

Osnove relacionog modela podataka

Strukturalna, operacijska i integritetna komponenta relacionog modela podataka

Sadržaj

- Model podataka
- Strukturalna komponenta
- Integritetna komponenta
- Operacijska komponenta

Model podataka

- Strukturalna komponenta
 - primitivni i složeni koncepti
 - "gradivni" elementi modela podataka
 - pravila za kreiranje složenih koncepata
 - služi za modeliranje LSO, kao statičke strukture sistema šeme BP
- Operacijska komponenta
 - upitni jezik (QL)
 - jezik za manipulisanje podacima (DML)
 - jezik za definiciju podataka (DDL)
 - služi za modeliranje dinamike izmene stanja

Model podataka

- Integritetna komponenta
 - skup tipova ograničenja (uslova integriteta)
 - služi za modeliranje ograničenja nad podacima u BP
- Nivoi apstrakcije
 - određeni modelom podataka
 - nivo intenzije (konteksta)
 - nivo tipa
 - opisuje npr. nivo logičke strukture obeležja šeme
 - nivo ekstenzije (konkretizacije)
 - nivo pojave tipa
 - opisuje npr. nivo logičke strukture podataka

Sadržaj

- Model podataka
- Strukturalna komponenta
- Integritetna komponenta
- Operacijska komponenta

- Primitivni kncepti u RMP
 - Obeležje (Atribut)
 - reprezentuje osobinu (svojstvo) klase entiteta ili poveznika u realnom sistemu (RS)
 - Domen
 - specifikacija skupa mogućih vrednosti koje neka obeležja mogu da dobiju
 - Pravilo pridruživanja domena obeležjima
 - > svakom obeležju obavezno se pridružuje tačno jedan domen

- Primitivni koncepti nivoa intenzije
 - domen
 - obeležje
- Primitivni koncept nivoa ekstenzije
 - vrednost
- kreiranje svih ostalih (složenih) koncepata strukturalne komponente RMP
 - kombinovanjem (strukturiranjem) primitivnih koncepata
 - korišćenjem definisanih pravila u RMP

- Skup primitivnih i složenih koncepata RMP
 - za opis LSO (nivo intenzije) i LSP (nivo ekstenzije)

Nivo intenzije

- Domen
- Obeležje
- Skup obeležja
- Šema relacije
- Šema BP

Nivo ekstenzije

- Vrednost
- Podatak
- Torka (N-torka)
- Relacija
- Baza podataka

Torka

- reprezentuje jednu pojavu entiteta ili poveznika
- pomoću torke se svakom obeležju, iz nekog skupa obeležja, dodeljuje konkretna vrednost
 - iz skupa mogućih vrednosti definisanog domenom
- formalno, za:
 - \cup **U** = { $A_1,..., A_n$ }
 - - skup svih mogućih vrednosti
 - torka predstavlja preslikavanje

$$t: U \rightarrow DOM,$$

 $(\forall A_i \in U)(t(A_i) \in dom(A_i))$

- Primer
 - $ightharpoonup U = \{MBR, IME, POL, SPR, NAP\}$
 - Torka t_1 definisana je na sledeći način

 - $\rightarrow t_1(IME) = Ana$
 - $t_1(SPR) = 1100$ $t_1(POL) = \check{z}$
 - $ightharpoonup t_1(NAP) = Univerzitetski IS$

- Primer
 - ightharpoonup Torka t_1 može se prikazati kao skup podataka

```
t_1 = \{(MBR, 101), (IME, Ana), (POL, \check{z}), (SPR, 1100), (NAP, Univerzitetski IS)\}
```

ightharpoonup Zadata je i torka t_2

```
t_2 = \{(MBR, 210), (IME, Aca), (POL, m), (SPR, 0105), (NAP, Polaris)\}
```

- Restrikcija ("skraćenje") torke t
 - ▶ na skup obeležja $X \subseteq U$
 - ▶ oznaka: t[X]
 - svakom obeležju iz skupa X pridružuje se ona vrednost koju je imala polazna torka t
 - formalno
 - $ightharpoonup X \subseteq U$, $t: U \rightarrow DOM$,
 - $t[X]: X \to DOM$

$$(\forall A \in X)(t[X](A) = t(A))$$

- Primer
 - $t_2 = \{(MBR, 210), (IME, Aca), (POL, m), (SPR, 0105), (NAP, Polaris)\}$
 - Neka je X = MBR + IME
 - $t_2[X] = \{(MBR, 210), (IME, Aca)\}$

