## PCT

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12Q 1/68, C07H 21/04, A61K 48/00, C12N 15/00, 15/85

(11) International Publication Number:

WO 00/20645

 $\mathbf{A1}$ 

(43) International Publication Date:

13 April 2000 (13.04.00)

(21) International Application Number:

PCT/US99/23205

(22) International Filing Date:

5 October 1999 (05.10.99)

(30) Priority Data:

09/166,186 09/313,932 5 October 1998 (05.10,98) 18 May 1999 (18.05.99) US

US

(71) Applicant (for all designated States except US): ISIS PHAR-MACEUTICALS, INC. [US/US]; 2292 Faraday Avenue, Carlsbad, CA 92008 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BAKER, Brenda, F. [US/US]; 2147 Avenida Toronja, Carlsbad, CA 92009 (US). BENNETT, C., Frank [US/US]; 1347 Cassins Street, Carlsbad, CA 92009 (US). BUTLER, Madeline, M. [US/US]; 15951 Avenida Calma, Rancho Santa Fe, CA 92091 (US). SHANAHAN, William, J., Jr. [US/US]; 3066 Camino Del Rancho, Encinitas, CA 92024 (US).
- (74) Agents: LICATA, Jane, Massey et al.; Law Offices of Jane Massey Licata, 66 E. Main Street, Marlton, NJ 08053 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### **Published**

With international search report.

(54) Title: ANTISENSE OLIGONUCLEOTIDE MODULATION OF TUMOR NECROSIS FACTOR- $\alpha$  (TNF- $\alpha$ ) EXPRESSION

#### (57) Abstract

Compositions and methods are provided for inhibiting the expression of human tumor necrosis factor- $\alpha$  (TNF- $\alpha$ ). Antisense oligonucleotides targeted to nucleic acids encoding TNF- $\alpha$  are preferred. Methods of using these oligonucleotides for inhibition of TNF- $\alpha$ expression and for treatment of diseases, particularly inflammatory and autoimmune diseases, associated with overexpression of TNF- $\alpha$  are provided.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|                        |                          |    |                     |    | _                     |      | • •                      |
|------------------------|--------------------------|----|---------------------|----|-----------------------|------|--------------------------|
| AL                     | Albania                  | ES | Spain               | LS | Lesotho               | SI   | Slovenia                 |
| AM                     | Armenia                  | FI | Finland             | LT | Lithuania             | SK   | Slovakia                 |
| AT                     | Austria                  | FR | France              | LU | Luxembourg            | SN   | Senegal                  |
| ΑU                     | Australia                | GA | Gabon               | LV | Latvia                | SZ   | Swaziland                |
| AZ                     | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD   | Chad                     |
| BA                     | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG   | Togo                     |
| BB                     | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ   | Tajikistan               |
| $\mathbf{BE}$          | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM   | Turkmenistan             |
| $\mathbf{BF}$          | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR   | Turkey                   |
| $\mathbf{BG}$          | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT   | Trinidad and Tobago      |
| $\mathbf{BJ}$          | Benin                    | IE | Ireland             | MN | Mongolia              | UA   | Ukraine                  |
| BR                     | Brazil                   | IL | Israel              | MR | Mauritania            | UG   | Uganda                   |
| BY                     | Belarus                  | IS | Iceland             | MW | Malawi                | US   | United States of America |
| CA                     | Canada                   | IT | Italy               | MX | Mexico                | UZ   | Uzbekistan               |
| CF                     | Central African Republic | JР | Japan               | NE | Niger                 | VN   | Viet Nam                 |
| CG                     | Congo                    | KE | Kenya               | NL | Netherlands           | YU   | Yugoslavia               |
| CH                     | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw   | Zimbabwe                 |
| CI                     | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           | 2,,, | Zillioaowe               |
| CM                     | Cameroon                 |    | Republic of Korea   | PL | Poland                |      |                          |
| CN                     | China                    | KR | Republic of Korea   | PT | Portugal              |      |                          |
| $\mathbf{C}\mathbf{U}$ | Cuba                     | KZ | Kazakstan           | RO | Romania               |      |                          |
| $\mathbf{CZ}$          | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |      |                          |
| DE                     | Germany                  | LI | Liechtenstein       | SD | Sudan                 |      |                          |
| DK                     | Denmark                  | LK | Sri Lanka           | SE | Sweden                |      |                          |
| EE                     | Estonia                  | LR | Liberia             | SG | Singapore             |      |                          |

-1-

# ANTISENSE OLIGONUCLEOTIDE MODULATION OF TUMOR NECROSIS FACTOR- $\alpha$ (TNF- $\alpha$ ) EXPRESSION

5

10

15

20

25

30

This invention relates to compositions and methods for modulating expression of the human tumor necrosis factor- $\alpha$  (TNF- $\alpha$ ) gene, which encodes a naturally present cytokine involved in regulation of immune function and implicated in infectious and inflammatory disease. This invention is also directed to methods for inhibiting TNF- $\alpha$  mediated immune responses; these methods can be used diagnostically or therapeutically. Furthermore, this invention is directed to treatment of conditions associated with expression of the human TNF- $\alpha$  gene.

#### BACKGROUND OF THE INVENTION

Tumor necrosis factor  $\alpha$  (TNF- $\alpha$  also cachectin) is an important cytokine that plays a role in host defense. The cytokine is produced primarily in macrophages and monocytes in response to infection, invasion, injury, or inflammation. Some examples of inducers of TNF- $\alpha$  include bacterial endotoxins, bacteria, viruses, lipopolysaccharide (LPS) and cytokines including GM-CSF, IL-1, IL-2 and IFN- $\gamma$ .

TNF- $\alpha$  interacts with two different receptors, TNF receptor I (TNFRI, p55) and TNFRII (p75), in order to transduce its effects, the net result of which is altered gene expression. Cellular factors induced by TNF- $\alpha$  include interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), interferon- $\gamma$  (IFN- $\gamma$ ), platelet derived growth factor (PDGF) and epidermal growth factor (EGF), and endothelial cell adhesion molecules including endothelial leukocyte

adhesion molecule 1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) (Tracey, K.J., et al., Annu. Rev. Cell Biol., 1993, 9, 317-343; Arvin, B., et al., Ann. NY Acad. Sci., 1995, 765, 62-71).

5

Despite the protective effects of the cytokine, overexpression of TNF- $\alpha$  often results in disease states, particularly in infectious, inflammatory and autoimmune diseases. This process may involve the apoptotic pathways (Ksontini, R., et al., J. Immunol., 1998, 160, 4082-4089). 10 High levels of plasma TNF- $\alpha$  have been found in infectious diseases such as sepsis syndrome, bacterial meningitis, cerebral malaria, and AIDS; autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease (including 15 Crohn's disease), sarcoidosis, multiple sclerosis, Kawasaki syndrome, graft-versus-host disease and transplant (allograft) rejection; and organ failure conditions such as adult respiratory distress syndrome, congestive heart failure, acute liver failure and myocardial infarction (Eigler, A., et al., Immunol. Today, 1997, 18, 487-492). 20 Other diseases in which  $TNF-\alpha$  is involved include asthma (Shah, A., et al., Clinical and Experimental Allergy, 1995, 25, 1038-1044), brain injury following ischemia (Arvin, B., et al., Ann. NY Acad. Sci., 1995, 765, 62-71), non-insulin-25 dependent diabetes mellitus (Hotamisligil, G.S., et al., Science, 1993, 259, 87-90), insulin-dependent diabetes mellitus (Yang, X.-D., et al., J. Exp. Med., 1994, 180, 995-1004), hepatitis (Ksontini, R., et al., J. Immunol., 1998, 160, 4082-4089), atopic dermatitis (Sumimoto, S., et al., Arch. Dis. Child., 1992, 67, 277-279), and pancreatitis 30 (Norman, J.G., et al., Surgery, 1996, 120, 515-521). Further, inhibitors of  $TNF-\alpha$  have been suggested to be useful for cancer prevention (Suganuma, M., et al. (Cancer

-3-

Res., 1996, 56, 3711-3715). Elevated TNF- $\alpha$  expression may also play a role in obesity (Kern, P.A., J. Nutr., 1997, 127, 1917S-1922S). TNF- $\alpha$  was found to be expressed in human adipocytes and increased expression, in general, correlated with obesity.

5

20

25

30

There are currently several approaches to inhibiting TNF-α expression. Approaches used to treat rheumatoid arthritis include a chimeric anti-TNF-α antibody, a humanized monoclonal anti-TNF-α antibody, and recombinant human soluble TNF-α receptor (Camussi,G., Drugs, 1998, 55, 613-620). Other examples are indirect TNF-α inhibitors including phosphodiesterase inhibitors (e.g. pentoxifylline) and metalloprotease inhibitors (Eigler,A., et al., Immunol. Today, 1997, 18, 487-492). An additional class of direct TNF-α inhibitors is oligonucleotides, including triplex-forming oligonucleotides, ribozymes, and antisense oligonucleotides.

Several publications describe the use of oligonucleotides targeting TNF- $\alpha$  by non-antisense mechanisms. U.S. Patent 5,650,316, WO 95/33493 and Aggarwal,B.B. et al. (Cancer Research, 1996, 56, 5156-5164) disclose triplex-forming oligonucleotides targeting TNF- $\alpha$ . WO 95/32628 discloses triplex-forming oligonucleotides especially those possessing one or more stretches of guanosine residues capable of forming secondary structure. WO 94/10301 discloses ribozyme compounds active against TNF- $\alpha$  mRNA. WO 95/23225 discloses enzymatic nucleic acid molecules active against TNF- $\alpha$  mRNA.

A number of publications have described the use of antisense oligonucleotides targeting nucleic acids encoding TNF- $\alpha$ . The TNF- $\alpha$  gene has four exons and three introns. WO 93/09813 discloses TNF- $\alpha$  antisense oligonucleotides

10

15

20

25

30

conjugated to a radioactive moiety, including sequences targeted to the 5'-UTR, AUG start site, exon 1, and exon 4 including the stop codon of human TNF- $\alpha$ . EP 0 414 607 B1 discloses antisense oligonucleotides targeting the AUG 5 start codon of human TNF- $\alpha$ . WO 95/00103 claims antisense oligonucleotides to human  $TNF-\alpha$  including sequences targeted to exon 1 including the AUG start site. Hartmann, G. et al. (Mol. Med., 1996, 2, 429-438) disclose uniform phosphorothicates and mixed backbone phosphorothioate/ phosphodiester oligonucleotides targeted to the AUG start site of human TNF- $\alpha$ . Hartmann, G. et al. (Antisense Nucleic Acid Drug Devel., 1996, 6, 291-299) disclose antisense phosphorothicate oligonucleotides targeted to the AUG start site, the exon 1/intron 1 junction, and exon 4 of human TNF- $\alpha$ . d'Hellencourt, C.F. et al. (Biochim. Biophys. Acta, 1996, 1317, 168-174) designed and tested a series of unmodified oligonucleotides targeted to the 5'-UTR, and exon 1, including the AUG start site, of human  $TNF-\alpha$ . Additionally, one oligonucleotide each was targeted to exon 4 and the 3'-UTR of human TNF- $\alpha$  and one oligonucleotide was targeted to the AUG start site of mouse Rojanasakul, Y. et al. (J. Biol. Chem., 1997, 272, 3910-3914) disclose an antisense phosphorothioate oligonucleotide targeted to the AUG start site of mouse Taylor, M.F. et al. (J. Biol. Chem., 1996, 271, 17445-17452 and Antisense Nucleic Acid Drug Devel., 1998. 8, 199-205) disclose morpholino, methyl-morpholino, phosphodiester and phosphorothicate oligonucleotides targeted to the 5'-UTR and AUG start codon of mouse  $TNF-\alpha$ . Tu,G.-C. et al. (J. Biol. Chem., 1998, 273, 25125-25131) designed and tested 42 phosphorothicate oligonucleotides

targeting sequences throughout the rat TNF- $\alpha$  gene.

WO 00/20645

5

15

20

25

Interestingly, some phosphorothioate oligodeoxynucleotides have been found to enhance lipopolysaccharide-stimulated TNF- $\alpha$  synthesis up to four fold due to nonspecific immunostimulatory effects (Hartmann et al. Mol. Med., 1996, 2, 429-438).

Accordingly, there remains an unmet need for therapeutic compositions and methods for inhibiting expression of TNF- $\alpha$ , and disease processes associated therewith.

#### 10 BRIEF DESCRIPTION OF THE INVENTION

The present invention provides oligonucleotides which are targeted to nucleic acids encoding TNF- $\alpha$  and are capable of modulating TNF- $\alpha$  expression. The present invention also provides chimeric oligonucleotides targeted to nucleic acids encoding human TNF- $\alpha$ . The oligonucleotides of the invention are believed to be useful both diagnostically and therapeutically, and are believed to be particularly useful in the methods of the present invention.

The present invention also comprises methods of modulating the expression of human TNF- $\alpha$ , in cells and tissues, using the oligonucleotides of the invention. Methods of inhibiting TNF- $\alpha$  expression are provided; these methods are believed to be useful both therapeutically and diagnostically. These methods are also useful as tools, for example, for detecting and determining the role of TNF- $\alpha$  in various cell functions and physiological processes and conditions and for diagnosing conditions associated with expression of TNF- $\alpha$ .

The present invention also comprises methods for diagnosing and treating infectious and inflammatory diseases, particularly diabetes, rheumatoid arthritis, Crohn's disease, pancreatitis, multiple sclerosis, atopic

-6-

WO 00/20645

10

15

20

25

30

dermatitis and hepatitis. These methods are believed to be useful, for example, in diagnosing TNF- $\alpha$ -associated disease progression. These methods employ the oligonucleotides of the invention. These methods are believed to be useful both therapeutically, including prophylactically, and as clinical research and diagnostic tools.

PCT/US99/23205

## DETAILED DESCRIPTION OF THE INVENTION

TNF- $\alpha$  plays an important regulatory role in the immune response to various foreign agents. Overexpression of TNF- $\alpha$  results in a number of infectious and inflammatory diseases. As such, this cytokine represents an attractive target for treatment of such diseases. In particular, modulation of the expression of TNF- $\alpha$  may be useful for the treatment of diseases such as Crohn's disease, diabetes mellitus, multiple sclerosis, rheumatoid arthritis, hepatitis, pancreatitis and asthma.

The present invention employs antisense compounds, particularly oligonucleotides, for use in modulating the function of nucleic acid molecules encoding  $TNF-\alpha$ , ultimately modulating the amount of  $TNF-\alpha$  produced. This is accomplished by providing oligonucleotides which specifically hybridize with nucleic acids, preferably mRNA, encoding  $TNF-\alpha$ .

This relationship between an antisense compound such as an oligonucleotide and its complementary nucleic acid target, to which it hybridizes, is commonly referred to as "antisense". "Targeting" an oligonucleotide to a chosen nucleic acid target, in the context of this invention, is a multistep process. The process usually begins with identifying a nucleic acid sequence whose function is to be modulated. This may be, as examples, a cellular gene (or mRNA made from the gene) whose expression is associated with a particular disease state, or a foreign nucleic acid

-7-

from an infectious agent. In the present invention, the targets are nucleic acids encoding TNF- $\alpha$ ; in other words, a gene encoding TNF- $\alpha$ , or mRNA expressed from the TNF- $\alpha$  gene. mRNA which encodes TNF- $\alpha$  is presently the preferred target. The targeting process also includes determination of a site or sites within the nucleic acid sequence for the antisense interaction to occur such that modulation of gene expression will result.

5

In accordance with this invention, persons of ordinary 10 skill in the art will understand that messenger RNA includes not only the information to encode a protein using the three letter genetic code, but also associated ribonucleotides which form a region known to such persons as the 5'-untranslated region, the 3'-untranslated region, the 5' cap region and intron/exon junction ribonucleotides. 15 Thus, oligonucleotides may be formulated in accordance with this invention which are targeted wholly or in part to these associated ribonucleotides as well as to the informational ribonucleotides. The oligonucleotide may therefore be specifically hybridizable with a transcription 20 initiation site region, a translation initiation codon region, a 5' cap region, an intron/exon junction, coding sequences, a translation termination codon region or sequences in the 5'- or 3'-untranslated region. is known in the art, the translation initiation codon is 25 typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon." A minority of genes have 30 a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator

WO 00/20645

5

amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (prokaryotes). It is all

known in the art that eukaryotic and prokaryotic genes may

-8-

PCT/US99/23205

have two or more alternative start codons, any one of which

may be preferentially utilized for translation initiation

in a particular cell type or tissue, or under a particular

set of conditions. In the context of the invention, "start

codon" and "translation initiation codon" refer to the

codon or codons that are used in vivo to initiate

10 translation of an mRNA molecule transcribed from a gene

encoding TNF- $\alpha$ , regardless of the sequence(s) of such

codons. It is also known in the art that a translation

termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the

15 corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA,

respectively). The terms "start codon region," "AUG

region" and "translation initiation codon region" refer to

a portion of such an mRNA or gene that encompasses from

about 25 to about 50 contiguous nucleotides in either

20 direction (i.e., 5' or 3') from a translation initiation

codon. This region is a preferred target region.

Similarly, the terms "stop codon region" and "translation

termination codon region" refer to a portion of such an

mRNA or gene that encompasses from about 25 to about 50

25 contiguous nucleotides in either direction (i.e., 5' or 3')

from a translation termination codon. This region is a

preferred target region. The open reading frame (ORF) or

"coding region," which is known in the art to refer to the

region between the translation initiation codon and the

30 translation termination codon, is also a region which may

be targeted effectively. Other preferred target regions

include the 5' untranslated region (5'UTR), known in the

art to refer to the portion of an mRNA in the 5' direction

from the translation initiation codon, and thus including

35 nucleotides between the 5' cap site and the translation

-9-

initiation codon of an mRNA or corresponding nucleotides on the gene and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

5

10

15

20

25

30

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a pre-mRNA transcript to yield one or more mature mRNAs. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., exon-exon or intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. Targeting particular exons in alternatively spliced mRNAs may also be preferred. also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

Once the target site or sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired modulation.

-10-

"Hybridization", in the context of this invention, means hydrogen bonding, also known as Watson-Crick base pairing, between complementary bases, usually on opposite nucleic acid strands or two regions of a nucleic acid strand. Guanine and cytosine are examples of complementary bases which are known to form three hydrogen bonds between them. Adenine and thymine are examples of complementary bases which form two hydrogen bonds between them.

5

10

15

20

25

30

"Specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity such that stable and specific binding occurs between the DNA or RNA target and the oligonucleotide.

It is understood that an oligonucleotide need not be 100% complementary to its target nucleic acid sequence to be specifically hybridizable. An oligonucleotide is specifically hybridizable when binding of the oligonucleotide to the target interferes with the normal function of the target molecule to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the oligonucleotide to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment or, in the case of in vitro assays, under conditions in which the assays are conducted.

Hybridization of antisense oligonucleotides with mRNA interferes with one or more of the normal functions of mRNA. The functions of mRNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in by the RNA. Binding of specific protein(s) to

-11-

the RNA may also be interfered with by antisense oligonucleotide hybridization to the RNA.

5

10

15

20

25

30

The overall effect of interference with mRNA function is modulation of expression of TNF- $\alpha$ . In the context of this invention "modulation" means either inhibition or stimulation; i.e., either a decrease or increase in expression. This modulation can be measured in ways which are routine in the art, for example by Northern blot assay of mRNA expression, or reverse transcriptase PCR, as taught in the examples of the instant application or by Western blot or ELISA assay of protein expression, or by an immunoprecipitation assay of protein expression. Effects of antisense oligonucleotides of the present invention on TNF- $\alpha$  expression can also be determined as taught in the examples of the instant application. Inhibition is presently a preferred form of modulation.

The oligonucleotides of this invention can be used in diagnostics, therapeutics, prophylaxis, and as research reagents and in kits. Since the oligonucleotides of this invention hybridize to nucleic acids encoding TNF- $\alpha$ , sandwich, colorimetric and other assays can easily be constructed to exploit this fact. Provision of means for detecting hybridization of oligonucleotides with the TNF- $\alpha$  gene or mRNA can routinely be accomplished. Such provision may include enzyme conjugation, radiolabelling or any other suitable detection systems. Kits for detecting the presence or absence of TNF- $\alpha$  may also be prepared.

The present invention is also suitable for diagnosing abnormal inflammatory states in tissue or other samples from patients suspected of having an inflammatory disease such as rheumatoid arthritis. The ability of the oligonucleotides of the present invention to inhibit inflammatory processes may be employed to diagnose such states. A number of assays may be formulated employing the

-12-

present invention, which assays will commonly comprise contacting a tissue sample with an oligonucleotide of the invention under conditions selected to permit detection and, usually, quantitation of such inhibition. In the context of this invention, to "contact" tissues or cells with an oligonucleotide or oligonucleotides means to add the oligonucleotide(s), usually in a liquid carrier, to a cell suspension or tissue sample, either *in vitro* or *ex vivo*, or to administer the oligonucleotide(s) to cells or tissues within an animal.

5

10

15

20

25

The oligonucleotides of this invention may also be used for research purposes. Thus, the specific hybridization exhibited by the oligonucleotides may be used for assays, purifications, cellular product preparations and in other methodologies which may be appreciated by persons of ordinary skill in the art.

In the context of this invention, the term "oligonucleotide" refers to an oligomer or polymer of ribonucleic acid or deoxyribonucleic acid. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent intersugar (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced binding to target and increased stability in the presence of nucleases.

The antisense compounds in accordance with this

invention preferably comprise from about 5 to about 50

nucleobases. Particularly preferred are antisense

oligonucleotides comprising from about 8 to about 30

nucleobases (i.e. from about 8 to about 30 linked

nucleosides). As is known in the art, a nucleoside is a

base-sugar combination. The base portion of the nucleoside

-13-

is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

5

10

15

20

25

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Preferred modified oligonucleotide backbones include,

for example, phosphorothioates, chiral phosphorothioates,
phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates
including 3'-alkylene phosphonates and chiral phosphonates,
phosphinates, phosphoramidates including 3'-amino

phosphoramidate and aminoalkylphosphoramidates,

-14-

thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.

5

10

15

20

25

30

35

Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to U.S. Patent 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside These include those having morpholino linkages linkages. (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH<sub>2</sub> component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Patent 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967;

-15-

5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439.

5

10

15

20

25

30

35

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylqlycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S.: 5,539,082; 5,714,331; and 5,719,262. Further teaching of PNA compounds can be found in Nielsen et al. (Science, 1991, 254, 1497-1500).

Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular  $-CH_2-NH-O-CH_2-$ ,  $-CH_2-N(CH_3)-O-CH_2-$  [known as a methylene (methylimino) or MMI backbone],  $-CH_2-O-N(CH_3)-CH_2-$ ,  $-CH_2-N(CH_3)-N(CH_3)-CH_2-$  and  $-O-N(CH_3)-CH_2-CH_2-$  [wherein the native phosphodiester backbone is represented as  $-O-P-O-CH_2-$ ] of the above referenced U.S. Patent 5,489,677, and the amide backbones of the above referenced U.S. Patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. patent 5,034,506.

Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides

-16-

mrigo one of the following a

comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl, O-alkyl-O-alkyl, O-, S-, or N-alkenyl, or O-, S- or N-alkynyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C<sub>1</sub> to C<sub>10</sub> alkyl or C<sub>2</sub> to C<sub>10</sub> alkenyl and alkynyl. Particularly preferred are 5  $O[(CH_2)_nO]_mCH_3$ ,  $O(CH_2)_nOCH_3$ ,  $O(CH_2)_2ON(CH_3)_2$ ,  $O(CH_2)_nNH_2$  $O(CH_2)_nCH_3$ ,  $O(CH_2)_nONH_2$ , and  $O(CH_2)_nON[(CH_2)_nCH_3)]_2$ , where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2' position:  $C_1$  to  $C_{10}$ 10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, Oalkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH<sub>3.</sub> SO<sub>2</sub>CH<sub>3.</sub> ONO<sub>2.</sub> NO<sub>2.</sub> N<sub>3.</sub> NH<sub>2.</sub> heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, 15 an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O-CH2CH2OCH3, also 20 known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta 1995, 78, 486-504) i.e., an alkoxyalkoxy group.

Other preferred modifications include 2'-methoxy (2'-O-CH<sub>3</sub>), 2'-aminopropoxy (2'-OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>) and 2'-fluoro (2'-25 F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the 30 pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugars structures include, but are not limited to, U.S. Patent 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 35 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811;

WO 00/20645

5

10

15

20

25

30

35

-17-

PCT/US99/23205

5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920.

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C or m5c), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8substituted adenines and guanines, 5-halo particularly 5bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8azaguanine and 8-azaadenine, 7-deazaguanine and 7deazaadenine and 3-deazaquanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Patent 3,687,808, those disclosed in the Concise Encyclopedia Of Polymer Science And Engineering 1990, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, those disclosed by Englisch et al. (Angewandte Chemie, International Edition 1991, 30, 613-722), and those disclosed by Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds., Antisense Research and Applications 1993, CRC Press, Boca Raton, pages 289-302. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-

-18-

propynylcytosine. 5-Methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds., Antisense Research and Applications 1993, CRC Press, Boca Raton, pages 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

5

10

15

20

25

30

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Patent 3,687,808, as well as U.S. Patent 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; and 5,681,941.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett. 1994, 4, 1053-1059), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci. 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let. 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res. 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J. 1991, 10, 1111-1118; Kabanov et al., FEBS Lett. 1990, 259, 327-330; Svinarchuk et al., Biochimie 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-racglycerol or triethylammonium 1,2-di-O-hexadecyl-racglycero-3-H-phosphonate (Manoharan et al., Tetrahedron

-19-

Lett. 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res. 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett. 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther. 1996, 277, 923-937).

5

10 Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Patent 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 15 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 20 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941.

The present invention also includes oligonucleotides which are chimeric oligonucleotides. "Chimeric" oligonucleotides or "chimeras," in the context of this invention, are oligonucleotides which contain two or more chemically distinct regions, each made up of at least one nucleotide. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An

-20-

additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of antisense inhibition of gene expression. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art. This RNAse H-mediated cleavage of the RNA target is distinct from the use of ribozymes to cleave nucleic acids. Ribozymes are not comprehended by the present invention.

5

10

Examples of chimeric oligonucleotides include but are 15 not limited to "gapmers," in which three distinct regions are present, normally with a central region flanked by two regions which are chemically equivalent to each other but distinct from the gap. A preferred example of a gapmer is an oligonucleotide in which a central portion (the "gap") 20 of the oligonucleotide serves as a substrate for RNase H and is preferably composed of 2'-deoxynucleotides, while the flanking portions (the 5' and 3' "wings") are modified to have greater affinity for the target RNA molecule but are unable to support nuclease activity (e.g., fluoro- or 2'-O-methoxyethyl-substituted). Chimeric oligonucleotides 25 are not limited to those with modifications on the sugar, but may also include oligonucleosides or oligonucleotides with modified backbones, e.g., with regions of phosphorothioate (P=S) and phosphodiester (P=O) backbone linkages or with regions of MMI and P=S backbone linkages. 30 Other chimeras include "wingmers," also known in the art as "hemimers," that is, oligonucleotides with two distinct In a preferred example of a wingmer, the 5' portion of the oligonucleotide serves as a substrate for 35 RNase H and is preferably composed of 2'-deoxynucleotides.

-21-

whereas the 3' portion is modified in such a fashion so as to have greater affinity for the target RNA molecule but is unable to support nuclease activity (e.g., 2'-fluoro- or 2'-O-methoxyethyl- substituted), or vice-versa. embodiment, the oligonucleotides of the present invention 5 contain a 2'-O-methoxyethyl (2'-O-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>) modification on the sugar moiety of at least one nucleotide. modification has been shown to increase both affinity of the oligonucleotide for its target and nuclease resistance 10 of the oligonucleotide. According to the invention, one, a plurality, or all of the nucleotide subunits of the oligonucleotides of the invention may bear a 2'-0methoxyethyl (-O-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>) modification. Oligonucleotides comprising a plurality of nucleotide subunits having a 2'-15 O-methoxyethyl modification can have such a modification on any of the nucleotide subunits within the oligonucleotide, and may be chimeric oligonucleotides. Aside from or in addition to 2'-O-methoxyethyl modifications, oligonucleotides containing other modifications which enhance antisense efficacy, potency or target affinity are 20 also preferred. Chimeric oligonucleotides comprising one or more such modifications are presently preferred.

The oligonucleotides used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis.

Equipment for such synthesis is sold by several vendors including Applied Biosystems. Any other means for such synthesis may also be employed; the actual synthesis of the oligonucleotides is well within the talents of the routineer. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and 2'-alkoxy or 2'-alkoxyalkoxy derivatives, including 2'-O-methoxyethyl oligonucleotides (Martin, P., Helv. Chim. Acta 1995, 78, 486-504). It is also well known to use similar techniques and commercially available modified amidites and

25

30

35

-22-

controlled-pore glass (CPG) products such as biotin, fluorescein, acridine or psoralen-modified amidites and/or CPG (available from Glen Research, Sterling, VA) to synthesize fluorescently labeled, biotinylated or other conjugated oligonucleotides.

5

10

15

20

The antisense compounds of the present invention include bioequivalent compounds, including pharmaceutically acceptable salts and prodrugs. This is intended to encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of the nucleic acids of the invention and prodrugs of such nucleic acids. "Pharmaceutically acceptable salts" are physiologically and pharmaceutically acceptable salts of the nucleic acids of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci. 1977, 66, 1-19).

For oligonucleotides, examples of pharmaceutically

acceptable salts include but are not limited to (a) salts
formed with cations such as sodium, potassium, ammonium,
magnesium, calcium, polyamines such as spermine and
spermidine, etc.; (b) acid addition salts formed with
inorganic acids, for example hydrochloric acid, hydrobromic

acid, sulfuric acid, phosphoric acid, nitric acid and the
like; salts formed with organic acids such as, for
example, acetic acid, oxalic acid, tartaric acid, succinic
acid, maleic acid, fumaric acid, gluconic acid, citric
acid, malic acid, ascorbic acid, benzoic acid, tannic acid,
palmitic acid, alginic acid, polyglutamic acid,

-23-

naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.

5

10

15

20

25

30

35

The oligonucleotides of the invention may additionally or alternatively be prepared to be delivered in a "prodrug" form. The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510.

For therapeutic or prophylactic treatment, oligonucleotides are administered in accordance with this invention. Oligonucleotide compounds of the invention may be formulated in a pharmaceutical composition, which may include pharmaceutically acceptable carriers, thickeners, diluents, buffers, preservatives, surface active agents, neutral or cationic lipids, lipid complexes, liposomes, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients and the like in addition to the oligonucleotide. Such compositions and formulations are comprehended by the present invention.

Pharmaceutical compositions comprising the oligonucleotides of the present invention may include penetration enhancers in order to enhance the alimentary delivery of the oligonucleotides. Penetration enhancers may be classified as belonging to one of five broad categories, i.e., fatty acids, bile salts, chelating agents, surfactants and non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, 8,

-24-

91-192; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems 1990, 7, 1-33). One or more penetration enhancers from one or more of these broad categories may be included. Various fatty acids and their derivatives which act as penetration enhancers include, for example, 5 oleic acid, lauric acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, recinleate, monoolein (a.k.a. 1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glyceryl 1-monocaprate, 10 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, mono- and di-glycerides and physiologically acceptable salts thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et 15 al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems 1990, 7, 1; El-Hariri et al., J. Pharm. Pharmacol. 1992 44, 651-654).

The physiological roles of bile include the

20 facilitation of dispersion and absorption of lipids and
fat-soluble vitamins (Brunton, Chapter 38 In: Goodman &
Gilman's The Pharmacological Basis of Therapeutics, 9th
Ed., Hardman et al., eds., McGraw-Hill, New York, NY, 1996,
pages 934-935). Various natural bile salts, and their

25 synthetic derivatives, act as penetration enhancers. Thus,
the term "bile salt" includes any of the naturally
occurring components of bile as well as any of their
synthetic derivatives.

Complex formulations comprising one or more

30 penetration enhancers may be used. For example, bile salts
may be used in combination with fatty acids to make complex
formulations.

Chelating agents include, but are not limited to, disodium ethylenediaminetetraacetate (EDTA), citric acid,

-25-

salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems 1990, 7, 1-33; Buur et al., J. Control Rel. 1990, 14, 43-51). Chelating agents have the added advantage of also serving as DNase inhibitors.

5

20

25

30

Surfactants include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, page 92); and perfluorochemical emulsions, such as FC-43 (Takahashi et al., J. Pharm. Phamacol. 1988, 40, 252-257).

Non-surfactants include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol. 1987, 39, 621-626).

As used herein, "carrier compound" refers to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition

-26-

between the carrier compound and the nucleic acid for a common receptor. In contrast to a carrier compound, a "pharmaceutically acceptable carrier" (excipient) is a pharmaceutically acceptable solvent, suspending agent or 5 any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. pharmaceutically acceptable carrier may be liquid or solid and is selected with the planned manner of administration in mind so as to provide for the desired bulk, consistency, 10 etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. pharmaceutically acceptable carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl 15 methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic 20 acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrates (e.g., starch, sodium starch glycolate, etc.); or wetting agents (e.g., sodium laury) sulphate, etc.). Sustained release oral delivery systems 25 and/or enteric coatings for orally administered dosage forms are described in U.S. Patents 4,704,295; 4,556,552;

The compositions of the present invention may additionally contain other adjunct components

conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional compatible pharmaceutically-active materials such as, e.g., antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional

4,309,406; and 4,309,404.

WO 00/20645

5

10

15

20

materials useful in physically formulating various dosage forms of the compositions of present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the invention.

-27-

PCT/US99/23205

Regardless of the method by which the oligonucleotides of the invention are introduced into a patient, colloidal dispersion systems may be used as delivery vehicles to enhance the in vivo stability of the oligonucleotides and/or to target the oligonucleotides to a particular organ, tissue or cell type. Colloidal dispersion systems include, but are not limited to, macromolecule complexes, nanocapsules, microspheres, beads and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, liposomes and lipid:oligonucleotide complexes of uncharacterized structure. A preferred colloidal dispersion system is a plurality of liposomes. Liposomes are microscopic spheres having an aqueous core surrounded by one or more outer layers made up of lipids arranged in a bilayer configuration (see, generally, Chonn et al., Current Op. Biotech. 1995, 6, 698-708).

The pharmaceutical compositions of the present
invention may be administered in a number of ways depending
upon whether local or systemic treatment is desired and
upon the area to be treated. Administration may be topical
(including ophthalmic, vaginal, rectal, intranasal,
epidermal, and transdermal), oral or parenteral.

Parenteral administration includes intravenous drip,
subcutaneous, intraperitoneal or intramuscular injection,
pulmonary administration, e.g., by inhalation or
insufflation, or intracranial, e.g., intrathecal or
intraventricular, administration. Oligonucleotides with at
least one 2'-O-methoxyethyl modification are believed to be

-28-

particularly useful for oral administration.

5

10

15

20

25

30

35

Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.

Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

Compositions for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives. In some cases it may be more effective to treat a patient with an oligonucleotide of the invention in conjunction with other traditional therapeutic modalities in order to increase the efficacy of a treatment regimen. In the context of the invention, the term "treatment regimen" is meant to encompass therapeutic, palliative and prophylactic modalities. For example, a patient may be treated with conventional chemotherapeutic agents such as those used for tumor and cancer treatment. When used with the compounds of the invention, such chemotherapeutic agents may be used individually, sequentially, or in combination with one or more other such chemotherapeutic agents.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules

WO 00/20645

5

10

15

20

25

30

-29-

PCT/US99/23205

can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on  $EC_{50}s$  found to be effective in vitro and in in vivo animal models. general, dosage is from 0.01  $\mu$ g to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01  $\mu$ g to 100 g per kg of body weight, once or more daily, to once every 20 years.

Thus, in the context of this invention, by
"therapeutically effective amount" is meant the amount of
the compound which is required to have a therapeutic effect
on the treated individual. This amount, which will be
apparent to the skilled artisan, will depend upon the age
and weight of the individual, the type of disease to be
treated, perhaps even the gender of the individual, and
other factors which are routinely taken into consideration
when designing a drug treatment. A therapeutic effect is
assessed in the individual by measuring the effect of the
compound on the disease state in the animal.

The following examples illustrate the present invention and are not intended to limit the same.

PCT/US99/23205

#### EXAMPLES

20

25

30

WO 00/20645

#### EXAMPLE 1: Synthesis of Oligonucleotides

Unmodified oligodeoxynucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) 5 using standard phosphoramidite chemistry with oxidation by iodine.  $\beta$ -cyanoethyldiisopropyl-phosphoramidites are purchased from Applied Biosystems (Foster City, CA). phosphorothioate oligonucleotides, the standard oxidation bottle was replaced by a 0.2 M solution of <sup>3</sup>H-1,2-10 benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation cycle wait step was increased to 68 seconds and was followed by the capping step. Cytosines may be 5-methyl cytosines. (5-methyl deoxycytidine phosphoramidites available from Glen Research, Sterling, VA or Amersham 15 Pharmacia Biotech, Piscataway, NJ)

2'-methoxy oligonucleotides are synthesized using 2'-methoxy  $\beta$ -cyanoethyldiisopropyl-phosphoramidites (Chemgenes, Needham, MA) and the standard cycle for unmodified oligonucleotides, except the wait step after pulse delivery of tetrazole and base is increased to 360 seconds. Other 2'-alkoxy oligonucleotides are synthesized by a modification of this method, using appropriate 2'-modified amidites such as those available from Glen Research, Inc., Sterling, VA.

2'-fluoro oligonucleotides are synthesized as described in Kawasaki et al. (J. Med. Chem. 1993, 36, 831-841). Briefly, the protected nucleoside N<sup>6</sup>-benzoyl-2'-deoxy-2'-fluoroadenosine is synthesized utilizing commercially available 9- $\beta$ -D-arabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'- $\alpha$ -fluoro atom is introduced by a  $S_N2$ -displacement of a 2'- $\beta$ -O-trifyl group. Thus N<sup>6</sup>-benzoyl-9- $\beta$ -D-arabinofuranosyladenine is selectively protected in

moderate yield as the 3',5'-ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N<sup>6</sup>-benzoyl groups is accomplished using standard methodologies. Standard methods are also used to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'-phosphoramidite intermediates.

5

10

15

20

25

30

The synthesis of 2'-deoxy-2'-fluoroguanosine is accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9- $\beta$ -D-arabinofuranosylguanine as starting material, and conversion to the intermediate diisobutyryl-arabinofuranosylguanosine. Deprotection of the TPDS group is followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine. Selective O-deacylation and triflation is followed by treatment of the crude product with fluoride, then deprotection of the THP groups. Standard methodologies are used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

Synthesis of 2'-deoxy-2'-fluorouridine is accomplished by the modification of a known procedure in which 2, 2'-anhydro-1- $\beta$ -D-arabinofuranosyluracil is treated with 70% hydrogen fluoride-pyridine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-deoxy-2'-fluorocytidine is synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N<sup>4</sup>-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-(2-methoxyethyl)-modified amidites were synthesized according to Martin, P. (Helv. Chim. Acta 1995, 78, 486-506). For ease of synthesis, the last nucleotide may be a deoxynucleotide. 2'-O-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>-cytosines may be 5-methyl cytosines.

Synthesis of 5-Methyl cytosine monomers:

## 2,2'-Anhydro[1-(β-D-arabinofuranosyl)-5-methyluridine]:

5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), 5 diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 mL). The mixture was heated to reflux, with stirring, allowing the evolved carbon dioxide gas to be released in a controlled manner. 10 After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether (2.5 L), with stirring. product formed a gum. The ether was decanted and the residue was dissolved in a minimum amount of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) 15 to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hg for 24 hours) to give a solid which was crushed to a light tan powder (57 g, 85% crude yield). The material was used as is for further 20 reactions.

#### 2'-O-Methoxyethyl-5-methyluridine:

25

30

35

2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2-methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH (200 mL). The residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 g) was dissolved in CH<sub>3</sub>CN (600 mL) and evaporated. A silica gel column (3 kg) was packed in CH<sub>2</sub>Cl<sub>2</sub>/acetone/MeOH (20:5:3) containing 0.5% Et<sub>3</sub>NH. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product was eluted with the packing

25

30

35

solvent to give 160 g (63%) of product.

## 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine:

2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) was co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of di-5 methoxytrityl chloride (94.3 g, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 q, 0.278 M) was added and the reaction stirred for an additional one hour. 10 Methanol (170 mL) was then added to stop the reaction. HPLC showed the presence of approximately 70% product. solvent was evaporated and triturated with CH<sub>3</sub>CN (200 mL). The residue was dissolved in CHCl<sub>3</sub> (1.5 L) and extracted with 2x500 mL of saturated NaHCO3 and 2x500 mL of saturated 15 NaCl. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/Hexane/Acetone (5:5:1) containing 0.5% Et<sub>3</sub>NH. The pure fractions were evaporated to give 164 g of 20 product. Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g (57%). 3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methyluridine:

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 g, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and stirred at room temperature for 24 hours. The reaction was monitored by tlc by first quenching the tlc sample with the addition of MeOH. Upon completion of the reaction, as judged by tlc, MeOH (50 mL) was added and the mixture evaporated at 35°C. The residue was dissolved in CHCl<sub>3</sub> (800 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHCl<sub>3</sub>. The

-34-

combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% product). The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/Hexane(4:1). Pure product fractions were evaporated to yield 96 g (84%).

# 3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine:

5

10

15

20

25

30

35

A first solution was prepared by dissolving 3'-Oacetyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5methyluridine (96 g, 0.144 M) in CH<sub>3</sub>CN (700 mL) and set Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH<sub>3</sub>CN (1 L), cooled to -5°C and stirred for 0.5 hours using an overhead stirrer. POCl<sub>3</sub> was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The first solution was added dropwise, over a 45 minute period, to the later solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution was evaporated. residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO3 and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.

### 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine:

A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH $_4$ OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH $_3$  gas was added and the vessel heated to 100°C for 2 hours (tlc showed complete conversion). The

5

10

15

20

25

30

35

vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.

N<sup>4</sup>-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-cytidine:

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyl-cytidine (85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) was added with stirring. After stirring for 3 hours, tlc showed the reaction to be approximately 95% complete. The solvent was evaporated and the residue azeotroped with MeOH (200 mL). The residue was dissolved in CHCl<sub>3</sub> (700 mL) and extracted with saturated NaHCO<sub>3</sub> (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO<sub>4</sub> and evaporated to give a residue (96 g). The residue was chromatographed on a 1.5 kg silica column using EtOAc/Hexane (1:1) containing 0.5% Et<sub>3</sub>NH as the eluting solvent. The pure product fractions were evaporated to give 90 g (90%) of the title compound. N<sup>4</sup>-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine-3'-amidite:

N<sup>4</sup>-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (74 g, 0.10 M) was dissolved in  $CH_2Cl_2$  (1 L). Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxytetra(isopropyl)phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (tlc showed the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO $_3$  (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes were backextracted with  $CH_2Cl_2$  (300 mL), and the extracts were combined, dried over MgSO $_4$  and concentrated. The residue obtained was chromatographed on a 1.5 kg silica column using EtOAc\Hexane (3:1) as the eluting solvent. The pure

WO 00/20645

5

10

15

20

25

PCT/US99/23205

-36-

fractions were combined to give 90.6 g (87%) of the title compound.

5-methyl-2'-deoxycytidine (5-me-C) containing oligonucleotides were synthesized according to published methods (Sanghvi et al., *Nucl. Acids Res.* **1993**, *21*, 3197-3203) using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).

Oligonucleotides having methylene (methylimino) (MMI) backbones were synthesized according to U.S. Patent 5,378,825, which is coassigned to the assignee of the present invention and is incorporated herein in its entirety. For ease of synthesis, various nucleoside dimers containing MMI linkages were synthesized and incorporated into oligonucleotides. Other nitrogen-containing backbones are synthesized according to WO 92/20823 which is also coassigned to the assignee of the present invention and incorporated herein in its entirety.

Oligonucleotides having amide backbones are synthesized according to De Mesmaeker et al. (Acc. Chem. Res. 1995, 28, 366-374). The amide moiety is readily accessible by simple and well-known synthetic methods and is compatible with the conditions required for solid phase synthesis of oligonucleotides.

Oligonucleotides with morpholino backbones are synthesized according to U.S. Patent 5,034,506 (Summerton and Weller).

Peptide-nucleic acid (PNA) oligomers are synthesized according to P.E. Nielsen et al. (Science 1991, 254, 1497-1500).

After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel

5

10

15

20

25

30

electrophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of phosphorothicate and phosphodiester linkages obtained in synthesis were periodically checked by <sup>31</sup>P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al. (J. Biol. Chem. 1991, 266, 18162). Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

#### EXAMPLE 2: Human TNF-α Oligodeoxynucleotide Sequences

Antisense oligonucleotides were designed to target human  $TNF-\alpha$ . Target sequence data are from the  $TNF-\alpha$  cDNA sequence published by Nedwin, G.E. et al. (Nucleic Acids Res. 1985, 13, 6361-6373); Genbank accession number X02910, provided herein as SEQ ID NO: 1. Oligodeoxynucleotides were synthesized primarily with phosphorothicate linkages. Oligonucleotide sequences are shown in Table 1. Oligonucleotide 14640 (SEQ ID NO. 2) is a published TNF- $\alpha$ antisense oliqodeoxynucleotide targeted to the start site of the  $TNF-\alpha$  gene (Hartmann, G., et al., Antisense Nucleic Acid Drug Dev., 1996, 6, 291-299). Oligonucleotide 2302 (SEQ ID NO. 41) is an antisense oligodeoxynucleotide targeted to the human intracellular adhesion molecule-1 (ICAM-1) and was used as an unrelated (negative) target control. Oligonucleotide 13664 (SEQ ID NO. 42) is an antisense oligodeoxynucleotide targeted to the Herpes Simplex Virus type 1 and was used as an unrelated target control.

NeoHK cells, human neonatal foreskin keratinocytes (obtained from Cascade Biologicals, Inc., Portland, OR) were cultured in Keratinocyte medium containing the supplied growth factors (Life Technologies, Rockville, MD).

At assay time, the cells were between 70% and 90% confluent. The cells were incubated in the presence of

Keratinocyte medium, without the supplied growth factors added, and the oligonucleotide formulated in LIPOFECTIN® (Life Technologies), a 1:1 (w/w) liposome formulation of the cationic lipid N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride (DOTMA), and dioleoyl phosphotidylethanolamine (DOPE) in membrane filtered water. For an initial screen, the oligonucleotide concentration was 300 nM in 9  $\mu$ g/mL LIPOFECTIN®. Treatment was for four hours. After treatment, the medium was removed and the cells were further incubated in Keratinocyte medium containing the supplied growth factors and 100 nM phorbol 12-myristate 13-acetate (PMA, Sigma, St. Louis, MO). mRNA was analyzed 2 hours post-induction with PMA. Protein levels were analyzed 12 to 20 hours post-induction.

5

10

15

20

25

30

Total mRNA was isolated using the RNEASY® Mini Kit (Qiagen, Valencia, CA; similar kits from other manufacturers may also be used), separated on a 1% agarose gel, transferred to  $\mathtt{HYBOND^{TM}-N+}$  membrane (Amersham Pharmacia Biotech, Piscataway, NJ), a positively charged nylon membrane, and probed. A TNF- $\alpha$  probe consisted of the 505 bp EcoRI-HindIII fragment from BBG 18 (R&D Systems, Minneapolis, MN), a plasmid containing human TNF- $\alpha$  cDNA. Α glyceraldehyde 3-phosphate dehydrogenase (G3PDH) probe consisted of the 1.06 kb HindIII fragment from pHcGAP (American Type Culture Collection, Manassas, VA), a plasmid containing human G3PDH cDNA. The restriction fragments were purified from low-melting temperature agarose, as described in Maniatis, T., et al., Molecular Cloning: A Laboratory Manual, 1989 and labeled with REDIVUE™ 32P-dCTP (Amersham Pharmacia Biotech, Piscataway, NJ) and PRIME-A-GENE® labeling kit (Promega, Madison, WI). mRNA was quantitated by a PhosphoImager (Molecular Dynamics, Sunnyvale, CA).

-39-

Secreted TNF- $\alpha$  protein levels were measured using a human TNF- $\alpha$  ELISA kit (R&D Systems, Minneapolis, MN or Genzyme, Cambridge, MA).

TABLE 1

Nucleotide Sequences of Human TNF-α Phosphorothioate
Oligodeoxynucleotides

|    | ISIS<br>NO. | NUCLEOTIDE SEQUENCE <sup>1</sup> (5' -> 3')                                                                        | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>2</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|--------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------|--------------------------|
| 10 | 14640       | <u>C</u> ATG <u>C</u> TTT <u>C</u> AGTG <u>C</u> T <u>C</u> AT                                                     | 2                | 0796-0813                                              | AUG                      |
|    | 14641       | $\texttt{TGAGGGAG}\underline{C}\texttt{GT}\underline{C}\texttt{TG}\underline{C}\texttt{TG}\underline{C}\texttt{T}$ | 3                | 0615-0634                                              | 5' <b>-</b> UTR          |
|    | 14642       | GTG <u>C</u> T <u>C</u> ATGGTGT <u>CC</u> TTT <u>CC</u>                                                            | 4                | 0784-0803                                              | AUG                      |
|    | 14643       | TAAT <u>C</u> A <u>C</u> AAGTG <u>C</u> AAA <u>C</u> ATA                                                           | 5                | 3038-3057                                              | 3'-UTR                   |
|    | 14644       | TA <u>CCCC</u> GGT <u>C</u> T <u>CCC</u> AAATAA                                                                    | 6                | 3101-3120                                              | 3'-UTR                   |
| 15 | 14810       | GTGCTCATGGTGTCCTTTCC                                                                                               | 4                | 0784-0803                                              | AUG                      |
|    | 14811       | AGCACCGCCTGGAGCCCT                                                                                                 | 7                | 0869-0886                                              | coding                   |
|    | 14812       | GCTGAGGAACAAGCACCGCC                                                                                               | 8                | 0878-0897                                              | coding                   |
|    | 14813       | AGGCAGAAGAGCGTGGTGGC                                                                                               | 9                | 0925-0944                                              | coding                   |
|    | 14814       | AAAGTGCAGCAGGCAGAAGA                                                                                               | 10               | 0935-0954                                              | coding                   |
| 20 | 14815       | TTAGAGAGAGGTCCCTGG                                                                                                 | 11               | 1593-1610                                              | coding                   |
|    | 14816       | TGACTGCCTGGGCCAGAG                                                                                                 | 12               | 1617-1634                                              | junction                 |
|    | 14817       | GGGTTCGAGAAGATGATC                                                                                                 | 13               | 1822-1839                                              | junction                 |
|    | 14818       | GGGCTACAGGCTTGTCACTC                                                                                               | 14               | 1841-1860                                              | coding                   |
|    | 14820       | CCCCTCAGCTTGAGGGTTTG                                                                                               | 15               | 2171-2190                                              | junction                 |
| 25 | 14821       | CCATTGGCCAGGAGGGCATT                                                                                               | 16               | 2218-2237                                              | coding                   |
|    | 14822       | ACCACCAGCTGGTTATCTCT                                                                                               | 17               | 2248-2267                                              | coding                   |
|    | 14823       | CTGGGAGTAGATGAGGTACA                                                                                               | 18               | 2282-2301                                              | coding                   |
|    | 14824       | CCCTTGAAGAGGACCTGGGA                                                                                               | 19               | 2296-2315                                              | coding                   |
|    | 14825       | GGTGTGGGTGAGGAGCACAT                                                                                               | 20               | 2336-2355                                              | coding                   |
| 30 | 14826       | GTCTGGTAGGAGACGGCGAT                                                                                               | 21               | 2365-2384                                              | coding                   |
|    | 14827       | GCAGAGAGGAGGTTGACCTT                                                                                               | 22               | 2386-2405                                              | coding                   |
|    | 14828       | GCTTGGCCTCAGCCCCCTCT                                                                                               | 23               | 2436-2455                                              | coding                   |

20

WO 00/20645 PCT/US99/23205

-40-

| 14829 | CCTCCCAGATAGATGGGCTC                                                                                                                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2464-2483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14830 | CCCTTCTCCAGCTGGAAGAC                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2485-2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14831 | ATCTCAGCGCTGAGTCGGTC                                                                                                                                 | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2506-2525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14832 | TCGAGATAGTCGGGCCGATT                                                                                                                                 | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2527-2546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14833 | AAGTAGACCTGCCCAGACTC                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2554-2573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14834 | GGATGTTCGTCCTCCTCACA                                                                                                                                 | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2588-2607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14835 | ACCCTAAGCCCCCAATTCTC                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2689-2708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 ' -UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14836 | CCACACATTCCTGAATCCCA                                                                                                                                 | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2758-2777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14837 | AGGCCCCAGTGAGTTCTGGA                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2825-2844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14838 | GTCTCCAGATTCCAGATGTC                                                                                                                                 | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2860-2879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14839 | CTCAAGTCCTGCAGCATTCT                                                                                                                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2902-2921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14840 | TGGGTCCCCCAGGATACCCC                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3115-3134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14841 | ACGGAAAACATGTCTGAGCC                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3151-3170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14842 | CTCCGTTTTCACGGAAAACA                                                                                                                                 | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3161-3180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14843 | GCCTATTGTTCAGCTCCGTT                                                                                                                                 | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3174-3193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14844 | GGTCACCAAATCAGCATTGT                                                                                                                                 | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3272-3292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14845 | GAGGCTCAGCAATGAGTGAC                                                                                                                                 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3297-3316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3'-UTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2302  | G <u>CCC</u> AAG <u>C</u> TGG <u>C</u> AT <u>CC</u> GT <u>C</u> A                                                                                    | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | target cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13664 | GCCGAGGTCCATGTCGTACGC                                                                                                                                | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | target cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 14830<br>14831<br>14832<br>14833<br>14834<br>14835<br>14836<br>14837<br>14838<br>14839<br>14840<br>14841<br>14842<br>14843<br>14844<br>14845<br>2302 | 14830 CCCTTCTCCAGCTGGAAGAC 14831 ATCTCAGCGCTGAGTCGGTC 14832 TCGAGATAGTCGGGCCGATT 14833 AAGTAGACCTGCCCAGACTC 14834 GGATGTTCGTCCTCCTCACA 14835 ACCCTAAGCCCCCAATTCTC 14836 CCACACATTCCTGAATCCCA 14837 AGGCCCCAGTGAGTTCTGGA 14838 GTCTCCAGATTCCAGATGTC 14839 CTCAAGTCCTGCAGCATTCT 14840 TGGGTCCCCCAGGATACCCC 14841 ACGGAAAACATGTCTGAGCC 14842 CTCCGTTTTCACGGAAAACA 14843 GCCTATTGTTCAGGCATTGT 14844 GGTCACCAAATCAGCATTGT 14844 GGTCACCAAATCAGCATTGT 14845 GAGGCTCAGCATCCAA | 14830         CCCTTCTCCAGCTGGAAGAC         25           14831         ATCTCAGCGCTGAGTCGGTC         26           14832         TCGAGATAGTCGGGCCGATT         27           14833         AAGTAGACCTGCCCAGACTC         28           14834         GGATGTTCGTCCTCACA         29           14835         ACCCTAAGCCCCCAATTCTC         30           14836         CCACACATTCCTGAATCCCA         31           14837         AGGCCCCAGTGAGTTCTGGA         32           14838         GTCTCCAGATTCCAGATGTC         33           14839         CTCAAGTCCTGCAGCATTCT         34           14840         TGGGTCCCCCAGGATACCCC         35           14841         ACGGAAAACATGTCTGAGCC         36           14842         CTCCGTTTTCACGGAAAACA         37           14843         GCCTATTGTTCAGCTCCGTT         38           14844         GGTCACCAAATCAGCATTGT         39           14845         GAGGCTCAGCAATGAGTGAC         40           2302         GCCCAAGCTGGCATCCGTCA         41 | 14830       CCCTTCTCCAGCTGGAAGAC       25       2485-2504         14831       ATCTCAGCGCTGAGTCGGTC       26       2506-2525         14832       TCGAGATAGTCGGGCCGATT       27       2527-2546         14833       AAGTAGACCTGCCCAGACTC       28       2554-2573         14834       GGATGTTCGTCCTCCTCACA       29       2588-2607         14835       ACCCTAAGCCCCCAATTCTC       30       2689-2708         14836       CCACACATTCCTGAATCCCA       31       2758-2777         14837       AGGCCCCAGTGAGTTCTGGA       32       2825-2844         14838       GTCTCCAGATTCCAGATGTC       33       2860-2879         14839       CTCAAGTCCTGCAGCATTCT       34       2902-2921         14840       TGGGTCCCCCAGGATACCCC       35       3115-3134         14841       ACGGAAAACATGTCTGAGCC       36       3151-3170         14842       CTCCGTTTTCACGGAAAACA       37       3161-3180         14843       GCCTATTGTTCAGCTCCGTT       38       3174-3193         14844       GGTCACCAAATCAGCATTGT       39       3272-3292         14845       GAGGCTCAGCAATGAGTGAC       40       3297-3316         2302       GCCCAAGCTGGCATCCGTCA       41       target cor |

 $<sup>^1</sup>$  "C" residues are 5-methyl-cytosines except "C" residues are unmodified cytidines; all linkages are phosphorothicate linkages.

