МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського "Харківський авіаційний інститут"

Кафедра комп'ютерних систем та мереж

Лабораторна робота № 2

"Разработка и исследование программы решения квадратного уравнения."

По дисциплине "Технологии программирования"

XAI.503.525B.123. 1705067.180

Виконав студент гр. 525В Пеналоза Г. 18-02-19 Перевірив <u>ст. викладач каф. 503</u> (науковий ступінь, вчене звання, посада) (підпис, дата) (П.І.Б.)

Тема работы: "Разработка и исследование линейных программ" (Калькулятор)

Задание: разработать на Visual Studio C# проект, реализующий программу поиска действительных корней квадратного уравнения. Запретить ввод в окна редактирования: - символов отличных от (0 1 2 3 4 5 6 7 8 9 + - ,), - двух символов (+ -,), - символов (+ и -) не в начале числа.

Диаграмму классов

Текст программы

Form.cs

```
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Globalization;
using System.Ling;
using System.Text;
using System.Text.RegularExpressions;
using System. Threading;
using System.Threading.Tasks;
using System.Windows.Forms;
namespace Lab2._2._2
  public partial class Form1: Form
    public ContextMenu contxt_menu = new ContextMenu(); //Create an empty
context menu object
    public Form1()
```

```
{
       InitializeComponent();
     public string Formato(string n)//Check the formart
       Regex reg dec nul = new Regex((^{\circ}(-))[0-9]+([,.][0-9]\{1,7\})?);
       string input = n;
       return reg_dec_nul.IsMatch(n) ? "dec" : "nul";
     }
    public void button1_Click(object sender, EventArgs e)//Clean all the data to
do new operation
     {
       a_.Text = "":
       b_.Text = "";
       c .Text = "";
       x1_.Text = "";
       x2 . Text = "";
       m_1.Checked = false;
       m_2.Checked = false;
       m_3.Checked = false;
     }
    public void tBKeyPress(object sender, KeyPressEventArgs e)
                                                                       //Detect
key entered according to the variant.
       Thread.CurrentThread.CurrentCulture = new CultureInfo("es-EC"); //Gets
or sets the current culture used by the Resource Manager to look up culture-
specific resources at run time.
       TextBox tb = (TextBox)sender;
       if (!char.IsDigit(e.KeyChar) && e.KeyChar != ',' && e.KeyChar != '-' &&
e.KeyChar!='\b')
         e.KeyChar = char.MinValue;
       }
       else
          if (e.KeyChar == ',')
            if (tb.Text.IndexOf(',') != -1)
               e.KeyChar = char.MinValue;
          }
```

```
else if (e.KeyChar == '-')
            if (tb.Text.Length == 0)
               return;
            e.KeyChar = char.MinValue;
          else
            if (!char.IsDigit(e.KeyChar))
               return;
            else
               string text = tb.Text;
               int num = text.IndexOf(',');
               if (num == -1 || text.Length - 1 - num <= 6)
                 return;
               e.KeyChar = char.MinValue;
            }
          }
       }
     }
     public void tb_KeyDown(object sender, KeyEventArgs e)//Event when press
control + c or control + v to copy and paste
     {
       TextBox tb = (TextBox)sender;
       if (e.Control && (e.KeyCode == Keys.V))
       {
          string n = Clipboard.GetText();
          string str = Formato(n);
          if (!(str == "dec"))
            Help.ShowPopup(tb, "incorrect format!", new Point(tb.Right,
tb.Left));
            e.Handled = true;
          }
          else
            if (n.Contains("."))
               n = n.Replace('.', ',');
            tb.Text = n;
            Help.ShowPopup(tb, "text pasted!", new Point(tb.Right, tb.Left));
          }
       }
       else
```

```
{
         if (!e.Control || e.KeyValue != 67)
            return:
          Clipboard.SetText(tb.Text);
          Help.ShowPopup(tb, "text copied!", new Point(tb.Right, tb.Left));
       }
     }
     private void Form1_Load(object sender, EventArgs e)
       a_.ContextMenu = this.contxt_menu; //Set an empty context menu object
       b_.ContextMenu = this.contxt_menu; //Set an empty context menu object
       c .ContextMenu = this.contxt menu; //Set an empty context menu object
     }
     private void m_1_CheckedChanged(object sender, EventArgs e)//Checked the
first method and resolve the equation
       if (m 1.Checked == true && a .Text != "" && b .Text != "" && c .Text !
       {
          m 2.Checked = false; m 3.Checked = false;
          x1 . Text = "";
          x2 . Text = "";
          \exp.\text{Text} = \text{"a. } x \land 2 + \text{b. } x + \text{c} = 0\text{"};