Relacija

- nad skupom obeležja *U*
- predstavlja konačan skup torki
- reprezentuje skup realnih entiteta ili poveznika
- Formalno

$$r(U) \subseteq \{t \mid t: U \rightarrow DOM\}, \mid r \mid \in \mathbb{N}_0$$

Skup svih mogućih torki nad skupom obeležja *U - Tuple(U)*

- Primer
 - $ightharpoonup U = \{MBR, IME, POL, SPR, NAP\}$
 - $ightharpoonup r_1(U) = \{t_1, t_2\}$
 - $t_1 = \{(MBR, 101), (IME, Ana), (POL, \check{z}), (SPR, 1100), (NAP, Univerzitetski IS)\}$
 - $ightharpoonup t_2 = \{(MBR, 210), (IME, Aca), (POL, m), (SPR, 0105), (NAP, Polaris)\}$

Primer

- $R = \{A, B, C\}$
 - $ightharpoonup dom(A) = \{a_1, a_2\}$
 - $ightharpoonup dom(B) = \{b_1, b_2\}$
 - \rightarrow dom(C) = {c₁, c₂}
- $t_1 = \{(A, a_1), (B, b_1), (C, c_1)\}$
- $t_2 = \{(A, a_2), (B, b_2), (C, c_2)\}$
- $t_3 = \{(A, a_1), (B, b_1), (C, c_2)\}$
- $ightharpoonup r(R) = \{t_1, t_2, t_3\}$

- U relaciji se ne mogu pojaviti dve identične torke
 - ▶ to je onda ista torka, samo dva puta prikazana
- Uobičajena reprezentacija relacije
 - pomoću tabele
 - relaciju predstavlja kompletan sadržaj tabele
 - kratko, tabela
 - poredak obeležja (kolona tabele) ne utiče na informacije koje sa sobom nosi relacija - nebitan
 - poredak torki u relaciji ne utiče na informacije koje sa sobom nosi relacija nebitan

Primeri

Radnik	MBR	IME	POL	SPR	NAP
t_1	101	Ana	ž	1100	Univerzitetski IS
t_2	210	Aca	m	0105	Polaris

r(R)	Α	В	С
t_1	a_1	<i>b</i> ₁	C ₁
t_2	a_2	b_2	<i>c</i> ₂
t_3	a_1	<i>b</i> ₁	c ₂

Šema relacije

imenovani par

N(R, O)

- ► *N* naziv šeme relacije (može biti izostavljen)
- R skup obeležja šeme relacije
- O skup ograničenja šeme relacije

Pojava nad šemom relacije

- ► (R, O)
- ightharpoonup bilo koja relacija r(R), takva da zadovoljava sva ograničenja iz skupa O

- Primer
 - Data je šema relacije

Letovi({*P*, *A*, *L*}, *O*)

O = {"Pilot može da leti samo na jednom tipu aviona"}

Let1	Р	Α	L
	Рор	747	101
	Рор	747	102
	Ana	737	103

Let2	Р	Α	L
	Рор	747	101
	Рор	737	102
	Ana	737	103

▶ Da li prikazane relacije predstavljaju pojave nad datom šemom relacije?

Relaciona šema baze podataka

▶ (imenovani) par

S - skup šema relacija

$$S = \{(R_i, O_i) \mid i \in \{1, ..., n\}\}$$

I - skup međurelacionih ograničenja

- Primer
 - Zadate su šeme relacija
 - ► Radnik({MBR, IME, PRZ, DATR}, {"Ne postoje dva radnika sa istom vrednošću za MBR. Svaki radnik poseduje vrednost za MBR."})
 - Projekat({SPR, NAP}, {"Ne postoje dva projekta sa istom vrednošću za SPR. Svaki projekat poseduje vrednost za SPR."})
 - Angažovanje({SPR, MBR, BRC}, {"Ne može se isti radnik na istom projektu angažovati više od jedanput. Pri angažovanju, vrednosti za MBR i SPR su uvek poznate."})

- Primer
 - ▶ S = {Radnik, Projekat, Angažovanje}
 - I = {
 "radnik ne može biti angažovan na projektu, ako nije zaposlen";
 "na projektu ne može biti angažovan ni jedan radnik, dok projekat ne bude registrovan"
 }
 - ► (S, I) predstavlja jednu relacionu šemu BP

Relaciona baza podataka

▶ jedna pojava nad zadatom relacionom šemom baze podataka (S, I)

$$s: S \to \{r_i \mid i \in \{1,..., n\}\}, (\forall i)s(R_i, O_i) = r_i$$

- svakoj šemi relacije iz skupa S odgovara jedna njena pojava
- skup relacija s mora da zadovoljava sva međurelaciona ograničenja iz skupa I

