F-328 – Física Geral III

Aula exploratória – Cap. 24 UNICAMP – IFGW

F328 - 1S2017

Pontos essenciais

• Energia potencial elétrica U

Sistema de cargas

Equivalente ao *trabalho* executado por um *agente externo* para trazer as cargas do *infinito* até a configuração desejada

• Diferença de potencial ΔV

Pontos no espaço

Energia potencial por unidade de carga

Ambos dependem de \vec{E}

Potencial elétrico

Diferença de potencial

$$\Delta V \equiv \frac{\Delta U}{q_0}$$

$$\Delta V = V_f - V_i = -\int_{\vec{r}} \vec{E}(\vec{r}) \cdot d\vec{s}$$

- Entre dois pontos do espaço
- \vec{s} vai de i a f
- Independente do caminho seguido
 - Força elétrica conservativa

Potencial

$$V \equiv \frac{U}{q_0}$$

$$V(\vec{r}) = -\int_{-\infty}^{\vec{r}} \vec{E}(\vec{r}) \cdot d\vec{s}$$

$$\vec{E} = -\vec{\nabla}V$$

- Para cada ponto do espaço
- Referência no infinito
- Aumenta no sentido oposto das linhas de campo elétrico

V e U dependendo do sistema

Carga puntiforme

$$V(r) = \frac{q}{4\pi\varepsilon_0 r} \longrightarrow U = q_0 V = \frac{1}{4\pi\varepsilon_0} \frac{q_0 q}{r} \quad (V_i = 0 \ para \ r_i \to \infty)$$

Sistema de cargas puntiformes

$$V = \sum_{i} \frac{q_{i}}{4\pi\varepsilon_{0}r_{i}} \longrightarrow U = \sum_{i < j} \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}r_{ij}} \quad \text{Contar só uma vez cada par de carga, } U_{ij} = U_{ji}$$

Distribuição contínua finita de cargas

$$dV(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r} \longrightarrow V(\vec{r}) = \int \frac{1}{4\pi\varepsilon_0} \frac{dq}{r}$$

Exercício Exploratório 01

Um contador Geiger-Müller é um detector de radiação que consiste basicamente de um cilindro oco (o catodo) de raio r_A e um fio cilíndrico coaxial (o anodo) de raio r_B ambos com comprimento L ($L>>r_A$). A carga por unidade de comprimento no anodo é $+\lambda$, enquanto que a carga por unidade de comprimento no catodo vale $-\lambda$. Mostre que o módulo da diferença de potencial entre o fio e o cilindro vale:

$$\Delta V = \frac{\lambda}{2\pi\varepsilon_0} \ln\left(\frac{r_A}{r_B}\right)$$

Questão 01

Considere duas esferas condutoras isoladas e de raios R_A e R_B , nominadas de esferas A e B, cada uma tendo a mesma carga líquida Q. A esfera B é maior que a esfera A $(R_A < R_B)$. Assumir que as esferas estão muito afastadas uma da outra o bastante de forma que a presença de uma não afeta a distribuição de cargas da outra e que V=0 em $r=\infty$. Nestas condições o potencial nas esferas é:

Α

- a) maior na superfície da esfera A;
- b) maior na superfície da esfera B;
- c) o mesmo nos centros das duas esferas;
- d) menor no centro da esfera A do que no centro da esfera B;
- e) não temos elementos suficientes para decidir (saber).

Exercício Exploratório 02

A figura mostra uma barra fina de plástico com comprimento L e densidade linear não uniforme dada por $\lambda = cx$. Assumindo que o potencial no infinito é nulo determine:

- a) o potencial elétrico no ponto P_1 ;
- b) o potencial elétrico no ponto P_2 .

F328 - 1S2017

Questão 02

A figura mostra três pares de placas paralelas, todas igualmente espaçadas, e os potenciais de cada placa. O campo elétrico é uniforme entre as placas e perpendicular a elas. Ordene os pares de acordo com o módulo do campo elétrico entre as placas, começando pelo maior.

