VE203 Discrete Math

Spring 2022 — HW5 Solutions

April 16, 2022

Exercise 5.1

(i)

Since $a \equiv b \pmod{m}$, denote $a = r_1 m + s$, $b = r_2 m + s$ so that $a \equiv b \equiv s \pmod{m} (r, s \in a)$ \mathbb{Z}). From $d \mid m$, we can represent m by $m = r_3 d$. So $a = r_1 r_3 d + s, b = r_1 r_3 d + s.a \equiv$ $s(\bmod d), b \equiv s(\bmod d), \text{ thus } a \equiv b(\bmod d).$

Similarly, denote $a = r_1 m + s, b = r_2 m + s$, so that $a \equiv b \equiv s \pmod{m} (r, s \in \mathbb{Z}) . ac =$ $r_1mc + sc$, $bc = r_2mc + sc.ac \equiv sc \pmod{mc}$, $bc \equiv sc \pmod{mc}$, thus $ac \equiv bc \pmod{mc}$.

Exercise 5.2

If $ax \equiv ay \pmod{m}$: $m \left| (ax - ay) \Rightarrow \frac{m}{\gcd(a,m)} \right| \frac{a}{\gcd(a,m)} (x - y)$.

Since $\gcd\left(\frac{m}{\gcd(a,m)}, \frac{a}{\gcd(a,m)}\right) = 1, \frac{m}{\gcd(a,m)} \mid (x-y).$ So $x \equiv y \pmod{\frac{a}{\gcd(a,m)}}$

If $x \equiv y \left(\operatorname{mod} \frac{a}{\gcd(a,m)} \right) : \frac{m}{\gcd(a,m)} | (x-y) \Rightarrow m | \gcd(a,m) \cdot (x-y)$. Since $\gcd(a,m) | a, m | a \cdot a = 1$. (x-y). So $ax \equiv ay \pmod{m}$.

So $ax \equiv ay \pmod{m} \Leftrightarrow x \equiv y \pmod{\frac{a}{\gcd(a.m)}}$.

(ii)

If $ax \equiv ay \pmod{m}$, $m \mid (ax - ay)$. Since $\gcd(a, m) = 1$, $m \mid (x - y)$. So $x \equiv y \pmod{m}$.

Exercise 5.3

If $x \equiv y \pmod{m_i}$ for $i = 1, 2, \dots, r : m_i \mid (x - y) \Rightarrow (x - y)$ is the common multiple of m_i .

So $\text{lcm}(m_1, m_2, ..., m_r) \mid (x - y)$. So $x \equiv y \pmod{\text{lcm}(m_1, m_2, ..., m_r)}$. If $x \equiv y \pmod{\text{lcm}(m_1, m_2, \dots, m_r)}$:

Exercise 5.4

If $x^2 \equiv 1 \pmod{p}$: $p \mid (x^2 - 1) \Rightarrow p \mid (x + 1)(x - 1)$. Since p is prime, either $p \mid (x + 1)$ or $p \mid (x-1)$. So $x \equiv \pm 1 \pmod{p}$.

If $x \equiv \pm 1 \pmod{p}$: $x^2 \equiv 1 \pmod{p}$ by simply square both side.

So $x^2 \equiv 1 \pmod{p} \Leftrightarrow x \equiv \pm 1 \pmod{p}$.

(ii)

For $p = 2, 1 \equiv -1 \pmod{2}$.

For $p \neq 2$, namely, p is odd:

The multiplicative group $X = (\mathbb{Z}/p\mathbb{Z})^{\times} = \{1, 2, \dots, p-1\}$ since p is prime and every integer less than p is coprime to p. As is shown in (i), the only solution of $x^2 \equiv 1 \pmod{p}$ for $x \in X$ is x = 1 and x = p - 1.

This is to say, x 's inverse does not equal to itself for $x \neq 1$ or p-1. Besides, there are even elements in $X \setminus \{1, p-1\}$. So we can always pair tow elements in $X \setminus \{1, p-1\}$ with their multiple equals $1 \pmod p$, i.e. $2 \cdot 3 \cdot \ldots \cdot (p-2) \equiv 1 \pmod p$. Since $1 \cdot (p-1) \equiv -1 \pmod p$, so $(p-1)! \equiv -1 \pmod p$.

(iii)

If $p \equiv 3 \pmod{4}$, $\frac{p-1}{2}$ is odd. For $x = 1, 2, \dots, \frac{p-1}{2}, x \equiv -(p-x) \pmod{p}$. Since $(p-1)! \equiv 1 \cdot (-1) \cdot 2 \cdot (-2) \dots \frac{p-1}{2} \cdot -\frac{p-1}{2} \equiv -1 \pmod{p}$ and $\frac{p-1}{2}$ is odd, $-\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv -1 \pmod{p}$. According to (i), $\left(\frac{p-1}{2}\right)! \equiv \pm 1 \pmod{p}$.

