# Fano Threefolds

# Ikhan Choi Lectured by Hiromu Tanaka University of Tokyo, Spring 2023

# June 8, 2023

# **Contents**

| 1 | Day 1: April 6  | 2  |
|---|-----------------|----|
| 2 | Day 2: April 13 | 5  |
| 3 | Day 3: April 20 | 8  |
| 4 | Day 4: April 27 | 11 |
| 5 | Day 5: May 11   | 15 |
| 6 | Day 6: May 18   | 18 |
| 7 | Day 7: May 25   | 22 |
| 8 | Day 8: June 8   | 25 |

# 1 Day 1: April 6

Grade: solve 2~4 exercises (report)

Throughout this lecture,

- we work over  $\mathbb{C}$ .
- A projective scheme is a projective scheme over  $\mathbb{C}$ , i.e. a closed subscheme of  $\mathbb{P}^N_{\mathbb{C}}$  for some N.
- A variety is an integral scheme which is separated and of finite type over  $\mathbb{C}$ .

**Definition 1.1.** A Fano variety is a smooth projective variety X such that  $-K_X$  is ample.

**Definition 1.2.** Let X be a smooth variety. A canonical divisor  $K_X$  is a Weil divisor such that  $\mathcal{O}_X(K_X) \cong \omega_X := \bigwedge^{\dim X} \Omega_X^1 \in \operatorname{Pic}(X)$ . ( $\Omega$  is a locally free sheaf of  $\operatorname{rank}(=\dim X)$ ) the canonical divisor

**Example 1.3.** If *X* is a smooth projective curve, then *X* is Fano iff  $X \equiv \mathbb{P}^1$ .

*Proof.* 1. A divisor *D* on *X* is ample iff deg D > 0. (deg  $D = \sum_i a_i$  for  $D = \sum_i a_i P_i$ )

2. 
$$\deg K_X = 2g - 2$$
,  $(g := h^1(X, \mathcal{O}_X) \in \mathbb{Z}_{2n})$ 

3. 
$$g = 0$$
 iff  $X = \mathbb{P}^1$ .

Moreover,  $\mathbb{P}^n$  is Fano.

**Example 1.4.** Let  $X \subset \mathbb{P}^N$ : smooth hypersurface of deg d. For example, we may consider  $X = \{x_0^d + \cdots + x_N^d\}$ . Then, X is Fano iff  $d \leq N$ .

Proof. (Sketch) By the adjunction formula,

$$\mathcal{O}_X(K_X) \cong \mathcal{O}_{\mathbb{P}^N}(K_{\mathbb{P}^N} + X)|_X \cong \mathcal{O}_{\mathbb{P}^N}(-N - 1 - d)|_X.$$

Then,  $\operatorname{Pic} \mathbb{P}^N = \{\mathcal{O}_{\mathbb{P}^N}(m) | m \in \mathbb{Z}\} \cong \mathbb{Z}$  (group isomoprhism).

Why 3-folds? It is started by Gino Fano (1904~), and the following theorem gives a motivation:

**Theorem 1.5** (Lüroth,1876).  $\mathbb{C} \subset K \subset \mathbb{C}(x)$  be field extensions. Assume the trenscendental degree of K is one. Then,  $K \cong \mathbb{C}(y)$ .

The Lüroth problem states that: if  $\mathbb{C} \subset K \subset \mathbb{C}(x_1, \dots, x_n)$  field extensions, assuming the trenscendental degree of K is n, then  $K \cong \mathbb{C}(y_1, \dots, y_n)$ ?

**Theorem 1.6** (Castelnuovo, 1886). *The Lüroth problem is true if* n = 2.

The idea of this theorem is to convert Lüroth problem into a geometric version. A field extension  $K \subset \mathbb{C}(x)$  corresponds to a dominant rational map  $\mathbb{P}^1_{\mathbb{C}} \to X$ , and the trenscendental degree one is equivalent to that X is curve. Here we may assume X to be a smooth projective curve. So, the Lüroth theorem can be restated as

**Theorem 1.7.** If  $\mathbb{P}^1_{\mathbb{C}} \twoheadrightarrow X$  for a smooth projective curve X, then  $X \cong \mathbb{P}^1_{\mathbb{C}}$ .

For n = 2, we consider the rationality criterion.

**Theorem 1.8.** Let X be a smooth projective surface. Then, X is rational iff  $H^1(X, \mathcal{O}_X) = H^0(X, 2K_X) = 0$ 

**Example 1.9.** If a surface X is del Pezzo(=Fano surface), then X is rational. It is because if  $-K_X$  is ample then  $H^0(X, 2K_X) = 0$  (: if not, then  $2K_X$  is linearly equivalent to an effective divisor D, and  $2(-K_X)^2 = 2K_X \cdot K_X = D \cdot K_X = \sum a_i C_i \cdot K_X \ge 0$ .) Also, by the Kodaira vanishing, we have  $H^1(X, \mathcal{O}_X) = H^1(X, \mathcal{O}_X(K_X + (-K_X))) = 0$ .

How about n = 3? We may consider

- · Three-dimensional rationality criterion?
- Fano hypersurface  $X \subset \mathbb{P}^4$  are rational?

To settle the second question, Fano studied similar and easier Fano threefolds.

**Theorem 1.10.** There is a counterexample to Lüroth's problem. Specifically, if X is the complete intersection of deg 2 hypersurface and deg 3 hypersurface in  $\mathbb{P}^5$ , X is not rational (1908, Fano), but X is unirational (1912, Enriques).

**Theorem 1.11** (1942, G. Fano). There is a hypersurface of degree  $3 \ X \subset \mathbb{P}^4$  which is not rational but unirational.

*Remark* 1.12. The proof by Fano is not rigorous, so the second question(rationality of hypersurface) is now considered as results of

- Clemes-Griffiths (deg= 3)
- Iskovskih-Manin (deg≥ 4)

#### Classification of Fano 3-folds

Two invariants: Picard number  $\rho$  and index r.

**Definition 1.13.** Let *X* be a smooth projective variety.

$$\rho = \rho(X) := \dim_{\mathbb{Q}}((\operatorname{Pic} X \otimes_{\mathbb{Z}} \mathbb{Q}) / \equiv) \in \mathbb{Z}_{\geq 0}.$$

It is equal to  $\dim_{\mathbb{Q}}((\text{Div}X \otimes_{\mathbb{Z}} \mathbb{Q})/\equiv$ , where DivX is the group of Weil divisors so that  $\text{Div}X \otimes_{\mathbb{Z}} \mathbb{Q}$  contains the formal linear combinations of prime divisors over  $\mathbb{Q}$ , and where the quivalence relation is given by  $D \equiv D'$  iff  $D \cdot C = D' \cdot C$  for every curve on X. From the intersection theory,  $D \cdot C = \mathcal{O}_X(D) \cdot C = \deg(\mu^*\mathcal{O}_X(D))$  for  $\mu : C^N \to C \hookrightarrow X$  (composition of normal and closed immersion). Then,  $D \in \text{Div}X \otimes_{\mathbb{Z}} \mathbb{Q}$  implies that there is  $m \in \mathbb{Z}_{\geq 0}$  such that  $mD \in \text{Div}X$ , then  $D \cdot C := \frac{1}{m}((mD) \cdot C)$ .

*Remark* 1.14. Let *X* be a Fano variety. Then,  $\operatorname{Pic} X \cong \operatorname{Pic} X / \equiv \cong \mathbb{Z}^{\oplus \rho(X)}$ . In particular,  $D \sim D'$  implies  $D \equiv D'$ .

**Definition 1.15.** Let X be a Fano variety.

 $r = r_X$  := the largest positive integer that divides  $K_X$ ,

that is, there is a divisor H such that  $-K_X \sim rH$ , but for s > r there is no divisor H such that  $-K_X \sim sH$ .

We shall prove  $1 \le r \le \dim X + 1$  (for  $\dim X = 3$ , then r = 1, 2, 3, 4).

**Example 1.16.** Let  $X = \mathbb{P}^3$ . Then, Pic  $X \cong \mathbb{Z}H$ , where H is a hyperplane, and  $-K_x \equiv \sim 4H$ , hence  $\rho = 1$  and r = 4.

So here is the outline:

- 1.  $r \ge 2$ : Iskovskih, Fujita
- 2.  $\rho = r = 1$ : Iskovskih, Fujita
- 3.  $\rho \geq 2$ : Mori-Mukai

For 1,  $\Delta$ -genus(Fujita) is used, and for 2 and 3, the cone theorem(minimal model program) is used. When  $\dim X = 2$ , using MMP, a del Pezzo surface X is reduced to  $\mathbb{P}^2$  or  $\mathbb{P}^1 \times \mathbb{P}^1$ . When  $\dim X = 3$ , we have primitive Fano threefolds.

Our plan:

- 1. Cone theorem(mainly 2-dim)
- 2.  $r \ge 2$
- 3.  $\rho = r = 1$
- 4.  $\rho \ge 2$  (primitive)
- 5.  $\rho \ge 2$  (imprimitive)

#### Cone theorem

**Theorem 1.17** (Cone theorem, Mori, 1982). Let X be a Fano variety. Then, there is rational curves  $l_1, \dots, l_m$  such that

$$NE(X) = \sum_{i=1}^{m} \mathbb{R}_{\geq 0}[l_i]$$
 and  $-K_X \cdot l_i \leq \dim X + 1$ .

When  $\rho = 3$ ,  $NE(X) \subset N_1(X) \cong \mathbb{R}^{\rho(X)}$  is a triangular pyramid.

**Definition 1.18.** Let *X* be a smooth projective variety.

- 1.  $Z_1(X) := \bigoplus_{C:\text{curve on } X} \mathbb{Z}C$ ,
- 2.  $N_1(X) := (Z_1(X) \otimes_{\mathbb{Z}} \mathbb{R}) / \equiv$ , where  $Z \equiv Z'$  iff  $L \cdot Z = L \cdot Z'$  for all  $L \in \text{Pic } X$ .

It is well-known that

$$N_1(X) \times \left(\frac{\operatorname{Pic} X \otimes_{\mathbb{Z}} \mathbb{R}}{\equiv}\right) \to \mathbb{R}$$

induces a bijection

$$N_1(X) \to \operatorname{Hom}_{\mathbb{R}} \left( \frac{\operatorname{Pic} X \otimes_{\mathbb{Z}} \mathbb{R}}{\equiv}, \mathbb{R} \right),$$

therefore  $\dim_{\mathbb{R}} N_1(X) = \rho(X)$ .

**Definition 1.19.** Let *X* be a smooth projective variety.

- 1. For  $Z \in Z_1(X) \otimes \mathbb{R}$ , denote by  $[Z] \in N_1(X)$  the numerical equivalence class of Z.
- 2. For  $Z \in Z_1(X) \otimes \mathbb{R}$  is an effective 1-cycle.
- 3.  $NE(X) := \{ [Z] \in N_1(X) : Z \text{ effective 1-cycles} \}$

Remark 1.20. NE(X) is a convex cone.

**Example 1.21.** Let  $X := \mathbb{P}^1 \times \mathbb{P}^1$ . Let  $l_i = \pi_i^{-1}(*)$  for i = 1, 2 be any fibers. Then,  $NE(X) = \mathbb{R} \ge_0 [l_1] + \mathbb{R}_{\ge 0}[l_2]$ . One direction is clear, and for the opposite, pick  $[D] = [a_1C_1 + \cdots + a_rC_r] \in NE(X)$   $(a_i \ge 0)$ . It is enough to show  $C_i \equiv b_1l_1 + b_2l_2$  for some  $b_1, b_2 \ge 0$ . Fix a curve C on X. Note that since  $PicX = \mathbb{Z}l_1 \oplus \mathbb{Z}l_2$ , we have  $C \equiv b_1l_1 + b_2l_2$ , so  $0 \le C \cdot l_i = (b_1l_1 + b_2l_2) \cdot l_i = b_il_1 \cdot l_2 > 0$ , we are done.

References for surfaces:

- Beauville: Complex algebraic surfaces (over C),
- Bădescu: Algebraic surfaces

References for cone thm:

- Kollár-Mori: Birational geometry of algebraic varieties
- Debarre: Higher-dimensional algebraic geometry

### 2 Day 2: April 13

### Extremal rays

**Definition 2.1.** Let *X* be a Fano variety. A ray *R* is called an extremal ray (of NE(X) or of *X*) if  $\zeta, \xi \in NE(X)$  and  $\zeta + \xi \in R$  imply  $\zeta, \xi \in R$ .

**Theorem 2.2** (Contraction theorem). Let X be a Fano variety,  $R = \mathbb{R}_{\geq 0}[l]$  an extremal ray for a curve l on X. Then, there is a unique morphism  $f: X \to Y$  such that

- (i) Y is a projective normal variety,
- (ii)  $f_*\mathcal{O}_X = \mathcal{O}_Y$ ,
- (iii) For a curve C on X, f(C) is point iff  $[C] \in R$ .

