Chapitre 2 Définition de la logique propositionnelle

Contenu de ce chapitre

- Syntaxe de la logique propositionnelle
 - Définitions inductives
 - Preuves par induction

Contenu de ce chapitre

- Syntaxe de la logique propositionnelle
 - Définitions inductives
 - Preuves par induction
- Sémantique de la logique propositionnelle
 - Définition de fonctions par récurrence

Contenu de ce chapitre

- Syntaxe de la logique propositionnelle
 - Définitions inductives
 - Preuves par induction
- Sémantique de la logique propositionnelle
 - Définition de fonctions par récurrence
- Algorithmique de la logique propositionnelle (première approche)

Vers une définition de la syntaxe

Première Idée

On définit les formules selon les différents cas de leur forme.

Syntaxe des formules propositionnelles

Vers une définition de la syntaxe

Première Idée

On définit les formules selon les différents cas de leur forme.

Une formule propositionnelle

- ightharpoonup peut être une variable propositionnelle (comme x)
- $ightharpoonup \neg p$, où p est une formule
- $(p \land q)$, où p et q sont des formules
- $(p \lor q)$, où p et q sont des formules

Syntaxe des formules propositionnelles

Vers une définition de la syntaxe

Première Idée

On définit les formules selon les différents cas de leur forme.

Une formule propositionnelle

- ightharpoonup peut être une variable propositionnelle (comme x)
- $ightharpoonup \neg p$, où p est une formule
- $(p \land q)$, où p et q sont des formules
- $(p \lor q)$, où p et q sont des formules

Une précision importante :

Seulement les chaînes de caractères ainsi formées sont des formules.

Sont des formules :

x (car variable propositionnelle)

Sont des formules :

- x (car variable propositionnelle)
- $\rightarrow \neg x$ (car négation d'une formule)

Sont des formules :

- x (car variable propositionnelle)
- $\rightarrow \neg x$ (car négation d'une formule)
- y (car variable propositionnelle)

Syntaxe des formules propositionnelles

Exemples de formules propositionnelles

Sont des formules :

- x (car variable propositionnelle)
- $\rightarrow \neg x$ (car négation d'une formule)
- y (car variable propositionnelle)
- $(\neg x \land y)$ (car conjonction de deux formules)

Sont des formules :

- x (car variable propositionnelle)
- $\rightarrow \neg x$ (car négation d'une formule)
- y (car variable propositionnelle)
- $(\neg x \land y)$ (car conjonction de deux formules)

Ne sont pas des formules (dans le sens stricte) :

Sont des formules :

- x (car variable propositionnelle)
- $\rightarrow \neg x$ (car négation d'une formule)
- y (car variable propositionnelle)
- $(\neg x \land y)$ (car conjonction de deux formules)

Ne sont pas des formules (dans le sens stricte) :

► ((x

Sont des formules :

- x (car variable propositionnelle)
- $\rightarrow \neg x$ (car négation d'une formule)
- y (car variable propositionnelle)
- $(\neg x \land y)$ (car conjonction de deux formules)

Ne sont pas des formules (dans le sens stricte) :

- ► ((x
- $\rightarrow x \lor y$

Les variables propositionnelles

On choisit d'abord un ensemble de variables propositionnelles :

$$V := \{x, x_1, x_2, x_3, \dots, y, y_1, y_2, \dots, z, z_1, z_2, z_3, \dots\}$$

Nous admettons également les décorations habituelles des variables propositionnelles comme par exemple x', y''.

Syntaxe des formules propositionnelles

Tentative de définition

L'ensemble Form des formules propositionnelles est défini comme l'ensemble de chaînes de caractères tel que :

- 1. $V \subseteq Form$
- 2. Si $p \in Form$ alors $\neg p \in Form$
- 3. Si $p, q \in Form$ alors $(p \land q) \in Form$
- 4. Si $p, q \in Form$ alors $(p \lor q) \in Form$

Nous appelons ces quatre conditions (1) - (4) les propriétés de clôture des formules propositionnelles.

Il y a plusieurs ensembles Form qui satisfont la description :

ightharpoonup L'ensemble E_1 des formules propositionnelles dans le sens de la description informelle au-dessus.

Il y a plusieurs ensembles Form qui satisfont la description :

- ightharpoonup L'ensemble E_1 des formules propositionnelles dans le sens de la description informelle au-dessus.
- L'ensemble E_2 de toutes les chaînes de caractères qui ont le même nombre de «(»que de «) ». Mais cet ensemble contient aussi la chaîne «()() ».

Il y a plusieurs ensembles Form qui satisfont la description :

- ightharpoonup L'ensemble E_1 des formules propositionnelles dans le sens de la description informelle au-dessus.
- L'ensemble E₂ de toutes les chaînes de caractères qui ont le même nombre de «(»que de «) ». Mais cet ensemble contient aussi la chaîne «()() ».
- L'ensemble E₃ de toutes les chaînes de caractères. Cet ensemble contient aussi la chaîne « ((».

Il y a plusieurs ensembles Form qui satisfont la description :

- ightharpoonup L'ensemble E_1 des formules propositionnelles dans le sens de la description informelle au-dessus.
- L'ensemble E_2 de toutes les chaînes de caractères qui ont le même nombre de «(»que de «) ». Mais cet ensemble contient aussi la chaîne «()() ».
- L'ensemble E₃ de toutes les chaînes de caractères. Cet ensemble contient aussi la chaîne « ((».

Nous avons $E_1 \subseteq E_2 \subseteq E_3$.

La racine du problème

Notre tentative de définition prend en compte

- le cas de base (les variables propositionnelles)
- ▶ et les constructions autorisées (¬, ∧, ∨)

mais ne prend absolument pas en compte la restriction qu'une chaîne qui ne peut pas être construite selon les règles précédentes n'est pas une formule.

Syntaxe des formules propositionnelles

La bonne définition

Definition

L'ensemble Form des formules propositionnelles est le plus petit ensemble de chaînes de caractères tel que :

- 1. $V \subseteq Form$
- 2. Si $p \in Form$ alors $\neg p \in Form$
- 3. Si $p, q \in Form$ alors $(p \land q) \in Form$
- 4. Si $p, q \in Form$ alors $(p \lor q) \in Form$

Le principe

- On a certaines propriétés de clôture (ici : les quatre propriétés de clôture des formules propositionnelles)
- On définit un ensemble (ici : Form) comme étant le plus petit ensemble ayant ces propriétés de clôture.

Le principe

- On a certaines propriétés de clôture (ici : les quatre propriétés de clôture des formules propositionnelles)
- On définit un ensemble (ici : Form) comme étant le plus petit ensemble ayant ces propriétés de clôture.

Qu'est-ce que c'est le plus petit ensemble ?

Si un ensemble X satisfait toutes les propriétés de clôture des formules propositionnelles, alors $Form \subseteq X$.

Le principe

- On a certaines propriétés de clôture (ici : les quatre propriétés de clôture des formules propositionnelles)
- On définit un ensemble (ici : Form) comme étant le plus petit ensemble ayant ces propriétés de clôture.

