MTH101A, End-Sem. Exam Marking, IIT Kanpur

Date: 20.11.2017 Time: 9:00-12:00 hrs Total Marks: 100

1. (a) Let $x_1 = 1$ and $x_{n+1} = \frac{4 + 3x_n}{3 + 2x_n}$ for all $n \ge 1$. Show that the sequence (x_n) is bounded and monotone and find its limit. [4]

ANSWER:

- Notice that $x_2 > x_1$ and $x_{n+1} x_n = \frac{x_n x_{n-1}}{(3 + 2x_n)(3 + 2x_{n-1})}$. [1] By Induction principle, the sequence (x_n) is an increasing sequence. [1]
- Also,

$$x_{n+1} = 1 + \frac{1 + x_n}{3 + 2x_n} \le 2$$

for all $n \geq 1$. Thus the sequence is also bounded.

• Let l be the limit of the sequence (x_n) then $l = \frac{4+3l}{3+2l}$. This gives $l = \sqrt{2}$.

Remark: If anyone uses contractive condition where $\alpha \in (0,1)$ does not depends on the $n \in \mathbb{N}$, to show that the sequence is Cauchy and so bounded then 1-mark is given.

- (b) Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{\cos(n\pi) \log n}{n}$. [4] **ANSWER:**
 - For $n \in \mathbb{N}$ we have

$$\cos(n\pi) = (-1)^n$$

and let for n > 2

$$a_n = (\frac{\log n}{n}).$$

[1]

[1]

Then a_n is a decreasing sequence.

[1 for checking]

Also, a_n converging to 0.

[1 for checking]

- By Leibniz test, the series $\sum_{n=3}^{\infty} \frac{\cos(n\pi) \log n}{n}$ is convergent and hence the given series converges. [1]
- (c) Let $f:[0,2] \to \mathbb{R}$ be a twice differentiable function. If f(0) = 0, f(1) = 2, and f(2) = 4 then show that there exists $x_0 \in (0,2)$ such that $f''(x_0) = 0$.

[4]

ANSWER:

• By applying Mean Value Theorem on $f:[0,1] \longrightarrow \mathbb{R}$ we get

$$f'(c_1)(1-0) = f(1) - f(0) = 2.$$

[1]

• Also by applying Mean Value Theorem on $f:[1,2]\longrightarrow \mathbb{R}$ we get

$$f'(c_2)(2-1) = f(2) - f(1) = 2.$$

[1]

- Then by Rolle's theorem on $f:[c_1,c_2] \longrightarrow \mathbb{R}$ we get that $f''(x_0)=0$ for some $x_0 \in (c_1,c_2)$.
- (d) Does there exist a vector field F(x, y, z) such that $curl(F) = (x \sin y, \cos y, z xy)$? Justify your answer. [2]

ANSWER:

No.

We know that
$$div(curl(F)) = 0.$$
 [1]

But,
$$div(x \sin y, \cos y, z - xy) = 1.$$
 [1]

2. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at x = 0 and f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Then show that f is a continuous function.

Assume that f(1) = 1 and find the values of f(5), $f(\frac{5}{3})$ and $f(\sqrt{5})$.

$$[4+1+2+3=10]$$

ANSWER:

• Using the condition

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}$, we get f(0) = 0 and f(-x) = -f(x) for all $x \in \mathbb{R}$. [1]

- For any $c \in \mathbb{R}$ we have f(x-c) = f(x) f(c) for all $x \in \mathbb{R}$. Thus, $\lim_{x \to c} f(x-c) = \lim_{x \to c} [f(x) f(c)].$ [1]
- Since f is continuous at x = 0, we have

$$\lim_{x \to c} f(x - c) = \lim_{(x - c) \to 0} f(x - c) = f(0) = 0.$$

Therefore,

$$\lim_{x \to c} f(x) = f(c).$$

[2]

•
$$f(5) = f(1) + f(1) + f(1) + f(1) + f(1) = 5$$
 [1]

• Now, $f(5) = f(\frac{5}{3}) + f(\frac{5}{3}) + f(\frac{5}{3}) = 3f(\frac{5}{3})$. So,

$$f(\frac{5}{3}) = \frac{1}{3}f(5) = \frac{5}{3}.$$

[2]

• Similarly, we can show that $f(\frac{p}{q}) = \frac{p}{q}$ for any rational number $\frac{p}{q} \in \mathbb{R}$. For any irrational number $c \in \mathbb{R}$, let (x_n) be a sequence of rational number converging to c. Then by continuity of f we get,

$$f(c) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n = c.$$

Therefore
$$f(\sqrt{5}) = \sqrt{5}$$
. [3]

Remark: No mark is given if it is assumed that the function is differentiable and an expression of f(x) is derived by differentiating the condition

$$f(x+y) = f(x) + f(y).$$

Also, to compute $f(\sqrt{5})$ we need to consider sequences with rational entries converging to $\sqrt{5}$. Otherwise, just by mentioning that $f(\frac{p}{q}) = \frac{p}{q}$ for any rational number $\frac{p}{q} \in \mathbb{R}$. So, $f(\sqrt{5}) = \sqrt{5}$ one will not get marks.

