732A99/TDDE01 Machine Learning Lecture 3b Block 1: Support Vector Machines

Jose M. Peña IDA, Linköping University, Sweden

Contents

- Support Vector Machines for Classification
- Support Vector Machines for Regression
- Summary

Literature

- Main source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
 Section 7.1.
- Additional source
 - Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer, 2009. Sections 4.5 and 12.1-12.3.

- ▶ Consider binary classification with input space \mathbb{R}^D .
- ▶ Consider a training set $\{(\boldsymbol{x}_n, t_n)\}$ where $t_n \in \{-1, +1\}$.
- ► Consider using the linear model

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$$

so that a new point x is classified according to the sign of y(x).

Assume that the training set is linearly separable in the **feature space** (but not necessarily in the input space), i.e. $t_n y(x_n) > 0$ for all n.

Aim for the separating hyperplane that maximizes the margin (i.e. the smallest perpendicular distance from any point to the hyperplane) so as to minimize the generalization error.

▶ The perpendicular distance from any point to the hyperplane is given by

$$\frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$$

and, thus, the margin of the hyperplane is given by

$$\min_{n} \frac{t_n(\boldsymbol{w}^T \phi(\boldsymbol{x}_n) + b)}{\|\boldsymbol{w}\|}$$

For any scalar κ , $y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$ and $\kappa y(\mathbf{x}) = \kappa \mathbf{w}^T \phi(\mathbf{x}) + \kappa b$ represent the same hyperplane. So, hereinafter we only consider rescaled hyperplanes where κ is such that $\min_n t_n(\kappa \mathbf{w}^T \phi(\mathbf{x}_n) + \kappa b) = 1$. For simplicity, we rename $\kappa \mathbf{w}$ and κb as \mathbf{w} and b. Then, the maximum margin separating hyperplane is given by

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,max}} \frac{1}{\|\boldsymbol{w}\|}$$

subject to $t_n(\boldsymbol{w}^T\phi(\boldsymbol{x}_n)+b)\geq 1$ for all n.

▶ Then, the maximum margin separating hyperplane is given by

$$\underset{\boldsymbol{w},b}{\arg\min} \ \frac{1}{2} ||\boldsymbol{w}||^2$$

subject to $t_n(\boldsymbol{w}^T\phi(\boldsymbol{x}_n)+b)\geq 1$ for all n.

▶ To minimize the previous expression, we minimize

$$\frac{1}{2}||\boldsymbol{w}||^2 - \sum_{n} a_n (t_n(\boldsymbol{w}^T \phi(\boldsymbol{x}_n) + b) - 1)$$

where $a_n \ge 0$ are called Lagrange multipliers.

- ▶ Note that any stationary point of the Lagrangian function is a stationary point of the original function subject to the constraints. Moreover, the Lagrangian function is a quadratic function subject to linear inequality constraints. Then, it is concave, actually concave up because of the +1/2 and, thus, "easy" to minimize.
- Note that we are now minimizing with respect to w and b, and maximizing with respect to a_n.
- \triangleright Setting its derivatives with respect to \mathbf{w} and b to zero gives

$$\mathbf{w} = \sum_{n} a_{n} t_{n} \phi(\mathbf{x}_{n})$$
$$0 = \sum_{n} a_{n} t_{n}$$

▶ A new point x is classified according to the sign of

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_n a_n t_n \phi(\mathbf{x}_n)^T \phi(\mathbf{x}) + b = \sum_n a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b.$$

So, we have a kernel method!

 Replacing the previous expressions in the Lagrangian function gives the dual representation of the problem, in which we maximize

$$\sum_{n} a_{n} - \frac{1}{2} \sum_{n} \sum_{m} a_{n} a_{m} t_{n} t_{m} \phi(\mathbf{x}_{n})^{T} \phi(\mathbf{x}_{m}) = \sum_{n} a_{n} - \frac{1}{2} \sum_{n} \sum_{m} a_{n} a_{m} t_{n} t_{m} k(\mathbf{x}_{n}, \mathbf{x}_{m})$$

subject to $a_n \ge 0$ for all n, and $\sum_n a_n t_n = 0$.

- Again, this "easy" to maximize.
- Note that the dual representation makes use of the kernel trick, i.e. it allows working in a more convenient feature space without constructing it.

When the Lagrangian function is maximized, the Karush-Kuhn-Tucker condition holds for all n:

$$a_n(t_n y(\mathbf{x}_n) - 1) = 0$$

- ▶ Then, $a_n > 0$ if and only if $t_n y(x_n) = 1$. The points with $a_n > 0$ are called **support vectors** and they lie on the margin boundaries.
- ▶ A new point **x** is classified according to the sign of

$$y(\mathbf{x}) = \mathbf{w}^{T} \phi(\mathbf{x}) + b = \sum_{n} a_{n} t_{n} \phi(\mathbf{x}_{n})^{T} \phi(\mathbf{x}) + b = \sum_{n} a_{n} t_{n} k(\mathbf{x}, \mathbf{x}_{n}) + b$$
$$= \sum_{m \in S} a_{m} t_{m} k(\mathbf{x}, \mathbf{x}_{m}) + b$$

where $\mathcal S$ are the indexes of the support vectors. **Sparse** kernel method!

