Теория групп. Лекция 11

Штепин Вадим Владимирович

14 ноября 2019 г.

1 Свободные группы

Известно, что циклическая группа $C_n=\{e,a,...,a^{n-1}\}$ задается свойствами $a^n=e$ и $a^sa^t=a^{s+t}$, если s+t< n и a^{s+t-n} иначе.

Пусть G=(Z,+). Тогда существует гомоморфизм $\phi:Z\to C_n,\,\phi(1)=a$ и $\phi(k)=a^k$.

Тогда можно поставить следующую задачу: Построить семейство групп, что все конечные (и конечнопорожденные группы) являются гомоморфными образами этих групп (или их факторгруппами, что эквивалентно по теореме о гомоморфизме).

<u>Опр.</u> Группа F **свободная ранга** n со свободными порождающими $f_1, ..., f_n$ (ранг равен количеству порождающих), если верно:

- 1. $F = \langle f_1, ..., f_n \rangle$
- 2. $\forall G$ —группа и $g_1,...,g_n \in G$ \exists гомоморфизм $\phi: F \to G$, что $\phi(f_i) = g_i$. Это условие следует понимать так: \exists изначальное отображение ϕ со свойствами $\phi(f_i) = g_i$, и его можно продолжить до гомоморфизма.

2 Конструкция свободных групп ранга n с порождающими элементами

Пусть $f_1, ..., f_n$ заданы.

Опр. **Алфавит** — это множество $A = \{f_1, ..., f_n, f_1^{-1}, ..., f_n^{-1}\}$

Опр. Слово над алфавитом A — это произвольное конечное выражение вида $f_{i_1}^{\epsilon_1} f_{i_2}^{\epsilon_2} ... f_{i_k}^{\epsilon_k}, \ \epsilon_i \in \{1, \overline{-1}\}$

<u>Опр.</u> **Полугруппа** — множество с определенной ассоциативной бинарной алгебраической операцией

Опр. Моноид — полугруппа с нейтральным элементом.

На множестве слов над алфавитом A введем операцию умножения— конкатенация с последующим сокращением рядом стоящих взаимнообратных элементов

<u>Опр.</u> Слово **полностью редуцированно**, если произведены все сокращения рядом стоящих обратных элементов.

Обозначение: F_n — множество всех полностью редуцированных слов над A (пустое слово включено).

Теорема

 F_n — свободная группа ранга n с n порождающими элементами.

Доказательство

Обратное слово к слову $f_{i_1}^{\epsilon_1} f_{i_2}^{\epsilon_2} ... f_{i_k}^{\epsilon_k}$ — это $f_{i_k}^{-\epsilon_k} ... f_{i_1}^{-\epsilon_1}$. Покажем ассоциативность F_n . Пусть |w| — количество букв в полностью редуцированной записи слова (длина слова). a(bc) = (ab)c. Проверим утверждение индукцией по длине b.

База:
$$|b| = 0$$
: $ab = a$, $bc = b$ и $a(c) = (a)c$

$$|b|=1\Rightarrow b=f$$
 — буква.

Разберем случаи:

1.
$$a = a'f^{-1}$$
, $c = f^{-1}c'$. Тогда $(ab)c = a'f^{-1}c' = a(bc)$

2.
$$a = a'f^{-1}, c \neq f^{-1}c'$$
. Тогда $(ab)c = a'c = a(bc)$

3.
$$a \neq a'f^{-1}$$
, $c = f^{-1}c'$. Тогда $(ab)c = ac' = a(bc)$

4.
$$a \neq a'f^{-1}$$
, $c \neq f^{-1}c'$. Тогда $(ab)c = a(bc)$, так как буква f не сократится.