(b) Let $f, g: [0,1] \longrightarrow \mathbb{R}$ be continuous functions such that

$$\inf\{f(x): x \in [0,1]\} = \inf\{g(x): x \in [0,1]\}.$$

Show that there exists a point $c \in [0,1]$ such that f(c) = g(c). [6]

ANSWER:

• As f, g are continuous functions on [0, 1] there exists $x_1, x_2 \in [0, 1]$ such that

$$f(x_1) = \inf\{f(x) : x \in [0, 1]\}$$

and

$$g(x_2) = \inf\{g(x) : x \in [0, 1]\}$$

[2]

• Note that from definition of infimum we have,

$$f(x_1) \le g(x_1)$$
 and $f(x_2) \ge g(x_2)$.

[2]

- Let $\phi(x) = f(x) g(x)$. Then $\phi(x_1) \leq 0$ and $\phi(x_2) \geq 0$. Applying Intermediate Value Property to the function ϕ we get a point $c \in [0, 1]$ such that f(c) = g(c).
- (c) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$ if x is a rational number and f(x) = 0 if x is an irrational number. Prove that f'(0) = 0. [2]

ANSWER: Note that for all h we have

$$0 \le \left| \frac{f(h)}{h} \right| \le |h|.$$

So,
$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = 0.$$

Remark: If anyone uses sequences (h_n) with only rational entries and only irrational entries and say that $f'(0) = \lim_{h_n \to 0} \frac{f(h_n) - f(0)}{h_n} = 0$, then only 1 marks is given. Because, there might be sequence with both the rational and irrational entries, and we need to give a proof for that case as well.

3. (a) A rectangular box without a lid is to be made of 12 square meters of cardboard.

Assuming that there exists a box of maximum volume, find its dimensions.

[6]

Marking Scheme

- Let x, y, z be the dimensions of the box (in meters). We would like to maximize the volume of the box f(x, y, z) = xyz subject to the constraint g(x, y, z) = xy + 2xz + 2yz = 12. [2]
- Lagrange equations: $\nabla f = \lambda \nabla g$ gives $yz = \lambda(y + 2z)$; $xz = \lambda(x + 2z)$; $xy = \lambda(2x + 2y)$. [2]
- Observe that $\lambda \neq 0$ otherwise x = y = z = 0 which does not satisfy the constraint equation g(x, y, z) = xy + 2xz + 2yz = 12. Similarly $x, y, z \neq 0$. Solving x = y = 2 and z = 1. [2] [Multiplying the equations appropriately: $xyz = x\lambda(y + 2z) = y\lambda(x + 2z) = z\lambda(2x + 2y)$. From the second equality conclude x = y and from third equality y = 2z. Putting in the constraint equation, we get the values.]

(If someone by mistake takes g(x, y, z) = 2xy + 2xz + 2yz = 12 and does rest of the calculations correctly then he/she should get the answer as $x = y = z = \sqrt{2}$. In this case 4 marks are to be awarded.)

(b) Find the unit tangent vector, unit normal vector and the curvature at any point of the curve $R(t) = (a\cos t, a\sin t, bt), \ t \in \mathbb{R}, \ a, b > 0$ [2+2+2] Marking Scheme

• $R'(t) = (-a \sin t, a \cos t, b)$ and $|R'(t)| = \sqrt{a^2 + b^2}$. The unit tangent vector $T(t) = \frac{R'(t)}{|R'(t)|} = \frac{1}{\sqrt{a^2 + b^2}} (-a \sin t, a \cos t, b)$ [2]

- $T'(t) = \frac{1}{\sqrt{a^2 + b^2}}(-a\cos t, -a\sin t, 0)$ and $|T'(t)| = \frac{a}{\sqrt{a^2 + b^2}}$. The unit normal vector $N(t) = \frac{T'(t)}{|T'(t)|} = (-\cos t, -\sin t, 0)$ [2]
- Curvature $\kappa(t) = \left| \frac{dT}{ds} \right| = \left| \frac{dT}{dt} \right| / \left| \frac{ds}{dt} \right| = |T'(t)| / |R'(t)| = a/(a^2 + b^2).$ [2]

