Architecture des ordinateurs: TD2

Université de Tours

Département informatique de Blois

Logique booléenne et circuits combinatoires

Problème 1

On veut concevoir un circuit combinatoire permettant de comparer deux nombres A et B de 4 bits, $A = \langle a_3 a_2 a_1 a_0 \rangle_2$ et $B = \langle b_3 b_2 b_1 b_0 \rangle_2$.

Le circuit possède deux sorties :

$$G(A,B) = \begin{cases} 1 & \text{Si } A > B \\ 0 & \text{Sinon} \end{cases} \quad \text{et} \quad E(A,B) = \begin{cases} 1 & \text{Si } A = B \\ 0 & \text{Sinon} \end{cases}$$

1. Soient a et b deux bits. Soit un circuit à deux sorties :

$$g(a,b) = \begin{cases} 1 & \text{Si } a > b \\ 0 & \text{Sinon} \end{cases} \quad \text{et} \quad e(a,b) = \begin{cases} 1 & \text{Si } a = b \\ 0 & \text{Sinon} \end{cases}.$$

Donner l'expression logique de g et e puis dessiner le circuit correspondant à un comparateur 1 bit.

On a : $g(a, b) = a \land \neg b$ On a : $e(a, b) = a \Leftrightarrow b$ $= \neg(a \oplus b)$

2. En utilisant le circuit de la question précédente ainsi que des portes logiques \vee, \wedge (éventuellement à entrées ≥ 3) et \neg , proposer un circuit permettant de comparer deux nombres de 4 bits.

On a A > B = G(A, B) dans un des cas suivants est vrai :

- • $a_3 = b_3 \wedge a_2 = b_2 \wedge a_1 = b_1 \wedge a_0 > b_0 \equiv e_3 \wedge e_2 \wedge e_1 \wedge g_0$

On réalise chacun de ces cas au sein du circuit puis on les fusionne par une porte OU (car au moins un des cas doit être à vrai).

Pour la fonction E(A, B), celle-ci vaut vrai si et seulement si $\forall i \in \{0, 1, 2, 3\}, a_i = b_i$, soit $E(A, B) = e_3 \land e_2 \land e_1 \land e_0$.

Problème 2

On cherche à représenter la fonction implémentant un hidden bit.

Cette fonction prend en entrée k valeurs booléennes et retourne une valeur booléenne. Soient k entrées binaires $a_1, a_2, ..., a_k$ et soit $s = \text{card}(\{i | a_i = 1\})$.

La sortie S est alors égale à 0 si s = 0 et elle est égale à a_s si $s \in [1, k]$.

- 1. Dresser la table de vérité de S pour k=3.
- 2. Simplifier S à l'aide des tableaux de Karnaugh.
- 3. Dessiner le circuit combinatoire correspondant. À quel autre circuit celui-ci correspond-il?

Problème 3

L'opérateur Nand noté \uparrow est un opérateur très utilisé en électronique et dans la réalisation des microprocesseurs car il forme un système complet de connecteurs à lui seul.

1. Montrer que $x \oplus y = [(x \uparrow y) \uparrow x] \uparrow [y \uparrow (x \uparrow y)]$. On rappelle que l'opérateur \oplus désigne le OU exclusif (ou Xor).

On rappelle que : $x \uparrow y = \neg(x \land y)$

De, même, on rappelle que $x \oplus y = (x \vee y) \wedge (\neg x \vee \neg y)$, dès lors, on a :

$$x \oplus y = (x \lor y) \land (\neg x \lor \neg y)$$
$$= (x \lor y) \land \neg (x \land y)$$
$$= (x \lor y) \land (x \uparrow y)$$

$$= [x \wedge (x \uparrow y)] \vee [y \wedge (x \uparrow y)] \ Distributivit\acute{e}$$

$$= \neg (\neg [x \wedge (x \uparrow y)] \wedge \neg [y \wedge (x \uparrow y)]) \ Double \ n\acute{e}gation \ \text{et Loi de de Morgan}$$

$$= \neg ([x \uparrow (x \uparrow y)] \wedge [y \uparrow (x \uparrow y)])$$

$$= [x \uparrow (x \uparrow y)] \uparrow [y \uparrow (x \uparrow y)]$$

- 2. Sur la modélisation de \oplus :
 - (a) Proposer un circuit bien modélisé de l'opérateur \oplus à l'aide du système d'opérateurs $\{\lor,\land,\lnot\}$.

