1. Allgemeines

(8 Punkte)

Name.	Matrikelnummer	

Prüfer:	Prof. DrIng. Rainer Keller	Anzahl der Seiten:	14
Studiengänge:	Softwaretechnik und Medieninformatik Technische Informatik Ingenieurpädagogik	Semester:	SWB2 TIB2 IEP2
Klausur:	Betriebssysteme	Prüfungsnummern:	IT 105 2004
(keine Kopie). D	DIN A4 Blatt, beidseitig selbst geschrieben Das Hilfsmittel ist abzugeben. Sollte kein Vendet werden ist dies in der Klausur	Dauer der Klausur:	90 Minuten

Bitte lesen Sie die Aufgaben sorgfältig durch. Jede Aufgabe besteht aus Unteraufgaben – für die es Teilpunkte gibt. Jeder Punkt entspricht ca. 1 Minute Arbeitszeit. Nutzen Sie also den zur Verfügung stehenden Raum und die Zeit aus, um möglichst sorgfältig und ausführlich zu antworten. Achten Sie auf Schlüsselwörter wie "in Stichworten", "kurz", "ausführlich" "nennen", "erklären" oder "im Detail". Der Umfang Ihrer Antwort soll sich danach richten.

	, ingenience,	
a)	Nennen Sie die allgemeine Definition eines Betriebssystems der Vorlesung?	
		2

b) Nennen Sie 3 unterschiedliche (Klassen von) Systemen auf denen Linux läuft

1.	
2.	
3.	

Sommersemester 2023

		'
•	d-wx 3 me you 42 Feb 29 11:55 check Warum nicht - und wie können Sie den Fehler beheben?	
٥)	Sie können die Datei check als User me nicht editieren:	
		2
d)	Warum ist der Linux Kernel (hauptsächlich) in der Programmiersprache programmiert?	C
2.		- 1
1.		
c)	Nennen Sie 2 unterschiedliche (Klassen von) Systemen auf denen Windows läuft	:?

Sommersemester 2023

	achen die folgenden Bash-Befehle. Bitte stichpun	ktartig erklären:
du -h		
fsck		
dmesg		
objdump		
ps		3
echo		
kill		
less		
c) Geben	Sie die passenden Shell Befehle an:	
Tastendru	ck um Programm abzubrechen:	
Den Proze	ss 666 freundlicherweise auf Prio 10 setzen:	
Freien Plat	ttenplatz menschenlesbar anzeigen lassen:	
Datei f in	Verzeichnis d verschieben:	4
Dalai I	fassen (bspw. damit es ins Backup kommt!):	
Datel b an	der 1. Partition auf der 2. Platte prüfen:	
	·	
Filesystem	allen Verzeichnissen finden mit Endung .h:	

Name			

d) Schreiben Sie das Bash Programm count: Es basiert auf dem Output von last:

```
rakeller pts/6 134.108.34.30 Wed Feb 29 11:55 still logged in rakeller pts/7 134.108.34.67 Wed Feb 30 12:01 - 12:03 (00:03)
```

Schreiben Sie ein vollständiges Skript, welches die IP-Adresse als erstes Parameter nimmt und die Ausgabe von last nach dieser IP durchsucht und am Ende die IP und die Anzahl der Logins ausgibt. Eine Fehlerprüfung auf Anzahl Parameter ist Teil der Aufgabe – nicht aber Prüfung auf korrekte IPv4/IPv6 Adresse (dies ergibt aber Zusatzpunkte!)!

Die Ausgabe im obigen Fall wäre also:

```
$ ./count 134.108.43.304
```

134.108.43.30 1

Name		
3. System Calls	(7	Punkte)
a) Beschriften Sie die (SW-)Hiera	archien auf modernen UNIX/Windo	ows-Systemen:
		7
Grafische Beni	utzeroberflächen ———	
	-	2
<u></u> Γ		
Software		
Hardware		
b) Auf welche Arten kann der U	ser-Kontext auf Intel x86 System-	Calls aufrufen?
	·	
		2
c) Ein HW-Interrupt tritt auf. Wa	s passiert? Bitte den Ablauf kurz	beschreiben!
		3

Nar	me	
4.	Linux Kernel & Scheduling (20 Punkte)	
a)	Was muss die HW mind. bieten, damit Scheduling implementiert werden kann?	
1.		
		1
2.		2
b)	In Linux Kernel arbeitet der Completely Fair Scheduler (CFS). Nach welchem Prinzip und mit welcher Datenstruktur arbeitet dieser?	
		2
c)	Ein Prozess ruft einen blockierenden Systemcall (wie z.B. read() zum Lesen von Daten von der Festplatte). Was passiert? Erklären Sie die Schritte.	VFS- Kem
	1.) Systemall read (32	Culc
	2) Kernel Subsider vis profit later variants 3) Enternationale FS wird gauger die Rotte zu lesen	2
	1 C 16 holder Olar Festilatte	
	(4.) Generica solder gelight ab hier daugt es (Interrupt)=Durid schligten gelight	
d)	Welche (temporären) Informationen sollte ein Scheduler erfassen, um die Priorität eines Tasks neu zu berechnen?	
		7
		۷

Name	
e) Beurteilen Sie jede Aussagen ob diese Wahr (W) oder Falsch (F) ist:	
Aussage	W/F?
Das 1:1 Modell reduziert Komplexität, ist damit einfacher	
Der Kernel weiß beim 1:1 Modell, daß ein Thread auf einen Lock wartet	
1:1 Modell heißt ein User-Thread entspricht einem Task im OS	
In struct task{} stehen die lauffähigen und gestoppten Tasks	
Der Scheduler wählt den Task mit der längstem vruntime	
Die vruntime ist in Millisekunden (ms) aufgeteilt	

4

Die CPU-Zeit wird an die nr running Tasks verteilt

Java Anwendungen mit mehreren Threads nutzen auf Linux nur 1 Core

Ein Task läuft nachdem er auf einem core gestartet wurde nur auf

Als Nutzer kann ich nicht die Priorität meiner Prozesse setzen

kompilieren und zu installieren.

f) Geben Sie mind. vier Kommandos an, um den Linux Kernel zu konfigurieren, zu

1.	
2.	
3.	
4.	