ALTERNATIVE:

$$\kappa(t) = \frac{|R'(t) \times R''(t)|}{|R'(t)|^3}.$$
Now $R''(t) = (-a\cos t, -a\sin t, 0)$ and so
$$R'(t) \times R''(t) = (ab\sin t, -ab\cos t, a^2)$$

$$|R'(t) \times R''(t)| = a\sqrt{a^2 + b^2}. \text{ Hence } \kappa(t) = a/(a^2 + b^2).$$
 [2]

(c) Suppose that at a given instant a rectangular block has dimensions x = 3m, y = 2m and z = 1m (m = meter). Now assume that x and y are increasing at 1 cm/min and 2 cm/min respectively, while z is decreasing at 2 cm/min. Determine the rates at which the block's volume and surface area are increasing or decreasing at the given instant.

Marking Scheme

- Let V and S denote the volume and surface area of the rectangular box respectively. Then V = xyz and S = 2(xy + yz + zx), and $\frac{dx}{dt} = 1$, $\frac{dy}{dt} = 2$, $\frac{dz}{dt} = -2$.
- Differentiating by chain rule, $\frac{dV}{dt} = yz\frac{dx}{dt} + zx\frac{dy}{dt} + xy\frac{dz}{dt}$ = (200)(100)(1) + (300)(100)(2) + (300)(200)(-2) = -40000.Thus volume is decreasing at the rate 40000 cm^3/min . [1]

• Differentiating by chain rule, $\frac{dS}{dt} = 2(y+z)\frac{dx}{dt} + 2(z+x)\frac{dy}{dt} + 2(x+y)\frac{dz}{dt}$ = 2(300)(1) + 2(400)(2) + 2(500)(-2) = 200.Thus surface area is increasing at the rate 200 cm²/min. [1]

4. (a) Let (x_0, y_0) be the centroid of the parametric curve $x(t) = \cos^3 t$, $y(t) = \sin^3 t$, $0 \le t \le \pi/2$. Using Pappus theorem find y_0 . [8]

Marking Scheme

[Pappus Theorem: Let C be a plane curve. Suppose C is revolved about a line which does not cut C, then the area of the surface generated is $S = 2\pi\rho L$, where ρ is the distance of the centroid from the axis of revolution and L is the arc length of the plane curve C.]

• The length of the arc
$$x(t) = \cos^3 t$$
, $y(t) = \sin^3 t$, $0 \le t \le \pi/2$:
$$L = \int_0^{\pi/2} \sqrt{x'(t)^2 + y'(t)^2} dt$$

$$= \int_0^{\pi/2} \sqrt{(-3\cos^2 t \sin t)^2 + (3\sin^2 t \cos t)^2} dt$$

$$= \int_0^{\pi/2} 3\sin t \cos t dt$$

$$= 3/2.$$
 [2]

• The surface area generated by revolving the arc $x(t) = \cos^3 t$, $y(t) = \sin^3 t$, $0 \le t \le \pi/2$ about x-axis:

$$S = \int_{0}^{\pi/2} 2\pi y(t) \sqrt{x'(t)^2 + y'(t)^2} dt$$

$$= \int_{0}^{\pi/2} 2\pi \sin^3 t \cdot 3 \sin t \cos t dt$$

$$= 6\pi \int_{0}^{\pi/2} \sin^4 t \cos t dt$$

$$= \frac{6\pi}{5} \text{ (using } \sin t = u \text{ substitution)}$$
[2]

- Therefore, by Pappus theorem $2\pi y_0 L = S$, $2\pi y_0 \frac{3}{2} = 6\pi/5$ and so $y_0 = 2/5$.
- (b) Find the point(s) on the surface $x^2 y^2 + 2z^2 = 1$ where the tangent plane is perpendicular to the line joining (3, -1, 0) and (5, 3, 6). Find the equation(s) of the tangent planes there.

Marking Scheme

- The normal vector at any point (x_0, y_0, z_0) of the surface is given by $(2x_0, -2y_0, 4z_0)$. [2]
- The direction of line joining (3-1,0) and (5,3,6) is (2,4,6) (or (-2,-4,-6)). [1]
- By the given condition $2x_0 = 2k$, $-2y_0 = 4k$, $4z_0 = 6k$ for some $k \in \mathbb{R}$ [1]
- Putting in the given equation of the surface we get $k = \pm \sqrt{6}/3$. [1]
- The require points are $x_0 = k$, $y_0 = -2k$, $z_0 = 3/2k$ for $k = \pm \sqrt{6}/3$. [1]

SECOND PART:

• Tangent planes are given by $2(x - x_0) + 4(y - y_0) + 6(z - z_0) = 0$. Now $2x + 4y + 6z = 2x_0 + 4y_0 + 6z_0 = 3k = \pm \sqrt{6}$. Hence tangent planes are $2x + 4y + 6z = \pm \sqrt{6}$.

