2021 - PHY 981 - Homework set 10 (due Mar 28)

- 1. link to lecture notes link to nushellx.zip link to toi.zip link to mingw-w64.zip
- 2. Read Chapters 22-23.
- 3. Derive Eqs. 22.26 and 22.27.
- 4. Use Eq. 22.31 to obtain an expression for $\langle C \mid \hat{F} \mid C \rangle$.
- 5. Use the second-quantization method to reduce the following many-particle matrix elements to a sum of single-particle matrix elements for the states (a,b,c,d). (1111) means they are all filled, etc. $<(1100)\mid\hat{F}\mid(1100)>,<(1100)\mid\hat{F}\mid(0011)>,<(1100)\mid\hat{F}\mid(0011)>.$
- 6. For the last problem replace \hat{F} with the number operator of Eq. 22.33.
- 7. Calculate the B(E2) for the $1/2^+$ to $5/2^+$ transitions in 17 F and 17 O assuming these states are represented by $1s_{1/2}$ and $0d_{5/2}$. single-particle states outside of a 16 O closed shell. Use hamonic-oscillator radial wavefunctions with $\hbar\omega=14$ MeV. Use can use the rme program for the matrix elements. Compare to experiment.
- 8. What are all possible (ℓ, S, T) values for each of the following:
 - a) a $J^{\pi} = 3^{-}$ resonance of the two-neutron system.
 - b) a $J^{\pi}=2^-$ resonance of the two-nucleon system with $T_z=1$.
 - c) a $J^{\pi}=2^{+}$ resonance of the two-nucleon system with $T_{z}=0$.
- 9. For the configuration $(0f_{7/2})^2$ for two neutrons what are the allowed J values?
- 10. For the configuration $(0f_{7/2}, 1p_{3/2})$ for two neutrons what are the allowed J values?
- 11. For the configuration $(0f_{7/2})^2$ for two nucleons what are the allowed combinations of (J,T) values?