MATH455 - Analysis 4 Abstract Metric, Topological Spaces; Functional Analysis.

Based on lectures from Winter 2025 by Prof. Jessica Lin. Notes by Louis Meunier

Contents

1 Abstract Metric and Topological Spaces	2
1.1 Review of Metric Spaces	2
1.2 Compactness, Separability	3
1.3 Arzelà-Ascoli	
1.4 Baire Category Theorem	8
1.4.1 Applications of Baire Category Theorem	9
1.5 Topological Spaces	10
1.6 Separation, Countability, Separability	12
1.7 Continuity and Compactness	15
1.8 Connected Topological Spaces	17
1.9 Urysohn's Lemma and Urysohn's Metrization Theorem	19
1.10 Stone-Weierstrass Theorem	22
2 Functional Analysis	24
2.1 Introduction to Linear Operators	24
2.2 Finite versus Infinite Dimensional	20
2.3 Open Mapping and Closed Graph Theorems	28
2.4 Uniform Boundedness Principle	3
2.5 Introduction to Hilbert Spaces	32
2.6 Adjoints, Duals and Weak Convergence (for Hilbert Spaces)	40
2.7 Introduction to Weak Convergence	43
2.8 Review of L^p Spaces	4
2.9 $(L^p)^*$: The Riesz Representation Theorem	47
2.10 Weak Convergence in $L^p(\Omega)$	53
2.11 Convolution and Mollifiers	
2.12 Strong Compactness in $L^p(\mathbb{R}^d)$	62
3 Introduction to Fourier Analysis	
3.1 Fourier Series	61

$\S 1$ Abstract Metric and Topological Spaces

§1.1 Review of Metric Spaces

Throughout fix *X* a nonempty set.

 \hookrightarrow **Definition 1.1** (Metric): $\rho: X \times X \to \mathbb{R}$ is called a *metric*, and thus (X, ρ) a *metric space*, if for all $x, y, z \in X$,

- $\rho(x,y) \geq 0$,
- $\rho(x,y) = 0 \Leftrightarrow x = y$,
- $\rho(x, y) = \rho(y, x)$, and
- $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

 \hookrightarrow Definition 1.2 (Norm): Let *X* a linear space. A function $\|\cdot\|: X \to [0, \infty)$ is called a *norm* if for all *u*, *v* ∈ *X* and *α* ∈ \mathbb{R} ,

- $\bullet \|u\| = 0 \Leftrightarrow u = 0,$
- $||u+v|| \le ||u|| + ||v||$, and
- $\bullet \|\alpha u\| = |\alpha| \|u\|.$

Remark 1.1: A norm induces a metric by $\rho(x, y) := ||x - y||$.

 \hookrightarrow Definition 1.3: Given two metrics ρ , σ on X, we say they are *equivalent* if \exists C > 0 such that $\frac{1}{C}\sigma(x,y) \le \rho(x,y) \le C\sigma(x,y)$ for every $x,y \in X$. A similar definition follows for equivalence of norms.

Given a metric space (X, ρ) , then, we have the notion of

- open balls $B(x,r) = \{ y \in X : \rho(x,y) < r \}$,
- open sets (subsets of X with the property that for every $x \in X$, there is a constant r > 0 such that $B(x,r) \subseteq X$), closed sets, closures, and
- convergence.

 \hookrightarrow Definition 1.4 (Convergence): $\{x_n\}\subseteq X$ converges to $x\in X$ if $\lim_{n\to\infty}\rho(x_n,x)=0$.

We have several (equivalent) notions, then, of continuity; via sequences, $\varepsilon - \delta$ definition, and by pullbacks (inverse images of open sets are open).

1.1 Review of Metric Spaces

 \hookrightarrow Definition 1.5 (Uniform Continuity): $f:(X,\rho)\to (Y,\sigma)$ uniformly continuous if f has a "modulus of continuity", i.e. there is a continuous function $\omega:[0,\infty)\to [0,\infty)$ such that $\sigma(f(x_1),f(x_2)) \le \omega(\rho(x_1,x_2))$

for every $x_1, x_2 \in X$.

Remark 1.2: For instance, we say f Lipschitz continuous if there is a constant C>0 such that $\omega(\cdot)=C(\cdot)$. Let $\alpha\in(0,1)$. We say f α -Holder continuous if $\omega(\cdot)=C(\cdot)^{\alpha}$ for some constant C.

 \hookrightarrow **Definition 1.6** (Completeness): We say (X, ρ) *complete* if every Cauchy sequence in (X, ρ) converges to a point in X.

Remark 1.3: If (X, ρ) complete and $E \subseteq X$, then (E, ρ) is complete iff E closed in X.

§1.2 Compactness, Separability

 \hookrightarrow **Definition 1.7** (Open Cover, Compactness): $\{X_{\lambda}\}_{\lambda \in \Lambda} \subseteq 2^{X}$, where X_{λ} open in X and Λ an arbitrary index set, an *open cover* of X if for every $x \in X$, $\exists \lambda \in \Lambda$ such that $x \in X_{\lambda}$.

X is *compact* if every open cover of X admits a compact subcover. We say $E \subseteq X$ compact if (E, ρ) compact.

Definition 1.8 (Totally Bounded, ε-nets): (X, ρ) totally bounded if $\forall \varepsilon > 0$, there is a finite cover of X of balls of radius ε . If $E \subseteq X$, an ε-net of E is a collection $\{B(x_i, \varepsilon)\}_{i=1}^N$ such that $E \subseteq \bigcup_{i=1}^N B(x_i, \varepsilon)$ and $x_i \in X$ (note that x_i need not be in E).

 \hookrightarrow **Definition 1.9** (Sequentially Compact): (X, ρ) *sequentially compact* if every sequence in X has a convergent subsequence whose limit is in X.

 \hookrightarrow **Definition 1.10** (Relatively / Pre-Compact): $E \subseteq X$ relatively compact if \overline{E} compact.

\hookrightarrow Theorem 1.1: TFAE:

- 1. *X* complete and totally bounded;
- 2. *X* compact;
- 3. *X* sequentially compact.

Remark 1.4: $E \subseteq X$ relatively compact if every sequence in E has a convergent subsequence.

Let $f:(X,\rho)\to (Y,\sigma)$ continuous with (X,ρ) compact. Then,

- f(X) compact in Y;
- if $Y = \mathbb{R}$, the max and min of f over X are achieved;
- *f* is uniformly continuous.

Let $C(X) := \{f : X \to \mathbb{R} \mid f \text{ continuous}\}$ and $\|f\|_{\infty} := \max_{x \in X} |f(x)|$ the sup (max, in this case) norm. Then,

 \hookrightarrow Theorem 1.2: Let (X, ρ) compact. Then, $(C(X), \|\cdot\|_{\infty})$ is complete.

PROOF. Let $\{f_n\}\subseteq C(X)$ Cauchy with respect to $\|\cdot\|_\infty$. Then, there exists a subsequence $\{f_{n_k}\}$ such that for each $k\geq 1$, $\|f_{n_{k+1}}-f_{n_k}\|_\infty\leq 2^{-k}$ (to construct this subsequence, let $n_1\geq 1$ be such that $\|f_n-f_{n_1}\|_\infty<\frac{1}{2}$ for all $n\geq n_1$, which exists since $\{f_n\}$ Cauchy. Then, for each $k\geq 1$, define inductively n_{k+1} such that $n_{k+1}>n_k$ and $\|f_n-f_{n_{k+1}}\|_\infty<\frac{1}{2^{k+1}}$ for each $n\geq n_{k+1}$. Then, for any $k\geq 1$, $\|f_{n_{k+1}}-f_{n_k}\|_\infty<2^{-k}$, since $n_{k+1}>n_k$.).

Let $j \in \mathbb{N}$. Then, for any $k \geq 1$,

$$\|f_{n_{k+j}} - f_{n_k}\|_{\infty} \leq \sum_{\ell=k}^{k+j-1} \|f_{n_{\ell+1}} - f_{n_{\ell}}\|_{\infty} \leq \sum_{\ell} 2^{-\ell}$$

and hence for each $x \in X$, with $c_k \coloneqq f_{n_k}(x)$,

$$|c_{k+j}-c_k| \leq \sum_{\ell=k}^{\infty} 2^{-\ell}.$$

The RHS is the tail of a converging series, and thus $|c_{k+j}-c_k|\to 0$ as $k\to\infty$ i.e. $\{c_k\}$ a Cauchy sequence, in \mathbb{R} . $(\mathbb{R},|\cdot|)$ complete, so $\lim_{k\to\infty}c_k=:f(x)$ exists for each $x\in X$. So, for each $x\in X$, we find

$$|f_{n_k}(x)-f(x)|\leq \sum_{\ell=k}^\infty 2^{-\ell},$$

and since the RHS is independent of x, we may pass to the sup norm, and find

$$\|f_{n_k}-f\|_\infty \leq \sum_{\ell=k}^\infty 2^{-\ell},$$

with the RHS $\to 0$ as $k \to \infty$. Hence, $f_{n_k} \to f$ in C(X) as $k \to \infty$. In other words, we have uniform convergence of $\left\{f_{n_k}\right\}$. Each $\left\{f_{n_k}\right\}$ continuous, and thus f also continuous, and thus $f \in C(X)$.

It remains to show convergence along the whole sequence. Suppose otherwise. Then, there is some $\alpha>0$ and a subsequence $\left\{f_{n_j}\right\}\subseteq \{f_n\}$ such that $\|f_{n_j}-f\|_\infty>$

 $\alpha > 0$ for every $j \ge 1$. Then, let k be sufficiently large such that $||f - f_{n_k}||_{\infty} \le \frac{\alpha}{2}$. Then, for every $j \ge 1$ and k sufficiently large,

$$\begin{split} \|f_{n_j}-f_{n_k}\|_{\infty} &\geq \|f_{n_j}-f\|_{\infty} - \|f-f_{n_k}\|_{\infty} \\ &> \alpha - \frac{\alpha}{2} > 0, \end{split}$$

which contradicts the Cauchy-ness of $\{f_n\}$, completing the proof.

Definition 1.11 (Density/Separability): A set $D \subseteq X$ is called *dense* in X if for every nonempty open subset $A \subseteq X$, $D \cap A \neq \emptyset$. We say X *separable* if there is a countable dense subset of X.

Remark 1.5: If *A* dense in *X*, then $\overline{A} = X$.

 \hookrightarrow **Proposition 1.1**: If *X* compact, *X* separable.

PROOF. Since X compact, it is totally bounded. So, for $n \in \mathbb{N}$, there is some K_n and $\{x_i\} \subseteq X$ such that $X \subseteq \bigcup_{i=1}^{K_n} B\big(x_i, \frac{1}{n}\big)$. Then, $D = \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{K_n} \{x_i\}$ countable and dense in X.

§1.3 Arzelà-Ascoli

The goal in this section is to find conditions for a sequence of functions $\{f_n\} \subseteq C(X)$ to be precompact, namely, to have a uniformly convergent subsequence.

Corollary 1.1: Any Cauchy sequence converges if it has a convergent subsequence.

PROOF. Let $\{x_n\}$ be a Cauchy sequence in a metric space (X,ρ) with convergent subsequence $\big\{x_{n_k}\big\}$ which converges to some $x\in X$. Fix $\varepsilon>0$. Let $N\geq 1$ be such that if $m,n\geq N$, $\rho(x_n,x_m)<\frac{\varepsilon}{2}$. Let $K\geq 1$ be such that if $k\geq K$, $\rho\big(x_{n_k},x\big)<\frac{\varepsilon}{2}$. Let $n,n_k\geq \max\{N,K\}$, then

$$\rho(x,x_n) \leq \rho \Big(x,x_{n_k}\Big) + \rho \Big(x_{n_k},x_n\Big) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definition 1.12 (Equicontinuous): A family $\mathcal{F} \subseteq C(X)$ is called *equicontinuous* at $x \in X$ if $\forall \varepsilon > 0$ there exists a $\delta = \delta(x, \varepsilon) > 0$ such that if $\rho(x, x') < \delta$ then $|f(x) - f(x')| < \varepsilon$ for every $f \in \mathcal{F}$.

Remark 1.6: \mathcal{F} equicontinuous at x iff every $f \in \mathcal{F}$ share the same modulus of continuity.

1.3 Arzelà-Ascoli 5

 \hookrightarrow Definition 1.13 (Pointwise/uniformly bounded): $\{f_n\}$ pointwise bounded if $\forall \, x \in X$, $\exists \, M(x) > 0$ such that $|f_n(x)| \leq M(x) \, \forall \, n$, and uniformly bounded if such an M exists independent of x.

 \hookrightarrow Lemma 1.1 (Arzelà-Ascoli Lemma): Let X separable and let $\{f_n\} \subseteq C(X)$ be pointwise bounded and equicontinuous. Then, there is a function f and a subsequence $\{f_{n_k}\}$ which converges pointwise to f on all of X.

PROOF. Let $D = \left\{x_j\right\}_{j=1}^\infty \subseteq X$ be a countable dense subset of X. Since $\{f_n\}$ p.w. bounded, $\{f_n(x_1)\}$ as a sequence of real numbers is bounded and so by the Bolzano-Weierstrass (BW) Theorem there is a convergent subsequence $\left\{f_{n(1,k)}(x_1)\right\}_k$ that converges to some $a_1 \in \mathbb{R}$. Consider now $\left\{f_{n(1,k)}(x_2)\right\}_k$, which is again a bounded sequence of \mathbb{R} and so has a convergent subsequence, call it $\left\{f_{n(2,k)}(x_2)\right\}_k$ which converges to some $a_2 \in \mathbb{R}$. Note that $\left\{f_{n(2,k)}\right\} \subseteq \left\{f_{n(1,k)}\right\}$, so also $f_{n(2,k)}(x_1) \to a_1$ as $k \to \infty$. We can repeat this procedure, producing a sequence of real numbers $\{a_\ell\}$, and for each $j \in \mathbb{N}$ a subsequence $\left\{f_{n(j,k)}\right\}_k \subseteq \{f_n\}$ such that $f_{n(j,k)}(x_\ell) \to a_\ell$ for each $1 \le \ell \le j$. Define then

$$f: D \to \mathbb{R}, f(x_j) := a_j.$$

Consider now

$$f_{n_k} \coloneqq f_{n(k,k)}, k \ge 1,$$

the "diagonal sequence", and remark that $f_{n_k}\big(x_j\big) \to a_j = f\big(x_j\big)$ as $k \to \infty$ for every $j \geq 1$. Hence, $\big\{f_{n_k}\big\}_k$ converges to f on D, pointwise.

We claim now that $\left\{f_{n_k}\right\}$ converges on all of X to some function $f:X\to\mathbb{R}$, pointwise. Put $g_k:=f_{n_k}$ for notational convenience. Fix $x_0\in X$, $\varepsilon>0$, and let $\delta>0$ be such that if $x\in X$ such that $\rho(x,x_0)<\delta$, $|g_k(x)-g_k(x_0)|<\frac{\varepsilon}{3}$ for every $k\geq 1$, which exists by equicontinuity. Since D dense in X, there is some $x_j\in D$ such that $\rho(x_j,x_0)<\delta$. Then, since $g_k(x_j)\to f(x_j)$ (pointwise), $\left\{g_k(x_j)\right\}_k$ is Cauchy and so there is some $K\geq 1$ such that for every $k,\ell\geq K$, $|g_\ell(x_j)-g_k(x_j)|<\frac{\varepsilon}{3}$. And hence, for every $k,\ell\geq K$,

$$|g_k(x_0) - g_\ell(x_0)| \leq |g_k(x_0) - g_k\big(x_j\big)| + |g_k\big(x_j\big) - g_\ell\big(x_j\big)| + |g_\ell\big(x_j\big) - g_\ell(x_0)| < \varepsilon,$$

so namely $\{g_k(x_0)\}_k$ Cauchy as a sequence in $\mathbb R$. Since $\mathbb R$ complete, then $\{g_k(x_0)\}_k$ also converges, to, say, $f(x_0) \in \mathbb R$. Since x_0 was arbitrary, this means there is some function $f: X \to \mathbb R$ such that $g_k \to f$ pointwise on X as we aimed to show.

1.3 Arzelà-Ascoli 6

 \hookrightarrow **Definition 1.14** (Uniformly Equicontinuous): $\mathcal{F} \subseteq C(X)$ is said to be uniformly equicontinuous if for every $\varepsilon < 0$, there exists a $\delta > 0$ such that $\forall \, x,y \in X$ with $\rho(x,y) < \delta$, $|f(x) - f(y)| < \varepsilon$ for every $f \in \mathcal{F}$. That is, every function in \mathcal{F} has the same modulus of continuity.

→ **Proposition 1.2** (Sufficient Conditions for Uniform Equicontinuity):

- 1. $\mathcal{F} \subseteq C(X)$ uniformly Lipschitz
- 2. $\mathcal{F} \subseteq C(X) \cap C^1(X)$ has a uniform L^{∞} bound on the first derivative
- 3. $\mathcal{F} \subseteq C(X)$ uniformly Holder continuous
- 4. (X, ρ) compact and \mathcal{F} equicontinuous

Proof.

- 1. If C>0 is such that $|f(x)-f(y)|\leq C\rho(x,y)$ for every $x,y\in X$ and $f\in\mathcal{F}$, then for $\varepsilon>0$, let $\delta=\frac{\varepsilon}{C}$, then if $\rho(x,y)\leq\delta$, $|f(x)-f(y)|\leq C\delta<\varepsilon$, and δ independent of x (and f) since it only depends on C which is independent of x,y,f, etc.
- 3. Akin to 1.

 \hookrightarrow Theorem 1.3 (Arzelà-Ascoli): Let (X, ρ) a compact metric space and $\{f_n\} \subseteq C(X)$ be a uniformly bounded and (uniformly) equicontinuous family of functions. Then, $\{f_n\}$ is precompact in C(X), i.e. there exists $\{f_{n_k}\} \subseteq \{f_n\}$ such that f_{n_k} is uniformly convergent on X.

PROOF. Since (X,ρ) compact it is separable and so by the lemma there is a subsequence $\left\{f_{n_k}\right\}$ that converges pointwise on X. Denote by $g_k\coloneqq f_{n_k}$ for notational convenience.

We claim $\{g_k\}$ uniformly Cauchy. Let $\varepsilon>0$. By uniform equicontinuity, there is a $\delta>0$ such that $\rho(x,y)<\delta\Rightarrow |g_k(x)-g_k(y)|<\frac{\varepsilon}{3}$. Since X compact it is totally bounded so there exists $\{x_i\}_{i=1}^N$ such that $X\subseteq\bigcup_{i=1}^N B(x_i,\delta)$. For every $1\le i\le N$, $\{g_k(x_i)\}$ converges by the lemma hence is Cauchy in \mathbb{R} . So, there exists a K_i such that for every $k,\ell\ge K_i$ $|g_k(x_i)-g_\ell(x_i)|\le \frac{\varepsilon}{3}$. Let $K:=\max\{K_i\}$. Then for every $\ell,k\le K$, $|g_k(x_i)-g_\ell(x_i)|\le \frac{\varepsilon}{3}$ for every i=1,...,N. So, for all $x\in X$, there is some x_i such that $\rho(x,x_i)<\delta$, and so for every $k,\ell\ge K$,

$$\begin{split} |g_k(x)-g_\ell(x)| &\leq |g_k(x)-g_k(x_i)| \\ &+ |g_k(x_i)-g_\ell(x_i)| \\ &+ |g_\ell(x_i)-g_\ell(x)| < \varepsilon, \end{split}$$

the first and last follow by the equicontinuity and the second from the lemma. This holds for every x and thus $\|g_k-g_\ell\|_\infty<\varepsilon$, so $\{g_k\}$ Cauchy in C(X). But C(X) complete so converges in the space.

1.3 Arzelà-Ascoli 7

Remark 1.7: If $K \subseteq X$ a compact set, then K bounded and closed.

→Theorem 1.4: Let (X, ρ) compact and $\mathcal{F} \subseteq C(X)$. Then, \mathcal{F} a compact subspace of C(X) iff \mathcal{F} closed, uniformly bounded, and (uniformly) equicontinuous.

PROOF. (\Leftarrow) Let $\{f_n\}\subseteq \mathcal{F}$. By Arzelà-Ascoli Theorem, there exists a subsequence $\{f_{n_k}\}$ that converges uniformly to some $f\in C(X)$. Since \mathcal{F} closed, $f\in \mathcal{F}$ and so \mathcal{F} sequentially compact hence compact.

 (\Rightarrow) $\mathcal F$ compact so closed and bounded in C(X). To prove equicontinuous, we argue by contradiction. Suppose otherwise, that $\mathcal F$ not-equicontinuous at some $x\in X$. Then, there is some $\varepsilon_0>0$ and $\{f_n\}\subseteq \mathcal F$ and $\{x_n\}\subseteq X$ such that $|f_n(x_n)-f_n(x)|\geq \varepsilon_0$ while $\rho(x,x_n)<\frac{1}{n}$. Since $\{f_n\}$ bounded and $\mathcal F$ compact, there is a subsequence $\left\{f_{n_k}\right\}$ that converges to f uniformly. Let K be such that $\forall\,k\geq K$, $\|f_{n_k}-f\|_\infty\leq \frac{\varepsilon_0}{3}$. Then,

$$\begin{split} |f\left(x_{n_k}\right) - f \mid &\geq |\ |f\left(x_{n_k}\right) - f_{n_k}\Big(x_{n_k}\Big)| - |f_{n_k}\Big(x_{n_k}\Big) - f_{n_k}(x)| - |f_{n_k}(x) - f(x)|\ | \\ &\geq \frac{\varepsilon_0}{3}, \end{split}$$

while $\rho(x_{n_k}, x) \leq \frac{1}{n_k}$, so f cannot be continuous at x, a contradiction.

§1.4 Baire Category Theorem

Definition 1.15 (Hollow/Nowhere Dense): We say a set $E \subseteq X$ hollow if int(E) = \emptyset . We say a set $E \subseteq X$ nowhere dense if its closure is hollow, i.e. int(\overline{E}) = \emptyset .

Remark 1.8: Notice that E hollow $\Leftrightarrow E^c$ dense, since $\operatorname{int}(E) = \emptyset \Rightarrow (\operatorname{int}(E))^c = \overline{E^c} = X$.

 \hookrightarrow Theorem 1.5 (Baire Category Theorem): Let X be a complete metric space.

- (a) Let $\{F_n\}$ a collection of closed hollow sets. Then, $\bigcup_{n=1}^{\infty} F_n$ also hollow.
- (b) Let $\{\mathcal{O}_n\}$ a collection of open dense sets. Then, $\bigcap_{n=1}^{\infty} \mathcal{O}_n$ also dense.

PROOF. Notice that $(a) \Leftrightarrow (b)$ by taking complements. We prove (b).

Put $G := \bigcap_{n=1}^{\infty} \mathcal{O}_n$. Fix $x \in X$ and r > 0, then to show density of G is to show $G \cap B(x,r) \neq \emptyset$.

Since \mathcal{O}_1 dense, then $\mathcal{O}_1\cap B(x,r)$ nonempty and in particular open. So, let $x_1\in X$ and $r_1<\frac{1}{2}$ such that $\overline{B}(x,r_1)\subseteq B(x,2r_1)\subseteq \mathcal{O}_1\cap B(x,r)$.

Similarly, since \mathcal{O}_2 dense, $\mathcal{O}_2 \cap B(x_1,r_1)$ open and nonempty so there exists $x_2 \in X$ and $r_2 < 2^{-2}$ such that $\overline{B}(x_2,r_2) \subseteq \mathcal{O}_2 \cap B(x_1,r_1)$.

Repeat in this manner to find $x_n \in X$ with $r_n < 2^{-n}$ such that $\overline{B}(x_n, r_n) \subseteq \mathcal{O}_n \cap B(x_{n-1}, r_{n-1})$ for any $n \in \mathbb{N}$. This creates a sequence of sets

$$\overline{B}(x_1,r_1)\supseteq \overline{B}(x_2,r_2)\supseteq \cdots,$$

with $r_n \to 0$. Hence, the sequence of points $\{x_n\}$ Cauchy and since X complete, $x_j \to x_0 \in X$, so in particular

$$\{x_0\} = \bigcap_{n=1}^{\infty} \overline{B}(x_n, r_n),$$

hence $x_0 \in \mathcal{O}_n$ for every n and thus $G \cap B(x,r)$ nonempty.

 \hookrightarrow Corollary 1.2: Let X complete and $\{F_n\}$ a sequence of closed sets in X. If $X = \bigcup_{n \geq 1} F_n$, there is some n_0 such that $\operatorname{int}(F_{n_0}) \neq \emptyset$.

PROOF. If not, violates BCT since X is not hollow in itself; int(X) = X.

 \hookrightarrow Corollary 1.3: Let X complete and $\{F_n\}$ a sequence of closed sets in X. Then, $\bigcup_{n=1}^{\infty} \partial F_n$ hollow.

PROOF. We claim $\operatorname{int}(\partial F_n)=\varnothing$. Suppose not, then there exists some $B(x_0,r)\subseteq\partial F_n$. Then $x_0\in\partial F_n$ but $B(x_0,r)\cap F_n^c=\varnothing$, a contradiction. So, since ∂F_n closed and $\partial F_n\cap B(x_0,r)=\varnothing$ for every such ball, by BCT $\bigcup_{n=1}^\infty\partial F_n$ must be hollow.

1.4.1 Applications of Baire Category Theorem

→Theorem 1.6: Let $\mathcal{F} \subset C(X)$ where X complete. Suppose \mathcal{F} pointwise bounded. Then, there exists a nonempty, open set $\mathcal{O} \subseteq X$ such that \mathcal{F} uniformly bounded on \mathcal{O} .

