Predicting COVID-19 Positive Cases From Chest X-Ray Images

Springboard Data Science Track - Capstone Project

Fellow: George Pinto

Mentor: Srdjan Santic

Problem Identification

- Medical images need to be interpreted because they are not self-explanatory.
- Medical images vary considerably, even within a particular exam type. Anatomical structures can camouflage features of clinical interest
- These complexities can lead to interpretation errors.
 Clinicians do make mistakes (Berlin, 2005, 2007, 2009).
- In radiology alone, estimates suggest that in some areas, there may be up to a 30% miss rate and an equally high false positive rate.

https://www.ncbi.nlm.nih.gov/pmc/articles

Problem Identification: Dataset

- How do we deal with a real situation in which we need medical images interpreted quickly and efficiently classify a novel disease?
- 219 COVID-19 positive images
- 1341 normal images
- 1345 viral pneumonia images.
- Dataset from Kaggle not many sources of Covid-19 X-Rays available since this is a novel disease
- A team of researchers from Qatar University (Doha, Qatar) and the University of Dhaka in Bangladesh
- Collaborators from Pakistan and Malaysia
- Collaborating medical doctors

https://www.sirm.org/category/senza-categoria/covid-19/

https://github.com/ieee8023/covid-chestxray-dataset

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

Recommendations and Key Findings

Category	Model	Precision	Recall	F1	Accuracy
Covid-19	VGG16	0.93	1.00	0.96	0.97
Normal Normal	VGG16	1.00	0.92	<mark>0.96</mark>	0.97
<mark>Viral Pneumonia</mark>	VGG16	1.00	1.00	1.00	<mark>0.97</mark>
Covid-19	ResNet50	0.92	0.92	0.92	0.85
Normal	ResNet50	1.00	0.69	0.82	0.85
Viral Pneumonia	ResNet50	0.72	0.93	0.81	0.85
Covid-19	DenseNet121	1.00	1.00	1.00	0.93
Normal	DenseNet121	1.00	0.77	0.87	0.93
Viral Pneumonia	DenseNet121	0.82	1.00	0.90	0.93

- Use State of the Art VGG16 Deep Learning Model trained on a curated library of approx.14 million images (Imagenet) to assist with classification and interpretation
- Covid-19 presents a good case to expedite and facilitate image interpretation in medical settings with the use of AI
- We can use Transfer learning and take advantage of the massive amount of features this model learned and use the model to classify Covid-19 positive X-Ray Images
- The key metric to optimize is recall, because we want to maximize the number of images predicted as Covid-19 that are correctly classified as Covid-19
- Highlighted on the left, the VGG16 Model has a recall of 1 (or 100%) for Covid-19, 100% for Viral Pneumonia and the highest recall for normal patients obtained between the three tested deep learning models.
- To compare to the human error of up to 30% in our opening page the miss rate of the neural network is 0

Recommendations: Advantages of Disruptive Technologies

- Cloud computing and AI are disruptive technologies
- We can leverage the power of these two technologies to streamline the process of image interpretation
- Tasks that have been historically time consuming for radiologists, like image processing are automated in the AI pipeline.
- The model is reliably served through a cloud API that is flexible and scalable
- Images can be uploaded from anywhere (desktop, mobile, tablet) to make a request and obtain a prediction in minutes from the cloud

Modeling Results and Analysis: Transfer Learning

- Class Imbalance
 - Small number of Covid-19 images resulted in Class imbalance
 - necessary to under-sample the other classes.
 - 219 images for each Category matching the Covid-19 class
- Transfer learning is the best choice in terms of model architectures
 - Deep learning models require a lot of data to train, and we don't have a lot of data
 - The features necessary for classification are instead extracted from a stateof-the-art image dataset (Imagenet)
 - Pre-trained extraction layers from 3 state-of-the-art models
- The head (customized final layers) is built specifically for the task at hand and has 3 outputs representing our 3 categories
 - Each model requires a unique head
- Training
 - The model trains using randomly initialized weights on the head
 - The head learns the more specialized features of the actual classes
 - The pre-train features that we are transferring are the harder to learn more generalizable features and they have already been learned so the weights on this section are frozen
- Metrics are used to decide on the best model.
- Pre-trained models provide an excellent alternative because Learning such vast and rich image features is time and cost prohibitive for most researchers/data scientists

