Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 76.25

Figure 1: Outline of path 1

2.1.1 Suzuki coupling of vinyl bromides with alkenyl boronic acids

Substrates:

- 1. trans-Propenylboronic acid available at Sigma-Aldrich
- 2. 3-bromo-2,5-dihydrofuran-2-one available at Sigma-Aldrich

Products:

 $1. \ C/C=C/C1=CCOC1=O$

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 24937

2.1.2 Diels-Alder

Substrates:

1. Calcium carbide - available at Sigma-Aldrich

 $2. \ \mathrm{C/C}{=}\mathrm{C/C1}{=}\mathrm{CCOC1}{=}\mathrm{O}$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

 $\textbf{Typical conditions:} \ H2O. MeOH. EtOH. is ooct ane$

Protections: none

 $\textbf{Reference:} \ \ 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3702(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)40:1000(20020517)40:100$

Z

2.1.3 Alkenylation-Acylation of enones and enoate esters

Substrates:

- 1. b-Bromostyrene available at Sigma-Aldrich
- $2. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815 AND 10.1021/ja0320018 AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

Retrosynthesis ID: 13033

2.2 Path 2

Score: 76.25

2.2.1 Oxidation of primary alcohols with DMP

Figure 2: Outline of path 2

Substrates:

1. 2-Methyl-3-buten-1-ol - available at Sigma-Aldrich

Products:

1. 2-methyl-but-3-enal

Typical conditions: DMP.DCM.0-25 C

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and

10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

${\bf 2.2.2} \quad {\bf Condensation \ of \ esters \ with \ aldehydes/ketones}$

Substrates:

- 1. 4-ethenyloxolan-2-one available at Sigma-Aldrich
- 2. 2-methyl-but-3-enal

Products:

 $1. \ C{=}CC(C)C{=}C1C({=}O)OCC1C{=}C$

Typical conditions: LDA.THF

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104 AND

Retrosynthesis ID: 14983

2.2.3 Alkenylation-Acylation of enones and enoate esters

Substrates:

1. C=CC(C)C=C1C(=O)OCC1C=C

2. b-Bromostyrene - available at Sigma-Aldrich

3. Acetyl chloride - available at Sigma-Aldrich

Products:

 $1. \ C = CC(C)C(/C = C/c1ccccc1)C1(C(C) = O)C(=O)OCC1C = C$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3 AND 10.1021/ja0320018 AND 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815

2.2.4 Ring-Closing Metathesis

Substrates:

 $1. \ C{=}CC(C)C(/C{=}C/c1cccc1)C1(C(C){=}O)C({=}O)OCC1C{=}C$

Products:

 $1. \ \mathrm{CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1}$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

 $10.1021/jo0264729 \ \ {\rm and} \ \ 10.1021/ja072334v \ \ {\rm and} \ \ 10.1002/ejoc.201001102$

Retrosynthesis ID: 31014187

2.3 Path 3

Score: 90.31

Figure 3: Outline of path 3

2.3.1 Reaction of acyl chlorides with alcohols and phenols

Substrates:

- 1. 4-bromcrotonsaeurechlorid
- 2. sorbic alcohol

Products:

1. CC=CC=CCOC(=O)C=CCBr

Typical conditions: base.DCM

Protections: none

Reference: 10.1016/j.bmcl.2012.03.021 AND 10.1021/ja026266i (SI, hydroperoxides) AND 10.1016/j.tetasy.2004.07.044 AND 10.1021/jm1006929 (SI) AND 10.1016/j.tet.2011.05.017 AND 10.1016/j.tetasy.2012.09.002 AND 10.1021/ol016268s (SI) AND 10.1021/jo801116n AND 10.1021/jo00279a041 AND WO2013/64518 A1, 2013 (page 102)

Retrosynthesis ID: 28549

2.3.2 Diels-Alder

Substrates:

1. CC=CC=CCOC(=O)C=CCBr

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2C1CBr}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

Retrosynthesis ID: 18116

2.3.3 Wittig-Schlosser olefination

Substrates:

1. Benzaldehyde - available at Sigma-Aldrich

 $2. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2C1CBr}$

Products:

