Введение в глубинное обучение

Куликов В.А. в соавторстве с Лемпицким В.С.

v.kulikov@skoltech.ru

Окурсе

- Основы машинного обучения
 - Линейная регрессия
 - Логистическая регрессия
 - Нейронные сети
- Сверточные нейронные сети
 - Классификация изображений
 - Представление внутри сетей
- Глубокое обучение в компьютерном зрении
 - Семантическая сегментация
 - Детекторы объектов

Краткая история машинного обучения

Семантические задачи (что есть на изображении)

Метрические задачи (геометрия и описание сцены)

Семантическая задача: собака или кошка?

Глубинное обучение - революция

Этапы развития глубинного обучения

- 2009: Распознавание речи
- 2012: Компьютерное зрение
- 2014: Автоматический перевод
- 1. Данные (огромное количество данным, которые можно использовать для обучения)
- 2. Графические ускорители

Completed • Swag • 215 teams

Dogs vs. Cats

Wed 25 Sep 2013 – Sat 1 Feb 2014 (8 months ago)

Dashboard

Private Leaderboard - Dogs vs. Cats

This competition has completed. This leaderboard reflects the final standings.

See someone

#	Δ1w	Team Name *in the money	Score 2	Entries	Last Submission UTC (Best - Last
1	_	Pierre Sermanet *	0.98914	5	Sat, 01 Feb 2014 21:43:19 (-
2	↑26	orchid *	0.98309	17	Sat, 01 Feb 2014 23:52:30
3	_	Owen	0.98171	15	Sat, 01 Feb 2014 17:04:40 (-
4	new	Paul Covington	0.98171	3	Sat, 01 Feb 2014 23:05:20
5	†3	Maxim Milakov Куликов В.А. "Введение в гулбинное обуч	0.98137 чение" 2018	24	Sat, 01 Feb 2014 18:20:58

Текущий чемпион по классификации изображений: сверточная нейронная сеть

• Операции:

- Свертки
- Pooling (изменение разрешения)
- Нелинейности
- Произведение матриц

Задачи машинного обучения

- Обучение с учителем (supervised) (известны ответы)
 - Классификация
 - Регрессия
- Обучение без учителя (unsupervised) (нету ответов)
 - Кластеризация
 - Автоэнкодеры
 - Поиск аномалий

Задача предсказания цены дома по его параметрам

Задача: построить зависимость между параметрами дома и его ценой

Даны пары: площадь, цена

Площадь	Цена
1180	221900
2570	538000
770	180000
1960	604000

Линейная регрессия, понятие модели

Линейная модель

• $h_w(x) = w_0 + w_1 x$ w_0 и w_1 праметры модели

Функция потерь (Loss function)

•
$$J(w) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2$$

ullet Выведем функцию J(w)

Одномерный случай

• Модель

•
$$h_w(x) = w_1 x$$

Поиск оптимального решения

- Модель
 - $h_w(x) = w_0 + w_1 x$
- Параметры
 - (w_0, w_1)
- Функция потерь

•
$$J(w) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2$$

- Задача
 - $\min_{w_0, w_1} J(w)$

Градиентный спуск

- Модель
 - $h_w(x) = w_1 x$
- Параметры
 - Модели w_1 , Алгоритма lr
- For n_iter:
 - $J(w) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) y_i)^2$
 - Градиент функции потерь:
 - $\frac{dJ}{dw_1} = \frac{1}{N} \sum_{i=1}^{N} (w_1 x_i y_i) x$
 - $\bullet \ w_1 = w_1 lr \frac{dJ}{dw_1}$

Градиентный спуск если lr маленький

- Модель
 - $h_w(x) = w_1 x$
- Параметры
 - Модели w_1 , Алгоритма lr
- For n_iter:
 - $J(w) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) y_i)^2$
 - Градиент функции потерь:
 - $\frac{dJ}{dw_1} = \frac{1}{N} \sum_{i=1}^{N} (w_1 x_i y_i) x$
 - $w_1 = w_1 lr \frac{dJ}{dw_1}$

Градиентный спуск если Ir большой

- Модель
 - $h_w(x) = w_1 x$
- Параметры
 - Модели w_1 , Алгоритма lr
- For n_iter:
 - $J(w) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) y_i)^2$
 - Градиент функции потерь:
 - $\frac{dJ}{dw_1} = \frac{1}{N} \sum_{i=1}^{N} (w_1 x_i y_i) x$
 - $w_1 = w_1 lr \frac{dJ}{dw_1}$

