

Projeto: Redução de scrap e aumento de FPY da linha SJP07

Black Belt: Pedro Forastieri de Almeida Prado

SEIS SIGMA – BLACK BELT REVISÃO 2010

Glossário

- FPY: First Pass Yield, ou eficiência de produção
- OW: Overweight, ou sobrepeso, produto com gramatura entre o target e a especificação máxima de gramatura
- QW / Quality Windows: sistema eletrônico de registro de parâmetros de processo e de apontamento de perdas de bobinas
- SAP: sistema de gestão de produção, utilizada para apontamento de perdas de tecido, os quais não geraram bobinas, como setups e start ups de máquina
- *Spunbonding¹*: processo de vários estágios, no qual uma resina termoplástica (polipropileno) é extrusada, estirada e depositada sobre uma esteira transportadora.
- Meltblown¹: processo de estágio único no qual o ar em alta velocidade e temperatura assopra uma resina termoplástica, a qual deixa uma extrusora por uma ponta/ferramenta (die) para a superfície de uma mesa transportadora, formando uma rede de fibras consolidadas. Sua principal vantagem é a de produzir microfibras (0,1mm-15mm de diâmetro) as quais outras tecnologias não conseguem atingir.

SEIS SIGMA – BLACK BELT REVISÃO 2010

¹ Karthik, T. Rathinamoorthy, R. Karan, C.P. Nonwovens: *Process, structure, properties and applications.* Woodhead Publishing India Pvt. Ltd. P. 75. New Delhi, 2016.

Contrato

ÁREA : Engenharia de processos

DESCRIÇÃO DO PROJETO: Como parte do plano estratégico da empresa, todas as linhas de não tecidos da Berry Global foram desafiadas a atingir a meta anual de FPY 88, ou seja, eficiência de matéria prima de 88%. A meta corporativa da Berry Global é 87%. Através da metodologia LSS, foi realizado um estudo para redução das perdas e aproximar-se do alvo proposto pela empresa. Foram atacados o FPY (Arranques e Contaminações por Filamentos) chegando a 87% no acumulado de 2020+2021 e a 88% em 2021. Também foi atacado o OW chegando a +0,5% no acumulado após as mudanças.

ESCOPO: Aumentar o FPY da linha para alcançar 88%, através da reformulação do sistema de medição da empresa, estudo das causas principais de perdas, elaboração de planos de ação e controle da variação das perdas.

EQUIPE : Clóvis Rocha, Rodis Borges, Elisson do Vale, Fernando da Silva, Joel Wolski, Marcos Ribeiro, Edison Rocha, Mhaykel Oliveira, Victor Gnoatto, Adriano Stobbe, Ellton Dobynski, Rafael Popovisk.

"Redução de perdas como foco"

Desafio

- Importância
 - Eficiência da produção avaliada pelo %FPY
 - OW impacta diretamente no FPY (1:1)
- O controle dos scraps em SJP sempre foi um desafio pela natureza do processo
 - Produção mixta: processos contínuos e discretos
 - Número enxuto de operadores
 - Mix mensal de produtos altamente variável
 - Número de setups grandes por dia
 - Funcionamento 24/7/365
 - Máquina relativamente antiga (Reicofil 3.1, anos 2000)

"Desafio multivariável"

Histórico

Fluxo de processo

- 1. Spunbonding
- Meltblown
- 3. Calandragem
- 4. Tratamento com surfactante
- 5. Secagem
- 6. Bobinamento
- 7. Buffer
- 8. Desbobinamento
- 9. Corte, rebobinamento e embalagem

Tecnologia SSMMS Reicofil 3.1

Histórico

Aplicações dos materiais produzidos na SJP071

Higiênicos

Duráveis e outros

Players:

Products

Action Nonwovens

Dongguan Veijun Non-woven

Berry Global Kimberly-Clark **AVGOL** First Quality Toray **PEGAS** Fitesa Fibertex Mitsui Wonderful Nonwovens Regent Nonwoven Materials **Huifeng Nonwoven** Dalian Ruiguang Nonwoven **CHTC Jiahua** Kingsafe Group Jinsheng Huihuang Shandong Kangjie Nonwovens Hubei Huanfu Plastic

¹ Karthik, T. Rathinamoorthy, R. Karan, C.P. Nonwovens: *Process, structure, properties and applications.* Woodhead Publishing India Pvt. Ltd. Pp. 80, 86. New Delhi, 2016.

Tecido não-tecido tem diversas aplicações

Definição SIPOC

X1: Bobinas defeitosas **X2**: Setups X3: "Perdas de processo"* **X4**: Refile **X5**: Baixas logísticas _ X6: Testes de PD—— **X7**: Rejeitos internos de Qualidade X8: Reclamações de — cliente

Processo:

Geração de perdas de material

Sub-Processos:

- · Repartida de máquina
- Programação de produção
- Tempo de vida dos equipamentos
- Paradas preventivas
- Produção de material não conforme
- · Danos ao produto ao longo da cadeia
- · Desenvolvimento de novos produtos
- Desvio de produção entre linhas
- · Produto com sobrepesagem

Y1: First Pass Yield

Y2: Overweight

→ **Y3**: Reportes

Y4: Impacto financeiro

Diversidade de X's

X9: Overweight

(Sobrepesagem)

^{*}Detalhamento como parte do projeto

SIPOC

- SIPOC geral do processo produtivo e perdas decorrentes

X2.3 Fios e Borras

Definição **SIPOC**

FIRST PASS YIELD **Big Y**

¹Perdas de produção

- 3 Não era consenso entre equipes operacionais as causas corretas e era opcional o apontamento via QW. Foi
 - abordado na etapa de MSA.

Múltiplos CTQs

produção

Equipe

Clovis Rocha Sup. Tecnologia

 Coordenar operação para seguir procedimentação
 Mentoria / expert da

Victor Gnoatto

- Melhoria de matéria primaGuia no processo
- de melhoria do
 Overweight dos
 8gsm

Rodis Borges Eng. Confiabilidade

- Projeto "Gavetas retráteis"
- Emissão do relatório de falhas mecânicas/eletrôni cas e preventivas

Confiabilidade Coordenador de PCP

Produção
- Seguimento de premissas para

produção

Mhaykel Oliveira

Rafael Popovisk Supervisor do Laboratório de CQ

 Auxílio nas análises de laboratório

Edson Rocha Coord. Manut.

