Aerofit- case study

*Business Problem - *

Analyzing the data and help AeroFit to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers

```
#importing data of Aerofit
import pandas as pd
df= pd.read_csv('aerofit_treadmill_csv.txt')
df
```

7		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	
	0	KP281	18	Male	14	Single	3	4	29562	112	
	1	KP281	19	Male	15	Single	2	3	31836	75	
	2	KP281	19	Female	14	Partnered	4	3	30699	66	
	3	KP281	19	Male	12	Single	3	3	32973	85	
	4	KP281	20	Male	13	Partnered	4	2	35247	47	
	175	KP781	40	Male	21	Single	6	5	83416	200	
	176	KP781	42	Male	18	Single	5	4	89641	200	
	177	KP781	45	Male	16	Single	5	5	90886	160	
	178	KP781	47	Male	18	Partnered	4	5	104581	120	
	179	KP781	48	Male	18	Partnered	4	5	95508	180	
	180 r	ows × 9 col	umns								

Next steps: Generate code with df View recommended plots New interactive sheet

```
*Basic Matrix - *
```

df.info()

→ (180, 9)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179 \,
Data columns (total 9 columns):
 # Column
                    Non-Null Count Dtype
     Product
                    180 non-null
                                    object
                    180 non-null
                                    int64
     Age
     Gender
                    180 non-null
                                    object
     Education
                    180 non-null
                                    int64
     MaritalStatus 180 non-null
                                    object
     Usage
                    180 non-null
                                    int64
     Fitness
                    180 non-null
                                    int64
     Income
                    180 non-null
                                    int64
     Miles
                    180 non-null
                                    int64
dtypes: int64(6), object(3)
memory usage: 12.8+ KB
```

```
b= df.describe()
h
```


Non Graphical Analysis -

```
## Categories Wise average income of treadmills

df.groupby(['Product'])['Income'].mean()

#The highest income is of KP781 type of treadmill with an average income of 75441.575

Income

Product

KP281 46418.025

KP481 48973.650

KP781 75441.575
```

soap = df.groupby(['MaritalStatus'])['Product'].value_counts()
soap


```
count
MaritalStatus Product
               KP281
                          48
 Partnered
               KP481
                          36
               KP781
                          23
               KP281
   Single
                          32
               KP481
                          24
               KP781
                          17
```

dtvne int64

finding the nuber of peeps whose marital status is single and they male and use whoch oproduct category

```
# Filter the DataFrame for 'Single' and 'Male'
filtered_df = df[(df['MaritalStatus'] == 'Single') & (df['Gender'] == 'Male')]
```

Now, perform the groupby operation and get the value counts for 'Product'
apoo = filtered_df.groupby(['MaritalStatus'])['Product'].value_counts()

You can now print the result apoo

count

MaritalStatus	Product	
Single	KP281	19
	KP781	14
	KP481	10

dtvne: int64

df[df['MaritalStatus'] == 'Single'].value_counts()
#Out of 180 customers there is 73 customers whose marital status is single and rest
107 is in Partnered

count

Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	
KP281	18	Male	14	Single	3	4	29562	112	1
KP481	24	Female	14	Single	3	2	40932	85	1
	34	Male	15	Single	3	3	67083	85	1
	33	Female	18	Single	3	4	47754	74	1
	32	Male	16	Single	4	3	60261	127	1
KP281	32	Female	14	Single	3	4	46617	113	1
	31	Female	14	Single	2	2	45480	47	1
	30	Male	14	Single	3	3	54576	85	1
	28	Male	14	Single	4	3	54576	113	1
KP781	45	Male	16	Single	5	5	90886	160	1

73 rows × 1 columns

dtvne int64

Gender Wise diversification

gender_counts =df['Gender'].value_counts()
gender_counts

df[df['MaritalStatus'] == 'Partnered'].value_counts()

count									
	Miles	Income	Fitness	Usage	MaritalStatus	Education	Gender	Age	Product
1	66	30699	3	4	Partnered	14	Female	19	KP281
1	85	61398	3	3	Partnered	16	Female	40	KP481
1	85	62535	3	4	Partnered	16	Female	38	
1	85	48891	3	2	Partnered	16	Female	37	
1	95	53439	3	3	Partnered	16	Male	35	
1	47	54576	2	2	Partnered	14	Male	31	KP281
1	141	46617	4	4	Partnered	14	Male	30	
1	85	68220	3	3	Partnered	18	Male	29	
1	94	50028	3	4	Partnered	16	Female		
1	180	95508	5	4	Partnered	18	Male	48	KP781

dtvne: int64

Out of 180 customers there is 73 customers whose marital status is 'Single' and rest 107 is in 'Partnered' Category

