

STATISTIQUE INFÉRENTIELLE

Contrôle continu 2 - janvier 2021 - durée 45min

Calculatrice non programmable autorisée

Remarque: Les réponses devront être arrondies à 10^{-3} près.

Exercice 1 (7 points)

Une usine fabrique des câbles. On suppose que la charge maximale supportée par un câble exprimée en tonnes est une variable aléatoire suivant une loi normale de paramètres m et $\sigma=0.5$. Une étude portant sur 50 câbles a donné une moyenne des charges maximales supportées égale à 12.2 tonnes.

- 1. Déterminer l'intervalle de confiance à 99% de la charge maximale moyenne de tous les câbles fabriqués par l'usine.
- 2. Quelle doit être la taille minimale de l'échantillon étudié pour que la longueur de l'intervalle de confiance à 99% soit inférieure ou égale à 0.2?

Exercice 2 (7 points)

Lors d'un sondage, 814 adultes ont répondu à une séries de questions sur leur opinion quant à l'état des affaires dans l'entreprise. Au total, 562 adultes ont répondu oui à la question: "Pensez vous que les affaires ne marchent pas bien en ce moment?"

On souhaite estimer le paramètre p qui représente la proportion de la population d'adultes qui pensent que les affaires ne vont pas bien dans l'entreprise.

- 1. Définir la variable aléatoire parente et sa loi.
- 2. Proposer un estimateur de p. Quelle est sa loi? Donner une estimation ponctuelle de p.
- 3. Construire un intervalle de confiance à 90% pour la proportion de la population des adultes qui pensent que les choses ne vont pas bien dans l'entreprise.

Exercice 3 (6 points)

Une étude a été réalisée pour estimer le nombre de kilomètres effectués par jour, en voiture, par les résidents d'une ville de province. Les données suivantes ont été recueillies à partir d'un échantillon de 15 habitants:

On donne:
$$\sum_{i=1}^{15} X_i = 303$$
 et $\sum_{i=1}^{15} (X_i - \overline{X})^2 = 532.4$

- 1. Construire un intervalle de confiance à 95% pour estimer le nombre moyen de kilomètres effectués par les habitants de cette ville, en voiture.
- 2. Supposant que l'on souhaite estimer le nombre moyen de kilomètres effectués par la population avec une marge d'erreur de plus ou moins 2 kilomètres, au seuil de confiance de 90%. Est-ce que les données fournissent le niveau de précision souhaité ? Si non que recommandez vous de faire ?

1 Table de la loi Normale centrée réduite

X étant une variable aléatoire de loi $\mathcal{N}(0,1)$ et α un réel de [0,1], la table donne la valeur de $z_{1-\frac{\alpha}{2}}=\Phi^{-1}(1-\frac{\alpha}{2})$ telle que $P(|X|>z_{1-\frac{\alpha}{2}})=\alpha$. En R, la commande correspondante est qnorm(1-alpha/2).

α	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	Inf	2.5758	2.3263	2.1701	2.0537	1.9600	1.8808	1.8119	1.7507	1.6954
0.1	1.6449	1.5982	1.5548	1.5141	1.4758	1.4395	1.4051	1.3722	1.3408	1.3106
0.2	1.2816	1.2536	1.2265	1.2004	1.1750	1.1503	1.1264	1.1031	1.0803	1.0581
0.3	1.0364	1.0152	0.9945	0.9741	0.9542	0.9346	0.9154	0.8965	0.8779	0.8596
0.4	0.8416	0.8239	0.8064	0.7892	0.7722	0.7554	0.7388	0.7225	0.7063	0.6903
0.5	0.6745	0.6588	0.6433	0.6280	0.6128	0.5978	0.5828	0.5681	0.5534	0.5388
0.6	0.5244	0.5101	0.4959	0.4817	0.4677	0.4538	0.4399	0.4261	0.4125	0.3989
0.7	0.3853	0.3719	0.3585	0.3451	0.3319	0.3186	0.3055	0.2924	0.2793	0.2663
0.8	0.2533	0.2404	0.2275	0.2147	0.2019	0.1891	0.1764	0.1637	0.1510	0.1383
0.9	0.1257	0.1130	0.1004	0.0878	0.0753	0.0627	0.0502	0.0376	0.0251	0.0125

2 Table de la loi de Student

Attention pour la description de cette table. Ici on donne directement le quantile $t_{n,1-\frac{\alpha}{2}}$.

