实验一 贝叶斯分类器的设计及应用实验

实验目标:理解朴素贝叶斯分类器的原理;

能独立实现常用贝叶斯分类器的设计;

准确评估分类器精度。

实验工具: Python(推荐) 或 C/C++

实验步骤:

一、朴素贝叶斯分类算法原理理解

每个数据样本用一个 n 维特征向量 $X=\{x_1,x_2,\cdots,x_n\}$ 表示;分别描述对 n 个属性 $A_1,A_2,...,A_n$ 样本的 n 个度量。假定有 **m 个类 C_1,\cdots,** C_m ,对于数据样本 X,分类法将预测 X 属于类 C_i ,当且仅当: $P(C_i|X)>P(C_i|X),1<=j<=m$ 且 $j\neq i$ 。

根据贝叶斯定理,: P(C_i|X)=P(X|C_i)P(C_i)/P(X)

只需最大化 $P(X|c_i)P(c_i)$ 。

假设属性之间相互独立,则
$$P(X \mid c_j) = \prod_{i=1}^n P(x_i \mid c_j)$$

一个对象被标记为 c_j ,如果这个类是如下贝叶斯公式的分子取得最大值,则一个对象将标记为类。

$$P(c_j) \bullet \prod_{i=1}^n P(x_i \mid c_j)$$

三种常用模型: 高斯模型、多项式模型、贝努利模型。

二、基于经典数据集实现糖尿病案例预测实验

1. 数据集简介

数据集 pima-indians-diabetes.data(详见附件,属于"皮马印第安人糖尿病问题"),其中包括 768 个对于皮马印第安患者的医疗观测细节,记录所描述的瞬时测量取自诸如患者的年纪,怀孕和血液检查的次数。所有患者都是 21 岁以上(含 21 岁)的女性,所有属性都是数值型,而且属性的单位各不相同。

数据集的前8列分别记录怀孕次数、口服葡萄糖耐量试验中2小时血浆葡萄糖浓度、舒张压、三头肌皮褶厚度、2小时血清胰岛素、体重指数 kg/m^2、糖尿病家族作用、年龄。

每一个记录归属于一个类,这个类指明以测量时间为止,患者是否是在5年之内感染的糖尿病。如果是,则为1,否则为0。

2. 朴素贝叶斯算法实验过程:

- ① 处理数据:从 CSV 文件中载入数据,然后划分为训练集和测试集。
- ② 提取数据特征: 提取训练数据集的属性特征,以便我们计算概率并做出预测。
- ③ 单一预测:使用数据集的特征生成单个预测。
- ④ 多重预测:基于给定测试数据集和一个已提取特征的训练数据集生成预测。
- ⑤ 评估精度:评估对于测试数据集的预测精度作为预测正确率。
- ⑥ 合并代码:使用所有代码呈现一个完整的、独立的朴素贝叶斯算法的实现。

1) 处理数据

首先加载数据文件,使用 csv 模块中的 open 函数打开文件,使用 reader 函数读取行数据。

```
def loadCsv(filename):
    lines = csv.reader(open(filename, "rb"))
    dataset = list(lines)
    for i in range(len(dataset)):
        dataset[i] = [float(x) for x in dataset[i]]
    return dataset
```

可以通过加载皮马印第安人数据集,然后打印出数据样本的个数。

```
filename = 'pima-indians-diabetes.data.csv'
dataset = loadCsv(filename)
print('Loaded data file {0} with {1} rows').format(filename, len(dataset))
```

下一步,用 splitDataset()函数将数据分为用于朴素贝叶斯预测的训练数据集(67%)和测试数据集(33%)。

```
def splitDataset(dataset, splitRatio):
    trainSize = int(len(dataset) * splitRatio)
    trainSet = []
    copy = list(dataset)
    while len(trainSet) < trainSize:
        index = random.randrange(len(copy))
        trainSet.append(copy.pop(index))
    return [trainSet, copy]</pre>
```

