Boğaziçi University Department of Mathematics Math 231 Advanced Calculus I Fall 2024 – First Midterm Exam.

1	2	3	4	\sum
25 pts	25 pts	25 pts	25 pts	100 pts

Date: October 22, 2024
Time: 17:00-18:30

Full Name: Property Signature Full Name: Property Sign

- 1. Mark the statements below as TRUE or FALSE. No justification is needed in this part. EACH INCORRECT ANSWER CANCELS A CORRECT ONE.
- 1. \square A line in \mathbb{R}^2 is closed in \mathbb{R}^2 .
- 1. \square A line in \mathbb{R}^- is closed in \mathbb{R} .

 2. \square Any finite set in \mathbb{R}^m is compact. Because a finite set is bounded & is a finite union of (closed) single tons.
- 3. T Every Cauchy sequence is bounded.
- 4. F If a bounded sequence (a_n) in \mathbb{R}^m has a convergent subsequence then (a_n) is convergent too. Conference $(-1)^n$

A sequence $(c_n)_{n=1}^{\infty}$ is said to be **Cauchy** if the following condition is satisfied (write in the box below):

Y €70, there is some N s.t. Yk, L≥N, |Ck-CL|<E.

2. (a) Show: If A, B are bounded sets of \mathbb{R} then $A \times B$ is bounded in \mathbb{R}^2 .

A lies in a large interval IA; B lies in IB. Then AXBCIAXIB.

(b) Consider the compact interval $I = [0, 1] \in \mathbb{R}$ and a function $f : I \to \mathbb{R}$. The **graph** $\Gamma_f \subset \mathbb{R}^2$ of f is defined as

$$\Gamma_f = \{(x, y) \in \mathbb{R}^2 \mid y = f(x)\} \subset \mathbb{R}^2.$$

Show: If f is continuous on I then Γ_f is compact.

SUNI [Set $F: I \rightarrow IR^2$, F(x) = (x, f(x)). Observe F = F(I).

F is continuous because its component thes are cont. The first component of the first continuous of F(I) is constant.

I is compact. Since f is cont, f(I) is compact too. By part (a), Ixf(I) is bounded. So $F\subset Ixf(I)$ is bounded too.

of is closed because (T_f) is open in R²:

SOLN2 Let (p,q) & If; i.e.

either $p \not\in I$, say p>1. Then $B(p-1, (p,q)) \subset (\Gamma_f)^c \subset (p,q)$ or $p \in I$ but $\Gamma = f(p) \neq q$. Then $P \in S$

we'll use the continuity of f as follows:

Given $E = \frac{f(p)-r}{2}$ 0, take \$>0 so that $B(s,p) \subset B(E,r)$. Then the open box $C = B(s,p) \times B(E,f(p))$ does not intersect f.

3. Prove that if (a_n) and (b_n) are Cauchy sequences in \mathbb{R}^m , then the sequence of distances $|a_n - b_n|$ converges. See the definationer for being Cauchy, to fix Na & Nb, given \$>0. We show the sequence Cn=lan-bnl is Cauchy (=> convergent) That is, given &>0, I'N s.t.k,n>N => |c,-cn|<2; Given 670, choose N=max (Non Nh). Then $|c_k-c_n|=|a_k-a_n+b_k-b_n|$ < |ac-an| + |bc-bn| < E/2 + E/2 4. For an arbitrary pair of real numbers $b_0 > a_0 \ge 0$, we consider the recurrence: $a_{n+1} = \sqrt{a_n b_n}$ and $b_{n+1} = \frac{a_n + b_n}{2}$; i.e. the next a_{n+1} is the geometric mean of the previous a_n and b_n , and the next b_{n+1} is the arithmetic mean of the previous a_n and b_n . (a) Show: For every $n \in \mathbb{Z}^{\geq 0}$, $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$. (A hint: Start with proving $a_n \leq b_n$. For this you might want to consider $b_n^2 - a_n^2$.) (b) Show that the sequences (a_n) and (b_n) converge, and they converge to the same limit. (You can commit this part assuming that part (a) is true.) (a) Observe $b_{n+1} - a_{n+1}^2 = \frac{1}{4}(a_n + b_n)^2 - a_n b_n = \frac{1}{4}(b_n - a_n)^2 > 0$ So $b_{n+1}-a_{n+1} > 0$, $\forall n$. So $b_{n+1}-a_{n+1} \ge 0$, $\forall n$.

Also, $a_{n+1}^2 = a_n b_n \ge a_n - a_n \implies a_{n+1} \ge a_n$;

(Since all a_n, b_n are nonnegative) and $b_{n+1} = \frac{1}{2} (a_n + b_n) \leq \frac{1}{2} (b_n + b_n) = b_n$. (b) By Mon Seq. Property, an > supanzia & bn > inf bn zib. Observe b<a would contradict with (a): (Work this out) Now, grenOZE
b-a, 3 some index k s.t. a-ak< & & b-b, < E. Then b-bk+1= = = (b-ak+b-bk) $\geq (b-\alpha-\epsilon)_{\beta} > 0$. bkan bk This contradicts with b&bk+1.