

PROCÉDÉ DE CREATION IN VITRO DE SEQUENCES
POLYNUCLEOTIDIQUES RECOMBINEES PAR LIGATION ORIENTEE

5 La présente invention se rapporte à une méthode d'obtention *in vitro* de séquences polynucléotidiques recombinées par ligation orientée. L'invention vise tout particulièrement à générer puis sélectionner des séquences polynucléotidiques susceptibles de présenter une ou 10 plusieurs propriétés avantageuses par rapport aux propriétés correspondantes de séquences de référence et donc capables de conférer un phénotype amélioré et/ou de produire des protéines améliorées.

On entend par séquence de référence une séquence ayant des propriétés proches de celles recherchées.

On entend par *in vitro* tout événement, réaction ou procédé qui n'a pas lieu dans un organisme vivant.

On entend par ligation un procédé qui permet de créer une liaison phosphodiester entre deux fragments d'acides nucléiques.

25 On entend par ligation orientée tout procédé de ligation qui permet d'assembler dans un ordre déterminé des molécules d'acides nucléiques, notamment par hybridation desdites molécules d'acides nucléiques sur au moins une matrice nucléotidique.

On entend par séquence polynucléotidique toute molécule d'acide nucléique simple ou double brin.

30 Différentes techniques ont été développées pour favoriser la recombinaison *in vitro* entre différentes séquences polynucléotidiques, parmi celles-ci on peut citer plus particulièrement le DNA-Shuffling et le StEP toutes deux fondées sur l'utilisation de la PCR.

35 Le DNA-Shuffling comporte deux étapes, la fragmentation aléatoire par la DNase I de séquences polynucléotidiques, et une amplification par PCR dans laquelle les fragments précédemment générés servent d'amorces. A chaque étape d'hybridation, le changement de

matrice provoque des recombinaisons au niveau des régions ayant des séquences homologues. Le StEP consiste à mélanger différentes séquences polynucléotidiques contenant diverses mutations en présence d'une paire d'amorces. Ce mélange est soumis à une réaction de type PCR dans laquelle les étapes d'hybridation et de polymérisation sont regroupées en une seule étape de très courte durée. Ces conditions permettent l'hybridation des amorces mais diminuent la vitesse de polymérisation, de façon à ce que les fragments qui sont partiellement synthétisés s'hybrident aléatoirement sur les séquences polynucléotidiques portant les différentes mutations, permettant ainsi la recombinaison. Dans chacune de ces deux méthodes, l'étape de polymérisation est indispensable au processus de recombinaison. Ainsi, en fonction des polymérases choisies, cette étape de polymérisation peut être génératrice de mutations supplémentaires non souhaitées. En outre, à partir d'un certain nombre de cycles, le DNA-Shuffling et le StEP reposent sur le principe de l'hybridation d'une "méga-amorce" sur une matrice, ce qui entraîne probablement des difficultés de mise en oeuvre pour des séquences polynucléotidiques dont la taille est supérieure à 1,5 Kpb. Enfin, ces deux techniques ne permettent pas de contrôler le taux de recombinaisons, puisque celles-ci se font aléatoirement au cours des étapes successives de polymérisation.

La présente invention vise précisément à palier les inconvenients ci-dessus en offrant une méthode simple de préparation d'au moins une séquence polynucléotidique recombinée, en utilisant un procédé de ligation orientée de fragments obtenus à partir d'une banque de séquences polynucléotidiques.

On entend par banque de séquences polynucléotidiques un ensemble de séquences polynucléotidiques contenant au moins deux séquences polynucléotidiques hétérologues.

Dans une forme de mise en œuvre de l'invention, ce but est atteint grâce à un procédé comprenant les étapes suivantes :

5 a) la fragmentation d'une banque de séquences polynucléotidiques ,

b) la dénaturation des fragments ainsi obtenus,

c) l'hybridation de fragments obtenus à l'étape (b) avec une ou plusieurs matrice(s) d'assemblage,

10 d) la ligation orientée desdits fragments pour obtenir au moins une séquence polynucléotidique recombinée,

Lorsque la matrice d'assemblage est double brin, elle est préalablement dénaturée avant l'étape (c) comme par exemple au cours de l'étape (b).

Le procédé de l'invention permet de recombiner de manière aléatoire différents fragments au cours des étapes (b), (c) et (d) au sein d'une séquence polynucléotidique. Ce procédé reproduit donc *in vitro* les phénomènes de recombinaison qui peuvent se produire *in vivo* en les favorisant. Le procédé de l'invention est donc tout particulièrement intéressant pour recombiner des séquences polynucléotidiqubes entre elles afin de générer de nouvelles séquences polynucléotidiqubes.

25 Ces séquences polynucléotidiqubes recombinées sont susceptibles de présenter des propriétés avantageuses par rapport aux propriétés correspondantes de séquences de référence et donc capables de conférer un phénotype amélioré et/ou de produire des protéines améliorées.

30 Ce but est atteint grâce à un procédé comprenant les étapes suivantes :

a) la fragmentation d'une banque de séquences polynucléotidiqubes ,

b) la dénaturation des fragments,

35 c) l'hybridation de fragments obtenus à l'étape (b) avec une ou plusieurs matrice(s) d'assemblage,

d) la ligation orientée desdits fragments pour obtenir au moins une séquence polynucléotidique recombinée,

e) la sélection des séquences polynucléotidiques recombinées présentant des propriétés avantageuses par rapport aux propriétés correspondantes à une ou plusieurs séquences de référence.

