

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Linear Quadratic Regulation: Solution Algorithm

Back to LQR Problem

A discrete-time LTI system

$$x[k+1] = Ax[k] + Bu[k], \quad x[0] = x_0$$

Problem: Given a time horizon $k \in \{0, 1, ..., N\}$, find the optimal input sequence $U = \{u[0], ..., u[N-1]\}$ that minimizes the cost function

$$J(U) = \sum_{k=0}^{N-1} \underbrace{\left(x[k]^T Q x[k] + u[k]^T R u[k]\right)}_{\text{running cost}} + \underbrace{x[N]^T Q_f x[N]}_{\text{terminal cost}}.$$

Can we apply dynamic programming method to LQR problem?

Value Function of LQR Problem

Value function (cost-to-go) at time $t \in \{0, 1, ..., N\}$ and state $x \in \mathbb{R}^n$ is

$$V_t(x) = \min_{u[t],...,u[N-1]} \sum_{k=t}^{N-1} \left(x[k]^T Q x[k] + u[k]^T R u[k] \right) + x[N]^T Q_f x[N]$$

with the initial condition x[t] = x

- Optimal cost over the time horizon $\{t, t+1, \dots, N\}$, starting from x[t] = x
- $V_0(x)$ is the optimal cost of the original LQR problem

Preview of Dynamic Programming Solution

- Value function at any time t is quadratic: $V_t(x) = x^T P_t x$
- P_t can be obtained recursively from P_{t+1}

Solution algorithm:

- **1** Start from $P_N = Q_f$ at time t = N;
- 2 For $t = N 1, \dots, 1, 0$, compute P_t from P_{t+1}
- **3** For t = 0, 1, ..., N 1, compute $u^*[t]$ using P_{t+1}

Bellman Equation

Optimality principle: to achieve optimal cost-to-go $V_t(x)$ from x[t] = x, cost-to-go from next state x[t+1] should be optimal

- $V_t(x)$ is the optimal cost-to-go from current position x[t] = x
- Assume the control adopted at time t is u[t] = v. Then cost over time horizon $\{t, t+1, \ldots, N\}$ can be decomposed into
 - Current running cost: $x^TQx + v^TRv$
 - Cost-to-go from next state x[t+1] = Ax + Bv over $\{t+1, \dots, N\}$

(Hamilton-Jacobi-)Bellman equation:

$$V_t(x) = \min_{u[t]=v} \left[x^T Q x + v^T R v + V_{t+1} (\underbrace{A x + B v}_{x[t+1]}) \right]$$

t = N Case

Value function at time N is quadratic:

$$V_N(x) = x^T P_N x$$
, $\forall x \in \mathbb{R}^n$, where $P_N = Q_f$

$$t = N - 1$$
 Case

Value function at time N-1 is also quadratic:

$$V_{N-1}(x) = \min_{v} \left[x^{T} Q x + v^{T} R v + V_{N} (A x + B v) \right]$$

$$= \min_{v} \left[x \right]_{v}^{T} \left[Q + A^{T} P_{N} A - A^{T} P_{N} B \right]_{v}^{T} \left[x \right]_{v}^{T}$$

$$= x^{T} \underbrace{\left(Q + A^{T} P_{N} A - A^{T} P_{N} B (R + B^{T} P_{N} B)^{-1} B^{T} P_{N} A \right)}_{P_{N-1}} x$$

with the optimal control
$$v^* = -\underbrace{(R + B^T P_N B)^{-1} B^T P_N A}_{K_{N-1}} x$$

• Optimal control $u^*[N-1] = -K_{N-1} \cdot x[N-1]$ at time N-1 is a linear state feedback controller with gain determined from P_N (not P_{N-1} !)

Schur Complement

Given
$$X = X^T \in \mathbb{R}^{m \times m}$$
, $Y = Y^T \in \mathbb{R}^{n \times n}$ $(Y \succ 0)$, $Z \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^m$

$$\min_{y \in \mathbb{R}^n} \begin{bmatrix} x \\ y \end{bmatrix}^T \begin{bmatrix} X & Z \\ Z^T & Y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^T (X - ZY^{-1}Z^T)x$$

- $X ZY^{-1}Z^T$ is called the Schur complement of Y in $\begin{bmatrix} X & Z \\ Z^T & Y \end{bmatrix}$
- Minimum is achieved at $y^* = -Y^{-1}Z^Tx$

Fact (Schur Complement Lemma)

$$\begin{bmatrix} X & Z \\ Z^T & Y \end{bmatrix} \succ 0 \text{ if and only if } Y \succ 0 \text{ and } X - ZY^{-1}Z^T \succ 0$$

General Case

Suppose value function at time t+1 is quadratic: $V_{t+1}(x) = x^T P_{t+1} x$

- Value function at time t is also quadratic: $V_t(x) = x^T P_t x$
- P_t obtained from P_{t+1} according to the **Riccati recursion**:

$$P_t := Q + A^T P_{t+1} A - A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$$

Optimal control at time t is a linear state feedback controller:

$$u^*[t] = -\underbrace{(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A}_{\text{Kalman gain } K_t} \times$$

whose gain is determined from P_{t+1} (not $P_t!$)

LQR Solution Algorithm

Set
$$P_N = Q_f$$

for
$$t = N - 1, N - 2, ..., 0$$
 do

Compute the value functions backward in time:

$$P_t := Q + A^T P_{t+1} A - A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$$

end for

Return $V_0(x_0)$ as the optimal cost

$$\mathsf{Set}\ x^*[0] = x_0$$

for
$$t = 0, 1, ..., N - 1$$
 do

Recover the optimal control and state trajectory forward in time:

$$u^*[t] = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A x^*[t]$$

$$x^*[t+1] = A x^*[t] + B u^*[t]$$

end for

Return u^* and x^* as the optimal control and state sequences

Remarks

- Value function at any time is quadratic (easy numeric representation)
- Optimal controls are linear state feedback with time-varying gains
- Yields the optimal solutions for all initial conditions x_0 and all intial times $t_0 \in \{0, 1, \dots, N\}$ simultaneously
- Easily extended to time-varying dynamics and costs cases