Proof. Let

$$\begin{split} E_n \coloneqq \{x \in X : |f(x)| \leq n \, \forall \, f \in \mathcal{F}\} \\ = \bigcap_{f \in \mathcal{F}} \underbrace{\{x : |f(x)| \leq n\}}_{\text{closed}}. \end{split}$$

Since $\mathcal F$ pointwise bounded, for every $x\in X$ there is some $M_x>0$ such that $|f(x)|\leq M_x$ for every $f\in \mathcal F$. Hence, for every $n\in \mathbb N$ such that $n\geq M_x$, $x\in E_n$ and thus $X=\bigcup_{n=1}^\infty E_n$.

 E_n closed and hence by the previous corollaries there is some n_0 such that $\operatorname{int}\left(E_{n_0}\right) \neq \varnothing$ and hence there is some r>0 and $x_0\in X$ such that $B(x_0,r)\subseteq E_{n_0}$. Then, for every $x\in B(x_0,r)$, $|f(x)|\leq n_0$ for every $f\in \mathcal{F}$, which gives our desired nonempty open set upon which \mathcal{F} uniformly bounded.

Theorem 1.7: Let X complete, and $\{f_n\}$ ⊆ C(X) such that $f_n \to f$ pointwise on X. Then, there exists a dense subset $D \subseteq X$ such that $\{f_n\}$ equicontinuous on D and f continuous on D.

PROOF. For $m, n \in \mathbb{N}$, let

$$\begin{split} E(m,n) &:= \left\{ x \in X : |f_j(x) - f_k(x)| \leq \frac{1}{m} \, \forall \, j,k \geq n \right\} \\ &= \bigcap_{j,k \geq n} \left\{ x : |f_j(x) - f_k(x)| \leq \frac{1}{m} \right\}. \end{split}$$

The union of the boundaries of these sets are hollow, hence $D \coloneqq \left(\bigcup_{m,n \geq 1} \partial E(m,n)\right)^c$ is dense. Then, if $x \in D \cap E(m,n)$, then $x \in \left(\partial E(m,n)\right)^c$ implies $x \in \operatorname{int}(E(m,n))$.

We claim $\{f_n\}$ equicontinuous on D. Let $x_0 \in D$ and $\varepsilon > 0$. Let $\frac{1}{m} \leq \frac{\varepsilon}{4}$. Then, since $\{f_n(x_0)\}$ convergent it is therefore Cauchy (in \mathbb{R}). Hence, there is some N such that $|f_j(x_0) - f_k(x_0)| \leq \frac{1}{m}$ for every $j,k \geq N$, so $x_0 \in D \cap E(m,N)$ hence $x_0 \in \mathrm{int}(E(m,N))$.

Let $B(x_0,r)\subseteq E(m,N).$ Since f_N continuous at x_0 there is some $\delta>0$ such that $\delta< r$ and

$$|f_N(x)-f_N(x_0)|<\frac{1}{m}\,\forall\,x\in B(x_0,\delta),$$

and hence

$$\begin{split} |f_j(x)-f_j(x_0)| &\leq |f_j(x)-f_N(x)| + |f_N(x)-f_N(x_0)| + |f_N(x_0)-f_j(x_0)| \\ &\leq \frac{3}{m} \leq \frac{3}{4}\varepsilon, \end{split}$$

for every $x \in B(x_0, \delta)$ and $j \ge N$, where the first, last bounds come from Cauchy and the middle from continuity of f_N . Hence, we've show $\{f_n\}$ equicontinuous at x_0 since δ was independent of f.

In particular, this also gives for every $x \in B(x_0, \delta)$ the limit

$$\frac{3}{4}\varepsilon>\lim_{j\to\infty}|f_j(x)-f_j(x_0)|=|f(x)-f(x_0)|,$$

so f continuous on D.

§1.5 Topological Spaces

Throughout, assume $X \neq \emptyset$.

1.5 Topological Spaces 10

 \hookrightarrow **Definition 1.16** (Topology): Let $X \neq \emptyset$. A *topology* \mathcal{T} on X is a collection of subsets of X, called *open sets*, such that

- $X, \emptyset \in \mathcal{T}$;
- If $\{E_n\} \subseteq \mathcal{T}$, $\bigcap_{n=1}^N E_n \in \mathcal{T}$ (closed under *finite* intersections);
- If $\{E_n\} \subseteq \mathcal{T}$, $\bigcup_n E_n \in \mathcal{T}$ (closed under arbitrary unions).

If $x \in X$, a set $E \in \mathcal{T}$ containing x is called a neighborhood of x.

 \hookrightarrow **Proposition 1.3**: $E \subseteq X$ open \Leftrightarrow for every $x \in E$, there is a neighborhood of x contained in E.

PROOF. \Rightarrow is trivial by taking the neighborhood to be E itself. \Leftarrow follows from the fact that, if for each x we let \mathcal{U}_x a neighborhood of x contained in E, then

$$E = \bigcup_{x \in E} \mathcal{U}_x,$$

so *E* open being a union of open sets.

Example 1.1: Every metric space induces a natural topology given by open sets under the metric. The *discrete topology* is given by $\mathcal{T} = 2^X$ (and is actually induced by the discrete metric), and is the largest topology. The *trivial topology* $\{\emptyset, X\}$ is the smallest. The *relative topology* defined on a subset $Y \subseteq X$ is given by $\mathcal{T}_Y := \{E \cap Y : E \in \mathcal{T}\}$.

Definition 1.17 (Base): Given a topological space (X, \mathcal{T}) , let $x \in X$. A collection \mathcal{B}_x of neighborhoods of x is called a *base* of \mathcal{T} at x if for every neighborhood \mathcal{U} of x, there is a set $B \in \mathcal{B}_x$ such that $B \subseteq \mathcal{U}$.

We say a collection \mathcal{B} a base for all of \mathcal{T} if for every $x \in X$, there is a base for $x, \mathcal{B}_x \subseteq \mathcal{B}$.

 \hookrightarrow **Proposition 1.4**: If (X, \mathcal{T}) a topological space, then $\mathcal{B} \subseteq \mathcal{T}$ a base for $\mathcal{T} \Leftrightarrow$ every nonempty open set $\mathcal{U} \in \mathcal{T}$ can be written as a union of elements of \mathcal{B} .

Proof. \Rightarrow If $\mathcal U$ open, then for $x \in \mathcal U$ there is some basis element B_x contained in $\mathcal U$. So in particular $\mathcal U = \bigcup_{x \in \mathcal U} B_x$.

 $\Leftarrow \text{Let } x \in \mathcal{U} \text{ and } \mathcal{B}_x \coloneqq \{B \in \mathcal{B} \mid x \in B\}. \text{ Then, for every neighborhood of } x \text{, there is some } B \text{ in } \mathcal{B}_x \text{ such that } B \subseteq \mathcal{U} \text{ so } \mathcal{B}_x \text{ a base for } \mathcal{T} \text{ at } x.$

Remark 1.9: A base \mathcal{B} defines a unique topology, $\{\emptyset, \cup \mathcal{B}_x\}$.

1.5 Topological Spaces 11

 \hookrightarrow **Proposition 1.5**: $\mathcal{B} \subseteq 2^X$ a base for a topology on $X \Leftrightarrow$

- $X = \bigcup_{B \in \mathcal{B}} B$
- If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there is a $B \in \mathcal{B}$ such that $x \in B \subseteq B_1 \cap B_2$.

PROOF. (\Rightarrow) If \mathcal{B} a base, then X open so $X = \cup_B B$. If $B_1, B_2 \in \mathcal{B}$, then $B_1 \cap B_2$ open so there must exist some $B \subseteq B_1 \cap B_2$ in \mathcal{B} .

$$\mathcal{T} = \{ \mathcal{U} \mid \forall \, x \in \mathcal{U}, \exists \, B \in \mathcal{B} \text{ with } x \in B \subseteq \mathcal{U} \}.$$

One can show this a topology on X with \mathcal{B} as a base.

 \hookrightarrow **Definition 1.18**: If $\mathcal{T}_1 \subsetneq \mathcal{T}_2$, we say \mathcal{T}_1 weaker/coarser and \mathcal{T}_2 stronger/finer.

Given a subset $S \subseteq 2^X$, define

 $\mathcal{T}(S) = \bigcap$ all topologies containing S = unique weakest topology containing S

to be the topology *generated* by S.

 \hookrightarrow **Proposition 1.6**: If $S \subseteq 2^X$,

$$\mathcal{T}(S) = \big \lfloor \ \big | \{ \text{finite intersections of elts of } S \}.$$

We call S a "subbase" for $\mathcal{T}(S)$ (namely, we allow finite intersections of elements in S to serve as a base for $\mathcal{T}(S)$).

PROOF. Let $\mathcal{B} := \{X, \text{finite intersections of elements of } S\}$. We claim this a base for $\mathcal{T}(S)$.

Definition 1.19 (Point of closure/accumulation point): If $E \subseteq X, x \in X$, x is called a *point* of closure if $\forall \mathcal{U}_x, \mathcal{U}_x \cap E \neq \emptyset$. The collection of all such sets is called the *closure* of E, denoted \overline{E} . We say E closed if $E = \overline{E}$.

- \hookrightarrow **Proposition 1.7**: Let $E \subseteq X$, then
- \overline{E} closed,
- \overline{E} is the smallest closed set containing E,
- E open $\Leftrightarrow E^c$ closed.

§1.6 Separation, Countability, Separability

 \hookrightarrow **Definition 1.20**: A neighborhood of a set $K \subseteq X$ is any open set containing K.

 \hookrightarrow **Definition 1.21** (Notions of Separation): We say (X, \mathcal{T}) :

- $\bullet \ \ \textit{Tychonoff Separable} \ \text{if} \ \ \forall \ x,y \in X, \exists \ \mathcal{U}_x, \mathcal{U}_y \ \text{such that} \ y \notin \mathcal{U}_x, x \notin \mathcal{U}_y \\$
- Hausdorff Separable if $\forall x,y \in X$ can be separated by two disjoint open sets i.e. $\exists \mathcal{U}_x \cap \mathcal{U}_y = \emptyset$
- Normal if Tychonoff and in addition any 2 disjoint closed sets can be separated by disjoint neighborhoods.

Remark 1.10: Metric space \subseteq normal space \subseteq Hausdorff space \subseteq Tychonoff space.

\hookrightarrow **Proposition 1.8**: Tychonoff $\Leftrightarrow \forall x \in X, \{x\}$ closed.

PROOF. For every $x \in X$,

$$\begin{split} \{x\} \text{ closed} &\Leftrightarrow \{x\}^c \text{ open} \\ &\Leftrightarrow \forall \, y \in \{x\}^c, \exists \, \mathcal{U}_y \subseteq \{x\}^c \\ &\Leftrightarrow \forall \, y \neq x, \exists \, \mathcal{U}_y \text{ s.t. } x \notin \mathcal{U}_y, \end{split}$$

and since this holds for every x, X Tychonoff.

→Proposition 1.9: Every metric space normal.

PROOF. Define, for $F \subseteq X$, the function

$$\operatorname{dist}(F, x) := \inf \{ \rho(x, x') \mid x' \in F \}.$$

Notice that if F closed and $x \notin F$, then $\operatorname{dist}(F,x) > 0$ (since F^c open so there exists some $B(x,\varepsilon) \subseteq F^c$ so $\rho(x,x') \ge \varepsilon$ for every $x' \in F$). Let F_1,F_2 be closed disjoint sets, and define

$$\begin{split} \mathcal{O}_1 &\coloneqq \{x \in X \mid \mathrm{dist}(F_1,x) < \mathrm{dist}(F_2,x)\}, \\ \mathcal{O}_2 &\coloneqq \{x \in X \mid \mathrm{dist}(F_1,x) > \mathrm{dist}(F_2,x)\}. \end{split}$$

Then, $F_1\subseteq \mathcal{O}_1, F_2\subseteq \mathcal{O}_2$, and $\mathcal{O}_1\cap \mathcal{O}_2=\varnothing$. If we show $\mathcal{O}_1, \mathcal{O}_2$ open, we'll be done.

Let $x\in\mathcal{O}_1$ and $\varepsilon>0$ such that $\mathrm{dist}(F_1,x)+\varepsilon\leq\mathrm{dist}(F_2,x).$ I claim that $B\big(x,\frac{\varepsilon}{5}\big)\subseteq\mathcal{O}_1.$ Let $y\in B\big(x,\frac{\varepsilon}{5}\big).$ Then,

$$\begin{split} \operatorname{dist}(F_2,y) & \geq \rho(y,y') - \frac{\varepsilon}{5} & \text{for some } y' \in F_2 \\ & \geq \rho(x,y') - \rho(x,y) + \frac{\varepsilon}{5} & \text{reverse triangle inequality} \\ & \geq \operatorname{dist}(F_2,x) - \frac{2\varepsilon}{5} \\ & \geq \operatorname{dist}(F_1,x) + \varepsilon - \frac{2\varepsilon}{5} \\ & \geq \rho(x,\tilde{y}) + \frac{2\varepsilon}{5} & \text{for some } \tilde{y} \in F_1 \\ & \geq \rho(y,\tilde{y}) - \rho(y,x) + \frac{2\varepsilon}{5} & \text{reverse triangle inequality} \\ & \geq \rho(y,\tilde{y}) - \frac{\varepsilon}{5} + \frac{2\varepsilon}{5} \\ & \geq \operatorname{dist}(F_1,y) + \frac{\varepsilon}{5} > \operatorname{dist}(F_1,y), \end{split}$$

hence, $y \in \mathcal{O}_1$ and thus \mathcal{O}_1 open. Similar proof follows for \mathcal{O}_2 .

 \hookrightarrow **Proposition 1.10**: Let X Tychonoff. Then X normal $\Leftrightarrow \forall F \subseteq X$ closed and neighborhood \mathcal{U} of F, there exists an open set \mathcal{O} such that

$$F \subseteq \mathcal{O} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}$$
.

This is called the "nested neighborhood property" of normal spaces.

PROOF. (\Rightarrow) Let F closed and $\mathcal U$ a neighborhood of F. Then, F and $\mathcal U^c$ closed disjoint sets so by normality there exists $\mathcal O, \mathcal V$ disjoint open neighborhoods of F, $\mathcal U^c$ respectively. So, $\mathcal O \subseteq \mathcal V^c$ hence $\overline{\mathcal O} \subseteq \overline{\mathcal V}^c$ and thus

$$F\subseteq \mathcal{O}\subseteq \overline{\mathcal{O}}\subseteq \mathcal{V}^c\subseteq \mathcal{U}.$$

(\Leftarrow) Let A, B be disjoint closed sets. Then, B^c open and moreover $A \subseteq B^c$. Hence, there exists some open set \mathcal{O} such that $A \subseteq \mathcal{O} \subseteq \overline{\mathcal{O}} \subseteq B^c$, and thus $B \subseteq \overline{\mathcal{O}}^c$. Then, \mathcal{O} and $\overline{\mathcal{O}}^c$ are disjoint open neighborhoods of A, B respectively so X normal.

 \hookrightarrow **Definition 1.22** (Separable): A space *X* is called *separable* if it contains a countable dense subset.

- \hookrightarrow **Definition 1.23** (1st, 2nd Countable): A topological space (X, \mathcal{T}) is called
- 1st countable if there is a countable base at each point; and
- 2nd countable if there is a countable base for all of \mathcal{T} .

Example 1.2: Every metric space is first countable; for $x \in X$ let $\mathcal{B}_x = \{B(x, \frac{1}{n}) \mid n \in \mathbb{N}\}.$

→Proposition 1.11: Every 2nd countable space is separable.

⇒ Definition 1.24 (Convergence): Let $\{x_n\} \subseteq X$. Then, we say $x_n \to x$ in \mathcal{T} if for every neighborhood \mathcal{U}_x , there exists an N such that $\forall n \geq N, x_n \in \mathcal{U}_x$.

Remark 1.11: In general spaces, such a limit may not be unique. For instance, under the trivial topology, the only nonempty neighborhood is the whole space, so every sequence converges to every point in the space.

 \hookrightarrow **Proposition 1.12**: Let (X, \mathcal{T}) be Hausdorff. Then, all limits are unique.

PROOF. Suppose otherwise, that $x_n \to \mathrm{both}\ x$ and y. If $x \neq y$, then since X Hausdorff there are disjoint neighborhoods $\mathcal{U}_x, \mathcal{U}_y$ containing x, y. But then x_n cannot be on both \mathcal{U}_x and \mathcal{U}_y for sufficiently large n, contradiction.

 \hookrightarrow **Proposition 1.13**: Let X be 1st countable and $E \subseteq X$. Then, $x \in \overline{E} \Leftrightarrow$ there exists $\{x_j\} \subseteq E$ such that $x_j \to x$.

PROOF. (\Rightarrow) Let $\mathcal{B}_x = \left\{B_j\right\}$ be a base for X at $x \in \overline{E}$. Wlog, $B_j \supseteq B_{j+1}$ for every $j \ge 1$ (by replacing with intersections, etc if necessary). Hence, $B_j \cap E \neq \emptyset$ for every j. Let $x_j \in B_j \cap E$, then by the nesting property $x_j \to x$ in \mathcal{T} .

 (\Leftarrow) Suppose otherwise, that $x \notin \overline{E}$. Let $\left\{x_j\right\} \in E_j$. Then, \overline{E}^c open, and contains x. Then, \overline{E}^c a neighborhood of x but does not contain any x_j so $x_j \not\to x$.

§1.7 Continuity and Compactness

⇒ Definition 1.25: Let $(X, \mathcal{T}), (Y, \mathcal{S})$ be two topological spaces. Then, a function $f: X \to Y$ is said to be continuous at x_0 if for every neighborhood \mathcal{O} of $f(x_0)$ there exists a neighborhood $\mathcal{U}(x_0)$ such that $f(\mathcal{U}) \subseteq \mathcal{O}$. We say f continuous on X if it is continuous at every point in X.

 \hookrightarrow **Proposition 1.14**: f continuous $\Leftrightarrow \forall \mathcal{O}$ open in Y, $f^{-1}(\mathcal{O})$ open in X.

 \hookrightarrow **Definition 1.26** (Weak Topology): Consider $\mathcal{F} \coloneqq \left\{ f_{\lambda} : X \to X_{\lambda} \right\}_{\lambda \in \Lambda}$ where X, X_{λ} topological spaces. Then, let

$$S := \{ f_{\lambda}^{-1}(\mathcal{O}_{\lambda}) \mid f_{\lambda} \in \mathcal{F}, \mathcal{O}_{\lambda} \in X_{\lambda} \} \subseteq X.$$

We say that the topology $\mathcal{T}(S)$ generated by S is the *weak topology* for X induced by the family \mathcal{F} .

 \hookrightarrow **Proposition 1.15**: The weak topology is the weakest topology in which each f_{λ} continuous on X.

Example 1.3: The key example of the weak topology is given by the product topology. Consider $\{X_\lambda\}_{\lambda\in\Lambda}$ a collection of topological spaces. We can defined a "natural" topology on the product $X:=\prod_{\lambda\in\Lambda}X_\lambda$ by consider the weak topology induced by the family of projection maps, namely, if $\pi_\lambda:X\to X_\lambda$ a coordinate-wise projection and $\mathcal{F}=\{\pi_\lambda:\lambda\in\Lambda\}$, then we say the weak topology induced by \mathcal{F} is the *product topology* on X. In particular, a base for this topology is given, by previous discussions,

$$\mathcal{B} = \left\{ \bigcap_{j=1}^n \pi_{\lambda_j}^{-1} \big(\mathcal{O}_j \big) \right\} = \left\{ \prod_{\lambda \in \Lambda} \mathcal{U}_{\lambda} : \mathcal{U}_{\lambda} \text{ open and all by finitely many } U_{\lambda}{}'s = X_{\lambda} \right\}.$$

 \hookrightarrow **Definition 1.27** (Compactness): A space *X* is said to be *compact* if every open cover of *X* admits a finite subcover.

\hookrightarrow **Proposition 1.16**:

- Closed subsets of compact spaces are compact
- $X \text{ compact} \Leftrightarrow \text{if } \{F_k\} \subseteq X \text{-nested and closed, } \cap_{k=1}^{\infty} F_k \neq \emptyset.$
- Continuous images of compact sets are compact
- Continuous real-valued functions on a compact topological space achieve their min, max.

 \hookrightarrow **Proposition 1.17**: Let K compact be contained in a Hausdorff space X. Then, K closed in X.

PROOF. We show K^c open. Let $y \in K^c$. Then for every $x \in K$, there exists disjoint open sets $\mathcal{U}_{xy}, \mathcal{O}_{xy}$ containing y, x respectively. Then, it follows that $\left\{\mathcal{O}_{xy}\right\}_{x \in K}$ an open cover of K, and since K compact there must exist some finite subcover, $K \subseteq \bigcup_{i=1}^N \mathcal{O}_{x_iy}$. Let $E := \bigcap_{i=1}^N \mathcal{U}_{x_iy}$. Then, E is an open neighborhood of Y with $E \cap \mathcal{O}_{x_iy} = \emptyset$ for every

i=1,...N. Thus, $E\subseteq \bigcap_{i=1}^N \mathcal{O}_{x_iy}^c=\left(\bigcup_{i=1}^N \mathcal{O}_{x_iy}\right)^c\subseteq K^c$ so since y was arbitrary K^c open.

 \hookrightarrow **Definition 1.28** (Sequential Compactness): We say (X, \mathcal{T}) sequentially compact if every sequence in X has a converging subsequence with limit contained in X.

 \hookrightarrow **Proposition 1.18**: Let (X, \mathcal{T}) second countable. Then, X compact \Leftrightarrow sequentially compact.

PROOF. (\Rightarrow) Let $\{x_k\}\subseteq X$ and put $F_n:=\overline{\{x_k\mid k\geq n\}}$. Then, $\{F_n\}$ defines a sequence of closed and nested subsets of X and, since X compact, $\bigcap_{n=1}^\infty F_n$ nonempty. Let x_0 in this intersection. Since X 2nd and so in particular 1st countable, let $\{B_j\}$ a (wlog nested) countable base at $x_0.$ $x_0\in F_n$ for every $n\geq 1$ so each B_j must intersect some F_n . Let n_j be an index such that $x_{n_j}\in B_j$. Then, if $\mathcal U$ a neighborhood of x_0 , there exists some N such that $B_j\subseteq \mathcal U$ for every $j\geq N$ and thus $\{x_{n_j}\}\subseteq B_N\subseteq \mathcal U$, so $x_{n_j}\to x_0$ in X.

 $(\Leftarrow) \text{ Remark that since } X \text{ second countable, every open cover of } X \text{ certainly has a countable subcover by intersecting a given cover with our countable basis. So, assume we have a countable cover <math>X \subseteq \bigcup_{n=1}^\infty \mathcal{O}_n$ and suppose towards a contradiction that no finite subcover exists. Then, for every $n \geq 1$, there exists some $m(n) \geq n$ such that $\mathcal{O}_{m(n)} \setminus \bigcup_{i=1}^n \mathcal{O}_i \neq \varnothing.$ Let x_n in this set for every $n \geq 1$. Since X sequentially compact, there exists a convergent subsequence $\left\{x_{n_k}\right\} \subseteq \left\{x_n\right\}$ such that $x_{n_k} \to x_0$ in X, so there exists some \mathcal{O}_N such that $x_0 \in \mathcal{O}_N$. But by construction, $x_{n_k} \notin \mathcal{O}_N$ if $n_k \geq N$, and we have a contradiction.

\hookrightarrow **Theorem 1.8**: If *X* compact and Hausdorff, *X* normal.

PROOF. We show that any closed set F and any point $x \notin F$ can be separated by disjoint open sets. Then, the proof in the more general case follows.

For each $y \in X$, X is Hausdorff so there exists disjoint open neighborhoods \mathcal{O}_{xy} and \mathcal{U}_{xy} of x,y respectively. Then, $\left\{\mathcal{U}_{xy} \mid y \in F\right\}$ defines an open cover of F. Since F closed and thus, being a subset of a compact space, compact, there exists a finite subcover $F \subseteq \bigcup_{i=1}^N \mathcal{U}_{xy_i}$. Put $\mathcal{N} := \bigcap_{i=1}^N \mathcal{O}_{xy_i}$. This is an open set containing x, with $\mathcal{N} \cap \bigcup_{i=1}^N \mathcal{U}_{xy_i} = \emptyset$ hence F and x separated by $\mathcal{N}, \bigcup_{i=1}^N \mathcal{U}_{xy_i}$.

§1.8 Connected Topological Spaces

Definition 1.29 (Separate): 2 non-empty sets \mathcal{O}_1 , \mathcal{O}_2 separate X if \mathcal{O}_1 , \mathcal{O}_2 disjoint and $X = \mathcal{O}_1 \cup \mathcal{O}_2$.

 \rightarrow **Definition 1.30** (Connected): We say *X* connected if it cannot be separated.

Remark 1.12: Note that if X can be separated, then $\mathcal{O}_1, \mathcal{O}_2$ are closed as well as open, being complements of each other.

 \hookrightarrow Proposition 1.19: Let $f: X \to Y$ continuous. Then, if X connected, so is f(X).

PROOF. Suppose otherwise, that $f(X) = \mathcal{O}_1 \sqcup \mathcal{O}_2$ for nonempty, open, disjoint $\mathcal{O}_1, \mathcal{O}_2$. Then, $X = f^{-1}(\mathcal{O}_1) \sqcup f^{-1}(\mathcal{O}_2)$, and each of these inverse images remain nonempty and open in X, so this a contradiction to the connectedness of X.

Remark 1.13: On \mathbb{R} , $C \subseteq \mathbb{R}$ connected \Leftrightarrow an interval \Leftrightarrow convex.

 \hookrightarrow **Definition 1.31** (Intermediate Value Property): We say X has the intermediate value property (IVP) if $\forall f \in C(X)$, f(X) an interval.