▶ To find b, consider any support vector \mathbf{x}_n . Then,

$$1 = t_n y(\mathbf{x}_n) = t_n \left(\sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b \right)$$

and multiplying both sides by t_n , we have that

$$b = t_n - \sum_{m \in \mathcal{S}} a_m t_m k(\boldsymbol{x}_n, \boldsymbol{x}_m)$$

We now drop the assumption of linear separability in the feature space, e.g. to avoid overfitting. We do so by introducing the slack variables ξ_n ≥ 0 to penalize (almost-)misclassified points as

$$\xi_n = \begin{cases} 0 & \text{if } t_n y(\boldsymbol{x}_n) \ge 1 \\ |t_n - y(\boldsymbol{x}_n)| & \text{otherwise} \end{cases}$$

▶ The optimal separating hyperplane is given by

$$\underset{\boldsymbol{w},b,\{\xi_n\}}{\operatorname{arg\,min}} \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_n \xi_n$$

subject to $t_n y(\mathbf{x}_n) \geq 1 - \xi_n$ and $\xi_n \geq 0$ for all n, and where C > 0 controls regularization. Its value can be decided by cross-validation. Note that the number of misclassified points is upper bounded by $\sum_n \xi_n$.

► To minimize the previous expression, we minimize with respect to w, b, and En and maximize with respect to an

$$\frac{1}{2}||\boldsymbol{w}||^2 + C\sum_n \xi_n - \sum_n a_n (t_n(\boldsymbol{w}^T \phi(\boldsymbol{x}_n) + b) - 1 + \xi_n) - \sum_n \mu_n \xi_n$$

where $a_n \ge 0$ and $\mu_n \ge 0$ are Lagrange multipliers.

• Setting its derivatives with respect to \boldsymbol{w} , b and ξ_n to zero gives

$$\mathbf{w} = \sum_{n} a_{n} t_{n} \phi(\mathbf{x}_{n})$$
$$0 = \sum_{n} a_{n} t_{n}$$
$$a_{n} = C - \mu_{n}$$

 Replacing these in the Lagrangian function gives the dual representation of the problem, in which we maximize

$$\sum_{n} a_{n} - \frac{1}{2} \sum_{n} \sum_{m} a_{n} a_{m} t_{n} t_{m} k(\boldsymbol{x}_{n}, \boldsymbol{x}_{m})$$

subject to $a_n \ge 0$ and $a_n \le C$ for all n, because $\mu_n \ge 0$.

When the Lagrangian function is maximized, the Karush-Kuhn-Tucker conditions hold for all n:

$$a_n(t_n y(\mathbf{x}_n) - 1 + \xi_n) = 0$$
$$\mu_n \xi_n = 0$$

- ▶ Then, $a_n > 0$ if and only if $t_n y(\mathbf{x}_n) = 1 \xi_n$ for all n. The points with $a_n > 0$ are called support vectors and they lie
 - on the margin if $a_n < C$, because then $\mu_n > 0$ and thus $\xi_n = 0$, or
 - inside the margin (even on the wrong side of the decision boundary) if $a_n = C$, because then $\mu_n = 0$ and thus ξ_n is unconstrained.

Since the optimal w takes the same form as in the linearly separable case, classifying a new point is done the same as before. Finding b is done the same as before by considering any support vector \mathbf{x}_n with $0 < a_n < C$.

- Not covered topics:
 - Classifying into more than two classes.
 - Returning class posterior probabilities.

- Consider regressing an unidimensional continuous random variable on a D-dimensional continuous random variable.
- ▶ Consider a training set $\{(x_n, t_n)\}$. Consider using the linear model

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$$

 To get a sparse solution, instead of minimizing the classical regularized error function

$$\frac{1}{2}\sum_{n}(y(\boldsymbol{x}_{n})-t_{n})^{2}+\frac{\lambda}{2}||\boldsymbol{w}||^{2}$$

consider minimizing the ϵ -insensitive regularized error function

$$C\sum_{n}E_{\epsilon}(y(\boldsymbol{x}_{n})-t_{n})+\frac{1}{2}||\boldsymbol{w}||^{2}$$

where C > 0 controls regularization and

$$E_{\epsilon}(y(\mathbf{x}) - t) = \begin{cases} 0 & \text{if } |y(\mathbf{x}) - t| < \epsilon \\ |y(\mathbf{x}) - t| - \epsilon & \text{otherwise} \end{cases}$$

Figure 7.6 Plot of an ←insensitive error function (in red) in which the error increases linearly with distance beyond the insensitive region. Also shown for comparison is the quadratic error function (in green).

