II. Kristallstruktur

II.1	Ва	unktgitter = Raster asis = Atome athematische Beschreibung
II.2	Gittertypen, Bravaisgitter	kubisch, hexagonal etc.
II.3	Miller-Indizes	Kristallebenen, - Richtungen
II.4	Einfache Kristallstrukturen	Diamant, NaCl etc.
II.5	Gitterfehler	
II.6	Polykristallinität, amorphe Fe	stkörper

II.1 Periodisches Gitter

II.1.a historisch: - regelmäßige äußere Form von natürlichen Kristallen

Quarz, Edelsteine, Halbedelsteine

- 1912: Röntgenbeugungsexperimente:

Beweis für periodische Anordnung der Atome

Entwicklung der Röntgenstrukturanalyse

Wilhelm Conrad Röntgen Nobelpreis Physik 1901

Max von Laue Nobelpreis Physik1914

Dorothy Crawfoot Hodkin Nobelpreis Chemie 1964

DNA Röntgenstrukturanalyse

Nobelpreis für Medizin 1962

Francis Crick

Maurice Wilkins

Röntgenbeugungsbild DNA Natriumsalz

Rosalind Franklin (1953)

II.1.b Kristallstruktur

"unendliche" periodische Wiederholung identischer Struktureinheiten im (zwei- oder) dreidimensionalen Raum

Beschreibung: periodisches <u>Gitter</u> (= Zellen) mit <u>Basis</u> (= Zellen<u>inhalt</u>)

Kristallstruktur = Gitter + Basis

Gitter: regelmäßige Anordnung

von (math.) Punkten

beschreibbar durch Vektoren mit

ganzzahligen Koordinaten.

Basis: einzelnes oder mehrere Atome

bzw. Moleküle

in Biokristallen:

teilw. mehr als 1000 Atome

in der Basis.

II.1.c Beschreibung des Gitters

beliebiger Gitterpunkt r:

$$\mathbf{r} = \mathbf{r_0} + \mathbf{n_1} \, \mathbf{a_1} + \mathbf{n_2} \, \mathbf{a_2} + \mathbf{n_3} \, \mathbf{a_3}$$
 \uparrow

Referenzpunkt (Ursprung, oft weggelassen)

 $\mathbf{a_1}, \ \mathbf{a_2}, \ \mathbf{a_3}$: Basisvektoren

 $\mathbf{n_1}, \ \mathbf{n_2}, \ \mathbf{n_3}$: ganze Zahlen

Jeder Gitterpunkt ist darstellbar als eine Linearkombination der Basisvektoren mit ganzzahligen Koeffizienten

Def.: Translationsvektor

$$T = n_1 a_1 + n_2 a_2 + n_3 a_3$$

Gitter kommt nach Translation vollständig mit sich zur Deckung:

TRANSLATIONSINVARIANZ TRANSLATIONSSYMMETRIE

2 beliebige Gitterpunkte können mit T verknüpft werden!

TRANSLATIONSINVARIANZ ist eine definierende Eigenschaft eines Gitters.

II.1.d Beschreibung der Basis

(= Zelleninhalt)

Atom j in der Gitterzelle:

$$\mathbf{r'}_{j} = x_{j} \mathbf{a_{1}} + y_{j} \mathbf{a_{2}} + z_{j} \mathbf{a_{3}}$$

 $0 \le x_{j}, y_{j}, z_{j} < 1$

$$\mathbf{r}_{j} = \mathbf{r} + \mathbf{x}_{j} \mathbf{a}_{1} + \mathbf{y}_{j} \mathbf{a}_{2} + \mathbf{z}_{j} \mathbf{a}_{3}$$

Gittervektor \mathbf{r} + Koordinatenvektor in Zelle

I.1.e Symmetrieoperationen (des Gitters):

führen das Gitter in sich selbst über (Invarianz des Gitters)

(ii) <u>Punkt</u>operationen Drehung um Achse

↑ Spiegelung an Ebene

Festpunkt(e) Drehspiegelung Drehung + Spiegelung Inversion Spiegelung an Punkt.