 \hookrightarrow Proposition 1.20: *X* has IVP \Leftrightarrow *X* connected.

PROOF. (\Leftarrow) If X connected, f(X) connected in \mathbb{R} hence an interval.

 $(\Rightarrow) \text{ Suppose otherwise, that } X = \mathcal{O}_1 \sqcup \mathcal{O}_2. \text{ Then define the function } f: X \to \mathbb{R} \text{ by } x \mapsto \begin{cases} 1 \text{ if } x \in \mathcal{O}_2 \\ 0 \text{ if } x \in \mathcal{O}_1 \end{cases}. \text{ Then, for every } A \subseteq \mathbb{R},$

$$f^{-1}(A) = \begin{cases} \varnothing & \text{if } \{0,1\} \not\subseteq A \\ \mathcal{O}_1 & \text{if } 0 \in A \\ \mathcal{O}_2 & \text{if } 1 \in A \\ X & \text{if } \{0,1\} \subseteq A \end{cases},$$

which are all open sets, hence f continuous. But $f(X) = \{0,1\}$ which is not an interval, hence the IVP fails and so X must be connected.

Definition 1.32 (Arcwise/Path Connected): *X arc connected/path connected* if $\forall x, y \in X$, there exists a continuous function $f : [0,1] \rightarrow X$ such that f(0) = x, f(1) = y.

 \hookrightarrow Proposition 1.21: Arc connected \Rightarrow connected.

PROOF. Suppose otherwise, $X=\mathcal{O}_1\sqcup\mathcal{O}_2$. Let $x\in\mathcal{O}_1,y\in\mathcal{O}_2$ and define a continuous function $f:[0,1]\to X$ such that f(0)=x and f(1)=y. Then, $f^{-1}(\mathcal{O}_i)$ each open, nonempty and disjoint for i=1,2, but

$$f^{-1}(\mathcal{O}_1) \sqcup f^{-1}(\mathcal{O}_2) = [0,1],$$

a contradiction to the connectedness of [0,1].

§1.9 Urysohn's Lemma and Urysohn's Metrization Theorem

We present the main lemma of this section first, but need more tools before proving it.

→Lemma 1.2 (Urysohn's): Let $A, B \subseteq X$ closed and disjoint subsets of a normal space X. Then, $\forall [a,b] \subseteq \mathbb{R}$, there exists a continuous function $f:[a,b] \to \mathbb{R}$ such that $f(X) \subseteq [a,b]$, $f|_A = a$ and $f|_B = b$.

Remark 1.14: We have a partial converse of this statement as well:

 \hookrightarrow Proposition 1.22: Let X Tychonoff and suppose X satisfies the properties of Urysohn's Lemma. Then, X normal.

PROOF. Let A, B be closed nonempty disjoint subsets. Let $f: X \to \mathbb{R}$ continuous such that $f|_A = 0$, $f|_B = 1$ and $0 \le f \le 1$. Let I_1, I_2 be two disjoint open intervals in \mathbb{R} with $0 \in I_1$ and $1 \in I_2$. Then, $f^{-1}(I_1)$ open and contains A, and $f^{-1}(I_2)$ open and contains B. Moreover, $f^{-1}(I_1) \cap f^{-1}(I_2) = \emptyset$; hence, $f^{-1}(I_1), f^{-1}(I_2)$ disjoint open neighborhoods of A, B respectively, so indeed X normal.

 \hookrightarrow **Definition 1.33** (Normally Ascending): Let (X, \mathcal{T}) a topological space and $\Lambda \subseteq \mathbb{R}$. A collection of open sets $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$ is said to be *normally ascending* if $\forall \lambda_1, \lambda_2 \in \Lambda$,

$$\overline{\mathcal{O}_{\lambda_1}}\subseteq\mathcal{O}_{\lambda_2} \text{ if } \lambda_1<\lambda_2.$$

Lemma 1.3: Let $\Lambda \subseteq (a,b)$ a dense subset, and let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ a normally ascending collection of subsets of *X*. Let *f* : *X* → \mathbb{R} defined such that

$$f(x) = \begin{cases} b & \text{if } x \in \left(\bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}\right)^{c} \\ \inf\{\lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda}\} \text{ else} \end{cases}.$$

Then, *f* continuous.

PROOF. We claim $f^{-1}(-\infty,c)$ and $f^{-1}(c,\infty)$ open for every $c\in\mathbb{R}$. Since such sets define a subbase for \mathbb{R} , it suffices to prove continuity on these sets. We show just the first for convenience. Notice that since $f(x)\in[a,b]$, if $c\in(a,b)$ then $f^{-1}(-\infty,c)=f^{-1}[a,c)$, so really it suffices to show that $f^{-1}[a,c)$ open to complete the proof.

Suppose $x \in f^{-1}([a,c])$ so $a \le f(x) < c$. Let $\lambda \in \Lambda$ be such that $a < \lambda < f(x)$. Then, $x \notin \mathcal{O}_{\lambda}$. Let also $\lambda' \in \Lambda$ such that $f(x) < \lambda' < c$. By density of Λ , there exists a $\varepsilon > 0$ such that $f(x) + \varepsilon \in \Lambda$, so in particular

$$\overline{\mathcal{O}}_{f(x)+\varepsilon} \subseteq \mathcal{O}_{\lambda'} \Rightarrow x \in \mathcal{O}_{\lambda'},$$

by nesting. So, repeating this procedure, we find

$$f^{-1}([a,c)) \subseteq \bigcup_{a \le \lambda < \lambda' < c} \mathcal{O}_{\lambda'} \setminus \overline{\mathcal{O}}_{\lambda},$$

noticing the set on the right is open. By similar reasoning, the opposite inclusion holds and we have equality. Hence, f continuous.

Lemma 1.4: Let *X* normal, $F \subseteq X$ closed, and \mathcal{U} a neighborhood of *F*. Then, for any $(a,b) \subseteq \mathbb{R}$, there exists a dense subset $\Lambda \subseteq (a,b)$ and a normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ such that

$$F\subseteq \mathcal{O}_\lambda\subseteq \overline{\mathcal{O}}_\lambda\subseteq \mathcal{U}, \qquad \forall \ \lambda\in \Lambda.$$

Remark 1.15: This is essentially a generalization of the nested neighborhood property, and indeed the proof essentially just uses this property repeatedly to construct the collection $\{\mathcal{O}_{\lambda}\}$.

PROOF. Without loss of generality, we assume (a,b)=(0,1), for the two intervals are homeomorphic, i.e. the function $f:(0,1)\to\mathbb{R}, f(x):=a(1-x)+bx$ is continuous, invertible with continuous inverse and with f(0)=a,f(1)=b so a homeomorphism.

Let

$$\Lambda \coloneqq \left\{\frac{m}{2^n} \mid m,n \in \mathbb{N} \mid 1 \leq m \leq 2^{n-1}\right\} = \bigcup_{n \in \mathbb{N}} \underbrace{\left\{\frac{m}{2^n} \mid m \in \mathbb{N}, 1 \leq m \leq 2^{n-1}\right\}}_{=:\Lambda_n},$$

which is clearly dense in (0,1). We need now to define our normally ascending collection. We do so by defining on each Λ_1 and proceding inductively.

For Λ_1 , since X normal, let $\mathcal{O}_{1/2}$ be such that $F \subseteq \mathcal{O}_{1/2} \subseteq \overline{\mathcal{O}}_{1/2} \subseteq \mathcal{U}$, which exists by the nested neighborhood property.

For $\Lambda_2=\left\{\frac{1}{4},\frac{3}{4}\right\}$, we use the nested neighborhood property again, but first with F as the closed set and $\mathcal{O}_{1/2}$ an open neighborhood of it, and then with $\overline{\mathcal{O}}_{1/2}$ as the closed set and \mathcal{U} an open neighborhood of it. In this way, we find

$$\underbrace{F \subseteq \mathcal{O}_{1/4} \subseteq \overline{\mathcal{O}}_{1/4} \subseteq \mathcal{O}_{1/2}}_{\text{nested nbhd}} \subseteq \underbrace{\overline{\overline{\mathcal{O}}}_{1/2} \subseteq \mathcal{O}_{3/4} \subseteq \overline{\mathcal{O}}_{3/4} \subseteq \overline{\mathcal{U}}}_{\text{nested nbhd}}.$$

We repeat in this manner over all of Λ , in the end defining a normally ascending collection $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$.

PROOF (Of Urysohn's Lemma, Lem. 1.2). Let F=A and $\mathcal{U}=B^c$ as in the previous lemma Lem. 1.4. Then, there is some dense subset $\Lambda\subseteq(a,b)$ and a normally ascending collection $\left\{\mathcal{O}_{\lambda}\right\}_{\lambda\in\Lambda}$ such that $A\subseteq\mathcal{O}_{\lambda}\subseteq\overline{\mathcal{O}}_{\lambda}\subseteq B^c$ for every $\lambda\in\Lambda$. Let f(x) as in the previous previous lemma, Lem. 1.3. Then, if $x\in B$, $B\subseteq\left(\bigcup_{\lambda\in\Lambda}\mathcal{O}_{\lambda}\right)^c$ and so f(x)=b.

Otherwise if $x \in A$, then $x \in \bigcap_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ and thus $f(x) = \inf\{\lambda \in \Lambda\} = a$. By the first lemma, f continuous, so we are done.

 \hookrightarrow Theorem 1.9 (Urysohn's Metrization Theorem): Let X be a second countable topological space. Then, X is metrizable (that is, there exists a metric on X that induces the topology) if and only if X normal.

PROOF. (\Rightarrow) We have already showed, every metric space is normal.

 (\Leftarrow) Let $\{\mathcal{U}_n\}$ be a countable basis for \mathcal{T} and put

$$A\coloneqq \big\{(n,m)\in \mathbb{N}\times \mathbb{N}\ |\ \overline{\mathcal{U}}_n\subseteq \mathcal{U}_m\big\}.$$

By Urysohn's lemma, for each $(n,m)\in A$ there is some continuous function $f_{n,m}:X\to\mathbb{R}$ such that $f_{n,m}$ is 1 on \mathcal{U}_m^c and 0 on $\overline{\mathcal{U}}_n$ (these are disjoint closed sets). For $x,y\in X$, define

$$\rho(x,y) \coloneqq \sum_{(n,m) \in A} \frac{1}{2^{n+m}} \ |f_{n,m}(x) - f_{n,m}(y)|.$$

The absolute valued term is ≤ 2 , so this function will always be finite. Moreover, one can verify that it is indeed a metric on X. It remains to show that it induces the same topology; it suffices to compare bases of the two.

Let $x \in \mathcal{U}_m$. We wish to show there exists $B_{\rho}(x,\varepsilon) \subseteq \mathcal{U}_m$. $\{x\}$ is closed in X being normal, so there exists some n such that

$$\{x\}\subseteq \mathcal{U}_n\subseteq \overline{\mathcal{U}}_n\subseteq \mathcal{U}_m,$$

so $(n,m)\in A$ and so $f_{n,m}(x)=0.$ Let $\varepsilon=\frac{1}{2^{n+m}}.$ Then, if $\rho(x,y)<\varepsilon$, it must be

$$\begin{split} \frac{1}{2^{n+m}} &> \sum_{(n',m')\in A} \frac{1}{2^{n'+m'}} \; |f_{n',m'}(x) - f_{n',m'}(y)| \\ &\geq \frac{1}{2^{n+m}} \; |\underbrace{f_{n,m}(x)}_{=0} - f_{n,m}(y)| \\ &= \frac{1}{2^{n+m}} \; |f_{n,m}(y)|, \end{split}$$

so $|f_{n,m}(y)| < 1$ and thus $y \notin \mathcal{U}_m^c$ so $y \in \mathcal{U}_m$. It follow that $B_\rho(x,\varepsilon) \subseteq \mathcal{U}_m$, and so every open set in X is open with respect to the metric topology.

Conversely, if $B_{\rho}(x,\varepsilon)$ some open ball in the metric topology, then notice that $y\mapsto \rho(x,y)$ for fixed y a continuous function, and thus $(\rho(x,\cdot))^{-1}(-\varepsilon,\varepsilon)$ an open set in $\mathcal T$ containing x. But this set also just equal to $B_{\rho}(x,\varepsilon)$, hence $B_{\rho}(x,\varepsilon)$ open in $\mathcal T$. We conclude the two topologies are equal, completing the proof.

Remark 1.16: Recall metric \Rightarrow first countable hence not first countable \Rightarrow not metrizable.

§1.10 Stone-Weierstrass Theorem

We need to use the following theorem, which we'll prove later.

→Theorem 1.10 (Weierstrass Approximation Theorem): Let $f : [a,b] \to \mathbb{R}$ continuous. Then, for every $\varepsilon > 0$, there exists a polynomial p(x) such that $||f - p||_{\infty} < \varepsilon$.

Definition 1.34 (Algebra, Separation of Points): We call a subset $\mathcal{A} \subseteq C(X)$ an *algebra* if it is a linear subspace that is closed under multiplication (that is, $f, g \in \mathcal{A} \Rightarrow f \cdot g \in \mathcal{A}$).

We say \mathcal{A} separates points in X if for every $x, y \in X$, there exists an $f \in \mathcal{A}$ such that $f(x) \neq f(y)$.

→Theorem 1.11 (Stone-Weierstrass): Let X be a compact Hausdorff space. Suppose $\mathcal{A} \subseteq C(X)$ an algebra that separates points and contains constant functions. Then, \mathcal{A} dense in C(X).

We tacitly assume the conditions of the theorem in the following lemmas as as not to restate them.

Lemma 1.5: For every $F \subseteq X$ closed, and every $x_0 \in F^c$, there exists a neighborhood $\mathcal{U}(x_0)$ such that $F \cap \mathcal{U} = \emptyset$ and $\forall \varepsilon > 0$ there is some $h \in \mathcal{A}$ such that $h < \varepsilon$ on \mathcal{U} , $h > 1 - \varepsilon$ on F, and $0 \le h \le 1$ on X.

In particular, \mathcal{U} is *independent* of choice of ε .

PROOF. Our first claim is that for every $y \in F$, there is a $g_y \in \mathcal{A}$ such that $g_y(x_0) = 0$ and $g_y(y) > 0$, and moreover $0 \le g_y \le 1$. Since \mathcal{A} separates points, there is an $f \in \mathcal{A}$ such that $f(x_0) \ne f(y)$. Then, let

$$g_y(x) \coloneqq \left[\frac{f(x) - f(x_0)}{\|f - f(x)\|_\infty}\right]^2.$$

Then, every operation used in this new function keeps $g_y \in \mathcal{A}$. Moreover one readily verifies it satisfies the desired qualities. In particular since g_y continuous, there is a neighborhood \mathcal{O}_y such that $g_y|_{\mathcal{O}_y}>0$. Hence, we know that $F\subseteq\bigcup_{y\in F}\mathcal{O}_y$, but F closed and so compact, hence there exists a finite subcover i.e. some $n\geq 1$ and finite sequence $\{y_i\}_{i=1}^n$ such that $F\subseteq\bigcup_{i=1}^n\mathcal{O}_{y_i}$. Let for each y_i $g_{y_i}\in\mathcal{A}$ with the properties from above, and consider the "averaged" function

$$g(x)\coloneqq \frac{1}{n}\sum_{i=1}^n g_{y_i}(x)\in \mathcal{A}.$$

1.10 Stone-Weierstrass Theorem

22

Then, $g(x_0)=0$, g>0 on F and $0\leq g\leq 1$ on all of X. Hence, there is some 1>c>0 such that $g\geq c$ on F, and since g continuous at x_0 there exists some $\mathcal{U}(x_0)$ such that $g<\frac{c}{2}$ on \mathcal{U} , with $\mathcal{U}\cap F=\varnothing$. So, $0\leq g|_{\mathcal{U}}<\frac{c}{2}$, and $1\geq g|_{F}\geq c$. To complete the proof, we need $\left(0,\frac{c}{2}\right)\leftrightarrow (0,\varepsilon)$ and $(c,1)\leftrightarrow (1-\varepsilon,1)$. By the Weierstrass Approximation Theorem, there exists some polynomial p such that $p|_{\left[0,\frac{c}{2}\right]}<\varepsilon$ and $p|_{\left[c,1\right]}>1-\varepsilon$. Then if we let $h(x):=(p\circ g)(x)$, this is just a polynomial of g hence remains in \mathcal{A} , and we find

$$h|_{\mathcal{U}} < \varepsilon, \qquad h|_{F} > 1 - \varepsilon, \qquad 0 \le h \le 1.$$

⇒Lemma 1.6: For every disjoint closed set A, B and $\varepsilon > 0$, there exists $h \in \mathcal{A}$ such that $h|_A < \varepsilon$, $h|_B > 1 - \varepsilon$, and $0 \le h \le 1$ on X.

PROOF. Let F=B as in the last lemma. Let $x\in A$, then there exists $\mathcal{U}_x\cap B=\varnothing$ and for every $\varepsilon>0$, $h|_{\mathcal{U}_x}<\varepsilon$ and $h|_B>1-\varepsilon$ and $0\le h\le 1$. Then $A\subseteq\bigcup_{x\in A}\mathcal{U}_x$. Since A closed so compact, $A\subseteq\bigcup_{i=1}^N\mathcal{U}_{x_i}$. Let $\varepsilon_0<\varepsilon$ such that $\left(1-\frac{\varepsilon_0}{N}\right)^N>1-\varepsilon$. For each i, let $h_i\in\mathcal{A}$ such that $h_i|_{\mathcal{U}_{x_i}}<\frac{\varepsilon_0}{N}$, $h_i|_B>1-\frac{\varepsilon_0}{N}$ and $0\le h_i\le 1$. Then, put

$$h(x) = h_1(x) \cdot h_2(x) \cdots h_N(x) \in \mathcal{A}.$$

Then, $0 \le h \le 1$ and $h|_B > \left(1 - \frac{\varepsilon_0}{N}\right)^N > 1 - \varepsilon$. Then, for every $x \in A$, $x \in \mathcal{U}_{x_i}$ so $h_i(x) < \frac{\varepsilon_0}{N}$ and $h_i(x) \le i$ so $h(x) < \frac{\varepsilon_0}{N}$ so $h|A < \frac{\varepsilon_0}{N} < \varepsilon$.

PROOF. (Of Stone-Weierstrass) WLOG, assume $f \in C(X)$, $0 \le f \le 1$, by replacing with

$$\tilde{f}(x) = \frac{f(x) + ||f||_{\infty}}{||f + ||f||_{\infty}||_{\infty}}$$

if necessary, since if there exists a $\tilde{g} \in \mathcal{A}$ such that $\|\tilde{f} - \tilde{g}\|_{\infty} < \varepsilon$, then using the properties of \mathcal{A} we can find some appropriate $g \in \mathcal{A}$ such that $\|f - g\|_{\infty} < \varepsilon$.

Fix $n \in \mathbb{N}$, and consider the set $\left\{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1\right\}$, and let for $1 \le j \le n$

$$A_j \coloneqq \bigg\{ x \in X \mid f(x) \leq \frac{j-1}{n} \bigg\}, \qquad B_j \coloneqq \bigg\{ x \in X \mid f(x) \geq \frac{j}{n} \bigg\},$$

which are both closed and disjoint. By the lemma, there exists $g_j \in \mathcal{A}$ such that

$$|g_j|_{A_j} < \frac{1}{n}, \qquad g_j|_{B_j} > 1 - \frac{1}{n},$$

with $0 \le g_j \le 1$. Let then

$$g(x)\coloneqq \frac{1}{n}\sum_{j=1}^n g_j(x)\in \mathcal{A}.$$

We claim then $||f - g||_{\infty} \le \frac{3}{n}$, which proves the claim by taking n sufficiently large. Suppose $k \in [1, n]$. If $f(x) \le \frac{k}{n}$, then

1.10 Stone-Weierstrass Theorem 23

$$g_j(x) = \begin{cases} <\frac{1}{n} \text{ if } j-1 \geq k \\ \leq 1 \text{ else} \end{cases},$$

so

$$g(x) = \frac{1}{n} \sum_{j=1}^n g_j(x) = \frac{1}{n} \left[\sum_{j=1}^k g_j(x) + \sum_{j=k+1}^n g_j(x) \right] \leq \frac{1}{n} \left[k + \frac{n-k}{n} \right] \leq \frac{k}{n} + \frac{n-k}{n^2} \leq \frac{k+1}{n}.$$

Similarly if $f(x) \ge \frac{k-1}{n}$, then

$$g_j(x) = \begin{cases} > 1 - \frac{1}{n} \text{ if } j \le k - 1, \\ \ge 0 \quad \text{else} \end{cases}$$

so

$$g(x) \geq \frac{1}{n} \sum_{i=1}^{k-1} \left(1 - \frac{1}{n}\right) \geq \frac{1}{n} (k-1) \left(1 - \frac{1}{n}\right) = \frac{k-1}{n} - \frac{k-1}{n^2} \geq \frac{k-2}{n}.$$

So, we've show that if $\frac{k-1}{n} \le f(x) \le \frac{k}{n}$, then $\frac{k-2}{n} \le g(x) \le \frac{k+1}{n}$, and so repeating this argument and applying triangle inequality we conclude $\|f-g\|_{\infty} \le \frac{3}{n}$.

\hookrightarrowTheorem 1.12 (Borsuk): *X* compact, Hausdorff and *C*(*X*) separable \Leftrightarrow *X* is metrizable.

§2 Functional Analysis

Here, we will primarily work with a normed vector space (nvs). Moreover, we usually work in:

 \hookrightarrow **Definition 2.1** (Banach Space): A normed vector space $(X, \| \cdot \|)$ is a *Banach space* if it is complete as a metric space under the norm-induced metric.

§2.1 Introduction to Linear Operators

 \hookrightarrow Definition 2.2 (Linear Operator, Operator Norm): Let *X*, *Y* be vector spaces. Then, a map *T* : *X* → *Y* is called *linear* if $\forall x, y \in X, \alpha, \beta \in \mathbb{R}, T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$.

If X, Y normed vector spaces, we say T is a bounded linear operator if T linear and the operator norm

$$\|T\| = \|T\|_{\mathcal{L}(X,Y)} = \sup_{\substack{x \in X, \\ \|x\|_{Y} \le 1}} \|Tx\|_{Y} < \infty$$

is finite. Then, we put

$$\mathcal{L}(X,Y) := \{ \text{bounded linear operators } X \to Y \}.$$

We'll also write $\mathcal{L}(X) := \mathcal{L}(X, X)$.

→Theorem 2.1 (Bounded iff Continuous): If X, Y are nvs, $T \in \mathcal{L}(X, Y)$ iff and only if T is continuous, i.e. if $x_n \to x$ in X, then $Tx_n \to Tx$ in Y.

PROOF. If $T \in \mathcal{L}(X,Y)$,

$$\begin{split} \|Tx_n - Tx\|_Y &= \|T(x_n - x)\|_Y \\ &= \|x_n - x\|_X \cdot \|\frac{T(x_n - x)}{\|x_n - x\|_X}\|_Y \\ &\leq \underbrace{\|T\|}_{<\infty} \|x_n - x\|_X \to 0, \end{split}$$

hence T continuous. Conversely, if T continuous, then by linearity T0=0, so by continuity, there is some $\delta>0$ such that $\|Tx\|_Y<1$ if $\|x\|_X<\delta$. For $x\in X$ nonzero, let $\lambda=\frac{\delta}{\|x\|_X}$. Then, $\|\lambda x\|_X\leq\delta$ so $\|T(\lambda x)\|_Y<1$, i.e. $\frac{\|T(x)\|_Y\delta}{\|x\|_X}<1$. Hence,

$$||T|| = \sup_{x \in X: x \neq 0} \frac{||T(x)||_Y}{||x||_X} \le \frac{1}{\delta},$$

so $T \in \mathcal{L}(X,Y)$.

 \hookrightarrow **Proposition 2.1** (Properties of $\mathcal{L}(X,Y)$): If X,Y nvs, $\mathcal{L}(X,Y)$ a nvs, and if X,Y Banach, then so is $\mathcal{L}(X,Y)$.

PROOF. (a) For $T, S \in \mathcal{L}(X, Y)$, $\alpha, \beta \in \mathbb{R}$, and $x \in X$, then

$$\begin{split} \|(\alpha T + \beta S)(x)\|_{Y} &\leq |\alpha| \ \|Tx\|_{Y} + |\beta| \ \|Sx\|_{Y} \\ &\leq |\alpha| \ \|T\| \ \|x\|_{X} + |\beta| \ \|T\| \ \|x\|_{X}. \end{split}$$

Dividing both sides by ||x||, we find $||\alpha T + \beta S|| < \infty$. The same argument gives the triangle inequality on $||\cdot||$. Finally, T = 0 iff $||Tx||_Y = 0$ for every $x \in X$ iff ||T|| = 0.

(b) Let $\{T_n\}\subseteq \mathcal{L}(X,Y)$ be a Cauchy sequence. We have that

$$\|T_nx-T_mx\|_Y \leq \|T_n-T_m\|\ \|x\|_X,$$

so in particular the sequence $\{T_n(x)\}$ a Cauchy sequence in Y for any $x \in X$. Y complete so this sequence converges, say $T_n(x) \to y^*$ in Y. Let $T(x) \coloneqq y^*$ for each x. We claim that $T \in \mathcal{L}(X,Y)$ and that $T_n \to T$ in the operator norm. We check:

$$\begin{split} \alpha T(x_1) + \beta T(x_2) &= \lim_{n \to \infty} \alpha T_n(x_1) + \lim_{n \to \infty} \beta T_n(x_2) \\ &= \lim_{n \to \infty} [T_n(\alpha x_1) + T_n(\beta x_2)] \\ &= \lim_{n \to \infty} T_n(\alpha x_1 + \beta x_2) \\ &= T(\alpha x_1 + \beta x_2), \end{split}$$

so T linear.

