

# **Emission Properties of Elemental Metal Photocathodes**

#### Tuo Li

Ben L. Rickman, W. Andreas Schroeder and Joel A. Berger

Physics Department, University of Illinois at Chicago



Department of Energy, NNSA DE-FG52-09NA29451

Department of Education, GAANN Fellowship DED P200A070409



## **Brightness: Transverse Emittance**



• Measure of transverse electron beam (or pulse) quality:

$$\varepsilon_T = \frac{1}{mc} \Delta x \cdot \Delta p_T$$

... a conserved quantity in a 'perfect' system.

- Initial electron source parameters at photocathode:
  - $-\Delta x$  determined by laser spot size & limited by Child's Law
  - $-\Delta p_T$  is an *intrinsic* property of the photocathode material
- **Standard** theoretical expressions for transverse rms momentum:

- Single-photon photoemission: 
$$\Delta p_T = \sqrt{\frac{m(\hbar\omega - \varphi)}{3}}$$

#### **Results: Metals**



- Effective mass in metal photocathodes: dH-vA, CR ...



B.L. Rickman et al., *Phys. Rev. Lett.* **111** (2013) 23740

















## **Work Function Anisotropy**



- Example:  $\phi_{(ijk)}$  for Mo by electron emission microscopy





- Polycrystalline metal photocathodes generate inhomogeneous electron beams
- Any photoemission analysis *must* include  $\phi_{(ijk)}$

## **Photoemission Simulation: Ag**



fcc crystal lattice



## **Photoemission Simulation: Ag**





## **Photoemission Simulation: Ag**





Spatially-averaged  $\Delta p_T = 0.267 \text{ (m}_0.\text{eV})^{1/2}$ 

#### **Photoemission Simulation: Mo**



bcc crystal lattice



#### **Photoemission Simulation: Mo**



#### bcc crystal lattice



Both electron- and hole-like states contribute to photoemission

### **Photoemission Simulation: Mo**





Spatially-averaged  $\Delta p_T = 0.219 \text{ (m}_0.\text{eV)}^{1/2}$ 

#### **Photoemission Simulation: Nb**



bcc crystal lattice



#### **Photoemission Simulation: Nb**



bcc crystal lattice



Only hole-like states contribute to photoemission

#### **Photoemission Simulation: Nb**



bcc crystal lattice



## **Experiment vs. Theory**





Li, Tuo and Rickman, B.L. and Schroeder, W. A, Journal of Applied Physics, 117, 134901

## $\Delta p_{\rm T}(T_e)$ for V(001) emission



- DFT band structure with Fermi-Dirac distribution for electrons



## Summary



- Work function anisotropy  $\phi_{(ijk)}$ 
  - ⇒ Intrinsically inhomogeneous electron beam from polycrystalline photocathodes
- Band structure complexity (non-spherical Fermi surface)
- $\Rightarrow$  DFT-based photoemission analysis for evaluation of  $\Delta p_T$  (knowledge of electronic state (**p**,*E*)-distribution is fundamental)

## **Hexagonal Close-Packed Metals**



 $\Delta p_{\rm T}(ijk)$  for **all** elemental metals

http://people.uic.edu/~tli27/Database.html







# Thank you!

The authors are indebted to Juan Carlos Campuzano, Serdar Ogut, Christopher Grein, Randall Meyer for their valuable discussions.