习题 4.5

- 1. 求下列函数的凸性区间和拐点
- (1) 解: \diamondsuit y=f(x) ,则 f'(x)=3 x^2 10x + 3 f"(x)=6x-10

可知 f(x)在
$$(-\infty, \frac{5}{3})$$
上凸,在 $(\frac{5}{3}, +\infty)$ 下凸

$$(\frac{5}{3},\frac{20}{27})$$
 为拐点

- (2) 解: 令 y=f(x) ,则 f'(x)= $e^{-x} xe^{-x}$ f"(x)= $-e^{-x} - -e^{-x} + xe^{-x} = e^{-x}(x-2)$ 可知 f(x)在($-\infty$, 2)上凸,在(2, + ∞)下凸(2, $\frac{2}{e^2}$)为拐点
- (3)解: 令 y=f(x) , 则 f'(x)= $\frac{2x}{1+x^2}$

f"
$$(x) = \frac{2(1+x)(1-x)}{(1+x^2)^2}$$

可知 f(x) 在 (-1, 1) 上凸,在 $(-\infty, -1)$ 和 $(1, +\infty)$ 下凸 $(-1, \ln 2)$ 和 $(1, \ln 2)$ 为拐点

(4) 解: 令 y=f(x) , 则 f'(x)=1+cosx

f"
$$(x) = -\sin x$$

可知 $f(x)$ 在 $(2k\pi, \pi + 2k\pi)$ 下凸,在 $(\pi + 2k\pi, 2k\pi)$ 上凸 $(k\pi, k\pi)$ 为拐点

- 2. 利用函数的凸性,证明下列不等式
- (1)解:设 f(x)= e^x

$$:: f''(x) = e^x > 0 :: f(x)$$
下凸(严格)

故 f
$$\left(\frac{x_1+x_2}{2}\right)$$
 $\left(\frac{1}{2}$ (f $\left(x_1\right)$ +f $\left(x_2\right)$)

则
$$e^{\frac{x+y}{2}} < \frac{1}{2} (e^x + e^y)$$

(2)解:设 f(x)= x^n ,则 f'(x)= ln n x^n

$$: f "(x) = \ln^2 n x^n > 0 : f(x) 下凸 (严格)$$

故
$$f\left(\frac{x+y}{2}\right) < \frac{1}{2} (f(x) + f(y))$$

则
$$\left(\frac{x+y}{2}\right)^n < \frac{1}{2}(x^n + y^n)$$

- 3. 求下列函数的渐近线
- (1) $\Re: a_1 = \lim_{x \to +\infty} \frac{f(x)}{x} = 0$

$$b_1 = \lim_{x \to +\infty} (f(x) - ax) = 0$$

当 x→ - ∞时同理

故渐近线为 y=0

(2)
$$\Re: a_1 = \lim_{x \to +\infty} \frac{f(x)}{x} \lim_{x \to +\infty} (e^{\frac{2}{x}} + \frac{1}{x}) = 1$$

$$b_1 = \lim_{x \to +\infty} (f(x) - ax) = \lim_{x \to +\infty} x(e^{\frac{2}{x}} - 1) + 1$$

令
$$t=1/x$$
,则上式= $\lim_{t\to 0} \frac{e^{2t}-1}{t}+1$

用洛必达易得 b_1 =3,渐近线 1 为 y=x+3

$$a_1 = \lim_{x \to 0^-} \frac{f(x) - 1}{x} = 0, b = 1$$

渐近线 2 为 y=1

(3) **M**:
$$a_1 = \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$b_1 = \lim_{x \to +\infty} (f(x) - ax) = +\infty \quad \text{and} \quad \text{and} \quad \text{and} \quad \text{boundary}$$

当
$$x \to +0^+$$
时, $f(x)=-\infty$

故垂直渐近线为 x=0

(4) #:
$$a_1 = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} (2 + \frac{\arctan \frac{x}{2}}{x}) = 2$$

$$b_1 = \lim_{x \to +\infty} (f(x) - ax) = \frac{\pi}{2}$$

渐近线 1: $y=2x+\frac{\pi}{2}$

$$a_2 = \lim_{x \to -\infty} \frac{f(x)}{x} = 2$$

$$b_2 = \lim_{x \to +\infty} (f(x) - ax) = -\frac{\pi}{2}$$

渐近线 2: $y=2x-\frac{\pi}{2}$

4,

(1)

证明:根据下凸函数定义

则 f(
$$\lambda_1 x_1 + \lambda_2 x_2$$
) <= $\lambda_1 f(x_1) + \lambda_2 f(x_2)$

(2)

证明:

将
$$\lambda_3 x_3 + \lambda_2 x_2$$
合并为 $\lambda_4 x_4$

两次使用(1)结论可得结果

(3

$$\diamondsuit \lambda_k \lambda_{k+1} = \lambda_k, \frac{\lambda_k}{\lambda_k} x_k + \frac{X_{k+1}}{\lambda_k} x_{k+1} = x_k.$$

则
$$x_k$$
、 \in (a, b), $\lambda_1 + \lambda_2 + \dots + \lambda_k + \lambda_k$ 。 $= 1$

易知 x_1 , x_2 , x_{k-1} , x_k , 是(a, b)内不全相等 k 个数

由归纳法假设有

$$f(\lambda_1 x_1 + \lambda_2 x_2 + ... \lambda_k, x_k) < \lambda_1 f(x_1) + \lambda_2 f(x_2) + ... \lambda_k, f(x_k)$$

因为
$$\frac{\lambda_k}{\lambda_k}$$
, $\frac{\lambda_k+1}{\lambda_k} \in \mathbb{R}^+$, 且 $\frac{\lambda_k}{\lambda_k} + \frac{\lambda_k+1}{\lambda_k} = 1$

故上式<=
$$\frac{x_k}{\lambda_k}$$
f(xk)+ $\frac{\lambda_{k+1}}{\lambda_k}$

因此
$$f(\sum_{k=1}^{n} \lambda_{k} x_{k}) \langle = \sum_{k=1}^{n} f(\lambda_{k} x_{k}) \rangle$$