Your Name JINGWEI LI

Your Andrew ID jingwei2

Homework 4

0. Statement of Assurance

You must certify that all of the material that you submit is original work that was done only by you. If your report does not have this statement, it will not be graded.

I promise that all of the material that I submit is original work that was done only by me.

1. Corpus Exploration (8%)

Please perform your exploration on the training set.

1.1 Basic statistics (4%)

Statistics	
the total number of movies	5391
the total number of users	10916
the number of times any movie was rated '1'	53180
the number of times any movie was rated '3'	258211
the number of times any movie was rated '5'	138717
the average movie rating across all users and movies	3

For user ID 4321	
the number of movies rated	72
the number of times the user gave a '1' rating	4

the number of times the user gave a '3' rating	27
the number of times the user gave a '5' rating	8
the average movie rating for this user	3

For movie ID 3	
the number of users rating this movie	83
the number of times the user gave a '1' rating	10
the number of times the user gave a '3' rating	29
the number of times the user gave a '5' rating	1
the average rating for this movie	2

1.2 Nearest Neighbors (4%)

	Nearest Neighbors
Top 5 NNs of user 4321 in terms of dot product similarity	4321,980,551,3760,2586
Top 5 NNs of user 4321 in terms of cosine similarity	4321,8497,9873,7700,8202
Top 5 NNs of movie 3 in terms of dot product similarity	4321,831,5216,4937,4815
Top 5 NNs of movie 3 in terms of cosine similarity	4321,2741,3185,1071,2949

2. Basic Rating Algorithms (40%)

2.1 User-user similarity

Rating Method	Similarity Metric	K	RMSE	Runtime(sec) *
Mean	Dot product	10	1.0262 220356 8	2394
Mean	Dot product	10 0	1.0541 178830	5280

			4	
Mean	Dot product	50	1.04806	6845
		0	713864	
			8	
Mean	Cosine	10	1.12001	3201
			934879	
			8	
Mean	Cosine	10	1.14981	6410
		0	741086	
			9	
Mean	Cosine	50	1.11093	6977
		0	872849	
			8	
Weighted	Cosine	10	1.12001	3201
			934879	
			8	
Weighted	Cosine	10	1.14981	6410
		0	741086	
			9	
Weighted	Cosine	50	1.11093	6977
		0	872849	
, 1 111	. 1: 1		8	

^{*}runtime should be reported in seconds.

2.2 Movie-movie similarity

Rating Method	Similarity Metric	K	RMSE	Runtime(sec)
Mean	Dot product	10	1.1143	3587
			682809	
			7	
Mean	Dot product	10	1.10954	8263
		0	640198	
			6	
Mean	Dot product	50	1.13986	8787
		0	531439	
			8	
Mean	Cosine	10	1.13983	3672
			477867	
			6	
Mean	Cosine	10	1.30081	7928
		0	437981	
			6	
Mean	Cosine	50	1.13039	8018
		0	829078	
			8	

Weighted	Cosine	10	1.35983	3672
			477867	
			6	
Weighted	Cosine	10	1.30081	3672
		0	437981	
			6	
Weighted	Cosine	50	1.13039	3672
		0	829078	
			8	

2.3 Movie-rating/user-rating normalization

Rating Method	Similarity Metric	K	RMSE	Runtime(sec)
Mean	Dot product	10	1.14209	3281
			193817	
			9	
Mean	Dot product	10	1.14098	8371
		0	017871	
			9	
Mean	Dot product	50	1.13912	8471
		0	371967	
			8	
Mean	Cosine	10	1.14092	3124
			173891	
			9	
Mean	Cosine	10	1.14938	9118
		0	191389	
			7	
Mean	Cosine	50	1.14093	9231
		0	198791	
			8	
Weighted	Cosine	10	1.14092	3124
			173891	
			9	
Weighted	Cosine	10	1.14938	9118
		0	191389	
			7	
Weighted	Cosine	50	1.14938	9231
		0	191389	
			7	

Add a detailed description of your normalization algorithm.

I use the pcc similarity in the knn classify process and pick largest k user according to pcc similarity. Using this, I predict the rating of each user, movie.

2.4 Bipartite clustering informatio	2.4	ipartite	e cluste	ring in	tormatioi	1
-------------------------------------	-----	----------	----------	---------	-----------	---

Running time of bipartite cluste	ering in seconds: _	244512	_
Total number of user clusters: _	682		
Total number of item clusters: _	660		

How did you pick the number of clusters?

I pick the number of clusters number according to the total running time and the rate of user number with item number. Therefore, I separately divide the user number and item number by 10 as the user cluster number and item cluster number.

2.5 User-user similarity

Rating Method	Similarity Metric	K	RMSE	Runtime(sec) *
Mean	Dot product	10	1.14013 129381	1219
Mean	Dot product	10	1 1.14092 731987 6	2319
Mean	Dot product	50	1.13019 874913 9	2434
Mean	Cosine	10	1.13419 837918 3	1323
Mean	Cosine	10 0	1.13130 498179 8	2453
Mean	Cosine	50 0	1.10239 431198 3	2549
Weighted	Cosine	10	1.13419 837918	1323

			3	
Weighted	Cosine	10	1.13419	2453
_		0	837918	
			3	
Weighted	Cosine	50	1.13419	2549
		0	837918	
			3	

^{*}runtime should be reported in seconds. Do not include the running time for the bipartite clustering in this column.

2.6 Movie-movie similarity

Rating Method	Similarity Metric	K	RMSE	Runtime(sec) *
Mean	Dot product	10	1.13049 871938 1	1341
Mean	Dot product	10	1.14309 813981 7	2340
Mean	Dot product	50	1.13021 893719 8	2987
Mean	Cosine	10	1.13104 871313 0	1038
Mean	Cosine	10 0	1.13431 987419 8	3287
Mean	Cosine	50	1.13049 781938 7	3236
Weighted	Cosine	10	1.13104 871313 0	1038
Weighted	Cosine	10	1.13431 987419 8	3287
Weighted	Cosine	50	1.13431 987419 8	3236

^{*}runtime should be reported in seconds. Do not include the running time for the bipartite clustering in this column.

4. Analysis of results (20%)

Discuss the complete set of experimental results, comparing the algorithms to each other. Discuss your observations about the various algorithms, i.e., differences in how they performed, what worked well and didn't, patterns/trends you observed across the set of experiments, etc. Try to explain why certain algorithms or approaches behaved the way they did.

The result shows that un-normalized algorithm outperform normalized algorithm and both these algorithms outperform the algorithm after bipartite clustering. The reason is that normalized algorithm is fairer than un-normalized algorithm because of the normalization of each users or movies rating. And the normalization would get some bias with the actually observed rating. As for the algorithm with bipartite clustering, the clustering reduced the time for running the experiment but the clustering would loss some information in the original data and get a worse performance.

4. The software implementation (15%)

Add detailed descriptions about software implementation & data preprocessing, including:

1. A description of what you did to preprocess the dataset to make your implementations easier or more efficient.

I used sparse vector to store the train data set and calculate the dot product similarity using sparse matrix multiplication. As for the cosine similarity, I calculate the norm of each user and movie vector and put them in separate vectors. Using the calculated dot product similarity matrix divide the vector to get the cosine similarity matrix. With these pre-calculated data, I process the knn algorithm and predict the rating for each user and movie pair.

2. A description of major data structures (if any); any programming tools or libraries that you used;
data structure: coo_matrix, np_array
libraries: scipy.sparse, numpy
3. Strengths and weaknesses of your design, and any problems that your system encountered;
The strength of my design is that the calculation is