Stepwise 구현

Roh

주의할 점 (1)

기준을 무엇으로 할것인가? 정해진 답이 없음!

- Test Statistics and its P-value
 - T test (x)
 - LR test
 - Rao Score test
 - Wald test
- R2
- AIC / BIC

SAS

추가 Criteria: Rao Score

제거 Criteria: Wald Score

Note: Wald >= LR >= Rao

주의할 점 (2)

Regression 결과에 나오는 변수별 p-value를 쓰는게 아니다! t-test statistic 과 해당하는 p-value는 beta = 0 을 테스트 하는 것 Stepwise selection에서 하고 싶은것은 모델간의 비교이다 Intercept only : Y = b0

Step 1 Model: Y = b0 + b1 X1

. . .

Full model: Y = b0 + b1 X1 + b2 X2 + ... + bk Xk

다시말해서,

새로운 변수를 추가 및 삭제 했을때

- Residual Sum of Square (OLS)
- Likelihood (LOGIT)

이 현재모델과 추가삭제한 모델이 000을 기준으로

Significant 하게 달라졌는지 체크!

AIC/BIC 그리고 R2는 비교

나머지 LR/Rao/Wald 는 테스트

주의할 점 (4)

- Categorical Variable 인경우
 - 변수를 추가하거나 뺄때 더미코딩 되어있는 각각의 변수가 아니라 전체를 한번에 추가하거나 빼야함
 - 과도한 Linear Dependency (Multicollinearity) 가 있을 수 있음
 - 미리 제거 필요!

- 자동으로 선택된 변수 set을 과도하게 믿게됨
 - Knowledge of the subject expert 가 필요
 - Forced In (사업적으로 반드시 필요한 경우)
 - Forced Out (Nice에서 더이상 제공을 안해주는 경우)
 - 에러에 너그러워짐

비교 대상 데이터

- 본석님.csv (전부 Categorical Variable)
 - 'R_CL0000911', 'R_CL0000912', 'R_CS0000050', 'R_CS0000202', 'R_LC0017002', 'R_LC0017202', 'R_LC0321001', 'R_P13003300', 'R_P32001500', 'R_P32001700', 'R_P32002400', 'R_P44003900', 'R_P44003901', 'R_PE0000028', 'R_PE0000047', 'R_PE0000105', 'R_PH0000099', 'R_PH0000120', 'R_PH0000127', 'R_PHC000023', 'R_PS0000100', 'R_PS0000113', 'R_PS0000206', 'R_PS0001721', 'R_PS0001726', 'R_PS0001727', 'R_PS0001731', 'R_PS0001896', 'R_SC0000018', 'R_SC0000020', 'R_SC0000052'
- Remission.csv
 - "Remiss", "Cell", "Smear", "Infil", "Li", "Blast", "Temp"

데이터1: SAS and R (Entry 0.35, Stay 0.3)

			Summary of Stepw	ise Selection			
Step	SAS		R		Score	Wald	Pr > ChiSq
	Entered	Removed	Entered	Removed	Chi-Square	Chi-Square	
1	R_P32002400		R_P32002400		288.2923		<.0001
2	R_CS0000202		R_CS0000202		111.812		<.0001
3	R_LC0017202		R_LC0017202		88.7185		<.0001
4	R_LC0321001		R_LC0321001		56.5524		<.0001
5	R_LC0017002		R_LC0017002		29.861		<.0001
6	R_CL0000912		R_CL0000912		27.863		<.0001
7	R_P44003901		R_P44003901		23.8204		<.0001
8	R_CS0000050		R_CS0000050		10.0662		0.0015
9	R_PS0000100		R_PS0000100		15.9769		0.0011
10	R_SC0000020		R_SC0000020		7.9237		0.019
11	R_P32001700		R_P32001700		5.9824		0.0502

데이터1: SAS and R (Entry 0.5, Stay 0.3)

		9	Summary of Step	wise Selection			
Step	SAS		R		Score	Wald	Pr > ChiSq
	Entered	Removed	Entered	Removed	Chi-Square	Chi-Square	
1	R_P32002400		R_P32002400		288.2923		<.0001
2	R_CS0000202		R_CS0000202		111.812		<.0001
3	R_LC0017202		R_LC0017202		88.7185		<.0001
4	R_LC0321001		R_LC0321001		56.5524		<.0001
5	R_LC0017002		R_LC0017002		29.861		<.0001
6	R_CL0000912		R_CL0000912		27.863		<.0001
7	R_P44003901		R_P44003901		23.8204		<.0001
8	R_CS0000050		R_CS0000050		10.0662		0.0015
9	R_PS0000100		R_PS0000100		15.9769		0.0011
10	R_SC0000020		R_SC0000020		7.9237		0.019
11	R_P32001700		R_P32001700		5.9824		0.0502
12	R_PH0000099		R_PH0000099		3.2167		0.3594
13		R_PH0000099		R_PH0000099		3.213	0.3599

데이터1: SAS and R (Entry 0.5, Stay 0.6)

Step 17 까지 동일

Step 18에서 Perfect Multicollinearity 등장

waldtest.lm(before, after)에서 다음과 같은 에러가 발생했습니다:

there are aliased coefficients in the model

SAS는 해당 에러를 무시하고 쭉 진행

Multicollinearity 를 미리 제거하고 나면 문제가 안됨!