Градиентный спуск от двух параметров

- Модель
 - $h_w(x) = w_0 + w_1 x$
- Параметры
 - $(w_0, w_1), lr$
- For n_iter:

•
$$J(w) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2$$

•
$$\frac{dJ}{dw_0} = \frac{1}{N} \sum_{i=1}^{N} ((h_w(x_i) - y_i))$$

•
$$\frac{dJ}{dw_1} = \frac{1}{N} \sum_{i=1}^{N} ((h_w(x_i) - y_i)x)$$

•
$$w_0 = w_0 - lr \frac{dJ}{dw_0}$$

•
$$w_1 = w_1 - lr \frac{dJ}{dw_1}$$

Практика линейная регрессия

- 1.Реализовать функцию потерь
- 2.Реализовать производные функции потерь по параметрам

Многомерная линейная регрессия

• Модель: $h_w(x) = w_0 + w_1 x_1 + w_2 x_2$

Площадь	Год постройки	Цена
1180	1980	221900
200	2010	138000
770	2011	180000
1960	1990	604000

Скаляры, векторы, матрицы и тензоры

- $h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Пусть $x_0 = 1$
- Тогда:

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \in R^{n+1} \qquad w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_n \end{bmatrix} \in R^{n+1} \qquad [w_0 \quad w_1 w_2 \quad \dots \quad w_n] \quad \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

•
$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n = w^T x$$

Многомерный градиентный спуск

- Модель: $h_w(x) = w^T x = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Параметры: $w = w_0, w_1, ..., w_n$
- Функция потерь
 - $J(w) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x^{(i)}) y^{(i)})^2$ і номер примера в выборке
- Вычисляем частные производные:

•
$$\frac{dJ}{dw_i} = \frac{1}{N} \sum_{i=1}^{N} (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

- Градиентный спуск:
 - $w_j = w_j lr \frac{1}{N} \sum_{i=1}^{N} (h_w(x^{(i)}) y^{(i)}) x_j^{(i)}$

Многомерный градиентный спуск

- Модель: $h_w(x) = w_1 x_1 + w_2 x_2$
- Проблема:
 - Разные масштабы величин по осям
 - Надо выбрать маленький lr (скорость обучения)

Нормирование признаков

- Модель: $h_w(x) = w_1 x_1 + w_2 x_2$
- Признаки: х
- x = (x mean(x))/std(x)
- $mean(x) = \frac{1}{N} \sum_{i} x^{(i)}$
- $std(x) = \sqrt{\frac{1}{N}\sum_{i}(x^{(i)} mean(x))^2}$

Выбор параметра Ir в градиентном спуске

- Функция потерь должна убывать от количества итераций
- Если увеличивается выбрать Ir меньше
- Если не изменяется, или изменяется слишком медленно увеличить lr

Логистическая регрессия

Задача: по цене и площади дома сказать его категорию

Даны параметры: площадь,

цена, категория

Площадь	Цена	Категория
1180	221900	1
2570	538000	1
770	180000	0
1960	604000	1

Логистическая регрессия (классификация)

- $y \in \{0,1\}$
- Где:
 - 0: «Отрицательный класс»
 - 1: «Положительный»
- Примеры:
 - не качественный / качественный дом по его характеристикам
 - нету/есть заболевание по анализу крови
 - спам/не спам электронная почта и т.д.

- Нам нужна модель:
 - $0 \le h_w(x) \le 1$
- Модель линейной регрессии может принимать значения от [-inf,+inf]
- Наложить поверх линейной модели дополнительную функцию

Сигмоид (Sigmoid function)

$$\bullet \ \sigma(x) = \frac{1}{1 + e^{-x}}$$

- Свойства:
 - $x \rightarrow -inf$, $\sigma(x) \rightarrow 0$
 - $y \rightarrow +inf$, $\sigma(x) \rightarrow 1$

Логистическая регрессия (классификация)

• Модель:

•
$$h_w(x) = \sigma(w^T x)$$

$$\bullet \ h_w(x) = \frac{1}{1 + e^{-w^T x}}$$

- Сейчас выход нашей модели является оценкой вероятности, что y=1 при наблюдении x
- $h_w(x) = P(y = 1|x; w)$
- $P(y = 0|x; w) = 1 h_w(x) = P(y = 1|x; w)$

Решающее правило

- Модель:
 - $h_w(x) = \sigma(w^T x) = P(y = 1|x;w)$
- Пусть y = 1 если $h_w(x) \ge 0.5$
 - $w^T x \geq 0$
 - y = 0 если $h_w(x) < 0.5$
 - $w^T x < 0$
- Что это означает на практике?

