Actividad (con respuestas)

Laboratorio de Mecánica y Termodinámica - 1^{er} cuat. 2020

Expresar los resultados de la tabla de la forma $x = (x_0 \pm \Delta x)$ unidad. Recordar que x_0 representa el valor absoluto de la magnitud y Δx la incerteza. Escribir los resultados con el número de cifras significativas apropiado (de la misma manera que lo reportaría en un informe de laboratorio). Para las unidades utilice símbolos de uso general como los del Sistema Internacional.

	Valor absoluto	Incerteza	Unidad	Respuesta
Tiempo	35	0,01	segundos	$t = (35,00 \pm 0,01) \mathrm{s}$
Longitud	15,63	0,1275	centímetros	$L = (15, 6 \pm 0, 1) \text{ cm}$
Velocidad	0,52106	0,0010863	<u>metros</u> segundos	$v = (0,521 \pm 0,001) \mathrm{m/s}$
Densidad	2,719955186	0,000183520	$\frac{\text{gramos}}{\text{cm}^3}$	$\rho = (2,7200 \pm 0,0002) \mathrm{g/cm^3}$
Temperatura	25	0,00143	grados Celcuis	$T = (25,000 \pm 0,001)$ °C
Longitud	318,29	2	metros	$L = (318 \pm 2) \mathrm{m}$
Masa	65,03001	0,148001	gramos	$m = (65, 0 \pm 0, 2) \mathrm{g}$
Aceleración	2,00015	0,54	$\frac{\text{m}}{\text{segundos}^2}$	$a = (2,0 \pm 0,5) \mathrm{m/s^2}$
Longitud	12,333321	1,243331	micrómetros	$L = (12 \pm 1) \mu\text{m}$
Tiempo	4,89	0,01	segundos	$t = (4,89 \pm 0,01) \mathrm{s}$
Longitud	$3,217 \times 10^{-2}$	2×10^{-4}	metros	$L = (3,22 \pm 0,02) \times 10^{-2} \mathrm{m}$
Volumen	$1,322136 \times 10^2$	1	m^3	$V = (132 \pm 1) \mathrm{m}^3$