### Probabilidade

Raucélio Coelho Cardoch Valdes

30 de abril de 2020

Introdução

Noções de Conjuntos

Probabilidade

## Introdução

#### Conteúdo:

- Noções de conjuntos.
- Conceitos de probabilidade e propriedades.
- Probabilidade condicionada e independência entre eventos.
- Variável aleatória.
- Esperança matemática.
- Variáveis aleatórias discretas e contínuas.

### Definição (Conjuntos)

Uma coleção de objetos bem definidos.

É usual denotar os conjuntos por letras maiúsculas e os elementos por letras minúsculas.

Definição (Elemento de um conjunto)

Objeto que pertence ao conjunto.

#### Representação de conjuntos.

Extensão:  $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$  e  $Y = \{a, e, i, o, u\}$ Compreensão:  $X = \{algarísmos arábicos\}$  e  $Y = \{vogais\}$ 

Diagrama de Venn:



## Definição (Pertinência)

É a propriedade de um elemento que faz parte de um conjunto. Dado o objeto x e o conjunto X, se x pertence a X, escreve-se  $x \in X$  e  $x \notin X$ , caso x não pertença a X.

**Exemplo:** 1.1 Seja o conjunto  $A = \{0, 1, 2, casa, 5\}$  são corretas as afirmações:

- **1)** 1 ∈ *A*
- 2) 3 ∉ *A*
- 3)  $\{1,2\} \notin A$

### Definição (Subconjunto)

Caso todo elemento de um conjunto A é elemento de um conjunto B, é dito que A é um subconjunto de B.

**Exemplo:** 2.1 Seja  $\mathbb N$  o conjunto dos números naturais, então são subconjuntos:

- 1)  $X = \{ \text{os números pares} \}.$
- 2)  $Y = \{ \text{os números ímpares} \}.$
- 3)  $Z = \{ \text{os múltiplos de 5} \}.$

### Definição (Classe)

Classe é o nome dado a uma coleção de conjuntos.

Em outras palavras: classe é um conjunto de conjuntos.

**Exemplo:** 3.1  $X = \{\{1,2\}, \emptyset\}.$ 

**Exemplo:** 3.2  $Y = \{\{4\}, \{5\}\}.$ 

### Definição (Conjunto das Partes)

O conjunto formado por todos os subconjuntos de um outro conjunto. Dado um conjunto A, escreve-se  $\mathcal{P}(A)$ .

**Exemplo:** 4.1 Se 
$$X = \{1, 2\}$$
 então  $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ 

**Exemplo:** 4.2 Se 
$$Y = \{a, b, c\}$$
 então

$$P(Y) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$$

### Definição (Cardinalidade)

É a medida do número de elementos de um conjunto. Dado um conjunto A, é denotada por |A|, #A ou  $\overline{A}$ .

A cardinalidade um conjunto pode ser finita, infinita contável e infinita incontável. Para um conjunto finito a sua cardinalidade é o seu número de elementos.

**Exemplo:** 5.1 A cardinalidade para o conjunto A:

- 1)  $A = \{1, 2, 3\}$ . Tem-se que #A = 3.
- 2)  $A = \{1, 2, 3, \ldots\}$ . Tem-se #A infinito e contável.
- 3) A = [1, 3]. Tem-se #A infinito e incontável.

### Definição (Conjunto Vazio)

O conjunto que não contém elementos é denominado conjunto vazio, sendo representado por  $\emptyset$  ou  $\{\}$ .

**Exemplo:** 6.1 Seja  $\mathbb R$  o conjunto dos número reais, então são vazios os conjuntos:

- 1)  $\{x \in \mathbb{R} | x = x + 1\}.$
- 2)  $\{x \in \mathbb{R} | x^2 + 2 = 0\}.$

### Definição (Conjunto Unitário)

O conjunto que contém somente um elemento.

### Exemplo: 7.1 São conjuntos unitários:

- 1)  $A = \{2\}.$ 
  - 2)  $X = \{x \in \mathbb{R} | 3x + 5 = 8\}.$
  - 3)  $Y = \{x \in \mathbb{N} | x^2 = 1\}.$

### Definição (Conjunto Universo)

O conjunto que representa todos os elementos de interesse e também todos os conjuntos relacionados. É representado pela letra  $\mathbf{U}$ .