On utilise le fait que $x \oplus y = (x \vee y) \wedge \neg (x \wedge y)$

(b) Expliquer pourquoi la modélisation 2.(a) n'est pas satisfaisante. Proposer un circuit logique à l'aide de l'opérateur Nand. Pourquoi cette modélisation est meilleure?

Le circuit précédent n'est pas satisfaisant car il ne minimise pas le nombre de portes logiques différentes.

À l'aide du connecteur Nand, on obtient le circuit suivant :

Ce circuit est meilleur que le précédent car il contient le même nombre de portes logiques mais utilise uniquement le Nand qui est un système complet ; ceci permet des économies en terme de commande de composants ou en simplicité de gravure des wafers.

Problème 4

Soit la fonction booléenne P de n variables booléennes définie telle que :

$$P(x_1, ..., x_n) = \bigoplus_{i=1}^n x_i$$

Où \oplus désigne l'opérateur Ou exclusif (XOR). On rappelle que l'opérateur \oplus est associatif et commutatif, ainsi P s'écrit aussi comme $P(x_1, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$.

Cette fonction est appelée fonction de clé de parité.

1. Montrer que la valeur de la fonction P est 1 si et seulement s'il y'a, parmi $x_1, ..., x_n$, un nombre impair de variables valant 1.

Par commutativité et associativité de \oplus , il est possible de grouper les variables x_i selon leur valeur de vérité. On crée les ensembles $E^+ = \{x_i | x_i = 1\}$ et $E^- = \{x_j | x_j = 0\}$. On a évidemment $E^+ \cap E^- = \emptyset$ et $E^+ \cup E^- = \{x_1, ..., x_n\}$.

Dès lors :
$$P(x_1,...,x_n)=\bigoplus_{x_i\in E^+}x_i\oplus\bigoplus_{x_j\in E^-}x_j$$

$$=\bigoplus_{x_i\in E^+}x_i \text{ (Car 0 est l'élément neutre de }\oplus.\text{)}$$

$$=\underbrace{1}_{0}\oplus 1\oplus 1\oplus 1\oplus 1\oplus...\oplus 1=0$$

On observe la forme d'une suite de forme 1 0 1 0 1 0 \ldots .

On en déduit que :

$$P(x_1, ..., x_n) = \begin{cases} 1 & \text{si } |E^+| = 2n + 1 \\ 0 & \text{sinon} \end{cases}$$

- 2. On considère x, un vecteur binaire tel que $x = \langle x_1, ..., x_n \rangle$.
 - (a) Écrire une fonction cle_parite en C ou en Java utilisant les opérateurs $\hat{}$ (ou exclusif) et \gg (décalage à droite) qui implémente la fonction P(x).

(b) Écrire une fonction cle_parite_log en C ou en Java, plus efficace, permettant de calculer P(x) s'appuyant sur l'exemple ci-dessous.

Exemple : pour 8 bits stockés dans la donnée x, on calcule :

```
y=4 forts \oplus 4 faibles de x=\langle x_7\oplus x_3, x_6\oplus x_2, x_5\oplus x_1, x_4\oplus x_0\rangle
z=2 forts \oplus 2 faibles de y=\langle y_3\oplus x_1, y_2\oplus y_0\rangle
t=z_1\oplus z_0 puis on retourne t.
```

- 3. Combien d'étapes pour 16, 32, 64 bits? pour 2^n ? Combien d'étapes avec la méthode initiale? Pourquoi qualifie t-on cette méthode de logarithmique?
- 4. Appliquer la méthode de la question 2.b pour les valeurs $x = 2^8 1$ et x = -15.
- 5. Traduire sur papier les méthodes 2.a et 2.b du calcul de la clé de parité P(x) sous forme de circuits logiques à 8 entrée et 1 sortie, avec des portes XOR.

