LKH'S CAPSTONE: ADOPTION LIKELIHOOD

Dataset Size: 10290 rows & 24 columns

WHY?

THE STRAITS TIMES

LIFE

More people in Singapore interested in adopting or fostering pets during Covid-19 pandemic

Shop

Funds will support our animal welfare services that cost \$3 million a year to run.

Learn more >

Most S'pore animal shelters full as groups cancel pet adoption drives amid Covid-19 outbreak

By MANDY LEE

Published MA Updated MA

Undergraduate Sarah Chua and her family adopted Tau Pok during the circuit breaker period, PHOTO: COURTESY OF SARAH CHUA

FORMAT:

I) EDA (Knowing your data) & Data preprocessing

- Non-graphical approach
- Univariate analysis eg. Null data
- Multivariate analysis eg. Pairplot
- Interesting facts

Includes feature engineering and encoding during the analysis

2) Machine learning

- Handling imbalanced data (SMOTETomek)
- Feature analysis before plugging into model
- Auto ML to preview which models work well
- Data Scale: non scaled VS standardized VS normalized
- Models & Metrics
- Hyperparameter tuning & Metrics

•Also includes Visualizations

```
adoption.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10290 entries, 0 to 10289
Data columns (total 24 columns):
     Column
                       Non-Null Count Dtvpe
     -----
                       -----
                       10290 non-null int64
     intakedate
                       10290 non-null object
     intakereason
                       10288 non-null
                                      object
     istransfer
                       10290 non-null int64
     sheltercode
                       10290 non-null object
     identichipnumber 8324 non-null
                                      object
                       10290 non-null object
     animalname
     breedname
                       10245 non-null object
     basecolour
                       10290 non-null object
     speciesname
                       10290 non-null
                                      object
     animalage
                       10290 non-null object
                       10290 non-null object
     sexname
                       10290 non-null object
     location
     movementdate
                       10290 non-null
                                      obiect
     movementtype
                       10290 non-null object
     istrial
                       10289 non-null float64
     returndate
                       3256 non-null
                                      obiect
     returnedreason
                       10290 non-null object
                                      object
     deceaseddate
                       326 non-null
     deceasedreason
                       10290 non-null object
     diedoffshelter
                       10290 non-null int64
     puttosleep
                       10290 non-null int64
     isdoa
                       10290 non-null int64
     label
                       10290 non-null int64
dtypes: float64(1), int64(6), object(17)
memory usage: 1.9+ MB
```

no. of Unique values of the data

adoption.nunique()		
id	7288	
intakedate	5306	
intakereason	25	
istransfer	2	
sheltercode	7288	
identichipnumber	5460	
animalname	4336	
breedname	799	
basecolour	78	
speciesname	27	
animalage	273	
sexname	3	
location	39	
movementdate	872	
movementtype	7	
istrial	1	
returndate	756	
returnedreason	24	
deceaseddate	211	
deceasedreason	13	
diedoffshelter	2	
puttosleep	2	
isdoa	2	
label	3	
dtype: int64		

EDA: KNOWING YOUR DATA

Non-Graphical Analysis

- I) Highly Categorical -> Objects more than half of all data
- 2) Highly Cardinal data -> up to 7k unique values almost 70% unique.

Number of variables	24
Number of observations	10290
Missing cells	19012
Missing cells (%)	7.7%
Duplicate rows	0
Duplicate rows (%)	0.0%

identichipnumber has 1966 (19.1%) missing values
returndate has 7034 (68.4%) missing values
deceaseddate has 9964 (96.8%) missing values

Numeric 1
Categorical 23

istrial has constant value "0.0" intakedate has a high cardinality: 5306 distinct values sheltercode has a high cardinality: 7288 distinct values identichipnumber has a high cardinality: 5460 distinct values animalname has a high cardinality: 4336 distinct values breedname has a high cardinality: 799 distinct values basecolour has a high cardinality: 78 distinct values animalage has a high cardinality: 273 distinct values movementdate has a high cardinality: 872 distinct values returndate has a high cardinality: 756 distinct values deceaseddate has a high cardinality: 211 distinct values

Constant

High cardinality

EDA: KNOWING YOUR DATA

Non-Graphical Analysis

- I) Highly Categorical -> Objects more than half of all data
- 2) Highly Cardinal data -> up to 7k unique values almost 70% unique.

