شناسایی آماری الگو بخش دوازدهی بخش ۱۰-۷۱۱ (۱۰-۱۹۱)

الله المال ا

دانشگاه شهید بهشتی پژوهشکده ی فضای مجازی بهار ۱۳۹۶ لعمد معمودی ازناوه

فهرست مطالب

- شیوه های مختلف ارزیابی دستهبند
- روشهای تقسیم مجموعی دادهها
 - کارایی
 - معیارهای ارزیابی

ييشگفتار

 با توجه به الگوریتههای دستهبندی مختلف و تأثیر هایپرپارامترها بر روی عملکرد یک روش دستهبندی مقایسه و انتخاب بهترین الگوریته اجتنابناپذیر است.

ارزیابی کارایی

- بررسی نتیجهی دستهبند بر روی دادههای آموزشی پذیرفتنی نیست، بلکه باید قدرت تعمیهپذیری روش را مورد ارزیابی قرار داد.
- معیار کارایی یک الگوریتم، خطای دستهبندی بر روی داده های آزمون(test) است.
- داده هایی که در مرحلهی آموزش مورد استفاده قرار نگرفته اند.
- متی با جدا کردن دادههای آموزش و آزمون یک بار بررسی کفایت نمیکند.
- ممکن است مجموعی دادهها کم بوده و دارای دادههایی خاص(نویز و دادههای برونهشته) باشند که بر نتیجی کلی اثر گذاز هستند.
 - الگوریتی آموزش به مقادیر اولیه وابسته باشد.

ارزیابی کارایی

- برای ایجاد یک دستهبند، یک الگوریته دستهبندی و یک مجموعه دادهی آموزشی مورد استفاده قرار میگیرد.
- برای کاهش اثر عوامل تصادفی(دادههای آموزشی، وزنهای اولیه) یک الگوریته برای ایجاد دستهبندهای متفاوت استفاده میشود.
- ارزیابیها بر اساس توزیع فطا دستهبندهای متفاوت صورت میپذیرد.

ارزیابی کارایی(ادامه...)

 باید توجه داشت که اعتبار این ارزیابی محدود به مجموعه دادهی مورد استفاده و کاربرد میشود و به معنای مقایسی کلی نمیباشد.
 No Free Lunch Theorem

- میچ الگوریتی بهینهای برای تمای مالات وجود ندارد.
 - معمولا داده به سه قسمت تقسیم میشود.
 - یک قسمت برای آزمون
 - دو قسمت برای آموزش و اعتبارسنجی
- شبکهعصبی: داده آموزشی برای تنظیه وزنها، دادههای اعتبارسنجی برای تنظیم واحدهای مخفی و نرخ یادگیری و دادههای آزمون برای ارزیابی نهایی
 - Knn: برای تنظیم k از دادههای اعتبارسنجی استفاده میشود.

Cross Validation

در تقسیم داده ها به دو قسمت باید توجه داشت
 که توزیع داده ها مفظ شود، بدین ترتیب دانش
 بیشین در مورد یک کلاس دستخوش تغییر نخواهد
 شد.
 stratification

K-fold cross validation

در این شیوه مجموعی دادهها به ه قسمت مساوی تقسیم میشود. هر بار یک قسمت برای اعتبارسنجی و مابقی به عنوان مجموعی آموزشی

$$\mathcal{V}_{\kappa} = \mathcal{X}_{\kappa} \quad \mathcal{T}_{\kappa} = \mathcal{X}_{1} \cup \mathcal{X}_{2} \cup \cdots \cup \mathcal{X}_{\kappa-1}$$

Dataset

Train Test

Leave-one-out (N-fold cross validation)

- یک مالت خاص k-fold است (k=N).
- این شیوه معمولا در مواردی مورد استفاده قرار میگیرد که تهیهی دادهی برچسب خورده دشوار باشد. مانند تشخیصهای پزشکی

5×2 Cross-Validation

$$\mathcal{T}_1 = \mathcal{X}_1^{(1)}$$
 $\mathcal{V}_1 = \mathcal{X}_1^{(2)}$ $\mathcal{T}_2 = \mathcal{X}_1^{(2)}$ $\mathcal{V}_2 = \mathcal{X}_1^{(1)}$

$$\mathcal{T}_2 = \mathcal{X}_1^{(2)}$$
 $\mathcal{V}_2 = \mathcal{X}_1^{(1)}$ $\mathcal{T}_3 = \mathcal{X}_2^{(1)}$ $\mathcal{V}_3 = \mathcal{X}_2^{(2)}$ $\mathcal{T}_4 = \mathcal{X}_2^{(2)}$ $\mathcal{V}_4 = \mathcal{X}_2^{(1)}$

$$\mathcal{T}_9 = \mathcal{X}_5^{(1)}$$
 $\mathcal{V}_9 = \mathcal{X}_5^{(2)}$ $\mathcal{T}_{10} = \mathcal{X}_5^{(2)}$ $\mathcal{V}_{10} = \mathcal{X}_5^{(1)}$

Bootstrapping

- در این شیوه ۱۱ نمونه با جایگذاری انتخاب میشود.
 - اعتمال انتخاب یک نمونه 1/N است.
- احتمال این که یک نمونه ۱ بار انتخاب نشود:

$$\left(1 - \frac{1}{N}\right)^N \approx e^{-1} = 0.368$$

در نتیجه میتوان گفت هر بار مجموعهی آموزشی تنها ۳۷ درصد دادهها را در بر میگیرد.