Переход: Пусть для слов длины $\leq n-1$ доказано и $|b|=n,\ b=fb'$ и |b'|=n-1. Тогда (ab)c=(a(fb'))c=((af)b')c=(af)(b'c)=a(f(b'c))=a((fb')c)=a(bc) так как ассоциативность верна для однобуквенных слов.

$$F_n = \langle f_1, ..., f_n \rangle.$$

Пусть G — группа и $g_1, ..., g_n \in G$. Зададим гомоморфизм ϕ : $\phi(f_{i_1}^{\epsilon_1} ... f_{i_k}^{\epsilon_k}) = g_{i_1}^{\epsilon_1} ... g_{i_k}^{\epsilon_k}$. Пусть $w_1 = af_i^{\epsilon} f_i^{-\epsilon} b, \ w_2 = ab$. Покажем, что $\phi(w_1) = \phi(w_2)$: $\phi(w_1) = \phi(af_i^{\epsilon} f_i^{-\epsilon} b) = \phi(a)g_i^{\epsilon} g_i^{-\epsilon} \phi(b) = \phi(a)\phi(b) = \phi(ab) = \phi(w_2)$, и, следовательно, ϕ корректно определен.

Пример $F_1 \simeq (Z, +), \ f_1 = 1.$ Существует гомоморфизм $\phi : F_1 \to Z_n, \ \phi(1) = \overline{1}, \ \phi(k) = \overline{k}$ Пусть G— произвольная группа и $g \in G$. Существует гомоморфизм $\phi : F_1 \to G$, что $\phi(1) = g, \ \phi(k) = g^k$.

3 Задание группы с помощью образующих и соотношений

Пусть F_n — свободная группа ранга n с порождающими $f_1,...,f_n$, и $G = \langle g_1,...,g_n \rangle$.

Тогда \exists гомоморфизм $\phi: F_n \to G$, $\phi(f_i) = g_i$. Причем ϕ сюрьективен, так как у каждого порождающего группу G элемента g_i есть прообраз f_i . Гомоморфизм с данными условиями определяется единственным образом.

По основной теореме о гомоморфизме, $G \simeq F_n/ker(\phi)$

Вывод: Любая конечнопорожденная группа изоморфна факторгруппе свободной группы ранга n.

Теорема

Если F_n и G_n —свободные группы ранга n с порождающими элементами $f_1,...,f_n$ и $g_1,...mg_n$ соответственно, то $F_n \simeq G_n$

Доказательство

По определению свободной группы, $\exists \phi: F_n \to G_n$ и $\psi: G_n \to F_n$ —гомоморфизмы, что $\phi(f_i) = g_i$ и $\phi(g_i) = f_i$. Тогда $\phi \circ \psi: G_n \to G_n$ —гомоморфизм и $\phi \circ \psi(g_i) = g_i \Rightarrow \phi \circ \psi$ —тождественное отображение, так как g_i —порождающие элементы. Аналогично доказывается, что $\psi \circ \phi$ —тождественное отображение, а значит ϕ, ψ —взаимнообратные изоморфизмы групп.

Опр. Пусть $S \subset F_n$ (свободная группа ранга n) и $K = \langle S \rangle_n$. Тогда группа $G = \langle g_1, ..., g_n \rangle$ — группа с образующими $g_1, ..., g_n$ и соотношениями S, если $\phi : F_n \to G$ — сюръективный гомоморфизм из определения свободной группы, причем $\phi(f_i) = g_i$ и $ker(\phi) = K$.

Обозначение: $G = \langle g_1, ..., g_n \mid S.$

Замечание: Принято в указании S заменять вхождения f_i на g_i .

Пример.

 $Z \to C_n \simeq Z_n$ — гомоморфизм, значит $C_n = \langle a \mid a_n \rangle, \ \phi(k) = a^k, \ ker(\phi) = nZ.$

Теорема (универсальное свойство группы, порожденной элементами и соотношениями)

Пусть $G = \langle g_1, ..., g_n \mid S \rangle$, H—группа с элементами $h_1, ..., h_n$, такая, что соотношения из S тривиализуются на H, то есть $\forall w \in S \ \theta(w) = \theta(h_1...h_k) = e$, где $\theta : F_n \to H$ —гомоморфизм из определения свободной группы.

Тогда \exists гомоморфизм $\phi: G \to H$, что $\phi(g_i) = h_i \ \forall i | in\{1, ..., n\}$.

