## TP557 - Tópicos avançados em IoT e Machine Learning: *Introduzindo Convoluções*







Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

#### O que vamos ver?

- Até agora, nossas redes neurais continham apenas dois tipos de camadas: densas e de achatamento.
- Porém, um outro tipo muito importante são as camadas convolucionais.
- Essas camadas formam as Convolutional Neural Networks (CNNs).
- A principal diferente para uma DNN é que ao invés de aprender os pesos das camadas densas, uma CNN aprende os valores de filtros de convolução (ou apenas filtros).
  - Esses filtros são muito eficientes em "compreender" o conteúdo de uma imagem ou vídeo.
- CNNs são usadas em tarefas de visão computacional, como, por exemplo, reconhecimento de objetos, detecção de padrões, segmentação de imagens, rastreamento de objetos, etc.

#### Dados tabulares



- DNNs são ideais para dados tabulares, onde os exemplos são representados por linhas e os atributos por colunas.
- Ao analisar esses dados, o objetivo da DNN é descobrir padrões que envolvem interações entre os atributos, sem presumir uma estrutura espacial (em termos de posicionamento físico) específica entre eles.
- Em contraste, imagens têm uma estrutura espacial que pode ser explorada por modelos de ML.

#### Imagens simples



- Até o momento, as imagens que usamos nos problemas de classificação eram bem simples.
- Eram imagens em tons de cinza, com objetos centralizados, sem muita variação em termos de rotação, iluminação, escala, com um mesmo fundo, sem oclusões (i.e., partes do objeto obstruídas), etc.

#### Imagens complexas





- Mas e quando as imagens são mais complexas?
- Com cores, resoluções variadas, objetos não centralizados, com variação em termos de rotação, iluminação, escala, diferentes fundos, oclusões, etc.
- Usar *filtros de convolução* pode nos ajudar com esses problemas.
- Por exemplo, e se eu quiser classificar entre pessoas e cavalos?

#### Neurônios biológicos



- Os neurônios biológicos no córtex visual respondem a padrões específicos em pequenas regiões do campo visual chamadas campos receptivos.
- À medida que o sinal visual percorre as camadas do cérebro, os neurônios respondem a padrões mais complexos em campos receptivos maiores.

### Neurônios biológicos



- Alguns neurônios reagem apenas a imagens de linhas horizontais, enquanto outros reagem apenas a linhas com orientações diferentes.
- Outros neurônios têm campos receptivos maiores e reagem a padrões mais complexos que são combinações de padrões de nível inferior.

# Diferença entre camadas densas e convolucionais



- Como veremos, a diferença fundamental entre uma camada densamente conectada e uma de convolução é:
- As camadas densas aprendem *padrões globais* em seu espaço de atributos.
- Por exemplo, para um dígito da base de dados MNIST, as camadas densas aprendem padrões envolvendo todos os pixels.

# Diferença entre camadas densas e convolucionais



- As camadas de convolução aprendem padrões locais.
- No caso de imagens, as camadas de convolução aprendem padrões encontrados em pequenas janelas 2D das entradas.
- Para aprender esses padrões, a camada utiliza filtros de convolução, também chamados de kernels.

# Diferença entre camadas densas e convolucionais



- Camadas convolucionais aprendem hierarquias espaciais de padrões.
- Uma primeira camada de convolução aprenderá pequenos padrões locais, como arestas (i.e., bordas), uma segunda camada de convolução aprenderá padrões maiores criados a partir da combinação das características das primeiras camadas e assim por diante.

#### Canais





- Antes de falarmos sobre convolução, vamos falar sobre cores.
- Até agora, ignoramos que imagens, em geral, consistem em três canais: vermelho (R), verde (G) e azul (B).
- Imagens coloridas têm canais RGB para indicar a quantidade de vermelho, verde e azul.
- Em suma, as imagens não são objetos bidimensionais, mas sim tensores de três dimensões, caracterizados por altura, largura e canal.