35 Oligonucleotides 14828 (SEQ ID NO. 23), 14834 (SEQ ID NO.

<sup>&</sup>lt;sup>2</sup>Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

Results are shown in Table 2. Oligonucleotides 14828 (SEQ 30 ID NO. 23), 14829 (SEQ ID NO. 24), 14832 (SEQ ID NO. 27), 14833 (SEQ ID NO. 28), 14834 (SEQ ID NO. 29), 14835 (SEQ ID NO. 30), 14836 (SEQ ID NO. 31), 14839 (SEQ ID NO. 34), 14840 (SEQ ID NO. 35), and 14844 (SEQ ID NO. 39) inhibited TNF-α expression by approximately 50% or more.

-41-

29), and 14840 (SEQ ID NO. 35) gave better than 70% inhibition.

TABLE 2

Inhibition of Human TNF-α mRNA Expression by

Phosphorothicate Oligodeoxynucleotides

|    | ISIS<br>No: | SEQ<br>ID<br>NO: | GENE<br>TARGET<br>REGION | % mRNA<br>EXPRESSION | % mRNA<br>INHIBITION |
|----|-------------|------------------|--------------------------|----------------------|----------------------|
|    | basal       |                  |                          | 16%                  |                      |
|    | induced     |                  |                          | 100%                 | 0%                   |
| 10 | 13664       | 42               | control                  | 140%                 |                      |
|    | 14640       | 2                | AUG                      | 61%                  | 39%                  |
|    | 14641       | 3                | 5'-UTR                   | 95%                  | 5%                   |
|    | 14642       | 4                | AUG                      | 131%                 | <del>-</del>         |
|    | 14810       | 4                | AUG                      | 111%                 |                      |
| 15 | 14815       | 11               | coding                   | 85%                  | 15%                  |
|    | 14816       | 12               | junction                 | 106%                 |                      |
|    | 14817       | 13               | junction                 | 97%                  | 3%                   |
|    | 14818       | 14               | coding                   | 64%                  | 36%                  |
|    | 14820       | 15               | junction                 | 111%                 |                      |
| 20 | 14821       | 16               | coding                   | 91%                  | 9%                   |
|    | 14822       | 17               | coding                   | 57%                  | 43%                  |
|    | 14827       | 22               | coding                   | 67%                  | 33%                  |
|    | 14828       | 23               | coding                   | 27%                  | 73%                  |
|    | 14829       | 24               | coding                   | 33%                  | 67%                  |
| 25 | 14830       | 25               | coding                   | 71%                  | 29%                  |
|    | 14831       | 26               | coding                   | 62%                  | 38%                  |
|    | 14832       | 27               | coding                   | 40%                  | 60%                  |
|    | 14833       | 28               | coding                   | 43%                  | 57%                  |
|    | 14834       | 29               | STOP                     | 26%                  | 74%                  |
| 30 | 14835       | 30               | 3'-UTR                   | 32%                  | 68%                  |
|    | 14836       | 31               | 3'-UTR                   | 40%                  | 60%                  |

| _ | 4 | 2 | _ |
|---|---|---|---|
|   |   |   |   |

|   | 14837 | 32 | 3'-UTR | 106% |     |
|---|-------|----|--------|------|-----|
|   | 14838 | 33 | 3'-UTR | 70%  | 30% |
|   | 14839 | 34 | 5'-UTR | 49%  | 51% |
|   | 14840 | 35 | 3'-UTR | 28%  | 72% |
| 5 | 14841 | 36 | 3'-UTR | 60%  | 40% |
|   | 14842 | 37 | 3'-UTR | 164% |     |
|   | 14843 | 38 | 3'-UTR | 67%  | 33% |
|   | 14844 | 39 | 3 'UTR | 46%  | 54% |
|   | 14845 | 40 | 3'-UTR | 65%  | 35% |

## 10 EXAMPLE 3: Dose response of antisense phosphorothioate oligodeoxynucleotide effects on human TNF- $\alpha$ mRNA levels in NeoHK cells

Four of the more active oligonucleotides from the initial screen were chosen for dose response assays. These include 15 oligonucleotides 14828 (SEQ ID NO. 23), 14833 (SEQ ID NO. 28), 14834 (SEQ ID NO. 29) and 14839 (SEQ ID NO. 34). NeoHK cells were grown, treated and processed as described in Example 2. LIPOFECTIN® was added at a ratio of 3 µg/mL per 100 nM of oligonucleotide. The control included LIPOFECTIN® at a 20 concentration of 9  $\mu$ g/mL. The effect of the TNF- $\alpha$  antisense oligonucleotides was normalized to the non-specific target control. Results are shown in Table 3. Each oligonucleotide showed a dose response effect with maximal inhibition greater than 70%. Oligonucleotides 14828 (SEQ ID NO. 23) had an  $IC_{50}$ 25 of approximately 185 nM. Oligonucleotides 14833 (SEQ ID NO. 28) had an IC<sub>50</sub> of approximately 150 nM. Oligonucleotides 14834 (SEQ ID NO. 29) and 14839 (SEQ ID NO. 34) had an  $IC_{50}$  of approximately 140 nM.

TABLE 3  $\mbox{Dose Response of NeoHK Cells to TNF-$\alpha$} \label{eq:Dose Response of NeoHK Cells to TNF-$\alpha$}$  Antisense Phosphorothioate Oligodeoxynucleotides (ASOs)

-43-

|    | ISIS # | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % mRNA<br>Expression | % mRNA<br>Inhibition |
|----|--------|------------------|--------------------|--------|----------------------|----------------------|
| 5  | 2302   | 41               | control            | 25 nM  | 100%                 |                      |
|    | 11     | "                | 11                 | 50 nM  | 100%                 |                      |
|    | 11     | II               | 11                 | 100 nM | 100%                 |                      |
|    | 11     | 11               | 11                 | 200 nM | 100%                 |                      |
|    | 11     | 11               | n                  | 300 nM | 100%                 |                      |
| 10 | 14828  | 23               | coding             | 25 nM  | 122%                 |                      |
|    | 11     | 11               | 11                 | 50 nM  | 97%                  | 3%                   |
|    | 11     | 11               | 11                 | 100 nM | 96%                  | 4%                   |
|    | 11     | 11               | н                  | 200 nM | 40%                  | 60%                  |
|    | 11     | 11               | п                  | 300 nM | 22%                  | 78%                  |
| 15 | 14833  | 28               | coding             | 25 nM  | 89%                  | 11%                  |
|    | 11     | 11               | II .               | 50 nM  | 78%                  | 22%                  |
|    | 11     | 11               | 11                 | 100 nM | 64%                  | 36%                  |
|    | 11     | 11               | 11                 | 200 nM | 36%                  | 64%                  |
|    | 11     | H                | 11                 | 300 nM | 25%                  | 75%                  |
| 20 | 14834  | 29               | STOP               | 25 nM  | 94%                  | 6%                   |
|    | 11     | II               | 11                 | 50 nM  | 69%                  | 31%                  |
|    | 11     | 11               | 11                 | 100 nM | 65%                  | 35%                  |
|    | †I     | II               | 11                 | 200 nM | 26%                  | 74%                  |
|    | Ħ      | 11               | 11                 | 300 nM | 11%                  | 89%                  |
| 25 | 14839  | 34               | 3'-UTR             | 25 nM  | 140%                 |                      |
|    | 11     | 11               | 11                 | 50 nM  | 112%                 | <del>-</del>         |
|    | "      | 11               | 11                 | 100 nM | 65%                  | 35%                  |
|    | 11     | II               | 11                 | 200 nM | 29%                  | 71%                  |
|    | 11     | 11               | 11                 | 300 nM | 22%                  | 78%                  |

-44-

EXAMPLE 4: Design and Testing of Chimeric (deoxy gapped) 2'-0-methoxyethyl TNF- $\alpha$  Antisense Oligonucleotides on TNF- $\alpha$  Levels in NeoHK Cells

Oligonucleotides having SEQ ID NO: 28 and SEQ ID NO: 29

5 were synthesized as uniformly phosphorothicate or mixed phosphorothicate/phosphodiester chimeric oligonucleotides having variable regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. The sequences and the oligonucleotide chemistries are shown in Table 4. All 2'-MOE cytosines were 5-methyl-cytosines.

Dose response experiments, as discussed in Example 3, were performed using these chimeric oligonucleotides. The effect of the TNF- $\alpha$  antisense oligonucleotides was normalized to the non-specific target control. Results are shown in 15 Table 5. The activities of the chimeric oligonucleotides tested were comparable to the parent phosphorothicate oligonucleotide.

des

|    | Nucl        | Nucleotide Sequences of TNF- $\alpha$ Chimeric (deoxy gapped) |                  | 2'-0-methoxyethyl Oligonucleotid                       | .igonucleotid            | 775 |
|----|-------------|---------------------------------------------------------------|------------------|--------------------------------------------------------|--------------------------|-----|
|    | ISIS<br>NO. | NUCLEOTIDE SEQUENCE<br>(5' -> 3')                             | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>1</sup> | GENE<br>TARGET<br>REGION |     |
| Ŋ  | 14833       | AsAsGsTsAsGsAsCsCsTsGsCsCsCsAsGsAsCsTsC                       | 28               | 2554-2573                                              | coding                   |     |
|    | 16467       | AoAoGoToAsGsAsCsCsTsGsCsCsAsGoAoCoToC                         | 28               | 2554-2573                                              | coding                   |     |
|    | 16468       | AsAsGsTsAsGsAsCsCsTsGsCsCsCsAsGsAsCsTsC                       | 28               | 2554-2573                                              | coding                   |     |
|    | 16469       | AsAsGsTsAsGsAsCsCsTsGsCsCsCsAsGsAsCsTsC                       | 28               | 2554-2573                                              | coding                   |     |
|    | 16470       | AsAsGsTsAsGsAsCsCsTsGsCsCsCsAsGsAsCsTsC                       | 28               | 2554-2573                                              | coding                   |     |
| 10 | 16471       | AsAsGsTsAsGsAsCsCsTsGsCsCsCsAsGsAsCsTsC                       | 28               | 2554-2573                                              | coding                   |     |
|    | 14834       | GSGSASTSGSTSTSCSGSTSCSTSCSASCSA                               | 29               | 2588-2607                                              | STOP                     |     |
|    | 16472       | GoGoAoToGsTsTsCsGsTsCsCsTsCsCsToCoAoCoA                       | 29               | 2588-2607                                              | STOP                     |     |
|    | 16473       | GSGSASTSGSTSTSCSGSTSCSTSCSTSCSASCSA                           | 29               | 2588-2607                                              | STOP                     |     |
|    | 16474       | GSGSASTSGSTSTSCSGSTSCSCSTSCSASCSA                             | 29               | 2588-2607                                              | STOP                     |     |
| 15 | 16475       | GsGsAsTsGsTsTsCsGsTsCsCsTsCsAsCsA                             | 29               | 2588-2607                                              | STOP                     |     |
|    | 16476       | GSGSASTSGSTSCSGSTSCSCSTSCSASCSA                               | 29               | 2588-2607                                              | STOP                     |     |

All  $^{1}\;\mathrm{Emboldened}$  residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). phosphorothioate linkages, "o" linkages are phosphodiester linkages. 2'-methoxyethoxy cytidines are 5-methyl-cytidines; "s" linkages are

<sup>2</sup> Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

TABLE 5 Dose Response of NeoHK Cells to TNF- $\alpha$  Chimeric (deoxy gapped) 2'-0-methoxyethyl Antisense Oligonucleotides

-47-

| 5  | ISIS # | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % mRNA<br>Expression | % mRNA<br>Inhibition |
|----|--------|------------------|--------------------|--------|----------------------|----------------------|
|    | 13664  | 42               | control            | 50 nM  | 100%                 |                      |
|    | u      | 11               | 11                 | 100 nM | 100%                 |                      |
|    | 11     | 11               | 11                 | 200 nM | 100%                 |                      |
|    | 11     | "                | 11                 | 300 nM | 100%                 |                      |
| 10 | 14833  | 28               | coding             | 50 nM  | 69%                  | 31%                  |
|    | n      | 11               | 11                 | 100 nM | 64%                  | 36%                  |
|    | 11     | 11               | 11                 | 200 nM | 56%                  | 44%                  |
|    | II.    | 11               | 11                 | 300 nM | 36%                  | 64%                  |
|    | 16468  | 28               | coding             | 50 nM  | 66%                  | 34%                  |
| 15 | 11     | n                | II                 | 100 nM | 53%                  | 47%                  |
|    | 11     | 11               | 11                 | 200 nM | 34%                  | 66%                  |
|    | 11     | 11               | 11                 | 300 nM | 25%                  | 75%                  |
|    | 16471  | 28               | coding             | 50 nM  | 77%                  | 23%                  |
|    | 11     | н                | п                  | 100 nM | 56%                  | 44%                  |
| 20 | II     | II               | п                  | 200 nM | 53%                  | 47%                  |
|    | II .   | n                | H                  | 300 nM | 31%                  | 69%                  |
|    | 14834  | 29               | STOP               | 50 nM  | 74%                  | 26%                  |
|    | 11     | 11               | II .               | 100 nM | 53%                  | 47%                  |
|    | 11     | **               | 11                 | 200 nM | 24%                  | 76%                  |
| 25 | 11     | 11               | 11                 | 300 nM | 11%                  | 89%                  |
|    | 16473  | 29               | STOP               | 50 nM  | 71%                  | 29%                  |
|    | 11     | 11               | 11                 | 100 nM | 51%                  | 49%                  |
|    | 11     | II               | II .               | 200 nM | 28%                  | 72%                  |
|    | 11     | 11               | 11                 | 300 nM | 23%                  | 77%                  |
| 30 | 16476  | 29               | STOP               | 50 nM  | 74%                  | 26%                  |

-48-

| 11 | 11 | 11 | 100 | nM | 58% | 42% |
|----|----|----|-----|----|-----|-----|
| 11 | н  | 11 | 200 | nM | 32% | 68% |
| 11 |    | 11 | 300 | nM | 31% | 69% |

#### EXAMPLE 5: Design and Testing of Chimeric

## 5 Phosphorothioate/MMI TNF- $\alpha$ Antisense Oligodeoxynucleotides on TNF- $\alpha$ Levels in NeoHK Cells

Oligonucleotides having SEQ ID NO. 29 were synthesized as mixed phosphorothioate/methylene(methylimino) (MMI) chimeric oligodeoxynucleotides. The sequences and the oligonucleotide chemistries are shown in Table 6. Oligonucleotide 13393 (SEQ ID NO. 49) is an antisense oligonucleotide targeted to the human intracellular adhesion molecule-1 (ICAM-1) and was used as an unrelated target control. All cytosines were 5-methyl-cytosines.

15 Dose response experiments were performed using these chimeric oligonucleotides, as discussed in Example 3 except quantitation of TNF- $\alpha$  mRNA levels was determined by real-time PCR (RT-PCR) using the ABI PRISM™ 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) 20 according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are 25 quantitated after the PCR is completed, products in RT-PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter 30 dye (e.g., JOE or FAM, PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, PE-Applied Biosystems, Foster City, CA) is

-49-

attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a 5 substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a 10 sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular (six-second) intervals by laser optics built into the ABI PRISM™ 7700 Sequence 15 Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

20 RT-PCR reagents were obtained from PE-Applied Biosystems, Foster City, CA. RT-PCR reactions were carried out by adding 25 µl PCR cocktail (1x TAQMAN® buffer A, 5.5 mM MgCl<sub>2</sub>, 300 µM each of dATP, dCTP and dGTP, 600 µM of dUTP, 100 nM each of forward primer, reverse primer, and 25 probe, 20 U RNAse inhibitor, 1.25 units AMPLITAQ GOLD®, and 12.5 U MuLV reverse transcriptase) to 96 well plates containing 25 µl poly(A) mRNA solution. The RT reaction was carried out by incubation for 30 minutes at 48°C. following a 10 minute incubation at 95°C to activate the AMPLITAQ 30 GOLD®, 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

For TNF- $\alpha$  the PCR primers were:

Forward: 5'-CAGGCGGTGCTTGTTCCT-3' SEQ ID NO. 43

Reverse: 5'-GCCAGAGGGCTGATTAGAGAGA-3' SEQ ID NO. 44 and the PCR probe was: FAM-CTTCTCCTTCCTGATCGTGGCAGGC-TAMRA (SEQ ID NO. 45) where FAM or JOE (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

For GAPDH the PCR primers were:

Forward primer: 5'-GAAGGTGAAGGTCGGAGTC-3' SEQ ID NO. 46
Reverse primer: 5'-GAAGATGGTGATGGGATTTC-3' SEQ ID NO. 47

10 and the PCR probe was: 5' JOE-CAAGCTTCCCGTTCTCAGCC - TAMRA

3' (SEQ ID NO. 48) where FAM or JOE (PE-Applied
Biosystems, Foster City, CA) is the fluorescent reporter

dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is
the quencher dye.

Results are shown in Table 7. The oligonucleotide containing MMI linkages was more effective in reducing TNF-  $\alpha$  mRNA levels than the uniformly phosphorothicate oligonucleotide. The IC<sub>50</sub> value was reduced from approximately 75 nM, for oligonucleotide 14834 (SEQ ID NO: 29), to approximately 30 nM for oligonucleotide 16922 (SEQ ID NO: 29).

Dose response experiments were also performed measuring the effect on TNF- $\alpha$  protein levels. Protein levels were measured as described in Example 2. Results are shown in Table 8. The oligonucleotide containing four MMI linkages on each end was more effective in reducing protein levels than the uniformly phosphorothicate oligonucleotide. The IC $_{50}$  value was reduced from approximately 90 nM, for oligonucleotide 14834 (SEQ ID NO: 30 29), to approximately 45 nM for oligonucleotide 16922 (SEQ ID NO: 29).

TABLE 6

Nucleotide Sequences of Human TNF- $\alpha$  Chimeric Phosphorothioate/MMI Oligodeoxynucleotides

|   | ISIS<br>NO.         | NUCLEOTIDE SEQUENCE<br>(5' -> 3')                                                            | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>1</sup> | GENE<br>TARGET<br>REGION |
|---|---------------------|----------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------|--------------------------|
| Ŋ | 14834               | GSGSASTSGSTSCSGSTSCSCSTSCSASCSA                                                              | 29               | 2588-2607                                              | STOP                     |
|   | 16922               | GmGmAmTmGsTsTsCsGsTsCsCsTsCsCsTmCmAmCmA                                                      | 29               | 2588-2607                                              | STOP                     |
|   | 16923               | GmGmAmTmGmTmTsCsGsTsCsCsTsCmCmTmCmAmCmA                                                      | 29               | 2588-2607                                              | STOP                     |
|   | 13393               | TsCsTsGsAsGsTsAsGsCsAsGsAsGsAsGsCsTsC                                                        | 49               | target control                                         | trol                     |
|   | <sup>1</sup> All cv | <sup>1</sup> All cytosine residues are 5-methyl-cytosines: "s" linkages are phosphorothioate | kades al         | e phosphorothic                                        | ate.                     |

linkages, "m" linkages are methylene(methylimino) (MMI). 10

<del>,</del> <sup>2</sup> Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO.

-52-

TABLE 7 Dose Response of Chimeric Phosphorothioate/MMI TNF- $\alpha$  Antisense Oligodeoxynucleotides on TNF- $\alpha$  mRNA Levels in PMA-Induced NeoHK Cells

| 5  | ISIS #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % mRNA<br>Expression | % mRNA<br>Inhibition |
|----|---------|------------------|--------------------|--------|----------------------|----------------------|
|    | induced |                  | <del></del>        |        | 100%                 |                      |
|    | 13393   | 49               | control            | 25 nM  | 87.3%                | 12.7%                |
|    | II      | "                | II.                | 50 nM  | 98.5%                | 1.5%                 |
|    | II      | "                | 11                 | 100 nM | 133.1%               |                      |
| 10 | 11      | 11               | TI .               | 200 nM | 139.6%               |                      |
|    | 14834   | 29               | STOP               | 25 nM  | 98.7%                | 1.3%                 |
|    | Ħ       | 11               | 11                 | 50 nM  | 70.8%                | 29.2%                |
|    | 11      | ŧŧ               | 11                 | 100 nM | 36.0%                | 64.0%                |
|    | 11      | 11               | H                  | 200 nM | 38.2%                | 61.8%                |
| 15 | 16922   | 29               | STOP               | 25 nM  | 58.9%                | 41.1%                |
|    | 11      | II               | 11                 | 50 nM  | 28.2%                | 71.8%                |
|    | II      | **               | п                  | 100 nM | 22.2%                | 77.8%                |
|    | 11      | 11               | m .                | 200 nM | 18.9%                | 81.1%                |

TABLE 8

Dose Response of Chimeric Phosphorothioate/MMI TNF- $\alpha$  Antisense Oligodeoxynucleotides on TNF- $\alpha$  Protein Levels in PMA-Induced NeoHK Cells

|    | ISIS #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose  | % protein<br>Expression | % protein<br>Inhibition |
|----|---------|------------------|--------------------|-------|-------------------------|-------------------------|
|    | induced |                  |                    |       | 100.0%                  |                         |
| 25 | 13393   | 49               | control            | 25 nM | 117.0%                  |                         |
|    | 11      | 11               | n                  | 50 nM | 86.6%                   | 13.4%                   |

| _ | 5 | 3 | _ |
|---|---|---|---|
|   |   |   |   |

|    | *1    | "   | 11   | 100 nM | 98.7% | 1.3%  |
|----|-------|-----|------|--------|-------|-------|
|    | 11    | 11  | 11   | 200 nM | 78.0% | 22.0% |
|    | 14834 | 29  | STOP | 25 nM  | 84.8% | 15.2% |
|    | 11    | 11  | 11   | 50 nM  | 76.9% | 23.1% |
| 5  | 11    | "   | "    | 100 nM | 44.5% | 55.5% |
|    | 11    | 11  | 11   | 200 nM | 18.7% | 81.3% |
|    | 16922 | 29  | STOP | 25 nM  | 67.1% | 32.9% |
|    | 11    | #1  | 11   | 50 nM  | 48.6% | 51.4% |
|    | 11    | 11  | 11   | 100 nM | 20.0% | 80.0% |
| 10 | 11    | 11  | 11   | 200 nM | 7.9%  | 92.1% |
|    | 16923 | 29  | STOP | 25 nM  | 79.9% | 20.1% |
|    | II    | *** | 11   | 50 nM  | 69.9% | 30.1% |
|    | 11    | 11  | n    | 100 nM | 56.0% | 44.0% |
|    | 11    | 11  | 11   | 200 nM | 44.5% | 55.5% |

#### 15 EXAMPLE 6: Additional Human TNF- $\alpha$ Antisense Oligonucleotide Sequences

A second screening of human TNF- $\alpha$  antisense oligonucleotides was performed. Oligonucleotides were designed specifically against specific regions of the TNF- $\alpha$ 20 gene. A series of oligonucleotides was designed to target introns 1 and 3, and exon 4. Sequences targeting introns 1 or 3 were synthesized as uniformly phosphorothicate oligodeoxynucleotides or mixed phosphorothioate/ phosphodiester chimeric backbone oligonucleotides having 25 variable regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. Sequences targeting exon 4 were synthesized as mixed phosphorothioate/phosphodiester chimeric backbone oligonucleotides having variable regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and 30 deoxynucleotides. The sequences of the chimeric oligonucleotides are shown in Table 9. Sequences of the

uniformly phosphorothicate oligodeoxynucleotides are shown in Table 11.

These oligonucleotides were screened at 50 nM and 200 nM for their ability to inhibit TNF-α protein secretion, 5 essentially as described in Example 2. Results for the chimeric backbone oligonucleotides are shown in Table 10; results for the uniformly phosphorothicate oligodeoxynucleotides are shown in Table 12.

For the chimeric backbone oligonucleotides targeting
10 introns 1 or 3, oligonucleotide 21688 (SED ID NO. 69) gave
60% inhibition or greater. For chimeric backbone
oligonucleotides targeting exon 4, two-thirds of the
oligonucleotides gave nearly 60% inhibition or greater (SEQ
ID NOS. 88, 90, 91, 92, 93, 94, 97, and 98). See Table 10.
15 For the uniformly phosphorothicate oligodeoxynucleotides,
five of nine oligonucleotides targeting intron 3 were
effective in reducing TNF-α expression by nearly 60% or
greater (SEQ ID NOS. 79, 80, 81, 82, and 84). See Table
12.

Oligonucleotides having SEQ ID NO. 91 and SEQ ID NO. 98 were synthesized as a uniformly phosphorothicate oligodeoxynucleotides or mixed phosphorothicate/ phosphodiester chimeric backbone oligonucleotides having variable regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. The sequences and the oligonucleotide chemistries are shown in Table 13. All 2'-MOE cytosines and 2'-deoxy cytosines were 5-methyl-cytosines.

Dose response experiments, as discussed in Example 3, 30 were performed using these oligonucleotides. Included in this experiment were two oligonucleotides targeting intron 1 and two oligonucleotides targeting intron 3. Results are shown in Tables 14 and 15. The oligonucleotides targeting exon 4 with variable regions of 2'-O-methoxyethyl (2'-MOE)

-55-

nucleotides and deoxynucleotides and/or uniformly phosphorothioate or mixed phosphorothioate/phosphodiester were, in general, comparable to the parent compound.

Oligonucleotides targeting introns 1 or 3 having SEQ 5 ID NOs 66, 69 and 80 were effective in reducing TNF- $\alpha$  mRNA levels by greater than 80% and showed a dose response effect with an IC<sub>50</sub> approximately 110 nM. See Tables 14 and 15.

Nucleotide Sequences of TNF- $\alpha$  Chimeric Backbone (deoxy gapped) 2'-0-methoxyethyl

TABLE 9

# Oligonucleotides

| വ  | ISIS<br>NO. | NUCLEOTIDE SEQUENCE<br>(5' -> 3')       | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>1</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|-----------------------------------------|------------------|--------------------------------------------------------|--------------------------|
|    | 21669       | ToGoCoGoTsCsTsCsAsTsTsTsCsCoCoToT       | 50               | 1019-1038                                              | intron 1                 |
|    | 21670       | ToCoCoCoAsTsCsTsCsTsCsCsCsCsToCoToCoT   | 51               | 1039-1058                                              | intron 1                 |
|    | 21671       | ColoGoCoGsCsAsTsCsTsTsTsCsloCoCoCoA     | 52               | 1059-1078                                              | intron 1                 |
|    | 21672       | ToCoToCoTsCsTsCsAsTsCsCsCsTsCsCoCoToAoT | 53               | 1079-1098                                              | intron 1                 |
| 10 | 21673       | COGOTOCOTSTSTSCSTSCSASTSGSTSTOTOTOT     | 54               | 1099-1118                                              | intron 1                 |
|    | 21674       | CoAoCoAoTsCsTsCsTsCsTsGsCsAoToCoCoC     | 55               | 1119-1138                                              | intron 1                 |
|    | 21675       | CoToCoToCsTsTsCsCsCsAsTsCsTsCoToToGoC   | 56               | 1139-1158                                              | intron 1                 |
|    | 21676       | GoToCoToCsTsCsAsTsCsTsTsTsCsCoToToCoT   | 57               | 1159-1178                                              | intron 1                 |
|    | 21677       | ToToCoCoAsTsGsTsGsCsCsAsGsAsCsAoToCoCoT | 28               | 1179-1198                                              | intron 1                 |
| 15 | 21678       | AoToAoCoAsCsAsCsTsTsAsGsTsGsAsGoCoAoCoC | 59               | 1199-1218                                              | intron 1                 |
|    | 21679       | ToToCoAoTsTsCsAsTsTsCsAsCoToCoC         | 09               | 1219-1238                                              | intron 1                 |
|    | 21680       | ToAoToAoTsCsTsGsCsTsTsGsTsTsCsAoToToCoA | 61               | 1239-1258                                              | intron 1                 |
|    | 21681       | CotoGotoCstsCsAstsAstsCststsAototoa     | 62               | 1259-1278                                              | intron 1                 |

| 21682 | ToCoToCoTsTsCsTsCsAsCsAsCsCsCoAoCoAoT   | 63  | 1279-1298 | intron 1 |
|-------|-----------------------------------------|-----|-----------|----------|
| 21683 | CoAoCoToTsGsTsTsTsCsTsTsCsCsCsCoCoAoToC | 64  | 1299-1318 | intron 1 |
| 21684 | CoToCoAoCsCsAsTsCsTsTsAsTsTsCoAoToAoT   | 65  | 1319-1338 | intron 1 |
| 21685 | AoToAoToTsTsCsCsCsCsTsTsCsTsToCoToGoT   | 99  | 1339-1358 | intron 1 |
| 21686 | CoAoToCoTsCsTsCsCsTsTsAsGsCoToGoToC     | 29  | 1359-1378 | intron 1 |
| 21687 | ToCoToToCsTsCsTsCsTsTsAsTsCsToCoCoC     | 89  | 1379-1398 | intron 1 |
| 21688 | GoToGoToGsCsCsAsGsAsCsAsCsCsCsToAoToCoT | 69  | 1399-1418 | intron 1 |
| 21689 | ToCoToToTsCsCsCsTsGsAsGsTsGsTsCoToToCoT | 70  | 1419-1438 | intron 1 |
| 21690 | AoCoCoToTsCsCsAsGsCsAsTsTsCsAsAoCoAoGoC | 71  | 1439-1458 | intron 1 |
| 21691 | CoToCoCoAsTsTsCsAsTsCsTsGsTsGsToAoToToC | 72  | 1459-1478 | intron 1 |
| 21692 | ToGoAoGoGsTsGsTsGsGsTsTsTsToCoToCoT     | 73  | 1479-1498 | intron 1 |
| 21693 | AoCoAoCoAsTsCsCsTsCsAsGsAsGsCsToCoToToA | 74  | 1871-1890 | intron 3 |
| 21694 | CoToAoGoCsCsCsTsCsAsAsGsTsTsCoCoAoAoG   | 75  | 1891-1910 | intron 3 |
| 21695 | CoGoGoCsTsTsCsAsAsTsCsCsCsCsAoAoAoToC   | 92  | 1911-1930 | intron 3 |
| 21696 | AoAoGoToTsCsTsGsCsCsTsAsCsCsAsToCoAoGoC | 7.7 | 1931-1950 | intron 3 |
| 21697 | GoToCoCoTsTsCsAsCsAsTsTsGsToCoToCoC     | 78  | 1951-1970 | intron 3 |
| 21698 | CoCoToToCsCsCsTsTsGsAsGsCsTsCsAoGoCoGoA | 79  | 1971-1990 | intron 3 |
| 21699 | GoGoCoCoTsGsTsGsTsGsTsTsCsCsToCoCoAoC   | 80  | 1991-2010 | intron 3 |

Ŋ

exon 4

2401-2420

96

COAOGOGOGSCSTSCSTSTSGSASTSGSGOCOAOGOA

| exon 4   | 2421-2440 | 95 | CoCoToCoTsGsGsGsGsTsCsTsCsCsCsToCoToGoG | 21729 | 15 |
|----------|-----------|----|-----------------------------------------|-------|----|
| exon 4   | 2441-2460 | 94 | CoCoAoGoGsGsCsTsTsGsGsCsCsTsCsAoGoCoCoC | 21728 |    |
| exon 4   | 2461-2480 | 93 | CoCoCoAoGsAsTsAsGsAsTsGsGsGsCsToCoAoToA | 21727 |    |
| exon 4   | 2481-2500 | 92 | ToCoToCoCsAsGsCsTsGsGsAsAsGsAsCoCoCoT   | 21726 |    |
| exon 4   | 2501-2520 | 91 | AoGoCoGoCsTsGsAsGsTsCsGsGsTsCsAoCoCoCoT | 21725 |    |
| exon 4   | 2521-2540 | 06 | ToAoGoToCsGsGsCsCsGsAsTsTsGsAoToCoToC   | 21724 | 10 |
| exon 4   | 2541-2560 | 89 | CoaogoaoCsTsCsGsGsCsAsAsAsGsTsCoGoaoGoa | 21723 |    |
| exon 4   | 2561-2580 | 88 | GOAOTOCOCSCSASASASGSTSASGSASCSCOTOGOCOC | 21722 |    |
| intron 3 | 2131-2150 | 87 | AoGoAoGoGsAsGsAsGsTsCsAsGsTsGsToGoGoCoC | 21706 |    |
| intron 3 | 2111-2130 | 98 | AoToGoToCsGsGsTsTsCsAsCsTsCsTsCoCoAoCoA | 21705 |    |
| intron 3 | 2091-2110 | 85 | ToCoCoToGsGsCsCsCsTsCsGsAsGsCsToCoToGoC | 21704 | Ŋ  |
| intron 3 | 2071-2090 | 84 | CoCoAoCoCsCsAsCsAsTsCsCsGsGsToToCoCoT   | 21703 |    |
| intron 3 | 2051-2070 | 83 | GoToCoCoTsCsTsCsTsGsTsCsTsGsTsCoAoToCoC | 21702 |    |
| intron 3 | 2031-2050 | 82 | ColoColoIsCsCsCsAsCsCsTsGsGsCsColoGol   | 21701 |    |
| intron 3 | 2011-2030 | 81 | CoGOTOTOCSTSGSASGSTSASTSCSCSCSAOCOTOAOA | 21700 |    |

|        |           |     |                                               | •     |
|--------|-----------|-----|-----------------------------------------------|-------|
| exon 4 | 2341-2360 | 66  | 21733 CotoGoAotsGsGsTsGsTsGsGsGsTsGsAoGoGoAoG | 21733 |
| exon 4 | 2361-2380 | 86  | 21732 Gogotoaogsgsasgsascsgsgscsgsastogocogog | 21732 |
| exon 4 | 2381-2400 | 1.6 | Z1/31 GOAOGOGOASGSGSTSTSGSASCSCSTSTSGOGOTOCOT | 21/31 |

All 2'methoxyethoxy cytidines and 2'-deoxycytidines are 5-methyl-cytidines; "s" linkages are phosphorothioate linkages, "o" linkages are phosphodiester linkages.  $^{1}$  Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). വ

<sup>2</sup> Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

-60~

TABLE 10 Dose Response of PMA-Induced neoHK Cells to Chimeric Backbone (deoxy gapped) 2'-O-methoxyethyl TNF- $\alpha$  Antisense Oligonucleotides

| 5  | isis #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % protein<br>Expression | -               |
|----|---------|------------------|--------------------|--------|-------------------------|-----------------|
|    | induced |                  |                    |        | 100%                    |                 |
|    | 14834   | 29               | STOP               | 50 nM  | 76%                     | 24%             |
|    | tī      | 11               | 11                 | 200 nM | 16%                     | 84%             |
|    | 21669   | 50               | intron 1           | 50 nM  | 134%                    |                 |
| 10 | 11      | 11               | 11                 | 200 nM | 114%                    |                 |
|    | 21670   | 51               | intron 1           | 50 nM  | 122%                    |                 |
|    | II      | 11               | 11                 | 200 nM | 101%                    | . <del></del> - |
|    | 21671   | 52               | intron 1           | 50 nM  | 90%                     | 10%             |
|    | 11      | 11               | 11                 | 200 nM | 58%                     | 42%             |
| 15 | 21672   | 53               | intron 1           | 50 nM  | 122%                    |                 |
|    | 11      | 11               | 11                 | 200 nM | 131%                    |                 |
|    | 21673   | 54               | intron 1           | 50 nM  | 102%                    |                 |
|    | II .    | 11               | 11                 | 200 nM | 110%                    |                 |
|    | 21674   | 55               | intron 1           | 50 nM  | 111%                    |                 |
| 20 | II      | 11               | Ħ                  | 200 nM | 96%                     | 4%              |
|    | 21675   | 56               | intron 1           | 50 nM  | 114%                    |                 |
|    | 11      | 11               | Ħ                  | 200 nM | 99%                     | 1%              |
|    | 21676   | 57               | intron 1           | 50 nM  | 107%                    |                 |
|    | II      | 11               | 11                 | 200 nM | 96%                     | 4%              |
| 25 | 21677   | 58               | intron 1           | 50 nM  | 86%                     | 14%             |
|    | 11      | 11               | Ŧf                 | 200 nM | 95%                     | 5%              |
|    | 21678   | 59               | intron 1           | 50 nM  | 106%                    |                 |
|    | II      | "                | 11                 | 200 nM | 107%                    |                 |
|    | 21679   | 60               | intron 1           | 50 nM  | 75%                     | 25%             |
| 30 | II      | n .              | tt                 | 200 nM | 73%                     | 27%             |

-61-

|    | 21680 | 61         | intron 1 | 50 nM  | 76%  | 24% |
|----|-------|------------|----------|--------|------|-----|
|    | 11    | ff         | "        | 200 nM | 80%  | 20% |
|    | 21681 | 62         | intron 1 | 50 nM  | 79%  | 21% |
|    | 11    | "          | II       | 200 nM | 82%  | 18% |
| 5  | 21682 | 63         | intron 1 | 50 nM  | 102% |     |
|    | 11    | **         | II       | 200 nM | 88%  | 12% |
|    | 21683 | 64         | intron 1 | 50 nM  | 80%  | 20% |
|    | II    | 11         | 11       | 200 nM | 66%  | 34% |
|    | 21684 | 65         | intron 1 | 50 nM  | 91%  | 9%  |
| 10 | 11    | II .       | II       | 200 nM | 69%  | 31% |
|    | 21685 | 66         | intron 1 | 50 nM  | 98%  | 2%  |
|    | 11    | 11         | 11       | 200 nM | 90%  | 10% |
|    | 21686 | 67         | intron 1 | 50 nM  | 97%  | 3%  |
|    | II    | 11         | 11       | 200 nM | 72%  | 28% |
| 15 | 21687 | 68         | intron 1 | 50 nM  | 103% |     |
|    | tt    | 11         | "        | 200 nM | 64%  | 36% |
|    | 21688 | 69         | intron 1 | 50 nM  | 87%  | 13% |
|    | tt    | 11         | 11       | 200 nM | 40%  | 60% |
|    | 21689 | 70         | intron 1 | 50 nM  | 78%  | 22% |
| 20 | "     | 11         | 11       | 200 nM | 74%  | 26% |
|    | 21690 | 71         | intron 1 | 50 nM  | 84%  | 16% |
|    | 11    | 11         | II       | 200 nM | 80%  | 20% |
|    | 21691 | 72         | intron 1 | 50 nM  | 86%  | 14% |
|    | II    | "          | 11       | 200 nM | 75%  | 25% |
| 25 | 21692 | <b>7</b> 3 | intron 1 | 50 nM  | 85%  | 15% |
|    | 11    | II .       | 11       | 200 nM | 61%  | 39% |
|    | 21693 | 74         | intron 3 | 50 nM  | 81%  | 19% |
|    | 11    | 11         | II       | 200 nM | 83%  | 17% |
|    | 21694 | 75         | intron 3 | 50 nM  | 99%  | 1%  |
| 30 | 11 .  | 11         | II       | 200 nM | 56%  | 44% |
|    | 21695 | 76         | intron 3 | 50 nM  | 87%  | 13% |
|    | ti .  | 11         | Ħ        | 200 nM | 84%  | 16% |

-62-

|    |       |     |          | 02     |      |     |
|----|-------|-----|----------|--------|------|-----|
|    | 21696 | 77  | intron 3 | 50 nM  | 103% |     |
|    | 11    | 11  | 11       | 200 nM | 86%  | 14% |
|    | 21697 | 78  | intron 3 | 50 nM  | 99%  | 1%  |
|    | II    | 11  | 11       | 200 nM | 52%  | 48% |
| 5  | 21698 | 79  | intron 3 | 50 nM  | 96%  | 4%  |
|    | 11    | **  | H        | 200 nM | 47%  | 53% |
|    | 21699 | 80  | intron 3 | 50 nM  | 73%  | 27% |
|    | 11    | 11  | II       | 200 nM | 84%  | 16% |
|    | 21700 | 81  | intron 3 | 50 nM  | 80%  | 20% |
| 10 | II.   | ti. | n        | 200 nM | 53%  | 47% |
|    | 21701 | 82  | intron 3 | 50 nM  | 94%  | 6%  |
|    | n     | 11  | "        | 200 nM | 56%  | 44% |
|    | 21702 | 83  | intron 3 | 50 nM  | 86%  | 14% |
|    | 11    | 11  | "        | 200 nM | 97%  | 3%  |
| 15 | 21703 | 84  | intron 3 | 50 nM  | 88%  | 12% |
|    | 11    | II  | 11       | 200 nM | 74%  | 26% |
|    | 21704 | 85  | intron 3 | 50 nM  | 69%  | 31% |
|    | 11    | 11  | u        | 200 nM | 65%  | 35% |
|    | 21705 | 86  | intron 3 | 50 nM  | 92%  | 8%  |
| 20 | 11    | 11  | п        | 200 nM | 77%  | 23% |
|    | 21706 | 87  | intron 3 | 50 nM  | 95%  | 5%  |
|    | 11    | II  | n        | 200 nM | 82%  | 18% |
|    | 21722 | 88  | exon 4   | 50 nM  | 81%  | 19% |
|    | II    | 11  | 11       | 200 nM | 41%  | 59% |
| 25 | 21723 | 89  | exon 4   | 50 nM  | 87%  | 13% |
|    | 11    | 11  | II .     | 200 nM | 74%  | 26% |
|    | 21724 | 90  | exon 4   | 50 nM  | 68%  | 32% |
|    | 11    | 11  | 11       | 200 nM | 33%  | 67% |
|    | 21725 | 91  | exon 4   | 50 nM  | 55%  | 45% |
| 30 | 11    | 11  | II       | 200 nM | 30%  | 70% |
|    | 21726 | 92  | exon 4   | 50 nM  | 72%  | 28% |
|    | 11    | 11  | 11       | 200 nM | 40%  | 60% |

| WO 00/20645 | PCT/US99/23205 |
|-------------|----------------|
| WO 00/20645 | PCT/US99/23205 |

|    |       |    |        | -63-   |     |     |
|----|-------|----|--------|--------|-----|-----|
|    | 21727 | 93 | exon 4 | 50 nM  | 67% | 33% |
|    | Ħ .   | 11 | "      | 200 nM | 40% | 60% |
|    | 21728 | 94 | exon 4 | 50 nM  | 62% | 38% |
|    | 11    | 11 | 11     | 200 nM | 41% | 59% |
| 5  | 21729 | 95 | exon 4 | 50 nM  | 78% | 22% |
|    | 11    | u  | **     | 200 nM | 53% | 47% |
|    | 21730 | 96 | exon 4 | 50 nM  | 68% | 32% |
|    | 11    | 11 | 11     | 200 nM | 48% | 52% |
|    | 21731 | 97 | exon 4 | 50 nM  | 77% | 23% |
| 10 | 11    | 11 | 11     | 200 nM | 41% | 59% |
|    | 21732 | 98 | exon 4 | 50 nM  | 62% | 38% |
|    | II.   | 11 | **     | 200 nM | 28% | 72% |
|    | 21733 | 99 | exon 4 | 50 nM  | 92% | 8%  |
|    | 11    | "  | 11     | 200 nM | 74% | 26% |

Nucleotide Sequences of Additional Human TNF- $\alpha$ Phosphorothioate Oligodeoxynucleotides

TABLE 11

15

|    | ISIS<br>NO. | NUCLEOTIDE SEQUENCE <sup>1</sup> (5' -> 3') | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>2</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|---------------------------------------------|------------------|--------------------------------------------------------|--------------------------|
| 20 | 21804       | TGCGTCTCTCATTTCCCCTT                        | 50               | 1019-1038                                              | intron 1                 |
|    | 21805       | TCCCATCTCTCTCCCTCTCT                        | 51               | 1039-1058                                              | intron 1                 |
|    | 21806       | CAGCGCACATCTTTCACCCA                        | 52               | 1059-1078                                              | intron 1                 |
|    | 21807       | TCTCTCTCATCCCTCCCTAT                        | 53               | 1079-1098                                              | intron 1                 |
|    | 21808       | CGTCTTTCTCCATGTTTTTT                        | 54               | 1099-1118                                              | intron 1                 |
| 25 | 21809       | CACATCTCTTTCTGCATCCC                        | 55               | 1119-1138                                              | intron 1                 |
|    | 21810       | CTCTCTTCCCCATCTCTTGC                        | 56               | 1139-1158                                              | intron 1                 |
|    | 21811       | GTCTCTCCATCTTTCCTTCT                        | 57               | 1159-1178                                              | intron 1                 |
|    | 21812       | TTCCATGTGCCAGACATCCT                        | 58               | 1179-1198                                              | intron 1                 |
|    | 21813       | ATACACACTTAGTGAGCACC                        | 59               | 1199-1218                                              | intron 1                 |
| 30 | 21814       | TTCATTCATTCACTCC                            | 60               | 1219-1238                                              | intron 1                 |

|    | 21815 | TATATCTGCTTGTTCATTCA | 61 | 1239-1258 | intron 1 |
|----|-------|----------------------|----|-----------|----------|
|    | 21816 | CTGTCTCCATATCTTATTTA | 62 | 1259-1278 | intron 1 |
|    | 21817 | TCTCTTCTCACACCCCACAT | 63 | 1279-1298 | intron 1 |
|    | 21818 | CACTTGTTTCTTCCCCCATC | 64 | 1299-1318 | intron 1 |
| 5  | 21819 | CTCACCATCTTTATTCATAT | 65 | 1319-1338 | intron 1 |
|    | 21820 | ATATTTCCCGCTCTTTCTGT | 66 | 1339-1358 | intron 1 |
|    | 21821 | CATCTCTCTCCTTAGCTGTC | 67 | 1359-1378 | intron 1 |
|    | 21822 | TCTTCTCTCCTTATCTCCCC | 68 | 1379-1398 | intron 1 |
|    | 21823 | GTGTGCCAGACACCCTATCT | 69 | 1399-1418 | intron 1 |
| 10 | 21824 | TCTTTCCCTGAGTGTCTTCT | 70 | 1419-1438 | intron 1 |
|    | 21825 | ACCTTCCAGCATTCAACAGC | 71 | 1439-1458 | intron 1 |
|    | 21826 | CTCCATTCATCTGTGTATTC | 72 | 1459-1478 | intron 1 |
|    | 21827 | TGAGGTGTCTGGTTTTCTCT | 73 | 1479-1498 | intron 1 |
|    | 21828 | ACACATCCTCAGAGCTCTTA | 74 | 1871-1890 | intron 3 |
| 15 | 21829 | CTAGCCCTCCAAGTTCCAAG | 75 | 1891-1910 | intron 3 |
|    | 21830 | CGGGCTTCAATCCCCAAATC | 76 | 1911-1930 | intron 3 |
|    | 21831 | AAGTTCTGCCTACCATCAGC | 77 | 1931-1950 | intron 3 |
|    | 21832 | GTCCTTCTCACATTGTCTCC | 78 | 1951-1970 | intron 3 |
|    | 21833 | CCTTCCCTTGAGCTCAGCGA | 79 | 1971-1990 | intron 3 |
| 20 | 21834 | GGCCTGTGCTGTTCCTCCAC | 80 | 1991-2010 | intron 3 |
|    | 21835 | CGTTCTGAGTATCCCACTAA | 81 | 2011-2030 | intron 3 |
|    | 21836 | CACATCCCACCTGGCCATGA | 82 | 2031-2050 | intron 3 |
|    | 21837 | GTCCTCTCTGTCTGTCATCC | 83 | 2051-2070 | intron 3 |
|    | 21838 | CCACCCCACATCCGGTTCCT | 84 | 2071-2090 | intron 3 |
| 25 | 21839 | TCCTGGCCCTCGAGCTCTGC | 85 | 2091-2110 | intron 3 |
|    | 21840 | ATGTCGGTTCACTCTCCACA | 86 | 2111-2130 | intron 3 |
|    | 21841 | AGAGGAGAGTCAGTGTGGCC | 87 | 2131-2150 | intron 3 |

 $<sup>^{1}</sup>$  All "C" residues are 5-methyl-cytosines; all linkages are phosphorothioate linkages.

