3. Bedingte Verteilung, bedingte Erwartung

Bedingte Verteilung

Bedingter Erwartungswert

0

Erklärung und Prognose von Merkmalen

 \hookrightarrow Gegeben: Datensatz

Merkmal 1	 Merkmal k	Merkmal $k+1$
X ₁₁	 <i>x</i> _{1<i>k</i>}	<i>y</i> 1
:	:	:
x_{n1}	 x_{nk}	y_n

Modell *n*-fache (unabh.) Versuchswiederholung mit ZV X_1, \ldots, X_k, Y

- \hookrightarrow Aufgabe: Finde eine Funktion h mit $Y \approx h(X_1, \dots, X_k)$, welche den Datensatz "gut" beschreibt ("Überwachtes Lernen"):
 - □ Erklärung von Y durch $X_1, ..., X_k$: Modell durch Festlegung von h an Daten anpassen.
 - \square Prognose von Y durch X_1, \ldots, X_k : Prognosefehler minimieren.
- → Bedingte Sicht:
 - \square X_1, \ldots, X_n sind Informationen, die zur Neubewertung der Modell-Informationen über Y führen
 - ☐ Aus der Wahrscheinlichkeitsrechnung bekanntes Konzept: Bedingte Wahrscheinlichkeiten von Ereignissen
 - □ Übertragung auf ZV: Bedingte Verteilung /bedingte Erwartung

3.1 Bedingte Verteilung

- \hookrightarrow in WS-Rechnung:
 - □ WS von Ereignissen \sim Verteilungen von ZV $P(X \in B) = P(X^{-1}(B))$
- $\ \square$ Bedingte WS von Ereignissen: $P(B|A)=P(B\cap A)/P(A)$ für P(A)>0
- \hookrightarrow Kombination: Bedingte WS von durch ZV X, Y induzierten Ereignissen

$$\Box P(Y \in B | X \in A) = \frac{P(Y^{-1}(B) \cap X^{-1}(A))}{P(X^{-1}(A))} \quad \text{für } P(X \in A) > 0 \quad (*)$$

- \hookrightarrow Dabei ist z.B. in Erklärungsmodellen ein konkreter beobachteter Wert X=x gegeben, d.h. $A=\{X=x\}$. Die WS für Y wird unter X=x neu bewertet. (**Bedingte Verteilung** von Y unter X=x, Notation: $\mathcal{L}(Y|X=x)$)
 - (Dealingte Verteilling von 7 unter X = X, Notation. $\mathcal{L}(Y | X = X)$
 - \Box Gerade in stetigen WS-Modellen gilt aber P(X = x) = 0,
 - □ d.h. (*) kann dann direkt nicht umgesetzt werden.
- \hookrightarrow Analog zur Bayes-Formel lässt sich für bivariate ZV (X,Y) mit gemeinsamer Dichte f(x,y) "die" Dichte einer bedingten Verteilung $\mathcal{L}(Y|X=x)$ erklären.
- \hookrightarrow Deren Kennzahlen lassen sich zur Prognose von Y gegeben X=x einsetzen.

2

Übung: Es seien A, B Ereignisse mit 0 < P(A) < 1 und $X = \mathbb{1}_A$, $Y = \mathbb{1}_B$. Berechnen Sie die bedingte Verteilung $\mathcal{L}(Y|X=x)$ für $x \in \{0,1\}$.

Die bedingenden Ereignisse sind $\{X=1\}=\{\omega:\mathbb{1}_B(\omega=1\}=A \text{ und } \{X=0\}=A^c.$ Es müssen bedingte WS der Ereignisse $\{Y=1\}=\{\omega:\mathbb{1}_B(\omega)=1\}=B \text{ bzw.} \{Y=0\}=B^c \text{ berechnet werden.}$

Die bedingte Verteilung wird also durch die verschiedenen bedingten Wahrscheinlichkeiten auf Grundlage von A, A^c bzw B, B^c gegeben.

3

- Beschränkung auf bivariaten Fall: Gegeben sei ein Zufallsvektor (X, Y) mit
 - \Box diskreter/stetiger Dichte $f_{X,Y}(x,y)$
 - \square Randdichten $f_X(x)$, $f_Y(y)$.

Bedingte Verteilung $\mathcal{L}(Y|X=x)$

ist gegeben durch bedingte Dichte:

$$f_{Y|X=x}(y) = \begin{cases} f_{X,Y}(x,y)/f_X(x) & \text{falls Nenner} > 0\\ f_Y(y) & \text{sonst} \end{cases}$$
 (Bayes-Formel)

"bedingte WS in y bilden bei festem x eine WS-Verteilung".