 Suporte nos planos mensais de paradas preventivas

Adriano Stobbe Especialista de SAP

 Suporte na reformulação do sistema de medição de scrap no SAP

Ellton Dobynski

Programado de Manutenção

 Programação para compra/instalação de peças/equipamentos/s erviços

Equipe multidisciplinar

Definição Change Management Stakerholder Mapping

eo	High	Ger. Manufatura (Custos)	Sup. Produção Ger. Produção Operação	Ger. Processos Tec. Informação Diretoria
Level of Importance	Medium	PCP PD	Liderança de Produção	Confiabilidade PCM
/eve/	Том		Customer Service	
		Against/Polyetant	Moutral	Committed

Against/Reluctant

Neutral

Committed

Equipe

Threat (If we don't change)

Opportunity (If we do change)

Short Term (If we don't change

↑Aumento de paradas de

↑Rejeitos Internos

máquina

defeitos

JMelhora no FPY

↓Menos paradas de máquina

↑Reclamos de cliente por

↓Reclamos de cliente por defeitos

Long Term ↑Rejeitos Internos

↑Perda de mercado

↑Necessidade de mão de obra

↑Limitações com mix produtos

JMelhora no FPY

↓Possibilidade de produção para menor gramagem

↓Otimização da mão de obra

↓Maior flexibilidade de produção

Medição Histórico

Qual é o histórico do FPY na SJP07?

Em 2018...

Histórico

Histórico Time Series FPY – Ano Fiscal 2018

Baseline = 85%; Meta do FPY = 88%,

Medição Histórico

6,00 5,00

3,00 2,00

Em 2018...

Histórico Acumulado de Perdas - Ano Fiscal 2018

 Durante a coleta de dados, observou-se inconsistência ao realizar a conciliação de dados do sistema SAP vs sistema QW – o balanço de massa de perdas não fechava

- Gap entre SAP e QW era maior que a própria soma das perdas
- Existem outras causas de perdas que não estão sendo categorizadas e possivelmente são tão importantes quanto (ou mais)

Inconsistência ao conciliar os dados SAP+QW

Before - Sistema de medição (MSA)

- 1º Desafio: Balanço de massa não fecha
 - •QW x SAP indicando valores distintos de perdas

"Perdas De Processo" = Qnt. Extr. Apont. – Q1 – Demais Categorias de Perdas

Oportunidade de reformulação do sistema de medição

Before - Sistema de medição (MSA)

- 2º Desafio: Sistema de medição com causas genéricas
 - •Perdas de bobinas não eram apontadas como perdas de bobinas - estavam entre várias causas agrupadas na categoria "Perdas de Processo"
- Causas em comum, em categorias distintas ("Outros – Processo" e "Partida de Máquina")
- Categorias genéricas / caixas pretas
 - "Outros Processo", "Outros Setup",
 "Outros-Bobinas QW"
- Sem metas / limites por categoria: onde atacar?
 - O que está alto / o que está baixo?
 - O que está sob controle / o que está fora

Maguna	Dividição da Pieda	Quarmidada Perdida Linit medida hésica	Percentral de Penta sobre a Produ Percentral de Penta	
SJP07	Apera Lateral	52225 594 KG	4 4515	29.010
SJP0T	Sobra de Larg. Utili	13883.674 KG	1.1861	7.712
SJP07	Processo	86200 501 KG	7.3646	47.882
SJP07	Troca de gramatura	3728.778 KG	0.3106	2.071
SJP07	Troca de Car	1463.291 KG	0.1250	0.812
SJP07	Partida do Máquina	21033.166 KG	1.7970	11.683
SJP07	Ouries	1490.572 KG	0.1273	0.828
SJP07		101025.470143	15.3805	100.000
		180025.476 KG	19.3806	103,0300

Oportunidade de reformulação do sistema de medição

Before - Sistema de medição (MSA)

- 3º Desafio: Operação não conseguia identificar corretamente a perda
 - Gage R&R
 - Dados atributos/discretos
 - Round robin com expert
 - Prova contendo 10 defeitos, 3 posições cada

 Direate a producijo, e defetta abako foi obsevado em bolonas producidos e reportuelas cuma portisa no Quelliz Windows zomo Bolona-Beloido. O operador apontitos corretamenta?
 SMI = OK.

 Durierte a produção, o defeito abaiso foi observado em bóbinas produzitas e resportadas como pardas no Quality, Windows como Falha de Corte. O operador aportitu corretemente?
 G SMH – DK

 A seguinte perda foi opontado no Quality Windows como Eleito Taleadolco. O appartamento cutá conducida cam a porda observada na foto?
 SSA 9 GK

 Durante a producţio, o defetio abako foi obsenuado em bobisas productias e reportadas como penda no Quality Windows como Bobinamento Inregular. O operador apentiru corretamente? C SIMI-OK
 ONÃO-NOK

Durante a produção, o defetio abaixo foi observado em bobixas produções o reportadas como perdas no <u>Quality</u> Windows como Contaminação - Inseto. O operador apontou corretamente?
 SMI – OK
 NÃO – NOS

 Durante a produção, o defeito abaixo foi observado em bobinas producidas e reportadas como perdas no Quality Windows como Meia Lua. O operador apontou corretamente?
 3 SIM = OK

Verificação de repetibilidade e reprodutibilidade

0,0000

Medição

Avaliação dos operadores

Before - Sistema de medição (MSA)

- 3° Desafio: Operação não conseguia identificar corretamente a perda
 - Gage R&R
 - Dados atributos/discretos
 - Round robin com expert (padrão)
 - Prova contendo 10 defeitos
 - Medição do índice Kappa

Kappa =1; sistema de medição aceitável

Between Appraisers Assessment Agreement # Inspected # Matched Percent 50,00 (18,71; 81,29) # Matched: All appraisers' assessments agree with each other. Fleiss' Kappa Statistics SE Kappa 0,537037 ,0471405 11,3923 0,537037 0,0471405 11,3923

entre operadore

Avaliação

Kappa < 0,8; sistema de medição inaceitável

```
All Appraisers vs Standard
Assessment Agreement
# Inspected # Matched Percent
                         50,00 (18,71; 81,29)
# Matched: All appraisers' assessments agree with the known standard.
Fleiss' Kappa Statistics
                    SE Kappa
                                   Z P(vs > 0)
Response
         0,591499
                        0,1 5,91499
                                         0,0000
          0.591499
                        0,1 5,91499
                                         0,0000
```

Kappa < 0,8; sistema de medição inaceitável

Sistema de medição inaceitável

Avaliação operadores *versus expert*

During – Sistema de medição (MSA)

Reformulação do Sistema

 Brainstorming para categorias essenciais, eliminando redundâncias

 Registros físicos / try out antes da implamentação das novas categorias no SAP

- Solicitação para modificação do sistema de medição
 - Chamado YBC001 à TI no SAP