Let now $\varepsilon>0$ and N such that for every $n\geq N$ and $k\geq 1$ such that $\|T_n-T_{n+k}\|<\frac{\varepsilon}{2}.$ Then,

$$\begin{split} \|T_n(x) - T_{n+k}(x)\|_Y &= \left\| \left(T_n - T_{n+k}\right)(x) \right\|_Y \\ &\leq \left\|T_n - T_{n+k}\right\| \left\|x\right\|_X \\ &< \frac{\varepsilon}{2} \|x\|_X. \end{split}$$

Letting $k \to \infty$, we find that

$$\|T_n(x)-T(x)\|_Y<\frac{\varepsilon}{2}\ \|x\|_X,$$

so normalizing both sides by $||x||_X$, we find $||T_n - T|| < \frac{\varepsilon}{2}$, and we have convergence.

 \hookrightarrow **Definition 2.3** (Isomorphism): We say $T \in \mathcal{L}(X,Y)$ an *isomorphism* if T is bijective and $T^{-1} \in \mathcal{L}(Y,X)$. In this case we write $X \simeq Y$, and say X,Y isomorphic.

§2.2 Finite versus Infinite Dimensional

If X a nvs, then we can look for a basis β such that $\operatorname{span}(\beta) = X$. If $\beta = \{e_1, ..., e_n\}$ has no proper subset spanning X, then we say $\dim(X) = n$.

As we saw on homework, any two norms on a finite dimensional space are equivalent.

- **Corollary 2.1**: (a) Any two nvs of the same finite dimension are isomorphic.
- (b) Any finite dimensional space is complete, and so any finite dimensional subspace is closed.
 - (c) $\overline{B}(0,1)$ is compact in a finite dimensional space.

PROOF. (a) Let $(X, \|\cdot\|)$ have finite dimension n. Then, we claim $(X, \|\cdot\|) \simeq (\mathbb{R}^n, |\cdot|)$. Let $\{e_1, ..., e_n\}$ be a basis for X. Let $T: \mathbb{R}^n \to X$ given by

$$T(x) = \sum_{i=1}^{n} x_i e_i,$$

where $x=(x_1,...,x_n)\in\mathbb{R}^n$, which is clearly linear. Moreover,

$$Tx = 0 \Leftrightarrow \sum_{i=1}^{n} x_i e_i = 0 \Leftrightarrow x = 0,$$

so T injective, and so being linear between two spaces of the same dimension gives T surjective. It remains to check boundedness.

First, we claim $x\mapsto \|T(x)\|$ is a norm on \mathbb{R}^n . $\|T(x)\|=0 \Leftrightarrow x=0$ by the injectivity of T, and the properties $\|T(\lambda x)\|=|\lambda|\ \|Tx\|$ and $\|T(x+y)\|\leq \|Tx\|+\|Ty\|$ follow from linearity of T and the fact that $\|\cdot\|$ already a norm. Hence, $\|T(\cdot)\|$ a norm on \mathbb{R}^n and so equivalent to $|\cdot|$, i.e. there exists constants $C_1,C_2>0$ such that

$$|C_1|x| \le ||T(x)|| \le |C_2|x|,$$

for every $x \in X$. It follows that ||T|| (operator norm now) is bounded.

Letting T(x) = y, we find similarly

$$|C_{1'}||y|| \le |T^{-1}(y)| \le C_{2'}||y||,$$

so $||T^{-1}||$ also bounded. Hence, we've shown any n-dimensional space is isomorphic to \mathbb{R}^n , so by transitivity of isomorphism any two n-dimensional spaces are isomorphic.

- (b) The property of completeness is preserved under isomorphism, so this follows from the previous statement since \mathbb{R}^n complete.
- (c) Consider $\overline{B}(0,1)\subseteq X$. Let T be an isomorphism $X\to\mathbb{R}^n$. Then, for $x\in\overline{B}(0,1)$, $\|Tx\|\leq \|T\|<\infty$, so $T\left(\overline{B}(0,1)\right)$ is a bounded subset of \mathbb{R}^n , and since T and its inverse continuous, $T\left(\overline{B}(0,1)\right)$ closed in \mathbb{R}^n . Hence, $T\left(\overline{B}(0,1)\right)$ closed and bounded hence compact in \mathbb{R}^n , so since T^{-1} continuous $T^{-1}\left(T\left(\overline{B}(0,1)\right)\right)=\overline{B}(0,1)$ also compact, in X.

 \hookrightarrow Theorem 2.2 (Riesz's): If X is an nvs, then $\overline{B}(0,1)$ is compact if and only if X if finite dimensional.

Lemma 2.1 (Riesz's): Let $Y \subseteq X$ be a closed nvs (and X a nvs). Then for every $\varepsilon > 0$, there exists $x_0 \in X$ with $||x_0|| = 1$ and such that

$$||x_0 - y||_X > \varepsilon \, \forall \, y \in Y.$$

PROOF. Fix $\varepsilon > 0$. Since $Y \subsetneq X$, let $x \in Y^c$. Y closed so Y^c open and hence there exists some r > 0 such that $B(x, r) \cap Y = \emptyset$. In other words,

$$\inf\{\|x-y'\| \mid y' \in Y\} > r > 0.$$

Let then $y_1 \in Y$ be such that

$$r < \|x - y_1\| < \varepsilon^{-1}r,$$

and take

$$x_0 \coloneqq \frac{x - y_1}{\|x - y_1\|_X}.$$

Then, x_0 a unit vector, and for every $y \in Y$,

$$\begin{split} x_0 - y &= \frac{x - y_1}{\|x - y_1\|} - y \\ &= \frac{1}{\|x - y_1\|} [x - y_1 - y \ \|x - y_1\|] \\ &= \frac{1}{\|x - y_1\|} [x - y'], \end{split}$$

where $y' = y_1 + y \|x - y_1\| \in Y$, since it is closed under vector addition. Hence

$$\|x_0-y\|=\frac{1}{\|x-y_1\|}\;\|x-y'\|>\frac{\varepsilon}{r}\;\|x-y'\|>\varepsilon,$$

for every $y \in Y$.

PROOF. (Of Thm. 2.2) (\Leftarrow) By the previous corollary.

 (\Rightarrow) Suppose X infinite dimensional. We will show $B\coloneqq \overline{B}(0,1)$ not compact.

Claim: there exists $\{x_i\}_{i=1}^{\infty} \subseteq B$ such that $||x_i - x_j|| > \frac{1}{2}$ if $i \neq j$.

We proceed by induction. Let $x_1 \in B$. Suppose $\{x_1,...,x_n\} \subseteq B$ are such that $\|x_i - x_j\| > \frac{1}{2}$. Let $X_n = \operatorname{span}\{x_1,...,x_n\}$, so X_n finite dimensional hence $X_n \subsetneq X$. By the previous lemma (taking $\varepsilon = \frac{1}{2}$) there is then some $x_{n+1} \in B$ such that $\|x_1 - x_{n+1}\| > \frac{1}{2}$ for every i = 1,...,n. We can thus inductively build such a sequence $\{x_i\}_{i=1}^{\infty}$. Then, every subsequence of this sequence cannot be Cauchy so B is not sequentially compact and thus B is not compact.

§2.3 Open Mapping and Closed Graph Theorems

Definition 2.4 (*T* open): If *X*, *Y* toplogical spaces and *T* : *X* → *Y* a linear operator, *T* is said to be *open* if for every $\mathcal{U} \subseteq X$ open, $T(\mathcal{U})$ open in *Y*.

In particular if X,Y are metric spaces (or nvs), then T is open iff the image of every open ball in X containes an open ball in Y, i.e. $\forall \, x \in X, r > 0$ there exists r' > 0 such that $T(B_X(x,r)) \supseteq B_Y(Tx,r')$. Moreover, by translating/scaling appropriately, it suffices to prove for x=0, r=1.

→Theorem 2.3 (Open Mapping Theorem): Let X, Y be Banach spaces and $T: X \to Y$ a bounded linear operator. If T is surjective, then T is open.

PROOF. Its enough to show that there is some r > 0 such that $T(B_X(0,1)) \supseteq B_Y(0,r)$.

Claim: $\exists c > 0$ such that $\overline{T(B_X(0,1))} \supseteq B_Y(0,2c)$.

Put $E_n=n\cdot\overline{T(B_X(0,1))}$ for $n\in\mathbb{N}$. Since T surjective, $\bigcup_{n=1}^\infty E_n=Y$. Each E_n closed, so by the Baire Category Theorem there exists some index n_0 such that E_{n_0} has nonempty interior, i.e.

$$\operatorname{int}\left(\overline{T(B_X(0,1))}\right) \neq \varnothing,$$

where we drop the index by homogeneity. Pick then c>0 and $y_0\in Y$ such that $B_Y(y_0,4c)\subseteq \overline{T(B_X(0,1))}$. We claim then that $B_Y(-y_0,4c)\subseteq \overline{T(B_X(0,1))}$ as well. Indeed, if $B_Y(y_0,4c)\subseteq \overline{T(B_X(0,1))}$, then $\forall\, \tilde y\in Y$ with $\|y_0-\tilde y\|_Y<4c$, Then, $\|-y_0+\tilde y\|_Y<4c$ so $-\tilde y\in B_Y(-y_0,4c)$. But $\tilde y=\lim_{n\to\infty}T(x_n)$ and so $-\tilde y=\lim_{n\to\infty}T(-x_n)$. Since $\{-x_n\}\subseteq B_X(0,1)$, this implies $-\tilde y\in \overline{T(B_X(0,1))}$ hence the "subclaim" holds.

Now, for any $\tilde{y} \in B_Y(0,4c)$, $\|\tilde{y}\| \le 4c$ so

$$\tilde{y} = y_0 \underbrace{-y_0 + \tilde{y}}_{\in B_Y(-y_0,4c)} = \underbrace{\tilde{y}_0 + \tilde{y}}_{}^{\in B(y_0,4c)} - y_0.$$

Therefore,

$$\begin{split} B_Y(0,4c) &= B_Y(y_0 - y_0, 4c) \\ &\subseteq B_Y(y_0, 4c) + B_Y(-y_0, 4c) \\ &\overline{T(B_X(0,1))} + \overline{T(B_X(0,1))} = 2\overline{T(B_X(0,1))}, \end{split}$$

(where summation of two sets is the vector addition of all the elements in the sets), hence $B_Y(0,2c) \subseteq \overline{T(B_X(0,1))}$.

We claim next that $T(B_X(0,1))\supseteq B_Y(0,c)$. Choose $y\in Y$ with $\|y\|_Y< c$. By the first claim, $B_Y(0,c)\subseteq \overline{T\big(B_X\big(0,\frac12\big)\big)}$, so for every $\varepsilon>0$ there is some $z\in X$ with $\|z\|_X<\frac12$ and $\|y-Tz\|_Y<\varepsilon$. Let $\varepsilon=\frac c2$ and $z_1\in X$ such that $\|z_1\|_X<\frac12$ and $\|y-Tz_1\|_Y<\frac c2$. But the first claim can also be written as $B_Y\big(0,\frac c2\big)\subseteq \overline{T\big(B_X\big(0,\frac14\big)\big)}$ so if $\varepsilon=\frac c4$, let $z_2\in X$ such that $\|z_2\|_X<\frac14$ and $\|(y-Tz_1)-Tz_2\|_Y<\frac c4$. Continuing in this manner we find that

$$B_Y\Big(0,\frac{c}{2^k}\Big)\subseteq \overline{T\bigg(B_X\bigg(0,\frac{1}{2^{k+1}}\bigg)\bigg)},$$

so exists $z_k \in X$ such that $\|z_k\|_X < \frac{1}{2^k}$ and $\|y - T(z_1 + \dots + z_k)\|_Y < \frac{c}{2^k}$. Let $x_n = z_1 + \dots + z_n \in X$. Then $\{x_n\}$ is Cauchy in X, since

$$\|x_n - x_m\|_X \le \sum_{k=m}^n \|z_k\|_X < \sum_{k=m}^n \frac{1}{2^k} \to 0.$$

Since X a Banach space, $x_n \to \overline{x}$ and in particular $\|\overline{x}\| \le \sum_{k=1}^\infty \|z_k\|_X < \sum_{k=1}^\infty \frac{1}{2^k} = 1$, so $\overline{x} \in B_X(0,1)$. Since T bounded it is continuous, so $Tx_n \to T\overline{x}$, so $y = T\overline{x}$ and thus $B_Y(0,c) \subseteq T(B(0,1))$.

 \hookrightarrow Corollary 2.2: Let X, Y Banach and $T: X \to Y$ be bounded, linear and bijective. Then, T^{-1} continuous.

⇔Corollary 2.3: Let $(X, \|\cdot\|_1), (X, \|\cdot\|_2)$ be Banach spaces. Suppose there exists c > 0 such that $\|x\|_2 \le C\|x\|_1$ for every $x \in X$. Then, $\|\cdot\|_1, \|\cdot\|_2$ are equivalent.

PROOF. Let T be the identity linear operator and use the previous corollary.

 \hookrightarrow **Definition 2.5** (*T* closed): If *X*, *Y* are nvs and *T* is linear, the *graph* of *T* is the set

$$G(T) = \{(x, Tx) \mid x \in X\} \subseteq X \times Y.$$

We then say *T* is *closed* if G(T) closed in $X \times Y$.

Remark 2.1: Since X, Y are nvs, they are metric spaces so first countable, hence closed \leftrightarrow contains all limit points.

In the product topology, a countable base for $X \times Y$ at (x, y) is given by

$$\left\{B_X\left(x,\frac{1}{n}\right)\times B\left(y,\frac{1}{m}\right)\right\}_{n,m\in\mathbb{N}}.$$

Then, G(T) closed iff G(T) contains all limit points. How can we put a norm on $X \times Y$ that generates this product topology? Let

$$||(x,y)||_1 := ||x||_X + ||y||_Y.$$

If $(x_n,y_n) \to (x,y)$ in the product topology, then since Π_1,Π_2 continuous maps, $(x_n,y_n) \to (x,y)$ in the $\|\cdot\|_1$ topology. On the other hand if $(x_n,y_n) \to (x,y)$ in the $\|\cdot\|_1$ norm, then

$$\|x_n-x\|_X \leq \|(x_n,y_n)-(x,y)\|_1,$$

hence since the RHS $\to 0$ so does the LHS and so $x_n \to x$ in $\|\cdot\|_X$; similar gives $y_n \to y$ in $\|\cdot\|_Y$. From here it follows that $(x_n,y_n) \to (x,y)$ in the product topology.

So, to prove G(T) closed, we just need to prove that if $x_n \to x$ in X and $Tx_n \to y$, then $y = Tx_n$.

→Theorem 2.4 (Closed Graph Theorem): Let X, Y be Banach spaces and $T: X \to Y$ linear. Then, T is continuous iff T is closed.

PROOF. (\Rightarrow) Immediate from the above remark.

(⇐) Consider the function

$$x \mapsto \|x\|_{\star} := \|x\|_{X} + \|Tx\|_{Y}.$$

So by the above, T closed implies $(X,\|\cdot\|_*)$ is complete, i.e. if $x_n\to x$ in $\|\cdot\|_*$ in X iff $x_n\to x$ in $\|\cdot\|_X$ and $Tx_n\to Tx$ in $\|\cdot\|_Y$. However, $\|\cdot\|_X\le \|\cdot\|_*$, hence since $\left(X,\|\cdot\|_X\right)$ and $\left(X,\|\cdot\|_*\right)$ are Banach spaces, by the corollary, there is some C>0 such that $\|\cdot\|_*\le C\|\cdot\|_Y$. So,

$$\left\|x\right\|_X + \left\|Tx\right\|_Y \le C \|x\|_X,$$

so

$$\left\|Tx\right\|_{Y} \leq \left\|x\right\|_{X} + \left\|Tx\right\|_{Y} \leq C \|x\|_{X},$$

so T bounded and thus continuous.

Remark 2.2: The Closed Graph Theorem simplifies proving continuity of T. It tells us we can assume if $x_n \to x$, $\{Tx_n\}$ Cauchy so $\exists y$ such that $Tx_n \to y$ since Y is Banach. So, it suffices to check that y = Tx to check continuity; we don't need to check convergence of Tx_n .

§2.4 Uniform Boundedness Principle

Recall the following consequence of the Baire Category Theorem:

→Theorem 2.5: Let $\mathcal{F} \subseteq C(X)$ where (X, ρ) a complete metric space. Suppose \mathcal{F} pointwise bounded. Then, there exists a nonempty open set $\mathcal{O} \subseteq X$ such that there is some M > 0 such that $|f(x)| \leq M$ for every $x \in \mathcal{O}, f \in \mathcal{F}$.

This leads to the following result:

→Theorem 2.6 (Uniform Boundedness Principle): Let X a Banach space and Y a nvs. Consider $\mathcal{F} \subseteq \mathcal{L}(X,Y)$. Suppose \mathcal{F} is pointwise bounded, i.e. for every $x \in X$, there is some $M_x > 0$ such that

$$\|Tx\|_{_{Y}}\leq M_{x}, \forall\, T\in\mathcal{F}.$$

Then, \mathcal{F} is uniformly bounded, i.e. $\exists M > 0$ such that

$$||T||_V \leq M, \forall T \in \mathcal{F}.$$

PROOF. For every $T \in \mathcal{F}$, let $f_T : X \to \mathbb{R}$ be given by

$$f_T(x) = ||Tx||_Y.$$

Since $T \in \mathcal{L}(X,Y)$, T is continuous, so $x_n \underset{X}{\to} x \Rightarrow Tx_n \underset{Y}{\to} Tx$, hence $\|Tx_n\|_Y \to \|Tx\|_Y$ so f_T continuous for each T i.e. $f_T \in C(X)$, so $\{f_T\} \subseteq C(X)$ pointwise bounded. So by the previous theorem, there is some ball $B(x_0,r) \subseteq X$ and some K>0 such that $\|Tx\| \le K$ for every $x \in B(x_0,r)$ and $T \in \mathcal{F}$. Thus, for every $x \in B(0,r)$,

$$\begin{split} \|Tx\| &= \|T(x-x_0+x_0)\| \\ &\leq \left\|T\underbrace{(x-x_0)}_{\in B(x_0,r)}\right\| + \|Tx_0\| \\ &\leq K+M_{x_0}, \qquad \forall \, x \in B(0,r), T \in \mathcal{F}. \end{split}$$

Thus, for every $x \in B(0,1)$,

$$\|Tx\| = \frac{1}{r} \left\| T\underbrace{(rx)}_{\in B(0,r)} \right\| \leq \frac{1}{r} \left(K + M_{x_0} \right) =: M,$$

so its clear $||T|| \le M$ for every $T \in \mathcal{F}$.

→Theorem 2.7 (Banach-Saks-Steinhaus): Let X a Banach space and Y a nvs. Let $\{T_n\} \subseteq \mathcal{L}(X,Y)$. Suppose for every $x \in X$, $\lim_{n \to \infty} T_n(x)$ exists in Y. Then,

a. $\{T_n\}$ are uniformly bounded in $\mathcal{L}(X,Y)$;

b. For $T: X \to Y$ defined by

$$T(x)\coloneqq \lim_{n\to\infty}T_n(x),$$

we have $T \in \mathcal{L}(X, Y)$;

c. $\|T\| \leq \liminf_{n \to \infty} \|T_n\|$ (lower semicontinuity result).

PROOF. (a) For every $x \in X$, $T_n(x) \to T(x)$ so $\|Tx\| < \infty$ hence $\sup_n \|T_n x\| < \infty$. By uniform boundedness, then, we find $\sup_n \|T\| =: C < \infty$.

(b) T is linear (by linearity of T_n). By (a),

$$||T_n x|| \le C||x||,$$

for every n, x, so

$$||Tx|| \le C||x|| \ \forall \ x \in X,$$

so T bounded.

(c) We know

$$\|T_nx\|\leq \|T_n\|\|x\|\ \forall\ x\in X,$$

so

$$\frac{\|T_nx\|}{\|x\|} \le \|T_n\|,$$

so

$$\liminf_n \frac{\|T_nx\|}{\|x\|} = \frac{\|Tx\|}{\|x\|} \leq \liminf_n \|T_n\|,$$

so by "suping" both sides,

$$||T|| \le \liminf_n ||T_n||.$$

Remark 2.3:

- We do note have $T_n \to T$ in $\mathcal{L}(X,Y)$ i.e. with respect to the operator norm.
- If Y is a Banach space, then $\lim_{n\to\infty}T_n(x)$ exists in $Y\Leftrightarrow \{T_nx\}$ Cauchy in Y for every $x\in X$.

§2.5 Introduction to Hilbert Spaces

2.5 Introduction to Hilbert Spaces

Definition 2.6 (Inner Product): An *inner product* on a vector space X is a map $(\cdot, \cdot): X \times X \to \mathbb{R}$ such that for every $\lambda, \mu \in \mathbb{R}$ and $x, y, z \in X$,

- $(\lambda x + \mu y, z) = \lambda(x, z) + \mu(y, z);$
- (x,y) = (y,x);
- $(x,x) \ge 0$ and $(x,x) = 0 \Leftrightarrow x = 0$.

Remark 2.4: The first and second conditions combined imply that (\cdot, \cdot) actually *bilinear*, namely, linear in both coordinates.

Remark 2.5: An inner product induces a norm on a vector space by

$$||x|| := (x, x)^{\frac{1}{2}}.$$

→ **Proposition 2.2** (Cauchy-Schwarz Inequality): Any inner product satisfies Cauchy-Schwarz, namely,

$$|(x,y)| \le ||x|| ||y||,$$

for every $x, y \in X$.

PROOF. Suppose first y=0. Then, the right hand side is clearly 0, and by linearity (x,y)=0, hence we have $0\leq 0$ and are done. Suppose then $y\neq 0$. Then, let $z=x-\frac{(x,y)}{(y,y)}y$ where $y\neq 0$. Then,

$$0 \le \|z\|^2 = \left(x - \frac{(x,y)}{(y,y)}y, x - \frac{(x,y)}{(y,y)}y\right)$$

$$= (x,x) - \frac{(x,y)}{(y,y)}(x,y) - \frac{(x,y)}{(y,y)}(y,x) + \frac{(x,y)^2}{(y,y)^2}(y,y)$$

$$= (x,x) - \frac{2((x,y))^2}{(y,y)} + \frac{(x,y)^2}{(y,y)}$$

$$= \|x\| - \frac{(x,y)^2}{(y,y)}$$

$$\Rightarrow \frac{(x,y)^2}{(y,y)} \le \|x\| \Rightarrow (x,y)^2 \le \|x\|^2 \|y\|^2$$

$$\Rightarrow |(x,y)| \le \|x\| \|y\|.$$

 \hookrightarrow Corollary 2.4: The function $||x|| := (x,x)^{\frac{1}{2}}$ is actually a norm on X.

PROOF. By definition, $||x|| \ge 0$ and equal to zero only when x = 0. Also,

$$\|\lambda x\| = (\lambda x, \lambda x)^{\frac{1}{2}} = |\lambda|(x, x)^{\frac{1}{2}} = |\lambda|\|x\|.$$

Finally,

$$||x + y||^2 = (x + y, x + y)$$

$$= (x, x) + 2(x, y) + (y, y)$$

$$= ||x||^2 + ||y||^2 + 2(x, y)$$
by Cauchy-Schwarz
$$\leq ||x||^2 + ||y||^2 + 2||x|| ||y||$$

$$= (||x|| + ||y||)^2,$$

hence by taking square roots we see $||x + y|| \le ||x|| + ||y||$ as desired.

→ Proposition 2.3 (Parallelogram Law): Any inner product space satisfies the following:

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

 \hookrightarrow Corollary 2.5: (\cdot,\cdot) is continuous, i.e. if $x_n \to x$ and $y_n \to y$, then $(x_n,y_n) \to (x,y)$.

Proof.

$$\begin{split} |(x_n,y_n)-(x,y)| &= |(x_n,y_n)-(x,y_n)+(x,y_n)-(x,y)| \\ &= |(x_n-x,y_n)+(x,y_n-y)| \\ &\leq |(x_n-x,y_n)|+|(x,y_n-y)| \\ &(\text{Cauchy-Schwarz}) &\leq \underbrace{\|x_n-x\|}_{\to 0} \underbrace{\|y_n\|}_{\to M} + \|x\| \underbrace{\|y_n-y\|}_{\to 0} \to 0. \end{split}$$

 \hookrightarrow **Definition 2.7** (Hilbert Space): A *Hilbert Space H* is a complete inner product space, namely, it is complete with respect to the norm induced by the inner product.

***** Example 2.1:

- 1. ℓ^2 , the space of square-summable real-valued sequences, equipped with inner product $(x,y)=\sum_{i=1}^\infty x_iy_i.$
- 2. L^2 , with inner product $(f,g) = \int f(x)g(x) dx$.

 \hookrightarrow **Definition 2.8** (Orthogonality): We say x, y orthogonal and write $x \perp y$ if (x, y) = 0. If $M \subseteq H$, then the *orthogonal complement* of M, denoted M^{\perp} , is the set

$$M^{\perp} = \{ y \in H \mid (x, y) = 0, \forall \, x \in M \}.$$

Remark 2.6: M^{\perp} is always a closed subspace of H. If $y_1, y_2 \in M^{\perp}$, then for every $x \in M$,

$$(x, \alpha y_1 + \beta y_2) = \alpha(x, y_1) + \beta(x, y_2) = 0,$$

so M^{\perp} a subspace.

If $y_n \to y$ in the norm on H and $\{y_n\} \subseteq M^\perp$, then using the continuity of (\cdot,\cdot) , we know that for every $x \in M$, $(x,y_n) \to (x,y)$. But the $(x,y_n) = 0$ for every n and thus (x,y) = 0 so $y \in M^\perp$, hence M^\perp closed.

