

FORM PTO-1390 (Modified)
(REV 10-95)

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

**TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371**

ATTORNEY'S DOCKET NUMBER

BB-1332

U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR)

09 / 914098INTERNATIONAL APPLICATION NO.
PCT/US00/04526INTERNATIONAL FILING DATE
22 FEBRUARY 2000 (22.02.00)PRIORITY DATE CLAIMED
22 FEBRUARY 1999 (22.02.99)TITLE OF INVENTION
LYSOPHOSPHATIDIC ACID ACETYLTRANSFERASESAPPLICANT(S) FOR DO/EO/US
CAHOON, Edgar B. et al.

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This is an express request to being national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b)) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application was filed (35 U.S.C. 371 (c) (2))
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US)
6. A translation of the International Application into English (35 U.S.C. 371 (c) (2)).
7. A copy of the International Search Report (PCT/ISA/210).
8. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c) (3))
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
9. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371 (c)(3)).
10. An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)).
11. A copy of the International Preliminary Examination Report (PCT/IPEA/409)
12. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371 (c)(5)).

Items 13 to 18 below concern document(s) or information included :

13. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
14. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
15. A **FIRST** preliminary amendment.
A **SECOND** or **SUBSEQUENT** preliminary amendment.
16. A substitute specification.
17. A change of power of attorney and/or address letter.
18. Certificate of Mailing by Express Mail.
19. Other items or information:

17. General Power of Attorney**18. Express Mailing Label No. EJ376014714US**

APPLICATION NO. (IF KNOWN, SEE 37 CFR) **09/914098**INTERNATIONAL APPLICATION NO.
PCT/US00/04526ATTORNEY'S DOCKET NUMBER
BB-1332

20. The following fees are submitted

CALCULATIONS PTO USE ONLY**BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) – (5)) :**

<input checked="" type="checkbox"/> Search Report has been prepared by the EPO or JPO	\$860.00
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482)	\$690.00
<input type="checkbox"/> No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2))	\$760.00
<input type="checkbox"/> Neither international preliminary examination fee paid to USPTO (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO	\$1000.00
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) And all claims satisfied provisions of PCT Article 33(2)-(4)	\$ 100.00

ENTER APPROPRIATE BASIC FEE AMOUNT =**\$860.00**Surcharge of **\$130.00** for furnishing the oath or declaration later than
months from the earliest claimed priority date (37 CFR 1.492 (e)). 20 30**\$0.00**

CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	
Total Claims	20 - 20 =	0 x	\$18.00	\$0.00
Independent Claims	2 - 3 =	0 x	\$80.00	\$0.00
Multiple Dependent Claims (check if applicable)			<input type="checkbox"/>	\$0.00
TOTAL OF ABOVE CALCULATIONS =				\$0.00
Reduction of $\frac{1}{2}$ for filing by small entity, if applicable. Verified Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28) (check if applicable).				<input type="checkbox"/> \$0.00
SUBTOTAL =				\$0.00
Processing Fee of \$130.00 for furnishing the English translation later than months from the earliest claimed priority date (37 CFR 1.492 (f)).				<input type="checkbox"/> 20 <input type="checkbox"/> 30 \$0.00
TOTAL NATIONAL FEE =				\$860.00
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) (check if applicable).				<input type="checkbox"/> \$0.00
TOTAL FEES ENCLOSED =				\$860.00
				Amount to be : refunded \$
				Charged \$

- A check in the amount of _____ to cover the above fees enclosed.
- Please charge my Deposit Account No. **04-1928** in the amount of **\$860.00** to cover the above fees.
- The Commissioner is hereby authorized to charge any fees which may be required, or credit any overpayment to Deposit Account No. **04-1928** a duplicate copy of this sheet is enclosed.

NOTE : Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (CFR 1.37(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

GOLIAN, Paul D.
E. I. DU PONT DE NEMOURS AND COMPANY
Legal Patent Records Center
1007 Market Street
Wilmington, Delaware 19898
United States of America

SIGNATURE**GOLIAN, PAUL D.****NAME****42,591****REGISTRATION NUMBER****Aug 22, 2001****DATE**

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the Application of:

EDGAR B. CAHOON ET AL.

CASE NO.: BB1332 PCT

APPLICATION NO.: UNKNOWN

GROUP ART UNIT: UNKNOWN

FILED: CONCURRENTLY HEREWITH

EXAMINER: UNKNOWN

FOR: LYSOPHOSPHATIDIC ACID
ACETYLTRANSFERASES

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents
Washington, DC 20231

Sir:

Before examination of the above-referenced application, please amend the application as follows:

IN THE SPECIFICATION:

Please replace the following paragraphs:

Paragraph starting at page 7, line 18:

For example, it is well known in the art that antisense suppression and co-suppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed. Moreover, alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not affect the functional properties of the encoded polypeptide, are well known in the art. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Consequently, an isolated polynucleotide comprising a nucleotide sequence of at least one of 60 (preferably at least one of 40, most preferably at least one of 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of (a) SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences, and/or (b) SEQ ID

NOs:19, 21, 23, 53, 55, and 57 and the complement of such nucleotide sequences may be used in methods of selecting an isolated polynucleotide that affects the expression of an LPAAT isozyme polypeptide in a host cell. A method of selecting an isolated polynucleotide that affects the level of expression of a polypeptide in a host cell (eukaryotic, such as plant or yeast, prokaryotic such as bacterial, or viral) may comprise the steps of: constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; measuring the level a polypeptide in the host cell containing the isolated polynucleotide; and comparing the level of a polypeptide in the host cell containing the isolated polynucleotide with the level of a polypeptide in a host cell that does not contain the isolated polynucleotide.

Paragraph starting at page 9, line 32:

“Codon degeneracy” refers to divergence in the genetic code permitting variation of the nucleotide sequence without affecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment comprising a nucleotide sequence that encodes all or a substantial portion of the amino acid sequences set forth herein. The skilled artisan is well aware of the “codon-bias” exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a nucleic acid fragment for improved expression in a host cell, it is desirable to design the nucleic acid fragment such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.

IN THE CLAIMS:

Please cancel claims 1-42.

Please add the following new claims:

- 43. An isolated polynucleotide that encodes an LPAAT isozyme polypeptide having a sequence identity of at least 80% based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.
44. The polynucleotide of Claim 43 wherein the sequence identity is at least 85%.
45. The polynucleotide of Claim 43 wherein the sequence identity is at least 90%.
46. The polynucleotide of Claim 43 wherein the sequence identity is at least 95%.
47. The polynucleotide of Claim 43 wherein the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.

48. An isolated complement of the polynucleotide of Claim 43, wherein (a) the complement and the polynucleotide consist of the same number of nucleotides, and (b) the nucleotide sequences of the complement and the polynucleotide have 100% complementarity.
49. An isolated nucleic acid molecule that encodes an LPAAT isozyme polypeptide and remains hybridized with the isolated polynucleotide of Claim 43 under a wash condition of 0.1X SSC, 0.1% SDS, and 65°C.
50. A cell or a virus comprising the polynucleotide of Claim 43.
51. The cell of Claim 28, wherein the cell is selected from the group consisting of a yeast cell, a bacterial cell, an insect cell, and a plant cell.
52. A transgenic plant comprising the polynucleotide of Claim 43.
53. A method for transforming a cell comprising introducing into a cell the polynucleotide of Claim 43.
54. A method for producing a transgenic plant comprising (a) transforming a plant cell with the polynucleotide of Claim 43, and (b) regenerating a plant from the transformed plant cell.
55. An isolated LPAAT isozym polypeptide having a sequence identity of at least 80% based on the Clustal method compared to an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.
56. The isolated polypeptide of Claim 55 wherein the sequence identity is at least 85%.
57. The isolated polypeptide of Claim 55 wherein the sequence identity is at least 90%.
58. The isolated polypeptide of Claim 55 wherein the sequence identity is at least 95%.
59. The isolated polypeptide of Claim 55 wherein the polypeptide has a sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.
60. A chimeric gene comprising the polynucleotide of Claim 43 operably linked to at least one suitable regulatory sequence.
61. The chimeric gene of Claim 60, wherein the chimeric gene is an expression vector.
62. A method for altering the level of an LPAAT isozym polypeptide expression in a host cell, the method comprising:
 - (a) Transforming a host cell with the chimeric gene of claim 60; and
 - (b) Growing the transformed cell in step (a) under conditions suitable for the expression of the chimeric gene. --

REMARKS

Applicants respectfully submit that the amendment to the Specification only corrects obvious typographical errors. Furthermore, applicants submit that newly added claims more clearly and distinctly recite that which applicants consider to be their invention, and are adequately supported by the original disclosure.

No new matter is believed to be at issue. Entry of the amendments and early favorable consideration of the claims on the merits are hereby respectfully requested.

Respectfully submitted,

KENING LI
ATTORNEY FOR APPLICANTS
REGISTRATION NO. 44,872
TELEPHONE: (302) 992-3749
FACSIMILE: (302) 892-1026

Dated: 05/24/2001

VERSION WITH MARKINGS TO SHOW CHANGES MADE

In showing the changes, deleted material is shown as bolded brackets and stricken through, and inserted material is shown underlined.

IN THE SPECIFICATION:

Please replace the following paragraphs:

Paragraph starting at page 7, line 18:

For example, it is well known in the art that antisense suppression and co-suppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed. Moreover, alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not affect [effect] the functional properties of the encoded polypeptide, are well known in the art. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Consequently, an isolated polynucleotide comprising a nucleotide sequence of at least one of 60 (preferably at least one of 40, most preferably at least one of 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of (a) SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences, and/or (b) SEQ ID NOs:19, 21, 23, 53, 55, and 57 and the complement of such nucleotide sequences may be used in methods of selecting an isolated polynucleotide that affects the expression of an LPAAT isozyme polypeptide in a host cell. A method of selecting an isolated polynucleotide that affects the level of expression of a polypeptide in a host cell (eukaryotic, such as plant or yeast, prokaryotic such as bacterial, or viral) may comprise the steps of: constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; measuring the level a polypeptide in the host cell containing the isolated polynucleotide;

and comparing the level of a polypeptide in the host cell containing the isolated polynucleotide with the level of a polypeptide in a host cell that does not contain the isolated polynucleotide.

Paragraph starting at page 9, line 32:

“Codon degeneracy” refers to divergence in the genetic code permitting variation of the nucleotide sequence without affecting [effecting] the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment comprising a nucleotide sequence that encodes all or a substantial portion of the amino acid sequences set forth herein. The skilled artisan is well aware of the “codon-bias” exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a nucleic acid fragment for improved expression in a host cell, it is desirable to design the nucleic acid fragment such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.

TITLELYSOPHOSPHATIDIC ACID ACETYLTRANSFERASES

This application claims the benefit of U.S. Provisional Application No. 60/121,119, filed February 22, 1999.

5

FIELD OF THE INVENTION

This invention is in the field of plant molecular biology and, in particular, this invention pertains to isolated polynucleotides encoding lysophosphatidic acid acyltransferases in plants and seeds.

BACKGROUND OF THE INVENTION

10 Triacylglycerols are nonpolar, water-insoluble fatty acid triesters of glycerols. Triacylglycerols differ according to the identity and placement of their three fatty acid residues. Lysophosphatidic acid acyltransferase (EC 2.3.1.51), also called 1-acyl-sn-glycerol-3-phosphate acyltransferase, 1-AGP acyltransferase, 1-AGPAT, lysophosphatidic acid transferase, and LPAAT, catalyzes the attachment of the second acyl group to the glycerol backbone during de-novo biosynthesis of triacylglycerols.

15 The fatty acid distribution in triacylglycerols is thought to be dependent on the specificities of the acyltransferases involved in their biosynthesis. Although no plant LPAAT has been purified to completion, spinach leaves have at least two systems which reside in different subcellular compartments (chloroplast inner membrane and the endoplasmic reticulum) and which incorporate different fatty acids into the glycerol backbone (Frentzen et al. (1984) in *Structure, function and metabolism of plant lipids*; Siegenthaler and Eichenberger, eds. pp 105-110). Isolation of LPAAT genes from *Limnanthes douglasii* is dependent on the approach used to isolate the clone. Two different clones have been isolated which varied in their expression patterns, in their ability to complement an *E. coli* temperature-sensitive mutant defective in LPAAT activity and in their ability to hybridize to the already known maize LPAAT (Brown et al. (1995) *Plant Mol. Biol.* 29:267-278). Thus, the presence of many other LPAATs with different specificities, subcellular locations and activities is expected.

20 30 Production of industrially-significant oils in seed oil plants has been a quest of the agricultural industry of some time now. Introduction of the yeast LPAAT sequence into *Arabidopsis* and *B. napus* results in increased seed oil content in many transgenic plants and in changes in seed oil composition (Zou et al. (1997) *Plant Cell* 9:909-923).

SUMMARY OF THE INVENTION

35 The invention concerns an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a first nucleotide sequence encoding a polypeptide of at least 100 amino acids having at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52, or

(b) a second nucleotide sequence comprising the complement of the first nucleotide sequence.

In a second embodiment, it is preferred that the isolated polynucleotide of the claimed invention comprises a first nucleotide sequence which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51, that codes for the polypeptide selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.

In a third embodiment, this invention concerns a chimeric gene comprising an isolated polynucleotide of the present invention operably linked to suitable regulatory sequences.

In a fourth embodiment, this invention concerns an isolated host cell comprising a chimeric gene of the present invention or an isolated polynucleotide of the present invention. The host cell may be eukaryotic, such as a yeast or a plant cell, or prokaryotic, such as a bacterial cell. The present invention also relates to a virus, preferably a baculovirus, comprising an isolated polynucleotide of the present invention or a chimeric gene of the present invention.

In a fifth embodiment, the present invention concerns a process for producing an isolated host cell comprising a chimeric gene of the present invention or an isolated polynucleotide of the present invention, the process comprising either transforming or transfecting an isolated compatible host cell with a chimeric gene or isolated polynucleotide of the present invention.

In a sixth embodiment, the invention also relates to lysophosphatidic acid acyltransferase (LPAAT isozymes) polypeptides of at least 100 amino acids comprising at least 80% homology based on the Clustal method of alignment compared to a polypeptide selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.

In a seventh embodiment, the invention concerns a method of selecting an isolated polynucleotide that affects the level of expression of an LPAAT isozyme polypeptide in a host cell, preferably a plant cell, the method comprising the steps of: (a) constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; (b) introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; (c) measuring the level the LPAAT isozyme polypeptide in the host cell containing the isolated polynucleotide; and (d) comparing the level of the LPAAT isozyme polypeptide in the host cell containing the isolated polynucleotide with the level of the LPAAT isozyme polypeptide in the host cell that does not contain the isolated polynucleotide.

In an eighth embodiment, the invention concerns a method of obtaining a nucleic acid fragment encoding a substantial portion of an LPAAT isozyme polypeptide, preferably a plant LPAAT isozyme polypeptide, comprising the steps of: synthesizing an

oligonucleotide primer comprising a nucleotide sequence of at least one of 60 (preferably at least one of 40, most preferably at least one of 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences; and amplifying a nucleic acid fragment (preferably a cDNA inserted in a cloning vector) using the oligonucleotide primer. The amplified nucleic acid fragment preferably will encode a portion of an LPAAT isozyme amino acid sequence.

In a ninth embodiment, the invention concerns a method of obtaining a nucleic acid fragment encoding all or a substantial portion of the amino acid sequence encoding an LPAAT isozyme polypeptide comprising the steps of: probing a cDNA or genomic library with an isolated polynucleotide of the present invention; identifying a DNA clone that hybridizes with an isolated polynucleotide of the present invention; isolating the identified DNA clone; and sequencing the cDNA or genomic fragment that comprises the isolated DNA clone.

In a tenth embodiment, this invention concerns a composition, such as a hybridization mixture, comprising an isolated polynucleotide of the present invention.

In an eleventh embodiment, this invention concerns an isolated polynucleotide of the present invention comprising at least one of 30 contiguous nucleotides derived from a nucleic acid sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51.

In a twelfth embodiment, this invention concerns a method for positive selection of a transformed cell comprising: (a) transforming a host cell with the chimeric gene of the present invention or an expression cassette of the present invention; and (b) growing the transformed host cell, preferably plant cell, such as a monocot or a dicot, under conditions which allow expression of the LPAAT isozyme polynucleotide in an amount sufficient to complement a null mutant to provide a positive selection means.

In a thirteenth embodiment, this invention concerns an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) first nucleotide sequence encoding a polypeptide of at least 100 amino acids having at least 95% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:20, 22, 24, 54, 56, and 58 or (b) a second nucleotide sequence comprising the complement of the first nucleotide sequence. All of the embodiments described above are applicable with the exception of the particular sequences involved and the sequence identity being at least 95% as noted in the appropriate claims.

BRIEF DESCRIPTION OF THE SEQUENCE LISTINGS

The invention can be more fully understood from the following detailed description and the accompanying Sequence Listing which form a part of this application.

Table 1 lists the polypeptides that are described herein, the designation of the cDNA clones that comprise the nucleic acid fragments encoding polypeptides representing all or a substantial portion of these polypeptides, and the corresponding identifier (SEQ ID NO:) as used in the attached Sequence Listing. The sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C.F.R. §1.821-1.825.

TABLE 1
Lysophosphatidic Acid Acyltransferases

Protein	Clone Designation	SEQ ID NO: (Nucleotide)	SEQ ID NO: (Amino Acid)
Corn Polypeptide Similar to <i>Mus musculus</i> LPAAT	Contig of: p0018.chssd06r p0104.cabbd29r cca.pk0027.c9 p0018.chstw94r p0094.cssl20r	1	2
Soybean Polypeptide Similar to <i>Mus musculus</i> LPAAT	sl2.pk121.a19	3	4
Wheat Polypeptide Similar to <i>Mus musculus</i> LPAAT	Contig of: wlm1.pk0018.g6 wre1n.pk0040.h11 wre1n.pk0064.g7	5	6
Corn Polypeptide Similar to <i>B. pseudomallei</i> LPAAT	Contig of: ceb5.pk0049.b3 cen3n.pk0027.f6	7	8
Soybean Polypeptide Similar to <i>B. pseudomallei</i> LPAAT	sgs1c.pk001.i16	9	10
Wheat Polypeptide Similar to <i>B. pseudomallei</i> LPAAT	wre1n.pk0027.d4	11	12
Arabidopsis Polypeptide Similar to <i>Arabidopsis thaliana</i> Protein	ads1c.pk005.i10	13	14
Rice Polypeptide Similar to <i>Arabidopsis thaliana</i> Protein	Contig of: rls6.pk0076.d5 rlr24.pk0068.e3	15	16
Soybean Polypeptide Similar to <i>Arabidopsis thaliana</i> Protein	scb1c.pk003.d18	17	18
Rice Polypeptide Similar to Corn LPAAT	Contig of: rr1.pk0004.a10 rr1.pk0039.e10	19	20
Soybean Polypeptide Similar to Corn LPAAT	Contig of: se4.cp0008.b2 sl2.pk0033.cl	21	22
Wheat Polypeptide Similar to Corn LPAAT	Contig of: wlk1.pk0004.e7 wle1n.pk0002.g3	23	24

Protein	Clone Designation	SEQ ID NO: (Nucleotide)	SEQ ID NO: (Amino Acid)
Catalpa Polypeptide Similar to <i>Mus musculus</i> LPAAT	ncs.pk0013.d2:fis	25	26
Corn Polypeptide Similar to <i>Mus musculus</i> LPAAT	Contig of: ceb1.pk0011.d11 ceb5.pk0053.e3 p0010.cbpbq45r p0018.chssd06r:fis	27	28
Rice Polypeptide Similar to <i>Mus musculus</i> LPAAT	rlr2.pk0028.d6:fis	29	30
Sorghum Polypeptide Similar to <i>Mus musculus</i> LPAAT	gds1c.pk002.a19:fis	31	32
Soybean Polypeptide Similar to <i>Mus musculus</i> LPAAT	sl2.pk121.a19:fis	33	34
Catalpa Polypeptide Similar to <i>B. pseudomallei</i> LPAAT	ncs.pk0009.f12:fis	35	36
Wheat Polypeptide Similar to <i>B. pseudomallei</i> LPAAT	wre1n.pk0027.d4:fis	37	38
Corn Polypeptide Similar to <i>Arabidopsis thaliana</i> Protein	Contig of: ceb1.mn0001.d12:fis cpe1c.pk006.e1	39	40
Rice Polypeptide Similar to <i>A. thaliana</i> Protein	rls6.pk0076.d5:fis	41	42
Soybean Polypeptide Similar to <i>Arabidopsis thaliana</i> Protein	scb1c.pk003.d18:fis	43	44
Corn Polypeptide Similar to <i>A. thaliana</i> acyltransferase	ccoln.pk062.p19	45	46
Rice Polypeptide Similar to <i>A. thaliana</i> acyltransferase	rlr6.pk0094.f6:fis	47	48
Soybean Polypeptide Similar to <i>A. thaliana</i> acyltransferase	sdp4c.pk006.n11:fis	49	50
Soybean Polypeptide Similar to <i>A. thaliana</i> acyltransferase	Contig of: sgs1c.pk005.k7 sgs5c.pk0003.e7	51	52
Rice Polypeptide Similar to Corn LPAAT	rr1.pk0004.a10:fis	53	54
Soybean Polypeptide Similar to Corn LPAAT	sl2.pk0033.c1:fis	55	56
Wheat Polypeptide Similar to Corn LPAAT	wlk1.pk0004.e7:fis	57	58

The Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the IUPAC-IUBMB

standards described in *Nucleic Acids Res.* 13:3021-3030 (1985) and in the *Biochemical J.* 219 (No. 2):345-373 (1984) which are herein incorporated by reference. The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.

5 — DETAILED DESCRIPTION OF THE INVENTION

In the context of this disclosure, a number of terms shall be utilized. The terms "polynucleotide" and "nucleic acid fragment"/"isolated nucleic acid fragment" are used interchangeably herein. These terms encompass nucleotide sequences and the like. A polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that
10 optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof. An isolated polynucleotide of the present invention may include at least one of 60 contiguous nucleotides, preferably at least one of 40 contiguous nucleotides, most preferably one of at least 30 contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of (a) SEQ ID
15 NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51, or the complement of such sequences and /or (b) SEQ ID NOs:19, 21, 23, 53, 55, and 57 or the complement of such sequences. The term "isolated" polynucleotide is one that has been substantially separated or purified away from other nucleic acid sequences in the cell of the organism in which the nucleic acid naturally occurs, i.e., other chromosomal and
20 extrachromosomal DNA and RNA, by conventional nucleic acid purification methods. The term also embraces recombinant polynucleotides and chemically synthesized polynucleotides.

As used herein, "contig" refers to a nucleotide sequence that is assembled from two or
25 more constituent nucleotide sequences that share common or overlapping regions of sequence homology. For example, the nucleotide sequences of two or more nucleic acid fragments can be compared and aligned in order to identify common or overlapping sequences. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences (and thus their corresponding nucleic acid fragments) can be
30 assembled into a single contiguous nucleotide sequence.

As used herein, "substantially similar" refers to nucleic acid fragments wherein changes in one or more nucleotide bases results in substitution of one or more amino acids, but do not affect the functional properties of the polypeptide encoded by the nucleotide sequence. "Substantially similar" also refers to nucleic acid fragments wherein changes in one or more nucleotide bases does not affect the ability of the nucleic acid fragment to mediate alteration of gene expression by gene silencing through for example antisense or co-suppression technology. "Substantially similar" also refers to modifications of the nucleic acid fragments of the instant invention such as deletion or insertion of one or more

nucleotides that do not substantially affect the functional properties of the resulting transcript vis-à-vis the ability to mediate gene silencing or alteration of the functional properties of the resulting protein molecule. It is therefore understood that the invention encompasses more than the specific exemplary nucleotide or amino acid sequences and includes functional equivalents thereof. The terms "substantially similar" and "corresponding substantially" are used interchangeably herein.

Substantially similar nucleic acid fragments may be selected by screening nucleic acid fragments representing subfragments or modifications of the nucleic acid fragments of the instant invention, wherein one or more nucleotides are substituted, deleted and/or inserted, for their ability to affect the level of the polypeptide encoded by the unmodified nucleic acid fragment in a plant or plant cell. For example, a substantially similar nucleic acid fragment representing at least one of 30 contiguous nucleotides derived from the instant nucleic acid fragment can be constructed and introduced into a plant or plant cell. The level of the polypeptide encoded by the unmodified nucleic acid fragment present in a plant or plant cell exposed to the substantially similar nucleic fragment can then be compared to the level of the polypeptide in a plant or plant cell that is not exposed to the substantially similar nucleic acid fragment.

For example, it is well known in the art that antisense suppression and co-suppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed. Moreover, alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not effect the functional properties of the encoded polypeptide, are well known in the art. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Consequently, an isolated polynucleotide comprising a nucleotide sequence of at least one of 60 (preferably at least one of 40, most preferably at least one of 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of (a) SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences, and/or (b) SEQ ID NOS:19, 21, 23, 53, 55, and 57 and the complement of such

nucleotide sequences may be used in methods of selecting an isolated polynucleotide that affects the expression of an LPAAT isozyme polypeptide in a host cell. A method of selecting an isolated polynucleotide that affects the level of expression of a polypeptide in a host cell (eukaryotic, such as plant or yeast, prokaryotic such as bacterial, or viral) may 5 comprise the steps of: constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; measuring the level a polypeptide in the host cell containing the isolated polynucleotide; and comparing the level of a polypeptide in the host 10 cell containing the isolated polynucleotide with the level of a polypeptide in a host cell that does not contain the isolated polynucleotide.

Moreover, substantially similar nucleic acid fragments may also be characterized by their ability to hybridize. Estimates of such homology are provided by either DNA-DNA or DNA-RNA hybridization under conditions of stringency as is well understood by those skilled in the art (Hames and Higgins, Eds. (1985) Nucleic Acid Hybridisation, IRL Press, 15 Oxford, U.K.). Stringency conditions can be adjusted to screen for moderately similar fragments, such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Post-hybridization washes determine stringency conditions. One set of preferred conditions uses a series of washes starting with 6X SSC, 0.5% SDS at room 20 temperature for 15 min, then repeated with 2X SSC, 0.5% SDS at 45°C for 30 min, and then repeated twice with 0.2X SSC, 0.5% SDS at 50°C for 30 min. A more preferred set of stringent conditions uses higher temperatures in which the washes are identical to those above except for the temperature of the final two 30 min washes in 0.2X SSC, 0.5% SDS was increased to 60°C. Another preferred set of highly stringent conditions uses two final 25 washes in 0.1X SSC, 0.1% SDS at 65°C.

Substantially similar nucleic acid fragments of the instant invention may also be characterized by the percent identity of the amino acid sequences that they encode to the amino acid sequences disclosed herein, as determined by algorithms commonly employed by those skilled in this art. Suitable nucleic acid fragments (isolated polynucleotides of the 30 present invention) encode polypeptides that are at least about 70% identical, preferably at least about 80% identical to the amino acid sequences reported herein. Preferred nucleic acid fragments encode amino acid sequences that are about 85% identical to the amino acid sequences reported herein. More preferred nucleic acid fragments encode amino acid sequences that are at least about 90% identical to the amino acid sequences reported herein. 35 Most preferred are nucleic acid fragments that encode amino acid sequences that are at least about 95% identical to the amino acid sequences reported herein. Suitable nucleic acid fragments not only have the above homologies but typically encode a polypeptide having at least 50 amino acids, preferably at least 100 amino acids, more preferably at least 150 amino

acids, still more preferably at least 200 amino acids, and most preferably at least 250 amino acids. Sequence alignments and percent identity calculations were performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the sequences was performed using the Clustal 5 method-of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5.

A “substantial portion” of an amino acid or nucleotide sequence comprises an amino acid or a nucleotide sequence that is sufficient to afford putative identification of the protein or gene that the amino acid or nucleotide sequence comprises. Amino acid and nucleotide sequences can be evaluated either manually by one skilled in the art, or by using computer-based sequence comparison and identification tools that employ algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al. (1993) *J. Mol. Biol.* 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/). In general, a sequence of ten or more contiguous amino acids or thirty or more contiguous nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene-specific oligonucleotide probes comprising 30 or more contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., *in situ* hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12 or more nucleotides may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. Accordingly, a “substantial portion” of a nucleotide sequence comprises a nucleotide sequence that will afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence. The instant specification teaches amino acid and nucleotide sequences encoding polypeptides that comprise one or more particular plant proteins. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention 30 comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.

“Codon degeneracy” refers to divergence in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment 35 comprising a nucleotide sequence that encodes all or a substantial portion of the amino acid sequences set forth herein. The skilled artisan is well aware of the “codon-bias” exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a nucleic acid fragment for improved expression in a host cell,

it is desirable to design the nucleic acid fragment such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.

“Synthetic nucleic acid fragments” can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form larger nucleic acid fragments which may then be enzymatically assembled to construct the entire desired nucleic acid fragment. “Chemically synthesized”, as related to nucleic acid fragment, means that the component nucleotides were assembled *in vitro*. Manual chemical synthesis of nucleic acid fragments may be accomplished using well established procedures, or automated chemical synthesis can be performed using one of a number of commercially available machines. Accordingly, the nucleic acid fragments can be tailored for optimal gene expression based on optimization of nucleotide sequence to reflect the codon bias of the host cell. The skilled artisan appreciates the likelihood of successful gene expression if codon usage is biased towards those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell where sequence information is available.

“Gene” refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. “Native gene” refers to a gene as found in nature with its own regulatory sequences. “Chimeric gene” refers any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. “Endogenous gene” refers to a native gene in its natural location in the genome of an organism. A “foreign” gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes. A “transgene” is a gene that has been introduced into the genome by a transformation procedure.

“Coding sequence” refers to a nucleotide sequence that codes for a specific amino acid sequence. “Regulatory sequences” refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.

“Promoter” refers to a nucleotide sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. The promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers. Accordingly, an “enhancer” is a

nucleotide sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic nucleotide segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters which cause a nucleic acid fragment to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg (1989) *Biochemistry of Plants* 15:1-82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, nucleic acid fragments of different lengths may have identical promoter activity.

