Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

GitHub проекта

Автор в ВК

Внимание: данный документ не поддерживается и поддерживаться не будет! Сообщения об ошибках НЕ рассматриваются, пулл реквесты НЕ принимаются! Если Вы хотите поддерживать этот документ - форкните проект на Github. Благодарю за понимание.

Содержание

1	нормальные подгруппы и идеалы. Свойства гомоморфиз- ма	3
2	Существование эпиморфизма групп с данным ядром	4
3	Существование эпиморфизма колец с данным ядром	4
4	Теорема о гомоморфизме	5
5	Смежные по подгруппе, Лагранж	6
6	Взаимно простые идеалы, их пересечение и произведение	7
7	Китайская теорема об остатках	8
8	Простые и максимальные идеалы	9
9	Неприводимые элементы и простота главного идеала	10
10	Факториальные кольца. Достаточное условие факториальности	11
11	Факториальность кольца главных идеалов	12
12	Евклидовы кольца и кольца главных идеалов	13
13	НОД и его линейное представление	14
14	Функция Эйлера	15
15	Порядок элемента группы, теорема Эйлера	16
16	Экспонента группы, теорема Кармайкла	17
17	Многочлены. Теорема о делении с остатком	18

1 Нормальные подгруппы и идеалы. Свойства гомоморфизма

Нормальная подгруппа – подгруппа, для которой выполняется $\forall g \in G, h \in H$ верно $ghg^{-1} \in H$ или, аналогично, gH = Hg.

В абелевой группе все подгруппы нормальные.

Идеал — аддитивная подгруппа I кольца R, для которой выполняется $\forall r \in R, i \in I$ верно $ri \in I$ (левый идеал), $ir \in I$ (правый идеал). Идеал выдерживает умножение на элементы кольца.

Гомоморфизм групп — отображение группы (G, *) в группу (H, #), такое, что f(g * g') = f(g) # f(g').

Гомоморфизм колец — гомоморфизм, сохраняющий операции (т.е. переводящий сложение в сложение, умножение в умножение).

Свойства гомоморфизма групп:

- 1) $f(e_x) = e_y$ (рассмотреть перевод произведения двух $f(e_x)$ в одну $f(e_x)$ и домножить на обратный);
- 2) $f(a^{-1}) = (f(a))^{-1}$ (представить перемножение элемента и обратного, получится e, дальше понятно);

Свойства гомоморфизма колец:

- 1) f(0) = 0;
- 2) f(-a) = -f(a);
- 3) f(a+b) = f(a) + f(b);
- 4) f(ab) = f(a)f(b).

Образ гомоморфизма — его образ как функции.

Свойства:

Образ гомоморфизма групп всегда является подгруппой. Доказывается на изи, потому что гомоморфизм сохраняет операции, нейтральный и обратный.

Ядро гомоморфизма — все такие элементы, которые гомоморфизм обращает в нейтральный.

Свойства:

- 1) Ядро гомоморфизма всегда содержит нейтральный элемент (так как гомоморфизм переводит нейтральный в нейтральный).
- 2) Ядро гомоморфизма групп/колец является нормальной подгруппой/двусторонним идеалом (гомоморфим $g^{-1}hg$).

2 Существование эпиморфизма групп с данным ядром

Теорема: $H \unlhd G$, группы по умножению. Тогда существует группа F и эпиморфизм φ , такой, что $\ker \varphi = H$.

Доказательство:

Задаем $F = \{gH | g \in G\}, \ \varphi(g) = gH, \$ обратная $\varphi^{-1} = gH = Hg.$

Проверяем корректность операций $(ahbh \in abH)$.

Доказываем, что F — группа (ассоциативность непосредственно, нейтральный H, так как gHH=gH, обратный аналогично через нейтральный eH и предположение существования g^1H).