Exercise 5.5

$$561 - 1 = 280 \cdot 2 = 56 \cdot 10 = 35 \cdot 16$$
. So $a^{561 - 1} = (a^{3-1})^{280} = (a^{11-1})^{56} = (a^{17-1})^{35}$.

For $\gcd(a,3)=1, a^{560}\equiv 1 \pmod 3$. For $\gcd(a,3)\neq 1$, i.e. $a\in 3\mathbb{Z}, 3\mid a$. Then, $3\mid a\ (a^{560}-1), \forall a\in \mathbb{Z}$ because either $3\mid a$ or $3\mid (a^{560}-1)$. Similar for 7 and 11. Therefore, $a^{561}\equiv a \pmod 3, a^{561}\equiv a \pmod {11}, a^{561}\equiv a \pmod {17}$. So that $a^{561}-a$ is divisible by 3,11 and 17 and since they are pairwise relatively prime, $3\cdot 11\cdot 17\mid a^{561}-a$. i.e. $a^{561}\equiv a \pmod {561}$ for all integer a.

Exercise 5.6

(i)

For $a \in \mathbb{Z}$, because $a^q \equiv 1 \pmod{p}$. we can get that $\gcd(a \cdot p) = 1$. Hence. from Fermat's (Little) Theorem. we can get $a^{p-1} \equiv 1 \pmod{p}$.

Therefore $a^{p-1} \equiv a^q \equiv 1 \pmod{p}$. $\Leftrightarrow p \mid a^{\min\{p-1,q\}} \left(1 - a^{\max(p-1,q) - \min\{p-1,q\}}\right)$. If a is identify element that $a \equiv 1 \pmod{p}$. it's obviously true. If p+a-1. because p+a. hence. $a^{\max(p-1,q) - \min\{p-1,q\}} \equiv 1 \pmod{p}$.

Therefore $|p-1-q|=nq(n\in z)$. $\Leftrightarrow p-1\equiv 0 \pmod{q} \Leftrightarrow p\equiv 1 \pmod{q}$. Hence, $a^q\equiv 1 \pmod{p} \Rightarrow p\equiv 1 \pmod{q} va\equiv 1 \pmod{p}$.

(ii)

Because 5|a. we can get that $a \equiv 0 \pmod{5}$

Hence. we can prove $5|a \wedge p|a^4 + a^3 + a^2 + a + 1 \rightarrow P \equiv 1 \pmod{5} \Rightarrow$

$$a^5 \equiv 1 \pmod{p} \to p \equiv 1 \pmod{5}$$

Hence, we need to prove $5|a \wedge p|a^4 + a^3 + a^2 + a + 1 \Rightarrow p \mid a^5 - 1$.

Because $a^5 - 1 = (a - 1)(a^4 + a^3 + a^2 + a + 1)$

Hence. $p \mid a^4 + a^3 + a^2 + a + 1 \Rightarrow p \mid (a-1)(a^4 + a^3 + a^2 + a + 1) \Leftrightarrow p \mid a^5 - 1$. Therefore, we can get that $a^5 \equiv 1 \pmod{P}$ and $P \equiv 1 \pmod{5}$.

(iii)

Because $P \equiv 1 \pmod{5} \Leftrightarrow P = 5n + 1, n \in \mathbb{Z}$ with $5|a \cap P|a^4 + a^3 + a^2 + a + 1$.

It's easy to find that $2 \mid P$ and $P \in P$. therefore. P = 10n + 1. $n \in \mathbb{Z}$.

Hence. for $\forall a (5 \mid a)$. $\exists p = 10n + 1 (p \mid a^4 + a^3 + a^2 + a + 1 \land n \in \mathbb{Z}.)$

Here we set $a = 5m, m \in \mathbb{Z}$. and $k = a^4 + a^3 + a^2 + a + 1$.

For $k = 5(125m^4 + 25m^3 + 5m^2 + m) + 1$, it's easy ts find that whether m is odd or m is even. $125m^4 + 25m^3 + 5m^2 + m$ is even.

Hence. for $\forall k = 10n + 1(n \in \mathbb{Z}), \exists p = 10q + 1(p \mid k \land q \in \mathbb{Z}).$

Here we assume the greatest prime $P_x = 10n + 1$.

For $S = 2 \times 3 \times 5 \times \cdots \times (10n + 1) + 1$. all primes from 2 to P_x are not the divisor.

and $S = (2 \times 5) \times 3 \times 7 \times \cdots \times (10n+1) + 1$ can be express as S = 10m+1.

Therefore, there must exist a prime P with form 10n + 1 fits $P \mid S$. Hence, for every prime with form 10n + 1, there must exists a greater one with form 10n + 1, which means that there are infinitely many primes with form 10n + 1.

Exercise 5.7

Suppose $p \mid 2^{2^5} + 1, p \leq \sqrt{2^{2^5} + 1}$. Hence, $2^{32} \equiv -1 \pmod{p}$ and $2^{64} \equiv 1 \pmod{p}$. By Fermat's theorem, $2^{p-1} \equiv 1 \pmod{p} \Rightarrow p \equiv 1 \pmod{64}$. By checking all $64k + 1 \pmod{k} \in \mathbb{Z}$ in $0 \leq 64k + 1 \leq 2^{16}$, we can find $F_5 = 641 \times 6700417$.

