Static Route

Router(config) #ip route network-address subnet-mask {ip-address | exit-intf}

Parameter	Description Destination network address of the remote network to be added to the routing table.		
network-address			
subnet-mask	Subnet mask of the remote network to be added to the routing table. The subnet mask can be modified to summarize a group of networks.		
ip-address	Commonly referred to as the next-hop router's IP address. Typically used when connecting to a broadcast media (i.e., Ethernet). Commonly creates a recursive lookup.		
exit-intf	Use the outgoing interface to forward packets to the destination network. Also referred to as a directly attached static route. Typically used when connecting in a point-to-point configuration.		

Default Route

Router(config) #ip route 0.0.0.0 0.0.0.0 {ip-address | exit-intf}

Parameter	Description		
0.0.0.0	Matches any network address.		
0.0.0.0	Matches any subnet mask.		
ip-address	 Commonly referred to as the next-hop router's IP address. Typically used when connecting to a broadcast media (i.e., Ethernet). Commonly creates a recursive lookup. 		
exit-intf	Use the outgoing interface to forward packets to the destination network. Also referred to as a directly attached static route. Typically used when connecting in a point-to-point configuration.		

show ip route show ip route static show ip route network Show running-config show ip interface brief

RIPv1 (Auto Summarization)

RIP update: R2#debug ip rip

RIPv2 (network = สายที่ออกจาก router)

router rip
version 2
network 192.168.1.80 {Subnet mask}
network 192.168.1.0 {Subnet mask}
network 192.168.1.32
passive-interface fa0/0.10
passive-interface fa0/0.20
no auto-summary

Standard ACL:

Router(config)# access-list access-list-number
deny | permit | remark
source [source-wildcard] [log]


```
R1 (config) #no access-list 1
R1 (config) #access-list 1 deny host 192.168.10.10
R1 (config) #access-list 1 permit any
R1 (config) #interface g0/0
R1 (config-if) #ip access-group 1 in
```

```
R1 (config) #ip access-list standard NO_ACCESS
R1 (config-std-nacl) #remark Do not allow access from Lab
workstation
R1 (config-std-nacl) #deny host 192.168.11.10
R1 (config-std-nacl) #remark Allow access from all other networks
R1 (config-std-nacl) #permit any
R1 (config-std-nacl) #interface G0/0
R1 (config-if) #ip access-group NO_ACCESS out
R1 (config-if) #
```

Extended ACL:

access-list access-list-number {deny | permit | remark}
protocol source [source-wildcard] [operator operand]
[port port-number or name] destination [destination-wildcard]
[operator operand] [port port-number or name][established]

R1 (config) #access-list 103 permit tcp 192.168.10.0 0.0.0.255 any eq 80
R1 (config) #access-list 103 permit tcp 192.168.10.0 0.0.0.255 any eq 443
R1 (config) #access-list 104 permit tcp any 192.168.10.0 0.0.0.255 established
R1 (config) #interface g0/0
R1 (config-if) #ip access-group 103 in
R1 (config-if) #ip access-group 104 out

```
R1(config) #access-list 101 deny tcp 192.168.11.0 0.0.0.255 192.168.10.0 0.0.0.255 eq ftp
R1(config) #access-list 101 deny tcp 192.168.11.0 0.0.0.255 192.168.10.0 0.0.0.255 eq ftp-data
R1(config) #access-list 101 permit ip any any
R1(config) #interface g0/1
R1(config-if) #ip access-group 101 in
```

```
R1(config) #ip access-list extended SURFING
R1(config-ext-nacl) #permit tcp 192.168.10.0 0.0.0.255 any eq 80
R1(config-ext-nacl) #permit tcp 192.168.10.0 0.0.0.255 any eq 443
R1(config-ext-nacl) #exit
R1(config) #ip access-list extended BROWSING
R1(config-ext-nacl) #permit tcp any 192.168.10.0 0.0.255 established
R1(config-ext-nacl) #exit
R1(config-if) #interface g0/0
R1(config-if) #ip access-group SURFING in
R1(config-if) #ip access-group BROWSING out
```