Доказываем, что $H-\ker\varphi$: берем элемент из H, доказываем, что он лежит в ядре $(\varphi(h)=hH=H)$. Затем берем какой-то элемент $g\in\ker\varphi$, гомоморфируем, получаем $gH=H\Rightarrow gh_1=h_2\Rightarrow g=h_1^{-1}h_2\Rightarrow g\in H$. То есть любой элемент из ядра лежит в H следовательно, $H=\ker\varphi$.

Говорим, что структура G/H называется факторгруппой.

3 Существование эпиморфизма колец с данным ядром

Теорема: I — двусторонний идеал, R и A — кольца. Тогда существует эпиморфизм с ядром I.

Доказательство:

Определяем $\varphi(a) = a + I$ и $\varphi(b) = b + I$. Проверяем корректность при сложении и умножении, при этом не забываем о том, что идеал выдерживает умножение на элементы кольца.

Аналогично группам доказываем, что I нейтральный по сложению в A.

Также аналогично доказываем, что $I = \ker \varphi$.

Не забываем сказать, что R/I — факторкольцо.

4 Теорема о гомоморфизме

Теорема: G, G', G'' — группы. $f: G \to G'$ — эпиморфизм, $g: G \to G''$ — гомоморфизм. Если $\ker f = \ker g$, тогда существует единственный мономорфизм $h: G' \to G''$, такой, что $g = h \circ f$.

Если g — эпиморфизм, то h — гомоморфизм.

Доказательство: задаем $x' \in G'$, тогда в силу сюръективности существует $x \in G$, являющийся его прообразом. Задаем h(x') = g(x), проверяем корректность данного определения, взяв $y \in G$ такой, что f(y) = x'. Тогда $f(y) = f(x) \Rightarrow y = xt, t \in \ker f \Rightarrow g(y) = g(t)g(x) = g(x)$, что показывает корректность определения.

Доказываем, что h — гомоморфизм. Берем $x', z' \in G'$, тогда есть $x, z \in G$. Тогда, в силу гомоморфности f, g: f(xz) = f(x)f(z), h(xz) = g(xz) = g(x)g(z) = h(x')h(z'), то есть h — гомоморфизм. Положим теперь f(x') = h(z') и аналогично проверке корректности получаем x' = f(x) = f(z)f(t) = f(z) = z', то есть h — инъекция.

Если $g = h \circ f$ — сюрьекция, то h также сюръекция, а, следовательно, биекция.

Теорема о гомоморфизме: Гомоморфный образ группы изоморфен факторгруппе по ядру гомоморфизма.

Доказательство: функция f, задающая образ, сюръективна по определению. Она - эпиморфизм с ядром $\ker f$ по теореме о существовании эпиморфизма с данным ядром. Тогда f обладает теми же свойствами, что и группы в теореме выше, следовательно, существует изоморфизм $Imf\cong G/\ker f$.

5 Смежные по подгруппе, Лагранж

Смежный класс $-gH = \{gh|h \in H\}$ для некоторого $g \in G$.

Лемма: Смежные классы равномощны подгруппе, по которой образованы.

Доказательство: $f: H \to gH$ — биекция. Сюръекция по определению, инъекция, т.к. из $gh_1 = gh_2$ следует $h_1 = h_2$.

Лемма: Смежные классы либо не пересекаются, либо совпадают.

Доказательство: Предполагаем, что существует $g \in g_1H \cap g_2H$, тогда $g = g_1h_1 = g_2h_2 \Leftrightarrow g_1 = g_2h_1^{-1}h_2 \Rightarrow g_1H \subset g_2H$, так же в обратную сторону, тогда смежные классы равны.

Теорема: Порядок подгруппы является делителем порядка группы. Доказательство: Вводим левые смежные классы по подгруппе, их непересекающееся объединение составляет группу, следовательно, порядок группы равен сумме порядков каждого смежного класса, классы равномощны.

6 Взаимно простые идеалы, их пересечение и произведение

Идеал I — **простой**, если из $ab \in I$ следует $a \in I$ или $b \in I$.