Exercise 5.8

$$2021 = (11111100101)_2 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^2 + 2^0 \cdot 2^{2^0} \equiv 2 \pmod{2021}, 2^{2^2} \equiv 16$$

 $(\bmod{2021}), 2^{2^5} \equiv 747 (\bmod{2021}), 2^{2^6} \equiv 213 (\bmod{2021}), 2^{2^7} \equiv 907 (\bmod{2021}), 2^{2^8} \equiv 102 (\bmod{2021}), 2^{2^9} \equiv 299 (\bmod{2021}), 2^{2^{10}} \equiv 477 (\bmod{2021}) \cdot 2^{2021} = 2^{2^{10}} \cdot 2^{2^9} \cdot 2^{2^8} \cdot 2^{2^7} \cdot 2^{2^6} \cdot 2^{2^5} \cdot 2^{2^2} \cdot 2^{2^9} = 477 \cdot 299 \cdot 102 \cdot 907 \cdot 213 \cdot 747 \cdot 16 \cdot 2 \equiv 388 \cdot 907 \cdot 213 \cdot 747 \cdot 4 \equiv 1322 (\bmod{2021}).$ Since $2^{2021} \equiv 1322 \not\equiv 2 \pmod{2021}, 2021$ is not a prime.

Exercise 5.9

To begin with, we deal with the first two linear congruence $x \equiv 2 \pmod{4}, x \equiv 5 \pmod{7}$. Solve 4u + 7v = 1 and we easily get $u = 2, v = -1.t_1 = 8 \cdot 5 - 7 \cdot 2 \equiv 26 \pmod{28}$. Then we deal with the last two linear congruence $x \equiv 0 \pmod{11}, x \equiv 8 \pmod{15}$. Solve 11m + 15n = 1 and we get m = -4, n = 3. $t_2 = -44 \cdot 8 + 45 \cdot 0 = -352 \equiv -22 \pmod{165}$. Finally we deal with $x \equiv 26 \pmod{28}, x \equiv -22 \pmod{165}$. Solve 28p + 165q = 1 and we get p = -53, q = 9. $t = -1484 \cdot (-22) + 1485 \cdot 26 = 71258 \equiv 1958 \pmod{4620}$. Thus the final solution x = 1958.

Exercise 5.10

(i)
$$6x \equiv 2 \cdot 3x \equiv 2 \cdot 0 \equiv 0 \pmod{3}$$

Therefore $6x \equiv 2 \pmod{5}$ does not have solutions.

(ii)
$$6x \equiv x + 5x \equiv x + 0 \equiv x \pmod{5}$$

Since there are infinitely many x that satisfies $x \equiv 2 \pmod{5}$, such as 5k + 2, $(k \in \mathbb{Z}, 6x \equiv 2 \pmod{5})$ has infinitely many solutions.

Exercise 5.11

```
i) e(233) = 233^{95} \pmod{323}
        Since 95 = 2^6 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0
        233^{95} = 233^{64} \times 235^{16} \times 233^8 \times 233^4 \times 233^2 \times 233^1
        233^1 \equiv 233 \pmod{323}
        233^2 \equiv 25 \pmod{323}
        233^4 \equiv 25^2 \equiv 302 \pmod{323}
        233^8 \equiv 302^2 \equiv 118 \pmod{323}
        233^{16} \equiv 118^2 \equiv 35 \pmod{323}
        233^{32} \equiv 35^2 \equiv 256 \pmod{323}
        233^{64} \equiv 256^2 \equiv 290 \pmod{323}
        \Rightarrow 233^{95} \equiv 290 \times 35 \times 118 \times 302 \times 25 \times 233 \equiv 180 \pmod{323}
ii) D = E^{-1} \pmod{\varphi(n)}
   d(y) = y^D = x^{ED} \equiv x \bmod n
    d(y) = y^{191} \bmod 323
iii) d(180) = 180^{191} \mod 323
     Since 191 = 2^7 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0
     180^{191} = 18^{128} \times 180^{32} \times 18^{16} \times 180^8 \times 18^4 \times 18^2 \times 180^1
     180^1 \equiv 180 \pmod{323}
     180^2 \equiv 100 \pmod{323}
     180^4 \equiv 100^2 \equiv 310 \pmod{323}
     180^8 \equiv 310^2 \equiv 169 \pmod{323}
     180^{16} \equiv 169^2 \equiv 137 \pmod{323}
     180^{32} \equiv 137^2 \equiv 35 \pmod{323}
     180^{64} \equiv 35^2 \equiv 256 \pmod{323}
     180^{128} \equiv 256^2 \equiv 290 \pmod{323}
      \Rightarrow 180^{191} \equiv 290 \times 35 \times 137 \times 169 \times 310 \times 100 \times 180 \equiv 233 \pmod{323}
```