OSPF:

Cost = 100,000,000 bps/interface bandwidth in bps

Serial 1.544 Mbps	100,000,000	÷	1,544,000	64	
----------------------	-------------	---	-----------	----	--

g Bandwidth = R1# show interfaces serial 0/0/0 DHCP:

```
R1 (config) # ip dhcp excluded-address 192.168.10.1 192.168.10.9
R1 (config) # ip dhcp excluded-address 192.168.10.254
R1 (config) # ip dhcp pool LAN-POOL-1
R1 (dhcp-config) # network 192.168.10.0 255.255.255.0
R1 (dhcp-config) # default-router 192.168.10.1
R1 (dhcp-config) # dns-server 192.168.11.5
R1 (dhcp-config) # domain-name example.com
R1 (dhcp-config) # end
```

Switch:

Enter global configuration mode.	S1# configure terminal
Enter interface configuration mode.	S1(config)# interface fastethernet 0/1
Configure the interface duplex.	S1(config-if)# duplex full
Configure the interface speed.	S1(config-if)# speed 100
Return to the privileged EXEC mode.	S1(config-if)# end
Save the running config to the startup config.	S1# copy running-config startup- config

Cisco Switch IOS Commands		
Display interface status and configuration.	S1# show interfaces [interface-id]	
Display current startup configuration.	S1# show startup-config	
Display current operating config.	S1# show running-config	
Displays info about flash filesystem.	S1# show flash	
Displays system hardware & software status.	S1# show version	
Display history of commands entered.	S1# show history	
Display IP information about an interface.	S1# show ip [interface-id]	
Display the MAC address table.	S1# show mac-address-table	

Sw with SSH

```
S1 # configure terminal
S1(config) # ip domain-name cisco.com
S1(config) # crypto key generate rsa
The name for the keys will be: S1.cisco.com
...
How many bits in the modulus [512]: 1024
...
S1(config) # username admin password ccna
S1(config) # line vty 0 15
S1(config-line) # transport input ssh
S1(config-line) # login local
S1(config) # end
```

Static secure MAC addresses

Switch(config-if)#switchport mode access
Switch(config-if)#switchport port-security
Switch(config-if)#switchport port-security mac-address MAC-ADD

Dynamic secure MAC addresses

Switch(config-if) #switchport mode access
Switch(config-if) #switchport port-security
Switch(config-if) #switchport port-security mac-address sticky

Maximum MAC addresses

Switch (config-if) #switchport port-security maximum MAX

Violation mode

Switch(config-if)#switchport port-security violation ?
protect Security violation protect mode
restrict Security violation restrict mode
shutdown Security violation shutdown mode

Cisco IOS CLI Commands			
S1(config)#interface fastethernet 0/18	Specify the interface to be configured for port security.		
S1(config-if) #switchport mode access	Set the interface mode to access.		
S1(config-if) #switchport port- security	Enable port security on the interface.		
S1(config-if) #switchport port- security maximum 50	Set the maximum number of secure addresses allowed on the port.		
S1(config-if) #switchport port- security mac-address sticky	Enable sticky learning.		

Spanning Tree

S3# show spanning-tree

```
S1# configure terminal
S1(config)# spanning-tree mode rapid-pvst
S1(config)# interface f0/2
S1(config-if)# spanning-tree link-type point-to-point
S1(config-if)# end
S1# clear spanning-tree detected-protocols
```

```
S3(config)# spanning-tree vlan 20 root primary
```

This command forces S3 to be the primary root for VLAN 20.

```
S3(config)# spanning-tree vlan 10 root secondary
```

This command forces \$3 to be the secondary root for VLAN 10.

```
S1(config)# spanning-tree vlan 10 root primary
```

This command forces S1 to be the primary root for VLAN 10.

```
S1(config)# spanning-tree vlan 20 root secondary
```

Configure PVST+

```
S3(config)# spanning-tree vlan 20 priority 4096
```

This command sets the priority for S3 to be the lowest possible, making it most likely hat S3 will be the primary root for VLAN 20.

```
S1(config)# spanning-tree vlan 10 priority 4096
```

This command sets the priority for S1 to be the lowest possible, making it most likely hat S1 will be the primary root for VLAN 10.

