Types and λ -calculus

Problem Sheet 4

* 1.	Justify each of the following conversions <i>M</i>	\approx	N by finding a common reduct
1	P, i.e. such that $M \triangleright^* P$ and $N \triangleright^* P$.		

- (a) $(\lambda x. x)y \approx (\lambda xy. x) y z$
- (b) $(\lambda x. M)N \approx M[N/x]$
- (c) fix (const 1) $\approx M$ (const pred 2)
- (d) $z (const id div) div \approx z id (const div id)$

Solution -

- (a) *y*
- (b) M[N/x]
- (c) 1
- (d) $z \operatorname{id} \operatorname{div}$

* 2. Define
$$\underline{Y} = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx)).$$

Show that \underline{Y} is also a fixed point combinator, i.e for all terms M:

$$YM \approx M(YM)$$

Solution -

On the one hand:

$$\underline{Y} M \rhd (\lambda x. M (x x))(\lambda x. M (x x))$$

$$\rhd M ((\lambda x. M (x x))(\lambda x. M (x x)))$$

and, on the other:

$$M(\underline{Y} M) > M((\lambda x.M(xx))(\lambda x.M(xx)))$$

so, they have a common reduct.

** 3. Prove Lemma 7.1 of the notes, i.e. show all of the following:

Reflexivity For all $M: M \approx M$.

Symmetry For all $M, N: M \approx N$ implies $N \approx M$.

Transitivity For all M, N and P: $M \approx P$ and $P \approx N$ implies $M \approx N$.

Compatibility For all M, N and C[]: if $M \approx N$ then $C[M] \approx C[N]$.

There is no need for any induction. For compatibility, you will need to use a result from the previous problem sheet.

Solution -

We prove each requirement separately:

- **Reflexivity** Let M be a term. Then, there is a 0-step reduction sequence from M to M so, by definition, $M \rhd^* M$. Hence, we can use the definition of convertibility with P = M to obtain $M \approx M$.
- **Symmetry** Let M and N be terms and suppose $M \approx N$. Then, by definition of convertibility, there is a term P such that $M \rhd^* P$ and $N \rhd^* P$. By definition, to show $N \approx M$ we need some common reduct of N and M, so we can use the same witness P again.
- **Transitivity** Let M, N and P be terms and suppose (i) $M \approx P$ and (ii) $P \approx N$. Then, by definition of convertibility there are terms Q_1 and Q_2 such that (a) $M \rhd^* Q_1$, (b) $P \rhd^* Q_1$, (c) $P \rhd^* Q_2$ and (d) $N \rhd^* Q_2$. By confluence applied to (b) and (c), we obtain a common reduct, R, of Q_1 and Q_2 . From this, (a) and (d) we obtain that $M \rhd^* Q_1 \rhd^* R$ and $N \rhd^* Q_2 \rhd^* R$ have R as a common reduct and hence, by definition, $M \approx N$.
- **Compatibility** Let M, N be terms and C[] a context. Suppose $M \approx N$, so that, by definition, there is a common reduct of M and N, say P, i.e. $M \rhd^* P$ and $N \rhd^* P$. Then by G(b) of the previous problem sheet, $G[M] \rhd^* G[P]$ and $G[N] \rhd^* G[P]$. So G[P] is a common reduct of G[M] and G[N]. Hence, by definition, $G[M] \approx G[N]$.

* 4. Recall the definition of add:

$$fix (\lambda f x y. ifz x y (S (f (pred x) y)))$$

Give a complete reduction sequence from add 2 3 to 5.

Solution

```
add 2 3
= fix (\lambda f x y. ifz x y (S (f \text{ (pred } x) y))) <math>\underline{2} \underline{3}
\triangleright (\lambda f x y. \text{ ifz } x y (S (f (\text{pred } x) y))) \text{ add } 2 3
\triangleright (\lambda x y. ifz \ x \ y \ (S \ (add \ (pred \ x) \ y))) \ \underline{2} \ \underline{3}
\triangleright (\lambda y. ifz \underline{2} y (S (\underline{add} (pred \underline{2}) y))) \underline{3}

ightharpoonup ifz \underline{2} \underline{3} (S (add (pred \underline{2}) \underline{3}))
\triangleright S (add (pred 2) 3)
S (add 1 3)
= S((\lambda f x y) \cdot (S(f(pred x) y))) \cdot (\lambda f x y \cdot (S(f(pred x) y))) \cdot (\lambda f x y \cdot (S(f(pred x) y))))
\triangleright S ((\lambda xy. ifz x y (S (\underline{\text{add}} (pred x) y))) \underline{1} \underline{3})

ightharpoonup S ((\lambda y. ifz \underline{1} \ y (S (\underline{\text{add}} \ (\text{pred} \ \underline{1}) \ y))) \underline{3})
\triangleright S (ifz \underline{1} \underline{3} (S (\underline{add} (\underline{pred} \underline{1}) \underline{3})))
\triangleright S (S (add (pred 1) 3))
\triangleright S (S (add 0 3))
\triangleright S (S ((\lambda xy. ifz x y (S (\underline{\text{add}} (pred x) y))) \underline{0} \underline{3}))
\triangleright S (S ((\lambda y. ifz \underline{0} y (S (\underline{add} (pred \underline{0}) y))) \underline{3}))
\triangleright S (S (ifz \underline{0} \underline{3} (S (\underline{add} (pred \underline{0}) \underline{3}))))
\triangleright S(S(3))
= 5
```