可以定义一个具有5个样例的数据集来进行测试,把它分为训练数据集和测试数据集,打印出来,看每个数据样本最终落在哪个数据集。

```
dataset = [[1], [2], [3], [4], [5]]
splitRatio = 0.67
train, test = splitDataset(dataset, splitRatio)
print('Split {0} rows into train with {1} and test with {2}').format(len(dataset), train, test)
```

2) 提取数据特征

朴素贝叶斯模型包含训练数据集中数据的特征,然后使用这个数据特征来做预测。

所收集的训练数据的特征,包含相对于每个类的每个属性的均值和标准差。例如,有 2 个类和 7 个数值属性,则需要每一个属性(7)和类(2)的组合的均值和标准差,即 14 个属性特征。

我们将数据特征的获取划分为以下的子任务:

- a. 按类别划分数据
- b. 计算均值
- c. 计算标准差
- d. 提取数据集特征
- e. 按类别提取属性特征

划分数据

SeparateByClass()函数按类别划分数据,然后计算出每个类的统计数据。

可以用一些样本数据测试如下:

```
dataset = [[1, 20, 1], [2, 21, 0], [3, 22, 1]]
separated = separateByClass(dataset)
print('Separated instances: {0}').format(separated)
```

计算均值

计算在每个类中每个属性的均值、每个类中每个属性的标准差。均值是数据的中点或者集中 趋势,在计算概率时,用来作为高斯分布的中值。

```
def mean(numbers):
    return sum(numbers) / float(len(numbers))

def stdev(numbers):
    avg = mean(numbers)
    variance = sum([pow(x - avg, 2) for x in numbers]) / float(len(numbers) - 1)
    return math. sqrt(variance)
```

提取数据集的特征

对于一个给定的样本列表(对应于某个类),我们可以计算每个属性的均值和标准差。

```
def summarize(dataset):
    summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
    del summaries[-1]
    return summaries
```

测试 summarize () 函数如下:

```
dataset = [[1, 20, 0], [2, 21, 1], [3, 22, 0]]
summary = summarize(dataset)
print('Attribute summaries: {0}').format(summary)
```

按类别提取属性特征

首先将训练数据集按照类别进行划分,然后计算每个属性的摘要

```
def summarizeByClass(dataset):
    separated = separateByClass(dataset)
    summaries = {}
    for classValue, instances in separated.iteritems():
        summaries[classValue] = summarize(instances)
    return summaries
```

使用小的测试数据集来测试 summarizeByClass()函数

```
dataset = [[1, 20, 1], [2, 21, 0], [3, 22, 1], [4, 22, 0]]
summary = summarizeByClass(dataset)
print('Summary by class value: {0}').format(summary)
```

3) 预测

我们现在可以使用从训练数据中得到的摘要来做预测。做预测涉及到对于给定的数据样本, 计算其归属于每个类的概率,然后选择具有最大概率的类作为预测结果。 我们可以将这部分划分成以下任务:

- a. 计算高斯概率密度函数
- b. 计算对应类的概率
- c. 单一预测
- d. 多重预测
- e. 评估精度

计算高斯概率密度函数

给定来自训练数据中已知属性的均值和标准差,可以使用高斯函数来评估一个给定的属性值的概率,如下 calculateProbability()函数实现。

```
import math

def calculateProbability(x, mean, stdev):
    exponent = math. exp(-(math. pow(x - mean, 2) / (2 * math. pow(stdev, 2))))
    return (1 / (math. sqrt(2 * math. pi) * stdev)) * exponent
```

使用一些简单的数据测试如下:

```
x = 71.5
mean = 73
stdev = 6.2
probability = calculateProbability(x, mean, stdev)
print('Probability of belonging to this class: {0}').format(probability)
```

计算所属类的概率

合并一个数据样本中所有属性的概率,得到整个数据样本属于某个类的概率。

```
def calculateClassProbabilities(summaries, inputVector):
    probabilities = {}
    for classValue, classSummaries in summaries.iteritems():
        probabilities[classValue] = 1
        for i in range(len(classSummaries)):
            mean, stdev = classSummaries[i]
            x = inputVector[i]
            probabilities[classValue] *= calculateProbability(x, mean, stdev)
    return probabilities
```

