Sorbonnes Université - Sciences

MASTER ANDROIDE

Projet de Résolution de problèmes

Metaheuristiques pour la résolution du problème de l'arbre de Steiner de poids minimum

Author:
Tristan de Blauwe

Supervisor:
Patrice PERNY
Nadjet BOURDACHE

Contents

1	$\mathbf{U}\mathbf{n}$	simple algorithme génétique	3
	1.1	Codage d'un individu	3
	1.2	Evaluation d'un individu	3
	1.3	Opérateur de sélection et croissement	4
	1.4	Mutation	5
	1.5	Replacement et nouvelle génération	6
	1.6	Population initiale	7
2	Am	élioration de la population avec heuristiques de construction	9
	2.1	Heuristique du plus court chemin	9
	2.2	Heuristique de l'arbre couvrant minimum	10
	2.3	Randomisation des heuristiques de construction	11
3	Rec	herche Locale	13
	3.1	Génération d'une solution	13
4	Inst	cances et évaluation	17
	4.1	Conclusion	22

Introduction

Ce rapport est un des documents attendus dans le cadre du projet RP (Résolution de problèmes). Ce document est accompagné du code-source et des différentes ressources utilisées pour mener à bien ce projet. L'objet du projet est de tester quelques métaheuristiques pour répondre au problème de l'arbre minimum de Steiner, en particulier de comparer les résultats obtenus par un algorithme génétique et une méthode de recherche locale. Vous trouverez donc dans ce document les choix, les réalisations et les tests accomplis durant ce projet.

Pour mettre en oeuvre ce projet, il a été choisi d'utiliser java, en utilisant la bibliothèque suivante:

http://www.i3s.unice.fr/~hogie/software/index.php

Dans un premier temps, nous décrirons les implémentations des parties clés des algorithmes. Puis les tests et les conclusions apportées.

1 Un simple algorithme génétique

La première méthode mise en place pour résoudre le problème de Steiner est un algorithme génétique. Les sections suivantes expliqueront les implémentations des différentes étapes.

1.1 Codage d'un individu

Le codage d'un individu suit les consignes données dans le sujet. Nous récupérons le graphe du problème initial. Pour chaque noeud non terminal de ce graphe, il est ajouté dans la chaine. Au final, l'individu est codé selon un tableau de boolean. True signifie que le noeud est présent dans le graphe associé à ce codage.

1.2 Evaluation d'un individu

L'évaluation d'un individu se fait avec la fonction suivante :

```
public static int computeFitness(WeightedGraph g) {
  int fitness = 0;

WeightedGraph mst = g.kruskal();

if(mst.isConnected()) {
  fitness = mst.sumWeight();
}else {
```

1.3 Opérateur de sélection et croissement

Comme opérateur de croissement, nous avons choisis d'utiliser un opérateur à un point, qui est implémenté avec la fonction suivante :

```
public static Individual[] crossover(Individual a, Individual b) {
  Individual[] childs = new Individual[2];
  childs[0] = new Individual(false);
  childs[1] = new Individual(false);
  int rnd = HandyTools.randInt(1, a.getGenes().length-1); //
      Exclusion des bornes pour avoir un crossover significatif
  for(int i=0; i<a.getGenes().length; i++) {</pre>
     if(i<rnd) {</pre>
        childs[0].setGene(i, a.getGene(i));
        childs[1].setGene(i, b.getGene(i));
     }else {
        childs[0].setGene(i, b.getGene(i));
        childs[1].setGene(i, a.getGene(i));
     }
  }
  return childs;
}
```

Aucun autre opérateur n'a été testé.

Quant à la sélection des parents, nous utilisons la sélection par roulette :

```
private int rouletteSelect() {
  int leastFittest = getLeastFittest().getFitness();
```

```
int index;
while (true) {
   index = HandyTools.randInt(0, getPopulationSize());
   if (HandyTools.randProb((1-getIndividual(index).getFitness() /
        leastFittest))) break;
}
return index;
}
```

Cette méthode permet de sélectionner des individus, dont leur probabilité d'être tiré est proportionnelle à leur fitness. Ce qui permet aux meilleurs d'être tiré plus souvent, mais de tout de même selectionner d'autres individus, dans le but de garder une diversité. D'autres méthodes auraient pu être utilisé comme la sélection par tournoi, plus coûteuse. Cependant, cette méthode a pour avantage d'être très peu couteuse tout en étant efficace. D'où ce choix.

