RNN-T MODELS FAIL TO GENERALIZE TO OUT-OF-DOMAIN AUDIO: CAUSES AND SOLUTIONS

Chung-Cheng Chiu, Arun Narayanan, Wei Han, Rohit Prabhavalkar, Yu Zhang, Navdeep Jaitly , Ruoming Pang, Tara N. Sainath, Patrick Nguyen, Liangliang Cao, Yonghui Wu

Google Inc, D. E. Shaw Group

End-to-End ASR

최근의 End-to-End ASR 모델은 빠르게 발전하고 SOTA를 달성해나가고 있음

- CTC (Connectionist Temporal Classification)
- Attention based Encoder-Decoder
- Transformer

Problem of End-to-End ASR

하지만 비교적 짧고(15초 이내) 같은 도메인을 가지는 데이터 셋으로 Train되고 Test 되었던 결과

End-to-End ASR 모델은 크게 두 가지 문제가 발생

- 1. 도메인 불일치 상황에 매우 민감함
- 2. 문장 길이에 민감함

이전 연구들에서는 해당 문제에 대한 원인을 분석하지 않았으므로 이 논문에서는 실험을 통해 원인을 분석해보았음

RNN - Transducer

Fig. 1: Block diagram of an RNN-T model [22, 13].

CTC의 단점을 극복하기 위해 Alex Graves에 의해 제안(2012, 2013)

Encoder, Prediction, Joint Network의 세 부분으로 구성

상태가 조건부 독립이라 가정했던 CTC와는 다르게 이전 출력이 prediction network와 joint network를 통해 새로운 출력에 관여하여 종속적이게 해줌

RNN - Transducer

- 이 논문에서는 RNN-T를 사용하여 실험을 진행함
 - 1. Youtube에서 추출한 짧은 음성으로 학습한 모델
 - 2. 짧은 Search data(In-house data)로 학습한 모델
 - 3. LibriSpeech Corpus로 학습한 모델

Generalization Problem을 확인하기위해 다른 데이터셋 사용하여 평가

- 1. Youtube-Short(2분 ~ 10분 길이)
- 2. Youtube-Long(41.8초 ~ 30분 길이)

Non-Streaming 방식과 Streaming 방식 모두 분석했음

테스트 진행해보니 짧은 문장으로 train 후 각 데이터셋에 대해 inference 했고 50k step 이후에 각 모듈들을 freeze 해보면서 더 학습시켰더니 낮은 성능을 보였음

Fig. 3: WERs and the respective deletion, insertion, and substitution errors for non-streaming model on *YT-long* as a function of training steps.

높은 WER의 원인을 분석해보니 Deletion error가 주된 요인 이었음

실험은 Encoder, Prediction, Joint Network들을 각각 freeze 해보면서 성능을 살펴봤는데 주된 요인은 Encoder Network의 overfitting임을 추측할 수 있음

Beam search step 200	Beam search step 280	Beam search step 299	
hey guys i don't know a <empty> oh hey guys i don't know a hey hey guys i don't know a hey guys i don't know uh hey guys i don't know a oh hey guys i don't know a hey guys i don't know a</empty>	<empty> hey guys i don't know a lot of work yes oh you're hey guys i don't know a lot of work yes oh hey guys i don't know a lot of work yes subscribe hey guys i don't know a lot of work yes please hey guys i don't know a lot of work yes subscribe hey guys i don't know a lot of work yes for</empty>	<pre><empty> subscribe yeah h this uh hmm is</empty></pre>	

Beamsearch의 진행을 살펴봤더니〈Blank〉 토큰의 불안정한 예측으로 인해서 Beamsearch 가 진행될수록 더 심해져 결국 토큰이 없는 prefix가 남아 높은 deletion error를 유발했다고 함

논문 그림 오류...

요약하자면...

학습이 진행될 수록 긴 문장에서 Blank 토큰의 예측 확률이 증가했고, 이에 따라 빔서치는 pruning 시 높은 확률로 빈 시퀀스를 남기게 되어 결과적으로 deletion error가 증가하여 높은 WER을 유발하게 됨

Streaming 모델은 음성 검색 TASK에 대해 실험해보았음

Streaming을 사용해야되는 환경을 고려하여 더 작은 모델로 구성

Train은 평균 6.3초 길이의 Search data로 학습

Test는 in-domain과 out-domain으로 평가

In-domain은 평균 6초 길이,

Out-domain은 평균 62초의 TTS 음성으로 평가

Streaming 모델은 음성 검색 TASK에 대해 실험해보았음

Streaming을 사용해야되는 환경을 고려하여 더 작은 모델로 구성

Train은 평균 6.3초 길이의 Search data로 학습

Test는 in-domain과 out-domain으로 평가

In-domain은 평균 6초 길이,

Out-domain은 평균 62초의 TTS 음성으로 평가

In-domain의 경우 학습이 진행되도 성능 하락은 없었지만, Out-domain의 경우 Non-Streaming모델과 마찬가지로 인코더가 성능하락에 많은 기여를 하고 있음을 확인,

Regularization Cocktail

Generalization Problem은 주로 Encoder로 인해 발생하는 것을 확인 했으므로

이는 Regularization 기법을 조합해서 해결할 수 있음

논문에서는 세가지 방법의 Regularization을 사용했음

- Variational Weight Noise
- SpecAugment
- Random state sampling and random state passing

Regularization Cocktail

- Variational Weight Noise

학습이 어느정도 진행 된 후에 Gaussian Noise를 첨가

- SpecAugment

Time Warping + Masking, Frequency Masking

- Random state sampling and random state passing RSS – LSTM의 초기 State 를 0 vector 대신 정규분포로 초기화

RSP – LSTM의 초기 State 및 Token을 이전 미니 배치의 마지막 State 와

Token으로 초기화

Regularization Cocktail

Dynamic Overlapping Inference

Inference 시 긴 문장을 짧은 문장으로 나눠서 Inference 후 결과물을 overlapping 되도록 이어 붙임

Experiment

Models	YT-short		YT-long		Call-center	
	Reg.	DOI	Reg.	DOI	Reg.	DOI
Base	10.6	9.7	22.3	17.0	27.6	22.4
SpecAugment	9.4	9.4	15.9	15.3	21.5	20.3
+ RSS	9.3	9.2	15.6	15.2	19.6	19.5
+ RSS + VN	9.1	9.0	14.8	14.9	19.3	19.2

Models	Search	TTS-Audiobook	YT-short
Baseline	4.9	48.6	67.0
VN	4.7	31.3	59.8
SpecAugment	4.6	16.5	52.9
+ RSP	5.1	11.9	27.3
+ RSP + VN	5.1	11.9	25.3

	Reg.	DOI
Test	3.2 (0.2/0.4/2.6)	3.2 (0.2/0.4/2.6)
Test Other	7.8 (0.7/0.8/6.3)	$7.8 \ (0.6/0.9/6.3)$
YT-short	99.8 (99.5/0.1/0.2)	33.0 (3.6/7.2/22.2)

Contribution

RNN-T 기반 모델에서 Generalization Problem에 대한 원인을 분석하고 성능 개선 방안을 제시

분석 결과 Encoder의 Overfitting이 Generalization Problem의 주된 요인임을 확인

여러 Regularization 기법을 조합한 Regularization Cocktail과 Dynamic Overlapping 을 통해 Generalization 성능이 크게 향상됨을 확인

Q&A