RMIT UNIVERSITY MELBOURNE MATH1309 - MULTIVARIATE ANALYSIS

Assignment 2

Udeshika Dissanayake (\$3400652)

Udeshika.dissanayake@student.rmit.edu.au

Table of Contents

Questic	on1	2
1.1.	Mean and standard deviation for the 13 chemical concentrations	2
1.2.	Correlation matrix and a scatterplot	2
2.3.	Principal component analysis on the raw data	4
2.4.	Principal component analysis on the correlation matrix	6
Questic	on2	10
2.1	Dataset	10
2.2	Mean and Standard Deviation of the data	10
2.3	Factor Analysis on the raw data and the correlation matrix	11
2.4		12
2.5.	Scoring coefficient as eigenvectors	13
2.6.	Component scores as linear combination of the observed variables	15
Questic	on3	17
3.1.	Sample from Dataset	17
3.2	Mean and variance-covariance matrix for genuine notes	17
3.3	Mean, STD and variance-covariance matrix for counterfeit notes	18
3.4	Correlation matrix and the scatterplot matrix for genuine notes	18
3.5	Correlation matrix and the scatterplot matrix for counterfeit notes	19
3.6	Discriminant Analysis	21
Append	dix	24
SA	S Codes for Question1	24
SA	S Codes for Question2	25
SA	S Codes for Question3	26

Question1

1.1. Mean and standard deviation for the 13 chemical concentrations

The MEANS Procedure

Variable	Mean	Std Dev
chem1	13.0006	0.8118
chem2	2.3363	1.1171
chem3	2.3665	0.2743
chem4	19.4949	3.3396
chem5	99.7416	14.2825
chem6	2.2951	0.6259
chem7	2.0293	0.9989
chem8	0.3619	0.1245
chem9	1.5909	0.5724
chem10	5.0581	2.3183
chem11	0.9574	0.2286
chem12	2.6117	0.7100
chem13	746.8933	314.9075

1.2. Correlation matrix and a scatterplot

The correlation matrix is suitable for principal component analysis as there is a high correlation between some variables. E.g.

- chem1 and chem13 → 64 %
- chem2 and chem11→ -56 %
- chem6 and chem7 → 86 %
- chem6 and chem9 → 61 %
- chem6 and chem12→ 70 %
- chem7 and chem9 \rightarrow 65 %
- chem7 and chem12→ 79 %

This means some of the variables can safely be ignored and entire data set can effectively be summarized by a fewer numbers of variables. i.e. principle components.

2.3. Principal component analysis on the raw data

Eigenvalues of the Covariance Matrix								
	Eigenvalue	Difference	Proportion	Cumulative				
1	99201.7895	99029.2543	0.9981	0.9981				
2	172.5353	163.0972	0.0017	0.9998				
3	9.4381	4.4469	0.0001	0.9999				
4	4.9912	3.7623	0.0001	1.0000				
5	1.2288	0.3878	0.0000	1.0000				
6	0.8411	0.5621	0.0000	1.0000				
7	0.2790	0.1276	0.0000	1.0000				
8	0.1514	0.0393	0.0000	1.0000				
9	0.1121	0.0404	0.0000	1.0000				
10	0.0717	0.0341	0.0000	1.0000				
11	0.0376	0.0165	0.0000	1.0000				
12	0.0211	0.0129	0.0000	1.0000				
13	0.0082		0.0000	1.0000				

						Eigen	vectors						
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11	Prin12	Prin13
chem1	0.001659	0.001203	0.016874	0.141447	0.020337	0.194120	0.923280	0.284821	086601	002245	014972	015651	0.008029
chem2	000681	0.002155	0.122003	0.160390	612883	0.742473	150110	084874	015862	018509	023188	0.067296	011090
chem3	0.000195	0.004594	0.051987	009773	0.020176	0.041753	0.045010	149340	073650	086800	0.954011	132063	173686
chem4	004671	0.026450	0.938593	330965	0.064352	024065	0.031527	0.015154	002045	0.003554	052822	0.005394	0.001940
chem5	0.017868	0.999344	029780	005394	006149	001924	0.001797	003552	0.001964	000041	003025	0.000621	0.002285
chem6	0.000990	0.000878	040485	074585	0.315245	0.278717	020186	177238	255673	0.847195	0.008802	0.003883	026691
chem7	0.001567	000052	085443	169087	0.524761	0.433598	038869	248117	378307	520138	133205	037488	0.069599
chem8	000123	001354	0.013511	0.010806	029648	021953	004665	0.006498	036752	0.037713	0.199179	0.147552	0.966466
chem9	0.000601	0.005004	024659	050121	0.251183	0.241884	309799	0.870433	0.051520	0.009723	0.135621	013119	017604
chem10	0.002327	0.015100	0.291398	0.878894	0.331747	0.002740	112837	081287	0.099029	023147	009820	0.050356	004633
chem11	0.000171	000763	025978	060035	0.051524	023776	0.030820	002952	033065	038470	0.097511	0.975562	166551
chem12	0.000705	003495	070324	178200	0.260639	0.288913	0.101974	186715	0.873747	0.017017	0.028485	0.011630	0.044192
chem13	0.999823	017774	0.004529	003113	002299	001212	001076	0.000010	0.000073	0.000049	000240	000100	0.000036

1.3.a)

In total 99.99% of the total sample variation is accounted in first 3 PC's.

