Analysis 2 W5-1

fat

March 19, 2024

Recall: $f \in L^1([-\pi, \pi])$ and extend f periodically. To each such f we can associate the Fourier series of f:

$$f(x) \sim \sum_{n=-\infty}^{\infty} \hat{f}(n)e^{inx}$$

where

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)e^{-iny} \mathrm{d}y$$

which is well-defined when $f \in L^1$.

Questions: Does the Fourier series converge? In what sense? Is the limit f? In fact we don't have pointwise convergence if f is justs piecewise continuous. Consider

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le \pi \\ 0 & \text{if } -\pi < x < 0 \end{cases}$$

Extend it periodically on \mathbb{R} .

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{\pi} e^{-inx} dx = \begin{cases} \frac{1 - e^{-in\pi}}{2\pi i n} & \text{if } n \neq 0\\ \frac{1}{2} & \text{if } n = 0 \end{cases}$$

$$= \begin{cases} \frac{1}{i\pi n} & \text{if } n \text{ is odd} \\ \frac{1}{2} & \text{if } n = 0 \\ 0 & \text{if } n \text{ is even, } n \neq 0 \end{cases}$$

The Fourier series of f becomes

$$\frac{1}{2} + \sum_{n \text{ odd}} \frac{2}{n\pi} \sin nx$$

f(0) = 0, but the Fourier series is 1/2 at x = 0. How about continuous f? Define the partial sum

$$S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}(n)e^{inx}$$

Consider the N^{th} -Dirichlet kernel

$$D_N(x) = \sum_{n=-N}^{N} e^{inx}$$

Check:

 $D_N(x) = \frac{\sin\left(\left(N + \frac{1}{2}\right)x\right)}{\sin\left(\frac{x}{2}\right)} (D_N(0) = 2N + 1)$

and

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(x) dx = 1$$

$$S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}(n) e^{inx}$$

$$= \sum_{n=-N}^{N} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{-iny} dy \right) e^{inx}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left(\sum_{N=N}^{N} e^{in(x-y)} \right) dy$$

where

 $(f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y)g(y) dy$

 $= f * D_N(x)$

So

$$S_N(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin\left(\left(N + \frac{1}{2}\right)(x - y)\right)}{\sin\left(\frac{x - y}{2}\right)} f(y) dy$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin\left(\left(N + \frac{1}{2}\right)y\right)}{\sin\left(\frac{y}{2}\right)} f(x - y) dy$$

Proposition 1. If f is 2π periodic and Hölder/Lipschitz continuous then $S_N(f) \to f$ pointwise.

Proof.

Let $\alpha \in (0,1]$ and c > 0 such that

$$|f(x+h) - f(x)| \le c|h|^{\alpha} \ \forall x, h \in \mathbb{R}$$

$$S_N(f)(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x - y) - f(x)) D_N(y) dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(y) \sin\left(\left(N + \frac{1}{2}\right)y\right) dy$$

where $g(y) \in L^1([-\pi, \pi])$. For $y \in [-\pi, \pi]$,

$$\left| \frac{f(x-y) - f(x)}{\sin\left(\frac{y}{2}\right)} \right| \le c'|y|^{-1+\alpha}$$

where $c'|y|^{-1+\alpha}$ is Lebesgue integrable.

Recall that if g is integrable then $\hat{g}(N) \to 0$ as $|N| \to \infty$. (Riemann-Lebesgue lemma.) Similarly, can show

$$\int_{-\pi}^{\pi} g(x) \sin\left(\left(N + \frac{1}{2}\right)x\right) dy \to 0 \text{ as } N \to \infty$$

So

$$S_N(f)(x) - f(x) \to 0 \ \forall x \in \mathbb{R}, \text{ as } N \to \infty$$

What if f is merely continuous?

Fact: Can construct an explicit example of continuous f such that its Fourier series diverges at one point. (Stein-Shakarchi: Fourier analysis, Ch3, Section 2.2) We will give as soft (non-constructive) proof of a stronger result. A periodic function can be viewed as a function on \mathbb{S}^1 .

Theorem 1. $\{f \in C^0(\mathbb{S}^1) : S_N(f) \text{ diverges at } 0\}$ is dense in $C^0(\mathbb{S}^1)$.

Proof.

Consider $\Lambda_N f = S_N(f)(0) = \sum_{n=-N}^N \hat{f}(n)$. Check: $\Lambda_N \in (C^0(\mathbb{S}^1))^*$. Can write

$$\Lambda_N f = \frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(y) f(y) dy$$

Claim.

$$\|\Lambda_N\| = \int_{-\pi}^{\pi} |D_N(y)| \mathrm{d}y$$

Proof.

