Analysis of differential gene expression in wild and cultivated rice under drought stress

Ingo Giebel

Math.-Nat. Fakultät, Heinrich-Heine-Universität Düsseldorf

QBio304: Applied Bioinformatics

Prof. Dr. Björn Usadel

Dr. Jedrzej Jakub Szymanski

May 1, 2023

Contents

1	Abstract		2
2	Introduction		
	2.1	Background	2
	2.2	Objectives	
3	Materials and methods		
	3.1	Selection of publicly available plant RNA-seq data	2
	3.2	Quality evaluation	2
	3.3	Mapping to the respective genome	2
	3.4	Statistical evaluation and differential expression analysis	2
	3.5	Functional enrichment analysis	3
4	Results		
	4.1	Quality evaluation	3
	4.2	Mapping efficiency and coverage	3
	4.3	Exploratory data analysis	
	4.4	Differentially expressed genes	
	4.5	Functional enrichment analysis	
5			3
	5.1	Critical evaluation of the results	3
	5.2	Biological implications	
	5.3		4
6	Conclusion		4

1 Abstract

Provide a brief summary of the purpose of the assignment, the methods used, the main findings, and the significance of the results. Limit the abstract to 200-250 words.

2 Introduction

2.1 Background

Introduce and explain the study and give a rationale for the RNA-seq analysis. Discuss why of RNA sequencing in understanding gene expression and regulation in plants and why it is used in this study.

2.2 Objectives

State the specific aims of the assignment, which include obtaining plant RNA-seq data, evaluating its quality, mapping to a respective genome, performing statistical evaluation, differential expression analysis, functional enrichment analysis, and critically evaluating and discussing the results.

3 Materials and methods

3.1 Selection of publicly available plant RNA-seq data

Explain the criteria for selecting the data and the source of the published study.

3.2 Quality evaluation

Describe the tools and methods used to assess the quality of the selected RNA-seq data.

3.3 Mapping to the respective genome

Detail the reference genome used and the bioinformatics tools employed for the mapping process.

3.4 Statistical evaluation and differential expression analysis

Explain the statistical methods and software used for evaluating the data and identifying differentially expressed genes.

3.5 Functional enrichment analysis

Describe the tools and databases used to perform functional enrichment analysis to interpret the biological significance of the differentially expressed genes.

4 Results

4.1 Quality evaluation

Present the findings from the quality evaluation of the selected RNA-seq data.

4.2 Mapping efficiency and coverage

Report the results of the mapping process, including the mapping efficiency and coverage.

4.3 Exploratory data analysis

Discuss the dominating variance components, reproducibility, possible batch effects and confounding variables.

4.4 Differentially expressed genes

Discuss the identified differentially expressed genes and their potential biological significance.

4.5 Functional enrichment analysis

Present the results of the functional enrichment analysis, highlighting the enriched functional categories.

5 Discussion

5.1 Critical evaluation of the results

Discuss the quality and reliability of the RNA-seq data and the downstream analyses.

5.2 Biological implications

Discuss the potential implications of the findings for plant biology and the broader scientific community.

5.3 Limitations and future directions

Address the limitations of the current analysis and suggest possible future directions to expand on the findings.

6 Conclusion

Summarize the main findings of the assignment, reiterating the significance of the results, and provide a final statement on the overall outcome of the study.