Statistics 2 - Notes

Dom Hutchinson

October 10, 2019

Contents

1	Estimation	2		
	1.1 Introduction	2		
2	The Likelihood Function	3		
3	Maximum Likelihood Estimates	4		
	Maximum Likelihood Estimates 3.1 Determinig MLEs - The Tractable Case	5		
4	Statistics and Estimators	7		
5	Probabilistic Convergence			
0	endix 1			
	0.1 Notation	10		
	0.2 R	10		
	0.3 Probability Distributions	10		

1 Estimation

1.1 Introduction

Definition 1.1 - Probabiltiy Space, $(\Omega, \mathcal{F}, \mathbb{P})$

A mathematical construct for modelling the real world. A Probabilty Space has three elements

- i) Ω Sample space.
- ii) \mathcal{F} Set of events.
- iii) \mathbb{P} Probability measure.

and most fulfil the following conditions

- i) $\Omega \in \mathcal{F}$;
- ii) $\forall A \in \mathcal{F} \implies A^c \in \mathcal{F}$;

iii)
$$\forall A_0, \dots, A_n \in \mathcal{F} \implies \left(\bigcup_i A_i\right) \in \mathcal{F};$$

iv) $\mathbb{P}(\Omega) = 1$; and,

v)
$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$
 for disjoint A_1, A_2, \dots (Countable Additivity).

Definition 1.2 - Random Variable

A function which maps an event in the sample space to a value e.g. $X: \Omega \to \mathbb{R}$.

Remark 1.1 - Probability Density Function for iid Random Variable Vector

For $\mathbf{X} \sim f_n(\cdot; \theta)$ where each component of \mathbf{X} is independent and identically distribution the probability density function of \mathbf{X} is

$$f_n(\mathbf{x}; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

Definition 1.3 - Expectation

The mean value for a random variable. For rv X

$$\mathbb{E}(X) := \sum_{x \in \mathcal{X}} x f_X(x) \quad \& \quad \mathbb{E}(X) := \int_{\mathbb{R}} x f_X(x) dx$$

Theorem 1.1 - Expection of a Function

For a function $g: \mathbb{R} \to \mathbb{R}$ and rv X with pmf f_X

$$\mathbb{E}(g(X)) := \sum_{g(x) \in Y} x f_X(x) \quad \& \quad \mathbb{E}(g(X)) := \int_{\mathbb{R}} g(x) f_X(x) dx$$

Theorem 1.2 - Expectation of a Linear Operator

For rv X with pmf $f_X \& a, b \in \mathbb{R}$

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$

Definition 1.4 - Variance

For rv X

$$\operatorname{var}(X) := \mathbb{E}[(X - \mathbb{E}(X))^2] = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Theorem 1.3 - Variance of a Linear Operator

For rv X and $a, b \in \mathbb{R}$

$$var(aX + b) = a^2 var(X)$$

Definition 1.5 - Moment of a Random Variable

For rv X the n^{th} moment of X is defined as $\mathbb{E}(X^n)$.

 $N.B. - \mathbb{E}(X^n) \neq \mathbb{E}(X)^n.$

Definition 1.6 - Covariance

For rv X & Y

$$cov(X,Y) := \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Theorem 1.4 - Properties of Covaraince

Let X & Y be independent random variables

- i) cov(X, X) = var(X);
- ii) cov(X, Y) = 0

Theorem 1.5 - Variance of two Random Variables with linear operators

$$var(aX + bY) = a^{2}var(X) + b^{2}var(Y) + 2abcov(X, Y)$$

Theorem 1.6 - Independent Random Variables

Random variables X_1, \ldots, X_n are independent iff

$$\mathbb{P}(X_1 \le a_1, \dots, X_n \le a_n) = \prod_{i=1}^n \mathbb{P}(X_i \le a_i) \ \forall \ a_1, \dots, a_n \in \mathbb{R}$$

2 The Likelihood Function

Definition 2.1 - Likelihood Function

Define $\mathbf{X} \sim f_n(\cdot; \theta^*)$ for some unknown $\theta^* \in \Theta$ and let \mathbf{x} be an observation of \mathbf{X} .

