Multi-sensor rail track detection in automatic train operations

Master's thesis in Data Science

Student: Attila Kovacs

1st Advisor: Lukas Rohatsch (FH Technikum)

2nd Advisor: Daniele Capriotti (M2C Expert Control GmbH)

Alignment: 20.10.2023

Problem setting

Automatic train operations (ATO)

Technology to automate tasks that were previously performed by rail personnel (e.g., conductor)

Research questions

- Which modelling technique and which deep learning model can be applied to solve the rail detection problem?
- How can the efficiency of standard, high-resolution, and infrared cameras be compared against each other; does a higher resolution result in a higher accuracy?
- What is the trade-off between model accuracy and speed of providing predictions when applied to a video stream in real time?
- How do deep learning models perform compared to gradient-based thresholding approaches in terms of, e.g., accuracy (share of correctly identified objects) or F1-score (mean of precision and recall)

Data source

- Deutsch Bahn / Digitale Schiene Deutschland
 (https://digitale-schiene-deutschland.de/en/news/OSDaR23-multi-sensor-data-set-for-machine-learning).
- Images were generated between 09.09.2021 and 15.09.2021
- Total number of images: 13.952
- Sensors: 12MP RGB, 5MP RGB, IR cameras, lidar, radar, GPS, inertia sensor

Data source

- Deutsch Bahn / Digitale Schiene Deutschland
 (https://digitale-schiene-deutschland.de/en/news/OSDaR23-multi-sensor-data-set-for-machine-learning).
- Images were generated between 09.09.2021 and 15.09.2021
- Total number of images: 13.952
- Sensors: 12MP RGB, 5MP RGB, IR cameras, lidar, radar, GPS, inertia sensor

Relevant dataset (7.421 images, 27.386 labels)

- Most images are from forward facing cameras
- The number of labels in the image depends on sensor orientation and type

Sensors

Type	Teledyne GenieNano 5GigE C4040
Sensor data	RGB images (8 Bit, PNG)
Resolution	$4112 \times 2504 \text{ px}$
Sampling frequency	10 Hz (synchronized)
Alignment	trident (in driving direction
	diagonal left, central and diagonal right)
Three 5MP RGB cam	eras
Туре	Teledyne GenieNano C2420
Sensor data	RGB images (8 Bit, PNG)
Resolution	$2464 \times 1600 \text{ px}$
Sampling frequency	10 Hz (synchronized)
Alignment	trident
Three IR cameras	
Туре	Teledyne Calibir DXM640
Sensor data	grayscale images (8 Bit, PNG)
Resolution	$640 \times 480 \text{ px}$
Sampling frequency	10 Hz (synchronized)
Alignment	trident

Aspect ratios (= width / height)

- All images are generated with one of three camera types
- Double check whether there are other images in the set

University of

Labels per image

- Most tracks are labelled in pairs
- However, there is also a small number of images with uneven number of tracks

Location of images

• All images/videos were taken around Hamburg

Time of images

All images were taken between 8 AM and 5 PM

Some examples of labeled images

Brightness of images

RGB images are darker thank high resolution images (not pixel related)

Occlusion

Most of the labels have a good visibility

Examples of occlusion = 100%

Most of the labels have a good visibility

Splitting into trail, validation and test set

Many images are very similar which needs to be taken into account

Splitting data set

- Given the large similarity between images, we split data by randomly assigning videos to either train, validation or test set
- Advantage: fair testing as we have a "data leakage" between the sets
- Disadvantage: validation batches might have low variety

Orientation of labels

Size of labels

Histogram of bounding box shapes and sizes

Bounding boxes format is related to the orientation of sensors

Aspect ratio of bounding boxes

These features can guide the gradient treshold appraoch

Baselining with CV2-FastLineDetection Filtering based on aspect ratio

Next steps

- Establish baseline
 - Finetune parameters → separately for highres/rgb/ir
 - Analyze results, select optimization function
- Generate label masks for images
- Select image segmentation model

Fragen

- Ist die aktuelle Richtung in Ordnung?
 - Fragestellung: Wo liegen Schienen genau (Hauptschiene, Nebenschienen)
 - Anreichern der Daten mit alternativ Sets
- FastLineDetection als Baseline
 - Finetuning
 - Parametertuning
 - Result selection
- Modellierung als "Segmentation Model"
- Lösungsansatz YOLOv8
- FH In Naichste Abstimmung: 17.11.2023 13:00 TECHNIKUM
 WIEN