МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный университет им. П.Г. Демидова"

Кафедра теории функций и функционального анализа

«Допустить к защите»
Зав.кафедрой,
к.фм.н., доцент
М.В.Невский
«»20 г.

Дипломная работа

Вычисление геометрических характеристик *п*-мерного симплекса

Научный рук	оводитель
к.фм.н., доп	ент
M.E	3.Невский
« <u> </u> »	20 г.
Студентка гр	уппы ПМИ-51СО
A.A	.Князева
« »	20 г.

Содержание

1	Вве	едение. Постановка задачи	2
2	Гео	метрические характеристики п-мерного симплекса	3
	2.1	Некоторые свойста базисных многочленов лагранжа	3
	2.2	Вычисление максимального в симплексе отрезка данного	
		направления	5
	2.3	Симплекс и куб в \mathbb{R}^n	7
3	Опі	исание программы	9
4	Рез	ультаты счета	12
	4.1	Случай $n=2$	12
	4.2	Случай $n=3$	18
5	Зак	лючение	22
6	Биб	блиография	23
7	Прі	иложение	24

1 Введение. Постановка задачи

Данная работа посвящена решению ряда задач, связанных с невырожденным симплексом $S \subset \mathbb{R}^n$. Эта тема является актуальной и в последнее время ей было посвящено множество работ, например [1], [3], [4] и [5]. А так же была Основными являются задачи вычисления осевых диаметров n-мерного симплекса и вычисление максимального отрезка заданного направления.

Целью работы является изучение алгоритма решения поставленных задач и реализация его на ЭВМ. Программа должна подсчитывать осевые диаметры, коэффициенты λ_j базисных многочленов Лагранжа, норму интерполяционного проектора, величину α по заданным вершинам невырожденного симплекса S, максимальный отрезок заданного направления (направление задаётся вектором размерности n) и некоторых других характеристик.

Теоретическая часть содержит необходимые геометрические характеристики. Представленные в этой части работы формулы используются для нахождения осевых диаметров n-мерного симплекса, базисных многочленов Лагранжа и других величин, связанных с поставленными задачами. Вторая часть включает в себя описание программы. Затем рассмотрены некоторые примеры, подтверждающие точность полученных в завершении работы программы результатов. Обобщает все это заключение, в котором подводится итог всей проделанной работе. Также имеет место приложение, в котором представлен код реализованной мною программы.

2 Геометрические характеристики n-мерного симплекса

2.1 Некоторые свойста базисных многочленов лагранжа

Пусть $n \in \mathbb{N}$. Элемент $x \in \mathbb{R}^n$ будем записывать в виде $x = (x_1, \dots, x_n)$. Положим $Q_n := [0,1]^n$. Через $C(Q_n)$ обозначим пространство непрерывных функций $F: C(Q_n) \to \mathbb{R}$ с нормой $\|f\|_{C(Q_n)} := \max_{x \in Q_n} |f(x)|$, а через $\Pi_1(\mathbb{R}_n)$ – совокупность многочленов от n переменных степени ≤ 1 .

Рассмотрим невырожденный симплекс $S \subset \mathbb{R}^n$, то есть такой, что $vol(S) \neq 0$. Обозначим вершины S через $x^{(j)} = \left(x_1^{(j)}, \dots, x_n^{(j)}\right), j = 1, \dots, n+1$. Из координат вершин $x^{(j)}$ составим матрицу

$$\mathbf{A} := \begin{pmatrix} x_1^{(1)} & \dots & x_n^{(1)} & 1 \\ x_1^{(2)} & \dots & x_n^{(2)} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_1^{(n+1)} & \dots & x_n^{(n+1)} & 1 \end{pmatrix}.$$

Пусть $\Delta := det(\mathbf{A})$, а определитель $\Delta_j(x)$ получается из Δ заменой j-й строки на строку $(x_1, \ldots, x_n, 1)$. Многочлены $\lambda_j(x) = 0$ задают (n-1)-мерные грани S. Имеет место представление

$$S = \{ x \in \mathbb{R}^n : \lambda_j(x) \ge 0, j = 1, \dots, n+1 \}.$$
 (2.1)

В дальнейшем используется запись

$$\lambda_j(x) = l_{1j}x_1 + \dots + l_{nj}x_n + l_{n+1,j}. \tag{2.2}$$

Обозначим через $d_i(S)$ максимальную длину отрезка, содержащегося в S и параллельного оси x_i . Величину $d_i(S)$ будем называть i-м осевым диаметром S. В [1] доказано, что для любого $i=1,\ldots,n$ справедливо равенство

$$\frac{1}{d_i(S)} = \frac{1}{2} \sum_{j=1}^{n+1} |l_{ij}|. \tag{2.3}$$

В симплексе S существует ровно один отрезок длины $d_i(S)$, параллель-

ный оси x_i . Концы $y_+^{(i)}$ и $y_-^{(i)}$ этого отрезка суть

$$y_{+}^{(i)} = \sum_{j=1}^{n+1} s_{ij} x^{(j)}, s_{ij} := \frac{|l_{ij}| + l_{ij}}{\sum_{k=1}^{n+1} |l_{ik}|};$$
(2.4)

$$y_{-}^{(i)} = \sum_{j=1}^{n+1} t_{ij} x^{(j)}, t_{ij} := \frac{|l_{ij}| - l_{ij}}{\sum_{k=1}^{n+1} |l_{ik}|}.$$
 (2.5)

Обозанчим за $\Sigma_i(S)$ (n-1)-меру проекции S на гиперплоскость $x_i=0$. Имеет место равенство

$$vol(S) = \frac{d_i(S) \cdot \Sigma_i(S)}{n}, \tag{2.6}$$

Если $Q_n \subset S$, то справедливо неравенство

$$\sum_{i=1}^{n} \frac{1}{d_i(S)} \le 1. \tag{2.7}$$

Из (2.7) следует, что в случае $Q_n \subset S$ для некоторого $i = 1, \ldots, n$ симплекс S содержит отрезок длины n, параллельный оси x_i .

Если $S \subset Q_n$, то многочлены λ_j могут применяться для вычисления величины $\xi(S) := \min\{\sigma \geq 1 : Q_n \subset \sigma S\}$, где σS есть результат гомотетии S относительно центра тяжести с коэффициентом σ .

$$\xi(S) = (n+1) \max_{1 \le j \le n+1} \max_{x \in ver(Q_n)} (-\lambda_j(x)) + 1.$$
 (2.8)

Здесь и далее $ver(Q_n)$ есть совокупность вершин Q_n .