Key takeaway:

Require alot of feature engineering to reduce high cardinality

Columns with NaNs

#of rows in dataframe is :10290

EDA: KNOWING YOUR DATA

Univariate Analysis

Missing values -> drop or feature engineer -> There is no numerical value to impute a mean etc.

Important thing to note is that returndate and deceased date is missing but their respective reasons are not!

Univariate Analysis:

Dealing with Nulls

Feat. Engineering:

- I) Aggregation
- 2) a little bit of Creativity eg. Missing means not dead etc.

Key takeaway:

- Strays are the main reason why animals are in the shelter
- Both having an identity chip & being alive is important to determine if animal is to be adopted.

Univariate Analysis:

What some of the other columns look like

Other important features:

- 1) mostly cats & dogs
- 2) There are repeated IDs -> Feature engineer into no. Of times fostered
- 3) in general converting most of my columns into binaries via aggregation

Univariate Analysis:

What some of the other columns look like

Binary encoding to avoid curse of dimensionality

Not as many as one hot But still able to reduce no. Of columns

Univariate Analysis:

More challenging columns

Most challenging column was the date time column.

I simplified the column into years

Multivariate Analysis

Both the pairplot and the auto-EDA library both agree that there is nothing to plot

Report generated with pandas-profiling

Key takeaway:

No numerical/ continuous data to plot with so lets create some

Both the graphs we can tell that adoption is not time sensitive

And that most of the data comes from after 2017

EDA: KNOWING YOUR DATA

Univariate Analysis

Adoption rate over each instance of adoption

Adoption rate Over the years per month

Other interesting facts

While black is the most abandoned, it si also the most adopted colour between cats and dogs
And strangely most shelters only have One animal very very strange

More interesting facts

Fun fact:
More Cats are in shelters than dogs

 How well a column can contribute to prediction of my label

ML: FEATURE ANALYSIS

ML: FEATURE ANALYSIS

Chosen to drop Male &
 Died off shelter since no
 info can be obtained

ML: FEATURE ANALYSIS

• Highly correlated features might not impact my metrics but it can affect how I interpret the model AKA which features really played a part

ML: FEATURE ANALYSIS

• Can help to tell variance and if the model can even tell the difference from each class

Model Selection

- 1. Lazy predict -> Suggest what models i should run
- 2. Hyperopt -> autoML
- 3. TPOT -> autoML

LazyPredictClassifier

100% 29/29 [01:02<00:00, 2.16s/it] for 'Adopted or not' multiclass-Label										
	Accuracy	Balanced Accuracy	ROC AUC	F1 Score	Time Taken					
Model										
XGBClassifier	0.98	0.93	None	0.98	1.09					
	0.50	0,53	None	0.90	1,09					
BaggingClassifier	0.98	0.93	None	0.98	0.17					
BaggingClassifier RandomForestClassifier										

Conclusion:

Lazy -> RF Hyper -> SVC TPOT -> XGB

* do note that XGBoost is not in the HyperoptEstimator library

HyperOpt

```
step 3) fitting
```

```
hyper.fit(a_train_stand.to_numpy(),b_train.to_numpy())
```

```
100% | 1/1 [00:04<00:00, 4.54s/trial, best loss: 0.024267782426778295] | 100% | 1/2 [00:09<00:00, 9.72s/trial, best loss: 0.024267782426778295] | 100% | 1/3 [00:32<00:00, 32.41s/trial, best loss: 0.024267782426778295] | 100% | 1/4 [00:08<00:00, 8.85s/trial, best loss: 0.024267782426778295] | 100% | 1/4 [00:08<00:00, 2.55s/trial, best loss: 0.024267782426778295] | 100% | 1/4 [00:08<00:00, 5.00s/trial, best loss: 0.024267782426778295] | 100% | 1/4 [00:08<00:00, 5.19s/trial, best loss: 0.024267782426778295] | 100% | 1/4 [00:08<00:00, 3.01s/trial, best loss: 0.023430962343096273] | 100% | 1/4 [00:03<00:00, 3.90s/trial, best loss: 0.023430962343096273] | 100% | 1/4 [00:08<00:00, 3.90s/trial, best loss: 0.023430962343096273] | 1/4 [00:08<00:00, 3.90s/trial, best loss: 0.02343096234309627
```