#### Filtros de convolução ou kernels

Kernel 2D

| 0 | 1 |
|---|---|
| 2 | 3 |

Kernel 3D



- Um *kernel* é um tensor (em geral em 3D) responsável por detectar características específicas em uma imagem.
- Ele percorre uma imagem e realiza operações convolução entre seus valores e os dos pixels na região da imagem correspondente a ele.

#### Filtros de convolução ou kernels

Kernel 2D

| 0 | 1 |
|---|---|
| 2 | 3 |

Kernel 3D



- Cada kernel é projetado para extrair/detectar um tipo particular de característica, como bordas, texturas, padrões ou partes específicas de objetos.
- Os kernels aprendem automaticamente a detectar as características mais relevantes para a tarefa específica em mãos.
  - Eles aprendem, a partir de seu treinamento, os valores dos elementos do tensor.

|   | nput | •<br>• | 1   | Kernel |   |   |   |     |
|---|------|--------|-----|--------|---|---|---|-----|
| 0 | 1    | 2      |     |        |   | Ī |   | put |
| 2 | 1    | _      | (*) | 0      | 1 | _ |   | 3   |
| 3 | 4    | 5      |     | 2      | 7 |   | ? | 7   |
| 6 | 7    | 8      |     | _      | 9 |   | • | •   |



$$o(i,j) = \sum_{m} \sum_{i} I(i+m,j+n) K(m,n)$$

- Vamos ignorar os canais por enquanto e ver como uma operação de convolução funciona com dados bidimensionais.
- O símbolo \* representa a operação de "convolução".
- A entrada é chamada de *input feature map*.
- O *filtro* também é chamado de "*kernel*".
- O operação é representada pela equação ao lado.



 Ao calcular a convolução, começamos com a janela de convolução no canto superior esquerdo do tensor de entrada.

output(i, j)  

$$= \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

$$= 0 * 0 + 1 * 1 + 3 * 2 + 4 * 3 = 19$$

|   | nput |   | Kernel |     |      |   | Output |      |  |
|---|------|---|--------|-----|------|---|--------|------|--|
| 0 | 1    | 2 |        | nci | 1101 |   |        | .put |  |
| 3 | 4    | 5 | *      | 0   | 1    | = | 19     | 25   |  |
| 6 | 7    | 8 |        | 2   | 3    |   |        |      |  |

• Em seguida, deslizamos a janela um elemento para a direita.

output(i, j)  

$$= \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

$$= 1 * 0 + 2 * 1 + 4 * 2 + 5 * 3 = 25$$

|   | nput |   |   | K⊖r            | nel |   | Output |      |   |
|---|------|---|---|----------------|-----|---|--------|------|---|
| 0 | 1    | 2 |   | \(\rac{1}{2}\) | 1   |   | 10     | .put | 1 |
| 3 | 4    | 5 | * | 0              | 1   | = | 19     | 25   | - |
| 6 | 7    | 8 |   | 2              | 3   |   | 3/     |      |   |

 Ao chegar-se ao final das colunas do tensor de entrada, volta-se ao seu início, deslizando a janela um elemento para baixo, ou seja, uma linha.

output(i, j)  

$$= \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

$$= 3 * 0 + 4 * 1 + 6 * 2 + 7 * 3 = 37$$

| Input |   |   |   |   | Ker |   | Output |    |    |   |
|-------|---|---|---|---|-----|---|--------|----|----|---|
|       | 0 | 1 | 2 |   | 1   | 1 |        | 10 | 25 | ] |
|       | 3 | 4 | 5 | * | 0   | 1 | =      | 19 | 23 |   |
|       | 6 | 7 | 8 |   | 2   | 3 |        | 3/ | 43 |   |

- Em seguida, deslizamos a janela um elemento para a direita.
- Esse processo se repete até que a janela de convolução tenha percorrido todo o tensor de entrada.

$$= \sum_{m} \sum_{n} I(i+m,j+n) K(m,n)$$
$$= 4 * 0 + 5 * 1 + 7 * 2 + 8 * 3 = 43$$