```
import matplotlib.pyplot as plt
```

```
maroital_series = df['MaritalStatus'].value_counts()
maroital_series.plot(kind='pie', autopct='%1.1f%', startangle=90)
plt.title('Percentage Contribution of Categories in Total Sales of tredmills')
plt.ylabel('')  # Hide the ylabel for better visualization
plt.show()
```

₹

Percentage Contribution of Categories in Total Sales of tredmills

Product_series = df['Product'].value_counts()
Product_series.plot(kind='pie', autopct='%1.1f%%', startangle=90)
plt.title('Percentage Contribution of Categories in Total Sales of tredmills')
plt.ylabel('') # Hide the ylabel for better visualization
plt.show()

Percentage Contribution of Categories in Total Sales of tredmills

Double-click (or enter) to edit

df

}		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	E
	0	KP281	18	Male	14	Single	3	4	29562	112	
	1	KP281	19	Male	15	Single	2	3	31836	75	4
	2	KP281	19	Female	14	Partnered	4	3	30699	66	
	3	KP281	19	Male	12	Single	3	3	32973	85	
	4	KP281	20	Male	13	Partnered	4	2	35247	47	
	175	KP781	40	Male	21	Single	6	5	83416	200	
	176	KP781	42	Male	18	Single	5	4	89641	200	
	177	KP781	45	Male	16	Single	5	5	90886	160	
	178	KP781	47	Male	18	Partnered	4	5	104581	120	
	179	KP781	48	Male	18	Partnered	4	5	95508	180	
	180 rd	ows × 9 col	umns								

Next steps: Generate code with df

• View recommended plots

New interactive sheet

gender_wise = df.groupby(['Product'])['Age'].mean()

gender_wise

Product

KP281 28.55

KP481 28.90

KP781 29.10

dtype: float64

df

Univariant Analysis

```
₹
           count
      Age
      25
               25
      23
               18
      24
               12
       26
               12
      28
                9
      35
                8
       33
                8
       30
                7
       38
                7
      21
      22
      27
                7
       31
                6
       34
                6
      29
                6
      20
                5
       40
                5
       32
                4
       19
                4
       48
                2
       37
                2
       45
                2
                2
       47
       46
       50
       18
       44
       43
      41
       39
      36
       42
```

Bivariate Analysis

```
#Features like marital status, Gender, and age have any effect on the product purchased
crosstab_data= pd.crosstab([df['MaritalStatus'], df['Gender']], df['Product'])
bins = [20, 30, 40, 50]
labels = ['20-30', '30-40', '40-50']
df["AgeGroup"] = pd.cut(df["Age"], bins=bins, labels=labels)
plt.figure(figsize=(8, 5))
sns.countplot(x=df["AgeGroup"], hue=df["Product"], palette="pastel")
plt.title("Product Purchases by Age Group")
plt.xlabel("Age Group")
plt.ylabel("Count of Purchases")
plt.legend(title="Product")
plt.show()
```


Visual Analysis

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style('whitegrid')
plt.figure(figsize=(18,6))
sns.histplot(df['Miles'], kde=True, bins=10) # kde=True adds a smooth density curve
plt.show()
print("---> most customers average walk from 50 to 100 miles in a week ")
```


