Esercizi di Topologia Algebrica

Gabriele Bozzola Matricola: 882709

Gennaio 2017

Esercizi			
1	1 1.1.19 (iv)		1
2	2 1.1.19 (v)		3
3	3 1.1.19 (vii)		3
4	4 1.2.33 (v)		4
5	5 1.2.33 (xii)		5
6	6 1.2.33 (xiii)		5
7	7 1.5.19 (vii)		6
8	8 1.9 (7)		7
9	9 1.9 (21)		9
10	10 4.2.27 (v)		10

1 Esercizio 1.1.19 (iv)

Testo

Mostra che l'equivalenza omotopica tra spazi topologici è una relazione di equivalenza.

Soluzione

Siano X e Y due spazi topologici, dico che X è omotopicamente equivalente a Y se esiste una funzione continua $f\colon X\to Y$ tale che esiste una funzione continua $g\colon Y\to X$ tale

che $f\circ g\sim 1_Y$ e $g\circ f\sim 1_X$, dove \sim indica la relazione di omotopia tra due applicazioni continue.

Devo mostrare che la relazione di omotopia tra due spazi topologici è una relazione di equivalenza, cioè, indicando anche questa relazione con \sim , soddisfa:

- 1. Riflessività: $X \sim X$
- 2. Simmetria: se $X \sim Y$ allora $Y \sim X$
- 3. Transitività: se $X \sim Y$ e $Y \sim Z$ allora $X \sim Z$

Ma:

- 1. Devo trovare una funzione continua $f\colon X\to X$ tale che esiste una seconda funzione continua $g\colon X\to X$ con $f\circ g\sim 1_X$ e $g\circ f\sim 1_X$. Una possibile scelta per queste funzioni è $f=g=1_X$ che è tale che $f\circ g=g\circ f=1_X\sim 1_X$ per la riflessività della relazione di omotopia tra funzioni.
- 2. Per ipotesi esiste una funzione continua $f\colon X\to Y$ tale che esiste una seconda funzione continua $g\colon Y\to X$ con $f\circ g\sim 1_Y$ e $g\circ f\sim 1_X$, devo trovare una funzione continua $\phi\colon Y\to X$ tale che esiste una seconda funzione continua $\gamma\colon X\to Y$ con $\phi\circ\gamma\sim 1_X$ e $\gamma\circ\phi\sim 1_Y$ Una possibile scelta per queste funzioni è $\phi=f$ e $\gamma=g$, infatti queste sono funzioni continue con il giusto dominio e codominio e sono tali che $\phi\circ\gamma=g\circ f\sim 1_X$ e $\gamma\circ\phi=f\circ g\sim 1_Y$.

Per dimostrare il terzo punto è conveniente utilizzare un lemma:

Lemma 1. La relazione di omotopia tra funzioni si comporta bene rispetto alla composizione, cioè siano X, Y, W, Z spazi topologici, $f, g \colon X \to Y, h \colon W \to X$ e $k \colon Y \to Z$ mappe continue con $f \sim g$, allora $f \circ h \sim g \circ h$ e $k \circ f \sim h \circ g$.

Dimostrazione. Siccome $f\circ g$ significa che esiste una funzione continua $F\colon X\times I\to Y$ (con I=[0,1]) tale che:

$$F(x,0) = f(x)$$
$$F(x,1) = g(x)$$

Definisco $\phi=f\circ h$ e $\gamma=g\circ h$, vale che $\phi,\gamma\colon W\to Y$ sono funzioni continue perché composizioni di funzioni continue. Devo mostrare che:

$$\exists H \colon W \times I \to Y$$
 continua tale che $H(w,0) = \phi(w)$ e $H(w,1) = \gamma(w)$

Una possibile scelta per H è $H=F\circ (h,1_I)$, questa è continua perché composizione di funzioni continue, inoltre è tale che $H(w,0)=f\circ h(w)=\phi(w)$ e $H(w,1)=g\circ h(w)=\gamma(w)$, e quindi è l'omotopia cercata.

