Curs 9

Cuprins

1 Sisteme de rescriere abstracte

Amintiri

- \square (S, Σ) signatură și R sistem de rescriere
- \square pentru $t, t' \in T_{\Sigma}(X)_s$ definim relația $t \to_R t'$ astfel:

```
t \to_R t' \Leftrightarrow t \text{ este } c[z \leftarrow \theta_s(I)] \text{ și}
t' \text{ este } c[z \leftarrow \theta_s(I)], \text{ unde}
c \in T_{\Sigma}(X \cup \{z\}) \text{ context},
I \to_s r \in R \text{ cu } Var(I) = Y,
\theta : Y \to T_{\Sigma}(X) \text{ substituție}
```

 $\square \rightarrow_R$ este relația de rescriere generată de sistemul de rescriere R.

Amintiri

- \square (S,Σ) signatură, X mulțime de variabile și $t,t'\in T_\Sigma(X)_s$
- □ E mulţime de ecuaţii
- \square R_F sistemul de rescriere determinat de E
- $\square \rightarrow_E$ relația de rescriere generată de R_E
- $\square \stackrel{*}{\leftrightarrow_E}$ echivalența generată de \rightarrow_E

Teorema

$$E \vdash (\forall X)t \stackrel{\cdot}{=}_s t' \Leftrightarrow t \stackrel{*}{\leftrightarrow}_E t'$$

Definitie

Un sistem de rescriere abstract este o pereche (T, \rightarrow) unde:

- ☐ *T* este o mulţime,
- $\square \rightarrow \subseteq T \times T \ (\rightarrow \text{ este o relație binară pe } T).$

Definitie

Un sistem de rescriere abstract este o pereche (T, \rightarrow) unde:

- ☐ *T* este o mulţime,
- $\square \rightarrow \subseteq T \times T \ (\rightarrow \text{ este o relație binară pe } T).$

Definitii:

- $\square \leftarrow := \rightarrow^{-1}$ (relația inversă)
- $\square \leftrightarrow := \rightarrow \cup \leftarrow$ (închiderea simetrică)
- $\square \stackrel{*}{\rightarrow} := (\rightarrow)^*$ (închiderea reflexivă și tranzitivă)
- $\square \stackrel{*}{\leftrightarrow} := (\leftrightarrow)^*$ (echivalența generată)

Rescrierea termenilor

 (S,Σ) signatură și Y mulțime de variabile.

regulă de rescriere
$$I \rightarrow_s r$$
 I , r termeni din $T_\Sigma(Y)$ sistem de rescriere (TRS) R mai multe $I \rightarrow_s r$ relația de rescriere \rightarrow_R generată de R echivalența $\stackrel{*}{\leftrightarrow}_R$ generată de \rightarrow_R

 $(T_{\Sigma}(Y), R)$ este un sistem de rescriere abstract.

```
\square T := \mathbb{N} \setminus \{0,1\}
```

$$\square \rightarrow := \{(m,k) \mid k < m, k | m\}$$

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m, k) \mid k < m, k | m\}$
- $\square \leftarrow = \{(k, m) \mid k < m, k | m\}$

```
\Box T := \mathbb{N} \setminus \{0, 1\} 

\Box \rightarrow := \{(m, k) \mid k < m, k \mid m\} 

\Box \leftarrow = \{(k, m) \mid k < m, k \mid m\} 

\Box \leftrightarrow = \{(k_1, k_2) \mid k_1 \neq k_2, k_1 \mid k_2 \text{ sau } k_2 \mid k_1\}
```

```
\Box T := \mathbb{N} \setminus \{0, 1\}

\Box \to := \{(m, k) \mid k < m, k \mid m\}

\Box \leftarrow = \{(k, m) \mid k < m, k \mid m\}

\Box \leftrightarrow = \{(k_1, k_2) \mid k_1 \neq k_2, k_1 \mid k_2 \text{ sau } k_2 \mid k_1\}

\Box \stackrel{+}{\to} = \{(m, k) \mid \text{ex. } n \geq 0, \text{ ex. } k_1, \dots, k_n \in T \text{ a.i. } m \to k_1 \to \dots \to k_n \to k\} = \to
```

Exemple

```
\Box T := \mathbb{N} \setminus \{0, 1\}

\Box \to := \{(m, k) \mid k < m, k \mid m\}

\Box \leftarrow = \{(k, m) \mid k < m, k \mid m\}

\Box \leftrightarrow = \{(k_1, k_2) \mid k_1 \neq k_2, k_1 \mid k_2 \text{ sau } k_2 \mid k_1\}

\Box \stackrel{+}{\to} = \{(m, k) \mid \text{ex. } n \geq 0, \text{ ex. } k_1, \dots, k_n \in T \text{ a.i. } m \to k_1 \to \dots \to k_n \to k\} = \to

\Box \stackrel{*}{\to} = \stackrel{+}{\to} \cup \{(k, k) \mid k \in T\}
```

 (T, \rightarrow) sistem de rescriere.

 (T, \rightarrow) sistem de rescriere.

Definitie

 \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.

 (T, \rightarrow) sistem de rescriere.

- \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.
- \square O reducere este un șir $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$

 (T, \rightarrow) sistem de rescriere.

- \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.
- \square O reducere este un șir $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
- \Box $t \in T$ este în formă normală (ireductibil) dacă nu este reductibil.

 (T, \rightarrow) sistem de rescriere.

- \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.
- \square O reducere este un şir $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
- \Box $t \in T$ este în formă normală (ireductibil) dacă nu este reductibil.
- □ t₀ este o formă normală a lui t dacă
 - \Box $t\stackrel{*}{\rightarrow} t_0$ și
 - \Box t_0 este în formă normală.

 (T, \rightarrow) sistem de rescriere.

- \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.
- \square O reducere este un şir $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
- \Box $t \in T$ este în formă normală (ireductibil) dacă nu este reductibil.
- □ t₀ este o formă normală a lui t dacă
 - \Box $t\stackrel{*}{\rightarrow} t_0$ și
 - \Box t_0 este în formă normală.
- \Box t_1 și t_2 se intâlnesc dacă există $t \in T$ a.î. $t_1 \stackrel{*}{\to} t \stackrel{*}{\leftarrow} t_2$.
 - \square notație: $t_1 \downarrow t_2$.

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m,k) \mid k < m, k | m\}$

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m,k) \mid k < m, k | m\}$
- \square k este în formă normală dacă este număr prim.

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m, k) \mid k < m, k \mid m\}$
- \square k este în formă normală dacă este număr prim.
- \square $k_1 \downarrow k_2$ dacă nu sunt prime între ele.

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m, k) \mid k < m, k \mid m\}$
- \square k este în formă normală dacă este număr prim.
- \square $k_1 \downarrow k_2$ dacă nu sunt prime între ele.
- \square k este o formă normală a lui m dacă k este un factor prim al lui m.

```
\Box T := \{a, b\}^* 

\Box \rightarrow := \{(ubav, uabv) \mid u, v \in T\}
```

- $\Box T := \{a, b\}^*$
- $\square \rightarrow := \{(ubav, uabv) \mid u, v \in T\}$
- \square w este în formă normală dacă $w = a^n b^k$, cu $n, k \ge 0$.

```
□ T := \{a, b\}^*
□ \rightarrow := \{(ubav, uabv) \mid u, v \in T\}
□ w este în formă normală dacă w = a^n b^k, cu n, k \ge 0.
□ w_1 \downarrow w_2 dacă
□ nr_a(w_1) = nr_a(w_2) și
□ nr_b(w_1) = nr_b(w_2).
```

 (T, \rightarrow) sistem de rescriere.

Definitie

(T, \rightarrow) se numește

 (T, \rightarrow) sistem de rescriere.

- (T, \rightarrow) se numește
 - noetherian (se termină): dacă nu există reduceri infinite
 - $t_0 \rightarrow t_1 \rightarrow \dot{t}_2 \rightarrow \ldots$
 - orice rescriere se termină.

 (T, \rightarrow) sistem de rescriere.

- (T, \rightarrow) se numește
 - □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
 - \square confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.

 (T, \rightarrow) sistem de rescriere.

Definitie

 (T, \rightarrow) se numește

- □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
- \square confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- \square local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$.

 (T, \rightarrow) sistem de rescriere.

Definitie

 (T, \rightarrow) se numește

- □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
- \square confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- \square local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$.
- \Box Church-Rosser: $t_1 \stackrel{*}{\leftrightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.

 (T, \rightarrow) sistem de rescriere.

- (T, \rightarrow) se numește
 - □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
 - \square confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
 - \square local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$.
 - \Box Church-Rosser: $t_1 \stackrel{*}{\leftrightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
 - □ Normalizat: orice element are o formă normală.

 (T, \rightarrow) sistem de rescriere.

