

# Mathematik I (Inf.) Funktionen (Teil 3)

Jens Hüppmeier

# **Bsp.: Spiegelung an der x-Achse**





- Spiegelung an x,y-Achsen, Ursprung
- Verschiebung in x.y-Richtungen
- Streckung/Stauchung in x,y-Richtungen



# **Spiegelung**

#### Rückblick: Symmetrie

Eine Funktion mit einem zum Nullpunkt symmetrischen Definitionsbereich *D* heißt

- **gerade**, wenn für jedes  $x \in D$  gilt: f(-x) = f(x)
- **ungerade**, wenn für jedes  $x \in D$  gilt: f(-x) = -f(x)



#### Spiegelung an der y-Achse

$$f^*(x) = f(-x)$$

Bsp.: 
$$f(x) = x^2 - 2x + 3$$

$$f^*(x) = f(-x)$$

$$f^*(x) = x^2 + 2x + 3$$





# Spiegelung am Ursprung

$$f^*(x) = -f(-x)$$

Bsp.: 
$$f(x) = x^2 - 2x + 3$$

$$f^*(x) = -f(-x)$$

$$f^*(x) = -x^2 - 2x - 3$$





#### Spiegelung an der x-Achse

$$f^*(x) = -f(x)$$

Bsp.: 
$$f(x) = x^2 - 2x + 3$$

$$f^*(x) = -f(x)$$

$$f^*(x) = -x^2 + 2x - 3$$





#### Verschiebung

Eine Verschiebung des Graphen in einem Bezugssystem lässt sich auch interpretieren als Verschiebung des Bezugssystems bei feststehendem Graphen.



#### Verschiebung

Eine Verschiebung des Graphen in einem Bezugssystem lässt sich auch interpretieren als Verschiebung des Bezugssystems bei feststehendem Graphen.



#### Verschiebung in x-Richtung um den Wert $x_0$

Bsp.: 
$$f(x) = x^2 - 2x + 3$$
  
 $x_0 = -2$ 

$$f^*(x) = (x+2)^2 - 2(x+2) + 3$$
$$f^*(x) = x^2 + 2x + 3$$



 $f^*(x) = f(x - x_0)$ 



# Verschiebung in y-Richtung um den Wert $y_0$

Bsp.: 
$$f(x) = x^2 - 2x + 3$$
  
 $y_0 = 5$ 

$$f^*(x) = x^2 - 2x + 3 + 5$$

$$f^*(x) = x^2 - 2x + 8$$

$$f^*(x) = f(x) + y_0$$





# Verschiebung in y-Richtung um den Wert $y_0$

Bsp.: 
$$f(x) = x^2 - 2x + 3$$
  
 $y_0 = 5$ 

$$f^*(x) = x^2 - 2x + 3 + 5$$

$$f^*(x) = x^2 - 2x + 8$$

$$f^*(x) = f(x) + y_0$$





# **Dehnen und Stauchen in x-Richtung** $f^*(x) = f(c \cdot x)$

$$f^*(x) = f(c \cdot x)$$





# **Dehnen und Stauchen in y-Richtung** $f^*(x) = c \cdot f(x)$

$$f^*(x) = c \cdot f(x)$$



