Exercícios - Imagem Direta e Inversa

José Antônio O. Freitas

MAT-UnB

$$g'(x) = \{ z \in A \mid g(t) \in X \} \subseteq A$$

Exercício

Seja
$$g: \underline{A \to B}$$
 uma função e sejam $\underline{X}, Y \subset \underline{B}$ Mostre que $g^{-1}(X - Y) = g^{-1}(X) - g^{-1}(Y)$.

Solvais: PRE ci samos mosma i) $g^{-1}(X-Y) = g^{-1}(X) - g^{-1}(Y)$ ii) $g^{-1}(X) - g^{-1}(Y) = g^{-1}(X-Y)$.

PANA MOSTMAR (i) SETA $t \in g^{-1}(X-Y)$. Da, $g(t) \in X-Y$. OU SEJA $g(t) \in X \in g(t) \notin Y$. LOGO, $t \in g^{-1}(X) \in t \notin g^{-1}(Y)$.

JSTO
$$\frac{1}{\epsilon}$$
, $t \in g^{-1}(X) - g^{-1}(X)$.

ASSIN, $g^{-1}(X-Y) = g^{-1}(X) - g^{-1}(Y)$.

A GODA PARA MUSTMAN (ii) SEJA

 $3\epsilon g^{-1}(X) - g^{-1}(Y)$. DAI, $3\epsilon g^{-1}(X)$

E z & g (Y). 2060, g(z) EX € g(3) & Y. OU SETA,

ASSIM $g^{-1}(X) - g^{-1}(X) \subseteq g^{-1}(X-Y)$.

 $g(z) \in X - Y$. ISTO E', $z \in g^{2}(X-Y)$.

$$g^{-1}(X-Y)=g^{-1}(X)-g^{-1}(Y).$$

Exercício

Sejam f $A \rightarrow B$ uma função e $Q \subseteq A$. Mostre que se f é injetora, então $f(P \cap Q) = f(P) \cap f(Q)$.

$$f(P)=|f(x)|x\in P$$
 = B

SOLUÇÃO: PRECISAMOS MOSTRAM QUE

i) f(PnO) = f(P) n f(O) ~

iv) f(P) n f(O) = f(Pn Q) &

PAMA MOSTMAR (i) SEJA $f \in f(R_{0})$.

PA' EXISTE $x \in P_{0}$ TAL QUE f(x) = t.

ASSIM XEP E f(x)-t E XED

ef(x)=t or exting A $t \in f(P) \in t \in f(Q)$. Assim

 $f(RO) \leq f(P) \cap f(O)$.

tef(P) n f(0). 1060

AGOM PAM MOSTRAN (ii) SETA ze f(P) n f(D). ASSim ze f(P) EZEP(Q). DAÍ EXISTE X, EP TAL QUE P(Ns)=3 E EXISTE MZEQ TAL QUO f(M2)=J. L060 $f(x_3) = f(x_2).$ MAS, POR HIPÓTESE PÉ JUVETO-RA, DAÍX, = X2. ASSIM

 $\chi_{s} = \chi_{z} \in P_{\Omega} \otimes e f(\chi_{s}) = f(\chi_{s}) = 3.$ $1060, 3 \in f(P_{\Omega} \otimes s). Assim$

 $f(P) \cap f(Q) \subseteq f(R \cap Q).$

BONTANTO, f(PnD)= f(P) n f(D).