Theory of Distributions and Linear Differential Equations

Ruoyu Wang

University College London r.wang.13@ucl.ac.uk

February 13, 2016

Outline

- Introduction
- 2 Theory of Distributions
 - Definitions
 - Operations
- 3 Applications to Differential Equations
 - Linear ODE with singularity
 - PDE and fundamental solution
- 4 Epilogue
 - Distributional solutions to Navier-Stokes equations
 - Flaw of the theory

■ Laurent Schwartz and Sergei Sobolev;

- Laurent Schwartz and Sergei Sobolev;
- a more perspicuous language for PDE analysts;

- Laurent Schwartz and Sergei Sobolev;
- a more perspicuous language for PDE analysts;
- a generalised approach to solve linear PDEs.

- Laurent Schwartz and Sergei Sobolev;
- a more perspicuous language for PDE analysts;
- a generalised approach to solve linear PDEs.
- treat functions as functionals acting on some 'good' functions

Think of a first-order non-constant coefficient ODE:

$$x^2\dot{y}(x) + xy(x) = 0$$

for x > 0.

Think of a first-order non-constant coefficient ODE:

$$x^2\dot{y}(x) + xy(x) = 0$$

for x > 0. Solution:

$$y(x) = \frac{\alpha}{x}$$

Think of a first-order non-constant coefficient ODE:

$$x^2\dot{y}(x) + xy(x) = 0$$

for x > 0. Solution:

$$y(x) = \frac{\alpha}{x}$$

Does it admit an extension from \mathbb{R}_+ to \mathbb{R} ?

Think of a first-order non-constant coefficient ODE:

$$x^2\dot{y}(x) + xy(x) = 0$$

for x > 0. Solution:

$$y(x) = \frac{\alpha}{x}$$

Does it admit an extension from \mathbb{R}_+ to \mathbb{R} ? No classical solution, but there are distributional solutions!

Definition (Test functions.)

We write the test functions over region Ω to be all smooth (C^{∞} , infinitely many times differentiable) functions over Ω with compact supports (in short: all non-zero value of which lie in a compact set).

5 / 25

Example

The function

$$\Psi(x) = egin{cases} \exp(-rac{1}{1-x^2}), & |x| < 1 \ 0, & ext{otherwise} \end{cases}$$

is a test function on \mathbb{R} .

Example

The followings are not test functions on \mathbb{R} :

Example

The followings are not test functions on \mathbb{R} :

the latter of which is function $exp(-x^2)$.

Definition (Distributions.)

We then define the distributions, i.e. generalised functions, to be defined as continuous linear functionals over all test functions on Ω .

Example (Regular distributions.)

All L_{loc}^1 -functions f are automatically defined as distributions:

$$\langle f, \varphi \rangle = \int f(x) \cdot \varphi(x) \, \mathrm{d}x$$

for any test function φ .

8 / 25

Example (Heaviside function.)

The Heaviside step function is defined as

$$\theta(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & x = 0 \\ 1, & x > 0 \end{cases}.$$

It admits a regular distribution

$$\langle \theta(x), \varphi(x) \rangle = \int_{\mathbb{R}} \theta(x) \varphi(x) \ dx = \int_{\mathbb{R}_+} \varphi(x) \ dx.$$

4□ > 4□ > 4 = > 4 = > = 90

Example (Dirac distribution.)

The Dirac distribution $\delta(x)$ is defined as

$$\langle \delta(x), \varphi(x) \rangle = \varphi(0).$$

It is an irregular distribution. It can be seen as an approximation of

$$\delta_{\varepsilon}(x) = \frac{1}{\varepsilon\sqrt{\pi}}e^{-x^2/\varepsilon^2}$$

as $\varepsilon \to 0$.

Definition (Multiplication by C^{∞} -functions.)

Given a distribution g on Ω and a C^{∞} -function f on Ω , we define the distribution fg on Ω to be

$$\langle fg, \varphi \rangle = \langle g, f \cdot \varphi \rangle$$

for any test function φ on Ω .

Definition (Multiplication by C^{∞} -functions.)

Given a distribution g on Ω and a C^{∞} -function f on Ω , we define the distribution fg on Ω to be

$$\langle fg, \varphi \rangle = \langle g, f \cdot \varphi \rangle$$

for any test function φ on Ω .

Definition (Differentiation.)

