# Paper Review: Semi-parametric efficiency bounds and efficient estimation for high-dimensional models

Sara van de Geer, Jana Janková

ETH Zürich

January 26, 2016

## Overview

- Problem Setup
- 2 Preliminary Results
- Main Results
  - Lower bounds for the linear model
  - An asymptotically efficient estimator in the linear model
- 4 Le Cam's Lemma

## Problem Setup

Consider the linear model:

$$Y = X\beta_0 + \varepsilon, p > n, \tag{1}$$

where  $X \in \mathbb{R}^{n \times p}$ ,  $Y \in \mathbb{R}^n$ ,  $\varepsilon \in \mathbb{R}^n$  with  $\mathbb{E}\varepsilon_i = 0$ , and  $\varepsilon_i$ 's independent. Questions:

- statistical inference of  $\beta_0$ , e.g. confidence intervals, hypothesis tests? "de-sparsifying" or "de-biasing", van de Geer (2014); Zhang and Zhang (2014)
- optimality properties of these de-biased estimators? lower bounds on the variance.

## De-sparsifying Lasso Estimator

### Lasso Estimator:

$$\widehat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \left\{ \| Y - X\beta \|_2^2 / n + \lambda \|\beta\|_1 \right\} \tag{2}$$

- $oldsymbol{\widehat{\beta}}$  does not have a tractable limiting distribution since it introduces bias by shrinking all coefficients towards zero.
- ② De-sparsified estimator  $\hat{b}$ : uses  $\hat{\beta}$  as an initial estimator and implements a bias correction step.

### Goal

- **9** show that  $\hat{b}$  is **asymptotically unbiased**, and achieve the **lower bound**,
  - i.e. the de-biased estimator is the best among all asymptotically unbiased estimators: thus in this sense asymptotically efficient.
- show that the de-sparsified estimator converges locally uniformly to the limiting normal distribution with zero mean and the smallest possible variance.

## Strong oracle inequalities for the Lasso I

### Theorem

Assume the linear model in (1) with  $\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2 I)$ , where  $\sigma_\epsilon^2 = \mathcal{O}(1)$ . Suppose that  $X_i \sim \mathcal{N}(0, \Sigma_0)$  are independent for  $i=1,\ldots,n$ , where  $\|\Sigma_0\|_\infty = \mathcal{O}(1)$  and  $\Lambda_{\min}(\Sigma_0) \geq L > 0$  for a universal constant L. Suppose that  $\|\beta_0\|_2 = \mathcal{O}(1)$ ,  $\|\beta_0\|_0 \leq s$  and  $s \log p/n = o(1)$ . Let  $k \in \{1, 2, \ldots\}$  be fixed and let  $\tau > 0$  fixed be such that  $p^{-\tau/2} = \mathcal{O}((s\lambda^2)^{k/2})$ . Consider the Lasso  $\hat{\beta}$  defined in (2) with tuning parameter  $\lambda \geq c\tau \sqrt{\log p/n}$ , where c is a sufficiently large universal constant. Then there exist universal constants  $C_1$ ,  $C_2$  such that

$$(\mathbb{E}\|\hat{\beta}-\beta_0\|_1^k)^{1/k}\leq C_1s\lambda.$$

Moreover, for any u>0 it holds with probability at least  $1-1/
u^k$ 

$$\|\hat{\beta} - \beta_0\|_1 \le \nu C_1 s \lambda.$$

## Strong oracle inequalities for the Lasso II

• Taking k = 1, under the conditions of Theorem 1 we obtain

$$\mathbb{E}\|\hat{\beta}-\beta_0\|_1\leq C_1s\lambda.$$

## Local uniform asymptotic unbiasedness I

### **Definition**

Let  $a \in \mathbb{R}^p$  and let  $0 < \delta_n \downarrow 0$ . We call  $T_n$  a strongly asymptotically unbiased estimator of  $g(\theta_0)$  at  $\theta_0$  in the direction a with rate  $\delta_n$  if for  $m_n := n/\delta_n$  and for  $\theta := \theta_0 + a/\sqrt{m_n}$  and for  $\theta := \theta_0$  it holds that

$$\sqrt{m_n}(\mathbb{E}_{\theta} T_n - g(\theta)) = o(1).$$

### **Definition**

We say that  $T_n$  is **strongly asymptotically unbiased** for estimation of  $g(\theta)$  if for all  $\theta \in \Theta$  and  $a \in \Theta$  it holds that

$$\sqrt{n}\left(\mathbb{E}_{\theta+a/\sqrt{n}}T_n-g\left(\theta+\frac{a}{\sqrt{n}}\right)\right)=o(1).$$

## Local uniform asymptotic unbiasedness II

- The first definition assumes unbiasedness only along a particular direction
- In particular, we consider shrinking neighbourhoods of  $\theta_0$  of size  $1/\sqrt{n}$ , where we require the bias to vanish at a rate  $1/\sqrt{n}$ . Note that if  $\sqrt{n}(\mathbb{E}_{\theta}(T_n) g(\theta)) = o(1)$ , then one may take e.g.  $\delta_n := \sqrt{n}(\mathbb{E}_{\theta}(T_n) g(\theta))$ .
- It is particularly useful when recognizing the concept of a worst possible sub-direction
- The second definition assumes unbiasedness in every direction within the considered sparse model.