Definitie

 (T, \rightarrow) se numește

- □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
- \square confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- □ local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$.
- \Box Church-Rosser: $t_1 \stackrel{*}{\leftrightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- □ Normalizat: orice element are o formă normală.
- □ Complet (convergent, canonic): confluent și noetherian.

Confluent:

Local confluent:

- \square $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m,k) \mid k < m, k | m\}$

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m,k) \mid k < m, k | m\}$
- \Box (T, \rightarrow) este noetherian:
 - orice *m* se rescrie într-un factor prim al său.

Sisteme de rescriere abstracte

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m,k) \mid k < m, k \mid m\}$
- \square (T, \rightarrow) este noetherian:
 - orice *m* se rescrie într-un factor prim al său.
- \square (T, \rightarrow) nu este confluent:

Proprietăți (goto 25)

Propoziție (1)

Fie (T, \rightarrow) sistem de rescriere. Dacă $t \downarrow t'$, atunci $t \stackrel{*}{\leftrightarrow} t'$.

Proprietăți (goto 25)

Propoziție (1)

Fie (T, \rightarrow) sistem de rescriere. Dacă $t \downarrow t'$, atunci $t \stackrel{*}{\leftrightarrow} t'$.

Demonstrație

Dacă $t\downarrow t'$, atunci există t_0 a.î. $t\stackrel{*}{\to} t_0\stackrel{*}{\leftarrow} t'$, i.e. $t\stackrel{*}{\leftrightarrow} t'$.

Propoziție (2)

Fie (T, \rightarrow) sistem de rescriere.

$$\begin{array}{ccc} \text{noetherian} & \Rightarrow & \text{orice element are o formă normală} \\ & & & & & & & & \\ \end{array}$$

Propoziție (2)

Fie (T, \rightarrow) sistem de rescriere.

noetherian
$$\Rightarrow$$
 orice element are o formă normală $\not=$

- $\ \square \ S = \{\textit{Nat}\} \ \mathsf{si} \ \Sigma = \{0: \rightarrow \textit{Nat}, s: \textit{Nat} \rightarrow \textit{Nat}, +: \textit{NatNat} \rightarrow \textit{Nat}\}$
- \Box $E = \{x + 0 = x, x + s \ y = s(x + y), 0 + y = y + 0\}$
- \square $R_E = \{x + 0 \to x, x + s \ y \to s(x + y), 0 + y \to y + 0\}$

Propoziție (2)

Fie (T, \rightarrow) sistem de rescriere.

 $\begin{array}{ccc} \text{noetherian} & \Rightarrow & \text{orice element are o formă normală} \\ & & \# \end{array}$

- $\ \square \ S = \{\textit{Nat}\} \ \mathsf{si} \ \Sigma = \{0: \rightarrow \textit{Nat}, s: \textit{Nat} \rightarrow \textit{Nat}, +: \textit{NatNat} \rightarrow \textit{Nat}\}$
- \Box $E = \{x + 0 = x, x + s \ y = s(x + y), 0 + y = y + 0\}$
- $\square R_E = \{x + 0 \to x, x + s y \to s(x + y), 0 + y \to y + 0\}$
- \square orice termen are o formă normală, de forma $s(s(\dots(0)\dots))$

Propoziție (2)

Fie (T, \rightarrow) sistem de rescriere.

```
\begin{array}{ccc} \text{noetherian} & \Rightarrow & \text{orice element are o formă normală} \\ & & & & & & & & \\ \end{array}
```

- \square $S = \{Nat\}$ și $\Sigma = \{0 : \rightarrow Nat, s : Nat \rightarrow Nat, + : NatNat \rightarrow Nat\}$
- \Box $E = \{x + 0 = x, x + s y = s(x + y), 0 + y = y + 0\}$
- \square $R_E = \{x + 0 \to x, x + s \ y \to s(x + y), 0 + y \to y + 0\}$
- \square orice termen are o formă normală, de forma $s(s(\dots(0)\dots))$
- \square R_E nu este noetherian: $0 + 0 \rightarrow_E 0 + 0 \rightarrow_E \dots$

Propoziție (2)

Fie (T, \rightarrow) sistem de rescriere.

```
\begin{array}{ccc} \text{noetherian} & \Rightarrow & \text{orice element are o formă normală} \\ & & \neq & \end{array}
```

- \square $S = \{Nat\}$ și $\Sigma = \{0 : \rightarrow Nat, s : Nat \rightarrow Nat, + : NatNat \rightarrow Nat\}$
- \Box $E = \{x + 0 = x, x + s y = s(x + y), 0 + y = y + 0\}$
- \square $R_E = \{x + 0 \to x, x + s \ y \to s(x + y), 0 + y \to y + 0\}$
- \square orice termen are o formă normală, de forma $s(s(\dots(0)\dots))$
- \square R_E nu este noetherian: $0 + 0 \rightarrow_E 0 + 0 \rightarrow_E \dots$
- eliminând ultima regulă de rescriere, obținem un sistem de rescriere noetherian

Propoziție (3)

Fie (T, \rightarrow) sistem de rescriere.

