Introduction à la logique

R1.06 - Mathématiques discrètes

 ${\tt monnerat@u-pec.fr} \, \boxtimes \,$

21 septembre 2021

IUT de Fontainebleau

Partie 3

Logique prédicative

Introduction

Quantificateurs

Prédicat : introduction

Exemple 1 : Soient les deux propositions :

r: "il pleut" et u: "Jean prend son parapluie"

et l'implication:

 $r \rightarrow u$: "s'il pleut, Jean prend son parapluie"

Ce qui est vrai pour Jean l'est pour Pierre, Marie, etc.

Au lieu de créer les mêmes propositions en changeant à chaque fois le prénom de la personne (il y en a une infinité possible), on va considérer des énoncés faisant intervenir des variables représentant une personne quelconque.

u(x) : "x prend son parapluie" ou w(x) : "x est mouillé"

On écrira u(Jean), u(Marie), w(Pierre), etc.

Que "signifie" $u(x) \rightarrow \neg w(x)$?

Exemple 2 : à tout entier x, on associe la proposition

$$a(x)$$
: "x est impair"

a(2) est faux, mais a(3) est vrai.

Exemple 3 : on considère l'énoncé dépendant des variables entières x, y, z, n

$$f(x, y, z, n): x^n + y^n = z^n$$

$$f(3,4,5,2): 3^2 + 4^2 = 5^2$$
 est vrai.

$$f(1,2,3,3):1^3+2^3=3^3$$
 est faux.

Prédicat

Définition

De manière très imprécise, on appelle **prédicat** tout énoncé p(x, y, ...) contenant des **variables** d'un certain **domaine**, tel que, quand on substitue à chacune des variables un objet du domaine, on obtient un proposition (donc vraie ou fausse).

Remarques

- Le nombre de variables du prédicat s'appelle son poids ou son arité.
- ullet On peut voir un prédicat d'arité n sur un domaine ${\mathcal D}$ comme une application de ${\mathcal D}^n o \{0,1\}$

Exemples

- a(x, y): "x est divisible par y" est un prédicat à deux variables (poids 2), binaire.
- a(x,2): "x est divisible par 2" est un prédicat à une variable, unaire.
- a(10,3): "10 est divisible par 3" est un prédicat à 0 variables (poids 0). C'est une proposition.

45/50

Connecteurs et quantificateurs

Soient a et b deux prédicats définis sur un même domaine. Alors

- $\neg a$, $(a \lor b)$, $(a \land b)$, $(a \to b)$, $(a \leftrightarrow b)$ sont des prédicats.
- Si x est une variable "libre" de A, alors

$$\forall x, a$$

et

$$\exists x, a$$

sont des prédicats. La variable x est alors dite liée.

 $\forall x$ se lit : "pour tout x", "quelque soit x" (quantificateur universel).

 $\exists x$ se lit : "il existe un x (quantificateur existentiel).

Remarque : une variable liée à un connecteur n'est plus une variable du prédicat. On dit qu'elle est capturée par le quantificateur.

Sémantique des formules quantifiées

Soient les deux formules $\forall x, a(x)$ et $\exists x, a(x)$ supposées sans variables libres. On leur donne la valeur de vérité suivante :

- ∀x, a(x) est vraie si et seulement si a(x) est vraie pour tous les objets du domaine.
- $\exists x, a(x)$ est vraie si et seulement si a(x) est vraie pour au moins un objet du domaine.

Exemple : soit le prédicat p(x) : $x^2 \le 10$, sur le domaine des entiers de 1 à 5.

- $\forall x, p(x)$ est la même chose que $p(1) \land p(2) \land p(3) \land p(4) \land p(5)$. C'est faux : p(4) est un contre exemple.
- $\exists x, p(x)$ est?? car??.

Formalisation du langage naturel

Exemples: trois prédicats:

h(x): x est un homme, m(x): x est méchant, aime(x, y): x aime y

• Tous les hommes sont méchants

$$\forall x, (h(x) \rightarrow m(x))$$

Seulement les hommes sont méchants.

$$\forall x, (m(x) \rightarrow h(x))$$

• Il existe un homme méchant.

$$\exists x, (m(x) \land h(x))$$

• Il existe un homme qui aime tous les hommes.

$$\exists x, (h(x) \land \forall y, (h(y) \rightarrow aime(x, y))$$

• Il existe une femme qui n'aime personne.

$$\exists x, (\neg h(x) \land (\forall y, \neg aime(x, y)))$$

Équivalences (théorèmes) ususelles

Les équivalences suivantes sont vraies pour p et q quelconques

théorème	nom
$\neg \forall x, p(x) \equiv \exists x, \neg p(x)$	De Morgan
$ eg \exists p, p(x) \equiv \forall x, eg p(x)$	De Morgan
$\forall x \forall y \ p(x,y) \equiv \forall y \forall x \ p(x,y)$	commutativité ∀
$\exists x \exists y \ p(x,y) \equiv \exists y \exists x \ p(x,y)$	commutativité ∃
$\forall x (p(x) \land q(x)) \equiv \forall x p(x) \land \forall x q(x)$	distributivité ∀ sur ∧
$\exists x \ (p(x) \lor q(x)) \equiv \exists x \ p(x) \lor \exists x \ q(x)$	distributivité ∃ sur ∨

Exemple: soit $p = \forall x \exists y \ y < x$.

$$\neg p \equiv \neg (\forall x \exists y \ y < x)$$
$$\equiv \exists x \ \neg (\exists y \ y < x)$$
$$\equiv \exists x \forall y \ \neg (y < x)$$
$$\equiv \exists x \ \forall y \ y \ge x$$

Question : p est-elle vraie sur les entiers naturels ? relatifs ?

Attention : en général

$$\forall x, \exists y, p \not\equiv \exists y, \forall x, p$$

Par exemple, avec p(x,y): "x aime y". $\forall x, \exists y, p$ devient "toute personne aime quelqu'un", alors que $\exists y, \forall x, p$ devient "il existe une personne aimée de tous". Implication?

$$\forall x, (p \lor q) \not\equiv (\forall x, p) \lor (\forall x, q)$$

Sur \mathbb{N} , avec $p(x) = \|x \text{ est pair}\|$ et $q(x) = \|x \text{ est impair}\|$. Implication?

$$\exists x, (p \land q) \not\equiv (\exists x, p) \land (\exists x, q)$$

Sur \mathbb{N} , avec $p(x) = \|x \text{ est pair}\|$ et $q(x) = \|x \text{ est impair}\|$. Implication?