19日本国特許庁(JP)

①特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭60-256121

Mint Cl.4

識別記号

庁内整理番号

@公開 昭和60年(1985)12月17日

G 02 F 1/133 G 09 F 9/35

127

Z-8205-2H 6615-5C

審査請求 未請求 発明の数 1 (全10頁)

液晶セル

> 到特 昭60-104104 頭

9出 頣 昭60(1985)5月17日

図1984年5月18日のフランス(FR) 308407767 優先権主張

79発明者 ジャン・フレドリツク フランス国38240メイラン、アレ・デイ・プレ・ブラーン

クレール

10

個発 明 者 ジャン・クラウド ド フランス国38000グルノーブル, リユー・ティエール52

イツチ

包出 頣 コミサリア・ア・レネ フランス国75015ペリ、リユー・ド・ラ・フェデラシオン

ルジ・アトミツク 31/33

20代 理 人 弁理士 星野 恒司 外1名

> ĸД 却

- 1. 発明の名称 被品セル
- 2. 特許請求の範囲
- (1) 一種のホメオトロピック (類似走向性) 構造と液晶層の各側に設けた電極群とを備えた液 温層を有する集成体から成り、前記電極の一つが 少なくとも透明体であり、上記集成体の側面の一 つを入射光に騙し、いわゆるこのセルがまた、少 なくとも上記側面に入射光を偏光させる手段を備 えかつその層厚と偏光手段とにより、ホメオトロ ピック構造内の液晶層の複屈折を補償する結果、 ある一定の観測面内で斜方向からの測定を行う場 合、このセルが上記構造に対し鮮明な対比を有す ることを特徴とする電気的に制御された複屈折タ イプの液晶セル。
- (2) セルが電気的に制御される複扇折伝達タ イブのものであり、鼈極が透明体であって、セル には上記集成体の各側に第1ならびに第2偏光手 段とほぼ円形状の偏光子相当装置が備わり、ホメ

オトロピック方向に伝搬される人射面光波に対し 相互に補足性を保ち、観測而は上記方向に平行で あって、前記第1、第2個光手段のそれぞれがま たこの観測面に適応して上方から斜方向に入射す る面光波に対し、一種の格川偏光を形成させるこ とができ、この偏光楕円の長輪が観測値にある角 度を与え、被晶層の厚みが対象全具を組方向から 入射する波が透過する際、上配角度を抹消し切る に必要な厚さの2倍相当であることを特徴とする 特許請求の範囲第(1)項記載の被品セル。

(3) 第1および第2の偏光手段にはそれぞれ 一次リニア偏光子と、この偏光子-上記集成体間 の一次遅延プレートとからなる第1対と、何じく 二次リニア偏光子と、このものと上記集成体間の 二次遅延プレートとからなる第2対を含み、それ ぞれのリニア偏光子の最大吸収軸は層のホメオト ロピック方向に平行な観測面に直交する同一面に 平行でありかつ、上記ホメオトロピック方向には 直角方向であり、各遅延プレートは、2本の中性 線がホメオトロピック方向に対し直角をなし、か

つ、この中性線の形成角の二等分線の一つが突出 するような位置構成であり、しかもホメオトロピック方向には平行であって、実質上相当リニア遅延 光子の最大吸収軸の上方に位置し、この結果遅延 プレートは同時に、それぞれの相当遅延軸が同一 面の一方側に位置する状態を示し、また、この光 に近い光子の最大、第2対が円形に近い光子は がフレートを、第1、第2対が円形に近い光子は に上記ホメオトロピック方向に適応して伝搬 はたまれる入射而光波に対し補足関係を保つように構成 することを特徴とする特許諸求の範囲第(2)項記 報の被品セル。

- (4) 2枚の遅延プレートを単一プレートに組み込みかつ、上記単一プレートの中性線の形成角を二分する線が実質上リニア偏光子の一つの最大吸収軸上にあって、ホメオトロピック方向に平行に突出する構成とすることを特徴とする特許諸求の範囲第(3)項記載の液品セル。
- (5) セルが電気的に制御された複扇折反射タイプのものであり、かつ電極の一つが被晶層に対

