Accelerating Permutation Testing in Voxel-wise Analysis through Subspace Tracking: A new plugin for SnPM

Felipe Gutierrez-Barragan, Vamsi K. Ithapu, Chris Hinrichs, Camille Maumet, Sterling C. Johnson, Thomas E. Nichols, and Vikas Singh

http://felipegb94.github.io/RapidPT/

The paper

- **Problem:** Permutation testing is computationally expensive in voxelwise analysis.
- **Solution:** A model that leverages the structure of the permutation testing matrix to reduce the computation runtime.

Contributions:

- Theoretical framework + Algorithm
- RapidPT: A MATLAB toolbox for fast and robust permutation testing.
 - 2x 38x faster than state of the art (SnPM toolbox) and 20x 1000x faster than a naïve permutation testing implementation.
- SnPM Plugin: RapidPT is incorporated into a widely used neuroimaging toolbox. Not a common contribution of new algorithms.

Schedule

- 1. Background: Voxel-wise analysis in neuroimaging studies, multiple hypothesis testing, p-values and thresholds, controlling FWER.
- 2. Permutation Testing Procedure
- 3. The permutation testing matrix, **T**
- 4. RapidPT Algorithm
- 5. Evaluations
 - 1. Accuracy
 - 2. Runtime gains
- 6. SnPM Plugin
- 7. Discussion

Background: Problem

- Consider a study with *n* subjects from two groups (ex: sick vs. healthy, resting state vs. non resting state)
- For each subject we have a v dimensional measurement vector (voxels, genes, region of interest, etc)
- Question: Does the data display any interesting activity? If so, where is that "interesting" activity? How certain are we?
- Goal: Classify each voxel as either active or not active and associate a probability (alpha) to how certain we are of our classification of each voxel.

Background: Hypothesis Testing

- Solution: Hypothesis Testing does exactly what we want.
 - Calculate the probability that your claim/hypothesis is true.

Null Hypothesis vs. Alternate Hypothesis Inactive vs. Active

H₀ vs. H_a

- Basic idea:
 - Assume voxels from both groups come from the same distribution (null hypothesis).
 - Test if they do. If they do accept null, if they don't reject null.

Background: Hypothesis Testing - Procedure

- 1. Choose appropriate test statistic (t-test, mean difference, etc).
- 2. State $\rm H_0$ and $\rm H_a$
- Construct the null distribution for the test statistic. This is the distribution of the statistic given that H_Q is true. This can be done analytically in some cases.
- 4. State alpha
- 5. Compute the test statistic with the given data.
- 6. Calculate the probability of observing such a statistic given that H_0 is true (p-value).
- 7. Accept or reject H_0 .

Hypothesis Testing - Types of Error

	Actual Situation "Truth"				
Decision	H ₀ True	H ₀ False			
Do Not Reject H ₀	Correct Decision 1 - α	Incorrect Decision Type II Error β			
Rejct H _o	Incorrect Decision Type I Error α	Correct Decision 1 - β			

 $\alpha = P(Type\ I\ Error)$ $\beta = P(Type\ II\ Error)$

Multiple Testing Problem

• FWER: Probability of making at least Type I Error (False Positive).

P(Making at least 1 error in m tests) = 1 -
$$(1 - \alpha)$$

P(Making at least 1 error in m tests) = 1 - $(1 - \alpha)$ ^m

- Common Alpha = 0.05
- For $m = 100 \rightarrow FWER = 0.99$.
- In neuroimaging m>100,000 tests. One for every voxel.
- Just by chance we will reject the null MANY times.
- Hence, we want to somehow control for the FWER and keep it under a certain probability α_0 .

Controlling FWER

Parametric Methods

- Assumptions about the data and its distribution.
- **Bonferroni** Conservative. Simply set $\alpha_0 = \alpha/v$ (v = number of tests).
- Random Fields Theory Estimate number of activation areas, effectively reducing the number of tests.

Nonparametric/Resampling Methods

- Permutation Testing Empirically estimate the null distribution of the test statistics.
 - Exact control of the FWER.

Permutation Testing

• Idea: If the two groups do not differ, then I can permute the group/class labels and end up with approximately same set of test statistics.

Procedure:

- 1. Re-label images (permute the labels of the images).
- 2. Compute test statistic for each voxel
- 3. Repeat N times.
- After the procedure is done we will have the exact null distribution for each voxel, and we can proceed from step 4 of hypothesis testing.

