CSCE 411: Design and Analysis of Algorithms

Lecture 13: Finishing DFS; Minimum Spanning Trees

Date: Week 9 Nate Veldt, updated by Samson Zhou

1 The transpose graph and connected component graph

If G = (V, E) is a graph, a strongly connected component is maximal subgraph $S \subseteq V$ in which every node is reachable from every other node by following paths in S.

Let G = (V, E) be a graph and assume that $\{C_1, C_2, \dots, C_k\}$ represent its strongly connected components.

The connected component graph $G^{\text{scc}} = (V^{\text{scc}}, E^{\text{scc}})$ is defined as follows:

- There is a node $v_i \in V^{\text{scc}}$ for each component C_i
- There is an edge $(v_i, v_j) \in E^{\text{scc}}$ if and only if there is a directed edge between C_i and C_j

|--|

The transpose graph of G is $G^T = (V^{\text{scc}}, E^T)$ where

$$E^T = \{(u, v) : (v, u) \in E\}$$

Lemma 1.2. G and G^T have _____

2 Strongly Connected Components

The following algorithm will compute the strongly connected components of a graph G = (V, E):

STRONGLY-CONNECTED-COMPONENTS(G)

- 1. Find a DFS for G to get finish times u.F for each $u \in V$.
- 2. Compute the transpose graph $G^T = (V, E^T)$
- 3. Find a DFS for G^T , but in the main loop of DFS, always visit nodes based on the reverse order of finish times from the DFS of G.
- 4. Output the vertices of each tree in the DFS of G^T .

What is the key to making this work? In the second DFS, we essentially visit all of the nodes in the connected components graph in topologically sorted order.

Some definitions For the rest of the notes, we will use u.F and u.D to denote timestamps for nodes from the first DFS. We then define:

$$f(U) = \max_{u \in U} u.F$$

$$d(U) = \min_{u \in U} u.D$$

$$d(U) = \min_{u \in U} u.D$$

We will use the following white-path theorem without proving it.

Theorem 2.1. In a depth first forest of G, vertex v is a descendant of $u \iff when u$ is discovered (at u.D), there is a path from u to v consisting of white vertices.

Lemma 2.2. Let C and C' be distinct strongly connected components in G. If there is an edge $(u, v) \in E$ where $u \in C$ and $v \in C'$, then f(C) > f(C').

Proof of Lemma 2.2

(If $C \to C'$, then f(C) > f(C'))

Case 1: A node in C is discovered first

Case 2: A node in C' is discovered first

Notice that if you "reverse" the Lemma, it tells you something about G^T . Let C and C' be two strongly connected components in G, which are also the strongly connected components in G^T . The following two statements are equivalent:

- If there is an edge $(u, v) \in E$ where $u \in C$ and $v \in C'$, then f(C) > f(C').
- If there is an edge $(u, v) \in E^T$ where $u \in C$ and $v \in C'$, then f(C) < f(C').

Theorem 2.3. Each depth-first tree found in Line 3 of the Strongly-Connected-Components algorithm will be a strongly connected component of G.

Question 1. What is the runtime of finding strongly connected components of a graph G using the above method?

- $lackbox{A} \hspace{0.5cm} \Theta(V)$
- $\Theta(E)$
- $oldsymbol{\mathsf{C}} oldsymbol{\Theta}(V^2)$
- $oldsymbol{\mathsf{D}} oldsymbol{\Theta}(E^2)$
- I'm not sure how we can know that with what we've learned so far.

3 Minimum Spanning Trees

Let G=(V,E,w) be an undirected, connected, weighted graph where $w\colon E\to \mathbb{R}^+$ maps each edge to a nonnegative weight.

A spanning tree of G is a subset of edges $E_T \subseteq E$ such that $T = (V, E_T)$

A minimum spanning tree of G is a spanning tree T^* that minimizes

over all spanning trees of G.

3.1 Minimum Spanning Tree Terminology

Safe Edges. Let A be a subset of nodes that is guaranteed to be in some minimum spanning tree of G = (V, E). An edge $(u, v) \in E$ is safe for A if $A \cup \{(u, v)\}$ is contained in some minimum spanning tree of G.

GENERICMST(G, w)

- 1. Set $A = \emptyset$
- 2. While A is not a spanning tree
- 3. find a safe edge (u, v) for A
- 4. $A \leftarrow A \cup \{(u, v)\}$

The key to implementing this method is finding a safe edge (u, v) at each step.

Cut terminology Let G = (V, E) and A be a set of its edges.

- If $S \subseteq V$, we call the partition (S, V S) a _____
- An edge $(u,v) \in E$ _____ the cut (S,V-S) if ____
- An edge (u, v) is a _____ if is has minimum weight among all cut edges.

3.2 Generic greedy strategy

We define the following greedy strategy for choosing a safe edge to add to A GENERICFINDSAFE(G,A,w)

- 1. Let (S, V S) be a cut that respects A
- 2. Let (u, v) be a light edge in (S, V S)
- 3. Return (u, v)

Lemma 3.1. If A is a subset of the edges in a minimum spanning tree T of G, then GenericFindSafe will return a safe edge for A

3.3 Algorithms of Kruskal and Prim

Kruskal algorithm and Prim's algorithm are two strategies for creating an MST of G=(V,E).

Strategy	What is A?	At each step we add:
Kruskal		
Prim		

3.4 Prim's Algorithm in More Depth

During Prim's algorithm, we grow out a tree from an arbitrary starting node r. Each node has the following attributes:

- v.parent = parent node of v in the tree we are constructing
- v.key = minimum weight of an edge connecting v to the tree

We will use a min-priority queue Q to store the nodes not in the tree with their keys, which allows us to find the node with the smallest key in $O(\log V)$ time.

```
MST-PRIM(G,r)
for u \in V do
   u.\text{key} = \infty
   u.parent = NIL
end for
r.key = 0
Q = G.V
while |Q| > 0 do
   u = \text{ExtractMin}Q
   if u \neq r then
       Add edge (u, u.parent) to A
   end if
   for v \in Adj[u] do
       if v \in Q and w(u, v) < v.key then
          v.parent = u
           v.\text{key} = w(u, v)
       end if
   end for
end while
Return A
```


Question 2. What is the runtime of Prim's algorithm, knowing that it takes $O(\log V)$ time to extract the minimum element from Q or update the key of an element in Q?

- $\Theta(\log V)$
- $\Theta(\log E)$
- $\Theta(V \log V)$
- $\Theta(E \log V)$
- $oldsymbol{\mathsf{E}} = \Theta(V^2)$