Counting Homogeneous Einstein Metrics

Hannah Friedman (UC Berkeley)

San Francisco State University Algebra, Geometry, and Combinatorics Seminar October 8, 2025

(Homogeneous) Einstein Metrics

Let M be a manifold with metric g. The metric g is Einstein or Ricci-flat if $\mathrm{Ric}_g = \lambda g$.

If a group G acts on M in a way that respects g, then the metric g is uniquely determined by an inner product on the tangent space \mathbf{m} of M at a single point. Assume \mathbf{m} decomposes into pairwise inequivalent Q-orthogonal representations $\mathbf{m} = \mathbf{m}_1 \oplus \cdots \oplus \mathbf{m}_\ell$. Then $g = x_1 Q |_{\mathbf{m}_1} + \cdots + x_\ell Q |_{\mathbf{m}_\ell}$ and g is Einstein if and only if

$$f_{i}(x) = \frac{L_{iii}}{x_{i}} + \sum_{k \in [\ell] \setminus \{i\}} \left(\frac{2L_{iik}x_{k}}{x_{i}^{2}} - \frac{2L_{ikk}x_{i}}{x_{k}^{2}} \right) + \sum_{j \neq k \in [\ell] \setminus \{i\}} 2L_{ijk} \left(\frac{x_{j}}{x_{i}x_{k}} + \frac{x_{k}}{x_{i}x_{j}} - \frac{x_{i}}{x_{j}x_{k}} \right) + 4d_{i} = 0, \quad i \in [\ell]$$

$$d_i = \dim(\mathfrak{m}_i)$$
 L_{ijk} are (almost) structure constants

(Homogeneous) Einstein Metrics

Example (Ziller, 1982).

$$M = S^{2n+1} \subseteq \mathbb{C}^{n+1} \qquad G = SU(n+1)$$

$$M \cong G/H$$
 where $H = \left\{ \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \in G : A \in SU(n) \right\}$

endow $\mathfrak{g} = \mathfrak{S}u(n+1)$ with the bi-invariant metric $Q(X,Y) = -\frac{1}{2} \operatorname{Re} \operatorname{tr} XY$

 $\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m}_1\oplus\mathfrak{m}_2$ where $\mathfrak{m}_1\cong\mathbb{C}^n$ is the defining representation and $\mathfrak{m}_2\cong\mathbb{R}$ is the trivial representation

$$\ell = 2 \quad d_1 = 2n \quad d_2 = 1 \quad L_{112} = 4n + 4 \quad L_{122} = 0 \quad L_{111} = -16n^2 + 16n \quad L_{222} = 0$$

$$-\frac{16n^2 + 16n}{x_1} + \frac{(8n+8)x_2}{x_1^2} = -8n$$

$$\xrightarrow{(4n+4)x_2 = 4} = 4$$

$$x_1 = 2n, \quad x_2 = \frac{2n}{n+1}$$
round metric

The Finiteness Conjecture

Conjecture (Böhm-Wang-Ziller, 2004). If M = G/H is a compact homogeneous space whose isotropy representation consists of pairwise inequivalent irreducible summands, then the Einstein equations have only finitely many real solutions.

$$f_{i}(x) = \frac{L_{iii}}{x_{i}} + \sum_{k \in [\ell] \setminus \{i\}} \left(\frac{2L_{iik}x_{k}}{x_{i}^{2}} - \frac{2L_{ikk}x_{i}}{x_{k}^{2}} \right) + \sum_{j \neq k \in [\ell] \setminus \{i\}} 2L_{ijk} \left(\frac{x_{j}}{x_{i}x_{k}} + \frac{x_{k}}{x_{i}x_{j}} - \frac{x_{i}}{x_{j}x_{k}} \right) + 4d_{i} = 0, \quad i \in [\ell]$$

Proposition (Bettiol-F, 2025). Let $\ell=2$ and suppose that $d_1,d_2>0$. Then the system has finitely many solutions.

Question (Bettiol-F, 2025). Suppose $d_1, \ldots, d_{\ell} > 0$. Does this system have finitely many solutions?

