STAT 161/261: Homework 2 Bayes Decision Theory. Due Monday, April 18 in class.

Prof. Alyson Fletcher

Send all submissions and questions to the TA.

- 1. Maximum likelihood parameter estimation from data
 - (a) Load the data Doctor1data.txt and Doctor2data.txt. The two columns are the weight (in pounds) and height (in inches) for 1000 patients at the offices of two different pediatricians in a large practice, where certain doctors have multiple subspecialties.
 - (b) Plot a 2D histogram of the data from the first doctor. You can use a 2D bar plot or surface plot. In MATLAB, the bar plot can be done with the hist3 function. Select 10 bins in each axis. Label your plot.
 - (c) Assuming a Gaussian distribution, find the ML estimate for the mean and covariance matrix for the data, which are the sample mean and covariance. Plot a 2D surface plot of the bivariate Gaussian density. Qualitatively, is the Gaussian density a good fit for Doctor1's patients? Why?
 - (d) Repeat parts (b) and (c) with the second data file. Is a Gaussian a good fit?
 - (e) Describe a clustering and better model for the data from Doctor 2. Who do you think her patients are compared to Doctor 1's? (Note: the office specializes in infants and teenagers.)
- 2. The data for the problem is in the file housePrM.txt. Column 2 is the price of the house in thousands of dollars and column 3 is the size in hundreds of square feet.
 - (a) Create a plot of price vs. size. Do you see a linear relationship?
 - (b) Obtain the equation of the best linear regression fit to the data. Plot the regression fitted line on the scatterplot. What price do you predict for a house with size 20?
 - (c) Do you notice anything unusual in the scatterplot?
 - (d) Obtain the correlation between the size and price.
- 3. Use MATLAB, R or equivalent. In this problem, we will illustrate the concept of empirical risk minimization on a simple classification problem. Suppose that data (x, y) is generated from a model, where y = 0 or 1 is the class label with

$$P(y=1) = P(y=0) = \frac{1}{2},$$

and x is a scalar xith likelihood

$$p(x|y=i) = \frac{1}{\lambda_i} e^{-x/\lambda_i}, \quad x \ge 0,$$
(1)

where $\lambda_i = \mathbb{E}(x|y=i)$ is the conditional expectation of x given y=i. Take $\lambda_0=1, \lambda_1=10$.

- (a) Derive the MAP classifier, \hat{y} , assuming you know the values λ_i . Generate $N_{\text{test}} = 1000$ i.i.d. samples (x_i, y_i) from the above distribution, and run the classifier on samples you generate. Measure the classification error rate, which is the fraction of samples i on which $\hat{y} \neq y$.
- (b) Now suppose that you don't know the parameters λ_i . Derive the MLE of λ_i . Generate $N_{\text{train}} = 1000$ i.i.d. samples (x_i, y_i) of the above distribution, and obtain ML estimates $\hat{\lambda}_i$ from the training data. Use these estimates in the MAP classifier from part (a) and measure the classification error rate.
- (c) (**Due with HW3, but builds on earlier part of this problem.) Next suppose that the data is not exactly modeled via the exponential distributions in (1). Specifically,

$$p(x|y = 0) = \frac{1}{\lambda_0} e^{-x/\lambda_0},$$

$$p(x|y = 1) = \frac{1 - q}{\lambda_1} e^{-x/\lambda_1} + \frac{q}{\lambda_2} e^{-x/\lambda_2},$$

so that when y = 0, x is distributed as before, but when y = 1, x is drawn from a mixture of two exponentials. Take $\lambda_0 = 1$, $\lambda_1 = 10$, $\lambda_2 = 100$, and q = 0.1. Generate 1000 training and test samples from this density. Then, re-do part (b), where the training and classifier still assumes that both likelihoods are exponentials. What is the classification error rate? Is this classifier robust to errors in the model?

(d) (**Due with HW3 also.) To find a classifier that is more robust, we will use empirical risk minimization. Consider a set of classifiers of the form

$$\hat{y} = \begin{cases} 1 & \text{if } x \ge \gamma, \\ 0 & \text{if } x < \gamma, \end{cases}$$

for some threshold level γ . Using the training data from the previous part, find the value of γ that minimizes the classification error rate on the training data. Then, using that value of γ , measure the classification error rate on the test data. How does this compare to the classification error in the previous part?

- 4. Easy-to-prove facts about linear regression.
 - (a) Consider the (very!) simple linear regression model $\hat{y} = \beta_0$ for data (x_i, y_i) . (Estimating with a constant is equivalent to fitting a line that is constrained to zero slope.) Find the least-squares estimate of β_0 as function of N data samples.
 - (b) Prove that for the least squares estimator in the simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$, where ϵ is zero mean, the estimate for β_0 is unbiased.