Пусть $P: C(Q_n) \to \Pi_1(\mathbb{R}^n)$ – интерполяционный проектор, узлы которого совпадают с вершинами $S \subset Q_n$. Этот проектор определяется равенствами $Pf(x^{(j)}) = f_j := f(x^{(j)})$. Справедлив следующий аналог интерполяционной формулы Лагранжа:

$$Pf(x) = p(x) := \sum_{j=1}^{n+1} f_j \lambda_j(x),$$
 (2.9)

в связи с чем многочлены λ_j мы называем базисными многочленами Лагранжа. Из (2.9) получается, что норма P как оператора из $C(Q_n)$ в

 $C(Q_n)$ может быть найдена по формулам

$$||P|| = \max_{x \in ver(Q_n)} \sum_{j=1}^{n+1} |\lambda_j(x)| = \max_{f_j = \pm 1} \max_{x \in ver(Q_n)} |p(x)|.$$
 (2.10)

Как установлено в [1], в случае $S \subset Q_n$ введённые нами величины связаны двойным неравенством

$$\sum_{i=1}^{n} \frac{1}{d_i(S)} \le \xi(S) \le \frac{n+1}{2} (\|P\| - 1) + 1.$$
 (2.11)

Пусть C - выпуклое тело в \mathbb{R}^n , т.е. компактное выпуклое подмножество \mathbb{R}^n с непустой внутренностью. Через σC обозначим результат гомотетии C относительно центра тяжести с коэффициентом σ . Символом $d_i(C)$ обозначим i-й осевой диаметр C. Через Q_n обозначим n-мерный единичный куб $[0,1]^n$. Под транслятором будем понимать результат параллельного переноса.

Для выпуклых тел $C_1, C_2 \subset \mathbb{R}^n$ обозначим через $\alpha(C_1; C_2)$ минимальное $\sigma > 0$, для которого C_1 принадлежит транслятору σC_2 . В [3] доказано, что для любого выпуклого тела C справедливо неравенство

$$\alpha(Q_n; C) \le \sum_{i=1}^n \frac{1}{d_i(C)}.$$
(2.12)

Если же C представляет собой невырожденный симплекс S, то это соотношение обращается в равенство, т.е. имеет место

$$\alpha(Q_n; S) = \sum_{i=1}^n \frac{1}{d_i(S)}.$$
 (2.13)

(см. [4, теорема 4]).

Из (2.13) и (2.3) получается, что

$$\alpha(Q_n; S) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} |l_{ij}|.$$
 (2.14)

2.2 Вычисление максимального в симплексе отрезка данного направления

Пусть v — ненулевой n-мерный вектор. Обозначим через $d^v(S)$ максимальную длину отрезка, принадлежащего S и параллельного v. Далее

представлены формулы для вычисления величины $d^v(S)$ и концов максимального отрезка по координатам v и вершинам S. В случае, когда v коллинеарен i-й координатной оси, положим $d_i(S) := d^v(S)$, где $d_i(S)$ – i-ый осевой диаметр S.

Обозначим через $v_1, \dots v_n$ координаты данного нам вектора v. Введем в рассмотрение числа $(1 \le j \le n+1)$

$$m_j := \sum_{k=1}^n l_{kj} v_k, \tag{2.15}$$

$$\alpha_j := \frac{|m_j| - m_j}{\sum_{k=1}^{n+1} |m_k|}, \quad \beta_j := \frac{|m_j| + m_j}{\sum_{k=1}^{n+1} |m_k|}.$$
 (2.16)

Через $\|\cdot\|$ обозначим евклидову норму в \mathbb{R}^n . В [5] доказано следующее.

Теорема. Величина $d^{v}(S)$ удовлетворяет равенству

$$d^{v}(S) = \frac{2||v||}{\sum_{j=1}^{n+1} |m_{j}|}.$$
(2.17)

Концы единственного отрезка максимальной длины, принадлежащего S и параллельного v, есть точки

$$a = \sum_{j=1}^{n+1} \alpha_j x^{(j)}, \quad b = \sum_{j=1}^{n+1} \beta_j x^{(j)}.$$
 (2.18)

Для доказательства данной теоремы в [5] используются следующие вспомогательные предположения.

Лемма 1. Пусть I – отрезок, параллельный v и расположеенный в S таким образом, что каждый (n-1)-мерная грань S содержит хотя бы один из его концов. Тогда длина I совпадает c правой частью (2.17).

Лемма 2. В S существует единственный отрезок, параллельный вектору v и расположенный таким образом, что каждая (n-1)-мерная грань S содержит хотя бы один из его концов. Этот отрезок является единственным отрезком из S максимальной длины, параллельным v.

С привлечением результатов, описанных в [1] и [2] можно получить следующие следствия. Пусть $\Sigma(S;v)$ есть (n-1)-мерная мера проекции симплекса S на гиперплоскость, ортогональную вектору v.

Следствие 1. Имеют места равенства

$$\Sigma(S; v) = \frac{n * vol(S)}{d^{v}(S)} = \frac{|det(A)|}{2(n-1)!||v||} \sum_{j=1}^{n+1} |m_{j}|.$$
 (2.19)

Через σS обозначим образ S при гомотетии с коэфиициентом σ и центром гомотетии в центре тяжести S. Пусть V – невырожденный параллелепипед в \mathbb{R}^n , рёбра которого задаются линейно независимыми векторами $v^{(1)}, \ldots, v^{(n)}$. Через $\alpha(V; S)$ обозначим минимальное $\sigma > 0$ такое, что V одержится в трансляте сиплекса σS . Вычислим величину

$$M := \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n+1} \left| \sum_{k=1}^{n} l_{kj} v_k^{(i)} \right|. \tag{2.20}$$

Следствие 2. Имеют места равенства

$$\alpha(V;S) = \sum_{i=1}^{n} \frac{\|v^{(i)}\|}{d^{v^{(i)}}(S)} = M.$$
 (2.21)

Следствие 3. Неравенство $M \leq 1$ эквивалентно тому, что V содержится в трансляте симплекса S. Равенство M=1 эквивалентно тому, что некоторый транслят S' симплекса S описан вокруг V, т.е. $V \subset S'$ и каждая (n-1)-мерная грань S' содержит вершину V.

