The Fermiology of BaFe₂P₂ and Charge Transport in Widely Doped BSCO2201

Brendan, J. Arnold

May 31, 2011

1 Unresolved issues in High-Tc superconductivity

1.1 Fermi surface nesting as a pairing mechanism

 Describe nesting and link to susceptibility as an intro to BaFe2P2 dHvA results

1.2 The pseudogap versus the coherent state

• Describe current theories of 'friend' or 'foe' of superconductivity as intro to BSCO magnetoresistance results

1.3 Doping determination

 Discuss problem of doping determination, LSCO and comparisons with other cuprates as intro to BSCO Hall results

2 Experimental technique

2.1 Measuring charge transport

2.1.1 Fermi liquid theory

• Description of basic Fermi liquid theory to provide a contrast to behaviour observed in high-Tc superconductors

2.1.2 Hall effect

• Briefly discuss theory of Hall effect

2.1.3 Magnetoresistance

• Briefly discuss theory of magnetoresistance

2.1.4 Six probe technique

- Discuss geometry
- Mention high field measurements
- Briefly discuss Polo setup, amplifier characterisation
- Show Cu hall bar results (to be performed)

2.1.5 Sample size determination

• Discuss briefly FIB and optical microscope

2.2 dHvA torque oscillation

2.2.1 Theory

- Briefly describe Landau levels, Lifshitz-Kosevich equation, Onsager relation
- Some discussion as to limitations, i.e. non-superconducting state, only extremal areas, relatively long mean free path required etc.

2.2.2 Method

- Brief discussion of use of AFM cantilevers
- Discuss new sample mounting (grease)
- Introduce novel temperature correction techniques for use on Yellow Magnet
- Discuss angle determination using x-rays, coil and data symmetry

3 dHvA measurements on $BaFe_2P_2$

3.1 The BaFe(P_xAs_{1-x})₂series

- Discuss phase diagram, cleanliness of samples, pressure analogy
- Introduce existing measurements in Shishido, Analytis papers
- Present x-rays showing crystal quality

3.2 Angle dependent measurements

3.2.1 Mapping the Fermi surface with DFT calculations

- Angle measurement results
- DFT calculations, shifting to fit
- Demonstration of the nesting

3.2.2 Susceptibility calculations

- Explanation of Lindhard function
- Results of calculations in various conditions (i.e. T = 0K, T = 300K)

3.3 Measuring effective mass

3.3.1 Analysis techniques

- Discuss simple LK fits
- Discuss correcting for large field range using 'retrofitting'
- Discuss correcting for large field range using 'microfits'

3.3.2 Effective mass results

3.4 Determining the spin mass

- Discuss mass enhancement at the Fermi level due to spin excitations
- Fits to the peak amplitude and possible values for m_s

3.5 Conclusions

- Discussion as to possible origins of shift (compare with results on CaFe2P2 and SrFe2P2)
- Discussion of nesting conditions in non-superconducting end member
- Discuss relatively small mass enhancements
- Compare with previous results by Analytis et al. i.e. lack of Yumaji point, misidentification of bands

4 Hall measurements on $Bi_{2+z-y}Pb_ySr_{2-x-z}La_xCuO_{6+\delta}$

4.1 Field sweeps

- Compare techniques for determining the linear portion of data
- Show comparison of BSCO with existing LSCO and Thallium data and determine doping

4.2 Conclusisons

• Discuss validity and utility of method

${\bf 5} \quad {\bf Magnetoresistance\ measurements\ on\ Bi}_{2+z-y}{\bf Pb}_y{\bf Sr}_{2-x-z}{\bf La}_x{\bf CuO}_{6+\delta}$

Recreate Pat's original analysis in a similar way to that in the LSCO paper and upcoming BSCO paper.

5.1 Temperature sweeps

- Show divergence in the differential as indicator of the onset of the decay of the pseudogap
- Mention use of temperature sweeps for minor temperature corrections in the field sweeps

5.2 Field sweeps

- Discuss techniques for determining H_2 , i.e. the B^2 portion of the magnetoresistance curve. Look to alternate techniques to one Pat used
- Present data with comparisons to high field results from Toulouse and Nijmegan performed by Pat, XF and Ionna
- Discuss multi-carrier model fitting similar to analysis performed on YBCO
- Results on low temperature (< 300 K) resistivity
- High temperature BSCO if necessary results not yet taken

5.3 Conclusions

• Discuss the further refinements to the phase diagram of BSCO and what this means for the pseudogap

6 Bibliography