2008年复变试题共五页

- 一. 选择题(每题3分,共27分)
- 1. 下列函数中,在有限复平面上解析的函数是()

(A)
$$x^2 - y^2 + (2xy - y^2)i$$
 (B) $x^2 + y^2i$

(C)
$$2xy + i(y^2 - x^2 + 2x)$$
 (D) $x^3 - 3xy^2 + 3x^2yi - y^3i$

2 设 C 是从
$$i$$
 到 $\frac{i}{2}$ 的直线段,则积分 $\int_{C} e^{\pi z} dz = ($)

(A)
$$\frac{1}{\pi}$$
 (B) $-\frac{1}{\pi}$ (C) $-\frac{1}{\pi}(1+i)$ (D) $\frac{1}{\pi}(1+i)$

3. 设 C 为曲线 C_1 : 从 - 1 到 1 的下半单位圆周和曲线 C_2 : 从 1 到 - 1 的直线构成的封闭

曲线,则
$$\int_C (\bar{z}-1)dz = ($$
)

(A)
$$i\pi$$
 (B) $-i\pi$ (C) 0 (D) π

4.设函数 zctgz 的泰勒展开式为 $\sum_{n=0}^{\infty} c_n (z-\frac{\pi}{2})^n$,那么幂级数 $\sum_{n=0}^{\infty} c_n (z-\frac{\pi}{2})^n$ 的收敛半径

$$R = ($$

$$(A) + \infty (B) 1 (C) \frac{\pi}{2} (D) \pi$$

5.设
$$f(z) = x^2 - y^2 - x + i(2xy - y^2)$$
,则 $f'(1 + \frac{i}{2}) = ($

(A)
$$1-i$$
 (B) $1+i$ (C) $1-\frac{1}{2}i$ (D) $1+\frac{1}{2}i$

- 6.下列命题中,正确的是(
- (A)设 v_1,v_2 在区域D内均为u的共轭调和函数,则必有 $v_1=v_2$
- (B)解析函数的实部是虚部的共轭调和函数
- (C) 设 f(z) = u + iv 在区域 D 内解析,则 $\frac{\partial u}{\partial x}$ 为 D 内的调和函数
- (D)以调和函数为实部与虚部的函数是解析函数

7.设
$$z = 0$$
为函数 $\frac{1 - e^z}{z - \sin z}$ 的 m 级极点,那么 $m = ($

8.设函数 f(t) 的拉普拉斯变换 $L[f\{t\}] = F(s)$,则 $L[\int_0^{3t} f(t)dt] = ($

(A)
$$\frac{1}{3s}F(\frac{s}{3})$$
 (B) $\frac{1}{s}F(\frac{s}{3})$ (C) $\frac{1}{3s}F(s)$ (D) $\frac{1}{s}F(s)$

9.设函数 f(t) 的傅立叶变换为 $F[f(t)] = F(\omega)$,则函数 (t-2)f(-2t) 的傅立叶变换为

()

(A)
$$-\frac{i}{4}F'(-\frac{\omega}{2}) - F(-\frac{\omega}{2})$$
 (B) $\frac{i}{4}F'(-\frac{\omega}{2}) - F(-\frac{\omega}{2})$

$$(C) -\frac{i}{2}F'(-\frac{\omega}{2}) - F(-\frac{\omega}{2}) \qquad (D) \frac{i}{2}F'(-\frac{\omega}{2}) - F(-\frac{\omega}{2})$$

二. 填空题(每题4分, 共40分)

1.已知
$$z = (\frac{2i}{-1+i})(\frac{1-i}{1+i})^5$$
,则 $z^6 =$ ______

2.复数*i*¹⁺ⁱ 的主值为______

3 . 解析函数
$$f(z) = u + iv$$
 的实部 $u = x^3 - 3xy^2$,则

$$\int_0^{2\pi} \frac{1 + 2\cos\theta}{5 + 4\cos\theta} d\theta = \underline{\hspace{1cm}}$$

