Review: Circuits

05 June 2025

Linear Circuits

$$\begin{cases}
f(a) \\
f(k_1 m_1 + k_2 x_2 + k_3 x_3 ...) \\
k_1 f(x_1) + k_2 f(x_2) + k_3 f(x_3)
\end{cases}$$

$$y_{0}$$
 $\frac{1}{1}$ $\frac{1}{1$

$$|R_2| = |C_0 \times \frac{RKP_2}{R_1 + R_2}$$

$$R_{2} = Q_{01} + Q_{02}$$

$$= -Q_{mic} \frac{R_{1}}{12_{2}} + Q_{00}(1+R_{1})$$

Active Circuits

▶ Linear Dependent Sources

▶ Analysis using Dependent Sources

Operational Amplifier Model

Operational Amplifier Analysis

$$\frac{U_0}{U_S} = \frac{1 + \frac{R_1}{R_2}}{U_S} = \frac{1}{\frac{1}{R_1} + \frac{R_2}{R_1 + R_2}}$$

$$\frac{V_0}{A} = A \left(\frac{V_0 - V_0}{V_0 \times R_1} \right)$$

$$= A \left(\frac{V_0}{V_0} - \frac{V_0 \times R_1}{V_0 \times R_1} \right)$$

$$\frac{V_0}{A} + \frac{V_0 \times R_2}{V_0 \times R_1} = V_0$$

$$\frac{V_0}{A} + \frac{V_0}{V_0 \times R_1} = V_0$$

$$\frac{V_0}{A} + \frac{V_0}{V_0 \times R_1} = V_0$$

▶ Operational Amplifier Analysis

$$\frac{10 \text{ k}\Omega}{25} = \frac{15 \text{ k}\Omega}{25}$$

$$\frac{10 \text{ k}\Omega}{33 \text{ k}\Omega}$$

$$\frac{15 \text{ k}\Omega}{33 \text{ k}\Omega}$$

$$\frac{15 \text{ k}\Omega}{33 \text{ k}\Omega}$$

$$\frac{21 \text{ k}\Omega}{33 \text{ k}\Omega}$$

$$\frac{3 k\Omega}{\sqrt{68 k\Omega}} = \frac{1}{\sqrt{68 k\Omega}} = \frac{7.5 \times 3}{5 \times 180 \times 200 \times 200} = \frac{4.04}{5}$$

Circuit	Block diagram	Gains
v ₁ ° v _O	Non Inverting	$K = \frac{R_1 + R_2}{R_2}$
V ₁ □ − − − − − − − − − − − − − − − − − −	Inverting VI VO	$K = -\frac{R_2}{R_1}$
v ₁ 0	Inverting Summer v_0 v_1 v_2 v_2 v_3 v_4 v_4 v_5	$K_1 = -\frac{R_F}{R_1}$ $K_2 = -\frac{R_F}{R_2}$
R_1 R_2 $V_1 \circ V_2 \circ V_4$ R_3 R_4	Subtractor v_0 v_1 v_2 K_2	$K_{1} = -\frac{R_{2}}{R_{1}}$ $K_{2} = \left(\frac{R_{1} + R_{2}}{R_{1}}\right) \left(\frac{R_{4}}{R_{3} + R_{4}}\right)$
R ₁ V ₁ R ₂ V ₂ R _N V _N R _N R _A R _A	Non-Inverting Summer v_1 K_1 v_2 K_2 v_3 v_4 v_6 v_8	$K = \frac{R_{B} + R_{A}}{R_{A}}$ $K_{1} = \frac{(R_{2} \parallel R_{3} \parallel \cdots R_{N})}{R_{1} + (R_{2} \parallel R_{3} \parallel \cdots R_{N})}$ $K_{N} = \frac{(R_{1} \parallel R_{2} \parallel \cdots R_{N-1})}{R_{N} + (R_{1} \parallel R_{2} \parallel \cdots R_{N-1})}$