VLAN

Cisco Switch IOS Commands			
Enter global configuration mode.	S1# configure terminal		
Create a VLAN with a valid id number.	S1(config)# vlan vlan_id		
Specify a unique name to identify the VLAN.	S1(config)# name vlan_name		
Return to the privileged EXEC mode.	S1(config)# end		

```
s1# configure terminal
s1(config) # interface F0/18
s1(config-if) # switchport mode access
s1(config-if) # switchport access vlan 20
s1(config-if) # end
```

```
S1(config)# interface FastEthernet0/1
S1(config-if)# switchport mode trunk
S1(config-if)# switchport trunk native vlan 99
S1(config-if)# switchport trunk allowed vlan 10,20,30
S1(config-if)# end
```

Inter-VLAN

```
Router(config) #interface fastethernet 0/0
Router(config-if) #no shutdown
Router(config-if) #interface fastethernet 0/0.10
Router(config-subif) #description vlan 10
Router(config-subif) #encapsulation dotlq 10
Router(config-subif) #ip address 192.168.a.254 255.255.255.0
Router(config-subif) #exit
Router(config-if) #interface fastethernet 0/0.20
Router(config-subif) #description vlan 20
Router(config-subif) #encapsulation dotlq 20
Router(config-subif) #ip address 192.168.b.254 255.255.255.0
Router(config-subif) #exit
```

VTP

```
VTP Configuration in global configuration mode:
 Switch#config terminal
 Switch (config) #vtp version 2
 Switch (config) #vtp mode server
 Switch (config) #vtp domain cisco
 Switch (config) #vtp password mypassword
VTP Configuration in VLAN configuration mode:
 Switch#vlan database
 Switch(vlan) #vtp v2-mode
 Switch (vlan) #vtp server
 Switch (vlan) #vtp domain cisco
 Switch (vlan) #vtp password mypassword
Switch#show vtp staus
MDF Switch#show vtp counters
Switch (vlan) #vtp pruning
To make specific VLANs pruning ineligible
```

Static NAT

ip nat inside source static 192.168.1.11
ip nat inside source static 192.168.1.12
ip nat inside source static 192.168.2.11
ip nat inside source static 192.168.2.12
int fa0/0.10
ip nat inside
exit
int fa0/0.20
ip nat inside
exit
int se0/0
ip nat outside

Step	Action
1	Establish static translation between an inside local address and an inside global address. Router(config)# ip nat inside source static local- ip global-ip
2	Specify the inside interface. Router(config)# interface type number
3	Mark the interface as connected to the inside. Router(config-if) # ip nat inside
4	Exit interface configuration mode. Router(config-if)# exit
5	Specify the outside interface. Router(config)# interface type number
6	Mark the interface as connected to the outside. Router(config-if) # ip nat outside

R2# show ip nat translations

Dynamic NAT

Dynamic NA	Dynamic NAT Configuration Steps			
Step 1	Define a pool of global addresses to be used for translation. ip nat pool name start-ip end-ip { netmasknetmask prefix-length prefix-length }			
Step 2	Define a standard access list permitting the addresses that should be translated. access-list access-list-number permit source [source-wildcard]			
Step 3	Establish dynamic source translation, specifying the access list and pool defined in prior steps. ip nat inside source list access-list-number pool name			
Step 4	Identify the inside interface. interface type number ip nat inside			
Step 5	Identify the outside interface. interface type number ip nat outside			