Linear Dependency

(Intercept)	-2.73546 R_PE00000281	-0.11125 R_PS00017261	0.142035	
R_CL00009111	-0.74981 R_PE00000282	0.471866 R_PS00017262	0.203866	R_P440039013 = R_P440039003 + R_P440039004 - R_P440039012
R_CL00009112	-0.72857 R_PE00000471	-0.36705 R_PS00017263	10.22674	R_PE00000473 = R_P440039001 + R_P440039002 + R_P440039003 + R_P440039004 -
R_CL00009113	-0.76254 R_PE00000472	-0.13717 R_PS00017271	-0.46198	R_PE00000471 - R_PE00000472
R_CL00009114	-0.44652 R_PE00000473	NA R_PS00017272	NA	R_PH00001202 = R_PE00000281 + R_PE00000282 - R_PH00001201
R_CL00009121	0.949656 R_PE00001051	0.156519 R_PS00017273	NA	R_PHC0000231 = R_PE00000471
R_CL00009122	0.692156 R_PE00001052	-0.40227 R_PS00017311	-0.0548	R_PHC0000232 = R_PE00000472
R_CS00000501	0.178226 R_PH00000991	-0.10931 R_PS00017312	-0.00046	R_PHC0000233 = R_P440039001 + R_P440039002 + R_P440039003 + R_P440039004 -
R_CS00002021	0.1522 R_PH00000992	-0.34576 R_PS00017313	-0.09443	R_PE00000471 - R_PE00000472 R_PS00001131 = R_P440039001 + R_P440039002
R_LC00170021	0.336316 R_PH00000993	1.217138 R_PS00017314	-0.85308	R_PS00001132 = R P440039012
R_LC00170022	0.4251 R_PH00001201	-0.18249 R_PS00018961	-0.04204	D D\$00001133 - D D440030003 + D D440030004 D D440030013
R_LC00172021	0.656496 R_PH00001202	NA R_PS00018962	CONTRACTOR CONTRACTOR	D D000047272 - D D420022004 D D000047274
R_LC00172022	0.708394 R_PH00001271	0.294053 R_PS00018963	-0.03383	
R_LC03210011	0.205638 R_PH00001272	-0.82038 R_PS00018964		R_PS00017273 = R_P130033002
R_LC03210012	0.493621 R_PHC0000231	NA R_SC00000181		
R_P130033001	0.196744 R_PHC0000232	NA R_SC00000182	7.000	
R_P130033002	1.19488 R_PHC0000233	NA R_SC00000183		
R_P320015001	-0.12691 R_PS00001001	0.509184 R_SC00000201	0.088495	" check timear dependency among variables
R_P320015002	-10.6937 R_PS00001002	-0.03899 R_SC00000202		- 1 C3 U 1 C3 - 1 C3 CD U
R_P320017001	0.307296 R_PS00001003	-0.0515 R_SC00000521	0.096724	remove first dummy - TRUE
R_P320017002	10.74321 R_PS00001131	NA R_SC00000522		remove calested calumns TOUT)
R_P320024001	0.143059 R_PS00001132	NA R_SC00000523		
R_P320024002	-0.28149 R_PS00001133	NA R_SC00000524	0.149531	
R_P440039001	0.628951 R_PS00002061	0.041194		lincomb_name = lapply(lincomb\$linearCombos, function(x) colnames(results)[x])
R_P440039002	0.67194 R_PS00002062	0.077193		print(lincomb_name)
R_P440039003	0.690003 R_PS00002063	0.13087		
R_P440039004	0.511493 R_PS00002064	0.029441		
R_P440039011	NA R_PS00017211	0.256233		
R_P440039012	-0.14078 R_PS00017212	-10.007		
R_P440039013	NA			

R_P440039011 = R_P440039001 + R_P440039002

데이터2: SAS Result (Entry 0.35, Stay 0.3)

Output 73.1.5: Summary of the Stepwise Selection

	No.		Summa	ry of Stepwis	e Selection	es vy	
Step	Effect			Number	Score	Wald	
	Entered	Removed	DF	In	Chi-Square	Chi-Square	Pr > ChiSq
1	li		1	1	7.9311		0.0049
2	temp		1	2	1.2591		0.2618
3	cell		1	3	1.4700		0.2254

링크:

https://documentation.sas.com/doc/en/statcdc/14.2/statug/statug_logistic_examples01.htm

	SAS		R		
Step	Entered	Removed	Entered	Removed	Equal
1	Li		Li		TRUE
2	Temp		Temp		TRUE
3	Cell		Cell		TRUE