1. CC1C=CC2COC(=O)C2C1/C=C/c1cccc1

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde.3.base

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

2.3.4 Claisen Condensation

Substrates:

- 1. CC1C=CC2COC(=O)C2C1/C=C/c1ccccc1
- 2. Methyl acetate available at Sigma-Aldrich

Products:

 $1. \ \mathrm{CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1}$

Typical conditions: Base.Solvent

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.4 Path 4

Score: 90.31

Figure 4: Outline of path 4

2.4.1 Acid catalyzed transesterification

Substrates:

- 1. sorbic alcohol
- 2. 4-oxobutenoate methyl ester

Products:

 $1. \ CC{=}CC{=}CCOC({=}O)C{=}CC{=}O$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

Retrosynthesis ID: 50438

2.4.2 Diels-Alder

Substrates:

$$1. \ CC = CC = CCOC(=O)C = CC = O$$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2C1C}{=}\mathrm{O}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.4.3 Wittig-Schlosser olefination

Substrates:

1. a-Bromotoluene - available at Sigma-Aldrich

2. CC1C=CC2COC(=O)C2C1C=O

Products:

 $1. \ CC1C = CC2COC(=O)C2C1/C = C/c1ccccc1$

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde.3.base

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

2.4.4 Claisen Condensation

Substrates:

- 1. CC1C=CC2COC(=O)C2C1/C=C/c1ccccc1
- 2. Methyl acetate available at Sigma-Aldrich

Products:

 $1. \ \mathrm{CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1}$

 ${\bf Typical\ conditions:}\ {\bf Base. Solvent}$

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.5 Path 5

Score: 90.31

Figure 5: Outline of path 5

2.5.1 Jones Oxidation

Substrates:

1. 4-hydroxy-2-butenyl-benzoat

Products:

 $1. \ O{=}C(O)C{=}CCOC({=}O)c1ccccc1$

Typical conditions: cromate.sulfate.H2O.acetone

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

2.5.2 Hydrolysis of benzoates

Substrates:

1. O=C(O)C=CCOC(=O)c1ccccc1

Products:

 $1. \ \mathrm{O}{=}\mathrm{C}(\mathrm{O})\mathrm{C}{=}\mathrm{C}\mathrm{C}\mathrm{O}$

 $\textbf{Typical conditions:} \ \, \text{LiOH/K2CO3/NH3.MeOH.H2O.THF}$

Protections: none

Reference: 10.1021/jm0502788 and 10.1016/j.tetlet.2008.09.165 and 10.1021/jm034098e and 10.1021/jo049277y and 10.1055/s-0033-1338657

Retrosynthesis ID: 25136

2.5.3 Oxidation of primary alcohols with DMP

Substrates:

1. O=C(O)C=CCO

Products:

1. O = CC = CC(=O)O

Typical conditions: DMP.DCM.0-25 $\rm C$

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and 10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.5.4 Steglich Esterification

Substrates:

- 1. O=CC=CC(=O)O
- 2. sorbic alcohol

Products:

$$1. \ CC = CC = CCOC(=O)C = CC = O$$

Typical conditions: alcohol.DCC.DMAP.DCM or thiol.DCC.DMAP.DCM

Protections: none

Reference: 10.1002/anie.197805221

2.5.5 Diels-Alder

Substrates:

$$1. \ CC=CC=CCOC(=O)C=CC=O$$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2C1C}{=}\mathrm{O}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

Retrosynthesis ID: 18116

2.5.6 Wittig-Schlosser olefination

Substrates:

1. a-Bromotoluene - available at Sigma-Aldrich

 $2. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2C1C}{=}\mathrm{O}$

Products:

$1. \ CC1C = CC2COC(=O)C2C1/C = C/c1ccccc1$

 ${\bf Typical\ conditions:}\ 1. PPh3\ or\ trialkylphosphite. 2. base. aldehyde. 3. base$

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

Retrosynthesis ID: 9546

2.5.7 Claisen Condensation

Substrates:

1. CC1C=CC2COC(=O)C2C1/C=C/c1cccc1

2. Methyl acetate - available at Sigma-Aldrich

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1

Typical conditions: Base.Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002