 \hookrightarrow **Proposition 2.4**: If $M \subsetneq H$ is a closed subspace, then every $x \in H$ has a unique decomposition

$$x = u + v, \qquad u \in M, v \in M^{\perp}.$$

Hence, we may write $H = M \oplus M^{\perp}$. Moreover,

$$\|x-u\| = \inf_{y \in M} \|x-y\|, \qquad \|x-v\| = \inf_{y \in M^{\perp}} \|x-y\|.$$

PROOF. Let $x \in H$. If $x \in M$, we're done with u = x, v = 0. Else, if $x \notin M$, then we claim that there is some $u \in M$ such that $\|x - u\| = \inf_{y \in M} \|x - y\| =: \delta > 0$. By definition of the infimum, there exists a sequence $\{u_n\} \subseteq M$ such that

$$\left\|x-u_n\right\|^2 \leq \delta^2 + \frac{1}{n}.$$

Let $\overline{x} \coloneqq u_m - x$, $\overline{y} = u_n - x$. By the Parallelogram Law,

$$\left\|\overline{x}-\overline{y}\right\|^2+\left\|\overline{x}+\overline{y}\right\|^2=2{\left\|\overline{x}\right\|}^2+2{\left\|\overline{y}\right\|}^2$$

hence

$$\left\| u_m - u_n \right\|^2 + \left\| u_m + u_n - 2x \right\|^2 = 2 \left\| u_m - x \right\|^2 + 2 \left\| u_n - x \right\|^2.$$

Now, the second term can be written

$$\|u_m + u_n - 2x\|^2 = 4 \left\| \frac{u_m + u_n}{2} - x \right\|^2$$

hence we find

$$\left\| u_m - u_n \right\|^2 = 2 \|u_m - x\|^2 + 2 \|u_n - x\|^2 - 4 \left\| \frac{u_m + u_n}{2} - x \right\|^2.$$

Recall that M a subspace, hence $\frac{1}{2}(u_m+u_n)\in M$ so $\left\|x-\frac{1}{2}(u_m+u_n)\right\|\geq \delta$ as defined before. Thus, we find that by our choice of $\{u_n\}$,

$$\left\| u_m - u_n \right\|^2 \leq 2 \left(\delta^2 + \frac{1}{m} \right) + 2 \left(\delta^2 + \frac{1}{n} \right) - 4 \delta^2 = \frac{2}{m} + \frac{2}{n},$$

and thus, by making m,n sufficiently large we can make $\|u_m-u_n\|$ arbitrarily small. Hence, $\{u_n\}\subseteq M$ are Cauchy. H is complete, hence the $\{u_n\}$'s converge, and thus since M closed, $u_n\to u\in M$. Then, we find

$$\begin{split} \|x-u\| &\leq \|x-u_n\| + \|u_n-u\| \\ &\leq \underbrace{\left(\delta^2 + \frac{1}{n}\right)^{\frac{1}{2}}}_{\rightarrow \delta} + \underbrace{\|u_n-u\|}_{\rightarrow 0} \rightarrow \delta. \end{split}$$

But also, $u \in M$ and thus $\|x - y\| \ge \delta$, and we conclude $\|x - u\| = \delta = \inf_{y \in M} \|x - y\|$.

Next, we claim that if we define v=x-y, then $v\in M^{\perp}$. Consider $y\in M$, $t\in \mathbb{R}$, then

$$\left\| x - \underbrace{(u - ty)}_{\in M} \right\|^2 = \left\| v + ty \right\|^2 = \left\| v \right\|^2 + 2t(v, y) + t^2 \|y\|^2.$$

Then, notice that the map

$$t \mapsto \|v + ty\|^2$$

is minimized when t=0, since $\|x-z\|$ for $z\in M$ is minimized when z=u, as we showed in the previous part, so equivalently $\|x-(u-ty)\|^2$ minimized when t=0. Thus,

$$\begin{split} 0 &= \frac{\partial}{\partial t} \|\boldsymbol{v} + t\boldsymbol{y}\|^2|_{t=0} = \frac{\partial}{\partial t} \big[\|\boldsymbol{v}\|^2 + 2t(\boldsymbol{v}, \boldsymbol{y}) + t^2 \|\boldsymbol{y}\|^2 \big]_{t=0} \\ &= \left(2(\boldsymbol{v}, \boldsymbol{y}) + 2t \|\boldsymbol{y}\|^2 \right)_{t=0} = (\boldsymbol{v}, \boldsymbol{y}) \\ &\Rightarrow (\boldsymbol{v}, \boldsymbol{y}) = 0 \ \forall \ \boldsymbol{y} \in M \Rightarrow \boldsymbol{v} \in M^\perp. \end{split}$$

So, x=u+v and $u\in M, v\in M^\perp$. For uniqueness, suppose $x=u_1+v_1=u_2+v_2$. Then, $u_1-u_2=v_2-v_1$, but then

$$\left\|v_2-v_1\right\|^2=(v_2-v_1,v_2-v_1)=(v_2-v_1,u_2-u_1)=0,$$

so $v_2 = v_1$ so it follows $u_2 = u_1$ and uniqueness holds.

 \hookrightarrow **Definition 2.9** (Dual of H): The *dual* of H, denoted H^* , is the set

$$H^* := \{ f : H \to \mathbb{R} \mid f \text{ continuous and linear} \}.$$

On this space, we may equip the operator norm

$$\|f\|_{H^*} = \|f\| = \sup_{x \in H} \frac{|f(x)|}{\|x\|_H} = \sup_{\|x\| \le 1} |f(x)|.$$

\circledast Example 2.2: For $y \in H$, let $f_y : H \to \mathbb{R}$ be given by $f_y(x) = (x,y)$. By CS,

$$\left\|f_y\right\|_{H^*} = \sup_{\|x\| \le 1} (x,y) \le \sup_{\|x\| \le 1} \|x\| \|y\| \le \|y\|.$$

Also, if $y \neq 0$, then

$$f_y\bigg(\frac{y}{\|y\|}\bigg) = \bigg(\frac{y}{\|y\|}, y\bigg) = \|y\|.$$

Thus, $\|f_y\|_{H^*} = \|y\|_H$. It turns out all such functionals are of this form.

→Theorem 2.8 (Riesz Representation for Hilbert Spaces): If $f \in H^*$, there exists a unique $y \in H$ such that f(x) = (x, y) for every $x \in X$.

PROOF. We show first existence. If $f \equiv 0$, then y = 0. Otherwise, let $M = \{x \in X \mid f(x) = 0\}$, so $M \subsetneq H$. f linear, so M a linear subspace. f is continuous, so in addition M is closed. By the previous theorem, $M^{\perp} \neq \{0\}$. Let $z \in M^{\perp}$ of norm 1.

Fix $x \in H$, and define

$$u := f(x)z - f(z)x.$$

Then, notice that by linearity

$$f(u) = f(x)f(z) - f(z)f(x) = 0,$$

so $u \in M$. Thus, since $z \in M^{\perp}$, (u, z) = 0, so in particular,

$$\begin{split} (u,z) &= 0 = (f(x)z - f(z)x - z) \\ &= f(x)(z,z) - f(z)(x,z) \\ &= f(x)\|z\|^2 - (x,f(z)z) \\ &= f(x) - (x,f(z)z), \end{split}$$

hence, rearranging we find

$$f(x) = (x, f(z)z),$$

and thus letting y = f(z)z completes the proof of existence, noting z independent of x.

For uniqueness, suppose (x,y)=(x,y') for every $x\in X$. Then, (x,y-y')=0 for every $x\in X$, hence letting x=y-y' we conclude (y-y',y-y')=0 thus y-y'=0 so y=y', and uniquness holds.

 \hookrightarrow **Definition 2.10** (Orthonormal Set): A collection $\{e_i\}\subseteq H$ is orthonormal if $(e_i,e_j)=\delta_i^j$.

Remark 2.7: The following section writes notations assuming *H* has a countable. However, for more general Hilbert spaces, all countable summations can be replaced with uncountable ones in which only countably many elements are nonzero. The theory is very similar.

 \hookrightarrow **Definition 2.11** (Orthonormal Basis): A collection $\{e_j\}\subseteq H$ is an *orthonormal basis* for H if $\{e_j\}$ is an orthonormal set, and $x=\sum_{j=1}^{\infty}(x,e_j)e_j$ for every $x\in H$, in the sense that

$$\left\|x-\sum_{j=1}^N \bigl(x,e_j\bigr)e_j\right\|\to 0, \qquad N\to\infty.$$

 \hookrightarrow Theorem 2.9 (General Pythagorean Theorem): If $\left\{e_j\right\}_{j=1}^{\infty}\subseteq H$ are orthonormal and $\left\{\alpha_i\right\}_{i=1}^{\infty}\subseteq\mathbb{R}$ are orthonormal, then for any N,

$$\left\|\sum_{i=1}^N \alpha_i e_i\right\|^2 = \sum_{i=1}^N \left|\alpha_i\right|^2.$$

Proof.

$$\left\|\sum_{i=1}^N \alpha_i e_i\right\|^2 = \left(\sum_{i=1}^N \alpha_i e_i, \sum_{j=1}^N \alpha_j e_j\right) = \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j \underbrace{\left(e_i, e_j\right)}_{=\delta_i^j} = \sum_{i=1}^N \alpha_i^2.$$

We can also Gram-Schmidt in infinite-dimensional Hilbert spaces. Let $\{x_i\} \subseteq H$. Let

$$e_1 = \frac{x_1}{\|x_1\|},$$

and inductively, for any $n \geq 2$, define

$$v_N = x_N - \sum_{i=1}^{N-1} (x_N, e_i) e_i.$$

Then, for any N, $\operatorname{span}(v_1,...,v_N) = \operatorname{span}(e_1,...,e_N)$, and for any j < N,

$$\left(v_N,e_j\right) = \left(x_N,e_j\right) - \sum_{i=1}^N (x_N,e_i) \left(e_i,e_j\right) = \left(x_N,e_j\right) - \left(x_N,e_j\right) = 0.$$

Let then $e_N = \frac{v_N}{\|v_N\|}$. Then, $\{e_i\}_{i=1}^{\infty}$ will be orthonormal; we discuss how to establish when this set will actually be a basis to follow.

 \hookrightarrow Theorem 2.10 (Bessel's Inequality): If $\{e_i\}_{i=1}^{\infty}$ are orthonormal, then for any $x \in H$,

$$\sum_{i=1}^{\infty} |(x, e_i)|^2 \le ||x||^2.$$

PROOF. We have

$$\begin{split} 0 & \leq \left\| x - \sum_{i=1}^{N} (x, e_i) e_i \right\|^2 \\ & = \left(x - \sum_{i=1}^{N} (x, e_i) e_i, x - \sum_{j=1}^{N} (x, e_j) e_j \right) \\ & = \left\| x \right\| - 2 \sum_{i=1}^{N} (x, e_i)^2 + \sum_{i=1}^{N} (x, e_i)^2 \\ & = \left\| x \right\| - \sum_{i=1}^{N} (x, e_i)^2, \end{split}$$

so $\sum_{i=1}^{N} (x, e_i)^2 \le ||x||$; letting $N \to \infty$ proves the desired inequality, since the RHS is independent of N.

Theorem 2.11: If $\{e_i\}_{i=1}^{\infty}$ are orthonormal, then TFAE:

- (a) completeness: if $(x, e_i) = 0$ for every i, then x = 0, the zero vector;
- (b) Parseval's identity holds: $||x||^2 = \sum_{i=1}^{\infty} (x, e_i)^2$ for every $x \in H$;
- (c) $\{e_i\}_{i=1}^{\infty}$ form a basis for H, i.e. $x = \sum_{i=1}^{\infty} (x, e_i) e_i$ for every $x \in H$.

Proof. ((a) \Rightarrow (c)) By Bessel's, $\sum_{i=1}^{\infty} (x, e_i)^2 \leq ||x||^2$. So, for any $M \geq N$,

$$\left\| \sum_{i=N}^{M} (x, e_i) e_i \right\|^2 = \sum_{i=N}^{M} (x, e_i)^2,$$

which must converge to zero as $N, M \to \infty$, since the whole series converges (being bounded). Hence, $\left\{\sum_{i=1}^N (x,e_i)e_i\right\}_N$ is Cauchy in $\|\cdot\|$ and since H complete, $\sum_{i=1}^N (x,e_i)e_i$ converges in H. Putting $y=x-\sum_{i=1}^\infty (x,e_i)e_i$, we find

$$(y, e_i) = (x, e_i) - (x, e_i) = 0 \ \forall i,$$

hence by assumption in (a), it follows that y=0 so $x=\sum_{i=1}^{\infty}(x,e_i)e_i$ and thus $\{e_i\}$ a basis for H and (c) holds.

((c)
$$\Rightarrow$$
 (b)) Since $x = \sum_{i=1}^{\infty} (x, e_i)e_i$, then,

$$\|x\|^2 - \sum_{i=1}^N (x, e_i)^2 = \left\|x - \sum_{i=1}^N (x, e_i)e_i\right\|^2 \to 0$$

as $N \to \infty$, hence $\left\|x\right\|^2 = \sum_{i=1}^{\infty} \left(x, e_i\right)^2$.

((b)
$$\Rightarrow$$
 (a)) If $(x, e_i) = 0$ for every i , then by Parseval's $||x||^2 = \sum_{i=1}^{\infty} 0 = 0$ so $x = 0$.

Remark 2.8: (a) is equivalent to span $(e_1, e_2, ...,)$ is *dense* in H.

→Theorem 2.12: Every Hilbert space has an orthonormal basis.

PROOF. Let $\mathcal{F} = \{\text{orthonormal subsets of } H\}$. \mathcal{F} can be (partially) ordered by inclusion, as can be upper bounded by the union over the whole space. By Zorn's Lemma, there is a maximal set in \mathcal{F} , which implies completeness, (a).

\hookrightarrow **Proposition 2.5**: *H* is separable iff *H* has a countable basis.

PROOF. (\Leftarrow) If H has a countable basis $\{e_i\}$, $\operatorname{span}_{\mathbb{Q}}\{e_i\}$ is a countable dense set.

 (\Rightarrow) If H is separable, let $\{x_n\}$ be a countable dense set. Use Gram-Schmidt, to produce a countable, orthonormal set, which is dense and hence a (countable) basis for H.

Remark 2.9: All this can be extended to uncountable bases.

§2.6 Adjoints, Duals and Weak Convergence (for Hilbert Spaces)

First consider $T: H \to H$ bounded and linear. Fix $y \in H$. We claim that the map

$$x \mapsto (T(x), y)$$

belongs to H^* , namely is bounded and linear. Linearity is clear since T linear. We know by Cauchy-Schwarz that

$$|(T(x), y)| \le ||T(x)|| ||y|| \le ||T|| ||x|| ||y|| \le C||x||,$$

so indeed $x\mapsto (T(x),y)\in H^*.$ By Riesz Representation Theorem, there is some unique $z\in H$ such that

$$(T(x), y) = (x, z) \,\forall \, x \in H.$$

This motivates the following.

 \hookrightarrow **Definition 2.12** (Adjoint of T): Let $T^*: H \to H$ be defined by

$$(Tx, y) = (x, T^*y), \forall x, y \in H.$$

Remark 2.10: In finite dimensions, T can be identified with some $n \times n$ matrix, in which case $T^* = T^t$, the transpose of T; namely $Tx \cdot b = x \cdot T^t b$.

 \hookrightarrow Proposition 2.6: If $T \in \mathcal{L}(H) := \mathcal{L}(H, H)$, then $T^* \in \mathcal{L}(H)$ and $||T^*|| = ||T||$.

PROOF. Linearity of T^* is clear. Also, for any $||y|| \le 1$,

$$\left\| T^{*}y \right\|^{2} = (T^{*}y, T^{*}y) = (TT^{*}y, y) \leq \|T\| \|T^{*}(y)\| \|y\|$$

so $||T^*y|| \le ||T||$ for all ||y|| = 1. so $||T^*|| \le ||T||$ hence $T^* \in \mathcal{L}(H)$. But also, if $x \in H$ with ||x|| = 1, then symmetrically,

$$||Tx||^2 = (Tx, Tx) = (x, T^*Tx) \le ||T^*|| ||Tx||$$

so similarly $||T|| \le ||T^*||$ hence equality holds.

 \hookrightarrow Proposition 2.7: $(T^*)^* = T$.

Proof. On the one hand,

$$(T^*y,x) = (y,(T^*)^*x) = ((T^*)^*x,y)$$

while also

$$(T^*y,x)=(x,T^*y)=(Tx,y)$$

so $(Tx, y) = ((T^*)^*, y)$, from which it follows that $T = T^{**}$.

Proposition 2.8: $(T + S)^* = T^* + S^*$, and $(T \circ S)^* = S^* \circ T^*$.

We'll write N(T) for the nullspace/kernel of T, and R(T) for the range/image of T.

 \hookrightarrow **Proposition 2.9**: Suppose $T \in \mathcal{L}(H)$. Then,

- $N(T^*) = R(T)^{\perp}$ (and hence, if R(T) closed, $H = N(T^*) \oplus R(T)$);
- $N(T) = R(T^*)^{\perp}$ (and hence, if $R(T^*)$ closed, $H = N(T) \oplus R(T^*)$).

PROOF. $N(T^*)=\{y\in H: T^*y=0\}$, so if $y\in N(T^*)$, $(Tx,y)=(x,T^*y)=(x,0)=0$, which holds iff y orthogonal to Tx, and since this holds for all $x\in H$, $y\in R(T)^{\perp}$.

Then, if R(T) closed, the by orthogonal decomposition we'll find $H = R(T) \oplus R(T)^{\perp} = R(T) \oplus N(T^*)$.

The other claim follows similarly.

Remark 2.11: Recall that $R(T)^{\perp}$ is closed; hence

$$\left(R(T)^{\perp}\right)^{\perp} = \left\{z \in H \mid (y, z) = 0 \,\forall \, y \in R(T)^{\perp}\right\},\,$$

and is also closed; hence $\left(R(T)^{\perp}\right)^{\perp} = \overline{R(T)}$ thus equivalently $N(T^*)^{\perp} = \overline{R(T)}$.

Remark 2.12: By the Closed Graph Theorem, *T* linear and bounded gives *T* closed; namely, the graph of *T* closed; this is *not* the same as saying the range of *T* closed.

 \circledast Example 2.3: Consider $C([0,1]) \subseteq L^2([0,1])$, and $T:C([0,1]) \to L^2([0,1])$ given by the identity, Tf=f. Then, T is bounded, but R(T)=C([0,1]); this subspace is *not* closed in $L^2([0,1])$, since there exists sequences of continuous functions that converge to an L^2 , but not continuous, function.

Remark 2.13: The prior theorem is key in "solvability", especially if T a differential or integral operator. If we wish to find u such that Tu = f, we need that $f \in R(T)$, hence $f \in N(T^*)^{\perp}$.

® Example 2.4: Let $M \subsetneq H$ a closed linear subspace. Then, $H = M \oplus M^{\perp}$; define the projection operator

$$P: H \to H, \qquad x = u + v \in M \oplus M^{\perp} \mapsto u.$$

This means, in particular, $x = Px + (\operatorname{id} - P)x$. We claim $P \in \mathcal{L}(H)$, $\|P\| = 1$, $P^2 = P$, and $P^* = P$.

Linearity is clear. To show $P^2 = P$, write x = Px + v. Then, composing both sides with P, we find $Px = P^2x + Pv = P^2x$, so $Px = P^2x$ for every $x \in H$. To see the norm, we find that for every $x \in H$,

$$\begin{split} \|x\|^2 &= (x,x) = (Px + (\operatorname{id} - P)x, Px + (\operatorname{id} - P)x) \\ &= \|Px\|^2 + 2\underbrace{(Px, (\operatorname{id} - P)x)}_{\perp} + \|(\operatorname{id} - P)x\|^2 \\ &= \|Px\|^2 + \|(\operatorname{id} - P)x\|^2 \ge \|Px\|^2 \\ &\Rightarrow \|Px\| \le \|x\| \Rightarrow \|P\| \le 1, \end{split}$$

and moreover if $x \in M$, Px = x so ||Px|| = ||x|| hence ||P|| = 1 indeed.

Finally, the show P self-adjoint, let $x, y \in H$, then,

$$0 = (Px, (id - P)y) = (Px, y - Py) \Rightarrow (Px, y) = (Px, Py).$$

Symmetrically, (x, Py) = (Px, Py), hence (Px, y) = (x, Py), and so $P = P^*$.

§2.7 Introduction to Weak Convergence

We let throughout *X* be a Banach space.

 \hookrightarrow **Definition 2.13** (Weak convergence): We say $\{x_n\}\subseteq X$ converges weakly to $x\in X$, and write $x_n\rightharpoonup x$

iff for every $f \in X^* = \{f : X \to \mathbb{R} \text{ bounded, linear}\}, f(x_n) \to f(x)$.

 \hookrightarrow **Definition 2.14** (Weak topology $\sigma(X, X^*)$): The weak topology $\sigma(X, X^*)$ is the weak topology induced by

$$\mathcal{F} = X^*$$
.

In particular, this is the smallest topology in which every f continuous.

Recall that this was defined as being $\tau(\{f^{-1}(\mathcal{O})\})$ for \mathcal{O} open in \mathbb{R} . A base for this topology is given by $\mathcal{B}=\{\text{finite intersections of }\{f^{-1}\mathcal{O}\}\}$. Namely, let $\mathcal{B}_X\coloneqq\left\{B_{\varepsilon,f_1,f_2,\ldots,f_n}(x)\right\}$ where

$$B_{\varepsilon,f_1,f_2,\dots,f_n}(x) = \{x' \in X \mid |f_k(x') - f_k(x)| < \varepsilon, \forall \, 1 \leq k \leq n\}.$$

So, $x_n \to x$ in $\sigma(X,X^*)$ if for every $\varepsilon > 0$, and ball $B_{\varepsilon,f_1,\dots,f_m}(x)$, there is an N such that for every $n \ge N$, $x_n \in B_{\varepsilon,f_1,\dots,f_m}(x)$, hence for every $f \in X^*$, $|f(x_n) - f(x)| < \varepsilon$.

For Hilbert spaces, by Riesz we know $f \in H^*$ can always be identified with f(x) = (x,y) for some $y \in H$. So, we find $x_n \rightharpoonup x$ in H iff for every $y \in H$, $(x_n,y) \to (x,y)$.

Remark 2.14: If $x_n \to x$ in H, then $(x_n, y) \to (x, y)$; so this normal convergence implies weak convergence.

 \hookrightarrow **Proposition 2.10**: (i) Suppose $x_n \rightharpoonup x$ in H. Then, $\{x_n\}$ are bounded in H, and $\|x\| \le \lim\inf_{n\to\infty}\|x_n\|$.

(ii) If $y_n \to y$ (strongly) in H and $x_n \rightharpoonup x$ (weakly) in H, then $(x_n, y_n) \to (x, y)$.

Remark 2.15: It does *not* hold, though, that $x_n \rightharpoonup x$, $y_n \rightharpoonup y$ gives $(x_n, y_n) \rightarrow (x, y)$.

PROOF. (i) If $x_n \rightharpoonup x$, then

$$\left(x_n, \frac{x}{\|x\|}\right) \to \left(x, \frac{x}{\|x\|}\right) = \|x\|.$$

By Cauchy-Schwarz, we also have

$$\left| \left(x_n, \frac{x}{\|x\|} \right) \right| \le \|x_n\| \left(\frac{\|x\|}{\|x\|} \right) = \|x_n\|,$$

hence we conclude

$$\liminf_{n\to\infty} \left(x_n, \frac{x}{\|x\|}\right) \leq \liminf_{n\to\infty} \|x_n\| \Rightarrow \|x\| \leq \liminf_{n\to\infty} \|x_n\|.$$

To argue $\{x_n\}$ bounded, need the uniform boundedness principle. Let $\{x_n\}\subseteq H^{**}=H.$ By weak convergence, for every $f=f_y\in H^*$, $f\mapsto f(x_n)=(x_n,y)\to (x,y).$ So,

$$\sup_n f(x_n) \le C.$$

Thus, the map $f \mapsto f(x_n)$ a bounded linear operator on H^* , so by uniform boundedness $\sup_n ||x_n|| \le C$.

(ii) If $y_n \to y$ in H,

$$\begin{split} |(x_n,y_n)-(x,y)| &\leq |(x_n,y_n-y)| + |(x_n-x,y)| \\ &\leq \underbrace{\|x_n\|}_{\text{bounded}} \underbrace{\|y_n-y\|}_{\to 0} + \underbrace{|(x_n-x,y)|}_{\to 0 \text{ by weak}} \to 0. \end{split}$$

The real help of weak convergence is in the ease of achieving weak compactness;

 \hookrightarrow Theorem 2.13 (Weak Compactness): Every bounded sequence in H has a weakly convergent subsequence.

→Theorem 2.14 (Helley's Theorem): Let X a separable normed vector space and $\{f_n\} \subseteq X^*$ such that there is a constant C>0 such that $|f_n(x)| \le C\|x\|$ for every $x \in X$ and $n \ge 1$. Then, there exists a subsequence $\{f_{n_k}\}$ and an $f \in X^*$ such that $f_{n_k}(x) \to f(x)$ for every $x \in X$.

PROOF. This is essentially a specialization of the Arzelà-Ascoli lemma. To apply it, we need X separable (done), the sequence to be pointwise bounded (done), and the sequence to be equicontinuous. To verify this last one, we know that

$$||f_n(x)|| \le C||x|| \Rightarrow ||f_n|| \le C, \forall n \ge 1,$$

hence by linearity, for any $x, y \in X$,

$$\|f_n(x)-f_n(y)\|\leq C\|x-y\|, \forall\, n\geq 1,$$

so in particular $\{f_n\}$ uniformly Lipschitz, thus equicontinuous.

