Segunda Lista de Exercícios GEOMETRIA ANALÍTICA

Dependência, independência linear e base

- 1. (Camargo-Boulos) A tripla $(\vec{u}, \vec{v}, \vec{w})$ é LD. Verifique se é verdadeira ou falsa cada afirmação e justifique sua resposta.
 - (a) Necessariamente, um dos vetores é nulo.
 - (b) Se $\vec{u} = \vec{0}$, então $\vec{v} \parallel \vec{w}$.
 - (c) Se $\vec{u}, \vec{v}, \vec{w}$ são não nulos, então dois deles são paralelos.
 - (d) Existem três planos paralelos e distintos, o primeiro contendo origem e extremidade de um representante de \vec{u} , o segundo contendo origem e extremidade de um representante de \vec{v} e o terceiro contendo origem e extremidade de um representante de \vec{w} .
- 2. (Camargo–Boulos) Prove que:
 - (a) (\vec{u}, \vec{v}) é LD \Longrightarrow $(\vec{u}, \vec{v}, \vec{w})$ é LD.
 - (b) $(\vec{u}, \vec{v}, \vec{w})$ é LI \Longrightarrow (\vec{u}, \vec{v}) é LI.
 - (c) (\vec{u}, \vec{v}) é LD \iff $(\vec{u} + \vec{v}, \vec{u} \vec{v})$ é LD.
- 3. (Camargo-Boulos) Verdadeiro ou falso? Justifique sua resposta.
 - (a) $(\vec{u}, \vec{v}, \vec{w})$ é LD \Longrightarrow (\vec{u}, \vec{v}) é LD.
 - (b) (\vec{u}, \vec{v}) é LI \Longrightarrow $(\vec{u}, \vec{v}, \vec{w})$ é LI.
 - (c) Se $\vec{u}, \vec{v}, \vec{w}$ não são nulos, então $(\vec{u}, \vec{v}, \vec{w})$ é LD $\Longrightarrow (2\vec{u}, -\vec{v})$ é LD.
 - (d) Se $(\vec{u}, \vec{v}, \vec{w})$ é LD, então (\vec{u}, \vec{v}) tanto pode ser LD como LI.
 - (e) Se (\vec{u}, \vec{v}) é LI, então $(\vec{u}, \vec{v}, \vec{w})$ tanto pode ser LD como LI.
- 4. (Camargo–Boulos) Prove que $(\vec{a}, \vec{b}, \vec{c})$ é LD, quaisquer que sejam $\vec{u}, \vec{v}, \vec{w}$.
 - (a) $\vec{a} = 2\vec{u} + 4\vec{v} + \vec{w}$, $\vec{b} = -\vec{u} + \frac{1}{2}\vec{v} + \frac{3}{4}\vec{w}$, $\vec{c} = \vec{v} + \frac{1}{2}\vec{w}$
 - (b) $\vec{a} = \vec{u} + 2\vec{v} \vec{w}$, $\vec{b} = 2\vec{u} 3\vec{v} + \vec{w}$, $\vec{c} = 7\vec{v} 3\vec{w}$ (c) $\vec{a} = \vec{u} 2\vec{v} + \vec{w}$, $\vec{b} = 2\vec{u} + \vec{v} + 3\vec{w}$, $\vec{c} = \vec{u} + 8\vec{v} + 3\vec{w}$
- 5. (Camargo–Boulos) Sejam $\vec{a}=\vec{u}+\vec{w},\; \vec{b}=2\vec{u}+\vec{v}-\vec{w}$ e $\vec{c}=\vec{v}-2\vec{w}.$ Prove que $(\vec{u}, \vec{v}, \vec{w})$ é LI se, e somente se, $(\vec{a}, \vec{b}, \vec{c})$ é LI.
- 6. (Camargo-Boulos) Prove que (\vec{u}, \vec{v}) é LI se, e somente se, $(\vec{u} + \vec{v}, \vec{u} \vec{v})$ é LI.

1

- 7. (Camargo–Boulos) Mostre que $(\vec{u}, \vec{v}, \vec{w})$ é LI se, e somente se, $(\vec{u} + \vec{v} + \vec{w}, \vec{u} \vec{v}, 3\vec{v})$ é LI.
- 8. (Camargo–Boulos) Prove que $(2\vec{u} + \vec{w}, \vec{u} \vec{v}, \vec{v} + \vec{w})$ é LD se, e somente se, $(\vec{u} \vec{w}, \vec{u} + \vec{v}, \vec{u} + \vec{w})$ é LD.
- 9. (Camargo-Boulos) Suponha que $(\vec{u}, \vec{v}, \vec{w})$ é uma tripla LI de vetores, e seja $\vec{x} = a\vec{u} + b\vec{v} + c\vec{w}$. Mostre que $(\vec{u} + \vec{x}, \vec{v} + \vec{x}, \vec{w} + \vec{x})$ é LI se, e somente se, $a + b + c + 1 \neq 0$.
- 10. Desenhe os seguintes vetores na posição padrão em um plano gerado por um par (\vec{x}, \vec{y}) de vetores ortonormais.