## Lower bounds for the linear model

Assume that X is a random  $n \times p$  matrix independent of  $\epsilon$  with independent rows  $X_i \sim \mathcal{N}(0, \Sigma_0)$  for  $i = 1, \ldots, n$ . We assume the inverse covariance matrix  $\Theta_0 := \Sigma_0^{-1}$  exists.

### Theorem

Let  $a \in \mathbb{R}^p$  be such that  $a^T \Sigma_0 a = 1$ . Suppose that  $T_n$  is a strongly asymptotically unbiased estimator of  $g(\beta_0)$  at  $\beta_0$  in the direction a with rate  $\delta_n$ . Assume moreover that for some  $\dot{g}(\beta_0) \in \mathbb{R}^p$  and for  $m_n = n/\delta_n$ 

$$\sqrt{m_n}\left(g(\beta_0+a/\sqrt{m_n})-g(\beta_0)\right)=a^T\dot{g}(\beta_0)+o(1). \tag{3}$$

Then

$$nvar(T_n) \ge [a^T \dot{g}(\beta_0)]^2 - o(1).$$

### Corollary

The lower bound  $[a^T \dot{g}(\beta_0)]^2$  is maximized at the value

$$a_0 := \Theta_0 \dot{g}(\beta_0) / \sqrt{\dot{g}(\beta_0)^T} \Theta_0 \dot{g}(\beta_0).$$

Hence under the conditions of Theorem 4, we get

$$nvar(T_n) \geq \dot{g}(\beta_0)^T \Theta_0 \dot{g}(\beta_0) - o(1).$$

### **Definition**

Let g be differentiable at  $\beta_0$  with derivative  $\dot{g}(\beta_0)$ . We call

$$c_0 := \Theta_0 \dot{g}(\beta_0) / \dot{g}(\beta_0)^T \Theta_0 \dot{g}(\beta_0)$$

the worst possible sub-direction for estimating  $g(\beta_0)$ .

Assume that  $T_n$  is strongly asymptotically unbiased in all directions  $a \in \mathcal{B}$ , where  $\mathcal{B} := \{\beta \in \mathbb{R}^p : \|\beta\|_0 \le s, \|\beta\|_2 = \mathcal{O}(1)\}.$ 

### Corollary

Let  $T_n$  be a strongly asymptotically unbiased estimator of  $g(\beta_0)$ , and for all  $\beta_0 \in \mathcal{B}$ ,  $a \in \mathcal{B}$  it holds

$$\sqrt{n}\left(g(\beta_0+a/\sqrt{n})-g(\beta_0)\right)=a^T\dot{g}(\beta_0)+o(1).$$

Suppose that  $\Theta_0 \dot{g}(\beta_0)/\sqrt{\dot{g}(\beta_0)^T\Theta_0\dot{g}(\beta_0)} \in \mathcal{B}$  for all  $\beta_0 \in \mathcal{B}$  and suppose that  $\Lambda_{\text{max}}(\Sigma_0) = \mathcal{O}(1)$ . Then it holds

$$nvar_{\beta_0}(T_n) \geq \dot{g}(\beta_0)^T \Theta_0 \dot{g}(\beta_0) - o(1).$$

## Construction of the de-biased Lasso estimator I

- Consider  $X_i$  are iid rows with mean zero and covariance matrix  $\Sigma_0$ . Assume the inverse covariance matrix  $\Theta_0 := \Sigma_0^{-1}$  exists.
- Consider the Lasso defined in (2) with  $\lambda \simeq \sqrt{\log p/n}$ .
- Let  $\hat{\Theta}_j$  be an estimate of  $\Theta_j^0$  be obtained nodewise regression.
- Denote by  $X_{-j}$  the  $n \times (p-1)$  matrix obtained by removing the j-th column from X.