2.3 Симплекс и куб в \mathbb{R}^n

В данном разделе рассматривается задача о вычислении для симплекса S такой точки $x \in \mathbb{R}^n$, для которой с минимально возможным коэффициентом $\sigma > 0$ справедливо включение $Q_n \subset S_{x,\sigma}$. В [6] автор доказывает, что задача имеет решение, и причём единственное, в случае $\alpha(S) \neq 1$; при этом минимальное σ как раз и равно $\alpha(S)$. Далее приведены формулы, в которых центр x минимальной положительной гомотетии вычисляется через вершины S и числа l_{ij} – коэффициенты многочленов λ_j (см (2.2)).

Пусть S - невырожденный симплекс в \mathbb{R}^n . Из определения $\alpha(S)$ (см. 2.14) легко следует, что некоторый транслянт симплекса описан вокруг Q_n . Поэтому $\alpha(S)=1$ тогда и только тогда, когда существует транслят S описанный вокруг Q_n .

Теорема 1. Если $\sigma = \sum_{i=1}^{n} 1/d_i(S) \neq 1$, то существует единственная точка $x = (x_1, \dots, x_n)$ такая, что $Q_n \subset S_{x,\sigma}$. Имеют место равенства

$$x_k = \frac{1}{2(\sigma - 1)} \left[\sum_{i=1}^{n+1} \left(\sum_{i=1}^n |l_{ij}| \right) x_k^{(j)-1} \right], k = 1, \dots, n.$$
 (2.22)

Eсли $0 < \sigma < \sum_{i=1}^{n} 1/d_i(S)$, то для любой $x \in \mathbb{R}^n$ верно $Q_n \not\subset S_{x,\sigma}$.

В [6] приведены следующие формулы для вычисления x, в которых используются только вершины S и числа l_{ij} .

Теорема 2. Для невырожденного симплекса $S \subset \mathbb{R}^n$ условие $\alpha(S) \neq 1$ эквивалентно

$$\sum_{i=1}^{n} \sum_{j=1}^{n+1} |l_{ij}| \neq 2. \tag{2.23}$$

Пусть выполнено (2.23) и $\sigma := \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n+1} |l_{ij}|$. Тогда единственная точка x, для которой верно включение $Q_n \subset S_{x,\sigma}$, может быть вычислена по равенствам

$$x_k = \frac{\sum_{j=1}^{n+1} (\sum_{i=1}^n |l_{ij}|) x_k^{(j)} - 1}{\sum_{i=1}^n \sum_{j=1}^{n+1} |l_{ij}| - 2}, k = 1, \dots, n.$$
 (2.24)

Рассмотрим ситуацию, когда симплекс содержиться в Q_n . $d_i(S) \leq 1$, поэтому $\alpha(S) \geq n$ (равенство имеет место тогда и только тогда, когда каждый осевой диаметр равен 1). Далее идёт специальный вариант теоремы 1 для этой ситуации.

Теорема 3. Пусть $S \subset Q_n$ и $d_1(S) = \cdots = d_n(S) = 1$. Существует единственная точка $x \in S$ такая, что $Q_n \subset S_{x,n}$. При n > 1 имеют место равенства

$$x_k = \frac{1}{2(n-1)} \left[\sum_{j=1}^{n+1} \left(\sum_{i=1}^n |l_{ij}| \right) x_k^{(j)-1} \right], k = 1, \dots, n.$$
 (2.25)

Если $0 < \sigma < n$, то для любой $x \in \mathbb{R}^n$ верно $Q_n \not\subset S_{x,n}$.

3 Описание программы

Основной задачей моей работы стало написание программы, реализующей алгоритм нахождения различных геометрических характеристик симплекса по заданным вершинам.

Программа написана на языке JavaScript и представляет собой вебприложение. Серверная часть реализована на NodeJs. Для сборки клиентской части использовался GULP, пакетный менеджер на клиентской части - Bower. Программа написана с использованием популярного фрэймворка AngularJS. Так же применялся front-end фрэймворк Bootstrap. На странице приложения вводятся координаты вершин симплекса, вектор, параллелограмм (представленный n векторами). После завершения подсчета на экран выводятся осевые диаметры (длины и координаты концов), коэффициенты базисных многочленов Лагранжа, норма проектора $\|P\|$, минимальный транслятор $\alpha(Q_n;S)$, максимальный вписанный отрезок, параллельный заданному вектору (длина и координаты концов), $\Sigma(S;v)$, $\alpha(V;S)$ для заданного параллелограмма. Все исходники хранятся в репозитории на GitHub.

Программа включает в себя следующие файлы:

- 1. package.json, метаданные серверной части проекта;
- 2. bower.json, метаданные клиентской части проекта;
- 3. server.js, серверная часть проекта;
- 4. gulpfile.js, файл, необходимый для сборки проекта и сжатия файлов;
- 5. index.html, файл с версткой;
- 6. simplex.js, контроллер;
- 7. mymath.js, файл с реализацией необходимых вычислительных функций;

Интерфейс выглядит следующим образом:

1. ввод размерности и вершин симплекса;

2. ввод координат вектора;

3. ввод векторов, образующих параллелограмм;

v⁽¹⁾ 0 0 0 0 v⁽²⁾ 0 0 0 0 0 v⁽³⁾ 0 0 0

4 Результаты счета

В этой части работы будут приведены несколько примеров, показывающих результаты вручную посчитанного алгоритма в сравнении с результатами, посчитанными программой.