Идеалы называются взаимно простыми, если $I_1+I_2=R$. При этом, соответственно, найдутся такие $i_1\in I_1, i_2\in I_2$, что $i_1+i_2=1$.

Лемма: Если все идеалы $I_1,...,I_n$ — попарно взаимно простые, то $I_1\cap...\cap I_n=I_1\cdot...\cdot I_n$. Доказывается по индукции, в обе стороны:

$$I_1 + 1 \dots + I_n = I_1 \cdot \dots \cdot I_n$$
. Доказывается по индукции, в оое стороны:
$$\left\{ \forall i_1 \in I_1 \ i_1 I_2 \subseteq I_2 \ \forall i_2 \in I_2 \ i_2 I_1 \subseteq I_1 \Rightarrow \left\{ I_1 I_2 \subseteq I_2 \ I_2 I_1 \subseteq I_1 \Rightarrow I_1 I_2 \subseteq I_1 \cdot I_2 \right\} \right\}$$

Обратно: берем $i_1 \in I_1, i_2 \in I_2$, для них верно, что $i_1 + i_2 = 1$, берем $x \in I_1 \cap I_2$, для него $x = x \cdot 1 = x(i_1 + i_2) = xi_1 + xi_2$. Это элементы идеалов, следовательно, x лежит в сумме идеалов, а $I_2I_1 + I_1I_2 = I_1I_2$. Значит, любой элемент пересечения лежит в произведении, следовательно, пересечение равно произведению.

Переходим по индукции с использованием

Леммы: Если I_1 взаимно прост с $I_2...,I_k$, то он взаимно прост с их произведением.

Доказываем опять по индукции, берем k=3, расписываем $R=I_1+I_2$ и $=I_2+I_3$, затем $I_1+I_2=I_1+I_2R=I_1+I_2(I_2+I_3)=I_1+I_2I_3=R$. Индукция по $k\colon I_1\cdot\ldots\cdot I_k=R$ и $I_{k+1}+J=R$, перемножаем, все классно Возвращаемся к предыдущей лемме, доказываем для нее ИП.

7 Китайская теорема об остатках

Теорема: R — коммутативное с 1. Если $I_1,...,I_n$ — взаимно простые, то $R/I_1 \cdot ... \cdot I_n \cong \bigoplus_{i=1}^n R/I_i$.

Доказательство по индукции для k=2. $R/I_1\cdot I_2\cong R/I_1\oplus R/I_2$. Строим гомоморфизм $\varphi:R\to R/I_1\oplus R/I_2$. $\varphi(r)=(r+I_1,r+I_2)$. Проверим, что это гомоморфизм. Затем говорим, что, раз идеалы взаимно просты, то $I_1+I_2=R\Rightarrow i_1+i_2=1$. Тогда прообразом элемента $(x+I_1,y+I_2)$ будет являться элемент xi_1+yi_2 . Доказываем это, взяв гомоморфизм (не забываем, что элементы вида $xi_1\in I_1!!!$). Получаем, что это верно. Таким образом, имеем два эпиморфизма, первый мы доказали, второй очевиден по теореме о существовании эпиморфизма с данным ядром. По теореме о гомоморфизме между их образами существует изоморфизм.

Индукция осуществляется аналогично, $R/I_1 \cdot ... \cdot I_{n+1} \cong R/I_1 \cdot ... \cdot I_n \oplus R/I_{n+1}$.

8 Простые и максимальные идеалы

Идеал I — **простой**, если из $ab \in I$ следует, что либо $a \in I$, либо $b \in I$.

Максимальный идеал — идеал, который не содержится ни в каком другом идеале.

Лемма: Для любого идеала существует максимальный идеал, который его содержит. (без доказательства)

Лемма: Любой максимальный идеал является простым.