Bed. Dichte zu stetigem Zufallsvektor (DuW)

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{2}x + \frac{3}{2}y & 0 \le x, y \le 1, \\ 0 & sonst \end{cases}, f_X(x) = \frac{1}{2}x + \frac{3}{4}, f_Y(y) = \frac{3}{2}y + \frac{1}{4}$$

bed. Dichte für 0 < x, y < 1:

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)} = \frac{\frac{1}{2}x + \frac{3}{2}y}{\frac{1}{2}x + \frac{3}{4}}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 5

Übung: Berechne $\mathcal{L}(Y|X=x)$ zu $f(x,y) = \frac{1_{]0;1[}(x)1_{]0;x[}(y)}{x}$:

1.
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \dots$$

$$\dots = \int_{-\infty}^{\infty} \frac{\mathbb{1}_{]0:1}(x)\mathbb{1}_{]0:x[}(y)}{x} dy = \frac{\mathbb{1}_{]0:1}[x)}{x} \int_{-\infty}^{\infty} \mathbb{1}_{]0:x[}(y) dy$$

$$= \frac{\mathbb{1}_{]0:1}[x)}{x} \int_{0}^{x} 1 dy = \frac{\mathbb{1}_{]0:1}[x)}{x} \cdot x = \mathbb{1}_{]0:1[}(x)$$
also ist $\mathcal{L}(X)$ eine Standard-Rechteck-Verteilung

2.
$$f_{Y|X=x}(y) = f(x,y)/f_X(x) = \dots$$

$$\dots = \frac{\mathbb{1}_{]0:1[(x)}\mathbb{1}_{]0:x[(y)}}{x} / \mathbb{1}_{]0:1[(x)} = \frac{1}{x}\mathbb{1}_{]0:x[(y)}$$
Also ist $\mathcal{L}(Y|X=x)$ eine Rechteckverteilung $Re(0,x)$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Diskretes Beispiel: Y_1, \ldots, Y_m u.i.v. $\sim Bin(1, p), X = Y_1 + \cdots + Y_m$

Bestimme bedingte Verteilung von $(Y_1, ..., Y_m)$ unter $X = x \in \{0, ..., m\}$. Betrachte hierzu (ausschließlich) $y_1, ..., y_m \in \{0, 1\}$ mit $y_1 + \cdots + y_m = x$:

$$P(Y_1 = y_1, ..., Y_m = y_m | X = x) = \frac{P(Y_1 = y_1, ..., Y_m = y_m, X = x)}{P(X = x)}$$

$$= \frac{P(Y_1 = y_1, ..., Y_m = y_m)}{P(X = x)}$$

$$= \frac{p^x (1 - p)^{m - x}}{\binom{m}{x} p^x (1 - p)^{m - x}} = 1/\binom{m}{x}$$

- $\hookrightarrow \mathcal{L}(Y_1,\ldots,Y_m|X=x)$ ist also eine Gleichverteilung auf den $\binom{m}{x}$ *m*-Tupeln $(y_1,\ldots,y_m)\in\{0,1\}^m$ mit $y_1+\cdots+y_m=x$.
- \hookrightarrow Die bedingte Verteilung ist unabhängig von p:
 - \square Information über p ist schon vollständig in X enthalten.
 - \square Schätzer, Tests, Konfidenzintervalle,...zu p dürfen Datenverdichtung X anstelle der Originaldaten Y_1, \ldots, Y_m verwenden.
 - \square Man sagt: $X = Y_1 + \cdots + Y_m$ ist **suffizient**.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 7

3.2 Bedingter Erwartungswert

- \hookrightarrow Erwartungswert der bedingten Verteilung $\mathcal{L}(Y|X=x)$.
- \hookrightarrow Bei Vorliegen einer bedingten Dichte f(y|x)

$$h(x) := E(Y|X = x) = \begin{cases} \int\limits_{-\infty}^{\infty} y \cdot f(y|x) dy & \text{stetiger Fall} \\ \sum\limits_{y \in \mathcal{Y}} y \cdot f(y|x) & \text{diskreter Fall mit Träger } \mathcal{Y} \end{cases}$$

- \hookrightarrow Schreibweise: E(Y|X) = h(X)
- \hookrightarrow Der bed. EW löst das Problem $E((Y h(X))^2) \stackrel{!}{=} \min$, d.h. gibt eine Funktion h an, welche den Ausdruck minimiert.
- \hookrightarrow Konzept bedingter Verteilungen/Erwartungswerte übertragbar auf Zufallsvektoren:

$$\mathcal{L}(Y_1, ..., Y_m | X_1 = x_1, ..., X_k = x_k)$$
 bzw. $E(Y | X_1 = x_1, ..., X_n = x_n)$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Bed. Dichte zu stetigem Zufallsvektor (DuW)

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{2}x + \frac{3}{2}y & 0 \le x,y \le 1, \\ 0 & sonst \end{cases}, f_X(x) = \frac{1}{2}x + \frac{3}{4}, f_Y(y) = \frac{3}{2}y + \frac{1}{4}$$

bed. Dichte für 0 < x, y < 1:

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)} = \frac{\frac{1}{2}x + \frac{3}{2}y}{\frac{1}{2}x + \frac{3}{4}}$$

$$E(Y|X=x) = \int_0^1 \frac{\frac{1}{2}xy + \frac{3}{2}y^2}{\frac{1}{2}x + \frac{3}{4}} dy$$

$$= \left[\frac{\frac{1}{4}xy^2 + \frac{1}{2}y^3}{\frac{1}{2}x + \frac{3}{4}}\right]_{y=0}^{y=1}$$

$$= \frac{\frac{1}{4}x + \frac{1}{2}}{\frac{1}{2}x + \frac{3}{4}}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Übung: Berechne E(Y|X=x) zu $f(x,y)=\frac{\mathbb{1}_{]0;1[}(x)\mathbb{1}_{]0;x[}(y)}{x}$. Bereits gerechnet:

- 1. $f_X(x) = \mathbb{1}_{[0:1]}(x)$, d.h. $\mathcal{L}(X)$ ist Standard-Rechteck-Verteilung
- 2. $f_{Y|X=x}(y) = f(x,y)/f_X(x) = \frac{1}{x} \mathbb{1}_{[0:x]}(y)$, d.h. $\mathcal{L}(Y|X=x) = Re(0,x)$

Daraus jetzt den bedingten Erwartungswert:

Erwartungswert dieser Rechteckverteilung ist
$$(0 + x)/2 = x/2$$
, zu Fuß:
$$E(Y|X = x) = \int_0^x \frac{1}{x} y dy = \left[\frac{y^2}{2x}\right]_0^x = \frac{x^2}{2x} = \frac{x}{2}$$

Regeln für bedingte Erwartungswerte

 \hookrightarrow Linearität: $E(a+bY_1+cY_2|X)=a+bE(Y_1|X)+cE(Y_2|X)$

$$\hookrightarrow$$
 Totale Wahrscheinlichkeit: $E(Y) = E(E(Y|X))$
 \hookrightarrow Faktorisierung: $E(Y \cdot g(X)|X) = g(X) \cdot E(Y|X)$

$$\hookrightarrow$$
 Faktorisierung: $E(Y \cdot g(X)|X) = g(X) \cdot E(Y|X)$

 \hookrightarrow Substituieren/Eliminieren (SE): Wenn X, Y st.u. sind, dann gilt:

(SE1)
$$P(h(X, Y) \in B|X = x)) = P(h(x, Y) \in B)$$

(SE2) $E(h(X, Y)|X = x) = E(h(x, Y))$

Aussagen jeweils "fast sicher" und unter Annahme existierender Erwartungswerte

Übung: Fortsetzung des Beispiels mit $f(x,y) = \mathbb{1}_{]0;1[}(x)\mathbb{1}_{]0;x[}(y)/x$. Bereits berechnet wurden: $\mathcal{L}(X) = Re(0,1)$, E(Y|X=x) = x/2.

1. Berechne E(Y) mit dem Satz von der totalen WS E(Y) = E(E(Y|X)).

$$E(Y) = E(E(Y|X)) = E(X/2) = \frac{1}{2}E(X) = \frac{1}{4}$$

2. Vergleiche mit dem direkten Rechenweg, d.h.

$$\Box f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \dots \text{ für } y \in [0; 1]$$

$$\Box E(Y) = \int_{-\infty}^{\infty} y \cdot f_Y(y) dy = \dots$$

$$\square \cdot \dots = \int_{-\infty}^{\infty} \mathbb{1}_{]0;1[}(x)\mathbb{1}_{]0;x[}(y)/xdx = \int_{0}^{1} \mathbb{1}_{]0;x[}(y)/xdx$$
Nun ist $\mathbb{1}_{[0;x[}(y) = 1 \Leftrightarrow y < x \Leftrightarrow \mathbb{1}_{[y;\infty]}(x) = 1$, also

Nun ist
$$\mathbb{I}_{[0;x[}(y) = 1 \Leftrightarrow y < x \Leftrightarrow \mathbb{I}_{[y;\infty]}(x) = 1$$
, also $\mathbb{I}_{[0;x[}(y) = \mathbb{I}_{[y;\infty]}(x)$ für $y \in [0;1]$, daher für $y \in [0;1]$

$$f_Y(y) = \int_0^1 \frac{\mathbb{I}_{[0;x[}(y)}{x} dx = \int_0^1 \frac{\mathbb{I}_{[y;\infty]}(x)}{x} dx = \int_0^1 \frac{\mathbb{I}_$$

Dieser Rechenweg liefert das gleiche Ergebnis (bestätigt die t.W.-Formel), ist aber wesentlich aufwändiger.