<sup>30 &</sup>lt;sup>2</sup>Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

|    | ISIS #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % protein<br>Expression |     |
|----|---------|------------------|--------------------|--------|-------------------------|-----|
| 5  | induced |                  |                    | ·      | 100%                    |     |
|    | 14834   | 29               | STOP               | 50 nM  | 80%                     | 20% |
|    | 11      | 11               | "                  | 200 nM | 13%                     | 87% |
|    | 21812   | 58               | intron 1           | 50 nM  | 110%                    |     |
|    | H       | 11               | ıı                 | 200 nM | 193%                    |     |
| 10 | 21833   | 79               | intron 3           | 50 nM  | 88%                     | 12% |
|    | II .    | **               | "                  | 200 nM | 8%                      | 92% |
|    | 21834   | 80               | intron 3           | 50 nM  | 70%                     | 30% |
|    | 11      |                  | 11                 | 200 nM | 18%                     | 82% |
|    | 21835   | 81               | intron 3           | 50 nM  | 106%                    |     |
| 15 | II      | 11               | 11                 | 200 nM | 42%                     | 58% |
|    | 21836   | 82               | intron 3           | 50 nM  | 71%                     | 29% |
|    | 11      | 11               | 11                 | 200 nM | 12%                     | 88% |
|    | 21837   | 83               | intron 3           | 50 nM  | 129%                    |     |
|    | II      | II               | 11                 | 200 nM | 74%                     | 26% |
| 20 | 21838   | 84               | intron 3           | 50 nM  | 85%                     | 15% |
|    | 11      | **               | 11                 | 200 nM | 41%                     | 59% |
|    | 21839   | 85               | intron 3           | 50 nM  | 118%                    |     |
|    | 11      | п                | 11                 | 200 nM | 58%                     | 42% |
|    | 21840   | 86               | intron 3           | 50 nM  | 120%                    |     |
| 25 | "       | 11               | 11                 | 200 nM | 96%                     | 4%  |
|    | 21841   | 87               | intron 3           | 50 nM  | 117%                    |     |
|    | 11      | 11               | 11                 | 200 nM | 78%                     | 22% |

TABLE 13

Nucleotide Sequences of TNF- $\alpha$  Chimeric (deoxy gapped) 2'-0-methoxyethyl Oligonucleotides

|    | ISIS<br>NO. | NUCLEOTIDE SEQUENCE<br>(5' -> 3')       | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>1</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|-----------------------------------------|------------------|--------------------------------------------------------|--------------------------|
| വ  | 21725       | AoGoCoGoCsTsGsAsGsTsCsGsGsTsCsAoCoCoCoT | 91               | 2501-2520                                              | exon 4                   |
|    | 25655       | AsGsCsGsCsTsGsAsGsTsCsGsGsTsCsAsCsCsCsT | =                | <b>1</b> 5                                             | =                        |
|    | 25656       | AsGsCsCsTsGsAsGsTsCsGsGsTsCsAsCsCsCsT   | =                | =                                                      | Ξ                        |
|    | 25660       | AoGoCoGsCsTsGsAsGsTsCsGsGsTsCsAsCoCoCoT | =                | =                                                      | =                        |
|    | 21732       | GoGoToAoGsGsAsGsAsCsGsGsCsGsAsToGoCoGoG | 86               | 2361-2380                                              | exon 4                   |
| 10 | 25657       | GsGsTsAsGsAsGsAsCsGsGsCsGsAsTsGsCsGsG   | =                | =                                                      | =                        |
|    | 25658       | GsGsTsAsGsAsGsAsCsGsGsCsGsAsTsGsCsGsG   | =                | Ξ                                                      | =                        |
|    | 25661       | GoGoToAsGsAsGsAsCsGsGsCsGsAsTsGoCoGoG   | =                | =                                                      | =                        |
|    |             |                                         |                  |                                                        |                          |

66 -

methoxyethoxy cytidines and 2'-deoxycytidines are 5-methyl-cytidines; "s" linkages are All 2'- $^{1}$  Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). phosphorothioate linkages, "o" linkages are phosphodiester linkages. 15

<sup>2</sup> Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

-67-

|    | ISIS #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % protein<br>Expression | % protein<br>Inhibition |
|----|---------|------------------|--------------------|--------|-------------------------|-------------------------|
| 5  | induced |                  |                    |        | 100%                    |                         |
|    | 14834   | 29               | STOP               | 75 nM  | 91.2%                   | 8.8%                    |
|    | 11      | Ħ                | 11                 | 150 nM | 42.0%                   | 58.0%                   |
|    | II      | 11               | II                 | 300 nM | 16.9%                   | 83.1%                   |
|    | 21820   | 66               | intron 1           | 75 nM  | 79.0%                   | 21.0%                   |
| 10 | 11      | 11               | 11                 | 150 nM | 34.5%                   | 65.5%                   |
|    | II      | 11               | II.                | 300 nM | 15.6%                   | 84.4%                   |
|    | 21823   | 69               | intron 1           | 75 nM  | 79.5%                   | 20.5%                   |
|    | II      | 11               | 11                 | 150 nM | 31.8%                   | 68.2%                   |
|    | 11      | 11               | 11                 | 300 nM | 16.2%                   | 83.8%                   |
| 15 | 21725   | 91               | exon 4             | 75 nM  | 74.8%                   | 25.2%                   |
|    | 11      | 11               | 11                 | 150 nM | 58.4%                   | 41.6%                   |
|    | II .    | Ħ                | n                  | 300 nM | 45.2%                   | 54.8%                   |
|    | 25655   | 91               | exon 4             | 75 nM  | 112.0%                  |                         |
|    | TT .    | 11               | tt.                | 150 nM | 55.0%                   | 45.0%                   |
| 20 | IF      | n                | II                 | 300 nM | 39.3%                   | 60.7%                   |
|    | 25656   | 91               | exon 4             | 75 nM  | 108.3%                  |                         |
|    | 11      | 11               | 11                 | 150 nM | 60.7%                   | 39.3%                   |
|    | 11      | 11               | 11                 | 300 nM | 42.8%                   | 57.2%                   |
|    | 25660   | 91               | exon 4             | 75 nM  | 93.2%                   | 6.8%                    |
| 25 | II      | 11               | 11                 | 150 nM | 72.8%                   | 27.2%                   |
|    | II      | 11               | 11                 | 300 nM | 50.3%                   | 49.7%                   |

TABLE 15 Dose Response of 20 Hour PMA-Induced neoHK Cells to TNF- $\alpha$  Antisense Oligonucleotides (ASOs)

|    | ISIS #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % protein<br>Expression | % protein<br>Inhibition |
|----|---------|------------------|--------------------|--------|-------------------------|-------------------------|
| 5  | induced |                  |                    |        | 100%                    |                         |
|    | 14834   | 29               | STOP               | 75 nM  | 44.9%                   | 55.1%                   |
|    | п       | 11               | 11                 | 150 nM | 16.3%                   | 83.7%                   |
|    | 11      | ŧī               | n                  | 300 nM | 2.2%                    | 97.8%                   |
|    | 21834   | 80               | intron 3           | 75 nM  | 102.9%                  |                         |
| 10 | 11      | ff               | 11                 | 150 nM | 24.5%                   | 75.5%                   |
|    | **      | 11               | 11                 | 300 nM | 19.1%                   | 80.9%                   |
|    | 21836   | 82               | intron 3           | 75 nM  | 70.8%                   | 29.2%                   |
|    | 11      | 11               | 11                 | 150 nM | 55.9%                   | 44.1%                   |
|    | II .    | 11               | и                  | 300 nM | 32.7%                   | 67.3%                   |
| 15 | 21732   | 98               | exon 4             | 75 nM  | 42.4%                   | 57.6%                   |
|    | "       | 11               | 11                 | 150 nM | 34.9%                   | 65.1%                   |
|    | 11      | II .             | 11                 | 300 nM | 15.4%                   | 84.6%                   |
|    | 25657   | 98               | exon 4             | 75 nM  | 46.7%                   | 53.3%                   |
|    | II      | 11               | 11                 | 150 nM | 72.0%                   | 28.0%                   |
| 20 | 11      | 11               | 11                 | 300 nM | 50.6%                   | 49.4%                   |
|    | 25658   | 98               | exon 4             | 75 nM  | 83.7%                   | 16.3%                   |
|    | 11      | 11               | 11                 | 150 nM | 56.6%                   | 43.4%                   |
|    | !!      | 11               | 11                 | 300 nM | 36.9%                   | 63.1%                   |
|    | 25661   | 98               | exon 4             | 75 nM  | 54.9%                   | 45.1%                   |
| 25 | 11      | 11               | 11                 | 150 nM | 34.4%                   | 65.6%                   |
|    | 11      | 11               | II                 | 300 nM | 8.6%                    | 91.4%                   |

### EXAMPLE 7: Activity of Fully 2'-MOE Modified TNF- $\alpha$ Antisense Oligonucleotides

A series of antisense oligonucleotides were synthesized targeting the terminal twenty nucleotides of each exon at 5 every exon-intron junction of the TNF- $\alpha$  gene. These oligonucleotides were synthesized as fully 2'-methoxyethoxy modified oligonucleotides. The oligonucleotide sequences are shown in Table 16. Oligonucleotide 12345 (SEQ ID NO. 106) is an antisense oligonucleotide targeted to the human 10 intracellular adhesion molecule-1 (ICAM-1) and was used as an unrelated target control.

The oligonucleotides were screened at 50 nM and 200 nM for their ability to inhibit TNF-α mRNA levels, as described in Example 3. Results are shown in Table 17. Oligonucleotide 15 21794 (SEQ ID NO. 102) showed an effect at both doses, with greater than 75% inhibition at 200 nM.

TABLE 16 Nucleotide Sequences of Human TNF- $\alpha$  Uniform 2'-MOE Oligonucleotides

| 20 | ISIS<br>NO. | NUCLEOTIDE SEQUENCE <sup>1</sup> (5' -> 3') | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>2</sup> | GENE<br>TARGET<br>REGION <sup>3</sup> |
|----|-------------|---------------------------------------------|------------------|--------------------------------------------------------|---------------------------------------|
|    | 21792       | AGGCACTCACCTCTTCCCTC                        | 100              | 0972-0991                                              | E1/I1                                 |
|    | 21793       | CCCTGGGGAACTGTTGGGGA                        | 101              | 1579-1598                                              | I1/E2                                 |
|    | 21794       | AGACACTTACTGACTGCCTG                        | 102              | 1625-1644                                              | E2/I2                                 |
| 25 | 21795       | GAAGATGATCCTGAAGAGGA                        | 103              | 1812-1831                                              | I2/E3                                 |
|    | 21796       | GAGCTCTTACCTACAACATG                        | 104              | 1860-1879                                              | E3/I3                                 |
|    | 21797       | TGAGGGTTTGCTGGAGGGAG                        | 105              | 2161-2180                                              | I3/E4                                 |
|    | 12345       | GATCGCGTCGGACTATGAAG                        | 106              | target con                                             | trol                                  |

<sup>&</sup>lt;sup>1</sup> Emboldened residues are 2'-methoxyethoxy residues, 2'-30 methoxyethoxy cytosine residues are 5-methyl-cytosines; all

-70-

linkages are phosphorothicate linkages.

TABLE 17

Dose Response of neoHK Cells to TNF-α

Antisense 2'-MOE Oligonucleotides

|    | ISIS #         | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % mRNA<br>Expression | % mRNA<br>Inhibition |
|----|----------------|------------------|--------------------|--------|----------------------|----------------------|
|    | induced        |                  |                    |        | 100%                 |                      |
|    | 12345          | 106              | control            | 50 nM  | 121%                 |                      |
|    | 11             | 11               | п                  | 200 nM | 134%                 |                      |
| 15 | 13393          | 49               | control            | 50 nM  | 110%                 |                      |
|    | II             | 11               | 11                 | 200 nM | 112%                 |                      |
|    | 14834          | 29               | STOP               | 50 nM  | 92%                  | 8%                   |
|    | 11             | 11               | f1                 | 200 nM | 17%                  | 83%                  |
|    | 21792          | 100              | E1/I1              | 50 nM  | 105%                 |                      |
| 20 | 11             | 11               | 11                 | 200 nM | 148%                 |                      |
|    | 21793          | 101              | I1/E2              | 50 nM  | 106%                 |                      |
|    | 11             | <b>11</b>        | II                 | 200 nM | 172%                 |                      |
|    | 21794          | 102              | E2/I2              | 50 nM  | 75%                  | 25%                  |
|    | 11             | 11               | 11                 | 200 nM | 23%                  | 77%                  |
| 25 | 21795          | 103              | I2/E3              | 50 nM  | 79%                  | 21%                  |
|    | II             | 11               | II                 | 200 nM | 125%                 |                      |
|    | 21796          | 104              | E3/I3              | 50 nM  | 56%                  | 44%                  |
|    | II             | 11               | n                  | 200 nM | 150%                 |                      |
|    | 21797          | 105              | I3/E4              | 50 nM  | 90%                  | 10%                  |
| 30 | t <del>i</del> | It               | 11                 | 200 nM | 128%                 |                      |

<sup>&</sup>lt;sup>2</sup> Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

<sup>&</sup>lt;sup>3</sup> Each target region is an exon-intron junction and is 5 represented in the form, for example, I1/E2, where I, followed by a number, refers to the intron number and E, followed by a number, refers to the exon number.

#### EXAMPLE 8: Mouse TNF- $\alpha$ Oligonucleotide Sequences

Antisense oligonucleotides were designed to target mouse TNF-α. Target sequence data are from the TNF-α cDNA sequence published by Semon,D. et al. (Nucleic Acids 5 Res. 1987, 15, 9083-9084); Genbank accession number Y00467, provided herein as SEQ ID NO: 107. Oligonucleotides were synthesized primarily as phosphorothicate oligodeoxynucleotides. Oligonucleotide sequences are shown in Table 18. Oligonucleotide 3082 (SEQ ID NO. 141) is an 10 antisense oligodeoxynucleotide targeted to the human intracellular adhesion molecule-1 (ICAM-1) and was used as an unrelated target control. Oligonucleotide 13108 (SEQ ID NO. 142) is an antisense oligodeoxynucleotide targeted to the herpes simplex virus type 1 and was used as an unrelated target control.

P388D1, mouse macrophage cells (obtained from American Type Culture Collection, Manassas, VA) were cultured in RPMI 1640 medium with 15% fetal bovine serum (FBS) (Life Technologies, Rockville, MD).

20 At assay time, cell were at approximately 90% confluency. The cells were incubated in the presence of OPTI-MEM® medium (Life Technologies, Rockville, MD), and the oligonucleotide formulated in LIPOFECTIN® (Life Technologies), a 1:1 (w/w) liposome formulation of the 25 cationic lipid N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride (DOTMA), and dioleoyl phosphotidylethanolamine (DOPE) in membrane filtered water. For an initial screen, the oligonucleotide concentration was 100 nM in 3 μg/ml LIPOFECTIN®. Treatment was for four 30 hours. After treatment, the medium was removed and the cells were further incubated in RPMI medium with 15% FBS and induced with 10 ng/ml LPS. mRNA was analyzed 2 hours post-induction with PMA.

-72-

Total mRNA was isolated using the TOTALLY RNA™ kit (Ambion, Austin, TX), separated on a 1% agarose gel, transferred to HYBOND™-N+ membrane (Amersham, Arlington Heights, IL), a positively charged nylon membrane, and 5 probed. A TNF- $\alpha$  probe consisted of the 502 bp EcoRI-HindIII fragment from BBG 56 (R&D Systems, Minneapolis, MN), a plasmid containing mouse TNF- $\alpha$  cDNA. A glyceraldehyde 3-phosphate dehydrogenase (G3PDH) probe consisted of the 1.06 kb HindIII fragment from pHcGAP 10 (American Type Culture Collection, Manassas, VA), a plasmid containing human G3PDH cDNA. The fragments were purified from low-melting temperature agarose, as described in Maniatis, T., et al., Molecular Cloning: A Laboratory Manual, 1989 and labeled with REDIVUE™ 32P-dCTP (Amersham 15 Pharmacia Biotech, Piscataway, NJ) and PRIME-A-GENE® labelling kit (Promega, Madison, WI). mRNA was quantitated by a PhosphoImager (Molecular Dynamics, Sunnyvale, CA).

Secreted TNF- $\alpha$  protein levels were measured using a mouse TNF- $\alpha$  ELISA kit (R&D Systems, Minneapolis, MN or 20 Genzyme, Cambridge, MA).

TABLE 18
Nucleotide Sequences of Mouse TNF-α Phosphorothioate
Oligodeoxynucleotides

| 25 | ISIS<br>NO. | NUCLEOTIDE SEQUENCE <sup>1</sup> (5' -> 3') | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>2</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|---------------------------------------------|------------------|--------------------------------------------------------|--------------------------|
|    | 14846       | GAGCTTCTGCTGGCTGGCTG                        | 108              | 4351-4370                                              | 5'-UTR                   |
|    | 14847       | CCTTGCTGTCCTCGCTGAGG                        | 109              | 4371-4390                                              | 5'-UTR                   |
|    | 14848       | TCATGGTGTCTTTTCTGGAG                        | 110              | 4511-4530                                              | AUG                      |
|    | 14849       | CTTTCTGTGCTCATGGTGTC                        | 111              | 4521-4540                                              | AUG                      |
| 30 | 14850       | GCGGATCATGCTTTCTGTGC                        | 112              | 4531-4550                                              | coding                   |
|    | 14851       | GGGAGGCCATTTGGGAACTT                        | 113              | 5225-5244                                              | junction                 |
|    | 14852       | CGAATTTTGAGAAGATGATC                        | 114              | 5457-5476                                              | junction                 |

<del>-</del>73-

|    | 14846 | GAGCTTCTGCTGGCTGGCTG                                     | 108 | 4351-4370 | 5'-UTR   |
|----|-------|----------------------------------------------------------|-----|-----------|----------|
|    | 14853 | CTCCTCCACTTGGTGGTTTG                                     | 115 | 5799-5818 | junction |
|    | 14854 | CCTGAGATCTTATCCAGCCT                                     | 116 | 6540-6559 | 3'-UTR   |
|    | 14855 | CAATTACAGTCACGGCTCCC                                     | 117 | 6927-6946 | 3'-UTR   |
|    | 15921 | CCCTTCATTCTCAAGGCACA                                     | 118 | 5521-5540 | junction |
| 5  | 15922 | CACCCTCAACCCGCCCCCC                                      | 119 | 5551-5570 | intron   |
|    | 15923 | AGAGCTCTGTCTTTTCTCAG                                     | 120 | 5581-5600 | intron   |
|    | 15924 | CACTGCTCTGACTCTCACGT                                     | 121 | 5611-5630 | intron   |
|    | 15925 | ATGAGGTCCCGGGTGGCCCC                                     | 122 | 5651-5670 | intron   |
|    | 15926 | CACCCTCTGTCTTTCCACAT                                     | 123 | 5681-5700 | intron   |
| 10 | 15927 | CTCCACATCCTGAGCCTCAG                                     | 124 | 5731-5750 | intron   |
|    | 15928 | ATTGAGTCAGTGTCACCCTC                                     | 125 | 5761-5780 | intron   |
|    | 15929 | GCTGGCTCAGCCACTCCAGC                                     | 126 | 5821-5840 | coding   |
|    | 15930 | TCTTTGAGATCCATGCCGTT                                     | 127 | 5861-5880 | coding   |
|    | 15931 | AACCCATCGGCTGGCACCAC                                     | 128 | 5891-5910 | coding   |
| 15 | 15932 | GTTTGAGCTCAGCCCCCTCA                                     | 129 | 6061-6080 | coding   |
|    | 15933 | CTCCTCCCAGGTATATGGGC                                     | 130 | 6091-6110 | coding   |
|    | 15934 | TGAGTTGGTCCCCCTTCTCC                                     | 131 | 6121-6140 | coding   |
|    | 15935 | CAAAGTAGACCTGCCCGGAC                                     | 132 | 6181-6200 | coding   |
|    | 15936 | ACACCCATTCCCTTCACAGA                                     | 133 | 6211-6230 | STOP     |
| 20 | 15937 | CATAATCCCCTTTCTAAGTT                                     | 134 | 6321-6340 | 3'-UTR   |
|    | 15938 | CACAGAGTTGGACTCTGAGC                                     | 135 | 6341-6360 | 3'-UTR   |
|    | 15939 | CAGCATCTTGTGTTTCTGAG                                     | 136 | 6381-6400 | 3'-UTR   |
|    | 15940 | CACAGTCCAGGTCACTGTCC                                     | 137 | 6401-6420 | 3'-UTR   |
|    | 15941 | TGATGGTGGTGCATGAGAGG                                     | 138 | 6423-6442 | 3'-UTR   |
| 25 | 15942 | GTGAATTCGGAAAGCCCATT                                     | 139 | 6451-6470 | 3'-UTR   |
|    | 15943 | CCTGACCACTCTCCCTTTGC                                     | 140 | 6501-6520 | 3'-UTR   |
|    | 3082  | TG <u>C</u> AT <u>CCCCC</u> AGG <u>CC</u> A <u>CC</u> AT | 141 | target co | ontrol   |
|    | 13108 | GCCGAGGTCCATGTCGTACG<br>C                                | 142 | target co | ontrol   |

<sup>&</sup>lt;sup>1</sup> All "C" residues are 5-methyl-cytosines except underlined

PCT/US99/23205

" $\underline{C}$ " residues are unmodified cytosines; all linkages are phosphorothicate linkages.

<sup>2</sup>Co-ordinates from Genbank Accession No. Y00467, locus name "MMTNFAB", SEO ID NO. 107.

5 Results are shown in Table 19. Oligonucleotides 14853 (SEQ ID NO. 115), 14854 (SEQ ID NO. 116), 14855 (SEQ ID NO. 117), 15921 (SEQ ID NO. 118), 15923 (SEQ ID NO. 120), 15924 (SEQ ID NO. 121), 15925 (SEQ ID NO. 122), 15926 (SEQ ID NO. 123), 15929 (SEQ ID NO. 126), 15930 (SEQ ID NO. 127), 15931 (SEQ ID NO. 128), 15932 (SEQ ID NO. 129), 15934 (SEQ ID NO. 131), 15935 (SEQ ID NO. 132), 15936 (SEQ ID NO. 133), 15937 (SEQ ID NO. 134), 15939 (SEQ ID NO. 136), 15940 (SEQ ID NO. 137), 15942 (SEQ ID NO. 139), and 15943 (SEQ ID NO. 140) gave better than 50% inhibition. Oligonucleotides 15931 (SEQ ID NO. 128), 15932 (SEQ ID NO. 129), 15934 (SEQ ID NO. 131), and 15943 (SEQ ID NO. 140) gave 75% inhibition or

TABLE 19
Inhibition of Mouse TNF-α mRNA expression in P388D1 Cells
by Phosphorothioate Oligodeoxynucleotides

better.

|    | ISIS<br>No: | SEQ<br>ID<br>NO: | GENE<br>TARGET<br>REGION | % mRNA<br>EXPRESSION | % mRNA<br>INHIBITION |
|----|-------------|------------------|--------------------------|----------------------|----------------------|
|    | induced     |                  |                          | 100%                 | 0%                   |
|    | 3082        | 141              | control                  | 129%                 |                      |
| 25 | 13664       | 42               | control                  | 85%                  | 15%                  |
|    | 14846       | 108              | 5'-UTR                   | 84%                  | 16%                  |
|    | 14847       | 109              | 5'-UTR                   | 88%                  | 12%                  |
|    | 14848       | 110              | AUG                      | 60%                  | 40%                  |
|    | 14849       | 111              | AUG                      | 75%                  | 25%                  |
| 30 | 14850       | 112              | coding                   | 67%                  | 33%                  |
|    | 14851       | 113              | junction                 | 62%                  | 38%                  |
|    | 14852       | 114              | junction                 | 69%                  | 31%                  |
|    | 14853       | 115              | junction                 | 49%                  | 51%                  |

|    | 14854 | 116 | 3'-UTR   | 31% | 69% |
|----|-------|-----|----------|-----|-----|
|    | 14855 | 117 | 3'-UTR   | 39% | 61% |
|    | 15921 | 118 | junction | 42% | 58% |
|    | 15922 | 119 | intron   | 64% | 36% |
| 5  | 15923 | 120 | intron   | 31% | 69% |
|    | 15924 | 121 | intron   | 29% | 71% |
|    | 15925 | 122 | intron   | 30% | 70% |
|    | 15926 | 123 | intron   | 29% | 71% |
|    | 15928 | 125 | intron   | 59% | 41% |
| 10 | 15929 | 126 | coding   | 38% | 62% |
|    | 15930 | 127 | coding   | 43% | 57% |
|    | 15931 | 128 | coding   | 23% | 77% |
|    | 15932 | 129 | coding   | 25% | 75% |
|    | 15933 | 130 | coding   | 52% | 48% |
| 15 | 15934 | 131 | coding   | 21% | 79% |
|    | 15935 | 132 | coding   | 39% | 61% |
|    | 15936 | 133 | STOP     | 35% | 65% |
|    | 15937 | 134 | 3'-UTR   | 45% | 55% |
|    | 15938 | 135 | 3'-UTR   | 76% | 24% |
| 20 | 15939 | 136 | 3'-UTR   | 33% | 67% |
|    | 15940 | 137 | 3'-UTR   | 38% | 62% |
|    | 15941 | 138 | 3'-UTR   | 54% | 46% |
|    | 15942 | 139 | 3'-UTR   | 42% | 58% |
|    | 15943 | 140 | 3'-UTR   | 25% | 75% |
|    |       |     |          |     |     |

# 25 EXAMPLE 9: Dose response of antisense phosphorothiaote oligodeoxynucleotide effects on mouse TNF- $\alpha$ mRNA levels in P388D1 cells

Four of the more active oligonucleotides from the initial screen were chosen for dose response assays. These 30 include oligonucleotides 15924 (SEQ ID NO. 121), 15931 (SEQ ID NO. 128), 15934 (SEQ ID NO. 131) and 15943 (SEQ ID NO.

140). P388D1 cells were grown, treated and processed as described in Example 8. LIPOFECTIN® was added at a ratio of 3  $\mu$ g/ml per 100 nM of oligonucleotide. The control included LIPOFECTIN® at a concentration of 6  $\mu$ g/ml.

Results are shown in Table 20. Each oligonucleotide tested showed a dose response effect with maximal inhibition about 70% or greater and  $IC_{50}$  values less than 50 nM.

TABLE 20

Dose Response of LPS-Induced P388D1 Cells to TNF- $\alpha$ 10 Antisense Phosphorothioate Oligodeoxynucleotides (ASOs)

|    | ISIS #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % mRNA<br>Expression | % mRNA<br>Inhibition |
|----|---------|------------------|--------------------|--------|----------------------|----------------------|
|    | induced |                  |                    |        | 100%                 | <del>-</del>         |
|    | 13108   | 142              | control            | 25 nM  | 68%                  | 32%                  |
|    | 11      | 17               | II .               | 50 nM  | 71%                  | 29%                  |
| 15 | 11      | 11               | п                  | 100 nM | 64%                  | 36%                  |
|    | ***     | **               | 11                 | 200 nM | 75%                  | 25%                  |
|    | 15924   | 121              | intron             | 25 nM  | 63%                  | 37%                  |
|    | 11      | 11               | 11                 | 50 nM  | 49%                  | 51%                  |
|    | n       | 11               | 11                 | 100 nM | 36%                  | 64%                  |
| 20 | II .    | If               | 11                 | 200 nM | 31%                  | 69%                  |
|    | 15931   | 128              | coding             | 25 nM  | 42%                  | 58%                  |
|    | 11      | 11               | "                  | 50 nM  | 30%                  | 70%                  |
|    | 11      | **               | 11                 | 100 nM | 17%                  | 83%                  |
|    | 11      | 11               | 11                 | 200 nM | 16%                  | 84%                  |
| 25 | 15934   | 131              | coding             | 25 nM  | 37%                  | 63%                  |
|    | II      | 11               | 11                 | 50 nM  | 26%                  | 74%                  |
|    | 11      | 17               | 11                 | 100 nM | 13%                  | 87%                  |
|    | 11      | Ħ                | ıı .               | 200 nM | 13%                  | 87%                  |
|    | 15943   | 140              | 3'-UTR             | 25 nM  | 38%                  | 62%                  |
| 30 | 11      | **               | II.                | 50 nM  | 38%                  | 62%                  |

-77-

| !! | II . | ti. | 100 nM | 16% | 84% |
|----|------|-----|--------|-----|-----|
| *1 | 11   | **  | 200 nM | 16% | 84% |

EXAMPLE 10: Design and Testing of 2'-0-methoxyethyl (deoxy gapped) TNF- $\alpha$  Antisense Oligonucleotides on TNF- $\alpha$  Levels in P388D1 Cells

Oligonucleotides having SEQ ID NO: 128, SEQ ID NO: 131, and SEQ ID NO: 140 were synthesized as uniformly phosphorothicate oligodeoxynucleotides or mixed phosphorothicate/phosphodiester chimeric oligonucleotides 10 having variable regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. The sequences and the oligonucleotide chemistries are shown in Table 21. All 2'-MOE cytosines were 5-methyl-cytosines.

Oligonucleotides were screened as described in Example 8. Results are shown in Table 22. All the oligonucleotides tested, except oligonucleotide 16817 (SEQ ID NO. 140) showed 44% or greater inhibition of TNF-α mRNA expression. Oligonucleotides 16805 (SEQ ID NO: 131), 16813 (SEQ ID NO: 140), and 16814 (SEQ ID NO: 140) showed greater than 70% inhibition.

TABLE 21

Nucleotide Sequences of Mouse 2'-0-methoxyethyl (deoxy gapped) TNF- $\alpha$  Oligonucleotides

|    | 101   | NICLEOTIDE SECTENCE1                      | SEQ | TARGET GENE               | GENE   |
|----|-------|-------------------------------------------|-----|---------------------------|--------|
|    | NO.   | (5' -> 3')                                | NO: | CO-ORDINATES <sup>2</sup> | REGION |
| Ŋ  | 15931 | AsAsCsCsCsAsTsCsGsGsCsTsGsGsCsAsCsCsAsC   | 128 | 5891-5910                 | coding |
|    | 16797 | AoAoCoCsCsAsTsCsGsGsCsTsGsGsCsAsCoCoAoC   | =   | 5891-5910                 | coding |
|    | 16798 | AsAsCsCsAsTsCsGsGsCsTsGsGsCsAsCsAsC       | =   | 5891-5910                 | coding |
|    | 16799 | AoAoCoCoCsAsTsCsGsGsCsTsGsGsCsAoCoCoAoC   | Ξ   | 5891-5910                 | coding |
|    | 16800 | AsAsCsCsCsAsTsCsGsGsCsTsGsGsCsAsCsCsAsC   | =   | 5891-5910                 | coding |
| 10 | 16801 | AoAoCoCoCoAoToCoGsGsCsTsGsGsCsAsCsCsAsC   | =   | 5891-5910                 | coding |
|    | 16802 | AsAsCsCsCsAsTsCsGsGsCsTsGsGsCsAsCsCsAsC   | =   | 5891-5910                 | coding |
|    | 16803 | Asascscscsastscsgsgscs <b>togogocoaoc</b> | =   | 5891-5910                 | coding |
|    | 16804 | Asascscscsastscsgscstsgsgscsascsasc       | =   | 5891-5910                 | coding |
|    | 15934 | TsGsAsGsTsTsGsGsTsCsCsCsCsTsTsCsTsCsC     | 131 | 6121-6140                 | coding |
| 15 | 16805 | ToGoAoGsTsTsGsGsTsCsCsCsCsTsTsCoToCoC     | =   | 6121-6140                 | coding |
|    | 16806 | TsGsAsGsTsTsGsGsTsCsCsCsCsTsTsCsTsCsC     | =   | 6121-6140                 | coding |
|    | 16807 | ToGoAoGoTsTsGsGsTsCsCsCsCsTsToCoToCoC     | ±   | 6121-6140                 | coding |
|    | 16808 | TsGsAsGsTsTsGsGsTsCsCsCsCsTsTsCsTsCsC     | =   | 6121-6140                 | coding |

- 78 -

<sup>2</sup>Co-ordinates from Genbank Accession No. Y00467, locus name "MMTNFAB", SEQ ID NO. 107.

|        | inkages.    | "o" linkages are phosphodiester linkages. | ages are ph  | o" linkages are phosphodiester linkages, "o" lin                                            | "o" li  |    |
|--------|-------------|-------------------------------------------|--------------|---------------------------------------------------------------------------------------------|---------|----|
| sages, | hioate linl | are phosphorot                            | " linkages   | methoxyethoxy cytidines are 5-methyl-cytidines; "s" linkages are phosphorothioate linkages, | methox  | 15 |
|        | All 2'-     | e 2'-deoxy-).                             | s (others ar | Emboldened residues are 2'-methoxyethoxy residues (others are                               | 1 Embol |    |
|        | 3'-UTR      | 6501-6520                                 | =            | CSCSTSGSASCSASCSTSCSTSCSCSTSTSTSGSC                                                         | 16820   |    |
|        | 3'-UTR      | 6501-6520                                 | =            | CsCsTsGsAsCsCsAsCsTsCsToCoCoCoToToGoC                                                       | 16819   |    |
|        | 3'-UTR      | 6501-6520                                 | =            | CsCsTsGsAsCsCsTsCsTsCsTsCsTsTsGsC                                                           | 16818   |    |
| '9 –   | 3'-UTR      | 6501-6520                                 | =            | CoCoToGoAoCoCoTsCsTsCsTsCsTsTsTsGsC                                                         | 16817   | 10 |
| - 7    | 3'-UTR      | 6501-6520                                 | =            | CsCsTsGsAsCsCsAsCsTsCsTsCsCsTsTsGsC                                                         | 16816   |    |
|        | 3'-UTR      | 6501-6520                                 | =            | CoCoToGoAsCsCsAsCsTsCsTsCsCsCsToToGoC                                                       | 16815   |    |
|        | 3'-UTR      | 6501-6520                                 | =            | CsCsTsGsAsCsCsAsCsTsCsTsCsCsCsTsTsGsC                                                       | 16814   |    |
|        | 3'-UTR      | 6501-6520                                 | =            | CoCoToGsAsCsCsAsCsTsCsTsCsCsCsTsToToGoC                                                     | 16813   |    |
|        | 3'-UTR      | 6501-6520                                 | 140          | CsCsTsGsAsCsCsAsCsTsCsTsCsCsCsTsTsGsC                                                       | 15943   | 2  |
|        | coding      | 6121-6140                                 | =            | TsGsAsGsTsTsGsGsTsCsCsCsCsTsTsCsTsCsC                                                       | 16812   |    |
|        | coding      | 6121-6140                                 | =            | TsGsAsGsTsTsGsGsTsCsCsCoCoToToCoToCoC                                                       | 16811   |    |
|        | coding      | 6121-6140                                 | Ξ            | TsGsAsGsTsTsGsGsTsCsCsCsCsTsTsCsTsCsC                                                       | 16810   |    |
|        | coding      | 6121-6140                                 | =            | ToGoAoGoToToGoGoTSCSCSCSCSTSTSCSTSCSC                                                       | 16809   |    |

TABLE 22 Inhibition of mouse TNF- $\alpha$  mRNA expression in P388D1 Cells by 2'-O-methoxyethyl (deoxy gapped) Oligonucleotides

-80-

| 5  | ISIS<br>No: | SEQ<br>ID<br>NO: | GENE<br>TARGET<br>REGION | % mRNA<br>EXPRESSION | % mRNA<br>INHIBITION |
|----|-------------|------------------|--------------------------|----------------------|----------------------|
|    | induced     |                  |                          | 100%                 | 0%                   |
|    | 13108       | 142              | control                  | 87%                  | 13%                  |
|    | 15934       | 131              | coding                   | 28%                  | 72%                  |
|    | 16797       | 128              | coding                   | 33%                  | 67%                  |
| 10 | 16798       | 11               | coding                   | 34%                  | 66%                  |
|    | 16799       | 11               | coding                   | 56%                  | 44%                  |
|    | 16800       | 11               | coding                   | 35%                  | 65%                  |
|    | 16801       | н                | coding                   | 34%                  | 66%                  |
|    | 16802       | tt               | coding                   | 38%                  | 62%                  |
| 15 | 16803       | II               | coding                   | 35%                  | 65%                  |
|    | 16804       | 11               | coding                   | 39%                  | 61%                  |
|    | 16805       | 131              | coding                   | 29%                  | 71%                  |
|    | 16806       | 11               | coding                   | 31%                  | 69%                  |
|    | 16807       | 11               | coding                   | 46%                  | 54%                  |
| 20 | 16808       | II               | coding                   | 43%                  | 57%                  |
|    | 16809       | ***              | coding                   | 33%                  | 67%                  |
|    | 16810       | 11               | coding                   | 37%                  | 63%                  |
|    | 16811       | *1               | coding                   | 40%                  | 60%                  |
|    | 16812       | n                | coding                   | 31%                  | 69%                  |
| 25 | 16813       | 140              | 3'-UTR                   | 28%                  | 72%                  |
|    | 16814       | 11               | 3'-UTR                   | 28%                  | 72%                  |
|    | 16815       | 11               | 3'-UTR                   | 46%                  | 54%                  |
|    | 16816       | fi .             | 3'-UTR                   | 49%                  | 51%                  |
|    | 16817       | Ħ                | 3'-UTR                   | 172%                 |                      |

-81-

| 16818 | II | 3'-UTR | 34% | 66% |
|-------|----|--------|-----|-----|
| 16819 | II | 3'-UTR | 51% | 49% |
| 16820 | 11 | 3'-UTR | 44% | 56% |

EXAMPLE 11: Effect of TNF-α Antisense Oligonucleotides in a 5 Murine Model for Non-Insulin-dependent Diabetes Mellitus

The db/db mouse model, a standard model for noninsulin-dependent diabetes mellitus (NIDDM; Hotamisligil, G.S., et al., Science, 1993, 259, 87-90), was used to assess the activity of TNF- $\alpha$  antisense 10 oligonucleotides on blood glucose levels and  $TNF-\alpha$  mRNA levels in whole mice. These mice have elevated blood glucose levels and TNF- $\alpha$  mRNA levels compared to wild type mice. Female db/db mice and wild-type littermates were purchased from Jackson Laboratories (Bar Harbor, ME). 15 effect on oligonucleotide 15931 (SEQ ID NO. 128) on blood glucose levels was determined. For determination of TNF- $\alpha$ mRNA levels, oligonucleotide 15931 (SEQ ID NO. 128), a uniformly modified phosphorothicate oligodeoxynucleotide, was compared to oligonucleotide 25302 (SEQ ID NO. 128), a 20 mixed phosphorothioate/phosphodiester chimeric oligonucleotide having regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. The sequences and chemistries are shown in Table 23. Oligonucleotide 18154 (SEQ ID NO. 143) is an antisense mixed

phosphorothioate/phosphodiester chimeric oligonucleotide, having regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides, targeted to the human vascular cell adhesion molecule-1 (VCAM-1) and was used as an unrelated target control.

TABLE 23  $\label{eq:table_23} \mbox{Nucleotide Sequence of TNF-$\alpha$ Antisense Oligonucleotide}$ 

|   | ISIS<br>NO. | NUCLEOTIDE SEQUENCE <sup>1</sup> (5' -> 3') | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>2</sup> | GENE<br>TARGET<br>REGION |
|---|-------------|---------------------------------------------|------------------|--------------------------------------------------------|--------------------------|
| 5 | 15931       | AACCCATCGGCTGGCACCAC                        | 128              | 5891-5910                                              | coding                   |
|   | 25302       | AACCCATCGGCTGGCACCAC                        | 128              | 5891-5910                                              | coding                   |
|   | 18154       | TCAAGCAGTGCCACCGATCC                        | 143              | target con                                             | trol                     |

<sup>1</sup> All 2'-methoxyethyl cytosines and 2'-deoxy cytosines residues are 5-methyl-cytosines; all linkages are 10 phosphorothioate linkages.

db/db mice, six to ten weeks old, were dosed intraperitoneally with oligonucleotide every other day for 2 weeks at 10 mg/kg. The mice were fasted for seven hours prior to administration of the oligonucleotide. The mice were bled via retro orbital sinus every other day, and glucose measurements were performed on the blood. Results are shown in Table 24. Oligonucleotide 15931 (SEQ ID NO. 128) was able to reduce blood glucose levels in db/db mice to levels comparable with wild type mice. Food intake between wild type mice, treated and untreated, did not differ. Food intake between db/db mice, treated and untreated, although higher than wild type mice, did not differ significantly.

Samples of the fat (adipose) tissue from the inguinal fat pads were taken for RNA extraction. RNA was extracted according to *Current Protocols in Molecular Biology*, 1997, Ausubel, F., et al. ed., John Wiley & Sons. RNA was purified using the RNA clean up procedure of the RNEASY® Mini kit (Qiagen, Valencia, CA). TNF-α mRNA levels were

<sup>&</sup>lt;sup>2</sup> Co-ordinates from Genbank Accession No. Y00467, locus name "MMTNFAB", SEQ ID NO. 107.

-83-

measured using the RIBOQUANT® kit (PharMingen, San Diego, CA) with 15  $\mu g$  of RNA per lane. The probe used was from the mCK-3b Multi-Probe Template set (PharMingen, San Diego, CA) labeled with  $[\alpha^{32}P]$  UTP (Amersham Pharmacia Biotech, Piscataway, NJ). Results are shown in Table 25. Both oligonucleotide 15931 (SEQ ID NO. 128) and 25302 (SEQ ID NO. 128) were able to reduce TNF- $\alpha$  levels in fat, with 25302 (SEQ ID NO. 128) reducing TNF- $\alpha$  to nearly wild-type levels.

TABLE 24

Level of Blood Glucose in Normal and db/db Mice After

Treatment with TNF- $\alpha$  Antisense Oligonucleotides

10

25

|    | Mouse<br>Strain | ISIS # | SEQ ID<br>NO: | ASO Gene<br>Target | Time<br>(days) | blood<br>glucose<br>(mg/dL) |
|----|-----------------|--------|---------------|--------------------|----------------|-----------------------------|
| 15 | wild type       |        |               |                    | 1              | 140                         |
|    | 11              | 15931  | 128           | coding             | **             | 138                         |
|    | db/db           |        |               |                    | 1              | 260                         |
|    | "               | 15931  | 128           | coding             | **             | 254                         |
|    | wild type       |        |               |                    | 9              | 175                         |
| 20 | n               | 15931  | 128           | coding             | 11             | 163                         |
|    | db/db           |        |               |                    | 9              | 252                         |
|    | II.             | 15931  | 128           | coding             | II.            | 128                         |

TABLE 25 Level of TNF- $\alpha$  mRNA in Fat of db/db Mice After Treatment with TNF- $\alpha$  Antisense Oligonucleotides

| ISIS<br>No:  | SEQ<br>ID<br>NO: | GENE<br>TARGET<br>REGION | % mRNA<br>EXPRESSION |  |
|--------------|------------------|--------------------------|----------------------|--|
| wt saline    |                  |                          | 100%                 |  |
| db/db saline |                  |                          | 362%                 |  |

-84-

| 18154 | 142 | control | 130% |
|-------|-----|---------|------|
| 15931 | 128 | coding  | 210% |
| 25302 | 128 | coding  | 417% |

#### EXAMPLE 12: Effect of TNF-α Antisense Oligonucleotides in a 5 Murine Model for Rheumatoid Arthritis

Collagen-induced arthritis (CIA) was used as a murine model for arthritis (Mussener,A., et al., Clin. Exp. Immunol., 1997, 107, 485-493). Female DBA/1LacJ mice (Jackson Laboratories, Bar Harbor, ME) between the ages of 10 6 and 8 weeks were used to assess the activity of TNF- $\alpha$  antisense oligonucleotides.

On day 0, the mice were immunized at the base of the tail with 100 µg of bovine type II collagen which is emulsified in Complete Freund's Adjuvant (CFA). On day 7, 15 a second booster dose of collagen was administered by the same route. On day 14, the mice were injected subcutaneously with 100 µg of LPS. Oligonucleotide was administered intraperitoneally daily (10 mg/kg bolus) starting on day -3 ( three days before day 0) and 20 continuing for the duration of the study.

Weights were recorded weekly. Mice were inspected daily for the onset of CIA. Paw widths are rear ankle widths of affected and unaffected joints were measured three times a week using a constant tension caliper. Limbs were clinically evaluated and graded on a scale from 0-4 (with 4 being the highest).

Oligonucleotide 25302 (SEQ ID NO. 128) was compared to a saline control. The antisense TNF- $\alpha$  oligonucleotide reduced the incidence of CIA from 70% for the saline control to 40% for the oligonucleotide. The severity of the disease (based on the mean score of the limbs) was also reduced from 3.2 for the saline control to 2.1 for the

-85-

oligonucleotide.

#### EXAMPLE 13: Effect of TNF- $\alpha$ Antisense Oligonucleotides in a Murine Model for Contact Sensitivity

Contact sensitivity is a type of immune response

5 resulting from contact of the surface of the skin with a sensitizing chemical. A murine model for contact sensitivity is widely used to develop therapies for chronic inflammation, autoimmune disorder, and organ transplant rejection (Goebeler, M., et al., Int Arch. Allergy Appl.

10 Immunol., 1990, 93, 294-299). One example of such a disease is atopic dermatitis. Female Balb/c mice between the ages of 8 and 12 weeks are used to assess the activity of TNF-α antisense oligonucleotides in a contact sensitivity model.

15 Balb/c mice receive injections of oligonucleotide drug in saline via i.v. injection into the tail vein. The abdomen of the mice is shaved using an Oster hair clipper. The animals are anesthesized using isoflurane, and 25 μl of 0.2% 2,4-dinitrofluorobenzene (DNFB) in 4:1 acetone:olive 20 oil is applied to the shaved abdomen two days in a row. After five days, 10 ml of 0.2% DNFB in the same vehicle is applied to the right ear. After each exposure, the mouse is suspended in air for two minutes to allow the DNFB to absorb into the skin. 24 and 48 hours after application of 25 DNFB to the ear, the ear thickness is measured using a micrometer. Inflammation (dermatitis) is indicated by a ranked thickening of the ear. Thickness of the treated ear is compared to untreated (contralateral) ear thickness.

## EXAMPLE 14: Effect of TNF- $\alpha$ Antisense Oligonucleotides in a 30 Murine Model for Crohn's Disease

C3H/HeJ, SJL/JK and IL10-/- mice are used in a TNBS (2,4,5,-trinitrobenzene sulfonic acid) induced colitis model for Crohn's disease (Neurath, M.F., et al., J. Exp. Med., 1995, 182, 1281-1290). Mice between the ages of 6

-86-

weeks and 3 months are used to assess the activity of TNF- $\alpha$  antisense oligonucleotides.

C3H/HeJ, SJL/JK and IL10-/- mice are fasted overnight prior to administration of TNBS. A thin, flexible

5 polyethylene tube is slowly inserted into the colon of the mice so that the tip rests approximately 4 cm proximal to the anus. 0.5 mg of the TNBS in 50% ethanol is slowly injected from the catheter fitted onto a 1 ml syringe. Animals are held inverted in a vertical position for

10 approximately 30 seconds. TNF-α antisense oligonucleotides are administered either at the first sign of symptoms or simultaneously with induction of disease. Animals, in most cases, are dosed every day. Administration is by i.v., i.p., s.q., minipumps or intracolonic injection. Experimental tissues are collected at the end of the treatment regimen for histochemical evaluation.

# EXAMPLE 15: Effect of TNF- $\alpha$ Antisense Oligonucleotides in a Murine Model for Multiple Sclerosis

Experimental autoimmune encephalomyelitis (EAE) is a commonly accepted murine model for multiple sclerosis (Myers, K.J., et al., J. Neuroimmunol., 1992, 41, 1-8).
SJL/H, PL/J, (SJLxPL/J)F1, (SJLxBalb/c)F1 and Balb/c female mice between the ages of 6 and 12 weeks are used to test
the activity of TNF-α antisense oligonucleotides.

The mice are immunized in the two rear foot pads and base of the tail with an emulsion consisting of encephalitogenic protein or peptide (according to Myers, K.J., et al., J. of Immunol., 1993, 151, 2252-2260)

30 in Complete Freund's Adjuvant supplemented with heat killed Mycobacterium tuberculosis. Two days later, the mice

-87-

receive an intravenous injection of 500 ng Bordatella pertussis toxin and additional adjuvant.

Alternatively, the disease may also be induced by the adoptive transfer of T-cells. T-cells are obtained from the draining of the lymph nodes of mice immunized with encephalitogenic protein or peptide in CFA. The T cells are grown in tissue culture for several days and then injected intravenously into naive syngeneic recipients.

Mice are monitored and scored daily on a 0-5 scale for 10 signals of the disease, including loss of tail muscle tone, wobbly gait, and various degrees of paralysis.

#### EXAMPLE 16: Effect of TNF- $\alpha$ Antisense Oligonucleotides in a Murine Model for Pancreatitis

Swiss Webster, C57BL/56, C57BL/6 lpr and gld male mice are used in an experimental pancreatitis model (Niederau, C., et al., Gastroenterology, 1985, 88, 1192-1204). Mice between the ages of 4 and 10 weeks are used to assess the activity of TNF- $\alpha$  antisense oligonucleotides.

Caerulin (5-200  $\mu g/kg$ ) is administered i.p. every hour 20 for one to six hours. At varying time intervals, the mice are given i.p. injection of avertin and bled by cardiac puncture. The pancreas and spleen are evaluated for histopathology and increased levels of IL-1 $\beta$ , IL-6, and TNF- $\alpha$ . The blood is analyzed for increased levels of serum 25 amylase and lipase. TNF- $\alpha$  antisense oligonucleotides are administered by intraperitoneal injection at 4 hours precaerulin injections.

### EXAMPLE 17: Effect of TNF- $\alpha$ Antisense Oligonucleotides in a Murine Model for Hepatitis

Concanavalin A-induced hepatitis is used as a murine model for hepatitis (Mizuhara, H., et al., J. Exp. Med., 1994, 179, 1529-1537). It has been shown that this type of liver injury is mediated by Fas (Seino, K., et al.,

time.

Gastroenterology 1997, 113, 1315-1322). Certain types of viral hepatitis, including Hepatitis C, are also mediated by Fas (*J. Gastroenterology and Hepatology*, 1997, 12, S223-S226). Female Balb/c and C57BL/6 mice between the ages of 6 weeks and 3 months are used to assess the activity of TNF-α antisense oligonucleotides.

Mice are intravenenously injected with oligonucleotide. The pretreated mice are then intravenously injected with 0.3 mg concanavalin A (Con A) to induce liver injury. Within 24 hours following Con A injection, the livers are removed from the animals and analyzed for cell death (apoptosis) by in vitro methods. In some experiments, blood is collected from the retroorbital vein.

15 EXAMPLE 18: Effect of Antisense Oligonucleotide Targeted to  ${\tt TNF-\alpha}$  on Survival in Murine Heterotopic Heart Transplant Model

To determine the therapeutic effects of TNF-α antisense oligonucleotides in preventing allograft

20 rejection, murine TNF-α-specific oligonucleotides are tested for activity in a murine vascularized heterotopic heart transplant model. Hearts from Balb/c mice are transplanted into the abdominal cavity of C3H mice as primary vascularized grafts essentially as described by Isobe et al., Circulation 1991, 84, 1246-1255. Oligonucleotide is administered by continuous intravenous administration via a 7-day Alzet pump. The mean survival time for untreated mice is usually approximately 9-10 days.

Treatment of the mice for 7 days with TNF-α antisense oligonucleotides is expected to increase the mean survival

WO 00/20645

-89-

PCT/US99/23205

# EXAMPLE 19: Optimization of Human TNF- $\alpha$ Antisense Oligonucleotide

Additional antisense oligonucleotides targeted to intron 1 of human TNF- $\alpha$  were designed. These are shown in 5 Table 26. Oligonucleotides are screened by RT-PCR as described in Example 5 hereinabove.

