Linear Algebra

[KOMS120301] - 2023/2024

12.1 - Basis dan Dimensi

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 12 (Desember 2023)

Bagian 1: Basis ruang vektor

Contoh intuitif

Di $\mathbb{R}^3 \to \text{Misalkan } \mathbf{i} = (1,0,0), \ \mathbf{j} = (0,1,0), \ \mathbf{k} = (0,0,1)$

Setiap vektor $\mathbf{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$ dapat dinyatakan sebagai kombinasi linear dari basis vektor, yaitu:

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

 $\mathsf{Di}\ \mathbb{R}^n o \mathsf{Konsep}$ ini dapat digeneralisasi untuk ruang vektor Euclid \mathbb{R}^n

Misalkan:
$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0), \ \mathbf{e}_3 = (0, 0, 0, \dots, 1)$$

Setiap vektor $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ dapat diekspresikan sebagai:

$$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{v}_2 + \dots + v_n \mathbf{v}_n$$

Mungkinkah sebuah ruang vektor mempunyai lebih dari satu basis?

Jika iya, bagaimana keterkaitan antara basis satu dengan basis yang lain?

Sistem linier persegi panjang dan non-persegi panjang

Dalam Aljabar Linier, sistem koordinat biasanya ditentukan dengan menggunakan vektor, bukan sumbu koordinat.

Definisi formal tentang dasar

Jika V adalah suatu ruang vektor dan $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ adalah himpunan vektor-vektor di V, maka S disebut basis untuk V jika dua kondisi berikut berlaku:

- ① S bebas linier; dan
- \bigcirc S merentang V.

Contoh 1: Basis standar untuk \mathbb{R}^n

Basis standar untuk \mathbb{R}^n adalah himpunan vektor $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$, dimana:

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \ \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

Hal ini berarti bahwa: $\forall \mathbf{v} \in \mathbb{R}^n$, maka $\exists k_1, k_2, \dots, k_n \in \mathbb{R}$, sedemikian sehingga \mathbf{v} dapat dinyatakan sebagai kombinasi linier dari vektor-vektor di S. Dengan kata lain, persamaan berikut berlaku:

$$\mathbf{v} = k_1 \mathbf{e}_1 + k_2 \mathbf{e}_2 + \cdots + k_n \mathbf{e}_n$$

Contoh (Kasus khusus \mathbb{R}^3)

Di \mathbb{R}^3 , basis standarnya adalah:

$$\mathbf{i} = (1,0,0), \quad \mathbf{j} = (0,1,0), \quad \mathbf{k} = (0,0,1)$$

Contoh 2: Basis standar untuk P_n

Tunjukkan bahwa himpunan $S = \{1, x, x^2, \dots, x^n\}$ merupakan basis standar untuk ruang vektor P_n yang terdiri dari polinomial.

Solusi:

Berdasarkan teorema tersebut, kita harus menunjukkan bahwa polinomial-polinomial di *S* memiliki sifat:

- bebas linier;
- \bigcirc merentang P_n .

Notasikan polinomial dengan vektor:

$$\mathbf{p}_0 = 1, \ \mathbf{p}_1 = x, \ \mathbf{p}_2 = x^2, \ \dots, \ \mathbf{p}_n = x^n$$

Kita telah menunjukkan (dalam pembahasan di slide minggu sebelumnya) bahwa vektor-vektor merentang P_n , dan vektor-vektor tersebut bebas linier.

Contoh 2: Basis lain untuk \mathbb{R}^3

Tunjukkan bahwa vektor berikut membentuk basis untuk \mathbb{R}^3 .

$$\mathbf{v}_1 = (1, 2, 1), \ \mathbf{v}_2 = (2, 9, 0), \ \text{and} \ \mathbf{v}_3 = (3, 3, 4)$$

Solusi:

Seperti pada contoh sebelumnya, harus ditunjukkan bahwa vektor-vektornya adalah independen linier dan merentang \mathbb{R}^3 .

 Independensi linier, bahwa persamaan vektor berikut hanya memiliki solusi trivial.

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_3\mathbf{v}_3=\mathbf{0}$$

• Merentang ruang vektor \mathbb{R}^3 , bahwa setiap vektor $\mathbf{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$ dapat dinyatakan sebagai:

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_3 \mathbf{v}_3$$

Kedua persamaan vektor di atas dapat dinyatakan sebagai sistem linier:

$$\begin{cases} c_1 + 2c_2 + 3c_3 = 0 \\ 2c_1 + 9c_2 + 3c_3 = 0 \\ c_1 + 4c_3 = 0 \end{cases} \qquad \begin{cases} c_1 + 2c_2 + 3c_3 = v_1 \\ 2c_1 + 9c_2 + 3c_3 = v_2 \\ c_1 + 4c_3 = v_3 \end{cases}$$

Untuk menunjukkan bahwa sistem linier homogen (kiri) mempunyai hanya solusi trivial dan sistem (kanan) mempunyai solusi tunggal, sama dengan menunjukkan bahwa matriks koefisien:

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{bmatrix}$$

mempunyai determinan bukan nol.

Tugas: Buktikan bahwa $det(A) \neq 0$.

Kita akan membuktikan bahwa $det(A) \neq 0$

$$det(A) = 1 \begin{vmatrix} 9 & 3 \\ 0 & 4 \end{vmatrix} - 1 \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} + 3 \begin{vmatrix} 2 & 9 \\ 1 & 0 \end{vmatrix}$$
$$= 1(36 - 0) - 1(8 - 3) + 3(0 - 9)$$
$$= 36 - 5 - 27$$
$$= 4$$
$$\neq 0$$

Keunikan representasi basis

Teorema (Uniqueness)

Jika $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ adalah basis dari ruang vektor V, maka setiap vektor \mathbf{v} di V dapat dinyatakan dalam bentuk berikut dalam satu cara.

$$\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n$$

Proof.

