

# **What is Feature Engineering?**

Feature Engineering is the process of creating, modifying, selecting, or extracting the right features from raw data to improve the performance of machine learning models.

Well-engineered features help models learn better, generalize more, and capture hidden patterns that raw data might miss.



# 4 Main Steps in Feature Engineering

### 1. Feature Transformation

Transform raw data into a format that's more suitable for the model.

### A. Missing Values Imputation

- **Problem**: Missing values can break the model.
- Solution: Fill with mean, median, mode, or use advanced methods.

**Ex:** For age column with missing values → fill with median(age)

#### **B.** Handling Categorical Values

Convert text categories into numbers so models can understand them.

**Ex:** Color = [Red, Green, Blue] → One-hot encode to [1, 0, 0], [0, 1, 0], [0, 0, 1]

#### C. Outlier Detection

Detect and handle extreme values that might skew results.

**Ex:** A salary value of \$10 million in a normal dataset could be capped using **IQR** or **z-score**.

#### D. Feature Scaling

Scale all numeric features to a similar range so the model treats them fairly.

Ex: Convert age (range 0-100) and income (range 0-100000) to [0-1] using Min-Max Scaling

#### 2. Feature Construction

Create **new features** from existing data to capture more meaning.

Ex: From Date of Birth, construct a new feature: Age
Ex: From Text, count number of words → Word Count

These new features often capture hidden patterns the model can't detect directly.

#### 3. Feature Selection

- Identify and keep only the most relevant features.
- Reduces overfitting, improves performance, and lowers complexity.

#### Methods:

- Filter methods: correlation, chi-square
- Wrapper methods: Recursive Feature Elimination (RFE)
- Embedded methods: Feature importance from Decision Trees or Lasso

**Ex:** If height and weight both predict BMI, you may drop one if it adds redundancy.

#### 4. Feature Extraction

• Derive new compact features from raw data, especially in images, audio, or text.

#### **Examples:**

- PCA (Principal Component Analysis) → reduces dimensionality of data
- **TF-IDF** → converts text documents into meaningful numerical values
- CNN layers → extract image features automatically in deep learning

Ex: From 100 features → reduce to 10 most informative using PCA

## **Summary Table**

| Step           | Purpose                   | Example                           |
|----------------|---------------------------|-----------------------------------|
| Feature        | Clean and standardize raw | Fill missing values, encode       |
| Transformation | data                      | categories, scale features        |
| Feature        | Build new features from   | Age from DOB, count words in text |
| Construction   | existing ones             |                                   |

| Feature Selection  | Choose only useful    | Drop irrelevant or redundant      |
|--------------------|-----------------------|-----------------------------------|
|                    | features              | columns                           |
| Feature Extraction | Automatically extract | PCA for dimensionality reduction, |
|                    | compact features      | TF-IDF for text                   |

## Final Thought

Feature Engineering is often **more important than the algorithm** itself. A simple model with well-engineered features can **outperform** a complex model trained on raw data.