Решающее правило

- - Прямая!
 - Классы линейно разделимы

Решающее правило

- Классы линейно разделимы
- $h_w(x) = \sigma(w^T x)$?
- $w^T x = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2$
- Окружность!

Функция потерь для логистической регрессии

•
$$J(w) = \frac{1}{2N} \sum_{i=1}^{N} (\sigma(w^T x^{(i)}) - y^{(i)})^2$$

- Т.к. добавляется функция сигмоид функция J(w) перестает быть выпуклой
- Нам нужна выпуклая функция потерь, которая обладает следующими свойствами $J(h_w(x),y) \to 0$:
 - Если $\sigma(w^T x^{(i)}) o 1$ при $y^{(i)} = 1$
 - Если $\sigma(w^T x^{(i)}) o 0$ при $y^{(i)} = 0$

•
$$J(h_w(x), y) = \begin{cases} -\log(h_w(x)) & \text{если } y = 1 \\ -\log(1 - h_w(x)) & \text{если } y = 0 \end{cases}$$

•
$$J(h_w(x), y) = -y \log(h_w(x)) - (1 - y) \log(1 - h_w(x))$$

Градиентный спуск для логистической регрессии

• Функция потерь:

•
$$J(h_w(x), y) = -\frac{1}{N} \sum y^{(i)} \log(h_w(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_w(x^{(i)}))$$

- \bullet Хотим найти $\min_w J$
- Частные производные:

•
$$\frac{dJ}{dw_i} = \frac{1}{N} \sum (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

• Шаг градиента:

•
$$w_j = w_j - lr \frac{1}{N} \sum (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

• Аналогично линейной регрессии

Результат применения градиентного спуска

Практика логистическая регрессия

- Реализовать сигмоид
- Реализовать функцию потерь
- Градиенты

Задача множественной классификации

Задача множественной классификации

Надо превратить выход линейной модели в вероятности!

$$2.0 \rightarrow p(y = bird|x, W) = 0.59$$

 $0.1 \rightarrow p(y = elef|x, W) = 0.08$
 $0.2 \rightarrow p(y = kon|x, W) = 0.09$
 $1.0 \rightarrow p(y = ken|x, W) = 0.21$

Softmax

$$\begin{array}{ccc}
2.0 & \rightarrow \\
y & \begin{array}{c}
0.1 & \rightarrow \\
0.2 & \rightarrow \\
1.0 & \rightarrow
\end{array}$$

$$S(y_j) = \frac{e^{y_j}}{\sum_j e^{y_j}}$$

$$p(y = bird|x, W) = 0.59$$

 $p(y = elef|x, W) = 0.08$
 $p(y = kon|x, W) = 0.09$
 $p(y = ken|x, W) = 0.21$

"One-hot" кодировка

Кросс энтропия

Все вместе

Ориентированный граф вычислений. Вершины – данные, дуги – операции.

Инициализация параметров

- Как правильно инициализировать W?
- Т.е. на выход нашего классификатора Softmax начальное распределение сильно чувствительно к входным значений
- При условии, что наши данные имеют средине значение 0 и единичную дисперсию, мы можем инициализировать W нормальным распределением
- Большое σ значения на выходе будут сильно различаться, будут сильные пики в softmax
- Маленькое сигма распределение будет более равномерным.
- Рекомендуется брать для начала маленькое сигма

Вычислительный граф

$$P(h_w(x) = 1|x, W) = \frac{1}{1 + e^{-Wx}}$$

Граф/сеть

Свойства линейных моделей

• Плюсы

- Выпуклые функции потерь
- Стабильность
- $y = Wx \rightarrow y + \Delta \approx W(x + \Delta)$
- Производные константы

•
$$\frac{dy}{dx} = W^T$$

•
$$\frac{dy}{dw} = x^T$$

• Минусы

- Ограниченно число параметров
- $k \times n + 1$
- Невозможно моделировать сложные функции
- x1 * x2
- $y = W_1W_2W_3x = Wx$

Rectified linear units (ReLU)

Нейронная сеть

Биологический нейрон

Fig. 5. Scheme of the layers of the developing retina around 5 months' gestation (Modified from Odgen, 1989).