Note that such f can define the associated extremal ray. Moreover, we have  $\rho(X) = \rho(Y) + 1$  and an exact sequence  $0 \to \operatorname{Pic} Y \xrightarrow{f^*} \operatorname{Pic} X \xrightarrow{l} \mathbb{Z}$ . The morphism f is called the contraction morphism of R.

Proof. See [Kollár-Mori]. □

**Theorem 2.3.** Let X be a del Pezzo surface. Let  $R = \mathbb{R}_{\geq 0}[l]$  be an extremal ray for a curve l on X and  $f: X \to Y$  be its contraction. Then, one of the following holds:

- (A) l is a (-1)-curve and f is a blow down of l (hence dim Y = 2),
- (B) dim Y = 1 (i.e. Y is a smooth projective curve) and  $\rho(X) = 2$ , and f is a  $\mathbb{P}^1$ -bundle with fiber l.
- (C) dim Y = 0 (i.e.  $Y = \operatorname{Spec} \mathbb{C}$ ) and  $\rho(X) = 1$ .

Remark 2.4. Let Y be a smooth projective surface and  $f: X \to Y$  be the blowup at a point  $P \in Y$ . Then,  $l:=f^{-1}(p)$  satisfies  $l \cong \mathbb{P}^1$  and  $l^2=-1$ ; called (-1)-curve. In this case we say f is the blowdown of l.

*Remark* 2.5. Let *X* be a del Pezzo surface and  $\rho(X) = 1$ . Then, it is known that  $X \cong \mathbb{P}^2$ .

Exercise 2.6. Show the above remark.

Remark 2.7. Let X be a smooth projective rational surface. If there is no (-1)-curve on X, then  $X \cong \mathbb{P}^2$  or X is isomorphic to the Hirzeburch surface  $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$ , where  $n \in \mathbb{Z}_{>0} \setminus \{1\}$ .

*Remark* 2.8. Let *X* be a del Pezzo surface and  $f: X \to Y$  be a  $\mathbb{P}^1$ -bundle on a smooth projective curve *Y*. Then,  $Y = \mathbb{P}^1$  and  $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n)), n \in \{0, 1\}.$ 

Sketch. Leray spectral sequence gives  $H^1(Y, f_*\mathcal{O}_X(=\mathcal{O}_Y)) \hookrightarrow H^1(X, \mathcal{O}_X) = 0$ , so  $H^1(Y, \mathcal{O}_Y) = 0$  implies  $Y = \mathbb{P}^1$ .

Also,  $\mathbb{P}^1$ -bundle,  $X \cong \mathbb{P}_{\mathbb{P}^1}(E)$  of rank two, it is well known that  $E \cong \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)$  and  $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(a) \oplus \mathcal{O}(b)) \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O} \oplus \mathcal{O}(b-a))$  for  $n := b-a \geq 0$ . It is known that for a  $\mathbb{P}^1$ -bundle over  $\mathbb{P}^1$  there is a section c such that  $c^2 = -n$ , then  $n \in \{0, 1\}$ .

**Lemma 2.9.** Let X be a del Pezzo surface and C a curve on X. Then,  $C^2 \ge -1$ .

*Proof.* Write  $(K_X + C) \cdot C = 2h^1(C, \mathcal{O}_C) - 2$ . Recall that  $(\omega_X \otimes \mathcal{O}_X(C))|_C \cong \omega_C$  holds even if C is a singular curve. Hence,  $C^2 \geq -K_X \cdot C - 2 \geq 1 - 2 = -1$ .

**Example 2.10.** Let  $X = \mathbb{P}^1 \times \mathbb{P}^1$  and  $l_i = \pi_i^{-1}(*)$  fibers. Then, each projection map  $\pi_i$  corresponds to the extremal rays  $\mathbb{R}_{>0}[l_i]$ .

**Example 2.11.** Let  $X = \mathbb{P}^2$ . Then,  $NE(X) = \mathbb{R}_{\geq 0}[l] = \mathbb{R}_{\geq 0}[l'] = \cdots$  since  $N_1(X) = \mathbb{R}^{\rho(X)} = \mathbb{R}$ .

**Example 2.12.** Let  $X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$ , which is del Pezzo. Then, if f is a blowdown of a section  $l \cong \mathbb{P}^1$ , then  $\rho(Y) = 1$  and  $Y \cong \mathbb{P}^2$ . Then, we have two extremal rays [l] and [l'] which correspond to f and  $\pi$  respectively.

*Remark* 2.13. Let *X* be a del Pezzo surface with  $\rho(X) \ge 3$ . Then,

$$\{\text{extremal rays}\} \longleftrightarrow \{(-1)\text{-curves}\}.$$

Therefore, a del Pezzo surface has a finitely many (-1)-curves.

**Example 2.14.** Let  $f: X \to \mathbb{P}^2$  be a blowup at two points P and Q with  $l_P = f^{-1}(P)$  and  $l_Q = f^{-1}(Q)$ . Lifting a line m passing through P and Q, we obtain  $m_X$  the proper transform of m. Then,  $\rho(X) = 3$  and  $NE(X) = \mathbb{R}_{\geq 0}[l_P] + \mathbb{R}_{\geq 0}[l_Q] + \mathbb{R}_{\geq 0}[m_X]$ .

Remark 2.15. Let  $X \subset \mathbb{P}^3$  be a smooth cubic surface, for example,  $X: x^3 + y^3 + z^3 + w^3 = 0$ . It is well-known that X has exactly 27 (-1)-curves so that  $NE(X) = \sum_{i=1}^{27} \mathbb{R}_{\geq 0}[l_i]$ .

Remark 2.16. Minimal model program for del Pezzo surfaces.



*Remark.* Let  $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$  with  $n \in \{0, 1\}$ .

If 
$$n = 0$$
, then  $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}) \cong \mathbb{P}^1 \times \mathbb{P}^1$ .

If n = 1, then  $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$ , there is a (-1)-curve on X (cf.(2.11))

Outline of (2.3). For an extremal ray  $R = \mathbb{R}_{>0}[l]$ , (A) for  $l^2 < 0$ , (B) for  $l^2 = 0$ , (C) for  $l^2 > 0$ .

**Proposition 2.17.** Let X be a del Pezzo surface and l be a curve on X with  $l^2 < 0$ . Then,

- (a) l is a (-1)-curve,
- (b)  $\mathbb{R}_{>0}[l]$  is an extremal ray,
- (c) the contraction of R is the blowdown of l.

In particular,  $\dim Y = \dim X = 2$ .

*Proof.* (a) We will show the following statements are equivalent:

- (i) l is a (-1)-curve,
- (ii)  $l \cong \mathbb{P}^1$  and  $l^2 = -1$ ,
- (iii)  $K_X \cdot l = l^2 = -1$ ,
- (iv)  $K_X \cdot l < 0$  and  $l^2 < 0$ .

Here X is a smooth projective surface and l a curve on it. Note (i) and (ii) are equivalent by definition. The equivalence between (ii) and (iii) is due to  $(K_X + l) \cdot l = 2h^1(l, \mathcal{O}_l) - 2 \ge -2$ . The equivalence between (iii) and (iv) is clear.

- (b) Omitted.
- (c) Let  $f: X \to Y$  blowdown of l and P:=f(l). Recall that f is a contraction of R iff

- (i) Y is a projective normal variety,
- (ii)  $f_*\mathcal{O}_X = \mathcal{O}_Y$ ,
- (iii) for a curve C on X, f(C) is a point iff  $[C] \in \mathbb{R}_{>0}[1]$ .

It follows (ii) from the following lemma (2.18). For (iii), ( $\Rightarrow$ ) is clear. ( $\Leftarrow$ ) Suppose  $[C] \in \mathbb{R}_{\geq 0}[l]$  and  $C \neq l$  so that  $C \cdot l \geq 0$ . Then,  $C \equiv al$  for  $a \in \mathbb{R}_{\geq 0}$ , and a > 0 since  $C \cdot H = al \cdot H$  for ample H. Now  $0 \leq C \cdot l = al \cdot l = a(>0) \cdot l^2(=-1) < 0$ , a contradiction.

**Lemma 2.18.** If f is a projective birational morphism of normla varieties, then  $f_*\mathcal{O}_X = \mathcal{O}_Y$ .

Proof. Consider the Stein factorization



such that  $g_*\mathcal{O}_X = \mathcal{O}_Z$  and h finite. Then,



implies  $Z \xrightarrow{h} Y$  is finite birational morphism, and  $A \hookrightarrow B$  is integral extension with K(A) = K(B) where  $\text{Spec } A \subset Y$  is affine open and Spec B is given by the pullback(inverse image of h), hence A = B.

**Lemma 2.19.** Let X be a del Pezzo surface and  $\mathbb{R}_{\geq 0}[l]$  be an extremal ray for a curve l on X, whose contraction is  $f: X \to Y$ . Then,

- (A)  $l^2 < 0$  iff dim Y = 2,
- (B)  $l^2 = 0$  iff dim Y = 1,
- (C)  $l^2 > 0$  iff dim Y = 0.

Proof. Next lecture.

**Proposition 2.20** ((B)). If  $l^2 = 0$ , then the fiber is isomorphic to  $\mathbb{P}^1$ .

*Proof.* For  $P \in Y$ , let  $F := f^*P = \sum_{i=1}^r a_i C_i$  with  $a_i \in \mathbb{Z}_{>0}$  and  $C_i$  prime divisors.

Claim 2.21. Every fiber is irreducible.

*Proof.* If it is reducible, then there are  $C_1 \neq C_2$  in the fiber, then

$$F \cdot C_1 = (\sum_{i=1}^r a_i C_i) \cdot C_1 = a_1 C_1^2 + (\text{positive}),$$

so  $C_1^2 < 0$ . Then,  $C_i \equiv b_i l$ , so  $C_1^2 < 0$  implies  $l^2 < 0$  and  $C_1 \cdot C_2 \ge 0$  implies  $l^2 \ge 0$ , a contradiction.  $\square$ 

We can show that every fiber *F* is reduced:

$$(K_X + F) \cdot F = K_X \cdot F + F^2 = K_X \cdot F + 0 < 0,$$

by the adjunction,  $F \cong \mathbb{P}^1$ .

# 3 Day 3: April 20

#### Nef divisors and big divisors

Our today's goal is to prove Lemma 2.19.

*Remark* 3.1. Since  $f_*(\mathcal{O}_X) = \mathcal{O}_Y$ ,  $f: X \to Y$  is surjective so that dim  $Y \in \{0, 1, 2\}$ . If we prove (A) and (C) in the Lemma 2.19, then we are enough.

*Proof of Lemma 2.19 (A).* ( $\Rightarrow$ ) Proposition 2.17.

(⇐) Note that dim  $X = \dim Y$  and  $f_*(\mathcal{O}_X) = \mathcal{O}_Y$  imply f is birational. For an ample Cartier divisor  $A_Y$  on Y,  $f^*A_Y$  is a big divisor(defined later). Then,

$$f^*A_Y \cdot l = \deg(f^*A_Y|_l) = \deg(i^*f^*A_Y) = \deg((f|_l)^*j^*A_Y) = \deg((f|_l)^*\mathcal{O}_{f(l)}) = \deg\mathcal{O}_l = 0,$$

where  $i: l \hookrightarrow X$  and  $j: f(l) = * \hookrightarrow Y$  such that  $fi = jf|_l$ .

We can define  $f^*A_Y$  to be a big divisor if and only if there is  $m \in \mathbb{Z}_{>0}$  such that  $mf^*A_Y$  is the sum of an ample divisor A and an effective divisor E. Then,  $A \cdot l + E \cdot l = 0$  implies  $E \cdot l < 0$ , so if we write  $E = \sum a_i C_i$ , then  $l = C_i$  for some i, hence  $l^2 < 0$ .

**Definition 3.2.** Let X be a projective normal variety and D a Cartier divisor. Then, D is called to be big if and only if there are  $m \in \mathbb{Z}_{>0}$ , an ample Cartier divisor A, and an effective Cartier divisor E such that mD = A + E.

*Remark* 3.3. In the above definition, the equality mD = A + E can be replaced by  $\sim$  or  $\equiv$ .

*Remark* 3.4. A divisor *D* is big iff nD is big for all  $n \in \mathbb{Z}_{>0}$  iff nD is big for some  $n \in \mathbb{Z}_{>0}$ .

**Proposition 3.5.** Let  $f: X \to Y$  be a birational morphism of projective normal varieties. For a Cartier divisor D on Y,  $f^*D$  is big iff D is big.

