SEQUENCE LISTING

BACTIO> Panda, Satchidananda Hogenesch, John B. Provincio, Ignacio Kay, Steve A. IRM LLC Uniformed Services University of the Health Sciences <120> Methods for Treating Circadian Rhythm Phase Disturbances <130> 021288-001020US <140> US 10/637,710 <141> 2003-08-08 <150> US 60/402,570 <151> 2002-08-08 <150> US 60/482,384 <151> 2003-06-25 <160> 12 <170> PatentIn Ver. 2.1 <210> 1 <211> 2137 <212> DNA <213> Mus sp. <220> <223> mouse melanopsin cDNA <400> 1 cactcattcc tttgcgcttc attggacatt aagcagtcag cagcccaaag agcagctcca 60 qqctqqatqq atqaqaqcqq gcaqcaqqtq gaccaggccg cagggttaag gatggtatag 120 agccggaagt ctggggaccg atccctgatc tttccatggc cttagctcct ctgagagcct 180 gagcatggac teteetteag gaccaagagt ettgteaage ttaacteagg ateceagett 240 cacaaccagt cctgccctgc aaggcatttg gaacggcact cagaacgtct ccgtaagagc 300 ccagettete tetetagee ecaegacate tgcacateag getgetgeet gggteeeett 360 ccccacagtc gatgtcccag accatgctca ctatacccta ggcacggtga tcctgctggt 420 gggactcaca gggatgctgg gcaatctgac ggtcatctac accttctgca ggaacagagg 480 cctgcggaca ccagcaaaca tgttcatcat caacctcgca gtcagcgact tcctcatgtc 540 agtcactcag gccccggtct tctttgccag cagcctctac aagaagtggc tctttgggga 600 gacaggttgc gagttctatg cettetgegg ggetgtettt ggcateaett ceatgateae 660 cctgacagcc atagccatgg accgctatct ggtgatcaca cgtccactgg ccaccatcgg 720 caggggatcc aaaagacgaa cggcactcgt cctgctaggc gtctggcttt atgccctggc 780 ctggagtctg ccacctttct ttggttggag tgcctacgtg cccgaggggc tgctgacatc 840 ctgctcctgg gactacatga ccttcacacc ccaggtgcgt gcctacacca tgctgctctt 900 ctgctttgtc ttcttcctcc ccctgctcat catcatcttc tgctacatct tcatcttcag 960 ggccatccga gagacaggcc gggcctgtga gggctgcggt gagtcccctc tgcggcagag 1020 geggeagtgg cageggetge agagtgagtg gaagatggee aaggtegeac tgattgteat 1080 tettetette gtgetgteet gggeteecta etceaetgtg getetggtgg cetttgetgg 1140 atactegeae atectgaege cetacatgag eteggtgeea geegteateg ceaaggette 1200 tgccatccac aatcccatta tctacgccat cactcacccc aagtacaggg tggccattgc 1260 ccagcacctg ccttgccttg gggtgcttct cggtgtatca ggccagcgca gccaccctc 1320 cctcagctac cgctctaccc accgctccac attgagcagc cagtcctcag acctcagctg 1380 gatctctgga cggaagcgtc aagagtccct gggttctgag agtgaagtgg gctggacaga 1440 cacagaaaca accgctgcat ggggagctgc ccagcaagca agtggacagt ccttctgcag 1500

tcagaaccta gaagatggag aactcaaggc ctcttccagc ccccaggtac agagatctaa 1560 gactcccaag gtgcctggac ccagtacctg ccgccctatg aaaggacagg gagccaggcc 1620 aagtagccta aggggtgacc agaaaggcag gcttgctgtg tgcacaggcc tctcagagtg 1680 tccccatccc catacatccc agtttcccct tgctttccta gaggatgatg tgactctcag 1740 acatctgtag cagggtctaa gtatgatctg tatctagggg aatatctgca tgtgactgtg 1800 tagctctgcg catgacatgc tgtcagctat gttgtaccat atgtatatgt agagtatgca 1860 tataacttat gtgcccttga agatatgtgg cctacagcag agaacaactc atgcgtgtgt 1920 ggaccatgtt cctggcatat atgctctctg tcactgtgat gcctctgtgt tgtgtgggtg 1980 acagagtgtg atggtgtca cctctctgcg cgggttttga tgctgggcaa acacggggaa 2040 gggagctgca agccatgta tagctcactg ccgatggcct gtgctcaaga tgtcaccgag 2100 gagaacactt gtagctatta aaagaaggcc agctgtc

<210> 2

<211> 521

<212> PRT

<213> Mus sp.

