### Filling the Gap: Decoding of Word Embeddings for Generation of Coherent New Words

Safa AlSaidi, Amandine Decker, Stephanie Monteiro

 $\mathsf{M2}-\mathsf{Software}\;\mathsf{Project}$ 



- State of the Project
- 2 Languages study
- 3 Results
- 4 Discussion
- Mhat to improve?
- 6 Future work

#### Reminder of our aim

• Apply decoder to the regression task (solving analogies)

$$A: B:: C: X \xrightarrow{X=?} A: B:: C: D$$
  
e.g.  $star: stars:: cat: X \rightarrow cats$ 

- Current output: vectors (≠ word)
- Aim: transform these vectors into words

# What we managed to do?

- Move all codes to PyTorch Lightning
- Research on morphology and variational auto-encoder
- Build the decoder based on word embeddings
- Train it on 11 Languages
- Test with different parameters
- Evaluate results with two metrics

- State of the Project
- 2 Languages study
- Results
- 4 Discussion
- 5 What to improve?
- 6 Future work

# Language family

| Language family | Languages                |  |  |
|-----------------|--------------------------|--|--|
| Indo-European   | German, Russian, Spanish |  |  |
| Afro-Asiatic    | Arabic, Maltese          |  |  |
| Uralic          | Finnish, Hungarian       |  |  |
| Altaic          | Turkish, Japanese        |  |  |
| Caucasian       | Georgian                 |  |  |
| Na-Dene         | Navajo                   |  |  |

Figure: Classification according to language families

# Morphological typology (1)

Figure: Classification according to the degree of internal complexity

# Morphological typology (2)

| Morphological type | Flectional                                                            | Agglutinating                                                                                  |  |
|--------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Characteristics    | <ul><li>Cumulation</li><li>Fusion</li><li>Internal flection</li></ul> | <ul> <li>Morpheme ⇔1 meaning</li> <li>Clear-cut boundary</li> <li>Form not affected</li> </ul> |  |
| Languages          | German, Russian, Spanish,<br>Arabic, Maltese                          | Finnish, Hungarian, Turkish,<br>Japanese, Georgian, Navajo                                     |  |

Figure: Classification according to the technique

## Inflectional morphology

| Affixes   | Suffixes++                                                               | Suffixes+ | = | Prefixes+ | Prefixes++ |
|-----------|--------------------------------------------------------------------------|-----------|---|-----------|------------|
| Languages | German Russian Spanish Arabic Maltese Finnish Hungarian Turkish Japanese | Georgian  |   |           | Navajo     |

Figure: Affixes used in inflectional morphology [Dryer, 2013]



Arabic, Maltese: templatic morphology (root-and-pattern strategy)

- State of the Project
- 2 Languages study
- Results
- 4 Discussion
- 5 What to improve?
- 6 Future work

## Results with different parameters



Figure: Mean accuracy ( $\pm$  standard deviation) on 5 trials for Hungarian

# Results on all languages



Figure: Mean accuracy ( $\pm$  standard deviation) on 5 trials with a sigmoid activation function and a hidden size of 2048

# Results on all languages



Figure: Mean levenshtein distance ( $\pm$  standard deviation) on 5 trials with a sigmoid activation function and a hidden size of 2048

- State of the Project
- 2 Languages study
- Results
- 4 Discussion
- 5 What to improve?
- 6 Future work

### Leads to explain the results

- content of the embeddings
  - subwords ? (root-and-pattern strategy)
  - ► amount of different subwords
  - proximity of the subwords
- morphological features of the languages

- State of the Project
- 2 Languages study
- Results
- 4 Discussion
- **5** What to improve?
- 6 Future work

### What to improve?

- Find a better evaluation metrics e.g.:
  - search for a new metrics that deals with word lengths
- Have a better understanding of the content of the embeddings:
  - subwords = morphemes ?
  - decoded words: real for some languages

- State of the Project
- 2 Languages study
- Results
- 4 Discussion
- 5 What to improve?
- 6 Future work

#### Future work

- 22 Nov Regression model + decoder / Variational auto-encoder
- 10 Dec Qualitative analysis / Multilingual model
- 14 Jan Application docker & webpage
- 3 Feb Report

شكراجزيلا Thank you Merci អរគុណ Obrigado

#### References I



Booij, G. E., Lehmann, C., Mugdan, J., and Skopeteas, S. (2008). *Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung.* De Gruyter Mouton.



Dryer, M. S. (2013).

Prefixing vs. suffixing in inflectional morphology.

In Dryer, M. S. and Haspelmath, M., editors, *The World Atlas of Language Structures Online*. Max Planck Institute for Evolutionary Anthropology, Leipzig.



Eifring, H. and Theil, R. (2005).

Linguistic typology.

Linguistics for students of Asian and African languages.

#### Our decoder structure



Figure: Our GRU based decoder

Inspired by this blogpost https://rajatvd.github.io/Generating-Words-From-Embeddings/

## Results with different parameters (smaller hidden sizes)



Figure: Mean accuracy ( $\pm$  standard deviation) on 5 trials for Navajo