Многоуровневый вычислительный граф

- Первый уровень: параллельная логистическая регрессия
- Результат первого уровня используется в качестве признаков для второго уровня
- Второй уровень:

Выход классификатора как вектор признаков

[Kumar et al. Attribute and Simile Classifiers for Face Verification. ICCV 2009]

Производная сложной функции (chain rule)

$$\bullet \frac{d(xy)}{dx} = y$$

$$\bullet \, \frac{d(x+y)}{dx} = 1$$

•
$$\frac{df(g(x))}{dx} = \frac{df}{dg} \frac{dg}{dx}$$

•
$$\frac{df(g(x),m(x))}{dx} = \frac{df}{dg}\frac{dg}{dx} + \frac{df}{dm}\frac{dm}{dx}$$

Производная сложной функции (chain rule)

- Автоматически строится большинством библиотек машинного обучения
- Эффективное использование ресурсов
- Много повторных использований

Градиенты абстрактного слоя

- Прямой проход:
- y = f(x, w)
- Обратный проход:
- z(x) = z(f(x, w))

Обратное распространение ошибки

Куликов В.А. "Введение в гулбинное обучение" 2018

I радиенты мультипликативного слоя

$$z(x) = z(f(x, w)) = z(Wx)$$

$$\frac{dz}{dx} = \frac{dy^T}{dx} \frac{dz}{dy}$$

•
$$y = Wx$$

$$\frac{dz}{dw} = \frac{dy^T}{dw} \frac{dz}{dy}$$

•
$$\frac{dz}{dw_{ij}} = \left(\frac{dy}{dw_{ij}}\right)^T \frac{dz}{dy} = x_j \frac{dz}{dy_i}$$

$$\bullet \frac{dz}{dw} = \frac{dz}{dy} x^T$$

Пример для нейронной сети

$$x \rightarrow W_1 * x$$
 $f relu(f)$ $g W_2 * g$ $h \sum_{h=1}^{\infty} (h-y)^2$

- $L(W_2(ReLU(W_1x))) = L(h(g(f(x))))$
- $\frac{dL}{dW_1} = \frac{dL}{dh} \frac{dh}{dg} \frac{dg}{df} \frac{df}{dW_1}$

- X = [64,1000]
- W1 = [1000,100]
- W2 = [100,10]
- Y = [64,10]

Пример для нейронной сети

$$\bullet \frac{dL}{dW_2} = \frac{dL}{dh} \frac{dh}{dg} \frac{dg}{df} \frac{df}{dW_1}$$

•
$$\frac{dL}{dh} = 2(h - y)$$

- [64,10]
- $\frac{dh}{dg} = W_2$
- [100,10]

$$\bullet \frac{dL}{dh} \frac{dh}{dg} = 2(h - y) * W_2^T$$

• [64,100]

- X = [64,1000]
- W1 = [1000,100]
- W2 = [100,10]
- Y = [64,10]

Пример для нейронной сети

$$\bullet \frac{dL}{dW_1} = \frac{dL}{dh} \frac{dh}{dW_2}$$

•
$$\frac{dL}{dh} = 2(h - y)$$

- [64,10]
- $\frac{dh}{dW_2} = g$
- [64,100]

$$\bullet \frac{dL}{dW_2} = g^T 2(h - y)$$

• [100,10]

•
$$X = [64,100]$$

- W1 = [100,1000]
- W2 = [100,10]
- Y = [64,10]

Программная реализация модуля

```
import numpy as np
class Layer:
   def init (self):
        pass
   def forward(self, x):
        return x
   def backward(self, x, grad output):
        num units = input.shape[1]
        iden = np.eye(num units)
        return np.dot(grad output, iden )
```

- Две функции
 - Прямой проход
 - Обратный проход
- Во время обратного прохода:
 - вычисляются производные от forward по x
 - скалярно умножаются на градиенты от следующей функции

