Кафедра информационной безопасности киберфизических систем

Москва 2024

Криптографические методы защиты информации

Кольца

Криптографические методы защиты информации

Кольца

2

Общие сведения о кольцах

Понятие кольца

- На множестве K задана **структура кольца**, если на нем заданы две алгебраические операции, называемые сложением (+) и умножением (\cdot) , причём выполняются следующие свойства:
 - -(K;+) является абелевой группой;
 - $-(K; \cdot)$ является полугруппой;
 - выполняется двоякая дистрибутивность умножения относительно сложения, когда $\forall \, a,b,c \in K \Rightarrow \begin{cases} a(b+c) = ab + ac, \\ (a+b)c = ac + bc. \end{cases}$

- $(K; +; \cdot)$ обозначение кольца.
- Абелева группа (K; +) называется **аддитивной** группой кольца K.
- Полугруппа $(K; \cdot)$ называется **мультипликативной полугруппой** кольца K.
- Нейтральный элемент аддитивной группы кольца называется **нулем кольца** и обозначается 0_K или просто 0.

Свойства колец

- Виды колец:
 - если в $(K;\cdot)$ есть нейтральный элемент, называемый единицей кольца 1_K , то кольцо K называется кольцом с единицей;
 - если умножение в кольце K коммутативно, то кольцо K называется **коммутативным кольцом**.
- Простейшие свойства колец:

$$-0\cdot x=x\cdot 0=0\ \forall\ x\in K;$$

$$-(-x)\cdot y = x\cdot (-y) = -(xy) \ \forall \ x,y \in K;$$

$$-(-x)\cdot(-y)=xy\ \forall\ x,y\in K;$$

$$-(-1_K) \cdot x = -x \ \forall \ x \in K$$
, если $\exists \ 1_K \in K$.

- Элемент u кольца с единицей K называется **обратимым элементом**, если $\exists \ u^{-1} \in K$ такой, что $u^{-1} \cdot u = u \cdot u^{-1} = 1_k$.
- Обратимые элементы кольца с единицей K образуют группу K^* .

Кольца

Свойства колец

В кольце с единицей K элементы вида 1, • $1+1=2\cdot 1,\;...,\;\underbrace{1+\dots+1}=l\cdot 1$ называются

целыми элементами кольца.

- Если все целые элементы кольца K отличны от нуля, то K называется кольцом **нулевой** характеристики, char K=0.
- Если для некоторого $l \in \mathbb{N}$ выполняется $l\cdot 1=0$, причем l является наименьшим числом, обладающим данным свойством, то Kненулевой называется кольцом характеристики l, char K = l.

- **Пример** кольцо целых чисел \mathbb{Z} :
 - коммутативное кольцо с единицей;
 - кольцо нулевой характеристики;
 - группа обратимых элементов $\mathbb{Z}^* = \{-1,1\}.$

Классы колец

- Кольца классов вычетов:
 - строятся на основе кольца целых чисел;
 - реализуют арифметику остатков.
- Кольца многочленов:
 - являются основой для построения полей Галуа.

Для криптографии наибольшей ценностью обладают конечные структуры.

Криптографические методы защиты информации

Кольца

7

Кольца классов вычетов

Бинарные отношения

- **Бинарным отношением** ρ между множествами X и Y называется произвольное подмножество декартового произведения $X \times Y$, $\rho \subseteq X \times Y$.
- Если X = Y, то ρ есть бинарное отношение на множестве X.

- Бинарное отношение ρ на множестве X называется **отношением эквивалентности**, если выполняются три свойства:
 - рефлексивность: $x \rho x$ ∀ $x \in X$;
 - симметричность: $x\rho y$ ⇒ $y\rho x$ ∀x, $y \in X$;
 - транзитивность: $x\rho y, y\rho z \Rightarrow x\rho z \ \forall x, y, z \in X$.
- Множество X с заданным на нем отношением эквивалентности ρ разбивается на попарно непересекающиеся **классы эквивалентности**, где классом эквивалентности элемента x называется множество $\bar{x} = \{y \in X | x \rho y\}$.

