

Miguel Fernández Cortizas

TRABAJO FIN DE GRADO

KIT DE DESARROLLO Y VALIDACIÓN DE ALGORITMOS DE CONTROL DE ACTITUD PARA CUADRICÓPTEROS.

TRABAJO FIN DE GRADO PARA LA OBTENCIÓN DEL TÍTULO DE GRADUADO EN INGENIERÍA EN **TECNOLOGÍAS INDUSTRIALES** SEPTIEMBRE **2019**

Miguel Fernández Cortizas

DIRECTOR DEL TRABAJO FIN DE GRADO: **Pascual Campoy Cervera**

INDUSTRIALES

José Gutiérrez Abascal, 2. 28006 Madrid Tel.: 91 336 3060 info.industriales@upm.es

www.industriales.upm.es

TRABAJO FIN DE GRADO

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

KIT DE DESARROLLO Y VALIDACIÓN DE ALGORITMOS DE CONTROL DE ACTITUD PARA CUADRICÓPTEROS.

Miguel Fernández Cortizas

Tutor académico: D. Pascual Campoy Cervera

> Madrid - España 2020

En memoria de mi padrino Juan, seguiré trabajando hasta alcanzar las metas que me hubiese gustado celebrar contigo.

Agradecimientos

Resumen ejecutivo

Introducción

Los drones de carreras autónomos aun están lejos de alcanzar el rendimiento de los pilotos humanos. añadir todos los campos que tienen relevancia: estimacion, control, generación de trayectorias, percepción y todo a muy altas velocidades con sistemas a bordo

En 2019 la *Drone Racing League* y la empresa *Lockheed Martin* organizaron **Alphapilot** una carrera de drones autónomos con un gran premio de 1 millon de dólares para el ganador.

Alcance

Los objetivos de este trabajo consisten en diseñar un controlador capaz de permitir que un cuadricóptero sea capaz de volar a muy altas velocidades, superiores a 5 m/s, a través de un circuito de carreras para drones, así como generar las trayectorias que el dron debe seguir para recorrer el circuito de forma óptima.

Solución realizada

- Controlador pequeños ángulos:
- Controlador grandes ángulos:
- Generador de trayectorias óptimas en acceleracion:
- Generador de trayectorias óptimas en *snap*:

Experimentación y resultados.

Para la simulación se ha empleado el entorno de simulación Flightgoogles citar el cual fue el empleado para las pruebas clasificatorias virtuales del Alphapilot 2019.

Conclusiones y trabajo futuro

Palabras clave

UAV, cuadricóptero, control clásico, aprendizaje automático, inteligencia artificial, aprendizaje por refuerzo, redes neuronales.

Códigos UNESCO

120304	INTELIGENCIA ARTIFICIAL
120326	SIMULACIÓN
330104	AERONAVES
330412	DISPOSITIVOS DE CONTROL
330703	DISEÑO DE CIRCUITOS

Índice general

1	Introducción 1.1 Motivación 1.2 Solución propuesta 1.3 Objetivos	
2	Estado del arte	3
3	Arquitectura del sistema	5
4	Modelado de un cuadricóptero 4.1 Análisis dinámico	8
5	Control5.1 Controlador para ángulos pequeños	11 11 11
6	Generación de trayectorias 6.1 Trayectorias óptimas	13
7	Metodología 7.1 Generación de waypoints	15 15
8	Experimentos 8.1 Experimentos en simulación	17 17 17
9	Conclusiones y trabajo futuro 9.1 Conclusiones	19 19
A	Presupuesto y Planificación A.1 Presupuesto	
В	Impacto social v medioambiental	23

Introducción

cuidado con usar dron y uav, pueden ser los militares... Los drones son vehículos no tripulados cuya popularidad en el mundo de la industria es cada vez mayor siendo utilizados para realizar tareas en campos muy diversos, como la inspección industrial, la industria cinematográfica o para su uso en operaciones de búsqueda y rescate. Dentro de este grupo los más empleados por la industria son los cuadricópteros, debido a la simplicidad de estos, lo que reduce su peso y su coste.

La inmensa mayoría del uso de estas aeronaves es mediante teleoperación, dentro del paradigma de los RPAS (*Remotely Piloted Aircraft System*) aunque el auge de estas aeronaves han llevado a la comunidad científica hacia el desarrollo de sistemas que permita a los cuadricópteros ser capaces de realizar tareas de forma autónoma.