4.1 Случай n=2

Пусть n=2,S - треугольник с вершинами $x^{(1)}=(1,\ 0), x^{(2)}=(1/2,1),$ $x^{(3)}=(0,1/4).$ Тогда

$$\mathbf{A} := \begin{pmatrix} 1 & 0 & 1 \\ \frac{1}{2} & 1 & 1 \\ 0 & \frac{1}{4} & 1 \end{pmatrix}, \mathbf{A}^{-1} := \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & -\frac{8}{7} \\ -\frac{4}{7} & \frac{8}{7} & -\frac{4}{7} \\ \frac{1}{7} & -\frac{2}{7} & \frac{8}{7} \end{pmatrix}.$$

Коэффициенты базисных многочленов Лагранжа составляют столбцы матрицы \mathbf{A}^{-1} , поэтому

$$\lambda_1(x) = \frac{6}{7}x_1 - \frac{4}{7}x_2 + \frac{1}{7}, \lambda_2(x) = \frac{2}{7}x_1 + \frac{8}{7}x_2 - \frac{2}{7}, \lambda_3 = -\frac{8}{7}x_1 - \frac{4}{7}x_2 + \frac{8}{7}.$$
 (4.1)

Результат программы:

$$\begin{split} &\lambda_1 = 0.8571428571428571^*x_1 + 0.2857142857142857^*x_2 - \\ &1.1428571428571428^*x_3 \\ &\lambda_2 = -0.5714285714285714^*x_1 + 1.1428571428571428^*x_2 - \\ &0.5714285714285714^*x_3 \\ &\lambda_3 = 0.14285714285714285^*x_1 - 0.2857142857142857^*x_2 + \\ &1.1428571428571428^*x_3 \end{split}$$

В соответствии с (2.1) симплекс S (с границей) задаётся системой линейных неравенств

$$\frac{6}{7}x_1 - \frac{4}{7}x_2 \ge -\frac{1}{7}, \frac{2}{7}x_1 + \frac{8}{7}x_2 \ge \frac{2}{7}, \frac{8}{7}x_1 - \frac{4}{7}x_2 \ge -\frac{8}{7}.$$

Вычисления по формуле (2.3) с учётом (2.2), (4.1) дают:

$$\frac{1}{d_1(S)} = \frac{1}{2} \left(\frac{6}{7} + \frac{2}{7} + \frac{8}{7} \right) = \frac{8}{7}, \frac{1}{d_2(S)} = \frac{1}{2} \left(\frac{4}{7} + \frac{8}{7} + \frac{4}{7} \right) = \frac{8}{7},$$

т.е. $d_1(S) = d_2(S) = 7/8$. Заметим, что совпадение $d_1(S)$ и $d_2(S)$ сразу следует из равенства длин проекций S на координатные оси – достаточно привлечь (2.6).

Результат выполнения программы:

$$d_1 = 0.875$$

 $d_2 = 0.875$

Найдём координаты концов максимальных отрезков рассматриваемого видаю При i=1 формулы (2.4) - (2.5) приводят к следующим результатам:

$$s_{11} = \frac{6/7 + 6/7}{16/7} = 1, s_{12} = \frac{2/7 + 2/7}{16/7} = \frac{1}{4}, s_{13} = \frac{8/7 - 8/7}{16/7} = 0,$$

$$y_{+}^{(1)} = s_{11} x^{(1)} + s_{12} x^{(2)} + s_{13} x^{(3)} = \left(\frac{7}{8}, \frac{1}{4}\right);$$

$$t_{11} = \frac{6/7 - 6/7}{16/7} = 0, t_{12} = \frac{2/7 + 2/7}{16/7} = 0, t_{13} = \frac{8/7 + 8/7}{16/7} = 1,$$

$$y_{-}^{(1)} = t_{11} x^{(1)} + t_{12} x^{(2)} + t_{13} x^{(3)} = \left(0, \frac{1}{4}\right).$$

Концы максимального в S отрезка, параллельного оси x_1 есть точки $y_+^{(1)}=(78,14),y_-^{(1)}=(0,1/4).$ При i=2 аналогично получаем:

$$s_{21} = 0, \ s_{22} = 1, \ s_{23} = 0,$$

$$y_{+}^{(2)} = s_{21} x^{(1)} + s_{22} x^{(2)} + s_{23} x^{(3)} = x^{(2)} = \left(\frac{1}{2}, 1\right);$$

$$t_{21} = \frac{1}{2}, \ t_{22} = 0, \ t_{23} = \frac{1}{2},$$

$$y_{-}^{(2)} = t_{21} x^{(1)} + t_{22} x^{(2)} + t_{23} x^{(3)} = \frac{1}{2} x^{(1)} + \frac{1}{2} x^{(3)} = \left(\frac{1}{2}, \frac{1}{8}\right).$$

Поэтому максимальным в S отрезком, параллельным оси x_2 , является отрезок с концами $y_+^{(2)}=(1/2,1), y_-^{(2)}=(1/2,1/8)$.

Результат выполнения программы:

$$y_{+}^{1} = (0.875, 0.25) y_{-}^{1} = (0, 0.25)$$

 $y_{+}^{2} = (0.5, 1) y_{-}^{2} = (0.5, 0.125)$

Теперь найдем $\xi(S)$. Очевидно,

$$\max_{x \in ver(Q_2)}(-\lambda_1(x)) = \frac{3}{7}, \max_{x \in ver(Q_2)}(-\lambda_2(x)) = \frac{2}{7}, \max_{x \in ver(Q_2)}(-\lambda_3(x)) = \frac{4}{7}.$$

Формула (2.8) даёт $\xi(S) = 3 \cdot (4/7) + 1 = 19/7$.

Найдём норму интерполяционного проектора $P:C(Q_2)\to\Pi_1(\mathbb{R}^2)$, узлы которого совпадают с вершинами S. Интерполяционная формула Лагранжа (2.9) в данном случае имеет вид

$$p(x) = Pf(x) = f_1\lambda_1(x) + f_2\lambda_2(x) + f_3\lambda_3(x).$$

Подставим сюда выражение для базисных многочленов λ_j и найдем значения p в вершинах Q_2 :

$$p(0,0) = \frac{1}{7}f_1 - \frac{2}{7}f_2 + \frac{8}{7}f_3, p(1,0) = f_1,$$

$$p(0,1) = -\frac{3}{7}f_1 + \frac{6}{7}f_2 + \frac{4}{7}f_3, p(1,1) = \frac{3}{7}f_1 + \frac{8}{7}f_2 - \frac{4}{7}f_3,$$

Поэтому в соответствии с (2.10)

$$||P|| = \max_{f_j = \pm 1} \max(|p(0,0)|, |p(1,0)|, |p(0,1)|, |p(1,1)|) = \frac{15}{7}.$$

Соотношения (2.11) принимают вид 16/7 < 19/7 = 19/7.

Применяя (2.13) или (2.14) находим $\alpha(Q_2; S) = 16/7$.