Will prove something stronger. For $G \in C^0([a,b])$, define $\Lambda f = \int_a^b f(x)g(x)dx$. Will show $\Lambda \in (C^0([a,b]))^*$, and

$$\|\Lambda\| = \int_a^b |g(x)| \mathrm{d}x$$

By Riesz representation theorem, take

$$\alpha(x) = \int_{a}^{x} g(t) dt$$

$$\Rightarrow \|\Lambda\| = T_{\alpha}(a, b) = \|g\|_{L^{1}}$$

(Can prove this directly without Riesz representation theorem.)

$$\|\Lambda_N\| = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\sin\left(\left(N + \frac{1}{2}\right)y\right)}{\sin\left(\frac{y}{2}\right)} \right| dy$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \left| \frac{\sin\left(\left(N + \frac{1}{2}\right)y\right)}{\sin\left(\frac{y}{2}\right)} \right| dy$$

$$\geq \frac{2}{\pi} \int_{0}^{\pi} \frac{\left| \sin\left(\left(N + \frac{1}{2}\right)y\right) \right|}{y} dy$$

$$= \frac{2}{\pi} \int_{0}^{\left(N + \frac{1}{2}\right)\pi} \frac{\left| \sin y \right|}{y} dy$$

$$\geq \frac{2}{\pi} \sum_{j=1}^{N} \int_{(j-1)\pi}^{j\pi} \frac{\left| \sin y \right|}{y} dy$$

$$\geq \frac{2}{\pi} \sum_{j=1}^{N} \frac{1}{j\pi} \int_{(j-1)\pi}^{j} \left| \sin y \right| dy$$

$$\frac{4}{\pi^2} \sum_{j=1}^{N} \frac{1}{j} \to \infty \text{ as } N \to \infty$$

That is, $\|\Lambda_N\| \to \infty$ as $N \to \infty$. So by the alternative formulation of UBP, the resonance points of (Λ_N) are dense in $C^0(\mathbb{S}^1)$. The resonance points are exactly the functions whose Fourier series diverges at 0.

1 Open Mapping Theorem

Recall(?): A function $f: X \to Y$, where X, Y are topological spaces, is called an open map if $f(\mathcal{U})$ is open in Y whenever \mathcal{U} is open in X.

Example 1. Every nonzero linear functional on a normed space X is open. Let $\Lambda \in L(X, \mathbb{C})$ be nonzero. Pick $z_0 \in X$ such that $\Lambda z_0 = 1$. Let $\mathcal{U} \subseteq X$ be open. Want: $\Lambda \mathcal{U}$ is open. Take $\Lambda x_0 \in \Lambda \mathcal{U}$. Since \mathcal{U} is open, $\exists r > 0$ such that $B(x_0, r) \subseteq \mathcal{U}$. If $s \in \left(-\frac{r}{\|z_0\|}, \frac{r}{\|z_0\|}\right)$, then $x_0 + sz_0 \in B(x_0, r)$.

$$\Rightarrow \Lambda(x_0 + sz_0) = \Lambda x_0 + s \in \Lambda \mathcal{U}$$

$$\Rightarrow \left(\Lambda x_0 - \frac{r}{\|z_0\|}, \Lambda x_0 + \frac{r}{\|z_0\|}\right) \subseteq \Lambda \mathcal{U}$$

So $\Lambda \mathcal{U}$ is open.

Theorem 2. Every surjective bounded linear operator from a Banach space to another Banach space is an open map.

Proof.

Let $T \in \mathcal{B}(X,Y)$ be surjective, where X,Y are Banach spaces.

Step 1: $\exists r > 0$ such that $B_Y(0,r) \subseteq \overline{TB_X(0,1)}$. Why? Since T is onto,

$$Y = \bigcup_{j=1}^{\infty} TB_X(0,j) = \bigcup_{j=1}^{\infty} \overline{TB_X(0,j)}$$

Y is complete. By Baire category theorem, $\exists j_0$ such that $\overline{TB_X(0,j_0)}$ contains a ball $B_Y(y_0,\rho)$. $TB_X(0,j_0)$ is dense in $\overline{TB_X(0,j_0)} \Rightarrow B_Y(y_0,\rho) \cap TB_X(0,j_0) \neq \phi$. By replacing $B_Y(y_0,\rho)$ by a smaller ball if necessary, we may assume $y_0 = Tx_0$ for some $x_0 \in B(0,j_0)$. Then

$$B_Y(y_0, \rho) \subseteq \overline{TB_X(0, j_0)} \stackrel{\Delta - \text{ineq}}{\subseteq} \overline{TB_X(x_0, j_0 + ||x_0||)}$$

