Feature Clustering for the SN_DREAMS Diabetic Retinopathy (DR) dataset

Aadit Deshpande

Nature of Data and Dataset

- 13 Risk Factors for Diabetic Retinopathy (DR)
- 1555 Patients
- Categorical and Continuous Columns
- 14th DR Column Indicates Diabetic Retinopathy
- Expert-Labelled Primary and Secondary Risk Factors
- Data points (Patients) with DR = 1 are sparse => Imbalanced Data
- Pre-processing includes SMOTE-ENN, Standardization

Motivation for Feature Clustering

- Identifying Features as primary and secondary indicators of DR
- Dimensionality Reduction + Ranking Features
- Comparing ML vs Expert-labelled Feature Clusters

Primary Features	Secondary Features	
Hypertension_cat	Gen_cat	
Insulin_Treatment_cat	IHD_cat	
BP_sys	Fam_His_Diab_cat	
HbA1c_grade_cat	Physical_AS_cat	
DurYrs	Ann_Family_In	
FBS_Grp_cat	AgeGrp_cat	
	BMI_cat	

Clustering (Attempt 1)

- Transpose Matrix (Cluster by feature, not patient)
- Standard Scaling
- K-Means Clustering (k=2, k-means++)
- Agglomerative Clustering (Hierarchical)
- [Neither matched the real Clusters]
- T-SNE Visualization

```
Cluster 0 Attributes are:
    gen_cat
    bp_sys
    HbA1c_grade_cat
    agegrp_cat
    DurYrs
    FBS_Grp_cat

Cluster 1 Attributes are:
    Hypertension_cat
    IHD_cat
    insulin_treatment_cat
    fam_his_diab_cat
    Physical_AS_cat
    ann_family_in
    BMIcat
```

K-Means Clusters

```
Cluster 0 Attributes are:
    gen_cat
    fam_his_diab_cat
    bp_sys
    HbA1c_grade_cat
    agegrp_cat
    BMIcat
    DurYrs
    FBS_Grp_cat

Cluster 1 Attributes are:
    Hypertension_cat
    IHD_cat
    insulin_treatment_cat
    Physical_AS_cat
    ann_family_in
```

Agglomerative Clusters

TSNE Visualization

Classification (Attempt 2)

- SMOTE-ENN to correct DR=1 Sparseness (Data Imbalance)
- 70:30 Train Test Split
- kNN Classification (k=5, Minkowski Distance (p=2))
- Classify using the 13 risk factors individually (DR is the dependent Variable)
- Metrics: ROC-AUC Score and Classification Accuracy
- Sort into 2 halves based on AUC Scores
- Clusters are better but still don't match exactly

kNN with Individual Features (Ranked by AUC Scores)

kNN with All Features (AUC Score Upper Bound)

Autoencoder (Attempt 3)

- 70:30 Train Test Split
- Standard Scaler + Normalization
- 2-layer Autoencoder
 - Densely Connected Code Layer (7 neurons)
 - Dense *Output Layer* (13 neurons)
 - 202 Parameters
- Training
 - Mean Absolute Error
 - Adam Optimizer
 - 15 epochs
- Use Code Layer Weights used to score features
- Much Better Clusters

Model: "autoencoder"		
Layer (type)	Output Shape	Param #
Code_Layer (Sequential)	(None, 7)	105
Output_Layer (Sequential)	(None, 14)	112
 Fotal params: 217		
rainable params: 217		
Non-trainable params: 0		

Autoencoder Model Structure

Feature Selection (Code Layer Weights threshold)

References

- https://www.tensorflow.org/tutorials/generative/autoencoder
- https://scikit-learn.org/stable/modules/classes.html#modulesklearn.cluster
- https://towardsdatascience.com/dimensionality-reduction-pca-versus-autoencoders-338fcaf3297d
- Khalid, S., Prieto-Alhambra, D. Machine Learning for Feature Selection and Cluster Analysis in Drug Utilisation Research. *Curr Epidemiol Rep* **6**, 364–372 (2019).