TRIGONOMETRY **Chapter 19**

del ángulo doble

HISTORIA Y APLICACIONES DE LA TRIGONOMETRÍA

IDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE

Para el seno:

sen 2x = 2 sen x cos x

Para el coseno:

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\cos 2x = 1 - 2\sin^2 x$$

$$\cos 2x = 2\cos^2 x - 1$$

Ejemplos:

- $sen 20^{\circ} = 2 sen 10^{\circ} cos 10^{\circ}$
- $\cos 6\alpha = \cos^2 3\alpha \sin^2 3\alpha$
- $2 \text{sen}^2 15^\circ = 1 \cos 30^\circ$

<u>IDENTIDADES DE DEGRADACIÓN</u>

$$2\cos^2 x = 1 + \cos 2x$$

Para la tangente:

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

Ejemplo: Si tan x = 2; calcule: tan 2x

Resolución

Dato:
$$tan x = 2$$

Luego:
$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x} \implies \tan 2x = \frac{2(2)}{1 - (2)^2}$$

$$\therefore \tan 2x = -\frac{4}{3}$$

IDENTIDADES AUXILIARES

$$\cot \alpha - \tan \alpha = 2 \cot 2\alpha$$

 $\cot \alpha + \tan \alpha = 2 \csc 2\alpha$

Si cosx = $\frac{2}{3}$, donde 0° < x < 90° ; calcule sen2x

Resolución

Del dato:

$$\cos x = \frac{2}{3} = \frac{CA}{H}$$

¡ Buen trabajo!

Luego: sen2x = 2 senx cosx

$$sen2x = 2\left(\frac{\sqrt{5}}{3}\right)\left(\frac{2}{3}\right)$$

$$\therefore \text{sen2x} = \frac{4\sqrt{5}}{9}$$

Si
$$\frac{5}{\cos \theta} = \frac{3}{\sin \theta}$$
, calcule $\tan 2\theta$

Resolución

Del dato:

$$\frac{5}{\cos\theta} = \frac{3}{\sin\theta}$$

$$\frac{\text{sen}\theta}{\cos\theta} = \frac{3}{5}$$

$$\tan\theta = \frac{3}{5}$$

Luego:
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

$$tan2\theta = \frac{2\left(\frac{3}{5}\right)}{1-\left(\frac{3}{5}\right)^2} = \frac{\frac{6}{5}}{\frac{25}{25}-\frac{9}{25}} = \frac{\frac{6}{5}}{\frac{16}{25}}$$

$$\tan 2\theta = \frac{\frac{5}{6}(25)}{\frac{5}{5}(16)}$$

$$\therefore \tan 2\theta = \frac{15}{8}$$

A partir del gráfico, determine el valor de x .

Resolución

Del gráfico:
$$tan\theta = \frac{2}{x}$$
; $tan2\theta = \frac{7}{x}$

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

Reemplazando:

$$\frac{7}{x} = \frac{2\left(\frac{2}{x}\right)}{1-\left(\frac{2}{x}\right)^2} = \frac{\frac{4}{x}}{\frac{x^2-4}{x^2}}$$

$$\frac{7}{x} = \frac{4x^2}{x(x^2-4)}$$

$$7x^2 - 28 = 4x^2$$

$$3x^2 = 28$$

$$x^2 = \frac{28}{3}$$

$$x = \sqrt{\frac{28}{3}}$$

$$x = \frac{2\sqrt{7}}{\sqrt{3}}$$

$$\therefore x = \frac{2\sqrt{21}}{3} m$$

Determine el valor de $E = (\cot 42^{\circ} + \tan 42^{\circ}) \cos 6^{\circ}$

Resolución

Recordar:

$$\cot \alpha + \tan \alpha = 2 \csc 2\alpha$$

$$E = (\cot 42^{\circ} + \tan 42^{\circ}) \cos 6^{\circ}$$

$$E = [2 \csc(2 \times 42^{\circ})] \cos 6^{\circ}$$

$$E = 2 \csc 84^{\circ} \cdot \sec 84^{\circ}$$

$$1$$

Reduzca:
$$G = \frac{\sin 2\alpha + \sin \alpha}{1 + \cos 2\alpha + \cos \alpha}$$

Recordar:

$$sen2\alpha = 2 sen\alpha . cos\alpha$$

$$1 + \cos 2\alpha = 2 \cos^2 \alpha$$

Resolución

$$G = \frac{sen2\alpha + sen\alpha}{1 + cos2\alpha + cos\alpha}$$

$$G = \frac{2 sen\alpha . cos\alpha + sen\alpha}{2 cos^2 \alpha + cos\alpha}$$

$$G = \frac{\operatorname{sen}\alpha \left(\frac{2 \cos \alpha + 1}{\cos \alpha \left(\frac{2 \cos \alpha + 1}{1}\right)}\right)}{\cos \alpha \left(\frac{2 \cos \alpha + 1}{1}\right)}$$

$$G = \frac{\operatorname{sen}\alpha}{\cos\alpha}$$

$$\therefore$$
 G = tan α

Carlita necesita A gramos de sodio para realizar un experimento conformado por ciertas cantidades de cloro y sodio para obtener NaCl en un grado de saturación correcta. - Si A está determinado por 32 sen2 θ y sabemos que sen θ - $\cos\theta$ = $\frac{3}{4}$; calcular los A gramos necesarios para que Carlita pueda experimentar sin ningún problema.

Recordar:

$$sen^2\mathbf{\theta} + cos^2\mathbf{\theta} = 1$$

$$sen2\theta = 2 sen\theta . cos\theta$$

Dato:
$$sen\theta - cos\theta = \frac{3}{4}$$

$$(\operatorname{sen}\theta - \cos\theta)^2 = \left(\frac{3}{4}\right)^2$$

$$sen^2\theta + cos^2\theta - 2 sen \theta \cdot cos \theta = \frac{9}{16}$$

$$sen2\theta = \frac{7}{16}$$

32 sen2
$$\theta$$
 = $32\left(\frac{7}{16}\right)$

$$\therefore A = 14 \text{ gramos}$$

Tres estudiantes: Roberto, Kennet y Alexander, entran al concurso de

matemáticas; el puntaje se designa por $E_{(x)} = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$

Siendo asignado un x = $\frac{\pi}{3}$ para Roberto, x = $\frac{\pi}{4}$ para Kennet y x = $\frac{\pi}{6}$ para Alexander. ¿ Quién ocupó el primer lugar?

Resolución

Recordar:

$$1 + \cos 2x = 2\cos^2 x$$

$$1 - \cos 2x = 2 \sin^2 x$$

$$E_{(x)} = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \sqrt{\frac{2 \sin^2 x}{2 \cos^2 x}} = \sqrt{\tan^2 x} \implies E_{(x)} = |\tan x|$$

Roberto:
$$E_{(\frac{\pi}{3})} = \left| \tan \frac{\pi}{3} \right| = \left| \sqrt{3} \right| = \sqrt{3}$$

Kenneth:
$$E_{(\frac{\pi}{4})} = \left| \tan \frac{\pi}{4} \right| = |1| = 1$$

Alexander:
$$E_{(\frac{\pi}{6})} = \left| \tan \frac{4}{6} \right| = \left| \frac{\sqrt{3}}{3} \right| = \frac{\sqrt{3}}{3}$$

: Roberto ocupó el