Funktionen

Symetrien

• Eine Funktion f heisst gerade, wenn f(-x) = f(x) für alle

• Eine Funktion f heisst ungerade, wenn f(-x) = -f(x) für alle

Umkehrfunktionen

Für die Umkehrfunktionen einfach nach x auflösen und dann x und y vertauschen.

Eigenschaften von Umkehrfunktionen:

- Für jede Relation R gilt $R^{-1^{-1}} = R$
- R ist genau dann linksvollständig, wenn R^{-1} rechtseindeutig ist.
- R ist genau dann linkseindeutig, wenn R^{-1} rechtseindeutig ist.

1.3 Komposition

Für $g: A \to B$ und $f: B \to C$ definieren wir:

$$f \circ g : A \to C$$

$$(f \circ g)(x) = f(g(x))$$

g zuerst ausgeführt wird.

1.3.1 Assoziativität

Für $f: A \rightarrow B$, $g: B \rightarrow C$ und $h: C \rightarrow D$ gilt:

•
$$(f \circ g) \circ h = f \circ (g \circ h)$$

1.4 Summenformel

Arithmetische Summenformel:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Summe der Quadratzahlen:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

1.5 Betragsfunktion

$$|x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

Polynome

2.1 Definition

Ein Polynom ist eine Funktion der Form:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

2.2 Nullstellen

Im Polynom $f(x) = (x-1)(x+3)(x-8)^2(x-6)^3$ ist 8 eine Doppelnullstelle und 6 eine Dreifachnullstelle.

2.2.1 Nullstellen Raten

Wörtlich sagt man auch "f nach g" da f nach g ausgeführt wird bzw. In Analyis 1 der ZHAW dürfen zudem Nullstellen geraten werden. Diese sind immer im folgenden Bereich: $\{-3, -2, -1, 0, 1, 2, 3\}$

2.3 Horner-Schema

Polynomdivision

GOOD LUCK HOMIE

Ableiten

Ableitungsregeln

3.1.1 Faktorregel

$$(c \cdot f)(x)' = c \cdot f'(x)$$

3.1.2 Summenregel

$$(f+g)(x)' = f'(x) + g'(x)$$

3.1.3 Produktregel

$$(u \cdot v)'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

3.1.4 Quotientenregel

$$\left(\frac{u}{v}\right)'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{(v(x))^2}$$

3.1.5 Kettenregel

$$(F \circ u)'(x) = F'(u) \cdot u'(x)$$

Ableitungen bestimmter Funktionen

•
$$sin(x)' = cos(x)$$

•
$$cos(x)' = -sin(x)$$

•
$$(e^x)' = e^x$$

•
$$(e^{-3x})' = -3 \cdot e^{-3x}$$

•
$$(a^x)' = a^x \cdot ln(a)$$

•
$$(ln(x))' = \frac{1}{x}$$

•
$$(log_a(x))' = \frac{1}{r \cdot ln(a)}$$

3.3 Linearisierung einer Funktion

Die Funktionsgleichung für die Tangente von f(x) an der Stelle x_0 lautet:

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

3.4 Newton-Verfahren

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

4 Integral

Um die Fläche unter einer Funktion zu berechnen muss man folgende Schritte durchgehen:

- 1. Bestimme die Stammfunktion F(x)
- 2. Berechne F(b) F(a)

4.1 Stammfunktion

Die Stammfunktion F(x) einer Funktion f(x) ist die Funktion, deren Ableitung f(x) ist, also äufleiten".

4.2 Satz

Gegeben ist eine Funktion f, die auf einem Intervall I stetig ist, und eine beliebige Stamm- funktion F von f. Dann gilt für alle $a,b \in I$:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

4.3 Integrale von bestimmten Funktionen

4.3.1 Potenz- und Logharithmusfunktionen

- $\int a^x dx = \frac{a^x}{\ln(a) + C}$
- $\int ln(x)dx = x \cdot ln(x) x + C$
- $\int log_a(x)dx = \frac{1}{\ln(a)} \cdot (x \cdot \ln(x) x) + C$

4.3.2 Trigonometrische Funktionen

- $\int \sin(x) \, dx = -\cos(x) + C$
- $\int \cos(x) \, dx = \sin(x) + C$
- $\int \tan(x) dx = -\ln|\cos(x)| + C$
- $\int (1 + \tan^2(x)) dx = \int \frac{1}{\cos^2(x)} dx = \tan(x) + C$
- $\int (1-x^2)^{-1/2} dx = \arcsin(x) + C$
- $\int -(1-x^2)^{-1/2} dx = \arccos(x) + C$
- $\int (1+x^2)^{-1} dx = \arctan(x) + C$