- Baza podataka
 - reprezentuje jedno stanje realnog sistema
 - ažurira se, jer promene stanja realnog sistema treba da prate odgovarajuće promene podataka u BP
- Odnos šema BP BP

Nivo intenzije

$$\{r_1(R_1),..., (R_n, O_n)\}, I\}$$

Šema BP statička (sporo promenljiva kategorija) sistema BP

relaciona BP dinamička (stalno promenljiva kategorija) sistema BP

Nivo ekstenzije

- Primer
 - ▶ S = {Radnik, Projekat, Angažovanje}
 - RBP = {radnik, projekat, angažovanje}

Radnik

MBR	IME	PRZ	DATR
101	Ana	Рар	12.12.65.
102	Aca	Tot	13.11.48.
110	Ivo	Ban	01.01.49.
111	Olja	Kun	06.05.71.

Projekat

SPR	NAP
11	X25
13	Polaris
14	Univ. IS

Angažovanje

MBR	SPR
101	11
101	14
102	14

- Konzistentno stanje BP
 - baza podataka RBP = $\{r_i \mid i \in \{1,..., n\}\}$ nad šemom (S, I) nalazi se u
 - formalno konzistentnom stanju ako
 - \lor $(\forall r_i \in RBP)(r_i \text{ zadovoljava sva ograničenja odgovarajuće šeme } (R_i, O_i))$
 - ▶ RBP zadovoljava sva međurelaciona ograničenja iskazana putem I
 - suštinski konzistentnom stanju ako
 - se nalazi u formalno konzistentnom stanju i
 - predstavlja vernu sliku stanja realnog sistema
 - ▶ u praksi, nivo pojave grešaka u BP sveden je na ispod 2-3%
 - > SUBP može da kontroliše formalnu konzistentnost

Sadržaj

- Model podataka
- Strukturalna komponenta
- Integritetna komponenta
- Operacijska komponenta

- Definisana putem tipova ograničenja
- Karakteristike tipa ograničenja
 - formalizam za zapisivanje (definicija)
 - pravilo za interpretaciju (validaciju)
 - oblast definisanosti
 - ▶ tip logičke strukture obeležja nad kojom se ograničenje definiše
 - oblast interpretacije
 - ▶ tip logičke strukture podataka nad kojom se ograničenje interpretira

- Karakteristike tipa ograničenja
 - skup operacija nad bazom podataka koje mogu dovesti do narušavanja ograničenja datog tipa
 - skup mogućih akcija kojima se obezbeđuje očuvanje validnosti baze podataka, pri pokušaju narušavanja ograničenja datog tipa
 - b definiše se za svaku operaciju koja može dovesti do narušavanja ograničenja

Implementacione šeme BP i pravila poslovanja

- ► Kontrola ograničenja, implementiranih na nivou SUBP je centralna
 - ne može je zaobići ni jedan program ili korisnik
 - korisnici nisu svesni postojanja ograničenja, dok ne dođe do njegovog narušavanja
 - u slučaju pokušaja narušavanja ograničenja nekom operacijom ažuriranja, SUBP
 - izaziva grešku i prekida operaciju
 - prosleđuje korisničkom programu poruku o grešci
 - program obrađuje tu poruku i prosleđuje je korisniku
 - ▶ Ili aktivnim mehanizmom dovodi stanje BP u konzistentno
 - automatski, nakon izvođenja kritične operacije za ograničenje

- Oblasti definisanosti u relacionom MP
 - vanrelaciono ograničenje
 - definiše se izvan konteksta šeme relacije
 - ▶ **jednorelaciono** (unutarrelaciono, lokalno) ograničenje
 - definiše se nad tačno jednom šemom relacije
 - višerelaciono ograničenje
 - b definiše se nad skupom ili nizom šema relacija, koji sadrži bar dva člana

- Oblasti interpretacije u relacionom MP
 - ograničenje vrednosti
 - interpretira se nad tačno jednom vrednošću nekog obeležja
 - ograničenje torke
 - ▶ interpretira se nad jednom torkom bilo koje relacije
 - relaciono ograničenje
 - interpretira se nad skupom torki bilo koje relacije
 - međurelaciono ograničenje
 - interpretira se nad barem dve, bilo koje relacije

- Oblasti interpretacije u relacionom MP
 - ograničenje vrednosti
 - ograničenje torke
 - relaciono ograničenje
 - međurelaciono ograničenje
 - ► Napomena "bilo koja relacija":
 - ▶ jedna relacija iz baze podataka, ili
 - relacija koja je nastala primenom izraza relacione algebre nad jednom ili više drugih relacija - pogled
 - moguća i primena operatora spajanja

