Unification des caractérisations de P

Mémoire de stage - M2 LMFI 2015-2016

Erwan BEURIER

31 août 2016

Caractérisation fonctionnelle d'une classe qu'on comprend surtout en termes de machines.

Caractérisation fonctionnelle d'une classe qu'on comprend surtout en termes de machines.

Plusieurs pistes:

Contrainte explicite sur la longueur des valeurs des fonctions (Cobham)

Distinctions entre arguments (Bellantoni-Cook, Leivant)

Objets utilisés

Algèbre = ensemble de termes clos basés sur une signature fonctionnelle.

Objets utilisés

Algèbre = ensemble de termes clos basés sur une signature fonctionnelle.

Algèbre binaire = \mathbb{W} , de signature $\sigma = \{\varepsilon, 1(-), 0(-)\}$.

Algèbre unaire = \mathbb{N} , de signature $\sigma = \{0, s(-)\}$.

Approche de Leivant

Distinction sur les arguments, à rapprocher de Bellantoni-Cook, mais résultat plus fin.

Les tiers

 $\mathbb{W}_0, \mathbb{W}_1, \ldots, \mathbb{W}_n, \ldots$

 \mathbb{W}_m a une copie de chaque constructeur, noté c^m ;

 \sim niveaux d'abstraction de \mathbb{W} .

Définition (Argument critique)

Soit f une fonction définie par récurrence à partir des fonctions $(g_c)_{c\in\{\varepsilon,0,1\}}$:

$$\forall c \quad f(c(a), \bar{x}) = g_c(f(a, \bar{x}), a, \bar{x})$$

L'argument $f(a, \bar{x})$ de la fonction g_c est appelé argument critique.

Approche de Leivant

Les arguments critiques contraignent la définition par récurrence :

Définition (Récurrence ramifiée)

Une fonction $f: \mathbb{W}_m \times \mathcal{W} \to \mathbb{W}_n$ est définie par récurrence ramifiée à partir des fonctions $(g_c)_{c \in \{\varepsilon,0,1\}}$ lorsque :

$$\forall i \quad g_{c_i} : \mathbb{W}_n^{r_i} \times \mathbb{W}_m^{r_i} \times \mathcal{W} \rightarrow \mathbb{W}_n$$

$$\forall i \quad f(c^m(a), \bar{x}) = g_c(f(a, \bar{x}), a, \bar{x})$$

Si l'une des fonctions de récurrence a un argument critique, alors le tiers de départ m de f doit être strictement supérieur au tiers d'arrivée n: m > n; sinon, $m \ge n$.

Approche de Leivant

Définition

On note $TRec(\mathbb{W})$ le plus petit ensemble de fonctions récursives primitives sur \mathbb{W} contenant les constructeurs, les projections et étant clos par composition ramifiée et récurrence ramifiée.

On note $TRec_2(\mathbb{W})$ le sous-ensemble de $TRec(\mathbb{W})$ dont chaque fonction est constructible en n'utilisant que les deux tiers $\mathbb{W}_0, \mathbb{W}_1$.

Théorème

$$TRec(\mathbb{W}) = TRec_2(\mathbb{W}) = \mathbf{P}$$

Approche de Leivant

Définition (Degré d'imbrication de récurrence)

```
Soit f \in TRec(\mathbb{W}).
```

Le degré d'imbrication de récurrence de f, noté $\delta(f)$, est un entier défini par induction sur la définition de f:

```
Si f est un constructeur ou une projection, alors \delta(f)=0. Si f est définie par composition, sans perte de généralité, f(\bar{x})=g\left(\bar{x},h(\bar{x})\right), alors :  \begin{aligned} &Si \ tier(h) < tier(g) \ alors \ \delta(f)=\delta(g) \ ; \\ &Si \ tier(h) = tier(g) \ alors \ \delta(f)=\max\left(\delta(g),\delta(h)\right) \ ; \\ &Si \ tier(h) > tier(g) \ alors \ \delta(f)=\max\left(1,\delta(h)\right) \times \delta(g) \ ; \end{aligned}  Si f est définie par récurrence ramifiée f(c^j(a),\bar{x})=g_c\left(f(a,\bar{x}),a,\bar{x}\right), telles que \left(g_{\alpha_j}\right)_{j\in p} aient un argument critique et \left(g_{\beta_j}\right)_{j\in q} n'en aient pas, alors \delta(f)=\max\left(1+\delta\left(g_{\alpha_1}\right),\ldots,1+\delta\left(g_{\alpha_p}\right),\delta\left(g_{\beta_1}\right),\ldots,\delta\left(g_{\beta_q}\right)\right).
```

