因式分解技巧

1 常用公式

1.
$$a^2-b^2=(a+b)(a-b)$$

2. $a^3+b^3=(a+b)(a^2-ab+b^2)$
3. $a^3-b^3=(a-b)(a^2+ab+b^2)$
4. $a^2+2ab+b^2=(a+b)^2$
5. $a^2-2ab+b^2=(a-b)^2$
6. $a^3+3a^2b+3ab^2+b^3=(a+b)^3$
7. $a^3-3a^2b+3ab^2-b^3=(a-b)^3$
8. $a^2+b^2+c^2+2ab+2ac+2bc=(a+b+c)^2$
9. $a^4+a^2b^2+b^4=(a^2+ab+b^2)(a^2-ab+b^2)$
10. $a^6-b^6=(a+b)(a-b)(a^2+ab+b^2)(a^2-ab+b^2)$
11. $a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-\cdots-ab^{n-2}+b^{n-1})$ (n 为正奇数)
12. $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+\cdots+ab^{n-2}+b^{n-1})$
13. $a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd=(a+b+c+d)^2$
14. $a^2+b^2+c^2-ab-bc-ac=\frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]$
15. $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$

2 十字相乘

如果二次三项式 $ax^2 + bx + c$ 的系数和 a + b + c = 0 , 那么

$$ax^{2} + bx + c = (x - 1)(ax - c)$$

进一步推论:

对于 $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$:

- 如果多项式的系数的和等于0,那么1一定是它的根
- 如果多项式的偶次项系数的和减去奇次项系数的和等于0,那么-1一定是它的根

3余数定理

令 $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$,有 x-c 除 f(x) 时,所得的余数为 f(c) . 这个结论称为余数定理.

因此,如果 f(c)=0 ,那么 x-c 是 f(x) 的因式. 反过来,如果 x-c 是 f(x) 的因式,那么 f(c)=0 .

4 有理根的求法

假定 $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ 是整系数多项式,有理数 $c=\frac{p}{q}$ (p 、q 为互质的整数)是 f(x) 的根,可得有理根 $c=\frac{p}{q}$ 的分子 p 是常数项 a_0 的因数,分母 q 是首项系数 a_n 的因数.

5 实数集与复数集内的分解

5.1 求根公式

$$ax^2 + bx + c = a(x - \frac{-b + \sqrt{b^2 - 4ac}}{2a})(x - \frac{-b - \sqrt{b^2 - 4ac}}{2a})$$

5.2 代数基本定理

在复数集内,每一个 x 的(不是常数的)多项式至少有一个根. 即对于多项式 $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\quad (n$ 是正整数),一定有复数 c 使得 f(c)=0 .

这个结论称为代数基本定理

5.3 共轭复数

虚数 a + bi 与 a - bi 称为共轭复数,它们的和为

$$(a+bi) + (a-bi) = 2a$$

它们的积为

$$(a+bi)(a-bi) = a^2 + b^2$$

即共轭复数的和与积都是实数.

实系数多项式的虚数根是两两共轭的.

5.4 单位根

三次单位虚根 ω 相关公式有

$$\omega=rac{-1+\sqrt{3}i}{2}$$
 $\omega^2=rac{-1-\sqrt{3}i}{2}$ $\omega^3=1$ $1+\omega=-\omega^2$

一般地,在复数集内有 $n \land n$ 次单位根,它们是

$$\cos rac{2k\pi}{n} + i \sin rac{2k\pi}{n} (k = 1, 2, \cdots, n)$$

$$\cos rac{2n\pi}{n} + i \sin rac{2n\pi}{n} = 1$$

6 艾氏判别法

设
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 是整系数多项式.

如果存在一个质数 p 满足以下条件:

- 1. p 不整除 a_n ;
- 2. p 整除其余的系数 (a_0,a_1,\cdots,a_{n-1}) ;
- 3. p^2 不整除 a_0 .

那么, f(x) 在有理数集内不可约.

7 分圆多项式

分圆多项式在有理数集内是不可约的.