Bayesian Classification

= {age=youth, income=wedien, generality=frid, chalent=spes, credit=ratiy=frid, buy-complex=?} P(bug-conjuils=y8)=9/4 = 0.643

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

1(playtennis=yes)-9/14-0.643

P(pleyterni3 = no) = 5/14 = 0.357

Q. (Out took = sunny temperature = vol, Humidity = high, asind = strong glay termis = ?)

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Temperatur	.1 Ves	INO	Humidity	Yes	
Otdiook Yes No	Hot	2/5	45	High	3/9	
Sunny 2/9 3/5	- Nild	40		Normal	6/5	1
Overcast 46 0 Rain 36 215	(00)	<u> </u>		wind	•	_
Raus 1-6 (-13 (•		, , -	Strang	3/9	
•				6)00K	\overrightarrow{H}	_

1 (out look = sunry | Play terris = Yes) = 2/9 = 0.222 P(P(temp=cool | Play tennis = Yes) = 3/9 = 0.333

P(hamidity=high/playtenine=1/es)=3/g=0.333

P(wird=stray/playtenins=19) = 3/3 = 0.333

P(X/play termis=yes) = 0.222x 0.333x 0.333 + 0.333 = 0.0082

P(X | playtopiny=W) = = = = 0.000 P(yex)= P(X/ Play tennis=yes) * P(playlennio=yes) = 0.0082 × 0.643 = 0.0053 25 P(x) P(x) Phytomis=N) * P(phytomis=no) = 0.058x 0.357 = 0.0207 Since P(G|X) q playteuris: No bras greater value, naive bayesian classifier predicts play primis = 10 for hiple X (notbook = sunns, temporature = cool, humidity high, wind = strong) P (flu = yes) = 3/8 = P(X|flu=yes) = P(chill=yes) x P(sunsing new =yes) x P(headenh=yes) x P(hea 7(x/f/u-m) = p(chil/-no)xp(rumning nose=1/45) xp(headonhe=no)xp(eve=no) P(x), flu=yes) + 1(flu=yes) = PCX ([u=no) x P([u=nd) = (8) Consider following detaset and predict the fruit = Eyellow, sweet, lags voing Nairo Bayes Classification algorithm. Efal long Sweet Yellow Fruit 450 650 0 350 Mango 350 400 300 400 Barana Others 50 150 100 50 Total 1200 850 400 300

P(frid: Margo) = 650/1200 = 0.50) P(X/Umas) = P(Vellow/Margo) + P(swet/Margo) + P(lang/Maryo)

8	No	Single	85K	Yes
ø	No	Merried	78K	No
10	No	single	BOK	Yes

8	No No	Single Married Single	85 85 80	5	Yes No Yes		110 2010) 7
&. W	or = Green	, legs=2,	Height = Tal	L, Smelly= Smelly	No, Species=	1 (11)	P(X orade= No)=
<u>No.</u>	Color	Legs]	Height Shert	Yes	Species		VP(x [evad= Yes) =
ا بر ع	Green	2 3	Tall Short	No Yes			
y	white	3	Short	Yes	M		
5	Green	2 2	Shart Tall	iso No	4		
6 7	white	1 2	Tall	No	4		
8	white	12	Short	Yes	H		

JP(x [evad= Yes) = 0.0023 NO JP(x [evad= Yes) = 0 ms No