Qu'est-ce que c'est le plus petit ensemble ?

Si un ensemble X satisfait toutes les propriétés de clôture des formules propositionnelles, alors $Form \subseteq X$.

As-t-on le droit d'écrire une telle définition ?

- 1. Est-ce qu'il existe effectivement (au moins) un tel plus petit ensemble ?
- 2. Cet ensemble, est-il unique?

A priori, il n'est pas évident qu'il existe un (unique) plus petit ensemble avec une certaine propriété donnée.

- A priori, il n'est pas évident qu'il existe un (unique) plus petit ensemble avec une certaine propriété donnée.
- Exemple : le plus petit ensemble d'entiers qui contient au moins deux éléments ?

- A priori, il n'est pas évident qu'il existe un (unique) plus petit ensemble avec une certaine propriété donnée.
- Exemple : le plus petit ensemble d'entiers qui contient au moins deux éléments ?
- ▶ Ensembles $\{0, 1\}$ et $\{2, 3\}$

Syntaxe des formules propositionnelles

- A priori, il n'est pas évident qu'il existe un (unique) plus petit ensemble avec une certaine propriété donnée.
- Exemple : le plus petit ensemble d'entiers qui contient au moins deux éléments ?
- ► Ensembles $\{0, 1\}$ et $\{2, 3\}$
- Dans notre cas, il y a un plus petit ensemble (mais on ne va pas le montrer).

- A priori, il n'est pas évident qu'il existe un (unique) plus petit ensemble avec une certaine propriété donnée.
- Exemple : le plus petit ensemble d'entiers qui contient au moins deux éléments ?
- ► Ensembles $\{0, 1\}$ et $\{2, 3\}$
- Dans notre cas, il y a un plus petit ensemble (mais on ne va pas le montrer).
- En bref : c'est dû au fait qu'il s'agit ici de propriétés de clôture.

Notre définition de la syntaxe de la logique propositionnelle est une définition inductive.

- Notre définition de la syntaxe de la logique propositionnelle est une définition inductive.
- On verra d'autres exemples de définitions inductives.

- Notre définition de la syntaxe de la logique propositionnelle est une définition inductive.
- On verra d'autres exemples de définitions inductives.
- Ici on ne s'intéresse pas à étudier les définition inductives en général, il suffit de dire qu'elles sont toujours de la forme « le plus petit ensemble qui satisfait certaines propriétés de clôture ».

Syntaxe des formules propositionnelles

Syntaxe Abstraite

Syntaxe abstraite de $(x \land (y \lor \neg z))$:

Structure de la formule, representé par un arbre. On remarque qu'on n'a pas besoin de parenthèses.

Encodage de l'implication

On peut encoder l'implication de la manière suivante:

$$(p\Rightarrow q):=(\lnot p\lor q)\ (p\Leftrightarrow q):=((p\Rightarrow q)\land (q\Rightarrow p))$$

On l'utilisera comme suit:

si
$$p$$
 alors q $(p \Rightarrow q)$
 q si p $(p \Rightarrow q)$
 q seulement si p $(p \Leftarrow q)$ ou $(q \Rightarrow p)$
 q uniquement si p $(p \Leftarrow q)$ ou $(q \Rightarrow p)$
 q si et seulement si p $(p \Leftrightarrow q)$

Preuves par induction: Un exemple

Theorem

Toute formule propositionnelle a le même nombre de parenthèses ouvrantes que de parenthèses fermantes.

Notation

 $|w|_{(}$ dénote le nombre de parenthèses ouvrantes de w.

Notation

- $|w|_{\ell}$ dénote le nombre de parenthèses ouvrantes de w.
- |w| dénote le nombre de parenthèses fermantes de w.

Notation

- $|w|_{\ell}$ dénote le nombre de parenthèses ouvrantes de w.
- |w| dénote le nombre de parenthèses fermantes de w.
- Par exemple, $|(x \wedge y)|_{(} = 1$

Notation

- $|w|_{\ell}$ dénote le nombre de parenthèses ouvrantes de w.
- |w| dénote le nombre de parenthèses fermantes de w.
- Par exemple, $|(x \wedge y)|_{(} = 1$
- ▶ Pareil pour des autres symboles : $|w|_{\neg}$, etc.

Notation

- $|w|_{\ell}$ dénote le nombre de parenthèses ouvrantes de w.
- |w| dénote le nombre de parenthèses fermantes de w.
- Par exemple, $|(x \wedge y)|_{(} = 1$
- ▶ Pareil pour des autres symboles : $|w|_{\neg}$, etc.

À montrer : pour tout $w \in Form$, $|w|_{(} = |w|_{)}$.

Le principe d'une preuve par induction structurelle

Le principe est illustré ici sur l'exemple des formules propositionnelles :

Theorem

Soit P une propriété sur les chaînes de caractères. Supposons que P vérifie les énoncés de clôture suivants :

- tout élément de V a la propriété P,
- ▶ si p satisfait P alors ¬p satisfait P,
- ightharpoonup si p et q satisfont P alors $(p \land q)$ satisfait P,
- ightharpoonup si p et q satisfont P alors $(p \lor q)$ satisfait P,

Alors tous les éléments de Form satisfont P.

Exemple de propriété P : avoir le même nombre de (que de).

Comment rédiger une preuve par induction structurelle ?

À montrer :

pour tout $w \in Form$, $|w|_{(} = |w|_{)}$.

Comment rédiger une preuve par induction structurelle ?

À montrer :

pour tout $w \in Form$, $|w|_{(} = |w|_{)}$.

(1) Cas des variables :

À montrer : $|w|_{(} = |w|_{)}$ pour tout $w \in V$.

Comment rédiger une preuve par induction structurelle ?

À montrer :

pour tout $w \in Form$, $|w|_{(} = |w|_{)}$.

(1) Cas des variables :

À montrer : $|w|_{(} = |w|_{)}$ pour tout $w \in V$.

Démonstration:

Si $w \in V$ alors $|w|_{(} = 0$ et $|w|_{)} = 0$, donc $|w|_{(} = |w|_{)}$.

Rédaction d'une preuve par induction (2)

(2) Cas de la négation :

Soit $p \in Form$. Hypothèse d'induction : $|p|_{(} = |p|_{)}$.

À montrer : $|\neg p|_{(} = |\neg p|_{)}$.

Rédaction d'une preuve par induction (2)

(2) Cas de la négation :

Soit $p \in Form$. Hypothèse d'induction : $|p|_{(} = |p|_{)}$.

À montrer : $|\neg p|_{(} = |\neg p|_{)}$.

$$|\neg p|_{(} =$$

Rédaction d'une preuve par induction (2)

(2) Cas de la négation :

Soit $p \in Form$. Hypothèse d'induction : $|p|_{(} = |p|_{)}$.