#### **Exemplo:** 8.1 São conjuntos universo:

- Ao resolver uma equação o conjunto universo é o ℝ.
- 2) Ao escolher os deputados para uma comissão o universo são os atuais deputados.

### Definição (União)

O conjunto cujos elementos são elementos de um conjunto A, de um conjunto B ou de ambos é denominado união de A e B, escrevendo-se

$$A \cup B = \{x : x \in A \text{ ou } x \in B \text{ ou ambos } \}.$$

**Exemplo:** 9.1 Sejam  $A = \{1, 3, 4\}$ ,  $B = \{4, 5, 6\}$  e  $C = \{1, a, 6\}$ .

- 1)  $A \cup B = \{1, 3, 4, 5, 6\}.$
- 2)  $A \cup C = \{1, a, 3, 4, 6\}.$
- 3)  $B \cup C = \{1, a, 4, 5, 6\}.$

### Definição (Interseção)

O conjunto cujos elementos são simultaneamente elementos de um conjunto A e de um conjunto B, escrevendo-se

$$A \cap B = \{x : x \in A \ e \ x \in B\}.$$

**Exemplo:** 10.1 Sejam  $A = \{a, e, i\}, B = \{a, d, e\} \in C = \{1, a, d, \}.$ 

- 1)  $A \cap B = \{a, e\}.$
- 2)  $A \cap C = \{a\}.$
- 3)  $B \cap C = \{a, d\}.$



### Definição (Diferença)

O conjunto cujos elementos são elementos de um conjunto B que não pertencem a um outro conjunto A é chamado conjunto diferença entre B e A, escrevendo-se

$$B - A = \{x \colon x \in B \text{ e } x \notin A\}.$$

**Exemplo:** 11.1 Sejam  $A = \{a, 1, rato\} \in B = \{gato, a, 1\}.$ 

- 1)  $A B = \{rato\}.$
- 2)  $B A = \{gato\}.$

### Definição (Complemento)

O conjunto cujos elementos são os do conjunto universo U que não pertencem a um determinado conjunto A. É chamado complemento de A, sendo representado por  $\bar{A}$ . Ou seja:

$$\bar{A} = \{x : x \notin A\}.$$

**Exemplo:** 12.1 Sejam  $A = \{x \in \mathbb{N} | x \text{ \'e par} \}$  e  $B = \{x \in \mathbb{N} | x \geq 10\}$  .

- 1)  $\bar{A} = \{x \in \mathbb{N} | x \text{ \'e impar} \}.$
- 2)  $\bar{B} = \{x \in \mathbb{N} | x < 10\}.$

#### Definição (Experimentos Aleatórios)

É um procedimento no qual os resultados possíveis são conhecidos. Entretanto, em uma realização, não é possível precisar o resultado.

### **Exemplo:** 13.1 São experimentos aleatórios:

- 1) O resultado de um exame de gravidez.
- 2) Lançar um dado.
- 3) Lançar uma moeda duas vezes.
- 4) Tentativas de fraudes em um banco.
- 5) A durabilidade de uma lâmpada.

### Definição (Espaço Amostral)

É o conjunto de todos os resultados possíveis em uma realização de um experimento aleatório. Denotado por S.

Exemplo: 14.1 São experimentos aleatórios e os seus espaços amostrais.

- 1) Teste de gravidez tem  $S = \{positivo, negativo\}.$
- 2) Lançar um dado tem  $S = \{1, 2, 3, 4, 5, 6\}$ .
- 3) Lança uma moeda tem  $S = \{(\bar{c}, c), (\bar{c}, \bar{c}), (c, \bar{c}), (c, c)\}.$
- 4) Tentativas de fraudes tem  $S = \{0, 1, 2, \ldots\}$ .
- 5) A durabilidade de uma lâmpada tem  $S = \{s \in \mathbb{R} | s \ge 0\}$

## Definição (Evento)

É qualquer subconjunto E de um espaço amostral S. Isto é, se  $E \subseteq S$  então F é um evento.

**Exemplo:** 15.1 Seja o espaço amostral é  $S = \{x, y, z\}$ . São eventos:

- 1)  $\{x\}$ ,  $\{y\}$  e  $\{z\}$ .
- 2)  $\{x, y\}$ ,  $\{x, z\}$  e  $\{y, z\}$ .
- 3)  $\{x, y, z\} \in \emptyset$ .

