

DEEP LEARNING DEMYSTIFIED

Dr. Alptekin Temizel
DLI Certified Instructor
Associate Professor, Graduate School of Informatics, METU

DEFINITIONS

DEEP LEARNING IS SWEEPING ACROSS INDUSTRIES

Internet Services

Medicine

Media & Entertainment

Security & Defense

Autonomous Machines

- ➤ Image/Video classification
- > Speech recognition
- > Natural language processing
- > Cancer cell detection
- > Diabetic grading
- > Drug discovery

- > Video captioning
- > Content based search
- > Real time translation
- > Face recognition
- > Video surveillance
- > Cyber security

- > Pedestrian detection
- > Lane tracking
- > Recognize traffic signs

DEEP LEARNING IS TRANSFORMING HPC

"Seeing" Gravity In Real Time

Accelerating Drug Discovery

92% believe AI will impact their work 93% using deep learning seeing positive results

> insideHPC.com Survey November 2016

AI IS CRITICAL FOR INTERNET APPLICATIONS

Users Expect Intelligence In Services

THE EXPANDING UNIVERSE OF MODERN AI

Big Data GPU Algorithms

INVIDIA. CUDNN

🗬 api.ai

BLUERIVER

crop-yield optimization

clarifai

risual recognition platform

drive ai

nervana

YSADAKO Waste Management

eCommerce & Medica

SocialEves*

Morpho!

1,000+ AI START-UPS \$5B IN FUNDING

AstraZeneca 🕏

 \mathbf{m}

Bai 心百度

Bloomberg

charles SCHWAB

allada

CISCO

ebay

FANUC

gsk

SIEM

yel

A NEW COMPUTING MODEL

Algorithms that Learn from Examples

Traditional Approach

- > Requires domain experts
- > Time consuming
- > Error prone
- Not scalable to new problems

A NEW COMPUTING MODEL

Algorithms that Learn from Examples

Traditional Approach

- ➤ Requires domain experts
- > Time consuming
- > Error prone
- Not scalable to new problems

Deep Learning Approach

- √ Learn from data
- √ Easy to extend
- √ Speedup with GPUs

Untrained Ieural Network Model

TRAINING Learning a new capability from existing data TRAINING DATASET Untrained Framework

TRAINING Learning a new capability from existing data TRAINING DATASET Untrained Trained Model Framework New Capability

NVIDIA DEEP LEARNING INSTITUTE

Hands-on Training for Data Scientists and Software Engineers

Helping the world to solve challenging problems using AI and deep learning

On-site workshops and online courses presented by certified instructors

Covering complete workflows for proven application use cases Self-Driving Cars, Healthcare, Intelligent Video Analytics, IoT/Robotics, Finance and more

www.nvidia.com/dli

GPU TECHNOLOGY CONFERENCE

DEEP LEARNING TRAINING AT GTC

Silicon Valley, May 8-11 Beijing, September 26-27 Munich, October 10-11 Israel, October 18 Washington DC, November 1-2 Tokyo, December 12-13

DEEP LEARNING SOFTWARE

NVIDIA DIGITS™

Interactively manage data and train deep learning models for image classification without the need to write code.

Learn more

Deep Learning Frameworks

Design and train deep learning models using a high-level interface. Choose a deep learning framework that best suits your needs based on your choice of programming language, platform, and target application.

Learn more

Purine

KERAS

NVIDIA Deep Learning SDK

This SDK delivers high-performance multi-GPU acceleration and industry-vetted deep learning algorithms, and is designed for easy drop-in acceleration for deep learning frameworks.

Learn more

END-TO-END PRODUCT FAMILY

TRAINING INFERENCE

FULLY INTERGRATED DL SUPERCOMPUTER DGX-1 & DGX Station

READY TO GET STARTED?

Project Checklist

- 1. What problem are you solving, what are the DL tasks?
- 2. What data do you have/need, and how is it labeled?
- 3. Which deep learning framework & tools will you use?
- 4. On what platform(s) will you train and deploy?

WHAT PROBLEM ARE YOU SOLVING?

Defining the AI/DL Tasks

INPUTS	QUESTION	AI/DL TASK	EXAMPLE OUTPUTS
Text Data Images Video Audio	Is "it" <u>present</u> or not?	Detection	Cancer Detection
	What <u>type</u> of thing is "it"?	Classification	Tumor Identification
	To what <u>extent</u> is "it" present?	Segmentation	Tumor Size/Shape Analysis
	What is the likely outcome?	Prediction	Survivability Prediction
	What will likely satisfy the objective?	Recommendation	Therapy Recommendation

SELECTING A DEEP LEARNING FRAMEWORK

Considerations

- 1. Type of problem
- 2. Training & deployment platforms
- 3. DNN models available, layer types supported
- 4. Latest algos & GPU acceleration: cuDNN, NCCL, etc.
- 5. Usage model/interfaces: GUI, command line, programming language, etc.
- 6. Easy to install and get started: containers, docs, code samples, tutorials, ...
- 7. Enterprise integration, vendors, ecosystem

START SIMPLE, LEARN FAST

Progressive Growing of GANs for Improved Quality, Stability, and Variation

Tero Karras (NVIDIA), Timo Aila (NVIDIA), Samuli Laine (NVIDIA), Jaakko Lehtinen (NVIDIA and Aalto University)

Picture: Two imaginary celebrities that were dreamed up by a random number generator.

WHAT'S NEXT?

Learn More

Listen to the <u>NVIDIA AI Podcast</u> Review examples of AI in action Take a Self-Paced Lab

www.nvidia.com/dlilabs

REGISTER FOR A DLI WORKSHOP

https://www.nvidia.com/en-us/deep-learning-ai/education/

https://openzeka.com/blog/

Contact us at nvdli@nvidia.com

DEEP LEARNING **INSTITUTE**

www.nvidia.com/dl