UID:	NAME !!						!!	1	12	
<u> </u>								_	3	16
CS170A – Mathematical Models and Methods for Computer Science								$\frac{3}{4}$	4	
Winter 2016								}	5	4
HOMEWORK #1 DUE WEDNESDAY, January 27, 11:55pm									Total	40
1. Kinds of Matrices For each of the following matrices, Determine (true/false) whether each of the following matrices is: invertible, Hermitian, or unitary, where $\theta = \pi/4$, and $\underline{i} = \sqrt{-1}$.										
	matrix		invertible?		Hermitian?		unitary?			
		$ \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right) $		False	True	False	True	False]	
		$\left(egin{array}{cc} 0 & i \ i & 0 \end{array} ight)$	True \Box	$\text{False }\square$	True	$\text{False } \square$	True	$\text{False} \ \Box$]	
	$\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$ $\begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & -\sin \theta \end{pmatrix}$ $\langle \sin \theta & -\sin \theta \rangle$		True \square	$\mathbf{False} \ \Box$	True	$\operatorname{False} \square$	True \square	False]	
	$ \begin{pmatrix} \sin \theta \\ -\sin \theta \end{pmatrix} $	$\begin{pmatrix} -\sin\theta \\ \sin\theta \end{pmatrix}$	True \square	$_{\rm False}\square$	True \square	$_{\rm False}\square$	True \square	$\text{False } \square$]	
	2. Matrix Algebra and Eigenstructure									
For each of the following equations, mark whether the equation is True (valid for all specified matrices A) or False. Assume that A^{\top} denotes the transpose of A, A' denotes the hermitian transpose (conjugate transpose) of A, and $i = \sqrt{-1}$.										
Assume for real θ that 2×2 rotation matrices have form $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, and reflections have form $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$.										
$_{\mathbf{True}}\ \Box$	False \square Every product of two 2×2 rotation matrices is orthogonal, and has determinant $+1$.									
$\text{True} \ \Box$	$\text{False} \ \Box$									
$_{\mathbf{True}}\ \Box$	$\mathbf{False} \ \Box$					<u>2</u>				
True \square	False \square	If $A = (a_{ij})$ is real symmetric, with squared Frobenius norm $ A _F^2 = \sum_{ij} a_{ij}^2$, and Q is orthogonal, then $ Q A Q' _F^2 = A _F^2$.						nogonal,		
True \square	$\text{False } \square$	If $A = Q L Q'$, where Q orthogonal and L is diagonal, but L has complex values on the diagonal, then A a normal matrix.					iagonal,			
$_{\mathbf{True}}\ \Box$	$\mathbf{False} \ \Box$	If A is either normal or real symmetric or (real) orthogonal, then so is A^2 .								
$_{\mathbf{True}}\ \Box$	$_{\mathbf{False}}\ \Box$	If the eigenvalues of a real symmetric matrix A are all real and positive, then A is invertible.								
$\mathbf{True} \ \Box$	$\mathbf{False} \ \Box$	If A is real symmetric and $det(A) > 1$, then A is invertible and $det(A^{-1}) < 1$.								
True \Box	$_{\rm False}\square$	If $A = Q L Q'$, where L is diagonal, and Q is orthogonal, then $A^2 = Q L^2 Q'$.								
True \square	$\text{False } \square$	If A is a real symmetric matrix and $A = QLQ'$, and $B = QL^{1/2}Q'$ where $L^{1/2}$ is the diagonal matrix whose entries are square roots of corresponding entries in L, then $B^2 = A$.								
True \square	$\mathbf{False} \ \Box$	If A is a real symmetric 2×2 matrix and $\operatorname{trace}(A) > \det(A) > 0$, then A is positive definite.								
$_{\mathbf{True}}\ \Box$	$\text{False} \ \Box$	If U and V are orthogonal, and $UV = VU$, then UV is normal.								
True \square	False \square	For all real θ and ϕ , the product $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & -\cos \phi \end{pmatrix}$ is a reflection.								
True \square	$\text{False }\square$	If A has the eigenvalue decomposition $A = Q L Q'$, where L is the diagonal matrix of eigenvalues of A and Q is a real orthogonal matrix, and A is invertible, then A is positive definite.								
True \square	False \square	For all real	θ , if $R(\theta) =$	$=\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$	$\begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$ and	$d U = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$, the	n $R(\theta)$ U	V = U F	$R(-\theta)$.

