

SEQUENCE LISTING

1

```
<110> BOYLE, WILLIAM
      LACEY, DAVID
      CALZONE, FRANK
      CHANG, MING-SHI
      SENALDI, GIORGIO
<120> COMBINATION THERAPY FOR CONDITIONS LEADING TO BONE LOSS
<130> A-378CIP5
<140> US 09/613,591
<141> 2000-07-10
<150> US 09/457,647
<151> 1999-12-09
<150> US 09/350,670
<151> 1999-07-09
<150> US 08/706,945
<151> 1996-09-03
<150> US 08/577,788
<151> 1995-12-22
<160> 168
<170> PatentIn version 3.0
<210> 1
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
<223>
      Random cDNA primer with internal NotI restriction site.
<400> 1
                                                                     36
aaaggaagga aaaaagcggc cgctacannn nnnnnt
<210>
      2
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
```

```
<223> ds oligonucleotide adapter
<400> 2
                                                                        16
tcgacccacg cgtccg
<210> 3
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> ds oligonucleotide adapter
<400> 3
                                                                        12
gggtgcgcag gc
<210> 4
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> PCR primer
<400> 4
                                                                        18
tgtaaaacga cggccagt
<210> 5
<211>' 18
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer
<400> 5
                                                                        18
caggaaacag ctatgacc
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
```

>-

<223>	T3 primer	
<400> caatta	6 accc tcactaaagg	20
<210><211><211>		
	Rattus rattus	
	7 tgac ccagaaaccg gac	23
<210><211><211><212><213>	23 DNA	
	8 cgcc cttcctcaca ttc	23
<210><211><211><212><213>	30	
<222>	<pre>misc_feature ()() PCR primer</pre>	
	9 tccc acaatgaaca agtggctgtg	30
<210><211><211><212><213>	10 45 DNA Artificial Sequence	
<222>	<pre>misc_feature ()() PCR primer</pre>	
<400> ataaga	10 atgc ggccgctaaa ctatgaaaca gcccagtgac cattc	45
<210><211><211><212><213>		

	misc_feature ()() PCR primer	
<400> gcctcta	11 agaa agagctggga c	21
<210><211><211><212><213>	12 21 DNA Artificial Sequence	
<220><221><222><222><223>	<pre>misc_feature ()() PCR primer</pre>	
<400> cgccgte	12 gttc catttatgag c	21
<210><211><212><212><213>	13 24 DNA Rattus rattus	
<400> atcaaa	13 ggca gggcatactt cctg	24
<210><211><211><212><213>	14 . 24 DNA Rattus rattus	
<400> gttgca	14 ctcc tgtttcacgg tctg	24
<210><211><212><212><213>	15 24 DNA Rattus rattus	
<400> caagaca	15 acct tgaagggeet gatg	24
<210><211><211><212><213>	16 24 DNA Rattus rattus	

<400> 16 taacttttac agaagagcat cagc	24
<210> 17 <211> 33 <212> DNA <213> Rattus rattus	
<400> 17 agcgcggccg catgaacaag tggctgtgct gcg	33
<210> 18 <211> 31 <212> DNA <213> Rattus rattus	
<400> 18 agctctagag aaacagccca gtgaccattc c	31
<210> 19 <211> 24 <212> DNA <213> Rattus rattus	
<400> 19 gtgaagctgt gcaagaacct gatg	24
<210> 20 <211> 24 <212> DNA <213> Rattus rattus	
<400> 20 atcaaaggca gggcatactt cctg	24
<210> 21 <211> 24 <212> DNA <213> Homo sapiens	
<400> 21 cagatcctga agctgctcag tttg	24
<210> 22 <211> 33 <212> DNA <213> Homo sapiens	
<400> 22 agcgcggccg cggggaccac aatgaacaag ttg	33

	23 33 DNA Homo sapiens	
<400>	23	
	agaa ttgtgaggaa acagctcaat ggc	33
		•
<211> <212>	24 39 DNA Artificial Sequence	
<222>	<pre>misc_feature ()() PCR primer</pre>	
<400>	24	
atagcgg	gccg ctgagcccaa atcttgtgac aaaactcac	39
<211> <212>	25 45 DNA Artificial Sequence	
<222>	<pre>misc_feature ()() PCR primer</pre>	
<400>	25	
tctagag	rtcg acttatcatt tacccggaga cagggagagg ctctt	45
<211> <212>	26 38 DNA Mus musculus	
<400>	26	
cctctga	agct caagcttccg aggaccacaa tgaacaag	38
<210><211><211><212><213>	27 43 DNA Mus musculus	
<400>	27	
cctctgc	egge egetaageag ettattttea eggattgaae etg	43

*

```
<210> 28
  <211>
         38
  <212> DNA
  <213> Mus musculus
  <400> 28
                                                                      38
  cctctgagct caagcttccg aggaccacaa tgaacaag
  <210> 29
  <211> 24
  <212> DNA
  <213> Homo sapiens
  <400> 29
                                                                      24
  tccgtaagaa acagcccagt gacc
  <210> 30
  <211> 31
  <212> DNA
  <213> Mus musculus
  <400> 30
                                                                      31
  cctctgcggc cgctgttgca tttcctttct g
  <210> 31
  <211> 19
  <212> PRT
  <213> Mus musculus
  <400> 31
  Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His
                                     10
Gln Leu Leu
  <210> 32
  <211> 21
  <212> DNA
  <213> Mus musculus
  <400> 32
  tcccttgccc tgaccactct t
                                                                      21
  <210> 33
  <211> 34
  <212> DNA
  <213> Mus musculus
  <400> 33
```

cctctgcggc cgcacacacg	ttgtcatgtg	ttgc	34
<210> 34 <211> 21 <212> DNA <213> Mus musculus			
<400> 34			0.1
tecettgeee tgaceactet	τ		21
<210> 35 <211> 34 <212> DNA <213> Mus musculus			
<400> 35			
cctctgcggc cgccttttgc	gtggcttctc	tgtt	34
<210> 36 <211> 37 <212> DNA <213> Homo sapiens			
<400> 36			27
cctctgagct caagcttggt	ttccggggac	cacaatg	37
<210> 37 <211> 38 <212> DNA <213> Homo sapiens			
<400> 37			
cctctgcggc cgctaagcag	cttattttta	ctgaatgg	38
<210> 38 <211> 37 <212> DNA <213> Homo sapiens			
<400> 38 cctctgagct caagcttggt	ttccggggac	cacaatg	37
<210> 39 <211> 33 <212> DNA <213> Homo sapiens			
<400> 39 cctctgcggc cgccagggta	acatctattc	cac	33

```
<210> 40
<211> 35
<212> DNA
<213> Mus musculus
<400> 40
                                                                     35
ccgaagcttc caccatgaac aagtggctgt gctgc
<210> 41
<211> 40
<212> DNA
<213> Mus musculus
<400> 41
                                                                     40
cctctgtcga ctattataag cagcttattt tcacggattg
<210> 42
<211> 21
<212> DNA
<213> Mus musculus
<400> 42
                                                                     21
tcccttgccc tgaccactct t
<210> 43
<211> 35
<212> DNA
<213> Mus musculus
<400> 43
cctctgtcga cttaacacac gttgtcatgt gttgc
                                                                     35
<210> 44
<211> 21
<212> DNA
<213> Mus musculus
<400> 44
                                                                     21
tcccttgccc tgaccactct t
<210> 45
<211> 35
<212> DNA
<213> Mus musculus
<400> 45
                                                                     35
cctctgtcga cttacttttg cgtggcttct ctgtt
```

<211> 1548 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> ()..() Human sequence modified to include unique AatII and SacII sites. <223> <400> 46 tgcacgcatt gcatacgtac cagaggggta cgctctcatc ccttgacggt ccgtagttta 60 120 ttttgctttc cgagtcagct ttctgacccg gaaagcaaaa tagacaacaa acagccactt 180 gcgagaggac tcatcctgtt taggcggccc tcgcctaaac ttgcaacgct tcgttgccgg gcctcccacc gcccgtcctg cgggcggtat ttgacggtcc gtagtttaat tcgtcttccg 240 300 gtaggactgc ctaccggaaa aacgcaaaga tgtttgagaa aacaaataaa aagatttatg 360 taagtttata cctgcagcat gaattgaaaa tttcataccc gttagttaac gaggacaatt ttaacgaaat ctttatgaaa ccgtcgccaa acaacataac tcaaagtaaa cgcgtaacca 420 480 atttaccttt cactggcacg cgaatgatgt cggattataa aaactttata gggttctcga 540 aaaaggaagc gtacgggtgc gatttgtaag aaaaagagaa aaccaattta gcaacaaact 600 aaataataaa cgatataaat aaaaagctat taatagttga tetetteett gttaattace 660 atacaagtat gtgcgtacat ttttatttga tagatatatc aacagaaaga gacttacacg ttttgattcg taaggettcg gtaataatcg teataettat eeetttgatt tgggteaeta 720 ttctggacta ctaaagcgaa gaaattaatg taaacctcta aaaaataaat gtcgtaacaa 780 aagtttatat aaggttaatt agccacttac taacctcaat cttattagat gatatcctag 840 900 tataaaataa tttaatcgca gtagtattat aacggaggta aaaaatccca ttaataggtc 960 ttaactttat agtctaaatt ggtatcttac tcctatttac tagcgctcat ttattataag 1020 tgttacatgg taaaatcagt atagtctatt cgtaactaat tatagtaata acgaagatgt 1080 ccgaaattaa aataattaat aagacattca cagcagccgt aaatacagaa agtatgggta 1140 gagaaatagg aatggataac aaacagcgtt caaaacgcac aatatatagt aattttgcca 1200 ttatctaact gtaaactaag attatttaac ctaaaaacag tgtgataata tagcgaactt

