

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 58202448 A

(43) Date of publication of application: 25.11.83

(51) Int. CI

G03F 7/20 G03F 9/00

(21) Application number: 57084784

(22) Date of filing: 21.05.82

(71) Applicant:

HITACHI LTD

(72) Inventor:

KAWAMURA YOSHIO TAKANASHI AKIHIRO KUNIYOSHI SHINJI KUROSAKI TOSHISHIGE **HOSAKA SUMIO**

TERASAWA TSUNEO

(54) EXPOSING DEVICE

(57) Abstract:

PURPOSE: To reduce the interference fringes of a photoresist layer, to detect the first pattern position with high precision, and to expose the second pattern exactly, by interposing a transparent liquid layer between a lens system and a substrate, and bringing a transparent plate attached to the lens system into contact with the liquid layer.

CONSTITUTION: The first pattern 7 is formed on a base 5 and a photosensitive layer 6 is formed on the pattern 7. The pattern 7 is detected with the lens systems 2, 4, and the second pattern to be formed on the photosensitive layer 6 formed on a reticle 3 is registered with the first pattern. The transparent liquid layer 12 is interposed between the lens 4 and the base 5, and the lens 4 is brought into contact with the layer 12 by the medium of a glass plate 4 in the exposing device for exposing the layer 6 to the optical second pattern. As a result, occurrence of interference fringes are reduced, detection accuracy of the first pattern 7 is enhanced, and the second pattern is exactly exposed with this exposing device.

COPYRIGHT: (C)1983,JPO&Japio

(9) 日本国特許庁 (JP)

① 特許出願公開

(A) 公開特許公報(A)

昭58—202448

60Int. Cl.3 G 03 F 7/20 9/00

識別記号

庁内整理番号 7124-2H 7124-2H

匈公開 昭和58年(1983)11月25日 発明の数

審査請求 未請求

(全 4 頁)

60露光装置

②1特

願 昭57-84784

邻出 願 昭57(1982)5月21日

⑫発 明 者 河村喜雄

> 国分寺市東恋ヶ窪1丁目280番 地株式会社日立製作所中央研究

所内

@発 明 者 高梨明紘

> 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究

所内

@発明 国吉伸治 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内

⑫発 明 者 **柴** 米 、

の出

国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内

株式会社日立製作所

東京都干代田区丸の内1丁目5

番号

砂代 理 人 弁理士 薄田利幸

最終頁に続く

発明の名称 露光装置

特許請求の範囲

1. 第1のパターンが設けられ、かつ、その上に 感光剤層が形成された基板における上記第1の パターンをレンス系を介して横出し、上記感光 剤層を感光すべき第2のパターンと上記第1の パターンとの位置合せを行ない、上記感光剤を 上記第2のパターンでもつて感光させる舞光装 置において、上記レンズ系と上記基板との間に 光字的に透明な液体層を介在させ、かつ、上記 レンズ系が光学的に平行で透明な板状 部材を介 して上記液体層と接する如く構成してなること を特徴とする露光装置。

発明の詳細な説明

本発明は、半導体集積回路等の製造工程で用い られる鮮光装飾の改良に関するものである。

第1の敬細パターンの描かれた半導体 基板上の パターンを観察して、相対的な位置合わせを行な つた後、第2のバターンを投影する半導体露光装

憚において、説察すべき第1のパターンは凹凸を 有する段差状の形状を成しており、その段差状の パターンの上に感光剤であるホトレジスト層が形 成されている。しかし、とのホトレジスト層は、 観察すべき第1のパターンの凹凸に従つて凹凸が 生じてその逐布厚さが均一でなくなり、観察光を 照射 すると半導体基板からの反射光と半導体基板 への入射光とが柏互に干渉して、レジスト層の際で 厚差による干渉縞が生じ、観察光学上の障害とな つている。

したがつて、本発明の目的は、第1のパターン を有する基板上に形成されたホトレジスト層の膜 厚の差によつて生じる干渉縞の影響を低滅して第 1のパターンの位置を髙精度に検出し、第2のパ ターンを正確に露光する解光装置を提供すること **にある。**