**Exemplo:** 16.1 Para o laçamento de um dado tem-se

$$S = \{1, 2, 3, 4, 5, 6\}$$
. São eventos:

- 1)  $A = \{2, 4, 6\}$ , qualquer resultado par.
- 2)  $B = \{1, 3, 5\}$ , qualquer resultado ímpar.
- 3)  $\emptyset$ , sair oito como resultado.

### Definição (Evento Elementar)

É um evento E com apenas um elemento.

**Exemplo:** 17.1 Seja o espaço amostral  $S = \{a, b\}$ . São eventos elementares:  $\{a\}$  e  $\{b\}$ .

### Definição (Evento Impossível)

É um evento E que é um conjunto vazio.

### **Exemplo:** 18.1 São conjuntos vazios:

- Obter a soma quinze no lançamento de dois dados, visto que o máximo é doze.
- 2) Escolher um número natural que é par e ímpar.

#### Definição (Eventos Mutuamente Exclusivos)

São dois eventos  $E_1$  e  $E_2$  disjuntos, isto é, a interseção entre eles é o conjunto vazio. Assim,  $E_1 \cap E_2 = \emptyset$ .

**Exemplo:** 19.1 O laçamento de um dado tem  $S = \{1, 2, 3, 4, 5, 6\}$ .

- 1)  $E_1 = \{2, 4, 6\}$  e  $E_2 = \{1, 3, 5\}$  são mutuamente exclusivos, pois  $E_1 \cap E_2 = \emptyset$ .
- 2)  $E_1 = \{2,4,6\}$  e  $E_2 = \{5,6,3\}$  não são mutuamente exclusivos, pois  $E_1 \cap E_2 = \{6\}$

### Definição (Evento Complementar)

 $\acute{E}$  o evento  $\overline{E_1}$  formado por todos elementos do espaço amostral S que não pertencem ao evento  $E_1$ .

**Exemplo:** 20.1 Seja o espaço amostral  $S = \{1, 2, 3, 4, 5, 6\}$ . O evento  $E_1 = \{2, 4, 6\}$  tem como complementar  $\overline{E_1} = \{1, 3, 5\}$ .

## Definição (Definição Clássica)

Dado um experimento aleatório, seu espaço amostral S, finito, e um evento E. A probabilidade  $P\left\{E\right\}$  é dada por

$$P\{E\} = \frac{n \text{úmero de elementos de } E}{n \text{úmero de elementos de } S}.$$

Há duas restrições a serem observados no uso da definição clássica de probabilidade:

- i) O experimento deve ter um número finito de resultados.
- ii) Os resultados do experimento devem ser equiprováveis.

probabilidade de sair "cara" é  $\frac{1}{2}$ .

**Exemplo:** 21.1 Ao lançar um moeda, intuitivamente, espera-se que a

**Exemplo:** 22.1 Em uma urna com uma bola vermelha, duas brancas e três azuis, ao evento tirar uma bola branca associa-se a probabilidade  $\frac{2}{6}$ .

Se o espaço amostral for um intervalo, por exemplo S=[a,b], a probabilidade do evento E é dada por

$$P\{E\} = \frac{\text{medida de E}}{\text{medida de S}}.$$



### Definição (Definição Frequentista)

Dado um experimento aleatório, com espaço amostral S e um evento  $E \subseteq S$ . No caso em que esse experimento é repetido um "número grande" de vezes, a probabilidade de E ocorrer é dada por

$$P\{E\} = \frac{n \text{úmero de ocorrências de } E}{n \text{úmero de repetições}}.$$

**Exemplo:** 23.1 Em uma caixa com duzentas bolas vazias, dez não enchem. Assim, probabilidade uma bola ser defeituosa é

$$P\{\text{bola defeiuosa}\} = \frac{10}{200} = 0,05.$$

### Definição (Definição Axiomática)

Dado um experimento aleatório, o espaço amostral S e o evento E. A probabilidade  $P\{E\}$  é uma função que associa a E um número real e satisfaz os axiomas:

- i)  $P\{E\} \geq 0, \forall E \subseteq S$
- ii)  $P\{S\} = 1$
- iii) Se  $E_1$  e  $E_2$  são mutuamente exclusivos, então  $P\{E_1 \cup E_2\} = P\{E_1\} + P\{E_2\}.$