TABLE 26  $\label{eq:nucleotide} \mbox{Nucleotide Sequences of Human TNF-$\alpha$ Intron 1 Antisense } \mbox{Oligonucleotides}$ 

| 10 | ISIS<br>NO. | NUCLEOTIDE SEQUENCE <sup>1</sup> (5' -> 3') | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>2</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|---------------------------------------------|------------------|--------------------------------------------------------|--------------------------|
| ·  | 100181      | <b>AG</b> TGTCTTCTGTGTGCCA <b>GA</b>        | 144              | 1409-1428                                              | intron 1                 |
|    | 100201      | AGTGTCTTCTGTGTGCCAGA                        | tt               | н                                                      | intron 1                 |
|    | 100230      | <b>AGTG</b> TCTTCTGTGTGCCA <b>GA</b>        | 11               | 11                                                     | intron 1                 |
| 15 | 100250      | AGTGTCTTCTGTGTGCCAGA                        | 11               | п                                                      | intron 1                 |
|    | 100182      | <b>GT</b> GTCTTCTGTGTGCCAG <b>AC</b>        | 145              | 1408-1427                                              | intron 1                 |
|    | 100202      | <b>GT</b> GTCTTCTGTGTGCC <b>AGAC</b>        | "                | 11                                                     | intron 1                 |
|    | 100231      | GTGTCTTCTGTGTGCCAGAC                        | "                | 11                                                     | intron 1                 |
|    | 100251      | GTGTCTTCTGTGTGCCAGAC                        | "                | 11                                                     | intron 1                 |
| 20 | 100183      | TGTCTTCTGTGTGCCAGACA                        | 146              | 1407-1426                                              | intron 1                 |
|    | 100203      | TGTCTTCTGTGTGCCAGACA                        | "                | 11                                                     | intron 1                 |
|    | 100232      | TGTCTTCTGTGTGCCAGACA                        | "                | 11                                                     | intron 1                 |
|    | 100252      | TGTCTTCTGTGTGCCAGACA                        | "                | 11                                                     | intron 1                 |
|    | 100184      | <b>GT</b> CTTCTGTGTGCCAGAC <b>AC</b>        | 147              | 1406-1425                                              | intron 1                 |
| 25 | 100204      | <b>GT</b> CTTCTGTGTGCCAG <b>ACAC</b>        | 11               | 11                                                     | intron 1                 |
|    | 100233      | <b>GTCT</b> TCTGTGTGCCAGAC <b>AC</b>        | 11               | tt .                                                   | intron 1                 |
|    | 100253      | GTCTTCTGTGTGCCAGACAC                        | 11               | н                                                      | intron 1                 |
|    | 100185      | TCTTCTGTGTGCCAGACACC                        | 148              | 1405-1424                                              | intron 1                 |
|    | 100205      | TCTTCTGTGTGCCAGACACC                        | 11               | 11                                                     | intron 1                 |
| 30 | 100234      | TCTTCTGTGTGCCAGACACC                        | 11               | 11                                                     | intron 1                 |

-90-

|    | 100254 | <b>TCTT</b> CTGTGTGCCAGA <b>CACC</b> | 11  | 11        | intron 1  |
|----|--------|--------------------------------------|-----|-----------|-----------|
|    | 100186 | <b>CT</b> TCTGTGTGCCAGACAC <b>CC</b> | 149 | 1404-1423 | intron 1  |
|    | 100206 | <b>CT</b> TCTGTGTGCCAGAC <b>ACCC</b> | 11  | 11        | intron 1  |
|    | 100235 | CTTCTGTGTGCCAGACACCC                 | 11  | 11        | intron 1  |
| 5  | 100255 | CTTCTGTGTGCCAGACACCC                 | 11  | 11        | intron 1  |
|    | 100187 | <b>TT</b> CTGTGTGCCAGACACC <b>CT</b> | 150 | 1403-1422 | intron 1  |
|    | 100207 | TTCTGTGTGCCAGACACCCT                 | 11  | 11        | intron 1  |
|    | 100236 | <b>TTCT</b> GTGTGCCAGACACC <b>CT</b> | 11  | 11        | intron 1  |
|    | 100256 | TTCTGTGTGCCAGACACCCT                 | 11  | 11        | intron 1  |
| 10 | 100188 | <b>TC</b> TGTGTGCCAGACACCC <b>TA</b> | 151 | 1402-1421 | intron 1  |
|    | 100208 | <b>TC</b> TGTGTGCCAGACAC <b>CCTA</b> | 11  | 11        | intron 1  |
|    | 100237 | TCTGTGTGCCAGACACCCTA                 | **  | 11        | intron 1  |
|    | 100257 | TCTGTGTGCCAGACACCCTA                 | 11  | n         | intron 1  |
|    | 100189 | CTGTGTGCCAGACACCCTAT                 | 152 | 1401-1420 | intron 1  |
| 15 | 100209 | CTGTGTGCCAGACACCCTAT                 | 11  | II        | intron 1  |
|    | 100238 | CTGTGTGCCAGACACCCTAT                 | 11  | TT .      | intron 1  |
|    | 100258 | CTGTGTGCCAGACACCCTAT                 | "   | 11        | intron 1  |
|    | 100190 | <b>TG</b> TGTGCCAGACACCCTA <b>TC</b> | 153 | 1400-1419 | intron 1  |
|    | 100210 | <b>TG</b> TGTGCCAGACACCC <b>TATC</b> | 11  | 11        | intron 1  |
| 20 | 100239 | TGTGTGCCAGACACCCTATC                 | 11  | 11        | intron 1  |
|    | 100259 | TGTGTGCCAGACACCCTATC                 | 11  | 11        | intron 1  |
|    | 100191 | TGTGCCAGACACCCTATCTT                 | 154 | 1398-1417 | intron 1  |
|    | 100211 | <b>TG</b> TGCCAGACACCCTA <b>TCTT</b> | 11  | 11        | intron 1  |
|    | 100240 | TGTGCCAGACACCCTATCTT                 | 11  | 11        | intron 1  |
| 25 | 100260 | TGTGCCAGACACCCTATCTT                 | 11  | 11        | intron 1  |
|    | 100192 | <b>GT</b> GCCAGACACCCTATCT <b>TC</b> | 155 | 1397-1416 | intron 1. |
|    | 100212 | <b>GT</b> GCCAGACACCCTAT <b>CTTC</b> | 11  | 11        | intron 1  |
|    | 100241 | <b>GTGC</b> CAGACACCCTATCT <b>TC</b> | II. | 11        | intron 1  |
|    | 100261 | <b>GTGC</b> CAGACACCCTAT <b>CTTC</b> | 11  | n         | intron 1  |

|    | 100193 | <b>TG</b> CCAGACACCCTATCTT <b>CT</b> | 156 | 1396-1415 | intron 1 |
|----|--------|--------------------------------------|-----|-----------|----------|
|    | 100213 | <b>TG</b> CCAGACACCCTATC <b>TTCT</b> | 11  | 11        | intron 1 |
|    | 100242 | TGCCAGACACCCTATCTTCT                 | "   | 11        | intron 1 |
|    | 100262 | TGCCAGACACCCTATCTTCT                 | "   | "         | intron 1 |
| 5  | 100194 | <b>GC</b> CAGACACCCTATCTTC <b>TT</b> | 157 | 1395-1414 | intron 1 |
|    | 100214 | <b>GC</b> CAGACACCCTATCT <b>TCTT</b> | 11  | 11        | intron 1 |
|    | 100243 | GCCAGACACCCTATCTTCTT                 | 11  | п         | intron 1 |
|    | 100263 | GCCAGACACCCTATCTTCTT                 | #1  | 11        | intron 1 |
|    | 100195 | <b>CC</b> AGACACCCTATCTTCT <b>TC</b> | 158 | 1394-1413 | intron 1 |
| 10 | 100215 | CCAGACACCCTATCTTCTTC                 | *** | n         | intron 1 |
|    | 100244 | CCAGACACCCTATCTTCTTC                 | **  | n .       | intron 1 |
|    | 100264 | CCAGACACCCTATCTTCTTC                 | 11  | п         | intron 1 |
|    | 100196 | <b>CA</b> GACACCCTATCTTCTT <b>CT</b> | 159 | 1393-1412 | intron 1 |
|    | 100216 | <b>CA</b> GACACCCTATCTTC <b>TTCT</b> | 11  | 11        | intron 1 |
| 15 | 100245 | CAGACACCCTATCTTCTTCT                 | 11  | 11        | intron 1 |
|    | 100265 | CAGACACCCTATCTTCTTCT                 | 11  | 11        | intron 1 |
|    | 100197 | <b>AG</b> ACACCCTATCTTC <b>TC</b>    | 160 | 1392-1411 | intron 1 |
|    | 100217 | <b>AG</b> ACACCCTATCTTCT <b>CTC</b>  | 11  | 11        | intron 1 |
|    | 100246 | <b>AGAC</b> ACCCTATCTTC <b>TC</b>    | 11  | n         | intron 1 |
| 20 | 100266 | <b>AGAC</b> ACCCTATCTTCT <b>TCTC</b> | 11  | II        | intron 1 |
|    | 100198 | <b>GA</b> CACCCTATCTTCTC <b>TCT</b>  | 161 | 1391-1410 | intron 1 |
|    | 100218 | <b>GA</b> CACCCTATCTTCTT <b>CTCT</b> | 11  | H         | intron 1 |
|    | 100247 | GACACCCTATCTTCTCTCT                  | 11  | п         | intron 1 |
|    | 100267 | GACACCCTATCTTCTTCTCT                 | 11  | п         | intron 1 |
| 25 | 100199 | <b>AC</b> ACCCTATCTTCTTC <b>TC</b>   | 162 | 1390-1409 | intron 1 |
|    | 100219 | <b>AC</b> ACCCTATCTTCTTC <b>TCTC</b> |     | ıı        | intron 1 |
|    | 100248 | <b>ACAC</b> CCTATCTTCTCTC            | 11  | II        | intron 1 |
|    | 100268 | <b>ACAC</b> CCTATCTTCTTC <b>TCTC</b> | 11  | 11        | intron 1 |
|    | 100200 | CACCCTATCTTCTCTCCC                   | 163 | 1389-1408 | intron 1 |

| 100220 | CACCCTATCTTCTTCTCCC                                                                                                    | #1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100249 | CACCCTATCTTCTCTCCC                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100269 | CACCCTATCTTCTTCTCCC                                                                                                    | "                                                                                                                                                                                                                                                                                                                                                                                                                                                               | π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100270 | <b>GTC</b> TTCTGTGTGCCA <b>GAC</b>                                                                                     | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1408-1425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100271 | TCTTCTGTGTGCCAGACA                                                                                                     | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1407-1424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100272 | <b>CTT</b> CTGTGTGCCAGA <b>CAC</b>                                                                                     | 166                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1406-1423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100273 | TTCTGTGTGCCAGACACC                                                                                                     | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1405-1422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100274 | TCTGTGTGCCAGACACCC                                                                                                     | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1404-1421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100275 | CTGTGTGCCAGACACCCT                                                                                                     | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1403-1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100276 | <b>TGT</b> GTGCCAGACACC <b>CTA</b>                                                                                     | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1402-1419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100277 | GTGTGCCAGACACCCTAT                                                                                                     | 171                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1401-1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100278 | TGTGCCAGACACCCTATC                                                                                                     | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1400-1417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100279 | <b>TGC</b> CAGACACCCTAT <b>CTT</b>                                                                                     | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1398-1415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100280 | <b>GCC</b> AGACACCCTATC <b>TTC</b>                                                                                     | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1397-1414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100281 | CCAGACACCCTATCTTCT                                                                                                     | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1396-1413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100282 | <b>CAG</b> ACACCCTATCTT <b>CTT</b>                                                                                     | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1395-1412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100283 | <b>AGA</b> CACCCTATCTTC <b>TTC</b>                                                                                     | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1394-1411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100284 | <b>GAC</b> ACCCTATCTTCT <b>TCT</b>                                                                                     | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1393-1410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100285 | <b>ACA</b> CCCTATCTTCTT <b>CTC</b>                                                                                     | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1392-1409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | intron 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 100249 100269 100270 100271 100272 100273 100274 100275 100276 100277 100278 100279 100280 100281 100282 100283 100284 | CACCCTATCTTCTCTCC  100269 CACCCTATCTTCTTCTCCC  100270 GTCTTCTGTGTGCCAGAC  100271 TCTTCTGTGTGCCAGACA  100272 CTTCTGTGTGCCAGACAC  100273 TTCTGTGTGCCAGACACC  100274 TCTGTGTGCCAGACACCC  100275 CTGTGTGCCAGACACCCT  100276 TGTGTGCCAGACACCCTA  100277 GTGTGCCAGACACCCTA  100278 TGTGCCAGACACCCTAT  100279 TGCCAGACACCCTATC  100280 GCCAGACACCCTATCTTC  100281 CCAGACACCCTATCTTCT  100282 CAGACACCCTATCTTCTTC  100283 AGACACCCTATCTTCTTC  100284 GACACCCTATCTTCTTCT | 100249         CACCCTATCTTCTTCTCC         "           100269         CACCCTATCTTCTTCTCC         "           100270         GTCTTCTGTGTGCCAGAC         164           100271         TCTTCTGTGTGCCAGACA         165           100272         CTTCTGTGTGCCAGACAC         166           100273         TTCTGTGTGCCAGACACC         167           100274         TCTGTGTGCCAGACACCC         168           100275         CTGTGTGCCAGACACCCT         169           100276         TGTGTGCCAGACACCCTA         170           100277         GTGTGCCAGACACCCTAT         171           100278         TGTGCCAGACACCCTATC         172           100279         TGCCAGACACCCTATCTT         173           100280         GCCAGACACCCTATCTTC         174           100281         CCAGACACCCTATCTTCT         175           100282         CAGACACCCTATCTTCTT         176           100283         AGACACCCTATCTTCTTCT         177           100284         GACACCCTATCTTCTTCT         178 | 100249       CACCCTATCTTCTTCTCC       "       "         100269       CACCCTATCTTCTTCTCC       "       "         100270       GTCTTCTGTGTGCCAGAC       164       1408-1425         100271       TCTTCTGTGTGCCAGACA       165       1407-1424         100272       CTTCTGTGTGCCAGACAC       166       1406-1423         100273       TTCTGTGTGCCAGACACC       167       1405-1422         100274       TCTGTGTGCCAGACACCC       168       1404-1421         100275       CTGTGTGCCAGACACCCT       169       1403-1420         100276       TGTGTGCCAGACACCCTA       170       1402-1419         100277       GTGTGCCAGACACCCTAT       171       1401-1418         100278       TGTGCCAGACACCCTATC       172       1400-1417         100279       TGCCAGACACCCTATCTT       173       1398-1415         100280       GCCAGACACCCTATCTTCT       175       1396-1413         100281       CCAGACACCCTATCTTCTT       176       1395-1412         100283       AGACACCCTATCTTCTTC       177       1394-1411         100284       GACACCCTATCTTCTTCT       178       1393-1410 |

<sup>&</sup>lt;sup>1</sup> Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethyl cytosines and 2'-deoxy cytosines residues are 5-methyl-cytosines; all linkages are phosphorothioate linkages.

<sup>&</sup>lt;sup>2</sup>Co-ordinates from Genbank Accession No. X02910, locus name 25 "HSTNFA", SEQ ID NO. 1.

-93-

### EXAMPLE 20: Design of Antisense Oligonucleotides Targeting Human TNF- $\alpha$ Intron 2

Additional antisense oligonucleotides targeted to intron 2 and coding regions of human TNF- $\alpha$  were designed. 5 These are shown in Table 27. Oligonucleotides are screened by RT-PCR as described in Example 5 hereinabove.

TABLE 27  $\label{eq:nucleotide} \mbox{Nucleotide Sequences of Human TNF-$\alpha$ Intron 2 Antisense } \mbox{Oligonucleotides}$ 

| 10 | ISIS<br>No. | NUCLEOTIDE SEQUENCE <sup>1</sup> (5' -> 3') | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>2</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|---------------------------------------------|------------------|--------------------------------------------------------|--------------------------|
|    | 100549      | AGAGGTTTGGAGACACTTAC                        | 180              | 1635-1654                                              | intron 2                 |
|    | 100566      | <b>AG</b> AGGTTTGGAGACACTT <b>AC</b>        | 11               | 11                                                     | intron 2                 |
|    | 100550      | GAATTAGGAAAGAGGTTTGG                        | 181              | 1645-1664                                              | intron 2                 |
| 15 | 100567      | <b>GA</b> ATTAGGAAAGAGGTTT <b>GG</b>        | <b>#1</b>        | п                                                      | intron 2                 |
|    | 100551      | CCCAAACCCAGAATTAGGAA                        | 182              | 1655-1674                                              | intron 2                 |
|    | 100568      | <b>CC</b> CAAACCCAGAATTAGG <b>AA</b>        | **               | 11                                                     | intron 2                 |
|    | 100552      | TACCCCCAAACCCAAACCCA                        | 183              | 1665-1684                                              | intron 2                 |
|    | 100569      | TACCCCCAAACCCAAACCCA                        | 11               | II.                                                    | intron 2                 |
| 20 | 100553      | GTACTAACCCTACCCCAAA                         | 184              | 1675-1694                                              | intron 2                 |
|    | 100570      | <b>GT</b> ACTAACCCTACCCCA <b>AA</b>         | 11               | 11                                                     | intron 2                 |
|    | 100554      | TTCCATACCGGTACTAACCC                        | 185              | 1685-1704                                              | intron 2                 |
|    | 100571      | <b>TT</b> CCATACCGGTACTAAC <b>CC</b>        | **               | 11                                                     | intron 2                 |
|    | 100555      | CCCCCACTGCTTCCATACCG                        | 186              | 1695-1714                                              | intron 2                 |
| 25 | 100572      | CCCCACTGCTTCCATACCG                         | 11               | 11                                                     | intron 2                 |
|    | 100556      | CTTTAAATTTCCCCCACTGC                        | 187              | 1705-1724                                              | intron 2                 |
|    | 100573      | CTTTAAATTTCCCCCACTGC                        | 11               | н                                                      | intron 2                 |
|    | 100557      | AAGACCAAAACTTTAAATTT                        | 188              | 1715-1734                                              | intron 2                 |
|    | 100571      | <b>AA</b> GACCAAAACTTTAAAT <b>TT</b>        | 11               | 11                                                     | intron 2                 |
| 30 | 100558      | ATCCTCCCCCAAGACCAAAA                        | 189              | 1725-1744                                              | intron 2                 |

WO 00/20645

|    | 100640 | <b>AT</b> CCTCCCCAAGACCAA <b>AA</b>  | 11  | 11        | intron 2 |
|----|--------|--------------------------------------|-----|-----------|----------|
|    | 100559 | ACCTCCATCCATCCTCCCCC                 | 190 | 1735-1754 | intron 2 |
|    | 100641 | <b>AC</b> CTCCATCCATCCTCCC <b>CC</b> | "   | 11        | intron 2 |
|    | 100560 | CCCTACTTTCACCTCCATCC                 | 191 | 1745-1764 | intron 2 |
| 5  | 100642 | CCCTACTTTCACCTCCATCC                 | 11  | н         | intron 2 |
|    | 100561 | GAAAATACCCCCCTACTTTC                 | 192 | 1755-1774 | intron 2 |
|    | 100643 | <b>GA</b> AAATACCCCCCTACTT <b>TC</b> | 11  | 11        | intron 2 |
|    | 100562 | AAACTTCCTAGAAAATACCC                 | 193 | 1765-1784 | intron 2 |
|    | 100644 | <b>AA</b> ACTTCCTAGAAAATAC <b>CC</b> | "   | и         | intron 2 |
| 10 | 100563 | TGAGACCCTTAAACTTCCTA                 | 194 | 1775-1794 | intron 2 |
|    | 100645 | <b>TG</b> AGACCCTTAAACTTCC <b>TA</b> | 11  | 11        | intron 2 |
|    | 100564 | AAGAAAAAGCTGAGACCCTT                 | 195 | 1785-1804 | intron 2 |
|    | 100646 | <b>AA</b> GAAAAAGCTGAGACCC <b>TT</b> | 11  | II.       | intron 2 |
|    | 100565 | GGAGAGAAAAAGC                        | 196 | 1795-1814 | intron 2 |
| 15 | 100647 | <b>GG</b> AGAGAAAAAGAAAAAGC          | 11  | H         | intron 2 |
|    | 100575 | TGAGCCAGAAGAGGTTGAGG                 | 197 | 2665-2684 | coding   |
|    | 100576 | ATTCTCTTTTTGAGCCAGAA                 | 198 | 2675-2694 | coding   |
|    | 100577 | TAAGCCCCCAATTCTCTTTT                 | 199 | 2685-2704 | coding   |
|    | 100578 | GTTCCGACCCTAAGCCCCCA                 | 200 | 2695-2714 | coding   |
| 20 | 100579 | CTAAGCTTGGGTTCCGACCC                 | 201 | 2705-2724 | coding   |
|    | 100580 | GCTTAAAGTTCTAAGCTTGG                 | 202 | 2715-2734 | coding   |
|    | 100581 | TGGTCTTGTTGCTTAAAGTT                 | 203 | 2725-2744 | coding   |
|    | 100582 | TTCGAAGTGGTGGTCTTGTT                 | 204 | 2735-2754 | coding   |
|    | 100583 | AATCCCAGGTTTCGAAGTGG                 | 205 | 2745-2764 | coding   |
| 25 | 100584 | CACATTCCTGAATCCCAGGT                 | 206 | 2755-2774 | coding   |
|    | 100585 | GTGCAGGCCACACATTCCTG                 | 207 | 2765-2784 | coding   |
|    | 100586 | GCACTTCACTGTGCAGGCCA                 | 208 | 2775-2794 | coding   |
|    | 100587 | GTGGTTGCCAGCACTTCACT                 | 209 | 2785-2804 | coding   |
|    | 100588 | TGAATTCTTAGTGGTTGCCA                 | 210 | 2795-2814 | coding   |
| 30 | 100589 | GGCCCCAGTTTGAATTCTTA                 | 211 | 2805-2824 | coding   |
|    |        |                                      |     |           |          |

WO 00/20645

PCT/US99/23205

-95-

|    | 100590 | GAGTTCTGGAGGCCCCAGTT | 212 | 2815-2834 | coding |
|----|--------|----------------------|-----|-----------|--------|
|    | 100591 | AGGCCCCAGTGAGTTCTGGA | 32  | 2825-2844 | coding |
|    | 100592 | TCAAAGCTGTAGGCCCCAGT | 214 | 2835-2854 | coding |
|    | 100593 | ATGTCAGGGATCAAAGCTGT | 215 | 2845-2864 | coding |
| 5  | 100594 | CAGATTCCAGATGTCAGGGA | 216 | 2855-2874 | coding |
|    | 100595 | CCCTGGTCTCCAGATTCCAG | 217 | 2865-2884 | coding |
|    | 100596 | ACCAAAGGCTCCCTGGTCTC | 218 | 2875-2894 | coding |
|    | 100597 | TCTGGCCAGAACCAAAGGCT | 219 | 2885-2904 | coding |
|    | 100598 | CCTGCAGCATTCTGGCCAGA | 220 | 2895-2914 | coding |
| 10 | 100599 | CTTCTCAAGTCCTGCAGCAT | 221 | 2905-2924 | coding |
|    | 100600 | TAGGTGAGGTCTTCTCAAGT | 222 | 2915-2934 | coding |
|    | 100601 | TGTCAATTTCTAGGTGAGGT | 223 | 2925-2944 | coding |
|    | 100602 | GGTCCACTTGTGTCAATTTC | 224 | 2935-2954 | coding |
|    | 100603 | GAAGGCCTAAGGTCCACTTG | 225 | 2945-2964 | coding |
| 15 | 100604 | CTGGAGAGAGGAAGGCCTAA | 226 | 2955-2974 | coding |
|    | 100605 | CTGGAAACATCTGGAGAGAG | 227 | 2965-2984 | coding |
|    | 100606 | TCAAGGAAGTCTGGAAACAT | 228 | 2975-2994 | coding |
|    | 100607 | GCTCCGTGTCTCAAGGAAGT | 229 | 2985-3004 | coding |
|    | 100608 | ATAAATACATTCATCTGTAA | 230 | 3085-3104 | coding |
| 20 | 100609 | GGTCTCCCAAATAAATACAT | 231 | 3095-3114 | coding |
|    | 100610 | AGGATACCCCGGTCTCCCAA | 232 | 3105-3124 | coding |
|    | 100611 | TGGGTCCCCCAGGATACCCC | 35  | 3115-3134 | coding |
|    | 100612 | GCTCCTACATTGGGTCCCCC | 234 | 3125-3144 | coding |
|    | 100613 | AGCCAAGGCAGCTCCTACAT | 235 | 3135-3154 | coding |
| 25 | 100614 | AACATGTCTGAGCCAAGGCA | 236 | 3145-3164 | coding |
|    | 100615 | TTTCACGGAAAACATGTCTG | 237 | 3155-3174 | coding |
|    | 100616 | TCAGCTCCGTTTTCACGGAA | 238 | 3165-3184 | coding |
|    | 100617 | AGCCTATTGTTCAGCTCCGT | 239 | 3175-3194 | coding |
|    | 100618 | ACATGGGAACAGCCTATTGT | 240 | 3185-3204 | coding |
|    |        |                      |     |           |        |

|    | 100619 | ATCAAAAGAAGGCACAGAGG | 241 | 3215-3234 | coding |
|----|--------|----------------------|-----|-----------|--------|
|    | 100620 | GTTTAGACAACTTAATCAGA | 242 | 3255-3274 | coding |
|    | 100621 | AATCAGCATTGTTTAGACAA | 243 | 3265-3284 | coding |
|    | 100622 | TTGGTCACCAAATCAGCATT | 244 | 3275-3294 | coding |
| 5  | 100623 | TGAGTGACAGTTGGTCACCA | 245 | 3285-3304 | coding |
|    | 100624 | GGCTCAGCAATGAGTGACAG | 246 | 3295-3314 | coding |
|    | 100625 | ATTACAGACACAACTCCCCT | 247 | 3325-3344 | coding |
|    | 100626 | TAGTAGGGCGATTACAGACA | 248 | 3335-3354 | coding |
|    | 100627 | CGCCACTGAATAGTAGGGCG | 249 | 3345-3364 | coding |
| 10 | 100628 | CTTTATTTCTCGCCACTGAA | 250 | 3355-3374 | coding |

<sup>&</sup>lt;sup>1</sup> Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethyl cytosines and 2'-deoxy cytosines residues are 5-methyl-cytosines; all linkages are phosphorothioate linkages.

15 <sup>2</sup> Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

Several of these oligonucleotides were chosen for dose response studies. Cells were grown and treated as described in Example 3. Results are shown in Table 28.

20 Each oligonucleotide tested showed a dose response curve with maximum inhibition greater than 75%.

TABLE 28 Dose Response of PMA-Induced neoHK Cells to TNF- $\alpha$  Antisense Oligonucleotides (ASOs)

| 25 | isis #  | SEQ ASO Gene ID Target NO: |          | Dose   | % protein<br>Expression | % protein<br>Inhibition |  |
|----|---------|----------------------------|----------|--------|-------------------------|-------------------------|--|
|    | induced |                            |          |        | 100%                    |                         |  |
|    | 100235  | 149                        | intron 1 | 75 nM  | 77%                     | 23%                     |  |
|    | 11      | II                         | 11       | 150 nM | 25%                     | 75%                     |  |

|   |        |     |          | -97-   |     |     |
|---|--------|-----|----------|--------|-----|-----|
|   | u      | 11  | 11       | 300 nM | 6%  | 94% |
|   | 100243 | 157 | intron 1 | 75 nM  | 68% | 32% |
|   | H      | 11  | н        | 150 nM | 15% | 85% |
|   | H      | 11  | n        | 300 nM | 6%  | 94% |
| 5 | 100263 | 157 | intron 1 | 75 nM  | 79% | 21% |
|   | 11     | н   | 11       | 150 nM | 30% | 70% |
|   | **     | Ħ   | 11       | 300 nM | 23% | 77% |

### EXAMPLE 21: Optimization of Human TNF- $\alpha$ Antisense Oligonucleotide Chemistry

Analogs of oligonucleotides 21820 (SEQ ID NO. 66) and 21823 (SEQ ID NO. 69) were designed and synthesized to find an optimum gap size. The sequences and chemistries are shown in Table 29.

Dose response experiments were performed as described in Example 3. Results are shown in Table 30.

TABLE 29  $\label{eq:partial_continuous_problem} \mbox{Nucleotide Sequences of TNF-$\alpha$ Chimeric Backbone (deoxy gapped) Oligonucleotides <math display="block">\mbox{ Gapped Sequences of TNF-$\alpha$ Chimeric Backbone (deoxy gapped) Chimeric Backbone (deoxy$ 

| 20 | ISIS<br>NO. | NUCLEOTIDE SEQUENCE (5' -> 3')       | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-<br>ORDINATES <sup>1</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|--------------------------------------|------------------|------------------------------------------------------------|--------------------------|
|    | 21820       | ATATTTCCCGCTCTTTCTGT                 | 66               | 1339-1358                                                  | intron 1                 |
|    | 28086       | <b>AT</b> ATTTCCCGCTCTTTCT <b>GT</b> | II               | 11                                                         | 11                       |
|    | 28087       | ATATTTCCCGCTCTTTCTGT                 | 11               | 11                                                         | 11                       |
|    | 21823       | GTGTGCCAGACACCCTATCT                 | 69               | 1399-1418                                                  | intron 1                 |
| 25 | 28088       | <b>GT</b> GTGCCAGACACCCTAT <b>CT</b> | 11               | 11                                                         | 11                       |
|    | 28089       | <b>GTGT</b> GCCAGACACCCT <b>ATCT</b> | 11               | 11                                                         | 11                       |

<sup>1</sup> Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines and 2'-

-98-

deoxycytidines are 5-methyl-cytidines; all linkages are phosphorothicate linkages.

5

TABLE 30

Dose Response of 20 Hour PMA-Induced neoHK Cells to TNF- $\alpha$ Chimeric (deoxy gapped) Antisense Oligonucleotides (ASOs)

|    | ISIS #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % protein<br>Expression | % protein<br>Inhibition |
|----|---------|------------------|--------------------|--------|-------------------------|-------------------------|
|    | induced |                  |                    |        | 100%                    |                         |
| 10 | 13393   | 49               | control            | 75 nM  | 150.0%                  |                         |
|    | 11      | 11               | 11                 | 150 nM | 135.0%                  |                         |
|    | 11      | "                | 11                 | 300 nM | 90.0%                   | 10.0%                   |
|    | 21820   | 66               | intron 1           | 75 nM  | 65.0%                   | 35.0%                   |
|    | II      | 11               | II                 | 150 nM | 28.0%                   | 72.0%                   |
| 15 | 11      | **               | II .               | 300 nM | 9.7%                    | 90.3%                   |
|    | 28086   | 66               | intron 1           | 75 nM  | 110.0%                  |                         |
|    | 11      | **               | IJ                 | 150 nM | 83.0%                   | 17.0%                   |
|    | II      | 11               | 11                 | 300 nM | 61.0%                   | 39.0%                   |
|    | 28087   | 66               | intron 1           | 75 nM  | 127.0%                  |                         |
| 20 | 11      | 11               | 11                 | 150 nM | 143.0%                  |                         |
|    | 11      | 11               | 11                 | 300 nM | 147.0%                  |                         |
|    | 21823   | 69               | intron 1           | 75 nM  | 35.0%                   | 65.0%                   |
|    | "       | **               | II .               | 150 nM | 30.0%                   | 70.0%                   |
|    | II .    | 11               | II                 | 300 nM | 6.4%                    | 93.6%                   |
| 25 | 28088   | 69               | intron 1           | 75 nM  | 56.0%                   | 44.0%                   |
|    | 11      | 11               | 11                 | 150 nM | 26.0%                   | 74.0%                   |
|    | II      | *1               | n                  | 300 nM | 11.0%                   | 89.0%                   |
|    | 28089   | 69               | intron 1           | 75 nM  | 76.0%                   | 24.0%                   |
|    | **      | 11               | "                  | 150 nM | 53.0%                   | 47.0%                   |
| 30 | 11      | II               | U                  | 300 nM | 23.0%                   | 77.0%                   |

<sup>&</sup>lt;sup>2</sup> Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

-99-

# EXAMPLE 22: Screening of additional TNF- $\alpha$ chimeric (deoxy gapped) antisense oligonucleotides

Additional oligonucleotides targeting the major regions of TNF-α were synthesized. Oligonucleotides were synthesized as uniformly phosphorothicate chimeric oligonucleotides having regions of five 2'-O-methoxyethyl (2'-MOE) nucleotides at the wings and a central region of ten deoxynucleotides. Oligonucleotide sequences are shown in Table 31.

Oligonucleotides were screened as described in Example
5. Results are shown in Table 32.

TABLE 31 Nucleotide Sequence of Additional Human TNF- $\alpha$  Chimeric (deoxy gapped) Antisense Oligonucleotides

| 15 | ISIS<br>NO. | NUCLEOTIDE SEQUENCE <sup>1</sup> (5' -> 3') | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-ORDINATES <sup>2</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|---------------------------------------------|------------------|--------------------------------------------------------|--------------------------|
|    | 104649      | CTGAGGGAGCGTCTGCTGGC                        | 251              | 0616-0635                                              | 5'-UTR                   |
|    | 104650      | CCTTGCTGAGGGAGCGTCTG                        | 252              | 0621-0640                                              | 5'-UTR                   |
|    | 104651      | CTGGTCCTCTGCTGTCCTTG                        | 253              | 0636-0655                                              | 5'-UTR                   |
| 20 | 104652      | CCTCTGCTGTCCTTGCTGAG                        | 254              | 0631-0650                                              | 5'-UTR                   |
|    | 104653      | TTCTCTCCCTCTTAGCTGGT                        | 255              | 0651-0670                                              | 5'-UTR                   |
|    | 104654      | TCCCTCTTAGCTGGTCCTCT                        | 256              | 0646-0665                                              | 5'-UTR                   |
|    | 104655      | TCTGAGGGTTGTTTTCAGGG                        | 257              | 0686-0705                                              | 5'-UTR                   |
|    | 104656      | CTGTAGTTGCTTCTCTCCCT                        | 258              | 0661-0680                                              | 5'-UTR                   |
| 25 | 104657      | <b>ACCTG</b> CCTGGCAGCT <b>TGTCA</b>        | 259              | 0718-0737                                              | 5'-UTR                   |
|    | 104658      | <b>GGATG</b> TGGCGTCTGA <b>GGGTT</b>        | 260              | 0696-0715                                              | 5'-UTR                   |
|    | 104659      | <b>TGTGA</b> GAGGAAGAGA <b>ACCTG</b>        | 261              | 0733-0752                                              | 5'-UTR                   |
|    | 104660      | <b>GAGGA</b> AGAGAACCTG <b>CCTGG</b>        | 262              | 0728-0747                                              | 5'-UTR                   |
|    | 104661      | <b>AGCCG</b> TGGGTCAGTA <b>TGTGA</b>        | 263              | 0748-0767                                              | 5'-UTR                   |
| 30 | 104662      | <b>TGGGT</b> CAGTATGTGA <b>GAGGA</b>        | 264              | 0743-0762                                              | 5'-UTR                   |

WO 00/20645

|    | 104663 | <b>GAGAG</b> GGTGAAGCCG <b>TGGGT</b> | 265 | 0758-0777 | 5'-UTR |
|----|--------|--------------------------------------|-----|-----------|--------|
|    | 104664 | TCATGGTGTCCTTTCCAGGG                 | 266 | 0780-0799 | AUG    |
|    | 104665 | CTTTCAGTGCTCATGGTGTC                 | 267 | 0790-0809 | AUG    |
|    | 104666 | TCATGCTTTCAGTGCTCATG                 | 268 | 0795-0814 | AUG    |
| 5  | 104667 | <b>ACGTC</b> CCGGATCATG <b>CTTTC</b> | 269 | 0805-0824 | coding |
|    | 104668 | GCTCCACGTCCCGGATCATG                 | 270 | 0810-0829 | coding |
|    | 104669 | TCCTCGGCCAGCTCCACGTC                 | 271 | 0820-0839 | coding |
|    | 104670 | GCGCCTCCTCGGCCAGCTCC                 | 272 | 0825-0844 | coding |
|    | 104671 | <b>AGGAA</b> CAAGCACCGC <b>CTGGA</b> | 273 | 0874-0893 | coding |
| 10 | 104672 | CAAGCACCGCCTGGAGCCCT                 | 274 | 0869-0888 | coding |
|    | 104673 | <b>AAGGA</b> GAAGAGGCTG <b>AGGAA</b> | 275 | 0889-0908 | coding |
|    | 104674 | <b>GAAGA</b> GGCTGAGGAA <b>CAAGC</b> | 276 | 0884-0903 | coding |
|    | 104675 | <b>CCTGC</b> CACGATCAGG <b>AAGGA</b> | 277 | 0904-0923 | coding |
|    | 104676 | CACGATCAGGAAGGAGAAGA                 | 278 | 0899-0918 | coding |
| 15 | 104677 | AAGAGCGTGGTGGCGCCTGC                 | 279 | 0919-0938 | coding |
|    | 104678 | CGTGGTGGCGCCTGCCACGA                 | 280 | 0914-0933 | coding |
|    | 104679 | <b>AAGTG</b> CAGCAGGCAG <b>AAGAG</b> | 281 | 0934-0953 | coding |
|    | 104680 | <b>CAGCA</b> GGCAGAAGAG <b>CGTGG</b> | 282 | 0929-0948 | coding |
|    | 104681 | GATCACTCCAAAGTGCAGCA                 | 283 | 0944-0963 | coding |
| 20 | 104682 | <b>GGGCC</b> GATCACTCCA <b>AAGTG</b> | 284 | 0949-0968 | coding |
|    | 104683 | <b>GGGCC</b> AGAGGGCTGA <b>TTAGA</b> | 285 | 1606-1625 | coding |
|    | 104684 | <b>AGAGG</b> GCTGATTAGA <b>GAGAG</b> | 286 | 1601-1620 | coding |
|    | 104685 | GCTACAGGCTTGTCACTCGG                 | 287 | 1839-1858 | coding |
|    | 104686 | CTGACTGCCTGGGCCAGAGG                 | 288 | 1616-1635 | E2/I23 |
| 25 | 104687 | TACAACATGGGCTACAGGCT                 | 289 | 1849-1868 | coding |
|    | 104688 | <b>AGCCA</b> CTGGAGCTGC <b>CCCTC</b> | 290 | 2185-2204 | coding |
|    | 104689 | CTGGAGCTGCCCCTCAGCTT                 | 291 | 2180-2199 | coding |
|    | 104690 | TTGGCCCGGCGGTTCAGCCA                 | 292 | 2200-2219 | coding |
|    | 104691 | TTGGCCAGGAGGGCATTGGC                 | 293 | 2215-2234 | coding |

|    | 104692 | CCGGCGGTTCAGCCACTGGA                 | 294 | 2195-2214 | coding |
|----|--------|--------------------------------------|-----|-----------|--------|
|    | 104693 | CTCAGCTCCACGCCATTGGC                 | 295 | 2230-2249 | coding |
|    | 104694 | CAGGAGGCATTGGCCCGGC                  | 296 | 2210-2229 | coding |
|    | 104695 | CTCCACGCCATTGGCCAGGA                 | 297 | 2225-2244 | coding |
| 5  | 104696 | ACCAGCTGGTTATCTCTCAG                 | 298 | 2245-2264 | coding |
|    | 104697 | CTGGTTATCTCTCAGCTCCA                 | 299 | 2240-2259 | coding |
|    | 104698 | CCCTCTGATGGCACCACCAG                 | 300 | 2260-2279 | coding |
|    | 104699 | TGATGGCACCACCAGCTGGT                 | 301 | 2255-2274 | coding |
|    | 104700 | TAGATGAGGTACAGGCCCTC                 | 302 | 2275-2294 | coding |
| 10 | 104701 | AAGAGGACCTGGGAGTAGAT                 | 303 | 2290-2309 | coding |
|    | 104702 | GAGGTACAGGCCCTCTGATG                 | 304 | 2270-2289 | coding |
|    | 104703 | CAGCCTTGGCCCTTGAAGAG                 | 305 | 2305-2324 | coding |
|    | 104704 | GACCTGGGAGTAGATGAGGT                 | 306 | 2285-2304 | coding |
|    | 104705 | TTGGCCCTTGAAGAGGACCT                 | 307 | 2300-2319 | coding |
| 15 | 104706 | TGGTGTGGGTGAGGAGCACA                 | 308 | 2337-2356 | coding |
|    | 104707 | CGGCGATGCGGCTGATGGTG                 | 309 | 2352-2371 | coding |
|    | 104708 | TGGGTGAGGAGCACATGGGT                 | 310 | 2332-2351 | coding |
|    | 104709 | TGGTCTGGTAGGAGACGGCG                 | 311 | 2367-2386 | coding |
|    | 104710 | <b>ATGCG</b> GCTGATGGTG <b>TGGGT</b> | 312 | 2347-2366 | coding |
| 20 | 104711 | <b>AGAGG</b> AGGTTGACCT <b>TGGTC</b> | 313 | 2382-2401 | coding |
|    | 104712 | TGGTAGGAGACGGCGATGCG                 | 314 | 2362-2381 | coding |
|    | 104713 | <b>AGGTT</b> GACCTTGGTC <b>TGGTA</b> | 315 | 2377-2396 | coding |
|    | 104714 | <b>GGCTC</b> TTGATGGCAG <b>AGAGG</b> | 316 | 2397-2416 | coding |
|    | 104715 | TCATACCAGGGCTTGGCCTC                 | 317 | 2446-2465 | coding |
| 25 | 104716 | TTGATGGCAGAGAGGAGGTT                 | 318 | 2392-2411 | coding |
|    | 104717 | CCCAGATAGATGGGCTCATA                 | 93  | 2461-2480 | coding |
|    | 104718 | CCAGGGCTTGGCCTCAGCCC                 | 94  | 2441-2460 | coding |
|    | 104719 | AGCTGGAAGACCCCTCCCAG                 | 319 | 2476-2495 | coding |
|    | 104720 | ATAGATGGGCTCATACCAGG                 | 320 | 2456-2475 | coding |
|    |        |                                      |     |           |        |

|    | 104721 | CGGTCACCCTTCTCCAGCTG                 | 321 | 2491-2510 | coding |
|----|--------|--------------------------------------|-----|-----------|--------|
|    | 104722 | GAAGACCCCTCCCAGATAGA                 | 322 | 2471-2490 | coding |
|    | 104723 | <b>ATCTC</b> AGCGCTGAGT <b>CGGTC</b> | 26  | 2506-2525 | coding |
|    | 104724 | <b>ACCCT</b> TCTCCAGCTG <b>GAAGA</b> | 323 | 2486-2505 | coding |
| 5  | 104725 | <b>TAGTC</b> GGGCCGATTG <b>ATCTC</b> | 90  | 2521-2540 | coding |
|    | 104726 | AGCGCTGAGTCGGTCACCCT                 | 91  | 2501-2520 | coding |
|    | 104727 | TCGGCAAAGTCGAGATAGTC                 | 324 | 2536-2554 | coding |
|    | 104728 | <b>GGGCC</b> GATTGATCTC <b>AGCGC</b> | 325 | 2516-2535 | coding |
|    | 104729 | TAGACCTGCCCAGACTCGGC                 | 326 | 2551-2570 | coding |
| 10 | 104730 | <b>AAAGT</b> CGAGATAGTC <b>GGGCC</b> | 327 | 2531-2550 | coding |
|    | 104731 | GCAATGATCCCAAAGTAGAC                 | 328 | 2566-2585 | coding |
|    | 104732 | CTGCCCAGACTCGGCAAAGT                 | 329 | 2546-2565 | coding |
|    | 104733 | CGTCCTCACAGGGCAAT                    | 330 | 2581-2600 | stop   |
|    | 104734 | GATCCCAAAGTAGACCTGCC                 | 88  | 2561-2580 | coding |
| 15 | 104735 | <b>GGAAG</b> GTTGGATGTT <b>CGTCC</b> | 331 | 2596-2615 | 3'-UTR |
|    | 104736 | TCCTCACAGGGCAATGATCC                 | 332 | 2576-2595 | stop   |
|    | 104737 | GTTGAGGGTGTCTGAAGGAG                 | 333 | 2652-2671 | 3'-UTR |
|    | 104738 | GTTGGATGTTCGTCCTCCTC                 | 334 | 2591-2610 | stop   |
|    | 104739 | TTTGAGCCAGAAGAGGTTGA                 | 335 | 2667-2686 | 3'-UTR |
| 20 | 104740 | <b>GAGGC</b> GTTTGGGAAG <b>GTTGG</b> | 336 | 2606-2625 | 3'-UTR |
|    | 104741 | GCCCCCAATTCTCTT <b>TTTGA</b>         | 337 | 2682-2701 | 3'-UTR |
|    | 104742 | <b>GCCAG</b> AAGAGGTTGA <b>GGGTG</b> | 338 | 2662-2681 | 3'-UTR |
|    | 104743 | <b>GGGTT</b> CCGACCCTAA <b>GCCCC</b> | 339 | 2697-2716 | 3'-UTR |
|    | 104744 | CAATTCTCTTTTTTGAGCCAG                | 340 | 2677-2696 | 3'-UTR |
| 25 | 104745 | TAAAGTTCTAAGCTTGGGTT                 | 341 | 2712-2731 | 3'-UTR |
|    | 104746 | CCGACCCTAAGCCCCCAATT                 | 342 | 2692-2711 | 3'-UTR |
|    | 104747 | <b>GGTGG</b> TCTTGTTGCT <b>TAAAG</b> | 343 | 2727-2746 | 3'-UTR |
|    | 104748 | TTCTAAGCTTGGGTTCCGAC                 | 344 | 2707-2726 | 3'-UTR |
|    | 104749 | CCCAGGTTTCGAAGTGGTGG                 | 345 | 2742-2761 | 3'-UTR |

|    | 104750 | TCTTGTTGCTTAAAGTTCTA                 | 346 | 2722-2741 | 3'-UTR |
|----|--------|--------------------------------------|-----|-----------|--------|
|    | 104751 | CACACATTCCTGAATCCCAG                 | 347 | 2757-2776 | 3'-UTR |
|    | 104752 | <b>GTTTC</b> GAAGTGGTGG <b>TCTTG</b> | 348 | 2737-2756 | 3'-UTR |
|    | 104753 | CTTCACTGTGCAGGCCACAC                 | 349 | 2772-2791 | 3'-UTR |
| 5  | 104754 | <b>ATTCC</b> TGAATCCCAG <b>GTTTC</b> | 350 | 2752-2771 | 3'-UTR |
|    | 104755 | TAGTGGTTGCCAGCACTTCA                 | 351 | 2787-2806 | 3'-UTR |
|    | 104756 | CCCAGTTTGAATTCTTAGTG                 | 352 | 2802-2821 | 3'-UTR |
|    | 104757 | CTGTGCAGGCCACACATTCC                 | 353 | 2767-2786 | 3'-UTR |
|    | 104758 | GTGAGTTCTGGAGGCCCCAG                 | 354 | 2817-2836 | 3'-UTR |
| 10 | 104759 | GTTGCCAGCACTTCACTGTG                 | 355 | 2782-2801 | 3'-UTR |
|    | 104760 | TTTGAATTCTTAGTGGTTGC                 | 356 | 2797-2816 | 3'-UTR |
|    | 104761 | <b>AAGCT</b> GTAGGCCCCA <b>GTGAG</b> | 357 | 2832-2851 | 3'-UTR |
|    | 104762 | TTCTGGAGGCCCCAGTTTGA                 | 358 | 2812-2831 | 3'-UTR |
|    | 104763 | <b>AGATG</b> TCAGGGATCA <b>AAGCT</b> | 359 | 2847-2866 | 3'-UTR |
| 15 | 104764 | TGGTCTCCAGATTCCAGATG                 | 360 | 2862-2881 | 3'-UTR |
|    | 104765 | GTAGGCCCCAGTGAGTTCTG                 | 361 | 2827-2846 | 3'-UTR |
|    | 104766 | GAACCAAAGGCTCCCTGGTC                 | 362 | 2877-2896 | 3'-UTR |
|    | 104767 | TCAGGGATCAAAGCTGTAGG                 | 363 | 2842-2861 | 3'-UTR |
|    | 104768 | TCCAGATTCCAGATGTCAGG                 | 364 | 2857-2876 | 3'-UTR |
| 20 | 104769 | GCAGCATTCTGGCCAGAACC                 | 365 | 2892-2911 | 3'-UTR |
|    | 104770 | GTCTTCTCAAGTCCTGCAGC                 | 366 | 2907-2926 | 3'-UTR |
|    | 104771 | AAAGGCTCCCTGGTCTCCAG                 | 367 | 2872-2891 | 3'-UTR |
|    | 104772 | CAATTTCTAGGTGAGGTCTT                 | 368 | 2922-2941 | 3'-UTR |
|    | 104773 | <b>ATTCT</b> GGCCAGAACC <b>AAAGG</b> | 369 | 2887-2906 | 3'-UTR |
| 25 | 104774 | CTCAAGTCCTGCAGCATTCT                 | 34  | 2902-2921 | 3'-UTR |
|    | 104775 | AAGGTCCACTTGTGTCAATT                 | 370 | 2937-2956 | 3'-UTR |
|    | 104776 | <b>GAGAG</b> AGGAAGGCCT <b>AAGGT</b> | 371 | 2952-2971 | 3'-UTR |
|    | 104777 | TCTAGGTGAGGTCTTCTCAA                 | 372 | 2917-2936 | 3'-UTR |
|    | 104778 | CCACTTGTGTCAATTTCTAG                 | 373 | 2932-2951 | 3'-UTR |

|    | 104779 | GTCTGGAAACATCTGGAGAG                  | 374 | 2967-2986 | 3'-UTR   |
|----|--------|---------------------------------------|-----|-----------|----------|
|    | 104780 | CCGTGTCTCAAGGAAGTCTG                  | 375 | 2982-3001 | 3'-UTR   |
|    | 104781 | <b>AGGAA</b> GGCCTAAGGT <b>CCACT</b>  | 376 | 2947-2966 | 3 ' -UTR |
|    | 104782 | GAGGGAGCTGGCTCCATGGG                  | 377 | 3014-3033 | 3'-UTR   |
| 5  | 104783 | GAAACATCTGGAGAGAGGAA                  | 378 | 2962-2981 | 3'-UTR   |
|    | 104784 | GTGCAAACATAAATAGAGGG                  | 379 | 3029-3048 | 3'-UTR   |
|    | 104785 | TCTCAAGGAAGTCTGGAAAC                  | 380 | 2977-2996 | 3'-UTR   |
|    | 104786 | <b>AATAA</b> ATAATCACAA <b>GTGCA</b>  | 381 | 3044-3063 | 3 ' -UTR |
|    | 104787 | <b>GGGCT</b> GGGCTCCGTG <b>TCTCA</b>  | 382 | 2992-3011 | 3'-UTR   |
| 10 | 104788 | TACCCCGGTCTCCCAAATAA                  | 383 | 3101-3120 | 3'-UTR   |
|    | 104789 | <b>AACAT</b> AAATAGAGGG <b>AGCTG</b>  | 384 | 3024-3043 | 3'-UTR   |
|    | 104790 | TTGGGTCCCCCAGGATACCC                  | 385 | 3116-3135 | 3'-UTR   |
|    | 104791 | <b>ATAAT</b> CACAAGTGCA <b>AACA</b> T | 386 | 3039-3058 | 3'-UTR   |
|    | 104792 | <b>AAGGC</b> AGCTCCTACA <b>TTGGG</b>  | 387 | 3131-3150 | 3'-UTR   |
| 15 | 104793 | CGGTCTCCCAAATAA <b>ATACA</b>          | 388 | 3096-3115 | 3'-UTR   |
|    | 104794 | <b>AAACA</b> TGTCTGAGCC <b>AAGGC</b>  | 389 | 3146-3165 | 3'-UTR   |
|    | 104795 | TCCCCCAGGATACCCCGGTC                  | 390 | 3111-3130 | 3'-UTR   |
|    | 104796 | <b>AGCTC</b> CTACATTGGG <b>TCCCC</b>  | 391 | 3126-3145 | 3'-UTR   |
|    | 104797 | CTCCGTTTTCACGGAAAACA                  | 37  | 3161-3180 | 3'-UTR   |
| 20 | 104798 | TGTCTGAGCCAAGGCAGCTC                  | 392 | 3141-3160 | 3'-UTR   |
|    | 104799 | CAGCCTATTGTTCAGCTCCG                  | 393 | 3176-3195 | 3'-UTR   |
|    | 104800 | <b>AGAAG</b> GCACAGAGGC <b>CAGGG</b>  | 394 | 3209-3228 | 3'-UTR   |
|    | 104801 | TTTTCACGGAAAACATGTCT                  | 395 | 3156-3175 | 3'-UTR   |
|    | 104802 | TATTGTTCAGCTCCGTTTTC                  | 396 | 3171-3190 | 3'-UTR   |
| 25 | 104803 | <b>AAAAA</b> CATAATCAAA <b>AGAAG</b>  | 397 | 3224-3243 | 3'-UTR   |
|    | 104804 | <b>CAGAT</b> AAATATTTTA <b>AAAAA</b>  | 398 | 3239-3258 | 3'-UTR   |
|    | 104805 | TACATGGGAACAGCCTATTG                  | 399 | 3186-3205 | 3'-UTR   |
|    | 104806 | TTTAGACAACTTAATCAGAT                  | 400 | 3254-3273 | 3 ' -UTR |
|    | 104807 | CATAATCAAAAGAAGGCACA                  | 401 | 3219-3238 | 3'-UTR   |
|    |        |                                       |     |           |          |

|    | 104808 | <b>ACCAA</b> ATCAGCATTG <b>TTTAG</b> | 402 | 3269-3288 | 3'-UTR   |
|----|--------|--------------------------------------|-----|-----------|----------|
|    | 104809 | AAATATTTTAAAAAAACATAA                | 403 | 3234-3253 | 3 ' -UTR |
|    | 104810 | GAGTGACAGTTGGTCACCAA                 | 404 | 3284-3303 | 3'-UTR   |
|    | 104811 | <b>ACAAC</b> TTAATCAGAT <b>AAATA</b> | 405 | 3249-3268 | 3'-UTR   |
| 5  | 104812 | <b>CAGAG</b> GCTCAGCAAT <b>GAGTG</b> | 406 | 3299-3318 | 3 ' -UTR |
|    | 104813 | <b>ATCAG</b> CATTGTTTAG <b>ACAAC</b> | 407 | 3264-3283 | 3'-UTR   |
|    | 104814 | <b>AGGGC</b> GATTACAGAC <b>ACAAC</b> | 408 | 3331-3350 | 3 ' ~UTR |
|    | 104815 | ACAGTTGGTCACCAAATCAG                 | 409 | 3279-3298 | 3'-UTR   |
|    | 104816 | TCGCCACTGAATAGTAGGGC                 | 410 | 3346-3365 | 3'-UTR   |
| 10 | 104817 | <b>GCTCA</b> GCAATGAGTG <b>ACAGT</b> | 411 | 3294-3313 | 3'-UTR   |
|    | 104818 | AGCAAACTTTATTTCTCGCC                 | 412 | 3361-3380 | 3'-UTR   |
|    | 104819 | GATTACAGACACAACTCCCC                 | 413 | 3326-3345 | 3'-UTR   |
|    | 104820 | <b>ACTGA</b> ATAGTAGGGC <b>GATTA</b> | 414 | 3341-3360 | 3'-UTR   |
|    | 104821 | <b>ACTTT</b> ATTTCTCGCC <b>ACTGA</b> | 415 | 3356-3375 | 3'-UTR   |
| 15 | 104822 | GCTGTCCTTGCTGAGGGAGC                 | 416 | 0626-0645 | 5'-UTR   |
|    | 104823 | CTTAGCTGGTCCTCTGCTGT                 | 417 | 0641-0660 | 5'-UTR   |
|    | 104824 | GTTGCTTCTCTCCCTCTTAG                 | 418 | 0656-0675 | 5'-UTR   |
|    | 104825 | TGGCGTCTGAGGGTTGTTTT                 | 419 | 0691-0710 | 5'-UTR   |
|    | 104826 | <b>AGAGA</b> ACCTGCCTGG <b>CAGCT</b> | 420 | 0723-0742 | 5'-UTR   |
| 20 | 104827 | CAGTATGTGAGAGGAAGAGA                 | 421 | 0738-0757 | 5'-UTR   |
|    | 104828 | <b>GGTGA</b> AGCCGTGGGT <b>CAGTA</b> | 422 | 0753-0772 | 5'-UTR   |
|    | 104829 | <b>AGTGC</b> TCATGGTGTC <b>CTTTC</b> | 423 | 0785-0804 | AUG      |
|    | 104830 | CCGGATCATGCTTTCAGTGC                 | 424 | 0800-0819 | coding   |
|    | 104831 | GGCCAGCTCCACGTCCCGGA                 | 425 | 0815-0834 | coding   |
| 25 | 104832 | GGCCCCCTGTCTTCTTGGG                  | 426 | 0847-0866 | coding   |
|    | 104833 | <b>GGCTG</b> AGGAACAAGC <b>ACCGC</b> | 427 | 0879-0898 | coding   |
|    | 104834 | TCAGGAAGGAGAAGAGGCTG                 | 428 | 0894-0913 | coding   |
|    | 104835 | TGGCGCCTGCCACGATCAGG                 | 429 | 0909-0918 | coding   |
|    | 104836 | <b>GGCAG</b> AAGAGCGTGG <b>TGGCG</b> | 430 | 0924-0943 | coding   |