The "translation leader sequence" refers to a nucleotide sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner and Foster (1995) *Mol. Biotechnol.* 3:225-236).

The "3' non-coding sequences" refer to nucleotide sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor. The use of different 3' non-coding sequences is exemplified by Ingelbrecht et al. (1989) *Plant Cell* 1:671-680.

"RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from posttranscriptional processing of the primary transcript and is referred to as the mature RNA. "Messenger RNA (mRNA)" refers to the RNA that is without introns and that can be translated into polypeptide by the cell. "cDNA" refers to a DNA that is complementary to and derived from a mRNA template using the enzyme reverse transcriptase. The cDNA can be single-stranded or converted into the double stranded form using, for example, the klenow fragment of DNA polymerase I. "Sense" RNA refers to an RNA transcript that includes the mRNA and so can be translated into a polypeptide by the cell. "Antisense RNA" refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the

expression of a target gene (see U.S. Patent No. 5,107,065, incorporated herein by reference). The complementarity of an antisense RNA may be with any part of the specific nucleotide sequence, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence. "Functional RNA" refers to sense RNA, antisense RNA, ribozyme RNA, or other RNA that may not be translated but yet has an effect on cellular processes.

The term "operably linked" refers to the association of two or more nucleic acid fragments on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in a sense or antisense orientation.

The term "recombinant" means, for example, that a recombinant nucleic acid sequence is made by an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques.

The term "expression", as used herein, refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression may also refer to translation of mRNA into a polypeptide. "Antisense inhibition" refers to the production of antisense RNA transcripts capable of suppressing the expression of the target protein. "Overexpression" refers to the production of a gene product in transgenic organisms that exceeds levels of production in normal or non-transformed organisms. "Co-suppression" refers to the production of sense RNA transcripts capable of suppressing the expression of identical or substantially similar foreign or endogenous genes (U.S. Patent No. 5,231,020, incorporated herein by reference).

"Altered levels" or "altered expression" refers to the production of gene product(s) in transgenic organisms in amounts or proportions that differ from that of normal or non-transformed organisms.

"Mature" protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed. "Precursor" protein refers to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may be but are not limited to intracellular localization signals.

A "chloroplast transit peptide" is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the chloroplast or other plastid types present in the cell in which the protein is made. "Chloroplast transit sequence" refers to a nucleotide sequence that encodes a chloroplast transit peptide. A "signal peptide" is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the secretory system (Chrispeels (1991) *Ann. Rev. Plant Phys. Plant Mol. Biol.* 42:21-53).

If the protein is to be directed to a vacuole, a vacuolar targeting signal (*supra*) can further be added, or if to the endoplasmic reticulum, an endoplasmic reticulum retention signal (*supra*) may be added. If the protein is to be directed to the nucleus, any signal peptide present should be removed and instead a nuclear localization signal included (Raikhel (1992) *Plant Phys.* 100:1627-1632).

“Transformation” refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as “transgenic” organisms. Examples of methods of plant transformation include *Agrobacterium*-mediated transformation (De Blaere et al. (1987) *Meth. Enzymol.* 143:277) and particle-accelerated or “gene gun” transformation technology (Klein et al. (1987) *Nature (London)* 327:70-73; U.S. Patent No. 4,945,050, incorporated herein by reference). Thus, isolated polynucleotides of the present invention can be incorporated into recombinant constructs, typically DNA constructs, capable of introduction into and replication in a host cell. Such a construct can be a vector that includes a replication system and sequences that are capable of transcription and translation of a polypeptide-encoding sequence in a given host cell. A number of vectors suitable for stable transfection of plant cells or for the establishment of transgenic plants have been described in, e.g., Pouwels et al., *Cloning Vectors: A Laboratory Manual*, 1985, supp. 1987; Weissbach and Weissbach, *Methods for Plant Molecular Biology*, Academic Press, 1989; and F Levin et al., *Plant Molecular Biology Manual*, Kluwer Academic Publishers, 1990. Typically, plant expression vectors include, for example, one or more cloned plant genes under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant expression vectors also can contain a promoter regulatory region (e.g., a regulatory region controlling inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.

Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook et al. *Molecular Cloning: A Laboratory Manual*; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter “Maniatis”).

“PCR” or “polymerase chain reaction” is a technique for the synthesis of large quantities of specific DNA segments. It consists of a series of repetitive cycles (Perkin Elmer Cetus Instruments, Norwalk, CT). Typically, the double-stranded DNA is heat denatured, the two primers complementary to the 3' boundaries of the target segment are annealed at low temperature and then extended at an intermediate temperature. One set of these three consecutive steps is referred to as a cycle.

The present invention concerns an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) first nucleotide sequence encoding a polypeptide of at least 100 amino acids having at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52, or (b) a second nucleotide sequence comprising the complement of the first nucleotide sequence.

5 Preferably, the first nucleotide sequence comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 10 37, 39, 41, 43, 45, 47, 49, and 51, that codes for the polypeptide selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.

15 The present invention also concerns an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) first nucleotide sequence encoding a polypeptide of at least 100 amino acids having at least 95% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOS:20, 22, 24, 54, 56, and 58 or (b) a second nucleotide sequence comprising the complement of the first nucleotide sequence.

20 Preferably, the first nucleotide sequence comprises a nucleic acid sequence selected from the group consisting of SEQ ID Nos:19, 21, 23, 53, 55 and 57 that codes for the polypeptide selected from the group consisting of SEQ ID NOS:20, 22, 24, 54, 56, and 58.

25 Nucleic acid fragments encoding at least a portion of several LPAAT isozymes have been isolated and identified by comparison of random plant cDNA sequences to public databases containing nucleotide and protein sequences using the BLAST algorithms well known to those skilled in the art. The nucleic acid fragments of the instant invention may be used to isolate cDNAs and genes encoding homologous proteins from the same or other plant species. Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as exemplified by various uses of nucleic acid amplification technologies (e.g., polymerase chain reaction, ligase chain reaction).

30 For example, genes encoding other LPAAT isozymes, either as cDNAs or genomic DNAs, could be isolated directly by using all or a portion of the instant nucleic acid fragments as DNA hybridization probes to screen libraries from any desired plant employing methodology well known to those skilled in the art. Specific oligonucleotide probes based upon the instant nucleic acid sequences can be designed and synthesized by methods known in the art (Maniatis). Moreover, the entire sequences can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primer DNA labeling,

nick translation, or end-labeling techniques, or RNA probes using available *in vitro* transcription systems. In addition, specific primers can be designed and used to amplify a part or all of the instant sequences. The resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full length cDNA or genomic fragments under conditions of appropriate stringency.

In addition, two short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA. The polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding plant genes. Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can follow the RACE protocol (Frohman et al. (1988) *Proc. Natl. Acad. Sci. USA* 85:8998-9002) to generate cDNAs by using PCR to amplify copies of the region between a single point in the transcript and the 3' or 5' end. Primers oriented in the 3' and 5' directions can be designed from the instant sequences. Using commercially available 3' RACE or 5' RACE systems (BRL), specific 3' or 5' cDNA fragments can be isolated (Ohara et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:5673-5677; Loh et al. (1989) *Science* 243:217-220). Products generated by the 3' and 5' RACE procedures can be combined to generate full-length cDNAs (Frohman and Martin (1989) *Techniques* 1:165). Consequently, a polynucleotide comprising a nucleotide sequence of at least one of 60 (preferably one of at least 40, most preferably one of at least 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of:

- (a) SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences may be used in such methods to obtain a nucleic acid fragment encoding a substantial portion of an amino acid sequence of a polypeptide, and/or
- (b) SEQ ID NOS:19, 21, 23, 53, 55 and 57 and the complement of such nucleotide sequences may be used in such methods to obtain a nucleic acid fragment encoding a substantial portion of an amino acid sequence of a polypeptide.

The present invention relates to a method of obtaining a nucleic acid fragment encoding a substantial portion of an LPAAT isozyme polypeptide preferably a substantial portion of a plant LPAAT isozyme polypeptide, comprising the steps of : synthesizing an oligonucleotide primer comprising a nucleotide sequence of at least one of 60 (preferably at least one of 40, most preferably at least one of 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of:

- (a) SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences; and/or
(b) SEQ ID NOS:19, 21, 23, 53, 55 and 57 and the complement of such nucleotide sequences,
5 and amplifying a nucleic acid fragment (preferably a cDNA inserted in a cloning vector) using the oligonucleotide primer. The amplified nucleic acid fragment preferably will encode a portion of an LPAAT isozyme polypeptide.

Availability of the instant nucleotide and deduced amino acid sequences facilitates immunological screening of cDNA expression libraries. Synthetic peptides representing portions of the instant amino acid sequences may be synthesized. These peptides can be used to immunize animals to produce polyclonal or monoclonal antibodies with specificity for peptides or proteins comprising the amino acid sequences. These antibodies can be then be used to screen cDNA expression libraries to isolate full-length cDNA clones of interest (Lerner (1984) *Adv. Immunol.* 36:1-34; Maniatis).

15 In another embodiment, this invention concerns host cells comprising either the chimeric genes of the invention as described herein or an isolated polynucleotide of the invention as described herein. Examples of host cells which can be used to practice the invention include, but are not limited to, yeast, bacteria, plants, and viruses.

20 As was noted above, the nucleic acid polynucleotides of the instant invention may be used to create transgenic plants in which the disclosed polypeptides are present at higher or lower levels than normal or in cell types or developmental stages in which they are not normally found. This would have the effect of altering the level of specific triacylglycerols in those cells. For example overexpression of an LPAAT similar to the maize LPAAT, such as those contained in Example 6, will result in higher oil content in the seed, stem and leaf while overexpression of LPAAT similar to *Burkholderia pseudomallei* will result in larger accumulation of oil in seed.

25 Overexpression of the proteins of the instant invention may be accomplished by first constructing a chimeric gene in which the coding region is operably linked to a promoter capable of directing expression of a gene in the desired tissues at the desired stage of development. The chimeric gene may comprise promoter sequences and translation leader sequences derived from the same genes. 3' Non-coding sequences encoding transcription termination signals may also be provided. The instant chimeric gene may also comprise one or more introns in order to facilitate gene expression.

30 Plasmid vectors comprising the isolated polynucleotide (or chimeric gene) may be constructed. The choice of plasmid vector is dependent upon the method that will be used to transform host plants. The skilled artisan is well aware of the genetic elements that must be present on the plasmid vector in order to successfully transform, select and propagate host cells containing the chimeric gene. The skilled artisan will also recognize that different

independent transformation events will result in different levels and patterns of expression (Jones et al. (1985) *EMBO J.* 4:2411-2418; De Almeida et al. (1989) *Mol. Gen. Genetics* 218:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by 5 Southern analysis of DNA, Northern analysis of mRNA expression, Western analysis of protein expression, or phenotypic analysis.

For some applications it may be useful to direct the instant polypeptides to different cellular compartments, or to facilitate its secretion from the cell. It is thus envisioned that the chimeric gene described above may be further supplemented by directing the coding 10 sequence to encode the instant polypeptides with appropriate intracellular targeting sequences such as transit sequences (Keegstra (1989) *Cell* 56:247-253), signal sequences or sequences encoding endoplasmic reticulum localization (Chrispeels (1991) *Ann. Rev. Plant Phys. Plant Mol. Biol.* 42:21-53), or nuclear localization signals (Raikhel (1992) *Plant Phys.* 100:1627-1632) with or without removing targeting sequences that are already present. 15 While the references cited give examples of each of these, the list is not exhaustive and more targeting signals of use may be discovered in the future.

It may also be desirable to reduce or eliminate expression of genes encoding the instant polypeptides in plants for some applications. In order to accomplish this, a chimeric 20 gene designed for co-suppression of the instant polypeptide can be constructed by linking a gene or gene fragment encoding that polypeptide to plant promoter sequences. Alternatively, a chimeric gene designed to express antisense RNA for all or part of the instant nucleic acid fragment can be constructed by linking the gene or gene fragment in 25 reverse orientation to plant promoter sequences. Either the co-suppression or antisense chimeric genes could be introduced into plants via transformation wherein expression of the corresponding endogenous genes are reduced or eliminated.

Molecular genetic solutions to the generation of plants with altered gene expression have a decided advantage over more traditional plant breeding approaches. Changes in plant 30 phenotypes can be produced by specifically inhibiting expression of one or more genes by antisense inhibition or cosuppression (U.S. Patent Nos. 5,190,931, 5,107,065 and 5,283,323). An antisense or cosuppression construct would act as a dominant negative regulator of gene activity. While conventional mutations can yield negative regulation of 35 gene activity these effects are most likely recessive. The dominant negative regulation available with a transgenic approach may be advantageous from a breeding perspective. In addition, the ability to restrict the expression of specific phenotype to the reproductive tissues of the plant by the use of tissue specific promoters may confer agronomic advantages relative to conventional mutations which may have an effect in all tissues in which a mutant gene is ordinarily expressed.

The person skilled in the art will know that special considerations are associated with the use of antisense or cosuppression technologies in order to reduce expression of particular genes. For example, the proper level of expression of sense or antisense genes may require the use of different chimeric genes utilizing different regulatory elements known to the skilled artisan. Once transgenic plants are obtained by one of the methods described above, it will be necessary to screen individual transgenics for those that most effectively display the desired phenotype. Accordingly, the skilled artisan will develop methods for screening large numbers of transformants. The nature of these screens will generally be chosen on practical grounds. For example, one can screen by looking for changes in gene expression by using antibodies specific for the protein encoded by the gene being suppressed, or one could establish assays that specifically measure enzyme activity. A preferred method will be one which allows large numbers of samples to be processed rapidly, since it will be expected that a large number of transformants will be negative for the desired phenotype.

In another embodiment, the present invention concerns an polypeptide of at least 100 amino acids that has at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.

In still another embodiment, the present invention also concerns a polypeptide of at least 100 amino acids that has at least 95% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOS:20, 22, 24, 54, 56, and 58.

The instant polypeptides (or portions thereof) may be produced in heterologous host cells, particularly in the cells of microbial hosts, and can be used to prepare antibodies to the these proteins by methods well known to those skilled in the art. The antibodies are useful for detecting the polypeptides of the instant invention *in situ* in cells or *in vitro* in cell extracts. Preferred heterologous host cells for production of the instant polypeptides are microbial hosts. Microbial expression systems and expression vectors containing regulatory sequences that direct high level expression of foreign proteins are well known to those skilled in the art. Any of these could be used to construct a chimeric gene for production of the instant polypeptides. This chimeric gene could then be introduced into appropriate microorganisms via transformation to provide high level expression of the encoded LPAAT isozyme. An example of a vector for high level expression of the instant polypeptides in a bacterial host is provided (Example 9).

All or a substantial portion of the polynucleotides of the instant invention may also be used as probes for genetically and physically mapping the genes that they are a part of, and as markers for traits linked to those genes. Such information may be useful in plant breeding in order to develop lines with desired phenotypes. For example, the instant nucleic acid fragments may be used as restriction fragment length polymorphism (RFLP) markers.

Southern blots (Maniatis) of restriction-digested plant genomic DNA may be probed with the nucleic acid fragments of the instant invention. The resulting banding patterns may then be subjected to genetic analyses using computer programs such as MapMaker (Lander et al. (1987) *Genomics* 1:174-181) in order to construct a genetic map. In addition, the nucleic acid fragments of the instant invention may be used to probe Southern blots containing restriction endonuclease-treated genomic DNAs of a set of individuals representing parent and progeny of a defined genetic cross. Segregation of the DNA polymorphisms is noted and used to calculate the position of the instant nucleic acid sequence in the genetic map previously obtained using this population (Botstein et al. (1980) *Am. J. Hum. Genet.* 32:314-331).

The production and use of plant gene-derived probes for use in genetic mapping is described in Bernatzky and Tanksley (1986) *Plant Mol. Biol. Reporter* 4:37-41. Numerous publications describe genetic mapping of specific cDNA clones using the methodology outlined above or variations thereof. For example, F2 intercross populations, backcross populations, randomly mated populations, near isogenic lines, and other sets of individuals may be used for mapping. Such methodologies are well known to those skilled in the art.

Nucleic acid probes derived from the instant nucleic acid sequences may also be used for physical mapping (i.e., placement of sequences on physical maps; see Hoheisel et al. In: *Nonmammalian Genomic Analysis: A Practical Guide*, Academic press 1996, pp. 319-346, and references cited therein).

In another embodiment, nucleic acid probes derived from the instant nucleic acid sequences may be used in direct fluorescence *in situ* hybridization (FISH) mapping (Trask (1991) *Trends Genet.* 7:149-154). Although current methods of FISH mapping favor use of large clones (several to several hundred KB; see Laan et al. (1995) *Genome Res.* 5:13-20), improvements in sensitivity may allow performance of FISH mapping using shorter probes.

A variety of nucleic acid amplification-based methods of genetic and physical mapping may be carried out using the instant nucleic acid sequences. Examples include allele-specific amplification (Kazazian (1989) *J. Lab. Clin. Med.* 11:95-96), polymorphism of PCR-amplified fragments (CAPS; Sheffield et al. (1993) *Genomics* 16:325-332), allele-specific ligation (Landegren et al. (1988) *Science* 241:1077-1080), nucleotide extension reactions (Sokolov (1990) *Nucleic Acid Res.* 18:3671), Radiation Hybrid Mapping (Walter et al. (1997) *Nat. Genet.* 7:22-28) and Happy Mapping (Dear and Cook (1989) *Nucleic Acid Res.* 17:6795-6807). For these methods, the sequence of a nucleic acid fragment is used to design and produce primer pairs for use in the amplification reaction or in primer extension reactions. The design of such primers is well known to those skilled in the art. In methods employing PCR-based genetic mapping, it may be necessary to identify DNA sequence differences between the parents of the mapping cross in the region corresponding to the

instant nucleic acid sequence. This, however, is generally not necessary for mapping methods.

Loss of function mutant phenotypes may be identified for the instant cDNA clones either by targeted gene disruption protocols or by identifying specific mutants for these genes contained in a maize population carrying mutations in all possible genes (Ballinger and Benzer (1989) *Proc. Natl. Acad. Sci USA* 86:9402-9406; Koes et al. (1995) *Proc. Natl. Acad. Sci USA* 92:8149-8153; Bensen et al. (1995) *Plant Cell* 7:75-84). The latter approach may be accomplished in two ways. First, short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols in conjunction with a mutation tag sequence primer on DNAs prepared from a population of plants in which Mutator transposons or some other mutation-causing DNA element has been introduced (see Bensen, *supra*). The amplification of a specific DNA fragment with these primers indicates the insertion of the mutation tag element in or near the plant gene encoding the instant polypeptides. Alternatively, the instant nucleic acid fragment may be used as a hybridization probe against PCR amplification products generated from the mutation population using the mutation tag sequence primer in conjunction with an arbitrary genomic site primer, such as that for a restriction enzyme site-anchored synthetic adaptor. With either method, a plant containing a mutation in the endogenous gene encoding the instant polypeptides can be identified and obtained. This mutant plant can then be used to determine or confirm the natural function of the instant polypeptides disclosed herein.

EXAMPLES

The present invention is further defined in the following Examples, in which all parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

The disclosure of each reference set forth above is incorporated herein by reference in its entirety.

EXAMPLE 1

Composition of cDNA Libraries; Isolation and Sequencing of cDNA Clones

cDNA libraries representing mRNAs from various *Arabidopsis*, catalpa, corn, rice, sorghum, soybean, and wheat tissues were prepared. The characteristics of the libraries are described below.

TABLE 2
**cDNA Libraries from Arabidopsis, Catalpa, Corn,
Rice, Sorghum, Soybean, and Wheat**

Library	Tissue	Clone
ads1c	<i>Arabidopsis Wassilewskija</i> 6 day old seedlings	ads1c.pk005.i10
cca	Corn Callus Type II Tissue, Undifferentiated, Highly Transformable	cca.pk0027.c9
ccoln	Corn Cob of 67 Day Old Plants Grown in Green House ¹	ccoln.pk062.p19:fis
ceb1	Corn Embryo 10 to 11 Days After Pollination	ceb1.mn0001.d12:fis
ceb1	Corn Embryo 10 to 11 Days After Pollination	ceb1.pk0011.d11
ceb5	Corn Embryo 30 Days After Pollination	ceb5.pk0049.b3
ceb5	Corn Embryo 30 Days After Pollination	ceb5.pk0053.e3
cen3n	Corn Endosperm 20 Days After Pollination ¹	cen3n.pk0027.f6
cpelc	Corn pooled BMS treated with chemicals related to phosphatase ²	cpelc.pk006.e1
gds1c	Sorghum Seed 20 Days After Pollination	gds1c.pk002.a19:fis
ncs	<i>Catalpa speciosa</i> Developing Seed	ncs.pk0009.f12:fis
ncs	<i>Catalpa speciosa</i> Developing Seed	ncs.pk0013.d2:fis
p0010	Corn Log Phase Suspension Cells Treated With A23187 ³ to Induce Mass Apoptosis	p0010.cbpbq45r
p0018	Corn Seedling After 10 Day Drought, Heat Shocked for 24 Hours, Harvested After Recovery at Normal Growth Conditions for 8 Hours	p0018.chssd06r
p0018	Corn Seedling After 10 Day Drought, Heat Shocked for 24 Hours, Harvested After Recovery at Normal Growth Conditions for 8 Hours	p0018.chstw94r
p0094	Corn Leaf Collars for the Ear Leaf (EL) and the Next Leaf Above and Below the EL ¹	p0094.cssl20r
p0104	Corn Roots V5 Stage ⁴ , Corn Root Worm Infested ¹	p0104.cabbd29r
rlr2	Rice Leaf 15 Days After Germination, 2 Hours After Infection of Strain <i>Magaporthe grisea</i> 4360-R-62 (AVR2-YAMO); Resistant	rlr2.pk0028.d6:fis
rlr24	Rice Leaf 15 Days After Germination, 24 Hours After Infection of Strain <i>Magaporthe grisea</i> 4360-R-62 (AVR2-YAMO); Resistant	rlr24.pk0068.e3
rlr6	Rice Leaf 15 Days After Germination, 6 Hours After Infection of Strain <i>Magaporthe grisea</i> 4360-R-62 (AVR2-YAMO); Resistant	rlr6.pk0094.f6:fis
rls6	Rice Leaf 15 Days After Germination, 6 Hours After Infection of Strain <i>Magaporthe grisea</i> 4360-R-67 (AVR2-YAMO); Susceptible	rls6.pk0076.d5
rr1	Rice Root of Two Week Old Developing Seedling	rr1.pk0004.a10

Library	Tissue	Clone
rr1	Rice Root of Two Week Old Developing Seedling	rr1.pk0039.e10
scb1c	Soybean Embryogenic Suspension Culture Subjected to 4 Bombardments and Collected 12 Hours Later	scb1c.pk003.d18
sdp4c	Soybean Developing Pods (10-12 mm)	sdp4c.pk006.n11:fis
se4	Soybean Embryo, 19 Days After Flowering	se4.cp0008.b2
sgs1c	Soybean Seeds 4 Hours After Germination	sgs1c.pk001.i16
sgs1c	Soybean Seeds 4 Hours After Germination	sgs1c.pk005.k7
sgs5c	Soybean Seeds 4 Days After Germination	sgs5c.pk0003.e7
sl2	Soybean Two-Week-Old Developing Seedlings Treated With 2.5 ppm chlorimuron	sl2.pk0033.c1
sl2	Soybean Two-Week-Old Developing Seedlings Treated With 2.5 ppm chlorimuron	sl2.pk121.a19
wle1n	Wheat Leaf From 7 Day Old Etiolated Seedling ¹	wle1n.pk0002.g3
wlk1	Wheat Seedlings 1 Hour After Treatment With Herbicide ⁵	wlk1.pk0004.e7
wlm1	Wheat Seedlings 1 Hour After Inoculation With <i>Erysiphe graminis f. sp tritici</i>	wlm1.pk0018.g6
wre1n	Wheat Root From 7 Day Old Etiolated Seedling ¹	wre1n.pk0027.d4
wre1n	Wheat Root From 7 Day Old Etiolated Seedling ¹	wre1n.pk0040.h11
wre1n	Wheat Root From 7 Day Old Etiolated Seedling ¹	wre1n.pk0064.g7

¹These libraries were normalized essentially as described in U.S. Patent No. 5,482,845, the disclosure of which is hereby incorporated by reference.

²Chemicals used included okadaic acid, cyclosporin A, calyculin A, cypermethrin.

³A23187 is commercially available from several vendors including Calbiochem.

⁴Corn developmental stages are explained in the publication "How a corn plant develops" from the Iowa State University Coop. Ext. Service Special Report No. 48 reprinted June 1993.

⁵Application of 6-iodo-2-propoxy-3-propyl-4(3H)-quinazolinone; synthesis and methods of using this compound are described in USSN 08/545,827, the disclosure of which is hereby incorporated by reference.

cDNA libraries may be prepared by any one of many methods available. For example, the cDNAs may be introduced into plasmid vectors by first preparing the cDNA libraries in Uni-ZAP™ XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, CA). The Uni-ZAP™ XR libraries are converted into plasmid libraries according to the protocol provided by Stratagene. Upon conversion, cDNA inserts will be contained in the plasmid vector pBluescript. In addition, the cDNAs may be introduced directly into precut Bluescript II SK(+) vectors (Stratagene) using T4 DNA ligase (New England Biolabs), followed by transfection into DH10B cells according to the manufacturer's protocol (GIBCO BRL Products). Once the cDNA inserts are in plasmid

vectors, plasmid DNAs are prepared from randomly picked bacterial colonies containing recombinant pBluescript plasmids, or the insert cDNA sequences are amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted cDNA sequences. Amplified insert DNAs or plasmid DNAs are sequenced in dye-primer sequencing reactions to generate partial cDNA sequences (expressed sequence tags or "ESTs"; see Adams et al., (1991) *Science* 252:1651-1656). The resulting ESTs are analyzed using a Perkin Elmer Model 377 fluorescent sequencer.

EXAMPLE 2

Identification of cDNA Clones

cDNA clones encoding LPAAT isozymes were identified by conducting BLAST (Basic Local Alignment Search Tool; Altschul et al. (1993) *J. Mol. Biol.* 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/) searches for similarity to sequences contained in the BLAST "nr" database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the last major release of the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The cDNA sequences obtained in Example 1 were analyzed for similarity to all publicly available DNA sequences contained in the "nr" database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the "nr" database using the BLASTX algorithm (Gish and States (1993) *Nat. Genet.* 3:266-272) provided by the NCBI. For convenience, the P-value (probability) of observing a match of a cDNA sequence to a sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as "pLog" values, which represent the negative of the logarithm of the reported P-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA sequence and the BLAST "hit" represent homologous proteins.

EXAMPLE 3

Characterization of cDNA Clones Encoding Proteins

Similar to *Mus musculus* LPAAT

The BLASTX search using the EST sequences from clones listed in Table 3 revealed similarity of the proteins encoded by the cDNAs to an unknown protein from *Caenorhabditis elegans* and a putative LPAAT protein from *Mus musculus* (NCBI General Identifier Nos. 3878960 and 2317725, respectively). Shown in Table 3 are the BLAST results for individual ESTs ("EST") or for the sequences of contigs assembled from two or more ESTs ("Contig"):

TABLE 3
**BLAST Results for Sequences Encoding Polypeptides
 Homologous to *Mus musculus* LPAAT**

Clone	Status	BLAST pLog Score	
		3878960	2317725
Contig of: p0018.chssd06r p0104.cabbd29r cca.pk0027.c9 p0018.chstw94r p0094.csssl20r	Contig	59.40	57.70
sl2.pk121.a19	EST	15.22	10.09
Contig of: wlm1.pk0018.g6 wre1n.pk0040.h11 wre1n.pk0064.g7	Contig	54.30	50.52

5 The sequence of the entire cDNA insert in clones p0018.chssd06r and sl2.pk121.a19 was determined. Further sequencing and analysis of the DuPont proprietary EST database allowed the identification of catalpa, rice, and sorghum clones encoding polypeptides with similarities to *Mus musculus* LPAAT. The BLAST search using the sequences from clones listed in Table 4 revealed similarity of the proteins encoded by the cDNAs to an unknown protein from *Caenorhabditis elegans* and a putative LPAAT protein from *Mus musculus* (NCBI General Identifier Nos. 3878960 and 2317725, respectively). Shown in Table 4 are the BLAST results for the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of the entire protein encoded by a contig assembled from an FIS and one or more ESTs ("Contig*"), or the sequences of the entire protein encoded by an FIS ("CGS"):

TABLE 4
**BLAST Results for Sequences Encoding Polypeptides
 Homologous to *Mus musculus* LPAAT**

Clone	Status	BLAST pLog Score	
		3878960	2317725
ncs.pk0013.d2:fis	CGS	56.40	54.15
Contig of: ceb1.pk0011.d11 ceb5.pk0053.e3 p0010.cbpbq45r p0018.chssd06r:fis	Contig*	58.00	55.04
rlr2.pk0028.d6:fis	CGS	57.70	55.40
gds1c.pk002.a19:fis	FIS	58.10	45.52
sl2.pk121.a19:fis	CGS	57.70	53.00

In this type of plant LPAAT domain I consists of amino acids Asn-His-Thr-Ser-Met-Ile-Asp-Phe-Ile and domain II (62 amino acids downstream) consists of amino acids Leu-Ile-Phe-Pro-Glu-Gly-Thr-Cys.

The data in Table 5 represents a calculation of the percent identity of the amino acid sequences set forth in SEQ ID NOS:2, 4 6, 26, 28, 30, 32, and 34 and the *Caenorhabditis elegans* and *Mus musculus* sequences (NCBI General Identifier Nos. 3878960 and 2317725, respectively).