(iii) Kombinationen Schraubenachse Spiegelung + Translation Gleitspiegelung Drehung + Translation

Symmetrieoperationen spielen zentrale Rolle in der Kristallographie

Mathematisch: Symmetrieoperationen = Gruppe

Beschreibung & Symbole aus Gruppentheorie

Dre	hung	um

 $180^\circ = 2\pi /2$: C_2 zweifache Drehung $120^\circ = 2\pi /3$: C_3 dreifache Drehung $90^\circ = 2\pi /4$: C_4 vierfache Drehung $60^\circ = 2\pi /6$: C_6 sechsfache Drehung

Symmetrieoperationen spielen zentrale Rolle in der Kristallographie

Mathematisch: Symmetrieoperationen = Gruppe

Beschreibung & Symbole aus Gruppentheorie

Dre	hung	um
-----	------	----

180° = 2π /2: C_2 zweifache Drehung 120°= 2π /3: C_3 dreifache Drehung 90°= 2π /4: C_4 vierfache Drehung 60°= 2π /6: C_6 sechsfache Drehung

σ_h an horizontaler Ebene (d.h. ⊥ Drehachse)
 σ_v an vertikaler Ebene (d.h. // ")

Drehspiegelung:

S_j j-fache Drehung + Spiegelung

Punktspiegelung:

Inversionszentrum

II.1.f Einheitszelle und primitive Elementarzelle

Gittervektoren a_i spannen eine Zelle auf: Parallelepiped = Einheitszelle

Volumen der Zelle: $V = |\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)|$ Spatprodukt

Rechtwinklige Zelle: zugehörige Basis enthält 2 Atome (in diesem Beispiel)

II.1.f Einheitszelle und primitive Elementarzelle

Gittervektoren a_i spannen eine Zelle auf: Parallelepiped = Einheitszelle

Volumen der Zelle: $V = |\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)|$ Spatprodukt

Rechtwinklige Zelle: zugehörige Basis enthält 2 Atome (in diesem Beispiel)

Schiefwinklige Zelle: Basis mit nur 1 Atom

Definition:

primitive Elementarzelle = Zelle mit dem kleinstmöglichen Volumen =

(= Zelle mit genau einem Gitterpunkt)

primitive Basisvektoren = zugehörige Basisvektoren

primitive Basis = zugeh. atomare Basis (kleinstmögliche Atomzahl)

Primitive Elementarzelle ist nicht eindeutig

II.2 Gittertypen, Bravaisgitter

II.2.a 2-dimensionale Gittertypen

Zahl der möglichen Gitter unbegrenzt wg. beliebiger Längen und Winkel Unterteilung in Gittertypen

Für jeden Gittertyp: charakteristische Menge von Symmetrieoperationen,

die das Gitter invariant lassen

2-dim: 5 verschiedene Gittertypen:

5 zweidimensionale Bravaisgitter

1.) quadratisch

$$|a_1| = |a_2| \qquad \phi = 90^\circ$$

rechtwinkelig

$$|\mathbf{a}_1| \neq |\mathbf{a}_2| \quad \varphi = 90^\circ$$

$$|a_1| = |a_2| \qquad \varphi = 120^\circ$$

Konvention: wähle ϕ = 120°, nicht ϕ = 60°

5.) schiefwinkelig

$$|\mathbf{a}_1| \neq |\mathbf{a}_2| \qquad \varphi \neq 90^\circ$$

4.) zentriert rechtwinkelig

$$|\mathbf{a}_1| \neq |\mathbf{a}_2|$$
 $\phi' \neq 120^\circ, 90^\circ$ $\phi = 90^\circ$

Zwei mögliche Beschreibungen:

- a) zentriert rechtwinkelig mit Basis: (0,0), (0.5, 0.5)
- b) primitiv schiefwinkelig

II.2 Gittertypen, Bravaisgitter

II.2.a 2-dimensionale Gittertypen

2-dim: 5 verschiedene Gittertypen:

5 zweidimensionale Bravaisgitter

4.) zentriert rechtwinkelig Basis: (0,0), (0.5, 0.5)

