Problem R-5A. Recall that a subset E of \mathbb{R} is said to be *measurable* if whenever A is an arbitrary subset of \mathbb{R} , one has

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^C),$$

where m^* denotes Lebesgue outer measure and C denotes set complement.

Prove that a subset E of \mathbb{R} is measurable if and only if for every $\epsilon > 0$ there exists an open set $G \subseteq \mathbb{R}$ such that $E \subseteq G$ and $m^*(G \setminus E) < \epsilon$.

(=>) Assume E is measurable. Let E>0.

First assume n(E) (∞). Then we can find a countable collection of open intervals $\{E, E\}$ so that $E \subseteq \bigcup E_{k}$ and

Let G = UIK. Then 6 is open & E C G so

and by the excision property of outer measure,

$$M^*(G \setminus E) = M^*(G) - M^*(E)$$

as desired,

If $M^*(E) = \infty$, then we can express E as the disjoint union of a countable collection of measurable sets $\{E_K\}$, so that $M^*(E_K)$ $< \infty$ for each E_K . From before, we can

find an open set Gk for each Ex such that

Let $G = \bigcup G_k$. Then $E \subseteq G$ and

$$\langle E = (\bigcup G_{R}) \rangle E$$

$$\leq \bigcup (G_{R}) \langle E_{R} \rangle$$

(E) Assume that for any E>0, there is an open set G such that $E\subseteq G$ and $M^*(G)E)(E)$.

For each $K \in \mathbb{N}$, pick G_K such that $E \subseteq G_K$ and $M^*(G_K) \not\equiv \chi'/\chi$. Let $G = \Lambda G_K$. Then G is open and $E \subseteq G_K$.

As $G \setminus E \subseteq G_K \setminus E$ for any K, by monotonic:41

~ (6) E) 4 M* (6,1E)

$$\Rightarrow M^{\dagger}(G \setminus E) = 0$$

Since 6 is measurable & sets of measure zero are measurable, $E = 6 \ \land \ (6 \backslash E)^{C}$

is an intersection of measurable sets & is measurable.