1.4 Mutation

Pour la mutation, un individu dans une population a une certaine probabilité de muter (paramétrable) :

```
for(int i=0; i<getPopulationSize(); i++) {
   if (HandyTools.randProb(SimpleGeneticAlgorithm.MUTATION_RATE)) {
     getIndividual(i).mutate();}
}</pre>
```

Si c'est le cas, alors un de ces gènes va être modifié (inversion de bit). Pour accélerer la vitesse d'execution de notre programme, nous mettons en cache la valeur de qualité de l'individu. Il faut donc relancer le calcul de qualité après mutation (si cette valeur est à nouveau demandé, sinon on ne la calcule pas). Au cours de nos tests, nous avons obtenu de meilleurs résultats en mettant le taux de mutation à 0.4. En le mettant plus bas, notre algorithme convergait plus lentement vers l'optimal.

```
public void mutate() {
   int mutationIndex = HandyTools.randInt(0, genes.length);
   genes[mutationIndex] = !genes[mutationIndex];
   fitness = 0; // Pour relancer le calcul de fitness
}
```

1.5 Replacement et nouvelle génération

Dans notre impléntation, la nouvelle génération peut-être générée de deux manières différentes. Soit, elle est composée uniquement des enfants issus des croisements, ou alors, composée des meilleurs individus des deux générations (Parents et enfants). Ici, nous prenons la moitié des meilleurs des enfants et la moitié des meilleurs des enfants .

Au début, nous faisions en sorte que le meilleur individu soit gardé intacte dans la nouvelle génération. Nous empêchions donc qu'il mute. Cependant, ce choix nous posait des problèmes lors de la résolution de certaines instances, où nous restions bloqué dans un minimum local. Il a donc été décidé de le laisser muter si besoin est, ce qui a permis d'obtenir de meilleurs résultats par la suite.

Selon nos tests et l'implémentation de notre solution, il ne semble pas y avoir de majeure différence entres les deux méthodes de remplacement:

Figure 1: Elitiste

Figure 2: Genérationnelle

Quant au nombre de génération maximale, nous avons autorisé au maximum 2000 générations. Pour les petites instances, la solution est en générale trouvée avant. Et pour les grosses instances, ce nombre est trop grand pour être atteint avec un timeout faible. Il s'agit donc surtout de permettre de trouver la meilleure solution possible, si l'instance se déroule rapidement.

1.6 Population initiale

Une des méthodes pour générer la population initiale, est de tout simplement générer des individus aléatoirement :

Chaque individu a une probabilité aléatoire p qui détermine la probabilité qu'un gène soit à 1 ou 0. Le fait d'avoir une probabilité p différente pour chaque individu permet d'améliorer la diversité.

Nous avons décidé d'utiliser une population de taille 50. Ce paramètre permet d'obtenir un bon compromis entre efficacité et temps de calcul, même si pour les plus grosses instances, il est préférable de baisser jusqu'à 30 par exemple.

Cependant, avec une population aléatoire, cette méthode donne de mauvaise résultats pour les grosses instances. Dans la prochaine partie, nous allons vous montrer les implémentations des méthodes permettant d'améliorer la population initiale.

2 Amélioration de la population avec heuristiques de construction

Cette partie décrit l'implémentation des deux nouvelles heuristiques, l'heuristique du plus court chemin et l'heuristique de l'arbre couvrant minimum, ainsi que les nouvelles stratégies de génération de la population initiale.

