I. Relații

Se numește **relație binară** pe o mulțime X nevidă, o submulțime nevidă $\rho \subseteq X \times X$, unde $X \times X = \{(x,x) : x \in X\}$ (numit produsul cartezian dintre mulțimile X și X). Pentru $(x,y) \in \rho$, notăm $x \rho y$ și citim "x este în relație cu y".

O relație ρ pe o mulțime X se numește:

- reflexivă, dacă $x \rho x, \forall x \in X$;
- simetrică, dacă $x \rho y \implies y \rho x, \forall x, y \in X;$
- antisimetrică, dacă $x\rho y$ si $y\rho x \implies x = y, \forall x, y \in X$;
- tranzitivă, dacă $x \rho y$ si $y \rho z \implies x \rho z, \forall x, y, z \in X$.

O relație ρ pe o mulțime X nevidă se numește de **echivalență** dacă este **reflexivă**, **simetrică** și **tranzitivă**. De obicei, relațiile de echivalență se notează cu \sim .

O relație ρ pe o mulțime X nevidă se numește de **ordine** dacă este **reflexivă**, **anti-simetrică** si **tranzitivă**. De obicei, relațiile de ordine se notează cu \leq .

O mulțime X nevidă pe care definim o relație de ordine \leq se numește **mulțime** ordonată și se noteaza (X, \leq) .

O mulțime ordonată se numește **total ordonată** dacă orice două elemente ale ei se pot compara, adică dacă pentru orice x și $y \in X$ avem $x \le y$ sau $y \le x$.

Exemple: mulțimea (\mathbb{C}, \leq) nu este total ordonată, iar mulțimea (\mathbb{Q}, \leq) este total ordonată, unde \leq este relația de ordine uzuală.

II. Infimumul si supremumul unei mulțimi

Fie (X, \leq) o mulțime nevidă total ordonată, $A \subseteq X$ o submulțime nevidă a lui X.

- $x \in X$ se numește majorant al lui A dacă $a \le x$, pentru orice $a \in A$. Dacă A are cel puțin un majorant, atunci A este mărginită superior;
- $x \in X$ se numește minorant al lui A dacă $x \leq a$, pentru orice $a \in A$. Dacă A are cel puțin un minorant, atunci A este mărginită inferior;
- dacă există un majorant în A, atunci acesta este unic și se numește maximul lui A (notație: maxA);
- dacă există un minorant în A, atunci acesta este unic și se numește minimul lui A (notație: minA);
- spunem că A este mărginită inferior cu infimum dacă există un cel mai mare minorant in X (notație infA);
- spunem că A este mărginită superior cu supremum dacă există un cel mai mic majorant in X (notație supA);

Observații:

- 1. Dacă există minA, atunci există infA și este egal cu minA. Inversa nu este întot-deauna adevarată.
- 2. Dacă există maxA, atunci există supA și este egal cu maxA. Inversa nu este întotdeauna adevarată.
- 3. Dacă există infA, atunci orice alt minorant al lui A este mai mic decât infA.
- 4. Dacă există supA, atunci orice alt majorant al lui A este mai mare decât supA.
- 5. A este nemărginită superior sau inferior \iff există un șir $(x_n)_n \subseteq A$ astfel încât $\lim_{n\to\infty} x_n = \pm \infty$.
- 6. A este finită $\implies A$ este mărginită și are minA și maxA.

Exemplu: Considerăm mulțimea (\mathbb{R}, \leq) , unde \leq este relația de ordine uzuala și mulțimea $A \subseteq \mathbb{R}, A = (-\sqrt{7}, \sqrt{5}) \cap \mathbb{Q}$. Atunci

- majoranți ai mulțimii A sunt 4, 5, 7.2, etc;
- mulțimea tuturor majoranților este $[\sqrt{5}, \infty)$;
- $sup A = \sqrt{5}$, $inf A = -\sqrt{7}$;
- nu există maxA, minA;
- A este mărginită superior și inferior.

III. Exerciții

- 1. Fie $A ext{ si } B \subset \mathbb{R}$. Definim suma acestor mulțimi prin $A + B = \{a + b : a \in A, b \in B\}$. Arătați că dacă $A ext{ si } B ext{ sunt mărginite, atunci } A + B ext{ este mărginită si } sup(A + B) = supA + supB, iar <math>inf(A + B) = infA + infB$.
- 2. Fie A și B două submulțimi mărginite ale lui $\mathbb R$ astfel încât $A\subseteq B$. Arătați că $supA\leq supB$ și $infA\geq infB$.
- 3. Fie A și B două mulțimi măriginite de numere reale. Arătați că $sup(A \cup B) = max(supA, supB)$ și $inf(A \cup B) = min(infA, infB)$.
- 4. Să se determine $inf(-1,1] \cup [\sqrt{2},\sqrt{5}]$ și $sup(-1,1] \cup [\sqrt{2},\sqrt{5}]$.
- 5. Determinați infA, supA pentru mulțimile:
 - (a) $A = \{x \in \mathbb{R} \setminus \{-5\} : \frac{3x-1}{x+5} < 2\}$
 - (b) $A = \left\{ \frac{m}{n} : m, n \in \mathbb{N} \setminus \{0\}, m < 5n \right\}$

- (c) $A = \{(-1)^{n+1} \frac{m+n}{2m+1} : m, n \in \mathbb{N} \setminus \{0\}\}$ (d) $A = \{n + \frac{(-1)^n}{4n} : n \in \mathbb{N} \setminus \{0\}\}$ (e) $A = \{\frac{2mp}{m^2 + p^2 + 1} : m, p \in \mathbb{N} \setminus \{0\}\}$