23.
$$6x^2 + 9y^2 = 54 \Rightarrow \frac{x^2}{9} + \frac{y^2}{6} = 1$$

 $\Rightarrow c = \sqrt{a^2 - b^2} = \sqrt{9 - 6} = \sqrt{3}$

24.
$$169x^2 + 25y^2 = 4225 \implies \frac{x^2}{25} + \frac{y^2}{169} = 1$$

 $\implies c = \sqrt{a^2 - b^2} = \sqrt{169 - 25} = 12$

25. Foci:
$$\left(\pm\sqrt{2},0\right)$$
, Vertices: $(\pm2,0) \Rightarrow a=2, c=\sqrt{2} \Rightarrow b^2=a^2-c^2=4-\left(\sqrt{2}\right)^2=2 \Rightarrow \frac{x^2}{4}+\frac{y^2}{2}=1$

26. Foci:
$$(0, \pm 4)$$
, Vertices: $(0, \pm 5) \Rightarrow a = 5, c = 4 \Rightarrow b^2 = 25 - 16 = 9 \Rightarrow \frac{x^2}{9} + \frac{y^2}{25} = 1$

27.
$$x^2 - y^2 = 1 \implies c = \sqrt{a^2 + b^2} = \sqrt{1 + 1} = \sqrt{2}$$
; 28. $9x^2 - 16y^2 = 144 \implies \frac{x^2}{16} - \frac{y^2}{9} = 1$ asymptotes are $y = \pm x$ $\implies c = \sqrt{a^2 + b^2} = \sqrt{16 + 9} = 5$

29.
$$y^2 - x^2 = 8 \Rightarrow \frac{y^2}{8} - \frac{x^2}{8} = 1 \Rightarrow c = \sqrt{a^2 + b^2}$$
 30. $y^2 - x^2 = 4 \Rightarrow \frac{y^2}{4} - \frac{x^2}{4} = 1 \Rightarrow c = \sqrt{a^2 + b^2}$ $= \sqrt{8 + 8} = 4$; asymptotes are $y = \pm x$ $= \sqrt{4 + 4} = 2\sqrt{2}$; asymptotes are $y = \pm x$

 $=\sqrt{2+8}=\sqrt{10}$; asymptotes are $y=\pm 2x$

- $=\sqrt{2+8}=\sqrt{10}$; asymptotes are $y=\pm\frac{x}{2}$
- 33. $8y^2 2x^2 = 16 \Rightarrow \frac{y^2}{2} \frac{x^2}{8} = 1 \Rightarrow c = \sqrt{a^2 + b^2}$ 34. $64x^2 36y^2 = 2304 \Rightarrow \frac{x^2}{36} \frac{y^2}{64} = 1 \Rightarrow c = \sqrt{a^2 + b^2}$ $= \sqrt{2 + 8} = \sqrt{10}$; asymptotes are $y = \pm \frac{x}{2}$ $= \sqrt{36 + 64} = 10$; asymptotes are $y = \pm \frac{4}{2}$ $=\sqrt{36+64}=10$; asymptotes are y = $\pm \frac{4}{3}$

- 35. Foci: $\left(0,\,\pm\sqrt{2}\right)$, Asymptotes: $y=\,\pm\,x\,\Rightarrow\,c=\sqrt{2}$ and $\frac{a}{b}=1\,\Rightarrow\,a=b\,\Rightarrow\,c^2=a^2+b^2=2a^2\,\Rightarrow\,2=2a^2$ \Rightarrow a = 1 \Rightarrow b = 1 \Rightarrow y² - x² = 1
- 36. Foci: $(\pm 2,0)$, Asymptotes: $y=\pm \frac{1}{\sqrt{3}}x \Rightarrow c=2$ and $\frac{b}{a}=\frac{1}{\sqrt{3}} \Rightarrow b=\frac{a}{\sqrt{3}} \Rightarrow c^2=a^2+b^2=a^2+\frac{a^2}{3}=\frac{4a^2}{3}$ $\Rightarrow \ 4 = \frac{4a^2}{3} \ \Rightarrow \ a^2 = 3 \ \Rightarrow \ a = \sqrt{3} \ \Rightarrow \ b = 1 \ \Rightarrow \ \frac{x^2}{3} - y^2 = 1$
- 37. Vertices: $(\pm 3,0)$, Asymptotes: $y = \pm \frac{4}{3}x \Rightarrow a = 3$ and $\frac{b}{a} = \frac{4}{3} \Rightarrow b = \frac{4}{3}(3) = 4 \Rightarrow \frac{x^2}{9} \frac{y^2}{16} = 1$
- 38. Vertices: $(0, \pm 2)$, Asymptotes: $y = \pm \frac{1}{2} x \Rightarrow a = 2$ and $\frac{a}{b} = \frac{1}{2} \Rightarrow b = 2(2) = 4 \Rightarrow \frac{y^2}{4} \frac{x^2}{16} = 1$
- 39. (a) $y^2 = 8x \Rightarrow 4p = 8 \Rightarrow p = 2 \Rightarrow$ directrix is x = -2, focus is (2,0), and vertex is (0,0); therefore the new directrix is x = -1, the new focus is (3, -2), and the new vertex is (1, -2)

40. (a) $x^2 = -4y \Rightarrow 4p = 4 \Rightarrow p = 1 \Rightarrow$ directrix is y = 1, focus is (0, -1), and vertex is (0, 0); therefore the new directrix is y = 4, the new focus is (-1, 2), and the new vertex is (-1, 3)

41. (a) $\frac{x^2}{16} + \frac{y^2}{9} = 1 \Rightarrow \text{center is } (0,0), \text{ vertices are } (-4,0)$ and (4,0); $c = \sqrt{a^2 - b^2} = \sqrt{7} \Rightarrow \text{ foci are } \left(\sqrt{7},0\right)$ and $\left(-\sqrt{7},0\right)$; therefore the new center is (4,3), the new vertices are (0,3) and (8,3), and the new foci are $\left(4 \pm \sqrt{7},3\right)$

(b)

42. (a) $\frac{x^2}{9} + \frac{y^2}{25} = 1 \Rightarrow \text{center is } (0,0), \text{ vertices are } (0,5)$ and (0,-5); $c = \sqrt{a^2 - b^2} = \sqrt{16} = 4 \Rightarrow \text{ foci are } (0,4) \text{ and } (0,-4)$; therefore the new center is (-3,-2), the new vertices are (-3,3) and (-3,-7), and the new foci are (-3,2) and (-3,-6)

43. (a) $\frac{x^2}{16} - \frac{y^2}{9} = 1 \Rightarrow \text{center is } (0,0), \text{ vertices are } (-4,0)$ and (4,0), and the asymptotes are $\frac{x}{4} = \pm \frac{y}{3}$ or $y = \pm \frac{3x}{4}$; $c = \sqrt{a^2 + b^2} = \sqrt{25} = 5 \Rightarrow \text{ foci are } (-5,0) \text{ and } (5,0)$; therefore the new center is (2,0), the new vertices are (-2,0) and (6,0), the new foci are (-3,0) and (7,0), and the new asymptotes are $y = \pm \frac{3(x-2)}{4}$

