Vérification calcul pressure drag

Maxime Cochennec

September 18, 2020

Contents

Problème 1

Vérification avec interface symétrique

Résultats

2

Code

4

Problème

On cherche à calculer l'intégrale 1

$$\frac{1}{S} \int_{\Gamma_{wo}} \gamma \left(\frac{\pi}{4} \kappa_{\parallel} - \frac{2}{h} \cos \theta \right) \mathbf{n}_{ow} \, \mathrm{d}l, \tag{1}$$

en particulier on s'intéresse à la composante selon x afin de discuter la différence entre les forces de trainées $d_{ow}|_x - d_{wo}|_x$.

¹ La composante selon *x* de l'intégrande est nul si symétrie d'axe y. Dans le cas d'une double symétrie d'axe x et y, par ex. une bulle parfaitement cylindrique, l'intégrande est nul.

L'intégrale 1 est calculée en dehors de Comsol comme suit :

- export de l'interface,
- · reconstruction par fitting avec un polynôme,
- calcul sur l'interface reconstruite.

On note que

$$\int_{\Gamma_{wo}} (p_w - p_o) \mathbf{n}_{ow} \cdot \mathbf{e}_x \, \mathrm{d}l = \int_{\Gamma_{wo}} \gamma \left(\frac{\pi}{4} \kappa_{\parallel} - \frac{2}{h} \cos \theta \right) \mathbf{n}_{ow} \cdot \mathbf{e}_x \, \mathrm{d}l, \quad (2)$$

puisque la viscosité des fluides est identique. On vérifie d'abord que l'intégrale 1 est bien nulle dans le cas d'une interface avec une symétrie d'axe y. Ensuite, on présente les résultats.

Vérification avec interface symétrique

On utilise une interface symétrique (Fig.1) afin de vérifier si le calcul de l'intégrale 1 renvoie bien un résultat nul. Les résultats sont donnés dans la Table 1. L'intégrale est bien nulle.

Figure 1: Interface symétrique utilisée pour l'exemple.

l'entrefer (Ca = 0.5).

l'entrefer (Ca = 0.025).

$$\frac{\langle \kappa_{\parallel} \rangle \text{ (1/m)} \quad \text{Intégrale (N/m)}}{-308 \quad 3 \times 10^{-17}}$$

Table 1: Courbure moyenne dans le plan et résultat de l'intégrale pour l'interface symétrique Fig.1

Table 2: Courbure moyenne dans le plan et résultat de l'intégrale en fonction de

Résultats

On calcule maintenant la courbure moyenne et l'intégrale 1 en fonction de l'entrefer et pour deux nombres capillaire. Les résultats sont donnés dans les Tables 2 et 3.

h^*	$\langle \kappa_{\parallel} \rangle$ (1/m)	Intégrale (N/m^3)	$\int \mathbf{n} \cdot \mathbf{e}_{x} \mathrm{d}l$	d_{ow} (N/m ³)
5	25	-4.65e-3	-2.79E-06	15.2
2	29	-1.83e-3	-3.21E-06	16.3
1	33	8.54e-3	-4.90E-06	21.2
0.5	39	3.44e-2	-5.92E-06	43.7
0.25	43	6.05e-2	-4.26E-06	138.5
0.125	53	5.05e-2	-1.67E-06	490.2
0.05	60	7.28e-2	-9.24E-07	2484.0
h^*	$\langle \kappa_{\parallel} \rangle$ (1/m)	Intégrale (N/m³)	$\int \mathbf{n} \cdot \mathbf{e}_x \mathrm{d}l$	d_{ow} (N/m ³)
	$\langle \kappa_{\parallel} \rangle$ (1/m)	Intégrale (N/m³) 2.48e-2	$\frac{\int \mathbf{n} \cdot \mathbf{e}_x \mathrm{d}l}{3.70 \text{E-o}_5}$	$\frac{d_{ow} (N/m^3)}{13.3}$
			- U	
5	-11	2.48e-2	3.70E-05	13.3
5 2	-11 -12	2.48e-2 -2.84e-4	3.70E-05 2.96E-05	13.3 13.5
5 2 1	-11 -12 -17	2.48e-2 -2.84e-4 1.00e-1	3.70E-05 2.96E-05 2.14E-07	13.3 13.5 14.6
5 2 1 0.5	-11 -12 -17 -23	2.48e-2 -2.84e-4 1.00e-1 6.10e-1	3.70E-05 2.96E-05 2.14E-07 -4.55E-05	13.3 13.5 14.6 24.0

