

POMDP Formulation Approximations

Network

Convolutional

Neural

5ARSOP ~100,000

Sad facts • 🔄

Sad facts

• Infinite horizon POMDPs are undecidable

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are *undecidable*
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space
 - Any algorithm that can solve a general POMDP will have exponential complexity

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space
 - Any algorithm that can solve a general POMDP will have exponential complexity (we think)

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Numerical Approximations

(approximately solve original problem)

Offline

1

Online

Last week

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Formulation Approximations

(solve a slightly different problem)

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Formulation Approximations

(solve a slightly different problem)

Today!

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$\pi^* = rgmax_{\pi:B o A} \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'=\tau(b,a,o)$$

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

$$b'= au(b,a,o)$$

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

$$\pi_{ ext{CE}}(b) = \pi_s(ext{E}[s])$$
 mode $s{\sim}b$

$$b'= au(b,a,o)$$

MDP analogy LQR

$$\underbrace{T(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) = \mathcal{N}(\mathbf{s}' \mid \mathbf{T}_{s}\mathbf{s} + \mathbf{T}_{a}\mathbf{a}, \mathbf{\Sigma}_{s})}_{O(\mathbf{o} \mid \mathbf{s}') = \mathcal{N}(\mathbf{o} \mid \mathbf{O}_{s}\mathbf{s}', \mathbf{\Sigma}_{o})}$$

When is CE Good

QMDP

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

QMDP

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

$$b'= au(b,a,o)$$

QMDP

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

$$\pi_{\text{QMDP}}(b) = \underset{a \in A}{\operatorname{argmax}} \underbrace{\operatorname{E}_{S \sim b}\left[Q_{\text{MDP}}(s, a)\right]}_{\text{QMDP}(s, a)}$$

$$b'= au(b,a,o)$$

Example: Tiger POMDP with Waiting

Terminates when door is open, 40.9

E[QMOP(S,a)] = b(TL)Qmop(TL,a)+(1-b(TL))Qmop(TR,a)

Is	QMOP	good	for
		tiger	
		, , –	•

	15	0	1 QMOP
	TL	06	~100
	TL	OR	+10
	TR	OL	1-10
	TR	OR	-100
	*	L	-1+,10=8
	*	W	0+10=9
١			•

QMDP is bad at costly information gathering + long-lasting uncertainty O.W. QMDP is pretty good + Much easier to solve

$$\mathcal{S}=\mathbb{Z}$$
 $\mathcal{O}=\mathbb{R}$ $o\sim\mathcal{N}(s,s-10)$ $\mathcal{A}=\{-10,-1,0,1,10\}$ $R(s,a)=egin{cases} 100 & ext{if } a=0,s=0 \ -100 & ext{if } a=0,s
eq 0 \end{cases}$ otherwise

Accurate Observations

Accurate Observations

Accurate Observations

$$egin{aligned} \mathcal{S} &= \mathbb{Z} & \mathcal{O} &= \mathbb{R} \ s' &= s + a & o \sim \mathcal{N}(s, s - 10) \ \mathcal{A} &= \{-10, -1, 0, 1, 10\} \ R(s, a) &= egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$$

Goal:
$$a=0$$
 at $s=0$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Goal: a=0 at s=0

Accurate Observations

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

POMDP Solution

QMDP

Same as **full observability** on the next step

Information Gathering

QMDP

Full POMDP

Information Gathering

QMDP Full POMDP

Information Gathering

QMDP

Full POMDP

QMDP

INDUSTRIAL GRADE

QMDP

ACAS X [Kochenderfer, 2011]

Hindsight Optimization

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

Subject to
$$S_{t+1} = G(S_t, \alpha_t, w_t^k)$$

$$\pi_{HS}(b) = argmax E[Q_{HS}(s,a)]$$

$$b' = \tau(b,a,o)$$

FIB

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

k-Markov

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

Solve an MDP where state is
$$5+ = [0+, 0+-1, \dots 0+-k]$$

Open Loop

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$