#### Mapa de características

|   | Input | • |     | Ker |      | Output |    |      |
|---|-------|---|-----|-----|------|--------|----|------|
| 0 | 1     | 2 |     | ^   | 1101 |        |    | .put |
| 3 | 4     | 5 | (*) | U   | Т_   | =      | 19 | 25   |
| 6 | 7     | 8 |     | 2   | 3    |        | 37 | 43   |

output
$$(i, j)$$
  
=  $\sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$ 

- Lembrando que o objetivo dos kernels é extrair características.
- Portanto, o resultado da operação de convolução é chamado de *mapa* de características.
- Pois ele pode ser considerado como as representações (i.e., características) aprendidas nas dimensões espaciais (por exemplo, largura e altura) para a camada subsequente.

#### Stride



- Neste exemplo anterior, deslizamos a janela um elemento por vez.
- Porém, às vezes, seja por eficiência computacional ou porque desejamos reduzir a resolução, movemos a janela mais de um elemento por vez.
- Esse parâmetro é chamado de *stride*.
- No exemplo ao lado, o stride é de 2 para deslizamentos ao longo das colunas e linhas.
  - Porém, ele pode ser diferente para deslocamentos ao longo das linhas e colunas.

### Convolução ou correlação cruzada?

output
$$(i,j) = K(i) \circledast I(j)$$
  
=  $\sum_{m} \sum_{n} K(i-m,j-n)I(m,n)$ 

Convolução

output
$$(i, j)$$
  
=  $\sum_{m} \sum_{n} K(i + m, j + n)I(m, n)$ 

Correlação cruzada

- As operações em uma CNN, embora sejam chamadas de convoluções, são implementadas como correlações cruzadas na maioria das bibliotecas.
  - Correlações são mais eficientes (sem inversão) e simples de serem implementadas.
- Ao contrário da operação de convolução, as CNNs não invertem o kernel (ou o sinal de entrada).
- No entanto, isso não importa, pois os kernels são aprendidos e podem se adaptar tanto à correlação cruzada quanto à convolução.



- Em geral, se a imagem tem 3 dimensões, o kernel também terá 3 dimensões.
- Para entender a operação, podemos dividi-la em 3 operações de convolução separadas que têm seus resultados somados ao final para gerar a saída.
- Usando um *stride* = 1, temos.







# Kernels diferentes para características diferentes



- Em geral, cada camada de uma rede convolucional possui vários kernels.
- Cada kernel detecta uma característica diferente.
- A saída de cada kernel tem um valor de bias somado a ela e o resultado é passado por uma função de ativação, f(.), (e.g., ReLU).
- A saída de uma camada é o resultado do empilhamento de várias matrizes.

#### Aplicando kernels a imagens



- Considerem a imagem à esquerda.
- Se aplicarmos o kernel (i.e., filtro) mostrado, obteremos os resultados à direita.
- Ele realça muito as linhas verticais e escurece todo o resto.
- Portanto, podemos considerar este kernel como um detector de linhas verticais.

#### Aplicando kernels a imagens



- De forma similar, este filtro pode detectar linhas horizontais, escurecendo quase tudo na imagem que não seja uma linha horizontal.
- Ao aplicar filtros como esses, podemos remover quase tudo, exceto uma característica distinta.
- Esse processo é chamado de *extração de características*.
  - Processo que determina as partes mais importantes de uma imagem.

fonte: https://setosa.io/ev/image-kernels/

#### Camada de *Pooling* (ou subamostragem)

#### **Max Pooling**

| 2 | 8 | 9 | 3 |                                                   |   |   |
|---|---|---|---|---------------------------------------------------|---|---|
| 7 | 3 | 5 | 0 | Tamanho do <i>pool</i> : 2x2<br><i>Stride</i> : 2 | 8 | 9 |
| 1 | 4 | 2 | 1 |                                                   | 6 | 7 |
| 6 | 5 | 5 | 7 |                                                   |   |   |

- Aplicada, em geral, após uma camada de convolução.
- Ela subamostra sua entrada.
- O objetivo da subamostragem é reduzir a carga computacional, o uso de memória e o número de parâmetros (limitando assim o risco de sobreajuste).
- Além disso, ela ajuda a tornar a rede mais robusta a pequenas mudanças na posição das características, o que é útil em tarefas de reconhecimento de objetos.

