HW0

Bailey Wickham

April 7, 2020

Problem 1

Kronecker's Theorem. Let F be a field and $p \in F[x]$ a irreducible polynomial. Then there exsts an extention field E of F and an element $a \in E$ such that p(a) = 0

Proof. First, we claim that $E = F[x]/\langle p(x) \rangle$ is that extention field. To show that E is an extention field of F, we define

$$\varphi: F \to F[x]/\langle p(x) \rangle$$
.

We can quickly check that φ is a ring homomorphism. We know E contains the elements of F, so we must now check that φ is one-to-one. To check that φ is one-to-one, assume that $\varphi(a) = \varphi(b)$, where $a + p(x) = \varphi(a), b + p(x) = \varphi(b)$. We know $ker\varphi$ is a prime ideal with $a, b \in ker\varphi$, so $a - b \in ker\varphi$. Since $ker\varphi$ is prime, a - b = c(x)p(x) for some polynomial c(x).

$$\therefore a - b = 0$$
$$\therefore a = b$$

 $\therefore \varphi$ is one-to-one over F

Now we must show that p(x) has a root in E. We claim $\alpha = x + p(x)$ is the root in E.

$$p(x) = a_0 + a_1 x \dots a_n x^{n-1}$$

$$p(\alpha) = a_0 + a_1 (x + \langle p(x) \rangle) + \dots (a_n x^n + \langle p(x) \rangle)$$

$$p(\alpha) = a_0 + a_1 x + \dots + a_n x^n + \langle p(x) \rangle$$

$$p(\alpha) = 0 + \langle p(x) \rangle$$

 $\therefore p(x)$ has a root in E and E is an extention field containing F