## The Data

The data is about measured populations of fish from Tallgrass Prairie national preserve.

|    | Season        | Normal | Flood_6Months | MultipleFloods_6Months | Drought_6Months | Flood_Drought_6Months | ToleranceCode | ScientificName          | Freq |
|----|---------------|--------|---------------|------------------------|-----------------|-----------------------|---------------|-------------------------|------|
|    | <b>o</b> 2001 | 1      | 0             | 0                      | 0               | 0                     | 1             | Luxilus cardinalis      | 787  |
|    | <b>1</b> 2001 | 1      | 0             | 0                      | 0               | 0                     | 1             | Notropis percobromus    | 1    |
|    | <b>2</b> 2001 | 1      | 0             | 0                      | 0               | 0                     | 1             | Notropis topeka         | 7    |
|    | <b>3</b> 2001 | 1      | 0             | 0                      | 0               | 0                     | 1             | Notropis volucellus     | 1    |
|    | 4 2001        | 1      | 0             | 0                      | 0               | 0                     | 1             | Pimephales tenellus     | 23   |
|    |               |        |               |                        |                 |                       |               |                         |      |
| 35 | 5 2019        | 0      | 0             | 1                      | 0               | 0                     | Т             | Pimephales notatus      | 6    |
| 35 | 6 2019        | 0      | 0             | 1                      | 0               | 0                     | Т             | Pimephales promelas     | 1    |
| 35 | 7 2019        | 0      | 0             | 1                      | 0               | 0                     | Т             | Semotilus atromaculatus | 75   |
|    | <b>o</b> 2011 | 0      | 0             | 1                      | 0               | 0                     | 1             | Luxilus cardinalis      | 0    |
|    | <b>1</b> 2012 | 0      | 0             | 1                      | 0               | 0                     | 1             | Luxilus cardinalis      | 0    |

Figure 1: A Portion of the Data

The data contains columns for the year, whether flooding or drought occurred six months before the measurement of population, the species, the species' tolerance for poor water quality and human disturbance, and the population of that species in the park that year.

| Ι | Intolerant          |  |
|---|---------------------|--|
| M | Moderately Tolerant |  |
| Т | Tolerant            |  |
| U | Unknown             |  |

Figure 2: Tolerance Code Meanings

I took this dataset, and fit the same Bayesian model to the full dataset and four subsets based on the four different tolerance code, with the goal of comparing how different environmental factors might possibly affect the fish populations, and whether those factors would have more effect on species of different tolerance codes.

## The Model

To explore this data, I built a Bayesian model that accounts for the flooding and drought data.

It assumes the population of a species of fish for any given year can be modeled as a Normal distribution, with a mean consisting of a linear combination of several other normally distributed variables, and a variance modeled by a half-cauchy distribution.

Once this model is fitted to a dataset using PyMC3, it can take the drought/flood conditions for a year and predict the average number of fish of a single species in the population.

Figure 3: Code for the Model

#### The Results

After that model was built, I then used the NUTS sampler to fit it to different subsets of the population data.

# Intercept

Intercept is the variable in the model that is not based on any of the input values. It can be considered a sort of "baseline" value that represents the expected number of fish in a sample, before any of the climate conditions are considered.

Since each species has one tolerance category, the difference in this value only represents the difference in mean population count for all the species in a dataset across all years. These results tell us that the species categorized as "Tolerant" had, on average, twice as many fish in all the years' samples for a tolerant species as there were for a species in the "Intolerant" category.

This data point will be useful for helping compare the impact of climate events on different categories.

| Classification      | Mean Value         |  |
|---------------------|--------------------|--|
| All Data            | 59.748923116347434 |  |
| Tolerant            | 57.2367494043198   |  |
| Moderately Tolerant | 46.19413763532205  |  |
| Intolerant          | 29.272990398236775 |  |
| Unknown             | 0.5872680087324352 |  |

## Flood 6Months Normalized

This coefficient represents the impact of the value of the flood\_6months column, which is 1 if there was one flood within six months before the sample was taken, or zero otherwise.

What I mean by "Normalized" for these other coefficients: In order to compare the mean value of the coefficient between data sets, I divided the coefficient by the intercept variable. That means that the values in this table are a way of comparing the magnitude of the coefficient, rather than just the raw number.