À montrer : $|\neg p|_{(} = |\neg p|_{)}$.

$$|\neg p|_{(} = |p|_{(}$$
 par définition $|\cdot|_{(}$

Rédaction d'une preuve par induction (2)

(2) Cas de la négation :

Soit $p \in Form$. Hypothèse d'induction : $|p|_{(} = |p|_{)}$. À montrer : $|\neg p|_{(} = |\neg p|_{)}$.

$$|\neg p|_{(} = |p|_{(} \text{ par définition } |\cdot|_{(}$$

= $|p|_{)}$ par hypothèse d'induction

Rédaction d'une preuve par induction (2)

(2) Cas de la négation :

```
Soit p \in Form. Hypothèse d'induction : |p|_{(} = |p|_{)}. À montrer : |\neg p|_{(} = |\neg p|_{)}.
```

$$|\neg p|_{(} = |p|_{(} \text{ par définition } |\cdot|_{(}$$

= $|p|_{)}$ par hypothèse d'induction
= $|\neg p|_{)}$ par définition $|\cdot|_{)}$

Rédaction d'une preuve par induction (3)

(3) Cas de la conjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

À montrer : $|(p \land q)|_{(} = |(p \land q)|_{)}$

Rédaction d'une preuve par induction (3)

(3) Cas de la conjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

À montrer : $|(p \wedge q)|_{(} = |(p \wedge q)|_{)}$

$$|(p \wedge q)|_{(} =$$

Rédaction d'une preuve par induction (3)

(3) Cas de la conjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

À montrer : $|(p \wedge q)|_{(} = |(p \wedge q)|_{)}$

$$|(p \wedge q)|_{(} = 1 + |p|_{(} + |q|_{(}$$
 par définition $|\cdot|_{(}$

Rédaction d'une preuve par induction (3)

(3) Cas de la conjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

A montrer : $|(p \wedge q)|_{(} = |(p \wedge q)|_{)}$

$$|(p \wedge q)|_{(} = 1 + |p|_{(} + |q|_{(} \text{ par définition }|\cdot|_{(} = |p|_{)} + |q|_{)} + 1$$
 par hypothèse d'induction

Rédaction d'une preuve par induction (3)

(3) Cas de la conjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

À montrer : $|(p \wedge q)|_{(} = |(p \wedge q)|_{)}$

$$|(p \wedge q)|_{(} = 1 + |p|_{(} + |q|_{(} \text{ par définition } | \cdot |_{(} = |p|_{)} + |q|_{)} + 1$$
 par hypothèse d'induction $= |(p \wedge q)|_{)}$ par définition $| \cdot |_{)}$

Rédaction d'une preuve par induction (4)

(4) Cas de la disjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

A montrer : $|(p \lor q)|_{(} = |(p \lor q)|_{)}$

Rédaction d'une preuve par induction (4)

(4) Cas de la disjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

A montrer : $|(p \lor q)|_{(} = |(p \lor q)|_{)}$

$$|(p \vee q)|_{(} =$$

Rédaction d'une preuve par induction (4)

(4) Cas de la disjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

À montrer : $|(p \lor q)|_{(} = |(p \lor q)|_{)}$

$$|(p \lor q)|_{(} = 1 + |p|_{(} + |q|_{(}$$
 par définition $|\cdot|_{(}$

Rédaction d'une preuve par induction (4)

(4) Cas de la disjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

A montrer : $|(p \lor q)|_{(} = |(p \lor q)|_{)}$

$$|(p\lor q)|_{(}=1+|p|_{(}+|q|_{(}$$
 par définition $|\cdot|_{(}=|p|_{)}+|q|_{)}+1$ par hypothèse d'induction

Rédaction d'une preuve par induction (4)

(4) Cas de la disjonction :

Soient $p, q \in Form$.

Hypothèse d'induction : $|p|_{(}=|p|_{)}$ et $|q|_{(}=|q|_{)}$

A montrer : $|(p \lor q)|_{(} = |(p \lor q)|_{)}$

$$|(p \lor q)|_{(} = 1 + |p|_{(} + |q|_{(} \text{ par définition } | \cdot |_{(} = |p|_{)} + |q|_{)} + 1$$
 par hypothèse d'induction $= |(p \lor q)|_{)}$ par définition $|\cdot|_{)}$

On utilise le théorème sur le principe des preuves par induction structurelle.

- On utilise le théorème sur le principe des preuves par induction structurelle.
- ► Toujours dire clairement quelles sont les hypothèses, et qu'est-ce qu'il faut montrer.

- On utilise le théorème sur le principe des preuves par induction structurelle.
- ► Toujours dire clairement quelles sont les hypothèses, et qu'est-ce qu'il faut montrer.
- Justifier les étapes du raisonnement.

- On utilise le théorème sur le principe des preuves par induction structurelle.
- ➤ Toujours dire clairement quelles sont les hypothèses, et qu'est-ce qu'il faut montrer.
- Justifier les étapes du raisonnement.
- Parfois (mais pas toujours !), le cas ∨ et le cas ∧ sont très similaires.

Retour au théorème

Theorem

Soit P une propriété sur les chaînes de caractères. Supposons que P vérifie les énoncés de clôture suivants :

- tout élément de V a la propriété P,
- ▶ si p satisfait P alors ¬p satisfait P,
- ightharpoonup si p et q satisfont P alors $(p \land q)$ satisfait P,
- ightharpoonup si p et q satisfont P alors $(p \lor q)$ satisfait P,

Alors tous les éléments de Form satisfont P.

▶ Soit X l'ensemble de toutes les chaînes de caractères avec la propriété P.

- Soit X l'ensemble de toutes les chaînes de caractères avec la propriété P.
- On remarque donc que l'ensemble X satisfait les propriétés de clôture des formules propositionnelles (par l'hypothèse du théorème).

- Soit X l'ensemble de toutes les chaînes de caractères avec la propriété P.
- On remarque donc que l'ensemble X satisfait les propriétés de clôture des formules propositionnelles (par l'hypothèse du théorème).
- ▶ Donc $Form \subseteq X$ car Form est le plus petit ensemble de chaînes de caractères qui satisfait ces propriétés.

- Soit X l'ensemble de toutes les chaînes de caractères avec la propriété P.
- On remarque donc que l'ensemble X satisfait les propriétés de clôture des formules propositionnelles (par l'hypothèse du théorème).
- ▶ Donc $Form \subseteq X$ car Form est le plus petit ensemble de chaînes de caractères qui satisfait ces propriétés.
- Autrement dit, tout élément de Form a la propriété P.

Définition d'une fonction

Une méthode pour définir une fonction : par une expression close.

Définition d'une fonction

- Une méthode pour définir une fonction : par une expression close.
- ▶ Par exemple, la fonction qui envoie un argument, qui est un nombre naturel, vers l'argument incrémenté de 1 :

$$f(x) := x + 1$$

La variable x est le paramètre formel de la fonction.

Définition d'une fonction

- Une méthode pour définir une fonction : par une expression close.
- ▶ Par exemple, la fonction qui envoie un argument, qui est un nombre naturel, vers l'argument incrémenté de 1 :

$$f(x) := x + 1$$

La variable x est le paramètre formel de la fonction.

