Estimating Gradients for Discrete Distributions by Sampling Without Replacement

Wouter Kool, Herke van Hoof & Max Welling

International Conference on Learning Representations (ICLR) 2020

Problems of discrete nature

- Reinforcement Learning
- Machine Translation / Image Captioning
- Discrete Latent Variable Modelling
- (Hard) Attention

Gradient of discrete operation

REINFORCE

$$\nabla_{\boldsymbol{\theta}} E_{p_{\boldsymbol{\theta}}(x)}[f(x)] = E_{p_{\boldsymbol{\theta}}(x)}[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(x) f(x)]$$

REINFORCE

$$\nabla_{\boldsymbol{\theta}} E_{p_{\boldsymbol{\theta}}(x)}[f(x)] \approx \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(x) f(x)$$

REINFORCE with multiple samples

$$\nabla_{\boldsymbol{\theta}} E_{p_{\boldsymbol{\theta}}(x)}[f(x)] \approx \frac{1}{k} \sum_{i=1}^{k} \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(x_i) f(x_i)$$

REINFORCE with baseline

$$\nabla_{\boldsymbol{\theta}} E_{p_{\boldsymbol{\theta}}(x)}[f(x)] \approx \frac{1}{k} \sum_{i=1}^{k} \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(x_i) \left(f(x_i) - \frac{\sum_{j \neq i} f(x_j)}{k-1} \right)$$
Baseline

Sampling without replacement

Since duplicate samples are uninformative!

Sampling without replacement

$$p(B) = p(b_1)$$

$$\times \frac{p(b_2)}{1 - p(b_1)}$$

$$B = (3)4)1)$$

$$\times \frac{p(b_3)}{1 - p(b_1) - p(b_2)}$$

Ordered samples without replacement

Sequence B = (3,4,1)

$$p(B) = \prod_{i=1}^{k} \frac{p(b_i)}{1 - \sum_{j < i} p(b_j)}$$

Unordered samples without replacement

$$p(B) = \prod_{i=1}^{k} \frac{p(b_i)}{1 - \sum_{j < i} p(b_j)}$$

Set
$$S = \{1,3,4\}$$

Unordered samples without replacement

$$p(S) = \sum_{B \in \mathcal{B}(S)} p(B) = \sum_{B \in \mathcal{B}(S)} \prod_{i=1}^{K} \frac{p(b_i)}{1 - \sum_{j < i} p(b_j)}$$

Set $S = \{1,3,4\}$

Sum over *k*! permutations

Gumbel-Top-k sampling

https://arxiv.org/abs/1903.06059

http://www.jmlr.org/papers/v21/19-985.html

$$B = (3,4,1)$$

 $S = \{1,3,4\}$

Back to our problem

$$\nabla_{\boldsymbol{\theta}} E_{p_{\boldsymbol{\theta}}(x)}[f(x)]$$

Estimating the expectation

$$E_{p_{\theta}(x)}[f(x)]$$

The single sample estimator

$$E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(B)}[f(b_1)]$$

Separating the expectation

$$E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(S)} \left[E_{p_{\theta}(B|S)}[f(b_{1})] \right]$$
Set of unordered samples Conditional distribution of their order

Separating the expectation

$$E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(S)} \left[E_{p_{\theta}(b_1|S)}[f(b_1)] \right]$$

$$E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(S)}[E_{p_{\theta}(b_1|S)}[f(b_1)]]$$

$$E_{p_{\theta}(b_1|S)}[f(b_1)] = \sum_{s \in S} P(b_1 = s|S) f(s)$$

$$E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(S)} \left[E_{p_{\theta}(b_1|S)}[f(b_1)] \right]$$

$$E_{p_{\theta}(b_1|S)}[f(b_1)] = \sum_{s \in S} P(b_1 = s|S) f(s)$$

$$P(b_1 = s|S) = \frac{P(S|b_1 = s)P(b_1 = s)}{P(S)}$$

$$E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(S)} \left[E_{p_{\theta}(b_1|S)}[f(b_1)] \right]$$

$$E_{p_{\theta}(b_1|S)}[f(b_1)] = \sum_{s \in S} P(b_1 = s|S) f(s)$$

$$P(b_1 = s|S) = \frac{P(S|b_1 = s)}{P(S)} P(b_1 = s)$$
Leave-one-out ratio $R(S,s)$

$$E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(S)} \left[E_{p_{\theta}(b_1|S)}[f(b_1)] \right]$$

$$E_{p_{\theta}(b_1|S)}[f(b_1)] = \sum_{s \in S} P(b_1 = s|S) f(s)$$

$$P(b_1 = s|S) = R(S,s)p_{\theta}(s)$$

$$E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(S)}[E_{p_{\theta}(b_1|S)}[f(b_1)]]$$

$$E_{p_{\theta}(b_1|S)}[f(b_1)] = \sum_{s \in S} R(S,s)p_{\theta}(s)f(s)$$

$$E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(S)} \left[\sum_{s \in S} R(S, s) p_{\theta}(s) f(s) \right]$$

Unordered set estimator

$$E_{p_{\theta}(x)}[f(x)]$$

$$= E_{p_{\theta}(S)} \left[\sum_{s \in S} R(S, s) p_{\theta}(s) f(s) \right]$$

$$E_{p_{\theta}(x)}[\nabla_{\theta}\log p_{\theta}(s)f(x)]$$

$$= E_{p_{\theta}(S)} \left[\sum_{s \in S} R(S, s) p_{\theta}(s) \nabla_{\theta} \log p_{\theta}(s) f(s) \right]$$

$$\nabla_{\theta} E_{p_{\theta}(x)}[f(x)] = E_{p_{\theta}(x)}[\nabla_{\theta} \log p_{\theta}(s) f(x)]$$

$$= E_{p_{\theta}(s)} \left[\sum_{s \in S} R(S, s) p_{\theta}(s) \nabla_{\theta} \log p_{\theta}(s) f(s) \right]$$

$$\nabla_{\theta} p_{\theta}(s)$$

$$\nabla_{\theta} E_{p_{\theta}(x)}[f(x)]$$

$$= E_{p_{\theta}(S)} \left[\sum_{s \in S} R(S, s) \nabla_{\theta} p_{\theta}(s) f(s) \right]$$

Unordered set policy gradient estimator

Include a baseline

$$\nabla_{\theta} E_{p_{\theta}(x)}[f(x)]$$

$$= E_{p_{\theta}(s)} \left[\sum_{s \in S} R(s,s) \nabla_{\theta} p_{\theta}(s) \left(f(s) - \sum_{s' \in S} R^{\setminus s}(s,s') p_{\theta}(s') f(s') \right) \right]$$
'Baseline'

Unbiased!

Experiments

Bernoulli gradient variance

Categorical Variational Auto-Encoder (grad. var.)

Table 1: VAE gradient log-variance of different unbiased estimators with k=4 samples.

	ARSM	RELAX	REINFORCE		Sum & sample		REINF. w.r.	Unordered
Domain			(no bl)	(sample bl)	(no bl)	(sample bl)	(built-in bl)	(built-in bl)
Small 10^2				7.49	6.29	6.29	6.65	6.29
Large 10^{20}	15.55	15.86	13.81	8.48	13.77	8.44	7.06	7.05

Travelling Salesman Problem

Take away

The unordered set estimator

- Low-variance
- Unbiased
- Alternative to Gumbel-Softmax

End of story