Measuring Impedance in a double-voltage divider

Teddy Brewer

Introduction

Output impedance - corresponds to internal resistance of device creating voltage

Input impedance - corresponds to internal resistance of device measuring voltage

To show internal resistances, replace real device with its ideal version

Single vs Double voltage divider

Double Voltage divider:

Expected Values

with a Z_{in}

break circuit into two parts

To find output - resistors in parallel; expect our impedance to be $Z_{out} = \frac{R_1}{2}$ To find input - resistors are in series; expect our impedance to be $Z_{in} = 2R_2$ To measure the impedance, we will treat the left hand side as a voltage source with a Z_{out} and the right most voltage divider as the voltage measuring device

Differences between input and output impedance and their affect on a circuit

An example of output impedance. V_{real} is the regular battery and the diagram on the right shows it's ideal version where $r = Z_{out}$ is the output impedance (internal resistance of the battery) and V_{ideal} is the input voltage

An example of input impedance. V_{real} is the regular voltmeter and the diagram on the right shows it's ideal version where $Z_i n$ is the input impedance and V_{out} is the output voltage

Impedance Equations

Impedance is denoted by a Z

Output Impedance:

Where R_L is the load resistance and V_{nL} is the voltage the device produces with only the voltmeter connected

$$Z_{out} = \frac{\Delta V_{nL} - \Delta V_L}{\Delta V_L} R_L \tag{1}$$

Input Impedance:

$$Z_{in} = \frac{\Delta V_L}{\Delta V_{nL} - \Delta V_L} Z_{out} \tag{2}$$

Procedure

Steps to find input impedance in a circuit

Output Impedance Circuit setup:

Input Impedance Circuit setup:

- Measure V_{NL} and V_{L}
- Calculate output impedance using equation 1
- measure new V_L with second circuit diagram
- Calculate input impedance using equation 2

Results and Conclusion

Expected output: 5000 ohms
Actual output: 4940 ohms
Expected input: 10000 ohms
Actual input: 9980 ohms

Our actual input was very similar to our expected input, thus we sucessfully measured the impedance in a doublevoltage divider.