Преобразование базиса Грёбнера нульмерного идеала к иному мономиальноальному упорядочению.

Федоров Глеб М33351

Октябрь 2020

- 1 Оглавление
- 1.1 Постановка проблемы
- 1.2 Дополнительная теория
- 1.3 Алгоритм FGLM
- 1.4 Примерная архитектура программы
- 1.5 Используемая литература

2 Постановка проблемы

Дан базис Грёбнера нульмерного идеала, построенный на мономиальном упорядочении m_1 . Привести данный базис к иному мономиальному упорядочению m_2 .

3 Дополнительная теория

3.1 Исключающий идеал

Определение: Пусть дан $I = \langle f_1, \dots, f_n \rangle \in F[x_1, \dots, x_n]$. Тогда l-м исключающим идеалом I_l называется идеал в $F[x_{l+1}, \dots, x_n]$, равный $I \cap F[x_{l+1}, \dots, x_n]$.

Теорема (об исключении): Пусть $I \subset F[x_1, x_2, \dots, x_s]$ - идеал и G - его базис Грёбнера по отношению к lex-упорядочению с $x_1 > x_2 > \dots > x_n$. Тогда $\forall l: 0 \leq l \leq n$ множество

$$G_l = G \cap F[x_1, x_2, \dots, x_s]$$

является базисом Грёбнера l-го исключающего идеала I_l .

Доказательство: Зафиксируем l в интервале (0,n). Так как $G_l \in I_l$ по построению, достаточно показать, что

$$\langle LT(I_l)\rangle = \langle LT(G_l)\rangle$$

Включение в одну сторону очевидно $(\langle LT(G_l)\rangle \subset \langle LT(I_l)\rangle$ по построению). Докажем, что $\langle LT(I_l)\rangle \subset \langle LT(G_l)\rangle$. Для этого достаточно показать что LT(f), где $f \in I_l$, делится на некоторый $g \in G_l$. Заметим, что $f \in I$, то есть LT(f) делится на LT(g) для некоторго g(т.к. G является базисом Грёбнера иделала I). Так как $f \in I_l$, то LT(g) содержит только переменные x_{l+1}, \ldots, x_n . Так как используется lex-упорядочении с $x_1 > x_2 > \ldots > x_n$, то любой моном, содержащий хотя бы одну из переменных x_1, \ldots, x_l , больше всех мономов из $F[x_{x+1}, \ldots, x_n]$. Значит $g \in G_l$, что и требовалось доказать.

3.2 Соответсвие иделала и многообразия

Определение: Пусть $I \in F[x_1, \dots, x_n]$ - некоторый идеал. Положим

$$V(I) = (a_1, \dots, a_n) \in F^n : f(a_1, \dots, a_n) = 0 \forall f \in I$$

Теорема: V(I) является аффинным многообразием. В частности, если $I=\langle f_1,\dots,f_n\rangle$, то $V(I)=V(f_1,\dots,f_n)$

Доказательство: По теореме Гильберта о базисе идеал I конечно порождён, $I = \langle f_1, \dots, f_n \rangle$. Покажем, что $V(I) = V(f_1, \dots, f_n)$. Если $f(a_1, \dots, a_n) = 0$ для всех полиномов $f \in I$, то $f_i(a_1, \dots, a_n) = 0$ (так как $f_i \in I$). Следовательно, $V(I) \in V(f_1, \dots, f_n)$. С другой стороны, пусть $(a_1, \dots, a_n) \in V(f_1, \dots, f_n)$, и пусть $f \in I$. Так как $I = \langle f_1, \dots, f_n \rangle$, то

$$f = \sum_{i=1}^{s} h_i f_i$$

для некоторых $h_i \in F[x_1, \ldots, x_n]$. Но тогда

$$f(a_1, \dots, a_n) = \sum_{i=1}^s h_i(a_1, \dots, a_n) f_i(a_1, \dots, a_n) = \sum_{i=1}^s h_i(a_1, \dots, a_n) * 0 = 0$$

Следовательно, $V(f_1, ..., f_n) \in V(I)$, а значит эти два идеала равны.

