$$\chi_{b0}(1P)$$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(2S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+.

$\chi_{b0}(1P)$ MASS

VALUE (MeV)

DOCUMENT ID

9859.44 \pm 0.42 \pm 0.31 OUR EVALUATION From average γ energy below, using $\Upsilon(2S)$ mass = 10023.26 ± 0.31 MeV

$m_{\chi_{b1}(1P)}$	-	$m_{\chi_{b0}(1F)}$	")
---------------------	---	---------------------	----

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
32.49±0.93	LEES	14M BABR	$\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-$

γ ENERGY IN $\Upsilon(2S)$ DECAY

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
162.5 ±0.4 OUR AVERAGE				
$162.56 \pm 0.19 \pm 0.42$	ARTUSO	05	CLEO	$\Upsilon(2S) \rightarrow \gamma X$
$162.0 \pm 0.8 \pm 1.2$	EDWARDS	99	CLE2	$\Upsilon(2S) ightarrow \gamma \chi(1P)$
$162.1 \pm 0.5 \pm 1.4$	ALBRECHT	85E	ARG	$\Upsilon(2S) ightarrow \ {\sf conv.} \gamma {\sf X}$
$163.8 \pm 1.6 \pm 2.7$	NERNST	85	CBAL	$\Upsilon(2S) ightarrow \gamma X$
158.0 ± 7 ± 1	HAAS	84	CLEO	$\Upsilon(2S) ightarrow {\sf conv.} \gamma {\sf X}$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
149.4 ± 0.7 ± 5.0	KLOPFEN	83	CUSB	$\Upsilon(2S) \rightarrow \gamma X$

$\chi_{b0}(1P)$ DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma$) Confiden	ce level
$\overline{\Gamma_1}$	$\gamma \Upsilon(1S)$	$(1.94\pm0.27$	7) %	
Γ_2	$D^0 X$	< 10.4	%	90%
Γ_3	$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 1.6	\times 10 ⁻⁴	90%
Γ_4	$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 ⁻⁵	90%
Γ_5	$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}2\pi^{0}$	< 5	$\times 10^{-4}$	90%
Γ_6	$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-4}$	90%
Γ_7	$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	(1.1 ± 0.6	$) \times 10^{-4}$	
Γ ₈	$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.7	\times 10 ⁻⁴	90%
Γ_9	$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 5	\times 10 ⁻⁴	90%
Γ_{10}	$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 1.6	\times 10 ⁻⁴	90%
Γ_{11}	$3\pi^+3\pi^-$	< 8	\times 10 ⁻⁵	90%
Γ_{12}	$3\pi^{+}3\pi^{-}2\pi^{0}$	< 6	\times 10 ⁻⁴	90%

Γ_{13}	$3\pi^{+}3\pi^{-}K^{+}K^{-}$	($2.4 \pm$	$(1.2) \times 10^{-4}$	
Γ_{14}	$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.0	$\times 10^{-3}$	90%
Γ_{15}	$4\pi^+4\pi^-$	< 8	$\times10^{-5}$	90%
Γ_{16}	$4\pi^{+}4\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-3}$	90%
Γ_{17}	$J/\psiJ/\psi$	< 7	$\times 10^{-5}$	90%
Γ_{18}	$J/\psi\psi(2S)$	< 1.2	\times 10 ⁻⁴	90%
Γ_{19}	$\psi(2S)\psi(2S)$	< 3.1	$\times 10^{-5}$	90%

$\chi_{b0}(1P)$ BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(1S))/\Gamma_{\text{total}}$

VALUE (%)

 Γ_1/Γ

TECN COMMENT

1.94 =	⊵0.27 OUR AVERA	GE				
2.07=	$\pm 0.24 \pm 0.21$		1,2 LEES			$\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-$
1.76	$\pm 0.30 \pm 0.18$	87	^{3,4} KORNICER	11	CLEO	$e^+e^- \rightarrow \gamma\gamma\ell^+\ell^-$
11/			1	C'. I'	•	

DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 4.6	90	⁵ LEES	11J	BABR	$\Upsilon(2S) \rightarrow X\gamma$
< 6	90	WALK	86	CBAL	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
<11	90	PAUSS	83	CUSB	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

¹ LEES 14M quotes $\Gamma(\chi_{b0}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total} \times \Gamma(\Upsilon(2S) \to \gamma \chi_{b0}(1P))/\Gamma_{total} = (7.75 \pm 0.91) \times 10^{-4}$ combining the results from samples of $\Upsilon(2S) \to \gamma \gamma \mu^+ \mu^-$ with and without converted photons. Assumes B($\Upsilon(1S) \to \mu^+ \mu^-$) = (2.48 ± 0.05)%.

CL% EVTS

$\Gamma(D^0X)/\Gamma_{\text{total}}$

 Γ_2/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<10.4 × 10 ⁻²	90	6,7 BRIERE	08	CLEO	$\gamma(2S) \rightarrow \gamma D^0 X$

⁶ For $p_{D^0} > 2.5 \text{ GeV/c.}$

$\Gamma(\pi^+\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

 Γ_3/Γ

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
<1.6	90 8	ASNER	08A	CLEO	$\gamma(2S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}$
⁸ ASNER 08A	reports [Γ	$(\chi_{b0}(1P) \rightarrow$	$\pi^+\pi$	- к+ к	$(-\pi^0)/\Gamma_{total}$ × [B($\Upsilon(2S)$ \rightarrow
		⁶ which we divi	de by	our best	value B($\Upsilon(2S) ightarrow \gamma \chi_{b0}(1P)$)
$= 3.8 \times 10^{-2}$	<u>2</u> .				

²LEES 14M reports $[\Gamma(\chi_{b0}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma \chi_{b0}(1P))] = (7.75 \pm 0.91) \times 10^{-4}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma \chi_{b0}(1P)) = (3.8 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ Assuming B($\Upsilon(1S) \to \ell^+\ell^-$) = (2.48 ± 0.05)%.

⁴ KORNICER 11 reports $[\Gamma(\chi_{b0}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma \chi_{b0}(1P))] = (6.59 \pm 0.96 \pm 0.60) \times 10^{-4}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma \chi_{b0}(1P)) = (3.8 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁵ LEES 11J quotes a central value of $\Gamma(\chi_{b0}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total} \times \Gamma(\Upsilon(2S) \to \gamma \chi_{b0}(1P))/\Gamma_{total} = (8.3 \pm 5.6^{+3.7}_{-2.6}) \times 10^{-4}$.

⁷ The authors also present their result as $(5.6 \pm 3.6 \pm 0.5) \times 10^{-2}$.

 $\Gamma(2\pi^+\pi^-K^-K^0_S)/\Gamma_{\text{total}}$

 Γ_{A}/Γ

⁹ ASNER 08A reports $[\Gamma(\chi_{b0}(1P) \rightarrow 2\pi^+\pi^-K^-K_S^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma\chi_{b0}(1P))] < 2 \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma\chi_{b0}(1P)) = 3.8 \times 10^{-2}$.

$\Gamma(2\pi^+\pi^-K^-K_S^02\pi^0)/\Gamma_{\text{total}}$

 Γ_5/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT	ID	TECN	COMMENT
<5	90	10 ASNER	08A	CLEO	$\gamma(2S) \rightarrow \gamma 2\pi^{+}\pi^{-}K^{-}2\pi^{0}$
¹⁰ ASNER 08A	reports	$[\Gamma(\chi_{b0}(1P) \rightarrow$	$2\pi^{+}\pi^{-}$	$\kappa^- \kappa_S^0$	$(2\pi^0)/\Gamma_{total} \times [B(\Upsilon(2S) \rightarrow$
		10^{-6} which we d	ivide by o	ur best	value B($\Upsilon(2S) ightarrow \gamma \chi_{b0}(1P)$)
$= 3.8 \times 10^{-2}$	<u>2</u> .				

