Привет! Это BOTVA ИУ6, точнее малая ее часть.

Пользоваться и распространять файлы конечно же можно. Если вы нашли ошибку в файле, можете исправить ее в исходном коде и подать на слияние или просто написать в issue.

Так же вы можете купить распечатанную версию данного файла в виде книжки. Если возникнут вопросы, пишите в комментарии под постом файла в tg.

> Приятного бота) GitHub

Подготовка к экзамену

 $\alpha = \psi\left(\frac{1}{2}\right) = \left[\psi\left(\frac{1}{2}\right)\right]$

Математический анализ

1,=/ x2 dx zn- an=(z-a)(zn-4az

a = 4 (9=) (10gax)'=1im

Над файлом работали: fiixii, pluttan

1 Определения и понятия

- 1. № Множество натуральных чисел, состоит из чисел, возникающих при счёте.
- 2. **ℤ множество целых чисел**, состоит из натуральных чисел, нуля и чисел, противоположных натуральным.
- 3. $\mathbb Q$ множество рациональных чисел, состоит из чисел, представимых в виде $\frac{z}{n},z\in\mathbb Z,\ n\in\mathbb N.$
- 4. \mathbb{I} множество иррациональных чисел, состоит из чисел, которые не представимы в виде $\frac{z}{n}, \ z \in \mathbb{Z}, \ n \in \mathbb{N}$, такие как $e, \pi, \sqrt{3}$ и т.д..
- 5. \mathbb{R} множество действительных чисел, состоит из рациональных и иррациональных чисел.
- 6. $\overline{\mathbb{R}}$ расширенное множество действительных чисел, состоит из действительных чисел с добавлением $\{+\infty\}$ и $\{-\infty\}$.
- 7. **Окрестностью** U(x) **точки** x называют любой интервал, содержащий эту точку.
- 8. **Проколотой окрестностью** $\overset{\circ}{U}(x)$ **точки** x называют окрестность этой точки U(x), за исключением самой точки x.
- 9. ε -окрестностью точки x_0 (при положительном ε) называют интервал $(x_0 \varepsilon, x_0 + \varepsilon)$.

$$U_{\varepsilon}(x_0) = \{ x \in \mathbb{R} : x_0 - \varepsilon < x < x_0 + \varepsilon \}$$

10. правой (правосторонней) δ -окрестностью точки x_0 называют полуинтервал $[x_0, x_0 + \delta), \ \delta > 0.$

$$U_{\delta}^{+}(x_0) = \{x \in \mathbb{R} : x_0 \leqslant x < x_0 + \delta\}, \ \delta > 0$$

11. **левой (левосторонней)** δ **-окрестностью точки** x_0 называют полуинтервал $(x_0 - \delta, x_0], \ \delta > 0.$

$$U_{\delta}^{-}(x_0) = \{ x \in \mathbb{R} : x_0 - \delta < x \leqslant x_0 \}, \ \delta > 0$$

12. **Окрестностью точки** $+\infty$ называют интервал $(a, +\infty), \ a > 0$.

$$U(+\infty) = \{x \in \mathbb{R} : x > a\}, \ a > 0$$

13. Окрестностью точки $-\infty$ называют интервал $(-\infty, -a), \ a > 0$.

$$U(-\infty) = \{x \in \mathbb{R} : x < -a\}, \ a > 0$$

14. Окрестностью ∞ (бесконечности без знака) называют объединение двух интервалов $(-\infty, -a) \cup (a, +\infty), \ a > 0.$

$$U(\infty) = \{x \in \mathbb{R} : |x| > a\}, \ a > 0$$

- 15. Последовательностью $\{X_n\}$ называется числовая функция натурального аргумента. Если натуральному числу n при этом поставлено в соответствие число x_n , то это число называется n-м элементом последовательности; n называют номером элемента x_n .
- 16. Последовательность чисел $\{X_n\}$ называется **неубывающей**, если $x_{n+1} \geqslant x_n, \ \forall \ n \in \mathbb{N}$.
- 17. Последовательность чисел $\{X_n\}$ называется возрастающей, если $x_{n+1} > x_n, \ \forall \ n \in \mathbb{N}$.
- 18. Последовательность чисел $\{X_n\}$ называется **невозрастающей**, если $x_{n+1} \leqslant x_n, \ \forall \ n \in \mathbb{N}$.
- 19. Последовательность чисел $\{X_n\}$ называется убывающей, если $x_{n+1} < x_n, \ \forall \ n \in \mathbb{N}$.
- 20. Неубывающие, невозрастающие, убывающие и возрастающие последовательности называют монотонными.
- 21. Последовательность называется постоянной, если $\forall n \in \mathbb{N}: x_n = c, c \in \mathbb{R}$.
- 22. Последовательность $\{X_n\}$ называется ограниченной сверху, если $\exists M \in \mathbb{R}$, такое, что $\forall n \in \mathbb{N}: x_n \leqslant M$.
- 23. Последовательность $\{X_n\}$ называется **ограниченной снизу**, если $\exists M \in \mathbb{R}$, такое, что $\forall n \in \mathbb{N}: x_n \geqslant M$.
- 24. Последовательность, ограниченная и сверху и снизу, называют ограниченной: $\exists M > 0, \ M \in \mathbb{R}$, такое, что $\forall n \in \mathbb{N}: \ |x_n| \leqslant M$.
- 25. Число a называется **пределом числовой последовательности** $\{X_n\}$, если для любого, сколь угодно малого положительного ε существует такой номер N, зависящий от ε , что для всех n > N выполняется неравенство $|a x_n| < \varepsilon$.

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \forall n > N \Rightarrow |x_n - a| < \varepsilon$$

- 26. Числовая последовательность называется **сходящейся**, если существует предел этой последовательности, и он конечен.
- 27. Последовательность $\{X_n\}$ называется фундаментальной, если для любого $\varepsilon>0$ существует номер $N=N(\varepsilon)$ такой, что при любых $m\geqslant N$ и $n\geqslant N$ выполняется неравенство $|x_m-x_n|<\varepsilon.$
- 28. Число a называется **пределом функции** f(x) при $x\to x_0$, если для любого $\varepsilon>0$ существует положительное число $\delta=\delta(\varepsilon)$ такое, что для любого $x\in \overset{\circ}{U}_{\delta}(x_0)$ выполняется

неравенство $|f(x) - a| < \varepsilon$ (определение по Коши).

$$\lim_{x \to x_0} f(x) = a \iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

29. Число a называется **пределом функции** f(x) при $x \to x_0$, если для любой последовательности $\{X_n\}$ точек из $\overset{\circ}{U}(x_0)$, для которой $\lim_{n \to \infty} x_n = x_0$, выполняется равенство $\lim_{n \to \infty} \{f(x_n)\} = a$ (определение по Гейне).

$$\lim_{x \to x_0} f(x) = a \iff \{ \forall x_n \in \overset{\circ}{U}(x_0), \ n \in \mathbb{N} \} \cap \lim_{n \to \infty} x_n = x_0 : \lim_{n \to \infty} \{ f(x_n) \} = a$$

30. Число a называется **правым (правосторонним) пределом функции** f(x) при $x \to x_0+$, если для любого $\varepsilon > 0$ существует $\delta = \delta(\varepsilon) > 0$ такое, что при любом $x \in U_{\delta}^+(x_0)$ (.. $x_0 < x < x_0 + \delta$), выполняется неравенство $|f(x) - a| < \varepsilon$.

$$\lim_{x \to x_0 +} f(x) = a \iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in U_{\delta}^+(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

31. Число a называется левым (левосторонним) пределом функции f(x) при $x \to x_0-$, если для любого $\varepsilon > 0$ существует $\delta = \delta(\varepsilon) > 0$ такое, что при любом $x \in U_{\delta}^-(x_0)$, $(...x_0 - \delta < x < x_0)$ выполняется неравенство $|f(x) - a| < \varepsilon$.

$$\lim_{x \to x_0 -} f(x) = a \iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in U_{\delta}^{-}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

- 32. Функцию f(x) называют ограниченной на множестве D, если существует такое число M>0, что для любых $x\in D$ выполняется неравенство $|f(x)|\leqslant M$.
- 33. Функцию f(x) называют ограниченной (на области определения D_f), если существует такое число M>0, что для любых $x\in D_f$ выполняется неравенство $|f(x)|\leqslant M$.
- 34. Функцию f(x) называют локально ограниченной в окрестности точки a, если существует такое число M>0 и такая окрестность $\overset{\circ}{U}_{\delta}(a)$, что для любых $x\in \overset{\circ}{U}_{\delta}(a)$ выполняется неравенство $|f(x)|\leqslant M$.
- 35. Функцию f(x) называют **бесконечно малой** при $x \to x_0, \ x_0 \in \overline{\mathbb{R}},$ если $\lim_{x \to x_0} f(x) = 0.$
- 36. Функцию f(x) называют **бесконечно большой** при $x \to x_0, \ x_0 \in \overline{\mathbb{R}},$ если $\lim_{x \to x_0} f(x) = \infty$.
- 37. $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ первый замечательный предел.
- 38. $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$ второй замечательный предел.
- 39. Функции $\alpha(x)$ и $\beta(x)$ называют **сравнимыми** бесконечно малыми при $x \to x_0$, если существует хотя бы один из пределов $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$ или $\lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)}$.

40. Функции $\alpha(x)$ и $\beta(x)$ называют **несравнимыми** бесконечно малыми при $x \to x_0$, если не существует ни конечного, ни бесконечного предела их отношения при $x \to x_0$.

41. Функции $\alpha(x)$ и $\beta(x)$ называют бесконечно малыми одного порядка при $x \to x_0$ и записывают $\alpha(x) = O(\beta(x))$, если существует отличный от нуля конечный предел отношения $\alpha(x)/\beta(x)$, при $x \to x_0$.

$$\alpha(x) = O(\beta(x))$$
 при $x \to x_0 \iff \exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = c \in \mathbb{R} \backslash \{0\}$

42. Функцию $\alpha(x)$ называют бесконечно малой более высокого порядка малости по сравнению с $\beta(x)$ при $x \to x_0$ и записывают $\alpha(x) = o(\beta(x))$, если существует и равен нулю предел отношения $\alpha(x)/\beta(x)$, при $x \to x_0$.

$$lpha(x)=o(eta(x))$$
 при $x o x_0\iff\exists\lim_{x o x_0}rac{lpha(x)}{eta(x)}=0$

- 43. Функцию $\alpha(x)$ называют **бесконечно малой более низкого порядка** малости по сравнению с $\beta(x)$ при $x \to x_0$, если предел отношения $\alpha(x)/\beta(x)$, при $x \to x_0$, равен бесконечности.
- 44. Функции $\alpha(x)$ и $\beta(x)$ называют эквивалентными бесконечно малыми при $x \to x_0$, если предел их отношения при $x \to x_0$ равен 1.

$$\alpha(x) \sim \beta(x)$$
 при $x \to x_0 \iff \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$

45. Функцию $\alpha(x)$ называют **бесконечно малой** k**-ого порядка** малости относительно $\beta(x)$ при $x \to x_0$, а число k (k > 0) - **порядком малости** $\alpha(x)$ относительно $\beta(x)$ при $x \to x_0$, если функции $\alpha(x)$ и $\beta^k(x)$ являются бесконечно малыми одного порядка при $x \to x_0$, т.е.