- Tipovi ograničenja u relacionom modelu podataka
 - ograničenje domena
 - ograničenje vrednosti obeležja
 - ograničenje torke
 - integritet entiteta (ograničenje ključa)
 - ograničenje jedinstvenosti vrednosti obeležja
 - zavisnost sadržavanja
 - ograničenje referencijalnog integriteta
 - funkcionalna zavisnost

Specifikacija domena

D(id(D), Predef)

- D naziv domena
- ▶ id(D) ograničenje (integritet) domena
- Predef predefinisana vrednost domena
- Ograničenje domena

- Tip tip podatka (primitivni domen), ili oznaka prethodno definisanog domena
- Dužina dužina tipa podatka
- Uslov logički uslov

Specifikacija domena

- ► Tip
 - predstavlja jedinu obaveznu komponentu specifikacije ograničenja domena
- Dužina
 - navodi se samo za tipove podataka (primitivne domene) koji to zahtevaju
 - ▶ ne navodi za domene čiji *tip* ne predstavlja primitivni domen
- **▶** Uslov
 - mora da ga zadovoljava svaka vrednost iz skupa mogućih vrednosti domena
- Predef
 - mora da zadovolji ograničenja tipa, dužine i uslova

Ograničenje domena

- interpretacija ograničenja
 - moguća za bilo koju vrednost konstantu d
 - ightharpoonup oznaka id(D)(d)

Primeri

- ▶ $DPrezime((String, 30, \Delta), \Delta)$
- ▶ DDatum((Date, \triangle , $d \ge$ '01.01.1900'), \triangle)
- ▶ DOcena((Number, 2, $d \ge 5 \land d \le 10$), \triangle)
- ▶ DPozOcena((DOcena, Δ , $d \ge 6$), 6)
 - $ightharpoonup \Delta$ komponenta u specifikaciji nije zadata

- Nula (nedostajuća, izostavljena) vrednost
 - specijalna vrednost
 - označava se posebnim simbolom
 - $\triangleright \omega$, ili ? (u literaturi) ili
 - ► NULL (u literaturi i SQL-u)
 - moguća značenja
 - nepoznata postojeća vrednost obeležja
 - nepostojeća vrednost obeležja
 - neinformativna vrednost obeležja
 - skup mogućih vrednosti svih domena proširuje se nula vrednošću

 $DOM \cup \{\omega\}$

nula vrednost a priori zadovoljava svako ograničenje domena

- Specifikacija obeležja šeme relacije
 - $ightharpoonup A \in R, N(R, O)$
 - zadaje se za svako obeležje šeme relacije

(id(N, A), Predef)

- ▶ id(A) ograničenje vrednosti obeležja
- Predef predefinisana vrednost obeležja
- Ograničenje vrednosti obeležja

$$id(N, A) = (Domen, Null)$$

- Domen oznaka (naziv) domena obeležja
- $ightharpoonup Null \in \{T, \bot\}$ ograničenje nula vrednosti obeležja
 - ightharpoonup T dozvola dodele nula vrednosti obeležju u r(N)
 - $ightharpoonup \perp$ zabrana dodele nula vrednosti obeležju u r(N)

- Specifikacija obeležja šeme relacije
 - Domen i Null
 - obavezne komponente specifikacije
 - Predef
 - ▶ ako se navede, onda je on važeći
 - u protivnom, važeći je Predef odgovarajućeg Domena, ili prvog sledećeg nasleđenog domena, za koji je Predef definisan
- Interpretacija ograničenja
 - moguća za bilo koju vrednost obeležja d
 - ightharpoonup oznaka id(N, A)(d)

Ograničenje torke

- izražava ograničenja na moguće vrednosti unutar jedne torke
- predstavlja skup ograničenja vrednosti obeležja, kojem je pridodat logički uslov
- ightharpoonup formalno, za šemu relacije N(R, O)

$$id(N) = id(R) = (\{id(N, A) \mid A \in R\}, Uslov)$$

- Uslov
 - logički uslov koji svaka torka mora da zadovolji
 - može, u ulozi operanda, da sadrži bilo koje obeležje date šeme relacije
- interpretacija ograničenja
 - ightharpoonup moguća za bilo koju torku nad skupom obeležja R, id(N)(t)

- Primer
 - ► Radnik({MBR, PRZ, IME, ZAN, BPJZ}, O)

Radnik	Domen	Null	Predef	
MBR	MBRD	1	Δ	
PRZ	PRZD	1	Δ	
IME	IMED	1	Δ	
ZAN	ZAND	1	Δ	
BPJZ	BPJZD	T	Δ	

