Mandatory iSCSI Security

review of the potential methods

IPS Interim Meeting Nashua NH, May 01 2001

Ofer Biran

Thanks to:

IBM Research Lab in Haifa

Bernard Aboba, David Black,

Julian Satran, Steve Senum

Current draft Security MUST / MAY for Implementation:

- ♦ MUST provide means of authentication and data integrity.
- ◆ MAY provide means of data privacy.
- ◆ Both can be satisfied by using IPSec. IPSec 'orthogonal' to the iSCSI standard.

◆ Negotiated: Kerb5, SPKM-1,2, SRP, CHAP [TLS, proprietary]

Security Open Issues

- **◆ Mandatory to implement** method ensures *Implementation Interoperability*
- ◆ Still might be 'configured out'...
- ◆ e.g., in TLS, mandatory algorithm is TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA in CHAP: MD5

Selection Criteria

- 1. Suitability for the iSCSI scenarios
- 2. Administration
- Standardization, existing code & implementations
- 4. Code complexity
- 5. Performance / hardware acceleration
- 6. Security considerations
- 7. Licensing

1. Suitability for the iSCSI scenarios

- ◆ Security 'roles':
 - **♦** Initiator
 - **◆** Target
 - ♦ iSCSI Proxy
 - ◆ iSCSI Gateway
 - ♦ iSCSI-aware firewall
- ◆ Initiators are 'users' on target systems?
- ◆ The identity to be authenticated.

1. ...Suitability for the iSCSI scenarios

◆ Corporate intranet aspects, firewalls.

◆ Central security server appropriate ?

◆ iSNS requirements / interoperability.

2. Administration

- ◆ Getting into operational state.
- ◆ Adding / removing users and service principals.
- ◆ Maintenance (passwords, certificates, security servers & databases).
- ◆ Policy.
- ◆ Authorization aspects.

2. ... Administration

- ◆ The potential methods divided to:
 - ◆ 'User accounts on target machine' (SRP, CHAP)
 - ◆ Security server (KERB5, CHAP/Radius, SPKM/iSNS)
 - ◆ PKI (IPSec, SPKM, TLS)

3. Standardization, existing code & implementations

- ◆ Status of formal standard
- ◆ Existing code:
 - ♦ Open source
 - ◆ Commercial libraries (GSS_API)
- ◆ Experience and acceptance
- ◆ 'Customer base'

4. Code complexity

- ◆ Code size
- ◆ Programming effort
- **◆** Testing effort
 - ◆ Security server more complex.
 - ◆ More options more complex...

5. Performance / Hardware accelerators

◆ Initial Authentication – no issue

◆ Message authentication/integrity

- ◆ Encryption
 - ◆ not mandatory
 - ◆ Agreed only by IPSec (or proprietary)

6. Security considerations

◆ Protected attacks

◆ Known crypto algorithm deficiencies

◆ Other security problems

Kerberos V5

- ◆ Central KDC (AS + TGS) stores all users & services keys.
- ◆ User get credentials (TGT) from the AS, then get a ticket for each desired service.
- ◆ Service has a private key in protected file.
- ◆ Timestamps play important role.
- ♦ iSCSI login defines tokens exchange and digests based on GSS-API.

Kerberos V5

- 1. Suitability for the iSCSI scenarios +-
 - Excellent for Intranet scenario
 - ◆ Less suitable for Internet / crossing into Intarnet.
 - Third party (KDC) dependency.
- 2. Administration +
 - ◆ Some effort in initial configuration
 - Excellent for add/delete users, maintenance,
 Policy, Authorization aspects.

...Kerberos V5

- 3. Standardization, exist. Implementations +
 - Excellent experience & acceptance.
 - Large customer base.
- 4. Code complexity +-
 - ◆ Very complex, however free & commercial GSS-API libraries exist.
- 5. Performance / hardware acceleration -
 - ◆ For digest: MD5 / DES based.