A Likelihood Function is any function, $L(\cdot; \mathbf{x}) : \Theta \to [0, \infty)$, which is proportional to the PMF/PDF of the observed realisation \mathbf{x} .

$$L(\theta; \mathbf{x}) := C f_b(\mathbf{x}; \theta) \ \forall \ C > 0$$

N.B. Sometimes this is called the Observed Likelihood Function since it is dependent on observed data.

Definition 2.2 - Log-Likelihood Function

Let $\mathbf{X} \sim f_n(\cdot; \theta^*)$ for some unknown $\theta^* \in \Theta$ and \mathbf{x} be an observation of \mathbf{X} .

The Log-Likelihood Function is the natural log of a Likelihood Function

$$\ell(\theta; \mathbf{x}) := \ln f_n(\mathbf{x}; \theta) + C, \ C \in \mathbb{R}$$

Theorem 2.1 - Multidiensional Transforms

Let **X** be a continuous random vector in \mathbb{R}^n with PDF $f_{\mathbf{X}}$; $g: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous differentiable bijection; and, $h:=g^{-1}$.

Then $\mathbf{Y} = g(\mathbf{X})$ is a continuous random vector and its PDF is

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(h(\mathbf{y})H_h(\mathbf{Y}))$$

where

$$J_h := \left| \det \left(\frac{\partial h}{\partial \mathbf{y}} \right) \right|$$

Proposition 2.1 - Invaraince of Likelihood Function by bijective transformation of the observations independent of θ

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be a bijetive transformation which is independent of θ ; and $\mathbf{Y} := g(\mathbf{X})$.

Then \mathbf{Y} is a random variable with PDF/PMG

$$f_{\mathbf{Y}}(\mathbf{y};\theta) \propto f_{\mathbf{X}}(g^{-1}(\mathbf{y});\theta)$$

Hence, if $\mathbf{y} = g(\mathbf{x})$ then $L_{\mathbf{Y}}(\theta; \mathbf{y}) \propto L_{\mathbf{X}}(\theta; \mathbf{x})$

Proof 2.1 - Proposition 2.1

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be a bijective transformation which is independent of θ ; $h:=g^{-1}$; \mathbf{X}, \mathbf{Y} be a rvs st $\mathbf{Y}:=g(\mathbf{X})$.

i) Discrete Case - Consider the case when \mathbf{X} is a discrete rv. Then

$$f_{\mathbf{Y}}(y;\theta) = \mathbb{P}(\mathbf{Y} = \mathbf{y}; \theta)$$

$$= \mathbb{P}(g^{-1}(\mathbf{Y}) = g^{-1}(\mathbf{y}); \theta)$$

$$= \mathbb{P}(h(\mathbf{Y}) = h(\mathbf{y}); \theta)$$

$$= \mathbb{P}(\mathbf{X} = h(\mathbf{y}); \theta)$$

$$= f_{\mathbf{X}}(g^{-1}(\mathbf{y}); \theta)$$

ii) Continuous Case - Consider the case when ${\bf X}$ is a continuous rv. Then, by **Theorem 2.1**

$$f_{\mathbf{Y}}(\mathbf{y}; \theta) = f_{\mathbf{X}}(g^{-1}(\mathbf{y}); \theta) J_{g^{-1}}(\mathbf{y})$$

Since $J_{q^{-1}}$ does not depend on θ this case is solved.

Thus in botoh cases $L_{\mathbf{Y}}(\theta; y) = f_{\mathbf{Y}}(y; \theta) \propto f_{\mathbf{X}}(g^{-1}(\mathbf{y}); \theta) = L_{\mathbf{X}}(\theta; \mathbf{x}).$

3 Maximum Likelihood Estimates

Definition 3.1 - Maximum Likelihood Estimate

Let $\mathbf{X} \sim f_n(\cdot; \theta)$; and \mathbf{x} be a realisation of \mathbf{X} .