<220>

<223> mouse melanopsin

<400> 2

Met Asp Ser Pro Ser Gly Pro Arg Val Leu Ser Ser Leu Thr Gln Asp
1 5 10 15

Pro Ser Phe Thr Thr Ser Pro Ala Leu Gln Gly Ile Trp Asn Gly Thr
20 25 30 '

Gln Asn Val Ser Val Arg Ala Gln Leu Leu Ser Val Ser Pro Thr Thr 35 40 45

Ser Ala His Gln Ala Ala Ala Trp Val Pro Phe Pro Thr Val Asp Val 50 55 60

Pro Asp His Ala His Tyr Thr Leu Gly Thr Val Ile Leu Leu Val Gly 65 70 75 80

Leu Thr Gly Met Leu Gly Asn Leu Thr Val Ile Tyr Thr Phe Cys Arg 85 90 95

Asn Arg Gly Leu Arg Thr Pro Ala Asn Met Phe Ile Ile Asn Leu Ala 100 105 110

Val Ser Asp Phe Leu Met Ser Val Thr Gln Ala Pro Val Phe Phe Ala 115 120 125

Ser Ser Leu Tyr Lys Lys Trp Leu Phe Gly Glu Thr Gly Cys Glu Phe 130 135 140

Tyr Ala Phe Cys Gly Ala Val Phe Gly Ile Thr Ser Met Ile Thr Leu 145 150 155 160

Thr Ala Ile Ala Met Asp Arg Tyr Leu Val Ile Thr Arg Pro Leu Ala 165 170 175

Thr Ile Gly Arg Gly Ser Lys Arg Arg Thr Ala Leu Val Leu Leu Gly
180 185 190

Val Trp Leu Tyr Ala Leu Ala Trp Ser Leu Pro Pro Phe Phe Gly Trp 195 200 205

	Ala 210	Tyr	Val	Pro	Glu	Gly 215	Leu	Leu	Thr	Ser	Cys 220	Ser	Trp	Asp	Tyr
Met 225	Thr	Phe	Thr	Pro	Gln 230	Val	Arg	Ala	Tyr	Thr 235	Met	Leu	Leu	Phe	Cys 240
Phe	Val	Phe	Phe	Leu 245	Pro	Leu	Leu	Ile	Ile 250	Ile	Phe	Cys	Tyr	Ile 255	Phe
Ile	Phe	Arg	Ala 260	Ile	Arg	Glu	Thr	Gly 265	Arg	Ala	Cys	Glu	Gly 270	Cys	Gly
Glu	Ser	Pro 275	Leu	Arg	Gln	Arg	Arg 280	Gln	Trp	Gln	Arg	Leu 285	Gln'	Ser	Glu
Trp	Lys 290	Met	Ala	Lys	Val	Ala 295	Leu	Ile	Val	Ile	Leu 300	Leu	Phe	Val	Leu
Ser 305	Trp	Ala	Pro	Tyr	Ser 310	Thr	Val	Ala	Leu	Val 315	Ala	Phe	Ala	Gly	Tyr 320
Ser	His	Ile	Leu	Thr 325	Pro	Tyr	Met	Ser	Ser 330	Val	Pro	Ala	Val	Ile 335	Ala
Lys	Ala	Ser	Ala 340	Ile	His	Asn	Pro	Ile 345	Ile	Tyr	Ala	Ile	Thr 350	His	Pro
Lys	Tyr	Arg 355	Val	Ala	Ile	Ala	Gln 360	His	Leu	Pro	Cys	Leu 365	Gly	Val	Leu
Leu	_	Val	Ser	Gly	Gln	_	Ser	His	Pro	Ser		Ser	Tyr	Arg	Ser
	370					375					380				
Thr 385		Arg	Ser	Thr	Leu 390		Ser	Gln	Ser	Ser 395		Leu	Ser	Trp	Ile 400
385	His		Ser Lys		390	Ser				395	Asp				400
385 Ser	His Gly	Arg		Arg 405	390 Gln	Ser Glu	Ser	Leu	Gly 410	395 Ser	Asp Glu	Ser	Glu	Val 415	400 Gly
385 Ser Trp	His Gly Thr	Arg Asp	Lys Thr	Arg 405 Glu	390 Gln Thr	Ser Glu Thr	Ser Ala	Leu Ala 425	Gly 410 Trp	395 Ser Gly	Asp Glu Ala	Ser Ala	Glu Gln 430	Val 415 Gln	400 Gly Ala