Leaky ReLU

•
$$y = \max(x, \alpha x)$$

$$\bullet \frac{dy}{dx} = ?$$

$$\frac{dy}{d\alpha} = ?$$

arXiv.org > cs > arXiv:1502.01852

Computer Science > Computer Vision and Pattern Recognition

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

(Submitted on 6 Feb 2015)

Стохастическая оптимизация

- Проблема: данных настолько много, что они не помещаются в оперативную память для градиентного спуска
 - Текущие базы данных изображений (Cityscapes, ImageNet, MS COCO) содержат тысячи изображений

$$J(W) = \sum D(x^{(i)})$$

Сложность O(N)

$$\Delta J(W)$$
 Сложность $\sim 3 \times O(N)$

Стохастическая оптимизация (SGD)

- Вместо того, чтобы проходиться по всему обучающему множеству из N несколько раз с большим lr
- Выбираем случайное подмножество данных M<<N и делаем маленькую итерацию (Ir маленькое) на нем

Куликов В.А. "Введение в гулбинное обучение" 2018

Проблемы SGD

- Сильно чувствительный к шуму
- Нужно:
 - Нормированный входной вектор (среднее 0, дисперсия 1)
 - Нормированные случайные веса W

Momentum

$$J(W) = \sum D(x^{(i)})$$

•
$$W = W - lr \times \Delta I$$

- Сглаживаем значения градиентов бегущим средним
- $\mu = 0.9\mu + \Delta J$
- $W = W lr \times \mu$

Momentum

$$J(W) = \sum D(x^{(i)})$$

•
$$W = W - lr \times \Delta I$$

- Сглаживаем значения градиентов бегущим средним
- $\mu = 0.9\mu + \Delta J$
- $W = W lr \times \mu$

Понижение скорости обучения

Стратегия 1:

- Уменьшать несущественно скорость обучения после каждого шага
- lr = lr * 0.99998
- Стратегия 2:
 - Уменьшать сильно при выходе функции потерь на плато
 - lr = lr * 0.1

Тюнинг скорости обучения

Создание своей глубокой сети

- Задать вычислительные слои
- Собрать слои в вычислительный граф
- Итерировать по случайным подмножествам выборки
- Для каждого подмножества вычисляем градиенты и обновляем параметры

Разбиение данных на несколько групп

- 80% training
- 10% валидация
- 10% тест

- Используем train для обучения модели
- Валидацию для настройки гиперпараметров
- Тест для оценки итоговой модели

Переобучение модели

Переобучение полиномиальной регрессии

Переобучение модели

- Переобучение очень ощутимо для глубоких моделей. Почему?
- Прогресс машинного обучения и глубинного обучения ждал появления большого количества данных
- Эффект переобучения: Параметров модели хватает, чтобы запомнить обучающую выборку

L2 регуляризация

• Регуляризация по Тихонову

•
$$J'(W) = J(W) + \frac{\beta}{2} ||W||^2$$

- Другие методы регуляризации:
- Взять меньше модель
- Ранняя остановка
- Использовать несколько моделей

Использование нескольких моделей

- Различные локальные минимумы дают улучшения
- Использования различных архитектур тоже
- Почти все соревнования по классификации были выиграны набором из нескольких глубоких моделей

Dropout (выбросы)

Эмуляция работы ансамбля:

Обучение с Dropout

Обучаем очень большой набор таких моделей

Вывод с DropOut

- Приближение не точное
- Но хорошо работает на практике

Реализация Dropout

• Во время тренировке с заданной вероятностью обнуляем случайные элементы данных

•
$$n \sim Bernouli(p)$$
 $y = x * n$
• $\frac{dz}{dx} = \frac{dz}{dy} * n$

• Во время вывода умножаем х на константу р, чтобы среднее значение активаций в модуле оставалось тем-же.

Многоцелевое обучение

- Две совместные задачи: пример (предсказание пола и возраста по фотографии)
- Есть много данных для близкой задачи
- Обучать совместно общую часть и отдельно для целевой задачи

Что такое «глубинное обучение»?

- Совместное обучение всех элементов модели
 - Модель ориентированный граф из вычислительных блоков
 - Каждый блок дифференцируемый
 - Оптимизация градиентными методами
 - Градиенты вычисляются методом обратного распространения ошибки
- Революция глубинного обучения (2012?-now):
 - Инженерные решения соответствующие этим принципам