Escolha uma:

- a. 2, depois 1 e 3 empatados;
- b. 1, 3, 2;
- C. 1, 2, 3;
- d. 2, 3, 1;
- e. 3, 2, 1;

Exercício Exploratório 03

Um elétron é colocado no plano xy, onde o potencial elétrico varia com x e y de acordo com os gráficos (o potencial não depende de z). Em termos dos vetores unitários, qual é a força a que é submetido o elétron? A escala do eixo vertical é definida por V_s = 500 V

F328 – 1S2017

Exercício Prático 01

A figura abaixo mostra um conjunto de três partículas carregadas. Se a partícula de carga +q for deslocada do ponto A para o ponto D por uma força externa, determine se as grandezas a seguir são positivas, negativas ou nulas:

- (a)a variação da energia potencial elétrica;
- (b)o trabalho realizado pela força eletrostática sobre a partícula que foi deslocada;
- (c)o trabalho realizado pela força externa.
- (d)Quais são as repostas dos itens (a), (b) e (c) se a partícula é deslocada do ponto *B* para o ponto *C*?

Exercício Prático 02

O rosto sorridente da figura abaixo é formado por três elementos:

- 1) uma barra fina com carga de -3,0 μ C e a forma de uma circunferência completa com 6,0 cm de raio;
- 2) uma segunda barra fina com uma carga de 2,0 μ C e a forma de um arco de circunferência com 4,0 cm de raio, concêntrico com o primeiro elemento, que subtende um ângulo de 90°;
- 3) um dipolo elétrico com um momento dipolar na direção perpendicular ao diâmetro do primeiro elemento que passa pelo centro do segundo elemento, cujo módulo é $1,28 \times 10^{-21} \,\mathrm{C} \cdot \mathrm{m}$.

Determine o potencial elétrico no centro da figura.

Exercício Prático 03

Uma camada esférica condutora oca, descarregada, tem raio interno a e externo b. Uma carga puntiforme positiva +q é colocada no centro da cavidade. Determine:

- a) A carga em cada superfície do condutor;
- b) O potencial elétrico V(r) em qualquer posição, isto é, $r > b, a < r < b \text{ e } r < a, \text{ admitindo-se } V = 0 \text{ em } r = \infty.$
- c) O trabalho necessário para transportar uma carga, Q, de um ponto fora da casca esférica (r > b) para um ponto dentro da casca (a < r < b).

F328 - 1S2017

Exercício Extra 01

Duas cascas condutoras, concêntricas e isoladas, de raios R_1 e R_2 , estão carregadas com cargas q_1 e q_2 . Tomando V=0 no infinito, ache As expressões para E(r) e V(r), onde r é a distância ao centro das esferas. Esboce os gráficos E(r) e V(r).

Resp:

$$r > R_2 \rightarrow E(r) = \frac{q_1 + q_2}{4\pi\epsilon_0 r^2}$$
; $V(r) = \frac{q_1 + q_2}{4\pi\epsilon_0 r}$
 $R_1 < r < R_2 \rightarrow E(r) = \frac{q_1}{4\pi\epsilon_0 r^2}$; $V(r) = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1}{r} + \frac{q_2}{R_2}\right)$
 $r < R_1 \rightarrow E(r) = 0$; $V(r) = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1}{R_1} + \frac{q_2}{R_2}\right)$

Exercício Extra 02

Seja um sistema de três cargas puntiformes: q_1 , $q_2 = -2q_1$ e $q_3 = 3q_1$, como no arranjo abaixo.

- a) Qual é o potencial elétrico no ponto P?
- b) Qual é a energia potencial elétrica da distribuição de cargas q_1, q_2 e q_3 ?
- c) Qual trabalho que uma força externa precisa realizar para trazer uma carga $q_4 = 2.5 \ q_1$ do infinito até o ponto P, com velocidade constante?

