1. On the logic set $X = \{true, false\}$, we have two binary operations: one is "OR" (denoted by \vee) and the other is "AND" (denoted by \wedge). If we use 1 to represent true and 0 to represent false. Then

$$0 \lor 1 = 1 \lor 0 = 1 \lor 1 = 1, \quad 0 \lor 0 = 0.$$

Also,

$$0 \land 1 = 1 \land 0 = 0 \land 0 = 0, \quad 1 \land 1 = 1.$$

- (a) Show that both \vee and \wedge are abelian monoid structures on X.
- (b) Show that \vee is distributive with respect to \wedge .
- (c) Show that \wedge is distributive with respect to \vee .
- (d) Is (X, \vee, \wedge) a ring? If not, can you modify \vee to arrive at a new binary operation \vee' so that (X, \vee', \wedge) is a commutative ring with unit? If yes, is this ring a field?
- 2. Find a non-empty subset X of the set of real square matrix of order 2 such that
 - 1) the set X is closed under matrix multiplication, and
 - 2) there are many left-identities, but there is no two-sided identity.
- 3. Let \mathbb{F} be a field and X be a non-empty set. Recall that $\mathbb{F}[[X]]$ is the set of \mathbb{F} -valued functions on X and $\mathbb{F}[X]$ is the set of finitely-supported \mathbb{F} -valued functions on X. Both $\mathbb{F}[[X]]$ and $\mathbb{F}[X]$ are linear spaces over the field \mathbb{F} .

Let $T: X \to Y$ be a set map and $\mathbb{F}[T]: \mathbb{F}[X] \to \mathbb{F}[Y]$ be the map such that

$$\mathbb{F}[T](f)(y) = \sum_{x \in T^{-1}(y)} f(x), \quad \forall y \in Y$$

In case $T^{-1}(y)$ is the empty set \emptyset , the sum is assumed to be 0. Please check that the sum above is well-defined and $\mathbb{F}[T](f)$ has a finite-support.

- (a) Show that $\mathbb{F}[1_X] = 1_{\mathbb{F}[X]}$ for all non-empty set X. Recall that 1_S denotes the identity map on the set $S : s \mapsto s$.
- (b) Show that $\mathbb{F}[TS] = \mathbb{F}[T]\mathbb{F}[S]$ for all set maps T and S such that the composition TS is defined.

For simplicity, we may rewrite $\mathbb{F}[T]$ as T_* .

- (c) For any set map $T: X \to Y$, we have an induced map $T^*: F[[Y]] \to \mathbb{F}[[X]]$ defined via the formula $T^*f = fT$. Show that, $1_X^* = 1_{\mathbb{F}[[X]]}$ and $(TS)^* = S^*T^*$.
- (d) (optional) Can we get a natural map from $\mathbb{F}[[X]]$ to $\mathbb{F}[[Y]]$ or from $\mathbb{F}[Y]$ to $\mathbb{F}[X]$ for any set map $T: X \to Y$ between two infinite sets X and Y?