MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

September 11, 2024

Outline

- Real Analysis Lecture 5
 - Sets, Relations, Functions
 - Cardinality

Outline

- Real Analysis Lecture 5
 - Sets, Relations, Functions
 - Cardinality

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

• in practice, this is a bad definition (Russell's Paradox)

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

Examples:

 \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}
- $(1,5], (0,\infty)$

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}
- $(1,5], (0,\infty)$
- empty set Ø

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}
- $(1,5], (0,\infty)$
- empty set Ø
- {♡, Fall, {∅}}

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}
- $(1,5], (0,\infty)$
- empty set Ø
- {♡, Fall, {∅}}
- $\{n \in \mathbb{Z} : n \text{ is prime}\}$

In the true minimalistic philosophy of mathematics, we want everything to be a set.

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

ordered pairs

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

ordered pairs

$$(a,b) = \{a, \{a,b\}\}$$

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

ordered pairs

$$(a,b) = \{a, \{a,b\}\}$$

even relations and functions are sets!

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

$$(a,b) = (c,d)$$
 if and only if $\{a, \{a,b\}\} = \{c, \{c,d\}\}$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

$$(a,b) = (c,d)$$
 if and only if $\{a, \{a,b\}\} = \{c, \{c,d\}\}$
Clearly, if $a = c$ and $b = d$, then $\{a, \{a,b\}\} = \{c, \{c,d\}\}$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

$$(a,b) = (c,d)$$
 if and only if $\{a,\{a,b\}\} = \{c,\{c,d\}\}$
Clearly, if $a = c$ and $b = d$, then $\{a,\{a,b\}\} = \{c,\{c,d\}\}$
The tough part is the opposite direction!

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

(a,b)=(c,d) if and only if $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ Clearly, if a=c and b=d, then $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ The tough part is the opposite direction! Suppose $\{a,\{a,b\}\}=\{c,\{c,d\}\}$.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

(a,b)=(c,d) if and only if $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ Clearly, if a=c and b=d, then $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ The tough part is the opposite direction! Suppose $\{a,\{a,b\}\}=\{c,\{c,d\}\}$. Two possible cases:

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

(a,b)=(c,d) if and only if $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ Clearly, if a=c and b=d, then $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ The tough part is the opposite direction! Suppose $\{a,\{a,b\}\}=\{c,\{c,d\}\}$. Two possible cases:

> Case I: a = c and $\{a, b\} = \{c, d\}$ Case II: $a = \{c, d\}$ and $\{a, b\} = c$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

(a,b) = (c,d) if and only if $\{a,\{a,b\}\} = \{c,\{c,d\}\}$

Clearly, if a = c and b = d, then $\{a, \{a, b\}\} = \{c, \{c, d\}\}$

The tough part is the opposite direction!

Suppose $\{a, \{a, b\}\} = \{c, \{c, d\}\}.$

Two possible cases:

Case I: a = c and $\{a, b\} = \{c, d\}$

Case II: $a = \{c, d\}$ and $\{a, b\} = c$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since
$$\{a, b\} = \{c, d\}$$
, we know $b \in \{c, d\}$.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done!

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Then a = c implies a = b.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Then a = c implies a = b.

Therefore $\{c, d\} = \{a, b\} = \{a, a\} = \{a\}.$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Then a = c implies a = b.

Therefore $\{c, d\} = \{a, b\} = \{a, a\} = \{a\}.$

It follows that d = c = b = a.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Case II:
$$a = \{c, d\}$$
 and $\{a, b\} = c$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case II:
$$a = \{c, d\}$$
 and $\{a, b\} = c$

This would imply that $c \in a$ and $a \in c$.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case II:
$$a = \{c, d\}$$
 and $\{a, b\} = c$

This would imply that $c \in a$ and $a \in c$.

This can be shown to contradict the ZF Axioms of Set Theory.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case II:
$$a = \{c, d\}$$
 and $\{a, b\} = c$

This would imply that $c \in a$ and $a \in c$.