step 4) results

•••

Accuracy: 0.975226
{'learner': SVC(C=43.55045088966252, cache_size=512, degree=1, gamma=0.0028828818626642524, max_iter=234625374.0, random_state=1, shrinking=False, tol=0.0015963489030502776), 'preprocs': (PCA(n_components=24),), 'ex_preprocs': ()}


```
Generation 1 - Current best internal CV score: 0.9815713566763506

Generation 2 - Current best internal CV score: 0.981867915634296

Generation 3 - Current best internal CV score: 0.9819058511810427

Generation 4 - Current best internal CV score: 0.982054901453926

Generation 5 - Current best internal CV score: 0.982054901453926

Best pipeline: XGBClassifier(input_matrix, learning_rate=0.5, max_depth=1, min_child_weight=2, n_esting the store in the st
```

• • •

roc_auc_ovr score:

1: 0.9803668502931683

Standardize data

- rescaling the distribution of values so that the mean of observed
- · centering the data.

Normalize data

```
# range between 0 to 1. So, normalization would not affect
# fit scaler on training data
norm = MinMaxScaler().fit(a_train)

# transform training data
a_train_normz = norm.transform(a_train)

# transform testing dataabs
a_test_normz = norm.transform(a_test)
```

Not scaled, Standardized & Normalized data

```
traina = [a_train, a_train_normz, a_train_stand]
testa = [a_test, a_test_normz, a_test_stand]
```

ML: DATA SCALE

• I've chosen to keep a set of 3 to see if my dataset is sensitive to any 3 of these different scales of data

Normalization typically means rescales the values into a range of [0,1].

Standardization typically means rescales data to have a mean of 0 and a **standard** deviation of I

ML: METRIC REVISION

- Accuracy -> Correctness
- (tp + tn) / (p + n)
- Precision -> Exactness
- - tp / (tp + fp)
- Recall -> Completeness
- tp / (tp + fn)
- FI -> how complete & exact IE balance of precision and recall
- - 2 tp / (2 tp + fp + fn)
- Logloss -> model comparison metric
- AUC ROC ovo and ovr:
- Ovr is harder to determine the difference between classes for many classes and is used typically for a faster metric
- If possible ovo is the better choice

Number of sa TRAINing wit Log Loss: ROC AUC (One	rain sample i amples in val :h RF.score:	idation se 100.0 .102435276 .979177404	t: (1494,) 26924914 * 0521516 *	The lower t	the better. the better.	Standardised!! number of trai Number of samp TRAINing with Log Loss: ROC AUC (One-v. ROC AUC (One-v.	n sample in les in valid RF.score: 10 0.1 s-one) : 0.9	dation set 00.0 1024626802 9791895526	: (1494,) 6918709 * 1 854516 * 1	he lower th	
	precision	recall	f1-score	support							
-1	0.98	0.98	0.98	408			precision	recall	f1-score	support	
-1			0.86	125		-1	0.00	0.00	0.00	408	
1			0.99	961		-1	0.98 0.93	0.98 0.81			
						1	0.98	1.00		125 961	
accuracy	,		0.98	1494		1	0.90	1.00	0.99	901	
macro avg	0.96	0.93	0.94	1494		accuracy			0.98	1494	
weighted avg	0.98	0.98	0.98	1494		macro avg	0.96	0.93		1494	
						weighted avg		0.98	0.98	1494	
Normalised!!!	1111111111					weighted avg	0.50	0.50	0.50	1454	
number of tra Number of sam TRAINing with Log Loss: ROC AUC (One- ROC AUC (One-	nples in vali RF.score: 1 0. vs-one) : 0.	dation set: 00.0 1021840561: 97937727074	: (1494,) 354754 * TI 487435 *	he lower the		SmoteTomek!!! number of train Number of samp TRAINing with Log Loss: ROC AUC (One-value)	in sample in ples in val: RF.score: : 0 /s-one) : 0	idation se 100.0 .140912662 .980300628	et: (1494,) 293948082 * 30902927 *	The lower	the better. the better
	precision	recall	f1-score	support			precision	recall	f1-score	support	
-1	0.98	0.98	0.98	408		-1	0.99	0.94	0.97	408	
0	0.93	0.81	0.86	125		0	0.78	0.85		125	
1	0.98	1.00	0.99	961		1	0.98	0.99		961	
accuracy			0.98	1494		accuracy			0.97	1494	
macro avg	0.96	0.93	0.94	1494		macro avg	0.92	0.93		1494	
weighted avg	0.98	0.98	0.98	1494		weighted avg	0.97	0.97		1494	
werRuren av8	0.30	0.30	0.30	1454		werenced ave	0.57	0.57	0.57	1454	

