

Plan

- ▶ Contexte et problématique
- ► HDFS et cas d'usage
- ▶ Stockage: Format et organisation
- ▶ Stockage en mémoire
- ▶ Perspectives et Conclusion

Contexte

3

- ► Analyse de données à large échelle
 - ► Analyse offline/online
- ▶ Type d'application
 - ► Chaine de traitements (workflow)
 - ▶ Transformation élémentaire : entrée → traitement → sortie
 - ► Enchainer les transformations
 - ▶ Données intermédiaires volumineuses
 - ▶ Un traitement peut imposer que les entrées et sorties soient des fichiers
 - → Besoin de stocker les données intermédiaires dans des fichiers
 - ► Conception incrémentale d'un workflow
 - → Réutiliser les fichiers résultats des analyses précédentes

Contexte: Fichier

4

Format d'un fichier

- Textuel
- ou Binaire

Structure des données d'un fichier

- Non structuré : image, audio, vidéo
- document semi structuré
- ou collection d'éléments de même type

Description d'un fichier

- Nom unique: emplacement + nom du fichier
- Taille
- Dates : création, dernière modification, dernière lecture, ...
- Droits d'accès : propriétaire

Contexte : Système de fichiers

Problématique du stockage à large échelle

à

Image: http://globbsecurity.fr/dark-data-mettent-entreprise-danger-44185/

Sert à organiser les fichiers en les classant

- Dossier: contient des fichiers et des sous-dossiers
- ▶ Organisation hiérarchique

Accès en lecture à un fichier

- ▶ Rechercher un fichier: explorateur de fichiers
- Lire un dossier pour atteindre des sous-dossiers
- Lire un fichier

Accès en écriture

- ▶ Créer un nouveau fichier
- ▶ Modifier un fichier existant
- Supprimer un fichier existant

Problématique du stockage à large échelle

- Grand nombre de fichiers à gérer (plusieurs millions de fichiers)
- Grande taille d'un fichier (1 Go à plusieurs To par fichier)

Capacité de stockage > celle d'un disque

- ▶ Une gestion et architecture centralisée ne convient pas
- → Besoin d'une solution **distribuée** pouvant utiliser plusieurs disques

Durée trop longue pour lire un fichier

- Parcours séquentiel trop lent pour un gros fichier
- → Besoin d'une solution **parallèle** pour lire le contenu d'un fichier

Les systèmes distribués mais non parallèles (NFS) ne conviennent pas

- ► Cluster (grappe) de machines
 - ▶ Une **machine** = unité de stockage et de traitement
- Avantages
 - Faible prix, bon rapport capacité/prix
 - ▶ Nombreuses machines → Parallélisme élevé (ex. 60K 000 machines chez Critéo)
 - Extensible
- Inconvénient
 - Pannes fréquentes, occurrence proportionnelle au nombre de machines
 - ▶ 10 machines: 1 panne par an
 - ▶ 10 * 365 machines: 1 panne par jour

Objectifs et choix de conception

- Valérance aux pannes
 - ▶ Rester en service pendant une panne
 - ▶ Détection rapide, reprise automatique
- Concu pour un scénario d'accès spécifique
 - ► Créer un fichier puis le lire **n** fois (avec n >>1)
 - Ajout de données dans un fichier existant. Pas de modification du contenu
- Performance
 - Débit élevé pour créer un fichier et le lire
 - ▶ Paralléliser l'accès à un fichier
- > Séparer : fichiers globaux / fichiers locaux contenant les données
 - Métadonnées : description logique globale des fichiers et dossiers
 - Données : un fichier logique composé de plusieurs fichiers locaux
 - ▶ Permet d'optimiser l'accès au contenu tout en préservant l'organisation globale