385 Ser Trp Ser	His Gly Thr	Arg Asp Gln 435	Lys Thr 420	Arg 405 Glu Phe	390 Gln Thr Cys	Ser Glu Thr	Ser Ala Gln 440	Leu Ala 425 Asn	Gly 410 Trp Leu	395 Ser Gly Glu	Asp Glu Ala Asp	Ser Ala Gly 445	Glu Gln 430 Glu	Val 415 Gln Leu	400 Gly Ala Lys
385 Ser Trp Ser	His Gly Thr Gly Ser 450	Arg Asp Gln 435 Ser	Lys Thr 420 Ser	Arg 405 Glu Phe	390 Gln Thr Cys	Ser Glu Thr Ser Val 455	Ser Ala Gln 440 Gln	Leu Ala 425 Asn	Gly 410 Trp Leu Ser	395 Ser Gly Glu Lys	Asp Glu Ala Asp Thr	Ser Ala Gly 445 Pro	Glu Gln 430 Glu Lys	Val 415 Gln Leu Val	400 Gly Ala Lys Pro
385 Ser Trp Ser Ala Gly 465	His Gly Thr Gly Ser 450	Arg Asp Gln 435 Ser	Lys Thr 420 Ser	Arg 405 Glu Phe Pro	390 Gln Thr Cys Gln Arg	Ser Glu Thr Ser Val 455 Pro	Ser Ala Gln 440 Gln Met	Leu Ala 425 Asn Arg	Gly 410 Trp Leu Ser	395 Ser Gly Glu Lys Gln 475	Asp Ala Asp Thr 460 Gly	Ser Ala Gly 445 Pro	Glu Gln 430 Glu Lys Arg	Val 415 Gln Leu Val	400 Gly Ala Lys Pro
385 Ser Trp Ser Ala Gly 465 Ser	His Gly Thr Gly Ser 450 Pro	Arg Asp Gln 435 Ser Ser	Lys Thr 420 Ser Ser	Arg 405 Glu Phe Pro Cys Asp 485	390 Gln Thr Cys Gln Arg 470 Gln	Ser Glu Thr Ser Val 455 Pro	Ser Ala Gln 440 Gln Met	Leu Ala 425 Asn Arg Lys	Gly 410 Trp Leu Ser Gly Leu 490	395 Ser Gly Glu Lys Gln 475 Ala	Asp Ala Asp Thr 460 Gly Val	Ser Ala Gly 445 Pro Ala Cys	Glu Gln 430 Glu Lys Arg	Val 415 Gln Leu Val Pro Gly 495	400 Gly Ala Lys Pro Ser 480 Leu

```
<211> 2284
<212> DNA
<213> Homo sapiens
<220>
<223> human melanopsin cDNA
<400> 3
cggacacagg agaaagcagc gggtaggcta agcaggggtg ctgaggatgg aggaaagttg 60
ggaggctgag cacagctgaa gtcctgagct ccctgtgccc ttgacttctc tgtgggctcg 120
agcaaggacc atcccaactc aggatgaacc ctccttcggg gccaagagtc ccgcccagcc 180
caacccaaga gcccagctgc atggccaccc cagcaccacc cagctggtgg gacagctccc 240
agagcagcat ctccagcctg ggccggcttc catccatcag tcccacagca cctgggactt 300
gggctgctgc ctgggtcccc ctccccacgg ttgatgttcc agaccatgcc cactataccc 360
tgggcacagt gatcttgctg gtgggactca cggggatgct gggcaacctg acggtcatct 420
atacettetg caggageaga ageeteegga cacetgeeaa catgtteatt ateaaceteg 480
cggtcagcga cttcctcatg tccttcaccc aggcccctgt cttcttcacc agtagcctct 540
ataagcagtg gctctttggg gagacaggct gcgagttcta tgccttctgt ggagctctct 600
