

<u>Course</u> > <u>Unit 2:</u> ... > <u>4 Eigen</u> ... > 2. The ...

2. The eigenvalue-eigenvector problem

In the course *Differential equations: 2 by 2 systems*, we learned that the first step in solving a linear $\mathbf{2} \times \mathbf{2}$ system of differential equations, $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, is to find the eigenvalues and eigenvectors of the $\mathbf{2} \times \mathbf{2}$ matrix \mathbf{A} . The procedure for solving linear $\mathbf{n} \times \mathbf{n}$ systems of DEs is the same, and starts with finding eigenvalues and eigenvectors. And even outside the context of differential equations, the eigenvalues and eigenvectors of a matrix tell us a lot about what the matrix does as a function on \mathbb{R}^n .

Definition 2.1 Let **A** be an $n \times n$ matrix.

- An **eigenvalue of A** is a **scalar** λ such that $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ for some **nonzero** vector \mathbf{v} .
- An eigenvector of ${\bf A}$ associated with an eigenvalue ${\bf \lambda}$ is a vector ${\bf v}$ such that ${\bf A}{\bf v}={\bf \lambda}{\bf v}.$

(We also say that an eigenvector ${f v}$ "corresponds to," or "belongs to" an eigenvalue ${m \lambda}$.)

The eigenvalue-eigenvector problem is to find all possible scalars λ , and for each λ , all vectors \mathbf{v} such that

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
.

Warning: Eigenvalues and eigenvectors are defined only for **square** matrices.

Warning: Some authors require an eigenvector to be nonzero, but we allow $\mathbf{0}$ as an eigenvector. However, there must be at least one nonzero eigenvector for each eigenvalue, or it isn't an eigenvalue.

Note: Everyone allows that $\lambda=0$ can be an eigenvalue.

Example 2.2 The matrix
$$\begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
 satisfies

$$egin{pmatrix} 5 & 0 & 0 \ 0 & 5 & 0 \ 0 & 0 & 5 \end{pmatrix} \mathbf{v} = 5 \mathbf{v} \quad ext{ for all } \mathbf{v} ext{ in } \mathbb{R}^3.$$

Therefore, the number ${f 5}$ is an eigenvalue and all vectors in ${\Bbb R}^3$ are eigenvectors associated to the eigenvalue ${f 5}$.

Example 2.3 The diagonal matrix $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ satisfies the following:

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = -1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

The first equation above shows that the scalar $oldsymbol{2}$ is an eigenvalue with associated eigenvector

 $egin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Similarly, the second and third equations show that ${f 0}$ and ${f -1}$ are both eigenvalues,

and $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ are eigenvectors associated to 0 and -1 respectively.

Example 2.4 The matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ satisfies

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = (-1) \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Therefore, the scalar $\mathbf{1}$ is an eigenvalue with an associated eigenvector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and $-\mathbf{1}$ is an eigenvalue with an associated eigenvector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Eigenvalue and eigenvector concept check

1/1 point (graded)

Let
$${f A}=egin{pmatrix}1&-1&2\\0&3&-4\\2&1&0\end{pmatrix}$$
 . Given that ${f v}=egin{pmatrix}-1\\2\\0\end{pmatrix}$ is an eigenvector, find the eigenvalue

 λ that \mathbf{v} is associated with

$$\lambda =$$
 3 \checkmark Answer: 3

Solution:

The calculation

$$\mathbf{Av} = egin{pmatrix} 1 & -1 & 2 \ 0 & 3 & -4 \ 2 & 1 & 0 \end{pmatrix} egin{pmatrix} -1 \ 2 \ 0 \end{pmatrix} = egin{pmatrix} -3 \ 6 \ 0 \end{pmatrix} = 3\mathbf{v},$$

shows that ${f v}$ is an eigenvector associated with eigenvalue ${f 3}$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Scalar multiples of eigenvectors

1/1 point (graded)

As above, let
$${f A}=egin{pmatrix}1&-1&2\\0&3&-4\\2&1&0\end{pmatrix}$$
 . We know that ${f v}=egin{pmatrix}-1\\2\\0\end{pmatrix}$ is an eigenvector

associated to an eigenvalue λ (which you found in the previous problem).

Which of the following is true about the vector $\mathbf{w} = 2\mathbf{v}$?

- w is not an eigenvector.
- ullet w is an eigenvector corresponding to the **same** eigenvalue λ . \checkmark
- lacktriangle w is an eigenvector corresponding to an eigenvalue **different** from λ .

Solution:

We have

$$Aw = A(2v) = 2(Av) = 2(3v) = 6v = 3w,$$

so **w** is an eigenvector associated to the same eigenvalue, **3**.

(Alternatively, we could have multiplied out $\mathbf{A}\mathbf{w}$ explicitly to find out how it compared to \mathbf{w} , but that would have been more work.)

Submit

You have used 1 of 3 attempts

- **1** Answers are displayed within the problem
- 2. The eigenvalue-eigenvector problem

Hide Discussion

Topic: Unit 2: Linear Algebra, Part 2 / 2. The eigenvalue-eigenvector problem

		Add a Post
Show all posts ▼		by recent activity ▼
There are no posts in this to	ppic yet.	
×		
	Learn About Verified Certificates	
		© All Rights Reserved