

Objective:

Classify Pulsar
Candidates using
Neural Networks
and Machine
Learning Models

The Data

17,898 Pulsar Star Candidates

- 1. Mean of the IP
- 2. Standard Deviation of the IP
- 3. Excess Kurtosis of the IP
- 4. Skewness of the IP
- 5. Mean of the DM-SNR Curve
- 5. Standard Deviation of the DM-SNR Curve
- 7. Excess Kurtosis of the DM-SNR Curve
- 8. Skewness of the DM-SNR Curve
- 9. Target (1: pulsar, 0: non-pulsar)

IP: Integrated Profile
DM: Dispersion Measure

SNR: Signal-to-Noise Ratio

Important (and Separable!) Features

Model Performance

7 of 8 models between 97 and 98% Test Accuracy Score.

Best Model: Deep Learning Model 2

	precision	recall	f1-score	support	
0 1	0.99 0.87	0.99 0.91	0.99 0.89	4880 490	
accuracy macro avg weighted avg	0.93 0.98	0.95 0.98	0.98 0.94 0.98	5370 5370 5370	

#Plot confustion matrix for Model 2
plot_conf_matrix(y_true, y_pred2, model_name='Deep Learning Model 2')

Conclusions and Future Work

- ★ Good news for the Astrophysicists! Machine Learning is very useful for classifying Pulsar Stars almost 98% Accuracy even for more basic models.
- ★ Gather more data.
- ★ Continue to investigate overlap region and signal noise to better capture Pulsar Stars signals.
- ★ Experiment with feature selection to develop more efficient models.

Thank you!

Questions?