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta^k(x)} = c \in \mathbb{R} \setminus \{0\}$$

46. Функцию u(x) называют **бесконечно большой** k**-ого порядка** роста относительно w(x) при $x \to x_0$, а число k (k > 0) - **порядком роста** u(x) относительно w(x) при $x \to x_0$, если функции u(x) и $w^k(x)$ являются бесконечно большими одного порядка при $x \to x_0$, т.е.

$$\lim_{x \to x_0} \frac{u(x)}{w^k(x)} = c \in \mathbb{R} \setminus \{0\}$$

- 47. Главная часть суммы бесконечно малых функций это слагаемое более низкого порядка малости по сравнению с каждым из остальных слагаемых.
- 48. **Приращением аргумента** в точке x_0 называется изменение аргумента функции от значения x_0 к другому значению x,

$$\Delta x = x - x_0$$

- 49. Приращением функции в точке x_0 называется $\Delta y = f(x_0 + \Delta x) f(x_0)$.
- 50. $(onp.\ 1)$ Функция f(x) называется **непрерывной в точке** x_0 , если в этой точке существует конечный предел функции и он совпадает с значением функции в этой точке, т.е. $\exists \lim_{x \to x_0} f(x) = f(x_0)$.
- 51. $(onp.\ 2)$ Функция f(x) называется **непрерывной в точке** x_0 , если приращение функции в этой точке есть бесконечно малая функция при стремлении приращения аргумента к 0 ($\Delta x \to 0$).
- 52. Функция f(x) называется **непрерывной в точке** x_0 **справа**, если в этой точке существует конечный *правый* предел функции и он совпадает с значением функции в этой точке, т.е. $\exists \lim_{x \to x_0+} f(x) = f(x_0)$.
- 53. Функция f(x) называется **непрерывной в точке** x_0 **слева**, если в этой точке существует конечный левый предел функции и он совпадает с значением функции в этой точке, т.е. $\exists \lim_{x \to x_0-} f(x) = f(x_0)$.
- 54. Функция f(x) непрерывна на интервале (a,b), если она непрерывна в каждой его точке.
- 55. Функция f(x) непрерывна на отрезке [a,b], если она непрерывна на интервале (a,b), в точке a непрерывна справа, т.е. $\lim_{x\to a+} f(x) = f(a)$, в точке b непрерывна слева, т.е. $\lim_{x\to b-} f(x) = f(b)$.
- 56. Если данная функция f(x) не является непрерывной в точке x_0 , то x_0 называется точкой разрыва функции f(x).
- 57. Точкой разрыва первого рода называют такую точку разрыва функции, в которой существуют оба односторонних предела этой функции и они конечны.
- 58. **Точкой разрыва второго рода** называют такую точку разрыва функции, в которой хотя бы один из односторонних пределов функции не существует (в частности, равен бесконечности).
- 59. Если x_0 точка разрыва функции первого рода и односторонние пределы функции в этой точке равны между собой, но не равны значению функции в этой точке или f(x) не определена в этой точке, то такой разрыв называют устранимым, а точку x_0 точкой устранимого разрыва первого рода.
- 60. Если x_0 точка разрыва функции первого рода и односторонние пределы функции в этой точке не равны между собой, то такой разрыв называют **неустранимым**, а точку x_0 точкой неустранимого разрыва первого рода.
- 61. Если существует конечный предел $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$, то он называется производной функции f(x) в точке x_0 и обозначается $f'(x_0)$.

62. Если f(x) определена в правосторонней окрестности точки x_0 и если $\exists \lim_{\Delta x \to 0+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$, то этот предел называется **правой производной функции** f(x) в x_0 и обозначается $f'_+(x)$.

- 63. Если f(x) определена в левосторонней окрестности точки x_0 , и если $\exists \lim_{\Delta x \to 0-} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$, то этот предел называется **левой производной функции** f(x) в x_0 и обозначается $f'_-(x)$.
- 64. Пусть функция y=f(x) определена в некоторой окрестности точки x_0 . Функция называется д**ифференцируемой в точке** x_0 , если ее приращение Δy в точке x_0 представимо в следующем виде: $\Delta y=A\Delta x+\alpha(\Delta x)\Delta x$, где A некоторое число, не зависящее от Δx , а $\lim_{\Delta x\to 0}\alpha(\Delta x)=0$.
- 65. **дифференциалом функции** f(x) **в точке** x_0 называется главная часть приращения функции, линейная относительно приращения аргумента Δx .
- 66. Дифференциалом n-го порядка называется дифференциал от дифференциала n-1 порядка, т.е.

$$d^{n}y = d(d^{n-1}y) = f^{(n)}(x)dx^{n}$$

67. **Производная** n**-ого порядка** от функции y = f(x), есть производная от производной n-1 порядка, т.е.

$$f^{(n)} = (f^{n-1}(x))'$$

- 68. Функция f(x) называется возрастающей на интервале (a,b), если $\forall x_1,x_2 \in (a,b)$, таких что $x_2 > x_1$, выполняется неравенство $f(x_2) > f(x_1)$.
- 69. Функция f(x) называется невозрастающей на интервале (a,b), если $\forall x_1,x_2\in(a,b)$, таких что $x_2>x_1$, выполняется неравенство $f(x_2)\leqslant f(x_1)$.
- 70. Функция f(x) называется убывающей на интервале (a,b), если $\forall x_1, x_2 \in (a,b)$, таких что $x_2 > x_1$, выполняется неравенство $f(x_2) < f(x_1)$.
- 71. Функция f(x) называется **неубывающей на интервале** (a,b), если $\forall x_1, x_2 \in (a,b)$, таких что $x_2 > x_1$, выполняется неравенство $f(x_2) \ge f(x_1)$.
- 72. Функция f(x) называется **монотонной**, если она невозрастающая или неубывающая.
- 73. Функция f(x) называется **строго монотонной**, если она возрастающая или убывающая.
- 74. Точка x_0 называется точкой локального минимума функции f(x), если $\exists U_\delta(x_0)$, такая что $\forall x \in U_\delta(x_0): f(x_0) \leqslant f(x)$.
- 75. Точка x_0 называется **точкой локального максимума** функции f(x), если $\exists U_{\delta}(x_0)$, такая что $\forall x \in U_{\delta}(x_0): f(x_0) \geqslant f(x)$.
- 76. Точка x_0 называется точкой строгого локального минимума функции f(x), если $\exists \overset{\circ}{U}_{\delta}(x_0)$, такая что $\forall x \in \overset{\circ}{U}_{\delta}(x_0): \ f(x_0) < f(x)$.

77. Точка x_0 называется **точкой строгого локального максимума** функции f(x), если $\exists \overset{\circ}{U}_{\delta}(x_0)$, такая что $\forall x \in \overset{\circ}{U}_{\delta}(x_0): f(x_0) > f(x)$.

- 78. **Точками локального экстремума** называются точки локального максимума и строгого локального максимума, локального минимума и строгого локального минимума.
- 79. Точками строгого локального экстремума называются точки строгого локального максимума и минимума.
- 80. Точку x_0 из области определения функции f(x) называют **критической**, если производная в ней равна 0 или не сущестует вовсе.
- 81. Точку x_0 из области определения функции f(x) называют **стационарной**, если $f'(x_0) = 0$.
- 82. Прямая Ax+By+C=0 называется **асимптотой** графика y=f(x), если расстояние от точки M(x,f(x)) графика функции до этой прямой стремится к 0 при бесконечном удалении точки M от начала координат.
- 83. Прямая x=a называется **вертикальной асимптотой** графика функции y=f(x), если хотя бы один из пределов $\lim_{x\to a+(-)}f(x)=\infty$
- 84. Прямая y = kx + b называется **правой наклонной асимптотой** графика функции y = f(x), если эту функцию можно представить в виде $f(x) = kx + b + \alpha(x)$, где $k, b \in \mathbb{R}$ и $\alpha(x)$ бесконечно малая функция при $x \to +\infty$.
- 85. Прямая y = kx + b называется **левой наклонной асимптотой** графика функции y = f(x), если эту функцию можно представить в виде $f(x) = kx + b + \alpha(x)$, где $k, b \in \mathbb{R}$ и $\alpha(x)$ бесконечно малая функция при $x \to -\infty$.
- 86. Пусть функция f(x) дифференцируема на интервале (a,b). График функции y=f(x) имеет на интервале (a,b) выпуклость вверх, если он лежит не выше любой касательной к графику на (a,b).
- 87. Пусть функция f(x) дифференцируема на интервале (a,b). График функции y=f(x) имеет на интервале (a,b) выпуклость вниз, если он лежит не ниже любой касательной к графику на (a,b).
- 88. Точка $x_0 \in (a, b)$ называется точкой перегиба функции f(x), если эта функция непрерывна в точке x_0 и если $\exists \delta > 0$ такое, что направления выпуклостей функции f(x) на интервалах $(x_0 \delta; x_0)$ и $(x_0; x_0 + \delta)$ различны.

2 Вопросы для подготовки к экзамену

2.1 Теорема (о единственности предела сходящейся последовательности)

Если последовательность имеет предел, то этот предел - единственный.

Доказательство (от противного)

Пусть $a, b \in \mathbb{R}, \ a \neq b$, где a и b - пределы сходящейся последовательности $\{X_n\}$:

$$\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} x_n = b, \ a \neq b$$

По определению предела:

$$\forall \varepsilon > 0, \ \exists N_1 = N_1(\varepsilon) \in \mathbb{N}: \ \forall n > N_1 \Rightarrow |x_n - a| < \varepsilon$$

$$\forall \varepsilon > 0, \ \exists N_2 = N_2(\varepsilon) \in \mathbb{N} : \ \forall n > N_2 \Rightarrow |x_n - b| < \varepsilon$$

Примем $\varepsilon = \frac{|b-a|}{3}$ и при $n > max(N_1,\ N_2)$ получим

$$|b-a| = |x_n - a + b - x_n| \le |x_n - a| + |b - x_n| = |x_n - a| + |x_n - b| \Rightarrow |b-a| < 2\varepsilon$$

Или $|b-a| < 2 \cdot \frac{|b-a|}{3}$, т.е. $|b-a| < \frac{2}{3}|b-a|$, $\frac{1}{3}|b-a| < 0$, чего не может быть $\Rightarrow a \neq b$ неверно, т.е. $a=b \Rightarrow$ предел единственный. Теорема доказана.

2.2 Теорема (об ограниченности сходящейся последовательности)

Всякая сходящаяся последовательность является ограниченной.

Доказательство

Пусть $\{X_n\}$ - сходящаяся последовательность. Тогда по определению, у нее существует конечный предел

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ \forall n > \mathbb{N} \Rightarrow |x_n - a| < \varepsilon,$$
$$-\varepsilon + a < x_n < \varepsilon + a$$

Обозначим через A максимальное число среди $|x_1|, |x_2|, ..., |x_n|, |a-\varepsilon|, |a+\varepsilon|$, т.е.

$$A = max(|x_1|, |x_2|, ..., |x_n|, |a - \varepsilon|, |a + \varepsilon|)$$

Тогда $\forall n \in \mathbb{N}$ выполняется $|x_n| < A, \Rightarrow$ последовательность ограничена. Теорема доказана.

2.3 Теорема (о локальной ограниченности функции, имеющей конечный предел)

Если функция f(x) имеет конечный предел при $x \to x_0$, то f(x) локально ограничена. Доказательство

По условию \exists конечный предел $\lim_{x\to x_0}f(x)=a,$ тогда

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

Пусть $\varepsilon=1$, тогда $|f(x)|-|a|\leqslant |f(x)-a|<1$, а значит

$$\forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x)| < 1 + |A| = const \overset{\text{no onp.}}{\Rightarrow}$$

f(x) является локально ограниченной в окрестности точки x_0 . Теорема доказана.