1.3.b)

First PC is having eigenvalue of 99201.7895 and it explains 99.81% of variation. There is high correlation between first PC and Chem13; which is 99.98%.

Second PC is having eigenvalue of 172.5353 and it explains 0.17% of variation. There is high correlation between second PC and Chem5; which is 99.93%.

Third PC is having eigenvalue of 9.4381 and it explains 0.01% of variation. There is high correlation between third PC and Chem4; which is 93.86%. and between third PC and Chem10; which is 29.13%.

1.3.c)

$$\begin{split} PC1 &= Y_1 = 0.001659X_1 - 0.000681X_2 + 0.000195X_3 - 0.004671X_4 + 0.017868X_5 + 0.00099X_6 \\ &\quad + 0.001567X_7 - 0.000123X_8 + 0.000601X_9 + 0.002327X_{10} + 0.000171X_{11} \\ &\quad + 0.000705X_{12} + 0.999823X_{13} \end{split}$$

$$PC2 = Y_2 = 0.001203X_1 + 0.002155X_2 + 0.004594X_3 + 0.02645X_4 + 0.999344X_5 + 0.000878X_6 \\ -0.000052X_7 - 0.001354X_8 + 0.005004X_9 + 0.0151X_{10} - 0.000763X_{11} \\ -0.003495X_{12} - 0.017774X_{13}$$

$$PC3 = Y_3 = 0.016874X_1 + 0.122003X_2 + 0.051987X_3 + 0.938593X_4 - 0.02978X_5 - 0.040485X_6 \\ - 0.085443X_7 + 0.013511X_8 - 0.024659X_9 + 0.291398X_{10} - 0.025978X_{11} \\ - 0.070324X_{12} + 0.004529X_{13}$$

1.3.d)

Due to large variance, Chem13 completely dominates the first principle component in above covariance calculation. Moreover, the first principle component explains 99.81% of the total population variance. This means even though the dataset could be effectively summarized by a fewer variables through PC analysis, the covariance matrix approach is not suitable due to non-normalized behavior of variables, specially chem13.

1.3.e)

As per the scree plot, markers for component 2-13 are linear and first two PC's explain 99.99% of the variance. Hence two components will be retained.

2.4. Principal component analysis on the correlation matrix

						Correla	tion Matri	x					
	chem1	chem2	chem3	chem4	chem5	chem6	chem7	chem8	chem9	chem10	chem11	chem12	chem13
chem1	1.0000	0.0944	0.2115	3102	0.2708	0.2891	0.2368	1559	0.1367	0.5464	0717	0.0723	0.6437
chem2	0.0944	1.0000	0.1640	0.2885	0546	3352	4110	0.2930	2207	0.2490	5613	3687	1920
chem3	0.2115	0.1640	1.0000	0.4434	0.2866	0.1290	0.1151	0.1862	0.0097	0.2589	0747	0.0039	0.2236
chem4	3102	0.2885	0.4434	1.0000	0833	3211	3514	0.3619	1973	0.0187	2740	2768	4406
chem5	0.2708	0546	0.2866	0833	1.0000	0.2144	0.1958	2563	0.2364	0.2000	0.0554	0.0660	0.3934
chem6	0.2891	3352	0.1290	3211	0.2144	1.0000	0.8646	4499	0.6124	0551	0.4337	0.6999	0.4981
chem7	0.2368	4110	0.1151	3514	0.1958	0.8646	1.0000	5379	0.6527	1724	0.5435	0.7872	0.4942
chem8	1559	0.2930	0.1862	0.3619	2563	4499	5379	1.0000	3658	0.1391	2626	5033	3114
chem9	0.1367	2207	0.0097	1973	0.2364	0.6124	0.6527	3658	1.0000	0252	0.2955	0.5191	0.3304
chem10	0.5464	0.2490	0.2589	0.0187	0.2000	0551	1724	0.1391	0252	1.0000	5218	4288	0.3161
chem11	0717	5613	0747	2740	0.0554	0.4337	0.5435	2626	0.2955	5218	1.0000	0.5655	0.2362
chem12	0.0723	3687	0.0039	2768	0.0660	0.6999	0.7872	5033	0.5191	4288	0.5655	1.0000	0.3128
chem13	0.6437	1920	0.2236	4406	0.3934	0.4981	0.4942	3114	0.3304	0.3161	0.2362	0.3128	1.0000