2.1 Heuristique du plus court chemin

Voici l'implémentation de cette heuristique :

```
public WeightedGraph generateShortestPathGraphHeuristic(boolean
   randomize) {
  NumericalProperty weights = this.getWeightsProperty();
  if(randomize) { weights = getRandomizedWeights(); }
  int[] terminalVertices =
      this.terminalVertices.stream().mapToInt(Integer::intValue).toArray();
  DistanceMatrix distMatrix = new
      StackBasedBellmanFordWeightedMatrixAlgorithm(weights).compute(this);
  WeightedGraph g1 = new WeightedGraph();
  int edge = 0;
  for (int i = 0; i < terminalVertices.length; i++) {</pre>
     for (int j = i + 1; j < terminalVertices.length; j++) {</pre>
        if(!g1.containsVertex(terminalVertices[i])) {
           g1.addVertex(terminalVertices[i]); }
        if(!g1.containsVertex(terminalVertices[j])) {
           g1.addVertex(terminalVertices[j]); }
        g1.addEdge(edge, terminalVertices[i], terminalVertices[j],
           distMatrix.get(terminalVertices[i], terminalVertices[j]));
        edge++;
     }
  }
  WeightedGraph g2 = g1.kruskal();
  PredecessorMatrix predMatrix = new
      WeightedPredecessorMatrixAlgorithm(weights).compute(this);
  WeightedGraph g3 = new WeightedGraph();
  for(int edgeId:g2.getEdges().toIntArray()) {
```

```
= g2.getOneVertex(edgeId);
        source
        destination = g2.getTheOtherVertex(edgeId, source);
  int
  if(!g3.containsVertex(source)) { g3.addVertex(source); }
  if(!g3.containsVertex(destination)) {
      g3.addVertex(destination); }
        formerPred = destination;
                = predMatrix.getPredecessor(source, destination);
  int
  while(formerPred != source) {
     edgeId = getEdgesConnecting(pred,
         formerPred).toIntArray()[0];
     if(!g3.containsVertex(pred)) { g3.addVertex(pred); }
     if(!g3.containsEdge(edgeId)) { g3.addEdge(edgeId, pred,
         formerPred, getEdgeWeight(edgeId)); }
     formerPred = pred;
     pred = predMatrix.getPredecessor(source, pred);
}
WeightedGraph g4 = g3.kruskal();
for(int vertex:g4.getVertices().toIntArray()) {
  if(isVertexTerminal(vertex)) {
     g4.addTerminalVertex(vertex);
     if(g4.getVertexDegree(vertex) <= 1) {</pre>
        g4.removeVertex(vertex);
     }
  }
}
return g4; // G5 is built during the for loop
```

2.2 Heuristique de l'arbre couvrant minimum

Voici l'implémentation de cette heuristique :

}

```
public WeightedGraph
    generateMinimalSpanningTreeGraphHeuristic(boolean randomize) {
    NumericalProperty weights = this.getWeightsProperty();
    if(randomize) { weights = getRandomizedWeights(); }
```

2.3 Randomisation des heuristiques de construction

}

Les graphes étant parfois très volumineux, modifier le coût des arêtes était très coûteux, si le graphe devait être copié. Heureusement, la bibliothèque utilisée permet de dupliquer une propriété contenant le poids des arêtes. Il est donc possible d'avoir un même graphe, mais plusieurs propriétés de poids, donc sans duplication de graphe. D'où le code suivant permettant de randomiser le poids des arêtes :

```
}else {
     weight -= weight * variation;
}
     _weights.setValue(edge, (int) Math.floor(weight));
}
return _weights;
}
```

Ici, les poids subissent une variation aléatoire entre deux bornes réglables.

Grâce à ces nouvelles heuristiques, il est désormais possible de générer une meilleure population initiale. Notre programme dispose de trois stratégies de générations :

RANDOM - Individus générés aléatoirement

IMPROVED - Individus générés selon les deux heuristiques + aléatoire (1/3 de chaque)! Très coûteux pour générer la pop° initiale!

MINIMAL - Individus générés selon les deux heuristiques + aléatoire (Pour les deux heuristiques, elles utilisent le taux spécifié, le reste est aléatoire)

Si nous avons implémenté la stratégie mininale, c'est parce que la génération des individus selon les deux heuristiques est très coûteuse sur les très grosse instance. Donc cette stratégie n'en génère que quelques-uns (réglable selon des paramètres), afin d'obtenir un temps d'éxécution raisonnable, tous en gardant une bonne population initiale.