ML: RANDOMFOREST MODELS & METRICS

Not scaled!!!!!!!!!!

Standardised

For standardised (since score is very similar)

Hyperparameter tuning

#1 Grid Search~~

```
]: base rf = RandomForestClassifier(random state = 42, class weight = "balanced")
}]: param_dict6 = { 'max_depth' : np.arange(10,20) ,
                    'criterion': ['gini', 'entropy'],
                    'n_estimators': np.arange(900,1000,5)}
    grid_model = GridSearchCV(estimator= base_rf, param_grid = param_dict6 , verbose= 1,n_jobs=16, refit = True, \
                                 cv=RepeatedStratifiedKFold(n_splits=4,n_repeats=3,random_state=42))
    grid model.fit(a train stand, b train)
    grid_model.best_params_
    Fitting 12 folds for each of 400 candidates, totalling 4800 fits
    [Parallel(n_jobs=16)]: Using backend LokyBackend with 16 concurrent workers.
    [Parallel(n_jobs=16)]: Done 18 tasks
                                                elapsed: 21.7s
    [Parallel(n_jobs=16)]: Done 168 tasks
                                                elapsed: 3.0min
    [Parallel(n_jobs=16)]: Done 418 tasks
                                                elapsed: 8.0min
    [Parallel(n jobs=16)]: Done 768 tasks
                                               | elapsed: 15.6min
    [Parallel(n_jobs=16)]: Done 1218 tasks
                                                | elapsed: 25.8min
    [Parallel(n jobs=16)]: Done 1768 tasks
                                                 elapsed: 38.3min
    [Parallel(n_jobs=16)]: Done 2418 tasks
                                                | elapsed: 53.0min
    [Parallel(n_jobs=16)]: Done 3168 tasks
                                                 elapsed: 70.2min
                                                | elapsed: 90.1min
    [Parallel(n jobs=16)]: Done 4018 tasks
    [Parallel(n_jobs=16)]: Done 4800 out of 4800 | elapsed: 108.7min finished
}]: {'criterion': 'gini', 'max_depth': 16, 'n_estimators': 975}
)]: grid_model.best_estimator_
]]: RandomForestClassifier(class weight='balanced', max depth=16, n estimators=975,
                           random state=42)
```