II.2.b Dreidimensionale Gittertypen

Im dreidimensionalen:

14 Bravaisgitter

niedrigste Symmetrie:

triklines Gitter

$$\mathbf{a}_1 \neq \mathbf{a}_2 \neq \mathbf{a}_3$$

 $\alpha \neq \beta \neq \gamma \neq 90^\circ$

Gittervektoren, rechtshändig (!)

nächsthöhere Symmetrie:

monoklines Gitter

$$\mathbf{a}_1 \neq \mathbf{a}_2 \neq \mathbf{a}_3$$

$$\alpha = \gamma = 90^{\circ} \neq \beta$$

primitiv

basiszentriert

nichtprimitives Gitter

hexagonal

$$a_1 = a_2 \neq a_3$$

 $\alpha = \beta = 90^\circ, \ \gamma = 120^\circ$

rhomboedrisch (trigonal)

$$a_1 = a_2 = a_3$$

 $\alpha = \beta = \gamma < 120^\circ, \neq 90^\circ, (\neq 109^\circ 28')$

tetragonal

$$a_1 = a_2 \neq a_3$$

$$\alpha = \beta = \gamma = 90^{\circ}$$

primitiv

raumzentriert nichtprimitives Gitter

Orthorhombisch

$$\mathbf{a}_1 \neq \mathbf{a}_2 \neq \mathbf{a}_3$$

$$a_1 \neq a_2 \neq a_3$$
 $\alpha = \beta = \gamma = 90^\circ$

primitiv

basiszentriert

flächenzentriert raumzentriert

<u>kubisch</u>

$$a_1 = a_2 = a_3$$

flächenzentriert

$$a_1 = a_2 = a_3$$
 $\alpha = \beta = \gamma = 90^{\circ}$

raumzentriert

II.2.c Kubische Raumgitter

SC

kubisch raumzentriert <u>b</u>ody <u>c</u>entered <u>c</u>ubic

kubisch flächenzentriert face centered cubic

Vol. üblicher Einheitszelle
Gitterpkte / Einheitszelle
Volumen d. primitiven Zelle
Gitterpunkte / Volumen
nächste Nachbarn
Abstand nächster Nachbarn
Raumfüllungsfaktor (siehe Übungen)

,	
ć	
1	
1	
(

bcc		fcc
SC	bcc	fcc
a^3	a^3	a^3
1	2	4
a^3	$\frac{1}{2} a^3$	¼ a³
1/a ³	2/a ³	4/a ³
6	8	12
a	½√3 · a ≈ 0,87a	½√2 · a ≈ 0,71a
$1/6 \pi$ = 0,524	$1/8 \pi \cdot \sqrt{3}$ = 0,680	$1/6 \ \pi \cdot \sqrt{2}$ = 0,740

II.2.d Kubische Einheitszelle vs. Primitive Elementarzelle

Primitive Elementarzelle:

kleinste Zelle

Kubische Einheitszelle:

praktische Beschreibung

bcc

Rhomboeder

Primitive Elementarzelle: Wigner-Seitz-Zelle

Konstruktionsverfahren:

Mittelsenkrechten der Verbindungsgeraden der Gitterpunkte bilden Einhüllende der Wigner-Seitz-Zelle

Relevanz z.B. beim reziproken Gitter (später)

Wigner-Seitz-Zelle des raumzentrierten Gitters (bcc)

Zusammenfassung der Dreidimensionale Gittertypen

Im dreidimensionalen:

14 Bravaisgitter

<u>Triklin</u>	$\mathbf{a}_1 \neq \mathbf{a}_2 \neq \mathbf{a}_3$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Р
Monoklin	$\mathbf{a}_1 \neq \mathbf{a}_2 \neq \mathbf{a}_3$	$\alpha = \gamma = 90^{\circ} \neq \beta$	P, C
<u>Hexagonal</u>	$\mathbf{a}_1 = \mathbf{a}_2 \neq \mathbf{a}_3$	$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	Р
Rhomboedrisch (Trigonal)	$a_1 = a_2 = a_3$	$\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$	Р
<u>Tetragonal</u>	$\mathbf{a}_1 = \mathbf{a}_2 \neq \mathbf{a}_3$	$\alpha = \beta = \gamma = 90^{\circ}$	P, I
<u>Orthorhombisch</u>	$a_1 \neq a_2 \neq a_3$	$\alpha = \beta = \gamma = 90^{\circ}$	P, C, F, I
<u>Kubisch</u>	$a_1 = a_2 = a_3$	$\alpha = \beta = \gamma = 90^{\circ}$	P, F, I