         //Method 1 - посредством реализации алгоритма решения
квадратного уравнения непосредственно в обработчике;
          double a,b,c,x1,x2,d;
          a = Double.Parse(a_.Text);
          b = Double.Parse(b_.Text);
          c = Double.Parse(c_.Text);
         exp.Text = exp.Text.Replace("a", a_.Text);
          exp.Text = exp.Text.Replace("b", b_.Text);
          exp.Text = exp.Text.Replace("c", c .Text);
          d = b * b - 4 * a * c;
          if (d<0)
            MessageBox.Show("Дискриминант меньше нуля. Корней нет.");
            MessageBox.Show("Результат будет отображаться в комплексных
числах.");
            x1 = ((-b) / (2 * a));
            x1_.Text = x1.ToString("G4");
            x1 = ((-Math.Sqrt(Math.Abs(d))) / (2 * a));
            x1_.Text += x1.ToString("G4")+" * i";
```

```
x2 = ((-b) / (2 * a));
            x2_.Text = x2.ToString("G4");
            x2 = ((Math.Sqrt(Math.Abs(d))) / (2 * a));
            x2. Text += "+"+x2. ToString("G4")+" * i";
         }
         if (d==0)
            x1 = (-b / (2 * a));
            x1_.Text = x1.ToString("G7");
            //MessageBox.Show("Дискриминант равен нулю. Корень равен " +
x1 + ".");
         if(d>0)
            x1 = ((-b - Math.Sqrt(d)) / (2 * a));
            x2 = ((-b + Math.Sqrt(d)) / (2 * a));
            x1_.Text = x1.ToString("G7");
            x2 .Text = x2.ToString("G7");
            //MessageBox.Show("Дискриминант равен " + d + ". Первый
корень равен " + х1 + ". Второй корень равен " + х2 + ".");
         }
       }
       else
       {
         MessageBox.Show("Введите все переменные!");
         m 1.Checked = false;
     }
     private void m_2_CheckedChanged(object sender, EventArgs e)//Checked the
second method
     {
       if (m_2.Checked == true && a_.Text!="" && b_.Text != "" && c_.Text !=
       { m 1.Checked = false; m 3.Checked = false; x1 .Text = ""; x2 .Text =
""; exp.Text = "a . x^2 + b \cdot x + c = 0"; }
       else
       {
         MessageBox.Show("Введите все переменные!");
         m 2.Checked = false;
       }
     }
```

```
private void m_3_CheckedChanged(object sender, EventArgs e)//Checked the
third method
     {
       if (m_3.Checked == true && a_.Text != "" && b_.Text != "" && c_.Text !
       { m_1.Checked = false; m_2.Checked = false; x1_.Text = ""; x2_.Text =
""; exp.Text = "a . x^2 + b . x + c = 0"; }
       else
         m 3.Checked = false;
          MessageBox.Show("Введите все переменные!");
       }
     }
     private void button3 Click(object sender, EventArgs e)//Close the application
       this.Close();
     }
     public double d_;
     public void Method 2()//Method 2 - посредством реализации алгоритма
решения уравнения в методе класса формы;
     {
       x1_.Text = "":
       x2_.Text = "";
       \exp.\text{Text} = \text{"a. } x^2 + \text{b. } x + \text{c} = 0\text{"};
       //Method 1
       double a, b, c, x1, x2;
       a = Double.Parse(a .Text);
       b = Double.Parse(b_.Text);
       c = Double.Parse(c .Text);
       exp.Text = exp.Text.Replace("a", a_.Text);
       exp.Text = exp.Text.Replace("b", b_.Text);
       exp.Text = exp.Text.Replace("c", c_.Text);
       d = b * b - 4 * a * c;
       if (d_{<0})
          MessageBox.Show("Дискриминант меньше нуля. Корней нет.");
          MessageBox.Show("Результат будет отображаться в комплексных
числах.");
         x1 = ((-b) / (2 * a));
          x1_.Text = x1.ToString("G4");
         x1 = ((-Math.Sqrt(Math.Abs(d_))) / (2 * a));
          x1 .Text += x1.ToString("G4") + " * i";
```

```
x2 = ((-b) / (2 * a));
          x2_.Text = x2.ToString("G4");
          x2 = ((Math.Sqrt(Math.Abs(d_))) / (2 * a));
         x2_.Text += "+" + x2.ToString("G4") + " * i";
       if (d_==0)
         x1 = (-b / (2 * a));
          x1_.Text = x1.ToString("G7");
         //MessageBox.Show("Дискриминант равен нулю. Корень равен " +
x1 + ".");
       if (d_{-} > 0)
          x1 = ((-b - Math.Sqrt(d_)) / (2 * a));
         x2 = ((-b + Math.Sqrt(d_)) / (2 * a));
         x1_.Text = x1.ToString("G7");
          x2_.Text = x2.ToString("G7");
         //MessageBox.Show("Дискриминант равен " + d + ". Первый корень
равен " + х1 + ". Второй корень равен " + х2 + ".");
     }
     private void button2_Click(object sender, EventArgs e)//Identify methods
       if (m_2.Checked==true)
          Method_2();
       if (m_3.Checked==true)
          Class1 class1 = new Class1
            f = this
          class1.Method_3();
       }
     }
  }
}
```