$\Gamma(2\pi^+2\pi^-2\pi^0)/\Gamma_{\text{total}}$

 Γ_6/Γ

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
<2.1	90	11 ASNER 08A	CLEO	$\Upsilon(2S) \rightarrow \gamma 2\pi^{+} 2\pi^{-} 2\pi^{0}$

 11 ASNER 08A reports $[\Gamma(\chi_{b0}(1P)\to 2\pi^+2\pi^-2\pi^0)/\Gamma_{\rm total}]\times [{\rm B}(\varUpsilon(2S)\to \gamma\chi_{b0}(1P))]$ $<8\times 10^{-6}$ which we divide by our best value ${\rm B}(\varUpsilon(2S)\to \gamma\chi_{b0}(1P))=3.8\times 10^{-2}.$

$\Gamma(2\pi^+2\pi^-K^+K^-)/\Gamma_{\text{total}}$

 Γ_7/Γ

$\Gamma(2\pi^+2\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

Го/Г

$\Gamma(2\pi^+2\pi^-K^+K^-2\pi^0)/\Gamma_{\text{total}}$

Γο/Γ

Created: 5/30/2017 17:21

$\Gamma(3\pi^+2\pi^-K^-K^0_5\pi^0)/\Gamma_{\text{total}}$ $\frac{\text{CL}\%}{90}$ $\frac{\text{DOCUMENT ID}}{15}$ $\frac{\text{TECN}}{\text{ASNER}}$ 08A CLEO $\frac{\text{COMMENT}}{\text{C2S}} \rightarrow \gamma 3\pi^{+} 2\pi^{-} K^{-} K_{S}^{0} \pi^{0}$ VALUE (units 10^{-4}) CL% <1.6 $^{15}\, {\rm ASNER}$ 08A reports $[\Gamma(\chi_{b0}(1P) \ \rightarrow \ 3\pi^+ \, 2\pi^- \, K^- \, K^0_S \, \pi^0)/\Gamma_{\rm total}] \ \times \ [{\rm B}(\varUpsilon(2S) \ \rightarrow \ T^- \, K^- \, K^0_S \, \pi^0)/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^0_S \, T^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^- \, K^0_S \, T^- \, K^0_S \, \pi^0]/\Gamma_{\rm total}] \ \times \ [{\rm ASNER} \, T^- \, K^0_S \, T^- \, K^0$ $\gamma \chi_{b0}(1P))] < 6 \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P)$) $= 3.8 \times 10^{-2}$ $\Gamma(3\pi^+3\pi^-)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 08A CLEO $\Upsilon(2S) \rightarrow \gamma 3\pi^{+} 3\pi^{-}$ <0.8 $^{16}\, {\rm ASNER}$ 08A reports $[\Gamma(\chi_{b0}(1P) \rightarrow ~3\pi^+\, 3\pi^-)/\Gamma_{\rm total}]\, \times\, [{\rm B}(\varUpsilon(2S) \rightarrow ~\gamma\chi_{b0}(1P))]$ $<3 imes 10^{-6}$ which we divide by our best value B($\Upsilon(2S) ightarrow \gamma \chi_{b0}(1P)) = 3.8 imes 10^{-2}$. $\Gamma(3\pi^+3\pi^-2\pi^0)/\Gamma_{\text{total}}$ $rac{ extit{DOCUMENT ID}}{ extit{17}}$ $rac{ extit{TECN}}{ extit{ASNER}}$ 08A CLEO $rac{ extit{COMMENT}}{ extit{T}(2S)} ightarrow \gamma 3\pi^{+} 3\pi^{-} 2\pi^{0}$ VALUE (units 10^{-4}) <6 $^{17}\,\text{ASNER 08A