Indhold

1	Opgave 1		1
2	Opgave 2		2
3	Opgave 3		3
	3.0.1	Show that when $\rho = 1$ indifference curves become linear	3
	3.0.2	Show that as $\rho \to 0$ this utility function comes to represent the same	
		preferences as the Cobb-Douglas utility function $U(x) = x_1^{\alpha_1} x_2^{\alpha_2}$	3
	3.0.3	Plot the lower contour set for $U(x) = 1$ for $\rho = \frac{1}{2}$ when $\alpha_1 = \alpha_2 = 1$	3
	3.0.4	Plot indifference curves for $\rho = \frac{1}{2}$ and $\rho = 2$ when $\alpha_1 = \alpha_2 = 1$	4
	3.0.5	What happens to the shape of the indifference curves as $\rho \to -\infty$?	
		you can use plot for this	4

1 | Opgave 1

Prove the following:

Proposition: If \succeq is rational then:

1. \succ is both irreflexive and transitive

For the irreflexive part completeness is used, which is given by

$$\forall x, y \in X \Rightarrow x \succeq y \quad \text{or} \quad x \preceq y$$

In this given case we have two x which gives

$$\forall x \in X \Rightarrow x \succeq x$$

which is the reflexive property, since it applies $\forall x$ and it can not be both \succ and \succeq it must be a contradiction and therefore it is seen that $x \succ x$ never holds.

Next, we prove transitivity

If it is rational we know that by transitivity we have: $\forall x, y, z \in X$: if $x \succeq y$ and $y \succeq z$ then $x \succeq z$. It is possible to only operate with \succ , and then we have $x \succ y$ and $y \succ z$ so that $x \succ z$, which means that \succ is transitive.

2. \sim is reflexive $(x \sim x \ \forall x \in X)$, transitive and symmetric (if $x \sim y$ then $y \sim x$).

Reflective: By completeness we have, from the exercise above, that $x \gtrsim x \ \forall x \in X$ this implies by definition of indifference that $x \sim x$

Transitive: Suppose $x \sim y$ and $y \sim z$ we know that by transitivity we have: $\forall x, y, z \in X$: if $x \succeq y$ and $y \succeq z$ then $x \succeq z$. we also, by definition of indifference, have the inequalities $x \preceq y$ and $y \preceq z$ then $x \preceq z$. Since $x \succeq z$ and $x \preceq z$, it is therefore known that $x \sim z$, which means that \sim is transitive.

Symmetric: By completeness we again have, that $x \succeq y$ or $y \succeq x \ \forall x, y \in X$, so when only operating with \sim this implies by definition of indifference that $x \sim y$ and $y \sim x$

3. If $x \succ y \succ z$, then $x \succ z$

Since \succeq is rational, $x \succsim z$. If we assume $z \succsim x$. Then since $y \succsim z$, then by transitivity, $y \succsim x$. But we also have that $x \succ y$, which is a contradiction. Therefore $x \succ z$.

2 | Opgave 2

Consider the lexicographic preference relation \succeq over \mathbb{R}^2 defined by $(x_1, x_2) \succeq (y_1, y_2)$ if $x_1 > y_1$ or $x_1 = y_1$ and $x_2 \geq y_2$

Proposition: If \succeq is rational then:

1. Show that \succeq is transitive.

To show $X \succsim Y \succsim Z \Longrightarrow X \succsim Z$ let first $Y \succsim Z$ be fulfulled, then $y_1 > z_1$ or $y_1 = z_1$ and $y_2 \ge z_2$. Since $x_1 > y_1$ or $x_1 = y_1$ and $x_2 \ge y_2$ is fulfilled, then $x_1 > y_1 \ge z_1$ or $x_1 = y_1 \ge z_1$ and $x_2 \ge y_2 \ge z_2$ implying that $X \succsim Z$

2. Show that \succeq is not continuous

Let $(x_1^n, x_2^n) = (1 - \frac{1}{n}, 1)$ and $(y_1, y_2) = (1, 0)$ then it is clear that $X \succ Y$, but taking the limit

$$\lim_{n \to \infty} X = (1,0) = Y$$

Thus $X \succ Y$ but $n \to \infty \implies X \sim Y$

3 | Opgave 3

Suppose that in a two-commodity world, the consumer's utility function takes the form:

$$U(x) = [\alpha_1 x_1^{\rho} + \alpha_2 x_2^{\rho}]^{1/\rho}$$

This utility function is known as the constant elasticity of substitution (or CES) utility function.

3.0.1 Show that when $\rho = 1$ indifference curves become linear.

When $\rho = 1$ then $U(x) = [\alpha_1 x_1^1 + \alpha_2 x_2^1]^{1/1} \Rightarrow \alpha_1 x_1 + \alpha_2 x_2$. Solves x_2 we get: $x_2 = -\frac{\alpha_1}{\alpha_2} x_1$ and thus U(x) become linear.

- 3.0.2 Show that as $\rho \to 0$ this utility function comes to represent the same preferences as the Cobb-Douglas utility function $U(x) = x_1^{\alpha_1} x_2^{\alpha_2}$
- **3.0.3** Plot the lower contour set for U(x)=1 for $\rho=\frac{1}{2}$ when $\alpha_1=\alpha_2=1$

- 3.0.4 Plot in difference curves for $\rho=\frac{1}{2}$ and $\rho=2$ when $\alpha_1=\alpha_2=1$
- 3.0.5 What happens to the shape of the indifference curves as $\rho \to -\infty$? you can use plot for this

Kode (står i kommentar i overleaf plot!(X,y,line = :dash, color = :red, linewidth = 3, label="yR2:y x") 5)

Billeder/SkÃęrmbillede 2024-02-07 kl. 11.53.31.png

Figur 3.1: opgave V