3 Recherche Locale

Pour la mise en place de la recherche locale, nous détaillerons les étapes clés de l'algorithme.

3.1 Génération d'une solution

Notre programme génère une solution selon 4 stratégies différentes:

RANDOM - Solution générée aléatoirement

ALL - Solution générée selon les deux heuristiques + aléatoire (1/3 de chaque)

MSP - Solution générée selon l'heuristique de l'arbre couvrant de poids minimum

SP - Solution générée selon l'heuristique du plus court chemin

En utilisant les deux heuristiques, aucun mouvement n'est accomplie, puisqu'avec les règles d'ignorement aucun voisin n'est possible candidat. C'est pour cela que la stratégie ALL a été mise en place, et qu'un paramètre pour déterminer si oui ou non les règles d'ignorement sont utilisées.

La fonction responsable de la génération d'une solution est la suivante :

```
private void generateSolution() {
  generateNewSolution = false;
  WeightedGraph g;
  boolean randomize = (this.movementCount == 0 ) ? false : true; //
      La premi[U+FFFD]re tentative n'est pas randomis[U+FFFD]e
  switch(GENERATION) {
     case ALL:
        int choice = HandyTools.randInt(0, 3);
        if(choice==0) {
              (base.generateMinimalSpanningTreeGraphHeuristic(randomize));
           setCurrentSolution(g, 0);
        }else if(choice==1) {
           g = (base.generateShortestPathGraphHeuristic(randomize));
           setCurrentSolution(g, 0);
        }else if(choice==2) {
           boolean[] genes = new boolean[Bridge.getGenesLength()];
           double p = HandyTools.randDouble(0, 1);
           for(int i=0; i<Bridge.getGenesLength(); i++) {</pre>
```

```
if(HandyTools.randProb(p)) { genes[i] = true; }
           }
           g = new WeightedGraph(base, genes);
           setCurrentSolution(g, 0);
        }
        break;
     case RANDOM:
        boolean[] genes = new boolean[Bridge.getGenesLength()];
        double p = HandyTools.randDouble(0, 1);
        for(int i=0; i<Bridge.getGenesLength(); i++) {</pre>
           if(HandyTools.randProb(p)) { genes[i] = true; }
        }
        g = new WeightedGraph(base, genes);
        setCurrentSolution(g, 0);
        break;
     case MSP:
        g =
            (base.generateMinimalSpanningTreeGraphHeuristic(randomize));
        setCurrentSolution(g, 0);
        break;
     case SP:
        g = (base.generateShortestPathGraphHeuristic(randomize));
        setCurrentSolution(g, 0);
        break;
  }
}
```

Notre algorithme de recherche locale continue de fonctionner, tant que la solution optimale n'a pas été trouvé ou tant qu'il reste du temps. Si une solution non optimale est trouvé, on relance l'algorithme avec une autre solution.

Voici la majeure partie de la boucle principale de notre algorithme :

```
while( (System.nanoTime() - startTime)/1000000 < TIMEOUT*60000 &&
    solValue != opt ) {
    if(generateNewSolution) {
        this.movementCount = 0;
        this.researchCount += 1;</pre>
```

```
generateSolution();
}

TreeMap<Integer, WeightedGraph> candidates = getCandidates();
if(!candidates.isEmpty()) {
   int value = candidates.firstKey();
   if(candidates.firstKey() < solValue) {
      setCurrentSolution(candidates.get(value), value);
      this.movementCount +=1;
   }else {
      generateNewSolution = true;
   }
}else {
   generateNewSolution = true;
}</pre>
```