上記目的を選択するために本発明においては、 第1のパターンが設けられ、かつ、その上に感光 剤層が形成された基板における第1のパターンを レンメ系を介して検出し、感光剤層を感光すべき

持開昭58-202448 (2)

第2のパターンと第1のパターンとの位置合せを 行ない、感光剤層を第2のパターンでもつて感光 させる露光装置において、レンズ系と基根との間 に光学的に透明な液体層を介在させ、かつ、レン ズ系が光学的に平行で透明な板状部材を介して液 体層と接するようにして弊光装置を構成したとと を特徴としている。

かかる本発明の特徴的な 構成により、ホトレジスト層の膜厚のムラに起因する干渉縞の影響を抑制することが可能となるため 基板上のパターンの位置を正確に検出できる。その結果、 高精度な驚光が可能な露光装置を提供できるようになつた。

以下、本発明を実施例を参照して詳細に説明する。

第1図は本発明による露光装置の基本構成を示したものである。露光装置は光源1、コンデンサレンズ2、拡大パターンの構かれたレティクル3、縮小投影レンズ4とから構成されており、レティクル3に描かれたパターンを基板である半導体ワエーハ5上に塗布された感光剤であるホトレジス

単放長光を用いるととになる。単放長の光を用い て、透明なホトレジスト層6を通して第1のパメ ーン7を検出する際には、ウエーハ5の表面から の反射光とウエーハ5への入射光とが互いに干渉 しあつて、ホトレジスト層と空気層とのように屈 折率の異なる媒体の接する境界面でホトレジスト 層6の膜厚の差に応じた干渉縞を生じてしまう。 との干参稿は明暗の般状となるため、第1のパタ ーン1の輪郭と区別するととが難しくなり、餌検 出の原因となり、その結果、重ね合せ精度を劣化 させる要因となるものである。特に、第、1のパタ ーン1の形状と完全に相似な形状のホトレジスト 層6の膜厚差(凹凸)10が得られる場合には、 ・干砂縞を用いて、第1のパターン7の位置を検出 し、これからパターン位置を類推することも可能 であるが、現実には、段差を有する第1のパター ン1と相似な形状のホトレジスト層 6 の膜厚差 (凹凸)10を得るととは不可能である。

そこで、本発明では上述のホトレジスト層 6 の 膜厚差 (凹凸) 1 0 による干渉縞の発生を低波し ト暦に投影するととによつてウェーへ5に所望の パターンを形成するものである。

一般に、半導体素子は、種々の回路パターンを 数回に渡つて、高精度に位置合わせを行ない重ね 焼きして行く必要がある。重ね焼きを行なりため には、前もつて形成された第1のパターン 7 の位 を放出光学系 8 . 1 1 によつて検出し、ウェー の乗つた移動台 9 を駆動させ、ウェーハ5 を の気の位置に位置決めして、レティクル3 に形する。 された第2のパターンと正確に合わせて解決を された第2のパターンと正確に合わせて解決を された第2のパターンと正確に合わせて解決を はなの第1のパターン 7 は凹凸状の段のパターンを はないるため、レティクル3 の第2のごと 大を成しているため、レティクル3 の第2のごと 大を成しているため、レティクル3 の第2のごと 大を成しているため、レティクル3 の第2のごと 大を第一のパターン 7 の凹凸にならつにた は9 に凹凸(膜厚差)10を生じる。

第1のパターン7の位置の検出光学系 8, 11 は、縮小投影レンズ 4 を通して第1のパターン7 を検出する。一般に、露光装置に用いられる高解 像力の縮小投影レンズは、単波長光用に設計され ているため、検出光学系 8, 11に使用する光も