This can be shown to contradict the ZF Axioms of Set Theory.

Specifically the regularity axiom for the set $\{a, c\}$...

The Cartesian product of A and B is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

The Cartesian product of A and B is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

The Cartesian product of A and B is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

NOTATION: aRb means $(a, b) \in R$.

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

NOTATION: aRb means $(a, b) \in R$.

Domain and codomain:

The Cartesian product of A and B is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

NOTATION: aRb means $(a, b) \in R$.

Domain and codomain:

$$dom(\mathcal{R}) = \{ a \in A : \exists b \in B, \ a\mathcal{R}b \}$$
$$codom(\mathcal{R}) = \{ b \in B : \exists a \in A, \ a\mathcal{R}b \}$$

The Cartesian product of A and B is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

NOTATION: aRb means $(a, b) \in R$.

Domain and codomain:

$$dom(\mathcal{R}) = \{ a \in A : \exists b \in B, \ a\mathcal{R}b \}$$
$$codom(\mathcal{R}) = \{ b \in B : \exists a \in A, \ a\mathcal{R}b \}$$

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

• **reflexive** if aRa for all $a \in A$

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- transitive if aRb and bRc implies aRc for all $a, b, c \in A$

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- transitive if aRb and bRc implies aRc for all $a, b, c \in A$

An equivalence relation satisfies all three properties.

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- **transitive** if aRb and bRc implies aRc for all $a, b, c \in A$

An **equivalence relation** satisfies all three properties. Examples:

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- **transitive** if aRb and bRc implies aRc for all $a, b, c \in A$

An **equivalence relation** satisfies all three properties. Examples:

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- transitive if aRb and bRc implies aRc for all $a, b, c \in A$

An **equivalence relation** satisfies all three properties. Examples:

• < = $\{(x, y) : y - x \in (0, \infty)\}$ is transitive but not reflexive or symmetric on $\mathbb R$

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- transitive if aRb and bRc implies aRc for all $a, b, c \in A$

An **equivalence relation** satisfies all three properties. Examples:

- < = $\{(x, y) : y x \in (0, \infty)\}$ is transitive but not reflexive or symmetric on \mathbb{R}
- \leq = { $(x, y) : y x \in [0, \infty)$ } is reflexive and transitive but not symmetric on \mathbb{R}

Problem

Give an example of a relation on \mathbb{R} which is symmetric and transitive but not reflexive.

Problem

Give an example of a relation on $\mathbb R$ which is reflexive and symmetric but not transitive.

A **function** from A to B is a relation \mathcal{R} from A to B with the property

A **function** from A to B is a relation \mathcal{R} from A to B with the property

aRb and aRc implies b = c.

A **function** from A to B is a relation \mathcal{R} from A to B with the property

aRb and aRc implies b = c.

If a relation R is a function, we usually use a symbol like f.

A **function** from A to B is a relation \mathcal{R} from A to B with the property

aRb and aRc implies b = c.

If a relation \mathcal{R} is a function, we usually use a symbol like f.

NOTATION: $f: A \rightarrow B$ means f is a function from A to B

NOTATION: f(a) = b means $(a, b) \in f$.

A **function** from A to B is a relation \mathcal{R} from A to B with the property

$$aRb$$
 and aRc implies $b = c$.

If a relation \mathcal{R} is a function, we usually use a symbol like f.

NOTATION: $f: A \rightarrow B$ means f is a function from A to B

NOTATION: f(a) = b means $(a, b) \in f$.

The set

$$img(f) = \{f(a) : a \in A\}$$

is called the range or image of f

Problem

Determine all the equivalence relations on $\ensuremath{\mathbb{R}}$ which are also functions.

Problem

Determine all the equivalence relations on \mathbb{R} which are also functions.

Solution

 $f = \mathcal{R}$ must be reflexive, so $x\mathcal{R}x$ for all x

Problem

Determine all the equivalence relations on $\mathbb R$ which are also functions.

Solution

 $f = \mathcal{R}$ must be reflexive, so $x\mathcal{R}x$ for all x. This means f(x) = x for all x.