PROOF. (Of Thm. 2.13) Let $\{x_n\}\subseteq H$ be bounded and let $H_0=\overline{\operatorname{span}\{x_1,...,x_n,...\}}$, so H_0 is separable, and $(H_0,(\cdot,\cdot))$ is a Hilbert space (being closed). Let $f_n\in H_0^*$ be given by

$$f_n(x) = (x_n, x), \forall \, x \in H_0.$$

Then,

$$|f_n(x)| \le \|x_n\| \|x\| \le C \|x\|,$$

since $\{x_n\}$ bounded by assumption. By Helly's Theorem, then, there is a subsequence $\{f_{n_k}\}$ such that $f_{n_k}(x)\to f(x)$ for every $x\in H_0$, where $f\in H_0^*$. By Riesz, then, $f(x)=(x,x_0)$ for some $x_0\in H_0^*$. This implies

$$\left(x_{n_k},x\right)\to (x_0,x), \forall\, x\in H_0.$$

Let *P* the projection of *H* onto H_0 . Then, for every $x \in H$,

$$\left(x_{n_k},(\operatorname{id}-P)x\right)=(x_0,(\operatorname{id}-P)x)=0$$

so for any $x \in H$,

$$\begin{split} \lim_{k \to \infty} \Bigl(x_{n_k}, x\Bigr) &= \lim_{k \to \infty} \Bigl(x_{n_k}, Px + (\operatorname{id} - P)x\Bigr) \\ &= \lim_{k \to \infty} \bigl(x_{n_k}, \underbrace{Px}_{\in H_0}\bigr) \\ &= (x_0, Px) = (x_0, Px + (\operatorname{id} - P)x) = (x_0, x), \end{split}$$

as we aimed to show.

§2.8 Review of L^p Spaces

We always consider $\Omega \subseteq \mathbb{R}^d$.

 \hookrightarrow **Definition 2.15** ($L^p(\Omega)$): For $1 \le p < \infty$, define

$$L^p(\Omega)\coloneqq \bigg\{f:\Omega\to\mathbb{R}\ |\ f \text{ measurable and} \int_\Omega |f|^p\,\mathrm{d}x<\infty\bigg\},$$

endowed with the norm

$$\left\|f\right\|_{L^p(\Omega)} = \left\|f\right\|_p \coloneqq \left[\int_{\Omega} \left|f(x)\right|^p \mathrm{d}x\right]^{\frac{1}{p}}.$$

For $p = \infty$, define

$$L^{\infty}(\Omega) = \{ f : \Omega \to \mathbb{R} \mid f \text{ measurable and } \exists C < \infty \text{ s.t. } |f| \le C \text{ a.e.} \},$$

endowed with the norm

$$\left\|f\right\|_{L^{\infty}(\Omega)} = \left\|f\right\|_{\infty} \coloneqq \inf\{C: |f| \leq C \text{ a.e.}\}.$$

The following are recalled but not proven here, see here.

Theorem 2.15 (Holder's Inequality): For $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$, then if $f \in L^p(\Omega), g \in L^q(\Omega)$, then $fg \in L^1(\Omega)$, and

$$\int |fg| \, \mathrm{d}x \le \|f\|_p \|g\|_q.$$

2.8 Review of L^p Spaces 45

Theorem 2.16 (Minkowski's Inequality): For all $1 \le p \le \infty$, $||f + g||_p \le ||f||_p + ||g||_p$. In particular, $L^p(\Omega)$ is a normed vector space.

Theorem 2.17 (Riesz-Fischer Theorem): $L^p(\Omega)$ is a Banach space for every $1 \le p \le \infty$.

→Theorem 2.18: $C_c(\mathbb{R}^d)$, the space of continuous functions with compact support, simple functions, and step functions are all dense subsets of $L^p(\mathbb{R}^d)$, for every $1 \le p < \infty$.

Theorem 2.19 (Separability of $L^p(\Omega)$): L^p is separable, for every $1 \le p < \infty$.

Proof. We prove for $\Omega = \mathbb{R}^d$. Let

$$\mathcal{R} \coloneqq \bigg\{ \prod_{i=1}^d (a_i, b_i) \ | \ a_i, b_i \in \mathbb{Q} \bigg\},$$

and let

 $\mathcal{E} := \{ \text{finite linear combinations of } \chi_R \text{ for } R \in \mathcal{R} \text{ with coefficients in } \mathbb{Q} \},$

where χ_R the indicator function of the set R. Then, we claim $\mathcal E$ dense in $L^p(\mathbb R^d)$.

Given $f \in L^p(\mathbb{R}^d)$ and $\varepsilon > 0$, by density of $C_c(\mathbb{R}^d)$ there is some f_1 with $\|f - f_1\|_p < \varepsilon$. Let $\mathrm{supp}(f_1) \subseteq R \in \mathcal{R}$. Now, let $\delta > 0$. Write

$$R = \cup_{i=1}^N \, R_i, \qquad R_i \in \mathcal{R},$$

such that

$$\operatorname{osc}_{R_i}(f_1)\coloneqq \sup_{R_i} f_1 - \inf_{R_i} f_1 < \delta.$$

Then, let

$$f_2(x) = \sum_{i=1}^N q_i \chi(R_i), \qquad q_i \in \mathbb{Q} \text{ s.t. } q_i \approx f_1|_{R_i},$$

so

$$\left\| f_2 - f_1 \right\|_{\infty} < \delta.$$

Hence,

$$\begin{split} \left\| f_2 - f_1 \right\|_p & \le \left(\int_R \left| f_2(x) - f_1(x) \right|^p \mathrm{d}x \right)^{\frac{1}{p}} \\ & \le \left| f_1 - f_2 \right|_{\infty} \cdot m(R)^{\frac{1}{p}} < \delta \cdot m(R)^{\frac{1}{p}}, \end{split}$$

2.8 Review of L^p Spaces

where m the Lebesgue measure on \mathbb{R}^d . δ was arbitrary so we may take it arbitrarily small such that $\delta m(R)^{\frac{1}{p}} < \varepsilon$, hence for such a δ ,

$$\left\|f-f_2\right\|_p \leq \left\|f-f_1\right\|_p + \left\|f_1-f_2\right\|_p < 2\varepsilon.$$

Now, $f_2 \in \mathcal{E}$, and thus \mathcal{E} is dense in $L^p(\mathbb{R}^d)$, and countable by construction, thus $L^p(\mathbb{R}^d)$ separable.

Remark 2.16: $L^{\infty}(\Omega)$ is *not* separable, and $C_c(\mathbb{R}^d)$ is *not* dense in $L^{\infty}(\Omega)$.

Remark 2.17 (Special Cases):

- If Ω has finite measure, $L^p(\Omega) \subseteq L^{p'}(\Omega)$ for every $p \leq p'$.
- $\ell^p \coloneqq \left\{ a = \left(a_n \right)_{n=1}^{\infty} \mid \sum_{n=1}^{\infty} \left| a_n \right|^p < \infty \right\}$ endowed with the norm $\left| a \right|_{\ell}^p \coloneqq \left(\sum_{n=1}^{\infty} \left| a_n \right|^p \right)^{1/p}$.

§2.9 $(L^p)^*$: The Riesz Representation Theorem

We are interested in functions $T: L^p(\Omega) \to \mathbb{R}$ which is bounded and linear. For instance, let $g \in L^q(\Omega)$ and $f \in L^p(\Omega)$ where p, q conjugates, and define

$$T(f) \coloneqq \int_{\Omega} f(x)g(x) \, \mathrm{d}x.$$

This is clearly linear, and by Holders,

$$|Tf| = \left| \int_{\Omega} fg \right| \le \|f\|_p \|g\|_q.$$

so

$$\left|T\left(\frac{f}{\left\|f\right\|_{p}}\right)\right|\leq\left\|g\right\|_{q},\ \forall\,f\in L^{p}(\Omega),\Rightarrow\left\|T\right\|\leq\left\|g\right\|_{q},$$

and thus $T \in (L^p(\Omega))^*$. Moreover, if $1 , <math>1 < q < \infty$, let

$$f(x) = \frac{{|g(x)|}^{q-2}g(x)}{{\|g\|}_{g}^{q-1}}.$$

Then,

$$\begin{split} \int_{\Omega} \left| f(x) \right|^p \mathrm{d}x &= \frac{1}{\left\| g \right\|_q^{(q-1)p}} \int_{\Omega} \left| g(x) \right|^{(q-2)p} \left| g(x) \right|^p \mathrm{d}x \\ &= \frac{1}{\left\| g \right\|_q^{(q-1)p}} \int_{\Omega} \left| g(x) \right|^{qp-p} \mathrm{d}x. \end{split}$$

Since $\frac{1}{p} + \frac{1}{q} = 1$, we have q + p = pq, so further

$$= \frac{1}{\|g\|_q^q} \int_{\Omega} |g(x)|^q dx = \frac{1}{\|g\|_q^q} \cdot \|g\|_q^q = 1,$$

so f as defined indeed in $L^p(\Omega)$ and moreover has L^p -norm of 1. In addition,

$$\begin{split} |Tf| &= \frac{1}{\|g\|_q^{q-1}} \int_{\Omega} \left| g(x)^{q-2} \right| g(x) g(x) \, \mathrm{d}x \\ &= \frac{1}{\|g\|_q^{q-1}} \int_{\Omega} \left| g(x) \right|^q \mathrm{d}x \\ &= \frac{1}{\|g\|_q^{q-1}} \|g\|_q^q = \|g\|_q, \end{split}$$

so $\|T\| = \|g\|_q$ as desired. We have, more generally, akin to the Riesz representation theorem,

Theorem 2.20 (Riesz-Representation Theorem for $L^p(\Omega)$): Let $1 \le p < \infty$. For any $T \in (L^p(\Omega))^*$, there exists a unique $g \in L^q(\Omega)$ such that $T(f) = \int_{\Omega} f(x)g(x) \, \mathrm{d}x$ with $\|T\| = \|g\|_q$.

We'll only prove for $\Omega \subseteq \mathbb{R}$. First:

Proposition 2.11: Let $T, S ∈ (L^p(Ω))^*$. If T = S on a dense subset $E ⊆ L^p(Ω)$, then T = S everywhere.

PROOF. Let $f_0 \in L^p(\Omega)$. By density, there exists $\{f_n\} \subseteq E$ such that $f_n \to f$ in $L^p(\Omega)$. By continuity, $Tf_n \to Tf_0$ and $Sf_n \to Sf_0$, while $Tf_n = Sf_n$ for every $n \ge 1$, so by uniqueness of limits in \mathbb{R} , $Tf_0 = Sf_0$.

The general outline of the proof of <u>Thm. 2.20</u> is the following:

- prove the theorem for *f* a step function;
- prove the theorem for f bounded and measurable;
- conclude the full theorem by appealing to the previous proposition.

To do this, we need first to recall the notion of absolutely continuous functions. Fix $[a,b]\subseteq R$ and $G:[a,b]\to\mathbb{R}$. G is said to be absolutely continuous on [a,b] if for every $\varepsilon>0$ there exists a $\delta>0$ such that for every disjoint collection $\{(a_k,b_k)\}_{k=1}^N\subseteq [a,b]$ with $\sum_{k=1}^N (a_k-b_k)<\delta$, then $\sum_{k=1}^N |G(b_k)-G(a_k)|<\varepsilon$. In particular, we need the following result, proven here:

→Theorem 2.21: If $G : [a, b] \to \mathbb{R}$ is absolutely continuous, then g = G' exists a.e. on [a, b], $g \in L^1([a, b])$, and for every $x \in [a, b]$,

$$G(x) - G(a) = \int_{a}^{x} g(t) dt.$$

PROOF (Of Thm. 2.20 with $\Omega = [a, b]$). Let $T \in (L^p([a, b]))^*$.

Step 1: Let f a step function. The function $\chi_{[a,x)} \in L^p([a,b])$; define

$$G_T(x) \coloneqq T(\chi_{[a,x)}).$$

We claim G_T absolutely continuous. Consider $\{(a_k,b_k)\}_{k=1}^N$ disjoint. Then, for every $[c,d]\subseteq [a,b]$, $G_T(d)-G_T(c)=T\Big(\chi_{[a,d)}\Big)-T\Big(\chi_{[a,c]}\Big)=T\Big(\chi_{[a,d)}-\chi_{[a,c)}\Big)=T\Big(\chi_{[c,d)}\Big)$, so

$$\begin{split} \sum_{k=1}^{N} (G_T(b_k) - G_T(a_k)) &= \sum_{k=1}^{N} c_k \cdot (G_T(b_k) - G_T(a_k)), \qquad c_k \coloneqq \mathrm{sgn}(G_T(b_k) - G_T(a_k)) \\ &= \sum_{k=1}^{N} c_k \cdot T\Big(\chi_{[a_k,b_k)}\Big) \\ &= T\left(\sum_{k=1}^{N} c_k \chi_{[a_k,b_k)}\right) \\ &\leq \|T\| \left\|\sum_{k=1}^{N} c_k \chi_{[a_k,b_k)}\right\|_p. \end{split}$$

By the disjointedness of the intervals, we may write

$$\begin{split} \int_{a}^{b} \left| \sum_{k=1}^{N} c_{k} \chi_{[a_{k},b_{k})} \right|^{p} \mathrm{d}x &\leq \sum_{k=1}^{N} \int_{a_{k}}^{b_{k}} \mathrm{d}x = \sum_{k=1}^{N} (b_{k} - a_{k}). \end{split}$$
 So, $\left\| \sum_{k=1}^{N} c_{k} \chi_{[a_{k},b_{k})} \right\|_{p} &= \left(\sum_{k=1}^{N} (b_{k} - a_{k}) \right)^{\frac{1}{p}}$, thus
$$\sum_{k=1}^{N} |G_{T}(b_{k}) - G_{T}(a_{k})| \leq \|T\| \cdot \left(\sum_{k=1}^{N} (b_{k} - a_{k}) \right)^{\frac{1}{p}}. \end{split}$$

Hence, for $\varepsilon>0$, letting $\delta=\left(\frac{\varepsilon}{\|T\|}\right)^p$ proves absolute continuity of G_T . Thus, $g=G_T'$ exists and is such that $g\in L^1([a,b])$ and

$$G_T(x) = \int_a^x g(t) \, \mathrm{d}t, \, \forall \, x \in [a, b].$$

Hence,

$$\begin{split} T\Big(\chi_{[c,d)}\Big) &= G_T(d) - G_T(c) = \int_a^d g(t) \,\mathrm{d}t - \int_a^c g(t) \,\mathrm{d}t \\ &= \int_c^d g(t) \,\mathrm{d}t \\ &= \int_a^b g(t) \cdot \chi_{[c,d)}(t) \,\mathrm{d}t. \end{split}$$

This proves the theorem for indicator functions; by linearity of T and linearity of the integral, we can repeat this procedure to find a function g such that $Tf = \int_a^b f(t)g(t) \, \mathrm{d}t$ for every step function f.

Step 2: Let f bounded and measurable. We know that for every step function ψ , $T\psi=\int_a^b\psi(t)g(t)\,\mathrm{d}t$ (with the g as "found" in step 1). So,

$$\begin{split} \left|Tf - \int_a^b \psi(t)g(t)\right| &= \left|T(f-\psi) - \int_a^b (f(t)-\psi(t))g(t)\,\mathrm{d}t\right| \\ &\leq \left\|T\right\| \left\|f - \psi\right\|_p + \int_a^b |f(t)-\psi(t)||g(t)|\,\mathrm{d}t. \end{split}$$

Then, since $g \in L^1([a,b])$, for every $\varepsilon > 0$ there is some $\delta > 0$ such that if E a set of measure less than δ , $\int_E |g(t)| \, \mathrm{d}t < \varepsilon$. Fix $\varepsilon > 0$ and $\delta > 0$ such that this holds; let $\delta < \varepsilon$ if necessary wlog. Since f bounded and measurable, there is some step function ψ such that $|f - \psi| < \delta$ on $E \subseteq [a,b]$, and that $m(E^c) < \delta$ and $|\psi| \le \|f\|_\infty$. Hence,

$$\begin{split} \left\|f - \psi\right\|_p^p &= \int_E \left|f - \psi\right|^p + \int_{E^c} \left|f - \psi\right|^p \\ &\leq \delta^p \cdot m(E) + \left(2 \|f\|_{\infty}\right)^p m(E^c) \\ &\leq \delta^p \, \left|b - a\right| + \left(2 \|f\|_{\infty}\right)^p \delta. \end{split}$$

Also,

$$\begin{split} \int_{a}^{b} |f - \psi| |g| \, \mathrm{d}t &\leq \int_{E} \delta \cdot |g| \, \mathrm{d}t + \int_{E^{c}} 2\|f\|_{\infty} |g| \, \mathrm{d}t \\ &\leq \delta \|g\|_{1} + 2\|f\|_{\infty} \varepsilon. \end{split}$$

All together then,

$$\begin{split} \left|Tf - \int_{a}^{b} f(t)g(t) \, \mathrm{d}t \right| &\leq \|T\| \Big(\delta^{p} \, \left|b - a\right| + \Big(2\|f\|_{\infty}\Big)^{p} \delta\Big)^{\frac{1}{p}} + \delta\|g\|_{1} + 2\|f\|_{\infty} \varepsilon \\ &< C\Big(\|f\|_{\infty}, \|g\|_{1}, a, b, \|T\|\Big) \cdot \varepsilon^{\frac{1}{p}}, \end{split}$$

where C a constant. The LHS does not depend on ε , hence taking the limit $\varepsilon \to 0^+$, we conclude

$$Tf = \int_a^b f(t)g(t) \, \mathrm{d}t.$$

Note that all simple functions are bounded and measurable, so the necessary property also holds for *f* simple.

We need now to show $g \in L^q([a,b])$ and ||g|| = ||T||.

• Case 1:
$$p>1$$
 so $q<\infty$. Let $g_n:=\left\{egin{array}{l} g & \text{if } |g|\leq n \\ 0 & \text{o.w.} \end{array}\right.$ and $f_n:=\left\{egin{array}{l} |g|^{q-1} & \mathrm{sgn}(g) & \text{if } |g|\leq n \\ 0 & \text{o.w.} \end{array}\right.$ Then,

$$\begin{split} \|g_n\|_q^q &= \int_{\{|g| \le n\}} |g|^q \, \mathrm{d}t \\ &= \int_{\{|g| \le n\}} f_n \cdot g_n \, \mathrm{d}t \\ &= \int_{\{|g| \le n\}} f_n g \, \mathrm{d}t \\ &= T f_n \le \|T\| \|f_n\|_p, \end{split}$$

since f_n bounded and measurable so Step 2 applies. Also,

$$||f_n||_p^p = \int_{\{|g| \le n\}} |g|^{(q-1)p} dt$$

$$= \int_{\{|g| \le n\}} |g|^q dt = ||g_n||_q^q.$$

All together then,

$$\|g_n\|_q^q \le \|T\| \|g_n\|_q^{q/p} \Rightarrow \|g_n\|_q^{q\left(1-\frac{1}{p}\right)} = \|g_n\|_q \le \|T\|.$$

By construction, $|g_n|^q \to |g|^q$ a.e. and monotonely, so by the monotone convergence theorem,

$$\left\|g_n\right\|_q \to \left\|g\right\|_q,$$

so $\|g\|_q \leq \|T\|$ and so $g \in L^q([a,b])$. From here, as in the example at the beginning of this section, one can show equality by chosing f appropriately.

• Case 2: p=1 so $q=\infty$. We claim that $\|g\|_{\infty}=\sup_{\|f\|_1=1,\ \int fg$. Let $\varepsilon>0$ and $A\subseteq [a,b]$ such that $|g|\geq \|g\|_{\infty}-\varepsilon$ on A where m(A)>0. Let

$$f(x) = \frac{\chi_A}{m(A)} \operatorname{sgn}(g).$$

Then, f bounded and $||f||_1 = 1$. So,

$$\int fg = \frac{1}{m(A)} \int_A \left|g\right| \geq \frac{1}{m(A)} \int_A \left(\left\|g\right\|_{\infty} - \varepsilon\right) = \left\|g\right\|_{\infty} - \varepsilon,$$

hence we have proven \leq of our claim. By Holder,

$$\sup_{\|f\|=1}\int fg \leq \left\|f\right\|_1 \left\|g\right\|_\infty = \left\|g\right\|_\infty,$$

so \geq holds and the claim is proven. Thus,

$$\left\|g\right\|_{\infty} = \sup_{\substack{\|f\|=1,\\f \text{ bdd}}} Tf \leq \left\|T\right\| \left\|f\right\|_1 = \left\|T\right\|,$$

so in particular $g \in L^{\infty}([a,b])$. For the other inequality,

$$|Tf| = \left| \int fg \, \mathrm{d}t \right| \le \|f\|_1 \|g\|_\infty,$$

hence

$$||T|| \leq ||g||_{\infty}$$

so $\|g\|_{\infty} = \|T\|$ as we aimed to show.

Step 3: We need to show $Tf=\int_a^b fg\,\mathrm{d}t$ for every $f\in L^p([a,b])$. Simple functions are dense in $L^p([a,b])$, and since $Tf=\int_a^b fg\,\mathrm{d}t$ for every simple function f, we conclude $Tf=\int_a^b fg\,\mathrm{d}t$ for every $f\in L^p([a,b])$ by the previous density lemma.

Moreover, g is unique because if

$$\int_{a}^{b} fg = \int_{a}^{b} fg',$$

then

$$\int_{a}^{b} f(g - g') = 0,$$

for every $f \in L^p$. Let $f(t) = \operatorname{sgn}(g - g')$, then

$$0 = \int_{a}^{b} |g - g'| dt \Rightarrow g = g'$$
 a.e..

So, g uniquely defined up to a set of measure 0 so g = g' in L^q .

PROOF $(Of\ RRT\ if\ \Omega=\mathbb{R})$. Fix $T\in (L^p(\mathbb{R}))^*$. Then, $T|_{[-N,N]}\in (L^p([-N,N]))^*$ for every $N\geq 1$, and $\left\|T|_{[-N,N]}\right\|\leq \|T\|$. Then, by RRT on [-N,N], there is a $g_N\in L^q([-N,N])$ such that $Tf=\int_{-N}^N fg_N\,\mathrm{d}t$. By uniqueness, $g_{N+1}|_{[-N,N]}=g_N$. Define

$$g(t)\coloneqq g_N(t), \qquad t\in [-N,N].$$

So, $g_N(t) \to g(t)$ pointwise and $|g_N(t)|^q \to |g(t)|^q$ pointwise and monotonely. By monotone convergence, then, $\int_{\mathbb{R}} |g_N|^q \, \mathrm{d}t \to \int_{\mathbb{R}} |g|^q \, \mathrm{d}t$. So, $g \in L^q(\mathbb{R})$ since $\|g_N\|_{L^q([-N,N])} \le \|T\|$ for every $N \ge 1$. Let $f_N(t) = f(t)\chi_{[-N,N]}$. Then, $f_N \to f$ in $L^p(\mathbb{R})$ so $Tf_N \to Tf$. So also

$$Tf_N = \int_{-N}^N f_N g_N = \int_{-N}^N f(t) g_N(t) \, \mathrm{d}t = \int_{\mathbb{R}} f g_N \, \mathrm{d}t \to Tf,$$

if we take by convention the g_N 's to be zero outside of [-N,N]. But also, $f\in L^p(\mathbb{R})$ and $g_N\to g$ in $L^q(\mathbb{R})$, so applying Holder's to the quantity $\int_{\mathbb{R}}fg_N$, we know

$$\int_{\mathbb{R}}fg_N\to\int_{\mathbb{R}}fg,$$

hence equating the two

$$Tf=\int_{\mathbb{R}}fg,$$

for every $f \in L^p(\mathbb{R})$. A similar proof to the previous gives the necessary norm identity.

PROOF (Of RRT for general $\Omega \subseteq \mathbb{R}$). If $T \in (L^p(\Omega))^*$, let $\hat{T} \in (L^p(\mathbb{R}))^*$ given by $\hat{T}f = T(f|_{\Omega})$. Then by the previous case there is $\hat{g} \in L^q(\mathbb{R})$ such that $\hat{T}(f) = \int f\hat{g}$. Let $g = \hat{g}|_{\Omega}$, then $Tf = \int_{\Omega} fg$.

So, RRT gives us that for $p \in [1, \infty]$, $(L^p(\Omega))^* \sim L^q(\Omega)$, and that $\|f\|_p = \sup_{g \in L^q} \left| \int fg \right|$.

In particular, if p = 1,

$$\|f\|_{L^1} = \int f \operatorname{sgn} f(x) dx = \sup_{\|g\|_{\infty} = 1} \int fg.$$

What, though, is $(L^{\infty})^*$. Certainly, $L^1(\Omega) \subseteq (L^{\infty}(\Omega))^*$ since for $f \in L^{\infty}$, $Tf = \int fg \, \mathrm{d}x$ with $g \in L^1$, which is bounded by Holders. However, it turns out that this inclusion is a strict one. Consider for instance

$$Tf \coloneqq f(0), \qquad T: L^{\infty}([-1,1]) \to \mathbb{R}.$$

Then, certainly $|Tf| \leq \|f\|_{\infty}$ so $T \in (L^{\infty})^*$. However, there is no function g such that $f(0) = \int f(t)g(t) dt$.