Translation,
$$y_0 = Tx_0$$
 $B_Y(0, \rho) \subseteq \overline{TB_X(0, j_0 + ||x_0||)}$

$$\Rightarrow B_Y(0,r) \subseteq \overline{TB_X(0,1)}, \text{ where } r = \frac{\rho}{j_0 + \|x_0\|}$$

Step 2: $B_Y(0,r) \subseteq TB_X(0,3)$. Exercise: This implies the theorem. It remains to show Step 2. Let $y \in B_Y(0,r)$. Want to find $x^* \in B_X(0,3)$ such that $Tx^* = y$. By Step 1, for any $n \ge 0$, we have

$$B_Y\left(0, \frac{r}{2^n}\right) \subseteq \overline{TB_X\left(0, \frac{1}{2^n}\right)}$$

n = 0: $\exists x_1 \in B_X(0, 1)$ such that $||y - Tx_1|| < \frac{r}{2}$. Now, $y - Tx_1 \in B_Y(0, \frac{r}{2})$.

n = 1: $\exists x_2 \in B_X\left(0, \frac{1}{2}\right)$ such that $\|y - Tx_1 - Tx_2\| < \frac{r}{2^2}$. Inductively, we obtain (x_n) with $x_n \in B_X\left(0, \frac{1}{2^{n-1}}\right)$ and $\|y - Tx_1 - Tx_2 - \dots - Tx_n\| < \frac{r}{2^n}$. Set $z_n = \sum_{j=1}^n x_j$. Then (z_n) is Cauchy: for $r_n < n$,

$$||z_m - z_n|| \le ||x_{m+1}|| + \dots + ||x_n|| \le \frac{1}{2^{m-1}}$$

X is complete $\Rightarrow x^* = \lim_{n \to \infty} z_n$ exists. Check: $x^* \in B_X(0,3)$ and $Tx^* = y$.

$$||z_n|| \le \sum_{j=1}^n ||x_j|| \le 2$$

$$\Rightarrow x^* \in \overline{B_X(0,2)} \subseteq B_X(0,3)$$

$$||y - Tx^*|| \le ||y - Tz_n|| + ||Tz_n - Tx^*|| < \frac{r}{2^n} + 0 \to 0$$

 $y = Tx^*$.

Corollary 1 (Banach inverse mapping theorem). Let $T \in \mathcal{B}(X,Y)$ be a bijection, where X,Y are Banach spaces. Then T is invertible.

Proof.

Want: T^{-1} is bounded. From the proof of the open mapping theorem, $\exists r > 0$ such that $B_Y(0,r) \subseteq TB_X(0,3)$.

$$\Rightarrow T^{-1}B_Y(0,r) \subseteq B_X(0,3)$$

 $\Rightarrow T^{-1}$ maps a ball (and hence any ball) in Y to a bounded set in $X. \Rightarrow T^{-1}$ is bounded.

2 Closed Graph Theorem

Theorem 3. Let $T: X \to Y$ be linear, where X, Y are vector spaces. The graph of T is

$$G(T) = \{(x, Tx) : x \in X\} \subseteq X \times Y\}$$

Further suppose that X, Y are normed. We say that T is closed if G(T) is a cclosed subset of $X \times Y$ under the product topology. Equivalently, T is closed if whenever $x_n \to x$ in X and $Tx_n \to y$ then y = Tx.

T bounded $\Rightarrow T$ closed $\Rightarrow T$ bounded. Differential operator $\frac{d}{dx}$ on $C^1([a,b]) \subseteq C^0([a,b])$ with sup norm is closed by unbounded.

Theorem 4 (Closed Graph Theorem). Any closed map from a Banach space to another Banach space is bounded.

Proof.

Let $T \in L(X,Y)$ be a closed map. Since $X \times Y$ is complete and G(T) is closed in $X \times Y$, G(T) is also a Banach space. Define the projection operator $P: G(T) \to X$ by

$$P(x, Tx) = x \ \forall x \in X$$

Clearly, P is bijective. Also,

$$||P(x,Tx)|| = ||x|| \le ||x|| + ||Tx||$$

 $\Rightarrow P \in \mathcal{B}(G(T), X)$. By Banach's inverse mapping theorem, P^{-1} is bounded. So $\exists, > 0$ such that

$$||x|| + ||Tx|| = ||(x, Tx)|| = ||P^{-1}x|| \le c||x|| \ \forall x \in X$$

 $\Rightarrow T$ is bounded.

We showed open mapping theorem \Rightarrow closed graph theorem. Can also show closed graph theorem \Rightarrow open mapping theorem. These two are equivalent.