Problem

Determine all the equivalence relations on \mathbb{R} which are also functions.

Solution

 $f = \mathcal{R}$ must be reflexive, so $x\mathcal{R}x$ for all x

This means f(x) = x for all x.

Thus the only function which is an equivalence relation is the identity function

$$f(x) = x$$
.

A function f from A to B is called **one-to-one** or **injective** if

A function f from A to B is called **one-to-one** or **injective** if

$$f(x) = f(y)$$
 implies $x = y$ for all $x, y \in A$.

A function f from A to B is called **one-to-one** or **injective** if

$$f(x) = f(y)$$
 implies $x = y$ for all $x, y \in A$.

It is called **onto** or **surjective** if img(f) = B, or equivalently

for all $b \in B$ there exists $a \in A$ with f(a) = b.

A function f from A to B is called **one-to-one** or **injective** if

$$f(x) = f(y)$$
 implies $x = y$ for all $x, y \in A$.

It is called **onto** or **surjective** if img(f) = B, or equivalently

for all
$$b \in B$$
 there exists $a \in A$ with $f(a) = b$.

If it satisfies both properties, it is called **bijective**.

The **converse** of a relation \mathcal{R} from A to B is the relation

The **converse** of a relation \mathcal{R} from A to B is the relation

$$\check{\mathcal{R}} = \{(b, a) \in B \times A : a\mathcal{R}b\}.$$

The **converse** of a relation \mathcal{R} from A to B is the relation

$$\check{\mathcal{R}} = \{(b, a) \in B \times A : a\mathcal{R}b\}.$$

If f is function, then \check{f} may or not be a function.

The **converse** of a relation \mathcal{R} from A to B is the relation

$$\check{\mathcal{R}} = \{(b, a) \in B \times A : a\mathcal{R}b\}.$$

If f is function, then \check{f} may or not be a function. If it is, we call it the **inverse** of f.

Compositions

The composition of $f: A \rightarrow B$ and $g: B \rightarrow C$ is the function

Compositions

The composition of $f: A \rightarrow B$ and $g: B \rightarrow C$ is the function

$$g \circ f : A \rightarrow C$$

Compositions

The composition of $f: A \rightarrow B$ and $g: B \rightarrow C$ is the function

$$g \circ f : A \rightarrow C$$

with domain A and codomain C defined by

Compositions

The composition of $f: A \rightarrow B$ and $g: B \rightarrow C$ is the function

$$g \circ f : A \rightarrow C$$

with domain A and codomain C defined by

$$(g\circ f)(x)=g(f(x)).$$

A **finite sequence** is a function $f: \{1, 2, ..., n\} \rightarrow \mathbb{R}$.

A finite sequence is a function $f: \{1, 2, ..., n\} \to \mathbb{R}$. An infinite sequence is a function $f: \mathbb{Z}_+ \to \mathbb{R}$.

A finite sequence is a function $f: \{1, 2, ..., n\} \to \mathbb{R}$. An infinite sequence is a function $f: \mathbb{Z}_+ \to \mathbb{R}$.

NOTATION: f_n indicates the value f(n)

A finite sequence is a function $f: \{1, 2, ..., n\} \to \mathbb{R}$. An **infinite sequence** is a function $f: \mathbb{Z}_+ \to \mathbb{R}$.

NOTATION: f_n indicates the value f(n)

NOTATION: $\{f_n\}$ is another way of writing the function f

A finite sequence is a function $f: \{1, 2, ..., n\} \to \mathbb{R}$. An **infinite sequence** is a function $f: \mathbb{Z}_+ \to \mathbb{R}$.

NOTATION: f_n indicates the value f(n)

NOTATION: $\{f_n\}$ is another way of writing the function f

If $k : \mathbb{Z}_+ \to \mathbb{Z}_+$ is a function which is **strictly increasing**, meaning

$$m < n \Rightarrow k(m) < k(n),$$

A finite sequence is a function $f: \{1, 2, ..., n\} \to \mathbb{R}$. An **infinite sequence** is a function $f: \mathbb{Z}_+ \to \mathbb{R}$.

