Práctico 6

Lógica de Predicados

Ejercicio 1

Considere un conjunto A de números reales que incluya al 0. Considere un lenguaje de primer orden con un símbolo de relación binario M que denota la relación < de los reales y otro símbolo binario = que denota la igualdad. Considere un símbolo de función binario m que denota la multiplicación.

Podemos usar el lenguaje de primer orden para expresar propiedades. Por ejemplo, la propiedad "ser neutro" puede expresarse como

SER_NEUTRO
$$(x_1) := ((\forall x_2) \ m(x_2, x_1) =' x_2)$$

Usando solamente los símbolos dados, escriba fórmulas de primer orden que expresen las siguientes nociones.

- a. x_1 es el máximo de A.
- b. x_1 es un sucesor inmediato de x_2 .
- c. No hay ningún elemento entre x_1 e x_2 .
- d. La función cuadrado es creciente.

Ejercicio 2

Sean PE el conjunto de las personas; la relación hermanos: $H \subseteq PE \times PE$; la relación estudiante: $E \subseteq PE$; la función madre: $m: PE \to PE$ y un elemento de PE: Juan.

Considere un lenguaje de primer orden con igualdad con los siguientes símbolos:

- P_1 denota la relación H.
- P_2 denota la relación E.
- f_1 denota la función m
- c_1 denota el elemento Juan

Usando solamente los símbolos dados, escriba fórmulas de primer orden que definan las siguientes nociones:

- a. x_1 es la madre de Juan.
- b. x_1 es la madre de algún estudiante.
- c. Todos los estudiantes son hermanos de Juan.
- d. Todos los estudiantes tienen hermanos.
- e. Juan tiene por lo menos 2 hermanos.
- f. x_1 es una persona tal que todos sus hermanos son estudiantes pero él no lo es.
- g. No hay personas que sean estudiantes.
- h. Los estudiantes no tienen hermanos.

Ejercicio 3

Considere el conjunto \mathbb{N} de los números naturales. Considere un lenguaje de primer orden con un símbolo de predicado P_1 (unario) que denota la relación "ser par", un símbolo de relación binario =' que denota la igualdad, dos símbolos de función f_1 y f_2 (binarios) que denotan la suma y el producto respectivamente y tres símbolos de constante c_1 , c_2 , c_3 que denotan las constantes 1, 2, 6.

Traduzca a fórmulas de primer orden (utilizando solamente los símbolos definidos) cada uno de los siguientes enunciados:

- a. Todo natural n cumple que $n^2 + n$ es par.
- b. Para todo natural par p existe un natural m tal que $p = 2 \times m$.
- c. La suma de dos naturales impares cualesquiera es un natural par.
- d. Para todo natural n existe un natural m tal que $n \times (n+1) \times (n+2) = 6 \times m$.
- e. No hay ningún natural que sea par e impar a la vez.
- f. Hay un natural n que es par y que además cumple que $n + n = n \times n$.
- g. La suma posee un neutro, que además es único.
- h. La suma es una función inyectiva.

Ejercicio 4

Considere un lenguaje de primer orden del tipo $\langle 1,2;2;0\rangle$ con dos símbolos de relación P_1 (unario) y P_2 (binario) y un símbolo de función f_1 (binario). Sea FORM el conjunto de fórmulas de dicho lenguaje. Indique cuáles de las siguientes son fórmulas bien formadas de dicho lenguaje (o sea, cuáles cumplen la definición de FORM).

```
a. ((\forall x_1)((\exists x_2) \ P_2(x_1, x_2)))

b. (P_1(x_1) \to (((\exists x_2) \ f_1(x_1, x_2) =' \ x_2) \land ((\exists x_1) \ P_2(x_1, x_2))))

c. (((\exists x_1)((\exists x_2) \ f_1(x_1, x_2))) \leftrightarrow ((\forall x_1) \ P_1(f_1(x_1, x_1))))

d. ((\forall x_1)((\forall x_2) \ (P_1(x_1) \lor ((\exists x_1)P_2(x_1, x_2))))))

e. (P_1((\forall x_1) \ P_2(x_1, x_2)) \leftrightarrow ((\forall x_1) \ P_1(P_2(x_1, x_2)))))

f. ((\exists x_1) \land ((\forall x_2)P_2(x_1, x_2)))

g. ((\forall x_1) \ (P_1(x_1) \to (P_1(f_1(x_1, x_2)) \land ((\exists x_1)P_1(f_1(x_1, f_1(x_1, x_2))))))))))
```

