Annonce ments
- Please consider making a collection of definitions for the
graph theony topic
- The Kieg For graphs is having all the definitions down First
tour
repeating egges repeated when its the that starts and ends Start or end
repeating egges repeated when is the
that starts and ends Start or end
on the same vertex
5/ fi
A STORY

Definitions for 6, to be a tree

- G is connected and contains no cycles.
- 2. G is connected and has n-1 edges (where n=|V| is the number of vertices).
- G is connected, and the removal of any single edge disconnects G.
- 4. G has no cycles, and the addition of any single edge creates a cycle.

- 1 True or False
- (a) Any pair of vertices in a tree are connected by exactly one path.
- (b) Adding an edge between two vertices of a tree creates a new cycle.
- (c) Adding an edge in a connected graph creates exactly one new cycle.

a) True. Assome that these two, for cycle, contradition

6) True. From Jefinition

c) False.

2 Bipartite Graph

A bipartite graph consists of 2 disjoint sets of vertices (say L and R), such that no 2 vertices in the same set have an edge between them. For example, here is a bipartite graph (with $L = \{\text{green vertices}\}\$ and $R = \{\text{red vertices}\}\$), and a non-bipartite graph.

Prove that a graph has no tours of odd length if it is a bipartite (This is equivalent to proving that, a graph G being a bipartite implies that G has no tours of odd length).

Suppose twe 15 2 tar

ho EL, N, ER

No, N, 16th

hi, N2 115th

(2k+1)th edge

N2h, N2k+1

2n+1, 2k+2 ger edge

4 Odd Degree Vertices

Claim: Let G = (V, E) be an undirected graph. The number of vertices of G that have odd degree is even.

Prove the claim above using:

- (i) Direct proof (e.g., counting the number of edges in G). Hint: in lecture, we proved that $\sum_{v \in V} \deg v = 2|E|.$
- (ii) Induction on m = |E| (number of edges)
- (iii) Induction on n = |V| (number of vertices)

Call