Criação de novo sistema de medição

During – Sistema de medição (MSA)

Reformulação do Sistema

Pilar (Argentina)

Benchmarking com Argentina e Colômbia

São José dos Pinhais (Brasil)

		Rechazos Línea 1							
Fecha	Motivo	KG	% Motivo	Prod Bruta	Observ				
03/jun	SUCIEDAD DE TELERA (FIBRAS)	323	0,818%	39508					
03/jun	GOTEOS	46	0,116%	39508					
04/jun	SUCIEDAD DE TELERA (FIBRAS)	434	1,405%	30891					
04/jun	LATERAL SUCIO	167	0,541%	30891					
04/jun	TUBO CORRIDO	158	0,511%	30891					
04/jun	CUCHILLAS	135	0,437%	30891					
04/jun	FALLA MECANICA	100	0,324%	30891					
04/jun	GOTEOS	47	0,152%	30891					
04/jun	FINPRODUCCION	19	0,062%	30891					
05/jun	SUCIEDAD DE TELERA (FIBRAS)	145	0,383%	37859					
05łjun	FIN PRODUCCION	392	1,035%	37859					
05řjun	FALLA MECANICA	175	0,462%	37859					
05/jun	AROS DE COLOR	78	0,206%	37859					
05/jun	CUCHILLAS	59	0,156%	37859					
05/jun	CONTAMINACION	27	0,071%	37859					
05/jun	GOTEOS	19	0,050%	37859					
06/jun	-	0	0,000%	38865					
07/jun	MALA DISTRIBUCION	332	1,021%	32505					
07/jun	AROS DE COLOR	525	1,615%	32505					
07Jims	CONTAMINACION	F20	1050-/	22E0E					

DEBORTE DIABIO DE DECONICCION (CAR

	LNEAT TOTAL	18.			308,088 308,088	310	31M 369,214 269,914	27,538 27,538	001,034 901,034
CALLINEAT	0	H: 54.3	PL 86.81%	90.49%	84,421	0.00%	8441%	\$2,33%	85.12%
PRO	EUCCION POR I		m +m	210	278	179	1.794	TOM	TMES
RECHAZOS (KQ)									
MOTIVO		1 TD	1 TM	2 TD	2 TM	3 70	3 TM	T DIA	TMES
ALINEACION CENTRO DE CAR	TON	0	38	0	0	0	0		38
ANCHO		-0	320	a	101		35	0	460
BONDEADO		0	0	a	a	0	529	0	520
CEJAS		0	918	o o	372	0	0	0	1,290
COLOR		0	0	a .	67	0	33	. 0	100
CORE COLAPSADO Y/O PEGA	00	0	491	Q.	· ·	· ·	97	0	589
DESCAPPE		0	701	0	2.273		1.241	0	4,215
DIFERENCIA ZONA FOBICA		0	247	0	466	0	086	- 0	1,690
ESCALONADO Y/O ANILLOS		0	1,561	0	0	.0	382	0	1,944
FORMACION		.0	2.015	0	2,433		142	.0	4,580
GOTAS Y FILAMENTOS		. 0	2.857	18	1.946	0	2,403	18	7,205
HUECOS		15	2.004	25	1.220	0	2.240	40	5,665
LAGUNAS Y/O HALONES		0	469	0	932	0	894	0	2,295
MAL CORTE		0	308	ď	884	0	272	0	1,464
MAL EMPALME		0	76	0	557	0	0	0	632
MATERIAL OBSOLETO		-0	0	a	272	0	. 0	0	272
METRAJE		0	1,734	a	1,428	.0	2.398	.0	5,630
PRINGAS		0	491	a	a	0	594	0	1,085
SALIDA DE REFILES		0	446	0	410	.0	1.139	0	1,995
ST-REWET		0	0	Q.	873	Q.	0	0	873
TELA RASCIADA		0	0	ō	a	6	38	0	38
TELA SALIDA		19	44	0	· ·	0	0	10	44
TELA SUCIA		0	1,730	a.	2.147	.0	1.580	0	5,438
TELESCOPEO		.0	579	0	132	- 6	196	0	907
	TOTAL:	33	17,048	436	16.584	- 0	15,165	77	48,797

Cali (Colombia)

Benchmarking LATAM

After - Sistema de medição

- "Perdas Processo"
 - Agora é uma família de causas hierarquizadas, Desperdícios.
 - Eliminadas redundâncias

Categorização de perdas mais hierarquizada

After - Sistema de medição

- Perdas após a reformulação
 - Cálculo das perdas modificado, agora todas categorias são pesadas, com exceção de encolhimento do tecido (que é calculado com base no produto final) que também é nova categoria

After - Sistema de medição

- Limpeza/sobra: metragem produzida para contemplar amostras para laboratório e regiões de instabilidade entre jumbos – nova categoria na família de Desperdícios
- Tirada Rompida EXT e Tirada Rompida REB: metragens perdidas por falhas durante produção, não chegaram a virar bobinas nova categoria na família de Desperdícios

Exemplo: Pedido de 8 ordens com bobinas de 17500m – 4 jumbos de 35000m (téorico)

Categorização correta de 100% das perdas

After - Sistema de medição

Perdas de Bobinas

- Agora tem uma categoria própria no SAP, dentro de Desperdícios
- Poka Yoke para evitar ausência de apontamento na ZTPP001
 - Bobinas marcadas com defeito durante segregação no sistema de inspeção ISRA Vision saem com uma marca de X para operador do corte segregar
 - Todas bobinas saem automaticamente do SAP com uma matricial, caso a bobina tenha defeito, operador realiza um "flag" na matricial antes da impressão, saindo como uma etiqueta de perda – categorização do tipo de Perda de Bobina é feito nesse momento
 - Ordem não é fechada e carregada ao cliente enquanto todas as bobinas defeituosas não forem segregadas na ordem

Categorização correta de 100% das perdas

After - Sistema de medição

Perdas de Bobinas

- Criadas duas transações no SAP para atribuir o tipo de defeito e resumir as bobinas da ordem defeituosas
 - ZTPP146 Rastreabilidade de matriciais
 - ZTPP147 Relatório de Perdas por Sequencia de Rolo Jumbo

