
-SO₂CH₃	-CF₃	
-SO₂CH₃	-CF₃	CH ₃
-SO₂CH₃	-CF ₃	OH
-SO ₂ CH₃	-CF ₃	H ₃ C N
-SO₂CH₃	-CF ₃	
-SO₂CH₃	-CF ₃	O CH ₃ CH ₃
-SO₂CH₃	-CF ₃	O_CH ₃
-SO ₂ CH₃	-CF ₃	CEN
-SO₂CH₃	-CF ₃	N, CH3
-SO₂CH₃	-CF₃	П СН3
-SO₂CH₃	-CF ₃	H ₃ C CH ₃
-SO₂CH₃	-CF ₃	н,с" Сн,

R ³	R ⁴	R ^b
-SO ₂ CH ₃	-CF ₃	O CH ₃ CH ₃
-SO₂CH₃	-CF₃	N CH ₃
-SO₂CH₃	·-CF ₃	н₃с" Н сн₃
-SO₂CH₃	-CF ₃	H ₃ C,,OCH ³
-SO₂CH₃	H	H³C
-SO₂CH₃	H	
-SO₂CH₃	н	O CH ₃ CH ₃
-SO ₂ CH ₃	Н	ОН
-SO₂CH₃	Н	ОН
-SO₂CH₃	Н	ОН
-SO₂CH₃	H	CH ₃
-SO₂CH₃	H	NH NH

R ³	R ⁴	R ^b
-SO₂CH₃	Н	O CH ₃ CH ₃
-SO₂CH₃	Н	CIIN CIIN
-SO₂CH₃	CN	O CH ₃ CH ₃
-SO₂CH₃	CN	CH ₃
-SO₂CH₃	CN	CH ₃
F	-SO₂CH₃	CEN
F	-SO₂CH₃	NH ₂
F	-SO₂CH₃	O II O CH ₃
F .	-SO ₂ CH₃	O CH ₃ CH ₃
· F	-SO ₂ CH ₃	ОН
F	-SO₂CH₃	
F	-SO₂CH₃	
-SO₂CH₃	CI	H ₃ C CH ₃

R ³	R ⁴	R ^b
-SO ₂ CH ₃	F	OH

5. A compound of formula I that is also a compound of formula XIV

where R⁴ and -NR^aR^b are as shown in the following table:

R ⁴ .	R*
F	R ^b
F	N N
F	N CH ₃
F	N N
н	O NH ₂
-CF ₃	NH ₂

R ⁴	N R ^b
-CF ₃	NE CONTRACTOR OF THE PROPERTY
	N NH ₂

6. A compound of formula I that is also a compound of formula XV

where R^4 and -Het are as shown in the following table:

R ⁴	-Het
F	
F	н _з с — сн _з
F	0-N CH3
F	O-N CH ₃
F	O-N CH,
F	
F	O-N CH ₃
F	N-CH ₃

R ⁴	-Het
F	S N CH ₃
F	CH ₃
F .	CH ₃
F	N N CH ₃
F	
F	
F	H ₃ C CH ₃
F	T'A '
F	CH,
F	CH ₃
F	LN CH3
F	H ₃ C CH ₃
F	LN CH3

R ⁴	-Het
F	N.
	CH ₃
	сн
F	VN,
	0-CH ₃
F	N,
	OH
F	
	√ОН
	ÇH ₃
F	N.
F	CH ₃
F	
	T
	N CH ₃
F	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	L CH,
F	N. CH ₃
	N H ₃ C CH ₃
	<u> </u>
F	
F	. \N.
	HN-N'N
F	N N
	H ₃ C N-N
<u> </u>	
F	2,2
	N-N
	CH ₃
-CF ₃	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	CH ₃
Cl	N CH ₃
Cl	, N
	CH,
L	V1/3

R ⁴	-Het
-CN	СН
-CN	O H ₃ C CH ₃
	CH ₃
	CH ₃
	CH3
-CN	CH ₃
Н	LN CH3

7. A compound of formula I that is also a compound of formula XVI

where Rb is as shown in the following table:

R ^b
αH ₃
O OH,
CH ₃ H ₃ N ₄ CH ₃
l b dy
CH ₃
O GH,
CH ₃
N-N CH3
O OH3
H _{H,C} OH ₃ OH ₃
N ari
વનુ વનુ
O CH ₃
विस्
h at
D H ₃ C OH ₃ OH ₃
A A of

- 8. A compound according to any one of claims 1 to 7 in combination with an anti-inflammatory, bronchodilatory, antihistamine or anti-tussive drug substance.
- 9. A compound according to any one of claims 1 to 7 for use as a pharmaceutical.

- 10. A pharmaceutical composition comprising a compound according to any one of claims 1 to 7.
- 11. The use of a compound according to any one of claims 1 to 7 in the manufacture of a medicament for the treatment of a disease mediated by phosphatidylinositol 3-kinase.
- 12. The use of a compound according to any one of claims 1 to 7 in the manufacture of a medicament for the treatment of respiratory diseases, allergies, rheumatoid arthritis, osteoarthritis, rheumatic disorders, psoriasis, ulcerative colitis, Crohn's disease, septic shock, proliferative disorders such as cancer, atherosclerosis, allograft rejection following transplantation, diabetes, stroke, obesity or restenosis.
- 13. A process for the preparation of a compound of formula I as defined in claim 1, in free or salt form which comprises the steps of:
- (i) (A) reacting a compound of formula II

$$\mathbb{R}^3$$
 \mathbb{R}^4
 \mathbb{R}^2
 \mathbb{R}^3
 \mathbb{R}^4

wherein R², R³, R⁴ and R⁵ are as claimed in claim 1 and T is a 5- or 6-membered heterocyclic ring having one or more ring hetero atoms selected from the group consisting of oxygen, nitrogen and sulphur, with a compound of formula III

wherein R^a and R^b are as claimed in claim 1;

(B) reacting compounds of formula IV

wherein R^2 , R^3 , R^4 and R^5 are as claimed in claim 1 with a compound of formula III wherein R^a and R^b are as claimed in claim 1;

WO 2005/021519 PCT/EP2004/009586

(C) for the preparation of compounds of formula I where R^a is hydrogen and R², R³, R⁴, R⁵ and R^b are as claimed in claim 1, reacting a compound of formula V

$$R^{5}$$
 N
 NH_{2}
 R^{3}
 R^{4}

wherein R², R³, R⁴ and R⁵ are as claimed in claim 1, with a compound of formula VI

$$R^b - N = C = O$$
 VI

wherein Rb is as claimed in claim 1; or

(D) for the preparation of compounds of formula I where R^a is hydrogen, R^b is C₁-C₈-alkyl substituted by imidazolyl substituted by C₁-C₈-alkyl optionally substituted by hydroxy or C₁-C₈-alkoxy and R², R³, R⁴ and R⁵ are as claimed in claim 1, reacting a compound of formula V where R², R³, R⁴ and R⁵ are as claimed in claim 1, with a compound of formula VII

where Q is C1-C8-alkyl optionally substituted by hydroxy or C1-C8-alkoxy; and

(ii) recovering the resultant compound of formula I in free or salt form.