685

- 45. $y^2 = 4x \implies 4p = 4 \implies p = 1 \implies$ focus is (1,0), directrix is x = -1, and vertex is (0,0); therefore the new vertex is (-2,-3), the new focus is (-1,-3), and the new directrix is x = -3; the new equation is $(y+3)^2 = 4(x+2)$
- 46. $y^2 = -12x \Rightarrow 4p = 12 \Rightarrow p = 3 \Rightarrow$ focus is (-3,0), directrix is x = 3, and vertex is (0,0); therefore the new vertex is (4,3), the new focus is (1,3), and the new directrix is x = 7; the new equation is $(y 3)^2 = -12(x 4)$
- 47. $x^2 = 8y \Rightarrow 4p = 8 \Rightarrow p = 2 \Rightarrow$ focus is (0, 2), directrix is y = -2, and vertex is (0, 0); therefore the new vertex is (1, -7), the new focus is (1, -5), and the new directrix is y = -9; the new equation is $(x 1)^2 = 8(y + 7)$
- 48. $x^2=6y \Rightarrow 4p=6 \Rightarrow p=\frac{3}{2} \Rightarrow$ focus is $\left(0,\frac{3}{2}\right)$, directrix is $y=-\frac{3}{2}$, and vertex is (0,0); therefore the new vertex is (-3,-2), the new focus is $\left(-3,-\frac{1}{2}\right)$, and the new directrix is $y=-\frac{7}{2}$; the new equation is $(x+3)^2=6(y+2)$
- 49. $\frac{x^2}{6} + \frac{y^2}{9} = 1 \Rightarrow \text{ center is } (0,0), \text{ vertices are } (0,3) \text{ and } (0,-3); c = \sqrt{a^2 b^2} = \sqrt{9-6} = \sqrt{3} \Rightarrow \text{ foci are } \left(0,\sqrt{3}\right)$ and $\left(0,-\sqrt{3}\right)$; therefore the new center is (-2,-1), the new vertices are (-2,2) and (-2,-4), and the new foci are $\left(-2,-1\pm\sqrt{3}\right)$; the new equation is $\frac{(x+2)^2}{6} + \frac{(y+1)^2}{9} = 1$
- 50. $\frac{x^2}{2} + y^2 = 1 \Rightarrow \text{ center is } (0,0), \text{ vertices are } \left(\sqrt{2},0\right) \text{ and } \left(-\sqrt{2},0\right); c = \sqrt{a^2 b^2} = \sqrt{2-1} = 1 \Rightarrow \text{ foci are } (-1,0) \text{ and } (1,0); \text{ therefore the new center is } (3,4), \text{ the new vertices are } \left(3\pm\sqrt{2},4\right), \text{ and the new foci are } (2,4) \text{ and } (4,4); \text{ the new equation is } \frac{(x-3)^2}{2} + (y-4)^2 = 1$
- 51. $\frac{x^2}{3} + \frac{y^2}{2} = 1 \implies$ center is (0,0), vertices are $\left(\sqrt{3},0\right)$ and $\left(-\sqrt{3},0\right)$; $c = \sqrt{a^2 b^2} = \sqrt{3-2} = 1 \implies$ foci are (-1,0) and (1,0); therefore the new center is (2,3), the new vertices are $\left(2 \pm \sqrt{3},3\right)$, and the new foci are (1,3) and (3,3); the new equation is $\frac{(x-2)^2}{3} + \frac{(y-3)^2}{2} = 1$
- 52. $\frac{x^2}{16} + \frac{y^2}{25} = 1 \implies \text{center is } (0,0), \text{ vertices are } (0,5) \text{ and } (0,-5); c = \sqrt{a^2 b^2} = \sqrt{25 16} = 3 \implies \text{foci are } (0,3) \text{ and } (0,-3); \text{ therefore the new center is } (-4,-5), \text{ the new vertices are } (-4,0) \text{ and } (-4,-10), \text{ and the new foci are } (-4,-2) \text{ and } (-4,-8); \text{ the new equation is } \frac{(x+4)^2}{16} + \frac{(y+5)^2}{25} = 1$
- 53. $\frac{x^2}{4} \frac{y^2}{5} = 1 \implies$ center is (0,0), vertices are (2,0) and (-2,0); $c = \sqrt{a^2 + b^2} = \sqrt{4+5} = 3 \implies$ foci are (3,0) and (-3,0); the asymptotes are $\pm \frac{x}{2} = \frac{y}{\sqrt{5}} \implies y = \pm \frac{\sqrt{5}x}{2}$; therefore the new center is (2,2), the new vertices are

- (4,2) and (0,2), and the new foci are (5,2) and (-1,2); the new asymptotes are $y-2=\pm\frac{\sqrt{5}(x-2)}{2}$; the new equation is $\frac{(x-2)^2}{4}-\frac{(y-2)^2}{5}=1$
- 54. $\frac{x^2}{16} \frac{y^2}{9} = 1 \Rightarrow \text{ center is } (0,0), \text{ vertices are } (4,0) \text{ and } (-4,0); c = \sqrt{a^2 + b^2} = \sqrt{16 + 9} = 5 \Rightarrow \text{ foci are } (-5,0)$ and (5,0); the asymptotes are $\pm \frac{x}{4} = \frac{y}{3} \Rightarrow y = \pm \frac{3x}{4}$; therefore the new center is (-5,-1), the new vertices are (-1,-1) and (-9,-1), and the new foci are (-10,-1) and (0,-1); the new asymptotes are $y + 1 = \pm \frac{3(x+5)}{4}$; the new equation is $\frac{(x+5)^2}{16} \frac{(y+1)^2}{9} = 1$
- 55. $y^2 x^2 = 1 \Rightarrow \text{ center is } (0,0), \text{ vertices are } (0,1) \text{ and } (0,-1); c = \sqrt{a^2 + b^2} = \sqrt{1+1} = \sqrt{2} \Rightarrow \text{ foci are } \left(0,\pm\sqrt{2}\right); \text{ the asymptotes are } y = \pm x; \text{ therefore the new center is } (-1,-1), \text{ the new vertices are } (-1,0) \text{ and } (-1,-2), \text{ and the new foci are } \left(-1,-1\pm\sqrt{2}\right); \text{ the new asymptotes are } y+1=\pm(x+1); \text{ the new equation is } (y+1)^2 (x+1)^2 = 1$
- 56. $\frac{y^2}{3} x^2 = 1 \Rightarrow \text{ center is } (0,0), \text{ vertices are } \left(0,\sqrt{3}\right) \text{ and } \left(0,-\sqrt{3}\right); c = \sqrt{a^2 + b^2} = \sqrt{3+1} = 2 \Rightarrow \text{ foci are } (0,2)$ and (0,-2); the asymptotes are $\pm x = \frac{y}{\sqrt{3}} \Rightarrow y = \pm \sqrt{3}x$; therefore the new center is (1,3), the new vertices are $\left(1,3\pm\sqrt{3}\right)$, and the new foci are (1,5) and (1,1); the new asymptotes are $y-3=\pm\sqrt{3}(x-1)$; the new equation is $\frac{(y-3)^2}{3} (x-1)^2 = 1$
- 57. $x^2 + 4x + y^2 = 12 \implies x^2 + 4x + 4 + y^2 = 12 + 4 \implies (x + 2)^2 + y^2 = 16$; this is a circle: center at C(-2,0), a = 4
- 58. $2x^2 + 2y^2 28x + 12y + 114 = 0 \Rightarrow x^2 14x + 49 + y^2 + 6y + 9 = -57 + 49 + 9 \Rightarrow (x 7)^2 + (y + 3)^2 = 1$; this is a circle: center at C(7, -3), a = 1
- 59. $x^2 + 2x + 4y 3 = 0 \implies x^2 + 2x + 1 = -4y + 3 + 1 \implies (x+1)^2 = -4(y-1)$; this is a parabola: V(-1,1), F(-1,0)
- 60. $y^2 4y 8x 12 = 0 \implies y^2 4y + 4 = 8x + 12 + 4 \implies (y 2)^2 = 8(x + 2)$; this is a parabola: V(-2, 2), F(0, 2)
- 61. $x^2 + 5y^2 + 4x = 1 \Rightarrow x^2 + 4x + 4 + 5y^2 = 5 \Rightarrow (x+2)^2 + 5y^2 = 5 \Rightarrow \frac{(x+2)^2}{5} + y^2 = 1$; this is an ellipse: the center is (-2,0), the vertices are $\left(-2\pm\sqrt{5},0\right)$; $c=\sqrt{a^2-b^2}=\sqrt{5-1}=2 \Rightarrow$ the foci are (-4,0) and (0,0)
- 62. $9x^2 + 6y^2 + 36y = 0 \Rightarrow 9x^2 + 6(y^2 + 6y + 9) = 54 \Rightarrow 9x^2 + 6(y + 3)^2 = 54 \Rightarrow \frac{x^2}{6} + \frac{(y+3)^2}{9} = 1$; this is an ellipse: the center is (0, -3), the vertices are (0, 0) and (0, -6); $c = \sqrt{a^2 b^2} = \sqrt{9 6} = \sqrt{3} \Rightarrow$ the foci are $\left(0, -3 \pm \sqrt{3}\right)$
- 63. $x^2 + 2y^2 2x 4y = -1 \Rightarrow x^2 2x + 1 + 2(y^2 2y + 1) = 2 \Rightarrow (x 1)^2 + 2(y 1)^2 = 2$ $\Rightarrow \frac{(x - 1)^2}{2} + (y - 1)^2 = 1$; this is an ellipse: the center is (1, 1), the vertices are $\left(1 \pm \sqrt{2}, 1\right)$; $c = \sqrt{a^2 - b^2} = \sqrt{2 - 1} = 1 \Rightarrow$ the foci are (2, 1) and (0, 1)
- 64. $4x^2 + y^2 + 8x 2y = -1 \implies 4(x^2 + 2x + 1) + y^2 2y + 1 = 4 \implies 4(x + 1)^2 + (y 1)^2 = 4$ $\implies (x + 1)^2 + \frac{(y 1)^2}{4} = 1$; this is an ellipse: the center is (-1, 1), the vertices are (-1, 3) and (-1, -1); $c = \sqrt{a^2 b^2} = \sqrt{4 1} = \sqrt{3} \implies$ the foci are $\left(-1, 1 \pm \sqrt{3}\right)$