Approche de Leivant

Théorème

Une fonction f est calculable en temps $\mathcal{O}\left(n^{k}\right)$ ssi $\delta(f)\leqslant k$.

En particulier, f est calculable en temps $O(n^{\delta(f)})$

Quel modèle de calcul?

Définition

Une W-RAM est un modèle de calcul comprenant :

Un ensemble fini d'états $S = \{s_1, ..., s_l\}$, où s_1 est l'état initial et s_l est l'état final;

Un ensemble fini de registres $\Pi = \{\pi_1, \dots, \pi_m\}$.

Les registres contiennent des termes de l'algèbre \mathbb{W} . Par défaut, on leur assigne une valeur ε .

Un programme de \mathbb{W} -RAM est un ensemble fini d'instructions dont chacune est de l'une des formes suivantes :

```
(const) s_a \pi_i C \pi_j s_b

(p\text{-}dest) s_a \pi_i \pi_j s_b

(switch) s_a \pi_j s_b s_0 s_1
```

La machine de Leivant

Construit des termes Spécifique à cette caractérisation Plus puissante qu'une machine de Turing Moins puissante qu'une σ -RAM

Quel modèle de calcul?

Définition

Soit σ une signature fonctionnelle (typiquement $\sigma = \{+, -, \times\}$) Une σ -RAM est un modèle de calcul composé de :

```
Deux accumulateurs A, B; 
Un registre spécial N; 
Une infinité dénombrable de registres (R_i)_{i\in\omega}.
```

Instructions:

```
A := c pour n'importe quelle constante c \in \mathbb{N} A := op(A) ou op(A, B), où op \in \sigma A := N N := A A := R_A B := A R_A := B |f(A = B)\{I(i)\} ELSE \{I(j)\}
```

Quel modèle de calcul?

Comparaison entre les deux machines

Travaille sur des termes VS travaille sur des entiers

Mémoire finie VS infinie

Test partiel VS test d'égalité

Machine \mathbb{W} -RAM est moins puissante que la σ -RAM, donc les classes fines définies sur l'une ne sont pas les mêmes sur l'autre machine.

II. Vers une caractérisation de $\mathsf{DTIME}_{\mathsf{RAM}}\left(n^K\right)$

Introduction

Définition (RAM-structure)

Soit t un type, c'est-à-dire une signature fonctionnelle ne contenant que des symboles de constantes ou de fonctions unaires.

Une RAM-structure s de type t est un uplet constitué de :

 $n \in \mathbb{N}$ qui est la taille de la structure; $C \in \mathbb{N}$ pour chaque symbole $C \in t$; $f: n \to \mathbb{N}$ pour chaque symbole $f \in t$.

On notera s.n, s.C, s.f les composantes n, C, f de s. On dira que s est c-bornée pour $c \in \mathbb{N}$ lorsque s.C, s.f(i) < cs.n pour tous $C, f \in t$ et $i \in n$.

Introduction

EXEMPLE

Example

Un graphe (V, E). La taille n serait ||V|| + ||E||, et on coderait les

Introduction

Definition (Fonction de RAM)

Soient t_1 , t_2 des types.

Une (t_1, t_2) -fonction de RAM Γ est une fonction telle qu'il existe $c_1, c_2 \in \mathbb{N}$, tels que Γ envoie les structures c_1 -bornées de type t_1 sur des structures c_2 -bornées de type t_2 .

On dit que Γ est polynomiale lorsque $\Gamma(s).n = \mathcal{O}((s.n)^K)$.

