Introduction to Convolutional Neural Network

A Report Submitted in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Technology

In

Computer Science and Engineering

By

Piyush Ojha (16235)

Under Guidance of

Prof. Dileep Singh Rathore

Computer Science and Engineering Department Kamla Nehru Institute of Technology, Sultanpur

Convolutional Neural Network(CNN)

CNNs are regularized versions of multilayer perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neurons in the next layer. The "fully-connectedness" of these networks makes them prone to over fitting data. Typical ways of regularization include adding some form of magnitude measurement of weights to the loss function. However, CNNs take a different approach towards regularization: they take advantage of the hierarchical pattern in data and assemble more complex patterns using smaller and simpler patterns. Therefore, on the scale of connectedness and complexity, CNNs are on the lower extreme.

Neural Network with a convolution operation instead of matrix multiplication in at least one of the layers. It uses the convolution and pooling operations to extract a feature map which is proven to perform better especially in computer vision tasks.

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can take in an input image, assign importance (learnable weights and biases) to various aspects/objects in the image and be able to differentiate one from the other. The pre-processing required in a ConvNet is much lower as compared to other classification algorithms. While in primitive methods filters are hand-engineered, with

enough training, ConvNets have the ability to learn these filters/characteristics.

The architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons in the Human Brain and was inspired by the organization of the Visual Cortex. Individual neurons respond to stimuli only in a restricted region of the visual field known as the Receptive Field. A collection of such fields overlap to cover the entire visual area.

Why ConvNets over Feed-Forward Neural Nets?

Flattening of a 3x3 image matrix into a 9x1 vector

An image is nothing but a matrix of pixel values, right? So why not just flatten the image (e.g. 3x3 image matrix into a 9x1 vector) and feed it to a Multi-Level Perceptron for classification purposes? Uh.. not really. In cases of extremely basic binary images, the method might show an average

precision score while performing prediction of classes but would have little to no accuracy when it comes to complex images having pixel dependencies throughout.

A ConvNet is able to successfully capture the Spatial and Temporal dependencies in an image through the application of relevant filters. The architecture performs a better fitting to the image dataset due to the reduction in the number of parameters involved and reusability of weights. In other words, the network can be trained to understand the sophistication of the image better.

Input Image

4x4x3 RGB Image

In the figure, we have an RGB image which has been separated by its three color planes — Red, Green, and Blue.

There are a number of such color spaces in which images exist — Grayscale, RGB, HSV, CMYK, etc.

You can imagine how computationally intensive things would get once the images reach dimensions, say 8K (7680×4320). The role of the ConvNet is to reduce the images into a form which is easier to process, without losing features which are critical for getting a good prediction. This is important when we are to design an architecture which is not only good at learning features but also is scalable to massive datasets.

Convolution Layer — The Kernel

1,	1_×0	1,	0	0				
0,0	1 _{×1}	1,0	1	0		4		
0 _{×1}	0,0	1,	1	1				
0	0	1	1	0				
0	1	1	0	0				
Image					(Convolved		
						Feature		

Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved feature

Image Dimensions = 5 (Height) x 5 (Breadth) x 1 (Number of channels, eg. RGB)

In the above demonstration, the green section resembles our **5x5x1 input image**, **I**. The element involved in carrying out the convolution operation in the first part of a Convolutional Layer is called the **Kernel/Filter**, **K**, represented in the color yellow. We have selected **K** as a **3x3x1 matrix**.

Kernel/Filter,
$$K = 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$$

The Kernel shifts 9 times because of **Stride Length = 1 (Non-Strided)**, every time performing a **matrix multiplication operation between K and the portion P of the image** over which the kernel is hovering.

Movement of the Kernel

The filter moves to the right with a certain Stride Value till it parses the complete width. Moving on, it hops down to the beginning (left) of the image with the same Stride Value and repeats the process until the entire image is traversed. In the case of images with multiple channels (e.g. RGB), the Kernel has the same depth as that of the input image. Matrix Multiplication is performed between Kn and In stack ([K1, I1]; [K2, I2]; [K3, I3]) and all the results are summed with the bias to give us a squashed one-depth channel Convoluted Feature Output.

Convolution Operation with Stride Length = 2

The objective of the Convolution Operation is to **extract the high-level features** such as edges, from the input image. ConvNets need not be limited to only one Convolutional Layer. Conventionally, the first ConvLayer is responsible for capturing the Low-Level features such as edges, color, gradient orientation, etc. With added layers, the architecture

adapts to the High-Level features as well, giving us a network which has the wholesome understanding of images in the dataset, similar to how we would.

There are two types of results to the operation — one in which the convolved feature is reduced in dimensionality as compared to the input, and the other in which the dimensionality is either increased or remains the same. This is done by applying **Valid Padding** in case of the former, or **Same Padding** in the case of the latter.

SAME padding: 5x5x1 image is padded with 0s to create a 6x6x1 image

When we augment the 5x5x1 image into a 6x6x1 image and then apply the 3x3x1 kernel over it, we find that the convolved matrix turns out to be of dimensions 5x5x1. Hence the name — Same Padding.

On the other hand, if we perform the same operation without padding, we are presented with a matrix which has dimensions of the Kernel (3x3x1) itself — **Valid Padding**. The following repository houses many such GIFs which would help you get a better understanding of how Padding and Stride Length work together to achieve results relevant to our needs.

Pooling Layer

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3x3 pooling over 5x5 convolved feature

Similar to the Convolutional Layer, the Pooling layer is responsible for reducing the spatial size of the Convolved Feature. This is to decrease the computational power required to process the data through dimensionality reduction. Furthermore, it is useful for extracting dominant features which are rotational and positional invariant, thus maintaining the process of effectively training of the model. There are two types of Pooling: Max Pooling and Average Pooling. Max Pooling returns the maximum value from the portion of the image covered by the Kernel. On the other

hand, Average Pooling returns the average of all the values from the portion of the image covered by the Kernel. Max Pooling also performs as a Noise Suppressant. It discards the noisy activations altogether and also performs de-noising along with dimensionality reduction. On the other hand, Average Pooling simply performs dimensionality reduction as a noise suppressing mechanism. Hence, we can say that Max Pooling performs a lot better than Average Pooling.

Types of Pooling

The Convolutional Layer and the Pooling Layer, together form the i-th layer of a Convolutional Neural Network. Depending on the complexities in the images, the number of such layers may be increased for capturing low-levels details even further, but at the cost of more computational power. After going through the above process, we have successfully enabled the model to understand the features. Moving on, we are going to flatten the final output and feed it to a regular Neural Network for classification purposes.

Stride

Stride controls how the filter convolves around the input volume. In the example we had in part 1, the filter convolves around the input volume by shifting one unit at a time. The amount by which the filter shifts is the stride. In that case, the stride was implicitly set at 1. Stride is normally set in a way so that the output volume is an integer and not a fraction. Let's look at an example. Let's imagine a 7 x 7 input volume, a 3 x 3 filter (Disregard the 3rd dimension for simplicity), and a stride of 1. This is the case that we're accustomed to.

Same old, right? See if we can try to guess what will happen to the output volume as the stride increases to 2.

7 x 7 Input Volume

3 x 3 Output Volume

So, as we can see, the receptive field is shifting by 2 units now and the output volume shrinks as well. Notice that if we tried to set our stride to 3, then we'd have issues with spacing and making sure the receptive fields fit on the input volume. Normally, programmers will increase the stride if they want receptive fields to overlap less and if they want smaller spatial dimensions.