- 3 -

光子とともにホメオトロピック方向に伝搬する入 射面光波に対し、円形傷光子を構成させるよう選 定することを特徴とする特許請求の範囲第(5)項 記載の被品セル。

- (7) 各遅延プレートを二輪材料から製作して 最も速度の高い中性輪をホメオトロピック方向と 繋合させることを特徴とする特許請求の範囲第(3) 項記録の被品セル。
- (8) 各遅延プレートを追加の被品セルで構成させ、上記追加のセル壁に対し分子方向を平面均・とすることを特徴とする特許請求の範囲第(3) 項記載の被品セル。
- (9) ・つの遅延プレートを二軸材料から製作 しそのもっとも速度の早い中性軸をホメオトロピック方向と整合させることを特徴とする特許請求 の範囲第(6)項記載の被品セル。
- (10) 一つの遅延プレートを追加の被品セルで 構成させ、上記追加のセル壁に対し分子方向を平 前均一とすることを特徴とする特許請求の範囲第 (6) 項記載の被品セル。

し偏光手段の反対側に位置して光学的に反射を行い、この偏光手段がホメオトロピック方向に伝腕する人射而光波を円形に偏光させることができ、観測而がこの方向に平行でありかつ、観測面内でその上方から斜方向に入射してくる而光波に対し、格門偏光を生ぜしめ、この偏光楕円の段輪が観測高と一定の角度を形成し、被晶層厚が斜方降下してくる光波が上記厚みを透過し切った場合、この角度を消し去るような間隔構成とすることを特徴とする特許線次の範囲第(1)項記載の液晶セル。

(6) 解光装置手段として、リニア研光子と、これと上記集成体間の一種の遅延プレートとを設けることとし、このリニア研光子の最大吸収輸が被品層のホメオトロピック方向に対し直交し、かつ観測前に対しても直角であり、一方遅延プレートを、前記2本の中性線がホメオトロピック方向に直角になるごとく位置づけし、この突出中性線の形成角を二分する線の一つが、リニア研光子の最大吸収輸上方でホメオトロピック方向に平行とし、さらに他方ではこの遅延プレートをリニア研

- 4 -

3. 発明の詳細な説明

本発明はホメオトロピック (類似走向性) 構造を有しかつ、その構造に対し複点折を補償するタイプの被品セルに関するものである。 さらにくわしく言えば、この発明は時計とか携を用地子計算器のごときデータ表示手段に利用される。

 角であり、かつ、他の偏光子に対向する分子が上記軸に平行な配列であり、さらにこの偏光子の最大吸収軸が白地に思の正のコントラストを得るごとく垂直方向であるか、思地に白の負のコントラストを得るよう平行方向であるかの構成とする。セルが刺激を受けると、つまり、適当な負荷電圧が電極間に加わると、被晶はホメオトロピック方向性でを持つにいたる(第1図B)。

第2図A、第2図Bは2枚のガラスプレート10。 11間にネマチック液晶層9を備えた。 電気的に制 御される被屈折タイプ "の液晶セルを擦説したも のであり、このプレートは図示されていない電極 ともに、層とプレートとで構成された集成体の 各側にとりつけた2個の偏光子12と13とを有して いる。この2個の偏光子は好ましくは円形か円形 に近い形状のものであって、相互に補足性、つま り2個の偏光子に同一垂直方向に伝機する2本の 光波に対向した偏光方向を示す性質を有し、それ

- 7 -

ック構造内で被晶層の複周折を補償する手段を備え、一定の観測而内で斜方向からの測定を行う場合、上記構造に対しセルがすぐれたコントラストを有する特徴をそなえている。

この結果、ホメオトロピック方向での観測に対しては反対方向になる斜方向測定時にあって、被晶はそのホメオトロピック構造中では複屈折を呈し、この構造を通過する光波の楕円形状につい改をはられて、コントラストの劣化につなる結果となる。一定観測面に対しそのボメオトロピック構造のでの被品層の複屈折を補食することにより、上記観面中の斜方向測定の場合でも高い電気の大きのでの、とが可能となり、たとえば電気の大きの大きが可能となり、この制御が可に対した対した対したはである。電極はセルにより発現される場合の独性とともに変動する一つもしくはそれ以上の役割を持ち得る。