tatgttaaca aattgtattc atggacatcc tagcatgtcc aaatgcgttc ttttaccaaa

caatatcagc taattagcta aactaagatc taaacaaaat tgattaattt cctccttatt

gtataccaat tgcgcaacct taagctcgag tgatcacagc tggacgtccc atggtacctt

1260

1320

1380

cgaatg	agct cctaggcgcc	tttcttcttc	ttcttcttct	ttcgggcttt	ccttcgacto	1440
aaccga	cgac ggtggcgact	cgttattgat	cgtattgggg	aaccccggag	atttgcccag	1500
aactcc	ccaa aaaacgactt	tcctccttgg	cgagaagtgc	gagaagtg		1548
<210><211><211><212><213>	Homo sapiens					
<400> ccggcg	47 gaca tttatcacac	agcagctgat	gagaagtttc	ttcatcca		48
<210><211><211><212><213>		ience				
<220> <221>	misc_feature					
	()()					
<400>	48 gatt ctagaaggag	gaataacata	tggttaacgc	gttggaattc	ggtac	55
<210>	49 49					
<212>	DNA					
<213>	Artificial Sequ	ience				
<220> <221> <222> <223>	_					
<400>	49					
taaacta	aaga tcttcctcct	tattgtatac	caattgcgca	accttaagc		49
<210><211><211><212><213>	1546 DNA	ıence				
<220><221><222><222><223>		modified to	o include ur	nique AatIT	and SacIT	sites.
<400>	50			4		
	cgta tgcatggtct	ccccatgcga	gagtagggaa	ctgccaggca	tcaaataaaa	a 60

cgaaaggctc	agtcgaaaga	ctgggccttt	cgttttatct	gttgtttgtc	ggtgaacgct	120
ctcctgagta	ggacaaatcc	gccgggagcg	gatttgaacg	ttgcgaagca	acggcccgga	180
gggtggcggg	caggacgccc	gccataaact	gccaggcatc	aaattaagca	gaaggccatc	240
ctgacggatg	gcctttttgc	gtttctacaa	actcttttgt	ttatttttct	aaatacattc	300
aaatatggac	gtcgtactta	acttttaaag	tatgggcaat	caattgctcc	tgttaaaatt	360
gctttagaaa	tactttggca	gcggtttgtt	gtattgagtt	tcatttgcgc	attggttaaa	420
tggaaagtga	ccgtgcgctt	actacagcct	aatatttttg	aaatatccca	agagcttttt	480
ccttcgcatg	cccacgctaa	acattctttt	tctcttttgg	ttaaatcgtt	gtttgattta	540
ttatttgcta	tatttatttt	tcgataatta	tcaactagag	aaggaacaat	taatggtatg	600
ttcatacacg	catgtaaaaa	taaactatct	atatagttgt	ctttctctga	atgtgcaaaa	660
ctaagcattc	cgaagccatt	attagcagta	tgaataggga	aactaaaccc	agtgataaga	720
cctgatgatt	tcgcttcttt	aattacattt	ggagattttt	tatttacagc	attgttttca	780
aatatattcc	aattaatcgg	tgaatgattg	gagttagaat	aatctactat	aggatcatat	840
tttattaaat	tagcgtcatc	ataatattgc	ctccattttt	tagggtaatt	atccagaatt	900
gaaatatcag	atttaaccat	agaatgagga	taaatgatcg	cgagtaaata	atattcacaa	960
tgtaccattt	tagtcatatc	agataagcat	tgattaatat	cattattgct	tctacaggct	1020
ttaattttat	taattattct	gtaagtgtcg	tcggcattta	tgtctttcat	acccatctct	1080
ttatccttac	ctattgtttg	tcgcaagttt	tgcgtgttat	atatcattaa	aacggtaata	1140
gattgacatt	tgattctaat	aaattggatt	tttgtcacac	tattatatcg	cttgaaatac	1200
aattgtttaa	cataagtacc	tgtaggatcg	tacaggttta	cgcaagaaaa	tggtttgtta	1260
tagtcgatta	atcgatttga	ttctagattt	gttttaacta	attaaaggag	gaataacata	1320
tggttaacgc	gttggaattc	gagctcacta	gtgtcgacct	gcagggtacc	atggaagctt	1380
actcgaggat	ccgcggaaag	aagaagaaga	agaagaaagc	ccgaaaggaa	gctgagttgg	1440
ctgctgccac	cgctgagcaa	taactagcat	aaccccttgg	ggcctctaaa	cgggtcttga	1500
ggggttttt	gctgaaagga	ggaaccgctc	ttcacgctct	tcacgc		1546

<210> 51

<211> 47

<212> DNA <213> Artificial Sequence

```
<220>
<221> misc_feature
<222>
      ()..()
<223>
      Part of oligonucleotide duplex used in vector formation.
<400> 51
tatgaaacat catcaccatc accatcatgc tagcgttaac gcgttgg
                                                                      47
<210> 52
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
      Part of oligonucleotide duplex used in vector formation.
<223>
<400> 52
                                                                      49
actttgtagt agtggtagtg gtagtacgat cgcaattgcg caaccttaa
<210> 53
<211> 141
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
<223> Part of oligonucleotide duplex used in vector formation.
<400> 53
ctaattccga tctcacctac caaacaatgc cccctgcaa aaaataaatt catataaaaa
                                                                      60
acatacagat aaccatctgc ggtgataaat tatctctggc ggtgttgaca taaataccac
                                                                     120
                                                                     141
tggcggtgat actgagcaca t
<210> 54
<211> 147
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 54
tgcagattaa ggcgagagtg gatggtttgt tacgggggga cgttttttat ttaagtatat
                                                                      60
                                                                     120
tttttgtatg tctattggta gacgccacta tttaatagag accgccacaa ctgtatttat
```

ggtç	accgcc actatgactc gtgtagc	147
-210	, FE	
)> 55 	
	.> 55	
	P DNA	
<213	> Artificial Sequence	
<220		
	.> misc_feature	
	()()	
<223	> Part of oligonucleotide duplex used in vector formation.	
<400)> 55	
cgat	ttgatt ctagaaggag gaataacata tggttaacgc gttggaattc ggtac	55
<210	0> 56	
	> 49	
	> DNA	
	> Artificial Sequence	
1213	Alterial beganne	
<220		
<221	.> misc_feature	
<222	?> ()()	
<223	> Part of oligonucleotide duplex used in vector formation.	
<400	0> 56	
taaa	ectaaga tetteeteet tattgtatae caattgegea acettaage	49
<210)> 57	
<211	.> 668	
<212	P> DNA	
<213	> Artificial Sequence	
<220)>	
<221	<pre>.> misc_feature</pre>	
	() ()	
<223		
<400	0> 57	
tgca	egcatt gcatacgtac cagaggggta cgctctcatc ccttgacggt ccgtagttta	60
tttt	gctttc cgagtcagct ttctgacccg gaaagcaaaa tagacaacaa acagccactt	120
gcga	gaggac tcatcctgtt taggcggccc tcgcctaaac ttgcaacgct tcgttgccgg	180
gcct	cccacc gcccgtcctg cgggcggtat ttgacggtcc gtagtttaat tcgtcttccg	240
gtag	gactgc ctaccggaaa aacgcaaaga tgtttgagaa aacaaataaa aagatttatg	300
taag	tttata cctgcagagt attaaaaatt ttttaagtaa actgtttacg attttaagaa	360
ctaa	ttataa gagttaacac tcgcgagtgt taaatagcta aactaagatc taaactcaat	420

tgattaattt cctccttatt gta	taccaat tgcgcaacct	taagctcgag	tgatcacagc	480
tggacgtccc atggtacctt cga	aatgaget eetaggegee	tttcttcttc	ttcttcttct	540
ttcgggcttt ccttcgactc aac	ccgacgac ggtggcgact	cgttattgat	cgtattgggg	600
aaccccggag atttgcccag aac	ctccccaa aaaacgactt	tcctccttgg	cgagaagtgc	660
gagaagtg				668
<pre><210> 58 <211> 726 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> ()() <223> Part of oligonucle</pre>	ce eotide duplex used i	in vector fo	ormation.	
<400> 58 gcgtaacgta tgcatggtct ccc	catgcga gagtagggaa	ctgccaggca	tcaaataaaa	60
cgaaaggctc agtcgaaaga ctg	gggccttt cgttttatct	gttgtttgtc	ggtgaacgct	120
ctcctgagta ggacaaatcc gcc	gggagcg gatttgaacg	ttgcgaagca	acggcccgga	180
gggtggcggg caggacgccc gcc	cataaact gccaggcatc	aaattaagca	gaaggggcct	240
cccaccgccc gtcctgcggg cgg	statttga cggtccgtag	tttaattcgt	cttcgccatc	300
ctgacggatg gcctttttgc gtt	tctacaa actcttttgt	ttatttttct	aaatacattc	360
aaatatggac gtctcataat ttt	taaaaaa ttcatttgac	aaatgctaaa	attcttgatt	420
aatattctca attgtgagcg ctc	acaattt atcgatttga	ttctagattt	gttttaacta	480
attaaaggag gaataacata tgg	sttaacgc gttggaattc	gagctcacta	gtgtcgacct	540
gcagggtacc atggaagctt act	cgaggat ccgcggaaag	aagaagaaga	agaagaaagc	600
ccgaaaggaa gctgagttgg ctg	gctgccac cgctgagcaa	taactagcat	aaccccttgg	660
ggcctctaaa cgggtcttga ggg	ggtttttt gctgaaagga	ggaaccgctc	ttcacgctct	720
tcacgc				726