Localité données/traitement dans un cluster

10

- L'interconnexion des machines est en 2 niveaux
 - ▶ Une machine dans un rack
 - Un rack dans un cluster
- Localité donnée/traitement : décroit avec l'éloignement
 - Lire un fichier local d'une machine : très rapide
 - Lire un fichier d'une autre machine (du même rack) : rapide
 - ▶ Lire un fichier d'un autre rack : lent
 - Lire un fichier d'un autre cluster : trop lent
- Bénéficier de la localité
 - Déplacer les traitements vers les données
 - ► Favoriser les traitements locaux

Type Master/Slave

- ▶ Un master, le NameNode, contrôle le système
- ▶ Plusieurs slaves, un DataNode par machine

NameNode

- ▶ Il gère les métadonnées : description des dossiers et fichiers
- Point d'entrée pour une demande d'accès
- ▶ Connait l'état des Datanodes
- Les données lues/écrites ne passent **pas** par le NameNode

DataNode

- ▶ Service : accès au système de fichiers (local FS)
- ▶ Stocke le contenu d'une partie des fichiers

Distribution et placement des données

1.4

Equilibrer le stockage

- ▶ Remplir d'abord les datanodes avec un faible taux d'occupation
- Possibilité de déplacer un bloc pour forcer l'équilibre

Équilibrer la charge en lecture

- ▶ Hypothèse : les blocs récents sont lus plus fréquemment que les autres
- Distribuer les blocs récemment créés sur plusieurs datanodes

Accès en parallèle aux différents blocs d'un fichier :

→Placer les blocs d'un fichier dans le même rack

Accès en cas de panne

→Placer les répliques des racks différents de celui de la donnée "principale"

Fragmentation et réplication des données

14

Un fichier est découpé en blocs successifs de 64M

- $F = \{B1, B2, ...\}$
- ▶ Taille d'un bloc Bi = 64M par défaut (ajustable) << taille d'un fichier

Chaque bloc est répliqué

- ▶ Degré de réplication = 3 (ajustable, par fichier ou par dossier)
- Le Namenode connait l'emplacement des répliques de chaque bloc
 - ▶ Fichier = {nom, liste de blocs}, bloc = liste de répliques, réplique = {D, B}

Avantages

- ► Tolérance aux pannes
- ▶ Parallélisme pour les gros fichiers (< nombre de blocs)

Lecture d'un fichier (1)

16

1) Le client demande au NameNode de lire le fichier nommé F

2) Le NameNode

- ▶ Lit les métadonnées : F→ Liste de blocs : B1, B2, ... + Datanode Di des blocs
- ▶ Réponse au client : liste de couples (Bi, {Di})

3) Le client lit les blocs sur les Di

- Pour chaque bloc Bi, choisit un DataNode Di stockant le bloc
- Di envoie le contenu de Bi au client

Accès décentralisé aux fichiers

- Le client cache les métadonnées (Bi, {Di}) de F
- ▶ Il ne recontacte pas le NameNode pour relire F
- Maméliore la scalabilité: évite la congestion du NameNode
- Le client se charge de vérifier la validité du cache

Lecture d'un fichier (2)

Ecriture d'un nouveau fichier (1)

- Client→ Namenode : demande la création d'un nouveau fichier
 - ▶ Réponse : identifiant du 1^{er} bloc (et de ses répliques)
- ► Ecriture "principale" Client→ Datanode
 - ► Client écrit le bloc sur le Datanode principal (pas de réplication)
 - Bloc plein: invoquer le Namenode pour obtenir l'identifiant du prochain bloc (et de ses répliques)
 - ▶ Le Namenode sérialise les demandes concurrentes concernant le même fichier

Réplication

- ▶ Pour chaque bloc B, le datanode principal copie B vers la 1ère réplique
- ► Ainsi de suite pour les autres répliques
- ▶ Informer le client puis le Namenode de la fin de l'écriture

Tolérance aux pannes (1/3)