TABLE 5

Percent Identity of Amino Acid Sequences Deduced From the Nucleotide Sequences of cDNA Clones Encoding Polypeptides Homologous to *Mus musculus* LPAAT

SEQ ID NO.	Percent Identity to	
	3878960	2317725
2	38.5	35.1
4	39.3	29.9
6	39.8	35.9
26	31.8	35.4
28	32.1	36.1
30	31.9	37.4
32	33.5	36.1
34	32.2	35.4

Sequence alignments and percent identity calculations were performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. Sequence alignments and BLAST scores and probabilities indicate that the nucleic acid fragments comprising the instant cDNA clones encode a substantial portion of a corn, a sorghum, a soybean and a wheat LPAAT and entire catalpa, corn, rice, and soybean LPAAT proteins. These sequences represent the first catalpa, corn, rice, soybean, and wheat sequences encoding LPAAT proteins of this type.

EXAMPLE 4

Characterization of cDNA Clones Encoding LPAATs Similar to *Burkholderia pseudomallei* LPAAT

The BLASTX search using the EST sequences from clones listed in Table 3 revealed similarity of the polypeptides encoded by the cDNAs to LPAAT from *Burkholderia*

pseudomallei (NCBI General Identifier No. 3135672). Shown in Table 6 are the BLAST results for individual ESTs ("EST") the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), or for the sequences of contigs assembled from two or more ESTs ("Contig"):

5

TABLE 6
BLAST Results for Sequences Encoding Polypeptides Homologous
to *Burkholderia pseudomallei* LPAAT

Clone	Status	BLAST pLog Score 3135672
Contig of: ceb5.pk0049.b3 cen3n.pk0027.f6	Contig	9.52
sgs1c.pk001.i16	FIS	9.30
wre1n.pk0027.d4	EST	4.00

10 The sequence of the entire cDNA insert from clone wre1n.pk0027.d4 was determined. Further sequencing and analysis of the DuPont proprietary database allowed the identification of a catalpa clone with similarity to the *Burkholderia pseudomallei* LPAAT. The BLAST search using the sequences from clones listed in Table 7 revealed similarity of the polypeptides encoded by the *Arabidopsis thaliana* contig to similar to acyltransferase 15 (NCBI General Identifier No. 6503307) and of the cDNAs to LPAAT from *Burkholderia pseudomallei* (NCBI General Identifier No. 3135672). Shown in Table 7 are the BLAST results for the sequences of the entire cDNA inserts comprising the indicated cDNA clones encoding the entire protein ("CGS"):

20

TABLE 7
BLAST Results for Sequences Encoding Polypeptides Homologous
to *Burkholderia pseudomallei* LPAAT

Clone	Status	BLAST pLog Score 6503307	BLAST pLog Score 3135672
ncs.pk0009.f12:fis	CGS	87.00	10.22
wre1n.pk0027.d4:fis	CGS	83.52	11.40

25 In this type of plant LPAAT domain I consists of amino acids Asn-His-(Val or Ile)-Ser-Tyr-(Val, Ile, or Leu)-Asp-Ile-Leu and domain II (62 amino acids downstream) consists of amino acids Xaa1-(Leu or Ile)-Phe-Pro-Glu-Gly-Thr-Thr, where Xaa1 is Leu, Ile, Met or Tyr.

30 The data in Table 8 represents a calculation of the percent identity of the amino acid sequences set forth in SEQ ID NOS:8, 10, 12, 36, and 38 and the *Burkholderia pseudomallei* sequence (NCBI General Identifier No. 3135672).

TABLE 8

Percent Identity of Amino Acid Sequences Deduced From the Nucleotide
 Sequences of cDNA Clones Encoding Polypeptides
 Homologous to *Burkholderia pseudomallei* LPAAT

SEQ ID NO.	Percent Identity to 3135672
8	19.8
10	17.6
12	17.4
36	219.1
38	20.3

Sequence alignments and percent identity calculations were performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. Sequence alignments and BLAST scores and probabilities indicate that the nucleic acid fragments comprising the instant cDNA clones encode a substantial portion of a wheat LPAAT and entire corn, catalpa, soybean, and wheat LPAAT proteins. These sequences represent the first corn, catalpa, soybean, and wheat sequences encoding LPAATs of this type.

EXAMPLE 5

Characterization of cDNA Clones Encoding Putative LPAATs

The BLASTX search using the EST sequences from clones listed in Table 9 revealed similarity of the polypeptides encoded by the contig to an unknown protein from *Arabidopsis thaliana* (NCBI General Identifier No. 2979560). Shown in Table 9 are the BLAST results for individual ESTs ("EST"), the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), or the sequences of contigs assembled from two or more ESTs ("Contig"):

TABLE 9
**BLAST Results for Sequences Encoding Polypeptides
 Homologous to LPAATs**

Clone	Status	BLAST pLog Score 2979560
ads1c.pk005.i10	FIS	52.00
Contig of: rls6.pk0076.d5 rlr24.pk0068.e3	Contig	22.70
scb1c.pk003.d18	EST	45.04

5 The sequence of the entire cDNA insert in clones rls6.pk0076.d5 and scb1c.pk003.d18 was determined. Further sequencing and analysis of the DuPont proprietary database allowed the identification of corn clones with similarities to the *Arabidopsis thaliana* putative protein. The BLAST search using the sequences from clones listed in Table 10 revealed similarity of the polypeptides encoded by the contig to an unknown protein from *Arabidopsis thaliana* (NCBI General Identifier No. 2979560). Shown in Table 10 are the BLAST results for the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of contigs assembled from two or more ESTs ("Contig"), or the sequences of an FIS encoding the entire protein ("CGS"):

TABLE 10
**BLAST Results for Sequences Encoding Polypeptides
 Homologous to LPAATs**

Clone	Status	BLAST pLog Score 2979560
Contig of: ceb1.mn0001.d12:fis cpe1c.pk006.e1	Contig	21.70
rls6.pk0076.d5:fis	FIS	67.52
scb1c.pk003.d18:fis	CGS	81.00

15 In this type of plant LPAATs domain I includes the amino acids Ser-Asn-His-(Val or Ile)-Ser-Tyr-Ile-Glu-Pro-Ile and domain II (61 amino acids downstream) includes the amino acids Leu-Leu-Phe-Pro-Glu-Gly-Thr-Thr-Thr.

20 The BLAST search using the sequences from clones listed in Table 11 revealed similarity of the polypeptides encoded by the contig to a member of the acyltransferase family from *Arabidopsis thaliana* (NCBI General Identifier No. 6503307). Shown in Table 11 are the BLAST results for the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of contigs assembled from two or more ESTs ("Contig"), or the sequences of the entire protein encoded by an FIS ("CGS"):

TABLE 11
 BLAST Results for Sequences Encoding Polypeptides
 Homologous to LPAATs

Clone	Status	BLAST pLog Score 6503307
cc01n.pk062.p19:fis	CGS	119.00
rlr6.pk0094.f6:fis	CGS	111.00
sdp4c.pk006.n11:fis	FIS	95.52
Contig of:	Contig	6.52
sgs1c.pk005.k7		
sgs5c.pk0003.e7		

5

In this type of plant LPAATs domain I includes the amino acids Ser-Asn-His-Val-Ser-Tyr-(Val or Leu)-Asp-Ile-Leu and domain II (61 amino acids downstream) includes the amino acids Leu-Phe-Pro-Glu-Gly-Thr-Thr-Thr.

10 The data in Table 12 represents a calculation of the percent identity of the amino acid sequences set forth in SEQ ID NOS:14, 16, 18, 40, 42, 44, 46, 48, 50, and 52 and the *Arabidopsis thaliana* sequences (NCBI General Identifier No. 6503307).

TABLE 12
 Percent Identity of Amino Acid Sequences Deduced From the Nucleotide
 Sequences of cDNA Clones Encoding Polypeptides
 Homologous to LPAATs

SEQ ID NO.	Percent Identity to	
	2979560	6503307
14	36.3	13.2
16	32.8	13.8
18	65.4	16.8
40	27.0	21.1
42	50.2	16.9
44	65.4	19.7
46	18.0	54.6
48	18.1	52.5
50	11.2	63.7
52	12.4	19.5

Sequence alignments and percent identity calculations were performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., 20 Madison, WI). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default

parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. Sequence alignments and BLAST scores and probabilities indicate that the nucleic acid fragments comprising the instant cDNA clones encode a substantial portion of an *Arabidopsis*, a corn, a rice, and a soybean LPAAT and an entire soybean LPAAT. These sequences represent the first corn, rice, soybean, and *Arabidopsis* sequences encoding LPAAT of this type.

EXAMPLE 6

Characterization of cDNA Clones Encoding Proteins

Similar to *Zea mays* LPAAT

The BLASTX search using the EST sequences from clones listed in Table 13 revealed similarity of the polypeptides encoded by the cDNAs to LPAAT from *Zea mays* (NCBI General Identifier No. 575960). Shown in Table 13 are the BLAST results for the sequences of contigs assembled from two or more ESTs ("Contig"):

TABLE 13

BLAST Results for Sequences Encoding Polypeptides Homologous to *Zea mays* LPAAT

Clone	Status	BLAST pLog Score 575960
Contig of: rr1.pk0004.a10 rr1.pk0039.e10	Contig	57.70
Contig of: se4.cp0008.b2 sl2.pk0033.c1	Contig	67.15
Contig of: wlk1.pk0004.e7 wle1n.pk0002.g3	Contig	78.70

The sequence of the entire cDNA insert in clones rr1.pk0004.a10, sl2.pk0033.c1, and wlk1.pk0004.e7 was determined. The BLASTP search using the amino acid sequences from clones listed in Table 14 revealed similarity of the polypeptides encoded by the cDNAs to LPAATs from *Zea mays* and *Brassica napus* (NCBI General Identifier Nos. 1076821 and 4583544, respectively). Shown in Table 14 are the BLAST results for the sequences of the entire cDNA inserts comprising the indicated cDNA clones encoding the entire protein ("CGS"):

TABLE 14
**BLAST Results for Sequences Encoding Polypeptides
 Homologous to *Zea mays* LPAAT**

Clone	Status	BLAST pLog Score	
		1076821	4583544
rr1.pk0004.a10:fis	CGS	>254.00	149.00
sl2.pk0033.c1:fis	CGS	169.00	175.00
wlk1.pk0004.e7:fis	CGS	>254.00	148.00

5 In this type of plant LPAAT domain I consists of amino acids Ser-Asn-His-Arg-Ser-Asp-Ile-Asp-Trp-Leu and domain II (69 amino acids downstream) consists of amino acids Ala-Leu-Phe-Val-Glu-Gly-Thr-Arg-Phe.

10 The data in Table 15 represents a calculation of the percent identity of the amino acid sequences set forth in SEQ ID NOS:20, 22, 24, 54, 56, and 58 and the *Zea mays* sequence (NCBI General Identifier Nos. 1076821).

TABLE 15
**Percent Identity of Amino Acid Sequences Deduced From the Nucleotide
 Sequences of cDNA Clones Encoding Polypeptides Homologous
 to *Zea mays* LPAAT**

SEQ ID NO.	Percent Identity to 1076821
20	72.6
22	72.4
24	73.1
54	91.2
56	70.1
58	84.8

Sequence alignments and percent identity calculations were performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the sequences was performed using the Clustal 20 method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. Sequence alignments and BLAST scores and probabilities indicate that the nucleic acid fragments comprising the instant cDNA clones encode a substantial portion of and an entire rice, soybean, and wheat LPAAT. These 25 sequences represent the first rice, soybean, and wheat sequences encoding LPAATs of this type.

EXAMPLE 7Expression of Chimeric Genes in Monocot Cells

A chimeric gene comprising a cDNA encoding the instant polypeptides in sense orientation with respect to the maize 27 kD zein promoter that is located 5' to the cDNA fragment, and the 10 kD zein 3' end that is located 3' to the cDNA fragment, can be constructed. The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites (NcoI or SmaI) can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the digested vector pML103 as described below.

5 Amplification is then performed in a standard PCR. The amplified DNA is then digested with restriction enzymes NcoI and SmaI and fractionated on an agarose gel. The appropriate band can be isolated from the gel and combined with a 4.9 kb NcoI-SmaI fragment of the plasmid pML103. Plasmid pML103 has been deposited under the terms of the Budapest Treaty at ATCC (American Type Culture Collection, 10801 University Blvd., Manassas,

10 VA 20110-2209), and bears accession number ATCC 97366. The DNA segment from pML103 contains a 1.05 kb SalI-NcoI promoter fragment of the maize 27 kD zein gene and a 0.96 kb SmaI-SalI fragment from the 3' end of the maize 10 kD zein gene in the vector pGem9Zf(+) (Promega). Vector and insert DNA can be ligated at 15°C overnight, essentially as described (Maniatis). The ligated DNA may then be used to transform *E. coli*

15 XL1-Blue (Epicurian Coli XL-1 Blue™; Stratagene). Bacterial transformants can be screened by restriction enzyme digestion of plasmid DNA and limited nucleotide sequence analysis using the dideoxy chain termination method (Sequenase™ DNA Sequencing Kit; U.S. Biochemical). The resulting plasmid construct would comprise a chimeric gene encoding, in the 5' to 3' direction, the maize 27 kD zein promoter, a cDNA fragment

20 encoding the instant polypeptides, and the 10 kD zein 3' region.

25

The chimeric gene described above can then be introduced into corn cells by the following procedure. Immature corn embryos can be dissected from developing caryopses derived from crosses of the inbred corn lines H99 and LH132. The embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al. 30 (1975) *Sci. Sin. Peking* 18:659-668). The embryos are kept in the dark at 27°C. Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos. The embryogenic callus isolated from the primary explant can 35 be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.

The plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker. This plasmid contains the *Pat* gene (see European Patent Publication 0 242 236)

which encodes phosphinothricin acetyl transferase (PAT). The enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin. The *pat* gene in p35S/Ac is under the control of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) *Nature* 313:810-812) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of *Agrobacterium tumefaciens*.

The particle bombardment method (Klein et al. (1987) *Nature* 327:70-73) may be used to transfer genes to the callus culture cells. According to this method, gold particles (1 μm in diameter) are coated with DNA using the following technique. Ten μg of plasmid DNAs are added to 50 μL of a suspension of gold particles (60 mg per mL). Calcium chloride (50 μL of a 2.5 M solution) and spermidine free base (20 μL of a 1.0 M solution) are added to the particles. The suspension is vortexed during the addition of these solutions. After 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed. The particles are resuspended in 200 μL of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 μL of ethanol. An aliquot (5 μL) of the DNA-coated gold particles can be placed in the center of a KaptonTM flying disc (Bio-Rad Labs). The particles are then accelerated into the corn tissue with a BiostaticTM PDS-1000/He (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.

For bombardment, the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium. The tissue is arranged as a thin lawn and covered a circular area of about 5 cm in diameter. The petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen. The air in the chamber is then evacuated to a vacuum of 28 inches of Hg. The macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.

Seven days after bombardment the tissue can be transferred to N6 medium that contains glufosinate (2 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional 2 weeks the tissue can be transferred to fresh N6 medium containing glufosinate. After 6 weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the glufosinate-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium.

Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al. (1990) *Bio/Technology* 8:833-839).

EXAMPLE 8Expression of Chimeric Genes in Dicot Cells

A seed-specific expression cassette composed of the promoter and transcription terminator from the gene encoding the β subunit of the seed storage protein phaseolin from the bean *Phaseolus vulgaris* (Doyle et al. (1986) *J. Biol. Chem.* 261:9228-9238) can be used for expression of the instant polypeptides in transformed soybean. The phaseolin cassette includes about 500 nucleotides upstream (5') from the translation initiation codon and about 1650 nucleotides downstream (3') from the translation stop codon of phaseolin. Between the 5' and 3' regions are the unique restriction endonuclease sites Nco I (which includes the 5 ATG translation initiation codon), Sma I, Kpn I and Xba I. The entire cassette is flanked by Hind III sites.

The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the expression vector. Amplification is then performed as described above, and the isolated fragment is inserted into a pUC18 vector carrying the seed expression cassette.

Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptides. To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26°C on an appropriate agar medium for 6-10 weeks. Somatic embryos which produce secondary embryos are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiplied as early, globular staged embryos, the suspensions are maintained as described below.

Soybean embryogenic suspension cultures can be maintained in 35 mL liquid media on a rotary shaker, 150 rpm, at 26°C with fluorescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 mL of liquid medium.

Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al. (1987) *Nature* (London) 327:70-73, U.S. Patent No. 4,945,050). A DuPont Biostatic™ PDS1000/HE instrument (helium retrofit) can be used for these transformations.

A selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) *Nature* 313:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from *E. coli*; Gritz et al. (1983) *Gene* 25:179-188) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of *Agrobacterium tumefaciens*. The seed

expression cassette comprising the phaseolin 5' region, the fragment encoding the instant polypeptides and the phaseolin 3' region can be isolated as a restriction fragment. This fragment can then be inserted into a unique restriction site of the vector carrying the marker gene.

- 5 To 50 μ L of a 60 mg/mL 1 μ m gold particle suspension is added (in order): 5 μ L DNA (1 μ g/ μ L), 20 μ L spermidine (0.1 M), and 50 μ L CaCl₂ (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 μ L 70% ethanol and resuspended in 40 μ L of anhydrous ethanol. The DNA/particle suspension can
10 be sonicated three times for one second each. Five μ L of the DNA-coated gold particles are then loaded on each macro carrier disk.

Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally
15 bombarded. Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.

- Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or
20 regenerated into whole plants by maturation and germination of individual somatic embryos.
25

EXAMPLE 9

Expression of Chimeric Genes in Microbial Cells

- 30 The cDNAs encoding the instant polypeptides can be inserted into the T7 *E. coli* expression vector pBT430. This vector is a derivative of pET-3a (Rosenberg et al. (1987) *Gene* 56:125-135) which employs the bacteriophage T7 RNA polymerase/T7 promoter system. Plasmid pBT430 was constructed by first destroying the EcoR I and Hind III sites in pET-3a at their original positions. An oligonucleotide adaptor containing EcoR I and
35 Hind III sites was inserted at the BamH I site of pET-3a. This created pET-3aM with additional unique cloning sites for insertion of genes into the expression vector. Then, the Nde I site at the position of translation initiation was converted to an Nco I site using

oligonucleotide-directed mutagenesis. The DNA sequence of pET-3aM in this region, 5'-CATATGG, was converted to 5'-CCCATGG in pBT430.

Plasmid DNA containing a cDNA may be appropriately digested to release a nucleic acid fragment encoding the protein. This fragment may then be purified on a 1% NuSieve 5 GTG™ low melting agarose gel (FMC). Buffer and agarose contain 10 µg/ml ethidium bromide for visualization of the DNA fragment. The fragment can then be purified from the agarose gel by digestion with GELase™ (Epicentre Technologies) according to the manufacturer's instructions, ethanol precipitated, dried and resuspended in 20 µL of water. Appropriate oligonucleotide adapters may be ligated to the fragment using T4 DNA ligase (New England Biolabs, Beverly, MA). The fragment containing the ligated adapters can be purified from the excess adapters using low melting agarose as described above. The vector pBT430 is digested, dephosphorylated with alkaline phosphatase (NEB) and deproteinized with phenol/chloroform as described above. The prepared vector pBT430 and fragment can then be ligated at 16°C for 15 hours followed by transformation into DH5 electrocompetent 10 cells (GIBCO BRL). Transformants can be selected on agar plates containing LB media and 100 µg/mL ampicillin. Transformants containing the gene encoding the instant polypeptides are then screened for the correct orientation with respect to the T7 promoter by restriction 15 enzyme analysis.

For high level expression, a plasmid clone with the cDNA insert in the correct 20 orientation relative to the T7 promoter can be transformed into *E. coli* strain BL21(DE3) (Studier et al. (1986) *J. Mol. Biol.* 189:113-130). Cultures are grown in LB medium containing ampicillin (100 mg/L) at 25°C. At an optical density at 600 nm of approximately 1, IPTG (isopropylthio-β-galactoside, the inducer) can be added to a final concentration of 0.4 mM and incubation can be continued for 3 h at 25°. Cells are then harvested by 25 centrifugation and re-suspended in 50 µL of 50 mM Tris-HCl at pH 8.0 containing 0.1 mM DTT and 0.2 mM phenyl methylsulfonyl fluoride. A small amount of 1 mm glass beads can be added and the mixture sonicated 3 times for about 5 seconds each time with a microprobe sonicator. The mixture is centrifuged and the protein concentration of the supernatant determined. One µg of protein from the soluble fraction of the culture can be separated by 30 SDS-polyacrylamide gel electrophoresis. Gels can be observed for protein bands migrating at the expected molecular weight.

Activity assays may be conducted under well known experimental conditions which permit optimal enzymatic activity. For example, assays for LPAAT which incorporates medium-sized chain fatty acids are presented by Knutzon et al. (1995) *Plant Physiol.* 35 109:999-1006. Assays for LPAAT which incorporates fatty acids longer than 18 carbons are presented by Lassner et al. (1995) *Plant Physiol.* 109:1389-1394. Assays to investigate the fatty acid selectivity of LPAATs is presented by Löhdén and Frentzen (1992) *Planta* 188:215-224.

CLAIMS

What is claimed is:

1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of:

- 5 — (a) first nucleotide sequence encoding a polypeptide of at least 100 amino acids having at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52, or
10 (b) a second nucleotide sequence comprising the complement of the first nucleotide sequence.

2. The isolated polynucleotide of Claim 1, wherein the first nucleotide sequence comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51, that codes for the polypeptide selected from the group consisting of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.

15 3. The isolated polynucleotide of Claim 1 wherein the nucleotide sequences are DNA.

4. The isolated polynucleotide of Claim 1 wherein the nucleotide sequences are RNA.

20 5. A chimeric gene comprising the isolated polynucleotide of Claim 1 operably linked to suitable regulatory sequences.

6. An isolated host cell comprising the chimeric gene of Claim 5.

7. A host cell comprising an isolated polynucleotide of Claim 1.

25 8. The host cell of Claim 7 wherein the host cell is selected from the group consisting of yeast, bacteria, plant, and virus.

9. The host cell of claim 8 wherein the host cell is a virus.

10. A polypeptide of at least 100 amino acids that has at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.

30 11. A method of selecting an isolated polynucleotide that affects the level of expression of an LPAAT isozyme polypeptide in a plant cell, which comprises:

35 (a) constructing an isolated polynucleotide comprising a nucleotide sequence of at least one of 30 contiguous nucleotides derived from an isolated polynucleotide of Claim 1;

(b) introducing the isolated polynucleotide into a plant cell;

(c) measuring the level of a polypeptide in the plant cell containing the polynucleotide; and

(d) comparing the level of polypeptide in the plant cell containing the isolated polynucleotide with the level of polypeptide in a plant cell that does not contain the isolated polynucleotide.

12. The method of Claim 11 wherein the isolated polynucleotide consists of a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 that codes for the polypeptide selected from the group consisting of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.

13. A method of selecting an isolated polynucleotide that affects the level of expression of an LPAAT isozyme polypeptide in a plant cell which comprises:

- (a) constructing an isolated polynucleotide of Claim 1;
- (b) introducing the isolated polynucleotide into a plant cell;
- (c) measuring the level of polypeptide in the plant cell containing the polynucleotide; and

15 (d) comparing the level of polypeptide in the plant cell containing the isolated polynucleotide with the level of polypeptide in a plant cell that does not contain the polynucleotide.

14. A method of obtaining a nucleic acid fragment encoding an LPAAT isozyme polypeptide which comprises:

- (a) synthesizing an oligonucleotide primer comprising a nucleotide sequence of at least one of 30 contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences; and
- (b) amplifying a nucleic acid sequence using the oligonucleotide primer.

25 15. A method of obtaining a nucleic acid fragment encoding an LPAAT isozyme polypeptide which comprises:

- (a) probing a cDNA or genomic library with an isolated polynucleotide comprising at least one of 30 contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences;
- (b) identifying a DNA clone that hybridizes with the isolated polynucleotide;
- (c) isolating the identified DNA clone; and
- (d) sequencing the cDNA or genomic fragment that comprises the isolated DNA clone.

30 16. A composition comprising the isolated polynucleotide of Claim 1.

35 17. A composition comprising the isolated polynucleotide of Claim 10.

18. An isolated polynucleotide comprising the nucleotide sequence having at least one of 30 contiguous nucleotides derived from a nucleic acid sequence selected from the group consisting of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such sequences.

5 19. A method for positive selection of a transformed cell comprising:

(a) transforming a host cell with the chimeric gene of Claim 5; and

(b) growing the transformed host cell under conditions which allow expression of the polynucleotide in an amount sufficient to complement a null mutant to provide a positive selection means.

10 20. The method of Claim 19 wherein the plant cell is a monocot.

21. The method of Claim 19 wherein the plant cell is a dicot.

22. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of:

15 (a) first nucleotide sequence encoding a polypeptide of at least 100 amino acids having at least 95% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOS:20, 22, 24, 54, 56, and 58 or
(b) a second nucleotide sequence comprising the complement of the first nucleotide sequence.

20 23. The isolated polynucleotide of Claim 22, wherein the first nucleotide sequence comprises a nucleic acid sequence selected from the group consisting of SEQ ID Nos:19, 21, 23, 53, 55 and 57 that codes for the polypeptide selected from the group consisting of SEQ ID NOS:20, 22, 24, 54, 56, and 58.

25 24. The isolated polynucleotide of Claim 22 wherein the nucleotide sequences are DNA.

25 25. The isolated polynucleotide of Claim 22 wherein the nucleotide sequences are RNA.

26. A chimeric gene comprising the isolated polynucleotide of Claim 22 operably linked to suitable regulatory sequences.

30 27. An isolated host cell comprising the chimeric gene of Claim 26.

28. A host cell comprising an isolated polynucleotide of Claim 22.

29. The host cell of Claim 28 wherein the host cell is selected from the group consisting of yeast, bacteria, plant, and virus.

30 30. The host cell of claim 29 wherein the host cell is a virus.

35 31. A polypeptide of at least 100 amino acids that has at least 95% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOS:20, 22, 24, 54, 56, and 58.

32. A method of selecting an isolated polynucleotide that affects the level of expression of an LPAAT isozyme polypeptide in a plant cell, which comprises:

(a) constructing an isolated polynucleotide comprising a nucleotide sequence of at least one of 30 contiguous nucleotides derived from an isolated polynucleotide of Claim 22;

(b) introducing the isolated polynucleotide into a plant cell;

5 (c) measuring the level of a polypeptide in the plant cell containing the polynucleotide; and

(d) comparing the level of polypeptide in the plant cell containing the isolated polynucleotide with the level of polypeptide in a plant cell that does not contain the isolated polynucleotide.

10 33. The method of Claim 32 wherein the isolated polynucleotide consists of a nucleotide sequence selected from the group consisting of SEQ ID 19, 21, 23, 53, 55 and 57 that codes for the polypeptide selected from the group consisting of SEQ ID NOS:20, 22, 24, 54, 56, and 58.

15 34. A method of selecting an isolated polynucleotide that affects the level of expression of an LPAAT isozyme polypeptide in a plant cell which comprises:

(a) constructing an isolated polynucleotide of Claim 22;

(b) introducing the isolated polynucleotide into a plant cell;

20 (c) measuring the level of polypeptide in the plant cell containing the polynucleotide; and

(d) comparing the level of polypeptide in the plant cell containing the isolated polynucleotide with the level of polypeptide in a plant cell that does not contain the polynucleotide.

25 35. A method of obtaining a nucleic acid fragment encoding an LPAAT isozyme polypeptide which comprises:

(a) synthesizing an oligonucleotide primer comprising a nucleotide sequence of at least one of 30 contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOS:19, 21, 23, 53, 55, and 57 and the complement of such nucleotide sequences; and

(b) amplifying a nucleic acid sequence using the oligonucleotide primer.

30 36. A method of obtaining a nucleic acid fragment encoding an LPAAT isozyme polypeptide which comprises:

(a) probing a cDNA or genomic library with an isolated polynucleotide comprising at least one of 30 contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOS:19, 21, 23, 53, 55, and 57 and the complement of such nucleotide sequences;

(b) identifying a DNA clone that hybridizes with the isolated polynucleotide; (c) isolating the identified DNA clone; and

(d) sequencing the cDNA or genomic fragment that comprises the isolated DNA clone.

37. A composition comprising the isolated polynucleotide of Claim 22.

38. A composition comprising the isolated polynucleotide of Claim 31.

5 39. An isolated polynucleotide comprising the nucleotide sequence having at least one of 30 contiguous nucleotides derived from a nucleic acid sequence selected from the group consisting of SEQ ID NOs:19, 21, 23, 53, 55, and 57 and the complement of such sequences.

10 40. A method for positive selection of a transformed cell comprising:

(a) transforming a host cell with the chimeric gene of Claim 26; and

15 (b) growing the transformed host cell under conditions which allow expression of the polynucleotide in an amount sufficient to complement a null mutant to provide a positive selection means.