Доказательство через расписывание определения простого идеала. Для определенности говорим, что $a \notin I$, значит, должно выполняться $b \in I$. Затем рассматриваем структуру I + aR = R. Домножаем на b с обоих сторон, получаем хренюшку bR = bI + baR, откуда следует, что $bI \subseteq I$; $ba \in I \Rightarrow baR \subseteq I$; $b \in bR \Rightarrow b \in bI + baR \subseteq I \Rightarrow b \in I$

Лемма:

- 1) Идеал I простой $\Leftrightarrow R/I$ область целостности
- 2) Идеал I простой $\Leftrightarrow R/I$ поле.

Доказательство 1 вправо: допускаем, что R/I — не область целостности, следовательно, существуют $a,b \neq I, a,b \in R/I$, такие, что ab = eI. Расписываем ab = I, умножаем, получаем $r_1r_2 + I \in I \Rightarrow r_1r_2 \in I$, что по определению простого идеала дает $a \in I$ или $b \in I$, что противоречит тому, что R/I — не область целостности. Ура.

Доказательство 1 влево: говорим, что если ab=I, то либо a=I, либо b=I. Расписываем их, получаем что $r_1\in I$ или $r_2\in I$, затем расписываем $ab=I\Rightarrow r_1r_2\in I$.

Доказательство 2 вправо: расписываем a,b, получаем $r_1r_2+I=R$, так как I — максимальный, $r_1r_2+i=1$, добавим и вычтем с каждой стороны по I, чтобы избавиться от i, получим, что $r_1r_2=1$, то есть любой элемент имеет обратный.

Доказательство 2 влево: расписываем a,b, перемножаем, приравниваем к 1, так как каждый элемент имеет обратный, откуда следует, что $r_1r_2+I=1$, значит, I — максимальный.

9 Неприводимые элементы и простота главного идеала

Элементы $a,b\in R$ называются **ассоциированными**, если $a\in bR$ и $b\in aR$, или, иначе говоря, a делит b и b делит a, то есть они отличаются на обратимый элемент.

Элемент $p \in R$ называется **неприводимым**, если из p = ab следует, что либо a ассоциировано с p, либо b ассоциировано с p.

Элемент p простой, если pR — простой идеал.

Лемма: если pR простой идеал, то p неприводим.

Доказательство: ab=p, либо $a\in pR$, либо $b\in pR$ по свойству простых идеалов. Пусть $a\in pR$. Тогда $a=pr\Leftrightarrow p=ar^{-1}\Rightarrow p\in aR$. Значит, p ассоциировано с a.

Главный идеал — идеал, образованный одним элементом, идеал вида aR.

Кольцо главных идеалов — кольцо, в котором любой идеал главный (кольцо целых чисел является кольцом главных идеалов).

Лемма: R — кольцо главных идеалов, область целостности. Если p неприводим, то pR простой.

Доказательство: если $ab \in pR$ и pR простой, то $a \in pR$ или $b \in pR$. Предположим, что это не так, и оба элемента не лежат в pR. Тогда aR + pR = a'R, отсюда p = a'r. Расписываем p по условию неприводимости, говорим, что либо a', либо r обратимы. Если обратим a'R = R. Если обратим r, то $a' = pr^{-1} \Rightarrow prr^{-1} = a'r \Rightarrow pR = a'R$. То есть p ассоциирован с a', следовательно, $a \in pR$, противоречие, значит, верно что a'R = R. Аналогично с b. R = aR + pR = a(bR + pR) + pR = abR + pR = pR. pR = R, значит, p обратимый, противоречие условию, следовательно, $a \in pR$ или $p \in pR$.

10 Факториальные кольца. Достаточное условие факториальности

Кольцо R факториально, если существуют неприводимые элементы $p_1,...,p_m \in R$ и обратимый элемент $\epsilon \in R$, такие, что $r = \epsilon p_1...p_m$ и если $\epsilon p_1...p_m = \delta q_1...q_n$, то m = n и существует такая перестановка σ , что p_i ассоциировано с $q_{\sigma}(i)$.