Modeling Results and Analysis: an Example of Transfer Learning

Source:

https://learnopencv.com/image-classification-using-transfer-learning-in-pytorch/

Modeling Results and Analysis: Tools and Models

- Data manipulation libraries: Pandas, NumPy, matplotlib
- Deep Learning Framework: TensorFlow 2
- GPU(s)
- Well known state of the art models chosen, all pretrained on ImageNet
 - VGG16
 - ResNet50
 - DenseNet121
- Head layers were customized trying different architectures consisting of an average pooling layer, dense layers, dropout and SoftMax activation
 - If the model underfits then more complexity is needed on the final custom layers (more neurons or units on each layer or simply more layers)
 - if the model overfits, then we need less

https://towardsdatascience.com/four-common-types-of-neural-network-layers

Modeling Results and Analysis: Learning Rate Parameters and Tuning

Optimizers and learning rate

- Optimizers are algorithms or methods used to change the attributes of your neural network such as weights and learning rate in order to reduce the losses [minimize loss and maximize learning]
- The Adam optimizer was chosen as it can be an excellent choice for deep learning models focusing on computer vision.
- A learning rate scheduler was used to plot learning rates on a log scale to determine the best learning rate ranges for each model (to achieve the best loss)
- It was not necessary to modify the default settings on the Adam optimizer (learning rate=0.001)

https://towardsdatascience.com/optimizers-for-training-neural-networks

Callbacks

- A callback or function to save the best weights of the model was used
- This callback monitored validation accuracy (or improvement on results of unseen samples) and saved the best learned weights (highest achieved validation accuracy)
- A reduce on plateau callback was used, this function reduces the value of the learning rate if the model stops making improvements on the validation loss after a custom number of epochs (learning cycles) for a customized reduction amount
- Recommended settings for the Adam optimizer were used on this function
- Lastly an early stopping callback was used to stop the model if validation accuracy stopped increasing for a custom number of epochs

https://www.kdnuggets.com/2019/08/keras-callbacks-explained-three-minutes

Modeling Results and Analysis: Image Processing

- Normalizing Image Inputs
 - Data normalization is an important step which ensures that each input parameter (pixel, in this case) has a similar data distribution. This makes convergence faster while training the network
 - Data normalization is done by subtracting the mean from each pixel and then dividing the result by the standard deviation
 - For image inputs we need the pixel numbers to be positive, so we might choose to scale the normalized data in the range [0,1]
 - When splitting the data into training, validation and testing sets, the normalization statistics (mean and standard deviation) should come from the training Data
- Dimensionality Reduction
 - Collapse the RGB channels into a single gray-scale channel
 - This approach makes the learning problem more tractable

https://becominghuman.ai/imagedata-pre-processing-for-neural-networks

Modeling Results and Analysis: Example Model – Chosen Model VGG16 with Custom Head

LOSS: PROCEED WITH CAUTION!

VGG16

Modeling Results and Analysis: Loss

- Loss (error between predictions and real target values)
 - We want the loss to go down
 - This means predictions are getting better

Loss Function

- Categorical Cross Entropy is the loss function (function used for multiple category problems) to calculate the loss and derivative (to minimize the loss)
- The activation used on the output layer of the network is SoftMax (used to get probabilities for each class)

Training and Validation

- At first, validation (unseen samples) was performing better than training. See image on the left the red validation line is under the blue training line. This is normally reversed.
- This can be dangerous for unseen samples because the model could be overlearning on the validation set and wildly fluctuating on results on new unseen data.
- Initially some regularization (as dropout) was used on the ResNet50 and VGG16 models, but the data is truly too little, and regularization did not allow the model to learn properly
- Best to pull back on the dropout. Other forms of regularization, like data augmentation would probably make this worse as well
- Dropout was removed for VGG16 and ResNet50 and pulled back from 0.5 to 0.2 on the DenseNet121.
- Model complexity was increased on ResNet50 and DenseNet121
- New architectures were trained and validated

RESNET50

Modeling Results and Analysis: Loss

The best model training is denoted by training and validation losses converging as close together as possible and dropping down smoothly as the model learns.