41. The method of Claim 40 wherein the plant cell is a monocot.

42. The method of Claim 40 wherein the plant cell is a dicot.

GENERAL POWER OF ATTORNEY
(Concerning Several International Patent Applications)

The undersigned, Vernon R. Rice, Vice President and Assistant General Counsel of E. I. DU PONT DE NEMOURS AND COMPANY, 1007 Market Street, Wilmington, Delaware 19898 USA ("DuPont"), hereby confirms that the power to sign for DuPont has been granted to various individuals (as set forth in the attached excerpt from DuPont's Patent Board Rules of Procedure (January 1988), Appendix Section III.A.4), including the Chairman, Vice-Chairman, and those individuals who are Assistant Secretaries of the Patent Board. Currently these Assistant Secretaries are:

Roger A. Bowman
Linda J. Davis
John E. Griffiths

Barbara J. Massie
Miriam D. Meconnahay
Deborah A. Meginniss

In addition, the authority to act on behalf of DuPont before the competent International Authorities in connection with any and all international patent applications filed by it with the United States as Receiving Office and to make or receive payments on its behalf is hereby granted to:

Beardell, Lori Y.	34,293	Katz, Elliott A.	26,396
Belopolsky, Inna	43,319	Kelly, Patricia L.	39,247
Benjamin, Steven C.	36,087	King, Karen K.	34,850
Birch, Linda D.	38,719	Kuller, Mark D.	31,925
Bowen, Jr., Alanson G.	24,027	Krukiel, Charles E.	27,344
Christenbury, Lynne M.	30,971	Jarnholm, Arne R.	30,396
Cotreau, William J.	36,490	Langworthy, John A.	32,255
Deitch, Gerald E.	30,457	Lerman, Bart E.	31,897
Deshmukh, Sudhir	33,677	Levitt, Cary A.	31,848
Dobson, Kevin S.	40,296	Magee, Thomas H.	27,355
Duffy, Roseanne R.	33,869	Mayer, Nancy S.	29,190
Edwards, Mark A.	39,542	Medwick, George M.	27,456
Estrin, Barry	26,452	Morrisey, Bruce W.	30,663
Evans, Craig H.	31,825	Reynolds, Stephen E.	37,580
Fair, Tamera L.	35,867	Rizzo, Thomas M.	41,272
Feltham, S. Neil	36,506	Santopietro, Lois A.	36,264
Floyd, Linda Axamethy	33,692	Schaeffer, Andrew L.	33,605
Fricke, Hilmar L.	22,384	Sebree, Chyrrea J.	45,348
Furr, Robert B.	32,985	Shay, Lucas K.	34,724
Golian, Andrew G.	25,293	Shipley, James E.	32,003
Golian, Paul D.	42,591	Siegell, Barbara C.	30,684
Gorman, Thomas W.	31,959	Sinnott, Jessica M.	34,015
Gould, David J.	25,338	Steinberg, Michael A.	43,160
Griffiths, John E.	32,647	Steinberg, Thomas W.	37,013
Hamby, Jane O.	32,872	Stevenson, Robert B.	26,039
Hamby, William H.	31,521	Strickland, Frederick D.	39,041
Heiser, David E.	31,366	Tulloch, Rebecca W.	36,297
Hendrickson, John S.	30,847	Walker, P. Michael	32,602
Joung, J. Kenneth	41,881	Wang, Chen	38,650

The undersigned ratifies fully all actions already taken by the above-named individuals in accordance with the authority granted hereby.

E. I. DU PONT DE NEMOURS AND COMPANY

By: _____

Vernon R. Rice
Vice President and Assistant General Counsel

O-9-01

DECLARATION and POWER OF ATTORNEY

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

LYSOPHOSPHATIDIC ACID ACETYLTRANSFERASES

the specification of which is attached hereto unless the following box is checked:

was filed on **22 February 2000** as U.S. Application No. _____ or PCT International Application No. **PCT/US00/04526** and was amended on _____ (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is known to me to be material to patentability as defined in 37 CFR § 1.56.

I hereby claim foreign priority benefits under 35 U.S.C. § 119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Application No.	Country	Filing Date	Priority Claimed (Yes/No)

I hereby claim the benefit under 35 U.S.C. § 119(e) of any United States Provisional Application(s) listed below.

U.S. Provisional Application No.	U.S. Filing Date
60/121,119	22 FEBRUARY 1999

I hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or § 365(c) of any PCT International Application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application or PCT International Application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose information which is known to me to be material to patentability as defined in 37 CFR § 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application.

Application No.	Filing Date	Status (patented, pending or abandoned)

POWER OF ATTORNEY: I hereby appoint the following attorney(s) and/or agent(s) the power to prosecute this application and transact all business in the Patent and Trademark Office connected therewith:

Name: LYNNE M. CHRISTENBURY	Registration No.: 30,971
Send correspondence and direct telephone calls to: LYNNE M. CHRISTENBURY	E. I. du Pont de Nemours and Company Legal - Patents Wilmington, DE 19898, U.S.A.
	Tel. No. (302) 992-5481 Fax No. (302) 892-7949

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

INVENTOR(S)

1-00 Full Name of Inventor	Last Name CAHOON	First Name EDGAR	Middle Name B.
	Signature (please sign full name): <i>Edgar E. Cahoon</i>		Date: 3/31/2000
Residence & Citizenship	City WILMINGTON	State or Foreign Country DELAWARE	Country of Citizenship U.S.A.
Post Office Address	Post Office Address 2331 WEST 18TH STREET	City WILMINGTON	State or Country DELAWARE
2-00 Full Name of Inventor	Last Name CAHOON	First Name REBECCA	Middle Name E.
	Signature (please sign full name): <i>Rebecca E. Cahoon</i>		Date: April 5, 2000
Residence & Citizenship	City WILMINGTON	State or Foreign Country DELAWARE	Country of Citizenship U.S.A.
Post Office Address	Post Office Address 2331 WEST 18TH STREET	City WILMINGTON	State or Country DELAWARE
3-00 Full Name of Inventor	Last Name HITZ	First Name WILLIAM	Middle Name D.
	Signature (please sign full name): <i>William D. Hitz</i>		Date: 3/31/2000
Residence & Citizenship	City WILMINGTON	State or Foreign Country DELAWARE	Country of Citizenship U.S.A.
Post Office Address	Post Office Address 404 HILLSIDE ROAD	City WILMINGTON	State or Country DELAWARE
			Zip Code 19807

Additional Inventors are being named on separately numbered sheets attached hereto.

Full Name of Inventor 400	Last Name KINNEY Signature (please sign full name): <i>Anthony Kinney</i>	First Name ANTHONY	Middle Name J. Date: 3/31/2000
Residence & Citizenship	City WILMINGTON	State or Foreign Country DELAWARE DE	Country of Citizenship GB
Post Office Address	Post Office Address 609 LORE AVENUE	City WILMINGTON	State or Country DELAWARE Zip Code 19807
Full Name of Inventor 500	Last Name RIPP Signature (please sign full name): <i>Kevin Ripp</i>	First Name KEVIN	Middle Name G. Date: 3/31/00
Residence & Citizenship	City WILMINGTON	State or Foreign Country DELAWARE DE	Country of Citizenship U.S.A.
Post Office Address	Post Office Address 2310 WEST 18TH STREET	City WILMINGTON	State or Country DELAWARE Zip Code 19806

SEQUENCE LISTING

<110> E. I. du Pont de Nemours and Company
<120> Lysophosphatidic Acid Acetyltransferases
<130> BB1332
<140>
<141>
<150> 60/121,119
<151> 1999-February-22
<160> 58
<170> Microsoft Office 97
<210> 1
<211> 928
<212> DNA
<213> Zea mays
<220>
<221> unsure
<222> (858)
<220>
<221> unsure
<222> (876)
<220>
<221> unsure
<222> (897)
<400> 1
cttttttccct gtccatttcc tattgaaagg gcaagacaag ttgagaagta aaattgagag 60
gaagtgggtt gaaatgatgt gcagtgtttt tggactggag ttatcaagta 120
tcatggacca cgcggcaagca cacgacctca tcaggtattc gttgcaaacc atacatcgat 180
gatagatttc attattctgg agcaaattgac agcatttgct gtcatcatgc agaagcatcc 240
tggatgggtt ggatttattc agaagactat cttggaaaagt gtcgggtgca tctggtttaa 300
tcgtaatgtat ctccgggacc gtgaagttac ggcacggaag ttacgtgatc atgttcaaca 360
accagacaac aatcctctgt tgattttcc ggaaggaact tgtgtgaaca accagtagac 420
ggtcatgttc aagaagggtg cctttgagct tggctgcgt gtatgtccaa tagctatcaa 480
gtacaataaa atatttgtt atgccttttga acatgttgc 540
cttggtccgg ctgatgacat catggctgt tggctgcgt gttggact tacctcctca 600
atatctgagg gagggagaga cggcaattgc atttgctgag agagtaaggg acatgatagc 660
tgcttagagct ggactaaaga agttccttgg gatggctatc tgaaacacaa ccgtcctagt 720
cccaaacaca ctgaagagaa acaacgcata tttgccgaat ctgtcttgat gagactggag 780
gagaaatgaa gggacgtaaa gccgtacaag tgcacttcgt tagggttttacatgcagcta 840
ccttggattt ccgttggntt cccaaaaaaaaaaaaantgag cctggacac gtcaaantga 900
ccacctccat tttgggttggtaattttgc 928
<210> 2
<211> 262
<212> PRT
<213> Zea mays

<400> 2
 Phe Phe Pro Val His Phe Leu Leu Lys Gly Gln Asp Lys Leu Arg Ser
 1 5 10 15
 Lys Ile Glu Arg Lys Leu Val Glu Met Met Cys Ser Val Phe Val Ala
 20 25 30
 Ser Trp Thr Gly Val Ile Lys Tyr His Gly Pro Arg Pro Ser Thr Arg
 35 40 45
 Pro His Gln Val Phe Val Ala Asn His Thr Ser Met Ile Asp Phe Ile
 50 55 60
 Ile Leu Glu Gln Met Thr Ala Phe Ala Val Ile Met Gln Lys His Pro
 65 70 75 80
 Gly Trp Val Gly Phe Ile Gln Lys Thr Ile Leu Glu Ser Val Gly Cys
 85 90 95
 Ile Trp Phe Asn Arg Asn Asp Leu Arg Asp Arg Glu Val Thr Ala Arg
 100 105 110
 Lys Leu Arg Asp His Val Gln Gln Pro Asp Asn Asn Pro Leu Leu Ile
 115 120 125
 Phe Pro Glu Gly Thr Cys Val Asn Asn Gln Tyr Thr Val Met Phe Lys
 130 135 140
 Lys Gly Ala Phe Glu Leu Gly Cys Ala Val Cys Pro Ile Ala Ile Lys
 145 150 155 160
 Tyr Asn Lys Ile Phe Val Asp Ala Phe Trp Asn Ser Lys Lys Gln Ser
 165 170 175
 Phe Thr Met His Leu Val Arg Leu Met Thr Ser Trp Ala Val Val Cys
 180 185 190
 Asp Val Trp Tyr Leu Pro Pro Gln Tyr Leu Arg Glu Gly Glu Thr Ala
 195 200 205
 Ile Ala Phe Ala Glu Arg Val Arg Asp Met Ile Ala Ala Arg Ala Gly
 210 215 220
 Leu Lys Lys Val Pro Trp Asp Gly Tyr Leu Lys His Asn Arg Pro Ser
 225 230 235 240
 Pro Lys His Thr Glu Glu Lys Gln Arg Ile Phe Ala Glu Ser Val Leu
 245 250 255
 Met Arg Leu Glu Glu Lys
 260

<210> 3
<211> 519
<212> DNA
<213> Glycine max
<220>
<221> unsure
<222> (46)

<220>
<221> unsure
<222> (69)

<220>
<221> unsure
<222> (72)

<220>
<221> unsure
<222> (86)

<220>
<221> unsure
<222> (117)

<220>
<221> unsure
<222> (142)

<220>
<221> unsure
<222> (144)

<220>
<221> unsure
<222> (186)

<220>
<221> unsure
<222> (241)

<220>
<221> unsure
<222> (245)

<220>
<221> unsure
<222> (347)

<220>
<221> unsure
<222> (368) .. (369)

<220>
<221> unsure
<222> (371)

<220>
<221> unsure
<222> (404)

<220>
<221> unsure
<222> (413)

<220>
<221> unsure
<222> (422)

<220>
<221> unsure
<222> (436)

<220>
<221> unsure
<222> (438)

<220>
<221> unsure
<222> (479)

<220>
<221> unsure
<222> (489)

<220>
<221> unsure
<222> (493)

<220>
<221> unsure
<222> (504)

<220>
<221> unsure
<222> (508) .. (509)

<220>
<221> unsure
<222> (516)

<400> 3
gagaactagt ctcgagttt ttttttttt ttttgtcat ggaatnattt tcaggcaatt 60
tcatgtana tntacatgtat tatcanaata gtaagtggag tacaaacaag gtttgngaa 120
aatcattact gaaaaagtaa ananatatac attattttc ctcaaagcgc cgcaacacag 180
actcancgaa tatttgtgc tttccttctc tgtgcttggg actagggcga gaataactca 240
natancoatc ccaaggaacc ttttaagcc cagcacgatg tgagattatg tctctaactc 300
tctctgcaaa ttcaatgggt gtctctcctg gcttcaaatt ttgtggntcc aagtaccata 360
catcacannc nacagccaa gatgtcatta attgcaagag atgnctggta aangattgct 420
tncgactatt ccaaancngc atcgacgaaa atttaatgt acttgattgc caccgggnna 480
aaatttgtnc agncaaagtc aaantggnnnc cttcntgg 519

<210> 4
<211> 107
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (24)

<220>
<221> UNSURE
<222> (36)

<220>
<221> UNSURE
<222> (43)

<220>
<221> UNSURE
<222> (79)

<220>
<221> UNSURE
<222> (97)

<400> 4
Pro Val Ala Ile Lys Tyr Ile Lys Ile Phe Val Asp Ala Val Trp Asn
1 5 10 15

Ser Arg Lys Gln Ser Phe Thr Xaa His Leu Leu Gln Leu Met Thr Ser
20 25 30

Trp Ala Val Xaa Cys Asp Val Trp Tyr Leu Xaa Pro Gln Asn Leu Lys
35 40 45

Pro Gly Glu Thr Pro Ile Glu Phe Ala Glu Arg Val Arg Asp Ile Ile
50 55 60

Ser His Arg Ala Gly Leu Lys Lys Val Pro Trp Asp Gly Tyr Xaa Lys
65 70 75 80

Tyr Ser Arg Pro Ser Pro Lys His Arg Glu Gly Lys Gln Gln Ile Phe
85 90 95

Xaa Glu Ser Val Leu Arg Arg Phe Glu Glu Lys
100 105

<210> 5
<211> 1067
<212> DNA
<213> *Triticum aestivum*

<220>
<221> unsure
<222> (935)

<220>
<221> unsure
<222> (1009)

<220>
<221> unsure
<222> (1016) .. (1017)

<220>
<221> unsure
<222> (1029)

<220>
<221> unsure
<222> (1034) .. (1035)

<220>
<221> unsure
<222> (1061)

<400> 5
tgcttcttgg actggagtga tcaagtagcca tggaccacgc ccaagctcac gaccttatca 60
ggtattttgtt gcaaaccata catcgatgtt agattttatt attctggagc agatgacagc 120
atttgctgtc atcatgcaaa agcatcctgg atgggttggg tttattcaga agactattct 180
ggaaaagtgtg gttgcacatcg ggttaaccg taatgatctc aaggatcgta aagtagttgg 240
aagaaagtta cgtgatcaag ttccagcatcc agacaacaat cctcttttga tttcccgga 300
aggaacttgt gttaataatc agtacactgt gatgttcaag aagggtgtt ttgagttgg 360
ctgtgctgtt tgtccaaatag ctatcaaata taataaaata tttgttgcgt ctttctggaa 420
tagtaagaag caatcttttta caatgcattt gggtcgctt atgacatcat gggctgttgt 480
ttgtgtatgtt tggcttggg aacctcagta tctcaggaa ggggagacag cgatagaatt 540
tactgaaaga gtgagggaca tgatagctgc tcgggtgtt cttaaaggaa ttccatggaa 600
tggctatctg aaacataacc gcccttagccc caaacataacc gaggaaaagc agcgcatgtt 660
tgctgaatct gtgttgggaa gactagagga aaactaaata gctatcaatc aactcacgg 720
ctcctggta gttgaggat ttcccttag ttgccttgcgtt atctgttaat caccaagtg 780
agacctgggg catgtggaaa tgaccaccgc agtttgcgt taaatttgcgt tgcgtttga 840
cagaatcagt agcatgtgtt tggcaagaaa gaactattga atcaaccttgcgttatacatac 900
gacactagtc cgattttgtt acaccacaga tcaancgttgcgttgcgttgcgttgcgtt 960
gaacacagat ttgcgtgtac acaaatttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt 1020
gatcgtnna gtnnttaat actaaagatg gtaggttacc naacatt 1067

<210> 6

<211> 231

<212> PRT

<213> Triticum aestivum

<400> 6

Ala	Ser	Trp	Thr	Gly	Val	Ile	Lys	Tyr	His	Gly	Pro	Arg	Pro	Ser	Ser
1					5				10				15		

Arg	Pro	Tyr	Gln	Val	Phe	Val	Ala	Asn	His	Thr	Ser	Met	Ile	Asp	Phe
					20				25				30		

Ile	Ile	Leu	Glu	Gln	Met	Thr	Ala	Phe	Ala	Val	Ile	Met	Gln	Lys	His
					35				40				45		

Pro	Gly	Trp	Val	Gly	Phe	Ile	Gln	Lys	Thr	Ile	Leu	Glu	Ser	Val	Val
					50				55				60		

Ala	Ser	Gly	Phe	Asn	Arg	Asn	Asp	Leu	Lys	Asp	Arg	Glu	Val	Val	Gly
					65			70				75			80

Arg	Lys	Leu	Arg	Asp	Gln	Val	Gln	His	Pro	Asp	Asn	Asn	Pro	Leu	Leu
					85				90				95		

Ile	Phe	Pro	Glu	Gly	Thr	Cys	Val	Asn	Asn	Gln	Tyr	Thr	Val	Met	Phe
					100				105				110		

Lys	Lys	Gly	Ala	Phe	Glu	Leu	Gly	Cys	Ala	Val	Cys	Pro	Ile	Ala	Ile
					115				120				125		

Lys	Tyr	Asn	Lys	Ile	Phe	Val	Asp	Ala	Phe	Trp	Asn	Ser	Lys	Lys	Gln
					130				135				140		

Ser	Phe	Thr	Met	His	Leu	Val	Arg	Leu	Met	Thr	Ser	Trp	Ala	Val	Val
					145				150				155		160

Cys	Asp	Val	Trp	Ser	Trp	Glu	Pro	Gln	Tyr	Leu	Arg	Glu	Gly	Glu	Thr
					165				170				175		

Ala Ile Glu Phe Thr Glu Arg Val Arg Asp Met Ile Ala Ala Arg Ala
 180 185 190

Gly Leu Lys Lys Val Pro Trp Asp Gly Tyr Leu Lys His Asn Arg Pro
 195 200 205

Ser Pro Lys His Thr Glu Glu Lys Gln Arg Met Phe Ala Glu Ser Val
 210 215 220

Leu Arg Arg Leu Glu Glu Asn
 225 230

<210> 7

<211> 1043

<212> DNA

<213> Zea mays

<400> 7

gccgcgcgtg cacgctgttc gtggatgcag atggggggcg gccgagggttgcgcggggggcgg
 ggaggaaggc cgtgctgcga tcgggggtcg cgctctcacg ggtgatgctc ttctgtttcg 60
 ggttctactg gatccgcgag accccgcagaa ggtccactaa tgctaagggt ttaaatcagg 120
 accaatttga agaatcccaa aggccagggg caattgtatc taatcatgtc tcttatgtgg 180
 atattcttta tcacatgtca gcatttttc caagtttgcg tgctaaggag tcagtgtcca 240
 ggttgccact tattggtctc ataagcaatt gtcttggatg cattttgtt caacgagaat 300
 cgaagtcttc agaagctaaa ggtgtctcag ggcgtgtaac tgaaaggatc caagacgttt 360
 gtcaagataa gaataccccca atgatgttgcg tggtttcccg gggactact acaaattgggg 420
 attaccttct tccatttaag actggagcct ttcttgcagg tgaccaggatc cagccagtca 480
 ttttgaataa cccttacagg agattttagtc cagcatgggat ttcaatggat ggagcacgtc 540
 atgtgtttt gctgctctgt caatttgcgtt atcacatggat ggtggccgg ttgcctgttat 600
 actatccttc tcaactagaa aaagaagatc ctaagctcta cgcaaataat gtcagaaaaac 660
 taatagcaat ggagggcaat ttagttctt ctaatattgg gctggcagag aagcgcgtgt 720
 accatgcagc actgactggt agtagtctac ctggcgctag acatgagaaa gatgattgaa 780
 agacgttgcg tcgcgttttc tgtaacagac agccgaggaa cactaaaaaa tgtaactgtg 840
 tgcgtgtttt tatacctgta atgtggcagt ttatattttt gaggaggctg ttgagttaccc 900
 ttctcatact acattgtaca aaaacaatgt ccaatgtcca ttatagtttgcg atgaggttcg 960
 tgctccaaaaa aaaaaaaaaaaa aaa 1020
 1043

<210> 8

<211> 278

<212> PRT

<213> Zea mays

<400> 8

Arg Ala Cys Thr Leu Phe Val Asp Ala Asp Gly Gly Arg Pro Arg Leu
 1 5 10 15

Ala Gly Trp Arg Arg Lys Ala Val Leu Arg Ser Gly Cys Ala Leu Ser
 20 25 30

Arg Val Met Leu Phe Val Phe Gly Phe Tyr Trp Ile Arg Glu Thr Arg
 35 40 45

Arg Arg Ser Thr Asn Ala Lys Gly Leu Asn Gln Asp Gln Phe Glu Glu
 50 55 60

Ser Gln Arg Pro Gly Ala Ile Val Ser Asn His Val Ser Tyr Val Asp
 65 70 75 80

Ile Leu Tyr His Met Ser Ala Ser Phe Pro Ser Phe Val Ala Lys Glu
 85 90 95

Ser Val Ser Arg Leu Pro Leu Ile Gly Leu Ile Ser Asn Cys Leu Gly
 100 105 110

Cys Ile Phe Val Gln Arg Glu Ser Lys Ser Ser Glu Ala Lys Gly Val
 115 120 125

Ser Gly Ala Val Thr Glu Arg Ile Gln Asp Val Cys Gln Asp Lys Asn
 130 135 140

Thr Pro Met Met Leu Leu Phe Pro Glu Gly Thr Thr Thr Asn Gly Asp
 145 150 155 160

Tyr Leu Leu Pro Phe Lys Thr Gly Ala Phe Leu Ala Gly Ala Pro Val
 165 170 175

Gln Pro Val Ile Leu Lys Tyr Pro Tyr Arg Arg Phe Ser Pro Ala Trp
 180 185 190

Asp Ser Met Asp Gly Ala Arg His Val Phe Leu Leu Leu Cys Gln Phe
 195 200 205

Val Asn His Met Glu Val Val Arg Leu Pro Val Tyr Tyr Pro Ser Gln
 210 215 220

Leu Glu Lys Glu Asp Pro Lys Leu Tyr Ala Asn Asn Val Arg Lys Leu
 225 230 235 240

Ile Ala Met Glu Gly Asn Leu Val Leu Ser Asn Ile Gly Leu Ala Glu
 245 250 255

Lys Arg Val Tyr His Ala Ala Leu Thr Gly Ser Ser Leu Pro Gly Ala
 260 265 270

Arg His Glu Lys Asp Asp
 275

<210> 9

<211> 1349

<212> DNA

<213> Glycine max

<400> 9

aagaacctga cccaggatga ggatcgctg agcactcctc ttcagatccg cacaaggcatt 60
 gcatatcaa tcaagcatcc tgttccttat ctctgtctct gcatttccct tccttcttct 120
 tctctctctc tctctaaaac cctaattcta tacatggaaag ggaaatctca aatctaata 180
 ctaattaatt aatccatcgta tcaagcatgg agtccgaact caaagacctc aattcgaagc 240
 cggccgaacgg caacggcaac agcggtcgcg atgaccgtcc tctgctgaag ccggagccctc 300
 cggctccgc cgacagcatc gccgatatgg agaagaagtt cgccgcttac gtccgcccgc 360
 acgtgtacgg caccatggaa cgccggcgagt tgcctccaa ggagaagctc ttgctcggtt 420
 tcgcgttggt cactctctc cccattcgag tcggttcgc cgtcaccata ttgctctttt 480
 attacttaat ttgttagggtt tgcactctct tctctgcgcc cactggcgaa gaggaacagg 540
 aagattacgc tcacatgagt gggtgagga gaaccattat tgtttctgtt ggacgcgc 600
 tctccagact catgcttttc attttcggct tttattggat ccccgaaatcg aactctgcct 660
 ctcaggaaga caagagtccg cagccccaaag agttgaggag acctggcgta ataatttcta 720
 atcatgtgtc gtacttggat attttgcatac acatgtcttc ctcattccct agttttgtt 780
 ctaagagatc agtggctaaa cttccgctag tcgggtctcat cagcaagtgc cttgggttgt 840
 tctatgttca gcgggaatca aggtcatcag acttcaaggg tgtttcagct gttgtcactg 900
 acagaattcg agaagctcat cagaatgagt ctgctccatt aatgatgtta tttccagaag 960
 gtacaaccac aaatggagag ttcctccttc cattcaagac tggtggttt ttggcaaagg 1020

caccggtaact tcctgtgata ttacgatatac attaccagag attttagccct gcctgggatt 1080
 ccataatctgg agtgcgccat gtgatatttc tcctgtgtca gtttgtgaat tatatggagg 1140
 tgatccgatt acctgtttac catccttcac agcaggagat ggatgatccc aaactatacg 1200
 ctaataatgt tagaagggtt atggctactg aggtaattt gatactttct gatattgggc 1260
 tagctgaaaa acgaatatat cacgctgctc tcaatggtaa taatagcctg cctagtgttt 1320
 tgcatacagaa agacgaatga taatttcat 1349

<210> 10

<211> 377

<212> PRT

<213> Glycine max

<400> 10

Met	Glu	Ser	Glu	Leu	Lys	Asp	Leu	Asn	Ser	Lys	Pro	Pro	Asn	Gly	Asn
1				5					10				15		

Gly	Asn	Ser	Val	Arg	Asp	Asp	Arg	Pro	Leu	Leu	Lys	Pro	Glu	Pro	Pro
			20					25				30			

Val	Ser	Ala	Asp	Ser	Ile	Ala	Asp	Met	Glu	Lys	Lys	Phe	Ala	Ala	Tyr
					35			40				45			

Val	Arg	Arg	Asp	Val	Tyr	Gly	Thr	Met	Gly	Arg	Gly	Glu	Leu	Pro	Pro
				50			55				60				

Lys	Glu	Lys	Leu	Leu	Leu	Gly	Phe	Ala	Leu	Val	Thr	Leu	Leu	Pro	Ile
				65			70			75			80		

Arg	Val	Val	Leu	Ala	Val	Thr	Ile	Leu	Leu	Phe	Tyr	Tyr	Leu	Ile	Cys
					85			90				95			

Arg	Val	Cys	Thr	Leu	Phe	Ser	Ala	Pro	Thr	Gly	Glu	Glu	Gln	Glu	
				100				105			110				

Asp	Tyr	Ala	His	Met	Ser	Gly	Trp	Arg	Arg	Thr	Ile	Ile	Val	Ser	Cys
				115			120				125				

Gly	Arg	Ala	Leu	Ser	Arg	Leu	Met	Leu	Phe	Ile	Phe	Gly	Phe	Tyr	Trp
				130			135			140					

Ile	Pro	Glu	Ser	Asn	Ser	Ala	Ser	Gln	Glu	Asp	Lys	Ser	Arg	Gln	Pro
	145					150			155			160			

Glu	Glu	Leu	Arg	Arg	Pro	Gly	Val	Ile	Ile	Ser	Asn	His	Val	Ser	Tyr
				165				170			175				

Leu	Asp	Ile	Leu	Tyr	His	Met	Ser	Ser	Phe	Pro	Ser	Phe	Val	Ala	
				180				185			190				

Lys	Arg	Ser	Val	Ala	Lys	Leu	Pro	Leu	Val	Gly	Leu	Ile	Ser	Lys	Cys
				195			200			205					

Leu	Gly	Cys	Val	Tyr	Val	Gln	Arg	Glu	Ser	Arg	Ser	Ser	Asp	Phe	Lys
				210			215			220					

Gly	Val	Ser	Ala	Val	Val	Thr	Asp	Arg	Ile	Arg	Glu	Ala	His	Gln	Asn
				225			230			235			240		

Glu	Ser	Ala	Pro	Leu	Met	Met	Leu	Phe	Pro	Glu	Gly	Thr	Thr	Thr	Asn
					245			250			255				

Gly Glu Phe Leu Leu Pro Phe Lys Thr Gly Gly Phe Leu Ala Lys Ala
260 265 270

Pro Val Leu Pro Val Ile Leu Arg Tyr His Tyr Gln Arg Phe Ser Pro
275 280 285

Ala Trp Asp Ser Ile Ser Gly Val Arg His Val Ile Phe Leu Leu Cys
290 295 300

Gln Phe Val Asn Tyr Met Glu Val Ile Arg Leu Pro Val Tyr His Pro
305 310 315 320

Ser Gln Gln Glu Met Asp Asp Pro Lys Leu Tyr Ala Asn Asn Val Arg
325 330 335

Arg Leu Met Ala Thr Glu Gly Asn Leu Ile Leu Ser Asp Ile Gly Leu
340 345 350

Ala Glu Lys Arg Ile Tyr His Ala Ala Leu Asn Gly Asn Asn Ser Leu
355 360 365

Pro Ser Val Leu His Gln Lys Asp Glu
370 375

<210> 11

<211> 585

<212> DNA

<213> Triticum aestivum

<220>

<221> unsure

<222> (363)

<220>

<221> unsure

<222> (391)

<220>

<221> unsure

<222> (404)

<220>

<221> unsure

<222> (433)

<220>

<221> unsure

<222> (439)

<220>

<221> unsure

<222> (449)

<220>

<221> unsure

<222> (470)

<220>
<221> unsure
<222> (510)

<220>
<221> unsure
<222> (527)

<220>
<221> unsure
<222> (532)

<220>
<221> unsure
<222> (535)

<220>
<221> unsure
<222> (539)

<220>
<221> unsure
<222> (557)

<220>
<221> unsure
<222> (562)

<220>
<221> unsure
<222> (571)

<400> 11
caggggttga ggagggaggc cgtgctgcgt gctggccgcg tggatcgatggatgctg 60
ttcggttcg ggttctactg gatccccgtg tccgatcgaa gcttcccaa tgccgaggat 120
gtacctaag atcaatcatga agaactggaa agaccagggg cgattgtatc taatcatgtg 180
tcataatgtgg acattctta tcataatgtca gcttcttctc cgagtttgt tgctaagaac 240
tcagtgtcca agttgccgtt gattggtctc ataagcaa at gtcgtgggtg cattttgtt 300
caacgagaac caaatgttca gattctaaag ggtctcaagt gctgttaactg aaagtccatg 360
agntcacaag gacgagaatc cctatatctc nccttcctg agnttacact acaatggat 420
tactctccat tanacaganc ttcttgang gacatgcaac tgtatgggn atacctacag 480
agattatcca cctgggacca tggatggacn caagttttg ccccccgnatt tnaantaana 540
agggtccctt ctgaaaact cncaaaaaga ngttcaatca gcaaa 585

