Math101

16. oktober 2018

Benjamin Støttrup benjamin@math.aau.dk

> Institut for matematiske fag Aalborg universitet Danmark

Agenda

Inverse funktioner

Logaritmer og eksponentialfunktioner

Trigonometriske funktioner

- ► To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$
 - for alle x i X og y i Y.
- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ▶ Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ▶ Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ▶ Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis f(g(y)) = y, og g(f(x)) = x

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

- ▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$ for alle $x \in X$ og $y \in Y$.
- ► Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner
- ▶ Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

- ▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$
- for alle x i X og y i Y.
- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

- ▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$ for alle $x \in X$ og $y \in Y$.
- ioi alio x i x og y i i .
- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

- ▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis f(g(y)) = y, og g(f(x)) = x for alle $x \in X$ og $y \in Y$.
- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

- ▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis f(g(y)) = y, og g(f(x)) = x for alle $x \in X$ og $y \in Y$.
- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}]$ som kaldes *logaritmen med grundtal a*.
- ► Hvis a = e så skriver vi ln i stedet for \log_e og hvis a = 10 skriver vi log i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x$$
 og $a^{log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8)$$
, $\log_{10}(10000)$, $\log_a(1)$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}]$ som kaldes *logaritmen med grundtal a*.
- ► Hvis a = e så skriver vi ln i stedet for \log_e og hvis a = 10 skriver vi log i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x$$
 og $a^{log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8)$$
, $\log_{10}(10000)$, $\log_a(1)$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}]$ som kaldes *logaritmen med grundtal a*.
- ► Hvis a = e så skriver vi ln i stedet for \log_e og hvis a = 10 skriver vi log i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x$$
 og $a^{log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8)$$
, $\log_{10}(10000)$, $\log_a(1)$.

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}]$ som kaldes *logaritmen med grundtal a*.
- ► Hvis a = e så skriver vi ln i stedet for \log_e og hvis a = 10 skriver vi log i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x$$
 og $a^{log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8)$$
, $\log_{10}(10000)$, $\log_a(1)$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}]$ som kaldes *logaritmen med grundtal a*.
- ► Hvis a = e så skriver vi ln i stedet for \log_e og hvis a = 10 skriver vi log i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x$$
 og $a^{log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8), \qquad \log_{10}(10000), \qquad \log_a(1)$$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a*.
- ► Hvis a = e så skriver vi ln i stedet for \log_e og hvis a = 10 skriver vi log i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x \quad \text{og} \quad a^{\log_a(y)} = y,$$
 for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8)$$
, $\log_{10}(10000)$, $\log_a(1)$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a*.
- ► Hvis a = e så skriver vi ln i stedet for \log_e og hvis a = 10 skriver vi log i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x)=x \quad \text{og} \quad a^{\log_a(y)}=y,$$
 for alle $x\in\mathbb{R}$ og $y\in]0,\infty[$.

$$\log_2(8)$$
, $\log_{10}(10000)$, $\log_a(1)$.

- Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\log_a(xy) = \log_a(x) + \log_a(y),$$

$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x).$$

$$\log(50) + \log(20),$$
 $2^{2 + \log_2(5)},$ $9^{\log_3(2)}$

- Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\log_a(xy) = \log_a(x) + \log_a(y),$$

$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x).$$

$$\log(50) + \log(20),$$
 $2^{2 + \log_2(5)},$ $9^{\log_3(2)}$

- Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\log_a(xy) = \log_a(x) + \log_a(y),$$

$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x).$$

$$\log(50) + \log(20),$$
 $2^{2 + \log_2(5)},$

- Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{split} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{split}$$

$$\log(50) + \log(20),$$
 $2^{2+\log_2(5)}$

- Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

$$\log(50) + \log(20),$$
 $2^{2 + \log_2(5)},$ $9^{\log_3(2)}$

- Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

$$\log(50) + \log(20),$$
 $2^{2 + \log_2(5)},$ $9^{\log_3(2)}$

- Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

$$\log(50) + \log(20),$$
 $2^{2+\log_2(5)},$ $9^{\log_3(2)}.$

▶ Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

▶ Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

► Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

▶ Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

► Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

▶ Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

▶ Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

▶ Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

► For særlige vinkler kan vi bestemme eksakte værdier af de trigonometriske funktioner.

_			
θ	$\sin \theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$			
$\frac{\pi}{4}$			
$\frac{\pi}{3}$			
$\frac{\pi}{2}$			

► For særlige vinkler kan vi bestemme eksakte værdier af de trigonometriske funktioner.

θ	$\sin \theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$			
$\frac{\pi}{4}$			
$\frac{\pi}{3}$			
$\frac{\pi}{2}$	1	0	

θ	$\sin \theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$			
$\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$			
$\frac{\pi}{2}$			

θ	$\sin \theta$	$\cos \theta$	$\tan heta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{1}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$			
$\frac{\pi}{2}$			

θ	$\sin \theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$	1/2	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	

θ	$\sin \theta$	$\cos \theta$	$\tan heta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}), \qquad \sin(9\pi), \qquad \sin(-\frac{5\pi}{4})$$

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$

$$\sin(9\pi)$$
,

$$\sin(-\frac{5\pi}{4}).$$

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$

$$\sin(9\pi)$$
,

$$\sin(-\frac{5\pi}{4}).$$

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$

$$\sin(9\pi)$$
,

$$\sin(-\frac{5\pi}{4}).$$

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$

$$\sin(9\pi)$$
,

$$\sin(-\frac{5\pi}{4}).$$

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$

$$\sin(9\pi)$$
,

$$\sin(-\frac{5\pi}{4}).$$

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$
 $\sin(9\pi),$ $\sin(-\frac{5\pi}{4}).$

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$
 $\sin(9\pi),$ $\sin(-\frac{5\pi}{4}).$

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}), \qquad \sin(9\pi),$$

$$\sin(-\frac{5\pi}{4}).$$

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$
 $\sin(9\pi),$ $\sin(-\frac{5\pi}{4}).$

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$
 $\sin(9\pi),$ $\sin(-\frac{5\pi}{4}).$

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}),$$

$$\sin(9\pi)$$
,

$$\sin(-\frac{5\pi}{4}).$$

Opgaveregning!