X étant une variable aléatoire de loi de Student à n degrés de liberté St(n) et α un réel de [0,1], la table donne la valeur de $t_{n,1-\frac{\alpha}{2}}=F^{-1}(1-\frac{\alpha}{2})$ telle que $P(|X|>t_{n,1-\frac{\alpha}{2}})=\alpha$. En R, la commande correspondante est qt(1-alpha/2, n).

$n \setminus \alpha$	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.05	0.02	0.01	0.001
1	0.158	0.325	0.510	0.727	1.000	1.376	1.96	3.08	6.31	12.71	31.82	63.66	636.62
2	0.142	0.289	0.445	0.617	0.816	1.061	1.39	1.89	2.92	4.30	6.96	9.93	31.60
3	0.137	0.277	0.424	0.584	0.765	0.978	1.25	1.64	2.35	3.18	4.54	5.84	12.92
4	0.134	0.271	0.414	0.569	0.741	0.941	1.19	1.53	2.13	2.78	3.75	4.60	8.61
5	0.132	0.267	0.408	0.559	0.727	0.920	1.16	1.48	2.02	2.57	3.37	4.03	6.87
6	0.131	0.265	0.404	0.553	0.718	0.906	1.13	1.44	1.94	2.45	3.14	3.71	5.96
7	0.130	0.263	0.402	0.549	0.711	0.896	1.12	1.42	1.90	2.37	3.00	3.50	5.41
8	0.130	0.262	0.399	0.546	0.706	0.889	1.11	1.40	1.86	2.31	2.90	3.35	5.04
9	0.129	0.261	0.398	0.543	0.703	0.883	1.10	1.38	1.83	2.26	2.82	3.25	4.78
10	0.129	0.260	0.397	0.542	0.700	0.879	1.09	1.37	1.81	2.23	2.76	3.17	4.59
11	0.129	0.260	0.396	0.540	0.697	0.876	1.09	1.36	1.80	2.20	2.72	3.11	4.44
12	0.128	0.259	0.395	0.539	0.695	0.873	1.08	1.36	1.78	2.18	2.68	3.06	4.32
13	0.128	0.259	0.394	0.538	0.694	0.870	1.08	1.35	1.77	2.16	2.65	3.01	4.22
14	0.128	0.258	0.393	0.537	0.692	0.868	1.08	1.34	1.76	2.14	2.62	2.98	4.14
15	0.128	0.258	0.393	0.536	0.691	0.866	1.07	1.34	1.75	2.13	2.60	2.95	4.07
16	0.128	0.258	0.392	0.535	0.690	0.865	1.07	1.34	1.75	2.12	2.58	2.92	4.01
17	0.128	0.257	0.392	0.534	0.689	0.863	1.07	1.33	1.74	2.11	2.57	2.90	3.96
18	0.127	0.257	0.392	0.534	0.688	0.862	1.07	1.33	1.73	2.10	2.55	2.88	3.92
19	0.127	0.257	0.391	0.533	0.688	0.861	1.07	1.33	1.73	2.09	2.54	2.86	3.88
20	0.127	0.257	0.391	0.533	0.687	0.860	1.06	1.32	1.73	2.09	2.53	2.85	3.85
21	0.127	0.257	0.391	0.532	0.686	0.859	1.06	1.32	1.72	2.08	2.52	2.83	3.82
22	0.127	0.256	0.390	0.532	0.686	0.858	1.06	1.32	1.72	2.07	2.51	2.82	3.79
23	0.127	0.256	0.390	0.532	0.685	0.858	1.06	1.32	1.71	2.07	2.50	2.81	3.77
${\bf 24}$	0.127	0.256	0.390	0.531	0.685	0.857	1.06	1.32	1.71	2.06	2.49	2.80	3.75
25	0.127	0.256	0.390	0.531	0.684	0.856	1.06	1.32	1.71	2.06	2.48	2.79	3.73
26	0.127	0.256	0.390	0.531	0.684	0.856	1.06	1.31	1.71	2.06	2.48	2.78	3.71
27	0.127	0.256	0.389	0.531	0.684	0.855	1.06	1.31	1.70	2.05	2.47	2.77	3.69
28	0.127	0.256	0.389	0.530	0.683	0.855	1.06	1.31	1.70	2.05	2.47	2.76	3.67
29	0.127	0.256	0.389	0.530	0.683	0.854	1.05	1.31	1.70	2.04	2.46	2.76	3.66
30	0.127	0.256	0.389	0.530	0.683	0.854	1.05	1.31	1.70	2.04	2.46	2.75	3.65