<210> 12
<211> 194
<212> PRT
<213> *Triticum aestivum*

<220>
<221> UNSURE
<222> (120)

<220>
<221> UNSURE
<222> (130)

<220>
<221> UNSURE
<222> (134)

<220>
<221> UNSURE
<222> (144)

<220>
<221> UNSURE
<222> (146)

<220>
<221> UNSURE
<222> (149)

<220>
<221> UNSURE
<222> (156)

<220>
<221> UNSURE
<222> (175)

<220>
<221> UNSURE
<222> (177) .. (178) .. (179)

<220>
<221> UNSURE
<222> (185)

<220>
<221> UNSURE
<222> (187)

<220>
<221> UNSURE
<222> (190)

<400> 12

Gln Gly Leu Arg Arg Glu Ala Val Leu Arg Ala Gly Arg Val Leu Ser
1 5 10 15

Arg Ala Met Leu Phe Val Phe Gly Phe Tyr Trp Ile Pro Val Ser Asp
20 25 30

Arg Ser Phe Pro Asn Ala Glu Asp Val Pro Lys Asp His Tyr Glu Glu
35 40 45

Leu Glu Arg Pro Gly Ala Ile Val Ser Asn His Val Ser Tyr Val Asp
50 55 60

Ile Leu Tyr His Met Ser Ala Ser Ser Pro Ser Phe Val Ala Lys Asn
65 70 75 80

Ser Val Ser Lys Leu Pro Leu Ile Gly Leu Ile Ser Lys Cys Leu Gly
85 90 95

Cys Ile Phe Val Gln Arg Glu Pro Asn Val Gln Ile Leu Lys Gly Leu
100 105 110

Lys Cys Cys Asn Lys Ser Met Xaa Ser Gln Gly Arg Glu Ser Leu Tyr
 115 120 125

Leu Xaa Phe Pro Glu Xaa Thr Leu Gln Trp Asp Tyr Ser Pro Leu Xaa
 130 135 140

Arg Xaa Ser Cys Xaa Asp Met Gln Leu Tyr Leu Xaa Tyr Leu Gln Arg
 145 150 155 160

Leu Ser Thr Trp Asp His Asp Gly Thr Gln Val Phe Ala Pro Xaa Phe
 165 170 175

Xaa Xaa Xaa Arg Val Pro Ser Glu Xaa Leu Xaa Lys Arg Xaa Ser Ile
 180 185 190

Ser Lys

<210> 13

<211> 1501

<212> DNA

<213> Arabidopsis thaliana

<400> 13

atgcagaatc atgtggatta ctcggatctg taccagatgt atccctttctt cttttggcta 60
 tcagtggata agaaggaaag ggaaacctgc tcggagagag attgctccga ttgttgtatc 120
 aaatcatgtt tcttatattt aaccaatctt ctacttctat gaattatcac cgaccattgt 180
 tgcatcgtag tcacatgatt cacttccatt tggtaactt attatcagg caatgcagg 240
 gatatatgtt aatagattct cacagacatc aaggaagaat gctgtgcattt aaataaagag 300
 aaaagcttcc tgcgatagat ttccctcgat gctgttattt cccgaaggaa ccacgactaa 360
 tggaaaagtt ctatccctt tccaaactcgg tgcttcattt cctggttacc ctattcaacc 420
 tgttagtagtc cggtatcccc atgtacattt tgatcaatcc tggggaaata tctctttgtt 480
 gacgctcatg ttttagaatgt tcactcagtt tcacaatttc atggaggttg aatatcttcc 540
 tgtaatctat cccagtgaaa agcaaaagca gaatgctgtt cgtctctcac agaagactag 600
 tcatgcaatt gcaacatctt tgaatgtcgat ccaaacatcc cattttttt cggacttgc 660
 gctactcaac aaagcaactg agttaaagct ggagaacccc tcaaattaca tggttggaaat 720
 ggcaagagtt gagtcgctat tccatgttaag cagcttagag gcaacgcgtt tttggatac 780
 atttggccatc atgattccgg actcgagtgg acgtgtttagg ctacatgact ttcttcgggg 840
 tcttaaactg aaaccttgc ctctttctaa aaggatattt gagttcatcg atgtggagaa 900
 ggtcgatca atcaacttca aacagttctt gttgcctcg ggccacgtgt tgacacagcc 960
 gcttttaag caaacatgcg agcttagcattt ttccatttc gatgcagatg gagatggcta 1020
 tattacaattt caagaactcg gagaagctct caaaaacaca atcccaaact tgaacaagga 1080
 cgagattcga ggaatgtacc atttgcata cgacgaccaaa gatcaaagaa tcagccaaaa 1140
 tgacttggatc tcctgcttaa gaagaaaccc tcttcataat gccatctttt cacctgactt 1200
 ggcccccaaca taacacagag agacaaaatg gctggctaaat atttgggtt cgtgattgt 1260
 aaacttgcattt ttgtggatata ttattatacc ttttgggtt tcttcataat tgatttcagc 1320
 tagaaaaaaag aaggactgc tatgtttta gcctatataat ataccctcctt ccaacatgga 1380
 tccatccttt tgagtgttgg actataactg cttgtcgatc tccaccccaa aaaacgctat 1440
 ggtgtttgct cctcttagttc tgagcaaaactt ttgctgtaaa aaaaaaaaaa aaaaaaaaaa 1500
 a 1501

<210> 14

<211> 403

<212> PRT

<213> Arabidopsis thaliana

<400> 14

Cys Arg Ile Met Trp Ile Thr Arg Ile Cys Thr Arg Cys Ile Leu Phe
 1 5 10 15

Ser Phe Gly Tyr Gln Trp Ile Arg Arg Lys Gly Lys Pro Ala Arg Arg
 20 25 30

Glu Ile Ala Pro Ile Val Val Ser Asn His Val Ser Tyr Ile Glu Pro
 35 40 45

Ile Phe Tyr Phe Tyr Glu Leu Ser Pro Thr Ile Val Ala Ser Glu Ser
 — 50 55 60

His Asp Ser Leu Pro Phe Val Gly Thr Ile Ile Arg Ala Met Gln Val
 65 70 75 80

Ile Tyr Val Asn Arg Phe Ser Gln Thr Ser Arg Lys Asn Ala Val His
 85 90 95

Glu Ile Lys Arg Lys Ala Ser Cys Asp Arg Phe Pro Arg Leu Leu Leu
 100 105 110

Phe Pro Glu Gly Thr Thr Asn Gly Lys Val Leu Ile Ser Phe Gln
 115 120 125

Leu Gly Ala Phe Ile Pro Gly Tyr Pro Ile Gln Pro Val Val Val Arg
 130 135 140

Tyr Pro His Val His Phe Asp Gln Ser Trp Gly Asn Ile Ser Leu Leu
 145 150 155 160

Thr Leu Met Phe Arg Met Phe Thr Gln Phe His Asn Phe Met Glu Val
 165 170 175

Glu Tyr Leu Pro Val Ile Tyr Pro Ser Glu Lys Gln Lys Gln Asn Ala
 180 185 190

Val Arg Leu Ser Gln Lys Thr Ser His Ala Ile Ala Thr Ser Leu Asn
 195 200 205

Val Val Gln Thr Ser His Ser Phe Ala Asp Leu Met Leu Leu Asn Lys
 210 215 220

Ala Thr Glu Leu Lys Leu Glu Asn Pro Ser Asn Tyr Met Val Glu Met
 225 230 235 240

Ala Arg Val Glu Ser Leu Phe His Val Ser Ser Leu Glu Ala Thr Arg
 245 250 255

Phe Leu Asp Thr Phe Val Ser Met Ile Pro Asp Ser Ser Gly Arg Val
 260 265 270

Arg Leu His Asp Phe Leu Arg Gly Leu Lys Leu Lys Pro Cys Pro Leu
 275 280 285

Ser Lys Arg Ile Phe Glu Phe Ile Asp Val Glu Lys Val Gly Ser Ile
 290 295 300

Thr Phe Lys Gln Phe Leu Phe Ala Ser Gly His Val Leu Thr Gln Pro
 305 310 315 320

Leu Phe Lys Gln Thr Cys Glu Leu Ala Phe Ser His Cys Asp Ala Asp
 325 330 335

Gly Asp Gly Tyr Ile Thr Ile Gln Glu Leu Gly Glu Ala Leu Lys Asn
340 345 350

Thr Ile Pro Asn Leu Asn Lys Asp Glu Ile Arg Gly Met Tyr His Leu
355 360 365

Leu Asp Asp Asp Gln Asp Gln Arg Ile Ser Gln Asn Asp Leu Leu Ser
 — 370 375 380

Cys Leu Arg Arg Asn Pro Leu Leu Ile Ala Ile Phe Ala Pro Asp Leu
385 390 395 400

Ala Pro Thr

<210> 15
<211> 692
<212> DNA
<213> *Oryza sativa*

<220>
<221> unsure
<222> (446)

<220>
<221> unsure
<222> (579)

<220>
<221> unsure
<222> (677)

<400> 15

gttctaaccc	gcctcctctc	gcctcgccctc	cggccacccat	ggcttctcga	aaccctagcc	60
ccgcctccct	ctccacgccc	ctcctctccg	actccatctc	gccccacgccc	accaccaacg	120
gccacgcggg	gcaccataac	cacgacgacg	acgacgagga	gtcgccaacg	gtgtgcggcg	180
gcatatggcgg	aggagggggg	gaccgcgtcg	cgttcctatc	ggaggatcgg	ccggcgttggt	240
ggtcgcccgcg	gggggtgtcc	ccggccgacc	cgttccgcaa	cgggacgccc	gggtggtgcg	300
gggcgtacga	gctcgtgagg	gcgctcgtgt	gcgccgcgtt	ggcggcggcg	aggctggtgtc	360
tgttcgggct	ctccatcgcg	gtgggtacg	ccgcccacgtg	ggtggcgctc	cgcgggtggg	420
tcgacgtgcg	ggagcgggcg	gcmcangagg	gcccgggccc	catgcggcgc	tggcgccgccc	480
gcctcatgtg	gatcacgcgg	attccgcgcg	ctgcacatctc	tttccttctcg	gatacattgg	540
ataaggagaa	aggaaaaaccg	ccctagaaaac	ttcaactatnt	ttctaaatca	tgttcatcat	600
agaaccatat	actctcatag	cttccgacat	cgttctcaaa	tccatatcat	acatttgaa	660
aatttcagca	tcagtantag	ttaaaatccc	aa			692

<210> 16
<211> 174
<212> PRT
<213> Oryza sativa

<220>
<221> UNSURE
<222> (136)

<400> 16

Met Ala Ser Arg Asn Pro Ser Pro Ala Ser Leu Ser Thr Pro Leu Leu
1 5 10 15

<220>
<221> unsure
<222> (366)

<220>
<221> unsure
<222> (377) .. (378)

<220>
<221> unsure
<222> (399)

<220>
<221> unsure
<222> (419)

<220>
<221> unsure
<222> (426)

<220>
<221> unsure
<222> (428)

<220>
<221> unsure
<222> (432)

<220>
<221> unsure
<222> (454)

<220>
<221> unsure
<222> (475)

<400> 17
gcgacgacga cgacttctcc gtgcggccac cgtccaccct ggaccgttc cgcaaccgca 60
cgccggcgat cgaggggctc tacgagtggg ccaagacggc gctgtgcctg ccgctggcgg 120
cgctgcggct cgcgctgttc gggctctgcc tcgcgggtgg gtacgtggcg acgaagggtgg 180
cgctggcang gtggnaggac aaggagaatc ccatgccccaa gtggaggtgt agggttatgt 240
ggatcacgcg cttgtgcgcc aaatgtattc tcttctcctt tggntatcan tggataaaaac 300
ggnaagggaa acctgcacca agggaaatt gctccaataa attgtatcta aaccatgttt 360
cntaanagtg agcctannct tcctatttct aagaattant tcctaacaat ggtgggaanc 420
tgaagnncna anactccata tcctttgtt gggnaccaat taatagagca aatgnaagtc 480

<210> 18
<211> 107
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (63)

<220>
<221> UNSURE
<222> (65)

<220>

<221> UNSURE
<222> (96)

<220>

<221> UNSURE
<222> (101)

<400> 18

Asp Asp Asp Asp Phe Ser Val Pro Pro Pro Ser Thr Leu Asp Pro Phe
1 5 10 15Arg Asn Arg Thr Pro Ala Ile Glu Gly Leu Tyr Glu Trp Ala Lys Thr
20 25 30Ala Leu Cys Leu Pro Leu Ala Ala Leu Arg Leu Ala Leu Phe Gly Leu
35 40 45Cys Leu Ala Val Gly Tyr Val Ala Thr Lys Val Ala Leu Ala Xaa Trp
50 55 60Xaa Asp Lys Glu Asn Pro Met Pro Lys Trp Arg Cys Arg Val Met Trp
65 70 75 80Ile Thr Arg Leu Cys Ala Lys Cys Ile Leu Phe Ser Phe Gly Tyr Xaa
85 90 95Trp Ile Lys Arg Xaa Gly Lys Pro Ala Pro Arg
100 105

<210> 19

<211> 784

<212> DNA

<213> Oryza sativa

<220>

<221> unsure
<222> (560)

<220>

<221> unsure
<222> (648)

<220>

<221> unsure
<222> (670)

<220>

<221> unsure
<222> (739)

<220>

<221> unsure
<222> (758)

<400> 19

cttctcgtcg ccgggtggatt cgccgcgcgc tccgcgcgcg cgcgcggagg aggaggacga 60
ggagagggcg ctccctcggg ggtgagcatac cagccacctc ggcccgttgc ctccctttcg 120
catctcgcc cccgcgagatt ggaagtgagg gcagggcagg gcggcagggg ccatggcggt 180
cccactcgtg ctctgtgtgc tccccgtcg cctcccttcc ctcctctccg gcctcaacgc 240

catccaggcc gtcctgttgc tctcgataag gccgttctcg aagagcttgt accggcggat 300
 caacaggttc ttggccgagc tgctgtggct tcagctggtc tggctgtgg attgggtggc 360
 aggagttaag atacaactgc atgctgatga cgaaacttac aaggcaatgg ggaatgagca 420
 tgcacttgtc atatcaaattc atcgaggcga tatcgattgg cttattgggt ggattttggg 480
 cacagcgctc aaggatgcct tggaaagtac acttgctgtt atgaagaaac atccgaaatc 540
 cttccaatta ttgggctggn ccatgttgtt tgcagaatac cccttttgg gaaaaggact 600
 gggcaaagga tgaaaagaca ttgaaatggg ggcccccaaa ggttgaanga cttccccaga 660
 caatttggcn acccttttg tttaggacc cccttaccca aaaaaactcc aacaactcaa 720
 ggagtatctg ttcacaggn tgcaacacca agaaatgnat gatcacgtca aagggattgt 780
 acac 784

<210> 20
<211> 146
<212> PRT
<213> Oryza sativa

<220>
<221> UNSURE
<222> (130)

<400> 20

Met	Ala	Val	Pro	Leu	Val	Leu	Val	Val	Leu	Pro	Leu	Gly	Leu	Leu	Phe
1				5					10					15	

Leu	Leu	Ser	Gly	Leu	Asn	Ala	Ile	Gln	Ala	Val	Leu	Phe	Leu	Ser	Ile
				20				25					30		

Arg	Pro	Phe	Ser	Lys	Ser	Leu	Tyr	Arg	Arg	Ile	Asn	Arg	Phe	Leu	Ala
				35				40				45			

Glu	Leu	Leu	Trp	Leu	Gln	Leu	Val	Trp	Leu	Val	Asp	Trp	Trp	Ala	Gly
				50				55			60				

Val	Lys	Ile	Gln	Leu	His	Ala	Asp	Asp	Glu	Thr	Tyr	Lys	Ala	Met	Gly
	65				70				75			80			

Asn	Glu	His	Ala	Leu	Val	Ile	Ser	Asn	His	Arg	Ser	Asp	Ile	Asp	Trp
				85				90			95				

Leu	Ile	Gly	Trp	Ile	Leu	Gly	Thr	Ala	Leu	Lys	Asp	Ala	Leu	Gly	Ser
				100				105			110				

Thr	Leu	Ala	Val	Met	Lys	Lys	His	Pro	Lys	Ser	Phe	Gln	Leu	Leu	Gly
				115				120			125				

Trp	Xaa	Met	Leu	Phe	Ala	Glu	Tyr	Pro	Phe	Leu	Gly	Lys	Gly	Leu	Gly
				130				135			140				

Lys Gly
145

<210> 21
<211> 584
<212> DNA
<213> Glycine max

<220>
<221> unsure
<222> (17)..(18)

<220>
<221> unsure
<222> (33)

<220>
<221> unsure
<222> (38) .. (39)

<220>
<221> unsure
<222> (519)

<220>
<221> unsure
<222> (543)

<220>
<221> unsure
<222> (546)

<220>
<221> unsure
<222> (575)

<400> 21
cgtttgctga cctgacnnncg ggttttttt ttnggggnnc acgggtttc gttgcgttgt 60
gctctgctct gtcctttgg gcctgggctg ggctgggctg ggctgggctg ggcattggcta 120
ttgcagcagc ggccgtggtg gtaccattgg gcctgtctt ctgcgcctcc ggccctccttg 180
ttaatctcat tcaggcaata tgctatgtcg tcgtaaggcc ggtgtcgaaa agtttgtaca 240
gaaggatcaa ccgggttagta gcagagctct tgtggctgga gcttgtatgg cttattgatt 300
ggggggcagg agttaaggc caaatattca cagatcatga aaccttcgt ttaatggta 360
aagagcatgc acttgtgata agcaatcaca gaagtgatat tgattggctt gttggatggg 420
ttcagctca gcgttcaggt tgtcttggca gcactctaag ctgtgatgaa gaaatcttca 480
aagtttctgc cggtcattgg ctggtcaatg tggtttcng agtaacctt tctggagaag 540
aantnngcc aaagatgaaa gcccattaaa gtcangcatc ccgg 584

<210> 22
<211> 116
<212> PRT
<213> Glycine max

<400> 22
Met Ala Ile Ala Ala Ala Val Val Val Val Pro Leu Gly Leu Leu Phe
1 5 10 15

Phe Ala Ser Gly Leu Leu Val Asn Leu Ile Gln Ala Ile Cys Tyr Val
20 25 30

Val Val Arg Pro Val Ser Lys Ser Leu Tyr Arg Arg Ile Asn Arg Val
35 40 45

Val Ala Glu Leu Leu Trp Leu Glu Leu Val Trp Leu Ile Asp Trp Trp
50 55 60

Ala Gly Val Lys Val Gln Ile Phe Thr Asp His Glu Thr Phe Arg Leu
65 70 75 80

Met Gly Lys Glu His Ala Leu Val Ile Ser Asn His Arg Ser Asp Ile
85 90 95

Asp Trp Leu Val Gly Trp Val Ser Ala Gln Arg Ser Gly Cys Leu Gly
 100 105 110

Ser Thr Leu Ser
 115

<210> 23
<211> 570
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (510)

<220>
<221> unsure
<222> (516)

<220>
<221> unsure
<222> (518)

<400> 23
gagaggagac gcggcgccgg ccatggcgat tcccctcgtg ctgcgtcctgc tcccgctcgg 60
cctcctcttc ctccctcctcg gcctcgctcg caacactgtc caggccgtat tggtcttgac 120
gataaggcca ttctcgaagc gattgttaccg gcagatcaac gtattcctgg ccgagttgtt 180
gtggcttcag ctgatctggc ttgtggactg gtggcaggt attaaggtac aggtgtatgc 240
ggatccagaa acttggaaac taatggcaa agagcacgcc cttctcatat ccaatcatcg 300
aagtgacatt gattggctgg ttggatggat ttagcacag cggtcaggat gtcttggaaag 360
cgcaatagct ataatgaaga aatcctcaaa gttccttcca gttattgggtt ggtccatgtg 420
gtttgcagaa tactcttttggagagaactg gcaaaggatg aaaaacacta aatcggtct 480
caaggtgaaa actccagata ttggctgccc ttgttnangg tcaaattact cacaaacttt 540
acagtaagaa atcatccaag gttgcacgc 570

<210> 24
<211> 160
<212> PRT
<213> Triticum aestivum

<400> 24
Met Ala Ile Pro Leu Val Leu Val Leu Leu Pro Leu Gly Leu Leu Phe
 1 5 10 15

Leu Leu Ser Gly Leu Val Val Asn Thr Val Gln Ala Val Leu Phe Leu
 20 25 30

Thr Ile Arg Pro Phe Ser Lys Arg Leu Tyr Arg Gln Ile Asn Val Phe
 35 40 45

Leu Ala Glu Leu Leu Trp Leu Gln Leu Ile Trp Leu Val Asp Trp Trp
 50 55 60

Ala Gly Ile Lys Val Gln Val Tyr Ala Asp Pro Glu Thr Trp Lys Leu
 65 70 75 80

Met Gly Lys Glu His Ala Leu Leu Ile Ser Asn His Arg Ser Asp Ile
 85 90 95

Asp Trp Leu Val Gly Trp Ile Leu Ala Gln Arg Ser Gly Cys Leu Gly
 100 105 110

Ser Ala Ile Ala Ile Met Lys Lys Ser Ser Lys Phe Leu Pro Val Ile
 115 120 125

Gly Trp Ser Met Trp Phe Ala Glu Tyr Ser Phe Gly Glu Asn Trp Gln
 130 135 140

Arg Met Lys Asn Thr Lys Ser Gly Leu Lys Val Lys Thr Pro Asp Ile
 145 150 155 160

<210> 25

<211> 1337

<212> DNA

<213> Catalpa speciosa

<400> 25

gcacgagagg ctaaaggaca atgagcaagc taaaaacatc cagctccgaa ttggatttgg 60
 atcaccccaa tatgaagac tatcttccat ccggatccat tcaagagcct cacggcaagc 120
 tccgcctgcg tgatttgctc gatatttcac caactctaac tgaggcagct ggtgccattg 180
 ttgatgactc ctacgaga tgcttcaagt caaatccgcc agaaccctgg aactggaaca 240
 tatatttgtt tccttgtgg tgcttaggag ttgttgcag atatggtctt cttttccccct 300
 taaggtaat agtggaca ataggatgga ttatatttct ctcatgctat ttccctgtgc 360
 atttctgtt aaaaggcat gacaaattga gaaaaaaaaatt agagagaggt ctatggagt 420
 tggatgtgcag ttttttgtt gcatcatgga ctggggtgtt caagtaccat ggtccgcggc 480
 ccagcatgcg gcctaagcag gttttgtgg ctaatcacac atccatgatt gatttcattg 540
 ttttggaca aatgactgca tttgcagtga ttatgcagaa gcatcctggg tggtaggac 600
 tattgcagag cactatttg gagagtctag gatgtatctg gttcaaccgg tcagagtcca 660
 aggaccgtga aattgttgc aaaaagctaa gagatcatgt ccatggcgct gataataatc 720
 ctcttcttat attcccgaa ggaacatgtg tgaataacca ctacactgtg atgtttaaga 780
 aggggtgcatt tgaacttggc tgcactgtct gtccaatcgc aatcaagtat aacaagattt 840
 ttgtggatgc cttctggAAC agcagaaagc aatcccttac aatgcacttg ttgcagctt 900
 tgacatcctg ggctgttgc tgtatgttt ggtacctggc gcctcaaat ctaaaacctg 960
 gggaaacacc aattgaattt gctgagaggg tgagggcat tatttctgtt cgagcaggcc 1020
 ttaagaaggt gccgtggat ggatattga agtactctcg ccccagccca aagcatcg 1080
 agcgaaagca acaaagctc gcagagtcag ttctccatca cctggaaagag aaatagattt 1140
 aagataaata' atttgttat ttactgtctt caatttgtta gatcaagttt gttagctgtt 1200
 ttgaaattca atcttatttg tcactataaa gaggattca gttcctcaat tgacataatg 1260
 aaattcctt gatacgtcgt tgaagaggaa aatacaatat gaagtgttga aaaaaaaaaa 1320
 aaaaaaaaaa aaaaaaaaaa 1337

<210> 26

<211> 371

<212> PRT

<213> Catalpa speciosa

<400> 26

Met Ser Lys Leu Lys Thr Ser Ser Ser Glu Leu Asp Leu Asp His Pro
 1 5 10 15

Asn Ile Glu Asp Tyr Leu Pro Ser Gly Ser Ile Gln Glu Pro His Gly
 20 25 30

Lys Leu Arg Leu Arg Asp Leu Leu Asp Ile Ser Pro Thr Leu Thr Glu
 35 40 45

Ala Ala Gly Ala Ile Val Asp Asp Ser Phe Thr Arg Cys Phe Lys Ser
 50 55 60

Asn	Pro	Pro	Glu	Pro	Trp	Asn	Trp	Asn	Ile	Tyr	Leu	Phe	Pro	Leu	Trp
65					70					75					80
Cys	Leu	Gly	Val	Val	Val	Arg	Tyr	Gly	Leu	Leu	Phe	Pro	Leu	Arg	Val
			85						90					95	
<u>Ile</u>	Val	Leu	Thr	<u>Ile</u>	Gly	Trp	Ile	Ile	Phe	Leu	Ser	Cys	Tyr	Phe	Pro
				100				105					110		
Val	His	Phe	Leu	Leu	Lys	Gly	His	Asp	Lys	Leu	Arg	Lys	Lys	Leu	Glu
			115					120				125			
Arg	Gly	Leu	Val	Glu	Leu	Met	Cys	Ser	Phe	Phe	Val	Ala	Ser	Trp	Thr
			130				135				140				
Gly	Val	Val	Lys	Tyr	His	Gly	Pro	Arg	Pro	Ser	Met	Arg	Pro	Lys	Gln
			145			150			155			160			
Val	Phe	Val	Ala	Asn	His	Thr	Ser	Met	Ile	Asp	Phe	Ile	Val	Leu	Glu
			165					170				175			
Gln	Met	Thr	Ala	Phe	Ala	Val	Ile	Met	Gln	Lys	His	Pro	Gly	Trp	Val
			180				185				190				
Gly	Leu	Leu	Gln	Ser	Thr	Ile	Leu	Glu	Ser	Leu	Gly	Cys	<u>Ile</u>	Trp	Phe
			195				200				205				
Asn	Arg	Ser	Glu	Ser	Lys	Asp	Arg	Glu	Ile	Val	Ala	Lys	Lys	Leu	Arg
			210			215				220					
Asp	His	Val	His	Gly	Ala	Asp	Asn	Asn	Pro	Leu	Leu	Ile	Phe	Pro	Glu
			225			230			235			240			
Gly	Thr	Cys	Val	Asn	Asn	His	Tyr	Thr	Val	Met	Phe	Lys	Lys	Gly	Ala
			245					250				255			
Phe	Glu	Leu	Gly	Cys	Thr	Val	Cys	Pro	Ile	Ala	Ile	Lys	Tyr	Asn	Lys
			260				265				270				
Ile	Phe	Val	Asp	Ala	Phe	Trp	Asn	Ser	Arg	Lys	Gln	Ser	Phe	Thr	Met
			275				280				285				
His	Leu	Leu	Gln	Leu	Met	Thr	Ser	Trp	Ala	Val	Val	Cys	Asp	Val	Trp
			290			295				300					
Tyr	Leu	Glu	Pro	Gln	Asn	Leu	Lys	Pro	Gly	Glu	Thr	Pro	Ile	Glu	Phe
			305			310			315			320			
Ala	Glu	Arg	Val	Arg	Gly	Ile	Ile	Ser	Val	Arg	Ala	Gly	Leu	Lys	Lys
			325					330				335			
Val	Pro	Trp	Asp	Gly	Tyr	Leu	Lys	Tyr	Ser	Arg	Pro	Ser	Pro	Lys	His
			340				345				350				
Arg	Glu	Arg	Lys	Gln	Gln	Ser	Phe	Ala	Glu	Ser	Val	Leu	His	His	Leu
			355			360				365					
Glu	Glu	Lys													
			370												

<210> 27
<211> 1582
<212> DNA
<213> Zea mays

<400> 27

cctcgcccca tcgcggacct ttcctcgccg gctcgccat ctcatcgccg gcgggcgtgc 60
ggcccggtggc cgaagccctt aggcatggc gacctcgct gtggccggcgg acatggagct 120
ggaccggcca aacctggagg actacccccc gcccactcg ctcccgagg aggcgcggcg 180
aatctccat ctgcgcgatc tgctggacat ctcgcgggtg ctcaccgagg cagcgggtgc 240
cattgtcgat gactcctca cacgtgctt taagtcaaataat tctccagagc catgaaattt 300
aacatataat ctgtccccct tatgtgtctt tggtgttagta ataagatatg gattacttt 360
cccactgagg tccttaacgc ttgcaatagg atggttagca tttttgctg cctttttcc 420
tgtccatttc ctattgaaag gtcaagacaa gttgagaagt aaaattgaga ggaagttgg 480
tgaatgatg tgcatgttt ttgttgcttc atggactgga gttatcaagt atcatggacc 540
acgcccagaac acacgacccatc atcaggtatt cggtgcaaac catacatcgat tgatagattt 600
cattattctg gagcaaatttgc cagcatttgc tgtcatcatg cagaagcatc ctggatgggt 660
tggatttatt cagaagacta tcttgaaag tgccgggtgc atctggtttatacgtaatga 720
tctccgggac cgtgaagttt cggcacggaa gttacgttat catgttcaac aaccagacaa 780
caatcctctg ttgatttttc cggaaggaac ttgtgtgaac aaccagtaca cggtcatgtt 840
caagaagggt gccttgagc ttggctgcgc tgtatgtcca atagctatca agtacaataa 900
aatatttgtt gatgcctttt ggaacagttaa gaagcaatct tttacaatgc acttgggtccg 960
gctgatgaca tcatgggctg ttgtgtgtga tggttggtac ttaccccttc aatatctgag 1020
ggagggagag acggcaatttgc catttgcgtt gagagtaagg gacatgatag ctgctagagc 1080
tggactaaag aagggttccctt gggatggctt tctgaaacac aaccgtccta gtcccaaaca 1140
cactgaagag aaacaacgcataatttgcgaa atctgtcttgc atgagactgg aggagaaatg 1200
aagggacgta aagccgtaca agtgcacttc gttagggttt tacatgcagc taccttgtaa 1260
ttccgggtggc ttccagaaaaaaa aaaaaaagttaa gcctgggaca cgtcaagtga ccacccatgt 1320
tttgggtttaa atttgttact agttgtatag gattattttt atgtacttat cagaaaaaga 1380
attctcagta tgggttttgg ctgcccatttca aatgatagttt cagtgattaa caccgaagca 1440
ttgtgctctc gtgagatgtt gtgttgttctt taatatatttgc acggtaactgtt accatgggttt 1500
aaatgtgattt attgaagcaatggta tttagctggctt aagaaaaaaaaaaaaaaa 1560
aaaaaaaaaaaaaaa ag 1582