5

La ou les matrice(s) d'assemblage peuvent-être simple ou double brin. Dans le cas où l'une de ces matrices est double brin, elle est préalablement dénaturée pour être ajoutée sous forme simple brin à l'étape (c) comme par exemple au cours de l'étape (b).

10

Le procédé de l'invention peut comprendre à l'issue de l'étape (e) la répétition des étapes (a), (b), (c) et (d). Dans ce cas, la banque de séquences polynucléotidiques contient au moins une séquence polynucléotidique recombinée qui a été sélectionnée en (e).

Le procédé de l'invention peut aussi comprendre à l'issue de l'étape (d) et avant l'étape (e), la répétition des étapes (b), (c) et (d), ou des étapes (a), (b), (c) et (d).

25

Ce dernier mode de réalisation est particulièrement utile dans le cas où à l'issue de l'étape (d) tous les fragments ne sont pas liqués. Dans ce cas, le procédé de l'invention comprend en outre, à la fin de l'étape (d) et avant l'étape (e), un ou plusieurs cycles des réactions suivantes:

30

- dénaturation des fragments liqués et non liqués issus de l'étape (d), éventuellement en présence d'une ou plusieurs matrice(s) d'assemblage,

- hybridation desdits fragments avec une ou plusieurs matrice(s) d'assemblage si celle(s)-ci n'est (ne sont) pas présente(s) lors de la dénaturation,

35

- ligation desdits fragments.

Ces réactions de dénaturation, hybridation et ligation, sont équivalentes aux étapes (b), (c) et (d), mais réalisées non pas avec les fragments de l'étape (a)

mais avec les fragments ligués et non ligués issus de l'étape (d).

5 Selon une forme de mise en œuvre particulière du procédé, les séquences polynucléotidiques de la banque sont simple brin. L'usage de fragments d'ADN simple brin est particulièrement adapté à la recombinaison de familles de gènes pour lesquelles une matrice simple brin donnée ou un mélange de matrices simple brin différentes seront
10 hybridées à des fragments simple brin issus d'une banque de gènes homologues. Puisqu'il n'y a pas de séquences strictement complémentaires entre elles parmi la population de fragments, l'hybridation ne sera pas biaisée vers les séquences sauvages entre les fragments ou entre fragments et matrices. La température d'hybridation peut alors être
15 ajustée en fonction du degré d'homologie entre les séquences, générant ainsi des molécules recombinées avec le degré de recombinaison le plus élevé possible. Des banques de molécules recombinées sont ainsi créées, avec une meilleure valeur en terme de diversité, augmentant considérablement les chances de trouver le bon mutant à
20 l'issue du minimum de cycles de recombinaison.

Pour obtenir des molécules simple brin d'ADN,
25 un phagémide de type Bluescript ou un vecteur de la famille des phages filamenteux comme M13mp18 peuvent être utilisés. Une autre façon de procéder consiste à générer des molécules double brin par PCR en utilisant une amorce phosphorylée en 5' et l'autre non phosphorylée. La digestion par l'exonucléase du phage lambda détruira les
30 brins d'ADN phosphorylés en 5', laissant les brins non phosphorylés intacts. Une autre méthode de génération de molécules simple brin consiste à faire une amplification par PCR assymétrique à partir d'une matrice d'ADN méthylée.

La digestion par *Dpn* I détruira les brins méthylés, laissant intacts les produits de l'amplification qui pourront alors être purifiés après dénaturation.

5 Le procédé de l'invention peut comprendre en
outre, une ou plusieurs des étapes suivantes :

- la séparation des séquences polynucléotidiques recombinées de la ou des matrice(s) d'assemblage avant l'étape (e).

- l'amplification des séquences polynucléotidiques recombinées avant l'étape (e).

- le clonage de séquences polynucléotidiques recombinées éventuellement après séparation des brins recombinés de la ou des matrices

Dans une forme de mise en œuvre avantageuse de la méthode, les extrémités des fragments générés à l'étape (a) sont telles qu'il peut y avoir hybridation adjacente de ces extrémités au moins à une matrice d'assemblage à l'étape (c) et ligation de ces fragments les uns avec les autres à l'étape (d). Les séquences polynucléotidiques de la banque sur laquelle le procédé de l'invention est effectué doivent être telles que les fragments obtenus au cours du procédé présentent des extrémités telles que décrites ci-dessus. Ces fragments peuvent être notamment obtenus au cours de l'étape (a), ou au cours de l'étape (d) par ligation de fragments.

Une forme de mise en oeuvre avantageuse du procédé de l'invention consiste à réaliser simultanément les étapes (c) et (d) selon une réaction dite de RLR pour l'expression anglaise de "Recombinant Ligation Reaction".

Outre les avantages indiqués précédemment, le procédé de l'invention est remarquable en ce qu'il favorise et accélère la recombinaison aléatoire *in vitro* de séquences polynucléotidiques, ces séquences polynucléotidiques pouvant être des gènes. On entend par gène un fragment ou une séquence d'ADN associée à une fonction biologique. Un gène peut être obtenu de différentes façons, dont la synthèse chimique, la synthèse par polymérisation ou par extraction dudit gène à partir d'une source d'acides nucléiques.