<210> 59

<211> 44

<212> DNA <213> Homo sapiens

<400> 59

tacgca	ctgg atccttataa gcagcttatt tttactgatt ggac	44
	60 27 DNA Homo sapiens	
<400>		2.7
gtcctc	ctgg tacctaccta aaacaac	27
	61 54 DNA Homo sapiens	
<400>	61 tgaa gaaacttete ateagetget gtgtgataaa tgteegeegg gtae	54
tatgga	tgaa gaaacttete ateagetget gtgtgataaa tgteegeegg gtae	74
<210><211><211><212><213>	62 19 PRT Homo sapiens	
<400>	62	
Met As	p Ġlu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro 5 10 15	
Gly Th	r Tyr	
<210><211><212><212><213>	63 84 DNA Artificial Sequence	
<220><221><222><222><223>	<pre>misc_feature ()() Sequence used in vector formation using human sequence with E.</pre>	
coli c	odons.	
<400> tatgga	63 aact tttcctccaa aatatcttca ttatgatgaa gaaacttctc atcagctgct	60
gtgtga	taaa tgtccgccgg gtac	84
<210><211><211><212><213>	78	

```
<220>
<221> misc_feature
<222>
      ()..()
<223> Sequence used in vector formation using human sequence with E. coli
codons.
<400> 64
ccggcggaca tttatcacac agcagctgat gagaagtttc ttcatcataa tgaagatatt
                                                                      60
                                                                      78
ttggaggaaa agtttcca
<210> 65
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer
<400> 65
                                                                      44
tacgcactgg atccttataa gcagcttatt ttcacggatt gaac
<210> 66
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer
<400> 66
                                                                      38
gtgctcctgg tacctaccta aaacagcact gcacagtg
<210> 67
<211> 84
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 67
tatggaaact ctgcctccaa aatacctgca ttacgatccg gaaactggtc atcagctgct
                                                                      60
                                                                      84
gtgtgataaa tgtgctccgg gtac
```

```
<210> 68
<211> 78
<212>
      DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 68
                                                                     60
ccggagcaca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt
                                                                     78
ttggaggcag agtttcca
<210> 69
<211> 54
<212> DNA
<213> Mus musculus
<400> 69
                                                                     54
tatggaccca gaaactggtc atcagctgct gtgtgataaa tgtgctccgg gtac
<210> 70
<211> 48
<212> DNA
<213> Mus musculus
<400> 70
ccggagcaca tttatcacac agcagctgat gaccagtttc tgggtcca
                                                                     48
<210> 71
<211> 87
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 71
tatgaaagaa actetgeete caaaatacet geattaegat eeggaaactg gteateaget
                                                                     60
gctgtgtgat aaatgtgctc cgggtac
                                                                     87
<210> 72
<211> 81
<212> DNA
<213> Artificial Sequence
```

<220>							
		_feature					
<222>							
<223>	Part	of oligonu	cleotide du	ıplex used i	n vector fo	ormation.	
<400>	72						
ccggagc	aca	tttatcacac	agcagctgat	gaccagtttc	cggatcgtaa	tgcaggtatt	60
ttggagg	ıcag	agtttctttc	a				81
<210>	73						
<211>							
<212>							
<213>	Arti	ficial Sequ	ience				
<220>							
<221>	misc	_feature					
<222>							
<223>	PCR	primer					
<400>	73						
gttctcc	tca	tatgaaacat	catcaccatc	accatcatga	aactctgcct	ccaaaatacc	60
tgcatta	acga	t					71
<210>	74						
<211>	43						
<212>		_					
<213>	Mus	musculus					
<400>	74						
gttctcc	ctca	tatgaaagaa	actctgcctc	caaaatacct	gca		43
<210>	75						
<211>	76						
<212>	DNA						
<213>	Mus	musculus					
<400>	75						
tacgcac	ctgg	atccttaatg	atggtgatgg	tgatgatgta	agcagcttat	tttcacggat	60
tgaacct	gat	tcccta					76
<210>	76						
<211>	47						
<212>		_					
<213>	Mus	musculus					
<400>	76						
gttctcc	ctca	tatgaaatac	ctgcattacg	atccggaaac	tggtcat		47

```
<210>
      77
<211>
      43
<212>
      DNA
<213> Homo sapiens
<400> 77
gttctcctat taatgaaata tcttcattat gatgaagaaa ctt
                                                                    43
<210> 78
<211> 40
<212> DNA
<213> Homo sapiens
<400> 78
                                                                     40
tacgcactgg atccttataa gcagcttatt tttactgatt
<210> 79
<211> 40
<212> DNA
<213> Mus musculus
<400> 79
                                                                     40
gttctcctca tatggaaact ctgcctccaa aatacctgca
<210> 80
<211> 43
<212> DNA
<213> Mus musculus
<400> 80
tacgcactgg atccttatgt tgcatttcct ttctgaatta gca
                                                                     43
<210> 81
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 81
                                                                     18
ccggaaacag ataatgag
<210> 82
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<221>
      misc_feature
<222>
      ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 82
                                                                     18
gatcctcatt atctgttt
<210> 83
<211>
      30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 83
                                                                     30
ccggaaacag agaagccacg caaaagtaag
<210> 84
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 84
                                                                     30
gatccttact tttgcgtggc ttctctgttt
<210>. 85
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
      ()..()
<222>
<223> Part of oligonucleotide duplex used in vector formation.
<400> 85
                                                                      12
tatgttaatg ag
<210> 86
<211>
      14
<212>
      DNA
<213> Artificial Sequence
```

```
<220>
<221>
      misc_feature
      ()..()
<222>
<223> Part of oligonucleotide duplex used in vector formation.
<400> 86
                                                                     14
gatcctcatt aaca
<210>
      87
<211>
      21
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 87
                                                                      21
tatgttccgg aaacagttaa g
<210> 88
<211>
      23
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 88
                                                                      23
gatccttaac tgtttccgga aca
<210> 89
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 89
                                                                      36
tatgttccgg aaacagtgaa tcaactcaaa aataag
<210> 90
<211> 38
<212> DNA
<213> Artificial Sequence
```

```
<220>
<221> misc_feature
      ()..()
<222>
<223> Part of oligonucleotide duplex used in vector formation.
<400> 90
gatccttatt tttgagttga ttcactgttt ccggaaca
                                                                      38
<210> 91
<211> 100
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 91
                                                                      60
ctagcgacga cgacgacaaa gaaactctgc ctccaaaata cctgcattac gatccggaaa
                                                                     100
ctggtcatca gctgctgtgt cataaatgtg ctccgggtac
<210> 92
<211> 92
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      () . . ()
<223> Part of oligonucleotide duplex used in vector formation.
<400> 92
                                                                      60
ccggagcaca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt
                                                                      92
ttggaggcag agtttctttg tcgtcgtcgt cg
      93
<210>
<211>
      26
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Used to produce fusion protein with human OPG.
<400> 93
                                                                      26
acaaacacaa tcgatttgat actaga
```

```
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Used to produce fusion protein with human OPG.
<400> 94
tttgttttaa ctaattaaag gaggaataaa atatgagagg atcgcatcac
                                                                     50
<210> 95
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> Used to produce fusion protein with human OPG.
<400> 95
                                                                     50
catcaccatc acgaaacctt cccgccgaaa tacctgcact acgacgaaga
<210> 96
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Used to produce fusion protein with human OPG.
                                                                      49
aacctcccac cagctgctgt gcgacaaatg cccgccgggt acccaaaca
<210> 97
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Used to produce fusion protein with human OPG.
<400> 97
                                                                      26
tgtttgggta cccggcgggc atttgt
```

```
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<221>
      misc_feature
<222>
      ()..()
<223> Used to produce fusion protein with human OPG.
<400> 98
cgcacagcag ctggtgggag gtttcttcgt cgtagtgcag gtatttcggc
                                                                     50
<210> 99
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> Used to produce fusion protein with human OPG.
<400> 99
                                                                     49
gggaaggttt cgtgatggtg atggtgatgc catcctctca tattttatt
<210> 100
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> Used to produce fusion protein with human OPG.
                                                                     50
cctcctttaa ttagttaaaa caaatctagt atcaaatcga ttgtgtttgt
<210> 101
<211> 59
<212> DNA
<213> Homo sapiens
<400> 101
acaaacacaa tcgatttgat actagatttg ttttaactaa ttaaaggagg aataaaatg
                                                                     59
<210> 102
<211> 48
<212> DNA
<213> Homo sapiens
<400> 102
```

