Final Project

Dahye Chung, Donguk Yoo, Hanseung Jang, Sanghyun Lee, Jungyoon Choi, Seokyeong Park, Semin Seo, Boyeon Kim

2023-07-21

library(tidyverse)

```
library(broom)
library(tidyr)
library(dplyr)
library(modelr)
library(boot)
library(tidyr)
library(ggplot2)
library(ggmosaic)
library(dplyr)
library(readr)
library(class)
library(caret)
library(infer)
#Intro
library(tidyr)
library(ggplot2)
library(ggmosaic)
library(dplyr)
Sleep_health_and_lifestyle_dataset <- read_csv("Sleep_health_and_lifestyle_dataset.csv")
Sleep_health_and_lifestyle_dataset_renamed <- Sleep_health_and_lifestyle_dataset %>%
  rename( ID = 'Person ID',
          Duration = 'Sleep Duration',
          Stress = 'Stress Level',
          Physical = 'Physical Activity Level',
          Quality = 'Quality of Sleep',
          BMI= 'BMI Category',
          BPressure = 'Blood Pressure' ,
          HRate = 'Heart Rate' ,
          DSteps = 'Daily Steps'
          Disorder = 'Sleep Disorder' )
```

head(Sleep_health_and_lifestyle_dataset)

			Sleep				BMI				
			Du-	Quality	Physical		Cat-	Blood			Sleep
Perso	on		ra-	of	Activity	Stress	e-	Pres-	Heart	Daily	Dis-
ID	GendArg	eOccupation	n tion	Sleep	Level	Level	gory	sure	Rate	Steps	order
1	Male 27	Software Engi- neer	6.1	6	42	6	Overw	e i@t /83	77	4200	None
2	Male28	Doctor	6.2	6	60	8	Norma	1125/80	75	10000	None
3	Male28	Doctor	6.2	6	60	8	Norma	1125/80	75	10000	None
4	Male 28	Sales Representa- tive	5.9	4	30	8	Obese	140/90	85	3000	Sleep Ap- nea
5	Male 28	Sales Representa- tive	5.9	4	30	8	Obese	140/90	85	3000	Sleep Ap- nea
6	Male 28	Software Engi- neer	5.9	4	30	8	Obese	140/90	85	3000	Insomi

tail(Sleep_health_and_lifestyle_dataset)

							DMI				-
Perso ID	on Gend e rge	e Occupa	Sleep Dura- ati oio n	Quality of Sleep	Physical Activity Level	Stress Level	BMI Cat- e- gory	Blood Pres- sure	Heart Rate	Daily Steps	Sleep Disor- der
369	Femal ₅ 9	Nurse	8.1	9	75	3	Overw	ei g40 /95	68	7000	Sleep
											Ap- nea
370	Fema b 9	Nurse	8.1	9	75	3	Overw	rei gh0 /95	68	7000	Sleep Ap-
371	Fema 5 9	Nurse	8.0	9	75	3	Overw	rei g40 /95	68	7000	nea Sleep Ap- nea

Perso	n		Sleep Dura-	Quality of	Physical Activity	Stress	BMI Cat- e-	Blood Pres-	Heart	Daily	Sleep Disor-
ID	Genderg	e Occupa	ati oio n	Sleep	Level	Level	gory	sure	Rate	Steps	der
372	Fema 59	Nurse	8.1	9	75	3	Overw	vei g40 /95	68	7000	Sleep Ap- nea
373	Fema h 9	Nurse	8.1	9	75	3	Overw	ei g10 /95	68	7000	Sleep Ap- nea
374	Fema 5 9	Nurse	8.1	9	75	3	Overw	rei g40 /95	68	7000	Sleep Ap- nea

```
Sleep_health_and_lifestyle_dataset_renamed %>%
summarize(
    standard_deviation = sd(HRate)
)
```

 $\frac{\text{standard_deviation}}{4.135675}$

Visualizing data

Histogram

```
Sleep_health_and_lifestyle_dataset_renamed %>%
    ggplot() +
    geom_histogram(mapping = aes(x = HRate), color = "pink", fill = "lightgreen") +
    labs(title = "Count of Heart Rate", x = "Heart rate")
```


$\#\#\#\mathrm{Box}$ plot

```
Sleep_health_and_lifestyle_dataset_renamed %>%
    ggplot() +
    geom_boxplot(mapping = aes(x = HRate)) +
    labs(title = "Boxplot of Individual Heart Rate", x = "Heart rate")
```