ttggcatttc ctccatgatc accetgacgg ccatcgccct ggaccgctac ctggtaatca 660
cacqcccqct qqccaccttt ggtqtggcgt ccaagaggcg tgcggcattt gtcctgctgg 720
gegtttgget ctatgecetg geetggagte tgecaccett etteggetgg agegeetaeg 780
tgcccgaggg gttgctgaca tcctgctcct gggactacat gagcttcacg ccggccgtgc 840
gtgcctacac catgcttctc tgctgcttcg tgttcttcct ccctctgctt atcatcatct 900
actgctacat cttcatcttc agggccatcc gggagacagg acgggctctc cagaccttcg 960
gggcctgcaa gggcaatggc gagtccctgt ggcagcggca gcggctgcag agcgagtgca 1020
agatggccaa gatcatgctg ctggtcatcc tcctcttcgt gctctcctgg gctccctatt 1080
ccgctgtggc cctggtggcc tttgctgggt acgcacacgt cctgacaccc tacatgagct 1140
cggtgccagc cgtcatcgcc aaggcctctg caatccacaa ccccatcatt tacgccatca 1200
cccacccaa gtacagggtg gccattgccc agcacctgcc ctgcctgggg gtgctgctgg 1260
gtgtatcacg ccggcacagt cgcccctacc ccagctaccg ctccacccac cgctccacgc 1320
tgaccagcca cacctccaac ctcagctgga tctccatacg gaggcgccag gagtccctgg 1380
gctcggagag tgaggtgggc tggacacaca tggaggcagc agctgtgtgg ggagctgccc 1440
agcaagcaaa tgggcggtcc ctctacggtc agggtctgga ggacttggaa gccaaggcac 1500
cccccagacc ccagggacac gaagcagaga ctccagggaa gaccaagggg ctgatcccca 1560
gccaggaccc caggatgtag gacgcccact ggctctccct ttcttctgag acacatccag 1620
ccccccacg tctccctcat atacacagac ccaggattat gctgtgagcc tgcaggcttt 1680
ggaagtggcc ctgtcacccg tgctgcacgg gattcacagc cccagcccca tggcccctct 1740
ccacacctca aaactcctgc cccataacgt cctccgcatc cactttccag ctcagcagcc 1800
gcacccgagg ctcagcctga ggggtgtgtg cccaggccct cccacttccc gagttgtctg 1860
cctctcctca aatgctgtgt gctgcaattg tccaggcgat gacaatggtg atggctccag 1920
agaacacacc agctatttat gagcctctgc ccccaggctg ggcctgtcac tggcatagga 1980
aggccagccc cgcatctccc actgccaaca gctgaagccg agcacagacc tccctttgca 2040
cgctggaaca gttactcacc tgtggcttct tcccccagtg taccgttcca ctgtggccca 2100
cattettgtg cacgegggca tttgcaggca cgctctcgcg tagttaccta tctgaatgca 2160
caccaagcac atgcgtgcac actctgcgtc tgtgattcat ttcatgtagt ggtctaagct 2220
cctcccaggg ctgtgtggat ctgacagggt ataggaaaat aaaaagcgga gaaggtgtct 2280
                                                                  2284
tcag
<210> 4
<211> 478
<212> PRT
<213> Homo sapiens
<220>
<223> human melanopsin
<400> 4
Met Asn Pro Pro Ser Gly Pro Arg Val Pro Pro Ser Pro Thr Gln Glu
                                     10
  1
```

