Q' Given buow are two sets of FD's for a relation R(A, B, C, D, E). Are they calculated.

(i) A→B, AB→C, D→AC, D→E

(ii) ATBC, DTAE.

Soin:
$$A \rightarrow B$$
 $A \rightarrow B$ with proceeds transitivity

 $AB \rightarrow C$ $AB \rightarrow C$ $AB \rightarrow C$
 $D \rightarrow AC$ $\Rightarrow A \rightarrow C$
 $D \rightarrow A$, $A \rightarrow C$
 $D \rightarrow B$

(ii) Now Consider A-7 BC, D-> AE

$$A \rightarrow BC$$
 $D \rightarrow AE$
 D

1. D→c, D→B, D→E

Q'. Consider the following relation for CARSALE (Car-no, Date-sold, Salesman_No, Commission, Discount)

Assume a car can be sold by multiple Salesman and hence primary Key is 6 Car_no, Salesman-no g
Additional dependencies are

Date-Sold -> Discount

Salesman_no -> Commission

(i) is this relation in 1NF, 2NF or 3NF? why or why not?

(ii) How would you normalize this completely.

After normalizing upto 3NF

Carno Balesman_no Date-sold

Car_Sale 2

Car-Sale 3