The Maximum Likelihood Estimate is the value $\hat{\theta} \in \Theta$ st

$$\forall \theta \in \Theta \ f_n(\mathbf{x}; \hat{\theta}) \ge f_n(\mathbf{x}, \theta)$$

Equivalently

$$\forall \ \theta \in \Theta \ L(\hat{\theta}; \mathbf{x}) \ge L(\theta; \mathbf{x}) \quad \text{or} \quad \ell(\hat{\theta}; \mathbf{x}) \ge \ell(\theta; \mathbf{x})$$

i.e. $\hat{\theta}(\mathbf{x}) := \operatorname{argmax}_{\theta}(L(\theta; \mathbf{x}))$.

Remark 3.1 - The Maximum Likelihood Estimate may <u>not</u> be unique

Example 3.1 - MLE for Uniform Distribution

Consider $\mathbf{X} \stackrel{\text{iid}}{\sim} U[0, \theta]$ for $\theta > 0$.

Then

$$L(\theta; \mathbf{x}) \propto f_n(\mathbf{x}; \theta)$$

$$= \prod_{i=1}^n \frac{1}{\theta} \mathbb{1} \{ x_i \in [0, \theta] \}$$

$$= \frac{1}{\theta^n} \prod_{i=1}^n \mathbb{1} \{ x_i \in [0, \theta] \}$$

$$\implies \hat{\theta} = \max \{ x_i : x_i \in \mathbf{x} \}$$

Remark 3.2 - MLE of Reparameterisation

Define $\tau(\theta): \mathbb{R} \to \mathbb{R}$. Then

$$\hat{\tau} = \tau(\hat{\theta})$$

N.B. We often write \tilde{f} to represent the pmf when τ is taken as a parameter rate than θ . i.e. $f(x;\theta) = \tilde{f}(x;\tau(\theta))$.

Theorem 3.1 - Invariance of MLE under bijective Reparameterisation

Let $g:\Theta\to G$ be a bijective transformation of the statisitcal parameter $\theta.$

Let $\mathbf{X} \sim f(\cdot; \theta) = \tilde{f}(\cdot; g(\theta))$ for some θ , and let \mathbf{x} be a realisation of \mathbf{X} .

If $\hat{\theta}$ s an MLE of θ then $\hat{\tau} = g(\hat{\theta})$ is an MLE of τ .

Proof 3.1 - *Theorem 3.1*

This is a proof by contradiction.

Suppose $\exists \tau^* \in Gst\tilde{f}(x;\tau^*) > \tilde{f}(x;\tau^*)$ We know that $\forall \theta \in \Theta, f(x;\theta) = \tilde{f}(x;g(\theta))$ and $\forall \tau \in G, f(x;g^{-1}(\tau)) = \tilde{f}(x;\tau)$.

We deduce that

$$\begin{array}{lcl} f(x;g^{-1}(\tau^*)) & = & \tilde{f}(x;\tau^*) \\ & > & \tilde{f}(x;\hat{\tau}) \text{ by assumption} \\ & = & f(x;g^{-1}(\hat{\tau})) \\ & = & f(x;\hat{\theta}) \end{array}$$

This contradicts the assumption that $\hat{\theta}$ is an maximum likelihood estimate of θ .

Remark 3.3 - Not all Reparameterisations are Bijective

When reparameterisations $g: \mathbb{R} \to \mathbb{R}$ is not bijective it is helpful to consider the *induced likelihood*

$$L^*(\tau; \mathbf{x}) := \max_{\theta \in G_{\tau}} L(\theta; \mathbf{x}) \text{ where } G_{\tau} := \{\theta : g(\theta) = \tau\}$$

Since this reduces the domain to only where g is bijective.

