

Advanced Computational Methods in Biotechnology

M. Sc. Marleen Beentjes

Professor Andreas Kremling

Technische Universität München

Professorship of Systems Biotechnology

Garching, 23th of June 2021

Course Evaluation

Online:

https://evasys.zv.tum.de/evasys/public/online/index

Code: K3MSL

Thank you in advance ©

Scales of Cellular Processes

Metabolic Networks

Annotation:

- Reactants
- Products
- Direction of reactions
- Co-factors
- Reducing equivalents
- Enzymes

Reducing equivalents

$$RH_2 + NAD^+ \rightarrow NADH + H^+ + R$$

From the hydride electron pair:

- one electron is transferred to the positively charged nitrogen of the nicotinamide ring of NAD+
- the second hydrogen atom is transferred to the C4 carbon atom opposite this nitrogen
- In case study:
 - Not interested in H⁺ as compound (not included in stoichiometric matrix)

How to access Metabolic Networks

Different options:

- KEGG
- MetaCyc
- BioCyc
- ENZYME
- BRENDA
- Reactome
- KaPPA-View4

For our assignment: KEGG

KEGG

- Kyoto Encyclopedia of Genes and Genomes
- Different databases in four main categories
 - Systems information
 - Genomic information
 - Chemical information
 - Health information
- KEGG PATHWAY https://www.genome.jp/kegg/pathway.html
- Allows you to analyse specific (metabolic) pathways
- Allows you to find the occurrence of specific biochemical substances in different pathways

Example: L-Leucine

Occurs in 34 different pathways in KEGG Database

Computational analysis of Metabolic Networks

Mathematical description of metabolite dynamics:

$$\frac{dc_i}{dt} = production \ rate - consumption \ rate$$

Example Component C:

$$\frac{dc_C}{dt} = k_1 \cdot c_A \cdot c_B^2 - (k_2 + k_3) \cdot c_C$$

- Kinetic parameters often not known
- Great computational effort for complex networks

What is a (metabolic) flux?

Flux (various meanings)

Physics:

Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance

Biology:

Flux, or metabolic flux is the rate of turnover of molecules through a metabolic pathway. Flux is regulated by the enzymes involved in a pathway

Flux Balance Analysis

Computational capacity is limited → simpler representation is preffered

Flux Balance Analysis

- Computational capacity is limited → simpler representation is preffered
- Flux Balance Analysis
 - First conceptualized in the 1980s
 - Simulation of flux distrubition in metabolic networks
 - Assumes all reactions in steady state (Constant over time)
 - Simulated using linear programming

General overview

- Stoichiometric representation of network
- More unknown rates as known rates → Many solutions possible
- Finding a meaningfull solution → objective function
- Define an objective function
 - In the case of FBA, maximize or minimize a certain flux
- Perform optimization using linear programming

 We will come back to the mathematical and computational description of the problem later on

Why do we use it?

Indicate targets for genetic engineering

Why do we use it?

Indicate targets for genetic engineering

Investigate effect of reaction inhibitions

Why do we use it?

Indicate targets for genetic engineering

Investigate effect of reaction inhibitions

Estimate the impact of different carbon sources

How to improve quality of analysis?

Add experimental data to the model

Constraints:

- Thermodynamic (reversiblity of reactions)
- Substrate uptake
 - Extracellular concentration
 - Diffusion / Active transport
- Measured fluxes
 - → NMR or isotope labelling

How to improve quality of analysis?

Add experimental data to the model

Constraints:

- Thermodynamic (reversibility of reactions)
- Substrate uptake
 - Extracellular concentration
 - Diffusion / Active transport
- Measured fluxes
 - → NMR or isotope labelling

Stoichiometric representation of reactions:

(compare lectures on Reactor Problem)

Reaction equation:

$$|\gamma_A|A + |\gamma_B|B \rightarrow |\gamma_C|C + |\gamma_D|D$$

Mass balance equation:

$$0 = \gamma_C \cdot C + \gamma_D \cdot D + \gamma_A \cdot A + \gamma_B \cdot B$$

Vector/Matrix representation:

$$\underline{n} = \begin{pmatrix} \gamma_A \\ \gamma_B \\ \gamma_C \\ \gamma_D \end{pmatrix} \qquad \underline{K} = \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix}$$