Кольца

Московский институт электроники и математики им. А.Н. Тихонова

Множества классов вычетов по модулю n

- Зададим на $\mathbb Z$ отношение эквивалентности ρ_n для некоторого $n \in \mathbb{N}$: $a\rho_n b \Leftrightarrow a \equiv b \pmod{n}$, то есть a и b имеют одинаковый остаток от деления на n.
- разбивает \mathbb{Z} Отношение на классы эквивалентности, называемые классами вычетов.

$$\mathbb{Z} = \boxed{\overline{0} \quad \overline{1} \quad \overline{2} \quad \dots \quad \overline{n-1}}$$

- $\bar{a} = \{x \in \mathbb{Z} | x = kn + a, k \in \mathbb{Z}\}$ класс вычетов a по модулю n.
- $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$ множество классов вычетов по модулю n, $|\mathbb{Z}_n| = n$.
- **Пример** для n = 4:

$$\overline{0} = \{..., -8, -4, 0, 4, 8, 12, ...\};$$

$$\overline{1} = \{..., -7, -3, 1, 5, 9, 13, ...\};$$

$$-\bar{2} = \{..., -6, -2, 2, 6, 10, 14, ...\};$$

$$\overline{3} = \{..., -5, -1, 3, 7, 11, 15, ...\}.$$

Московский институт электроники и математики им. А.Н. Тихонова

Кольца классов вычетов по модулю n

• Зададим на \mathbb{Z}_n две алгебраические операции:

– сложение: $\bar{a} \oplus \bar{b} = \overline{a+b} \ \ \forall \ \bar{a}, \bar{b} \in \mathbb{Z}_n;$

– умножение: $\bar{a} \otimes \bar{b} = \overline{a \cdot b} \quad \forall \ \bar{a}, \bar{b} \in \mathbb{Z}_n$.

• Структура $(\mathbb{Z}_n; \oplus; \otimes)$ является коммутативным кольцом с единицей, называемым кольцом классов вычетов по модулю n.

 $- 0_K = \overline{0}$ — нуль кольца;

 $-1_K=\overline{1}$ — единица кольца.

• \mathbb{Z}_n^* — группа обратимых элементов кольца \mathbb{Z}_n .

• **Теорема.** Ненулевой элемент $\bar{a} \in \mathbb{Z}_n$ является обратимым тогда и только тогда, когда HOД(a,n)=1.

• Пример для n=10:

 $= \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\};$

 $-\mathbb{Z}_{10}^* = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}\};$

 $\begin{array}{ll}
 & \overline{1} \otimes \overline{1} = \overline{1 \cdot 1} = \overline{1}, \overline{3} \otimes \overline{7} = \overline{3 \cdot 7} = \overline{21} = \overline{1}, \\
 & \overline{9} \otimes \overline{9} = \overline{9 \cdot 9} = \overline{81} = \overline{1}.
\end{array}$

Криптографические методы защиты информации

Кольца

11

Кольца многочленов

Многочлены над кольцом

- Пусть $(K; +; \cdot)$ коммутативное кольцо с единицей.
- Любая конечная последовательность элементов кольца K вида $a=(a_0,a_1,...,a_n)$ называется многочленом над кольцом K:
 - если $a_n \neq 0$, то a является многочленом степени n , $\deg(a) = n$, а a_n называется старшим коэффициентом многочлена a;
 - если $a_n=1$, то a называется нормированным многочленом;
 - многочлен вида $a=(a_0)$ называется константой.

Пример для $K = \mathbb{Z}_{12}$:

- $-a=(\overline{2},\overline{5},\overline{0},\overline{11},\overline{2},\overline{3})$ многочлен степени 5;
- $-b = (\bar{3}, \bar{7}, \bar{1})$ нормированный многочлен степени 2;
- $-c = (\bar{5})$ многочлен-константа.

Операции над многочленами

• Пусть $a = (a_0, a_1, ..., a_m)$, $b = (b_0, b_1, ..., b_n)$, $m \le n$,

- сложение: $a \oplus b = c$, $c = (c_0, c_1, ..., c_n) = (a_0 + b_0, a_1 + b_1, ..., a_m + b_m, b_{m+1}, ..., b_n)$.

- умножение: $a \otimes b = c, c = (c_0, c_1, ..., c_{m+n}),$ где $c_i = \sum_{j=0}^i a_j \cdot b_{i-j}, i = \overline{0, m+n}.$

• Введем многочлен первой степени $X = (0_K, 1_K) = (0, 1)$:

 $-X^0 = (1), X^1 = (0, 1), X^2 = (0, 0, 1), X^3 = (0, 0, 0, 1), ..., X^m = (0, 0, ..., 0, 1),$

 $- a = (a_0, a_1, \dots, a_m) = (a_0) \oplus (0, a_1) \oplus \dots \oplus (0, 0, \dots, a_m) = a_0 \oplus a_1 \otimes X \oplus a_2 \otimes X^2 \oplus \dots \oplus a_m \otimes X^m.$

- Множество всевозможных многочленов над кольцом K с заданными на нем операциями сложения и умножения многочленов является коммутативным кольцом с единицей и обозначается K[X].
- Пример:
 - Кольцо многочленов над кольцом классов вычетов $\mathbb{Z}_n[X]$.