Pour appliquer une telle fonction : remplacer dans l'expression le paramètre formel par le paramètre actuel, puis évaluer l'expression.

Définition d'une fonction

- Une méthode pour définir une fonction : par une expression close.
- Par exemple, la fonction qui envoie un argument, qui est un nombre naturel, vers l'argument incrémenté de 1 :

$$f(x) := x + 1$$

La variable x est le paramètre formel de la fonction.

- Pour appliquer une telle fonction : remplacer dans l'expression le paramètre formel par le paramètre actuel, puis évaluer l'expression.
- ► Sur l'exemple :

$$f(5) = 5 + 1 = 6$$

Définition de fonctions sur Form

Problème : comment définir une fonction sur un ensemble qui est défini par induction ?

Définition de fonctions sur Form

- Problème : comment définir une fonction sur un ensemble qui est défini par induction ?
- Exemple : comment définir la fonction qui donne la longueur d'une formule, ou le nombre de parenthèses ?

Définition de fonctions sur Form

- Problème : comment définir une fonction sur un ensemble qui est défini par induction ?
- Exemple : comment définir la fonction qui donne la longueur d'une formule, ou le nombre de parenthèses ?
- En général, l'évaluation d'une telle fonction appliquée à une formule dépend de la structure de la formule.

Définition par récurrence

On peut définir une fonction avec domaine Form comme suit :

1. on donne le résultat de la fonction appliquée à un élément quelconque de V,

Définition par récurrence

On peut définir une fonction avec domaine Form comme suit :

- 1. on donne le résultat de la fonction appliquée à un élément quelconque de V,
- 2. on donne le résultat de la fonction appliquée à une formule de la forme $\neg p$, sachant quel est le résultat de la fonction appliquée à p,

Définition par récurrence

On peut définir une fonction avec domaine Form comme suit :

- 1. on donne le résultat de la fonction appliquée à un élément quelconque de V,
- 2. on donne le résultat de la fonction appliquée à une formule de la forme $\neg p$, sachant quel est le résultat de la fonction appliquée à p,
- 3. on donne le résultat de la fonction appliquée à une formule de la forme $(p \land q)$, sachant quel est le résultat de la fonction appliquée à p et le résultat de la fonction appliquée à q,

Définition par récurrence

On peut définir une fonction avec domaine Form comme suit :

- 1. on donne le résultat de la fonction appliquée à un élément quelconque de V,
- 2. on donne le résultat de la fonction appliquée à une formule de la forme $\neg p$, sachant quel est le résultat de la fonction appliquée à p,
- 3. on donne le résultat de la fonction appliquée à une formule de la forme $(p \land q)$, sachant quel est le résultat de la fonction appliquée à p et le résultat de la fonction appliquée à q,
- 4. on donne le résultat de la fonction appliquée à une formule de la forme $(p \lor q)$, sachant quel est le résultat de la fonction appliquée à p et le résultat de la fonction appliquée à q.

Exemple récurrence : length

La fonction length est définie comme suit :

- 1. length(x) = 1 si $x \in V$
- 2. $length(\neg p) = 1 + length(p)$
- 3. $length((p \land q)) = 3 + length(p) + length(q)$
- 4. $length((p \lor q)) = 3 + length(p) + length(q)$

Exemple récurrence : length

$$length((x_1 \land \neg x_2)) =$$

Exemple récurrence : length

$$length((x_1 \land \neg x_2)) = 3 + length(x_1) + length(\neg x_2)$$
 (3)

Exemple récurrence : length

$$length((x_1 \land \neg x_2)) = 3 + length(x_1) + length(\neg x_2)$$
(3)
= $3 + 1 + length(\neg x_2)$ (1)

Exemple récurrence : length

$$length((x_1 \land \neg x_2)) = 3 + length(x_1) + length(\neg x_2)$$
 (3)
= $3 + 1 + length(\neg x_2)$ (1)
= $3 + 1 + 1 + length(x_2)$ (2)

Exemple récurrence : length

$$length((x_1 \land \neg x_2)) = 3 + length(x_1) + length(\neg x_2)$$
(3)
= $3 + 1 + length(\neg x_2)$ (1)
= $3 + 1 + 1 + length(x_2)$ (2)
= $3 + 1 + 1 + 1$ (1)

Exemple récurrence : length

$$length((x_1 \land \neg x_2)) = 3 + length(x_1) + length(\neg x_2)$$
(3)
= $3 + 1 + length(\neg x_2)$ (1)
= $3 + 1 + 1 + length(x_2)$ (2)
= $3 + 1 + 1 + 1$ (1)
= 6

Exemple de récurrence : ${\cal V}$

Notre deuxième exemple est la fonction \mathcal{V} , définie comme suit :

- 1. $V(x) = \{x\} \text{ si } x \in V$
- 2. $V(\neg p) = V(p)$
- 3. $\mathcal{V}((p \land q)) = \mathcal{V}(p) \cup \mathcal{V}(q)$
- 4. $\mathcal{V}((p \lor q)) = \mathcal{V}(p) \cup \mathcal{V}(q)$

Exemple de récurrence : ${\cal V}$

Notre deuxième exemple est la fonction \mathcal{V} , définie comme suit :

- 1. $V(x) = \{x\} \text{ si } x \in V$
- 2. $\mathcal{V}(\neg p) = \mathcal{V}(p)$
- 3. $\mathcal{V}((p \land q)) = \mathcal{V}(p) \cup \mathcal{V}(q)$
- 4. $\mathcal{V}((p \lor q)) = \mathcal{V}(p) \cup \mathcal{V}(q)$

 $\mathcal{V}(p)$ est l'ensemble des variables de p.

Exemple de récurrence : ${\cal V}$

$$\mathcal{V}((x_1 \wedge (x_2 \vee x_3))) =$$

Exemple de récurrence : ${\cal V}$

$$\mathcal{V}((x_1 \wedge (x_2 \vee x_3))) = \mathcal{V}(x_1) \cup \mathcal{V}((x_2 \vee x_3)) \quad (3)$$

Exemple de récurrence : ${\cal V}$

$$\mathcal{V}((x_1 \land (x_2 \lor x_3))) = \mathcal{V}(x_1) \cup \mathcal{V}((x_2 \lor x_3)) \quad (3) \\
= \{x_1\} \cup \mathcal{V}(x_2) \cup \mathcal{V}(x_3) \quad (1), (4)$$

Exemple de récurrence : ${\cal V}$

$$\mathcal{V}((x_1 \land (x_2 \lor x_3))) = \mathcal{V}(x_1) \cup \mathcal{V}((x_2 \lor x_3)) \quad (3)
= \{x_1\} \cup \mathcal{V}(x_2) \cup \mathcal{V}(x_3) \quad (1), (4)
= \{x_1\} \cup \{x_2\} \cup \{x_3\} \quad (1), (1)$$

Exemple de récurrence : ${\cal V}$

$$\mathcal{V}((x_1 \land (x_2 \lor x_3))) = \mathcal{V}(x_1) \cup \mathcal{V}((x_2 \lor x_3)) \quad (3) \\
= \{x_1\} \cup \mathcal{V}(x_2) \cup \mathcal{V}(x_3) \quad (1), (4) \\
= \{x_1\} \cup \{x_2\} \cup \{x_3\} \quad (1), (1) \\
= \{x_1, x_2, x_3\}$$

Une subtilité

Une fonction doit toujours associer à un argument donné un seul résultat. On doit donc assurer que la définition récursive d'une fonction garantit bien cette unicité du résultat.