*Proof.* Since  $f_*\mathcal{O}_X = \mathcal{O}_Y$ , by tensoring  $\mathcal{O}_Y(mD)$  we get

$$\mathcal{O}_{Y}(mD) = (f_{*}\mathcal{O}_{X}) \otimes_{\mathcal{O}_{Y}} \mathcal{O}_{Y}(mD) = f_{*}(\mathcal{O}_{X} \otimes_{\mathcal{O}_{Y}} f^{*}\mathcal{O}_{Y}(mD)) = f_{*}f^{*}\mathcal{O}_{Y}(mD)$$

(the second equality is due to the projection formula), so

$$H^{0}(Y, \mathcal{O}_{Y}(mD)) = H^{0}(Y, f_{*}f^{*}\mathcal{O}_{Y}(mD)) = H^{0}(X, f^{*}\mathcal{O}_{Y}(mD)) = H^{0}(X, \mathcal{O}_{X}(mf^{*}(D))).$$

Therefore,  $f^*D$  is big iff D is big by Proposition 3.6.

**Proposition 3.6.** Let X be a projective normal variety and D a Cartier divisor on X. Then D is big iff there is  $c \in \mathbb{Q}_{>0}$  such that for all sufficiently large m we have

$$h^0(X, \mathcal{O}_X(mD)) > c \cdot m^{\dim X}$$
.

*Proof.* ( $\Rightarrow$ ) We may assume D = A + E with A ample and E effective. Then,  $H^0(X, mD) = H^0(X, m(A + E)) \leftrightarrow H^0(X, mA)$  by

$$0 \to \mathcal{O}_X(-mE) \to \mathcal{O}_X \to \mathcal{O}_{mE} \to 0.$$

Thus  $h^0(X, mA) \le h^0(X, mD)$  implies that we may assume D is ample.

It is well-known that

$$\chi(X, mD) = \frac{D^{\dim X}}{(\dim X)!} m^{\dim X} + O(m^{\dim X - 1}) \in \mathbb{Z}[m]$$

from the Riemann-Roch, and by the Serre vanishing we have  $\chi(X, mD) = h^0(X, mD)$  for large m, and we also have  $D^{\dim X} > 0$  by Nakai's criterion.

 $(\Leftarrow)$  Fix A a very ample divisor on X. We may assume by Bertini that A is a normal prime divisor. We have

$$0 \to \mathcal{O}_X(mD - A) \to \mathcal{O}_X(mD) \to \mathcal{O}_X(mD)|_A \to 0$$
,

and  $\mathcal{O}_X(mD)|_A \cong \mathcal{O}_A(mD_A)$  for some Cartier divisor  $D_A$  on A such that  $\mathcal{O}_X(D)|_A \cong \mathcal{O}_A(D_A)$ .

Write

$$0 \to H^0(X, mD - A) \to H^0(X, mD) \to H^0(A, mD_A).$$

Here  $h_0(X, mD) \ge c \cdot m^{\dim X}$  and  $h^0(A, mD_A) \le b \cdot m^{\dim A}$  by the Exercise 3.7, we have  $H^0(X, mD - A) \ne 0$  for some m > 0, i.e. mD - A is linearly equivalent to an effective divisor.

**Exercise 3.7.** Let Z be a projective normal variety and D a Cartier divisor on Z. Show that there exists b > 0 such that  $h^0(Z, mD) \le b \cdot m^{\dim Z}$  for all  $m \in \mathbb{Z}_{>0}$ . If you want, you may assume that Z is smooth.

*Proof of Lemma 2.19 (C).* ( $\Leftarrow$ ) Let dim Y=0 i.e.  $Y=\operatorname{Spec}\mathbb{C}$  with  $\rho(X)=\rho(Y)+1=1$ , which implies that  $l\equiv cA$  for some  $c\in\mathbb{Q}$  and an ample divisor A on X because every projective variety has an ample divisor. Then, we can prove c>0 from  $A\cdot l=A\cdot (cA)=cA^2$ , hence  $l^2=(cA)\cdot (cA)=c^2A^2>0$ .

(⇒) Let  $l^2 > 0$ . Note that if l is a curve on a smooth projective surface X such that  $l^2 > 0$ , then l is nef because  $l \cdot C > 0$  if l = C and  $l \cdot C \ge 0$  if  $l \ne C$ , and furthermore l is big by Proposition 3.9. Fix C a curve on X. We are enough to show  $[C] \in \mathbb{R}_{\ge 0}[l]$ . Then,  $N_1(X) = \bigoplus_C \mathbb{R}_C / \equiv$  is generated by [l], we get  $\rho(X) = \dim N_1(X) = 1$  and  $\dim Y = 0$ .

Let l be a big divisor so that there is a sufficiently large m with a rational map  $f: X \dashrightarrow \mathbb{P}^N$  defined by the complete linear system |ml| whose image is a surface. By considering the defining polynomials of  $\varphi(C) = \overline{V_+}(f_1, \cdots, f_r)$  such that  $\varphi(ml)$  is a hyperplane section, there must be  $f_i$  not vanishing on X, so we have  $f_i$  with  $\overline{V_+}(f_i) \cap \varphi(X) = \varphi(C) + \varphi(E)$ , where  $E = \varphi^{-1}(\varphi(E))$ . Then, since  $\overline{V_+}(f_i) \sim \varphi((\deg f_i)ml)$ , which implies  $(\deg f_i)ml \sim C + E$ . Thus, using the definition of extremal rays, we have  $[C] \in \mathbb{R}_{\geq 0}[l]$ .

**Definition 3.8.** Let *X* be a projective normal variety. A Cartier divisor *D* is called nef iff  $D \cdot C \ge 0$  for all curves *C* on *X*.

**Proposition 3.9.** Let X be a projective normal variety and D a nef Cartier divisor. Then, D is big iff  $D^{\dim X} > 0$ .

*Proof.* For simplicity, assume  $\dim X = 2$ .

- (⇒) Let mD = A + E with  $z \in \mathbb{Z}_{>0}$ , A ample, E effective. Since  $mD \cdot E \ge 0$  from that D is nef and  $mD \cdot A = A^2 + E \cdot A > 0$  from that A is ample, we have  $(mD)^{\dim X} = (mD)^2 = mD \cdot A + mD \cdot E > 0$ .
- $(\Leftarrow)$  We may assume X is smooth by taking a resolution of X (the pullback via a rational map of a nef or big divisor is also nef of big respectively). Take H a very ample divisor on X. We also may assume  $H K_X$  is ample by the Serre criterion. Then,

$$0 \to \mathcal{O}_X(mD) \to \mathcal{O}_X(mD+H) \to \mathcal{O}_X(mD+H)|_H \to 0$$

and

$$0 \to H^0(\mathcal{O}_X(mD)) \to H^0(\mathcal{O}_X(mD+H)) \to H^0(\mathcal{O}_X(mD+H)|_H)$$

are exact. Note that we have

$$h^0(\mathcal{O}_X(mD+H)) = \chi(X, mD+H) = \frac{(mD+H)^2}{2!} + O(m) \ge c \cdot m^2$$

by the Kodaira vanishing

$$H^{i}(X, mD + H) = H^{i}(X, K_{X} + (mD)_{\text{(it is nef)}} + (H - K_{X})_{\text{(it is ample)}}) = 0$$

(sum of nef and ample is ample :: Corollary 3.12.) and  $h^0(\mathcal{O}_X(mD+H)|_H) \leq b \cdot m^{\dim H} = b \cdot m$ . Therefore,  $h^0(X, \mathcal{O}(mD)) \geq c' \cdot m^2$  for some c' and sufficiently large m.

*Remark* 3.10. Let *X* be a projective normal variety with a nef divisor *D*. Then,

- (a)  $D \cdot \forall$  (curve)  $\geq 0$  (by def),
- (b)  $D \cdot \forall$  (effective 1-cycle)  $\geq 0$ .

In particular,  $NE(X) \subset D^{\geq 0} := \{\zeta \in N_1(X) : D \cdot \zeta \geq 0\} = D^{>0} \cup D^{\perp}$ . In fact,

(c) The Kleiman-Mori cone is contained in  $D^{\geq 0}$ , i.e.  $\overline{NE(X)} \subset D^{\geq 0}$ .

**Theorem 3.11** (Kleiman's ampleness criterion). Let X be a projective normal variety and D a Cartier divisor. Then, D is ample iff  $\overline{NE(X)} \setminus \{0\} \subset D^{>0}$ .

*Proof.* Omitted. □

**Corollary 3.12.** If N is nef and A is ample, then N + A is ample.

*Proof.*  $\zeta \in \overline{NE(X)} \setminus \{0\}$  implies  $(N+A) \cdot \zeta = N \cdot \zeta + A \cdot \zeta > 0$  because  $N \cdot \zeta \ge 0$  and  $A \cdot \zeta > 0$ .

Remark 3.13. It is useful to use  $\mathbb{Q}$ -divisors. For  $D \in \text{Div} X \otimes_{\mathbb{Z}} \mathbb{Q}$ , D is defined to be nef if there is  $m \in \mathbb{Z}_{>0}$  such that D is a nef Cartier divisor, and defined to be ample if there is  $m \in \mathbb{Z}_{>0}$  such that D is a ample Cartier divisor. Then, a nef divisor can be approximated by  $D = \lim_{\varepsilon \to 0+} (D + \varepsilon A)$ .

**Theorem 3.14** (Nakai-Moishezon). Let X be a projective normal variety and D a Cartier divisor. Then, D is ample (resp. nef) iff for a subvariety  $Y \subset X$  we have  $Y \cdot D^{\dim Y} > 0$  (resp.  $\geq 0$ ).

*Proof.* For amples, well-known. For nefs, it follows from  $Y \cdot D^{\dim Y} = \lim_{\varepsilon \to 0+} Y \cdot (D + \varepsilon A)^{\dim Y} \ge 0$ .  $\square$ 

# 4 Day 4: April 27

We study  $\Delta$ -genus to classify Fano 3-folds with index  $r \geq 2$ .

**Definition 4.1.** Let X be a Fano 3-fold. The index  $r = r_X \in \mathbb{Z}_{>0}$  is defined such that there is a divisor H with  $-K_X \sim rH$  but no divisors H satisfy  $-K_X \sim sH$  for  $s \in \mathbb{Z}_{r>0}$ .

**Lemma 4.2.**  $1 \le r \le 4$ .

*Proof.* Cone theorem implies  $NE(X) = \sum_{i=1}^{m} \mathbb{R}_{\geq}[l_i]$  with  $0 < -K_X \cdot l_i \leq \dim X + 1 = 4$ . Then, since  $r \leq -K_X \cdot l_i$ , we are done.

Today's goal: r = 4 implies  $X \cong \mathbb{P}^3$ , and r = 3 implies  $X \cong (\text{quadratic}) \subset \mathbb{P}^4$ . Here is our outline:

- If r = 4, then
- $\Delta(X, H) = 0$  with  $-K_X \sim 4H$ , then
- |H| is very ample with  $H^3 = 1$ , then
- $X \cong \mathbb{P}^3$ .

We can do r = 3 similar.

#### $\Delta$ -genus (1): definition and examples

**Definition 4.3.** A pair (X, D) is called a polarized variety if X is a projective variety and D is an ample divisor(or invertible sheaf) on X.

**Definition 4.4.** Let (X, D) be a polarized variety. Then,

$$\Delta(X, D) := \dim X + D^{\dim X} - h^0(X, D).$$

#### Example 4.5.

(i) Let  $n \in \mathbb{Z}_{>0}$ . Then,

$$\begin{split} \Delta(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(n)) &= \dim \mathbb{P}^1 + \deg \mathcal{O}_{\mathbb{P}^1}(n) - h^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(n)) \\ &= 1 + n - (n+1) = 0. \end{split}$$

(ii) Let *X* be an elliptic curve and *D* an ample divisor on *X*. Then, by the Riemann-Roch

$$h^{0}(X, D) - h^{1}(X, D) = \chi(X, D) = \deg D + 1 - g = \deg D$$

and the Serre duality  $h^1(X, D) = h^0(X, -D) = 0$ , we have

$$\Delta(X, D) = 1 + \deg D - \deg D = 1.$$

**Example 4.6.** Let *X* be a del Pezzo surface. Then,  $\Delta(X, -K_X) = 1$ .

Proof. By the Riemann-Roch

$$\chi(X,D) = \chi(X,\mathcal{O}_X) + \frac{1}{2}(-K_X) \cdot (-K_X - K_X)$$

and the Kodaira vanishing

$$\chi(X, -K_X) = \chi(X, K_X + (-2K_X)) = h^0(X, -K_X), \qquad \chi(X, \mathcal{O}_X) = h^0(X, \mathcal{O}_X),$$

we have  $h^0(X, -K_X) = K_X^2 + 1$ . Therefore,

$$\Delta(X, -K_X) = \dim X + (-K_X)^2 - h^0(X, -K_X) = 1.$$

**Proposition 4.7.** Let X be a Fano 3-fold. Pick a divisor H such that  $-K_X \sim rH$ .

- (a) If r = 4, then  $\Delta(X, H) = 0$  and  $H^3 = 1$ .
- (b) If r = 3, then  $\Delta(X, H) = 0$  and  $H^3 = 2$ .

