K-MEANS CLUSTERING

DEVELOPED BY: VISHRUTH KHARE ROLL NUMBER: 2K18/CO/393

IDE: PyCharm

Compiler: Terminal (Python 3.6)

DataSet: Mall Customers

Sample Dataset:

1	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
2	0001	Male	19	15	39
3	0002	Male	21	15	81
4	0003	Female	20	16	6
5	0004	Female	23	16	77
6	0005	Female	31	17	40
7	0006	Female	22	17	76
8	0007	Female	35	18	6
9	0008	Female	23	18	94
10	0009	Male	64	19	3
11	0010	Female	30	19	72
12	0011	Male	67	19	14
13	0012	Female	35	19	99
14	0013	Female	58	20	15
15	0014	Female	24	20	77
16	0015	Male	37	20	13
17	0016	Male	22	20	79
18	0017	Female	35	21	35
19	0018	Male	20	21	66
20	0019	Male	52	23	29
21	0020	Female	35	23	98
22	0021	Male	35	24	35
23	0022	Male	25	24	73
24	0023	Female	46	25	5

Source Code:

```
# K-Means Clustering

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Mall_Customers.csv')
```

```
X = dataset.iloc[:, [3, 4]].values
# y = dataset.iloc[:, 3].values
# Splitting the dataset into the Training set and Test set
"""from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"""
# Feature Scaling
 """from sklearn.preprocessing import StandardScaler
sc X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)"""
# Using the elbow method to find the optimal number of clusters
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
  kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
  kmeans.fit(X)
  wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
# Fitting K-Means to the dataset
kmeans = KMeans(n_clusters = 5, init = 'k-means++', random_state = 42)
y_kmeans = kmeans.fit_predict(X)
# Visualising the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = \text{'magenta'}, label = \text{'Cluster 5'}
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids'
plt.title('Clusters of customers')
```

```
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```

OUTPUT:

