

Why Graph Optimizations? - Many problems one easily expressed as a set of transitions between states of a system. Such problems can naturally be approached as graph search. Fig. flight paths, cost of different layover options Planning the actions of an autonomous agent, e.g., robot. - Modes can represent the states of a system, and edges represent the actions that mil transition the system from one state to emotion. Graph algorithms Breadth-Kirst search Can be implemented inth Quene - worked hot Initialize quene Q 18 B Mark v as visited, push to queue X While Q is not empty Take front element, call it is * For each W -> 4 K If u is not visited, (E mark it as visited and H push it to Q Visited: A, B, D, G, E, F, C, H Depth-first search: Uses stack; 2, Visit 3, Mark as visited. D75(v): X mark v as visited 8 8 For each edge V -> U: 天天 if u is not usited, call DFS(u) Stack: Visited; A, B, E, G, F, C, H, D

Shortest Path Problem Dijksfra's algorithm : used for graphs with positive edge weights. Priority quene or Reap. Initialize source to zero and 3 every other vertex to do Relax all out-edges from source - Check if edge com give shorter pat to connected viertex than current shortest Oa 5a 60 path. 5a - Heat verten to relan: verten 00 56 11c C 80 12c closest to source. d 56 11c 12c 8 110 91 95 Example 2 B 6 d 85 65 55 00 55 OB 65 90 00 00 65 00 00 9d 00 7d 8a 90 00 00

d

14e

He

14e

80

90

90

120

95

90

Bellman-Ford Single-Source Shortest Path Algorithm

marimum V-1 iterations.

Repeatedly relax all edges in the graph.

Iterations	5	A	B	C	D	E	
1	0	10	04.	∞	06	8	
	0	10	10	12	9	×	
2	0	5	10	8	9	8	
3	D	5D	50	7.	9:	8-	
				A		05	

Enample 2

	5	A	B	C	D	
1	0	45	6s	000	Ø	
		18	65	70	78	
2	0	10	65	4	GA	
3		18	6s	4A	66 =	


```
Topological sort algorithm
function Top Set (G)
  for i = 1 to n
     indegree [i] = 0;
     LPT[i] = 0;
 for i = 1 to so
      for (i,j) in E
         indegree [j] = indegree [j] +1
 for i=1 to n
    if indegree [j] == 0
        add i to Queue
 while Quene is not empty
   j = remove head (Queue)
   fr (j, K) in E
       indegree [K] = Indegree [K] -1
       LPT[K] = man (LPT[K], 1+ LPT[j])
      if indegree [K] == 0
          add K to amene.
```

Topological sort/longest path example

Indegree

	0	
4	2+9=2	
6	Z+i= ;	£.g., of
7	j+e=f	dependencie
8	z+f=K)

Node: 1 4 2 5 3 6 7 8 Longest 0 1 0 1 1 2 3 4

Weighted DAG example

Topological ordering 3,2,9,8,1,4,5,6,7 er,3,4,5,2,9,8,6,7

Longest path - 19

Longest part: DAG

Graph representation of datapaths Example 1

Delays

Adder: 5ns

Comp: 3.5ns

Multiplier: 8ns

Subtractor: 5.5 ns

Multipleson: 2ns

Whres: Ins

Component delays

Parallel bad register: 11

Multiplener: 8

Multiplier: 12 Adder: 7

Comparato : 7

Graph representation of datapaths 2 Example 2 contid

Virt Verlex weights can be translated to a graph with only edge weights.

£:9;

- find subgraphs that start at inop or reg and end at
- Find longest path in subgraph.