10	Perda	as má	quina/	rolo jui	mbo													
	-																	
		4 7		F.	%。2							_00010000000000000000000000000000000000	_					44,00
	Seq.	Status	Status RJ	Ordem *	Data	Peso RJ	Qtd Emb	Refile	SLU	Perda de B	FI s e Bor	Stp Cor	Stp Gramat	_				n T
	A	A	F	1405931		2.632,668	1.073,241	115,697	65,341	1.120,572	0,000	0,000	0,000	Res	umo	diári	o e I	2.875,7
		A	F	1405932		1.316,332	536,619	57,848	32,671	0,000	0,000	0,000	0,000					3.412,3
	В	Α	F	1405931		780,000	0,000	29,885	16,878	0,000	100,000	0,000	0,000	por	orae	em da	35	1.170,0
		Α	F	1405932		390,000	0,000	14,942	8,439	295,389	50,000	0,000	0,000		Orde	as de		1.170,0
	C	А	F		01.06.2018	1.020,000	810,978	44,827	25,317	77,058	0,000	0,000	0,000		Ciuc	is ue		209,0
	A	A	F	1405934	11.06.2018	2.000,000	1.684,032	71,918	20,050	140,000	0,000	0,000	0,000	Bobinas			315,9	
į,	В	Α	F			1.140,000	840,000	40,995	11,429	69,828	0,000	117,400	0,000					300,0
	С	Α	F			1.030,000	840,000	37,038	10,326	68,094	0,000	0,000	0,000	0.000	0,000	53,763	20,779	190,0

Categorização correta de 100% das perdas

After - Sistema de medição

Perdas de Bobinas

• Validação: comparação semanal QW x SAP

Soma de Nr. Bobinas Rótulos de Linha	Rótulo ▼ 1416082	1410086	14161
1006-Buraco	1110002	111,000	11101
1017-Contaminação - Filamentos soltos	2	1	
1018-Contaminação - Inseto	_		
1027-Distribuição Irregular			
1030-Dobras - Extrusão			
1039-Goteira, fio arrembentado ou hardspot (SB)			
1054-Meia Lua			
1070-Tensionamento - Bobinador			
		4	
2006-Bobinamento Irregular	3		
2007-Contaminação (Sujeira - Rebob.)) J		
2009-Dobras - Rebob.			
2012-Efeito Telescópico	٠.,		
2018-Estanga murchou	21		
2024-Falha de Corte - Faca (Conjunto)		1	
2027-Falha no corte do tubete	8		
2030-Largura Irregular	1		
2033-Ponta de Tubete			
3010-Danificado pelo Robô	5		
3030-Sobras de Bobinas (Pacote Incompleto)			
Total Geral	40	2	
rada apos voltar da manutencao			
^*^			

Contagem de Bobina	Rótulos de Coluna	-1	
Rótulos de Linha	1416082	1416086	141609
1004 - EX-Marca de esteira			
1020 - EX-Lateral Desfiando			
1028 - EX-Acúm Filamentos		1	
1032 - EX-Dobras			
2005 - EXSV-Goteira			
2010 - EXSV-Buraco			
2014 - EXSV-Meia Lua			
2018 - EXSV-Fio Arrebentado			
2022 - EXSV-Distrib Irregul		1	
2030 - EXSV-Contaminação	1	12	
2034 - EXSV-Ratão			
4004 - Reb-Faca		1	
4006 - Reb-Contra Faca			
4008 - Reb-Corte Irregular		1	
4010 - Reb-Efeito Telescópi		1	
4012 - Reb-Ondulação		20	
4016 - Reb-Ponta de Tubete			
4018 - Reb-Larg Irregular		1	
4026 - Reb-Tensionamento			
4032 - Reb-Estanga Murchou			
4034 - Reb-Contra Faca Trav			
4036 - Reb-Falha Equipam			
4040 - Reb-Falta de Largura			
4044 - Reb-Sobra Bobinas		2	
4046 - Reb-Sujeira/Inseto		5	
4048 - Reb-Tubete Deslocado		7	
5002 - FC-Faca			
6000 - MIR-Estanga Murchou			
9099 Ourtos			
Total Geral		48)4	

Ajustes finos e acompanhamento

After - Sistema de medição

- Perdas de Bobinas
 - Validação: comparação semanal QW x SAP

Ordem: 1416112

Núm. Jumbo: 1416111

Correção de anomalias nos testes

After - Sistema de medição

- Treinamento e book de defeitos
 - A fim de validar o sistema de medição, os operadores foram submetidos a treinamentos com book de defeitos desenvolvido pela planta e com ajuda de outros sites

Revalidação do sistema de medição

Avaliação operadores

After - Sistema de medição

- Novo Gage R&R
 - A fim de validar o sistema de medição, os operadores foram submetidos a treinamentos com book de defeitos desenvolvido pela planta e com ajuda de outros sites
 - Sistema revalidado

```
Between Appraisers

Assessment Agreement

# Inspected # Matched Percent 95% CI
10 9 90,00 (55,50; 99,75)

# Matched: All appraisers' assessments agree with each other.

Fleiss' Kappa Statistics

Response Kappa SE Kappa Z P(vs > 0)
NOK 0,917898 0,1 9,17898 0,0000
OK 0,917898 0,1 9,17898 0,0000

Kendall's Coefficient of Concordance

Only one or two distinct values in assessments and standards. Kendall's coefficients not computed.
```

Kappa = 0,95; sistema de medição aceitável

Kappa = 0,92; sistema de medição aceitável

Revalidação do sistema de medição

After - Sistema de medição

Sistema de medição revalidado. Como ficaram as classificações de perdas?

After - Sistema de medição

X2.3 Fios e Borras

FIRST PASS YIELD Big Y

Perdas de produção

Classificação mais clara

Medição After - Sistema de medição

FIRST PASS YIELD

Quais seriam então os maiores ofensores de FPY para atacarmos, considerando a abrangência desejada para o projeto?

After - Sistema de medição

- Por quê mencionamos os CTQs em amarelo nos primeiros slides?
 - Pareto de perdas agora está claro

Top 3 de perdas totais:

1º: Apara Lateral: PCP (fora do escopo)

2º: Perda de Bobinas: Processo/Produção

3º: Partida/Arranque de Máquina: Processo/Produção

OBS.: Overweight é um multiplicador direto no FPY e sem padronização registrada.

Top 3 de perdas definidos

After - Sistema de medição

- CTQ: Perdas de bobinas
- Contaminação por Filamentos
 - 20% do total de Bobinas!

Contaminação por filamentos = Principal Ofensor

After - Sistema de medição

- CTQ: Arranque de máquina
- LIMPM: arranques gerados por paradas para limpeza de máquina são o maior ofensor
 - 25% do total de arranques!