II. Vers une caractérisation de $\mathsf{DTIME}_{\mathsf{RAM}}\left(n^K\right)$

Definition (Fonction de RAM)

Soient t_1, t_2 des types.

Introduction

Une (t_1, t_2) -fonction de RAM Γ est une fonction telle qu'il existe $c_1, c_2 \in \mathbb{N}$, tels que Γ envoie les structures c_1 -bornées de type t_1 sur des structures c_2 -bornées de type t_2 .

On dit que Γ est polynomiale lorsque $\Gamma(s).n = \mathcal{O}\left((s.n)^K\right)$.

Definition (Temps polynomial)

On définit DTIME_{RAM} (n^K) comme étant l'ensemble des fonctions de RAM calculables sur $\{+\}$ -RAM en temps $\mathcal{O}\left(n^K\right)$, telles que le nombre de registres utilisés, les valeurs entières manipulées (y compris les adresses de registres) soient bornés par $\mathcal{O}\left(n^K\right)$.

Introduction

Definition (Application bornée et equal-predecessor)

Pour $f: n \to \mathbb{N}$, on définit deux opérations :

L'application bornée :

$$f[x]_y = \begin{cases} f(x) & \text{si } x < y \\ x & \text{sinon} \end{cases}$$

L'opération equal-predecessor :

$$f^{\leftarrow}(x) = \begin{cases} \max(\{y < x | f(x) = f(y)\}) & \text{si un tel } y \text{ existe} \\ x & \text{sinon} \end{cases}$$

Pour $g, g': n \to \mathbb{N}$, on combine ces deux opérations pour en créer une troisième, l'opération de *récursion* :

$$f(x) = g' \left[g^{\leftarrow}(x) \right]_x$$

C'est-à-dire : f(x) = g'(y) où y est le plus grand z tel que g(x) = g(z), ou f(x) = x si un tel y n'existe pas.

II. Vers une caractérisation de $\mathsf{DTIME}_{\mathsf{RAM}}\left(n^K\right)$

Definition (LSRS)

Introduction

Soit F un ensemble de symboles de fonctions unaires (dites fonctions de base), soient f_1, \ldots, f_k des symboles de fonctions qui n'apparaissent pas dans F. Pour $i \leq k$, notons $F_i = F \cup \{f_1, \ldots, f_i\}$.

Un LSRS (*Linear Simultaneous Recursion Scheme*) S sur f_1, \ldots, f_k et F est une suite de k équations $(E_i)_{i \in k}$ dont chacune est de l'une des deux formes suivantes :

(opération)
$$f_i(x) = g(x) * g'(x)$$
 où $g, g' \in F_{i-1}$ et $* \in \{+, -, \times\}$ (récursion) $f_i(x) = g' [g^{\leftarrow}(x)]_x$ où $g' \in F_k$ et $g \in F_{i-1}$

Entrée d'un LSRS

Introduction

Soient t un type et S un LSRS pour f_1,\ldots,f_k sur $t\cup\{1(-),\operatorname{id}(-),n(-)\}$. L'entrée d'un LSRS peut être vue comme étant une RAM-structure s de type t, qu'il lit en interprétant les symboles de F_t de la façon suivante :

$$\forall f \in t_1 : f(i) = \begin{cases} s.f(i) & \text{si } i < s.n \\ 0 & \text{sinon} \end{cases}$$

$$\forall C \in t_1 : f_C(i) = s.C$$

$$1(i) = 1, \ n(i) = s.n, \ id(i) = i$$

La sortie du LSRS peut aussi être vue comme une nouvelle structure s' = S(s) de type $\{f_1, \ldots, f_k\}$.

Definition (RAM n^K -représentée par LSRS)

Soient t_1, t_2 des types. Soit Γ une (t_1, t_2) -fonction de RAM. Soit S un LSRS pour f_1, \ldots, f_k sur F_{t_1} .

On dit que Γ est n^K -représentée par S lorsqu'il existe un entier c tel que le LSRS S définit des fonctions $f_1, \ldots, f_k : c(s.n)^K \to c(s.n)^K$ telles que $\Gamma(s) = S(s)$ où S(s) est la structure définie par le LSRS.