2.4 Теорема (о сохранении функцией знака своего предела)

Если $\lim_{x\to x_0}f(x)=A\neq 0$, то $\exists \overset{\circ}{U}_{\delta}(x_0): \ \forall x\in \overset{\circ}{U}_{\delta}(x_0)$ функция f(x) сохраняет знак своего предела.

Доказательство

По условию \exists конечный $\lim_{x\to x_0} f(x) = a > 0 \stackrel{\text{по опр.}}{\Rightarrow}$

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

• в случае a>0 выбираем $\varepsilon=\frac{a}{2},$ тогда

$$|f(x) - a| < \frac{a}{2}$$
$$-\frac{a}{2} < f(x) - a < \frac{a}{2}$$
$$\frac{a}{2} < f(x) < \frac{3a}{2}$$

Следовательно $f(x)>\frac{a}{2}>0$, т.е. данная функция положительна при $x\in \overset{\circ}{U}_{\delta}(x_0)$.

• в случае a<0 выбираем $\varepsilon=-\frac{a}{2}$, тогда

$$|f(x) - a| < -\frac{a}{2}$$

$$\frac{a}{2} < f(x) - a < -\frac{a}{2}$$

$$\frac{3a}{2} < f(x) < \frac{a}{2}$$

Следовательно $f(x)<\frac{a}{2}<0$, т.е. данная функция отрицательна при $x\in \overset{\circ}{U}_{\delta}(x_0).$ Теорема доказана.

2.5 Теорема (о предельном переходе в неравенстве)

Пусть функции f(x) и g(x) определены в проколотой окрестности $\overset{\circ}{U}(x_0)$ точки x_0 , причем для любого $x\in \overset{\circ}{U}(x_0)$ выполняется неравенство $f(x)\geqslant g(x)$. Тогда, если эти функции имеют пределы $a=\lim_{x\to x_0}f(x)$ и $b=\lim_{x\to x_0}g(x)$, то $a\geqslant b$.

Доказательство

По условию $\forall x \in \overset{\circ}{U}(x_0): f(x) \geqslant g(x) \Rightarrow f(x) - g(x) \geqslant 0$, тогда по теореме о сохранении функцией знака своего предела:

$$\lim_{x\to x_0}(f(x)-g(x))\geqslant 0\Rightarrow \lim_{x\to x_0}f(x)-\lim_{x\to x_0}g(x)=a-b\geqslant 0, \Rightarrow a\geqslant b$$

2.6 Теорема (о пределе промежуточной функции)

Пусть для всех x из некоторой проколотой окрестности $\overset{\circ}{U}(x_0)$ точки x_0 выполняется двойное неравенство $f(x)\leqslant g(x)\leqslant h(x)$, и пусть существуют пределы $\lim_{x\to x_0}f(x)$ и $\lim_{x\to x_0}h(x)$, равные одному и тому же числу a. Тогда и $\lim_{x\to x_0}g(x)=a$.

Доказательство

По условию $\exists \lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} h(x) = a,$ тогда по определению предела функции,

$$\forall \varepsilon > 0 \; \exists \delta_1 = \delta_1(\varepsilon) > 0 : \; \forall x \in \overset{\circ}{U}_{\delta_1}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

$$\text{T.e.} \; \; a - \varepsilon < f(x) < a + \varepsilon$$

$$\forall \varepsilon > 0 \; \exists \delta_2 = \delta_2(\varepsilon) > 0 : \; \forall x \in \overset{\circ}{U}_{\delta_2}(x_0) \Rightarrow |h(x) - a| < \varepsilon$$

$$\text{T.e.} \; \; a - \varepsilon < h(x) < a + \varepsilon$$

Тогда при $x\in \overset{\circ}{U}_{\delta}(x_0),\; \delta=min(\delta_1,\delta_2),$ выполняется неравенство

$$a - \varepsilon < f(x) \leqslant g(x) \leqslant h(x) < a + \varepsilon$$

$$a - \varepsilon < g(x) < a + \varepsilon$$

$$|g(x) - a| < \varepsilon$$

Таким образом, получаем

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0: \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |g(x) - a| < \varepsilon \iff \lim_{x \to x_0} g(x) = a$$

2.7 Теорема (о пределе произведения функций)

Если \exists конечные пределы $\lim_{x \to x_0} f(x) = a$ и $\lim_{x \to x_0} g(x) = b$, то $\lim_{x \to x_0} (f(x) \cdot g(x)) = a \cdot b = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$.

Доказательство

По условию \exists конечные пределы $\lim_{x\to x_0} f(x) = a$ и $\lim_{x\to x_0} g(x) = b$, тогда по теореме о связи функции, ее предела и бесконечно малой имеем

$$f(x)=a+lpha(x),\$$
где $lpha(x)-$ бесконечно малая функция при $x o x_0$ $g(x)=b+eta(x),\$ где $eta(x)-$ бесконечно малая функция при $x o x_0$

Тогда

$$f(x) \cdot g(x) = (a + \alpha(x)) \cdot (b + \beta(x)) = a \cdot b + a \cdot \beta(x) + \alpha(x) \cdot b + \alpha(x) \cdot \beta(x)$$

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} (a \cdot b + \underbrace{a \cdot \beta(x)}_{x \to x_0} + \underbrace{\alpha(x) \cdot b}_{x \to x_0} + \underbrace{\alpha(x) \cdot \beta(x)}_{x \to x_0}) =$$

$$= \lim_{x \to x_0} (a \cdot b) = a \cdot b = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

2.8 Теорема (о пределе сложной функции)

Если функция y=f(x) имеет в точке x=a конечный предел, равный b, и $f(x)\neq b$ в некоторой проколотой окрестности $\overset{\circ}{U}(a)$ этой точки, а функция g(y) имеет в точке b конечный предел c, то сложная функция g(f(x)) имеет $\lim_{x\to a}g(f(x))=c$. Доказательство

По определению предела функции по Гейне имеем:

$$\exists \lim_{x \to a} f(x) = b \iff \{ \forall x_n \in \overset{\circ}{U}(a), \ n \in \mathbb{N} \} \cap \lim_{n \to \infty} x_n = a : \lim_{n \to \infty} \{ f(x_n) \} = b$$
$$\exists \lim_{n \to \infty} g(y) = c \iff \{ \forall y_n \in \overset{\circ}{U}(b), \ n \in \mathbb{N} \} \cap \lim_{n \to \infty} y_n = b : \lim_{n \to \infty} \{ g(y_n) \} = c$$

Пусть $\{X_n\}$ - произвольная последовательность, стремящаяся к точке a и $x_n \neq a \ \forall n \in \mathbb{N}$. Тогда $\lim_{n \to \infty} \{f(x_n)\} = b$, но $f(x_n) \neq b \ \forall n \in \mathbb{N}$. Пусть $y_n = f(x_n)$. Поскольку $\lim_{n \to \infty} \{y_n\} = b$ и $y_n \neq b \ \forall n \in \mathbb{N}$, имеем $\lim_{n \to \infty} \{g(y_n)\} = c$, т.е.

$$\{\forall x_n \in \overset{\circ}{U}(a), \ n \in \mathbb{N}\} \ \cap \ \lim_{n \to \infty} x_n = a: \ \lim_{n \to \infty} \{g(f(x_n))\} = c \iff \lim_{n \to \infty} g(f(x)) = c$$

2.9 Вывод первого замечательного предела

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Пусть $0 < x < \frac{\pi}{2}$. Рассмотрим окружность радиуса R с центром в начале координат, пересекающую ось абсцисс в точке A, и пусть угол $\angle AOB$ равен x (радиан). Пусть, далее, CA — перпендикуляр к этой оси, C — точка пересечения с этим перпендикуляром продолжения отрезка OB за точку B. Тогда

$$S_{\triangle OAB} < S_{\ OAB} < S_{\triangle OAC}$$

$$\frac{1}{2}R^2sin(x) < \frac{1}{2}R^2x < \frac{1}{2}R^2tg(x)$$
 $sin(x) < x < tg(x)$
$$1 < \frac{x}{sin(x)} < \frac{1}{cos(x)}$$
 $1 > \frac{sin(x)}{x} > cos(x)$, при $x \in (0, \frac{\pi}{2})$

Рассмотрим $x \in (-\frac{\pi}{2}, 0)$. Сделаем замену $\beta = -x$, таким образом $\beta \in (0, \frac{\pi}{2})$, а значит справедливо следующее неравенство:

$$1 > \frac{\sin(\beta)}{\beta} > \cos(\beta)$$

Вернемся к замене $\beta = -x$

$$1>\frac{sin(-x)}{-x}>cos(-x)$$

$$1>\frac{-sin(x)}{-x}>cos(x)$$

$$1>\frac{sin(x)}{x}>cos(x)$$
 при $x\in(-\frac{\pi}{2},0)$

Таким образом, полученное неравенство справедливо для $x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2})$. Перейдем к пределу при $x \to 0$:

$$\left. \lim_{x \to 0} \cos(x) = 1 \atop \lim_{x \to 0} 1 = 1 \right\} \Rightarrow \text{ (по т. о пределе промежуточной функции) } \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

2.10 Теорема (о связи функции, ее предела и бесконечно малой)

Равенство $\lim_{x\to x_0} f(x)=a$ имеет место $\iff f(x)=a+\alpha(x)$, где $\alpha(x)$ - бесконечно малая функция при $x\to x_0$.

Доказательство

 (\Rightarrow)

По условию \exists конечный $\lim_{x \to x_0} f(x) = a$, тогда по определению

$$\forall \varepsilon > 0 \ \exists \overset{\circ}{U}_{\delta}(x_0) : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

Обозначим $f(x)-a=\alpha(x)$. Тогда $|\alpha(x)|<\varepsilon \ \forall x\in \overset{\circ}{U}_{\delta}(x_0)\overset{\text{по опр.}}{\Rightarrow}\underset{x\to x_0}{\lim}\alpha(x)=0,$ т.е. $\alpha(x)$ - бесконечно малая функция при $x\to x_0$.

Ho
$$\alpha(x)=f(x)-a\Rightarrow f(x)=a+\alpha(x),$$
 где $\lim_{x\to x_0}\alpha(x)=0.$ (\Leftarrow)

По условию f(x)=a+lpha(x), где $\lim_{x\to x_0}lpha(x)=0,$ тогда по определению

$$\forall \varepsilon > 0 \ \exists \overset{\circ}{U}_{\delta}(x_0) : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |\alpha(x)| < \varepsilon$$

Но по условию $f(x) = a + \alpha(x) \Rightarrow \alpha(x) = f(x) - a$, отсюда имеем

$$\forall \varepsilon > 0 \; \exists \overset{\circ}{U}_{\delta}(x_0): \; \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon \overset{\text{no ord.}}{\Rightarrow} \lim_{x \to x_0} f(x) = a$$

2.11 Теорема (о произведении бесконечно малой функции на ограниченную)

Если $\alpha(x)$ - бесконечно малая функция при $x\to x_0,\,f(x)$ - ограниченная функция, то $\alpha(x)\cdot f(x)$ - бесконечно малая функция при $x\to x_0$. Доказательство По условию $\alpha(x)$ - бесконечно малая функция при $x\to x_0$, тогда

$$\forall \varepsilon > 0 \ \exists \overset{\circ}{U}_{1}(x_{0}) : \forall x \in \overset{\circ}{U}_{1}(x_{0}) \Rightarrow |\alpha(x)| < \frac{\varepsilon}{c}$$

f(x) - ограниченная функция, тогда

$$|f(x)| < c$$
, где $c = const$, $\forall x \in \overset{\circ}{U}_2(x_0)$

Таким образом,

$$\forall x \in \mathring{U}(x_0) = \mathring{U}_1(x_0) \cap \mathring{U}_2(x_0) :$$
$$|\alpha(x) \cdot f(x)| < \frac{\varepsilon}{c} \cdot c \Rightarrow$$

 $|\alpha(x)\cdot f(x)|<arepsilon \Rightarrow lpha(x)\cdot f(x)$ - бесконечно малая функция при $x o x_0$ Теорема доказана.

