Aufgabe 16:

Zwischen zwei Platten mit dem Abstand b und der Tiefe t befindet sich ein dichtebeständiges Fluid mit der Viskosität μ . Die untere Platte ist feststehend, die obere Platte bewegt sich mit der Geschwindigkeit v_0 in x-Richtung.

Annahmen:

- Die Strömung ist stationär, laminar und voll ausgebildet.
- Volumenkräfte können vernachlässigt werden.

Gegeben:

Geschwindigkeit: $v_0 = 0.12$ m/s Dyn. Viskosität: $\mu = 1.5$ Pa·s

Abstand: b = 6mm Tiefe: t = 1m

- a) Berechnen Sie den Druckgradienten so, dass der Volumenstrom zwischen den beiden Platten null ist.
- b) Zeichnen Sie die Geschwindigkeits- und die Schubspannungsverteilung bei einem Volumenstrom zwischen den Platten von null.

Aufgabe 17:

Zwischen zwei mit den Geschwindigkeiten $2v_0$ bzw. v_0 bewegten vertikalen Platten strömt ein newtonsches Fluid. Der Abstand der Platten beträgt 2a und die Strömung ist laminar, stationär und voll ausgebildet. Das inkompressible Fluid besitzt die dynamischen Viskosität μ .

Annahmen:

- Die Strömung ist stationär, laminar und voll ausgebildet.
- Der Druck ist über den jeweiligen Querschnitt konstant.

Gegeben:

Dynamische Viskosität: µ Erdbeschleunigung: g

Dichte: ρ Breite: a

Tiefe: b Geschwindigkeit: v₀

- a) Bilden Sie das Kräftegleichgewicht am Fluidelement in y-Richtung und ermitteln Sie $\tau(x)$ und v(x) in Abhängigkeit von $\partial p/\partial y$.
- b) An der Stelle x = -a/2 ist die Schubspannung $\tau(x) = 0$. Geben Sie den Wert der Geschwindigkeit v(x) für x = 0 an, skizzieren Sie das Geschwindigkeitsprofil v(x) und den Schubspannungsverlauf $\tau(x)$.

Aufgabe 18:

Die laminare Strömung in einem Spalt zwischen zwei feststehenden Platten soll untersucht werden. Der Spalt wird von zwei unterschiedlichen dichtebeständigen newtonschen Fluiden A und B durchströmt. Der Volumenstrom zwischen den Platten stellt sich so ein, dass die Fluidschichten die gleiche Dicke haben.

Annahmen:

- Die Fluide mischen sich nicht.
- Die Strömung ist stationär, laminar und voll ausgebildet.
- Der Druckgradient ist konstant.

Gegeben:

Dynamische Viskosität: μ_A, μ_B Höhe: b

- a) Berechnen Sie die Geschwindigkeits- und die Schubspannungsverteilung in Abhängigkeit des Druckgradienten.
- b) Skizzieren Sie diese Verteilungen für einen negativen Druckgradienten und $\mu_A > \mu_B$.