A função probabilidade apresenta as seguintes propriedades:

- i)  $P\{\emptyset\} = 0$ .
- ii)  $P\{\overline{E}\}=1-P\{E\}.$
- iii) Se  $E_1 \subseteq E_2$ , então  $P\{E_1\} \le P\{E_2\}$ .
- iv) Para  $E_1$  e  $E_2$  vale  $P\{E_1 \cup E_2\} = P\{E_1\} + P\{E_2\} P\{E_1 \cap E_2\}$ .
- v) Se os eventos  $E_i \subseteq S$ , com i = 1, ..., mutuamente exclusivos, então

$$P\left\{\bigcup_{i=1}^{\infty} E_i\right\} = \sum_{i=1}^{\infty} P\left\{E_i\right\} \text{ com } E_i \cap E_j = \emptyset \text{ para } i \neq j.$$



A ocorrência de um evento pode mudar o conhecimento de um outro evento futuro.

A tabela apresenta 20 bolas, verdes ou brancas, nas urnas X e Y.

| Urna  | Bolas |        | Total |
|-------|-------|--------|-------|
|       | verde | branca | TOtal |
| X     | 8     | 2      | 10    |
| Υ     | 5     | 5      | 10    |
| Total | 13    | 7      | 20    |

A probabilidade de tirar uma bola verde é  $P\left\{verde\right\}=\frac{13}{20}$ . Mas, "dado" que foi tirada da urna X, passa a ser  $P\left\{verde|X\right\}=\frac{8}{10}$ .

### Definição (Probabilidade Condicional)

Dados os eventos  $E_1$  e  $E_2$ , a probabilidade de ocorrer o  $E_1$  dado que  $E_2$  é dada por

$$P\{E_1|E_2\} = \frac{P\{E_1 \cap E_2\}}{P\{E_2\}}$$
, se  $P\{E_2\} > 0$ .

## Definição (Regra do Produto)

Dados os eventos  $E_1$  e  $E_2$ , então

$$P\{E_1 \cap E_2\} = P\{E_1|E_2\} P\{E_2\}$$
, com  $P\{E_2\} > 0$ .

## Probabilidade Condicional - independência

Na situação em que a ocorrência de um evento não altera as probabilidades de um outro evento, esses eventos são ditos independentes. Logo, nesse caso tem-se

$$P\{E_1|E_2\} = P\{E_1\}.$$



### Probabilidade Condicional - independência

#### Definição (Eventos Independentes)

Os eventos  $E_1$  e  $E_2$  são ditos independentes se

$$P\left\{E_{1}\cap E_{2}\right\}=P\left\{E_{1}\right\}P\left\{E_{2}\right\}.$$

## Probabilidade - independência

**Exemplo:** 24.1 Ao lançar uma moeda 2 vezes, sair cara (Ca) no 2º lançamento é independente de sair coroa (Co) no 1º.

- 1) Espaço amostral é  $S = \{(Ca, Ca), (Ca, Co), (Co, Co), (Co, Ca)\}$ .
- 2) Evento cara no 2º lançamento é  $E_1 = \{(Ca, Ca), (Co, Ca)\}$  e coroa no 1º é  $E_2 = \{(Co, Ca), (Co, Co)\}$ .
- 3) Como  $E_1 \cap E_2 = \{(Ca, Co)\}$ .
- 4)  $P\{E_1 \cap E_2\} = \frac{1}{4}, P\{E_1\} = \frac{1}{2} \text{ e } P\{E_2\} = \frac{1}{2}.$ Assim.

$$P\{E_1 \cap E_2\} = P\{E_1\} P\{E_2\} = \frac{1}{4}.$$

### Definição (Variável Aleatória)

É a função real  $X:S\longrightarrow \mathbb{R}$ , definida no espaço amostral S de um experimento aleatório, tal que a probabilidade  $P\{X\leq a\}$  seja definida para todo  $a\in \mathbb{R}$ .

É usual denotar uma variável aleatória por letras maiúsculas X, Y, Z, etc., e os valores que assume por letras minúsculas x, y, z, etc.

**Exemplo:** 25.1 Seja uma urna com bolas numeradas de 1 a 6.

- 1) Seja a v.a. X que assume o valor 1 se a bola for par e 0 se a bola for ímpar.
- 2) Seja a v.a. X o número da bola e  $Y = X^2 5X + 6$ .