Boxplot of Individual Heart Rate

Violin plot

```
Sleep_health_and_lifestyle_dataset_renamed %>%
   ggplot() +
   geom_violin(mapping = aes(x = HRate, y ="")) +
   labs(title = "Violin of Individual Heart rate", x = "Heart rate", y = "y")
```

Violin of Individual Heart rate

###Bar Graph

```
Sleep_health_and_lifestyle_dataset_renamed %>%
   ggplot() +
   geom_bar(mapping = aes(x = BMI), color = "black", fill = "yellow") +
   labs(title = "BMI Count", x = "BMI")
```


 $\#\#\#\mathrm{Box}$ plot

```
Sleep_health_and_lifestyle_dataset_renamed %>%
    ggplot() +
    geom_boxplot(mapping = aes(x = BMI, y = Duration)) +
    labs(title = "Relationship between BMI and Duration", x = "BMI")
```

Relationship between BMI and Duration

 $\#\#\#\mathrm{Violin}$ plot

```
Sleep_health_and_lifestyle_dataset_renamed %>%
    ggplot() +
    geom_violin(mapping = aes(x = BMI, y = Duration)) +
    labs(title = "Relationship between BMI and Duration", x = "bmi", y = "Duration")
```

Relationship between BMI and Duration

###Scatter plot_Duration and Heart Rate

```
Sleep_health_and_lifestyle_dataset_renamed %>%
ggplot() +
geom_point(mapping = aes(x = BMI, y = Duration)) +
labs(
title = "Scatter plot of Duration and Heart Rate",
```

```
x = "BMI",
y = "Duration"
)
```

Scatter plot of Duration and Heart Rate

Data Wrangling

```
Sleep_health_and_lifestyle_dataset_renamed$BMI[Sleep_health_and_lifestyle_dataset_renamed$BMI Sleep_health_and_lifestyle_dataset_renamed$BMI [Sleep_health_and_lifestyle_dataset_renamed$BMI Sleep_health_and_lifestyle_dataset_renamed$BMI [Sleep_health_and_lifestyle_dataset_renamed$BMI [Sleep_health_and_lifestyle_datase
```

```
head(Sleep_health_and_lifestyle_dataset_renamed) %>%
  select(ID, HRate, Duration, Gender, Age, Occupation, Physical, BMI, Quality) %>%
  arrange(Duration)
```

ID	HRate	Duration	Gender	Age	Occupation	Physical	BMI	Quality
4	85	5.9	Male	28	Sales Representative	30	Fat	4
5	85	5.9	Male	28	Sales Representative	30	Fat	4
6	85	5.9	Male	28	Software Engineer	30	Fat	4
1	77	6.1	Male	27	Software Engineer	42	Fat	6
2	75	6.2	Male	28	Doctor	60	Normal	6
3	75	6.2	Male	28	Doctor	60	Normal	6

```
tail(Sleep_health_and_lifestyle_dataset_renamed) %>%
select(ID, HRate, Duration, Gender, Age, Occupation, Physical, BMI, Quality) %>%
arrange(Duration) %>%
filter(Gender == 'Female')
```

ID	HRate	Duration	Gender	Age	Occupation	Physical	BMI	Quality
371	68	8.0	Female	59	Nurse	75	Fat	9
369	68	8.1	Female	59	Nurse	75	Fat	9
370	68	8.1	Female	59	Nurse	75	Fat	9
372	68	8.1	Female	59	Nurse	75	Fat	9
373	68	8.1	Female	59	Nurse	75	Fat	9
374	68	8.1	Female	59	Nurse	75	Fat	9

```
head(Sleep_health_and_lifestyle_dataset_renamed) %>%
select(ID, HRate, Duration, Gender, Age, Occupation, Physical, BMI, Quality) %>%
arrange(Duration) %>%
filter(Gender == 'Male')
```

ID	HRate	Duration	Gender	Age	Occupation	Physical	BMI	Quality
4	85	5.9	Male	28	Sales Representative	30	Fat	4
5	85	5.9	Male	28	Sales Representative	30	Fat	4
6	85	5.9	Male	28	Software Engineer	30	Fat	4
1	77	6.1	Male	27	Software Engineer	42	Fat	6
2	75	6.2	Male	28	Doctor	60	Normal	6
3	75	6.2	Male	28	Doctor	60	Normal	6

Data Visualization

```
Sleep_health_and_lifestyle_dataset_renamed %>%
    ggplot()+
    geom_point( mapping = aes( x = Age , y = Duration, color = Gender))+
    labs(
    title = "Sleep Duration vs Age (by gender)",
    x= "Age", y = " Duration")
```