2.12 Теорема (о связи между бесконечно большой и бесконечно малой)

 $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, отличная от нуля в некоторой проколотой окрестности точки $x_0 \Rightarrow \frac{1}{\alpha(x)}$ - бесконечно большая функция при $x \to x_0$.

f(x) - бесконечно большая функция при $x \to x_0 \Rightarrow \frac{1}{f(x)}$ - бесконечно малая функция при $x \to x_0$.

Доказательство

Пусть $\alpha(x)$ - бесконечно малая функция при $x\to x_0$, отличная от нуля в некоторой проколотой окрестности $\overset{\circ}{U}(x_0)$ точки x_0 . Выберем произвольное E>0. Тогда

для
$$\varepsilon=rac{1}{E}>0$$
 $\exists \overset{\circ}{U}_{1}(x_{0}): \ \forall x\in \overset{\circ}{U}(x_{0})\cap \overset{\circ}{U}_{1}(x_{0})\Rightarrow 0<|\alpha(x)|<\varepsilon, \ \mathrm{r.e.}$

$$\frac{1}{|\alpha(x)|}>E, \stackrel{\text{по опр.}}{\Rightarrow} \frac{1}{\alpha(x)}$$
 - бесконечно большая функция при $x o x_0$

Пусть f(x) - бесконечно большая функция при $x \to x_0$. Выберем произвольное $\varepsilon > 0$. Тогда

$$\frac{1}{f(x)} < \frac{1}{E} = \varepsilon, \stackrel{\text{по опр.}}{\Rightarrow} \frac{1}{f(x)}$$
 - бесконечно малая функция при $x \to x_0$

2.13 Теорема (о замене бесконечно малой на эквивалентную под знаком предела)

Пусть $\alpha(x) \sim \beta(x)$ при $x \to x_0$, и f(x) - некоторая функция, определенная в проколотой окрестности $\overset{\circ}{U}(x_0)$ точки x_0 . Тогда:

- если существует предел при $x \to x_0$ произведения $\alpha(x) \cdot f(x)$, то он не изменится при замене $\alpha(x)$ на эквивалентную при $x \to x_0$ бесконечно малую функцию $\beta(x)$
- если существует предел при $x \to x_0$ частного $\frac{f(x)}{\alpha(x)}$, то он не изменится при замене $\alpha(x)$ на эквивалентную при $x \to x_0$ бесконечно малую функцию $\beta(x)$

Доказательство

По условию $\alpha(x) \sim \beta(x)$ при $x \to x_0$, тогда по определению $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$. Таким образом,

$$\bullet \lim_{x \to x_0} (\alpha(x) \cdot f(x)) = \lim_{x \to x_0} \tfrac{\alpha(x) \cdot \beta(x) \cdot f(x)}{\beta(x)} = \lim_{x \to x_0} \tfrac{\alpha(x)}{\beta(x)} \cdot \lim_{x \to x_0} (\beta(x) \cdot f(x)) = \lim_{x \to x_0} (\beta(x) \cdot f(x))$$

•
$$\lim_{x \to x_0} \frac{f(x)}{\alpha(x)} = \lim_{x \to x_0} \frac{\beta(x) \cdot f(x)}{\alpha(x) \cdot \beta(x)} = \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} \cdot \lim_{x \to x_0} \frac{f(x)}{\beta(x)} = \lim_{x \to x_0} \frac{f(x)}{\beta(x)}$$
 Теорема доказана.

2.14 Теорема (о необходимом и достаточном условии эквивалентности бесконечно малых)

Две бесконечно малые функции $\alpha(x)$ и $\beta(x)$ при $x \to x_0$ эквивалентны \iff их разность имеет больший порядок малости при $x \to x_0$ по сравнению с каждой из них.

Доказательство

 (\Rightarrow)

По условию $\alpha(x) \sim \beta(x)$ при $x \to x_0$, тогда по определению $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$. Таким образом,

$$\lim_{x\to x_0}\frac{\alpha(x)-\beta(x)}{\beta(x)}=\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}-1=0, \overset{\text{по опр.}}{\Rightarrow}\alpha(x)-\beta(x)=o(\beta(x)) \text{ при } x\to x_0$$

$$\lim_{x\to x_0}\frac{\alpha(x)-\beta(x)}{\alpha(x)}=1-\lim_{x\to x_0}\frac{\beta(x)}{\alpha(x)}=0, \overset{\text{по опр.}}{\Rightarrow}\alpha(x)-\beta(x)=o(\alpha(x)) \text{ при } x\to x_0$$

 (\Leftarrow)

По условию $\alpha(x)-\beta(x)=o(\beta(x))$ при $x\to x_0,\ \alpha(x)-\beta(x)=o(\alpha(x))$ при $x\to x_0.$ Тогда

$$0 = \lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} - 1 \ \Rightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1, \stackrel{\text{по опр.}}{\Rightarrow} \alpha(x) \sim \beta(x) \text{ при } x \to x_0$$

$$0 = \lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\alpha(x)} = 1 - \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} \ \Rightarrow \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} = 1, \stackrel{\text{по опр.}}{\Rightarrow} \alpha(x) \sim \beta(x)$$
 при $x \to x_0$

2.15 Теорема (о сумме конечного числа бесконечно малых разных порядков)

Сумма конечного числа бесконечно малых функций при $x \to x_0$ эквивалентна своей главной части.

Доказательство

Пусть $\alpha_1(x),\ \alpha_2(x),\ ...,\ \alpha_n(x)$ - бесконечно малые функции при $x\to x_0$, и $\alpha_1(x)$ - главная часть суммы $\alpha_1(x)+\alpha_2(x)+...+\alpha_n(x)$, т.е.

$$\lim_{x \to x_0} \frac{\alpha_2(x)}{\alpha_1(x)} = 0, \lim_{x \to x_0} \frac{\alpha_3(x)}{\alpha_1(x)} = 0, \dots, \lim_{x \to x_0} \frac{\alpha_n(x)}{\alpha_1(x)} = 0,$$

Тогда рассмотрим

$$\lim_{x\to x_0}\frac{\alpha_1(x)+\alpha_2(x)+\ldots+\alpha_n(x)}{\alpha_1(x)}=1+\lim_{x\to x_0}\frac{\alpha_2(x)}{\alpha_1(x)}+\lim_{x\to x_0}\frac{\alpha_3(x)}{\alpha_1(x)}+\ldots+\lim_{x\to x_0}\frac{\alpha_n(x)}{\alpha_1(x)}=1, \stackrel{\text{no offip.}}{\Longrightarrow}$$

$$lpha_1(x) + lpha_2(x) + ... + lpha_n(x) \sim lpha_1(x)$$
 при $x o x_0$

2.16 Теорема (о непрерывности суммы, произведения и частного непрерывных функций)

Если f(x) и g(x) непрерывны в точке x_0 , то функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$, $\frac{f(x)}{g(x)}$ (последнее при $g(x) \neq 0$) - также непрерывны в точке x_0 .

Доказательство

По условию f(x) и g(x) непрерывны в точке x_0 , тогда по определению

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

$$\exists \lim_{x \to x_0} g(x) = g(x_0)$$

- 1. $\lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{в точке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{s тoчке } \mathbf{x} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{s tover} = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{s tover } = x_0}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text{s tover } = x_0}}} f(x) \pm \lim_{\substack{x \to x_0 \\ \text$
- 2. $\lim_{\substack{x\to x_0\\\text{точке }\mathbf{x}=x_0}}(f(x)\cdot g(x))=\lim_{\substack{x\to x_0\\}}f(x)\cdot \lim_{\substack{x\to x_0\\}}g(x)=f(x_0)\cdot g(x_0), \overset{\text{по опр.}}{\Rightarrow}f(x)\cdot g(x)$ непрерывна в
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{f(x_0)}{g(x_0)}, \stackrel{\text{по опр.}}{\Rightarrow} \frac{f(x)}{g(x)}$ непрерывна в точке $\mathbf{x} = x_0$ при условии $g(x) \neq 0$.

2.17 Теорема (о непрерывности сложной функции)

Если функция y=f(x) непрерывна в точке x=a, а функция g(y) непрерывна в соответствующей точке b=f(a), то сложная функция g(f(x)) непрерывна в точке x=a. Доказательство

По условию функция y=f(x) непрерывна в точке x=a, функция g(y) непрерывна в точке b=f(a). Тогда по определению

$$\exists \lim_{x \to a} f(x) = f(a)$$

$$\exists \lim_{y \to b} g(y) = g(b)$$

Тогда

$$\lim_{x\to a}g(f(x))=\lim_{y\to b}g(y)=g(b)=g(f(a)), \stackrel{\text{по опр.}}{\Rightarrow} \text{ функция }g(f(x)) \text{ непрерывна в точке } x=a$$

2.18 Теорема (о сохранении знака непрерывной функции в окрестности точки)

Пусть функция f(x) непрерывна в точке x_0 , и $f(x_0) \neq 0$. Тогда в некоторой окрестности $U_{\delta}(x_0)$ точки x_0 функция f(x) имеет знак числа $f(x_0)$.

Доказательство

По условию y = f(x) непрерывна в точке $x = x_0$. Тогда по определению

$$\exists \lim_{x \to x_0} f(x) = f(x_0) \neq 0$$

Тогда по теореме о сохранении функцией знака своего предела функция f(x) имеет знак числа $f(x_0)$ в некоторой проколотой окрестности $\overset{\circ}{U}_{\delta}(x_0)$ точки x_0 , т.е.

$$f(x_0) > 0 \Rightarrow \exists \overset{\circ}{U}_{\delta}(x_0) : \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow f(x) > 0$$

$$f(x_0) < 0 \Rightarrow \exists \overset{\circ}{U}_{\delta}(x_0) : \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow f(x) < 0$$

Так как $\overset{\circ}{U}_{\delta}(x_0)=U_{\delta}(x_0)\backslash\{x_0\}$, то

$$f(x_0) > 0 \Rightarrow \exists U_\delta(x_0) : \forall x \in U_\delta(x_0) \Rightarrow f(x) > 0$$

$$f(x_0) < 0 \Rightarrow \exists U_\delta(x_0) : \forall x \in U_\delta(x_0) \Rightarrow f(x) < 0$$

2.19 Функция, непрерывная в точке. Теорема о непрерывности элементарных функций.

(опр. 1) Функция f(x) называется **непрерывной в точке** x_0 , если в этой точке существует конечный предел функции и он совпадает с значением функции в этой точке, т.е. $\exists \lim_{x \to x_0} f(x) = f(x_0)$.

(onp. 2) Функция f(x) называется **непрерывной в точке** x_0 , если приращение функции в этой точке есть бесконечно малая функция при стремлении приращения аргумента к 0 $(\Delta x \to 0)$.

Теорема (о непрерывности элементарных функций)

Все элементарные функции непрерывны всюду, где они определены.