### Camada de *Pooling* (ou subamostragem)

#### **Max Pooling**



- A maneira mais comum de subamostrar é aplicar uma operação max(.) ao resultado de cada kernel.
- Somente o valor máximo de entrada em cada campo receptivo da camada de pooling passa para a próxima camada, enquanto as outras entradas são descartadas.
- O pooling é normalmente aplicado a cada canal de entrada de forma independente, de forma que a profundidade de saída seja igual a de entrada.

#### Camada de *Pooling* (ou subamostragem)



- Adicionalmente, as camadas de pooling ajudam a capturar e reter as características mais importantes, ao mesmo tempo que descartam informações menos relevantes ou ruidosas.
- Portanto, elas compactam os dados sem perder as características importantes.

#### Padding ou preenchimento

|   |   | Input |          | Kernel |              |   |   | Output       |    |  |
|---|---|-------|----------|--------|--------------|---|---|--------------|----|--|
|   | 0 | 1     | 2        |        |              |   | = |              |    |  |
| İ | 3 | 1     | 5        | *      | 0            | 1 |   | 19           | 25 |  |
| ŀ |   | 7     | <u> </u> |        | 2            | 3 |   | 37           | 43 |  |
|   | 6 | 7     | 8        |        |              |   |   |              |    |  |
| ٠ |   | 2 🗸 2 | )        | 1      | $2 \times 2$ |   |   | $2 \times 2$ |    |  |
|   |   | 3 X 3 | Ó        |        |              |   |   |              |    |  |

$$n_{out} = \left| \frac{n_{in} + 2p - k}{s} \right| + 1$$

 $n_{out}$ : dimensão da saída  $n_{in}$ : dimensão da entrada k: dimensão do kernel

p : quantidade camadas de padding

s: tamanho do stride

|x|: função piso retorna o maior inteiro menor ou igual a x.

- Depois de aplicar muitas convoluções sucessivas, as imagens tendem a se tornarem consideravelmente menores do que as da entrada.
- Se temos uma imagem de entrada com  $240 \times 240$  pixels, após dez camadas de convolução  $5 \times 5$  com stride igual a 1, ela é reduzida para  $200 \times 200$  pixels.
- Isso reduz a imagem em ≈17%, e consequentemente, faz com que qualquer informação interessante nas bordas da imagem desapareçam.

#### Padding ou preenchimento



 $3 \times 3$ 

- O padding é usado para controlar o tamanho dos mapas de características após uma camada convolucional.
- Pixels de preenchimento são adicionados ao redor da borda da imagem de entrada, aumentando assim seu tamanho efetivo.
  - Normalmente, os pixels são feitos iguais a zero.
- Em tarefas de classificação de imagens, é comum aplicar *padding* nas camadas iniciais para preservar informações de borda, enquanto camadas finais não o aplicam para reduzir a dimensionalidade.

#### Camadas densas

#### Convolution Neural Network (CNN)



- Depois das camadas convolucionais, as CNN apresentam algumas camadas densas.
- Elas são responsáveis por realizar a classificação ou regressão propriamente dita.
- As camadas densas recebem as características extraídas pelas camadas convolucionais e combinam essas informações para aprender padrões complexos e realizar a tarefa de classificação ou regressão.

#### Os filtros são aprendidos!

#### **Convolution Neural Network (CNN)**



- Nós não precisamos definir os filtros manualmente.
- Em vez disso, durante o treinamento, as camadas convolucionais
   aprenderão automaticamente os filtros mais úteis para sua tarefa, e as
   camadas acima (i.e., densas) aprenderão a combiná-los em padrões mais
   complexos.

### Exemplo de classificação de imagens



- Para entender melhor o que uma camada de convolução faz, vamos considerar um exemplo simples.
- Vamos supor que não conhecemos o conteúdo da imagem ao lado.
- Isso foi simulado deixando-a embaçada.