WO 00/20645

|    | 104837 | CTCCAAAGTGCAGCAGCAG                   | 431 | 0939-0958 | coding |
|----|--------|---------------------------------------|-----|-----------|--------|
|    | 104838 | <b>GCTGA</b> TTAGAGAGAG <b>GTCCC</b>  | 432 | 1596-1615 | coding |
|    | 104839 | TGCCTGGGCCAGAGGGCTGA                  | 433 | 1611-1630 | coding |
|    | 104840 | GCTGCCCCTCAGCTTGAGGG                  | 434 | 2175-2194 | coding |
| 5  | 104841 | <b>GGTTC</b> AGCCACTGGA <b>GCTGC</b>  | 435 | 2190-2209 | coding |
|    | 104842 | GGGCATTGGCCCGGCGGTTC                  | 436 | 2205-2224 | coding |
|    | 104843 | CGCCATTGGCCAGGAGGGCA                  | 437 | 2220-2239 | coding |
|    | 104844 | TATCTCTCAGCTCCACGCCA                  | 438 | 2235-2254 | coding |
|    | 104845 | GCACCACCAGCTGGTTATCT                  | 439 | 2250-2269 | coding |
| 10 | 104846 | ACAGGCCCTCTGATGGCACC                  | 440 | 2265-2284 | coding |
|    | 104847 | GGGAGTAGATGAGGTACAGG                  | 441 | 2280-2299 | coding |
|    | 104848 | CCTTGAAGAGGACCTGGGAG                  | 442 | 2295-2314 | coding |
|    | 104849 | GAGGAGCACATGGGTGGAGG                  | 443 | 2327-2346 | coding |
|    | 104850 | GCTGATGGTGTGGGTGAGGA                  | 444 | 2342-2361 | coding |
| 15 | 104851 | <b>GGAGA</b> CGGCGATGCG <b>GCTGA</b>  | 445 | 2357-2376 | coding |
|    | 104852 | GACCTTGGTCTGGTAGGAGA                  | 446 | 2372-2391 | coding |
|    | 104853 | <b>GGCAG</b> AGAGGAGGTT <b>GACCT</b>  | 447 | 2387-2406 | coding |
|    | 104854 | <b>GCTTG</b> GCCTCAGCCC <b>CCTC</b> T | 23  | 2436-2455 | coding |
|    | 104855 | TGGGCTCATACCAGGGCTTG                  | 448 | 2451-2470 | coding |
| 20 | 104856 | CCCCTCCCAGATAGATGGGC                  | 449 | 2466-2485 | coding |
|    | 104857 | TCTCCAGCTGGAAGACCCCT                  | 92  | 2481-2500 | coding |
|    | 104858 | TGAGTCGGTCACCCTTCTCC                  | 450 | 2496-2515 | coding |
|    | 104859 | GATTGATCTCAGCGCTGAGT                  | 451 | 2511-2530 | coding |
|    | 104860 | <b>CGAGA</b> TAGTCGGGCC <b>GATTG</b>  | 452 | 2526-2545 | coding |
| 25 | 104861 | CAGACTCGGCAAAGTCGAGA                  | 89  | 2541-2560 | coding |
|    | 104862 | <b>CAAAG</b> TAGACCTGCC <b>CAGAC</b>  | 453 | 2556-2575 | coding |
|    | 104863 | <b>ACAGG</b> GCAATGATCC <b>CAAAG</b>  | 454 | 2571-2590 | stop   |
|    | 104864 | ATGTTCGTCCTCCTCACAGG                  | 455 | 2586-2605 | stop   |
|    | 104865 | <b>GTTTG</b> GGAAGGTTGG <b>ATGTT</b>  | 456 | 2601-2620 | 3'-UTR |

|    | 104866 | <b>AAGAG</b> GTTGAGGGTG <b>TCTGA</b> | 457 | 2657-2676 | 3'-UTR |
|----|--------|--------------------------------------|-----|-----------|--------|
|    | 104867 | CTCTTTTTGAGCCAGAAGAG                 | 458 | 2672-2691 | 3'-UTR |
|    | 104868 | <b>CCTAA</b> GCCCCCAATT <b>CTCTT</b> | 459 | 2687-2706 | 3'-UTR |
|    | 104869 | <b>AGCTT</b> GGGTTCCGAC <b>CCTAA</b> | 460 | 2702-2721 | 3'-UTR |
| 5  | 104870 | TTGCTTAAAGTTCTAAGCTT                 | 461 | 2717-2736 | 3'-UTR |
|    | 104871 | <b>GAAGT</b> GGTGGTCTTG <b>TTGCT</b> | 462 | 2732-2751 | 3'-UTR |
|    | 104872 | TGAATCCCAGGTTTCGAAGT                 | 463 | 2747-2766 | 3'-UTR |
|    | 104873 | CAGGCCACACATTCCTGAAT                 | 464 | 2762-2781 | 3'-UTR |
|    | 104874 | CAGCACTTCACTGTGCAGGC                 | 465 | 2777-2796 | 3'-UTR |
| 10 | 104875 | <b>ATTCT</b> TAGTGGTTGC <b>CAGCA</b> | 466 | 2792-2811 | 3'-UTR |
|    | 104876 | GAGGCCCCAGTTTGAATTCT                 | 467 | 2807-2826 | 3'-UTR |
|    | 104877 | CCCCAGTGAGTTCTGGAGGC                 | 468 | 2822-2841 | 3'-UTR |
|    | 104878 | GATCAAAGCTGTAGGCCCCA                 | 469 | 2837-2856 | 3'-UTR |
|    | 104879 | <b>ATTCC</b> AGATGTCAGG <b>GATCA</b> | 470 | 2852-2871 | 3'-UTR |
| 15 | 104880 | CTCCCTGGTCTCCAGATTCC                 | 471 | 2867-2886 | 3'-UTR |
|    | 104881 | <b>GGCCA</b> GAACCAAAGG <b>CTCCC</b> | 472 | 2882-2901 | 3'-UTR |
|    | 104882 | GTCCTGCAGCATTCTGGCCA                 | 473 | 2897-2916 | 3'-UTR |
|    | 104883 | GTGAGGTCTTCTCAAGTCCT                 | 474 | 2912-2931 | 3'-UTR |
|    | 104884 | TGTGTCAATTTCTAGGTGAG                 | 475 | 2927-2946 | 3'-UTR |
| 20 | 104885 | GGCCTAAGGTCCACTTGTGT                 | 476 | 2942-2961 | 3'-UTR |
|    | 104886 | ATCTGGAGAGAGGAAGGCCT                 | 477 | 2957-2976 | 3'-UTR |
|    | 104887 | <b>AGGAA</b> GTCTGGAAAC <b>ATCTG</b> | 478 | 2972-2991 | 3'-UTR |
|    | 104888 | <b>GGGCT</b> CCGTGTCTCA <b>AGGAA</b> | 479 | 2987-3006 | 3'-UTR |
|    | 104889 | <b>AAATA</b> GAGGGAGCTG <b>GCTCC</b> | 480 | 3019-3038 | 3'-UTR |
| 25 | 104890 | CACAAGTGCAAACATAAATA                 | 481 | 3034-3053 | 3'-UTR |
|    | 104891 | TCCCAAATAAATACATTCAT                 | 482 | 3091-3110 | 3'-UTR |
|    | 104892 | CAGGATACCCCGGTCTCCCA                 | 483 | 3106-3125 | 3'-UTR |
|    | 104893 | CTACATTGGGTCCCCCAGGA                 | 484 | 3121-3140 | 3'-UTR |
|    | 104894 | GAGCCAAGGCAGCTCCTACA                 | 485 | 3136-3155 | 3'-UTR |

|    | 104895 | <b>ACGGA</b> AAACATGTCT <b>GAGCC</b> | 486 | 3151-3170 | 3 ' -UTR |
|----|--------|--------------------------------------|-----|-----------|----------|
|    | 104896 | TTCAGCTCCGTTTTCACGGA                 | 487 | 3166-3185 | 3'-UTR   |
|    | 104897 | <b>GGGAA</b> CAGCCTATTG <b>TTCAG</b> | 488 | 3181-3200 | 3'-UTR   |
|    | 104898 | TCAAAAGAAGGCACAGAGGC                 | 489 | 3214-3233 | 3'-UTR   |
| 5  | 104899 | TTTTAAAAAAACATAA <b>TCAAA</b>        | 490 | 3229-3248 | 3'-UTR   |
|    | 104900 | TTAATCAGATAAATATTTTA                 | 491 | 3244-3263 | 3'-UTR   |
|    | 104901 | CATTGTTTAGACAACTTAAT                 | 492 | 3259-3278 | 3 ' -UTR |
|    | 104902 | TGGTCACCAAATCAGCATTG                 | 493 | 3274-3293 | 3'-UTR   |
|    | 104903 | <b>GCAAT</b> GAGTGACAGT <b>TGGTC</b> | 494 | 3289-3308 | 3'-UTR   |
| 10 | 104904 | <b>GGGAG</b> CAGAGGCTCA <b>GCAAT</b> | 495 | 3304-3323 | 3'-UTR   |
|    | 104905 | ATAGTAGGGCGATTACAGAC                 | 496 | 3336-3355 | 3 ' -UTR |
|    | 104906 | <b>ATTTC</b> TCGCCACTGA <b>ATAGT</b> | 497 | 3351-3370 | 3'-UTR   |

<sup>1</sup> Emboldened residues are 2'-O-methoxyethyl residues (others are 2'-deoxy-). All 2'-O-methoxyethyl cytosines and 2'-15 deoxy cytosines residues are 5-methyl-cytosines; all linkages are phosphorothioate linkages.

TABLE 32

Inhibition of Human TNF-α mRNA Expression by Chimeric (deoxy gapped) Phosphorothicate Oligodeoxynucleotides

| ISIS<br>No: | SEQ ID<br>NO: | GENE TARGET<br>REGION | % mRNA<br>EXPRESSION | % mRNA<br>INHIBITION |
|-------------|---------------|-----------------------|----------------------|----------------------|
| basal       |               |                       | 0.0%                 |                      |
| induced     |               |                       | 100.0%               | 0.0%                 |

<sup>&</sup>lt;sup>2</sup>Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

This target region is an exon-intron junction and is represented in the form, for example, I1/E2, where I, followed by a number, refers to the intron number and E, followed by a number, refers to the exon number.

|    | 28089  | 69  | intron 1 | 42.3%  | 57.7% |
|----|--------|-----|----------|--------|-------|
|    | 104649 | 251 | 5'-UTR   | 165.6% |       |
|    | 104650 | 252 | 5'-UTR   | 75.8%  | 24.2% |
|    | 104651 | 253 | 5'-UTR   | 58.2%  | 41.8% |
| 5  | 104652 | 254 | 5'-UTR   | 114.5% |       |
|    | 104653 | 255 | 5'-UTR   | 84.9%  | 15.1% |
|    | 104654 | 256 | 5'-UTR   | 80.8%  | 19.2% |
|    | 104655 | 257 | 5'-UTR   | 94.3%  | 5.7%  |
|    | 104656 | 258 | 5'-UTR   | 78.4%  | 21.6% |
| 10 | 104657 | 259 | 5'-UTR   | 87.4%  | 12.6% |
|    | 104658 | 260 | 5'-UTR   | 213.4% |       |
|    | 104659 | 261 | 5'-UTR   | 96.3%  | 3.7%  |
|    | 104660 | 262 | 5'-UTR   | 153.1% |       |
|    | 104661 | 263 | 5'-UTR   | 90.0%  | 10.0% |
| 15 | 104662 | 264 | 5'-UTR   | 33.3%  | 66.7% |
|    | 104663 | 265 | 5'-UTR   | 144.2% |       |
|    | 104664 | 266 | AUG      | 76.3%  | 23.7% |
|    | 104665 | 267 | AUG      | 185.3% |       |
|    | 104666 | 268 | AUG      | 67.4%  | 32.6% |
| 20 | 104667 | 269 | coding   | 94.3%  | 5.7%  |
|    | 104668 | 270 | coding   | 63.1%  | 36.9% |
|    | 104669 | 271 | coding   | 50.8%  | 49.2% |
|    | 104670 | 272 | coding   | 43.7%  | 56.3% |
|    | 104671 | 273 | coding   | 52.2%  | 47.8% |
| 25 | 104672 | 274 | coding   | 51.8%  | 48.2% |
|    | 104673 | 275 | coding   | 102.3% |       |
|    | 104674 | 276 | coding   | 135.4% |       |
|    | 104675 | 277 | coding   | 83.1%  | 16.9% |
|    | 104676 | 278 | coding   | 87.5%  | 12.5% |
| 30 | 104677 | 279 | coding   | 53.6%  | 46.4% |
|    |        |     |          |        |       |

|    | 104678 | 280 | coding | 75.2%  | 24.8%        |
|----|--------|-----|--------|--------|--------------|
|    | 104679 | 281 | coding | 114.0% |              |
|    | 104680 | 282 | coding | 142.5% |              |
|    | 104681 | 283 | coding | 58.5%  | 41.5%        |
| 5  | 104682 | 284 | coding | 101.9% |              |
|    | 104683 | 285 | coding | 77.1%  | 22.9%        |
|    | 104684 | 286 | coding | 61.0%  | 39.0%        |
|    | 104685 | 287 | coding | 65.9%  | 34.1%        |
|    | 104686 | 288 | E2/I2  | 59.2%  | 40.8%        |
| 10 | 104687 | 289 | coding | 77.0%  | 23.0%        |
|    | 104688 | 290 | coding | 40.1%  | 59.9%        |
|    | 104689 | 291 | coding | 78.6%  | 21.4%        |
|    | 104690 | 292 | coding | 90.9%  | 9.1%         |
|    | 104691 | 293 | coding | 107.6% |              |
| 15 | 104692 | 294 | coding | 63.4%  | 36.6%        |
|    | 104693 | 295 | coding | 74.1%  | 25.9%        |
|    | 104694 | 296 | coding | 108.3% |              |
|    | 104695 | 297 | coding | 48.2%  | 51.8%        |
|    | 104696 | 298 | coding | 120.3% |              |
| 20 | 104697 | 299 | coding | 45.0%  | 55.0%        |
|    | 104698 | 300 | coding | 77.1%  | 22.9%        |
|    | 104699 | 301 | coding | 143.7% |              |
|    | 104700 | 302 | coding | 96.1%  | 3.9%         |
|    | 104701 | 303 | coding | 106.8% |              |
| 25 | 104702 | 304 | coding | 157.4% |              |
|    | 104703 | 305 | coding | 84.3%  | 15.7%        |
|    | 104704 | 306 | coding | 182.8% |              |
|    | 104705 | 307 | coding | 125.1% |              |
|    | 104706 | 308 | coding | 81.8%  | 18.2%        |
| 30 | 104707 | 309 | coding | 104.8% | <del>-</del> |

-111-

|    | 104708 | 310 | coding | 163.0% |       |
|----|--------|-----|--------|--------|-------|
|    | 104709 | 311 | coding | 95.0%  | 5.0%  |
|    | 104710 | 312 | coding | 182.1% |       |
|    | 104711 | 313 | coding | 82.1%  | 17.9% |
| 5  | 104712 | 314 | coding | 118.1% |       |
|    | 104713 | 315 | coding | 31.1%  | 68.9% |
|    | 104714 | 316 | coding | 90.5%  | 9.5%  |
|    | 104715 | 317 | coding | 96.7%  | 3.3%  |
|    | 104716 | 318 | coding | 180.7% |       |
| 10 | 104717 | 93  | coding | 71.6%  | 28.4% |
|    | 104718 | 94  | coding | 187.0% |       |
|    | 104719 | 319 | coding | 88.8%  | 11.2% |
|    | 104720 | 320 | coding | 166.5% |       |
|    | 104721 | 321 | coding | 65.0%  | 35.0% |
| 15 | 104722 | 322 | coding | 59.6%  | 40.4% |
|    | 104723 | 26  | coding | 90.1%  | 9.9%  |
|    | 104724 | 323 | coding | 88.7%  | 11.3% |
|    | 104725 | 90  | coding | 94.7%  | 5.3%  |
|    | 104726 | 91  | coding | 84.1%  | 15.9% |
| 20 | 104727 | 324 | coding | 125.3% |       |
|    | 104728 | 325 | coding | 221.7% |       |
|    | 104729 | 326 | coding | 102.4% |       |
|    | 104730 | 327 | coding | 151.6% |       |
|    | 104731 | 328 | coding | 102.2% |       |
| 25 | 104732 | 329 | coding | 53.2%  | 46.8% |
|    | 104733 | 330 | stop   | 57.0%  | 43.0% |
|    | 104734 | 88  | coding | 119.2% |       |
|    | 104735 | 331 | 3'-UTR | 71.2%  | 28.8% |
|    | 104736 | 332 | stop   | 79.0%  | 21.0% |
| 30 | 104737 | 333 | 3'-UTR | 87.4%  | 12.6% |
|    |        |     |        |        |       |

-112-

|    | 104738 | 334 | stop   | 36.8%  | 63.2% |
|----|--------|-----|--------|--------|-------|
|    | 104739 | 335 | 3'-UTR | 106.0% |       |
|    | 104740 | 336 | 3'-UTR | 130.9% |       |
|    | 104741 | 337 | 3'-UTR | 79.2%  | 20.8% |
| 5  | 104742 | 338 | 3'-UTR | 159.0% |       |
|    | 104743 | 339 | 3'-UTR | 96.1%  | 3.9%  |
|    | 104744 | 340 | 3'-UTR | 129.9% |       |
|    | 104745 | 341 | 3'-UTR | 80.2%  | 19.8% |
|    | 104746 | 342 | 3'-UTR | 168.8% |       |
| 10 | 104747 | 343 | 3'-UTR | 89.2%  | 10.8% |
|    | 104748 | 344 | 3'-UTR | 103.4% |       |
|    | 104749 | 345 | 3'-UTR | 89.0%  | 11.0% |
|    | 104750 | 346 | 3'-UTR | 160.0% |       |
|    | 104751 | 347 | 3'-UTR | 60.1%  | 39.9% |
| 15 | 104752 | 348 | 3'-UTR | 72.4%  | 27.6% |
|    | 104753 | 349 | 3'-UTR | 70.0%  | 30.0% |
|    | 104754 | 350 | 3'-UTR | 115.6% |       |
|    | 104755 | 351 | 3'-UTR | 71.7%  | 28.3% |
|    | 104756 | 352 | 3'-UTR | 91.5%  | 8.5%  |
| 20 | 104757 | 353 | 3'-UTR | 85.6%  | 14.4% |
|    | 104758 | 354 | 3'-UTR | 97.6%  | 2.4%  |
|    | 104759 | 355 | 3'-UTR | 68.6%  | 31.4% |
|    | 104760 | 356 | 3'-UTR | 182.4% |       |
|    | 104761 | 357 | 3'-UTR | 110.9% |       |
| 25 | 104762 | 358 | 3'-UTR | 161.4% |       |
|    | 104763 | 359 | 3'-UTR | 102.0% |       |
|    | 104764 | 360 | 3'-UTR | 113.5% |       |
|    | 104765 | 361 | 3'-UTR | 154.8% |       |
|    | 104766 | 362 | 3'-UTR | 126.4% |       |
| 30 | 104767 | 363 | 3'-UTR | 116.1% |       |
|    |        |     |        |        |       |

-113-

|    | 104768 | 364 | 3'-UTR | 177.7% |       |
|----|--------|-----|--------|--------|-------|
|    | 104769 | 365 | 3'-UTR | 89.8%  | 10.2% |
|    | 104770 | 366 | 3'-UTR | 94.3%  | 5.7%  |
|    | 104771 | 367 | 3'-UTR | 191.2% |       |
| 5  | 104772 | 368 | 3'-UTR | 80.3%  | 19.7% |
|    | 104773 | 369 | 3'-UTR | 133.9% |       |
|    | 104774 | 34  | 3'-UTR | 94.8%  | 5.2%  |
|    | 104775 | 370 | 3'-UTR | 80.6%  | 19.4% |
|    | 104776 | 371 | 3'-UTR | 90.1%  | 9.9%  |
| 10 | 104777 | 372 | 3'-UTR | 84.7%  | 15.3% |
|    | 104778 | 373 | 3'-UTR | 121.3% |       |
|    | 104779 | 374 | 3'-UTR | 97.8%  | 2.2%  |
|    | 104780 | 375 | 3'-UTR | 67.6%  | 32.4% |
|    | 104781 | 376 | 3'-UTR | 141.5% |       |
| 15 | 104782 | 377 | 3'-UTR | 96.5%  | 3.5%  |
|    | 104783 | 378 | 3'-UTR | 153.2% |       |
|    | 104784 | 379 | 3'-UTR | 85.4%  | 14.6% |
|    | 104785 | 380 | 3'-UTR | 163.9% |       |
|    | 104786 | 381 | 3'-UTR | 82.9%  | 17.1% |
| 20 | 104787 | 382 | 3'-UTR | 89.7%  | 10.3% |
|    | 104788 | 383 | 3'-UTR | 103.9% |       |
|    | 104789 | 384 | 3'-UTR | 75.8%  | 24.2% |
|    | 104790 | 385 | 3'-UTR | 106.3% |       |
|    | 104791 | 386 | 3'-UTR | 165.3% |       |
| 25 | 104792 | 387 | 3'-UTR | 71.8%  | 28.2% |
|    | 104793 | 388 | 3'-UTR | 101.9% |       |
|    | 104794 | 389 | 3'-UTR | 70.7%  | 29.3% |
|    | 104795 | 390 | 3'-UTR | 68.8%  | 31.2% |
|    | 104796 | 391 | 3'-UTR | 93.4%  | 6.6%  |
| 30 | 104797 | 37  | 3'-UTR | 131.7% |       |

-114-

|    | 104798 | 392 | 3'-UTR | 89.4%  | 10.6% |
|----|--------|-----|--------|--------|-------|
|    | 104799 | 393 | 3'-UTR | 89.6%  | 10.4% |
|    | 104800 | 394 | 3'-UTR | 89.0%  | 11.0% |
|    | 104801 | 395 | 3'-UTR | 196.8% |       |
| 5  | 104802 | 396 | 3'-UTR | 189.3% |       |
|    | 104803 | 397 | 3'-UTR | 119.7% |       |
|    | 104804 | 398 | 3'-UTR | 102.4% |       |
|    | 104805 | 399 | 3'-UTR | 90.6%  | 9.4%  |
|    | 104806 | 400 | 3'-UTR | 89.1%  | 10.9% |
| 10 | 104807 | 401 | 3'-UTR | 152.6% |       |
|    | 104808 | 402 | 3'-UTR | 96.8%  | 3.2%  |
|    | 104809 | 403 | 3'-UTR | 178.8% |       |
|    | 104810 | 404 | 3'-UTR | 94.9%  | 5.1%  |
|    | 104811 | 405 | 3'-UTR | 234.4% |       |
| 15 | 104812 | 406 | 3'-UTR | 114.3% |       |
|    | 104813 | 407 | 3'-UTR | 153.7% |       |
|    | 104814 | 408 | 3'-UTR | 86.3%  | 13.7% |
|    | 104815 | 409 | 3'-UTR | 153.9% |       |
|    | 104816 | 410 | 3'-UTR | 79.9%  | 20.1% |
| 20 | 104817 | 411 | 3'-UTR | 196.5% |       |
|    | 104818 | 412 | 3'-UTR | 94.3%  | 5.7%  |
|    | 104819 | 413 | 3'-UTR | 143.3% |       |
|    | 104820 | 414 | 3'-UTR | 123.8% |       |
|    | 104821 | 415 | 3'-UTR | 129.2% |       |
| 25 | 104822 | 416 | 5'-UTR | 76.6%  | 23.4% |
|    | 104823 | 417 | 5'-UTR | 63.9%  | 36.1% |
|    | 104824 | 418 | 5'-UTR | 22.0%  | 78.0% |
|    | 104825 | 419 | 5'-UTR | 109.4% |       |
|    | 104826 | 420 | 5'-UTR | 45.2%  | 54.8% |
| 30 | 104827 | 421 | 5'-UTR | 68.9%  | 31.1% |

|    | 104828 | 422 | 5'-UTR | 70.9%  | 29.1% |
|----|--------|-----|--------|--------|-------|
|    | 104829 | 423 | AUG    | 46.6%  | 53.4% |
|    | 104830 | 424 | coding | 55.0%  | 45.0% |
|    | 104831 | 425 | coding | 49.5%  | 50.5% |
| 5  | 104832 | 426 | coding | 106.0% |       |
|    | 104833 | 427 | coding | 23.7%  | 76.3% |
|    | 104834 | 428 | coding | 91.8%  | 8.2%  |
|    | 104835 | 429 | coding | 72.3%  | 27.7% |
|    | 104836 | 430 | coding | 63.4%  | 36.6% |
| 10 | 104837 | 431 | coding | 31.0%  | 69.0% |
|    | 104838 | 432 | coding | 18.0%  | 82.0% |
|    | 104839 | 433 | coding | 67.9%  | 32.1% |
|    | 104840 | 434 | coding | 93.8%  | 6.2%  |
|    | 104841 | 435 | coding | 43.0%  | 57.0% |
| 15 | 104842 | 436 | coding | 73.2%  | 26.8% |
|    | 104843 | 437 | coding | 48.1%  | 51.9% |
|    | 104844 | 438 | coding | 39.2%  | 60.8% |
|    | 104845 | 439 | coding | 37.6%  | 62.4% |
|    | 104846 | 440 | coding | 81.7%  | 18.3% |
| 20 | 104847 | 441 | coding | 50.8%  | 49.2% |
|    | 104848 | 442 | coding | 56.7%  | 43.3% |
|    | 104849 | 443 | coding | 51.8%  | 48.2% |
|    | 104850 | 444 | coding | 91.8%  | 8.2%  |
|    | 104851 | 445 | coding | 93.9%  | 6.1%  |
| 25 | 104852 | 446 | coding | 100.9% |       |
|    | 104853 | 447 | coding | 67.7%  | 32.3% |
|    | 104854 | 23  | coding | 11.0%  | 89.0% |
|    | 104855 | 448 | coding | 62.5%  | 37.5% |
|    | 104856 | 449 | coding | 67.8%  | 32.2% |
| 30 | 104857 | 92  | coding | 28.1%  | 71.9% |
|    |        |     |        |        |       |

|    | 104858 | 450 | coding | 76.2%  | 23.8% |
|----|--------|-----|--------|--------|-------|
|    | 104859 | 451 | coding | 52.3%  | 47.7% |
|    | 104860 | 452 | coding | 93.6%  | 6.4%  |
|    | 104861 | 89  | coding | 79.3%  | 20.7% |
| 5  | 104862 | 453 | coding | 63.1%  | 36.9% |
|    | 104863 | 454 | stop   | 64.5%  | 35.5% |
|    | 104864 | 455 | stop   | 43.2%  | 56.8% |
|    | 104865 | 456 | 3'-UTR | 83.1%  | 16.9% |
|    | 104866 | 457 | 3'-UTR | 49.4%  | 50.6% |
| 10 | 104867 | 458 | 3'-UTR | 49.5%  | 50.5% |
|    | 104868 | 459 | 3'-UTR | 89.6%  | 10.4% |
|    | 104869 | 460 | 3'-UTR | 21.4%  | 78.6% |
|    | 104870 | 461 | 3'-UTR | 118.0% |       |
|    | 104871 | 462 | 3'-UTR | 55.8%  | 44.2% |
| 15 | 104872 | 463 | 3'-UTR | 49.0%  | 51.0% |
|    | 104873 | 464 | 3'-UTR | 92.6%  | 7.4%  |
|    | 104874 | 465 | 3'-UTR | 33.4%  | 66.6% |
|    | 104875 | 466 | 3'-UTR | 36.2%  | 63.8% |
|    | 104876 | 467 | 3'-UTR | 73.4%  | 26.6% |
| 20 | 104877 | 468 | 3'-UTR | 40.9%  | 59.1% |
|    | 104878 | 469 | 3'-UTR | 78.7%  | 21.3% |
|    | 104879 | 470 | 3'-UTR | 75.4%  | 24.6% |
|    | 104880 | 471 | 3'-UTR | 50.2%  | 49.8% |
|    | 104881 | 472 | 3'-UTR | 47.0%  | 53.0% |
| 25 | 104882 | 473 | 3'-UTR | 82.7%  | 17.3% |
|    | 104883 | 474 | 3'-UTR | 46.4%  | 53.6% |
|    | 104884 | 475 | 3'-UTR | 46.1%  | 53.9% |
|    | 104885 | 476 | 3'-UTR | 156.9% |       |
|    | 104886 | 477 | 3'-UTR | 102.4% |       |
| 30 | 104887 | 478 | 3'-UTR | 59.1%  | 40.9% |

|    | 104888 | 479 | 3'-UTR | 64.7%  | 35.3%       |
|----|--------|-----|--------|--------|-------------|
|    | 104889 | 480 | 3'-UTR | 83.7%  | 16.3%       |
|    | 104890 | 481 | 3'-UTR | 52.9%  | 47.1%       |
|    | 104891 | 482 | 3'-UTR | 87.9%  | 12.1%       |
| 5  | 104892 | 483 | 3'-UTR | 39.8%  | 60.2%       |
|    | 104893 | 484 | 3'-UTR | 71.1%  | 28.9%       |
|    | 104894 | 485 | 3'-UTR | 34.0%  | 66.0%       |
|    | 104895 | 486 | 3'-UTR | 129.8% |             |
|    | 104896 | 487 | 3'-UTR | 57.6%  | 42.4%       |
| 10 | 104897 | 488 | 3'-UTR | 49.6%  | 50.4%       |
|    | 104898 | 489 | 3'-UTR | 71.7%  | 28.3%       |
|    | 104899 | 490 | 3'-UTR | 101.5% |             |
|    | 104900 | 491 | 3'-UTR | 142.1% | <del></del> |
|    | 104901 | 492 | 3'-UTR | 55.9%  | 44.1%       |
| 15 | 104902 | 493 | 3'-UTR | 85.3%  | 14.7%       |
|    | 104903 | 494 | 3'-UTR | 46.0%  | 54.0%       |
|    | 104904 | 495 | 3'-UTR | 59.9%  | 40.1%       |
|    | 104905 | 496 | 3'-UTR | 47.2%  | 52.8%       |
|    | 104906 | 497 | 3'-UTR | 56.3%  | 43.7%       |
|    |        |     |        |        |             |

Oligonucleotides 104662 (SEQ ID NO: 264), 104669 (SEQ ID NO: 271), 104670 (SEQ ID NO: 272), 104688 (SEQ ID NO: 290), 104695 (SEQ ID NO: 297), 104697 (SEQ ID NO: 299), 104713 (SEQ ID NO: 315), 104738 (SEQ ID NO:334), 104824 (SEQ ID NO: 418), 104826 (SEQ ID NO: 420), 104829 (SEQ ID NO: 423), 104831 (SEQ ID NO: 425), 104833 (SEQ ID NO: 427), 104837 (SEQ ID NO: 431), 104838 (SEQ ID NO: 432), 104841 (SEQ ID NO: 435), 104843 (SEQ ID NO: 437), 104844 (SEQ ID NO: 438), 104845 (SEQ ID NO: 439), 104847 (SEQ ID NO: 441), 104854 (SEQ ID NO: 23), 104857 (SEQ ID NO: 92), 104864 (SEQ ID NO: 455), 104866 (SEQ ID NO: 457), 104867 (SEQ ID NO: 463),

-118-

104874 (SEQ ID NO: 465), 104875 (SEQ ID NO: 466), 104877 (SEQ ID NO: 468), 104880 (SEQ ID NO: 471), 104881 (SEQ ID NO: 472), 104883 (SEQ ID NO: 474), 104884 (SEQ ID NO: 475), 104892 (SEQ ID NO: 483), 104894 (SEQ ID NO: 485), 104897

5 (SEQ ID NO: 488), 104903 (SEQ ID NO: 494) and 104905 (SEQ ID NO: 496) gave approximately 50% or greater reduction in TNF-α mRNA expression in this assay. Oligonucleotides 104713 (SEQ ID NO: 315), 104824 (SEQ ID NO: 418), 104833 (SEQ ID NO: 427), 104837 (SEQ ID NO: 431), 104838 (SEQ ID NO: 432), 104854 (SEQ ID NO: 23), 104857 (SEQ ID NO: 92), and 104869 (SEQ ID NO: 460) gave approximately 70% or greater reduction in TNF-α mRNA expression in this assay. EXAMPLE 23: Dose response of chimeric (deoxy gapped) antisense phosphorothicate oligodeoxynucleotide effects on TNF-α mRNA and protein levels

Several oligonucleotides from the initial screen were chosen for dose response assays. NeoHk cells were grown, treated and processed as described in Example 3.

LIPOFECTIN® was added at a ratio of 3 µg/ml per 100 nM of oligonucleotide. The control included LIPOFECTIN® at a concentration of 9 µg/ml.

The human promonocytic leukaemia cell line, THP-1 (American Type Culture Collection, Manassas, VA) was maintained in RPMI 1640 growth media supplemented with 10% 25 fetal calf serum (FCS; Life Technologies, Rockville, MD). A total of 8 x 10<sup>5</sup> cells were employed for each treatment by combining 50 µl of cell suspension in OPTIMEM<sup>TM</sup>, 1% FBS with oligonucleotide at the indicated concentrations to reach a final volume of 100 µl with OPTIMEM<sup>TM</sup>, 1% FBS. Cells were 30 then transferred to a 1 mm electroporation cuvette and electroporated using an Electrocell Manipulator 600 instrument (Biotechnologies and Experimental Research, Inc.) employing 90 V, 1000 µF, at 13 Ω. Electroporated

-119-

cells were then transferred to 24 well plates. 400  $\mu$ l of RPMI 1640, 10% FCS was added to the cells and the cells were allowed to recover for 6 hrs. Cells were then induced with LPS at a final concentration of 100 ng/ml for 2 hours. 5 RNA was isolated and processed as described in Example 3.

Results with NeoHK cells are shown in Table 33 for mRNA, and Table 34 for protein. Results with THP-1 cells are shown in Table 35.

Most of the oligonucleotides tested showed dose
10 response effects with a maximum inhibition of mRNA greater
than 70% and a maximum inhibition of protein greater than
85%.

|    | ISIS #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % mRNA<br>Expression | % mRNA<br>Inhibition |
|----|---------|------------------|--------------------|--------|----------------------|----------------------|
|    | induced |                  |                    |        | 100%                 |                      |
|    | 16798   | 128              | coding             | 30 nM  | 87%                  | 13%                  |
|    | II      | 11               | 11                 | 100 nM | 129%                 |                      |
| 20 | н       | II               | 11                 | 300 nM | 156%                 |                      |
|    | 21823   | 69               | intron 1           | 30 nM  | 82%                  | 18%                  |
|    | 11      | 11               | 11                 | 100 nM | 90%                  | 10%                  |
|    | 11      | 11               | 11                 | 300 nM | 59%                  | 41%                  |
|    | 28088   | 68               | intron 1           | 30 nM  | 68%                  | 32%                  |
| 25 | H .     | 11               | 11                 | 100 nM | 43%                  | 57%                  |
|    | 11      | 11               | 11                 | 300 nM | 42%                  | 58%                  |
|    | 28089   | 69               | intron 1           | 30 nM  | 59%                  | 41%                  |
|    | 11      | ***              | 11                 | 100 nM | 44%                  | 56%                  |
|    | 11      | 11               | 11                 | 300 nM | 38%                  | 62%                  |
| 30 | 104697  | 299              | coding             | 30 nM  | 60%                  | 40%                  |
|    | n       | 11               | 11                 | 100 nM | 45%                  | 55%                  |

|        |     |        | -120-  |     |     |
|--------|-----|--------|--------|-----|-----|
| 11     | 11  | 11     | 300 nM | 27% | 73% |
| 104777 | 372 | 3'-UTR | 30 nM  | 66% | 34% |
| 11     | II  | 11     | 100 nM | 55% | 45% |
| 11     | 11  | 11     | 300 nM | 43% | 57% |

|    | ISIS #  | SEQ<br>ID<br>NO: | ASO Gene<br>Target | Dose   | % Protein<br>Expression | % Protein<br>Inhibition |
|----|---------|------------------|--------------------|--------|-------------------------|-------------------------|
| -  | induced |                  |                    |        | 100.0%                  |                         |
| 10 | 16798   | 128              | coding             | 30 nM  | 115.0%                  |                         |
|    | 11      | ***              | 11                 | 100 nM | 136.0%                  |                         |
|    | 11      | **               | "                  | 300 nM | 183.0%                  |                         |
|    | 28089   | 69               | intron 1           | 30 nM  | 87.3%                   | 12.7%                   |
|    | 11      | 11               | 11                 | 100 nM | 47.4%                   | 52.6%                   |
| 15 | 11      | 11               | "                  | 300 nM | 22.8%                   | 77.2%                   |
|    | 104681  | 283              | coding             | 30 nM  | 91.3%                   | 8.7%                    |
|    | 11      | **               | n                  | 100 nM | 62.0%                   | 38.0%                   |
|    | 11      | ***              | "                  | 300 nM | 28.5%                   | 71.5%                   |
|    | 104697  | 299              | coding             | 30 nM  | 87.1%                   | 12.9%                   |
| 20 | II      | **               | II .               | 100 nM | 59.6%                   | 40.4%                   |
|    | II .    | 11               | II .               | 300 nM | 29.1%                   | 70.9%                   |
|    | 104838  | 432              | coding             | 30 nM  | 91.9%                   | 8.1%                    |
|    | 11      | ***              | H                  | 100 nM | 56.9%                   | 43.1%                   |
|    | 11      | **               | II                 | 300 nM | 14.8%                   | 85.2%                   |
| 25 | 104854  | 23               | coding             | 30 nM  | 64.4%                   | 35.6%                   |
|    | II      | 17               | 11                 | 100 nM | 42.3%                   | 57.7%                   |
|    | 11      | 11               | 11                 | 300 nM | 96.1%                   | 3.9%                    |
|    | 104869  | 460              | 3'-UTR             | 30 nM  | 88.9%                   | 11.1%                   |
|    | 11      | 11               | H                  | 100 nM | 56.8%                   | 43.2%                   |

-121-

" " 300 nM 42.3% 57.7%

TABLE 35

Dose Response of LPS-Induced THP-1 Cells to Chimeric (deoxy gapped) TNF-α Antisense Phosphorothioate

Oligodeoxynucleotides (ASOs)

5

|    | isis #  | SEQ ID<br>NO: | ASO Gene<br>Target | Dose  | % mRNA<br>Expression | % mRNA<br>Inhibition |
|----|---------|---------------|--------------------|-------|----------------------|----------------------|
| •  | induced |               |                    |       | 100%                 |                      |
|    | 16798   | 128           | coding             | 1 μΜ  | 102%                 |                      |
|    | 11      | II .          | 11                 | 3 μΜ  | 87%                  | 13%                  |
| 10 | 11      | 11            | 11                 | 10 μΜ | 113%                 |                      |
|    | 11      | #1            | tt.                | 30 μM | 134%                 |                      |
|    | 28089   | 69            | intron 1           | 1 μΜ  | 39%                  | 61%                  |
|    | 11      | 11            | 11                 | 3 µМ  | 79%                  | 21%                  |
|    | 11      | 11            | 11                 | 10 μΜ | 91%                  | 9%                   |
| 15 | 11      | 11            | 11                 | 30 μM | 63%                  | 37%                  |
|    | 104697  | 299           | coding             | 1 μΜ  | 99%                  | 1%                   |
|    | 17      | **            | 11                 | 3 μΜ  | 96%                  | 4%                   |
|    | 11      | 11            | 11                 | 10 μΜ | 92%                  | 8%                   |
|    | **      | 11            | 11                 | 30 μM | 52%                  | 48%                  |
| 20 | 104838  | 432           | coding             | 1 μΜ  | 31%                  | 69%                  |
|    | 11      | 11            | 11                 | 3 μМ  | 20%                  | 80%                  |
|    | 11      | Ħ             | п                  | 10 μΜ | 15%                  | 85%                  |
|    | 11      | Ħ             | II                 | 30 μM | 7%                   | 93%                  |
|    | 104854  | 23            | coding             | 1 μΜ  | 110%                 |                      |
| 25 | #1      | 11            | 11                 | 3 μΜ  | 90%                  | 10%                  |
|    | 11      | 11            | II                 | 10 μΜ | 95%                  | 5%                   |
|    | 11      | 11            | 11                 | 30 μM | 61%                  | 39%                  |

#### -122-

## EXAMPLE 24: Further Optimization of Human TNF- $\alpha$ Antisense Oligonucleotide Chemistry

Additional analogs of TNF- $\alpha$  oligonucleotides were designed and synthesized to find an optimum gap size. The 5 sequences and chemistries are shown in Table 36.

Dose response experiments are performed as described in Example 3.

TABLE 36

Nucleotide Sequences of TNF-α Chimeric Backbone (deoxy

10 gapped) Oligonucleotides

| _  | ISIS<br>NO. | NUCLEOTIDE SEQUENCE <sup>1</sup> (5' -> 3') | SEQ<br>ID<br>NO: | TARGET GENE<br>NUCLEOTIDE<br>CO-<br>ORDINATES <sup>2</sup> | GENE<br>TARGET<br>REGION |
|----|-------------|---------------------------------------------|------------------|------------------------------------------------------------|--------------------------|
|    | 110554      | GCTGATTAGAGAGAGGTCCC                        | 432              | 104838 aı                                                  | nalog                    |
|    | 110555      | <b>GCT</b> GATTAGAGAG <b>AGGTCCC</b>        | 11               | II.                                                        |                          |
| 15 | 110556      | <b>GC</b> TGATTAGAGA <b>GAGGTCCC</b>        | н                | 11                                                         |                          |
|    | 110557      | <b>G</b> CTGATTAGAG <b>AGAGGTCCC</b>        | 11               | п                                                          |                          |
|    | 110583      | GCTGATTAGA <b>GAGAGGTCCC</b>                | ff               | 11                                                         |                          |
|    | 110558      | CTGATTAGAGAGAGGTCCC                         | 498              | 1596-1614                                                  | coding                   |
|    | 110559      | CTGATTAGAGAGAGGTCCC                         | 11               | TT .                                                       | II                       |
| 20 | 110560      | CTGATTAGAGAGAGGTCCC                         | 11               | 11                                                         | 11                       |
|    | 110561      | CTGATTAGAGAGAGGTCCC                         | II               | II.                                                        | 11                       |
|    | 110562      | CTGATTAGAGAGAGGTCCC                         | 11               | п                                                          | 11                       |
|    | 110563      | <b>CT</b> GATTAGAGAG <b>AGGTCCC</b>         | Ħ                | 11                                                         | II                       |
|    | 110564      | CTGATTAGAGAGAGGTCCC                         | 11               | 11                                                         | 11                       |
| 25 | 110565      | CTGATTAGAGAGAGGTCCC                         | II               | 11                                                         | н                        |
|    | 110566      | <b>C</b> TGATTAGAGAG <b>AGGTCCC</b>         | 11               | 11                                                         | 11                       |
|    | 110567      | <b>C</b> TGATTAGAGA <b>GAGGTCCC</b>         | 11               | II.                                                        | 11                       |
|    | 110584      | CTGATTAGAGAGAGGTCCC                         | 11               | 11                                                         | 11                       |
|    | 108371      | CTGATTAGAGAGAGGTCC                          | 499              | 1597-1614                                                  | coding                   |

-123-

|    | 110568 | CTGATTAGAGAGAGGTCC                   | "   | 11        | 11       |
|----|--------|--------------------------------------|-----|-----------|----------|
|    | 110569 | CTGATTAGAGAGAGGTCC                   | 11  | 11        | II.      |
|    | 110570 | <b>C</b> TGATTAGAGA <b>GAGGTCC</b>   | 11  | 11        | "        |
|    | 110585 | CTGATTAGAG <b>AGAGGTCC</b>           | 11  | 11        | 11       |
| 5  | 110571 | CTGGTTATCTCTCAGCTCCA                 | 299 | 104697    | analog   |
|    | 110572 | CTGGTTATCTCTCAGCTCCA                 | 11  | 11        |          |
|    | 110573 | CTGGTTATCTCTCAGCTCCA                 | 11  | 11        |          |
|    | 110586 | CTGGTTATCT <b>CTCAGCTCCA</b>         | 11  | 11        |          |
|    | 110574 | GATCACTCCAAAGTGCAGCA                 | 283 | 104681    | analog   |
| 10 | 110575 | GATCACTCCAAAGTGCAGCA                 | 11  | 11        |          |
|    | 110576 | GATCACTCCAAAGTGCAGCA                 | 11  | II        |          |
|    | 110587 | GATCACTCCA <b>AAGTGCAGCA</b>         | n   | 11        |          |
|    | 110577 | <b>AGCTTGG</b> GTTCCGACCC <b>TAA</b> | 460 | 104689    | analog   |
|    | 110578 | <b>AGCTTGGG</b> TTCCGACCCT <b>AA</b> | II  | II        |          |
| 15 | 110579 | <b>AGC</b> TTGGGTTCCG <b>ACCCTAA</b> | 11  | II        |          |
|    | 110588 | AGCTTGGGTT <b>CCGACCCTAA</b>         | Ħ   | tt        |          |
|    | 110580 | <b>AGGTTGA</b> CCTTGGTCTG <b>GTA</b> | 315 | 104713    | analog   |
|    | 110581 | <b>AGGTTGAC</b> CTTGGTCTGG <b>TA</b> | II  | 11        |          |
|    | 110582 | <b>AGG</b> TTGACCTTGG <b>TCTGGTA</b> | 11  | Ħ         |          |
| 20 | 110589 | AGGTTGACCT <b>TGGTCTGGTA</b>         | 11  | ***       |          |
|    | 110637 | <b>GTGTG</b> CCAGACACCC <b>TATCT</b> | 69  | 21823     | analog   |
|    | 110651 | GTGTGCCAGACACCCTATCT                 | 11  | II        |          |
|    | 110665 | GTGTGCCAGACACCCTATCT                 | 11  | 11        |          |
|    | 110679 | <b>GT</b> GTGCCAGACA <b>CCCTATCT</b> | 11  | 11        |          |
| 25 | 110693 | <b>G</b> TGTGCCAGAC <b>ACCCTATCT</b> | 11  | II        |          |
|    | 110707 | GTGTGCCAGA <b>CACCCTATCT</b>         | 11  | 11        |          |
|    | 110590 | TGAGTGTCTTCTGTGTGCCA                 | 500 | 1411-1430 | intron 1 |
|    | 110597 | TGAGTGTCTTCTGTGTGCCA                 | II  | н         | 11       |
|    | 110604 | TGAGTGTCTTCTGTGTGCCA                 | 11  | "         | 11       |

-124-

|    | 110611 | TGAGTGTCTTCTGTGTGCCA                 | 11  | II        | 11       |
|----|--------|--------------------------------------|-----|-----------|----------|
|    | 110618 | TGAGTGTCTTCTGTGTGCCA                 | "   | 11        | "        |
|    | 110625 | TGAGTGTCTT <b>CTGTGTGCCA</b>         | 11  | 11        | u.       |
|    | 110591 | GAGTGTCTTCTGTGTGCCAG                 | 501 | 1410-1429 | intron 1 |
| 5  | 110598 | GAGTGTCTTCTGTGTGCCAG                 | ti  | 11        | 11       |
|    | 110605 | GAGTGTCTTCTGTGTGCCAG                 | II  | II        | 11       |
|    | 110612 | GAGTGTCTTCTGTGTGCCAG                 | 11  | Ħ         | 11       |
|    | 110619 | <b>G</b> AGTGTCTTCT <b>GTGTGCCAG</b> | 11  | Ħ         | 11       |
|    | 110626 | GAGTGTCTTC <b>TGTGTGCCAG</b>         | 11  | 11        | 11       |
| 10 | 110592 | <b>AGTGT</b> CTTCTGTGTG <b>CCAGA</b> | 144 | 100181    | analog   |
|    | 110599 | <b>AGTG</b> TCTTCTGTGT <b>GCCAGA</b> | 11  | 11        |          |
|    | 110606 | <b>AGT</b> GTCTTCTGTG <b>TGCCAGA</b> | 11  | 11        |          |
|    | 110613 | <b>AG</b> TGTCTTCTGT <b>GTGCCAGA</b> | 11  | 11        |          |
|    | 110620 | <b>A</b> GTGTCTTCTG <b>TGTGCCAGA</b> | 11  | H         |          |
| 15 | 110627 | AGTGTCTTCT <b>GTGTGCCAGA</b>         | 11  | 11        |          |
|    | 110593 | GTGTCTTCTGTGTGCCAGAC                 | 145 | 100182    | analog   |
|    | 110600 | GTGTCTTCTGTGTGCCAGAC                 | *** | II        |          |
|    | 110607 | GTGTCTTCTGTGTGCCAGAC                 | 11  | 11        |          |
|    | 110614 | <b>GT</b> GTCTTCTGTG <b>TGCCAGAC</b> | 11  | tl        |          |
| 20 | 110621 | GTGTCTTCTGTGTGCCAGAC                 | 11  | 11        |          |
|    | 110628 | GTGTCTTCTG <b>TGTGCCAGAC</b>         | 11  | 11        |          |
|    | 110594 | TGTCTTCTGTGTGCCAGACA                 | 146 | 100183    | analog   |
| •  | 110601 | TGTCTTCTGTGTGCCAGACA                 | 11  | tt        |          |
|    | 110608 | TGTCTTCTGTGTGCCAGACA                 | 11  | 11        |          |
| 25 | 110615 | TGTCTTCTGTGTGCCAGACA                 | 11  | 11        |          |
|    | 110622 | TGTCTTCTGTGTGCCAGACA                 | 11  | 11        |          |
|    | 110629 | TGTCTTCTGTGTGCCAGACA                 | 11  | 11        |          |
|    | 110595 | GTCTTCTGTGTGCCAGACAC                 | 147 | 100184    | analog   |
|    | 110602 | GTCTTCTGTGTGCCAGACAC                 | 11  | 11        |          |

