

Escuela de Ingeniería Eléctrica

IE-425 Redes de computadores

Escuela de Ingeniería Eléctrica Universidad de Costa Rica

Febrero, 2021

Objetivo

-Analizar el funcionamiento de los protocolos en la subred de comunicaciones.

Direcciones especiales de IPv4

D.x ---

 0.0.0.0/0 en el contexto de tablas de enrutamiento se refiere como una ruta por defecto.

0.0.0.0 FAI

• 127.0.0.1 se utiliza como loopback

927. X

Buscar archivo system32/drivers/etc/hosts

Ejemplo con VisualStudio en la dirección "localhost"

Direccionamiento IPv4

- Poder realizar una redistribución en subredes según las necesidades de cada parte de la red.
- Poder identificar cada una de las clases A, B, C, Dy E
- Poder identificar entre direcciones IPv4 públicas y privadas (bloques específicos)
- Poder identificar a partir de una dirección y su los elesco. 9/14 máscara la dirección de red/subred y la dirección de broadcast
- Bloques privados y NAT ante reducción de IPv4 públicas disponibles

Direccionamiento IPv4

Temas que se espera deben dominar

- Dominios de broadcast, dominios de colisión
- Máscaras de subred (/25 ~ 255.255.255.128)

LULIAN TOUTH THINK TOOOD

- Ejemplos:
- /17 ~255.255.128.0
- /29 ~ 255.255.255.248
- Direcciones (comando show ip interface brief)
- Tablas de enrutamiento (comando show ip route)

Direccionamiento IPv6

IPv6

- IETF inició en 1990 nueva versión de IP. Con los objetivos:
 - 1. Soportar miles de millones de hosts, incluso con una asignación de direcciones ineficiente.
 - 2. Reducir el tamaño de las tablas de enrutamiento (abreviación de rutas)
 - 3. Simplificar el protocolo para permitir a los enrutadores procesar los paquetes con más rapidez.
 - 4. Proporcionar mayor seguridad (autentificación y privacidad).
 - 5. Poner más atención en cuanto al tipo de servicio, en especial para los datos en tiempo real.
 - 6. Ayudar a la multidifusión al permitir la especificación de alcances.
 - 7. Permitir que un host deambule libremente sin tener que cambiar su dirección.
 - 8. Permitir que el protocolo evolucione en el futuro.
 - 9. Permitir que el protocolo viejo y el nuevo coexistan durante años.

IPv6

- Se publicó en 1993 a partir de varias propuestas
- RFC 2460 a 2466
- Direcciones de 128 bits (vs. 32 bits de IPv4)
- Menos campos en el encabezado solo 7 (vs. 13 de IPv4)
- Campos opcionales
- Campos para seguridad
- Mejoras en QoS

32 Bits					
Versión	Servicios diferenciados	Etiqueta de flujo			
	Longitud de carga út	til	Siguiente encabezado	Límite de saltos	
-			de origen oytes)		
- -	I		de destino oytes)		

Direcciones IPv6

- 16 bytes
- Notación de 8 grupos de 4 dígitos hexadecimales

8000:0000:0000:0000:0123:4567:89AB:CDEF

- Se pueden omitir los ceros a la izquierda
 8000:0000:0000:0000:123:4567:89AB:CDEF
- Los grupos de Os (1 o más grupos) se pueden reemplazar por dos puntos (como abreviación)

8000::123:4567:89AB:CDEF

Las direcciones IPv4 se escriben como

::192.168.0.1

IPv6

- La densidad de IPv6 permite darle a cada metro cuadrado del planeta un espacio de direccionamiento de 7 x 10²³
- En un cálculo pesimista de uso ineficiente del espacio de direccionamiento se ha calculado que quedarán aún 1000 direcciones por m².
- Se eliminó el campo de CHECK SUM, ya que otras capas también lo implementan, reduce procesamiento.

Ejercicio en GNS3

DHCP

Capa de transporte

Generalidades

Servicios a capas superiores

La meta de esta capa es proporcionar un servicion de transmisión de datos eficiente, confiable y económico a sus usuarios, normalmente de la capa de aplicación.

 Esta capa está corriendo en el sistema operativo y normalmente no está directamente asociada a la tarjeta de red (la asocian las capas inferiores)

Primitivas

- Para obtener un servicio de transporte orientado a conexión, que no dependa de capas inferiores (y de las redes), se tiene mayor control desde el punto de vista de usuario final y de programador de las aplicaciones.
- Considera las 5 primitivas.

Primitiva	Paquete enviado	Significado
LISTEN	(ninguno)	Se bloquea hasta que algún proceso intenta conectarse.
CONNECT	CONNECTION REQ.	Intenta activamente establecer una conexión.
SEND	DATA	Envía información.
RECEIVE	(ninguno)	Se bloquea hasta que llegue un paquete DATA.
DISCONNECT	DISCONNECTION REQ.	Solicita que se libere la conexión

• Cmd> netstat -a

Elementos de los protocolos de transporte

- Similar a capa 2 hay control de errores, secuenciación y control de flujo, pero desde otra perspectiva (más orientada al cliente y no a la red, no depende del hardware de red, sino de sus propios recursos)
- Direccionamiento. TSAP (punto de acceso al servicio de transporte), es el puerto con el que aprovechamos la conexión con la capa de aplicación.

Control de congestión

Asignación del ancho de banda

Control de congestión

• Regulación de tasa de envío

Control de incremento/decremento multiplicativo (AIDM)

Ejemplos

Puertos

• Aplicación web en 8080 y en 8081.

Encabezado UDP

32 bits					
Puerto de origen	Puerto de destino				
Longitud de UDP	Suma de verificación de UDP				

Ejemplo de encabezado UDP

• Con Wireshark se hace un rastreo de un segmento con protocolo UDP.

Encabezado TCP

Ejemplo de encabezado UDP

• Con Wireshark se hace un rastreo de un segmento con protocolo TCP.