	Eigenvalues of the Correlation Matrix							
	Eigenvalue	Difference	Proportion	Cumulative				
1	4.70585025	2.20887652	0.3620	0.3620				
2	2.49697373	1.05090176	0.1921	0.5541				
3	1.44607197	0.52709805	0.1112	0.6653				
4	0.91897392	0.06574575	0.0707	0.7360				
5	0.85322818	0.21157115	0.0656	0.8016				
6	0.64165703	0.09062872	0.0494	0.8510				
7	0.55102831	0.20253095	0.0424	0.8934				
8	0.34849736	0.05961742	0.0268	0.9202				
9	0.28887994	0.03797746	0.0222	0.9424				
10	0.25090248	0.02511384	0.0193	0.9617				
11	0.22578864	0.05701840	0.0174	0.9791				
12	0.16877023	0.06539230	0.0130	0.9920				
13	0.10337794		0.0080	1.0000				

						Eigen	vectors						
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11	Prin12	Prin13
chem1	0.144329	0.483652	207383	017856	0.265664	0.213539	056396	0.396139	0.508619	211605	225917	266286	0.014970
chem2	245188	0.224931	0.089013	0.536890	035214	0.536814	0.420524	0.065827	075283	0.309080	0.076486	0.121898	0.025984
chem3	002051	0.316069	0.626224	214176	0.143025	0.154475	149171	170260	307694	0.027125	498891	049822	141218
chem4	239320	010591	0.612080	0.060859	066103	100825	288989	0.427970	0.200449	052799	0.479314	055743	0.091683
chem5	0.141992	0.299834	0.130757	351797	727049	0.038144	0.322883	158381	0.271403	087870	0.071289	0.082220	0.058774
chem6	0.394661	0.085040	0.148179	0.198068	0.149318	084122	027925	405934	0.286035	0.320131	0.304341	303882	463908
chem7	0.422934	003360	0.150882	0.152295	0.109026	018920	080885	187245	0.049578	0.163151	025894	042899	0.832257
chem8	298533	0.028779	0.170368	203301	0.500703	258594	0.595447	233285	0.195501	215535	0.116896	0.042352	0.114040
chem9	0.313429	0.039302	0.149454	0.399057	136860	533795	0.372139	0.368227	209145	134184	237363	095553	116917
chem10	088617	0.529996	137308	0.065926	0.076437	418844	227712	033797	0.058218	0.290775	0.031839	0.604222	011993
chem11	0.296715	279235	0.085222	427771	0.173615	0.105983	0.232076	0.438824	0.085828	0.522399	048212	0.259214	089889
chem12	0.376167	164496	0.168005	0.184121	0.101161	0.265851	044764	078108	0.137227	523706	0.046423	0.600959	156718
chem13	0.286752	0.364903	126746	232071	0.157869	0.119726	0.076805	0.120023	575786	162116	0.539270	079402	0.014447

1.4.a)

In total 66.53% of the total sample variation is accounted for first 3 PC's.

1.4.b)

First PC is having eigenvalue of 4.70585 and it explains 36.2% of variation. There is high correlation between first PC and Chem7; which is 42.29%.

Second PC is having eigenvalue of 2.497 and it explains 19.21% of variation. There is high correlation between second PC and Chem10; which is 53%.

Third PC is having eigenvalue of 1.446 and it explains 11.1% of variation. There is high correlation between third PC and Chem3; which is 62.62%. and between third PC and Chem4; which is 61.4%

1.4.c)

$$\begin{aligned} & \text{PC1=}Y_1 = 0.144329 \left(\frac{X_1 - \mu_1}{\sqrt{0.65906}} \right) - 0.245188 \left(\frac{X_2 - \mu_2}{\sqrt{1.24802}} \right) - 0.002051 \left(\frac{X_3 - \mu_3}{\sqrt{0.07526}} \right) - 0.23932 \left(\frac{X_4 - \mu_4}{\sqrt{11.15269}} \right) + \\ & 0.141992 \left(\frac{X_5 - \mu_5}{\sqrt{203.98}} \right) + 0.394661 \left(\frac{X_6 - \mu_6}{\sqrt{0.39169}} \right) + 0.422934 \left(\frac{X_7 - \mu_7}{\sqrt{0.99772}} \right) - 0.298533 \left(\frac{X_8 - \mu_8}{\sqrt{0.01549}} \right) + \\ & 0.313429 \left(\frac{X_9 - \mu_9}{\sqrt{0.32759}} \right) - 0.088617 \left(\frac{X_{10} - \mu_{10}}{\sqrt{5.37445}} \right) + 0.296715 \left(\frac{X_{11} - \mu_{11}}{\sqrt{0.05224}} \right) + 0.376167 \left(\frac{X_{12} - \mu_{12}}{\sqrt{0.50409}} \right) + \\ & 0.286752 \left(\frac{X_{13} - \mu_{13}}{\sqrt{99166.71}} \right) \end{aligned}$$