20

Namenode

- ▶ Un NameNode actif + un NameNode secondaire (backup)
- Les opérations modifiant les métadonnées propagées sur les NameNode secondaires
- ▶ Propagation synchrone
 - ▶ Garantit qu'un NameNode secondaire est identique au NameNode actif.
 - ▶ Permet le remplacement d'un NameNode en panne
- Journalisation, point de reprise

DataNode

Détection: signal *heartbeat* envoyé régulièrement au NameNode

- Plan des diapos suivantes
 - Installation
 - Utilisation
 - Administration

- ▶ Logiciel: fondation Apache, projet Hadoop
- Matériel: réseau de machines
- Connectivité NameNode DataNode
 - accès ssh avec authentification par clés (sans mot de passe)
 - ssh-kevaen
 - .ssh/authorized_keys sur chaque machine (NameNode et DataNode)
- Configuration
 - ▶ Rôle de chaque machine : Namenode (principal, secondaire), DataNode
- Initialisation
 - ► Formater le système de fichiers
 - ▶ hadoop namenode format
- Service
 - ▶ start-dfs stop-dfs

- Démarrer le Namenode
 - Lire la dernière image
 - ► Appliquer le journal
 - ► Ecrire l'image courante et la répliquer
 - ▶ Attendre que les DataNodes soient prêts
- Démarrer les datanodes
 - ▶ Un dataNode transmet la description de ses blocs au NameNode
 - ▶ Description courte (8 octets) par bloc
 - ▶ Le Namenode informe les datanodes des éventuels blocs corrompus

27

Administration de HDFS (1/2)

- Redimensionner un cluster HDFS
 - ▶ En fonction des besoins applicatifs : volume des données, charge
 - ► Ajouter/supprimer un dataNode
 - dfsadmin refreshNodes listés dans dfs.include et dfs.exclude
- ▶ Ré-équilibrer la taille des données stockées dans les dataNodes
 - ▶ Garantie que pour tout Di, |1 (taille Di / taille moyenne) | < N%
 - ▶ Déplacer des blocs Di le plus rempli → Dj le moins rempli
 - Utilitaire : balancer
 - Plafonner les ressources utilisées
 - ne pas ralentir le service courant
 - dfsadmin setBalancerBandwidth

Commandes HDFS

- Interface
 - ▶ lignes de commandes (CLI)
 - API
- ▶ Importer des données : put, appendToFile
- Exporter un fichier : get, getmerge, cat
- Explorer: Is, Isr, du, stat, count
- Organiser: mkdir, mv, cp, rm, setfattr
- ▶ Autorisations L et/ou E pour une personne, un groupe, une liste
 - chown, chmod, setfacl
- Profile : quota d'espace pour un dossier

Administration de HDFS (2/2)

28

- Optimiser les performances de lecture
 - ▶ ajuster le degré de réplication si
 - ▶ nbre de blocs * degré < nb disques</p>
- ► Cloner un cluster HDFS
 - ▶ distcp2
- ► Etat des dataNodes:
 - report, fsck, nombre de blocs sur/sous répliqués
- Interface d'administration : GUI
 - Navigateur web: tableau de bord, explorateur

- ▶ Plan des diapos suivantes
 - Cas d'usage typiques
 - ▶ HDFS + Spark : localité d'accès
 - Bilan

- Cas d'usage le plus approprié au Big Data
- Fichier = collection d'éléments (exple, collection d'images)
 - ▶ Lire un fichier → appliquer un traitement sur chaque élément du fichier
- Bénéficie de l'architecture HDFS
 - Le fichier est distribué sur un cluster de M machines
 - ▶ Chaque machine a C cœurs
 - ▶ Traitement indépendant par élément et **N tâches parallèles** (degré N)
 - degré max = nombre de blocs du fichier, degré réel = M * C
- Traitement tolérant aux pannes
 - Si échec du traitement d'un bloc alors
 - ▶ Reprendre seulement le traitement du bloc