Une subtilité

- Une fonction doit toujours associer à un argument donné un seul résultat. On doit donc assurer que la définition récursive d'une fonction garantit bien cette unicité du résultat.
- ► En principe, la même formule pourrait être construite de deux façon différentes. Dans ce cas, la définition de la fonction risque de donner deux valeurs différentes selon la construction considérée.

Une subtilité

- Une fonction doit toujours associer à un argument donné un seul résultat. On doit donc assurer que la définition récursive d'une fonction garantit bien cette unicité du résultat.
- ► En principe, la même formule pourrait être construite de deux façon différentes. Dans ce cas, la définition de la fonction risque de donner deux valeurs différentes selon la construction considérée.
- Heureusement, cette difficulté n'existe pas pour notre définition des formules propositionnelles : théorème de lecture unique (démonstration omise).

Une subtilité

- Une fonction doit toujours associer à un argument donné un seul résultat. On doit donc assurer que la définition récursive d'une fonction garantit bien cette unicité du résultat.
- ► En principe, la même formule pourrait être construite de deux façon différentes. Dans ce cas, la définition de la fonction risque de donner deux valeurs différentes selon la construction considérée.
- Heureusement, cette difficulté n'existe pas pour notre définition des formules propositionnelles : théorème de lecture unique (démonstration omise).
- Mais attention dans le cas général des ensembles définis par induction.

Récurrence et induction

Un ensemble peut être défini par induction: on dit comment construire un nouvel élément de l'ensemble à partir des éléments plus primitifs. Il y donc un sens « ascendant ».

Récurrence et induction

- Un ensemble peut être défini par induction: on dit comment construire un nouvel élément de l'ensemble à partir des éléments plus primitifs. Il y donc un sens « ascendant ».
- Les fonctions peuvent être définies par récurrence : on défini le résultat d'une fonction appliquée sur un argument composé en faisant référence au résultat de la fonction sur des arguments plus simples. Il y a donc un sens « descendant ».

Récurrence et induction

- Un ensemble peut être défini par induction: on dit comment construire un nouvel élément de l'ensemble à partir des éléments plus primitifs. Il y donc un sens « ascendant ».
- Les fonctions peuvent être définies par récurrence : on défini le résultat d'une fonction appliquée sur un argument composé en faisant référence au résultat de la fonction sur des arguments plus simples. Il y a donc un sens « descendant ».
- ► Finalement, une propriété de tous les éléments d'un ensemble qui est défini par induction est normalement démontrée par induction structurelle.

Chapitre 2 Définition de la logique propositionnelle

Sémantique de la logique propositionnelle

Sémantique de la logique propositionnelle

Affectations

Valeurs de vérités : 0 et 1.

Sémantique de la logique propositionnelle

Affectations

Valeurs de vérités : 0 et 1.

Definition

Une affectation est une fonction

$$v:V\rightarrow\{0,1\}$$

Le support d'une affectation v est défini comme

$$supp(v) = \{x \in V \mid v(x) = 1\}$$

Il existe des définitions différentes

- ▶ Pour 0 : False, ff, ...
- ▶ Pour 1 : True, tt, . . .

Il existe des définitions différentes

- ▶ Pour 0 : False, ff, ...
- ▶ Pour 1 : True, tt, . . .
- Les affectations sont parfois définies comme des fonctions partielles.

Notation pour les affectations

Nous écrivons

$$[x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 1, \dots, x_n \mapsto 1]$$

pour l'affectation qui aux variables x_1, \ldots, x_n associe la valeur 1, et qui associe à toute autre variable la valeur 0.

Sémantique de la logique propositionnelle

Notation pour les affectations

Nous écrivons

$$[x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 1, \dots, x_n \mapsto 1]$$

pour l'affectation qui aux variables x_1, \ldots, x_n associe la valeur 1, et qui associe à toute autre variable la valeur 0.

On ne peut pas écrire toutes les affectations de cette façon.

Exemple d'une affectation

$$[x_1 \mapsto 1, x_3 \mapsto 1]$$

est l'affectation qui associe à x_1 et x_3 la valeur 1, et à toute autre variable la valeur 0.

Son support est $\{x_1, x_3\}$.

Interprétation d'un formule

L'interprétation $[\![p]\!]v$ d'une formule p par rapport à l'affectation v est définie par récurrence sur la structure de p:

Exemples

$$[x]v_1 = 0 (car v_1(x) = 0)$$

Exemples

- $[x]v_1 = 0 (car v_1(x) = 0)$
- $[y]v_1 = 1 (car v_1(y) = 1)$

Exemples

- $[x]v_1 = 0 (car v_1(x) = 0)$
- $[y]v_1 = 1 (car v_1(y) = 1)$
- ightharpoonup Donc: $[(x \wedge y)]v_1 = 0$

Exemples

- $[x]v_1 = 0 (car v_1(x) = 0)$
- $[y]v_1 = 1 (car v_1(y) = 1)$
- et $[(x \lor y)]v_1 = 1$.

Stratégie d'interprétation

Theorem

Soient p et q des formules propositionnelles et v une affectation, alors

$$[[(p \land q)]]v = \begin{cases} 0 & si [[p]]v = 0 \\ [[q]]v & si [[p]]v = 1 \end{cases}$$

$$[[(p \lor q)]]v = \begin{cases} 1 & si [[p]]v = 1 \\ [[q]]v & si [[p]]v = 0 \end{cases}$$

On poet éluise oursi
$$|(p \wedge q)|_{U} = |(p \wedge q)|_{U} = |(p \wedge q)|_{U}$$

Nous démontrons seulement le premier des deux énoncés; le second se montre de façon analogue. Il y a deux cas, selon la valeur de $\llbracket p \rrbracket v$:

```
Cas [p]v = 0: Nous avons à montrer que dans ce cas [(p \land q)]v = 0. C'est une conséquence immédiate de la définition.
```

Nous démontrons seulement le premier des deux énoncés; le second se montre de façon analogue. Il y a deux cas, selon la valeur de $\llbracket p \rrbracket v$:

Cas [p]v = 0: Nous avons à montrer que dans ce cas $[(p \land q)]v = 0$. C'est une conséquence immédiate de la définition.

Cas $[\![p]\!]v=1$: Nous avons à montrer que dans ce cas $[\![(p\wedge q)]\!]v=[\![q]\!]v$. Il y a deux cas, selon la valeur de $[\![q]\!]v$:

Nous démontrons seulement le premier des deux énoncés; le second se montre de façon analogue. Il y a deux cas, selon la valeur de $\llbracket p \rrbracket v$:

Cas [p]v = 0: Nous avons à montrer que dans ce cas $[(p \land q)]v = 0$. C'est une conséquence immédiate de la définition.

