# 紧黎曼曲面

Math4013 1.29 版



# 本书为 Raghavan Narasimhan Compact Riemann Surfaces 的非官方 (野生) 中译本. 仅供学习交流.

此书有国内影印版, 请支持正版.

# 目录

| 1         | 代数函数                | 4   |
|-----------|---------------------|-----|
| 2         | 黎曼曲面                | 9   |
| 3         | 全纯函数芽层              | 13  |
| 4         | 代数函数的黎曼曲面           | 15  |
| 5         | 层论初步                | 17  |
| 6         | 向量丛, 线丛与除子          | 28  |
| 7         | 有限性定理               | 33  |
| 8         | Dolbeaut 同构         | 39  |
| 9         | Weyl 引理与 Serre 对偶定理 | 44  |
| 10        | Riemann-Roch 定理及其应用 | 50  |
| 11        | 紧黎曼曲面的更多性质          | 60  |
| <b>12</b> | 超椭圆曲线与典范映射          | 66  |
| 13        | 射影曲线的几何             | 70  |
| 14        | 双线性关系               | 82  |
| <b>15</b> | 雅可比簇与 Abel 定理       | 88  |
| <b>16</b> | <b>黎</b> 曼 ϑ-函数     | 96  |
| <b>17</b> | ⊖ 除子                | 103 |
| 18        | Torelli 定理          | 113 |
| 19        | ○ 的奇异性的黎曼定理         | 118 |
| 20        | 参考文献                | 128 |

#### 代数函数 1

设  $F \in \mathbb{C}[x,y]$  为不可约的二元 (复系数) 多项式, 假设其关于 y 的次数  $\geq 1$ .

由代数学中的高斯引理可知, 若将  $\mathbb{C}[x,y]$  等同于  $\mathbb{C}[x][y]$ , 并且 F 不可约, 则 F 在  $\mathbb{C}(x)[y]$  中也不可约. 其中  $\mathbb{C}(x)[y]$  为 x 的有理函数域上的多项式环. 此外,  $\mathbb{C}[x,y]$  也是 唯一分解整环.

直观地讲, **代数函数**是由方程 F(x,y) 所 "定义" 的隐函数, 其中 f 为  $\mathbb{C}[x,y]$  中的 不可约多项式.

为将上述定义严格讲清楚, 我们需要:

#### 定理. (隐函数定理)

设 f 为定义在  $\left\{(x,y)\in\mathbb{C}^2\Big||x|< r_1,|y|< r_2\right\}$  上的二元全纯函数,其中  $r_1,r_2>0$ . 如果  $f(0,0)=0,\quad \frac{\partial f}{\partial y}(0,0)\neq 0,$  则存在正数  $\varepsilon,\delta>0$  使得对任意  $x\in D_\varepsilon=\left\{z\in\mathbb{C}\Big||z|<\varepsilon\right\},$  方程 f(x,y)=0 存在 唯一知解 g(x) 使得 g(x)

$$f(0,0) = 0, \quad \frac{\partial f}{\partial y}(0,0) \neq 0,$$

唯一的解 y(x), 使得  $|y(x)| < \delta$ , 并且函数  $x \mapsto y(x)$  在  $D_{\varepsilon}$  全纯.

证明. 由于  $\frac{\partial f}{\partial y}(0,0)=0$ , 从而可以取  $\delta>0$  使得当  $0<|y|\leq\delta$  时成立  $f(0,y)\neq0$ . 再取  $\varepsilon > 0$  使得当  $|x| \le \varepsilon$ ,  $|y| = \delta$  时  $f(x,y) \ne 0$  (这是可行的, 因为 f 在紧集  $\{0\} \times \{|y| = \delta\}$ 恒非零).

由辐角原理, 对于  $|x| < \varepsilon$ , 积分

$$\frac{1}{2\pi i} \int_{|y|=\delta} \left( \frac{\partial f}{\partial y}(x,y) \middle/ f(x,y) \right) dy$$

的值 n(x) 是整数, 并且等于函数  $y \mapsto f(x,y)$  在  $|y| < \delta$  内的零点个数; 由  $\delta$  的选取可 知 n(0) = 1. 另一方面, 由于当  $|x| < \varepsilon$ ,  $|y| = \delta$  时  $f(x,y) \neq 0$ , 从而 n(x) 在  $|x| < \varepsilon$  当 中连续. 这表明当  $|x|<\varepsilon$  时, n(x) 恒为 1, 从而 f(x,y)=0 的满足  $|y(x)|<\delta$  的解存在 且唯一.

由公式

$$y(x) = \frac{1}{2\pi i} \int_{|y|=\delta} y \frac{\frac{\partial f}{\partial y}(x,y)}{f(x,y)} \, \mathrm{d}y$$

可知  $x \mapsto y(x)$  全纯 (此公式可由留数定理的直接得到).

记  $F(x,y) = a_0(x)y^n + a_1(x)y^{n-1} + \cdots + a_n(x) \in \mathbb{C}[x,y]$  为不可约多项式, 其中  $n \geq 1$ ; F 不可约, 故  $a_0, a_1, ..., a_n \in \mathbb{C}[x]$  没有非平凡的公因子.

**引理 1.1.** 设  $a\in\mathbb{C}$  使得  $a_0(a)\neq 0$ ,并且不存在  $b\in\mathbb{C}$  使得  $F(a,b)=0=\frac{\partial F}{\partial y}(a,b)$ . 那么存在  $\varepsilon>0$  以及定义在圆盘  $\left\{x\in\mathbb{C}\Big||x-a|<\varepsilon\right\}$  上的 n 个全纯函数  $y_1(x),...,y_n(x)$  满足如下:

$$(i)$$
 若  $i \neq j$ ,  $|x-a| < \varepsilon$ ,  $|x'-a| < \varepsilon$ , 则  $y_i(x) \neq y_j(x')$ ; 并且

$$F(x, y_i(x)) \equiv 0$$
, 任意 $|x - a| < \varepsilon$ ,  $i = 1, ..., n$ .

(ii) 若  $\eta\in\mathbb{C},$   $F(x,\eta)=0,$   $|x-a|<\varepsilon,$  则在 1,2,...,n 当中存在唯一的 i 使得  $\eta=y_i(x).$ 

证明. 由于对任意满足 F(a,b)=0 的 b 都有  $\frac{\partial F}{\partial y}(a,b)\neq 0$ , 并且多项式 F(a,y) 恰有 n 和互异的根  $b_1,...,b_n$ . 取足够小的  $\varepsilon>0$  以及定义在  $|x-a|<\varepsilon$  上的全纯函数  $y_i(x)$  使得  $y_i(a)=b_i$ ,  $F(x,y_i(x))=0$  (这是能做到的, 由隐函数定理保证), 于是当  $\varepsilon$  取得足够小的时候性质 (i) 成立. 而性质 (ii) 也是成立的, 因为方程  $F(x,\eta)=0$  至多有 n 个根.  $\square$ 

**性质 1.1.** 设多项式  $F \in \mathbb{C}[x,y]$  不可约, 则至多存在有限多个  $x \in \mathbb{C}$  使得关于 y 的方程组

$$F(x,y) = 0 = \frac{\partial F}{\partial y}(x,y)$$

有解  $y \in \mathbb{C}$ .

证明.  $^1$  由带余除法算法, 存在多项式  $b_i \in \mathbb{C}[x] (i \geq 0)$  使得  $b_0 = a_0$  [回顾 F =

 $<sup>^1</sup>$ 译者注: 译者以为这个证法较啰嗦. 事实上, 由 F 不可约可知 F 与  $\frac{\partial F}{\partial y}$  互素, 之后在  $\mathbb{C}(x)[y]$  当中使用 Bézout 定理即可.

 $a_0(x)y^n + \cdots + a_n(x)$ ] 以及多项式  $A_j, Q_j \in \mathbb{C}[x, y] \ (j \ge 1)$  使得

$$b_0^n F = A_1 \frac{\partial F}{\partial y} + Q_1, \qquad \deg_y Q_1 < \deg_y \frac{\partial F}{\partial y} = n - 1$$

$$b_1 \frac{\partial F}{\partial y} = A_2 Q_1 + Q_2, \qquad \deg_y Q_2 < \deg_y Q_1$$

$$\vdots$$

$$b_{k-1}Q_{k-2} = A_kQ_{k-1} + Q_k, \quad \deg_y Q_k < \deg_y Q_{k-1}.$$

不妨假设  $\deg_y Q_k = 0$ ,即  $Q_k \in \mathbb{C}[x]$ (否则上述带余除法继续做下去). 我们断言  $Q_k(x) \neq 0$ . 假如  $Q_k \equiv 0$ ,则从上述方程中的最后一个可知, $Q_{k-1}$  的任何满足  $\deg_y P > 0$  的素因子 P 必能整除  $b_{k-1}Q_{k-2}$ ,从而整除  $Q_{k-2}$  [因为  $b_{k-1} \in \mathbb{C}[x]$  且  $\deg_y P > 0$ ]. 再由方程  $b_{k-2}Q_{k-3} = A_{k-1}Q_{k-2} + Q_{k-1}$  可知 P 整除  $b_{k-2}Q_{k-3}$ ,进而整除  $Q_{k-3}$ . 反复如此论证,可知 P 能整除所有的  $Q_j$  ( $j \geq 1$ ),从而整除  $\frac{\partial F}{\partial y}$  与 F,这与 F 的不可约性矛盾. 因此  $Q_k = Q_k(x) \in \mathbb{C}[x]$  非零.

现在, 若  $a,b \in \mathbb{C}$  使得  $F(a,b) = 0 = \frac{\partial F}{\partial y}(a,b)$ , 则从上述方程可知  $Q_1(a,b) = 0$ , 进 而  $Q_2(a,b) = 0, ..., Q_k(a,b) = Q_k(a) = 0$ . 由于  $Q_k \not\equiv 0$ , 从而集合

$$\left\{x\in\mathbb{C}\Big|\exists y\in\mathbb{C},\ F(x,y)=0=\frac{\partial F}{\partial y}(x,y)\right\}\subseteq\left\{x\in\mathbb{C}\Big|Q_k(x)=0\right\}$$

是有限集.

继续前进之前, 我们需要一些拓扑学的预备知识. 以下所有拓扑空间都默认是 Hausdorff 的.

定义. 对于局部紧 (Hausdorff) 空间 X,Y 以及连续映射  $p:X\to Y$ , 如果对 Y 的任何 紧子集 K, 原像  $p^{-1}(K)$  在 X 中紧致, 则称 p 为真映射 (proper map).

**引理 1.2.** 设 X,Y 为局部紧空间, 则真映射  $p:X\to Y$  一定是闭映射 [即把 X 的闭集映为 Y 的闭集].

证明. 设  $A \subseteq X$  为闭集,  $y_0 \in Y$ . 设 K 为  $y_0$  在 Y 中的一个紧邻域. 则  $p(A) \cap K = p(A \cap p^{-1}(K))$  是紧致的 (这是因为 A 是闭集,  $p^{-1}(K)$  是紧集), 从而为 K 的闭集.  $\square$ 

**注记.** 局部紧空间之间的连续映射  $p: X \to Y$  为真映射当且仅当对任何局部紧空间 Z, 乘积映射

$$p \times \mathrm{id}_Z : X \times Z \to Y \times Z, \quad (x, z) \mapsto (p(z), z)$$

为闭映射. 若 X,Y 具有可数拓扑基,则可由以下注记来得出上述断言: 若 X 中的点列  $\{x_1,...,x_n,...\}$  没有极限点,但是  $\{p(x_n)\}_{n\geq 1}$  在 Y 中收敛,则  $X\times\mathbb{R}$  中的闭集  $\left\{(x_n,\frac{1}{n})\Big|n\geq 1\right\}$  的像集不是  $Y\times\mathbb{R}$  的闭集.

此注记中的性质可以用来把真映射的概念推广到非局部紧空间上.

**注记.** 设  $p:X\to Y$  为局部紧空间之间的真映射. 若  $Z\subseteq Y$  在子空间拓扑下是局部紧的,则限制映射  $p|_{p^{-1}(Z)}:p^{-1}(Z)\to Z$  也是真映射. 事实上, Z 的紧子集也是 Y 的紧子集.

**引理 1.3.** 设  $c_1, c_2, ..., c_n \in \mathbb{C}$  不全为零,  $w \in \mathbb{C}$  满足  $w^n + c_1 w^{n-1} + \cdots + c_n = 0$ , 则

$$|w| < 2 \max_{\nu} |c_{\nu}|^{1/\nu}.$$

证明. 设  $c=\max_{\nu}|c_{\nu}|^{1/\nu}>0$ . 记  $z=\frac{w}{c}$ , 则  $z^n+\frac{c_1}{c}z^{n-1}+\cdots+\frac{c_n}{c^n}=0$ . 由于  $|c_{\nu}|\leq c^{\nu}$ , 从而

$$|z|^n \le |z|^{n-1} + \dots + 1.$$

如果  $|z| \geq 2$ ,则有  $1 \leq \frac{1}{|z|} + \dots + \frac{1}{|z|^n} \leq \frac{1}{2} + \dots + \frac{1}{2^n} < 1$ ,从而矛盾.这表明必有 |z| < 2,即 |w| < 2c.

性质 1.2. 设  $F \in \mathbb{C}[x,y], \ F(x,y) = a_0(x)y^n + \cdots + a_n(x), \ a_0 \not\equiv 0.$  记  $V := \left\{ (x,y) \in \mathbb{C}^2 \middle| F(x,y) = 0 \right\}, \ S_0 := \left\{ x \in \mathbb{C} \middle| a_0(x) = 0 \right\}.$  记  $\pi : V \to \mathbb{C}$  为投影映射  $(x,y) \mapsto x.$  则  $\pi|_{\pi^{-1}(\mathbb{C}-S_0)} \to \mathbb{C} - S_0$  为真映射.

证明. 设  $K \subseteq \mathbb{C} - S_0$  为紧集,则存在  $\delta > 0$  使得对任意  $x \in K$  都有  $|a_0(x)| \ge \delta, |a_{\nu}(x)| \le \frac{1}{\delta}$ . 对于  $(x,y) \in V, x \in \pi^{-1}(K)$ , 有

$$y^{n} + \frac{a_{1}(x)}{a_{0}(x)}y^{n-1} + \dots + \frac{a_{n}(x)}{a_{0}(x)} = 0,$$

因此由之前引理可知  $|y| \leq 2 \max_{\nu} \delta^{-2/\nu}$ . 因此  $\pi^{-1}(K)$  是有界集. 又因为  $\pi^{-1}(K) = (K \times \mathbb{C}) \cap V$  为  $\mathbb{C}^2$  的闭集, 故  $\pi^{-1}(K)$  紧致.

定义. 设  $p: X \to Y$  为 (Hausdorff) 空间之间的连续映射. 如果 p 满足以下条件:  $\forall y_0 \in Y$ , 存在  $y_0$  的开邻域 V 使得  $p^{-1}(V)$  形如 X 中的开集的无交并  $\coprod_{j \in \mathcal{J}} U_j$ , 并且对任意  $j \in \mathcal{J}$ ,  $p|_{U_j}$  为  $U_j$  与 V 的同胚, 则称三元组 (X,Y,p) 为覆盖 (covering). 此时也称  $X \not\in Y$  的覆盖.

若开子集  $V \subseteq Y$  满足上述定义中的性质, 则称 Y 被 p 所覆盖.

由定义可知,  $p^{-1}(y)$  的基数是 Y 上的局部常值函数. [沿用定义里的记号, 对任意  $y \in Y$ ,  $p^{-1}(y)$  的基数恰为指标集  $\mathcal{J}$  的基数.] 因此, 若 Y 连通, 则  $p^{-1}(y)$  当中的"点的个数"与 y 无关. 若  $p^{-1}(y)$  是有限 (无限)集, 则称该覆盖是有限 (无限)的. 若对任意  $y \in Y$ ,  $p^{-1}(y)$  恰有 n 个元素, 则称此覆盖为n 叶覆盖.

若  $p: X \to Y, p': X' \to Y$  为 Y 的两个覆盖, 如果存在同胚映射  $\varphi: X' \to X$  使得  $p \circ \varphi = p'$ , 则称 Y 的这两个覆盖**同构**.

#### 例子.

(1) 记  $\Delta = \{z \in \mathbb{C} | |z| < 1\}, \Delta^* = \Delta - \{0\}.$  则对任意  $n \geq 1$ , 映射  $p_n : \Delta^* \rightarrow \Delta^*, z \mapsto z^n$  为 n 叶覆盖.

覆盖空间理论当中的一个标准结果是,  $\Delta^*$  的任何 n 叶覆盖都同构于  $p_n$ .

- (2)  $p: \mathbb{C} \to \mathbb{C}^*$ ,  $p(z) = e^z$  为  $\mathbb{C}^*$  的无限覆盖.
- (3) 设 X, Y 为局部紧空间,  $p: X \to Y$  为局部同胚 [即对任意  $z \in X$ , 存在 a 的开邻域 U 使得 V:=p(U) 为 Y 的开集, 并且  $p|_U$  为映到 V 的同胚].则 p 为有限覆盖当且仅当 p 为真映射.

证明. 若 p 为有限覆盖, 则对  $y_0 \in Y$  以及  $y_0$  的被 p 覆盖的开邻域 V,  $p|_{p^{-1}(V)}$  显然是真映射. 由此易知  $^2$  p 是真映射.

<sup>&</sup>lt;sup>2</sup>译者注: 原文的确稍微跳过了一些点集拓扑的细节, 请读者自行补充之, 作为练习.

反之, 若 p 为局部同胚且为真映射, 任取  $y_0 \in Y$ , 记  $p^{-1}(y_0) = \{x_1, ..., x_n\}$ . 设  $U_j'$  为  $x_j$  的开邻域, 并且使得  $p|_{U_j'}$  为映到  $V_j := p(U_j')$  的同胚. 由 p 为真映射, 以及  $X - \bigcup_{j=1}^n U_j'$ 

为 X 的闭集, 从而  $E:=p\left(X-\bigcup_{j=1}^n U_j'\right)$  为 Y 的闭集. 显然  $y_0\not\in E$ . 记 V:=Y-E.

则  $p^{-1}(V) \subseteq U'_1 \cup \cdots \cup U'_n$ ,  $V \subseteq V_1 \cap \cdots \cap V_n$ . 记  $U_j := U'_j \cap p^{-1}(V)$ , 则  $p^{-1}(V) = \bigcup_{j=1}^n U_j$ ,  $p|_{U_j}$  为映到 V 的同胚.

设  $F \in \mathbb{C}[x,y]$  为不可约多项式,  $F(x,y) = a_0(x)y^n + \cdots + a_n(x)$ . 记  $S_0 = \left\{x \in \mathbb{C} \middle| a_0(x) = 0\right\}$ ,  $S_1 = \left\{x \in \mathbb{C} \middle| \exists y \in \mathbb{C}, F(x,y) = 0 = \frac{\partial F}{\partial y}(x,y)\right\}$ . 那么, 若  $V = \left\{(x,y) \in \mathbb{C}^2 \middle| F(x,y) = 0\right\}$ ,  $\pi: V \to \mathbb{C}$  为投影  $(x,y) \to x$ , 则

$$\pi|_{\pi^{-1}(\mathbb{C}-(S_0\cup S_1))}\longrightarrow \mathbb{C}-(S_0\cup S_1)$$

为 (n 叶) 有限覆盖.

上述断言可有由性质 1.2 与隐函数定理得到.

在介绍如何用  $S_0 \cup S_1$  当中的点与  $\mathbb{C}$  中的无穷远点  $\infty$  对集合 V 适当调整使得 "完备化" 之前, 我们先来介绍黎曼曲面及其相关概念.

# 2 黎曼曲面

设 X 为二维流形 (即 Hausdorff 空间, 并且每一点都有同胚于  $\mathbb{R}^2$  中的开集的邻域). 考虑二元组  $(U,\varphi)$ , 其中 U 为 X 的开集,  $\varphi:U\to\varphi(U)\subseteq\mathbb{C}$  为映到  $\mathbb{C}$  中开集的同胚.

称两个这样的二元组  $(U_1, \varphi_1)$ ,  $(U_2, \varphi_2)$  是 (全纯) **相容**的, 如果映射  $\varphi_2 \circ \varphi_1^{-1}$ :  $\varphi_1(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2)$  为全纯映射. 此时由复分析的标准结果可知该映射的逆映射也是全纯的.

X 上的**复结构**是指由一些二元组  $(U,\varphi)$  构成的集合族  $\mathcal{S}$ , 使得  $\mathcal{S}$  中的二元组两两相容并且  $\bigcup U=X$ ; 给定复结构  $\mathcal{S}$ , 存在唯一的满足上述两条性质的且包含  $\mathcal{S}$  的极大

的二元组族; 于是我们通常假设复结构是极大的. (极大的) 复结构之中的二元组  $(U,\varphi)$  称为**坐标卡** (chart) 或者**坐标邻域** (coordinate neighbourhood). 在坐标卡中, 我们常将  $U \vdash \varphi(U)$  等同, 像通常的复变量那样把  $\varphi$  的自变量记作 z.

带有复结构的二维连通流形 X 称为**黎曼曲面**. 我们常假定 X 具有可数拓扑基, 尽管 Radó 的某定理 (详见 [4]) 断言此假定自动成立.

设 X 为黎曼曲面,  $\Omega \subseteq X$  为开集,  $f:\Omega \to \mathbb{C}$  连续. 如果对 X 的任意坐标卡  $(U,\varphi)$ , 函数  $f \circ \varphi^{-1}: \varphi(\Omega \cap U) \to \mathbb{C}$  全纯, 则称 f 全纯.

设 X,Y 为黎曼曲面,  $f:X\to Y$  连续. 如果对 Y 的任何坐标卡  $(V,\psi)$ , 函数  $\psi\circ f:f^{-1}(V)\to\psi(V)\subseteq\mathbb{C}$  是全纯的, 则称映射 f 全纯.

黎曼曲面之间的非常值全纯映射是开映射. 全纯双射  $f: X \to Y$  的逆映射  $f^{-1}: X \to Y$  也全纯. 全纯双射也叫做**解析同构**或者**双全纯映射**.

#### 例子.

(1) 复射影直线 = 黎曼球面. 设  $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$  为复平面  $\mathbb{C}$  的单点紧化. 记  $U_1 = \mathbb{P}^1 - \{\infty\} = \mathbb{C}$ ,  $\varphi_1 : U_1 \to \mathbb{C}$  为恒等映射;

$$U_2 = \mathbb{P}^1 - \{0\}, \quad \varphi_2(z) = \begin{cases} \frac{1}{z} & z \in \mathbb{C} - \{0\} = \mathbb{C}^* \\ 0 & z = \infty \end{cases}.$$

映射  $\varphi_2 \circ \varphi_1^{-1}$  为  $\mathbb{C}^*$  到自身的映射  $z \mapsto \frac{1}{z}$ . 因此上述两个坐标卡定义了  $\mathbb{P}^1$  的复结构. 这个黎曼曲面称为**复射影直线**或者**黎曼球面**.

(2) 环面. 设  $\tau \in \mathbb{C}$ ,  $\operatorname{Im} \tau > 0$ . 记  $\Lambda = \left\{ m + n\tau \middle| m, n \in \mathbb{Z} \right\}$ .  $\Lambda$  是  $\mathbb{C}$  的加法子群. 考虑商群  $X := \mathbb{C}/\Lambda$  与典范投影  $\pi : \mathbb{C} \to X$ . 在商拓扑下, X 为紧 Hausdorff 空间,  $\mathbb{C} \to X$  为局部同胚. [此断言是下述两者的推论: 若  $a \in \mathbb{C}$ , 则集合  $U := \left\{ a + \lambda + \mu\tau \middle| \lambda, \mu \in \mathbb{R}, -\frac{1}{2} < \lambda, \mu < \frac{1}{2} \right\}$  是开集, 并且  $\pi$  将 U ——地映到 X 的某开子集; 此外 X 为紧集  $\overline{U}(U$  的闭包) 的像 ( $\forall a \in \mathbb{C}$ ).  $\pi$  其实是覆盖映射. ] X 的坐标卡  $(U, \varphi)$  如下选取: 设 V 为  $\mathbb{C}$  的开子集, 且满足  $\pi|_V$  为映到 X 的开子集 U 的同胚; 记  $\varphi := (\pi|_V)^{-1}: U \to V \subseteq \mathbb{C}$ . 任意两个如此构造的二元组

 $(U_1,\varphi_1),(U_2,\varphi_2)$  都全纯相容: 显然对任意  $z\in\varphi_1(U_1\cap U_2)$  都有  $\pi(\varphi_2\circ\varphi_1^{-1}(z))=$ 

 $\pi(z)$ , 从而  $\varphi_2 \circ \varphi_1^{-1}(z) - z \in \Lambda$ ,  $\forall z \in \varphi_1(U_1 \cap U_2)$ , 从而必然在其连通分支上为常值 [因为  $\varphi_2 \circ \varphi_1^{-1}$  连续, 而  $\Lambda$  离散].

上述构造的黎曼曲面 X 称为**环面**或者**椭圆曲线**.

(3) "高亏格" 曲面. 设 g 是大于 1 的整数, 0 < r < 1. 记  $\Delta := \{z \in \mathbb{C} | |z| < 1\}$ . 则存在唯一的双全纯映射  $T : \Delta \to \Delta$  使得  $T(r) = re^{3\pi i/2g}$ ,  $T(re^{\pi i/2g}) = re^{2\pi i/2g}$ . 记  $\sigma : \Delta \to \Delta$  为旋转映射  $z \mapsto ze^{2\pi i/4g}$ .

对  $k \in \mathbb{Z}$ , 记

$$A_k = \sigma^{4k} T \sigma^{-4k}, \quad B_k = \sigma^{4k+1} T \sigma^{-4k-1}.$$

记  $\Gamma$  为由  $A_k, B_k$  ( $k \in \mathbb{Z}$ ) 生成的  $\Delta$  的双全纯变换群.

Poincaré 的某定理的一个特例表明, 存在 0 < r < 1 使得群  $\Gamma$  在  $\Delta$  的作用是自由 (没有不动点) 且不连续的, 并且商空间  $\Delta/\Gamma$  紧致. [此定理及其证明详见 de Rham 的优美文章 Sur les polygônes générateurs de groupes Fuchsiens, L'Enseignement Mathématique, 1971, pp.47-61]. 可以证明典范投影  $\pi: \Delta \to \Delta/\Gamma$  为覆盖映射; 与环面情形类似, 可通过  $\pi$  得到  $\Delta/\Gamma$  的复结构并且使得  $\pi$  为全纯映射.

(4) 设 Y 为黎曼曲面,X 为二维连通流形, $p: X \to Y$  为局部同胚. 则 X 存在唯一的复结构使得 p 全纯. 此复结构如下构造: 设 U 为 X 的开集,使得  $p|_U$  为映到 Y 的开集 V 的同胚,并且存在某个  $j \in \mathcal{J}$  使得  $V \subseteq V_j$ ,其中  $\{(V_j,\psi_j)_{j\in\mathcal{J}}\}$  为 Y 的给定的复结构. 定义  $\varphi_U: U \to \mathbb{C}$  为  $\varphi_U = \psi_j \circ p$ . 则容易验证两个如此定义的  $(U,\varphi_U),(U',\varphi_{U'})$  全纯相容,于是由此得到 X 的复结构,且 p 在此复结构下全纯. 而唯一性则是如下结论的推论: 设  $U \subseteq X$  为 X 的开集, $p|_U$  为映到  $V \subseteq Y$  的同 X 的 Y 全纯,则 Y 全纯,则 Y 企业

设黎曼曲面 X 上的全纯函数  $p: X \to \mathbb{C}$  也是局部同胚. 我们将  $\mathbb{C}$  视为  $\infty \in \mathbb{P}^1$  的补集, 也把 p 视为局部同胚  $p: X \to \mathbb{P}^1$ .

我们来定义 X 的边界点. 设  $\{x_{\nu}\}_{\nu>1}$  为 X 的点列, 并且满足以下三条:

- (1)  $\{x_{\nu}\}$  是离散的 (即在 X 中不存在极限点);
- (2)  $\{p(x_{\nu})\}$  收敛于某点  $a \in \mathbb{P}^1$ ;
- (3) 当  $a \in \mathbb{C}$  时记  $D_{\varepsilon} := \left\{ z \in \mathbb{C} \middle| |z a| < \varepsilon \right\}$ , 而  $a = \infty$  时记  $D_{\varepsilon} := \left\{ z \in \mathbb{C} \middle| |z| < \frac{1}{\varepsilon} \right\} \cup \{\infty\}$ . 那么对足够小的  $\varepsilon > 0$ ,  $\{x_{\nu}\}$  当中至多除去有限个例外, 所有的点都在

 $p^{-1}(D_{\varepsilon})$  的同一个连通分支.

对于满足上述三条性质的点列  $\{x_{\nu}\}$  与  $\{y_{\nu}\}$ , 如果点列

$$z_{\nu} := \begin{cases} x_{\frac{\nu+1}{2}} & \nu \text{为奇数} \\ y_{\frac{\nu}{2}} & \nu \text{为偶数} \end{cases}$$

依然满足此三条性质 [即  $\lim p(x_{\nu}) = \lim p(y_{\nu}) = a$ ,并且  $p^{-1}(D_{\varepsilon})$  的某个连通分支包括  $x_{\nu}, y_{\nu}$  中的几乎所有点,至多有限个点例外],则称这两个点列等价.

X 的 (关于映射 p 的) **边界点** 是指满足那三条性质的点列在上述等价关系下的等价类. 记  $\tilde{X} := X \cup \{X$ 的边界点 $\}$ .

设 P 是 X 的由点列  $\{x_{\nu}\}_{\nu\geq 1}$  定义的边界点. 定义 P 在  $\tilde{X}$  中的邻域如下. 取充分小的  $\varepsilon>0$ ,以及  $D_{\varepsilon}=\left\{z\Big||z-a|<\varepsilon\right\}$   $(a\in\mathbb{C})$  或者  $D_{\varepsilon}=\left\{z\Big||z|>\frac{1}{\varepsilon}\right\}\cup\{\infty\}$   $(a=\infty)$ ,其中  $a:=\lim p(x_{\nu})$ . 记  $\Omega_{\varepsilon}$  为  $p^{-1}(D_{\varepsilon})$  的包括几乎所有点  $x_{\nu}$ (至多有限个点例外) 的那个连通分支,再记  $\tilde{\Omega}_{\varepsilon}$  为  $\Omega_{\varepsilon}$  与满足以下性质的边界点 Q 构成的集合之并: 若边界点 Q 被点列  $\{y_{\nu}\}_{\nu\geq 1}$  定义,则  $\{\nu\Big|y_{\nu}\not\in\Omega_{\varepsilon}\}$  有限 [此性质与 Q 的代表元  $\{y_{\nu}\}$  选取无关]. 我们规定  $\tilde{\Omega}_{\varepsilon}$   $(\varepsilon>0$  足够小) 构成边界点  $P\in\tilde{X}-X$  的邻域基.

 $\tilde{X}$  的上述拓扑是 Hausdorff 的: 设 P,Q 分别为 X 的由  $\{x_{\nu}\}$ ,  $\{y_{\nu}\}$  所定义的边界点,并且  $P \neq Q$ ; 则由点列等价关系的定义,存在  $\varepsilon > 0$  使得  $p^{-1}(D_{\varepsilon})$  分别包含点列  $\{x_{\nu}\}$  与  $\{y_{\nu}\}$  的几乎所有 (至多有限个例外) 点的连通分支  $\Omega_{\varepsilon,1}$  与  $\Omega_{\varepsilon,2}$  不相同,并且  $\tilde{\Omega}_{\varepsilon,1} \cap \tilde{\Omega}_{\varepsilon,2} = \varnothing$ . 此外,p 显然可以延拓为连续映射  $\tilde{p}: \tilde{X} \to \mathbb{P}^1$ ,使得  $\tilde{p}(P) = a = \lim p(x_{\nu})$ .

如果 X 的边界点 P 满足: 对于  $a := \tilde{p}(P)$  的足够小的邻域  $D_{\varepsilon}$  以及  $p^{-1}(D_{\varepsilon})$  的包含定义 P 的点列的几乎所有 (至多有限个例外) 点的连通分支  $\Omega$ , 则  $p(\Omega) \subseteq D_{\varepsilon} - \{a\}$  且  $p: \Omega \to D_{\varepsilon} - \{a\}$  为有限覆盖; 则称 P 为 X 的**代数边界点**.

记  $\Delta_R:=\left\{z\in\mathbb{C}\Big||z|< R\right\},\ \Delta_R^*:=\Delta_R-\{0\},\ \text{则存在}\ n\geq 1$  使得映射  $p:\Omega\to D_\varepsilon-\{a\}$  同构于  $p_n:\Delta_{\varepsilon^{1/n}}^*\to D_\varepsilon-\{a\},\ \text{其中}\ p_n(z)=a+z^n\ (若\ a\in\mathbb{C})$  或者  $p_n(z)=z^{-n}\ (若\ a=\infty)$  [见上一节例子 1]. 此时, P 在  $\tilde{X}$  中的邻域  $\tilde{\Omega}=\Omega\cup\{P\}$  不含 X 的其它边界点. 由于  $p|_\Omega$  同构于上述  $p_n$ , 从而存在同胚  $\varphi:\tilde{\Omega}\to\Delta_{\varepsilon^{\frac{1}{n}}}$  使得  $\varphi(P)=0$ , 且在  $\Delta_{\varepsilon^{\frac{1}{n}}}^*$  当中成立  $p\circ\varphi^{-1}=p_n$ . 显然  $\varphi|_\Omega$  全纯.

记  $\hat{X} := X \cup \{X$ 的代数边界点 $\}$ . 我们可以通过代数边界点  $P \in \hat{X} - X$  的上述构

造的二元组  $(\tilde{\Omega}, \varphi)$  将 X 的复结构延拓至  $\hat{X}$ . 记  $\hat{p} := \tilde{p}|_{\hat{X}}$ . 二元组  $(\hat{X}, \hat{p})$  称为 (X, p) 的 (代数) 完备化 (algebraic completion). 映射  $\hat{p} : \hat{X} \to \mathbb{P}^1$  是全纯的,但不一定是局部同胚. 沿用之前记号,若 P 为代数边界点, $\Omega$  为  $D_{\varepsilon} - \{a\}$  的 n 叶覆盖 (n > 1),则  $\hat{p}$  在点 P 处不是局部同胚.

本节所述的这些构造将用来得到全纯函数的黎曼曲面,这正是黎曼本人当初的想法. 在此之前,我们先引入黎曼曲面上的全纯函数芽层.

### 3 全纯函数芽层

设 X 为黎曼曲面,  $a \in X$ . 考虑二元组 (U,f), 其中 U 为 a 的开邻域, f 为 U 上的 全纯函数. 对于这样的两个二元组 (U,f), (V,g), 如果存在 a 的开邻域  $W \subseteq U \cap V$  使得  $f|_W = g|_W$ , 则称这两个二元组等价, 也称它们定义了点 a 处的同一个函数芽. (U,f) 所在的等价类称为 f 在 a 处的**芽** (germ), 记作  $\underline{f}_a$ . 芽  $\underline{f}_a$  在 a 处的取值  $\underline{f}_a(a) := f(a)$ , 其中任取  $\underline{f}_a$  的代表元 (U,f).

若取坐标卡  $(U,\varphi)$  使得  $a\in U, \varphi(a)=0$  并且将 U 上的函数等同于  $\varphi(U)$  上的函数,则我们也可以谈论芽  $\underline{f}_a$  在 a 处的导数值:

$$\underline{f}_a^{(k)}(a) = \left(\frac{\mathrm{d}}{\mathrm{d}z}\right)^k f \circ \varphi^{-1}|_{z=0},$$

其中任取  $\underline{f}_a$  的代表元 (V, f).

记  $\mathcal{O}_a$  为点 a 处的全体芽构成的集合.  $\mathcal{O}_a$  显然是环, 而且是  $\mathbb{C}$ -代数.  $\mathcal{O}_a$  中的满足  $\underline{f}_a(a)=0$  的芽  $\underline{f}_a$  构成的集合  $\mathfrak{m}_a$  是  $\mathcal{O}_a$  的理想; 补集  $\mathcal{O}_a-\mathfrak{m}_a$  由  $\mathcal{O}_a$  的全体可逆元构成  $[\underline{f}_a$  在  $\mathcal{O}_a$  中可逆  $\iff$   $\underline{f}_a(a)\neq 0]$  , 从而  $\mathfrak{m}_a$  是  $\mathcal{O}_a$  的唯一的极大理想.

若取上述坐标卡,则映射  $\underline{f}_a\mapsto\sum_{n=0}^\infty\frac{1}{n!}\underline{f}_a^{(n)}(a)z^n$  为  $\mathcal{O}_a$  与收敛半径非零的幂级数环之间的  $\mathbb{C}$ -代数同构.

记  $\mathcal{O}_X:=\coprod_{a\in X}\mathcal{O}_a$ (无交并). 我们有时把  $\mathcal{O}_X$  简记为  $\mathcal{O}$ . 再定义映射  $p:\mathcal{O}_X\to X$  使得对任意  $f\in\mathcal{O}_a,\,p(f)=a$ .

对于芽  $\underline{f}_a \in \mathcal{O}_X, \, (U,f)$  为  $\underline{f}_a$  的一个代表元. 记集合  $N(U,f) := \left\{\underline{f}_x \middle| x \in U\right\}$ ,即

由函数 f 与 U 中的点所定义的芽之全体. 我们再定义  $\mathcal{O}_X$  的拓扑, 使得当 (U,f) 跑遍  $\underline{f}_x$  的所有代表元时,  $\{N(U,f)\}$  构成  $\underline{f}_x$  的邻域基.

引理.  $\mathcal{O}_X$  的上述拓扑是 Hausdorff 的, 并且映射  $p: \mathcal{O}_X \to X$  是局部同胚.

证明. 设  $\underline{f}_a, \underline{g}_b \in \mathcal{O}_X$  并假设  $\underline{f}_a \neq \underline{g}_b$ . 我们只需证明它们可被开集分离, 考虑以下两种情况:

- 1).  $a \neq b$ . 此时分别取  $\underline{f}_a$ ,  $\underline{g}_b$  的代表元 (U,f) 与 (V,g), 使得  $a \in U, b \in V$ . 不妨适当选取 (缩小)U,V 使得  $U \cap V = \varnothing$ , 从而  $N(U,f) \cap N(V,g) = \varnothing$ .
- 2). a=b. 设 U 为 a 的连通开邻域, f,g 为 U 上的全纯函数使得二元组 (U,f), (V,g) 分别定义了  $\underline{f}_a$ ,  $\underline{g}_a$ . 断言  $N(U,f)\cap N(U,g)=\varnothing$ . 这是因为, 若存在  $\underline{h}_x$   $(x\in U)$  属于二者的交集, 则 f,g 在 x 处都定义了芽  $\underline{h}_x$ , 从而 f,g 在 x 的某邻域相等. 又因为 U 连通, 从而解析延拓原理表明  $f\equiv g$ , 于是  $\underline{f}_a=\underline{g}_a$ , 矛盾.

因此  $\mathcal{O}_X$  是 Hausdorff 的.

此外,若 U 为 X 的开集,f 在 U 全纯,则 p(N(U,f))=U 并且  $p|_{N(U,f)}$  为单射,且 逆映射为  $x\mapsto \underline{f}_x(=f$  在 x 处的芽).由此可知 p 满足此引理所述性质.

**注记.** 若 X 具有可数拓扑基,则可直接证明  $\mathcal{O}_X$  的任何连通分支具有可数拓扑基. 这 是 Poincaré-Volterra 定理 [其叙述与证明可见 [7]] 的推论.

现在我们来构造"解析函数的黎曼曲面".

设  $X=\mathbb{C}$ , 考虑  $\mathcal{O}_{\mathbb{C}}$ . 设 M 为  $\mathcal{O}_{\mathbb{C}}$  的一个连通分支,  $p:M\to\mathbb{C}\subseteq\mathbb{P}^1$  为之前构造的映射  $\underline{f}_a\mapsto a$  在 M 上的限制映射; 则  $p:M\to\mathbb{C}$  为局部同胚, 从而 M 存在唯一的黎曼曲面结构使得 p 为全纯映射; 于是 p 为局部解析同构, 即对任意  $a\in M$  都存在 a 的开邻域 U 使得  $p|_U$  为 U 与 p(U) 的解析同构.

定义 M 上的全纯函数 h,使得  $h(\underline{f}_a) = \underline{f}_a(a)$  [若 (U,f) 为  $\underline{f}_a$  的代表元并且 U 连 通,则  $N(U,f) \subseteq M$  并且对任意  $x \in U$  都成立  $h(\underline{f}_x) = f(x)$ ,所以 h 是全纯的] . 直观地讲,如此"万有 (universal) 函数" h 描述了给定  $\underline{f}_x \in M$  的能通过"解析延拓"所得到的所有的芽.

记  $\hat{M} := M \cup \{M$ 的代数边界点 $\}$ , 再记  $\hat{p} : \hat{M} \to \mathbb{P}^1$  为  $p : M \to \mathbb{C}$  延拓而成的全纯

映射.

设 U 为  $\mathbb C$  的连通开集, f 为 U 上的全纯函数. 假设 (U,f) 定义了某点  $a\in U$  的芽  $\underline{f}_a\in M$  [因为 U 连通, 从而实际上对任何  $a\in U$  都有  $\underline{f}_a\in M$ ] .

 $E:=\hat{M}-M$  为  $\hat{M}$  的离散点集, 再记 h 为之前定义的 M 上的 "万有函数". 设  $X_f$  为 M 与 E 中的 h 的非本性奇点 [即 h 的可去奇点或极点] 构成的集合的并集. 因此存在定义在  $X_f$  上的亚纯函数  $h_f$  使得  $h_f|_M=h$ . 再记  $p_f:X_f\to\mathbb{P}^1$  为  $\hat{p}$  的限制.

三元组  $(X_f, p_f, h_f)$  称为 U 上的**函数** f **的黎曼曲面**.

设  $P \in X_f - M$ ,  $p_f(P) = a$ . 则在 P 附近, 映射  $p_f 与 z \mapsto a + z^n (n \ge 1)$  或者  $z \mapsto z^{-n}$  等价. 因此可适当选取  $X_f$  的 P 附近的局部坐标 z 以及  $\mathbb{P}^1$  的 a 附近的局部坐标 w, 使得  $p_f 与 h_f$  在该局部坐标下形如

$$\begin{cases} w = z^n \\ h_f = \sum_{\nu = -k}^{\infty} a_{\nu} w^{\nu/n} \quad (= \sum_{\nu = -k}^{\infty} a_{\nu} z^{\nu}). \end{cases}$$

# 4 代数函数的黎曼曲面

设  $F(x,y) = a_0(x)y^n + a_1(x)y^{n-1} + \cdots + a_n(x) \in \mathbb{C}[x,y]$  为不可约多项式,记  $V := \left\{ (x,y) \in \mathbb{C}^2 \middle| F(x,y) = 0 \right\}$ . 再记  $S_0 := \left\{ x \in \mathbb{C} \middle| a_0(x) = 0 \right\}$ ,  $S_1 := \left\{ x \in \mathbb{C} \middle| \exists y \in \mathbb{C}, F(x,y) = 0 = \frac{\partial F}{\partial y}(x,y) \right\}$ , 以及  $S := S_0 \cup S_1 \cup \{\infty\} \subseteq \mathbb{P}^1$ . 令  $\pi : V \to \mathbb{C}$  为投影映射  $(x,y) \mapsto x$ ,  $V' := V - \pi^{-1}(S) = V - \pi^{-1}(S_0 \cup S_1)$ ,  $\pi' := \pi|_{V'}$ . 我们已经知道,若  $D_\varepsilon$  为以点  $a \in S$  为中心的开圆盘 [若  $a = \infty$ ,则  $D_\varepsilon = \{|z| > \frac{1}{\varepsilon}\} \cup \{\infty\}$ ],则  $\pi'|_{\pi^{-1}(D_\varepsilon - \{a\})} \to D_\varepsilon - \{a\}$  为  $[n \ \text{th}]$  有限覆盖. 特别地,  $\pi^{-1}(D_\varepsilon - \{a\})$  只有有限多个连通分支. 此外,若 W 为 V' 的一个连通分支,则  $\pi'|_W$  也是覆盖映射,从而将 W 映满  $\mathbb{P}^1 - S$ . 因此 V' 只有有限多个连通分支. [我们后面将证明,V' 其实是连通集.]

设  $W_1,...,W_r$  为 V' 的各连通分支. 于是  $\pi_j:=\pi|_{W_j}\to\mathbb{P}^1-S$  为有限覆盖, 因此  $W_j$  的边界点都是代数边界点. 记  $\hat{\pi}_j:\hat{W}_j\to\mathbb{P}^1$  为  $\pi_j:\mathbb{P}^1-S$  的代数完备化. 若  $P\in\hat{W}_j-W_j$ ,  $a=\hat{\pi}_j(P)$ , 则存在 P 的邻域  $U,\varepsilon>0$  以及某正整数 m 使得  $\hat{\pi}_j|_U\to D_\varepsilon$  同构于映射  $z\mapsto a+z^m$  [或者  $z\mapsto z^{-m}$ ]. 于是特别地,  $\hat{\pi}_j|_U\to D_\varepsilon$  为真映射 (proper

map). 这表明, 对任意  $a \in S$ , 存在  $\varepsilon > 0$  使得  $\hat{\pi}_j|_{\hat{\pi}_j^{-1}(D_{\varepsilon})} \to D_{\varepsilon}$  为真映射. 又因为  $\hat{\pi}_j|_{W_j} \to \mathbb{P}^1 - S$  为真映射, 所以  $\hat{\pi}_j : \hat{W}_j \to \mathbb{P}^1$  为真映射, 因此  $\hat{W}_j$  紧致.

记  $p_2: V \to \mathbb{C}$  为向第二个分量的投影  $(x,y) \mapsto y$ , 则  $\eta := p_2|_{V'}$  是 V' 上的全纯函数, 并且  $\eta_i := \eta|_{W_i}$  也全纯.

断言  $\eta_j$  可延拓为  $\hat{W}_j$  上的亚纯函数. 为此, 任取  $a \in S$ , 记  $P \in \hat{W}_j$  使得  $\hat{\pi}_j(P) = a$ . 取 P 附近的局部坐标 z 与 a 附近的局部坐标 w, 使得  $\hat{\pi}_j$  在此局部坐标下形如  $z \mapsto z^m = w$ . 若 U 为点 P 的小邻域, 则由 V 与  $\eta$  的定义可知当  $z \neq 0$  时成立

$$\eta_j^n + \frac{a_1(w)}{a_0(w)} \eta_j^{n-1}(z) + \dots + \frac{a_n(w)}{a_0(w)} = 0, \quad w = \hat{\pi}_j(z).$$

由于  $a_{\nu}/a_0$  在 w=0 处亚纯,从而存在常数 C>0,N>0 使得在 w=0 附近有  $\left|\frac{a_{\nu}(w)}{a_0(w)}\right| \leq \frac{C}{|w|^N}$ . 由引理 1.3,可知存在常数  $C_1$ ,k 使得  $|\eta_j(z)| \leq 2\max_{\nu} \frac{C^{1/\nu}}{|w|^{N/\nu}} \leq \frac{C_1}{|z|^k}$ . 因此  $\eta_i$  可亚纯延拓至  $\hat{W}_i$ .

我们断言 V' 是连通的. 否则,  $\pi_1: W_1 \to \mathbb{P}^1 - S$  为 r 叶覆盖, 其中 1 < r < n.

对于  $x \in \mathbb{P}^1 - S$ , 记  $b_{\nu}(x)$  ( $\nu = 1, ..., r$ ) 为关于  $y_1, ..., y_r$  的第  $\nu$  个初等对称多项式, 其中  $y_j$  为函数  $\eta_1$  在  $\pi_1^{-1}(x)$  里的第 j 个点处的取值. 由  $\eta_1$  的定义可知,  $y_j$  为向第二分量的投影映射  $p_2$  在点 (x,y) 处的取值, 于是  $F(x,y_j) = 0$ , j = 1, ..., r.

断言  $b_{\nu}$  可亚纯延拓至  $\mathbb{P}^1$ . 事实上, 由于  $y_j$  为  $\hat{W}_1$  上的亚纯函数  $\eta_1$  的值, 从而在  $a \in S$  附近有如下估计:

$$|b_{\nu}(x)| = \left| \sum_{i_1, \dots, i_{\nu}} \eta_1(P_{i_1}) \cdots \eta_1(P_{i_{\nu}}) \right| \le C|z|^{-\ell}$$
  
  $\le C_1|x-a|^{-\ell'}$  (若  $a = \infty$  则这里换成 $C_1|x|^{-\ell'}$ )

[其中  $\{P_1,...,P_r\} = \pi_1^{-1}(x)$ .] 从而  $b_{\nu}$  为  $\mathbb{P}^1$  上的亚纯函数, 从而是关于 x 的有理函数.

记  $G(x,y)=y^r+b_1(x)y^{r-1}+\cdots+b_r(x)$ . 于是对  $x\in\mathbb{P}^1-S,\ G(x,y)$  的根 [视 y 为未知数] 也是 F(x,y) 的根. 因此在  $\mathbb{C}(x)[y]$  当中 G 整除 F; 又因为  $\deg_y G\geq 1$ , 所以 F 不是不可约的 [Gauss 引理].

因此 V' 连通, 并且其代数完备化  $\hat{W}$  是紧黎曼曲面.  $\hat{W}$  上具有亚纯函数  $\eta$ , 若再记  $\hat{\pi}: \hat{W} \to \mathbb{P}^1$  为  $\pi': V' \to \mathbb{P}^1 - S$  的延拓, 则在  $\hat{W}$  恒成立

$$F(\hat{\pi}(P), \eta(P)) \equiv 0.$$

此构造当然是全纯函数芽的黎曼曲面的特殊情形, 毕竟我们证明了 V' 的连通性. 此命题与下述等价:

设  $a \in \mathbb{P}^1 - S$ , 记  $y_1, ..., y_n$  为满足方程  $F(x, y_j(x)) = 0$  的函数芽. 则对任意 j, 存在  $\mathbb{P}^1 - S$  中的以 a 为起点, 终点的闭曲线  $\gamma$ , 使得  $y_1$  沿  $\gamma$  解析延拓得到  $y_i$ .

# 5 层论初步

设 X 为拓扑空间. X 上的 Abel 群**预层** (presheaf) 是指如下资料:

- (1) 对于每个开集  $U \subseteq X$ , 都配以 Abel 群  $\mathcal{F}(U)$ , 并且  $\mathcal{F}(\emptyset) = \{0\}$  为只有一个元素 的 Abel 群.
- (2) 对于任何满足  $V \subseteq U$  的两个开集 U, V,都配以群同态  $\rho_V^U : \mathcal{F}(U) \to \mathcal{F}(V)$  [称为 **限制映射**],使得满足:
  - (a) 对任意开集 U,  $\rho_U^U$  为  $\mathcal{F}(U)$  上的恒等映射.
  - (b) 若  $W \subseteq V \subseteq U$  为三个开集,则

$$\rho_W^U = \rho_W^V \circ \rho_V^U.$$

若群  $\mathcal{F}(U)$  具有额外的结构 [环,向量空间,  $\mathbb{C}$ -代数...],并且限制映射也保持相应的结构,则我们也可谈论相应的 [环,向量空间,  $\mathbb{C}$ -代数...]的预层.

**例子.** 设 X 为黎曼曲面, 对 X 的开集 U, 即  $\mathcal{O}(U)$  为 U 上的全纯函数构成的  $\mathbb{C}$ -代数. 若开集  $V \subseteq U$ , 映射  $\rho_V^U : \mathcal{O}(U) \to \mathcal{O}(V)$  为通常的函数限制  $f \mapsto f|_V$ .

X 上的预层  $(\mathcal{F}(U), \rho_V^U)$  如果再满足以下两个条件 <sup>3</sup>, 则称为**层** (sheaf): 对任意开集  $U\subseteq X$ , 以及 U 的任何开覆盖  $U=\bigcup U_i$ ,

- (1) 若  $f,g \in \mathcal{F}(U)$ , 并且对任意  $i \in \mathcal{I}$  都有  $\rho_{U_i}^U(f) = \rho_{U_i}^U(g)$ , 则 f = g.
- (2) 若  $f_i \in \mathcal{F}(U_i)$ ,  $(i \in \mathcal{I})$  使得对任意  $i, j \in \mathcal{I}$  都有  $\rho_{U_i \cap U_j}^{U_i}(f_i) = \rho_{U_i \cap U_j}^{U_j}(f_j)$ , 则存在  $f \in \mathcal{F}(U)$  使得  $\rho_{U_i}^U(f) = f_i$ ,  $(\forall i)$ .

<sup>3</sup>译者注: 下述两个条件分别俗称"唯一性公理"与"粘合公理".

我们常将  $\rho_V^U(f)$  简记为  $f|_V$  [就好像我们在谈论通常函数的限制一样].

对任何预层,我们能相应得到一个层 [用之前定义全纯函数芽的方式来构造].设  $\mathcal{F}=(\mathcal{F}(U),\rho_V^U)$  为 X 上的预层, $a\in X$ . 我们引入不交并  $\prod_{a\in U}\mathcal{F}(U)$  上的如下等价关系: 对于  $f\in\mathcal{F}(U)$ , $g\in\mathcal{F}(V)$ ,如果存在 a 的开邻域  $a\in W\subseteq U\cap V$  使得  $f|_W=g|_W$ ,则称 f 与 g 等价.上述等价关系的等价类构成的集合记为  $\mathcal{F}_a$ ,称为预层  $\mathcal{F}$  在  $a\in X$  的茎条 (stalk). [这也是直系统  $\{\mathcal{F}(U),\rho_V^U\}$  的直极限].我们定义  $|\mathcal{F}|:=\prod_{a\in X}\mathcal{F}_a(\mathbf{T}$  交并)上的 拓扑,使得对任意  $\underline{f}_a\in\mathcal{F}_a$ ,以下 N(U,f) 之全体构成  $\underline{f}_a$  的邻域基:设  $f\in\mathcal{F}(U)$ , $a\in U$  为等价类  $\underline{f}_a$  的一个代表元, $N(U,f):=\left\{\underline{f}_x\middle|x\in U\right\}$ ,其中  $\underline{f}_x$  为 (U,f) 所在的  $\mathcal{F}_x$  的 等价类.一般来说,在此拓扑下, $|\mathcal{F}|$  不一定是 Hausdorff 的,但投影映射  $p:|\mathcal{F}|\to X$ ,p(f)=a (若 $f\in\mathcal{F}_a$ ) 为局部同胚.若记  $|\mathcal{F}|(U)$  为由  $|\mathcal{F}|$  在 U 上的截面构成的集合,即  $|\mathcal{F}|(U)=\left\{s:U\to|\mathcal{F}|\middle|s$ 为连续映射,并且 $p\circ s=\mathrm{id}_U\right\}$ ,再令  $r_V^U(s)$  为截面  $s:U\to|\mathcal{F}|$  在  $V\subseteq U$  上的限制.那么  $(|\mathcal{F}|(U),r_V^U)$  是层,称为预层  $\mathcal{F}$  的**层化** (the sheaf associated to the presheaf  $\mathcal{F}$ ).

