Econ C103: Game Theory and Networks Lecture 3

Instructor: Matt Leister

University of California, Berkeley

Fall 2019, UC Berkeley

Readings:

- Osborne (2004) chapters 4.1-4.6
- Osborne and Rubinstein (1994) chapters 2.3-2.4

Mixed strategies

Definition (Mixed strategy)

For finite set of actions A_i , a **mixed strategy** of player i is a probability distribution $\alpha_i: A_i \mapsto [0,1]$ satisfying $\sum_{a_i \in A_i} \alpha_i(a_i) = 1$.

- Denote $\Delta(A_i) \equiv \{\alpha_i\}$. ΔA_i is exactly the $(|A_i| 1)$ -simplex.
- Denote $\Delta(A)$ the set of all lotteries over A, equal to the (|A|-1)-simplex.
- Then, each profile of mixed strategies $\alpha = (\alpha_1, ..., \alpha_n)$ maps to a lottery in $\Delta(A)$, precisely:

$$\mathbf{\alpha} \mapsto (A, P(\cdot)), \text{ where } P(\mathbf{a}) = \prod_{i \in N} \alpha_j(a_j), \ \forall \mathbf{a} \in A.$$

Mixed extensions

Definition (Mixed strategy extension)

For static game $\Gamma = \langle N, \{A_i\}_{i \in N}, \{u_i\}_{i \in N} \rangle$ such that for each $i \in N$ the set of actions A_i is finite, a **mixed strategy extension of** Γ is given by $\Delta\Gamma = \langle N, \{\Delta(A_i)\}_{i \in N}, \{U_i\}_{i \in N} \rangle$ where for each $i \in N$:

$$U_i(\boldsymbol{\alpha}) = \sum_{\mathbf{a} \in A} \left(\prod_{j \in N} \alpha_j(\mathbf{a}_j) \right) u_i(\mathbf{a}).$$

 \bullet $\Delta\Gamma$ is itself a strategic game, with a larger action/strategy space.

Definition (Mixed-strategy Nash equilibrium)

Given mixed strategy extension $\Delta\Gamma$, a strategy profile α^* is a mixed-strategy Nash equilibrium (MNE) iff for each $i \in N$:

$$U_i(\boldsymbol{\alpha}^*) \geq U_i(\alpha_i', \boldsymbol{\alpha}_{-i}^*), \ \forall \alpha_i' \in \Delta(A_i).$$

Best responses in mixed extensions

• Fact: PNE are special (degenerate) cases of MNE: For any game Γ , the set of *PNE* of $\Gamma \subseteq$ the set of *MNE* of $\Delta\Gamma$.

Definition (Best response)

Given mixed extension $\langle N, \{\Delta(A_i)\}_{i \in N}, \{U_i\}_{i \in N} \rangle$, for each $i \in N$ and any profile $\alpha_{-i} \in \times_{j \in N} \Delta(A_j)$:

$$BR_i(\boldsymbol{\alpha}_{-i}) \equiv \{\alpha_i \in \Delta(A_i) : U_i(\alpha_i, \boldsymbol{\alpha}_{-i}) \geq U_i(\alpha_i', \boldsymbol{\alpha}_{-i}), \ \forall \alpha_i' \in \Delta(A_i)\}.$$

• $BR_i(\alpha_{-i})$ gives i's best mixed-strategy when others' are conjectured to play α_{-i} .

Mixed-strategy Nash equilibrium (MNE)

- Fact 1: In MNE α^* , for each $i \in N$ and $a_i \in A_i$ s.t. $a_i \in supp(\alpha_i^*)$ (i.e. $\alpha_i^*(a_i) > 0$), a_i is a pure best response to α_{-i}^* .
- Equivalently, let $\alpha_i^D[a_i]$ denote the (D)egenerate strategy on a_i (i.e. $\alpha_i^Da_i = 1$ and $\alpha_i^D[a_i](a_i') = 0$ for $a_i' \in A_i \setminus \{a_i\}$). In MNE α^* , for every $i \in N$ and $a_i \in supp(\alpha_i^*)$:

$$U_i(\alpha_i^D[a_i], \boldsymbol{\alpha}_{-i}^*) = U_i(\alpha_i^*, \boldsymbol{\alpha}_{-i}^*).$$

• In words: Equilibrium strategies α_{-i}^* induce i's indifference over the support of i's equilibrium strategy α_i^* .