Cas $[\![p]\!]v=1$: Nous avons à montrer que dans ce cas $[\![(p\wedge q)]\!]v=[\![q]\!]v$. Il y a deux cas, selon la valeur de $[\![q]\!]v$:

Cas $\llbracket q \rrbracket v = 0$: Nous avons $\llbracket (p \land q) \rrbracket v = 0 = \llbracket q \rrbracket v$

Nous démontrons seulement le premier des deux énoncés; le second se montre de façon analogue. Il y a deux cas, selon la valeur de $\llbracket p \rrbracket v$:

- Cas [p]v = 0: Nous avons à montrer que dans ce cas $[(p \land q)]v = 0$. C'est une conséquence immédiate de la définition.
- Cas $[\![p]\!]v=1$: Nous avons à montrer que dans ce cas $[\![(p\wedge q)]\!]v=[\![q]\!]v$. Il y a deux cas, selon la valeur de $[\![q]\!]v$:

Cas
$$\llbracket q \rrbracket v = 0$$
: Nous avons $\llbracket (p \land q) \rrbracket v = 0 = \llbracket q \rrbracket v$
Cas $\llbracket q \rrbracket v = 1$: Nous avons $\llbracket (p \land q) \rrbracket v = 1 = \llbracket q \rrbracket v$

L'intérêt de ce théorème

Pour évaluer $[(p \land q)]v$ on évalue d'abord [p]v, et selon le résultat obtenu il se peut qu'il ne soit plus nécessaire d'évaluer [q]v, ce qui est bon à savoir quand q est une très grande expression.

L'intérêt de ce théorème

- Pour évaluer $[(p \land q)]v$ on évalue d'abord [p]v, et selon le résultat obtenu il se peut qu'il ne soit plus nécessaire d'évaluer [q]v, ce qui est bon à savoir quand q est une très grande expression.
- On aurait pu donner une variante du théorème dans laquelle on interprète d'abord q au lieu de p, ou encore des variantes avec des critères plus sophistiqués (par exemple: on commence avec l'interprétation de la formule parmi p, q qui est la plus petite).

Évaluation et interprétation

- En général, une application d'une fonction à des arguments est évaluée.
- Plus spécifiquement, une formule propositionnelle est interprétée par rapport à une affectation.

L'interprétation de p par rapport à v est obtenue par l'évaluation de $\llbracket p \rrbracket v$.

Définition

Soit *p* une formule propositionnelle.

On écrit $v \models p$ si $\llbracket p \rrbracket v = 1$, et on dit $\langle p \rangle$ est vraie par rapport à $v \gg$.

Définition

- On écrit $v \models p$ si $\llbracket p \rrbracket v = 1$, et on dit $\langle p \rangle$ est vraie par rapport à $v \gg$.
- On écrit $v \not\models p$ si $\llbracket p \rrbracket v = 0$, et on dit $\ll p$ est fausse par rapport à $v \gg$.

Définition

- On écrit $v \models p$ si [p]v = 1, et on dit «p est vraie par rapport à v ».
- On écrit $v \not\models p$ si [p]v = 0, et on dit p est fausse par rapport à p ».
- On dit que p est satisfaisable s'il existe une affectation v telle que $v \models p$.

que
$$v \models p$$
.

Françle faceurle saféxfairable:

 $Q = [x \mid -x]$

Définition

- On écrit $v \models p$ si [p]v = 1, et on dit «p est vraie par rapport à v ».
- On écrit v ⊭ p si [p] v = 0, et on dit «p est fausse par rapport à v ».
- On dit que p est satisfaisable s'il existe une affectation v telle que $v \models p$.
- On dit que p est falsifiable s'il existe une affectation v telle que $v \not\models p$.

Définition

- On écrit $v \models p$ si [p]v = 1, et on dit «p est vraie par rapport à v ».
- On écrit $v \not\models p$ si $\llbracket p \rrbracket v = 0$, et on dit $\ll p$ est fausse par rapport à $v \gg$.
- On dit que p est satisfaisable s'il existe une affectation v telle que $v \models p$.
- On dit que p est falsifiable s'il existe une affectation v telle que $v \not\models p$.
 - On écrit $\models p$ si $v \models p$ pour toute affectation v, et on dit que p est valide (ou une tautologie) for foliale.

Définition

- On écrit $v \models p$ si $\llbracket p \rrbracket v = 1$, et on dit $\langle p \rangle$ est vraie par rapport à $v \gg$.
- On écrit v ⊭ p si [p] v = 0, et on dit «p est fausse par rapport à v ».
- On dit que p est satisfaisable s'il existe une affectation v telle que $v \models p$.
- On dit que p est falsifiable s'il existe une affectation v telle que $v \not\models p$.
- On écrit $\models p$ si $v \models p$ pour toute affectation v, et on dit que p est valide (ou une tautologie). \rightarrow
- On écrit $\not\models p$ si $v \not\models p$ pour toute affectation v, et on dit que p est contradictoire.

Exemples

La formule $(x \lor y)$ est

ightharpoonup satisfaisable (elle est vraie par rapport à $[x \mapsto 1]$)

Exemples

La formule $(x \lor y)$ est

- ightharpoonup satisfaisable (elle est vraie par rapport à $[x \mapsto 1]$)
- ► falsifiable (elle est fausse par rapport à [])

Exemples

La formule $(x \lor y)$ est

- ightharpoonup satisfaisable (elle est vraie par rapport à $[x \mapsto 1]$)
- falsifiable (elle est fausse par rapport à [])
- pas une tautologie

Exemples

La formule $(x \lor y)$ est

- ightharpoonup satisfaisable (elle est vraie par rapport à $[x \mapsto 1]$)
- falsifiable (elle est fausse par rapport à [])
- pas une tautologie
- pas contradictoire

Exemples

 $(x \lor \neg x)$ est une tautologie.

Exemples

- $(x \lor \neg x)$ est une tautologie.
- $(x \land \neg x)$ est contradictoire.

Notions de sémantique

Ne pas confondre les notations:

- Une formule est vraie ou fausse toujours par rapport à une affectation.
- Une formule peut être satisfaisable ou falsifiable tout court. Il n'y a pas de «satisfaisable par une affectation ».
- Une formule peut être valide ou contradictoire.

Une formule p est valide si et seulement si $\neg p$ n'est pas satisfaisable.

Une formule p est valide si et seulement si $\neg p$ n'est pas satisfaisable.

Démonstration:

On a la chaîne d'équivalences suivante : p est valide

Une formule p est valide si et seulement si $\neg p$ n'est pas satisfaisable.

Démonstration :

On a la chaîne d'équivalences suivante :

ssi $v \models p$ pour toute affectation v per pair parappoir λ

Une formule p est valide si et seulement si $\neg p$ n'est pas satisfaisable.