Доказательство (для y = sin(x) и y = cos(x))

$$y = sin(x)$$

Найдем приращение функции

$$\Delta y = f(x + \Delta x) - f(x) = \sin(x + \Delta x) - \sin(x) =$$

$$= 2\sin\left(\frac{x + \Delta x - x}{2}\right) \cdot \cos\left(\frac{x + \Delta x + x}{2}\right) = 2\sin\left(\frac{\Delta x}{2}\right) \cdot \cos\left(x + \frac{\Delta x}{2}\right)$$

Тогда

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left(2 sin \Big(\frac{\Delta x}{2} \Big) \cdot cos \Big(x + \frac{\Delta x}{2} \Big) \right) = 0,$$

Т.е. $\lim_{\Delta x \to 0} \Delta y = 0 \stackrel{\text{по опр.}}{\Rightarrow} y = sin(x)$ непрерывна на всей числовой прямой.

$$y = cos(x)$$

Найдем приращение функции

$$\Delta y = f(x + \Delta x) - f(x) = \cos(x + \Delta x) - \cos(x) =$$

$$=2sin\Big(\frac{x+\Delta x+x}{2}\Big)\cdot sin\Big(\frac{x-\Delta x-x}{2}\Big)=-2sin\Big(x+\frac{\Delta x}{2}\Big)\cdot sin\Big(\frac{\Delta x}{2}\Big)$$

Тогда

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left(-2 sin \left(x + \frac{\Delta x}{2} \right) \cdot sin \left(\frac{\Delta x}{2} \right) \right) = 0,$$

Т.е. $\lim_{\Delta x \to 0} \Delta y = 0 \stackrel{\text{по опр.}}{\Rightarrow} y = cos(x)$ непрерывна на всей числовой прямой.

2.20 свойства функций, непрерывных на отрезке

1. Первая теорема Вейерштрасса

Если функция y=f(x) является непрерывной на [a,b], то она ограничена на этом отрезке.

2. Вторая теорема Вейеритрасса

Если функция y = f(x) является непрерывной на [a,b], то она имеет на этом отрезке наибольшее и наименьшее значение.

3. Первая теорема Больцано-Коши

Если функция y=f(x) является непрерывной на [a,b] и на концах этого отрезка принимает значения разных знаков, т.е. $f(a)\cdot f(b)<0$, то существует хотя бы одна точка $c\in (a,b)$, в которой значение функции f(c)=0.

4. Вторая теорема Больцано-Коши

Если функция y = f(x) является непрерывной на [a,b] и $f(a) \neq f(b)$, то существует такая точка $c \in (a,b)$, что f(a) < f(c) < f(b).

5. Теорема о непрерывности обратной функции

Если функция y=f(x) непрерывна и монотонно возрастает (убывает) на [a,b], то существует и определена на отрезке [f(a),f(b)] обратная функция $x=f^{-1}(y)$, непрерывная и возрастающая (убывающая) на этом отрезке.

2.21 Точки разрыва функции и их классификация. Примеры

Если данная функция f(x) не является непрерывной в точке x_0 , то x_0 называется **точкой** разрыва функции f(x).

1. Точкой разрыва первого рода называют такую точку разрыва функции, в которой существуют оба односторонних предела этой функции и они конечны.

Пример: $f(x) = \frac{\sin(x)}{x}$. Рассмотрим односторонние пределы и значение функции в точке x = 0:

$$\exists\lim_{x o 0+}rac{sin(x)}{x}=1$$
 $\exists\lim_{x o 0-}rac{sin(x)}{x}=1$ \Rightarrow точка $x=0$ - точка разрыва первого рода. $x=0
otin D_f$, т.е. $otin f(0)$

2. **Точкой разрыва второго рода** называют такую точку разрыва функции, в которой хотя бы один из односторонних пределов функции не существует (в частности, равен бесконечности).

Пример: $f(x) = \frac{1}{x}$. Рассмотрим односторонние пределы и значение функции в точке x=0

$$\exists\lim_{x o 0+}rac{1}{x}=+\infty$$
 $\exists\lim_{x o 0-}rac{1}{x}=-\infty$ \Rightarrow точка $x=0$ - точка разрыва второго рода. $x=0
otin D_f, ext{ т.e. }
eta f(0)$

3. Если x_0 — точка разрыва функции первого рода и односторонние пределы функции в этой точке равны между собой, но не равны значению функции в этой точке или f(x) не определена в этой точке, то такой разрыв называют устранимым, а точку x_0 - точкой устранимого разрыва первого рода.

Пример:
$$f(x) = \frac{\sin(x)}{x}$$
:

Из соображений выше, точка x=0 является точкой разрыва первого рода функции f(x). При этом, $\lim_{x\to 0+}\frac{\sin(x)}{x}=\lim_{x\to 0-}\frac{\sin(x)}{x}=1$, тогда по определению, точка x=0 - точка устранимого разрыва первого рода.

Если доопределить функцию f(x) следующим образом:

$$f(x) = \begin{cases} \frac{\sin(x)}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$

то функция f(x) по определению будет непрерывной.

4. Если x_0 — точка разрыва функции первого рода и односторонние пределы функции в этой точке не равны между собой, то такой разрыв называют **неустранимым**, а точку x_0 - точкой неустранимого разрыва первого рода.

Пример: $f(x) = \begin{cases} x-1, \ x \leqslant 0 \\ x+1, \ x>0 \end{cases}$. Рассмотрим односторонние пределы и значение функции в точке x=0:

$$\exists \lim_{x \to 0+} f(x) = 1$$

$$\exists \lim_{x \to 0-} f(x) = -1$$

$$\exists f(0) = -1$$

 \Rightarrow точка x = 0 - точка неустранимого разрыва первого рода по определению.

2.22 Теорема (о необходимом и достаточном условии существования наклонной асимптоты)

Прямая y = kx + b является правой (левой) наклонной асимптотой графика функции $y = f(x) \iff$ существуют конечные пределы

$$\lim_{x \to +(-)\infty} \frac{f(x)}{x} = k,$$

$$\lim_{x \to +(-)\infty} (f(x) - kx) = b$$

Доказательство

 (\Rightarrow)

По условию прямая y = kx + b является правой (левой) наклонной асимптотой графика y = f(x). Тогда по определению

$$f(x) = kx + b + \underbrace{\alpha(x)}_{\text{б.м.ф.}}, \text{ при } x \to +(-)\infty$$

Отсюда $\frac{f(x)}{x}=k+\frac{b}{x}+\frac{\alpha(x)}{x}\to k,\; f(x)-kx=b+\alpha(x),\;$ при $x\to +(-)\infty,\;$ т.е. $\lim_{x\to +(-)\infty}\frac{f(x)}{x}=k,\;\lim_{x\to +(-)\infty}\left(f(x)-kx\right)=b$ (\Leftarrow)

По условию существуют конечные пределы

$$\lim_{x\to +(-)\infty}\frac{f(x)}{x}=k,$$

$$\lim_{x \to +(-)\infty} (f(x) - kx) = b$$

тогда по теореме о связи функции, ее предела и бесконечно малой

$$f(x)-kx=b+\underbrace{\alpha(x)}_{\text{б.м.ф.}},\ \text{при }x o +(-)\infty$$

$$f(x) = kx + b + \underbrace{\alpha(x)}_{\text{6 м b}}, \text{ при } x \to +(-)\infty$$

Таким образом, прямая y = kx + b является правой (левой) наклонной асимптотой графика функции f(x) по определению. Теорема доказана.

2.23 Теорема (необходимое и достаточное условие дифференцируемости функции)

Функция f(x) дифференцируема в некоторой точке x_0 тогда и только тогда, когда существует конечная производная $f'(x_0)$ в этой точке.

Доказательство

 (\Rightarrow) .

По условию функция f(x) дифференцируема в точке x_0 . Тогда по определению дифференцируемости:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x,$$

После деления на Δx получаем:

$$\frac{\Delta y}{\Delta x} = A + \alpha(\Delta x)$$
, где $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$.

По теореме о связи функции, ее предела и бесконечно малой, имеем

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A,$$

Таким образом производная $f'(x_0)$ существует (и равна A) по определению. (\Leftarrow)

По условию существует $f'(x_0)$. Тогда по определению производной:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$$

Тогда по теореме о связи функции, ее предела и бесконечно малой, имеем

$$\frac{\Delta y}{\Delta x} = f'(x_0) + \alpha(\Delta x)$$
, где $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$.

После умножения на Δx получаем:

$$\Delta y = f'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$

Таким образом, функция f(x) дифференцируема в точке x_0 по определению. Теорема доказана.

2.24 Теорема (о связи дифференцируемости и непрерывности функции)

Если функция f(x) дифференцируема в некоторой точке $x=x_0$, то она непрерывна в этой точке.

Доказательство

По условию y = f(x) дифференцируема в точке $x = x_0$, тогда по определению

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$
, где $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$.

 $\downarrow \downarrow$

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left(A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x \right) = 0, \stackrel{\text{по опр.}}{\Rightarrow} y = f(x) \text{ непрерывна в точке } x = x_0$$

2.25 Теорема (о производной произведения двух дифференцируемых функций)

Если функции f(x) и g(x) дифференцируемы в точке x_0 , то функция $f(x) \cdot g(x)$ тоже дифференцируема в этой точке и $\big(f(x) \cdot g(x)\big)' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$.

Доказательство

По условию функции f(x) и g(x) дифференцируемы в точке $x=x_0,\Rightarrow$ существуют конечные пределы

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = f'(x_0), \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x} = g'(x_0)$$

Вычислим $(f(x) \cdot g(x))'$:

$$\begin{split} \left(f(x) \cdot g(x)\right)' &= \lim_{\Delta x \to 0} \frac{\Delta \left(f(x) \cdot g(x)\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) \cdot g(x + \Delta x) - f(x) \cdot g(x)}{\Delta x} = \\ \lim_{\Delta x \to 0} \frac{f(x + \Delta x) \cdot g(x + \Delta x) - f(x) \cdot g(x + \Delta x) + f(x) \cdot g(x + \Delta x) - f(x) \cdot g(x)}{\Delta x} = \\ \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \cdot g(x + \Delta x) + f(x) \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x}\right) = \\ \lim_{\Delta x \to 0} \left(\frac{\Delta f}{\Delta x} \cdot g(x + \Delta x) + f(x) \cdot \frac{\Delta g}{\Delta x}\right) = \underbrace{\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}}_{f'(x)} \cdot \underbrace{\lim_{\Delta x \to 0} g(x + \Delta x)}_{g(x)} + \underbrace{\lim_{\Delta x \to 0} f(x)}_{f(x)} \cdot \underbrace{\lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x}}_{g'(x)} = \\ f'(x) \cdot g(x) + f(x) \cdot g'(x) \end{split}$$

2.26 Теорема (о производной частного двух дифференцируемых функций)

Если функции f(x) и g(x) дифференцируемы в точке x_0 , то функция $\frac{f(x)}{g(x)}$ тоже дифференцируема в этой точке (при условии $g(x) \neq 0$) и $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$. Доказательство

По условию функции f(x) и g(x) дифференцируемы в точке $x=x_0, \Rightarrow$ существуют конечные пределы

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = f'(x_0), \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x} = g'(x_0)$$