**Exemplo:** 26.1 O experimento é lançar um dado. A v.a. Y é o número de pontos na face de cima. Com as probabilidades dos eventos elementares  $\{1\}$ ,  $\{2\}$ ,  $\{3\}$ ,  $\{4\}$ ,  $\{5\}$  e  $\{6\}$  iguais a  $\frac{1}{6}$ . Assim,

- 1)  $P\{Y \le 0\} = 0 \text{ e } P\{Y \ge 7\} = 0$
- 2)  $P\{Y \le 2\} = P\{Y = 1\} + P\{Y = 2\} = \frac{2}{6}$
- 3)  $P\{2 \le Y \le 5\} = P\{Y = 2\} + P\{Y = 3\} + P\{Y = 4\} + P\{Y = 5\} = \frac{4}{6}$

### Definição (Suporte)

Seja variável aleatória real  $X:S\longrightarrow \mathbb{R}$ , é o conjunto  $R_x$  dos valores possíveis de X. Em notação de conjunto é  $R_x=X(X)=\{X(s)|s\in S\}$ .

**Exemplo:** 27.1 Seja uma urna com bolas numeradas de 1 a 6.

- 1) Seja a v.a. X, onde X=1 se a bola for par e 0 se for ímpar. Assim,  $R_X=\{0,1\}$
- 2) Seja a v.a. X o número da bola e  $Y=X^2-5X+6$ . Assim,  $R_y=\{0,2,6,12\}$



**Exemplo:** 28.1 A v.a. Y é o total de lançamentos de uma moeda até sair uma coroa. Assim,  $R_V = \{1, 2, 3, ...\}$ 

**Exemplo:** 28.2 A v.a. Z é a altura de 50 homens, em cm, escolhidos entre os alunos da turma de estatística. Assim,  $R_z = [145; 203]$ 

#### Definição (Variável Aleatória Discreta)

É a variável aleatória  $X:S\longrightarrow \mathbb{R}$ , definida no espaço amostral S, com o suporte  $R_x$  finito ou enumerável.



#### Definição (Variável Aleatória Contínua)

É a variável aleatória  $X:S\longrightarrow \mathbb{R}$ , definida no espaço amostral S, com o suporte  $R_x$  não enumerável.



#### Definição (Função de Probabilidade)

Dada a variável aleatória discreta  $X: S \longrightarrow \mathbb{R}$ , definida no espaço amostral S, é a função  $f: R_x \longrightarrow \mathbb{R}$ , definida o suporte  $R_x$  que satisfaz:

i 
$$f(x_i) \geq 0$$
, para  $\forall x_i \in \mathbb{R}$  e

$$ii \sum_{x_i \in R_{\nu}} f(x_i) = 1.$$

Onde  $f(x_i)$  é a probabilidade de X assumir o valor  $x_i$ , isto é,  $P\{X = x_i\}$ 

#### Definição (Função de Densidade)

Dada a variável aleatória contínua  $X: S \longrightarrow \mathbb{R}$ , definida no espaço amostral S, é a função  $f: R_x \longrightarrow \mathbb{R}$ , definida o suporte  $R_x$  que satisfaz:

i 
$$f(x_i) \geq 0$$
, para  $\forall x_i \in \mathbb{R}$  e

ii 
$$\int_{R_x} f(x) dx = 1$$
.

Onde a probabilidade de c < X < d , isto é,  $P\left\{c < X < d\right\}$  é dada por

$$P\left\{c < X < d\right\} = \int_{c}^{d} f(x)dx$$
, para  $c < d$  e  $[c,d] \subset R_{x}$ .



#### Definição (Função de Distribuição)

Para uma variável aleatória X, discreta ou continua,  $F(x) = P\{X \le a\}$  é definida por

$$F(x) = egin{cases} \sum_{x_i \leq x} f(x_i) & ext{se } X ext{ \'e discreta} \ \int_{-\infty}^{x} f(s) ds & ext{se } X ext{ \'e contínua} \end{cases}$$

#### Definição (Esperança Matemática)

Para variável aleatória, discreta ou continua, X, a esperança matemática para a função g(X) é definida por

$$E\left[g(X)
ight] = egin{cases} \sum_{x_i \leq x} g(x) f(x_i) & ext{se } X ext{ \'e discreta} \ & \ \int_{-\infty}^{+\infty} g(s) f(s) ds & ext{se } X ext{ \'e contínua} \end{cases}$$

se a integral ou o somatório convergirem.

