

Actividad 3

programación Orientada a objetos

Grupo 4

Estudiante

Andres Felipe Devia Orrego

Docente

Walter Arboleda

Medellin

2023

CONTENIDO

Introducción	4
Capítulo 3	5
Ejercicio 18	5
Clase	5
Diagrama de clase	5
Interfaz Grafica	6
Ejercicio 19	7
Clase	7
Diagrama de clase	7
Interfaz Grafica	8
CAPITULO 4	9
Ejercicio 07	9
Clase	9
Diagrama de clase	9
Interfaz Grafica	10
Ejercicio 10	11
Clase	11
Diagrama de clase	11
Interfaz Grafica	12
Ejercicio 22	13
Clase	13
Diagrama de clase	13
Interfaz Grafica	14
Ejercicio 23	15
Clase	15
Diagrama de clase	15
Interfaz Grafica	16
CAPITULO 5	17
Ejercicio 40	17
Clase	17
Diagrama de clase	
Interfaz Grafica	18

Ejercio	cio 41	19
Clas	se	19
Dia	grama de clase	19
Interfa	az Grafica	20
Clases Fi	iguras Geométricas	21
Interfa	az General	21
Diagra	ama de Clases	21
Circ	culo	22
Rec	tángulo	23
Cua	adrado	24
Tria	angulo	25
Ron	mbo	26
Traj	pecio	27

<u>INTRODUCCIÓN</u>

Los ejercicios fueron desarrollados en **Python** y divididos en una clase cada ejercicio, se mostrara la interfaz de cada ejercicio, junto con su clase, su diagrama de clase y su resultado.

La interfaz grafica base de la actividad es la siguiente:

Donde cada ejercicio será explicado a continuación:

CAPÍTULO 3

Ejercicio 18

Clase

```
class ejercicio 18():
    def __init__(self,Codigo,nombre,horas,valorHora,retencion):
       self.Codigo=Codigo
        self.nombre=nombre
       self.horas=horas
        self.valorHora=valorHora
        self.retencion=retencion
    def salarioEmpleado(self):
       codigo=self.Codigo
       nombre=self.nombre
       horas=self.horas
       valorHora=self.valorHora
        retencion=self.retencion
        salarioBruto=valorHora*horas
        porcentaje=retencion/100
        salarioNeto=salarioBruto-(salarioBruto*porcentaje)
        return {
            "salarioNeto":salarioNeto,
            "salarioBruto":salarioBruto
```


Como se puede observar el código realiza el calculo del salario bruto y realiza el descuento del salario neto.

Ejercicio 19

Clase

```
class ejercicio_19():
   def __init__(self,lado):
       self.lado=lado
   def Area(self):
       lado=self.lado
       Area=(math.sqrt(3)*(lado*lado))/4
       Area=round(Area,2)
       return Area
   def Altura(self):
       lado=self.lado
       Altura=(math.sqrt(3)*lado)/2
       Altura=round(Altura,2)
       return Altura
   def Perimetro(self):
       lado=self.lado
       Perimetro=3*lado
       Perimetro=round(Perimetro,2)
       return Perimetro
```


Como se puede observar el código realiza el calculo de la altura, el área, y el perímetro, teniendo como dato de entrada, el lado de un triángulo equilátero.

CAPITULO 4

Ejercicio 07

Clase

```
class ejercicio_7():
    def __init__(self,a,b):
        self.a=a
        self.b=b
    def desicion(self):
        a=self.a
        b=self.b
        mensaje=""
        if a > b:
            mensaje=str(a)+" Es mayor que "+str(b)
        elif a < b:
            mensaje=str(a)+" Es menor que "+str(b)
        else:
            mensaje=str(a)+" Es igual que "+str(b)
        return mensaje</pre>
```


Como se puede observar el código realiza la operación para poder indicar si el valor de A, es menor, igual o mayor, que el valor de B.

Ejercicio 10

Clase

```
class ejercicio_10():
         def __init__(self,Inscripcion,nombres,Patrimonio,Estrato,):
             self.Inscripcion=Inscripcion
             self.nombres=nombres
             self.Patrimonio=Patrimonio
             self.Estrato=Estrato
         def pago(self):
             Inscripcion=self.Inscripcion
             nombres=self.nombres
             Patrimonio=self.Patrimonio
             Estrato=self.Estrato
70
             valor=50000
             if Patrimonio>2000000 and Estrato>3:
                 valor=(Patrimonio*0.03)+valor
             return valor
```


Como se puede observar el código realiza la operación para calcular el pago total de la matricula de un estudiante

Ejercicio 22

Clase

```
class ejercicio_22():
    def __init__(self,nombre,salario,horas):
        self.nombre=nombre
        self.salario=salario
        self.horas=horas
    def pago(self):
        mensual=int(self.salario)*int(self.horas)
        if mensual>450000 :
        return mensual
```


Como se puede observar el código realiza la operación para calcular el salario mensual de un empleado.