PAT

conf t

ip nat pool net 161.246.1.101 161.246.1.103 hetmask 255.255.255.0 access-list 1 permit 192.168.1.0 0.0.0.255 access-list 1 permit 192.168.2.0 0.0.0.255 ip nat inside source list 1 pool net overload

end

Step 1	Define a pool of global addresses to be used for overload translation.		
	<pre>ip nat pool name start-ip end-ip {netmask netmask prefix-length prefix-length}</pre>		
Step 2	Define a standard access list permitting the addresses that should be translated.		
	access-list access-list-number permit source [source-wildcard]		
Step 3	Establish overload translation, specifying the access list and pool defined in prior steps.		
	<pre>ip nat inside source list access-list-number pool name overload</pre>		
Step 4	Identify the inside interface.		
	<pre>interface type number ip nat inside</pre>		
Step 5	Identify the outside interface.		
	interface type number ip nat outside		

Step 1	Define a standard access list permitting the addresses that should be translated.	
	access-list access-list-number permit source[source-wildcard]	
Step 2	Establish dynamic source translation, specifying the ACL, exit interface and overload options.	
	ip nat inside source listaccess-list-numberinterface type number overload	
Step 3	Identify the inside interface.	
	interface type number ip nat inside	
Step 4	Identify the outside interface.	
	interface type number ip nat outside	

EIGRP

conf t

router eigrp 100

eigrp router-id 1.1.1.1

network 192.168.1.80

network 192.168.1.76

network 192.168.1.56

no auto-summary

end

-We can determine the EIGRP metric as follows:

- 1. Determine the link with the slowest bandwidth and use that value to calculate bandwidth (10,000,000/bandwidth).
- [K1 * bandwidth + K3 * delay] * 256 = Metric Because K1 and K3 both equal 1, the formula becomes: (Bandwidth + Delay) * 256 = Metric
- 2. Determine the delay value for each outgoing interface on the way to the destination and add the delay values and divide by 10 (sum of delay/10).
- This composite metric produces a 24-bit value which EIGRP multiplies with 256.

((10,000,000 / bandwidth) + (sum of delay / 10)) * 256 = Metric R2# show ip route D 192.168.1.0/24 [90/3012096] via 192.168.10.10, 00:12:32, Serial0/0/1

Subnet Mask	CIDR Value	Subnet Mask	CIDR Value
255.0.0.0	/8	255.255.240.0	/20
255.128.0.0	/9	255.255.248.0	/21
255.192.0.0	/10	255.255.252.0	/22
255.224.0.0	/11	255.255.254.0	/23
255.240.0.0	/12	255.255.255.0	/24
255.248.0.0	/13	255.255.255.128	/25
255.252.0.0	/14	255.255.255.192	/26
255.254.0.0	/15	255.255.255.224	/27
255.255.0.0	/16	255.255.255.240	/28
255.255.128.0	/17	255.255.255.248	/29
255.255.192.0	/18	255.255.255.252	/30
255.255.224.0	/19	255.255.255.254	/31 Not valid

Sw_Doodle

en vlan database vlan 10 name Doodle exit conf t hostname Sw_Doodle int range f0/1-3 sw mo ac sw ac v 10 Rt_Doodle en conf t hostname Rt_Doodle int f0/0 ip add 111.111.111.1 255.255.255.0 no sh int s0/0 ip add 66.66.66.2 255.255.255.252 no sh int s0/1 ip add 111.111.112.121 255.255.255.252 no sh ip route 33.33.33.0 255.255.255.0 s0/1 router eigrp 100 no auto-summary network 111.111.111.0 network 66.66.66.0 ip address 192.168.2.73 255.255.255.252 clock rate 56000 no shutdown exit Rt_Basecook en conf t hostname Rt_Basecook int f0/0

```
ip add 33.33.33.1 255.255.255.0
    no sh
    int s0/0
    ip add 66.66.66.6 255.255.255.252
    no sh
    int s0/1
    ip add 111.111.112.122 255.255.255.252
    no sh
    ip route 111.111.111.0 255.255.255.0 s0/1
    router eigrp 100
    no auto-summary
    network 33.33.33.0
    network 66.66.66.4
Rt_Isp
    en
    conf t
    hostname Rt_Isp
    int s0/0
    ip add 66.66.66.1 255.255.255.252
    no sh
    int s0/1
    ip add 66.66.66.5 255.255.255.252
    no sh
    int s0/2
    ip add 66.66.66.9 255.255.255.252
    router eigrp 100
    no auto-summary
    network 66.66.66.0
    network 66.66.66.4
    network 66.66.66.8
Rt_Center
    en
    conf t
    hostname Rt_Center
    int s0/0
    ip add 66.66.66.10 255.255.255.252
    no sh
```