- 65. $x^2 y^2 2x + 4y = 4 \Rightarrow x^2 2x + 1 (y^2 4y + 4) = 1 \Rightarrow (x 1)^2 (y 2)^2 = 1$; this is a hyperbola: the center is (1, 2), the vertices are (2, 2) and (0, 2); $c = \sqrt{a^2 + b^2} = \sqrt{1 + 1} = \sqrt{2} \Rightarrow$ the foci are $\left(1 \pm \sqrt{2}, 2\right)$; the asymptotes are $y 2 = \pm (x 1)$
- 66. $x^2 y^2 + 4x 6y = 6 \Rightarrow x^2 + 4x + 4 (y^2 + 6y + 9) = 1 \Rightarrow (x + 2)^2 (y + 3)^2 = 1$; this is a hyperbola: the center is (-2, -3), the vertices are (-1, -3) and (-3, -3); $c = \sqrt{a^2 + b^2} = \sqrt{1 + 1} = \sqrt{2} \Rightarrow$ the foci are $\left(-2 \pm \sqrt{2}, -3\right)$; the asymptotes are $y + 3 = \pm (x + 2)$
- 67. $2x^2 y^2 + 6y = 3 \Rightarrow 2x^2 (y^2 6y + 9) = -6 \Rightarrow \frac{(y-3)^2}{6} \frac{x^2}{3} = 1$; this is a hyperbola: the center is (0,3), the vertices are $\left(0,3\pm\sqrt{6}\right)$; $c=\sqrt{a^2+b^2}=\sqrt{6+3}=3 \Rightarrow$ the foci are (0,6) and (0,0); the asymptotes are $\frac{y-3}{\sqrt{6}}=\pm\frac{x}{\sqrt{3}} \Rightarrow y=\pm\sqrt{2}x+3$
- 68. $y^2 4x^2 + 16x = 24 \Rightarrow y^2 4(x^2 4x + 4) = 8 \Rightarrow \frac{y^2}{8} \frac{(x-2)^2}{2} = 1$; this is a hyperbola: the center is (2, 0), the vertices are $\left(2, \pm \sqrt{8}\right)$; $c = \sqrt{a^2 + b^2} = \sqrt{8 + 2} = \sqrt{10} \Rightarrow$ the foci are $\left(2, \pm \sqrt{10}\right)$; the asymptotes are $\frac{y}{\sqrt{8}} = \pm \frac{x-2}{\sqrt{2}} \Rightarrow y = \pm 2(x-2)$
- 69. (a) $y^2=kx \Rightarrow x=\frac{y^2}{k}$; the volume of the solid formed by revolving R_1 about the y-axis is $V_1=\int_0^{\sqrt{kx}}\pi\left(\frac{y^2}{k}\right)^2\!dy$ $=\frac{\pi}{k^2}\int_0^{\sqrt{kx}}y^4\,dy=\frac{\pi x^2\sqrt{kx}}{5}\text{ ; the volume of the right circular cylinder formed by revolving PQ about the y-axis is <math>V_2=\pi x^2\sqrt{kx} \Rightarrow$ the volume of the solid formed by revolving R_2 about the y-axis is $V_3=V_2-V_1=\frac{4\pi x^2\sqrt{kx}}{5}$. Therefore we can see the ratio of V_3 to V_1 is 4:1.

- (b) The volume of the solid formed by revolving R_2 about the x-axis is $V_1 = \int_0^x \pi \left(\sqrt{kt}\right)^2 dt = \pi k \int_0^x t \ dt$ $= \frac{\pi k x^2}{2}$. The volume of the right circular cylinder formed by revolving PS about the x-axis is $V_2 = \pi \left(\sqrt{kx}\right)^2 x = \pi k x^2 \implies$ the volume of the solid formed by revolving R_1 about the x-axis is $V_3 = V_2 V_1 = \pi k x^2 \frac{\pi k x^2}{2} = \frac{\pi k x^2}{2}$. Therefore the ratio of V_3 to V_1 is 1:1.
- 70. $y = \int \frac{w}{H} x \, dx = \frac{w}{H} \left(\frac{x^2}{2}\right) + C = \frac{wx^2}{2H} + C$; y = 0 when $x = 0 \Rightarrow 0 = \frac{w(0)^2}{2H} + C \Rightarrow C = 0$; therefore $y = \frac{wx^2}{2H}$ is the equation of the cable's curve
- 71. $x^2 = 4py$ and $y = p \Rightarrow x^2 = 4p^2 \Rightarrow x = \pm 2p$. Therefore the line y = p cuts the parabola at points (-2p, p) and (2p, p), and these points are $\sqrt{[2p (-2p)]^2 + (p p)^2} = 4p$ units apart.
- $72. \ \underset{x \xrightarrow{b}}{\lim} \left(\frac{b}{a} x \frac{b}{a} \sqrt{x^2 a^2} \right) = \frac{b}{a} \underset{x \xrightarrow{b}}{\lim} \left(x \sqrt{x^2 a^2} \right) = \frac{b}{a} \underset{x \xrightarrow{b}}{\lim} \left[\frac{\left(x \sqrt{x^2 a^2} \right) \left(x + \sqrt{x^2 a^2} \right)}{x + \sqrt{x^2 a^2}} \right] = \frac{b}{a} \underset{x \xrightarrow{b}}{\lim} \left[\frac{a^2}{x + \sqrt{x^2 a^2}} \right] = 0$