For smoted

#2 Optuna

. . .

```
[I 2021-06-12 05:43:08,928] A new study created in memory with name: no-name-22ce870e-22le-40f7-9e49-6114f0a71898
[I 2021-06-12 05:43:10,063] Trial 0 finished with value: 0.30035779897337495 and parameters: {'n_estimators': 128, 'max_depth': 6.
[I 2021-06-12 05:43:16,595] Trial 1 finished with value: 0.1418853989249978 and parameters: {'n_estimators': 583, 'max_depth': 29.
[I 2021-06-12 05:43:21,194] Trial 2 finished with value: 0.830471663608147 and parameters: {'n_estimators': 759, 'max_depth': 1.06 [I 2021-06-12 05:43:22,142] Trial 3 finished with value: 0.3674493673077322 and parameters: {'n_estimators': 94, 'max_depth': 5.7 [I 2021-06-12 05:43:30,343] Trial 4 finished with value: 0.22972692067624803 and parameters: {'n_estimators': 868, 'max_depth': 5.04 [I 2021-06-12 05:43:30,740] Trial 5 finished with value: 0.3792928367736469 and parameters: {'n_estimators': 46, 'max_depth': 5.04 [I 2021-06-12 05:43:42,954] Trial 6 finished with value: 0.14120368378076442 and parameters: {'n_estimators': 963, 'max_depth': 26 [I 2021-06-12 05:43:50,035] Trial 7 finished with value: 0.14162992751967415 and parameters: {'n_estimators': 559, 'max_depth': 26 [I 2021-06-12 05:43:50,035] Trial 8 finished with value: 0.830276623232614 and parameters: {'n_estimators': 730, 'max_depth': 15 [I 2021-06-12 05:43:50,061] Trial 8 finished with value: 0.830276623232614 and parameters: {'n_estimators': 730, 'max_depth': 15 [I 2021-06-12 05:43:50,061] Trial 8 finished with value: 0.830276623232614 and parameters: {'n_estimators': 730, 'max_depth': 15 [I 2021-06-12 05:43:50,061] Trial 8 finished with value: 0.830276623232614 and parameters: {'n_estimators': 730, 'max_depth': 15 [I 2021-06-12 05:43:50,061] Trial 8 finished with value: 0.830276623232614 and parameters: {'n_estimators': 730, 'max_depth': 15 [I 2021-06-12 05:43:50,061] Trial 8 finished with value: 0.830276623232614 and parameters: {'n_estimators': 730, 'max_depth': 15 [I 2021-06-12 05:43:50,061] Trial 8 finished with value: 0.830276623232614 and parameters: {'n_estimators': 7
```

Standardised grid: Trade between accuracy over label –I and 0

Smote optuna: Trade between accuracy over label 0 and 1

number of tra	in sample	in train set	. (5974 2	4)	numb	er of tra	in sample :	in train se	t: (5974, 2	4)	
Number of sam				*/	Numb	er of sam	ples in va	lidation se	t: (1494,)		
TRAINing with			. (1454)		TRAI	Ning with	RF.score:	97.52			
_			73968472 * 1	The lower the H					17263633 * 1	The lower t	he better.
ROC AUC (One-	vs-one) ·	0.11333330047	1187393 * 1	The higher the							
ROC AUC (One-	vs-rest):	9 9747612473	765371 *	came ^	ROC	AUC (One-	vs-rest):	0.975346998	890427 * s	ame ^	
NOC AUC (ONC	v3-1c3c).	J.J/4/0124/1	2703371								
	precision	recall	f1-score	support			precision	recall	f1-score	support	
-1	0.96	1.00	0.98	408		-1	0.96	1.00	0.98	408	
0	1.00	0.75	0.86	125		0	0.99	0.75	0.85	125	
1	0.98	1.00	0.99	961		1	0.98	1.00	0.99	961	
accuracy			0.98	1494		accuracy			0.98	1494	
macro avg	0.98	0.92	0.94	1494	m	acro avg	0.98	0.92	0.94	1494	
weighted avg	0.98	0.98	0.98	1494	weig	hted avg	0.98	0.98	0.98	1494	
Normalised!!! number of tra Number of sam TRAINing with	ain sample mples in va	lidation se		_	numi Numi	ber of tra ber of sam	mples in v	in train s alidation s	et: (11523, et: (1494,)		
Log Loss:		0.12752044	578648455	The lower th	better IKA	rwing with	n RF.score		447600063	T1 - 1	
ROC AUC (One-	vs-one) :	0.965031591	15474758 =	The higher t	ne hette oos	LOSS:		0.1/615//1	41/689263	The Tower	the better.
ROC AUC (One-	vs-rest):	0 975524789	94164777 *	: same ^	ROC BOS	AUC (One-	-vs-one):	0.9654515/	549665/3	Ine nigne	r the better.
NOC ADC (ONC		0.37332470.	74104777	30IIIC	ROC	AUC (One-	-vs-rest):	0.9/40/261	48722928	same ^	
	precision	recall	f1-score	support			precisio	n recall	f1-score	support	
-1	0.96	1.00	0.98	408		-1	0.99	9 0.87	0.92	408	
0	1.00	0.75	0.86	125		0	0.6	6 0.85	0.74	125	
1	0.98	1.00	0.99	961		1	0.98	8 1.00	0.99	961	
accuracy			0.98	1494		accuracy			0.95	1494	
macro avg		0.92		1494		macro avg		8 0.90		1494	
weighted avg				1494		ghted avg				1494	
weighten avg	0.50	0.50	0.50	1424	MCT	sircu avg	0.50	0.55	0.55	1454	

Not scaled!!!!!!!!!!!