int s0/1 ip add 192.168.6.14 255.255.255.252 no sh router eigrp 100 redistribute ospf 100 metric 1000 100 255 1 1500 network 66.66.66.8 router ospf 100 log-adjacency-changes redistribute eigrp 100 metric 1 subnets network 192.168.6.12 0.0.0.3 area 0 Rt_Company en conf t hostname Rt_Company int f0/1 no sh int f0/1.10 description Vlan-Dev en do 10 ip add 192.168.1.30 255.255.255.224 int f0/1.20 description Vlan-Design en do 20 ip add 192.168.1.62 255.255.255.224 int s0/0 ip add 192.168.6.2 255.255.255.252 no sh

router ospf 100

network 192.168.6.0 0.0.0.3 area 0 network 192.168.6.8 0.0.0.3 area 0

ip add 192.168.6.9 255.255.255.252

ip add 192.168.1.98 255.255.255.252

network 192.168.1.96 0.0.0.3 area 0

Sw_Company

int s0/1

no sh int f0/0

no sh

```
en
    vlan database
    vlan 10 name Dev
    vlan 20 name Design
    exit
    conf t
    hostname Sw_Company
    vtp do vtp
    vtp mo t
    vtp ve 2
    int f0/2
    sw mo tr
    int f0/3
    sw mo tr
Sw_Dev
    en
    vlan database
    vlan 10 name Dev
    vlan 20 name Design
    exit
    conf t
    hostname Sw_Dev
    vtp do vtp
    vtp mo s
    vtp ve 2
    int f0/24
    sw mo tr
    no sh
    int range f0/1-8
    sw mo ac
    sw ac v 10
    int range f0/9-15
    sw mo ac
    sw ac v 20
Sw_Tech
    en
    vlan database
    vlan 10 name Infra
```

vlan 20 name UxUi

exit

conf t

hostname Sw_Tech

vtp do vtp

vtp mo c

vtp ve 2

int f0/24

sw mo tr

no sh

int range f0/1-8

sw mo ac

sw ac v 10

int range f0/9-15

sw mo ac

sw ac v 20

Rt_InternetCafe

en

conf t

hostname Rt_InternetCafe

int s0/0

ip add 192.168.6.6 255.255.255.252

no sh

int s0/1

ip add 192.168.6.10 255.255.255.252

no sh

int f0/0

ip add 192.168.2.126 255.255.255.128

no sh

router ospf 100

network 192.168.6.4 0.0.0.3 area 0

network 192.168.6.8 0.0.0.3 area 0

network 192.168.2.0 0.0.0.127 area 0

Sw_InternetCafe

en

conf t

hostname Sw_InternetCafe

int f0/24

no sh

Wrt_InternetCafe

IP Address 192.168.2.126 Network: 192.168.2.0/26

Subnet Mask 255.255.255.128

SSID: InternetCafe

WPA2-PSK: InternetCafe

StartIp: 192.168.2.1 EndIp: 192.168.2.62

Rt_Link

en

conf t

hostname Rt_Isp

int s0/0

ip add 192.168.6.1 255.255.255.252

no sh

int s0/1

ip add 192.168.6.5 255.255.255.252

no sh

int s0/2

ip add 66.66.66.62 255.255.255.252

no sh

ip route 192.168.6.0 255.255.255.252 66.66.66.61

ip route 192.168.6.4 255.255.255.252 66.66.66.61

router ospf 100

redistribute static subnets

network 192.168.6.0 0.0.0.3 area 0

network 192.168.6.4 0.0.0.3 area 0