测试 calculateClassProbabilities()函数如下:

```
summaries = {0: [(1, 0.5)], 1: [(20, 5.0)]}
inputVector = [1.1, '?']
probabilities = calculateClassProbabilities(summaries, inputVector)
print('Probabilities for each class: {0}'). format(probabilities)
```

单一预测

找到最大的概率值,并返回关联的类。下面的 predict()函数实现。

```
def predict(summaries, inputVector):
    probabilities = calculateClassProbabilities(summaries, inputVector)
    bestLabel, bestProb = None, -1
    for classValue, probability in probabilities.iteritems():
        if bestLabel is None or probability > bestProb:
            bestProb = probability
            bestLabel = classValue
    return bestLabel
```

测试 predict()函数:

```
summaries = {'A': [(1, 0.5)], 'B': [(20, 5.0)]}
inputVector = [1.1, '?']
result = predict(summaries, inputVector)
print('Prediction: {0}').format(result)
```

多重预测

通过对测试数据集中每个数据样本的预测,我们可以评估模型精度。getPredictions()函数实现这个功能,并返回每个测试样本的预测列表。

```
def getPredictions(summaries, testSet):
    predictions = []
    for i in range(len(testSet)):
        result = predict(summaries, testSet[i])
        predictions. append(result)
    return predictions
```

测试 getPredictions()函数:

```
summaries = {'A': [(1, 0.5)], 'B': [(20, 5.0)]}
testSet = [[1.1, '?'], [19.1, '?']]
predictions = getPredictions(summaries, testSet)
print('Predictions: {0}').format(predictions)
```

评估精度

将预测值和测试数据集中的类别值进行比较,可以得到精确率作为分类的精确度。getAccuracy()函数可以计算出这个精确率。

```
def getAccuracy(testSet, predictions):
    correct = 0
    for x in range(len(testSet)):
        if testSet[x][-1] == predictions[x]:
            correct += 1
    return (correct / float(len(testSet))) * 100.0
```

4) 合并代码

最后,将代码连贯起来,即朴素贝叶斯的 Python 逐步实现的全部代码。

三、在第二步基础上,更换数据集,独立实现红酒预测案例

数据集 wine.data 是对在意大利同一地区生产的三种不同品种的酒,做大量分析所得出的数据。这些数据包括了三种酒中 13 种不同成分的数量。分别为: Alcohol,Malicacid,Ash,

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Wine Data Set

Download Data Folder Data Set Description

Abstract Using chemical analysis determine the origin of wines

Data Set Characteristics:	Multivariate	Number of Instances:	178	Area:	Physical
Attribute Characteristics:	Integer, Real	Number of Attributes:	13	Date Donated	1991-07-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	368148

红酒数据集图示

Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols, Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines, Proline.

在 "wine.data" 文件中,每行代表一种酒的样本,共有 178 个样本; 一共有 14 列,其中,第一列为类标志属性,共有三类,分别记为"1","2","3"; 后面的 13 列为每个样本的对应属性的样本值。其中第 1 类有 59 个样本,第 2 类有 71 个样本,第 3 类有 48 个样本。

实验要求:用以上 GaussianNB 分类器结合 win.data 数据集,实现测试样本抽取,并对测试样本分类,与标签比对后统计分类预测精度。

注意:

- 1. Python 的版本不同,涉及到语法的修改
- 2. 两个数据集结构别,需要修改相应语句
- 3. 运行出结果后,对比 sklearn 中封装的贝叶斯分类器使用,比较差异

实验报告要求:

- 1. 为便于实验统计,文件名为学号_MachineLearning.rar 格式。
- 2. 以*.rar 格式提交,包括 Python 代码、运行结果截图及分析、代码说明文档、关键问题解决。
- 3. 下次实验课之前提交到教辅平台。

参考资料: http://www.jb51.net/article/63164.htm

https://blog.csdn.net/qq_22562949/article/details/49755413