5 Folgen und Reihen

5.1 Folgen

5.1.1 Grenzwert von Folgen

Fall 1: Zählergrad < Nennergrad. Dann gilt:

$$\lim_{n \to \infty} \frac{g(n)}{h(n)} = 0$$

$$\lim_{n \to \infty} \frac{3n^2 + 7n - 15}{n^3 - 2n^2 + n + 10} = 0$$

Fall 2: Zählergrad > Nennergrad. Dann gilt:

$$\lim_{n \to \infty} \frac{g(n)}{h(n)} = \infty \text{ oder } -\infty$$

$$\lim_{n \to \infty} \frac{3n^4 + 7n - 15}{6n^3 - 2n^2 + 10} \to \infty$$

Fall 3: Zählergrad = Nennergrad. Dann gilt:

$$\lim_{n \to \infty} \frac{g(n)}{h(n)} = \frac{\text{führender Term von } g}{\text{führender Term von } h}$$

$$\lim_{n \to \infty} \frac{2n^3 + n^2 + 8n}{5n^3 + 4n^2 + 17} = \frac{2}{5}$$

Spezialfall: Folge führt gegen $e \approx 2.718$:

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

$$\left(1 + \frac{7}{n}\right)^{\frac{5n}{6}} = \left(1 + \frac{7}{n}\right)^{\frac{5n}{6} \cdot \frac{7}{n} \cdot \frac{n}{7}} = \left(\left(1 + \frac{7}{n}\right)^{\frac{n}{7}}\right)^{\frac{5 \cdot \frac{1}{7} \cdot 7}{6 \cdot \frac{1}{7}}} = \left(\left(1 + \frac{7}{n}\right)^{\frac{n}{7}}\right)^{\frac{5 \cdot 7}{6}} = e^{\frac{5 \cdot 7}{6}}$$

Andrer Spezialfall:

$$\frac{2^{n-1}+1}{2^{n+1}+8} = \frac{2^{-1} \cdot 2^n + 1}{2^1 \cdot 2^n + 8} = \frac{2^{-1} + \frac{1}{2^n}}{2^1 + \frac{8}{2^n}} \xrightarrow{n \to \infty} \frac{2^{-1} + 0}{2^1 + 0} = \frac{1}{4}$$

5.2 Rechnen mit Grenzwerten

$$\lim_{n\to\infty} c \cdot a_n = c \cdot \lim_{n\to\infty} a_n$$

$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$$

$$\lim_{n\to\infty}(a_n\cdot b_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$$

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

5.2.1 Arithmetische Reihe

$$a_k = a_1 + (k-1) \cdot d$$

$$s_n = n \cdot a_1 + \frac{n \cdot (n-1)}{2} \cdot d$$

- s_n = Summe der ersten n Glieder
- a_1 = Erstes Glied
- $a_n = \text{n-tes Glied}$
- d = Differenz

5.2.2 Geometrische Reihe

$$s_n = a_1 \cdot \frac{q^n - 1}{q - 1}$$

$$a_n = a_1 \cdot q^{n-1}$$

- s_n = Summe der ersten n Glieder
- a_1 = Erstes Glied
- $a_n = \text{n-tes Glied}$
- q = Quotient

5.2.3 Explizit und Implizit

- **Explizit**: $a_n = a_1 \cdot q^{n-1}$
- **Implizit**: $a_3 = a_2 + x$

5.2.4 q herausfinden

In einer Geometrischen Folge ist gegeben: $a_3 = 12$ und $a_5 = 20$

$$q_2 = \frac{a_5}{a_3}$$
$$q = (\frac{a_5}{a_3})^{\frac{1}{2}}$$

5.2.5 Grenzwert von Reihen

Arithmetische Reihe

Geht (divergiert) immer gegen ∞ oder $-\infty$

Geometrische Reihe

Eine geometrische Reihe konvergiert genau dann, wenn |q| < 1 ist.

Fall 1: q > 1

Die Reihe strebt gegen ∞ oder $-\infty$.

Fall 2: $q \le -1$

Die Reihe springt zwischen positiven und negativen Werten hin und her.