A questo punto:

3. Per ipotesi so che $X \sim Y$ e $Y \sim Z$, cioè so che:

$$\exists f_1 \colon X \to Y$$
 tale che $\exists g_1 \colon Y \to X$ tale che $f_1 \circ g_1 \sim 1_Y$ e $g_1 \circ f_1 \sim 1_X$ $\exists f_2 \colon Y \to Z$ tale che $\exists g_2 \colon Z \to Y$ tale che $f_2 \circ g_2 \sim 1_Z$ e $g_2 \circ f_2 \sim 1_Y$

Devo mostrare che:

$$\exists f_3 \colon X \to Z$$
 tale che $\exists g_3 \colon Z \to X$ tale che $f_3 \circ g_3 \sim 1_Z$ e $g_3 \circ f_3 \sim 1_X$

Una possibile scelta per f_3 e g_3 è $f_3=f_2\circ f_1$ e $g_3=g_1\circ g_2$. In questo modo ho $f_3\colon X\to Z$ e $g_3\colon Z\to X$, queste mappe sono continue perché sono composizione di funzioni continue. Perché questa sia una buona scelta deve essere che:

- a) $f_2 \circ f_1 \circ g_1 \circ g_2 \sim 1_Z$
- b) $g_1 \circ g_2 \circ f_2 \circ f_1 \sim 1_X$

Definisco $h=f_1\circ g_1\circ g_2$, mostrare la prima relazione equivale a mostrare che $f_2\circ h\sim 1_Z$. Per il lemma 1 vale che $h=f_1\circ g_1\circ g_2\sim 1_Y\circ g_2=g_2$, in quanto $f_1\circ g_1\sim 1_Y$ per ipotesi, ma siccome $h\sim g_2$ e $f_2\circ g_2\sim 1_Z$ per il medesimo lemma $f_2\circ h\sim 1_Z$.

La seconda relazione è analoga.

2 Esercizio 1.1.19 (v)

Testo

Mostra che una mappa equivalente a una equivalenza omotopica è una equivalenza omotopica.

Soluzione

Se X,Y sono spazi topologici omotopicamente equivalenti esiste una funzione continua $f\colon X\to Y$, detta equivalenza omotopica tale che esista una seconda funzione continua $g\colon Y\to X$ con $f\circ g\sim 1_Y$ e $g\circ f\sim 1_X$. Sia $h\colon X\to Y$ una funzione continua con $h\sim f$, devo mostrare che h è una equivalenza omotopica, cioè che esiste una funzione continua $k\colon Y\to X$ tale che $h\circ k\sim 1_Y$ e $k\circ h\sim 1_X$. Una possibile scelta per questa funzione k è la funzione g stessa. Questa è continua e per il lemma 1 vale che $g\sim 1_Y$ e $g\circ h\sim 1_X$ in quanto per ipotesi $g\sim 1_Y$ e $g\sim$

3 Esercizio 1.1.19 (vii)

Testo

Sia $f \colon X \to Y$ e $g \colon Y \to X$ mappe tali che $f \circ g$ e $g \circ f$ siano relazioni omotopiche, mostra che f e g sono equivalenze omotopiche.

Soluzione

Siano X,Y spazi topologici e $f\colon X\to X,\,g\colon Y\to Y$ funzioni continue tali che $f\circ g$ e $g\circ f$ siano equivalenze omotopiche, devo mostrare che questo implica che f e g stesse siano equivalenze omotopiche, cioè che:

$$\exists \phi \colon Y \to X \text{ continua tale che } f \circ \phi \sim 1_Y \text{ e } \phi \circ f \sim 1_X$$

$$\exists \gamma \colon X \to Y \text{ continua tale che } g \circ \gamma \sim 1_X \text{ e } \gamma \circ g \sim 1_Y$$

Siccome $f\circ g$ e $g\circ f$ sono equivalenze omotopiche vale che:

$$\exists h \colon Y \to Y$$
 continua tale che $f \circ g \circ h \sim 1_Y$ e $h \circ f \circ g \sim 1_Y$ $\exists k \colon X \to X$ continua tale che $g \circ f \circ k \sim 1_X$ e $k \circ g \circ f \sim 1_X$

