СИСТЕМЫ ВЫЧЕТОВ

ОПРЕДЕЛЕНИЕ. Полной системой вычетов по модулю m называется совокупность m целых чисел, содержащая точно по одному представителю из каждого класса вычетов по модулю m.

ОПРЕДЕЛЕНИЕ. Совокупность чисел 0,1,2,...,m-1 называется системой наименьших неотрицательных вычетов по модулю m.

(т.е. члены a + km при k = 0)

ОПРЕДЕЛЕНИЕ. Совокупность чисел

$$0,\pm 1,\pm 2,\dots,\pm \frac{m-1}{2}$$
 при нечетном $m,$ $-\frac{m}{2}+1,\dots,-1,0,1,\frac{m}{2}$ при четном m

называется системой абсолютно наименьших вычетов по модулю m, т.е. каждый из абсолютно наименьших вычетов по абсолютной величине не превосходит половины модуля.

ОПРЕДЕЛЕНИЕ. Часть полной системы вычетов, состоящая из чисел, взаимно простых с модулем называется *приведенной системой вычетов*.

ПРИМЕР 1. Выписать: 1) любые три полные системы вычетов (ПоСВ) по модулю m; 2) Систему наименьших неотрицательных вычетов (СННВ) по модулю m; 3) Две любые приведенные системы вычетов (ПрСВ) по модулю m. Сравнить количество чисел в приведенной системе вычетов по модулю m со значением функции Эйлера от m.

a)
$$m = 7$$
; 6) $m = 4$; B) $m = 2$; $r) m = 9$.

ПРИМЕР 2. Вычислить абсолютно наименьший и наименьший неотрицательный вычеты числа α по модулю m:

a)
$$a = 12, m = 15$$
; 6) $a = 35, m = 31$; B) $a = -1, m = 81$;

г)
$$a = 50, m = 12;$$
 д) $a = 8, m = 15;$ е) $a = 8, m = 17;$

ё)
$$a = -80$$
, $m = 100$; ж) $a = -4$, $m = 3$; з) $a = 11$, $m = 11$.

ФУНКЦИЯ ЭЙЛЕРА. ТЕОРЕМА ЭЙЛЕРА. МАЛАЯ ТЕОРЕМА ФЕРМА.

Функция Эйлера:

1)
$$\varphi(1) = 1$$
;

2) если
$$p$$
 — простое, то $\varphi(p) = p - 1$;

3) если НОД
$$(m,n)=1$$
, то $\varphi(m\cdot n)=\varphi(m)\cdot \varphi(n)$;

4) если
$$p$$
 — простое, то $\varphi(p^n) = p^n - p^{n-1}$;

5) если
$$n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot ...\cdot p_s^{\alpha_s}$$
 — каноническое разложение числа n , то

$$\varphi(n) = \varphi \left(p_1^{\alpha_1} \right) \cdot \varphi \left(p_2^{\alpha_2} \right) \cdot \ldots \cdot \varphi \left(p_s^{\alpha_s} \right) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \ldots \left(1 - \frac{1}{p_s} \right)$$

Теорема Эйлера: $HOД(a, m) = 1 \implies a^{\varphi(m)} \equiv 1 \pmod{m}$.

<u>Малая теорема Ферма</u>: p — простое и НОД $(a,p)=1 \implies a^{p-1} \equiv 1 \pmod{p}$.

ПРИМЕР 1. Пользуясь свойствами функции Эйлера, вычислить $\varphi(n)$: а) $\varphi(73)$; б) $\varphi(81)$; в) $\varphi(97)$; г) $\varphi(343)$; д) $\varphi(28)$; е) $\varphi(210)$;

ё)
$$\varphi(10800)$$
; ж) $\varphi(32)$; з) $\varphi(\varphi(125))$; и) $\varphi(63000)$; й) $\varphi(1000000)$.

ПРИМЕР 2. Найти остаток от деления n на m:

a)
$$n = 90^{42}$$
, $m = 41$; 6) $n = 34^{160\,003}$, $m = 15$; B) $n = (-5)^{100\,016}$, $m = 11$;

г)
$$n = 8^{485}$$
, $m = 187$; д) $n = (-2)^{634178}$, $m = 117$; e) $n = 50^{190021}$, $m = 38$;

ë)
$$n = 3^{161613}$$
, $m = 16$; $m = 5^{186609}$, $m = 9$; $m = 347^{174007}$, $m = 349$;

и)
$$n = (-3)^{49}$$
, $m = 15$; й) $n = (-714)^{3043}$, $m = 52$.