Démonstration:

On a la chaîne d'équivalences suivante :

p est valide

ssi $v \models p$ pour toute affectation v

ssi $[\![p]\!]v = 1$ pour toute affectation v

Une formule p est valide si et seulement si $\neg p$ n'est pas satisfaisable.

Démonstration:

On a la chaîne d'équivalences suivante :

p est valide

ssi $v \models p$ pour toute affectation v

ssi [p]v = 1 pour toute affectation v

ssi $\llbracket \neg p \rrbracket v = 0$ pour toute affectation v

Une formule p est valide si et seulement si $\neg p$ n'est pas satisfaisable.

Démonstration:

```
On a la chaîne d'équivalences suivante :
```

p est valide

ssi
$$v \models p$$
 pour toute affectation v

ssi
$$[p]v = 1$$
 pour toute affectation v

ssi
$$\llbracket \neg p \rrbracket v = 0$$
 pour toute affectation v

ssi
$$v \models \neg p$$
 pour aucune affectation v

Une formule p est valide si et seulement si $\neg p$ n'est pas satisfaisable.

Démonstration:

```
On a la chaîne d'équivalences suivante : p est valide ssi v \models p pour toute affectation v ssi \llbracket p \rrbracket v = 1 pour toute affectation v ssi \llbracket \neg p \rrbracket v = 0 pour toute affectation v ssi v \models \neg p pour aucune affectation v ssi v \models \neg p pour aucune affectation v ssi v \models \neg p n'est pas satisfaisable
```

Une formule p est contradictoire si et seulement si $\neg p$ est valide. (Exercice !)

Décider validité etc.

Pour savoir si une formule propositionnelle donnée est satisfaisable ou valide il faut donc en principe évaluer la formule sur toutes les affectations possibles.

Décider validité etc.

- Pour savoir si une formule propositionnelle donnée est satisfaisable ou valide il faut donc en principe évaluer la formule sur toutes les affectations possibles.
- Problème : il y a un nombre infini d'affectations possibles car il y a un nombre infini de variables propositionnelles !

Décider validité etc.

- Pour savoir si une formule propositionnelle donnée est satisfaisable ou valide il faut donc en principe évaluer la formule sur toutes les affectations possibles.
- Problème : il y a un nombre infini d'affectations possibles car il y a un nombre infini de variables propositionnelles !
- Heureusement, le théorème suivant dit que seulement les variables qui aparaissent dans les formules sont pertinentes.

D'abord une proposition

Proposition:

Soit p une formule propositionnelle et v_1, v_2 des affectations telles que $v_1(x) = v_2(x)$ pour toute variable $x \in \mathcal{V}(p)$. Alors

 $[\![p]\!]v_1 = [\![p]\!]v_2.$

Exercice (sera fait en TD)!

taites les variable dans

Le théorème de coïncidence

Theorem

Une formule p est

- 1. satisfaisable si et seulement s'il existe une affectation v telle que supp $(v) \subseteq \mathcal{V}(p)$ et $v \models p$.
- 2. valide si et seulement si $v \models p$ pour toute affectation v avec $supp(v) \subseteq \mathcal{V}(p)$.

Démonstration du premier énoncé

Si $v \models p$ avec $supp(v) \subseteq \mathcal{V}(p)$ alors p est, par définition satisfaisable.

Démonstration du premier énoncé

Si $v \models p$ avec $supp(v) \subseteq \mathcal{V}(p)$ alors p est, par définition satisfaisable.

Si p est satisfaisable il y a une affectation w telle que $w \models p$. Nous construisons une nouvelle affectation v comme suit:

$$v(x) = \begin{cases} w(x) & \text{si } x \in \mathcal{V}(p) \\ 0 & \text{si } x \notin \mathcal{V}(p) \end{cases}$$

Démonstration du premier énoncé

Si $v \models p$ avec $supp(v) \subseteq \mathcal{V}(p)$ alors p est, par définition satisfaisable.

Si p est satisfaisable il y a une affectation w telle que $w \models p$. Nous construisons une nouvelle affectation v comme suit:

$$v(x) = \begin{cases} w(x) & \text{si } x \in \mathcal{V}(p) \\ 0 & \text{si } x \notin \mathcal{V}(p) \end{cases}$$

On a que $supp(v) \subseteq \mathcal{V}(p)$, et $v \models p$ par la proposition précédente.

Une méthode pour décider la satisfaisabilité d'une formule p

1. Calculer V(p)

Une méthode pour décider la satisfaisabilité d'une formule p

- 1. Calculer V(p)
- 2. Engendrer l'ensemble A des affectations v avec $supp(v) \subseteq \mathcal{V}(p)$

Une méthode pour décider la satisfaisabilité d'une formule p

- 1. Calculer $\mathcal{V}(p)$
- 2. Engendrer l'ensemble A des affectations v avec $supp(v) \subseteq \mathcal{V}(p)$
- 3. Évaluer [p]v pour toute affectation $v \in A$. Dès qu'on tombe sur un v tel que [p]v = 1 on sait que p est satisfaisable, si on n'en trouve pas alors p n'est pas satisfaisable.

Une méthode pour décider la satisfaisabilité d'une formule p

- 1. Calculer $\mathcal{V}(p)$
- 2. Engendrer l'ensemble A des affectations v avec $supp(v) \subseteq \mathcal{V}(p)$
- 3. Évaluer [p]v pour toute affectation $v \in A$. Dès qu'on tombe sur un v tel que [p]v = 1 on sait que p est satisfaisable, si on n'en trouve pas alors p n'est pas satisfaisable.

Combien d'affectations est-ce qu'il y a à tester, si la formule a *n* variables ?

Décider la validité d'une formule p

1. Calculer V(p)

Décider la validité d'une formule p

- 1. Calculer V(p)
- 2. Engendrer l'ensemble A des affectations v avec $supp(v) \subseteq \mathcal{V}(p)$

Décider la validité d'une formule p

- 1. Calculer $\mathcal{V}(p)$
- 2. Engendrer l'ensemble A des affectations v avec $supp(v) \subseteq \mathcal{V}(p)$
- 3. Évaluer [p]v pour tout $v \in A$. Dès qu'on tombe sur un v tel que [p]v = 0 on sait que p n'est pas valide, si on n'en trouve pas alors p est valide.

