Bin Packing Problem: A general purpose Hill Climbing procedure

Lukas Schmauch, Sebastian Wolf

Seminar Modern Heuristics Dr. Rico Walter

Februar 2021

1/38

Übersicht

Was ist das Bin Packing Problem?

Hill Climbing Ansatz

Computational Studies

Zusammenfassung

Bin Packing Problem - Kurzübersicht

3/38

Grundidee Hill Climbing Ansatz

Ablauf Hill Climbing Verfahren

- 1. Eröffnungsverfahren (First Fit Descending)
- 2. Zufällige Auswahl von Bins
- 3. Ausführung des Verbesserungsverfahrens
- 4. Füge Gruppen wieder zusammen
- 5. Shuffle der Gruppen
- 6. Greedy Algorithmus
- 7. Wiederhole Schritt 2-6 bis Abbruchkriterium erreicht

Figure: Greedy Algorithmus

1. Eröffnungsverfahren - First Fit Descending

Sortierung nach absteigender Itemkapazität

```
Greedy(\pi, G)
      for (i \leftarrow 1 \text{ to } |\pi|)
     i \leftarrow 1
(3)
        found \leftarrow false
(4)
           while (not found and j \leq G)
(5)
               if (Group j is feasible for Item \pi[i])
(6)
                   Insert Item \pi[i] into Group j
(7)
                   found \leftarrow true
(8)
               else
(9)
                   i \leftarrow i + 1
(10)
         if (not found)
               G \leftarrow G + 1 / A \text{ new group is opened}^* /
(11)
(12)
                Insert \pi[i] into group G
```

Figure: Greedy Algorithmus

Bild mit resultierender Lösung

2. Zufällige Auswahl von Bins

7/38

3. Ausführung des Verbesserungsverfahrens

8/38

4. Zusammenfügen der Gruppen

5. Shuffle der Gruppen

10/38

6. Greedy Algorithmus

11/38

Ablauf Hill Climbing Verfahren

- 1. Eröffnungsverfahren (First Fit Descending)
- 2. Zufällige Auswahl von Bins
- 3. Ausführung des Verbesserungsverfahrens
- 4. Füge Gruppen wieder zusammen
- 5. Shuffle der Gruppen
- 6. Greedy Algorithmus
- 7. Wiederhole Schritt 2-6 bis Abbruchkriterium erreicht

3. Verbesserungsverfahren im Detail

```
BPP-Improvement-Procedure (\pi, \rho, C)
        for (a \leftarrow 1 \text{ to } G(\pi))
            foreach (pair of items i, j in group g in \pi)
(2)
               for (h \leftarrow 1 \text{ to } G(\rho))
(3)
(4)
                   foreach (pair of items k, l in group h in \rho)
                      \delta = s[k] + s[l] - s[i] + s[j]
(5)
                      if (\delta > 0 and F(q) + \delta < C)
(6)
                          Move items i and j into group h in \rho and move items k and l into group g in
(7)
                          \pi
(8)
            foreach (pair of items i, j in group g in \pi)
               for (h \leftarrow 1 \text{ to } G(\rho))
(9)
(10)
                   foreach (item k in group h in \rho)
                      \delta = s[k] - s[i] + s[j]
                       if (\delta > 0 and F(q) + \delta < C)
(12)
(13)
                          Move items i and j into group h in \rho and move item k into group g in \pi
(14)
            foreach (item i in group g in \pi)
               for (h \leftarrow 1 \text{ to } G(\rho))
                   foreach (item k in group h in \rho)
(16)
                      \delta = s[k] - s[i]
(17)
(18)
                      if (\delta > 0 and F(q) + \delta < C)
(19)
                          Move items i into group h in \rho and move item k into group q in \pi
```

Figure: Verbesserungsverfahren Pseudocode

2:2 Move

$$\delta = 4 + 3 - 2 - 1 = 4$$

•
$$if(\delta > 0 \text{ and } F(g) + \delta \leq C)$$

$$ightharpoonup$$
 if $(4 > 0 \text{ and } 10 + 4 \le 20)$

2:1 Move

$$\delta = 45 - 20 - 20 = 5$$

- if $(\delta > 0 \text{ and } F(g) + \delta \leq C)$
- ▶ $if(5 > 0 \text{ and } 85 + 5 \le 91)$

