Дискретная математика

Коченюк Анатолий

22 сентября 2020 г.

0.1 Введение

Связаться:

- stankev@gmail.com Собирать культуру общения: указывать Фамилию, Имя
- Телеграм @andrewzta (для немедленного ответа. Если нет, оно утонет).
- +79219034426 (для катастрофических ситуаций, ожидается, что звонить никто не будет) (ни в коем случае не писать смс)

Обращаться можно по методическим вопросам. Если проблема группы – пишет староста.

Не писать по учебно-методическим проблемам (общежитие, медосмотр, армия ..) для этого есть зам. декана Харченко (легко найти контакты в ису)

Про отчётность будет на первой практике.

Лекции есть в ютубе andrewzta

Глава 1

1 курс

1.1 Фундамент

Множество – неопределяемое понятие. Множество состоит из элементов. $a \in A$ а-маленькое принадлежит множеству А-большое

$$A = \{2, 3, 9\}$$

$$A = \{n \mid n \text{ чётно}, n \in \mathbb{N}\}$$
 — фильтр

A, B:

- $A \cup B = \{a \mid a \in A$ или $a \in B\}$
- $A \cap B = \{a \mid a \in A \text{ и } a \in B\}$
- $A \setminus B = \{a | a \in A \text{ и } a \notin B\}$
- $\overline{A} = \{a | a \notin A\}$??? U универсум

$$\overline{A} = U \setminus A$$

$$A \setminus B = A \cap \overline{B}$$

• $A \triangle B = A \oplus B = (A \cup B) \setminus (A \cap B)$

Замечание. Если множество – любой набор чего-угодно возникает парадокс Рассела

$$A = \{a|a$$
 – множество, $a \notin a\}$

Вопрос лежит ли в себе A?

Определение 1 (Пара). A, B — множества. Мы можем рассмотреть множество пар, где первый элемент из A, а второй из B

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

$$A \times A = A^2$$

$$(A\times B)\times C=\{(x,y)|x\in A\times B,y\in C\}=\{((a,b),y)|a\in A,b\in B,y\in C\}$$

$$A \times (B \times C) = \{(a, (y, z)) | a \in A, y \in B, z \in C\}$$

$$A \times B \times C = \{(a, b, c) | a \in A, b \in B, c \in C\}$$

Для простоты, здесь и далее эта операция будет считаться ассоциативной и первые две строчки будут давать то же, что третья – множество троек.

$$A \times A \times A = A^3 A^n = \begin{cases} A &, n = 1 \\ A \times A^{n-1} &, n > 1 \end{cases}$$

 $A^0 = \{ [] \} = \{ \varepsilon \}$ – пустая последовательность.

Пример.
$$A = 2, 3, 9 -> A \times A = \{(2, 2), (2, 3), (2, 9), (3, 2), (3, 3), \ldots\}$$

Замечание. У множества есть элемента и для любого элемента из универсума, он либо входит (1 раз) либо не входит.

Определение 2. Функция – отображение, которое каждому элементу из одного множества ставит в соответветвие единственный элемент из другого множества

$$f: A \to B$$

График $\{(x, f(x))\}.$

Формально будем отождествлять функцию и её график.

$$f \subset A \times B \quad \forall a \in A \exists ! b \in B \quad (a, b) \in f$$

Замечание. Не путайте принадлежность и включение

 $a \in A$

 $A, B, \forall a \text{ (если } a \in A, \text{ то } a \in B) A \subset B$

 $D_4 = \{n | n \text{ кратно } 4\}$

 $E = \{n|n$ чётно $\}$

 $D_4 \subset E$

 $\{2,3,9\} \subset \{2,3,4,\ldots,9\}$

 $A \subset A$

4

ГЛАВА 1. 1 КУРС

 $\emptyset \subset A$

 $A \subset U$

Замечание. Необязательно все b попадают в график.

 $sqr: \mathbb{N} \to \mathbb{N}$ – только квадраты чисел

Определение 3. $\forall b \in B \exists a \in A : b = f(a)$ – сюръекция

Определение 4. $\forall a \in A \forall b \in B \quad a \neq b \implies f(a) \neq f(b)$

Замечание. Принцип Дирихле – нет инъекции из большего в меньшее множества. Если кроликов больше, чем клеток, то какому-то кролику не хватит клетки

Определение 5. Если f – инъекция и сюръекция, то f – называется биекцией

Если между двумя конечными множествами есть биекция, то у низ равное количество элементов.

Определение 6. Два множества называется равномощными, если между ними есть дикция

 B^A – множество функций из A в B

$$|A| = a, |B| = b$$
 $|A \times B| = a \cdot b$ $|B^A| = b^a$

 $|A^{\emptyset}|=1$ эфемерная функция, которой ничего не передать

$$\emptyset^A = \emptyset, A \neq \emptyset$$

$$\emptyset^{\emptyset} = 1$$

Определение 7. $R \subset A \times B$ – отношение (бинарное)

Пример. $A = B = \mathbb{N}$ $R = \{(a, b) | a < b\}$ R = <

a:b 6:2 6 /5

$$A =$$
 люди, $B =$ собаки, $R = \{(a, b)|a -$ хозяин $b\}$

Рассмотрим 5 классов отношение на квадрате множества:

1. рефлексивные $\forall a \quad aRa$

RC(R) – рефлексивное замыкание, включаем все пары (a,a)

- 2. антирефлексивные $\forall a \neg aRa$
- 3. симметричные $aRb \implies bRa$
- 4. антисимметричные $aRb, a \neq b \implies \neg bRa$ или aRb и $bRa \implies a = b$
- 5. транзитивность $aRb, bRc \implies aRc$

Определение 8. 1+3+5 – рефлексивные, симметричные и тразитивные – называются отношениями эквивалентности.