-125-

|    | 110609 | <b>GTC</b> TTCTGTGTGC <b>CAGACAC</b> | 11   | 11            |
|----|--------|--------------------------------------|------|---------------|
|    | 110616 | <b>GT</b> CTTCTGTGTG <b>CCAGACAC</b> | 11   | Ħ             |
|    | 110623 | <b>G</b> TCTTCTGTGT <b>GCCAGACAC</b> | 11   | TI .          |
|    | 110630 | GTCTTCTGTGTGCCAGACAC                 | 11   | 17            |
| 5  | 110596 | TCTTCTGTGTGCCAGACACC                 | 148  | 100185 analog |
|    | 110603 | TCTTCTGTGTGCCAGACACC                 | II   | II            |
|    | 110610 | TCTTCTGTGTGCCAGACACC                 | 11   | п             |
|    | 110617 | TCTTCTGTGTGCCAGACACC                 | II . | tt            |
|    | 110624 | TCTTCTGTGTGCCAGACACC                 | 11   | 11            |
| 10 | 110631 | TCTTCTGTGTGCCAGACACC                 | 11   | 11            |
|    | 110632 | CTTCTGTGTGCCAGACACCC                 | 149  | 100186 analog |
|    | 110646 | CTTCTGTGTGCCAGACACCC                 | n    | 11            |
|    | 110660 | CTTCTGTGTGCCAGACACCC                 | 11   | π             |
|    | 110674 | CTTCTGTGTGCCAGACACCC                 | 11   | 11            |
| 15 | 110688 | CTTCTGTGTGCCAGACACCC                 | 11   | 11            |
|    | 110702 | CTTCTGTGTGCCAGACACCC                 | 11   | 11            |
|    | 110633 | TTCTGTGTGCCAGACACCCT                 | 150  | 100187 analog |
|    | 110647 | TTCTGTGTGCCAGACACCCT                 | 11   | H             |
|    | 110661 | TTCTGTGTGCCAGACACCCT                 | ti . | Ħ             |
| 20 | 110675 | TTCTGTGTGCCAGACACCCT                 | 11   | 11            |
|    | 110689 | TTCTGTGTGCCAGACACCCT                 | 11   | II            |
|    | 110703 | TTCTGTGTGCCAGACACCCT                 | 11   | 11            |
|    | 110634 | TCTGTGTGCCAGACACCCTA                 | 151  | 100188 analog |
|    | 110648 | TCTGTGTGCCAGACACCCTA                 | 11   | н             |
| 25 | 110662 | TCTGTGTGCCAGACACCCTA                 | II . | 11            |
|    | 110676 | TCTGTGTGCCAGACACCCTA                 | 11   | 11            |
|    | 110690 | TCTGTGTGCCAGACACCCTA                 | 11   | 11            |
|    | 110704 | TCTGTGTGCCAGACACCCTA                 | ***  | 11            |
|    | 110635 | CTGTGTGCCAGACACCCTAT                 | 152  | 100189 analog |

WO 00/20645

-126-

|    | 110649 | CTGTGTGCCAGACACCCTAT                 | 11  | 11     |        |
|----|--------|--------------------------------------|-----|--------|--------|
|    | 110663 | CTGTGTGCCAGACACCCTAT                 | 11  | 11     |        |
|    | 110677 | CTGTGTGCCAGACACCCTAT                 | 11  | 11     |        |
|    | 110691 | CTGTGTGCCAGACACCCTAT                 | 11  | n      |        |
| 5  | 110705 | CTGTGTGCCAGACACCCTAT                 | 11  | 11     | •      |
|    | 110636 | TGTGTGCCAGACACCCTATC                 | 153 | 100190 | analog |
|    | 110650 | TGTGTGCCAGACACCCTATC                 | "   | 11     |        |
|    | 110664 | TGTGTGCCAGACACCCTATC                 | 11  | 11     |        |
|    | 110678 | TGTGTGCCAGACACCCTATC                 | и.  | 11     |        |
| 10 | 110692 | TGTGTGCCAGACACCCTATC                 | 11  | 11     |        |
|    | 110706 | TGTGTGCCAGACACCCTATC                 | 11  | "      |        |
|    | 110638 | TGTGCCAGACACCCTATCTT                 | 154 | 100191 | analog |
|    | 110652 | TGTGCCAGACACCCTATCTT                 | 11  | п      |        |
|    | 110666 | TGTGCCAGACACCCTATCTT                 | 11  | II     |        |
| 15 | 110680 | TGTGCCAGACACCCTATCTT                 | 11  | 11     |        |
|    | 110694 | TGTGCCAGACACCCTATCTT                 | 11  | H      |        |
|    | 110708 | TGTGCCAGACACCCTATCTT                 | 11  | 11     | ·      |
|    | 110639 | <b>GTGCC</b> AGACACCCTA <b>TCTTC</b> | 155 | 100192 | analog |
|    | 110653 | <b>GTGC</b> CAGACACCCT <b>ATCTTC</b> | 11  | п      |        |
| 20 | 110667 | <b>GTG</b> CCAGACACCC <b>TATCTTC</b> | 11  | II.    |        |
|    | 110681 | <b>GT</b> GCCAGACACC <b>CTATCTTC</b> | 11  | u      |        |
|    | 110695 | GTGCCAGACACCCTATCTTC                 | 11  | "      |        |
|    | 110709 | GTGCCAGACACCCTATCTTC                 | 11  | 11     |        |
|    | 110640 | TGCCAGACACCCTATCTTCT                 | 156 | 100193 | analog |
| 25 | 110654 | TGCCAGACACCCTATCTTCT                 | *1  | 11     |        |
|    | 110668 | TGCCAGACACCCTATCTTCT                 | 11  | II     |        |
|    | 110682 | TGCCAGACACCCTATCTTCT                 | 11  | 11     |        |
|    | 110696 | TGCCAGACACCCTATCTTCT                 | **  | 11     |        |
|    | 110710 | TGCCAGACACCCTATCTTCT                 | 11  | II     |        |
|    |        |                                      |     |        |        |

-127-

|    | 110641 | GCCAGACACCCTATCTTCTT                 | 157 | 100194 analog |
|----|--------|--------------------------------------|-----|---------------|
|    | 110655 | <b>GCCA</b> GACACCCTAT <b>CTTCTT</b> | 11  | 11            |
|    | 110669 | <b>GCC</b> AGACACCCTA <b>TCTTCTT</b> | "   | н             |
|    | 110683 | <b>GC</b> CAGACACCCT <b>ATCTTCTT</b> | 11  | II            |
| 5  | 110697 | <b>G</b> CCAGACACCC <b>TATCTTCTT</b> | 11  | 11            |
|    | 110711 | GCCAGACACCCTATCTTCTT                 | 11  | m .           |
|    | 110642 | CCAGACACCCTATCTTCTTC                 | 158 | 100195 analog |
|    | 110656 | CCAGACACCCTATCTTCTTC                 | 11  | 11            |
|    | 110670 | <b>CCA</b> GACACCCTAT <b>CTTCTTC</b> | *** | н             |
| 10 | 110684 | CCAGACACCCTATCTTCTTC                 | 11  | п             |
|    | 110698 | <b>C</b> CAGACACCCT <b>ATCTTCTTC</b> | "   | 11            |
|    | 110712 | CCAGACACCCTATCTTCTTC                 | 11  | н             |
|    | 110643 | CAGACACCCTATCTTCTTCT                 | 159 | 100196 analog |
|    | 110657 | CAGACACCCTATCTTCTT                   | ŧŧ  | 11            |
| 15 | 110671 | CAGACACCCTATCTTCTT                   | II  | 11            |
|    | 110685 | <b>CA</b> GACACCCTAT <b>CTTCT</b>    | 11  | II            |
|    | 110699 | CAGACACCCTATCTTCTTCT                 | 11  | 11            |
|    | 110713 | CAGACACCCTATCTTCTT                   |     | II .          |
|    | 110644 | <b>AGACA</b> CCCTATCTTC <b>TTCTC</b> | 160 | 100197 analog |
| 20 | 110658 | <b>AGAC</b> ACCCTATCTT <b>CTTCTC</b> | 11  | 11            |
|    | 110672 | <b>AGA</b> CACCCTATCT <b>TCTTCTC</b> | 11  | II            |
|    | 110686 | <b>AG</b> ACACCCTATC <b>TTCTC</b>    | 11  | п             |
|    | 110700 | <b>A</b> GACACCCTAT <b>CTTCTC</b>    | 11  | 11            |
|    | 110714 | AGACACCCTATCTTCTC                    | 11  | 11            |
| 25 | 110645 | GACACCCTATCTTCTCTCT                  | 161 | 100198 analog |
|    | 110659 | GACACCCTATCTTCTCTCT                  | 11  | п             |
|    | 110673 | GACACCCTATCTTCTCT                    | 11  | 11            |
|    | 110687 | <b>GA</b> CACCCTATCT <b>TCTTCTCT</b> | 11  | 11            |
|    |        |                                      |     |               |

-128-

110701 GACACCCTATCTTCTCT "

110715 GACACCCTATCTTCTCT " "

1 Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines and 2'-5 deoxycytidines are 5-methyl-cytidines; all linkages are phosphorothioate linkages.

<sup>2</sup>Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

# Example 25: Effect of TNF- $\alpha$ antisense oligonucleotides in 10 TNF- $\alpha$ transgenic mouse models

The effect of TNF-α antisense oligonucleotides is studied in transgenic mouse models of human diseases. Such experiments can be performed through contract laboratories (e.g. The Laboratory of Molecular Genetics at The Hellenic Pasteur Institute, Athens, Greece) where such transgenic mouse models are available. Such models are available for testing human oligonucleotides in arthritis (Keffer, J., et al., EMBO J., 1991, 10, 4025-4031) and multiple sclerosis (Akassoglou, K., et al., J. Immunol., 1997, 158, 438-445) models. A model for inflammatory bowel disease is available for testing mouse oligonucleotides (Kontoyiannis, D., et al., Immunity, 1999, 10, 387-398).

Briefly, litters of the appropriate transgenic mouse strain are collected and weighed individually. Twice

25 weekly from birth, oligonucleotide in saline is administered intraperitoneally or intravenously.

Injections continue for 7 weeks. Each week the animals are scored for manifestations of the appropriate disease.

After the final treatment, the mice are sacrificed and histopathology is performed for indicators of disease as indicated in the references cited for each model.

### What is claimed is:

- An oligonucleotide 8 to 30 nucleotides in length comprising a nucleotide sequence complementary to an intron of a nucleic acid encoding human tumor necrosis factor-α,
   wherein said oligonucleotide inhibits the expression of said human tumor necrosis factor-α.
- 2. The oligonucleotide of claim 1 wherein said intron is intron 1 of a nucleic acid encoding human tumor 10 necrosis factor- $\alpha$ .
  - 3. The oligonucleotide of claim 2 comprising SEQ ID NO:66, SEQ ID NO:69, SEQ ID NO:149 or SEQ ID NO:157.
- The oligonucleotide of claim 1 wherein said intron is intron 2 of a nucleic acid encoding human tumor
   necrosis factor-α.
  - 5. The oligonucleotide of claim 1 wherein said intron is intron 3 of a nucleic acid encoding human tumor necrosis factor- $\alpha$ .
- The oligonucleotide of claim 5 comprising SEQ ID
   NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82 or SEQ ID
   NO:84.
  - 7. The oligonucleotide of claim 1 which contains at least one phosphorothicate intersugar linkage.
- 8. The oligonucleotide of claim 1 which has at least 25 one 2'-O-methoxyethyl modification.

-130-

- 9. The oligonucleotide of claim 1 which contains at least one 5-methyl cytidine.
- 10. The oligonucleotide of claim 8 in which every 2'-O-methoxyethyl modified cytidine residue is a 5-methyl 5 cytidine.
  - 11. The oligonucleotide of claim 9 in which every cytidine residue is a 5-methyl cytidine.
  - 12. The oligonucleotide of claim 1 which contains at least one methylene(methylimino) intersugar linkage.
- 10 13. A composition comprising the oligonucleotide of claim 1 and a pharmaceutically acceptable carrier or diluent.
- 14. The composition of claim 13 wherein said pharmaceutically acceptable carrier or diluent comprises a 15 lipid or liposome.
  - 15. A method of modulating the expression of human tumor necrosis factor- $\alpha$  in cells or tissue comprising contacting said cells or tissue with the oligonucleotide of claim 1.
- 16. A method of reducing an inflammatory response of human cells comprising contacting said human cells with the oligonucleotide of claim 1.
  - 17. A method of treating a human having a disease or condition associated with tumor necrosis factor- $\alpha$

comprising administering to said animal a therapeutically or prophylactically effective amount of an oligonucleotide of claim 1.

-131-

- 18. The method of claim 17 wherein said administering 5 is through oral delivery.
  - 19. The method of claim 17 wherein the disease or condition is associated with overexpression of tumor necrosis factor- $\alpha$ .
- 20. The method of claim 19 wherein said disease or 10 condition is an inflammatory or autoimmune disease or condition.
- 21. The method of claim 20 wherein said inflammatory or autoimmune disease or condition is diabetes, inflammatory bowel disease, multiple sclerosis,
  15 pancreatitis, rheumatoid arthritis, hepatitis, atopic dermatitis or allograft rejection.
  - 22. The method of claim 19 wherein said disease or condition is an infectious disease.
- 23. The method of claim 22 wherein said infectious 20 disease is hepatitis.
- 24. An oligonucleotide complementary to a nucleic acid molecule encoding human tumor necrosis factor-α, wherein said oligonucleotide inhibits the expression of said human tumor necrosis factor-α and comprises SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:39, SEQ ID NO:88, SEQ ID NO:90, SEQ ID

-132-

- NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:102, SEQ ID NO:264, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:290, SEQ ID NO:297, SEQ ID NO:299, SEQ ID NO: 315, SEQ ID NO:334, SEQ ID NO:418, SEQ ID NO:420, SEQ ID NO:423, SEQ ID NO:425, SEQ ID NO:427, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:435, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:441, SEQ ID NO:455, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:460, SEQ ID NO:463, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:468, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:483, SEQ ID NO:485, SEQ ID NO:485, SEQ ID NO:486.
  - 25. The oligonucleotide of claim 24 which contains at least one phosphorothicate intersugar linkage.
- 26. The oligonucleotide of claim 24 which has at 15 least one 2'-O-methoxyethyl modification.
  - 27. The oligonucleotide of claim 24 which contains at least one 5-methyl cytidine.
- 28. The oligonucleotide of claim 26 in which every 2'-O-methoxyethyl modified cytidine residue is a 5-methyl 20 cytidine.
  - 29. The oligonucleotide of claim 27 in which every cytidine residue is a 5-methyl cytidine.
  - 30. The oligonucleotide of claim 24 which contains at least one methylene (methylimino) intersugar linkage.
- 25 31. A composition comprising the oligonucleotide of claim 24 and a pharmaceutically acceptable carrier or diluent.

WO 00/20645

-133-

PCT/US99/23205

- 32. The composition of claim 31 wherein said pharmaceutically acceptable carrier or diluent comprises a lipid or liposome.
- 33. A method of modulating the expression of human 5 tumor necrosis factor- $\alpha$  in cells or tissue comprising contacting said cells or tissue with the oligonucleotide of claim 24.
- 34. A method of reducing an inflammatory response of 10 human cells comprising contacting said human cells with the oligonucleotide of claim 24.
- 35. A method of treating a human having a disease or condition associated with tumor necrosis factor- $\alpha$  comprising administering to said animal a therapeutically or prophylactically effective amount of an oligonucleotide of claim 24.
  - 36. The method of claim 35 wherein said administering is through oral delivery.
- 37. The method of claim 35 wherein the disease or 20 condition is associated with overexpression of tumor necrosis factor- $\alpha$ .
  - 38. The method of claim 37 wherein said disease or condition is an inflammatory or autoimmune disease or condition.
- 39. The method of claim 38 wherein said inflammatory or autoimmune disease or condition is diabetes, inflammatory bowel disease, multiple sclerosis,

WO 00/20645

-134-

PCT/US99/23205

pancreatitis, rheumatoid arthritis, atopic dermatitis or allograft rejection.

- 40. The method of claim 39 wherein said disease or condition is an infectious disease.
- 5 41. The method of claim 40 wherein said infectious disease is hepatitis.
- 42. An oligonucleotide 8 to 30 nucleotides in length comprising a nucleotide sequence complementary to a nucleic acid encoding human tumor necrosis factor-α, wherein said
  10 oligonucleotide inhibits the expression of said human tumor necrosis factor-α, and has at least one 2'-O-methoxyethyl modification.
- 43. An oligonucleotide 8 to 30 nucleotides in length comprising a nucleotide sequence complementary to a nucleic 15 acid encoding human tumor necrosis factor- $\alpha$ , wherein said oligonucleotide inhibits the expression of said human tumor necrosis factor- $\alpha$ , and contains at least one 5-methyl cytidine.
- 44. The oligonucleotide of claim 42 in which every 20 2'-O-methoxyethyl modified cytidine residue is a 5-methyl cytidine.
  - 45. The oligonucleotide of claim 43 in which every cytidine residue is a 5-methyl cytidine.
- 46. An oligonucleotide 8 to 30 nucleotides in length 25 comprising a nucleotide sequence complementary to a nucleic acid encoding human tumor necrosis factor-α, wherein said oligonucleotide inhibits the expression of said human tumor

-135-

necrosis factor- $\alpha$ , and which contains at least one methylene (methylimino) intersugar linkage.

47. An antisense oligonucleotide capable of modulating gene expression in adipose tissue.

5

- 48. The antisense oligonucleotide of claim 47 which is targeted to human tumor necrosis factor- $\alpha$ .
- 49. A method of modulating the expression of a selected gene product in adipose tissue comprising10 contacting said adipose tissue with an antisense compound targeted to said selected gene.
  - 50. The method of claim 49 wherein said selected gene product is tumor necrosis factor- $\alpha$ .
- 51. A method of modulating the function of a selected 15 nucleic acid sequence in adipose tissue comprising contacting said adipose tissue with an antisense compound targeted to said selected nucleic acid sequence.
  - 52. The method of claim 51 wherein said selected nucleic acid sequence encodes tumor necrosis factor- $\alpha$ .
- 20 53. A method of treating a human having a disease or condition associated with expression of a selected nucleic acid sequence in adipose tissue comprising administering to said animal a therapeutically or prophylactically effective amount of an antisense compound targeted to said selected nucleic acid sequence.
  - 54. The method of claim 53 wherein said adminstering is through oral delivery.

-136-

- 55. A method of reducing the blood glucose level in a human comprising administering to said animal a therapeutically or prophylactically effective amount of an oligonucleotide of claim 1.
- 5 56. A method of reducing the blood glucose level in a human comprising administering to said animal a therapeutically or prophylactically effective amount of an oligonucleotide of claim 24.

### WO 00/20645 PCT/US99/23205 SEQUENCE LISTING

| <110> | Baker, Brenda Bennett, C. Frank Butler, Madeline M. Shanahan, William R. Isis Pharmaceuticals, Inc. |
|-------|-----------------------------------------------------------------------------------------------------|
| <120> | ANTISENSE OLIGONUCLEOTIDE MODULATION OF TUMOR NECROSIS FACTOR- $\alpha$ (TNF- $\alpha$ ) EXPRESSION |
| <130> | ISPH-0409                                                                                           |
| <150> | 09/313,932                                                                                          |
| <151> | 1999-05-18                                                                                          |
|       | ·                                                                                                   |
| <150> | 09/166,168                                                                                          |
| <151> | 1998-10-05                                                                                          |
|       |                                                                                                     |
| <160> | 501                                                                                                 |
|       |                                                                                                     |
| <210> | 1                                                                                                   |
| <211> | 3634                                                                                                |
| <212> | DNA                                                                                                 |
| <213> | Homo sapiens                                                                                        |
|       |                                                                                                     |
| <220> |                                                                                                     |
| <221> | CDS                                                                                                 |
| <222> | (796981,15891634,18221869,21712592)                                                                 |
|       |                                                                                                     |
| <220> |                                                                                                     |
| <221> | exon                                                                                                |
| <222> | (615)(981)                                                                                          |
|       |                                                                                                     |
| <220> |                                                                                                     |
| <221> | intron                                                                                              |
| <222> | (982)(1588)                                                                                         |
|       |                                                                                                     |
| <220> |                                                                                                     |
| <221> | exon                                                                                                |
| <222> | (1589)(1634)                                                                                        |
| 1000- |                                                                                                     |
| <220> |                                                                                                     |
| <221> | intron                                                                                              |
| <222> | (1635)(1821)                                                                                        |
| <220> |                                                                                                     |

```
<221>
           exon
<222>
           (1822)..(1869)
<220>
<221>
           intron
<222>
           (1870)..(2070)
<220>
<221>
           exon
<222>
           (2171)..(3381)
<300>
<301>
           Nedwin, G.E.
           Naylor, S.L.
           Sakaguchi, A.Y.
           Smith, D.
           Jarrett-Nedwin, J.
           Pennica, D.
           Goeddel, D.V.
           Gray, P.W.
           Human lymphotoxin and tumor necrosis factor genes: structure,
<302>
           homology and chromosomal localization
           Nucleic Acids Res.
<303>
<304>
           13
<305>
           17
<306>
           6361-6373
<307>
           1985-09-11
<308>
           X02910 Genbank
<309>
           1997-02-17
<400>
           1
gaatteeggg tgattteact eceggetgte eaggettgte etgetacece acceaquett
                                                                    60
tectgaggee teaageetge caccaageee ceageteett eteecegeag gacccaaaca
                                                                    120
caggeeteag gaeteaacae agetttteee tecaaceegt ttteteteee teaacggaet
                                                                    180
cagetttetg aageceetee cagttetagt tetatetttt teetgeatee tgtetggaag
                                                                    240
ttagaaggaa acagaccaca gacctggtcc ccaaaagaaa tggaggcaat aggttttgag
                                                                    300
```

| gggcatgggg              | acggggttca   | gcctccaggg   | tcctacacac  | aaatcagtca                       | gtggcccaga   | 360  |
|-------------------------|--------------|--------------|-------------|----------------------------------|--------------|------|
| agacccccct              | cggaatcgga   | gcagggagga   | tggggagtgt  | gaggggtatc                       | cttgatgctt   | 420  |
| gtgtgtcccc              | aactttccaa   | atccccgccc   | ccgcgatgga  | gaagaaaccg                       | agacagaagg   | 480  |
| tgcagggccc              | actaccgctt   | cctccagatg   | agctcatggg  | tttctccacc                       | aaggaagttt   | 540  |
| teegetggtt              | gaatgattct   | ttccccgccc   | tectetegee  | ccagggacat                       | ataaaggcag   | 600  |
| ttgttggcac              | acccagccag   | cagacgctcc   | ctcagcaagg  | acagcagagg                       | accagctaag   | 660  |
| agggagagaa              | gcaactacag   | acccccctg    | aaaacaaccc  | tcagacgcca                       | catcccctga   | 720  |
| caagctgcca              | ggcaggttct   | cttcctctca   | catactgacc  | cacggcttca                       | ccctctctcc   | 780  |
| cctggaaagg              |              |              |             | c cgg gac gt<br>Arg Asp Va       | <del>-</del> | 831  |
|                         |              |              |             | ccc cag ggc<br>Pro Gln Gly<br>25 |              | 879  |
|                         |              |              |             | atc gtg gca<br>Ile Val Ala<br>40 |              | 927  |
|                         |              | u Leu His P  |             | atc ggc ccc<br>Ile Gly Pro       |              | 975  |
| gaa gag gtga<br>Glu Glu | agtgeet gge  | cagcett cat  | ccactct ccc | acccaag ggg                      | aaatgag      | 1031 |
| agacgcaaga g            | gagggagaga   | gatgggatgg ( | gtgaaagatg  | tgcgctgata                       | gggagggatg   | 1091 |
| agagagaaaa a            | aaacatggag   | aaagacgggg a | atgcagaaag  | agatgtggca                       | agagatgggg   | 1151 |
| aagagagaga (            | gagaaagatg q | gagagacagg a | atgtctggca  | catggaaggt (                     | gctcactaag   | 1211 |
| tgtqtatqqa o            | gtgaatgaat o | gaatgaatga a | atgaacaagc  | agatatataa :                     | ataagatatg   | 1271 |

| gagacagatg tggggtgtga gaagagaat gggggaagaa acaagtgata tgaataaaga                                                                             | 1331 |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| tggtgagaca gaaagagcgg gaaatatgac agctaaggag agagatgggg gagataagga                                                                            | 1391 |
| gagaagaaga tagggtgtct ggcacacaga agacactcag ggaaagagct gttgaatgct                                                                            | 1451 |
| ggaaggtgaa tacacagatg aatggagaga gaaaaccaga cacctcaggg ctaagagcgc                                                                            | 1511 |
| aggecagaca ggcagccage tgtteeteet ttaagggtga eteeetegat gttaaccatt                                                                            | 1571 |
| ctccttctcc ccaacag ttc ccc agg gac ctc tct cta atc agc cct ctg  Phe Pro Arg Asp Leu Ser Leu Ile Ser Pro Leu  65 70                           | 1621 |
| gcc cag gca gtc agtaagtgtc tccaaacctc tttcctaatt ctgggtttgg<br>Ala Gln Ala Val<br>75                                                         | 1673 |
| gtttgggggt agggttagta ccggtatgga agcagtgggg gaaatttaaa gttttggtct                                                                            | 1733 |
| tgggggagga tggatggagg tgaaagtagg ggggtatttt ctaggaagtt taagggtctc                                                                            | 1793 |
| agetttttet tttetetete etettea gga tea tet tet ega ace eeg agt gae<br>Arg Ser Ser Ser Arg Thr Pro Ser Asp<br>80 85                            | 1847 |
| aag oot gta goo oat gtt gta ggtaagagot otgaggatgt gtottggaac<br>Lys Pro Val Ala His Val Val<br>90                                            | 1898 |
| ttggagggct aggatttggg gattgaagcc cggctgatgg taggcagaac ttggagacaa                                                                            | 1958 |
| tgtgagaagg actcgctgag ctcaagggaa gggtggagga acagcacagg ccttagtggg                                                                            | 2018 |
| atactcagaa cgtcatggcc aggtgggatg tgggatgaca gacagagagg acaggaaccg                                                                            | 2078 |
| gatgtggggt gggcagaget egagggecag gatgtggaga gtgaacegae atggecacae                                                                            | 2138 |
| tgactctcct ctccctctct ccctccctcc a gca aac cct caa gct gag ggg Ala Asn Pro Gln Ala Glu Gly 95                                                | 2190 |
| cag ctc cag tgg ctg aac cgc cgg gcc aat gcc ctc ctg gcc aat ggc Gln Leu Gln Trp Leu Asn Arg Arg Ala Asn Ala Leu Leu Ala Asn Gly  105 110 115 | 2238 |

|                                                                        |      |       |      |       |              |       |      |      |              |             | tca   |       |             |       |       | 2286  |
|------------------------------------------------------------------------|------|-------|------|-------|--------------|-------|------|------|--------------|-------------|-------|-------|-------------|-------|-------|-------|
| Val                                                                    | Glu  | Leu   |      | Asp   | Asn          | Gln   | Leu  |      | Val          | Pro         | Ser   | Glu   | _           | Leu   | Tyr   |       |
|                                                                        |      |       | 120  |       |              |       |      | 125  |              |             |       |       | 130         |       |       |       |
| ctc                                                                    | atc  | tac   | tcc  | caq   | atc          | ctc   | ttc  | aad  | aac          | caa         | ggc   | tac   | ccc         | taa   | 3.00  | 2334  |
|                                                                        |      |       |      |       |              |       |      |      |              |             | Gly   |       |             |       |       | 2334  |
|                                                                        |      | 135   |      | 0     | • • • •      | Deu   | 140  | טענב | Cry          | 0111        | Gry   | 145   | FIO         | Ser   | 1111  |       |
|                                                                        |      |       |      |       |              |       |      |      |              |             |       | 143   |             |       |       |       |
| cat                                                                    | gtg  | ctc   | ctc  | acc   | cac          | acc   | atc  | agc  | cgc          | atc         | gcc   | gtc   | tcc         | tac   | cag   | 2382  |
| His                                                                    | Val  | Leu   | Leu  | Thr   | His          | Thr   | Ile  | Ser  | Arg          | Ile         | Ala   | Val   | Ser         | Tyr   | Gln   |       |
|                                                                        | 150  |       |      |       |              | 155   |      |      |              |             | 160   |       |             | _     |       |       |
|                                                                        |      |       |      |       |              |       |      |      |              |             |       |       |             |       |       |       |
| acc                                                                    | aag  | gtc   | aac  | ctc   | ctc          | tct   | gcc  | atc  | aag          | agc         | ccc   | tgc   | cag         | agg   | gag   | 2430  |
| Thr                                                                    | Lys  | Val   | Asn  | Leu   | Leu          | Ser   | Ala  | Ile  | Lys          | Ser         | Pro   | Cys   | Gln         | Arg   | Glu   |       |
| 165                                                                    |      |       |      |       | 170          |       |      |      |              | <b>17</b> 5 |       |       |             |       | 180   |       |
|                                                                        |      |       |      |       |              |       |      |      |              |             |       |       |             |       |       |       |
|                                                                        |      |       |      |       |              |       |      |      |              |             | gag   |       |             |       | •     | 2478  |
| Thr                                                                    | Pro  | Glu   | Gly  | Ala   | Glu          | Ala   | Lys  | Pro  | Trp          | Tyr         | Glu   | Pro   | Ile         | Tyr   | Leu   |       |
|                                                                        |      |       |      | 185   |              |       |      |      | 190          |             |       |       |             | 195   |       |       |
|                                                                        |      |       |      |       |              |       |      |      |              |             |       |       |             |       |       |       |
|                                                                        |      |       |      |       |              |       |      |      |              |             | ctc   |       |             |       |       | 2526  |
| Gly                                                                    | Gly  | Val   | Phe  | Gln   | Leu          | Glu   | Lys  | Gly  | Asp          | Arg         | Leu   | Ser   | Ala         | Glu   | Ile   |       |
|                                                                        |      |       | 200  |       |              |       |      | 205  |              |             |       |       | 210         |       |       |       |
|                                                                        |      |       |      |       |              |       |      |      |              |             |       |       |             |       |       |       |
| aat                                                                    |      |       |      |       |              |       |      |      |              |             |       |       |             |       |       | 2574  |
| Asn                                                                    |      |       | Asp  | Tyr   | Leu          |       |      | Ala  | Glu          | Ser         | Gly   | Gln   | Val         | Tyr   | Phe   |       |
|                                                                        |      | 215   |      |       |              |       | 220  |      |              |             |       | 225   |             |       |       |       |
| ~~~                                                                    |      |       |      |       |              |       |      |      |              |             |       |       |             |       |       |       |
| ggg<br>Gly                                                             |      |       |      |       | tga          | ggag  | gacg | aa c | atcc         | aacc        | t tc  | ccaa  | acgc        |       |       | 2622  |
| _                                                                      | 230  | TIE.  | Ата  | ьeu   |              |       |      |      |              |             |       |       |             |       |       |       |
|                                                                        |      | CC    | caat | aaat  | + +-         | ttaa  | aaaa | taa  | ++           | ~-~         | ~~~   |       |             |       | tggct | 0.500 |
| 0000                                                                   | cccg |       | caac | CCCC  | ı ıa         | ccac  | CCCC | LCC  | LLCa         | gac         | accc  | ccaa  | ee t        | CLLC  | tggct | 2682  |
| caaa                                                                   | aaga | аа а  | ttaa | aaac  | t ta         | aaat  | caaa | acc  | caac         | at t        | 2022  | a+++  | 33 <b>~</b> | a     | aagac | 2742  |
|                                                                        |      | J     | 33   | 3330  | c ca         | 3330  | cgga | acc  | caag         | CCC         | agaa  |       | aa y        | Caac  | aayac | 2742  |
| cacc                                                                   | actt | co a  | aacc | t.aaa | a t.t.       | cagg  | aatq | tat  | aacc         | tac         | acad  | taaa  | at a        | ctaa  | caacc | 2802  |
|                                                                        |      | _     |      | - 555 |              | 35    |      | 930  | 5500         | -50         | acag  | cgaa  | 3, 3        | ccgg  | caacc | 2002  |
| acta                                                                   | agaa | tt c  | aaac | taga  | a cc         | tcca  | aaac | tca  | ctaa         | aac         | ctaca | agct: | t.t. a.     | aticc | ctgac | 2862  |
|                                                                        | -    |       |      |       | <del>-</del> |       |      |      | . ت ر        |             |       |       | - ~ J'      |       |       | 2002  |
| atct                                                                   | ggaa | tc t  | ggag | acca  | g gg         | agcci | tttg | gtt  | ctgg         | cca (       | gaat  | geta  | ca q        | gact  | tgaga | 2922  |
| atctggaatc tggagaccag ggagcctttg gttctggcca gaatgctgca ggacttgaga 2922 |      |       |      |       |              |       |      |      | <del>-</del> |             |       |       |             |       |       |       |
| agac                                                                   | ctca | cc ta | agaa | attg  | a ca         | caagt | gga  | cct  | tagg         | cct         | taata | ctct  | cc ag       | gatgi | tttcc | 2982  |

| agacttcctt | gagacacgga | gcccagccct | ccccatggag | ccagctccct | ctatttatgt | 3042 |
|------------|------------|------------|------------|------------|------------|------|
| ttgcacttgt | gattatttat | tatttattta | ttatttattt | atttacagat | gaatgtattt | 3102 |
| atttgggaga | ccggggtatc | ctgggggacc | caatgtagga | gctgccttgg | ctcagacatg | 3162 |
| ttttccgtga | aaacggagct | gaacaatagg | ctgttcccat | gtageceect | ggcctctgtg | 3222 |
| ccttcttttg | attatgtttt | ttaaaatatt | tatctgatta | agttgtctaa | acaatgctga | 3282 |
| tttggtgacc | aactgtcact | cattgctgag | cctctgctcc | ccaggggagt | tgtgtctgta | 3342 |
| atcgccctac | tattcagtgg | cgagaaataa | agtttgctta | gaaaagaaac | atggtctcct | 3402 |
| tcttggaatt | aattctgcat | ctgcctcttc | ttgtgggtgg | gaagaagctc | cctaagtcct | 3462 |
| ctctccacag | gctttaagat | ccctcggacc | cagtcccatc | cttagactcc | tagggccctg | 3522 |
| gagaccctac | ataaacaaag | cccaacagaa | tattccccat | cccccaggaa | acaagagcct | 3582 |
| gaacctaatt | acctctccct | cagggcatgg | gaatttccaa | ctctgggaat | tc         | 3634 |
| <210>      | 2          |            |            |            |            |      |
| <211>      | 18         |            |            |            |            |      |
| <212>      | DNA        |            |            |            |            |      |
| <213>      | Artificial | Sequence   |            |            |            |      |
| <220>      |            |            |            |            |            |      |
| <223>      | Synthetic  |            |            |            |            |      |
| <400>      | 2          |            |            |            |            |      |
| catgctttca | gtgctcat   |            |            |            |            | 18   |
| <210>      | 3          |            |            |            |            |      |
| <211>      | 20         |            |            |            |            |      |
| <212>      | DNA        |            |            |            |            |      |
| <213>      | Artificial | Sequence   |            |            |            |      |
| <220>      |            |            |            |            |            |      |
| <223>      | Synthetic  |            |            |            |            |      |

<400> 3

tgagggagcg tctgctggct 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> gtgctcatgg tgtcctttcc 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic 5 <400> taatcacaag tgcaaacata 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 6 taccccggtc tcccaaataa 20 <210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220>

PCT/US99/23205

WO 00/20645

<223>

Synthetic

WO 00/20645 PCT/US99/23205 <400> 7 agcaccgcct ggagccct 18 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 8 gctgaggaac aagcaccgcc 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 9 aggcagaaga gcgtggtggc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 10 aaagtgcagc aggcagaaga 20 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence

<220>

WO 00/20645 PCT/US99/23205 <223> Synthetic <400> 11 ttagagagag gtccctgg 18 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 12 tgactgcctg ggccagag 18 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 13 gggttcgaga agatgatc 18 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 14 gggctacagg cttgtcactc 20 <210> 15 <211> 20 <212> DNA

Artificial Sequence

<213>

WO 00/20645 PCT/US99/23205 <220> <223> Synthetic 15 <400> cccctcagct tgagggtttg 20 <210> 16 <211> 20 <212> DNA Artificial Sequence <213> <220> <223> Synthetic <400> 16 ccattggcca ggagggcatt 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 17 accaccagct ggttatctct 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 18 ctgggagtag atgaggtaca 20 <210> 19

<211>

<212>

20

DNA

| <213>      | Artificial Se  | equence |  | 2 Tx |
|------------|----------------|---------|--|------|
| <220>      |                |         |  |      |
| <223>      | Synthetic      |         |  |      |
|            |                |         |  |      |
| <400>      | 19             |         |  |      |
| cccttgaag  | a ggacctggga   |         |  | 20   |
|            |                |         |  |      |
| <210>      | 20             |         |  |      |
| <211>      | 20             |         |  |      |
| <212>      | DNA            |         |  |      |
| <213>      | Artificial Se  | quence  |  |      |
|            |                | ·       |  |      |
| <220>      |                |         |  |      |
| <223>      | Synthetic      |         |  |      |
|            |                |         |  |      |
| <400>      | 20             |         |  |      |
| ggtgtgggtg | aggagcacat     |         |  | 20   |
| 0.1.0      |                |         |  |      |
| <210>      | 21             |         |  |      |
| <211>      | 20             |         |  |      |
| <212>      | DNA            |         |  |      |
| <213>      | Artificial Sec | quence  |  |      |
| <220>      |                |         |  |      |
| <223>      | Synthetic      |         |  |      |
| (223)      | Synchecic      |         |  |      |
| <400>      | 21             |         |  |      |
|            | agacggcgat     |         |  | 20   |
|            |                |         |  | 20   |
| <210>      | 22             |         |  |      |
| <211>      | 20             |         |  |      |
| <212>      | DNA            |         |  |      |
| <213>      | Artificial Sec | quence  |  |      |
|            |                |         |  |      |
| <220>      |                |         |  |      |
| <223>      | Synthetic      |         |  |      |
|            |                |         |  |      |
| <400>      | 22             |         |  |      |
| gcagagagga | ggttgacctt     |         |  | 20   |
|            |                |         |  |      |
| <210>      | 23             |         |  |      |

| <211>      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <212>      | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <213>      | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <220>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <223>      | Synthetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| gcttggcctc | agcccctct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <211>      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>      | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <213>      | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 220        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <220>      | Company to the state of the sta |    |
| <223>      | Synthetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <400>      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|            | agatgggctc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 |
| ·          | ~3~6333366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 |
| <210>      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <211>      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>      | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <213>      | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <220>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <223>      | Synthetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| cccttctcca | gctggaagac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 |
| .01.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <211>      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>      | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <213>      | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <220>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <223>      | Synthetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| ,          | ~ <i>,</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| <400>      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| atctcagcgc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 |
| J-3-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 |

```
<210>
            27
<211>
            20
<212>
            DNA
<213>
            Artificial Sequence
<220>
<223>
            Synthetic
<400>
            27
tcgagatagt cgggccgatt
                                                                      20
<210>
           28
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           28
aagtagacct gcccagactc
                                                                      20
<210>
           29
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           29
ggatgttcgt cctcctcaca
                                                                     20
<210>
           30
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           30
```

accctaagcc cccaattctc 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 31 ccacacattc ctgaatccca 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 32 aggccccagt gagttctgga 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 33 gtctccagat tccagatgtc 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220>

PCT/US99/23205

WO 00/20645

<223>

Synthetic

WO 00/20645 PCT/US99/23205 <400> 34 ctcaagtcct gcagcattct 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 35 tgggtccccc aggatacccc 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 36 acggaaaaca tgtctgagcc 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 37 ctccgttttc acggaaaaca 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence

<220>

| <223>          | Synthetic           |    |
|----------------|---------------------|----|
| <400>          | 38                  |    |
|                | cageteegtt          | 20 |
|                |                     | 20 |
| <210>          | 39                  |    |
| <211>          | 21                  |    |
| <212>          | DNA                 |    |
| <213>          | Artificial Sequence |    |
|                |                     |    |
| <220>          |                     |    |
| <223>          | Synthetic           |    |
| . 1.00         |                     |    |
| <400>          | 39                  |    |
| ggccaccaaa     | tcagcattgt t        | 21 |
| <210>          | 40                  |    |
| <211>          | 20                  |    |
| <212>          | DNA                 |    |
| <213>          | Artificial Sequence |    |
|                | •                   |    |
| <220>          |                     |    |
| <223>          | Synthetic           |    |
|                |                     |    |
| <400>          | 40                  |    |
| gaggeteage     | aatgagtgac          | 20 |
| -210-          | 41                  |    |
| <210><br><211> | 41<br>20            |    |
| <212>          | DNA                 |    |
| <213>          | Artificial Sequence |    |
|                | morrat bequence     |    |
| <220>          |                     |    |
| <223>          | control sequence    |    |
|                |                     |    |
| <400>          | 41                  |    |
| gcccaagctg     | gcatccgtca          | 20 |
|                |                     |    |
| <210>          | 42                  |    |
| <211>          | 21                  |    |
| <212>          | DNA                 |    |
| <213>          | Artificial Sequence |    |

WO 00/20645 PCT/US99/23205 <220> <223> control sequence <400> 42 gccgaggtcc atgtcgtacg c 21 <210> 43 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 43 caggcggtgc ttgttcct 18 <210> 44 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 44 gccagagggc tgattagaga ga 22 <210> 45 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> PCR probe <400> 45 cttctccttc ctgatcgtgg caggc 25

<210>

<211>

<212>

46

19

DNA

| <213>          | Artificial Sequence    |     |
|----------------|------------------------|-----|
| <220>          |                        |     |
| <223>          | PCR primer             |     |
|                |                        |     |
| <400>          | 46                     |     |
| gaaggtgaag     | gtcggagtc              | 19  |
|                |                        |     |
| <210>          | 47                     |     |
| <211>          | 20                     |     |
| <212>          | DNA                    |     |
| <213>          | Artificial Sequence    |     |
|                |                        |     |
| <220>          |                        |     |
| <223>          | PCR primer             |     |
| <400>          | 47                     |     |
|                | atgggatttc             | 0.0 |
| gaagacggcg     | acgggacccc             | 20  |
| <210>          | 48                     |     |
| <211>          | 20                     |     |
| <212>          | DNA                    |     |
| <213>          | Artificial Sequence    |     |
|                |                        |     |
| <220>          |                        |     |
| <223>          | PCR probe              |     |
|                |                        |     |
| <400>          | 48                     |     |
| caagcttccc     | gttctcagcc             | 20  |
| 010            |                        |     |
| <210>          | 49                     |     |
| <211><br><212> | 20                     |     |
| <212>          | DNA Antificial Company |     |
| (213)          | Artificial Sequence    |     |
| <220>          |                        |     |
| <223>          | control sequence       |     |
|                |                        |     |
| <400>          | 49                     |     |
|                | agaggagctc             | 20  |
|                |                        |     |
| <210>          | 50                     |     |

```
<211>
            20
<212>
            DNA
<213>
            Artificial Sequence
<220>
<223>
            Synthetic
<400>
            50
tgcgtctctc atttcccctt
                                                                     20
<210>
            51
<211>
            20
<212>
            DNA
<213>
            Artificial Sequence
<220>
<223>
           Synthetic
<400>
           51
tcccatctct ctccctctct
                                                                     20
<210>
           52
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           52
cagcgcacat ctttcaccca
                                                                     20
<210>
           53
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           53
tctctctcat ccctccctat
                                                                     20
```

```
<210>
            54
<211>
            20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           54
cgtctttctc catgtttttt
                                                                     20
<210>
           55
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           55
cacatctctt tctgcatccc
                                                                     20
<210>
           56
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           56
ctctcttccc catctcttgc
                                                                     20
<210>
           57
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           57
```

PCT/US99/23205 gtctctccat ctttccttct 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 58 ttccatgtgc cagacatcct 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 59 atacacactt agtgagcacc 20 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 60 ttcattcatt cattcactcc 20 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220>

WO 00/20645

<223>

Synthetic

WO 00/20645 PCT/US99/23205 <400> 61 tatatctgct tgttcattca 20 <210> 62 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 62 ctgtctccat atcttattta 20 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 63 tctcttctca caccccacat 20 <210> 64 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 64 cacttgtttc ttcccccatc 20 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence

<220>

WO 00/20645 PCT/US99/23205 <223> Synthetic <400> 65 ctcaccatct ttattcatat 20 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 66 atatttcccg ctctttctgt 20 <210> 67 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 67 catctctct cttagctgtc 20 <210> 68 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 68 tcttctccc ttatctcccc 20 <210> 69 <211> 20 <212> DNA

<213>

Artificial Sequence

WO 00/20645 PCT/US99/23205 <220> <223> Synthetic <400> 69 gtgtgccaga caccctatct 20 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 70 tctttccctg agtgtcttct 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 71 accttccagc attcaacagc 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 72 ctccattcat ctgtgtattc 20 <210> 73 <211> 20

<212>

DNA

| <213>      | Artificial Sequence |    |
|------------|---------------------|----|
| <220>      |                     |    |
| <223>      | Synthetic           |    |
|            | 2                   |    |
| <400>      | 73                  |    |
| tgaggtgtct | ggttttetet          | 20 |
|            |                     |    |
| <210>      | 74                  |    |
| <211>      | 20                  |    |
| <212>      | DNA                 |    |
| <213>      | Artificial Sequence |    |
|            |                     |    |
| <220>      |                     |    |
| <223>      | Synthetic           |    |
| <400>      | 74                  |    |
|            | agagetetta          | •  |
| acacacccc  | agagetetta          | 20 |
| <210>      | 75                  |    |
| <211>      | 20                  |    |
| <212>      | DNA                 |    |
| <213>      | Artificial Sequence |    |
|            |                     |    |
| <220>      |                     |    |
| <223>      | Synthetic           |    |
|            |                     |    |
| <400>      | 75                  |    |
| ctagccctcc | aagttccaag          | 20 |
| <210>      | 76                  |    |
| <211>      | 20                  |    |
| <212>      | DNA                 |    |
| <213>      | Artificial Sequence |    |
|            | ******              |    |
| <220>      |                     |    |
| <223>      | Synthetic           |    |
|            |                     |    |
| <400>      | 76                  |    |
| cgggcttcaa | tccccaaatc          | 20 |
|            |                     |    |
| <210>      | 77                  |    |

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 77 aagttctgcc taccatcagc 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 78 gtccttctca cattgtctcc 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic

<400> 79

ccttcccttg agctcagcga 20

<210> 80 <211> 20 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 80

ggcctgtgct gttcctccac 20

```
<210>
            81
<211>
            20
<212>
            DNA
<213>
            Artificial Sequence
<220>
<223>
            Synthetic
<400>
            81
cgttctgagt atcccactaa
                                                                     20
<210>
          82
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           82
cacatcccac ctggccatga
                                                                    20
<210>
           83
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           83
gtcctctctg tctgtcatcc
                                                                    20
<210>
           84
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           84
```

| WO 00/20645    |                  | PCT/U | JS99/23205 |
|----------------|------------------|-------|------------|
| ccaccccaca tcc | ggtteet          |       | 20         |
| <210> 85       |                  |       |            |
| <211> 20       |                  |       |            |
| <212> DNA      |                  |       |            |
| <213> Art      | ificial Sequence |       |            |
| <220>          |                  |       |            |
| <223> Syn      | thetic           |       |            |
| <400> 85       |                  |       |            |
| tectggeeet ega | getetge          |       | 20         |
| <210> 86       |                  |       |            |
| <211> 20       |                  |       |            |
| <212> DNA      |                  |       |            |
| <213> Art      | ificial Sequence |       |            |
| <220>          |                  |       |            |
| <223> Syn      | thetic           |       |            |
| <400> 86       |                  |       |            |
| atgtcggttc act | ctccaca          |       | 20         |
| <210> 87       |                  |       |            |
| <211> 20       |                  |       |            |
| <212> DNA      |                  |       |            |
| <213> Art      | ificial Sequence |       |            |
| <220>          |                  |       |            |
| <223> Syn      | thetic           |       |            |
| <400> 87       |                  |       |            |
| agaggagagt cag | gtggcc           |       | 20         |
| <210> 88       |                  |       |            |
| <211> 20       |                  |       |            |
| <212> DNA      |                  |       |            |
| <213> Art      | ificial Sequence |       |            |
| <220>          |                  |       |            |
| 000            |                  |       |            |

<223> Synthetic

| WO 00/2064 | 5          |          | PCT/US99/23205 |
|------------|------------|----------|----------------|
| <400>      | 88         |          |                |
| gatcccaaag | tagacctgcc |          | 20             |
| <210>      | 89         |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 89         |          |                |
| cagactcggc | aaagtcgaga |          | 20             |
| <210>      | 90         |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 90         |          |                |
| tagtcgggcc | gattgatctc |          | 20             |
| <210>      | 91         |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 91         |          |                |
| agcgctgagt | cggtcaccct |          | 20             |
| <210>      | 92         |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |

<220>

| WO 00/2064 | 5          |          |  | PCT/US99/23205 |
|------------|------------|----------|--|----------------|
| <223>      | Synthetic  |          |  |                |
| <400>      | 92         |          |  |                |
| tctccagctg | gaagacccct |          |  | 20             |
| <210>      | 93         |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |
| <220>      |            |          |  |                |
| <223>      | Synthetic  |          |  |                |
| <400>      | 93         |          |  |                |
| cccagataga | tgggctcata |          |  | 20             |
| <210>      | 94         |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |
| <220>      |            |          |  |                |
| <223>      | Synthetic  |          |  |                |
| <400>      | 94         |          |  |                |
| ccagggcttg | gcctcagccc |          |  | 20             |
| <210>      | 95         |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |
| <220>      |            |          |  |                |
| <223>      | Synthetic  |          |  |                |
| <400>      | 95         |          |  |                |
| cctctggggt | ctccctctgg |          |  | 20             |
| <210>      | 96         |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |

<213> Artificial Sequence

| WO 00/2064 | .5         |          | PCT/US99/23205 |
|------------|------------|----------|----------------|
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 96         |          |                |
| caggggctct | tgatggcaga |          | 20             |
| <210>      | 97         |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 97         |          |                |
| gaggaggttg | accttggtct |          | 20             |
| <210>      | 98         |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 98         |          |                |
| ggtaggagac | ggcgatgcgg |          | 20             |
| <210>      | 99         |          |                |
| <211>      | 20         | ·        |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 99         |          |                |
| ctgatggtgt | gggtgaggag |          | 20             |
| <210>      | 100        |          |                |
| <211>      | 20         |          |                |
| .010       |            |          |                |

<212>

DNA

```
<213>
            Artificial Sequence
 <220>
 <223>
            Synthetic
 <400>
            100
 aggcactcac ctcttccctc
                                                                     20
 <210>
            101
 <211>
            20
<212>
            DNA
<213>
           Artificial Sequence
<220>
<223>
       Synthetic
<400>
           101
ccctggggaa ctgttgggga
                                                                    20
<210>
           102
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           102
agacacttac tgactgcctg
                                                                    20
<210>
           103
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           103
gaagatgatc ctgaagagga
                                                                    20
<210>
           104
```

```
<211>
            20
 <212>
            DNA
 <213>
            Artificial Sequence
<220>
<223>
            Synthetic
<400>
            104
gagctcttac ctacaacatg
                                                                     20
<210>
            105
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           105
tgagggtttg ctggagggag
                                                                     20
<210>
           106
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           control sequence
<400>
           106
gatcgcgtcg gactatgaag
                                                                    20
<210>
           107
<211>
           7208
<212>
           DNA
<213>
           Mus musculus
<220>
<221>
           CDS
<222>
           (4527..4712,5225..5279,5457..5504,5799..6217)
<220>
```

```
<221>
           exon
<222>
            (4371)..(4712)
<220>
<221>
           intron
<222>
            (4713)..(5224)
<220>
<221>
           exon
<222>
            (5225)..(5279)
<220>
<221>
           intron
<222>
           (5280)..(5456)
<220>
<221>
           exon
           (5457)..(5504)
<222>
<220>
<221>
           intron
<222>
           (5505)..(5798)
<220>
<221>
           exon
<222>
           (5799)..(>6972)
<300>
<301>
           Semon, D.
           Kawashima, E.
           Jongeneel, C.V.
           Shakhov, A.N.
           Nedospasov, S.A.
<302>
           Nucleotide sequence of the murine TNF locus, including the
           TNF-alpha (tumor necrosis factor) and TNF-beta (lymphotoxin)
           genes
<303>
           Nucleic Acids Res.
<304>
           15
<305>
           21
<306>
           9083-9084
<307>
           1987-11-11
<308>
           Y00467 Genbank
```