现在我们定义两个预层之间的态射. 设  $\mathcal{F} = (\mathcal{F}(U), \rho_V^U)$  与  $\mathcal{G} = (\mathcal{G}(U), r_V^U)$  为 X 上的两个预层. **态射**  $\alpha: \mathcal{F} \to \mathcal{G}$  是指, 对每个开集 U 都安排一个群同态  $\alpha_U: \mathcal{F}(U) \to \mathcal{G}(U)$ , 使得对于任意  $V \subseteq U$ , 图表

$$\mathcal{F}(U) \xrightarrow{\alpha_U} \mathcal{G}(U)$$

$$\downarrow^{\rho_V^U} \qquad \qquad \downarrow^{r_V^U}$$

$$\mathcal{F}(V) \xrightarrow{\alpha_V} \mathcal{G}(V)$$

交换. 若对任意开集 U,  $\alpha_U$  为同构, 则称  $\alpha: \mathcal{F} \to \mathcal{G}$  为同构. 设预层态射  $\alpha: \mathcal{F} \to \mathcal{G}$ , 则定义该态射的**核**ker  $\alpha$  为如下的预层:

$$\left\{ \left. \ker(\alpha_U), \rho_V^U \right| \ker(\alpha_U) \right\}.$$

若  $\mathcal{F}$ ,  $\mathcal{G}$  都是层, 则 ker  $\alpha$  也是层.

还可以定义预层态射的 $\mathbf{g}$ im( $\alpha$ )为

$$\left\{\operatorname{im}(\alpha_U), r_V^U\middle|\operatorname{im}(\alpha_U)\right\},\right$$

特别注意, 即使  $\mathcal{F}, \mathcal{G}$  都是层, 预层  $\operatorname{im}(\alpha)$  也不一定是层.

**例子.** 设  $X = \mathbb{C}^* = \mathbb{C} - \{0\}$ ,  $\mathcal{O}(U)$  为 U 上的全纯函数的加法群,  $\mathcal{O}^*(U)$  为 U 上的处处非零全纯函数的乘法群. 考虑态射  $\exp: \mathcal{O} \to \mathcal{O}^*$ , 使得对任意  $f \in \mathcal{O}(U)$ ,  $\exp_U: f \mapsto \exp(2\pi i f)$ , 则  $\operatorname{im}(\exp)$  不满足成为层的第二个要求 [即"粘合公理"]. 这是因为, 考虑  $U_1 = \mathbb{C} - \left\{x \in \mathbb{R} \middle| x \leq 0\right\}$ ,  $U_2 = \mathbb{C} - \left\{x \in \mathbb{R} \middle| x \geq 0\right\}$ , 再考虑  $U_1$  上的函数  $f_1(z) \equiv z$  以及  $U_2$  上的函数  $f_2(z) \equiv z$ . 则由  $U_1, U_2$  的单连通性可知  $f_i \in \operatorname{im}(\exp_{U_i})$ , 但是不存在  $f \in \operatorname{im}(\exp_{U_1 \cup U_2})$  使得  $f|_{U_i} = f_i \ (i = 1, 2)$ . [函数 z 在  $\mathbb{C}^* = U_1 \cup U_2$  不存在单值对数.]

**注记.** 设  $\mathcal{F}$  为预层,  $|\mathcal{F}|$  为  $\mathcal{F}$  的层化, 则有预层态射  $\alpha: \mathcal{F} \to |\mathcal{F}|$  满足: 对于  $f \in \mathcal{F}(U)$ ,  $\alpha_U(f)$  为 U 上的截面, 使得  $a \mapsto \underline{f}_a = (U, f)$  所在的  $\mathcal{F}_a$  的等价类. 也能直接验证, 若  $\mathcal{F}$  为层, 则  $\alpha$  为同构.

考虑黎曼曲面 X 上的全纯函数层  $U \mapsto \mathcal{O}(U) = \{U \text{上的全纯函数}\}$ ,则相应的  $|\mathcal{O}|$  为第 3 节所定义的 "X 上的全纯函数芽层". 由于从  $\mathcal{O}$  到  $|\mathcal{O}|$  的态射是同构,我们将不再区分这两者.

我们常将黎曼曲面 X 上的全纯函数层记作  $\mathcal{O}_X$ , 称为 X 的**结构层** (structure sheaf). 定义. 设  $\alpha: \mathcal{F} \to \mathcal{G}$  为层  $\mathcal{F}, \mathcal{G}$  之间的态射, 则将预层  $\operatorname{im}(\alpha) = \left\{ \operatorname{im}(\alpha_U), r_V^U \middle| \operatorname{im}(\alpha_U) \right\}$  的层化记作  $\operatorname{Im}(\alpha)$ .

设  $\alpha: \mathcal{E} \to \mathcal{F}$  与  $\beta: \mathcal{F} \to \mathcal{G}$  为 X 上的层  $\mathcal{E}, \mathcal{F}, \mathcal{G}$  之间的同态. 如果  $\ker(\beta)$  与我们刚才定义的  $\operatorname{Im}(\alpha)$  相等, 则称序列

$$\mathcal{E} \stackrel{\alpha}{\rightarrow} \mathcal{F} \stackrel{\beta}{\rightarrow} \mathcal{G}$$

[在 F 处] 正合 (exact). 该正合性意味着以下:

- (1)  $\beta_U \circ \alpha_U = 0, \forall U,$ 并且
- (2) 若  $f \in \mathcal{F}(U)$  使得  $\beta_U(f) = 0$ ,则存在 U 的开覆盖  $\{U_i\}_{i \in \mathcal{I}}$  使得对任意  $i \in \mathcal{I}$ ,  $f|_{U_i} \in \operatorname{im}(\alpha_{U_i})$ .

现在设 X 为拓扑空间,  $\mathcal{F}$  为 X 上的层. 设  $\mathcal{U} = \{U_i\}_{i \in \mathcal{I}}$  为 X 的一族开覆盖. 那么对于整数  $q \geq 0$ , 定义  $\mathcal{F}$  的 [关于开覆盖  $\mathcal{U}$  的] q-**上链群** (q-cochain group) 如下:

$$C^{q}(\mathcal{U},\mathcal{F}) := \prod_{(i_0,\dots,i_q)\in\mathcal{I}^{q+1}} \mathcal{F}(U_{i_0}\cap\dots\cap U_{i_q}).$$

定义**上边缘算子** (coboundary) $\delta: C^0(\mathcal{U}, \mathcal{F}) \to C^1(\mathcal{U}, \mathcal{F})$  使得  $\delta((f_i)_{i \in \mathcal{I}}) = (c_{ij})_{i,j \in \mathcal{I}}$ , 其中  $c_{ij} = f_i|_{U_i \cap U_j} - f_j|_{U_i \cap U_j}$ . 再记

$$Z^{1}(\mathcal{U},\mathcal{F}) = \left\{ (c_{ij}) \in C^{1}(\mathcal{U},\mathcal{F}) \middle| \Delta U_{i} \cap U_{j} \cap U_{k} \text{ 当中成立} c_{ij} + c_{jk} = c_{ik}, \forall i, j, k \in \mathcal{I} \right\}$$

[严格地讲, 此条件应该是

$$c_{ij}|_{U_{ijk}}+c_{jk}|_{U_{ijk}}=c_{ik}|_{U_{ijk}},\quad U_{ijk}=U_i\cap U_j\cap U_k.$$

] 最后, 再记  $B^1(\mathcal{U}, \mathcal{F}) = \operatorname{Im} \left[ \delta : C^0(\mathcal{U}, f) \to C^1(\mathcal{U}, \mathcal{F}) \right]$ ; 则  $B^1(\mathcal{U}, \mathcal{F}) \subseteq Z^1(\mathcal{U}, \mathcal{F})$ .

我们称商群

$$H^1(\mathcal{U},\mathcal{F}) := Z^1(\mathcal{U},\mathcal{F})/B^1(\mathcal{U},\mathcal{F})$$

为  $\mathcal{F}$  关于  $\mathcal{U}$  的**第一个上同调群** (the first cohomology group).

我们也记

$$H^0(\mathcal{U}, \mathcal{F}) = \left\{ (f_i)_{i \in \mathcal{I}} \in C^0(\mathcal{U}, \mathcal{F}) \middle| \delta(f_i)_{i \in \mathcal{I}} = 0 \right\};$$

由层公理, 由  $f \mapsto (f|_{U_i})_{i \in \mathcal{I}}$  所定义的映射  $\mathcal{F}(X) \to C^0(\mathcal{U}, \mathcal{F})$  给出了  $\mathcal{F}(X)$  与  $H^0(\mathcal{U}, \mathcal{F})$  的同构, 这对任何开覆盖都成立.  $\mathcal{F}(X) = H^0(\mathcal{U}, \mathcal{F})$  中的元素也称为层  $\mathcal{F}$  的**整体截面** (global section).

称开覆盖  $\mathcal{V} = (V_{\alpha})_{\alpha \in \mathcal{A}}$  为开覆盖  $\mathcal{U}$  的一个**加细** (refinement), 如果存在映射  $\tau$  :  $\mathcal{A} \to \mathcal{I}$  使得对任意  $\alpha \in \mathcal{A}$  成立  $V_{\alpha} \subseteq U_{\tau(\alpha)}$ . 此时,  $\tau$  通过下述方式诱导群同态

$$\tau^*: H^1(\mathcal{U}, \mathcal{F}) \to H^1(\mathcal{V}, \mathcal{F}),$$

它是如此得到的: 对于  $\xi = (c_{ij})_{i,j\in\mathcal{I}} \in Z^1(\mathcal{U},\mathcal{F})$ , 令  $\tau^* = (\gamma_{\alpha\beta})_{\alpha\beta}$ , 其中  $\gamma_{\alpha\beta} = c_{\tau(\alpha)\tau(\beta)}|_{V_{\alpha}\cap V_{\beta}}$ . 显然  $\tau^*(B^1(\mathcal{U},\mathcal{F})) \subseteq B^1(\mathcal{V},\mathcal{F})$ , 从而这诱导从  $H^1(\mathcal{U},\mathcal{F})$  到  $H^1(\mathcal{V},\mathcal{F})$ 的群同态 [也记作  $\tau^*$ ].

**性质 5.1.** 若  $\sigma, \tau: A \to \mathcal{I}$  为两个 (不同的) 加细映射 (也就是说, 对任意  $\alpha \in A$ ,  $V_{\alpha} \in U_{\tau(\alpha)} \cap U_{\sigma(\alpha)}$ , 则相应的同态

$$\tau^*, \sigma^*: H^1(\mathcal{U}, \mathcal{F}) \to H^1(\mathcal{V}, \mathcal{F})$$

相等.

证明. 若  $(f_{ij})_{i,j\in\mathcal{I}}\in Z^1(\mathcal{U},\mathcal{F})$ ,则在  $V_\alpha\cap V_\beta$  当中成立

$$f_{\tau(\alpha)\tau(\beta)} - f_{\sigma(\alpha)\sigma(\beta)} = \left( f_{\tau(\alpha)\sigma(\alpha)} + f_{\sigma(\alpha)\tau(\beta)} \right) - \left( f_{\sigma(\alpha)\tau(\beta)} + f_{\tau(\beta)\sigma(\beta)} \right) = g_{\alpha} - g_{\beta},$$
  
其中  $g_{\alpha} = f_{\tau(\alpha)\sigma(\alpha)}|_{V_{\alpha}}$ . 因此  $\{ f_{\tau(\alpha)\tau(\beta)} - f_{\sigma(\alpha)\sigma(\beta)} \} \in B^{1}(\mathcal{V}, \mathcal{F}).$ 

#### 性质 5.2. 若开覆盖 V 是 U 的加细, 则诱导同态

$$H^1(\mathcal{U},\mathcal{F}) \to H^1(\mathcal{V},\mathcal{F})$$

为单射.

证明. 设  $\tau: \mathcal{A} \to \mathcal{I}$  为加细映射,  $\xi = \{(f_{ij})_{i,j \in \mathcal{I}}\} \in Z^1(\mathcal{U}, \mathcal{F})$ , 使得  $\tau^*(\xi) \in B^1(\mathcal{V}, \mathcal{F})$ . 于是存在  $g_{\alpha} \in \mathcal{F}(V_{\alpha})$  使得  $f_{\tau(\alpha)\tau(\beta)}|_{V_{\alpha}\cap V_{\beta}} = g_{\alpha}|_{V_{\alpha}\cap V_{\beta}} - g_{\beta}|_{V_{\alpha}\cap V_{\beta}}$ . 给定  $i \in \mathcal{I}, x \in U_i$ . 取  $\alpha \in \mathcal{A}$  使得  $x \in V_{\alpha}$ , 定义  $h_i(x) := g_{\alpha}(x) + f_{i\tau(\alpha)}(x)$ . 若  $\beta \in \mathcal{A}$  使得  $x \in V_{\beta}$ , 则

$$g_{\alpha}(x) + f_{i\tau(\alpha)}(x) - g_{\beta}(x) - f_{i\tau(\beta)}(x) = g_{\alpha}(x) - g_{\beta}(x) - f_{\tau(\alpha)\tau(\beta)}(x) = 0,$$

这是因为

$$f_{i\tau(\alpha)}(x) - f_{i\tau(\beta)}(x) = -(f_{\tau(\alpha)i}(x) + f_{i\tau(\beta)}(x))$$
$$= -f_{\tau(\alpha)\tau(\beta)}(x) \quad (因为 \xi \in Z^1(\mathcal{U}, \mathcal{F})).$$

因此, 上述  $h_i \in \mathcal{F}(U_i)$  良定.

对于  $x \in U_i \cap U_j$ , 取  $\alpha$  使得  $x \in V_\alpha$ , 则

$$h_i(x) - h_j(x) = g_{\alpha}(x) + f_{i\tau(\alpha)}(x) - g_{\alpha}(x) - f_{j\tau(\alpha)}(x)$$
  
=  $f_{i\tau(\alpha)}(x) + f_{\tau(\alpha)j}(x) = f_{ij}(x)$ .

因此  $\delta\{(h_i)\}=\xi$ , 从而  $\xi\in B^1(\mathcal{U},\mathcal{F})$ . 从而得证.

现在我们来定义**上同调群** $H^1(X,\mathcal{F})$ . 设  $U,\mathcal{V}$  为 X 的开覆盖,  $\mathcal{U} = \{U_i\}_{i\in\mathcal{I}}, \mathcal{V} = \{V_\alpha\}_{\alpha\in\mathcal{A}}, \mathcal{V}$  为  $\mathcal{U}$  的加细. 则有群同态  $\tau(\mathcal{U},\mathcal{V}): H^1(\mathcal{U},\mathcal{F}) \to H^1(\mathcal{V},\mathcal{F})$  [该群同态由加细映射  $\tau: \mathcal{A} \to \mathcal{I}$  所诱导, 但与  $\tau$  的选取无关]. 若  $\mathcal{W}$  为  $\mathcal{V}$  的加细, 则  $\tau(\mathcal{U},\mathcal{W}) = \mathcal{U}$ 

 $\tau(\mathcal{V}, \mathcal{W}) \circ \tau(\mathcal{U}, \mathcal{V})$ . 我们将  $H^1(X, \mathcal{F})$  定义为系统  $(H^1(\mathcal{U}, \mathcal{F}), \tau(\mathcal{U}, \mathcal{V}))$  的直极限, 即如下:

我们通过下述方式定义不交并  $\coprod_{\mathcal{U}} H^1(\mathcal{U},\mathcal{F})$  上的等价关系 R, 使得  $\xi \in H^1(\mathcal{U},\mathcal{F})$  与  $\eta \in H^1(\mathcal{V},\mathcal{F})$  等价当且仅当存在  $\mathcal{U}$  与  $\mathcal{V}$  公共的加细覆盖  $\mathcal{W}$  使得

$$\tau(\mathcal{U}, \mathcal{W})\xi = \tau(\mathcal{V}, \mathcal{W})\eta.$$

之后,  $\diamondsuit H^1(X,\mathcal{F}) := \prod H^1(\mathcal{U},\mathcal{F})/R$ .

对任意开覆盖  $\mathcal{U}$ , 有自然的映射  $\tau(\mathcal{U}):H^1(\mathcal{U},\mathcal{F})\to H^1(X,\mathcal{F})$ , 此映射将  $\xi\in H^1(\mathcal{U},\mathcal{F})$  映为它所在的关于等价关系 R 的等价类.

性质 5.2 等价于  $\tau(\mathcal{U})$  是单射.

我们还需要 Leray 定理的如下特殊情形:

定理. (Leray 定理).

设 $\mathcal{F}$ 为X上的层, $\mathcal{U}=\{U_i\}_{i\in\mathcal{I}}$ 为X的开覆盖.如果 $H^1(U_i,\mathcal{F})=0, \forall i,$ 则自然映射

$$H^1(\mathcal{U},\mathcal{F}) \to H^1(X,\mathcal{F})$$

为同构.

证明. 性质 5.2 表明该映射为单射. 于是我们只需再证明, 对  $\mathcal{U}$  的任意加细覆盖  $\mathcal{V} = \{V_{\alpha}\}_{\alpha \in \mathcal{A}}$ , 诱导同态  $\tau^* : H^1(\mathcal{U}, \mathcal{F}) \to H^1(\mathcal{V}, \mathcal{F})$  为满射; 其中加细映射  $\tau : \mathcal{A} \to \mathcal{I}$  满足  $V_{\alpha} \subseteq U_{\tau(\alpha)}, \forall \alpha$ .

任意给定  $\{c_{\alpha\beta}\}_{\alpha\beta\in\mathcal{A}}\in Z^1(\mathcal{V},\mathcal{F})$ ,那么  $\{c_{\alpha\beta}|_{U_i}\}\in Z^1(U_i\cap\mathcal{V},\mathcal{F})$ ,其中  $U_i\cap\mathcal{V}:=\{U_i\cap\mathcal{V}_\alpha\}_{\alpha\in\mathcal{A}}$  为  $U_i$  的开覆盖. 由题设  $H^1(U_i,\mathcal{F})=0$ ,性质 5.1 表明存在  $g_{i\alpha}\in\mathcal{F}(U_i\cap\mathcal{V}_\alpha)$  使得

于是, 在  $U_i \cap U_j \cap V_\alpha \cap V_\beta$  当中成立  $g_{i\alpha} - g_{i\beta} = c_{\alpha\beta} = g_{j\alpha} - g_{j\beta}$ , 即  $g_{i\alpha} - g_{j\alpha} = g_{i\beta} - g_{j\beta}$ ; 因此由层的粘合公理, 存在  $\gamma_{ij} \in \mathcal{F}(U_i \cap U_j)$  使得  $\gamma_{ij} = g_{i\alpha} - g_{j\alpha}$  于  $U_i \cap U_j \cap V_\alpha$ . 从而在  $U_i \cap U_j \cap U_k$  当中显然有  $\gamma_{ij} \cap \gamma_{jk} = \gamma_{ik}$ . 从而在  $V_\alpha \cap V_\beta$  ( $\subseteq U_{\tau(\beta)}$ ) 当中成立

$$\gamma_{\tau(\alpha)\tau(\beta)} + c_{\alpha\beta} = (g_{\tau(\alpha)\alpha} - g_{\tau(\beta)\alpha}) + (g_{\tau(\beta)\alpha} - g_{\tau(\beta)\beta})$$

$$= -g_{\tau(\beta)\beta} + g_{\tau(\alpha)\alpha}.$$

由于  $g_{\tau(\beta)\beta} \in \mathcal{F}(U_{\tau(\beta)} \cap V_{\beta}) = \mathcal{F}(V_{\beta})$ , 这表明  $\{c_{\alpha\beta}\}$  与  $\{-\gamma_{\tau(\alpha)\tau(\beta)}\}$  其实是  $H^1(\mathcal{V},\mathcal{F})$  中的同一个元素, 不过后者是  $\{-\gamma_{ij}\}$  在  $\tau^*$  下的像. 从而定理证毕.

Leray 定理在 Riemann 曲面理论中的相关性和有用性源于以下:

为证此定理, 我们先来证明:

性质 5.3. 设  $\Omega$  为  $\mathbb C$  的开集,  $f \in C^{\infty}(\Omega)$ . 则存在  $u \in C^{\infty}(\Omega)$  使得  $\frac{\partial u}{\partial \bar{z}} = f$ .

回顾: z = x + iy, x, y 为实数, 则

$$\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial z} = \frac{1}{2} \left( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right).$$

性质 5.3 的证明. 情形 1. 若 f 在  $\Omega$  紧支, 则令

$$u(z) := \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{f(z+w)}{w} \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w}.$$

断言  $u \in C^{\infty}(\mathbb{C})$  并且  $\frac{\partial u}{\partial \bar{z}} = f$ . 首先, 为说明  $u \in C^{\infty}(\mathbb{C})$ , 注意  $\frac{1}{|w|}$  在  $\mathbb{C}$  上的任何紧子 集上可积; 比如我们可证明  $\frac{\partial u}{\partial x}$  的存在性与连续性如下:

$$\lim_{h \to 0 \atop h \in \mathbb{R}} \int_{\mathbb{C}} \frac{f(z+h+w) - f(z+w)}{h} \frac{1}{w} \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w} = \int_{\mathbb{C}} \frac{\partial f}{\partial x} (z+w) \frac{1}{w} \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w},$$

这是因为 f 紧支, $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h}=\frac{\partial f}{\partial x}(z)$  在  $\mathbb C$  上一致地成立且有界.之后反复如此论证即可.若  $\varepsilon>0$ ,则有

$$\frac{\partial u}{\partial \bar{z}} = \frac{1}{2\pi i} \lim_{\varepsilon \to 0} \int_{|w| > \varepsilon} \frac{\partial f}{\partial \bar{z}} (z + w) \frac{1}{w} \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w};$$

而

$$\int_{|w| \ge \varepsilon} \frac{\partial f}{\partial \bar{z}} (z + w) \frac{1}{w} dw \wedge d\bar{w} = \int_{|w| \ge \varepsilon} \frac{\partial}{\partial \bar{w}} \left( \frac{f(z + w)}{w} \right) dw \wedge d\bar{w} 
= -\int_{|w| \ge \varepsilon} d\left( \frac{f(z + w) dw}{w} \right),$$

由 Stokes 定理, 上式

$$= \int_{|w|=\varepsilon} \frac{f(z+w)}{w} dw = 2\pi i f(z) + \int_{|w|=\varepsilon} \frac{f(z+w) - f(z)}{w} dw.$$

由于  $\frac{f(z+w)-f(z)}{w}$  是关于 w 的有界函数, 从而当  $\varepsilon\to 0$  时上式右边第二项  $\to 0$ , 于是得证.

情形 2. 现在考虑一般的  $f\in C^\infty(\Omega)$ . 对任意紧子集  $K\subseteq\Omega$ , 取  $\varphi\in C_0^\infty(\Omega)$  使得在 K 中成立  $\varphi\equiv 1$ . 将之前的论述用于函数  $\varphi f$ , 我们得到: 若  $f\in C^\infty(\Omega)$ ,  $K\subseteq\Omega$  紧 致, 则存在  $u\in C^\infty(\Omega)$  使得在 K 中成立  $\frac{\partial u}{\partial \bar{z}}=f$ .

为完成性质 5.3 的证明, 我们还需要如下的 Runge 定理; 我们不打算证明它, 其证明可见 [7]:

设  $\Omega$  为  $\mathbb C$  的开集, 紧集  $K\subseteq\Omega$ . 记 L 为 K 与  $\Omega-K$  在  $\Omega$  中的相对紧的连通分支之并, 则 L 紧致, 并且满足: 任何在 L 附近全纯的函数都可被  $\Omega$  上的全纯函数在 L 上一致逼近.

回到性质 5.3 的证明. 取  $\{K_n\}_{n\geq 1}$  为  $\Omega$  的紧子集列, 使得  $K_n\subseteq \check{K}_{n+1}$  (即  $K_{n+1}$  的内部),  $\bigcup K_n=\Omega$ , 并且  $\Omega-K_n$  没有在  $\Omega$  中相对紧的连通分支.

对于  $f \in C^{\infty}(\Omega)$ , 取  $u_n \in C^{\infty}(\Omega)$  使得在  $K_n$  附近成立  $\frac{\partial u_n}{\partial \bar{z}} = f$ . 那么  $u_{n+1} - u_n$  在  $K_n$  附近全纯,于是存在  $\Omega$  上的全纯函数  $h_n$ ,使得在  $K_n$  中成立  $|u_{n+1} - u_n - h_n| < 2^{-n}$ ,( $\forall n \geq 1$ ).

定义  $K_n$  上的函数  $u:=u_n+\sum_{m\geq n}(u_{m+1}-u_m-h_m)-h_1-\cdots-h_{n-1};$  此函数项级数在  $K_n$  一致收敛. 注意到

$$u = u_n + (u_{n+1} - u_n - h_n) + \sum_{m \ge n+1} (u_{m+1} - u_m - h_m) - h_1 - \dots - h_{n-1}$$
$$= u_{n+1} + \sum_{m \ge n+1} (u_{m+1} - u_m - h_m) - h_1 - \dots - h_n,$$

从而函数 u 在  $\Omega$  良定. 因为  $\sum_{n\geq n+1}(u_{m+1}-u_m-h_m)$  在  $\mathring{K}_{n+1}\supseteq K_n$  全纯, 并且在  $K_n$  成立  $\frac{\partial u_{n+1}}{\partial \overline{z}}=f$ , 从而对任意 n 都有  $\frac{\partial u}{\partial \overline{z}}=f$ , 从而在  $\Omega$  也如此.

Mittag-Leffler 定理的证明. 只需证明对  $\Omega$  的任何开覆盖  $\mathcal{U}$  都有  $H^1(\mathcal{U},\mathcal{O})=0$  [其中  $\Omega$  为  $\mathbb{C}$  的开集].

记  $\mathcal{U} = \{U_i\}_{i \in \mathcal{I}}$ , 取  $\{\alpha_i\}_{i \in \mathcal{I}}$  为从属于  $\mathcal{U}$  的单位分解, 这是指:  $\alpha_i \in C^{\infty}(\Omega)$ ,  $\operatorname{supp}(\alpha_i) \subseteq U_i$ , 集合族  $\{\operatorname{supp}(\alpha_i)\}_{i \in \mathcal{I}}$  局部有限, 并且  $\sum \alpha_i \equiv 1$ .

若  $c_{ij}$  在  $U_i \cap U_j$  全纯, 并且对任意 i, j, k, 在  $U_i \cap U_j \cap U_k$  当中成立  $c_{ij} + c_{jk} = c_{ik}$ , 则取 i = j = k 可知  $c_{ii} = 0 \forall i$ ; 再取 k = i 可知  $c_{ij} = -c_{ji}$ .

现在, 取定 i,j, 我们定义  $U_i$  上的  $C^{\infty}$ -函数, 使得该函数在  $U_i \cap U_j$  当中等于  $\alpha_j c_{ij}$ , 在  $U_i - (U_i \cap U_j)$  上恒为 0. 由于  $\operatorname{supp}(\alpha_j) \subseteq U_j$ , 从而在  $(\partial U_j) \cap U_i$  附近成立  $\alpha_j = 0$ , 所以此函数的确为  $U_i$  上的  $C^{\infty}$ -函数; 我们将此函数简记为  $\alpha_j c_{ij}$ . 记  $\varphi_i := \sum_{j \in \mathcal{I}} \alpha_j c_{ij}$ ; 因为  $\{\operatorname{supp}(\alpha_j)\}$  局部有限, 所以  $\varphi_i$  是  $U_i$  上的  $C^{\infty}$ -函数. 对任意  $k, \ell \in \mathcal{I}$ , 在  $U_k \cap U_\ell$  当中有

$$\varphi_k - \varphi_\ell = \sum_j \alpha_j (c_{kj} - c_{\ell j}) = \sum_j \alpha_j (c_{kj} + c_{j\ell}) = \sum_j \alpha_j c_{k\ell} = c_{k\ell}.$$

从而在  $U_k \cap U_\ell$  当中成立  $\frac{\partial \varphi_k}{\partial \bar{z}} - \frac{\partial \varphi_l}{\partial \bar{z}} = \frac{\partial c_{kl}}{\partial \bar{z}} = 0$ . 因此存在  $\Omega$  上的  $C^{\infty}$ -函数  $\psi$  使得对任意  $k \in \mathcal{I}$  都成立  $\psi|_{U_k} = \frac{\partial \varphi_k}{\partial \bar{z}}$ .

取  $u \in C^{\infty}(\Omega)$  使得在  $\Omega$  成立  $\frac{\partial u}{\partial \bar{z}} = \psi$ , 再令  $U_k$  上的函数  $h_k = \varphi_k - u$ . 则在  $U_k$  当中成立  $\frac{\partial h_k}{\partial \bar{z}} = \frac{\partial \varphi_k}{\partial \bar{z}} - \frac{\partial u}{\partial \bar{z}} = 0$ , 故  $h_k \in \mathcal{O}(U_k)$ . 在  $U_k \cap U_\ell$  当中有  $h_k - h_\ell = \varphi_k - \varphi_\ell = c_{kl}$ . 从而完成证明.

我们还需要层论中更一般的构造与定理. 这正是所谓**上同调正合列** (exact cohomology sequence). 我们仅仅介绍该理论的对我们有用的一部分.

设  $0 \to \mathcal{E} \xrightarrow{\alpha} \mathcal{F} \xrightarrow{\beta} \mathcal{G} \to 0$  为拓扑空间 X 上的 Abel 群层短正合列. [注意在  $\mathcal{G}$  处的正合性,  $\beta$  为满态射意味着对任意  $x \in X$ ,  $\beta_x : \mathcal{F}_x \to \mathcal{G}_x$  为满同态, 其中  $\mathcal{F}_x$ ,  $\mathcal{G}_x$  分别为  $\mathcal{F},\mathcal{G}$  在 x 处的茎条.] 首先有如下引理:

引理. 取整体截面所诱导的序列

$$0 \to \mathcal{E}(X) \stackrel{\alpha_X}{\to} \mathcal{F}(X) \stackrel{\beta_X}{\to} \mathcal{G}(X)$$

是正合的.

证明. 注意每个  $\alpha_x: \mathcal{E}_x \to \mathcal{F}_x$  都为单射, 再由  $\mathcal{E}$  满足层的公理, 易知  $\alpha_X$  也为单射.

欲证此序列在  $\mathcal{F}(X)$  处正合,只需证明对于  $f \in \mathcal{F}(X)$ ,如果存在 X 的开覆盖  $\{U_i\}$  使得  $f|_{U_i} \in \operatorname{im}(\alpha_{U_i})$ ,( $\forall i$ ),则  $f \in \operatorname{im}(\alpha_X)$ . 取  $e_i \in \mathcal{E}(U_i)$  使得  $\alpha_{U_i}(e_i) = f|_{U_i}$ .则  $(e_i - e_j)|_{U_i \cap U_j} = 0$ , [因为  $\alpha$  为单态射] .由层的粘合公理可知存在  $e \in \mathcal{E}(X)$  使得  $e|_{U_i} = e_i$ ,( $\forall i$ ).显然  $\alpha_X(e)|_{U_i} = \alpha_{U_i}(e_i) = f|_{U_i}$ ,因此  $\alpha_X(e) = f$ .

注意我们也有  $H^0(X,\mathcal{E}) = \mathcal{E}(X),....$  我们将  $\alpha^0 : H^0(X,\mathcal{E}) \to H^0(X,\mathcal{F})$  定义 为  $\alpha^0 := \alpha_X$  [类似定义  $\beta^0 := \beta_X : H^0(X,\mathcal{F}) \to H^0(X,\mathcal{G})$ ]. 下面我们来定义  $\delta : H^0(X,\mathcal{G}) \to H^1(X,\mathcal{E})$  以及  $\alpha^1 : H^1(X,\mathcal{E}) \to H^1(X,\mathcal{F}), \beta^1 : H^1(X,\mathcal{F}) \to H^1(X,\mathcal{G}).$ 

 $\delta$  的定义. 设  $g \in H^0(X,\mathcal{G}) = \mathcal{G}(X)$ . 由于  $\beta$  为满态射,故存在 X 的开覆盖  $\{U_i\}_{i\in\mathcal{I}} = \mathcal{U}$  以及  $f_i \in \mathcal{F}(U_i)$  使得  $\beta_{U_i}(f_i) = g|_{U_i}$ , $\forall i$ . 因此由刚才的引理可知  $f_i - f_j|_{U_i \cap U_j} \in \ker(\beta_{U_i \cap U_j}) = \operatorname{im}(\alpha_{U_i \cap U_j})$ ,也就是说存在  $e_{ij} \in \mathcal{E}(U_i \cap U_j)$  使得  $\alpha_{U_i \cap U_j}(e_{ij}) = f_i - f_j|_{U_i \cap U_j}$ . 在  $U_i \cap U_j \cap U_k$  中, $\alpha$  显然将  $e_{ij} + e_{jk} - e_{ik}$  映为 0. 因此  $\{e_{ij}\} \in Z^1(\mathcal{U}, \mathcal{E})$ ,从而它确定了  $H^1(X, \mathcal{E})$  中的元素,记为  $\delta(g)$ . 我们还需要验证如此  $\delta(g)$  是良定的,即与  $\mathcal{U}, f_i$  的选取无关.若  $\mathcal{V}$  为  $\mathcal{U}$  的加细 [并记  $\tau: \mathcal{A} \to \mathcal{I}$  为其加细映射],则取  $f'_{\alpha} := f_{\tau(\alpha)}|_{V_{\alpha}}$ ,则显然会得到  $H^1(X, \mathcal{E})$  中同样的元素 [简单地说,这是上链  $\{e_{ij}\}$  在  $\mathcal{V}$  的限制.]

因此,我们只需考虑在同一个开覆盖 U 上可能不同的  $f'_i \in \mathcal{F}(U_i)$  的选取,也使得  $\beta_{U_i}(f'_i) = g|_{U_i}$ . 同样因为之前的引理,可知存在  $e_i \in \mathcal{E}(U_i)$  使得  $\alpha_{U_i}(e_i) = f'_i - f_i$ . 若  $e'_{ij} \in \mathcal{E}(U_i \cap U_j)$  被映为  $f'_i - f'_j$ , 则有  $e_i - e_j = e'_{ij} - e_{ij}$  [因为  $\alpha$  为单射],所以  $\{e_{ij}\}$  与  $\{e'_{ij}\}$  定义了  $H^1(X,\mathcal{E})$  中的同一个元素.

 $\alpha^1$  的定义. 对 X 的任何开覆盖  $U, \alpha : \mathcal{E} \to \mathcal{F}$  诱导群同态

$$\alpha_{\mathcal{U}}: C^1(\mathcal{U}, \mathcal{E}) \to C^1(\mathcal{U}, \mathcal{F}),$$

它将  $Z^1(\mathcal{U}, \mathcal{E})$  映到  $Z^1(\mathcal{U}, \mathcal{F})$ , 将  $B^1(\mathcal{U}, \mathcal{E})$  映到  $B^1(\mathcal{U}, \mathcal{F})$ , 因此诱导群同态  $\alpha_{\mathcal{U}}^1: H^1(\mathcal{U}, \mathcal{E}) \to H^1(\mathcal{U}, \mathcal{F})$ . 这进而诱导了  $\alpha^1$ .

 $\beta^1$  的定义. 与  $\alpha^1$  相同的方式, 态射  $\beta: \mathcal{F} \to \mathcal{G}$  诱导了  $\beta^1: H^1(X, \mathcal{F}) \to H^1(X, \mathcal{G})$ .

定理. (上同调正合列). 设  $0\to\mathcal{E}\overset{\alpha}\to\mathcal{F}\overset{\beta}\to\mathcal{G}\to 0$  为拓扑空间 X 上的层短正合列. 则有如下的长正合列:

$$0 \to H^0(X,\mathcal{E}) \xrightarrow{\alpha^0} H^0(X,\mathcal{F}) \xrightarrow{\beta^0} H^0(X,\mathcal{G}) \xrightarrow{\delta}$$
$$\xrightarrow{\delta} H^1(X,\mathcal{E}) \xrightarrow{\alpha^1} H^1(X,\mathcal{F}) \xrightarrow{\beta^1} H^1(X,\mathcal{G}).$$

**注记.** 我们可以定义更高阶的 Čech 上同调群  $H^q(X,\mathcal{F}), q \geq 0$ , 并且当 X 仿紧时可以 将上述长正合列继续延长 [可以参考 Serre - Faisceaux algébriques cohérents, Annals of Math. **61**(1955)].

证明.

在  $H^0(X,\mathcal{G})$  的正合性. 首先, 对于  $g = \beta^0(f)$ ,  $f \in H^0(X,\mathcal{G})$ , 则由  $\delta(g)$  的定义, 任取开 覆盖  $\{U_i\}$ , 再令  $f_i = f|_{U_i}$ . 因为  $f_i - f_j|_{U_i \cap U_j} = 0$ , 于是  $\delta(g) = 0$ .

反之,假设  $\delta(g) = 0$ ; 适当选取开覆盖  $\mathcal{U} = \{U_i\}_{i \in \mathcal{I}}$ , 使得存在  $\{e_{ij}\} \in Z^1(\mathcal{U}, \mathcal{E})$  满足  $\alpha_{U_i \cap U_j}(e_{ij}) = f_i - f_j|_{U_i \cap U_j}$ ,  $\beta_{U_i}(f_i) = g|_{U_i}$ . 因为  $\delta(g) = 0$  [以及  $H^1(\mathcal{U}, \mathcal{E}) \to H^1(X, \mathcal{E})$  为单射],从而存在  $e_i \in \mathcal{E}(U_i)$  使得  $e_i - e_j|_{U_i \cap U_j} = e_{ij}$ . 令  $f_i' := f_i - \alpha_{U_i}(e_i)$ ; 则  $f_i' - f_j' = f_i - f_j - \alpha_{U_i \cap U_j}(e_{ij}) = 0$ ,于是存在  $f \in \mathcal{F}(X)$  使得  $f|_{U_i} = f_i$ . 于是  $\beta_{U_i}(f) = g|_{U_i} - (\beta \circ \alpha)_{U_i}(e_i) = g|_{U_i}$ ; 因此  $g = \beta_X(f)$ .

在  $H^1(X,\mathcal{E})$  的正合性. 设  $\mathcal{U} = \{U_i\}$  为开覆盖,  $\{e_{ij}\} \in Z^1(\mathcal{U},\mathcal{E})$ . 则  $\alpha^1(\xi) = 0$  [其中  $\xi$  为  $\{e_{ij}\}$  在  $H^1(X,\mathcal{E})$  的等价类]  $\iff$   $\exists \{f_i\} \in C^0(\mathcal{U},\mathcal{F})$  使得  $f_i - f_j|_{U_i \cap U_j} = \alpha_{U_i \cap U_j}(e_{ij})$ ; 由定义易知当  $\xi = \delta(g)$  时此条件满足. 反之, 若它成立, 则  $f_i - f_j|_{U_i \cap U_j} \in \ker(\beta)$ , 因此存在  $g \in H^0(X,\mathcal{G})$  使得  $g|_{U_i} = \beta_{U_i}(f_i)$ , 从而由定义知  $\xi = \delta(g)$ .

在  $H^1(X,\mathcal{F})$  的正合性. 与定义  $\alpha^1$  的方式类似,由  $\beta \circ \alpha = 0$  可以去定义  $(\beta \circ \alpha)^1$ :  $H^1(X,\mathcal{E}) \to H^1(X,\mathcal{G})$ ; 显然  $(\beta \circ \alpha)^1 = 0$ . 而易知  $(\beta \circ \alpha)^1 = \beta^1 \circ \alpha^1$ ,从而  $\operatorname{im}(\alpha^1) \subseteq \ker(\beta^1)$ .

反之,若  $\{f_{ij}\}\in Z^1(\mathcal{U},\mathcal{F})$  [其中  $\mathcal{U}$  为 X 的合适的开覆盖] 并假设  $\beta_{U_i\cap U_j}(f_{ij})=g_i-g_j|_{U_i\cap U_j}$ ,其中  $g_i\in\mathcal{G}(U_i)$ . 将  $\mathcal{U}$  适当加细,不妨假设 [注意  $\beta$  为满射] 存在  $f_i\in\mathcal{F}(U_i)$  使得  $\beta_{U_i}(f_i)=g_i$ . 记  $f'_{ij}:=f_{ij}-(f_i-f_j)|_{U_i\cap U_j}$ ,则  $\{f'_{ij}\}$  与  $\{f_{ij}\}$  代表了  $H^1(X,\mathcal{F})$  的相同元素,并且  $\{f'_{ij}\}\in\ker\beta_{U_i\cap U_j}=\mathrm{im}\alpha_{U_i\cap U_j}$ . 若  $\alpha_{U_i\cap U_j}(e_{ij})=f'_{ij}$ ,则易知  $\{e_{ij}\}\in Z^1(\mathcal{U},\mathcal{E})$ ,并且它关于  $\alpha^1$  的像等于  $\{f'_{ij}\}$  所在等价类,从而等于  $\{f_{ij}\}$  所在等价类.

# 6 向量丛,线丛与除子

设 E,X 为拓扑空间, 并且有连续映射  $\pi:E\to X$  使得每个纤维  $\pi^{-1}(a)=E_a,\,a\in X$  都具有 n 维  $\mathbb{C}$ -线性空间结构.

称上述  $\pi: E \to X$  为 (连续) **向量丛** (vector bundle), 如果满足以下"局部平凡"条件: 对任意  $a \in X$ , 存在 a 的开邻域 U 以及同胚映射  $h_U: \pi^{-1}(U) \to U \times \mathbb{C}^n$  使得成立

#### (1) 下述图表



交换 [其中  $\operatorname{pr}_U: U \times \mathbb{C}^n \to U$  为投影映射];

(2) 任意  $a \in U$ , 由  $h_U(x) = (a, \varphi_a(x)), x \in E_a$  所确定的映射  $\varphi_a : E_a \to \mathbb{C}^n$  为  $\mathbb{C}$ -线性空间的同构.

若  $X, E, \pi$  为  $C^{\infty}$  [或者: 复解析],并且  $h_U$  也是  $C^{\infty}$  [相应地: 双全纯],则我们称相应的该向量丛是  $C^{\infty}$  [相应地: 全纯] 的. 整数 n 称为该向量丛的**秩** (rank). 若秩 n=1,则称向量丛  $\pi: E \to X$  为线丛 (line bundle). 映射  $h_U$  称为 E 在 U 上的平凡化 (trivialisation) [或者称为 E 在点 a 上的局部平凡化]. 也可称为 E 在 U 上的线性坐标卡 (linear chart).

若  $\pi: E \to X$  为复流形 X 上的全纯向量丛, 则可取一族开覆盖  $\mathcal{U} = \{U_i\}_{i\in\mathcal{I}}$  以及全纯的平凡化

$$h_i: \pi^{-1}(U_i) \to U_i \times \mathbb{C}^n$$
.

在  $U_i \cap U_j$  中, 映射  $h_i \circ h_j^{-1} : (U_i \cap U_j) \times \mathbb{C}^n \to (U_i \cap U_j) \times \mathbb{C}^n$  形如  $(x,v) \mapsto (x,\eta(x,v))$ ; 并且对每个给定的  $x \in U_i \cap U_j$ ,  $v \mapsto \eta(x,v)$  为  $\mathbb{C}^n$  的线性同构. 因此存在全纯映射  $g_{ij} : U_i \times U_j \to GL(n,\mathbb{C})$  使得

$$h_i \circ h_j^{-1}(x, v) = (x, g_{ij}(x)v).$$

在  $U_i \cap U_j \cap U_k$ , 成立上闭链条件 (cocycle condition)

$$g_{ij}(x) \cdot g_{jk}(x) = g_{ik}(x)$$

 $[GL(n,\mathbb{C})$  的乘法]. 此  $\{g_{ij}\}$  称为该向量丛 [关于局部平凡化  $h_i$  的] **转移函数** (transition function).

若将 $\{h_i\}$ 换成其它的平凡化 $\{h_i'\}$ ,则 $h_i' \circ h_i^{-1}: U_i \times \mathbb{C}^n \to U_i \times \mathbb{C}^n$  形如 $(x,v) \mapsto (x,\varphi_i(v))$ ,其中 $\varphi_i: U_i \to GL(n,\mathbb{C})$ 全纯;相应的转移函数为 $\varphi_i g_{ij} \varphi_j^{-1}$ .

反之, 给定一族全纯映射  $g_{ij}:U_i\cap U_j\to GL(n,\mathbb{C})$  使得在  $U_i\cap U_j\cap U_k$  当中成立  $g_{ij}g_{jk}=g_{ik}$ , 则我们可如下构造一个向量丛:

记  $\tilde{E} = \coprod_{i \in \mathcal{I}} U_i \times \mathbb{C}^n$  [无交并],映射  $\tilde{\pi} : \tilde{E} \to X$  使得  $(x,v) \mapsto x$ . 称  $(x,v) \in U_i \times \mathbb{C}^n$  与  $(y,w) \in U_j \times \mathbb{C}^n$  等价,如果 x = y 且  $v = g_{ij}(x)w$ . 由上闭链条件可知该关系的确为等价关系,并且位于同一个  $U_i \times \mathbb{C}^n$  中的两点等价当且仅当它们相等.于是, $\tilde{\pi}$  诱导了映射  $\pi : E \to X$ ,其中 E 为  $\tilde{E}$  关于上述等价关系的商空间.商映射  $\tilde{E} \to E$  诱导了双射  $h_i^{-1} : U_i \times \mathbb{C}^n \to \pi^{-1}(U_i)$ ,我们容易验证  $\pi : E \to X$  为全纯向量丛.

若  $\pi: E \to X$  为向量丛, 则 E 的 [连续,  $C^{\infty}$ , 全纯] **截面** (section) 是指满足  $\pi \circ s = \mathrm{id}_X$  的 [连续,  $C^{\infty}$ , 全纯] 映射  $s: X \to E$ . 若考虑局部平凡化  $h_i: \pi^{-1}(U_i) \to U_i \times \mathbb{C}^n$ , 则存在映射  $f_i: U_i \to \mathbb{C}^n$  使得  $h_i \circ s(x) = (x, f_i(x)), x \in U_i$ . 注意到若  $x \in U_i \cap U_j$  则有  $h_i \circ s(x) = h_i \circ h_i^{-1}(x, f_j(x)) = (x, g_{ij}(x)f_j(x))$ , 从而

$$f_i(x) = g_{ij}(x)f_j(x), \quad x \in U_i \cap U_j.$$

反之亦然, 这易验证. 于是向量丛  $\pi: E \to X$  的 [连续,  $C^{\infty}$ , 全纯] 截面可视为一族 [连续,  $C^{\infty}$ , 全纯] 函数  $\{f_i\}_{i\in\mathcal{I}}$ , 其中  $f_i: U_i \to \mathbb{C}^n$ , 并且在  $U_i \cap U_j$  满足相容性  $f_i = g_{ij}f_j$ . 亦可显然地去定义向量丛 E 在 X 的开子集上的截面.

现在设 X 为黎曼曲面,  $\pi: E \to X$  为 X 上的全纯向量丛. E 的亚纯截面定义为以下: 对于 X 的离散点集 S 以及全纯截面  $s: X - S \to E$ , 如果对任意  $a \in S$ , 存在 a 的邻域 U 以及 U 的局部坐标 z 使得 z(a) = 0,  $U \cap S = \{a\}$ , 并且存在整数  $N \geq 0$  使得  $z^N s$  为 E 在 U 上的某全纯截面在  $U - \{a\}$  的限制, 则称 s 为 E 的亚纯截面 (meromorphic section).

若  $\mathcal{U} = \{U_i\}_{i \in \mathcal{I}}$  为 X 的开覆盖,  $h_i : \pi^{-1}(U_i) \to U_i \times \mathbb{C}^n$  为平凡化, 对  $x \in U_i - S$ , 记  $h_i \circ s(x) = (x, f_i(x))$ , 则  $f_i$  在  $U_i - S$  全纯; 截面 s 是亚纯截面当且仅当对任意 i,  $f_i$  在  $U_i$  亚纯 [即  $U_i \cap S$  的点至多是  $f_i$  的极点].

若  $\pi: E \to X$  与  $\pi': E' \to X$  为 [连续,  $C^{\infty}$ , 全纯] 向量丛, 则如果映射  $u: E \to E'$  满足:  $\pi' \circ u = \pi$ , 并且  $u_a: \pi^{-1}(a) \to \pi'^{-1}(a)$  为  $\mathbb{C}$ -线性映射, 则称 u 为向量丛之间的态射. 如果 u 为连续,  $C^{\infty}$ , 全纯的, 则称此态射满足相应性质. 称 X 上的向量丛 E, E' 同构, 若存在态射  $u: E \to E'$  与  $u': E' \to E$  使得  $u \circ u' = \mathrm{id}_{E'}, u' \circ u = \mathrm{id}_{E}$ . 向量丛  $\pi: E \to X$  称为**平凡丛** (trivial bundle), 如果它同构于 "平凡的"向量丛  $\mathrm{pr}_X: X \times \mathbb{C}^n \to X$  [其中  $\mathrm{pr}_X(x,v)=x$ ] . 若  $u: E \to E', u': E' \to E$  是连续的,  $C^{\infty}$  的或者全纯的, 则称该同构具有相应性质.

接下来定义黎曼曲面上的除子. 设 X 为黎曼曲面, X 上的**除子** (divisor) 是指支集局部有限的映射  $D: X \to \mathbb{Z}$  [即对于任何紧子集  $K \subseteq X$ , 集合  $\left\{P \in K \middle| D(P) \neq 0\right\}$  是有限集]. 我们通常记作

$$D = \sum_{P \in X} D(P)P;$$

若 X 紧致,则上述求和是有限和. 定义两个除子的和 [差]  $D_1 \pm D_2$  为  $(D_1 \pm D_2)(P) = D_1(P) \pm D_2(P)$ . 如果除子 D 满足  $D(P) \ge 0$ ,  $\forall P \in X$ ,则称 D 是**有效的** (effective). 对于除子  $D_1, D_2$ ,如果  $D_1 - D_2$  有效,则记  $D_1 \ge D_2$ . 集合  $\left\{P \in X \middle| D(P) \ne 0\right\}$  称为 D 的**支集** (support),记作 supp(D).

回顾如下记号: 若 f 为黎曼曲面 X 的一点 a 的邻域 U 上的亚纯函数, z 为 U 的局部坐标且 z(a)=0, 则记

$$\operatorname{ord}_{a}(f) := \begin{cases} \infty & \text{若在 } a \text{ 附近} f \equiv 0, \\ k & \text{若} f(z) = \sum_{n=k}^{\infty} a_{n} z^{n}, \quad (k \in \mathbb{Z}), \ a_{k} \neq 0. \end{cases}$$

现在设s 为黎曼曲面X 的全纯向量丛E 的一个亚纯截面,  $s \neq 0$ .

对于  $a \in X$ , 取坐标邻域 (U,z) 使得 z(a) = 0, 以及局部平凡化  $h : E|_U \to U \times \mathbb{C}^n$ . 则  $h \circ s(x) = (x, f(x)), x \in U$ , 其中 f 为 U 上的亚纯函数 n 元组. 则存在整数 k 使得  $f = z^k g$ , 其中 g 为 a 附近的全纯函数 n 元组, 并且  $g(a) \neq 0$ . 我们记  $k = \operatorname{ord}_a(s)$ .

容易验证上述  $\operatorname{ord}_a(s)$  与局部坐标, 局部平凡化的选取无关.

若 s 为全纯向量丛 E 的亚纯截面, 则映射  $a \mapsto \operatorname{ord}_a(s)$  为除子, 即

$$\sum_{a \in X} \operatorname{ord}_a(s)a$$

称为亚纯截面 s 的除子, 记作 (s) 或者 div(s). 事实上, 黎曼曲面上的任何除子都是某向量丛的某亚纯截面的除子, 甚至一定可以来自于线丛 [即秩为 1 的向量丛]. 下面介绍该构造.

设 X 为黎曼曲面,D 为 X 上的除子; 记  $D = \sum_{P \in X} n_P P$  [其中  $n_P = D(P) \in \mathbb{Z}$ 

且该求和是局部有限的]. 设  $S = \left\{ P \in X \middle| n_P \neq 0 \right\}$ , 取  $P \in S$  的局部坐标  $\{U_P, z_P\}$  使得  $z_P(P) = 0$ ; 不妨再适当选取  $U_P$  使得当  $P \neq Q$  时  $U_P \cap U_Q = \varnothing$ ,  $P,Q \in S$ . 设  $U_* = X - S$ ,  $f_* \equiv 1$ , 以及定义在  $U_P(P \in S)$  上的函数  $f_P = z_P^{n_P}, P \in S$ . 记指标集  $\mathcal{I} = \{*\} \coprod S$ , 再记  $U_i \cap U_j$  上的函数  $g_{ij} := f_i/f_j$ ,  $i,j \in \mathcal{I}$  [若  $U_i \cap U_j = \varnothing$ , 则约定  $g_{ij} = 1$ ]. 若  $U_i \cap U_j$  非空,则  $g_{ij}$  在  $U_i \cap U_j$  全纯且处处非零. 此外,上闭链条件  $g_{ij}g_{jk} = g_{ik}$  在  $U_i \cap U_j \cap U_k$  [如果非空] 显然成立. 因此, $\{g_{ij}\}$  构成某个线丛 L(D) 的一组转移函数. 此外,由有关定义知  $f_i = g_{ij}f_j$ ,  $i,j \in \mathcal{I}$ ,从而  $\{f_i\}$  确定了 L(D) 的一个亚纯截面,记该截面为  $s_D$ . 因为  $s_D$  在  $U_i$  当中被  $f_i$  所定义,从而当  $a \in X - S$  时成立  $\operatorname{ord}_a(s_D) = \operatorname{ord}_a(f_*) = 0$ ,并且当  $a = P \in S$  时成立  $\operatorname{ord}_a(s_D) = \operatorname{ord}_P(z_P^{n_P}) = n_P$ . 因此  $\operatorname{Div}(s_D) = D$ .