 $complet \quad \Rightarrow \quad orice \ element \ are \ o \ unică \ formă \ normală \ fn(t)$

Propoziție (3)

Fie (T, \rightarrow) sistem de rescriere.

complet \Rightarrow orice element are o unică formă normală fn(t)

Demonstrație

- \square Deoarece (T, \rightarrow) este noetherian, t are o formă normală, i.e.
 - $t \stackrel{*}{\rightarrow} t'$ și t' este în formă normală.
- \square Presupunem că t mai are o altă formă normală t''.
- \square Cum $t\stackrel{*}{ o}t''$ și $t\stackrel{*}{ o}t'$, din confluență avem

$$t' \downarrow t''$$
.

 \square Cum t' și t'' sunt în formă normală, putem obține doar t'=t''.

Proprietăți (goto 25)

Propoziție (4)

Fie (T, \rightarrow) sistem de rescriere.

confluent ⇔ Church-Rosser

Proprietăți (goto 25)

Propoziție (4)

Fie (T, \rightarrow) sistem de rescriere.

confluent ⇔ Church-Rosser

Demonstrație

(⇐)

- \square Presupunem $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2$.
- \square Atunci avem $t_1 \stackrel{*}{\leftrightarrow} t_2$.
- \square Cum (T, \rightarrow) este Church-Rosser, obţinem că $t_1 \downarrow t_2$.
- \square Deci (T, \rightarrow) este confluent.

Demonstrație (cont.)

(\Rightarrow)

 \square Presupunem $t_1 \stackrel{*}{\leftrightarrow} t_2$. Atunci există n și t_1', \ldots, t_n' a.î.:

$$t_1 = t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' = t_2.$$

- \square Demonstrăm prin inducție după n că dacă $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n'$, atunci $t_1' \downarrow t_n'$:
 - \square n=1: Atunci evident $t'_1 \downarrow t'_1$.
 - \square $n \rightarrow n+1$: Pres. $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' \leftrightarrow t_{n+1}'$.

Din ip. de inducție știm $t_1' \downarrow t_n'$. Atunci ex. w a.î. $t_1' \stackrel{*}{\to} w \stackrel{*}{\leftarrow} t_n'$. Avem două cazuri:

- $t'_n \to t'_{n+1}$: Cum $w \stackrel{*}{\leftarrow} t'_n \to t'_{n+1}$ și (T, \to) este confluent, obținem $w \downarrow t'_{n+1}$. Deci există w' a.î. $w \stackrel{*}{\to} w' \stackrel{*}{\leftarrow} t'_{n+1}$. Deci $t'_1 \stackrel{*}{\to} w \stackrel{*}{\to} w' \stackrel{*}{\leftarrow} t'_{n+1}$, adică $t'_1 \downarrow t'_{n+1}$.
 - \square În concluzie, $t_1 \downarrow t_2$.

Propoziție (5)

Fie (T, \rightarrow) sistem de rescriere.

 $\begin{array}{ccc} \mathsf{confluent} & \Rightarrow & \mathsf{local} \; \mathsf{confluent} \\ & \not = & \end{array}$

Propoziție (5)

Fie
$$(T, \rightarrow)$$
 sistem de rescriere.

$$\begin{array}{ccc} \mathsf{confluent} & \Rightarrow & \mathsf{local} \; \mathsf{confluent} \\ & & & & & & \\ \end{array}$$

$$\Box T = \{a, b, c, d\}$$

$$\quad \square \ \rightarrow :$$

$$a \leftarrow b$$
 $c \rightarrow a$

Propoziție (5)

Fie
$$(T, \rightarrow)$$
 sistem de rescriere. confluent \Rightarrow local confluent $\not=$

- $\Box T = \{a, b, c, d\}$ $\Box \rightarrow: \qquad \qquad a \longleftarrow b \qquad \qquad c \longrightarrow c$
- ☐ T este local confluent:

Propoziție (5)

Fie
$$(T, \rightarrow)$$
 sistem de rescriere. confluent \Rightarrow local confluent $\not=$

$$□ T = \{a, b, c, d\}$$

$$□ →: a \longleftarrow b$$

$$□ T \text{ este local confluent:}$$

- - \square $a \leftarrow b \rightarrow c$ și $a \downarrow c$ (în a)
 - \square $b \leftarrow c \rightarrow d$ și $b \downarrow d$ (în d)
- ☐ T nu este confluent:
 - \square $a \stackrel{*}{\leftarrow} b \stackrel{*}{\rightarrow} d$, dar $a \not\downarrow d$
 - \square $a \stackrel{*}{\leftarrow} c \stackrel{*}{\rightarrow} d$, dar $a \lor d$

Propoziție (6) - Lema lui Newman

Fie (T, \rightarrow) sistem de rescriere.

noetherian + local confluent ⇒ confluent

Propoziție (6) - Lema lui Newman

Fie (T, \rightarrow) sistem de rescriere.

noetherian + local confluent ⇒ confluent

Demonstrație

- \square Deoarece (T, \rightarrow) este noetherian, știm că orice element are o formă normală.
- Arătăm că orice element are o formă normală unică.
- □ Fie M mulţimea elementelor care au cel puţin două forme normale diferite:

$$M = \{t \mid n_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} n_2, n_1 \neq n_2, n_1, n_2 \text{ în formă normală } \}.$$

Demonstrație (cont.)

☐ Demonstrăm următoarea proprietate:

$$(\star)$$
 pt. or. $t \in M$, există $t' \in M$ a.î. $t \to t'$.

- \square Fie $t \in M$.
- Atunci ex. n_1 si n_2 în formă normală a.î. $n_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} n_2, n_1 \neq n_2$.
- □ Pres. $n_1 \leftarrow t \rightarrow n_2$:
 - Din local confluență, obținem $n_1 \downarrow n_2$.
 - Cum n_1 și n_2 în formă normală, obținem $n_1 = n_2$ (contradicție).
- \square Pres. $n_1 \leftarrow t \stackrel{*}{\rightarrow} n_2$:
 - Atunci există t_2 a.î. $n_1 \leftarrow t \rightarrow t_2 \stackrel{*}{\rightarrow} n_2$.
 - Din local confluența, obținem $n_1 \downarrow t_2$.
 - Cum n_1 în formă normală, obținem $t_2 \stackrel{*}{\rightarrow} n_1$.
 - Deci $t_2 \in M$ și $t \to t_2$.
- \square Pres. $n_1 \stackrel{*}{\leftarrow} t \rightarrow n_2$:
 - Atunci există t_1 a.î. $n_1 \stackrel{*}{\leftarrow} t_1 \leftarrow t \rightarrow n_2$.
 - Din local confluență, obținem $t_1 \downarrow n_2$ și, mai departe, $t_1 \stackrel{*}{\rightarrow} n_2$.
 - Deci $t_1 \in M$ și $t \to t_1$.

Demonstrație (cont.)

- \square (*) pt. or. $t \in M$, există $t' \in M$ a.î. $t \to t'$. Pres. $n_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} n_2$:
- Atunci există t_1, t_2 a.î. $n_1 \stackrel{*}{\leftarrow} t_1 \leftarrow t \rightarrow t_2 \stackrel{*}{\rightarrow} n_2$.
- Din local confluență, obținem $t_1 \downarrow t_2$.
- Deci ex. n_3 în formă normală a.î. $t_1 \stackrel{*}{\to} n_3$ și $t_2 \stackrel{*}{\to} n_3$.
- Deoarece $n_1 \neq n_2$, deducem că $n_3 \neq n_1$ sau $n_3 \neq n_2$.
- Dacă $n_3 \neq n_1$, atunci $t_1 \in M$ și $t \rightarrow t_1$.
- □ Dacă $n_3 \neq n_2$, atunci $t_2 \in M$ și $t \rightarrow t_2$.

Demonstrație (cont.)

- \square Arătăm unicitatea formei normale, i.e. $M = \emptyset$.
 - □ Pres. prin absurd că $M \neq \emptyset$. Atunci există $t_1 \in M$.
 - \square Din (\star) , ex. $t_2 \in M$ a.î. $t_1 \rightarrow t_2$.
 - \square Prin inducție, obținem un șir $\{t_i\}_{i\in\mathbb{N}}$ de elemente din M a.î.

$$t_1 \to t_2 \to \ldots \to t_n \to \ldots$$

ceea ce contrazice faptul că (T, \rightarrow) este noetherian.