$$\begin{split} PC2 &= Y_2 = 0.483652 \left(\frac{X_1 - \mu_1}{\sqrt{0.65906}} \right) + 0.224931 \left(\frac{X_2 - \mu_2}{\sqrt{1.24802}} \right) + 0.3160694 \left(\frac{X_3 - \mu_3}{\sqrt{0.07526}} \right) \\ &- 0.010591 \left(\frac{X_4 - \mu_4}{\sqrt{11.15269}} \right) + 0.299634 \left(\frac{X_5 - \mu_5}{\sqrt{203.98}} \right) + 0.06504 \left(\frac{X_6 - \mu_6}{\sqrt{0.39169}} \right) \\ &- 0.00336 \left(\frac{X_7 - \mu_7}{\sqrt{0.99772}} \right) + 0.028779 \left(\frac{X_8 - \mu_8}{\sqrt{0.01549}} \right) + 0.039302 \left(\frac{X_9 - \mu_9}{\sqrt{0.32759}} \right) \\ &+ 0.529996 \left(\frac{X_{10} - \mu_{10}}{\sqrt{5.37445}} \right) - 0.279235 \left(\frac{X_{11} - \mu_{11}}{\sqrt{0.05224}} \right) - 0.164496 \left(\frac{X_{12} - \mu_{12}}{\sqrt{0.50409}} \right) \\ &+ 0.364903 \left(\frac{X_{13} - \mu_{13}}{\sqrt{99166.71}} \right) \end{split}$$

$$\begin{split} PC3 &= Y_3 = -0.207383 \left(\frac{X_1 - \mu_1}{\sqrt{0.65906}} \right) + 0.089013 \left(\frac{X_2 - \mu_2}{\sqrt{1.24802}} \right) + 0.626224 \left(\frac{X_3 - \mu_3}{\sqrt{0.07526}} \right) \\ &+ 0.61208 \left(\frac{X_4 - \mu_4}{\sqrt{11.15269}} \right) + 0.130757 \left(\frac{X_5 - \mu_5}{\sqrt{203.98}} \right) + 0.146179 \left(\frac{X_6 - \mu_6}{\sqrt{0.39169}} \right) \\ &+ 0.150682 \left(\frac{X_7 - \mu_7}{\sqrt{0.99772}} \right) + 0.170368 \left(\frac{X_8 - \mu_8}{\sqrt{0.01549}} \right) + 0.149454 \left(\frac{X_9 - \mu_9}{\sqrt{0.32759}} \right) \\ &- 0.137306 \left(\frac{X_{10} - \mu_{10}}{\sqrt{5.37445}} \right) + 0.085222 \left(\frac{X_{11} - \mu_{11}}{\sqrt{0.05224}} \right) + 0.166005 \left(\frac{X_{12} - \mu_{12}}{\sqrt{0.50409}} \right) \\ &- 0.126746 \left(\frac{X_{13} - \mu_{13}}{\sqrt{99166.71}} \right) \end{split}$$

1.4.d)

The first four principle components account for 73% of the total population variance in the data set. This means, the first four principle components could replace the original 13 variables with significantly less loss of information.

1.4.e)

As per the scree plot, 4 components will be retained.

Question2

2.1 **Dataset**

Obs	Population	School	Employment	Services	HouseValue
1	5700	12.8	2500	270	25000
2	1000	10.9	600	10	10000
3	3400	8.8	1000	10	9000
4	3800	13.6	1700	140	25000
5	4000	12.8	1600	140	25000
6	8200	8.3	2600	60	12000
7	1200	11.4	400	10	16000
8	9100	11.5	3300	60	14000
9	9900	12.5	3400	180	18000
10	9600	13.7	3600	390	25000
11	9600	9.6	3300	80	12000
12	9400	11.4	4000	100	13000

2.2 **Mean and Standard Deviation of the data**

The MEANS Procedure						
Variable	Mean	Std Dev				
Population	6241.6667	3439.9943				
School	11.4417	1.7865				
Employment	2333.3333	1241.2115				
Services	120.8333	114.9275				
HouseValue	17000.0000	6367.5313				

2.3 Factor Analysis on the raw data and the correlation matrix

The FACTOR Procedure

Input Data Type	Raw Data
Number of Records Read	12
Number of Records Used	12
N for Significance Tests	12

Means and Standard Deviations from 12 Observations					
Variable	Mean	Std Dev			
Population	6241.667	3439.9943			
School	11.442	1.7865			
Employment	2333.333	1241.2115			
Services	120.833	114.9275			
HouseValue	17000.000	6367.5313			