Misalkan **v** dapat diekspresikan dalam kombinasi linier lain, katakanlah:

$$\mathbf{v} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$$

Mengurangkan kedua persamaan menghasilkan:

$$\mathbf{v} = (c_1 - k_1)\mathbf{v}_1 + (c_2 - k_2)\mathbf{v}_2 + \cdots + (c_n - k_n)\mathbf{v}_n$$

Karena vektor-vektor di S bebas linier, maka:

$$c_1 - k_1 = 0$$
, $c_2 - k_2 = 0$, ..., $c_n - k_n = 0$

yang berarti: $c_1=k_1,\ c_2=k_2,\ \dots,\ c_n=k_n$ (dengan kata lain, terdapat sebuah cara tunggal untuk merepresentasikan ${\bf v}$.

Bagian 2: Dimensi

Banyaknya vektor dalam suatu basis

Suatu ruang vektor dapat mempunyai lebih dari satu basis yang berukuran sama.

Teorema (Ukuran basis ruang vektor)

Semua basis untuk ruang vektor berdimensi hingga memiliki jumlah vektor yang sama.

Teorema tersebut berasal dari observasi berikut.

Teorema

Misalkan V adalah ruang vektor berdimensi n, dan misalkan $S = \{v_1, v_2, \dots, v_n\}$ adalah suatu basis dari V.

- Jika suatu himpunan vektor di V mempunyai lebih dari n vektor, maka himpunan tersebut bergantung linier.
- 2 Jika suatu himpunan vektor di V memiliki kurang dari n vektor, maka himpunan tersebut tidak dapat merentang V.

Pernyataan pada Teorema kedua benar karena vektor-vektor di S bebas linier, dan harus merentang V, sehingga ukuran S tidak dapat ditambah atau dikurangi.

Dimensi

Dimensi dari sebuah ruang vektor yang berhingga V didefinisikan sebagai banyaknya vektor di dalam basisnya.

Dimensi dari ruang vektor V dinotasikan dengan $\dim(V)$

Tambahan: ruang vektor nol (atau yang hanya terdiri dari $\{0\}$) didefinisikan memiliki dimensi 0.

Contoh (Dimensi beberapa ruang vektor)

```
\dim(\mathbb{R}^n) = n [basis standar memiliki n vektor] \dim(P_n) = n+1 [basis standar memiliki n+1 vektor] \dim(M_{mn}) = mn [basis standar memiliki mn vektor]
```

Contoh 1: Dimensi span(S)

Misalkan $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ adalah himpunan vektor bebas linier.

Buktikan bahwa dim $(span\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\})=n$.

Solusi:

Setiap vektor di span(S) dapat dinyatakan sebagai kombinasi linier dari vektor-vektor di S.

Oleh karena itu, S adalah basis dari span(S).

Dengan Teorema "Ukuran Basis",

$$\dim(span\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\})=n$$

Contoh 2: Dimensi ruang solusi

Diketahui sistem linier berikut:

$$\begin{cases} x_1 + 3x_2 - 2x_3 & + 2x_5 & = 0 \\ 2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 & = 0 \\ 5x_3 + 10x_4 + 15x_5 & = 0 \\ 2x_1 + 6x_2 & + 8x_4 + 4x_5 + 18x_6 & = 0 \end{cases}$$

Temukan dimensi ruang solusi SPL di atas.

Solusi:

Temukan solusi dari sistem:

$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$

Dalam bentuk vektor:

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (-3r - 4s - 2t, r, -2s, s, t, 0)$$

= $r(-3, 1, 0, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0)$

• Jadi vektor-vektor berikut merentang ruang solusi dari SPL tersebut:

$$\mathbf{v}_1 = (-3, 1, 0, 0, 0, 0), \ \mathbf{v}_2 = (-4, 0, -2, 1, 0, 0), \ \mathbf{v}_3 = (-2, 0, 0, 0, 1, 0)$$

• Selanjutnya, periksa apakah himpunan vektor $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ bebas linier. Harus ditunjukkan bahwa persamaan vektor:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = 0$$

hanya memiliki solusi *trivial*, yakni $c_1 = 0, c_2 = 0, c_3 = 0$.

Periksa kebenarannya!

• Jika ya, maka S adalah basis dari ruang solusi, dan dim(S) = 3.

Sekarang kita akan memeriksa apakah persamaan vektor:

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3=0$$

hanya memiliki solusi trivial.

$$\begin{cases}
-3r - 4s - 2t = 0 \\
r = 0 \\
-2s = 0 \\
s = 0 \\
t = 0
\end{cases}$$

Dengan menyelesaikan sistem tersebut, diperoleh: r = 0, s = 0, t = 0.

Dengan demikian, S adalah basis dari ruang solusi, dan dim(S) = 3.

Dimensi sub-ruang vektor

Teorema

Jika W adalah subruang dari ruang vektor berdimensi hingga V, maka:

- W memiliki dimensi hingga;
- \bigcirc dim $(W) \leq$ dim(V);

Proof.

Baca halaman 225 pada "Elementary Linear Algebra Applications Version (Howard Anton, Chris Rorres - Edisi 1 - 2013)".

bersambung...