▶ Capacitance

Capacitance

▶ First-Order Circuits

► Frequency Response (Four Basic Gain Responses)

▶ First-Order Low-Pass Response

$$T(s) = \frac{K}{s + \alpha}$$

$$T(j\omega) = \frac{K}{j\omega + \alpha}$$

$$|T(j\omega)| = \frac{|K|}{\sqrt{\omega^2 + \alpha^2}}$$

$ T(j\omega) $	$ T(j\omega) _{dB}$
10 ³	60
10 ²	40
10	20
2	6
$\sqrt{2}$	3
1	O
$1/\sqrt{2}$	-3
0.5	-6
10 -1	-20
10 -2	-40
10 -3	-60

$$\theta(\omega) = angle(K) - \tan^{-1}(\omega/\alpha)$$

▶ First-Order High-Pass Response

$$T(s) = \frac{Ks}{s + \alpha}$$

$$T(j\omega) = \frac{j\omega K}{j\omega + \alpha}$$

$$|T(j\omega)| = \frac{|K|\omega}{\sqrt{\omega^2 + \alpha^2}}$$

$$\theta(\omega) = angle(K) + 90^{\circ} - tan^{-1}(\omega/\alpha)$$

$$\frac{K}{84^{\circ}} = -R_{2}$$

$$R_{1}$$

$$K = -\frac{1}{R_{1}}$$

$$\frac{\sqrt{2}(s)}{\sqrt{1}} = \frac{|R|}{\sqrt{2}}$$

$$\frac{|R|}{\sqrt{2}} = -\frac{R_2}{\sqrt{2}}$$

$$|R|/\sqrt{2} = -\frac{R_2}{\sqrt{2}}$$

$$\frac{-1/R_{1}C}{s+1/R_{2}C}$$

► First-Order Band-Pass Response

$$T(s) = T_1(s) \times T_2(s) = \left(\frac{K_1 s}{s + \alpha_1}\right) \left(\frac{K_2}{s + \alpha_2}\right)$$
high pass low pass
$$S = \int_{S} \omega \operatorname{Low} \operatorname{frequency} (\omega \ll \alpha_1 \ll \alpha_2) : |T(j\omega)| \to \left(\frac{|K_1|\omega}{\alpha_1}\right) \left(\frac{|K_2|}{\alpha_2}\right) = \frac{|K_1||K_2|\omega}{\alpha_1\alpha_2}$$

Low frequency (
$$\omega \ll \alpha_1 \ll \alpha_2$$
):
 $\omega \ll \omega_2$

$$|T(j\omega)| \rightarrow \left(\frac{|K_1|\omega}{\alpha_1}\right) \quad \left(\frac{|K_2|}{\alpha_2}\right) = \frac{|K_1||K_2|\omega}{\alpha_1\alpha_2}$$
high pass low pass

$$|T(j\omega)| = \left(\frac{|K_1|\omega}{\sqrt{\omega^2 + \alpha_1^2}}\right) \left(\frac{|K_2|}{\sqrt{\omega^2 + \alpha_2^2}}\right)$$
high pass

High frequency (
$$\alpha_1 \ll \alpha_2 \ll \omega$$
) :

High frequency
$$(\alpha_1 \ll \alpha_2 \ll \omega)$$
: $|T(j\omega)| \rightarrow \left(\frac{|K_1|\omega}{\omega}\right) \left(\frac{|K_2|}{\omega}\right) = \frac{|K_1||K_2|}{\omega}$ high pass low pass

Mid-frequency (
$$\alpha_1 \ll \omega \ll \alpha_2$$
)

Mid-frequency (
$$\alpha_1 \ll \omega \ll \alpha_2$$
): $|T(j\omega)| \rightarrow \left(\frac{|K_1|\omega}{\omega}\right) \left(\frac{|K_2|}{\alpha_2}\right) = \frac{|K_1||K_2|}{\alpha_2}$