**Proposition 4.8** (Riemann-Roch for 3-folds). *Let X be a smooth projective 3-fold and D a divisor. Then,* 

(a) 
$$\chi(X,D) = \frac{1}{12}D \cdot (D - K_X) \cdot (2D - K_X) + \frac{1}{12}D \cdot c_2(X) + \chi(X, \mathcal{O}_X).$$

(b) 
$$-K_{\mathbf{Y}} \cdot c_2(\mathbf{X}) = 24\gamma(\mathbf{X}, \mathcal{O}_{\mathbf{Y}}).$$

*Proof.* Omitted. □

**Corollary 4.9.** Let X be Fano 3-fold and H an ample divisor such that  $H \equiv -qK_X$  with  $q \in \mathbb{Q}_{>0}$ . Then,

$$h^0(X,H) = \chi(X,H) = \frac{1}{12}q(q+1)(2q+1)(-K_X)^3 + 2q+1.$$

As a comment for  $\mathbb{Q}_{>0}$ , in most cases we have  $q^{\pm 1} \in \mathbb{Z}_{>0}$ . For example,  $H \equiv -\frac{1}{r}K_X$  iff  $rH \equiv -K_X$ .

Proof. By Propositioin 4.8 and the Kodaira vanishing

$$\chi(X,H) = h^0(X,H), \quad \chi(X,\mathcal{O}_X) = 1,$$

we can complete the proof by simple computation.

**Theorem 4.10.** Let (X,D) be a polarized variety. Then,  $\Delta(X,D) > \dim Bs|D|$ , where  $\dim \emptyset := -1$ . In particular,  $\Delta(X,D) \geq 0$ .

*Proof.* We will do if time permits.

Proof of Proposition 4.7. We only show (a). Note that

$$h^{0}(X,H) = {}^{(4.9)} \frac{1}{12}q(q+1)(2q+1)(-K_{X})^{3} + 2q + 1 = h^{0}(X,H) = \frac{5}{2}H^{3} + \frac{3}{2}$$

since  $q = \frac{1}{4}$  and  $(-K_X)^3 = (4H)^3 = 64H^3$ . Then, Theorem 4.10 and  $H^3 \ge 1$  imply

$$0 \ge \Delta(X, H) = \dim X + H^3 - h^0(X, H) = \frac{3}{2}(1 - H^3) \le 0.$$

Therefore,  $H^3 = 1$  and  $\Delta(X, H) = 0$ .

Remark 4.11. If r = 4 and  $-K_X \sim 4H$ , then  $h^0(X, H) = 4$ . If |H| is very ample, then  $X \hookrightarrow \mathbb{P}^{4-1} = \mathbb{P}^3$ , hence  $X \cong \mathbb{P}^3$ . Thus we are enough to show the complete linear system |H| is very ample.

**Theorem 4.12.** Let (X, D) be a polarized variety with  $\Delta(X, D) = 0$ . Then,

- (a)  $N_1$  property holds: the section ring  $\bigoplus_{m=0}^{\infty} H^0(X, mD)$  of D is generated by  $H^0(X, D)$  as a  $\mathbb{C}$ -algebra.
- (b) |D| is very ample.

Exercise 4.13. Show that under the  $N_1$  property, if D is ample, then |D| is very ample.

**Proposition 4.14.** Let (X, L) be a polarized variety with invertible sheaf L. Let Y be an integral closed subscheme in |L|. For example, if X is normal with  $L \cong \mathcal{O}_X(D)$ , then  $D \sim Y$ , and it is a prime divisor. Then,

- (a)  $L^{\dim X} = (L|_{Y})^{\dim X 1}$ .
- (b)  $0 \le \Delta(X, L) \Delta(Y, L|_Y) \le h^1(X, \mathcal{O}_X)$ .
- (c)  $H^0(X,L) \to H^0(Y,L|_Y)$  is surjective iff  $\Delta(X,L) = \Delta(Y,L|_Y)$ .
- (d) Assume the condition in the part (c). Then, if  $L|_{Y}$  satisfies  $N_{1}$  property, then so does L.

*Proof of Proposition 4.12 assuming Proposition 4.14.* For simplicity, we assume X is smooth. The complete linear system |D| is base point free by  $\Delta(X,D)=0$  and Theorem 4.10 (dim  $Bs|D|<\Delta(X,D)$ ). Let  $Y\in |D|$  be a general member. By Bertini, Y is smooth and connected (D) is ample, hence Y is a smooth prime divisor. Applying Proposition 4.14, we have  $0 \le \Delta(Y,D|_Y) \le \Delta(X,D) \le 0$ . By Proposition 4.14 (d), D satisfies  $N_1$  property from applying the induction hypothesis.

*Remark* 4.15. We can check that for a projective curve *X* we have TFAE:

- (i)  $X \cong \mathbb{P}^1$ ,
- (ii)  $\Delta(X, D) = 0$  for every ample D,
- (iii)  $\Delta(X, D) = 0$  for an ample D.

*Proof of Proposition 4.14.* Write  $n := \dim X$ .

(a) 
$$L^n = L^{n-1} \cdot Y = (L|_Y)^{n-1}$$

(b) 
$$\Delta(X, L) = n + L^n - h^0(X, L)$$
 and  $\Delta(Y, L|_Y) = (n-1) + (L|_Y)^{n-1} - h^0(Y, L|_Y)$  imply

$$\Delta(X, L) - \Delta(Y, L|_Y) = 1 + h^0(Y, L|_Y) - h^0(X, L).$$

By taking  $- \otimes L$  on

$$0 \to \mathcal{O}(-Y) \to \mathcal{O}_X \to \mathcal{O}_Y \to 0,$$

we have exact sequences

$$0 \to \mathcal{O}_X \to L \to L|_Y \to 0$$

and

$$0 \to H^0(X, \mathcal{O}_X) \to H^0(X, L) \to H^0(Y, L|_Y) \xrightarrow{\delta} H^1(X, \mathcal{O}_X).$$

Then,

$$h^{1}(X, \mathcal{O}_{X}) \ge \dim \operatorname{im} \delta = h^{0}(Y, L|_{Y}) - h^{0}(X, L) + h^{0}(X, \mathcal{O}_{X}) = \Delta(X, L) - \Delta(Y, L|_{Y})$$

and dim im  $\delta \ge 0$  implies the desired result.

- (c) We have  $\delta = 0$  if and only if  $\Delta(X, L) = \Delta(Y, L|_Y)$ , which is also equivalent to that  $H^0(X, L) \to H^0(Y, L|_Y)$  is surjective.
- (d) Note that we have a surjection  $H^0(X,L) \to H^0(Y,L|_Y)$ . Suppose  $L|_Y$  satisfies  $N_1$  property. If  $\zeta \in H^0(Y,mL|_Y)$ , then  $\zeta = \sum c \xi_1 \cdots \xi_m$  for  $c \in \mathbb{C}$  and  $\xi_i \in H^0(Y,L|_Y)$ , so we can show the map  $H^0(X,mL) \to H^0(Y,mL|_Y)$  is surjective.

It is enough to show  $\mu_X: H^0(X, mL) \otimes_{\mathbb{C}} H^0(X, L) \to H^0(X, (m+1)L)$  is surjective.

$$H^{0}(X, mL) \otimes_{\mathbb{C}} H^{0}(X, L) \longrightarrow H^{0}(Y, mL|_{Y}) \otimes_{\mathbb{C}} H^{0}(Y, L|_{Y})$$

$$\downarrow^{\mu_{X}} \qquad \qquad \downarrow^{\mu_{Y}}$$

$$0 \longrightarrow H^{0}(X, mL) \xrightarrow{-\otimes s_{Y}} H^{0}(X, (m+1)L) \xrightarrow{\pi_{m+1}} H^{0}(Y, (m+1)L|_{Y})$$

For  $\zeta \in H^0(X,(m+1)L)$ , we have  $\zeta_Y := \pi_{m+1}(\zeta) \in H^0(Y,(m+1)L|_Y)$  and there is  $\sum c\xi_Y \otimes \eta_Y \in H^0(Y,mL|_Y) \otimes_{\mathbb{C}} H^0(Y,L|_Y)$  and back to obtain  $\sum c\xi_X \otimes \eta_X \in H^0(X,mL) \otimes_{\mathbb{C}} H^0(X,L)$  with surjectivity. If we define  $\widetilde{\zeta} := \zeta - \mu_X(\sum c\xi_X \otimes \eta_X)$ , then  $\pi_{m+1}(\widetilde{\zeta}) = \zeta_Y - \zeta_Y = 0$  so that there is  $\widetilde{\widetilde{\zeta}} \in H^0(X,mL)$  such that  $\widetilde{\zeta} = \widetilde{\widetilde{\zeta}} \otimes s_Y = \mu_X(\widetilde{\widetilde{\zeta}} \otimes s_Y)$ , where  $V(s_Y) = Y$  (check the exact sequence in the part (b)). Then,  $\zeta = \widetilde{\zeta} + \mu_X(\sim)$  belongs to the image of  $\mu_X$ .

We now prove Theorem 4.10.

**Definition 4.16.** Let X be a projective variety and L an ample invertible sheaf. Let  $V \subset H^0(X, L)$  be a  $\mathbb{C}$ -linear subspace. Let  $\Delta(X, L, V) := \dim X + L^{\min X} - \dim_{\mathbb{C}} V$ . (Note  $\Delta(X, L) = \Delta(X, L, H^0(X, L))$ 

**Theorem 4.17.**  $\Delta(X, L, V) > \dim Bs|V|$ , where |V| is the linear system corresponding to V.

*Proof.* We may assume that X is normal and  $V = H^0(X, L)$ . the normalization of the resolution of the inderminacies of  $\varphi_{|L|}$ ..

One of the following holds:

- (i)  $\dim Bs|L| = n$ , where  $n = \dim X$ ,
- (ii)  $\dim Z = 1$ ,
- (iii)  $\dim Z \ge 2$  and  $\dim Bs|L| = n 1$ ,
- (iv)  $\dim Z \ge 2$  and  $\dim Bs|L| \le n-2$ ,

For the case (i), since  $\dim Bs|L| = n$  iff  $H^0(X, L) = 0$ , we have

$$\Delta(X,L) = n + L^n - h^0(X,L) > n = \dim Bs|L|.$$

For the case (ii), we have  $\Delta(X,L) = n + L^n - h^0(X,L)$ . Then,  $\mu^*L = M + F$  is decomposed into a base point free movable part M and a fixed part F by  $L \mapsto \mu^*L$  and  $L_Z := \mathcal{O}_{\mathbb{P}^N}(1)|_Z \mapsto M$ . Then, with normal X and  $\mu$  birational we have

$$H^{0}(X,L) \cong H^{0}(Y,\mu^{*}L) \cong H^{0}(Y,M).$$

Also  $H^0(Y,M) \cong H^0(Z,L_Z)$  since the injectivity follows from  $\psi_* \mathcal{O}_Y \hookleftarrow \mathcal{O}_Z$  and the surjectivity is due to the fact that the composition  $H^0(Y,M) \leftarrow H^0(Z,L_Z) \leftarrow H^0(\mathbb{P}^N,\mathcal{O}_{\mathbb{P}^N}(1))$  is bijective. Now

$$0 \le \Delta(Z, L_Z) = 1 + \deg L_Z - h^0(Z, L_Z)$$

and

$$(\mu^*L)^{n-1} \cdot (\psi^*L_Z) = (\deg L_Z) \cdot (\mu^*L)^{n-1} \cdot (\text{a general fiber of } \psi) \ge \deg L_Z$$

because  $\mu^*L$  is nef and big. Then,

$$L^{n} = (\mu^{*}L)^{n} = (\mu^{*}L)^{n-1} \cdot (M+F) \ge \deg L_{z} + (\mu^{*}L)^{n-1} \cdot F,$$

and

$$\begin{split} \Delta(X,L) &= n + L^n - h^0(X,L) \\ &\geq n + \deg L_Z + (\mu^*L)^{n-1} \cdot F - h^0(Z,L_Z) \\ &= n + \Delta(Z,L_Z) - 1 + (\mu^*L)^{n-1} \cdot F \\ &\geq n - 1 + (\mu^*L)^{n-1} \cdot F \\ &\geq n - 1. \end{split}$$

If dim  $Bs|L| \le n-2$ , then we are done. If dim Bs|L| = n-1, then  $(\mu^*L)^{n-1} \cdot F > 0$  because  $\mu(F)$  has dimension n-1, so  $\Delta(X,L) > n-1$ .

For the case (iii) and (iv), see [Fujita].