Ejercicio 23

Clase

```
class ejercicio_23():
         def __init__(self,a,b,c):
             self.a = a
             self.b = b
         def solucion(self):
             valores = [self.a,self.b,self.c]
             disc=(valores[1]**2)-(4*valores[0]*valores[2])
              if disc<0:
                 return{
100
             resultado1 = ((-1*valores[1])+math.sqrt((valores[1]**2)-(4*valores[0]*valores[2])))/(2*valores[0])
             resultado2 = ((-1*valores[1])-math.sqrt((valores[1]**2)-(4*valores[0]*valores[2])))/(2*valores[0])
101
102
                 "valor1":resultado1,
103
                  "valor2":resultado2
```

```
ejercicio_23

+a: int
+b: int
+c: int
+solucion(self): object
```


Como se puede observar el código realiza las operaciones necesarias para hallar los valores de la ecuación cuadratica

CAPITULO 5

Ejercicio 40

Clase

```
class ejercicio_40():
          def __init__(self,lista1):
              self.lista1 = lista1
          def solucion(self):
110
111
              lista1=self.lista1
112
              cuadrados=[]
              raicez=[]
113
114
              cubos=[]
              for i in lista1:
115
                   cuadrados.append(i**2)
116
                  raicez.append(round(math.sqrt(i),3))
117
                  cubos.append(i**3)
118
119
              print(cubos)
120
              return{
                   "cuadrados":cuadrados,
122
                  "raicez":raicez,
                   "cubos":cubos
```


Como se puede observar el código realiza los cuadrados, cubos, y raíces de la lista de números que introduzcamos.

Ejercicio 41

Clase

```
class ejercicio_41():
126
          def __init__(self,lista1):
127
              self.lista1 = lista1
128
          def solucion(self):
129
              lista1=self.lista1
130
              mayor=0
131
132
              for i in lista1:
                  if i>mayor:
                      mayor=i
              return mayor
136
```


Como se puede observar el código acumula una lista de números y retorna el mayor de todos estos.

CLASES FIGURAS GEOMÉTRICAS

Para este conjunto de ejercicios mostrar su interfaz de manera individual, pero su diagrama se representara a continuación:

Interfaz General

Circulo

```
class circulo():

def __init__(self,radio):

self.radio = radio

def Area(self):

return math.pi*math.pow(self.radio,2)

def Perimetro(self):

return 2*math.pi*self.radio
```


Rectángulo

```
class rectangulo():

def __init__(self,base,altura):

self.base = base

self.altura = altura

def Area(self):

return self.base*self.altura

def Perimetro(self):

return (2*self.base)+(2*self.altura)
```


Cuadrado

Triangulo

```
class triangulo():
              def __init__(self,base,altura):
                  self.base = base
                  self.altura = altura
              def Area(self):
                  return (self.altura*self.base)/2
              def Hipotenusa(self):
                  return math.sqrt((self.altura**2)+(self.base**2))
              def Perimetro(self):
                  return self.base+self.altura+self.Hipotenusa()
170
              def TipoTriangulo(self):
                  base=self.base
                  altura=self.altura
                  hipotenusa=self.Hipotenusa()
                  if base==altura and base==hipotenusa and altura==hipotenusa:
                      return "Equilatero"
                  elif base!=altura and base!=hipotenusa and altura!=hipotenusa:
176
                      return "Escaleno"
178
179
                      return "Isoceles"
```


Rombo

```
class rombo():

def __init__(self,lado,ancho,largo):

self.lado = lado

self.ancho = ancho

self.largo = largo

def Area(self):

return (self.largo*self.ancho)/2

def Perimetro(self):

return 4*self.lado
```


Trapecio

```
class trapecio():

def __init__(self,lado,altura,base1,base2):

self.altura = altura

self.lado = lado

self.base1 = base1

self.base2 = base2

def Area(self):

return ((self.base1+self.base2)/2)*self.altura

def Perimetro(self):

return self.lado+self.lado+self.base1+self.base2
```