ctaattaaag gag	ggaataaa	atgaaagaaa	cttttcctcc	aaaatatc		48
<210> 103						
<211> 31						
<212> DNA						
<213> Homo sa	apiens					
<400> 103						
tgtttgggta ccc	ggcggac	atttatcaca	С			31
<210> 104						
<211> 59						
<212> DNA						
<213> Homo sa	apiens					
<400> 104						
acaaacacaa tcg	gatttgat	actagatttg	ttttaactaa	ttaaaggagg	aataaaatg	59
<210> 105						
<211> 54						
<212> DNA						
<213> Homo sa	apiens					
<400> 105						
ctaattaaag gag	gaataaa	atgaaaaaaa	aagaaacttt	tcctccaaaa	tatc	54
<210> 106						
<211> 31						
<212> DNA	_					
<213> Homo sa	apiens					
<400> 106						2.1
tgtttgggta ccc	eggeggae	atttatcaca	С			31
-210- 107						
<210> 107 <211> 44						
	cial Sequ	onco				
<213> Artific	rai sequ	ence				
<220>						
<221> misc_fe	eature					
<222> ()()	_					
<223> PCR pri	mer for	FchOPG fusi	on protein.			
<400> 107						
cagcccgggt aaa	aatggaaa	cgtttcctcc	aaaatatctt	catt		44
<210> 108						
<211> 44						
<212> DNA						

```
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for FchOPG fusion protein.
<400> 108
                                                                     44
cgtttccatt ttacccgggc tgagcgagag gctcttctgc gtgt
<210> 109
<211>
      45
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> PCR primer for FcmuOPG fusion protein.
<400> 109
                                                                     45
cgctcagccc gggtaaaatg gaaacgttgc ctccaaaata cctgc
<210> 110
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> PCR primer for FcmuOPG fusion protein.
<400> 110
ccattttacc cgggctgagc gagaggctct tctgcgtgt
                                                                     39
<210> 111
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for muOPG-Fc fusion protein.
<400> 111
                                                                     36
gaaaataaga tgcttagctg cagctgaacc aaaatc
<210> 112
<211> 34
<212> DNA
```

```
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for muOPG-Fc fusion protein.
<400> 112
                                                                      34
cagctgcagc taagcagctt attttcacgg attg
<210> 113
<211>
      36
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> PCR primer for huOPG-Fc fusion protein.
<400> 113
aaaaataagc tgcttagctg cagctgaacc aaaatc
                                                                      36
<210> 114
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for huOPG-Fc fusion protein.
<400> 114
cagctgcagc taagcagctt atttttactg attgg
                                                                      35
<210> 115
<211> 102
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Linker with XbaI and KpnI sites inserted into human sequence.
<400> 115
ctagaaggag gaataacata tggaaacttt tgctccaaaa tatcttcatt atgatgaaga
                                                                     60
                                                                    102
aactagtcat cagctgctgt gtgataaatg tccgccgggt ac
```

```
<211> 94
<212> DNA
<213> Artificial Sequence
<220>
<221>
      misc_feature
<222>
      ()..()
<223> Linker with XbaI and KpnI sites inserted into human sequence.
<400> 116
ccggcggaca tttatcacac agcagctgat gactagtttc ttcatcataa tgaagatatt
                                                                     60
                                                                     94
ttggagcaaa agtttccata tgttattcct cctt
<210> 117
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<221>
      misc_feature
<222>
      ()..()
<223> Linker with XbaI and SpeI sites inserted into human sequence.
<400> 117
ctagaaggag gaataacata tggaaacttt tcctgctaaa tatcttcatt atgatgaaga
                                                                     60
                                                                     62
aa
<210> 118
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> Linker with XbaI and SpeI sites inserted into human sequence.
<400> 118
ctagtttctt catcataatg aagatattta gcaggaaaag tttccatatg ttattcctcc
                                                                     60
                                                                     62
tt
<210> 119
<211> 51
<212> PRT
<213> Homo sapiens
<400> 119
Tyr His Tyr Tyr Asp Gln Asn Gly Arg Met Cys Glu Glu Cys His Met
```

10

5

Cys Gln Pro Gly His 20	Phe Leu Val Lys His 25	Cys Lys Gln Pro Lys Arg 30	g
Asp Thr Val Cys His 35	Lys Pro Cys Glu Pro 40	Gly Val Thr Tyr Thr Asp 45	ρ
Asp Trp His 50			
<210> 120 <211> 2432 <212> DNA <213> Rattus rattus	:		
<220> <221> CDS <222> (124)(1326)			
<400> 120 atcaaaggca gggcatact	t cctgttgccc agacct	tata taaaacgtca tgttcgc	ctg 60
ggcagcagag aagcaccta	ng cactggccca gcggct	gccg cctgaggttt ccagagg	acc 120
		ctg gtg ttc ttg gac atc Leu Val Phe Leu Asp Ilo 10 15	
		cca aaa tac ttg cat ta Pro Lys Tyr Leu His Ty: 30	
		gac aaa tgt gct cct ggd Asp Lys Cys Ala Pro Gly 45	
_		agg aag aca ctg tgt gto Arg Lys Thr Leu Cys Va 60	
		tgg cac acg agt gat ga: Trp His Thr Ser Asp Gl 75	
Cys Val Tyr Cys Ser		ctg cag acc gtg aaa cag Leu Gln Thr Val Lys Gl 90 95	n
		gaa tgt gag gaa ggg cg Glu Cys Glu Glu Gly Arg 110	
		cgg agc tgt ccc cca gg Arg Ser Cys Pro Pro Gl 125	

									gtt Val		552
									aaa Lys		600
									cta Leu		648
	-			_		_			aga Arg		696
	_	_		_	-				gca Ala 205		744
									agt Ser		792
									gta Val		840
									cta Leu		888
									aag Lys		936
_	_		_	_	_	_			atc Ile 285		984
									agc Ser		1032
									aag Lys		1080
									agg Arg		1128
									ctc Leu		1176

ttg aaa gca tac cac ttt ccc aaa acc gtc acc cac agt ctg agg aag Leu Lys Ala Tyr His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys 355 360 365	1224
acc atc agg ttc ttg cac agc ttc acc atg tac cga ttg tat cag aaa Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys 370 375 380	1272
ctc ttt cta gaa atg ata ggg aat cag gtt caa tca gtg aag ata agc Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser 385 390 395	1320
tgc tta tagttaggaa tggtcactgg gctgtttctt caggatgggc caacactgat Cys Leu 400	1376
ggagcagatg gctgcttctc cggctcttga aatggcagtt gattcctttc tcatcagttg	1436
gtgggaatga agatcctcca gcccaacaca cacactgggg agtctgagtc aggagagtga	1496
ggcaggctat ttgataattg tgcaaagctg ccaggtgtac acctagaaag tcaagcaccc	1556
tgagaaagag gatattttta taacctcaaa cataggccct ttccttcctc tccttatgga	1616
tgagtactca gaaggcttct actatcttct gtgtcatccc tagatgaagg cctctttat	1676
ttatttttt attcttttt tcggagctgg ggaccgaacc cagggccttg cgcttgcgag	1736
gcaagtgctc taccactgag ctaaatctcc aacccctgaa ggcctctttc tttctgcctc	1796
tgatagtcta tgacattctt ttttctacaa ttcgtatcag gtgcacgagc cttatcccat	1856
ttgtaggttt ctaggcaagt tgaccgttag ctatttttcc ctctgaagat ttgattcgag	1916
ttgcagactt ggctagacaa gcaggggtag gttatggtag tttatttaac agactgccac	1976
caggagtcca gtgtttcttg ttcctctgta gttgtaccta agctgactcc aagtacattt	2036
agtatgaaaa ataatcaaca aattttattc cttctatcaa cattggctag ctttgtttca	2096
gggcactaaa agaaactact atatggagaa agaattgata ttgcccccaa cgttcaacaa	2156
cccaatagtt tatccagctg tcatgcctgg ttcagtgtct actgactatg cgccctctta	2216
ttactgcatg cagtaattca actggaaata gtaataataa taatagaaat aaaatctaga	2276
ctccattgga tctctctgaa tatgggaata tctaacttaa gaagctttga gatttcagtt	2336
gtgttaaagg cttttattaa aaagctgatg ctcttctgta aaagttacta atatatctgt	2396
aagactatta cagtattgct atttatatcc atccag	2432

<210> 121 <211> 401 <212> PRT

<213> Rattus rattus

<400> 121

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile Ile 1 5 10 15

Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 55 60

Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Thr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110

Leu Glu Leu Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu 115 120 125

Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Leu Ile Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190