<210> 28

<211> 371

<212> PRT

<213> Zea mays

<400> 28

Met	Ala	Thr	Ser	Ser	Val	Ala	Ala	Asp	Met	Glu	Leu	Asp	Arg	Pro	Asn
1					5				10					15	

Leu	Glu	Asp	Tyr	Leu	Pro	Pro	Asp	Ser	Leu	Pro	Gln	Glu	Ala	Pro	Arg
				20				25				30			

Asn	Leu	His	Leu	Arg	Asp	Leu	Leu	Asp	Ile	Ser	Pro	Val	Leu	Thr	Glu
				35				40				45			

Ala	Ala	Gly	Ala	Ile	Val	Asp	Asp	Ser	Phe	Thr	Arg	Cys	Phe	Lys	Ser
				50				55			60				

Asn	Ser	Pro	Glu	Pro	Trp	Asn	Trp	Asn	Ile	Tyr	Leu	Phe	Pro	Leu	Trp
				65				70			75			80	

Cys	Phe	Gly	Val	Val	Ile	Arg	Tyr	Gly	Leu	Leu	Phe	Pro	Leu	Arg	Ser
					85				90				95		

Leu	Thr	Leu	Ala	Ile	Gly	Trp	Leu	Ala	Phe	Phe	Ala	Ala	Phe	Phe	Pro
				100				105				110			

Val His Phe Leu Leu Lys Gly Gln Asp Lys Leu Arg Ser Lys Ile Glu
 115 120 125
 Arg Lys Leu Val Glu Met Met Cys Ser Val Phe Val Ala Ser Trp Thr
 130 135 140
 Gly Val Ile Lys Tyr His Gly Pro Arg Pro Ser Thr Arg Pro His Gln
 145 150 155 160
 Val Phe Val Ala Asn His Thr Ser Met Ile Asp Phe Ile Ile Leu Glu
 165 170 175
 Gln Met Thr Ala Phe Ala Val Ile Met Gln Lys His Pro Gly Trp Val
 180 185 190
 Gly Phe Ile Gln Lys Thr Ile Leu Glu Ser Val Gly Cys Ile Trp Phe
 195 200 205
 Asn Arg Asn Asp Leu Arg Asp Arg Glu Val Thr Ala Arg Lys Leu Arg
 210 215 220
 Asp His Val Gln Gln Pro Asp Asn Asn Pro Leu Leu Ile Phe Pro Glu
 225 230 235 240
 Gly Thr Cys Val Asn Asn Gln Tyr Thr Val Met Phe Lys Lys Gly Ala
 245 250 255
 Phe Glu Leu Gly Cys Ala Val Cys Pro Ile Ala Ile Lys Tyr Asn Lys
 260 265 270
 Ile Phe Val Asp Ala Phe Trp Asn Ser Lys Lys Gln Ser Phe Thr Met
 275 280 285
 His Leu Val Arg Leu Met Thr Ser Trp Ala Val Val Cys Asp Val Trp
 290 295 300
 Tyr Leu Pro Pro Gln Tyr Leu Arg Glu Gly Glu Thr Ala Ile Ala Phe
 305 310 315 320
 Ala Glu Arg Val Arg Asp Met Ile Ala Ala Arg Ala Gly Leu Lys Lys
 325 330 335
 Val Pro Trp Asp Gly Tyr Leu Lys His Asn Arg Pro Ser Pro Lys His
 340 345 350
 Thr Glu Glu Lys Gln Arg Ile Phe Ala Glu Ser Val Leu Met Arg Leu
 355 360 365
 Glu Glu Lys
 370
 <210> 29
 <211> 1422
 <212> DNA
 <213> Oryza sativa
 <400> 29
 gcacgagatc actgcgaaga tttcctcgcc ggcggcggag gggatcgacg gagggggggga 60
 tggcgacctc gtcgggtggcg gggacatcg agctggaccg gccgaacctg gaggactacc 120

tcccatccga ctcgctgccg caggagttcc ccaggaatct ccatctgcgc gatctgctgg 180
 acatctcgcc ggtgctcaact gaagcagcgg gcgcacatcggt cgatgattca ttcacacgtt 240
 gctttaagtc aaattctcca gagccatgga attgaaacat ttatttattc ccattgtgg 300
 gcttggagt agtgataaga tacggaataac tattccgct gaggggccta actcttctag 360
 ttggatggtt agcattctt gctgccttt tcctgtaca tttcttattg aaaggtcaaa 420
 agatgagaag taaaatagag agaaagctgg ttgaaatgat gtgcagtgtt tttgttgctt 480
 cttggactgg agtgatcaag tatcatggc ctcgcccag cacacggcct catcaggtat 540
 ttgttgcaaa ccatacatcg atgatagatt tcattattct ggagcagatg acagcattg 600
 ctgtcattat gcaaaagcat cctggatggg ttggatttat tcagaagact atcttgaaa 660
 gtgttggtt catctggttt aatcgcaatg atctcaagga tcgtgaagtg gttgaaaaaa 720
 agttacgaga tcatgttcaa catccagaca gcaatcctct cctgatttc cctgaaggaa 780
 cttgtgttaa caaccagtac actgtcatgt tcaagaaggg tgctttgag cttgctgtg 840
 ctgtatgccc aatacgatc aaatacaata aaatatttgc tgatgccttc tggaatagta 900
 agaagcaatc gtttacaatg cacttggta ggcttatgac atcatggca gttgtgtgtg 960
 atgtatggta cttggagcct cagtatctga gggatggaga aacagcaatt gaatttgctg 1020
 aaagagtaag agacatgata gctgcttagag ctggcttaa gaagggtccg tgggacgggt 1080
 atctgaaaaca caaccgcct agtcccaaacc acactgaaga gaagcagcgc atcttgctg 1140
 actctgtgtt gcggagactg gaggaaagct aaacagatata caatcaactc tggtgcctat 1200
 tggtagtcc aggttactaa tgtccttagt tgcatactggg tctctggagt atgtggaaat 1260
 taccactgca gtttgggtt aaattgttg cagcttgaca gaatcaacat ttaatagcct 1320
 gtattagcca agattttatg attggttagg gttaacacat aaatattata cttccccaaa 1380
 tgatgttatta atacttaccc tcaaaaaaaaaaaaaaaa ac 1422

<210> 30

<211> 370

<212> PRT

<213> Oryza sativa

<400> 30

Met	Ala	Thr	Ser	Ser	Val	Ala	Gly	Asp	Ile	Glu	Leu	Asp	Arg	Pro	Asn
1									10					15	

Leu	Glu	Asp	Tyr	Leu	Pro	Ser	Asp	Ser	Leu	Pro	Gln	Glu	Phe	Pro	Arg
									25					30	

Asn	Leu	His	Leu	Arg	Asp	Leu	Leu	Asp	Ile	Ser	Pro	Val	Leu	Thr	Glu
									35				40		45

Ala	Ala	Gly	Ala	Ile	Val	Asp	Asp	Ser	Phe	Thr	Arg	Cys	Phe	Lys	Ser
									50				55		60

Asn	Ser	Pro	Glu	Pro	Trp	Asn	Trp	Asn	Ile	Tyr	Leu	Phe	Pro	Leu	Trp
									65				70		75

Cys	Leu	Gly	Val	Val	Ile	Arg	Tyr	Gly	Ile	Leu	Phe	Pro	Leu	Arg	Gly
									85				90		95

Leu	Thr	Leu	Leu	Val	Gly	Trp	Leu	Ala	Phe	Phe	Ala	Ala	Phe	Phe	Pro
									100				105		110

Val	His	Phe	Leu	Leu	Lys	Gly	Gln	Lys	Met	Arg	Ser	Lys	Ile	Glu	Arg
									115				120		125

Lys	Leu	Val	Glu	Met	Met	Cys	Ser	Val	Phe	Val	Ala	Ser	Trp	Thr	Gly
									130				135		140

Val	Ile	Lys	Tyr	His	Gly	Pro	Arg	Pro	Ser	Thr	Arg	Pro	His	Gln	Val
									145				150		155

Phe Val Ala Asn His Thr Ser Met Ile Asp Phe Ile Ile Leu Glu Gln
 165 170 175

Met Thr Ala Phe Ala Val Ile Met Gln Lys His Pro Gly Trp Val Gly
 180 185 190

Phe Ile Gln Lys Thr Ile Leu Glu Ser Val Gly Cys Ile Trp Phe Asn
 195 200 205

Arg Asn Asp Leu Lys Asp Arg Glu Val Val Ala Lys Lys Leu Arg Asp
 210 215 220

His Val Gln His Pro Asp Ser Asn Pro Leu Leu Ile Phe Pro Glu Gly
 225 230 235 240

Thr Cys Val Asn Asn Gln Tyr Thr Val Met Phe Lys Lys Gly Ala Phe
 245 250 255

Glu Leu Gly Cys Ala Val Cys Pro Ile Ala Ile Lys Tyr Asn Lys Ile
 260 265 270

Phe Val Asp Ala Phe Trp Asn Ser Lys Lys Gln Ser Phe Thr Met His
 275 280 285

Leu Val Arg Leu Met Thr Ser Trp Ala Val Val Cys Asp Val Trp Tyr
 290 295 300

Leu Glu Pro Gln Tyr Leu Arg Asp Gly Glu Thr Ala Ile Glu Phe Ala
 305 310 315 320

Glu Arg Val Arg Asp Met Ile Ala Ala Arg Ala Gly Leu Lys Lys Val
 325 330 335

Pro Trp Asp Gly Tyr Leu Lys His Asn Arg Pro Ser Pro Lys His Thr
 340 345 350

Glu Glu Lys Gln Arg Ile Phe Ala Asp Ser Val Leu Arg Arg Leu Glu
 355 360 365

Glu Ser
 370

<210> 31

<211> 1392

<212> DNA

<213> Sorghum

<400> 31

gcacgagcca	ggaatctcca	tctgcgcgat	ctgcttgaca	tctcgccggt	gctaaccgag	60
gcagcgggtg	ccatagtgcg	tgatttcattc	acgcgcgtgt	ttaagtcgaa	ttctccagaa	120
ccatggact	ggaacatata	tttggccct	ttatgggtgt	tcgggtgtgt	aattcgatat	180
ggattactct	tcccactgag	gtccttaacg	cttgcataat	gatggtagc	attttttgct	240
gccttttcc	ccgtgcattt	cctatggaaa	ggtcaagaca	agttgagaaa	taaaatttag	300
aggaagttgg	ttgaaatgt	gtgcagtgtt	tttggctt	catggactgg	agtgtatcaag	360
taccatggac	cacgccccaa	cacacgacct	catcaggat	ttgttgcaaa	ccatacatca	420
atgatagatt	tcattattct	ggagcaaatg	acagcatttg	ctgtcatcat	gcagaagcat	480
cctggatggg	ttggatttat	tcagaagact	atcttgaaaa	gtgtgggttg	catctgggttt	540
aaccgtaatg	atctccggga	tcgtgaagtt	acggcacggaa	agttgcgtga	tcatgttcaa	600
catccagaca	aaaaccctct	cttgattttc	ccagaaggaa	cttgtgttaa	caaccagtat	660
acggtcatgt	tcaagaaggg	tgcctttag	cttgggtgtg	ctgtctgtcc	aatagctatc	720

aaataacaata aaatatttgt tcatgccttt tggAACAGTA AGAAGCAATC TTTACGATG 780
 cacttggcc ggtttagatgac atcatggcgt gttgtgtgtg atgtttggta cttggagcct 840
 caatatctga gggaggggaga gactgcaatt gcgttgctg agagagtaag ggacatgata 900
 gcagctagag ctggcttaa gaaggccccg tggatggct atctgaaaca caaccgcct 960
 agtcccaaac acaccgaaga gaagcaacgc atattcgccg aatctgtctt gaggagacta 1020
 gaggagaaat gaagagacat caaacactac aagcgcattt gtttagtgtt ttaccgttca 1080
gctacccgtt aattcggtt gctccccgaa aaaaaaaagt ccgggacacg tcaagtgc 1140
 agctcagttt tggtgtaaat ttattagaaa ttgacagaa ttggtagtgtt gaacttacca 1200
 agaaaggaag aatagccgca tgtgttgtgg ctgttcattc tatgatttgtt taggaattga 1260
 cacttgaac acggtaactt attcagaggc tgtgtccgtt tttatgaatc gacgatgtaa 1320
 tggtttaat tcatgtgatt attgattcaa taatatgagt agattaaaaa aaaaaaaaaa 1380
 aaaaaaaaaaa aa 1392

<210> 32

<211> 343

<212> PRT

<213> Sorghum

<400> 32

Ala	Arg	Ala	Arg	Asn	Leu	His	Leu	Arg	Asp	Leu	Leu	Asp	Ile	Ser	Pro
1				5				10				15			

Val	Leu	Thr	Glu	Ala	Ala	Gly	Ala	Ile	Val	Asp	Asp	Ser	Phe	Thr	Arg
			20					25				30			

Cys	Phe	Lys	Ser	Asn	Ser	Pro	Glu	Pro	Trp	Asn	Trp	Asn	Ile	Tyr	Leu
			35				40				45				

Phe	Pro	Leu	Trp	Cys	Phe	Gly	Val	Val	Ile	Arg	Tyr	Gly	Leu	Leu	Phe
			50				55			60					

Pro	Leu	Arg	Ser	Leu	Thr	Leu	Ala	Ile	Gly	Trp	Leu	Ala	Phe	Phe	Ala
65					70				75			80			

Ala	Phe	Phe	Pro	Val	His	Phe	Leu	Leu	Lys	Gly	Gln	Asp	Lys	Leu	Arg
				85					90			95			

Asn	Lys	Ile	Glu	Arg	Lys	Leu	Val	Glu	Met	Met	Cys	Ser	Val	Phe	Val
					100			105			110				

Ala	Ser	Trp	Thr	Gly	Val	Ile	Lys	Tyr	His	Gly	Pro	Arg	Pro	Ser	Thr
115					120				125						

Arg	Pro	His	Gln	Val	Phe	Val	Ala	Asn	His	Thr	Ser	Met	Ile	Asp	Phe
130					135				140						

Ile	Ile	Leu	Glu	Gln	Met	Thr	Ala	Phe	Ala	Val	Ile	Met	Gln	Lys	His
145					150				155			160			

Pro	Gly	Trp	Val	Gly	Phe	Ile	Gln	Lys	Thr	Ile	Leu	Glu	Ser	Val	Gly
				165				170			175				

Cys	Ile	Trp	Phe	Asn	Arg	Asn	Asp	Leu	Arg	Asp	Arg	Glu	Val	Thr	Ala
				180				185			190				

Arg	Lys	Leu	Arg	Asp	His	Val	Gln	His	Pro	Asp	Lys	Asn	Pro	Leu	Leu
195					200				205						

Ile	Phe	Pro	Glu	Gly	Thr	Cys	Val	Asn	Asn	Gln	Tyr	Thr	Val	Met	Phe
210					215				220						

Lys Lys Gly Ala Phe Glu Leu Gly Cys Ala Val Cys Pro Ile Ala Ile
 225 230 235 240

Lys Tyr Asn Lys Ile Phe Val Asp Ala Phe Trp Asn Ser Lys Lys Gln
 245 250 255

Ser Phe Thr Met His Leu Val Arg Leu Met Thr Ser Trp Ala Val Val
 260 265 270

Cys Asp Val Trp Tyr Leu Glu Pro Gln Tyr Leu Arg Glu Gly Glu Thr
 275 280 285

Ala Ile Ala Phe Ala Glu Arg Val Arg Asp Met Ile Ala Ala Arg Ala
 290 295 300

Gly Leu Lys Lys Val Pro Trp Asp Gly Tyr Leu Lys His Asn Arg Pro
 305 310 315 320

Ser Pro Lys His Thr Glu Glu Lys Gln Arg Ile Phe Ala Glu Ser Val
 325 330 335

Leu Arg Arg Leu Glu Glu Lys
 340

<210> 33

<211> 1466

<212> DNA

<213> Glycine max

<400> 33

tctctctctc	tctctctctc	tctctctctg	gacaaaattg	ccctccatca	60
cttccttgt	tagagtttgtt	ttctgcacc	taccatgcaa	ttcctcacct	120
tctattgccca	cgttggatc	gaaaagtcta	gtttaaccac	acgtttgtgg	180
agcgtaacga	agatgaatgg	cattggaaaa	ctcaaatcgt	cgagttctga	240
cacattgaag	attacctacc	ttctggatcc	agtgttcaac	aagaacggca	300
cgactgtgtg	atttgctaga	catttctcct	agtctatctg	aggcagcacg	360
gatgatacat	tcacaaggtg	tttcaagtca	aatcctccag	tggcaagctc	420
tatttgtttc	ctttgtggtg	ctgtggagtt	aaccttgaa	ctggaatgtt	480
aggattcttag	tgttggcatt	aggatggatt	atatttcttt	cagccttcat	540
tccctcctga	aaggaaatga	tgatttgagg	aaaaagattg	tccagtgcac	600
atgtgcagtt	tctttgttgc	atcatggact	agaggtgttt	gttggagatg	660
agtatccgac	caaaacaggt	ggggttgtca	agtaccatgg	gccaaagacct	720
ttagaacaga	ttttgtggcc	aatcatactt	ccatgattga	tttcatattac	780
ttgcagagca	tgactgcatt	tgctgttatt	atgcagaagc	atcctggatg	840
gatcgagaaa	ttgtggcaag	gaaattggagg	gatcatgtcc	tgggagctaa	900
cttctcatat	ttcctgaagg	aacttgtgta	aataatcact	caataaccct	960
ggtgcatttg	aacttggctg	cacaatttgc	ccagttgcaa	tcaagtacaa	1020
gtcgatgctt	tttggaaatag	tcgaaagcaa	tcattcacca	taaaattttc	1080
acatcttggg	ctgtagtttg	tgatgttgg	tacttggagc	tttcatcttt	1140
gagacaccca	ttgaatttgc	agagagagtt	cacaaaattt	gcaattaatg	1200
aaaaagggttc	tttggatgg	agagacataa	tttctcacatcg	tttcatcttt	1260
ggaaagcaac	atatattcgc	ttgttctgtg	tttgcggcgct	tttcatcttt	1320
tcttttact	tttgcgttta	tgatgttctc	tttgcggcgct	tttcatcttt	1380
tgatatacat	tttgcgttta	catgaaattt	tttgcggcgct	tttcatcttt	1440
aaaaaaaaact	tttgcgttta	cctgaaaattt	tttgcggcgct	tttcatcttt	1466

<210> 34

<211> 373

<212> PRT

<213> Glycine max

<400> 34

Met	Asn	Gly	Ile	Gly	Lys	Leu	Lys	Ser	Ser	Ser	Glu	Leu	Asp	Leu
1					5			10				15		

His	Ile	Glu	Asp	Tyr	Leu	Pro	Ser	Gly	Ser	Ser	Val	Gln	Gln	Glu	Arg
					20			25				30			

His	Gly	Lys	Leu	Arg	Leu	Cys	Asp	Leu	Leu	Asp	Ile	Ser	Pro	Ser	Leu
						35		40			45				

Ser	Glu	Ala	Ala	Arg	Ala	Ile	Val	Asp	Asp	Thr	Phe	Thr	Arg	Cys	Phe
						50		55			60				

Lys	Ser	Asn	Pro	Pro	Glu	Pro	Trp	Asn	Trp	Asn	Val	Tyr	Leu	Phe	Pro
					65		70		75		80				

Leu	Trp	Cys	Cys	Gly	Val	Val	Val	Arg	Tyr	Leu	Ile	Leu	Phe	Pro	Ile
					85			90			95				

Arg	Ile	Leu	Val	Leu	Ala	Leu	Gly	Trp	Ile	Ile	Phe	Leu	Ser	Ala	Phe
						100		105			110				

Ile	Pro	Val	His	Ser	Leu	Leu	Lys	Gly	Asn	Asp	Asp	Leu	Arg	Lys	Lys
						115		120			125				

Ile	Glu	Arg	Cys	Leu	Val	Glu	Met	Met	Cys	Ser	Phe	Phe	Val	Ala	Ser
						130		135			140				

Trp	Thr	Gly	Val	Val	Lys	Tyr	His	Gly	Pro	Arg	Pro	Ser	Ile	Arg	Pro
					145		150		155		160				

Lys	Gln	Val	Phe	Val	Ala	Asn	His	Thr	Ser	Met	Ile	Asp	Phe	Ile	Ile
					165			170			175				

Leu	Glu	Gln	Met	Thr	Ala	Phe	Ala	Val	Ile	Met	Gln	Lys	His	Pro	Gly
					180			185			190				

Trp	Val	Gly	Leu	Leu	Gln	Ser	Thr	Ile	Leu	Glu	Ser	Val	Gly	Cys	Ile
						195		200			205				

Trp	Phe	Asn	Arg	Thr	Glu	Ala	Lys	Asp	Arg	Glu	Ile	Val	Ala	Arg	Lys
						210		215			220				

Leu	Arg	Asp	His	Val	Leu	Gly	Ala	Asn	Asn	Asn	Pro	Leu	Ile	Phe
					225		230			235			240	

Pro	Glu	Gly	Thr	Cys	Val	Asn	Asn	His	Tyr	Ser	Val	Met	Phe	Lys	Lys
						245		250			255				

Gly	Ala	Phe	Glu	Leu	Gly	Cys	Thr	Ile	Cys	Pro	Val	Ala	Ile	Lys	Tyr
					260			265			270				

Asn	Lys	Ile	Phe	Val	Asp	Ala	Phe	Trp	Asn	Ser	Arg	Lys	Gln	Ser	Phe
					275			280			285				

Thr	Thr	His	Leu	Leu	Gln	Leu	Met	Thr	Ser	Trp	Ala	Val	Val	Cys	Asp
					290			295			300				

Val	Trp	Tyr	Leu	Glu	Pro	Gln	Asn	Leu	Lys	Pro	Gly	Glu	Thr	Pro	Ile
305					310					315					320

Glu Phe Ala Glu Arg Val Arg Asp Ile Ile Ser His Arg Ala Gly Leu
325 330 335

Lys Lys Val Pro Trp Asp Gly Tyr Leu Lys Tyr Ser Arg Pro Ser Pro
340 345 350

Lys His Arg Glu Gly Lys Gln Ile Phe Ala Glu Ser Val Leu Arg
355 360 365

Arg Phe Glu Glu Lys
370

<210> 35
<211> 1384
<212> DNA
<213> Cata

<400> 35

gcacgaggta	ggtttctgtc	gaggatttg	ttgtttgtt	tcgggttcta	ttggatttgt	60	
gaaaccagta	agggaattga	ggttgatggg	caggggata	atgagtctgc	atcttaggaat	120	
cggtctgaag	aggtggaagg	acctggggct	attgtatcca	atcatatatc	ttatataagat	180	
atccctgtatc	acatgtcttc	ctctttccca	agtttcgttt	ccaagagatc	cgtcgctaaa	240	
cttcccccttg	ttggtcttgt	gagcaagtgt	cttgggtgtg	tatatgtaca	gcgtgaggtt	300	
aagtctgtcg	atttcaaggg	ggtatcaggt	gttgcactg	aaagaattca	agaagctcat	360	
caaataagt	ttgctccaaa	gatgataatt	ttcccagaag	gcacaactac	aatggggac	420	
ttcctcccttc	cattcaagac	tggtgcattt	ttggcaaagg	ctccagtaact	tcctgtcatt	480	
ttaagatatt	cgtaccagag	atttagtccc	gcgtggact	ctatttctgg	ggctcgccat	540	
gtgattcttc	ttctctgtca	gtttgtaaat	tacattgaag	tgacacattt	gcctgttttat	600	
catccgtccg	aacaagaaaa	ggaagatccc	aagctttcg	ctgaaaatgt	taggcttctg	660	
atggctcg	aggtaattt	gattcttcg	gatattggat	tggcggagaa	acgagtttat	720	
catgctgctc	tcaatggttt	actttgtcaa	agataatcca	gttcgctat	attgattgtat	780	
taaatgtatt	ttttgacttc	cataaaaacta	ataactaagc	ccataaaatta	cgctggaaga	840	
ggtcattgat	cttcatcg	tatacgattt	ctaactatta	tctggacatc	ttagttactg	900	
cttcagctt	ggtaaggatc	ctctaaagct	gtctctattt	gatacattag	gccgtctggc	960	
ttaatacaga	acgtggaagc	cgatgttgta	ttaacgacgt	tggtgaacat	ggagctattt	1020	
cttctacttg	aaatttgacc	atccattatt	tgattcttga	gacatgaagt	tgagaaaatta	1080	
gagttcg	tttggattttt	gagatttagcc	ataaaatcgca	tttctctaac	agtttgttct	actgggtacg	1140
gtatttagttt	cccccttgtat	atagcacaat	gcaaatgctg	tagttaacta	ctttgttttg	1200	
atcttctgtt	ttgtttgtt	tattgcaacg	ttaggagttt	taaatatcct	taaaaatctag	1260	
ttggatttagc	atagtttaatt	gtgaaatatg	tagtggtgcc	tgagaatggt	cttggatgg	1320	
aagtcttgct	tcttctggga	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1380	
aaaaa						1384	

<210> 36
<211> 251
<212> PRT
<213> Catalpa speciosa

<400> 36
 Ala Arg Gly Arg Phe Leu Ser Arg Ile Leu Leu Phe Val Phe Gly Phe
 1 5 10 15

Tyr Trp Ile Gly Glu Thr Ser Lys Gly Ile Glu Val Asp Gly Gln Gly
 20 25 30

Asn Asn Glu Ser Ala Ser Arg Asn Arg Ser Glu Glu Val Glu Gly Pro
 35 40 45

 Gly Ala Ile Val Ser Asn His Ile Ser Tyr Ile Asp Ile Leu Tyr His
 50 55 60

Met Ser Ser Ser Phe Pro Ser Phe Val Ser Lys Arg Ser Val Ala Lys
 65 70 75 80

 Leu Pro Leu Val Gly Leu Val Ser Lys Cys Leu Gly Cys Val Tyr Val
 85 90 95

 Gln Arg Glu Leu Lys Ser Ser Asp Phe Lys Gly Val Ser Gly Val Val
 100 105 110

 Thr Glu Arg Ile Gln Glu Ala His Gln Asn Lys Phe Ala Pro Lys Met
 115 120 125

 Ile Ile Phe Pro Glu Gly Thr Thr Asn Gly Asp Phe Leu Leu Pro
 130 135 140

 Phe Lys Thr Gly Ala Phe Leu Ala Lys Ala Pro Val Leu Pro Val Ile
 145 150 155 160

 Leu Arg Tyr Ser Tyr Gln Arg Phe Ser Pro Ala Trp Asp Ser Ile Ser
 165 170 175

 Gly Ala Arg His Val Ile Leu Leu Leu Cys Gln Phe Val Asn Tyr Ile
 180 185 190

 Glu Val Thr His Leu Pro Val Tyr His Pro Ser Glu Gln Glu Lys Glu
 195 200 205

 Asp Pro Lys Leu Phe Ala Glu Asn Val Arg Leu Leu Met Ala Arg Glu
 210 215 220

 Gly Asn Leu Ile Leu Ser Asp Ile Gly Leu Ala Glu Lys Arg Val Tyr
 225 230 235 240

 His Ala Ala Leu Asn Gly Leu Leu Cys Gln Arg
 245 250

<210> 37

<211> 1042

<212> DNA

<213> Triticum aestivum

<400> 37

```

gcacgagcag ggggtttagga gggaggccgt gctgcgtgct ggccgcgtgt tgcgcgggc 60
aatgttgttc gtgttcgggt tctactggat ccccggtgtcc gatcaagct tccccaaatgc 120
cgaggatgtc cctaaagatc actatgaaga actggaaaga ccaggggcga ttgttatctaa 180
tcatgtgtca tatgtggaca ttctttatca tatgtcagct tcttctccga gttttgttgc 240
taagaactca gtgtccaagt tgccgttgat tggtctcata agcaaattgtc ttgggtgcatt 300
ttttgttcaa cgagaatcca aatgttcaga ttctaaagggt gtctcagggtg ctgttaactga 360
aaggctccat gaggtttcac aagacgagaa ttcccctatg atcttactct ttcctgaggg 420
tactactacg aatggggatt accttctccc attaaagaca ggagccttgc ttgcaagggc 480
accattgcaa cctgtatatt tgagatatcc ttacaggaga ttttagtccag cctgggactc 540
catggatggg gcacgtcatg tggtttgtct cctctgtcaa tttgcaaaatt acatagaggt 600
ggttcgcttg cctgtatact atccttctga gcaagaaaag caggatccta gagtctatgc 660
caacaacgtc agaaaaattgc ttgcgactga gggtaattta gttctgtcta atcttggcct 720

