Workshop Week 8

COMP20008 2020S2

Clustering (& Linear regression)

Q1: Consider the 1-dimensional data set with 10 data points $\{1,2,3,...10\}$. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to $\{1, 2\}$.

- Iteration 1 Data points: [1 2 3 4 5 6 7 8 9 10]
 Assignments: [0, 1, 1, 1, 1, 1, 1, 1, 1] Centroids: [1.0, 6.0]
- 0 means 1, 1 means cluster 2
- Iteration 2 Data points: [1 2 3 4 5 6 7 8 9 10]
 Assignments: [0, 0, 0, 1, 1, 1, 1, 1, 1, 1] Centroids: [2.0, 7.0]
- Iteration 3 Data points: [1 2 3 4 5 6 7 8 9 10]
 Assignments: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1] Centroids: [2.5, 7.5]

Consider the 1-dimensional data set with 10 data points {1,2,3,...10}. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to {1, 2}.

• Iteration 4 Data points: [1 2 3 4 5 6 7 8 9 10]
Assignments: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] Centroids: [3.0, 8.0]

Iteration 5 Data points: [1 2 3 4 5 6 7 8 9 10]
 Assignments: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] Centroids: [3.0, 8.0]

Q2: Repeat Exercise 1 using agglomerative hierarchical clustering and Euclidean distance, with single linkage (min) criterion.

	1	2	3	4	5	6	7	8	9	10		1	2	3	4	5	6	7	8	9	10
1	0										1	0	1	2	3	4	5	6	7	8	9
2	1	0			ially ster						2	1	0	1	2	3	4	5	6	7	8
3	2		0	Ciu	ster	s uc) WE	illa	ver		3	2	1	0	1	2	3	4	5	6	7
4	3			0							4	3	2	1	0	1	2	3	4	5	6
5	4				0						5	4	3	2	1	0	1	2	3	4	5
6	5					0					6	5	4	3	2	1	0	1	2	3	4
7	6						0				7	6	5	4	3	2	1	0	1	2	3
8	7							0			8	7	6	5	4	3	2	1	0	1	2
9	8								0		9	8	7	6	5	4	3	2	1	0	1
10	9									0	10	9	8	7	6	5	4	3	2	1	0

Inter-point distance Matrix

Step1: Calculate Distances between every pair of observation: Euclidean Distance

	1	2	3	4	5	6	7	8	9	10
1	0	1	2	3	4	5	6	7	8	9
2	1	0	1	2	3	4	5	6	7	8
3	2	1	0	1	2	3	4	5	6	7
4	3	2	1	0	1	2	3	4	5	6
5	4	3	2	1	0	1	2	3	4	5
6	5	4	3	2	1	0	1	2	3	4
7	6	5	4	3	2	1	0	1	2	3
8	7	6	5	4	3	2	1	0	1	2
9	8	7	6	5	4	3	2	1	0	1
10	9	8	7	6	5	4	3	2	1	0

Inter-point distance Matrix

Step 2: Choose the most similar two observations to merge (i.e. Closest)

(i.e. pair with the minimum distance in Dissimilarity Matrix)

	1	2	3	4	5	6	7	8	9	10
1	0	1	2	3	4	5	6	7	8	9
2	1	0	1	2	3	4	5	6	7	8
3	2	1	0	1	2	3	4	5	6	7
4	3	2	1	0	1	2	3	4	5	6
5	4	3	2	1	0	1	2	3	4	5
6	5	4	3	2	1	0	1	2	3	4
7	6	5	4	3	2	1	0	1	2	3
8	7	6	5	4	3	2	1	0	1	2
9	8	7	6	5	4	3	2	1	0	1
10	9	8	7	6	5	4	3	2	1	0

	12	3	4	5	6	7	8	9	10
12	0	1							
3	1	0	1	2	3	4	5	6	7
4		1	0	1	2	3	4	5	6
5		2	1	0	1	2	3	4	5
6		3	2	1	0	1	2	3	4
7		4	3	2	1	0	1	2	3
8		5	4	3	2	1	0	1	2
9		6	5	4	3	2	1	0	1
10		7	6	5	4	3	2	1	0