若采用 P 的不同局部坐标  $(U_P, \zeta_P)$  [但开集  $U_P$  是同一个],则  $h_P = (\zeta_P/z_P)^{n_P}$  在  $U_P$  全纯且非零;若记  $h_* = 1$ , 再将  $\zeta_P^{n_P}$  确定的转移函数记为  $\{g'_{ij}\}$ ,则  $g'_{ij} = h_i g_{ij} h_j^{-1}$ . 若 L' 为  $\{g'_{ij}\}$  所确定的线丛,则有 L(D) 到 L' 的同构,将截面  $s_D$  映为由  $\{f'_i\}$   $(f'_* = 1, f'_P = \zeta_P^{n_P})$  所确定的 L' 的截面.

#### 一些一般的注记.

(1) 若 s 为 X 的全纯向量丛的  $\neq 0$  的亚纯截面,则 s 为全纯截面当且仅当 Div(s) 是有效的 [s 可能有零点但没有极点].

(2) 给定除子 D 以及开集  $U \subseteq X$ ,记  $\mathcal{O}_D(U) = \{f \mapsto U \text{ 上的亚纯函数} | \operatorname{Div}(f) \geq -D$ ,即 $\forall a \in U$ ,ord $_a(f) \geq -D(a)\}$ .则  $U \mapsto \mathcal{O}_D(U)$  显然为层,记作  $\mathcal{O}_D$ .记  $\Gamma(U, L(D))$  为线丛 L(D) 在 U 上的全纯截面构成的空间, $s_D \in \Gamma(X, L(D))$  为满足  $\operatorname{Div}(s_D) = D$  的标准截面,则映射  $\mathcal{O}_D(U) \to \Gamma(U, L(D))$ , $f \mapsto fs_D$  为同构,事实上  $\operatorname{Div}(f) \geq -D = -\operatorname{Div}(s_D) \iff \operatorname{Div}(fs_D) \geq 0$ .

因此, L(D) 的全纯截面芽层典范地同构于  $\mathcal{O}_D$ .

还要注意到, 若  $\pi: L \to X$  为线丛,  $s_0, s_1$  为 L 的两个亚纯截面  $(s_0 \neq 0)$ , 则存在 X 上的亚纯函数 f 使得  $s_1 \equiv fs_0$ .

再定义除子的线性等价. 对于除子  $D_1, D_2$ , 如果存在 X 上的亚纯函数  $f \neq 0$  使得  $Div(f) = D_1 - D_2$ , 则称  $D_1, D_2$  线性等价 (linear equivalent), 记作  $D_1 \sim D_2$ .

引理. 除子  $D_1, D_2$  线性等价当且仅当线丛  $L(D_1), L(D_2)$  全纯同构.

证明. 若  $D_1, D_2$  线性等价, 取 X 上的亚纯函数 f 使得  $Div(f) = D_1 - D_2$ . 记  $s_{D_1}, s_{D_2}$  分别为  $L(D_1), L(D_2)$  的标准截面. 则存在唯一的同构  $u: L(D_1) \to L(D_2)$  将  $s_{D_1}$  映为  $fs_{D_2}$ ; 若  $x \in X$  不是 f 的零点, 极点, 且不在  $D_1, D_2$  的支集当中, 则 u 定义为

$$\lambda s_{D_1}(x) \mapsto \lambda f(x) s_{D_2}(x), \quad \lambda \in \mathbb{C};$$

它可以全纯延拓到 X: 这是因为, 对任意开集  $U \subseteq X$ , 截面  $x \mapsto \lambda s_{D_1}(x)$  全纯当且仅当  $x \mapsto \lambda f(x)s_{D_2}$  全纯,  $\mathrm{Div}(s_{D_1}) \cap U = \mathrm{Div}(fs_{D_2}) \cap U$ .

反之, 若  $u: L(D_1) \to L(D_2)$  为全纯同构, 则  $u \circ s_{D_1}$  为  $L(D_2)$  的亚纯截面. 取亚纯函数 f 使得  $u \circ s_{D_1} = f s_{D_2}$ , 则  $\mathrm{Div}(f) = D_1 - D_2$  [因为任意  $a \in X$ ,  $\mathrm{ord}_a(s_{D_1}) = \mathrm{ord}_a(u \circ s_{D_1})$ ].

**注记.** 用层  $\mathcal{O}_{D_1}, \mathcal{O}_{D_2}$  的语言, 上述同构可简单写为  $\varphi \in \mathcal{O}_{D_1}(U) \mapsto f\varphi \in \mathcal{O}_{D_2}(U)$ .

更多的注记. 若  $\pi: E \to X$  为全纯向量丛,记  $E^*:=\coprod_{a\in X}(E_a)^*$   $[E_a^*$  为线性空间  $E_a=\pi^{-1}(a)$  的对偶空间],则可通过下述自然的方式赋予  $E^*$  向量丛结构.设  $U\subseteq X$  为开集, $h_U:\pi^{-1}(U)\to U\times\mathbb{C}^n$  为平凡化.定义  $\check{h}_U:\coprod_{a\in U}E_a^*\to U\times\mathbb{C}^n$  使得  $\check{h}_U(v)=$ 

 $(a, (h_{U,a}^*)^{-1}(v)), v \in E_a^*,$  其中  $h_{U,a} : E_a \to \mathbb{C}^n$  是由  $h_U|_{E_a} \to \{a\} \times \mathbb{C}^n$  所诱导的线性同构,  $h_{U,a}^* : \mathbb{C}^n \to E_a^*$  为其对偶映射. 若  $g_{ij} : U_i \cap U_j \to GL(n,\mathbb{C})$  为 E 的转移函数,则  $E^*$  的相应的转移函数为  ${}^tg_{ij}^{-1}$ ,  $[{}^tM$  为矩阵 M 的转置].

若  $E_1, E_2$  为 X 上的向量丛,则可定义向量丛  $\pi: E_1 \otimes E_2 \to X$  使得  $\pi^{-1}(a) = E_{1,a} \otimes E_{2,a};$  若  $\{g_{ij}^{(\nu)}\}: U_i \cap U_j \to GL(n_{\nu},\mathbb{C})$  为向量丛  $E_{\nu}$  的转移函数  $(\nu=1,2)$ ,则  $E_1 \otimes E_2$  的转移函数为  $g_{ij}^{(1)} \otimes g_{ij}^{(2)}$  [矩阵的 Kronecker 乘积]. 特别地, 若  $L_1, L_2$  为线丛,转移函数分别为  $g_{ij}^{(1)}, g_{ij}^{(2)}$ ,则线丛  $L_1 \otimes L_2$  的转移函数为  $g_{ij}^{(1)} \cdot g_{ij}^{(2)}$  [通常的复数乘法].

若  $D_1, D_2$  为除子, 由相应线丛的构造可直接看出  $L(D_1)\otimes L(D_2)$  同构于  $L(D_1+D_2)$ . 此外, 对任意除子 D, L(-D) 同构于  $L(D)^*$ . 若 L 为线丛, 并且存在处处非零的全纯截面 s, 则 L 是平凡丛; 这是因为, 映射  $X\times\mathbb{C}\to L$ ,  $(x,\lambda)\to\lambda s(x)$  为同构. 由此可推知, 若 L 为 X 上的线丛, 则  $L\otimes L^*$  为平凡丛: 若  $v\in L_x, v\neq 0$ , 则存在唯一的线性函数  $\ell\in L_x^*$  使得  $\ell(v)=1$  [对于  $c\in\mathbb{C}$ , 关于向量 cv 的线性函数为  $\frac{1}{c}\ell$ ]. 因此  $x\mapsto v\otimes \ell$  是  $L\otimes L^*$  的处处非零的截面.

若 L 为 X 上的全纯线丛, s 为 L 的亚纯截面,  $s \neq 0$ , 则  $L \cong L(D)$ , 其中  $D = \mathrm{Div}(s)$ . 事实上, 若  $s_{-D}$  为 L(-D) 的标准截面, 则  $s \otimes s_{-D}$  为  $L \otimes L(-D)$  的处处非零全纯截面. [定义在 D 的支集之外的同构映射  $\lambda s(x) \mapsto \lambda s_D(x)$  可延拓为 L 到 L(D) 的全纯同构.]

# 7 有限性定理

定理 7.1. 设 X 为紧黎曼曲面,  $\pi:E\to X$  为全纯向量丛. 则 E 在 X 上的整体全纯截面空间  $H^0(X,E)=\left\{s:X\to E\,\middle|\, \pi\circ s=\mathrm{id}_X,\, s$  全纯  $\right\}$  是有限维  $\mathbb{C}$ -线性空间.

证明. 取 X 的有限多个坐标邻域  $\{U_i, z_i\}_{i=1,\dots,N}$  满足以下:

- (1)  $z_i: U_i \to \Delta = \left\{z \in \mathbb{C} \middle| |z| < 1\right\}$  为解析同构;
- (3) 存在  $\overline{U}_i$  的邻域  $W_i$  使得存在平凡化  $h_i: \pi^{-1}(W_i) \to W_i \times \mathbb{C}^n$  以及转移函数  $g_{ij}: W_i \cap W_i \to GL(n, \mathbb{C}).$

设  $s \in H^0(X, E)$ ; 则 s 可被表示为一族 [向量值] 全纯函数  $\{s_i\}_{i=1,\dots,N}$ , 其中  $s_i: W_i \to \mathbb{C}^n$  满足

$$s_i(x) = g_{ij}(x)s_j(x), \quad x \in W_i \cap W_j.$$

我们记

$$||s||^U := \max_i \sup_{x \in U_i} |s_i(x)|,$$
  
 $||s||^V := \max_i \sup_{x \in V_i} |s_i(x)|.$ 

首先断言: 存在常数 C > 0 使得  $\forall s \in H^0(X, E)$ .

$$\|s\|^U \le C \|s\|^V.$$

事实上, 取  $x_0 \in \overline{U}_i$  使得  $|s_i(x_0)| = ||s||^U$ , 再取 j 使得  $x_0 \in V_j$ . 则有

$$|s_i(x_0)| = |g_{ij}(x_0)s_j(x_0)| \le C|s_j(x_0)| \le C|s|^V,$$

其中  $C:=\max_{i,j}\sup_{x\in U_i\cap U_j}\|g_{ij}(x)\|,\|g\|$ 为  $g\in GL(n,\mathbb{C})$  的算子范数 [视为  $\mathbb{C}^n$  到自身的线性算子].

设  $a_i \in U_i$  使得  $z_i(a_i) = 0$ . 我们证明如下版本的 Schwarz 圆盘引理: 设  $s \in H^0(X, E)$  并且  $\operatorname{ord}_{a_i}(s) \geq k$ , 其中  $k \geq 0$  为给定的整数, i = 1, ..., N; 则成立  $\|s\|^V \leq 2^{-k} \|s\|^U$ . 事实上,  $\frac{s_i}{z_i^k}$  在  $U_i$  全纯, 从而  $\sup_{V_i} \left| \frac{s_i}{z_i^k} \right| \leq \sup_{\partial U_i} \left| \frac{s_i}{z_i^k} \right| = \sup_{\partial U_i} |s_i| \leq \|s\|^U$ . 因此, 对于  $x \in V_i$ , 有  $|s_i(x)| \leq \sup_{z_i \in V_i} \left( |z_i^k| \left| \frac{s_i}{z_i^k} \right| \right) \leq 2^{-k} \|s\|^U$ . 从而若  $s \in H^0(X, E)$  且  $\operatorname{ord}_{a_i}(s) \geq k$ , 则

$$||s||^U \le C||s||^V \le 2^{-k}C||s||^U.$$

特别地, 若  $2^k > C$ , 则迫使  $s \equiv 0$ .

记  $\mathcal{O}_{a_i}$  为  $a_i$  处的全纯函数芽环,  $\mathfrak{m}_i^k$  是  $\mathcal{O}_{a_i}$  的由  $z_i^k$  生成的理想, 则  $\mathcal{O}_{a_i}/\mathfrak{m}_i^k$  是 k 维  $\mathbb{C}$ -线性空间. 此外, 若  $2^k > C$ , 则线性映射

$$H^0(X, E) \rightarrow \bigoplus_{i=1}^n \mathbb{C}^n \otimes (\mathcal{O}_{a_i}/\mathfrak{m}_i^k)$$

$$s \mapsto \bigoplus_{i=1}^n (s_i \bmod z_i^k)$$

为单射, 这是因为该线性映射的核空间恰由满足  $\operatorname{ord}_{a_i}(s) \geq k$ ,  $\forall i$  的截面 s 构成. 从而证 毕.

我们所需要的下一个有限性定理更加难证.

设 X 为紧黎曼曲面,  $\pi: E \to X$  为 X 上的全纯向量丛. 丛 E 的截面芽层  $\mathbb{E}$  是满足  $U \to \mathbb{E}(U) = \{E \ \text{在}\ U \ \text{上的全纯截面}\}$  的层. 我们也将层  $\mathbb{E}$  的第一个上同调群  $H^1(X,\mathbb{E})$  记为  $H^1(X,E)$ .

定理 7.2. 设  $\pi: E \to X$  为紧黎曼曲面 X 上的全纯向量丛, 则  $H^1(X,E)$  是有限 维  $\mathbb{C}$ -线性空间.

证明. 对于开集  $U\subseteq X$ ,假设存在 [全纯] 局部平凡化  $h_U:\pi^{-1}(U)\to U\times\mathbb{C}^n$ . 如果 V 为开集且  $V\subset U$  [相对 U 紧],则将 E 在 V 上的**有界**全纯截面构之全体记为  $E_b(V)$ ;这里的"有界"是在局部平凡化  $h_U$  意义下的,具体地说,对于截面  $s:V\to E$ ,则存在函数  $f:V\to\mathbb{C}^n$  使得  $h_U\circ s(x)=(x,f(x)), x\in V$ ;若  $\sup_{x\in V}|f(x)|<\infty$ ,则称截面 s [在 $h_U$  意义下] 有界. 对于  $s\in E_b(V)$ ,记  $\|s\|_V:=\sup_{x\in V}|f(x)|$ .在此范数下, $E_b(V)$  为 Banach空间;U 的不同的局部平凡化  $h'_U:\pi^{-1}(U)\to U\times\mathbb{C}^n$  给出了  $E_b(V)$  的等价范数.

对上述  $U, h_U$ , 如果再假定 U 解析同构于  $\mathbb C$  的开集, 则  $H^1(U, E) = 0$ . 这是因为第 5 节的 Mittag-Leffler 定理以及如下事实: 若 U 同构于  $\mathbb C$  的开集  $\Omega$ , 且  $h_U : \pi^{-1}(U) \to U \times \mathbb C^n$  为同构, 则  $H^1(U, E) \cong (H^1(\Omega, \mathcal O))^{\oplus n}$ .

记  $\Delta(r)$  为复平面上的圆盘  $\left\{z \in \mathbb{C} \middle| |z| < r\right\}, r > 0$ . 取 X 的有限坐标覆盖  $\left\{W_i, z_i\right\}_{i=1,\dots,N}$  以及全纯平凡化  $h_i: \pi^{-1}(W_i) \to W_i \times \mathbb{C}^n$ , 使得满足以下:

(1)  $z_i$  为  $W_i$  到  $\Delta(2)$  的同构.

(2) 
$$\ \ \text{id}\ U_i(r) = z_i^{-1}(\Delta(r)), \ \ \bigcup_i U_i(\frac{1}{2}) = X.$$

对于  $\frac{1}{2} \leq r \leq 2$ ,记  $\mathcal{U}(r) := \{U_i(r)\}_{i=1,\dots,N}$  为 X 的开覆盖. 对于  $x \in W_i$ ,  $v \in \pi^{-1}(x) = E_x$ ,若  $h_i(v) = (x, w)$ , $w \in \mathbb{C}^n$ ,则记  $|h_i(v)| := |w|$ . 令

$$Z_b^1(r) := \left\{ \xi \in Z^1(\mathcal{U}(r), E) \middle| \Xi \xi = (f_{ij}), \, \mathbb{M} f_{ij} \in E_b(U_i(r) \cap U_j(r)), \, \forall i, j \right\},$$

$$C_b^0(r) := \left\{ \gamma \in C^0(\mathcal{U}(r), E) \middle| \tilde{\pi}\gamma = (c_i), \, \mathbb{M} c_i \in E_b(U_i(r)), \, \forall i \right\}.$$

在上述空间中引入范数 || || 如下:

$$\|\xi\|_r := \max_{i,j} \sup_{x \in U_i(r) \cap U_j(r)} |h_i(f_{ij}(x))|, \quad \tilde{\pi} \quad \xi = (f_{ij}) \in Z_b^1(r);$$
$$\|\gamma\|_r := \max_i \sup_{x \in U_i(r)} |h_i(c_i(x))|, \quad \tilde{\pi} \quad \gamma = (c_i) \in C_b^0(r).$$

在此范数下, $Z_b^1(r)$  与  $C_b^0(r)$  为 Banach 空间. 现在设  $\frac{1}{2} \leq \rho < r < 1$ . 断言: 若  $\gamma \in C^0(\mathcal{U}(r), E)$ , $\delta \gamma \in Z_b^1(r)$ ,则必有  $\gamma \in C_b^0(r)$ ;并且存在只与  $\{W_i, z_i, h_i\}$  有关的常数 C > 0 使得

$$\|\gamma\|_r \leq \|\delta\gamma\|_r + C\|\gamma\|_{\rho}.$$

这是因为, 若  $\gamma = (c_i)$ ,  $x_0 \in U_i(r)$ , 则取 j 使得  $x_0 \in U_j(\rho)$ ; 注意  $c_i(x_0) = (c_i - c_j)(x_0) + c_j(x_0)$  并且  $h_i(c_j(x_0)) = h_i \circ h_j^{-1}(h_j(c_j(x_0)))$ , 所以

$$|h_i(c_j(x_0))| \le C |h_i(c_j(x_0))| \le C ||\gamma||_{\rho},$$

其中 C 为当 x 跑遍所有  $U_i(1) \cap U_j(1)$  时矩阵  $h_i \circ h_j^{-1}(x)$  的范数的上确界. 因此

$$|h_i(c_i(x_0))| \le ||\delta\gamma||_r + C||\gamma||_\rho.$$

记 
$$H_b^1(r) := Z_b^1(r)/\delta C_b^1(r)$$
. 断言: 对于  $\frac{1}{2} \le s \le 1$ , 自然同态

$$H^1_b(s) \to Z^1(\mathcal{U}(s), E)/\delta C^0(\mathcal{U}(s), E) = H^1(\mathcal{U}(s), E) \cong H^1(X, E)$$

为同构. 这是因为, 有上一个断言易知此同态为单射; 而其满射性是因为 Leray 定理, 只需注意同构映射  $H^1(\mathcal{U}(2),E)\to H^1(\mathcal{U}(s),E)$  穿过  $H^1_b(s)$ . 断言得证. 此外, 限制映射  $H^1_b(1)\to H^1_b(s)$  也为同构; 特别地, 限制映射  $Z^1_b(1)\to Z^1_b(r)$  所诱导的  $Z^1_b(1)\to H^1_b(r)$  为满射.

给定正整数  $N \ge 1$ . 同之前一样取定  $\frac{1}{2} \le \rho \le r < 1$ , 令  $C^0(r,N) := \left\{ \gamma = (c_i) \in C_b^0(r) \middle| \operatorname{ord}_{a_i}(c_i) \ge N \right\}$ , 其中  $a_i \in W_i$  使得  $z_i(a_i) = 0$ . 由 Schwarz 引理 [见定理 7.1 的证明过程],有

$$\|\gamma\|_{\rho} \le \left(\frac{\rho}{r}\right)^N \|\gamma\|_r \quad \stackrel{\text{def}}{=} \gamma \in C^0(r, N).$$

因此,若取充分大的 N 使得  $C(\frac{\rho}{r})^N \leq \frac{1}{2}$ ,则有:对任意  $\gamma \in C^0(r,N)$ , $\|\gamma\|_r \leq \|\delta\gamma\|_r + C(\frac{\rho}{r})^N\|\gamma\|_r$ ,从而  $\|\gamma\|_r \leq 2\|\delta\gamma\|_r$ .特别地, $\delta C^0(r,N) \subseteq Z_b^1(r)$  为闭子空间,商空间  $\mathcal{H} := Z_b^1(r)/\delta C^0(r,N)$  为 Banach 空间.此外,又因为  $C_b^0(r)/C^0(r,N)$  是有限维空间,从而映到  $\mathcal{H}$  的像空间  $\delta C_b^0(r) \subseteq \mathcal{H}$  是有限维的,从而是  $\mathcal{H}$  的闭子空间 [见第 8 节的相 关泛函分析定理证明].因此  $\delta C_b^0(r)$  为  $Z_b^1(r)$  的闭子空间, $H_b^1(r) = Z_b^1(r)/\delta C_b^0(r)$  为 (Hausdorff) Banach 空间.

现在,由 Montel 定理 [该定理断言:  $\mathbb{C}$  的开集  $\Omega$  上的一致有界的全纯函数列必存在内闭一致收敛子列] 可知限制映射  $Z_b^1(1) \to Z_b^1(r)$ , (r < 1) 是紧算子 [注意  $U_i(r) \cap U_j(r)$  相对于  $U_i(1) \cap U_j(1)$  紧]. 所以诱导同态  $Z_b^1(r) \to H_b^1(r)$  既是紧算子又是满射. 从而由 [泛函分析中的] 开映射定理,  $H_b^1(r)$  当中的原点 0 具有相对紧的邻域 [例如  $Z_b^1(1)$  当中的单位球的像集]. 因此  $H_b^1(r) \cong H^1(X, E)$  是有限维  $\mathbb{C}$ -线性空间.

**注记.** 上述定理的早期证明用到了 L.Schwarz 的某个大定理, 它关于 Banach 空间之间的满射的紧算子扰动. 而本文对定理 7.2 的证明来自 Madhav Nori, 绕开了 L.Schwarz 定理.

定理 7.2 无比强大. 作为应用, 我们证明以下:

定理 7.3. 设 X 为紧黎曼曲面,  $\pi: L \to X$  为全纯线丛. 则 L 存在非全纯的亚纯截面. 特别地:

- (1) X 上的任何线丛 L 都同构于某个 L(D), 其中 D 为 X 的除子;
- (2) 存在 X 上的非常值亚纯函数.

证明. 取  $a \in X$  及其坐标邻域 (U,z), 使得 z(a)=0; 不妨存在全纯平凡化  $h_U:\pi^{-1}(U)\to U\times\mathbb{C}$ .

对于整数  $k \geq 1$ , 记  $s_k$  为 L 在 U 上的亚纯截面,使得  $h_U(s_k(x)) = (x, \frac{1}{(z(x))^k}), x \in U - \{a\}$ . 考虑 X 的开覆盖  $U = \{U, X - \{a\}\}$ ,再令  $f_{12}^{(k)} := s_k|_{U - \{a\}}; f_{21}^{(k)} = -f_{12}^{(k)}, f_{11}^{(k)} = f_{22}^{(k)} = 0$ . 则  $\{f_{ij}^{(k)}\}_{i,j \in \{1,2\}}$  确定了  $f^{(k)} \in Z^1(\mathcal{U}, L)$ . 由于  $H^1(X, L)$  有限维, $H^1(\mathcal{U}, L) \to H^1(X, L)$  为单射,于是若记  $d = \dim_{\mathbb{C}} H^1(X, L)$ ,则存在不全为零的常数  $c_1, ..., c_{d+1}$  使得

$$c_1 f^{(1)} + \dots + c_{d+1} f^{(d+1)} \in B^1(\mathcal{U}, L);$$

也就是说存在 L 在  $U, X - \{a\}$  上的全纯截面  $u_1, u_2$ , 使得在  $U - \{a\}$  中成立

$$c_r s_r + \dots + c_{d+1} s_{d+1} = u_1 - u_2, \quad c_r \neq 0.$$

则截面  $s=u_2$  在  $X-\{a\}$  亚纯 [但不全纯],因为在  $U-\{a\}$  当中有  $s=-\sum_{\nu=r}^{d+1}c_{\nu}s_{\nu}+u_1$ .

**注记.** 上述论证表明, 若  $g := \dim_{\mathbb{C}} H^1(X, \mathcal{O})$ , 则对任意  $a \in X$ , 存在 X 上的非常值亚纯函数, 使得它在  $X - \{a\}$  全纯, 并且在 a 处的极点阶数  $\leq g + 1$ .

定理 7.3(b) 可用于证明以下:

定理 7.4. 设 X 是紧黎曼曲面, M(X) 为 X 上的亚纯函数域. 则 M(X) 为一元代数函数域. 具体地说, 若 f 为 X 上的非常值亚纯函数, 则 M(X) 是有理函数域  $\mathbb{C}(f)$  的代数扩张.

证明. 任取 X 上的非常值亚纯函数 f. 视 f 为全纯映射  $f: X \to \mathbb{P}^1$  [将极点映到  $\infty \in \mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$ ]. 设  $C \subseteq X$  为 f 的临界点集 [即 f 在在这些点处不是局部同  $\mathbb{E}$ ], $B \subseteq \mathbb{P}^1$  为 C 的像集: B = f(C). 则 B, C 都是有限集. 再令  $A = f^{-1}(C)$ ,则  $f: X - A \to \mathbb{P}^1 - B$  为有限叶覆盖,记其叶数为 d.

对于  $q \in \mathcal{M}(X)$ , 断言存在  $\mathbb{P}^1$  上的亚纯函数  $a_1, ..., a_d$  使得

$$(g(x))^d + a_1(f(x))(g(x))^{d-1} + \dots + a_d(f(x)) = 0.$$

这是因为, 记 S 为 g 的极点构成的集合, 则对于  $z \in \mathbb{P}^1 - B - f(S)$ , 定义  $a_{\nu}(z)$  为  $g(x_1),...,g(x_d)$  的第  $\nu$  个初等对称函数, 其中  $\{x_1,...,x_d\} = f^{-1}(z)$ . 于是 [由初等对称函数的定义] 易知

$$(g(x))^d + a_1(f(x))(g(x))^{d-1} + \dots + a_d(f(x)) = 0$$

对  $x \in X - A - f^{-1}f(S)$  成立. 于是, 只需再证明  $a_{\nu}$  可亚纯延拓到整个  $\mathbb{P}^1$  上.

设  $a \in B \cup f(S)$ , 取 a 的邻域 U 使得 g 在  $f^{-1}(U)$  中的极点必落在  $f^{-1}(a)$  中,并且存在 U 上的不恒为零的全纯函数 w 使得 w(a) = 0. 于是存在整数 N > 0 使得  $(w \circ f)^N g$  在  $f^{-1}(U)$  全纯. 现在, 若 W 为 a 的邻域且  $a \in W \subset U$ , 则  $(w \circ f)^N g$  在

 $f^{-1}(W)$  有界, 从而关于  $(w \circ f)^N g$  在  $\{x_1,...,x_d\} = f^{-1}(z)$   $z \in W - \{a\}$  处的取值的第 $\nu$  个初等对称函数  $b_{\nu}(z)$  有界, 从而可全纯延拓至 a 处. 而  $a_{\nu}(z) = \frac{b_{\nu}(z)}{(w(z))^{\nu N}}$ , 从而  $a_{\nu}$  在 a 处至多为极点.

因为  $\mathbb{P}^1$  上的亚纯函数都是有理函数,从而这就证明了任意  $g \in \mathcal{M}(X)$  都是  $\mathbb{C}(f)$  上的次数  $\leq d$  的代数元.

取  $g_0$  使得扩张次数  $[\mathbb{C}(f,g_0):\mathbb{C}(f)]$  最大. 断言  $\mathbb{C}(f,g_0)=\mathcal{M}(X)$ . 这是因为, 如 果  $h \in \mathcal{M}(X)$  但  $h \notin \mathbb{C}(f,g_0)$ , 注意到  $\mathbb{C}(f)$  是特征零域, 从而存在  $g \in \mathcal{M}(X)$  使得  $\mathbb{C}(f)(g_0,h)=\mathbb{C}(f)(g)$ ; 然而这样, g 在  $\mathbb{C}(f)$  上的次数  $=[\mathbb{C}(f)(g_0,h):\mathbb{C}(f)]$  严格大于  $[\mathbb{C}(f)(g_0):\mathbb{C}(f)]$ , 矛盾.

定理得证.

### 8 Dolbeaut **同构**

在证明 Mittag-Leffler 定理  $[H^1(U,\mathcal{O})=0,U\subseteq\mathbb{C}]$  当中, 我们把此问题转化为求解方程  $\frac{\partial u}{\partial \bar{z}}=f$ . 若将此方法形式化, 则会导出  $H^1(X,E)$  的一个重要解释 [E 为黎曼曲面 X 上的全纯向量丛], 称为 Dolbeaut **同构**.

假定读者熟悉外代数以及流形上的微分形式. 我们简要回顾一下其中与我们话题有 关的内容.

设 X 为黎曼曲面,  $T_X^{\mathbb{C}}$  为 X 的**复切丛** [由复切向量构成的丛]. 其对偶丛  $T_X^{*,\mathbb{C}}$  为复余切向量构成的丛, 称为**复余切丛**, 其  $C^{\infty}$ -截面为 X 上的光滑微分形式. 若 (U,z) 为一个局部坐标, z=x+iy [x,y 取实值],则 U 上的微分形式  $\varphi$  可写为  $\varphi=\varphi_1\,\mathrm{d} x+\varphi_2\,\mathrm{d} y$ ,其中  $\varphi_1,\varphi_2\in C^{\infty}(U)$ . 若记  $\mathrm{d} z=\mathrm{d} x+i\,\mathrm{d} y$ ,  $\mathrm{d} \bar{z}=\mathrm{d} x-i\,\mathrm{d} y$ ,则  $\varphi$  也能写为  $\varphi=a\,\mathrm{d} z+b\,\mathrm{d} \bar{z}$ ,其中  $a,b\in C^{\infty}(U)$ .

若 (V,w) 为另一个局部坐标, $f:V\to U$  为全纯映射,则  $f^*(\varphi)=(a\circ f)f'\,\mathrm{d}w+(b\circ f)\overline{f}'\,\mathrm{d}\overline{w}$  [注意柯西-黎曼方程];从而若  $\varphi=a\,\mathrm{d}z+b\,\mathrm{d}\overline{z}$  且在 V 中  $b\equiv 0$ ,则  $f^*(\varphi)$  的  $\mathrm{d}\overline{w}$  的系数也恒为 0;于是这是微分形式的内蕴性质.我们称微分形式  $\varphi$  是 (1,0)-型的 [相应地,(0,1)-型的],如果对于任何局部坐标 (U,z), $\varphi$  在该坐标下的局部表示形如  $\varphi=a\,\mathrm{d}z$  [相应地, $b\,\mathrm{d}\overline{z}$ ].

对于 X 的开子集 W, 记  $\mathcal{A}^{1,0}(W)$  [相应地,  $\mathcal{A}^{0,1}(W)$ ] 为 W 上的 (1,0)-形式 [相应地, (0,1)-形式] 构成的空间.  $\mathcal{A}^{0,0}(W) = C^{\infty}(W)$ .

对于  $f \in C^{\infty}(W)$ , 外微分 df 可唯一分解为 d $f = \partial f + \bar{\partial} f$ , 使得  $\partial f \in \mathcal{A}^{1,0}(W)$ ,  $\bar{\partial} f \in \mathcal{A}^{0,1}(W)$ . 在局部坐标下,  $\partial f = \frac{f}{z} \, \mathrm{d} z$ ,  $\bar{\partial} f = \frac{\partial f}{\partial \bar{z}} \, \mathrm{d} \bar{z}$ .

若  $\alpha \in \mathcal{A}^{1,0}(W)$ , 则令  $\partial \alpha = 0$ ,  $\bar{\partial} \alpha = d\alpha$  [外微分]; 类似地, 若  $\beta \in \mathcal{A}^{0,1}(W)$ , 则  $\partial \beta = d\beta$ ,  $\bar{\partial} \beta = 0$ . 局部坐标下, 若  $\alpha = a \, dz$ ,  $\beta = b \, d\bar{z}$ , 则定义  $\bar{\partial} \alpha = \frac{\partial a}{\partial \bar{z}} \, d\bar{z} \wedge dz = -\frac{\partial z}{\partial \bar{z}} \, dz \wedge d\bar{z}$ , 以及  $\partial \beta = \frac{\partial \beta}{\partial z} \, dz \wedge d\bar{z}$ .

设  $\pi: E \to X$  为黎曼曲面 X 上的全纯向量丛, W 为 X 的开子集. 记  $C_E^{\infty}(W)$  为 E 在 W 上的光滑截面构成的空间 [即满足  $\pi \circ s = \mathrm{id}_W$  的光滑映射  $s: W \to E$  构成的空间]. 若  $E|_W$  为平凡丛 [即存在全纯平凡化  $h: \pi^{-1}(W) \to W \times \mathbb{C}^n$ ], 则映射

$$H^0(W, E) \otimes_{\mathcal{O}(W)} C^{\infty}(W) \rightarrow C_E^{\infty}(W)$$
  
 $s \otimes f \mapsto f \cdot s$ 

为同构  $[其中 H^0(W,E)$  为 E 在 W 上的全纯截面空间].

令  $\mathcal{A}_{E}^{0,1}(W) = C_{E}^{\infty}(W) \otimes_{C^{\infty}(W)} \mathcal{A}^{0,1}(W)$ , 其中 W 为 X 的开集. 若  $E|_{W}$  为平凡丛, 则有  $\mathcal{A}_{E}^{0,1}(W) = H^{0}(W,E) \otimes_{\mathcal{O}(W)} \mathcal{A}^{0,1}(W)$ .

若  $E|_W$  为平凡丛, 在存在唯一的  $\mathcal{O}(W)$ -线性映射  $\bar{\partial}_{E,W}: C_E^\infty(W) \to \mathcal{A}_E^{0,1}(W)$ ,此 线性映射由  $1 \otimes \bar{\partial}: H^0(W,E) \otimes_{\mathcal{O}(W)} C^\infty(W) \to H^0(W,E) \otimes_{\mathcal{O}(W)} \mathcal{A}^{0,1}(W)$  所诱导 [注意到, 因为  $\bar{\partial}$  是  $\mathcal{O}(W)$ -线性的, 从而  $1 \otimes \bar{\partial}$  良定]. 由此易知对于 X 的任意开集 V, 都存在唯一的  $\mathcal{O}(V)$ -线性映射  $\bar{\partial}_{E,V}: C_E^\infty(V) \to \mathcal{A}_E^{0,1}(V)$  使得对任意开集  $U \subseteq V$ ,若  $E|_U$  平凡,则对任意  $s \in C_E^\infty(V)$ , $\bar{\partial}_{E,V}(s)|_U = \bar{\partial}_{E,U}(s|_U)$ . 我们将此映射简记为  $\bar{\partial}_E: E \to \mathcal{A}_E^{0,1}$ ,或者直接简记为  $\bar{\partial}$ .

现在陈述本节主定理:

定理. (Dolbeaut 同构定理).

设 $\pi: E \to X$  为黎曼曲面 X 上的全纯向量丛. 考虑映射

$$\bar{\partial}: C_E^{\infty}(X) \to \mathcal{A}_E^{0,1}(X).$$

则有:  $\ker(\bar{\partial})=H^0(X,E)$ , 即 E 在 X 上的全纯截面空间; 以及  $\mathrm{coker}(\bar{\partial})$  自然同构于  $H^1(X,E)$ .

证明. 注意到  $\ker(\bar{\partial}) = H^0(X, E)$  是局部性质. 对于 X 的开子集 U, 若有全纯平凡化  $\pi^{-1}(U) \to U \times \mathbb{C}^n$ , 则对于  $s \in C_E^\infty(X)$ ,  $\bar{\partial}s|_U = 0 \iff \bar{\partial}f = 0$ , 其中  $(x, f(x)) = h_U(s(x)), x \in U$ . 此时, 当且仅当 f 全纯.

为证明此定理的第二部分, 我们需要以下引理:

**引理.** 设  $\mathbb{E}^{\infty}$  是 E 的光滑截面层,即对于开集  $W \subseteq X$ ,  $\mathbb{E}^{\infty}(W) = C_{E}^{\infty}(W)$ ,则

$$H^1(X, \mathbb{E}^\infty) = 0.$$

证明. 设  $\mathcal{U}=\{U_i\}_{i\in\mathcal{I}}$  为 X 的一族开覆盖,  $s_{ij}\in C_E^\infty(U_i\cap U_j)$  使得  $\{s_{ij}\}\in Z^1(\mathcal{U},\mathbb{E}^\infty)$ . 则取从属于开覆盖  $\mathcal{U}$  的单位分解  $\{\alpha_i\}_{i\in\mathcal{I}}$ , 再令  $s_i\in C_E^\infty(U_i)$  满足  $s_i=\sum_{j\in\mathcal{I}}\alpha_js_{ij}$  [其中函数  $\alpha_js_{ij}$  的定义为: 对于  $x\in U_i\cap U_j$ ,  $(\alpha_js_{ij})(x)=\alpha_j(x)s_{ij}(x)$ ; 而此函数在  $U_i-U_j$  恒为零]. 则与 Mittag-Leffler 定理的证明一样, 在  $U_k\cap U_\ell$  当中成立

$$s_k - s_\ell = \sum_j \alpha_j (s_{kj} - s_{\ell j}) = \sum_j \alpha_j s_{k\ell} = s_{k\ell}.$$

回到 Dolbeaut 同构定理的证明. 我们定义映射

$$D: H^1(X, E) \to \mathcal{A}_E^{0,1}(X)/\bar{\partial} C_E^{\infty}(X)$$

如下:设  $\{s_{ij}\}\in Z^1(\mathcal{U},E)$  [其中  $s_{ij}\in H^0(U_i\cap U_j,E)$ ].取  $\varphi_i\in C_E^\infty(U_i)$  使得在  $U_i\cap U_j$  当中成立  $\varphi_i-\varphi_j=s_{ij}$ ,则有  $\bar{\partial}\varphi_i-\bar{\partial}\varphi_j=0$ ;因此  $\{\bar{\partial}\varphi_i\}$  定义了  $\mathcal{A}^{0,1}(X)$  中的一个元素,它在商空间  $\mathcal{A}_E^{0,1}(X)/\bar{\partial}C_E^\infty(X)$  中的像被定义为  $D(\{s_{ij}\})$ .

我们来验证此 D 的良定性 [与上述选取无关]. 首先, 若  $\{V_{\alpha}\}_{\alpha \in V}$ ,  $\tau: A \to \mathcal{I}$  为开 覆盖  $\{U_i\}$  的一个加细,  $s_{\alpha\beta} := s_{\tau(\alpha)\tau(\beta)}|_{V_{\alpha}\cap V_{\beta}}$ , 则取  $\psi_{\alpha} = \varphi_{\tau(\alpha)}|_{V_{\alpha}}$  使得  $\psi_{\alpha} - \psi_{\beta} = s_{\alpha\beta}$ ; 则显然  $\{\bar{\partial}\psi_{\alpha}\}$  与  $\{\bar{\partial}\varphi_i\}$  定义了同一个微分形式.

若  $\varphi_i' \in C_E^{\infty}(U_i)$  是方程  $\varphi_i' - \varphi_j' = s_{ij}$  的另一组解, 则在  $U_i \cap U_j$  当中成立  $\varphi_i' - \varphi_i = \varphi_j' - \varphi_j$ , 这确定了一个  $\varphi \in C_E^{\infty}(X)$ ; 显然, 由  $\omega|_{U_i} = \bar{\partial}\varphi_i$  所确定的  $\omega \in \mathcal{A}^{0,1}(E)(X)$  以及类似的  $\omega' \in \mathcal{A}^{0,1}(X)$ , 成立  $\bar{\partial}\varphi = \omega' - \omega$ .

断言 D 为单射: 给定  $\{s_{ij}\} \in Z^1(\mathcal{U}, E), \varphi_i \in C_E^{\infty}(U_i)$  使得在  $U_i \cap U_j$  成立  $\varphi_i - \varphi_j = s_{ij}$ ; 如果存在  $\varphi \in C_E^{\infty}(X)$  使得在  $U_i$  成立  $\bar{\partial} \varphi = \bar{\partial} \varphi_i$ , 那么在  $U_i \cap U_j$  中有

$$(\varphi_i - \varphi) - (\varphi_j - \varphi) = s_{ij}, \quad \bar{\partial}(\varphi_i - \varphi) = 0,$$
也就是说,  $\varphi_i - \varphi \in H^0(U_i, E).$ 

最后再验证 D 为满射. 事实上, 给定  $\omega \in \mathcal{A}_E^{0,1}(X)$ , 则我们可以取开覆盖  $\mathcal{U} = \{U_i\}_{i\in\mathcal{I}}$  以及  $\varphi_i \in C_E^\infty(U_i)$  使得  $\bar{\partial}\varphi_i = \omega|_{U_i}$  [因为,若  $\Omega \subseteq \mathbb{C}$  为开集, $f \in C^\infty(\Omega)$ ,则由第 5 节的性质 5.3 可知对任何紧子集  $K \subseteq \Omega$ ,存在  $u \in C^\infty(\Omega)$  使得在 K 中成立  $\frac{\partial u}{\partial \bar{z}} = f$ ]. 进而,再令  $s_{ij} = \varphi_i - \varphi_j|_{U_i \cap U_j}$ ,则  $\bar{\partial}s_{ij} = 0$ ,从而  $s_{ij} \in H^0(U_i \cap U_j, E)$ . 显然  $\{s_{ij}\} \in Z^1(\mathcal{U}, E)$ . 由 D 的定义可知  $D(\{s_{ij}\}) = \omega$  所在等价类.

**注记.** 注意层短正合列  $0\to\mathbb{E}\to\mathbb{E}^\infty\to\mathcal{A}_E^{0,1}\to 0$  以及引理  $H^1(X,\mathbb{E}^\infty)=0$ ,则其同调群的长正合列可直接推出 Dolbeaut 同构定理. 不过, D 的上述具体构造也常常有用.

Dolbeaut 同构定理结合第7节的有限性定理可得到一个重要推论.

首先, 我们定义  $C_E^\infty(X)$  与  $\mathcal{A}_E^{0,1}(X)$  上的拓扑. 设  $a\in X, U$  为 a 的坐标邻域, 局部 坐标  $z:U\to z(U)\subseteq\mathbb{C}$ , 并且  $E|_U$  平凡. 对于  $\varphi\in\mathcal{A}_E^{0,1}(X)$ , 则  $\varphi|_U$  具有局部表达式

$$(\varphi_1, ..., \varphi_n) d\bar{z}, \quad \varphi_1, ..., \varphi_n \in C^{\infty}(U).$$

设 X 为紧黎曼曲面, 我们通过下述条件来引入  $\mathcal{A}_E^{0,1}(X)$  上的拓扑, 使得它为完备度量空间 [甚至是 Fréchet 空间]:

序列  $\varphi^{(\nu)} \in \mathcal{A}_E^{0,1}(X)$  收敛, 当且仅当对任意的上述开集 U, 相应的序列  $(\varphi_1^{(\nu)},...,\varphi_n^{(\nu)})$ 

$$(\varphi_1^{(\nu)}, ..., \varphi_n^{(\nu)}) d\bar{z} = \varphi^{(\nu)}|_U,$$

在空间  $\prod_{p=1}^n C^{\infty}(U)$  中收敛. [即, 对于任意阶微分算子  $D^k$ ,  $(D^k = \frac{\partial^k}{\partial x^l \partial y^m}, l+m=k)$ , 序列  $\{D^k \varphi_i^{(\nu)}\}$  在 U 中内闭一致收敛].

同样的方式也可引入  $C_E^\infty(X)$ . 这称为  $\mathcal{A}_E^{0,1}, C_E^\infty$  上的  $C^\infty$ -拓扑, 也称为 Schwartz **拓扑**.

定理.  $\bar{\partial}C_E^{\infty}(X)$  是  $\mathcal{A}_E^{0,1}(X)$  的闭子空间.

因为  $\bar{\partial}C_E^{\infty}(X)$  在  $\mathcal{A}_E^{0,1}(X)$  当中有限余维 [由 dim  $H^1(X,E)$  的有限性以及 Dolbeaut 同构可知],从而此定理是以下泛函分析中的标准结果的推论:

**引理.** 设 V,W 为 Fréchet 空间,  $u:V\to W$  为连续线性映射. 若  $\dim_{\mathbb{C}}(W/u(V))<\infty$ , 则 u(V) 是 W 的闭子空间.

/特别注意, Fréchet 空间的有限余维子空间不一定是闭的. /

我们给出其证明概要. 首先, 因为 ker u 是闭的, V/ ker u 仍为 Fréchet 空间. 因此不妨假设 u 为单射. 设  $W_0$  为 W 的有限维子空间使得投影  $W_0 \to W/u(V)$  为代数同构. 那么,  $W_0$  为 W 的闭子空间. [若  $w_1,...,w_k$  为  $W_0$  的一组基, 则映射  $\mathbb{C}^k \to W_0$ ,  $(x_1,...,x_k) \to \sum x_i w_i$  为连续双射; 易知它是同胚, 这是因为  $\{\sum |x_i|^2 = 1\}$  的像集是紧的, 从而为  $W_0$  的闭子集, 从而存在 0 的邻域与该像集不交. 这表明  $W_0$  在 W 的子空间拓扑下是完备的, 从而闭. ] 映射  $W_0 \oplus V \to W$ ,  $(w,v) \mapsto w + u(v)$  为连续双射, 从而为同胚 [利用开映射定理]. 因为 V 为  $W_0 \oplus V$  的闭子集, 从而其像集在 W 中闭.  $\square$ 

作为本节结束, 我们介绍黎曼曲面 X 的典范丛 (canonical bundle).

设 W 为 X 的开子集. W 上的**全纯** 1-**形式** 是指满足  $\bar{\partial}\omega = 0$  的 (1,0)-形式  $\omega$ . [等价地, $d\omega = 0$ ] . 若 (U,z) 为局部坐标, $\omega$  是全纯 1-形式, $\omega|_{U\cap W} = f\,\mathrm{d}z$ ,则 f 全纯. 若  $\omega$  是定义在 W 去掉某个离散子集所得的集合上的 (1,0) 形式,且对于任何局部坐标 (U,z), $U\subseteq W$ , $\omega=f\,\mathrm{d}z$ ,则 f 在 U 上亚纯,那么称  $\omega$  为 W 上的**亚纯** 1-**形式**.

定义 X 上的层  $\Omega = \Omega_X (= \Omega_X^1)$ ,使得  $U \mapsto \Omega_X(U) = \{U \text{ 上的全纯 1-形式}\};$  称为**全纯** 1-**形式层**. 存在 X 上的线丛  $K = K_X$  使得对 X 的任何开集  $U \subseteq X$ , $H^0(U,K_X) = \Omega_X(U)$ .

我们可通过分析复余切丛  $T_X^{*,\mathbb{C}}$ , 以及将复余切向量分解为 (1,0)-型与 (0,1)-型来内蕴地描述该线丛. 在此我们用一组转移函数来定义它.

设  $\{(U_i, z_i)\}$  为 X 的一族坐标覆盖, 则显然存在  $U_i \cap U_j$  上处处非零的全纯函数  $g_{ij} \in \mathcal{O}(U_i \cap U_j)$  使得在  $U_i \cap U_j$  成立

$$\mathrm{d}z_j = g_{ij}\,\mathrm{d}z_i.$$

设  $K_X$  为由转移函数  $\{g_{ij}\}$  定义的线丛. 若  $W\subseteq X$  开子集,  $s\in H^0(W,K_X)$ , 则 s 可以表示为一族函数  $\{f_i\}$ ,  $f_i\in \mathcal{O}(U\cap U_i)$  使得在  $W\cap U_i\cap U_i$  成立

$$f_i = g_{ij}f_j$$
.

考虑  $W \cap U_i$  上的全纯 1-形式  $\omega_i = f_i \, \mathrm{d} z_i$ ; 则在  $W \cap U_i \cap U_j$  成立  $\omega_i = f_i \, \mathrm{d} z_i = g_{ij} f_j \, \mathrm{d} z_i = f_i \, \mathrm{d} z_i = \omega_i$ , 从而这定义了  $\omega \in \Omega_X(U)$ . 映射  $s \mapsto \omega$  显然是同构.

线丛  $K = K_X$  称为 X 的**典范** (**线**) 丛 (canonical (line) bundle). 在上述相应地描述下,  $K_X$  的亚纯截面对应于亚纯 1-形式. 我们可以谈论亚纯 1-形式  $\omega$  的除子; 这种除子称为**典范除子** (canonical divisor).

还要注意, 对于 X 的开子集 W, 考虑  $K_X$  在 W 上的  $C^{\infty}$ -截面, 可得  $C^{\infty}_{K_X}(W)$  与  $\mathcal{A}^{1,0}(W)$  的同构.

# 9 Weyl 引理与 Serre 对偶定理

我们通常所说的 Weyl 引理是关于 Laplace 算子的一个正则性引理, 而不是关于算子  $\bar{\partial}$ .

设 X 为紧黎曼曲面,  $\pi: E \to X$  为 X 上的全纯向量丛. 记  $\pi^*: E^* \to X$  为其对偶 丛,  $K_X$  为 X 的典范线丛. 我们通过下述方式来定义双线性型

$$\langle , \rangle : H^0(X, E^* \otimes K_X) \times \mathcal{A}_E^{0,1}(X) \to \mathbb{C}.$$

对于  $s \in H^0(X, E^* \otimes K_X)$ ,  $\varphi \in \mathcal{A}_E^{0,1}(X)$ , 设 (U,z) 为 X 上的一个局部坐标,  $\omega$  为 U 上的一个处处非零的全纯 1-形式  $[\mathbb{P}, \ \ \mathcal{E} \ \omega = f \, \mathrm{d} z$ , 则函数 f 在 U 处处非零]. 则  $s, \varphi$  在 U 上可唯一地写成

$$s|_U = \lambda \otimes \omega, \quad \varphi|_U = \alpha \otimes \overline{\omega},$$

其中  $\lambda \in H^0(U, E^*)$ ,  $\alpha \in C_E^\infty(U)$ ; 我们定义 U 上的  $C^\infty$  函数  $(\lambda, \alpha)$ , 使得对任意  $x \in U$  都有  $(\lambda, \alpha)(x) = \lambda(x)(\alpha(x))$  [注意  $\lambda(x)$  为纤维  $E_x$  上的线性函数,  $\alpha(x) \in E_x$ ],并且 U 上的 2-形式

$$(s|_{U}, \varphi|_{U}) = (\lambda, \alpha)\omega \wedge \overline{\omega}$$

与  $\omega$  的选取无关 [若另有  $\omega' = f\omega$ , 则 f 为 U 上处处非零的全纯函数. 于是  $(\frac{1}{f}\lambda)\otimes\omega' = s|_U$ ,  $\varphi|_U = (\frac{1}{f}\alpha)\otimes\overline{\omega}'$ , 从而  $(\frac{1}{f}\lambda,\frac{1}{f}\alpha)\omega'\wedge\overline{\omega}' = \frac{1}{|f|^2}(\lambda,\alpha)f\overline{f}\omega\wedge\overline{\omega} = (\lambda,\alpha)\omega\wedge\overline{\omega}$ ]. 这就定义了 X 上的 2-形式  $(s,\varphi)$ , 我们令

$$\langle s, \varphi \rangle = \int_X (s, \varphi).$$

注意若 W 为 X 的开子集,  $\mathrm{supp}(\varphi)\subseteq W$ , 则对于  $s\in H^0(W,E^*\otimes K_X)$ , 也可以定义  $\langle s,\varphi\rangle$ .

取局部坐标 (U,z), 使得存在平凡化  $h_U:\pi^{-1}(U)\to U\times\mathbb{C}^n$ , 再令  $h_U^*:\pi^{*-1}(U)\to U\times\mathbb{C}^n$  为其对偶丛 [转置的逆] 的对偶平凡化. 也就是说, 若  $v\in E_x$ ,  $\lambda\in E_x^*$ ,  $x\in U$ , 若  $h_U(x)=(x;v_1,...,v_n)$ ,  $h_U^*(\lambda)=(x,\lambda_1,...,\lambda_n)$ , 则成立  $\lambda(v)=\sum_{k=1}^n\lambda_kv_k$ . 若  $s\in H^0(X,E^*\otimes K_X)$ ,  $\varphi\in\mathcal{A}_E^{0,1}(X)$  并且  $\mathrm{supp}(\varphi)\subseteq U$ , 则有局部表示

$$s|_{U} = \lambda \otimes dz, \quad \sharp + h_{U}^{*}(\lambda(x)) = (x; \lambda_{1}(x), ..., \lambda_{n}(x))$$
  
 $\varphi|_{U} = \alpha \otimes d\bar{z}, \quad \sharp + h_{U}(\alpha(x)) = (x; \alpha_{1}(x), ..., \alpha_{n}(x))$ 

并且有

$$\langle s, \varphi \rangle = \int_U \left( \sum_{k=1}^n \lambda_k(z) \alpha_k(z) \right) dz \wedge d\bar{z}.$$

我们还要注意, 若  $f \in C_{E}^{\infty}(X)$ ,  $s \in H^{0}(X, E^{*} \otimes K_{X})$ , 则  $\langle s, \bar{\partial}f \rangle = 0$ . 为证明此断言, 首先 [用单位分解] 将 f 写成  $\sum_{\nu=1}^{p} f_{\nu}$ , 使得每个  $f_{\nu}$  的支集都包含于某个坐标邻域  $(U_{\nu}, z_{\nu})$ , 并且  $E|_{U_{\nu}}$  为平凡丛. 因此我们不妨假设 p=1, 并且  $\mathrm{supp}(f) \subseteq U$ , (U,z) 同之前. 则  $h_{U}(f(x))=(x;f_{1}(x),...,f_{n}(x))$ , 于是  $\bar{\partial}f=\alpha\otimes\mathrm{d}\bar{z}$ , 其中  $h_{U}(\alpha(z))=(z;\frac{\partial f_{1}}{\partial \bar{z}},...,\frac{\partial f_{n}}{\partial \bar{z}})$ ; 因此, 若在 U 上有  $h_{U}^{*}(s(z))=(z;\lambda_{1}(z),...,\lambda_{n}(z))$ , 则

$$\langle s, \varphi \rangle = \int_{U} \sum_{k=1}^{n} \lambda_{k}(z) \frac{\partial f_{k}}{\partial \bar{z}} dz \wedge d\bar{z} = -\int_{U} \sum_{k=1}^{n} \frac{\partial \lambda_{k}}{\partial \bar{z}} f_{k} dz \wedge d\bar{z} = 0$$

[注意  $\operatorname{supp}(f_k) \subseteq U$ , 作分部积分].