Pour récupérer les candidats possibles, c'est-à-dire les mouvements possibles depuis la solution courante, nous avons simplement implémenté les consignes du sujet. En voici l'implémentation :

```
private TreeMap<Integer, WeightedGraph> getCandidates() {
  TreeMap<Integer, WeightedGraph> candidates = new TreeMap<Integer,</pre>
      WeightedGraph>();
  boolean saveCandidate = false;
  for(int vertex:base.getVertices()) {
     if(!base.isVertexTerminal(vertex)) {
        WeightedGraph candidate = new WeightedGraph(currentSol);
        if(currentSol.containsVertex(vertex)) {
           candidate.removeVertex(vertex);
           if(candidate.isConnected() ||
              !LocalResearchAlgorithm.LIMIT_NEIGHBOURS) {
              saveCandidate = true;
           }
        }else {
           candidate.addVertex(vertex);
           if(candidate.getVertexDegree(vertex) > 1 ||
              !LocalResearchAlgorithm.LIMIT_NEIGHBOURS) {
             saveCandidate = true;
           }
        if(saveCandidate) {
```

4 Instances et évaluation

Désormais, dans cette section, nous allons vous décrire les résultats de nos algorithmes avec différents paramètres. Vu le temps limité et les possibilités très nombreuses, nous n'avons pas pu accomplir toutes les comparaisons possibles selon nos différents paramètres. Nous avons donc décidé de comparer les 4 algorithmes suivants sur un nombre raisonnable d'instances :

- SGA Random Algorithme génétique avec population initiale générée aléatoirement
- **SGA Improved** Algorithme génétique avec population initiale générée avec la stratégie Improved (2 heuristiques + random)
- LRA Ignore Algorithme de recherche locale avec les règles d'ignorement
- LRA No ignore Algorithme de recherche locale sans les règles d'ignorenent

Pour les instances B à C, le timeout était fixé à 1 minutes, pour D+ à 2 minutes. Cependant, vous remarquerez que certaines instances dépasse le timeout. Cela concerne uniquement la recherche locale, puisque nous lui laissons le temps de finir au moins une solution avant de vérifier le timeout.

Voici les paramètres de l'algorithme génétique utilisés lors des tests:

```
// Probabilite
public static double
                     MUTATION_RATE
                                           = 0.4;
   qu'un individu mute
public static double TRUE_PROBABILITY_MIN
                                             = 0.20; // Valeur min de
   la probabilite qu'un chromosome soit a 1 (lors de la creation d'un
   nouvel individu)
public static double TRUE_PROBABILITY_MAX
                                             = 0.50; // Valeur max de
   la probabilite qu'un chromosome soit a 1 (lors de la creation d'un
   nouvel individu)
public static double WEIGHT_RANDOM_OFFSET_MIN = 0.05; // Variation
   minimale d'un poids de sa valeur initial
public static double WEIGHT_RANDOM_OFFSET_MAX = 0.40; // Variation
   maximale d'un poids de sa valeur initial
public static int INITIAL_POP_SIZE
                                                   // Taille de la
                                        = 50;
   population (Doit etre paire (par simplicite))
                                        = 2000; // Nombre maximum de
public static int MAX_GENERATIONS
   generation a produire
public static int MAX_IND_FROM_SP_HEURISTIC = 3;
                                                    // Nombre maximum
   d'individus a produire selon l'heuristique du plus court chemins
public static int MAX_IND_FROM_MSP_HEURISTIC = 3;
                                                     // Nombre maximum
   d'individus a produire selon l'heuristique de l'arbre couvrant de
   poids minimum
```

```
public static ReplacementStrategy replacementStrat =
    ReplacementStrategy.ELITIST; // Selon quelle strat[U+FFFD]gie,
    l'algorithme doit-il former la nouvelle g[U+FFFD]n[U+FFFD]ration
```

Voici les paramètres de l'algorithme recherche locale utilisés lors des tests:

```
public static final double WEIGHT_RANDOM_OFFSET_MIN = 0.05; //
   Variation minimale d'un poids de sa valeur initial
public static final double WEIGHT_RANDOM_OFFSET_MAX = 0.40; //
   Variation maximale d'un poids de sa valeur initial

public static final solutionGeneration GENERATION =
   solutionGeneration.ALL; // Type de generation pour les solutions
```

Vous trouverez dans les pages suivantes les résultats de ces tests. Dans le dossier ./Charts ,disponible dans le livrable, vous trouverez aussi les graphes associés à ces tests, montrant l'évolution de la fitness au fil des générations, pour l'algorithme génétique, au fil des recherches (et non des mouvements) pour la recherche locale. Nous en avons inclus quelqu'uns dans la suite de ce document