Una prueba de estos avances se pueden observar en diversas competiciones internacionales como IMAV, MBZIRC o más recientemente el AIRR. Competiciones en las que el objetivo es conseguir que UAV sean capaces de realizar pruebas complejas de forma autónoma.

1.1. Motivación

Las velocidades a las que suelen volar estos uav normalmente no suelen exceder los 3 m/s estándo la inmensa mayoría de ellas por debajo del 1.5 m/s. El aumentar la velocidad de vuelo, exige tener algoritmos de percepción y de estimación de estado más rápidos, así como algoritmos de planificación y de control más precisos.

Además en la competición toda la computación se realiza a bordo de la aeronave en un SBC, por lo que la capacidad de cálculo es limitada.

1.2. Solución propuesta

En este trabajo se propone un sistema autónomo capaz de recorrer un circuito de carreras simulado a altas velocidades de forma autónoma y con incertidumbre sobre el recorrido en sí.

Para desarrollar los algoritmos se empleará el simulador fotorrealista FlightGoogles, empleado para las pruebas clasificatorias del AIRR 2019 como entorno de pruebas.

1.3. Objetivos

Estado del arte

Arquitectura del sistema

El objetivo de lograr que un cuadricóptero vuele a través de un circuito de carreras autónomamente requiere de la

- Percepción:
- Estimación de estado:
- Generador de trayectorias:
- Controlador:

Para coordinar el trabajo de los distintos módulos que componen el sistema autónomo se ha empleado ROS (Robot Operating System) [1] un framework orientado a el desarrollo de software para robots ampliamente extendido en la comunidad robótica. Esto permite desarrollar cada componente del sistema de forma independiente y comunicarlos entre ellos mediante una interfaz común. Esto permite encapsular el código, lo que aumenta la reusabilidad y la robustez de cada módulo, independiente del resto de módulos que les rodeen.

Modelado de un cuadricóptero

Un cuadricóptero es un robot aéreo con 6 grados de libertad (3 rotacionales y 3 traslacionales) y 4 motores, al tener menos motores que el número de grados de libertad, se dice que es un sistema subactuado.

Figura 4.1: Esquema de fuerzas y momentos que actúan sobre un cuadricóptero y sus sistemas de referencia asociados.

Como puede observar en la figura 4.1, se ha empleado el subíndice W para hacer referencia al sistema de referencia del mundo, así como el subíndice B para referirse al sistema asociado al cuerpo del cuadricóptero. El frame B posee su origen O_B en el centro de masas de la aeronave, con el eje x_B coincidente con la dirección de avance preferente de la aeronave.

Para modelar las rotaciones del frame B con respecto a W se emplearán los ángulos de Euler Z-X-Y, es decir, la matriz de rotación R para transformar coordenadas desde B a W consiste en la composición de las siguientes rotaciones:

$$R = R_{\mathbf{z},\psi} R_{\mathbf{x},\phi} R_{\mathbf{y},\theta} \tag{4.1}$$

siendo $R_{\mathbf{i},\alpha}$ una rotación de un ángulo α respecto al eje i. Al desarrollar la expresión 4.1 se obtiene la matriz R resultante

$$R = \begin{bmatrix} c_{\psi}c_{\theta} - s_{\phi}s_{\psi}s_{\theta} & -c_{\phi}s_{\psi} & c_{\psi}s_{\theta} + c_{\theta}s_{\phi}s_{\psi} \\ c_{\theta}s_{\psi} + c_{\psi}s_{\phi}s_{\theta} & c_{\phi}c_{\psi} & s_{\psi}s_{\theta} - c_{\theta}s_{\phi}c_{\psi} \\ -c_{\phi}s_{\theta} & s_{\phi} & c_{\phi}c_{\theta} \end{bmatrix}$$
(4.2)

donde c_{θ} y s_{θ} denotan $cos(\theta)$ y $sen(\theta)$ respectivamente.