3.3 Нульмерный идеал

Определение: Пусть A - это алгебра над полем K и J - двусторонний идеал в A. Рассматривая алгебру A как факторкольцо A/J, которое можно превратить в алгебру над K, если определить в ней умножение на элементы поля K следующим образом:

$$k(a+J) = ka+J, \ \forall k \ inK, \ \forall a \in A$$

Построенная таким образом алгебра называется факторал
геброй алгебры A по идеалу J.

Теорема: Пусть поле F алгебраически замкнуто и $I \in F[x_1, x_2, \dots, x_n]$. Тогда следующие условия эквивалентны:

- 1. Алгебра $A = F[x_1, x_2, \dots, x_n]/I$ конечномерна над F.
- 2. $V(I) \subset F^n$ конечно.
- 3. Если G базис Грёбнера идеала I, то

$$\forall i \exists m_i \ge 0 : x_i^{m_i} = LM(g)$$

для некоторого $g \in G$.

4. Для каждой переменной x_i исключающий идеал $I \cap F[x_1, x_2, \dots, x_n]$ является ненулевым.

Доказательство:

Идеал, удовлетворяюзий данной теореме называется нульмерным

3.4 Нормальная форма полинома

Определение(1): Пусть G - базис Грёбнера иделал I. Будем называть $f \in F[x_1, \ldots, x_n]$ редуцированым по отношению к G (или в нормальной форме по отношению к G), если не существует $g \in G$ старший член которого делит какие-либо члены из f.

Определение: Алгоритм редукции - алгоритм, вычисляющий нормальную форму по полинома f.

Определение: Базис Грёбнера G называется редуцированным, если $\forall g \in Gg$ - редуцирован, по отношению к другим элементам G.

Определение: Пусть I - нульмерный идеал над $F[x_1, ..., x_n]$ и G - его редуцированный базис Грёбнера. Натуральным базисом, определяемым G K-векторного пространства R / I, назовем базис B(G),

Кажется, чуваки называют редуцированный базис натуральным

Утверждение: Данное определение редуцированого базиса Грёбнера совпадает с определением из лекции.

Доказательство:

- 1. $\forall p \in GLC(g) = 1$
- 2. Никакой моном никакого $p \in G$ не принадлежит $\langle LT(G \backslash p) \rangle$

 \Rightarrow (выполнено определение с лекции, значит выполнено определение (1)): Никакой моном никакого $p \in G$ не принадлежит $< LT(G \backslash p) >$, значит не найдётся такого $g \in G \backslash p$, что LM(g) делит какие-либо члены p, по алгоритму проверки принадлежности многочлена идеалу.

 \Leftarrow (выполнено определение (1), значит выполнено определение с лекции): Рассмотрим $g \in G$, гдк G - редуцированный базис Грёбнера в смысле (1). Тогда не существует такого $p \in G \backslash g$, что старший член p делит какие-либо члены g. Значит $g \notin LT(G \backslash p) >$, значит никакие мономы p не принадлежат $LT(G \backslash p) >$, что и требовалось показать.

Определение: Пусть B(G) - натуральный базис для R/I. Тогда положим, что

$$M(G) = x_i b | b \in B(G), 1 \le i \le n, x_i b \notin B(G)$$

граница G.

Теорема: Пусть I - нульмерный идеал и G - редуцированный базис Грёбнера данного идеала, и B(G) - натуральный базис Грёбнера для R/I, тогда $\forall m \in M(G)$ выполнено одно из данных условий:

- 1. $\forall x_i : x_i | m$ выполнено, что $m/x_i \in B(G)$, если m это старший моном элементов G.
- 2. $m=x_jm_j$ для некоторых j и $m_k\in M(G)$

Доказательство:

- 1. Следует из определения редуцированного базиса Грёбнера и определения В(G)
- 2. Пусть x_j делит m и $m/x_j \notin B(G)$, тогда $m_k = m/x_j \in M(G)$.

Следствие: Пусть k число образующих редуцированного базиса Грёбнера для нульмерного идеала. Тогда $k \leq nD(I)$

4 Алгоритм FGLM

4.1 Вычисление нормальной формы

Определение: Обозначим $T(G) = (t_{ijk})$ тензор $n \times D(I) \times D(I)$, чьи элементы: $t_{ijk} = j$ -ая координата относительно B(G) с элементами $x_i b_k (b_k \in B(G))$.