- □ Pres. $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2$. Cum t are o unică formă normală n, obținem $t_1 \stackrel{*}{\rightarrow} n \stackrel{*}{\leftarrow} t_2$. Deci $t_1 \downarrow t_2$.
- \square În concluzie, (T, \rightarrow) este confluent.

Propoziție (7)

Fie (T, \rightarrow) sistem de rescriere complet.

$$t \stackrel{*}{\leftrightarrow} t' \quad \Leftrightarrow \quad \mathit{fn}(t) = \mathit{fn}(t')$$

Propoziție (7)

Fie (T, \rightarrow) sistem de rescriere complet.

$$t \stackrel{*}{\leftrightarrow} t' \quad \Leftrightarrow \quad \mathit{fn}(t) = \mathit{fn}(t')$$

Demonstrație

(=)

- \square Dacă fn(t) = fn(t'), atunci evident $t \downarrow t'$.
- \square Aplicăm Propoziția (1) și obtinem $t \stackrel{*}{\leftrightarrow} t'$.

Propoziție (7)

Fie (T, \rightarrow) sistem de rescriere complet.

$$t \stackrel{*}{\leftrightarrow} t' \quad \Leftrightarrow \quad \mathit{fn}(t) = \mathit{fn}(t')$$

Demonstrație

- (⇐)
 - \square Dacă fn(t) = fn(t'), atunci evident $t \downarrow t'$.
 - \square Aplicăm Propoziția (1) și obtinem $t \stackrel{*}{\leftrightarrow} t'$.
- (\Rightarrow)
 - \square Cum (T, \rightarrow) este complet, este confluent și or. element are o unică formă normală. Din Propozitia (4), este Church-Rosser.
 - \square Deoarece $t \stackrel{*}{\leftrightarrow} t'$, obţinem că $t \downarrow t'$, i.e. există w a.î. $t \stackrel{*}{\rightarrow} w \stackrel{*}{\leftarrow} t'$.
 - \square Fie *n* unica formă normală a lui w.
 - \square În concluzie, $t \stackrel{*}{\to} n \stackrel{*}{\leftarrow} t'$, deci fn(t) = fn(t').

Deducția ecuațională și rescriere

- \square (S,Σ) signatură, X mulțime de variabile și $t,t'\in T_{\Sigma}(X)_s$
- □ E mulţime de ecuaţii
- \square R_E sistemul de rescriere determinat de E
- $\square \rightarrow_E$ relația de rescriere generată de R_E
- $\square \stackrel{*}{\leftrightarrow_E}$ echivalența generată de \rightarrow_E

Teorema

$$E \vdash (\forall X)t \stackrel{\cdot}{=}_s t' \Leftrightarrow t \stackrel{*}{\leftrightarrow}_E t'$$

Corolar (8)

Dacă sistemul de rescriere $(T_{\Sigma}(X), R_E)$ este complet, atunci:

$$E \vdash (\forall X)t \stackrel{\cdot}{=}_s t' \Leftrightarrow t \stackrel{*}{\leftrightarrow}_E t' \Leftrightarrow fn(t) = fn(t')$$

Concluzii

Dacă E este o mulțime de ecuații a.î. R_E este un sistem de rescriere complet, atunci deducția ecuațională $E \vdash (\forall X)t \stackrel{\cdot}{=}_s t'$ este decidabilă:

Concluzii

Dacă E este o mulțime de ecuații a.î. R_E este un sistem de rescriere complet, atunci deducția ecuațională $E \vdash (\forall X)t \stackrel{\cdot}{=}_s t'$ este decidabilă:

Algoritm:

1.
$$t \stackrel{*}{\rightarrow_{E}} fn(t)$$

2.
$$t' \stackrel{*}{\rightarrow_E} fn(t')$$

3.
$$E \vdash (\forall X)t \stackrel{.}{=}_s t' \Leftrightarrow fn(t) = fn(t')$$

Observații

Ш	Terminarea unui sistem de rescriere este nedecidabila.
	echivalentă cu oprirea mașinilor Turing
	Pentru sisteme de rescriere particulare putem decide asupra terminării.
	diverse metode
	Pentru sisteme de rescriere care se termină, confluența este decidabilă.
	□ algoritmul Knuth-Bendix

Vacanță plăcută!