...Kerberos V5

- 6. Security considerations +-
 - Crypto digest available (GSS_GetMic) (MD5 / DES issues)
 - ◆ Encryption also available (GSS_Wrap) but not defined in the iSCSI draft.
 - ◆ Credentials reuse & delegation.
 - ◆ TGS protocol dictionary attack (proposal to use SRP...).

SPKM-1/2 Simple Public Key Mechanism

- Based on RFC-2025 "The Simple Public-Key GSS-API Mechanism (SPKM)"
- SPKM-1 (random challenge), SPKM-2 (timestamp)
- iSCSI login defines token exchange:

```
SPKM-REQ gss_init_sec_context()
```

SPKM-REP-TI gss_accept_sec_context()

SPKM-REP-IT gss_init_sec_context()

• Digest by GSS_GetMIC() similar to KRB5 (here: md5WithRSA, DES-MAC, md5-DES-CBC)

SPKM-1/2 Simple Public Key Mechanism

- Suitability for the iSCSI scenarios +
 - With CA hierarchy suitable both for Intranet and Internet.
 - Proxy / real target can both play security endpoint.
- 2. Administration +-
 - ◆ PKI... Intranet CA + distribution of certificates. CRLs are complex.
 - ◆ Certificates can be used for authorization aspects (property fields).

- 3. Standardization, exist. Implementations -
 - ◆ RFC-2025 in 'proposed standard (since 1996)
 - ◆ NFS V4 mandates SPKM-3 which is based on SPKM (RFC-2025).
 - Very few implementations / experience.
- 4. Code complexity +-
 - ◆ Not complex, but lack of experience & commercial libraries.

... SPKM-1/2

- 5. Performance / hardware acceleration -
 - ◆ For digest: MD5 / DES based.
- 6. Security considerations +
 - Crypto digest available (GSS_GetMic)(MD5 issues)
 - ◆ Encryption also available (GSS_Wrap) but not defined in the iSCSI draft.
 - ◆ CRLs are problematic.

SRP

- ◆ Strong Password Authentication
- protection against both passive and active attacks.
- ◆ Server keeps password verifiers.
- ◆ Mutual authentication (the server proves the knowledge of the verifier).
- ◆ Shared key (320 bit) is constructed no usage spec.

1. Suitability for the iSCSI scenarios

- User/password based...
- ◆ Machine key or user's password (?)
- Suitable for SSPs.

2. Administration +

 User/password DB for each target, or central security DB (with safe target connection).

- 3. Standardization, existing implementations +
 - ◆ RFC-2945 in 'proposed standard'.
 - ◆ Telnet, FTP, SSH extensions.
- 4. Code complexity +
 - Very simple.
- 5. Performance / hardware acceleration -
 - Only initial authentication (currently)
- 6. Security considerations +
 - ◆ Strong Password authentication. Mutual. no clear passwords saved, shared key (320 bits) is generated, can be used for MIC no standard for this.

CHAP ([/Radius])

- ◆ Simple challenge / response scheme.
- ◆ Used for PPP authentication (defined for the PPP link layer – iSCSI defines corresponding login exchanges).
- ◆ Radius server is used on the server side but this is optional.
- ◆ iSCSI login defines server authentication by reverse challenge / response.

CHAP ([/Radius])

1. Suitability for the iSCSI scenarios

- User/password based...
- ♦ Machine key or user's password (?)
- Suitable for SSPs.
- ◆ Target needs 'password for user' for mutual authentication.
- ◆ Third party (Radius server) dependency.

2. Administration +

◆ User/password DB for each target, or Radius security server (with safe target connection).

... CHAP ([/Radius])

- 3. Standardization, exist. Implementations +
 - ◆ RFC-2945 in 'proposed standard'.
 - Well accepted, large customer base.
- 4. Code complexity +
 - ◆ Very simple.
- 5. Performance / hardware acceleration
 - Only initial authentication.

... CHAP ([/Radius])

- 6. Security considerations -
 - Clear password saved (on Radius server).
 - Guessing attack on the response unveil the password!
 - ◆ Target's passwords for mutual authentication.
 - No shared key generated.