FBA specific:

- <u>r</u>: Vector containing all fluxes (reactions) in network
- N: Matrix containing stoichiometric coefficient of all reactions in network
 - Nr. columns = Nr. reactions
 - Nr. rows = Nr. metabolites
- Mass balance equation:

$$\dot{c} = N \cdot r$$

$$N = \begin{array}{c} comp_1 \\ comp_2 \\ \cdots \\ comp_N \end{array} \begin{array}{c} \gamma_{1,1} \quad \gamma_{1,2} \quad \cdots \quad \gamma_{1,N} \\ \gamma_{2,1} \quad \gamma_{2,2} \quad \cdots \quad \gamma_{2,N} \\ \cdots \quad \cdots \quad \cdots \\ \gamma_{N,1} \quad \gamma_{N,2} \quad \cdots \quad \gamma_{N,M} \end{array}$$

- Assumptions:
 - $0 = N \cdot \underline{r}$ (steady state)
 - Metabolite dilution negligible
 - Cell growth negligible (Proxy in form of ATP)

Example:

- <u>r</u>: Vector containing all fluxes (reactions) in network
- N: Matrix containing stoichiometric coefficient of all reactions in network
 - Nr. columns = Nr. reactions
 - Nr. rows = Nr. metabolites

					r_{M}
	$comp_1$ $comp_2$ $comp_N$	γ _{1,1}	$\gamma_{1,2}$	•••	$\gamma_{1,N}$
<i>N</i> =	$comp_2$	$\gamma_{2,1}$	$\gamma_{2,2}$	•••	$\gamma_{2,N}$
	•••	•••	•••	•••	•••
	$comp_N$	$\gamma_{N,1}$	$\gamma_{N,2}$	•••	$\gamma_{N,M}$
).

Construct the vector \underline{r} and matrix N for the following example network:

Example solution:

$$r = \begin{pmatrix} r_i \\ r_1 \\ r_2 \\ r_3 \end{pmatrix}$$

$$N = \begin{pmatrix} r_i & r_1 & r_2 & r_3 \\ -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} A_{\text{ex}} \\ A \\ B \\ C \\ D \\ E \end{bmatrix}$$

How can be FBA be validated experimentally?

Continuously stirred tank reactor (CSTR):

- $q_{in} = q_{out}$
- $\mu = (q_{in}/V)$ is constant
- System at steady-state

Optimization problem

Problem formulation

FBA aims to present the optimal distribution of all fluxes (*solution*) in the given metabolic network that are necessary to either maximize or minimize one or more specific fluxes (*objective function*)

$$\max c^{T} \cdot \underline{r}$$
s. t. $N \cdot \underline{r} = 0$

$$\underline{lb} < \underline{r} < \underline{ub}$$

The goal is to maximize the rates as indicated in the c^T vector subject to the steady state condition $(N \cdot \underline{r} = 0)$ and the fixed boundaries $(\underline{lb} < \underline{r} < \underline{ub})$

Objective function

What is most applied objective function in FBA?

- Biomass formation
- Atomic composition of biomass can be experimentally determined
- How is it represented?
 - Often lumped reactions
 - Sink for constituents of biomass (Fattyacids, aminoacids, cell wall components)
 - In our exercise → Approximation (only ATP considered)

Table 7-4: Typical composition of bacteria cells

Constituent or element	Percent of dry weight		
Major cellular material			
Protein	55.0		
Polysaccharide	5.0		
Lipid	9.1		
DNA	3.1		
RNA	20.5		
Other (sugars, amino acids)	6.3		
Inorganic ions	1.0		
Sum:	100%		
As cell elements			
Carbon	50.0		
Oxygen	22.0		
Nitrogen	12.0		
Hydrogen	9.0		
Phosphorus	2.0		
Sulfur	1.0		
Potassium	1.0		
Sodium	1.0		
Calcium	0.5		
Magnesium	0.5		
Chlorine	0.5		
Iron	0.2		
Other trace elements	0.3		
Sum:	100%		

Constraints

$$\underline{lb} < \underline{r} < \underline{ub}$$

 \underline{r} : Set of fluxes that, multiplied by stoichiometric matrix N, should guarantee a steady state of the system