La recombinaison *in vitro* des séquences polynucléotidiques de la banque initiale par le procédé de l'invention permet donc d'obtenir une nouvelle banque contenant des séquences ayant acquis une ou plusieurs caractéristiques des séquences de la banque précédente. Le procédé de l'invention constitue donc une technique d'évolution *in vitro*.

Le procédé de l'invention constitue une alternative à la PCR recombinatoire telle que mise en oeuvre dans les techniques de DNA shuffling ou de StEP, puisqu'il ne nécessite pas d'étape de polymérisation *in vitro* pour aboutir à la recombinaison. Au contraire, l'étape clef du procédé de l'invention est l'étape (d) de ligation sur une matrice d'assemblage (ou ligation orientée), ce qui assure un très haut degré de fidélité au cours des événements de recombinaison.

Le procédé de l'invention est remarquable en ce qu'il permet d'augmenter considérablement l'efficacité du réassemblage des fragments à liguer en utilisant la ligation orientée. En effet, dans le cas d'une séquence

découpée en n fragments, il existe de très nombreuses possibilités de réassociation des fragments en utilisant un procédé de ligation classique (sans utilisation d'une matrice de réassemblage qui oriente la ligation), parmi lesquelles une seule forme est intéressante. Dans le cas du procédé de l'invention, la ligation est orientée par la matrice d'assemblage, ce qui permet d'obtenir directement la seule forme intéressante.

La fragmentation de ces séquences polynucléotidiques à l'étape (a) peut se faire soit de manière contrôlée, soit de manière aléatoire.

Dans le cas d'une fragmentation réalisée de manière contrôlée, la fragmentation permet de maîtriser avec précision le degré de recombinaison voulu et la position des points de recombinaison. Selon une forme de réalisation préférée du procédé de l'invention, l'étape (a) consiste à soumettre les séquences polynucléotidiques de la banque à une hydrolyse par l'action d'une ou plusieurs enzymes de restriction. Ainsi, dans une forme de mise en œuvre particulière du procédé de l'invention, le degré de recombinaison et la position des points de recombinaison des séquences polynucléotidiques recombinées sont déterminés par la fragmentation de l'étape (a).

Ainsi, plus le nombre de fragments générés par séquence est grand, plus le nombre de fragments nécessaires pour recomposer une séquence est élevé, ce qui entraîne un taux de recombinaison élevé. En outre, la nature et la position des extrémités des fragments générés dans ce mode de réalisation du procédé de l'invention peuvent être connues et contrôlées, ce qui permet :

- de contrôler avec précision les zones où la recombinaison a lieu, ou

- d'induire la recombinaison entre des séquences polynucléotidiques, par exemple des gènes, si les extrémités des fragments sont créées dans des zones d'homologie entre ces séquences, ou des zones d'homologies entre ces séquences et la ou les matrices d'assemblage.

Dans le cas d'une fragmentation aléatoire, tout moyen enzymatique ou mécanique connu de l'homme de métier capable de couper aléatoirement l'ADN pourra être utilisé, comme par exemple une digestion par la Dnase I ou une sonication.

Le procédé de l'invention permettant d'augmenter considérablement l'efficacité de réassemblage des fragments à liguer, il peut donc être appliqué à l'orientation de la ligation multi-moléculaire à bouts francs. Dans cette application, on utilise comme matrice d'assemblage aux étapes (b) ou (c) des oligonucléotides simple ou double brin juste complémentaires de l'extrémité 3' d'un fragment et 5' du fragment adjacent, ce qui permet l'hybridation adjacente de ces deux extrémités sur la même matrice après l'étape de dénaturation. Une fois hybridées, les extrémités des fragments peuvent être ligées entre-elles de façon à orienter le sens de ligation des fragments à bout francs. La même approche peut être envisagée pour l'orientation de la ligation de fragments à bouts cohésifs.

Une mise en œuvre toute préférée du procédé de l'invention consiste à ajouter des enzymes capables, à l'étape (c) et/ou à l'étape (d), de reconnaître et de

5

dégrader et/ou couper de manière spécifique les extrémités non hybridées de fragments, lorsque celles-ci recouvrent d'autres fragments hybridés sur la même matrice. Un exemple préféré de ce type d'enzyme est l'enzyme Flap endonucléase .

10

Une mise en œuvre particulière du procédé de l'invention consiste donc à utiliser des enzymes du type Flap endonucléases lorsque les fragments générés à l'étape (a) peuvent se recouvrir lors de l'hybridation sur la matrice d'assemblage à l'étape (c).

Ainsi, lors de l'hybridation de fragments d'ADN sur une matrice, ces enzymes ont pour propriété de reconnaître et de couper de manière spécifique les extrémités non hybridées de ces fragments, lorsque celles-ci recouvrent d'autres fragments hybridés sur la même matrice.

25

Lorsque les fragments utilisés au cours du procédé de l'invention sont double brin, une forme particulière de l'invention consiste à utiliser des enzymes de type exonucléase spécifiques du simple brin. Ces enzymes auront pour propriété de reconnaître et de dégrader de manière spécifique les extrémités simple brin non hybridées de ces fragments, lorsque celles-ci recouvrent d'autres fragments hybridés sur la même matrice.