Значения в программе:

||P|| = 2.142857142857143

 $\alpha(S) = 2.2857142857142856$

 $\xi(S) = 2.7142857142857144$

2.2857142857142856 <= 2.7142857142857144 <= 2.7142857142857144

Возьмем вектор v=(1;1). Найдем величины m_1,\ldots,m_3 с помощью формулы (2.15). Получаем

$$m_1 = \frac{2}{7}, m_2 = \frac{10}{7}, m_3 = -\frac{12}{7}$$

Далее

$$\alpha_1 = 0, \alpha_2 = 0, \alpha_3 = 1, \beta_1 = \frac{1}{6}, \beta_2 = \frac{5}{6}, \beta_3 = 0,.$$

И находим концы максимального вписанного в симплекс отрезка заданного направления

$$a = 1 * (0, \frac{1}{4}), b = \frac{1}{6} * (1, 0) + \frac{5}{6} * (\frac{1}{2}, 1) = (\frac{7}{12}, \frac{5}{6},).$$

Его длина суть

$$d^{v}(S) = \frac{2||v||}{\sum_{j=1}^{n+1} |m_{j}|} = \frac{2\sqrt{3}}{3}.$$

Результат выполнения программы

 $d^{v} = 0.8249579113843056$

a = (0, 0.250000000000000000)

А величина $\Sigma(S,v)$ равна $\frac{3\sqrt{2}}{4}$. После выполнения программы получаем

$$\Sigma(S,v) = 1.060660171779821$$

Возьмем параллелограмм V, который задается векторами $v_1=(1;0)$, $v_2=(1,1)$ и посчитаем для него величину $\alpha(V,S)$ используя формулу (2.21). Т.к. v_2 есть вектор из предыдущих расчетов, а v_1 – вектор, параллельный координатной оси, то нет необходимости пересчитывать $d^{v^{(i)}}$. Получаем

$$\alpha(V, S) = \frac{1*8}{7} + \frac{1}{1} + \frac{12\sqrt{2}}{7\sqrt{2}} = \frac{20}{7} = M$$

Результат выполнения программы

4.2 Случай n=3

Пусть n=3, S — тетраэдр с вершинами $x^{(1)}=(1,0,0), x^{(2)}=(0,1,0),$ $x^{(3)}=(0,0,1), x^{(4)}=(1,1,1).$ Это правильный тетраэдр, вписанный в куб $Q_3=[0,1]^3.$ В рассматриваемой ситуации

$$\mathbf{A} := \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \mathbf{A}^{-1} := \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}.$$

Базисные многочлены Лагранжа -

$$\lambda_1(x) = \frac{1}{2}x_1 - \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{1}{2}, \lambda_2(x) = -\frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{1}{2},$$
$$\lambda_3 = -\frac{1}{2}x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + \frac{1}{2}, \lambda_4 = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}.$$

Результат выполнения программы:

$$\lambda_1 = 0.5^*x_1 - 0.5^*x_2 - 0.5^*x_3 + 0.5^*x_4$$

$$\lambda_2 = -0.5^*x_1 + 0.5^*x_2 - 0.5^*x_3 + 0.5^*x_4$$

$$\lambda_3 = -0.5^*x_1 - 0.5^*x_2 + 0.5^*x_3 + 0.5^*x_4$$

$$\lambda_4 = 0.5^*x_1 + 0.5^*x_2 + 0.5^*x_3 - 0.5^*x_4$$

Поэтому симплекс S (с границей) задаётся системой линейных неравенств

$$x_1 - x_2 - x_3 \ge -1, -x_1 + x_2 - x_3 \ge -1,$$

 $-x_1 - x + 2 + x_3 \ge -1, x_1 + x_2 + x_3 \ge 1,$

Вычислим осевые диаметры S и максимальные отрезки, параллельные координатным осям. Формула (2.3) даёт $d_1(S) = d_2(S) = d_3(S) = 1$. В программе получаем:

$$d_1 = 1$$

 $d_2 = 1$
 $d_3 = 1$

Факт совпадения всех $d_i(S)$ следует также из (2.6) и того, что площади проекций S на координатные плоскости одинаковы (и равны 1). Числа s_{ij} и t_{ij} оказываются следующими:

$$s_{11} = \frac{1}{2}, s_{12} = 0, s_{13} = 0, s_{14} = \frac{1}{2};$$

$$t_{11} = 0, t_{12} = \frac{1}{2}, t_{13} = \frac{1}{2}, t_{14} = 0;$$

$$s_{21} = 0, s_{22} = \frac{1}{2}, s_{23} = 0, s_{24} = \frac{1}{2};$$

$$t_{21} = \frac{1}{2}, t_{22} = 0, t_{23} = \frac{1}{2}, t_{24} = 0;$$

$$s_{31} = 0, s_{32} = 0, s_{33} = \frac{1}{2}, s_{34} = \frac{1}{2};$$

$$t_{31} = \frac{1}{2}, t_{32} = \frac{1}{2}, t_{33} = 0, t_{34} = 0.$$

Поэтому

$$y_{+}^{(1)} = \sum_{j=1}^{4} s_{1j} x^{(j)} = \frac{1}{2} \left(x^{(1)} + x^{(4)} \right) = \left(1, \frac{1}{2}, \frac{1}{2} \right),$$

$$y_{-}^{(1)} = \sum_{j=1}^{4} t_{1j} x^{(j)} = \frac{1}{2} \left(x^{(2)} + x^{(3)} \right) = \left(0, \frac{1}{2}, \frac{1}{2} \right),$$

$$y_{+}^{(2)} = \sum_{j=1}^{4} s_{2j} x^{(j)} = \frac{1}{2} \left(x^{(2)} + x^{(4)} \right) = \left(\frac{1}{2}, 1, \frac{1}{2} \right),$$

$$y_{-}^{(2)} = \sum_{j=1}^{4} t_{2j} x^{(j)} = \frac{1}{2} \left(x^{(1)} + x^{(3)} \right) = \left(\frac{1}{2}, 0, \frac{1}{2} \right),$$

$$y_{+}^{(3)} = \sum_{j=1}^{4} s_{3j} x^{(j)} = \frac{1}{2} \left(x^{(3)} + x^{(4)} \right) = \left(\frac{1}{2}, \frac{1}{2}, 1 \right),$$

$$y_{-}^{(3)} = \sum_{j=1}^{4} t_{3j} x^{(j)} = \frac{1}{2} \left(x^{(1)} + x^{(2)} \right) = \left(\frac{1}{2}, \frac{1}{2}, 0 \right),$$