Correlations								
Population School Employment Services HouseVa								
Population	1.00000	0.00975	0.97245	0.43887	0.02241			
School	0.00975	1.00000	0.15428	0.69141	0.86307			
Employment	0.97245	0.15428	1.00000	0.51472	0.12193			
Services	0.43887	0.69141	0.51472	1.00000	0.77765			
HouseValue	0.02241	0.86307	0.12193	0.77765	1.00000			

The FACTOR Procedure Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eig	Eigenvalues of the Correlation Matrix: Total = 5 Average = 1					
	Eigenvalue	Difference	Proportion	Cumulative		
1	2.87331359	1.07665350	0.5747	0.5747		
2	1.79666009	1.58182321	0.3593	0.9340		
3	0.21483689	0.11490283	0.0430	0.9770		
4	0.09993405	0.08467868	0.0200	0.9969		
5	0.01525537		0.0031	1.0000		

2 factors will be retained by the MINEIGEN criterion.

Factor Pattern				
	Factor1	Factor2		
Population	0.58096	0.80642		
School	0.76704	-0.54476		
Employment	0.67243	0.72605		
Services	0.93239	-0.10431		
HouseValue	0.79116	-0.55818		

Variance Explained by Each Factor		
Factor1	Factor2	
2.8733136	1.7966601	

Final Communality Estimates: Total = 4.669974				
Population	School	Employment	Services	HouseValue
0.98782629	0.88510555	0.97930583	0.88023562	0.93750041

2.4

2.4.a)

First 2 factors explain 93.4% of the variance. Hence first two factors provide an adequate summary of the data.

2.4.b)

First 2 factors explain 93.4% of the variance.

2.4.c)

First 3 factors explain 97.7% of the variance

2.5. Scoring coefficient as eigenvectors

		The PRIN	COMP Pro	ocedu	re	
		Obse	rvations	12		
		Varial	bles	5		
		Simp	ole Statist	ics		
	Population	School	Employ	ment	Services	HouseValue
Mean	6241.666667	11.44166667	2333.33	3333	120.8333333	17000.00000
StD	3439.994274	1.78654483	1241.21	1529	114.9275134	6367.53128

Correlation Matrix					
	Population	School	Employment	Services	HouseValue
Population	1.0000	0.0098	0.9724	0.4389	0.0224
School	0.0098	1.0000	0.1543	0.6914	0.8631
Employment	0.9724	0.1543	1.0000	0.5147	0.1219
Services	0.4389	0.6914	0.5147	1.0000	0.7777
HouseValue	0.0224	0.8631	0.1219	0.7777	1.0000

	Eigenvalues of the Correlation Matrix					
	Eigenvalue	Difference	Proportion	Cumulative		
1	2.87331359	1.07665350	0.5747	0.5747		
2	1.79666009	1.58182321	0.3593	0.9340		
3	0.21483689	0.11490283	0.0430	0.9770		
4	0.09993405	0.08467868	0.0200	0.9969		
5	0.01525537		0.0031	1.0000		

Eigenvectors					
	Prin1	Prin2	Prin3	Prin4	Prin5
Population	0.342730	0.601629	0.059517	0.204033	0.689497
School	0.452507	406414	0.688822	353571	0.174861
Employment	0.396695	0.541665	0.247958	0.022937	698014
Services	0.550057	077817	664076	500386	000124
HouseValue	0.466738	416429	139649	0.763182	082425

2.5.a) Eigen values and Eigen Vectors

	Eigenvalues of the Correlation Matrix					
	Eigenvalue	Difference	Proportion	Cumulative		
1	2.87331359	1.07665350	0.5747	0.5747		
2	1.79666009	1.58182321	0.3593	0.9340		
3	0.21483689	0.11490283	0.0430	0.9770		
4	0.09993405	0.08467868	0.0200	0.9969		
5	0.01525537		0.0031	1.0000		

	Eigenvectors				
	Prin1	Prin2	Prin3	Prin4	Prin5
Population	0.342730	0.601629	0.059517	0.204033	0.689497
School	0.452507	406414	0.688822	353571	0.174861
Employment	0.396695	0.541665	0.247958	0.022937	698014
Services	0.550057	077817	664076	500386	000124
HouseValue	0.466738	416429	139649	0.763182	082425

2.5.b)

The first and the second component account for 0.57 (57%) and 0.36 (36%) proportions of variance, respectively.

2.5.c)

First and second factors together account for the 93.4% of the standardized variance.

2.5.d)

Final communality estimates represent the proportion of each variable's variance that can be explained by the retained factors. As can be seen from the final communality estimate values (close to 1 for all variables) in this analysis for all the variables, it can be claimed that all the variables are well accounted by the retained factors.

