

ECONOMETRIA I

Curso de Ciências Econômicas

Prof. Lindomar Pegorini Daniel

ECONOMETRIA I

UNIDADE 1: INTRODUÇÃO AO MODELO DE REGRESSÃO LINEAR

Tópico 1.2 – Introdução à econometria

Aula 5 - Modelo clássico de regressão linear

Prof. Lindomar Pegorini Daniel

ESTIMADORES

Média Moda Mediana

ESTIMADORES

$$Y_i = bX + e_i$$

$$Y_i = b_1 + b_2X_i + e_i$$

$$\mathbf{b}_1 = \overline{\mathbf{Y}} - \mathbf{b}_2 \overline{\mathbf{X}}$$

$$b_2 = \frac{\sum x_i y_i}{\sum x_i^2}$$

MQO

VI

MV

onde

$$x_i = (X_i - \overline{X})$$

$$y_i = (Y_i - \overline{Y})$$

ESTIMADORES

$$Y_i = bX + e_i$$

$$Y_i = b_1 + b_2X_i + e_i$$

$$b_1 = \overline{Y} - b_2 \overline{X}$$

$$b_2 = \frac{\sum x_i y_i}{\sum x_i^2}$$
MQO

GMM VI MV

onde

$$x_i = (X_i - \overline{X})$$
$$y_i = (Y_i - \overline{Y})$$

TEOREMA DE GAUSS-MARKOV

- Caso as premissas do Modelo Clássico de Regressão Linear (MCRL) sejam válidas, o método de MQO produz os melhores estimadores lineares não viesados (MELNV) com as seguintes propriedades:
 - Os estimadores são **não tendenciosos**; em aplicações repetidas do método, os estimadores se aproximam de seus verdadeiros valores.
 - Os estimadores são **consistentes**; quando se aumenta o número de observações, os estimadores se aproximam de seus verdadeiros valores.
 - Na categoria de estimadores lineares, os estimadores de MQO apresentam variância mínima; ou seja, eles são **eficientes**, ou os "melhores" estimadores.

• Premissa 1: O modelo é linear nos parâmetros.

$$Y_{i} = bX + e_{i}$$
 $\frac{1}{Y_{i}} = bX + e_{i}$
 $Y_{i} = \sqrt{b}X + e_{i}$ $\ln Y_{i} = bX + e_{i}$
 $Y_{i} = bX^{2} + e_{i}$ $Y_{i} = b^{2}X + e_{i}$
 $Y_{i} = b_{1}b_{3}X + e_{i}$ $Y_{i} = bX + e_{i}$
 $Y_{i} = b\sqrt{X} + e_{i}$ $Y_{i} = b\ln X + e_{i}$

• Premissa 1: O modelo é linear nos parâmetros.

$$Y_{i} = bX + e_{i}$$

$$Y_{i} = \sqrt[3]{X} + e_{i}$$

$$Y_{i} = bX^{2} + e_{i}$$

$$Y_{i} = \sqrt[3]{A} + e_{i}$$

$$\frac{1}{Y_{i}} = bX + e_{i}$$

$$\ln Y_{i} = bX + e_{i}$$

$$Y_{i} = bX + e_{i}$$

$$Y_{i} = bX + e_{i}$$

$$Y_{i} = bInX + e_{i}$$

• Premissa 2: O valor esperado do termo de erro é zero.

Salário por hora = $b_1 + b_2$ Feminino + b_3 Nãobranco + b_4 Sindicato + b_5 Escolaridade + b_6 Experiência + e_i

Salário por hora = b₁ + b₂Feminino + b₃Nãobranco + b₄Sindicato + e_i

• Premissa 2: O valor esperado do termo de erro é zero.

Salário por hora = $b_1 + b_2$ Feminino + b_3 Nãobranco + b_4 Sindicato + b_5 Escolaridade + b_6 Experiência + e_i

• Premissa 3: A variância do termo de erro é constante em relação às variáveis X.

Salário por hora = $b_1 + b_2$ Feminino + b_3 Nãobranco + b_4 Sindicato + b_5 Escolaridade + b_6 Experiência + e_i

Vendas = $b_1 + b_2$ Temperatura + b_3 Panfletos + b_4 Preço + b_5 Chuva + e_i

• Premissa 3: A variância do termo de erro é constante em relação às variáveis X.

Salário por hora = $b_1 + b_2$ Feminino + b_3 Nãobranco + b_4 Sindicato + b_5 Escolaridade + b_6 Experiência + e_i

Vendas = $b_1 + b_2$ Temperatura + b_3 Panfletos + b_4 Preço + b_5 Chuva + e_i

• Premissa 4: Não há autocorrelação no termo de erro.

Vendas =
$$b_1 + b_2$$
Temperatura + b_3 Panfletos + b_4 Preço
+ b_5 Chuva + e_i

Vendas =
$$b_1 + b_2$$
Temperatura + b_3 Panfletos + b_4 Preço + e_i

• Premissa 4: Não há autocorrelação no termo de erro.

Vendas =
$$b_1 + b_2$$
Temperatura + b_3 Panfletos + b_4 Preço
+ b_5 Chuva + e_i

Vendas =
$$b_1 + b_2$$
Temperatura + b_3 Panfletos + b_4 Preço + e_i

• **Premissa 5:** Não há relações lineares perfeitas entre as variáveis X, ou não há multicolinearidade.

Correlação 0,80

Correlação -0,18

- Próxima atividade:
 - Atividade prática: Laboratório 4

- E-mail:
 - lindomar.pegorini@unemat.br