Лемма: Пусть R — кольцо, область целостности, в которой каждый элемент порождает простой идеал. Если каждый необратимый раскладывается в произведение неприводимых, то кольцо R факториально.

Доказательство: говорим, что $\epsilon p_1...p_m=\theta q_1...q_n$. Индукцией по $\min(m,n)$ докажем, что m=n и p_i ассоциировано с $q_{\sigma(i)}$. База индукции n=0, $\epsilon=\theta q_1...q_m$ тоже обратимо, тогда $\epsilon=\theta$, значит, m=n=0.

ИП: p_mR — простой, тогда $\exists l$, т.ч. $q_l=p_mR\Rightarrow\exists \delta$, т.ч. $q_l=\delta p_m$, причем, т.к. q_l неприводим, то δ обратим. Подставим это в равенство для m: $\theta q_1...q_n=\theta q_1...q_{l-1}p_n\delta q_{l+1}...q_m=\epsilon p_1...p_n$. Сократим на p_n , для этой конструкции будет выполняться условие индукции, значит, m=n и искомая перестановка $\sigma(m)=l$.

11 Факториальность кольца главных идеалов

Теорема: Область главных идеалов является факториальным кольцом

Доказательство: пусть $r \in R$ — необратимый. Идеал $rR \subseteq p_1R$, где p_1R максимальный, значит, $r = r_1p_1$, при этом p_1 неприводим. Будем раскладывать так каждый r_i . Если на одном из этапов r_i обратим, то теорема доказана. Иначе рассмотрим объединение идеалов $I = \cup r_iR$, он идеал, значит, I = qR. Тогда $q \in r_jR$, так как I — объединение всех идеалов вида r_iR . То есть $qR \subseteq r_jR$, но одновременно $r_jR \subseteq qR$. Значит, r_j ассоциировано с q. Еще $r_jR \subseteq r_{j+1}R$ и $r_{j+1}R \subseteq qR = r_jR$. Тогда $r_{j+1}R = qR$, $r_{j+1}R$ ассоциировано с r_jR , тогда они отличаются на обратимый. Мы знаем, что $r_j = r_{j+1}p_{j+1}$, значит, либо p_{j+1} обратим, либо r_{j+1} обратим. p_{j+1} неприводим, и, значит, необратим, следовательно, r_{j+1} обратим.

12 Евклидовы кольца и кольца главных идеалов

R — область целостности. Если $\exists f: R \to \mathbb{N} \cup \{-\infty\}$, обладающая следующими свойствам:

- 1) $f(0) < f(r) \forall r \in R \setminus \{0\};$
- $2) \; \forall a \neq 0$ и $b \neq 0, \, ab \in R$ существуют такие r,q, что a = bq + r, причем f(r) < f(b),

то такое кольцо называется **евклидовым**, а функция - евклидовой нормой.

Теорема: Евклидово кольцо является кольцом главных идеалов.

Доказательство: берем нетривиальный идеал, берем из него такое b, чтобы его евклидова норма была минимальной. Затем берем $a \in I$, тогда, по условию евклидового кольца, выполняется a = bq + r, (такие q и r существуют), откуда r = a - bq, оба слагаемых лежат в идеале, значит, r лежит в идеале и его евклидова норма 0, т.к. у b евклидова норма минимальна. Тогда a делит b и, следовательно, $I \subseteq bR$, но $b \in I \Rightarrow bR \subseteq I \Rightarrow bR = I$, значит, любой идеал в R — главный.

13 НОД и его линейное представление

Элемент $d=\gcd(a,b),$ если он делит и a, и b и он делит любой другой общий делитель a и b.

Таким образом, $aR + bR \subseteq dR$.

Теорема: R — кольцо главных идеалов. $\forall a,b \in R \ \exists x,y \in R$, такие, что $ax+by=\gcd(a,b)$.

Доказательство: на изи. aR+bR=dR — главный, следовательно, $\exists x\in R,y\in R,$ такие, что d=ax+by.

