Вариант 3

- 1. Вычислить $\iint_D 10y^2 \cos(xy/2) \, dx dy$, если область D ограничена линиями $D: x = 0, \ y = 9, \ y = x$.
- 2. Вычислить $\iint\limits_V \frac{dxdydz}{\big(6x+2y+5z+1\big)^3} \ ,$ если область интегрирования ограничена поверхностями $V: x=0, y=0, z=0, x+z=5, y=2 \ .$
- 3. Вычислить $\iint_D \ln(x^2 + y^2) dx dy$, если область D ограничена линиями $D: x^2 + y^2 = \sqrt{e}, x^2 + y^2 = e$.
- 4. Вычислить объем V тела, ограниченного поверхностями $V: x^2 + y^2 = 4x$, $x^2 + y^2 + z^2 = 16$.
- 5. Вычислить тройной интеграл $\iiint_V z^2 dx dy dz$; $V: 1 \le x^2 + y^2 \le 36$; $x \ge 0$; $y \ge x$; $z \ge 0$.
- 6. Вычислить криволинейный интеграл первого рода от функции f(x,y) = -2x 3xy + 4y по контуру прямоугольника с вершинами A(3,-3), B(8,-3), C(8,1), D(3,1).
- 7. Вычислить поверхностный интеграл первого рода $\iint_S \left(5x^2 + 5y^2 5z^2 2\right) d\sigma$, где S часть

конуса $z = \sqrt{x^2 + y^2}$, лежащая между плоскостями z = 2, z = 7.

- 8. Найти наибольшую скорость возрастания скалярного поля $u = ln(9x^2 + 7y^2 + 6z^2)$ в точке $M_0(1;5;7)$.
- 9. Найти поток векторного поля $\vec{a} = 7xy\vec{i} + 5yz\vec{j} + 8xz\vec{k}$ через замкнутую поверхность $S: z = x^2 + y^2, z = 1$ в направлении внешней нормали.
- 10. Найти ротор и дивергенцию векторного поля $\vec{a} = -2(z^2 + y^2)\vec{i} (z^2 + x^2)\vec{j} 5(x^2 + y^2)\vec{k}$ в точке $M_0\left(-2; -4; 5\right)$. Является ли данное поле потенциальным или соленоидальным?
- 11. Из колоды в 36 карт вынимают по одной три карты. Найти вероятность того, что в порядке появления в руках окажутся: шестерка, семерка, восьмерка. Из колоды в 36 карт вынимают по одной три карты. Найти вероятность того, что в порядке появления в руках окажутся: шестерка, семерка, восьмерка.
- 12. В цехе работают 15 человек, из которых 10 мужчин. По табельным номерам наудачу отобраны 9 человек. Найти вероятность того, что среди отобранных лиц окажутся 3 женщины.
- 13. Заготовки на сборку поступают из двух бункеров: 70% из первого и 30% из второго. При этом заготовки первого бункера имеют плюсовые допуски в 1 % случаев, а у второго в 2 %. Найти вероятность того, что взятая наудачу деталь имеет плюсовой допуск.
- 14. Вероятность попадания в цель при одном выстреле равна 0,6. Какова вероятность того, что 8 выстрелов дадут не менее 5 попаданий?
- 15. Дано следующее распределение дискретной случайной величины Х

	I		,		
X	-1	1	3	4	10
P	0,1	0,3	0,3	0,14	0,16

Найти ее математическое ожидание, дисперсию и среднеквадратичное отклонение.