

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Title: Database Management System(FC-II)

Course Code: P18CS46 | Semester : 4 | L:T:P: H - 2 : 2 : 0 : 4 | Credits: 3

Contact Period : Lecture :52 Hrs, Exam: 3Hrs | Weightage :CIE:50% SEE:50%

Course Content

Unit-1

Introduction: An example: Characteristics of Database approach; Advantages of using DBMS approach; A brief history of database applications; Data models, schemas and instances; Three-schema architecture and data independence

Entity-relationship model: Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types; Refining the ER Design; ER Diagrams,

Self study component : Naming Conventions and Design Issues; Relationship types of degree higher than two.

10 Hours

Unit-2

Relational model and relational algebra: Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations, Transactions and dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory;

Self study component : Binary Relational Operations : JOIN and DIVISION.

10 Hours

Unit-3

Additional Relational Operations; Examples of Queries in Relational Algebra; Relational Database Design Using ER- to-Relational Mapping

Structured query language :. SQL Data Definition and Data Types; Specifying basic constraints in SQL; Basic Retrieval Queries in SQL, INSERT,

Self study component : DELETE, and UPDATE Statements in SQL.

12 Hours

Unit-4

More complex SQL Retrieval Queries, Specifying constraints as Assertion and Actions as Trigger; Views (Virtual Tables) in SQL;

Database design: Informal Design Guidelines for Relation Schemas; Functional Dependencies.

Self study component: Additional features of SQL; Schema Change Statements in SQL.

10 Hours

Unit - 5

Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Multi valued Dependencies and Fourth Normal Form; Join Dependencies and Fifth Normal Form. Transaction processing concepts: Introduction to Transaction processing; Transactions and System concepts; Desirable properties of transactions

Self study component: Concurrency control: Two-phase locking techniques for concurrency control.

10 Hours

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Text Books:

1. FundamentalsofDatabaseSystems–ElmasriandNavathe,6thEdition,Addison-Wesley, 2011

Reference Books:

- 1. **DataBase System Concepts**–Silberschatz,KorthandSudharshan, 5th Edition, McGrawHill, 2006.
- 2. **An Introduction to Database Systems**—C.J.Date,A.Kannan, S.Swamynatham, 8th Ed., Pearson Education,2006.
- 3. **Database Management Systems** Raghu Ramakrishnan and JohannesGehrke 3rdEdition, McGraw-Hill,2003.

Course outcomes

At the end of the course the student should be able to

- 1. **Design** an ER model for a given example from real world description.
- 2. **Design** relational models for a given application using schema definition and constraints.
- 3. **Develop** complex queries using SQL to retrieve the required information from database.
- 4. **Apply** suitable normal forms to normalize the given database
- 5. **Determine** the roles of concurrency control in database design.

CO-PO Mapping

Course code: P18CS46				Title: Database Management System (FC-II)												
CO	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
CO 502.1	Design an ER model for a given example from real world description	3	3	3	1					2		2	2		3	
CO 502.2	Design relational models for a given application using schema definition and constraints.	3	2	3	1					2		2	2		3	
CO 502.3	Develop complex queries using SQL to retrieve the required information from database	3	3	3		2				2		2			3	
CO 502.4	Apply suitable normal forms to normalize the given database	2	2	2						2		2			2	
CO 502.5	Determine the roles of con-currency control in database design.		1	1					ii.						2	
C502, C302		2.6	2.2	2.4	1	2				2			2	2	2.6	