Limpeza de máquina = Principal Ofensor

After - Sistema de medição

- Overweight 2019: por material
 - Valor mínimo possível: 10% menor que a gramatura nominal

- Overweight dos materiais 8gsm e 10gsm são os maiores ofensores de OW, infelizmente possuem restrição de tecnologia da máquina
- Mateirais 25gsm e 33gsm foram materiais de teste de desenvolvimento pontuais
- Gramaturas acima de 10gsm possuem mais folga, poderiam ser melhor trabalhados para atingir 1,5%

Overweight pouco padronizado

After - Sistema de medição

- CTQ: Overweight
 - Perda invisível no processo, que entra diretamente no valor de FPY (1% OW = 1% FPY)
 - Pouco padronizado
 - Set points de gramatura
 - Quick Wins atrelados!

80 produtos distintos

Elaborada tabela guia para set point de gramatura beneficiando o OW, dentro da especificação

Gramatura	Média de gramatura real CO
8	7,5
10	9,5
11	10,5
12	11,5
13	12,5
15	14,5
17	16,5
19	18,5
20	19,5
22	21,5
25	24,5
28	27,5
30	29,5
33	32,5
35	34,1
40	39,1
45	44,1
48	47,5
50	49,1
55	54,1
60	59,1

OW = Quick Win

After – Sistema de medição

Portanto os CTQs estão determinados.

X2.3 Fios e Borras

Ofensores visíveis e balanço de massa fechando

FPY em 2019

 Em 2019 foi realizada a reformulação do sistema de medição, em retrospectiva dos problemas observados em 2018. Observando a tendência de 2019...

Média: 85,1%

SJP07 não havia alcançado a meta de FPY 88% em nenhum mês de 2019

%Filamentos em 2019

Média: 0,68% do total extrusado

SJP07 não havia alcançado a meta de FPY 88% em nenhum mês de 2019

%Arranques por LIMPM em 2019

Média: 0,5% do total extrusado

SJP07 não havia alcançado a meta de FPY 88% em nenhum mês de 2019

OW em 2019

- Evolução do OW ao longo de 2019: tendência de queda? Por quê?
 - Média: -0,6%

SJP07 não havia alcançado a meta de OW 88% em nenhum mês de 2019

Medição Estatísticas Básicas

Estatísticas básicas do processo

" Mensagem Principal do Slide "

Capabilidade do Processo

Capabilidade do processo - FPY

KPI não atingiu meta em nenhum mês, baixa capabilidade

Capabilidade do Processo

Capabilidade do processo - OW

KPI não atingiu meta em nenhum mês, baixa capabilidade

Medição Espinha de Peixe

Quais são as causas da incidência tão grande de arranque de máquina por limpeza de máquina e contaminação por filamentos?

Investigação das possíveis causas

Medição Espinha de Peixe

5 Por quês

Análise Detalhada	Descrição Causa 1	Descrição Causa 2	Descrição Causa 3	Descrição Causa 4	
1º Porquê	Set up das air knives desregulado	Trama da esteira desgastadas	Laterais tapadas fora do projeto original	Quebra mecânica do drive do soprador	
2º Porquê	Mudança de die de 35 para 45HPI	Uso prolongado	Bloqueio para permitir produção de gramaturas menores		
3º Porquê	Desbalanço entre set up e HPIs	Sem padrão de troca, somente com avarias que impossibilitavam seu uso (rasgos).			
4• Porquê					
5• Porquê					
	Descrição Causa 5	Descrição Causa 6	Descrição Causa 7	Descrição Causa 8	
1º Porquê	Quebra mecânica do compressor do limpador	Mudança de padrão pela linha do fornecedor de esteiras (EUA)	Máquina projetada para gramaturas maiores que 10gsm	Proximidade alta com a esteira poderia gerar aumento de fibras	
2ª Porquê			Projeto antigo		
3ª Porquê					
4º Porquê					
5ª Porquê					

Investigação das possíveis causas

Medição Espinha de Peixe

5 Por quês

	Descrição Causa 9	Descrição Causa 10	Descrição Causa 11	Descrição Causa 12
1º Porquê	Expulsão das fibras presentes no tecido para o ambiente	Esteira desgastada	Alta sucção	Erro de classificação no sistema
2º Porquê				
3º Porquê				
4• Porquê				
5• Porquê				
	Descrição Causa 13	Descrição Causa 14	Descrição Causa 15	
1º Porquê	Maior sensibilidade a defeitos	Quantidade de fibras finas maior	Tubulação de sucção auxiliar devolve o ar succionado para o ambiente	
2ª Porquê	Alta sucção para manter especificação	Necessário devido a BOM	Layout antigo de máquina	
3º Porquê				
4º Porquê				
5" Porquê				

Investigação das possíveis causas

Matriz de Causa e Efeito

Permeabilidade, cortina de MB, gavetas, mix, contaminação = críticos

Matriz de Esforço e Impacto

Há Xs de fácil execução e outros nem tanto

Quais análises quantitativas podemos fazer?

Relação: Arranque para LIMPM x Tecnologia

 Maioria dos dados são de SSMMS

Maior variabilidade com SSMMS

Relação: Arranque para LIMPM x Gramatura

 Maior tempo de aquecimento de calandra, maior tempo produzindo arranque

Maior gramatura, maior arranque

Identificação dos X's Vitais Relação: Arranque para LIMPM x Hidrofilia

 Maioria dos dados são de HFO

Maior variabilidade com HFO

Relação: Arranque para LIMPM x Cor

 Tempo para acerto de cor dos Medicals (pigmentados no MB) maior, gerando maior arranque

Maior arranque nos Medicals

Relação: Arranques para LIMPM x Gramatura

 10gsm é o material com mais arranques por LIMPM

10gsm é o principal ofensor de gramatura

Relação: Arranques para LIMPM x Gramatura

Mais de 50%
dos
arranques do
10gsm são
para limpeza
de máquina
(saturação de
gavetas)

LIMPM no 10gsm é crítico

Relação: Filamentos x Gramatura

 Quase 50%
 das perdas por contaminações por filamentos ocorrem no 10gsm

10gsm tem alta incidência de filamentos

Mix de Gramaturas 2019

- Apesar disso o

 10gsm era
 somente o 3°
 produto no Mix de
 2019 com 13%
 da produção.
- 10gsm e 8gsm necessitam de máquina limpa para evitar defeitos e contaminações
- Material opera a alta velocidade de esteira, condições extremas

Muitos arranques para pouca produção

Identificação dos X's Vitais

Estudo de defeitos no 10gsm e 8gsm

- Gavetas cheias de filamentos
 - Geração de meias luas
 - Interferência na distribuição do tecido
 - Não tão crítico na lateral, porém com

o tempo, aparecimento acaba migrando para o centro

Contaminações por filamentos soltos

Maior exigência de limpeza em baixas gramaturas

Identificação dos X's Vitais

Desgaste da esteira conforme aumenta a velocidade de produção / throughput

LIMPM: Por quê tantas paradas para limpeza?