Теорема: T(G) вычисляется за $O(nD(I)^3)$

Доказательство: Рассмотрим $MB(G)=B(G)\cup M(G)$ и упорядочим его элементы согласно m_1 . Будем строить столбцы t_{i*k} в том порядке, в котором x_ib_k появляется в MB(G). Рассмотрим $m=x_ib_k$. Если $m\in B(G)$, значит, что m - не редуцирован по отношению к G и другие $t_{ijk}=0$ для $j\neq k$, и $t_{ikk}=1$. В ином случае $m\in B(G)$, тогда, согласно теореме(), либо $\exists g\in G: g=m+\sum_{u=1}^{D(I)}a_ub_u$, тогда $t_{i*k}=(-a_1,\ldots,-a_{D(I)})^t$, либо $m=x_lm'$, где $m'\in M(G)$ и m'< m. В этом случае, координаты $m'=x_sb_h$ по отношению к B(G), уже вычислены, и хранятся в t_{i*k} . Этого достаточно, чтобы добавить координаты x_lb_v $b_v\in B(G)$ умноженые на соответсвующий коэфициент, то есть $x_ib_k=x_lx_sb_h=x_l\sum_v t_{svh}b_v=\sum_u\sum_v t_{svh}t_{luv}b_u$. В этом случае мы должны выполнить $D(I)^2$ операций чтобы посчитать t_{i*k} , и, в итоге, данную операцию мы будем повторять nD(I) раз.

```
Algorithm 1 Псевдокод
1: Input
2:
       m_1
                                                                                 ⊳ мономиальное упорядочение
3:
       Basis
                                        ⊳ минимальный редуцированный базис Грёбнера нульмерного идеала
4: EndInput
5: Output
       \phi[i, m, m'] for i = 1, \ldots, n
                                                 \triangleright m, m' \in B(G) такие, что \phi[i,*,*] - это матрица применений
   p-NormalForm(x_ip), где р - редуцированные многочлены
7: EndOutput
8: Subfunctions
       NextMonom ⊳ Вовзращает и удаляет первый элемент списка ListOfNexts. Возвращает nil, если список
   пуст.
       InsertNexts(monom)
                                              \triangleright Добавляет monom в ListOfNexts и сортирует его, согласно m_1
10:
11: EndSubfunctions
12: LocalVariables
13:
       ListOfNexts
                                              \triangleright Список "следующих" мономов. Отсортирован относительно m_1
14: EndLocalVariables
15: monom := 1, ListOfNexts := []
16: while monom \neq nil do
       if monom является произведением старших мономов каких-то элементов из Basis then
17:
          let monom = x_j m, где m - редуцируемо относительно Basis
18:
          NormalForm[monom] := \sum \lambda_i * NormalForm(x_j m_i)
19:
          for all k, таких что monom = x_k m', где m' - нередуцируем относительно Basis do
20:
              \phi[k,m'',m'] := коэфициент m'' в NormalForm[monom]
21:
       else if monom - старший моном какого-то p \in Basis then
22:
          NormalForm[monom] := -rest(p)
23:
24:
          for all j, таких, что monom = x_j m do
              \phi[j,m',m''] := коэфициент m' в NormalForm[monom]
25:
       else
26:
27:
          NormalForm[monom] := monom
          InsertNexts(monom)
28:
29:
          for all j, таких, что monom = x_i m do
30:
                                        \phi[j, m', m] := \begin{cases} 1 & \text{if } m' = monom \\ 0 & \text{otherwise} \end{cases}
       monom := NextMonom
```

Доказательство корректности: Корректность алгоритма следует из доказательства теоремы().

4.2 Смена упорядочения

Теорема: Пусть I - нульмерный идеал и (G_1, m_1) - его редуцированный базис Грёбнера, построенный для мономиального упорядочения m_1 , m_2 - иное мономиальное упорядочение. Тогда можно построить базис Грёбнера (G_2, m_2) за $O(nD(I)^3)$.