Inter-point distance Matrix

Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate linkage using min)

	1	2	3	4	5	6	7	8	9	10
1	0	1	2	3	4	5	6	7	8	9
2	1	0	1	2	3	4	5	6	7	8
3	2	1	0	1	2	3	4	5	6	7
4	3	2	1	0	1	2	3	4	5	6
5	4	3	2	1	0	1	2	3	4	5
6	5	4	3	2	1	0	1	2	3	4
7	6	5	4	3	2	1	0	1	2	3
8	7	6	5	4	3	2	1	0	1	2
9	8	7	6	5	4	3	2	1	0	1
10	9	8	7	6	5	4	3	2	1	0

12 0	1							
		2	3	4	5	6	7	8
3 1	0	1	2	3	4	5	6	7
4 2	1	0	1	2	3	4	5	6
5 3	2	1	0	1	2	3	4	5
6 4	3	2	1	0	1	2	3	4
7 5	4	3	2	1	0	1	2	3
8 6	5	4	3	2	1	0	1	2
9 7	6	5	4	3	2	1	0	1
10 8	7	6	5	4	3	2	1	0

Inter-point distance Matrix

Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate linkage using min)

How many clusters do we have now?

Updated Dissimilarity Matrix

	12	3	4	5	6	7	8	9	10
12	0	1	2	3	4	5	6	7	8
3	1	0	1	2	3	4	5	6	7
4	2	1	0	1	2	3	4	5	6
5	3	2	1	0	1	2	3	4	5
6	4	3	2	1	0	1	2	3	4
7	5	4	3	2	1	0	1	2	3
8	6	5	4	3	2	1	0	1	2
9	7	6	5	4	3	2	1	0	1
10	8	7	6	5	4	3	2	1	0

Updated distance Matrix

Extended Dendrogram Plot
X-axis → observations , Y-axis → distances

Repeat Step 2: Choose the most similar two observations to merge (i.e. Closest) (i.e. pair with the minimum distance in Dissimilarity Matrix)

	12	3	4	5	6	7	8	9	10							
	12	3	7				0		10		12	34	5	6	7	8
12	0	1	2	3	4	5	6	7	8	12	0		3	4	5	6
3	1	0	1	2	3	4	5	6	7	34		0				
4	2	1	0	1	2	3	4	5	6	5	3		0	1	2	3
5	3	2	1	0	1	2	3	4	5	6	4		1	0	1	2
6	4	3	2	1	0	1	2	3	4	7	5		2	1	0	1
7	5	4	3	2	1	0	1	2	3	8	6		3	2	1	0
8	6	5	4	3	2	1	0	1	2	9	7		4	3	2	1
9	7	6	5	4	3	2	1	0	1							
10	8	7	6	5	4	3	2	1	0	10	8		5	4	3	2
10	J	•			7	J	_	_	J							

Inter-point distance Matrix

Repeat Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate single linkage using min)

	12	3	4	5	6	7	8	9	10
12	0	1	2	3	4	5	6	7	8
3	1	0	1	2	3	4	5	6	7
4	2	1	0	1	2	3	4	5	6
5	3	2	1	0	1	2	3	4	5
6	4	3	2	1	0	1	2	3	4
7	5	4	3	2	1	0	1	2	3
8	6	5	4	3	2	1	0	1	2
9	7	6	5	4	3	2	1	0	1
10	8	7	6	5	4	3	2	1	0

	12	34	5	6	7	8	9	10
12	0	1	3	4	5	6	7	8
34	1	0	1	2	3	4	5	6
5	3	1	0	1	2	3	4	5
6	4	2	1	0	1	2	3	4
7	5	3	2	1	0	1	2	3
8	6	4	3	2	1	0	1	2
9	7	5	4	3	2	1	0	1
10	8	6	5	4	3	2	1	0

Let's see some python code

Inter-point distance Matrix

Repeat Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate linkage using min)