For  $j = 1, \ldots, p$ , let

$$\hat{\gamma}_{j} := \arg \min_{\gamma \in \mathbb{R}^{p-1}} \|X_{j} - X_{-j}\gamma\|_{2}^{2}/n + 2\lambda_{j} \|\gamma\|_{1}, \tag{4}$$

$$\hat{\tau}_j^2 := \|X_j - X_{-j}\hat{\gamma}_j\|_2^2/n,$$

$$\hat{\Theta}_{Lasso,j} := (-\hat{\gamma}_{j,1}, \dots, -\hat{\gamma}_{j,j-1}, 1, -\hat{\gamma}_{j,j+1}, \dots, -\hat{\gamma}_{j,\rho})/\hat{\tau}_j^2, \tag{5}$$

13 / 27

## Construction of the de-biased Lasso estimator II

where  $\lambda_j \asymp \lambda \asymp \sqrt{\log p/n}$  for  $j=1,\ldots,p$ . The necessary Karush-Kuhn-Tucker conditions corresponding to the nodewise regression (obtained by replacing derivatives by sub-differentials) imply the condition  $\|\hat{\Sigma}\hat{\Theta}_j - e_j\|_{\infty} = O_P(\lambda)$ .

Define the **de-biased** Lasso introduced in van de Geer (2014) by

$$\hat{b} := \hat{\beta} + \hat{\Theta}^T X^T (Y - X \hat{\beta}) / n, \tag{6}$$

## Estimation of $\beta_j^0$

- $\mathcal{B} := \{ \beta \in \mathbb{R}^p : \|\beta_0\|_0 = \mathcal{O}(s), \|\beta_0\|_2 = \mathcal{O}(1) \}$
- Condition (A1)  $1/\Lambda_{min}(\Sigma_0) = \mathcal{O}(1)$  and  $\Lambda_{max}(\Sigma_0) = \mathcal{O}(1)$ .

### Lemma

Suppose that condition (A1) is satisfied and suppose that  $s \log p/n = o(1)$ . Let  $\hat{\beta}$  be the Lasso estimator defined in (2) with a sufficiently large tuning parameter of order  $\sqrt{\log p/n}$ . Then for every  $\beta_0 \in \mathcal{B}$ 

$$\mathbb{E}_{\beta_0} \|\hat{\beta} - \beta_0\|_1 = \mathcal{O}(s\lambda).$$

## Strongly asymptotic unbiasedness of $\widehat{b}_j$

### Lemma

Suppose that condition (A1) is satisfied and suppose that  $s = o\left(\frac{\sqrt{n}}{\log p}\right)$ . Let  $\hat{b}_j$  be defined as in (6) with  $\hat{\Theta}_j$  satisfying  $\|\hat{\Sigma}\hat{\Theta}_j - e_j\|_{\infty} \leq \lambda_j$ . Then for every  $\beta_0 \in \mathcal{B}$ 

 $\sqrt{n}\mathbb{E}_{\beta_0}(\hat{b}_j-\beta_j^0)=o(1).$ 

### Theorem

Suppose that condition (A1) is satisfied,  $s = o\left(\frac{\sqrt{n}}{\log p}\right)$  and that  $\|\Theta_j^0\|_0 = \mathcal{O}(s)$ . Let  $\hat{\Theta}_{Lasso,j}$  be obtained using the nodewise regression as in (5). Then  $\hat{b}_j$  defined in (6) using the nodewise regression is strongly asymptotically unbiased and for any strongly asymptotically unbiased estimator T of  $\beta_j^0$  it holds for all  $\beta_0 \in \mathcal{B}$ 

$$var(T) \geq var(\hat{b}_j) = \frac{\Theta_{jj}^0 + o(1)}{n}.$$

## Locally uniform convergence I

#### Motivation

Classical examples of superefficiency: Hodges' Estimator.

$$P_{\theta} = \{N(\theta, 1), \theta \in \Theta\}$$

Let  $T_n = \bar{X}_n$ , where  $X_1, \dots, X_n$  iid  $N(\theta, 1)$ .

$$S_n = \begin{cases} T_n & \text{if } |T_n| \ge n^{-1/4} \\ 0 & \text{if } |T_n| < n^{-1/4}. \end{cases}$$
 (7)

Asymptotics for  $T_n$ :

$$\sqrt{n}(T_n-\theta)\stackrel{d}{\to} N(\theta,1)$$

Asymptotics for  $S_n$ :

$$\begin{cases} \sqrt{n}(S_n - \theta) \xrightarrow{d} N(\theta, 1), & \text{if } \theta \neq 0 \\ r_n(S_n - \theta) \xrightarrow{d} 0, & \text{if } \theta = 0 \end{cases}$$

## Locally uniform convergence II

#### Motivation

for any sequence  $r_n$  including  $r_n = \sqrt{n}$ .  $S_n$  is said to be "superefficient" at  $\theta = 0$ . However, consider the  $\mathbb{E}(S_n - \theta)^2$ ,



Pointwise convergence is insufficient for asymptotic efficiency and that we in fact need uniform convergence on shrinking neighbourhoods.