(3) = 3(3) ou 3(3) est la structure definite par le 2313.

Théorème (Grandjean-Schwentick)

 $\Gamma \in DTIME_{RAM}(n) \Leftrightarrow \Gamma$ est n-représentée par un LSRS.

Théorème

Pour tout $K \in \mathbb{N}$, $\Gamma \in DTIME_{RAM}(n^K) \Leftrightarrow \Gamma$ est n^K -représentée par un LSRS.

II. Vers une caractérisation de $\mathsf{DTIME}_{\mathsf{RAM}}\left(n^K\right)$

Remarques

C'est une première caractérisation.

Remarques

C'est une première caractérisation.

Le degré du polynôme est forcé.

Remarques

C'est une première caractérisation.

Le degré du polynôme est forcé.

Comment faire intervenir le degré du polynôme de manière plus naturelle?

Remarques

C'est une première caractérisation.

Le degré du polynôme est forcé.

Comment faire intervenir le degré du polynôme de manière plus naturelle?

Solution

Généraliser à des arités supérieures à 1.

LSRS à arité multiple

Cahier des charges

Ne pas se contenter d'une seule arité.

II. Vers une caractérisation de $\mathsf{DTIME}_{\mathsf{RAM}}\left(n^K\right)$

LSRS à arité multiple

Cahier des charges

Ne pas se contenter d'une seule arité.

Les fonctions devraient pouvoir s'appeler entre elles, peu importe leur arité.

Bon ordre sur les tuples afin de reproduire l'exécution pas à pas?

LSRS à arité multiple

Notations

Soit $a \in \mathbb{N}$. On notera a-LSRS un LSRS utilisant et/ou calculant des fonctions d'arité a et inférieure, et on notera ($\leqslant a$)-uplet l'ensemble des n-uplets où $n \leqslant a$.

LSRS à arité multiple

Notations

Soit $a \in \mathbb{N}$. On notera a-LSRS un LSRS utilisant et/ou calculant des fonctions d'arité a et inférieure, et on notera ($\leqslant a$)-uplet l'ensemble des n-uplets où $n \leqslant a$.

Choix naïf

L'ordre lexicographique naturel sur les ($\leq a$)-uplets pose problème.

 \Rightarrow Pas de projections.

LSRS à arité multiple

Définition

On définit l'ordre < sur les $(\leqslant a)$ -uplets par :

$$\overline{x} < \overline{y} \Leftrightarrow \left\{ \begin{array}{ll} \max{\left(\overline{x}\right)} < \max{\left(\overline{y}\right)} \\ ou \ \max{\left(\overline{x}\right)} = \max{\left(\overline{y}\right)} \quad et \ |\overline{x}| < |\overline{y}| \\ ou \ \max{\left(\overline{x}\right)} = \max{\left(\overline{y}\right)} \quad et \ |\overline{x}| = |\overline{y}| \quad et \ \overline{x} <_{\textit{lex}} \ \overline{y} \end{array} \right.$$

LSRS à arité multiple

Définition

On définit l'ordre < sur les $(\leqslant a)$ -uplets par :

$$\overline{x} < \overline{y} \Leftrightarrow \left\{ \begin{array}{ll} \max{(\overline{x})} < \max{(\overline{y})} \\ ou \ \max{(\overline{x})} = \max{(\overline{y})} \quad et \ |\overline{x}| < |\overline{y}| \\ ou \ \max{(\overline{x})} = \max{(\overline{y})} \quad et \ |\overline{x}| = |\overline{y}| \quad et \ \overline{x} <_{lex} \overline{y} \end{array} \right.$$

Example

Pour
$$a=3$$
, avec les arités $1,2,3:(0)<(0,0)<(0,0,0)<(1)<(0,1)<(1,0)<(1,1)<(0,0,1)<(0,1,0)<(0,1,1)<(1,0,0)<(1,0,1)<(1,1,1)<(2)<(0,2)<\dots$

