Abhijeet Gaurav Homework 3 IYSE 6420

1. (a)

PDF of Rayleigh Distribution is given by:

$$f(r) = \xi r \exp\{-\xi r^2/2\}$$

Since, we know that the above distribution's PDF depends on parameter ξ , we can say that:

$$f(r|\xi) = f(r) = \xi r \exp\{-\xi r^2/2\}$$

Also, we know that prior on ξ is exponential with the rate parameter λ , therefore:

Prior:
$$\pi(\xi) = \lambda \exp\{-\lambda \xi\}$$

Therefore, using Bayes theorem:

Posterior: $\pi(\xi/r) \propto f(r|\xi) * \pi(\xi)$ = $C \xi r \exp\{-\xi r^2/2\} * \lambda \exp\{-\lambda \xi\}$ [where C is some constant] = $C \xi \lambda r \exp\{-\xi r^2/2 - \lambda \xi\}$ = $C \xi \lambda r \exp\{-\xi r^2/2 - \lambda \xi\}$ = $C \xi \lambda r \exp\{-\xi (\lambda + r^2/2)\}$

We didn't compute marginal here, because our likelihood $f(r|\xi)$ and prior $\pi(\xi)$ belong to the same family of distributions and differ by their degrees of freedom. More details:

(https://en.wikipedia.org/wiki/Relationships_among_probability_distributions#Multiple_of_a_random_va_riable)

PDF of Gamma distribution is given by:

$$f(\xi, \alpha, \beta) = \beta^{\alpha} \xi^{\alpha-1} e^{-\beta \xi} / \Gamma(\alpha)$$

Comparing the kernels, clearly we can see that $\pi(\xi/r)$ is a Gamma distribution with:

$$\alpha - 1 = 1 \implies \alpha = 2$$

 $\beta = \lambda + r^2/2$

Therefore, $\pi(\xi/r)$ is a Gamma distribution with $\alpha = 2$ and $\beta = \lambda + r^2/2$

$$=> \pi(\xi/r) = Ga(\alpha, \beta) = Ga(2, \lambda + r^2/2)$$

1. (b)

Assuming r_1, r_2, \dots, r_n are observed:

Likelihood =
$$f(r_1|\xi) * f(r_2|\xi) * \dots * f(r_n|\xi)$$

= $\xi r_1 \exp\{-\xi r_1^2/2\} * \xi r_2 \exp\{-\xi r_2^2/2\} * \dots * \xi r_n \exp\{-\xi r_n^2/2\}$

$$= \xi^n r_1 r_2 \dots r_n \exp\{-\xi \sum_{i=1}^n r_i^2/2\}$$

We know that prior on ξ is exponential with the rate parameter λ , therefore:

Prior: $\pi(\xi) = \lambda \exp\{-\lambda \xi\}$

Using Bayes theorem:

Posterior: $\pi(\xi/r_1, r_2, ..., r_n) \propto Likelihood * Prior$

=
$$C \xi^n r_1 r_2 \dots r_n exp\{-\xi \sum_{i=1}^n r_i^2\} * \lambda exp\{-\lambda \xi\}$$

$$= C \xi^{n} \lambda r_{1} r_{2} ... r_{n} exp \{-\xi \sum_{i=1}^{n} r_{i}^{2}/2 - \lambda \xi \}$$

=
$$C \xi^n \lambda r_1 r_2 ... r_n exp \{ -\xi (\lambda + 1/2 * \sum_{i=1}^n r_i^2) \}$$

We didn't compute marginal here, because our likelihood $_{i=1}^{n} f(r_i|\xi)$ and prior $\pi(\xi)$ belong to the same family of distributions and differ by their degrees of freedom. More details:

(https://en.wikipedia.org/wiki/Relationships_among_probability_distributions#Multiple_of_a_random_variable)

PDF of Gamma distribution is given by:

$$f(\xi, \alpha, \beta) = \beta^{\alpha} \xi^{\alpha-1} e^{-\beta \xi} / \Gamma(\alpha)$$

Comparing the kernels, clearly we can see that $\pi(\xi/r_1, r_2, ..., r_n)$ is a Gamma distribution with:

$$a - 1 = n = a = n + 1$$

$$\beta = \lambda + 1/2 * \sum_{i=1}^{n} r_i^2$$

Therefore, $\pi(\xi/r_1, r_2, \dots, r_n)$ is a Gamma distribution with $\alpha = n + 1$ and $\beta = \lambda + 1/2 * \sum_{i=1}^{n} r_i^2 = \pi(\xi/r_1, r_2, \dots, r_n) = Ga(\alpha, \beta) = Ga(n + 1, \lambda + 1/2 * \sum_{i=1}^{n} r_i^2)$

