Problème 1 : Le début justifie la fin

Dans cet exercice, on considère l'ensemble, noté \mathscr{S} , des suites $(u_n)_{n\geqslant 0}$ à valeurs réelles et telles que

$$u_{n+1} = \frac{\exp(u_n)}{n+1}$$

pour tout entier $n \ge 0$.

Pour tout nombre réel x, on note u(x) la suite appartenant à \mathscr{S} et dont le premier terme vaut x. On note également $u_n(x)$ le terme d'indice n de cette suite. Ainsi, $u_0(x) = x$ et $u_1(x) = \exp(x)$.

- 1) Démontrer que toute suite appartenant à ${\mathscr S}$ est strictement positive à partir du rang 1.
- 2) Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathcal{S} . Démontrer que, s'il existe un rang $N\geqslant 2$ pour lequel $u_N\leqslant 1$, alors $(u_n)_{n\geqslant 0}$ converge vers 0.
- 3) Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathscr{S} . Démontrer que, si cette suite ne converge pas vers 0, alors elle diverge vers $+\infty$.

Ci-dessous, on note E_0 l'ensemble des réels x pour lesquels la suite u(x) converge vers 0, et E_{∞} l'ensemble des réels x pour lesquels u(x) diverge vers $+\infty$.

- 4) Démontrer que $0 \in E_0$.
- 5) a) Démontrer, pour tout entier $n \ge 0$, que la fonction $x \mapsto u_n(x)$ est strictement croissante sur \mathbb{R} .
 - b) En déduire que, si x est un élément de E_0 , alors l'intervalle $]-\infty,x]$ est inclus dans E_0 .
- 6) a) Démontrer que la fonction $x \mapsto \exp(x) x(x+1)$ est strictement positive sur l'intervalle $[2, +\infty[$.
 - b) Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathscr{S} . Démontrer que, s'il existe un rang $N\geqslant 1$ pour lequel $u_N\geqslant N+1$, alors $(u_n)_{n\geqslant 0}$ diverge vers $+\infty$.
 - c) Démontrer que $1 \in E_{\infty}$.
- 7) Démontrer que, si x est un élément de E_{∞} , alors l'intervalle $[x, +\infty[$ est inclus dans E_{∞} .

Nous allons maintenant démontrer qu'il existe un nombre réel δ tel que l'intervalle $]-\infty,\delta[$ est inclus dans E_0 et l'intervalle $]\delta,+\infty[$ est inclus dans E_∞ .

- 8) On définit deux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ de la façon suivante. Tout d'abord, on pose $a_0=0$ et $b_0=1$. Puis, pour tout entier $n\geqslant 0$, on pose $a_{n+1}=(a_n+b_n)/2$ et $b_{n+1}=b_n$ si $(a_n+b_n)/2\in E_0$, et on pose $a_{n+1}=a_n$ et $b_{n+1}=(a_n+b_n)/2$ sinon.
 - a) Démontrer que les suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ sont convergentes et ont même limite.
 - b) Soit δ la limite commune aux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$. Démontrer que l'intervalle $]-\infty,\delta[$ est inclus dans E_0 et l'intervalle $]\delta,+\infty[$ est inclus dans E_∞ .
- 9) On pose c₂ = ln(ln(2)), c₃ = ln(ln(2ln(3))) et c₄ = ln(ln(2ln(3ln(4)))), et plus généralement, pour tout entier ℓ ≥ 2, c_ℓ = ln(ln(2ln(3ln(···ln((ℓ − 1)ln(ℓ))...)))).
 Démontrer que, pour tout entier ℓ ≥ 2, le nombre réel c_ℓ appartient à E₀.
- 10) Démontrer que la suite $(c_{\ell})_{\ell \geqslant 2}$ converge.
- 11) Démontrer que $\delta \in E_{\infty}$.