- 73. Let $y = \sqrt{1 \frac{x^2}{4}}$ on the interval $0 \le x \le 2$. The area of the inscribed rectangle is given by $A(x) = 2x \left(2\sqrt{1 \frac{x^2}{4}}\right) = 4x\sqrt{1 \frac{x^2}{4}} \text{ (since the length is 2x and the height is 2y)}$ $\Rightarrow A'(x) = 4\sqrt{1 \frac{x^2}{4}} \frac{x^2}{\sqrt{1 \frac{x^2}{4}}}. \text{ Thus } A'(x) = 0 \Rightarrow 4\sqrt{1 \frac{x^2}{4}} \frac{x^2}{\sqrt{1 \frac{x^2}{4}}} = 0 \Rightarrow 4\left(1 \frac{x^2}{4}\right) x^2 = 0 \Rightarrow x^2 = 2$ $\Rightarrow x = \sqrt{2} \text{ (only the positive square root lies in the interval)}. \text{ Since } A(0) = A(2) = 0 \text{ we have that } A\left(\sqrt{2}\right) = 4$ is the maximum area when the length is $2\sqrt{2}$ and the height is $\sqrt{2}$.
- 74. (a) Around the x-axis: $9x^2 + 4y^2 = 36 \Rightarrow y^2 = 9 \frac{9}{4}x^2 \Rightarrow y = \pm \sqrt{9 \frac{9}{4}x^2}$ and we use the positive root $\Rightarrow V = 2\int_0^2 \pi \left(\sqrt{9 \frac{9}{4}x^2}\right)^2 dx = 2\int_0^2 \pi \left(9 \frac{9}{4}x^2\right) dx = 2\pi \left[9x \frac{3}{4}x^3\right]_0^2 = 24\pi$
 - (b) Around the y-axis: $9x^2 + 4y^2 = 36 \Rightarrow x^2 = 4 \frac{4}{9}y^2 \Rightarrow x = \pm \sqrt{4 \frac{4}{9}y^2}$ and we use the positive root $\Rightarrow V = 2\int_0^3 \pi \left(\sqrt{4 \frac{4}{9}y^2}\right)^2 dy = 2\int_0^3 \pi \left(4 \frac{4}{9}y^2\right) dy = 2\pi \left[4y \frac{4}{27}y^3\right]_0^3 = 16\pi$
- 75. $9x^2 4y^2 = 36 \implies y^2 = \frac{9x^2 36}{4} \implies y = \pm \frac{3}{2} \sqrt{x^2 4}$ on the interval $2 \le x \le 4 \implies V = \int_2^4 \pi \left(\frac{3}{2} \sqrt{x^2 4}\right)^2 dx$ $= \frac{9\pi}{4} \int_2^4 (x^2 4) dx = \frac{9\pi}{4} \left[\frac{x^3}{3} 4x\right]_2^4 = \frac{9\pi}{4} \left[\left(\frac{64}{3} 16\right) \left(\frac{8}{3} 8\right)\right] = \frac{9\pi}{4} \left(\frac{56}{3} 8\right) = \frac{3\pi}{4} (56 24) = 24\pi$
- 76. Let $P_1(-p,y_1)$ be any point on x=-p, and let P(x,y) be a point where a tangent intersects $y^2=4px$. Now $y^2=4px \Rightarrow 2y \frac{dy}{dx}=4p \Rightarrow \frac{dy}{dx}=\frac{2p}{y}$; then the slope of a tangent line from P_1 is $\frac{y-y_1}{x-(-p)}=\frac{dy}{dx}=\frac{2p}{y}$ $\Rightarrow y^2-yy_1=2px+2p^2$. Since $x=\frac{y^2}{4p}$, we have $y^2-yy_1=2p\left(\frac{y^2}{4p}\right)+2p^2 \Rightarrow y^2-yy_1=\frac{1}{2}y^2+2p^2$ $\Rightarrow \frac{1}{2}y^2-yy_1-2p^2=0 \Rightarrow y=\frac{2y_1\pm\sqrt{4y_1^2+16p^2}}{2}=y_1\pm\sqrt{y_1^2+4p^2}$. Therefore the slopes of the two tangents from P_1 are $m_1=\frac{2p}{y_1+\sqrt{y_1^2+4p^2}}$ and $m_2=\frac{2p}{y_1-\sqrt{y_1^2+4p^2}} \Rightarrow m_1m_2=\frac{4p^2}{y_1^2-(y_1^2+4p^2)}=-1$ \Rightarrow the lines are perpendicular
- 77. $(x-2)^2 + (y-1)^2 = 5 \Rightarrow 2(x-2) + 2(y-1) \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x-2}{y-1}$; $y = 0 \Rightarrow (x-2)^2 + (0-1)^2 = 5$ $\Rightarrow (x-2)^2 = 4 \Rightarrow x = 4 \text{ or } x = 0 \Rightarrow \text{ the circle crosses the x-axis at } (4,0) \text{ and } (0,0); x = 0$ $\Rightarrow (0-2)^2 + (y-1)^2 = 5 \Rightarrow (y-1)^2 = 1 \Rightarrow y = 2 \text{ or } y = 0 \Rightarrow \text{ the circle crosses the y-axis at } (0,2) \text{ and } (0,0).$ At (4,0): $\frac{dy}{dx} = -\frac{4-2}{0-1} = 2 \Rightarrow \text{ the tangent line is } y = 2(x-4) \text{ or } y = 2x-8$ At (0,0): $\frac{dy}{dx} = -\frac{0-2}{0-1} = -2 \Rightarrow \text{ the tangent line is } y = -2x$ At (0,2): $\frac{dy}{dx} = -\frac{0-2}{2-1} = 2 \Rightarrow \text{ the tangent line is } y = 2x+2$
- 78. $x^2 y^2 = 1 \implies x = \pm \sqrt{1 + y^2}$ on the interval $-3 \le y \le 3 \implies V = \int_{-3}^3 \pi \left(\sqrt{1 + y^2}\right)^2 dy = 2 \int_0^3 \pi \left(\sqrt{1 + y^2}\right)^2 dy = 2\pi \int_0^3 \left(1 + y^2\right) dy = 2\pi \left[y + \frac{y^3}{3}\right]_0^3 = 24\pi$
- 79. Let $y = \sqrt{16 \frac{16}{9} \, x^2}$ on the interval $-3 \le x \le 3$. Since the plate is symmetric about the y-axis, $\overline{x} = 0$. For a vertical strip: $(\widetilde{x}, \widetilde{y}) = \left(x, \frac{\sqrt{16 \frac{16}{9} \, x^2}}{2}\right)$, length $= \sqrt{16 \frac{16}{9} \, x^2}$, width $= dx \Rightarrow area = dA = \sqrt{16 \frac{16}{9} \, x^2} \, dx$ $\Rightarrow mass = dm = \delta \, dA = \delta \sqrt{16 \frac{16}{9} \, x^2} \, dx$. Moment of the strip about the x-axis: $\widetilde{y} \, dm = \frac{\sqrt{16 \frac{16}{9} \, x^2}}{2} \left(\delta \sqrt{16 \frac{16}{9} \, x^2}\right) \, dx = \delta \left(8 \frac{8}{9} \, x^2\right) \, dx$ so the moment of the plate about the x-axis is