Mixed-strategy Nash equilibrium (MNE)

- Fact 1: In MNE α^* , for each $i \in N$ and $a_i \in A_i$ s.t. $a_i \in supp(\alpha_i^*)$ (i.e. $\alpha_i^*(a_i) > 0$), a_i is a pure best response to α_{-i}^* .
- Equivalently, let $\alpha_i^D[a_i]$ denote the degenerate strategy on a_i (i.e. $\alpha_i^Da_i = 1$ and $\alpha_i^D[a_i](a_i') = 0$ for $a_i' \in A_i \setminus \{a_i\}$). In MNE α^* , for every $i \in N$ and $a_i \in supp(\alpha_i^*)$:

$$U_i(\alpha_i^D[a_i], \boldsymbol{\alpha}_{-i}^*) = U_i(\alpha_i^*, \boldsymbol{\alpha}_{-i}^*).$$

• Proof: If $U_i(\alpha_i^D[a_i], \alpha_{-i}^*) < U_i(\alpha_i^*, \alpha_{-i}^*) \equiv U_i^*$, then i profitably deviates by mixing $\tilde{\alpha}_i(a_i) = 0$, and, for each $a_i' \in supp(\alpha_i^*) \setminus \{a_i\}$, mixing $\tilde{\alpha}_i(a_i') = \alpha_i^*(a_i') + \alpha_i^*(a_i) \frac{\alpha_i^*(a_i')}{1 - \alpha_i^*(a_i)}$. Then, i's expected utility:

$$U(\tilde{\alpha}_i, \boldsymbol{\alpha}_{-i}^*) = U_i^* + \frac{\alpha_i^*(a_i)}{1 - \alpha_i^*(a_i)} (\underbrace{U_i^* - U_i(\alpha_i^D[a_i], \boldsymbol{\alpha}_{-i}^*)}_{+}) > U_i^*.$$

Thus, $\tilde{\alpha}_i$ gives a profitable deviation for i, a contradiction.

Mixed-strategy Nash equilibrium (MNE)

- Fact 1: In MNE α^* , for each $i \in N$ and $a_i \in A_i$ s.t. $a_i \in supp(\alpha_i^*)$ (i.e. $\alpha_i^*(a_i) > 0$), a_i is a pure best response to α_{-i}^* .
- Equivalently, let $\alpha_i^D[a_i]$ denote the degenerate strategy on a_i (i.e. $\alpha_i^Da_i = 1$ and $\alpha_i^D[a_i](a_i') = 0$ for $a_i' \in A_i \setminus \{a_i\}$). In MNE α^* , for every $i \in N$ and $a_i \in supp(\alpha_i^*)$:

$$U_i(\alpha_i^D[a_i], \alpha_{-i}^*) = U_i(\alpha_i^*, \alpha_{-i}^*).$$

• Proof (continued): Alternatively, if $U_i(\alpha_i^D[a_i], \alpha_{-i}^*) > U_i(\alpha_i^*, \alpha_{-i}^*)$, then i profitably deviates by playing strategy $\alpha_i^D[a_i]$.

• Denote $\alpha_i(T)=p$ and $\alpha_j(L)=q$. Consider "Battle of the Sexes":

		q	1-q
		L	R
р	Т	2, 1	0,0
1-p	В	0,0	1,2

• To find an MSN, first find p^* which makes j indifferent between L and R:

$$1p^* + 0(1 - p^*) = 0p^* + 1(1 - p^*)$$

 $\Leftrightarrow p^* = 2/3.$

Second, find q^* which makes i indifferent between T and B:

$$2q^* + 0(1 - q^*) = 0q^* + 1(1 - q^*)$$

 $\Leftrightarrow q^* = 1/3.$

• This MSN $(p^*, q^*) = (2/3, 1/3)$ is an additional Nash equilibrium to (1, 1) (i.e. (T,L)) and (0, 0) (i.e. (B,R)).

• Denote $\alpha_i(T) = p$ and $\alpha_i(L) = q$.

Figure: Two PNE, and one MNE in "Battle of the Sexes"

$$BR_i(q) = \left\{ \begin{array}{ll} 0 & \text{if } q < 1/3 \\ [0,1] & \text{if } q = 1/3 \\ 1 & \text{if } q > 1/3 \end{array} \right., \quad BR_j(p) = \left\{ \begin{array}{ll} 0 & \text{if } p < 2/3 \\ [0,1] & \text{if } p = 2/3 \\ 1 & \text{if } p > 2/3 \end{array} \right.$$

• $NE(\Gamma) = \{(0,0), (2/3,1/3), (1,1)\}.$

• Denote $\alpha_i(T) = p$ and $\alpha_i(L) = q$.

Figure: MNE in "Matching Pennies"

$$BR_i(q) = \left\{ \begin{array}{ll} 0 & \text{if } q < 1/2 \\ [0,1] & \text{if } q = 1/2 \\ 1 & \text{if } q > 1/2 \end{array} \right., \quad BR_j(p) = \left\{ \begin{array}{ll} 1 & \text{if } p < 1/2 \\ [0,1] & \text{if } p = 1/2 \\ 0 & \text{if } p < 1/2 \end{array} \right.$$

• $NE(\Gamma) = \{(1/2, 1/2)\}.$

• Denote $\alpha_i(T) = p$ and $\alpha_i(L) = q$.

Figure: MNE in "Prisoners Dilemma"

$$BR_i(q) = 0$$
, $BR_j(p) = 0$.