Given a distribution f on \mathbb{R}^n , for $1 \leq k \leq n$ we define the distribution $\frac{\partial}{\partial x^k} g$ on \mathbb{R}^n to be

$$\langle \frac{\partial}{\partial x^k} \mathbf{g}, \varphi \rangle = -\langle \mathbf{g}, \frac{\partial}{\partial x^k} \varphi \rangle$$

for any test function φ on \mathbb{R}^n .

Example

We want to find the derivative of Heaviside step function:

$$\begin{split} \langle \theta'(x), \varphi(x) \rangle &= -\langle \theta(x), \varphi'(x) \rangle = -\int_{\mathbb{R}_+} \varphi'(x) \ dx = -\left[\varphi(x) \right]_0^{\infty} \\ &= \varphi(0) = \langle \delta(x), \varphi(x) \rangle, \end{split}$$

for φ is a test function with compact support (it equals 0 when x is large enough). Hence $\theta'(x) = \delta(x)$.

Example

$$x \cdot \delta(x) = 0$$

as of

$$\langle x \cdot \delta(x), \varphi(x) \rangle = \langle \delta(x), x \varphi(x) \rangle = 0.$$

Definition (Principal value distributions.)

We define the principal value distribution of 1/x on $\mathbb R$ to be

$$\langle \mathcal{P}(\frac{1}{x}), \varphi(x) \rangle = \lim_{\varepsilon \to 0^+} \int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{1}{x} \varphi(x) \ dx.$$

Example

$$x\cdot \mathcal{P}(\frac{1}{x})=1.$$

Definition (Tensor product.)

If distributions f(x) is defined on Ω_1 and g(y) is defined on Ω_2 , then we define

$$\langle f(x) \otimes g(y), \varphi(x;y) \rangle = \langle f(x), \langle g(y), \varphi(x;y) \rangle \rangle$$

to be a distribution over $\Omega_1 \times \Omega_2$.

Definition (Tensor product.)

If distributions f(x) is defined on Ω_1 and g(y) is defined on Ω_2 , then we define

$$\langle f(x) \otimes g(y), \varphi(x;y) \rangle = \langle f(x), \langle g(y), \varphi(x;y) \rangle \rangle$$

to be a distribution over $\Omega_1 \times \Omega_2$.

Definition (Convolution.)

We for a moment assume that distributions f(x), g(y) are defined on the same region Ω , and f is a distribution of a compact support. Then

$$\langle f * g, \varphi \rangle = \langle f(x) \otimes g(y), \varphi(x+y) \rangle.$$

Example (Convolution with Dirac distribution.)

$$\langle f(x) * \delta(x), \varphi(x) \rangle = \langle f(x) \otimes \delta(y), \varphi(x+y) \rangle = \langle f(x), \langle \delta(y), \varphi(x+y) \rangle \rangle$$
$$= \langle f(x), \varphi(x+0) \rangle = \langle f(x), \varphi(x) \rangle.$$

Hence $f(x) * \delta(x) = f(x)$.

Example (Convolution with Dirac distribution.)

$$\langle f(x) * \delta(x), \varphi(x) \rangle = \langle f(x) \otimes \delta(y), \varphi(x+y) \rangle = \langle f(x), \langle \delta(y), \varphi(x+y) \rangle \rangle$$
$$= \langle f(x), \varphi(x+0) \rangle = \langle f(x), \varphi(x) \rangle.$$

Hence $f(x) * \delta(x) = f(x)$.

Proposition

If distributions f and g are defined on \mathbb{R}^n :

$$\frac{\partial}{\partial x^k} f * g = \left(\frac{\partial}{\partial x^k} f\right) * g = f * \left(\frac{\partial}{\partial x^k} g\right).$$

A first-order non-constant coefficient ODE:

$$x^2\dot{y}(x) + xy(x) = 0$$

for $x \in \mathbb{R}$.