LSRS à arité multiple

Définition

On définit l'ordre < sur les $(\leqslant a)$ -uplets par :

$$\overline{x} < \overline{y} \Leftrightarrow \left\{ \begin{array}{ll} \max{(\overline{x})} < \max{(\overline{y})} \\ ou \ \max{(\overline{x})} = \max{(\overline{y})} \quad et \ |\overline{x}| < |\overline{y}| \\ ou \ \max{(\overline{x})} = \max{(\overline{y})} \quad et \ |\overline{x}| = |\overline{y}| \quad et \ \overline{x} <_{lex} \overline{y} \end{array} \right.$$

Example

Pour
$$a=3$$
, avec les arités $1,2,3:(0)<(0,0)<(0,0,0)<(1)<(0,1)<(1,0)<(1,1)<(0,0,1)<(0,1,0)<(0,1,1)<(1,0,0)<(1,0,1)<(1,1,1)<(2)<(0,2)<\dots$

Avantages

Pas parfait non plus, MAIS...

LSRS à arité multiple

Propriétés

C'est un bon ordre.

Permet de faire des mélanges et des projections.

Propriétés intéressantes pour le calcul.

Le rang d'un élément \bar{x} est calculable à partir de ses coordonnées, de son maximum et de son arité.

LSRS à arité multiple

Propriétés

C'est un bon ordre.

Permet de faire des mélanges et des projections.

Propriétés intéressantes pour le calcul.

Le rang d'un élément \bar{x} est calculable à partir de ses coordonnées, de son maximum et de son arité.

Rang

rang
$$(\overline{x}) = ((\sum_{i=1}^{a} m^{i}) + (\sum_{i=1}^{r} ((m+1)^{i} - 1)) + (\sum_{i=1}^{r} c_{i}))$$

où $m = \max(\overline{x}), r = \operatorname{arit\acute{e}}(\overline{x})$ et $c_{i} = x_{i} \times (m+1)^{r-i}$ si $x_{i-1} = m$ ou $x_{i-2} = m$ ou ... ou $x_{1} = m$, et $c_{i} = (m+1)^{r-i} - m^{r-i}$ sinon.

LSRS à arité multiple

Notation

$$\bar{x}' \ll \bar{x} \quad \Leftrightarrow \quad \bar{x}' < \bar{x}, \ |\bar{x}'| < |\bar{x}| \ \forall j \ \exists j' \ x_j' = x_{j'}$$

Exemple

Si $\bar{x}=(x_1,x_2,_3)$, alors les tuples (x_1,x_2) , (x_2,x_2) , (x_3,x_1) et (x_1) sont $\ll \bar{x}$.

LSRS à arité multiple

Soit $a \in \mathbb{N}$.

Définition (a-LSRS)

Soit F un ensemble de symboles de fonctions de base. Soient f_1, \ldots, f_k de nouveaux symboles de fonctions n'apparaissant pas dans F, d'arités respectives $1 \leqslant r_1 \leqslant r_2 \leqslant \cdots \leqslant r_k = a$.

On note $F_i = F \cup \{f_j | r_j = r_i \text{ et } j < i\}$, $F'_i = F \cup \{f_j | r_j = r_i\}$, et $G_i = F \cup \{f_j | r_j < r_i\}$.

Un a-LSRS S sur F et f_1, \ldots, f_k est une suite d'équations E_1, \ldots, E_k où chaque E_i est de l'une des formes suivantes :

(opération) $f_i(\overline{x}) = A * B \text{ où } * \in \{+, -, \times\} \text{ et } A, B \text{ sont de la forme suivante } :$

$$g(\overline{x})$$
, avec $g \in F_i$; $g(\overline{x}')$, avec $g \in G_i$, c et $\overline{x}' \ll \overline{x}'$.

LSRS à arité multiple

Soit $a \in \mathbb{N}$.

Définition (a-LSRS)

Soit F un ensemble de symboles de fonctions de base. Soient f_1, \ldots, f_k de nouveaux symboles de fonctions n'apparaissant pas dans F, d'arités respectives $1 \leqslant r_1 \leqslant r_2 \leqslant \cdots \leqslant r_k = a$.

