Point-Set Topology

HECHEN HU

December 29, 2017

Contents

1	Basic Set Theory			
	1.1	Sets a	and Operations on Them	
		1.1.1	Naive Set Theory	1
		1.1.2	ZFC: Zermelo-Fraenkel Axioms and Axiom of Choice .	1
		1.1.3	The Cardinality of a Set(Cardinal Numbers)	2
		1.1.4	Operations on Sets	3
	1.2	Countable and Uncountable Sets		3
		1.2.1	The Cardinality of the Continuum	5

iv CONTENTS

1

Basic Set Theory

1.1 Sets and Operations on Them

1.1.1 Naive Set Theory

- 10. A set may consist of any distinguishable objects $(x \in A \Rightarrow \exists! x \in A)$
- 2^0 . A set is unambiguously determined by the collection of objects that comprise it.
- 3^0 . Any property defines the set of objects having that property $(A = \{x | P(x)\} \Rightarrow P(A))$.

However, this will lead to Russell's Paradox:

Let's have $P(M) := M \notin M$

Consider the class $K = \{M|P(M)\}$. If so K is not a set, since whether P(K) is true or false, contradiction arises.

1.1.2 ZFC: Zermelo-Fraenkel Axioms and Axiom of Choice

- 1⁰. (Axiom of Extensionality) Sets A and B are equal iff they have the same elements. $(A = B) \Leftrightarrow (\forall x ((x \in A) \Leftrightarrow (x \in B)))$
- 2^0 . (Axiom of Seperation) To any set A and any property P there corresponds a set B whose elements are those elements of A, and only those, having property P(if A is a set, then $B = \{x \in A | P(x)\}$ is also a set).
- 30. (Union Axiom) For any set M whose elements are sets there exists a set $\bigcup M$, called the union of M and consisting of those elements and only those that belong to some element of M ($x \in \bigcup M \Leftrightarrow \exists X((X \in M) \land (x \in X))$)

Similarly, the intersection of the set M is defined as:

$$\bigcap M \coloneqq \{x \in \bigcup M | \forall X ((X \in M) \Rightarrow (x \in X))\}$$

- 4^0 (Pairing Axiom) For any sets X and Y there exists a set Z such that X and Y are its only elements.
- 5^0 (Power Set Axiom) For any set X there exists a set P(X) having each subset of X as an element, and having no other elements.

Definition. The successor X^+ of the set X is $X^+ = X \cup \{X\}$.

Definition. An *inductive* set is a set that \emptyset is one of its elements and the successor of each of its elements as belongs to it.

60 (Axiom of Infinity) There exist inductive sets (Example: \mathbb{N}_0). 70 (Axiom of Replacement) Let F(x,y) be a statement (a formula) such that for every $x_0 \in X$ there exists a unique object y_0 such that $F(x_0, y_0)$ is true. Then the objects y for which there exists an element $x \in X$ such that F(x,y) is true form a set.

And finally, an axiom that is independent of ZF.

Definition. A choice function is a function f, defined on a collection X of nonempty sets, such that for every set A in X, f(A) is an element of A.

80 (Axiom of Choice/Zermelo's Axiom) For any set X of nonempty sets, there exists a choice function f defined on $X.(\forall X[\varnothing \notin X \Rightarrow \exists f: X \mapsto \bigcup X \quad \forall A \in X(f(A) \in A)])$

1.1.3 The Cardinality of a Set(Cardinal Numbers)

Definition. The set X is said to be *equipollent* to the set Y if there exists a bijective mapping of X onto Y (then $X \sim Y$).

Definition. Cardinality is a measure of the number of elements of the set. If $X \sim Y$, we write card $X = \operatorname{card} Y$.

If X is equipollent to some subset of Y, we say card $X \leq \operatorname{card} Y$, thus

$$(\operatorname{card} X \leqslant \operatorname{card} Y) := \exists Z \subset Y (\operatorname{card} X = \operatorname{card} Z)$$

A set is called *finite* if it is not equipollent to any proper subset of itself; otherwise it is called *infinite*.

