ML Специализация

CNN для классификации изображений

Q 4 2024

Задача

Классифицировать вид деятельности по изображению (20 категорий)

Пару слов про бейзлайн

Один из наиболее влияющих на продуктивность на дистанции пунктов - складно написанный бейзлайн

01 Удобная системой чекпоинтов

О2 Автоматизированный процесс обучения

03 Структурированный код

О4 Визуализированные итоги обучения

Подход к решению

Аугментация данных

Провести исследование методов аугментации данных, таких как повороты, отражения, обрезка и изменения яркости, для повышения устойчивости модели.

Тестирование различных архитектур

Провести исследование различных архитектур моделей, включая базовые CNN и более сложные сети, чтобы определить наиболее подходящую структуру для задачи.

Оптимизация обучения

Провести исследование подходов к оптимизации обучения, включая настройку гиперпараметров, использование различных оптимизаторов и внедрение методов регуляризации.

Аугментация данных

Аугментация улучшает обобщающие способности модели, увеличивая разнообразие данных. Для этого применены трансформации, такие как изменение размера, повороты, изменения цвета и добавление шума.

Архитектуры:

Модели с меньшим количеством параметров (MobileNet, SqueezeNet) показали лучшие результаты на небольшом объёме данных. EfficientNet обошёл всех по ключевым метрикам благодаря оптимальной архитектуре.

Оптимизация обучения

Loss функции

— Гиперпараметры

Оптимизаторы

Архитектуры моделей

Итоговое решение

Ансамбль

18 и 40 эпохи

Модель на основе ResNet18

40, 142 и 251 эпохи Модель на основе EfficnetNet-B0

- 11,273,812 параметров
- Mish активация
- Group Normalization
- SEBlock
- Dropout
- Свой ResidualBlock

- 4,074,512 параметров
- Эффективная свертка
- Identity mapping
- Dropout

F1-score: 0.831

Почему это работает?

Наша команда

Языкин Артем@I_D_DQD

Владислав Сунгуров @VladG00dman

Пудовкин Ярослав @polkopolk

Спасибо за внимание!