- T. Fujita, Classification · · · of polarized varieties (Book)
- T. Fujita, On the structure  $\cdots$  with  $\Delta$ -genus zero (Many papers by Fujita)

# 5 Day 5: May 11

#### $\Delta$ -genus (2): the case $\Delta = 0$

**Theorem 5.1.** Let (X, L) be a polarized variety with  $\Delta(X, L) = 0$  and  $n := \dim X$ .

- (a) If *X* is smooth, then one of the following holds:
  - (A)  $(X,L) \cong (\mathbb{P}^n, \mathcal{O}(1))$ , i.e. there is an isomorphism  $\theta: X \to \mathbb{P}^n$  such that  $L \cong \theta^* \mathcal{O}(1)$ .
  - (B)  $(X, L) \cong (Q^n, \mathcal{O}(1))$ , wherer  $Q^n \subset \mathbb{P}^{n+1}$  is a quadric hypersurface.
  - (C)  $(X,L) \cong (\mathbb{P}_{\mathbb{P}^1}(E), \mathcal{O}(1))$ , where E is a locally free sheaf on  $\mathbb{P}^1$  of rank n and  $\mathbb{P}_{\mathbb{P}^1}(E)$  is the  $\mathbb{P}^{n-1}$ -bundle over  $\mathbb{P}^1$ .
  - (D)  $(X,L) \cong (\mathbb{P}^2, \mathcal{O}(2))$ .
- (b) If X is not smooth, then (X, L) is a cone of the part (a). See Remark 5.3.

Importance of  $\Delta = 0$ : Hyperelliptic?

Remark 5.2.  $\Delta(X,L) = 0$  implies |L| is very ample, hence  $\varphi_{|L|} : X \hookrightarrow \mathbb{P}^N_{\mathbb{C}}$  is a closed immersion with  $N := h^0(X,L) - 1$ . For example,

- (A)  $\varphi_{|L|} = id$ .
- (B)  $\varphi_{|L|}: X \hookrightarrow \mathbb{P}^{n+1}$ .
- (D)  $\varphi_{|\mathcal{O}(2)|}: \mathbb{P}^2 \hookrightarrow \mathbb{P}^5: [x:y:z] \mapsto [x^2:y^2:z^2:xy:yz:zx]$  (Veronese embedding).

Remark 5.3. For the case (B), via linear transformations we may assume

$$X = \{x_0^2 + \dots + x_N^2 = 0\} = \operatorname{Proj} \frac{\mathbb{C}[x_0, \dots, x_N]}{(x_0^2 + \dots + x_N^2)} \subset \mathbb{P}_{\mathbb{C}}^N.$$

Then,

$$\operatorname{Proj} \frac{\mathbb{C}[x_0, \cdots, x_N, y]}{(x_0^2 + \cdots + x_N^2)} \subset \mathbb{P}_{\mathbb{C}}^{N+1}$$

is a(the) cone of  $X \subset \mathbb{P}^N_{\mathbb{C}}$ . More generally,

$$\operatorname{Proj} \frac{\mathbb{C}[x_0, \dots, x_N, y_1, \dots, y_r]}{(x_0^2 + \dots + x_N^2)} \subset \mathbb{P}_{\mathbb{C}}^{N+r}$$

is a (generalized) cone of  $X \subset \mathbb{P}^N_{\mathbb{C}}$ .

Definition 5.4. Let

$$X = \operatorname{Proj} \frac{\mathbb{C}[x_0, \cdots, x_N]}{(f_1, \cdots, f_s)} \subset \mathbb{P}^N_{\mathbb{C}}.$$

Then,

$$\operatorname{Proj} \frac{\mathbb{C}[x_0, \cdots, x_N, y_1, \cdots, y_r]}{(f_1, \cdots, f_s)} \subset \mathbb{P}^{N+r}_{\mathbb{C}}$$

is called a cone of  $X \subset \mathbb{P}^N_{\mathbb{C}}$ .

**Example 5.5** ((A)+(D)). Let  $n, r \in \mathbb{Z}_{>0}$ . Then,

$$\Delta(\mathbb{P}^n_{\mathbb{C}}, \mathcal{O}_{\mathbb{P}^n}(r)) = \dim \mathbb{P}^n + (\mathcal{O}_{\mathbb{P}^n}(r))^n - h^0(\mathbb{P}^n, \mathcal{O}(r)) = n + r^n - \binom{n+r}{n}.$$

For (A), we can check r = 1 implies  $\Delta(\mathbb{P}^n, \mathcal{O}(1)) = 0$ .

For (D), we can check n=2 implies  $\Delta(\mathbb{P}^2,\mathcal{O}(r))=\frac{(r-1)(r-2)}{2}$ , hence  $\Delta=0$  if and only if  $r\in\{1,2\}$ .

**Example 5.6** ((B)). Let  $X \subset \mathbb{P}^{n+1}$  be a smooth quadric hypersurface. Let  $\mathcal{O}_X(1) := \mathcal{O}_{\mathbb{P}^{n+1}}(1)|_X$ . Then,  $\Delta(X, \mathcal{O}_X(1)) = \dim X + \mathcal{O}_X(1)^n - h^0(X, \mathcal{O}_X(1))$ . Since

$$\mathcal{O}_X(1)^n = (\mathcal{O}_{\mathbb{P}^{n+1}}(1)|_X)^n = \mathcal{O}_{\mathbb{P}^{n+1}}(1)^n \cdot X = \mathcal{O}_{\mathbb{P}^{n+1}}(1)^n \cdot \mathcal{O}_{\mathbb{P}^{n+1}}(2) = 2\mathcal{O}_{\mathbb{P}^{n+1}}(1)^{n+1} = 2$$

and the standard usage of the projection formula and exact sequences implies that

$$0 = H^{0}(\mathcal{O}_{\mathbb{P}^{n+1}}(-1)) \to H^{0}(\mathcal{O}_{\mathbb{P}^{n+1}}(1)) \to H^{0}(\mathcal{O}_{X}(1)) \to H^{1}(\mathcal{O}_{\mathbb{P}^{n+1}}(-1)) = 0$$

and  $h^0(X, \mathcal{O}_X(1)) = h^0(\mathcal{O}_{\mathbb{P}^{n+1}}(1)) = n+2$ , so we have  $\Delta(X, \mathcal{O}_X(1)) = 0$ .

**Theorem 5.7** ((A)). Let (X, L) be a smooth polarized variety and  $n := \dim X$ . Then,  $(X, L) \cong (\mathbb{P}^n, \mathcal{O}(1))$  if and only if  $\Delta(X, L) = 0$  and  $L^n = 1$ .

*Proof.* ( $\Rightarrow$ ) By 5.2. ( $\Leftarrow$ ) Since  $\Delta(X,L) = n + L^n - h^0(X,L)$ , we have  $h^0(X,L) = n + 1$ . Then, we have a closed immersion  $X \hookrightarrow \mathbb{P}^{h^0(X,L)-1}_{\mathbb{C}} = \mathbb{P}^n_{\mathbb{C}}$  so that  $X \cong \mathbb{P}^n$ .

Similarly we can prove:

**Theorem 5.8** ((B)). Let (X, L) be a smooth polarized variety and  $n := \dim X$ . Then,  $(X, L) \cong (Q, \mathcal{O}_Q(1))$  if and only if  $\Delta(X, L) = 0$  and  $L^n = 2$ .

Now we are interested in the remaining case:  $\Delta(X, L) = 0$  and  $L^n \ge 3$ .

Remark 5.9 ((C)). Let E be a vector bundle (i.e. locally free sheaf) on  $\mathbb{P}^1$  of rank  $n \in \mathbb{Z}_{>0}$ . It is well known that  $E \cong \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1}(a_n)$ ,  $a_i \in \mathbb{Z}$ . Let  $X := \mathbb{P}_{\mathbb{P}^1}(E) = \mathbb{P}(E)$  and let  $\pi : X \to \mathbb{P}^1$  be the bundle projection.

Assume  $a_i > 0$  for all i. We will see later that  $\mathcal{O}_{\mathbb{P}(E)}(1)$  is very ample.

Remark 5.10. Let (X, L) as in Theorem 5.1.(a)(C). Then,  $(X, L) \cong (\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_n)), \mathcal{O}(1))$  with  $a_i > 0$ . Our goal is to verify  $\mathcal{O}_{\mathbb{P}(E)}(1)$  is ample and  $\Delta(\mathbb{P}(E), \mathcal{O}(1)) = 0$ .

If n = 1, clearly  $(\mathbb{P}(E), \mathcal{O}(1)) \cong (\mathbb{P}^1, \mathcal{O}(a))$ . If n = 2, then fiber is  $\cong \mathbb{P}^1$  and  $\mathbb{P}(E) = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(a) \oplus \mathcal{O}(b))$  for a, b > 0. If n = 2, then fiber is  $\cong \mathbb{P}^1$  and  $\mathbb{P}(E) = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(a) \oplus \mathcal{O}(b))$  for a, b > 0.

Remark 5.11  $(F, D_i, \Gamma_i)$ . Let  $X := \mathbb{P}_{\mathbb{P}^1}(E)$  and  $E = \bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^1}(a_i)$ . Fix  $1 \le i \le n$ .

- (a) For every  $p \in \mathbb{P}^1$ ,  $F := \pi^*(p)$  the fiber at p is an effective divisor on X.
- (b)  $E \xrightarrow{\operatorname{proj}} \mathcal{O}_{\mathbb{P}^1}(a_i)$  is surjective, we also have a surjection  $\operatorname{Sym} E \twoheadrightarrow \operatorname{Sym} \mathcal{O}_{\mathbb{P}^1}(a_i)$  between symmetric algebras, so it induces a closed immersion  $\gamma_i : \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(a_i)) \hookrightarrow \mathbb{P}(E)$  and they are bundles on  $\mathbb{P}^1$ . Let  $\Gamma_i := \gamma_i(\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(a_i)))$ , a section of  $\pi$ .
- (c) If we consider projections  $E \to \bigoplus_{j \neq i} \mathcal{O}_{\mathbb{P}^1}(a_j)$  for each i, then there is a closed immersion

$$\mathbb{P}(\bigoplus_{j\neq i}\mathcal{O}_{\mathbb{P}^1}(a_j))\to\mathbb{P}(E)$$

from a  $\mathbb{P}^{n-2}$ -bundle to a  $\mathbb{P}^{n-1}$ -bundle. Let  $D_i$  be this smooth prime divisor on  $X = \mathbb{P}(E)$ .

*Remark* 5.12.  $D_i \cap \Gamma_i = \emptyset$  since  $(F \cap D_i) \cap (F \cap \Gamma_i) = \emptyset$  for each fiber F. For example, n = 3,  $\Gamma_i$  is the intersection of  $D_i$  and  $D_k$  when we restrict them to the fiber F, where  $|\{i, j, k\}| = 3$ .

**Proposition 5.13.**  $\mathcal{O}_{\mathbb{P}(E)}(1) \sim D_i + a_i F$ .

*Proof.* Let  $\pi$  be the bundle projection. Since  $F \cong \mathbb{P}^{n-1}$ ,  $\mathcal{O}_{\mathbb{P}(E)}(1)|_F \cong \mathcal{O}_F(1) := \mathcal{O}_{\mathbb{P}^{n-1}(1)}$  and  $D_i|_F \sim \mathcal{O}_F(1)$ , thus  $\mathcal{O}_{\mathbb{P}(E)}(1) - D_i \equiv_{\pi} 0$ , i.e.

$$(\mathcal{O}_{\mathbb{P}(E)}(1) - D_i) \cdot \text{(curve contracted by } \pi) = 0.$$

There exists  $r \in \mathbb{Z}$  such that  $\mathcal{O}_{\mathbb{P}(E)}(1) - D_i \sim rF$ . Then,

$$0 = D_i \cdot \Gamma_i = (\mathcal{O}_{\mathbb{P}(E)}(1) - rF) \cdot \Gamma_i = \mathcal{O}_{\mathbb{P}(E)}(1) \cdot \Gamma_i - r$$

because for the inclusion  $j: \Gamma_i \to X$  we have

$$\mathcal{O}_X(F)|_{\Gamma} = \mathcal{O}_X(\pi^*P)|_{\Gamma} \cong \pi^*\mathcal{O}_{\mathbb{P}^1}(P)|_{\Gamma} \cong \pi^*\mathcal{O}_{\mathbb{P}^1}(1)|_{\Gamma} = j^*\pi^*\mathcal{O}_{\mathbb{P}^1}(1) = \mathcal{O}_{\mathbb{P}^1}(1)$$

and it implies  $F \cdot \Gamma_i = \deg(F|_{\Gamma_i}) = 1$ , so  $r = a_i$ .