En el sistema de referencia B las componentes del vector velocidad angular Ω están definidas por p, q y r de la forma:

$$\Omega = p\mathbf{x}_{\mathbf{B}} + q\mathbf{y}_{\mathbf{B}} + r\mathbf{z}_{\mathbf{B}} \tag{4.3}$$

Estas componentes están relacionadas con las derivadas de los ángulos de Euler de acuerdo a

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} c_{\theta} & 0 & -c_{\phi}s_{\theta} \\ 0 & 1 & s_{\phi} \\ s_{\theta} & 0 & c_{\phi}c_{\theta} \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$
(4.4)

4.1. Análisis dinámico

4.1.1. Ecuaciones de movimiento traslacional

Como se puede observar en la figura 4.1, las fuerzas que actúan sobre el cuadricóptero son: la gravedad, en la dirección $-\mathbf{z_W}$ y la fuerza de cada uno de los motores, en la dirección $\mathbf{z_B}$. Para hallar las ecuaciones que rigen la dinámica del centro de masas del sistema C se aplican las ecuaciones de Newton sobre él. Siendo \mathbf{r} el vector de posición del centro de masas C con respecto al origen de W obtenemos:

$$m\ddot{\mathbf{r}} = \begin{bmatrix} 0\\0\\-mg \end{bmatrix} + R \begin{bmatrix} 0\\0\\F_1 + F_2 + F_3 + F_4 \end{bmatrix}$$

$$(4.5)$$

Si denominamos $F = \sum_{i=1}^4 F_i$, al expandir la ecuación anterior con la definición de R en 4.2 obtenemos las ecuaciones que describen el movimiento traslacional del centro de masas del cuadricóptero:

$$m\ddot{\mathbf{r}} = \begin{bmatrix} 0\\0\\-mg \end{bmatrix} + \begin{bmatrix} s_{\theta}c_{\psi} + s_{\phi}c_{\theta}s_{\psi}\\s_{\theta}s_{\psi} - s_{\phi}c_{\theta}c_{\psi}\\c_{\phi}c_{\theta} \end{bmatrix} F \tag{4.6}$$

4.1.2. Ecuaciones de movimiento rotacional

Como se puede observar en la expresión anterior, el movimiento del cuadricóptero depende de la rotación R, por lo que es necesario modelar el movimiento rotacional del mismo. Se define el momento angular H como:

$$H = \mathbf{I}\Omega \tag{4.7}$$

donde $\mathbf{I} \in \mathbb{R}^{3\times 3}$ representa el tensor de inercia del cuadricóptero en el sistema B, y $\Omega = [p, q, r]$ representa el vector de velocidad angular de B respecto W.

Si denotamos $M_c = [\tau_x, \tau_y, \tau_z]^t$ como el momento total del cuadricóptero en el sistema B

$$M_c = \frac{d}{dt}H$$

$$= \mathbf{I}\dot{\Omega} + \Omega \times \mathbf{I}\Omega \tag{4.8}$$

Se considera que el cuadricóptero presenta una distribución de masa simétrica, por lo que el tensor de inercia $\mathbf I$ es un tensor diagonal de la forma:

$$\mathbf{I} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}$$
 (4.9)

siendo I_{xx} , I_{yy} , I_{zz} los momentos principales del cuadrícoptero con respecto a los ejes x_B , y_B , z_B respectivamente.

Desarrollando la expresión 4.8 y reorganizando sus términos:

$$\mathbf{I} \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times \mathbf{I} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
 (4.10)

A partir del diagrama de la figura 4.1 se puede calcular los valores de τ_x , τ_y y τ_z a partir de las fuerzas y momentos ejercidos por los motores.

$$\tau_x = L(F_2 - F_4)
\tau_y = L(F_3 - F_1)
\tau_z = M_1 - M_2 + M_3 - M_4$$
(4.11)

Finalmente se unen las expresiones 4.10 y 4.11 para obtener la ecuación de movimiento rotacional del cuadricóptero.

$$\mathbf{I} \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} L(F_2 - F_4) \\ L(F_3 - F_1) \\ M_1 - M_2 + M_3 - M_4 \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times \mathbf{I} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
(4.12)

Control

El problema del control se puede expresar formalmente: Dado el estado del sistema x(t) continuar como encontrar la función u(t) tal que, el estado x(t) sigue la trayectoria desesada $x^{des}(t)$ a lo largo del tiempo.

Si se define el error e(t) del control como:

$$e(t) = x^{des}(t) - x(t) \tag{5.1}$$

el objetivo del controlador sería conseguir que el error e(t) converja de forma exponencial a 0.