30

Au cours de l'étape (c) d'hybridation, l'utilisation de ce type d'enzymes (notamment Flap, ou exonucléase spécifique du simple brin) permet donc d'augmenter le nombre d'extrémités adjacentes pouvant être liquées à l'étape (d), ce qui est particulièrement

important dans le cas de fragments obtenus par coupure aléatoire, car ces fragments présentent des zones de recouvrement les uns avec les autres lorsqu'ils s'hybrident sur la matrice d'assemblage.

5 Dans une mise en œuvre particulière du procédé de l'invention utilisant une ligase active à haute température et préférentiellement thermostable à l'étape (d), les enzymes capables de reconnaître et/ou de couper de manière spécifique les extrémités non hybridées des
10 fragments, ajoutées à l'étape (c) et/ou à l'étape (d) auront les mêmes propriétés de thermorésistance et d'activité à haute température que ladite ligase.

La banque de séquences polynucléotidiques sur laquelle est effectuée le procédé de l'invention peut être générée par toute méthode connue de l'homme du métier, par exemple à partir d'un gène sauvage par étapes de mutagénèse dirigée successives, par PCR "error prone" (2), par mutagénèse aléatoire chimique, par mutagénèse aléatoire *in vivo*, ou en combinant des gènes de familles proches ou distinctes au sein de la même espèce ou d'espèces différentes de façon à disposer d'une variété de séquences polynucléotidiques dans ladite banque.
20

Parmi ces techniques, l'invention envisage plus particulièrement, un procédé dans lequel la banque de séquences polynucléotidiques est obtenue par une réaction de polymérisation en chaîne réalisée dans des conditions qui permettent de créer des mutations ponctuelles aléatoires.
25

30

La banque initiale de séquences polynucléotidiques peut être constituée de séquences

synthétiques qui seront fragmentées à l'étape (a) ou qui peuvent constituer les fragments de l'étape (a).

5 Selon une forme de réalisation préférée du procédé de l'invention, l'étape (a) consiste à soumettre les séquences polynucléotidiques de la banque à une hydrolyse par l'action d'une ou plusieurs enzymes de restriction.

10 Pour accroître le degré de recombinaison générée par le procédé de l'invention, il suffit d'augmenter le nombre de fragments de restriction en utilisant des enzymes de restriction ayant un grand nombre de sites de coupure sur les séquences polynucléotidiques de la banque, ou en combinant plusieurs enzymes de restriction. Dans le cas de 15 l'utilisation d'une ligase thermostable et thermoactive, la taille du plus petit fragment ainsi généré sera avantageusement supérieure ou égale à 40 b ou 40 pb, afin de conserver une température d'hybridation compatible avec celle de l'étape (d) de ligation qui est généralement de l'ordre de 65 °C.

20 L'étape (a) peut encore être réalisée en générant une banque de fragments par traitement aléatoire enzymatique ou mécanique. En particulier, l'étape (a) peut consister en un traitement aléatoire avec la DNase I d'une 25 banque de séquences polynucléotidiques . Dans le cas où l'on utilise à l'étape (a) une fragmentation enzymatique ou mécanique aléatoire, cette forme de mise en oeuvre du procédé de l'invention a la particularité de permettre l'utilisation des fragments générés par ce traitement 30 comme matrices les uns pour les autres, pour l'hybridation au cours de l'étape (c) ou de la réaction de RLR des étapes (c) et (d) simultanées.

5 L'étape (b) peut être réalisée en combinant au moins deux banques de fragments distinctes générées séparément à l'étape (a) à partir de la même banque initiale par des traitements différents, comme par exemple avec des enzymes de restriction différentes. Dans le cas de la mise en oeuvre de telles banques, on utilise les fragments obtenus à l'étape (a) comme matrices les uns pour les autres, pour l'hybridation au cours de l'étape (c) ou de la réaction de RLR des étapes (c) et (d) simultanées.

10 D
15 D
20 D
25 D
30 D
35 D
40 D
45 D
50 D
55 D
60 D
65 D
70 D
75 D
80 D
85 D
90 D
95 D

Les fragments de l'étape (a) du procédé de l'invention peuvent également être générés par des réactions d'amplification (telle que la PCR) menées sur les séquences polynucléotidiques de la banque. Deux solutions sont notamment envisageables. Dans un premier cas, les oligonucléotides amorces peuvent être conçus de manière à générer des fragments dont les extrémités sont adjacentes tout au long de la séquence d'assemblage. Dans un deuxième cas, les oligonucléotides amorces sont conçus de façon à générer des fragments ayant des séquences communes, ces fragments pouvant servir de matrice d'assemblage les uns pour les autres à l'étape (b) ou à l'étape (c).

25

30

L'efficacité de recombinaison du procédé de l'invention est fonction du nombre de fragments générés par séquence polynucléotidique à l'étape (a). En conséquence, le procédé de l'invention utilisera des séquences polynucléotidiques ayant été fragmentés en n fragments, n étant avantageusement supérieur ou égal à trois.

La matrice d'assemblage à l'étape (b) ou (c) est par exemple une séquence polynucléotidique issue de la banque initiale ou une séquence consensus de ladite banque, simple ou double brin. Dans le cas où la ou les matrices d'assemblage sont incorporées directement à l'étape (c) de l'invention, cette matrice doit être sous forme simple brin.