Localité (2/4) **Export** de données

- Favoriser un traitement local dans Spark sans transférer les données
 - Déplacer le programme vers les données et non l'inverse
- Maitriser la localité et les déplacement des données ?
- Exporter des données vers l'application
 - ▶ collect() : les données "remontent" vers l'application
 - ▶ Long car transfert puis conversion de données spark → python
 - Problème si l'application n'a pas assez de place en mémoire

Localité (3/4) Import de données

- ▶ Importer des données applicatives dans Spark ?
 - ▶ Broadcast : les données "descendent" vers toutes les machines
 - ▶ transfert ≈ taille tableau * nombre de machines
 - Créer nouveau dataframe
 - les données sont distribuées entre les machines
 - ▶ transfert ≃ taille tableau
 - ▶ ! Données python (tableau numpy) dans une opération map avec UDF
 - ▶ Simple à écrire mais transfert trop grand.
 - ▶ transfert ~ taille tableau * nombre de tâches
 - Milliers de tâches quand on traite un grand fichier (1 tâche par bloc de 64MB)

Fonction pyspark local pyspark cluster pandas Petit fichier en mémoire Grand fichier: itération Grand fichier: en mémoire Calcul parallèle n cœurs n cœurs n cœurs * M machines Localité Stockage HDFS /Traitement tolère les pannes

Bilan des cas d'usage

42

Formats de stockage

- Format texte
 - CSV, JSON
 - Avantage : lisible
- Format binaire
 - Parquet
 - ▶ RC ORC
 - K-store
 - ► Avantages: compact (= coût moindre), accès rapide
- Stockage avec partitionnement des données

47

Stockage au format RC et ORC

- Record-Columnar File Format (RCFile)
 - Proposé par Facebook, utilisé par Apache Hive
- Objectif
 - ▶ Stockage plus compact par compression
 - Accès rapide aux données par n-uplet (record)
- Principe
 - ▶ Découpage horizontal des données
 - ▶ Compression verticale des valeurs d'une colonne
- Stockage optimisé : RC File → ORC File
 - https://code.fb.com/core-data/scaling-the-facebook-data-warehouse-to-300-pb/

Structure du format ORC

- ▶ Segmentation horizontale des **lignes** en blocs de 256MB
- Métadonnées d'un bloc
 - ▶ Index de colonne
 - ▶ Dictionnaire : liste des valeurs distinctes
- ► Encodage compressé de chaque colonne
- Stockage consécutif des colonnes compressées
 - ▶ Un fichier = juxtaposition des colonnes

Index attribut1 attr2 attr3 attr4 ...

48

ORC: Segmentation

Une table → m blocs de 256 MB

ORC: Métadonnées (1/2)

▶ Index d'un bloc → infos sur n groupes de 10 000 lignes

ORC: Métadonnées (2/2) Index de colonne

51

- ► Un groupe Gr_i → position pour localiser le groupe
- Statistiques de colonne : Nbre de valeurs non nulles, min, max. Intéressant si le domaine d'un groupe est une "petite" partie du domaine de l'attribut.
- Filtre de Bloom : présence probable d'une valeur

	Nom	Prénom	Ville	Age
	min, max	min, max	min, max	min, max
Gr_1 :	Alice, Téo			18, 40
Gr ₂ :	Alan, Zoé			25, 60
Gr_n :	Bob, Paul			5, 80

ORC: Compression

- Nombreux algorithmes de compression existants
 - ► Lempel-Ziv-Oberhumer (LZO) Zlib,
 - ► Run Length Encoding
 - ▶ Optimisés : Snappy, LZ4, Ozip, ...
- Compression adaptée pour un type de valeurs
 - Nombres entiers: integer packing, delta value
 - ▶ Chaînes de caractères avec préfixe commun
 - Dates
- ► Taux de compression élevé (4 à 10)
 - car nombreuses répétitions de valeurs dans une colonne