El estado x(t) de un cuadricóptero consta de 12 variables, las 6 correspondientes a su pose y sus derivadas correspondientes.

$$x(t) = \begin{bmatrix} x & y & z & \phi & \theta & \psi & \dot{x} & \dot{y} & \dot{z} & \dot{\phi} & \dot{\theta} & \dot{\psi} \end{bmatrix}^{t}$$
 (5.2)

Si llamamos q al vector de configuración formado por las 6 primeras variables:

$$q(t) = \begin{bmatrix} x & y & z & \phi & \theta & \psi \end{bmatrix}^t \tag{5.3}$$

$$x(t) = [q \ \dot{q}]^t \tag{5.4}$$

5.1. Controlador para ángulos pequeños

Cuando las trayectorias que el cuadricóptero son poco agresivas se puede linealizar el modelo del cuadricóptero entorno a su punto de equilibrio. En la situación de equilibrio el cuadricóptero se encuentra en hover hover, es decir manteniendo la posición en el aire. En hover el estado x_0 de la aeronave es de la forma

$$x_0 = [q_0 \ 0]^t$$

$$q_0 = [x \ y \ z \ 0 \ 0 \ 0]^t$$
(5.5)

5.2. Controlador para ángulos grandes

Generación de trayectorias

En el apartado anterior se ha diseñado un controlador cuyo objetivo es seguir una trayectoria $x^{des}(t)$ minimizando el error de seguimiento. En este apartado se tratará sobre la forma en la que se generan estas trayectorias.

El objetivo es generar trayectorias a través del circuito de forma que la aeronave sea capaz de recorrerlas teniendo en cuenta restricciones de posición, velocidad y aceleración. control optimo antes ??? Se ha decidido usar trayectorias de tipo spline, es decir, curvas diferenciables definidas en segmentos polinómicos. Cada trayectoria $r_d(t)$ está compuesta por m segmentos de grado q, presentando la estructura

$$r_d(t) = \begin{cases} \sum_{i=1}^q a_{i1} t^i &, t_0 \le x \le t_1 \\ \sum_{i=1}^q a_{i2} t^i &, t_1 \le x \le t_2 \\ \vdots & \vdots \\ \sum_{i=1}^q a_{im} t^i &, t_{m-1} \le x \le t_m \end{cases}$$

$$(6.1)$$

siendo $a_{ij} \in \mathbb{R}$ los coeficientes de los polinomios. El grado q de estos polinomios dependerá del índice a minimizar durante el transcurso de la trayectoria, como se explicará en el apartado 6.1.

6.1. Trayectorias óptimas

El objetivo del control óptimo es encontrar la función $x^*(t)$ que minimiza la expresión

$$x^*(t) = \underset{x(t)}{\operatorname{argmin}} \int_0^T \mathcal{L}\left(x^{(n)}, x^{(n-1)}, ..., \dot{x}, x, t\right) dt$$
 (6.2)

siendo \mathcal{L} el índice que se debe optimizar.

Metodología

7.1. Generación de waypoints

Experimentos

- 8.1. Experimentos en simulación
- 8.2. Experimentos en real

Conclusiones y trabajo futuro

- 9.1. Conclusiones
- 9.2. Trabajo futuro

Presupuesto y Planificación

A.1. Presupuesto

El presupuesto del trabajo se puede separar en tres partes: recursos humanos, compra de material y amortización de los equipos utilizados.

En cuanto a los recursos humanos empleados, se ha tenido una dedicación por parte del alumno de unas 800 horas, esto es un número de horas mucho superior a las 360 horas (30h/ECTS) correspondientes a la carga temporal de los 12 ECTS del Trabajo fin de Grado (TFG). Esto se ha debido al gran alcance y a la complejidad del mismo. Un sueldo de investigador a media jornada en la universidad, sin estar graduado, es de unos 450 euros. Lo que se traduce en un salario de unos 5,625 euros la hora. Los salarios del tutor y el cotutor se han extraído del portal de transparencia de la UPM. La dedicación del tutor ha sido de unas 20 horas de implicación en el trabajo y la implicación del cotutor ha sido de unas 80 horas de implicación.

Recursos humanos	Horas	Coste Horario [EUR]	Total [EUR]
Alumno	800	5.625	4500
Cotutor	80	7.8	624
Tutor	20	33.72	674.4
Total			5798.4

Los costes de material del proyecto son debidos a la construcción del cuadricóptero y del autopiloto.

