

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 12 Jan 2024 1 of 4

Sample Information

Patient Name: 王孟捣 Gender: Male ID No.: A100743805 History No.: 23923140

Age: 77

Ordering Doctor: DOC5310D 曾彥寒

Ordering REQ.: C32NCLD Signing in Date: 2024/1/9

Path No.: M113-00007 **MP No.:** F24005

Assay: Oncomine Focus Assay Sample Type: FFPE Block No.: C112-49419A Percentage of tumor cells: 35%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	Report Highlights 0 Relevant Biomarkers 0 Therapies Available
Biomarker Descriptions 2	0 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding	
ALK	None detected	NTRK1	None detected	
BRAF	None detected	NTRK2	None detected	
EGFR	None detected	NTRK3	None detected	
ERBB2	None detected	RET	None detected	
KRAS	None detected	ROS1	None detected	
MET	None detected			

Relevant Biomarkers

No relevant biomarkers found in this sample.

Prevalent cancer biomarkers without relevant evidence based on included data sources

PIK3CA amplification

Date: 12 Jan 2024 2 of 4

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants

			Allele					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Frequency	Transcript	Variant Effect	Coverage
MYC	p.(T15=)	c.45G>A		chr8:128750508	21.13%	NM_002467.6	synonymous	1997

Copy Number Variations				
Gene	Locus	Copy Number		
PIK3CA	chr3:178916683	7.43		

Biomarker Descriptions

PIK3CA amplification

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme¹. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases^{2,3}. The p110 catalytic subunits include p110α, β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively². PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{4,5}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{4,5,6,7}. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability^{8,9,10}.

Alterations and prevalence: Recurrent somatic activating mutations in PIK3CA are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck, and colorectal cancers^{11,12}. Activating mutations in PIK3CA commonly occur in exons 10 and 21 (previously referred to as exons 9 and 20 due to exon 1 being untranslated)^{13,14}. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon 21 kinase (codon H1047) domains, each having distinct mechanisms of activation^{15,16,17}. PIK3CA resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{11,12}.

Potential relevance: The PI3K inhibitor, alpelisib 18 , is FDA approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer 19 . Additionally, a phase lb study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)-positive breast cancer, the clinical benefit rate, defined as lack of disease progression \geq 6 months, was 44% (7/16) in PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors 20 . Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations 20 . However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations 21 . Case studies with MTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers 22,23 .

Date: 12 Jan 2024

Clinical Trials in Taiwan region:

References

- Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498
- 2. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduct Target Ther. 2017;2:17063. PMID: 29279775
- 3. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004 Nov;9(6):667-76. PMID: 15505410
- 4. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 5. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 6. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 7. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 8. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 10. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 11. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 12. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 13. Brito et al. PIK3CA Mutations in Diffuse Gliomas: An Update on Molecular Stratification, Prognosis, Recurrence, and Aggressiveness. Clin Med Insights Oncol. 2022;16:11795549211068804. PMID: 35023985
- 14. Huret et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013 Jan;41(Database issue):D920-4. PMID: 23161685
- 15. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 16. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 17. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/212526s007lbl.pdf
- 19. NCCN Guidelines® NCCN-Breast Cancer [Version 4.2023]
- 20. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 21. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 22. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 23. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929