### Weyl 引理: $\bar{\partial}$ -算子的正则性.

定理. 设 X 为紧黎曼曲面,  $\pi: E \to X$  为 X 上的全纯向量丛. 将  $\mathcal{A}_E^{0,1}(X)$  赋予  $C^{\infty}$ -拓扑 /详见第8节/, 即在 X 的坐标邻域中各阶导数内闭一致收敛拓扑.

设  $F:\mathcal{A}_E^{0,1}(X)\to\mathbb{C}$  为连续线性泛函,并且满足  $F|_{\bar\partial C_E^\infty(X)}=0$ ,则必存在唯一的  $s\in H^0(X,E^*\otimes K_X)$  使得

$$F(\varphi) = \langle s, \varphi \rangle, \quad \forall \varphi \in \mathcal{A}_E^{0,1}(X).$$

#### 一些注记.

- (1) 若 E 是秩为 1 的平凡丛, X 为  $\mathbb C$  的开子集, 则我们要处理  $C_0^\infty(X)$  [紧支光滑函数] 上的线性泛函; 见关于 X 的紧性的下一个注记. [这样的线性泛函] 叫做**分布** (distribution) <sup>4</sup> 我们可以定义对分布求导数,使得条件  $F|_{\bar{\partial}C_0^\infty(X)}=0$  意味着 [在 对分布求导数的意义下]  $\frac{\partial F}{\partial \bar{z}}=0$ . 于是 Weyl 引理断言, 若分布 F 满足  $\frac{\partial F}{\partial \bar{z}}=0$ , 则 F 由某个全纯函数自然诱导.
- (2) X 的紧性条件不是本质的; 一般地, 我们可研究取值于 E 的紧支 (0,1)-形式空间. 为处理这种一般情形, 我们需要在这个截面空间上定义  $C^{\infty}$  或 Schwartz 拓扑, 这就牵扯到一系列拓扑空间的**归纳极限** (inductive limit), 而我们更倾向于避开这个归纳极限. 我们必须要注意支集, 我们必须要在证明中这样做, 尽管就我们所需要的而言这很简单.

Weyl 引理的证明. 先证明唯一性. 只需注意, 若  $W \subseteq X$  为开集,  $\sigma \in H^0(W, E^* \otimes K_X)$  使得对任意  $\varphi \in \mathcal{A}_E^{0,1}(X)$ ,  $\operatorname{supp}(\varphi) \subseteq W$  都有  $\langle \sigma, \varphi \rangle = 0$ , 则必有  $\sigma = 0$ . 因此, 我们只需要再证明下述存在性:

设 (U, z) 为 X 上的局部坐标, 并且存在全纯平凡化  $h_U : \pi^{-1}(U) \to U \times \mathbb{C}^n$ . 则存在  $s \in H^0(U, E^* \otimes K_X)$  使得对任意  $\varphi \in \mathcal{A}_E^{0,1}$ ,  $\operatorname{supp}(\varphi) \subseteq U$  都有  $F(\varphi) = \langle s, \varphi \rangle$ .

而这等价于证明存在 U 上的全纯函数  $\lambda_1,...,\lambda_n$  使得对 U 上的任意紧支光滑函数

<sup>4</sup>也叫做"广义函数".

 $\alpha_1, ..., \alpha_n$  [即  $\forall \alpha_i \in C_0^{\infty}(U)$ ] 都成立

$$F(\varphi) = \int_{U} \sum_{k=1}^{n} \lambda_{k}(z) \alpha_{k}(z) dz \wedge d\bar{z}, \quad \Big(\varphi = \alpha \otimes d\bar{z}, \, h_{U}(\alpha(z)) = (z; \alpha_{1}(z), ..., \alpha_{n}(z))\Big).$$

对于  $\alpha_j \in C_0^\infty(U)$ , 记  $G(\alpha_1,...,\alpha_n) = F(\alpha \otimes \mathrm{d}\bar{z}), h_U(\alpha(z)) = (z;\alpha_1(z),...,\alpha_n(z))$ . 条件  $F|_{\bar{\partial}C_E^\infty(X)} = 0$  意味着对任意  $\beta_j \in C_0^\infty(U)$  都有  $G(\frac{\partial \beta_1}{\partial \bar{z}},...,\frac{\partial \beta_n}{\partial \bar{z}}) = 0$ . 于是只需证明对 任意  $1 \le k \le n$ , 存在  $\lambda_k \in \mathcal{O}(U)$  使得

$$G(0,...,\alpha_k,...,0) = \int_U \lambda_k \alpha_k \, \mathrm{d}z \wedge \, \mathrm{d}\bar{z} \quad \forall \alpha_k \in C_0^{\infty}(U).$$

因此, Weyl 引理是如下定理的推论. 此定理称为  $\bar{\partial}$ -算子的正则性.

定理. 设 U 为  $\mathbb{C}$  的开子集.  $T: C_0^\infty(U) \to \mathbb{C}$  为满足以下性质的  $\mathbb{C}$ -线性映射:

- (1) 若  $\alpha^{(\nu)} \in C_0^\infty(U)$  是支于 U 的某个给定紧子集上光滑函数列, 并且再  $C^\infty$ -拓 扑下收敛于  $\alpha \in C_0^{\infty}(U)$ , 则  $T(\alpha^{(\nu)}) \to T(\alpha)$ .

  (2) 任意  $\beta \in C_0^{\infty}(U)$ , 都有  $T(\frac{\partial \beta}{\partial \bar{z}}) = 0$ .

那么存在  $\lambda \in \mathcal{O}(U)$  使得  $T(\alpha) = \int_{\mathcal{U}} \lambda \alpha \, \mathrm{d}z \wedge \, \mathrm{d}\bar{z}, \, \forall \, \alpha \in C_0^\infty(U).$ 

证明. 不妨假设 U 为  $\mathbb{C}$  的有界开集. 取  $\varepsilon > 0$ , 记  $U_{\varepsilon} := \left\{ z \in U \middle| z$  到  $\mathbb{C} - U$  的距离  $> \varepsilon \right\}$ .

取函数  $\varphi\in C_0^\infty(\mathbb{C})$  使得恒有  $0\leq \varphi\leq 1$ ,并且当  $|z|<\frac{1}{2}\varepsilon$  时成立  $\varphi(z)=1$ ,当  $|z| \ge \varepsilon \text{ ff } \varphi(z) = 0$ 

对任意的  $\alpha \in C_0^{\infty}(U_{\varepsilon})$ , 定义函数  $\tilde{\alpha} \in C_0^{\infty}(U)$  如下:

$$\tilde{\alpha}(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \alpha(z+w) \frac{\varphi(w)}{w} dw \wedge d\bar{w}.$$

我们断言

$$\alpha(z) = \frac{\partial \tilde{\alpha}}{\partial \bar{z}}(z) + \frac{1}{2\pi i} \int_{\mathbb{C}} \alpha(z+w)\rho(w) \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w}, \quad z \in U, \tag{*}$$

其中  $\rho(w)=\frac{\partial}{\partial \bar{w}}(\frac{\varphi(w)}{w}),\ w\neq 0,\ \rho(0)=0;\ \rho$  为  $C^{\infty}$ -函数, 其支集包含于圆盘  $|w|\leq \varepsilon$ [其实包含于圆环  $\frac{1}{2}\varepsilon \leq |w| \leq \varepsilon$ ].

为证明 (\*), 取定  $z \in U$  以及以 z 为中心的半径  $\delta > 0$  的小圆盘  $\Delta_{\delta}$ , 则

$$\frac{\partial \tilde{\alpha}}{\partial \bar{z}} = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial \alpha}{\partial \bar{z}} (z+w) \frac{\varphi(w)}{w} \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w} = \lim_{\delta \to 0} \frac{1}{2\pi i} \int_{\mathbb{C} -\Delta_{\delta}} \frac{\partial \alpha}{\partial \bar{w}} (z+w) \frac{\varphi(w)}{w} \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w};$$

对于固定的  $\delta > 0$ , 上式右边的积分等于

$$-\int_{\mathbb{C}-\Delta_{\delta}} d\left(\alpha(z+w)\frac{\varphi(w)}{w} dw\right) - \int_{\mathbb{C}-\Delta_{\delta}} \alpha(z+w) \frac{\partial}{\partial \bar{w}} \left(\frac{\varphi(w)}{w}\right) dw \wedge d\bar{w};$$

其第一项 =  $\int_{|w|=\delta} \frac{\alpha(z+w)\varphi(w)}{w} \,\mathrm{d}w, \, \, \text{ if } \, \delta \to 0 \, \, \text{ bh w 数于 } 2\pi i\alpha(z)\varphi(0) = 2\pi i\alpha(z). \, \, \text{ bh w in } \, 0 = 0$ 

$$\frac{\partial \tilde{\alpha}}{\partial \bar{z}} = \alpha(z) - \frac{1}{2\pi i} \int_{\mathbb{C}} \alpha(z+w) \rho(w) \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w},$$

这就证明了(\*). 它可以重写为

$$\alpha(z) = \frac{\partial \tilde{\alpha}}{\partial \bar{z}} + \frac{1}{2\pi i} \int_{U} \alpha(w) \rho(w - z) \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w}.$$

现在若我们用黎曼和来逼近此积分,则黎曼和序列在 U 的  $C^{\infty}$ -拓扑下收敛于此积分 [因为  $\rho \in C^{\infty}$ ],并且它们的支集都包含于 U 的某个固定的紧子集,这是因为  $\alpha \in C_0^{\infty}(U_{\varepsilon})$ 并且当  $|w-z| \geq \varepsilon$  时  $\rho(w-z)=0$ . 因此由 T 的连续性假设,我们得到

$$T(\alpha) = T\left(\frac{\partial \tilde{\alpha}}{\partial \bar{z}}\right) + \frac{1}{2\pi i} \int_{U} \alpha(w) \lambda(w) \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w},$$

其中对于  $w \in U_{\varepsilon}$ ,  $\lambda(w) = T(z \mapsto \rho(w-z))$ . 此外还有  $\lambda \in C^{\infty}(U_{\varepsilon})$  [这是因为, 比如对于实数  $h \neq 0$ ,  $h \to 0$ , 则  $\frac{\lambda(w+h) - \lambda(w)}{h} = T(\frac{\rho(w+h-z) - \rho(w-z)}{h})$ , 算子 T 里面的部分当  $h \to 0$  时在  $C^{\infty}$ -拓扑下收敛; 之后反复使用此论证]. 再注意到  $T(\frac{\partial \tilde{\alpha}}{\partial \bar{z}}) = 0$ . 因此我们证明了存在  $\lambda \in C^{\infty}(U_{\varepsilon})$  使得

$$T(\alpha) = \frac{1}{2\pi i} \int_{U} \alpha(w) \lambda(w) \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w}, \quad \forall \, \alpha \in C_0^{\infty}(U_{\varepsilon}).$$

对于  $\beta \in C_0^{\infty}(U_{\varepsilon})$ , 则有

$$0 = T(\frac{\partial \beta}{\partial \bar{z}}) = \frac{1}{2\pi i} \int_{U} \frac{\partial \beta}{\partial \bar{w}} \lambda(w) \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w} = -\frac{1}{2\pi i} \int_{U} \beta \frac{\partial \lambda}{\partial \bar{w}} \, \mathrm{d}w \wedge \, \mathrm{d}\bar{w},$$

由  $\beta \in C_0^{\infty}(U_{\varepsilon})$  的任意性可知, 在  $U_{\varepsilon}$  当中成立  $\frac{\partial \lambda}{\partial \bar{w}} = 0$ , 即  $\lambda \in \mathcal{O}(U_{\varepsilon})$ . 定理得证.  $\square$ 

设 X 为紧黎曼曲面,  $\pi: E \to X$  为 X 上的全纯向量丛. 我们用如下方式定义双线性型  $\langle , \rangle_E: H^0(X, E^* \otimes K_X) \times H^1(X, E) \to \mathbb{C}$ :

考虑之前定义的双线性型 $\langle,\rangle: H^0(X,E^*\otimes K_X)\times \mathcal{A}_E^{0,1}(X)\to \mathbb{C}$ . 我们已经知道对任意  $f\in C_E^\infty(X), s\in H^0(X,E^*\otimes K_X)$  都有 $\langle s,\bar{\partial}f\rangle=0$ , 因此该双线性型诱导了 $H^0(X,E^*\otimes K_X)\times [\mathcal{A}_E^{0,1}(X)/\bar{\partial}C_E^\infty(X)]\to \mathbb{C}$ , 我们把它也记为 $\langle,\rangle$ . 若我们记D为 Dolbeault 同构 $D:H^1(X,E)\to \mathcal{A}_E^{0,1}(X)/\bar{\partial}C_E^\infty(X)$ , 则我们定义 $\langle,\rangle_E$ 为:

$$\langle s, \xi \rangle_E = \langle s, D(\xi) \rangle, \quad s \in H^0(X, E^* \otimes K_X), \, \xi \in H^1(X, E).$$

此双线性型诱导了映射

$$H^0(X, E^* \otimes K_X) \stackrel{\Delta_E}{\to} H^1(X, E)^*$$

 $[V^*$  是线性空间 V 的对偶],

$$\Delta_E(s): \xi \mapsto \langle s, \xi \rangle_E$$
 是从  $H^1(X, E)$  到  $\mathbb{C}$  的线性映射.

定理.  $(Serre\ 对偶定理)$ . 对紧黎曼曲面 X 上的全纯向量丛 E, 映射  $\Delta_E: H^0(X, E^*\otimes K_X)\to H^1(X,E)^*$  为线性同构.

证明. 设  $\ell: \mathcal{A}_E^{0,1}/\bar{\partial}C_E^\infty(X)$  为任意  $\mathbb{C}$ -线性映射. 我们已经知道  $\bar{\partial}C_E^\infty(X)$  是  $\mathcal{A}_E^{0,1}(X)$  的 [在  $C^\infty$ -拓扑下的] 闭子空间,并且余维数有限. 由于有限维 (Hausdorff) 拓扑线性空间 上的任何线性函数都是连续的,从而线性映射  $F: \mathcal{A}_E^{0,1}(X) \to \mathbb{C}$  关于  $C^\infty$ -拓扑连续,其中 F 的定义为  $F(\varphi) = \ell(\{\varphi\})$ ,  $\{\varphi\}$  为  $\varphi$  在  $\mathcal{A}_E^{0,1}(X)/\bar{\partial}C_E^\infty(X)$  中的像. 此外, F 在  $\bar{\partial}C_E^\infty(X)$  恒为零. 从而由 Weyl 引理,存在  $S \in H^0(X, E^* \otimes K_X)$  使得

$$\ell(\{\varphi\}) = F(\varphi) = \langle s, \varphi \rangle = \langle s, \{\varphi\} \rangle \quad \forall \varphi \in \mathcal{A}_E^{0,1}(X).$$

由于 D 为同构, 从而这证明了  $\Delta_E$  为满射.

为证  $\Delta_E$  为单射, 任意给定  $s \in H^0(X, E^* \otimes K_X)$ , 我们必须证明如果对  $\forall \varphi \in \mathcal{A}_E^{0,1}(X)$  都有  $\langle s, \varphi \rangle = 0$ , 那么  $s \equiv 0$ . 这是直接的 [见 Weyl 引理证明的开头].

注意  $H^0(X, E)$  与  $H^1(X, E)$  都是有限维的, 从而 Serre 对偶定理也可如下表述:

### 另一种版本的 Serre 对偶定理. 双线性型

$$\langle,\rangle_E:H^0(X,E^*\otimes K_X)\times H^1(X,E)\to\mathbb{C}$$

非退化.

设 F 为全纯向量丛, 记  $E = F^* \otimes K_X$ , 则  $E^* \otimes K_X = F \otimes K_X^* \otimes K_X = F$  [因为对任意线丛  $L, L^* \otimes L$  平凡]. 因此对 X 的任意 [全纯] 向量丛  $F, H^0(X, F)$  同构于 $H^1(X, F^* \otimes K_X)$  的对偶空间.

我们考察 E 是秩为 1 的平凡丛的特殊情况来结束本节 [此时  $\mathcal{A}_E^{0,1}(X)=\mathcal{A}^{0,1}(X),$   $H^1(X,E)=H^1(X,\mathcal{O})$ ] .

性质 9.1. 设  $\varphi$  为紧黎曼曲面 X 上的 [光滑] (0,1)-形式. 则存在  $f\in C^\infty(X)$  使得  $\bar{\partial}f=\varphi$  当且仅当对 X 上的任意全纯 1-形式  $\omega$  都成立

$$\int_X \omega \wedge \varphi = 0.$$

## 10 Riemann-Roch 定理及其应用

本节中的 X 都是指**紧**黎曼曲面.

我们先介绍几个定义.

设  $D=\sum_{i=1}^r n_i P_i$  为 X 上的除子,则称  $d:=\sum_{i=1}^r n_i$  为除子 D 的**次数** (degree),记作 deg D.

设  $\omega$  为亚纯 1-形式,  $\omega \neq 0$ . 对于  $a \in X$ , 定义  $\omega$  在 a 处的**留数** (residue)  $\mathrm{Res}_a(\omega)$  如下: 取局部坐标 (U,z) 使得 z(a)=0,  $\omega=f\,\mathrm{d} z$ , 则  $\mathrm{Res}_a(\omega)=f$  在 a 处的留数 =f 的 Laurent 展开  $\sum_{\nu=-N}^{\infty} c_{\nu} z^{\nu}$  的  $\frac{1}{z}$  系数. 该定义与局部坐标选取无关. 事实上, 若  $\gamma$  为  $U\setminus\{a\}$  上的分段可微曲线, 且关于 a 的环绕数 [= 指标] 为 +1, 则  $\mathrm{Res}_a(\omega)=\frac{1}{2\pi i}\int_{\mathbb{R}^d}\omega$ .

引理 10.1. 设 
$$\omega$$
 为  $X$  上的亚纯 1-形式,  $\omega \not\equiv 0$ , 则  $\sum_{a \in X} \mathrm{Res}_a(\omega) = 0$ .

证明. 设  $a_1,...,a_m$  为  $\omega$  的极点. 取  $a_j$  的坐标邻域  $(U_j,z_j)$ ,使得  $z_j(a_j)=0$ . 再令  $\Delta_j=\left\{x\in U_j\big||z_j(x)|<\varepsilon\right\},\ [其中 \ \varepsilon>0\ 充分小]\ .$  记  $U=X-\bigcup_{j=1}^m\Delta_j$ . 由 Stokes 定理可得

$$\int_{U} d\omega = -\sum_{j=1}^{m} \int_{\partial \Delta_{j}} \omega = -2\pi i \sum_{j=1}^{m} \operatorname{Res}_{a_{j}}(\omega).$$

而黎曼曲面上的全纯 1-形式是闭的: 若  $\omega = f \, \mathrm{d}z$ , 则  $\mathrm{d}\omega = \frac{\partial f}{\partial z} \, \mathrm{d}z \wedge \mathrm{d}z + \frac{\partial f}{\partial \bar{z}} \, \mathrm{d}\bar{z} \wedge \mathrm{d}z = 0$ .

推论 10.1. 设 f 为 X 上的亚纯函数,  $f \neq 0$ , 则除子 (f) 的次数为 0.

证明. 取 
$$\omega = \frac{1}{f} df$$
, 则  $\deg(f) = \sum_{a \in X} \operatorname{Res}_a(\omega)$ .

**推论 10.2.** 若  $D_1, D_2$  为 X 上的除子, 且它们线性等价, 则  $\deg(D_1) = \deg(D_2)$ .

证明. 事实上, 若 
$$D_1 - D_2 = (f)$$
, 则  $\deg(D_1) - \deg(D_2) = \deg(f)$ .

设 D 为 X 上的除子; 我们引入层

则  $\mathcal{O}_D$  同构于层  $U \mapsto H^0(U, L(D))$ ,即 D 的线丛的全纯截面层. 茎条  $\mathcal{O}_{D,a}$  中的元素 f 形如 [收敛的] Laurent 级数

$$f = \sum_{n \ge -D(a)} c_n z^n$$
 ((U, z) 为 a 的坐标邻域,  $z(a) = 0$ ).

设  $D_1, D_2$  为除子,且  $D_1 \leq D_2$ .则对 X 的任意开集 U,显然  $\mathcal{O}_{D_1}(U) \subseteq \mathcal{O}_{D_2}(U)$ ,从而得到层的单态射  $\mathcal{O}_{D_1} \to \mathcal{O}_{D_2}$  [在线丛  $L(D_1)$ ,  $L(D_2)$  以及同构  $L(D_1) \otimes L(D_2 - D_2)$ 

 $D_1$ )  $\cong L(D_2)$  的意义下,该态射可以表示为  $f \in H^0(U,L(D_1)), f \mapsto f \otimes s_{D_2-D_1}$ ,其 中  $s_{D_2-D_1}$  为线丛  $L(D_2-D_1)$  的标准亚纯截面, 使得  $(s_{D_2-D_1})=D_2-D_1$ . ] 记  $\mathcal{S}_{D_1}^{D_2}$  为预层  $U \mapsto \mathcal{O}_{D_2}(U)/\mathcal{O}_{D_1}(U)$  的层化,则当  $D_1(a) = D_2(a)$  时 [特别地,例如  $a \notin \text{supp}(D_1) \cup \text{supp}(D_2)$  时] 有  $(\mathcal{S}_{D_1}^{D_2})_a = 0$ . 若  $D_1(a) < D_2(a)$ , 则  $(\mathcal{S}_{D_1}^{D_2})_a$  为有限维线 性空间, 且同构于线性空间  $\left\{\sum_{-D_2(a) \leq n < -D_1(a)}^{\sum_{1}^{n}} c_n z^n \middle| c_n \in \mathbb{C}, n$ 为未定元 $\right\}$ .

**引理 10.2.** 若  $D_1 \leq D_2$  为 X 上的除子, 则成立

- (1)  $\dim H^0(X, \mathcal{S}_{D_1}^{D_2}) = \deg D_2 \deg D_1,$ (2)  $H^1(X, \mathcal{S}_{D_1}^{D_2}) = 0.$

证明. (1). 注意层  $\mathcal{S}_{D_1}^{D_2}$  的支集为有限集, 且包含于  $\mathrm{supp}(D_1)\cup\mathrm{supp}(D_2)$ . 从而我们有

$$\dim H^{0}(X, \mathcal{S}_{D_{1}}^{D_{2}}) = \dim \prod_{a \in X} (\mathcal{O}_{D_{2}, a} / \mathcal{O}_{D_{1}, a})$$
$$= \sum_{a \in X} (D_{2}(a) - D_{1}(a)) = \deg D_{2} - \deg D_{1}.$$

(2). 对 X 的任意开覆盖 U, 总存在加细覆盖  $V = \{V_{\alpha}\}$  使得对任意  $\alpha \neq \beta$  都有  $V_{\alpha} \cap V_{\beta} \cap (\operatorname{supp}(D_1) \cup \operatorname{supp}(D_2)) = \emptyset$ . 则显然  $Z^1(\mathcal{V}, \mathcal{S}_{D_1}^{D_2}) = 0$ , 从而 (2) 得证.

一些记号. 设 D 为除子, 则记  $h^i(D) = \dim_{\mathbb{C}} H^i(X, \mathcal{O}_D) = \dim_{\mathbb{C}} H^i(X, L(D)), (i = 1)$ (0,1), 以及  $\chi(D) = h^0(D) - h^1(D)$ .

引理 10.3. 对 X 上的任意除子  $D_1, D_2,$  有

$$\chi(D_2) - \deg(D_2) = \chi(D_1) - \deg(D_1).$$

证明. 取除子  $D_0$  使得  $D_0 \leq D_{\nu}, \nu = 1, 2$ . 则有层短正合列

$$0 \to \mathcal{O}_{D_0} \to \mathcal{O}_{D_\nu} \to \mathcal{S}_{D_0}^{D_\nu} \to 0,$$

从而有层上同调正合列

$$0 \rightarrow H^0(X, \mathcal{O}_{D_0}) \rightarrow H^0(X, \mathcal{O}_{D_{\nu}}) \rightarrow H^0(X, \mathcal{S}_{D_0}^{D_{\nu}}) \rightarrow$$

$$\rightarrow H^1(X, \mathcal{O}_{D_0}) \rightarrow H^1(X, \mathcal{O}_{D_{\nu}}) \rightarrow 0$$

[注意引理10.2, 有  $H^1(X,\mathcal{S}_{D_0}^{D_\nu})=0$ ]. 记 V 为  $H^0(X,\mathcal{O}_{D_\nu})$  在  $H^0(X,\mathcal{S}_{D_0}^{D_\nu})$  中的像, 则 有如下两个正合列

$$0 \to H^0(X, \mathcal{O}_{D_0}) \to H^0(X, \mathcal{O}_{D_{\nu}}) \to V \to 0,$$

$$0 \to H^0(X, \mathcal{S}_{D_0}^{D_{\nu}})/V \to H^1(X, \mathcal{O}_{D_0}) \to H^1(X, \mathcal{O}_{D_{\nu}}) \to 0,$$

从而  $h^0(D_\nu) - h^0(D_0) = \dim V$ ,以及  $\deg D_\nu - \deg D_0 - \dim V = h^1(D_0) - h^1(D_\nu)$ . 这两式相加得到

$$\chi(D_{\nu}) - \chi(D_0) = \deg D_{\nu} - \deg D_0,$$

也就是说对  $\nu=1,2$  都有  $\chi(D_{\nu})-\deg D_{\nu}=\chi(D_0)-\deg D_0$ . 从而引理得证.

我们将整数  $\dim_{\mathbb{C}} H^1(X, \mathcal{O})$  记为 g; g 称为黎曼曲面 X 的**亏格** (genus).

#### 弱版本的 Riemann-Roch 定理.

定理. 设 D 为紧黎曼曲面 X 上的除子,则有

$$\dim_{\mathbb{C}} H^0(X, \mathcal{O}_D) - \dim_{\mathbb{C}} H^1(X, \mathcal{O}_D) = \deg D + 1 - g,$$

其中g为X的亏格.

证明. 由引理10.3可知  $\chi(D)$  -  $\deg D = \chi(0)$  -  $\deg 0$  [这里的"0"是恒为 0 的除子]. 而  $\chi(\mathcal{O}) = \dim H^0(X,\mathcal{O}) - \dim H^1(X,\mathcal{O}) = 1 - g$  [这是因为,由极大模原理可知 X 上的全纯函数必为常函数].

设 D 为 X 上的除子. 我们定义 X 上的层  $\Omega_D$ , 使得对 X 的开集 U, 成立  $\Omega_D(U) = \left\{\omega \middle| \omega$ 为 U 上的亚纯 1-形式,  $(\omega) \geq -D\right\}$ . 则  $\Omega_D$  同构于线丛  $K_X \otimes L(D)$  的全纯截面层.

由 Serre 对偶定理,  $\dim_{\mathbb{C}} H^1(X, L(D)) = \dim_{\mathbb{C}} H^0(X, K_X \otimes L(D)^*) = \dim_{\mathbb{C}} H^0(X, K_X \otimes L(D)) = \dim_{\mathbb{C}} H^0(X, \Omega_{-D})$ . 因此, 我们可将 Riemann-Roch 定理重写为如下:

定理. (Riemann-Roch 定理). 设 D 为紧黎曼曲面 X 上的除子,则有

$$\dim_{\mathbb{C}} H^0(X, \mathcal{O}_D) - \dim_{\mathbb{C}} H^0(X, \Omega_{-D}) = \deg D + 1 - g.$$

即: X 上的满足  $(f) \ge -D$  的亚纯函数 f 构成空间的维数 =  $\deg D + 1 - g +$  满足  $(\omega) \ge D$  的亚纯 1-形式  $\omega$  构成空间的维数.

我们已知 [见定理7.3] 紧黎曼曲面 X 上的任何全纯线丛 L 都同构于 X 上某个除子 D 的线丛 L(D); 并且任何两个这样的除子线性等价. 于是对于全纯线丛 L, 我们可定义 L 的次数 $\deg(L)$  为  $\deg(D)$ , 其中除子 D 使得  $L \cong L(D)$ . 此外也记  $h^i(L) = h^i(D)$ .

由 Serre 对偶定理以及亏格 g 的定义,  $h^0(K_X)=h^1(K_X^*\otimes K_X)=h^1(\mathcal{O})=g$  [亏格]. 从而:

推论 10.3. 紧黎曼曲面 X 上恰好存在 g 个线性无关的全纯 1-形式.

由 Riemann-Roch 定理

$$h^{0}(K_{X}) - h^{0}(\mathcal{O}) = 1 - g + \deg K_{X} = g - 1;$$

因此有:

**推论 10.4.** 典范线丛  $K_X$  的次数为 2g-2. 等价地, 若  $\omega \neq 0$  为亚纯 1-形式, 则  $\omega$  的除子的次数为 2g-2.

注记 . 若 L 为 X 上的全纯线丛且  $h^0(L) > 0$ , 则必有  $\deg(L) \ge 0$ ; 此外, 若  $h^0(L) > 0$  且  $\deg(L) = 0$ , 则 L 为平凡丛. 这是因为, 若存在整体截面  $s \in H^0(X, L)$ ,  $s \ne 0$ , 则  $L \cong L(D)$ , 其中  $D = \mathrm{Div}(s) \ge 0$ , 因此  $\deg L = \deg D \ge 0$ . 若  $\deg L = 0$ , 则截面 s 的除子 = 0, 从而 s 无零点, L 平凡.

此注记结合 Serre 对偶定理可推出如下:

定理. 消灭定理 (Vanishing theorem). 设 D 为 X 上的除子. 若  $\deg(D) > 2g - 2$ , 则  $H^1(X, \mathcal{O}_D) = 0$ ; 若  $\deg(D) > 0$ , 则  $H^1(X, \Omega_D) = 0$ .

证明. 注意  $h^1(D) = h^0(K-D)$ , [K 为任意给定的典范除子]. 由于  $\deg(K-D) = 2g - 2 - \deg(D) < 0$ , 从而  $h^0(K-D) = 0$ . 同样的方法, 再注意  $\deg(\Omega_D) = 2g - 2 + \deg(D)$ .  $\square$ 

我们记  $\mathcal{M}$  为 X 上的亚纯函数层, 即  $U \mapsto \mathcal{M}(U) := \{U \perp$  的全体亚纯函数 $\}$ ; 再记  $\Omega_{\mathcal{M}}$  为 X 上的亚纯 1-形式层.

推论 10.5. 
$$H^1(X, \mathcal{M}) = 0$$
,  $H^1(X, \Omega_{\mathcal{M}}) = 0$ .

证明. 设  $U = \{U_i\}_{i \in \mathcal{I}}$  为 X 的一组有限开覆盖, 开集族  $\{V_i\}$  满足  $\overline{V}_i \subseteq U_i$ ,  $\bigcup V_i = X$ . 对于  $\{f_{ij}\} \in Z^1(\mathcal{U}, \mathcal{M})$ , 我们可取除子 D > 0 使得  $\deg(D) > 2g - 2$ , 并且在任意的  $V_i \cap V_j$  成立  $(f_{ij}) \geq -D$  [因为  $\overline{V}_i \cap \overline{V}_j$  为  $U_i \cap U_j$  的紧子集]. 由消灭定理, 存在  $V_i$  上的亚纯函数  $f_i$ , 使得在  $V_i$  上成立  $(f_i) \geq -D$ , 并且在  $V_i \cap V_j$  成立  $f_i - f_j = f_{ij}$ . 特别地,  $\{f_{ij}\}$  在  $Z^1(\{V_i\}, \mathcal{M})$  中的像属于  $B^1(\{V_i\}, \mathcal{M})$ .

$$\Omega_{\mathcal{M}}$$
 的证明完全类似.

现在我们可以给出 Serre 对偶  $H^0(X,\Omega_{-D}) \times H^1(X,\mathcal{O}_D) \to \mathbb{C}$  的另一种解释.

设  $\{\omega_{ij}\}\in Z^1(\mathcal{U},\Omega)$ , 则由上述推论可知存在  $U_i$  上的亚纯 1-形式  $\omega_i$ , 使得在  $U_i\cap U_j$  当中成立  $\omega_i-\omega_j=\omega_{ij}$ . 将此上链  $\{\omega_i\}\in C^0(\mathcal{U},\Omega_{\mathcal{M}})$  记作  $\tilde{\omega}$ . 现在考虑点  $a\in X$ , 取指标 i 使得  $a\in U_i$ , 定义  $\tilde{\omega}$  在 a 处的留数  $\mathrm{Res}_a(\tilde{\omega}):=\mathrm{Res}_a(\omega)$  [这与 i 的选取无关, 因为 $\omega_i-\omega_j$  在  $U_i\cap U_j$  全纯].

由 Dolbeault 同构, 我们也可以取  $U_i$  上的  $C^{\infty}$ -(1,0)-形式  $\alpha_i$ , 使得

$$\omega_{ij} = \alpha_i - \alpha_j,$$

再取 X 上的 2-形式  $\varphi$ , 使得  $\varphi|_{U_i} = \bar{\partial}\alpha_i = \mathrm{d}\alpha_i$ , 则  $\varphi$  为上同调类  $D(\{\omega_{ij}\})$  在  $\mathcal{A}^{0,1}_{K_X}(X)$  当中的代表元 [其中  $D: H^1(X,K_X) \to \mathcal{A}^{0,1}_{K_X}(X)/\bar{\partial}C^\infty_{K_X}(X)$  为 Dolbeault 同构].则有:

引理 10.4.

$$\int_X D(\{\omega_{ij}\}) = 2\pi i \sum_{a \in X} \operatorname{Res}_a(\tilde{\omega}).$$

证明. 在  $U_i$  当中令  $\beta := \omega_i - \alpha_i$ ; 则  $\beta$  为  $X - \{a_1, ..., a_r\}$  上的  $C^{\infty}$ -形式, 其中  $S := \{a_1, ..., a_r\}$  为  $\tilde{\omega}$  的极点构成的集合  $[S \cap U_i \ \to \omega_i$  的全体极点]. 由于在  $U_i - S$  上成立

 $d\omega_i = 0$ , 从而在 X - S 成立

$$\varphi := D(\{\omega_{ij}\}) = -\,\mathrm{d}\beta.$$

记  $\Delta_{k,\varepsilon}$  为以点  $a_k$  为中心, 半径  $\varepsilon$  的小圆盘 (k=1,...,r), 则有

$$\int_X \varphi = \lim_{\varepsilon \to 0} \int_{X - \bigcup_k \Delta_{k,\varepsilon}} - \,\mathrm{d}\beta = \lim_{\varepsilon \to 0} \sum_k \int_{\partial \Delta_{k,\varepsilon}} \beta.$$

现在, 若  $\varepsilon > 0$  充分小, 指标 i 使得  $a_k \in U_i$ , 则  $\int_{\partial \Delta_{k,\varepsilon}} \omega_i = 2\pi i \operatorname{Res}_{a_k}(\omega_i) = 2\pi i \operatorname{Res}_{a}(\tilde{\omega})$ , 并且  $\lim_{\varepsilon \to 0} \int_{\partial \Delta_{k,\varepsilon}} \alpha_i = 0$  [因为  $\alpha_i$  光滑]. 因此  $\int_X \varphi = 2\pi i \sum_k \operatorname{Res}_{a_k}(\tilde{\omega})$ .

因此,  $\sum_k \operatorname{Res}_{a_k}(\tilde{\omega})$  只与  $\{\omega_{ij}\}$  在  $H^1(X,\Omega)$  的上同调类  $\xi$  有关 [而与它的  $\Omega_{\mathcal{M}}$  的上边缘表示无关], 我们将其记作  $\operatorname{Res}(\xi)$ .

因为  $H^0(X,\mathcal{O}) = H^0(X,K_X^* \otimes K_X) = \mathbb{C}$ , 从而线丛  $E = K_X$  的 Serre 对偶双线性型为  $(\lambda,\{\omega_{ij}\}) \mapsto \int \lambda \cdot D(\{\omega_{ij}\})$ . 因此我们有:

性质 10.1. 映射 Res:  $H^1(X,\Omega) \to \mathbb{C}$  为线性同构.

设 D 为紧黎曼曲面 X 上的除子,则有如下自然的双线性型  $(,)_D: H^0(X,\Omega_{-D}) \times H^1(X,\mathcal{O}_D) \to H^1(X,\Omega)$ ,使得  $(\omega,\{f_{ij}\}) \mapsto \{f_{ij}\omega\}$ . [这里的  $\omega$  为亚纯 1-形式,且  $(\omega) \geq D$ ; 而  $f_{ij}$  为  $U_i \cap U_j$  上的亚纯函数,且  $(f_{ij}) \geq -D$ . 于是  $f_{ij}\omega$  为  $U_i \cap U_j$  上的全纯 1-形式].

定理. (留数版本的 Serre 对偶定理). Serre 对偶定理中的双线性型  $\langle , \rangle_{(D)}$  等于  $2\pi i \operatorname{Res}(,)_D$ . 特别地, 双线性型

$$H^0(X,\Omega_{-D}) \times H^1(X,\mathcal{O}_D) \rightarrow \mathbb{C}$$
  
 $(\omega,\xi) \mapsto \operatorname{Res}((\omega,\xi)_D)$ 

非退化.

作为推论, 我们有如下紧黎曼曲面版本的 Mittag-Leffler 定理.

定理. 设  $\{U_i\}_{i\in\mathcal{I}}$  为紧黎曼曲面 X 的一族开覆盖,  $f_i$  为  $U_i$  上的亚纯函数, 并且  $f_i-f_j$  在  $U_i\cap U_j$  全纯. 那么存在 X 上的亚纯函数 f 使得对任意 i 都成立  $f-f_i$  在  $U_i$  全纯, 当且仅当对 X 上的任何全纯 1-形式  $\omega$ ,

$$\operatorname{Res}(\tilde{\omega}_0) = 0,$$

其中 0-上链  $\tilde{\omega}_0 \in C^0(\mathcal{U}, \Omega_{\mathcal{M}})$  为  $(f_i \omega)$ .

[若对  $a \in X$ , 取 i = i(a) 使得  $a \in U_{i(a)}$ , 则定理中的后者条件为  $\sum_{a \in X} \operatorname{Res}_a(f_{i(a)}\omega) = 0$ ].

证明. f 的存在性等价于说  $\xi := \{f_i - f_j | U_i \cap U_j\}$  在  $H^1(X, \mathcal{O})$  中的上同调类为 0. 由 之前定理, 这等价于此留数条件.

关于亚纯形式 [而不是亚纯函数] 的版本如下:

紧黎曼曲面上的亚纯形式的 Mittag-Leffler 定理 . 设  $\{U_i\}_{i\in\mathcal{I}}$  为紧黎曼曲面 X 的一族开覆盖,  $\omega_i$  为  $U_i$  上的亚纯 1-形式, 并且  $\omega_i - \omega_j$  在  $U_i \cap U_j$  全纯. 记  $\tilde{\omega} = \{\omega_i\}_{i\in\mathcal{I}}$ , 对任意  $a \in X$ , 记  $\mathrm{Res}_a(\tilde{\omega}) = \mathrm{Res}_a(\omega_i)$ , 其中指标 i 使得  $a \in U_i$  [这与 i 的选取无关, 因为  $\omega_i - \omega_j$  在  $U_i \cap U_j$  亚纯.]

定理. 条件如上. 则存在 X 上的亚纯 1-形式  $\omega$  使得对任意 i,  $\omega-\omega_i$  在  $U_i$  全纯,当且仅当

$$\sum_{a \in X} \mathrm{Res}_a(\tilde{\omega}) = 0.$$

证明.  $\omega$  的存在性等价于说  $\{\omega_{ij}\}$  在  $H^1(X,\Omega)$  的上同调类为 0. 而由性质10.1, 映射 Res :  $H^1(X,\Omega) \to \mathbb{C}$  为单射, 因此这等价于说  $\sum_{a \in X} \mathrm{Res}_a(\tilde{\omega}) = 0$ .

由对偶定理 [不用对偶双线性型的具体表达] 也可导出如下结果. 设  $D \ge 0, D \ne 0$  为 X 上的非零的有效除子,  $s_D$  为线丛 L(D) 的标准截面, 使得  $(S_D) = D$ . 考虑层短正合列  $0 \to \Omega \stackrel{s_D}{\to} \Omega_D \to \mathbb{C}_D \to 0$ . 层  $\mathbb{C}_D$  在  $\mathrm{supp}(D)$  以外为零; 若  $a \in \mathrm{supp}(D)$ , 则茎条

 $\mathbb{C}_{D,a}$  当中的元素形如  $\sum_{\nu=1}^{D(a)} \frac{c_{\nu}}{z^{\nu}} \,\mathrm{d}z$  [其中 z 为 a 的局部坐标, 使得 z(a)=0]. 则有上同调正合列

$$H^0(X,\Omega_D) \to H^0(X,\mathbb{C}_D) \to H^1(X,\Omega) \to H^1(X,\Omega_D);$$

由于  $\dim H^1(X,\Omega)=1$ ,  $H^1(X,\Omega_D)\cong H^0(X,\mathcal{O}_{-D})^*=0$ , 因此  $H^0(X,\Omega_D)$  在  $H^0(X,\mathbb{C}_D)\cong \mathbb{C}^{\deg(D)}$  的像的余维数是 1. 但是, 对于整体的 1-形式  $\omega$ , 注意  $\sum_{a\in X}\mathrm{Res}_a(\omega)=0$ , 因此上述像空间包含于集合

$$\left\{ \left\{ \omega_a \right\}_{a \in \text{supp}(D)} \middle| \text{ord}_a(\omega_a) \ge -D(a), \sum_{a \in \text{supp}(D)} \text{Res}_a(\omega_a) = 0 \right\}.$$

又因为上述两个空间的余维数都是 1, 因此它们相等.

由消灭定理 [若  $\deg D > 2g - 2$  则  $H^1(X, \mathcal{O}_D) = 0 = H^0(X, \Omega_{-D})$ ] 与 Riemann-Roch 定理可知, 当  $\deg D$  充分大时,  $h^0(D) = \deg D + 1 - g$  被  $\deg D$  所确定.

整数  $i(D) := h^1(D) = h^0(K - D)$  称为除子 D 的**特殊性指标** (index of speciality). 我们给出这些结果的一些更深的应用.

**性质 10.2.** 若 D 为 X 上的除子,且  $\deg D > 2g-1$ ,则对任意  $P \in X$ ,存在  $s \in H^0(X,L(D))$  使得  $s(P) \neq 0$ . 等价地,存在除子  $D' \geq 0$  使得 D' 与 D 线性等价,并且 P 不属于 D' 的支集.

证明. 设  $s_P$  为 L(P) 的标准截面, 使得  $(s_P) = P$ . 则映射

$$H^0(X, L(D-P)) \rightarrow H^0(X, L(D))$$
  
 $f \mapsto f \otimes s_P$ 

不是满射 [这是因为, 由上述注记可知  $h^0(D-P) = \deg(D-P) + 1 - g < \deg D + 1 - g = h^0(D)$ , 注意  $\deg(D-P) > 2g-2$  ]. 而该映射的像集恰好为 L(D) 的在 P 处为 0 的截面之全体.

性质 10.3. 设 L 为紧黎曼曲面 X 上的全纯线丛, 并且  $\deg L > 2q$ . 则有:

- (1) 对任意  $P,Q \in X, P \neq Q$ , 则存在  $s \in H^0(X,L)$  使得  $s(P) = 0, s(Q) \neq 0$ .
- (2) 对任意  $P \in X$ , 存在  $s \in H^0(X, L)$  使得  $\operatorname{ord}_P(s) = 1$ .

证明. 考虑线丛  $L \otimes L(-P)$ ; 由于任何线丛都同构于某个 L(D), 性质10.2表明存在  $s' \in H^0(X, L \otimes L(-P))$  使得  $s'(Q) \neq 0$ . 令  $s := s' \otimes s_P$ , 其中  $s_P$  为 L(P) 的标准截面. 那么, 若  $P \neq Q$  则有  $s(Q) \neq 0$ , s(P) = 0.

而当 
$$P = Q$$
 时,  $\operatorname{ord}_{P}(s) = 1$ .

嵌入定理 . 设 L 为 X 上的全纯线丛,  $\deg L > 2g$ , 记  $N := h^0(L) - 1 = \deg D - g$ . 下面我们来定义全纯映射  $\varphi_L : X \to \mathbb{P}^N$ .

取  $H^0(X,L)$  的一组基  $s_0,...,s_N$ ; 对每个  $a\in X$ , 取 a 的邻域 U 以及  $\sigma\in H^0(U,L)$ , 使得对任意  $x\in U$  都有  $\sigma(x)\neq 0$ . 则令  $\mathbb{P}^N$  当中的点  $\varphi_L(x)$  的齐次坐标为  $\left[\frac{s_0(x)}{\sigma(x)}:\cdots:\frac{s_N(x)}{\sigma(x)}\right]$ . 注意  $\frac{s_j}{\sigma}$  为 U 上的全纯函数; 上述定义的点  $\varphi_L(x)$  与  $\sigma$  的选取无关, 这是因为若另取截面  $\sigma'$ , 则  $\sigma'=h\sigma$ , 其中 h 为 U 上的处处非零的全纯函数, 于是  $\frac{s_j}{\sigma}=h\frac{s_j}{\sigma'}$ . 目前上述  $\varphi_L$  仅仅定义在 X 上除了  $s_0,...,s_N$  的公共零点之外. 然而, 由性质 10.2 可知这些截面没有公共零点.

注记. 对 X 的任意全纯线丛 L, 只要  $H^0(X,L) \neq 0$ , 就可以在 X 上处处定义 $\varphi_L: X \to \mathbb{P}^N$  [其中  $N = \dim H^0(X,L) - 1$ ]. 基  $s_0,...,s_N$  含义同上,  $A := \left\{x \in X \middle| s_j(x) = 0, \, \forall j\right\}$ , 则  $\varphi_L$  首先在 X - A 有定义. 而对于  $a \in A$ , 取坐标邻域 (U,z) 使得 z(a) = 0, 再记  $\varphi_L|_{U-\{a\}}$  在  $\mathbb{P}^N$  中的齐次坐标为  $[f_0:\dots:f_n]$ , 其中  $f_0,...,f_N$  为 U 上的全纯函数,并且 在点 a 之外非零. 则可记  $f_j = z^k g_j$ ,其中  $k = \min_{0 \leq j \leq N} \operatorname{ord}_a(f_j)$ . 于是  $\varphi_L$  在 U 上的限制 可由  $\mathbb{P}^N$  中的齐次坐标为  $[g_0:\dots:g_N]$  的点所确定.

上述构造仅在  $\dim X = 1$  时可行. 而高维情况, 线丛 L 的**基点** (base point), 也就是所有  $s \in H^0(X, L)$  的公共零点, 一般来说无法忽视;  $\varphi_L$  无法整体定义, 正与基点有关.

我们有如下:

定理. (嵌入定理). 若  $\deg L > 2g$ , 则  $\varphi_L$  为 X 到  $\mathbb{P}^N$  的嵌入.

证明. (1). 断言  $\varphi_L$  为单射. 设  $P,Q \in X, P \neq Q$ . 取  $s \in H^0(X,L)$  使得 s(P) = 0,  $s(Q) \neq 0$ . 记  $s = \sum_{\nu=0}^{N} c_{\nu} s_{\nu}$ , 则  $\varphi_L(P)$  位于射影超平面  $\sum_{\nu=0}^{N} c_{\nu} z_{\nu} = 0$ , 而  $\varphi_L(Q)$  不在此超

平面.

(2).  $\varphi_L$  的切映射是单射. 对于  $P \in X$ , 取  $s \in H^0(X, L)$  使得  $\mathrm{ord}_P(s) = 1$ , 再取  $0 \le k \le N$  使得  $s_k(P) \ne 0$ . 记  $s = \sum_{\nu=0}^N c_{\nu} s_{\nu}$ , 其中  $c_0, ..., c_N \in \mathbb{C}$ . 则

$$\frac{s}{s_k} = c_k + \sum_{\nu \neq k} c_\nu \frac{s_\nu}{s_k}.$$

函数  $f_{\nu} := \frac{s_{\nu}}{s_k}$ ,  $\nu \neq k$ , 给出了  $\varphi_L(x)$  [x 在 P 附近] 的非齐次坐标:  $\varphi_L(x) = [f_0(x), ..., 1, f_{k+1}(x), ..., f_N(x)]$ . 由于  $\mathrm{ord}_P \frac{s}{s_k} = 1$ , 从而至少存在一个  $\nu \neq k$  使得  $\mathrm{d}f_{\nu}(P) \neq 0$ .

Chow(周炜良) 的一个众所周知定理表明,  $\varphi_L$  将 X 映为  $\mathbb{P}^N$  的齐次坐标下的有限 多个齐次多项式的公共零点集. 因此 X 解析同构于  $\mathbb{P}^N$  中的某个光滑代数曲线.

此外, 对于  $\mathbb{P}^N$  中的**代数簇** [有限多个齐次多项式的公共零点集, 且不可约], 如果它是 1 维, 连通的, 且为  $\mathbb{P}^N$  的子流形, 则它显然是紧黎曼曲面. 因此, 我们不再区分紧黎曼曲面 与 [连通的] 光滑射影曲线.

X 上的全纯线丛 L 称为**丰沛** (ample) 的, 如果存在正整数 m>0, 使得 L 的 m 次 张量丛  $L^{\otimes m}$  可将 X 嵌入某个射影空间 [即  $\varphi_{L^{\otimes m}}: X \to \mathbb{P}^N$  为嵌入,  $N+1=h^0(L^{\otimes m})$ ]. 称 L 为**极丰沛** (very ample) 的, 如果  $\varphi_L$  本身就是嵌入.

我们已经证明, 若  $\deg(L) > 2g$ , 则 L 是极丰沛的. 于是, 若  $\deg(L) > 0$  则 L 是丰沛的, 这是因为  $\deg(L^{\otimes m}) = m \deg(L)$ . 反之, 若 L 是丰沛的, 则存在有效除子 D 以及正整数 m > 0 使得  $L^{\otimes m} \cong L(D)$ , 这是因为  $L^{\otimes m}$  至少有一个非零的全纯截面. 此外,  $D \neq 0$  [否则  $L^{\otimes m}$  平凡, 不可能将 L 嵌入]. 因此  $m \deg(L) = \deg(L^{\otimes m}) = \deg D > 0$ .

因此, 我们得到:

性质 10.4. X 上的全纯线丛 L 是丰沛的当且仅当  $\deg L > 0$ .

# 11 紧黎曼曲面的更多性质

设 X,Y 为黎曼曲面,  $f:X\to Y$  为非常值全纯映射. 若  $a\in X$ , b=f(a), w 为 b 的局部坐标, w(b)=0, 则记  $\operatorname{ord}_a(f):=\operatorname{ord}_b(w\circ f)$ . 整数  $\operatorname{b}(a,f):=\operatorname{ord}_a(f)-1$  称为 f 在 a 处的**分歧指数** (ramification index). 那么, f 为 a 处的局部微分同胚当且仅当  $\operatorname{b}(a,f)=0$ .

现在设 X,Y 为紧黎曼曲面,  $f:X\to Y$  为非常值全纯映射. 分别记  $g_X,g_Y$  为 X,Y 的亏格. 记  $b:=\sum_{a\in X} \mathrm{b}(a,f)$ , 称此 b 为映射 f 的**全分歧指数** (total ramification index). 记 C 为 f 的**临界点** (critical point)  ${}^5$ 之全体, 即  $C=\left\{a\in X \middle| \mathrm{b}(a,f)>0\right\}$ , 再

index). 记 C 为 f 的临界点 (critical point) <sup>3</sup>之全体,即  $C = \{a \in X | b(a, f) > 0\}$ ,冉记 B := f(C). B 中的点称为 f 的临界值 (critical value) [集合 B 有时也称为 f 的分支割迹 (branching locus)].

设  $\omega \neq 0$  为 Y 上的亚纯 1-形式,  $\omega_0 := f^*(\omega)$ , 则  $\deg(\omega_0) = 2g_X - 2$ .