```

ggctgaaaag cgtgtgtatc atgcggcaact taatggtaat agtcctcgta ctctgcata 780
 gaaagatgat taaaagccct tgcatcaact tctgtacact atctgttgag gtgattgtaa 840
 gaatgtatgc caacttttagc tgatcatgtg attcatggtt tctctgtttg aggagtatgt 900
 tgattgtatga aaacattata cctatggta gatgaattcc ctccttatac tacatgtat 960
 agaaaccatt aaacattata gttcaataat aatgtctggc ataattgttt tgcttggta 1020
 aaaaaaaaaa aaaaaaaaaa aa 1042

<210> 38
<211> 261
<212> PRT
<213> Triticum aestivum

<400> 38
Gln Gly Leu Arg Arg Glu Ala Val Leu Arg Ala Gly Arg Val Leu Ser
1 5 10 15

Arg Ala Met Leu Phe Val Phe Gly Phe Tyr Trp Ile Pro Val Ser Asp
20 25 30

Arg Ser Phe Pro Asn Ala Glu Asp Val Pro Lys Asp His Tyr Glu Glu
35 40 45

Leu Glu Arg Pro Gly Ala Ile Val Ser Asn His Val Ser Tyr Val Asp
50 55 60

Ile Leu Tyr His Met Ser Ala Ser Ser Pro Ser Phe Val Ala Lys Asn
65 70 75 80

Ser Val Ser Lys Leu Pro Leu Ile Gly Leu Ile Ser Lys Cys Leu Gly
85 90 95

Cys Ile Phe Val Gln Arg Glu Ser Lys Cys Ser Asp Ser Lys Gly Val
100 105 110

Ser Gly Ala Val Thr Glu Arg Leu His Glu Val Ser Gln Asp Glu Asn
115 120 125

Ser Pro Met Ile Leu Leu Phe Pro Glu Gly Thr Thr Asn Gly Asp
130 135 140

Tyr Leu Leu Pro Phe Lys Thr Gly Ala Phe Leu Ala Arg Ala Pro Leu
145 150 155 160

Gln Pro Val Ile Leu Arg Tyr Pro Tyr Arg Arg Phe Ser Pro Ala Trp
165 170 175

Asp Ser Met Asp Gly Ala Arg His Val Phe Leu Leu Leu Cys Gln Phe
180 185 190

Ala Asn Tyr Ile Glu Val Val Arg Leu Pro Val Tyr Tyr Pro Ser Glu
195 200 205

Gln Glu Lys Gln Asp Pro Arg Val Tyr Ala Asn Asn Val Arg Lys Leu
210 215 220

Leu Ala Thr Glu Gly Asn Leu Val Leu Ser Asn Leu Gly Leu Ala Glu
225 230 235 240

Lys Arg Val Tyr His Ala Ala Leu Asn Gly Asn Ser Pro Arg Ala Leu
245 250 255

His Gln Lys Asp Asp
260

<210> 39
<211> 1459
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (203)

<400> 39

gtttccaatc	atatctcgta	catagaaccc	atattttct	tctatgaatt	gttcccaacc	60
attgttcgt	cagagtctca	tgatgcccta	ccatttggta	gaacaattat	tcgagcgatg	120
caggttatat	atgttgacag	attctcacca	gcttctcgga	aggctgctgt	aatgaaata	180
aagagaaaagg	cagcttgcaa	tanctcccg	cgggtcctgt	tattccctga	aggcaccaca	240
acaaatggga	gattcctgat	ttcggttccaa	catggtgcgt	tcatacctgg	ctaccctgtt	300
caacctgttg	ttgtccatta	tccacatgtg	cacrttgatc	aatcatgggg	aaatatatcg	360
ttattaaagc	tcatgttcaa	gatgttcaca	cagtttcata	atttcatgga	ggttagagtac	420
cttcctgttg	tctaccctcc	tgagatcaag	caagagaatg	cccttcattt	tgcagaggat	480
accagctatg	ctatggcacf	tgcctcgaat	gccttgcga	cttattattc	atggcgattc	540
tatgattatg	gcacgagcag	tagaagctgg	aaaggtgaac	tgctcaaatt	atatggtaga	600
aatggcttgg	gttaaagatg	tttacggat	aagcacagca	gaagtgtatgg	aactattgga	660
acatttcctg	gctatgaatc	cagataaacga	tggacgtgtg	aaagctgaag	atttctggc	720
tcatttttgtt	ctggatttgc	gtcctctgtg	caagaagata	tttcaactatt	tcgatttaga	780
cattaagggg	ttgattacgt	tccgtcagtt	cttgggttggg	tgcgcgcacc	tgaggaagca	840
accactgttc	cagggttcct	gcgagaccgc	cttggagaag	tgccgggtc	ctgaaacgtc	900
ttagatctcc	agggcacacgc	tagctgatct	cttgcggitta	agcatggtgc	caccttctga	960
tgataagatg	ctggagctgt	tcaagacgtt	cgatgttagat	ggcgacgaga	agatcagcag	1020
ggacgacttc	atggcgtgtc	ttgggagggtt	cccgttcctg	atcgcggttct	ttgctgcct	1080
gatcaatggg	gaagtgtaca	tgcagatagt	ctgaatgaat	gcctgaggca	aagcgatgcc	1140
gcgtaaaaagg	ctggagctgc	cagtgcagg	cgtaggcagg	ggatccctcc	gtttatgcaa	1200
tgtggatacc	caccgggtgc	tcctccactt	tgagaccaaa	gcaactgtat	tattgggtat	1260
tgggttgcatt	caagtggctg	accagtgtat	tgcgtcgatt	ttgttttagtt	gcttcgttcg	1320
aattattatt	ggccattttac	cgaatctgtt	gagatacgcg	ctggactagt	agattgtcga	1380
tggaaactcag	aacgcaaata	gaaagcatct	gtaatctgaa	ctaactgaga	aaacatttaa	1440
aaaaaaaaaaa	aaaaaaaaaa					1459

<210> 40
<211> 204
<212> PRT
<213> Zea mays

<220>
<221> UNSURE
<222> (68)

<400> 40

Val	Ser	Asn	His	Ile	Ser	Tyr	Ile	Glu	Pro	Ile	Phe	Phe	Phe	Tyr	Glu
1				5				10						15	

Leu	Phe	Pro	Thr	Ile	Val	Ser	Ser	Glu	Ser	His	Asp	Ala	Leu	Pro	Phe
				20				25					30		

Val	Gly	Thr	Ile	Ile	Arg	Ala	Met	Gln	Val	Ile	Tyr	Val	Asp	Arg	Phe
				35				40				45			

Ser Pro Ala Ser Arg Lys Ala Ala Val Asn Glu Ile Lys Arg Lys Ala
 50 55 60
 Ala Cys Asn Xaa Phe Pro Arg Val Leu Leu Phe Pro Glu Gly Thr Thr
 65 70 75 80
Thr Asn Gly Arg Phe Leu Ile Ser Phe Gln His Gly Ala Phe Ile Pro
 85 90 95
 Gly Tyr Pro Val Gln Pro Val Val His Tyr Pro His Val His Phe
 100 105 110
 Asp Gln Ser Trp Gly Asn Ile Ser Leu Leu Lys Leu Met Phe Lys Met
 115 120 125
 Phe Thr Gln Phe His Asn Phe Met Glu Val Glu Tyr Leu Pro Val Val
 130 135 140
 Tyr Pro Pro Glu Ile Lys Gln Glu Asn Ala Leu His Phe Ala Glu Asp
 145 150 155 160
 Thr Ser Tyr Ala Met Ala Arg Ala Leu Asn Ala Leu Pro Thr Tyr Tyr
 165 170 175
 Ser Trp Arg Phe Tyr Asp Tyr Gly Thr Ser Ser Arg Ser Trp Lys Gly
 180 185 190
 Glu Leu Leu Lys Leu Tyr Gly Arg Asn Gly Leu Gly
 195 200

<210> 41
 <211> 2115
 <212> DNA
 <213> Oryza sativa

<400> 41
 gcacgagggtt ctaaccggcc tcttcgtcgc tcgcctccgc caccatggc ttctcgaaac 60
 cctagccccg cttccctctc cacggcgctc ctctccgact ccatctcgcc cacgcccacc 120
 accaacggcc acggggggca ccataaccac gacgacgacg acgaggagtc gccaacggtg 180
 tgcggcggcg atggcggagg agggggggac ccgttcgcgt tcctatcgga ggatcggccg 240
 gctgtgttgtt cgccgcgggg ggtgtccccg gccgaccctgt tccgcaacgg gacgcccggg 300
 tggtgccgggg cgtacgagct cgtgaggcgct ctcgtgtgcg cgccgggtggc ggcggcgagg 360
 ctgggtctgt tcgggctctc catcgccgtg ggttacgccc ccacgtgggt ggcgtccgc 420
 gggtgggtcg acgtgcggga gcggggcg caggagggcg ccggggccat gccggcggtgg 480
 cgccgcggcc tcatgtggat cacgcggatc tccgcgcgtc gcatcctctt ctccttcgga 540
 taccatttggaa taaggaggaa agaaaaaccg ggccttagag agttgcacc tatagttgtc 600
 tcaaataatcatg tatcatacat agaaccata tactttttt atgagctgtt cccgacaatc 660
 gtttcttcag attctcatga ttccatacca tttgttgaa caattatccg agcaatgcag 720
 gtttatatatg ttgacagatt ctcgcagct tcaaggaagt ctgctgtaaa tgaaataaaag 780
 gatgtgattt cagagaaagg cggcttgaa tagctccca cgtgtttgtt tattcccgaa 840
 aggcacgaca acaaataggaa gatttctgat ttctttccaa catggtgcat tcataacctgg 900
 ctaccctgtt caaccgttta ttgtgcgtt tccacatgtg cactttgtc aatcatgggg 960
 aaatatatca ttaggaaagc tcatgttcaa gatgtttacc cagtttcaca atttcatgga 1020
 ggttagagttt cttccctgtt tttaccacc tgagatcaag caagagaatg cccttcattt 1080
 tgcagagaac actagctatg ctatggcaca tgcacttaat gttatccaa cctcttattc 1140
 atatggggat tcaatgtca tggctcgagc agtggaaagat ggaaagggtga actgctaaa 1200
 ttatatgggt gagatggctt gggtaaaaga aacatatggt gtgagcacat cagaagcaat 1260
 ggcactcttgg gaagactttt tgtgtatgag cccagacaag gacggacgtg tgaatgcgca 1320
 agatttttgg gctcattttg gccttaattt caccctctt tgcaagaaga tatttcagta 1380
 cttcgattttt gaagccaagg aatccatcac attccgtcag ttcttgattt gatgtgcgca 1440

cctcaggaag cagccatcg ttcaggacgc ctgcgaaacc gcgtttgaga ggtgttagaa 1500
tcccctaaca tctcacatcg gcagggagca gctcgccgat gtcctgcggt caagcatgct 1560
tgagctgatg accgataatg gnatgatgaa gctgttcaag acgttggacg tcgacgatga 1620
cgacggaatc agcaaggatg acctgatggc atcccttagg aagctccct tcattatcg 1680
gctcttcgatg ggccggatca acgggaaagt ctacatcgag atagtttgcgat cgactggatt 1740
gatgcaggg gagagcaaaa atgggtggatg ggagtttgcgat acgcgggtggg agacgacaga 1800
cctccgtctg ttttagagg gatggttcc aaccgcttca ccgtccatgt agcttctca 1860
ggcgtgttgg actaaagtgg ctaaccggta tagtgcgcaa ttttgcgttca tatcgtaaaa 1920
atatatattt atatccatag aaaagctgtc gcgtgtatggc acgctggatt gtgcaatgtg 1980
gatatgatac tgtacaacat tggtccaact gggcgtgcac atagaaaactc ttttttgcgt 2040
ttggtttgcgt ttggcttaact gnatggatga ttacaaaactc ctttttgcgt aaaaaaaaaa 2100
aaaaaaaaaa aaaaaa 2115

<210> 42

<211> 255

<212> PRT

<213> Oryza sativa

<400> 42

Met	Ala	Ser	Arg	Asn	Pro	Ser	Pro	Ala	Ser	Leu	Ser	Thr	Pro	Leu	Leu
1					5				10				15		

Ser	Asp	Ser	Ile	Ser	Pro	Thr	Pro	Thr	Thr	Asn	Gly	His	Ala	Gly	His
									25				30		

His	Asn	His	Asp	Asp	Asp	Asp	Glu	Glu	Ser	Pro	Thr	Val	Cys	Gly	Gly
									40			45			

Asp	Gly	Gly	Gly	Gly	Asp	Pro	Phe	Ala	Phe	Leu	Ser	Glu	Asp	Arg
					50		55				60			

Pro	Ala	Trp	Trp	Ser	Pro	Arg	Gly	Val	Ser	Pro	Ala	Asp	Pro	Phe	Arg
					65		70			75			80		

Asn	Gly	Thr	Pro	Gly	Trp	Cys	Gly	Ala	Tyr	Glu	Leu	Val	Arg	Ala	Leu
								85		90			95		

Val	Cys	Ala	Pro	Val	Ala	Ala	Ala	Arg	Leu	Val	Leu	Phe	Gly	Leu	Ser
								100		105		110			

Ile	Ala	Val	Gly	Tyr	Ala	Ala	Thr	Trp	Val	Ala	Leu	Arg	Gly	Trp	Val
								115		120		125			

Asp	Val	Arg	Glu	Arg	Ala	Ala	Gln	Glu	Gly	Ala	Gly	Pro	Met	Pro	Ala
							130		135		140				

Trp	Arg	Arg	Arg	Leu	Met	Trp	Ile	Thr	Arg	Ile	Ser	Ala	Arg	Cys	Ile
					145		150			155			160		

Leu	Phe	Ser	Phe	Gly	Tyr	His	Trp	Ile	Arg	Arg	Lys	Gly	Lys	Pro	Ala
								165		170		175			

Pro	Arg	Glu	Leu	Ala	Pro	Ile	Val	Val	Ser	Asn	His	Val	Ser	Tyr	Ile
							180		185		190				

Glu	Pro	Ile	Tyr	Phe	Phe	Tyr	Glu	Leu	Phe	Pro	Thr	Ile	Val	Ser	Ser
							195		200		205				

Asp	Ser	His	Asp	Ser	Ile	Pro	Phe	Val	Gly	Thr	Ile	Ile	Arg	Ala	Met
						210		215			220				

Gln Val Ile Tyr Val Asp Arg Phe Ser Pro Ala Ser Arg Lys Ser Ala
225 230 235 240

Val Asn Glu Ile Lys Asp Val Ile Ser Glu Lys Gly Gly Leu Gln
245 250 255

<210> 43
<211> 2041
<212> DNA
<213> Glycine max

<400> 43

gcacgaggcg acgacgacga cttctccgtg ccgccaccgt ccaccctgga cccgttccgc 60
aaccgcacgc cgcgatcga ggggctctac gagtgggcca agacggcgct gtgcctgccc 120
ctggcgccgc tgcggctcgc gctgttcggg ctctgcctcg cggtgggta cgtggcgacg 180
aagggtggcg tggcagggtg gaaggacaag gagaatccca tgcccaagtg gaggtgttagg 240
gttatgtgga tcacgcgctt gtgcgccaga tgtattctct tctccttgg ctatcaagtgg 300
ataaaaacgga aaggaaaaacc tgccaccaagg gaaattgctc caataattgt atctaaccat 360
gtttcttata ttgagcctat cttctatttc tatgaattat ttcctaccat tgtggcagct 420
gagtctcatg actccatacc ttttgttggc accattatta gagcaatgca ggtcatatat 480
gttaacagat tcttaccatc atcaaggaag caggctgtta gggaaataaaa gaaatctgct 540
ttcaaggaac tgaataaacag agaagggcct cttgtgataa atttcctcga gtactattat 600
ttcccgaggg aacaacaact aatggcagga accttatctc cttccaactt ggtgcattta 660
tccctggata cccaatccag cctgttaatta tacgctatcc tcatgtacac tttgaccaat 720
cctggggtaa tggttcttg ggaaagctt tgttcagaat gttcactcaa tttcacaact 780
tttttgaggt agaatatctt cctgtcattt atccccctgga tgataaggaa actgctgtac 840
attttccggga gaggactagc cgtgctatcg caactgcact aaatgctgtc cagacaggac 900
attcttatgg agacataatg cttcatatga aagcacaaga agcaaaacag gagaacccct 960
caagtttat ggttgaatg accaaggtgg aatcattatt tcatatcagc agcacggaag 1020
ctgtggactt tctggataaa ttcttggcca tgaatcttga tcccagtggc cgtgttcaat 1080
atcatgactt cttgagggtt ttaagactta aggcttgccc actatctgca aagatatttt 1140
cattcattga tgtggagaag agtgggacaa ttacgttcag acagttcttg tatggatctg 1200
cccatgttat gtcccaacct gggttcgatc aaaccttga agaaggctt gctggctgtg 1260
gcgggtgcagt aaagacctat gttgtgaac aagagttacg agatttcatc caacctgcta 1320
tcctcaattt gagtgaggat gaggtccatg agtttttat gttatttgac aatgataatg 1380
atggaaagaat tgacaagaat gactttctt catgccttag aagaaatcct cttctcatag 1440
catttttac acctcagccca cagcaaaaag aatttgaagg taatggagtg atagaaatag 1500
tgtgatggat ggatttcaca ttccaggtctt ttgtggacta caaagaaaag aaatgggttag 1560
ggattccctgg ggaatacata cagtatagga tgcagtgccc tcatttttt tttttttcc 1620
ttttctcttt taattttttt accttgctct gattaattac tcgtaaagca taactatttg 1680
gtgaagatct gtgccatcca tcctgcttca tttgatgttt tttgttagct aggtcagttt 1740
tgcacagcta gatgtcagtt acctggatgt tgtgatcaca ccgatccaac atttgagttt 1800
tggttcaggg accatgctga catttagggt ccatgtgggt catgtaaagt ttgaaccaac 1860
gtgtcaattt gtaacaaaca ttataactgt attttttttc aaagatgtga acatgaagaa 1920
agtaatgtaa ttttatttgaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaactcgag 1980
ggggggcccg gttgttttcg aggtcgacgt gctcgataag attgtatcca caccgagcgc 2040
g

<210> 44
<211> 228
<212> PRT
<213> Glycine max

<400> 44

Ala Arg Gly Asp Asp Asp Asp Phe Ser Val Pro Pro Pro Ser Thr Leu
1 5 10 15

Asp Pro Phe Arg Asn Arg Thr Pro Ala Ile Glu Gly Leu Tyr Glu Trp
 20 25 30

Ala Lys Thr Ala Leu Cys Leu Pro Leu Ala Ala Leu Arg Leu Ala Leu
 35 40 45

Phe Gly Leu Cys Leu Ala Val Gly Tyr Val Ala Thr Lys Val Ala Leu
 50 55 60

Ala Gly Trp Lys Asp Lys Glu Asn Pro Met Pro Lys Trp Arg Cys Arg
 65 70 75 80

Val Met Trp Ile Thr Arg Leu Cys Ala Arg Cys Ile Leu Phe Ser Phe
 85 90 95

Gly Tyr Gln Trp Ile Lys Arg Lys Gly Lys Pro Ala Pro Arg Glu Ile
 100 105 110

Ala Pro Ile Ile Val Ser Asn His Val Ser Tyr Ile Glu Pro Ile Phe
 115 120 125

Tyr Phe Tyr Glu Leu Phe Pro Thr Ile Val Ala Ala Glu Ser His Asp
 130 135 140

Ser Ile Pro Phe Val Gly Thr Ile Ile Arg Ala Met Gln Val Ile Tyr
 145 150 155 160

Val Asn Arg Phe Leu Pro Ser Ser Arg Lys Gln Ala Val Arg Glu Ile
 165 170 175

Lys Lys Ser Ala Phe Lys Glu Leu Asn Asn Arg Glu Gly Pro Leu Val
 180 185 190

Ile Asn Phe Leu Glu Tyr Tyr Phe Pro Arg Glu Gln Gln Leu Met
 195 200 205

Ala Gly Thr Leu Ser Pro Ser Asn Leu Val His Leu Ser Leu Asp Thr
 210 215 220

Gln Ser Ser Leu
 225

<210> 45

<211> 1502

<212> DNA

<213> Zea mays

<400> 45

gcacgaggc	gtcctcacca	tgccgatccg	gcgtcagcgc	tagggtagg	gtctcctctg	60
cgccttatac	gccatggctc	ctaacaagc	cgctagcatc	accaccccgt	ccgagccgga	120
gagcgtggc	ggcagtgaga	tgagcagcga	agacatggcc	gccgcccagtc	cgctcctctc	180
gtcgtcctcc	ccctccccctt	ccccctccgc	agccccggtg	ctggagagca	tagaggaact	240
ggaccggaag	tacgcaccgt	acgcgcggcg	ggacgcgtac	ggaccgatgg	ggctcgccc	300
cgtgagcgca	gcggaggctg	cgcggctggc	gttgcgcgcg	gtcgtgctgg	tcccgctccg	360
tgtcgtggca	ggtgttctcg	tactcggt	ctactacctc	gtgtgccgcg	tgtgcacgct	420
gcgggtggag	gaggaccggg	agggcggcg	agggatggg	tacgcgcgt	tggacgggtg	480
gaggcggcg	ggggctgtgc	ggtgcggccg	cgcactcgct	cgcgcctgt	tgtttgtctt	540
cgggttctat	tggatccgag	agtacgacag	ccgccttccc	aatgctgagg	atggccatgt	600
ggaccagtct	aaagaaaatcg	aaaggcctgg	ggcaattgtg	tctaattatgt	tatcttatgt	660
ggatattctt	tatcacatgt	cagcctcttt	tcctagttt	gttgctaaga	gatcagtggc	720
tagattgcct	ctagttggc	tcataagcaa	atgtcttgg	tgcattttg	ttcagcggga	780
gtcgaaaaca	ccagattca	aaggtgtttc	aggtgctgta	tctgaaagaa	tccatcgtgc	840

tcataaacag aaaaatgcac caatgatgct actcttccct gagggcacaa ctacaaatgg 900
 ggattatctc cttccattca aaacaggtgc ttttcttgca aaggcaccag ttcaaccagt 960
 catttgaga tatttcattaca aaagatttaa tgcagcatgg gattccatgt cagggcacg 1020
 tcatttatctt ctgctgctct gtcaatttgt aaattaccta gaggtggtcc gcttaccagt 1080
 ttactatcct tctgagcaag aaaaggatga tcctaaagctc tatgcaaaca atgtacggaa 1140
 actgatggca gtggaggaa acttgattct ttcagacctt gggctggcg 1200
 gtaccatgcc gcactgaatg gtaatagtct agctcggtct ttacatcaga aagatgattg 1260
 aaatgccatg ctatcgctc tccataatac tggcttgctt gtaactgtgt gcttgcgtt 1320
 gcatcgcat ggtttagagg aatgtcgta atatactatc cggcataaaat ctgtaaagta 1380
 atttaccaac tgtcatagtt cagtaattat gttggttata ctcttacatg gttgggcatac 1440
 cgcacatttgc atcctgttgtt caatccatgt gagcctttt tactaaaaaa aaaaaaaaaa 1500
 aa 1502

<210> 46

<211> 395

<212> PRT

<213> Zea mays

<400> 46

Met	Ala	Pro	Asn	Glu	Ala	Ala	Ser	Ile	Thr	Thr	Pro	Ser	Glu	Pro	Glu
1				5					10				15		

Ser	Val	Gly	Gly	Ser	Glu	Met	Ser	Ser	Glu	Asp	Met	Ala	Ala	Ala	Ser
					20			25				30			

Pro	Leu	Leu	Ser	Ser	Ser	Ser	Pro	Ser	Pro	Ser	Pro	Ser	Ala	Ala	Pro
					35			40				45			

Val	Leu	Glu	Ser	Ile	Glu	Glu	Leu	Asp	Arg	Lys	Tyr	Ala	Pro	Tyr	Ala
					50			55			60				

Arg	Arg	Asp	Ala	Tyr	Gly	Pro	Met	Gly	Leu	Gly	Pro	Val	Ser	Ala	Ala
					65			70			75			80	

Glu	Ala	Ala	Arg	Leu	Ala	Phe	Ala	Ala	Val	Val	Leu	Val	Pro	Leu	Arg
					85				90				95		

Val	Val	Ala	Gly	Val	Leu	Val	Leu	Val	Val	Tyr	Tyr	Leu	Val	Cys	Arg
					100			105				110			

Val	Cys	Thr	Leu	Arg	Val	Glu	Glu	Asp	Arg	Glu	Gly	Glu	Gly	Asp	
					115			120			125				

Gly	Tyr	Ala	Arg	Leu	Asp	Gly	Trp	Arg	Arg	Ala	Gly	Ala	Val	Arg	Cys
					130			135			140				

Gly	Arg	Ala	Leu	Ala	Arg	Ala	Met	Leu	Phe	Val	Phe	Gly	Phe	Tyr	Trp
					145			150			155			160	

Ile	Arg	Glu	Tyr	Asp	Ser	Arg	Leu	Pro	Asn	Ala	Glu	Asp	Gly	His	Val
					165				170			175			

Asp	Gln	Ser	Lys	Glu	Ile	Glu	Arg	Pro	Gly	Ala	Ile	Val	Ser	Asn	His
					180			185			190				

Val	Ser	Tyr	Val	Asp	Ile	Leu	Tyr	His	Met	Ser	Ala	Ser	Phe	Pro	Ser
					195			200			205				

Phe	Val	Ala	Lys	Arg	Ser	Val	Ala	Arg	Leu	Pro	Leu	Val	Gly	Leu	Ile
					210			215			220				

Ser Lys Cys Leu Gly Cys Ile Phe Val Gln Arg Glu Ser Lys Thr Pro
225 230 235 240

Asp Phe Lys Gly Val Ser Gly Ala Val Ser Glu Arg Ile His Arg Ala
245 250 255

His Gln Gln Lys Asn Ala Pro Met Met Leu Leu Phe Pro Glu Gly Thr
260 265 270

Thr Thr Asn Gly Asp Tyr Leu Leu Pro Phe Lys Thr Gly Ala Phe Leu
275 280 285

Ala Lys Ala Pro Val Gln Pro Val Ile Leu Arg Tyr Pro Tyr Lys Arg
290 295 300

Phe Asn Ala Ala Trp Asp Ser Met Ser Gly Ala Arg His Val Phe Leu
305 310 315 320

Leu Leu Cys Gln Phe Val Asn Tyr Leu Glu Val Val Arg Leu Pro Val
325 330 335

Tyr Tyr Pro Ser Glu Gln Glu Lys Asp Asp Pro Lys Leu Tyr Ala Asn
340 345 350

Asn Val Arg Lys Leu Met Ala Val Glu Gly Asn Leu Ile Leu Ser Asp
355 360 365

Leu Gly Leu Ala Glu Lys Arg Val Tyr His Ala Ala Leu Asn Gly Asn
370 375 380

Ser Leu Ala Arg Ala Leu His Gln Lys Asp Asp
385 390 395

<210> 47

<211> 1555

<212> DNA

<213> Oryza sativa

<400> 47

gcacgagggtt taaaccacgt ctcgtcgcca tctcctcatg cctaccact gctagggttt 60
gcccctaagc ccccccacct ctccgcacatg gctctccctc tccacgacgc caccacctcc 120
ccctccgacc ccgacgacct cggcgccggc ggcgaggagg aggaggagag gctgcctcg 180
aagccgtcgc tctcgccccc gtccacctat cttccgcgg ggacggagga gggcgctcgag 240
gagctggagc tcgaccggag gtacgcgcgg tacgcgaggc gggacgcgtta cggggcgatg 300
ggccggggcc ccctggcgcc ggcggggcg gggcggctgg cggtgccgc cggcggtgc 360
tccccgtcgc ggctcgccgc gggcggtgcgtc gtgtcgctcg cctactacct cgtgtgccgc 420
gtgtgcacgc tgcgtgtgga ggaggaggag cgcgagggtg gcgggtggcg cgccggctgga 480
gaagtggagg gggacgggtta cgcgcggctc gaggggtgga ggcgtgaggg cgtcggtgcgg 540
tgcggccgcg cgctcgccgc cgccatgctg ttctgtttcg gtttctactg gatccgcgag 600
tacgactgcc gttccctga tgctgaggat gagcatcagg aacagtccaa agaattggga 660
agaccagggg cagtagtatc taatcatgtta tcttatgtgg atattcttta ccacatgtca 720
tcttccttcc caagcttgt tgccaagaga tcagtggcca gattgccat ggttggcttc 780
ataagcaaat gtcttgatg cattttgtt cagcggaaat ctaaaacctc agatttcaaa 840
ggcggttcag gtgctgtgac tgagagaatc caacgggctc atcaacagaa gaattctcca 900
atgatgtac tttccctga aggccacaact acaaatggtg attatcttcc ccccttcaag 960
acaggaggcat ttcttgcaaa agcaccagtg aagccagtc ttttaagata tccttacaag 1020
agatttatgtc cagcatggga ttctgtgtct ggggctcgcc atgtatttct gtcctttgt 1080
caatttgtaa ataaccttga ggtgatccat ttgcctgtgt attaccatc tgagcaagag 1140
aaggaagatc ctaagctgta cgcaaataat gtacggaaat tgatggcagt ggagggaaac 1200

ttgattcttt ctgatcttgg gctagcagag aagcggtgt accatgcggc attgaatgg 1260
 aataatagtc tacctcggtgc tttacatcgaa aaagatgatt gaaatgcctt gccatcgcc 1320
 ttctgtatac tgatgctgag tgacttgctt gtaatatgag tacaaggttcc tggtgttgc 1380
 tgattcctca tggtgagagg agctatgtta atatcctccc agtaaactgt aaaattattt 1440
 gtcctatgtg tggttcagta atcatgtcag ttatacatga ttacattcac atgtctggga 1500
 cacacttcac catgcaatcc atcgatgtga gctttataaa aaaaaaaaaaaa aaaaaa 1555

<210> 48

<211> 404

<212> PRT

<213> Oryza sativa

<400> 48

Met	Ala	Leu	Pro	Leu	His	Asp	Ala	Thr	Thr	Ser	Pro	Ser	Asp	Pro	Asp
1								10					15		