Class1.cs

```
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading.Tasks:
using System.Windows.Forms;
namespace Lab2._2._2
  public class Class1
     public Form1 f = new Form1();
    public void Method_3()//Method 3 - посредством реализации алгоритма
решения уравнения в методе отдельного класса;
       f.x1 . Text = "";
       f.x2_.Text = "";
       f.exp.Text = "a . x^2 + b . x + c = 0";
       //Method 1
       double a, b, c, x1, x2, d;
       a = Double.Parse(f.a_.Text);
       b = Double.Parse(f.b_.Text);
       c = Double.Parse(f.c_.Text);
       //Replace values in the expresion
       f.exp.Text = f.exp.Text.Replace("a", f.a ..Text);
       f.exp.Text = f.exp.Text.Replace("b", f.b_.Text);
       f.exp.Text = f.exp.Text.Replace("c", f.c_.Text);
       d = b * b - 4 * a * c; //Discriminate
       if (d < 0)//Complex roots
       {
         MessageBox.Show("Дискриминант меньше нуля. Корней нет.");
         MessageBox.Show("Результат будет отображаться в комплексных
числах.");
         x1 = ((-b) / (2 * a));
         f.x1 .Text = x1.ToString("G4");
         x1 = ((-Math.Sgrt(Math.Abs(d))) / (2 * a));
         f.x1_{...}Text += x1.ToString("G4") + " * i";
         x2 = ((-b) / (2 * a));
         f.x2_.Text = x2.ToString("G4");
         x2 = ((Math.Sqrt(Math.Abs(d))) / (2 * a));
```

```
f.x2_.Text += "+" + x2.ToString("G4") + " * i";
       if (d == 0)//One root
          x1 = (-b / (2 * a));
          f.x1_.Text = x1.ToString("G7");
          //MessageBox.Show("Дискриминант равен нулю. Корень равен " +
x1 + ".");
       if (d > 0)//Two roots
         x1 = ((-b - Math.Sqrt(d)) / (2 * a));
          x2 = ((-b + Math.Sqrt(d)) / (2 * a));
          f.x1_.Text = x1.ToString("G7");
         f.x2_.Text = x2.ToString("G7");
         //MessageBox.Show("Дискриминант равен " + d + ". Первый корень
равен " + x1 + ". Второй корень равен " + x2 + ".");
     }
  }
                                  Unit-тестов.
using System;
using Microsoft. Visual Studio. Test Tools. Unit Testing;
using Lab2. 2. 2;
using System.Windows.Forms;
namespace PruebasUnitarias
  [TestClass]
  public class UnitTest1
  {
     [TestMethod]
     public void CheckInput()//In this test fail because it does not read the char has
sent to textbox
     {
       var dig = '-';
       var valespect = "-";
       Form1 main = new Form1();
       KeyPressEventArgs keyPress = new KeyPressEventArgs(dig);
       main.tBKeyPress(main.a_,keyPress);
       Assert.AreEqual(valespect,main.a_.Text);
```

```
//Verify different of numbers if they are correct.
[TestMethod]
public void CheckInput2()
  var dig = "34";
  var valespect = "dec";
  Form1 main = new Form1();
  Assert.AreEqual(valespect, main.Formato(dig));
}
[TestMethod]
public void CheckInput3()
  var dig = "-34,d";
  var valespect = "nul";
  Form1 main = new Form1();
  Assert.AreEqual(valespect, main.Formato(dig));
}
[TestMethod]
public void CheckInput4()
  var dig = "--45.3";
  var valespect = "nul";
  Form1 main = new Form1();
  Assert.AreEqual(valespect, main.Formato(dig));
//Verify discrimante
[TestMethod]
public void Dis()
  var a = 1;
  var b = 2;
  var c = 1;
  //double disc = 2 * (b) - 4 * a * c;
  double valespect = 0;
  Form1 main = new Form1();
  main.a_.Text = a.ToString();
  main.b_..Text = b.ToString();
  main.c_.Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.d_);
[TestMethod]
public void Dis_()
```

```
var a = 2;
  var b = 4;
  var c = 2;
  //double disc = 2 * (b) - 4 * a * c;
  double valespect = 0;
  Form1 main = new Form1();