Selon une variante du procédé de l'invention, les matrices d'assemblage des étapes (b) ou (c) sont constituées d'oligonucléotides simples ou doubles brins.

Selon une forme particulière de mise en oeuvre du procédé de l'invention, des oligonucléotides, simple ou double brin, de longueur variable, sont ajoutés à l'étape (b) ou (c) en plus de la matrice. Ces oligonucléotides sont conçus pour pouvoir se substituer à une partie des fragments à l'étape (c), en effet, leur séquence est telle que :

- s'ils sont parfaitement homologues avec la séquence du fragment qu'ils remplacent, ils favorisent certaines combinaisons, ou

- s'ils sont partiellement hétérologues avec la séquence du fragment qu'ils remplacent, ils introduisent une ou des mutations dirigées supplémentaires.

On entend par séquences hétérologues, deux séquences dont la composition en bases diffère d'au moins une base.

Avant l'étape (e) du procédé de l'invention, il est possible de séparer les séquences polynucléotidiques recombinées de la matrice d'assemblage grâce à un marqueur présent sur la matrice d'assemblage ou sur les séquences polynucléotidiques recombinées. Il est en effet possible de

marquer chaque brin de la matrice selon des techniques connues de l'homme du métier. Par exemple, le marqueur de la matrice d'assemblage peut être un haptène et l'on sépare les séquences polynucléotidiques recombinées de la matrice d'assemblage par des techniques connues de l'homme du métier, comme par exemple un anticorps anti-haptène fixé sur un support ou une réaction biotine-streptavidine, si l'haptène est un marqueur biotine.

D'autres techniques peuvent être employées pour séparer les séquences polynucléotidiques recombinées de la matrice d'assemblage. La matrice d'assemblage peut aussi être préparée spécifiquement de façon à faciliter son élimination à la fin du procédé de l'invention. Elle peut ainsi être synthétisée par amplification PCR utilisant des dATP méthylés, ce qui permet sa dégradation par l'endonucléase de restriction *Dpn* I. Dans ce cas, les séquences polynucléotidiques recombinées ne doivent pas contenir de dATP méthylés. La matrice peut aussi avoir été préparée par amplification PCR en utilisant des dUTP, ce qui permet sa dégradation par traitement avec une uracyl-DNA-glycosylase. A l'inverse, il est possible de protéger les séquences polynucléotidiques recombinées en les amplifiant par PCR sélective avec des oligonucléotides portant des groupements phosphorothioates en 5'. Un traitement avec une exonucléase permet alors de dégrader spécifiquement la matrice d'assemblage.

Le procédé de l'invention peut comprendre avant le clonage éventuel de l'étape (e), une étape d'amplification des séquences polynucléotidiques recombinées. Toute technique d'amplification est acceptable notamment une amplification par PCR. Une des plus simple

F0510 F0510 F0510 F0510 F0510

20

25

30

consiste à réaliser une PCR qui permet d'amplifier spécifiquement les séquences polynucléotidiques recombinées grâce à des amorces qui ne peuvent s'hybrider que sur les extrémités des séquences recombinées. Les produits PCR sont ensuite clonés pour être caractérisés et les séquences polynucléotidiques présentant des propriétés avantageuses par rapport aux propriétés correspondantes de séquences de référence sont sélectionnées.

L'invention a pour objet de générer des séquences polynucléotidiques susceptibles de présenter des propriétés avantageuses par rapport aux propriétés correspondantes de séquences de référence. Les séquences polynucléotides recombinées obtenues à l'étape (d) et éventuellement clonées sont ciblées par tout moyen approprié pour sélectionner les séquences polynucléotidiques recombinées ou les clones présentant des propriétés avantageuses par rapport aux propriétés correspondantes de séquences de référence. On entend, par exemple, par propriétés avantageuses la thermostabilité d'une enzyme ou sa qualité à pouvoir fonctionner dans des conditions de pH ou de température où de concentration saline plus adaptées à un procédé enzymatique, que les protéines témoins habituellement utilisées pour ledit procédé. A titre d'exemple d'un tel procédé, on peut citer un procédé industriel de désencollage des fibres textiles ou de blanchiment des pâtes à papier ou de la production d'arômes dans l'industrie laitière, les procédés de biocatalyse pour la synthèse par voie enzymatique de nouvelles molécules thérapeutiques, etc...

Selon un mode de réalisation avantageux du procédé de l'invention, la banque de séquence

polynucléotidique peut donc être le résultat d'un crible ayant permis de sélectionner par tout moyen approprié les séquences polynucléotidiques présentant des propriétés avantageuses par rapport à des séquences témoins. Les 5 séquences ainsi sélectionnées constituent une banque restreinte.

Mais, il est aussi possible de partir d'une banque non restreinte afin de conserver la représentativité des propriétés contenues dans cette banque.