Функция Эйлера 14

Функция Эйлера от n — количество элементов от 1 до n, которые взаимно просты с n .

 $\mathbf{\Pi}$ емма: $\gcd(a,n)=d, aZ+n\mathbb{Z}$ — максимальный, тогда $a\mathbb{Z}+n\mathbb{Z}=d\mathbb{Z}$. Доказываем от противного, предполагая, что $a\mathbb{Z} + n\mathbb{Z} = b\mathbb{Z}$.

Тогда b делится на a и n, если a делится на c и b делится на c, то aR и bR подмножества cR, то есть $bR \subseteq cR$, то есть b делится на c, следовательно, b=d.

Свойства функции Эйлера:

1) Если gcd(a,b) = 1, то $\varphi(ab) = \varphi(a)\varphi(b)$.

Доказательство: aR + bR = R. Применяем KTO, $R/abR \cong R/aR \oplus$ $R/bR \Rightarrow (R/abR)^* \cong (R/aR)^* \times (R/bR)^*$, И тогда получаем, что $\varphi(a,b) =$ $(R/abR)^*$ (по определению), $\varphi(a) = (R/aR)^*$, $\varphi(b) = (R/bR)^*$, следовательно, $\varphi(a)\varphi(b) = \varphi(ab)$.

2)
$$\varphi(\prod_{i=1}^{m}(p_i^{k_i})) = \prod_{i=1}^{m}\varphi(p_i^{k_i}).$$

2) $\varphi(\prod_{i=1}^m(p_i^{k_i}))=\prod_{i=1}^m\varphi(p_i^{k_i}).$ Доказательство: индукция по количеству сомножителей. Индукцион- $^{m-1}$ ный переход раскрыть по предыдущему свойству как $\varphi(p_i^{k_m})\cdot\prod_{i=1}^{m-1}\varphi(p_i^{k_i})=m$.

$$\prod_{i=1}^{m} \varphi(p_i^{k_i}).$$
3) $\varphi(p^k) = p^k - p^{k-1}.$

Доказательство: $gcd(m, p^k) \neq 1$, следовательно, m делит p. Таких mот 1 до p^k будет в p раз меньше, так как каждое число m имеет с p^k общий делитель.

15 Порядок элемента группы, теорема Эйлера

Пусть $a \in \mathbb{Z}_n^*$; $a^m = 1 \pmod{n}$.

< a > - циклическая группа, порожденная элементом a.

Порядком элемента a называется наименьшая степень, в которую надо возвести a, чтобы получить 1. Если такого числа не существует, то порядок группы равен бесконечности. Обозначается ord a.

Лемма: $\varphi(n) = |(\mathbb{Z}_n)^*|$.

Доказательство: пусть a из группы. Для него существует такой a', что $aa'=1(mod\ n)$, значит, существует x, такой, что $xn=aa'-1\Rightarrow aa'-xn=1$, отсюда $\gcd(a,n)=1$, по определению функции Эйлера она — количество элементов взаимно простых с n, а такие в нашей группе все, так как доказанное условие выполняется для любого a.

Лемма: $a^k \equiv 1 \Leftrightarrow k$: ord a.

Доказательство: Если k делит ord a, то $k \ge \operatorname{ord} a \Rightarrow k = (\operatorname{ord} a)b + r$, где $0 < r < \operatorname{ord} a$.

Перепишем как $a^{(\operatorname{ord} a)b+r} = 1 \Rightarrow (a^{\operatorname{ord} a})^b \cdot a^r = 1 \Rightarrow 1^b a^r = 1 \Rightarrow a^r = 1 \Rightarrow r = 0 \Rightarrow k$: ord a.

В обратную сторону: k: ord $a \Rightarrow k = (\text{ord } a)b \Rightarrow (a^{\text{ord } a})^b = 1$.

Следствие из теоремы Лагранжа:

Т.к. ord $a=|< a>|,\ {\rm a}< a>-$ подгруппа в G, то |G| делится на ord a.