<210> 3

Pro Ser Cys Met Ala Thr Pro Ala Pro Pro Ser Trp Trp Asp Ser Ser Gln Ser Ser Ile Ser Ser Leu Gly Arg Leu Pro Ser Ile Ser Pro Thr 40 Ala Pro Gly Thr Trp Ala Ala Ala Trp Val Pro Leu Pro Thr Val Asp Val Pro Asp His Ala His Tyr Thr Leu Gly Thr Val Ile Leu Leu Val Gly Leu Thr Gly Met Leu Gly Asn Leu Thr Val Ile Tyr Thr Phe Cys Arg Ser Arg Ser Leu Arg Thr Pro Ala Asn Met Phe Ile Ile Asn Leu Ala Val Ser Asp Phe Leu Met Ser Phe Thr Gln Ala Pro Val Phe Phe Thr Ser Ser Leu Tyr Lys Gln Trp Leu Phe Gly Glu Thr Gly Cys Glu 135 Phe Tyr Ala Phe Cys Gly Ala Leu Phe Gly Ile Ser Ser Met Ile Thr 150 Leu Thr Ala Ile Ala Leu Asp Arg Tyr Leu Val Ile Thr Arg Pro Leu 170 Ala Thr Phe Gly Val Ala Ser Lys Arg Arg Ala Ala Phe Val Leu Leu Gly Val Trp Leu Tyr Ala Leu Ala Trp Ser Leu Pro Pro Phe Phe Gly Trp Ser Ala Tyr Val Pro Glu Gly Leu Leu Thr Ser Cys Ser Trp Asp Tyr Met Ser Phe Thr Pro Ala Val Arg Ala Tyr Thr Met Leu Leu Cys 230 Cys Phe Val Phe Phe Leu Pro Leu Leu Ile Ile Tyr Cys Tyr Ile 245 250 Phe Ile Phe Arg Ala Ile Arg Glu Thr Gly Arg Ala Leu Gln Thr Phe Gly Ala Cys Lys Gly Asn Gly Glu Ser Leu Trp Gln Arg Gln Arg Leu 280 Gln Ser Glu Cys Lys Met Ala Lys Ile Met Leu Leu Val Ile Leu Leu Phe Val Leu Ser Trp Ala Pro Tyr Ser Ala Val Ala Leu Val Ala Phe 315 Ala Gly Tyr Ala His Val Leu Thr Pro Tyr Met Ser Ser Val Pro Ala 330

Val	Ile	Ala	Lys 340	Ala	Ser	Ala	Ile	His 345	Asn	Pro	Ile	Ile	Tyr 350	Ala	Ile	
Thr	His	Pro 355	Lys	Tyr	Arg	Val	Ala 360	Ile	Ala	Gln	His	Leu 365	Pro	Cys	Leu	
Gly	Val 370	Leu	Leu	Gly	Val	Ser 375	Arg	Arg	His	Ser	Arg 380	Pro	Tyr	Pro	Ser	
Tyr 385	Arg	Ser	Thr	His	Arg 390	Ser	Thr	Leu	Thr	Ser 395	His	Thr	Ser	Asn	Leu 400	
Ser	Trp	Ile	Ser	Ile 405	Arg	Arg	Arg	Gln	Glu 410	Ser	Leu	Gly	Ser	Glu 415	Ser	
Glu	Val	Gly	Trp 420	Thr	His	Met	Glu	Ala 425	Ala	Ala	Val	Trp	Gly 430	Ala	Ala	
Gln	Gln	Ala 435	Asn	Gly	Arg	Ser	Leu 440	Tyr	Gly	Gln	Gly	Leu 445	Glu	Asp	Leu	
Glu	Ala 450	Lys	Ala	Pro	Pro	Arg 455	Pro	Gln	Gly	His	Glu 460	Ala	Glu	Thr	Pro	
Gly 465	Lys	Thr	Lys	Gly	Leu 470	Ile	Pro	Ser	Gln	Asp 475	Pro	Arg	Met			
<210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer a																
<400> 5 caggagcaag gtgagatgac aggag											25					
<210> 6 <211> 25 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence:Primer b																
<400> 6 aggatggtat agagccggaa gtctg											25					
<21 <21	0> 7 1> 2: 2> DI 3> A:	NA	icia	l Se	quen	ce										
<22 <22		escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e:Pr	imer	С				

<400>		
tcaagc	caca gaggatacta gcagg	25
<210>	8	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Primer d	
<400>	8	
	ctgg acgaagagca tcagg	25
55		
<210>	٥	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Primer e	
<400>	9	
actgag	gact gacactgaag cctgg	25
<210>	10	
<211>		
<212>		
	Artificial Sequence	
(213)	Altificial Sequence	
<220>		
	Description of Artificial Companyo, Primer F	
<223>	Description of Artificial Sequence:Primer f	
4.0.0	,	
<400>		2 -
cagtgt	cagg cctagcggga agaga	25
<210>	·	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:quantitative	
	RT-PCR arylalkylamine N-acetyltransferase (AA-NAT)	
	specific forward primer	
	•	
<400>	11	
	ccag gacaacac	18
249000		
<210>	12	
<211>		
<212>		
<213>	Artificial Sequence	

<220>

<223> Description of Artificial Sequence:quantitative
 RT-PCR arylalkylamine N-acetyltransferase (AA-NAT)
 specific reverse primer

<400> 12 ggttccccag cttcagaagt g

21