Extending communication games to more players

Veronica Boyce

LangCog Lab Meeting

1

Extending communication games to more players

Veronica Boyce

LangCog Lab Meeting

Extending communication games to more players

Veronica Boyce

LangCog Lab Meeting

1

BLAH BLAH BIG PICTURE

All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.

3

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- Um, the next one's the person ice skating that has two arms?

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- Um, the next one's the person ice skating that has two arms?
- The fourth one is the person ice skating, with two arms.

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- 2 Um, the next one's the person ice skating that has two arms?
- The fourth one is the person ice skating, with two arms.
- 4 The next one's the ice skater.

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- Um, the next one's the person ice skating that has two arms?
- The fourth one is the person ice skating, with two arms.
- 4 The next one's the ice skater.
- The fourth one's the ice skater.

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- Um, the next one's the person ice skating that has two arms?
- The fourth one is the person ice skating, with two arms.
- The next one's the ice skater.
- 5 The fourth one's the ice skater.
- The ice skater.

3

4

How do referring expressions develop?

How do referring expressions develop?

 Mental modelling (ex. RSA) (Clark & Wilkes-Gibbs 1986, Goodman & Frank 2016)

How do referring expressions develop?

- Mental modelling (ex. RSA) (Clark & Wilkes-Gibbs 1986, Goodman & Frank 2016)
- Interactive Alignment Account bottom up priming (Garrod & Pickering 2009)

How do referring expressions develop?

- Mental modelling (ex. RSA) (Clark & Wilkes-Gibbs 1986, Goodman & Frank 2016)
- Interactive Alignment Account bottom up priming (Garrod & Pickering 2009)

What are the speaker's strategies?

How do referring expressions develop?

- Mental modelling (ex. RSA) (Clark & Wilkes-Gibbs 1986, Goodman & Frank 2016)
- Interactive Alignment Account bottom up priming (Garrod & Pickering 2009)

What are the speaker's strategies?

- Audience design
- Common ground
- "Aim Low" (ex. Yoon & Brown-Schmidt 2019)

Scaling up with web-based experiments

Cued version with feedback on each trial

Scaling up with web-based experiments

- Cued version with feedback on each trial
- Message with a chat box

Scaling up with web-based experiments

- · Cued version with feedback on each trial
- Message with a chat box
- After all exclusions, 83 dyads

Scaling up with web-based experiments

- Cued version with feedback on each trial
- · Message with a chat box
- After all exclusions, 83 dyads

Semantics converge within and diverge between groups

7

Weber & Camerer 2003

Weber & Camerer 2003

Two speaker/listener pairs train separately Then 'merger': speaker talks with *both* listeners

Weber & Camerer 2003

Two speaker/listener pairs train separately Then 'merger': speaker talks with *both* listeners

Yoon & Brown-Schmidt 2019

Speaker talks to multiple matchers

Examine speaker's utterance length, elaborations, disfluencies

END BAD PART

First Year Project

Dynamics of alignment in larger groups

First Year Project

Dynamics of alignment in larger groups Compare groups of 2/3/4 communicators

Look for differential reduction

First Year Project

Dynamics of alignment in larger groups Compare groups of 2/3/4 communicators

Look for differential reduction

Rotate who is the knowledgeable speaker

- · Chosen for participant experience
- Stronger measure of alignment

Implemented in Empirica (Almaatouq et al 2020)

Bonus: 4 points

Bonus: 0 points

Bonus: Average of listeners = (2/3) * 4 points

Recruitment

Goal: 20 games in each of 2/3/4-player conditions Each game has 6 blocks of 12 tangrams

Recruitment

Goal: 20 games in each of 2/3/4-player conditions Each game has 6 blocks of 12 tangrams

Actual recruitment (over 3 days):

- 15 2-player games (+ 4 partial)
- 18 3-player games (+ 2 partial)
- 20 4-player games (+ 1 partial)

Include all complete blocks

Results: Accuracy is high and increasing

Results: Faster in later rounds

Results: Reduction in words over time

Results: Variability in reduction rate

Most groups/tangrams reduce gradually

Results: Tangrams vary in nameability

Example: iBaby

A(S):Looks like a letter 'i'

C: does it look like with its hand out or not

B: ^

A(S): no hand it is just a head and a body.

C: oke

A(S): more like a baby that has been swaddled in a blanket

B(S): swaddled baby

B(S): I

B(S): i

3 C(S): the baby i

D(S): baby swaddled, looks like an i

A(S): swaddled baby

B(S): iBaby

Example: Skydiving ghost superman

- A(S):flying man
 - A(S): like superman
 - A(S): hands in the air
 - A(S): like skydiving
- B(S): the diver with no legs
 - A: ok
- 3 C(S): This one looks like a ghost to me, but you called it superman or skydiver
 - A: ok no legs?
 - C(S): Correct A: ok
- A(S): ghost, superman, skydiver
- ⑤ B(S): sky diver, ghost
 - A: ok
- © C(S): Skydiving ghost superman

Example: Karate kid

*

A(S): Similar to the karate kid movie

A(S): the crane kick

B: Haha! Does it look like they have dangly sleeves!

C: I don't know that one.

A(S): yes

D:yes i see, thats a good explenation.

Example: Lack of shorthand

- A(S):Diamond on top. Body with no real arms or legs. The body is shaped like a boot with the diamond on top.
 C: Is the boot pointed left or right?
- B(S): diamond on top, large body beneath it. Left is a straight line all the way down, small variations on the right to the main body
- 3 C(S): Diamond in center on top. Left side straight, right side carved out like a vase.
- D(S): Diamond head, flat topped body, straight on the left side
 with two triangles pointing out on the left
 D(S): *on the right
- S A(S): Diamond on top. Left side is straight, right side is obstructed, looks like a boot
 B: what do you mean by obstructed?
 - A(S): The left side of the body is right, right side has bents in it
- 6 B(S): Diamond on top of a long large body/rectangle. Left side is complete, right side has bits missing

Example: Meta doesn't always help

1 ...A(S): yes, the legs are like a zig zag

C: CODE name ZIGZAG

A(S): There are no legs upwards

B(S): okay so similar to begger guy but no foot pointing up

B(S): its like a zigzag

B(S): i forgot the code name

D: zigzag yea

A: The one standing with knees bent listener

B(S): yeah

B(S): standing

C: Yeah zigzag

3 C(S): The begger with no foot coming out from the left

B: zigzag

C(S): zigzag it is

C(S): sorry i forgot

4 D(S): zigzag

A(S): zigzag

6 B(S): beggar guy

B(S): zigzag

Future analyses: Semantics

- Convergence by group size
- Accuracy & convergence
- Geometric v metaphorical language

Future directions

How far does this generalize?

- · group size
- · item sets
- · game paradigms

What makes communication more efficient?

- Background knowledge
- Curriculum learning

Comments, Questions?

Looking for feedback on

- Analyses
- · Future data sets