



In Air



Method to measure the error of network's predictions













Categorized based on the machine learning tasks





Categorized based on the machine learning tasks







Binary Cross-Entropy Loss or Log Loss



## **Binary Cross Entropy / Log Loss**

Evaluates the accuracy of binary classification predictions against true outcomes

#### Difference Calculation:

y<sub>i</sub> (actual targets) - p<sub>i</sub> (predicted probabilities)

#### Logarithmic Transformation:

-log(p<sub>i</sub>) for positive class and -log(1 - p<sub>i</sub>) for negative class

#### **Average Loss:**

$$E(y, f(x)) = -\Sigma[y_i * log(p_i) + (1 - y_i) * log(1 - (p_i))]$$





Minimize the loss value during training



## Binary Cross Entropy / Log Loss





### Category Cross Entropy Loss

A variation of BCE loss applicable for multi-classification problems.

CCE = 
$$-\Sigma y_i \text{ Log (p)}$$



Consider a model to guess the type of vehicle in an image from 5 options.





Consider a model to guess the type of vehicle in an image from 5 options.





**Given Input** 



Consider a model to guess the type of vehicle in an image from 5 options.



Two-wheeler

**Probability: 0.05** 



Autorickshaw

**Probability: 0.02** 



Car

Probability: 0.05



Bus

**Probability: 0.85** 



Truck

**Probability: 0.03** 



**Given Input** 



Consider a model to guess the type of vehicle in an image from 5 options.



Two-wheeler

**Probability: 0.05** 



Autorickshaw

**Probability: 0.02** 



Car

Probability: 0.05



Bus

**Probability: 0.85** 



Truck

**Probability: 0.03** 

Target 
$$(y_i) = [ 0 ]$$

0

0

1

0 ]



Consider a model to guess the type of vehicle in an image from 5 options.



Two-wheeler

**Probability: 0.05** 



Autorickshaw

**Probability: 0.02** 



Car

Probability: 0.05



Bus

**Probability: 0.85** 



Truck

**Probability: 0.03** 

Target 
$$(y_i) = \begin{bmatrix} 0 \end{bmatrix}$$

0

0

1

0]

$$CCE_{others} = 0 * Log (p)$$

$$CCE_{bus} = -1 * Log (0.85) = 0.07$$



Categorized based on the machine learning tasks





## Loss functions for Regression Problems

Mean Square Error (MSE) measures the average squared difference between predictions and actual values.





## **Loss functions for Regression Problems**









# Mean Absolute Error



## **Loss functions for Regression Problems**

Mean Absolute Error (MAE) averages the absolute differences between predicted and actual values.





### **MAE: Preferred Scenarios**





#### Conclusion



- Binary Cross-Entropy Loss
- Mean Square Error (MSE)
- Mean Absolute Error (MAE)

**Most commonly used loss functions** 



Hands-on