5.设
$$f(z) = \int_{|\zeta|=1} \frac{\cos \zeta}{(\zeta-z)^3} d\zeta$$
, 其中 $|z| \Longrightarrow 1$,则 $f'(\frac{\pi}{6}) =$

$$6. \int_{|z|=3} \frac{1}{z^2(z+1)} dz =$$

7.函数
$$\frac{e^z}{1-z}$$
 在 $z=0$ 处的泰勒展开式(至少写到含 z^3 的项)为 ______

8.在扩充复平面上函数
$$f(z) = \frac{\sin z}{z^4}$$
 的孤立奇点为(写出类型) ______

在孤立奇点处留数为_____

9.已知
$$F(s) = \frac{e^{\frac{\pi}{3}s}}{s^2 + 1}$$
,则 $F(s)$ 的拉普拉斯逆变换为 ______

10 设
$$F(\omega) = \frac{2}{\omega^2 + 1}$$
,则 $F(\omega)$ 的傅立叶逆变换为 ______

三.
$$(10 \, \text{分})$$
 将函数 $f(z) = \frac{1}{(z-i)z^2}$ 在适当的圆环域内展开成含 $z-i$ 的幂的洛朗级数。

四.
$$(9\, 9)$$
 计算函数 $f(t) = \begin{cases} 0, & -\infty < t < -1 \\ -1, & -1 < t < 0 \\ 1, & 0 < t < 1 \end{cases}$ 的傅立叶变换,并计算广义积分 $0, & 1 < t < +\infty$

$$\int_0^{+\infty} \frac{2(1-\cos\omega)}{\omega} \sin\omega t \ d\omega$$
的值。

五. $(8 \, \beta)$ 用拉普拉斯变换及其逆变换求解微分方程组 $\begin{cases} x'(t) + y''(t) = \delta(t-1) \\ 2x(t) + y'''(t) = 2u(t-1) \end{cases}$ 满足初始

条件
$$\begin{cases} x(0) = y(0) = 0 \\ y'(0) = y''(0) = 0 \end{cases}$$
的解。

六 . (6 分) 如 果 |z|<1 内 f(z) 解 析 且 |f(z)| $\leq \frac{1}{1-|z|}$, 证 明

$$|f^{(n)}(0)| \le 2^{n+1} n! \quad (n = 1, 2, \cdots)$$

答案

- 一. 选择题
- 1.D 2.D 3.A 4.C 5.B 6.C 7,D 8.B 9.A
- 二. 填空

1.
$$-8i$$
 2. $e^{\frac{\pi}{2}i - \frac{\pi}{2}}$ 3. $z^3 + ci$, $c \in R$

4. 0, 0 5.
$$\frac{\pi}{2}i$$
, 0
6. 0 7.1+z+z²+z³+...

6. 0
$$7.1 + z + z^2 + z^3 + \cdots$$

8.
$$z = 0$$
 (三级极点) , $z = \infty$ 本性奇点 ; $\text{Res}[f(z), 0] = -\frac{1}{6}, \text{Res}[f(z), \infty] = \frac{1}{6}$

$$9. \quad \sin(t-\frac{\pi}{3})u(t-\frac{\pi}{3})$$

10.
$$e^{-|t|}$$

三. 解:
$$f(z) = \frac{1}{(z-i)z^2}$$
 奇点为 $z = i, z = 0$

(1)
$$0 < |z - i| < 1$$

$$f(z) = \frac{1}{(z-i)} \bullet \frac{1}{z^2} \,,$$

$$\frac{1}{z^2} = (-\frac{1}{z})' = -(\frac{1}{z-i+i})' = -(\frac{1}{i(1+\frac{z-i}{i})})' = i(\frac{1}{1-(z-i)i})'$$

$$=i(\sum_{n=0}^{\infty}(z-i)^ni^n)'=\sum_{n=1}^{\infty}i^{n+1}n(z-i)^{n-1}$$

$$= i(\sum_{n=0}^{\infty} (z-i)^n i^n)' = \sum_{n=1}^{\infty} i^{n+1} n(z-i)^{n-1}$$
所以 $f(z) = \frac{1}{z-i} \sum_{n=1}^{\infty} i^{n+1} n(z-i)^{n-1} = \sum_{n=1}^{\infty} i^{n+1} n(z-i)^{n-2}$