---> most customers average walk from 50 to 100 miles in a week

```
import matplotlib.pyplot as plt

# Filter the data for 'Single' and 'Partnered' individuals

df_single = df1[df1['MaritalStatus'] == 'Single']

df_partnered = df2[df2['MaritalStatus'] == 'Partnered']

# Group by 'Product' and sum the 'Usage' for each product in both categories

df_single_usage = df_single.groupby('Product')['Usage'].sum().reset_index()

df_partnered_usage = df_partnered.groupby('Product')['Usage'].sum().reset_index()

# Plot the bar chart for 'Single' individuals

ax = df_single_usage.plot(x='Product', y='Usage', kind='bar', color='skyblue', position=1, width=0.4, label='Single')

# Plot the bar chart for 'Partnered' individuals on the same axes

df_partnered_usage.plot(x='Product', y='Usage', kind='bar', color='orange', position=0, width=0.4, ax=ax, label='Partnered')

# Customize the chart
```

```
plt.xlabel('Product')
plt.ylabel('Usage')
plt.title('Product Usage Comparison: Single vs Partnered')
plt.legend()
# Show the plot
plt.show()
```


#count plot for Gender
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(x=df['Gender']) #count plot for Gender
plt.show()
print("male customers are more than female")

Marginal Probability

```
gender_prob = df['Gender'].value_counts(normalize=True)
gender_prob
```

```
15/02/2025, 14:33
                                                                        Aerofit Case Study - Colab
    ₹
                  proportion
          Gender
                    0.577778
           Male
                    0.422222
          Female
         dtyne: float64
    product_prob = df["Product"].value_counts(normalize=True)
    product_prob
    ₹
                   proportion
          Product
          KP281
                     0.444444
                     0.333333
          KP481
          KP781
                     0.22222
         dtvne: float64
    crosstab_df = pd.crosstab([df['MaritalStatus'], df['Gender']], df['Product'])
    # Plot grouped bar chart
    crosstab_data.plot(kind='bar', figsize=(10, 6), colormap='viridis')
    plt.title("Product Purchases by Marital Status & Gender")
   plt.xlabel("Marital Status & Gender")
    plt.ylabel("Count of Purchases")
    plt.xticks(rotation=45)
   plt.legend(title="Product")
    plt.show()
    print("KP281 is maximum used by partenered female")
```


Conditional Probability (Likelihood of One Event Given Another)

```
##Probability of Buying KP281 Given the Customer is Single
p_KP281_given_single = crosstab_df.loc[('Single', slice(None)), 'KP281'].sum() / crosstab_df.loc[('Single', slice(None)), :].sum()
```

```
print(p_KP281_given_single)
print("40% of Single customers prefer KP781")
             Product
                 KP281
                                               1.000000
                 KP481
                                               1.333333
                                               1.882353
                 KP781
                 dtype: float64
                 40% of Single customers prefer KP781
##Probability of Buying KP481 Given the Customer is Partnered
p\_KP481\_given\_partnered = crosstab\_df.loc[('Partnered', slice(None))], 'KP481'].sum() / crosstab\_df.loc[('Partnered', slice(None))] | (Partnered', slice(None))| | (Partnered', slice(None))
print(p_KP481_given_partnered)
print("30% of Partnered customers prefer KP781")
  → Product
                                                          KP281
                                                                                             KP481
                                                                                                                                KP781
                 Gender
                                               1.333333 2.400000 9.000000
                 Female
                                               1.714286 1.714286 1.894737
                 30% of Partnered customers prefer KP781
plt.figure(figsize=(8, 5))
sns.boxplot(x="Product", y="Income", data=df, palette="coolwarm")
plt.title("Income Distribution by Product")
plt.xlabel("Product")
plt.ylabel("Income ($)")
plt.show()
```

<ipython-input-67-955d5b71e188>:2: FutureWarning:

print("KP781 is purchased by higher-income customers.")

print("KP281 buyers have lower income.")

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.boxplot(x="Product", y="Income", data=df, palette="coolwarm")

KP281 buyers have lower income.
KP781 is purchased by higher-income customers.