Les séquences codant pour la ou les protéines présentant une ou des propriétés avantageuses par rapport aux protéines de référence sont alors sélectionnées, par des criblages *in vivo* ou *in vitro*, et peuvent servir à constituer une nouvelle banque pour une éventuelle réitération du procédé de l'invention. Une mise en œuvre 10 avantageuse du procédé de l'invention consiste donc à utiliser comme banque plusieurs séquences polynucléotidiques sélectionnées après une première mise en œuvre du procédé de l'invention, éventuellement mélangées avec d'autres séquences polynucléotidiques. Parmi les 15 techniques de criblage qui peuvent être appliquées à chacun des clones de l'étape (e), les techniques de criblage par expression *in vitro* utilisant notamment la transcription *in vitro* des séquences polynucléotidiques recombinées puis la traduction *in vitro* des mRNAs obtenus, présentent 20 l'avantage de s'affranchir des problèmes de physiologie cellulaire, et de tous les inconvénients liés au clonage d'expression *in vivo*. En outre, ce type de criblage est facilement automatisable, ce qui permet de cibler un 25 nombre élevé de séquences polynucléotidiques recombinées.

DEPOSE
PARIS
15
20

L'invention concerne aussi une séquence polynucléotidique recombinée obtenue par un procédé selon l'invention, ainsi qu'un vecteur contenant une telle séquence polynucléotidique recombinée, un hôte cellulaire transformé par une séquence polynucléotidique recombinée ou un vecteur de l'invention, ainsi qu'une protéine codée par cette séquence polynucléotidique recombinée. L'invention comprend également les banques correspondantes de séquences polynucléotidiques recombinées, de vecteurs, d'hôtes cellulaires ou de protéines.

Exemple :

Cet exemple a pour objectif de générer des séquences polynucléotidiques recombinées du gène de résistance à la kanamycine en utilisant la ligation orientée de fragments simples brin

Dans un premier temps, le gène de résistance à la kanamycine (1 Kb) de pACYC184 est cloné dans le polylinker de M13mp18 de telle façon que le phagémide simple brin contient le brin non codant du gène.

En parallèle, ce gène est amplifié par une PCR mutagène (error prone PCR) avec deux amorce qui sont complémentaires de la séquence du vecteur M13mp18 de par et d'autre de la séquence du gène. L'amorce pour le brin non codant est phosphorylée alors que l'amorce pour le brin codant ne l'est pas. Le produit de la PCR mutagène est digéré par l'exonucléase de lambda, ce qui génère une banque de brins codants de mutants du gène de la résistance à la kanamycine.

Cette banque de molécules simple brin est digérée par un mélange d'enzymes de restriction, à savoir Hae III, Hinf I et Taq I.

Cette banque de fragments simple brin ainsi obtenue est alors hybridée au phagémide simple brin et ligaturée avec une ligase thermostable. Cette étape est répétée plusieurs fois, jusqu'à ce que les fragments de petite taille ne puissent plus être observés lors d'un dépôt sur un gel d'agarose alors que la bande correspondant au simple brin du gène complet de la résistance à la kanamycine devienne un composant majeur du " smear " de molécules simple brin visibles sur le gel.

La bande correspondant à la taille du gène est alors découpée du gel et purifiée. Elle est ensuite hybridée avec deux oligonucléotides (40 mer) complémentaires des séquences de M13mp18 de chaque côté du gène, et ce duplex partiel est digéré par Eco RI et Sph I puis ligaturée dans un vecteur M13 mp18 digéré par les mêmes enzymes.

Les cellules transformées avec le produit de ligation sont ciblées pour une résistance accrue à la kanamycine.

Le clonage des molécules simple brin recombinées peut éventuellement être réalisé par une PCR avec deux amorces du gène de taille complète et clonage du produit double brin de cette amplification. Pour éviter les mutations indésirables, cette amplification sera réalisée avec la polymérase de type Pfu et par un nombre limité de cycles.

Les plasmides des clones significativement plus résistants à la kanamycine que la souche initiale sont purifiés et utilisés comme matrices pour une PCR à la polymérase Pfu, dans des conditions de haute fidélité, avec le couple d'amorces phosphorylé/non phosphorylé tel que défini précédemment. Ceci génère la seconde génération de fragments simple brin, après un traitement à l'exonucléase de lambda et la fragmentation avec les enzymes de restriction. Les enzymes utilisées à cette étape peuvent être composées d'un mélange différent (Bst NI, Taq I et Mnl I).

Les étapes de recombinaison et de sélection sont répétées plusieurs fois, jusqu'à ce qu'un accroissement substantiel de la résistance à la kanamycine soit obtenu.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682<br

REVENDICATIONS

5 1) Procédé de création d'au moins une séquence polynucléotidique recombinée caractérisé en ce qu'il comprend une étape de ligation orientée de fragments issus d'une banque d'au moins deux séquences polynucléotidiques.

10 2) Procédé selon la revendication 1 caractérisé en ce qu'il comprend les étapes suivantes :

 a) la fragmentation d'une banque de séquences polynucléotidiques ,

 b) la dénaturation des fragments ainsi obtenus,

 c) l'hybridation de fragments obtenus à l'étape

 (b) avec une ou plusieurs matrice(s) d'assemblage,

 d) la ligation orientée desdits fragments pour obtenir au moins une séquence polynucléotidique recombinée,

20 3) Procédé selon la revendication 2 caractérisé en ce qu'il comprend après l'étape (d) :

 e) la sélection des séquences polynucléotidiques recombinées présentant des propriétés avantageuses par rapport aux propriétés correspondantes à une ou plusieurs séquences de référence.