$$\begin{array}{l} M_x = \int \widetilde{y} \ dm = \int_{-3}^3 \delta \left(8 - \frac{8}{9} \, x^2\right) \, dx = \delta \left[8x - \frac{8}{27} \, x^3\right]_{-3}^3 = 32 \delta; \ \text{also the mass of the plate is} \\ M = \int_{-3}^3 \delta \sqrt{16 - \frac{16}{9} \, x^2} \, dx = \int_{-3}^3 4 \delta \sqrt{1 - \left(\frac{1}{3} \, x\right)^2} \, dx = 4 \delta \int_{-1}^1 3 \sqrt{1 - u^2} \, du \ \text{where } u = \frac{x}{3} \ \Rightarrow \ 3 \ du = dx; \ x = -3 \\ \Rightarrow \ u = -1 \ \text{and} \ x = 3 \ \Rightarrow \ u = 1. \ \ \text{Hence,} \ 4 \delta \int_{-1}^1 3 \sqrt{1 - u^2} \, du = 12 \delta \int_{-1}^1 \sqrt{1 - u^2} \, du \\ = 12 \delta \left[\frac{1}{2} \left(u \sqrt{1 - u^2} + \sin^{-1} u\right)\right]_{-1}^1 = 6 \pi \delta \ \Rightarrow \ \overline{y} = \frac{M_x}{M} = \frac{32 \delta}{6 \pi \delta} = \frac{16}{3 \pi} \, . \ \ \text{Therefore the center of mass is} \ \left(0, \frac{16}{3 \pi}\right). \end{array}$$

$$\begin{split} 80. \ \ y &= \sqrt{x^2 + 1} \ \Rightarrow \ \frac{\text{d} y}{\text{d} x} = \frac{1}{2} \left(x^2 + 1 \right)^{-1/2} (2x) = \frac{x}{\sqrt{x^2 + 1}} \ \Rightarrow \ \left(\frac{\text{d} y}{\text{d} x} \right)^2 = \frac{x^2}{x^2 + 1} \ \Rightarrow \ \sqrt{1 + \left(\frac{\text{d} y}{\text{d} x} \right)^2} = \sqrt{1 + \frac{x^2}{x^2 + 1}} \\ &= \sqrt{\frac{2x^2 + 1}{x^2 + 1}} \ \Rightarrow \ S = \int_0^{\sqrt{2}} 2\pi y \sqrt{1 + \left(\frac{\text{d} y}{\text{d} x} \right)^2} \ \text{d} x = \int_0^{\sqrt{2}} 2\pi \sqrt{x^2 + 1} \ \sqrt{\frac{2x^2 + 1}{x^2 + 1}} \ \text{d} x = \int_0^{\sqrt{2}} 2\pi \sqrt{2x^2 + 1} \ \text{d} x \, ; \\ \left[u = \sqrt{2} x \\ \text{d} u = \sqrt{2} \ \text{d} x \right] \ \rightarrow \ \frac{2\pi}{\sqrt{2}} \int_0^2 \sqrt{u^2 + 1} \ \text{d} u = \frac{2\pi}{\sqrt{2}} \left[\frac{1}{2} \left(u \sqrt{u^2 + 1} + \ln \left(u + \sqrt{u^2 + 1} \right) \right) \right]_0^2 = \frac{\pi}{\sqrt{2}} \left[2\sqrt{5} + \ln \left(2 + \sqrt{5} \right) \right] \end{split}$$

81. (a)
$$\tan \beta = m_L \Rightarrow \tan \beta = f'(x_0)$$
 where $f(x) = \sqrt{4px}$;
$$f'(x) = \frac{1}{2} (4px)^{-1/2} (4p) = \frac{2p}{\sqrt{4px}} \Rightarrow f'(x_0) = \frac{2p}{\sqrt{4px_0}}$$
$$= \frac{2p}{y_0} \Rightarrow \tan \beta = \frac{2p}{y_0}.$$

(b)
$$\tan \phi = m_{FP} = \frac{y_0 - 0}{x_0 - p} = \frac{y_0}{x_0 - p}$$

(c)
$$\tan \alpha = \frac{\tan \phi - \tan \beta}{1 + \tan \phi \tan \beta} = \frac{\left(\frac{y_0}{x_0 - p} - \frac{2p}{y_0}\right)}{1 + \left(\frac{y_0}{x_0 - p}\right)\left(\frac{2p}{y_0}\right)}$$

$$= \frac{y_0^2 - 2p(x_0 - p)}{y_0(x_0 - p + 2p)} = \frac{4px_0 - 2px_0 + 2p^2}{y_0(x_0 + p)} = \frac{2p}{y_0(x_0 + p)} = \frac{2p}{y_0}$$

11.7 CONICS IN POLAR COORDINATES

$$\begin{array}{ll} 1. & 16x^2 + 25y^2 = 400 \ \Rightarrow \ \frac{x^2}{25} + \frac{y^2}{16} = 1 \ \Rightarrow \ c = \sqrt{a^2 - b^2} \\ & = \sqrt{25 - 16} = 3 \ \Rightarrow \ e = \frac{c}{a} = \frac{3}{5} \ ; \ F \ (\pm 3, 0) \ ; \\ & \text{directrices are } x = 0 \pm \frac{a}{e} = \pm \frac{5}{(\frac{3}{8})} = \pm \frac{25}{3} \end{array}$$

3.
$$2x^2 + y^2 = 2 \Rightarrow x^2 + \frac{y^2}{2} = 1 \Rightarrow c = \sqrt{a^2 - b^2}$$

 $= \sqrt{2 - 1} = 1 \Rightarrow e = \frac{c}{a} = \frac{1}{\sqrt{2}}; F(0, \pm 1);$
directrices are $y = 0 \pm \frac{a}{e} = \pm \frac{\sqrt{2}}{\left(\frac{1}{\sqrt{2}}\right)} = \pm 2$

5. $3x^2 + 2y^2 = 6 \Rightarrow \frac{x^2}{2} + \frac{y^2}{3} = 1 \Rightarrow c = \sqrt{a^2 - b^2}$ $= \sqrt{3 - 2} = 1 \Rightarrow e = \frac{c}{a} = \frac{1}{\sqrt{3}}; F(0, \pm 1);$ directrices are $y = 0 \pm \frac{a}{e} = \pm \frac{\sqrt{3}}{\left(\frac{1}{\sqrt{3}}\right)} = \pm 3$

6. $9x^2 + 10y^2 = 90 \Rightarrow \frac{x^2}{10} + \frac{y^2}{9} = 1 \Rightarrow c = \sqrt{a^2 - b^2}$ $= \sqrt{10 - 9} = 1 \Rightarrow e = \frac{c}{a} = \frac{1}{\sqrt{10}}; F(\pm 1, 0);$ directrices are $x = 0 \pm \frac{a}{e} = \pm \frac{\sqrt{10}}{\left(\frac{1}{\sqrt{10}}\right)} = \pm 10$