Максимальными в S отрезками, параллельными координатным осям, оказываются отрезки единичной длины, соединяющие середины противоположных (скрещивающихся) рёбер. Например, максимальный отрезок, параллельный оси x_1 , имеет концы $y_+^{(1)} = (1, 1/2, 1/2)$ и $y_-^{(1)} = (0, 1/2, 1/2)$. Указанные отрезки пересекаются в центре куба. В программе получаем:

$$y_{+}^{-1} = (1, 0.5, 0.5) y_{-}^{-1} = (0, 0.5, 0.5)$$

 $y_{+}^{2} = (0.5, 1, 0.5) y_{-}^{2} = (0.5, 0, 0.5)$
 $y_{+}^{3} = (0.5, 0.5, 1) y_{-}^{3} = (0.5, 0.5, 0)$

Найдём $\xi(S)$. Нетрудно видеть, что при всех j=1,2,3,4

$$\max_{x \in ver(Q_3)} (-\lambda_j(x)) = \frac{1}{2},$$

Поэтому по формуле (2.8) $\xi(S) = 4 \cdot (1/2) + 1 = 3$. Пусть $P: C(Q_3) \to \Pi_1(\mathbb{R}^3)$ – интерполяционный проектор, узлы которого совпадают с вершинами S. Применяя формулу

$$p(x) = Pf(x) = f_1\lambda_1(x) + f_2\lambda_2(x) + f_3\lambda_3(x) + f_4\lambda_4(x).$$

и явный вид λ_j , найдём значения p в каждой из восьми вершин $Q_3:p(0,0,0)=(1/2)(f_1+f_2+f_3-f_4), p(1,0,0)=f_1$ и т.д. Как оказывается,

$$||P|| = \max_{f_j = \pm 1} \max_{x \in ver(Q_n)} |p(x)| = 2.$$

Двойное неравенство (2.11) имеет форму равенства – каждая из его частей равняется 3. Применяя (2.13) или (2.14) находим $\alpha(Q_3; S) = 3$.

Выполнение программы даёт нам следующиие результаты:

$$||P|| = 2$$

 $\alpha(S) = 3$
 $\xi(S) = 3$
 $3 <= 3 <= 3$

Возьмем вектор v=(1,1,1). Найдем величины m_1,\ldots,m_4 с помощью формулы (2.15). Получаем

$$m_1 = -\frac{1}{2}, m_2 = -\frac{1}{2}, m_3 = -\frac{1}{2}, m_4 = \frac{3}{2}.$$

Далее

$$\alpha_1 = \frac{1}{3}, \alpha_2 = \frac{1}{3}, \alpha_3 = \frac{1}{3}, \alpha_4 = 0, \beta_1 = 0, \beta_2 = 0, \beta_3 = 0, \beta_4 = 1.$$

И находим концы максимального вписанного в симплекс отрезка заданного направления

$$a = \frac{1}{3}(1,0,0) + \frac{1}{3}(0,1,0) + \frac{1}{3}(0,0,1) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), b = 1 \cdot (1,1,1) = (1,1,1).$$

Его длина суть

$$d^{v}(S) = \frac{2||v||}{\sum_{i=1}^{n+1} |m_{i}|} = \frac{2\sqrt{3}}{3}.$$

Результат выполнения программы

d^v = 1.1547005383792515}

b = (1, 1, 1)

А величина $\Sigma(S,v)$ равна $\frac{\sqrt{3}}{2}$. Результат выполнения программы

$$\Sigma(S,v) = 0.8660254037844387$$

Возьмем параллелограмм V, который задается векторами $v_1=(1,1,1)$, $v_2=(1,0,0), v_3=(0,1,0)$ и посчитаем для него величину $\alpha(V,S)$ используя формулу (2.21). Т.к. v_1 есть вектор из предыдущих расчетов, а v_2 и v_3 параллельны координатным осям, то нет необходимости пересчитывать $d^{v^{(i)}}$. Получаем

$$\alpha(V,S) = \frac{3\sqrt{3}}{2\sqrt{3}} + \frac{1}{1} + \frac{1}{1} = \frac{7}{2} = M$$

Результат выполнения программы

$$\alpha(V,S) = 3.5$$

5 Заключение

Подводя итог, можно сказать, что в данной работе реализованы все поставленные задачи, а именно:

- рассмотрен алгоритм нахождения осевых диаметров, максимального в симплексе отрезка данного направления и прочих велечин, по заданным вершинам невырожденного симплекса, вектору и параллелограмму.
- на примерах разобраны случаи n=2 (S треугольник) и n=3 (S тетраэдр), подтверждающие корректность выполнения программы
- написана веб-программа, реализующая данные подсчеты на ЭВМ, с ипользованием популярных технологий и фрэймворков.

6 Библиография

Список литературы

- [1] Невский М.В., Об одном свойстве *п*-мерного симплекса // Матем. заметки. 2010. Т. 87, №4. С. 580 593.
- [2] Невский М.В., О некоторых свойствах базисных многочленов Лагранжа // Преподавание математики и компьютерных наук в классическом университете. Материалы 3-й научно-методической конференции преподавателей математического факультета и факультета информатики и вычислительной техники ЯрГУ им. П.Г.Демидова. Ярославль, 2010. С. 111 117.
- [3] Невский М.В., Об осевых диаметрах выпуклого тела // Матем. заметки. 2011. Т. 90, №2. С. 313 315.
- [4] Nevskii M., Properties of axial diametres of a simplex //Discrete Comput. Geom. 2011. V. 87, №2. P. 301 312.
- [5] Невский М.В.,Вычисление максимального в сиплексе отрезка данного направления // Фундамент. и прикладная математика. 2013. Т. 18, № 2. С. 147-152. (Английский перевод: Nevskii M.V. // journal of Math Sciense. 2014. V_1 203, N 6. P. 851-854)
- [6] Невский М.В., Об одной задачи для симплекса и куба в \mathbb{R}^n // Модел. и анализ информ. систем. Т.20, № 3 (2013) 77 85.
- [7] Толстопятенко А.А., Вычисление геометрических характеристик *п*-мерного симплекса. //Путь в науку. Математика: Материалы II международной молодежной научно-практической конференции /Гл. ред. Д.В. Глазков.- Ярославль ЯрГУ, 2014. с.56-59.