3.1 Determinig MLEs - The Tractable Case

Proposition 3.1 - Differentiable Likelihood in the continuous case - Multivariate

When $L(\theta; \mathbf{x})$ is differentiable one can find MLEs by considering its extrema. This is done equating & solving the cases when the gradient is zero, *i.e.* $\nabla L(\theta; \mathbf{x}) = 0$, and then checking whether this is a maximum or minimum point.

A point is a local minimum if the Hessian at the point is Negative Definite i.e. $x^T A x < 0 \ \forall \ x \neq \mathbf{0}$.

Example 3.2 - MLE of Normal Distribution

Let $\mathbf{X} \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$

$$L(\mu, \sigma^{2}; \mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$

$$\Rightarrow \qquad \ell(\mu, \sigma^{2}; \mathbf{x}) = C - \frac{n}{2} \ln(\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

$$\Rightarrow \qquad \nabla \ell(\mu, \sigma^{2}; \mathbf{x}) = \left(\frac{-1}{\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu), -\frac{n}{2\sigma^{2}} + \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right)$$
Setting
$$\frac{-1}{\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu) = 0$$

$$\Rightarrow \qquad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_{i} = \bar{x}$$
Setting
$$-\frac{n}{2\sigma^{2}} + \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = 0$$

$$\Rightarrow \qquad \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} \hat{\mu})^{2}$$

We now want to check whether $(\hat{\mu}, \hat{\sigma}^2)$ is a minimum.

$$\nabla^{2}\ell(\mu, \sigma^{2}; \mathbf{x}) = \begin{pmatrix} \frac{\partial^{2}\ell(\mu, \sigma^{2}; \mathbf{x})}{\partial \mu^{2}} & \frac{\partial^{2}\ell(\mu, \sigma^{2}; \mathbf{x})}{\partial \mu \partial \sigma^{2}} \\ \frac{\partial^{2}\ell(\mu, \sigma^{2}; \mathbf{x})}{\partial \mu \sigma^{2}} & \frac{\partial^{2}\ell(\mu, \sigma^{2}; \mathbf{x})}{\partial (\sigma^{2})^{2}} \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{n}{\hat{\sigma}^{2}} & 0 \\ 0 & -\frac{n}{2\hat{\sigma}^{4}} \end{pmatrix}$$

Since $(z_1 \quad z_2) \begin{pmatrix} -a & 0 \\ 0 & -b \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = -az_1^2 - bz_2^2 < 0 \ \forall \ a,b > 0$ and we have $\frac{n}{\hat{\sigma}^2}$, $\frac{n}{2\hat{\sigma}^4} > 0$ then we can conclude that $\nabla^2 \ell$ is negative definite.

Thus $\hat{\mu} = \bar{x} \& \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \hat{\mu})^2$ is an MLE for the normal distribution.

Example 3.3 - MLE for Capture-Recapture Model

Suppose you are wanting to calculate the unknown size of a population, n. The Capture-Recapture Model is one technique that can be used. You tag $t \leq n$ members of the population; wait for a while; then recapture $c \leq n$ members of which $x \leq \min\{t, c\} \leq n$ are tagged. With t, c, x known produce a MLE for n.

We first work out the associated probability distribution for X, the population size. We have

- i) $\binom{t}{x}$ ways of choosing x members among the tagged ones;
- ii) $\binom{n-t}{c-x}$ ways of choosing the remaining members among the non-tagged ones;
- iii) $\binom{n}{c}$ ways of choosing c members in a population of n individuals.

Thus

$$f_X(x;n) = \frac{\binom{t}{x}\binom{n-t}{c-x}}{\binom{n}{t}}$$

This means that $X \sim \text{Hypergeometric}(t, n, c)$ with t & c known. Now we calculate the MLE for X

$$L(n;x) = f_X(x;n) = \frac{\binom{t}{x}\binom{n-t}{c-x}}{\binom{n}{c}} = \frac{\frac{t!}{x!(t-x)!}\frac{(n-t)!}{(c-x)!(n-t-c+x)!}}{\frac{n!}{c!(n-c)!}}$$

Now we consider L(n;x)=0 when $x>\min\{t,c\}$. We want to indetify values of n for which $L(n;x)\geq L(n-1;x)$.

