Informatik I: Einführung in die Programmierung

Prof. Dr. Peter Thiemann Dr. Daniel Büscher, Hannes Saffrich Wintersemester 2019 Universität Freiburg Institut für Informatik

Übungsblatt 1

Abgabe: Montag, 28.10.2019, 9:00 Uhr morgens

Aufgabe 1.1 (Daphne und Subversion; 2 Punkte)

Im Guide zur Vorlesung finden Sie ein Tutorial, welches die Registrierung in Daphne sowie die Installation und Verwendung eines Subversion-Clients beschreibt. Lesen Sie das Tutorial vollständig durch. Führen Sie die ersten vier Schritte (Registrierung in Daphne, Installation eines Subversion-Clients, Erstellen einer Arbeitskopie, Publizieren von Dateien) aus. Da Lösungen ausschließlich auf elektronischem Wege über das Kursverwaltungssystem Daphne eingereicht werden können, sind diese Schritte unbedingt erforderlich.

Aufgabe 1.2 (Algorithmen; Datei: algorithmen.txt; 5 Punkte)

Handelt es sich bei der folgenden umgangssprachlichen, prozeduralen Beschreibung um einen Algorithmus? Entscheiden Sie dazu, ob diese Beschreibung die Bedingungen *Präzision*, *Effektivität*, *statische Finitheit*, *dynamische Finitheit* und *Terminierung* (siehe Folien) erfüllt. Begründen Sie jeweils kurz Ihre Antwort.

Gegeben seien ganze Zahlen a, b als Eingabe. Setze k = 0. Solange a größer ist als b, führe die folgenden Schritte durch: ziehe b von a ab und erhöhe k um 1. Ist a kleiner oder gleich b, gib k aus.

Ihre Lösung wird in der Datei algorithmen.txt im Unterverzeichnis sheet01 erwartet (siehe Tutorial, Schritt 4). Beachten Sie die Formatierungshinweise zur Abgabe von Lösungen zu Freitextaufgaben (siehe Guide).

Aufgabe 1.3 (Python: Erste Schritte; 6+5 Punkte)

Installieren Sie wie in der Vorlesung angegeben Python 3 (aktuelle Version: 3.7.4).

Erstellen Sie für jede der folgenden Teilaufgaben eine entsprechende .py Datei im Unterverzeichnis sheet01. Fügen Sie die Dateien Ihrer Arbeitskopie hinzu und publizieren Sie die Dateien auf dem Subversion-Server.

(a) Datei pattern.py

Verwenden Sie einen einzelnen Aufruf von print um folgende Ausgabe zu erzeugen:

===---===---

In Ihrem Python Code dürfen die Zeichen '=' und '-' aber jeweils nur ein einziges mal vorkommen.

(b) Datei numbers.py

Finden Sie eine Möglichkeit die folgenden Zahlen so mit den Operationen +, -, * und // zu verknüpfen, dass jede Zahl genau ein mal vorkommt und das Ergebnis eine Zahl zwischen 550 und 560 ist.

10 6 2 6 3 1

Beispiel: der Ausdruck

$$(10+6)*2+3*1-6$$

hat eine korrekte Form, aber ergibt 29.

Benutzen Sie in Ihrer Python Datei print um sich die Berechnung in folgender Form auszugeben:

$$(10 + 6) * 2 + 3 * 1 - 6 = 29$$

Das Ergebnis der Ausgabe soll durch Python-Code berechnet werden. Folgendes ist also keine Lösung:

$$print("(10 + 6) * 2 + 3 * 1 - 6 = 29")$$

Aufgabe 1.4 (Erfahrungen; Datei: erfahrungen.txt; Punkte: 2)

Legen Sie im Unterverzeichnis sheet1 eine Textdatei erfahrungen.txt an. Notieren Sie in dieser Datei kurz Ihre Erfahrungen beim Bearbeiten der Übungsaufgaben (Probleme, Bezug zur Vorlesung, Interessantes, benötigter Zeitaufwand, etc.).

Hinweise

Sofern Sie alle Aufgaben bearbeitet haben, sollte das Verzeichnis für Übungsblatt 1 die folgende Struktur aufweisen:

Bewertet wird bei allen Aufgaben die letzte Version, die zur Deadline des Übungsblattes auf dem SVN-Server eingereicht ist. Deshalb:

- 1. Überprüfen Sie, dass Sie alle Lösungen ins Repository hochgeladen haben (z.B. mit dem Befehl svn status).
- 2. Überprüfen Sie auch die Webseite Ihres Daphne/SVN-Verzeichnisses.