Figure 3: c16 - LRA with ignore

Figure 4: c16 - LRA without ignore

Figure 5: c16 - SGA with improved pop_Figure 6: c16 - SGA with random pop gen

Vous pouvez remarquer pour les deux algorithmes génétiques, qu'avec la population initiale améliorée, la convergence est très rapide. Dès les premières générations, la solution est très proche de l'optimal. Quant à la population aléatoire, elle tend progressivement vers l'optimal. Les deux n'ont pas atteint l'optimal, puisque ils ont tous les deux timeout. Pour le SGA avec la population améliorée, on peut voir qu'il est resté bloqué dans un minimum local. Enfin, comparé à l'algorithme génétique, la recherche locale n'a pas réussi à trouver un bonne solution comparé, pour le même temps alloué.

Table 1: Tableaux de comparaison des différents algorithmes - A à C

		SS	SGA - Random	n	SGA	- Improved	ved	LR	LRA - w/ ign	ignore	LRA	A - w/o ignore	lore
instance	Optimal	Best Value	12	Time	Best Value	ecart	Time	Best Value	ecart	Time	Best value	ecart	Time
b1	82	82	%00'	1137 ms	82	,00%	194 ms	82	%00'	14 ms	82	%00'	1653 ms
b2	83	83	%00'	948 ms	83	%00'	155 ms	98	3,61%	60029 ms	98	3,61%	60022 ms
b3	138	138	%00'	853 ms	138	,00%	239 ms	138	%00'	3622 ms	138	%00'	39885 ms
b4	59	63	6,78%	22059 ms	59	,00%	116 ms	59	%00'	7 ms	59	%00'	265 ms
b5	61	61	%00'	903 ms	61	,00%	133 ms	62	1,64%	60026 ms	62	1,64%	sm 29009
99	122	124	1,64%	sm 20009	122	%00'	218 ms	122	%00,	53363 ms	124	1,64%	60004 ms
P2	111	111	%00'	3403 ms	111	%00'	215 ms	111	%00'	0 ms	111	%00'	0 ms
p8	104	107	2,88%	80033 ms	104	%00'	260 ms	104	%00'	13 ms	104	%00'	0 ms
P9	220	220	%00'	$2097 \mathrm{ms}$	220	%00'	437 ms	220	%00,	0 ms	220	%00'	328 ms
b10	98	98	%00'	39324 ms	98	%00'	731 ms	94	9,30%	60102 ms	94	9,30%	$60020 \mathrm{ms}$
b11	88	68	1,14%	55839 ms	88	,00%	297 ms	06	2,27%	60094 ms	06	2,27%	60111 ms
b12	174	174	%00,	2536 ms	174	,00%	725 ms	174	%00'	43 ms	174	%00'	0 ms
b13	165	168	1,82%	$60045 \mathrm{ms}$	170	3,03%	$60020 \mathrm{ms}$	175	%90'9	60061 ms	175	%90'9	sm 60009
b14	235	1228	422,55%	sm 80009	236	,43%	sm 29009	237	,85%	60146 ms	237	,85%	60044 ms
b15	318	320	%89%	60012 ms	318	,00%	791 ms	323	1,57%	60024 ms	323	1,57%	$80030 \mathrm{ms}$