**Exemplo:** 29.1 Calcule E(X) para a função de probabilidade.

$$f(x) = \begin{cases} \frac{1}{4}, & \text{para } x = -1\\ \frac{1}{4}, & \text{para } x = 0\\ \frac{2}{4}, & \text{para } x = 1\\ 0, & \text{para outros valores} \end{cases}$$

1) 
$$E(X) = \frac{1}{4} \times (-1) + \frac{1}{4} \times (0) + \frac{2}{4} \times (1) = \frac{2}{4}$$



**Exemplo:** 30.1 Calcule E(X) e E(X+1) para a função de densidade.

$$f(x) = \begin{cases} \frac{1}{6}, & \text{para -3} < x < 6\\ 0, & \text{para outros valores} \end{cases}$$

1) 
$$E(X) = \int_{-3}^{3} x \times \frac{1}{6} dx = \frac{x^{2}}{12} \Big|_{-3}^{3} = \frac{3^{2}}{12} - \frac{(-3)^{2}}{12} = \frac{9}{12} - \frac{9}{12} = 0$$
  
2)  $E(X+1) = \int_{-3}^{3} (x+1) \times \frac{1}{6} dx = \frac{x^{2}+2x}{12} \Big|_{-3}^{3} = \frac{15}{12} - \frac{3}{12} = 1$ 

2) 
$$E(X+1) = \int_{-3}^{3} (x+1) \times \frac{1}{6} dx = \frac{x^2 + 2x}{12} \Big|_{-3}^{3} = \frac{15}{12} - \frac{3}{12} = 1$$



#### Definição (Valor Esperado)

Para uma variável aleatória, discreta ou continua, X é E(X), caso exista.

**Exemplo:** 31.1 Seja um jogo de dado. a v.a. X é o resultado do lançamento.Qual o resultado esperado desse jogo?

$$E(X) = \frac{1}{6}(1+2+3+4+5+6) = 3,5$$

### Definição (Variância)

Para uma variável aleatória, discreta ou continua, X é definida por  $V(X) = E(X^2) - [E(X)]^2$ , se  $E(X^2)$  existir.



**Exemplo:** 32.1 A v.a. X é o número da bola retirada de uma urna. São 4 bolas numeradas de 1 a 4. Qual a variância de X?

1) 
$$V(X) = E(X^2) - [E(X)]^2$$

2) 
$$E(X) = \frac{1}{4}(1+2+3+4) = \frac{10}{4} = 2,5$$

3) 
$$E(X^2) = \frac{1}{4}(1+4+9+16) = \frac{30}{4} = 7,5$$

4) 
$$V(X) = E(X^2) - [E(X)]^2 = 7.5 - (2.5)^2 = 7.5 - 6.25 = 1.25$$

**Exemplo:** 33.1 Seja a v.a. Y com a seguinte distribuição de probabilidade calcule E(Y) e V(Y).

Tabela: Distribuição de Probabilidade da v.a. Y.

| Y            | 0              | 1               | 2        | 3               | 4              |
|--------------|----------------|-----------------|----------|-----------------|----------------|
| $P(Y = y_i)$ | <u>5</u><br>80 | <u>20</u><br>80 | 30<br>80 | <u>20</u><br>80 | $\frac{5}{80}$ |

1) 
$$E(X) = \frac{1}{80} (0 \times 5 + 1 \times 20 + 2 \times 30 + 3 \times 20 + 4 \times 5) = 2$$

1) 
$$E(X) = \frac{1}{80} (0 \times 5 + 1 \times 20 + 2 \times 30 + 3 \times 20 + 4 \times 5) = 2$$
  
2)  $E(X^2) = \frac{1}{80} (0^2 \times 5 + 1^2 \times 20 + 2^2 \times 30 + 3^2 \times 20 + 4^2 \times 5) = 5$   
3)  $V(X) = E(X^2) - [E(X)]^2 = 5 - 4 = 1$ 