NOTATION: f_n indicates the value f(n)

NOTATION: $\{f_n\}$ is another way of writing the function f

If $k : \mathbb{Z}_+ \to \mathbb{Z}_+$ is a function which is **strictly increasing**, meaning

$$m < n \Rightarrow k(m) < k(n),$$

then the composition $f \circ k : \mathbb{Z}_+ \to \mathbb{R}$ forms a sequence called a **subsequence** of f.

A finite sequence is a function $f: \{1, 2, ..., n\} \to \mathbb{R}$. An **infinite sequence** is a function $f: \mathbb{Z}_+ \to \mathbb{R}$.

NOTATION: f_n indicates the value f(n)

NOTATION: $\{f_n\}$ is another way of writing the function f

If $k : \mathbb{Z}_+ \to \mathbb{Z}_+$ is a function which is **strictly increasing**, meaning

$$m < n \Rightarrow k(m) < k(n),$$

then the composition $f \circ k : \mathbb{Z}_+ \to \mathbb{R}$ forms a sequence called a **subsequence** of f.

NOTATION: $\{f_{k(n)}\}$ or $\{f_{k_n}\}$ both really mean $f \circ k$

Outline

- Real Analysis Lecture 5
 - Sets, Relations, Functions
 - Cardinality

Two sets A and B have the same **cardinality** if there is a bijection

Two sets A and B have the same **cardinality** if there is a bijection

 $f: A \rightarrow B$.

Two sets A and B have the same **cardinality** if there is a bijection

$$f: A \rightarrow B$$
.

NOTATION:
$$|A| = |B|$$
.

Two sets *A* and *B* have the same **cardinality** if there is a bijection

$$f: A \rightarrow B$$
.

NOTATION:
$$|A| = |B|$$
.

Theorem (Cantor-Schroeder-Bernstein Theorem)

If there exists an injection $f: A \to B$ and an injection $g: B \to A$, then there exists a bijection $h: A \to B$.

Two sets *A* and *B* have the same **cardinality** if there is a bijection

$$f: A \rightarrow B$$
.

NOTATION:
$$|A| = |B|$$
.

Theorem (Cantor-Schroeder-Bernstein Theorem)

If there exists an injection $f: A \to B$ and an injection $g: B \to A$, then there exists a bijection $h: A \to B$.

NOTATION: $|A| \le |B|$ means there is an injection from A to B.

Sets with finite cardinality:

 $\{1,2,3\}, \{\mathbb{Z},\mathbb{R}\}, \{x: x \text{ is a student at CSUF}\}$

Sets with finite cardinality:

$$\{1,2,3\}, \{\mathbb{Z},\mathbb{R}\}, \{x: x \text{ is a student at CSUF}\}$$

Sets with infinite cardinality:

$$\mathbb{Z}_+$$
, \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Sets with finite cardinality:

$$\{1,2,3\}, \{\mathbb{Z},\mathbb{R}\}, \{x: x \text{ is a student at CSUF}\}$$

Sets with infinite cardinality:

$$\mathbb{Z}_+$$
, \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Cantor's discovery: there are multiple sizes of infinity!

$$\mathbb{Z}_+,\ \mathbb{Z},\ \mathbb{Z}\times\mathbb{Z},\ \mathbb{Q},$$
 are all the same cardinality

Sets with finite cardinality:

$$\{1,2,3\}, \{\mathbb{Z},\mathbb{R}\}, \{x: x \text{ is a student at CSUF}\}$$

Sets with infinite cardinality:

$$\mathbb{Z}_+$$
, \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Cantor's discovery: there are multiple sizes of infinity!

$$\mathbb{Z}_+,\ \mathbb{Z},\ \mathbb{Z}\times\mathbb{Z},\ \mathbb{Q},$$
 are all the same cardinality

 \mathbb{R} has larger cardinality than \mathbb{Z}_+ .