[2]

(a) Determine whether the limit exists. Justify your answer.

(i)
$$\lim_{(x,y)\to(0,0)} \frac{y^2(1-\cos(2x))}{x^4+y^2}$$
 (ii)
$$\lim_{(x,y)\to(0,0)} \frac{y^2+(1-\cos(2x))^2}{x^4+y^2}$$
 [4+4]

Marking Scheme

(i):

• Notice that $0 \le \frac{y^2}{x^4 + y^2} \le 1$. Since $(1 - \cos 2x)$ is a non-negative number, we can multiply all sides of the inequality by it without changing the order of inequality. Thus we get,

$$0 \le \frac{y^2(1 - \cos 2x)}{x^4 + y^2} \le (1 - \cos 2x).$$
 [3]

• Both left and right hand approach 0 as $x \to 0$. Hence

$$\lim_{(x,y)\to(0,0)} \frac{y^2(1-\cos(2x))}{x^4+y^2} = 0.$$

[1]

$$\leq |y| \frac{x^4 + y^2}{x^4 + y^2}$$
 (Using A.M \geq G.M) [2]

$$= |y| \to 0 \text{ as } y \to 0.$$
 [1]

Remark: In \mathbb{R}^2 , to prove a limit exists it is not enough to check for y = mx or $y = mx^2$. We need to prove it from definition. But to show that a limit does not exist, it is enough to show that along two different curves, we get two different limits

(ii):

• We choose paths of the form $y = mx^2$ to show that the limit does not

•
$$\frac{y^2 + (1 - \cos(2x))^2}{x^4 + y^2} = \frac{m^2 x^4 + (2\sin^2 x)^2}{x^4 + m^2 x^4} = \frac{m^2 + 4\frac{\sin^4 x}{x^4}}{1 + m^2} \to \frac{m^2 + 4}{1 + m^2} \text{ as } x \to 0.$$
 [2]

- Since the limit along $y = mx^2$ depends on m, the given double limit does not exist. [1]
- (b) Let $f(x,y) = \frac{y}{|y|} \sqrt{x^2 + y^2}$ for $y \neq 0$ and f(x,y) = 0 if y = 0. Prove the following:
 - (i) Directional derivatives of f exist in all direction at the origin.
 - (ii) The function f is not differentiable at the origin. [2+4]

Marking Scheme:

- Let U=(u,v) with $u^2+v^2=1$. The directional derivative in the direction $U \text{ is } D_{(0,0)}f(u,v) = \lim_{t\to 0}\frac{f(tu,tv)}{t} = \lim_{t\to 0}\frac{0}{t} = 0 \text{ if } v = 0.$ • Also if $v\neq 0$, then

$$\lim_{t \to 0} \frac{f(tu, tv)}{t} = \lim_{t \to 0} \frac{1}{t} \frac{tv}{|tv|} \sqrt{t^2 u^2 + t^2 v^2} = \frac{v}{|v|}.$$

[2]

(ii)

- We get $f_x(0,0) = 0$ and $f_y(0,0) = 1$. |1|
- Then

$$\epsilon(h,k) = \frac{f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)}{\sqrt{h^2 + k^2}} = \frac{f(h,k) - k}{\sqrt{h^2 + k^2}}$$

[1]

• Letting $(h,k) \to (0,0)$ along y-axis (or x-axis), we see that $\epsilon(h,k) \to 0$. But along h=k line, $\epsilon(h,k)=(\sqrt{2}-1)\frac{k}{|k|}$ whose limit does exist as $k \to 0$. Hence $\lim_{(h,k)\to(0,0)} \epsilon(h,k)$ does not exist, in particular it doest not tend to 0. So f is not differentiable at the origin. [2]

ALTERNATIVE for b (ii):

- We get $f_x(0,0) = 0$ and $f_y(0,0) = 1$. [1]
- If f is differentiable at the origin, then $f'(0,0) = (f_x(0,0), f_y(0,0)) =$ (0,1). Then, for in any direction U=(u,v), we must have $D_{(0,0)}f(u,v)=$ f'(0,0).U=v. This does not match with the calculations of part (i). So f is not differentiable at the origin. [3]
- (c) Is the following statement true? If yes then give a proof, if no then give a counter example.

