

EXERCICE D'ORAL

ELECTROCINETIQUE

-EXERCICE 6.5-

• ENONCE :

« Circuit déphaseur pur »

- L' A.O est idéal et fonctionne en régime linéaire .
- 1) Déterminer la fonction de transfert :

$$\underline{H} = \underline{\underline{U}_{S}}$$

2) Tracer le diagramme de Bode correspondant et conclure .

EXERCICE D' ORAL

ELECTROCINETIQUE

CORRIGE :

«Circuit déphaseur pur »

1) L'A.O étant parfait, on sait que : $i_{-}=i_{+}=0$; l'application du théorème de Millman sur la

borne inverseuse donne alors:

$$V_{-} = \frac{\frac{\underline{U}_{E}}{R} + \frac{\underline{U}_{S}}{R}}{\frac{1}{R} + \frac{1}{R}} = \frac{\underline{U}_{E} + \underline{U}_{S}}{2}$$

• Un simple diviseur de tension (puisque $i_{+}=0$) sur la borne non inverseuse fournit :

$$V_{+} = \underline{U}_{E} \times \frac{\frac{1}{jC\omega}}{R + \frac{1}{jC\omega}} = \underline{U}_{E} \times \frac{1}{1 + jRC\omega}$$

• L'A.O étant en fonctionnement linéaire, on a $V_{+} = V_{-}$, d'où :

$$\frac{\underline{U}_E + \underline{U}_S}{2} = \underline{U}_E \times \frac{1}{1 + iRC\omega} =$$

$$\frac{\underline{U}_E + \underline{U}_S}{2} = \underline{U}_E \times \frac{1}{1 + jRC\omega} \quad \Rightarrow \quad \boxed{\underline{H} = \frac{\underline{U}_S}{\underline{U}_E} = \frac{1 - jRC\omega}{1 + jRC\omega} = \frac{1 - jx}{1 + jx}} \quad \text{avec} : \quad \boxed{\underline{x} = RC\omega}$$

avec:
$$x = RC\omega$$

2) Courbe de gain:

$$\left|\underline{H}\right| = \frac{\sqrt{1+x^2}}{\sqrt{1+x^2}} = 1$$
, $\forall x$ ou $H_{dB} = 0$ dB, $\forall x$

$$H_{dB} = 0 \text{ dB}, \ \forall x$$

• Courbe de l'argument :

•
$$x \ll 1$$
: $\underline{H} \simeq 1 \Rightarrow \varphi = Arg(\underline{H}) \simeq 0$

•
$$x=1$$
: $\underline{H} = \frac{1-j}{1+j} \Rightarrow \varphi = Arg(1-j) - Arg(1+j) = -\pi/4 - \pi/4 \Rightarrow \varphi = -\frac{\pi}{2}$

•
$$x \gg 1$$
: $\underline{H} \simeq -1 \Rightarrow \overline{\varphi = Arg(\underline{H}) \simeq \pm \pi}$

• On peut maintenant tracer la courbe de l'argument :

Le montage proposé permet donc de faire varier le déphasage entre la tension de sortie et la tension d'entrée, entre 0 et π . En revanche, la valeur efficace de la sortie est égale à celle de l'entrée.

⇒ c'est pourquoi on parle de « déphaseur pur ».