若  $a \in X$ , b = f(a), 分别取 a, b 的局部坐标 z, w [使得 z(a) = 0 = w(b)], 并且使得 f 在 a 附近具有局部表达式  $z \mapsto z^n = w$ , 则  $n = \operatorname{ord}_a(f)$ . 若  $\omega$  在 b 附近的局部表达式为  $\omega = h(w) \operatorname{d} w$ , 则在 a 附近有  $\omega_0 = f^*(\omega) = h(z^n) n z^{n-1} \operatorname{d} z$ , 从而

$$\operatorname{ord}_a(\omega_0) = n \operatorname{ord}_b(\omega) + n - 1, \quad \sharp \vdash n := \operatorname{ord}_a(f).$$

记 d 为映射 f [作为分歧覆盖] 的叶数 [= f 的次数 (degree)],将上式先对所有  $a \in f^{-1}(b)$  求和, 再对所有  $b \in Y$  求和, 可得到

$$deg(\omega_0) = \sum_{b \in Y} \left( \sum_{a \in f^{-1}(b)} \operatorname{ord}_a(f) \right) \operatorname{ord}_b(\omega) + \sum_{b \in Y, a \in f^{-1}(b)} (\operatorname{ord}_a(f) - 1)$$
$$= d \operatorname{deg}(\omega) + b.$$

再注意到  $\deg(\omega) = 2g_Y - 2$ ,  $\deg(\omega_0) = 2g_X - 2$ , 从而得到:

定理. (Riemann-Hurwitz 公式). 记号同上, 则有

$$2q_X - 2 = d(2q_Y - 2) + b$$
;

特别地,若存在非常值全纯映射  $X\to Y$ ,则  $g_X\ge g_Y$ ;此外若  $g_X=g_Y\ge 1$ ,则必有 b=0, d=1,除非  $g_X=g_Y=1$ .

<sup>&</sup>lt;sup>5</sup>也称为**分歧点** (branch point).

记号同之前, 再记  $a_1,...,a_r$  为 C 中的点,  $b_j := f(a_j)$ . 我们分别记 X,Y 的**拓扑欧拉示性数** (topological Euler characteristic) 为  $\chi(X),\chi(Y)$ , 也就是说, 比如

$$\chi(X) = \dim_{\mathbb{C}} H^0(X, \mathbb{C}) - \dim_{\mathbb{C}} H^1(X, \mathbb{C}) + \dim_{\mathbb{C}} H^2(X, \mathbb{C}) = 2 - b_1(X),$$

$$b_1(X) = \dim_{\mathbb{C}} H^1(X, \mathbb{C}) = X$$
 的第一个 Betti 数.

将 Y 作**三角剖分** (triangulation), 使得 B = f(C) 中的点都是三角形的顶点, 并且 假定每个三角形都充分小. 此三角剖分可通过 f 提升为 X 的一个三角剖分. 若记  $e_0(X)$  为 X 的三角剖分的顶点数,  $e_1(X)$  为边 [1 维单形] 数,  $e_2(X)$  为面 [2 维单形] 数. 也对 Y 的三角剖分引入类似记号. 则  $e_2(X) = de_2(Y), e_1(X) = de_1(Y), e_0(X) = de_0(Y) - b$  [这是因为, 若  $a_i \in C$ , 则每条以  $b_i = f(a_i)$  为端点的边都被 f 提升为  $b(a_i, f) + 1$  条以  $a_i$  为端点的边. 因此  $|f^{-1}(B)| = d|B| - b$ , (其中  $|\cdot|$  为集合的基数)].

综上, 我们得到

$$2 - b_1(X) = d(2 - b_1(Y)) - b.$$

若取  $Y = \mathbb{P}^1$ , 则必存在非常值全纯映射  $f: X \to \mathbb{P}^1$  [其实就是 X 上的非常值亚纯函数]. 此外, 我们知道  $g_{\mathbb{P}^1} = 0$ ,  $b_1(\mathbb{P}^1) = 0$ . 记 f 的叶数为 d, 则

$$2q_X - 2 = -2d + b$$

以及

$$2 - b_1(X) = 2d - b = -(2g_X - 2).$$

因此有

$$2g_X = b_1(X);$$

特别地, 亏格  $g_X = \dim H^1(X, \mathcal{O}) = \dim H^0(X, \Omega)$  为 X 的**拓扑不变量**.

接下来我们探讨 Weierstrass 点. 设 X 为紧黎曼曲面, 亏格为  $g=\dim H^1(X,\Omega)$ . 我们已经知道 [见第7节定理7.3后的注记], 对任意  $P\in X$ , 必存在 X 上的亚纯函数, 该函数在 X-P 全纯 [但在 P 不全纯], 并且在 P 处的极点阶数  $\leq g+1$ .

自然要问的是, 此结果能不能继续改进, 极点阶数的上界 g+1 能不能减少; 我们将知道, 仅仅对 [至多有限个] 特殊的点 P, 上述想法可行.

对于  $P \in X$ , 以及 P 点的局部坐标 (U, z), z(P) = 0. 我们称点 P 为 Weierstrass 点, 如果存在 X 上的亚纯函数 f 以及不全为零的常数  $c_0, ..., c_{q-1}$  使得

(1)  $f|_{X-\{P\}}$  为全纯函数,

(2) 
$$f - \sum_{\nu=0}^{g-1} \frac{c_{\nu}}{z^{\nu+1}}$$
 在  $P$  全纯.

根据第10节版本的 Mittag-Leffler 定理, 此条件成立当且仅当存在不全为零的常数  $c_0,...,c_{g-1}$  使得

$$\operatorname{Res}_P\left(\sum_{\nu=0}^{g-1} \frac{c_{\nu}}{z^{\nu+1}}\omega\right) = 0 \quad \forall \omega \in H^0(X,\Omega).$$

设  $\omega_1,...,\omega_g$  为  $H^0(X,\Omega)$  的一组基, 它们局部坐标 U 的表示为

$$\omega_k = f_k \, \mathrm{d}z, \quad f_k \in \mathcal{O}(U).$$

记 
$$f_k = \sum_{\nu=0}^{\infty} f_{k,\nu} z^{\nu}$$
,则  $f_{k,\nu} = \frac{1}{\nu!} (\frac{\mathrm{d}}{\mathrm{d}z})^{\nu} f_k |_{z=0} = \frac{1}{\nu!} f_k^{(\nu)}(0)$ ,以及

$$\operatorname{Res}_{P} \left( \sum_{\nu=0}^{g-1} \frac{c_{\nu}}{z^{\nu+1}} \omega_{k} \right) = c_{0} f_{k,0} + c_{1} f_{k,1} + \dots + c_{g-1} f_{k,g-1}$$
$$= \sum_{\nu=0}^{g-1} \frac{c_{\nu}}{\nu!} f_{k}^{(\nu)}(0).$$

因此我们有: P 为 Weierstrass 点当且仅当线性方程组

$$\sum_{\nu=0}^{g-1} c_{\nu} f_k^{(\nu)}(0) = 0, \quad k = 1, ..., g$$

具有非零解  $(c_0,...,c_{g-1}) \neq (0,...,0)$ ; 而这当且仅当  $\det \left(f_k^{(\nu)}(0)\right)_{\substack{1 \leq k \leq g \\ 0 \leq k \leq g}} = 0.$ 

我们补充一些 Wronski 行列式的知识. 设 U 为  $\mathbb C$  的连通开集,  $f_1,...,f_n \in \mathcal O(U)$ . 则记  $W(f_1,...,f_n)(z)=\det\left(f_k^{(\nu)}(z)\right)_{\substack{0\leq \nu< n\\1\leq k\leq n}}, z\in U$ , 称为函数  $f_1,...,f_n$  的 **Wronski 行列式** (Wronskian). 则有:

引理.  $f_1,...,f_n$  在  $\mathbb C$  线性相关当且仅当  $W(f_1,...,f_n)\equiv 0$ .

证明. 若  $c_1 f_1 + \dots + c_n f_n \equiv 0$ ,  $c_i \in \mathbb{C}$ , 并且某个  $c_k \neq 0$ . 则第 k 列  $f_k^{(\nu)}(0 \leq \nu < n)$  为 其它  $\ell \neq k$  列  $f_\ell^{(\nu)}(0 \leq \nu < n)$  的线性组合 [具体地,  $f_k^{(\nu)} = -\sum_{\ell \neq k} \frac{c_\ell}{c_k} f_\ell^{(\nu)}$ ], 从而该行列式为 0.

为证明相反方向,我们先考察 Wronski 行列式的如下性质. 对于  $\varphi \in \mathcal{O}(U)$ , $\varphi \not\equiv 0$ ,记  $g_k = \varphi f_k$ ,k = 1, ..., n. 那么  $g_k^{(\nu)} = \varphi f_k^{(\nu)} + \sum_{\mu < \nu} \lambda_\mu^\nu f_k^{(\mu)}$  [其中  $\lambda_\mu^\nu = \begin{pmatrix} \nu \\ \mu \end{pmatrix} \varphi^{(\nu-\mu)}$ ],从而  $\det \left( g_k^{(\nu)} \right) = \det \left( \varphi f_k^{(\nu)} \right) = \varphi^n \det \left( f_k^{(\nu)} \right)$ . [矩阵  $\left( g_k^{(\nu)} \right)$  可以由  $\left( \varphi f_k^{(\nu)} \right)$  作 初等行变换得到. 具体地,对于每个  $\mu < \nu$  将第  $\mu$  行倍加的第  $\nu$  行]. 因此我们有  $W(g_1, ..., g_n) = \varphi^n W(f_1, ..., f_n)$ .

现在我们通过对 n 归纳来证明, 若  $W(f_1,...,f_n)\equiv 0,$  则  $f_1,...,f_n$  线性相关. n=1 时结论平凡 [注意  $W(f_1)=f_1$ ] .

若  $f_1 \neq 0$ ,  $V := U - \{f_1$  的零点},则只需证明  $1, \frac{f_2}{f_1}, ..., \frac{f_n}{f_1}$  [在 V 中] 线性相关即可. 现在,我们有  $W(1, \frac{f_2}{f_1}, ..., \frac{f_n}{f_1}) = f_1^{-n}W(f_1, ..., f_n) = 0$ . 记  $g_k = \frac{f_k}{f_1}$ ,  $(2 \leq k \leq n)$ ,则  $W(1, g_2, ..., g_n) = W(\frac{\mathrm{d}g_2}{\mathrm{d}z}, ..., \frac{\mathrm{d}g_n}{\mathrm{d}z}) \equiv 0$ . 因此由归纳假设,存在不全为零的常数  $c_2, ..., c_n$  使得在 V 当中恒成立  $\sum_{k=2}^n c_k \frac{\mathrm{d}g_k}{\mathrm{d}z} \equiv 0$ ,也就是说  $\sum_{k=2}^n c_k g_k \equiv$  常数,从而  $1, g_2, ..., g_n$  线性相关.

回到 Weierstrass 点. 记  $\omega_1,...,\omega_g$  为  $H^0(X,\Omega)$  的一组基, (U,z) 为一个局部坐标, 在此局部坐标下记  $\omega_k = f_k \, \mathrm{d}z$ , 则令  $W(\omega_1,...,\omega_g) := W(f_1,...,f_g)$ . 那么, 因为  $\omega_k$  线性无关,于是  $W(\omega_1,...,\omega_g)$  在 U 上不恒为零,因此我们可知: X 上的 Weierstrass 点是孤立的,也就是说, X 上仅存在至多有限个 Weierstrass 点.

**进一步的注记.** 若 w=w(z) 为 U 上的另一个坐标,  $\omega_k=f_k\,\mathrm{d}z=g_k\,\mathrm{d}w$ , 则  $f_k=g_k(w(z))\frac{\mathrm{d}w}{\mathrm{d}z}$ , 从而可得

$$f'_{k} = \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{2} g'_{k}(w(z)) + \frac{\mathrm{d}^{2}w}{\mathrm{d}z^{2}} g_{k}(w(z))$$

$$\vdots$$

$$f_{k}^{(\nu)} = \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{\nu+1} g_{k}^{(\nu)}(w(z)) + \sum_{\mu \leq \nu} \lambda_{\mu}^{\nu} g_{k}^{(\mu)}(w(z))$$

其中  $\lambda_{\mu}^{\nu}$  与 k 无关. 因此  $W(f_1,...,f_n) = \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^N W(g_1,...,g_n)$ , 其中  $N = 1+2+\cdots+g = \frac{1}{2}g(g+1)$ . <sup>6</sup>

设  $(U_i, z_i)$  为 X 的一族坐标开覆盖,则转移函数  $g_{ij} = \frac{\mathrm{d}z_j}{\mathrm{d}z_i}$  定义了 X 的典范线 丛  $K_X$ ; 再注意  $i \mapsto W_i(f_{1,i},...,f_{g,i})$  [其中在  $U_i$  上有  $\omega_k = f_{k,i}\,\mathrm{d}z_i$ ] 满足转换关系  $W_i = g_{ij}^N W_j$ . 因此,  $W_i$  确定了线丛  $K_X^{\otimes N}$  上的一个全纯截面 W, 其中  $N = \frac{1}{2}g(g+1)$ . 综上,我们得到:

定理. 存在线丛  $K_X^{\otimes N}$ ,  $N=\frac{1}{2}g(g+1)$  的非零全纯截面 W, 使得 W 的零点集恰为 X 的 Weierstrass 点集.

注意  $\deg(\operatorname{div}(W)) = N \deg K_X = (g-1)g(g+1)$ ,因此 X 至多有 (g-1)g(g+1) 个 Weierstrass 点; 若 g > 1,则 W 必存在零点,也就是说此时 X 必存在 Weierstrass 点. 此外,我们还有如下结论:

定理. (Weierstrass 空缺定理). 设 X 为亏格 g>0 的紧黎曼曲面,  $P\in X$ . 则存在恰好 g 个整数  $1=n_1< n_2< \cdots < n_g\leq 2g-1$ , 使得不存在 X 上的仅在 P 处为极点且极点阶数为  $n_k$ , k=1,...,g 的亚纯函数.

于是, X 上除去有限多个例外的 P, 存在 X 上的仅在 P 点亚纯并且极点阶数为 m 的亚纯函数当且仅当  $m \geq g+1$ .

证明. 记除子  $D_k = k \cdot P$ , k = 0, 1, 2, ..., 则存在 X 上的仅在 P 处亚纯, 且极点阶数为 k 的亚纯函数当且仅当存在  $f \in \mathbb{C}(X)$  使得  $(f) \geq -D_k$ ,  $(f) \not\geq -D_{k-1}$ . 设  $s_P$  为 L(P) 的标准截面,  $(s_P) = P$ , 则上述条件等价于说

$$-\otimes s_P: H^0(X, L(D_{k-1})) \to H^0(X, L(D_k))$$

不是满同态.

首先, 由层正合列  $0 \to \mathcal{O}_{D_{k-1}} \stackrel{sp}{\to} \mathcal{O}_{D_k} \to \mathcal{O}_{D_k}/\mathcal{O}_{D_{k-1}} \to 0$  可得长正合列  $0 \to H^0(X, L(D_{k-1})) \to H^0(X, L(D_k)) \to H^0(X, \mathcal{O}_{D_k}/\mathcal{O}_{D_{k-1}}).$ 

 $<sup>^6</sup>$ 译者注:这里出现了危险的记号混用——作为函数的"g"以及黎曼曲面 X 的亏格 g.

再注意  $\dim H^0(X, \mathcal{O}_{D_k}/\mathcal{O}_{D_{k-1}}) = 1$  [此商层在 P 处的茎条为  $\mathbb{C}$ , 在其它点处为 0]. 因此,存在亚纯函数 f 使得  $(f) \geq -D_k$  但  $(f) \geq -D_{k-1}$  当且仅当  $h^0(D_k) > h^0(D_{k-1})$ ; 并且此时, $h^0(D_k) = 1 + h^0(D_{k-1})$ .

现在,由 Riemann-Roch 定理,

$$h^{0}(D_{k}) - h^{0}(D_{k-1}) = 1 - h^{1}(D_{k-1}) + h^{1}(D_{k}).$$

因此对任何 m > 0,

$$h^{0}(D_{m}) - h^{0}(D_{0}) = \sum_{k=1}^{m} (h^{0}(D_{k}) - h^{0}(D_{k-1})) = m - h^{1}(D_{0}) + h^{1}(D_{m}),$$

而当  $m \ge 2g-1$  时  $h^1(D_m)=0$ . 此外  $h^0(D_0)=1$ ,  $h^1(D_0)=g$ . 因此对于  $m \ge 2g-1$ , 我们有

$$h^0(D_m) = m - g + 1.$$

进一步, $h^0(D_m) - 1 = \sum_{k=1}^m (h^0(D_k) - h^0(D_{k-1}))$  为满足下述条件的  $k \le m$  的个数: 存在仅在 P 点亚纯且极点阶数为 k 的亚纯函数  $f \in \mathbb{C}(X)$ . 因此,"空缺"(gap) 的个数为  $m - (h^0(D_m) - 1) = g$ .

**注记.** 上述证明过程也可以应用于任意点列  $P_1, P_2, ...$ ,除子  $D_0 = 0$ , $D_k = \sum_{i=1}^k P_i$ ,k > 0. 我们可以证明,除了 [位于 1 与 2g - 1 之间的] g 个例外的  $k = n_1, ..., n_g$ ,存在亚纯函数 f,使得  $(f) \geq -D_k$  但  $f \geq -D_{k-1}$ . 这个结论有时称为 **Max Noether 空缺定理**.

# 12 超椭圆曲线与典范映射

设 X 为紧黎曼曲面, 记  $\mathbb{C}(X)$  为 X 上的亚纯函数域.

我们称 X 为超椭圆黎曼曲面 (hyperelliptic Riemann surface), 或者超椭圆曲线 (hyperelliptic curve), 如果存在从 X 到  $\mathbb{P}^1$  的 2 叶全纯 [分歧] 覆盖; 换句话说, 存在亚纯函数  $f \in \mathbb{C}(X)$ , 使得 f 恰有两个极点且都是单极点, 或者恰有一个极点且极点阶数为

2. [注记: 若 f 恰有一个单极点且阶数为 1, 则  $f: X \to \mathbb{P}^1$  为同构. 这是因为  $\infty$  不是临界值, 并且  $f: X \to \mathbb{P}^1$  为单叶的. ] 若 X 的亏格 g > 0, 则 X 是超椭圆曲线当且仅当存在有效除子 D, deg D = 2 并且  $h^0(D) \ge 2$ . 事实上, 若 X 为超椭圆曲线, f 的叶数为 2, 则取 D 为 f 的极点除子 [由于  $(1) \ge -D$ ,  $(f) \ge -D$ , 从而  $h^0(D) \ge 2$ ]. 反之, 若  $h^0(D) \ge 2$ , 则必存在非常值的亚纯函数 f 使得  $(f) \ge -D$ .

若 X 的亏格为 1, 则 X 必为超椭圆曲线. 这是因为, 对任何次数为 2 的除子 D,  $\deg D > 2g-2=0$ , 从而  $h^0(D)=1-g+\deg D=2$ . 若 X 的亏格为 2, 则 X 也必为超椭圆曲线. 事实上, 若 P 为 Weierstrass 点, 则存在函数  $f\in\mathbb{C}(X)$  在 X-P 全纯, 并且在 P 处的极点阶数为 2.

设 X 为超椭圆曲线,  $f: X \to \mathbb{P}^1$  的叶数为 2. 将 f 适当地复合上一个  $\mathbb{P}^1$  的自同构, 我们可不妨假设原像集  $f^{-1}(\infty)$  包含两个不同的点. 记 C 为 f 的临界点集, B = f(C), 则  $B \subseteq \mathbb{P}^1 - \{\infty\} = \mathbb{C}$ . 此外, 若  $a \in C$ , 则  $\operatorname{ord}_a(f) = 2$ ; 从而若  $b \in B$ , 则  $f^{-1}(b)$  为独点集. 定义映射  $\tau: X - C \to X - C$ , 使得  $\tau$  将 x 映为 x', 其中  $x' \neq x$ , f(x') = f(x). 此映射可延拓为全纯映射  $\tau: X \to X$  [若  $a \in C$ , 则规定  $\tau(a) = a$ ],使得成立  $\tau^2 = \operatorname{id}_X$ . 称此映射为 X 的**超椭圆对合** (hyperelliptic involution).

由 Riemann-Hurwitz 公式, 若 X 的亏格为 g, 注意  $\mathbb{P}^1$  的亏格为 0, 从而

$$2g - 2 = -4 + \sum_{a \in C} (\operatorname{ord}_a(f) - 1),$$

于是 [注意对于  $a \in C$ ,  $\operatorname{ord}_a(f) = 2$ ] f 的分歧点的个数为 2g + 2 [并且这些点都是 X 的 Weierstrass 点].

设 u 为 X 上的亚纯函数,使得对某些  $x \in X - C$  成立  $u(x) \neq u(\tau(x))$ ,并且 u 在  $x, \tau(x)$  处都全纯. 于是,对 f(x) 附近的点 z,都有  $u(x_1) \neq u(x_2)$ ,其中  $\{x_1, x_2\} = f^{-1}(z)$ . 从而存在有理函数  $a_1, a_2 \in \mathbb{C}(z)$  [这里将 f(x) 记作 z] 使得

$$u^{2}(x) + 2a_{1}(z)u(x) + a_{2}(z) = 0$$

[其证明见第7节定理7.4] . 于是  $(u+a_1)^2=a_1^2-a_2=p/q$ , 其中  $p,q\in\mathbb{C}[z]$ ; 若再记  $p\cdot q=P\cdot Q^2$ ,  $P,Q\in\mathbb{C}[z]$ , 并且 P 无平方因子, 则成立  $w^2=P(z)$ , 其中  $w=p(u+a_1)/Q$ . 此外, 存在  $\mathbb C$  的一个开集, 使得此开集当中的点 z 满足: 若  $\{x_1,x_2\}=f^{-1}(z)$ , 则  $w(x_1)\neq w(x_2)$ .

记 Y 为代数函数  $w^2 - P(z)$  的 [紧] 黎曼曲面. 则我们有映射  $\pi: X \to Y$ , 将 X 当中除了有限个点之外的点 x 映为  $\pi(x) = (f(x), w(x))$  [除去的那些点包括 f, w 的极点,

以及 Y 在  $\mathbb{P}^1$  上的分歧点, 即 w 的零点]; 此映射可延拓为全纯映射  $X \to Y$ . 现在, 对于某个开集当中的  $x \in X$ , 成立  $w(x) \neq w(\tau(x))$ ; 又因为  $w(x)^2 = w(\tau(x))^2$ , 从而必有  $w(x) = -w(\tau(x))$ , 从而由解析延拓原理, 对任意  $x \in X$  都有  $w(x) = -w(\tau(x))$ . 从而易知  $\pi: X \to Y$  为解析同构, 并且与映射  $f: X \to \mathbb{P}^1$  以及  $Y \to \mathbb{P}^1$ ,  $(z, w) \mapsto z$  交换.

此外, 由于  $\infty$  不是  $f: X \to \mathbb{P}^1$  的分歧值, 且 f 的分歧点的个数为 2g+2, 从而多项式 P 必形如  $c(z-z_1)\cdots(z-z_{2g+2})$ , 其中常数  $c\neq 0, z_1,...,z_{2g+2}\in \mathbb{C}$  两两互异. 不妨假设 c=1.

考虑 Y 上的 1-形式

$$\omega_{\nu} = z^{\nu - 1} \frac{\mathrm{d}z}{w}, \quad \nu = 1, ..., g.$$

由于在 Y 上成立  $2w \, \mathrm{d} w = P'(z) \, \mathrm{d} z$ ,并且在分歧值  $z_1, ..., z_{2g+2}$  处满足  $P'(z) \neq 0$ ,因此若  $z \in \mathbb{P}^1 - \{\infty\}$ , $\omega_{\nu} = 2z^{\nu-1} \frac{\mathrm{d} w}{P'(z)}$  在  $(z,w) \in Y$  点全纯. 而在  $z = \infty$  附近, $w = \pm z^{g+1} \left(1 + O(\frac{1}{z})\right)$ ,从而  $\omega_{\nu} = \pm z^{\nu-g-2} \left(1 + O(\frac{1}{z})\right) \, \mathrm{d} z$ ,在  $\infty$  处全纯. 因此  $\omega_1, ..., \omega_g$  构成  $H^0(Y,\Omega)$  的一组基. 并且我们也可以得到,在  $\mathbb{C} = \mathbb{P}^1 - \{\infty\}$  成立  $\omega_1 \neq 0$ ,在  $\infty$  处满足  $\omega_q \neq 0$ .

考虑由 Y 的典范线丛  $K_Y$  诱导的全纯映射  $\varphi_{K_Y}: Y \to \mathbb{P}^{g-1}$ , 则易知  $\varphi|_{Y-z^{-1}(\infty)}$  为  $(z,w)\mapsto [1:z:\cdots:z^{g-1}]$ , 并且 Y 在此映射下的像同构于  $\mathbb{P}^1$ . 此外,  $\varphi(z,-w)=\varphi(z,w)$ . 注意同构  $\pi:X\to Y$  将 z 映到 f. 另一方面, X 的典范线丛  $K_X$  诱导的映射  $\varphi_{K_X}$  在相差  $\mathbb{P}^{g-1}$  上的线性变换的意义下是内蕴定义的, 这个映射称为 X 的**典范映射** (canonical map).

因此, 若映射  $f: X \to \mathbb{P}^1$  的叶数为 2, 则它同构于映射  $\varphi_{K_X}: X \to \varphi_{K_X}(X) \subseteq \mathbb{P}^1$  [并且  $\varphi_{K_X}(X) \cong \mathbb{P}^1$ ]. 从而我们得到, 映射 f 在相差  $\mathbb{P}^1$  的自同构的意义下是唯一的, 也就是说任何两个叶数为 2 的映射仅仅相差一个 Möbius 变换  $f \mapsto \frac{af+b}{cf+d}$ ,  $a,b,c,d \in \mathbb{C}$ ,  $ad-bc \neq 0$ . 现在, 若  $f: X \to \mathbb{P}^1$  的叶数为 2, 则 f 的分歧点 P 必为 Weierstrass 点.  $f(P) = \infty$  的时候显然; 若  $f(P) \neq \infty$ , 则考虑  $(f-f(P))^{-1}$ .

我们来证明上述结论的逆命题,也就是说,超椭圆曲线上的任何 Weierstrass 点必为某个 [本质唯一的] 2 叶映射  $f: X \to \mathbb{P}^1$  [也就是典范映射] 的分歧点.我们将 X 等同为黎曼曲面  $w^2-P(z)=0$ ,其中  $P=(z-z_1)\cdots(z-z_{2g+2}), z_j$  两两互异.则  $\omega_{\nu}=\frac{z^{\nu-1}}{\omega}\,\mathrm{d}z,\,\nu=1,...,g$  为  $H^0(X,\Omega)$  的一组基.若  $w\neq 0$  [即  $P(z)\neq 0$ ],且  $z\neq 0$ ,则  $z^{\nu-1}/w,\,\nu=1,...,g$  的 Wronski 行列式等于  $w^{-g}W(1,z,...,z^{g-1})=w^{-g}c_g$  (其中

 $c_g = \prod_{\nu=1}^{g-1} \nu!$ )[见第**11**节的引理的证明过程, 我们已证  $W(\varphi f_1, ..., \varphi f_n) = \varphi^n W(f_1, ..., f_n)$ ; 再注意  $W(1, z, ..., z^{g-1})$  为上三角行列式, 且其对角元为 1, 1!, ..., (g-1)! ].若  $z = \infty$ , 则  $\omega_{\nu} = \pm z^{\nu-g-2} \left(1 + O(\frac{1}{z})\right) \mathrm{d}z = \mp \left(\frac{1}{z}\right)^{g-\nu} \left(1 + O(\frac{1}{z})\right) \mathrm{d}\left(\frac{1}{z}\right)$ ,从而在  $\infty$  处的 Wronski 行列式为对角元非零的上三角行列式. 综上, $P(z) \neq 0$  与  $z = \infty$  处都不是 Weierstrass 点,从而断言得证.

因此, 若 X 为超椭圆曲线, 则 X 的 Weierstrass 点恰为典范映射  $\varphi_{K_X}: X \to \varphi_{K_X}(X) \subseteq \mathbb{P}^{g-1}$  的分歧点. 恰有 2g+2 个这样的点.

当 g > 2 时, 2g + 2 < (g - 1)g(g + 1), 不等号右边为之前给出的 Weierstrass 点的个数的一个上界. 事实上还可以证明, 非超椭圆曲线的 Weierstrass 点的个数大于 2g + 2.

对于非超椭圆曲线, 典范映射为嵌入.

定理. 设 X 为非超椭圆的紧黎曼曲面, 其亏格为 g ( $\geq$  3), 那么典范线丛  $K_X$  是极丰沛的. 也就是说,  $K_X$  的全体整体截面没有公共零点, 且  $\varphi_{K_X}: X \to \mathbb{P}^{g-1}$  为嵌入.

证明.

- (1) 对于  $P \in X$ , 断言存在  $\omega \in H^0(X,\Omega)$  使得  $\omega(P) \neq 0$ . 若不然, 线丛 L(P) 的标准截面  $s_P$  诱导的同态  $H^0(X,\Omega_{-P}) \stackrel{\otimes s_P}{\to} H^0(X,\Omega)$  为同构. 而注意到  $h^0(\Omega_{-P}) h^1(\Omega_{-P}) = 1 g + (2g 3) = g 2$ , 并且  $h^1(\Omega_{-P}) = h^0(\mathcal{O}_P) = 1$  [这是因为, 若存在非常值亚纯函数 f 使得  $(f) \geq -P$ , 则 f 仅有一个单极点, 从而  $f: X \to \mathbb{P}^1$  为同构]. 因此  $h^0(\Omega_{-P}) = g 1 < h^0(\Omega)$ , 从而  $H^0(X,\Omega_{-P})$  不可能同构于  $H^0(X,\Omega)$ .
- (2) 对于  $P,Q \in X$ ,  $P \neq Q$ , 断言存在  $\omega \in H^0(X,\Omega)$  使得  $\omega(P) = 0$ ,  $\omega(Q) \neq 0$ . 若不然, 则  $H^0(X,\Omega_{-P-Q}) \stackrel{\otimes s_Q}{\to} H^0(X,\Omega_{-P})$  为同构. 而我们有  $h^0(\Omega_{-P-Q}) = 1 g + (2g 4) + h^1(\Omega_{-P-Q}) = g 3 + h^0(\mathcal{O}_{P+Q})$ . 若  $h^0(\mathcal{O}_{P+Q}) > 1$ , 则存在非常值亚纯函数 f 满足  $(f) \geq -P Q$ , 从而 f 的叶数为 2, X 为超椭圆曲线. 因此  $h^0(\mathcal{O}_{P+Q}) = 1$ ,  $h^0(\Omega_{-P-Q}) = g 2 < h^0(\Omega_{-P})$ .
- (3) 若  $P \in X$ , 断言存在  $\omega \in H^1(X,\Omega)$  使得  $\operatorname{ord}_P(\omega) = 1$ . 若不然, 则  $\omega(P) = 0 \Rightarrow \operatorname{ord}_P(\omega) \geq 2$ , 也就是说  $h^0(\Omega_{-P}) = h^0(\Omega_{-2P})$ . 与第 **2** 部分类似, 这表明存在非常值亚纯函数 f 使得 (f) > -2P, 从而 X 为超椭圆曲线.

由上述三点, 用第10节嵌入定理的证明方法即可得证.

对任意紧黎曼曲面 X, X 在典范映射  $\varphi_{K_X}$  下的像称为 X 的**典范曲线** (canonical curve). 若 X 为超椭圆曲线, 则 X 的典范曲线同构于  $\mathbb{P}^1$ ; 否则, 它同构于 X.

## 13 射影曲线的几何

先介绍一些一般概念. 设 M 是 n 维**复流形** (complex manifold),  $A \subseteq M$  为 n-1 维子流形 [余维数是 1]. 那么与黎曼曲面的情况类似, 子流形 A 通过如下方式定义 M 上的一个线丛: 若  $\{U_i\}$  为 M 的一族开覆盖,  $f_i \in \mathcal{O}(U_i)$  满足  $U_i \cap A = \left\{x \in U_i \middle| f_i(x) = 0, \ df_i \neq 0, \ \forall x \in U_i\right\}$ , 则  $g_{ij} := f_i/f_j$  为  $U_i \cap U_j$  上的处处非零的全纯函数,构成线丛 L(A) 的转移函数. 函数族  $\{f_i\}$  定义了线丛 L(A) 的标准截面  $s_A$  [我们也称 A 为线丛 L(A) 的除子].

现在考虑  $M=\mathbb{P}^n$ ,其齐次坐标为  $[z_0:\dots:z_n]$ .  $\mathbb{P}^n$  的**超平面** (hyperplane)H [即余维数为 1 的线性子空间] 形如  $\{\ell(z)=0\}$ ,其中  $\ell$  是关于  $z_0,...,z_n$  的非零线性函数. 我们把超平面 H 对应的线丛也记作 H [也记作  $\mathcal{O}_{\mathbb{P}^n}(1)$ ,或者  $\mathcal{O}(1)$ ];两个不同的超平面所对应的线丛是同构的. 若  $U_{\nu}=\left\{[z_0:\dots:z_n]\Big|z_{\nu}\neq 0\right\}$ , $\nu=0,...,n$ ,则函数  $\left(\frac{z_0}{z_{\nu}},...,\frac{\widehat{z_{\nu}}}{z_{\nu}},...,\frac{z_n}{z_{\nu}}\right)$  为  $U_{\nu}$  上的局部坐标,这给出  $U_{\nu}$  到  $\mathbb{C}^n$  的同构. [上方的尖号代表去掉这一项].若超平面  $H=\{\ell(z)=0\}$ ,则函数  $f_j=\frac{\ell(z)}{z_j}$  确定了  $H\cap U_j, j=0,...,n$ ,并且线丛 H 在  $U_i\cap U_j$  上的转移函数为  $g_{ij}=\frac{z_j}{z_i}$ . 全体超平面构成的集合为"对偶"射影空间  $(\mathbb{P}^n)^*$ , $\ell$  的系数为  $(\mathbb{P}^n)^*$  的齐次坐标.

设  $X \subseteq \mathbb{P}^n$  是 1 维连通复子流形 [= 光滑嵌入射影代数曲线]. 我们记  $\deg(X) := \deg(\mathcal{O}_{\mathbb{P}^n}(1)|_X)$ , 称为曲线 X 的**次数** (degree). 若记  $s_H$  为关于除子 [超平面] H 的线丛  $\mathcal{O}_{\mathbb{P}^n}(1)$  的标准截面, 再记 X 上的线丛  $\mathcal{O}_{\mathbb{P}^n}(1)|_X$  的 [亚纯] 截面  $s_H|_X$  的除子为  $\sum n_P P$ , 那么有  $\deg(X) = \sum n_P$ . 若  $X \cap H$  处处**横截** (transverse), 则  $\forall P \in X \cap H$ ,  $n_P = 1$ , 并且  $\deg(X)$  为 X 与超平面 H 的交点个数.

Bertini 的一个众所周知的定理表明, "一般的" 超平面与 X 横截; 我们将只证明这个定理的我们所需要的特殊情形.

**性质 13.1.**  $^a$  (Bertini 定理的特殊情形). 与 X 横截的超平面 H 构成 ( $\mathbb{P}^n$ )\* 的稠密开子集.

"若允许 X 有奇点, 则要求超平面 H 不含这些奇点, 并且在其余地方与 X 横截, 这种情况下本性质也成立; 只需注意若  $H_0$  不含 X 的奇点, 则  $H_0$  附近的超平面 H 都与包含这些奇点的某个开集不交.

证明. 设  $a \in X$ , U 为 a [在 X 中] 的邻域,使得存在双全纯映射  $\varphi: \Delta \to U$ , 其中  $\varphi = (\varphi_0, ..., 1, ..., \varphi_n)$ ,  $\Delta = \left\{t \in \mathbb{C} \middle| |t| < 1\right\}$ ,  $\varphi_0, ..., \varphi_n$  为全纯函数,且存在某个 j 使得在  $\Delta$  成立  $\varphi_j'(t) \neq 0$ ,且  $\varphi_k \equiv 1$ . 设  $K \subseteq U$  紧致. 简单起见,不妨 k = 0. 对于超平面  $H: c_0 z_0 + \cdots + c_n z_n = 0$ ,则  $H \cap X$  在 K 的某点处不横截当且仅当  $\sum_{\nu=1}^n c_\nu \varphi_\nu(t) = -c_0$  与  $\sum_{\nu=1}^n c_\nu \varphi_\nu'(t) = 0$  有公共解. 由于某个指标  $\nu$  满足  $\varphi_\nu'(t) \not\equiv 0$ ,从而可假设  $\sum_{\nu=1}^n c_\nu \varphi_\nu'(t) \not\equiv 0$ ;从而点集  $S = \left\{t \in U \middle| \sum_{\nu=1}^n c_\nu \varphi_\nu'(t) = 0\right\}$  是离散的,并且对任意的足够接近 0 的  $\lambda$ ,对任意  $t \in S$  都成立  $\sum_{\nu=1}^n c_\nu \varphi_\nu(t) \not\equiv -c_0 - \lambda$ ;从而超平面  $(c_0 + \lambda)z_0 + \cdots + c_n z_n = 0$  在 K 处与 X 横截相交;因此集合  $W_K = \left\{H\middle| X \cap H$ 在 K 处横截 M 是稠密的.它显然是开集,而再注意集合 M0、因此集合 M1、为有限多个形如 M2、的集合的交.

接下来, 我们总假定射影曲线  $X \subseteq \mathbb{P}^n$  是**非退化的** (non-degenerate), 这是指, X 不包含于任何超平面. 换句话说, 我们总考虑将 X 嵌入到  $\mathbb{P}^n$  的包含 X 的维数最小的线性子空间  $\mathbb{P}^k$ .

### **引理 13.1.** 若 $X \subseteq \mathbb{P}^n$ 非退化,则 $\deg(X) \geq n$ .

证明. 对于一般的超平面  $H, X \cap H = \{x_1, ..., x_d\}, d = \deg(X)$ . 如果 d < n, 则任取 X上的点  $y_1, ..., y_{n-d}$ . 注意到  $\mathbb{P}^n$  的任何 n 个点都共超平面 [即存在某个超平面包含这 n个点]. 设 H' 为过点  $x_1, ..., x_d; y_1, ..., y_{n-d}$  的超平面. 那么,若  $s_{H'}$  [线丛  $\mathcal{O}(1)$  的关于除子 H' 的标准截面] 满足  $s_{H'}|_X \neq 0$ , 则  $\deg(s_{H'}|_X) \geq n > d$ , 从而与  $\deg(X)$  的定义矛盾. 因此  $s_{H'}|_X \equiv 0$ , X 是退化的.

Riemann-Roch 定理的几何形式. 设 X 不是超椭圆的,  $X \subseteq \mathbb{P}^{g-1}$  为典范嵌入. 设  $D \ge 0$  为 X 的一个有效除子, 并假设  $D \ne 0$ . 若  $\ell$  为  $\mathbb{P}^{g-1}$  上的线性函数, 则  $\ell | X$  为 X 上的全纯 1-形式; 反之, X 上的全纯 1 形式都可这样得到.

对于超平面  $H \subseteq \mathbb{P}^{g-1}$ ,  $H = \{\ell(z) = 0\}$ , 如果全纯 1-形式  $\ell|_X$  的除子  $(\ell|_X) \ge D$ , 则称超平面 H **包含** (contain) 除子 D. 我们记 [D] 为所有包含除子 D 的超平面之交, 称为由除子 D 生成的  $\mathbb{P}^{g-1}$  的线性子空间. 如果除子 D 形如  $\sum P_i$ , 其中  $P_i$  两两不同, 则包含 D 的超平面恰为包含所有点  $P_i$  的超平面,[D] 恰为点  $P_i$  所张成的子空间.

Riemann-Roch 定理的几何形式是指如下公式:

$$h^0(D) = \deg(D) - \dim[D].$$

事实上  $h^0(\Omega_{-D})$  为满足  $(\omega) \geq D$  的线性无关的全纯 1-形式  $\omega$  的最大个数,也就是满足  $(\ell|_X) \geq D$  的线性无关的  $\mathbb{P}^{g-1}$  的线性函数  $\ell$  的最大个数,因此  $g-1-h^0(\Omega_{-D})$  为包含 D 的所有超平面之交的维数,即  $g-1-h^0(\Omega_{-D})=\dim[D]$ . 再由 Riemann-Roch 定理即可得证.

为更深入学习, 我们需要一个来自 Castelnuovo 的非常重要的定理. 注意任意 k+1 个点  $(k+1 \le n)$  都位于  $\mathbb{P}^n$  的某个 k 维线性子空间. 我们称点  $P_1,...,P_{k+1} \in \mathbb{P}^n$  **线性** 无关 (linearly independent), 如果它们不位于任何维数 < k 的子空间,也就是说这些点张成的子空间达到最大可能的维数.

定理. (Castelnuovo 一般位置定理). 设  $X \subseteq \mathbb{P}^n$  维非退化的射影代数曲线,  $\deg X = d$ . 则满足以下性质的超平面 H 构成 ( $\mathbb{P}^n$ )\* 的稠密子集: 若  $X \cap H = \{x_1, ..., x_d\}$ , 则它们当中任何 n 个点  $x_i, ..., x_i$ , 线性无关.

为证明此结果, 我们需要假设读者熟悉基础的**代数几何** (algebraic geometry). 先证明如下引理:

**引理 13.2.** 设  $n \geq 3$ . 设  $U \subseteq (\mathbb{P}^n)^*$  为与 X 横截的超平面构成的开集. [注意条件 " $H \in (\mathbb{P}^n)^*$  与 X 不横截"是代数的, U 为  $(\mathbb{P}^n)^*$  的某个代数真子集的补集]. 则存在 U 的代数真子集 A, 使得对任意  $H \in U - A$ ,  $X \cap H$  中的任何三点不共线. [我们假定 X 不可约, 而并不要求 X 光滑.]

证明. 我们将证明,  $\mathbb{P}^n$  当中的与 X 有至少 3 个交点的直线构成的 [代数] 簇的维数是 1. 我们称这样的直线为曲线 X 的**三割线** (trisecant). 由于包含给定直线的超平面构成的空间的维数是 n-2, 因此由将要证明的断言可知, 包含某条三割线的的超平面构成的空间的维数是 n-1.

若不然, 假设三割线构成的空间 S 的维数  $\geq 2$ . 因为 X 的**割线** (secant) [与 X 有至少 2 的交点的直线] 构成的空间是不可约的, 且维数是 2 [此空间是某个定义在  $X \times X - \Delta_X$  的映射的像集的闭包, 其中  $\Delta_X$  为  $X \times X$  的对角线, 此映射将 (P,Q) 映为连接 P,Q 两点的直线], 从而可知 X 的任何割线都是三割线.

我们先证明, 这意味着对 X 的任意两个光滑点 P,Q,X 在 P,Q 处的切线  $T_P,T_Q$  必相交.

取定  $P_0 \in X$ , 考虑关于点  $P_0$  的投影映射  $\mathbb{P}^n \to \mathbb{P}^{n-1}$  所诱导的映射  $\pi_0 : X - P_0 \to \mathbb{P}^{n-1}$ . 记 Y 为 X 在此映射下的像,  $y \in Y$  为光滑点, 使得  $\pi_0$  在  $\pi_0^{-1}(y)$  的点处都是正则的 [满秩, 秩为 1] . 若  $P,Q \in \pi_0^{-1}(y)$ , 则切线  $T_P,T_Q$  被映为 Y 在点 y 处的切线 L, 因此  $T_P,T_Q$  都位于由直线 L 与点  $P_0$  所张成的平面, 从而它们必相交. 这表明, 对于给定的某点  $P_0$ , 存在 X 的某个开集, 使得对此开集里的任意点 P, 如果  $\pi_0(P) = \pi_0(Q)$ , 则  $T_P,T_Q$  相交. 现在考虑  $P_0$  在某开集里变化,则相应的 Q 也取遍某个开集,因此使得  $T_P,T_Q$  相交的点对 (P,Q) 取遍某个开集; 这表明对任意  $(P,Q),T_P,T_Q$  相交.

现在设 X 在点 P,Q 处的切线不同,记 B 为切线  $T_P,T_Q$  张成的 2 维平面.注意  $B\cap X$  是有限点集 [因为 X 非退化],取点  $a\in X$ ,  $a\not\in B$ . 因此切线  $T_a$  与直线  $T_P,T_Q$  都相交;又因为  $T_a\not\subseteq B$ ,两条直线至多交于一点,因此  $T_a$  必过点  $P_0:=T_P\cap T_Q$ . 因此,对 X 的 [除了有限个点之外的] 任意点 a,切线  $T_a$  过点  $P_0$ . 进而任意  $a\in X$ , $T_a$  过点  $P_0$ . 但这是不可能的,因为关于点  $P_0$  的到  $\mathbb{P}^{n-1}$  的投影映射在 X 的限制,在 X 处处退化 [秩为 0],从而 X 的像集是独点集,X 只能是一条直线.

引理证毕.

**Castelnuovo** 一般位置定理的证明. 设  $U \subseteq (\mathbb{P}^n)^*$  的含义同上述引理, 令集合  $I \subseteq X \times U$  由满足  $P \in X \cap H$  的二元组 (P,H) 构成. 则 I 是 n 维不可约的. [I 不可约,是因为点  $P \in X$  关于投影映射  $I \to X$  的纤维是由过点 P 的超平面构成的不可约族; I 的维数是 n, 是因为投影映射  $I \to U$  是有限纤维的.]

考虑由 (P, H), 其中  $P \in \{P_1, ..., P_n\} = X \cap H$  且  $P_1, ..., P_n$  线性相关, 构成的子簇

 $I_0 \subseteq I$ . 如果  $\dim I_0 < n$ , 则其到 U 的投影是**真映射** (proper map), 从而定理得证. 而假如  $\dim I_0 = n$ , 则必有  $I_0 = I$ . 对于 X 的一般的点 P, 记  $\pi_P : X - \{P\} \to \mathbb{P}^{n-1}$  为关于点 P 的投影. 如果 X 不满足一般位置定理, 那么像曲线  $X' = \pi_P(X) \subseteq \mathbb{P}^{n-1}$  也不满足一般位置定理, 这是因为如果  $P = P_1, ..., P_n \in H \cap X$  都位于某个 n-2 维的子空间 B, 则  $\pi_P(P_2), ..., \pi_P(P_n)$  都位于 n-3 维的子空间  $\pi_P(B) \subseteq \mathbb{P}^{n-1}$ .

当  $n \ge 4$  时, 总可反复上述论证. 因此只需要证明此定理在 n = 3 时的情形, 而这正是引理13.2.

在给出一般位置定理的应用之前我们先来介绍一些术语.

设 X 为紧黎曼曲面,L 为 X 上的全纯线丛. 若 V 为  $H^0(X,L)$  的线性子空间, $V \neq \{0\}$ ,则称集合  $\left\{D\middle|D=\operatorname{div}(s), s \in V\right\}$  为由 V 所确定的**线性系统** (linear system). 若  $V=H^0(X,L)$ ,则称其为 L 的**完备线性系统** (complete linear system). 若 L=L(D) 为除子 D 的线丛,则 L 的完备线性系统由所有的与 D 线性等价的有效除子 D', $D'\sim D$ , $D'\geq 0$  构成. 这也称为除子 D 的完备线性系统,记作 |D|. 再记  $\dim |D|:=h^0(D)-1$ ,称为该完备线性系统的维数. 注意 |D| 与射影空间  $(H^0(X,L(D)))-\{0\})/\mathbb{C}^*=\mathbb{P}(H^0(X,L(D)))$  有自然的一一对应. 若  $h^0(D)>0$  且  $h^1(D)=h^0(\Omega_{-D})>0$ ,则称 D 为特殊除子 (special divisor); 也就是说 D 与  $K_X-D$  都线性等价于有效除子,其中  $K_X$  为 X 的典范除子.

我们从下述引理开始:

引理 13.3. 设 D 为除子, $h^0(D)>0$ , $r\geq 0$  为给定整数.则  $\dim |D|\geq r$  当且 仅当对任意次数为 r 的除子  $\Delta\geq 0$ ,存在  $D'\in |D|$  使得  $D'\geq \Delta$ ;特别地,若  $P_1,...,P_r\in X$ ,则存在  $D'\in |D|$  使得对任意 i=1,...,r 都有  $P_i\in \mathrm{supp}(D')$ .若此条件对 X 的某个非空开集中的任何两两互异的  $P_i$  都成立,则  $\dim |D|\geq r$ .

证明. 如果  $\dim H^0(X, L(D)) \geq r + 1$ ,记  $\Delta = \sum_{\nu=1}^k n_{\nu} P_{\nu}$ . 取 L(D) 在  $P_{\nu}$  处的局部平凡 化  $h_{\nu}$ ,以及局部坐标  $(U_{\nu}, z_{\nu})$  使得  $z_{\nu}(P_{\nu}) = 0$ .若  $s \in H^0(X, L(D))$ ,则  $(s) \geq \Delta$  当且仅 当  $\left(\frac{\mathrm{d}}{\mathrm{d}z_{\nu}}\right)^{\mu} h_{\nu}(s)\Big|_{s=P_{\nu}} = 0$  对任意  $0 \leq \mu < n_{\nu}, \nu = 1, ..., k$  成立. 因此,该条件等价于 s 位于  $H^0(X, L(D))$  上的  $n_1 + \cdots + n_k = r$  个线性函数  $s \mapsto \left(\frac{\mathrm{d}}{\mathrm{d}z_{\nu}}\right)^{\mu} h_{\nu}(s)\Big|_{s=P_{\nu}}$  的核空间之交,这些空间之交的维数  $\geq \dim H^0(X, L(D)) - r \geq 1$ .

反向命题可由下述更一般结论得到:

**引理 13.4.** 设 X 为黎曼曲面, L 为 X 上的全纯线丛, V 是  $H^0(X,L)$  的 k 维子空间. 则存在 k 个点  $P_1,...,P_k\in X$  使得对于  $s\in V$ , 如果  $s(P_\nu)=0,\, \nu=1,...,k$ , 则  $s\equiv 0$ . /事实上任意的 "一般位置"的 k 个点都可以./

证明. 不妨 k>0. 取  $s_1\in V,\ s_1\not\equiv 0,\$ 取  $P_1\in X$  使得  $s_1(P_1)\not\equiv 0.$  则  $V_1=\left\{s\in V \middle| s(P_1)=0\right\}$  是 V 的真子空间,维数为 k-1. 若 k-1>0,则再取  $s_2\in V_1$ ,以及点  $P_2\in X$  使得  $s_2(P_2)\not\equiv 0.$  从而  $V_2:=\left\{s\in V_1\middle| s(P_2)=0\right\}=\left\{s\in V\middle| s(P_1)=0,\ s(P_2)=0\right\}$  的维数是 k-2. 只需不断这样做下去即可.

有如下重要结论:

**性质 13.2.** 设除子  $D_1, D_2$  都线性等价于有效除子 [即  $h^0(D_i) > 0, i = 1, 2$ ]. 则成立

$$\dim |D_1| + \dim |D_2| \le \dim |D_1 + D_2|.$$

此外, 若上述等号成立, 则任意  $D \in |D_1 + D_2|$  [即  $D \ge 0$ ,  $D \sim D_1 + D_2$ ] 都可表示为  $D = D_1' + D_2'$ , 使得  $D_i' \in |D_i|$ , i = 1, 2.

证明. 记  $r_i = \dim |D_i|$ , i = 1, 2. 任取 X 上的点  $P_1, ..., P_{r_1}; Q_1, ..., Q_{r_2}$ , 则存在  $D_i' \sim D_i$ ,  $D_i' \geq 0$  使得  $P_i \in \operatorname{supp}(D_1')$ ,  $Q_j \in \operatorname{supp}(D_2')$ . 则  $D_1' + D_2' \in |D_1 + D_2|$ , 且其支集包含所有这  $(r_1 + r_2)$  个点  $P_i, Q_i$ ; 因此不等式成立.

注意  $\left\{D_1' + D_2' \middle| D_i' \geq 0, D_i' \sim D_i \right\}$  构成射影空间  $|D_1 + D_2| = \mathbb{P}(H^0(X, L(D_1 + D_2)))$  的  $(r_1 + r_2)$  维的子簇. 如果该不等式取到等号, 则这个子簇必为射影空间本身.

现在介绍一个重要定理. 记 K 为 X 的一个典范除子.

定理. (Clifford 定理). 设 D 为 X 上的有效特殊除子 [注意  $h^0(K-D)>0]$  , d 为 D 的次数, 则

$$\dim |D| \le \frac{1}{2}d = \frac{1}{2}\deg D.$$

此外, 若等号成立, 则必为以下三种情况之一: D=0, 或者  $D\sim K$ , 或者 X 为超椭圆曲线.

证明. 由于 K-D 线性等价于有效除子, 从而

$$\dim |D| + \dim |K - D| \le \dim |K|,$$

即

$$h^{0}(D) + h^{0}(K - D) \le h^{0}(K) + 1 = g + 1.$$

另一方面,由 Riemann-Roch 定理,

$$h^{0}(D) - h^{0}(K - D) = d + 1 - g.$$

两式相加整理得  $2h^0(D) \le d+2$ ,  $h^0(D) \le \frac{1}{2}D=1$ . 此外, 若等号成立, 则  $\dim |D|+\dim |K-D|=\dim |K|$ , 从而对任意的满足  $K'\ge 0$ ,  $K'\sim K$  的除子 K' 都可以写成  $K'=D_1+D_2$ , 使得  $D_i\ge 0$ ,  $D_1\sim D$ ,  $D_2\sim K-D$ .

设 X 不是超椭圆曲线, 则考虑典范嵌入  $X \subseteq \mathbb{P}^{g-1}$ . 若 H 为与 X 横截的超平面, 则  $H \cap X$  当中的点构成的除子 K', 满足  $K' \sim K$ ,  $K' \geq 0$ . 记  $K' = D_1 + D_2$  使得  $D_1 \sim D$ ,  $D_2 \sim K - D$ ,  $D_1, D_2 \geq 0$ . 不妨假设  $D_1, D_2 \neq 0$ .

记  $[D_i]$  为由除子  $D_i$  张成的  $\mathbb{P}^{g-1}$  的线性子空间, 则由几何形式的 Riemann-Roch 定理可得

$$\dim[D_1] = \deg D_1 - h^0(D_1) = d - h^0(D)$$
  
$$\dim[D_2] = \deg D_2 - h^0(D_2) = 2g - 2 - d - h^0(K - D).$$

由于等号  $\dim |D| = \frac{1}{2}d$  成立表明  $h^0(D) + h^0(K - D) = g + 1$ , 从而

$$\dim[D_1] + \dim[D_2] = 2g - 2 - (g+1) = g - 3.$$

因此  $D_1, D_2$  张成的线性子空间的维数都  $\leq g-3$ . 若  $d \geq g-1$ , 则  $D_1$  当中的点线性相关; 若 d < g-1, 则  $D_2$  中的点线性相关. 再注意 H 是与 X 横截的任意的超平面, 从而这与一般位置定理矛盾.