7. $6x^2 + 9y^2 = 54 \Rightarrow \frac{x^2}{9} + \frac{y^2}{6} = 1 \Rightarrow c = \sqrt{a^2 - b^2}$ = $\sqrt{9 - 6} = \sqrt{3} \Rightarrow e = \frac{c}{a} = \frac{\sqrt{3}}{3}$; $F\left(\pm\sqrt{3}, 0\right)$; directrices are $x = 0 \pm \frac{a}{e} = \pm \frac{3}{\left(\frac{\sqrt{3}}{3}\right)} = \pm 3\sqrt{3}$

8.
$$169x^2 + 25y^2 = 4225 \Rightarrow \frac{x^2}{25} + \frac{y^2}{169} = 1 \Rightarrow c = \sqrt{a^2 - b^2}$$

 $= \sqrt{169 - 25} = 12 \Rightarrow e = \frac{c}{a} = \frac{12}{13}$; F $(0, \pm 12)$; directrices are $y = 0 \pm \frac{a}{e} = \pm \frac{13}{(\frac{12}{13})} = \pm \frac{169}{12}$

- 9. Foci: $(0, \pm 3)$, $e = 0.5 \implies c = 3$ and $a = \frac{c}{e} = \frac{3}{0.5} = 6 \implies b^2 = 36 9 = 27 \implies \frac{x^2}{27} + \frac{y^2}{36} = 1$
- 10. Foci: $(\pm 8,0)$, $e = 0.2 \implies c = 8$ and $a = \frac{c}{e} = \frac{8}{0.2} = 40 \implies b^2 = 1600 64 = 1536 \implies \frac{x^2}{1600} + \frac{y^2}{1536} = 1600 + \frac{y^2}{1600} = 1$
- 11. Vertices: $(0, \pm 70)$, $e = 0.1 \Rightarrow a = 70$ and $c = ae = 70(0.1) = 7 \Rightarrow b^2 = 4900 49 = 4851 \Rightarrow \frac{x^2}{4851} + \frac{y^2}{4900} = 1000$
- 12. Vertices: $(\pm 10, 0)$, $e = 0.24 \Rightarrow a = 10$ and $c = ae = 10(0.24) = 2.4 \Rightarrow b^2 = 100 5.76 = 94.24 \Rightarrow \frac{x^2}{100} + \frac{y^2}{94.24} = 100 + 100 = 10$
- 13. Focus: $\left(\sqrt{5},0\right)$, Directrix: $x = \frac{9}{\sqrt{5}} \Rightarrow c = ae = \sqrt{5}$ and $\frac{a}{e} = \frac{9}{\sqrt{5}} \Rightarrow \frac{ae}{e^2} = \frac{9}{\sqrt{5}} \Rightarrow \frac{\sqrt{5}}{e^2} = \frac{9}{\sqrt{5}} \Rightarrow e^2 = \frac{5}{9}$ $\Rightarrow e = \frac{\sqrt{5}}{3} \text{ Then PF} = \frac{\sqrt{5}}{3} \text{ PD} \Rightarrow \sqrt{\left(x \sqrt{5}\right)^2 + (y 0)^2} = \frac{\sqrt{5}}{3} \left|x \frac{9}{\sqrt{5}}\right| \Rightarrow \left(x \sqrt{5}\right)^2 + y^2 = \frac{5}{9} \left(x \frac{9}{\sqrt{5}}\right)^2$ $\Rightarrow x^2 2\sqrt{5}x + 5 + y^2 = \frac{5}{9} \left(x^2 \frac{18}{\sqrt{5}}x + \frac{81}{5}\right) \Rightarrow \frac{4}{9}x^2 + y^2 = 4 \Rightarrow \frac{x^2}{9} + \frac{y^2}{4} = 1$
- 14. Focus: (4,0), Directrix: $x = \frac{16}{3} \Rightarrow c = ae = 4$ and $\frac{a}{e} = \frac{16}{3} \Rightarrow \frac{ae}{e^2} = \frac{16}{3} \Rightarrow \frac{4}{e^2} = \frac{16}{3} \Rightarrow e^2 = \frac{3}{4} \Rightarrow e = \frac{\sqrt{3}}{2}$. Then $PF = \frac{\sqrt{3}}{2} PD \Rightarrow \sqrt{(x-4)^2 + (y-0)^2} = \frac{\sqrt{3}}{2} \left| x \frac{16}{3} \right| \Rightarrow (x-4)^2 + y^2 = \frac{3}{4} \left(x \frac{16}{3} \right)^2 \Rightarrow x^2 8x + 16 + y^2 = \frac{3}{4} \left(x^2 \frac{32}{3} x + \frac{256}{9} \right) \Rightarrow \frac{1}{4} x^2 + y^2 = \frac{16}{3} \Rightarrow \frac{x^2}{\left(\frac{64}{3}\right)} + \frac{y^2}{\left(\frac{16}{3}\right)} = 1$
- 15. Focus: (-4,0), Directrix: $x=-16 \Rightarrow c=ae=4$ and $\frac{a}{e}=16 \Rightarrow \frac{ae}{e^2}=16 \Rightarrow \frac{4}{e^2}=16 \Rightarrow e^2=\frac{1}{4} \Rightarrow e=\frac{1}{2}$. Then $PF=\frac{1}{2}PD \Rightarrow \sqrt{(x+4)^2+(y-0)^2}=\frac{1}{2}|x+16| \Rightarrow (x+4)^2+y^2=\frac{1}{4}(x+16)^2 \Rightarrow x^2+8x+16+y^2$ $=\frac{1}{4}(x^2+32x+256) \Rightarrow \frac{3}{4}x^2+y^2=48 \Rightarrow \frac{x^2}{64}+\frac{y^2}{48}=1$
- 16. Focus: $\left(-\sqrt{2},0\right)$, Directrix: $x=-2\sqrt{2} \Rightarrow c=ae=\sqrt{2}$ and $\frac{a}{e}=2\sqrt{2} \Rightarrow \frac{ae}{e^2}=2\sqrt{2} \Rightarrow \frac{\sqrt{2}}{e^2}=2\sqrt{2} \Rightarrow e^2=\frac{1}{2}$ $\Rightarrow e=\frac{1}{\sqrt{2}}$. Then $PF=\frac{1}{\sqrt{2}}PD \Rightarrow \sqrt{\left(x+\sqrt{2}\right)^2+(y-0)^2}=\frac{1}{\sqrt{2}}\left|x+2\sqrt{2}\right| \Rightarrow \left(x+\sqrt{2}\right)^2+y^2$ $=\frac{1}{2}\left(x+2\sqrt{2}\right)^2 \Rightarrow x^2+2\sqrt{2}\,x+2+y^2=\frac{1}{2}\left(x^2+4\sqrt{2}\,x+8\right) \Rightarrow \frac{1}{2}\,x^2+y^2=2 \Rightarrow \frac{x^2}{4}+\frac{y^2}{2}=1$

17.
$$x^2 - y^2 = 1 \Rightarrow c = \sqrt{a^2 + b^2} = \sqrt{1 + 1} = \sqrt{2} \Rightarrow e = \frac{c}{a}$$

$$= \frac{\sqrt{2}}{1} = \sqrt{2}; \text{ asymptotes are } y = \pm x; F\left(\pm\sqrt{2}, 0\right);$$
directrices are $x = 0 \pm \frac{a}{e} = \pm \frac{1}{\sqrt{2}}$

19.
$$y^2 - x^2 = 8 \Rightarrow \frac{y^2}{8} - \frac{x^2}{8} = 1 \Rightarrow c = \sqrt{a^2 + b^2}$$