As given in the question, we know that $R_1 = 3$, $R_2 = 4$, $R_3 = 2$, and $R_4 = 5$

Therefore, in the distribution above: $\alpha = n + 1 = 4 + 1 = 5$ (given n = 4)

$$\beta = \lambda + 1/2 * \sum_{i=1}^{n} r_i^2$$

$$=\lambda + 1/2 * (3^2 + 4^2 + 2^2 + 5^2)$$

$$=\lambda + 1/2 * (3^2 + 4^2 + 2^2 + 5^2)$$

$$=\lambda + 1/2 * (9+16+4+25)$$

$$=\lambda + 1/2 * (54)$$

$$=\lambda + 27$$

=> This distribution will be Gamma (5, $\lambda + 27$)

$$E(\xi)$$
 of Gamma (ξ, α, β) is given by α/β

$$\Rightarrow$$
 Bayes estimator of ξ is given by E(ξ)

$$E(\xi)$$
 for Gamma $(5, \lambda + 27) = 5/(\lambda + 27)$

Therefore, here the Bayes estimator of ξ is $5/(\lambda + 27)$

1.(c)

For $\lambda = 1$ in Gamma distribution obtained in part (b), we get distribution: Gamma(5, 28)

To find 95% (equal-tailed) credible set for ξ , we run the following two commands in R: (R code attached in file gammaCredibleSet.r)

- a) qgamma(0.025, shape = 5, rate = 28) 0.05798166
- b) qgamma(0.975, shape = 5, rate = 28) 0.365771

Therefore, our 95% (equal-tailed) credible set for ξ is (0.05798166, 0.365771)

2. (a)

Elicitation of Beta prior on proportion that models the oncologist's beliefs:

$$\mu = 0.9$$

$$\mu - 2\sigma = 0.8 \implies \sigma = 0.05$$

For a Beta(p, α , β) distribution:

Mean = E (p) =
$$\alpha/(\alpha + \beta) = \mu = 0.9$$

$$=> \alpha = 0.9 \alpha + 0.9 \beta$$

$$=> 0.1 \alpha = 0.9 \beta$$

$$\Rightarrow \alpha = 9\beta$$

Variance =
$$\alpha\beta/(\alpha + \beta)^2(\alpha + \beta + 1) = \sigma^2 = 0.05^2$$

$$\Rightarrow 9\beta^2/((10\beta)^2*(10\beta + 1)) = 0.0025$$

$$=>10\beta+1=36$$

$$=> \beta = 3.5$$

$$\Rightarrow \alpha = 9 \beta = 9 * 3.5 = 31.5$$

$$\Rightarrow \pi(p) = Beta(\alpha, \beta) = Beta(31.5, 3.5)$$

Likelihood:

Since there is a trial in which 30 patients treated and 22 responded, this distribution can be represented by Bin(n,p).

$$\Rightarrow$$
 X|p \sim Bin(n,p)

$$=> f(x|p) = {}^{n}C_{x}p^{x}(1-p)^{n-x}$$

=>
$$f(x|p) = {}^{30}C_{22}p^{22}(1-p)^8$$
 {as n = 30, x = 22}

Finding Posterior distribution:

Given prior:
$$\pi(p) = \text{Beta}(\alpha, \beta) = p^{\alpha-1}(1-p)^{\beta-1}/B(\alpha, \beta)$$

Given likelihood: $f(x|p) = {}^{n}C_{x}p^{x}(1-p)^{n-x}$

$$\Rightarrow$$
 Posterior $\pi(p|x) \propto f(x|p) * \pi(p)$

=
$$c * {}^{n}C_{x}p^{x} (1-p)^{n-x} * p^{\alpha-1}(1-p)^{\beta-1}/B(\alpha, \beta)$$
 {Where c is some constant}
= $c * {}^{n}C_{x}p^{x+\alpha-1}(1-p)^{n+\beta-x-1}/B(\alpha, \beta)$

The above distribution models Beta($x + \alpha$, $n - x + \beta$) = Beta(22 + 31.5, 30 - 22 + 3.5) = Beta(53.5, 11.5)

