* Topics

1 Integration: Teapervisal, Simpson's 1/31d, Simpson's 3/8th Rules.

2 Interpolation: Lagranges, Newtons Interpolation

Newton's Newton's forward interpolⁿ.

3. System of linear equation: Gauss elimination method.

* Integration.

If the curve passes through the points

26.	<u>æ,</u>	22		2m	L	21-1-x; = h
Y	デ	42		dm	7	7+1 - 1

I) Tzapezoidal Rule:

$$I = \int_{\chi_1}^{\chi_m} y dx = \frac{1}{2} \left[y_1 + y_m + 2 (y_2 + y_3 + \dots + y_{m-1}) \right]$$

* Examples

Find the area bounded by the curve Y=f(x), X-axis between x=1, x=7. If the curve passes through the points.

 2
 1
 2
 3
 4
 5
 6
 7

 y
 8\)
 75
 80
 83
 78
 70
 60

Azea bdd by y=f(x), x-axis = $\sqrt{3}$ y y = $\sqrt{3}$

Given: 2 21=1 22=2 23=3 24=4 25=5 26=6 27=7 Y 11=81 12=75 13=80 4=83 45=78 16=70 17=60

:. from values of se: h=1

" By wing Feaperoidal rule

 $\int_{1}^{7} dx = \frac{h}{2} \left[y_{1} + y_{7} + 2 \left(y_{2} + y_{3} + y_{4} + y_{5} + y_{6} \right) \right]$ $= \frac{1}{2} \left[81 + 60 + 2 \left(75 + 80 + 83 + 78 + 70 \right) \right]$

$$=\frac{1}{2}\left[\frac{141}{141}+2\left(\frac{386}{386}\right)\right]$$

$$= \frac{1}{2} \left[\frac{1}{4} + \frac{772}{772} \right]$$
$$= \frac{1}{2} \left[\frac{913}{7} \right]$$

= 456·5

.. Area bold by Y=fox), x-axis bet x=1 and x=7 is 456.5 units

2) Evaluate using Traperoidal rule: $\int e^{-x^2}$ by taking 7 ordinates.

Given:

$$f(x) = e^{-x^2}$$

$$lower limit (x_1) = 0$$

$$upper limit (x_m) = 0.6$$

$$no. st points (m) = 7$$

:. no. of intervals(n) = m-1 = 6
step size (h) =
$$\frac{2m-21}{n} = \frac{27-21}{n} = \frac{0.6-0}{6} = 0.1$$

: Tabulated values of 2 and J:

				ઝ્ય,	25	Xc	
æ	%1=0_	22= 21+h=0.1	x3=21+2h=0.2	0.3	0.4	6.5	×7=0.6
Y	71= 20=1	72= =(01) =0.99	13 = e = 0.9608	74= 0 = 0.9139	75=0.8521	0.7788	0-6977

$$\int_{0}^{0.6} e^{x^2} dx = 0.534365 \qquad \cong 0.5344$$

3) Evaluat: Jydre if y=f(x) passes through

4) Evaluat: \(\frac{dze}{4z+5} \), dividing the sample into 10 equal posts

Given: $f(x) = \frac{1}{4x+5}$, no. of intervals = n = 10

lower limit = 2, = 0 & upper limit = 2m = 5

Since n=10, $m=no\cdot \text{ of points}=n+1=11$

Step size =
$$h = \frac{2m - 2l_1}{n} = \frac{2l_1 - 2l_1}{n} = \frac{5 - 0}{10} = \frac{1}{2} = 0.5$$

							,						
I	20	0	0.5				2.5				4.5	5	
1	7:	1/5	14	1/9	1/11	1/13	1/15	1/17	1/19	1/21	1/23/	1/25	ĺ
				L <u>'</u>			<u>'</u>				 \		•

$$I = \int_{4x+5}^{5} dx = \frac{h}{2} \left[Y_1 + Y_{11} + 2 \left(Y_2 + Y_3 + \cdots + Y_{10} \right) \right]$$

$$=\frac{0.5}{2}\left[\frac{1}{5}+\frac{1}{25}+2\left(\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)\right]$$

$$\int_{0}^{2\pi} \frac{dx}{4x+5} =$$