Let $R(\theta)$ and U be as in the previous question. For all real θ , if $A = R(-\theta) U$, then A is a real

symmetric matrix and $A = R(-\theta/2) U R(\theta/2)$ is an eigendecomposition of A.

True \square

 $\mathbf{False} \ \Box$

3.	Interesting Matrices		unction C = puzzle(sequence)							
	Consider the following M	IATLAB functions:	<pre>% assume sequence is a 1D array of integers n = length(sequence)</pre>							
	<pre>function L = luis(n) % assume n is a po f = @(x) factorial i = (1:n)' * ((1:r j = i' L = f(i+j-2) ./ (f</pre>	L(x) h)>0)	<pre>i = (1:n)' * ((1:n)>0) j = i' K = i - j + 1 K_mod_n = (K .* (K>0)) + ((K+n) .* (K<=0)) f = @(x) sequence(x) C = f(K_mod_n)</pre>							
	5	vocation luis(3) produce?	- (1.2)							
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
		vocation puzzle(1:3) produce? $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{pmatrix} \Box \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} \Box \begin{pmatrix} 2 & 3 \\ 3 & 1 \\ 1 & 2 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
		vocation puzzle((1:3) * 2) produce? $ \begin{pmatrix} 2 & 4 & 6 \\ 4 & 6 & 8 \end{pmatrix} \qquad \square \begin{pmatrix} 2 & 6 & 4 \\ 4 & 2 & 6 \end{pmatrix} \qquad \square \begin{pmatrix} 2 \\ 3 \end{pmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
	,	re, which of the following yields the $n \times n$ Paragraph (1:n)	ascal matrix $P = (P_{ij})$ where $P_{ij} = \frac{(i+j-2)!}{(i-1)!(j-1)!}$?							
	pascal = @(n) 1 + pascal = @(n) lui	· luis(n)								
4.	Rotations and Linear Suppose that the following	Transformations ng MATLAB statements have been executed	l:							
		c) -sin(t); sin(t) cos(t)] w) blkdiag(Rot(t), Rot(w))	% A 0 0 % blkdiag(A,B,) = 0 B 0 0 0							
	$\begin{array}{ccc} \text{True} & \square & \text{False} & \square & \square \\ \text{True} & \square & \text{False} & \square & \square \end{array}$	$\det(\mathbf{R})$ is always +1 \mathbf{R} is always an orthogonal matrix $ Rv = v $ for all $v \in \mathbb{R}^4$								
-			s angles. (i.e. $\langle Rv, Rw \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{R}^4$)							
5.	Singular Value Decon Consider the following fa	-								
	The sings	ular values of a matrix A are the positive $oldsymbol{sq}$	$oldsymbol{uare\ roots}$ of the eigenvalues of A^TA							
	Let $A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$. If $A = USV'$, which of the following matrices is the correct S matrix?									
	$\square \left(\begin{smallmatrix} 0 & 0 \\ 0 & 4 \end{smallmatrix} \right)$	$\square \left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{array} \right) \square \left(\begin{array}{cc} 2 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \square \left(\begin{array}{cc} 4 \\ 0 \\ 0 \end{array} \right)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
	For each the following equations, mark whether the equation is True (valid for all specified matrices X) or False . Assume that X' denotes the Hermitian (conjugate) transpose of X .									
	True \Box False \Box	If X is a 2×2 reflection matrix X, then its	s SVD is unique.							
	True \Box False \Box		is the diagonal matrix of singular values σ_i of X , and μ , then X is a constant multiple of a unitary matrix.							
	True \Box False \Box	If X has the SVD $X = U S U'$, where S is is a real unitary matrix, then X is real sym	the diagonal matrix of singular values σ_i of X , and U metric and U is orthogonal.							