Доказательство: Из (G_1, m_1) мы можем построить $B(G_1) = a_1, \ldots, a_{D(I)}, M(G_1)$ и $T(G_1)$, как было показано в предыдущей главе. Построим матрицу C в которой i-й столбец будет координатами элемента $b_i \in B(G_2)$ относительно $B(G_1)$. Будем строить новый бащиз итеративно. Пусть $B(G_2) := 1$ и $M(G_2) := \emptyset$. Пусть $m = min_{m_2}x_jb_i|1 \le j \le n, b_i \in B(G_2), x_jb_i \notin B(G_2) \cup M(G_2)$. Может возникнуть три случая:

- 1. m старший терм g, какого-либо $g \in G_2$
- 2. m был добавлен в $B(G_2)$
- 3. m был добавлен в $M(G_2)$, но m умножение старших членов для некоторых $g \in G$.

Проверка того, что m удовлетворяет третьему пункту - старший член g строго меньше чем m при любом допустимом упорядочении и g уже добавлен в $M(G_2)$. Поскольку по построению, $m=x_jb_i$ мы можем посчитать уго координаты $c(m)_h$ относительно $B(G_1)$ используя матрицу C и тензор $T(G_1)=(t_{ijk})$:

$$m = x_j b_i = x_j * \sum_k c_{ki} * a_k = \sum_k x_j * c_{ki} * a_k = \sum_k c_{ki} * \sum_h t_{jhk} * a_h = \sum_h (\sum_k t_{jhk} c_{ji}) = \sum_h c(m)_h a_h$$

Если вектор c(m) линейно независим от векторов из C, то выполняется второй пунк, и мы нашли новый $g \in G_2$.

```
Algorithm 2 Псевдокод
1: Input
2:
      m_2
                                                                                        ⊳ новое упорядочение
3:
      oldBasis
                                        \triangleright Базис Грёбнера нульмерного идела относительно упорядочения m_1
4: EndInput
5: Output
                                       \triangleright Базис Грёбнера нульмерного идеала относительно упорядочения m_2
      newBasis
7: EndOutput
8: Subfunctions
9:
      NormalForm(polynom)
                               ⊳ Возвращает редуцированную форму полиному относительно упорядочения
      NextMonom()
                           ⊳ Возвращает первый элемент ListOfNexts или nil, если ListOfNexts пуст. Первый
10:
   элемент удаляется
      InsertNexts(monom)
                              ⊳ Добавляет в ListOfNexts произведение монома со всеми переменными, после
11:
   чего сортирует лист и удаляет дубли
12: EndSubfunctions
13: LocalVariables
      staircase
                                                                     ⊳ Список ведущих мономов из NewBasis
14:
      MBasis \triangleright Список пар [a_i, b_i], где [a_i] - список мономов в нормальной форме относително нового базиса
15:
   и b_i = NormalForm(a_i), нормальная форма a_i относительно старого базиса.
      ListOfNexts
                                            \triangleright Список "следующих"мономов. Отсортирован относительно m_1
16:
17: EndLocalVariables
18: MBasis := []; staircase := []; newBasis := []; ListOfNexts := []; monom := 1;
   while monom \neq nil do
20:
      if monom не делится на какие-нибудь элементы из staircase then
                                                                               ⊳ Провекра, это пункт 1 или 2
          vector := NormalForm(monom)
21:
22:
          if есть линейная зависимость vector + \sum_{v \in MBasis} \lambda_v second(v) = 0 then
             pol := monom + \sum_{v \in MBasis} \lambda_v first(v)
23:
             newBasis := cons(pol, newBasis)
24:
             staircase := cons(monom, staircase)
25:
26:
          else
27:
             MBasis := cons([monom, vector], MBasis)
             InsertNexts(monom)
28:
29:
      monom := NextMonom
```

Доказательство корректности:

5 Используемая литература

- 1. Faugère, J.C., Gianni, P., Lazard, D., Mora, T. Efficient computation of zero-dimensional gröbner bases by change of ordering (1993) Journal of Symbolic Computation, 16 (4), pp. 329-344.
- ${\bf 2.\ http://halgebra.math.msu.su/groebner.pdf}$
- 3. Кокс Д., Литтл Дж., О'Ши Д. Идеалы, многообразия, кольца. Стр. 108. Стр. 153.
- 4. Презентация про FGLM алгоритм