  main.a..Text = a.ToString();
  main.b_..Text = b.ToString();
  main.c_..Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.d_);
[TestMethod]
public void Dis_()
  var a = 4;
  var b = 8;
  var c = 4;
  //double disc = 2 * (b) - 4 * a * c;
  double valespect = 0;
  Form1 main = new Form1();
  main.a_.Text = a.ToString();
  main.b_..Text = b.ToString();
  main.c_..Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.d_);
[TestMethod]
public void Dis2_()
  var a = 3;
  var b = 1;
  var c = 1;
  //double disc = 2 * (b) - 4 * a * c;
  double valespect = -11;
  Form1 main = new Form1();
  main.a_.Text = a.ToString();
  main.b_..Text = b.ToString();
  main.c_..Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.d_);
[TestMethod]
public void Dis2__()
```

```
var a = 5;
  var b = 1;
  var c = 1;
  //double disc = 2 * (b) - 4 * a * c;
  double valespect = -19;
  Form1 main = new Form1();
  main.a..Text = a.ToString();
  main.b_..Text = b.ToString();
  main.c_..Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.d_);
[TestMethod]
public void Dis2()
  var a = 10;
  var b = 2;
  var c = 6;
  //double disc = 2 * (b) - 4 * a * c;
  double valespect = -236;
  Form1 main = new Form1();
  main.a_.Text = a.ToString();
  main.b_.Text = b.ToString();
  main.c_..Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.d_);
[TestMethod]
public void Dis3()
  var a = 3;
  var b = 6;
  var c = 1;
  //double disc = 2 * (b) - 4 * a * c;
  double valespect = 24;
  Form1 main = new Form1();
  main.a_.Text = a.ToString();
  main.b_.Text = b.ToString();
  main.c_..Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.d_);
[TestMethod]
public void Dis3_()
```

```
var a = 1;
  var b = 4;
  var c = 3;
  //double disc = 2 * (b) - 4 * a * c;
  double valespect = 4;
  Form1 main = new Form1();
  main.a_.Text = a.ToString();
  main.b_..Text = b.ToString();
  main.c_..Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.d_);
[TestMethod]
public void Dis3__()
  var a = 2;
  var b = 7;
  var c = 3;
  //double disc = 2 * (b) - 4 * a * c;
  double valespect = 25;
  Form1 main = new Form1();
  main.a_.Text = a.ToString();
  main.b_.Text = b.ToString();
  main.c_.Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.d_);
}
//Verify test - results x1 and x2
[TestMethod]
public void TestP()
  var a = 1;
  var b = 2;
  var c = 1;
  //double disc = 2 * (b) - 4 * a * c;
  var valespect = "-1";
  Form1 main = new Form1();
  main.a_..Text = a.ToString();
  main.b_.Text = b.ToString();
  main.c_..Text = c.ToString();
  main.Method_2();
  Assert.AreEqual(valespect, main.x1_.Text);
}
[TestMethod]
public void TestP_()
```

```
{
       var a = 5;
       var b = 2;
       var c = 1;
       //double disc = 2 * (b) - 4 * a * c;
       var valespect = "-0,2-0,4 * i";
       var valespect_ = "-0,2+0,4 * i";
       Form1 main = new Form1();
       main.a..Text = a.ToString();
       main.b_.Text = b.ToString();
       main.c_..Text = c.ToString();
       main.Method_2();
       Assert.AreEqual(valespect, main.x1 .Text, valespect , main.x2 .Text);
     [TestMethod]
     public void TestP__()
       var a = 5;
       var b = 43;
       var c = 12;
       //double disc = 2 * (b) - 4 * a * c;
       var valespect = "-8,311234";
       var valespect_ = "-0,2887658";
       Form1 main = new Form1();
       main.a_.Text = a.ToString();
       main.b_.Text = b.ToString();
       main.c_.Text = c.ToString();
       main.Method 2();
       Assert.AreEqual(valespect, main.x1_.Text, valespect_, main.x2_.Text);
     }
  }
}
```