Final Communality Estimates: Total = 4.669974					
Population	School	Employment	Services	HouseValue	
0.98782629	0.88510555	0.97930583	0.88023562	0.93750041	

2.6. Component scores as linear combination of the observed variables

The FACTOR Procedure		
Input Data Type	Raw Data	
Number of Records Read	12	
Number of Records Used	12	
N for Significance Tests	12	

The FACTOR Procedure Initial Factor Method: Principal Components

Scoring Coefficients Estimated by Regression

Squared Mu	Itiple Correla	tions of the V	ariables with	Each Factor
Factor1	Factor2	Factor3	Factor4	Factor5
1.0000000	1.0000000	1.0000000	1.0000000	1.0000000

Standardized Scoring Coefficients								
	Factor1	Factor2	Factor3	Factor4	Factor5			
Population	0.20219	0.44884	0.12841	0.64542	5.58240			
School	0.26695	-0.30320	1.48612	-1.11846	1.41574			
Employment	0.23403	0.40411	0.53496	0.07256	-5.65135			
Services	0.32450	-0.05806	-1.43273	-1.58288	-0.00100			
HouseValue	0.27535	-0.31068	-0.30129	2.41419	-0.66734			

2.6.a)

$$FC_1 = 0.20219X_1 + 0.26695X_2 + 0.23403X_3 + 0.3245X_4 + 0.27535X_5$$

2.6.b) FC using standardized scoring coefficients

$$FC_2 = 0.44884X_1 - 0.3032X_2 + 0.40411X_3 - 0.05806X_4 - 0.31068X_5$$

2.6.c) PC using Eigenvectors

$$PC_1 = 0.34273X_1 + 0.452507X_2 + 0.396695X_3 + 0.550057X_4 + 0.466738X_5$$

$$PC_2 = 0.601629X_1 - .406414X_2 + 0.541665X_3 - .077817X_4 - 0.416429X_5$$

Question3

3.1. Sample from Dataset

Obs	Class	Length	Left	Right	Bottom	Тор	Diagonal
1	genuine	214.8	131.0	131.1	9.0	9.7	141.0
2	genuine	214.6	129.7	129.7	8.1	9.5	141.7
3	genuine	214.8	129.7	129.7	8.7	9.6	142.2
4	genuine	214.8	129.7	129.6	7.5	10.4	142.0
5	genuine	215.0	129.6	129.7	10.4	7.7	141.8
6	genuine	215.7	130.8	130.5	9.0	10.1	141.4
7	genuine	215.5	129.5	129.7	7.9	9.6	141.6

3.2 Mean and variance-covariance matrix for genuine notes

	Class=genuine _TYPE_=COV								
NAME	Length	Left	Right	Bottom	Тор	Diagonal			
Length	0.15024	0.05801	0.05729	0.05713	0.01445	0.00548			
Left	0.05801	0.13258	0.08590	0.05665	0.04907	-0.04306			
Right	0.05729	0.08590	0.12626	0.05818	0.03065	-0.02378			
Bottom	0.05713	0.05665	0.05818	0.41321	-0.26347	-0.00019			
Тор	0.01445	0.04907	0.03065	-0.26347	0.42119	-0.07531			
Diagonal	0.00548	-0.04306	-0.02378	-0.00019	-0.07531	0.19981			

Class=genuine _TYPE_=MEAN

NAME	Length	Left	Right	Bottom	Тор	Diagonal
	214.969	129.943	129.72	8.305	10.168	141.517

Class=genuine _TYPE_=N

NAME	Length	Left	Right	Bottom	Тор	Diagonal
	100	100	100	100	100	100

3.3 Mean, STD and variance-covariance matrix for counterfeit notes

				Class=co	unterf _TY	PE_=COV	,			
NA	AME	Leng	th	Left	Righ	t Botto	m	То	p Diago	na
Len	gth	0.124	01 0	.031515	0.024001	1 -0.1006	60 (0.0194	4 0.01	15
Left		0.031	52 0	.065051	0.046768	-0.0240)4 -(0.0119	2 -0.00	50
Righ	ht	0.024	00 0	.046768	0.088940	-0.0185	58 (0.0001	3 0.034	119
Bott	tom	-0.100	60 -0	.024040	-0.018576	1.2813	31 -0	0.4901	9 0.238	348
Тор		0.019	44 -0	.011919	0.000132	-0.4901	19 (0.4044	6 -0.022	20
Diag	gonal	0.011	57 -0	.005051	0.034192	0.2384	-(0.0220	7 0.31	12
		2	14.823	130.3	130.193	10.53	11.1	33	139.45	
		2	14.823	130.3	130.193	10.53	11.1	33	139.45	
				Class=co	ounterf _T\	/PE_=STD				
	NAME_	Lei	ngth	Class=co Left	ounterf _T\	/PE_=STD		Тор	Diagonal	
_	NAME_	-			_	_		Top 3597	Diagonal	
-		0.38	5215	Left 0.25505 Class=c	Right 0.29823	Bottom 1.13195 TYPE_=N	0.63	3597	0.55786	
-		-	5215 Leng	Left 0.25505 Class=c	Right 0.29823 counterf _1 Right	Bottom 1.13195		3597		