综上, 若 X 不是超椭圆曲线, 则必有  $D_1=0$  或  $D_2=0$ , 从而定理得证.

我们再给一个 Clifford 定理的另证, 这种证法不利用 Castelnuovo 一般位置定理. 我们只需证明下述断言:

**性质 13.3.** 设  $D \geq 0$  为有效除子, 次数为 d, 且  $0 \leq d \leq 2g-2$ . 那么成立  $\dim |D| \leq \frac{1}{2}d$ . 若  $D \neq 0$ ,  $D \not\sim K$  并且上述不等式取到等号, 则 X 为超椭圆曲线.

证明. 由于  $g-1 \geq \frac{1}{2}d$ , 从而  $h^0(D) - h^0(K-D) = 1 - g + d \leq -\frac{1}{2}d + d$ , 于是如果  $h^0(K-D) = 0$  则有  $\dim |D| \leq \frac{1}{2}d - 1$ . 因此我们不妨设 D 为特殊除子. 此时, 该不等式 为性质13.2的推论 [Clifford 定理的证明的前半部分], 并且有  $h^0(D) + h^0(K-D) \leq g + 1$ .

假设 D 为特殊除子并且  $h^0(D) + h^0(K - D) = g + 1$  [即  $h^0(D) = \frac{1}{2}d + 1$ ]. 若 d = 2, 则  $h^0(D) = 2$ ,从而存在非常值亚纯函数 f 使得  $(f) \ge -D$  并且 f 的叶数为 2,从而 X 是超椭圆的. 我们将证明: 若  $\deg D > 2$ , $K \not\sim D$ ,则存在除子  $D_0 \ge 0$ , $\deg D_0 < d$ ,并且 满足  $h^0(D_0) + h^0(K - D_0) = g + 1$ . 因为  $\deg D_0 < d \le 2g - 2 = \deg K$ ,从而  $K - D_0 \not\sim 0$ ,从而我们可以反复这样操作,直到得到除子 D' 使得  $\deg D' = 2$ , $h^0(D') = 2$ ,从而 X 为超椭圆曲线.

设  $D' \geq 0$  使得  $D' \sim K - D$ , 则  $D' \neq 0$ . 取点  $P \in \operatorname{supp}(D')$  以及  $Q \not\in \operatorname{supp}(D')$ . 由于  $\dim |D| = \frac{1}{2}d > 1$ , 从而在除子的线性等价意义下, 不妨 D 的支集包含 P,Q 两点; 我们之后总假定 D 满足此性质.

设  $D_0$  为满足  $D_0 \le D$  与  $D_0 \le D'$  的 "最大"的除子 [即, 如果  $D = \sum_a D(a)a$ ,  $D' = \sum_a D'(a)a$ , 则  $D_0 = \sum_a \min\{D(a), D'(a)\} \cdot a$ ]. 显然  $D_0(P) > 0$ ,  $D_0(Q) = 0$ , 因此  $\deg D_0 < \deg D$  并且  $D_0 \ne 0$ .

我们有如下的层短正合列:

$$0 \to \mathcal{O}_{D_0} \stackrel{\alpha}{\to} \mathcal{O}_D \oplus \mathcal{O}_{D'} \stackrel{\beta}{\to} \mathcal{O}_{D+D'-D_0} \to 0, \tag{*}$$

其中  $\alpha(h) = (h, -h), \beta(f, g) = f + g.$  下面验证其正合性. 若  $(h) \ge -D_0$ , 则  $(h) \ge -D$  且  $(h) \ge -D'$ . 如果  $(f) \ge -D$ ,  $(g) \ge -D'$ , 则  $\operatorname{ord}_a(f+g) \ge -\max\{D(a), D'(a)\} = -(D(a)+D'(a)-\min\{D(a), D'(a)\})$ . 因此  $\alpha, \beta$  的确为层同态. 若  $\operatorname{ord}_a(f) \ge -\max\{D(a), D'(a)\}$ .

D'(a)}  $[f \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ]$  , 则必有  $(f) \ge -D(a)$  或者  $(f) \ge -D'(a)$ ; 若是前者则  $f = \beta(f,0)$ , 若是后者则  $f = \beta(0,f)$ . 如果  $\beta(f,g) = 0$ , 则 f = -g,  $(f) \ge -D$ ,  $(f) = (g) \ge -D'$ , 从而  $(f) \ge -D_0$ ,  $(f,g) = \alpha(f)$ . 因此 (\*) 正合.

由该短正合列诱导的长正合列可知成立不等式

$$h^{0}(D) + h^{0}(D') \le h^{0}(D_{0}) + h^{0}(D + D' - D_{0}) = h^{0}(D_{0}) + h^{0}(K - D_{0}).$$

由于  $D' \sim K - D$ , 从而

$$g+1=h^0(D)+h^0(K-D) \le h^0(D_0)+h^0(K-D_0) \le g+1,$$

从而迫使等号成立, 其中第二个不等号见证明开头部分.

这就证明了  $D_0$  的存在性, 从而命题得证.

## Clifford 定理的推论.

**推论 13.1.** 设  $X \subseteq \mathbb{P}^n$  是次数 d < 2n 的紧黎曼曲面, 并且非退化. 则 X 的亏格  $g \leq d - n$ , 并且当等号成立时, 所有的超平面截面构成完备线性系统.

证明. 设 H 为  $\mathbb{P}^n$  的超平面,  $D = X \cap H$ . 则  $h^0(D) \ge n+1$  [这是因为  $\mathbb{P}^n$  的任何线性函数都给出了  $\mathcal{O}_D$  的一个截面; 由于 X 非退化, 从而任何线性函数在 X 上不恒为零,除非该线性函数恒为零.] 由于 d < 2n, 从而

$$\dim |D| \ge n > \frac{1}{2}d,$$

因此 D 不是特殊除子, 即  $h^0(K-D)=0$ . 因此

$$n+1 \le h^0(D) = 1 - g + d, \quad g \le d - n.$$

若取到等号,则  $h^0(D) = n + 1$ ,从而  $\mathbb{P}^n$  上的线性函数在 X 上的限制给出了  $\mathcal{O}_D$  的所有的截面. 这当然表明超平面截面构成完备线性系统. □

**推论 13.2.**  $\mathbb{P}^n$  中的次数为 n 的光滑非退化曲线必为有理曲线, 即亏格 g=0.

事实上可以证明这样的曲线只可能是  $\mathbb{C}$  在映射  $z \mapsto [1:z:z^2:\cdots:z^n]$  下的像集的闭包. 我们之前在超椭圆黎曼曲面的典范曲线当中见过这种映射.

一般位置定理的另一个应用则是 Castelnuovo 本人对  $\mathbb{P}^n$  中的次数  $d \gg n$  的曲线的 亏格的上界估计.

设  $X\subseteq\mathbb{P}^n$  为紧黎曼曲面在  $\mathbb{P}^n$  中的非退化嵌入, d 为 X 的次数. 则我们已经知道  $d\geq n$ . 记  $N:=\left[\dfrac{d-1}{n-1}\right]$  [整数部分]. 记  $D=X\cap H$  为 X 的关于一般的超平面 H 的截面的除子.

## 引理 13.5. 记号同上.

- (1) 若  $1 \le k \le N$ , 则  $h^0(kD) h^0((k-1)D) \ge 1 + k(n-1)$ . 此外, 若其中某个 k 使得等号成立,则  $H^0(X,\mathcal{O}_{kD})/H^0(X,\mathcal{O}_{(k-1)D})$  由  $H^0(X,\mathcal{O}_D)$  生成,即自然同态  $\operatorname{Sym}^k H^0(X,\mathcal{O}_D) \to H^0(X,\mathcal{O}_{kD})/H^0(X,\mathcal{O}_{(k-1)D})$  为满同态.
- (2) 若 k > N, 则  $h^0(kD) h^0((k-1)D) = d$ , 且  $H^0(X, \mathcal{O}_{kD})/H^0(X, \mathcal{O}_{(k-1)D})$  由  $H^0(X, \mathcal{O}_D)$  生成.

证明. 不妨设超平面 H 与 X 横截, 并且  $D = X \cap H$  当中的点为一般位置, 即 D 中的任何 n 个点都不共 n-2 维子空间.

若  $k \le N$ , 则  $k(n-1) \le d-1$ ,  $1+k(n-1) \le d$ . 任取 D 的 1+k(n-1) 元子集 E.

对于  $P \in E$ , 任取划分  $E - \{P\} = E_1 \cup \cdots \cup E_k$ , 使得每个  $E_j$  当中恰有 n-1 个点. 由 Castelnuovo 一般位置定理, 点集  $E_j$  ( $\forall j=1,...,k$ ) 张成一个不含点 P 的 n-2 维子空间. 因此存在超平面  $H_j$  使得  $P \notin H_j$ , 且  $E_j \subseteq H_j$ . 从而存在  $\mathbb{P}^n$  上的 线性函数  $\lambda_j$  使得  $\lambda_j(P) \neq 0$ ,  $\lambda_j(E_j) = 0$ . 令  $\Lambda_P = \lambda_1 \cdots \lambda_k$  为 k 次齐次多项式,则  $\Lambda_P(P) \neq 0$ ,  $\Lambda_P(E - \{P\}) = 0$ . 记截面  $s^{(P)} := \Lambda_P|_X \in H^0(X, \mathcal{O}_{kD})$ . 断言  $s^{(P)}$ ,  $P \in E$  在  $H^0(X, \mathcal{O}_{kD})/H^0(X, \mathcal{O}_{(k-1)D})$  当中的像是线性无关的. 事实上,记  $s_D$  为  $\mathcal{O}_D$  关于除子 D 的标准截面,如果存在常数  $c_P \in \mathbb{C}$ ,  $P \in E$  使得

$$\sum_{P \in E} c_P s^{(P)} \in s_D \cdot H^0(X, (k-1)D),$$

则在 D 处成立  $\sum_{P\in E} c_P s^{(P)}=0$ ,因此在 E 处满足此式. 但和式  $\sum_{P\in E} c_P s^{(P)}$  在  $Q\in E$  处的值为  $c_Q s^{(Q)}(Q)$  [因为若  $Q\neq P$  则  $s^{(P)}(Q)=0$ ].再注意  $s^{(Q)}(Q)\neq 0$ ,从而  $c_Q=0$ ,

 $\forall Q \in E$ . 因此 dim  $H^0(X, \mathcal{O}_{kD})/H^0(X, \mathcal{O}_{(k-1)D}) \geq E$  的基数 = 1 + k(n-1). 又因为截 面  $s^{(P)}$  显然  $\in \operatorname{Sym}^k H^0(X, \mathcal{O}_D)$  [因为  $\Lambda_P$  为线性函数的乘积],从而  $\operatorname{Sym}^k H^0(X, \mathcal{O}_D)$ 在  $H^0(X, \mathcal{O}_{kD})/H^0(X, \mathcal{O}_{(k-1)D})$  的像空间的维数  $\geq 1 + k(n-1)$ . 这就证明了引理的第 (1) 部分.

再证 (2). 注意到此时  $k > \frac{d-1}{n-1}$ , 且对任意  $P \in \text{supp}(D)$ , 存在划分 supp(D) —  $\{P\} = E_1 \cup \cdots \cup E_k$ , 使得每个  $E_i$  最多包含 n-1 个点. 与前面做法一样, 构造 k 次齐 次多项式  $\Lambda_P = \lambda_1 \cdots \lambda_k$ , 其中线性函数  $\lambda_j$  满足  $\lambda_j(P) \neq 0$ ,  $\lambda_j(E_j) = 0$ . 因此, 与之前 一样, 可知截面  $s^{(P)} = \Lambda_P|_X \in H^0(X, \mathcal{O}_{kD})$  在  $H^0(X, \mathcal{O}_{kD})/H^0(X, \mathcal{O}_{(k-1)D})$  线性无关. 从而证明了  $h^0(kD) - h^0((k-1)D) \ge d$ .

另一方面, 层短正合列

$$0 \to \mathcal{O}_{(k-1)D} \stackrel{s_P}{\to} \mathcal{O}_{kD} \to \mathbb{C}_D \to 0$$

 $[s_D$  为标准截面, 茎条  $\mathbb{C}_{D,x}$  在  $x \in \text{supp } D$  时 =  $\mathbb{C}$ , 否则 = 0] 意味着

$$h^{0}(kD) - h^{0}((k-1)D) \le \dim H^{0}(X, \mathbb{C}_{D}) = d.$$

这就证明了 (2), 也证明了当 
$$k > N$$
 时,  $H^0(X, \mathcal{O}_D)$  生成  $\frac{H^0(X, \mathcal{O}_{kD})}{H^0(X, \mathcal{O}_{(k-1)D})}$ .

由此我们得到:

定理. (Castelnuovo 亏格上界估计). 设 X 为  $\mathbb{P}^n$  中的非退化光滑曲线,  $d=\deg(X)$ ,  $N = \left[\frac{d-1}{n-1}\right]$ ,整数  $0 \le \varepsilon < n-1$  满足 d-1 = N

$$d-1 = N(n-1) + \varepsilon,$$

则 
$$X$$
 的亏格  $g$  满足 
$$g \leq \frac{1}{2}N(N-1)(n-1) + N\varepsilon.$$
 此外,若上式取到等号,则对任意  $k \geq 2$ ,

$$\operatorname{Sym}^k H^0(X, \mathcal{O}_D) \to H^0(X, \mathcal{O}_{kD})$$

为满同态, 即  $H^0(X, \mathcal{O}_D)$  生成  $H^0(X, \mathcal{O}_{kD})$ ,  $\forall k \geq 2$ .

证明. 取足够大的整数 r, 使得  $h^1((r+N)D)=0$ , 从而由 Riemann-Roch 定理,

$$h^{0}((r+N)D) = (r+N)d + 1 - g.$$

另一方面,

$$h^{0}((r+N)D) = \sum_{k=1}^{N} (h^{0}(kD) - h^{0}(k-1)D) + h^{0}(0 \cdot D)$$

$$+ \sum_{k=N+1}^{N+r} (h^{0}(kD) - h^{0}((k-1)D))$$

$$\geq \sum_{k=1}^{N} (1 + k(n-1)) + 1 + rd \quad (\text{利用引 理13.5})$$

$$= 1 + rd + N + \frac{1}{2}N(N+1)(n-1).$$

从而有

$$g \leq (r+N)d - rd - N - \frac{1}{2}N(N+1)(n-1)$$

$$= N(d-1) - \frac{1}{2}N(N+1)(n-1)$$

$$= N^{2}(n-1) + \varepsilon N - \frac{1}{2}N(N+1)(n-1)$$

$$= \frac{1}{2}N(N-1)(n-1) + \varepsilon N.$$

此外,该不等式取到等号表明对任意  $k \leq N$  都有  $h^0(kD) - h^0((k-1)D) = 1 + k(n-1)$ ,从而由之前引理,对 k 归纳可知对任意  $k \geq 2$ ,  $H^0(X, \mathcal{O}_D)$  生成  $H^0(X, \mathcal{O}_{kD})$ . [注意  $1 \in H^0(X, \mathcal{O}_D)$ ,从而  $\mathrm{Sym}^{k-1} H^0(X, \mathcal{O}_D) \subseteq \mathrm{Sym}^k H^0(X, \mathcal{O}_D)$ .]

Castelnuovo 的这个定理有许多漂亮的几何应用, Arbarello, Cornalba, Griffiths, Harris 所著 Geometry of Algebraic Curves, I. (Springer-Verlag) 中有关于它的精彩论述. 我们仅在此介绍其中一个推论—Max Noether 的一个著名定理:

定理. (Noether 定理). 设 X 为亏格  $g \geq 3$  的紧黎曼曲面,且不是超椭圆曲线.记  $K_X$  为 X 的典范线丛,则对任意  $m \geq 2$ ,自然同态

$$\operatorname{Sym}^m H^0(X, K_X) \to H^0(X, K_X^{\otimes m})$$

为满同态.

证明. 考虑典范嵌入  $X\subseteq \mathbb{P}^{g-1}$ . 超平面截面的除子 D 为典范除子,因此  $\deg D=\deg K=2g-2$ . 上述整数  $N=\left[\frac{2g-3}{g-2}\right]=\begin{cases} 2 &\text{如果 }g>3\\ 3 &\text{如果 }g=3 \end{cases}$ . 当 g>3 时, $\varepsilon=2g-3-2(g-2)=1$ ,从而  $\frac{1}{2}N(N-1)(n-1)+N\varepsilon=g-2+2-g$ . 若 g=3,则  $\varepsilon=0$ , N=3,从而  $\frac{1}{2}N(N-1)(n-1)+N\varepsilon=3(g-2)=3=g$ . 因此取到亏格上界估计当中的等号。从而由 Castelnuovo 定理可得 Noether 定理.

其实还要注意, 若 X 为超椭圆曲线 [此时  $g\geq 3$ ],则上述结论一定不成立. 这可以由以下事实推出: 当 m 充分大时  $K_X^{\otimes m}$  极丰沛, 但由  $K_X$  诱导的映射  $\varphi_{K_X}$  不是单射.

## 14 双线性关系

继续前进之前,我们回顾一下紧定向曲面的一些知识.这里不打算证明它们,有关证明可见 [6].

关于紧定向曲面分类的基本定理如下:

紧致 [无边] 可定向  $C^{\infty}$  曲面微分同胚于球面添加有限个**环柄** (handle).

"添加环柄"如下图所示:



环柄的个数 g 等于 X 的第一个 Betti 数的一半; 从而, 若 X 是亏格为 g 的紧黎曼曲面, 则它同胚于球面添加 g 个环柄; 任何两个这样的曲面是微分同胚的.

球面添加 g 个环柄, 在微分同胚意义下, 可如下实现. 首先考虑平面  $\mathbb{C}$  上的凸 4g-边形  $\Delta$ , 各边按逆时针依次记为  $a_1,b_1,a_1',b_1',...,a_g,b_g,a_g',b_g'$ . 若边  $a_1,a_1'$  分别为有向线段

 $\overline{pq}$ ,  $\overline{p'q'}$ , 则用将  $\overline{pq}$  映到  $\overline{p'q'}$  的线性映射 [即, 把 p 映为 q', q 映为 p'], 将边  $a_1$  与  $a'_1$  等 同. 同样的方法, 将  $a_j$  与  $a'_j$  等同, 将  $b_j$  与  $b'_j$  等同, (j=1,...,g). 上述操作如下图所示:



在此意义下,  $\Delta$  变成了微分同胚于球面添加 g 个环柄的紧黎曼曲面.  $\Delta$  的所有顶点被映为 X 上的同一个点  $x_0$ , 边  $a_j,b_j$  被映为 X 的以  $x_0$  为端点的闭曲线; 我们仍将这些闭曲线记作  $a_j,b_j$ . 而边  $a_j',g_j'$  分别被映为 X 的闭曲线  $a_i^{-1},b_i^{-1}$ .

X 的这些闭曲线  $a_j, b_j$  构成  $H_1(X, \mathbb{Z})$  的一组  $\mathbb{Z}$ -基, 其**相交数** (intersection number) 为  $a_i \cdot a_j = 0$ ,  $b_i \cdot b_j = 0$ ,  $a_i \cdot b_j = \delta_{ij} = -b_j \cdot a_i$  [其中  $\delta_{ij}$  为 Kronecker- $\delta$  记号, 当 i = j 时  $\delta_{ij} = 1$ , 否则  $\delta_{ij} = 0$ ].

这些曲线形如下图:



若我们将球面添加 g 个环柄沿曲线  $a_j,b_j$  割开 [注意  $x_0$  是任何一对  $a_j,b_j$  的唯一交点],则得到单连通的 4g-边形  $\Delta$ .

设 X 为亏格 g 的紧黎曼曲面. 则存在 4g-边形  $\Delta$ , 使得 X 由  $\Delta$  通过上述方式得到. 取定  $\Delta \to X$  [保定向的微分同胚]. 于是我们得到了 X 上 [分段可微的] 闭曲线  $a_i, b_j$ . 若  $\varphi$  为定义在这些曲线的邻域上的光滑闭1-形式, 则记

$$A_k(\varphi) = \int_{a_k} \varphi, \quad B_k(\varphi) = \int_{b_k} \varphi,$$

分别称为  $\varphi$  的a-**周期** 与b-**周期**.

设  $\alpha$  为 X 上的光滑闭 1-形式,  $\varphi$  为定义在  $\bigcup a_i \cup \bigcup b_j$  的某邻域上的光滑闭 1-形式. 将它们分别视为  $\Delta (=\overline{\Delta})$  与  $\partial \Delta$  上的 1-形式. 取定  $P_0 \in \mathring{\Delta}$ , 对任意  $P \in \Delta$ , 令  $u(P) = \int_{P_0}^P \alpha$  [注意  $\Delta$  单连通]. 则有:

引理 14.1.

$$\int_{\partial \Delta} u\varphi = \sum_{k=1}^{g} (A_k(\alpha)B_k(\varphi) - B_k(\alpha)A_k(\varphi)).$$

证明. 对于  $P \in a_k$ , 记 P' 为 P 在边  $a_k'$  上相应的点. 记  $\gamma$  为从 P' 到 P 的曲线, 如下图所示:



则  $u(P)=u(P')=\int_{\gamma}\alpha$ . 注意  $\gamma$  在 X 中的像为闭曲线, 且同调于  $b_k^{-1}$ , 又因为  $\alpha$  为闭形式, 从而

$$u(P) - u(P') = \int_{b_{\cdot}^{-1}} \alpha = -B_k(\alpha).$$

同理, 对于  $Q \in b_k$ , 相应的  $Q' \in b'_k$ , 则

$$u(Q) - u(Q') = \int_{a_k} \alpha = A_k(\alpha).$$

从而

$$\int_{\partial \Delta} u \varphi = \sum_{k=1}^{g} \left( \int_{a_k} + \int_{a'_k} + \int_{b_k} + \int_{b'_k} \right) u \varphi$$

$$= \sum_{k=1}^{g} \int_{a_k} (u(P) - u(P')) \varphi(P) + \sum_{k=1}^{g} \int_{b_k} (u(Q) - u(Q')) \varphi(Q)$$

$$= \sum_{k=1}^{g} \left( -B_k(\alpha) \int_{a_k} \varphi + A_k(\alpha) \int_{b_k} \varphi \right),$$

[在上式中,  $P \in a_k$ ,  $Q \in b_k$ , P', Q' 分别为它们在  $a'_k$ ,  $b'_k$  上相应的点]. 从而引理得证.  $\square$ 

有如下基本事实:

**性质 14.1.** 设 X 为亏格 g>0 的紧黎曼曲面. 沿用上文记号. 设  $\omega$  为 X 上的不恒为零的全纯 1-形式, 则

$$\operatorname{Im} \sum_{k=1}^{g} A_k(\omega) \overline{B_k(\omega)} < 0.$$

特别地, 若  $\omega \in H^0(X,\Omega)$ , 且它所有的 a-周期都为零, 则  $\omega = 0$ .

证明. 在上述引理中, 令  $\alpha = \omega$ ,  $\varphi = \overline{\omega}$ . 首先由 Stokes 定理可得

$$\int_{\partial \Delta} u \overline{\omega} = \int_{\Delta} du \wedge \overline{\omega} = \int_{X} \omega \wedge \overline{\omega}.$$

若 (U,z) 为 X 的局部坐标, z=x+iy, 并且在此坐标下  $\omega=f\,\mathrm{d}z,\,f\in\mathcal{O}(U)$ , 则

$$\int_{U} \omega \wedge \overline{\omega} = \int_{U} |f|^{2} dz \wedge d\overline{z} = -2i \int_{U} |f|^{2} dx \wedge dy,$$

从而  $\frac{1}{2i}\int_{V}\omega\wedge\overline{\omega}<0$ ,除非  $\omega\equiv0$ . 另一方面,由引理可知

$$\frac{1}{2i} \int_X \omega \wedge \overline{\omega} = \frac{1}{2i} \sum_{k=1}^g \left( A_k(\omega) \overline{B_k(\omega)} - B_k(\omega) \overline{A_k(\omega)} \right) = \operatorname{Im} \sum_{k=1}^g A_k(\omega) \overline{B_k(\omega)}.$$

**推论 14.1.** 设  $\omega_1,...,\omega_q$  为  $H^0(X,\Omega)$  的一组基. 记

$$A_{jk} = \int_{a_k} \omega_j.$$

则矩阵  $(A_{jk})_{1 \leq j,k \leq g}$  可逆.

证明. 其实, 记  $A_j = (\int_{a_1} \omega_j, ..., \int_{a_g} \omega_j)$  为 g 维向量. 如果  $\sum_{j=1}^g c_j A_j = 0$ , 则  $\sum_{j=1}^g c_j \omega_j$  的 a-周期为零, 从而  $\sum_{j=1}^g c_j \omega_j = 0$ , 从而  $c_j = 0$ , ∀j.

由此推论, 可以适当选取  $H^0(X,\Omega)$  的一组基  $\omega_1,...,\omega_g$  使得

$$\int_{a_k} \omega_j = \delta_{kj} \quad \text{(Kronecker  $\delta \ 记号)},$$$

称之为  $H^0(X,\Omega)$  的一组**正规基** (normalized basis). [与  $H_1(X,\mathbb{Z})$  的基  $a_i,b_j$  的选取有 关].

定理. (黎曼双线性关系). 设 X 为亏格 g>0 的紧黎曼曲面,  $\omega_1,...,\omega_g$  为  $H^0(X,\Omega)$  的一组正规基. 记

$$B_{jk} = \int_{b_i} \omega_k.$$

则复方阵  $B = (B_{ik})$  是对称的, 且其虚部是正定的.

证明. 记号  $a_j, b_k$  与  $\Delta$  的含义同之前, 再记  $u_j(P) = \int_{P_0}^P \omega_j$ , 则由 Stokes 定理得

$$\int_{\partial \Delta} u_j \omega_k = \int_X \omega_j \wedge \omega_k = 0;$$

另一方面, 由引理14.1 以及  $A_{\nu}(\omega_j) = \delta_{\nu j}$  可得

$$\int_{\partial \Delta} u_j \omega_k = \sum_{\nu=1}^g \left( A_{\nu}(\omega_j) B_{\nu}(\omega_k) - B_{\nu}(\omega_j) A_{\nu}(\omega_k) \right)$$
$$= B_j(\omega_k) - B_k(\omega_j),$$

因此 B 是对称的. 现在设  $c_1,...,c_g \in \mathbb{R}$  不全为零, 记  $\omega = \sum_{k=1}^g c_k \omega_k$ . 由性质14.1,

$$\operatorname{Im} \sum_{\nu=1}^{g} A_{\nu}(\omega) \overline{B_{\nu}(\omega)} < 0.$$

由于  $A_{\nu}(\omega) = c_{\nu}, c_k \in \mathbb{R},$  从而

$$\operatorname{Im} \sum_{\nu k} c_{\nu} c_{k} \overline{B_{\nu k}} < 0,$$

即

$$\operatorname{Im} \sum_{\nu k} c_{\nu} c_k B_{\nu k} > 0.$$

对于 X 上两个不同的点 P,Q,存在 X 上的亚纯 1-形式  $\varphi$ ,使得  $\varphi$  只有 P,Q 两个极点,且它们都是单极点,并满足  $\mathrm{Res}_P(\varphi)=+1$ , $\mathrm{Res}_Q(\varphi)=-1$  [由第10 节给出的关于 1-形式的 Mittag-Leffler 定理可得]. 由推论14.1可知,存在全纯 1-形式  $\varphi'$ ,使得 $\omega_{PQ}:=\varphi+\varphi'$  的 a-周期为零 [假设  $a_i,b_j$  不经过点 P,Q]; $\omega_{PQ}$  被唯一确定,称为第三类正规 Abel 微分 (normalized abelian differential of the third kind).

对于  $P \in X$ , 整数  $n \ge 1$ , 以及 P 点的局部坐标 (U,z) 使得 z(P) = 0, 则存在唯一的 X 上的亚纯 1-形式  $\omega_P^{(n)}$ , 使得它在  $X - \{P\}$  全纯, 并且  $\omega_P^{(n)} - \frac{\mathrm{d}z}{z^{n+1}}$  在 U 全纯, 并且  $\omega_P^{(n)}$  的 a-周期为零. 称该亚纯 1-形式为**第二类正规** Abel **微分** (normalized abelian differential of the second kind). [而 "第一类"正规阿贝尔微分就是通常的全纯 1-形式.] X 上的任何亚纯微分形式都是这三类正规 Abel 微分的线性组合.

定理. (互反定理). 设  $\omega_j,\,j=1,...,g$  为  $H^0(X,\Omega)$  的正规基,  $\omega_P^{(n)},\,\omega_{PQ}$  为第二, 三 类正规 Abel 微分. 则有:

- (1)  $\int_{b_k} \omega_{PQ} = 2\pi i \int_Q^P \omega_k$  [等号右边的积分路径为  $X \bigcup a_i \bigcup b_j$  当中的从 P 到 Q 的连线].
- P 到 Q 的连线 J . (2) 若 (U,z) 为点 P 的用于定义  $\omega_P^{(n)}$  的局部坐标,  $\omega_k=f_k\,\mathrm{d}z$ , 则

$$\int_{b_k} \omega_P^{(n)} = 2\pi i \cdot \frac{1}{n!} f_k^{(n-1)}(P).$$

证明. 像之前那样, 视  $X - \bigcup a_i - \bigcup b_j$  为凸多边形  $\Delta$ , 并记  $u_k(x) = \int_{P_0}^x \omega_k$  [其中  $P_0$  为  $\Delta$  中固定的一点, 积分路径为  $\Delta$  中连接这两点的任何一条]. 由引理14.1,

$$\int_{\partial \Delta} u_k \omega_{PQ} = \sum_{\nu} \left( A_{\nu}(\omega_k) - B_{\nu}(\omega_{PQ}) - B_{\nu}(\omega_k) - A_{\nu}(\omega_{PQ}) \right) 
= B_k(\omega_{PQ}) \quad [\mathbb{B} \not \exists A_{\nu}(\omega_k) = \delta_{\nu k}, \ \mathbb{M} \not \exists A_{\nu}(\omega_{PQ}) = 0] 
= \int_{b_k} \omega_{PQ}.$$

另一方面, 由于  $\Delta$  单连通,  $\omega_{PQ}$  在点 P,Q 处的留数分别为 +1,-1, 从而由留数定理得

$$\int_{\partial \Delta} u_k \omega_{PQ} = 2\pi i (u_k(P) - u_k(Q)) = 2\pi i \int_Q^P \omega_k.$$

这就证明了 (1). 而 (2) 的证明也类似:  $\int_{b_k} \omega_P^{(n)} = \int_{\partial \Delta} u_k \omega_P^{(n)} = 2\pi i \operatorname{Res}_P(u_k \omega_P^{(n)}) = 2\pi i \operatorname{Res}_P\left(u_k(z) \frac{\mathrm{d}z}{z^{n+1}}\right) = 2\pi i \frac{1}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}z}\right)^n u_k(z) = 2\pi i \frac{1}{n!} f_k^{(n-1)}(z) \left[ 因为在 P 附近 \frac{\mathrm{d}u_k}{\mathrm{d}z} = f_k \right].$ 

互反定理有时也被称为第二类和第三类微分的周期的双线性关系. 如果我们丢掉上面强加的正规化条件, 这就会变得更清楚.

## 15 雅可比簇与 Abel 定理

设 X 为亏格  $g \ge 1$  的紧黎曼曲面. 在上一节我们用凸 4g-边形来描述 X, 取定  $a_i,b_j$  为  $H_1(X,\mathbb{Z})$  相应的基.

取  $\omega_1,...,\omega_g$  为  $H^0(X,\Omega)$  的正规基:  $\int_{a_j} \omega_k = \delta_{jk}$ . 记  $\Lambda := \left\{ \lambda_\gamma \middle| \gamma \in H_1(X,\mathbb{Z}) \right\}$  为  $\mathbb{C}^g$  的子群, 其中  $\lambda_\gamma = (\int_\gamma \omega_1,...,\int_\gamma \omega_g) \in \mathbb{C}^g$ . 则  $\lambda_{a_k} = (0,...,1,...,0) = e_k$ ,即  $\mathbb{C}^g$  当中第 k 个分量为 1, 其余分量都为 0 的向量; 并且  $\lambda_{b_k} = (\int_{b_k} \omega_1,...,\int_{b_k} \omega_g)$  [以 后记作  $B_k$ ] 为矩阵  $B = (B_{jk})$  的列向量, $B_{jk} = \int_{b_k} \omega_k$ . 由于 Im(B) 正定,从而向量

组  $\{e_1,...,e_g;B_1,...,B_g\}$  是  $\mathbb{R}$ -线性无关的. 又因为  $\{a_i,b_j\}$  生成  $H_1(X,\mathbb{Z})$ , 从而  $\Lambda = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_g + \mathbb{Z}B_1 + \cdots + \mathbb{Z}B_g$ . 因此  $\Lambda$  是  $\mathbb{C}^g$  的格点子群, 紧商群

$$J(X) := \mathbb{C}^g/\Lambda$$

称为黎曼曲面 X 的**雅可比簇** (Jacobian variety).

也可如下方式来内蕴地定义 J(X). 记 V 为  $H^0(X,\Omega)$  的对偶空间 [由 Serre 对偶定理可知它典范同构于  $H^1(X,\mathcal{O})$ ]. 则自然有如下的从  $H_1(X,\mathbb{Z})$  到 V 的群同态: 对  $\gamma \in H_1(X,\mathbb{Z})$ , 它在 V 中的像为  $H^0(X,\Omega)$  上的线性函数  $\omega \mapsto \int_{\gamma} \omega$ . 从而上述 [关于  $a_i,b_j$  与  $\omega_k$  的] 选取将  $H^0(X,\Omega)^*$  自然等同于  $\mathbb{C}^g$ , 并且将  $H_1(X,\mathbb{Z})$  的像集等同于  $\Lambda$  [上述讨论也表明, 该群同态为  $H_1(X,\mathbb{Z})$  与  $H^0(X,\Omega)^*$  的某个格点子群的同构]. 则

$$J(X) = H^0(X, \Omega)^* / \operatorname{im}(H_1(X, \mathbb{Z})).$$

取定基点  $P_0 \in X$ . 我们定义 **Abel-Jacobi 映射** $A: X \to J(X)$  如下: 对于  $P \in X$ , 任取一条从  $P_0$  到 P 的曲线 c, 令

$$A(P) := \left( \int_{P_0}^P \omega_1, ..., \int_{P_0}^P \omega_g \right) \mod \Lambda$$

[这里所有的积分都是同一个沿路径 c] . 若 c' 是从  $P_0$  到 P 的另一条路径,则存在  $\gamma \in H_1(X,\mathbb{Z})$  使得  $\int_c \omega_k = \int_{c'} \omega_k + \int_{\gamma} \omega_k$ , $\forall k$ ,从而该映射是良定的. [内蕴地, $A(P) = H^0(X,\Omega)$  上的线性函数  $\omega \mapsto \int_c \omega$  的等价类.]

注意 J(X) 为 Abel 群, 从而我们定义映射  $X^N \to J(X)$ ,  $(P_1,...,P_N) \mapsto \sum_{j=1}^N A(P_j)$ . 记  $\mathrm{Div}(X)$  为 X 的所有除子构成的集合, 则我们也可定义映射  $\mathrm{Div}(X) \to J(X)$  为

$$\sum_{i=1}^{r} n_i P_i \mapsto \sum_{i=1}^{r} n_i A(P_i).$$

我们把上述定义的两个映射也记作 A.

在研究  $X \to J(X)$  之间的关系中真正核心的定理通常被称为 Abel 定理. Abel 对这个定理的表述 [与现在] 是相当不同的 (而且, 在某些方面, 甚至更一般). 此定理的如今常见版本的表述由黎曼在他关于 Abel 函数的奠基文章 [2] 中首先提出.

定理.  $(Abel\ 定理)$ . 设 D 为 X 上的次数为 0 的除子. 则 D 线性等价于 0 当且仅 当  $A(D)=0\in J(X)$ .

换句话说, 此定理表明如下. 若  $P_1,...,P_r;Q_1,...,Q_r$  为 X 上的点  $[\forall i,j,Q_j\neq P_1]$ . 则存在亚纯函数 f,使得  $\sum P_i$  为其零点除子并且  $\sum Q_j$  为其极点除子  $[\mathbb{P}(f)=P_1+\cdots+P_r-Q_1-\cdots-Q_r]$  的充要条件为:

$$\sum_{\nu=1}^{k} \int_{P_0}^{P_{\nu}} \vec{\omega} \equiv \sum_{\nu=1}^{k} \int_{P_0}^{Q_{\nu}} \vec{\omega} \mod \Lambda, \quad \vec{\omega} = (\omega_1, ..., \omega_g),$$

上述积分的路径分别沿着  $P_0$  到  $P_{\nu}$ , 以及  $P_0$  到  $Q_{\nu}$  的给定路径 [对于每个  $\nu$ , 积分路径 对所有的  $\omega_k$  都相同].

证明. 设除子 D 的次数为 0, 则 D 形如  $D = \sum_{k=1}^{r} (P_k - Q_k)$ , 其中  $P_k, Q_k$  为 X 上的点 [且任意  $k, l, P_k \neq Q_l$ ].

假设存在亚纯函数 f 使得 (f) = D,则存在常数  $c_1,...,c_g \in \mathbb{C}$  使得  $\frac{\mathrm{d}f}{f} = \sum_{k=1}^r \omega_{P_kQ_k} + \sum_{\nu=1}^g c_{\nu}\omega_{\nu}$ . 此外, $\int_{\gamma} \frac{\mathrm{d}f}{f} \in 2\pi i\mathbb{Z}$ ,对 X 上的任意 [不过任何点  $P_k,Q_k$  的] 闭曲线  $\gamma$  都成立.

反之, 若常数  $c_{\nu} \in \mathbb{C}$  使得对任意闭曲线  $\gamma$  都成立  $\int_{\gamma} \varphi \in 2\pi i \mathbb{Z}$ , 其中  $\varphi = \sum_{k=1}^{r} \omega_{P_{k}Q_{k}} + \sum_{\nu=1}^{g} c_{\nu}\omega_{\nu}$ , 则 (f) = D, 其中  $f(P) = \exp(\int_{P_{0}}^{P} \varphi)$ , [这里的  $\exp(\int_{P_{0}}^{P} \varphi)$  是良定的, 因为  $\int_{\gamma} \varphi \in 2\pi i \mathbb{Z}$ ].

我们像之前一样, 通过将 X 沿 [不经过任何点  $P_k,Q_k$  的] 闭曲线  $a_i,b_j$  割开, 把 X 等同于多边形  $\Delta$ . 令

$$\varphi = \sum_{k=1}^{r} \omega_{P_k Q_k} + \sum_{\nu=1}^{g} c_{\nu} \omega_{\nu}.$$

那么,对  $X - \bigcup \{P_k, Q_k\}$  中的任何闭曲线  $\gamma$  都成立  $\int_{\gamma} \varphi \in 2\pi i \mathbb{Z}$  当且仅当  $A_{\nu}(\varphi) = \int_{a_{\nu}} \varphi \in 2\pi i \mathbb{Z}$  并且  $B_{\nu}(\varphi) = \int_{b_{\nu}} \varphi \in 2\pi i \mathbb{Z}$  对任意  $\nu = 1, ..., g$  成立. 事实上,若  $C_k, C'_k$ 

分别为绕  $P_k,Q_k$  的小圆周 [在相应点的局部坐标下],则  $\gamma$  同调于  $a_{\nu},b_{\nu},C_k,C_{k'}$  的  $\mathbb{Z}$ -线性组合; 然而由于  $\omega_{PQ}$  在 P,Q 处的留数分别为 +1,-1,从而  $\int_{C_k} \varphi = +2\pi i$ ,  $\int_{C_k'} \varphi = -2\pi i$ , $\forall k$ .

因此, 存在亚纯函数 f 使得 (f) = D 当且仅当:

存在 
$$c_{\nu} \in \mathbb{C}$$
使得, 如果  $\varphi = \sum_{k=1}^{r} \omega_{P_{k}Q_{k}} + \sum_{\nu=1}^{g} c_{\nu}\omega_{\nu}$ , 则
$$A_{\nu}(\varphi), B_{\nu}(\varphi) \in 2\pi i \mathbb{Z}, \quad \nu = 1, ..., g. \tag{*}$$

然而, 由于第三类 Abel 微分  $\omega_{P_kQ_k}$  的 a-周期为 0, 并且  $A_{\nu}(\omega_{\mu}) = \delta_{\nu\mu}$ , 从而  $A_{\nu}(\varphi) = c_{\nu}$ . 此外, 由互反定理可知

$$B_{\nu}(\varphi) = \sum_{k=1}^{r} 2\pi i \int_{Q_k}^{P_k} \omega_{\nu} + \sum_{\mu=1}^{g} c_{\mu} B_{\mu\nu}.$$

因此,  $A_{\nu}(\varphi)$ ,  $B_{\nu}(\varphi) \in 2\pi i\mathbb{Z}$  当且仅当存在整数  $(n_1, ..., n_g)$ ,  $(m_1, ..., m_g)$  使得

$$2\pi i n_{\nu} = c_{\nu}$$

$$\sum_{k=1}^{r} \int_{Q_k}^{P_k} \omega_{\nu} + \sum_{\nu=1}^{g} n_{\mu} B_{\mu\nu} = m_{\nu},$$

 $(\nu = 1, ..., g)$ . 后者可写为

$$\sum_{k=1}^{r} \int_{Q_k}^{P_k} \vec{\omega} = -\sum_{\mu=1}^{g} n_{\mu} B_{\mu} + \sum_{\mu=1}^{g} m_{\mu} e_{\mu},$$

其中  $e_{\mu}$  为第  $\mu$  个分量为 1, 其余分量为 0 的向量, 向量  $B_{\mu} = (B_{\mu 1}, ..., B_{\mu g})$ ; 因为  $e_{\mu}$ , 为格点群  $\Lambda$  的  $\mathbb{Z}$ -基, 从而 (\*) 成立当且仅当

$$\sum_{k=1}^r \int_{Q_k}^{P_k} \vec{\omega} \in \Lambda.$$

从而定理得证.

接下来研究雅可比簇 J(X) 与  $X^g$  的关系. 记  $S_n$  为 n 元对称群  $[=\{1,2,...,n\}$  的 置换群] .  $S_n$  在笛卡尔积  $X^n = \underbrace{X \times \cdots \times X}_{n^{\uparrow}}$  上有自然的作用; 商集  $S^n(X) := X^n/S_n$ 

称为 X 的 n 次对称乘积. 事实上  $S^n(X)$  为 n 维复流形. 我们如下引入  $S^n(X)$  的局部 坐标 [尤其是  $S_n$  的非平凡元素的不动点附近的局部坐标].

考虑  $S_r$  在  $\mathbb{C}^r$  上的作用,以及原点  $0\in\mathbb{C}^r$  的邻域.  $\mathbb{C}^r$  的在原点 0 处的在  $S_r$  作用下不变的全纯函数 F 都是关于  $\mathbb{C}^r$  的坐标  $z_1,...,z_r$  的初等对称函数的全纯函数 [牛顿定理];等价地, F 是关于  $w_1=z_1+\cdots+z_r, w_2=\frac{1}{2!}(z_1^2+\cdots+z_r^2),...,w_r=\frac{1}{r!}(z_1^r+\cdots+z_r^r)$  的全纯函数,我们取  $w_1,...,w_r$  作为  $\mathbb{C}^r/S_r$  的局部坐标. 若  $P_1,...,P_n\in X$ ,我们不妨重新对这些 P 编号,使得  $P_1=\cdots=P_{r_1}$  (=:  $Q_1$ ), $P_{r_1+1}=\cdots=P_{r_1+r_2}$  (=:  $Q_2$ ),..., $P_{r_1+\cdots+r_{p-1}+1}=\cdots=P_{r_1+\cdots+r_p}$  (=:  $Q_p$ ),其中  $r_1+\cdots+r_p=n$ ,且点  $Q_1,...,Q_p$  两两互异, $S_n$  的保持  $(P_1,...,P_n)$  不变的元素构成的集合为  $S_{r_1}\times\cdots\times S_{r_p}$  [ $S_{r_k}$  作用于包含  $r_k$  个点的第 k 个分块],从而  $(P_1,...,P_n)$  在  $S^n(X)$  的邻域同构于 (0,...,0) 在  $\mathbb{C}^{r_1}/S_{r_1}\times\cdots\mathbb{C}^{r_p}/S_{r_p}$  的邻域,我们对每一个分块都采用上述局部坐标.

考察映射  $A: X^g \to J(X), (P_1, ..., P_g) \mapsto \sum_{k=1}^g A(P_k)$ . 自然地, A 诱导了映射 [仍记作 A]  $A: S^g(X) \to J(X)$ . 我们也把  $S^g(X)$  自然地等同于所有的次数为 g 的除子  $D \geq 0$  之全体.

定理 15.1.  $A: S^g(X) \to J(X)$  为双有理映射; 即, 存在维数 < g 的解析集  $Y \subseteq S^g(X)$  使得  $A: S^g(X) - Y \to J(X) - A(Y)$  为解析同构.

我们先从以下引理开始:

**引理 15.1.** 满足以下性质的点  $(P_1,...,P_n)\in X^g$  构成的集合是  $X^g$  的稠密开集: 映射  $A:S^g(X)\to J(X)$  的微分在  $D=\sum P_i$  处的秩取到最大, =g.

证明. 取  $P_j$  在 X 的局部坐标  $(U_j, z_j), z_j(P_j) = 0$ . 取 J(X) 的来自于  $\mathbb{C}^g$  的局部坐标 [注意  $J(X) = \mathbb{C}^g/\Lambda$ ],则映射 A 可显示表示为  $A(z_1, ..., z_g) = \sum_j \int^{z_j} \vec{\omega}, (\vec{\omega} = (\omega_1, ..., \omega_g))$ . 记  $\vec{\omega}$  在  $U_j$  局部表示为  $\vec{f_j} \, \mathrm{d}z_j$ ,  $[\vec{f_j} = (f_{j_1}, ..., f_{j_g})]$ ,则映射 A 在  $D = \sum_j P_i$  处的雅可比矩阵为

$$\begin{pmatrix} \vec{f_1}(P_1) \\ \vdots \\ \vec{f_g}(P_g) \end{pmatrix}.$$

由第13节引理13.4 [若 dim  $H^0(X,L) = k$ , 则存在 k 个点  $x_j$  使得对任意  $s \in H^0(X,L)$ , 若 s 在  $x_1,...,x_k$  都为零,则 s=0] 以及  $h^0(\Omega) = g$  可知,存在  $(P_1,...,P_g)$  使得该矩阵的秩为 g. 此外由引理13.4的证明过程还可以知道,这样的点构成的集合是稠密的.

引理 15.2. 若  $D = \sum_{i=1}^g P_i \in S^g(X)$ , 则  $A^{-1}A(D)$  为  $\mathbb{P}^r$  到  $S^g(X)$  的某个全纯双射的像集, 其中  $r = \dim |D|$ . 特别地,  $A^{-1}A(D)$  是连通集.

证明. 若  $D_1, D_2 \in S^g(X)$  满足  $A(D_1) = A(D_2)$ , 则由 Abel 定理可知  $D_1$  与  $D_2$  线性 等价 [注意  $\deg(D_1 - D_2) = 0$ ] . 记  $\mathbb{P}^r = \mathbb{P}(H^0(X, \mathcal{O}_D))$ , 其中  $D \in S^g(X)$ , 为射影 空间  $\left(H^0(X, \mathcal{O}_D) - \{0\}\right)/\mathbb{C}^*$ . 由之前所讨论可知, 映射  $H^0(X, \mathcal{O}_D) - \{0\} \to S^g(X)$ ,  $s \mapsto \operatorname{div}(s)$  诱导了从  $\mathbb{P}^r$  到  $A^{-1}A(D)$  的双射. 接下来断言该映射是全纯的. 考虑  $U \subseteq \mathbb{C}^N$  的开集以及  $\Delta_\varepsilon \times U$  上的全纯函数 f(x,t), [其中  $\Delta_\varepsilon = \{|x| < \varepsilon\}$ ] . 如果在  $|x| = \rho(<\varepsilon)$  处成立  $f(x,t) \neq 0$ ,  $\forall t \in U$ , 则对于给定  $t_0 \in U$ , f(x,t) 在  $|x| < \rho$  内的零点  $x_i(t)$  的个数 [计重数] 关于  $t_0$  附近的 t 是常数, 记作 k; 并且对于  $m \in \mathbb{Z}_{\geq 0}$ , 成立

$$\sum_{i=1}^{k} (x_i(t))^m = \frac{1}{2\pi i} \int_{|x|=\rho} x^m \frac{\frac{\partial f}{\partial x}(x,t)}{f(x,t)} dx,$$

从而上式左边 [在我们的具体问题中,是  $S^g(X)$  的局部坐标] 关于 t 全纯. 我们将此结论应用于一般截面  $t_0s_0 + \cdots + t_rs_r \in H^0(X, \mathcal{O}_D)$  上 [其中  $s_i$  构成基] 即可.

注记. 上述映射  $\mathbb{P}^r \to A^{-1}A(D)$  其实是双全纯的 [见定理15.2下方].

定理15.1的证明. 由引理15.1, 集合  $Y:=\left\{D\in S^g(X)\middle| \mathrm{rank}(\,\mathrm{d}A)|_D< g\right\}$  是维数 < g 的解析集. 由引理15.2, 若  $D\in S^g(X)-Y$ , 则  $A^{-1}A(D)=\{D\}$ . 结果如下.

注意若  $D \in S^g(X) - Y$ , 则  $h^0(D) = 1$ . 事实上, 引理**15.2**表明, 若 D 为  $A^{-1}A(D)$ 的孤立点, 则 dim |D| = 0. 由 Riemann-Roch 定理,

$$h^0(D) - h^0(K - D) = 1 - g + \deg D = 1$$

可知 Y 恰为次数为 g 的特殊除子之全体.

定理 15.2. 对任意  $D \in S^g(X)$ , 映射  $A: S^g(X) \to J(X)$  在 D 处的秩等于  $g - \dim |D|$ .

证明. 记  $D = r_1 P_1 + r_2 P_2 + \cdots + r_n P_n$ , 其中  $r_j > 0$ ,  $\sum r_j = g$ , 且  $P_1, ..., P_n$  两两不同. 取  $S^g(X)$  在 D 处的局部坐标

$$w_1^{(1)} = \sum_{i=1}^{r_1} x_i, \ w_2^{(1)} = \frac{1}{2!} \sum_{i=1}^{r_1} x_i^2, \dots, \ w_{r_1}^{(1)} = \frac{1}{r_1!} \sum_{i=1}^{r_1} x_i^{r_1},$$

$$w_1^{(2)} = \sum_{r_1 < i < r_1 + r_2} x_i, \ w_2^{(2)} = \frac{1}{2!} \sum_{r_1 < i < r_1 + r_2} x_i^2, \dots, \ w_{r_2}^{(2)} = \frac{1}{r_2!} \sum_{r_1 < i < r_1 + r_2} x_i^{r_2}$$

等等. [其中  $x_1,...,x_g$  分别为 X 在  $\underbrace{P_1,...,P_1}_{r_1 \uparrow},...,\underbrace{P_n,...,P_n}_{r_n \uparrow}$  的局部坐标.]

记在  $P_1$  附近局部成立  $\omega_k = f_k \, \mathrm{d}z$ , 则对于  $1 \le i \le r_1$ , 有

$$\int_{P_0}^{x_i} \omega_k = \sharp \mathfrak{Z} + x_i f_k(P_1) + \frac{x_i^2}{2!} f_k'(P_1) + \dots + \frac{x_i^{r_1}}{r_1!} f_k^{(r_1-1)}(P_1) + \dots.$$

因此

$$\sum_{i=1}^{r_1} \int_{P_0}^{x_i} \omega_k = \mathring{\mathbb{R}} + w_1^{(1)} f_k(P_1) + w_2^{(1)} f_k'(P_1) + \dots + w_{r_1}^{(1)} f_k^{(r_1-1)}(P_1) + O(w^2).$$

因此,

$$\sum_{i=1}^{g} \int_{P_0}^{x_i} \omega_k = \sharp \mathfrak{A} + \sum_{\nu=1}^{n} \sum_{1 \le j \le r_{\nu}} w_j^{(\nu)} f_k^{(j-1)}(P_{\nu}) + O(w^2).$$

于是, 映射 A 在 D 处的秩等于如下列向量构成的矩阵的秩:

$$\Phi_{k} = \begin{pmatrix} f_{k}(P_{1}) \\ \vdots \\ f_{k}^{(r_{1}-1)}(P_{1}) \\ f_{k}(P_{2}) \\ \vdots \\ f_{k}^{(r_{2}-1)}(P_{2}) \\ \vdots \end{pmatrix} \qquad k = 1, ..., g.$$

注意这些列向量的线性组合  $\sum_{k=1}^{g} c_k \Phi_k$  等于零,当且仅当全纯 1-形式  $\omega = \sum_{k=1}^{g} c_k \omega_k$  满足对任意  $\nu = 1, ..., n$ ,ord $_{P_{\nu}}(\omega) \geq r_{\nu}$ ;也就是说,当且仅当  $(\omega) \geq D$ . 因此向量组  $\Phi_k$  的线性无关的关系的个数为  $h^0(\Omega_{-D})$ ;因为  $h^0(D) - h^0(\Omega_{-D}) = 1 - g + g = 1$ ,从而  $h^0(\Omega_{-D}) = h^0(D) - 1 = \dim |D|$ ,因此矩阵  $(\Phi_1, ..., \Phi_g)$  的秩,也就是  $\mathrm{d}A$  在 D 处的秩,等于  $g - \dim |D|$ .

**推论 15.1.** 对任意  $D \in S^g(X)$ ,  $A^{-1}A(D)$  是维数为  $\dim |D|$  的光滑子流形, 之前定义的映射  $\mathbb{P}(H^0(X,\mathcal{O}_D)) \to A^{-1}A(D)$  是解析同构.