<309> 1993-05-11

<400> 107

gaattetgaa geteeetetg tacagageat tggaageetg gggtgtacat ttggggttac 60 atgatettgg ggttetaaga gaataeeeee aaateatett eeagaeetgg aacattetag 120 gacagggttc tcaaccttcc taactccatg accctttaat acagttcctc atgttgtggt 180 gaccccaacc atacaattat tttcgttgct atttcataac tgtaatttcg ctgctattat 240 gaatcataat gtaaatattt gttttaaata gaggtttgcc aaagggacct tgcccacagg 300 ttgagaactg ccgctccaga gagtaagggg acacagttaa gattgttaca caccaggatg 360 ccccagattt ggggagaggg cactgtaatg gaacttettg acatgaaact ggcagatgaa 420 actggcagaa aaaaaaaaa aagctgggca gtggtggcac acacctttaa tcccagcact 480 tgggaggcag aggcaggcgg atttctgagt tctaggccag cctggtctac agagtgagtt 540 tcaggacage cagggetaca cagagaaace etgtetegaa aaaagcaaaa aaaaaaaaa 600 aaaaaaaaa aaactggcag atgaccagaa aatacagata tattggaata actgtgactt 660 gaacccccaa agacaagaga ggaaataggc ctgaagggc ggcaggcatg tcaagcatcc 720 agagecetgg gttegaacet gaaaaaacaa aggtgeeget aaccaeatgt ggetteggag 780 ccctccagac atgaccatga tcgacagaga gggaaatgtg cagagaagcc tgtgagcagt 840 caagggtgca gaagtgatat aaaccatcac tetteaggga accaggette cagteacage 900 ccagctgcac cctctccacg aattgctcgg ccgttcactg gaactcctgg gcctgaccca 960 gctccctgct agtccctgcg gcccacagtt ccccggaccc gactcccttt cccagaacgc 1020 agtagtetaa geeettagee tgeggttete teetaggeee cageetttee tgeettegae 1080 tgaaacagca gcatcttcta agccctgggg gcttccccaa gccccagccc cgacctagaa 1140 cccgcccgct gcctgccaca ctgccgcttc ctctataaag ggacccgagc gccagcgccc 1200

aggaccccgc acagcaggtg agcctctcct accctgtctc cttgggctta ccctggtatc 1260 aggcatccct caggatccta cctcctttct tgagccacag ccttttctat acaacctgcc 1320 tggatcccca gccttaatgg gtctggtcct cctgtcgtgg ctttgatttt tqqtctqttc 1380 ctgtggcggc cttatcagtc tctctctct tctctctct tctctctct tctctctct 1440 tagecattgt etgattetat ggtggagett teetetteee etetgtetet eettateeet 1560 gctcacttca gggttcccct gcctgtcccc ttttctgtct gtcgccctgt ctctcagggt 1620 ggctgtctca gctgggaggt aaggtctgtc ttccgctgtg tgccccgcct ccgctacaca 1680 cacacactet etetetet eteageaggt tetecaeatg acactgeteg geegteteea 1740 cctcttgagg gtgcttggca cccctcctgt cttcctcctg gggctgctgc tggccctgcc 1800 tetaggggee caggtgagge ageaagagat tgggggtget ggggtggeet agetaactea 1860 gagtcctaga gtcctctcca ctctcttctg tcccagggac tctctggtgt ccgcttctcc 1920 gctgccagga cagcccatcc actccctcag aagcacttga cccatggcat cctgaaacct 1980 gctgctcacc ttgttggtaa acttctgcct ccagaggaga ggtccagtcc ctgccttttg 2040 tcctacttgc ccaggggctc aggcgatctt cccatctccc cacaccaact tttcttaccc 2100 ctaagggcag gcaccccact cccatctccc taccaaccat cccacttgtc cagtgcctgc 2160 tcctcaggga tggggacctc tgatcttgat agccccccaa tgtcttgtgc ctcttcccag 2220 ggtaccccag caagcagaac tcactgctct ggagagcaag cacggatcgt gcctttctcc 2280 gacatggctt ctctttgagc aacaactccc tcctgatccc caccagtggc ctctactttg 2340 tetaetecca ggtggtttte tetggagaaa getgeteece cagggecatt eccaetecca 2400 totacctggc acacgaggtc cagetetttt ceteccaata eccettecat gtgcetetec 2460

tcagtgcgca gaagtctgtg tatccgggac ttcaaggacc gtgggtgcgc tcaatgtacc 2520 agggggctgt gttcctgctc agtaagggag accagctgtc cacccacacc gacggcatct 2580 cccatctaca cttcagcccc agcagtgtat tctttggagc ctttgcactg tagattctaa 2640 agaaacccaa gaattggatt ccaggcctcc atcctgaccg ttgtttcaag ggtcacatcc 2700 ccacagtete cageetteee caetaaaata aeetggaget eteaegggag tetgagaeae 2760 ttcaggggac tacatettee ecagggeeae tecagatget caggggaega etcaageeta 2820 cctagaagtt cctgcacaga gcagggtttt tgtgggtcta ggtcggacag agacctggac 2880 atgaaggagg gacagacatg ggagaggtgg ctgggaacag gggaaggttg actatttatg 2940 gagagaaaag ttaagttatt tatttataga gaatagaaag aggggaaaaa tagaaagccg 3000 tcagatgaca actaggtccc agacacaaag gtgtctcacc tcagacagga cccatctaag 3060 agagagatgg cgagagaatt agatgtgggt gaccaagggg ttctagaaga aagcacgaag 3120 ctctaaaagc cagccactgc ttggctagac atccacaggg accccctgca ccatctgtga 3180 aacccaataa acctetttte tetgagatte tgtetgettg tgtetgtett gegttggggg 3240 agaaacttcc tggtctcttt aaggagtgga gcaggggaca gaggcctcag ttggtccatg 3300 ggatccgggc agagcaaaga gacatgagga gcaggcagct cccagagaca tggtggattc 3360 acgggagtga ggcagcttaa ctgccgagag acccaaagga tgagctaggg agatccatcc 3420 aagggtggag agaagatgagg gttctgggga gaagtgactc cactggaggg tgggagagtg 3480 tttaggagtg ggagggtggg ggaggggaat ccttggaaga ccggggagtc atacggattg 3540 ggagaaatcc tggaagcagg gctgtgggac ctaaatgtct gagttgatgt accgcagtca 3600 agatatggca gaggctccgt ggaaaactca cttgggagca gggacccaaa gcagcagcct 3660 gagctcatga tcagagtgaa aggagaaggc ttgtgaggtc cgtgaattcc cagggctgag 3720

ttcattccct ctgggctgcc ccatactcat cccattaccc ccccaccag ccctcccaaa 3780 gcccatgcac acttcccaac tctcaagctg ctctgccttc agccacttcc tccaagaact 3840 caaacagggg gctttccctc ctcaatatca tgtctccccc cttatgcacc cagctttcag 3900 aagcaccccc ccatgctaag ttctccccca tggatgtccc atttagaaat caaaaggaaa 3960 tagacacagg catggtcttt ctacaaagaa acagacaatg attagctctq qaqqacaqaq 4020 aagaaatggg tttcagttct cagggtccta tacaacacac acacacacac acacacac 4080 acacacaca acacacctc ctgattggcc ccagattgcc acagaatcct ggtggggacg 4140 acgggggaga gatteettga tgeetgggtg teeceaaett teeaaaeeet etgeeeege 4200 gatggagaag aaaccgagac agaggtgtag ggccactacc gcttcctcca catgagatca 4260 tggttttctc caccaaggaa gttttccgag ggttgaatga gagcttttcc ccgccctctt 4320 ccccaagggc tataaaggcg gccgtctgca cagccagcca gcagaagctc cctcagcgag 4380 gacagcaagg gactagccag gagggagaac agaaactcca gaacatcttg gaaatagctc 4440 ccagaaaagc aagcagccaa ccaggcaggt tctgtccctt tcactcactq qcccaaqqcq 4500 ccacatetee etecagaaaa gacaee atg age aca gaa age atg ate ege gae Met Ser Thr Glu Ser Met Ile Arg Asp 1 gtg gaa ctg gca gaa gag gca ctc ccc caa aag atg ggg ggc ttc cag 4601 Val Glu Leu Ala Glu Glu Ala Leu Pro Gln Lys Met Gly Gly Phe Gln 10 15 20 25 aac tcc agg cgg tgc cta tgt ctc agc ctc ttc tca ttc ctg ctt gtg 4649 Asn Ser Arg Arg Cys Leu Cys Leu Ser Leu Phe Ser Phe Leu Leu Val 30 35 40 gca ggg gcc acc acg ctc ttc tgt cta ctg aac ttc ggg gtg atc ggt Ala Gly Ala Thr Thr Leu Phe Cys Leu Leu Asn Phe Gly Val Ile Gly

50

45

ccc caa agg gat gag gtgagtgtct gggcaaccct tattctcgct cacaagcaaa 4752 Pro Gln Arg Asp Glu

60

cca aat ggc ctc cct ctc atc agt tct atg gcc cag acc ctc aca ctc 5278

Pro Asn Gly Leu Pro Leu Ile Ser Ser Met Ala Gln Thr Leu Thr Leu
65 70 75 80

agtaagtgtt cccacacctc tctcttaatt taagatggag aagggcagtt aggcatggga 5338 Arg

tgagatgggg tggggggaaa acttaaagct ttggtttggg aggaaagggg tctaagtgca 5398

tagatgcttg ctgggaagcc taaaaggctc atcettgcct ttgtctcttc ccctcca 5455

gga tca tct tct caa aat tcg agt gac aag cct gta gcc cac gtc gta 5503

Ser Ser Ser Gln Asn Ser Ser Asp Lys Pro Val Ala His Val Val

85 90 95

| tgg | gaaag | aca | gagg | gtgc | ag g | aacc       | ggaa | g tg | aagt | gtgg | gta               | gctg | ctg  | aggc | tcagga     | 5743 |
|-----|-------|-----|------|------|------|------------|------|------|------|------|-------------------|------|------|------|------------|------|
| tgt | ggag  | tgt | gaac | taag | ag g | gtga       | cact | g ac | tcaa | tcct | ccc               | cccc | ccc  | ctca | gca<br>Ala | 5800 |
|     |       |     | Val  |      |      |            |      |      |      |      | agc<br>Ser        |      |      |      | aac<br>Asn | 5848 |
|     |       | Leu |      |      |      |            |      |      |      |      | aac<br>Asn<br>125 |      |      |      |            | 5896 |
|     | Ala   |     |      |      |      |            |      |      |      |      | gtt<br>Val        |      |      | _    |            | 5944 |
|     |       |     |      |      |      |            |      |      |      |      | acc<br>Thr        |      | _    | _    |            | 5992 |
|     |       |     |      |      |      |            |      |      |      |      | tct<br>Ser        |      |      | _    | _          | 6040 |
|     |       |     |      |      |      |            |      |      |      |      | ctc<br>Leu        |      |      |      |            | 6088 |
|     |       |     |      |      |      |            |      |      |      |      | gag<br>Glu<br>205 |      |      | -    |            | 6136 |
|     |       |     |      |      |      |            |      |      |      |      | gac<br>Asp        |      |      |      |            | 6184 |
|     |       |     |      |      |      | gtc<br>Val |      |      |      | tga  | aggg              | aatg | gg t | gttc | atcca      | 6237 |

ttctctaccc agcccccact ctgacccctt tactctgacc cctttattgt ctactcctca 6297

| gagcccccag | , tctgtgtcct | tctaacttag | aaaggggatt | atggctcaga | gtccaactct | 6357 |
|------------|--------------|------------|------------|------------|------------|------|
| gtgctcagag | r ctttcaacaa | ctactcagaa | acacaagatg | ctgggacagt | gacctggact | 6417 |
| gtgggcctct | . catgcaccac | catcaaggac | tcaaatgggc | tttccgaatt | cactggagcc | 6477 |
| tegaatgtee | attcctgagt   | tctgcaaagg | gagagtggtc | aggttgcctc | tgtctcagaa | 6537 |
| tgaggetgga | . taagatetea | ggccttccta | ccttcagacc | tttccagact | cttccctgag | 6597 |
| gtgcaatgca | cagcetteet   | cacagagcca | gccccctct  | atttatattt | gcacttatta | 6657 |
| tttattattt | atttattatt   | tatttatttg | cttatgaatg | tatttatttg | gaaggccggg | 6717 |
| gtgtcctgga | ggacccagtg   | tgggaagctg | tcttcagaca | gacatgtttt | ctgtgaaaac | 6777 |
| ggagctgagc | tgtccccacc   | tggcctctct | accttgttgc | ctcctcttt  | gcttatgttt | 6837 |
| aaaacaaaat | atttatctaa   | cccaattgtc | ttaataacgc | tgatttggtg | accaggctgt | 6897 |
| cgctacatca | ctgaacctct   | gctccccacg | ggagccgtga | ctgtaattgc | cctacagtca | 6957 |
| attgagagaa | ataaagatcg   | cttggaaaag | aaatgtgatt | tctgtcttgg | gatgaagtct | 7017 |
| gcatccatct | ctttgcggag   | gcctaaagtc | tctgggtcca | gatctcagtc | tttatacccc | 7077 |
| tgggccatta | agacccccaa   | gacccccgtg | gaacaaaagg | cagccaacat | ccctacctct | 7137 |
| ccccggaaa  | caggagccta   | accctaatta | cctttgccct | ggggcatggg | aatttcccac | 7197 |
| tctgggaatt | С            |            |            |            |            | 7208 |
| <210>      | 108          |            |            |            |            |      |
| <211>      | 20           |            |            |            |            |      |
| <212>      | DNA          |            |            |            |            |      |
| <213>      | Artificial   | Sequence   |            |            |            |      |
| <220>      |              |            |            |            |            |      |
| <223>      | Synthetic    |            |            |            |            |      |
| <400>      | 108          |            |            |            |            |      |

41

20

gagettetge tggetggetg

| WO 00/2064 | <b>15</b>           | PCT/U | S99/23205 |
|------------|---------------------|-------|-----------|
| <210>      | 109                 |       |           |
| <211>      | 20                  |       |           |
| <212>      | DNA                 |       |           |
| <213>      | Artificial Sequence |       |           |
|            |                     |       |           |
| <220>      |                     |       |           |
| <223>      | Synthetic           |       |           |
| <400>      | 109                 |       |           |
|            | c ctcgctgagg        |       | 20        |
| 5 5        |                     |       | 20        |
| <210>      | 110                 |       |           |
| <211>      | 20                  |       |           |
| <212>      | DNA                 |       |           |
| <213>      | Artificial Sequence |       |           |
|            |                     |       |           |
| <220>      |                     |       |           |
| <223>      | Synthetic           |       |           |
| <400>      | 110                 |       |           |
|            | ttttctggag          |       | 20        |
|            |                     |       | 20        |
| <210>      | 111                 |       |           |
| <211>      | 20                  |       |           |
| <212>      | AND                 |       |           |
| <213>      | Artificial Sequence |       |           |
|            |                     |       |           |
| <220>      |                     |       |           |
| <223>      | Synthetic           |       |           |
| <400>      | 111                 |       |           |
|            | tcatggtgtc          |       | 20        |
| 000000     | coacggegee          |       | 20        |
| <210>      | 112                 |       |           |
| <211>      | 20                  |       |           |
| <212>      | DNA                 |       |           |
| <213>      | Artificial Sequence |       |           |
|            |                     |       |           |
| <220>      |                     |       |           |
| <223>      | Synthetic           |       |           |
| <400>      | 112                 |       |           |
|            |                     |       |           |

| WO 00/2064 | 5          |          |   | PCT/US99/23205 |
|------------|------------|----------|---|----------------|
| gcggatcatg | ctttctgtgc | :        |   | 20             |
| <210>      | 113        |          |   |                |
| <211>      | 20         |          |   |                |
| <212>      | DNA        |          |   |                |
| <213>      | Artificial | Sequence |   |                |
| <220>      |            |          |   |                |
| <223>      | Synthetic  |          |   |                |
| <400>      | 113        |          |   |                |
| gggaggccat | ttgggaactt |          | • | 20             |
| <210>      | 114        |          |   |                |
| <211>      | 20         |          |   |                |
| <212>      | DNA        |          |   |                |
| <213>      | Artificial | Sequence |   |                |
| <220>      |            |          |   |                |
| <223>      | Synthetic  |          |   |                |
| <400>      | 114        |          |   |                |
| cgaattttga | gaagatgatc |          |   | 20             |
| <210>      | 115        |          |   |                |
| <211>      | 20         |          |   |                |
| <212>      | DNA        |          |   |                |
| <213>      | Artificial | Sequence |   |                |
| <220>      |            |          |   |                |
| <223>      | Synthetic  |          |   |                |
| <400>      | 115        |          |   |                |
| ctcctccact | tggtggtttg |          |   | 20             |
| <210>      | 116        |          |   |                |
| <211>      | 20         |          |   |                |
| <212>      | DNA        |          |   |                |
| <213>      | Artificial | Sequence |   |                |
| <220>      |            |          |   |                |

WO 00/20645

<223> Synthetic

| WO 00/2064 | 5            |          | PCT/US | 599/23205 |
|------------|--------------|----------|--------|-----------|
| <400>      | 116          |          |        |           |
| cctgagatct | tatccagcct   |          |        | 20        |
| <210>      | 117          |          |        |           |
| <211>      | 20           |          |        |           |
| <212>      | DNA          |          |        |           |
| <213>      | Artificial   | Sequence |        |           |
| <220>      |              |          |        |           |
| <223>      | Synthetic    |          |        |           |
| <400>      | 117          |          |        |           |
| caattacagt | cacggctccc   |          |        | 20        |
| <210>      | 118          |          |        |           |
| <211>      | 20           |          |        |           |
| <212>      | DNA          |          |        |           |
| <213>      | Artificial   | Sequence |        |           |
| <400>      | 118          |          |        |           |
| cccttcattc | tcaaggcaca   |          |        | 20        |
| <210>      | 119          |          |        |           |
| <211>      | 20           |          |        |           |
| <212>      | DNA          |          |        |           |
| <213>      | Artificial   | Sequence |        |           |
| <220>      |              |          |        |           |
| <223>      | Synthetic    |          |        |           |
| <400>      | 119          |          |        |           |
| cacccctcaa | cccgccccc    |          |        | 20        |
| <210>      | 120          |          |        |           |
| <211>      | 20           |          |        |           |
| <212>      | DNA          |          |        |           |
| <213>      | Artificial : | Sequence |        |           |
| <220>      |              |          |        |           |
| <223>      | Synthetic    |          |        |           |
| <400>      | 120          |          |        |           |
| agagctctgt | cttttctcag   |          | :      | 20        |

```
<210>
            121
 <211>
            20
 <212>
            DNA
 <213>
            Artificial Sequence
<220>
<223>
            Synthetic
<400>
            121
cactgctctg actctcacgt
                                                                     20
<210>
            122
<211>
            20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           122
atgaggtccc gggtggcccc
                                                                     20
<210>
           123
<211>
          20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           123
caccetetgt etttecacat
                                                                    20
<210>
           124
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           124
```

| WO 00/2064 | 5           |          |  | PCT | /US99/23205 |
|------------|-------------|----------|--|-----|-------------|
| ctccacatcc | tgagcctcag  | ſ        |  |     | 20          |
|            |             |          |  |     |             |
| <210>      | 125         |          |  |     |             |
| <211>      | 20          |          |  |     |             |
| <212>      |             |          |  |     |             |
| <213>      | Artificial  | Sequence |  |     |             |
| .220.      |             |          |  |     |             |
| <220>      | Compthat da |          |  |     |             |
| <223>      | Synthetic   |          |  |     |             |
| <400>      | 125         |          |  |     |             |
| attgagtcag | tgtcaccctc  |          |  |     | 20          |
|            |             |          |  |     |             |
| <210>      | 126         |          |  |     |             |
| <211>      | 20          |          |  |     |             |
| <212>      | DNA         |          |  |     |             |
| <213>      | Artificial  | Sequence |  |     |             |
|            |             |          |  |     |             |
| <220>      |             |          |  |     |             |
| <223>      | Synthetic   |          |  |     |             |
| <400>      | 126         |          |  |     |             |
|            | ccactccagc  |          |  |     | 20          |
| 3003300003 | ceacceage   |          |  |     | 20          |
| <210>      | 127         |          |  |     |             |
| <211>      | 20          |          |  |     |             |
| <212>      | DNA         |          |  |     |             |
| <213>      | Artificial  | Sequence |  |     |             |
|            |             |          |  |     |             |
| <220>      |             |          |  |     |             |
| <223>      | Synthetic   |          |  |     |             |
|            |             |          |  |     |             |
| <400>      | 127         |          |  |     |             |
| tctttgagat | ccatgeegtt  |          |  |     | 20          |
| <210>      | 128         |          |  |     |             |
| <211>      | 20          |          |  |     |             |
| <212>      | DNA         |          |  |     |             |
| <213>      | Artificial  | Sequence |  |     |             |
|            |             |          |  |     |             |
| <220>      |             |          |  |     |             |
| <223>      | Synthetic   |          |  |     |             |

WO 00/20645

| WO 00/2064 | 15           | PC       | CT/US99/23205 |
|------------|--------------|----------|---------------|
| <400>      | 128          |          |               |
| aacccatcg  | g ctggcaccac | !        | 20            |
| <210>      | 129          |          |               |
| <211>      | 20           |          |               |
| <212>      | DNA          |          |               |
| <213>      | Artificial   | Sequence |               |
| <220>      |              |          |               |
| <223>      | Synthetic    |          |               |
| <400>      | 129          |          |               |
| gtttgagctc | agcccctca    |          | 20            |
| <210>      | 130          |          |               |
| <211>      | 20           |          |               |
| <212>      | DNA          |          |               |
| <213>      | Artificial   | Sequence |               |
| <220>      |              |          |               |
| <223>      | Synthetic    |          |               |
| <400>      | 130          |          |               |
| ctcctcccag | gtatatgggc   |          | 20            |
| <210>      | 131          |          |               |
| <211>      | 20           |          |               |
| <212>      | DNA          |          |               |
| <213>      | Artificial   | Sequence |               |
| <220>      |              |          |               |
| <223>      | Synthetic    |          |               |
| <400>      | 131          |          |               |
| tgagttggtc | cccttctcc    |          | 20            |
| <210>      | 132          |          |               |
| <211>      | 20           |          |               |
| <212>      | DNA          |          |               |
| <213>      | Artificial   | Sequence |               |

<220>

WO 00/20645 PCT/US99/23205 <223> Synthetic <400> 132 caaagtagac ctgcccggac 20 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 133 acacccattc ccttcacaga 20 <210> 134 <211> 20 <212> DNA Artificial Sequence <213> <220> <223> Synthetic <400> 134 cataatcccc tttctaagtt 20 <210> 135 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 135 cacagagttg gactctgagc 20 <210> 136 <211> 20 <212> DNA

Artificial Sequence

<213>

| WO 00/2064 | 5          |          | PCT/US99/23205 |
|------------|------------|----------|----------------|
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 136        |          |                |
| cagcatcttg | tgtttctgag |          | 20             |
| <210>      | 137        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 137        |          |                |
| cacagtccag | gtcactgtcc |          | 20             |
| <210>      | 138        | ·        |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 138        |          |                |
| tgatggtggt | gcatgagagg |          | 20             |
| <210>      | 139        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 139        |          |                |
| gtgaattegg | aaagcccatt |          | 20             |
| <210>      | 140        |          |                |
| <211>      | 20         |          |                |

<212>

DNA

| <213>      | Artificial | Sequence |    |
|------------|------------|----------|----|
| <220>      |            |          |    |
| <223>      | Synthetic  |          |    |
| <400>      | 140        |          |    |
| cctgaccact | ctccctttgc |          | 20 |
| <210>      | 141        |          |    |
| <211>      | 20         |          |    |
| <212>      | DNA        |          |    |
| <213>      | Artificial | Sequence |    |
| <220>      |            |          |    |
| <223>      | Synthetic  |          |    |
| <400>      | 141        |          |    |
| tgcatccccc | aggccaccat |          | 20 |
| <210>      | 142        |          |    |
| <211>      | 21         |          |    |
| <212>      | DNA        |          |    |
| <213>      | Artificial | Sequence |    |
| <220>      |            |          |    |
| <223>      | Synthetic  |          |    |
| <400>      | 142        |          |    |
| gccgaggtcc | atgtcgtacg | С        | 21 |
| <210>      | 143        |          |    |
| <211>      | 20         |          |    |
| <212>      | DNA        |          |    |
| <213>      | Artificial | Sequence |    |
| <220>      |            |          |    |
| <223>      | Synthetic  |          |    |
| <400>      | 143        |          |    |
|            | ccaccgatcc |          | 20 |
| <210>      | 144        |          |    |

| <211>      | 20                  |   |    |
|------------|---------------------|---|----|
| <212>      | DNA                 |   |    |
| <213>      | Artificial Sequence |   |    |
|            |                     |   |    |
| <220>      |                     |   |    |
| <223>      | Synthetic           |   |    |
|            |                     |   |    |
| <400>      | 144                 |   |    |
| agtgtcttct | gtgtgccaga          |   | 20 |
|            |                     |   |    |
| <210>      | 145                 |   |    |
| <211>      | 20                  |   |    |
| <212>      | DNA                 |   |    |
| <213>      | Artificial Sequence | • |    |
|            |                     |   |    |
| <220>      |                     |   |    |
| <223>      | Synthetic           |   |    |
|            |                     |   |    |
| <400>      | 145                 |   |    |
| gtgtcttctg | tgtgccagac          |   | 20 |
|            |                     |   |    |
| <210>      | 146                 |   |    |
| <211>      | 20                  |   |    |
| <212>      | DNA                 |   |    |
| <213>      | Artificial Sequence |   |    |
|            |                     |   |    |
| <220>      |                     |   |    |
| <223>      | Synthetic           |   |    |
|            |                     |   |    |
| <400>      | 146                 |   |    |
| tgtcttctgt | gtgccagaca          |   | 20 |
|            |                     |   |    |
| <210>      | 147                 |   |    |
| <211>      | 20                  |   |    |
| <212>      | DNA                 |   |    |
| <213>      | Artificial Sequence |   |    |
|            |                     |   |    |
| <220>      |                     |   |    |
| <223>      | Synthetic           |   |    |
|            |                     |   |    |
| <400>      | 147                 |   |    |
| gtcttctgtg | tgccagacac          |   | 20 |

```
<210>
           148
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           148
tcttctgtgt gccagacacc
                                                                    20
<210>
           149
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           149
cttctgtgtg ccagacaccc
                                                                   20
<210>
           150
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           150
ttctgtgtgc cagacaccct
                                                                   20
<210>
           151
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           151
```

| WO 00/2064 | 5            |          | PCT/US99/23205 |
|------------|--------------|----------|----------------|
| tatgtgtgad | agacacccta   |          | 20             |
| <210>      | 152          |          |                |
| <211>      | 20           |          |                |
| <212>      | DNA          |          |                |
| <213>      | Artificial   | Sequence |                |
| <220>      |              |          |                |
| <223>      | Synthetic    |          |                |
| <400>      | 152          |          |                |
| ctgtgtgcca | gacaccctat   |          | 20             |
| <210>      | 153          |          |                |
| <211>      | 20           |          |                |
| <212>      | DNA          |          |                |
| <213>      | Artificial   | Sequence |                |
| <220>      |              |          |                |
| <223>      | Synthetic    |          |                |
| <400>      | 153          |          |                |
| tgtgtgccag | acaccctatc   |          | 20             |
| <210>      | 154          |          |                |
| <211>      | 20           |          |                |
| <212>      | DNA          |          |                |
| <213>      | Artificial   | Sequence |                |
| <220>      |              |          |                |
| <223>      | Synthetic    |          |                |
| <400>      | 154          |          |                |
| tgtgccagac | accctatctt   |          | 20             |
| <210>      | 155          |          |                |
| <211>      | 20           |          |                |
| <212>      | DNA          |          |                |
| <213>      | Artificial S | Sequence |                |
| <220>      |              |          |                |
| <223>      | Synthetic    |          |                |
|            |              |          |                |

| WO 00/2064 | 5          |          |  | PCT/US99/23205 |
|------------|------------|----------|--|----------------|
| <400>      | 155        |          |  |                |
| gtgccagaca | ccctatcttc |          |  | 20             |
| <210>      | 156        |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |
| <220>      |            |          |  |                |
| <223>      | Synthetic  |          |  |                |
| <400>      | 156        |          |  |                |
| tgccagacac | cctatcttct |          |  | 20             |
| <210>      | 157        |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |
| <220>      |            |          |  |                |
| <223>      | Synthetic  | •        |  |                |
| <400>      | 157        |          |  |                |
| gccagacacc | ctatcttctt |          |  | 20             |
| <210>      | 158        |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |
| <220>      |            |          |  |                |
| <223>      | Synthetic  |          |  |                |
| <400>      | 158        |          |  |                |
| ccagacaccc | tatcttcttc |          |  | 20             |
| <210>      | 159        |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |

<220>

| WO 00/2064 | 15         |          |  | PCT/US99/23205 |
|------------|------------|----------|--|----------------|
| <223>      | Synthetic  |          |  |                |
| <400>      | 159        |          |  |                |
| cagacaccct | atcttcttct |          |  | 20             |
| <210>      | 160        |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |
| <220>      |            |          |  |                |
| <223>      | Synthetic  |          |  |                |
| <400>      | 160        |          |  |                |
| agacacccta | tcttcttctc |          |  | 20             |
| <210>      | 161        |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |
| <220>      |            |          |  |                |
| <223>      | Synthetic  |          |  |                |
| <400>      | 161        |          |  |                |
| gacaccctat | cttcttctct |          |  | 20             |
| <210>      | 162        |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |
| <213>      | Artificial | Sequence |  |                |
| <220>      |            |          |  |                |
| <223>      | Synthetic  |          |  |                |
| <400>      | 162        |          |  |                |
| acaccctatc | ttettetete |          |  | 20             |
| <210>      | 163        |          |  |                |
| <211>      | 20         |          |  |                |
| <212>      | DNA        |          |  |                |

Artificial Sequence

<213>

| WO 00/2064 | 5          |          | PCT/U | 899/23205 |
|------------|------------|----------|-------|-----------|
| <220>      |            |          |       |           |
| <223>      | Synthetic  |          |       |           |
| <400>      | 163        |          |       |           |
| caccctatct | tcttctctcc |          |       | 20        |
| <210>      | 164        |          |       |           |
| <211>      | 18         |          |       |           |
| <212>      | DNA        |          |       |           |
| <213>      | Artificial | Sequence |       |           |
| <220>      |            |          |       |           |
| <223>      | Synthetic  |          |       |           |
| <400>      | 164        |          |       |           |
| gtcttctgtg | tgccagac   |          |       | 18        |
| <210>      | 165        |          |       |           |
| <211>      | 18         |          |       |           |
| <212>      | DNA        |          |       |           |
| <213>      | Artificial | Sequence |       |           |
| <220>      |            |          |       |           |
| <223>      | Synthetic  |          |       |           |
| <400>      | 165        |          |       |           |
| tcttctgtgt | gccagaca   |          |       | 18        |
| <210>      | 166        |          |       |           |
| <211>      | 18         |          |       |           |
| <212>      | DNA        |          |       |           |
| <213>      | Artificial | Sequence |       |           |
| <220>      |            |          |       |           |
| <223>      | Synthetic  |          |       |           |
| <400>      | 166        |          |       |           |
| cttctgtgtg | ccagacac   |          |       | 18        |
| <210>      | 167        |          |       |           |
| <211>      | 18         |          |       |           |

<212>

DNA

PCT/US99/23205 <213> Artificial Sequence <220> <223> Synthetic <400> 167 ttctgtgtgc cagacacc 18 <210> 168 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 168 tctgtgtgcc agacaccc 18 <210> 169 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 169 ctgtgtgcca gacaccct 18 <210> 170 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 170 tgtgtgccag acacccta 18 <210> 171

WO 00/20645

<211>

18

WO 00/20645 PCT/US99/23205 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 171 gtgtgccaga caccctat 18 <210> 172 <211> 18 <212> DNA Artificial Sequence <213> <220> <223> Synthetic <400> 172 tgtgccagac accctatc 18 173 <210> <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 173 tgccagacac cctatctt 18 174 <210> <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 174

18

gccagacacc ctatcttc

```
<210>
           175
<211>
           18
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           175
ccagacaccc tatcttct
                                                                     18
<210>
           176
<211>
           18
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           176
cagacaccct atcttctt
                                                                    18
<210>
           177
<211>
           18
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           177
agacacccta tcttcttc
                                                                    18
<210>
           178
<211>
           18
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           178
```

| <pre>&lt;210&gt;     179 &lt;211&gt;     18 &lt;212&gt;     DNA &lt;213&gt;     Artificial Sequence  &lt;220&gt; &lt;223&gt;     Synthetic &lt;400&gt;     179</pre> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <211> 18 <212> DNA <213> Artificial Sequence  <220> <223> Synthetic                                                                                                  |
| <212> DNA <213> Artificial Sequence  <220> <223> Synthetic                                                                                                           |
| <220> <223> Artificial Sequence  <220> <223> Synthetic                                                                                                               |
| <220> <223> Synthetic                                                                                                                                                |
| <223> Synthetic                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
| <400> 179                                                                                                                                                            |
|                                                                                                                                                                      |
| acaccctatc ttcttctc 18                                                                                                                                               |
|                                                                                                                                                                      |
| <210> 180                                                                                                                                                            |
| <211> 20                                                                                                                                                             |
| <212> DNA                                                                                                                                                            |
| <213> Artificial Sequence                                                                                                                                            |
|                                                                                                                                                                      |
| <220>                                                                                                                                                                |
| <223> Synthetic                                                                                                                                                      |
|                                                                                                                                                                      |
| <400> 180                                                                                                                                                            |
| agaggtttgg agacacttac 20                                                                                                                                             |
|                                                                                                                                                                      |
| <210> 181                                                                                                                                                            |
| <211> 20                                                                                                                                                             |
| <212> DNA                                                                                                                                                            |
| <213> Artificial Sequence                                                                                                                                            |
|                                                                                                                                                                      |
| <220>                                                                                                                                                                |
| <223> Synthetic                                                                                                                                                      |
|                                                                                                                                                                      |
| <400> 181                                                                                                                                                            |
| gaattaggaa agaggtttgg 20                                                                                                                                             |
| ~210\ 192                                                                                                                                                            |
| <210> 182<br><211> 20                                                                                                                                                |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
| <213> Artificial Sequence                                                                                                                                            |
| <220>                                                                                                                                                                |

PCT/US99/23205

WO 00/20645

<223> Synthetic

| WO 00/2064 | 5          |          | PCT/US99/23205 |
|------------|------------|----------|----------------|
| <400>      | 182        |          |                |
| cccaaaccca | gaattaggaa |          | 20             |
| <210>      | 183        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 183        |          |                |
| tacccccaaa | cccaaaccca |          | 20             |
| <210>      | 184        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        | _        |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 184        |          |                |
| gtactaaccc | tacccccaaa |          | 20             |
| <210>      | 185        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 185        |          |                |
| ttccataccg | gtactaaccc |          | 20             |
| <210>      | 186        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |

| WO 00/20645 |                |          | PCT/US | 99/23205 |
|-------------|----------------|----------|--------|----------|
| <223>       | Synthetic      |          |        |          |
|             |                |          |        |          |
| <400>       | 186            |          |        |          |
| ccccactgc   | ttccataccg     |          |        | 20       |
|             |                |          |        |          |
| <210>       | 187            |          |        |          |
| <211>       | 20             |          |        |          |
| <212>       | DNA            |          |        |          |
| <213>       | Artificial     | Sequence |        |          |
|             |                |          |        |          |
| <220>       |                |          |        |          |
| <223>       | Synthetic      |          |        |          |
| .400-       | 107            |          |        |          |
| <400>       | 187            |          |        |          |
| Cilladalii  | ccccactgc      |          |        | 20       |
| <210>       | 188            |          |        |          |
| <211>       | 20             |          |        |          |
| <212>       | DNA            |          |        |          |
| <213>       | Artificial     | Seguence |        |          |
| 22137       | rii cii i ciai | sequence |        |          |
| <220>       |                |          |        |          |
| <223>       | Synthetic      |          |        |          |
|             | 2              |          |        |          |
| <400>       | 188            |          |        |          |
| aagaccaaaa  | ctttaaattt     |          |        | 20       |
|             |                |          |        |          |
| <210>       | 189            |          |        |          |
| <211>       | 20             |          |        |          |
| <212>       | DNA            |          |        |          |
| <213>       | Artificial     | Sequence |        |          |
|             |                |          |        |          |
| <220>       |                |          |        |          |
| <223>       | Synthetic      |          |        |          |
|             |                |          |        |          |
| <400>       | 189            |          |        |          |
| atcctccccc  | aagaccaaaa     |          |        | 20       |
|             |                |          |        |          |
| <210>       | 190            |          |        |          |
| <211>       | 20             |          |        |          |
| <212>       | DNA            |          |        |          |
| <213>       | Artificial     | Sequence |        |          |

| WO 00/20645 | ;          | PCT/     | US99/23205 |
|-------------|------------|----------|------------|
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 190        |          |            |
| acctccatcc  | atcctcccc  |          | 20         |
| <210>       | 191        |          |            |
| <211>       | 20         |          |            |
| <212>       | DNA        |          |            |
| <213>       | Artificial | Sequence |            |
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 191        |          |            |
| ccctactttc  | acctccatcc |          | 20         |
| <210>       | 192        |          |            |
| <211>       | 20         |          |            |
| <212>       | DNA        |          |            |
| <213>       | Artificial | Sequence |            |
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 192        |          |            |
| gaaaataccc  | ccctactttc |          | 20         |
| <210>       | 193        |          |            |
| <211>       | 20         |          |            |
| <212>       | DNA        |          |            |
| <213>       | Artificial | Sequence |            |
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 193        |          |            |
| aaacttccta  | gaaaataccc |          | 20         |
| <210>       | 194        |          |            |
| <211>       | 20         |          |            |

<212>

DNA

WO 00/20645 PCT/US99/23205 <213> Artificial Sequence

<220>

<223> Synthetic

<400> 194

20 tgagaccctt aaacttccta

<210> 195 <211> 20 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 195

aagaaaaagc tgagaccctt 20

<210> 196 <211> 20 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 196

20 ggagagaga aagaaaaagc

197 <210> <211> 20 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 197

tgagccagaa gaggttgagg 20

<210> 198 <211> 20

| WO 00/20645 | i          | PCT      | //US99/23205 |
|-------------|------------|----------|--------------|
| <212>       | DNA        |          |              |
| <213>       | Artificial | Sequence |              |
| <220>       |            |          |              |
| <223>       | Synthetic  |          |              |
| <400>       | 198        |          |              |
| attctcttt   | tgagccagaa |          | 20           |
| <210>       | 199        |          |              |
| <211>       | 20         |          |              |
| <212>       | DNA        |          |              |
| <213>       | Artificial | Sequence |              |
| <220>       |            |          |              |
| <223>       | Synthetic  |          |              |
| <400>       | 199        |          |              |
| taagccccca  | attctcttt  |          | 20           |
| <210>       | 200        |          |              |
| <211>       | 20         |          |              |
| <212>       | DNA        |          |              |
| <213>       | Artificial | Sequence |              |
| <220>       |            |          |              |
| <223>       | Synthetic  |          |              |
| <400>       | 200        |          |              |
| gttccgaccc  | taagccccca |          | 20           |
| <210>       | 201        |          |              |
| <211>       | 20         |          |              |
| <212>       | DNA        |          |              |
| <213>       | Artificial | Sequence |              |
| <220>       |            |          |              |
| <223>       | Synthetic  |          |              |
| <400>       | 201        |          |              |
| ctaagcttgg  | gttccgaccc |          | 20           |

| WO 00/20645    |            |          | PCT/US9 | 99/23205 |
|----------------|------------|----------|---------|----------|
| <210>          | 202        |          |         |          |
| <211>          | 20         |          |         |          |
| <212>          | DNA        |          |         |          |
| <213>          | Artificial | Sequence |         |          |
| <220>          |            |          |         |          |
| <223>          | Synthetic  |          |         |          |
| <400>          | 202        |          |         |          |
|                | ctaagcttgg |          |         | 20       |
| <210>          | 203        |          |         |          |
| <211>          | 20         |          |         |          |
| <212>          | DNA        |          |         |          |
| <213>          | Artificial | Sequence |         |          |
| <220>          |            |          |         |          |
| <223>          | Synthetic  |          |         |          |
|                | -7         |          |         |          |
| <400>          | 203        |          |         |          |
| tggtcttgtt     | gcttaaagtt |          |         | 20       |
| <210>          | 204        |          |         |          |
| <211>          | 20         |          |         |          |
| <212>          | DNA        |          |         |          |
| <213>          | Artificial | Sequence |         |          |
| <220>          |            |          |         |          |
| <223>          | Synthetic  |          |         |          |
|                | •          |          |         |          |
| <400>          | 204        |          |         |          |
| ttcgaagtgg     | tggtcttgtt |          |         | 20       |
| <210>          | 205        |          |         |          |
| <211>          | 20         |          |         |          |
| <212>          | DNA        |          |         |          |
| <213>          | Artificial | Sequence |         |          |
| <220>          |            |          |         |          |
| <220><br><223> | Synthetic  |          |         |          |
| <443>          | PAHEHECTC  |          |         |          |

<400>

| WO 00/20645 |            |          |   | PCT/US | 899/23205 |
|-------------|------------|----------|---|--------|-----------|
| aatcccaggt  | ttcgaagtgg |          |   |        | 20        |
| <210>       | 206        |          |   |        |           |
| <211>       | 20         |          |   |        |           |
| <212>       | DNA        |          |   |        |           |
| <213>       | Artificial | Sequence |   |        |           |
|             |            |          |   |        |           |
| <220>       |            |          |   |        |           |
| <223>       | Synthetic  |          |   |        |           |
| <400>       | 206        |          |   |        |           |
| cacattcctg  | aatcccaggt |          |   |        | 20        |
|             |            |          |   |        |           |
| <210>       | 207        |          |   |        |           |
| <211>       | 20         |          |   |        |           |
| <212>       | DNA        |          |   |        |           |
| <213>       | Artificial | Sequence |   |        |           |
| <220>       |            |          |   |        |           |
| <223>       | Synthetic  |          |   |        |           |
|             | -7         |          |   |        |           |
| <400>       | 207        |          |   |        |           |
| gtgcaggcca  | cacattcctg |          |   |        | 20        |
|             |            |          |   |        |           |
| <210>       | 208        |          | • |        |           |
| <211>       | 20         |          |   |        |           |
| <212>       | DNA        |          |   |        |           |
| <213>       | Artificial | Sequence |   |        |           |
| <220>       |            |          |   |        |           |
| <223>       | Synthetic  |          |   |        |           |
|             | •          |          |   |        |           |
| <400>       | 208        |          |   |        |           |
| gcacttcact  | gtgcaggcca |          |   |        | 20        |
|             |            |          |   |        |           |
| <210>       | 209        |          |   |        |           |
| <211>       | 20         |          |   |        |           |
| <212>       | DNA        |          |   |        |           |
| <213>       | Artificial | Sequence |   |        |           |
| <220>       |            |          |   |        |           |
|             |            |          |   |        |           |

WO 00/20645

Synthetic

<223>

| WO 00/20645 | i          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <400>       | 209        |          |                |
| gtggttgcca  | gcacttcact |          | 20             |
| <210>       | 210        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 210        |          |                |
| tgaattetta  | gtggttgcca |          | 20             |
| <210>       | 211        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 211        |          |                |
| ggccccagtt  | tgaattctta |          | 20             |
| <210>       | 212        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 212        |          |                |
| gagttctgga  | ggccccagtt |          | 20             |
| <210>       | 213        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |

<220>

| WO 00/20645 | 5          |          |  | PCT/US99/23205 |
|-------------|------------|----------|--|----------------|
| <223>       | Synthetic  |          |  |                |
| <400>       | 213        |          |  |                |
| aggccccagt  | gagttctgga |          |  | 20             |
| <210>       | 214        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 214        |          |  |                |
| tcaaagctgt  | aggccccagt |          |  | 20             |
| <210>       | 215        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 215        |          |  |                |
| atgtcaggga  | tcaaagctgt |          |  | 20             |
| <210>       | 216        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 216        |          |  |                |
| cagattccag  | atgtcaggga |          |  | 20             |
| <210>       | 217        |          |  |                |
| :211>       | 20         |          |  |                |
| 212>        | DNA        |          |  |                |

<213>

Artificial Sequence

| WO 00/20645 | 5          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 217        |          |                |
| ccctggtctc  | cagattccag |          | 20             |
| <210>       | 218        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 218        |          |                |
| accaaaggct  | ccctggtctc |          | 20             |
| <210>       | 219        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 219        |          |                |
| tctggccaga  | accaaaggct |          | 20             |
| <210>       | 220        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 220        |          |                |
| cctgcagcat  | tctggccaga |          | 20             |
| <210>       | 221        |          |                |
| <211>       | 20         |          |                |

<212>

DNA

<213> Artificial Sequence <220> <223> Synthetic <400> 221 cttctcaagt cctgcagcat 20 <210> 222 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 222 taggtgaggt cttctcaagt 20 <210> 223 <211> 20 <212> DNA Artificial Sequence <213> <220> <223> Synthetic <400> 223 tgtcaatttc taggtgaggt 20 <210> 224 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 224 ggtccacttg tgtcaatttc 20 <210> 225

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 225 gaaggcctaa ggtccacttg 20 <210> 226 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 226 ctggagagag gaaggcctaa 20 <210> 227 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 227 ctggaaacat ctggagagag 20 <210> 228 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 228

20

tcaaggaagt ctggaaacat

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <210>       | 229        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 229        |          |                |
| geteegtgte  | tcaaggaagt |          | 20             |
| <210>       | 230        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 230        |          |                |
| ataaatacat  | tcatctgtaa |          | 20             |
| <210>       | 231        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 231        |          |                |
| ggtctcccaa  | ataaatacat |          | 20             |
| <210>       | 232        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |

<400> 232

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| aggatacccc  | ggtctcccaa |          | 20             |
| <210>       | 233        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 233        |          |                |
| tgggtccccc  | aggatacccc |          | 20             |
| <210>       | 234        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 234        |          |                |
| gctcctacat  | tgggtccccc |          | 20             |
| <210>       | 235        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  | /        |                |
| <400>       | 235        |          |                |
| agccaaggca  | gctcctacat |          | 20             |
| <210>       | 236        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |

<223> Synthetic

| WO 00/20645 |            | PCT/U    | S99/23205 |
|-------------|------------|----------|-----------|
| <400>       | 236        |          |           |
| aacatgtctg  | agccaaggca |          | 20        |
| <210>       | 237        |          |           |
| <211>       | 20         |          |           |
| <212>       | DNA        |          |           |
| <213>       | Artificial | Sequence |           |
| <220>       |            |          |           |
| <223>       | Synthetic  |          |           |
| <400>       | 237        |          |           |
| tttcacggaa  | aacatgtctg |          | 20        |
| <210>       | 238        |          |           |
| <211>       | 20         |          |           |
| <212>       | DNA        |          |           |
| <213>       | Artificial | Sequence |           |
| <220>       |            |          |           |
| <223>       | Synthetic  |          |           |
| <400>       | 238        |          |           |
| tcagctccgt  | tttcacggaa |          | 20        |
| <210>       | 239        |          |           |
| <211>       | 20         |          |           |
| <212>       | DNA        |          |           |
| <213>       | Artificial | Sequence |           |
| <220>       |            |          |           |
| <223>       | Synthetic  |          |           |
| <400>       | 239        |          |           |
| agcctattgt  | tcagctccgt |          | 20        |
| <210>       | 240        |          |           |
| <211>       | 20         |          |           |
| <212>       | DNA        |          |           |
| <213>       | Artificial | Sequence |           |

<220>

| WO 00/20645         |            | 1        | PCT/US99/23205 |
|---------------------|------------|----------|----------------|
| <223>               | Synthetic  |          |                |
| <400>               | 240        |          |                |
| acatgggaac          | agcctattgt |          | 20             |
| <210>               | 241        |          |                |
| <211>               | 20         |          |                |
| <212>               | DNA        |          |                |
| <213>               | Artificial | Sequence |                |
|                     |            | sequence |                |
| <220>               |            |          |                |
| <223>               | Synthetic  |          |                |
|                     |            | •        |                |
| <400>               | 241        |          |                |
| atcaaaagaa          | ggcacagagg |          | 20             |
|                     |            |          |                |
| <210>               | 242        |          |                |
| <211>               | 20         |          |                |
| <212>               | DNA        |          |                |
| <213>               | Artificial | Sequence |                |
|                     |            |          |                |
| <220>               |            |          |                |
| <223>               | Synthetic  |          |                |
| -400-               | 242        |          |                |
| <400><br>gtttagacaa | 242        |          |                |
| gectagacaa          | CttaatCaga |          | 20             |
| <210>               | 243        |          |                |
| <211>               | 20         |          |                |
| <212>               | DNA        |          |                |
| <213>               | Artificial | Sequence |                |
|                     |            |          |                |
| <220>               |            |          |                |
| <223>               | Synthetic  |          |                |
|                     |            |          |                |
| <400>               | 243        |          |                |
| aatcagcatt          | gtttagacaa |          | 20             |
|                     |            |          |                |
| <210>               | 244        |          |                |
| <211>               | 20         |          |                |
| <212>               | DNA        |          |                |
| <213>               | Artificial | Sequence |                |

| WO 00/20645 |            |          |  | PCT/US99/23205 |
|-------------|------------|----------|--|----------------|
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 244        |          |  |                |
| ttggtcacca  | aatcagcatt |          |  | 20             |
| <210>       | 245        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 245        |          |  |                |
| tgagtgacag  | ttggtcacca |          |  | 20             |
| <210>       | 246        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 246        |          |  |                |
| ggctcagcaa  | tgagtgacag |          |  | 20             |
| <210>       | 247        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 247        |          |  |                |
| attacagaca  | caactcccct |          |  | 20             |
| <210>       | 248        |          |  |                |
| <211>       | 20         |          |  |                |

<212> DNA

| <213>      | Artificial | Sequence |    |
|------------|------------|----------|----|
| <220>      |            |          |    |
| <223>      | Synthetic  |          |    |
|            | 27         |          |    |
| <400>      | 248        |          |    |
| tagtagggcg | attacagaca |          | 20 |
|            |            |          |    |
| <210>      | 249        |          |    |
| <211>      | 20         |          |    |
| <212>      | DNA        |          |    |
| <213>      | Artificial | Sequence |    |
|            |            |          |    |
| <220>      |            |          |    |
| <223>      | Synthetic  |          |    |
|            |            |          |    |
| <400>      | 249        |          |    |
| cgccactgaa | tagtagggcg |          | 20 |
|            |            |          |    |
| <210>      | 250        |          |    |
| <211>      | 20         |          |    |
| <212>      | DNA        |          |    |
| <213>      | Artificial | Sequence |    |
|            |            |          |    |
| <220>      | Q+1        |          |    |
| <223>      | Synthetic  |          |    |
| <400>      | 250        |          |    |
|            | cgccactgaa |          | 20 |
| CECLACECCE | egecacegaa |          | 20 |
| <210>      | 251        |          |    |
| <211>      | 20         |          |    |
| <212>      | DNA        |          |    |
| <213>      | Artificial | Sequence |    |
|            |            |          |    |
| <220>      |            |          |    |
| <223>      | Synthetic  |          |    |
|            |            |          |    |
| <400>      | 251        |          |    |
| ctgagggagc | gtctgctggc |          | 20 |
|            |            |          |    |
| <210>      | 252        |          |    |

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 252 ccttgctgag ggagcgtctg 20 <210> 253 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 253 ctggtcctct gctgtccttg 20 <210> 254 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 254 cctctgctgt ccttgctgag 20 255 <210> <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 255

20

ttctctcct cttagctggt

| WO 00/20645 | ;          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <210>       | 256        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 256        |          |                |
| tccctcttag  | ctggtcctct |          | 20             |
| <210>       | 257        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 257        |          |                |
| tctgagggtt  | gttttcaggg |          | 20             |
| <210>       | 258        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 258        |          |                |
| ctgtagttgc  | ttctctccct |          | 20             |
| <210>       | 259        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             |            |          |                |

<400> 259

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| acctgcctgg  | cagcttgtca |          | 20             |
| <210>       | 260        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 260        |          |                |
| ggatgtggcg  | tctgagggtt | ,        | 20             |
| <210>       | 261        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 261        |          |                |
| tgtgagagga  | agagaacctg |          | 20             |
| <210>       | 262        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 262        |          |                |
| gaggaagaga  | acctgcctgg |          | 20             |
| <210>       | 263        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |

<223> Synthetic

| WO 00/20645 | ;            | 1        | PCT/US99/23205 |
|-------------|--------------|----------|----------------|
| <400>       | 263          |          |                |
| agccgtgggt  | cagtatgtga   |          | 20             |
| <210>       | 264          |          |                |
| <211>       | 20           |          |                |
| <212>       | DNA          |          |                |
| <213>       | Artificial   | Sequence |                |
| <220>       |              |          |                |
| <223>       | Synthetic    |          |                |
| <400>       | 264          |          |                |
| tgggtcagta  | tgtgagagga   |          | 20             |
| <210>       | 265          |          |                |
| <211>       | 20           |          |                |
| <212>       | DNA          |          |                |
| <213>       | Artificial   | Sequence |                |
| <220>       |              |          |                |
| <223>       | Synthetic    |          |                |
| <400>       | 265          |          |                |
| gagagggtga  | agccgtgggt   |          | 20             |
| <210>       | 266          |          |                |
| <211>       | 20           |          |                |
| <212>       | DNA          |          |                |
| <213>       | Artificial   | Sequence |                |
| <220>       |              |          |                |
| <223>       | Synthetic    |          |                |
| <400>       | 266          |          |                |
| tcatggtgtc  | ctttccaggg   |          | 20             |
| <210>       | 267          |          |                |
| <211>       | 20           |          |                |
| <212>       | DNA          |          |                |
| <213>       | Artificial : | Sequence |                |