 $k\circ g\colon Y\to X$ è continua e vale che $f\circ g\circ h\sim 1_Y$, allora per il lemma 1 $k\circ g\circ f\circ g\circ h\sim k\circ g$. Per il medesimo lemma e per il fatto che $k\circ g\circ f\sim 1_X$ deriva similmente che $g\circ h\sim k\circ g$. Una possibile scelta per ϕ è $\phi=g\circ h$, infatti utilizzando il fatto che $f\circ g$ è equivalenza omotopica:

$$f \circ \phi = f \circ g \circ h \sim 1_Y$$

Inoltre utilizzando l'osservazione appena fatta e il lemma 1:

$$g \circ h \circ f \sim k \circ g \circ f \sim 1_X$$

Anche in questo caso ho utilizzato il fatto che $g\circ f$ è equivalenza omotopica. Si può utilizzare un ragionamento analogo per γ .

4 Esercizio 1.2.33 (v)

Testo

Considera la mappa $f: \mathcal{S}^1 \times \mathcal{S}^1 \to \mathcal{S}^1 \times \mathcal{S}^1$ data da $f(z_1, z_2) = (z_1 z_2, z_2)$, calcola l'omomorfismo indotto f_* sul gruppo fondamentale.

Soluzione

È dato l'omomorfismo:

$$f \colon \mathcal{S}^1 \times \mathcal{S}^1 \to \mathcal{S}^1 \times \mathcal{S}^1$$

 $(z_1, z_2) \mapsto (z_1 z_2, z_2)$

Sullo spazio $\mathcal{S}^1 \times \mathcal{S}^1$ ogni laccio è omotopo ad un laccio della forma:

$$\sigma \colon \Delta_1 \times \Delta_1 \to \mathcal{S}^1 \times \mathcal{S}^1$$
$$(s,t) \mapsto (e^{2\pi i n s}, e^{2\pi i m t})$$

Dove $\Delta_1 \simeq [0,1]$ è l'1-simplesso standard, e in cui sostanzialmente $n,m \in \mathbb{Z}$ contano il numero di avvolgimenti del laccio attorno alle due circonferenze, per questo il gruppo fondamentale è $\pi_1(\mathcal{S}^1 \times \mathcal{S}^1) \cong \mathbb{Z} \times \mathbb{Z}$. Sto cercando quindi la mappa:

$$f_{\star} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

 $(n, m) \mapsto ?$

L'azione di f_{\star} è definita a partire dai lacci omotopicamente distinti del gruppo fondamentale: $f_{\star}[\sigma] = [f \circ \sigma]$ quindi:

$$(s,t) \xrightarrow{\sigma} (e^{2\pi i n s}, e^{2\pi i m t}) \longrightarrow (e^{2\pi i n s} e^{2\pi i m t}, e^{2\pi i m t})$$

Le classi di equivalenza distinte sono quelle in cui il numero di avvolgimenti del laccio intorno a S^1 è diverso, quindi:

$$f_{\star} \colon \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

 $(n,m) \mapsto (n+m,m)$

Intuitivamente quello che succede è che f fa ruotare il punto sulla prima S^1 di un angolo pari a quello del punto della seconda S^1 e quindi il numero di avvolgimenti si somma.

5 Esercizio 1.2.33 (xii)

Testo

Mostra che S^1 non è dello stesso tipo di omotopia di S^n per $n \geq 2$.

Soluzione

Due spazi topologici hanno lo stesso tipo di omotopia se sono omotopicamente equivalenti. Per assurdo \mathcal{S}^1 e \mathcal{S}^n con $n \geq 2$ sono omotopicamente equivalenti, questo implica che i loro gruppi fondamentali sono isomorfi, indipendentemente dal punto base in quanto gli spazi sono connessi per archi. Ma $\pi_1(\mathcal{S}^1) \cong \mathbb{Z}$, mentre $\pi_1(\mathcal{S}^n) \cong 1$ per $n \geq 2$, quindi siccome i gruppi fondamentali non sono isomorfi gli spazi non possono essere omotopicamente equivalenti.

6 Esercizio 1.2.33 (xiii)

Testo

Mostra che \mathbb{R}^2 non è omeomorfo a \mathbb{R}^n per ogni n > 2.