X_1	<i>X</i> ₂	<i>X</i> ₃	$ \neg x_2 $	$(x_1 \wedge x_2)$	$(x_3 \wedge \neg x_2)$	$ ((x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2)) $
(1)	(2)	(3)	(4)	(5)	(6)	(7)
			$\neg(2)$	$(1) \wedge (2)$	$(3) \wedge (4)$	$(5) \lor (6)$

X_1	<i>x</i> ₂	<i>X</i> ₃	$\neg x_2$	$(x_1 \wedge x_2)$	$(x_3 \wedge \neg x_2)$	$\big ((x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2))$	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
			一(2)	$(1) \wedge (2)$	$(3) \wedge (4)$	$(5) \lor (6)$	
0	0	0	1	\bigcirc	Ò	C) #POP	1
1	0	0				V]
0	1	0]
1	1	0					1
0	0	1					1
1	0	1					
0	1	1					1
1	1	1					

X_1	<i>x</i> ₂	<i>X</i> ₃	$\neg x_2$	$(x_1 \wedge x_2)$	$(x_3 \wedge \neg x_2)$	$ ((x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2)) $
(1)	(2)	(3)	(4)	(5)	(6)	(7)
			$\neg(2)$	$(1) \wedge (2)$	$(3) \wedge (4)$	$(5) \lor (6)$
0	0	0	1			
1	0	0				
0	1	0				
1	1	0				
0	0	1				
1	0	1				
0	1	1				
1	1	1				

X_1	<i>x</i> ₂	<i>X</i> ₃	$ \neg x_2 $	$(x_1 \wedge x_2)$	$(x_3 \wedge \neg x_2)$	$\mid ((x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2)) \mid$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
			一(2)	$(1) \wedge (2)$	$(3) \wedge (4)$	$(5) \lor (6)$
0	0	0	1	0	0	
1	0	0				
0	1	0				
1	1	0				
0	0	1				
1	0	1				
0	1	1				
1	1	1				

X_1	<i>x</i> ₂	<i>X</i> 3	$\neg x_2$	$(x_1 \wedge x_2)$	$(x_3 \wedge \neg x_2)$	$ ((x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2)) $
(1)	(2)	(3)	(4)	(5)	(6)	(7)
			$\neg(2)$	$(1) \wedge (2)$	$(3) \wedge (4)$	$(5) \lor (6)$
0	0	0	1	0	0	0
1	0	0				
0	1	0				
1	1	0				
0	0	1				
1	0	1				
0	1	1				
1	1	1				

X_1	<i>X</i> ₂	<i>X</i> ₃	$ \neg x_2 $	$(x_1 \wedge x_2)$	$(x_3 \wedge \neg x_2)$	$\mid ((x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2)) \mid$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
			一(2)	$(1) \wedge (2)$	$(3) \wedge (4)$	$(5) \lor (6)$
0	0	0	1	0	0	0
1	0	0	1	0	0	0
0	1	0				
1	1	0				
0	0	1				
1	0	1				
0	1	1				
1	1	1				

X_1	<i>x</i> ₂	<i>X</i> ₃	$\neg x_2$	$(x_1 \wedge x_2)$	$(x_3 \wedge \neg x_2)$	$ ((x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2)) $
(1)	(2)	(3)	(4)	(5)	(6)	(7)
			一(2)	$(1) \wedge (2)$	$(3) \wedge (4)$	$(5) \lor (6)$
0	0	0	1	0	0	0
1	0	0	1	0	0	0
0	1	0	0	0	0	0
1	1	0				
0	0	1				
1	0	1				
0	1	1				
1	1	1				

X_1	<i>x</i> ₂	X3	$ \neg x_2 $	$(x_1 \wedge x_2)$	$(x_3 \wedge \neg x_2)$	$\mid ((x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2)) \mid$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
			一(2)	$(1) \wedge (2)$	$(3) \wedge (4)$	$(5) \lor (6)$
0	0	0	1	0	0	0
1	0	0	1	0	0	0
0	1	0	0	0	0	0
1	1	0	0	1	0	1
0	0	1				
1	0	1				
0	1	1				
1	1	1				

X_1	<i>x</i> ₂	<i>X</i> 3	$\neg x_2$	$(x_1 \wedge x_2)$	$(x_3 \wedge \neg x_2)$	$ ((x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2)) $
(1)	(2)	(3)	(4)	(5)	(6)	(7)
			¬(2)	$(1) \wedge (2)$	$(3) \wedge (4)$	$(5) \lor (6)$
0	0	0	1	0	0	0
1	0	0	1	0	0	0
0	1	0	0	0	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
1	0	1	1	0	1	1
0	1	1	0	0	0	0
1	1	1	0	1	0	1

Si la formule a n variables : 2^n affectations possibles à essayer (dans le pire des cas)

- Si la formule a n variables : 2^n affectations possibles à essayer (dans le pire des cas)
- Temps d'exécution exponentiel

- Si la formule a n variables : 2^n affectations possibles à essayer (dans le pire des cas)
- Temps d'exécution exponentiel
- Acceptable seulement pour des petites formules.

- Si la formule a n variables : 2^n affectations possibles à essayer (dans le pire des cas)
- Temps d'exécution exponentiel
- Acceptable seulement pour des petites formules.
- Comment faire pour des formules avec 10.000 variables ? Voir dans quelques semaines !

Raccourcis

➤ On a le droit d'enchaîner des applications de l'opérateur ∧ :

$$(p_1 \wedge p_2 \wedge \ldots \wedge p_n)$$

ainsi que de l'opérateur ∨ :

$$(p_1 \vee p_2 \vee \ldots \vee p_n)$$

Raccourcis

➤ On a le droit d'enchaîner des applications de l'opérateur ∧ :

$$(p_1 \wedge p_2 \wedge \ldots \wedge p_n)$$

ainsi que de l'opérateur ∨ :

$$(p_1 \vee p_2 \vee \ldots \vee p_n)$$

On se permet d'omettre la paire de parenthèses qui est autour de la formule entière.

Récupérer la syntaxe stricte

Remplacer

$$(p_1 \wedge p_2 \wedge p_3 \wedge \ldots \wedge p_n)$$

par

$$(p_1 \wedge (p_2 \wedge (p_3 \ldots \wedge p_n) \ldots))$$

et pareil pour les chaînes ∨.

Récupérer la syntaxe stricte

Remplacer

$$(p_1 \wedge p_2 \wedge p_3 \wedge \ldots \wedge p_n)$$

par

$$(p_1 \wedge (p_2 \wedge (p_3 \ldots \wedge p_n) \ldots))$$

et pareil pour les chaînes ∨.

Mettre une paire de parenthèses extérieures autour de la formule si nécessaire Raccourcis syntaxiques

Exemple

$$(x_1 \wedge x_2 \wedge x_3) \vee y_1 \vee (z_1 \wedge z_2 \wedge z_3 \wedge z_4)$$

-Raccourcis syntaxiques

Exemple

$$(x_1 \wedge x_2 \wedge x_3) \vee y_1 \vee (z_1 \wedge z_2 \wedge z_3 \wedge z_4)$$

s'écrit en syntaxe stricte comme

$$\left(\left(x_1\wedge(x_2\wedge x_3)\right)\vee\left(y_1\vee\left(z_1\wedge\left(z_2\wedge\left(z_3\wedge z_4\right)\right)\right)\right)\right)$$

Syntaxe stricte ou raccourcie?

► On autorise la syntaxe raccourcie dans les exemples.

Syntaxe stricte ou raccourcie?

- On autorise la syntaxe raccourcie dans les exemples.
- Par contre, quand on vous demande de démontrer une propriété de la syntaxe (comme: $|w|_{(} = |w|_{)}$ pour toute $w \in Form$) c'est toujours la syntaxe stricte!