Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 3

Nicolás Cagliero

June 22, 2025

- 1. Defina cuando un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivamente enumerable (no hace falta que defina "función Σ -recursiva")
- 2. Defina $s \le$
- 3. Defina ∗≤
- 4. Defina #≤

Respuestas:

- 1. Diremos que un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivamente enumerable cuando sea vacío o haya una función $F: \omega \to \omega^n \times \Sigma^{*m}$ tal que $I_F = S$ y F_i sea Σ -recursiva, para cada $i \in \{1, \ldots, n+m\}$
- 2. Sea \leq un orden total sobre un alfabeto no vacío Σ y supongamos $\Sigma = \{a_1, \ldots, a_n\}$ con $a_1 \leq, \ldots, \leq a_n$ entonces $s^{\leq} : \Sigma^* \to \Sigma^*$

$$s^{\leq}((a_n)^m)=(a_1)^{m+1}, \text{ para cada } m\geq 0$$

$$s^{\leq}(\alpha a_i(a_n)^m)=\alpha a_{i+1}(a_1)^m$$

3. Sea \leq un orden total sobre un alfabeto no vacío Σ y supongamos $\Sigma = \{a_1, \ldots, a_n\}$ con $a_1 \leq, \ldots, \leq a_n$ entonces $*\leq : \omega \to \Sigma^*$

$$*^{\leq} (0) = \varepsilon$$

$$*^{\leq} (i+1) = s^{\leq} (*^{\leq} (i))$$

4. Sea \leq un orden total sobre un alfabeto no vacío Σ y supongamos $\Sigma = \{a_1, \ldots, a_n\}$ con $a_1 \leq, \ldots, \leq a_n$ entonces $\#^{\leq} : \Sigma^* \to \omega$

$$\#^{\leq}(\varepsilon) = 0$$

 $\#^{\leq}(a_{i_k} \dots a_{i_0}) = i_k n^k + \dots + i_0 n^0$ para $i_0, i_1, \dots, i_k \in \{1, \dots, n\}$