- 1. Diga, justificando, se as afirmações seguintes são verdadeiras ou falsas:
 - (a) Sejam p,q e r proposições. Se as proposições $r\Rightarrow p,\ p\Rightarrow q$ e $\sim q$ são verdadeiras, então, a proposição r é verdadeira.

A afirmação é falsa. Do facto de $r\Rightarrow p$ e $p\Rightarrow q$ serem verdadeiras, por transitividade, temos que $r\Rightarrow q$ é verdadeira. Como temos $\sim q$ verdadeira, por Modus Tolens, concluímos que $\sim r$ é verdadeira. Assim, não podemos concluir que r é verdadeira.

(b) Sejam A e B conjuntos disjuntos. Então, $R=\omega_A\cup\omega_B$ é uma relação de equivalência em $A\cup B$.

A afirmação é verdadeira. Como A e B são disjuntos, $\{A,B\}$ é uma partição do conjunto $A \cup B$. Como a relação de equivalência associada a esta partição é $\omega_A \cup \omega_B$, concluímos que R é uma relação de equivalência.

- (c) Sejam (A, \leq) um c.p.o. Se existe ínfimo de \emptyset em A então A admite um elemento maximal. A afirmação é verdadeira. Se existe $\inf \emptyset$, então existe $\max A$ e o máximo de um c.p.o. é sempre um elemento maximal desse mesmo c.p.o.
- (d) Sejam A,B e C conjuntos. Se $A\cup C\sim B\cup C$ então $A\sim B$. A afirmação é falsa. Considere-se o seguinte contraexemplo: Se $A=\{1,2\},\ B=\{3\}$ e $C=\{1,2,3\},$ então, $A\cup C=\{1,2,3\}=B\cup C$ e, portanto, $A\cup C\sim B\cup C$ e, no entanto,
- 2. Dê exemplo, ou justifique que não existe, de:
 - (a) um conjunto A tal que $\emptyset \in A$ e $\emptyset \subseteq A$;

 $A \not\sim B$, já que são conjuntos finitos com diferentes cardinais.

 $A=\{\emptyset\}.$ Neste caso, temos $\emptyset\in A.$ A inclusão $\emptyset\subseteq A$ é sempre verdadeira.

(b) uma família de conjuntos $(A_i)_{i\in\mathbb{N}}$ tal que $\bigcup_{i\in\mathbb{N}}A_i=\mathbb{R}$ e $\bigcap_{i\in\mathbb{N}}A_i=\{0\}$; Para $i\in\mathbb{N}$, seja $A_i=\{x\in\mathbb{R}:|x|\leq i-1\}$. Então, $(A_i)_{i\in\mathbb{N}}$ é uma família de conjuntos que satisfaz as condições enunciadas.

- (c) Uma relação de equivalência \mathcal{R} em $A=\{1,2,3,4\}$ tal que $(1,3),(1,4)\in\mathcal{R}$ e $[4]_{\mathcal{R}}=\{1,4\}$; Não existe. Sendo \mathcal{R} uma relação de equivalência tal que $(1,4)\in\mathcal{R}$, teríamos, por simetria, que $(4,1)\in\mathcal{R}$ e, uma vez que $(4,1),(1,3)\in\mathcal{R}$, por transitividade, teríamos que $(3,4)\in\mathcal{R}$ e, portanto, teríamos que $3\in[4]_{\mathcal{R}}$, o que não acontece.
- (d) Uma função $f:\{1,2\}\to \mathcal{P}(\{1,2\})$ sobrejetiva. Não existe. Como $\#\{1,2\}=2<4=\#\mathcal{P}(\{1,2\})$, não existe qualquer função de $\{1,2\}$ em $\mathcal{P}(\{1,2\})$ sobrejetiva.
- 3. Usando indução matemática, prove que, para todo o natural $n, \sum_{k=1}^n (3k-2) = \frac{n(3n-1)}{2}$.

- (1) Comecemos por verificar o caso base: considerando n=1, temos que $\sum_{k=1}^{1}(3k-2)=3\times 1-2=1=\frac{1(3\times 1-1)}{2};$
- (2) Suponhamos agora que $n\in\mathbb{N}$ é tal que $\sum_{k=1}^n(3k-2)=\frac{n(3n-1)}{2}$. Queremos provar que $\sum_{k=1}^{n+1}(3k-2)=\frac{(n+1)(3n+2)}{2}$. De facto, como

$$\begin{split} \sum_{k=1}^{n+1} (3k-2) &= \sum_{k=1}^{n} (3k-2) + (3(n+1)-2) \\ &= \frac{n(3n-1)}{2} + 3n + 1 \qquad \text{[por hipótese de indução]} \\ &= \frac{3n^2 - n + 6n + 2}{2} \\ &= \frac{3n^2 + 5n + 2}{2} \\ &= \frac{(n+1)(3n+2)}{2}. \end{split}$$

Por (1) e (2), aplicando o Princípio de Indução, podemos concluir que a igualdade se verifica para todo natural n.