3) 
$$V(X) = E(X^2) - [E(X)]^2 = 5 - 4 = 3$$

**Exemplo:** 34.1 Calcule E(X),  $E(X^2)$  e V(X) para a função de densidade

$$f(x) = \begin{cases} \frac{1}{8} & \text{para } 0 < x < 8\\ 0 & \text{para outros valores} \end{cases}$$

1) 
$$E(X) = \int_0^8 x \times \frac{1}{8} dx = 4$$

2) 
$$E(X^2) = \int_0^8 x^2 \times \frac{1}{8} dx = \frac{64}{3}$$

3) 
$$V(X) = E(X^2) - [E(X)]^2 = \frac{64}{3} - 16 = \frac{16}{3}$$

Um jogo consiste em acertar o número de caras em 10 lançamentos de uma moeda honesta. Qual a probabilidade de obter 5 caras? Como essa, há outras situações, práticas ou teóricas, cujo o interesse é atribuir uma probabilidade ao número de ocorrências de um resultados desejado, sucesso, em *n* tentativas independentes, nas quais a probabilidade de obter sucesso permanece constante.

A variável aleatória binomial X é apropriada para observar o número x de ocorrências de um resultado, com probabilidade p, em n repetições independentes de um experimento.

### Definição (Variável Binomial)

É a variável aleatória discreta X com parâmetros n e p, denotada por  $X \sim B(n,p)$ , cuja função de probabilidade é

$$f(x; n, p) = \binom{n}{x} p^n (1-p)^{n-x}, com x = 0, 1, ..., n.$$

Onde  $n \ge 1$  é um número inteiro,  $0 e <math>\binom{n}{x} = \frac{n!}{x!(n-x)!}$  é o número de combinações de n elementos tomados x a x.

**Exemplo:** 35.1 Seja  $X \sim B(4, 0.5)$ , calcule a P(X = 1).

$$P(X = 1) = {4 \choose 1}0,5^{1}(1-0,5)^{4-1}$$
$$= \frac{4!}{1!(4-1)!} \times 0,5 \times 0,5^{3}$$
$$= 4 \times 0,5^{4} = 0,25$$

Tabela: Distribuição de Probabilidade e Probabilidade Acumulada da v.a.  $X \sim B(4, 0.5)$ .

| X                          | 0                  | 1                    | 2                    | 3                    | 4             |
|----------------------------|--------------------|----------------------|----------------------|----------------------|---------------|
| $P(X = x_i)  P(X \le x_i)$ | 5<br>80<br>5<br>80 | 20<br>80<br>25<br>80 | 30<br>80<br>55<br>80 | 20<br>88<br>28<br>75 | 5<br>80<br>80 |

Tabela: Distribuição de Probabilidade e Probabilidade Acumulada da v.a.  $X \sim B(4, 0.5)$ .

| X               | 0      | 1      | 2      | 3      | 4      |
|-----------------|--------|--------|--------|--------|--------|
| $P(X = x_i)$    | 0.0625 | 0.2500 | 0.3750 | 0.2500 | 0.0625 |
| $P(X \leq x_i)$ | 0.0625 | 0.3125 | 0.6875 | 0.9371 | 1.0000 |



Figura: Funções f(x) = P(X = x) e  $F(x) = P(X \le x)$ .



Para uma v.a.  $X \sim B(n, p)$ , pode ser provado que o E[X] = p e Var[X] = np(1-p). Assim, para  $X \sim B(4, 0.5)$ 

- 1) E[X] = 0.5
- 2) Var[X] = 1

#### Definição (Variável de Normal)

É a variável aleatória contínua X com parâmetros  $\mu$  e  $\sigma$ , e função de densidade

$$f(x;\mu,\sigma)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$
 , para  $x\in\mathbb{R}$ 

com  $\mu$ ,  $\sigma \in \mathbb{R}$ ,  $\sigma > 0$  e denotada  $X \sim N(\mu, \sigma^2)$ .



Uma v.a.  $X \sim N\left(\mu, \sigma^2\right)$  apresenta:

- 1) O gráfico da função de densidade tem forma de sino.
- 2) A função de densidade é simétrica em relação a  $\mu$ .
- 3) P(X < x) = 1 P(X < -x)
- 4)  $E[X] = \mu$
- 5)  $Var[X] = \sigma^2$



A f.d.p. de uma v.a.  $X \sim N\left(\mu, \sigma^2\right)$  tem forma de sino e simétrica em relação a  $\mu$ .