1:1 Move

- $\delta = 4 2 = 2$
- $if(\delta > 0 \text{ and } F(g) + \delta \leq C)$
- ightharpoonup if $(2 > 0 \text{ and } 10 + 2 \le 20)$

Computational Studies - Genutzte Instanzen

Figure: Instanzen Triplet

Übersicht der Ergebnisse

$$\blacktriangleright LB = \left\lceil \sum_{j=1}^{n} \frac{w_j}{C} \right\rceil$$

▶ Uniform: $LB = z^*$ bei **79 von 80 Instanzen** (eine Instanz mit $z^* = LB + 1$)

▶ Hard: $LB = z^*$ bei 3 von 10 Instanzen (Bei 7 von 10 $z^* = LB + 1$)

Triplet: $LB = z^*$ für alle Instanzen

Тур	Inst.	#Items	Mittlere LB	FFD	нс	НС*	Mittlere Zeit
Unif	20	120	49.1	0.7	0.05	0.1	6.24
Unif	20	250	101.6	1.5	0.25	0.25	27.19
Unif	20	500	201.2	2.7	0.15	0.15	25.73
Unif	20	1000	400.6	4.85	0.25	0.2	42.91
Hard	10	200	55.5/56.2	4.1/3.4	0.8	0	81.04
Trip	20	60	20	3.2	1	0.85	100
Trip	20	120	40	5.8	1	1	100
Trip	20	249	83	12.1	1	1	100
Trip	20	510	167	23.05	1.1	1	100

Optimalitätsanalyse Instanzgruppe Uniform & Hard

$$LB = \left\lceil \sum_{j=1}^{n} \frac{w_j}{C} \right\rceil \tag{1}$$

Figure: Anzahl getroffener LBs

Worst Case Analyse Instanzgruppe Uniform & Hard

$$LB = \left\lceil \sum_{j=1}^{n} \frac{w_j}{C} \right\rceil \tag{2}$$

Figure: Worst Case Abweichung von LB

Lösungsgüte im Zeitverlauf Instanzgruppe Uniform & Hard

Figure: Mittlere Abweichung von LB pro Zeiteinheit

Optimalitätsanalyse Instanzgruppe Triplet

$$\blacktriangleright LB = \left\lceil \sum_{j=1}^{n} \frac{w_j}{C} \right\rceil = \frac{\#Items}{3}$$

► LB wird nie getroffen

Figure: Worst Case Abweichung von LB

Lösungsgüte im Zeitverlauf Instanzgruppe Triplet

Figure: Mittlere Abweichung von LB pro Zeiteinheit

Vergleich Uniform, Hard und Triplet

Figure: Uniform und Hard

Figure: Triplet

Verteilungsfunktion

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{3}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{4}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{5}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Verfahrensänderung (Uniform)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{6}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - andere Permutationswahl

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{7}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Shuffle (mittlere Itemkapazität)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{8}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Shuffle (inkl. mittlere Itemkapazität)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{9}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Verfahrensänderung (Triplet)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{10}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Shuffle (mittlere Itemkapazität)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{11}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Shuffle (inkl. mittlere Itemkapazität)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{12}$$

Figure: rel. Abweichung von LB

34 / 38

Zusammenfassung und Ausblick

- Weitere Untersuchungen des Shuffle-Operators
- Weglassen von Moves

Triplet: Vergleich mit Shuffle (mittlere Itemkapazität)

Figure: Standardverfahren

Figure: mittlere Itemkapazität

Uniform: Vergleich mit anderer Permutationswahl

Figure: Random Permutation

Figure: Minimale Itemzahl

Literaturverzeichnis

Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville, 2016

Convolutional neural networks: an overview and application in radiology, Yamashita, 2018

Script: Einführung in tiefe Lernverfahren - Faltungsnetzwerke, Prof. Joachim Denzler

https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks\

-the-eli5-way-3bd2b1164a53

https://aishack.in/tutorials/image-convolution-examples/