7 Приложение

1. Файл mymath.js (реализация необходимых для вычислений методов)

```
function transpose(a) {
1
         return a[0].map(function (v, i) {
2
             return a.map(function (r, j) {
3
                 return a[j][i];
4
             });
5
         });
6
7
    }
8
    function getA(m) {
9
         for (i in m) {
10
             m[i].push(1);
11
12
         }
13
         return m;
    }
14
15
    function _determinant(A)
16
    {
17
         var N = A.length, B = [], denom = 1, exchanges = 0;
18
         for (var i = 0; i < N; ++i) {
19
             B[i] = [];
20
             for (var j = 0; j < N; ++j) B[i][j] = A[i][j];
21
22
         for (var i = 0; i < N - 1; ++i) {
23
             var maxN = i, maxValue = Math.abs(B[i][i]);
24
             for (var j = i + 1; j < N; ++j) {
25
                 var value = Math.abs(B[j][i]);
26
                 if (value > maxValue) {
27
                     maxN = j;
28
29
                      maxValue = value;
                 }
30
             }
31
             if (\max N > i) {
32
                 var temp = B[i];
33
                 B[i] = B[maxN];
34
```

```
B[maxN] = temp;
35
                  ++exchanges;
36
             }
37
             else {
38
                  if (maxValue == 0) return maxValue;
39
             }
40
             var value1 = B[i][i];
41
             for (var j = i + 1; j < N; ++j) {
42
                  var value2 = B[j][i];
43
                  B[j][i] = 0;
44
                  for (var k = i + 1; k < N; ++k)
45
                      B[j][k] = (B[j][k] * value1 -
46
                          B[i][k] * value2) / denom;
47
             }
48
49
             denom = value1;
50
         }
         if (exchanges \% 2) return -B[N - 1][N - 1];
51
         else return B[N - 1][N - 1];
52
53
    }
54
     function _matrixCofactor(i, j, A)
55
     {
56
         var N = A.length, sign = ((i + j) % 2 == 0) ? 1 : -1;
57
         for (var m = 0; m < N; m++) {
58
             for (\text{var } n = j + 1; n < N; n++) A[m][n - 1] = A[m][n];
59
             A[m].length--;
60
         }
61
         for (\text{var } k = i + 1; k < N; k++) A[k - 1] = A[k];
62
         A.length--;
63
         return sign * _determinant(A);
64
    }
65
66
     function _adjugateMatrix(A)
67
     {
68
         var N = A.length, B = [], adjA = [];
69
         for (var i = 0; i < N; i++) {
70
             adjA[i] = [];
71
```

```
for (var j = 0; j < N; j++) {
72
                  for (var m = 0; m < N; m++) {
 73
                       B[m] = [];
74
                       for (\text{var } n = 0; n < N; n++) B[m][n] = A[m][n];
75
                  }
76
77
                  adjA[i][j] = _matrixCofactor(j, i, B);
78
              }
          }
79
80
          return adjA;
81
     }
82
     function inverse(A)
83
84
          var det = _determinant(A);
85
          if (det == 0) return false;
86
          var N = A.length, a = _adjugateMatrix(A);
87
          for (var i = 0; i < N; i++) {
88
              for (var j = 0; j < N; j++) {
89
                  a[i][j] /= det;
90
                  a[i][j] = a[i][j] || 0;
91
              }
92
          }
93
94
          return a;
95
     }
96
97
     function ifPointIntoSimplex(1, p) {
98
          var i, j, arr = [];
99
          for (i = 0; i < 1.length; i++) {
100
              var t = 0;
101
              for (j = 0; j < l[i].length; j++) {
102
                  t = t + 1[i][j] * p[j] ? p[j] : 1;
103
              }
104
              arr.push(t);
105
          }
106
          for (i in arr) {
107
              if (arr[i] < 0) {
108
```

```
109
                   return -1;
              }
110
              else if (arr[i] == 0) {
111
                   return 0;
112
              }
113
          }
114
          return 1;
115
     }
116
117
      function findDiamters(1) {
118
          var d = [], i = 0, j = 0;
119
          for (i = 0; i < 1.length - 1; i++) {
120
              d[i] = 0;
121
              for (j = 0; j < l[i].length; j++) {
122
                   d[i] += Math.abs(l[i][j]);
123
              }
124
              d[i] = 2 / d[i];
125
          }
126
127
          return d;
     }
128
129
      function _findSum(1) {
130
          var i, j, result = [];
131
          for (i = 0; i < 1.length - 1; i++) {
132
              var sum = 0;
133
              for (j = 0; j < l[i].length; j++) {
134
                   sum += Math.abs(l[i][j]);
135
              }
136
              result.push(sum);
137
          }
138
          return result;
139
     }
140
141
     function _findSOrT(el, s) {
142
          if (s) {
143
              return (Math.abs(el) + el);
144
          }
145
```

```
return (Math.abs(el) - el);
146
     }
147
148
     function endPoints(1, a) {
149
          var sum = _findSum(1), i, j, k, s = [],
150
              t = [], result = [], n = 1.length;
151
          for (i = 0; i < n - 1; i++) {
152
              s[i] = [];
153
              t[i] = [];
154
              for (j = 0; j < n; j++) {
155
                  s[i][j] = (s[i][j] || 0) + _findSOrT(l[i][j], true);
156
                  t[i][j] = (t[i][j] || 0) + _findSOrT(l[i][j]);
157
              }
158
              s[i] = s[i].map(function (num) {
159
                  return num / sum[i]
160
161
              });
              t[i] = t[i].map(function (num) {
162
                  return num / sum[i]
163
              });
164
          }
165
          result = [[], []];
166
          for (k = 0; k < n - 1; k++) {
167
              result[0][k] = [];
168
              result[1][k] = [];
169
              for (i = 0; i < n - 1; i++) {
170
                  for (j = 0; j < n; j++) {
171
                       result[0][k][i] =
172
                           (result[0][k][i] || 0) + s[i][j] * a[j][k];
173
                       result[1][k][i] =
174
                           (result[1][k][i] || 0) + t[i][j] * a[j][k];
175
                  }
176
              }
177
          }
178