Вычислим $\left(\frac{f(x)}{g(x)}\right)'$:

$$\left(\frac{f(x)}{g(x)}\right)' = \lim_{\Delta x \to 0} \frac{\Delta \left(\frac{f(x)}{g(x)}\right)}{\Delta x} = \lim_{\Delta x \to 0} \left(\frac{1}{\Delta x} \cdot \left(\frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)}\right)\right) =$$

$$= \lim_{\Delta x \to 0} \left(\frac{1}{\Delta x} \cdot \left(\frac{f(x + \Delta x) \cdot g(x) - g(x + \Delta x) \cdot f(x)}{g(x) \cdot g(x + \Delta x)}\right)\right) =$$

$$= \lim_{\Delta x \to 0} \left(\frac{1}{\Delta x} \cdot \left(\frac{f(x + \Delta x) \cdot g(x) - f(x) \cdot g(x) + f(x) \cdot g(x) - g(x + \Delta x) \cdot f(x)}{g(x) \cdot g(x + \Delta x)}\right)\right) =$$

$$= \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \cdot g(x) - \frac{g(x + \Delta x) - g(x)}{\Delta x} \cdot f(x)}{g(x) \cdot g(x + \Delta x)}\right) =$$

$$= \lim_{\Delta x \to 0} \left(\left(\frac{\Delta f}{\Delta x} \cdot g(x) - \frac{\Delta g}{\Delta x} \cdot f(x)\right) \cdot \frac{1}{g(x) \cdot g(x + \Delta x)}\right) =$$

$$= \left(\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \cdot \lim_{\Delta x \to 0} g(x) - \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x} \cdot \lim_{\Delta x \to 0} f(x)\right) \cdot \lim_{\Delta x \to 0} \frac{1}{g(x) \cdot g(x + \Delta x)} =$$

$$= \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)} =$$

Теорема (о производной сложной функции)

Если функция y = f(u) дифференцируема в точке u_0 и функция u = g(x) дифференцируема в точке $x_0,\,u_0=g(x_0),$ то сложная функция y=f(g(x)) дифференцируема в точке $x_0,$ и $\left(f(g(x))\right)' = f_u' \cdot g_x'.$

Доказательство

По условию * функция u = q(x) дифференцируема в точке $x = x_0$, тогда по определению существует конечный $\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = g'(x_0)$ * функция y = f(u) дифференцируема в точке $u=u_0$, тогда по определению существует конечный $\lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} = f'(u_0)$

Функция u=g(x) дифференцируема в точке $x=x_0, \Rightarrow$ Функция u=g(x) непрерывна в точке $x=x_0 \stackrel{\text{по опр.}}{\Rightarrow} \lim_{\Delta x \to 0} \Delta u = 0, \text{ т.е. } \Delta u \to 0 \text{ при } \Delta x \to 0.$

Таким образом,

$$y_x' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y \cdot \Delta u}{\Delta u \cdot \Delta x} = \lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = f'(u_0) \cdot g'(x_0)$$

Теорема (о производной обратной функции)

Если функция y = f(x) строго монотонна и дифференцируема в точке $x = x_0$, то обратная ей функция $x=f^{-1}(y)$ дифференцируема в точке $y=f(x_0)$ и $x_y'=\frac{1}{y_x'}.$

Доказательство

По условию функция y = f(x) дифференцируема в точке $x = x_0$, \Rightarrow существует конеч-

ный $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$ Функция y = f(x) дифференцируема в точке $x = x_0, \Rightarrow$ Функция y = f(x) непрерывна в точке $x=x_0 \overset{\text{по опр.}}{\Rightarrow} \lim_{\Delta x \to 0} \Delta y = 0, \text{ т.е. } \Delta y \to 0 \text{ при } \Delta x \to 0.$

Тогда

$$\left(f^{-1}(y)\right)' = x_y' \stackrel{\text{no onp.}}{=} \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta y} = \frac{1}{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{y_x'}$$

2.29 Теорема (свойство инвариантности формы записи дифференциала первого порядка)

Дифференциал функции y=f(u) не зависит от того, является ли u - независимой переменной, или функцией от другой независимой переменной. Доказательство

1. Пусть y = f(u), где u - независимая переменная. Тогда

$$dy = f'(u) \cdot du$$

2. Пусть y = f(u), где u = g(x) - некоторая функция, имеющая производную. Тогда

$$dy = y'_x \cdot du = y'_u \cdot \underbrace{u'_x \cdot dx}_{du} = y'_u \cdot du = f'(u) \cdot du.$$

2.30 Теорема Ферма

Если функция y = f(x) дифференцируема в точке x_0 , и точка x_0 - есть точка локального экстремума, то $f'(x_0) = 0$

Доказательство

Пусть x_0 - точка локального максимума функции y = f(x), тогда по определению

$$\exists U_{\delta}(x_0): \forall x \in U_{\delta}(x_0) \Rightarrow f(x) \leqslant f(x_0)$$

По условию y=f(x) дифференцируема в точке $x=x_0, \Rightarrow$ в точке $x=x_0$ существует конечная производная $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$ Тогда

$$f(x_0+\Delta x)\leqslant f(x_0),\ x_0+\Delta x\in U_\delta(x_0)$$

$$f(x_0+\Delta x)-f(x_0)\leqslant 0$$
 Если $\Delta x>0,\ \text{то}\ \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\leqslant 0$ Если $\Delta x<0,\ \text{то}\ \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\geqslant 0$

По теореме о переходе к пределу в неравенстве

Если
$$\Delta x>0, \ {
m To} \ \lim_{\Delta x\to 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=f'(x_0)\leqslant 0$$

Если
$$\Delta x < 0, \text{ то } \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0) \geqslant 0$$

Таким образом, $f'(x_0) = 0$. Теорема доказана.

2.31 Теорема Ролля

Пусть функция y = f(x):

- 1. Непрерывна на отрезке [a, b]
- 2. Дифференцируема на интервале (a, b)
- 3. f(a) = f(b)

Тогда на интервале (a,b) существует по крайней мере одна точка x_0 , в которой $f'(x_0) = 0$.

Доказательство

По условию y=f(x) непрерывна на $[a,b],\Rightarrow$ по (второй) теореме Вейерштрасса функция y=f(x) на отрезке [a,b] достигает своего наибольшего и наименьшего значения, обозначим

$$M = \max_{[a,b]} (f(x))$$

$$m = \min_{[a,b]} (f(x))$$

тогда $\forall x \in [a,b]: \ m \leqslant f(x) \leqslant M$ Если m=M, то $\forall x \in [a,b] \ m=M=f(x)=const \Rightarrow \forall x \in [a,b] \ f'(x)=0$ Если $m \neq M$, то

• f(a) = f(b) = m. Тогда функция y = f(x) достигает своего наибольшего значения внутри [a,b], т.е. $a < x_0 < b$

Таким образом, точка x_0 - точка локального максимума. Также по условию, f(x) дифференцируема на интервале $(a,b) \Rightarrow f(x)$ дифференцируема в точке x_0 . В итоге, по теореме Ферма, $f'(x_0) = 0$

• f(a) = f(b) = M. Тогда функция y = f(x) достигает своего наименьшего значения внутри [a,b], т.е. $a < x_0 < b$

Таким образом, точка x_0 - точка локального минимума. Также по условию, f(x) дифференцируема на интервале $(a,b)\Rightarrow f(x)$ дифференцируема в точке x_0 . В итоге, по теореме Ферма, $f'(x_0)=0$

• y = f(x) достигает своего минимального и максимального значения внутри [a,b] в точках x_0 и x_1 .

Точки x_0 и x_1 - точки экстремума. Также по условию, f(x) дифференцируема на интервале $(a,b) \Rightarrow f(x)$ дифференцируема в точках x_0 и x_1 . В итоге, по теореме Ферма, $f'(x_0) = 0$, $f'(x_1) = 0$.

2.32 Теорема Лагранжа

Пусть функция f(x): 1) Непрерывна на отрезке [a,b] 2) Дифференцируема на интервале (a,b)

Тогда существует хотя бы одна точка $c \in (a,b)$, такая, что $f(b) - f(a) = f'(c) \cdot (b-a)$ Доказательство

Рассмотрим вспомогательную функцию

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$$

1. Эта функция непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), поскольку этими свойствами обладает f(x).

1.

$$F(a) = f(a) - \frac{f(b) - f(a)}{b - a} \cdot (a - a) = f(a)$$

$$F(b) = f(b) - \frac{f(b) - f(a)}{b - a} \cdot (b - a) = f(a)$$

$$\Rightarrow F(a) = F(b)$$

Таким образом, для F(x) выполнены все условия теоремы Ролля \Rightarrow существует точка $c \in (a,b)$, для которой $F'(c)=f'(c)-\frac{f(b)-f(a)}{b-a}=0$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f'(c) \cdot (b-a) = f(b) - f(a)$$

2.33 Теорема Коши

Пусть функции f(x) и g(x):

- 1. Непрерывны на отрезке [a, b]
- 2. Дифференцируемы на интервале (a, b)
- 3. $g'(x) \neq 0, \forall x \in (a, b)$

Тогда существует хотя бы одна точка $c \in (a, b)$, такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство

Сначала заметим, что $g(b) - g(a) \neq 0$, т.к. если бы g(b) - g(a) = 0, то g(a) = g(b) и функция g(x), в результате, удовлетворяла бы условию теоремы Ролля, согласно которой $\exists c \in (a,b)$, такая, что g'(c) = 0, что противоречит условию 3 теоремы.

Введем вспомогательную функцию

$$F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot (g(x) - g(a))$$

- 1. Эта функция непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), поскольку этими свойствами обладают f(x) и g(x).
- 2.

$$F(a) = f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot (g(a) - g(a)) = f(a)$$

$$F(b) = f(b) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot (g(b) - g(a)) = f(a)$$

$$\Rightarrow F(a) = F(b)$$

Таким образом, для F(x) выполнены все условия теоремы Ролля \Rightarrow существует точка $c \in (a,b)$, для которой $F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c) = 0$

$$f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c) = 0$$

$$f'(c) = \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c)$$

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

2.34 теорема Лопиталя – Бернулли для предела отношения двух бесконечно малых функций

Пусть f(x) и g(x): 1) Являются бесконечно малыми или бесконечно большими функциями при $x \to x_0$ 2) Дифференцируемы в $\overset{\circ}{U}(x_0)$ 3) $g'(x) \neq 0$ в $\overset{\circ}{U}(x_0)$ 4) $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$

Тогда существует предел $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$

По условию f(x) и g(x) являются бесконечно малыми при $x \to x_0$, тогда по определению

$$\lim_{x \to x_0} f(x) = 0 \iff \lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x) = 0$$

$$\lim_{x \to x_0} g(x) = 0 \iff \lim_{x \to x_0 +} g(x) = \lim_{x \to x_0 -} g(x) = 0$$

По условию $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \iff \lim_{x \to x_0+} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0-} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ Рассмотрим пределы при $x \to x_0+$ (для $x \to x_0-$ доказывается аналогично)

Доопределим функции f(x) и g(x) в точке $x=x_0$, полагая $f(x_0)=g(x_0)=0$. Тогда f(x) и g(x) определены и непрерывны в $U^{+}(x_{0})$. Рассмотрим отрезок $[x_{0}, x]$, где $x > x_{0}$. По условию $q'(x) \neq 0$ в (x_0, x) .

Тогда функции f(x) и g(x) удовлетворяют условию теоремы Коши, а значит, $\exists c \in (x_0, x)$, такая, что $\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\frac{f'(c)}{g'(c)}$

- 1. Так как $f(x_0) = g(x_0) = 0$, то $\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}$
- 2. Так как $x_0 < c < x$, то, если $x \to x_0 +$, то и $c \to x_0 +$

Таким образом,

$$\lim_{x \to x_0 +} \frac{f(x)}{g(x)} = \lim_{x \to x_0 +} \frac{f'(c)}{g'(c)} = \lim_{c \to x_0 +} \frac{f'(c)}{g'(c)} = \lim_{x \to x_0 +} \frac{f'(x)}{g'(x)}, \text{ r.e. } \lim_{x \to x_0 +} \frac{f(x)}{g(x)} = \lim_{x \to x_0 +} \frac{f'(x)}{g'(x)}$$

Аналогично $\lim_{x\to x_0-}\frac{f(x)}{g(x)}=\lim_{x\to x_0-}\frac{f'(x)}{g'(x)}$ Таким образом, $\exists\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}.$

2.35 Сравнение роста показательной, степенной и логарифмической функций на бесконечности.