An Upper Bound

Theorem (Bettiol-F, 2025). The number of isolated solutions in $(\mathbb{C}^{\times})^{\ell}$ to

$$f_{i}(x) = \frac{L_{iii}}{x_{i}} + \sum_{k \in [\ell] \setminus \{i\}} \left(\frac{2L_{iik}x_{k}}{x_{i}^{2}} - \frac{L_{ikk}x_{i}}{x_{k}^{2}} \right) + \sum_{j \neq k \in [\ell] \setminus \{i\}} 2L_{ijk} \left(\frac{x_{j}}{x_{i}x_{k}} + \frac{x_{k}}{x_{i}x_{j}} - \frac{x_{i}}{x_{j}x_{k}} \right) + 4d_{i} = 0, \quad i \in [\ell]$$

is at most the central Delannoy number $D_{\ell-1}$.

$$D_2 = 13$$
:

3, 13, 63, 321, 1683, 8989, 48 639, 265 729

The Bernstein-Khovanskii-Kushnirenko Bound

A Laurent polynomial $f(x) = \sum_{a \in \mathbb{Z}^\ell} c_a x^a$ has support $\mathcal{A} = \{a \in \mathbb{Z}^\ell : c_a \neq 0\}$ and Newton polytope $P = \operatorname{conv}(\mathcal{A})$.

$$f(x,y) = 1 + x + y + xy$$
 $\mathcal{A} = \{(0,0), (1,0), (0,1), (1,1)\}$ $P = \bigcup_{(0,0)} (1,0)$

Let $\mathscr{F} = \{f_1, ..., f_\ell\}$ be a system of Laurent polynomials with Newton polytopes $\operatorname{Newt}(f_i) = P_i$.

Theorem (Bernstein, 1975). The number of isolated solutions in $(\mathbb{C}^{\times})^{\ell}$ to system $\mathscr{F}=0$ is bounded above by the *mixed volume* $MV(P_1,\ldots,P_{\ell})$.

If P_1,\ldots,P_ℓ are "close enough," then $\mathrm{MV}(P_1,\ldots,P_\ell)=\mathrm{nVol}(P_1\cup\cdots\cup P_\ell)$.

An Upper Bound: Examples

$$\ell=2$$
:

$$f_1(x) = L_{111}x_1^{-1} + 2L_{112}x_2x_1^{-2} - L_{122}x_1x_2^{-2} + 4d_1 = 0$$

$$f_2(x) = L_{222}x_2^{-1} + 2L_{122}x_1x_2^{-2} - L_{112}x_2x_1^{-2} + 4d_2 = 0$$

$$\ell = 3$$
:

$$P = \operatorname{conv}(\mathbf{0}, \mathbf{e}_i - 2\mathbf{e}_j : i, j \in [\ell])$$

Bernstein's "Other" Theorem

Theorem (Bernstein, 1975). Suppose that every facial system of \mathscr{F} has no roots in $(\mathbb{C}^{\times})^{\ell}$. Then all roots of \mathscr{F} are isolated and the number of solutions to the system \mathscr{F} is equal to the

BKK bound.

Let f be a polynomial in ℓ variables, $\mathcal{A} = \operatorname{supp}(f)$, and $P = \operatorname{conv}(\mathcal{A}) \subseteq \mathbb{R}^{\ell}$.

$$f(x,y) = 1 + x + y + xy$$

$$P = \prod_{x}^{xy}$$

If $f(x) = \sum_{a \in \mathcal{A}} c_a x^a$, then the restriction of f to the face $F \subseteq P$ is $f(x) = \sum_{a \in \mathcal{A} \cap F} c_a x^a$.

BKK Discriminant: $\ell = 2$

$$f_1(x) = L_{111}x_1^{-1} + 2L_{112}x_2x_1^{-2} - L_{122}x_1x_2^{-2} + 4d_1 = 0$$

$$f_2(x) = L_{222}x_2^{-1} + 2L_{122}x_1x_2^{-2} - L_{112}x_2x_1^{-2} + 4d_2 = 0$$

BKK Discriminant: $\ell = 2$

$$f_1(x) = L_{111}x_1^{-1} + 2L_{112}x_2x_1^{-2} - L_{122}x_1x_2^{-2} + 4d_1 = 0$$

$$f_2(x) = L_{222}x_2^{-1} + 2L_{122}x_1x_2^{-2} - L_{112}x_2x_1^{-2} + 4d_2 = 0$$