P = primitiv (keine Zentrierung), F = flächenzentriert, I = (innen-), raumzentriert C = Basiszentriert (C = die von a_1 und a_2 aufgespannte Ebene)

Allen zentrierten Bravaisgitter können auch als primitive Gitter "aufgestellt" werden, deren Einheitszellen haben aber eine niedrigere Symmetrie.

Die wichtigsten der 14 Bravaisgitter sind:

Hexagonal

$$a_1 = a_2 \neq a_3$$

 $\alpha = \beta = 90^\circ, \ \gamma = 120^\circ$

Rhomboedrisch (Trigonal)

$$a_1 = a_2 = a_3$$

 $\alpha = \beta = \gamma < 120^\circ, \neq 90^\circ$

Kubisch

$$a_1 = a_2 = a_3$$

$$a_1 = a_2 = a_3$$
 $\alpha = \beta = \gamma = 90^{\circ}$

II.3 Miller-Indizes

Indizierung für (i) Kristallebenen, (ii) Kristallrichtungen, (iii) Beugungsreflexe (später)

II.3.a Kristallebenen

Festlegung einer Ebene durch 3 nicht-kollineare Punkte

geeignete Auswahl: Schnittpunkte der Ebene mit Achsen der Einheitszelle

formelle Vorgehensweise:

- Bestimme die 3 Schnittpunkte der Ebene mit Gitterachsen a₁, a₂, a₃
- Gebe Ergebnisse an in Einheiten der Gittervektoren
- Bilde Kehrwerte dieser Zahlen
- Suche die 3 kleinsten ganzen Zahlen h, k, l, deren Verhältnis dem der Kehrwerte gleicht.
- \rightarrow (h,k,l)-Ebene (runde Klammern)

3/2, 1 , 2

2/3, 1, 1/2

→ 4, 6, 3

(4, 6, 3) -Ebene

Motivation: Indizierung von Gitterebenen (sog. Netzebenen) in Kristallen

Beispiel: Miller-Indizes

hochsymmetrische Ebenen

- x-Schnittpkt = 1·a
- Ebene parallel zu y- und z-Achse
- y,z Schnittpunkte: $\infty = 1/0$ d.h. y- und z-Index = 0

(100)- Ebene

- x-Schnittpkt = a/2d.h. Kehrwert = 2
- y- und z-Schnitt:
 ∞ = 1/0

x-Schnittpkt: -a/2d.h. Kehrwert = -2

Konvention:

Schreibweise 2

(200)-Ebene

_ (200)- Ebene

Beispiel: Miller-Indizes hochsymmetrische Ebenen (ii)

II.3.b Scharen von Ebenen

wegen Kristallsymmetrie:

Äquivalente Richtungen und äquivalente Ebenen <u>äquivalent</u> = nach Symmetrieoperationen deckungsgleich

Bsp: einfach kubisches Gitter

Nomenklatur:

Allg:

II.3.c Kristallrichtungen

[u v w] beschreibt Richtung (nicht Länge)

↑ ↑
eckige Klammern

u, v, w: 3 kleinste ganze Zahlen, die das gleiche Verhältnis haben wie die x-, y-, und z-Komponenten eines Vektors dieser Richtung

In kubischen Kristallen:

 $[n_1 \ n_2 \ n_3]$ - Richtung $\perp (n_1 \ n_2 \ n_3)$ - Ebene

d.h. Richtungsvektor = Oberflächennormale

Äquivalente Richtungen (analog zu Ebenen):

u v w >-Richtungen = alle Permutationen
 von u, v, w, -u, -v, -w.