一層特別な場合として、この発明によればセル

ぞれの個光子に光波が降りそそぐ方式のものである。 セルがはたらかない場合、 被晶はホメオトロピック構造を有し、このセルを構成する分子群14がこの場合 2 枚のプレート11と12に垂直な同一方向15に平行となるいわゆる"ホメオトロピック方向"(第 2 図 A) を持つようになる。 セルが刺激を受けると、分子群はすべて同一方向に傾き上記ホメオトロピック方向に対し α の 角度を形成する。

らせんネマチックまたは電気的に制御された複 屈折タイプのセルはある種の不便さを持っている。 この種セルがホメオトロピック構造であり、斜方 から観測される場合、そのコントラスト (対比) は劣化して、この欠陥は角度の増大とともに高く なり、上記コントラストが反転することさえあり 得る。本発明の目的はこの不便を除くことにある。

なすわち、この発明の目的とするものは、 ・種の被晶セル集成体であって、この集成体はホメオトロピック構造を持った被晶層とその層の各側に設けた電極とから成り、少なくともその電極の ・つは透明体で、この集成体にはそのホメオトロピ

-8-

は世気的に制御する被相折タイプのものであり、 上記集成体の一側が人射光を受けるはたらきをし、 このセルには少なくとも上記側面に人別光を観光 させる手段をとりつけ、一方この層厚と各編光手 段により上記補償操作をまとめて行う特徴を持た せている。

特殊態様によれば、このセルを電気的制御の複 屈折透過タイプとさせ、電極は透明タイプとし、 セルには上記集成体の各側に第1、第2偏光手段 を設け、円形に近い偏光子を備えてホメオトロピック方向に伝搬される人射而光波に対し相互に補 足効果を発揮させ、観測面はこの面に平行であり、 上記第1、第2偏光手段が同時に観測面に適切し 大き与えて、偏光等段が同時に観測面に楕円偏 光を与えて、偏光特円の段軸と観測而とに一定角 度を形成させ、被晶層の厚さをたとえば斜方のから 投入される光波が対象とする全厚を透過し切っ た際上記角度を排消すべき厚みの2倍にとる特徴 の方式を提供することができる。

さらに別の態様として、第1、第2個光手段が

さらに別の想様として、2枚の遅延プレートを

もまたその対応する遅延輪が同一面中一方側に位

取し、この軸を一次対と二次対が円形に近い偏光

子と類似準動をし、これら偏光子が、上記ホメオ

トロピック方向に適応して伝搬される入射面光波

に対し相互に補足性を呈する特徴を有する構造と

- 11 -

することができる。

つ級測師に対しても直角方向とし、遅延プレートを一方で、その中性線の2本がホメオトロピック方向に直角であり、この突出中性性の形成角を二分する線の1本がホメオトロピック方向に平行にリニア偏光子の最大吸収軸上に位置し、また他方でこの遅延プレートをリニア偏光子とともに、ホメトロピック方向に伝搬される入射面光波に対し円形の偏光子を形成するごとく選定する特徴の構造とすることも可能である。

次に添付図面にしたがって、さらに詳細に本発 明を説明する。

組み合わせて単一プレートとし、この単一プレートの中性線で形成する角の二分線がホメオトロピック方向に平行に実質上、リニア偏光子の一つの 最大吸収輸上に突出する構成とすることもできる。

また別の態様として、セルを電気的に制御する 被扇折反射タイプとし、電極の一つを光学的に放 射させつつ、被晶層に対し個光手段に対向して設 け、この個光手段装置はホメオトロピック方向に 低騰される入射前光波を円形に個光させることが 可能であり、観測前も上記方向に平行であり、こ の観測前内でその上方に斜方向から入射される制 光に対し、楕円個光効果を与え、循光楕円が制制 所内とある角度を形成し、この液晶層厚を斜方向 からの投射光で上記厚みを透過し切った時その角 度を消去し去るような特徴の構成とすることがで