On note $F_i = F \cup \{f_j | r_j = r_i \text{ et } j < i\}$, $F'_i = F \cup \{f_j | r_j = r_i\}$, et $G_i = F \cup \{f_j | r_j < r_i\}$.

Un a-LSRS S sur F et f_1, \ldots, f_k est une suite d'équations E_1, \ldots, E_k où chaque E_i est de l'une des formes suivantes :

(récursion) $f_i(\overline{x}) = g'[g^{\leftarrow}(\overline{x}')]_{\overline{x}'}$, où arité(g) = arité(g') et l'un des deux cas suivants se réalise :

Soit $\overline{x}' = \overline{x}$, et dans ce cas $g \in F_i$ et $g' \in F'_i$; Soit $\overline{x}' \ll \overline{x}$ et dans ce cas $g, g' \in G_i$.

LSRS à arité multiple

Les fonctions de base vont de $[0, cn-1] \times \cdots \times [0, cn-1]$ vers [0, cn-1].

Les fonctions calculées et les fonctions de sortie sont définies de $[0, cn-1] \times \cdots \times [0, cn-1]$ vers $[0, cn-1]^?$.

LSRS à arité multiple

Les fonctions de base vont de $[0, cn-1] \times \cdots \times [0, cn-1]$ vers [0, cn-1].

Les fonctions calculées et les fonctions de sortie sont définies de $[0, cn-1] \times \cdots \times [0, cn-1]$ vers $[0, cn-1]^?$.

 \Rightarrow On voudrait qu'elles soient définies de $[0, cn-1] \times \cdots \times [0, cn-1]$ vers $[0, cn-1]^a$.

LSRS à arité multiple

Exemple de fonctionnement

On choisit a = 3, et on considère le 3-LSRS suivant :

$$f_1(x) = x + 1(x) \tag{1}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (2)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (3)

$$(0) < (0,0) < (0,0,0) < (1) < (0,1) < (1,0) < (1,1) < (0,0,1) < \dots$$

Tour 1 (0):

$$f_1(0) = 1 \tag{4}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (5)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (6)

LSRS à arité multiple

Exemple de fonctionnement

On choisit a = 3, et on considère le 3-LSRS suivant :

$$f_1(x) = x + 1(x) \tag{1}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (2)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (3)

$$(0) < \textcolor{red}{(0,0)} < (0,0,0) < \textcolor{blue}{(1)} < (0,1) < \textcolor{blue}{(1,0)} < \textcolor{blue}{(1,1)} < \textcolor{blue}{(0,0,1)} < \ldots$$

Tour 1 (0,0):

$$f_1(0) = 1 \tag{4}$$

$$f_2(0,0) = f_1(0) + f_1(0)$$
 (5)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (6)

LSRS à arité multiple

Exemple de fonctionnement

On choisit a = 3, et on considère le 3-LSRS suivant :

$$f_1(x) = x + 1(x) \tag{1}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (2)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (3)

$$(0) < \textcolor{red}{(0,0)} < (0,0,0) < \textcolor{blue}{(1)} < (0,1) < \textcolor{blue}{(1,0)} < \textcolor{blue}{(1,1)} < \textcolor{blue}{(0,0,1)} < \ldots$$

Tour 1 (0,0):

$$f_1(0) = 1 \tag{4}$$

$$f_2(0,0) = 2 (5)$$

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (6)

LSRS à arité multiple

Exemple de fonctionnement

On choisit a = 3, et on considère le 3-LSRS suivant :

$$f_1(x) = x + 1(x) \tag{1}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (2)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (3)

$$(0) < (0,0) < \textcolor{red}{(0,0,0)} < (1) < (0,1) < (1,0) < (1,1) < (0,0,1) < \dots$$

Tour 1

(0,0,0):

$$f_1(0) = 1 \tag{4}$$

$$f_2(0,0) = 2 (5)$$

$$f_3(0,0,0) = f_2(0,0) + f_1(0)$$
 (6)

