## Quantitative Content Analysis: Lecture 7

Matthias Haber

29 March 2017

## Today's Outline

- Assignment 1 solution
- CMP: Validity and reliability issues
- Assignment 2

## Reliability & Validity

### Reliability

 Are measures that are derived from text analysis be stable when repeated?

### **Validity**

• Does the text analysis measure what it is supposed to measure

## CMP: Reliability within

#### Misclassification problem

- Ambuiguities and overlap in the Coding scheme:
  - '401: Free enterprise: Favorable mentions of free enterprise capitalismm; superiority of individual enterprise over state control systems...' +'402: Incentives: Need for wage and tax policies to induce enterprise' +'501: Environmental protection'
- CMP data are coded only once
- No estimate for the uncertainty resulting from the coding process

# CMP: Reliability within (II)

### The CMP's argument

- Reliability exists for the data set as a whole
   +i.e. for the RiLe scale or where substantial sub-sets of the data are input together the data has high reliability and validity
- Misclassification should 'cancel out'
  - +Miclassification within left/right/uncoded codes occur
  - +Misclassification between the groups of codes should be rare

## Are misclassifications self cancelling?

#### Mickhaylov et al. 2010

- Texts used in CMP-training;
   +Manifestos for UK and NZ + 'Gold-Standard'/'Master coding' gives 'true' coding
- Actual CMP-coders code manifestos
   +'Worst' 25% of coders are excluded in evaluation +(GB: 17, NZ: 12)
- ullet Coding of the two manifestos only uses  $\sim\!20$  of the 57 categories
- Correct unitizing is given for coders

## 1. Intercoder-reliability

### Intercoder-reliability

- Agreement between coders
- Calculated at
  - $+ \mbox{Full}$  56 categories level  $+ \mbox{RiLe-relevant}$  level, i.e. with right, left and other as categories, only
- .35 .36 for GB and .4 .47 for NZ
  - +Remember Krippendorff's suggestion from the first slide. . .

## 2. Coder-Master reliability

**Coder-Master reliability** - Agreement between coders and gold standard - Suggested kappa: .8





## 2. Coder-Master reliability (II)

- CMP argument: Disagreement cancels out
   +Data set as a whole is relable and valid +Misclassifications occur, but do not bias RiLe +i.e. occur between codes pertaining to the same side
- Misclassifications:
  - $+ {\sf Gold}$  standard gives true classification  $+ {\sf Are}$  misclassification within right/left/other or across?  $+ {\sf Measured}$  on the RiLe level, i.e. three categories

### 3. True vs. observed RiLe classification

|       |                       | True Rile Category |       |       | Total |
|-------|-----------------------|--------------------|-------|-------|-------|
|       |                       | Left               | Right | None  |       |
|       |                       |                    |       |       |       |
|       | Left                  | 430                | 100   | 188   | 718   |
|       |                       | 0.59               | 0.11  | 0.19  |       |
| Coded | Right                 | 41                 | 650   | 115   | 806   |
| Rile  |                       | 0.06               | 0.69  | 0.11  |       |
|       | None                  | 254                | 193   | 712   | 1,159 |
|       |                       | 0.35               | 0.20  | 0.70  |       |
|       | Total                 | 725                | 943   | 1,015 | 1,668 |
|       | "False negative" rate | .41                | .31   | .30   |       |
|       | "False positive" rate | .15                | .09   | .27   |       |

# Frequently misclassified categories

- Look at the probability for a code to be coded as left, right or other
- Compare with true coding (gold standard)



## Frequently misclassified categories (II)

- Coders assign truly left/right codes to the opposite categories (305 & 404)
- Truly uncoded text (headings etc.) are more likely to be coded left or right than other
- Additional noise?
- Bias in the RiLe scale?

## Assignment 2

- Register with the Manifesto Project and download the full CMP data set (v 2016b) directly into R using the manifestoR package.
- Chose a country of your interest and create an overview for the positions provided by the CMP (RiLe, Planeco, etc.) for each party. Display your results graphically.
- Analyze an entire party family (e.g. green parties) across multiple countries (>2) and choose an appropriate graphical presentation.
- Calculate an alternative right-left measures from Week 6 for either 2. and 3. and describe how results change.
- Exclude some of the most unreliable categories described in Mickhaylov et al. 2012 for either 2. or 3., recalculate and describe possible changes.

# Assignment 2 (II)

- Assignment is due on April 11
- Submit code via email
- Hand in short report in class

#### **Next Session**

- NO CLASS NEXT WEEK!
- Challenges involved in working with CMP data