Sleep Duration vs Age (by gender)

model_2 <- lm(Duration ~ Physical, Sleep_health_and_lifestyle_dataset_renamed)</pre>

```
model_2$coefficients
```

```
## (Intercept) Physical
## 6.652127945 0.008111349
```

physical activity level vs sleep duration

Modeling

```
Sleep_health_and_lifestyle_dataset_renamed%>%
   ggplot()+
   geom_point( mapping = aes( x = Physical , y = Duration)) +
   labs(title = "Relationships between Physical activies and Duration",
        x = "Physical Activities" , y = "Duration")
```

Relationships between Physical activies and Duration


```
data <- Sleep_health_and_lifestyle_dataset_renamed

model <- lm(Duration ~ Physical, data = Sleep_health_and_lifestyle_dataset_renamed)

residuals <- residuals(model)

qqnorm(residuals)
qqline(residuals)</pre>
```

Normal Q-Q Plot


```
labs( title = "QQplot" , x = "Theoretical" , y = "Quantaties")
## $x
## [1] "Theoretical"
##
## $y
## [1] "Quantaties"
##
## $title
## [1] "QQplot"
##
## attr(,"class")
## [1] "labels"
Renamed_other_model <- lm(Duration ~ Physical, data = Sleep_health_and_lifestyle_dataset_renamed_other_model <- lm(Duration ~ Physical, data = Sleep_health_and_lifestyle_dataset
Renamed_other_model$coefficients
## (Intercept)
                                                                                                            Physical
## 6.652127945 0.008111349
Renamed_other_model%>%
           tidy()
```

term	estimate	std.error	statistic	p.value
(Intercept)	6.6521279	0.1213792	54.804523	0.00e+00
Physical	0.0081113	0.0019352	4.191459	3.47e-05

```
Renamed_other_model%>%
  glance()%>%
  select(r.squared)
```

 $\frac{\text{r.squared}}{0.0450969}$

Relationships between Physical and Duration

#Advanced Modeling

```
continuous_model <- lm(Duration ~ Gender + Age + Occupation + DSteps + BMI + Physical, data = 0
coefficients <- tidy (continuous_model)
coefficients</pre>
```

term	estimate	std.error	statistic	p.value
(Intercept)	5.1538671	0.2889932	17.8338716	0.0000000
GenderMale	-0.2383578	0.1312962	-1.8154203	0.0703006
Age	0.0632686	0.0063798	9.9170335	0.0000000
OccupationDoctor	0.4771137	0.1436900	3.3204376	0.0009918

term	estimate	std.error	statistic	p.value
OccupationEngineer	0.3329909	0.1416952	2.3500512	0.0193162
OccupationLawyer	0.3442380	0.1574134	2.1868409	0.0294044
OccupationManager	0.0481333	0.4644330	0.1036388	0.9175143
OccupationNurse	-0.2414602	0.1234123	-1.9565332	0.0511838
OccupationSales Representative	0.6880740	0.3890627	1.7685429	0.0778265
OccupationSalesperson	0.2949398	0.1766485	1.6696421	0.0958692
OccupationScientist	0.2136997	0.2697812	0.7921220	0.4288171
OccupationSoftware Engineer	0.8351780	0.2669096	3.1290667	0.0018984
OccupationTeacher	0.3032818	0.1249970	2.4263134	0.0157491
DSteps	-0.0002816	0.0000290	-9.7161550	0.0000000
BMINormal Weight	-0.0266284	0.1150426	-0.2314658	0.8170860
BMIObese	-1.4449954	0.2024347	-7.1380799	0.0000000
BMIOverweight	-1.0938883	0.1247308	-8.7699953	0.0000000
Physical	0.0271587	0.0023259	11.6767906	0.0000000

r_squared <- glance(continuous_model)\$r.squared

```
Sleep_health_and_lifestyle_dataset_df <- Sleep_health_and_lifestyle_dataset_renamed %>%
   add_predictions(continuous_model) %>%
   add_residuals(continuous_model)
```

###Histogram of residual in Sleep_health_and_lifestyle_dataset_df

```
Sleep_health_and_lifestyle_dataset_df %>%
    ggplot() +
    geom_histogram(mapping = aes(x = resid), color = "blue", fill = "pink", bins = 10) +
    labs(x = "residual", y = "Duration",
    title = "Histogram of residual in Sleep_health_and_lifestyle_dataset_df")
```


###Observed vs. Predicted Plot

```
Sleep_health_and_lifestyle_dataset_df %>%
    ggplot() +
    geom_point(mapping = aes(x = pred, y = Duration)) +
    geom_abline(slope = 1, intercept = 0) +
    labs(title = "Observed vs. Predicted Plot", x = "Predicted Duration", y = "Observed Duration")
```