 $= \sqrt{8 + 8} = 4 \Rightarrow e = \frac{c}{a} = \frac{4}{\sqrt{8}} = \sqrt{2}$; asymptotes are $y = \pm x$; $F(0, \pm 4)$; directrices are $y = 0 \pm \frac{a}{e}$
 $= \pm \frac{\sqrt{8}}{\sqrt{2}} = \pm 2$

$$\begin{split} 21. \ 8x^2 - 2y^2 &= 16 \ \Rightarrow \ \frac{x^2}{2} - \frac{y^2}{8} = 1 \ \Rightarrow \ c = \sqrt{a^2 + b^2} \\ &= \sqrt{2 + 8} = \sqrt{10} \ \Rightarrow \ e = \frac{c}{a} = \frac{\sqrt{10}}{\sqrt{2}} = \sqrt{5} \ ; \text{ asymptotes} \\ \text{are } y &= \ \pm 2x; F\left(\pm\sqrt{10}, 0\right); \text{ directrices are } x = 0 \pm \frac{a}{e} \\ &= \ \pm \frac{\sqrt{2}}{\sqrt{5}} = \ \pm \frac{2}{\sqrt{10}} \end{split}$$

22.
$$y^2 - 3x^2 = 3 \Rightarrow \frac{y^2}{3} - x^2 = 1 \Rightarrow c = \sqrt{a^2 + b^2}$$

 $= \sqrt{3+1} = 2 \Rightarrow e = \frac{c}{a} = \frac{2}{\sqrt{3}}$; asymptotes are $y = \pm \sqrt{3}x$; $F(0, \pm 2)$; directrices are $y = 0 \pm \frac{a}{e}$
 $= \pm \frac{\sqrt{3}}{\left(\frac{2}{\sqrt{3}}\right)} = \pm \frac{3}{2}$

23.
$$8y^2 - 2x^2 = 16 \Rightarrow \frac{y^2}{2} - \frac{x^2}{8} = 1 \Rightarrow c = \sqrt{a^2 + b^2}$$

 $= \sqrt{2 + 8} = \sqrt{10} \Rightarrow e = \frac{c}{a} = \frac{\sqrt{10}}{\sqrt{2}} = \sqrt{5}$; asymptotes are $y = \pm \frac{x}{2}$; $F\left(0, \pm \sqrt{10}\right)$; directrices are $y = 0 \pm \frac{a}{e}$
 $= \pm \frac{\sqrt{2}}{\sqrt{5}} = \pm \frac{2}{\sqrt{10}}$

24.
$$64x^2 - 36y^2 = 2304 \Rightarrow \frac{x^2}{36} - \frac{y^2}{64} = 1 \Rightarrow c = \sqrt{a^2 + b^2}$$

 $= \sqrt{36 + 64} = 10 \Rightarrow e = \frac{c}{a} = \frac{10}{6} = \frac{5}{3}$; asymptotes are $y = \pm \frac{4}{3}x$; $F(\pm 10, 0)$; directrices are $x = 0 \pm \frac{a}{e}$
 $= \pm \frac{6}{\left(\frac{5}{3}\right)} = \pm \frac{18}{5}$

- 26. Vertices $(\pm 2,0)$ and $e=2 \Rightarrow a=2$ and $e=\frac{c}{a}=2 \Rightarrow c=2a=4 \Rightarrow b^2=c^2-a^2=16-4=12 \Rightarrow \frac{x^2}{4}-\frac{y^2}{12}=16$
- $27. \ \ \text{Foci} \ (\pm 3,0) \ \text{and} \ e = 3 \ \Rightarrow \ c = 3 \ \text{and} \ e = \frac{c}{a} = 3 \ \Rightarrow \ c = 3a \ \Rightarrow \ a = 1 \ \Rightarrow \ b^2 = c^2 a^2 = 9 1 = 8 \ \Rightarrow \ x^2 \frac{y^2}{8} = 1$
- 28. Foci $(0, \pm 5)$ and $e = 1.25 \Rightarrow c = 5$ and $e = \frac{c}{a} = 1.25 = \frac{5}{4} \Rightarrow c = \frac{5}{4} \Rightarrow 5 = \frac{5}{4} \Rightarrow a = 4 \Rightarrow b^2 = c^2 a^2 = 25 16 = 9 \Rightarrow \frac{y^2}{16} \frac{x^2}{9} = 1$
- 29. $e = 1, x = 2 \implies k = 2 \implies r = \frac{2(1)}{1 + (1)\cos\theta} = \frac{2}{1 + \cos\theta}$
- 30. $e = 1, y = 2 \implies k = 2 \implies r = \frac{2(1)}{1 + (1)\sin\theta} = \frac{2}{1 + \sin\theta}$
- 31. $e = 5, y = -6 \implies k = 6 \implies r = \frac{6(5)}{1 5\sin\theta} = \frac{30}{1 5\sin\theta}$
- 32. $e = 2, x = 4 \implies k = 4 \implies r = \frac{4(2)}{1 + 2\cos\theta} = \frac{8}{1 + 2\cos\theta}$
- 33. $e = \frac{1}{2}, x = 1 \implies k = 1 \implies r = \frac{\left(\frac{1}{2}\right)(1)}{1 + \left(\frac{1}{2}\right)\cos\theta} = \frac{1}{2 + \cos\theta}$

694 Chapter 11 Parametric Equations and Polar Coordinates

34.
$$e = \frac{1}{4}, x = -2 \implies k = 2 \implies r = \frac{\binom{\frac{1}{4}}{1 - \binom{1}{4}}\cos\theta}{1 - \binom{\frac{1}{4}}{1 - \binom{\frac{1}{4}}{1}}\cos\theta} = \frac{2}{4 - \cos\theta}$$

35.
$$e = \frac{1}{5}, y = -10 \implies k = 10 \implies r = \frac{\left(\frac{1}{5}\right)(10)}{1 - \left(\frac{1}{5}\right)\sin\theta} = \frac{10}{5-\sin\theta}$$

36.
$$e = \frac{1}{3}, y = 6 \implies k = 6 \implies r = \frac{\left(\frac{1}{3}\right)(6)}{1 + \left(\frac{1}{3}\right)\sin\theta} = \frac{6}{3+\sin\theta}$$

37.
$$r = \frac{1}{1 + \cos \theta} \implies e = 1, k = 1 \implies x = 1$$

38.
$$r = \frac{6}{2 + \cos \theta} = \frac{3}{1 + (\frac{1}{2})\cos \theta} \implies e = \frac{1}{2}, k = 6 \implies x = 6;$$

 $a(1 - e^2) = ke \implies a\left[1 - \left(\frac{1}{2}\right)^2\right] = 3 \implies \frac{3}{4}a = 3$
 $\implies a = 4 \implies ea = 2$

39.
$$r = \frac{25}{10 - 5\cos\theta} \Rightarrow r = \frac{\left(\frac{25}{10}\right)}{1 - \left(\frac{5}{10}\right)\cos\theta} = \frac{\left(\frac{5}{2}\right)}{1 - \left(\frac{1}{2}\right)\cos\theta}$$

 $\Rightarrow e = \frac{1}{2}, k = 5 \Rightarrow x = -5; a(1 - e^2) = ke$
 $\Rightarrow a\left[1 - \left(\frac{1}{2}\right)^2\right] = \frac{5}{2} \Rightarrow \frac{3}{4}a = \frac{5}{2} \Rightarrow a = \frac{10}{3} \Rightarrow ea = \frac{5}{3}$