Code Chunk (1) - Extractp Estimated 된 모델에서 P value 뽑기

```
extractp <- function(pred, fitCurrent, step = 'fwd') {</pre>
 # Foward with Rao Score
 if (step == 'fwd'){
   before = fitCurrent
   after = fMaker(pred, fitCurrent, add=T) # Add
   pvalue = anova(before, after, test='Rao')[2,6] # Rao
   names(pvalue) = pred
   return(as.data.frame(pvalue))
 # Backward with Wald Test
 else if (step == 'bwd')
   before = fitCurrent
   after = fMaker(pred, fitCurrent, add=F) # Remove
   pvalue <- lmtest::waldtest(before, after)[2,4] # Wald
   names(pvalue) = pred
   return(pvalue)
```

Code Chunk (2) - Stepfwd 전진선택법!!!

```
stepfwd <- function(fitCurrent, fullmodel, aEnter = 0.1, forcedOut = NULL) {
predsInModel <- rownames(anova(fitCurrent))</pre>
                                                                                                   #list of pre
predsFull <- rownames(anova(fullmodel))</pre>
                                                                                                   #list of pre
                                                                                                   #list of pre
predsNotInModel <- setdiff(predsFull, predsInModel)</pre>
pvalues <- unlist(sapply(predsNotInModel, function(x) as.numeric(extractp(x, fitCurrent, step = 'fwd'))))</pre>
print(as.data.frame(round(pvalues,5)))
cat('\n')
 if(length(pvalues)==0) return(fitCurrent)
toAdd <- pvalues[which(pvalues==min(pvalues, na.rm = TRUE))]
                                                                                                          #poss
if(as.numeric(toAdd) <= aEnter) {
   cat("+++++ Add predictor", names(toAdd), "+++++", "\n")
   print(summary(fMaker(names(toAdd), fitCurrent))$coefficients, digits = 4)
   cat("\n")
   return(fMaker(names(toAdd), fitCurrent))
                                                                                                   #updates and
return(fitCurrent)
```

Code Chunk (3) - Stepbwd 후진소거법!!!

```
stepbwd <- function(fitCurrent, fullmodel, aRemove = 0.1, forcedIn = NULL) {</pre>
 predsIncluded <- rownames(anova(fitCurrent))</pre>
                                                                                                #predictors
                                                                                                #removes "Nu
 predsIncluded <- predsIncluded[(predsIncluded != "NULL")]</pre>
 predsIncluded <- setdiff(predsIncluded, intersect(predsIncluded, forcedIn))</pre>
                                                                                                #makes sure I
 pvalues <- unlist(sapply(predsIncluded, function(x) as.numeric(extractp(x, fitCurrent, step = 'bwd'))))</pre>
 print(as.data.frame(round(pvalues,5)))
 cat('\n')
if(length(pvalues)==0) return(fitCurrent)
                                                                                                #returns cur
 toRemove <- pvalues[which(pvalues==max(pvalues, na.rm = TRUE))]
                                                                                                         #se
if(length(toRemove)==0) return(fitCurrent)
if(as.numeric(toRemove) > aRemove){
   cat("---- Remove predictor", names(toRemove), "----", "\n")
   print(summary(fMaker(names(toRemove), fitCurrent, add=FALSE))$coefficients, digits = 4)
   cat("\n")
   return(fMaker(names(toRemove), fitCurrent, add=FALSE))
                                                                                                #returns an I
return(fitCurrent)
                                                                                             #else, returns
```

최종 단계적 선택법

```
else if(method=='stepwise'){
# Step0 initiated
fitBwd = stepfwd(fitBwd, fullmodel, forcedOut = forcedOut, aEnter = aEnter)
step = 1
num = length(attr(fullmodel$terms, 'dataClasses'))
while (-num < 0)
  print(paste0('Forward Selection Step: ', step))
  fitFwd = stepfwd(fitBwd, fullmodel, forcedOut = forcedOut, aEnter = aEnter)
  summary(fitFwd)
  if(identical(fitFwd, fitBwd) == T) {
    cat("===== Final model ======". "\n")
    print(fitFwd$call)
    cat("Predictors forced in: ", forcedIn, "\n")
    cat("Predictors forced out: ", forcedOut, "\n", "\n")
    print(summary(fitFwd)$coefficients, digits = 4)
    cat("\n", "Alpha-to-enter = ", aEnter, ", Alpha-to-remove = ", aRemove, "\n")
    return(invisible(fitFwd))
    break # no more addition
  }else {
                                                                                  #1
    print(paste0('Backward Selection Step: '. step))
    fitBwd = stepbwd(fitFwd, fullmodel, forcedIn = forcedIn, aRemove = aRemove)
    if(identical(fitFwd,fitBwd) != T){
      break # when there was a removal
  num = num + step
  step = step + 1
```

Done