ORC: Performances

- ► Faible taille des données compressées
 - Moins de lectures consécutives
- ▶ Traitement des blocs en parallèle
 - ▶ Un bloc compressé tient dans un bloc HDFS
 - ▶ HDFS permet de lire/écrire les blocs en parallèle
- Lecture avec projection
 - ▶ Lire seulement les colonnes utiles
- ▶ Lecture avec sélection
 - ▶ utiliser [min, max] ou le filtre de Bloom pour cibler les groupes d'un bloc à lire et éviter de lire tous les groupes.
- ► Gain de perf en lecture > surcoût pour décoder les données

Motivation: accès sélectif

Cas 1: Lire un fichier pour analyser seulement une portion

55

- Lecture avec sélection selon un critère
 - ▶ Exple: Where année between 2017 and 2018
- Lire seulement les données qui satisfont le critère
 - ▶ "on pousse la sélection sur le disque"
- Cas 2 : Rapprocher les données de 2 grands fichiers
 - ▶ Comparer seulement des portions stockées sur le même disque
 - "on évite les transferts entre les machines"

Partitionnement Accès sélectif Analyse plus rapide

Partitionnement par attribut (1/2)

- Partition par valeurs distinctes d'un attribut
 - data.write.partitionBy("année").json("dossier")
- Composer plusieurs attributs
 - data.write.partitionBy("année", "genre").json("dossier")
 - Hiérarchie
- Divers formats de fichier supportés (csv, json, parquet)
 - data.write.partitionBy("age").parquet("dossier")
- Pousser une sélection
 - ▶ where année in (2005, 2007) → Lire seulement 2 dossiers
- Inconvénient
 - ► Grand nombre de dossiers (= domaine de l'attribut)

Partitionnement par attribut (2/2)

- Partitionnement par hachage
 - en P partitions
 - Films.bucketBy(8, "nF").json("Films")
 - ► Notes.bucketBy(8, "nF").json("Notes")
 - ▶ Plusieurs attributs possible
 - ▶ Utile pour attribut avec nombreuses valeurs distinctes
- Avantages
 - Pousser une sélection
 - ▶ where nF=999 → Lire seulement le bucket 3
 - Requête Group by nF sans transfert
 - ▶ Jointure entre 2 fichiers sans transfert ?
 - Les deux bucket i de Films ET de Notes sont sur le disque de la même machine

Films Bucket1 Bucket2 Bucket3 Bucket3 Bucket4 Bucket4 Bucket4 Bucket5 Bucket5 Bucket6 Bucket6 Bucket6 Bucket6 Bucket6 Bucket7 Bucket7 Bucket8

59

Persistance disque / mémoire (2/4)

- Spark Dataset ou Dataframe
 - repartition (nombre de partitions, attributs)
 - persist()
- Exemple
 - Notes = spark.read.json("....movielens/Notes.json")
 - Note.count()
 - ▶ lire le fichier, trop lent!
 - NoteMémoire = Notes.repartition(8, Notes.année).persist()
 - NoteMémoire.count()
 - ▶ lire le fichier, transformer au format orc et le garder en mémoire :
 - ▶ Lent, mais acceptable car traité une seule fois
 - NoteMémoire.count() Très rapide!

Persistance disque / mémoire (3/4) Solutions connexes

Persistance disque / mémoire (1/4)

▶ Encodage par colonne et compression (parquet / orc)

Répliqué dans la mémoire de plusieurs machines pour tolérer les pannes

Stockage sur disque + copie en mémoire

▶ Cache en mémoire volatile persistant ???