§2.10 Weak Convergence in $L^p(\Omega)$

 \hookrightarrow Definition 2.16 (Weak convergence in $L^p(\Omega)$): Let $\Omega \subset \mathbb{R}^d$, $p \in [1, \infty)$ and q its conjugate. Then, we say $f_n \to f$ weakly in $L^p(\Omega)$, and write

$$f_{n} \underset{L^{\overline{p}}(\Omega)}{\rightharpoonup} f,$$

if for every $g \in L^q(\Omega)$,

$$\lim_{n \to \infty} \int_{\Omega} f_n g \, \mathrm{d}x = \int f g \, \mathrm{d}x.$$

Remark 2.18: Weak limits are unique; suppose otherwise that $f_n \rightharpoonup f, \overline{f}$. Let $g = \mathrm{sgn} \left(f - \overline{f} \right) \cdot \left| f - \overline{f} \right|^{p-1}$, which is in $L^q(\Omega)$. So,

$$\lim_{n} \int g f_n \, \mathrm{d}x = \int g f \, \mathrm{d}x = \int g \overline{f} \, \mathrm{d}x,$$

by assumption, so

$$0 = \int_{\Omega} g(f - \overline{f}) dx = \int |f - \overline{f}|^p dx,$$

hence $f = \overline{f}$ a.e. (and so equal as elements of $L^p(\Omega)$).

Remark 2.19: Many of the properties of weakly convergent sequences in a Hilbert space carry over to this setting.

\hookrightarrow Proposition 2.12: Let $\Omega \subseteq \mathbb{R}^d$.

 $\text{(i) If } p\in(1,\infty)\text{, } f_n\underset{L^p(\Omega)}{\rightharpoonup}f\text{, then }\{f_n\}\subseteq L^p(\Omega)\text{ are bounded, and moreover }\|f\|_p\leq \liminf_n\|f_n\|_p.$

(ii) If
$$p \in [1,\infty)$$
 and $f_n \underset{L^p(\Omega)}{\longrightarrow} f, g_n \underset{L^p(\Omega)}{\longrightarrow} g$, then $\lim_{n \to \infty} \int g_n f_n \, \mathrm{d}x = \int g f \, \mathrm{d}x$.

PROOF. Identical to Hilbert space proofs; replace usage of Cauchy-Schwarz with Holder's.

Remark 2.20: In (i), $p \in (1, \infty)$, since L^p "reflexive" in this case, i.e. $(L^p)^{**} = L^p$ (just as we had in the Hilbert space case). We don't have this property for p = 1.

Remark 2.21: A related notion of convergence is called *weak* convergence*, written $f_n \underset{L^{\overline{p}}(\Omega)}{\overset{*}{\longrightarrow}} f$; we say this holds if for every $g \in L^q(\Omega)$ such that $(L^q)^* = L^p$, then $\int f_n g \, \mathrm{d}x \to \int f g \, \mathrm{d}x$. So if $p \in (1, \infty)$, weak convergence = weak* convergence, by Riesz.

Remark 2.22: There are many equivalent notions to weak convergence.

 \hookrightarrow Theorem 2.22 (Equivalent Weak Convergence): Let $p \in (1, \infty)$. Suppose $\{f_n\} \subseteq L^p(\Omega)$ are bounded and $f \in L^p$. Then, $f_n \xrightarrow[L^p(\Omega)]{} f$ iff

- for any $g \in G \subseteq L^q(\Omega)$ such that $\overline{\operatorname{span}(G)} = L^q(\Omega)$, then $\lim_{n \to \infty} \int f_n g = \int fg$;
- $\forall A \subseteq \Omega$ measurable with finite measure, then $\lim_{n \to \infty} \int_A f_n \, \mathrm{d}x = \int_A f \, \mathrm{d}x$;
- if d=1 and $\Omega=[a,b]$, then $\lim_{n\to\infty}\int_a^x f_n\,\mathrm{d}x=\int_a^x f\,\mathrm{d}x$ for every $x\in[a,b]$.
- $f_n \to f$ pointwise a.e..

Remark 2.23: Some of these notions extend to p = 1, but we state in the p > 1 case for simplicity.

 $\overset{\boldsymbol{\hookrightarrow}}{\mathbf{Theorem}} \ \mathbf{2.23} \ (\mathrm{Radon-Riesz}) \colon \ \mathrm{Let} \ p \in (1,\infty). \ \mathrm{Suppose} \ f_n \underset{L^{\overline{p}}(\Omega)}{\rightharpoonup} f \text{, then } f_n \underset{L^{\overline{p}}(\Omega)}{\rightarrow} f \ \mathrm{iff} \\ \lim_{n \to \infty} \left\| f_n \right\|_p = \left\| f \right\|_p.$

Alternatively, there exists a subsequence $\left\{f_{n_k}\right\}$ such that $f_{n_k} \to f$ in $L^p(\Omega)$ iff $\lim\inf_{n\to\infty}\left\|f_n\right\|_p=\left\|f\right\|_p$.

PROOF. (\Rightarrow) If $f_n \underset{L^p(\Omega)}{\to} f$ then $\|f_n\|_p \to \|f\|_p$ by triangle inequality.

The converse, (\Leftarrow) , is hard.

Theorem 2.24 (Weak Compactness): Let p ∈ (1, ∞), then every bounded sequence in $L^p(Ω)$ has a weakly convergent subsequence, with limit in $L^p(Ω)$.

PROOF. Let $\{f_n\}\subseteq L^p(\Omega)$ be bounded. $p\in (1,\infty)$ so so is q, and in particular $L^q(\Omega)$ is separable. Let $T_n\in (L^q(\Omega))^*$ be given by $T_n(g)\coloneqq \int f_n g\,\mathrm{d}x$ for $g\in L^q(\Omega)$. Then, $\|T_n\|=\|f_n\|_p\le C$. So,

$$\sup_n \lvert T_n(g) \rvert \leq \left\lVert T_n \right\rVert \left\lVert g \right\rVert_q \leq C {\left\lVert g \right\rVert}_q.$$

By Helley's Theorem (Thm. 2.14), there exists a subsequence $\left\{T_{n_k}\right\}$ and $T\subseteq (L^q(\Omega))^*$ such that $\lim_{k\to\infty}T_{n_k}(g)=T(g)$ for every $g\in L^q(\Omega)$. By Riesz, there exists some $f\in L^p(\Omega)$ such that $T(g)=\int fg\,\mathrm{d}x$, and hence

$$\lim_{k} \int f_{n_k} g \, \mathrm{d}x = \int f g \, \mathrm{d}x,$$

for every $g \in L^q(\Omega)$, so $f_{n_k} \underset{L^{\overline{p}}(\Omega)}{\longrightarrow} f$.

§2.11 Convolution and Mollifiers

→Definition 2.17 (Convolution):

$$(f*g)(x) \coloneqq \int_{\mathbb{R}^d} f(x-y)g(y) \, \mathrm{d}y = \int_{\mathbb{R}^d} f(y)g(x-y) \, \mathrm{d}y.$$

→Proposition 2.13 (Properties of Convolution):

a. (f * g) * h = f * (g * h) (convolution is associative)

b. Let $\tau_z f(x) := f(x-z)$ be the *z*-translate of *x* which centers *f* at *z*. Then,

$$\tau_z(f*g) = (\tau_z f)*g = f*(\tau_z g).$$

c. $supp(f * g) \subseteq \overline{\{x + y \mid x \in supp(f), y \in supp(g)\}}.$

PROOF. (a) Assuming all the necessary integrals are finite, we can change order of integration,

$$\begin{split} ((f*g)*h)(x) &= \left(\int f(y)g(x-y)\,\mathrm{d}y\right)*h(x) \\ &= \int \int f(y)g(x-z-y)\,\mathrm{d}y, h(z)\,\mathrm{d}z \\ &= \int \int f(y)g(x-y-z)h(z)\,\mathrm{d}z\,\mathrm{d}y \qquad (y'=x-y) \\ &= \int \int f(x-y')g(y'-z)h(z)\,\mathrm{d}z\,\mathrm{d}y' \\ &= \int f(x-y')(g*h)(y')\,\mathrm{d}y' = (f*(g*h))(x). \end{split}$$

(b) For the first equality,

$$\begin{split} \tau_z(f*g)(x) &= \tau_z \int f(x-y)g(y)\,\mathrm{d}y \\ &= \int f(x-z-y)g(y)\,\mathrm{d}y \\ &= \int (\tau_z f(x-y))g(y)\,\mathrm{d}y = ((\tau_z f)*g)(x). \end{split}$$

The second follows from a change of variables in the second line.

(c) We'll show that $A^c \subseteq (\operatorname{supp}(f*g))^c$ where A the set as defined in the proposition. Let $x \in A^c$, then if $y \in \operatorname{supp}(g)$, $x - y \notin \operatorname{supp}(f)$ so f(x - y) = 0; else if $y \notin \operatorname{supp}(g)$ it must be g(y) = 0. So, if $x \in A^c$, it must be that

$$\int f(x-y)g(y) dy = \int_{\operatorname{supp}(g)} \underbrace{f(x-y)}_{=0} g(y) dy + \int_{\operatorname{supp}(g)^c} f(x-y) \underbrace{g(y)}_{=0} dy = 0.$$

We've been rather loose with finiteness of the convolutions so far. To establish this, we need the following result.

$$\hookrightarrow$$
 Theorem 2.25 (Young's Inequality): Let $f\in L^1(\mathbb{R}^d), g\in L^p(\mathbb{R}^d)$ for any $p\in [1,\infty]$. Then,
$$\left\|f*g\right\|_p\leq \left\|f\right\|_1 \left\|g\right\|_p,$$

hence $f * g \in L^p(\mathbb{R}^d)$.

PROOF. Suppose first $p = \infty$, then

$$(f*g)(x) = \int f(y)g(x-y)\,\mathrm{d}y \leq \left\|g\right\|_{\infty} \int |f(y)|\,\mathrm{d}y = \left\|g\right\|_{\infty} \left\|f\right\|_{1},$$

for every $x \in \mathbb{R}^d$, so passing to the L^{∞} -norm,

$$||f * g||_{\infty} \le ||f||_{1} ||g||_{\infty}.$$

56

Suppose now p = 1. Then,

$$\left\|f*g\right\|_1 = \int \left|\int f(x-y)g(y)\,\mathrm{d}y\right|\mathrm{d}x.$$

Let F(x,y)=f(x-y)g(y), then for almost every $y\in\mathbb{R}^d$,

$$\begin{split} \int &|F(x,y)|\,\mathrm{d}x = \int |g(y)||f(x-y)|\,\mathrm{d}x\\ &= |g(y)|\int |f(x-y)|\,\mathrm{d}x\\ &= |g(y)|\|f\|_1. \end{split}$$

Applying Tonelli's Theorem, we have then

$$\iint \lvert F(x,y) \rvert \, \mathrm{d}y \, \mathrm{d}x = \iint \lvert F(x,y) \rvert \, \mathrm{d}x \, \mathrm{d}y = \int \lvert g(y) \rvert \big\lVert f \big\rVert_1 \, \mathrm{d}y = \big\lVert f \big\rVert_1 \big\lVert g \big\rVert_1,$$

(so really $F \in L^1(\mathbb{R}^d) \times L^1(\mathbb{R}^d)$), hence all together

$$\|f * g\|_1 = \int \left| \int F(x, y) \, \mathrm{d}y \right| \mathrm{d}x \le \iint |F(x, y)| \, \mathrm{d}y \, \mathrm{d}x = \|f\|_1 \|g\|_1.$$

Remark 2.24: It also follows that for a.e. $x \in \mathbb{R}^d$, $\int |F(x,y)| \, \mathrm{d}y < \infty$, i.e. $\int |f(x-y)g(y)| \, \mathrm{d}y < \infty$. Moreover, since if $g \in L^p(\Omega)$ then $|g|^p \in L^1(\Omega)$, a similar argument gives that for almost every $x \in \mathbb{R}^d$, $\int |f(x-y)||g(y)|^p \, \mathrm{d}y < \infty$.

Suppose now $1 . For a.e. <math>x \in \mathbb{R}^d$, $\int |g(y)|^p |f(x-y)| \, \mathrm{d}y < \infty$, so $g \in L^p(\mathbb{R}^d)$ implies for a.e. $x \in \mathbb{R}^d$, $|g(\cdot)|^p |f(x-\cdot)| \in L^1(\mathbb{R}^d)$ as a function of \cdot . This further implies $g(y)f^{\frac{1}{p}}(x-y) \in L^p(\mathbb{R}^d,\mathrm{d}y)$. Also, if $f \in L^1(\mathbb{R}^d)$, then $f^{\frac{1}{q}} \in L^q(\mathbb{R}^d)$. All together then,

$$\begin{split} \int &|f(x-y)||g(y)|\,\mathrm{d}y = \int \overbrace{\left|f^{\frac{1}{q}}(x-y)\right|}^{q} \underbrace{\left|f^{\frac{1}{p}}(x-y)\right||g(y)|\,\mathrm{d}y}_{p} \\ & \quad \text{Holder's} \qquad \leq \left(\int &|f(x-y)|\,\mathrm{d}y\right)^{\frac{1}{q}} \left(\int &|f(x-y)||g(y)|^{p}\,\mathrm{d}y\right)^{\frac{1}{p}}, \end{split}$$

hence, raising both sides to the p,

$$|(f * g)(x)|^p \le ||f||_{\frac{p}{q}}^{\frac{p}{q}} \cdot (|f| * |g|^p)(x)$$

and integrating both sides

$$\int \left| (f * g)(x) \right|^p \mathrm{d}x \le \|f\|_1^{\frac{p}{q}} \int \left(\underbrace{|f|}_{\in L^1(\mathbb{R}^d)} * \underbrace{|g|^p}_{\in L^1(\mathbb{R}^d)} \right) (x) \, \mathrm{d}x.$$

Hence, we can bound the right-hand term using the previous case for p = 1, and find

2.11 Convolution and Mollifiers 57

$$\begin{split} \int \left| (f * g)(x) \right|^p \mathrm{d}x &\leq \|f\|_1^{\frac{p}{q}} \|f\|_1 \|g^p\|_1 \\ &= \|f\|_1^{\frac{p}{q}+1} \|g\|_p^p \\ &= \|f\|_1^{\frac{p+q}{q}} \|g\|_p^p \\ \left(\frac{p+q}{q} = p \right) &= \|f\|_1^p \|g\|_p^p, \end{split}$$

so raising both sides to $\frac{1}{n}$, we conclude

$$||f * g||_{p} \le ||f||_{1} ||g||_{p}.$$

 \hookrightarrow Proposition 2.14: If $f \in L^1(\mathbb{R}^d)$ and $g \in C^1(\mathbb{R}^d)$ with $\left|\partial_{x_i} g\right| \in L^\infty(\mathbb{R}^d)$ for i = 1, ..., d, then $(f * g) \in C^1(\mathbb{R}^d)$ and moreover

$$\partial_{x_i}(f*g)=f*\left(\partial_{x_i}g\right).$$

Remark 2.25: There are many different conditions we can place on f, g to make this true; most basically, we need $|(\partial_i g) * f| < \infty$.

Proof.

$$\frac{\partial}{\partial x_i} \biggl(\int f(y) g(x-y) \, \mathrm{d}y \biggr) = \int \underbrace{f(y)}_{\in L^1(\mathbb{R}^d)} \underbrace{\partial_i g(x-y)}_{\in L^\infty(\mathbb{R}^d)} \, \mathrm{d}y < \infty,$$

citing the previous theorem for the finiteness; the dominated convergence theorem allows us to pass the derivative inside.

Remark 2.26: This also follows for the gradient; namely $\nabla(f*g) = f*(\nabla g)$ with a component-wise convolution.

Consider the function

$$\rho(x) = \begin{cases} C \exp\left(-\frac{1}{1-|x|^2}\right) & \text{if } |x| \le 1, \\ 0 & \text{o.w.} \end{cases}$$

where C=C(d) a constant such that $\int_{\mathbb{R}^d} \rho(x) dx = 1$. Then, note that $\rho \in C_c^{\infty}(\mathbb{R}^d)$ (infinitely differentiable with compact support). Let now

$$\rho_{\varepsilon}(x) \coloneqq \frac{1}{\varepsilon^d} \rho\bigg(\frac{x}{\varepsilon}\bigg).$$

Notice that $\rho_{\varepsilon}(x)$ is supported on $B(0,\varepsilon)$, but

2.11 Convolution and Mollifiers 58

$$\int_{\mathbb{R}^d} \rho_\varepsilon(x) \, \mathrm{d}x = \frac{1}{\varepsilon^d} \int_{\mathbb{R}^d} \rho \bigg(\frac{x}{\varepsilon} \bigg) \, \mathrm{d}x = \frac{1}{\varepsilon^d} \cdot \varepsilon^d \cdot \int_{\mathbb{R}^d} \rho(y) \, \mathrm{d}y = 1,$$

for every ε , by making a change of variables $y=\frac{x}{\varepsilon}$. We'll be interested in the convolution

$$f_\varepsilon(x)\coloneqq (\rho_\varepsilon*f)(x)$$

for some function f. ρ_{ε} is often called a "convolution kernel". In particular, it is a "good kernel", namely has the properties:

- $\int_{\mathbb{R}^d} \rho_{\varepsilon}(y) \, \mathrm{d}y = 1;$
- $\int_{\mathbb{R}^d}^{\mathbb{R}} |\rho_{\varepsilon}(y)| \, \mathrm{d}y \leq M$ for some finite M;
- $\forall \delta > 0, \int_{\{|y| > \delta\}} |\rho_{\varepsilon}(y)| dy \underset{\varepsilon \to 0}{\to} 0.$

The second condition is trivially satisfied in this case since our kernel is nonnegative. The last also follows easily since ρ_{ε} has compact support; more generally, this imposes rapid decay conditions on the tails of good kernels.

Since $\rho_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^d)$, for "reasonable" f, $f_{\varepsilon} = \rho_{\varepsilon} * f \in C^{\infty}(\mathbb{R}^d)$ by the previous proposition. In fact, we'll see that in many contexts $f_{\varepsilon} \to f$ as $\varepsilon \to 0$ in some notion of convergence. So, f_{ε} provides a good, now smooth, approximation to f.

 \hookrightarrow Proposition 2.15: Suppose $f \in L^{\infty}(\mathbb{R}^d)$ and f_{ε} is well-defined. Then, if f is continuous at x, then $f_{\varepsilon}(x) \to f(x)$ as $\varepsilon \to 0$.

If $f \in C(\mathbb{R}^d)$, then $f_{\varepsilon} \to f$ uniformly on compact sets.

PROOF. f continuous at x gives that for every $\eta>0$ there exists a $\delta>0$ such that $|f(y)-f(x)|<\eta$ whenver $|x-y|<\delta$. Then

$$\begin{split} |f_{\varepsilon}(x)-f(x)| &= \left| \int \rho_{\varepsilon}(y) f(x-y) \, \mathrm{d}y - f(x) \underbrace{\int \rho_{\varepsilon}(y) \, \mathrm{d}y}_{=1} \right| \\ &= \left| \int \rho_{\varepsilon}(y) (f(x-y)-f(x)) \, \mathrm{d}y \right| \\ &\leq \int_{\{|y| \leq \delta\}} |f(x-y)-f(x)| |\rho_{\varepsilon}(y)| \, \mathrm{d}y + \int_{\{|y| > \delta\}} |f(x-y)-f(x)| |\rho_{\varepsilon}(y)| \, \mathrm{d}y \\ \left(\operatorname*{cnty in first argument}_{L^{\infty}\text{-bound in second}} \right) &\leq \int_{\{|y| \leq \delta\}} \eta |\rho_{\varepsilon}(y)| \, \mathrm{d}y + 2 \|f\|_{\infty} \int_{|y| > \delta} |\rho_{\varepsilon}(y)| \, \mathrm{d}y \\ &\leq \eta \cdot M + 2 \|f\|_{\infty} \int_{\{|y| > \delta\}} |\rho_{\varepsilon}| \end{split}$$

for $\varepsilon \to 0$, by using the second property of good kernels for the first bound. By the last property, the right-most term $\to 0$ as $\varepsilon \to 0$; moreover, then,

$$\lim_{\varepsilon \to 0} |f_{\varepsilon}(x) - f(x)| \le C\eta$$

for some C and every $\eta > 0$, and thus $f_{\varepsilon}(x) \to f(x)$ as $\varepsilon \to 0$.

2.11 Convolution and Mollifiers 59

Now, if $f \in C(\mathbb{R}^d)$ fix a subset $K \subseteq \mathbb{R}^d$ compact. Hence, $\|f\|_{L^\infty(K)} < \infty$ and f uniformly continuous on K since K compact; so the modulus continuity is uniform for all $x \in K$, so for $\delta > 0$ and for every $x \in K$,

$$\int_{\{|y| \le \delta\}} |f(x-y) - f(x)| |\rho_{\varepsilon}(y)| \,\mathrm{d}y \le C\eta.$$

Also, using the bound on f, we may write the second integral in the argument above as

$$\int_{\varepsilon>|y|>\delta} |f(x-y)-f(x)||\rho_\varepsilon(y)|\,\mathrm{d}y \leq \|f\|_{L^\infty(K+B_\varepsilon)} \int_{\{|y|>\delta\}} |\rho_\varepsilon(y)|\,\mathrm{d}y \underset{\varepsilon\to 0}{\to} 0$$

where we take K slighly larger as $K + B_{\varepsilon}$, which is still compact. So, since this held for all $x \in K$,

$$\max_{x \in K} |f_{\varepsilon}(x) - f(x)| \underset{\varepsilon \to 0}{\to} 0.$$

Note that we proved the first for general good kernels but the second only in our constructed one.

Remark 2.27: This pointwise convergence result is why "good kernels" are called "approximations to the identity".

Remark 2.28: If $f \in C_c(\mathbb{R}^d)$, then $\operatorname{supp}(f_{\varepsilon}) \subseteq \overline{\operatorname{supp}(f) + B(0, \varepsilon)}$; so, f_{ε} is compactly supported if f is. Hence in this case $f_{\varepsilon} \to f$ uniformly on \mathbb{R}^d .

→Theorem 2.26 (Weierstrass Approximation Theorem): Let $[a,b] \subseteq \mathbb{R}$ and let $f \in C([a,b])$. Then for every $\eta > 0$, there exists a polynomial $P_N(x)$ of degree N such that

$$\left\|P_N-f\right\|_{L^\infty([a,b])}<\eta.$$

That is, polynomials are dense in C([a, b]).

PROOF. Extend f to be continuous with compact support on all of \mathbb{R} in whatever convenient way, such that $\operatorname{supp}(f) \subseteq [-M, M]$ for some sufficiently large M > 0. Consider now

$$K_{\varepsilon}(x) \coloneqq \frac{1}{\sqrt{\varepsilon}} e^{-\frac{\pi x^2}{\varepsilon}},$$

noting that

$$\int_{-\infty}^{\infty} K_{\varepsilon}(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} \frac{1}{\sqrt{\varepsilon}} e^{-\frac{\pi x^2}{\varepsilon}} \, \mathrm{d}x = 1,$$

which is clear by a change of variables $y=\frac{\sqrt{2\pi}}{\sqrt{\varepsilon}}x$. As a consequence, $\int_{-\infty}^{\infty}|K_{\varepsilon}(x)|\,\mathrm{d}x=1<\infty$, since $K_{\varepsilon}\geq 0$. Finally,

2.11 Convolution and Mollifiers

60

$$\begin{split} \int_{|x|>\delta} |K_\varepsilon(x)| \,\mathrm{d}x &= \int_{|x|>\delta} \frac{1}{\sqrt{\pi}} e^{-\frac{\pi x^2}{\varepsilon}} \,\mathrm{d}x \\ &= \int_{|y|>\frac{\sqrt{2\pi}}{\sqrt{\varepsilon}}\delta} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \,\mathrm{d}y \\ \text{since } |y| \ge 1 \text{ here for suff. small } \varepsilon & \le \int_{|y|>\frac{\sqrt{2\pi}}{\sqrt{\varepsilon}}\delta} \frac{|y|}{\sqrt{2\pi}} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \,\mathrm{d}y \\ & \le C e^{-\frac{y^2}{2}} \bigg|_{\frac{\sqrt{2\pi}}{\sqrt{\varepsilon}}\delta}^{\infty} \xrightarrow[\varepsilon \to 0]{} 0. \end{split}$$

So, K_{ε} is a good kernel, and so $(f*K_{\varepsilon})(\varepsilon) \underset{\varepsilon \to 0}{\to} f$ uniformly in [a,b] by our last remark. In particular, for $\eta > 0$ there is some $\varepsilon_0 > 0$,

$$\left|\left(f*K_{\varepsilon_0}\right)-f\right|_{L^\infty([a,b])}<\frac{\eta}{2}.$$

We claim now that there is a polynomial P_N such that $\left\|P_N-\left(f*K_{\varepsilon_0}\right)\right\|_{L^\infty([a,b])}<\frac{\eta}{2}.$ Recall that $e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$, which converges uniformly on compact sets. So, there exists a polynomial S_N (from truncating this sum) such that $\left\|K_{\varepsilon_0}-S_N\right\|_{L^\infty([-M,M])}<\frac{\eta}{4\|f\|_\infty M}.$ Thus,

$$\begin{split} \left| f * K_{\varepsilon_0}(x) - f * S_n(x) \right| & \leq \left| \int f(x-y) \Big(K_{\varepsilon_0}(y) - S_N(y) \Big) \, \mathrm{d}y \right| \\ \mathrm{supp}(f) \subset [-M, M] & \leq \int_{-M}^M \lvert f(x-y) \rvert \left| K_{\varepsilon_0}(y) - S_N(y) \right| \, \mathrm{d}y \\ & \leq 2M \|f\|_\infty \frac{\eta}{4M \|f\|_\infty} = \frac{\eta}{2}, \end{split}$$

for every x. Let $P_N(x) = (f * S_n)(x)$, which we see to be a polynomial.

 \hookrightarrow Theorem 2.27: Let $f \in L^p(\mathbb{R}^d)$ with $p \in [1, \infty)$. Then $f_{\varepsilon} \xrightarrow[L^p(\mathbb{R}^d)]{} f$.