A first-order non-constant coefficient ODE:

$$x^2\dot{y}(x) + xy(x) = 0$$

for $x \in \mathbb{R}$. We shall look for solutions from all distributions on \mathbb{R} .

$$x(x\ y(x))'=0$$

A first-order non-constant coefficient ODE:

$$x^2\dot{y}(x) + xy(x) = 0$$

for $x \in \mathbb{R}$. We shall look for solutions from all distributions on \mathbb{R} .

$$x(x y(x))' = 0 \Leftrightarrow (x y(x))' = \alpha \delta(x)$$

A first-order non-constant coefficient ODE:

$$x^2\dot{y}(x) + xy(x) = 0$$

for $x \in \mathbb{R}$. We shall look for solutions from all distributions on \mathbb{R} .

$$x(x \ y(x))' = 0 \Leftrightarrow (x \ y(x))' = \alpha \delta(x) \Leftrightarrow x \ y(x) = \alpha \theta(x) + \beta$$

for constants α , β .

A first-order non-constant coefficient ODE:

$$x^2\dot{y}(x) + xy(x) = 0$$

for $x \in \mathbb{R}$. We shall look for solutions from all distributions on \mathbb{R} .

$$x(x y(x))' = 0 \Leftrightarrow (x y(x))' = \alpha \delta(x) \Leftrightarrow x y(x) = \alpha \theta(x) + \beta$$

for constants α , β . Then

$$y(x) = \frac{1}{x}\alpha\theta(x) + \beta\mathcal{P}(\frac{1}{x}) + \gamma\delta(x)$$

one can show that

$$x \cdot (\frac{1}{2}\mathcal{P}\frac{1}{|x|} + \frac{1}{2}\mathcal{P}(\frac{1}{x})) = \theta(x)$$

where $\mathcal{P}\frac{1}{|x|}$ is the regularisation of $\frac{1}{|x|}$ defined by

$$\langle \mathcal{P} \frac{1}{|x|}, \varphi(x) \rangle = \int_{|x| < 1} \frac{\varphi(x) - \varphi(0)}{|x|} \mathrm{d}x + \int_{|x| > 1} \frac{\varphi(x)}{|x|} \mathrm{d}x.$$

one can show that

$$x \cdot (\frac{1}{2}\mathcal{P}\frac{1}{|x|} + \frac{1}{2}\mathcal{P}(\frac{1}{x})) = \theta(x)$$

where $\mathcal{P}\frac{1}{|\mathbf{x}|}$ is the regularisation of $\frac{1}{|\mathbf{x}|}$ defined by

$$\langle \mathcal{P}\frac{1}{|x|}, \varphi(x) \rangle = \int_{|x|<1} \frac{\varphi(x) - \varphi(0)}{|x|} dx + \int_{|x|>1} \frac{\varphi(x)}{|x|} dx.$$

After reseting all coefficients we obtain solutions in the form

$$y(x) = \alpha \mathcal{P} \frac{1}{|x|} + \beta \mathcal{P} \frac{1}{x} + \gamma \delta(x).$$

one can show that

$$x \cdot (\frac{1}{2}\mathcal{P}\frac{1}{|x|} + \frac{1}{2}\mathcal{P}(\frac{1}{x})) = \theta(x)$$

where $\mathcal{P}\frac{1}{|\mathbf{x}|}$ is the regularisation of $\frac{1}{|\mathbf{x}|}$ defined by

$$\langle \mathcal{P}\frac{1}{|x|}, \varphi(x) \rangle = \int_{|x|<1} \frac{\varphi(x) - \varphi(0)}{|x|} \mathrm{d}x + \int_{|x|>1} \frac{\varphi(x)}{|x|} \mathrm{d}x.$$

After reseting all coefficients we obtain solutions in the form

$$y(x) = \alpha \mathcal{P} \frac{1}{|x|} + \beta \mathcal{P} \frac{1}{x} + \gamma \delta(x).$$

When we restrain the domain from \mathbb{R} to \mathbb{R}_+ , $\mathcal{P}_{|x|}^{\frac{1}{|x|}}$ and $\mathcal{P}_{x}^{\frac{1}{x}}$ are exactly the distributions induced by $\frac{1}{|x|}$ and $\frac{1}{x}$.

Fundamental solution

Definition (Fundamental solution.)

We define the fundamental solutions to a constant coefficient differential operator $L(\partial)$ to be the distributional solution E which satisfies

$$L(\partial)E=\delta(x).$$

Fundamental solution

Definition (Fundamental solution.)

We define the fundamental solutions to a constant coefficient differential operator $L(\partial)$ to be the distributional solution E which satisfies

$$L(\partial)E=\delta(x).$$

Proposition

Let f be a distribution on Ω s.t. the convolution E*f exists as a distribution, then the solution of equation $L(\partial)E = f(x)$ exists in the space of distributions and is given by the formula

$$u = E * f$$
.

