Lecture

Ways of writing out algorithms

- · Pseudo code
 - Main choice for this course
- Natural language
- Flowcharts
 - · Think mermaidjs?

First n integers sum

$$\sum_{i=0}^{N}i=\frac{n(n-1)}{2}$$

Quadratic

```
int sum1(n) {
    int sum = 0
    for int i = 0 to n
        for int j = i to n
        sum += i
}
```

$$T(n) = 1 + 2n(2n + 2) + 1$$

= $4n^2 + 4n + 2$

Input	Cost
T(1)	10
T(2)	26
T(5)	122

Linear

$$T(n) = 1 + 2n(2) + 1 = 4n + 2$$

Input	Cost
T(1)	6
T(2)	10
T(5)	22

Constant

```
int sum(n) {
    return n * (n + 1) / 2
}
```

$$T(n) = 4$$

Input	Cost
T(1)	4
T(2)	4
T(5)	4

Strategies for analyzing runtime

- Follow program execution
 - Track executions and analyze how it scales with input size
 - Cost of individual operations is ignored
 - Runtime based on input size is what matters
 - We are testing for input sizes approaching infinity

Big-Oh (O)

- Upper bounded function
- Represents the worst case of an algorithm
 - Maximum Time
- Highest order polynomial is what is taken
 - Constants dropped

$$T(n) = O(f(n)) \quad T(n) \leq f(n) ext{ when } n \geq n_0$$

• In our quadratic example:

$$T(n) = 4n^2 + 4n + 2 \implies O(n^2)$$

Common patterns:

- Single loop from 1 to $n \to O(n)$
- Nested loops of same size $\rightarrow O(n)$
- Loop with iterator doubling / halving $\rightarrow O(\log n)$

• Loop with iterator growing by constant $\rightarrow O(n)$

Big-Omega (Ω)

- Lower bounded function
- Represents the best case of an algorithm
 - Minimum Time
- Also specifies the lower limit of the algorithm
- Lowest order polynomial is what is taken

$$T(n) = \Omega(f(n)) \quad T(n) \geq f(n) ext{ when } n \geq n_0$$

• In our quadratic example:

$$T(n) = 4n^2 + 4n + 2 \implies \Omega(n^2)$$

Big-Theta (Θ)

Tight bound of a function

$$T(n) = \Theta(fn)$$

if $T(n) = O(f(n))$
and $T(n) = \Omega(f(n))$

Efficiency Classes

Efficiency Class	Time Complexity
Constant	1
Logarithmic	$\log n$
Linear	n
Linear Logarithmic	$n \log n$
Quadratic	n^2
Cubic	n^3
Exponential	2^n or n^n
Factorial	n!

Relationships

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!)$$

Types of Algorithms

Recursive

Count recursive steps

Iterative

- Count operations
- Loops

Both

• Can solve the same problems, and be implemented in each type

Pseudo code to sum form

```
A(n) {
    int i;
    for i = 0 to n
        print("welcome")
}
```

$$T(n) = \sum_{i=1}^N 1 \implies O(n)$$

$$T(n) = \sum_{i=1}^n \sum_{j=1}^n 1 \implies O(n^2)$$