Пример сложения многочленов в кольце $\mathbb{Z}_{12}[X]$

- Пусть $a = (\overline{2}, \overline{5}, \overline{3})$, $\deg(a) = 2$, $a = (\overline{3}, \overline{0}, \overline{2}, \overline{1}, \overline{7})$, $\deg(b) = 4$.
 - $-a \oplus b = c = (c_0, c_1, c_2, c_3, c_4), \deg(c) = \max(\deg(a), \deg(b)) = 4$
 - $-c_0 = a_0 + b_0 = \overline{2} + \overline{3} = \overline{5};$
 - $-c_1 = a_1 + b_1 = \overline{5} + \overline{0} = \overline{5};$
 - $-c_2 = a_2 + b_2 = \overline{3} + \overline{2} = \overline{5};$
 - $-c_3=b_3=\bar{1};$
 - $-c_4=b_4=\overline{7};$
 - $c = (\overline{5}, \overline{5}, \overline{5}, \overline{1}, \overline{7}).$

Кольца

Пример умножения многочленов в кольце $\mathbb{Z}_{12}[X]$

Пусть $a = (\bar{2}, \bar{5}, \bar{3})$, $\deg(a) = 2$, $a = (\bar{3}, \bar{0}, \bar{2}, \bar{1}, \bar{7})$, $\deg(b) = 4$.

$$-a \otimes b = c = (c_0, c_1, c_2, c_3, c_4, c_5, c_6), \deg(c) = \deg(a) + \deg(b) = 6;$$

$$-c_0 = a_0 \cdot b_0 = \overline{2} \cdot \overline{3} = \overline{6};$$

$$-c_1 = a_0 \cdot b_1 + a_1 \cdot b_0 = \overline{2} \cdot \overline{0} + \overline{5} \cdot \overline{3} = \overline{3};$$

$$- c_2 = a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0 = \overline{2} \cdot \overline{2} + \overline{5} \cdot \overline{0} + \overline{3} \cdot \overline{3} = \overline{1};$$

$$- c_3 = a_0 \cdot b_3 + a_1 \cdot b_2 + a_2 \cdot b_1 = \overline{2} \cdot \overline{1} + \overline{5} \cdot \overline{2} + \overline{3} \cdot \overline{0} = \overline{0};$$

$$- c_4 = a_0 \cdot b_4 + a_1 \cdot b_3 + a_2 \cdot b_2 = \overline{2} \cdot \overline{7} + \overline{5} \cdot \overline{1} + \overline{3} \cdot \overline{2} = \overline{1};$$

$$-c_5 = a_1 \cdot b_4 + a_2 \cdot b_3 = \overline{5} \cdot \overline{7} + \overline{3} \cdot \overline{1} = \overline{2};$$

$$-c_6 = a_2 \cdot b_4 = \overline{3} \cdot \overline{7} = \overline{9};$$

$$-c = (\overline{6}, \overline{3}, \overline{1}, \overline{0}, \overline{1}, \overline{2}, \overline{9}).$$

Свойства многочленов над кольцом

- Собственным делителем многочлена $u \in K[X]$ называется многочлен $v \in K[X]$, такой, что $\deg(v) < \deg(u)$ и $u = q \cdot v, q \in K[X]$.
 - Многочлен $p \in K[X]$ называется **неприводимым многочленом**, если он не имеет собственных делителей и $\deg(p) > 0$.

На основе бесконечного кольца многочленов K[X] может быть построено бесконечное или конечное кольцо многочленных вычетов аналогично тому, как строится кольцо классов вычетов на основе кольца целых чисел.

Кафедра информационной безопасности киберфизических систем

Криптографические методы защиты информации

Спасибо за внимание!

Евсютин Олег Олегович

Заведующий кафедрой информационной безопасности киберфизических систем Канд. техн. наук, доцент

+7 923 403 09 21 oevsyutin@hse.ru