DENSENET121

Modeling Results and Analysis: Accuracy

- The same principles go for training and validation accuracy
- We want to see the training and testing accuracy converge as much as possible and to go up
- Note the last few epochs on the VGG16 and how training and validation are going up together, increasing together until the early stopping on epoch 7 on the x axis

Modeling Results and Analysis: VGG16 Performance on Unseen Test Data

Modeling Results and Analysis: VGG16 Make prediction Request and get Prediction - TensorFlow Serving

Input Chosen X-Ray Image

```
import json
data = json.dumps({"signature name": "serving default", "instances": input image.tolist()})
import requests
headers = {"content-type": "application/json"}
r = requests.post('http://localhost:8501/v1/models/covid vgg16 no reg grad:predict', data=data, headers=headers)
j = r.json()
pred = np.array(j['predictions'])
pred = pred.argmax(axis=1)
class names = ['COVID-19', 'Normal', 'Viral Pneumonia']
pred = [class names[i] for i in pred]
                                                           Get Prediction
print('The prediction for this image is: ',pred[0])
The prediction for this image is: COVID-19
```

Model Interpretability: GradCAM

- Classification scores on this final VGG16 model were very promising but on what regions of the images was the model focusing its activations?
- We can use the GradCam algorithm to explore the activations
- An algorithm that can be used visualize the class activation maps of a Convolutional Neural Network (CNN), thereby allowing you to verify that your network is "looking" and "activating" at the correct location source:

https://www.pyimagesearch.com/2020/03/09/gr ad-cam-visualize-class-activation-maps-withkeras-tensorflow-and-deep-learning/

Activations are the strongest in brighter yellow regions

Model Interpretability: GradCAM Covid-19 X-ray Images

Two Covid-19 examples

Activations are the strongest in brighter yellow regions

Interpretability:
GradCAM
Normal and Viral
Pneumonia XRay Images for
Reference

Normal

GradCAM

Viral Pneumonia

Model Interpretability: GradCAM Further Studies

- GradCAM images can be inspected by expert medical staff to reach a consensus on the significance of anatomical regions recognized by the model
- Further studies can be done by the data science teams and expert medical staff
 - Image segmentation can be used to identify the anatomical regions
 - New models can be created that identify the anatomical regions and the activation regions can be superimposed to immediately visualize the names of these regions

Summary

- The VGG16 Deep Learning Model can be a useful addition to the clinician/radiologist tool-kit
- This model can be trained and used to Classify Covid-19 on chest X-Ray Images
- Transfer learning allows the model to perform well even with very limited Covid-19 data
- The model can obtain the following results on unseen test data
 - Precision 0.93
 - Recall 1.00
 - F1 0.96
 - Accuracy 0.97
- Model Advantages
 - Automates Image Processing Tasks
 - Serves Predictions from the cloud using any device
 - Provides Activation regions associated with image classification for interpretation

References

Current Perspectives in Medical Image Perception, Elizabeth A. Kuprinsky (2010)

https://www.ncbi.nlm.nih.gov/pmc/articles

COVID-19 Database, S.I. S. o. M. a. I. Radiology. (2020)

https://www.sirm.org/category/senza-categoria/covid-19/

COVID-19 image data collection, Joseph Paul Cohen and Paul Morrison and Lan Dao (2020)

https://github.com/ieee8023/covid-chestxray-dataset

Chest X-Ray Images (Pneumonia), P. Mooney. (2018)

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

Image Classification using Transfer Learning in Pytorch, Sunita Nayak (2019)

https://learnopencv.com/image-classification-using-transfer-learning-in-pytorch/

Various Optimization Algorithms for Training Neural Networks, Sanket Doshi (2019)

https://towardsdatascience.com/optimizers-for-training-neural-networks

Grad-CAM: Visualize class activation maps with Keras, TensorFlow, and Deep Learning, Adrian Rosebrock (2020)

https://www.pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/

Four Common Types of Neural Network Layers, Martin Isaksson (2020)

https://towardsdatascience.com/four-common-types-of-neural-network-layers

Keras Callbacks Explained in Three Minutes, Andre Duong (2019)

https://www.kdnuggets.com/2019/08/keras-callbacks-explained-three-minutes

Image Data Pre-processing for Neural Networks, Nikhil B (2017)

https://becominghuman.ai/image-data-pre-processing-for-neural-networks

End

Thank you.