b16	127	132	3,94%	$60046 \mathrm{ms}$	127	,00%	7197 ms	137	7,87%	60091 ms	137	7,87%	60641 ms
b17	131	131	%00,	$12686 \mathrm{ms}$	131	,00%	712 ms	134	2,29%	60049 ms	134	2,29%	60245 ms
b18	248	221	10,89%	sm E2009	218	12,10%	60043 ms	224	%89'6	4249 ms	224	89,68%	30219 ms
cl	85	23037	27002,35%	$61002 \mathrm{ms}$	98	1,18%	45066 ms	88	3,53%	145884 ms	118	38,82%	71807 ms
c2	144	2151	1393,75%	$60034 \mathrm{ms}$	144	,00%	4556 ms	144	%00,	0 ms	8008	5461,11%	72027 ms
) c3	754	33201	4303,32%	sm 22809	992	1,59%	60196 ms	780	3,45%	127844 ms	298	14,99%	173718 ms
c4	1079	33460	3001,02%	62023 ms	1103	2,22%	$60355 \mathrm{ms}$	1112	3,06%	154989 ms	62643	5705,65%	76317 ms
c5	1579	24798	1470,49%	62271 ms	1584	,32%	60349 ms	1604	1,58%	60083 ms	55495	3414,57%	79271 ms
90	55	6118	11023,64%	$61361 \mathrm{ms}$	09	9,09%	29453 ms	09	%60'6	$130516\;\mathrm{ms}$	09	%60'6	$60447 \mathrm{ms}$
c7	102	4215	4032,35%	sm 60009	103	,98%	60013 ms	115	12,75%	164988 ms	115	12,75%	127043 ms
c8	509	8269	1524,56%	61491 ms	518	1,77%	60094 ms	531	4,32%	60006 ms	43590	8463,85%	64503 ms
65	202	5369	659,41%	$60169 \mathrm{ms}$	728	2,97%	60911 ms	728	2,97%	121344 ms	3548	401,84%	116790 ms
c10	1093	5471	400,55%	60354 ms	1105	1,10%	60538 ms	1122	2,65%	82573 ms	1662	52,06%	80622 ms
c11	32	543	1596,88%	60646 ms	38	18,75%	58235 ms	37	15,62%	105634 ms	764	2287,50%	112001 ms
c12	46	520	1030,43%	61661 ms	46	,00%	15598 ms	48	4,35%	158164 ms	48	4,35%	137236 ms
c13	258	595	130,62%	$61665 \mathrm{ms}$	279	8,14%	$60234 \mathrm{ms}$	882	205,43%	83211 ms	998	235,66%	203428 ms
c14	323	593	83,59%	$62126 \mathrm{ms}$	337	4,33%	$61096 \mathrm{ms}$	341	5,57%	84581 ms	868	23,22%	65964 ms
c15	556	669	25,72%	sm 22969	579	4,14%	63288 ms	571	2,70%	68218 ms	089	13,31%	84114 ms
c16	11	56	409,09%	sm 26009	16	45,45%	succession = 100009	174	1481,82%	60195 ms	12	%60'6	$60913 \mathrm{\ ms}$
c17	18	46	155,56%	sm 20009	21	16,67%	$60015 \mathrm{ms}$	20	11,11%	64301 ms	20	11,11%	229899 ms
c18	113	178	57,52%	$60964 \mathrm{ms}$	152	34,51%	60424 ms	124	9,73%	67382 ms	124	9,73%	261926 ms
c19	146	195	33,56%	80798 ms	207	41,78%	61108 ms	159	8,90%	167854 ms	315	115,75%	178439 ms
c20	267	298	11,61%	$60623 \mathrm{ms}$	320	19,85%	60427 ms	268	,37%	126218 ms	268	,37%	60915 ms