Ejercicio 5

```
a. Escriba el tipo de similaridad de las siguientes estructuras:
```

```
I. \langle \mathbb{Q}, <, 0 \rangle

II. \langle \mathbb{N}, +, \times, S, 0, 1, 2, 3, 4, \dots, n, \dots \rangle, donde S(x) = x + 1

III. \langle 2^{\mathbb{N}}, \subseteq, \cup, \cap, {}^{c}, \emptyset, \{1, 2\} \rangle

IV. \langle \mathbb{N}, \{x \in \mathbb{N}/x \text{ es impar}\}, \{x \in \mathbb{N}/x \text{ es primo}\}, +, {}^{2}, 0, 1 \rangle

V. \langle \mathbb{R}, 1 \rangle

VI. \langle \mathbb{R}, \mathbb{N}, <, T, 0, 1, 2 \rangle, donde T(a, b, c) es la relación "b está entre a y c".

VII. \langle \{0, 1, 2\}, \{(0, 1), (0, 2), (1, 2)\}, \{0, 2\}, 0, 1, 2 \rangle
```

b. Dé estructuras que tengan los siguientes tipos de similaridad:

```
I. \langle 1, 1; -; 3 \rangle

II. \langle 4; -; 0 \rangle

III. \langle 1, 2; 1, 2; 1 \rangle

IV. \langle -; 2, 3; 0 \rangle
```

- c. Considere los tipos de similaridad de la parte a. Para cada uno de ellos, dé el alfabeto para un lenguaje de dicho tipo.
- d. I. Escriba 3 términos pertenecientes al lenguaje del punto (aIII).
 - II. Escriba 3 términos pertenecientes al lenguaje del punto (aIV).
 - III. Escriba 3 átomos pertenecientes al lenguaje del punto (av).
 - IV. Escriba 3 átomos cerrados pertenecientes al lenguaje del punto (aVI).
 - V. Escriba 3 átomos pertenecientes al lenguaje del punto (aVII).
 - VI. Escriba 3 sentencias pertenecientes al lenguaje del punto (aIV).

Ejercicio 6

Considere un lenguaje de primer orden de tipo $\langle -; 2; 1 \rangle$ con un símbolo de función f_1 y un símbolo de constante c_1 .

a. En las siguientes fórmulas determine cuáles ocurrencias de variables son libres y cuáles son ligadas. Para aquellas que sean ligadas, señale el cuantificador al cual están ligadas.

```
I. x_2 =' x_1

II. x_1 =' x_1

III. x_2 =' c_1

IV. ((\exists x_2) f_1(x_2, x_3) =' c_1)

V. (((\forall x_4) f_1(x_1, x_3) =' c_1) \land ((\exists x_2) x_3 =' x_1))

VI. (((\forall x_3) x_3 =' x_4) \rightarrow ((\forall x_5) x_5 =' x_2))

VII. (((\exists x_3) x_3 =' c_1) \lor ((\exists x_4) x_3 =' x_4))
```

b. Realice las siguientes sustituciones:

```
I. x_2 =' x_1[x_1/x_1]

II. x_1 =' x_1[x_3/x_1]

III. x_2 =' c_1[f_1(x_1, x_3)/x_3]

IV. (((\forall x_4) \ f_1(x_1, x_3) =' c_1) \land ((\exists x_2) \ x_3 =' x_1))[f_1(x_1, x_2)/x_3]

V. (((\forall x_3) \ x_3 =' x_4) \rightarrow ((\forall x_5) \ x_5 =' x_2))[f_1(x_1, x_2)/x_5]

VI. (((\exists x_3) \ x_3 =' c_1) \lor ((\exists x_4) \ x_3 =' x_4))[f_1(x_1, x_2)/x_3][x_1/x_1]
```

c. Para las fórmulas resultados de las sustituciones anteriores determine cuáles ocurrencias de variables son libres y cuáles son ligadas. Para aquellas que sean ligadas, señale el cuantificador al cual están ligadas. Compare el resultado con los obtenidos en la parte a.

Ejercicio 7

Considere un lenguaje de primer orden de tipo $\langle -; 2; 1 \rangle$ con un símbolo de función f_1 y un símbolo de constante c_1 . Verifique cuáles de las siguientes afirmaciones son correctas.

```
a. x_1 es libre para x_1 en la fórmula x_2 = x_1.
```

- b. x_3 es libre para x_1 en la fórmula $x_1 = x_2$.
- c. c_1 es libre para $f_1(x_1, c_1)$ en la fórmula $f_1(x_1, c_1) =' c_1$.
- d. $f_1(x_1, x_3)$ es libre para x_3 en la fórmula $x_2 = c_1$.
- e. x_1 es libre para $f_1(x_1, c_1)$ en la fórmula $((\forall x_1) f_1(x_1, c_1) = c_1)$.
- f. $f_1(c_1, x_2)$ es libre para x_2 en la fórmula $((\exists x_2) x_2 = 'x_1)$.
- g. $f_1(c_1, x_2)$ es libre para x_1 en la fórmula $((\exists x_2) \ x_2 =' x_1)$.
- h. $f_1(x_1, x_2)$ es libre para x_5 en la fórmula $(((\forall x_3) \ x_3 =' x_4) \rightarrow ((\forall x_5) \ x_5 =' x_2))$.

i. $f_1(x_1, x_2)$ es libre para x_3 en la fórmula $(((\exists x_3) \ x_3 =' c_1) \lor ((\exists x_4) \ x_3 =' x_4))$.