Uslov: $ZAN = 'prg' \Leftrightarrow BPJZ \iff \omega$

- Primer
 - ► Radnik({MBR, PRZ, IME, ZAN, BPJZ}, O)

Domen	Tip	Dužina	Uslov	Predef
MBRD	Number	4	<i>d</i> ≥ 0	Δ
PRZD	String	30	Δ	Δ
IMED	String	15	Δ	Δ
ZAND	String	3	Δ	Δ
BPJZD	Number	2	<i>d</i> ≥ 0	0

Ključ šeme relacije

- minimalni podskup skupa obeležja šeme relacije, na osnovu kojeg se jedinstveno može identifikovati svaka torka relacije nad datom šemom
- ▶ formalno, *X* je ključ ako
 - ▶ 1^0 ($\forall u, v \in r(R)$)($u[X] = v[X] \Rightarrow u = v$)
 - $ightharpoonup 2^0 (\forall Y \subset X)(\neg 1^0)$
- oblast interpretacije
 - skup torki (relacija) nad datom šemom relacije

Ključ šeme relacije

u određenim situacijama (u procesu projektovanja šeme BP) skup ograničenja šeme relacije zadaje se samo kao skup ključeva

N(R, K)

- Primer
 - šema relacije Radnik(R, K)
 - $ightharpoonup R = \{MBR, IME, PRZ, DATR, POL, MESR, RBRE\}$
 - ► K = {MBR, DATR+MESR+POL+RBRE}

- Primer
 - ► Radnik({MBR, IME, PRZ, DATR}, {MBR})
 - Projekat({SPR, NAP}, {SPR})
 - ► Angažovanje({SPR, MBR, BRC}, {SPR+MBR})

- Ograničenje ključa (integritet entiteta)
 - \triangleright šeme relacije N(R, K)
 - ▶ ključ $X \in K$, $X \subseteq R$
 - oznaka

Key(N, X)

za sva obeležja ključa nula vrednosti su zabranjene

$$(\forall K_i \in K)(\forall A \in K_i)(Null(N, A) = \bot)$$

- Ograničenje ključa (integritet entiteta)
 - ightharpoonup svaka šema relacije mora posedovati najmanje jedan ključ ($K \neq \emptyset$)
 - proizilazi iz definicije pojma relacije
 - ekvivalentni ključevi
 - ▶ svi ključevi skupa ključeva *K*
 - primarni ključ
 - ▶ jedan izabrani ključ, od svih ekvivalentnih ključeva
 - \triangleright oznaka $K_p(N)$
 - svaka šema relacije treba da poseduje tačno jedan primarni ključ
 - koristi se u ulozi asocijativne (simboličke) adrese za povezivanje podataka u relacijama

- Ograničenje jedinstvenosti
 - vrednosti obeležja šeme relacije N(R, O)
 - Uniqueness Constraint

Unique(N, X)

- ▶ X skup obeležja, $X \subseteq R$
- ightharpoonup zahteva da ne-nula kombinacija vrednosti obeležja bude jedinstvena u relaciji nad N(R, O)
- formalno
 - $(\forall u, v \in r(R))((\forall A \in X)(u[A] \neq \omega \land v[A] \neq \omega) \Rightarrow (u[X] = v[X] \Rightarrow u = v))$

- Ograničenje jedinstvenosti
 - oblast interpretacije
 - ightharpoonup skup torki relacija nad datom šemom N(R, O)
 - ightharpoonup skup svih ograničenja jedinstvenosti u šemi N(R, O)

Uniq = {Unique(N,
$$X$$
) | $X \subseteq R$ }

Primer

Radnik({MBR, IME, PRZ, DATR, JMBG}, O)

- > Uniq ⊆ 0
- Uniq = {Unique(Radnik, JMBG)}
- ► Unique(Radnik, JMBG)
 - ▶ zahteva da ako radnik poseduje ne-nula vrednost za *JMBG*, onda je ta vrednost jedinstvena u relaciji nad šemom *Radnik*

- Skup svih ograničenja šeme relacije
 - praktično, kada šemu relacije treba implementirati u datom SUBP, zadaje se kao unija
 - skupa ključeva,
 - ograničenja jedinstvenosti i
 - ograničenja torke

 $N(R, K \cup Uniq \cup \{id(R)\})$

Primer

 $Radnik(\{MBR, PRZ, IME, ZAN, BPJZ, JMBG\}, K \cup Uniq \cup \{id(R)\})$

- \triangleright $K = \{MBR\}$
- Uniq = {Unique(Radnik, JMBG)}
- ightharpoonup id(R) prethodno zadat, u tabelarnom obliku