3.4 Correlation matrix and the scatterplot matrix for genuine notes

	Class=genuine _TYPE_=CORR									
NAME	Length	Left	Right	Bottom	Тор	Diagonal				
Length	1.00000	0.41105	0.41598	0.22928	0.05745	0.03164				
Left	0.41105	1.00000	0.66392	0.24204	0.20764	-0.26458				
Right	0.41598	0.66392	1.00000	0.25472	0.13289	-0.14970				
Bottom	0.22928	0.24204	0.25472	1.00000	-0.63156	-0.00065				
Тор	0.05745	0.20764	0.13289	-0.63156	1.00000	-0.25960				
Diagonal	0.03164	-0.26458	-0.14970	-0.00065	-0.25960	1.00000				

3.5 Correlation matrix and the scatterplot matrix for counterfeit notes

Class=counterf_TYPE_=CORR							
NAME	Length	Left	Right	Bottom	Тор	Diagonal	
Length	1.00000	0.35088	0.22853	-0.25236	0.08678	0.05887	
Left	0.35088	1.00000	0.61485	-0.08327	-0.07348	-0.03550	
Right	0.22853	0.61485	1.00000	-0.05503	0.00070	0.20552	
Bottom	-0.25236	-0.08327	-0.05503	1.00000	-0.68093	0.37766	
Тор	0.08678	-0.07348	0.00070	-0.68093	1.00000	-0.06221	
Diagonal	0.05887	-0.03550	0.20552	0.37766	-0.06221	1.00000	

3.6 Discriminant Analysis

Test of Homogeneity of Within Covariance Matrices

Chi-Square	DF	Pr > ChiSq
121.899123	21	<.0001

Since the Chi-Square value is significant at the 0.1 level, the within covariance matrices will be used in the discriminant function. Reference: Morrison, D.F. (1976) Multivariate Statistical Methods p252.

The DISCRIM Procedure

Generalized S	quared Dista	nce to Class		
From Class	counterf	genuine		
counterf	-1.58042	43.66535		
genuine	71.30651	-11.19437		

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.BANKDATA Resubstitution Summary using Quadratic Discriminant Function

From Class	counterf	genuine	Total
counterf	99 99.00	1 1.00	100 100.00
genuine	0.00	100 100.00	100 100.00
Total	99 49.50	101 50.50	200 100.00
Priors	0.01	0.99	

Error Count Estimates for Class					
	counterf	genuine	Total		
Rate	0.0100	0.0000	0.0001		
Priors	0.0100	0.9900			

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.BANKDATA
Cross-validation Summary using Quadratic Discriminant Function

From Class	counterf	genuine	Total
counterf	98	2	100
	98.00	2.00	100.00
genuine	1	99	100
	1.00	99.00	100.00
Total	99	101	200
	49.50	50.50	100.00
Priors	0.01	0.99	

Error Count Estimates for Class					
	counterf	genuine	Total		
Rate	0.0200	0.0100	0.0101		
Priors	0.0100	0.9900			

Obs	Length	Left	Right	Bottom	Тор	Diagonal	counterf	genuine	_INTO_
1	214.9	130.1	129.9	9	10.6	140.5	.000002526	1.00000	genuine

0.01

0.99

3.6.a)

The test of homogeneity within the covariance matrices show significantly high Chi Sq value (121.9) compared to the full model. This suggests that $\Sigma_1 = \Sigma_2$.

3.6.b)

As the implemented SAS script, the classification of $\mathbf{X_0}^T$ falls into "Genuine" category.

Priors

3.6.c) Confusion Matrix

		Predicted M	Number of	
	Population	Genuine	Counterf	Observation
Actual	Genuine	99	1	100
Membership	Counterf	2	98	100

Appendix

SAS Codes for Question1

```
/* Read THC.csv data file*/
PROC IMPORT out= work.data
datafile='/home/u41080493/Udeshika/THC.csv'
      DBMS=CSV replace;
      GETNAMES=YES;
      DATAROW=2;
RUN:
%let variableList = chem1 chem2 chem3 chem4 chem5 chem6 chem7 chem8 chem9
chem10 chem11 chem12 chem13;
/* 1.1 Mean and standard deviation for the 13 chemical concentrations*/
proc means data=data maxdec=4 MEAN STD;
var &variableList;
run:
/* 1.2 Correlation matrix for the 13 chemical concentrations */
proc corr data=data noprob;
var &variableList;
run:
/* 1.2 Scatterplot for the 13 chemical concentrations */
proc sgscatter data=data;
  title "Scatterplot Matrix for THC Data";
  matrix chem1 chem2 chem3 chem4 chem5 chem6 chem7 chem8 chem9 chem10 chem11
chem12 chem13/DIAGONAL = (HISTOGRAM);
/* 1.3 Principal component analysis on the raw data*/
proc princomp data=data cov;
var &variableList;
run;
/* 1.4 Principal component analysis on the correlation matrix*/
proc princomp data=data ;
var &variableList;
run;
```