reports}\,[\Gamma\big(\chi_{b0}(1P)\to\ 3\pi^+\ 3\pi^-\ 2\pi^0\big)/\Gamma_{\text{total}}]\times[\mathrm{B}(\ \varUpsilon(2S)\to\ \gamma\chi_{b0}(1P))]$ $<22\times10^{-6}$ which we divide by our best value B($\Upsilon(2S)\to\gamma\chi_{b0}(1P)$) = 3.8×10^{-2} . $\Gamma(3\pi^+3\pi^-K^+K^-)/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT VALUE (units 10^{-4}) EVTS08A CLEO $\Upsilon(2S) \rightarrow \gamma 3\pi^{+} 3\pi^{-} K^{+} K^{-}$ 2.4±1.2±0.2 ¹⁸ ASNER ¹⁸ ASNER 08A reports $[\Gamma(\chi_{b0}(1P) \rightarrow 3\pi^{+}3\pi^{-}K^{+}K^{-})/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow 3\pi^{+}K^{+}K^{-})/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow 3\pi^{+}K^{+}K^{+}K^{-})/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow 3\pi^{+}K^{+}K^{+}K^{-})/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow 3\pi^{+}K^{+}K^{+$ $\gamma \chi_{b0}(1P))] = (9 \pm 4 \pm 2) \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \rightarrow$ $\gamma \chi_{h0}(1P) = (3.8 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(3\pi^+3\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) CL% DOCUMENT ID TECN COMMENT 000 ASNER 08A CLEO 000 00 $\gamma \chi_{b0}(1P))] < 37 \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P)$) $= 3.8 \times 10^{-2}$ $\Gamma(4\pi^+4\pi^-)/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT VALUE (units 10^{-4}) 08A CLEO $\Upsilon(2S) ightarrow \gamma 4\pi^+ 4\pi^-$ <0.8 ²⁰ ASNER 08A reports $[\Gamma(\chi_{b0}(1P) \rightarrow 4\pi^+ 4\pi^-)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma\chi_{b0}(1P))]$ $<3 imes10^{-6}$ which we divide by our best value B($\Upsilon(2S) ightarrow ~\gamma\chi_{b0}(1P))=3.8 imes10^{-2}$. $\Gamma(4\pi^+4\pi^-2\pi^0)/\Gamma_{\text{total}}$ $\begin{array}{c|ccccc} \underline{\textit{DOCUMENT ID}} & \underline{\textit{TECN}} & \underline{\textit{COMMENT}} \\ \hline \textit{ASNER} & \textit{08A} & \textit{CLEO} & \underline{\varUpsilon(2S)} \rightarrow \gamma 4\pi^+ 4\pi^- 2\pi^0 \end{array}$ VALUE (units 10^{-4}) CL%<21 ²¹ ASNER 08A reports $[\Gamma(\chi_{b0}(1P) \to 4\pi^+ 4\pi^- 2\pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma \chi_{b0}(1P))]$ $<77 \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P)$) = 3.8 $\times 10^{-2}$.