20

Table 2: Tableaux de comparaison des différents algorithmes - D

Г		Г	П	П			Г								o		os
ore	Time	137550 ms	132244 ms	594379 ms	$233405~\mathrm{ms}$	$272947~\mathrm{ms}$	140340 ms	995358 ms	$180218 \; \mathrm{ms}$	151342 ms	$223637~\mathrm{ms}$	553314 ms	$743564\;\mathrm{ms}$	146896 ms	1372200 ms	307642 ms	1613241 ms
LRA - w/o ignore	ecart	34,91%	49,55%	5,05%	12,35%	1,94%	133813,43%	1,94%	6,62%	6,77%	2,42%	10,34%	4,76%	3886,60%	6,15%	11,38%	23,08%
LR	Best value	143	329	1644	2174	3313	89722	105	1143	1546	2161	32	44	19933	708	1243	16
ore	Time	1292628 ms	121763 ms	120543 ms	$120733 \mathrm{ms}$	$120914 \mathrm{ms}$	$120943 \mathrm{ms}$	607024 ms	121716 ms	1156543 ms	696345 ms	1354481 ms	1256006 ms	1177399 ms	947515 ms	523713 ms	$2101402\;\mathrm{ms}$
LRA - w/ ignore	ecart	,94%	7,73%	5,05%	3,41%	1,94%	8,96%	1,94%	6,62%	6,77%	2,42%	168,97%	4,76%	%08'9	6,15%	3,14%	23,08%
LR	Best Value	107	237	1644	2001	3313	73	105	1143	1546	2161	78	44	534	708	1151	16
ved	Time	76534 ms	23421 ms	121792 ms	120650 ms	135046 ms	106206 ms	35088 ms	122025 ms	127598 ms	129341 ms	88161 ms	120026 ms	121557 ms	124659 ms	157883 ms	120032 ms 16
SGA - Improved	ecart	,94%	%00,	2,62%	1,55%	,52%	10,45%	%00,	5,88%	3,38%	1,09%	13,79%	19,05%	9,00%	7,35%	2,78%	84,62%
SGA	Best Value	107	220	1606	1965	3267	74	103	1135	1497	2133	33	50	545	716	1147	24
ш	Time	120342 ms	120361 ms	126825 ms	121675 ms	124011 ms	120800 ms	122416 ms	124077 ms	129870 ms	132999 ms	130216 ms	126971 ms	130359 ms	141394 ms	126303 ms	121855 ms
A - Random	ecart	22203,77%	14301,82%	7133,48%	5349,66%	2441,66%	65562,69%	36034,95%	2370,52%	1948,14%	660,28%	4334,48%	2892,86%	160,00%	103,75%	34,41%	1830,77%
SGA	Best Value	23642	31684	113204	105451	82604	43994	37219	26484	29657	16042	1286	1257	1300	1359	1500	251
Ontimal	Optimal	106	220	1565	1935	3250	29	103	1072	1448	2110	29	42	500	299	1116	13
lemita0 opastani	IIIstalice	d1	d2	d3	d4	d5	9p	d7	gp	6p	d10	d11	d12	d13	d14	d15	d16

4.1 Conclusion

Avec ces résultats, nous pouvons voir dans un premier temps que l'algorithme génétique est plus rapide et efficace que la recherche locale. Par exemple, pour l'instance D1, le temps d'éxécution de SGA-IMPROVED est de 76 secondes, alors que les deux LRA ont pris 137 secondes, pour obtenir un même résultat ou pire. Pareille pour D2, où l'optimale a été trouvé en 23 secondes, alors qu'en 130 secondes, les deux n'ont pas obtenu mieux qu'un écart de 8%.

De manière similaire, il y a une nette amélioration avec le SGA - IMPROVED, comparé au SGA - RANDOM. L'utilisation des heuristiques de manière mélangé, permet donc d'avoir une convergence beaucoup plus rapide.

Concernant les deux LRA, le fait d'utiliser les règles d'ignorement semble tout de même plus efficace que sans. En effet, les résultats de LRA w/o ignore sont parfois drastiquement plus mauvais. Prenons comme exemple D6 où il obtient un écart de +133000%, alors qu'avec les règles d'ignorement un écart de 7% seulement.

Toutefois, ces conclusions se base sur notre implémentation de ces différents algorithmes et nos choix de paramètres. De plus, de par la nature non-déterministe de ces algorithmes, des résultats différents auraient été observées. Le souci de ces algorithmes est qu'ils sont propices à rester coincé dans un minimum local. Nous avons donc essayé de palier au mieux à ce problème, notamment par la mutation de tous les individus et le relancement de la recherche locale sur une autre solution initiale.

List of Figures

1	Elitiste	7
2	Genérationnelle	7
3	c16 - LRA with ignore	18
4	c16 - LRA without ignore	18
5	c16 - SGA with improved pop gen	19
6	c16 - SGA with random pop gen	19
List	of Tables	
1	Tableaux de comparaison des différents algorithmes - A à C	20
2	Tableaux de comparaison des différents algorithmes - D	21