Guantum PAC-learning model

Bshouty, Jackson 1999

OUTLINE

- (1) ATM
- 2 Fourier trongform over Boolean Cube
- 3 Quantum ExAMPLES DRACLE
- (4) learning DNF with OTM

AROOSA 27-12-2021 PTM

Q - set of states

Z - input alphabet

T - tape alphabet

Q - C: → C; (transition matrix)

where c (state, content, head)

<u>ATM</u>

Transition prob __ complex numbers/amplitudes
observation on $\leq a_i | c_i \rangle$ interservate

observe/measure - w.P |dol2, the outcome is 0 and state collapses to 10> - w.p 1812, the outcome 95 1 and state collapses to 197

Fourier transform over Boolean Cube

for any function $f: 20,15^m \rightarrow \mathbb{R}$,

uniform dist over instance space

2) ||f||₂ = ~ + + + = ~ | E [f²]

Fourier Basis

define (-1)where $a : x = \sum_{i=1}^{n} a_i x_i^2 \mod 2$ $\chi_a: \S_{0,1}\S^m \longrightarrow \S_{-1,+1}\S$ $\langle \chi_a, \chi_b \rangle = 3_{ab} \longrightarrow \chi_a$ an orthonormal basis for \mathbb{Z}_2^n

Fourier spectrum of a functions $f(x) = \frac{1}{\alpha \in 20,13^n} f(\alpha) \chi_{\alpha}(x)$ Fourier Coefficient of & at a 2 (a) = < f, xa7 = E[f. Xa]

Fourier Spectrum adds upto 1

f ca) > Probabilities

Learning Models

class F can be

- -> M leaenable using membership queries
- weakly M- launable
- → M-learnable by H; h ∈ H <
- -> Properly M-learnable <
- -> M-leamable w.r.tD = JDn

distribution-independent

for all distributions in distribution class

Strong E-approximator fer

Proper h∈ F

O RACLES

History of learning DNF $(m_1 + m_2 + \cdots + m_r : m_1 = 9_1 + 9_2 - \cdots 9_k)$ MONOTONE DNF learnable using both oracles -> Valiant 1984 Mon

KV, Mansour 1983 DNF weakly-learnable wirit $U(\xi_n U_m)$ using membership oracle - Mansour, Rudich 1994 DNF learnable wirt $U(\Xi U_n)$ using membership oracle → Jackson 1996

houter racheon 1999 EXAMPLES ORACLE Can M efficiently bean an E-approximation to f ?

QUANTUM EXAMPLES ORACLE

D(x) <x,f(x))

D(x) <x,f(x))

D(x) <x,f(x))

Anyle and output

from 2" possible

configurations

 $\leq \sqrt{DGX} \langle x, f(x) \rangle$ sample according to probability amplitude and observe !

> F is quantum - learnable if F is PAClearnable by a GTM using a GEX.

-> Every PAC-learnable function Class is quantum-learnable

TM efficient QTM EX efficient QTM QEX

Hushilevitz, Mausour 1993 O H For, D \rightarrow Za is a week-approximator g f w.r.t D

2) have efficient also to find La using polynomial number of membership queins when D=U

Jack	eson, Ru	dich 199	4		Δ.	N	0
	Use	boasting	to ge	t a	strong	leainer	0)
	DNF u	boosting orit U.			find	Xa to max	(imize
2	Algo	- define	Di	-	7		
vilger almon	stribution =	- get - comp	Di weak -!	learner E of h	h; w.	Examples	
050		- updat					

Behouty, Jackson 1999

O find The Using OLEK

\$ 2 (a) = E 2 [f xa]

Algo

- Start with empty - GEX (f, U)

- + 1 - Sample and repeat $\frac{fope}{\int_{2}^{n}} = \frac{1}{x} \left(\frac{1}{x}, f(x) \right)$

\(\frac{1}{2} \)
 \(\frac{1}{2}

- QEX can be used to efficiently weak-learn
- QEX can be used to get eeroes of weak-learner