また特殊の実施態様として、 偏光手段にリニア 偏光子の一個と、このものと上記集成体間に遅延 プレートとを設け、このリニア 偏光子の最大吸収 軸を被晶層のホメオトロピック方向に直角に、か

- 12 -

ク方向日には平行である。第3図はまた入射角iを持ってセル17上の測定値P内に投入されてくる 面光波の伝搬方向Dをも示している。この入射角 は実質上活性媒体内への入射角をあらわし、この 媒体の屈折率は1.5に近いのが通常であり、このことについては後に触れる。iに対応する空中の入射角は媒体のそれより大きい。上記活性媒体内におかれる観測者に対する。理論上"の伝搬方向はまた上記伝搬方向Dでもある。

第4回はこの発明セルの分解図であり、第3図と参照して見るとよくわかる。このセルには2枚のガラスプレート19と20間に伸長するネマチック被晶層18が設けられ、このガラスプレートの扇折率はほぼ1.5であり、この種のプレートは面上公知の挙動をし、直接にこれが被晶層と透明電極19aと20aとに対向し、このプレートの間に適当な電圧が加わると、セルスクリーンにある額のシンボル(図形、文字、点等)があらわれる。この両プレートはまた相互に平行で、被晶層はこの間に挿入されているため、電極間に離圧が加えられない

と、一種のホメオトロピック構造となり、このホメオトロピック方向は上記2枚のプレート19,20に重直で被品層の分子群はすべて、健極間に適正な健圧が加わる限り、ホメオトロピック方向と同一方向を示す。これを分かり易くするため参考として本発明による電気制御複屈折セルを第4回に示す。第8回もこれに関連した参考図である。

第4 図のセルには、液晶圏とガラスプレートとで構成したアセンブリ(集成体)の近傍、およびその各側に一次リニア偏光子21と二次リニア偏光子22とを設け、両者とも板状を显し、一次リニア偏光子はガラスプレート19の側に設けてこのプレートで入射光を受けいれる。セルにはまた一次遅延プレート23をプレート19と一次リニア偏光子21間に設けるとともに、二次遅延プレート24をガラスプレート20と二次リニア偏光子22間にとりつける。偏光子21,22と遅延プレート23,24とはプレート19と20とに平行である。

リニア偏光子21と22とはまた、それぞれの最大 吸収翰P,, P,とに相互に平行であり、かつ郡定面

- 15 -

ここで、座標×y'中の方向Dの光波の偏光の発現について述べることとする。まず入射が0である特殊ケースを想定する。つまり角度iが0で、ホメオトロピック方向に面光波が伝搬する場合である。一次遅延プレート23の入口で一次リニア偏光子21を透過したのち、面光波は第6図Aのごと

Pに直交する面Mとホメオトロピック方向にも平 行であり、この結果面Mは直線△に沿って測定面 Pと交わり、このAはホメオトロピック方向に平 行となっている。遅延プレート23または24はその 2本の中性線がそれぞれおくれ軸1.,または1.。に対 応し、進み軸R」またはR2の一つに相応したもので あるが、直線ムに直角となり、かつ、この中性線 群の形成する二等分線の一方が、直線ムに平行に 突出し、実質上対応するリニア偏光子21もしくは 22の 最大吸収軸P,またはP,上にあるごとく位置構 成されている。他の准み軸R.'またはR.'はこの場 合直線なに平行である。おくれ面はまた、そのそ れぞれのおくれ軸し、とし、とを前Mの一方側に位置 させるように構成される。さらに、遅延プレート 23と24とは、一次リニア偏光チー・次遅延プレー ト形成の対と、二次リニア偏光 チー: 次遅延プレ ート形成の対とが円形に近い偏光子として挙動し、 この種偏光子は相互に、直線ム方向に伝搬する人 射面光波に対し相互に補足性を示すよう両プレー トを選定する。

- 16 -

く軸yに沿って一つのリニア偏光を保有する。また図中、混合ライン形として、軸e,とr,とが示されており、これら軸はN面上への投影を示し両者ともおくれ軸t,と進み軸e,の直線 Δ に平行である。一次遅延プレート 23 からの出口では波動は円偏光に近く、偏光は楕円であるがこれはきわめて円に近似し、第6 図 B では矩 B P P であらわされる。かつその個長は実費上間長で、両側はそれぞれ軸×とyにより中心部直交となっている。