40.
$$r = \frac{4}{2-2\cos\theta} \implies r = \frac{2}{1-\cos\theta} \implies e = 1, k = 2 \implies x = -2$$

41.
$$r = \frac{400}{16 + 8 \sin \theta} \implies r = \frac{\binom{400}{16}}{1 + (\frac{8}{16}) \sin \theta} \implies r = \frac{25}{1 + (\frac{1}{2}) \sin \theta}$$

$$e = \frac{1}{2}, k = 50 \implies y = 50; a(1 - e^2) = ke$$

$$\implies a \left[1 - \left(\frac{1}{2}\right)^2\right] = 25 \implies \frac{3}{4} a = 25 \implies a = \frac{100}{3}$$

$$\implies ea = \frac{50}{3}$$

43.
$$r = \frac{8}{2 - 2\sin\theta} \Rightarrow r = \frac{4}{1 - \sin\theta} \Rightarrow e = 1,$$

 $k = 4 \Rightarrow y = -4$

44.
$$r = \frac{4}{2 - \sin \theta} \Rightarrow r = \frac{2}{1 - \left(\frac{1}{2}\right) \sin \theta} \Rightarrow e = \frac{1}{2}, k = 4$$
$$\Rightarrow y = -4; a\left(1 - e^2\right) = ke \Rightarrow a\left[1 - \left(\frac{1}{2}\right)^2\right] = 2$$
$$\Rightarrow \frac{3}{4}a = 2 \Rightarrow a = \frac{8}{3} \Rightarrow ea = \frac{4}{3}$$

45.
$$r\cos\left(\theta - \frac{\pi}{4}\right) = \sqrt{2} \Rightarrow r\left(\cos\theta\cos\frac{\pi}{4} + \sin\theta\sin\frac{\pi}{4}\right)$$

 $= \sqrt{2} \Rightarrow \frac{1}{\sqrt{2}}r\cos\theta + \frac{1}{\sqrt{2}}r\sin\theta = \sqrt{2} \Rightarrow \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y$
 $= \sqrt{2} \Rightarrow x + y = 2 \Rightarrow y = 2 - x$

46.
$$r\cos\left(\theta + \frac{3\pi}{4}\right) = 1 \implies r\left(\cos\theta\cos\frac{3\pi}{4} - \sin\theta\sin\frac{3\pi}{4}\right) = 1$$

$$\Rightarrow -\frac{\sqrt{2}}{2}r\cos\theta - \frac{\sqrt{2}}{2}r\sin\theta = 1 \implies x + y = -\sqrt{2}$$

$$\Rightarrow y = -x - \sqrt{2}$$

47.
$$r\cos\left(\theta - \frac{2\pi}{3}\right) = 3 \Rightarrow r\left(\cos\theta\cos\frac{2\pi}{3} + \sin\theta\sin\frac{2\pi}{3}\right) = 3$$

$$\Rightarrow -\frac{1}{2}r\cos\theta + \frac{\sqrt{3}}{2}r\sin\theta = 3 \Rightarrow -\frac{1}{2}x + \frac{\sqrt{3}}{2}y = 3$$

$$\Rightarrow -x + \sqrt{3}y = 6 \Rightarrow y = \frac{\sqrt{3}}{3}x + 2\sqrt{3}$$

48.
$$r\cos\left(\theta + \frac{\pi}{3}\right) = 2 \Rightarrow r\left(\cos\theta\cos\frac{\pi}{3} - \sin\theta\sin\frac{\pi}{3}\right) = 2$$

$$\Rightarrow \frac{1}{2}r\cos\theta - \frac{\sqrt{3}}{2}r\sin\theta = 2 \Rightarrow \frac{1}{2}x - \frac{\sqrt{3}}{2}y = 2$$

$$\Rightarrow x - \sqrt{3}y = 4 \Rightarrow y = \frac{\sqrt{3}}{3}x - \frac{4\sqrt{3}}{3}$$

49.
$$\sqrt{2}x + \sqrt{2}y = 6 \Rightarrow \sqrt{2}r\cos\theta + \sqrt{2}r\sin\theta = 6 \Rightarrow r\left(\frac{\sqrt{2}}{2}\cos\theta + \frac{\sqrt{2}}{2}\sin\theta\right) = 3 \Rightarrow r\left(\cos\frac{\pi}{4}\cos\theta + \sin\frac{\pi}{4}\sin\theta\right) = 3 \Rightarrow r\cos\left(\theta - \frac{\pi}{4}\right) = 3$$

50.
$$\sqrt{3} \operatorname{x} - \operatorname{y} = 1 \Rightarrow \sqrt{3} \operatorname{r} \cos \theta - \operatorname{r} \sin \theta = 1 \Rightarrow \operatorname{r} \left(\frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta \right) = \frac{1}{2} \Rightarrow \operatorname{r} \left(\cos \frac{\pi}{6} \cos \theta - \sin \frac{\pi}{6} \sin \theta \right) = \frac{1}{2} \Rightarrow \operatorname{r} \cos \left(\theta + \frac{\pi}{6} \right) = \frac{1}{2}$$

51.
$$y = -5 \Rightarrow r \sin \theta = -5 \Rightarrow -r \sin \theta = 5 \Rightarrow r \sin (-\theta) = 5 \Rightarrow r \cos \left(\frac{\pi}{2} - (-\theta)\right) = 5 \Rightarrow r \cos \left(\theta + \frac{\pi}{2}\right) = 5$$

52.
$$x = -4 \Rightarrow r \cos \theta = -4 \Rightarrow -r \cos \theta = 4 \Rightarrow r \cos (\theta - \pi) = 4$$

53.

54.

55.

56.

57.
$$(x - 6)^2 + y^2 = 36 \implies C = (6, 0), a = 6$$

 $\implies r = 12 \cos \theta$ is the polar equation

58.
$$(x + 2)^2 + y^2 = 4 \implies C = (-2, 0), a = 2$$

 $\implies r = -4 \cos \theta \text{ is the polar equation}$

59. $x^2 + (y - 5)^2 = 25 \implies C = (0, 5), a = 5$ $\implies r = 10 \sin \theta$ is the polar equation

61. $x^2 + 2x + y^2 = 0 \Rightarrow (x+1)^2 + y^2 = 1$ $\Rightarrow C = (-1,0), a = 1 \Rightarrow r = -2 \cos \theta$ is the polar equation

63. $x^2 + y^2 + y = 0 \Rightarrow x^2 + \left(y + \frac{1}{2}\right)^2 = \frac{1}{4}$ $\Rightarrow C = \left(0, -\frac{1}{2}\right)$, $a = \frac{1}{2} \Rightarrow r = -\sin\theta$ is the polar equation

60. $x^2 + (y + 7)^2 = 49 \implies C = (0, -7), a = 7$ $\implies r = -14 \sin \theta$ is the polar equation

62. $x^2 - 16x + y^2 = 0 \implies (x - 8)^2 + y^2 = 64$ $\implies C = (8, 0), a = 8 \implies r = 16 \cos \theta$ is the polar equation

64. $x^2 + y^2 - \frac{4}{3}y = 0 \implies x^2 + (y - \frac{2}{3})^2 = \frac{4}{9}$ $\implies C = (0, \frac{2}{3}), a = \frac{2}{3} \implies r = \frac{4}{3}\sin\theta$ is the polar equation

66. $r = 4 \sec (\theta + \pi/6)$ $\frac{8}{\sqrt{3}} \times$