Consider $n-1 \ge \min\{t,c\} \implies L(n-1;x) > 0$

$$\operatorname{Let} r(n) := \frac{L(n;x)}{L(n-1;x)}$$

$$= \frac{n-t}{n-t-c+x} \frac{n-c}{n}$$

$$\Rightarrow \qquad 1 \leq r(n)$$

$$\Leftrightarrow \qquad 1 \leq \frac{n-t}{n-t-c+x} \frac{n-c}{n}$$

$$\Leftrightarrow \qquad n(n-t-c+x) \leq (n-t)(n-c)$$

$$\Leftrightarrow \qquad n^2 - nt - cn + xn \leq n^2 - nt - cn + ct$$

$$\Leftrightarrow \qquad xn \leq ct$$

$$\Leftrightarrow \qquad x \leq \frac{ct}{n}$$

So L(n;x) is increasing for $n \leq \lfloor \frac{ct}{x} \rfloor$ & decreasing for $n > \lfloor \frac{ct}{x} \rfloor$. Consequently $\hat{n}_{\text{MLE}}(x) = \lfloor \frac{tc}{x} \rfloor$

4 Statistics and Estimators

Definition 4.1 - Statistic

Given some data \mathbf{x} a statistic is a function of the data $T(\mathbf{x})$.

N.B. A statistic cannot depend on an unknown statistical parameter.

Definition 4.2 - Estimate

Let $\mathbf{X} \sim f_n(\cdot; \theta^*)$ with $\theta^* \in \Theta$ and \mathbf{x} be a realisation of \mathbf{X} .

An Estimate θ^* is a statistic $\hat{\theta}(\mathbf{x}) = T(\mathbf{x})$ which is intended to approximate the real value of θ^* . N.B. An Estimate is a real value & thus is hard to evaluate.

Definition 4.3 - Estimator

Let $\mathbf{X} \sim f_n(\cdot; \theta^*)$ with $\theta^* \in \Theta$ and \mathbf{x} be a realisation of \mathbf{X} .

An Estimator of θ^* is $\hat{\theta}$ where $\hat{\theta}(\mathbf{x})$ is an estimate.

N.B. We call $T(\mathbf{X})$ an estimator. This is a random variable.

Definition 4.4 - Distribution of an Estimator

Let $\mathbf{X}|simf_n(\cdot;\theta^*)$ with $\theta^* \in \Theta \subseteq \mathbb{R}$.

If $\theta(\mathbf{X})$ is a real-valued random variable, we can write its CDF as

$$F_{\hat{\theta}(\mathbf{X})}(t; \theta^*) = \mathbb{P}(\hat{\theta}(\mathbf{X}) \le t; \theta^*)$$
$$= \int_{\chi^n} \mathbb{1}\{\hat{\theta}(\mathbf{x}) \le t\} f_n(\mathbf{x}; \theta^*) d\mathbf{x}$$

Remark 4.1 - Estimator dependends upon true value

The distribution of $theta(\mathbf{X})$ depends on the distribution of \mathbf{X} which in turn depends upon the distribution of θ^* .

Thus the distribution of an estimator depends on the true parameter of the variable it is estimating.

Remark 4.2 - Estimator Distribution & Sample Size

As sample size increases the distribution of an estimator may converge to a more standard distribution (e.g. Normal, Poisson).