Accès et sélection très rapide avec SIMD

► Format en mémoire

Partitionnement en mémoire

▶ Par attribut et hachage

- Apache Arrow
- Oracle in memory
- ▶ Hana SAP
- Vertica
 - Ref: Why All Column Stores Are Not the Same Twelve Low-Level Features That Offer High Value to Analysts
 - ▶ https://www.vertica.com/blog/column-stores-not

Persistance disque / mémoire (4/4) 61 Apache Arrow

- Couche commune en mémoire
- Pour persister et partager des données
- Données réutilisées par plusieurs outils applicatifs sans recopie ni conversion.
- ▶ Format optimisé en colonne, cf. ORC

63

voir arrow.apache.ora

Oracle In Memory (2/3)

- ▶ Transparent et compatible avec une base relationnelle existante
- Contrôler quelles données sont mémoire
 - Une table
 - ▶ Une partition d'une table
 - Exple: les données des n derniers mois
 - ▶ Exclure certains attributs
 - ▶ Blob (image) non accédée par les requêtes analytiques
 - ▶ Recommandation basée sur les requêtes récentes
- Contrôler la mise en mémoire des données
 - Dès le début
 - ▶ Lors de la première lecture

Oracle In Memory (1/3)

- ► Cas d'usage combiné : OLTP + OLAP
- Stockage disque en format ligne "classique"
- Cache en mémoire : 2 formats de données
 - ▶ Ligne (row format)
 - ► Colonne compressée (column format)
- Transactions: rapide car moins d'index secondaires à maintenir
- ► Cohérence : Niveau read commited pour les requêtes

Oracle In Memory (3/3): Performance

- ▶ OLAP : filtrage d'une colonne très rapide
 - ▶ Select et Group By traités en parallèle
 - ▶ SIMD (single instruction on multiple data)
 - ▶ Jointure avec pré-sélection par filtre de Bloom

Ref: Oracle Database In-Memory: A Dual Format In-Memory Database, ICDE 2013

62

- Amazon S3 : Simple Storage Service
 - ▶ Solution cloud (Platform as a service) pour stocker des fichiers
 - ► Espace de stockage : bucket objet = (clé, tags, fichier)
 - Disponibilité : d = 99.99% sur une année
 - ▶ Hors service $< 1/(1-d) = 1/10^4$: inaccessible moins de 53mn par an
 - Durabilité
 - ▶ Réplication : perte de données < 1 / 10¹¹
 - Géo-réplication
 - Elasticité
 - ► Sécurité: données encryptées
 - Localité donnée/traitement au niveau d'une zone de disponibilité

S3: select

- Principe : Filtrer des données avant de les lire pour réduire les transferts
- ► Concerne les données non binaires : CSV, texte
- Supporte les données compressées
- Traitement parallèle entre les objets stockés (cf. principe mapreduce)
 - ▶ Coût et temps de calcul réduit

S3:coût

- ► Coût à l'usage: 1To = 25\$/mois
 - ▶ Plusieurs qualités de service selon les besoins
 - > accès peu fréquent et disponibilité moindre (moitié prix),
 - ▶ archivage (1/5 du prix)
- ► Coût pour importer/exporter les données:
 - réduit si les transferts sont internes au cloud
- Coût inférieur à la location de machines exécutant HDFS
 - ► EC2: 5\$/h avec disque 48To avec replication 3x et remplissage à 70%
 - ▶ 1To coûte 100\$/mois

Perspective: Databricks Delta

68

- Données stockées dans S3
- Flux pour l'ajout ou la modification de données
- Requêtes analytiques en mémoire
 - Cluster Spark
 - ► Synchro S3→Spark
- ▶ Gestion unifiée des données

- ► HDFS : solution distribuée et parallèle pour l'accès efficace à des fichiers
 - ▶ Très grands fichiers, format quelconque
 - Disponibilité : tolérance aux pannes, accès rapide
- ► Formats efficaces pour stocker des données
 - ► Encodage par colonne et compression
 - Stockage partitionné : lectures sélectives
- ▶ Cache de données en mémoire
- ▶ Applications ciblées : analyse de données à large échelle
 - ▶ Ecosystème Hadoop : SQL Hive, dataStore Hbase
 - ▶ Plateforme Spark