Soluzione

Per assurdo esiste una funzione continua $f\colon \mathbb{R}^2\to\mathbb{R}^n$ con n>2 che sia omeomorfismo. Tolgo un punto p da \mathbb{R}^2 , se f è un omeomorfismo anche la restrizione \tilde{f} di f su $\mathbb{R}^2\setminus\{\,p\,\}$ è omeomorfismo. Ma $\mathbb{R}^2\setminus\{\,p\,\}\simeq\mathbb{R}\times\mathcal{S}^1$, infatti una mappa che realizza esplicitamente questo omeomorfismo è, dopo aver portato p in 0 (una traslazione è un omeomorfismo):

$$\mathbb{R}^2 \setminus \{ 0 \} \to \mathbb{R} \times \mathcal{S}^1$$
$$\vec{x} \mapsto \left(||\vec{x}||, \frac{\vec{x}}{||\vec{x}||} \right)$$

Analogamente $\mathbb{R}^n \setminus \{f(p)\} \simeq \mathbb{R} \times \mathcal{S}^{n-1}$. Quindi siccome per ipotesi esiste un omeomorfismo tra \mathbb{R}^2 e \mathbb{R}^n allora $\mathbb{R} \times \mathcal{S}^1 \simeq \mathbb{R} \times \mathcal{S}^{n-1}$, e questo implica che i gruppi fondamentali sono isomorfi. Siccome il gruppo fondamentale di un prodotto è il prodotto dei gruppi fondamentali e vale che:

$$\pi_1(\mathbb{R}) = 1$$

$$\pi_1(\mathcal{S}^1) = \mathbb{Z}$$

$$\pi_1(\mathcal{S}^n) = 1$$

allora $\pi_1(\mathbb{R} \times \mathcal{S}^1) = \mathbb{Z}$ e $\pi_1(\mathbb{R} \times \mathcal{S}^{n-1}) = 1$, ma questi gruppi non sono isomorfi, e quindi ho trovato l'assurdo.

7 Esercizio 1.5.19 (vii)

Testo

Mostra che ogni mappa $S^1 \to X$ è omotopa a zero se e solo se $\pi_1(X, x_0)$ è banale in ogni punto $x_0 \in X$.

Soluzione

Il gruppo fondamentale di uno spazio topologico X sul punto base $x_0 \in X$ è:

$$\pi_1(X, x_0) = \{ f \colon \mathcal{S}^1 \to X \text{ continua} \mid f(1) = x_0 \} / \sim$$

Dove \sim è la relazione di equivalenza omotopica. Una funzione si dice omotopa a zero quando è omotopa ad una funzione costante.

Se il gruppo fondamentale è banale $\forall x_0 \in X$ singifica che il suo unico elemento è la classe di equivalenza del laccio costante [1], per cui considerata la generica funzione $g \colon \mathcal{S}^1 \to X$ continua, questa è necessariamente nella stessa classe di equivalenza di [1] in $\pi_1(X,g(1))$ e ciò singifica che è omotopa ad un cammino costante, quindi omotopa a zero.

Mostro il viceversa. Fisso $x_0 \in X$ e considero tutte le funzioni continue $h \colon \mathcal{S}^1 \to X$ tali che $h(1) = x_0$, per ipotesi questi lacci sono omotopi a zero, quindi sono tutti equivalenti al laccio costante $C_{h(1)}$. Per questo motivo il gruppo fondamentale $\pi_1(X,h(1))$ contiene la sola classe di equivalenza del laccio costante, ed è quindi banale.

8 Esercizio 1.9 (7)

Testo

Considera le mappe $(x_1, \ldots, x_{n+1}) \mapsto (\pm x_1, \ldots, \pm x_{n+1})$ da S^n a S^n e inseriscile in classi di equivalenza rispetto omotopia. Quante classi ci sono?

Soluzione

Per risolvere velocemente questo esercizio sono utili alcuni lemmi:

Lemma 2. Sia ρ_i la riflessione rispetto al piano $x_i = 0$:

$$\rho_i \colon \mathcal{S}^n \to \mathcal{S}^n$$
$$(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, -x_i, \dots, x_{n+1})$$

allora il suo grado è -1, cioè $\deg \rho_i = -1 \ \forall i \in \{1, \ldots, n+1\}$.