- Então, digamos que haja um filtro ou um conjunto de filtros que ao serem passados sobre a imagem extraem os pixels mostrados ao lado.
- Como podemos ver, são duas formas verticais, que se parecem com pernas humanas.



- Na sequência, outros filtros extraem as características mostradas ao lado.
- São formas com cilindros que se projetam a partir delas.
- Nosso cérebro vê isso e instantaneamente classifica como mãos.
- Porém uma rede neural não treinada ainda não sabe disso.
- Ela apenas sabe que um filtro pode extrair algo parecido com esse conjunto de pixels.



- Em seguida, um outros filtros extraem um círculo com outros dois círculos menores, uma saliência e algumas formas paralelas.
- Nosso cérebro reconhece esse conjunto de *pixels* como um rosto com olhos, nariz e boca.
- Mas, novamente, o modelo não tem contexto para decidir o que esses pixels são.
- Ele só sabe que um filtro específico pode extrair essas características.



- Quando essas características estão presentes em uma imagem rotulada como humana, a rede neural pode ser treinada para aprender filtros que extraem essas informações.
- A rede pode combinar as características extraídas pelos três filtros (i.e., pernas, mãos e face) para detectar seres humanos em imagens inéditas.



- A mesma rede pode ser treinada para identificar diferentes características presentes nas imagens de cavalos.
- Assim, ao aprender conjuntos de filtros que podem detectar humanos ou cavalos, temos um modelo de visão computacional que pode lidar com imagens complexas e predizer o que há nelas.

## Observação



- Notem que usamos pernas, mãos e rostos como exemplos de características extraídas por um filtro.
- Essas são formas reconhecíveis pelo nosso cérebro, então as utilizamos para ilustrar o conceito.

## Observação



- No entanto, quando filtros são treinados para detectar características em imagens, eles podem identificar coisas que são imperceptíveis para os seres humanos.
- Podem existir padrões de pixels que correspondam a uma imagem rotulada, mas que não tenham significado aparente para nós.

## Explorando CNNs

- CNN Explainer
  - https://poloclub.github.io/cnn-explainer/
- ConvNetJS MNIST demo
  - https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
- ConvNetJS CIFAR-10 demo
  - https://cs.stanford.edu/people/karpathy/convnetj

### Atividades

- Quiz: "TP557 Introduzindo Convoluções".
- Exercício: Redes neurais convolucionais

## Perguntas?

# Obrigado!

### Input

| 0 | 1 | 2 | 3 |
|---|---|---|---|
| 4 | 5 | 6 | 7 |
| 8 | 9 | 0 | 1 |
| 2 | 3 | 4 | 5 |

### Kernel

| Output |
|--------|
|--------|



| 0 | 1 | _ |
|---|---|---|
| 2 | 3 |   |

| 24 |  |
|----|--|
|    |  |





### Input

| 0 | 1 | 2 | 3 |
|---|---|---|---|
| 4 | 5 | 6 | 7 |
| 8 | 9 | 0 | 1 |
| 2 | 3 | 4 | 5 |





| $\sim$ |      |    |    |
|--------|------|----|----|
| O      | ut   | 'n | u. |
| _      | ٠. ٠ | Γ. | •  |



| 0 | 1 |
|---|---|
| 2 | თ |

| 24 | 36 |
|----|----|
|    |    |

### Input

| 0 | 1 | 2 | 3 |
|---|---|---|---|
| 4 | 5 | 6 | 7 |
| 8 | 9 | 0 | 1 |
| 2 | 3 | 4 | 5 |

### Kernel



| 0 | 1 |  |
|---|---|--|
| 2 | 3 |  |

### Output

| 24 | 36 |
|----|----|
| 22 |    |











Camada convolucional

#### **Max Pooling**

| 2 | 8 | 9 | 3 |
|---|---|---|---|
| 7 | 3 | 5 | 0 |
| 1 | 4 | 2 | 1 |
| 6 | 5 | 5 | 7 |

Tamanho do *pool*: 2x2

Stride: 2

8967



Kernel

Output

 $4 \times 4$ 

 $3 \times 3$ 