It has the properties below:

 $1^{0} \quad (\operatorname{card} X \leqslant \operatorname{card} Y) \wedge (\operatorname{card} Y \leqslant \operatorname{card} Z) \Rightarrow (\operatorname{card} X \leqslant \operatorname{card} Z).$ $2^{0} \quad (\operatorname{card} X \leqslant \operatorname{card} Y) \wedge (\operatorname{card} Y \leqslant \operatorname{card} X) \Rightarrow (\operatorname{card} X = \operatorname{card} Y)(\operatorname{The} X)$

Schröder-Bernstein theorem). $3^0 \quad \forall X \forall Y (\operatorname{card} X \leqslant \operatorname{card} Y) \lor (\operatorname{card} Y \leqslant \operatorname{card} X)(\operatorname{Cantor's theorem}).$

We say $\operatorname{card} X < \operatorname{card} Y$ if $(\operatorname{card} X \leq \operatorname{card} Y) \wedge (\operatorname{card} X \neq \operatorname{card} Y)$. let \emptyset be the empty set and P(X) the set of all subsets(thus, the power set) of the set X. Then:

Theorem 1.1.1. $\operatorname{card} X < \operatorname{card} P(X)$

Proof. The assertion is obvious for the empty set, and we shall assume that $X \neq \emptyset$.

Since P(X) contains all the one-element subsets of X, $cardX \leq cardP(X)$. Suppose, contrary to the assertion, that there exists a bijective mapping $f: X \to P(X)$. Let set $A = \{x \in X : x \notin f(x)\}$ consisting of the elements $x \in X$ that do not belong to the set $f(x) \in P(X)$ assigned to them by the bijection. Because $A \in P(X)$, there exists $a \in X$ such that f(a) = A. For the element a the relation $a \in A$ or $a \notin A$ is impossible by the definition of A(Similar to Russell's Paradox).

1.1.4 Operations on Sets

Notation	Meaning	Definition
$A \subset B$	A is a subset of B	$\forall x ((x \in A) \Rightarrow (x \in B))$
A = B	A equals to B	$(A \subset B) \land (B \subset A)$
Ø	Empty Set	$\{x x\neq x\}$
$A \cup B$	The union of A and B	$\{x x\in A\vee x\in B\}$
$A \cap B$	The intersection of A and B	$\{x x\in A\land x\in B\}$
$A \setminus B$	The difference between A and B	$\{x x\in A\land x\notin B\}$
$C_M A$	The complement of A in M	$\{x x\in M \land x\notin A\}whereA\subset M$
$A \times B$	The Cartesian Product of A and B	$\{(x,y) x\in A\wedge y\in B\}$
A^2	$A \times A$	

In the ordered pair $z = (x_1, x_2)$ where $Z = X_1 \times X_2, z \in Z, x_1 \in X_1, x_2 \in X_2, x_1$ is called the *first projection* of the pair z and denoted pr₁z while x_2 is called the *second projection* of the pair z and denoted pr₂z.

1.2 Countable and Uncountable Sets

Definition. A set X is *countable* if it is equipollent with the set \mathbb{N} of natural numbers, that is, card $X = \operatorname{card} \mathbb{N}$.

Proposition. An infinite subset of a countable set is countable.

Proof. Let's consider a countable set E. There is a minimal element of $E_1 := E$, which we assign to $1 \in \mathbb{N}$ and denote $e_1 \in E$. E is infinite, so $E_2 := E \setminus e_1$ is not empty. Following the principle of induction, we can

construct a injective mapping from $\{1, 2...\}$ to $\{e_1, e_2, ...\}$.

Now we have to prove that this mapping is also surjective. Suppose the contrary, that an element $e \in E$ does not have a natural number assigned to it. The set $K = \{n \in E | n \le e\}$ is finite, since it's a subset of $\mathbb N$ bounded both from below and above. According to our previous construction, we assign 1 to $\min K$, denoted as e_1 , and we can acquire a sequence $e_1, e_2, \dots e_{k=\operatorname{card} K}$. But $e_{k=\operatorname{card} K}$ is $\max K$, and because $e \in K \land (\forall n \in K(n \le e))$, $e = \max K$. Therefore $e = e_k$, or otherwise it will contradict the uniqueness of maximal element.