• $NE(\Gamma) = \{(0,0)\}.$

Mixed-strategy Nash equilibrium and Dominance

• Define an action $a_i \in A_i$ in $\Delta\Gamma$ as a **never-best-response** if for all $\alpha_{-i} \in \times_{j \neq i} \Delta(A_j)$ there is some $a_i' \in A_i \setminus \{a_i\}$ such that:

$$U_i(\alpha_i^D[a_i'], \alpha_{-i}) > U_i(\alpha_i^D[a_i], \alpha_{-i}).$$

- Fact 2: If a_i is strictly dominated in Γ , then $a_i \in A_i$ is a never-best-response.
- Fact 3: For game Γ' obtained from Γ via IESDS:

$$\alpha^* \in NE(\Delta\Gamma') \Leftrightarrow \alpha^* \in NE(\Delta\Gamma).$$

• Fact 4: For game Γ' obtained from Γ via either IEWDS:

$$\alpha^* \in NE(\Delta\Gamma') \Rightarrow \alpha^* \in NE(\Delta\Gamma).$$

However, the converse of Fact 4 does not hold: $\alpha^* \in NE(\Delta\Gamma)$ does not imply $\alpha^* \in NE(\Delta\Gamma')$.

Fixed-point Theorems: Kakutani

Proposition (Kakutani)

Let $X \subseteq \mathbb{R}^n$ give a non-empty, compact (closed and bounded) and convex set. Take $f: X \mapsto X$ a set-valued function (correspondence) such that:

- for each $x \in X$, f(x) is non-empty and convex.
- ② the graph of $f(\mathbf{x})$ (a subset of $X \times X$) is closed: for any $(\mathbf{x}^t, \mathbf{y}^t)_{t=1}^{\infty}$ such that $\mathbf{y}^t = f(\mathbf{x}^t)$ with $\mathbf{x}^t \to \mathbf{x}$ and $\mathbf{y}^t \to \mathbf{y}$, we have $\mathbf{y} = f(\mathbf{x})$.

Then, there exists some $\mathbf{x}^* \in X$ such that $\mathbf{x}^* \in f(\mathbf{x}^*)$.

 Weaker necessary condition to "X bounded" and "f has closed graph": f is upper hemicontinous.

Figure: function (left), upper hemicontinous correspondence (right)

Fixed-point Theorems: Kakutani

- Nash (1950) applied Kakutani's fixed-point theorem to show equilibrium existence of MNE in finite games.
 - Construct correspondence $BR : \times_{i \in N} \Delta(A_i) \mapsto \Delta(A)$ by:

$$BR(\alpha) \equiv (BR_i(\alpha_{-i}))_{i \in N}.$$

- BR satisfies the conditions of Kakutani's fixed-point theorem \Rightarrow there exists some $\alpha^* \in BR(\alpha^*)$, giving a MNE.
- Generically, there exists an odd number of MNE in finite static games; in 2×2 games, there exists 1 or 3 MNE.

Fixed-point Theorems: Brouwer

A special case of Kakutani's fixed-point theorem is the following.

Proposition (Brouwer)

Let $X \subseteq \mathbb{R}^n$ give a non-empty, compact (closed and bounded) and convex set. Take $f: X \mapsto X$ a single-valued continuous function. There exists some $\mathbf{x}^* \in X$ such that $\mathbf{x}^* = f(\mathbf{x}^*)$.

Fixed-point Theorems: Tarski

- A partially ordered set X has a binary relation \leq satisfying:
 - **1** $\mathbf{x} \leq \mathbf{x}$, for each $\mathbf{x} \in X$ (reflexivity),
 - ② $\mathbf{x} \leq \mathbf{y}$ and $\mathbf{y} \leq \mathbf{x} \Rightarrow \mathbf{x} = \mathbf{y}$, for each $\mathbf{x}, \mathbf{y} \in X$ (antisymmetry),
 - lacktriangledown $\mathbf{x} \leq \mathbf{y}$ and $\mathbf{y} \leq \mathbf{z} \Rightarrow \mathbf{x} \leq \mathbf{z}$, for each $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$ (transitivity).
- A complete lattice X is a partially ordered set in which all subsets have both a "max" and a "min" in X. For $\mathbf{x}, \mathbf{x}' \in X \subseteq \mathbb{R}^n$:

$$\max(\mathbf{x}, \mathbf{x}') = (\max(x_1, x_1'), ..., \max(x_n, x_n')),$$

 $\min(\mathbf{x}, \mathbf{x}') = (\min(x_1, x_1'), ..., \min(x_n, x_n')).$

Proposition (Tarski)

Let $X \subseteq \mathbb{R}^n$ give a non-empty, compact (closed and bounded) and convex set. Take $f: X \mapsto X$ a single-valued continuous function such that $\mathbf{x} \ge \mathbf{x}' \to f(\mathbf{x}) \ge f(\mathbf{x}')$ (by vector-wise ordering). The non-empty set of $\mathbf{x}^* \in X$ satisfying $\mathbf{x}^* = f(\mathbf{x}^*)$ give a complete lattice.

ullet Tarski's fixed point theorem generalizes to any X a complete lattice.