- ▶ The values of C and ϵ can be decided by cross-validation.
- Consider the slack variables $\xi_n \ge 0$ and $\widehat{\xi}_n \ge 0$ such that

$$\xi_n = \begin{cases} t_n - y(\mathbf{x}_n) - \epsilon & \text{if } t_n > y(\mathbf{x}_n) + \epsilon \\ 0 & \text{otherwise} \end{cases}$$

and

$$\widehat{\xi}_n = \begin{cases} y(\mathbf{x}_n) - \epsilon - t_n & \text{if } t_n < y(\mathbf{x}_n) - \epsilon \\ 0 & \text{otherwise} \end{cases}$$

The optimal regression curve is given by

$$\underset{\pmb{w},b,\{\xi_n\},\{\widehat{\xi_n}\}}{\arg\min} C \sum_n (\xi_n + \widehat{\xi_n}) + \frac{1}{2} ||\pmb{w}||^2$$

subject to $\xi \ge 0$, $\widehat{\xi}_n \ge 0$, $t_n \le y(\boldsymbol{x}_n) + \epsilon + \xi_n$ and $t_n \ge y(\boldsymbol{x}_n) - \epsilon - \widehat{\xi}_n$.

▶ To minimize the previous expression, we minimize with respect to w, b, ξ_n and $\widehat{\xi}_n$ and maximize with respect to a_n

$$C \sum_{n} (\xi_{n} + \widehat{\xi}_{n}) + \frac{1}{2} ||\mathbf{w}||^{2} - \sum_{n} (\mu_{n} \xi_{n} + \widehat{\mu}_{n} \widehat{\xi}_{n})$$
$$- \sum_{n} a_{n} (y(\mathbf{x}_{n}) + \epsilon + \xi_{n} - t_{n}) - \sum_{n} \widehat{a}_{n} (t_{n} - y(\mathbf{x}_{n}) + \epsilon + \widehat{\xi}_{n})$$

where $\mu_n \ge 0$, $\widehat{\mu}_n \ge 0$, $a_n \ge 0$ and $\widehat{a}_n \ge 0$ are Lagrange multipliers.

• Setting its derivatives with respect to \mathbf{w} , b, ξ_n and $\widehat{\xi}_n$ to zero gives

$$\mathbf{w} = \sum_{n} (a_{n} - \widehat{a}_{n}) \phi(\mathbf{x}_{n})$$

$$0 = \sum_{n} (a_{n} - \widehat{a}_{n})$$

$$C = a_{n} + \mu_{n}$$

$$C = \widehat{a}_{n} + \widehat{\mu}_{n}$$

▶ The prediction for a new point x is made according to the kernel method

$$y(\mathbf{x}) = \sum (a_n - \widehat{a}_n) \phi(\mathbf{x}_n)^T \phi(\mathbf{x}) + b = \sum (a_n - \widehat{a}_n) k(\mathbf{x}, \mathbf{x}_n) + b$$

 Replacing the expressions above in the Lagrangian function gives the dual representation of the problem, in which we maximize

$$\frac{1}{2}\sum_{n}\sum_{m}(a_{n}-\widehat{a}_{n})(a_{m}-\widehat{a}_{m})k(\boldsymbol{x}_{n},\boldsymbol{x}_{m})-\epsilon\sum_{n}(a_{n}+\widehat{a}_{n})+\sum_{n}(a_{n}-\widehat{a}_{n})t_{n}$$

subject to $a_n \ge 0$ and $a_n \le C$ for all n, because $\mu_n \ge 0$. Similarly for \widehat{a}_n .

When the Lagrangian function is maximized, the Karush-Kuhn-Tucker conditions hold for all n:

$$a_n(y(\mathbf{x}_n) + \epsilon + \xi_n - t_n) = 0$$

$$\widehat{a}_n(t_n - y(\mathbf{x}_n) + \epsilon + \widehat{\xi}_n) = 0$$

$$\mu_n \xi_n = 0$$

$$\widehat{\mu}_n \widehat{\xi}_n = 0$$

▶ Then, $a_n > 0$ if and only if $y(x_n) + \epsilon + \xi_n - t_n = 0$, which implies that x_n lies on or above the upper margin of the ϵ -tube. Similarly for $\widehat{a_n} > 0$.

▶ The prediction for a new point x is made according to

$$y(\mathbf{x}) = \sum_{m \in \mathcal{S}} (a_m - \widehat{a}_m) k(\mathbf{x}, \mathbf{x}_m) + b$$

where ${\cal S}$ are the indexes of the support vectors. Sparse kernel method !

▶ To find *b*, consider any support vector \mathbf{x}_n with $0 < a_n < C$. Then, $\mu_n > 0$ and thus $\xi_n = 0$ and thus $0 = t_n - \epsilon - y(\mathbf{x}_n)$. Then,

$$b = t_n - \epsilon - \sum_{m \in S} (a_m - \widehat{a}_m) k(\boldsymbol{x}_n, \boldsymbol{x}_m)$$

Summary

- ▶ Kernel trick: It allows to work in the feature space without constructing it.
- Quadratic objective function: It allows to obtain the global optimum for a given kernel and C/ϵ (which are obtained by cross-validation).
- Sparse model: Only the support vectors are needed for classification/regression (compare with kernel models).