Proposition. The Union of the sets of a finite or countable system of countable sets is also a countable set.

Proof. Let $X_1, X_2, ..., X_n, ...$ is a countable system of sets and each set $X_m = \{x_m^1, ..., x_m^n, ...\}$ is itself countable. Since $\forall m \in \mathbb{N}(\operatorname{card}(X = \bigcup_{n \in \mathbb{N}} X_n) \geq X_m)$, X is an infinite set. The ordered pair (m, n) identifies the element $x_m^n \in X_m$. We can construct a mapping, like $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N} := (m, n) \to \frac{(m+n-2)(m+n-1)}{2} + m$, such that it is bijective. Thus X is countable. Then because $\operatorname{card} X \leq \operatorname{card} \mathbb{N}$ and the fact that X is infinite, we conclude that $\operatorname{card} X = \operatorname{card} \mathbb{N}$.

If it is known that a set is either finite or countable, we say it is at most $countable(\operatorname{card} X \leq \mathbb{N})$.

Corollary. card $\mathbb{Z} = \operatorname{card} \mathbb{N}$

Corollary. card $\mathbb{N}^2 = \operatorname{card} \mathbb{N}$ (The direct product of countable sets is countable).

Corollary. card $\mathbb{Q} = \operatorname{card} \mathbb{N}$, that is, the set of rational numbers is countable.

Proof. Let (m,n) denote a rational number $\frac{m}{n}$. It is known that the pair (m,n) and (m',n') define the same number iff they are proportional. Thus \mathbb{Q} is equipollent to some infinite subset of the set $\mathbb{Z} \times \mathbb{Z}$. Since $\operatorname{card} \mathbb{Z}^2 = \operatorname{card} \mathbb{N}$, we can conclude that $\operatorname{card} \mathbb{Q} = \operatorname{card} \mathbb{N}$.

Corollary. The set of algebraic numbers is countable.

Proof. It can be observed that $\operatorname{card} \mathbb{Q} \times \mathbb{Q} = \operatorname{card} \mathbb{N}$. By the principle of induction, $\forall k \in \mathbb{N}(\operatorname{card} \mathbb{Q}^k = \operatorname{card} \mathbb{N})$. Let $r \in \mathbb{Q}^k$ be an ordered set $(r_1, r_2, ..., r_k)$ consists of k rational numbers.

An algebraic equation of degree k with rational coefficient can be writtne in the reduced form $x^k + r_1 x^{k-1} + \cdots + r_k = 0$. Thus there are as many different algebraic equations of degree k as there are different ordered sets

 $(r_1,...,r_k)$ of rational numbers, that is, a countable set.

The algebraic equation with rational coefficients (of arbitrary degree) is the union of sets consisting of algebraic equation (of a fixed degree) which is countable, and this union is countable. Each such equation has only a finite number of roots. Hence the set of algebraic numbers is at most countable. But it is infinite, and therefore countable.

1.2.1 The Cardinality of the Continuum

Definition. The set \mathbb{R} of real numbers is also called the *number continuum* (from Latin *continuum*, meaning continuous, or solid), and its cardinality the *cardinality of the continuum*.

Theorem 1.2.1 (Cantor). card $\mathbb{N} < \operatorname{card} \mathbb{R}$

Proof by Nested Interval Lemma. It is sufficient to show that even [0,1] in an uncountable set.