<220>

| WO 00/20645 | 5          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <223>       | Synthetic  |          |                |
| <400>       | 267        |          |                |
| ctttcagtgc  | tcatggtgtc |          | 20             |
| <210>       | 268        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 268        |          |                |
| tcatgctttc  | agtgctcatg |          | 20             |
| <210>       | 269        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 269        |          |                |
| acgtcccgga  | tcatgctttc |          | 20             |
| <210>       | 270        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 270        |          |                |
| gctccacgtc  | ccggatcatg |          | 20             |
| <210>       | 271        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |

<213> Artificial Sequence

| WO 00/20645 | 5          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 271        |          |                |
| tecteggeea  | gctccacgtc |          | 20             |
| <210>       | 272        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             | _          |          |                |
| <400>       | 272        |          |                |
| gcgcctcctc  | ggccagctcc |          | 20             |
| <210>       | 273        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             | •          |          |                |
| <400>       | 273        |          |                |
| aggaacaagc  | accgcctgga |          | 20             |
| <210>       | 274        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
|             |            |          |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 274        |          |                |
| caagcaccgc  | ctggagccct |          | 20             |
| <210>       | 275        |          |                |
| <211>       | 20         |          |                |
| ~411/       | 20         |          |                |

<212>

DNA

| <213>      | Artificial   | Sequence |    |
|------------|--------------|----------|----|
| <220>      |              |          |    |
| <223>      | Synthetic    |          |    |
|            | 7            |          |    |
| <400>      | 275          |          |    |
| aaggagaaga | ggctgaggaa   |          | 20 |
|            |              |          |    |
| <210>      | 276          |          |    |
| <211>      | 20           |          |    |
| <212>      | DNA          |          |    |
| <213>      | Artificial : | Sequence |    |
|            |              |          |    |
| <220>      |              |          |    |
| <223>      | Synthetic    |          |    |
|            |              |          |    |
| <400>      | 276          |          |    |
| gaagaggctg | aggaacaagc   |          | 20 |
|            |              |          |    |
| <210>      | 277          |          |    |
| <211>      | 20           |          |    |
| <212>      | DNA          |          |    |
| <213>      | Artificial S | Sequence |    |
|            |              |          |    |
| <220>      |              |          |    |
| <223>      | Synthetic    |          |    |
|            |              |          |    |
| <400>      | 277          |          |    |
| cctgccacga | tcaggaagga   |          | 20 |
|            |              |          |    |
| <210>      | 278          |          |    |
| <211>      | 20           |          |    |
| <212>      | DNA          |          |    |
| <213>      | Artificial S | Sequence |    |
|            |              |          |    |
| <220>      |              |          |    |
| <223>      | Synthetic    |          |    |
|            |              |          |    |
| <400>      | 278          |          |    |
| cacgatcagg | aaggagaaga   |          | 20 |
|            |              |          |    |
| <210>      | 279          |          |    |

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 279 aagagcgtgg tggcgcctgc 20 <210> 280 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 280 cgtggtggcg cctgccacga 20 <210> 281 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 281 aagtgcagca ggcagaagag 20 <210> 282 20 <211> <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 282

20

cagcaggcag aagagcgtgg

WO 00/20645 PCT/US99/23205 <210> 283 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 283 gatcactcca aagtgcagca 20 <210> 284 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 284 gggccgatca ctccaaagtg 20 <210> 285 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 285 gggccagagg gctgattaga 20 <210> 286 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic

<400>

286

| WO 00/20645 | <b>;</b>   |          |  | ] | PCT/US99/23205 |
|-------------|------------|----------|--|---|----------------|
| agagggctga  | ttagagagag |          |  |   | 20             |
| <210>       | 287        |          |  |   |                |
| <211>       | 20         |          |  |   |                |
| <212>       | DNA        |          |  |   |                |
| <213>       | Artificial | Sequence |  |   |                |
| <220>       |            |          |  |   |                |
| <223>       | Synthetic  |          |  |   |                |
| <400>       | 287        |          |  |   |                |
| gctacaggct  | tgtcactcgg |          |  |   | 20             |
| <210>       | 288        |          |  |   |                |
| <211>       | 20         |          |  |   |                |
| <212>       | DNA        |          |  |   |                |
| <213>       | Artificial | Sequence |  |   |                |
| <220>       |            |          |  |   |                |
| <223>       | Synthetic  |          |  |   |                |
| <400>       | 288        |          |  |   |                |
| ctgactgcct  | gggccagagg |          |  |   | 20             |
| <210>       | 289        |          |  |   |                |
| <211>       | 20         |          |  |   |                |
| <212>       | DNA        |          |  |   |                |
| <213>       | Artificial | Sequence |  |   |                |
| <220>       |            |          |  |   |                |
| <223>       | Synthetic  |          |  |   |                |
| <400>       | 289        |          |  |   |                |
| tacaacatgg  | gctacaggct |          |  |   | 20             |
| <210>       | 290        |          |  |   |                |
| <211>       | 20         |          |  |   |                |
| <212>       | DNA        |          |  |   |                |
| <213>       | Artificial | Sequence |  |   |                |
| <220>       |            |          |  |   |                |

WO 00/20645

<223> Synthetic

<400> 290 20 agccactgga gctgcccctc <210> 291 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 291 20 ctggagctgc ccctcagctt <210> 292 20 <211> <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 292 20 ttggcccggc ggttcagcca <210> 293 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 293 ttggccagga gggcattggc 20 <210> 294 <211> 20 <212> DNA <213> Artificial Sequence

PCT/US99/23205

WO 00/20645

<220>

|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       | PCT/US99/23205                                                                                                                                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Synthetic  |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| 294        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| agccactgga | L                                                                                                                                                                           |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                     |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            | G                                                                                                                                                                           |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| Artificial | sequence                                                                                                                                                                    |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| Synthetic  |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| -          |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| 295        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| cgccattggc |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                     |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| 296        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| 20         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| DNA        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| Artificial | Sequence                                                                                                                                                                    |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| Synthetic  |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| 296        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                     |
| ceggeeegge |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                     |
| 297        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| 20         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| DNA        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| Artificial | Sequence                                                                                                                                                                    |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| Synthetic  |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| ıcggccagga |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                     |
| 298        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
| DNA        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            | Sequence                                                                                                                                                                    |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |
|            | Synthetic  294 agccactgga  295 20 DNA Artificial  Synthetic  296 20 DNA Artificial  Synthetic  296 ttggcccggc  297 20 DNA Artificial  Synthetic  297 ttggccagga  298 20 DNA | Synthetic  294 agccactgga  295 20 DNA Artificial Sequence  Synthetic  295 cgccattggc  296 20 DNA Artificial Sequence  Synthetic  296 20 DNA Artificial Sequence  Synthetic  296 ttggcccggc  297 20 DNA Artificial Sequence  Synthetic  297 20 DNA Artificial Sequence | Synthetic  294 agccactgga  295 20 DNA Artificial Sequence  Synthetic  296 20 DNA Artificial Sequence  Synthetic  296 20 DNA Artificial Sequence  Synthetic  296 ttggcccggc  297 20 DNA Artificial Sequence  Synthetic  297 20 DNA Artificial Sequence | Synthetic  294 agccactgga  295 20 DNA Artificial Sequence  Synthetic  295 cgccattggc  296 20 DNA Artificial Sequence  Synthetic  296 ttggcccggc  297 20 DNA Artificial Sequence  Synthetic  297 ttggccagga  298 20 DNA |

| WO 00/20645 | ;          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 298        |          |                |
| accagctggt  | tatctctcag |          | 20             |
| <210>       | 299        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  | •        |                |
| <400>       | 299        |          |                |
| ctggttatct  | ctcagctcca |          | 20             |
| <210>       | 300        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 300        |          |                |
| ccctctgatg  | gcaccaccag |          | 20             |
| <210>       | 301        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 301        |          |                |
| tgatggcacc  | accagctggt |          | 20             |
| <210>       | 302        |          |                |
| <211>       | 20         |          |                |

DNA

<212>

| <213>      | Artificial   | Sequence     |    |
|------------|--------------|--------------|----|
| <220>      |              |              |    |
|            | Synthetic    |              |    |
|            | 27110110010  |              |    |
| <400>      | 302          |              |    |
| tagatgaggt | acaggccctc   |              | 20 |
|            |              |              |    |
| <210>      | 303          |              |    |
| <211>      | 20           |              |    |
| <212>      | DNA          |              |    |
| <213>      | Artificial   | Sequence     |    |
|            |              |              |    |
| <220>      |              |              |    |
| <223>      | Synthetic    |              |    |
|            |              |              |    |
| <400>      | 303          |              |    |
| aagaggacct | gggagtagat   |              | 20 |
| 010        | 204          |              |    |
| <210>      | 304          |              |    |
| <211>      | 20           |              |    |
| <212>      | DNA          | Ga ann an an |    |
| <213>      | Artificial   | sequence     |    |
| <220>      |              |              |    |
| <223>      | Synthetic    |              |    |
|            |              |              |    |
| <400>      | 304          |              |    |
| gaggtacagg | ccctctgatg   |              | 20 |
|            | 5 5          |              | -* |
| <210>      | 305          |              |    |
| <211>      | 20           |              |    |
| <212>      | DNA          |              |    |
| <213>      | Artificial : | Sequence     |    |
|            |              |              |    |
| <220>      |              |              |    |
| <223>      | Synthetic    |              |    |
|            |              |              |    |
| <400>      | 305          |              |    |
| cagccttggc | ccttgaagag   |              | 20 |
| 0.1.0      |              |              |    |
| <210>      | 306          |              |    |

| <211>      | 20         |          |     |
|------------|------------|----------|-----|
| <212>      | DNA        |          |     |
| <213>      | Artificial | Sequence |     |
|            |            |          |     |
| <220>      |            |          |     |
| <223>      | Synthetic  |          |     |
| <400>      | 306        |          |     |
|            |            |          | 20  |
| gaccugggag | tagatgaggt |          | 20  |
| <210>      | 307        |          |     |
| <211>      | 20         |          |     |
| <212>      | DNA        | •        |     |
| <213>      | Artificial | Sequence |     |
|            |            |          |     |
| <220>      |            |          |     |
| <223>      | Synthetic  |          |     |
| <400>      | 307        |          |     |
|            |            |          | 20  |
| reggederig | aagaggacct |          | 20  |
| <210>      | 308        |          |     |
| <211>      | 20         |          |     |
| <212>      | DNA        |          |     |
| <213>      | Artificial | Sequence |     |
|            |            |          |     |
| <220>      |            |          |     |
| <223>      | Synthetic  |          |     |
| <400>      | 308        |          |     |
|            | gaggagcaca |          | 20  |
| -55-5-555- | gaggagcaca |          | 20  |
| <210>      | 309        |          |     |
| <211>      | 20         |          |     |
| <212>      | DNA        |          |     |
| <213>      | Artificial | Sequence |     |
|            |            |          |     |
| <220>      |            |          |     |
| <223>      | Synthetic  |          |     |
| <400>      | 309        |          |     |
|            | gctgatggtg |          | 20  |
|            | 2222-2     |          | ت ب |

```
<210>
            310
<211>
            20
<212>
            DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
            310
tgggtgagga gcacatgggt
                                                                     20
<210>
           311
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           311
tggtctggta ggagacggcg
                                                                    20
<210>
           312
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           312
atgcggctga tggtgtgggt
                                                                    20
<210>
           313
<211>
           20
<212>
           DNA
<213>
           Artificial Sequence
<220>
<223>
           Synthetic
<400>
           313
```

| WO 00/20645 |             |          |  | PCT/US99/23205 |
|-------------|-------------|----------|--|----------------|
| agaggaggtt  | gaccttggtc  |          |  | 20             |
| <210>       | 314         |          |  |                |
| <211>       | 20          |          |  |                |
| <212>       | DNA         |          |  |                |
| <213>       | Artificial  | Sequence |  |                |
| <220>       |             |          |  |                |
| <223>       | Synthetic   |          |  |                |
| <400>       | 314         |          |  |                |
| tggtaggaga  | c ggcgatgcg |          |  | 20             |
| <210>       | 315         |          |  |                |
| <211>       | 20          |          |  |                |
| <212>       | DNA         |          |  |                |
| <213>       | Artificial  | Sequence |  |                |
| <220>       |             |          |  |                |
| <223>       | Synthetic   |          |  |                |
| <400>       | 315         |          |  |                |
| aggttgacct  | tggtctggta  |          |  | 20             |
| <210>       | 316         |          |  |                |
| <211>       | 20          |          |  |                |
| <212>       | DNA         |          |  |                |
| <213>       | Artificial  | Sequence |  |                |
| <220>       |             |          |  |                |
| <223>       | Synthetic   |          |  |                |
| <400>       | 316         |          |  |                |
| ggctcttgat  | ggcagagagg  |          |  | 20             |
| <210>       | 317         |          |  |                |
| <211>       | 20          |          |  |                |
| <212>       | DNA         |          |  |                |
| <213>       | Artificial  | Sequence |  |                |
| <220>       |             |          |  |                |

WO 00/20645

<223> Synthetic

| WO 00/2064 | 5            |          |  | PCT/US99/23205 |
|------------|--------------|----------|--|----------------|
| <400>      | 317          |          |  |                |
| tcataccag  | gg cttggcctc |          |  | 20             |
| <210>      | 318          |          |  |                |
| <211>      | 20           |          |  |                |
| <212>      | DNA          |          |  |                |
| <213>      | Artificial   | Sequence |  |                |
| <220>      |              |          |  |                |
| <223>      | Synthetic    |          |  |                |
| <400>      | 318          |          |  |                |
| ttgatggca  | g agaggaggtt |          |  | 20             |
| <210>      | 319          |          |  |                |
| <211>      | 20           |          |  |                |
| <212>      | DNA          |          |  |                |
| <213>      | Artificial   | Sequence |  |                |
| <220>      |              |          |  |                |
| <223>      | Synthetic    |          |  |                |
| <400>      | 319          |          |  |                |
| agctggaaga | a cccctcccag |          |  | 20             |
| <210>      | 320          |          |  |                |
| <211>      | 20           |          |  |                |
| <212>      | DNA          |          |  |                |
| <213>      | Artificial a | Sequence |  |                |
| <220>      |              |          |  |                |
| <223>      | Synthetic    |          |  |                |
| <400>      | 320          |          |  |                |
| atagatgggd | tcataccagg   |          |  | 20             |
| <210>      | 321          |          |  |                |
| <211>      | 20           |          |  |                |
| <212>      | DNA          |          |  |                |
| <213>      | Artificial S | Sequence |  |                |

<220>

WO 00/20645 PCT/US99/23205 <223> Synthetic <400> 321 cggtcaccct tctccagctg 20 <210> 322 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 322 gaagacccct cccagataga 20 <210> 323 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 323 accettetee agetggaaga 20 <210> 324 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 324 tcggcaaagt cgagatagtc 20 <210> 325 <211> 20 <212> DNA

Artificial Sequence

<213>

| WO 00/20645 |            | PCT      | US99/23205 |
|-------------|------------|----------|------------|
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 325        |          |            |
| gggccgattg  | atctcagcgc |          | 20         |
| <210>       | 326        |          |            |
| <211>       | 20         |          |            |
| <212>       | DNA        |          |            |
| <213>       | Artificial | Sequence |            |
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 326        |          |            |
| tagacctgcc  | cagactcggc |          | 20         |
| <210>       | 327        |          |            |
| <211>       | 20         |          |            |
| <212>       | DNA        |          |            |
| <213>       | Artificial | Sequence |            |
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 327        |          |            |
| aaagtcgaga  | tagtcgggcc |          | 20         |
| <210>       | 328        |          |            |
| <211>       | 20         |          |            |
| <212>       | DNA        |          |            |
| <213>       | Artificial | Sequence |            |
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 328        |          |            |
| gcaatgatcc  | caaagtagac |          | 20         |
| <210>       | 329        |          |            |
| <211>       | 20         |          |            |

<212>

DNA

| <213>          | Artificial Sequence  |    |
|----------------|----------------------|----|
| <220>          |                      |    |
| <223>          | Synthetic            |    |
|                | -2                   |    |
| <400>          | 329                  |    |
| ctgcccagac     | tcggcaaagt           | 20 |
|                |                      |    |
| <210>          | 330                  |    |
| <211>          | 20                   |    |
| <212>          | DNA                  |    |
| <213>          | Artificial Sequence  |    |
|                |                      |    |
| <220>          |                      |    |
| <223>          | Synthetic            |    |
|                |                      |    |
| <400>          | 330                  |    |
| cgtcctcctc     | acagggcaat           | 20 |
| -210-          | 221                  |    |
| <210>          | 331                  |    |
| <211><br><212> | 20<br>DNA            |    |
| <212>          | Artificial Sequence  |    |
| (21)/          | Arctificial Sequence |    |
| <220>          |                      |    |
| <223>          | Synthetic            |    |
|                |                      |    |
| <400>          | 331                  |    |
| ggaaggttgg     | atgttcgtcc           | 20 |
|                |                      |    |
| <210>          | 332                  |    |
| <211>          | 20                   |    |
| <212>          | DNA                  |    |
| <213>          | Artificial Sequence  |    |
|                |                      |    |
| <220>          |                      |    |
| <223>          | Synthetic            |    |
|                |                      |    |
| <400>          | 332                  |    |
| tcctcacagg     | gcaatgatcc           | 20 |
| -210-          | 222                  |    |
| <210>          | 333                  |    |

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 333 gttgagggtg tctgaaggag 20 <210> 334 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 334 gttggatgtt cgtcctcctc 20 <210> 335 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 335 20 tttgagccag aagaggttga <210> 336 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 336

20

gaggcgtttg ggaaggttgg

WO 00/20645 PCT/US99/23205 <210> 337 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 337 gcccccaatt ctctttttga 20 <210> 338 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 338 gccagaagag gttgagggtg 20 <210> 339 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 339 gggttccgac cctaagcccc 20 <210> 340 <211> 20 <212> DNA

<213>

<220> <223>

<400>

Artificial Sequence

Synthetic

340

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| caattctctt  | tttgagccag | r        | 20             |
| <210>       | 341        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 341        |          |                |
| taaagttcta  | agcttgggtt |          | 20             |
| <210>       | 342        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 342        |          |                |
| ccgaccctaa  | gcccccaatt |          | 20             |
| <210>       | 343        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 343        |          |                |
| ggtggtcttg  | ttgcttaaag |          | 20             |
| <210>       | 344        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |

Synthetic

<223>

| WO 00/2064 | 5          |          |   | PCT/U | S99/23205 |
|------------|------------|----------|---|-------|-----------|
| <400>      | 344        |          |   |       |           |
| ttctaagct  | gggttccgac |          |   |       | 20        |
| <210>      | 345        |          |   |       |           |
| <211>      | 20         |          |   |       |           |
| <212>      | DNA        |          |   |       |           |
| <213>      | Artificial | Sequence |   |       |           |
| <220>      |            |          |   |       |           |
| <223>      | Synthetic  |          |   |       |           |
| <400>      | 345        |          |   |       |           |
| cccaggtttc | gaagtggtgg |          | • |       | 20        |
| <210>      | 346        |          |   |       |           |
| <211>      | 20         |          |   |       |           |
| <212>      | DNA        |          |   |       |           |
| <213>      | Artificial | Sequence |   |       |           |
| <220>      |            |          |   |       |           |
| <223>      | Synthetic  |          |   |       |           |
| <400>      | 346        |          |   |       |           |
| tcttgttgct | taaagttcta |          |   |       | 20        |
| <210>      | 347        |          |   |       |           |
| <211>      | 20         |          |   |       |           |
| <212>      | DNA        |          |   |       |           |
| <213>      | Artificial | Sequence |   |       |           |
| <220>      |            |          |   |       |           |
| <223>      | Synthetic  |          |   |       |           |
| <400>      | 347        |          |   |       |           |
| cacacattcc | tgaatcccag |          |   |       | 20        |
| <210>      | 348        |          |   |       |           |
| <211>      | 20         |          |   |       |           |
| <212>      | DNA        |          |   |       |           |
| <213>      | Artificial | Sequence |   |       |           |

<220>

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <223>       | Synthetic  |          |                |
| <400>       | 348        |          |                |
| gtttcgaagt  | ggtggtcttg |          | 20             |
| <210>       | 349        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 349        |          |                |
| cttcactgtg  | caggccacac |          | 20             |
| <210>       | 350        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            | •        |                |
| <223>       | Synthetic  |          |                |
| <400>       | 350        |          |                |
| attcctgaat  | cccaggtttc |          | 20             |
| <210>       | 351        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 351        |          |                |
| tagtggttgc  | cagcacttca |          | 20             |
| <210>       | 352        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
|             |            |          |                |

<213> Artificial Sequence

| WO 00/20645 |            | PCT/US   | S99/ <b>232</b> 05 |
|-------------|------------|----------|--------------------|
| <220>       |            |          |                    |
| <223>       | Synthetic  |          |                    |
| <400>       | 352        |          |                    |
| cccagtttga  | attcttagtg |          | 20                 |
| <210>       | 353        |          |                    |
| <211>       | 20         |          |                    |
| <212>       | DNA        |          |                    |
| <213>       | Artificial | Sequence |                    |
| <220>       |            |          |                    |
| <223>       | Synthetic  |          |                    |
| <400>       | 353        |          |                    |
| ctgtgcaggc  | cacacattcc |          | 20                 |
| <210>       | 354        |          |                    |
| <211>       | 20         |          |                    |
| <212>       | DNA        |          |                    |
| <213>       | Artificial | Sequence |                    |
| <220>       |            |          |                    |
| <223>       | Synthetic  |          |                    |
| <400>       | 354        |          |                    |
| gtgagttctg  | gaggccccag |          | 20                 |
| <210>       | 355        |          |                    |
| <211>       | 20         |          |                    |
| <212>       | DNA        |          |                    |
| <213>       | Artificial | Sequence |                    |
| <220>       |            |          |                    |
| <223>       | Synthetic  |          |                    |
| <400>       | 355        |          |                    |
| gttgccagca  | cttcactgtg |          | 20                 |
| <210>       | 356        |          |                    |
| <211>       | 20         |          |                    |

<212> DNA

WO 00/20645 PCT/US99/23205 <213> Artificial Sequence <220> <223> Synthetic <400> 356 tttgaattct tagtggttgc 20 <210> 357 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 357 aagctgtagg ccccagtgag 20 <210> 358 <211> 20 <212> DNA <213> Artificial Sequence. <220> <223> Synthetic <400> 358 ttctggaggc cccagtttga 20 <210> 359 <211> 20 <212> DNA <213> Artificial Sequence

<220>
<223> Synthetic

<400> 359
agatgtcagg gatcaaagct

20

<210> 360

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 360 tggtctccag attccagatg 20 <210> 361 <211> 20 <212> DNA Artificial Sequence <213> <220> <223> Synthetic <400> 361 gtaggcccca gtgagttctg 20 <210> 362 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 362 gaaccaaagg ctccctggtc 20 <210> 363 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 363 tcagggatca aagctgtagg

20

WO 00/20645 PCT/US99/23205 <210> 364 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 364 tccagattcc agatgtcagg 20 <210> 365 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 365 gcagcattct ggccagaacc 20 <210> 366 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 366 gtcttctcaa gtcctgcagc 20 <210> 367 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic

<400>

367

| WO 00/20645 |                   |           | PCT/US99/23205 |
|-------------|-------------------|-----------|----------------|
| aaaggctccc  | tggtctccag        |           | 20             |
| <210>       | 368               |           |                |
| <211>       | 20                |           |                |
| <212>       | DNA               |           |                |
| <213>       | Artificial        | Sequence  |                |
| <220>       |                   |           |                |
| <223>       | Synthetic         |           |                |
| <400>       | 368               |           |                |
| caatttctag  | gtgaggtctt        |           | 20             |
| <210>       | 369               |           |                |
| <211>       | 20                |           |                |
| <212>       | DNA               |           |                |
| <213>       | Artificial        | Sequence  |                |
| .220        |                   |           |                |
| <220>       | G                 |           |                |
| <223>       | Synthetic         |           |                |
| <400>       | 369               |           |                |
| attctggcca  | gaaccaaagg        |           | 20             |
| <210>       | 370               |           |                |
| <211>       | 20                |           |                |
| <212>       | DNA               |           |                |
| <213>       | Artificial        | Seguence  |                |
|             |                   | 004401100 |                |
| <220>       |                   |           |                |
| <223>       | Synthetic         |           |                |
| <400>       | 370               |           |                |
|             | tgtgtcaatt        |           | 20             |
| JJ          | J - J - L - L - L |           | 20             |
| <210>       | 371               |           |                |
| <211>       | 20                |           |                |
| <212>       | DNA               |           |                |
| <213>       | Artificial        | Sequence  |                |
|             |                   |           |                |
| <220>       |                   |           |                |
| <223>       | Synthetic         |           |                |

| WO 00/20645 |            | PCT      | T/US99/23205 |
|-------------|------------|----------|--------------|
| <400>       | 371        |          |              |
| gagagaggaa  | ggcctaaggt |          | 20           |
| <210>       | 372        |          |              |
| <211>       | 20         |          |              |
| <212>       | DNA        |          |              |
| <213>       | Artificial | Sequence |              |
| <220>       |            |          |              |
| <223>       | Synthetic  |          |              |
| <400>       | 372        |          |              |
| tctaggtgag  | gtcttctcaa |          | 20           |
| <210>       | 373        |          |              |
| <211>       | 20         |          |              |
| <212>       | DNA        |          |              |
| <213>       | Artificial | Sequence |              |
| <220>       |            |          |              |
| <223>       | Synthetic  |          |              |
| <400>       | 373        |          |              |
| ccacttgtgt  | caatttctag |          | 20           |
| <210>       | 374        |          |              |
| <211>       | 20         |          |              |
| <212>       | DNA        | ·        |              |
| <213>       | Artificial | Sequence |              |
| <220>       |            |          |              |
| <223>       | Synthetic  |          |              |
| <400>       | 374        |          |              |
| gtctggaaac  | atctggagag |          | 20           |
| <210>       | 375        |          |              |
| <211>       | 20         |          |              |
| <212>       | DNA        |          |              |
| <213>       | Artificial | Sequence |              |

<220>

| WO 00/20645 | i          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <223>       | Synthetic  |          |                |
| <400>       | 375        |          |                |
| ccgtgtctca  | aggaagtctg |          | 20             |
| <210>       | 376        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  | ·        |                |
| <400>       | 376        |          |                |
| aggaaggcct  | aaggtccact |          | 20             |
| <210>       | 377        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 377        |          |                |
| gagggagctg  | gctccatggg |          | 20             |
| <210>       | 378        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 378        |          |                |
| gaaacatctg  | gagagaggaa |          | 20             |
| <210>       | 379        |          |                |
| <211>       | 20         |          |                |
| _           |            |          |                |

<212>

DNA

| WO 00/20645    |                        | PCT/US99/23205 |
|----------------|------------------------|----------------|
| <213>          | Artificial Sequence    |                |
| <220>          |                        |                |
| <223>          | Synthetic              |                |
|                |                        |                |
| <400>          | 379                    |                |
| gtgcaaacat     | aaatagaggg             | 20             |
| <210>          | 380                    |                |
| <211>          | 20                     |                |
| <212>          | DNA                    |                |
| <213>          | Artificial Sequence    |                |
| 1223           | merrerar bequence      |                |
| <220>          |                        |                |
| <223>          | Synthetic              |                |
|                |                        |                |
| <400>          | 380                    |                |
| tctcaaggaa     | gtctggaaac             | 20             |
| 010            | 202                    |                |
| <210>          | 381                    |                |
| <211><br><212> | 20                     |                |
| <212>          | DNA Artificial Company |                |
| (213)          | Artificial Sequence    |                |
| <220>          |                        |                |
| <223>          | Synthetic              |                |
|                |                        |                |
| <400>          | 381                    |                |
| aataaataat     | cacaagtgca             | 20             |
| .01.0          | 200                    |                |
| <210>          | 382                    |                |
| <211><br><212> | 20                     |                |
| <212>          | DNA Antificial Company |                |
| (213)          | Artificial Sequence    |                |
| <220>          |                        |                |
| <223>          | Synthetic              |                |
|                |                        |                |
| <400>          | 382                    |                |
| gggctgggct     | ccgtgtctca             | 20             |
|                |                        |                |
| <210>          | 383                    |                |

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA Artificial Sequence <213> <220> Synthetic <223> <400> 383 20 tacccggtc tcccaaataa <210> 384 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 384 20 aacataaata gagggagctg <210> 385 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 385 20 ttgggtcccc caggataccc <210> 386 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic

386

<400>

| WO 00/20645 |            |          |  | PCT/US99/23205 |
|-------------|------------|----------|--|----------------|
| ataatcacaa  | gtgcaaacat |          |  | 20             |
| <210>       | 387        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 387        |          |  | •              |
| aaggcagctc  | ctacattggg |          |  | 20             |
| <210>       | 388        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 388        |          |  |                |
| cggtctccca  | aataaataca |          |  | 20             |
| <210>       | 389        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |
| <400>       | 389        |          |  |                |
| aaacatgtct  | gagccaaggc |          |  | 20             |
| <210>       | 390        |          |  |                |
| <211>       | 20         |          |  |                |
| <212>       | DNA        |          |  |                |
| <213>       | Artificial | Sequence |  |                |
| <220>       |            |          |  |                |
| <223>       | Synthetic  |          |  |                |

WO 00/20645 PCT/US99/23205 <400> 390 tececcagga tacceeggte 20 <210> 391 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 391 agctcctaca ttgggtcccc 20 <210> 392 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 392 tgtctgagcc aaggcagctc 20 <210> 393 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 393 cagcctattg ttcagctccg 20 <210> 394 <211> 20 <212> DNA <213> Artificial Sequence

<220>

| WO 00/20645 | 5          |          | PCT/US | 599/2320 |
|-------------|------------|----------|--------|----------|
| <223>       | Synthetic  |          |        |          |
| <400>       | 394        |          |        |          |
| agaaggcaca  | gaggccaggg |          |        | 20       |
| <210>       | 395        |          |        |          |
| <211>       | 20         |          |        |          |
| <212>       | DNA        |          |        |          |
| <213>       | Artificial | Sequence |        |          |
| <220>       |            |          |        |          |
| <223>       | Synthetic  |          |        |          |
| <400>       | 395        |          |        |          |
| ttttcacgga  | aaacatgtct |          |        | 20       |
| 010         | 206        |          |        |          |
| <210>       | 396        |          |        |          |
| <211>       | 20         |          |        |          |
| <212>       | DNA        | _        |        |          |
| <213>       | Artificial | Sequence |        |          |
| <220>       |            |          |        |          |
| <223>       | Synthetic  |          |        |          |
|             |            |          |        |          |
| <400>       | 396        |          |        |          |
| tattgttcag  | ctccgttttc |          |        | 20       |
| .210        | 200        |          |        |          |
| <210>       | 397        |          |        |          |
| <211>       | 20         |          |        |          |
| <212>       | DNA        |          |        |          |
| <213>       | Artificial | Sequence |        |          |
| <220>       |            |          |        |          |
| <223>       | Synthetic  |          |        |          |
|             | •          |          |        |          |
| <400>       | 397        |          |        |          |
| aaaaacataa  | tcaaaagaag |          |        | 20       |
|             |            |          |        |          |
| <210>       | 398        |          |        |          |
| <211>       | 20         |          |        |          |
| <212>       | DNA        |          |        |          |
|             |            | _        |        |          |

<213> Artificial Sequence

| WO 00/20645 | 5          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             |            |          |                |
| <400>       | 398        |          |                |
| cagataaata  | ttttaaaaaa |          | 20             |
| <210>       | 399        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
|             |            |          |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 399        |          |                |
| tacatgggaa  | cagcctattg |          | 20             |
|             |            |          |                |
| <210>       | 400        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             | <b>,</b>   |          |                |
| <400>       | 400        |          |                |
| tttagacaac  | ttaatcagat |          | 20             |
| <210>       | 401        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Seguence |                |
| \213/       | ALCITICIAL | sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             |            |          |                |
| <400>       | 401        |          |                |
| cataatcaaa  | agaaggcaca |          | 20             |
| <210>       | 402        |          |                |
| <211>       | 20         |          |                |
|             |            |          |                |

<212>

DNA

WO 00/20645 PCT/US99/23205
<213> Artificial Sequence

<220>

<223> Synthetic

<400> 402

accaaatcag cattgtttag 20

<210> 403 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 403

aaatatttta aaaaacataa 20

<210> 404 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 404

gagtgacagt tggtcaccaa 20

<210> 405 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 405

acaacttaatc agataaata 20

<210> 406

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 406 cagaggctca gcaatgagtg 20 <210> 407 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 407 atcagcattg tttagacaac 20 <210> 408 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 408 agggcgatta cagacacaac 20 <210> 409 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 409 acagttggtc accaaatcag

WO 00/20645 PCT/US99/23205 <210> 410 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 410 tcgccactga atagtagggc 20 <210> 411 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 411 gctcagcaat gagtgacagt 20 <210> 412 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 412 agcaaacttt atttctcgcc 20 <210> 413 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic

<400>

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| gattacagac  | acaactcccc |          | 20             |
| <210>       | 414        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 414        |          |                |
| actgaatagt  | agggcgatta |          | 20             |
| <210>       | 415        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 415        |          |                |
| actttatttc  | tcgccactga |          | 20             |
| <210>       | 416        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 416        |          |                |
| gctgtccttg  | ctgagggagc |          | 20             |
| <210>       | 417        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
|             | Synthetic  |          |                |

| WO 00/2064 | 5          |          | PCT/US99/23205 |
|------------|------------|----------|----------------|
| <400>      | 417        |          |                |
| cttagctggt | cctctgctgt |          | 20             |
| <210>      | 418        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 418        |          |                |
| gttgcttctc | tecetettag |          | 20             |
| <210>      | 419        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 419        |          |                |
| tggcgtctga | gggttgtttt |          | 20             |
| <210>      | 420        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |
| <220>      |            |          |                |
| <223>      | Synthetic  |          |                |
| <400>      | 420        |          |                |
| agagaacctg | cctggcagct |          | 20             |
| <210>      | 421        |          |                |
| <211>      | 20         |          |                |
| <212>      | DNA        |          |                |
| <213>      | Artificial | Sequence |                |

<220>

| WO 00/20645 | <b>;</b>            | PCT/US99/23205 |
|-------------|---------------------|----------------|
| <223>       | Synthetic           |                |
| <400>       | 421                 |                |
| cagtatgtga  | gaggaagaga          | 20             |
| <210>       | 422                 |                |
| <211>       | 20                  |                |
| <212>       | DNA                 |                |
| <213>       | Artificial Sequence |                |
| <220>       |                     |                |
| <223>       | Synthetic           |                |
| <400>       | 422                 |                |
| ggtgaagccg  | tgggtcagta          | 20             |
| <210>       | 423                 |                |
| <211>       | 20                  |                |
| <212>       | DNA                 |                |
| <213>       | Artificial Sequence |                |
| <220>       |                     |                |
| <223>       | Synthetic           |                |
| <400>       | 423                 |                |
| agtgctcatg  | gtgtcctttc          | 20             |
| <210>       | 424                 |                |
| <211>       | 20                  |                |
| <212>       | DNA                 |                |
| <213>       | Artificial Sequence |                |
| <220>       |                     |                |
| <223>       | Synthetic           |                |
| <400>       | 424                 |                |
| ccggatcatg  | ctttcagtgc          | 20             |
| <210>       | 425                 |                |
|             | 20                  |                |
| <212>       | DNA                 |                |

<213> Artificial Sequence

| WO 00/20645 | i          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 425        |          |                |
| ggccagctcc  | acgtcccgga |          | 20             |
| <210>       | 426        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 426        |          |                |
| ggcccccctg  | tettettggg |          | 20             |
| <210>       | 427        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 427        |          |                |
| ggctgaggaa  | caagcaccgc |          | 20             |
| <210>       | 428        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 428        |          |                |
| tcaggaagga  | gaagaggctg |          | 20             |
| <210>       | 429        |          |                |
| <211>       | 20         |          |                |

<212>

DNA

WO 00/20645 PCT/US99/23205

<213> Artificial Sequence <220> <223> Synthetic <400> 429 tggcgcctgc cacgatcagg 20 <210> 430 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 430 ggcagaagag cgtggtggcg 20 <210> 431 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 431 ctccaaagtg cagcaggcag 20 <210> 432 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 432 gctgattaga gagaggtccc 20 <210> 433

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 433 tgcctgggcc agagggctga 20 <210> 434 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 434 gctgcccctc agcttgaggg 20 <210> 435 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 435 ggttcagcca ctggagctgc 20 <210> 436 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic

20

<400>

436 gggcattggc ccggcggttc

WO 00/20645 PCT/US99/23205 <210> 437 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 437 cgccattggc caggagggca 20 <210> 438 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 438 tatctctcag ctccacgcca 20 <210> 439 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 439 gcaccaccag ctggttatct 20 <210> 440 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic

<400>

| WO 00/20645 |            | PCT/US   | 99/23205 |
|-------------|------------|----------|----------|
| acaggeeete  | tgatggcacc |          | 20       |
| <210>       | 441        |          |          |
| <211>       | 20         |          |          |
| <212>       | DNA        |          |          |
| <213>       | Artificial | Sequence |          |
| <220>       |            |          |          |
| <223>       | Synthetic  |          |          |
| <400>       | 441        |          |          |
| gggagtagat  | gaggtacagg |          | 20       |
| <210>       | 442        |          |          |
| <211>       | 20         |          |          |
| <212>       | DNA        |          |          |
| <213>       | Artificial | Sequence |          |
| <220>       |            |          |          |
| <223>       | Synthetic  |          |          |
| <400>       | 442        |          |          |
| ccttgaagag  | gacctgggag |          | 20       |
| <210>       | 443        |          |          |
| <211>       | 20         |          |          |
| <212>       | DNA        |          |          |
| <213>       | Artificial | Sequence |          |
| <220>       |            |          |          |
| <223>       | Synthetic  |          |          |
| <400>       | 443        |          |          |
| gaggagcaca  | tgggtggagg |          | 20       |
| <210>       | 444        |          |          |
| <211>       | 20         |          |          |
| <212>       | DNA        |          |          |
| <213>       | Artificial | Sequence |          |
| <220>       |            |          |          |

Synthetic

<223>

| WO 00/20645 | ;          |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <400>       | 444        |          |                |
| gctgatggtg  | tgggtgagga |          | 20             |
| <210>       | 445        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 445        |          |                |
| ggagacggcg  | atgcggctga |          | 20             |
| <210>       | 446        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 446        |          |                |
| gaccttggtc  | tggtaggaga |          | 20             |
| <210>       | 447        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 447        |          |                |
| ggcagagagg  | aggttgacct |          | 20             |
| <210>       | 448        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |

<220>

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <223>       | Synthetic  |          |                |
| <400>       | 448        |          |                |
| tgggctcata  | ccagggcttg |          | 20             |
| <210>       | 449        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
|             |            |          |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| 400         |            |          |                |
| <400>       | 449        |          |                |
| cccctcccag  | atagatgggc |          | 20             |
| <210>       | 450        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
|             |            |          |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 450        |          |                |
| tgagtcggtc  | accettetee |          | 20             |
|             |            |          |                |
| <210>       | 451        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             | Dynametre  |          |                |
| <400>       | 451        |          |                |
| gattgatctc  | agcgctgagt |          | 20             |
| <210>       | 452        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
|             | Artificial | Semience |                |
|             |            | Doquesto |                |

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 452        |          |                |
| cgagatagtc  | gggccgattg |          | 20             |
| <210>       | 453        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 453        |          |                |
| caaagtagac  | ctgcccagac |          | 20             |
| <210>       | 454        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 454        |          |                |
| acagggcaat  | gatcccaaag |          | 20             |
| <210>       | 455        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 455        |          |                |
| atgttcgtcc  | tcctcacagg |          | 20             |
| <210>       | 456        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |

WO 00/20645 PCT/US99/23205 <213> Artificial Sequence <220> <223> Synthetic <400> 456 gtttgggaag gttggatgtt 20 <210> 457 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 457 aagaggttga gggtgtctga 20 <210> 458 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 458 ctctttttga gccagaagag 20 <210> 459 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 459 cctaagcccc caattctctt 20

<210> 460

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 460 agcttgggtt ccgaccctaa 20 <210> 461 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 461 ttgcttaaag ttctaagctt 20 <210> 462 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 462 gaagtggtgg tcttgttgct 20 <210> 463 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 463

20

tgaatcccag gtttcgaagt

WO 00/20645 PCT/US99/23205 <210> 464 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 464 caggccacac attcctgaat 20 <210> 465 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 465 cagcacttca ctgtgcaggc 20 <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 466 attcttagtg gttgccagca 20 <210> 467 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic

<400>

| WO 00/20645 |            | PCT      | US99/23205 |
|-------------|------------|----------|------------|
| gaggccccag  | tttgaattct |          | 20         |
| <210>       | 468        |          |            |
| <211>       | 20         |          |            |
| <212>       | DNA        |          |            |
| <213>       | Artificial | Sequence |            |
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 468        |          |            |
| ccccagtgag  | ttctggaggc |          | 20         |
| <210>       | 469        |          |            |
| <211>       | 20         |          |            |
| <212>       | DNA        |          |            |
| <213>       | Artificial | Sequence |            |
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 469        |          |            |
| gatcaaagct  | gtaggcccca |          | 20         |
| <210>       | 470        |          |            |
| <211>       | 20         |          |            |
| <212>       | DNA        |          |            |
| <213>       | Artificial | Sequence |            |
| <220>       |            |          |            |
| <223>       | Synthetic  |          |            |
| <400>       | 470        |          |            |
| attccagatg  | tcagggatca |          | 20         |
| <210>       | 471        |          |            |
| <211>       | 20         |          |            |
|             | DNA        |          |            |
|             | Artificial | Sequence |            |
| <220>       |            |          |            |

<223> Synthetic

| WO 00/20645 |             | P        | CT/US99/23205 |
|-------------|-------------|----------|---------------|
| <400>       | 471         |          |               |
| ctccctggtc  | tccagattcc  |          | 20            |
| <210>       | 472         |          |               |
| <211>       | 20          |          |               |
| <212>       | DNA         |          |               |
| <213>       | Artificial  | Sequence |               |
| <220>       |             |          |               |
| <223>       | Synthetic   |          |               |
| <400>       | 472         |          |               |
| ggccagaacc  | aaaggctccc  |          | 20            |
| <210>       | 473         |          |               |
| <211>       | 20          |          |               |
| <212>       | DNA         |          |               |
| <213>       | Artificial  | Sequence |               |
| <220>       |             |          |               |
| <223>       | Synthetic   |          |               |
| <400>       | 473         |          |               |
| gtcctgcagc  | attetggeea  |          | 20            |
| <210>       | 474         |          |               |
| <211>       | 20          |          |               |
| <212>       | DNA         |          |               |
| <213>       | Artificial  | Sequence |               |
| <220>       |             |          |               |
| <223>       | Synthetic   |          |               |
| <400>       | 474         |          |               |
| gtgaggtctt  | ctcaagtcct  |          | 20            |
| <210>       | <b>47</b> 5 |          |               |
| <211>       | 20          |          |               |
| <212>       | DNA         |          |               |
| <213>       | Artificial  | Sequence |               |

<220>

| WO 00/20645 |                 | PCT/U    | S99/23205 |
|-------------|-----------------|----------|-----------|
| <223>       | Synthetic       |          |           |
| <400>       | 475             |          |           |
| tgtgtcaatt  | tctaggtgag      |          | 20        |
| <210>       | 476             |          |           |
| <211>       | 20              |          |           |
| <212>       | DNA             |          |           |
| <213>       | Artificial      | Sequence |           |
| <220>       |                 |          |           |
| <223>       | Synthetic       |          |           |
| <400>       | 476             |          |           |
| ggcctaaggt  | ccacttgtgt      |          | 20        |
| <210>       | 477             |          |           |
| <211>       | 20              |          |           |
| <212>       | DNA             |          |           |
| <213>       | Artificial      | Sequence |           |
| <220>       |                 |          |           |
| <223>       | Synthetic       |          |           |
| <400>       | 477             |          |           |
| atctggagag  | aggaaggcct      |          | 20        |
|             | <b>33 33</b>    |          |           |
| <210>       | 478             |          |           |
| <211>       | 20              |          |           |
| <212>       | DNA             |          |           |
| <213>       | Artificial      | Sequence |           |
| <220>       |                 |          |           |
| <223>       | Synthetic       |          |           |
| <400>       | 478             |          |           |
|             | gaaacatctg      |          | 20        |
|             | _               |          |           |
| <210>       | 479             |          |           |
| <211>       | 20              |          |           |
| <212>       | DNA             |          |           |
| .010.       | Bank 2 62 42 43 |          |           |

<213>

Artificial Sequence

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 479        |          |                |
| gggctccgtg  | tctcaaggaa |          | 20             |
| <210>       | 480        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 480        |          |                |
| aaatagaggg  | agctggctcc |          | 20             |
| <210>       | 481        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 481        |          |                |
| cacaagtgca  | aacataaata |          | 20             |
| <210>       | 482        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 482        |          |                |
| tcccaaataa  | atacattcat |          | 20             |
| <210>       | 483        |          |                |
| <211>       | 20         |          |                |

<212>

DNA

WO 00/20645 PCT/US99/23205 <213> Artificial Sequence <220> <223> Synthetic <400> 483 caggataccc cggtctccca 20 <210> 484 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 484 ctacattggg tcccccagga 20 <210> 485 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 485 gagccaaggc agctcctaca 20 <210> 486 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 486 acggaaaaca tgtctgagcc 20

<210>

WO 00/20645 PCT/US99/23205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 487 ttcagctccg ttttcacgga 20 <210> 488 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 488 gggaacagcc tattgttcag 20 <210> 489 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 489 tcaaaagaag gcacagaggc 20 <210> 490 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 490

20

ttttaaaaaa cataatcaaa

| WO 00/20645 |            | 1        | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <210>       | 491        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
|             |            |          |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             |            |          |                |
| <400>       | 491        |          |                |
| ttaatcagat  | aaatatttta |          | 20             |
|             |            |          |                |
| <210>       | 492        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
|             |            |          |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             |            |          |                |
| <400>       | 492        |          |                |
| cattgtttag  | acaacttaat |          | 20             |
|             |            |          |                |
| <210>       | 493        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
|             |            |          |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             |            |          |                |
| <400>       | 493        |          |                |
| tggtcaccaa  | atcagcattg |          | 20             |
|             |            |          |                |
| <210>       | 494        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
|             |            |          |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
|             |            |          |                |

<400>

| WO 00/20645 |                   | РСТ      | /US99/23205    |
|-------------|-------------------|----------|----------------|
| gcaatgagtg  | acagttggtc        |          | 20 <sub></sub> |
| <210>       | 495               |          |                |
| <211>       | 20                |          |                |
| <212>       | DNA               |          |                |
| <213>       | Artificial        | Sequence |                |
| <220>       |                   |          |                |
| <223>       | Synthetic         |          |                |
| <400>       | 495               |          |                |
| gggagcagag  | gctcagcaat        | •        | 20             |
| <210>       | 496               |          |                |
| <211>       | 20                |          |                |
| <212>       | DNA               |          |                |
| <213>       | Artificial        | Sequence |                |
| <220>       |                   |          |                |
| <223>       | Synthetic         |          |                |
| <400>       | 496               |          |                |
| atagtagggc  | gattacagac        |          | 20             |
| <210>       | 497               |          |                |
| <211>       | 20                |          |                |
| <212>       | DNA               |          |                |
| <213>       | Artificial        | Sequence |                |
| <220>       |                   |          |                |
| <223>       | Synthetic         |          |                |
| <400>       | 497               |          |                |
| atttctcgcc  |                   |          | 20             |
| -210-       | 400               |          |                |
| <210>       | 498               |          |                |
| <211>       | 19                |          |                |
| <212>       | DNA<br>Artificial | Company  |                |
| <213>       | Artificial        | sequence |                |
| <220>       |                   |          |                |
| 202         |                   |          |                |

<223> Synthetic

| WO 00/20645 |            |          | PCT/US99/23205 |
|-------------|------------|----------|----------------|
| <400>       | 498        |          |                |
| ctgattagag  | agaggteee  |          | 19             |
| <210>       | 499        |          |                |
| <211>       | 18         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 499        |          |                |
| ctgattagag  | agaggtcc   |          | 18             |
| <210>       | 500        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          | ·              |
| <400>       | 500        |          |                |
| tgagtgtctt  | ctgtgtgcca |          | 20             |
| <210>       | 501        |          |                |
| <211>       | 20         |          |                |
| <212>       | DNA        |          |                |
| <213>       | Artificial | Sequence |                |
| <220>       |            |          |                |
| <223>       | Synthetic  |          |                |
| <400>       | 501        | •        |                |
| gagtgtcttc  | tgtgtgccag |          | 20             |

## INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/23205

| A. CLASSIFICATION OF SUBJECT MATTER  IPC(6) :C12Q 1/68; C07H 21/04; A61K 48/00; C12N 15/00, 15/85                                                   |                                                                                                                                          |                                                                                                                                       |                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| US CL<br>According                                                                                                                                  | US CL: Please See Extra Sheet. According to International Patent Classification (IPC) or to both national classification and IPC         |                                                                                                                                       |                                                               |  |
|                                                                                                                                                     | LDS SEARCHED                                                                                                                             |                                                                                                                                       |                                                               |  |
| <del></del>                                                                                                                                         | documentation searched (classification system folio                                                                                      | wed by classification symbols)                                                                                                        |                                                               |  |
| U.S. :                                                                                                                                              | 435/6, 7.21, 91.1, 91.4, 325, 366, 375; 536/23.1,                                                                                        | 24.3. 24.5; 514/44                                                                                                                    |                                                               |  |
| Documenta<br>none                                                                                                                                   | ation searched other than minimum documentation to                                                                                       | the extent that such documents are included                                                                                           | in the fields searched                                        |  |
| i                                                                                                                                                   | data base consulted during the international search S AND FOREIGN PATENTS), DIALOG (MEDLIN                                               | ·                                                                                                                                     | s. search terms used)                                         |  |
| C. DOC                                                                                                                                              | CUMENTS CONSIDERED TO BE RELEVANT                                                                                                        |                                                                                                                                       |                                                               |  |
| Category*                                                                                                                                           | Citation of document, with indication, where                                                                                             | appropriate, of the relevant passages                                                                                                 | Relevant to claim No.                                         |  |
| X                                                                                                                                                   | WO 96/40162 A1 (EAST CAROLINATION 1996, see entire document.                                                                             | A UNIVERSITY) 19 December                                                                                                             | 1, 5-7, 12                                                    |  |
| X                                                                                                                                                   | WO 95/23225 A1 (RIBOZYME PHA<br>August 1995, see entire document.                                                                        | ARMACEUTICALS, INC.) 31                                                                                                               | 24-25, 33-38                                                  |  |
| Y                                                                                                                                                   | BRANCH, A. D. A good antisense r<br>February 1998, Vol. 23, pages 45-50                                                                  |                                                                                                                                       | 1-56                                                          |  |
|                                                                                                                                                     |                                                                                                                                          |                                                                                                                                       |                                                               |  |
| Furthe                                                                                                                                              | er documents are listed in the continuation of Box                                                                                       | C. See patent family annex.                                                                                                           |                                                               |  |
| "A" doc:                                                                                                                                            | cial categories of cited documents:<br>ument defining the general state of the art which is not considered<br>to of particular relevance | "T" later document published after the inter-<br>date and not in conflict with the applic<br>the principle or theory underlying the i | ation but cited to understand                                 |  |
|                                                                                                                                                     | ier document published on or after the international filing date<br>ument which may throw doubts on priority claim(s) or which is        | "X" document of particular relevance; the considered novel or cannot be considere when the document is taken alone                    | claimed invention cannot be<br>d to involve an inventive step |  |
| cited                                                                                                                                               | d to establish the publication date of another citation or other<br>cial reason (as specified)                                           | "Y" document of particular relevance; the considered to involve an inventive a                                                        | claimed invention cannot be                                   |  |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                        |                                                                                                                                          | combined with one or more other such of being obvious to a person skilled in the                                                      | documents, such combination                                   |  |
| P" document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed |                                                                                                                                          |                                                                                                                                       | •                                                             |  |
| Date of the actual completion of the international search  18 NOV 1999                                                                              |                                                                                                                                          |                                                                                                                                       | ch report                                                     |  |
|                                                                                                                                                     | ailing address of the ISA/US or of Patents and Trademarks                                                                                | Authorized officer                                                                                                                    |                                                               |  |
| Box PCT<br>Washington,                                                                                                                              |                                                                                                                                          | MARY SCHMIDT                                                                                                                          | /,                                                            |  |
| acsimile No.                                                                                                                                        |                                                                                                                                          | Telephone No. (703) 308-0196                                                                                                          |                                                               |  |

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/23205

| A. CLASSIFICATION OF SUBJECT MATTER: US CL :                         |  |  |  |
|----------------------------------------------------------------------|--|--|--|
| 435/6, 7.21, 91.1, 91.4, 325, 366, 375; 536/23.1, 24.3, 24.5; 514/44 |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |
|                                                                      |  |  |  |