事实上, 引理15.2表明  $A^{-1}A(D)$  是维数  $\dim |D|$  的解析集. 而定理15.2以及隐函数定理表明  $A^{-1}A(D)$  是光滑的.

于是我们可知  $\mathbb{P}(H^0(X,\mathcal{O}_D)) \to A^{-1}A(D)$  为复流形之间的全纯双射. 再由复分析的标准结果可知该映射是双全纯的.

再介绍两个更进一步的结果. 记 Div(X) 为 X 上的所有除子构成的集合, P(X) 为 X 上的线性等价于 0 [特别地, 次数为 0] 的除子构成的子集. 记

$$\operatorname{Pic}(X)=\operatorname{Div}(X)/P(X).$$

若再记  $\mathrm{Div}^0(X)$  为 X 的次数为 0 的除子之全体, 记  $\mathrm{Pic}^0(X) = \mathrm{Div}^0(X)/P(X)$ , 则

定理 15.3. Abel-Jacobi 映射  $A: Div(X) \to J(X)$  诱导 Abel 群同构

$$A: \operatorname{Pic}^0(X) \to J(X).$$

证明. 显然  $A: \operatorname{Div}^0(X) \to J(X)$  为 Abel 群同态. Abel 定理表明该同态的核恰为 P(X),从而自然诱导 Abel 群同态  $A: \operatorname{Pic}^0(X) \to J(X)$ . 只需证明它是满同态. 这是因为定理15.1; 若  $D \in S^g(X)$  被映到给定的  $\zeta \in J(X)$ , $P_0$  为 Abel-Jacobi 映射  $A: X \to J(X)$  的基点,则  $D-gP_0$  的次数为 0,且被映到  $\zeta$ .

定理 15.4. 若紧黎曼曲面 X 的亏格 g > 0, 则 Abel-Jacobi 映射  $A: X \to J(X)$  为 嵌入.

证明. 若  $P,Q \in X$  满足 A(P) = A(Q), 则由 Abel 定理, 存在 X 上的亚纯函数 f 使得 (f) = P - Q, 从而 f 只有一个极点, 且为单极点. 这表明 X 同构于  $\mathbb{P}^1$ , 亏格为 0, 矛盾. 因此 A 为单射.

映射 A 可显式表示为  $\left(\int_{P_0}^x \omega_1, ..., \int_{P_0}^x \omega_g\right)$ , 其在  $P \in X$  的切映射为  $(f_1(P), ..., f_g(P))$ , 其中在局部坐标下  $\omega_k = f_k(z)$ . 我们已经知道, 所有的  $\omega_k$  [从而  $f_k$ ] 在 X 上不存在公共零点, 因此 dA 也是单射.

我们以对定理15.2的一个注记来结束本节. 我们已经讨论了  $S^g(X) \to J(X)$  版本的 Abel-Jacobi 映射, 因为它最重要. 然而, 该定理及其证明可推广为如下:

定理 15.5. 设  $1 \le k \le g$ , 考虑映射  $A: S^k(X) \to J(X)$ . 若  $D = P_1 + \dots + P_k \in S^k(X)$ , 则纤维  $A^{-1}A(D)$  为光滑子流形,且解析同构于  $\mathbb{P}(H^0(X, \mathcal{O}_D))$ . 切映射 dA 在 D 处的秩等于  $k - \dim |D|$ . 在  $S^k(X)$  的某个解析真子集之外,映射 A 为单射.

若 k > g, 则上述这些论断, 除了关于 A 的单射性的内容, 都仍然成立. "k = g 时  $\mathrm{d}A$  在 D 处的秩等于  $g - \mathrm{dim} |D|$ " 的证明过程可逐字照搬到一般情况.

至于单射, 只需证明集合  $\left\{D\middle| \mathrm{rank}\;\mathrm{d}A|_D=k\right\}(k\leq g)$  非空, 即  $\left\{D\in S^k(X)\middle| \mathrm{dim}\;|D|=0\right\}\neq\varnothing$ . 这是因为, 若除子  $D'\geq 0$  的次数为 g,  $\mathrm{dim}\;|D'|=0$ , 则可记 D'=D+D'' 使得  $\deg D=k$ ,  $D''\geq 0$ , 从而  $\mathrm{dim}\;|D|=0$ .

# 16 黎曼 ϑ-函数

设  $\Lambda$  为  $\mathbb{C}^g$  的一个格点子群, 即秩为 2g 的离散子群, 则商群  $M = \mathbb{C}/\Lambda$  为紧复流形, 称为**复环面** (complex torus). 设 L 为 M 上的全纯线丛,  $\pi: \mathbb{C}^g \to M$  为投影映射. 由复分析中众所周知的结果,  $\mathbb{C}^g$  上的任何全纯线丛 [乃至全纯向量丛] 都全纯同构于平凡丛. 记  $h: \pi^*(L) \to \mathbb{C}^g \times \mathbb{C}$  为平凡化, 断言对于任意  $\lambda \in \Lambda$ ,  $z \in \mathbb{C}^g$ , 同构映射  $\pi^*(L)_z \to \mathbb{C}$  与  $\pi^*(L)_{z+\lambda} \to \mathbb{C}$  相差常数倍, 这是因为  $\pi^*(L)_z = \pi^*_{z+\lambda} = L_{\pi(z)}$ ; 如果我们将该常数记作  $\varphi_{\lambda}(z)$ , 则对于给定的  $\lambda \in \Lambda$ ,  $z \mapsto \varphi_{\lambda}(z)$  是无零点的全纯函数; 此外对任意  $\lambda, \mu \in \Lambda$ ,

成立

$$\varphi_{\mu}(z+\lambda)\varphi_{\lambda}(z) = \varphi_{\lambda+\mu}(z), \quad \forall z \in \mathbb{C}^g.$$

满足上式的函数族  $\left\{\varphi_{\lambda}(z)\middle|\lambda\in\Lambda\right\}$  称为一个**自守因子** (factor of automorphy). 反之, 任何一族这样的函数, 即自守因子, 都定义了 M 上的一个全纯线丛: 只需将  $\mathbb{C}^g\times\mathbb{C}$  中的点 (z,u) 与 (w,v) 等同, 如果存在  $\lambda\in\Lambda$  使得  $w=z+\lambda$  且  $v=\varphi_{\lambda}(z)u$ . 这种线丛的截面可以表示为  $\mathbb{C}^g$  上满足如下性质的全纯函数 f: 对任意  $\lambda\in\Lambda$ ,  $f(z+\lambda)=\varphi_{\lambda}(z)f(z)$ . 这样的函数称为**乘性全纯函数** (multiplicative holomorphic function).

设 X 是亏格  $g \ge 1$  的紧黎曼曲面,  $J(X) = \mathbb{C}^g/\Lambda$  为其雅可比簇. 我们沿用15节的记号, 取  $\Lambda$  的标准基  $e_k = (0,...,1,0,...,0)$  ["1"位于第 k 分量] 与  $B_{\nu} = (B_{\nu 1},...,B_{\nu g})$ , 其中  $B_{\nu k} = \int_{b_{\nu}} \omega_k$ . 则存在唯一的自首因子  $\{\varphi_{\lambda}\}$ , 使得  $\varphi_{e_k}(z) \equiv 1$ , 并且  $\varphi_{B_k}(z) = e^{-2\pi i z_k - \pi i B_{kk}}$ , k = 1,...,g.

定义. 设整数  $r \geq 1$ ,  $\theta(z)$  为  $\mathbb{C}^g$  上的全纯函数. 如果  $\theta(z+e_k)=\theta(z)$ ,  $\theta(z+B_k)=e^{-2\pi i r(z_k+\frac{1}{2}B_{kk})}\theta(z)$ , k=1,...,g, 则称  $\theta(z)$  为 r 阶 $\theta$ -函数 (theta function).

于是, r 阶  $\theta$ -函数可表示为  $L^{\otimes r}$  的全纯截面, 其中 L 为 J(X) 上的由自首因子  $\varphi_{e_k}(z)=1,\, \varphi_{B_k}(z)=e^{-2\pi i z_k-\pi i B_{kk}}$  所定义的全纯线丛.

我们构造如下函数, 称为黎曼  $\theta$ -函数:

$$\vartheta(z) := \vartheta(z,B) = \sum_{n \in \mathbb{Z}^g} \exp\left\{\pi i \langle n, Bn \rangle + 2\pi i \langle n, z \rangle\right\},$$

其中矩阵  $B = (B_{\nu k}), B_{\nu k} = \int_{b_{\nu}} \omega_{k}$ . 注意 B 为对称矩阵, 并且虚部正定. 此外, 对于  $z = (z_{1}, ..., z_{g}), w = (w_{1}, ..., w_{g}), 则 <math>\langle z, w \rangle = \sum z_{i} w_{i}$  为  $\mathbb{C}^{g}$  上的标准双线性型.

**引理 16.1.** 上述定义  $\vartheta$  的级数在  $\mathbb{C}^g$  的任意紧子集一致收敛;  $\vartheta(z)$  是 1 阶  $\theta$ -函数, 并且  $\vartheta \neq 0$ ,  $\vartheta(z) = \vartheta(-z)$ .

证明. 注意  $|e^{\pi i \langle n, Bn \rangle}| = e^{-\pi \langle n, \operatorname{Im}(B)n \rangle}$ . 因为  $\operatorname{Im}(B)$  正定, 从而存在  $\delta > 0$  使得  $\langle u, \operatorname{Im}(u) \rangle \geq \delta \langle u, u \rangle = \delta |u|^2$ ,  $\forall u \in \mathbb{R}^n$ . 因此

$$\left| e^{\pi i \langle n, Bn \rangle} \right| \le e^{-\pi \delta |n|^2}, \quad n \in \mathbb{Z}^g.$$

对于  $\mathbb{C}^g$  的紧子集 K, 则存在常数 C > 0 使得

$$\left| e^{2\pi i \langle n, z \rangle} \right| \le e^{C|n|}, \quad z \in K,$$

从而收敛性易得.

显然  $\vartheta(z+e_k)=\vartheta(z)$ ; 从而  $\vartheta$  关于每个分量都是周期 1 的. 作标准的傅里叶级数展开, 有

$$\vartheta(z + B_k) = \sum_{n \in \mathbb{Z}^g} e^{\pi i \langle n, Bn \rangle + 2\pi i \langle n, z \rangle + 2\pi i \langle n, B_k \rangle} \quad (Be_k = B_k)$$

$$= \sum_{n \in \mathbb{Z}^g} \exp\left(\pi i \langle n + e_k, B(n + e_k) \rangle + 2\pi i \langle n + e_k, z \rangle\right)$$

$$-\pi i \langle e_k, Be_k \rangle - 2\pi i \langle e_k, z \rangle$$

$$= e^{-2\pi i z_k - \pi i B_{kk}} \vartheta(z)$$

[注意当 n 跑遍  $\mathbb{Z}^g$  时,  $n+e_k$  也跑遍  $\mathbb{Z}^g$ .]  $\vartheta \neq 0$  是因为傅里叶系数不全为零的函数不可能恒为零. 将求和指标 n 换成 -n, 容易看出  $\vartheta(z) = \vartheta(-z)$ .

## 引理 16.2. 1 阶 $\theta$ -函数必为黎曼 $\vartheta$ -函数的常数倍.

证明. 设 f(z) 为 1 阶  $\theta$ -函数, 因为 f 关于自变量的每个分量都是周期 1 的, 从而 f 具有傅里叶级数展开

$$f(z) = \sum_{n \in \mathbb{Z}^g} a_n e^{2\pi i \langle n, z \rangle}.$$

从而,

$$\sum_{n \in \mathbb{Z}^g} a_n e^{2\pi i \langle n, z + B_k \rangle} = f(z + B_k)$$

$$= e^{-\pi i B_{kk} - 2\pi i z_k} f(z) = e^{-\pi i B_{kk}} \sum_{n \in \mathbb{Z}} a_n e^{2\pi i \langle n - e_k, z \rangle}$$

$$= \sum_{n \in \mathbb{Z}} a_{n + e_k} e^{-\pi i B_{kk}} e^{2\pi i \langle n, z \rangle}.$$

因此  $a_{n+e_k}=e^{\pi i B_{kk}+2\pi i \langle n,B_k\rangle}a_n$ . 因此若存在某个 n 使得  $a_n=0$ , 则  $a_{n+e_k}=0$ ,  $\forall k$ , 进而对任意  $n\in\mathbb{Z}^g$  都有  $a_n=0$ . 特别地,  $f\equiv 0$  当且仅当  $a_0=0$ .

将上述结论用于 
$$f - a_0 \vartheta$$
, 即得  $f \equiv a_0 \vartheta$ .

黎曼  $\vartheta$ -函数是研究 X 与 J(X) 之间关系的强大工具. 我们将介绍的第一个应用是证明 Lefschetz 的一个著名的嵌入定理. 为此先介绍一些准备知识.

设 L 为 J(X) 上的由自首因子  $\varphi_{e_k} \equiv 1$ ,  $\varphi_{b_k} = e^{-2\pi i z_k - \pi i B_{kk}}$  所定义的全纯线丛. 引 理 16.2表明  $H^0(X,L)$  的维数是 1, 且  $\vartheta$  定义了 L 的一个非零截面. 设  $\Theta$  为 J(X) 的由 该截面定义的除子:  $\Theta = \operatorname{div}(\vartheta)$ . 在 J(X) 的局部,  $\Theta$  由方程  $\vartheta(z) = 0$  所定义; 更具体 地, 对于点  $a_0 \in J(X)$ ,  $z_0 \in \mathbb{C}^g$  被投影映射  $\pi : \mathbb{C}^g \to J(X)$  映到 a, 则对  $z_0$  的小邻域 V,  $\pi(V) = U$ ,  $\Theta \cap U$  由  $(U, \vartheta \circ (\pi|_V)^{-1})$  所确定. 更集合论的讲法是,  $\Theta$  是  $\left\{z \in \mathbb{C}^g \middle| \vartheta(z) = 0\right\}$  在 J(X) 的像集. 称此  $\Theta$  为雅可比簇 J(X) 的 $\Theta$ -**除子** (theta-divisor).

我们还需要引理16.2的如下推广:

引理 16.3. 设 r 为正整数, 则阶数为 r 的  $\theta$ -函数构成的线性空间  $V_r$  的维数为  $r^g$ . 特别地,  $V_r$  是有限维空间.

[注记: 设 M 为紧复流形, E 是 M 上的全纯向量丛, 则用第7节定理7.1的方法也可证明  $H^0(M,E)$  是有限维的.]

引理16.3的证明. 设  $f \in V_r$ ,则 f 关于自变量的每个分量都是周期 1 的,从而作傅里叶级数展开  $f(z) = \sum_{n \in \mathbb{Z}^g} a_n e^{2\pi i \langle n, z \rangle}$ . 则有

$$\sum_{n \in \mathbb{Z}^g} a_n e^{2\pi i \langle n, B_k \rangle} e^{2\pi i \langle n, z \rangle} = f(z + B_k) = e^{-2\pi i r z_k - \pi i r B_{kk}} f(z)$$

$$= \sum_{n \in \mathbb{Z}^g} a_n e^{-\pi i r B_{kk}} e^{2\pi i \langle n - r e_k, z \rangle} = \sum_{n \in \mathbb{Z}^g} a_{n + r e_k} e^{-\pi i r B_{kk}} e^{2\pi i \langle n, z \rangle},$$

从而可得  $a_{n+re_k} = e^{\pi i r B_{kk} + 2\pi i \langle n, B_k \rangle} a_n$ . 于是, 如果对任意  $n = (n_1, ..., n_g), 0 \le n_j < r$ 都成立  $a_n = 0$ , 则  $f \equiv 0$ . 因此  $\dim_{\mathbb{C}} V_r \le r^g$ .

任取  $s = (s_1, ..., s_r) \in \mathbb{Z}^g$  满足  $0 \le s_i < r$ , 定义函数

$$\vartheta_{r,s}(z) = \sum_{n \in \mathbb{Z}^g} \exp\Big\{\pi i \langle B(n + \frac{s}{r}), rn + s \rangle + 2\pi i \langle z, rn + s \rangle\Big\}.$$

则与引理16.1一样,可知  $\vartheta_{r,s}$  在  $\mathbb{C}^g$  内紧一致收敛,且容易验证  $\vartheta_{r,s} \in V_r$ , $\forall s$ . 因为  $\vartheta_{r,s}$  的非零傅里叶系数落在格点集  $\left\{s+rn\middle|n\in\mathbb{Z}^g\right\}$ ,并且这些  $[0\leq s_j < r]$  格点集两两不交,这表明  $\left\{\vartheta_{r,s}\middle|s=(s_1,...,s_g)\in\mathbb{Z}^g,\,0\leq s_j < r\right\}$  线性无关,从而构成  $V_r$  的一组基.

考虑三阶  $\theta$ -函数空间的一组基  $\theta = (\theta_0, ..., \theta_N), N+1=3^g$ ; 我们将证明, 这些函数  $\theta_j$  无公共零点; 此外, 对任意  $\lambda \in \Lambda$ , 若记  $\theta(z+\lambda)=e^{w_\lambda(z)}\theta(z)$ , 则  $w_\lambda$  是次数  $\leq 1$  的多项式 [这可从  $\theta$ -函数的定义, 以及  $e_k, B_k$  生成  $\Lambda$  直接看出]. 因此,  $\theta$  定义了一个全纯映射, 我们将此映射仍记作  $\theta$ :

$$\theta: \mathbb{C}^g/\Lambda = J(X) \to \mathbb{P}^N.$$

定理. (Lefschetz 嵌入定理). 由三阶  $\theta$ -函数所定义的映射  $\theta: J(X) \to \mathbb{P}^n$  为嵌入.

证明. 我们先证明  $V_2$  没有**基点** (base point) [公共零点], 即,  $\forall z_0 \in \mathbb{C}^g$ , 存在二阶  $\theta$ -函数 f 使得  $f(z_0) \neq 0$ .

该断言由以下性质直接得到: 若  $\vartheta$  为黎曼  $\vartheta$ -函数,  $a \in \mathbb{C}^g$ , 则  $f(z) = \vartheta(z+a)\vartheta(z-a) \in V_2$ . 此外, 若  $a,b \in \mathbb{C}^g$ , 则  $\vartheta(z+a)\vartheta(z+b)\vartheta(z-a-b)$  是 3 阶  $\theta$ -函数. 由此也可推出  $V_3$  没有基点 [也就是说, 函数  $\theta_0,...,\theta_N$  无公共零点].

再证明  $\theta: J(X) \to \mathbb{P}^N$  是单射. 若  $w_1, w_2 \in \mathbb{C}^g$  满足  $\theta(w_1) = t\theta(w_2), t \neq 0$ , 那么对任意  $a, b \in \mathbb{C}^g$  都成立

$$\vartheta(w_1+a)\vartheta(w_1+b)\vartheta(w_1-a-b) = t\vartheta(w_2+a)\vartheta(w_2+b)\vartheta(w_2-a-b).$$

我们断言上式表明函数  $z\mapsto \frac{\vartheta(w_1+z)}{\vartheta(w_2+z)}$  是  $\mathbb{C}^g$  上的处处非零的全纯函数. 事实上, 给 定  $z_0\in\mathbb{C}^g$ , 可取  $b\in\mathbb{C}^g$  使得对  $z_0$  的某个小邻域 U 中的点 z 都成立  $\vartheta(w_j+b)\neq 0$ ,  $\vartheta(w_j-z-b)\neq 0$ , j=1,2; 从而

$$\frac{\vartheta(w_1+z)}{\vartheta(w_2+z)} = t \frac{\vartheta(w_2+b)\vartheta(w_2-z-b)}{\vartheta(w_1+b)\vartheta(w_1-z-b)}, \quad z \in U,$$

从而在 U 全纯且非零.

我们再使用如下引理:

引理 16.4. 若  $w \in \mathbb{C}^g$  使得函数  $z \mapsto \frac{\vartheta(w+z)}{\vartheta(z)}$  在  $\mathbb{C}^g$  全纯且恒非零, 则  $w \in \Lambda$ . 等价地, 若  $\zeta \in J(X)$  且  $\Theta$ -除子  $\Theta$  关于平移  $\zeta : \Theta = \Theta + \zeta$  左不变, 则  $\zeta = 0 \in J(X)$ .

[显然, 此引理与之前断言可推出  $w_1 - w_2 \in \Lambda$ , 从而  $\theta: J(X) \to \mathbb{P}^N$  是单射].

引理16.4的证明. 易知存在  $\mathbb{C}^g$  上的全纯函数 g 使得

$$\frac{\vartheta(w+z)}{\vartheta(z)} = e^{g(z)}, \quad z \in \mathbb{C}^g.$$

由于  $\vartheta$  关于每个分量都是周期 1 的, 从而存在整数  $n_k, k=1,...,g$ , 使得

$$g(z + e_k) - g(z) = 2\pi i n_k, \quad k = 1, ..., g.$$

此外还有,

$$e^{g(z+B_k)} = \frac{e^{-2\pi i(z_k+w_k)-\pi iB_{kk}}\vartheta(w+z)}{e^{-2\pi iz_k-\pi iB_{kk}}\vartheta(w)}$$
$$= e^{-2\pi iw_k}e^{g(z)}.$$

因此存在整数  $m_k$  使得

$$g(z + B_k) - g(z) = -2\pi i w_k + 2\pi i m_k.$$

从而对任意  $1 \le \nu \le g$ , 当  $\lambda = e_k$  或  $B_k$ , k = 1, ..., g 时都成立  $\frac{\partial g}{\partial z_{\nu}}(z + \lambda) = \frac{\partial g}{\partial z_{\nu}}(z)$ , 于是得到,

$$\frac{\partial g}{\partial z_{\nu}}(z+\lambda) = \frac{\partial g}{\partial z_{\nu}}(z) \quad \forall \lambda \in \Lambda,$$

从而  $\frac{\partial g}{\partial z_{\nu}}$  时定义在紧连通流形 J(X) 上的全纯函数, 从而是常值函数. 因此存在常数  $c_0,c_1,...,c_g$  使得

$$g(z) = c_0 + c_1 z_1 + \dots + c_q z_q$$
.

因此  $g(z+e_k)-g(z)=c_k=2\pi i n_k$ , 以及

$$2\pi i w_k = -(g(z+B_k) - g(z)) + 2\pi i m_k$$
  
=  $-\sum_{\nu} c_{\nu} B_{\nu k} + 2\pi i m_k = -2\pi i \sum_{\nu} n_{\nu} B_{\nu k} + 2\pi i m_k.$ 

因此 
$$w = -\sum_{\nu} n_{\nu} B_{\nu} + \sum_{k} m_{k} e_{k} \in \Lambda.$$

最后我们证明映射  $\theta$  的切映射  $d\theta$  也是单射, 即  $\theta: J(X) \to \mathbb{P}^N$  为浸入.

对于  $a \in \mathbb{C}^g$ ,  $d\theta$  在  $\pi(a)$  [其中  $\pi: \mathbb{C}^g \to J(X)$  为典范投影] 为单射等价于以下条件: 矩阵

$$\begin{pmatrix} \theta_0(a) & \cdots & \theta_N(a) \\ \frac{\partial \theta_0}{\partial z_1}(a) & \cdots & \frac{\partial \theta_N}{\partial z_1}(a) \\ \cdots & \cdots & \cdots \\ \frac{\partial \theta_0}{\partial z_g}(a) & \cdots & \frac{\partial \theta_N}{\partial z_g}(a) \end{pmatrix}$$

的秩为 g+1.

假设该矩阵的秩  $\leq g+1$ , 则存在不全为零的常数  $c_0,...,c_q \in \mathbb{C}$  使得

$$c_0 \theta_k(a) = \sum_{\nu=1}^g c_\nu \frac{\partial \theta_k}{\partial z_\nu}(a), \quad k = 0, ..., N.$$

从而对任意  $u,v \in \mathbb{C}^g$  都有

$$c_0 \left( \vartheta(a+u)\vartheta(a+v)\vartheta(a-u-v) \right) = \sum_{\nu=1}^g c_\nu \frac{\partial}{\partial z_\nu} \left( \vartheta(a+u)\vartheta(a+v)\vartheta(a-u-v) \right).$$

记 
$$\varphi(z) = \left(\sum_{\nu=1}^{g} c_{\nu} \frac{\partial \vartheta}{\partial z_{\nu}}(z)\right) / \vartheta(z)$$
,则上式可改写为

$$\varphi(a+u) + \varphi(a+v) + \varphi(a-u-v) = c_0.$$

先验地,  $\varphi$  为亚纯函数, 其极点位于  $\vartheta$  的零点集  $Z\subseteq\mathbb{C}^g$ . 但是, 给定  $a,u_0\in\mathbb{C}^g$ , 可取  $u_0$  的小邻域 U, 以及  $v\in\mathbb{C}^g$  使得  $a+v\not\in Z$ ,  $a-u-v\not\in Z$ ,  $\forall u\in U$ . 从而  $\varphi$  为  $\mathbb{C}^g$  的全纯函数. 此外还有

$$\varphi(z+e_k) = \varphi(z), \quad \varphi(z+B_k) - \varphi(z) = \sum_{\nu=1}^g c_\nu \frac{\partial}{\partial z_\nu} (-2\pi i z_k - \pi i B_{kk}) = -2\pi i c_k.$$

于是,与之前一样,可推出 $\varphi$ 必形如

$$\varphi(z) = \alpha_0 + \alpha_1 z_1 + \dots + \alpha_g z_g, \quad \alpha_0, \dots, \alpha_g \in \mathbb{C}.$$

而  $\varphi$  关于每个  $z_i$  都是周期 1 的, 从而  $\alpha_j = 0, j = 1, ..., g$ , 从而  $\varphi$  为常函数. 进而

$$-2\pi i c_k = \varphi(z + B_k) - \varphi(z) = 0, \quad k = 1, ..., g;$$

所以  $\varphi(z) = \sum_{\nu=1}^g c_\nu \frac{\partial \vartheta}{\partial z_\nu} \Big/ \vartheta \equiv 0$ ,以及  $c_0 = \varphi(a+u) + \varphi(a+v) + \varphi(a-u-v) = 0$ . 这与  $c_0, ..., c_g$  不全为零的假设矛盾. 从而证明了  $\theta: J(X) \to \mathbb{P}^N$  为浸入.

定理证毕. 

#### ⊖ 除子 17

本节我们研究 Θ-除子对黎曼曲面的影响, 所介绍的有关结论取材于黎曼关于 Abel 函数的基础文章. 这里给出的证明与黎曼的原始证明区别不大.

设 L 为 J(X) 上的全纯线丛, 他由自首因子  $\varphi_{e_k} \equiv 1$ ,  $\varphi_{B_k} = e^{-2\pi i z_k - \pi i B_{kk}}$  所确 定; 则  $\vartheta$ -函数为 L 的全纯截面,  $\Theta$ -除子为截面  $\vartheta$  的除子. 我们记  $\Theta_{\zeta} := \Theta + \zeta$  为  $\Theta$  沿  $\zeta \in J(X)$  的平移 [注意 J(X) 的加法群结构]. 等价地,  $\Theta_{\zeta}$  其实是 L 的关于  $\zeta$  的平移 变换的拉回丛  $L_{\zeta}$  的截面  $\vartheta(z-\zeta)$  的除子.

记  $A: X \to J(X)$  为 Abel-Jacobi 映射; 函数  $P \mapsto \vartheta(A(P) - \zeta)$  为沿 A 的拉回 丛  $A^*(L_{\mathcal{C}})$  的一个截面. 我们像第14节那样, 取  $H_1(X,\mathbb{Z})$  的一组基  $a_i,b_i$ , 并把 X 沿着 这些曲线割开, 得到 [单连通的] 多边形  $\Delta \subseteq \mathbb{C}$ , 此时  $\vartheta(A(P) - \zeta)$  可以视为  $\Delta$  上的全 纯函数. 注意我们可以适当选取  $a_i, b_i$ , 使得它们与任意事先给定的 X 的有限子集不交; 我们之后将默认这种"好的"选取. 沿用第14节的记号, 将 4g-边形  $\Delta$  的各边顺次记为  $a_{\nu}, b_{\nu}, a'_{\nu}, b'_{\nu}$  [其中  $a'_{\nu}, b'_{\nu}$  分别对应于 X 中的定向曲线  $a^{-1}_{\nu}, b^{-1}_{\nu}$ ].

定理 17.1. 设  $\zeta \in J(X)$  满足  $A(X) \not\subseteq \Theta_{\zeta}$  [注意集合  $\left\{\zeta \in J(X) \middle| A(X) \subseteq \Theta_{\zeta}\right\}$  显然是 J(X) 的解析真子集]. 那么,  $A(X) \cap \Theta_{\zeta}$  共含有 g 个点 [计重数]; 确切地说, 线丛  $A^*(L_{\zeta})$  的截面  $\vartheta(A(P)-\zeta)$  的除子的次数为 g:  $\operatorname{div}(\vartheta(A(P)-\zeta)) = \sum_{i=1}^g P_i(\zeta)$ .

$$\sum_{i=1}^{g} A(P_i(\zeta)) = \zeta - \kappa,$$

证明. 记  $\vec{\omega} = (\omega_1, ..., \omega_g)$ , 其中  $\omega_1, ..., \omega_g$  为  $H^0(X, \Omega)$  的正规基,  $\int_{\mathcal{C}} \omega_k = \delta_{\nu k}$ . 在  $\Delta$  上,

Abel-Jacobi 映射有如下显示表达 [模  $\Lambda$  意义下]:

$$A(P) = (A_1(P), ..., A_g(P)) = \int_{P_0}^{P} \vec{\omega}.$$

对于定义在  $\partial \Delta$  上的函数  $\Phi$ , 我们定义函数  $\Phi^{\pm}$ , 此函数定义于  $a_j, b_j$ , 满足: 对任意  $P \in a_j$  或  $b_j$ ,  $\Phi^+ := \Phi$ , 而  $\Phi^-(P) = \Phi(P')$ , 其中  $P' \in a_j'$  或  $b_j'$  为 P 的对应点.

若  $P \in a_{\nu}$ , 则类似于第14节引理14.1 [见下图],



成立  $A_k^+(P) - A_k^-(P) = \int_{P'}^P \omega_k = -\int_{b_\nu} \omega_k = -B_{\nu k}$ . 而对于  $Q \in b_\nu$ ,则成立  $A_k^+(Q) - A_k^-(Q) = \int_{Q'}^Q \omega_k = \int_{a_\nu} \omega_k = \delta_{\nu k}$ . 因此, $A^{\pm} := (A_1^{\pm}, ..., A_g^{\pm})$  满足

$$A^+ - A^- = \begin{cases} e_{\nu} & \text{min } P \in b_{\nu} \\ -B_{\nu} & \text{min } P \in a_{\nu} \end{cases}.$$

不妨假设当  $P \in \partial \Delta$  时  $\vartheta(A(P) - \zeta) \neq 0$ . 则  $F(P) := \vartheta(A(P) - \zeta)$  的零点个数为

$$\frac{1}{2\pi i} \int_{\partial \Delta} d \log F(P) = \frac{1}{2\pi i} \sum_{\nu=1}^{g} \left( \int_{a_{\nu}} + \int_{b_{\nu}} \right) d \log \frac{F^{+}(P)}{F^{-}(P)}.$$

注意到, 若  $P \in b_{\nu}$ , 则  $F^{+}(P) = \vartheta(A^{+}(P) - \zeta) = \vartheta(A^{-}(P) - \zeta + e_{\nu}) = F^{-}(P)$ . 而 若  $P \in a_{\nu}$ , 则  $F^{+}(P) = \vartheta(A^{-}(P) - \zeta - B_{\nu}) = e^{2\pi i (A_{\nu}(P) - \zeta_{\nu}) + \pi i B_{\nu\nu}} \vartheta(A^{-}(P) - \zeta)$ , 于是  $\log \frac{F^{+}(P)}{F^{-}(P)} = 2\pi i A_{\nu}(P) - 2\pi i \zeta_{\nu} + \pi i B_{\nu\nu}$ , 从而在  $a_{\nu}$  成立  $d \log \frac{F^{+}}{F^{-}} = 2\pi i \omega_{\nu}$ . 因此 F 在

 $\Delta$  上的零点总数等于  $\sum_{\nu=1}^{g} \int_{a_{\nu}} \omega_{\nu} = g$ . 这就证明了定理的第一部分.

再证其余部分. 记  $\vartheta(A(P)-\zeta)$  在  $\Delta$  的全部零点 [计重数] 为  $P_1(\zeta),...,P_g(\zeta)$ . 下面的计算过程中我们把与  $\zeta$  无关的项简单记为 "常数". 则有:

$$\sum_{\nu=1}^{g} A_k(P_{\nu}(\zeta)) = \frac{1}{2\pi i} \int_{\partial \Delta} A_k(P) \, d\log F(P)$$

$$= \frac{1}{2\pi i} \sum_{\nu=1}^{g} \left( \int_{a_{\nu}} + \int_{b_{\nu}} \right) \left( A_k^+ \, d\log F^+ - A_k^- \, d\log F^- \right).$$

先考察沿路径  $a_{\nu}$  的积分. 此时,  $A_{k}^{-}=A_{k}^{+}+B_{\nu k}$ , 从而  $d\log F^{+}=d\log F^{-}+2\pi i\omega_{\nu}$ , 因此

$$\int_{a\nu} \left( A_k^+ \, \mathrm{d} \log F^+ - A_k^- \, \mathrm{d} \log F^- \right) = \int_{a_\nu} \left( A_k^+ - A_k^- \right) \, \mathrm{d} \log F^+ + 2\pi i \int_{a_\nu} A_k^- \omega_\nu 
= -B_{\nu k} \int_{a_\nu} \mathrm{d} \log F^+ + \, \sharp \, \mathfrak{B}.$$

将 [定向] 边  $a_{\nu}$  的端点依次记为  $\alpha, \beta, \, \mathbb{M}$   $A^{+}(\beta) - A^{+}(\alpha) = \int_{a_{\nu}} \vec{\omega} = e_{\nu}, \, \mathbb{D}$ 此

$$\frac{1}{2\pi i} \int_{a_{\nu}} d\log F^{+} \equiv \frac{1}{2\pi i} \log \frac{\vartheta(A^{+}(\beta) - \zeta)}{\vartheta(A^{+}(\alpha) - \zeta)} \mod \mathbb{Z}$$

$$\equiv \frac{1}{2\pi i} \log \frac{\vartheta(A^{+}(\alpha) - \zeta + e_{\nu})}{\vartheta(A^{+}(\alpha) - \zeta)} \equiv 0 \mod \mathbb{Z}.$$

又因为该积分连续依赖 ζ, 从而得出

$$\int_{a_{k}} (A_{k}^{+} d \log F^{+} - A_{k}^{-} d \log F^{-}) = \sharp \mathfrak{B}, \quad \forall \nu = 1, ..., g.$$

再考虑沿路径  $b_{\nu}$  的积分. 此时  $A^{+}=A^{-}+e_{\nu}, F^{+}=F^{-},$  从而

$$\int_{b_{\nu}} (A_k^+ d \log F^+ - A_k^- d \log F^-) = \delta_{\nu k} \int_{b_{\nu}} d \log F^+.$$

记 [定向] 边  $b_{\nu}$  的端点依次为 x, y, 则  $A(y) = A(x) + B_{\nu}$ , 从而  $\frac{F^{+}(y)}{F^{+}(x)} = \frac{\vartheta(A(x) - \zeta + B_{\nu})}{\vartheta(A(x) - \zeta)} = \exp(-2\pi i A_{\nu}(x) + 2\pi i \zeta_{\nu} - \pi i B_{\nu\nu})$ , 于是

$$\frac{1}{2\pi i} \int_{h_{\nu}} d\log F^{+} \equiv \zeta_{\nu} - A_{\nu}(x) - \frac{1}{2} B_{\nu\nu} \mod \mathbb{Z},$$

从而得出  $\frac{1}{2\pi i} \int_{b_{\nu}} d\log F^+ = \zeta_{\nu} + 常数.$  这表明

$$\sum_{\nu=1}^{g} A_k(P_{\nu}(\zeta)) = \sum_{\nu=1}^{g} \delta_{\nu k} \zeta_{\nu} + \mathring{\pi} \mathring{\Xi} = \zeta_k + \mathring{\pi} \mathring{\Xi},$$

定理得证.

在讲下一个定理之前, 我们需要一些准备知识.

若 0 < k < g, 记  $S^k(X)$  为 X 的 k 次对称乘积, 我们记  $W_k$  为映射  $A: S^k(X) \to J(X), [A(P_1,...,P_k) = \sum A(P_i)]$  的像集. 即,  $W_k = \Big\{A(D) \Big| D$ 为 X 的有效除子, 且  $\deg D = k\Big\}$ .  $W_k$  为 J(X) 的解析集.

设 M 为紧复流形,  $\dim_{\mathbb{C}} M = n$ . M 的**除子** (divisor) D 是指如下的有限  $\mathbb{Z}$ -线性组合:  $D = \sum_{k=1}^{m} n_k Y_k, \, n_k \in \mathbb{Z}$ , 且  $Y_k$  为 M 的 n-1 维 [即,余维数 = 1] 不可约解析集. n 维复流形 M 上的余维数 = 1 的解析集  $Y \subseteq M$  可由**局部方程** (local equation) 来表示,即:  $\forall a \in M$ ,存在 a 的邻域 U 以及全纯函数  $f \in \mathcal{O}(U)$  使得,对任意  $x \in U$ ,g 为定义在 x 附近的,在 Y 取值恒为零的全纯函数,那么 [在 x 附近] g 为 f 的某个非零全纯函数倍.

若  $U \subseteq M$ ,  $f_k$  为  $Y_k$  在 U 上的局部方程, 则记  $f_U = \prod f_k^{n_k}$ . 若 V 是另一个这样的开集,  $f_V$  为 V 上的相应的亚纯函数, 则存在非零全纯函数  $g_{UV} \in \mathcal{O}(U \cap V)$  使得  $f_U = g_{UV} f_V$ . 这些  $\{g_{UV}\}$  构成 M 的某个全纯线丛的一族转移函数, 记相应线丛为 L = L(D). 函数族  $\{f_U\}$  定义了该线丛的标准 [亚纯] 截面  $s_D$ .

若  $D=\sum n_k Y_k$  为除子, 则称集合  $\bigcup_{n_k\neq 0} Y_k$  为 D 的**支集** (support). 若对任意 k 都 有  $n_k\geq 0$ , 则称 D 为**有效除子** (effective divisor). 有效除子的标准截面  $s_D$  是全纯的.

全纯线丛 L 的亚纯截面 s 也能定义 M 上的除子. 记 Y 为 s 的零点, 极点构成的解析集,  $Y = \bigcup Y_k$  为不可约分支的分解. 记亚纯函数 F 为 s 在某局部坐标下的表示,  $f_k$  为  $Y_k$  关于该局部坐标的局部方程, 则  $F = u \cdot \prod f_k^{n_k}$ , 其中 u 为非零全纯函数,  $n_k$  为 关于  $Y_k$  的常数. 我们记  $\operatorname{div}(s) := \sum n_k Y_k$ . 整数  $n_k$  称为 s 在  $Y_k$  上的**阶** (order) [视  $n_k > 0$  或  $n_k < 0$  来称之为零点或极点的阶数; 若  $n_k < 0$ ,则称极点阶数为  $|n_k|$ .]

定理 17.2. 记 κ 为定理17.1中的常数,则成立

$$\Theta = W_{g-1} + \kappa.$$

换言之, 除子  $\Theta$  形如  $1\cdot Y$ , 其中 Y 为 g-1 维不可约解析集 [从而  $\Theta$  的一般点为  $\vartheta$ -函数的单零点]. 此外,  $\Theta$  是由形如  $\sum_{\nu=1}^{g-1} A(p_{\nu}) + \kappa$ ,  $P_{1},...,P_{g-1} \in X$  的点构成的集合.

证明. 我们先证明  $W_{g-1} + \kappa \subseteq \text{supp}(\Theta)$ . 设  $D = P_1 + \cdots + P_g$  是次数为 g 的有效除子,并且  $P_1, \dots, P_g$  两两互异且位于一般位置,使得  $A: S^g(X) \to J(X)$  在 D 附近为单射. 此外我们不妨  $A(X) \not\subseteq \Theta_{\zeta}$ , 其中  $\zeta := A(D) + \kappa$  [因为  $A: S^g(X) \to J(X)$  是满射].

记  $Q_1,...,Q_g$  为  $P\mapsto \vartheta(A(P)-\zeta)$  的零点. 则由定理17.1可知  $\sum A(Q_i)=\zeta-\kappa=A(D)$ , 从而由 D 的选取可知  $D=\sum Q_i=\sum P_{\nu}$ . 特别地,  $\vartheta(A(P_g)-\zeta)=0$ , 从而  $0=\vartheta\left(-\sum_{\nu=1}^{g-1}A(P_{\nu})-\kappa\right)=\vartheta\left(\sum_{\nu=1}^{g-1}A(P_{\nu})+\kappa\right)$ . 由于满足那些条件的除子 D 构成  $S^g(X)$  的非空开集,从而对  $S^{g-1}(X)$  的某个非空开集当中任意的 D' 都成立  $\vartheta(A(D')+\kappa)=0$ , 这表明  $\vartheta|_{W_{g-1}+\kappa}=0$ .

再证明  $supp(\Theta) \subseteq W_{q-1} + \kappa$ . 取定  $\zeta \in supp(\Theta)$ . 首先假设存在  $P \in X$  使得

$$\exists x \in X, \quad \vartheta(A(x) - A(P) - \zeta) \neq 0;$$

此时,记  $D := \operatorname{div}\vartheta(A(x) - A(P) - \zeta)$ ,则存在有效除子  $D' \geq 0$ ,  $\operatorname{deg} D' = g - 1$  使得 D = P + D' [这是因为  $\vartheta(-\zeta) = \vartheta(\zeta) = 0$ ,从而  $P \in \operatorname{supp}(D)$ ];于是由定理17.1可得,

$$A(D) = A(P) + A(D') = (\zeta + A(P)) - \kappa,$$

所以  $\zeta = A(D') + \kappa \in W_{q-1} + \kappa$ .

如果对任意  $x, P \in X$ ,  $\vartheta(A(x) - A(P) - \zeta) \equiv 0$ , 则令 k 为满足如下性质的最大整数: 对任意的次数  $\leq k$  的有效除子  $D_0, D_1$ , 都成立  $\vartheta(A(D_0) - A(D_1) - \zeta) = 0$ . 则易知 k < g, 这是因为  $S^g(X) \to J(X)$  为满射.

取次数为 k+1 的有效除子  $E_0$ ,  $E_1$  使得  $\vartheta(A(E_0) - A(E_1) - \zeta) \neq 0$ . 不妨假设  $\mathrm{supp}(E_0 + E_1)$  含有 2k+2 个不同的点. 令  $E_0 = P + D_0$ , 使得  $D_0$  是次数为 k 的有效除子.

于是,  $x \mapsto \vartheta(A(x) + A(D_0) - A(E_1) - \zeta) \neq 0$  [因为它在 x = P 处不为零]; 记 D 为该函数的除子. 则  $D \geq 0$ , 且次数为 g. 另外, 若  $x \in \text{supp}(E_1)$ , 则  $E_1 - x \geq 0$  是次数为 k 的有效除子, 从而由 k 的定义可知  $\vartheta(A(x) + A(D_0) - A(E_1) - \zeta) = \vartheta(A(D_0) - A(E_1 - x) - \zeta) = 0$ . 因此  $D \geq E_1$ , 从而我们可以记  $D = E_1 + E_2$ , 其中  $\deg E_2 = g - k - 1$ .

现在,由定理17.1可得  $A(E_1) + A(E_2) = A(D) = \zeta + A(E_1) - A(D_0) - \kappa$ ,从而  $\zeta - \kappa = A(E_2 + D_0)$ ,且  $\deg(E_2 + D_0) = g - k - 1 + k = g - 1$ .因此,  $\operatorname{supp}(\Theta) \subseteq W_{g-1} + \kappa$ .

最后, 从该证明的开头还能看出, 若  $D = \sum P_i$ , 其中  $P_i$  两两互异且位于一般位置, 则 D 是截面  $x \mapsto \vartheta(A(x) - \zeta)$  的除子, 其中  $\zeta = A(D) + \kappa$ . 因此  $\vartheta(A(x) - \zeta)$  的零点都是单零点. 综上所述, 以下关于除子的等式成立:

$$\Theta = W_{q-1} + \kappa.$$

定理 17.3. 设  $\kappa$  为定理 17.1, 17.2 中的常数,  $K_X$  为 X 的典范除子, 则成立

$$A(K_X) = -2\kappa.$$

证明. 先介绍一个重要的中间结论, 该结论还将在后文被使用.

设有效除子  $D \geq 0$  的次数为 g-1, 则  $h^0(D) \geq 1$ . 由 Riemann-Roch 定理,  $h^0(K_X-D)=h^0(D)-(1-g+\deg D)=h^0(D)\geq 1$ , 从而  $K_X-D$  线性等价于某个有效除子  $D'\geq 0$ , 并且  $\deg D'=g-1$ . 从而  $A(K_X-D)\in W_{g-1}$ . 因此  $A(K_X)-W_{g-1}\subseteq W_{g-1}$ . 另一方面,  $A(D)=A(K_X)-A(D')\in A(K_X)-W_{g-1}$ . 因此, 我们有

$$A(K_X) - W_{g-1} = W_{g-1}.$$

回到定理证明. 注意  $\vartheta(z) = \vartheta(-z)$ , 从而

$$\Theta = W_{g-1} + \kappa = -\Theta = -W_{g-1} - \kappa = W_{g-1} - A(K_X) - \kappa = \Theta - (A(K_X) + 2\kappa).$$

因为  $\Theta$  不是关于 J(X) 的非零元平移不变的 [见引理16.4], 从而迫使

$$A(K_X) + 2\kappa = 0.$$

定理 17.4. 设  $\zeta \in J(X)$ . 则  $A(X) \subseteq \Theta_{\zeta}$  当且仅当存在有效除子  $D \ge 0$  使得  $\deg D = g$  且  $\dim |D| > 0$  /也就是次数为 d 的特殊除子/, 并且  $\zeta - \kappa = A(D)$ .

证明.  $A(X) \subseteq \Theta_{\zeta}$  当且仅当  $\forall P \in X$ ,  $A(P) - \zeta \in \Theta$ , 这当且仅当任意  $P \in X$ ,  $\zeta - A(P) \in \Theta = W_{g-1} + \kappa$ . 因此, 该条件等价于, 存在次数为 g 的有效除子 D, 使得  $P \in \operatorname{supp}(D)$ , 且  $\zeta - \kappa = A(D)$ . 这个 D 的选取可以相差线性等价; 若取定  $D_0$  使得  $A(D_0) = \zeta - \kappa$ , 则该条件等价于:  $\forall P \in X$ , 存在线性等价于  $D_0$  的有效除子 D 使得  $P \in \operatorname{supp}(D)$ . 这显然等价于  $\dim |D_0| > 0$ .

**推论 17.1.** 若  $\zeta \in J(X)$  满足  $A(X) \not\subseteq \Theta_{\zeta}$ , 则存在唯一的次数为 d 的有效除子  $D \geq 0$  使得  $A(D) + \kappa = \zeta$ . 具体地, D 为截面  $P \mapsto \vartheta(A(P) - \zeta)$  的除子.

证明. 由本节定理17.4与第15节定理 15.1,15.2直接得到.

这个推论彻底回答了所谓**雅可比逆问题** (Jacobi inversion problem), 即描述双有理 变换  $A: S^g(X) \to J(X)$  的逆.

我们给出上述结果的另一个应用. 考虑映射  $A: S^g(X) \to J(X), \ (P_1,...,P_g) \mapsto \sum A(P_i),$  记  $Y \subseteq S^g(X)$  为该映射的临界点集,即  $Y = \Big\{D \in S^g(X) \Big| \operatorname{rank}_D(\operatorname{d} A) < g \Big\}.$  则 Y 是维数  $\leq g-1$  的解析集.此外,若  $D \in Y$ ,则 [由定理15.2以及 Abel 定理可知]  $A^{-1}A(D) \subseteq Y$ ,且  $A^{-1}A(D)$  在其上任何一点的维数均为  $\dim |D| > 0$ .因此 Y' := A(Y) 为 J(X) 的解析集,且维数  $\leq g-2$ .特别地,有限多个 Y' 的平移的并集无法覆盖  $\Theta$ .

现在固定点  $P \in X$ , 再令  $x \in X$  为变量. 由定理17.4可知, 若  $A(P)+\zeta-\kappa \notin Y'$ , 则函数  $x \mapsto \vartheta(A(x)-A(P)-\zeta)$  恰有 g 个零点  $P_1,...,P_g$ , 并且满足  $\sum A(P_i)=\zeta+A(P)-\kappa$ ; 此外  $\sum P_i$  是满足这个方程的唯一的次数为 g 的有效除子.

若我们假设  $\zeta \in \Theta$ , 记  $\zeta = A(Q_1^0) + \cdots + A(Q_{q-1}^0) + \kappa$ , 则

$$\sum_{i=1}^{g} A(P_i) = A(P) + \sum_{j=1}^{g-1} A(Q_j^0),$$

从而  $\sum P_i = P + \sum Q_j^0$ . 因此, 若  $\zeta \in \Theta$  并且  $\zeta \notin -A(P) + \kappa + Y'$ , 则函数  $x \mapsto \vartheta(A(x) - A(P) - \zeta)$  的零点为

$$(P, Q_1^0, ..., Q_{q-1}^0),$$

其中  $Q_1^0,...,Q_{q-1}^0$  只与  $\zeta$  有关, 与 P 无关.

设 f 为 X 上的非常值亚纯函数,  $(f) = \sum_{k=1}^{r} P_k - \sum_{k=1}^{r} Q_k$ . 取  $\zeta \in \Theta$  使得  $\zeta \notin \bigcup_k (Y' + \kappa - A(P_k)) \cup \bigcup_k (Y' + \kappa - A(Q_k))$ , 并记  $\zeta = A(D_0) + \kappa$ ,  $D_0 = A(Q_1^0) + \cdots + A(Q_{g-1}^0)$ . 我们像第14节那样, 将 X 割成多边形  $\Delta$ , 使得边  $a_{\nu}$ ,  $b_{\nu}$  绕开事先给定的有限个点. 考虑定义在  $\Delta$  上的函数

$$F(x) = \prod_{k=1}^{r} \frac{\vartheta(A(x) - A(P_k) - \zeta)}{\vartheta(A(x) - A(Q_k) - \zeta)}.$$

其除子 =  $(\sum P_k + rD_0) - (\sum Q_k + rD_0) = \sum (P_k - Q_k) = (f)$ . 但是要注意, 这个函数在 X 上不是良定的.

若  $x \in b_{\nu}$ , 记 x 在  $b'_{\nu}$  上的对应点为 x', 则  $A(x') = A(x) - e_{\nu}$ , 从而 F(x) = F(x'). 而如果  $x \in a_{\nu}$ ,  $x' \in a'_{\nu}$  为 x 的对应点, 则  $A(x') = A(x) + B_{\nu}$ , 于是

$$\frac{F(x')}{F(x)} = \frac{\prod_{k=1}^{r} e^{-2\pi i (A_{\nu}(x) - A_{\nu}(P_k) - \zeta_{\nu})}}{\prod_{k=1}^{r} e^{-2\pi i (A_{\nu}(x) - A_{\nu}(Q_k) - \zeta_{\nu})}} = \exp\left(2\pi i \sum_{k=1}^{r} (A_{\nu}(P_k) - A_{\nu}(Q_k))\right).$$

由 Abel 定理, 存在整数  $n_1,...,n_q; m_1,...,m_q$  使得

$$\sum_{k=1}^{r} (A_{\nu}(P_k) - A_{\nu}(Q(k))) = \sum_{j=1}^{g} n_j e_j + \sum_{j=1}^{g} m_j B_j \quad 的第 \nu 分量$$
$$= n_{\nu} + \sum_{j=1}^{g} m_j B_{j\nu}.$$

现在, 取  $\omega_1, ..., \omega_g$  为  $H^0(X, \Omega)$  的正规基, 记  $\omega := \sum_{j=1}^g m_j \omega_j$ , 令  $\varphi(x) := \int_{P_0}^x \omega$ ,  $[P_0$  为 给定某点].则  $e^{2\pi i \varphi(x)}$  满足以下两条性质:

(1) 若  $x \in b_{\nu}$ , 记  $x' \in b'_{\nu}$  为其对应点, 则  $e^{2\pi i \varphi(x)} = e^{2\pi i \varphi(x')}$ .

(2) 若 
$$x \in a_{\nu}$$
, 记  $x' \in a'_{\nu}$  为其对应点,则  $\frac{e^{2\pi i \varphi(x')}}{e^{2\pi i \varphi(x)}} = e^{2\pi i \sum_{j} m_{j} B_{j\nu}}$ .

因此,  $F(x)e^{-2\pi i\varphi(x)}$  定义了 X 上的一个亚纯函数, 且其除子为  $\sum (P_k - Q_k) = (f)$ . 因此我们证明了:

定理 17.5. (黎曼因子分解定理). 设 f 为紧黎曼曲面 X 上的非常值亚纯函数, 其除子  $(f)=\sum_{k=1}^r P_k-\sum_{k=1}^r Q_k$ . 那么, 存在  $\omega\in H^0(X,\Omega)$  使得: 若  $\zeta$  为  $\Theta$  上的一般点, 则

$$f(x) = c \cdot e^{\int_{P_0}^x \omega} \prod_{k=1}^r \frac{\vartheta(A(x) - A(P_k) - \zeta)}{\vartheta(A(x) - A(Q_k) - \zeta)}.$$

这个定理是通常"有理函数分解为线性因子"的黎曼面版本.

同样的方法, 我们还能证明:

**定理 17.6.** 设  $P,Q \in X, P \neq Q, \zeta \in \Theta$  为一般点,则

$$d_x \log \frac{\vartheta(A(x) - A(P) - \zeta)}{\vartheta(A(x) - A(Q) - \zeta)}$$

为 X 上的亚纯 1-形式, 并且在  $X - \{P,Q\}$  全纯, P,Q 为其单极点, 在 P,Q 处的 留数分别为 +1, -1. 此外, 由  $\vartheta$  的周期性可知其 a-周期为 0.

