2D MATRIX

Act
as if what
you do makes
a difference.
It does.

-WILLIAM JAMES

Today's content

- 01 Matrice basics
- 02. Print row wise sum
- 0) Print col wise sum
- Ou. Print Diagonal of square matrix
- 05 Print all diagonal of Rectangular mators
- 06. Transpose a mateix
- 07. Rotate matriz by 90°

Matrix - 2D Array + Array of Arrays cols/restical Declaration: int mat (4) (5); tous/horizontal 3 2 0 → mat[1][3] ١ \rightarrow mat (2)(1) 2 -> mal (3)[4] ડ Commandiae

Gener of			int	[~] (~j) ma	t		
met (0) (2)	0	1	2	. Ĵ .		• •	m-I	mot (0) (m-1)
0				(0,1)				
t				(1,3)				
Q	(9,0)	(1,1)	(1,2)	(:.j)		·	(1, 141)	
•								
0-1				(n-1,j)				04 m

Obs - If we move on it sow Local will change (0 m-1) Obs - If we move on j' col Lyow will change (O n-1)

0: Given mat [N] [M], print row wise sum

int n = mod. length -> rows

int m = mot [0], leight -> coloumns

Idea - I terate on each row & sum all the col values

```
void rowsum (int C)() mot)
      int n = mod. length // rows
int m = mot(o). length // obs
      for ( r=0; r<n; r++)
          sum=0 // sum of of sow
    for (c=0; c<m; c++);

sum = sum + ar[r][c];

}

println (sum);
                                             TC = O(n*m)
                                             SC= 0(1)
```

02. Given mat (n) (m), print cal wise sum.

	0	ı	2	3	
0	4	3		7	
t	6	2	3	4	{ TODO }
2	5	3	2	7	
	15	8	6	18	

03. Given square matrix matN,

Diagonal - Right to left

$$\frac{2}{1} = \frac{3}{3}$$

$$\frac{3}{1} = \frac{3}{1}$$

$$\frac{1}{2} = \frac{3}{1}$$

$$\frac{1}$$

TC: 0(n)

SC: 0(1)

TODO -> For loop instead of while loop

rectaguler matris

03. Given a matrix mat [N] [M], print all the diagonals from Right to left

Note: Diagonals should start from 0 row & con also start from last cal

Obs → i <n \$ 120

Idea - First point all the diagonals of 0 0000
- Point all the diagonals of last col

```
void print rectagle diagonal (int [](] mat)
      int n= mat. length;
      int m = mat(o). length;
     11 print diagonals of 0' now
     for (j=0; j<m; j++)
       → int r=0, c=j ←
         while ( x < n && c 20 ) }
          print (mat (v) [c]);

++; c--;
                                         TC = O(n+m)
                                         SC=0(1)
         Printin():
  // print diagonals of last col
     for ( 1=1; 1 <n; 1++)
          8= 1 , c= m-1
        while ( x < n && c 20 ) }
         print (mat (v) [c]);
```

04. Given a mot [N] (N), colculate transpose of

matrix

Interchanging rous with cals

Expected SC:0(1)

Transpose	_
rows and	

	6	ı	2	3	ч
٥	6	6	4	16	21
1	2	5	12	2	22
2	જ	8	13	18	23
3	5	9	7	19	24
4	9	0	ك	2•	25

void transpose (int [][] mot)

int n= mot.length:

for (i=0; i<n; i++)

for (j=i+1; j<n; j++);

lenp = mot(i)[j]

mot(i)[j] = mot(j)[i]

mot(j)[i] = lemp

3

TC=0(n2)

3

SC=0(1)

Note: Swap either in lower toingle or in the upper toingle

05. Given a mat [n] [n], Rotate the matrix by 90° from top sight sc:0(1)

Transpose	
0° 800 - 0° col	
13 200 — 1° col	
2" 700 _ 2"d a	9
•	

0	ı	2	3	ч
	2	ઝ	J	5
6	7	8	g	10
11	12	13	7	ڪا
16	ī	18	19	20
21	22	23	24	25

				<u> </u>	
0	21	16	11	6	1
ţ	22	ין	12	\boldsymbol{r}	2
→ 2	23	18	ાં	8	3
3	24	19	Y	9	4
4	25	20	<u></u>	P	5

Tronspose	

	6	1	2	3	ч
٥	9	6	*	16	21
ı	2	5	12	17	22
2	ઝ	8	13	18	23
3	5	9	Y	19	24
4	2	0	٤	2.	25

Reverse each

```
1=0 9=4
void rotaleby 90° (int [][] mat)
    transpose (mat) mat (3)(0) with
                                  mot (3) (4)
         int i=0 j=n-1
         While ( P < j)
          int temp = mot [v] (i) ] swap

mot (v) (j) = lemp
                             TC: 0(n2)
                             SC: 0(1)
```