Problème 5

On dit qu'une fonction booléenne est sous forme minimale si elle se réduit au système de connecteurs $\{\Rightarrow,0\}$. Où 0 représente la valeur FAUX d'arité 0.

On veut montrer que toute formule $f \in \mathcal{B}$ admet une forme minimale équivalente.

1. Montrer que les opérateurs \neg et \lor peuvent être exprimés à l'aide du système $\{\Rightarrow,0\}$.

On sait que $p \Rightarrow 0 \equiv \neg p \lor 0$. Dès lors, $p \Rightarrow 0 \equiv \neg p$.

Par linéarité de \neg , on déduit que $p \lor q \equiv \neg p \Rightarrow q$. Dès lors, on a $p \lor q \equiv (p \Rightarrow 0) \Rightarrow q$.

2. Donner la table de vérité de la formule $(p \Rightarrow (q \Rightarrow 0)) \Rightarrow 0$ et la comparer à $p \land q$.

p	q	$(p \Rightarrow (q \Rightarrow 0))$	$((p \Rightarrow (q \Rightarrow 0)) \Rightarrow 0)$
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

La table de vérité de la formule $((p \Rightarrow (q \Rightarrow 0)) \Rightarrow 0)$ est équivalente à celle de $p \land q$.

3. Que pouvez-vous déduire à l'aide des questions précédentes ?

On peut déduire que $\{\Rightarrow,0\}$ forme un système complet de connecteurs.

4. Déduire des questions précédentes une fonction min qui transforme toute fonction f de la logique booléenne en une fonction équivalente sous forme minimale.

Soient $x \in B$ et $f, f' \in \mathcal{B}^2$. On considère l'ensemble de règles suivant :

$$\bullet \ \min(0) = 0$$

$$\bullet \ \min(f) = \min(f) \Rightarrow 0$$

•
$$\min(1) = 0 \Rightarrow 0$$

$$\bullet \ \min(f \vee f') = (\min(f) \Rightarrow 0) \Rightarrow \min(f')$$

•
$$\min(x) = x$$

$$\bullet \ \min(f \wedge f') = (\min(f) \Rightarrow (\min(f') \Rightarrow 0)) \Rightarrow$$

•
$$\min(1) = 0 \Rightarrow 0$$

• $\min(x) = x$
• $\min(f \Rightarrow f') = \min(f) \Rightarrow \min(f')$

Problème 6

Démontrer les assertions vraies. Donner un contre-exemple ou justifier soigneusement les assertions fausses.

1. L'unique connecteur unaire existant en logique booléenne est la négation \neg .

2. Le système de connecteurs $\{\oplus, \vee, 1\}$ est complet. On précise que 1 est la constante VRAI d'arité 0.

5

3. Il est vrai que $x \uparrow y = [(x \downarrow x) \downarrow (y \downarrow y)] \downarrow [(x \downarrow x) \downarrow (y \downarrow y)].$

4. La fonction logique $f(x, y, z) = \neg x \land y$ est identique au circuit logique ci-dessous.

5. Soient x_3, x_2, x_1 et x_0 quatre variables booléennes. On note $x = \langle x_3 x_2 x_1 x_0 \rangle_2$. On pose la fonction booléenne $\varphi(x) = \begin{cases} 1 & \text{si } x < \langle 1001 \rangle_2 \\ 0 & \text{sinon} \end{cases}$.

Il est vrai que $\varphi(x) = \neg x_3 \lor (\neg x_2 \land \neg x_1)$.