Assume it is countable, that is, can be written as a sequence $x_1, x_2, ..., x_n,$ Take x_1 on $I_0 = [0, 1]$, and find I_1 such that $x_1 \notin I_1$. Then construct the nested interval I_n such that $x_{n+1} \notin I_{n+1}$ and $|I_n| > 0$. It follows the nested interval lemma that there exist a point $c \in [0, 1]$ belonging to all I_n . But by our construction, $c \in \mathbb{R}$ and c cannot be any point of the sequence $x_1, x_2, ..., x_n,$

Proof by Cantor's Diagonal Argument. Let's first consider an the set L and write out the infinite sequence of distinct binary numbers in it which has the form:

$$s1 = (0, 0, 0, 0, 0, 0, 0, ...)$$

$$s2 = (1, 1, 1, 1, 1, 1, 1, ...)$$
(1.1)

$$s3 = (0, 1, 0, 1, 0, 1, 0, \dots)$$

$$(1.3)$$

$$s4 = (1, 0, 1, 0, 1, 0, 1, \dots)$$

$$(1.4)$$

$$\mathbf{54} - (1, 0, 1, 0, 1, 0, 1, \dots) \tag{1.4}$$

$$s5 = (1, 1, 0, 1, 0, 1, 1, \dots) \tag{1.5}$$

$$s6 = (0, 0, 1, 1, 0, 1, 1, \dots) (1.6)$$

$$\dots$$
 (1.8)

(1.9)

(1.7)

We then construut a number s such that its first digit is the complementary

s7 = (1, 0, 0, 0, 1, 0, 0, ...)

(swapping 0s for 1s and vice versa) of the first digit of s_1 and etc.

$$s1 = (\mathbf{0}, 0, 0, 0, 0, 0, 0, \dots) \tag{1.10}$$

$$s2 = (1, 1, 1, 1, 1, 1, 1, \dots) \tag{1.11}$$

$$s3 = (0, 1, \mathbf{0}, 1, 0, 1, 0, \dots) \tag{1.12}$$

$$s4 = (1, 0, 1, \mathbf{0}, 1, 0, 1, \dots) \tag{1.13}$$

$$s5 = (1, 1, 0, 1, \mathbf{0}, 1, 1, \dots)$$
 (1.14)

$$s6 = (0, 0, 1, 1, 0, 1, 1, \dots) \tag{1.15}$$

$$s7 = (1, 0, 0, 0, 1, 0, \mathbf{0}, \dots) \tag{1.16}$$

$$\dots$$
 (1.17)

$$s = (1, 0, 1, 1, 1, 0, 1, ..)$$
(1.18)

By construction s differs from s_n at the nth digit, so s is not in this sequence, and thus L is uncountable.

We can now define a mapping $f: L \to \mathbb{R}. f(s_n) = r_n \in \mathbb{R}$ means that s_n and r_n have the same digit while r_n is under base 10 and s_n is under base 2. For $s_n \neq s_m \Rightarrow (r_n = f(s_n)) \neq (r_m = f(s_m))$, f is injective, and with the fact that all s_n corresponds to a r_n together give us card $f(L) = \operatorname{card} L$. Since f(L) is a subset of \mathbb{R} , we can see that \mathbb{R} is also uncountable.

The cardinality of \mathbb{R} is often denotes as \mathfrak{c} .

Corollary. $\mathbb{Q} \neq \mathbb{R}$, and so irrational numbers exist.

Corollary. There exist transcendental numbers, since the set of algebraic numbers is countable.

Example 1.1. The cardinality of P(X), which is the power set of X, satisfy that if card X = n, card $P(X) = 2^n$.

Proof. We can use the principle of induction to complete the proof. If n = 1, $X = \{x\}$, then $P(X) = \{\emptyset, X\}$, then card $P(X) = 2^1$.

Now if $n \in \mathbb{N} \Rightarrow \operatorname{card} P(X) = 2^n$, let X be a set that has x as one of its elements and has the cardinality of n+1. Therefore $Y = X \setminus \{x\}$ has n elements. We can divide P(X) into two parts: the ones containing x and the ones don't. If $x \in A \subset P(X)$, then $A \setminus \{x\} \subset P(Y)$ and vice versa. Thus we can set up a bijection between P(Y) and the elements in P(X) that contains x. Similarly, we can clearly see that a bijection between the subsets of P(X) that does not contains x and P(Y). Thus $\operatorname{card} P(X) = 2^n + 2^n = 2^{n+1}$, and we complete the proof.