

MEMORANDUM

To: Stan Carpenter

From: William Keyes

Date: 13 September 1965

Subject: HYPERGEOMETRIC DISTRIBUTION:

1. EXPONENTIAL FAILURE LAW:

To approximate the actual failure distribution, the exponential failure law is assumed. Let F denote the number of components which would fail when N components of MTTF = M hours are tested for t hours each. Then

$$F = N \left(1 - e^{-\frac{t}{M}} \right) \dots \dots \dots \quad (1)$$

11. HYPERGEOMETRIC DISTRIBUTION:

Given a lot of N gyros of which F (determined from equa. (1)) are defective, what is the probability of finding i defectives in a random sample of n units?

Let X = hypergeometric random variable, the number of defectives drawn from a sample of n gyros of which F are defective.

$$\begin{aligned} P(X = i) &= \frac{\text{No. of favorable events}}{\text{No. of possible events}} \\ &= \frac{\text{No. of ways to get } i \text{ defectives and } (n-i) \text{ non-defectives}}{\text{No. of ways to select } n \text{ samples from lot size } N} \end{aligned}$$

$$\begin{aligned} \text{Numerator} &= (\# \text{ ways to select } i \text{ defectives from } F \text{ defectives}) \\ &\quad \times (\# \text{ ways to select } (n-i) \text{ non-defectives from original } (N-F) \text{ lot of non-defectives}) \end{aligned}$$

$$= \binom{F}{i} \binom{N-F}{n-i} \quad \text{where} \quad \binom{F}{i} = \frac{F!}{i! (F-i)!} \quad \text{etc.}$$

Denominator = # Combinations of N objects taken n at a time.

$$= \binom{N}{n}$$

Let $p(i; N, F, n)$ = probability of finding i defectives in a sample of n gyros drawn at random from a lot of N gyros of which F are defective.

$$\text{Then } p(i; N, F, n) = \frac{\binom{F}{i} \binom{N-F}{n-i}}{\binom{N}{n}} \dots \dots \dots (2)$$

The sum of hypergeometric probabilities must be 1

$$\sum_{i=0}^N \frac{\binom{F}{i} \binom{N-F}{n-i}}{\binom{N}{n}} = 1$$

With an acceptance number of failures C, a partial sum determines confidence factor:

$$\sum_{i=0}^C p(i; N, F, n) = \text{sum of probabilities of finding } i = 0, 1, \dots, C \text{ defectives}$$

Define confidence factor P

$$\sum_{i=0}^C p(i; N, F, n) = \sum_{i=0}^C \frac{\binom{F}{i} \binom{N-F}{n-i}}{\binom{N}{n}} \equiv 1 - P \dots \dots \dots (3)$$

To establish an acceptance test which will project a MTTF of $M = \frac{r}{t} t$ (t = testing time) with confidence P from a lot of N units with acceptance number C , the number of samples, n , which are needed is found:

- a. Calculate F from eq. (1) to nearest integer
- b. Calculate n from eq. (3)

If n units from a lot of N gyros are tested for t hours each and C random failures are observed, the MTTF with confidence P is calculated:

- a. Solve equa.(3) for F
- b. Solve equa. (1) for M

EXAMPLE:

In a procurement of 100 units, the MTTF is required to be 100,000 hours with 80% confidence and acceptance no. of failures $C = 1$. Find minimum sample size for 10,000 hours of testing.

$$\underline{a.} F = N \left(1 - e^{-\frac{t}{M}} \right) = 100 \left(1 - e^{-0.1} \right) = 10$$

$$\underline{b.} \frac{\binom{F_0}{F_0} \left(\binom{N-F}{n} + \binom{F_1}{1} \binom{N-F}{n-1} \right)}{\binom{N}{n}} \leq 1 - P$$

try $n = 20$

$$\frac{\binom{90}{20} + 10 \binom{90}{19}}{\binom{100}{20}} = .42 \text{ which is } > \text{ than the acceptable "risk" of } 1-P=.20$$

∴ 20 samples is too few

try $n = 30$

$$\frac{\binom{90}{30} + 10 \times \binom{90}{29}}{\binom{100}{30}} = .194 \text{ which is within the acceptable "risk" of .20}$$

Therefore if 30 units are tested for 10,000 hours each and 1 random failure is observed, the MTTF of each of the original lot of 100 units is 100,000 hours with 80% confidence.

Date: 13 September 1963

Subject: HYPERGEOMETRIC DISTRIBUTION

EXPONENTIAL FAILURE LAW

W. Keyes
William Keyes

To approximate the actual failure distribution, the exponential failure law is assumed. Let k denote the number of components, then a unit could fail when k components of k fail. It can be noted for a failure mode, then

$$P(\text{failure}) = \frac{k!}{(k-n)!} \cdot \frac{n!}{k!} \cdot p^n \cdot q^{k-n}$$

II. HYPERGEOMETRIC DISTRIBUTION

Given a lot of N units of which r are defective, what is the probability of getting n non-defective units in a sample of m units?

Let X = hypergeometric random variable, the number of defectives drawn from a sample of m units, then

$$P(X=x) = \frac{\binom{r}{x} \binom{N-r}{m-x}}{\binom{N}{m}}$$

to obtain get 1 defectives and $(n-1)$ non-defective
we need to select n samples from lot size N

Indicator = 0 ways to select 1 defective from N defectives

\times (n ways to select $(n-1)$ nondefectives from original
($N-r$) lot of nondefectives)

$$\binom{r}{n-1} \times \binom{N-r}{n-1} = \frac{r!}{(r-n+1)!} \cdot \frac{(N-r)!}{(N-r-n+1)!}$$