Доказательство

Б.о.о. $H = \langle h_1, ..., h_n \rangle$, так как гомоморфизм можно расширить от $\langle h_1, ..., h_n \rangle$ до всего H.

По определению свободной группы, \exists сюръективный гомоморфизм ψ , что $\psi(f_i) = g_i$, $ker(\psi) = K = \langle S \rangle_n$. Так же \exists гомоморфизм $\theta : F_n \to H$: $\theta(f_i) = h_i$, $ker(\theta) = L \triangleleft F_n$. По условию, $\forall w \in S$, $\theta(w) = e \Rightarrow w \in ker(\theta) = L \Rightarrow K \subset L \Rightarrow K \triangleleft L \triangleleft F_n$.

По теореме о соответствии, $H\simeq F_n/L \triangleleft F_n/K \simeq G \Rightarrow H\simeq (F_n/K)/(L/K) \simeq G/G_1$, где $G_1=L/K$.

В качестве ϕ можно взять канонический эпиморфизм $p:G\to G_1$.

Примеры

- 1. Задание V_4 образующими и соотношениями. $G=\langle a,b \mid a^2,b^2,(ab)^2 \rangle$. Покажем, что $G\simeq Z_2\times Z_2$.
 - $ab=b^{-1}a^{-1}=ba$, так как $(ab)=e,\ a^2=b^2=e,$ а значит G абелева. $\forall x\in G\ x=a^ib^j,$ $i,j\in\{0,1\}$ и $|G|\leq 4$. Пусть $a'=(1,0),\ b'=(0,1)\in Z_2\times Z_2$. Тогда $Z_2\times Z_2= \rangle a',b'\rangle$ и соотношения тривиализуются на $Z_2\times Z_2$. По универсальному свойству, \exists сюръективный гомоморфизм ϕ . Тогда $Z_2\times Z_2\simeq \Im(\phi)\simeq G/ker(\phi)\Rightarrow |G|=|ker(\phi)||Z_2\times Z_2|=4|ker(\phi)|$. Так как $|G|\leq 4$, то $|ker(\phi)|=1$ и ϕ инъективно. Причем, $V_4=\{e,(12)(34),(13)(24),(14)(23)\}\simeq Z_2\times Z_2$, а значит мы задали V_4 образующими и соотношениями.
- 2. Задание группы квантерионов образующими и соотношениями.

 $G=\langle a,b\mid a^4,a^2b^{-2},bab^{-1}a\rangle$. Пусть $x\in G,\ x=a^{i_1}b^{j_1}a^{i_2}b^{j_2}...a^{i_k}b^{j_k}$. Заменим все вхождения a^2 на b^2 , так как $a^2=b^2$. Тогда все $j_s\in\{0,1\}$. Используем то, что $ba=a^{-1}b=a^3b$: $x=a^ib^j,\ i\in\{0,1,2,3\},\ j\in\{0,1\}$. Значит, $|G|\leq 8$. Пусть $H\leq GL_2(C),\ H=\langle A,B\rangle$, где $A=\begin{pmatrix} i&0\\0&-i\end{pmatrix},\ B=\begin{pmatrix} 0&1\\-1&0\end{pmatrix}$.

На H соотношения из S тривиализуются, так как $A^2=B^S$, $A^4=E$ и $BAB^{-1}=A^{-1}$. По универсальному свойству, \exists гомоморфизм $\phi:G\to H\le GL_2(C)$, причем ϕ сюръективно, так как $\phi(a)=A$ и $\phi(b)=B$. Значит, |G|=8 (аналогично предыдущему пункту). Построенная подгруппа в $GL_2(C)$ называется группой квантерионов и состоит из 8 элементов.

Замечание

Если
$$G = \langle f_1, ..., f_n \mid S \rangle, H = \langle h_1, ..., h_n \mid S \rangle.$$

Доказательство

Аналогично свободным группам

Замечание

Задача об изоморфизме групп, заданных образующими и соотношениями алгоритмически неразрешима