Counting in binary & hex

3-bit # of bits Brinary: 000,001,000,011,100,101,110,111 $(2^{\frac{3}{2}}=8)$

Convert to decimal: 0 1 2 3 4 5 6 7

Dr b6 b5 b4 b3 b2 bi bo 8-bit binary number

-> Decimal equivalent:

bit value bit position

D = b7.27 + b6.2 + b5.25 + b4.24 +

b3.23 + b2.22 + b, .2 + b0.20

Example: B = 11.012base-10 $\Rightarrow D = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2 + 1 \cdot 2^\circ$

 $= 2^3 + 2^2 + 2^\circ = (13)_{10}$

Ex:
$$B = (|00| \ 01|0)_2$$

$$D = |1 \cdot 2^{2} + 0 \cdot 2^{6} + 0 \cdot 2^{4} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{6}$$

$$= 2^{7} + 2^{4} + 2^{2} + 2^{1}$$

$$= 128 + 16 + 4 + 2 = (|50|_{10})$$

- for binary to hex, look at 4-bit nibbles - one hex symbol

			8 = 15 c . 17 des	
	binary	hex	deainal	
~ 0000		O	0	
	0001	t	l	
	0010	2	2	
الما	0011	3	3	
2	0100	4	4	
	1	:	•	
	[]00	С	12	
	1101	D	13	
	1110	Ė	14	
	_ , , , , ,	F	15	

For binary to hex conversion, it is easier to arrange the binary number in groups of 4 bits

[x: 0100 0110

$$Ex: B = (1001 0110)_2$$
 $60 \times 16 \rightarrow H = (9 6) 16$

Conv. to Hex;

$$MSD: (1101)_2 = (13)_{10} = (D)_{16}$$

:
$$(1101 \circ 111)_2 \equiv (D7)_{16}$$

MSD LSD \leftarrow big endian