PROOF. Since $f \in L^p(\mathbb{R}^d)$, for every $\eta > 0$ there is a $\tilde{f} \in C_c(\mathbb{R}^d)$ such that $\left\| f - \tilde{f} \right\|_p < \eta$. Since $\tilde{f} \in C_c(\mathbb{R}^d)$, by the previous theorem dealing with mollifiers and uniform convergence, $\tilde{f}_{\varepsilon} \to \tilde{f}$ uniformly. In particular, we have $\left\| \tilde{f}_{\varepsilon} - \tilde{f} \right\|_p \to 0$, hence

$$\left\|f-f_{\varepsilon}\right\|_{p} \leq \left\|f_{\varepsilon}-\tilde{f}_{\varepsilon}\right\|_{p} + \left\|\tilde{f}_{\varepsilon}-\tilde{f}\right\|_{p} + \left\|\tilde{f}-f\right\|_{p}.$$

We've dealt with the second two bounds. For the first,

$$\begin{split} \left\| f_{\varepsilon} - \tilde{f}_{\varepsilon} \right\|_{p} &= \left\| \left(f - \tilde{f} \right) * \rho_{\varepsilon} \right\|_{p} \\ & (\text{Young's}) \qquad \leq \left\| \rho_{\varepsilon} \right\|_{1} \left\| f - \tilde{f} \right\|_{p} = \left\| f - \tilde{f} \right\|_{p}, \end{split}$$

so

$$\|f - f_{\varepsilon}\|_{p} \le 2\|f - \tilde{f}\|_{p} + \|\tilde{f}_{\varepsilon} - \tilde{f}\|_{p} < 3\eta.$$

 \hookrightarrow Corollary 2.6: $C_c^{\infty}(\mathbb{R}^d)$ dense in $L^p(\mathbb{R}^d)$.

PROOF. We showed \tilde{f}_{ε} approximates f in $L^p(\mathbb{R}^d)$, and by construction \tilde{f}_{ε} is smooth with compact support.

§2.12 Strong Compactness in $L^p(\mathbb{R}^d)$

We saw that for $p\in(1,\infty)$, $\{f_n\}\subset L^p(\Omega)$, that any bounded sequence admits a weakly converging subsequence, $f_{n_k}\underset{L^p}{\rightharpoonup} f$. In addition, if the norms also converge i.e. $\lim_{n\to\infty}\|f_n\|_p=\|f\|_{p'}$, then we actually have strong convergence $f_{n_k}\underset{L^p}{\rightarrow} f$.

We provide now a strong compactness result in L^p , akin to Arzelà-Ascoli.

 \hookrightarrow Theorem 2.28 (Strong Compactness): Let $\{f_n\} \subseteq L^p(\mathbb{R}^d)$ for $p \in [1, \infty)$ s.t.

i. $\exists\, C>0 \text{ s.t. } \|f_n\|_p < C\, \forall\, n, \text{ i.e. } \{f_n\} \text{ uniformly bounded in } L^p;$

ii. $\lim_{|h|\to 0} \|f_n - \tau_h f_n\|_p = 0$ uniformly in h, i.e. for every $\eta > 0$, there exists $\delta > 0$ such that if $|h| < \delta$, $\int |f_n(x) - f_n(x-h)|^p \, \mathrm{d}x < \eta^p$ for every n;

Then, for any $\Omega\subseteq\mathbb{R}^d$ with finite measure, there exists a subsequence $\left\{f_{n_k}\right\}$ such that $f_{n_k}\underset{L^p(\Omega)}{\to}f.$

PROOF. Recall that $L^p(\Omega)$ is a complete metric space, so TFAE:

- 1. sequential compactness;
- 2. totally bounded (& complete);
- 3. compact.

Let $\mathcal{F}=\{f\in L^p(\mathbb{R}^d) \text{ satisfying i., ii.}\}$ and fix $\Omega\subseteq\mathbb{R}^d$ with finite measure. We aim to show that $\mathcal{F}|_{\Omega}$ is sequentially compact in $L^p(\Omega)$ (with no regard to whether the limit lives in \mathcal{F}_{Ω}); equivalently, we wish to show $\mathcal{F}|_{\Omega}$ is precompact in $L^p(\Omega)$ i.e. $\overline{\mathcal{F}|_{\Omega}}$ is compact. Since $\overline{\mathcal{F}|_{\Omega}}$ is a complete metric space, to prove the result it suffices to show that $\mathcal{F}|_{\Omega}$ is totally bounded (recall: for every $\delta>0$, $\mathcal{F}|_{\Omega}\subseteq\bigcup_{i=1}^N B_{L^p(\Omega)}(g_i,\delta)$). We'll do this using mollifiers and AA to do this.

Step 1: Fix η , δ as in ii. in the statement of the theorem, and let $f \in \mathcal{F}$. Then, for every $\varepsilon < \delta$, we claim

$$\|(\rho_\varepsilon*f)-f\|_{L^p(\mathbb{R}^d)}<\eta.$$

We have

$$\begin{split} |(\rho_{\varepsilon}*f)(x)-f(x)| &= \left|\int_{B_{\varepsilon}} \rho_{\varepsilon}(y) f(x-y) \, \mathrm{d}y - f(x) \int \rho_{\varepsilon}(y) \, \mathrm{d}y \right| \\ &\leq \int_{B_{\varepsilon}} \rho_{\varepsilon}(y) |f(x-y)-f(x)| \, \mathrm{d}y \\ &= \int_{B_{\varepsilon}} \rho_{\varepsilon}^{\frac{1}{q}}(y) \rho_{\varepsilon}^{\frac{1}{p}}(y) |f(x-y)-f(x)| \, \mathrm{d}y \end{split}$$
 (Holder's)
$$\leq \left(\int \rho_{\varepsilon}(y) |f(x-y)-f(x)|^p \, \mathrm{d}y \right)^{1/p} \underbrace{\left(\int \rho_{\varepsilon}(y) \, \mathrm{d}y \right)^{1/q}}_{-1},$$

and hence

$$\begin{split} \int \left| (\rho_{\varepsilon} * f)(x) - f(x) \right|^p \mathrm{d}x & \leq \iint \rho_{\varepsilon}(y) |f(x-y) - f(x)|^p \, \mathrm{d}y \, \mathrm{d}x \\ & \qquad \qquad (\text{Tonelli's}) \qquad = \int_{B_{\varepsilon}} \rho_{\varepsilon}(y) \underbrace{\int \left| f(x-y) - f(x) \right|^p \, \mathrm{d}x}_{\varepsilon < \delta \Rightarrow \eta^p} \, \mathrm{d}y \\ & \qquad \qquad < \eta^p \underbrace{\int_{B_{\varepsilon}} \rho_{\varepsilon}(y) \, \mathrm{d}y}_{=1} = \eta^p, \end{split}$$

 $\text{hence } \left\| (\rho_{\varepsilon} * f)(x) - f(x) \right\|_{p} < \eta.$

Step 2: We first claim that there exists some C_{ε} such that for any $f \in \mathcal{F}$,

$$\left\|\rho_{\varepsilon}*f\right\|_{\infty} \leq C_{\varepsilon} \|f\|_{p}, \qquad (1)$$

and that for any $x_1, x_2 \in \mathbb{R}^d$,

$$|(\rho_{\varepsilon}*f)(x_1) - (\rho_{\varepsilon}*f)(x_2)| \le C_{\varepsilon} \|f\|_p |x_1 - x_2|. \tag{2}$$

In particular, this shows that for ε fixed, $(\rho_{\varepsilon}*f)$ satisfy hypothesis of AA. Remark that the first is a uniform boundedness type condition for $\rho_{\varepsilon}*f$, and the second is a uniform Lipschitz bound.

For the first claim (1),

$$\begin{split} |(\rho_{\varepsilon}*f)(x)| &= \left| \int \rho_{\varepsilon}(x-y)f(y)\,\mathrm{d}y \right| \\ (\mathrm{Holder's}) & \leq \left(\int \rho_{\varepsilon}^q(x-y)\,\mathrm{d}y \right)^{\frac{1}{q}} \cdot \left\| f \right\|_p \\ &= \left\| \rho_{\varepsilon} \right\|_q \left\| f \right\|_p, \end{split}$$

so we have the bound with $C_{\varepsilon}\coloneqq \|\rho_{\varepsilon}\|_q$ since the bound is independent of x.

Remark 2.29: One can explicitly compute $\|\rho_{\varepsilon}\|_{q'}$ and realize that it will in general depend explicitly on ε .

For the second statement (2), we find that $\nabla(\rho_{\varepsilon}*f)=(\nabla\rho_{\varepsilon})*f$ since the RHS is finite, because

$$(\nabla \rho_{\varepsilon} * f)(x) = \int \nabla \rho_{\varepsilon}(x-y) f(y) \, \mathrm{d}y \leq \|\nabla \rho_{\varepsilon}\|_q \|f\|_p.$$

So,

$$\left\|\nabla(\rho_{\varepsilon}*f)\right\|_{\infty}\leq\underbrace{\left\|\nabla\rho_{\varepsilon}\right\|_{q}}_{=:C_{\varepsilon}}\left\|f\right\|_{p}.$$

By the mean-value theorem then, we have all together

$$\begin{split} \|(\rho_{\varepsilon}*f)(x_1) - (\rho_{\varepsilon}*f)(x_2)\| &\leq \|\nabla(\rho_{\varepsilon}*f)\|_{\infty} |x_1 - x_2| \\ &\leq C_{\varepsilon} \|f\|_{n} |x_1 - x_2|. \end{split}$$

This proves (2).

Step 3: Next, we claim that for $\eta>0$ and fixed $\varepsilon<\eta$ and $\Omega\subseteq\mathbb{R}^d$ with finite measure, there exists $E\subseteq\Omega\subseteq\mathbb{R}^d$ such that E is bounded, i.e. $E\subseteq B(0,M)$ where M sufficiently large, and moreover that $\|f\|_{L^p(\Omega\setminus E)}<\eta$ for every $f\in\mathcal{F}$.

We have that

$$\left\|f\right\|_{L^p(\Omega \backslash E)} \leq \left\|f - (\rho_\varepsilon * f)\right\|_{L^p(\mathbb{R}^d)} + \left\|\rho_\varepsilon * f\right\|_{L^p(\Omega \backslash E)}.$$

By the very first step of the proof, the first term is $< \eta$, so this is bounded by

$$< \eta + \left(\int_{\Omega/E} |\rho_{\varepsilon} * f|^{p} dx \right)^{1/p}$$

$$< \eta + \|\rho_{\varepsilon} * f\|_{\infty} |\Omega \setminus E|^{\frac{1}{p}}$$

$$< \eta + C_{\varepsilon} \|f\|_{p} |\Omega \setminus E|^{\frac{1}{p}}.$$

 $C_{arepsilon}$ finite and $\left\|f
ight\|_p$ upper bounded uniformly over \mathcal{F} , so it suffices to construct E with the measure of $\Omega\setminus E$ sufficiently small, so we can get $\left\|f
ight\|_{L^p(\Omega\setminus E)}<2\eta.$

Step 4: Fix $\eta > 0$. We claim $\mathcal{F}|_{\Omega}$ is totally bounded. Let $\varepsilon < \delta$ then let

$$\mathcal{H}\coloneqq (\rho_\varepsilon*\mathcal{F})|_{\overline{E}}=\{\rho_\varepsilon*f|_E:f\in\mathcal{F}\}.$$

 $E\subseteq\Omega\subseteq\mathbb{R}^d$ is bounded implies \overline{E} is compact. So by Step 2., we showed $(\rho_{\varepsilon}*\mathcal{F})$ satisfies hypotheses of AA on \overline{E} . Hence, \mathcal{H} is precompact in $C(\overline{E})$. Thus, since we have uniform convergence we certainly have L^p convergence thus \mathcal{H} also precompact in $L^p(\overline{E})$. Thus, for $\eta>0$, there exists $\left\{\overline{g}_i\right\}\subseteq L^p(\overline{E})$ such that

$$\mathcal{H}\subseteq \bigcup_{i=1}^N B_{L^p(\overline{E})}\big(\overline{g}_i,\eta\big). \qquad \bigstar$$

Let $g_i: \Omega \to \mathbb{R}$ be given by

$$g_i(x) = \begin{cases} \overline{g}_i \text{ on } E \\ 0 \text{ on } \Omega \setminus E \end{cases}.$$

Then, we claim $\mathcal{F}|_{\Omega}\subseteq\bigcup_{i=1}^N B_{L^p(\Omega)}(g_i,3\eta).$ If $f\in\mathcal{F}$ by \bigstar , there is an i such that $\left\|\rho_{\varepsilon}*f-\overline{g}_i\right\|_{L^p(\overline{E})}<\eta.$ But also,

$$\begin{split} \|f-g_i\|_{L^p(\Omega)}^p &= \int_{\Omega \backslash E} |f|^p \, \mathrm{d}x + \int_{\overline{E}} \left|f-\overline{g}_i\right|^p \, \mathrm{d}x \\ &= \|f\|_{L^p(\Omega \backslash E)} + \int_{\overline{E}} \left|f-\overline{g}_i\right|^p \, \mathrm{d}x \\ \end{split}$$
 (Step 3.)
$$\leq \eta^p + \int_{\overline{E}} \left|f-\overline{g}_i\right|^p \, \mathrm{d}x.$$

Recall $(a+b)^{\frac{1}{p}} \leq a^{\frac{1}{p}} + b^{\frac{1}{p}}$. Applying this bound to the above, we find

$$\begin{split} \left\| f - g_i \right\|_{L^p(\Omega)} & \leq \eta + \left\| f - \overline{g}_i \right\|_{L^p(\overline{E})} \\ & \leq \eta + \underbrace{\left\| f - f * \rho_\varepsilon \right\|_{L^p(\mathbb{R}^d)}}_{< \eta \text{ by Step 1.}} + \underbrace{\left\| \left(f * \rho_\varepsilon \right) - \overline{g}_i \right\|_{L^p(\overline{E})}}_{< \eta \text{ by } \star} \\ & \leq 3 \eta. \end{split}$$

Hence, $\mathcal{F}|_{\Omega} \subseteq \bigcup_{i=1}^N B(g_i, 3\eta)$, thus $\mathcal{F}|_{\Omega}$ is sequentially compact so any sequence in \mathcal{F} has a converging subsequence, which proves the theorem.

Remark 2.30: This can be extended to $L^p(\mathbb{R}^d)$ with some conditions.

§3 Introduction to Fourier Analysis

References are Folland, Chapter 8 and Fourier Analysis by Stein & Sharkarchi.

§3.1 Fourier Series

We will denote the torus $\mathbb{T}=[0,1)\simeq \mathbb{R}/\mathbb{Z}$ (with 1 identified back with 0), and specifically complex-valued functions on the torus

$$L^2(\mathbb{T}) = \bigg\{ f: \mathbb{T} \to \mathbb{C} \ \Big| \ \int_0^1 \left| f(x) \right|^2 \mathrm{d}x < \infty \bigg\},$$

where now $|\cdot|$ the modulus (i.e. $|a+bi|^2=a^2+b^2$). Equivalently, $f:\mathbb{T}\to\mathbb{C}$ can be identified with $\tilde{f}:\mathbb{R}\to\mathbb{C}$ which is periodic.

 \hookrightarrow **Proposition 3.1**: The function $L^2(\mathbb{T}) \times L^2(\mathbb{T}) \to \mathbb{C}$

$$(f,g) = \int_0^1 f(x)\overline{g(x)} \, \mathrm{d}x$$

is an inner product on $L^2(\mathbb{T})$. In particular, $(L^2(\mathbb{T}), (\cdot, \cdot))$ a Hilbert space.

PROOF. For C-valued functions, we need to check:

• linearity in the first variable: for $\alpha \in \mathbb{C}$,

$$(\alpha f + h, g) = \int_0^1 (\alpha f + h) \overline{g} \, \mathrm{d}x = \alpha(f, g) + (h, g)$$

by linearity of the integral;

• conjugate symmetry:

$$\begin{split} \int_0^1 f(x)\overline{g(x)}\,\mathrm{d}x &= \int_0^1 (\mathrm{Re}(f) + i\mathrm{Im}(f))(\mathrm{Re}(g) - i\mathrm{Im}(g))\,\mathrm{d}x \\ &=: \int_0^1 (a+ib)(c-id)\,\mathrm{d}x \\ &= \int_0^1 (ac+bd) + i(bc-ad)\,\mathrm{d}x \\ &= \int_0^1 (ac+bd) - i(ad-bc)\,\mathrm{d}x \\ &= \overline{\int_0^1 g\overline{f}\,\mathrm{d}x} = \overline{(g,f)}; \end{split}$$

• *f* inner product with *f* properties:

$$(f,f) = \int_0^1 f(x)\overline{f(x)} \, \mathrm{d}x = \int_0^1 |f(x)|^2 \, \mathrm{d}x = \|f\|_{L^2(\mathbb{T})}^2 \ge 0, = 0 \text{ iff } f \equiv 0.$$

We know $L^2(\mathbb{T})$ is complete, so $L^2(\mathbb{T})$ a Hilbert space with this inner product since it induces the same norm as the usual norm L^2 -norm.

 \hookrightarrow Theorem 3.1: Let $e_n(x) := e^{2\pi i n x}$ for $n \in \mathbb{Z}$. Then, $\{e_n\}_{n \in \mathbb{Z}}$ is an orthonormal basis of $L^2(\mathbb{T})$.

PROOF. For orthonormality, if $n \neq m$,

$$\begin{split} (e_n,e_m) &= \int_0^1 e^{2\pi i n x} e^{-2\pi i m x} \, \mathrm{d}x \\ &= \int_0^1 e^{2\pi i (n-m)x} \, \mathrm{d}x \\ &= \frac{1}{2\pi i (n-m)} e^{2\pi i (n-m)x} \Big|_0^1 \\ &= \frac{1}{2\pi i (n-m)} \left[e^{2\pi i (n-m)} - 1 \right] \\ &= \frac{1}{2\pi i (n-m)} \left[\underbrace{\cos(2\pi (n-m))}_{=1} + \underbrace{i \sin(2\pi (n-m))}_{=0} - 1 \right] = 0, \end{split}$$

and if n = m,

$$(e_n, e_n) = \int_0^1 \left| e^{2\pi i n x} \right|^2 \mathrm{d}x = \int_0^1 1 \, \mathrm{d}x = 1.$$

To prove its a basis, we use Stone-Weierstrass. T is compact; let

$$\mathcal{A}\coloneqq \biggl\{\sum_{n=-N}^N \alpha_n e_n: \alpha_n\in\mathbb{C}, N\in\mathbb{N}\biggr\}.$$

Notice $e_n e_m = e^{2\pi i (n+m)x} = e_{n+m}$, and $e_0 = 1$, so this family stays closed under multiplication (and clearly addition and scalar multiplication by definition), so is an algebra which contains constant functions. Also, if $x_1 \neq x_2$ and $x_1, x_2 \in [0,1)$, then if $n \neq 0$, $e_n(x_1) = e^{2\pi i n x_1} \neq e^{2\pi i n x_2} = e_n(x_2)$, so $\mathcal A$ separates points. By (complex) Stone-Weierstrass, then we know $\mathcal A$ is dense in $C(\mathbb T,\mathbb C)$ with respect to $\|\cdot\|_\infty$. We know $C(\mathbb T,\mathbb C)$ is dense in $L^2(\mathbb T)$ (by some mollifier argument, for example) with respect to $\|\cdot\|_{L^2(\mathbb T)}$. So,

$$f(x) = \lim_{N \to \infty} \sum_{n = -N}^{N} \alpha_n e_n(x),$$

with the limit taken in the sense of $L^2(\mathbb{T})$.

Recall that in Hilbert spaces, TFAE:

- $\{e_n\}$ are a basis, i.e. $f=\sum_{n=-\infty}^\infty \alpha_n e_n=\sum_{n=-\infty}^\infty (f,e_n)e_n$, in $L^2(\mathbb T)$;
- if $(f, e_n) = 0$ for every n, $f \equiv 0$ (completeness);
- $\|f\|_{L^2(\mathbb{T})}^2 = \sum_{n=-\infty}^{\infty} |(f, e_n)|^2$ (Parseval's).

With this in mind, we define:

→ **Definition 3.1** (Fourier Series): Let

$$\widehat{f}(n)\coloneqq (f,e_n)=\int_0^1 f(x)e^{-2\pi i nx}\,\mathrm{d}x.$$

Then, the complex Fourier series is defined by

$$\sum_{n=-\infty}^{\infty} \hat{f}(n)e^{2\pi i nx}.$$

Remark 3.1: A Fourier series can be defined for any periodic function, while we only do so for 1-periodic here. If f were L-periodic, we'd define

$$\hat{f}_L(n) \coloneqq \frac{1}{L} \int_0^L f(x) e^{\frac{-2\pi i n x}{L}} \, \mathrm{d}x,$$

with complex Fourier series $\sum_{n=-\infty}^{\infty} \hat{f}_L(n) e^{rac{2\pi i n x}{L}}$.

Remark 3.2: We can also make Fourier series to be real-valued, with sines and cosines, of the form

$$A_0 + \sum_{n=1}^{\infty} \left[A_n \cos \left(\frac{2n\pi x}{L} \right) + B_n \sin \left(\frac{2n\pi x}{L} \right) \right],$$

for some A_n, B_n also given by inner products.

What conditions do we need on f to make this series converge? In the general L^2 -theory, we just need $f \in L^2(\mathbb{T})$. By Parseval's,

$$\|f\|_{L^2(\mathbb{T})}^2 = \sum_{n=-\infty}^{\infty} \left| \hat{f}(n) \right|^2.$$

So, the operator $\hat{\cdot}: L^2(\mathbb{T}) \to \ell^2(\mathbb{C})$. Note that this implies $\lim_{n \to \infty} \left| \hat{f}(n) \right|^2 = 0$, so also $\lim_{n \to \infty} \left| \hat{f}(n) \right| = 0$. This proves the following proposition:

 \hookrightarrow Proposition 3.2 (Riemann-Lebesgue Lemma): If $f \in L^2(\mathbb{T})$,

$$\lim_{n\to\infty} \left| \hat{f}(n) \right| = 0.$$

Remark 3.3: This result in *very* useful, particularly for the real Fourier Series. In particular, it tells us statements such as

$$\lim_{n \to \infty} \int_0^1 f(x) \sin(2n\pi x) \, \mathrm{d}x = 0,$$

with similar for the cosine term. These are so-called "oscillatory integrals".

While the $L^2(\mathbb{T})$ -theory is very useful for Hilbert space interpretation, we are really concerned with the partial sums

$$S_N(x) = \sum_{n=-N}^N \hat{f}(n) e^{2\pi i n x},$$

and ways it might converge. We may rewrite by definition

$$\begin{split} S_N(x) &= \sum_{n=-N}^N \Biggl(\int_0^1 f(y) e^{-2\pi i n y} \,\mathrm{d}y \Biggr) e^{2\pi i n x} \\ \text{(because finite sum)} &= \int_0^1 f(y) \sum_{n=-N}^N e^{2\pi i n (x-y)} \,\mathrm{d}y \\ \text{(* just over } [0,1)) &= (f*D_N)(x), \qquad D_N(x) \coloneqq \sum_{n=-N}^N e^{2\pi i n x}. \end{split}$$

So in short,

$$S_N(x) = (f \ast D_N)(x),$$

where $D_N(x)$ is called the *Dirichlet kernel*. Let's look at some of its properties.

$$D_N(x) = 1 + \sum_{n=1}^{N} [e^{2\pi i n x} + e^{-2\pi i n x}],$$

so

$$\int_0^1 D_N(x) \, \mathrm{d}x = \int_0^1 1 \, \mathrm{d}x + \underbrace{\sum_{n=1}^N \int_0^1 (\text{some periodic functions})}_{=0} = 1,$$

by periodicity. However, $D_N(x)$ is not actually a good kernel; one can show that $\int_0^1 |D_n(x)| dx \ge C \log N$ as $N \to \infty$.

→Theorem 3.2 (Pointwise Convergence): Let $f \in L^2(\mathbb{T})$ and suppose f is Lipschitz continuous at x_0 . Then,

$$S_N(x_0) \to f(x_0).$$

Proof. Left as an exercise.

Note that

$$\begin{split} D_N(x) &= \sum_{n=-N}^N e^{2\pi i n x} \\ &= \sum_{n=0}^{2N} e^{2\pi i (n-N)x} \\ &= e^{-2\pi i N x} \sum_{n=0}^{2N} \left(e^{2\pi i x} \right)^n \\ &= e^{-2\pi i N x} \left(\frac{1 - e^{2\pi i (2N+1)} x}{1 - e^{2\pi i x}} \right) \qquad \text{(geometric series)} \\ &= \frac{e^{-2\pi i N x} - e^{2\pi i (N+1) x}}{1 - e^{2\pi i x}} \cdot \frac{e^{-2\pi i \frac{x}{2}}}{e^{-2\pi i \frac{x}{2}}} \\ &= \frac{e^{-2\pi i (N+\frac{1}{2}) x} - e^{2\pi i (N+\frac{1}{2}) x}}{e^{-2\pi i \frac{x}{2}} - e^{2\pi i \frac{x}{2}}} \\ &= \frac{\sin \left(2\pi \left(N + \frac{1}{2} \right) x \right)}{\sin \left(2\pi \frac{x}{2} \right)}. \end{split}$$

 \hookrightarrow Theorem 3.3 (Uniform convergence): If $f \in C^2(\mathbb{T})$, then $S_N(x) \to f(x)$ uniformly on \mathbb{T} .

Proof. Exercise.

Remark 3.4: In fact, we see that $\hat{f}(n) = \int_0^1 f(x)e^{-2\pi inx} dx$ is well-defined whenever $f \in L^1(\mathbb{T})$. So, we can view

$$\hat{\cdot}: L^1(\mathbb{T}) \to \ell^\infty(\mathbb{C}).$$

Remark 3.5: All the prior results can be extended to $f \in L^1(\mathbb{T})$, via density.