つぎに角度iが0(第3図と第5図中方向D波の場合)の場合を考える。 次リニア 個光 チ21を通過後、ちょうど、次遅延プレート23に入る面前、この波動はリニア 個光を有し、これに対応する光振動は y'に平行に生じ、その対角面の一つに対応する矩形R,'内に導入され、軸ℓ,,r,はそれぞれ矩形R,'の短辺と長辺の中心を通過する構成となり、軸ℓ,は軸 y'と角度 u を形成する(第7図A)。

一次遅延プレート23を離れる際、斜方向に導入 される角度は楕円偏光を受け、この偏光楕円は矩 形1., 内に導入され、楕円の長軸は軸2,に沿って仲長し、一方楕円の短軸は軸1,に沿って仲長する(第7図 B 参照)。 波が被晶層18のある深さに伝搬搬入されると、 編光楕円の短軸、 長軸は何れもそれぞれ x 軸と y '軸とに接近し、楕円の長軸と y '軸間の角度は u より小さいに u '値を取るようになる(第7図 C).

この結果、液晶層には特殊厚みe。が得られ、この被晶層に対し偏光楕円の長軸と短軸とはそれぞれ軸y'と×上に乗り、その結果楕円の長軸とy'間角は第7回Dのごとく0となる。本発明によれば、液晶層18の厚さは上記特殊厚みe。の2倍取ることができ、このことは専門家により決定し得る(たとえばデータ処理シミュレーション、または実験により)。このように、入射角iが0であってもなくても、二次リニア偏光子22を離れる光波は総合的に減光され、その結果斜方向観測に対してコントラストが保持される。

遅延プレートを発現するには単軸媒体に比し、 二軸媒体の方が好適である。このことは液晶層の

- 19 -

的反射性を有する電極27aを取りつけている。この被品層の取付位置は電極間に電圧がかからない場合ホメオトロピック構造を持たせるような構成とし、この際、ホメオトロピック方向は両プレートに直交するように選定している。

第8図に示すセルは同時にプレート状の、リニア偏光子28を備え、この偏光子28はプレート26と27とに平行であってこれらプレートと層が形成する集成体の外側に位置し、瞬間光を受けるプレート26とともにリニア偏光子との近傍に遅延プレート29とともにリニア偏光子、プレート26の間におってこのプレート26はまた上記がレートを研究である。リニアの最大の最大の根がホメオトロピック位置にある。位れても近れている。直角では対すトロピックを重要である。近角では対すトロピックを変更である。にはないできる。この面にはオトロピックを表し、はオトロピックを表し、はオトロピックを表し、はオトロピックを表し、はオトロピックを表し、はオトロピックを表し、はオトロピックを表し、はオトロピックを表し、はオトロできる。とすみ軸に、とすみ軸に、とすみもし、とすみ神に、とないは、とのプレートのおくれもは、シェートのおくれもはアートのよくを表し、アートのよりには、ファートのよりには、ファートのよりには、ファートのよりには、ファートのよりには、ファートのよりには、アートのよりには、アートのよりには、アートのよりには、アートのよりには、アートのよりには、アートのよりには、アートのよりには、アートのよりには、アートのよりには、アートのよりには、アートのよりには、アートにはは、アートにははないはは、アートにははないまする。アートにははないまする。アートにはははないまするにはないまするにはないまする。アートにはないまするにはないまする。アートにははないまするにはないまする。アートにはないまするはないまする。アートにはないまするにはないまする。アートにはないまするはないまするのはないまするのはないまする。アートにはないまするのは

高い光学厚みを補償する場合に実証される。進み 頼R,'とR,'とはこの場合それぞれ頼R,とR,よりも 早日に選定する。

ここでとくに限定されることのない参考例として、遅延プレート 23 と 24 とを 200 μ ■ 厚みの二酢酸セルローズストリップから調製し、このストリップを入射角 O 状態で約150nmの光学行程おくれを取るように抽出する。液晶はシッフ (Schiff) 系の材料から選定可能であり、液晶層は約5 μ m 厚さで製作し、その光学的重届折率を0.2 に等しくとることができる。なおまた、フェニルシクロヘキサン族から液晶を選定してもよく、厚さ約10 μ ■、光重配折率0.1 の液品層も取得可能である。