2

diesem

g) Programmieren Sie ein minimales Kernel-Module, welches beim Laden prüft, ob der ladende Task die FPU nutzt und dies auf der Debug-Konsole ausdruckt. Die relevante Datenstruktur task_struct, sowie die PF_* Flags (beide aus include/linux/sched.h) sind:

VIII CUCII	er Speicher	(18 Punkte)
Vofür stehe		W, A und P im Deskriptor? (Zusatz: B)
Base 31:	24 G B 0 A Limit L 19:16	P P 1 Type Base 23:16
Base	Address 15:00	Segment Limit 15:00
L	16	15
2 Zusatzp	ounkte	
2 Zusatzp	ounkte	
Big Pox		ausgelesen, wer darf auf ihn schreib
Was macht zugreifen?		ausgelesen, wer darf auf ihn schreib
Was macht zugreifen? as macht er TLB?	der TLB, wann wird er	
Was macht zugreifen? as macht er TLB?	der TLB, wann wird er	·\
Was macht	der TLB, wann wird er Translation Lookoside Buller Dei john Spichwaugi 64001	·\
Was macht zugreifen? as macht er TLB? ann elesen? er chreiben?	der TLB, wann wird er Translation Lookaside Buller bei johan Speichterungi bevor ist ar erauten	·\
Was macht zugreifen? as macht er TLB? ann elesen? er chreiben?	der TLB, wann wird er Translation Lookusside Buller bei johan Speichtraugr being	·\

Name			

d) Zeichnen Sie alle Pointer für die folgende 64-Bit Virtuelle Adresse ein - bitte beachten Sie die binären Zahlenwerte (0...001 bedeutet eine 1 niederwertigsten Bit, ansonsten Nullen). Geben Sie weiterhin die Anzahl an den unterstrichenen Stellen ein.

Sollten Sie etwas korrigieren wollen, nutzen Sie bitte das Feld unten.

e) Für besonders große Server und Speicheranforderungen, wie wird diese Speicherhierarchie erweitert werden?

2

- f) Der Buddy Allokator erlaubt, sehr effizient freie Speicherbereiche zu identifizieren. Die untenstehende Ansicht entspricht der Darstellung von Wikipedia. Im initialen Zustand 1 ist der gesamte Speicher frei. Zeichnen Sie die folgenden Allokationen ein:
 - 1. Programm A allokiert 13 kB Speicher
 - 2. Programm B allokiert 5 kB Speicher
 - 3. Programm A gibt den Speicher wieder frei
 - 4. Programm C allokiert 15 kB Speicher

	4kB															
1.	24															
2.																
3.																
4.																
5.																
6.																
7.																
8.																
9.																
10.																
11.																

6. IPC & Synchronisa	on (9 Punkte)
a) Bitte geben Sie min. einen (-Funktionsaufruf je Kommunikationsmodell an:
Asynchrone Benach- richtigung eines Events:	
Gemeinsamer Speicher	
Uni-direktionaler Daten- transfer via Kernel	
Direkt in den Speicher eines Prozesses schreiben	
b) Nennen Sie Vor- und Na auszutauschen:	eile Daten zwischen Prozessen mittels Dateien
Vorteile: Dode and aller BS dela Bignale Message Queues Backets Pipe Nachteile: Odobugger alor langeam	n super
c) Nennen Sie vier Synchronis	nsmechanismen:
1. Monitage	
2. Hutexe	
·	
3. Senaphore	

7.	Virtualisierung & Echtzeit-OS (12 Punkte)	
	Warum ist die $x86$ -Architektur so besonders schwierig, effizient zu virtualisieren? (erinnern Sie sich an das Paper von VMware und die Virtualisierung mittels trapand-emulate und eine der Instruktionen).	
)) ;	struktion wie papf verhalten Sich anders De Mach Ring O oder Ring 3 es ausgeführt wird	3
	Nennen Sie drei Vorteile von Virtuellen Maschinen – und drei Nachteile:	
Vo	orteile:	
1.	Tools um viele Server/VMs schnell warten	
2.	besse Ausfall sidrahah	
3.	SINDIA (SINDIA)	
Na	achteile:	3
1.	UN MUSS SEPPROL WERDEN	
2.	erhähte Kösten aurch VM SN Lizenz	
3.	vi lustet Performante	
c)	Nennen Sie drei Vorteile von Container-Technologien (z.B. Docker):	
1.		
2.		2
3.		_
4.		
[

Sommersemester 2023

 Na	me	
d)	Bei einem System gehen m periodische Ereignisse i mit der jeweiligen Periode P_i ein. Das Ereignis i verbraucht C_i CPU-Zeit. Wann ist dieses System noch stabil und kann diese Ereignisse zeitlich verarbeiten?	
	Geben Sie die Formel an.	
		2
e)	Was heißt ein Standard Linux-Kernel (wie in der VL demonstriert) ist nicht echtzeitfähig. Was zeigte der demonstrierte Kernel?	
W	as heißt nicht echtzeitfähig:	
W	as zeigte dieser Kernel:	1
		2