Observed vs. Predicted Plot

###Residual vs Predicted Plot

Residual vs Predicted Plot

###Q-Q Plot (Obeserved vs Predicted Plot)

```
Sleep_health_and_lifestyle_dataset_df %>%
    ggplot() +
    geom_qq(aes(sample = resid)) +
    geom_qq_line(aes(sample = resid))+
    labs(title = "Q-Q plot of residuals", x= "Predicted Duration", y= "Observed Duration")
```

Q-Q plot of residuals

$\#\#\#\mathrm{Box}$ Plot

```
Sleep_health_and_lifestyle_dataset_df %>%
  pivot_longer(
    cols = Gender:Occupation | Physical | BMI | DSteps,
    names_to = "column",
```

```
values_to = "value",
   values_transform = list(value = 'factor')
) %>%
ggplot() +
   geom_boxplot(aes(x = reorder(value, Duration, FUN = median), y = Duration)) +
   facet_wrap(~column, scales = "free_x") +
   labs(x = "x variable", y = "Duration", title = "Box Plot of x variables") +
   theme(axis.text.x = element_text(angle = 45))
```


#Predictive Analysis

###Load the dataset

```
Sleep_health_and_lifestyle_dataset <- read_csv(file = "Sleep_health_and_lifestyle_dataset.csv"
    col_types = cols(
        'Person ID' = col_character(),
        'Age' = col_double(),
        'Sleep Duration' = col_double(),
        'Stress Level' = col_double(),
        'Physical Activity Level' = col_double(),
        'Quality of Sleep' = col_double(),
        'BMI Category' = col_character(),
        'Blood Pressure' = col_character(),
        'Heart Rate' = col_double(),
        'Daily Steps' = col_double(),
        'Sleep Disorder' = col_character()
    ))</pre>
```

###Rename

 $\#\#\#\mathrm{Parse}$ Sleep Data

```
sleep_data <- Sleep_health_and_lifestyle_dataset_renamed %>%
   mutate(sufficient_sleep = as.logical(Duration >= 7.0))
```

###Sleep Data Disorders

```
sleep_data %>%
 pivot_longer(cols = c(Disorder), names_to = "variable", values_to = "value") %>%
 group_by(variable, value, sufficient_sleep) %>%
 summarise(count = n()) %>%
 ggplot() +
 geom_bar(
   mapping = aes(x = value, y = count, fill = sufficient_sleep),
   position = "dodge",
   alpha = 0.6,
   stat = "identity"
 ) +
 facet_wrap(~ variable, scales = "free") +
 labs(title = "Distribution of Sufficient Sleep across Disorders",
      x = "Disorder Type",
      y = "Count",
      fill = "Sufficient Sleep")
```

Distribution of Sufficient Sleep across Disorders

$\#\#\#\mathrm{Sleep}$ Data Gender

```
sleep_data %>%
  pivot_longer(cols = c(Gender), names_to = "variable", values_to = "value") %>%
  group_by(variable, value, sufficient_sleep) %>%
  summarise(count = n()) %>%
  ggplot() +
  geom_bar(
    mapping = aes(x = value, y = count, fill = sufficient_sleep),
    position = "dodge",
    alpha = 0.6,
    stat = "identity"
  ) +
  facet_wrap(~ variable, scales = "free") +
  labs(title = "Distribution of Sufficient Sleep by Gender",
    x = "Value",
    y = "Count",
    fill = "Sufficient Sleep")
```

Distribution of Sufficient Sleep by Gender

###Sleep Data BMI

```
sleep_data %>%
 pivot_longer(cols = c(BMI), names_to = "variable", values_to = "value") %>%
 mutate(value = ifelse(value == "Normal", "Normal Weight", value)) %>%
 group_by(variable, value, sufficient_sleep) %>%
 summarise(count = n()) %>%
 ggplot() +
 geom_bar(
   mapping = aes(x = value, y = count, fill = sufficient_sleep),
   position = "dodge",
   alpha = 0.6,
   stat = "identity"
 facet_wrap(~ variable, scales = "free") +
 labs(title = "Distribution of Sufficient Sleep by BMI Category",
       x = "Value",
       y = "Count",
      fill = "Sufficient Sleep")
```