II.4 Einfache Kristallstrukturen

Warum gibt es verschiedene Kristallstrukturen ??

Kriterien: (i) Raumausfüllung (insbes.: Metalle) Ausrichtung der elektronischen Bindungen (Nichtmetalle, z.B. Diamant) (ionische Verbindungen, (iii) Anziehung / Abstoßung von Ladungen z.B. NaCl) genauere Betrachtung: Kap. 4 II.4.1 dichteste (i) hexagonal: hex.dicht gepackt hcp Kugelpackungen (ii) kubisch: kubisch flächenzentriert fcc Elemente II.4.2 kubisch raumzentriert II.4.3 Diamantstruktur kubisch Bsp: C, Si, Ge II.4.4 Zinkblendestruktur kubisch Bsp: III-V: GaAs, InP etc. II-VI: ZnSe, ZnTe 11.4.5Wurtzitstruktur hexagon. Bsp: II-VI: CdS, CdSe etc. Verbindungen. II.4.6 NaCl - Struktur kubisch Bsp: I-VII: NaCl, KBr etc. Bsp: CsCl, NH₄Cl etc. II.4.7 CsCl - Struktur kubisch

II.4.1 Dichteste Kugelpackungen

fcc oder hcp, je nach Stapelfolge

Schicht 3

Schicht 2

Schicht 1

C

В

Α

A

В

Α

Identische Schichten, lateral gegeneinander verschoben, liegen "auf Lücke"

Draufsicht

Schicht 3 ≠ Schicht 1

Abfolge ABCABC

= kubisch flächenzentriert

fcc

Schicht 3 = Schicht 1

Abfolge ABABAB....

= hexagonal dichteste Packung

hcp (hex.close packed)

Bsp: Cu, Ag, Au, Pt

Bsp: Mg, Zn, Cd

für jedes Atom: 12 nächste Nachbarn

Raumausfüllung = 0,74.

II.4.1 (i) Schichtfolge ABAB...= hexagonale dichteste Packung

II.4.1 (ii) Schichtfolge ABC.. = kubisch flächenzentriert

Raumdiagonale ist die Normale zu den Kugelebenen A, B, C.

fcc in kubischer Aufstellung $(0,0,0),(\frac{1}{2},\frac{1}{2},0),(\frac{1}{2},0,\frac{1}{2}),(0,\frac{1}{2},\frac{1}{2})$ oder primitiv in rhomboedrischer Aufstellung (0,0,0)

II.4.2 kubisch raumzentriertes Gitter

body centered cubic: b c c

Stabilität der Bindung?

Kriterium: Zahl nächster Nachbarn (NN) (= Koordinationszahl)

bcc: 8 NN (Vgl. fcc: 12 NN)

aber: in bcc sind übernächste und drittnächste Nachbarn näher

> d_{ÜNN}(bcc) / d_{ÜNN}(fcc) = 2/3 (bezogen auf NN) => Übungsaufgaben

Bsp: Metalle

- Alkali: Li, Na, K, Rb, Cs

- Cr, Fe, W, Nb, Ta etc.

(Viele andere Metalle sind fcc: Cu, Ag, Au, etc.)

II.4.3 Diamantstruktur

Diamant: Kohlenstoff mit <u>sp³-Hybridisierung</u> der 4 Valenzelektronen

→ 4 äquivalente Bindungselektronen pro Atom

Folge: lokale Umgebung

Tetraeder

Vektoren AB, AC, AD:

primitive Einheitsvektoren des flächenzentrierten Gitters

Rhomboeder, $\varphi = 60^{\circ}$

Vektor AF:

Richtung = Raumdiagonale Länge = 1/4 Raumdiagonale

bei Darstellung mittels kubischer Basisvektoren:

Diamantstruktur = **fcc**-Gitter

mit 2-atomiger Basis: (0,0,0) und (1/4, 1/4, 1/4)

Aufbau der Diamantstruktur aus Tetraedern

Bsp: C (Diamant), Si, Ge, α-Sn.