我们也能用同样的方法构造出在某个点处为高阶极点且留数为 0 的亚纯 1-形式.

黎曼因子分解定理的背后想法也能用来构造 *X* 上的具有特定本性奇点的函数. 这样的函数对研究某些特定的非线性偏微分方程十分重要, 而这些非线性偏微分方程由与代数曲线的几何紧密联系. 这方面的介绍可以参考以下:

- B.A. Dubrovin: *Theta functions and non-linear equations*. Russian Math. Surveys (Uspekhi) **36** (1981), 11-92.
- I.M. Krichever and S.P. Novikov: *Holomorphic bundles over algebraic curves and non-linear equations*. Russian Math. Surveys (Uspekhi) **35** (1980), 53-79.
- D. Mumford: Tata Lectures on Theta, 2 vols., Brikhäuser, 1983, 1984.
- T. Shiota: Characterization of Jacobian varieties in terms of soliton equations, Inventions Math. 83 (1986), 333-382.

关于代数曲线与非线性偏微分方程之间联系的文献浩如烟海.

设 P 为紧黎曼曲面 X 上给定的点, (U,z) 为 P 附近的局部坐标, z(P)=0. 再设 u 为  $\mathbb C$  上的一元多项式. 设 D 为 X 上的次数为 g 的非特殊的有效除子. 假设  $P \notin \operatorname{supp}(D)$ .

定理 17.7. 存在 X - P 上的亚纯函数 F, 使得:

(1). 在 
$$X - P$$
 成立  $(F) \ge -D$ .

(2). 
$$F(z) \exp\left(-2\pi i u(\frac{1}{z})\right)$$
 在点  $P$  全纯.

证明. 记  $u(t) = c_0 + c_1 t + \dots + c_r t^r$ ,  $(c_r \neq 0)$ . 记  $\omega_P^{(n)}$  为第二类正规 Abel 微分,使得在 P 处的极点部分为  $\frac{\mathrm{d}z}{z^{n+1}}$ ,  $(n \geq 1)$ ,并且在 X - P 全纯. 则  $\mathrm{d}u(\frac{1}{z}) + \sum_{n=1}^r nc_n \omega_P^{(n)}$  在 点 P 全纯. 令  $\varphi := -\sum_{i=1}^r nc_n \omega_P^{(n)}$ . 记  $\beta = (\beta_1, \dots, \beta_g)$  为  $\varphi$  的 b-周期向量:

$$\beta_{\nu} = \int_{b_{\nu}} \varphi;$$

[注意  $\omega_P^{(n)}$  的正规性, 有  $\int_{a_n} \varphi = 0$ ].

令

$$F(x) := \exp\left(2\pi i \int_{P_0}^x \varphi\right) \frac{\vartheta(A(x) - A(D) + \beta - \kappa)}{\vartheta(A(x) - A(D) - \kappa)}.$$

首先, 这个 f 在 X 上是单值的: 首先至少 F 能定义在定理17.5中的多边形  $\Delta$  上. 若  $x \in b_{\nu}, x'$  为其在  $b'_{\nu}$  上的对应点, 则  $A(x') = A(x) + e_{\nu}$ , 再由  $\int_{x'}^{x} \varphi = \int_{a_{\nu}} \varphi = 0$  可得 F(x) = F(x').

而若  $x \in a_{\nu}$ , x' 为其在  $a'_{\nu}$  的对应点, 则

$$\int_{x'}^{x} \varphi = -\int_{b\nu} \varphi = -\beta_{\nu},$$

于是  $A(x) - A(x') = -B_{\nu}$ ,从而  $\vartheta(A(x) - A(D) + \beta - \kappa) = \vartheta(A(x') - A(D) + \beta - \kappa) \times$   $\exp\left(2\pi i(A_{\nu}(x') - A_{\nu}(D) + \beta_{\nu} - \kappa_{\nu}) + \pi i B_{\nu\nu}\right)$ ,以及  $\vartheta(A(x) - A(D) - \kappa) = \vartheta(A(x') - A(D) + \beta - \kappa) \times$  $\exp\left(2\pi i(A_{\nu}(x') - A_{\nu}(D) - \kappa_{\nu}) + \pi i B_{\nu\nu}\right)$ . 因此

$$\frac{F(x)}{F(x')} = e^{-2\pi i \beta_{\nu}} \cdot \frac{\exp(2\pi i (A_{\nu}(x') - A_{\nu}(D) + \beta_{\nu} - \kappa_{\nu}) + \pi i B_{\nu\nu})}{\exp(2\pi i (A_{\nu}(x') - A_{\nu}(D) - \kappa_{\nu}) + \pi i B_{\nu\nu})} = 1.$$

因为  $\varphi - du(\frac{1}{z})$  在 P 点全纯, 从而  $Fe^{-2\pi i u(\frac{1}{z})}$  在 P 点全纯.

最后, F 的极点位于  $\vartheta(A(x) - A(D) - \kappa)$  的零点. 由 D 不是特殊除子可知  $\operatorname{div}(\vartheta(A(x) - A(D) - \kappa)) = D$ .

不难看出, 若 D 和 u 选取得一般, 则这个函数在相差常数倍意义下是唯一的. 事实上, 该函数的零点除子 D' 不是特殊除子; 若函数  $F_0$  也满足此定理的条件, 则  $F_0/F$  在 X 上亚纯, 且  $(F_0/F) \ge -D'$ ; 而由 D' 不是特殊除子可知  $F_0/F$  为常数.

## 18 Torelli **定理**

Torelli 定理断言二元组  $(J(X),\Theta)$  能唯一确定黎曼曲面 X. 该定理有多种证明方法,本书介绍 Hernik Martens[12] 的证明. 此外还有更加 "几何" 的证明,可见 Griffith-Harris [9] 或者 Arbarello-Cornalba-Griffiths-Harris [10]. 我们先讲复环面的一个一般性质.

设  $T_1 = \mathbb{C}^m/\Lambda_1$ ,  $T_2 = \mathbb{C}^n/\Lambda_2$  为两个复环面 [其中  $\Lambda_1, \Lambda_2$  分别是  $\mathbb{C}^m, \mathbb{C}^n$  的格点子群].

**引理.** 设  $f:T_1\to T_2$  为全纯映射,  $F:\mathbb{C}^m\to\mathbb{C}^n$  为 f 的提升. 则 F 是次数  $\leq 1$  的多项式映射.

证明. 因为 F 是 f 的提升, 从而对任意  $\lambda \in \Lambda_1$ , 都有  $F(z + \lambda) - F(z) \in \Lambda_2$ ,  $\forall z \in \mathbb{C}^m$ , 从而为关于 z 的常函数. 因此对  $1 \le \nu \le m$ ,  $\frac{\partial F}{\partial z_{\nu}}$  关于  $\lambda$  平移不变, 于是这实际上定义了一个全纯映射  $T_1 \to \mathbb{C}^n$ ; 而  $T_1$  紧致, 从而该映射为常值映射. 证毕.

定理. (Torelli 定理). 设 X,Y 为紧黎曼曲面, 且亏格同为  $g \ge 1$ . 记  $\Theta_X,\Theta_Y$  分别为 J(X),J(Y) 上的  $\Theta$ -除子. 若存在解析同构  $\varphi:J(X)\to J(Y)$  使得  $\varphi^*(\Theta_Y)=\Theta_X$ , 则 X,Y 解析同构.

不妨通过  $\varphi$  将  $(J(X), \Theta_X)$  与  $(J_Y, \Theta_Y)$  等同.

记  $A_X: X \to J(X)$  为 X 的 Abel-Jacobi 映射,  $W_r \subseteq J(X)$  为  $S^r(X)$  的像,  $1 \le r \le g$ .

再记  $A_Y: Y \to J(Y)$  为 Y 的 Abel-Jacobi 映射,  $V_r \subseteq J(Y)$  为  $S^r(Y)$  的像,  $1 \le r \le g$ .

我们将证明以下定理. 下述定理显然能直接推出 Torelli 定理.

定理. 如果  $W_{q-1}$  是  $V_{q-1}$  的平移, 那么  $V_1$  是  $W_1$  或者  $-W_1$  的平移.

我们继续交待记号.

对于 J(X) 的子集 E, 记集合  $E^* := A(K_X) - E$ , 其中  $K_X$  为 X 的典范除子. 我们称  $E^*$  为 E 的对偶 (dual). 那么由定理17.3可知

$$W_{q-1}^* = W_{g-1}.$$

对于集合  $E \subseteq J(X)$  以及  $a \in J(X)$ , 记  $E_a$  为 E 沿 a 的平移, 即  $E_a := E + a$ . 在此记号下, 成立

$$(W_{g-1,a})^* = W_{g-1,-a}.$$

我们在接下来的证明中, 将次数为 k 的有效除子记作  $D_k, D'_k, \Delta_k, \dots$  [换言之, 在接下来的证明中, 除子的下角标常用来表示该除子的次数.]

**引理 18.1.** 设  $0 \le r \le g-1$ ,  $a,b \in J(X)$ , 则  $W_{r,a} \subseteq W_{g-1,b}$  当且仅当  $a \in W_{g-1-r,b}$ .

证明. 若  $a = A_X(D_{g-1-r}) + b$ , 则  $A(D_r) + a = A(D_r + D_{g-1-r}) + b \in W_{g-1,b}$ .

再证相反方向. 不妨假定 b=0. 于是由题设知对任意  $D_r$   $[D_r\geq 0$  且次数为 r],存在  $\Delta_{g-1}$  使得  $A_X(D_r)+a=A_X(\Delta_{g-1})$ . 记  $P_0\in X$  为定义 Abel-Jacobi 映射的基点,则  $A_X(rP_0)=0$ . 从而存在次数为 g-1 的有效除子  $\delta$  使得  $a=A_X(\delta)$ . 现在我们有  $A_X(D_r+\delta)=A_X(\Delta_{g-1}+rP_0)$ ,于是由 Abel 定理得  $D_r+\delta\sim\Delta_{g-1}+rP_0$  [线性等价]. 因此  $D_r+K_X-\Delta_{g-1}\sim(K_X-\delta)+rP_0$ . 此外, $K_X-\Delta_{g-1}$  与  $K_X-\delta$  都线性等价于有效除子 [因为  $h^0(D'_{g-1})=h^0(K_X-D'_{g-1})$ ]. 因此  $K_X-\delta+rP_0$  线性等价于某个形如  $D_r+D'_{g-1}$  的有效除子 ( $\forall D_r$ );因此  $\dim |K_X-\delta+rP_0|\geq r$ . 因此由 Riemann-Roch 定理, $h^0(\delta-rP_0)=h^0(K_X-\delta+rP_0)+1-g+(g-1-r)\geq 1$ . 因此  $\delta-rP_0\sim D^0_{g-1-r}$ ,从而我们有  $A_X(D^0_{g-1-r})=D_X(\delta-rP_0)=A_X(\delta)=a$ ,于是  $a\in W_{g-1-r}$ .

**引理 18.2.** 设  $0 \le r \le g - 1$ . 则成立

$$W_{g-1-r} = \bigcap_{a \in W_r} W_{g-1,-a},$$

以及

$$W_{g-1-r}^* = \bigcap_{a \in W_r} W_{g-1,a} = \bigcap_{a \in W_r} (W_{g-1,-a})^*.$$

证明. 若  $a \in W_r$ , 则  $a = A_X(D_r)$ , 并且  $W_{g-1-r} + A_X(D_r) \subseteq W_{g-1}$ , 从而  $W_{g-1-r} \subseteq \bigcap_{a \in W_r} W_{g-1,-a}$ .

另一方面若  $\zeta\in\bigcap_{a\in W_r}W_{g-1,-a}$ ,则  $\zeta+W_r\subseteq W_{g-1}$ . 于是由引理18.1可知  $\zeta\in W_{g-1-r}$ . 从而第一式得证. 此式两边取对偶即可得到第二式.

引理 18.3. 设  $0 \le r \le n-2$ ,  $a \in J(X)$ ,  $x \in W_1$ ,  $y \in W_{g-1-r}$ . 记 b := a+x-y. 则以下两者至少有一个成立: 要么

$$W_{r+1,a} \subseteq W_{g-1,b}$$

要么

$$W_{g-1,b} \cap W_{r+1,a} = W_{r,a+x} \cup S$$

其中  $S := W_{r+1,a} \cap (W_{q-2,y-a})^*$ .

证明. 由  $W_k$  的定义可知存在  $P \in X$  使得  $A_X(P) = x$ ; 存在除子  $D^0_{g-1-r}$  使得  $A_X(D^0_{g-1-r}) = y$ .

(1). 如果  $P \in \text{supp}(D_{g-1-r}^0)$ , 则  $x-y=-A_X(D')$ , 其中  $\deg D'=g-2-r$  [并且  $D' \geq 0$ ],于是我们有

$$a = b + A_X(D').$$

从而  $a + W_{r+1} = b + (A_X(D') + W_{r+1}) \subseteq b + W_{g-1}$ , 这是第一种情形.

(2). 如果  $P \notin \text{supp}(D_{q-1-r}^0)$ , 则对于任意的

$$u \in W_{r+1,a} \cap W_{q-1,b}$$

记

$$u = A_X(D_{r+1}) + a = A_X(\Delta_{g-1}) + b = A_X(\Delta_{g-1}) + a + A_X(P) - A_X(D_{g-1-r}^0).$$

注意  $D_{r+1} + D_{g-1-r}^0$  与  $\Delta_{g-1} + P$  的次数都为 g, 从而 Abel 定理表明

$$D_{r+1} + D_{g-1-r}^0 \sim \Delta_{g-1} + P.$$

情形 1.  $D_{r+1} + D_{q-1-r}^0 = \Delta_{q-1} + P$ .

此时, 因为  $P \notin \text{supp}(D_{g-1-r}^0)$ , 从而  $P \in \text{supp}(D_{r+1})$ , 因此我们有

$$D'_r + D^0_{q-1-r} = \Delta_{g-1}, \quad (D'_r = D_{r+1} - P).$$

于是

$$A_X(D_r') + y = u - b,$$

从而  $u \in W_r + b + y = W_{r,a+x}$ .

情形 2.  $D_{r+1} + D_{g-1-r}^0 \neq \Delta_{g-1} + P$ .

此时, 完备线性系统  $|\Delta_{g-1}+P|$  包含两个不同的有效除子, 于是  $\dim |\Delta_{g-1}+P| \geq 1$ . 因此对任意  $Q \in X$ , 存在  $\Delta'_{g-1} \geq 0$  使得  $\Delta_{g-1}+P \sim \Delta'_{g-1}+Q$ . 这表明, 若 w=A(Q),  $(u-b)+x=A_X(\Delta_{g-1})+A_X(P)=A_X(\Delta'_{g-1})+w\in W_{g-1,w};$  由 Q 的任意性可得  $u-b+x\in \bigcap_{w\in W_1}W_{g-1,w}=W_{g-2}^*$  [利用了引理18.2]; 因此  $u\in (W_{g-2}^*)_{b-x}=(W_{g-2}^*)_{a-y}=(W_{g-2,y-a})^*$ ; 当然, 由题设还有  $u\in W_{r+1,a}$ . 因此  $W_{r+1,a}\cap W_{g-1,b}\subseteq W_{r,a+x}\cup S$ .

我们还有验证相反的包含关系. 我们有  $W_r + a + x + W_r + a + A_X(P) \subseteq W_{r+1,a}$ . 因为  $a + x = b + y \in b + W_{g-1-r}$ , 我们有  $W_{r,a+x} \subseteq b + W_{g-1-r} + W_r \subseteq b + W_{g-1}$ . 最后,  $(W_{g-2,y-a})^* = W_{g-2}^* + b - x = A_X(K_X) - W_{g-2} - x + b \subseteq A_X(K_X) - W_{g-1} + b = W_{g-1} + b$ .

这就证明了  $W_{r,a+x} \subseteq W_{r+1,a} \cap W_{g-1,b}$  以及  $S \subseteq W_{r+1,a} \cap W_{g-1,b}$ ; 引理得证.  $\square$ 

**Torelli 定理的证明.** 注意我们将 J(X) 与 J(Y) 等同 [以后都记作 J],记  $V_r \subseteq J$  为  $S^r(Y)$  关于  $A_Y$  的像集.

记  $r \ge 0$  为满足以下性质的最小整数:  $V_1$  包含于  $W_{r+1}$  或者  $W_{r+1}^*$  的某个平移. 注意  $V_1 \subseteq V_{g-1}$ ,且  $V_{g-1}$  为  $W_{g-1}$  的某个平移, 因此的确存在满足该性质的 r [例如 g-2]

于是 Torelli 定理断言, r=0. 假设  $r\geq 1$ , 记  $V_1\subseteq W_{r+1,a}$ . 任取  $x\in W_1$ ,  $y\in W_{q-1-r}$ .

注意到, 对于给定的 x, 存在解析集  $Z(x) \subseteq W_{g-1-r}$ ,  $Z(x) \neq W_{g-1-r}$ , 使得当  $y \notin Z(x)$  时成立  $V_1 \nsubseteq W_{g-1,b}$ , 其中 b = a + x - y.

这是因为, 若  $\forall y, V_1 \subseteq W_{g-1,b}$ , 则  $V_{1,-x-a} \subseteq \bigcap_{y \in W_{g-1-r}} W_{g-1,-y} = W_r$ , 这与 r 的定义矛盾.

现在,若  $V_1 \subseteq W_{g-1,a+x-y} = V_{g-1,\alpha-y}$ , $\alpha := c_0 + x$ , $c_0$  给定,则  $V_1 + y \subseteq V_{g-1,\alpha}$ . 由引理18.1,可知必有  $y \in V_{g-2,\alpha}$ . 因此,若  $Z(x) = V_{g-2,\alpha} \cap W_{g-1-r} \neq W_{g-1-r}$ ,则对  $y \in W_{g-1-r} - Z(x)$  都有  $V_1 \not\subseteq W_{g-1,b}$ ,b := a + x - y.

至此 (记  $b := a + x - y, y \notin Z(x)$ )

$$V_1 \cap W_{q-1,b} = V_1 \cap (W_{q-1,b} \cap W_{r+1,a});$$

因为  $V_1 \subseteq W_{r+1,a}$ ,并且  $V_1 \not\subseteq W_{g-1,b}$ ,从而  $W_{r+1,a} \not\subseteq W_{g-1,b}$ . 从而由引理(18.3),我们得到

$$V_1 \cap W_{g-1,b} = (V_1 \cap W_{r,a+x}) \cup (V_1 \cap S),$$

其中  $S = W_{r+1,a} \cap (W_{g-2,y-a})^*$ . 因为  $V_1 \not\subseteq W_{g-1,b}$  [并且  $W_{g-1}$  是  $V_{g-1}$  的平移],从而存在 Y 上的次数为 g 的除子 D(b),使得 [记  $A_Y^{(g)}: S^g(Y) \to J$  为自然映射]

$$A_Y(D(b)) = V_1 \cdot W_{g-1,b}, \quad A_Y^{(g)}(D(b)) = b - c_1, \quad c_1$$
 某常数.

我们记  $D(b) = D_0(x) + D_1(x,y)$ , 其中  $D_0(x)$  由 D(b) 当中被  $A_Y$  映到  $V_1 \cap W_{r,a+x}$  的 点构成; 而  $D_1(x,y)$  当中的点都不被映到  $W_{r,a+x}$ . 断言  $D_0(x)$  的次数为 1, 即  $D_0(x)$  只含有一个点,它在  $V_1 \cap W_{q-1,b}$  中出现的次数为 1.

首先假设  $\deg D_0(x) \geq 2$ . 于是, 固定 x, 将 y 跑遍  $W_{g-1-r} - Z(x)$ , 则  $D_1(x,y)$  在 J 中的像是  $V_{g-2}$  的一个给定的平移,  $(V_{g-2})_{-A_Y(D_0(x))}$ . 但另一方面,  $D_1(x,y)$  的像也

是  $b-A_Y(D_0(x))$  的给定的平移, 从而也是关于 -y 的给定的平移 [与 x 有关]. 因为  $Z(x) \neq W_{q-1-r}$ , 从而

$$W_{q-1-r}^* \subseteq V_{q-2,\beta}, \quad \beta = \beta(x).$$

因此

$$\bigcap_{-v \in V_{g-2,\beta}} V_{g-1,v} \subseteq \bigcap_{-v \in W_{g-1-r}^*} W_{g-1,v+c} \quad \not\exists \ V_{g-1} = W_{g-1} + c.$$

由引理18.2, 上式左边为  $V_1$  的某个平移, 右边为  $W_r^*$  的某个平移. 这就与 r 的定义矛盾.

因此  $\deg D_0(x) < 1$ .

再证明  $\deg D_0(x) \geq 1$ . 否则,  $D(b) = D_1(x,y)$  的支集是只与 y 有关的有限集 [即, Y 中的被  $A_Y$  映到  $S \cap V_1$  的点构成的集合;  $S \cap V_1$  为有限集, 包含于  $V_1 \cap W_{g-1,b}$ ,  $V_1 \not\subseteq W_{g-1,b}$ ]. 但  $A_Y^{(g)}(D_1(x,y)) = a + x - y - c_1$  与 x 无关, 其中 x 取遍  $W_1$  的某非空 开集.

因此  $\deg D_0(x) = 1$ .

如前文所述, 若  $y \in W_{g-1-r} - Z(x)$ , 则  $D_1(x,y)$  的支集是有限集, 且只与 y 有关. 因此可以取无穷多个点  $x_{\nu} \in W_1$  ( $\nu \geq 1$ ) 使得  $D_1(x_{\nu},y) = D_1(y)$  [与  $\nu$  无关]. 因此  $A_Y(D_0(x_{\nu})) = a + x_{\nu} - y - c_0 - A_Y(D_1(y))$ , 并且

$$A_Y(D_0(x_\nu)) - A_Y(D_0(x_1)) = x_\nu - x_1, \quad \nu \ge 1.$$

显然  $A_Y(D_0(x_\nu)) - A_Y(D_0(x_1)) \in V_{1,t}$ ,  $t := -A_Y(D_0(x_1))$ ; 并且  $x_\nu - x_1 \in W_{1,-x_1}$ . 因此曲线  $V_{1,t}$  与  $W_{1,-x_1}$  有无穷多个交点, 从而必相等. 定理得证.

## 19 ⊖ 的奇异性的黎曼定理

黎曼奇点定理 (Riemann's singularity theorem) 将  $\vartheta$ -函数在点  $\zeta \in \Theta$  处的零点阶数用  $\dim |D|$  来表达, 其中  $D \geq 0$  是次数为 g-1 的有效除子, 使得  $\zeta - \kappa = A(D)$ . 黎曼将该零点阶数与  $\vartheta$  在形如  $W_r - W_r - \zeta$  的集合上是否恒为零联系起来, 以此证明黎曼奇点定理, 见 Über das Verschwinden der Theta-Functionen.

该定理可以 [用  $\Theta$  的切锥] 更加几何地表述, 并且推广到一般的  $W_k$ ,  $2 \le k \le g-1$ , 这是 G. Kempf 的工作, 见: On the geometry of a theorem of Riemann, Annals of Math.

98 (1973), 178-185. 对该定理的探讨, 最佳的参考书是 Arbarello-Cornalba-Griffiths-Harris [10].

我们来介绍两个引理, 其实我们在黎曼因子分解定理之前就证明过它们了.

引理 19.1. 取定  $P \in X$ , 则存在  $\zeta \in \Theta$  使得函数  $x \mapsto \vartheta(A(x) - A(P) - \zeta) \neq 0$ .

证明. 即  $Y \subseteq S^g(X)$  为映射  $A: S^g(X) \to J(X)$  的临界点构成的集合,即  $Y = \{D \in S^g(X) | \text{rank } \mathrm{d}A|_D < g\}$ . 则  $A|_Y$  在其任一纤维上都没有孤立点 [见定理15.2] ,从而 Y' := A(Y) 的维数  $\leq g-2$ .

如果  $x \mapsto \vartheta(A(X) - A(P) - \zeta) \equiv 0$ , 则  $\zeta + A(P) = A(D) + \kappa$ , 其中  $D \ge 0$  的次数 为 g, 并且 dim |D| > 0, 从而  $D \in Y$  [再次使用定理15.2]. 因此, 只需选取  $\zeta \in \Theta$  使得  $\zeta \not\in \kappa - A(P) + Y'$  即可.

接下来, 取定  $\zeta \in \Theta$ . 对于  $P \in X$ , 我们将 [X 的相应合适的线丛的] 截面  $x \mapsto \vartheta(A(X) - A(P))$  记作  $F_P$ .

引理 19.2. 取定  $\zeta \in \Theta$ ; 若  $P \in X$  满足  $F_P \not\equiv 0$ , 则  $\mathrm{div}(F_P) = P + D_0$ , 其中  $D_0 \geq 0$  的次数为 g-1, 并且  $D_0$  与 P 无关 [只与  $\zeta$  有关] .

证明. 记  $D := \operatorname{div}(\vartheta(A(x) - A(P) - \zeta))$ , 则  $D \ge 0$ ,  $\operatorname{deg} D = g$ , 并且  $\operatorname{dim} |D| = 0$  [因 为  $F_P \ne 0$ ]; 此外, 注意  $F_P(P) = \vartheta(-\zeta) = \vartheta(\zeta) = 0$ . 因此  $D = P + D_0$ ,  $D_0 \ge 0$ ,  $\operatorname{deg} D_0 = g - 1$ ,  $\operatorname{dim} |D_0| = 0$ .

若  $Q \in X$  满足  $F_Q \not\equiv 0$ ; 则

$$D' := \operatorname{div}(F_Q) = Q + D_1, \quad D_1 \ge 0, \operatorname{deg} D_1 = g - 1.$$

则有  $A(D) = A(P) + \zeta - \kappa$ , 从而  $A(D_0) = \zeta - \kappa$ ; 同样地有  $A(D_1) = \zeta - \kappa$ . 又因为  $D_0, D_1$  的次数都是 g - 1, 从而 Abel 定理表明  $D_0 \sim D_1$ . 又因为 dim  $|D_0| = 0$ , 于是迫使  $D_0 = D_1$ .

引理 19.3. 给定  $\zeta \in \Theta$ , 若存在  $P \in X$  使得  $F_P \neq 0$ , 那么至多存在 g 个点 Q 使得  $F_Q \equiv 0$ .

证明. 取定  $x_0$  使得  $\vartheta(A(x_0) - A(P) - \zeta) \neq 0$ . 那么函数  $y \mapsto \vartheta(A(x_0) - A(y) - \zeta)$  不恒为零, 并且其除子为  $\operatorname{div}(\vartheta(A(y) - \zeta'))$ , 其中  $\zeta' = -\zeta + A(x_0)$ . 由于  $\vartheta$ -函数为偶函数, 从而该除子的次数为 g.

定理 19.1. 取定  $\zeta \in \Theta$ . 则  $\forall P \in X$ ,  $F_P \equiv 0$  [换言之,  $\forall x, \forall P, \vartheta(A(x) - A(P) - \zeta) = 0$ ] 当且仅当

$$\frac{\partial \vartheta}{\partial z_{\nu}}(\zeta) = 0, \quad \nu = 1, ..., g.$$

证明. 若对任意 x, P 都有  $\vartheta(A(x) - A(P) - \zeta) = 0$ , 则两边对 x 微分, 注意  $\mathrm{d}A(x) = (\omega_1(x), ..., \omega_g(x))$ , 从而

$$\sum_{\nu=1}^{g} \frac{\partial \vartheta}{\partial z_{\nu}} (A(x) - A(P) - \zeta) \omega_{\nu}(x) = 0;$$

取 x = P, 有

$$\sum_{\nu=1}^{g} \frac{\partial \vartheta}{\partial z_{\nu}} (-\zeta) \omega_{\nu}(P) = 0, \quad \forall P;$$

由于  $(\omega_1, ..., \omega_g)$  线性无关, 并且  $\frac{\partial \vartheta}{\partial z_{\nu}}(z) = -\frac{\partial \vartheta}{\partial z_{\nu}}(-z)$ , 从而有  $\frac{\partial \vartheta}{\partial z_{\nu}}(\zeta) = 0$ ,  $\nu = 1, ..., g$ .

反之, 如果  $x \mapsto \vartheta(A(x) - A(P) - \zeta)$  不恒为零; 记  $\operatorname{div}(\vartheta(A(x) - A(P) - \zeta)) = P + D_0(\zeta)$ ,  $\operatorname{deg} D_0(\zeta) = g - 1$ . 由引理19.3, 存在  $Q \not\in \operatorname{supp} D_0(\zeta)$  使得  $\vartheta(A(x) - A(Q) - \zeta) \not\equiv 0$ . 再由引理19.2,  $\operatorname{div}(\vartheta(A(x) - A(Q) - \zeta)) = Q + D_0(\zeta)$ , 于是 Q 为  $\vartheta(A(x) - A(Q) - \zeta)$  的单零点, 从而

$$\sum_{\nu=1}^{g} \frac{\partial \vartheta}{\partial z_{\nu}} (A(x) - A(Q) - \zeta) \bigg|_{x=Q} \omega_{\nu}(Q) \neq 0,$$

从而存在某个  $\nu$  使得  $\frac{\partial \vartheta}{\partial z_{\nu}}(-\zeta) \neq 0$ .

此定理也可重新表述如下. 对于 J(X) 的子集 E,E' 以及  $\zeta \in J(X)$ ,我们将集合  $\left\{x-y-\zeta \middle| x \in E, y \in E'\right\}$  简记为  $E-E'-\zeta$ . 类似简记 E+E' 等等.

定理. 对于  $\zeta \in \Theta$ , 则  $\zeta \neq \Theta$  的奇点当且仅当  $\vartheta(W_1 - W_1 - \zeta) \equiv 0$ .

现在,设 X 的亏格  $g \ge 2$ . 给定  $\zeta \in \Theta$ ,则必存在正整数 r < g 使得  $\vartheta(W_r - W_r - \zeta) \ne 0$ ;这是因为,由于  $W_{g-1} = A(K_X) - W_{g-1}$  [见定理17.3的证明过程],从而  $W_{g-1} - W_{g-1}$  是  $W_{g-1} + W_{g-1} = J(X)$  的平移.

取定  $\zeta \in \Theta$ , 记  $r=r_{\zeta}$  是满足以下性质的最大整数:  $\forall k < r, \, \vartheta(W_k-W_k-\zeta) \not\equiv 0$ . 则 r < g.

定理 19.2. 设 s 为正整数,  $\zeta \in \Theta$ . 则  $r_{\zeta} \geq s$  当且仅当  $\zeta = \kappa + A(D)$ , 其中  $D \geq 0$ , deg D = g - 1, dim  $|D| \geq s - 1$ .

证明. 记  $r := r_{\zeta}$ . 则存在次数为 r 的有效除子  $D_0, D_1$  使得  $\vartheta(A(D_0) - A(D_1) - \zeta) \neq 0$ . 我们不妨假设  $\mathrm{supp}(D_0 + D_1)$  含有 2r 个不同的点. 这是因为, 固定  $D_1$ , 则满足上述要求的  $D_0 \in S^r(X)$  构成的集合是  $S^r(X)$  的非空开集.

记  $D_0 = P + \Delta_0$ , 其中  $\deg \Delta_0 = r - 1$ . 则函数  $F: x \mapsto \vartheta(A(x) + A(\Delta_0) - A(D_1) - \zeta) \neq 0$  [因为 x = P 时它不为零]. 对于  $x \in \text{supp}(D_1)$ , 则  $A(x) + A(\Delta_0) - A(D_1) = A(\Delta_0) - A(D_1 - x) \in W_{r-1} - W_{r-1}$ . 因此, 由  $\vartheta(W_{r-1} - W_{r-1} - \zeta) = 0$  可得 F(x) = 0,  $\forall x \in \text{supp} D_1$ . 从而 F 的除子 D 的次数为 g, 并且形如

$$D = D_1 + D_2$$
,  $\deg D_2 = q - r$ .

另一方面,

$$A(D) = \zeta + A(D_1) - A(\Delta_0) - \kappa,$$

从而得到

$$\zeta - \kappa = A(D_2 + \Delta_0), \quad \deg(D_2 + \Delta_0) = g - r_r - 1 = g - 1.$$

注意到  $\Delta_0$  可在  $S^{r-1}(X)$  的某个非空开集当中任意选取 [这是因为  $D_0 = P + \Delta_0$  可在  $S^r(X)$  的某个非空开集当中任意选取]. 因此  $\dim |D_2 + \Delta_0| \ge r - 1$ .

反之, 若  $\zeta - \kappa = A(D)$ , 其中  $D \ge 0$ , deg D = g - 1, 并且 dim  $|D| \ge s - 1$ . 那么对于任意的次数为 s - 1 的有效除子  $D_1$ , 我们总可不妨  $D \ge D_1$  [因为 dim  $|D| \ge s - 1$ ].

设  $E_0, E_1$  是次数为 s-1 的有效除子. 取  $D \ge 0$ ,  $\deg D = g-1$ , 使得  $\zeta - \kappa = A(D)$  并且  $D \ge E_0$ . 则有

$$A(E_0) - A(E_1) - \zeta = A(E_0 - D) - A(E_1) - \kappa = -(\kappa + A(E_1 + (D - E_0)));$$

由于  $D - E_0 \ge 0$ ,且其次数为 g - 1 - (s - 1),从而  $E_1 + D - E_0 \ge 0$ ,其次数为 g - 1. 因此  $\kappa + A(E_1 + D - E_0) \in W_{g-1} + \kappa = \Theta$ .从而  $A(E_0) - A(E_1) - \zeta \in -\Theta = \Theta$ ,于是  $\vartheta(A(E_0) - A(E_1) - \zeta) = 0$ .从而  $\vartheta(W_{s-1} - W_{s-1} - \zeta) \equiv 0$ .

## 定理 19.3. (黎曼奇点定理).

设  $\zeta \in \Theta$ , m 为  $\vartheta$ -函数在  $\zeta$  处的零点阶数, 即: 若多重指标  $\alpha=(\alpha_1,...,\alpha_g)$ ,  $|\alpha|:=\alpha_1+\cdots+\alpha_g < m,\, 则$ 

$$\frac{\partial^{\alpha} \vartheta}{\partial z^{\alpha}}(\zeta) := \frac{\partial^{|\alpha|} \vartheta}{\partial z_{1}^{\alpha_{1}} \cdots \partial z_{g}^{\alpha_{g}}}(\zeta) = 0,$$

并且存在多重指标  $|\beta|=m$  使得  $\frac{\partial^\beta \vartheta}{\partial z^\beta}(\zeta)\neq 0$ . 等价地,  $\vartheta$  在  $\zeta$  处的泰勒展开的最低次项的次数为 m.

那么成立  $m=r_\zeta$ , 从而  $m=1+\dim |D|$ , 其中  $D\geq 0$  是次数为 g-1 的有效除子, 使得  $\zeta-\kappa=A(D)$ .

证明. 设正整数 k 满足  $\vartheta(W_k - W_k - \zeta) \equiv 0$ . 断言: 若  $|\alpha| \le k$ , 则  $\frac{\partial^{\alpha} \vartheta}{\partial z^{\alpha}}|_{W_{k-|\alpha|} - \zeta} \equiv 0$ . 我们通过对  $n := |\alpha|$  归纳来证明此断言. n = 0 即为题设. 若  $|\alpha| = n - 1 < k$  时断言成立,则对于任意  $u, v \in W_{k-n}$  以及  $x, y \in X$ ,有  $A(x) + u - (A(y) + v) - \zeta \in W_{k-(n-1)} - W_{k-(n-1)} - \zeta$ ,从而  $\frac{\partial^{\alpha} \vartheta}{\partial z^{\alpha}}(A(x) + u - A(y) - v - \zeta) \equiv 0$ . 两边对 x 微分,再令 x = y,可得

$$\sum_{\nu=1}^{g} \frac{\partial}{\partial z_{\nu}} \frac{\partial^{\alpha} \vartheta}{\partial z^{\alpha}} (u - v - \zeta) \omega_{\nu}(x) = 0, \quad \forall x \in X,$$

从而对任意  $|\alpha'| = |\alpha| + 1 = n$  以及任意  $u, v \in W_{k-n}$  都有  $\frac{\partial^{\alpha'} \vartheta}{\partial z^{\alpha'}} (u - v - \zeta) = 0$ .

这表明对任意  $|\alpha| \le k$  都有  $\frac{\partial^{\alpha} \vartheta}{\partial z^{\alpha}}(-\zeta) = 0$ , 从而  $m \ge r_{\zeta}$ .

而反向的不等式  $m \leq r_{\zeta}$  较难证明. 记  $r = r_{\zeta}$ , 于是  $\vartheta(W_{r-1} - W_{r-1} - \zeta) \equiv 0$ , 且  $\vartheta(W_r - W_r - \zeta) \not\equiv 0$ . 取次数均为 r 的有效除子  $D, D_0, D_1$ , 使得  $\mathrm{supp}(D + D_0 + D_1)$  由 3r 个不同的点构成, 并且

$$\vartheta(A(D_0) - A(D_1) - \zeta) \neq 0, \quad \vartheta(A(D_0) - A(D) - \zeta) \neq 0.$$

记  $D=\sum_{\nu=1}^r P_{\nu},\, D_1=\sum_{\nu=1}^r Q_{\nu},\,$ 再记  $\omega_{P_{\nu}Q_{\nu}}$  为第三类正规 Abel 微分 [在  $P_{\nu},Q_{\nu}$  处的留

数分别为 +1, -1, 在 
$$X - \{P_{\nu}, Q_{\nu}\}$$
 全纯, 且  $a$ -周期为零]. 设  $\varphi := \sum_{\nu=1}^{r} \omega_{P_{\nu}Q_{\nu}}$ .

对于  $x_1, ..., x_r \in X$ , 令

$$F(x_1, ..., x_r) := \exp\left(\sum_{\nu=1}^r \int_{P_0}^{x_{\nu}} \varphi\right) \frac{\vartheta(A(x_1) + \dots + A(x_r) - A(D_1) - \zeta)}{\vartheta(A(x_1) + \dots + A(x_r) - A(D) - \zeta)}.$$

[若  $\sum p_{\nu} = D_0$ , 则 F 在点  $(p_1, ..., p_r)$  全纯且非零].

断言 F 是在  $X \times \cdots \times X$  整体定义的亚纯函数. 为此, 先固定  $x_2, ..., x_r$ , 将 F 视为关于  $x_1$  的, 定义在将 X 沿同调基  $a_i, b_j$  割开所得的单连通多边形  $\Delta$  上的一元函数  $F(x_1)$ . 若  $x_1 \in b_j$ ,  $x_1'$  为其在  $b_j'$  的对应点, 则  $A(x_1) = A(x_1') + e_j$ ,  $\int_{x_1'}^{x_1} \varphi = 0$  [因为  $\varphi$  的 a-周期为零]. 因此  $F(x_1) = F(x_1')$ . 而若  $x_1 \in a_j$ , 记  $x_1'$  为其在  $a_j'$  上的对应点, 则  $A(x_1) - A(x_1') = -B_j$ , 且由第14节的互反定理可知

$$\int_{x_1'}^{x_1} \varphi = -\sum_{\nu=1}^r \int_{b_j} \omega_{P_{\nu}Q_{\nu}} = 2\pi i \sum_{\nu=1}^r \int_{P_{\nu}}^{Q_{\nu}} \omega_j = 2\pi i \sum_{\nu=1}^r (A_j(Q_{\nu}) - A_j(P_{\nu})),$$

从而

$$\frac{F(x_1)}{F(x_1')} = e^{2\pi i (A_j(D_1) - A_j(D))} \frac{\exp\left(2\pi i \left(\sum_{\nu} A_j(x_{\nu}) - A_j(D_1) - \zeta_j\right) + \pi i B_{jj}\right)}{\exp\left(2\pi i \left(\sum_{\nu} A_j(x_{\nu}) - A_j(D) - \zeta_j\right) + \pi i B_{jj}\right)} = 1.$$

因此  $F(x_1)$  是 X 上的单值函数.

下面断言 F 是常值函数 [从而为非零常值函数. 注意  $F(p_1,...,p_n) \neq 0$ ]. 同样地, 先固定 X 上一般的点  $x_2,...,x_n$ , 考虑除子

$$E_1 = \operatorname{div}(x_1 \mapsto \vartheta(A(x_1) + \dots + A(x_r) - A(D_1) - \zeta)),$$

$$E = \operatorname{div}(x_1 \mapsto \vartheta(A(x_1) + \dots + A(x_r) - A(D) - \zeta)).$$

对于  $x_1 \in \text{supp}(D_1)$ , 则  $\sum_{\nu=1}^r A(x_\nu) - A(D_1) - \zeta = \sum_{\nu=2}^r A(x_\nu) - A(D_1 - x_1) - \zeta \in W_{r-1} - W_{r-1} - \zeta$ , 因此  $\vartheta$  在该点处的值为零. 从而必有  $E_1 = D_1 + D_1'$ , 其中  $D_1' \geq 0$  且次数为 g-r. 同样地,  $E = D + D_1'$ , 其中  $D_2' \geq 0$ ,  $\deg D_1' = \deg D_1' = g-r$ .

现在,我们来证明  $D_1' = D'$  [原因与引理19.2相同] . 事实上, $\dim |E| = 0$  [这是因为关于  $x_1$  的函数  $\vartheta(A(x_1) + \cdots + A(x_r) - A(D) - \zeta) \not\equiv 0$ ],从而  $\dim |D'| = 0$ . 另一方面, $A(D') = A(E) - A(D) = \left(\zeta + A(D) - \sum_{\nu=2}^r A(x_\nu) - \kappa\right) - A(D) = \zeta - \kappa - \sum_{\nu=2}^r A(x_\nu)$ ;

同样的方法也可得  $A(D_1') = \zeta - \kappa - \sum_{\nu=2}' A(x_{\nu})$ . 又因为  $\deg D' = \deg D_1'$ , 因此由 Abel 定理可得  $D_1' \sim D'$ . 再因为  $\dim |D'| = 0$ , 所以有  $D' = D_1'$ .

取定  $x_2,...,x_r$ , 考虑函数  $\exp\left(\sum_{k=1}^r \int_{P_0}^{x_k} \varphi\right)$ , 分别记  $z_{\nu},w_{\nu}$  为  $P_{\nu},Q_{\nu}$  的局部坐标 [使得  $z_{\nu}(P_{\nu})=0$ ,  $w_{\nu}(Q_{\nu})=0$ ]. 于是, 当  $x_1$  位于  $P_{\nu}$  附近时, 成立  $\int_{P_0}^{x_1} \varphi=\sum_{k=1}^r \int_{P_0}^{x_1} \omega_{P_kQ_k} = \int_{P_0}^{x_1} \frac{\mathrm{d}z_{\nu}}{z_{\nu}} + h$ , 其中 h 为  $P_{\nu}$  附近的全纯函数. 同样地, 当  $x_1$  在  $Q_{\nu}$  附近时, 有  $\int_{P_0}^{x_1} \varphi = -\int_{P_0}^{x_1} \frac{\mathrm{d}w_{\nu}}{w_{\nu}} + h'$ , 其中 h' 为  $Q_{\nu}$  附近的全纯函数. 因此, 在  $P_{\nu}$  附近成立.

$$\exp\left(\sum_{k=1}^{r} \int_{P_0}^{x_k} \varphi\right) = c(x_2, ..., x_r) z_{\nu} e^h, \quad (c(x_2, ..., x_r) \in \mathbb{C} - \{0\}),$$

以及, 在  $Q_{\nu}$  附近成立

$$\exp\left(\sum_{k=1}^r \int_{P_0}^{x_k} \varphi\right) = c'(x_2, ..., x_r)\omega_{\nu}^{-1} e^{h'}, \quad (c'(x_2, ..., x_r) \in \mathbb{C} - \{0\}).$$

于是, 关于  $x_1$  的函数  $\exp\left(\sum_{k=1}^r \int_{P_0}^{x_k} \varphi\right)$  的除子为  $\sum P_{\nu} - \sum Q_{\nu} = D - D_1$ . 因此函数  $x_1 \mapsto F(x_1, x_2, ..., x_n)$  的除子为

$$D - D_1 + E_1 - E = D_1' - D' = 0.$$

因此该函数在 X 全纯且非零,从而为非零常值函数 [在固定一般点  $x_2,...,x_n$  的条件下] . 再由该函数关于自变量  $x_1,...,x_r$  的对称性即可, $F \equiv c_0 \in \mathbb{C} - \{0\}$ . 综上, 我们已证明: 存在常数  $c_0 \neq 0$  使得

$$\exp\left(\sum_{\nu=1}^r \int_{P_0}^{x_\nu} \varphi\right) \vartheta\left(A(x_1) + \dots + A(x_r) - A(D_1) - \zeta\right) = c_0 \vartheta(A(x_1) + \dots + A(x_r) - A(D) - \zeta).$$

将上式两边对  $x_1$  微分, 再令  $x_1 = P_1$ . 注意当  $x_1 = P_1$  时成立  $\exp\left(\int_{P_0}^{x_1} \varphi\right) = 0$  [见前文] , 从而得

$$c_1 \exp\left(\sum_{\nu=2}^r \int_{P_0}^{x_{\nu}} \varphi\right) \vartheta\left(A(P_1) + A(x_2) + \dots + A(x_r) - A(D_1) - \zeta\right) dz_1(P_1)$$

$$= c_0 \sum_{k=1}^g \frac{\partial \vartheta}{\partial z_k} \left(A(P_1) + A(x_2) + \dots + A(x_r) - A(D) - \zeta\right) \omega_k(P_1);$$

这里的  $z_1, z_\nu$  分别为点  $P_1, P_\nu$  附近的局部坐标, 常数  $c_1 \neq 0$ ; 事实上, 由前文知, 在点  $P_1$  附近成立  $\exp\left(\int_{P_0}^{x_1} \varphi\right) = z_1 e^h$ , 其中 h 在  $P_1$  附近全纯. 反复上述操作, 最后得到

$$c_1 \cdots c_r \vartheta \left( A(P_1) + \cdots + A(P_r) - A(D_1) - \zeta \right) dz_1(P_1) \cdots dz_r(P_r)$$

$$= c_0 \sum_{1 \le k_1, \dots, k_r \le g} \frac{\partial^r \vartheta}{\partial z_{k_1} \cdots \partial z_{k_r}} \left( A(P_1) + \cdots + A(P_r) - A(D) - \zeta \right) \omega_{k_1}(P_1) \cdots \omega_{k_r}(P_r).$$

注意上式左边不为零, 且  $A(P_1) + \cdots + A(P_r) = D$ , 因此存在 [介于 1 和 g 之间的]  $k_1, \ldots, k_r$  使得

$$\frac{\partial^r \vartheta}{\partial z_{k_1} \cdots \partial z_{k_r}} \neq 0.$$

这就证明了  $m \le r = r_{\zeta}$ , 从而黎曼奇点定理得证.

黎曼在文献 [3] 中证明该定理时, 并没有直接使用正规 Abel 微分  $\omega_{P_{\nu}Q_{\nu}}$ , 而是用定理17.6的表达式. 于是, 我们其实也可以直接考虑函数

$$F(x_1, ..., x_r) = \frac{\prod_{k,\ell=1}^r \vartheta(A(x_k) - A(P_\ell) - \zeta_0)}{\prod_{k,\ell=1}^r \vartheta(A(x_k) - A(Q_\ell) - \zeta_0)} \frac{\vartheta(\sum_{\nu=1}^r A(X_\nu) - A(D_1) - \zeta)}{\vartheta(\sum_{\nu=1}^r A(X_\nu) - A(D) - \zeta)},$$

其中  $\zeta_0$  是  $\Theta$  上给定的一般的点. 用这个函数来证明, 本质上是一样的.

黎曼奇点定理的应用之一是证明如下定理: 若 X 不是超椭圆的,则  $\Theta$  的奇点构成的集合  $\Theta_{\text{sing}}$  的维数是 g-4 [而当 X 是超椭圆曲线的时候,该维数是 g-3]. 这是一个重要的性质,它表明雅可比簇是一类特殊的**主极化 Abel 簇** (principally polarized abelian variety) [即由满足如下性质的格点子群定义的复环面: 该格点子群的基形如 (I,B),其中 I 为单位阵,B 为复对称阵,并且虚部正定].而 [定义在 Abel 簇上的]  $\Theta$ -除子在一般的点处光滑。我们不打算在这里证明该定理,但会解释为什么当  $g \geq 4$  的时候  $\Theta_{\text{sing}} \neq \varnothing$ . 关于此定理的讨论可见 [8], [10], 而 A. Andreotti 和 A. Mayer 研究了这个定理的逆定理,见 On period relations for abelian integrals on algebraic curves, Annali Sc. Norm. Pisa **21** (1967), 189-238.

由定理19.1可知,  $\Theta_{\text{sing}}$  是集合  $W_{g-1}^1 := \left\{ A(D) \middle| D \geq 0, \deg D = g-1, \dim |D| > 0 \right\}$  的某个平移. 因此,  $\Theta_{\text{sing}} \neq 0$  等价于如下命题: 存在 X 上的非常值亚纯函数, 使得该函数的极点除子的次数  $\leq g-1$ . 若 X 是超椭圆的, 则  $g \geq 3$  时显然成立. 而证明 X 非超椭圆 [且  $g \geq 4$ ] 的情形的一种方法是先证明如下引理:

引理. 设 
$$X\subseteq \mathbb{P}^{g-1}$$
 为典范嵌入,则存在二次型  $Q=\sum_{1\leq i,j\leq g}a_{ij}z_iz_j$  [其中  $a_{ij}$  为对 称阵] 使得  $Q|_X\equiv 0$ ,并且  $0<\operatorname{rank}(a_{ij})\leq 4$ .

[只需要利用第13节的 Noether 定理以及简单的维数计算即可证之. 当然, g=4 的情形是平凡的.]

若承认此引理, 我们接下来这样做. 注意对称矩阵可对角化, 我们取  $(z_1,...,z_g)$  的适当的线性变换, 使得  $(a_{ij})$  变为如下对角形式:

$$\begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix},$$

并且对角元中 "1" 的个数至多为 4, 即  $Q=\sum_{\nu=1}^r z_{\nu}^2, r\leq 4$ . 若  $r\leq 2$ , 则 Q 为线性型的乘积, 从而在 X 上的限制不可能恒为零, 这是因为 X 非退化 [不包含于任何超平面]. 因

此  $Q=z_1^2+z_2^2+z_3^2$  或者  $Q=\sum_{\nu=1}^4 z_\nu^2$ . 注意  $a^2+b^2=(a+bi)(a-bi)$ , 从而通过继续作线性变换, 可将 Q 化为  $Q=z_3^2+z_1z_2$  或者  $Q=z_1z_2+z_3z_4$ . 若记  $(\omega_1,...,\omega_g)$  为  $H^0(X,\Omega)$ 的关于二次型 Q 的一组基, 则成立

$$\omega_3^2 + \omega_1 \omega_2 = 0$$
 或者  $\omega_1 \omega_2 + \omega_3 \omega_4 = 0$ 

[作为  $K_X^{\otimes 2}$  的截面]. 无论哪种情况, 若  $\mathrm{div}(\omega_3) = \sum_{\nu=1}^{2g-2} P_{\nu}, \, \omega_1$  或者  $\omega_2$  [不妨  $\omega_1$ ] 必然至少在  $P_{\nu}$  当中的 g-1 个点处取值为零, 从而  $\omega_1/\omega_3$  的极点除子的次数  $\leq g-1$ .

包含典范曲线的二次型的是非常丰富, 优美的研究课题, 可参考以下:

- B. Saint-Donat. On Petri's analysis or quadrics through a canonical curve, Math. Annalen **206** (1973), 157-175.
- M. Green. Quadrics of rank for in the ideal of the canonical curve. Inv. Math. **75** (1984), 85-104.

## 20 参考文献

关于黎曼曲面以及本书所涉及话题的文献浩如烟海,这里只列出能令我们满足的一部分.

黎曼曲面的经典书籍为:

[1] H. Weyl. Die Idee der Riemannschen Fläche, Teubner 1913.

以下是黎曼的两篇原始文章, 它们构成本书大多内容的基础:

- [2] B. Riemann. Theorie der Abel'schen Functionen. J. für die reine und angew. Math. 54 (1857). Collected Works: pp. 88-144.
- [3] B. Riemann. Über das Verschwinden der Theta-Functionen. J. für die riene und angew. Math. **65** (1865). Collected Works: 212-224.

以下两份黎曼曲面讲义容易找到, 且与本书的第一部分有很多相同之处:

- [4] O. Forster. Riemannsche Flächen, Springer 1977. 此书有英文翻译版.
- [5] R.C. Gunning. Lectures on Riemann surfaces. Princeton Mathematical Notes, 1966.

关于定向曲面的拓扑, 特别是分类定理, 可见:

[6] W.S. Massey. Algebraic topology: An Introduction. Harcourt Brace, New York, 1967.

关于本书前半部分用到的复分析知识 [尤其是  $\bar{\partial}$ -算子的性质],以及有限性定理的另一种证明, 可见:

[7] R. Narasimhan. Complex Analysis in one Variable, Birkhaüser, 1985.

说到曲线与雅可比簇的几何的快速入门,没有什么比下面这本优美的书更值得推荐:

- [8] D. Mumford. *Curves and their Jacobians*. University of Michigan Press, 1975. 以下两本书不可或缺, 它们不仅也讲了本书内容, 而且还介绍了更多:
- [9] P.A. Griffiths, J. Harris. *Principals of Algebraic Geometry*. Wiley, New York, 1978.
- [10] E. Arbarello, M. Cornalba, P.A. Friffiths, J. Harris. Geometry of Algebraic Curves, Vol. I, Springer, 1985.

Serre 对偶定理的原始文章为:

- [11] J.-P. Serre. Un théorème de dualité. Comm. Math. Helv. **29** (1955), 2-26.

  Martens 对 Torelli 定理的证明见:
- [12] H. Martens. A new proof of Torelli's theorem. Annals of Math. 78 (1963), 107-111.