Digital Electronic Circuits Section 1 (EE, IE)

Lecture 10

Static 0 Hazard

In Static O Hazard, output should remain static at O according to Boolean Logic but glitch occurs under certain input condition.

 τ_1 = NOT gate delay

 τ_2 = AND gate delay

$$Y = (A + C).(A' + B)$$

$$B = 0, C = 0$$

$$A: 0 \rightarrow 1$$

Glitch occurs

Detecting Static 0 Hazard

- Two logically adjacent cells with output 0 in K-Map not covered by a common sum term.
- Boolean expression (A.A') for certain condition.

$$Y = (A + B').(B + C)$$

Glitch, *ABC* : 000 → 010

Static 0 Hazard

$$Y = (B + C).(B' + C')$$

No Hazard for one variable changing

$$Y = (A + C).(C + D').(B + C')$$

Glitch: Static 0 Hazard

ABCD : 0001 → 0011

1001→ **1011**

 $0000 \rightarrow 0010$

Static 0 Hazard and its Cover

$$Y = (A + C).(A' + B).(B + C)$$

(B + C) = 0 for B = 0, C = 0This OR gate output when fed to AND gate, suppresses glitch.

Hazard-free circuit

$$Y = (A + C).(C + D').(B + C')$$

.(B + D').(A + B)

Hazard-free by covering logically adjacent 0s with common sum term

Hazard in NAND-NAND, NOR-NOR Circuit

Static 1 and Static 0
Hazards can also be
avoided by adding
delay (controlled) in
the transition path.

$$Y = A'.C + A.B$$

B = 1, C = 1

 $A:1 \rightarrow 0$

Glitch occurs

Cover: (*B.C*)' as 3rd input to output NAND

$$Y = (A + C).(A' + B)$$

B = 0, C = 0

Cover: (B + C)'

 $A:0\rightarrow 1$

as 3rd input to

Glitch occurs

output NOR

Dynamic Hazard

- Potential for multiple transitions before settling to final value while Boolean logic asks for only one transition.
- One input variable is to have three or more paths to the output.
- No. of levels three or more.
- For specific combination of input variables, Boolean expression reduces to (A + A').A or A + A'.A

Dynamic Hazard: Example

$$Y = (A.C + B.(C.D)').(C.D)'$$

Covering Dynamic Hazard

Consider,

$$Y = (A.C + B.C').(CD)'$$

For,
$$A = 1$$
, $B = 1$, $D = 1$

$$Y = (C + C').C'$$
 \Rightarrow Multiple transition at Y for $C: 1 \rightarrow 0$

To prevent, cover implicit Static 1 or 0 hazard

$$Y = (A.C + B.C' + A.B).(CD)'$$

For,
$$A = 1$$
, $B = 1$, $D = 1$

$$Y = (C + C' + 1).C' = C' \Rightarrow$$
 Single transition

Alternatively, convert multiple-level to 2-level circuit and cover hazard, if any.

Digital Building Blocks: Beyond Basic Gates

If-Then-Else

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

If **A** (i.e. **A** = 1) Then, **Y** = **B** Else, **Y** = **C**

A	Y
0	C
1	В

Multiplexer

$$Y = A'.C + A.B$$

Consider,

A = Control (Select)input, S_0

 \boldsymbol{B} = Data input, \boldsymbol{D}_1

 $C = Data input, D_0$

$$Y = S_0'.D_0 + S_0.D_1$$

S ₀	Y
0	D_0
1	D_1

A multiplexer steers one of the many inputs to an output based on control input(s).

Consider, $S_0 = A$, $D_0 = B$, $D_1 = B'$ then, Y = A'.B + A.B' = A XOR B

How to get Y = A.B?

4-to-1 Multiplexer

S ₁	S ₀	Y
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

$$D_0$$
 D_1
 D_2
 D_3
 S_1S_0

$$Y = S_1'S_0'D_0 + S_1'S_0D_1 + S_1S_0'D_2 + S_1S_0D_3$$

4-to-1 MUX from 2-to-1 MUX

$$Y = S_1'S_0'D_0 + S_1'S_0D_1 + S_1S_0'D_2 + S_1S_0D_3$$

$$= S_1'.(S_0'D_0 + S_0D_1) + S_1.(S_0'D_2 + S_0D_3)$$

$$= S_1'.F_0 + S_1.F_1$$

Higher order MUX from lower order

Higher order MUX from lower order

Shanon's Expansion Theorem and MUX

Shanon's Expansion Theorem: (inherent If-Then-Else)

$$F(x_1, x_2, x_3, ..., x_N) = x_1'.F(0, x_2, x_3, ..., x_N) + x_1.F(1, x_2, x_3, ..., x_N)$$

$$F(0, x_2, x_3, ..., x_N) \longrightarrow 0$$

$$2-\text{to-1}$$

$$MUX$$

$$1$$

$$Y = S_1'S_0'D_0 + S_1'S_0D_1 + S_1S_0'D_2 + S_1S_0D_3$$

$$= S_1'.[0'.S_0'D_0 + 0'.S_0D_1 + 0.S_0'D_2 + 0.S_0D_3] + S_1.[1'.S_0'D_0 + 1'.S_0D_1 + 1.S_0'D_2 + 1.S_0D_3]$$

$$= S_1'.(S_0'D_0 + S_0D_1) + S_1.(S_0'D_2 + S_0D_3)$$

$$F(x_1, x_2, x_3, ..., x_N) = x_1'.[x_2'.F(0, 0, x_3, ..., x_N) + x_2.F(0, 1, x_3, ..., x_N)] + x_1.[x_2'.F(1, 0, x_3, ..., x_N) + x_2.F(1, 1, x_3, ..., x_N)]$$

Shanon's Expansion Theorem and MUX

 $F(A,B,C) = A'B'C'.D_0 + A'B'C.D_1 + A'BC'.D_2 + A'BC.D_3$ $+ AB'C'.D_4 + AB'C.D_5 + ABC'.D_6 + ABC.D_7$

	F(A,B,C)	С	В	A
$D_0 = 1$	1	0	0	0
$D_1 = 0$	0	1	0	0
$D_2 = 0$	0	0	1	0
$D_3 = 1$	1	1	1	0
				•••

IC 74153

$$Y = E'.[(B'.A').C0 + (B'.A).C1 + (B.A').C2 + (B.A).C3]$$

STROBE (G)	В	A	Y
Н	Χ	Χ	L
L	L	L	CO
L	L	Н	C1
L	Н	L	C2
L	Н	Н	C3

References:

☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &

Applications 8e, McGraw Hill