**①** Consider the model  $\mathcal{P} := \{P_{\theta} : \theta \in \Theta\}$ , where

$$\Theta := \{\theta \in \mathbb{R}^p : \|\theta\|_0 \le s, \|\theta\|_2 = \mathcal{O}(1)\}.$$

② The de-sparsified estimator  $T_n$  is asymptotically linear:

$$T_n - g(\theta) = \frac{1}{n} \sum_{i=1}^n l_{\theta}(X_i) + o_P(n^{-1/2}),$$

where  $\mathbb{E}_{\theta}I_{\theta}=0$  and  $\mathbb{E}I_{\theta}^{2}<\infty$ .

## Locally uniform convergence IV

#### Motivation

For asymptotically linear estimators, one has the asymptotic variance  $V_{\theta} := \mathbb{E} I_{\theta}^2$ . Consider the following condition for every  $h \in \Theta$ 

$$P_{\theta}(I_{\theta}h^{\mathsf{T}}s_{\theta}) - h^{\mathsf{T}}\dot{g}(\beta) = 0.$$

If the condition is satisfied, then the Cauchy-Schwarz inequality implies

$$(h^T \dot{g}(\theta))^2 = (P_{\theta} I_{\theta} h^T s_{\theta})^2 \leq \text{var}(I_{\theta}) \text{var}(h^T s_{\theta}) = V_{\theta} h^T I_{\theta} h.$$

Hence

$$V_{\theta} \ge \max_{h \in \Theta} (h^T \dot{g}(\theta))^2 / h^T I_{\theta} h. \tag{8}$$

Assuming that  $I_{\theta}^{-1}\dot{g}(\theta)\in\Theta$ , the right-hand side of (8) is maximized at  $I_{\theta}^{-1}\dot{g}(\theta)$ . Hence we obtain the following lower bound on the asymptotic variance

$$V_{\theta} \geq \dot{g}(\theta)^T I_{\theta}^{-1} \dot{g}(\theta).$$

## Locally uniform convergence V

Motivation

 Under the conditions of the central limit theorem, asymptotic linearity implies that

$$\sqrt{n}(T_n - g(\theta))/V_{\theta}^{1/2} \stackrel{\theta}{\leadsto} \mathcal{N}(0,1)$$

for every  $\theta$ .

② For every  $h \in \Theta$  and every  $\theta \in \Theta$  it holds that

$$\frac{\sqrt{n}(T_n - g(\theta + h/\sqrt{n}))}{V_{\theta}^{1/2}} \overset{\theta + h/\sqrt{n}}{\leadsto} \mathcal{N}(0, 1).$$

### Theorem I

### Assume

• Let  $g: \mathbb{R}^p \to \mathbb{R}$  satisfy

$$\sqrt{n}(g(\theta + h/\sqrt{n}) - g(\theta)) = h^T \dot{g}(\theta) + o(1).$$

• Suppose that for all  $\theta \in \Theta$ 

$$T_n - g(\theta) = \frac{1}{n} \sum_{i=1}^n l_{\theta}(X_i) + o_{P_{\theta}}(n^{-1/2}),$$

where  $P_{\theta}I_{\theta}=0$  and  $V_{\theta}:=P_{\theta}I_{\theta}^2<\infty.$ 

### Theorem II

• Suppose that  $V_{\theta} = \mathcal{O}(1)$  and  $1/V_{\theta} = \mathcal{O}(1)$ . Let  $s_{\theta}$  be the score function, let  $I_{\theta} := \mathbb{E} s_{\theta} s_{\theta}^T$  and assume that

$$\|\frac{1}{n}\sum_{i=1}^{n}\dot{s}_{\theta}(X_{i})+I_{\theta}\|_{\infty}=\mathcal{O}_{P}(\lambda),$$

where  $\lambda$  is such that  $s\lambda = o(1)$ .

• Assume further that  $\Lambda_{\sf max}(I_{\theta}) = \mathcal{O}(1)$ .

### Theorem

Then for every  $h \in \Theta$  it holds that

$$\frac{\sqrt{n}(T_n - g(\theta + h/\sqrt{n})) - (P_{\theta}(I_{\theta}h^Ts_{\theta}) - h^T\dot{g}(\theta))}{V_{\theta}^{1/2}} \overset{\theta + h/\sqrt{n}}{\leadsto} \mathcal{N}(0, 1)$$

- Sara van de Geer. On the uniform convergence of empirical norms and inner products, with application to causal inference. *Electron. J. Statist.*, 8(1):543–574, 2014. doi: 10.1214/14-EJS894.
- Cun-Hui Zhang and Stephanie S. Zhang. Confidence intervals for low dimensional parameters in high dimensional linear models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(1): 217–242, 2014. ISSN 1467-9868. doi: 10.1111/rssb.12026.

# Thank you!