Asp	Leu	Gly	Gly	Gly	Gly	Glu	Glu	Glu	Glu	Arg	Leu	Ala	Ser	Lys
		20				25				30				

Pro	Leu	Leu	Ser	Ser	Pro	Ser	Thr	Tyr	Pro	Ser	Ala	Gly	Thr	Glu	Glu
							35	40				45			

Gly	Val	Glu	Glu	Leu	Glu	Leu	Asp	Arg	Arg	Tyr	Ala	Pro	Tyr	Ala	Arg
		50				55				60					

Arg	Asp	Ala	Tyr	Gly	Ala	Met	Gly	Arg	Gly	Pro	Leu	Gly	Ala	Ala	Gly
					65	70			75			80			

Ala	Gly	Arg	Leu	Ala	Val	Gly	Ala	Ala	Val	Leu	Phe	Pro	Leu	Arg	Leu
					85				90			95			

Ala	Ala	Gly	Val	Leu	Val	Leu	Val	Ala	Tyr	Tyr	Leu	Val	Cys	Arg	Val
					100			105			110				

Cys	Thr	Leu	Arg	Val	Glu	Glu	Glu	Arg	Gly						
					115			120			125				

Ala	Ala	Gly	Glu	Val	Glu	Gly	Asp	Gly	Tyr	Ala	Arg	Leu	Glu	Gly	Trp
					130		135				140				

Arg	Arg	Glu	Gly	Val	Val	Arg	Cys	Gly	Arg	Ala	Leu	Ala	Arg	Ala	Met
					145		150			155			160		

Leu	Phe	Val	Phe	Gly	Phe	Tyr	Trp	Ile	Arg	Glu	Tyr	Asp	Cys	Arg	Phe
					165			170			175				

Pro	Asp	Ala	Glu	Asp	Glu	His	Gln	Glu	Gln	Ser	Lys	Glu	Leu	Gly	Arg
						180		185			190				

Pro	Gly	Ala	Val	Val	Ser	Asn	His	Val	Ser	Tyr	Val	Asp	Ile	Leu	Tyr
					195			200			205				

His	Met	Ser	Ser	Ser	Phe	Pro	Ser	Phe	Val	Ala	Lys	Arg	Ser	Val	Ala
					210			215			220				

Arg	Leu	Pro	Met	Val	Gly	Leu	Ile	Ser	Lys	Cys	Leu	Gly	Cys	Ile	Phe
					225			230			235			240	

Val	Gln	Arg	Glu	Ser	Lys	Thr	Ser	Asp	Phe	Lys	Gly	Val	Ser	Gly	Ala
					245			250			255				

Val Thr Glu Arg Ile Gln Arg Ala His Gln Gln Lys Asn Ser Pro Met
260 265 270

Met Leu Leu Phe Pro Glu Gly Thr Thr Asn Gly Asp Tyr Leu Leu
275 280 285

Pro Phe Lys Thr Gly Ala Phe Leu Ala Lys Ala Pro Val Lys Pro Val
290 295 300

Ile Leu Arg Tyr Pro Tyr Lys Arg Phe Ser Pro Ala Trp Asp Ser Met
305 310 315 320

Ser Gly Ala Arg His Val Phe Leu Leu Leu Cys Gln Phe Val Asn Asn
325 330 335

Leu Glu Val Ile His Leu Pro Val Tyr Tyr Pro Ser Glu Gln Glu Lys
340 345 350

Glu Asp Pro Lys Leu Tyr Ala Asn Asn Val Arg Lys Leu Met Ala Val
355 360 365

Glu Gly Asn Leu Ile Leu Ser Asp Leu Gly Leu Ala Glu Lys Arg Val
370 375 380

Tyr His Ala Ala Leu Asn Gly Asn Asn Ser Leu Pro Arg Ala Leu His
385 390 395 400

Gln Lys Asp Asp

<210> 49

<211> 1072

<212> DNA

<213> Glycine max

<400> 49

gcacgaggga	agattacgct	catacgatg	ggttgaggag	aaccgtcatt	gttgcgtgtg	60
gacgcgccct	ctccagagtc	atgctttca	tttccggctt	ttattggatc	cccgaaatcca	120
actctgcctc	tcaagaaagac	cggagtca	ctgaagagtt	ggggagacct	agcgtaataa	180
tatctaatac	tgtgtcatac	ttggatattt	tgtatcacat	gtcgccctca	ttcccaagtt	240
ttgttgctaa	gagatcagt	gctaaacttc	cgctcatgg	tctcatcagc	aagtgccttg	300
gttgtgtgt	tgttcagcgg	aatcaaagt	catcgactt	caagggtgtt	ttagctgttg	360
tcactgacag	aattcaagaa	gctcatcaga	atgagtctgc	tccattaaatg	atgttatttc	420
cagaaggaac	aaccacaaat	ggagagttcc	tccttccatt	caagactggt	gtttttttgg	480
caaaggcacc	agtacttcct	gtgattttaa	gatatcatta	ccagagattt	agccccgcct	540
gggattccat	atctgggtg	cggcatgtaa	tatttcct	gtgtcagttt	gtgaattata	600
tggaggtgat	ccgagtacct	gtttaccatc	cctcacagca	ggagatgaat	gatcccaaac	660
tatatgctaa	taatgtttaga	agggtgatgg	ctactgaggg	taatttgata	ctttctgata	720
ttgggttagc	tgaaaaaacga	atatatcacg	ctgctctcaa	tggtaataat	agcatgccta	780
gtgtttgca	tcagaaagac	aatgataat	ttcatggccc	ccgtctcaa	tggaaatgttag	840
ttccagtcga	gttttagttt	caaacttagt	atctgtttat	aatggacag	tttgtgtgaa	900
gggtatact	aaatagtata	cattcaccta	aacatctgaa	tggtaactgt	gtaaatttct	960
tgtaaataac	gtgaccaata	atgttttaat	tgctggtaa	ctcaatttga	ggcacacaat	1020
tcaagatcta	taagtttaac	tgttctcgt	tcaaaaaaaaaa	aaaaaaaaaa	aa	1072

<210> 50

<211> 267

<212> PRT

<213> Glycine max

<400> 50
Thr Arg Glu Asp Tyr Ala His Met Ser Gly Leu Arg Arg Thr Val Ile
1 5 10 15

Val Ser Cys Gly Arg Ala Leu Ser Arg Val Met Leu Phe Ile Phe Gly
— 20 25 30

Phe Tyr Trp Ile Pro Glu Ser Asn Ser Ala Ser Gln Glu Asp Arg Ser
35 40 45

Gln Pro Glu Glu Leu Gly Arg Pro Ser Val Ile Ile Ser Asn His Val
50 55 60

Ser Tyr Leu Asp Ile Leu Tyr His Met Ser Ser Ser Phe Pro Ser Phe
65 70 75 80

Val Ala Lys Arg Ser Val Ala Lys Leu Pro Leu Ile Gly Leu Ile Ser
85 90 95

Lys Cys Leu Gly Cys Val Tyr Val Gln Arg Glu Ser Lys Ser Ser Asp
100 105 110

Phe Lys Gly Val Ser Ala Val Val Thr Asp Arg Ile Gln Glu Ala His
115 120 125

Gln Asn Glu Ser Ala Pro Leu Met Met Leu Phe Pro Glu Gly Thr Thr
130 135 140

Thr Asn Gly Glu Phe Leu Leu Pro Phe Lys Thr Gly Gly Phe Leu Ala
145 150 155 160

Lys Ala Pro Val Leu Pro Val Ile Leu Arg Tyr His Tyr Gln Arg Phe
165 170 175

Ser Pro Ala Trp Asp Ser Ile Ser Gly Val Arg His Val Ile Phe Leu
180 185 190

Leu Cys Gln Phe Val Asn Tyr Met Glu Val Ile Arg Val Pro Val Tyr
195 200 205

His Pro Ser Gln Gln Glu Met Asn Asp Pro Lys Leu Tyr Ala Asn Asn
210 215 220

Val Arg Arg Leu Met Ala Thr Glu Gly Asn Leu Ile Leu Ser Asp Ile
225 230 235 240

Gly Leu Ala Glu Lys Arg Ile Tyr His Ala Ala Leu Asn Gly Asn Asn
245 250 255

Ser Met Pro Ser Val Leu His Gln Lys Asp Glu
260 265

<210> 51
<211> 838
<212> DNA
<213> Glycine max

<220>

<221> unsure
<222> (205)

<220>

<221> unsure
<222> (779)

<220>

<221> unsure
<222> (814)

<400> 51

gagagaacta gtctcagcca tttccattt cttccactt ttatgtttc aggtcatata 60
 tgttaacaga ttcttaccat catcaaggaa gcaggctgtt agggaaataa agagaaggc 120
 ctcttgcatt agatttcctc gagtactatt atttcccggag ggaacaacaa caaatggcag 180
 gaaccttatac tccttccaac ttggngcatt tatccctgga tacccaatcc agcctgtaat 240
 tgtacgctat cctcatgtgc actttgacca atcctgggtt catgtttctt tgggaaagct 300
 tatgttcaga atgttcaactc aatttcacaa ctttttgag gtagaatatc ttccctgtcat 360
 ttatcccctg gatgataagg aaactgctgt acattttcg gaggacta gccgtgctat 420
 cgcaactgca ctaaatgctg tccagacagg acattcttat ggagacataa tgcttcata 480
 gaaagcacaa gaagcaaaac aggagaaccc ctcaagttt atggttgaaa tgaccaaggt 540
 ggaatcagtg agtccctaaa agcaaatgac cttaccattt ctttttttt tctgccattt 600
 tcaagtccct tgtaaattat cttttcttt aactttttaa gtaggatatt taggttaaac 660
 cttttgaagt acatgcaaat gccacagtaa cccttgctt atgccaatgg atgacagaca 720
 taagtgaccc agggtggctg cataatgtt gggccttcta atctatggg aatatgtant 780
 gaaaggggag aatatttaaa ttgtgattt tggnaataag gggataatat gacataag 838

<210> 52

<211> 185

<212> PRT

<213> Glycine max

<400> 52

Arg	Glu	Leu	Val	Ser	Ala	Ile	Phe	His	Phe	Phe	Pro	Leu	Leu	Cys	Phe
1															
														15	

Gln	Val	Ile	Tyr	Val	Asn	Arg	Phe	Leu	Pro	Ser	Ser	Arg	Lys	Gln	Ala
													30		

Val	Arg	Glu	Ile	Lys	Arg	Arg	Ala	Ser	Cys	Asn	Arg	Phe	Pro	Arg	Val
													45		

Leu	Leu	Phe	Pro	Glu	Gly	Thr	Thr	Asn	Gly	Arg	Asn	Leu	Ile	Ser
												60		

Phe	Gln	Leu	Gly	Ala	Phe	Ile	Pro	Gly	Tyr	Pro	Ile	Gln	Pro	Val	Ile
												80			

Val	Arg	Tyr	Pro	His	Val	His	Phe	Asp	Gln	Ser	Trp	Gly	His	Val	Ser
												95			

Leu	Gly	Lys	Leu	Met	Phe	Arg	Met	Phe	Thr	Gln	Phe	His	Asn	Phe	Phe
												110			

Glu	Val	Glu	Tyr	Leu	Pro	Val	Ile	Tyr	Pro	Leu	Asp	Asp	Lys	Glu	Thr
												125			

Ala	Val	His	Phe	Arg	Glu	Arg	Thr	Ser	Arg	Ala	Ile	Ala	Thr	Ala	Leu
												140			

Asn Ala Val Gln Thr Gly His Ser Tyr Gly Asp Ile Met Leu His Met
 145 150 155 160

Lys Ala Gln Glu Ala Lys Gln Glu Asn Pro Ser Ser Phe Met Val Glu
 165 170 175

Met Thr Lys Val Glu Ser Val Ser Pro
 180 185

<210> 53

<211> 1632

<212> DNA

<213> Oryza sativa

<400> 53

cttctcgatcg ccgggtggatt cgccgcccgc tccgcccggc ccggccggagg aggaggacga 60
 ggagagggcg ctccctcggg ggtgagcatc cagccacctc ggcccgttgc ctccctttcg 120
 catctcgcc cccgagatt ggaagtggagg gcagggcagg gcggcagggg ccatggcggt 180
 cccactcgatcg ctcgtcgatcg tccccgtcg cctcccttc ctcctctccg gcctcatcat 240
 caacgccatc caggccgtcc tgtttctctc gataaggccg ttctcgaaga gcttgtaccg 300
 gcggatcaac aggttcttgg ccgagctgtc gtggcttcag ctggcttgc ttgtggattg 360
 gtgggcagga gttaagatac aactgcacatgc tgatgacgaa acttacaagg caatggggaa 420
 tgagcatgca cttgtcatat caaataatcg gagcgatatc gattggcttta ttgggtggat 480
 tttggcacag cgctcaggat gccttggaaag tacacttgct gttatgaaga aatcatcgaa 540
 attccttcca gttattggct ggtccatgtc gtttgcagaa taccttttt tggaaaggag 600
 ctgggcaaag gatgaaaaga cattgaaatg gggcctccaa aggttgaagg acttccccag 660
 accattttgg ctagccctt ttgttggagg cactcgctt actccagcaa agcttcttagc 720
 agctcaggag tatgctgtt cacagggtt gccagcaccc agaaatgtat tgattccacg 780
 tacaaaggaa tttgtatcg ctgttaactat tatgcgggat tttgttccag ctatttatga 840
 tacaacagta attattccaa aagattcacc tcaaccaaca atgctgcgga ttttgaagg 900
 gcaatcttca gtggtacatg ttgcgtatgaa acgtcatgca atgagtgaga tgccaaagtc 960
 agaagacgat gtttcaaaat ggtgcaaaga catcttgcata gcaaaggatg cattactgga 1020
 taagcatttgcgcacaggca cttttgtatgaa ggagatttgc ccaattggcc gcccagtaaa 1080
 atcattgctg gtgactttgt tttggtcatg ttccttttata tggcgccg tcaagcttt 1140
 cctatggact caactcctgt cgacatggaa aggagtccgg tttacgggccc ttgggctcgc 1200
 actggtgacg gcggtcatgc atgtcttcat catgttctcg cagtcagagc gatcgagctc 1260
 agccaaggcg gctcggaaacc gtgtcaagaa agattgaaag agatgaagat agagtctgca 1320
 gcttatcaat gggagotacc aattaattgg gtattgaatt catgtaggca aaaaaattga 1380
 gggcctaattc ttccctgtat aatgcaccaa aagggttctt acagaactga atgcctgaat 1440
 agagagattc taggagattt ggtgaacttag caactctgag ctctgttgc ctgtattttc 1500
 agagaatgtt ttttttggca gaacaggaat tgtactactt gtatttatttgc aactttctac 1560
 atcagtctgg atttggatcg aagaccttta gtgatttgc tatcagtgaa acttaaaaaaa 1620
 aaaaaaaaaaa aa 1632

<210> 54

<211> 374

<212> PRT

<213> Oryza sativa

<400> 54

Met Ala Val Pro Leu Val Leu Val Val Leu Pro Leu Gly Leu Leu Phe
 1 5 10 15

Leu Leu Ser Gly Leu Ile Ile Asn Ala Ile Gln Ala Val Leu Phe Leu
 20 25 30

Ser Ile Arg Pro Phe Ser Lys Ser Leu Tyr Arg Arg Ile Asn Arg Phe
 35 40 45

Leu Ala Glu Leu Leu Trp Leu Gln Leu Val Trp Leu Val Asp Trp Trp
 50 55 60

Ala Gly Val Lys Ile Gln Leu His Ala Asp Asp Glu Thr Tyr Lys Ala
 65 70 75 80

Met Gly Asn Glu His Ala Leu Val Ile Ser Asn Asn Arg Ser Asp Ile
 85 90 95

Asp Trp Leu Ile Gly Trp Ile Leu Ala Gln Arg Ser Gly Cys Leu Gly
 100 105 110

Ser Thr Leu Ala Val Met Lys Lys Ser Ser Lys Phe Leu Pro Val Ile
 115 120 125

Gly Trp Ser Met Trp Phe Ala Glu Tyr Leu Phe Leu Glu Arg Ser Trp
 130 135 140

Ala Lys Asp Glu Lys Thr Leu Lys Trp Gly Leu Gln Arg Leu Lys Asp
 145 150 155 160

Phe Pro Arg Pro Phe Trp Leu Ala Leu Phe Val Glu Gly Thr Arg Phe
 165 170 175

Thr Pro Ala Lys Leu Leu Ala Ala Gln Glu Tyr Ala Val Ser Gln Gly
 180 185 190

Leu Pro Ala Pro Arg Asn Val Leu Ile Pro Arg Thr Lys Gly Phe Val
 195 200 205

Ser Ala Val Thr Ile Met Arg Asp Phe Val Pro Ala Ile Tyr Asp Thr
 210 215 220

Thr Val Ile Ile Pro Lys Asp Ser Pro Gln Pro Thr Met Leu Arg Ile
 225 230 235 240

Leu Lys Gly Gln Ser Ser Val Val His Val Arg Met Lys Arg His Ala
 245 250 255

Met Ser Glu Met Pro Lys Ser Glu Asp Asp Val Ser Lys Trp Cys Lys
 260 265 270

Asp Ile Phe Val Ala Lys Asp Ala Leu Leu Asp Lys His Leu Ala Thr
 275 280 285

Gly Thr Phe Asp Glu Glu Ile Arg Pro Ile Gly Arg Pro Val Lys Ser
 290 295 300

Leu Leu Val Thr Leu Phe Trp Ser Cys Leu Leu Leu Tyr Gly Ala Val
 305 310 315 320

Lys Leu Phe Leu Trp Thr Gln Leu Leu Ser Thr Trp Lys Gly Val Gly
 325 330 335

Phe Thr Gly Leu Gly Leu Ala Leu Val Thr Ala Val Met His Val Phe
 340 345 350

Ile Met Phe Ser Gln Ser Glu Arg Ser Ser Ser Ala Lys Ala Ala Arg
 355 360 365

Asn Arg Val Lys Lys Asp
370

<210> 55
<211> 1498
<212> DNA
<213> Glycine max

<400> 55

gcacgagggtt ccgtttgctg acctgaccctc ggaaatccaa agagggaaac tcacgggttt 60
tcgttgcgtt gtgctctgct ctgctcctt gggcctggc tgggctggc tgggctggc 120
tggcatggc tattgcagca gcggccgtgg tggtaccatt gggcctgctc ttcttcgcct 180
ccggcctcct tggtaatctc attcaggcaa tatgctatgt cgtcgtaagg cgggtgtcga 240
aaagtttgta cagaaggatc aaccgggtag tagcagagct cttgtggctg gagcttgtat 300
ggcttattga ttggtggca ggagttaagg tccaaatatt cacagatcat gaaacccccc 360
gtttaatggg taaagagcat gcacttgtga taagcaatca cagaagtcat attgattggc 420
tttgtggatg ggttcagct cagcggtcag gttgtcttgg cagcactcta gctgtgtatga 480
agaaaatctc aaagtttctg ccggtcattt gctggtcaat gtggtttctt gtagtatctt 540
ttctggagag aagttggcc aaggatgaaa gcacattaaa gtcaggcatc cagcgactga 600
gtgatttccc tcttccctt tggctagctc tctttttaga aggaacgcgt tttacacagg 660
ccaaactatt agctgctcag gaatatgcca cttccactgg attgcctgtt cctagaaaatg 720
ttttgattcc aagaactaag gttttgttt ctgcagtaag tcatatgcgc tcatttttc 780
ctgccattta tgatgttaaca gtagccatcc ctaagagttc ccctgcctt acaatgctaa 840
gactcttcaa gggacaacct tcagtggtgc atgttcatat caagaggcat ttgtatgaagg 900
aactgccaga tacagatgag gctgttgc aatggtgtcg agatataattt gtggccaagg 960
atgctttgtt agacaaacat atggctgagg gtacttttag tgatcaagag ctgcaggata 1020
ctggtcgacc aataaagtct cttctgttag ttatatctt ggcgtgtctg gttgttgcgg 1080
ggtctgtaaa gttcctgcaa tggcttcgt tactcttcc ctggaaagggt gttgcatttt 1140
cagctttgg tttggcagtt gttactgcac ttatgcaaatt tctgattcaa ttctcacagt 1200
cagagcgttc aaacccggcc aagatgtgc ctgcaaagtc aaaaaacaag gggtcttgat 1260
ttatttggcg aacttaaagt tgcatttatg tgtgtatgact gactcatgtt atactcatta 1320
ttttgcttcc aacatctt catgtatgc ttcttattcta tatatgtact attatgaatg 1380
cttacatcgatt cattgtttt aatttaatta ggatatcctt ttgttattgac agtctagggg 1440
atggcctaga aaaattcaac cacctatttt atttaaaaaa aaaaaaaaaa aaaaaaact 1498

<210> 56
<211> 377
<212> PRT
<213> Glycine max

<400> 56

Met Ala Ile Ala Ala Ala Ala Val Val Val Pro Leu Gly Leu Leu Phe
1 5 10 15

Phe Ala Ser Gly Leu Leu Val Asn Leu Ile Gln Ala Ile Cys Tyr Val
20 25 30

Val Val Arg Pro Val Ser Lys Ser Leu Tyr Arg Arg Ile Asn Arg Val
35 40 45

Val Ala Glu Leu Leu Trp Leu Glu Leu Val Trp Leu Ile Asp Trp Trp
50 55 60

Ala Gly Val Lys Val Gln Ile Phe Thr Asp His Glu Thr Phe Arg Leu
65 70 75 80

Met Gly Lys Glu His Ala Leu Val Ile Ser Asn His Arg Ser Asp Ile
85 90 95

Asp Trp Leu Val Gly Trp Val Ser Ala Gln Arg Ser Gly Cys Leu Gly
100 105 110

Ser Thr Leu Ala Val Met Lys Lys Ser Ser Lys Phe Leu Pro Val Ile
115 120 125

Gly Trp Ser Met Trp Phe Ser Glu Tyr Leu Phe Leu Glu Arg Ser Trp
130 135 140

Ala Lys Asp Glu Ser Thr Leu Lys Ser Gly Ile Gln Arg Leu Ser Asp
145 150 155 160

Phe Pro Leu Pro Phe Trp Leu Ala Leu Phe Val Glu Gly Thr Arg Phe
165 170 175

Thr Gln Ala Lys Leu Leu Ala Ala Gln Glu Tyr Ala Thr Ser Thr Gly
180 185 190

Leu Pro Val Pro Arg Asn Val Leu Ile Pro Arg Thr Lys Gly Phe Val
195 200 205

Ser Ala Val Ser His Met Arg Ser Phe Val Pro Ala Ile Tyr Asp Val
210 215 220

Thr Val Ala Ile Pro Lys Ser Ser Pro Ala Pro Thr Met Leu Arg Leu
225 230 235 240

Phe Lys Gly Gln Pro Ser Val Val His Val His Ile Lys Arg His Leu
245 250 255

Met Lys Glu Leu Pro Asp Thr Asp Glu Ala Val Ala Gln Trp Cys Arg
260 265 270

Asp Ile Phe Val Ala Lys Asp Ala Leu Leu Asp Lys His Met Ala Glu
275 280 285

Gly Thr Phe Ser Asp Gln Glu Leu Gln Asp Thr Gly Arg Pro Ile Lys
290 295 300

Ser Leu Leu Val Val Ile Ser Trp Ala Cys Leu Val Val Ala Gly Ser
305 310 315 320

Val Lys Phe Leu Gln Trp Ser Ser Leu Leu Ser Ser Trp Lys Gly Val
325 330 335

Ala Phe Ser Ala Phe Gly Leu Ala Val Val Thr Ala Leu Met Gln Ile
340 345 350

Leu Ile Gln Phe Ser Gln Ser Glu Arg Ser Asn Pro Ala Lys Ile Val
355 360 365

Pro Ala Lys Ser Lys Asn Lys Gly Ser
370 375

<210> 57
<211> 1415
<212> DNA
<213> Triticum aestivum

<400> 57

gcacgaggag aggagacgcg gggcgccca tggcgattcc cctcggtcgc gtcctgctcc 60
 cgctcgccct cctcttcctc ctctccggcc tcgtcgtaa cactgtccag gccgtattgt 120
 tcttgcacat aaggccattc tcgaagcgat tgtaccggca gatcaacgta ttccctggccg 180
 agttgttgtg gcttcagctg atctggcttg tggactgggtg ggcaggatt aaggtacagg 240
 tgtatgcgga tccagaaact tggaaactaa tgggcaaaga gcacgcctt ctcataatcca 300
 atcatcgaa tgacattgtat tggctgggtt gatggatttt agcacagcgt tcaggatgtc 360
 ttggaagcgc aatacgctata atgaagaaat cctcaaagtt ccttcagtt attgggttgt 420
 ccatgtggtt tgcagaatac ctcttttgg agagaagctg ggcaaaaggat gaaaaaacac 480
 ttaaatcggg tcttcaaagg ttgaaagact tccccagatc attttggctt gcccttttg 540
 ttgagggtac aagatttact ccagcaaaac ttttagcagc tcaagaatat gcagtctcac 600
 agggtttgac agcgcctagg aatgtgctga ttccacgaac aaaggattt gtatcagctg 660
 taagtattat gcgtgacttt gtcggcacta tctacgatac aacagtgatt attccggaag 720
 attcgccctaa accaacaatg ctgcgtattc ttcaggaca atcatcagtt gttcatgtcc 780
 gcataaaaacg ccattcaatg agtgcataatgc ctaactcgga tgaggatgtt tcaaaaatggt 840
 gcaaagatattt atttgttagca aaggacgcgt tattggacaa acatatacgactt 900
 ttgatgagga aattatacca attggccgtc cagtgaaatc tttgatgggtg gtcctgtctt 960
 ggtcatgtct ctccttat ggtgctcata gattcttaca gtggaccagg ctcttgcga 1020
 cgtggaaagg agtgcatttc tttgcttctg gattggcaat ggtaaccgccc gttatgcattg 1080
 tattcatcat gttctcgac gcccggcgt caagctctgc gaaagcagca agggaccgag 1140
 tgaagaagga ttgatagctc gtgtgaaatt cagtctatag gggactgcc aatttattat 1200
 gttcagaata tatgtagaca caggctccat gggtaaaatc tagtatgtcc ttgttgcct 1260
 cggttaagagc ttcaagaaatt ttgtgtggcg agaactgtga gctttcttcc ttctttctct 1320
 actttgtat gacttgtaaa gatttgctt gccataccag gaatcgctgc tcgaattttat 1380
 cgaagctttt ttttatcaaa aaaaaaaaaaaaaaaa 1415

<210> 58

<211> 374

<212> PRT

<213> Triticum aestivum

<400> 58

Met	Ala	Ile	Pro	Leu	Val	Leu	Val	Leu	Leu	Pro	Leu	Gly	Leu	Leu	Phe
1				5				10					15		

Leu	Leu	Ser	Gly	Leu	Val	Val	Asn	Thr	Val	Gln	Ala	Val	Leu	Phe	Leu
				20				25					30		

Thr	Ile	Arg	Pro	Phe	Ser	Lys	Arg	Leu	Tyr	Arg	Gln	Ile	Asn	Val	Phe
					35			40					45		

Leu	Ala	Glu	Leu	Leu	Trp	Leu	Gln	Leu	Ile	Trp	Leu	Val	Asp	Trp	Trp
					50			55				60			

Ala	Gly	Ile	Lys	Val	Gln	Val	Tyr	Ala	Asp	Pro	Glu	Thr	Trp	Lys	Leu
					65			70			75			80	

Met	Gly	Lys	Glu	His	Ala	Leu	Leu	Ile	Ser	Asn	His	Arg	Ser	Asp	Ile
					85				90				95		

Asp	Trp	Leu	Val	Gly	Trp	Ile	Leu	Ala	Gln	Arg	Ser	Gly	Cys	Leu	Gly
					100			105				110			

Ser	Ala	Ile	Ala	Ile	Met	Lys	Lys	Ser	Ser	Lys	Phe	Leu	Pro	Val	Ile
					115			120				125			

Gly	Trp	Ser	Met	Trp	Phe	Ala	Glu	Tyr	Leu	Phe	Leu	Glu	Arg	Ser	Trp
					130			135			140				

Ala Lys Asp Glu Lys Thr Leu Lys Ser Gly Leu Gln Arg Leu Lys Asp
145 150 155 160

Phe Pro Arg Ser Phe Trp Leu Ala Leu Phe Val Glu Gly Thr Arg Phe
165 170 175

Thr Pro Ala Lys Leu Leu Ala Ala Gln Glu Tyr Ala Val Ser Gln Gly
180 185 190

Leu Thr Ala Pro Arg Asn Val Leu Ile Pro Arg Thr Lys Gly Phe Val
195 200 205

Ser Ala Val Ser Ile Met Arg Asp Phe Val Pro Ala Ile Tyr Asp Thr
210 215 220

Thr Val Ile Ile Pro Glu Asp Ser Pro Lys Pro Thr Met Leu Arg Ile
225 230 235 240

Leu Gln Gly Gln Ser Ser Val Val His Val Arg Ile Lys Arg His Ser
245 250 255

Met Ser Asp Met Pro Asn Ser Asp Glu Asp Val Ser Lys Trp Cys Lys
260 265 270

Asp Ile Phe Val Ala Lys Asp Ala Leu Leu Asp Lys His Ile Ala Thr
275 280 285

Gly Thr Phe Asp Glu Glu Ile Ile Pro Ile Gly Arg Pro Val Lys Ser
290 295 300

Leu Met Val Val Leu Ser Trp Ser Cys Leu Leu Leu Tyr Gly Ala His
305 310 315 320

Arg Phe Leu Gln Trp Thr Gln Leu Leu Ser Thr Trp Lys Gly Val Ile
325 330 335

Leu Phe Ala Ser Gly Leu Ala Met Val Thr Ala Val Met His Val Phe
340 345 350

Ile Met Phe Ser Gln Ala Glu Arg Ser Ser Ser Ala Lys Ala Ala Arg
355 360 365

Asp Arg Val Lys Lys Asp
370