#### Proposition 5.14.

- (a)  $|\mathcal{O}_{\mathbb{P}(E)}(1)|$  is base point free.
- (b)  $\mathcal{O}_{\mathbb{P}(E)}(1)$  is ample;  $(\mathbb{P}(E), \mathcal{O}_{\mathbb{P}(E)}(1))$  is a polarized variety.

*Proof.* (a) With different fibers F and F' we have  $\mathcal{O}_{\mathbb{P}(E)}(1) \sim D_i + a_i F \sim D_i + a_i F'$ . Then,

$$Bs|\mathcal{O}_{\mathbb{P}(E)}(1)| \subset \bigcap_{i=1}^n \operatorname{supp}(D_i + a_i F) \cap \bigcap_{i=1}^n \operatorname{supp}(D_i + a_i F') = \bigcap_{i=1}^n \operatorname{supp}D_i = \emptyset.$$

(b) Let *C* be a curve on  $X = \mathbb{P}(E)$ . By the part (a) it is enough to show  $\mathcal{O}_{\mathbb{P}(E)}(1) \cdot C > 0$ . We have two cases:  $\pi(C) = *$  or not.

If  $\pi(C)$  is a point p, then  $C \subset F = \pi^*(p)$  implies  $\mathcal{O}_{\mathbb{P}(E)} \cdot C = (D_i + a_i F) \cdot C \ge D_i \cdot C$  because F is nef, and  $D_i \cdot C = (D_i|_F) \cdot C > 0$ . (Nakai criterion)

If  $\pi(C)$  is not a point, then there is  $D_i \not\supset C$ . Then,  $\mathcal{O}_{\mathbb{P}(E)}(1) \cdot C = (D_i + a_i F) \cdot C \ge a_i F \cdot C \ge a_i > 0$ . Here we used  $F \cdot C = \deg(\pi^* \mathcal{O}_{\mathbb{P}^1}(p)|_C) = \deg(j^* \pi^* \mathcal{O}_{\mathbb{P}^1}(p)) > 0$ .

**Proposition 5.16.**  $\Delta(\mathbb{P}(E), \mathcal{O}_{\mathbb{P}(E)}(1)) = 0.$ 

Proof. Write

$$H^0(\mathbb{P}(E), \mathcal{O}(1)) \cong H^0(\mathbb{P}^1, E) \cong \bigoplus_{j=1}^n H^0(\mathbb{P}^1, \mathcal{O}(a_j)).$$

By  $a_j > 0$ ,  $h^0(\mathbb{P}(E), \mathcal{O}(1)) = \sum_{j=1}^n (a_j + 1)$ . Also,  $D_1 \cdot ... \cdot D_n = 0$  and  $D_2 \cdot ... \cdot D_n \cdot F = (D_2|_F) \cdot ... \cdot (D_n|_F) = \mathcal{O}_{\mathbb{P}^{n-1}}(1)^{n-1} = 1$  imply

$$\mathcal{O}_{\mathbb{P}(E)}(1)^n = (D_1 + a_1 F) \cdot \dots \cdot (D_n + a_n F) = 0 + \sum_{j=1}^n a_j + (-) \cdot F^2 = \sum_{j=1}^n a_j.$$

So we are done.  $\Box$ 

# 6 Day 6: May 18

#### Fano threefolds with r=2

Here is a key argument: There exists  $H' \sim H$  such that H' is a smooth projective divisor. Then,  $K_{H'} = (K_X + H')|_{H'} \sim (-2H + H)|_{H'} = -H|_{H'}$ , so H' is a del Pezzo surface.

The following theorem is our goal of today.

**Theorem 6.1.** Let X be a Fano 3-fold with r = 2 so that  $-K_X \sim 2H$ .

- (a) If  $H^3 \ge 2$ , then |H| is base point free.
- (b) If  $H^3 \ge 3$ , then |H| has the  $N_1$  property, hence ample.

*Remark* 6.2. If  $H^3 \in \{1,2\}$ , then Theorem 6.1 is not needed for our classification, so we will only consider  $H^3 \ge 3$  from now on.

First, we prove Theorem 6.1 (b) by applying the following theorem for (X, H):

**Theorem 6.3.** Let (X, L) be a polarized variety such that  $\dim Bs|L| \le 0$  and  $L^{\dim X} \ge 2\Delta(X, L) - 1$ . Then, (X, L) has a ladder (see Definition 6.5).

**Proposition 6.4.** Let X be a Fano 3-fold with r = 2,  $-K_X \sim 2H$ . Then,

- (a)  $\Delta(X, H) = 1$ ,
- (b)  $\dim Bs|H| \leq 0$ ,
- (c) (X,H) has a ladder.

*Proof.* For (a), by the Riemann-Roch (4.9) with  $q = \frac{1}{2}$ , we have

$$\Delta(X,H) = \dim X + H^3 - h^0(X,H) = 3 + H^3 - (H^3 + 2) = 1.$$

Then, (b) follows from dim  $Bs|L| < \Delta(X, H) = 1$ , and (c) follows from  $H^3 \ge 1 = 2\Delta(X, H) - 1$ .

**Definition 6.5.** Let (X, L) be a polarized variety. An integral scheme Y is a *rung* of (X, L) if  $Y \in |L|$ , i.e. there is  $0 \neq s \in H^0(X, L)$  such that  $Y = \{s = 0\} \subset X$ . In particular, dim  $Y = \dim X - 1$ . When X is normal, a rung Y is just a prime divisor Y such that  $L \sim Y$ .

A sequence  $X = X_0 \supset X_1 \supset \cdots \supset X_{n-1}$  with  $n := \dim X$  is a ladder of (X, L) if  $X_i$  is a rung of  $(X_{i-1}, L|_{X_{i-1}})$  for  $1 \le i \le n-1$ . We say a ladder is regular if  $\Delta(X, L) = \Delta(X_1, L|_{X_1}) = \Delta(X_2, L|_{X_2}) = \cdots$ .

*Remark* 6.6. If  $\Delta(X, L) = 0$ , then (X, L) has a regular ladder.

Remark 6.7. If  $\Delta(X, L) = \Delta(Y, L|Y)$  for a rung Y of (X, L), and if  $L|_Y$  has the  $N_1$  property, then L has the  $N_1$  property. Since  $N_1$  property can be checked for one-dimensional  $X_{n-1}$ , the existence of a regular ladder implies the  $N_1$  property of L.

**Proposition 6.8.** Let X be a Fano 3-fold with r = 2,  $-K_X \sim 2H$ . Then, (X, H) has a regular ladder.

*Proof.* By Proposition 6.4, we have a ladder  $X = X_0 \supset X_1 \supset X_2$ . Let  $C := X_2$ . Since  $X_1 \in |H|$ , we may assume  $X_1 = H$ , which is a prime divisor.

By Propositioin 4.14, we have

$$0 \leq \Delta(X,H) - \Delta(H,H|_H) \leq h^1(X,\mathcal{O}_X) = 0$$

and

$$\leq \Delta(H, H|_H) - \Delta(C, H|_C) \leq h^1(H, \mathcal{O}_H) = 0,$$

so  $\Delta(X,H) = \Delta(H,H|_H) = \Delta(C,H|_C)$ ; the ladder is regular. Here when we compute  $h^1(H,\mathcal{O}_H) = 0$ , we have used the exact sequence for  $0 \to \mathcal{O}_X(-H) \to \mathcal{O}_X \to \mathcal{O}_H \to 0$  with the Kodaira vanishing theorem.

**Proposition 6.9.** Let X be a Fano 3-fold with r=2,  $-K_X \sim 2H$ . Let  $X \supset H \supset C$  be a regular ladder. Then, C is a projective Gorenstein curve with  $h^1(C, \mathcal{O}_C) = 1$ .

*Proof.* Note that H and C are effective divisors of X and H respectively, hence C is Gorenstein. In general, if V is a Gorenstein variety and W is an effective Cartier divisor, then W is a Gorenstein scheme and  $(\omega_V \otimes \mathcal{O}_V(W))|_W \cong \omega_W$ . We remark that a variety is Gorenstein if and only if it is Cohen-Macauley with invertible  $\omega_X$ . When V and W are normal, then  $(K_V + W)|_W \sim K_X$ .

Since

$$\omega_H \cong (\omega_X \otimes \mathcal{O}_X(H))|_H \cong \mathcal{O}_X(K_X + H)|_H \cong \mathcal{O}(-H)|_H$$

we have

$$\omega_C \cong (\omega_H \otimes \mathcal{O}_H(C))|_H = (\mathcal{O}_X(-H)|_H \otimes \mathcal{O}_X(H)|_H)|_C \cong (\mathcal{O}_X|_H)|_C = \mathcal{O}_C,$$

therefore the Serre duality implies  $h^1(C, \mathcal{O}_C) = h^0(C, \omega_C) = h^0(C, \mathcal{O}_C) = 1$ .

**Proposition 6.10.** Let C be a projective Gorenstein curve with arithmetic  $h^1(\mathcal{O}_C) = 1$ , i.e.  $\omega_C \cong \mathcal{O}_C$ . If a Cartier divisor D has dimension  $\dim D \geq 3$ , then D has the  $N_1$  property.

We will prove  $(6.11) \Rightarrow (6.13) \Rightarrow (6.10)$ .

**Proposition 6.11.** Let C be as Proposition 6.10, and D a Cartier divisor.

- (a) If  $\deg D \ge 1$ , then  $H^1(C, D) = 0$  and  $h^0(X, D) = \deg D$ .
- (b) If  $\deg D = 1$ , then Bs|D| = P, where P is a smooth point of C.
- (c) If  $\deg D \ge 2$ , then |D| is base point free.

Proof. (a) Directly follows by the Serre duality and the Riemann-Roch.

- (b) By (a), we may assume D is effective. By  $\deg D = 1$ , D is a smooth point P. Since  $h^1(C, D) = 1$ , we have Bs|D| = P.
- (c) Fix a smooth point  $Q \in X$ . Then, D (d-1)Q has degree 1, and is linearly equivalent to P by the part (b). Then,  $D \sim (d-1)Q + P$ , and  $Bs|D| \subset \{P,Q\}$ .

Let *R* be any smooth point. Then, we have

$$H^0(C, \mathcal{O}_C(D)) \to H^0(R, \mathcal{O}_C(D)|_R) \to H^1(C, \mathcal{O}_C(D-R)) = 0$$

by (a),  $deg(D-R) \ge 2-1 > 0$ , so Bs|D| does not contain smooth points. We are done.

*Exercise* 6.12. Let C be a projective Gorenstein curve and D an effective Cartier divisor. If  $\deg D = 1$ , then  $\operatorname{supp} D \subset \operatorname{the sum}$  of locus of C.

**Proposition 6.13.** Let C be as before, and D a Cartier divisor.

- (a) If  $\deg D \ge 2$ , then  $\bigoplus_{m=0}^{\infty} H^0(C, mD)$  is generated by  $H^0(C, D) \oplus H^0(C, 2D)$  as a  $\mathbb{C}$ -algebra.
- (b) If deg  $D \ge 3$ , then  $\bigoplus_{m=0}^{\infty} H^0(C, mD)$  is generated by  $H^0(C, D)$  as a  $\mathbb{C}$ -algebra; it enjoys the  $N_1$  property.

Proof. We only show (a).

It is enough to show

$$H^{0}(C,D) \otimes_{\mathbb{C}} H^{0}(C,(r+2)D) \to H^{0}(C,(r+3)D)$$

is surjective for all  $r \ge 0$ . This follows from the Castelnuovo-Mumford regularity (6.14 + 6.15).  $H^1(C, \mathcal{O}_C(D) \otimes \mathcal{O}_C(D)^{1-1}) = 0$ ,  $\mathcal{O}_C(D)$  is 1-regular with respect to  $\mathcal{O}_C(D)$ , globally defined by (6.11).

**Definition 6.14.** Let X be a projective scheme over  $\mathbb{C}$ , A a globally generated ample invertible sheaf, F a coherent sheaf. For  $m \in \mathbb{Z}$ , we say F is m-regular with respect to A if  $H^i(X, F \otimes A^{m-i}) = 0$  for each i > 0.

Theorem 6.15. Notation as in Definition 6.14. Then,

$$H^0(X,A) \otimes H^0(X,F \otimes A^{m+r}) \rightarrow H^0(X,F \otimes A^{m+r+1})$$

is surjective for  $r \in \mathbb{Z}_{\geq 0}$ .

*Proof.* See [FGA explained, §5] or [Lazarsfeld, Positivity].

Remark 6.16. Let C be a projective Gorenstein curve with  $h^1(C, \mathcal{O}_C) = 1$ . Then,  $C \cong \text{(cubic curve)} \subset \mathbb{P}^2_{\mathbb{C}}$ . It is because |3P| is very ample by Proposition 6.13.