- Gavetas saturando com filamentos mais rápido
 - Esteira atingindo tempo de vida precocemente (<3 meses)
 - Velocidade média da linha cada vez maior ocasiona maior perda de CFM ("mais voltas/min")
 - Necessária maior frequência de troca e limpeza

Scatterplot Screener for Perda CFM/

Summery Report

Velocidade tem correlação com desgaste

Identificação dos X's Vitais

<MEDIÇÃO> Ferramentas Qualitativas

- Mapa de Processo
- Diagrama Espinha de Peixe
- Matriz Causa e Efeito
- Matriz Esforço e Impacto

<ANÁLISE>

Ferramentas Quantitativas

- FMEA
- Box Plot
- Diagrama de Dispersão
- Pareto
- Teste de Hipótese
- ANOVA
- Test for Equal Variances
- Teste Chi-Quadrado
- Análise de Regressão
- Regressão Logística

Efeito Funil

X'S POTENCIAIS

X's Vitais do processo

X₁ - Quebra da cortina

X₂ - Permeabilidade baixa

X₇ – Limitação física das gavetas

X₁₃ – Materiais de baixa gramatura

X₁₅ – Contaminação por filamentos em suspensão no ar

Foco nos X's vitais

Ações para melhorar o Processo

Plano de ação

- Gavetas retráteis: revalidação e laudo de segurança ainda pendentes

1	SETA generatives generatives	Plano d	le Ação							<u>:</u>
ltem	Causa "X vital"	O que? "Ação"	Ver e Agir? Sim/Não	Quem? "Resp."	Quando? "Prazo"	Onde?	Por que?	Como?	Quan to?	Status
x1	Quebra da cortina de ar do MB com die de 45HPI	Alteração do setup das air knives	Não	Edson Ferreira	25/07/2019	Matrizaria	Redução de filamentos	Ajuste mecânico	-	100%
x2	Permeabilidade baixa	Compra de medidor de permeabilidade, estabelecimento de tempo de vida máximo e	Não	Pedro Prado	12/11/2019	Importação	Medição de permeabilida	RC	45000	100%
x4	Limpador de esteira fora de funcionamento por drive quebrado	Manutenção do drive do soprador do limpador de esteira e uso do mesmo	Sim	Edson Ferreira	08/01/2020	Manutenção	Reestabelece r limpador	Corretiva mecânica	-	100%
х5	Limpador de esteira fora de funcionamento por compressor quebrado	Manutenção do compressor do limpador de esteira e uso do mesmo	Sim	Edson Ferreira	08/01/2020	Manutenção	Reestabelece r limpador	Corretiva mecânica	-	100%
X4/ 5	Limpeza de máquina periódica sem necessidade de parada	Implementação de checklist de limpeza	Sim	Clovis Rocha	10/01/2020	Produção	Limpezas possíveis	Checklist	-	100%
х6	Mudança de qualidade da esteira Albany	Mudança de unidade produtiva da esteira (USA para França)	Não	Pedro Prado	21/03/2020	Fornecedor	Variações de qualidade	Paradas para limpeza	-	100%
х7	Limitação física das gavetas	Modificação das gavetas para retirada em produção	Não	Rodis Borges	26/02/2021	Manutenção	Reduzir paradas para	Gavetas retráteis	5500	80%
х8	DCD muito baixo	Aumento do DCD nos produtos	Sim	Pedro Prado	15/10/2019	Eng. Processos	Diminuição de filamentos	Teste de parâmetros	-	100%
х9	Volume de ar muito alto nos MBs	Redução do volume de ar dos MBs	Sim	Pedro Prado	15/10/2019	Eng. Processos	Diminuição de filamentos	Teste de	-	100%
x10	Tensão excessiva (>2,5bar) da esteira	Troca preventiva de esteira antes do fim de vida estabelecido pela medicão de permeabilidade	Não	Clovis Rocha	20/12/2019	Operação	Esteira desgastada	Operação de troca		100%
x11	Sucção de filamentos para gaveta	Baixar a sucção.	Sim	Pedro Prado	13/05/2020	Eng. Processos	Diminuição de filamentos	Teste de parâmetros	-	100%
x12	Apontamentos de produção errôneos	Verificação semanal dos apontamentos de paradas de máquina	Sim	Clovis Rocha	26/12/2019	Operação	Evitar introdução	SAP	-	100%
x13	Materiais de baixa gramatura	Negociado com cliente para fornecer maior volume de 10gsm, substituindo o 8gsm	Sim	Pedro Prado	01/09/2020	Comercial	8gsm tem	Negociação comercial	-	100%
x15	Contaminação por filamentos em suspensão no ar	Instalação de filtros na saída da sucção auxiliar e troca nas preventivas dos mesmos	Sim	Rodis Borges	02/12/2019	Manutenção	Filtrar filamentos	Rota preventiva	-	100%

" Mensagem Principal do Slide "

Ações para melhorar o Processo

X1 – Quebra da cortina de ar de MB

- Consulta e visita de fabricante Ceccato
- Alteração do set up das air knives para reduzir filamentos soltando-se da cortina de MB

Cortina de MB

Checagem do set up com espessímetro

Set ups:

Geometria 🔽	Antiga 🔻	Nova
Ângulo (°)	60	90
Set Back / Altura (mm)	1,00	0,90
Air Gap (mm)	0,80	0,90
L/D Orificio (mm/mm)	4/0,4	4/0,2
Holes Per Inch	35	45

Controle de Mudanças:

Set up otimizado para redução de filamentos

Ações para melhorar o Processo

X2 – Permeabilidade Baixa

- Esteiras eram trocadas somente por avarias (buracos, rasgos, etc.) pois não havia maneira de checar-se a permeabilidade
- Aquisição do medidor de permeabilidade
 - FX3360 Portair Textest similar ao de Pilar
 - Benchmarking de viagem para a Argentina

Acompanhamento da permeabilidade

Ações para melhorar o Processo

X2 – Permeabilidade Baixa

- Estabelecimento prazo de vida máximo: 440 de 550 cfm (nova)
- 440 cfm atingiria em 3 meses (dependendo do mix)
- Registro e acompanhamento em sharepoint com as áreas