- ◆ Based on the popular SSL (99% of internet secure traffic?)
- ◆ Public key & certificate scheme.
- ◆ Handshake phase authentication, session key generated and integrity / encryption algorithms negotiated.
- ♦ Has its own framing (record layer) doesn't preserve message boundaries.
- ◆ Otherwise convenient API control.

1. Suitability for the iSCSI scenarios +

- With CA hierarchy suitable both for Intranet and Internet.
- Proxy / real target can both play security endpoint.

2. Administration +-

- ◆ PKI... Intranet CA + distribution of certificates. CRLs are complex.
- ◆ Certificates can be used for authorization aspects (property fields).

- 3. Standardization, exis implementations +
 - ◆ **THE** Internet de-facto security.
- 4. Code complexity +-
 - ◆ Complex, but many commercial libraries.

- 5. Performance / hardware acceleration -
 - ♦ Hardware accelarators exists, not 1Gbs
 - ◆ Record layer fragmentation breaks iSCSI steering and synchronization.
- 6. Security considerations +
 - ◆ CRLs are problematic.

IPSec

- ◆ Security at the IP level.
- ◆ Transport mode for host to host.
- ◆ Tunnel mode between routers (VPNs).
- ◆ AH IP header authentication.
- ◆ ECP encryption of the payload (& auth)
- ◆ SA generated by IKE (or KINK...)
 - ◆ Manual keying or certificate based.
 - ◆ Main mode for authentication, keying material and protection of quick modes.
 - ◆ Quick modes for generating specific Sas.
- ◆ Complex policy rules for handling packets.
- ◆ Cannot be negotiated in iSCSI level.

IPSec

- 1. Suitability for the iSCSI scenarios +-
 - ◆ Security on the (ext-)Initiator firewall segment.
 - Suitable for 'iSCSI aware firewall'.
 - ♦ The only acceptable solution for encryption.
 - ◆ Fragmentation of IKE cert payloads (filters).

2. Administration -

- ◆ PKI... Intranet CA + distribution of certificates.
- ◆ Or manual keys setting not scalable.
- ◆ CRLs are complex.
- Complex policy.

- 3. Standardization, exist. Implementations +
 - ◆ IPSec, IH,ECP,ISAKMP, DOI, IKE
 - ♦ Well accepted, growing usage.

- 4. Code complexity +-
 - ◆ Very complex, IP Stack.

- 5. Performance / hardware acceleration +
 - Available hardware with excellent encryption/integrity performance.
- 6. Security considerations +
 - ◆ Issue of binding the identity authenticated during IKE SA with iSCSI.
 - ♦ Awareness of iSCSI implementation of the underlying IPSec protection. Would iSCSI / IPSec be orthogonal (only the administrator knows).
 - ◆ Credential reuse. (+)
 - ◆ CRLs are problematic.

	iSCSI Scena.	Admin	Std. & Impl.	Code Comp.	Perf. HW	Secur
Kerb5	+-	+	+	+-	-	+-
SPKM	+	+-	_	_	-	+
SRP		+	+	+	-	+
СНАР		+	+	+		_
TLS	+	+-	+	+-	-	+
IPSec	+-	_	+	+-	+	+

Recommendation

- 1. MUST implement E-E Authentication
 - ◆ Kerberos Third party, non-intranet
 - ◆ **SPKM** standard, code complexity
 - ◆ CHAP Security, mutual auth.
 - ◆ TLS record layer
 - ◆ SRP with defined digests
- 2. MUST (?SHOULD) implement IPSec ?unless... system where IPSec must be provided by other component.

... MUST IPSec

- ◆ Retrieving IKE identities / certs should be possible.
- ◆ Require IPSec/IKE administrative interface ?

- ◆ Restricting IPSec (Tunnel / ESP) ?
- ◆ Defining the IKE / SA rules in the iSCSI standard ? (iSCSI login in lower level or iSCSI 'login' standard on 2 levels)