**Proposition 6.17.** Let (X, L) be a polarized variety. Assume X is Cohen-Macauley,  $\dim Bs|L| \leq 0$ , and  $\dim \operatorname{im} \varphi_{|L|} = \dim X$ , where  $\operatorname{im} \varphi := (\varphi_{|L|}(X \setminus Bs|L|))^-$ . Then, X has a ladder.

*Proof.* Induction on dim X. For  $D \in |L|$  a general member, it suffices to show D is integral and  $(D, L|_D)$  satisfies the three assumptions in the statement of this proposition.

For reducedness of D,  $R_0 + S_1$ ,  $S_1$  Cohen-Macauley,  $D \cap X_{sm}$  by Bertini. For irreducibility of D, Bertini for irreducibles [Jounalou 83].

For  $(D, L|_D)$ , the integrality is done. The second assumption dim  $Bs|L|_D| \le 0$  follows from

$$Bs|L|\cap D=\bigcap_{s\in H^0(X,L)}\operatorname{supp} s\cap D\supset \bigcap_{t\in H^0(D,L|_D)}\operatorname{supp} t=Bs|L|_D|.$$

The third assumption is due to  $\dim \varphi_{|L|_D}(D) \ge \dim \varphi_{|L|}(D) \ge \dim X - 1$ , where the second inequality can be proved as follows: if we let X' be the normalization of the resolution of the indeter of  $\varphi_{|L|}$ , then we have by the Stein factorization that

$$X' \xrightarrow{\psi \text{ birat}} Z$$

$$\downarrow^{\mu} \qquad \downarrow^{\text{fin}}$$

$$X \xrightarrow{} I \text{ or } \varphi_{|D|} \subset \mathbb{P}^{N}_{\mathbb{C}}.$$

Suppose  $\dim \varphi'(\mu_*^{-1}D) = \dim \varphi_{|L|}(D) < \dim D$ . Then,  $\mu_*^{-1}D \subset Ex\psi$ ,  $D = \mu(\mu_*^{-1}D) \subset \mu(Ex\psi)$ . D general member, infinitely many choices, and only finitely many prime divisors. contradiction.

**Proposition 6.19.** Let (X, L) be a polarized variety and  $n := \dim X$ . Assume

- (a) X is smooth,
- (b)  $\dim Bs|L| \leq 0$ ,
- (c)  $\dim \operatorname{im} \varphi_{|L|} < \dim X$ ,
- (d)  $L^n \ge 2\Delta(X, L) 1$ .

Then, every general member of |L| is smooth.

If jikangire: see [Fujita, Book], [Fujita, total deficiency I].

*Proof.* For simplicity, assume Bs|L| = P. If  $D \in |L|$  is a general member, then the Bertini implies  $D \setminus P$  is smooth. Suppose D is singular at P.

For the blowup  $\alpha: X' \to X$ , we have a decomposition  $\alpha^*L = L' + mE$   $(m \ge 2)$  into a movable part and a fixed part. The normalization  $\beta: X'' \to X'$  at the indetersal of |L'|, with  $\beta*L' = L'' + F$ .



where  $Y = \varphi_{|L|}(X) = \varphi_{|L'|}(X') = \varphi_{|L''|}(X'')$ . Fix H such that  $\mathcal{O}_Y(H) \cong \mathcal{O}_{\mathbb{P}^N}(1)|_Y$  so that  $L'' = \varphi''^*H$ . We can check  $\dim Y = n - 1$ . Then, since

$$h^{0}(X, L) = h^{0}(X', L') = h^{0}(X'', L'') = h^{0}(Y, H),$$

we get

$$\Delta(X, L) = n + L^n - h^0(Y, H).$$

Now we have

$$0 \le \Delta(Y, H) = n - 1 + H^{n-1} - h^0(Y, H) = \Delta(X, L) - L^n - 1 + H^{n-1}.$$

We can show  $L^n \ge 2H^{n-1}$  so that we have  $L^n \ge 2(L^n + 1 - \Delta(X, L))$ , which leads to a contradiction  $2\Delta(X, L) - 2 \ge L^n$ .

# 7 Day 7: May 25

#### Fano threefolds with r = 2: II

**Notation 7.1.** Today, we will always use the following: X is a Fano 3-fold with r = 2, H is a smooth prime divisor such that  $-K_X \sim 2H$ . In particular, H is a del Pezzo surface.

Outline:

- 1.  $1 \le H^3 \le 9$ .
- 2. Case study(e.g.  $H^3 = 3$  implies  $X = (\deg = 3) \subset \mathbb{P}^4$ ).

#### Proposition 7.1.

- (a)  $H|_{H} \sim -K_{H}$ .
- (b)  $1 \le H^3 \le 9$ .

Proof. (a)  $K_H = (K_X + H)|_H \sim (-2H + H)|_H = -H|_H$ .

(b)  $H^3 = (H|_H)^2 = (-K_H)^2 = K_H^2$ . It is well-known that  $1 \le K_H^2 \le 9$  for a del Pezzro surface H. (If there is a (-1)-curve, then  $H \cong \mathbb{P}^2$  or  $H \cong \mathbb{P}^1 \times \mathbb{P}^1$ . If there is no (-1)-curve, then  $K_H^2 < K_{H'}^2$ , where  $H \to H'$  is a contraction of the (-1)-curve.)

**Theorem 7.2.** We denote by (d) a hypersurface of degree d, denote by  $P(a, b, c, \cdots)$  the weighted projective space, and denote by  $\cap$  the complete intersection. Then, the followings hold.

- (1) If  $H^3 = 1$ , then (6)  $\subset \mathbb{P}(1, 1, 1, 2, 3)$ .
- (2) If  $H^3 = 2$ , then  $(4) \subset \mathbb{P}(1, 1, 1, 1, 2)$ .
- (3) If  $H^3 = 3$ , then (3)  $\subset \mathbb{P}^4$ .
- (4) If  $H^3 = 4$ , then  $(2) \cap (2) \subset \mathbb{P}^5$ .
- (5) If  $H^3 = 5$ , then  $Gr(2,5) \cap (1) \cap (1) \cap (1) \subset \mathbb{P}^6$ . (we have  $Gr(2,5) \hookrightarrow \mathbb{P}^6$  by Plücker)
- (6) If  $H^3 = 6$ , then  $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$  or  $(1,1) \subset \mathbb{P}^2 \times \mathbb{P}^2$ .
- (7) If  $H^3 = 7$ , then the blowup of  $\mathbb{P}^3$  at a point.

*Remark.* If  $H^3 \ge 3$ , then |H| is very ample with  $\varphi_{|H|}: X \hookrightarrow \mathbb{P}^{H^3+1}$ .

Remark 7.3. These are actually Fano 3-folds with r = 2. For (3),(4),(6),(7), we can check with the adjunction formula and the Lefschetz hyperplane section theorem.

For (5), the Grassmannian  $Y = \operatorname{Gr}(r,n) := \{r\text{-dimensional subspaces of }\mathbb{C}^n\}$  has dimension r(n-r). If  $-K_Y \sim nH_Y$  and  $\operatorname{Pic} Y \cong \mathbb{Z}H_Y$ , then the Plücker embedding is given by  $\varphi_{|H_Y|} : Y \hookrightarrow \operatorname{Gr}(1,N) = \mathbb{P}^{N-1} : W \mapsto \bigcap^r W$ . By the adjunction formula, if  $X := Y \cap (1) \cap (1) \cap (1)$ , then  $-K_X \sim 2(H_Y|_X)$ . Also,

$$H_Y^{\dim Y} = \frac{(2n-4)!}{(n-1)!(n-2)!} = \frac{6!}{4!3!} = 5$$

for r = 2 and n = 5. See [Eisenbud-Harris 3264].

For (1) and (2), let  $Y := \mathbb{P}(1,1,1,1,2)$ , for example. Then, its singularity is a single point and it is a normal projective toric variety. Since  $ClY = \mathbb{Z}D_0$  and  $PicY = \mathbb{Z}(2D_0)$ ,  $-K_Y \sim (1+1+1+1+2)|_{D_0} = 6D_0$  and  $X \sim 4D_0$ . Since  $D_0|_X$  is Cartier by avoiding singularity,  $-K_X \sim 2(D_0|_X)$ .

Case (4). (Similarly for (3)) The Riemann-Roch gives

$$h^{0}(X, mH) = \frac{m(m+1)(m+2)}{6}H^{3} + m + 1 = \frac{2}{3}m(m+1)(m+2) + m + 1.$$

Then,

$$h^0(X,H) = 6$$
,  $h^0(X,2H) = 19$ ,  $h^0(\mathbb{P}^5,\mathcal{O}(1)) = \binom{6}{1} = 6$ ,  $h^0(\mathbb{P}^5,\mathcal{O}(2)) = \binom{7}{2} = 21$ .

Note

$$X = \operatorname{Proj} \frac{\mathbb{C}[x_0, \cdots, x_5]}{I_{\mathsf{Y}}} \hookrightarrow \operatorname{Proj} \mathbb{C}[x_0, \cdots, x_5] = \mathbb{P}^5.$$

With an exact sequence

$$0 \to I_X \to \mathcal{O}_{\mathbb{P}^5} \to \mathcal{O}_X \to 0$$

and

$$0 \to H^0(\mathbb{P}^5, I_X \otimes \mathcal{O}(2)) \to H^0(\mathbb{P}^5, \mathcal{O}(2)) \to H^0(X, \mathcal{O}(2)|_X (= 2H)) \to 0,$$

we have  $h^0(\mathbb{P}^5, I_X \otimes \mathcal{O}(2)) = 21 - 19 = 2$  and two quadrics  $Q_1, Q_2 \subset \mathbb{P}^5$  with  $X \subset Q_i$ . We also have  $Q_1 \neq Q_2$  and  $Q_i$  are integral (If not,  $Q_i = H + H'$  and  $X \subset Q_i$  implies  $X \subset H$  or  $X \subset H'$  by irreducibility, which is absurd to  $H^0(\mathbb{P}^5, \mathcal{O}(1)) \stackrel{\cong}{\to} H^0(X, H)$ ). Then,  $X \subset Q_1 \cap Q_2$ , and they have same degree 4, so  $X = Q_1 \cap Q_2$ . The divisors X and  $Q_2|_{Q_1}$  (effective Cartier divisor on  $Q_1$ )) are effective Weil divisors on  $Q_1$ , so  $X \leq Q_2|_{Q_1}$  and  $X\mathcal{O}(1)^3 = Q_2|_{Q_1} \cdot \mathcal{O}(1)^3 = Q_2 \cdot Q_1 \cdot \mathcal{O}(1)^3 = 4$ . Thus  $X = Q_2|_{Q_1}$  as Weil divisors on  $Q_1$ , and  $Q_2|_{Q_1} = Q_1 \cap Q_2$  is an integral scheme, so we have a closed immersion  $X \to Q_1 \cap Q_2$ , then by the same dimension we have  $X = Q_1 \cap Q_2$ .

Case (2). (Similarly for (1)) Then we have

- (i)  $h^0(X, H) = 4$  with  $H^0(X, H) = \bigoplus_{i=0}^3 \mathbb{C}x_i$ .
- (ii)  $h^0(X, 2H) = 11$  with  $H^0(X, H) = \bigoplus_{i=0}^3 \mathbb{C}x_i^2 \oplus \bigoplus_{0 \le i \le j \le 3} \mathbb{C}x_i x_j \oplus \mathbb{C}y$ .
- (iii)  $h^0(X, 3H) = 24$  with
- (iv)  $h^0(X, 4H) = 45$ .

For (ii) the linear independence of 10 elements are non-trivial. See Proposition 7.5. Note that  $X \cong \text{Proj}(\bigoplus_{d=0}^{\infty} H^0(X, dH))$  and  $\bigoplus_{d=0}^{\infty} H^0(X, dH)$  is generated by  $\bigoplus_{d=1}^2 H^0(X, dH)$  by the same argument as in day 6. For degree four, we have three cases  $Y^2$ ,  $Y^1 \times (\deg 2 \text{ using } X_0 \sim X_3)$ , and  $Y^0 \times (\deg 4 \text{ using } X_0 \sim X_3)$ . Then,  $1 + \binom{5}{2} + \binom{7}{3} = 46$ , i.e. there is a homogeneous polynomial of degree  $4 f(x_0, x_1, x_2, x_3, y)$ . We can check  $X = \{f = 0\}$ .

Exercise 7.4. Let X be a smooth projective variety and L be an invertible sheaf. Then,  $S^2H^0(X,L) \to H^0(X,L^{\otimes 2})$  is injective, where  $S^2$  means the symmetric product.

So far we have classified  $1 \le H^3 \le 4$  (for  $H^3 = 1$  or 3, we can do similarly as  $H^3 = 2$  and 4). We have  $H^3 \notin \{8, 9\}$ , and with a more argument we can show  $1 \le H^3 \le 5$  if and only if  $\rho(X) = 1$ .

