viu .es

ACTIVIDAD 1

Máster en Big Data y Data Science

02MBID -Sistemas de Almacenamiento y Gestión Big Data

Nombre: Gonzalo Antonio Delgado Rubio

Fecha: 13/05/2024

1. Creación de Esquemas de una Base de Datos Orienta a Columnas

Bajo el modelo conceptual se pide satisfacer las siguientes consultas

Consultas a satisfacer

1. Obtener toda la información de libros publicados en un año en concreto.

Tabla1	
Columna	Primary Key
Libro_año	PK – Primary Key
Libro_ISBN	CK – Clustering Key
Libro_Titulo	
Libro_Temas	

A partir de la consulta a satisfacer se toma en consideración que año será la columna de partición y para mantener la unicidad de la tabla se debe considerar como clustering key la columna ISNB el cual corresponde al identificador único de libro según el modelo conceptual.

De este modo para satisfacer la consulta, se toma únicamente información de la entidad libros.

2. Obtener toda la información de los ejemplares de un libro según el título de este.

Tabla2	
Columna	Primary Key
Libro_Titulo	PK – Partition Key
Libro_ISBN	CK – Clustering Key
Ejemplar_Nro	CK – Clustering Key
Ejemplar_Status	

Dado que el título de libro será clave para satisfacer una consulta de tipo

Select * from tabla2 where libro_titulo=?

Debemos considerar a libro_titulo como la columna partición a manera de balancear los datos de esta tabla, también debemos adicional las columnas libro_isbn y ejemplar_nro como clustering key dado que por la relación 1-n establecido deberán formar parte de nuestra clave primaria.

Se refuerza el hecho que al ser el titulo de libro un nombre que pueda repetirse para establecer verdaderamente la unicidad deberíamos añadir el campo Libro_isbn.

Ejemplo

Harry Potter	ISBN123	Ejemplar1	
Harry Potter	ISBN123	Ejemplar2	

Quizás si Ejemplar_nro fuera una combinación de ISBN+Nro podría considerar únicamente a esta como clustering key.

3. Obtener toda la información de los libros escritos por un autor buscando por el nombre del autor.

Tabla3	
Columna	Primary Key
Autor_nombre	PK – Partition Key
Libro_ISBN	CK – Clustering Key
Autor_Cod	CK – Clustering Key
Libro_Titulo	
Libro_Año	
Libro_Temas	

Dada que la consulta a satisfacer tendrá una forma similar a la siguiente

Select * from tabla3 where autor_nombre=?

Debemos considerar a esta columna como PK y a las columnas Libro ISBN y Autor cod como clustering key para mantener la unicicidad en los registros considerando la relación de las entidades n-m entre libro y autor. Esto siguiente la metodología estudiada en el curso.

4. Obtener los usuarios que han tomado prestado el ejemplar de un libro según el título de un libro.

Tabla4		
Columna	Primary Key	
Libro_Titulo	PK – Partition Key	
Usuario_DNI	CK – Clustering Key	
Libro_ISBN	CK – Clustering Key	
Ejemplar_Nro	CK – Clustering Key	
Usuario_nombre		
Usuario_calle		
Usuario_ciudad		•

La consulta más probable para resolver será la siguiente:

Select * from tabla4 where libro_titulo = ?

Esto nos indica que la partition key para este caso será el titulo de libro. Este campo nos ayudará en la distribución de nuestros datos sobre la db. En este caso en particular, a manera de mantener la unicidad deberíamos añadir las columnas Usuario_DNI, Libro_ISBN y Ejemplar_Nro debido que la consulta nos pide información de los usuarios que han solicitado prestado algún ejemplar de un libro. Aquí se indica entonces que debemos ver la relación de las entidades Libro – Ejemplar – Usuario; que de acuerdo con el modelo conceptual se establece de la siguiente manera:

- Libro – Ejemplar: 1- n

- Ejemplar – Usuario: n – m

Tal y como se siguió en la consulta 2, en el caso de las entidades Libro-Ejemplar se están considerando ambas llaves de tabla como parte del cluster para evitar duplicidad. Para el caso Ejemplar – Usuario, se sigue la metodología establecida.

5. Considerando que el 60% de los usuarios están en la ciudad de Nueva York, haga la tabla óptima según rendimiento en la que se consulte por la ciudad del usuario su información

Tabla5	
Columna	Primary Key
Usuario_ciudad	PK – Partition Key

Usuario_DNI	CK
Usuario_ Nombre	
Usuario_calle	

Para este caso nos solicitan satisfacer una consulta como la siguiente:

Select * from tabla5 where ciudad=?

El problema describe que debemos optimizar la búsqueda según la ciudad, para lo cual nos indican que la mayor parte de los datos, 60%, se encuentra en la ciudad de Nueva York. Para este caso al no tener una mejor partición a ciudad esta se mantiene, dado que calle usuario sería un dato que no ayudaría mucho en la distribución de los datos. Quizás si se tuviera un campo del tipo zonificación o código de área podría ayudar a una mejor distribución de los datos.

Siguiente esta línea, debemos añadir la clave de la entidad como clustering key para mantener la unicidad de los registros.

6. Obtener cuantas veces se ha prestado un ejemplar según su número (nro).

Tabla6	
Columna	Primary Key
Ejemplar_nro	PK – Partition Key
Usuario_DNI	CK – Clustering Key
Cantidad	+

Para esta consulta nos solicitan cuantas veces se ha prestado un ejemplar según el nro de este. Aquí nos damos cuenta de que nos están pidiendo una agregación de los datos a manera de cantidad de veces que un libro ha sido prestado.

Para este caso consideraremos el ejemplar_nro como la clave partición para los datos y usuario dni como su clustering key a manera de llevar una cuenta de los prestamos por usuario sin que sea demasiado complicado poder realizar una sumarización total de los prestamos por ejemplar.

7. Obtener la información de los autores que hayan ganado un premio específico (p. ej. Premio Planeta)

Tabla7		
Columna	Primary Key	
Premios_Premio	PK – Partition Key	
Autor_Cod	CK – Clustering Key	
Autor_nombre		

Para este caso en particular y según el modelo conceptual el tipo de dato premios pertenece a un conjunto de datos por lo que si quisiéramos satisfacer una consulta de este tipo debemos generar una tabla por separado considerando a premios_premio como la partición de la tabla y al autor_cod como su clustering key para contener la unicicidad de los datos.

Finalmente se resolverá una consulta como la siguiente:

Select * from tabla7 where premio=?

8. Buscar según la fecha de préstamo los ejemplares prestados y el usuario que lo tomó prestado.

Tabla8		
Fecha	PK – Partition Key	
Ejemplar_nro	CK – Clustering Key	
Usuario_DNI	CK – Clustering Key	
Ejemplar_status		
Usuario_nombre		
Usuario_ciudad		
Usuario_calle		

La consulta que debemos resolver es la siguiente

Select * from tabla8 where fecha=?

De aqui nos damos cuenta que fecha debería ser la clave partición de la tabla. Para descubrir los campos de tipo cluster que nos ayuden a mantener la unicidad de la tabla debemos ver la relación de las entidades. Para lo cual se tiene

- Usuario – Ejemplar: n – m

Por lo que la teoría nos indica que debemos traer las claves de estas entidades y añadir como clustering key. Para lo cual tenemos a ejemplar_nro y usuario_dni como tal.