て第1のバターン?の検出待度を向上させるため 次の如く構成したものである。干渉縞の発生を低 **酸させるためにはホトレジスト前6の屈折率とほ 厚等しい屈折率を有する液体層12でホトレジス** ト層6の表面をおおりことによりホトレジスト層 6の表面と液体層12との接する境界面における 屈折率差が小さくなり、ホトレジスト層6の表面 での干渉縞の発生が低減できる。ところが、 静止 状態では液体層12の表面は自由表面となるため 平坦となるが、露光装置として用いる場合には、 ウエーハ 5 を乗せた移動台 9 が高速にステップ。 アンド・リピートするため、液体層12の表面は **被打つてしまうという問題が生じる。そこで、被** 体層12の縮小投影レンメ4 に対する面を常に平 坦に保つために、本発明では、縮小投影レンス4 の下端に光学的に平行で透明なガラス板13を蝕 けてある。ガラス板13は、常に、液体層12と 接する状態を保つている。稲小投影レンズ4とガ ラス板13とはシール材14で仕切られている。 ととで、レンズ15は縮小投影レンズ4のレンズ

特開昭58-202448(3)

系を構成するフロントレンズである。カラス板 13と液体層12との接する境界面でも屈接率の 差から干渉縞の発生もあり得るが、液体層12の 厚さを適当に規定することにより、その境界面を 縮小投影レンズ4の焦点碟度外の領域に設定する ことは容易であるので、カラス板13の屈折率は 任意にすることが可能である。

従つて、ガラス板13は縮小投影レンズ4 K最 通な屈折率を有するものが使用できる。なお、ガ ラス板13と液体腐12とを介した場合の縮小投 影レンズ4の焦点位置合わせは、移動台9を光軸 方向に動かして制御するととによつて達せられる。

上述のよりに本発明は、主にホトレジスト層 6 の表面に生じる干渉縞の発生を低減させるという 効果が得られるものであるが、付陸的に以下の利点も得られるものである。

用いる液体層 1 2 を清浄化した、温度制御した 状態のものを用いることにより、現在、半導体プロセス上問題となつているウェーハ 5 上への塵埃の付着や、外周囲の温度変化の影響を極わめて小

導体電光装置において、第2のレンズ光学系のウェーへに対面した対物レンズの下端に、本発明を応用することにより、ウェーハ上に塗布されたホトレジストの表面の凹凸に起因する干渉紙による外乱を防いて、検出精度を向上させることができる。

以上説明したでとく、半導体基板に塗布されたホトレジスト層の膜厚のムラによつて生じる干渉 縞によるウエーハ上のパターンの位置を顕検出するととを防ぐため、ホトレジスト層の屈折率に近い屈折率の板体層でホトレジスト層の表面をおおい、かつ、縮小投影レンズの下端に設けた光学的に平行で透明なガラス板を液体層に接触させた状態で駆動する異光装置の構成とすることにより、高精度なパターンの重ね合わせが行なえるようになる。

また、清浄化された液体層でホトレジスト層の 表面をおおりため、ウエーハ上への防磨対策が容 易になる。さらには、熱容量の大きい液体層を用 いることが可能であるため、外部の温度変化に対 さくすることが容易になり、微細化パターンの形成を要求される半導体プロセスにおける歩留りの向上が図れる。

上述した実施例において便用したホトレジストはShipley 社のポジティブホトレジスト AZ1350J であり、このホトレジストを厚さ約1μmで塗布してホトレジスト層6を形成した。このホトレジスト層6の光の屈折率は約1.65である。また、液体層12は光の屈折率が約1.33の水、光の屈折率が約1.50のベンゼンの2種類を使用した。そして、ガラス板131位準常用いられている光学ガラスであり、その厚さは23mmのものを用いた。この光学ガラスの光の屈折率は約1.5である。

なお、本発明は、干渉縞等の外乱を防止できる ため高分解能で、かつ、高精度な微細パターンの 検査装盤として応用することも可能である。

また、半導体製光装置における主たる投影光学 系とは別に、第2のレンズ光学系を用いて、ウエ ーハ上のパターンの位置を検出する方式を取る半

するウエーハの変形等も容易に防ぐことが可能と なるなどの付限的な効果も得られる。

図面の簡単な説明

代理人 弁理士 薄田利幸

特開昭58-202448 (4)

第1頁の続き

⑫発 明 者 保坂純男

国分寺市東恋ヶ窪1丁目280番 地株式会社日立製作所中央研究 所内

仰発 明 者 寺澤恒男

国分寺市東恋ヶ窪1丁目280番 地株式会社日立製作所中央研究 所内