**Proposition 7.5.**  $H^3 \neq 9$ .

Sketch. If  $H^3=9$ , then  $H\cong \mathbb{P}^2$ . We have a torsion-free cokernel for  $\operatorname{Pic} X\hookrightarrow \operatorname{Pic} H:\mathcal{O}_X(H)\mapsto \mathcal{O}_X(H)|_H\cong \omega_H^{-1}\cong \mathcal{O}_{\mathbb{P}^2}(3)$  by the Leftschetz hyperplane theorem or some others. Then, there is H' such that  $H\sim 3H'$  and  $-K_X\sim 2H\sim 6H'$ .

Case (5). In what follows, we consider  $H^3 = 5$  and want to prove  $X \cong Gr(2,5) \cap (1) \cap (1) \cap (1)$ . Here is a rough idea:

(A) Let  $X \stackrel{\sigma}{\leftarrow} Y$  be a blowup, let  $Y \stackrel{\psi}{\rightarrow} Z \subset \mathbb{P}^4$  blowdown. Suppose  $\psi$  is a blowup along  $B \subset Z$ , with  $B \cong \mathbb{P}^1$  and  $\deg B = 3$ , a smooth cubic rational curve.

(B) We can recover X from Z a smooth quadric and B a cubic  $\mathbb{P}^1$ . We can show X does not depend on the choice of (Z,B), so the Fano threefold with r=2 and  $H^3=5$  is unique(we already have an example).

For (A), we have four steps.

- (A1) There is a curve  $\Gamma \subset X$  such that  $H \cdot \Gamma = 1$ ,  $\Gamma \cong \mathbb{P}^1$ , and  $N_{\Gamma/X} \cong \mathcal{O}_{\Gamma} \oplus \mathcal{O}_{\Gamma}$ , since  $\Gamma \subset X \subset \mathbb{P}^6$  induces  $\mathcal{O}(1) \mapsto H \mapsto \text{ a line in } \Gamma$ . Take the blowup  $\sigma : Y \to X$  and let  $H_Y := \sigma_*^{-1}H$  (str transform).
- (A2)  $|H_Y|$  is a base point free and  $h^0(Y, H_Y) = 5$ . Let  $Z := \varphi_{|H|}(Y)$ .
- (A3)  $H_v^3 = 2$ ,  $\psi : Y \to Z$  is birational, and  $Z \subset \mathbb{P}^4$  is a quadric hypersurface.
- (A4) Also, Z is smooth, and  $\psi$  is a blowup along a smooth cubic curve. (Proof omitted)

We omit the proof for (A1) and (A4).

For (A2), let  $\Lambda$  be the linear system consisting of the hyperplane sections  $H \subset X$  such that  $\Gamma \subset H$ . Then,  $Bs\Lambda = \Gamma$  scheme-theoretically,  $\sigma$  is the resolution of indet of  $\varphi_{\Lambda}$  so that  $\sigma^*H = \sigma_*^{-1}H + E = H_Y + E$  with base point free  $|H_Y|$ . Moreover,  $H^0(Y, H_Y) \cong V_{\Lambda} \subset H^0(X, H)$  with codimension 2, hence  $h^0(Y, H_Y) = 5$ .

For (A3), we omit for  $H^3=2$ . Note that  $2=H_Y^3=(\deg\psi)\times H_Z^3=(\deg\psi)\times(\deg Z)$ , where  $H_Z:=\mathcal{O}_{\mathbb{P}^4}(1)|_Z$ . If  $\deg Z=1$ , then  $H^0(Y,H_Y)\longleftrightarrow H^0(Z,H_Y)\longleftrightarrow H_0(\mathbb{P}^4,\mathcal{O}(1))$  is an isomorphism, so we have a contradiction. Therefore,  $\deg Z=1$  and  $\deg\psi=1$ , we are done. For (B), let  $Z,Z'\subset\mathbb{P}^4$  be

smooth quadric hypersurfaces and  $B \subset Z$ ,  $B' \subset Z'$  be smooth cubis rational curves. We want to show that there is  $\sigma : \mathbb{P}^4 \xrightarrow{\cong} \mathbb{P}^4$  such that  $\sigma(Z) = Z'$  and  $\sigma(B) = B'$ .

(B1) Let

$$V := \bigcap_{\substack{H: \text{ hyperplane} \\ B \subset H}} = \text{(the smallest linear sub in } \mathbb{P}^4 \text{ containing } B) \cong \mathbb{P}^3$$

 $B, B' \subset Z \cap V \cong \mathbb{P}^1 \times \mathbb{P}^1$  smooth quadric surface...

(B2) we can show  $\tau(B) = B'$ .

# 8 Day 8: June 8

# Primitive Fano 3-folds with $\rho \geq 2$

**Definition 8.1.** Let X be a Fano 3-fold. Then, X is called *imprimitive* if there is a Fano 3-fold Y and a smooth curve B on Y such that X is isomorphic to the blowup of Y along B, and called *primitve* if it is not imprimitive.

Our strategy of classification of Fano 3-folds is for an imprimitive Fano  $X_i$  to find a blowup  $X_i \to X_{i+1}$  such that  $X_{i+1}$  is Fano, until  $X_n$  is primitive. Since  $\rho(X_i) > \rho(X_{i+1})$ , this procedure terminates. In other words, the classification of primitive Fano 3-folds reduces to the classification of Fano 3-folds by blowups.

*Remark* 8.2. Let *X* be a primitive Fano 3-fold. For  $\rho(X) = 1$ , then Iskovskih(Prokhorov), Takeuchi. For  $\rho(X) \ge 2$ , then section 8 and 9 in [Mori-Mukai].

Here is the outline:

- (a) Prove  $\rho(X) \le 3$  and there is an extremal ray of type C, etc.
- (b) Case study depending on  $\rho(X)$  and types of extremal rays.

**Theorem 8.3** (Mori '82). Let X be a Fano 3-fold, R an extremal ray of NE(X), and  $f: X \to Y$  the contraction of R(i.e. the morphism to a projective normal variety Y such that  $f_*\mathcal{O}_X = \mathcal{O}_Y$  and  $f(C) = \operatorname{pt} \inf[C] \in R$  for a curve  $C \subset X$ ). Then, one of the following holds:

- (C)  $\dim Y = 2$  and Y smooth (Conic bundle)
- (D)  $\dim Y = 1$  (**D**el Pezzo fibration)
- (E)  $\dim Y = 3$  (birational, Exceptional(?))
- (F)  $\dim Y = 0$  (Fano)

Moreover, the following hold:

- (C) Y is smooth and f is flat, and X is a conic bundle over Y, that is, by definition, X is a subbundle of a rank-three vector bundle of Y such that each fiber is conic in  $\mathbb{P}^2_{\mathbb{C}}$ .
- (D) By the adjunction formula with generic smooth, general fibers are del Pezzo surfaces.
- (E) The exceptional locus D := Ex(f) is a prime divisor and there are five types:
  - $(E_1)$  Y is smooth, X is a blowup along a smooth curve B; D is a  $\mathbb{P}^1$ -bundle on B and f(D) = B.
  - (E<sub>2</sub>) Y is smooth, X is a blowup along a point;  $D = \mathbb{P}^2$  and  $f(D) = \operatorname{pt}$ .
  - (E<sub>3</sub>) Y is singular,  $D \cong \mathbb{P}^1 \times \mathbb{P}^1$  and f(D) = pt.
  - (E<sub>4</sub>) Y is singular, D = a singular quadric surface in  $\mathbb{P}^3$  and f(D) = pt.
  - $(E_5)$  Y is singular,  $D \cong \mathbb{P}^2$  with  $\mathcal{O}_X(D)|_D \cong \mathcal{O}_{\mathbb{P}^2}(2)$  and  $f(D) = \operatorname{pt}$ .

( $E_3$  and  $E_4$  are not that different)

(F) if and only if  $\rho(X) = 1$ . The proof will be omitted.

*Exercise* 8.4. For a Fano 3-fold X and the contraction  $f: X \to Y$  of an extremal ray R, show that if f is birational, then (1) D := Ex(f) is a prime divisor and (2)  $D \cong \mathbb{P}^2$  or  $D \cong$  quadric surface in  $\mathbb{P}^3$  when  $f(D) = \operatorname{pt}$ .

**Theorem 8.5** ((A), Today's goal). Let X be a primitive Fano 3-fold with  $\rho(X) \ge 2$ . Then,

(a)  $\rho(X) \leq 3$ ,

- (b) there is an extremal ray R of type C,
- (c) If  $f: X \to Y$  is the contracion of R, then  $\rho(X) = 2$  and 3 iff  $Y = \mathbb{P}^2$  and  $\mathbb{P}^1 \times \mathbb{P}^1$ , respectively.

*Outline of proof.* We will show (b) first. Then, if  $f: X \to Y$  is the contracion of R of type C, then Y is a smooth rational surface and there is no curve C on Y with  $C^2 < 0$ , so  $Y = \mathbb{P}^2$  or  $\mathbb{P}^1 \times \mathbb{P}^1$ .

**Lemma 8.6.** Let X be a Fano 3-fold with  $\rho(X) \ge 2$ .

- (a) There is an extremal ray R of type C or D or  $E_1$ .
- (b) There is an extremal ray R of type C or D, if X is primitve.

*Proof.* We only show (a). Suppose there is an extremal ray of type  $E_2 \sim E_5$ . Let  $f_i: X \to Y_i$  be the contraction of extremal ray  $R_i = \mathbb{R}_{\geq 0}[l_i]$ . Let  $D_i:=Ex(f_i)$  be a prime divisor. There is  $s \in \mathbb{Z}_{>0}$  such that  $|-sK_X|$  is very ample, so by taking  $H, H' \in |-sK_X|$  general members, we can take a smooth curve  $\Gamma:=H\cap H'$  on X such that  $[\Gamma]=\sum_{i=1}^n a_i l_i]$  with  $a_i \geq 0$ . Then,

$$0 < D_1 \cdot (-sK_X)^2 = D_1 \cdot H \cdot H' = (D_1|_{H'}) \cdot (H|_{H'}) = \deg_{\Gamma}(D_1|_{\Gamma}) = D_1 \cdot \Gamma = D_1 \cdot (\sum_{i=1}^n a_i l_i).$$

By Remark 8.7,  $D_1 \cdot l_1 < 0$ . Now we claim  $D_1 \cap D_2 = \emptyset$  so that we have  $D_1 \cdot l_i = 0$  for  $i \ge 2$  to obtain a contradiction. Suppose  $D_1 \cap D_2 \ne \emptyset$ . Then, there is a curve C in the intersection by the Krull Hauptidealsatz(maybe?), so  $[C] \in R_1 \cap R_2 = \{0\}$ , which is absurd by  $0 < (\text{ample}) \cdot C = (\text{ample}) \cdot 0$ .  $\square$ 

*Remark* 8.7. Let  $f: X \to Y$  be type E. Then,  $D \cdot l < 0$  and f is of type  $E_2 \sim E_5$ . Thus  $C \subset D$  iff  $[C] \in R$  iff  $D \cdot C < 0$  for a curve C on X.

*Proof.* We only show  $D \cdot l < 0$ , the other is easy. Let  $A_Y$  be an ample Cartier divisor on Y so that there is m such that  $mf^*A_Y = A + E$  is big. It implies  $E \cdot l < 0$  from  $0 = mf^*A_Y \cdot l = A \cdot l + E \cdot l$ .

Let  $E_0 := D$  and  $E = \sum_{i=0}^r a_i E_i$ . Then,  $E_i \cdot l \ge 0$  for  $1 \le i \le n$  because  $E_i \cdot l \ge 0$  iff  $E_i \cdot l' \ge 0$  for a general curve l' on D, therefore we have  $D \cdot l < 0$ .

**Proposition 8.8.** Let X be a primitive Fano 3-fold. Then, there is an extremal ray of type C.

*Proof.* Suppose every extremal ray is not of type C. By Lemma 8.6, there is a type of D. See the picture  $3 \sim 6$ .

**Proposition 8.10.** Let Y be a smooth projective surface. Then, Y is unirueld iff ruled iff  $K(\cdot Y) = -\infty$ ?

*Proof.* Omitted. □

**Theorem 8.11** (Kollar-Miyaoka-Mori). If X is a Fano variety, then X is rationally connected; for  $x_1, x_2 \in X$ , there is a rational curve C in X such that  $x_1, x_2 \in C$ .

**Proposition 8.12.** Let X be a Fano 3-fold and  $f: X \to Y$  be of type C. Then, Y is rational.

*Proof.* If X is rationally connected, then Y is rationally connected. Now Y is smooth projective surface. If Y is rationally connected, then Y is uniruled. If Y is irrational uniruled, then by MMP, it is made by blowups from a irrational curve, but B is also rationally connected, which impiles B is rational, a contradiction.