Definition 4.5 - Bias

Bias is a measure of how much an estimator deviates from the true value, on average.

$$\begin{aligned} \operatorname{Bias}(\hat{\theta}; \theta^*) &:= & \mathbb{E}(\hat{\theta}(\mathbf{X}) - \theta^*; \theta^*) \\ &= & \mathbb{E}(\hat{\theta}; \theta^*) - \mathbb{E}(\theta^*; \theta^*) \\ &= & \mathbb{E}(\hat{\theta}; \theta^*) - \theta^* \end{aligned}$$

Definition 4.6 - *Unbiased Estimator*

An Estimator, $\hat{\theta}$, is said to be Unbiased if $\forall \theta \in \Theta$, $\text{Bias}(\hat{\theta}; \theta) = 0$. Equivalently $\mathbb{E}(\hat{\theta}; \theta) = \theta$.

Definition 4.7 - Mean Square Error

The Mean Square Error of an estimator is the mean of the squared error associated with rv $\hat{\theta}$.

$$MSE(\hat{\theta}; \theta^*) := \mathbb{E}\left[(\hat{\theta}(\mathbf{X}) - \theta^*)^2; \theta^2\right]$$

Proposition 4.1 - Simplification of MSE Formula

The MSE is a combination of variance & bias.

$$\begin{split} MSE(\hat{\theta}; \theta^*) &= \mathbb{E}\left[(\hat{\theta}(\mathbf{X}) - \theta^*)^2; \theta^2\right] \\ &= \mathbb{E}\left[\left\{\hat{\theta} - \mathbb{E}(\hat{\theta}; \theta^*)\right\}^2; \theta^*\right] + \left(\mathbb{E}(\hat{\theta} - \theta^*; \theta^*)\right]^2 \\ &= \operatorname{Var}(\hat{\theta}; \theta^*) + \operatorname{Bias}(\hat{\theta}; \theta^*)^2 \end{split}$$

Example 4.1 - Sample mean as an Estimator

Let $\mathbf{X} \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda^*)$.

Suppose we are using the sample mean, $\hat{\lambda}(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^{n} x_i$, as an estimate of λ^* . We first want to show this estimator is *Unbiased*

$$\mathbb{E}(\hat{\lambda}; \lambda) = \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_i; \lambda\right)$$

$$= d\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i; \lambda)$$

$$= \frac{1}{n} n \lambda$$

$$= \lambda$$

Thus $\hat{\lambda}$ is unbiased.

Now we consider the MSE of $\hat{\lambda}$

$$\begin{split} MSE(\hat{\lambda};\lambda) &= \operatorname{Var}(\hat{\lambda};\lambda) \\ &= \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i};\lambda\right) \\ &= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i};\lambda) \\ &= \frac{1}{n^{2}}n\lambda \\ &= \frac{\lambda}{n} \end{split}$$

This shows that as the sample size increases the MSE of $\hat{\lambda}$ converges to 0.

5 Probabilistic Convergence

Remark 5.1 - Motivation

Here we consider the properties of a maximum likelihood estimators as the sample size increases.

Theorem 5.1 - Markov's Inequality

For a non-negative random variable X and a constant a > 0

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Proof 5.1 - Markov's Inequality Consider continuous X. We have

$$a\mathbb{P}(X \ge a) = a \int_{\infty}^{\infty} f_X(x) dx$$

$$\leq \int_{a}^{\infty} x f_X(x) dx$$

$$\leq \int_{0}^{\infty} x f_X(x) dx$$

$$= \mathbb{E}(X)$$

$$\Rightarrow a\mathbb{P}(X \ge a) = \mathbb{E}(X)$$

$$\Rightarrow \mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Theorem 5.2 - Chebyshev's Inequality Let $\mu = \mathbb{E}(X)$ and $\sigma^2 = \text{Var}(X)$. Then

 $\forall a > 0, \ \mathbb{P}(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$

Proof 5.2 - Chebyshev's Inequality

We have

$$\begin{split} \mathbb{P}(|X-\mu| \geq a) &= \mathbb{P}(|X-\mu|^2 \geq a^2) \\ &\leq \frac{\mathbb{E}\left((X-\mu)^2\right)}{a^2} \text{ By Markov's Inequality} \\ &= \frac{\sigma^2}{a^2} \end{split}$$