ML: SVC MODELS & METRICS

Standardised

ML: SVC MODELS & METRICS

Not scaled!!!!						Standardised!	1111111111				
number of train sample in train set: (5974, 24)					number of train sample in train set: (5974, 24)						
Number of samples in validation set: (1494,)					Number of samples in validation set: (1494,)						
TRAINing with						TRAINing with					
Log Loss:	0.	0791700865	157313 * 1	The lower the b	etter.	Log Loss:	0	.079170086	5157313 *	The lower	the better.
ROC AUC (One-v	vs-one) : 🛛 .	9765716097	746765 *	The higher the	e better.	ROC AUC (One-	vs-one) : 🛭	.976571609	7746765	* The highe	r the better.
ROC AUC (One-v	vs-rest): 🛛	9803668502	931683 *	same ^		ROC AUC (One-	vs-rest): 🛭	.980366850	2931683	* same ^	
	precision	recall	f1-score	support			precision	recall	f1-score	support	
-1	0.97	0.98	0.98	408		-1	0.97	0.98	0.98	408	
0	0.92	0.79	0.85	125		0	0.92	0.79	0.85	125	
1	0.98	1.00	0.99	961		1	0.98	1.00	0.99	961	
accuracy			0.98	1494		accuracy			0.98	1494	
_	0.96		0.94	1494		macro avg	0.96	0.92	0.94	1494	
weighted avg	0.98	0.98	0.98	1494		weighted avg	0.98	0.98	0.98	1494	
Normalised!!!!	11111111										
number of train		train set:	: (5974. 2	24)		SmoteTomek tu	ned!!!!!!!!	1			
Number of sampl				.,		number of tra					
TRAINing with F			(= :- :,)			Number of sam			t: (1494,)		
Log Loss:			157313 * T	he lower the b	better.	TRAINing with					
ROC AUC (One-vs				The higher the		Log Loss:					
ROC AUC (One-vs				same ^		ROC AUC (One-					the better.
						ROC AUC (One-	vs-rest): 🛭	9776815108	882/893 *	same ^	
ţ	precision	recall f	f1-score	support			precision	recall	f1-score	support	
-1	0.97	0.98	0.98	408		-1	0.99	0.94	0.96	408	
0	0.92	0.79	0.85	125		0	0.80	0.84			
1	0.98	1.00	0.99	961		1	0.98	1.00			
						-	2.30	2.20	2.22		
accuracy			0.98	1494		accuracy			0.97	1494	
macro avg	0.96	0.92	0.94	1494		macro avg		0.93			
weighted avg	0.98	0.98	0.98	1494		weighted avg		0.97	0.97	1494	

ML: XGBOOST MODELS & METRICS

Standardised

ML: XGBOOST MODELS & METRICS

ML: XGBOOST MODELS & METRICS

ATTEMPTING AN NN

```
# compile the keras model
from keras.optimizers import SGD
model = Sequential()
model.add(Dense(12, input_dim=24, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='categorical crossentropy', optimizer="adam", metrics=['accuracy'])
model.fit(ker, kerr, epochs=150, batch_size=10)
_, accuracy = model.evaluate(ker, kerr)
print('Accuracy: %.2f' % (accuracy*100))
Epoch 1/150
Epoch 2/150
Epoch 3/150
Epoch 4/150
Epoch 5/150
```

```
Epocn 150/150
1153/1153 [=======] - 1s 1ms/:
361/361 [=======] - 0s 740us/:
Accuracy: 33.32
```

What a horrible score!

One's failure today will be a victory some other day

Whoever said Money Can't Buy Happiness Has Never Paid an adoption Fee

THANK YOU!