* 5. Prove that <u>add</u> satisfies the following equations:

$$\underline{\text{add}} \ \underline{0} \ \underline{m} \approx \underline{m}$$
 and $\underline{\text{add}} \ (n+1) \ \underline{m} \approx S \ (\underline{\text{add}} \ \underline{n} \ \underline{m})$

Hint: it will save time to first observe that (why?):

$$\underline{\text{add}} \approx \lambda x y.\text{ifz } x y (S (\underline{\text{add}} (\text{pred } x) y))$$

In practice, you nearly always want to replace an occurrence of <u>add</u> with the right-hand-side of this equation, rather than by its actual definition (and the same can be said for any recursive function defined using "the recipe").

\sim	lutior			
\sim	1111	IOI		
\mathcal{L}	u	JUL		

The observation is true because the left-hand-side actually reduces to the right-hand-side in two steps. Then the first equation is true since (using the observation):

$$\underline{\text{add}} \ \underline{0} \ \underline{m} \ \approx \ \text{ifz} \ \underline{0} \ \underline{m} \ (\mathsf{S} \ (\underline{\text{add}} \ (\mathsf{pred} \ \underline{0}) \ \underline{m})) \ \approx \ \underline{m}$$

The second equation holds since:

$$\frac{\text{add } (n+1) \underline{m}}{\approx} \approx \text{ifz } (\underline{n+1}) \underline{m} (S (\underline{\text{add }} (\text{pred } (\underline{n+1})) \underline{m}))$$

$$\approx S (\underline{\text{add }} (\text{pred } (\underline{n+1})) \underline{m})$$

$$\approx S (\text{add } n \underline{m})$$

** 6. Use fix to define the recursive triangular number function: using the "recipe", give a combinator Tri that satisfies:

$$\underline{\mathsf{Tri}}\,\underline{0} \approx \underline{0} \quad \text{and} \quad \underline{\mathsf{Tri}}\,(n+1) \approx \underline{\mathsf{add}}\,(n+1)\,(\underline{\mathsf{Tri}}\,\underline{n})$$

Convince yourself that $\underline{\text{Tri } 2} \approx \underline{3}$ (this is obvious if you believe that your implementation of $\underline{\text{Tri }}$ really satisfies the given equations).

Solution —

Define $\underline{\mathsf{Tri}}$ as fix $(\lambda f \, n. \, \mathsf{ifz} \, n \, n \, (\mathsf{add} \, n \, (f \, (\mathsf{pred} \, n))))$

** 7. Define multiplication, i.e. construct a term <u>mult</u> that satisfies the following specification:

$$\underline{\text{mult } 0 \ m} \approx \underline{0}$$
 and $\underline{\text{mult } n+1 \ m} \approx \underline{\text{add } m} (\underline{\text{mult } n \ m})$

Solution -

Define mult = fix $(\lambda f x y)$. if $x \neq 0$ (add $y \neq 0$ (mult (pred $x \neq 0$))).

** 8. Prove that if $M \approx N$ and N is a normal form, then $M \triangleright^* N$.

Therefore, we now know that e.g. $\underline{\mathsf{Tri}} \, \lceil 2 \rceil \, \triangleright^* \, \lceil 3 \rceil$, so these definitions actually *compute* an output given an input.

Solution -

Suppose $M \approx N$ and N is a normal form. It follows from the definition of \approx that there is some common reduct P such that $M \rhd^* P$ and $N \rhd^* P$. Since N is in normal form, $N \rhd^* P$ implies P = N. Hence, $M \rhd^* N$.

*** 9. Prove that there is no PCF term <u>isNat</u> that satisfies, for all terms M:

$$\underline{\mathsf{isNat}}\ M\ \approx\ \begin{cases} \underline{1} & \text{if } M \text{ is a numeral, i.e. } \underline{n} \text{ for some } n \\ \underline{0} & \text{otherwise} \end{cases}$$

Solution —

Suppose there is a term $\underline{\mathsf{isNat}}$ that satisfies the given specification. Then we would have

$$0 \approx (\lambda x.0) 1 \approx (\lambda x. \text{isNat } x) 1 \approx \text{isNat } 1 \approx 1$$

which is absurd, since $\underline{0}$ and $\underline{1}$ would have a common reduct, but they are distinct normal forms.