MATH 425A HW10, NOV. 1, 6PM

JUAN SERRATOS

1. Chapter 4

Chapter 5; §2.3: Exercise 2.6.

Complete the following tasks.

- (a) Find a closed subset of E and a continuous function $f: \mathbb{R} \to \mathbb{R}$ is continuous such that f(E) is not closed.
- (b) Find a bounded subset E of \mathbb{R} and a continuous function $f: E \to \mathbb{R}$ such that f(E) is not bounded.
- (c) Show that if E is a bounded subset of \mathbb{R} and $f: \mathbb{R} \to \mathbb{R}$ is continuous, then f(E) is bounded.

Proof. (a) We know from the course notes that $f: \mathbb{R} \to \mathbb{R}$, where $x \mapsto \frac{1}{1+x^2}$ is continuous. Consider $E = \mathbb{R}$, which is closed in \mathbb{R} , but $f(\mathbb{R}) = (0, 1]$ and this is not closed in \mathbb{R} (nor is it open as well).

- (b) The set E = (0, 1] is clearly a bounded subset of \mathbb{R} . From the course notes, we know that $f: (0, 1] \to \mathbb{R}$ where $x \mapsto 1/x$ is a continuous function since f is continuous on $f: (0, +\infty) \to \mathbb{R}$ so the restriction $f|_{E}: (0, 1] \to \mathbb{R}$ is continuous (Proposition 2.9). But $f(E) = f((0, 1]) = [1, +\infty)$ which is of course not bounded in \mathbb{R} .
- (c) Suppose E is a bounded subset of \mathbb{R} . Then \overline{E} is a closed and bounded subset of \mathbb{R} , and so \overline{E} is compact. Now $f(\overline{E})$ is compact, which gives that $f(\overline{E})$ is totally bounded by Proposition 4.8 in Course Notes, and further $f(E) \subset F(\overline{E})$, so f(E) is bounded as well.

Chapter 5; §2.3: Exercise 2.7.

Prove that the set $\mathbb{R}^2 \setminus \{(0,0)\}$ is connected. Then, use the function $\frac{x}{|x|}$ to show that $S = \{x \in \mathbb{R}^2 : |x| = 1\}$ is connected. (You may use results from section 2.4.1 below if you want, but it is also possible to do this Exercise without it.)

Proof. Define the sets $A = \{(x,y) \colon y > 0\}$, $B = \{(x,y) \colon x > 0\}$, $C = \{(x,y) \colon x < 0\}$, $D = \{(x,y) \colon y < 0\}$ (we fix x in the set A and allow y to vary, and similarly for the rest). All of the sets A, B, C, D are clearly connected open sets, and so their union which is $\mathbb{R}^2 \setminus \{(0,0)\}$ is thus connected by Exercise 6.4. in Chapter 4. Alternatively, we could've proved this using path connectedness of $\mathbb{R}^2 \setminus \{0,0\}$ where given $x,y \neq 0$, then we map $f \colon [0,1] \to \mathbb{R} \setminus \{0,0\}$ by f(t) = (1-t)x + ty where $0 \le t \le 1$ works if the path between the points doesn't go through (0,0), and otherwise x and y ca be connected through a path by another point, say, z in $\mathbb{R}^2 \setminus \{0,0\}$. Now the set S is path connected: Define the map $\phi \colon \mathbb{R}^2 \setminus \{0,0\} \to S$ by $\phi(x) = \frac{x}{|x|}$. This map is clearly surjective and continuous, and so $\phi(\mathbb{R} \setminus \{(0,0)\}) = S$ Thus we have that S is connected as the image of a connected set is itself connected.

Date: October 15, 2022

Chapter 5; §2.3: Exercise 2.8.

Assume $f: X \to Y$ and $g: Y \to Z$ are uniformly continuous functions, where (X, d_X) , (Y, d_Y) , and (Z, d_Z) are metric spaces. Prove that $g \circ f$ is uniformly continuous.

Proof. We are going to show that $h:=g\circ f\colon X\to Z$ is uniformly continuous. Let $\varepsilon>0$. We want to find a $\delta>0$ such that $d_X(s,t)<\delta$ implies $d_Z(h(s),h(t))<\varepsilon$. As $g\colon Y\to Z$ is uniformly continuous, then we have that there is some $\gamma>0$ such that for $x,y\in X$ and $f(x),f(y)\in Y$ we have $d_Y(f(x),f(y))<\gamma$ gives us that $d_Z(g(f(x),g(f(y)))=d_Z(h(x),h(z))<\varepsilon$. Lastly, as f is uniformly continuous, then we have some $\delta>0$ such that $d_X(x,y)<\omega$, then $d_Y(f(x),f(y))<\varepsilon$. Thus for $h\colon X\to Z$, we pick $\omega=\delta$, and therefore we have that h is uniformly continuous.

Chapter 5; §2.3: Exercise 2.9.

Let E be a bounded subset of \mathbb{R}^k and let $f \colon E \to \mathbb{R}$ be a uniformly continuous function. Show that f is bounded. (Hint: You will need to use compactness of \overline{E} at some point.)

Proof. For sake of contradiction, suppose that f is not bounded. As \mathbb{R}^k is totally bounded, then so is E. Now as f is not bounded, then there is a sequence $(x_n)_{n=1}^{\infty}$ such that $|f(x_n)-0|=|f(x_n)|\to\infty$ as $n\to\infty$. In particular, we choose $(x_n)_{n-1}^{\infty}$ to be such that $|f(x_n)|>n$ for all $n\in\mathbb{N}$; we can do this as f is not bounded then for any we have $|f(x)|>\ell$ for all $x\in E$ and any $\ell>0$ in \mathbb{R} . However, as $(x_n)_{n=1}^{\infty}$ is a sequence in E which is (totally) bounded then we have some convergent subsequence $(x_{n_k})_{k=1}^{\infty}$. Now we have $|x_{n_k}-x_{n_k}|\to 0$ as $k,l\to\infty$. As $(x_{n_k})_{n=1}^{\infty}$ converges, then it is a standard fact that this sequence is Cauchy as well. As f is uniformly continuous, the for any $\epsilon>0$ there is $\delta>0$ such that $|x-c|<\delta$ in E implies $|f(x)-f(c)|<\epsilon$ (we abuse notation here for induced metric on E as $E\subseteq\mathbb{R}^k$). As $(x_{n_k})_{k=1}^{\infty}$ is Cauchy, then there is some $N\in\mathbb{N}$ such that $s,t\geq N$ implies $|x_{n_s}-x_{n_t}|<\delta$ (as we've chosen $\delta>0$). Thus, as f is uniformly continuous, we have $|f(x_{n_s})-f(x_{n_t})|<\epsilon$, and so $|f(x_{n_t})|\leq |f(x_{n_s})|+|f(x_{n_s})-f(x_{n_t})|<|f(x_{n_s})|+\epsilon$. Now if we let s vary and approach infinity and fix t, then $\lim_{t\to\infty}|f(x_{n_t})|<|f(x_{n_s})|+\epsilon$. This contradicts how we chose $(x_n)_{n=1}^{\infty}$ in sentence three. Therefore we must have that f is indeed bounded.

Department of Mathematics, University of Southern California, Los Angeles, CA 90007