SAS Codes for Question2

```
/* 2.1 Prepare the dataset */
data SocioEconomics;
     input Population School Employment Services HouseValue;
     datalines;
   5700
            12.8
                      2500
                               270
                                         25000
   1000
            10.9
                      600
                               10
                                         10000
   3400
            8.8
                     1000
                               10
                                        9000
   3800
            13.6
                     1700
                               140
                                        25000
   4000
            12.8
                     1600
                               140
                                         25000
   8200
            8.3
                     2600
                              60
                                        12000
   1200
          11.4
                    400
                              10
                                        16000
   9100
           11.5
                    3300
                              60
                                        14000
   9900
            12.5
                     3400
                              180
                                        18000
   9600
           13.7
                     3600
                              390
                                        25000
   9600
          9.6
                     3300
                              80
                                        12000
   9400
            11.4
                     4000
                               100
                                        13000
run;
/* 2.1 Print the dataset */
proc print data=SocioEconomics;
run:
/* 2.2 Mean and standard deviation for the data */
proc means data=SocioEconomics maxdec=4 MEAN STD;
     /* 2.3 Factort analysis*/
proc factor data=SocioEconomics simple corr;
run;
/* 2.5 the scoring coefficients as eigenvalues*/
proc princomp data=SocioEconomics;
run;
/* 2.6 the component scores as linear combinations of the observed variable*/
proc factor data=SocioEconomics n=5 score;
```

SAS Codes for Question3

```
/* 1.1 Load dataset */
data bankData;
      infile "/home/u41080493/Udeshika/Swiss Bank data.csv" delimiter=','
missover
            firstobs=1;
      input Class $ Length Left Right Bottom Top Diagonal;
run;
/* 3.1 Print the dataset */
proc print data=bankData(obs=7);
run;
/* 3.2 mean and variance-covariance matrix for genuine notes */
proc corr data=bankData outp=CorrOut COV noprint;
      by Class notsorted;
      var Length Left Right Bottom Top Diagonal;
run;
proc print data=CorrOut(where=(_TYPE_ in ("N", "MEAN", "COV"))) noobs;
      where Class="genuine";
      /* just view information for one group */
      by Class _Type_ notsorted;
      var _NAME_ Length Left Right Bottom Top Diagonal;
run;
/* 3.3 mean, STD and variance-covariance matrix for counterfeit notes */
proc print data=CorrOut(where=(_TYPE_ in ("N", "MEAN", "STD", "COV"))) noobs;
      where Class="counterf";
      /* just view information for one group */
      by Class _Type_ notsorted;
      var _NAME_ Length Left Right Bottom Top Diagonal;
run;
/* 3.4 Correlation matrix for genuine notes */
proc corr data=bankData outp=CorrOut2 noprint;
      by Class notsorted;
      var Length Left Right Bottom Top Diagonal;
run;
proc print data=CorrOut2(where=(_TYPE_ in ("CORR"))) noobs;
     where Class="genuine";
      /* just view information for one group */
      by Class _Type_ notsorted;
      var _NAME_ Length Left Right Bottom Top Diagonal;
run;
proc sgscatter data=bankData;
      where Class="genuine";
```

```
title "Scatterplot Matrix for genuine notes";
      matrix Length Left Right Bottom Top Diagonal/DIAGONAL=(HISTOGRAM);
run;
/* 3.5 Correlation matrix for counterfeit notes */
proc corr data=bankData outp=CorrOut2 noprint;
      by Class notsorted;
      var Length Left Right Bottom Top Diagonal;
run;
proc print data=CorrOut2(where=(_TYPE_ in ("CORR"))) noobs;
      where Class="counterf";
      /* just view information for one group */
      by Class _Type_ notsorted;
      var _NAME_ Length Left Right Bottom Top Diagonal;
run;
proc sgscatter data=bankData;
     where Class="counterf";
      title "Scatterplot Matrix for fake notes";
      matrix Length Left Right Bottom Top Diagonal/DIAGONAL=(HISTOGRAM);
run;
/* 3.6 Discriminant Analysis */
data test;
      input Length Left Right Bottom Top Diagonal;
      cards;
214.9 130.1 129.9 9 10.6 140.5;
run;
proc discrim data=bankData pool=test crossvalidate testdata=test testout=a;
      class Class;
      var Length Left Right Bottom Top Diagonal;
      priors "genuine"=0.99 "counterf"=0.01;
run;
```