## INDIAN INSTITUTE OF TECHNOLOGY BHILAI CS203: Theory of Computation I

## Tutorial Sheet 2

## • Solve the following problems before the Tutorial.

1. Two DFAs,  $M_1$  and  $M_2$  are given below. Answer the following questions for each of these machines.



Figure 1:  $M_1$ 



Figure 2:  $M_1$ 

- (a) What is the start state?
- (b) What is the set of accept states?
- (c) What sequence of states does the machine go through on input aabb?
- (d) Does the machine accept the string aabb?
- (e) Does the machine accept the string  $\epsilon$ ?
- 2. The formal description of a DFA, M is  $(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\})$ , where  $\delta$  is given by the following table. Give the state diagram of this machine.

| u     | d                       |
|-------|-------------------------|
| $q_1$ | $q_2$                   |
| $q_1$ | $q_3$                   |
| $q_2$ | $q_4$                   |
| $q_3$ | $q_5$                   |
| $q_4$ | $q_5$                   |
|       | $q_1$ $q_1$ $q_2$ $q_3$ |

- 3. Construct and give the state diagram of DFAs for the following given languages. In all parts  $\Sigma = \{a, b\}$ .
  - (a)  $\{ w | w \text{ has at least three } a \text{'s} \}$
  - (b)  $\{ w | w \text{ has exactly two } b$ 's $\}$
  - (c)  $\{ w | w \text{ contains substring } ba \}$
  - (d)  $\{w|w \text{ does not contain substring } abab\}$
  - (e)  $\{w|w \text{ is any string except } a \text{ and } b\}$
- 4. Give state diagrams of DFAs recognizing the following languages. In all parts the alphabet  $\Sigma = \{0, 1\}$ .
  - (a) { w|w begins with a 1 and ends with a 0}
  - (b) { w|w contains the substring 0101, i.e., w = x0101y for some x and y}
  - (c)  $\{ w | w \text{ does not contain the substring } 110 \}$

- (d)  $\{ w | \text{ every odd position of } w \text{ is a } 1 \}$
- (e)  $\{\epsilon, 0\}$
- 5. Construct and give the state diagram of NFAs for the following given languages.
  - (a) Set of all string in  $\{0,1\}$  which are the binary representation of integers divisible by 2.
  - (b) Set of strings consisting all strings over  $\{0,1\}$  starts and ends with same symbol.
  - (c) Set of strings consisting all strings over {0,1} does not start and end with same symbol.
  - (d) Set of strings consisting all strings over  $\{0\}$  of the form  $0^k$ , for k is even.
  - (e) Set of strings consisting all strings over  $\{0\}$  of the form  $0^k$ , for k is even and not divisible by 3.
  - (f) Set of strings consisting all strings over  $\{0,1\}$  containing an 1 in the 2nd position from end.
  - (g) Set of strings over  $\{0,1\}$  of length either divisible by 2 or 3.
- 6. Prove that if  $M_1 = \{Q, \sum, \delta, q_0, F\}$  is a DFA recognizes a language A, Then  $M_1 = \{Q, \sum, \delta, q_0, Q \setminus F\}$  recognizes  $A^c$ .