Histórico de esteiras utilizadas

Troca de esteira?	▼ Parada de máquir ▼	Sales Orde ▼	Serial No.	▼ Machine/Position ▼	Material Description	▼ Cust PO# ▼	Dim x / ft	Dim x / in 🔻	Dim y / ft	▼ Dim y / in
Não	07/01/2020	30573424-10	50937768	LINHA 7 - SPUNBOND	SUPRASTAT 4002	4500358857	195,21	188,976	59,5	4,8
Sim	17/01/2020	30579580-30	50970069	LINHA 7 - SPUNBOND	SUPRASTAT 4002	4500369824	195,21	188,976	59,5	4,8
Não	13/02/2020	30579580-30	50970069	LINHA 7 - SPUNBOND	SUPRASTAT 4002	4500369824	195,21	188,976	59,5	4,8
Não	10/03/2020	30579580-30	50970069	LINHA 7 - SPUNBOND	SUPRASTAT 4002	4500369824	195,21	188,976	59,5	4,8
Sim	23/04/2020	30579580-10	50948215	LINHA 7 - SPUNBOND	SUPRASTAT 4002	4500361980	195,21	188,976	59,5	4,8
Não	26/05/2020	30579580-10	50948215	LINHA 7 - SPUNBOND	SUPRASTAT 4002	4500361980	195,21	188,976	59,5	4,8
Não	10/06/2020	30579580-10	50948215	LINHA 7 - SPUNBOND	SUPRASTAT 4002	4500361980	195,21	188,976	59,5	4,8
Não	30/06/2020	30579580-10	50948215	LINHA 7 - SPUNBOND	SUPRASTAT 4002	4500361980	195,21	188,976	59,5	4,8

Esteiras onsite para uso

To be shipped

Controle do ciclo de vida completo das esteiras

Ações para melhorar o Processo

X3 – Suction boxes fora da especificação

- Verificado desenho técnico
- Lateral modificada anos atrás para evitar turbulência no tecido e possibilitar produção de materiais de menor gramatura (não projetados para a máquina)

Impossibilidade de readequação da lateral

Ações para melhorar o Processo

X4 e X5 - Limpador de esteira fora de funcionamento drive e compressor quebrados

- Manutenção corretiva mecânica/elétrica
- Baixa eficiência de limpeza e observado risco de travamento da esteira e perda da mesma
 - Abortado seu uso
 - Implementado checklist de limpeza de máquina

Beri	ry				СН	ECK LIST (DE LIMPEZ	A DA MÁ	QUINA SJI	P07					
	os de atenção: A entre uma limpe:							otivo e esteja ap							
				Estrutura			Pré-calandra	Gavetas			Cat	oine			Ferramenta
DATA	Responsável	Limpeza de esnutura da máquina	Limpeza da esnutura de MB	Manoais	Rolax de nação da esteira	Limpeza de rolos de apoio da mesa de transporte		Gavetas SB e grades (sveção) de MB	Canal superior (limpoza com álcosí)	Canal intern. (Impeza com álogot)	Placar SAS Jimpoza com álcooli	Difusorex (limpoza com álcocil	Limpeca de monômoto nas cabines	Telas de sopro jqueimar com soprador térmicol	Torque nas letramentas (a pada +-15 cies)

Sistema restaurado porém pouco eficiente

Ações para melhorar o Processo

X6 – Mudança de qualidade nas esteiras da Albany

- Comparação entre medido em máquina versus Certificate of Analysis especificado do cliente
 - Teste de esteira da França (vs EUA regular)
 - Sem melhorias significativas

Vs.

Medição em máquina

TY	TYLES										
STYLE		PLANT	MATERIAL	COATING	WARP (MM)	CFM	FRICTION	CONTACT POINT			
554001		FRANCE	POLYESTER/ ANTI-STATIC	SPRAY-STO	0.50	550	нсн	мерним			
554002	到時	USA	POLYESTER/ ANTI-STATIC	KISS-40U \$75	0.50	550	жен	MEDIUM			
S\$4000		FRANCE	POLYESTER/ ANTI-STATIC	SHILKY - DRIEK COMPONENT	0.50	550	MEDIUM	MEDIUM			
\$\$4001		USA	POLYESTER/ ANTI-STATIC	KISS-ROUL - DRIER COMPONENT	0.50	550	MEDIUM	MEDIUM			
5540021		FRANCE	POLYESTER/ ANTI-STATIC	SPRAY - STD REDUCTION TACK	0.50	550	DONT	меним			
5540021		USA	POLYESTER/ ANTI-STATIC	KISS-POLL-STD REDUCTION TACK	0.50	550	LIGHT	MEDIUM			

Não houve impacto em mudar de unidade fabril

Ações para melhorar o Processo

X7 – Limitação física das gavetas

- Modificação para remoção das gavetas em produção (ONGOING)
 - Poderá reduzir ainda mais as paradas para limpeza de máquina, em produtos menos exigentes

SJP07 – Gavetas regulares

SJP07 – Gavetas retráteis

Controle de Mudanças

Benchmarking - SJP09

Benchmarking - Argentina

Desenvolvimento de novo layout em teste

Ações para melhorar o Processo

X8 – Volume de ar muito alto nos MBs

X9 – DCD muito baixo

X11 – Sucção de filamentos para gaveta

- Utilizado menor volume de ar e menor sucção houve melhora da qualidade e desaparecimento do efeito "zebrado" no tecido
- Porém sem alterações nos filamentos e saturação das gavetas

Alteração de parâmetros de processo

Ações para melhorar o Processo

X8 – Volume de ar muito alto nos MBs

X9 – DCD muito baixo

X11 – Sucção de filamentos para gaveta

- Utilizado menor volume de ar e menor sucção houve melhora da qualidade e desaparecimento do efeito "zebrado" no tecido
- Porém sem alterações nos filamentos e saturação das gavetas

Teste C: Sucção C e D = 1400 rpm (receita QW) Temp. Dies C e D = 280°C

> Sieve*:Início Meio Fim 93% **85%** 81%

Teste D: Sucção C e D = 1200 rpm Temp. Dies C e D = 280°C

> Sieve*: Início Meio Fim 96,7% 98,3% 95,7%

Pequena diferença visual entre as amostras.

Amostra	Sieve Test / retenção %			Comment on I was	T Extrusora MB / °C	T D:- 14D / °C	C	C	Fatalas
	Início	Meio	Fim	Gramatura / gsm	i Extrusora IVIB / C	i Die MB/ C	Sucção C / rpm	Sucção D / rpm	Esteira
Teste A	4,3	30,8	0,0	8,0	280	280	1500	1500	461
Teste B	39,11	91,4	88,42	8,0	280	280	1200	1200	461
Teste C	93,0	85,0	81,0	7,9	280	280	1400	1400	~530
Teste D	96,7	98,3	95,7	7,9	280	280	1200	1200	~530

⁻ A esteira e sucção melhoraram conjuntamente o resultado.