Therefore our posterior distribution is: Beta(53.5, 11.5)

Bayes estimator of p in Beta(x +
$$\alpha$$
, n - x + β) = (x + α)/(n + α + β) = 53.5/(53.5 + 11.5) = 53.5/65 = 0.8231

2. (b)

To find 95% (equal-tailed) credible set for p, we run the following two commands in R: (R code attached in file betaCredibleSet.r)

- 1. qbeta(0.025, 53.5, 11.5, 0) 0.7222732
- 2. qbeta(0.975, 53.5, 11.5, 0) 0.9051004

Therefore, our 95% (equal-tailed) credible set for p is (0.7222732, 0.9051004)

2. (c)

(MATLAB code attached in file Hypothesis test.m)

Hypothesis test:

$$H_0: p \ge \%$$
 vs $H_1: p < \%$

From (a), we know that posterior is given by Beta(53.5, 11.5)

Evaluating Posteriors integrals:

$$p_1 = \int_{-\infty}^{4/5} Beta(53.5, 11.5) dp$$

Used MATLAB command given below to evaluate above integral:

$$\Rightarrow p_1 = 0.29457$$

$$\Rightarrow p_0 = 1 - p_1 = 1 - 0.29457 = 0.70543$$

From (a), we know that prior is given by Beta(53.5, 11.5) Evaluating Prior integrals:

$$\pi_1 = \int_{-\infty}^{4/5} Beta(31.5, 3.5) dp$$

Used MATLAB command given below to evaluate above integral:

betacdf(4/5,31.5, 3.5) 0.041495

$$\Rightarrow \pi_1 = 0.041495$$

$$\pi_0 = 1 - \pi_1 = 1 - 0.041495 = 0.958505$$

Therefore,

$$\mathbf{B}_{10} = (p_1/p_0)/(\pi_1/\pi_0) = (0.29457/0.70543)/(0.041495/0.958505) = 9.64568785228$$

$$log(B_{10}) = 0.98433320344$$

Based on the Bayesian calibration table discussed in the lectures, here $0.5 < log(B_{10}) = 0.98433320344$ <= 1 means substantial evidence against H₀.

2. (d)

(OpenBUGS code attached in file BayesianChemo.odc) Using below code in OpenBUGS:

Node st	atistics								_
p p1 pi pi1	mean 0.8231 0.2948 0.9 0.04156	sd 0.04699 0.456 0.05001 0.1996	4.538E-5 4.388E-4 5.15E-5	val2.5pc 0.7224 0.0 0.7827 0.0	median 0.8265 0.0 0.9076 0.0	val97.5pc 0.9054 1.0 0.9745 1.0	start 1 1 1	sample 1000000 1000000 1000000	<u> </u>

As obtained above we can see that mean of p = 0.8231 which is exactly the same as the Bayesian estimate of p that we got in part (a).

As obtained above, the 95% credible set of p is given by (0.7224, 0.9054) which is almost the same to the credible set for p given by (0.7222732, 0.9051004) that we obtained in part (b).

For hypothesis testing:

Using step function in OpenBUGS, I have calculated:

 p_1 = mean of p1 in the node statistics obtained in the last screenshot = 0.2948 (this is very similar to p_1 = 0.29457 we got in part (c))

=>
$$p_0 = 1 - p_1 = 1 - 0.2948 = 0.7052$$

(this is very similar to $p_0 = 0.70543$ we got in part (c))

 π_1 = mean of pi1 in the node statistics obtained in the last screenshot = 0.04156 (this is very similar to π_1 = 0.041495 we got in part (c))

=>
$$\pi_0 = 1 - \pi_1 = 1 - 0.04156 = 0.95844$$

(this is very similar to $\pi_0 = 0.958505$ we got in part (c))

$$B_{10} = (p_1/p_0)/(\pi_1/\pi_0) = (0.2948/0.7052)/(0.04156/0.95844) = 9.64061117277$$
 (this is very similar to $B_{10} = 9.64568785228$ we got in part (c))

$$log(B_{10}) = 0.98410456715$$

(this is very similar to $log(B_{10})=0.98433320344$ we got in part (c))

Based on the Bayesian calibration table discussed in the lectures, $0.5 < log(B_{10}) = 0.98410456715 <= 1$ means substantial evidence against H_0 . This result is the exact same as what we got in part (c).