Universite Paris Dauphine

Big Data

Single-source shortest path -Djikstra Algorithm

Students
Elie Abi Hanna Daher
Bilal El Chami
Badr Erraji

 $\begin{array}{c} Professor \\ \text{Mr Dario Colazzo} \end{array}$

January 30, 2018

Contents

1	Project goal	2
2	Dijkstra Algorithm	2
3	Implementation	2
	3.1 Input	2
	3.1.1 Data	2
	3.1.2 Prepare	2
	3.2 Mapper	2
	3.3 Reduce	2
	3.4 Job Chaining	2
4	Results	2
	4.1 Hadoop	2
	4.2 Spark	2
5	Performance	2
A	Appendix example	4

1 Project goal

The goal of the project is to find the shortest paths from a source node to all other nodes in the graph using the Dijkstra's algorithm. The algorithm should be implemented in both Python-Hadoop and Spark.

A long side the implementation, a scalability experiments is needed to check the performance of the algorithm implemented.

2 Dijkstra Algorithm

The Dijkstra's algorithm finds the shortest path from source to all other nodes. Technically the dijkstra algorithm is very similar to the BFS, but instead of having

3 Implementation

- 3.1 Input
- 3.1.1 Data
- 3.1.2 Prepare
- 3.2 Mapper
- 3.3 Reduce
- 3.4 Job Chaining
- 4 Results
- 4.1 Hadoop
- 4.2 Spark
- 5 Performance

References

 $[1] \begin{tabular}{ll} Cloud Computing Lecture 4 - Graph Algorithms with MapReduce. Jimmy Lin, The iSchool, University of Maryland, February 6, 2008. \end{tabular}$

A Appendix example

This an example of appendix