Fall 3: |q| < 1

Die Reihe strebt gegen $\frac{a_1}{1-a}$

6 Grenzwert von Funktionen

 $\lim_{x\to x_0} f(x) = g$ bedeutet, dass f(x) für x_0 gegen g geht. z.B. ist $\lim_{x\to 2} x^2 = 4$, da x^2 an der Stelle 2, genau den Wert 4 hat.

6.1 Rechnen mit Grenzwerten

$$\lim_{x \to x_0} (c \cdot f(x)) = c \cdot (\lim_{x \to x_0} f(x))$$

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = (\lim_{x \to x_0} f(x)) \cdot (\lim_{x \to x_0} g(x))$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$

6.2 Gebrochenrationale Funktionen

6.2.1 Hebbare Definitionslücke

Zählerpolynom und Nennerpolynom haben **beide** eine Nullstelle. Durch kürzen kann die Definitionslücke aufgehoben werden.

$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1} = x + 1$$

$$\lim_{x \to 1} f(x) = 2$$

6.2.2 Polstelle

Wenn **nur** das Nennerpolynom eine Nullstelle (nach Kürzen) hat, dann hat die Funktion eine Polstelle.

6.3 Grenzwert von Funktionen in ∞

Der Grenzwert g einer Funktion f für $x \to \infty$ bezeichnet den Wert, der die Funktion annimmt, wenn x gegen unendlich geht.

6.4 Stetigkeit von Funktionen

Eine Funktion f(x) heisst **stetig** an der Stelle x_0 , wenn der Grenzwert von $\lim_{x\to x_0} f(x)$ existiert und $= f(x_0)$ ist. Vereinfacht, eine Funktion ist auf einem Intervall I stetig, wenn sich ihr Graph in einem Zug, ohne Absetzen, zeichnen lässt.

6.4.1 Stetigkeits-Aufgaben

- 1. Prüfen welche Schritte machen (muss ich noch Ableiten für z.B. Differenzierbarkeit?)
- 2. Gleichungen für $f_1(1) = f_2(1)$, $f_2(2) = f_3(2)$... usw. aufstellen.
- 3. Nach Unbekannter auflösen.

6.4.2 Einschachteln von Nullstelle

Falls eine Funktion f(x) auf einem Intervall [a,b] stetig ist, und f(a) und f(b) verschiedene Vorzeichen haben, dann hat f in [a,b] mindestens eine Nullstelle.

7 Kurvendiskussion

7.1 Wendepunkte und Sattelpunkte

$$f''(x_0) = 0$$
 und $f'''(x_0) \neq 0 \Rightarrow$ Wendepunkt

 $f'(x_0) = 0$ und $f''(x_0) = 0$ und $f'''(x_0) = 0 \Rightarrow$ Sattelpunkt

7.2 Monotonie

Mithilfe dieses Satzes lassen sich monotone Abschnitte von Funktionen bestimmen:

7.3 Fragenkatalog

- 1. Defnitionsbereich?
- 2. Symmetrieeigenschaften (gerade/ungerade), Periode?
- 3. Schnittpunkte mit Achsen, Polstellen?
- 4. Randpunkte bzw. Verhalten, wenn *x* gegen die Grenzen des Defnitionsbereichs strebt?
- 5. Kandidaten für Extrema bestimmen und untersuchen
- 6. Wendepunkte suchen
- 7. Tabelle von Werten aufstellen (falls noch nötig)

7.4 Extremwertaufgaben

Siehe Kurvendiskussion für Maxima und Minima.

- Zielgrösse identifizieren.
- 2. Unabhängige Variable identifizieren.
- 3. Definitionsbereich bestimmen.
- 4. Zielgrösse als Funktion der unabhängigen Variablen ausdrücken; ev. eine qualitative Skizze des Graphen machen.
- Relative Maxima resp. Minima bestimmen; Randpunkte auch berücksichtigen!
- Untersuchen, welche der relativen Extrema auch absolute Extrema sind (inklusive bei offenen und halboffenen Intervallen Betrachtung der Funktion in der Nähe des Randes)
- Die gesuchte Information aus den Berechnungen extrahieren.
 (Ev. nachschauen, nach welcher Grösse gefragt wurde: Extremalstelle? Extremalwert? Extremalpunkt?)

f'(x) ist auf einem Intervall überall $\geq 0 \Leftrightarrow f$ ist auf diesem Intervall monoton steigend. f'(x) ist auf einem Intervall überall $\leq 0 \Leftrightarrow f$ ist auf diesem Intervall monoton fallend.