3 Table de la loi de Khi-deux χ^2

X étant une variable aléatoire de loi de χ^2 à n degrés de liberté et α un réel de [0,1], la table donne la valeur de $z_{n,\alpha}=F_{\chi^2_n}^{-1}(1-\alpha)$ telle que $P(X>z_{n,\alpha})=\alpha$. En R, la commande correspondante est qchisq(1-alpha, n).

$n \setminus \alpha$	0.995	0.99	0.975	0.95	0.1	0.05	0.025	0.01	0.005	0.001
1	0.000	0.000	0.001	0.004	2.71	3.84	5.02	6.63	7.88	10.8
2	0.010	0.020	0.051	0.103	4.61	5.99	7.38	9.21	10.60	13.8
3	0.072	0.115	0.216	0.352	6.25	7.82	9.35	11.35	12.84	16.3
4	0.207	0.297	0.484	0.711	7.78	9.49	11.14	13.28	14.86	18.5
5	0.412	0.554	0.831	1.145	9.24	11.07	12.83	15.09	16.75	20.5
6	0.676	0.872	1.237	1.635	10.64	12.59	14.45	16.81	18.55	22.5
7	0.989	1.239	1.690	2.167	12.02	14.07	16.01	18.48	20.28	24.3
8	1.344	1.646	2.180	2.733	13.36	15.51	17.54	20.09	21.95	26.1
9	1.735	2.088	2.700	3.325	14.68	16.92	19.02	21.67	23.59	27.9
10	2.156	2.558	3.247	3.940	15.99	18.31	20.48	23.21	25.19	29.6
11	2.603	3.053	3.816	4.575	17.27	19.68	21.92	24.73	26.76	31.3
12	3.074	3.571	4.404	5.226	18.55	21.03	23.34	26.22	28.30	32.9
13	3.565	4.107	5.009	5.892	19.81	22.36	24.74	27.69	29.82	34.5
14	4.075	4.660	5.629	6.571	21.06	23.68	26.12	29.14	31.32	36.1
15	4.601	5.229	6.262	7.261	22.31	25.00	27.49	30.58	32.80	37.7
16	5.142	5.812	6.908	7.962	23.54	26.30	28.84	32.00	34.27	39.3
17	5.697	6.408	7.564	8.672	24.77	27.59	30.19	33.41	35.72	40.8
18	6.265	7.015	8.231	9.390	25.99	28.87	31.53	34.80	37.16	42.3
19	6.844	7.633	8.907	10.117	27.20	30.14	32.85	36.19	38.58	43.8
20	7.434	8.260	9.591	10.851	28.41	31.41	34.17	37.57	40.00	45.3
21	8.034	8.897	10.283	11.591	29.61	32.67	35.48	38.93	41.40	46.8
22	8.643	9.542	10.982	12.338	30.81	33.92	36.78	40.29	42.80	48.3
23	9.260	10.196	11.689	13.091	32.01	35.17	38.08	41.64	44.18	49.7
24	9.886	10.856	12.401	13.848	33.20	36.41	39.36	42.98	45.56	51.2
25	10.520	11.524	13.120	14.611	34.38	37.65	40.65	44.31	46.93	52.6
26	11.160	12.198	13.844	15.379	35.56	38.88	41.92	45.64	48.29	54.1
27	11.808	12.879	14.573	16.151	36.74	40.11	43.20	46.96	49.65	55.5
28	12.461	13.565	15.308	16.928	37.92	41.34	44.46	48.28	50.99	56.9
29	13.121	14.256	16.047	17.708	39.09	42.56	45.72	49.59	52.34	58.3
30	13.787	14.953	16.791	18.493	40.26	43.77	46.98	50.89	53.67	59.7