Sequence Alignment Basics

Sequence alignment is the process of arranging **DNA**, **RNA**, **or protein sequences** to identify **regions of similarity**. These similarities may indicate:

- Evolutionary relationships between organisms.
- Functional or structural similarities between genes/proteins.
- **Predicted functions** of unknown sequences.

Imagine comparing two essays. You align sentences **word by word** to see which parts are similar or different. Sequence alignment works in the same way for biological sequences.

Types of Sequence Alignment

i. Global Alignment

- Aligns the **entire length** of two sequences.
- Best for sequences that are similar in length.
- Algorithm: Needleman–Wunsch.

Compare two full DNA barcodes to see overall similarity.

Algorithm: Needleman-Wunsch.

		A	T	G	C	T
	0	-2	-4	-6	-8	-10
A	-2	1	- <mark>1</mark>	-3	-5	-7
G	-4	-1	0	0	-2	-4
C	-6	-3	-2	-1	1	-1
T	-8	-5	-2	-3	-1	2

0	- 2		
<mark>-2</mark>	0		
<mark>-4</mark>		1	1

-2	-4
1	0

-1	-6	-3

Result:

A	T	G	C	T
A	-	G	C	T

ii. Local Alignment

- Finds the **best matching region** between two sequences.
- Useful when one sequence is **much longer** than the other.
- **Algorithm:** Smith–Waterman.

Find a matching paragraph in two different books.

		A	T	G	C	T
	0	0	0	0	0	0
A	0	1	0	0	0	0
G	0	0	0	1	0	0
C	0	0	0	0	2	0
T	0	0	1	0	0	3

0	0		
<mark>-2</mark>	<mark>-2</mark>	1	_
0	0	1	

0	0		
1	0		
- 1		<mark>-2</mark>	-1
0		0	0

[negative values becomes zero]

Result: [Choose the values that are greater than 1 in the matrix, should move up to 0]

A	T	G	C	T
	A	G	C	T

3. Scoring Matrices

To quantify similarity and penalize mismatches or gaps.

Rules (simple scoring example)

- **Match:** +1
- Mismatch: -1
- Gap (insertion/deletion): -2

Example:

Align sequences

ATGC

with

ATTC

Common Matrices

- PAM (Point Accepted Mutation): Measures evolutionary distance.
- BLOSUM (BLOcks Substitution Matrix): Measures amino acid substitutions; widely used for proteins.

Use **PAM** for closely related sequences, **BLOSUM** for more divergent protein sequences.

Practical Session: Pairwise Alignment (Basics)

Perform pairwise sequence alignment manually and with tools.

1. Take two short DNA sequences:

```
Seq1: ATGCT
Seq2: ATTT
```

- 2. Try to align them manually (introduce gap).
- 3. Calculate score using simple rules:
 - \circ Match = +1, Mismatch = -1, Gap = -2.
- 4. Use EMBOSS Needle (global)

```
and EMBOSS Water (local).
```

Tasks:

- Compare results of Needle vs Water.
- Which alignment gives a better score for partial matches?

Quick Review Questions

- 1. What's the main difference between global and local alignment?
- 2. Why do we need scoring matrices?
- 3. Which matrix (PAM or BLOSUM) is better for protein sequence alignment?