BKK Discriminant: $\ell=2$

BKK Discriminant: $\ell=2$

$$f_1(x) = L_{111}x_1^{-1} + 2L_{112}x_2x_1^{-2} - L_{122}x_1x_2^{-2} + 4d_1 = 0$$

$$f_2(x) = L_{222}x_2^{-1} + 2L_{122}x_1x_2^{-2} - L_{112}x_2x_1^{-2} + 4d_2 = 0$$

$$R = \begin{vmatrix} L_{122} & L_{222} & L_{111} & L_{112} \\ & L_{122} & L_{222} & L_{111} & L_{112} \\ & & L_{122} & L_{222} & L_{111} & L_{112} \\ 3L_{122} & 2L_{222} & L_{111} & & & & \\ & & 3L_{122} & 2L_{222} & L_{111} & & & & \\ & & & 3L_{122} & 2L_{222} & L_{111} & & & & \\ & & & & & & & & \\ \end{bmatrix} = 0$$

BKK Discriminant: $\ell=2$

Proposition (Bettiol-F, 2025). The system

$$f_1(x) = L_{111}x_1^{-1} + 2L_{112}x_2x_1^{-2} - L_{122}x_1x_2^{-2} + 4d_1 = 0$$

$$f_2(x) = L_{222}x_2^{-1} + 2L_{122}x_1x_2^{-2} - L_{112}x_2x_1^{-2} + 4d_2 = 0$$

has three solutions in $(\mathbb{C}^{\times})^2$ if the polynomial

$$(d_1 + 2d_2) \cdot (2d_1 + d_2) \cdot L_{112} \cdot L_{122} \cdot R$$

does not vanish.

BKK Discriminant

Proposition (Bettiol-F, 2025). The system

$$f_{i}(x) = \frac{L_{iii}}{x_{i}} + \sum_{k \in [\ell] \setminus \{i\}} \left(\frac{2L_{iik}x_{k}}{x_{i}^{2}} - \frac{L_{ikk}x_{i}}{x_{k}^{2}} \right) + \sum_{j \neq k \in [\ell] \setminus \{i\}} 2L_{ijk} \left(\frac{x_{j}}{x_{i}x_{k}} + \frac{x_{k}}{x_{i}x_{j}} - \frac{x_{i}}{x_{j}x_{k}} \right) + 4d_{i} = 0, \quad i \in [\ell]$$

has $D_{\ell-1}$ many solutions in $(\mathbb{C}^{ imes})^\ell$ if the polynomial below does not vanish:

$$E_{A}(\text{scal}) \cdot \prod_{\substack{S, T \subseteq [\ell] \\ S \cap T = \emptyset}} \left(\sum_{i \in S} 2d_i + \sum_{i \in T} d_i \right).$$

Scalar Curvature

The scalar curvature is the trace of the Ricci tensor.

$$f_{i}(x) = \underbrace{\frac{L_{iii}}{x_{i}} + \sum_{k \in [\ell] \setminus \{i\}} \left(\frac{2L_{iik}x_{k}}{x_{i}^{2}} - \frac{L_{ikk}x_{i}}{x_{k}^{2}} \right) + \sum_{j \neq k \in [\ell] \setminus \{i\}} 2L_{ijk} \left(\frac{x_{j}}{x_{i}x_{k}} + \frac{x_{k}}{x_{i}x_{j}} - \frac{x_{i}}{x_{j}x_{k}} \right) + 4d_{i} = 0, \quad i \in [\ell]$$

$$\operatorname{scal}(x) = \sum_{i=1}^{\ell} d_i r_i(x) = -\frac{1}{4} \left[\sum_{i=1}^{\ell} \frac{L_{iii}}{x_i} + \sum_{\substack{i,j,k=1\\k \neq i,j}}^{\ell} L_{ijk} \frac{x_k}{x_i x_j} \right]$$

$$x_i \frac{\partial}{\partial x_i} \operatorname{scal}(x) = -d_i r_i(x)$$

Principal A-Determinant

Let $\mathscr{A} \subseteq \mathbb{Z}^\ell$ be such that $f(x) = \sum_{a \in \mathscr{A}} c_a x^a$ is homogeneous. The principal A-determinant of f

is a polynomial in the c_a defined as the resultant of the toric derivatives of f:

$$E_A(f) = R_A\left(x_1 \frac{\partial f}{\partial x_1}, \dots, x_{\ell} \frac{\partial f}{\partial x_{\ell}}\right).$$