(a)
$$(3,1)$$
 (b) $(-4,-2)$ (c) $(2,-3)$ (d) $(-1,5)$ (e) $(4,0)$ (f) $(0,-3)$

11. Desenhe os seguintes vetores na posição (2, -3) em um plano gerado por um par (\vec{x}, \vec{y}) de vetores ortonormais.

(a)
$$(3,1)$$
 (b) $(-4,-2)$ (c) $(2,-3)$ (d) $(-1,5)$ (e) $(4,0)$ (f) $(0,-3)$

12. Desenhe os seguintes vetores na posição padrão (em um sistema de coordenadas ortonormal).

(a)
$$(0,1,2)$$
 (b) $(-4,0,0)$ (c) $(-1,-2,-3)$ (d) $(2,-1,5)$ (e) $(0,0,-2)$ (f) $(1,-3,1)$

13. Translade os vetores abaixo de modo que suas extremidades estejam no ponto (4, 2, -1), determine os pontos correspondentes às suas origens.

(a)
$$(0,1,2)$$
 (b) $(-4,0,0)$ (c) $(-1,-2,-3)$ (d) $(2,-1,5)$ (e) $(0,0,-2)$ (f) $(1,-3,1)$

14. (Poole) Para cada um dos seguintes pares de pontos, desenhe o vetor \overrightarrow{AB} . Depois, determine e redesenhe \overrightarrow{AB} na posição padrão.

(a)
$$A = (1, -1), B = (4, 2)$$

(b)
$$A = (0, -2), B = (2, -1)$$

(c)
$$A = (2, \frac{3}{2}), B = (\frac{1}{2}, 3)$$

(d)
$$A = (\frac{1}{3}, \frac{1}{3}), B = (\frac{1}{6}, \frac{1}{2})$$

15. Sejam u = (3, 1, -1), v = (-1, 0, 4) e w = (1, -2, 0). Determine os vetores indicados:

(a)
$$u + 2v$$
 (b) $3v - 2(4u + w)$ (c) $-w + 2u - \frac{3}{4}u$ (d) $5v + (2w - u) + 3w$

- 16. (Poole) Um excursionista anda 4 km no sentido norte e depois 5 km no sentido nordeste. Desenhe os vetores deslocamento que representam o passeio do excursionosta e o vetor que representa o deslocamento real do ponto de partida.
- 17. (Poole) O hexágono ABCDEF abaixo é regular. Expresse cada um dos seguintes vetores em função de $u = \overrightarrow{OA}$ e $v = \overrightarrow{OB}$.
 - (a) \overrightarrow{AB} (b) \overrightarrow{BC} (c) \overrightarrow{AD} (d) \overrightarrow{CF} (e) \overrightarrow{AC} (f) \overrightarrow{BC} + \overrightarrow{DE} + \overrightarrow{FA}

18. (Poole) Encontre o vetor x em função dos vetores u e v.

(a)
$$x - u = 2(x - 2u)$$

(b)
$$x + 2u - v = 3(x + u) - 2(2u - v)$$

- 19. Desenhe os eixos coordenados relativos aos vetores u=(2,1) e v=(0,-1). Localize o vetor w=3u-2v.
- 20. (Camargo-Boulos) Verifique se \vec{x} e \vec{y} são LI ou LD, nos seguintes casos:

(a)
$$\vec{x} = (0, 1, 0), \vec{y} = (1, 0, 1)$$
.

(b)
$$\vec{x} = (1, -3, 14), \ \vec{y} = (\frac{1}{14}, -\frac{3}{14}, 1).$$

(c)
$$\vec{x} = (0, 1, 1), \vec{y} = (0, 3, 1).$$

- 21. (Camargo–Boulos) Considere os vetores $\vec{x}=(1,-1,3), \ \vec{y}=(2,1,3), \ \vec{z}=(-1,-1,4).$
 - (a) Determine as coordenadas dos vetores $\vec{x} + \vec{y}$, $\vec{x} 2\vec{y}$ e $\vec{x} + 2\vec{y} 3\vec{z}$.
 - (b) Verifique se \vec{x} é combinação linear de \vec{y}, \vec{z} .