Permutation Testing – Example, Single Test

	Control				Drug			
Expression	9	12	14	17	18	21	23	26
Average		-	13			2	22	

Rearrangement of data Random Difference Assignment in Averages Drug 23 26 9.0 8.5 13 14 15 69 -8.5 14 70 -9.0

8 choose 4 = 70 possible permutations

Permutation Testing Matrix

 For each voxel we will have one null distribution associated to it.

• The permutation testing matrix T = v * L matrix of test statistics.

 Issue: If v ~ 100,00, L ~10,000 the matrix is around 7.5 Gigabytes.

Maxnull Distribution

- We don't have to keep track of all distributions.
- Simple keep track of the maximum test statistic across voxels for each permutation.
- Construct the maxnull distribution

...

Max Null

We still have computational issues...

- The possible number of relabelings becomes huge as the number of subjects increases.
 - 30 choose 15 = 155,117,520
- So we compute only a subset of them.
- For each relabeling of the data we have to compute v test statistics and find the max!
- More permutations = we can compute lower pvalues.
- Embarrassingly parallel problem, BUT not all neuroscientists have access to expensive hardware/supercomputers, and most of them prefer to work on their laptops.

Idea: Look at the structure of T

- T is "highly structured" A combination of low-rank signal and high-rank residual
- Example: MRI data 100 healthy vs. non-healthy. v = 1,000, L = 2,000

Permutation Testing Matrix P Singular values of P Magnitude 200 200 Position Magnitude Position

Core of RapidPT

- Many columns in T look similar to other columns as well as many rows look similar to other rows.
 - Rank of T is constrained by the number of subjects.
- If we compute a small number of entries of *T* we should be able to estimate the rest of it.
- Mathematically,

$$T = UW + S$$

- U is the low-rank basis of T.
- W is the coefficient matrix
- S is a high-rank random residual (noise).
- How many entries? In our experiments, subsampling <1% was enough

RapidPT Algorithm

- Divide the process into training and recovery.
- Training:
 - Calculate a few exact permutations ~ N
 - Estimate low-rank basis through subspace tracking
 - Estimate the residualS = T exact UW

Recovery:

- For each permutation
 Calculate a subset of the test statistics (eta) for a column of T.
- Recover the rest through matrix completion.
- Get max test statistic

Algorithm 2 The RapidPT algorithm for permutation testing.

```
Input: X^1, X^2, r, \eta, L, \ell, stat
Output: \hat{\mathbf{T}}, \mathbf{h}^L
    X = [X^1; X^2], n = n_1 + n_2
     TRAINING
    \mathbf{U} \leftarrow \text{Rand. Orth.}, \mathbf{W}_{ex} = [\varnothing]
    for i \in 1, \ldots, \ell do
         j_1 \ldots, j_n \sim \text{Permute}[1, n]
         \tilde{\mathbf{X}}^1 \leftarrow \mathbf{X}[:, j_1, \dots, j_{n_1}]
         \tilde{\mathbf{X}}^2 \leftarrow \mathbf{X}[:, j_{n_1+1}, \dots, j_n]
         \mathbf{T}_{ex}[:,i] \leftarrow \operatorname{test}(\tilde{\mathbf{X}}^1,\tilde{\mathbf{X}}^2)
         k_1, \ldots, k_{\lceil mv \rceil} \sim \text{UNIF}[1, v]
         \tilde{\mathbf{T}} \leftarrow \mathbf{T}_{ex}[k_1, \dots, k_{\lceil nv \rceil}, i]
         \mathbf{U}, \mathbf{W}_{ex}[:, i] \leftarrow \text{Subspace-Tracking}(r)
    end for
    \sigma \leftarrow \text{Standard Deviation}\{\mathbf{T}_{ex} - \mathbf{U}\mathbf{W}_{ex}\}_{\Omega}
    \mu \leftarrow \sup_{i} \text{MAX} \{ \mathbf{T}_{ex}[:, i] - \mathbf{UW}_{ex}[:, i] \}
    for i \in 1, \ldots, \ell do
         \hat{\mathbf{T}}[:,i] \leftarrow \mathbf{T}[:,i]
     end for
     RECOVERY
    for i \in \ell + 1, \dots, L do
         k_1, \ldots, k_{\lceil nv \rceil} \sim \text{UNIF}[1, v]
         j_1 \dots, j_n \sim \text{PERMUTE}[1, n]
         \tilde{\mathbf{X}}^1 \leftarrow \mathbf{X}[k_1, \dots, k_{\lceil m \rceil}, j_1, \dots, j_{n_1}]
         \tilde{\mathbf{X}}^2 \leftarrow \mathbf{X}[k_1, \dots, k_{\lceil mv \rceil}, j_{n_1+1}, \dots, j_n]
         \tilde{\mathbf{T}} \leftarrow \operatorname{test}(\tilde{\mathbf{X}}^1, \tilde{\mathbf{X}}^2)
         \mathbf{W}[:,i] \leftarrow \text{Complete}(\mathbf{U},\tilde{\mathbf{T}},k_1,\ldots,k_{\lceil m \rceil})
         s \leftarrow i.i.d\mathcal{N}^{v}(0, \sigma^{2})
         \hat{\mathbf{T}}[:,i] \leftarrow \mathbf{U}\mathbf{W}[:,i] + \mathbf{s}
     end for
    for i \in 1, \ldots, L do
         if i \leq \ell then
              m_i \leftarrow \text{MAX}(\hat{\mathbf{T}}[:,i])
         else
              m_i \leftarrow \text{MAX}(\hat{\mathbf{T}}[:,i]) + \mu
         end if
    end for
    h^L \leftarrow \text{Histogram}(m_1, \dots, m_L)
```

