First-order Necessary Conditions

Solutions to (Smooth) Optimization Problems Satisfy the First-order Conditions

Theorem: First-order Necessary Conditions [NW06]

If x^* is a local minimizer and f is continuously differentiable (in an open neighborhood of x^*), then

$$\nabla f(x^*)=0.$$

Here is Some Intuition Behind the First-order Conditions

Suppose x^* is a local minimizer but $\nabla f(x^*) \neq 0$.

Here is Some Intuition Behind the First-order Conditions (cont.)

What is the Significance of the Word "Necessary"

Definition: Stationary Point

The point \bar{x} is a stationary point if $\nabla f(\bar{x}) = 0$.

Does $\nabla f(\bar{x}) = 0$ imply that \bar{x} is a local minimizer/maximizer?

References

J. Nocedal and S. J. Wright, *Numerical Optimization*, second ed., Springer–Verlag, Berlin, Germany, 2006.