          return result;
179
     }
180
181
     function _getQ(n, f) {
182
```

```
var i, j, arr = [], m = Math.pow(2, n - 1);
183
          for (i = 0; i < m; i++) {
184
              arr.push([]);
185
              var m_2 = i.toString(2);
186
              if (m_2.length < n - 1) {
187
                  var l = m_2.length;
188
                  for (j = 1; j < n - 1; j++) {
189
                      m_2 = 0 + m_2;
190
                  }
191
              }
192
              for (j = 0; j < n - 1; j++) {
193
                  arr[i].push(f && !parseInt(m_2[j]) ? -1
194
195
                       : parseInt(m_2[j]));
              }
196
197
          }
198
          return arr;
     }
199
200
     function findKsi(1) {
201
          var q = getQ(1.length), i, k, j, arr = [], lambda = [];
202
203
          for (i = 0; i < 1.length; i++) {
              lambda[i] = [];
204
              for (j = 0; j < q.length; j++) {
205
                  lambda[i][j] = 0;
206
                  for (k = 0; k < 1.length; k++) {
207
                       lambda[i][j] += l[k][i] *
208
                       (q[j] == undefined ||
209
                           (q[j][k] == undefined) ? 1 : q[j][k])
210
                  }
211
              }
212
          }
213
          for (i = 0; i < lambda.length; i++) {
214
              lambda[i] = lambda[i].map(function (num) {
215
                  return -num;
216
              });
217
              arr[i] = Math.max.apply(Math, lambda[i]);
218
          }
219
```

```
return l.length * Math.max.apply(Math, arr) + 1;
220
     }
221
222
     function findP(1) {
223
          var q = getQ(1.length), i, k, j, arr = [], lambda = [];
224
          for (i = 0; i < 1.length; i++) {</pre>
225
226
              lambda[i] = [];
              for (j = 0; j < q.length; j++) {
227
                  lambda[i][j] = 0;
228
229
                  for (k = 0; k < 1.length; k++) {
                       lambda[i][j] += l[k][i] *
230
                       (q[j] == undefined ||
231
                           (q[j][k] == undefined) ? 1 : q[j][k])
232
                  }
233
              }
234
235
          }
          for (i = 0; i < lambda[0].length; i++) {</pre>
236
              for (j = 0; j < 1.length; j++)
237
                   arr[i] = (arr[i] || 0) + Math.abs(lambda[j][i]);
238
          }
239
240
          return Math.max.apply(Math, arr);
     }
241
242
     function findAlpha(d) {
243
          var i, a = 0;
244
          for (i = 0; i < d.length; i++) {
245
              a += 1 / d[1];
246
          }
247
248
          return a;
249
     }
250
     function _findM(1, v) {
251
          var i, j, m = [];
252
          for (i = 0; i < 1.length; i++) {
253
              m[i] = 0;
254
              for (j = 0; j < v.length; j++) {
255
                  m[i] += v[j] * l[j][i];
256
```

```
}
257
          }
258
259
          return m;
260
     }
261
     function _findMSum(m) {
262
263
          for (var s = 0, k = m.length; k; s += Math.abs(m[--k]));
264
          return s;
     }
265
266
     function vectorEndPoints(a, 1, v) {
267
          var m = _findM(1, v), sum = _findMSum(m), i, j,
268
              k, alpha = [], beta = [], result = [[], []],
269
270
              n = 1.length;
          for (i = 0; i < n; i++) {
271
              alpha[i] = _findSOrT(m[i]) / sum;
272
              beta[i] = _findSOrT(m[i], true) / sum;
273
          }
274
          for (k = 0; k < n - 1; k++) {
275
              for (j = 0; j < n; j++) {
276
                  result[0][k] = (result[0][k] || 0) +
277
                       alpha[j] * a[j][k];
278
                  result[1][k] = (result[1][k] || 0) +
279
                       beta[j] * a[j][k];
280
              }
281
          }
282
          return result;
283
     }
284
285
     function _findVectorNorm(v) {
286
          var sum = 0;
287
          for (var i = 0; i < v.length; i++) {
288
              sum += v[i] * v[i];
289
          }
290
          return Math.sqrt(sum);
291
     }
292
293
```

```
function findVectorD(1, v) {
294
          var m = _findM(1, v), sum = _findMSum(m),
295
              norm = _findVectorNorm(v);
296
         return (2 * norm) / sum;
297
     }
298
299
     function findVectorKsi(l, v, a) {
300
          var m = _findM(1, v), sum = _findMSum(m),
301
              norm = _findVectorNorm(v), det = _determinant(a),
302
              f = [1, 1, 2, 6, 24, 120, 720, 5040, 40320,
303
                  362880, 3628800, 39916800, 479001600];
304
305
         return (det * sum) / (norm * 2 * f[v.length - 1]);
306
     }
307
308
     function findVAlpha(1, v) {
          var i, j, result = 0;
309
          for (i = 0; i < v.length; i++) {
310
              result += _findVectorNorm(v[i]) / findVectorD(l, v[i]);
311
312
313
         return result;
314
     }
315
     function findX(1, a) {
316
         var i, j, k, sum = 0, result = [];
317
          for (i = 0; i < 1.length; i++) {
318
              for (j = 0; j < 1.length - 1; j++) {
319
                  sum += Math.abs(l[j][i]);
320
              }
321
          }
322
          for (k = 0; k < 1.length - 1; k++) {
323
              result[k] = 0;
324
              for (i = 0; i < 1.length; i++) {
325
                  for (j = 0; j < 1.length - 1; j++) {
326
                      result[k] += Math.abs(l[j][i]) * a[i][k];
327
                  }
328
              }
329
          }
330
```

```
result = result.map(function (num) {
331
              return num / (sum - 2)
332
          });
333
          return result;
334
     }
335
336
     function findBarycentricCoords(1, x) {
337
          var i, j, result = [];
338
          for (i = 0; i < 1.length; i++) {
339
              result[i] = 0;
340
              for (j = 0; j < l[i].length; j++) {
341
                  result[i] += l[j][i] * (x[j] == undefined ? 1 : x[j]);
342
              }
343
          }
344
345
          return result;
     }
346
347
348
349
```