ارزیابی شیوههای مختلف دستهبندی

Performance

- کارایی:
- پیشبینی درست برچسب کلاس
- Time and Space complexity

- پیچیدگی زمانی و مکانی:
- زمان (مافظه) مورد نیاز برای آموز \dot{m}
- زمان (مافظه) مورد نیاز برای دستهبندی

Robustness

- مقاومت:
- مقاومت در برابر نویز(برچسبهای اشتباه)، عدی وجود برخی مؤلفهها

Interpretability

- تفسیریذیری:
- امکان استخراج دانش
- معیارهای دیگری نظیر ریسک دستهبندی و سادگی نیز دارای اهمیت میباشند.

معیارهای ارزیابی

Confusion Matrix

ماتریس درههریفتگی(CM): در این ماتریس مؤلفهی (CM_{i,j} حنصر از مؤلفهی از دستهی از برچسب کلاس اله به عنوان عضوی از دستهی ز برچسب خورده است.

	Ball	Car	Dri	Feed	Left	right	Pet	Shake	Sniff	Walk
Ball	4.93	0	0	0.03	0.01	0	0	1.08	0.77	0.18
Car	0	12.62	0.06	0.03	0.04	0	0.07	0	0.18	0
Drink	0	0.45	3.26	0.35	0.02	0.01	0.17	0	0.72	0.02
Feed	0.2	0.24	0.46	7.61	0.95	0.3	1.84	0.2	0.35	0.85
LookLeft	0.51	0.94	0	1.01	3.76	2.43	0.21	0.36	0.05	1.73
LookRight	0	1.04	0	0.33	0.72	4.66	0.38	0	0.43	1.44
Pet	0	0.57	0	0.65	0.17	0.03	11.47	0.01	0.1	0
Shake	0.09	0	0	0.08	0.01	0	0.23	8.59	0	0
Sniff	0.04	0.06	0.01	0.07	0.09	0.09	0.04	0	13.14	0.46
Walk	0.03	0	0.02	0.05	0.45	0.11	0	0	0.85	11.49

معیارهای ارزیابی(ادامه...)

• در دستهبندی دوکلاسی این ماتریس مهار عنصر دارد:

- مثبت صمیح –

• شخص بیمار، به درستی بیمار تشخیص داده شود.

– مثبت کاذب: – مثبت کاذب:

• شخص سالم، به اشتباه بیمار تشخیص داده شود.

– منفی صمیح –

• شخص سالم، به درستی سالم تشخیص داده شود.

False Negative – منفی کاذب

شخص بیمار، به اشتباه سالم تشخیص داده شود.

معیارهای ارزیابی(ادامه...)

معیارهای ارزیابی(ادامه...)

 $ext{couracy}$: نسبت نمونههای که برچسب درست خوردهاند درستی (accuracy): نسبت نمونههای که برچسب درست خوردهاند به کل نمونهها

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} = \frac{TP + TN}{P + N}$$

$$error_rate = 1 - accuaracy = \frac{FP + FN}{P + N}$$
 (error rate) نرخ خطا •

True Positive Rate(TPR)

• مساسیت(Sensitivity)، یادآوری(recall):

$$sensitivity = \frac{TP}{TP + FN} = \frac{TP}{P}$$

• تشمیص(ویژگی)(specificity):

specificity =
$$\frac{TN}{TN + FP} = \frac{TN}{N}$$

True Negative Rate(TNR)

مساسیت به معنای امتمال درست تشفیص بیماری است تشفیص به معنای امتمال درست تشفیص سالم بودن است

منمنی مشخصه عملکرد سیستی

Receiver Operating Characteristics (ROC)

• این منمنی رابطهی بین TPR و FPR را نشان میدهد، زمانی که مدا ستانهی جداسازی تغییر میکند.

- در واقع این منمنی ابزاری است که میتواند برای انتخاب مدا ستانهی بهینه به کار رود.

false negatives true negatives true positives false positives selected elements How many selected How many relevant items are relevant? items are selected? Precision = -Recall = -

معیارهای ارزیابی(ادامه...)

• یادآوری(recall):

$$recall = \frac{TP}{TP + FN} = \frac{TP}{P}$$
:(precision) دقت

$$precision = \frac{TP}{TP + FP}$$

• معيار F₁ Score) •

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

دمعيار (F₁ Score) اد

- این معیار در واقع میانگین هارمونیک دقت و یادآوری است:
 - در بین میانگینهای فیثاغورثی کهترین مقدار را دارد.

$$F_{1} = \frac{2 \operatorname{precision} \times \operatorname{recall}}{\operatorname{precision} + \operatorname{recall}} = \frac{2}{\frac{1}{\operatorname{precision}} + \frac{1}{\operatorname{recall}}}$$

با توجه به این با تغییر مد آستانه دو مقدار دقت و یادآوری تغییر میکنند، معمولا از این معیار برای مقایسی دستهبندها استفاده میشود.

گزارش میانگین هر معیار

$$Recall = \frac{\left| \{ Forged \ Pixels \} \cap \{ Detected \ Pixels \} \right|}{\left| \{ Forged \ Pixels \} \cap \{ Detected \ Pixels \} \right|}$$

$$Precision = \frac{\left| \{ Forged \ Pixels \} \cap \{ Detected \ Pixels \} \right|}{\left| \{ Detected \ Pixels \} \right|}$$

$$F_1$$
=2 Recall×Precision Recall+Precision Recall*