## Mixture Distributions and the EM Algorithm

## Submit a PDF of your answers to Canvas

1. A mixture distribution is a convex combination of several base distributions:

$$p(\mathbf{x}) = \sum_{k} \pi_{k} p_{k}(\mathbf{x}),$$

where  $\pi_k$  is the mixing proportion or mixing prior, which represents the probability  $\boldsymbol{x}$  is drawn from base distribution  $p_k(\boldsymbol{x})$ . Show that if  $\pi_1, \ldots, \pi_k \geq 0$  and  $\sum_k \pi_k = 1$  then  $p(\boldsymbol{x})$  is a valid distribution; i.e,  $p(\boldsymbol{x}) \geq 0$  and  $\int p(\boldsymbol{x}) dx = 1$ .

valid distribution; i.e,  $p(x) \ge 0$  and  $\int p(x) dx = 1$ .

2. Consider the density shown in the figure below. You decide to approximate the distribution

2. Consider the density shown in the figure below. You decide to approximate the distribution with a Gaussian mixture. Two of the normals have unit variance, while one has variance equal to 2. Two of the mixing priors are equal to 0.25.



Find an expression for p(x) — Your answer does not have to be exact; just look at the graph to estimate parameters. 0.25 x  $N(-4,1)+0.5 \times N(0,1)+0.25 \times N(7,2)$ 

**3.** In this problem, you will run the EM algorithm for a Gaussian mixture model by hand in 1-dimension. You collect 6 data points:

$$\mathcal{D} = \{-9, -8, -7, 5, 7, 9\}.$$

a) Implement the first few rounds of the EM algorithm with K=2. Use the following initial starting conditions:  $\pi_1 = \pi_2 = 1/2$ ,  $\mu_1 = -2$ ,  $\mu_2 = 2$ ,  $\Sigma_1 = [1]$  and  $\Sigma_2 = [1]$ . To

simplify your calculations, you can make a hard assignment. In other words, you can approximate the responsibility  $r_{ik}$  as 1 for a single value of k, and zero for other values k.

- b) What is the resulting expression for p(x)?  $\frac{1}{2}$   $M(-8,\frac{3}{5}) + \frac{1}{2}$   $M(-3,\frac{8}{5})$
- c) How many iterations did it take for the algorithm to converge? 2