LSRS à arité multiple

Exemple de fonctionnement

On choisit a = 3, et on considère le 3-LSRS suivant :

$$f_1(x) = x + 1(x) \tag{1}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (2)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (3)

$$(0) < (0,0) < \textcolor{red}{(0,0,0)} < (1) < (0,1) < (1,0) < (1,1) < (0,0,1) < \dots$$

Tour 1

(0,0,0):

$$f_1(0) = 1 \tag{4}$$

$$f_2(0,0) = 2 ag{5}$$

$$f_3(0,0,0) = 3 (6)$$

LSRS à arité multiple

Exemple de fonctionnement

On choisit a = 3, et on considère le 3-LSRS suivant :

$$f_1(x) = x + 1(x) \tag{1}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (2)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (3)

$$(0) < (0,0) < (0,0,0) < (1) < (0,1) < (1,0) < (1,1) < (0,0,1) < \dots$$

Tour 2

(1):

$$f_1(1) = 1 + 1 \tag{4}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (5)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (6)

LSRS à arité multiple

Exemple de fonctionnement

On choisit a = 3, et on considère le 3-LSRS suivant :

$$f_1(x) = x + 1(x) \tag{1}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (2)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (3)

$$(0) < (0,0) < (0,0,0) < (1) < (0,1) < (1,0) < (1,1) < (0,0,1) < \dots$$

Tour 2 (0, 1):

$$f_1(1) = 2 \tag{4}$$

$$f_2(0,1) = f_1(0) + f_1(1)$$
 (5)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (6)

LSRS à arité multiple

Exemple de fonctionnement

On choisit a = 3, et on considère le 3-LSRS suivant :

$$f_1(x) = x + 1(x) \tag{1}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (2)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (3)

$$(0) < (0,0) < (0,0,0) < (1) < (0,1) < (1,0) < (1,1) < (0,0,1) < \dots$$

Tour 2 (0, 1):

$$f_1(1) = 2 \tag{4}$$

$$f_2(0,1) = 3 ag{5}$$

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (6)

LSRS à arité multiple

Exemple de fonctionnement

On choisit a = 3, et on considère le 3-LSRS suivant :

$$f_1(x) = x + 1(x) \tag{1}$$

$$f_2(x_1, x_2) = f_1(x_1) + f_1(x_2)$$
 (2)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (3)

$$(0) < (0,0) < (0,0,0) < (1) < (0,1) < (1,0) < (1,1) < (0,0,1) < \dots$$

Tour 2 (1,0):

$$f_1(1) = 2 \tag{4}$$

$$f_2(1,0) = f_1(1) + f_1(0)$$
 (5)

$$f_3(x_1, x_2, x_3) = f_2(x_2, x_1) + f_1(x_3)$$
 (6)

LSRS à arité multiple

Théorème

Soit Γ une (t_1, t_2) -fonction de RAM, où t_1 est un 1-type et t_2 est un a-type.

 Γ est représentable par un a-LSRS $\Leftrightarrow \Gamma$ est n^a -représentable par un LSRS.

Démonstration.

• a-LSRS \Rightarrow LSRS de longueur n^a :

Définir un LSRS qui permet de récupérer \bar{x} à partir de rang (\bar{x}) .

Trouver le max m (\bar{x} se situe entre (m) et (m+1) pour un certain m);

Trouver l'arité r (\bar{x} se situe entre $(0, \dots, 0, m)$ et (m, \dots, m, m));

Calculer les coordonnées de \bar{x} .

Simuler les opérations du *a*-LSRS avec un LSRS en utilisant les coordonnées calculées précédemment.

LSRS à arité multiple

Théorème

Soit Γ une (t_1, t_2) -fonction de RAM, où t_1 est un 1-type et t_2 est un a-type.

 Γ est représentable par un a-LSRS $\Leftrightarrow \Gamma$ est n^a -représentable par un LSRS.

Démonstration.

- LSRS de longueur $n^a \Rightarrow a$ -LSRS :
 - Définir un LSRS qui permet de récupérer rang (\bar{x}) à partir de \bar{x} .
 - ⇒ Réécrire la formule donnée précédemment.
 - Simuler les opérations du LSRS avec un *a*-LSRS en utilisant les coordonnées calculées précédemment.