Zavisnost sadržavanja

- ▶ date su šeme relacije $N_i(R_i, O_i)$ i $N_i(R_i, O_i)$
- dati su domenski kompatibilni nizovi obeležja

$$X = (A_1, ..., A_n), (\forall l \in \{1, ..., n\})(A_l \in R_i),$$

$$Y = (B_1, ..., B_n), (\forall l \in \{1, ..., n\})(B_l \in R_j),$$

$$(\forall l \in \{1, ..., n\})(dom(A_l) \subseteq dom(B_l))$$

oznaka (pravilo zapisivanja)

$$N_i[X] \subseteq N_j[Y]$$

Zavisnost sadržavanja

$$N_i[X] \subseteq N_i[Y]$$

ightharpoonup važi ako je za bilo koje dve relacije $r(R_i, O_i)$ i $s(R_j, O_j)$ zadovoljeno

$$(\forall u \in r)(\exists v \in s)(\forall l \in \{1, ..., n\})(u[A_l] = \omega \vee u[A_l] = v[B_l])$$

- oblast definisanosti
 - ▶ niz od dve šeme relacije
- oblast interpretacije
 - ightharpoonup relacije nad šemama N_i i N_j

- Primer
 - ▶ date su relacije $r(N_i)$ i $s(N_j)$
 - ▶ važi zavisnost sadržavanja $N_i[B] \subseteq N_j[B]$

r	Α	В
	a_1	b ₁
	a_2	<i>b</i> ₂

S	В	С
	<i>b</i> ₁	C ₁
	b_2	C ₁
	<i>b</i> ₃	<i>c</i> ₂

- Primer
 - ▶ date su relacije $r(N_i)$ i $s(N_j)$
 - ▶ važi zavisnost sadržavanja $N_i[(A, B)] \subseteq N_j[(C, D)]$

r	Α	В
	a_1	<i>b</i> ₁
	a_2	ω

S	С	D
	a_1	b ₁
	a_2	b_2
	a_3	b_2

- Ograničenje referencijalnog integriteta
 - ightharpoonup zavisnost sadržavanja $N_i[X] \subseteq N_j[Y]$, kada je Y ključ šeme relacije $N_j(R_j, K_j)$
 - $ightharpoonup N_i$ referencirajuća šema relacije
 - $ightharpoonup N_i$ referencirana šema relacije

Primer

- ▶ $Projekat[RUK] \subseteq Radnik[MBR]$
- ▶ Angažovanje[MBR] ⊆ Radnik[MBR]
- ▶ Angažovanje[SPR] ⊆ Projekat[SPR]

Radnik

MBR	IME	PRZ	DATR
101	Ana	Рар	12.12.85.
102	Aca	Tot	13.11.88.
110	Ivo	Ban	01.01.79.
111	Olja	Kun	06.05.81.

Angažovanje

MBR	SPR
101	11
101	14
111	14

Projekat

SPR	NAP	RUK
11	X25	101
13	Polaris	101
14	Univ.IS	111

Integritetna komponenta - $N_i[X] \subseteq N_j[Y]$

Primer - unos novog projekta
X

Referencirana šema relacije

▶ Projekat[RUK] ⊆ Radnik[MBR]

Referencirajuća šema relacije

Y - ključ

Projekat

SPR	RUK	NAP
11	101	X25
13	101	Polaris
14	111	Univ.IS
15	110	P7
15	710	P7

Radnik

240	MBR	IME	PRZ	DATR
210	101	Ana	Рар	12.12.85.
210	102	1 ca	Tot	13.11.88.
210	110	О	Ban	01.01.79.
210	111	Olja	Kun	06.05.81.

Integritetna komponenta - $N_i[X] \subseteq N_j[Y]$

- Primer-angažovanje radnika na novom projektu
 - ▶ Angažovanje[MBR] ⊆ Radnik[MBR]
 - ▶ Angažovanje[SPR] ⊆ Projekat[SPR]

Angažovanje

MBR	SPR
101	11
101	14
111	14
110	15
110	15

P Rojetkickt

SPR	NAP	RUK	DATR
11011	X 25	P10p1	12.12.85.
11032	Poloaris	<i>70</i> ₽	13.11.88.
11140	als	Ban	01.01.79.
1115	Ta	H u 10	06.05.81.

Integritetna komponenta - $N_i[X] \subseteq N_j[Y]$

- Primer brisanje radnika
 - ▶ $Projekat[RUK] \subseteq Radnik[MBR]$

DELETE FROM Radnik
WHERE MBR = 102

Pange Kotvanje

MBR	SPR	NAP	
11011	11011	X25	
11 <i>0</i> 81	11041	Polaris	
111/41	11141	Univ.IS	
1150	11150	P7	
			_

Radnik

	MBR	IME	PRZ	DATR
_	101	Ana	Pap	12.12.85
L	102	Aca	Tot	13.11.88.
}	110	Ivo	Ban	\$107)1.79.
	111	Olja	Kun	06.05.81.

