Programme n°25

MECANIQUE

M7 Mouvement d'un solide en rotation autour d'un axe fixe

Cours et exercices

M8 Mouvement dans un champ de force centrale

Cours et exercices

THERMODYNAMIQUE

TH1 Introduction à la thermodynamique (Cours uniquement)

- Présentation
- Notion de système thermodynamique
- Equilibre thermodynamique
- Exemples d'équation d'état
- Energie interne et capacité thermique à volume constant
 - Energie interne
 - Capacité thermique à volume constant.
 - Cas du gaz parfait
 - Cas d'une phase condensée

	•	contained acadined as processin of as temperature.
Energie interne d'un gaz parfait, capacité thermique		
à volume constant d'un gaz parfait.		l'expression de l'énergie interne d'un gaz parfait
		monoatomique.
Energie interr	e et capacité thermique à volume	Savoir que U _m =U _m (T) pour une phase condensée
constant d'ur	e phase condensée considérée	incompressible et indilatable.
incompressible et indilatable.		

SOLUTIONS AQUEUSES

AQ2 Réactions de dissolution ou de précipitation

Cours et exercices

AQ3 L'oxydoréduction (Cours uniquement)

- Concept oxydant-réducteur Echanges électroniques
 - Normalité
- Le nombre d'oxydation Conventions
 - Nombres d'oxydations extrêmes et classification périodique
 - Nombre d'oxydation et couple redox
 - Dismutation ,amphotérisation
 - Application à l'écriture des réactions
- Les piles et potentiels Principe d'une pile
 - Nécessité d'une électrode de référence
 - -Le potentiel de Nernst
- Différents types d'électrodes Les électrodes de 1° espèce
 - Les électrodes de 3° espèce (ou électrode de référence)
 - Les électrodes de 2° espèce
- Applications Couples redox dépendants
 - Recherche d'une constante d'équilibre

Prévoir les nombres d'oxydation extrêmes d'un
élément à partir de sa position dans le tableau
périodique.
Identifier l'oxydant et le réducteur d'un couple.
Décrire le fonctionnement d'une pile à partir d'une
mesure de tension à vide ou à partir des potentiels
d'électrodes.
Utiliser les diagrammes de prédominance ou
d'existence pour prévoir les espèces incompatibles
ou la nature des espèces majoritaires.
Prévoir qualitativement ou quantitativement le
caractère thermodynamiquement favorisé ou
défavorisé d'une réaction d'oxydo-réduction.
Pratiquer une démarche expérimentale mettant
en jeu des réactions d'oxydo-réduction.