25 4) Procédé selon la revendication 1 à 3 caractérisé en ce que la banque de séquences polynucléotidiques contient des séquences polynucléotidiques double brin

30 5) Procédé selon la revendication 1 à 3 caractérisé en ce que la banque de séquences

polynucléotidiques contient des séquences
polynucléotidiques simple brin

6) Procédé selon la revendication 2 à 5
5 caractérisé en ce que au moins une matrice d'assemblage est double brin et qu'elle est préalablement dénaturée pour être ajoutée sous forme simple brin à l'étape (c).

7) Procédé selon la revendication 2 à 5
10 caractérisé en ce que au moins une matrice d'assemblage est simple brin

8) Procédé selon les revendications 2 à 7
caractérisé en ce qu'il comprend à l'issue de l'étape (d)
515 au moins une répétition des étapes (a), (b), (c) et (d).

9) Procédé selon les revendications 2 à 7
caractérisé en ce qu'il comprend à l'issue de l'étape (d)
au moins une répétition des étapes (b), (c) et (d).
20

10) Procédé selon les revendications 3 à 7
caractérisé en ce qu'il comprend à l'issue de l'étape (e)
le choix d'au moins une séquence polynucléotidique
recombinée pour effectuer au moins une répétition des
étapes (a), (b), (c), (d) et (e).
25

11) Procédé selon l'une des revendications 2 à
10 , caractérisé en ce qu'il comprend la séparation des
30 séquences polynucléotidiques recombinées de la ou des
matrice(s) d'assemblage avant l'étape (e).

12) Procédé selon l'une quelconque des revendications 2 à 11, caractérisé en ce qu'il comprend l'amplification des séquences polynucléotidiques recombinées avant l'étape (e).

5

13) Procédé selon l'une quelconque des revendications 2 à 12, caractérisé en ce qu'il comprend avant l'étape (e), le clonage de séquences polynucléotidiques recombinées éventuellement après 10 séparation des brins recombinés de la ou des matrices.

0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
20

14) Procédé selon l'une quelconque des revendications 2 à 13, caractérisé en ce que les extrémités des fragments générés à l'étape (a) sont telles qu'il puisse y avoir hybridation adjacente de ces extrémités sur au moins une matrice d'assemblage à l'étape (c) et ligation de ces fragments les uns avec les autres à l'étape (d).

15) Procédé selon l'une quelconque des revendications 2 à 14, caractérisé en ce que les étapes (c) et (d) sont réalisées simultanément.

25 16) Procédé selon l'une quelconque des revendications 2 à 15, caractérisé en ce que l'étape (a) consiste à soumettre les séquences polynucléotidiques de la banque initiale à une hydrolyse par l'action d'une ou plusieurs enzymes de restriction.

30 17) Procédé selon l'une quelconque des revendications 2 à 15 caractérisé en ce que la fragmentation aléatoire des séquences polynucléotidiques à

l'étape (a) se fait par tout moyen enzymatique ou mécanique connu.

5 18) Procédé selon l'une quelconque des revendications 2 à 13 et 15 à 17, caractérisé en ce que l'on ajoute à l'étape (c) et/ou à l'étape (d) des enzymes capables de reconnaître et dégrader et/ou couper de manière spécifique les extrémités non hybridées des fragments, lorsque lesdites extrémités recouvrent d'autres
10 fragments hybridés sur la même matrice.

15 19) Procédé selon la revendication 18, caractérisé en ce que l'on ajoute à l'étape (c) et/ou à l'étape (d) l'enzyme Flap endonucléase.

20 20) Procédé selon l'une quelconque des revendications 2 à 15 caractérisé en ce que l'on ajoute à l'étape (c) et ou (d) au moins une exonucléase spécifique du simple brin capable de reconnaître et dégrader de manière spécifique les extrémités non hybridées des fragments, lorsque lesdites extrémités recouvrent d'autres fragments hybridés sur la même matrice.

25 21) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise à l'étape (d) une ligase active à haute température et de préférence thermostable.

30 22) Procédé selon les revendications 18 et 19, caractérisé en ce que les endonucléases capables de reconnaître et de dégrader et/ou couper de manière spécifique les extrémités non hybridées des fragments

ajoutées à l'étape (c) et/ou à l'étape (d) ont les mêmes propriétés de thermorésistance et d'activité à haute température que la ligase utilisée à l'étape (d).

5 23) Procédé selon la revendications 20,
caractérisé en ce que les exonucléases capables de reconnaître et de dégrader de manière spécifique les extrémités non hybridées des fragments ajoutées à l'étape (c) et/ou à l'étape (d) ont les mêmes propriétés de 10 thermorésistance et d'activité à haute température que la ligase utilisée à l'étape (d).

20
21
22
23
24
25
26
27
28
29
30

24) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la banque initiale de séquences polynucléotidiques est générée à partir d'un gène sauvage par étapes de mutagénèse dirigée successives, par PCR error prone, par mutagénèse aléatoire chimique, par mutagénèse aléatoire *in vivo*, ou en combinant des gènes de familles proches ou distinctes au sein de la même espèce ou d'espèces différentes de façon à disposer d'une variété de séquences polynucléotidiques dans la banque initiale.