Here we see all the values are negative. Since the model assumed this coefficient would have a negative impact on the expected number of fish in a sample, it seems like this variable actually has a positive impact on the expected number of fish in all but the "Unknown Tolerance" categories.

| Classification      | Mean Value           |  |
|---------------------|----------------------|--|
| All Data            | -0.29895795460160207 |  |
| Tolerant            | -0.3565970811676861  |  |
| Moderately Tolerant | -0.4508351508215578  |  |
| Intolerant          | -0.3167720036562346  |  |
| Unknown             | 0.5159925869893939   |  |

# MultipleFloods\_6Months Normalized

This value was also normalized to compare between categories. It represents the impact of the value of the MultipleFloods\_6Months column, which is 1 if there was more than one flood within six months before the sample was taken, or zero otherwise.

Since all the values are positive, this variable had a negative impact on the expected number of fish in a sample. There doesn't seem to be a correlation between the tolerance of the species and the impact of multiple floods, although we again see that the species with unknown tolerance are most severely impacted.

| Classification      | Mean Value          |  |
|---------------------|---------------------|--|
| All Data            | 0.4026912471802705  |  |
| Tolerant            | 0.23574510933068404 |  |
| Moderately Tolerant | 0.09375774066204416 |  |
| Intolerant          | 0.31714123248177567 |  |
| Unknown             | 0.6050900233014277  |  |

# Drought\_6Months Normalized

This value was also normalized to compare between categories. It represents the impact of the value of the Drought\_6Months column, which is 1 if there was a drought within six months before the sample was taken, or zero otherwise.

Again, since the values are positive, this variable had a negative impact on the expected number of fish in a sample. This time there is a correlation between tolerance category and impact, but it seems like more tolerant species are more affected by the drought. We also see that unknown tolerance species are most impacted. Perhaps the unknown ones are even less tolerant?

| Classification      | Mean Value          |  |
|---------------------|---------------------|--|
| All Data            | 0.41801142986850914 |  |
| Tolerant            | 0.30268707720812876 |  |
| Moderately Tolerant | 0.21181955553293932 |  |
| Intolerant          | 0.1140208128016585  |  |
| Unknown             | 0.8181050847388662  |  |

## **A1 Full Results**

The following pages have the trace charts for the variables in the model, for the entire dataset and the subsets I compared. The charts on the left side show the probability distribution for the variable at the end of the sampling, the charts on the right side show the mean of the variable during the trace. The left side charts are particularly useful because on top of visually depicting the most likely value for the variable in the model, they also show confidence in the value.

Data for the entire population:

Intercept 59.748923116347434
Flood\_6Months -17.86241584451161
MultipleFloods\_6Months 24.06036836740004
Drought\_6Months 24.97573278496801
Flood\_6Months Normalized -0.29895795460160207
MultipleFloods\_6Months Normalized 0.4026912471802705
Drought 6Months Normalized 0.41801142986850914



#### Data for Intolerant Species

Intercept 29.272990398236775
Flood\_6Months -10.438662933060936
MultipleFloods\_6Months 6.9009643218683925
Drought\_6Months 8.860555904783906
Flood\_6Months Normalized -0.3565970811676861
MultipleFloods\_6Months Normalized 0.23574510933068404
Drought\_6Months Normalized 0.30268707720812876



## Data for Moderately Tolerant Species

Intercept 46.19413763532205
Flood\_6Months -20.825941007892215
MultipleFloods\_6Months 4.331057976519299
Drought\_6Months 9.784821702141342
Flood\_6Months Normalized -0.4508351508215578
MultipleFloods\_6Months Normalized 0.09375774066204416
Drought\_6Months Normalized 0.21181955553293932



#### **Data for Tolerant Species**

Intercept 57.2367494043198
Flood\_6Months -18.130999791576176
MultipleFloods\_6Months 18.152133249336522
Drought\_6Months 6.526180689205387
Flood\_6Months Normalized -0.3167720036562346
MultipleFloods\_6Months Normalized 0.31714123248177567
Drought 6Months Normalized 0.1140208128016585



#### Data for Unknown Tolerance Species

Intercept 0.5872680087324352 Flood\_6Months 0.3030259390819592 MultipleFloods\_6Months 0.3553500130880923 Drought\_6Months 0.48044694404847416 Flood\_6Months Normalized 0.5159925869893939 MultipleFloods\_6Months Normalized 0.6050900233014277 Drought 6Months Normalized 0.8181050847388662



# A2 Code

Code is included as a jupyter notebook. The sampler code seems to have an intermittent failure. I tried to figure out how to fix it, and read that changing the initialization of the sampler might fix it, but I wasn't able to get that to work.

My regression code is based on this tutorial: <a href="https://docs.pymc.io/notebooks/GLM-linear.html">https://docs.pymc.io/notebooks/GLM-linear.html</a>

The pymc3 sampler uses this algorithm: <a href="https://arxiv.org/abs/1111.4246">https://arxiv.org/abs/1111.4246</a>