(2)
$$|z-i| > 1$$
, $f(z) = \frac{1}{(z-i)} \cdot \frac{1}{z^2}$

$$\frac{1}{z^{2}} = (-\frac{1}{z})' = -(\frac{1}{z-i+i})' = -(\frac{1}{(z-i)}\frac{1}{1+\frac{i}{z-i}})' = -(\frac{1}{(z-i)} \bullet \sum_{n=0}^{\infty} (-1)^{n} \frac{i^{n}}{(z-i)^{n}})'$$

$$= -(\sum_{n=0}^{\infty} \frac{(-i)^{n}}{(z-i)^{n+1}})' = \sum_{n=0}^{\infty} \frac{(-i)^{n} (n+1)(z-i)^{n}}{(z-i)^{2n+2}}$$

$$= \sum_{n=0}^{\infty} \frac{(n+1)(-i)^{n}}{(z-i)^{n+2}}$$

$$f(z) = \sum_{n=0}^{\infty} \frac{(n+1)(-i)^n}{(z-i)^{n+3}}$$

四. 解:
$$F[f(t)] = \int_{-1}^{0} -e^{-i\omega t} dt + \int_{0}^{1} e^{-i\omega t} dt = \frac{2}{i\omega} - \frac{2\cos\omega}{i\omega}$$

$$\therefore f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (\frac{2}{i\omega} - \frac{2\cos\omega}{i\omega}) e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{2}{i\omega} (1 - \cos\omega) (\cos\omega t + i\sin\omega t) d\omega$$

$$= \frac{-i}{\pi} \int_{-\infty}^{+\infty} \frac{(1 - \cos\omega) \cos\omega t + i(1 - \cos\omega) \sin\omega t}{\omega} d\omega$$

$$= \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{(1 - \cos\omega) \sin\omega t - i(1 - \cos\omega) \cos\omega t}{\omega} d\omega$$

$$= \frac{2}{\pi} \int_{0}^{+\infty} \frac{(1 - \cos\omega) \sin\omega t}{\omega} d\omega$$

$$= \frac{2}{\pi} \int_0^{+\infty} \frac{(1 - \cos \omega) \sin \omega t}{\omega} d\omega$$

$$= \frac{2}{\pi} \int_0^{+\infty} \frac{(1 - \cos \omega) \sin \omega t}{\omega} d\omega = \pi f(t) = \begin{cases} 0, & -\infty < t < -1, t = 0, 1 < t < \infty \\ -\frac{\pi}{2}, & t = -1 \\ -\pi, & -1 < t < 0 \\ \pi, & 0 < t < 1 \end{cases}$$

$$= \frac{\pi}{2}, \quad t = 1$$

五. 解: 设L[x(t)] = X(s), L[y(t)] = Y(s), 取 laplace 变换得

$$\begin{cases} sX(s) + s^{2}Y(s) = e^{-s} \\ 2X(s) + s^{3}Y(s) = \frac{2}{s}e^{-s} \end{cases}$$

$$\therefore \begin{cases} 2X(s) + 2sY(s) = \frac{2e^{-s}}{s}, \\ 2X(s) + s^{3}Y(s) = \frac{2}{s}e^{-s}, \end{cases}$$

$$(s^3 - 2s)Y(s) = 0, \therefore Y(s) = 0;$$

$$sX(s) = e^{-s}$$
 $\therefore X(s) = \frac{e^{-s}}{s}$;

$$\therefore \begin{cases} x(t) = u(t-1) \\ y(t) = 0 \end{cases}$$

六. 证明:

$$|f^{n}(0)| = \frac{n!}{2\pi i} \oint_{C} \frac{f(z)}{z^{n+1}} dz | \le \frac{n!}{2\pi} \oint_{C} \frac{|f(z)|}{|z|^{n+1}} ds \le \frac{n!}{2\pi} \oint_{C} \frac{1}{1-|z|} \frac{1}{|z|^{n+1}} ds$$

$$= \frac{n!}{2\pi} \frac{1}{(1-r)r^{n+1}} \oint_C ds = \frac{n!}{2\pi} \frac{1}{(1-r)r^{n+1}} 2\pi r = \frac{n!}{(1-r)r^n} = \frac{1}{1-r} (\frac{1}{r})^n n!$$

令
$$r = \frac{1}{2}$$
,即得| $f^{n}(0) | \le 2^{n+1} n!$