

PRÁCTICA

Departamento Académico	Sistemas y Computación		
Programa Académico	Plan de Estudios Formato		
Ing. en Sistemas Computacionales	ISIC-2010-224	SyC-01-2015-P	
Asignatura	Clave de la Asignatura	Créditos SATCA Semestre	
Fundamentos de Programación	AED-1285	3-2-5 1ro.	

No. de Práctica	Nombre de la Práctica	
P_01_02	P_01_02 Diseño de algoritmos para Estructuras selectivas (simple y compuesta).	
Competencia de la Práctica		
Diseño de algoritmos con estructuras selectivas (simple y compuesta).		

1. INTRODUCCIÓN

Hasta el momento, se ha trabajado casi exclusivamente en el flujo lineal de control, o sea, en la ejecución secuencial de los pasos, desde el primero hasta el último, con las estructuras de control es posible apartarse del flujo normal lineal. Estas estructuras de control son construcciones algorítmicas que afectan directamente el flujo de control de un programa y que permiten seleccionar un determinado sentido de acción, sobre la evaluación de determinadas condiciones

Las estructuras lógicas selectivas se encuentran en la solución algorítmica de casi todo tipo de problemas y se clasifican de la siguiente forma:

- 1. SI ENTONCES (Estructura selectiva simple)
- 2. SI ENTONCES / SINO (Estructura selectiva doble)
- 3. SI MULTIPLE (Estructura selectiva múltiple)

Estas estructuras las utilizamos cuando en el desarrollo de la solución de un problema debemos tomar una decisión, para establecer un proceso o señalar un camino alternativo a seguir.

Esta toma de decisión se basa en la evaluación de una o más condiciones que nos señalarán como alternativa o consecuencia, la rama a seguir

2. REQUERIMIENTOS

Equipo, herramientas y material.	Software
Computadora con sistema operativo Windows.	
Software para creación de diagramas de flujo, por ejemplo, FreeDFD, Raptor, etc.	Cuaderno, lápiz y USB
Software para creación de pseudocódigo, por ejemplo, PSInt.	

3. DESCRIPCIÓN DE LA PRÁCTICA.

Instrucciones:

- De manera individual resuelve cada uno de los siguientes problemas, construye el algoritmo.
- Utiliza el software indicado por tu profesor para crear los diagramas de flujo.
- Escribe los diagramas de flujo en tu cuaderno
- Guarda los archivos en la carpeta Unidad 1/Prácticas de tu unidad de almacenamiento Flash Drive (USB) y en DROPBOX

Práctica 1.6

Dado un número entero NUM, realiza el diagrama de flujo y el pseudocódigo para determinar si el número es par o impar; cuando sea par, a NUM se debe sumar su doble, cuando sea impar se debe duplicar el valor de NUM. Se debe mostrar el mensaje que indique si NUM es par o impar y el valor de la operación realizada.

Realiza una prueba de escritorio con los siguientes valores:

NUM	¿Par o Impar?	Operación	Resultado
14			
11			
5			
7			
2			

Diseño del algoritmo	Algoritmo
Entrada:	
Proceso:	
Salida:	

Práctica 1.7

La oficina fiscal condona el pago de tenencia a aquellos autos con 10 o más años de antigüedad, en los otros casos les aplica un 10% como pago de tenencia sobre el valor del auto. Dados el modelo del auto y su valor comercial, realiza el diagrama de flujo y el pseudocódigo que obtenga la cantidad que debe pagarse por concepto de tenencia.

Realiza una prueba de escritorio con los siguientes valores

Modelo	Valor	Antigüedad	Pago de tenencia
2013	\$250,000		
2000	\$185,600		
2010	\$190,000		
2002	\$98,000		
1998	\$127,000		

Diseño del algoritmo	Algoritmo
Entrada:	
Proceso:	
Salida:	

Práctica 1.8

La computadora de un auto registra la eficiencia (en km/litro) y los kilómetros recorridos desde el último servicio de mantenimiento. La computadora manda una señal de que el auto necesita servicio de mantenimiento cuando detecta que la eficiencia es menor a 8 km/litro o cuando la distancia recorrida desde el último servicio es mayor a 10,000km.

Dados los kilómetros totales (desde el último servicio), los kilómetros recorridos (desde la última carga de combustible) y el consumo (en litros) de combustible, realiza el algoritmo que indique si el auto debe ser llevado al servicio de mantenimiento. Cuando al auto aun no le toque el servicio, se debe mostrar la eficiencia actual.

Realiza y verifica la prueba de escritorio con los siguientes valores:

Kilómetros Totales	Kilómetros	Consumo (litros)	Eficiencia	Resultado
10,100	350	40		
9,500	159	20		
9,900	162	20		
10,200	260	37		
8,000	372	40		

Dise	ño del algoritmo	0		Algoritmo
Entr	ada:			
Proc	ceso:			
Salid	da:			

Práctica 1.9

Una asociación ecologista desea reforestar algunos bosques según el número de hectáreas. El tipo de árbol a sembrar y el terreno a usar se realizará de acuerdo con las siguientes condiciones:

Si la superficie del terreno excede		
a 1 millón de metros cuadrados		
Tipo de árbol Uso de superficie		
pino 70%		
cedro 30%		

Si la superficie del terreno es menor o		
igual a un millón de metros cuadrados		
Tipo de árbol Uso de superficie		
pino 60%		
cedro 40%		

Dada la cantidad de hectáreas de bosque, realiza el algoritmo que determine la cantidad de pinos y cedros que tendrá que sembrar en el bosque. Se sabe que en 10 metros cuadrados caben 8 pinos, y en 18 metros cuadrados caben 10 cedros. También se sabe que una hectárea equivale a 10 mil metros cuadrados.

Hectáreas	Superficie para pinos	Superficie para cedros	Cantidad de pinos	Cantidad de cedros
200				
100				
50				
150				
80				

Diseño del algoritmo	Algoritmo
Entrada:	
Proceso:	
Froceso.	
Salida:	

Práctica 1.10

Un alumno de Fundamentos de Programación obtuvo la calificación del 2do Parcial, pero el profesor encargó una actividad extra con valor de 5 puntos como máximo, pero solo sumarán para los alumnos que acreditaron el periodo (la calificación mínima aprobatoria es 70).

Dadas la calificación del 2do Parcial y de la actividad extra, realiza el algoritmo que obtenga calificación final del 2do Parcial, considerando que la calificación final no debe exceder de 100 puntos.

Realiza y verifica la prueba de escritorio con los siguientes valores:

Calificación	Actividad Extra	Calificación Final
66	5	
98	4	
98	3	
69	5	
86	5	

Diseño del algoritmo	Algoritmo
Entrada:	
Proceso:	
Salida:	

4. REPORTE:

Guarda los archivos en la carpeta Unidad 1/Prácticas de tu unidad de almacenamiento Flash Drive (USB) y en DROPBOX

5. FUENTES DE INFORMACIÓN.

Metodología de la Programación, 3°Edición Cairó Battistutti, O., Editorial Alfaomega, 2005.