Funkcionalna zavisnost (FZ)

- ightharpoonup izraz oblika $f: X \rightarrow Y$
 - gde su X i Y skupovi obeležja
 - f je oznaka FZ
 - ► X i Y su podskupovi skupa U
 - ▶ oznaka f se, u notaciji, često izostavlja
- semantika
 - ▶ ako je poznata *X* vrednost, poznata je i *Y* vrednost
 - ▶ svakoj X vrednosti odgovara samo jedna Y vrednost
- ightharpoonup relacija r zadovoljava FZ $X \rightarrow Y$ ako važi

$$(\forall u, v \in r)(u[X] = v[X] \Rightarrow u[Y] = v[Y])$$

- oblast interpretacije
 - relacija r(N) ili r(U)

Sadržaj

- Model podataka
- Strukturalna komponenta
- Integritetna komponenta
- Operacijska komponenta

- Jezik za manipulaciju podacima u RMP
 - operacije za ažuriranje relacija
 - dodavanje nove torke (Add)
 - brisanje postojeće torke (Delete)
 - modifikacija podataka postojeće torke (Update)
- Jezik za definiciju podataka u RMP
 - operacije za upravljanje šemom BP
 - kreiranje, brisanje i modifikovanje delova šeme BP
- Upitni jezik u RMP
 - operacije za izražavanje upita nad jednom relacijom, ili skupom relacija
 - pružanje podataka na uvid korisniku

- Upitni jezik sačinjavaju
 - operatori za izražavanje upita
 - pravila za formiranje operanada upita izraza
 - pravila za primenu tih operatora
- Vrste teoretskih upitnih jezika u RMP
 - relaciona algebra
 - zasnovana na teoriji skupova i skupovnih operacija
 - relacioni račun
 - nad torkama
 - nad domenima
 - zasnovani na predikatskom računu I reda

- Osnovne skupovne operacije nad relacijama
 - Unija

$$r(R) \cup s(R) = \{t \mid t \in r \lor t \in s\}$$

Presek

$$r(R) \cap s(R) = \{t \mid t \in r \land t \in s\}$$

Razlika

$$r(R) - s(R) = \{t \mid t \in r \land t \notin s\}$$

Primer

r	A B	
	a_1	<i>b</i> ₁
	a_2	<i>b</i> ₂

S	A	В	
	a_1	<i>b</i> ₁	
	a_3	<i>b</i> ₃	

$r \cup s$	Α	В
	a_1	<i>b</i> ₁
	a_2	b_2
	a_3	b_3

$r \cap s$	Α	В	
	a_1	<i>b</i> ₁	

r-s	Α	В	
	a_2	b_2	

Selekcija

- torki iz relacije
- omogućava izbor (selektovanje) torki relacije po nekom kriterijumu

$$\sigma_F(r(R)) = \{t \in r \mid F(t)\}$$

- logičkom formulom F izražava se kriterijum po kojem se torke relacije r selektuju
- \triangleright biće selektovane samo one torke, za koje je formula F tačna
 - ightharpoonup zahteva se formalno definisanje sintakse za zapisivanje selekcionih formula tipa F

Primer

$$ightharpoonup \sigma_F(r(R)), F ::= PLT > 5000$$

r	MBR	IME	POL	SPR	PLT
	101	Ana	ž	11	3400
	102	Aca	m	14	4200
	110	Ivo	m	11	7000
	111	Olja	ž	11	7200

 $\sigma_{\!F}$

- Upit
 - prikazati radnike čija je plata veća od 4000 i rade na projektu sa šifrom 11

MBR	IME	POL	SPR	PLT
110	Ivo	m	11	7000
111	Olja	ž	11	7200

Projekcija (restrikcija) relacije

- izdvajanje vrednosti pojedinih kolona iz relacije
- projektovanje relacije na podskup skupa obeležja
- $X \subseteq R$

$$\pi_X(r(R)) = \{t[X] \mid t \in r(R)\}$$

- Primer
 - ▶ P pilot
 - ► A tip aviona
 - ▶ *L* broj leta
- Upit:
 - prikazati pilote i tipove aviona na kojima lete:
 - \rightarrow $\pi_{PA}(r(PAL))$

r	Р	A	L
	Aca	747	101
	Ivo	737	101
	Aca	747	102
	Ana	DC9	110

Р	Α
Aca	747
Ivo	737
Ana	DC9

- Primer
 - ▶ Posmatra se relacija *r*

r	MBR	IME	POL	SPR	PLT
	101	Ana	ž	11	3400
	102	Aca	m	14	4200
	110	Ivo	m	11	7000
	111	Olja	ž	11	7200

