Smooth Convex Optimization

Hongjue Zhao

1 Minimization of Smooth Functions

1.1 Smooth Convex Functions

In this section, we consider the unconstrained minimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}),\tag{1.1}$$

where the objective function $f(\cdot)$ is smooth enough. \mathscr{F} represents differentiable functions.

Assumption 1.1 For any $f \in \mathcal{F}$, the first-order optimality condition is sufficient for a point to be a global solution to 1.1

Assumption 1.2 If
$$f_1, f_2 \in \mathscr{F}$$
 and $\alpha, \beta \geq 0$, then $\alpha f_1 + \beta f_2 \in \mathscr{F}$.

Assumption 1.3 Any linear function
$$l(x) = \alpha + \langle a, x \rangle$$
 belongs to \mathscr{F} .

Note that the linear function $l(\cdot)$ perfectly fits Assumption 1.1. Clearly, $\nabla l(\boldsymbol{x}) = 0$ implies that this function is constant, and any point \mathbb{R}^n is its global minimum.

Definition 1.1 (Convex Set)

A set $Q \subseteq \mathbb{R}^n$ is called convex if we have

$$\alpha x + (1 - \alpha)y \in Q \quad \forall x, y \in Q \text{ and } \forall \alpha \in [0, 1].$$

Definition 1.2 (Convex Function)

A continuously differentiable function $f(\cdot)$ is called convex on a convex set Q (notation $f \in \mathscr{F}^1(Q)$) if we have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$
 (1.2)

 \Diamond

If $-f(\cdot)$ is convex, we call $f(\cdot)$ concave.

Theorem 1.1

If
$$f \in \mathscr{F}^1(\mathbb{R}^n)$$
 and $\nabla f(x^*) = 0$ then x^* is the global minimum of $f(\cdot)$ on \mathbb{R}^n .

PROOF (OF THEOREM 1.1) In the inequality 1.2, for any $\boldsymbol{x} \in \mathbb{R}^n$ we have

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}^*) + \langle \nabla f(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle = f(\boldsymbol{x}^*).$$