CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Asymptotic notation

- Let $T, f: \mathbb{N} \to [0, \infty)$
- Roughly:
 - T is O(f) if $T(n) \le C \cdot f(n)$ for some large constant C
 - T is $\Omega(f)$ if $T(n) \ge c \cdot f(n)$ for some small constant c
 - T is o(f) if $T(n) \le c \cdot f(n)$ for every small constant c
 - T is $\omega(f)$ if $T(n) \ge C \cdot f(n)$ for every large constant C

Exponential vs. polynomial

- Proved last time: For every constant $k \in \mathbb{N}$, we have $n^k = o(2^n)$
- We say T(n) is poly(n) if there is some constant k such that T(n) is $O(n^k)$

Big-Θ

- Let $T, f: \mathbb{N} \to [0, \infty)$ be any two functions
- We say that T is $\Theta(f)$ if T is O(f) and T is $\Omega(f)$
- Example: $0.1n^2+14$ is $\Theta(n^2)$ and $\Theta(n^2+2n^{1.4})$, but not $\Theta(n)$

Summary of asymptotic notation

Notation	In words	Analogy
T is $o(f)$	T(n) grows more slowly than $f(n)$	<
T is $O(f)$	$T(n)$ is at most $C \cdot f(n)$	\leq
T is $\Theta(f)$	T(n) and $f(n)$ grow at the same rate	=
T is $\Omega(f)$	$T(n)$ is at least $c \cdot f(n)$	≥
T is $\omega(f)$	T(n) grows more quickly than $f(n)$	>

Note: Big-O is not just for time complexity!

- We can use asymptotic notation (big-0, etc.) any time we are trying to understand some kind of "scaling behavior"
- For example, let G be a simple undirected graph with N vertices
 - G has $O(N^2)$ edges
 - If G is connected, then G has $\Omega(N)$ edges
- Admittedly, we are especially interested in time complexity...

Deciding a language in time T

- Let $Y \subseteq \{0, 1\}^*$ and let $T: \mathbb{N} \to [0, \infty)$ be a function
- **Definition:** We say that Y can be decided in time T if there exists a one-tape Turing machine M such that
 - *M* decides *Y* , and
 - For every $n \in \mathbb{N}$ and every $w \in \{0,1\}^n$, the running time of M on w is at most T(n)

The complexity class P

• **Definition:** For any function $T: \mathbb{N} \to [0, \infty)$, we define $TIME(T) = \{Y \subseteq \{0, 1\}^* : Y \text{ can be decided in time } O(T)\}$

Definition:

 $P = \{Y \subseteq \{0, 1\}^* : Y \text{ can be decided in time poly}(n)\}$

$$=\bigcup_{k=1}^{\infty}\mathrm{TIME}(n^k)$$

"Polynomial time"

P: Our model of tractability

- Let $Y \subseteq \{0, 1\}^*$
- If $Y \in P$, then we will consider Y "tractable"
- If $Y \notin P$, then we will consider Y "intractable"
- Is this a good model? What about multi-tape Turing machines?

Multi-tape Turing machines, revisited

• Let $Y \subseteq \{0, 1\}^*$, let k be a positive integer, and let $T: \mathbb{N} \to \mathbb{N}$

Theorem: If there is a k-tape Turing machine that decides Y with time complexity T(n), then there is a 1-tape Turing machine that decides Y with time complexity $O(T(n)^2)$.

Efficiently Simulating k tapes using 1 tape

- Proof sketch (1 slide): For simplicity, assume $T(n) \ge n$
- Recall: To simulate step i, we scan back and forth over n+2i cells of the tape
- Simulating one step of the k-tape machine takes O(n + T(n)) steps

• Overall time complexity: $T(n) \cdot O(n + T(n)) = O(T(n)^2)$

Robustness of P

- Conclusion: We could define P using one-tape Turing machines or using multi-tape Turing machines
- Either way, we get the exact same set of languages

Theory vs. practice

- Disclaimer: P is not a perfect model of tractability
- Even if some problem is technically in P, it might not be "solvable in practice"
- Even if some problem is technically not in P, it might be "solvable in practice"

Analogy: Gravity

 Physics 101: "Gravity is a constant downward force of 9.8 N/kg"

• Physics 102: Newton's Law of Gravitation:

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

Better, but still not perfect!

Analogy: Gravity

 Newton's Law of Gravitation does not correctly predict Mercury's motion around the sun!

- "...all models are wrong, but some are useful." –George Box
- The complexity class P does not 100% align with the set of problems that are solvable in practice...
- But the alignment is pretty good, and studying P will absolutely give us real insights into the nature of computation

Which problems can be solved through computation?

Which languages are in P?

Example: Primality testing

• PRIMES = $\{\langle K \rangle : K \text{ is a prime number}\}$

Theorem: PRIMES ∈ P

- **Proof attempt:** For M=2,3,...,K-1, check if K/M is an integer.
 - Time complexity is poly(K), which is "pseudo-polynomial time"
 - "Polynomial time" means time complexity poly(n), where $n = |\langle K \rangle| \approx \log K!$
- The theorem is true, but the proof is beyond the scope of this course

Pseudo-polynomial time

- Suppose $Y = \{\langle x, k \rangle : k \in \mathbb{N} \text{ and (something)} \}$
- "Polynomial time" means poly(n) time where $n \approx |x| + \log k$
- "Pseudo-polynomial time" means poly(n') time where n' = |x| + k
- $Y' = \{\langle x, 1^k \rangle : k \in \mathbb{N} \text{ and (something)} \}$
- ullet If it's reasonable to assume that k is small, then pseudo-polynomial time might be good enough
- Interesting example: The knapsack problem

- Given: Positive integers $w_1, \dots, w_k, v_1, \dots, v_k, W, V$
- Question: Is there a set $S \subseteq \{1, 2, ..., k\}$ such that

$$\sum_{i \in S} w_i \leq W$$
 and $\sum_{i \in S} v_i \geq V$?

- Interpretation: There are k items
- Item i is worth v_i dollars, and it weighs w_i pounds
- We want to collect items worth V dollars, but our knapsack can only hold W pounds

- There is no known polynomial-time algorithm that decides KNAPSACK
- However, there is a pseudo-polynomial-time algorithm!

• KNAPSACK = $\{\langle w_1, ..., w_k, v_1, ..., v_k, W, V \rangle : \text{ there exists } S \subseteq \{1, 2, ..., k\}$ such that $\Sigma_{i \in S} w_i \leq W$ and $\Sigma_{i \in S} v_i \geq V \}$

Conjecture: KNAPSACK ∉ P

• UNARY-VAL-KNAPSACK = $\{\langle w_1, ..., w_k, 1^{v_1}, ..., 1^{v_k}, W, 1^V \rangle : \text{ there}$ exists $S \subseteq \{1, 2, ..., k\}$ such that $\Sigma_{i \in S} w_i \leq W \text{ and } \Sigma_{i \in S} v_i \geq V \}$

Theorem: UNARY-VAL-KNAPSACK ∈ P