Table 3: Courbure moyenne dans le plan et résultat de l'intégrale en fonction de

Les résultats de l'intégrale 1 sont très petits au regard de la force de trainée calculée dans le papier. Ces résultats confirment le résultat du papier, c-à-d, $d_{ow}|_x \approx d_{wo}|_x$.

Figure 2: Position de l'interface fluidefluide en fonction de l'entefer pour Ca =0.025. Une symétrie d'axe y apparaît pour un entrefer très petit.

Figure 3: Courbure dans le plan de l'interface le long de son abscisse curviligne (Ca = 0.025 et $h^* = 1/20$).

Code

```
import matplotlib
import numpy as np
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from matplotlib import rc
from scipy.optimize import curve_fit
from scipy.integrate import trapz
matplotlib.rcParams["mathtext.fontset"] = "stix"
matplotlib.rcParams["font.family"] = "STIXGeneral"
# constant
\#gamma = 2.23e-6
h = 5e-4 * 0.05
Surf = 5e-4 * 1e-3
gamma = 4.46e-5
xReconstruct = np.linspace(3e-3, 4e-3, num=100000)
# artificial symmetric interface
yArtificial = -5e-5 * np.sin(xReconstruct * np.pi / 1e-3) + 3.5e-4
xy = np.array(data, float)
z = np.polyfit(xy[:, 0], xy[:, 1], 8)
yReconstruct = np.polyval(z, xReconstruct)
# ---- COMPUTE GRADIENT
dx = np.gradient(xReconstruct)
ddx = np.gradient(dx)
dy = np.gradient(yArtificial)
ddy = np.gradient(dy)
# ----COMPUTE NORMAL VECTOR
nx = np.divide(-dy, np.sqrt(dx ** 2 + dy ** 2))
ny = np.divide(dx, np.sqrt(dx ** 2 + dy ** 2))
# ----COMPUTE ELEMENT LENGTH
ds = np.sqrt(dx ** 2 + dy ** 2)
sumds = np.cumsum(ds)
# ----COMPUTE CURVATURE
num = np.multiply(dx, ddy) - np.multiply(ddx, dy)
```

```
denom = (np.multiply(dx, dx) + np.multiply(dy, dy)) ** (3 / 2)
kappa = np.divide(num, denom)
L = np.sum(ds)
intnx = trapz(nx[2:-2], xReconstruct[2:-2])
intny = trapz(ny[2:-2], xReconstruct[2:-2])
meankappa = trapz(kappa[2:-2], xReconstruct[2:-2]) / L
meankappa1 = np.sum(np.multiply(kappa, ds)) / L
integral = gamma * trapz(nx[2:-2] * (kappa[2:-2] * np.pi / 4 - (2 / h)), xReconstruct[2:-2]) / Surf
integralnx = gamma * trapz(nx[2:-2], xReconstruct[2:-2]) / Surf
plt.clf()
fig1 = plt.figure(figsize=(3, 3))
plt.plot(xReconstruct[2:-2], yArtificial[2:-2])
plt.xlabel(r"$x$ (m)", fontsize=14)
plt.ylabel(r"$y$ (m)", fontsize=14)
plt.ticklabel_format(axis="x", style="sci", scilimits=(0, 0))
plt.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
fig1.tight_layout()
# plt.savefig('symInt.pdf')
plt.close()
fig2 = plt.figure(figsize=(3, 3))
plt.plot(sumds[3:-3],kappa[3:-3])
plt.xlabel(r'x curv (m)',fontsize=14)
plt.ylabel(r'$\kappa_{\parallel}$ (1/m)',fontsize=14)
plt.ticklabel_format(axis="x", style="sci", scilimits=(0, 0))
fig2.tight_layout()
#plt.savefig('kappa.pdf')
print("%2d,%2d,%10.2E,%10.2E"% (meankappa,meankappal,integral,integralnx))
```