第8回はこの発明による電気的制御による視点 折性の反射液晶セルの分解図の一例である。この セルでは、2枚の平行なガラスプレート間にネマ チック液晶層25をとりつけている。ガラスプレート26は液晶層に直接対向の面上に透明電便26aを 備えている。別のガラスプレート27には、この液 品層に直接向いた面上に一種の金属すなわち光学

- 20 -

に対応する2本の中性線が直線 Δ に垂直となり、そのものが形成する角の二等分線の中一つがリニア偏光子28上、その最大吸収軸P。に従って線 Δ に平行に突出するごとく位置構成させることができる。さらに、遅延プレート29はこのリニア偏光子28とともに、直線 Δ に沿って入射されてくる面光波に対し、円形の偏光子を形成させるよう選定することができる。

被晶層25の厚みは前述した特殊厚みe。に等しくできる。したがってこの場合、第8回で示したセル内の光学的反射性電極27aは、第4回で示すガラスプレート19と20とに平行な対称面ェ,としても挙動し、この対称面により上記セルの液晶層18は2個の1/2厚e。に分断されている。

このように、液晶圏の25の複屈折は補償される。
1/4波プレートは遅延プレートを形成するのに好
んで用いられる。たとえばリニア偏光子28上に入
射してくる而光波の場合、一方で金属電極27°a上
で反射され、一方、リニア偏光子28からは放散さ
れるごとく、特記されることとして、層の複屈折

の補償つまり、リニア偏光子を離れさる問題の波の波光は、正しくは使用プレートのもたらす光学おくれの 4 倍相当の一定波に対して得られるに過ぎない。

遅延プレートにしろ通常のプレートにしろ、これらは、分子の平面均一配向性を備えた追加の被品セルの助けを借りて入手し得るものである。また、第4回と第8回記載のセルに相当する液晶層の被配折の補償は"外的"なものということができるが、その理由は、この補償が上記層の各側で層に対し適当な手段を加えることによりもたらされるものであり、この場合その厚みに"影響"する他は、層には影響をもたらさないからである。

4. 図面の簡単な説明

第1図Aと第1図Bとは、従来技術によるらせ ん型ネマチック液晶セルの構成図であり、それぞ れ操作しない場合と、刺激を与えた場合とを示し たすでによく知られた例であり、

第2回A、第2回Bは従来技術による健気的に 制御した複屈折液品セルの構成図であり、同じく

- 23 -

第7回 D は、液晶層の半部分を通過したのちの 上記光波の偏光状態とともに、複屈折を補償する に適した厚さをあらわす構成図を、

第8回は、本発明による電気的に制御する被屈 折反射式液晶セルの分解構成図を、それぞれ示す。

操作しない場合と、刺激を与えた場合との公知の 例であり、

第3図はこの発明による、一種のセルの測定値 と電気的に制御する複組折透過形セルの構成図を、

第1図は、第3図のセルの分解図を、

第5図は第3図で示す測定面に関係した、第4 図で記載のセルに対し斜方向から投入而光波に対応する波面の構成図を、

第6図Aは上記セルを備えた一次遅延前の導入 口で、第4図に示すセル上に、ゼロ人射とともに 放射する面光波の偏光状態を示す構成図を、

第6図Bは一次遅延プレートの出口で1:記削光 波の偏光を示す構成図を、

第7回Aは一次遅延プレートの導入部で、第4 図のセル上に斜方から入射而光波の偏光を示す構成図を、

第7図Bは、一次遅延プレートの出口部で上記 光波の偏光を説明する構成図を、

第7回Cはある厚みの液晶層を透過したのちの 上記光波偏光を説明する構成図を.

- 24 -

e, , r, ... · ...

特許出願人 コミサリア・ア・レネルジ・アトミック

代理人 星野恒

岩 上 昇