Теорема Эйлера:

Если gcd(a, n) = 1, то $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Доказательство: По следствию из теоремы Лагранжа $|(Z_n)^*|$: ord $a \Rightarrow \varphi(n)$: ord $a \Rightarrow \varphi(n) = (\text{ord } a)b \Rightarrow (a^{\text{ord } a})^b = 1$.

16 Экспонента группы, теорема Кармайкла

Экспонента группы — наименьшее натуральное число d, такое, что $\forall g \in G$ будет верно $g^d = e$. Экспонента существует для всех конечных групп.

```
g^d=e\Rightarrow d: ord g\ \forall g\in G\Rightarrow d=\operatorname{lcm}(\operatorname{ord} g_1,...,g_m), где m=|G|. Теорема Кармайкла: Пусть n=\prod_{i=1}^m p_i^{k_i}, где p_i — взаимно простые множители. \varphi'(n)=\operatorname{lcm}(\varphi(p_1^{k_1}),...,\varphi(p_m^{k_m})). Если \gcd(a,n)=1, то \varphi'(n)\equiv 1 \pmod n. Доказательство: \gcd(a,n)=1, то \gcd(a,p_i)=1. Пусть a\equiv x_i \pmod p_i. Тогда a=(x_1,...,x_m)\in \times_{i=1}^m (Z/p_i^{k_i}Z)^* \varphi'(n)=\operatorname{lcm}(\varphi(p_1^{k_1}),...,\varphi(p_m^{k_m}))\Rightarrow \varphi'(n): \varphi(p_i^{k_i}). \varphi(p_i^{k_i})=|(Z/p_i^{k_i}Z)^*| по определению функции Эйлера от простого числа. |(Z/p_i^{k_i}Z)^*|=|(Z_{p_i^{k_i}})^*|: ord x по следствию из теоремы Лагранжа. x^{\operatorname{ord} x}\equiv 1(\operatorname{mod} p_i^{k_i})\Rightarrow x^{|(Z_{p_i^{k_i}})^*|}=1(\operatorname{mod} p_i^{k_i})\Rightarrow x^{\varphi(p_i^{k_i})}=1(\operatorname{mod} p_i^{k_i}) \Rightarrow x^{\varphi'(n)}=1(\operatorname{mod} p_i^{k_i})
```

17 Многочлены. Теорема о делении с остатком

F — поле. F[t] — кольцо многочленов над полем F.

$$F[t] = \{a_0 + a_1 t^1 + \dots + a_n t^n | a_i \in R; a_n \neq 0\}.$$

Многочлены можно представить в виде множества коэффициентов $F[n] = (a_0, ..., a_n).$

Сложение многочленов определено стандартно.

Умножение многочленов: каждый элемент множества коэффициентов представляется в виде суммы $\sum_{i=0}^{n} a_i b_{n-i}$.

Полиномиальная функция — значение многочлена в точке x.

Теорема о делении с остатком:

deg является евклидовой нормой на F[t], а само кольцо F[t] — евклидово.

Доказательство: зададим условия евклидовости:

- 1) $\deg 0 < \deg p \ \forall p \neq 0$
- $2) \ \exists q, p \in F[t]$

Пусть $X=\{p-qf|f\in F[t]\}$. Берем $r\in X$, такое, что $\deg(r)\leq \deg(r') \forall r'\in F[t]$. Тогда p=fq+r.

Допустим, что $\deg(q) \leq \deg(r)$. Распишем их по коэффициентам (коэффициенты большего многочлена задавать как m+n), $m \geq n$, умножим q на t^m и на $\frac{b_{n+m}}{a_n}$, отсюда $\deg(r-q\cdot t^m\cdot \frac{b_{n+m}}{a_n}) < \deg(r)$. Но $r-q\cdot t^m\cdot \frac{b_{n+m}}{a_n}$ лежит в $X\Rightarrow r$ не минимальный. Противоречие.