This solution is unique in the class of distributions.

Fundamental solution

Definition (Fundamental solution.)

We define the fundamental solutions to a constant coefficient differential operator $L(\partial)$ to be the distributional solution E which satisfies

$$L(\partial)E=\delta(x).$$

Proposition

Let f be a distribution on Ω s.t. the convolution E * f exists as a distribution, then the solution of equation $L(\partial)E = f(x)$ exists in the space of distributions and is given by the formula

$$u = E * f$$
.

This solution is unique in the class of distributions.

Hint:

We aim to solve

$$\triangle u(x_1,x_2,x_3) = f(x_1,x_2,x_3) \Leftrightarrow \frac{\partial^2}{\partial x_1^2} u + \frac{\partial^2}{\partial x_2^2} u + \frac{\partial^2}{\partial x_3^2} u = f.$$

We aim to solve

$$\triangle u(x_1,x_2,x_3) = f(x_1,x_2,x_3) \Leftrightarrow \frac{\partial^2}{\partial x_1^2} u + \frac{\partial^2}{\partial x_2^2} u + \frac{\partial^2}{\partial x_3^2} u = f.$$

Consider the equation where $x \in \mathbb{R}^3$

$$\triangle E_3(x) = \delta(x)$$

We aim to solve

$$\triangle u(x_1,x_2,x_3) = f(x_1,x_2,x_3) \Leftrightarrow \frac{\partial^2}{\partial x_1^2} u + \frac{\partial^2}{\partial x_2^2} u + \frac{\partial^2}{\partial x_3^2} u = f.$$

Consider the equation where $x \in \mathbb{R}^3$

$$\triangle E_3(x) = \delta(x)$$

It is a known fact that

$$E_3(x) = -\frac{1}{4\pi}|x|^{-1}.$$

We aim to solve

$$\triangle u(x_1,x_2,x_3) = f(x_1,x_2,x_3) \Leftrightarrow \frac{\partial^2}{\partial x_1^2} u + \frac{\partial^2}{\partial x_2^2} u + \frac{\partial^2}{\partial x_3^2} u = f.$$

Consider the equation where $x \in \mathbb{R}^3$

$$\triangle E_3(x) = \delta(x)$$

It is a known fact that

$$E_3(x) = -\frac{1}{4\pi}|x|^{-1}.$$

By the previous proposition, assume $E_3(x) * f(x)$ exists, then

$$u(x) = E_3(x) * f(x) = -\frac{1}{4\pi}|x|^{-1} * f$$

is a unique distributional solution to the equation in the class of distributions.

Distributional solutions to Navier-Stokes equations

Definition (Navier-Stokes equations.)

The incompressibe Navier-Stokes equations in \mathbb{R}^3 is defined by the system:

$$v_t + v \cdot \nabla v - \mu \triangle v + \nabla p = 0, \quad \nabla \cdot v = 0.$$

Distributional solutions to Navier-Stokes equations

Definition (Navier-Stokes equations.)

The incompressibe Navier-Stokes equations in \mathbb{R}^3 is defined by the system:

$$v_t + v \cdot \nabla v - \mu \triangle v + \nabla p = 0, \quad \nabla \cdot v = 0.$$

Theorem (Leray (1934))

For $v_0 \in L_2(\mathbb{R}^3)$ with $\nabla \cdot v_0 = 0$, there exists a solution v of the Navier-Stokes equations in the sense of distributions.

Distributional solutions to Navier-Stokes equations

Definition (Navier-Stokes equations.)

The incompressibe Navier-Stokes equations in \mathbb{R}^3 is defined by the system:

$$v_t + v \cdot \nabla v - \mu \triangle v + \nabla p = 0, \quad \nabla \cdot v = 0.$$

Theorem (Leray (1934))

For $v_0 \in L_2(\mathbb{R}^3)$ with $\nabla \cdot v_0 = 0$, there exists a solution v of the Navier-Stokes equations in the sense of distributions.

No one knows whether there are any classical solutions to the equations.

Flaw of the theory

multiplications of distributions have no proper definition.

Flaw of the theory

- multiplications of distributions have no proper definition.
- **a** L_2 -function can be multiplied by another L_2 -function to get a L_1 -function, automatically a distribution.

The End

The End

25 / 25