A figura 3 mostra exemplos de densidades de Normais.



Para a v.a.  $X \sim N(\mu, \sigma^2)$ , o cálculo de P(X < x) não é simples, pois a integral envolvida

$$P(X < x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

não tem fórmula fechada e dever ser obtido por meios numéricos.

Uma alternativa para calcular P(X < x) é por meio da variável aleatória

$$Z = \frac{X - \mu}{\sigma},$$

onde  $Z \sim N(0,1)$ , chamada normal padrão, cuja função de densidade é

$$f(x;0,1)=rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}$$
 , para  $x\in\mathbb{R}$  ,

pois o valor de P(Z < z) é tabulada para vários valores de z.



**Exemplo:** 36.1 Para  $X \sim N \ (\mu = 8, \sigma^2 = 4)$ . Calcule  $P \ (X < x)$ ?

$$P(X \le 5) = \int_{-\infty}^{5} \frac{1}{2\sqrt{2\pi}} e^{-\frac{(5-8)^2}{2 \cdot 2^2}} = 0,0668$$

Por meio da v.a  $Z = \frac{X-8}{2}$ , tem-se

$$P(X < 5) = P(\frac{X - 8}{2} < \frac{5 - 8}{2}) = P(Z < -1, 5)$$

Com Z = -1,5 tem-se que P(Z < -1,5) = 0,0668



Figura: P(x < 5) = 0.0668 e P(Z < -1.5) = 0.0668



#### Definição (Variável t de Student )

É a variável aleatória contínua X com parâmetro  $\nu$ , graus de liberdade, denotada por  $t_{\nu}$ , e função de densidade

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-(\frac{\nu+1}{2})},$$

na qual Γ é a função gama, definida por

$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx.$$



Uma v.a.  $X \sim t(\nu)$  apresenta:

- 1) O gráfico da função de densidade tem forma de sino.
- 2) O gráfico da função tem caudas pesadas.
- 3) A função de densidade é simétrica em relação a zero.
- 4) Quanto maior  $\nu$  mais próximo  $t_{\nu}$  de N(0,1).
- 5) P(X < x) = 1 P(X < -x)
- 6) E[X] = 0 para  $\nu > 1$
- 7)  $Var[X] = \frac{\nu}{\nu 2}$  para  $\nu > 2$





Figura: Função de densidade para  $t_{25}$ ,  $t_5$  e  $t_1$ .



Figura: Função de probabilidade para  $t_{25}$ ,  $t_5$ ,  $t_1$  e N(0,1).

## Distribuição F de Snedecor

#### Definição (Variável F de Snedecor )

É a variável aleatória contínua X com  $\nu_1$  e  $\nu_2$  graus de liberdades, denotada por  $F(\nu_1, \nu_2)$ , e função de densidade

$$f(x) = \frac{\Gamma\left[\frac{\nu_1 + \nu_2}{2}\right] \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} x^{\frac{\nu_1}{2} - 1}}{\Gamma\left[\frac{\nu_1}{2}\right] \Gamma\left[\frac{\nu_2}{2}\right] \left[\left(\frac{\nu_1}{\nu_2}\right) x + 1\right]^{\frac{\nu_1 + \nu_2}{2}}},$$

onde  $x \in [0, \infty)$  e  $\nu_1, \nu_2 = 1, 2, \dots$ 

# Distribuição F de Snedecor

Uma v.a.  $X \sim t(\nu)$  apresenta:

- 1) Pares de g.l. originam diferentes distribuições F.
- 2) Em  $X \sim F_{(\nu_1,\nu_2)}$ ,  $\nu_1$  é o g.l. do numerador e  $\nu_2$  do denominador.
- 3) A v.a. F é não-negativa, e a distribuição é assimétrica à direita
- 4)  $E[X] = \frac{\nu_2}{\nu_2 2}$ , para  $\nu_2 > 2$
- 5)  $Var[X] = \frac{2\nu_2^2(\nu_1 + \nu_2 2)}{\nu_1(\nu_2 4)(\nu_2 2)^2}$ , para  $\nu_2 > 4$

# Distribuição F de Snedecor



Figura: Função de densidade para  $X \sim F_{(\nu_1,\nu_2)}$ .