- 4. Considere a aplicação $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, definida por $f(m,n) = (mn,m^2)$, para todo $(m,n) \in \mathbb{Z} \times \mathbb{Z}$.
 - (a) Se $A=\{(x,y)\in\mathbb{Z}\times\mathbb{Z}\mid |x|=|y|=1\}$, determine f(A). Como $A=\{(1,1),(1,-1),(-1,1),(-1,-1)\}$ e f((1,1))=f((-1,-1))=(1,1), f((-1,1))=f((1,-1))=(-1,1), temos que

$$f(A) = \{(1,1), (-1,1)\}.$$

(b) Se $B=\{0,2\}\times\{2,0\}$, determine $f^\leftarrow(B)$.

Como $B = \{(0,0), (2,0), (0,2), (2,2)\}$ es

- $f((m,n)) = (0,0) \Leftrightarrow mn = 0 = m^2 \Leftrightarrow m = 0 \land n \in \mathbb{Z}$;
- $f((m,n)) = (2,0) \Leftrightarrow mn = 2 \land m^2 = 0 \Leftrightarrow \text{condição impossível};$
- $f((m,n)) = (0,2) \Leftrightarrow mn = 0 \land m^2 = 2 \Leftrightarrow \text{condição impossível em } \mathbb{Z} \times \mathbb{Z};$
- $f((m,n))=(2,2)\Leftrightarrow mn=2\land m^2=2\Leftrightarrow {\sf condição} \ {\sf impossível} \ {\sf em}\ \mathbb{Z}\times\mathbb{Z},$

temos que

$$f^{\leftarrow}(B) = \{(0, n) \mid n \in \mathbb{Z}\}.$$

- (c) Diga, justificando, se f é sobrejetiva e/ou injetiva.
 - Em (a), vimos que f((1,1)) = f((-1,-1)) = (1,1). Logo, f não é injetiva. Em (b), vimos que (2,0) não é imagem de um par de números inteiros. Logo, f não é sobrejetiva.
- (d) Considere a relação de equivalência associada à igualdade de imagem por f, definida por

$$(x,y) \mathcal{R}_f(a,b) \Leftrightarrow f(x,y) = f(a,b).$$

Determine $[(2,0)]_{\mathcal{R}_f}$ e $[(0,2)]_{\mathcal{R}_f}$.

Como f(2,0) = (0,4) e f(0,2) = (0,0), temos que

$$[(2,0)]_{\mathcal{R}_f} = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid (x,y) \ \mathcal{R}_f \ (2,0)\}$$
$$= \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid f(x,y) = f(2,0)\}$$
$$= \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid (xy,x^2) = (0,4)\}$$
$$= \{(2,0), (-2,0)\}$$

e

$$[(0,2)]_{\mathcal{R}_f} = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid (x,y) \ \mathcal{R}_f \ (0,2)\}$$
$$= \{(x,y) \in \mathbb{Z} \times Z \mid f(x,y) = f(0,2)\}$$
$$= \{(x,y) \in \mathbb{Z} \times Z \mid (xy,x^2) = (0,0)\}$$
$$= \{(0,y) \mid y \in \mathbb{Z}\}$$

5. Considere o c.p.o. (A, \leq) definido pelo seguinte diagrama de Hasse:

- (a) Indique, caso exista:
 - i. Maj $\{7, 10\}$;

$$\mathsf{Maj}\{7,10\} = \{8,4,1\}.$$

ii. sup∅;

Não existe. Quando existe, $\sup \emptyset = \min A$. O c.p.o. A tem dois elementos minimais (o 2 e o 5), pelo que não admite elemento mínimo.

iii. um subconjunto de A com 5 elementos que admita máximo e mínimo.

Seja $X = \{1, 8, 7, 10, 5\}$. Então, X admite máximo (o elemento 1) e mínimo (o elemento 5).

(b) Será (A,\leq) um reticulado? Justifique.

Não. Como vimos em (a)ii., A não admite elemento mínimo e A é um c.p.o. finito (qualquer reticulado finito admite elemento mínimo).

3.
$$1.5$$
 4. $3 \times 1.5 + 2.0$