II.4.4 Zinkblendestruktur

Benannt nach dem Mineral Zinkblende = ZnS

Viele III-V- und II-VI-Verbindungen:

kovalente Bindungen (wie Gruppe IV), aber unterschiedliche Atomsorten, deshalb teilweise ionische Bindung (Kap. 4)

Bindung: tetraedrisch

aber mit 2 Atomsorten

Ш	Ш	IV	V	VI	
	В	С	N	0	
	AI	Si	P	S	
Zn	Ga	Ge	As	Se	
Cd	In	Sn	Sb	Те	
					Г

Gitter: kubisch

flächenzentriert fcc

Basis: (0, 0, 0) Atomsorte A

(1/4, 1/4, 1/4) Atomsorte B

Aufbau der Zinkblendestruktur aus Tetraedern

Gitter 1: Atomsorte A Gitter 2: Atomsorte B.

II.4.5 Wurtzitstruktur= hexagonale Zinkblendestruktur

Bsp: II-VI: ZnO, ZnSe, CdS, CdSe etc.

Tetraedrische Bindungsanordnung

in Blickrichtung AB:

entscheidend:

Ausrichtung der Tetraeder zueinander

Tetraederschicht 1

Tetraederschicht 2

Tetraederschicht 3 = Schicht 1

Vergleich von Wurtzit – und Zinkblendestruktur

Tetraederschicht 1

Tetraederschicht 2

Tetraederschicht 3

Vergleich von Wurtzit – und Zinkblendestruktur

Tetraederschicht 1

Wurtzit (hexagonal)

Tetraederschicht 2

Zinkblende (kubisch)

Tetraederschicht 3 = Schicht 1

Abfolge ABAB..... Vgl. hcp Tetraederschicht 3 ≠ Schicht 1

Abfolge ABCABC....
Vgl. fcc

I.4 Einfache Kristallstrukturen

Kriterien: Raumausfüllung (insbes.: Metalle) (i) Ausrichtung der elektronischen Bindungen (Nichtmetalle, z.B. Diamant) (iii) Anziehung / Abstoßung von Ladungen (ionische Verbindungen, z.B. NaCl) genauere Betrachtung: Kap. 4 I 4 1 dichteste hexagonal: hex.dicht gepackt hcp Kugelpackungen kubisch: kubisch flächenzentriert fcc Elemente kubisch raumzentriert Diamantstruktur 143 kubisch Bsp: C, Si, Ge L4.4 Zinkblendestruktur kubisch Bsp: III-V: GaAs, InP etc. II-VI: ZnSe, ZnTe L4.5 Wurtzitstruktur hexagon. Bsp: II-VI: CdS, CdSe etc. Verbindungen. L4.6 NaCl - Struktur kubisch Bsp: I-VII: NaCl, KBr etc. L4.7 CsCl - Struktur kubisch Bsp: CsCl, NH₄Cl etc.

II.4.6 NaCl - Struktur

kubisch

Bsp: I-VII: NaCl, KBr etc

Cs: größter Radius

der Alkali-Ionen

→ CsCl hat spezielle Gitterstruktur

Gitter: kubisch primitiv

Basis: (0 0 0)

und

 $(\frac{1}{2} \frac{1}{2} \frac{1}{2})$

Koordinationszahl = 8

vgl. NaCl: Koordinationszahl = 6 dennoch ist NaCl häufiger weil begünstigt durch Verhältnis der Ionenradien:

Kristallstruktur = Gitter + Basis

Kupfer: ("fcc-Struktur")

fcc Gitter + einatomige Basis Cu (0 0 0)

Silizium: (Diamantstruktur)

fcc Gitter + zweiatomige Basis Si (000)

Si (1/4 1/4 1/4)

GaAs: (Zinkblendestruktur)

fcc Gitter + zweiatomige Basis Ga (0 0 0)

As (1/4 1/4 1/4)

NaCl: (Kochsalzstruktur)

fcc <u>Gitter</u> + zweiatomige Basis Na (0 0 0)

CI (½00)

Wigner-Seitz-Zelle: definiert für Gitter, nicht für Struktur

