CME 252: Support Vector Machines

AJ Friend ICME, Stanford University

Introduction

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Support Vector Machines

- many related/overlapping names:
 - maximum margin classifier
 - support vector classifier
 - ▶ (robust) linear discrimination/classification
 - support vector machine
- ▶ I won't always use the right name
- ▶ we'll start with:
 - find a hyperplane to separate data points into two classes
 - use hyperplane to classify new (unseen) points

Support Vector Machines

Scenarios

- classify data in increasingly sophisticated scenarios:
 - strictly linearly separable
 - approximately (not strictly) linearly separable
 - approximately non-linearly separable (hyperplanes won't work)

Strictly Linearly Separable Data

Approximately Linearly Separable Data

Approximately Non-linearly Separable

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

- ▶ data: $x_i \in \mathbf{R}^n$ with labels $y_i \in \{+1, -1\}$ for i = 1, ..., N
- assume strictly linearly separable
- find hyperplane $\{x \mid a^Tx = b\}$ that separates points by label

$$a^T x_i - b > 0$$
 if $y_i = +1$
 $a^T x_i - b < 0$ if $y_i = -1$

▶ rescale *a*, *b* so that

$$a^T x_i - b \ge +1$$
 if $y_i = +1$
 $a^T x_i - b \le -1$ if $y_i = -1$

▶ for all *i*, rewrite constraints as

$$y_i\left(a^Tx_i - b\right) \ge 1$$

get feasibility problem

minimize
$$0$$
 subject to $y_i\left(a^Tx_i-b\right)\geq 1$ for $i=1,\ldots,N$

with variables $a \in \mathbf{R}^n$, $b \in \mathbf{R}$

CVXPY for Separable Problem

```
a = Variable(n)
b = Variable()

obj = Minimize(0)
constr = [mul_elemwise(y, X*a - b) >= 1]
Problem(obj, constr).solve()
```

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

- ▶ infinitely many choices for separating hyperplane
- choose one which maximizes width of separating slab

$$\{x \mid -1 \le a^T x - b \le +1\}$$

"maximum margin" or "robust linear" classifier

width of separating slab

$$\{x \mid -1 \le a^T x - b \le +1\}$$

is $2/||a||_2$ (via linear algebra)

suggests optimization problem

maximize
$$2/\|a\|_2$$
 subject to $y_i\left(a^Tx_i-b\right)\geq 1$ for $i=1,\ldots,N$

but not convex!

reformulate:

$$\mathsf{maximize}\ 2/\|a\|_2 \iff \mathsf{minimize}\ \|a\|_2$$

gives

$$\begin{array}{ll} \text{minimize} & \|a\|_2 \\ \text{subject to} & y_i \left(a^T x_i - b\right) \geq 1 \text{ for } i = 1, \dots, N, \end{array}$$

the maximum margin classifier problem

Maximum Margin Classifier in CVXPY

```
a = Variable(n)
b = Variable()

obj = Minimize(norm(a))
constr = [mul_elemwise(y, X*a - b) >= 1]
Problem(obj, constr).solve()
```


Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifie

Non-separable Linear Classification

- reformulate as hinge loss function
- show indicator function to show same as feasibility problem
- logistic loss is logistic regression
- other random loss functions

"violation of margins/constraints" - combine relaxation with width of slab for "support vector classifier"

- no separating hyperplane exists
- try finding linear separator

```
obj = Minimize(0)
constr = [mul_elemwise(y, X*a - b) >= 1]
prob = Problem(obj, constr)
prob.solve()
```

results in prob.status == 'infeasible'

- ▶ idea: "relax" constraints to make problem feasible
- \blacktriangleright add ${\bf slack}$ variables $u\in {\bf R}_+^N$ to allow data points to be on "wrong side" of hyperplane

$$y_i\left(a^Tx_i-b\right) \ge 1-u_i, \quad u_i \ge 0$$

- $u_i = 0$: x_i on **right** side of hyperplane
- ▶ $0 < u_i < 1$: x_i on **right** side, but **inside slab** $\{x \mid -1 \le a^T x b \le +1\}$
- $u_i > 1$: x_i on **wrong** side of hyperplane

- u gives measure of how much constraints are violated
- ▶ for large *u* can make **any** data feasible
- want u "small"; minimize its sum

minimize
$$\mathbf{1}^T u$$
 subject to $y_i \left(a^T x_i - b \right) \geq 1 - u_i$ for $i = 1, \dots, N$ $u \geq 0$

- called support vector classifier
- ▶ $\mathbf{1}^T u = \|u\|_1$, since $u \ge 0$; good **heuristic** for separator with few (sparse) violations

CVXPY

```
a = Variable(n)
b = Variable()
u = Variable(N)

obj = Minimize(sum_entries(u))
constr = [mul_elemwise(y, X*a - b) >= 1 - u, u >= 0]
Problem(obj, constr).solve()
```

Example

Example

- ▶ "+" class has 3 misclassified points
- ▶ "—" class has 2 correctly classified, but inside slab

Hinge loss

▶ in SVC, it follows from $y_i\left(a^Tx_i - b\right) \geq 1 - u_i$, $u_i \geq 0$, that

$$u_i = \begin{cases} 0 & y_i \left(a^T x_i - b \right) \ge 1\\ 1 - y_i \left(a^T x_i - b \right) & y_i \left(a^T x_i - b \right) < 1 \end{cases}$$

lacktriangleright rewrite as $u_i = \ell_h \left[y_i \left(a^T x_i - b
ight)
ight]$, where

$$\ell_h(z) = \begin{cases} 0 & z \ge 1\\ 1 - z & z < 1 \end{cases}$$

is the **hinge loss** function, equivalently: $\max(0,1-z)$ or $(1-z)_+$

Hinge loss SVC

lacktriangleright note that ℓ_h is convex, so we can rewrite SVC as the **equivalent problem**

minimize
$$\sum_{i=1}^{N} \ell_h \left[y_i \left(a^T x_i - b \right) \right]$$

- unconstrained (non-differentiable) convex problem
- ▶ in CVXPY:

```
def hinge(z):
    return pos(1-z)

r = mul_elemwise(y, X*a - b)
obj = Minimize(sum_entries(hinge(r)))
Problem(obj).solve()
```

Non-separable Linear Classification

- relaxed feasibility problem
- ▶ I1 penality to minimize misclassification: pure LP
- ▶ tradeoff between classification and width of slab: SOCP

Hinge loss

- ▶ reformulate as hinge loss objective
- general loss function form. . . l(Ax + b)

logistic

- ► change loss function to get logistic loss
- other loss functions

regularization

▶ regularize to get sparse classifier...

nonlinear discrimination

- adding features
- polynomial discrimination any different?
- ▶ rbf kernel? radial basis function
- kernel methods and relationship with convex opt...

algorithms

- ▶ note that so far, we have said **nothing** about **how** to compute a supporting vector
- we have focused on modeling
- that's OK, we're focusing on modeling
- algorithms involve duality and optimality conditions

scikitlearn comparison

- ▶ make sure it matches up with python SVM formulation
- ▶ maybe even do a timing comparison...

data science perspective

- cleaning and centering data
- sparse predictors