HTTP://PDG.LBL.GOV

Page 4

$\Gamma(J/\psi J/\psi)/\Gamma_{\text{total}}$ Γ_{17}/Γ *VALUE* (units 10^{-5}) <7 $^{22}\,\mathrm{SHEN}\,12\,\mathrm{reports} < 7.1\times10^{-5}\,\,\mathrm{from}\,\,\mathrm{a}\,\,\mathrm{measurement}\,\mathrm{of}\,[\Gamma\big(\chi_{b0}(1P)\to\,J/\psi\,J/\psi\big)/\Gamma_{tota]}]$ \times [B($\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P)$)] assuming B($\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P)$) = $(3.8 \pm 0.4) \times 10^{-2}$. $\Gamma(J/\psi\psi(2S))/\Gamma_{\text{total}}$ Γ_{18}/Γ VALUE (units 10^{-5}) 23 SHFN <12 ²³ SHEN 12 reports < 12 \times 10⁻⁵ from a measurement of $[\Gamma(\chi_{b0}(1P) \rightarrow J/\psi\psi(2S))/\Gamma_{\text{total}}] \times [B(\Upsilon(2S) \rightarrow \gamma\chi_{b0}(1P))]$ assuming $B(\Upsilon(2S) \rightarrow \gamma\chi_{b0}(1P)) = (3.8 \pm 0.4) \times 10^{-5}$ 10^{-2} $\Gamma(\psi(2S)\psi(2S))/\Gamma_{\text{total}}$ Γ_{19}/Γ VALUE (units 10^{-5}) ²⁴ SHEN <3.1 $^{24}\,\mathrm{SHEN}$ 12 reports $<3.1\times10^{-5}$ from a measurement of $[\Gamma(\chi_{b0}(1P)\to~\psi(2S)\,\psi(2S))/(2S)]$ $\Gamma_{\text{total}}] \times [B(\Upsilon(2S) \to \gamma \chi_{b0}(1P))] \text{ assuming } B(\Upsilon(2S) \to \gamma \chi_{b0}(1P)) = (3.8 \pm 0.4) \times C_{b0}(1P)$ $\chi_{h0}(1P)$ CROSS-PARTICLE BRANCHING RATIOS $\Gamma(\chi_{b0}(1P) \to \gamma \, \Upsilon(1S))/\Gamma_{total} \, imes \, \Gamma(\Upsilon(2S) \to \gamma \chi_{b0}(1P))/\Gamma_{total}$ $\Gamma_1/\Gamma \times \Gamma_{49}^{\Upsilon(2S)}/\Gamma^{\Upsilon(2S)}$ TECN COMMENT $< 1.7 \times 10^{-3}$ 11J BABR $\Upsilon(2S) \rightarrow X\gamma$ ²⁵ LEES 11J quotes a central value of $\Gamma(\chi_{b0}(1P) \to \gamma \Upsilon(1S))/\Gamma_{\text{total}} \times \Gamma(\Upsilon(2S) \to \gamma \Upsilon(1S))$ $\gamma \chi_{b0}(1P))/\Gamma_{total}=(8.3\pm5.6^{+3.7}_{-2.6})\times10^{-4}$ and derives a 90% CL upper limit of $\Gamma\big(\gamma\,\varUpsilon(1S)\big)/\Gamma_{\mathsf{total}}\ < 4.6\% \ \mathsf{using} \ \mathsf{B}(\varUpsilon(2S)\to\ \gamma\chi_{b0}(1P)) = (3.8\pm0.4)\%.$ $B(\chi_{b0}(1P) \rightarrow \gamma \Upsilon(1S)) \times B(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P)) \times B(\Upsilon(1S) \rightarrow \ell^+\ell^-)$ VALUE (units 10^{-5}) DOCUMENT ID **EVTS** TECN COMMENT 1.67±0.28 OUR AVERAGE $2.9 \ \, ^{+1.7}_{-1.4} \ \, ^{+0.1}_{-0.8}$ ²⁶ LEES 14M BABR $\Upsilon(2S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}$ 11 CLEO $e^+e^- \rightarrow \gamma\gamma\ell^+\ell^ 1.63\!\pm\!0.24\!\pm\!0.15$ KORNICER ²⁶ From a sample of $\Upsilon(2S) \to \gamma \gamma \mu^+ \mu^-$ with one converted photon. $[B(\chi_{b0}(1P) \rightarrow \gamma \Upsilon(1S)) \times B(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P))] / [B(\chi_{b1}(1P) \rightarrow \gamma \chi_{b0}(1P))]$ $\gamma \Upsilon(1S)) \times \mathbb{B}(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))]$ VALUE (%) ²⁷ LEES 14M BABR $\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^ 3.28 \pm 0.37$ ²⁷ From a sample of $\Upsilon(2S) \to \gamma \gamma \mu^+ \mu^-$ without converted photons.

$\chi_{b0}(1P)$ REFERENCES