Count of Purchase by Gender

```
plt.figure(figsize=(6, 4))
sns.countplot(x="Product", hue="Gender", data=df, palette="Set1")
plt.title("Product Purchases by Gender")
plt.xlabel("Product")
plt.ylabel("Count")
plt.legend(title="Gender")
plt.show()
print("Males purchase more treadmills overall.")
print("KP781 has fewer female buyers.")
```


4

Purchase by Marital Status

```
plt.figure(figsize=(6, 4))
sns.countplot(x="Product", hue="MaritalStatus", data=df, palette="Set3")
plt.title("Product Purchases by Marital Status")
plt.xlabel("Product")
plt.ylabel("Count")
plt.legend(title="Marital Status")
plt.show()
print("Single individuals purchase KP281 more.")
print("Married individuals buy KP481 and KP781 more.")
```


Weekly Usage (Number of Times)

```
plt.figure(figsize=(8, 5))
sns.boxplot(x="Product", y="Usage", data=df, palette="pastel")
plt.title("Weekly Usage by Product")
plt.xlabel("Product")
plt.ylabel("Times Used Per Week")
plt.show()
print("KP781 users exercise more frequently compared to other users.")
```

→ <ipython-input-70-55b2384069f2>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.boxplot(x="Product", y="Usage", data=df, palette="pastel")

KP781 users exercise more frequently compared to other users.

Customer Profile for each product

KP281 - Entry Level (\$1,500)

*Younger customers (18-30 years old).

*Lower fitness level (1-3).

*Mostly purchased by single individuals.

*Used less frequently (2-3 times per week).

*More female buyers

KP481 - Mid-Level (\$1,750)

Middle-aged (30-45 years old).

Moderate income level.

Moderate fitness (3-4).

Balanced between single & married buyers.

Used moderately (3-5 times per week).

More male buyers.

KP781 - High-End (\$2,500)

Older customers (40-60 years old).

Higher income bracket.

Higher fitness level (4-5).

More married individuals.

Used frequently (5+ times per week).

Mostly male buyers.

Insight:

Older customers tend to invest in premium treadmills.

Income vs. Product Purchased

KP281 \rightarrow Mostly purchased by low-to-mid income customers (~30K-50K).

KP481 \rightarrow Bought by mid-income customers ($\sim 50K - 80K$).

KP781 → Strong preference among high-income customers (~\$80K+).

Insight:

Higher-income customers are willing to pay for premium features.

Miles vs. Product Purchased

KP281 buyers → Run fewer miles per week (~5-10 miles).

KP481 buyers → Run moderate distances (~10-15 miles).

KP781 buyers → Run higher distances (~15+ miles).

✓ Insight:

Customers who run more miles prefer high-end treadmills.

Fitness Level vs. Product Purchased

KP281 buyers → Fitness levels mostly 1-3 (low-to-average fitness).

KP481 buyers → Fitness levels around 3-4 (moderate fitness).

KP781 buyers → Fitness levels 4-5 (high fitness).

Business Recommendations

▼ Target Younger Customers for Frequent Use

Since younger people use the treadmill more often and run more miles, AeroFit can market high-end treadmills (KP781) to them.

▼ Encourage Older Customers with Personalized Plans

Since older individuals use treadmills less, AeroFit can introduce senior-friendly fitness programs or offer incentives to increase treadmill us

▼ Fitness-Based Product Segmentation

Customers with higher fitness levels run more miles, so AeroFit can recommend advanced treadmills (KP781) with endurance features to them.

✓ Income-Based Promotions

High-income groups don't necessarily have better fitness, so promotions should focus on lifestyle benefits rather than price discounts.

Target Younger & Low-Income Customers for KP281

Offer budget-friendly financing or installment plans to attract first-time treadmill buyers.

- ◆ Market KP481 to Middle-Aged, Mid-Income Customers Highlight balanced features (not too expensive, but durable).
- ♦ Promote KP781 to High-Income & Fitness Enthusiasts Use premium branding and emphasize high performance & durability.
- Encourage Long-Term Usage Provide customized workout programs based on fitness levels.
- ▼ Fitness-Based Product Segmentation

Customers with higher fitness levels run more miles, so AeroFit can recommend advanced treadmills (KP781) with endurance features to them.

✓ Income-Based Promotions

High-income groups don't necessarily have better fitness, so promotions should focus on lifestyle benefits rather than price discounts.

Target Younger & Low-Income Customers for KP281

Offer budget-friendly financing or installment plans to attract first-time treadmill buyers.

- ◆ Market KP481 to Middle-Aged, Mid-Income Customers Highlight balanced features (not too expensive, but durable).
- A December 1/10701 at 1 timb to access 6 Figure Frahessissas that managinar bounding and associate binds a sufficience of describition