25 25) Procédé selon l'une quelconque des revendications 2 à 23 , caractérisé en ce que la banque initiale de séquences polynucléotidiques est constituée de séquences synthétiques qui seront fragmentées à l'étape (a) ou qui peuvent constituer les fragments de l'étape (a)

30 26) Procédé selon l'une quelconque des revendications 2 à 16 et 18 à 25 caractérisé en ce que l'étape (a) consiste à soumettre la banque initiale à une

hydrolyse par l'action d'enzymes de restriction ayant un grand nombre de sites de coupure sur les séquences polynucléotidiques de la banque initiale, ou en combinant plusieurs enzymes de restriction.

5

27) Procédé selon l'une quelconque des revendications 2 à 15 et 17 à 25 caractérisé en ce que l'étape (a) consiste en un traitement aléatoire avec la DNase I d'une banque initiale de séquences polynucléotidiques .

10

28) Procédé selon l'une quelconque des revendications 2 à 15 et 17 à 27 caractérisé en ce que l'on utilise des fragments générés par un traitement de façon aléatoire comme matrices les uns pour les autres, pour l'hybridation au cours de l'étape (c) ou de la réaction des étapes (c) et (d) simultanées.

20

29) Procédé selon la revendication 2 à 16 et 18 à 26, caractérisé en ce que l'on utilise les fragments obtenus à l'étape (a) par un traitement avec des enzymes de restriction comme matrices les uns pour les autres, pour l'hybridation au cours de l'étape (c) ou de la réaction de des étapes (c) et (d) simultanées.

25

30

30) Procédé selon la revendication 2 à 15 et 18 à 26, caractérisé en ce que les fragments de l'étape (a) sont obtenus par des réactions d'amplification menées sur les séquences polynucléotidiques de la banque initiale en utilisant des oligonucléotides amorces permettant de générer des fragments ayant des séquences communes, lesdits

fragments servant de matrice d'assemblage les uns pour les autres à l'étape (b) ou à l'étape (c).

5 31) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que à l'étape (a) la banque initiale est fragmentée en n fragments, n étant supérieur ou égal à trois.

10 32) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on ajoute à l'étape (b) ou (c) en plus de la matrice, des oligonucléotides, simple ou double brin, de longueur variable.

15 33) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, avant l'étape (e), on sépare les séquences polynucléotidiques recombinées de la matrice d'assemblage grâce à un marqueur présent sur la matrice d'assemblage ou sur les séquences polynucléotidiques recombinées.

20 34) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les séquences polynucléotidiques recombinées obtenues à l'étape (d) et éventuellement clonées sont ciblées par tout moyen approprié pour sélectionner les séquences polynucléotidiques recombinées ou les clones présentant des propriétés avantageuses par rapport aux propriétés correspondantes de séquences de référence.

35) Procédé selon la revendication 34 caractérisé en ce que le criblage se fait par expression *in vitro* des séquences polynucléotidiques recombinées

5 36) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la banque de séquences polynucléotidiques initiale est constituée par une ou plusieurs banques restreintes préparées par un procédé selon l'une quelconque des revendications 1 à 35, 10 éventuellement mélangées avec d'autres séquences polynucléotidiques.

15 37) Une séquence polynucléotidique recombinée présentant une ou plusieurs propriétés avantageuses par rapport aux propriétés correspondantes de séquences de référence, obtenue et sélectionnée par un procédé selon l'une quelconque des revendications 1 à 36, ladite séquence ayant une taille supérieure à 1,5 Kpb.

20 38) Un vecteur contenant une séquence polynucléotidique selon la revendication 37.

25 39) Un hôte cellulaire transformé par une séquence polynucléotidique recombinée selon la revendication 37 ou par un vecteur selon la revendication 38.

30 40) Une protéine codée par une séquence polynucléotidique recombinée selon la revendication 37.

41) Une banque constituée de séquences polynucléotidiques recombinées selon la revendication 37,

ou de vecteur selon la revendication 38, ou d'hôtes cellulaires selon la revendication 39, ou de protéines selon la revendication 40.

PROCÉDÉ DE CREATION IN VITRO DE SEQUENCES
POLYNUCLEOTIDIQUES RECOMBINEES PAR LIGATION ORIENTÉE

La présente invention a pour objet un procédé de création d'au moins une séquence polynucléotidique recombinée comprenant une étape de ligation orientée de fragments issus d'une banque d'au moins deux séquences polynucléotidiq[ue]ues, et éventuellement le clonage des séquences polynucléotidiq[ue]ues recombinées, et la sélection des séquences polynucléotidiq[ue]ues présentant des propriétés avantageuses par rapport à une ou plusieurs séquences de référence.

TOSCHI - TÉLÉTYPE 60

TOS2200-TS2000B60

1/9

Figure 1 A

Figure 1 B
(Double-stranded process carried out, but illustrated here with a single strand)

Fig. 2

Fig. 2- continued

Fig. 2 continued

TOEPLITZ TEGORISIO

Figure 3: Position of the ten mutation zones (sites *Pvu* II and *Pst* I)

Figure 4: Position of the primers used as compared to the sequence of the *pnbB* gene

Fig. 5 : Migration of the RLR reactions and of the PCR amplifications of the reactions

Tracks:	1/ RLR 1	6/ PCRR LR 1
	2/ RLR 2	7/ PCRR LR 2
	3/ RLR 3	8/ PCRR LR 3
	4/ RLR 4	9/ PCRR LR 4
	5/ RLR Control	10/ PCR RLR Control

Figure 6 : Position of the mutations as compared to the restriction fragments