Скриншоты

	LAB2.2.2 - решения квадра	тного
	Values entered	Results
	a = 1 b = 2 c = 6	x1 = \[\begin{array}{lll} -1-2,236*i \\ x2 = \[\end{array} \] -1+2,236*i \\ \end{array}
} [T	Control 1.3	$^2 + 2 \cdot x + 6 = 0$
pu {	Method 1	New
	✓ Method 2	Calculate
	Method 3	Finalize

	LAB2.2.2 - решения ква <i>д</i>	ратного	
	Values entered	Results	
	a = 1 b = 43 c = 6	x1 = -42,86001 x2 = -0,1399906	
}	Control 1 . $x^2 + 43 . x + 6 = 0$		
pu {	Method 1	New	
	Method 2	Calculate	
000000	Method 3	Finalize	
'		Valor	

Таблица 1 - Поля и методы класса А и их назначение (Пример)

N°	Поле	Назначение
1	a_	Variable 1
2	b_	Variable 2
3	b_2	
4	button1	Clean fields
5	button2	Calcule the roots
6	button3	Close the app
7	C_	Variable 3
8	context_menu	Contex menu
9	d_	Discriminate
10	exp	Label with a expresion
11	label1	Titles
12	label2	Titles
13	label3	Titles
14	label4	Titles
15	label5	Titles
16	label6	Titles
17	label7	Titles
18	label8	Titles
19	m_1	Checkbox 1 (way)
20	m_2	Checkbox 2 (way)
21	m_3	Checkbox 3 (way)
22	x1_	Root 1
23	x2_	Root 2
24	f	Instance of form in the other file
25	Метод	Назначение
26	Method_2	Resolve the equation from a method of the form file
27	Formato	Indentify the correct format of the numbers entered.
28	Method_3	Resolve the equation from a

Таблица 2 - Обработчики событий проекта и их назначение (Пример)

N°	Обработчик события	Назначение
1	button1_Click	Clean
2	tBKeyPress	dentify the correct digits
3	tb_KeyDown	Copy and Paste with key combination
4	m_1_CheckedChanged	Identify the checkbox 1
5	m_2_CheckedChanged	Identify the checkbox 2
6	m_3_CheckedChanged	Identify the checkbox 3
7	button3_Click	Close
8	Form1_Load	Set null context menu to textbox
9	button2_Click	Calculate the roots

Выводы

Однажды лабораторная практика была закончена. Знания и практика с регулярными выражениями и вводом параметров в текстовом поле были усилены. Кроме того, для проверки данных использовались юнит-тесты. На практике я не смог получить успешный тест, который подтвердил конкретную цифру. Поэтому я приступил к проверке введенных данных. Улучшения для реализации:

- * Уравнения высшего уровня.
- * Получить график уравнения и его корней.

Использованные источники

1. https://docs.microsoft.com/es-es/dotnet/