Gln Asn Cys Glu Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val 220 210 215 Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Thr Glu Gln Leu Arg Ile Leu Met Glu Ser Leu Pro Gly 295 Lys Lys Ile Ser Pro Asp Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys 310 315 Pro Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 330 325 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu 340 345 350 Lys Ala Tyr His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr 355 360 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 370 375 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 390

Leu

<210> 122

<211> 1325

<212> DNA

<213> Mus musculus

```
<220>
<221> CDS
<222>
      (91)..(1293)
<220>
<221>
      misc_feature
<222>
      ()..()
<223> At position 11, R is a purine.
<400> 122
ccttatataa racqtcatqa ttqcctqqqc tqcaqaqacq cacctaqcac tqacccaqcq
                                                                       60
gctgcctcct qaggtttccc gaggaccaca atg aac aag tgg ctg tgc tgc gca
                                                                      114
                                 Met Asn Lys Trp Leu Cys Cys Ala
ctc ctg gtg ctc ctg gac atc att gaa tgg aca acc cag gaa acc ctt
                                                                      162
Leu Leu Val Leu Leu Asp Ile Ile Glu Trp Thr Thr Gln Glu Thr Leu
    10
ctt cca aag tac ttg cat tat gac cca gaa act ggt cat cag ctc ctg
                                                                      210
Leu Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His Gln Leu Leu
                                                                      258
tgt gac aaa tgt gct cct ggc acc tac cta aaa cag cac tgc aca gtg
Cys Asp Lys Cys Ala Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Val
                                                                      306
agg agg aag aca ttg tgt gtc cct tgc cct gac cac tct tat acg gac
Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp His Ser Tyr Thr Asp
                                                                      354
age tgg cac acc agt gat gag tgt gtg tat tgc agc cca gtg tgc aag
Ser Trp His Thr Ser Asp Glu Cys Val Tyr Cys Ser Pro Val Cys Lys
gaa ctg cag tcc gtg aag cag gag tgc aac cgc acc cac aac cga gtg
                                                                      402
Glu Leu Gln Ser Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val
tgt gag tgt gag gaa ggg cgt tac ctg gag atc gaa ttc tgc ttg aag
                                                                      450
Cys Glu Cys Glu Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys
cac cgg agc tgt ccc ccg ggc tcc ggc gtg gtg caa gct gga acc cca
                                                                      498
His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala Gly Thr Pro
                125
                                                                      546
gag cga aac aca gtt tgc aaa aaa tgt cca gat ggg ttc ttc tca ggt
Glu Arg Asn Thr Val Cys Lys Lys Cys Pro Asp Gly Phe Phe Ser Gly
gag act tca tcg aaa gca ccc tgt ata aaa cac acg aac tgc agc aca
                                                                      594
Glu Thr Ser Ser Lys Ala Pro Cys Ile Lys His Thr Asn Cys Ser Thr
                            160
```

			_		att Ile	-				_						642
					gaa Glu 190											690
					ttc Phe											738
					gtt Val											786
					gag Glu											834
					ctg Leu											882
_	_		_	_	atc Ile 270			_		_		-	_	_	_	930
	_				ggc Gly											978
					ctg Leu											1026
	_	-	-	_	acc Thr	_		_	_							1074
					atc Ile											1122
_	_		_		aag Lys 350		-									1170
_			_	_	agg Arg	_		_			_		_			1218
					cag Gln								ggg Gly			1266

gtt caa tcc gtg aaa ata agc tgc tta taactaggaa tggtcactgg 1313 Val Gln Ser Val Lys Ile Ser Cys Leu 395 400 gctgtttctt ca 1325 <210> 123 <211> 401 <212> PRT <213> Mus musculus <220> <221> misc_feature <222> ()..() <223> At position 11, R is a purine. <400> 123 Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Leu Leu Asp Ile Ile 5 10 Glu Trp Thr Thr Gln Glu Thr Leu Leu Pro Lys Tyr Leu His Tyr Asp 25 Pro Glu Thr Gly His Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 40 Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 55 Cys Pro Asp His Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser 120 Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys 135

Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys

145					150					155					160
Ile	Lys	His	Thr	Asn 165	Cys	Ser	Thr	Phe	Gly 170	Leu	Leu	Leu	Ile	Gln 175	Lys
Gly	Asn	Ala	Thr 180	His	Asp	Asn	Cys	Cys 185	Ser	Gly	Asn	Arg	Glu 190	Ala	Thr
Gln	Lys	Cys 195	Gly	Ile	Asp	Val	Thr 200	Leu	Cys	Glu	Glu	Ala 205	Phe	Phe	Arg
Phe	Ala 210	Val	Pro	Thr	Lys	Ile 215	Ile	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val
Asp 225	Ser	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240
Lys	Arg	Arg	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255	Leu
Trp	Lys	His	Gln 260	Asn	Arg	Asp	Gln	Glu 265	Met	Val	Lys	Lys	Ile 270	Ile	Gln
Asp	Ile	Asp 275	Leu	Cys	Glu	Ser	Ser 280	Val	Gln	Arg	His	Leu 285	Gly	His	Ser
Asn	Leu 290	Thr	Thr	Glu	Gln	Leu 295	Leu	Ala	Leu	Met	Glu 300	Ser	Leu	Pro	Gly
Lys 305	Lys	Ile	Ser	Pro	Glu 310	Glu	Ile	Glu	Arg	Thr 315	Arg	Lys	Thr	Cys	Lys 320
Ser	Ser	Glu	Gln	Leu 325	Leu	Lys	Leu	Leu	Ser 330	Leu	Trp	Arg	Ile	Lys 335	Asn
Gly	Asp	Gln	Asp 340	Thr	Leu	Lys	Gly	Leu 345	Met	Tyr	Ala	Leu	Lys 350	His	Leu
Lys	Thr	Ser 355	His	Phe	Pro	Lys	Thr 360	Val	Thr	His	Ser	Leu 365	Arg	Lys	Thr
Met	Arg	Phe	Leu	His	Ser	Phe	Thr	Met	Tyr	Arg	Leu	Tyr	Gln	Lys	Leu

375

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys

370

390 Leu <210> 124 <211> 1356 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (95)..(1297) <220> <221> misc_feature <222> ()..() At position 63, Y is a pyrimidine. <223> <400> 124 gtatatataa cgtgatgagc gtacgggtgc ggagacgcac cggcgcgctc gcccagccgc 60 115 cgyctccaag cccctgaggt ttccggggac caca atg aac aag ttg ctg tgc tgc Met Asn Lys Leu Leu Cys Cys 163 gcg ctc gtg ttt ctg gac atc tcc att aag tgg acc acc cag gaa acg Ala Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr 15 211 ttt cct cca aag tac ctt cat tat gac gaa gaa acc tct cat cag ctg Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu 30 259 ttg tgt gac aaa tgt cct cct ggt acc tac cta aaa caa cac tgt aca Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr 45 307 gca aag tgg aag tcc gtg tgc gcc cct tgc cct gac cac tac tac aca Ala Lys Trp Lys Ser Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr 60 65 355 gac agc tgg cac acc agt gac gag tgt cta tac tgc agc ccc gtg tgc Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys 80 403 aag gag ctg cag tac gtc aag cag gag tgc aat cgc acc cac aac cgc Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg

95

								tac Tyr								451
								ttt Phe								499
								aga Arg								547
								tgt Cys 160								595
-				_			_	aaa Lys			_			_		643
	_				_	_		act Thr			_			-	_	691
	_	-			_			agg Arg		_	_			_		739
acg	cct	226	+ ~ ~	at t	2 art							cct	~~~			787
Thr					-	_	_	Val	_		_					787
gta	Pro aac	Asn gca	Trp	Leu 220 agt	Ser	Val	Leu	_	Asp 225 aaa	Asn cgg	Leu	Pro cac	Gly	Thr 230 tca	Lys	835
gta Val gaa	Pro aac Asn	Asn gca Ala act	Trp gag Glu 235	Leu 220 agt Ser cag	Ser gta Val ctg	Val gag Glu ctg	Leu agg Arg	Val ata Ile	Asp 225 aaa Lys tgg	Asn cgg Arg	Leu caa Gln cat	Pro cac His	Gly agc Ser 245 aac	Thr 230 tca Ser	Lys caa Gln gcc	
gta Val gaa Glu	Pro aac Asn cag Gln gat	gca Ala act Thr 250	Trp gag Glu 235 ttc Phe	Leu 220 agt Ser cag Gln	Ser gta Val ctg Leu	Val gag Glu ctg Leu atc	agg Arg aag Lys 255	Val ata Ile 240 tta	Asp 225 aaa Lys tgg Trp	Asn cgg Arg aaa Lys	Leu caa Gln cat His	Pro cac His caa Gln 260	Gly agc Ser 245 aac Asn	Thr 230 tca Ser aaa Lys	caa Gln gcc Ala	835
gta Val gaa Glu caa Gln	eaac Asn cag Gln gat Asp 265	Asn gca Ala act Thr 250 ata Ile	gag Glu 235 ttc Phe gtc Val	Leu 220 agt Ser cag Gln aag Lys	Ser gta Val ctg Leu aag Lys	yal gag Glu ctg Leu atc Ile 270 gga	agg Arg aag Lys 255 atc Ile	Val ata Ile 240 tta Leu caa	Asp 225 aaa Lys tgg Trp gat Asp	Asn cgg Arg aaa Lys att Ile ctc	caa Gln cat His gac Asp 275	Cac His caa Gln 260 ctc Leu	agc Ser 245 aac Asn tgt Cys	Thr 230 tca Ser aaa Lys gaa Glu	caa Gln gcc Ala aac Asn	835 883
gta Val gaa Glu caa Gln agc Ser 280	eac Asn cag Gln gat Asp 265 gtg Val	Asn gca Ala act Thr 250 ata Ile cag Gln	gag Glu 235 ttc Phe gtc Val cgg Arg	Leu 220 agt Ser cag Gln aag Lys cac His	Ser gta Val ctg Leu aag Lys att Ile 285 agc	yal gag Glu ctg Leu atc Ile 270 gga Gly	agg Arg aag Lys 255 atc Ile cat His	Val ata Ile 240 tta Leu caa Gln gct	Asp 225 aaa Lys tgg Trp gat Asp aac Asn	Asn cgg Arg aaa Lys att Ile ctc Leu 290 aaa	caa Gln cat His gac Asp 275 acc Thr	Cac His caa Gln 260 ctc Leu ttc Phe	Gly agc Ser 245 aac Asn tgt Cys gag Glu gca	Thr 230 tca Ser aaa Lys gaa Glu cag Gln	caa Gln gcc Ala aac Asn ctt Leu 295 gac	835 883 931