Melhora de qualidade porém não em filamentos

^{*} Escolhidos piores pontos da manta.

Ações para melhorar o Processo X10 – Tensão excessiva (>2,5 bar) da esteira

- Longo tempo de uso necessita aumento de tensão, gerando mais desgaste
- Troca preventiva antes do fim de vida estabelecido pela medição de permeabilidade

Medidor de tensão em 1,9 bar

Troca preventiva

Follow up mensal do pipeline de esteiras com fornecedor

Ações para melhorar o Processo X13 – Materiais de baixa gramatura (8 e 10gsm)

- Alta velocidade dos 8 e 10gsm geraria mais desgaste da esteira
- Restrições de tecnologia no projeto
- Negociado com cliente para fornecer maior volume de 10gsm, substituindo o 8gsm
 - Projeto de aumento de Throughput no 10gsm

Restrições tecnológicas de projeto

Ganhos mensais: US\$14.298,26

Restrição tecnológica em oportunidade de lucro

Ações para melhorar o Processo

X15 – Contaminação por filamentos em suspensão no ar

- Sucção da esteira succiona filamentos para dentro do sistema devolve para o ambiente fabril, contaminando o ar e produto
- Instalação de filtros nas saídas dos dutos de ar

Fluxo de ar

Produto exposto ao ar

Remoção de possíveis contaminações do ar

Benefício Financeiro Validado

Quick Wins

Total Benefits (concluded): US\$48.354,44

Overweight: Padronização do set point de gramatura

Validação financeira dos ganhos

Benefício Financeiro Validado

Bobinas: Redução de contaminação por filamentos

Arranques: Redução de paradas para limpeza de máquina

Initial Planned Benefits: US\$32.981,64

To date: US\$3.709

Initial Planned Benefits: US\$16.784,76

To date: US\$12.533,56

Validação financeira dos ganhos

Nova Capabilidade do Processo

E a capabilidade do processo após a implementação das melhorias?

Nova Capabilidade do Processo

 $\sigma_{Antes} = -0.58$ $\sigma_{Depois} = +1.02$

Nova capabilidade do FPY

Queda de 30% de out of spec

Nova Capabilidade do Processo

Houve melhoria na média do FPY (significativa estatisticamente)?

- Teste de hipótese
 - Ho: não houve diferença na média
 - H1: houve diferença na média
 - P-value = 0,002 < 0,05
 - Rejeita Ho
 - Probabilidade de 1% de não ser verdadeiro H1
 - Melhoria estatisticamente significativa

Houve melhoria na média do FPY

Nova Capabilidade do Processo

Controle: Contaminação por Filamentos

 $\dot{x}_{Antes} = 0.68\%$ $\dot{x}_{Depois} = 0.20\%$

Melhora na média e na variabilidade

Nova Capabilidade do Processo

Controle: Arranques por LIMPM

 $\dot{x}_{Antes} = 0.51\%$ $\dot{x}_{Depois} = 0.34\%$

LIMPM teve redução da média

Nova Capabilidade do Processo

 $\sigma_{Antes} = + 0.27$ $\sigma_{Depois} = + 1.12$

Nova capabilidade do OW

Queda de 13% de out of spec

Nova Capabilidade do Processo

Houve melhoria na média do OW (significativa estatisticamente)?

- Teste de hipótese
 - Ho: não houve diferença na média
 - H1: houve diferença na média
 - P-value = 0,001 < 0,05
 - Rejeita Ho
 - Probabilidade de 1% de não ser verdadeiro H1
 - Melhoria estatisticamente significativa
- Não houve melhoria no desvio padrão

Houve melhoria na média do OW

Garantir a manutenção das melhorias feitas ao longo do tempo

- Com exceção dos meses onde houve ocorrência de Micro Furos (2020-09 a 2020-11) por umidade na matéria-prima, gerando necessidade de produzir 8gsm sob overweight negativo e FPY abaixo da meta para atender o cliente, o resultado se manteve melhor após as mudanças. O ano de 2021 iniciou com média de 88,3%.

$$\dot{x}_{Antes} = 85\%$$

 $\dot{x}_{Depois} = 87\%$

Tendência de melhora do FPY

Garantir a manutenção das melhorias feitas ao longo do tempo

- Com exceção dos meses onde houve ocorrência de Micro Furos (2020-09 a 2020-11) por umidade na matéria-prima, gerando necessidade de produzir 8gsm sob overweight negativo e FPY abaixo da meta para atender o cliente, o resultado se manteve melhor após as mudanças, mesmo produzindo-se mais material 8 e 10gsm (que possuem limitação de OW).

$$\dot{x}_{\text{Antes}} = -0.6\%$$

$$\dot{x}_{\text{Depois}} = +0.5\%$$

Tendência de melhora do OW

Garantir a manutenção das melhorias feitas ao longo do tempo

 Implementação de ferramentas para controle de arranques, filamentos e OW

> Relatórios de controle Diário, Semanal e Mensal

Relatório Diário

Relatório Semanal

Relatório Mensal

Maior controle sobre perdas e ações

Resumo Gerencial Final

Redução de scrap e aumento de FPY da linha SJP07

PROBLEMA PRATICO

Business Case: melhorar indicador de eficiência de produção de não-tecido, máquina de maior volume na América Latina: menor custo de produção, maior faturamento.

<u>Histórico</u>: nenhum mês atingindo o target = baixa eficiência

PROBLEMA ESTATISTICO

Estudo de Capacidade de Processo em

100% dos meses, se produziu abaixo da meta em 2019.

Média = 85,5%

Desvio Padrão = 0,014%

FPY Sigma = -0.58

30% de defectos!

SOLUÇÃO ESTATÍSTICA

Variáveis Críticas:

- Arrangues de máquina para limpeza.
- Contaminações por filamentos
- Overweight dos produtos

Principais Ações:

- Pipeline/troca programada de esteiras
- Padronizar medições permeabilidade
- Novo set up dos dies de MB
- Instalação de filtros nos dutos de ar
- Padronizar set point de gramatura

SOLUÇÃO PRÁTICA

Impacto:

- FPY Sigma = +1,02
- U\$ 25k/mês impacto no EBTIDA
- Tempo de execução de projeto = 1 ano MSA + 1 ano Melhorias
- Menor risco de quality incidents
- Ampliação do volume de produção
- Maior disponibilidade de máquina

Impacto: US\$78k concluded – Annual Total Estimated US\$265k