Evaluations Setup

- Data: T1 MRIs from ADNI2 are used.
 - 601 subjects (259 AD and 342 CN)
 - SPM preprocessing is applied.
 - GM images with approx. 500,000+ voxels are extracted.
 - Multiple combinations of dataset sizes
- Experiments: Can we recover the Maxnull distribution?
 - Stability of hyperparameters Sub-sampling rates, and training samples
 - Computational Speedups (RapidPT vs. SnPM, RapidPT vs. NaivePT)

Recovered MaxNull Distribution Accuracy

KL-Divergence: Measure of the difference between two distributions Datasets: 50, 100, 200 and 400 subjects

What Sub-Sampling Rate to Choose?

Low-rank matrix completion says that around ~rlog(d) entries are needed, where r is the column space rank and d is the ambient dimension.

$$\eta v \ge nlog(v)$$

$$\eta \ge \frac{nlog(v)}{v}$$

Empirically the above inequality worked well. However, we can subsample at lower rates

In our experiments, the number of subjects and number of voxels for each dataset were:

	er of Subj				\ / /
(50,5477	783) (100,	558295) ((200,568086)	6) (400,5	74640)

Table 1: Number of subjects and number of voxels per subject on each dataset.

Therefore, the corresponding estimate of the minimum sub-sampling rate would be:

Minimum sub-sampling rate estimate: η_n					
$\approx 0.1206\%$	$\approx 0.2370\%$	$\approx 0.4665\%$	$\approx 0.9231\%$		

Minimum η : n=14, L=3000, I=14 16 14 12 KL-Divergence 10 10 Sub-Sampling Rate, η (% of all voxels)

Figure 11: An experiment showing the effect of the sub-sampling rate (η) on the KL-Divergence.

Calculated T-Threshold for a Given P-Value

Speedup RapidPT vs. NaivePT

Speedup RapidPT vs. SnPM

Timing RapidPT vs. SnPM

Scaling the number of permuations

Discussion

- When to use RapidPT?
 - Many permutations. If you are doing > 10,000 permutations then RapidPT will highly benefit.
- When not to use it?
 - Permutation testing on small datasets take only a few seconds...
 - Large datasets >200 subjects, and < 10,000 permutations

RapidPT – Postprocess Example

```
% Get the outputs struct you obtained from RapidPT
load('~/PermTest/outputs/TwoSample_ADRC_200_200_400/rapidpt/outputs_80000_0
alpha = 0.01; % Significance level of 1 percent
tThresh_RapidPT = prctile(outputs.maxT, 100 - (100*alpha));
% Get the data
load('~/PermTest/data/ADRC/TwoSample/ADRC_400_200_200.mat');
[h,p,ci,stats]=ttest2(Data(1:200,:),Data(201:400,:),0.05,'both','unequal');
SampleMaxT = max(stats.tstat);
```


Acknoledgements and Website

- Vikas Singh
- Vamsi Ithapu
- Chris Hinrichs, Camille Maumet, Sterling C. Johnson, Thomas E. Nichols
- ADNI and ADRC

- Repository and project website:
 - https://github.com/felipegb94/RapidPT (Repository)
 - http://felipegb94.github.io/RapidPT/ (Website)