ctg ctc agt ttg tgg cga ata aaa aat ggc gac caa gac acc ttg aag Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys 330 335 340	1123
ggc cta atg cac gca cta aag cac tca aag acg tac cac ttt ccc aaa Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys 345 350 355	1171
act gtc act cag agt cta aag aag acc atc agg ttc ctt cac agc ttc Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe 360 365 370 375	1219
aca atg tac aaa ttg tat cag aag tta ttt tta gaa atg ata ggt aac Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn 380 385 390	1267
cag gtc caa tca gta aaa ata agc tgc tta taactggaaa tggccattga Gln Val Gln Ser Val Lys Ile Ser Cys Leu 395 400	1317
gctgtttcct cacaattggc gagatcccat ggatgataa	1356
<210> 125 <211> 401 <212> PRT <213> Homo sapiens	
<220> <221> misc_feature <222> ()() <223> At position 63, Y is a pyrimidine.	
<400> 125	
Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15	
Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30	
Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45	
Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Ser Val Cys Ala Pro 50 55 60	

Leu Tyr C	ys Ser Pro 85	Val Cys	Lys Glu	Leu Gln 90	Tyr Val	Lys Gln 95	Glu
Cys Asn A	rg Thr His 100	Asn Arg	Val Cys		Lys Glu	Gly Arg 110	Tyr
Leu Glu I	le Glu Phe 15	Cys Leu	Lys His 120	arg Ser	Cys Pro 125	Pro Gly	Phe
Gly Val Val 130	al Gln Ala	Gly Thr	Pro Glu	ı Arg Asn	Thr Val	Cys Lys	Arg
Cys Pro A	sp Gly Phe	Phe Ser	Asn Glu	Thr Ser		Ala Pro	Cys 160
Arg Lys H	is Thr Asn 165	_	Val Phe	e Gly Leu 170	Leu Leu	Thr Gln 175	Lys
Gly Asn A	la Thr His 180	Asp Asn	Ile Cys		Asn Ser	Glu Ser 190	Thr
Gln Lys C	ys Gly Ile 95	Asp Val	Thr Lev 200	ı Cys Glu	Glu Ala 205	Phe Phe	Arg
Phe Ala Va 210	al Pro Thr	Lys Phe 215	Thr Pro	Asn Trp	Leu Ser 220	Val Leu	Val
Asp Asn Lo 225	eu Pro Gly	Thr Lys 230	Val Asr	ı Ala Glu 235		Glu Arg	Ile 240
Lys Arg G	ln His Ser 245		Glu Glr	Thr Phe	Gln Leu	Leu Lys 255	Leu
Trp Lys H	is Gln Asn 260	Lys Ala	Gln Asp 265		Lys Lys	Ile Ile 270	Gln
	sp Leu Cys	Glu Asn	Ser Val	. Gln Arg	His Ile		Ala

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

<210> 126

<211> 139

<212> PRT

<213> Homo sapiens

<400> 126

Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys 1 5 10 15

Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro 20 25 30

Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala 35 40 45

Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys 50 55 60

Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr 65 70 75 80

Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn 85 90 95

Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly 115 120 Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys 135 <210> 127 <211> 48 <212> DNA <213> Artificial Sequence <220> <221> misc_feature ()..() <222> Oligonucleotide capable of hybridizing to human sequence. <400> 127 48 acctacttct ttgaagagta gtcgacgaca cactatttac aggcggcc <210> 128 <211> 219 <212> PRT <213> Rattus rattus <400> 128 Met Leu Gly Ile Trp Thr Leu Leu Pro Leu Val Leu Thr Ser Val Ala 5 Arg Leu Ser Ser Lys Ser Val Asn Ala Gln Val Thr Asp Ile Asn Ser Lys Gly Leu Glu Leu Arg Lys Thr Val Thr Thr Val Glu Thr Gln Asn Leu Glu Gly Leu His His Asp Gly Gln Phe Cys His Lys Pro Cys Pro Pro Gly Glu Arg Lys Ala Arg Asp Cys Thr Val Asn Gly Asp Glu Pro Asp Cys Val Pro Cys Gln Glu Gly Lys Glu Tyr Thr Asp Lys Ala His Phe Ser Ser Lys Cys Arg Arg Cys Arg Leu Cys Asp Glu Gly His Gly Leu Glu Val Glu Ile Asn Cys Thr Arg Thr Gln Asn Thr Lys Cys Arg Cys Lys Pro Asn Phe Phe Cys Asn Ser Thr Val Cys Glu His Cys Asp 135

Pro Cys Thr Lys Cys Glu His Gly Ile Ile Lys Glu Cys Thr Leu Thr

150

Ser Asn Thr Lys Cys Lys Glu Glu Gly Ser Arg Ser Asn Leu Gly Trp 165 170 175

Leu Cys Leu Leu Leu Pro Ile Pro Leu Ile Val Trp Val Lys Arg 180 185 190

Lys Glu Val Gln Lys Thr Cys Arg Lys His Arg Lys Glu Asn Gln Gly
195 200 205

Ser His Glu Ser Pro Thr Leu Asn Pro Glu Thr 210 215

<210> 129

<211> 281

<212> PRT

<213> Rattus rattus

<400> 129

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu 1 5 10 15

Glu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro
20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys 35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 55 60

Gly Thr Tyr Leu Thr Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr 65 70 75 80

Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His
85 90 95

Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln
100 105 110

Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys 115 120 125

Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys 130 135 140

Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln 145 150 155 160

Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg 165 170 175

Glu Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys 180 185 190 Thr Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp 195 200 205

Ser Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys 210 215 220

Leu Leu Ser Leu Leu Phe Ile Gly Leu Met Thr Arg Thr Gln Arg Trp 225 230 235 240

Lys Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys 245 250 255

Glu Gly Glu Leu Glu Gly Thr Thr Thr Lys Pro Leu Ala Pro Asn Pro 260 265 270

Ser Phe Ser Pro Thr Pro Gly Phe Thr 275 280

<210> 130

<211> 207

<212> PRT

<213> Rattus rattus

<400> 130

Met Leu Arg Leu Ile Ala Leu Leu Val Cys Val Val Tyr Val Tyr Gly
1 5 10 15

Asp Asp Val Pro Tyr Ser Ser Asn Gln Gly Lys Cys Gly Gly His Asp 20 25 30

Tyr Glu Lys Asp Gly Leu Cys Cys Ala Ser Cys His Pro Gly Phe Tyr 35 40 45

Ala Ser Arg Leu Cys Gly Pro Gly Ser Asn Thr Val Cys Ser Pro Cys 50 60

Glu Asp Gly Thr Phe Thr Ala Ser Thr Asn His Ala Pro Ala Cys Val 65 70 75 80

Ser Cys Arg Gly Pro Cys Thr Gly His Leu Ser Glu Ser Gln Pro Cys 85 90 95

Asp Arg Thr His Asp Arg Val Cys Asn Cys Ser Thr Gly Asn Tyr Cys 100 105 110

Leu Leu Lys Gly Gln Asn Gly Cys Arg Ile Cys Ala Pro Gln Thr Lys
115 120 125

Cys Pro Ala Gly Tyr Gly Val Ser Gly His Thr Arg Ala Gly Asp Thr 130 $135 \cdot$ 140

Leu Cys Glu Lys Cys Pro Pro His Thr Tyr Ser Asp Ser Leu Ser Pro 145 150 155 160

Thr Glu Arg Cys Gly Thr Ser Phe Asn Tyr Ile Ser Val Gly Phe Asn 165 170 175

Leu Tyr Pro Val Asn Glu Thr Ser Cys Thr Thr Thr Ala Gly His Asn 180 185 190

Glu Val Ile Lys Thr Lys Glu Phe Thr Val Thr Leu Asn Tyr Thr 195 200 205

<210> 131

<211> 227

<212> PRT

<213> Rattus rattus

<400> 131

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 1 5 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Thr Thr Asp Gln 35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 50 55 60