Ejercicio 8

Sean $\varphi \in \text{FORM}$, $x \in \text{VAR}$, $t \in \text{TERM}$. Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique.

- a. x está libre para x en φ
- b. Si $x \notin V(\varphi)$, entonces t está libre para x en φ .
- c. Si $x \notin BV(\varphi)$, entonces t está libre para x en φ .
- d. Si $x \notin FV(\varphi)$, entonces t está libre para x en φ .

Ejercicio 9

Considere un lenguaje de primer orden del tipo $\langle -; 1, 2; 1 \rangle$ con dos símbolos de función f_1 (unario) y f_2 (binario) y un símbolo de constante c_1 .

- a. Defina inductivamente el conjunto \mathtt{TERM}_C de los términos $\mathit{cerrados}$ pertenecientes a dicho lenguaje.
- b. Defina recursivamente la función $F: \mathtt{TERM}_C \to \mathbb{N}$ que calcula la cantidad de ocurrencias de c_1 en un término $t \in \mathtt{TERM}_C$.
- c. Demuestre por inducción que para todo $t \in \text{TERM}_C$ se cumple que F(t) > 0.

Ejercicio 10

Sean el lenguaje de primer orden con igualdad definido por el tipo de similaridad $\langle 1; -; 0 \rangle$ y la siguiente definición de la función $\#_{x_1}$: TERM $\to \mathbb{N}$, que cuenta las ocurrencias de la variable x_1 en un término del lenguaje:

$$\#_{x_1}(x_i) = \begin{cases} 0 & \text{si } x_i \neq x_1 \\ 1 & \text{si } x_i = x_1 \end{cases}$$

- a. Definir la función $\#_{x_1} : \mathtt{FORM} \to \mathbb{N}$, que cuenta las ocurrencias de la variable x_1 en una fórmula del lenguaje.
- b. Definir la función $\#_{x_1}^b$: FORM $\to \mathbb{N}$, que cuenta las ocurrencias ligadas de la variable x_1 en una fórmula del lenguaje.
- c. Demuestre que $((\bar{\forall}\varphi \in FORM))$ $(x_1 \text{ está libre para } y \text{ en } \varphi \text{ entonces } \#_{x_1}^b(\varphi[x_1/y]) = \#_{x_1}^b(\varphi)).$

Ejercicio 11

Sea L un lenguaje de primer orden con igualdad de tipo de similaridad $\langle 1; 1; 0 \rangle$ cuyo alfabeto cuenta con los símbolos de relación P y =', el símbolo de función f, las variables $\{x_i : i \in \mathbb{N}\}$, los conectivos \neg y \rightarrow , el cuantificador universal \forall , y los símbolos auxiliares) y (.

- a. Enuncie el PIP para las fórmulas del lenguaje L.
- b. Para cualquier fórmula $\varphi \in L$ y variables x_i, x_j tales que x_i no aparece en φ $(x_i \notin V(\varphi))$, pruebe que: $(\varphi[x_i/x_j])[x_j/x_i] = \varphi$.
- c. Muestre que la condición sobre la variable x_i es necesaria para que se cumpla la propiedad anterior.

Ejercicio 12

Considere un lenguaje de primer orden del tipo $\langle 1; -; 0 \rangle$ con un símbolo de predicado P (unario). Sea $Var = \{x_1, x_2, \ldots\}$ el conjunto de variables del lenguaje y sea FORM el conjunto de fórmulas del lenguaje.

- a. Defina recursivamente la función $V: FORM \to 2^{Var}$, tal que $V(\alpha)$ denota el conjunto de variables que ocurren en la fórmula α .
- b. Defina recursivamente la función $FV: \mathtt{FORM} \to 2^{Var}$, tal que $FV(\alpha)$ denota el conjunto de variables que ocurren libres en la fórmula α .
- c. Demuestre por inducción que para todo $\alpha \in FORM$ se cumple que: $FV(\alpha) \subseteq V(\alpha)$.

Ejercicio 13

Sea un lenguaje de primer orden con tipo de similaridad $\langle -; 1, 2, 2; 0 \rangle$ y símbolos de función f de aridad 1, g y h de aridad 2.

Sea $PROP_{\neg, \land, \lor}$ el conjunto de las fórmulas proposicionales que sólo emplean los conectivos \neg , \land y \lor .

- a. Defina inductivamente el conjunto TERM de los términos del lenguaje.
- b. Defina recursivamente una función biyectiva $C: \mathtt{TERM} \to \mathtt{PROP}_{\neg, \wedge, \vee}$, que cumpla:

$$C(g(x_1, x_3)) = (p_1 \wedge p_3)$$

- c. Defina recursivamente una función $R: \text{TERM} \to \text{TERM}$ tal que para todo término t se cumpla C(t) eq C(R(t)) y el conectivo \vee no ocurre en C(R(t)).
- d. Demuestre que para todo término t, C(t) eq C(R(t)).