1. Сравним рост показательной функции $y=a^x$ и степенной функции $y=x^n$ (a>1, n>0):

Так как при $x \to +\infty$ функции $y = a^x$ и $y = x^n$ являются бесконечно большими, воспользуемся правилом Лопиталя-Бернулли n раз:

$$\lim_{x\to +\infty}\frac{a^x}{x^n}=\lim_{x\to +\infty}\frac{ln(a)\cdot a^x}{n\cdot x^{n-1}}=\ldots=\lim_{x\to +\infty}\frac{ln^n(a)\cdot a^x}{n!}=+\infty$$

Таким образом, показательная функция $y=a^x$ растет быстрее степенной функции $y=x^n$.

2. Сравним рост логарифмической функции $y = log_a(x)$ и степенной функции $y = x^n (a > 1, n > 0)$:

Так как при $x \to +\infty$ функции $y = log_a(x)$ и $y = x^n$ являются бесконечно большими, воспользуемся правилом Лопиталя-Бернулли:

$$\lim_{x \to +\infty} \frac{\log_a(x)}{x^n} = \lim_{x \to +\infty} \frac{\frac{1}{x * ln(a)}}{n \cdot x^{n-1}} = \frac{1}{n \cdot ln(a)} \cdot \lim_{x \to +\infty} \frac{1}{x^n} = 0$$

Таким образом, степенная функция $y=a^x$ растет быстрее логарифмической функции $y=x^n$.

Вывод:

Показательная функция растет быстрее степенной, а степенная - быстрее логариф-мической.

2.36 Вывод формулы Тейлора с остаточным членом в форме Лагранжа

Пусть функция f(x) определена в окрестности $U(x_0)$ точки x_0 и имеет в этой окрестности производные всех порядков до (n+1)-го включительно. Тогда для любого $x \in U(x_0)$ справедливо равенство:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k + \underbrace{\frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} \cdot (x - x_0)^{n+1}}_{R_{n+1}},$$

где $\theta \in (0,1), \ R_{n+1}$ — остаточный член в форме Лагранжа.

Пусть $x \in U(x_0)$, и пусть для определенности $x > x_0$. Рассмотрим на отрезке $[x_0, x]$ две функции

$$\varphi(t) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} \cdot (x - t)^{k}$$
$$\psi(t) = (x - t)^{n+1}$$

Для этих функций имеем

$$\varphi(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} \cdot (x - x)^{k} = f(x) - f(x) = 0,$$

$$\varphi(x_{0}) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_{0})}{k!} \cdot (x - x_{0})^{k},$$

$$\psi(x) = (x - x)^{n+1} = 0,$$

$$\psi(x_{0}) = (x - x_{0})^{n+1}.$$

Вычислим производные

$$\varphi'(t) = \left(f(x) - f(t) - \sum_{k=1}^{n} \frac{f^{(k)}(t)}{k!} \cdot (x - t)^{k} \right)' =$$

$$= -f'(t) - \sum_{k=1}^{n} \frac{1}{k!} \cdot \left(f^{(k+1)}(t) \cdot (x - t)^{k} - k \cdot f^{(k)}(t) \cdot (x - t)^{k-1} \right) =$$

$$= -f'(t) - \sum_{k=1}^{n} \frac{f^{(k+1)}(t)}{k!} \cdot (x - t)^{k} + \sum_{k=1}^{n} \frac{f^{(k)}(t)}{(k-1)!} \cdot (x - t)^{k-1}$$

В последней сумме введем новый индекс суммирования l = k - 1. Тогда

$$\sum_{k=1}^{n} \frac{f^{(k)}(t)}{(k-1)!} \cdot (x-t)^{k-1} = \sum_{l=0}^{n-1} \frac{f^{(l+1)}(t)}{l!} \cdot (x-t)^{l} = f'(t) + \sum_{l=1}^{n-1} \frac{f^{(l+1)}(t)}{l!} \cdot (x-t)^{l}$$

Следовательно

$$\varphi'(x) = -f'(t) - \frac{f^{(n+1)}(t)}{n!} \cdot (x-t)^n - \sum_{k=1}^{n-1} \frac{f^{(k+1)}(t)}{k!} \cdot (x-t)^k + f'(t) + \sum_{l=1}^{n-1} \frac{f^{(l+1)}(t)}{l!} \cdot (x-t)^l = -\frac{f^{(n+1)}(t)}{n!} \cdot (x-t)^n,$$

T.e.

$$\varphi'(x) = -\frac{f^{(n+1)}(t)}{n!} \cdot (x-t)^n$$

Далее, $\psi'(t)=-(n+1)\cdot(x-t)^n$, и непосредственно видно, что производная $\psi'(t)$ на интервале (x_0,x) отлична от нуля. К паре функций $\psi(t)$ и $\varphi(t)$ на отрезке [x0,x] применим теорему Коши. Имеем

$$\frac{\varphi(x_0) - \varphi(x)}{\psi(x_0) - \psi(x)} = \frac{\varphi'(x_0 + \theta(x - x_0))}{\psi'(x_0 + \theta(x - x_0))},$$
 где $\theta \in (0, 1).$

Таким образом, $0 < \theta < 1 \iff 0 < \theta(x - x_0) < x - x_0 \iff x_0 < x_0 + \theta(x - x_0) < x, \Rightarrow c = x_0 + \theta(x - x_0) \in (x_0, x)$

Учитывая результаты проведенных вычислений, получаем отсюда:

$$\frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k}{(x - x_0)^{n+1}} = -\frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{n!} \cdot (x - x_0 - \theta(x - x_0))^n \times \frac{1}{-(n+1)(x - x_0 - \theta(x - x_0))^n} = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!},$$

T.e.

$$f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} \cdot (x - x_0)^{n+1}$$

Из последнего равенства следует утверждение теоремы при $x > x_0$. При $x < x_0$ рассуждения аналогичны; если $x = x_0$, то утверждение теоремы очевидно. Теорема доказана.

2.37 Вывод формулы Тейлора с остаточным членом в форме Пеано

Пусть функция f(x) определена в окрестности точки x_0 и имеет в этой точке производные всех порядков до n-го включительно. Тогда справедливо равенство

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k + o((x - x_0)^n), \ x \to x_0$$

Равенство, которое требуется доказать, означает, что

$$\lim_{x \to x_0} \frac{f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k}{(x - x_0)^n} = 0$$

Мы имеем здесь дело с неопределенностью $\{\frac{0}{0}\}$. Чтобы раскрыть её, применим n - 1 раз правило Лопиталя-Бернулли

$$\lim_{x\to x_0} \frac{f(x)-\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}\cdot(x-x_0)^k}{(x-x_0)^n}=\lim_{x\to x_0} \frac{f'(x)-\sum_{k=1}^n\frac{f^{(k)}(x_0)}{(k-1)!}\cdot(x-x_0)^{k-1}}{n(x-x_0)^{n-1}}=\\ =\lim_{x\to x_0} \frac{f''(x)-\sum_{k=2}^n\frac{f^{(k)}(x_0)}{(k-2)!}\cdot(x-x_0)^{k-2}}{n(n-1)(x-x_0)^{n-2}}=\ldots=\\ =\lim_{x\to x_0} \frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)-f^{(n)}(x_0)(x-x_0)}{n!(x-x_0)}=\\ =\frac{1}{n!}\lim_{x\to x_0} \left(\frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{(x-x_0)}\right)-f^{(n)}(x_0)\right)=0,$$
 т.к.
$$\lim_{x\to x_0} \left(\frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{(x-x_0)}\right)=f^{(n)}(x_0).$$
 Теорема доказана.

2.38 Формула Маклорена для функции $y = e^x$ с остаточным членом в форме Лагранжа

Найдем производные функции $y = e^x$ до n-го порядка:

$$f'(x) = f''(x) = f'''(x) = \dots = f^{(n)}(x) = e^x$$
$$f'(0) = f''(0) = f'''(0) = \dots = f^{(n)}(0) = 1$$

Таким образом, получаем

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \underbrace{\frac{x^{n+1}}{(n+1)!} \cdot e^{\theta x}}_{\text{остаточный член}}, \ \theta \in (0,1)$$

2.39 Формула Маклорена для функции $y=\sin(x)$ с остаточным членом в форме Лагранжа

Найдем производные функции y = sin(x) до n-го порядка:

$$f(x) = \sin(x), \ f(0) = 0$$

$$f'(x) = \cos(x) = \sin(x + \frac{\pi}{2}), \ f'(0) = 1$$

$$f''(x) = -\sin(x) = \sin(x + 2 \cdot \frac{\pi}{2}), \ f'(0) = 0$$

$$f'''(x) = -\cos(x) = \sin(x + 3 \cdot \frac{\pi}{2}), \ f'(0) = -1$$

$$\dots$$

$$f^{(2n+1)}(x) = (-1)^n \cdot \cos(x), \ f^{(2n+1)}(0) = (-1)^n$$

$$f^{(2n+2)}(x) = (-1)^{n+1} \cdot \sin(x), \ f^{(2n+2)}(0) = 0$$

Таким образом, получаем

$$sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \underbrace{\frac{x^{2n+2}}{(2n+2)!} \cdot sin \left(\theta x + (2n+2) \cdot \frac{\pi}{2}\right)}_{\text{остаточный член}}$$

2.40 Формула Маклорена для функции y = cos(x) с остаточным членом в форме Лагранжа

Найдем производные функции y=sin(x) до n-го порядка:

$$f(x) = \cos(x), \ f(0) = 1$$

$$f'(x) = -\sin(x) = \sin(x + \frac{\pi}{2}), \ f'(0) = 1$$

$$f''(x) = -\sin(x) = \sin(x + 2 \cdot \frac{\pi}{2}), \ f'(0) = 0$$

$$f'''(x) = -\cos(x) = \sin(x + 3 \cdot \frac{\pi}{2}), \ f'(0) = -1$$

$$\dots$$

$$f^{(2n+1)}(x) = (-1)^n \cdot \cos(x), \ f^{(2n+1)}(0) = (-1)^n$$

$$f^{(2n+2)}(x) = (-1)^{n+1} \cdot \sin(x), \ f^{(2n+2)}(0) = 0$$

2.41 Формула Маклорена для функции y = ln(1+x) с остаточным членом в форме Лагранжа

Найдем производные функции y = ln(1+x) до n-го порядка:

$$f(0) = 0$$

$$f'(x) = \frac{1}{1+x}, \ f'(0) = 1$$

$$f''(x) = -\frac{1}{(1+x)^2}, \ f''(0) = -1 = -1!$$

$$f'''(x) = \frac{2}{(1+x)^3}, \ f'''(0) = 2 = 2!$$

$$f^{IV}(x) = \frac{-3 \cdot 2}{(1+x)^4}, \ f^{IV}(0) = -3 \cdot 2 = -3!$$
...
$$f^{(n)}(x) = \frac{(n-1)!}{(1+x)^n} \cdot (-1)^{n-1}, \ f^{(n)}(0) = (-1)^{n-1}(n-1)!$$

$$f^{(n+1)}(x) = \frac{n!}{(1+x)^{n+1}} \cdot (-1)^n, \ f^{(n+1)}(0) = (-1)^n \cdot n!$$