Material	Coste unitario [EUR]	Unidades	Total [EUR]
Cuadrcóptero			
Bobina PLA 1Kg	20	1.5	30
Perfiles aluminio	2	1	2
Pack 4 Motores MT2204 II	25	1	25
ESC BlHeli 4 in 1	50	1	50
Baterías LiPo	25	2	50
PCB autopiloto	20	1	20
Componentes PCB	50	1	50
Hélices HQ5040	2.5	4	10
Total			239

En cuanto a la amortización del equipo, se han empleado 2 ordenadores para el desarrollo del software y para el entrenamiento de los algoritmos. Se ha considerado una amortización lineal del 10 % de la vida útil (10 años).

Equipo	Precio	Coste Amortización(10 %)
Pc sobremesa	1980	198
Pc portátil	1300	130
Total		328

Añadiendo un coste de encuadernado de la memoria de unos 30 euros el presupuesto total del proyecto ha sido

Concepto	Total [EUR]
Recursos humanos	5798.4
Material	239
Amortización del equipo	328
Encuadernación	40
Total	$6405,\!4$

A.2. Planificación

La realización de este trabajo ha empleado un ritmo continuo de horas de trabajo desde su comienzo, siendo un poco menor en épocas de exámenes y un poco mayor al comienzo de los cuatrimestres y julio. La dedicación media diaria del trabajo ha sido de unas 4 horas semanales, durante un periodo de unos 10 meses (descontando agosto y septiembre), lo que da un total de unas 800 horas. La inmensa mayoría de estas horas se han dedicado en el Centro de Automática y Robótica (CAR) de la Escuela Técnica Superior de Ingenieros Industriales (ETSII) de la Universidad Politécnica de Madrid (UPM), concretamente en el grupo de investigación de Visión por Computador y Robots Aéreos (CVAR).

En cuanto a la distribución del trabajo en este tiempo, el trabajo comenzó a realizarse en septiembre de 2018, durante los primeros meses se realizó el curso sobre redes neuronales y aprendizaje profundo, en la plataforma online Coursera. La duración del curso se extendió hasta finales de diciembre. Paralelamente, a partir de octubre se comenzó con el diseño de la aeronave, y en noviembre con el del autopiloto. A principios de febrero se finalizo con el diseño y construcción del cuadricóptero y con el diseño y montaje de la PCB del autopiloto. A partir de este punto, el resto del tiempo se ha dedicado al software, tanto el del autopiloto, como el de la estación de tierra , al diseño de los algoritmos de control y a la experimentación real. Se ha realizado un diagrama GANTT (??) en el que se ha detallado más en profundidad la distribución temporal de las tareas. Asimismo, se ha esquematizado la organización del proyecto en un diagrama EDP

Impacto social y medioambiental

El impacto social que tiene este trabajo se ve reflejado en su posible empleo en la educación y la investigación. Actualmente las metodologías docentes están tendiendo hacia el aprendizaje práctico, hacia aprender haciendo. Esta plataforma podría emplearse en centros docentes debido a su montaje mecánico hecho casi en su totalidad con impresión 3D.

Desde el punto de vista de la investigación, tener la posibilidad de desarrollar y probar nuevos algoritmos para el control de cuadricópteros puede mejorar la efectividad del uso de estas aeronaves en múltiples aplicaciones. Cuanto mejor sea el controlador, más fácil será utilizar estas aeronaves para tareas de inspección, seguridad y búsqueda y rescate, entre otras.

El impacto medioambiental de la plataforma es reducido, ya que, el PLA es un plástico biodegradable y las baterías de Litio, una vez descargadas, son sencillas de desechar. EL proceso de fabricación de los componentes requiere de recursos materiales y energéticos, cuyo proceso de obtención puede provenir de fuentes no renovables. Sin embargo, los beneficios sociales que se pueden extraer de los resultados del proyecto hacen asumible este impacto medioambiental.

Índice de figuras

4.1	Esquema de fuerzas y momentos que actúan sobre un cuadricóptero y sus	
	sistemas de referencia asociados	-

Bibliografía

[1] Stanford Artificial Intelligence Laboratory et al., "Robotic operating system." [Online]. Available: https://www.ros.org