Topology General Exam August 16, 2010

Name:	
${\bf Instructions:}$	This is a four hour exam and 'closed book'. There are eight problems.

- 1. (a) Let $T \subset \mathbb{R}^5$ be a closed subspace homeomorphic to \mathbb{R}^2 . Explain why T will be a retract of \mathbb{R}^5 .
- (b) View S^n as $\mathbb{R}^n \cup \{\infty\}$, so that the open subsets of S^n containing ∞ are precisely the complements of compact subsets of \mathbb{R}^n . Recall that a continuous function $f: \mathbb{R}^m \to \mathbb{R}^n$ is called *proper* if $f^{-1}(C)$ is compact in \mathbb{R}^m whenever C is compact in \mathbb{R}^n . Show that such a proper map extends uniquely to a continuous function $\bar{f}: S^m \to S^n$.
- (c) With T as in part (a), check that the inclusion $i: T \hookrightarrow \mathbb{R}^5$ is proper. By contrast, show that no retraction $r: \mathbb{R}^5 \to T$ can be proper. (Hint: start by using part (b).)

2. Let \mathbb{R}^{∞} denote the union $\mathbb{R} \hookrightarrow \mathbb{R}^2 \hookrightarrow \mathbb{R}^3 \hookrightarrow \ldots$, with the union topology, i.e. $U \subset \mathbb{R}^{\infty}$ is open iff $U \cap \mathbb{R}^n$ is open in \mathbb{R}^n for all n. Let \mathbb{R}^{ω} denote the product of a countable number of copies of \mathbb{R} , with the product topology. Check that the evident set theoretic inclusion $i : \mathbb{R}^{\infty} \to \mathbb{R}^{\omega}$ is continuous, but is *not* a homeomorphism onto its image.

- **3.** (a) Describe a connected double cover of $\mathbb{R}P^2 \vee \mathbb{R}P^2$. (There is more than one correct answer.)
- (b) What are the homology groups of your double cover?
- (c) What is the fundamental group of your double cover?

4. Let M be the compact surface with boundary circle C as pictured:
(a) Explain why M is homotopy equivalent to a figure eight. (Hint: M is the torus with a disk removed, and the torus is often represented as a square with opposite edges identified.)
(b) Explain why the inclusion i: C → M induces the zero homomorphism from H₁(C) to H₁(M).
(c) By contrast, explain why i is not null homotopic.

5. Suppose given a commutative diagram of abelian groups

with exact rows and columns. Show that there are isomorphisms $\ker\alpha\simeq\ker\beta\quad\text{and}\quad\operatorname{coker}\alpha\simeq\operatorname{coker}\beta.$

6. Recall that an n-dimensional manifold is a Hausdorff topological space M that can be covered by open sets homeomorphic to open sets in \mathbb{R}^n . Prove that a compact n-dimensional manifold can be embedded in (i.e. is homeomorphic to a subset of) \mathbb{R}^N for large enough N. (Hint: use a partition of unity associated to a finite open cover U_1, \ldots, U_k of M equipped with embeddings $f_i: U_i \to \mathbb{R}^n$.)

7. Let $C \subset \mathbb{R}^3$ be the union of the x-axis and the y-axis. Compute $H_*(\mathbb{R}^3 - C)$. (Hint: note that $\mathbb{R}^3 - C = (\mathbb{R}^3 - x$ -axis) $\cap (\mathbb{R}^3 - y$ -axis).)

- **8.** Let X be a Hausdorff space, and $f: X \to X$ a continuous function such that
 - $f(x) \neq x$ for all $x \in X$, and
 - $f \circ f$ is the identity.
- (a) Show that every $x \in X$ has an open neighborhood W_x satisfying $f(W_x) \cap W_x = \emptyset$.
- (b) Let $\bar{X} = X/(x \sim f(x))$, with the quotient space topology. Show that the quotient map $q: X \to \bar{X}$ is a covering map.