Dimostrazione. In dimensione n+1 ci sono n+1 diverse riflessioni, tuttavia ciascuna di queste può essere ricondotta a una riflessione di riferimento scambiando due opportunamente due coordinate, ma questa operazione è un omeomorfismo tra sfere in quanto è continua e ammette inverso continuo, e quindi è sufficiente dimostrare che una riflessione in \mathcal{S}^n ha grado -1 per dimostrare che anche tutte le altre hanno grado -1.

Tale dimostrazione è per induzione, per n=1:

$$\rho \colon \mathcal{S}^1 \to \mathcal{S}^1$$
$$(x_0, x_1) \mapsto (x_0, -x_1)$$

Considero il generatore σ :

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$

 $t \mapsto (\cos(2\pi t), \sin(2\pi t))$

Quindi:

$$\rho \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \mapsto (\cos(2\pi t), -\sin(2\pi t)))$$

Ma:

$$(\cos(2\pi t), -\sin(2\pi t))) = (\cos(-2\pi t), \sin(-2\pi t))) =$$

= $(\cos(2\pi(1-t)), \sin(2\pi(1-t)))$

Quindi $\rho \circ \sigma = \bar{\sigma} = -\sigma$ e quindi il grado è -1.

Suppongo che il risultato sia vero per S^{n-1} mostro che è vero anche per S^n .

Calcolando l'omologia delle sfere ho mostrato che per n>1 risulta che $H_n(\mathcal{S}^n)\cong H_{n-1}(\mathcal{S}^{n-1})$, quindi esiste il diagramma commutativo:

$$H_n(\mathcal{S}^n) \xrightarrow{\rho_{\star}} H_n(\mathcal{S}^n)$$

$$\downarrow^{\cong} \qquad \downarrow^{\cong}$$

$$H_{n-1}(\mathcal{S}^{n-1}) \xrightarrow{\rho_{\star}^{(n-1)}} H_{n-1}(\mathcal{S}^{n-1})$$

Ma per ipotesi induttiva per n-1 il grado è -1 ma nominando ϕ gli isomorfismi da $H_{n-1}(\mathcal{S}^{n-1})$ a $H_n(\mathcal{S}^n)$:

$$\deg\left(\rho_{\star}^{(n)}\right) = \deg\left(\phi \circ \rho_{\star}^{(n-1)} \circ \phi^{-1}\right)$$

L'azione su un generatore è:

$$x \xrightarrow{\phi^{-1}} \tilde{x} = \phi^{(-1)}(x) \xrightarrow{\rho_{\star}^{(n-1)}} -\tilde{x} \xrightarrow{\phi} -\phi(\tilde{x}) = -x$$

Quindi anche per n il grado è -1.

Lemma 3. Siano $f, g: S^n \to S^n$ due mappe continue allora $\deg (f \circ g) = \deg f \deg g$.

Dimostrazione. Il grado è definito dall'azione delle mappe indotte da f e g su $H_n(\mathcal{S}^n)$:

$$f_{\star} \colon H_n(\mathcal{S}^n) \to H_n(\mathcal{S}^n)$$

 $\alpha \mapsto \deg f \alpha$

Analogamente:

$$g_{\star} \colon H_n(\mathcal{S}^n) \to H_n(\mathcal{S}^n)$$

 $\alpha \mapsto \deg g \alpha$

Per la funtorialità:

$$(f \circ g)_{\star}(\alpha) = (f_{\star} \circ g_{\star})(\alpha) = f_{\star}(g_{\star}(\alpha)) = f_{\star}(\deg g \alpha)$$

Siccome f_{\star} è omomorfismo:

$$f_{\star}(\deg g \, \alpha) = \deg g f_{\star}(\alpha) = \deg g \, \deg f$$

Ma per definizione:

$$(f \circ g)_{\star}(\alpha) = \deg(f \circ g)\alpha$$

Da cui $\deg(f \circ g) = \deg f \deg g$.