Familiar Resultant

$$f(x) = ax^{2} + bx + c$$

$$f'(x) = 2ax + b$$

$$R(f, f') = b^{2} - 4ac$$

Principal A-Determinant of Scalar Curvature

Example ($\ell = 2$).

$$\operatorname{scal}(x) = -\frac{1}{4} \left(\frac{L_{111}}{x_1} + \frac{L_{222}}{x_2} + \frac{L_{122}x_1}{x_2^2} + \frac{L_{112}x_2}{x_1^2} \right)$$

Principal A-Determinant

Let
$$\mathscr{A} \subseteq \mathbb{Z}^{\ell}$$
 be such that $f(x) = \sum_{a \in \mathscr{A}} c_a x^a$ is homogeneous.

Theorem (Gelfand-Kapronov-Zelevinsky, 1994). The principal A-determinant factors as

$$E_{A}(f) = \prod_{F \subseteq P} \Delta_{F \cap \mathscr{A}}^{m_{F}}(f)$$

where the product is over faces F of the polytope $P=\operatorname{conv}(\mathscr{A})$, the m_F are natural numbers and $\Delta_{F\cap\mathscr{A}}(f)$ is the defining polynomial of the A-discriminant:

$$V(\Delta_{F\cap\mathscr{A}}(f)) = \left\{ c \in \mathbb{C}^{|\mathscr{A}|} : \text{there exists } x \in (\mathbb{C}^{\times})^{\mathscr{\ell}} \text{ such that } \frac{\partial f_F}{\partial x_i}(x) = 0 \text{ for } i \in [\mathscr{\ell}] \right\}$$

where f_F denotes the restriction of f to the face F.

Principal A-Determinant of Scalar Curvature

Example ($\ell = 2$).

$$\operatorname{scal}(x) = -\frac{1}{4} \left(\frac{L_{111}}{x_1} + \frac{L_{222}}{x_2} + \frac{L_{122}x_1}{x_2^2} + \frac{L_{112}x_2}{x_1^2} \right)$$

$$\mathbf{e}_{2} - 2\mathbf{e}_{1} \bullet \mathbf{e}_{2} - 2\mathbf{e}_{1} \bullet \mathbf{e}_{1} - \mathbf{e}_{2}$$

$$\mathbf{e}_{1} - 2\mathbf{e}_{2}$$

$$E_{A}(\text{scal}) = \begin{vmatrix} L_{122} & L_{222} & L_{111} & L_{112} \\ & L_{122} & L_{222} & L_{111} & L_{112} \\ & & L_{122} & L_{222} & L_{111} & L_{112} \\ & & & 3L_{122} & 2L_{222} & L_{111} \\ & & & & 3L_{122} & 2L_{222} & L_{111} \end{vmatrix}$$

$$=L_{112}L_{122}(L_{111}^2L_{222}^2-27L_{112}^2L_{122}^2-4L_{222}^3L_{112}-4L_{111}^3L_{122}+18L_{111}L_{222}L_{112}L_{122})$$

Geometric Corollary

Corollary (Bettiol-F, 2025) Let G/H be a compact homogeneous space whose isotropy representation consists of ℓ pairwise inequivalent irreducible summands. If the principal A -determinant $E_A(\text{scal})$ does not vanish, then there are at most $D_{\ell-1}$ many G-invariant Einstein metrics on G/H. In particular, the Finiteness Conjecture holds on G/H.

Question (Bettiol-F, 2025) Construct geometric examples with $\ell>2$ which achieve the BKK bound $D_{\ell-1}$.

Example: Full Flag Manifolds

Let M = G/H, where G is a compact simple Lie group of classical type and H is a maximal torus in G.

G	SU(3)	SU(4)	SU(5)	SU(6)	SO(5)	SO(7)	Sp(3)	SO(8)
BKK Bound	4	80	9,168	6,603,008	12	5,376	5,232	239,744
# complex solutions	4	59	7,908	5,037,448	10	4,224	4,512	150,256
# real solutions	4	29	1,596	191,252	6	750	728	11,128
# positive solutions, i.e., # G-invariant Einstein metrics	4	29	396	6,572	6	48	64	184
# isometry classes of G-invariant Einstein metrics	2	4	12	35	2	5	4	5

Thank you!