Let $f: \mathbb{R} \to \mathbb{R}^2$ be a differentiable function. For any $a, b \in \mathbb{R}$ with a < b, there exists $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a). [4]

Marking Scheme

• Not true.
$$f(t) = (\cos t, \sin t)$$
 and $a = 0, b = 2\pi$. [2]

• Then
$$f(b) - f(a) = (0,0)$$
 but $f'(c) = (-\sin c, \cos c) \neq (0,0)$ for any $c \in \mathbb{R}$ [2]

Remark: Another example is $f(t) = (t^2, t^3), \quad a = 0, b = 1.$

6. (a) Evaluate the double integral: $\iint_{R} \left(\frac{x-y}{x+y+2}\right)^2 dx dy$, where R is the region bounded by the lines $x \pm y = \pm 1$.

Marking Scheme

- Make a change of coordinate u = x + y, v = x y. So that the given region mapped onto $R' = \{(u, v): -1 \le u, v \le 1\}$ in the u-v plane.
- The Jacobian $\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = -2$. So $\frac{\partial(x,y)}{\partial(u,v)} = -\frac{1}{2}$. [1]
- $\iint_{R} \left(\frac{x y}{x + y + 2} \right)^{2} dx dy = \iint_{R'} \left(\frac{v}{u + 2} \right)^{2} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv$ $= \int_{v = -1}^{1} \int_{u = -1}^{1} \left(\frac{v}{u + 2} \right)^{2} \frac{1}{2} du dv = \frac{1}{2} \left[v^{3} / 3 \right]_{v = -1}^{1} \left[-\frac{1}{2 + u} \right]_{u = -1}^{1} = 2/9$ [3]
- (b) Let S be the surface $x^2 + y^2 + z^2 = 4$. Compute the surface integral

$$\iint_{S} (2x^{2} - y^{2} + 2z^{2} + 3e^{z^{2}}x - e^{x^{2}}y + z\cos^{2}y)d\sigma.$$

[6]

Marking Scheme

- The unit outward normal to S is given by $n = \frac{1}{2}(x, y, z)$ [1]
- Observe that $2x^2 y^2 + 2z^2 + 3e^{z^2}x e^{x^2}y + z\cos^2 y = F.n$ where $F(x, y, z) = (4x + 6e^{z^2}, -2y 2e^{x^2}, 4z + 2\cos^2 y)$ [2]

•
$$div(F) = 6$$
 [1]

• So by Divergence Theorem,

$$\iint\limits_{S}(2x^2-y^2+2z^2+3e^{z^2}x-e^{x^2}y+z\cos^2y)d\sigma=\iint\limits_{S}F.nd\sigma=\iiint\limits_{V}div(F)dv$$

$$= 6 \iiint_V dv = 6 \times 4\pi/3 \times 2^3 = 64\pi.$$
 [2]

(If someone misses the factor 1/2 in first step, but does rest calculations correctly then the answer should be 32π . In this case 4 marks are to to awarded.)

(c) Does there exist a function $\phi(x,y)$ such that $\nabla \phi(x,y) = (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$ for all $(x,y) \neq (0,0)$? Justify your answer. [4]

Marking Scheme:

- By Fundamental theorem of Line integral of $\oint_C \nabla \phi . dR = 0$ for ANY closed curve C (NEED NOT be a SIMPLE closed curve). [2]
- But the line integral $\oint_C \frac{-y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy = 2\pi$ where C is the unit circle with anticlockwise orientation.

To see that, consider $x = \cos t, y = \sin t, 0 \le t \le 2\pi$. Then

$$\oint_C \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = \int_0^{2\pi} (\cos^2 t + \sin^2 t) dt = 2\pi.$$
 [2]

- Explanation why the choice $\phi(x,y) = \tan^{-1}(y/x)$ does not work: Fist of all, for a given $(x,y) \neq (0,0)$, $\tan^{-1}(y/x)$ can have many values. Even if we fix a range length of 2π , for example $[0,2\pi)$, then $\tan^{-1}(y/x)$ becomes a well defined function on $\mathbb{R}^2 - (0,0)$. But still it does not satisfy the required condition. We can see it as follows:
 - Observe that any ϕ which satisfies $\nabla \phi(x,y) = (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$ for all $(x,y) \neq (0,0)$ has to be differentiable on $\mathbb{R}^2 (0,0)$ (since the partial derivatives are continuous.) But our choice of $\tan^{-1}(y/x)$ is discontinuous along positive x-axis (since it takes value small positive values just above positive x-axis and takes value near 2π just below the positive x-axis.)