Теорема 1. R – отношение эквивалентности на X, то элементы X можно разбить на классы эквивалентности так, что:

a и b в одном классе $\implies aRb$ a и b в разных классах $\implies \neg aRb$ множество таких классов обозначается X/R

$$N/\equiv_3=$$

$$\{ \{1,4,7,10,\ldots) \\ \{2,5,8,11,\ldots) \} \\ \{3,6,9,12,\ldots) \} \}$$

Замечание. Отношение равномощности – отношение эквивалентности.

Классы эквивалентности – порядки. Для конечного случая обозначаются числами

Определение 9. 1+4+5 – рефлексивные, антисимметричные и транзитивные – частичные порядки

Множество, на котором введён частичный порядок, то оно называется частично упорядоченным. (ч.у.м – частично упорядоченное множество, poset – partially organised set)

$$R \subset X \times X$$

$$X, Y, Z \quad R: X \times Y \quad S: Y \times Z$$

Определение 10. Композиция отношений:

$$T = R \circ S$$
 $xTy \iff \exists z : xRz$ и zSy

т.е. есть z, через который можно пройти, чтобы попасть в y из x

Замечание. $R \subseteq X \times X$ $S \subseteq X \times X$

$$R \circ S \subseteq X \times X$$

 $R \circ R \subseteq X \times X$ – пройти два раза по стрелкам

$$R^3=R\circ R^2=R^2\circ R$$
 – пути длины ровно 3

 $S \circ T \circ U$ – идём по стр
лке из S в T, а потом в U

Определение 11. Транзитивное замыкание.

$$R^+ = \bigcup_{k=1}^{\infty} R^k$$

 $R^0 = \{(x,x) | x \in X\}$ – они не включаются по дефолту в R^+

 $R^* = \bigcup_{k=0}^{\infty} R^k = R^+ \cup R^0$ — если между двумя вершинами существует какой-либо путь

Замечание. Транзитивное замыкание – транзитивно

Пусть
$$xR^+y \implies xR^iy$$

Пусть
$$yR^+z \implies yR^jz$$

$$\implies x(R^i \circ R^j)z \implies xR^kz$$

Замечание. $\forall T: T$ – транзитивно. $T \subset R \implies T^+ \subset R$

Доказательство. По индукции:

База:
$$R^1 \subset T$$
 – дано

Переход:
$$R^i \subset T \implies R^{i+1} \subset T$$

$$xR^{i+1}y \implies x(R \circ R^i)y \implies \exists z: xRz\&zR^iy \implies xTz\&zTy \implies xTy$$
 (по транзитивности $T)$

1.2 Булевы функции

 \emptyset – пустое множество. С функциями из/в него всё достаточно грустно.

 $\{unit\}$

void – ничего, константная функция

$$\mathbb{B} = \{0, 1\}$$

 $f:A_1\times A_2\times\ldots\times A_n\to B$ – функция от нескольких аргументов. Из одного, но декартового произведения

Булева функция: $f: \mathbb{B}^n \to B$

n=0 – ноль аргументов $\mathbb{B}^0=\{[]\}$

0, 1

n = 1

Таблица 1.1: n=1

X	0	id	\neg	1
0	0	0	1	1
1	0	1	0	1

Замечание. Подобные таблицы называются таблицами истинности функций

n = 2

Таблица 1.2: n=2

X	У	0	\wedge	\rightarrow	P_1	#	P_2	\oplus	\vee	\downarrow	=	$\neg P_2$	\leftarrow	$\neg P_1$	\rightarrow	\uparrow	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

С помощью стрелки Пирса (\downarrow) и штриха Шефера (†) можно выразить любую другую: $\neg x = x \downarrow x$

1.3 Задания булевых функций

Самый простой способ – таблица истинности

 $\oplus_n - 2^n$ значений. глупо их все отдельно описывать

1. Задание функции формулой.

Определим базисные функции, систему связок

например:
$$\land, \lor, \neg, \oplus$$

$$x_1 \oplus x_2 \oplus x_3 \dots$$

 $\{f_1,f_2,..,f_n\}$ – базисные. строка – формула. $f_i(x_1,\ldots,x_k)$ – формула

Определение 12. Дерево разбора формулы. Если у функции арность – k, то у ноды будет ровно k сыновей

 \overline{F} – функции, которые записываются формулами, используя F (замыкание F)

Теорема 2 (Теорема о стандартном базисе). $\overline{\{\land,\lor,\lnot\}} = \mathbb{B}$

Доказательство. Рассмотрим таблицу истинности функции f Она принимает n аргументов и в ней 2^n строк

Пусть $f \neq 0$. Рассмотрим строчки, в которых единицы.

По аргументам запишем с не – аргументы, которые 0, и без не – те, которые 1

 $\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4 \wedge x^5 - 1$ на ровно одном наборе элементов. А теперь возьмём "или"по всем строкам, в которых 1

Одна такая строка называется термом.

Такая форма называется совершенной дизъюнктивной нормальная формой

Лемма 1. Любая функция, кроме тождественного 0 – есть СДНФ $x \vee \neg x$ – тождественный ноль