Distribution of Sufficient Sleep by BMI Category

###Mode

```
mode_gender <- as.character(names(which.max(table(sleep_data$Gender))))
mode_occupation <- as.character(names(which.max(table(sleep_data$Occupation))))
mode_bmi <- as.character(names(which.max(table(sleep_data$BMI))))

sleep_data <- sleep_data %>%
mutate(
   Gender = if_else(is.na(Gender), mode_gender, Gender),
   Occupation = if_else(is.na(Occupation), mode_occupation, Occupation),
   BMI = if_else(is.na(BMI), mode_bmi, BMI)
)
```

###Sufficient Sleep

```
sleep_data$sufficient_sleep <- ifelse(sleep_data$Duration >= 7, "Sufficient", "Insufficient")
```

###Saparate Train, Test Set

```
set.seed(123)
train_indices <- createDataPartition(sleep_data$sufficient_sleep, p = 0.7, list = FALSE)
trainingSet <- sleep_data[train_indices, ]
testSet <- sleep_data[-train_indices, ]

trainingSet$sufficient_sleep <- as.factor(trainingSet$sufficient_sleep)
testSet$sufficient_sleep <- as.factor(testSet$sufficient_sleep)

training_Outcomes <- trainingSet$sufficient_sleep
test_Outcomes <- testSet$sufficient_sleep</pre>
```

 $\#\#\#{\rm Train}$

```
model <- glm(sufficient_sleep ~ Age + Gender + Occupation + Physical + DSteps + BMI, data = tra
\#\#\#\mathrm{Predict}
predictions <- predict(model, newdata = testSet, type = "response")</pre>
###Test
threshold <- 0.5
predicted_classes <- as.factor(ifelse(predictions >= threshold, "Sufficient", "Insufficient"))
actual_classes <- test_Outcomes</pre>
accuracy <- sum(predicted_classes == actual_classes) / length(actual_classes)</pre>
print(paste("Accuracy:", accuracy))
## [1] "Accuracy: 0.981981981981982"
model_1_preds <- testSet %>%
  add_predictions(model, type = "response") %>%
 mutate(
    outcome = as.factor(if_else(condition = pred > threshold,
                      "Sufficient", "Insufficient"))
 )
#Hypothesis Testing
Sleep_health_and_lifestyle_dataset_renamed$BMI[Sleep_health_and_lifestyle_dataset_renamed$BMI
Sleep_health_and_lifestyle_dataset_renamed$BMI[Sleep_health_and_lifestyle_dataset_renamed$BMI
Sleep_health_and_lifestyle_dataset_renamed$BMI[Sleep_health_and_lifestyle_dataset_renamed$BMI
Sleep_health_and_lifestyle_dataset_renamed %>%
  filter(BMI == "Normal" | BMI == "High") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = Duration, fill = BMI),
    position = "identity",
alpha = 0.5
```



```
Sleep_health_and_lifestyle_dataset_renamed %>%
  filter(BMI == "Normal" | BMI == "High") %>%
  ggplot() +
  geom_density(
    mapping = aes(x = Duration, fill = BMI),
    position = "identity",
alpha = 0.5
)
```



```
Sleep_health_and_lifestyle_dataset_renamed %>%
summarize(
mean = mean(Duration),
median = median(Duration),
standard_deviation = sd(Duration),
minimum = min(Duration),
```

```
maximum = max(Duration)
```

mean	median	standard_deviation	minimum	maximum
7.132086	7.2	0.7956567	5.8	8.5

```
Model <- lm(Duration ~ BMI, data = Sleep_health_and_lifestyle_dataset_renamed)
Simulation_results <-</pre>
  Sleep_health_and_lifestyle_dataset_renamed %>%
  specify(Duration ~ BMI) %>%
 hypothesize(null = "independence") %>%
  generate(reps = 1000, type = "permute") %>%
  calculate(stat = "diff in means", order = c("Normal", "High"))
Shl_obs_stat <-
  Sleep_health_and_lifestyle_dataset_renamed %>%
  specify(formula = Duration ~ BMI) %>%
  calculate(stat = "diff in means", order = c("Normal", "High"))
Shl_null <- Sleep_health_and_lifestyle_dataset_renamed %>%
  specify(Duration ~ BMI) %>%
 hypothesize(null = "independence") %>%
 generate(reps = 1000, type = "permute")
Shl_null %>% get_p_value(obs_stat = Shl_obs_stat, direction = "right")
                                     p value
p_value <- Shl_null %>% get_p_value(obs_stat = Shl_obs_stat, direction = "right")
Simulation_results %>%
visualize() +
shade_p_value(obs_stat = Shl_obs_stat, direction = "right")
## Warning in min(diff(unique_loc)): min에 전달되는 인자들 중 누락이 있어 Inf를
```

반환합니다