Таким образом, получаем

$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} + \ldots + (-1)^{n-1} \cdot \frac{x^n}{n} + \underbrace{(-1)^n \frac{x^{n+1}}{(n+1)(1+\theta x)^{n+1}}}_{\text{остаточный член}},$$

2.42 Формула Маклорена для функции $y = (1+x)^a$ с остаточным членом в форме Лагранжа

Найдем производные функции $y = (1+x)^a$ до n-го порядка:

$$f(x) = (1+x)^{a}, \ f(0) = 1$$

$$f'(x) = a \cdot (1+x)^{a-1}, \ f'(0) = a$$

$$f''(x) = a \cdot (a-1) \cdot (1+x)^{a-2}, \ f''(0) = a \cdot (a-1)$$
...
$$f^{(n)}(x) = a \cdot (a-1) \cdot (a-2) \cdot \dots \cdot (a-(n-1)) \cdot (1+x)^{a-n},$$

$$f^{(n)}(0) = a \cdot (a-1) \cdot (a-2) \cdot \dots \cdot (a-(n-1))$$

Таким образом, получаем

$$(1+x)^a = 1 + \frac{a}{1!}x + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3 + \frac{a(a-1)(a-2)(a-3)}{4!}x^4 + \dots$$

$$+ \frac{a(a-1)(a-2)...(a-(n-1))}{n!}x^n + \underbrace{\frac{a(a-1)...(a-n)}{(n+1)!}\cdot(1+\theta x)^{a-(n+1)}\cdot x^{n+1}}_{\text{остаточный член}},$$

$$\theta \in (0,1)$$

2.43 Необходимое и достаточное условие неубывания дифференцируемой функции

Пусть функция f(x) дифференцируема на интервале (a,b). Для того, чтобы эта функция была неубывающей на интервале (a,b), необходимо и достаточно, чтобы производная f'(x) была неотрицательна $\forall x \in (a,b)$.

Доказательство

 (\Rightarrow)

По условию f(x) не убывает на интервале (a,b). Тогда в точке $x \in (a,b)$, в которой функция f(x) дифференцируема, имеем

•
$$\Delta x > 0 \Rightarrow f(x + \Delta x) \geqslant f(x) \Rightarrow f'(x) = f'_{+}(x) = \lim_{\Delta x \to 0+} \frac{f(x + \Delta x) - f(x)}{\Delta x} \geqslant 0$$

•
$$\Delta x < 0 \Rightarrow f(x) \geqslant f(x + \Delta x) \Rightarrow f'(x) = f'_{-}(x) = \lim_{\Delta x \to 0-} \frac{f(x + \Delta x) - f(x)}{\Delta x} \geqslant 0$$

Таким образом, $\forall x \in (a, b) \Rightarrow f'(x) \geqslant 0$.

 (\Leftarrow)

По условию во всех точках интервала (a,b), в которых f(x) дифференцируема, выполняется неравенство $f'(x)\geqslant 0$. Пусть x_1 и $x_2,\ a< x_1< x_2< b,$ — произвольные точки этого промежутка. Тогда функция y=f(x) удовлетворяет теореме Лагранжа, $\Rightarrow \exists c\in (x1,x2),$ такая, что $f(x_2)-f(x_1)=f'(c)(x_2-x_1)$

Т.к.
$$\forall x \in (a,b) \Rightarrow f'(x) \geqslant 0$$
, и $x_2 > x_1$, то $f(x_2) - f(x_1) \geqslant 0 \iff f(x_2) \geqslant f(x_1)$

А значит, функция y = f(x) - неубывающая на (a, b) по определению. Теорема доказана.

2.44 Необходимое и достаточное условие невозрастания дифференцируемой функции

Пусть функция f(x) дифференцируема на интервале (a,b). Для того, чтобы эта функция была невозрастающей на интервале (a,b), необходимо и достаточно, чтобы производная $f'(x) \leq 0 \ \forall x \in (a,b)$.

Доказательство

 (\Rightarrow)

По условию f(x) не возрастает на интервале (a,b). Тогда в точке $x \in (a,b)$, в которой функция f(x) дифференцируема, имеем

•
$$\Delta x > 0 \Rightarrow f(x + \Delta x) \leqslant f(x) \Rightarrow f'(x) = f'_{+}(x) = \lim_{\Delta x \to 0+} \frac{f(x + \Delta x) - f(x)}{\Delta x} \leqslant 0$$

•
$$\Delta x < 0 \Rightarrow f(x) \leqslant f(x + \Delta x) \Rightarrow f'(x) = f'_{-}(x) = \lim_{\Delta x \to 0-} \frac{f(x + \Delta x) - f(x)}{\Delta x} \leqslant 0$$

Таким образом, $\forall x \in (a,b) \Rightarrow f'(x) \leqslant 0$. (\Leftarrow)

По условию во всех точках интервала (a,b), в которых f(x) дифференцируема, выполняется неравенство $f'(x) \le 0$. Пусть x_1 и x_2 , $a < x_1 < x_2 < b$, — произвольные точки этого промежутка. Тогда функция y = f(x) удовлетворяет теореме Лагранжа, $\Rightarrow \exists c \in (x1,x2)$, такая, что $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$

Т.к.
$$\forall x \in (a,b) \Rightarrow f'(x) \leqslant 0$$
, и $x_2 > x_1$, то $f(x_2) - f(x_1) \leqslant 0 \iff f(x_2) \leqslant f(x_1)$

А значит, функция y = f(x) - неубывающая на (a, b) по определению. Теорема доказана.

2.45 первое достаточное условие экстремума (по первой производной)

Пусть функция y=f(x) непрерывна в $U_\delta(x_0)$ и дифференцируема в $\overset{\circ}{U}_\delta(x_0)$ Тогда, если f'(x) меняет знак с минуса на плюс при переходе через точку x_0 , то в этой точке функция f(x) имеет строгий локальный минимум, а если f'(x) меняет знак с плюса на минус при переходе через x_0 , то функция f(x) имеет в этой точке строгий локальный максимум. Если же f'(x) сохраняет знак в проколотой окрестности точки x_0 , то экстремума в этой точке нет.

Доказательство

Рассмотрим первое утверждение теоремы. Если f'(x) < 0 при всех $x \in (x_0 \square \delta, x_0)$, то на полуинтервале $(x_0 \square \delta, x_0]$ функция f(x) убывает, и для любого $x \in (x_0 \square \delta, x_0)$ имеем $f(x) > f(x_0)$. На полуинтервале $[x_0, x_0 + \delta)$ функция f(x) возрастает, и $f(x_0) < f(x)$ для всех $x \in (x_0, x_0 + \delta)$. Мы видим, что x_0 и в самом деле есть точка строгого локального минимума. Аналогично доказывается и второе утверждение теоремы. В случае последнего утверждения функция f(x) либо возрастает, либо убывает на интервале $(x_0 \square \delta, x_0 + \delta)$ в зависимости от знака производной f'(x); экстремума в точке x_0 в обоих случаях нет. Теорема доказана.

2.46 второе достаточное условие экстремума (по второй производной)

Если точка $x=x_0$ - стационарная точка функции y=f(x), а функция y=f(x) дважды дифференцируема в $x=x_0$ и $f''(x_0)>0$ ($f''(x_0)<0$), тогда точка $x=x_0$ - точка локального минимума (максимума).

Доказательство

По условию $f''(x_0)>0\Rightarrow$ функция $f'(x_0)$ является возрастающей в $U(x_0)$ По условию x_0 - стационарная точка функции $y=f(x)\stackrel{\text{по опр.}}{\Rightarrow} f'(x_0)=0$ Таким образом,

$$f'(x) < 0$$
 при $x < x_0$ $f'(x) > 0$ при $x > x_0$ \Rightarrow по первому достаточному условию экстремума

 x_0 — точка локального минимума

Для $f''(x_0) < 0$ аналогично. Теорема доказана.

2.47 Достаточное условие выпуклости функции

Пусть функция f(x) дважды дифференцируема на интервале (a,b), причем в каждой точке $x \in (a,b)$ выполняется неравенство f''(x) > 0. Тогда функция f(x) выпукла вниз на указанном интервале. Если же во всех точках интервала (a,b) вторая производная f''(x) отрицательна, то функция f(x) выпукла вверх на этом интервале.

Доказательство

Докажем лишь первое утверждение теоремы (второе доказывается аналогично). Рассмотрим касательную к графику функции y=f(x) в точке $(x_0,f(x_0)), x_0\in (a,b)$. Уравнение такой касательной имеет вид $y=f(x_0)+f'(x_0)(x\square x_0)$. Пусть для определенности $x_0< x< b$. Тогда разность ординат точки касательной $(x,f(x_0)+f'(x_0)(x\square x_0))$ и точки графика (x,f(x)) равна $\Delta y=f(x_0)\square f(x)+f'(x_0)(x\square x_0)$. По теореме Лагранжа $f(x)\square f(x_0)=f'(c)(x\square x_0)$. Поэтому $\Delta y=(f'(x_0)\square f'(c))\cdot (x\square x_0),\ c\in (x_0,x)$. Применим еще раз теорему Лагранжа: $\Delta y=\square f''(c_1)(c\square x_0)(x\square x_0),\ c_1\in (x_0,c)$. Здесь $f''(c_1)>0,\ c\square x_0>0,\ x\square x_0>0$, поэтому $\Delta y<0$, и точка касательной лежит ниже соответствующей точки графика функции. Аналогично можно доказать это утверждение и в случае $a< x< x_0$. Таким образом, точки касательной лежат ниже соответствующих точек графика функции, и функция f(x) выпукла вниз на интервале (a,b). Теорема доказана.

2.48 необходимое условие точки перегиба

Пусть функция f(x) дважды дифференцируема в окрестности точки x_0 , причем вторая производная непрерывна в указанной точке. Тогда если x_0 — точка перегиба графика функции y = f(x), то $f''(x_0) = 0$.

Доказательство

Предположим, $f''(x_0) \neq 0$, и пусть для определенности $f''(x_0) > 0$. Тогда в силу непрерывности f''(x) в точке x_0 существует окрестность $U_{\delta}(x_0)$ этой точки такая, что f''(x) > 0 во всех точках этой окрестности. Тогда на обоих интервалах $(x_0 \square \delta, x_0)$ и $(x_0, x_0 + \delta)$ функция f(x) выпукла вниз, что противоречит наличию перегиба в точке x_0 . Поэтому $f''(x_0) = 0$. Теорема доказана.

2.49 достаточное условие точки перегиба

Пусть функция f(x) определена в окрестности $U_{\delta}(x_0)$ точки x_0 и непрерывна в указанной точке. Тогда, если в соответствующей проколотой окрестности $\overset{\circ}{U}_{\delta}(x_0)$ функция f(x) имеет вторую производную, которая меняет знак при переходе через точку x_0 , то точка x_0 есть точка перегиба функции y=f(x).

Доказательство

Пусть для определенности вторая производная f''(x) положительна при $x \in (x_0 - \delta, x_0)$ и отрицательна при $x \in (x_0, x_0 + \delta)$. Тогда на $(x_0 \Box \delta, x_0)$ функция f(x) выпукла вниз, а на $(x_0, x_0 + \delta)$ выпукла вверх, т.е. при переходе через точку x_0 направление выпуклости меняется на противоположное. Отсюда следует, что x_0 — точка перегиба функции f(x). Теорема доказана.