Homotopy Shields over Sets in \mathbb{R}^n , $n \in \mathbb{Z}^+$

Philipp Harland

May 2025

Email: piranhafisherman@proton.me

Abstract

In this paper, we will be defining the concept of a "homotopy shield" over a set in \mathbb{R}^n , and then documenting some immediate properties of its definition w.r.t. both binary and multiary contexts.

Contents

1	Introduction	1
_	Results of Research	2
	2.1 As a binary operation	 2
	2.2 As a k-ary operation	 2

1 Introduction

Let S be any path connected set with nonzero Lebesgue measure in \mathbb{R}^n . For the rest of the paper, this is what we will mean by "set" in the rest of this paper.

Def. 1.1. An algebraic structure, S, which is defined over a parameter space \mathcal{P} , is called a shield if the variety it belongs to varies w.r.t. different parameters. Or, stated succinctly, $|\bigcup_{p\in\mathcal{P}} Var(S_p)| \geq 2$.

We can consider our "homotopy shields" to be defined over the parameter space [0,1].

Def. 1.2. A function, f which is defined as a function – given S and T are points, or, they are collections of points of the same "type", e.g. 2 Jordan curves – is called a homotopy function if it is continuous, and, satisfies the condition that f(0) = S, f(1) = T.

This condition is slightly different to how topologists define it, but it fits for our purposes.

¹Here, instead of the context in algebraic geometry, we use the context in universal algebra where "algebraic variety" means a class of algebraic structures which all satisfy the same axioms, e.g. the class of groups, \mathfrak{C}_{Grp} or the class of abelian groups, \mathfrak{C}_{AbGrp} .

2 Results of Research

2.1 As a binary operation

We let S be a set over \mathbb{R}^n , for a fixed positive integer n. We will set up the algebraic structure (S, f_t) , where f_t is a homotopy function, which has a fixed interpolation value, t. We interpret this function as one belonging to the function space $S \times S \times \mathbb{I} \to S$.

We now document a few properties of homotopies on sets:

Thm. 2.1.1. When $t = \frac{1}{2}$ exactly, we obtain an abelian structure under the linear homotopy.

Proof. For 2 points $x=(x_1,...,x_n),\ y=(y_1,...,y_n)\in\mathbb{R}^n$, invoking the fact addition in \mathbb{R}^n is commutative, thus $x+y=y+x=(x_1+y_1,...,x_n+y_n)$, we have:

 $f_{\frac{1}{2}}(x,y) = \frac{(x_1+y_1,\dots,x_n+y_n)}{2}$

 $f_{\frac{1}{2}}(y,x)=rac{(y_1+x_1,\dots,y_n+x_n)}{2}$ And, we know these two are equal, given the identity above.

Thm. 2.1.2. We usually cannot define such structures on Lebesgue measure zero sets, but there are special cases where we can, i.e. the closure property is satisfied. These are the cases when $t \in \{0,1\}$.

Proof. Given two points, $x,y\in\mathbb{R}$ we know 0y+x=x, and 0x+y=y. And, since $t\not\in(0,1)$, it is impossible to get an 'in between' point.

Thm. 2.1.3. Given two sets, A and B, $A +_{Mink} B = 2 \cdot \bigcup_{(a,b) \in A \times B} f_{\frac{1}{2}}(a,b)$. Here, by $n \cdot A$ we mean the set $\{(na_1,...,na_k) | (a_1,...,a_n) \in A\}$.

Proof. This is trivial to prove.

For left and right identities, we will first describe such elements for the special cases $t \in \{0, \frac{1}{2}, 1\}$, then move onto the general case.

Thm 2.1.4. When $t = \frac{1}{2}$, we have an identity for every element, a, of our underlying set, A, which is a itself.

Proof. This is trivial to prove.

For homotopy shields over convex vs. concave sets, we have the following 2 theorems:

Thm. 2.1.5. Over convex sets, homotopy shields are always closed.

Proof. This follows immediately from the definition of a convex set.

Thm. 2.1.6. Over concave sets, homotopy shields are only closed if $t \in \{0, 1\}$.

Proof. This is trivial to prove.

2.2 As a k-ary operation

We can easily extend this theory to k-ary functions. Instead of 2, for a positive integer, k, we give the following theory:

Def 2.2.1. Drawing from **Def. 1.2.**, we define a k-ary homotopy function as a continuous function; and, given k points, or, sets of points $A_1, ..., A_k$ of the same "type", we have:

$$\begin{cases} f(1,...,0) & A_1 \\ \cdot & \cdot \\ \cdot & \cdot \\ f(0,...,1) & A_k \end{cases}$$

, where f(0,...,1,...,0) with the i^{th} input equal to 1 maps to A_i . We, for a function which we denote $f_{t_1,...,t_{k-1}}$ will have our "interpolation value" be fixed. We view it as belonging to the function space $S^k \times \mathbb{I}^{k-1} \to S$.

Similarly to how we define linear homotopy functions in one variable, we can explicitly define such a function: $f_{(t_1,...,t_{k-1})}(x_1,...,x_k) = (1 - \sum_{m=1}^{k-1} t_m)x_k + \sum_{m=1}^{k-1} t_m$ $\sum_{i=1}^{k-1} t_i x_i$. Here, all t_i 's are non-negative, and sum to 1. We are aware of the fact that t_k is completely determined by all t_i , $i \in \{1, ..., k-1\}$.

Thm. 2.2.1. Similar to Thm. 2.2. - we can always define a "homotopy shield" over any set, even if its Lebesgue measure is zero if our function's "interpolation value" is among one of the cases in the second condition of **Def.** 2.1. Proof. This is trivial to prove using the proof of Thm. 2.2..

Thm. 2.2.2. Similarly to Thm. 2.4., when our interpolation tuple is equal to $(\frac{1}{k},...,\frac{1}{k})$, there exists a double-sided identity element, a, for every element in our underlying set, which is $\underbrace{f_{(\frac{1}{k},...,\frac{1}{k})}(a,...,a)}_{k}$.

Proof. This is trivial to prove.

Thm. 2.2.3. Similarly to **Thm. 2.3.** Given n sets, $G_1, ..., G_n, +_{i-1}^n G_i =$ $n\cdot\bigcup_{a_i\in G_i}f_{(\frac{1}{n}...\frac{1}{n})}(a_1,..,a_n).$ Proof. This is trivial to prove.

We have the following theorems which come as analogues to Thm. 2.1.5. and Thm. 2.1.6.:

Thm. 2.2.4. Over convex sets, homotopy shields in k variables are always

Proof. Similarly to the analogue, this is trivial to prove. It comes directly from the definition of a convex set.

Thm. 2.2.5. Over concave sets, homotopy shields are only closed if their interpolation values are equivalent to the natural basis vectors in \mathbb{R}^{k-1} .

Proof. Similarly to the analogue, this is trivial to prove. 2

²Here, by trivial, we mean it is very easy and doesn't take that much ingenuity or too many additional concepts to prove. This applies to all theorems which have been marked as "trivial".