- (c) Verifique se é possível escrever o vetor $\vec{u} = (4, 0, 13)$ como combinação linear de $\vec{x}, \vec{y}, \vec{z}$.
- 22. (Camargo–Boulos) Determine m e n tais que (\vec{u}, \vec{v}) é LD, sendo $\vec{u} = (1, m, n+1)$ e $\vec{v} = (m, n, 10)$.
- 23. (Camargo–Boulos) Verifique se $\vec{u}, \vec{v}, \vec{w}$ são LI ou LD.
 - (a) $\vec{u} = (1, 0, 0), \vec{v} = (200, 2, 1), \vec{w} = (300, 1, 2).$
 - (b) $\vec{u} = (1, 2, 1), \vec{v} = (1, -1, -7), \vec{w} = (4, 5, -4).$
 - (c) $\vec{u} = (1, -1, 2), \vec{v} = (-3, 4, 1), \vec{w} = (1, 0, 9).$
 - (d) $\vec{u} = (7, 6, 1), \vec{v} = (2, 0, 1), \vec{w} = (1, -2, 1).$
- 24. (Camargo–Boulos) Determine m de modo que $\vec{u}=(1,2,2)$, $\vec{v}=(m-1,1,m-2)$, $\vec{w}=(m+1,m-1,2)$ sejam LD.
- 25. (Camargo–Boulos) Seja $\mathcal{B}=(\vec{u},\vec{v},\vec{w})$ uma base. Sabendo que $(a,b,a-b)_{\mathcal{B}}=(a^2,b^2,a+b)_{\mathcal{B}}$, determine a^2+b^2-a .
- 26. Se $(\vec{u}, \vec{v}, \vec{w})$ é base, então $(a\vec{u}, b\vec{v}, c\vec{w})$ é base? Discuta.
- 27. Seja \mathcal{B} uma base. Sendo $\vec{x} = (-2, 4, 0)_{\mathcal{B}}$ e $\vec{y} = (1, -3, 4)_{\mathcal{B}}$, encontre as coordenadas do vetor $\vec{z} = -5\vec{x} + 2\vec{y}$ na mesma base.
- 28. (Camargo–Boulos) Seja $\mathcal{B} = (\vec{u}, \vec{v}, \vec{w})$ uma base, $\vec{x} = (2, -1, 0), \vec{y} = (1, -1, 2)$ e $\vec{z} = (1, 0, 2)$.
 - (a) Mostre que $\mathcal{A} = (\vec{x}, \vec{y}, \vec{z})$ é base.
 - (b) Encontre as coordenadas de $\vec{e} = (1, 1, 1)_{\mathcal{B}}$ na base \mathcal{A} .
- 29. (Camargo–Boulos) Sejam $\mathcal{B} = (\vec{u}, \vec{v}, \vec{w})$ uma base, $\vec{x} = \vec{u} + \vec{v}$, $\vec{y} = \vec{u} + \vec{v} + \vec{w}$ e $\vec{z} = a\vec{u} + b\vec{v} + c\vec{w}$. Deduza uma condição necessária e suficiente sobre a, b, c para que $(\vec{x}, \vec{y}, \vec{z})$ seja base.
- 30. (Camargo–Boulos) Seja OABC um tetraedro e M o ponto médio do segmento BC. Explique por que $(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC})$ é base e determine as coordenadas de \overrightarrow{AM} nessa base.

- 31. (Camargo–Boulos) Seja $\mathcal{E}=(\vec{e_1},\vec{e_2},\vec{e_3})$ uma base ortonormal. Calcule $\|\vec{u}\|$, nos seguintes casos:
 - (a) $\vec{u} = (1, 1, 1)_{\mathcal{E}}$
 - (b) $\vec{u} = (-1, 1, 0)_{\mathcal{E}}$
 - (c) $\vec{u} = 3\vec{e}_1 + 4\vec{e}_3$
 - (d) $\vec{u} = -4\vec{e}_1 + 2\vec{e}_2 \vec{e}_3$
- 32. (Camargo–Boulos) Considere o paralelepípedo retângulo ABCDEFGH abaixo e responda o que se pede:
 - (a) Explique por que $\left(\overrightarrow{AB},\overrightarrow{AE},\overrightarrow{AD}\right)$ é base e verifique se é ortonormal.
 - (b) Encontre as coordenadas de \overrightarrow{AG} na base do item (a).
 - (c) Determine o comprimento da diagonal AG.