- Upit
 - prikazati matične brojeve i imena radnika čija plata je veća od 4000, a rade na projektu sa šifrom 11
 - $ightharpoonup F ::= PLT > 4000 \land SPR = 11$
 - $\qquad \qquad \pi_{MBR+IME}(\sigma_F(r))$

MBR	IME
110	Ivo
111	Olja

- Prirodni spoj relacija
 - spajanje torki različitih relacija po osnovu istih vrednosti zajedničkih obeležja
- ▶ Date su relacije r(R) i s(S)

$$r(R) \triangleright \triangleleft s(S) = \{t \in Tuple(RS) \mid t[R] \in r \land t[S] \in s\}$$

Primer

r	A	В	С		S	В	С	D
	a ₁	<i>b</i> ₁	c ₁			<i>b</i> ₁	C ₁	d_1
	a ₁	<i>b</i> ₂	<i>c</i> ₂		1	<i>b</i> ₁	C ₁	d_2
	a_1	b_3	<i>c</i> ₃		→	b_3	C ₃	d_3
				-		b_4	c ₂	d_2

$r \bowtie s$	Α	В	С	D
	a_1	<i>b</i> ₁	C ₁	d_1
	a_1	<i>b</i> ₁	C ₁	d_2
	a_1	<i>b</i> ₃	c ₃	d_3

Primer

r	Α	В	S	С	D
	a_1	b ₁	\	C ₁	d_1
	a_2	b_2	**	<i>c</i> ₂	d_2

$r \triangleright \triangleleft s$	Α	В	С	D
	a_1	<i>b</i> ₁	C ₁	d_1
	a_1	<i>b</i> ₁	c ₂	d_2
	a_2	<i>b</i> ₂	C ₁	d_1
	a_2	b_2	<i>c</i> ₂	d_2

Primer

Radnik

MBR	IME	PLT	POL
101	Ana	3400	ž
102	Aca	4200	m
110	Ivo	7000	m
111	Olja	7200	ž

Radproj

MBR	SPR
101	11
101	14
102	14
110	13
110	11

Projekat

SPR	NAP
11	X25
13	Polaris
14	Univ. IS

- Upit
 - izlistati matične brojeve radnika, šifre i nazive projekata na kojima rade
 - ▶ Radproj ⊳⊲ Projekat

MBR	SPR	NAP
101	11	X25
101	14	Univ. IS
102	14	Univ. IS
110	13	Polaris
110	11	X25

- Upit
 - ▶ Izlistati matične brojeve i imena radnika, koji rade na projektu sa šifrom 11
 - ► $\pi_{MBR+IME}(\sigma_{SPR=11}(Radproj)) \bowtie Radnik)$, ili
 - $\rightarrow \pi_{MBR+IME}(\sigma_{SPR = 11}(Radproj \rhd \lhd Radnik))$

MBR	IME
101	Ana
110	Ivo

Dekartov proizvod relacija

- spajanje formiranjem svih mogućih kombinacija torki iz dve relacije
- $ightharpoonup R \cap S = \emptyset$

$$r(R) \times s(S) = \{t \in Tuple(RS) \mid t[R] \in r \land t[S] \in s\}$$

Theta spajanje relacija

selektovanje torki po nekom kriterijumu iz dekartovog proizvoda relacija

$$r(R) \rhd \lhd_F s(S) = \sigma_F(r \times s)$$

- Primer
 - ▶ date su relacije
 - ▶ r red vožnje Niš Beograd
 - ▶ s red vožnje Beograd Novi Sad

r	PNI	DBG	
	06:00	09:00	
	08:00	10:30	
	13:00	16:00	

S	PBG	DNS	
	10:00	11:15	
	12:00	13:30	

- Upit
 - pregled svih mogućih varijanti za putovanje od Niša do Novog Sada s presedanjem u Beogradu

$r \bowtie_{DBG < PBG} s$	PNI	DBG	PBG	DNS
	06:00	09:00	10:00	11:15
	06:00	09:00	12:00	13:30
	08:00	10:30	12:00	13:30

Sadržaj

- Model podataka
- Strukturalna komponenta
- Operacijska komponenta
- Integritetna komponenta

Pitanja i komentari

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA KATEDRA ZA PRIMENJENE RAČUNARSKE NAUKE

Osnove relacionog modela podataka

Strukturalna, operacijska i integritetna komponenta relacionog modela podataka