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 65 70 75 80

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 95

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 100 105 110

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 115 120 125

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 135 140

Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 155 160

Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 175

Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 180 185 190

Asn Ala Ser Arg Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 210 215 220

Gln His Thr 225

<210> 132

<211> 197

<212> PRT

<213> Rattus rattus

<400> 132

Met Val Ser Leu Pro Arg Leu Cys Ala Leu Trp Gly Cys Leu Leu Thr 1 5 10 15

Ala Val His Leu Gly Gln Cys Val Thr Cys Ser Asp Lys Gln Tyr Leu 20 25 30

His Asp Gly Gln Cys Cys Asp Leu Cys Gln Pro Gly Ser Arg Leu Thr 35 40 45

Ser His Cys Thr Ala Leu Glu Lys Thr Gln Cys His Pro Cys Asp Ser 50 55 60

Gly Glu Phe Ser Ala Gln Trp Asn Arg Glu Ile Arg Cys His Gln His 65 70 75 80

Arg His Cys Glu Pro Asn Gln Gly Leu Arg Val Lys Lys Glu Gly Thr 85 . 90 95

Ala Glu Ser Asp Thr Val Cys Thr Cys Lys Glu Gly Gln His Cys Thr 100 105 110

Ser Lys Asp Cys Glu Ala Cys Ala Gln His Thr Pro Cys Ile Pro Gly
115 120 125

Phe Gly Val Met Glu Met Ala Thr Glu Thr Thr Asp Thr Val Cys His 130 135 140

Pro Cys Pro Val Gly Phe Phe Ser Asn Gln Ser Ser Leu Phe Glu Lys 145 150 155 160

Cys Tyr Pro Trp Thr Ser Cys Glu Asp Lys Asn Leu Glu Val Leu Gln 165 170 175

Lys Gly Thr Ser Gln Thr Asn Val Ile Cys Gly Leu Lys Ser Arg Met 180 185 190

Arg Ala Leu Leu Val 195

```
<211> 208
```

<212> PRT

<213> Rattus rattus

<400> 133

Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 60

Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Thr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110

Leu Glu Leu Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu 115 120 125

Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Ile Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190

Gln Asn Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

<210> 134

<211> 224

<212> PRT

<213> Rattus rattus

<400> 134

Met Gly Ala Gly Ala Thr Gly Arg Ala Met Asp Gly Pro Arg Leu Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Leu Leu Leu Gly Val Ser Leu Gly Gly Ala Lys Glu Ala Cys 20 25 30

Pro Thr Gly Leu Tyr Thr His Ser Gly Glu Cys Cys Lys Ala Cys Asn 35 40 45

Leu Gly Glu Gly Val Ala Gln Pro Cys Gly Ala Asn Gln Thr Val Cys 50 55 60

Glu Pro Cys Leu Asp Ser Val Thr Phe Ser Asp Val Val Ser Ala Thr 65 70 75 80

Glu Pro Cys Lys Pro Cys Thr Glu Cys Val Gly Leu Gln Ser Met Ser 85 90 95

Ala Pro Cys Val Glu Ala Asp Asp Ala Val Cys Arg Cys Ala Tyr Gly
100 105 110

Tyr Tyr Gln Asp Glu Thr Thr Gly Arg Cys Glu Ala Cys Arg Val Cys 115 120 125

Glu Ala Gly Ser Gly Leu Val Phe Ser Cys Gln Asp Lys Gln Asn Thr 130 135 140

Val Cys Glu Glu Cys Pro Asp Gly Thr Tyr Ser Asp Glu Ala Asn His 145 150 155 160

Val Asp Pro Cys Leu Pro Cys Thr Val Cys Glu Asp Thr Glu Arg Gln
165 170 175

Leu Arg Glu Cys Thr Arg Trp Ala Asp Ala Glu Cys Glu Glu Ile Pro 180 185 190

Gly Arg Trp Ile Thr Arg Ser Thr Pro Pro Glu Gly Ser Asp Ser Thr
195 200 205

Ala Pro Ser Thr Glu Glu Pro Glu Ala Pro Pro Glu Gln Asp Leu Ile 210 215 220

<210> 135

<211> 205

<212> PRT

<213> Rattus rattus

<400> 135

Met Tyr Val Trp Val Gln Gln Pro Thr Ala Phe Leu Leu Gly Leu 1 5 10 15

Ser Leu Gly Val Thr Val Lys Leu Asn Cys Val Lys Asp Thr Tyr Pro 20 25 30

Ser Gly His Lys Cys Cys Arg Glu Cys Gln Pro Gly His Gly Met Val 35 40 45 Ser Arg Cys Asp His Thr Arg Asp Thr Val Cys His Pro Cys Glu Pro 50 55 60

Gly Phe Tyr Asn Glu Ala Val Asn Tyr Asp Thr Cys Lys Gln Cys Thr 65 70 75 80

Gln Cys Asn His Arg Ser Gly Ser Glu Leu Lys Gln Asn Cys Thr Pro 85 90 95

Thr Glu Asp Thr Val Cys Gln Cys Arg Pro Gly Thr Gln Pro Arg Gln
100 105 110

Asp Ser Ser His Lys Leu Gly Val Asp Cys Val Pro Cys Pro Pro Gly 115 120 125

His Phe Ser Pro Gly Ser Asn Gln Ala Cys Lys Pro Trp Thr Asn Cys 130 135 140

Thr Leu Ser Gly Lys Gln Ile Arg His Pro Ala Ser Asn Ser Leu Asp 145 150 155 160

Thr Val Cys Glu Asp Arg Ser Leu Leu Ala Thr Leu Leu Trp Glu Thr
165 170 175

Gln Arg Thr Thr Phe Arg Pro Thr Thr Val Pro Ser Thr Thr Val Trp 180 185 190

Pro Arg Thr Ser Gln Leu Pro Ser Thr Pro Thr Leu Val 195 200 205

<210> 136

<211> 191

<212> PRT

<213> Rattus rattus

<400> 136

Met Gly Asn Asn Cys Tyr Asn Val Val Ile Val Leu Leu Val 1 5 10 15

Gly Cys Glu Lys Val Gly Ala Val Gln Asn Ser Cys Asp Asn Cys Gln 20 25 30

Pro Gly Thr Phe Cys Arg Lys Tyr Asn Pro Val Cys Lys Ser Cys Pro
35 40 45

Pro Ser Thr Phe Ser Ser Ile Gly Gly Gln Pro Asn Cys Asn Ile Cys 50 55 60

Arg Val Cys Ala Gly Tyr Phe Arg Phe Lys Lys Phe Cys Ser Ser Thr 65 70 75 80

His Asn Ala Glu Cys Glu Cys Ile Glu Gly Phe His Cys Leu Gly Pro 85 90 95

```
Gln Cys Thr Arg Cys Glu Lys Asp Cys Arg Pro Gly Gln Glu Leu Thr
            100
                                105
Lys Gln Gly Cys Lys Thr Cys Ser Leu Gly Thr Phe Asn Asp Gln Asn
        115
                            120
Gly Thr Gly Val Cys Arg Pro Trp Thr Asn Cys Ser Leu Asp Gly Arg
                        135
Ser Val Leu Lys Thr Gly Thr Thr Glu Lys Asp Val Val Cys Gly Pro
145
                    150
                                        155
Pro Val Val Ser Phe Ser Pro Ser Thr Thr Ile Ser Val Thr Pro Glu
                165
                                    170
Gly Gly Pro Gly Gly His Ser Leu Gln Val Leu Thr Leu Phe Leu
<210>
      137
<211>
      54
<212>
      DNA
<213>
      Artificial Sequence
<220>
<221>
      misc_feature
<222>
      ()..()
<223>
      Oligonucleotide capable of hybridizing to human sequence.
<400> 137
tatggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac
<210> 138
<211>
      284
<212>
      PRT
<213> Mus musculus
<400> 138
Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala
Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys Cys Pro Asp Gly Phe
Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys Ile Lys His Thr Asn
Cys Ser Thr Phe Gly Leu Leu Ile Gln Lys Gly Asn Ala Thr His
Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr Gln Lys Cys Gly Ile
```

Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr

Lys	Ile	Ile	Pro 100	Asn	Trp	Leu	Ser	Val 105	Leu	Val	Asp	Ser	Leu 110	Pro	Gly
Thr	Lys	Val 115	Asn	Ala	Glu	Ser	Val 120	Glu	Arg	Ile	Lys	Arg 125	Arg	His	Ser
Ser	Gln 130	Glu	Gln	Thr	Phe	Gln 135	Leu	Leu	Lys	Leu	Trp 140	Lys	His	Gln	Asn
Arg 145	Asp	Gln	Glu	Met	Val 150	Lys	Lys	Ile	Ile	Gln 155	Asp	Ile	Ala	Leu	Cys 160
Glu	Ser	Ser	Val	Gln 165	Arg	His	Leu	Gly	His 170	Ser	Asn	Leu	Thr	Thr 175	Glu
Gln	Leu	Leu	Ala 180	Leu	Met	Glu	Ser	Leu 185	Pro	Gly	Lys	Lys	Ile 190	Ser	Pro
Glu	Glu	Ile 195	Glu	Arg	Thr	Arg	Lys 200	Thr	Cys	Lys	Ser	Ser 205	Glu	Gln	Leu
Leu	Lys 210	Leu	Leu	Ser	Leu	Trp 215	Arg	Ile	Lys	Asn	Gly 220	Asp	Gln	Asp	Thr
Leu 225	Lys	Gly	Leu	Met	Tyr 230	Ala	Leu	Lys	His	Leu 235	Lys	Thr	Ser	His	Phe 240
Pro	Lys	Thr	Val	Thr 245	His	Ser	Leu	Arg	Lys 250	Thr	Met	Arg	Phe	Leu 255	His
Ser	Phe	Thr	Met 260	Tyr	Arg	Leu	Tyr	Gln 265	Lys	Leu	Phe	Leu	Glu 270	Met	Ile
Gly	Asn	Gln 275	Val	Gln	Ser	Val	Lys 280	Ile	Ser	Cys	Leu				
<210 <211 <211 <211	l> : 2> :	139 380 PRT Homo	sap:	iens											
<400)> :	139													
Glu 1	Thr	Phe	Pro	Pro 5	Lys	Tyr	Leu	His	Tyr 10	Asp	Glu	Glu	Thr	Ser 15	His
Gln	Leu	Leu	Cys 20	Asp	Lys	Cys	Pro	Pro 25	Gly	Thr	Tyr	Leu	Lys 30	Gln	His
Суѕ	Thr	Ala 35	Lys	Trp	Lys	Thr	Val 40	Cys	Ala	Pro	Cys	Pro 45	Asp	His	Tyr
Tyr	Thr	Asp	Ser	Trp	His	Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro

	50					55					60				
Val 65	Cys	Lys	Glu	Leu	Gln 70	Tyr	Val	Lys	Gln	Glu 75	Cys	Asn	Arg	Thr	His 80
Asn	Arg	Val	Cys	Glu 85	Cys	Lys	Glu	Gly	Arg 90	Tyr	Leu	Glu	Ile	Glu 95	Phe
Cys	Leu	Lys	His 100	Arg	Ser	Cys	Pro	Pro 105	Gly	Phe	Gly	Val	Val 110	Gln	Ala
Gly	Thr	Pro 115	Glu	Arg	Asn	Thr	Val 120	Cys	Lys	Arg	Cys	Pro 125	Asp	Gly	Phe
Phe	Ser 130	Asn	Glu	Thr	Ser	Ser 135	Lys	Ala	Pro	Cys	Arg 140	Lys	His	Thr	Asn
Cys 145	Ser	Val	Phe	Gly	Leu 150	Leu	Leu	Thr	Gln	Lys 155	Gly	Asn	Ala	Thr	His 160
Asp	Asn	Ile	Cys	Ser 165	Gly	Asn	Ser	Glu	Ser 170	Thr	Gln	Lys	Cys	Gly 175	Ile
Asp	Val	Thr	Leu 180	Cys	Glu	Glu	Ala	Phe 185	Phe	Arg	Phe	Ala	Val 190	Pro	Thr
Lys	Phe	Thr 195	Pro	Asn	Trp	Leu	Ser 200	Val	Leu	Val	Asp	Asn 205	Leu	Pro	Gly
Thr	Lys 210	Val	Asn	Ala	Glu	Ser 215	Val	Glu	Arg	Ile	Lys 220	Arg	Gln	His	Ser
Ser 225	Gln	Glu	Gln	Thr	Phe 230	Gln	Leu	Leu	Lys	Leu 235	Trp	Lys	His	Gln	Asn 240
Lys	Ala	Gln	Asp	.Ile 245	Val	Lys	Lys	Ile	Ile 250	Gln	Asp	Ile	Asp	Leu 255	Cys
Glu	Asn	Ser	Val 260	Gln	Arg	His	Ile	Gly 265	His	Ala	Asn	Leu	Thr 270	Phe	Glu
Gln	Leu	Arg 275	Ser	Leu	Met	Glu	Ser 280	Leu	Pro	Gly	Lys	Lys 285	Val	Gly	Ala
Glu	Asp 290	Ile	Glu	Lys	Thr	Ile 295	Lys	Ala	Cys	Lys	Pro 300	Ser	Asp	Gln	Ile
Leu 305	Lys	Leu	Leu	Ser	Leu 310	Trp	Arg	Ile	Lys	Asn 315	Gly	Asp	Gln	Asp	Thr 320
Leu	Lys	Gly	Leu	Met 325	His	Ala	Leu	Lys	His 330	Ser	Lys	Thr	Lys	His 335	Phe
Pro	Lys	Thr	Val 340	Thr	Gln	Ser	Leu	Lys 345	Lys	Thr	Ile	Arg	Phe 350	Leu	His

```
Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile
                           360
Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
   370
                       375
<210> 140
<211>
      30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for deletion analogue.
<400> 140
                                                                     30
tggaccaccc agaagtacct tcattatgac
<210> 141
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for deletion analogue.
<400> 141
                                                                     30
gtcataatga aggtacttct gggtggtcca
<210> 142
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> PCR primer for deletion analogue.
<400> 142
ggaccaccca gcttcattat gacgaagaaa c
                                                                     31
<210> 143
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
```

<221> misc_feature

```
<222> ()..()
<223> PCR primer for deletion analogue.
<400> 143
                                                                     31
gtttcttcgt cataatgaag ctgggtggtc c
<210> 144
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for deletion analogue.
<400> 144
                                                                     29
gtggaccacc caggacgaag aaacctctc
<210> 145
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for deletion analogue.
<400> 145
                                                                     29
gagaggtttc ttcgtcctgg gtggtccac
<210> 146
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221>
      misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 146
                                                                     29
cgtttcctcc aaagttcctt cattatgac
<210> 147
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
```

k

```
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 147
                                                                     29
gtcataatga aggaactttg gaggaaacg
<210> 148
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 148
                                                                     32
ggaaacgttt cctgcaaagt accttcatta tg
<210> 149
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 149
                                                                     32
cataatgaag gtactttgca ggaaacgttt cc
<210> 150
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 150
                                                                     27
cacgcaaaag tcgggaatag atgtcac
<210> 151
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
```

k

```
<221> misc_feature
<222> ()..()
<223> PCR primer for mutant analogue.
<400> 151
                                                                     27
gtgacatcta ttcccgactt ttgcgtg
<210> 152
<211>
      25
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 152
                                                                     25
caccetgteg gaagaggeet tette
<210> 153
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 153
                                                                     25
gaagaaggcc tcttccgaca gggtg
<210> 154
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 154
                                                                     24
tgacctctcg gaaagcagcg tgca
<210> 155
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
```

```
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 155
                                                                     24
tgcacgctgc tttccgagag gtca
<210> 156
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 156
                                                                     24
cctcgaaatc gagcgagcag ctcc
<210> 157
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> PCR primer for mutant analogue.
<400> 157
                                                                     25
cgatttcgag gtctttctcg ttctc
<210> 158
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 158
                                                                     33
ccgtgaaaat aagctcgtta taactaggaa tgg
<210> 159
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
```

```
<221> misc_feature
<222>
      ()..()
<223> PCR primer for mutant analogue.
<400> 159
                                                                     33
ccattcctag ttataacgag cttattttca cgg
<210> 160
<211>
      38
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223>
      PCR primer for deletion mutant.
<400> 160
                                                                     38
cctctgagct caagcttccg aggaccacaa tgaacaag
<210> 161
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for deletion mutant.
<400> 161
                                                                     44
cctctctcga gtcaggtgac atctattcca cacttttgcg tggc
<210> 162
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for deletion mutant.
<400> 162
                                                                     38
cctctgagct caagcttccg aggaccacaa tgaacaag
<210> 163
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
```

```
<221> misc_feature
<222>
      ()..()
<223> PCR primer for deletion mutant.
<400> 163
                                                                      38
cctctctcga gtcaaggaac agcaaacctg aagaaggc
<210>
      164
<211>
      38
<212>
      DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
      PCR primer for deletion mutant.
<223>
<400> 164
cctctgagct caagcttccg aggaccacaa tgaacaag
                                                                      38
<210> 165
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
      ()..()
<223> PCR primer for deletion mutant.
<400> 165
                                                                      38
cctctctcga gtcactctgt ggtgaggttc gagtggcc
<210> 166
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
      ()..()
<222>
<223> PCR primer for deletion mutant.
<400> 166
                                                                      38
cctctgagct caagcttccg aggaccacaa tgaacaag
<210> 167
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
```

```
<221> misc_feature
<222> ()..()
<223> PCR primer for deletion mutant.
<400> 167
                                                                    38
cctctctcga gtcaggatgt tttcaagtgc ttgagggc
<210> 168
<211> 16
<212>
      PRT
<213> Artificial Sequence
<220>
<221> misc_feature
<222> ()..()
<223> Encoded by oligonucleotide duplex used in vector formation.
<400> 168
Met Lys His His His His His His Ala Ser Val Asn Ala Leu Glu
```

.