 \underline{lb} : Lower bounds, indicate the **minimum** value for each flux. Size is equal to vector \underline{r}

 \underline{ub} : Upper bounds, indicate the **maximum** value for each flux. Size is equal to vector \underline{r}

General: Fluxes with unknown value ±∞

More realistic:

- Reversible reactions [lb,ub]
- Irreversible reaction [0, ub] or [lb,0]

MATLAB function for solving linear programming problems:

x = Iinprog(f,A,b,Aeq,beq,lb,ub)

Description

Linear programming solver

Finds the minimum of a problem specified by

$$\min_{x} f^{T}x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}$$

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

Output and inputs accepted by the linprog function:

f: Coefficient vector, specified as a real vector or real array. The coefficient vector represents the objective function f'*x.

A: Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number of inequalities, and N is the number of variables (length of f).

b: Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A matrix.

LB: Lower bounds, specified as a real vector or real array

UB: Upper bounds, specified as a real vector or real array

x: Solution, returned as a real vector or real array. The size of x is the same as the size of f.

M. Sc. Marleen Beentjes (TUM) | Advanced Computational Methods in Biotechnology|

FBA Linprog

$$\max_{c} c^{T} \cdot \underline{r}$$
s. t. $N \cdot \underline{r} = 0$

$$\underline{lb} < \underline{r} < \underline{ub}$$

$$\min_{x} \int_{0}^{T} x \text{ such that } \begin{cases} A \cdot x \leq b \text{ (inequality)} \\ Aeq \cdot x = beq, \\ \underline{lb} < \underline{x} < \underline{ub} \end{cases}$$

How to achieve maximization instead of minimization using linprog???

Output and inputs accepted by the linprog function (in FBA context):

f: Selects the fluxes for maximization/minimization (c^T , same dimension as \underline{r})

A: stoichiometric matrix (N)

b: vector to impose steady-state solution (contains only zeros, dimension is the height of N)

LB: lower boundaries for reactions UB: upper boundaries for reactions

x: optimal flux distribution to achieve the max/min fluxes of f (r)

Example

Stoichiometric matrix

$$N = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad f = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix} \text{Objective: maximize } \mathbf{r}_3$$

$$lb = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
Lower bound

$$f = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$
 Objective: maximize respective: maximize respective.

$$lb = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad ub = \begin{pmatrix} 1 \\ 100 \\ 100 \\ 100 \end{pmatrix}$$
 Upper boundries (fixed uptake rate)

Lower boundries (irreversible reactions)

SS-condition

Example

Stoichiometric matrix

$$N = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$f = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$$
 Objective: minimize r_2 Objective: maximize r_3

$$b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 SS-condition

$$lb = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
Lower boundred

$$ub = \begin{pmatrix} 1\\100\\100\\100 \end{pmatrix}$$
 Upper boundries (fixed uptake rate)

Lower boundries (irreversible reactions)

Input for the linprog function

x = linprog(f,A,b,Aeq,beq,lb,ub)

We are interested in the flux distribution for steady state condition (Aeq, beq)

r_opt = linprog (f, [], [], N, zeros(height(N),1), lb, ub)

[] means no entry

Different input possible for linprog:

Known fluxes fixed by boundaries vs known fluxes in vector b

$$N \cdot r = 0$$

$$N' \cdot \underline{r'} = -\underline{r_{known}}$$

N' should not include r_{known} in column

Saving space and memory in MATLAB

Working with large matrices:

- Construct large matrices in Excel
- Load them in a separate MATLAB file (e.g. readmatrix) and define matrix
 - NOTE: Excel file should be in same folder as MATLAB file
- Save Matrix as a .mat file (save)
- Load Matrix file (.mat) into working file
- Save memory by applying sparse function to matrix
- Some functions (like rank and null) will not work with sparsed matrices (Taks 1!)

Matrices on Moodle

- N₃ for task 3 (PHB synthesis)
- N₄ for task 4 (Glycerin Metabolism)
- N₆ for task 6 (Calvin-Cycle)

- In given matrices, r_{PHB} (r₂₄) represents a flux of 1 PHB and not ½ PHB!
- N₅ in task 5 (Alternative PHP synthesis) → Please include stoichiometric matrix file with indication of components and reactions!!!