Lemma 4. Siano $f, g: \mathcal{S}^n \to \mathcal{S}^n$ due mappe continue, se $\deg f = \deg g$ allora $f \sim g$, cioe se due applicazioni hanno le stesso grado allora sono omotope.

Utilizzando questi lemmi diventa semplice classificare tutte le mappe della forma:

$$(x_1, \ldots, x_{n+1}) \mapsto (\pm x_1, \ldots, \pm x_{n+1})$$

Per rappresentare tutto questo insieme si può scrivere:

$$r^{i_1...i_{n+1}} \colon (x_1,\ldots,x_{n+1}) \mapsto ((-)^{i_1}x_1,\ldots,(-)^{i_{n+1}}x_{n+1}) \text{ con } i_j \in \{0,1\} \ \forall j \in \{1,\ldots,n\}$$

L'insieme di queste applicazioni forma un gruppo discreto finito generato dalle riflessioni ρ_i , e la generica mappa si può scrivere come:

$$r^{i_1...i_{n+1}} = \rho_{n+1}^{i_{n+1}} \circ \cdots \circ \rho_1^{i_1} \text{ con } i_i \in \{0,1\} \ \forall j \in \{1,\ldots,n\}$$

Utilizzando il lemma 3 si ha che:

$$\deg r^{i_1...i_{n+1}} = \prod_{j=1}^{n+1} i_j = \pm 1$$

Quindi per il lemma 4 tutte le funzioni $r^{i_1...i_{n+1}}$ si ripartiscono in due classi di equivalenza, una con rappresentante l'identità, l'altra con rappresentante la mappa antipodale.

9 Esercizio 1.9 (21)

Testo

Sia $q_1(z)=z^n$ e $q_2(z)=\bar{z}$. Calcola il grado di $q_1,q_2\colon \mathcal{S}^1\to \mathcal{S}^1$.

Soluzione

Sia:

$$q_1 \colon \mathcal{S}^1 \to \mathcal{S}^1$$

 $z \mapsto z^n$

Questa induce una mappa sul gruppo $H_1(S^1)$, il quale è noto essere gruppo libero generato di rango 1. Un suo generatore è dato dalla classe del simplesso singolare:

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \mapsto e^{2\pi i t}$$

Ma quindi:

$$q_1 \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$

 $t \mapsto e^{2\pi i n t}$

E quindi $q_1(\sigma) = \sigma \star \sigma \star \sigma \cdots = \sigma^n$, cioè sui gruppi di omologia:

$$(q_1)_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

 $1 \mapsto n$

Per questo il grado della mappa è n. Sia:

$$q_2 \colon \mathcal{S}^1 \to \mathcal{S}^1$$

 $z \mapsto \bar{z}$

Dove \bar{z} indica il cammino inverso. Allora considerando lo stesso generatore:

$$q_2 \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$

$$t \mapsto e^{2\pi i(1-t)} = e^{-2\pi it}$$

Quindi a livello di gruppi di omologia:

$$(q_2)_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

 $1 \mapsto -1$

E quindi il grado è -1.

10 Esercizio 4.2.27 (v)

Testo

Calcola il grado di ogni riflessione in un piano, cioè $r \colon \mathcal{S}^n \to \mathcal{S}^n$ definita da:

$$\rho_0: (x_0,\ldots,x_{n+1}) \mapsto (-x_0,\ldots,x_{n+1})$$

Più in generale calcola il grado di una mappa $f_k \colon \mathcal{S}^n \to \mathcal{S}^n$ del tipo:

$$f_k : (x_0, \dots, x_{n+1}) \mapsto (-x_0, \dots, -x_k, \dots, x_{n+1})$$

Soluzione

Il grado delle riflessioni è già stato calcolato nell'esercizio 8. Utilizzando i risultati di tale esercizio e le medesima notazione, la funzione f_k si può scrivere come $f_k = \rho_k \circ \cdots \circ \rho_1$, quindi usando il lemma 3:

$$\deg f_k = \begin{cases} +1 & \text{se } k \text{ è dispari} \\ -1 & \text{se } k \text{ è pari} \end{cases}$$