0 Appendix

Definition 0.1 - Gradient

$$\nabla f(\boldsymbol{\theta}; \mathbf{x}) := \left(\frac{\partial f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1}, \dots, \frac{\partial f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_n} \right)$$

Definition 0.2 - Hessian

$$\nabla f(\boldsymbol{\theta}; \mathbf{x}) := \begin{pmatrix} \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1^2} & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_n \theta_1} \\ \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1^2} & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1 \theta_2} & \cdots & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_n \theta_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1 \partial \theta_n} & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_2 \theta_n} & \cdots & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_n^2} \end{pmatrix}$$

0.1 Notation

Notation	Denotes
$\theta \in \Theta \subseteq \mathbb{R}^{d_{\theta}}$	Scalar or vector parameter characterising a probability distribution
$\mid \hat{ heta} \mid$	Estimation for the value of the parameter θ
θ^*	True value of the paramter θ
$\mid \mathbb{P}$	Probability measure $\mathbb{P}: \mathcal{F} \to [0, 1]$
Ω	Sample space
X	Scalar random variable
\mathcal{F}	Sigma field (Set of events)
χ	Support of rv XX. A set set X is definitely in it i.e. $\mathbb{P}(X \in \chi; \theta) = 1$
\mathbf{X}	Vector consiting of scalar random variables

0.2 R

Command	Result
hist(a)	Plots a histogram of the values in array a
mean(a)	Returns the mean value of array a
rbinom(s,n,p)	Samples n of $Bi(n, p)$ random variables
rep(v,n)	Produces an array of size n where each entry has value v
$x \leftarrow v$	Maps value v to variable x

0.3 Probability Distributions

Definition 0.3 - Binomial Distribution

Let X be a discrete random variable modelled by a *Binomial Distribution* with n events and rate of success p.

$$\begin{array}{rcl} p_X(k) & = & \binom{n}{k} p^k (1-p)^{n-k} \\ \mathbb{E}(X) np = & \& & Var(X) = np(1-p) \end{array}$$

Definition 0.4 - Gamma Distribution

Let T be a continuous randmo variable modelled by a Gamma Distribution with shape parameter α & scale parameter λ . Then

$$f_T(x) = \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)} \quad \text{for } x > 0$$

$$\mathbb{E}(T) = \frac{\alpha}{\lambda} \quad \& \quad Var(T) = \frac{\alpha}{\lambda^2}$$

N.B. $\alpha, \lambda > 0$.

Definition 0.5 - Exponential Distribution

Let T be a continuous random variable modelled by a *Exponential Distribution* with parameter λ . Then

$$\begin{array}{rcl} f_T(t) &=& \mathbbm{1}\{t\geq 0\}.\lambda e^{-\lambda t}\\ F_T(t) &=& \mathbbm{1}\{t\geq 0\}.\left(1-e^{-\lambda t}\right)\\ \mathbbm{E}(X) = \frac{1}{\lambda} &\& & Var(X) = \frac{1}{\lambda^2} \end{array}$$

N.B. Exponential Distribution is used to model the wait time between decays of a radioactive source.

Definition 0.6 - Normal Distribution

Let X be a continuous random variable modelled by a Normal Distribution with mean μ & variance σ^2 .

Then

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$

$$M_X(\theta) = e^{\mu\theta + \sigma^2\theta^2(1/2)}$$

$$\mathbb{E}(X) = \mu \quad \& \quad Var(X) = \sigma^2$$

Definition 0.7 - Poisson Distribution

Let X be a discrete random variable modelled by a Poisson Distribution with parameter λ . Then

$$\begin{array}{rcl} p_X(k) & = & \frac{e^{-\lambda}\lambda^k}{k!} & \text{For } k \in \mathbb{N}_0 \\ \mathbb{E}(X) = \lambda & \& & Var(X) = \lambda \end{array}$$

N.B. Poisson Distribution is used to model the number of radioactive decays in a time period.