*QUÍMICA GENERAL

2020

TEMA 1 FUNDAMENTOS DE QUIMICA GENERAL

- Átomo: estructura. Modelo atómico actual. Nuevas partículas subatómicas. Isótopos.
- Elementos y símbolos. Tabla Periódica. Propiedades.
- Uniones químicas. Regla del octeto. Enlaces iónicos, covalentes y metálicos. Uniones intermoleculares.
- Reacciones químicas: tipos. Ecuaciones químicas.
- Soluciones. Coloides. Ácidos y bases. pH. pOH. Soluciones amortiguadoras.
- Nociones de termodinámica. Reacciones exotérmicas y endotérmicas. Energía libre. Entalpía. Entropía.

*SOLUCIONES. COLOIDES.

*ÁCIDOS Y BASES. PH Y POH.

*SOLUCIONES AMORTIGUADORAS.

PROPIEDADES COLIGATIVAS

 Son aquellas que dependen sólo del número de partículas del soluto en la disolución, y son independientes de la identidad química (naturaleza) del soluto.

Ejemplos: ↓ presión de vapor; ↑ punto de ebullición; ↓ punto de congelación; presión osmótica.

SISTEMAS DISPERSOS

- Son aquellos que presentan partículas de una o más sustancias distribuidas entre partículas constitutivas de una sustancia mayoritaria.
- Cada una de las sustancias del sistema mantiene su identidad y puede separarse. Los sistemas dispersos son mezclas.
- La sustancia que se encuentra en mayor proporción en la mezcla es el medio dispersante, el resto de las sustancias se denominan sustancias dispersas.

SISTEMAS DISPERSOS

- Según el diámetro promedio de las partículas dispersas, los sistemas pueden clasificarse en:
 - Soluciones (< 1 nm).</p>
 - Sistemas Coloidales (1 a 1000 nm).
 - Suspensiones (> 1000 nm).

PROPIEDADES

Propiedad	Solución	Coloide	Suspensión
Tamaño de partícula	0,1-1 nm	1-1000 nm	> 1000 nm
¿Se asienta al reposar?	No	No	Sí
ذSe filtra con papel?	No	No	Sí
¿Se separa por diálisis?	No	Sí	Sí
¿Homogéneo?	Sí	Incierto	No

SUSPENSIONES

- Son sistemas heterogéneos, formados por una mezcla de un líquido con una fase dispersa.
- Las partículas dispersas son poco solubles en el medio dispersante.
- o Sedimentan espontáneamente.
- Pueden separarse por filtración o centrifugación.

DISPERSIONES COLOIDALES

- Son sistemas microheterogéneos, es decir, sistemas que a simple vista parecen homogéneos pero al microscopio se puede apreciar su heterogeneidad.
- Está compuesto por una fase dispersante, normalmente fluida, y otra dispersa en forma de partículas.
- Las partículas dispersas no sedimentan al dejarlas en reposo y pasan a través del papel de filtro, por lo cual no pueden ser separadas por filtración.

DISPERSIONES COLOIDALES

- Los coloides poseen dos características primordiales:
 - Las partículas suspendidas son lo suficientemente grandes para dispersar la luz → EFECTO TYNDALL

DISPERSIONES COLOIDALES

2. Movilidad aleatoria contemplada en las partículas que se localizan en un ambiente fluido, ya sea gas o líquido, como consecuencia de los choques, contra las moléculas que se encuentran presentes en dichos fluidos →

MOVIMIENTO BROWNIANO

COLOIDES

٦	Тіро	Fase de la partícula (fase dispersa)	Fase del medio (disolvente)	Ejemplo
Es	puma	Gas	Líquida	Crema batida, Espuma de afeitar
	spuma ólida	Gas	Sólida	Jabón flotante, Piedra pómez
Ae	erosol	Líquida	Gas	Fijadores para el cabello, niebla
	ulsión quida	Líquida	Líquida	Leche, mayonesa, crema
	ulsión da (Gel)	Líquida	Sólida	Manteca, gelatina, vaselina sólida
Н	lumo	Sólida	Gas	Polvo fino u hollín en el aire
	Sol	Sólida	Líquida	Soluciones de almidón, jaleas, pinturas
Sol	sólido	Sólida	Sólida	Piedras preciosas (vidrio con metales dispersos)

SOLUCIONES

- Mezclas de dos o más sustancias puras, en donde una de ellas, solvente, se encuentra en mayor proporción que la(s) otra(s), soluto(s).
- Normalmente, el solvente determina el estado físico de la solución (si es un sólido, un líquido o un gas).

HOMOGÉNEA Sólida
Líquida - Acuosa
Gaseosa

CLASIFICACIÓN SEGÚN ESTADOS DE AGREGACIÓN

Soluto	Disolvente	Solución	Ejemplo
Gas	Gas	Gaseosa	Aire (O ₂ y otras sustancias en N ₂)
Gas	líquido	Líquida	Bebidas carbonatadas (CO ₂ en H ₂ O)
Líquido	Líquido	Líquida	Vino (etanol en H ₂ O)
Líquido	Sólido	Sólida	Amalgama dental (Hg en Ag)
Sólido	Líquido	Líquida	Salmuera (NaCl en H ₂ O)
Sólido	Sólido	Sólida	Acero (C en Fe) Latón (Cu en Zn)

CLASIFICACIÓN SEGÚN LA CONCENTRACIÓN

- La concentración de una solución expresa la cantidad de soluto que se halla disuelta en una cierta cantidad de solvente o de solución, a una temperatura determinada.
 - Soluciones Saturadas.
 - Diluidas.
 - Concentradas.
 - Soluciones Sobresaturadas.

CLASIFICACIÓN SEGÚN LA CONCENTRACIÓN

- Soluciones Saturadas: contiene la máxima cantidad de soluto que puede disolver un solvente, a una temperatura definida y constante.
 - ✓ Diluidas: el soluto está un muy baja cantidad en relación con el solvente.
 - ✓ Concentradas: tiene una cantidad considerable de soluto.

CLASIFICACIÓN SEGÚN LA CONCENTRACIÓN

■ Soluciones Sobresaturadas: contiene mas cantidad de soluto que la que puede disolver, es muy inestable.

Concentración de una Solución

Unidades Físicas

- **■** % P/P
- **■** % P/V
- **■** % V/V
- ppm

Unidades Químicas

- Molalidad
- Molaridad
- Normalidad
- Fracción molar

SOLUBILIDAD

- De una sustancia es una medida de cuánto soluto se disuelve en una cierta cantidad de disolvente a una temperatura definida.
- La solubilidad de un determinado soluto respecto al agua depende de la atracción relativa entre las partículas en las sustancias puras y las partículas en la solución.

SOLUBILIDAD

- Los solutos no polares (o muy poco polares) se disuelven mejor en disolventes no polares (Regla: "lo similar disuelve lo similar").
- La solubilidad de los sólidos en líquidos, en general, aumenta con la temperatura; la presión tiene poco efecto.
- Los gases se vuelven menos solubles al aumentar la temperatura. En cambio, su solubilidad aumenta al incrementar la presión.

CARACTERÍSTICAS GENERALES

<u>ÁCIDOS</u>

- Sabor agrio.
- Son corrosivos y producen quemaduras.
- Cambios de color en pigmentos naturales.
- Reaccionan con algunos metales liberando
 H₂.
- Reaccionan con carbonatos y bicarbonatos para dar $CO_{2(g)}$.
- Las disoluciones acuosas de ácidos conducen la corriente eléctrica.

CARACTERÍSTICAS GENERALES

BASES

- Sabor amargo.
- Al tacto son "jabonosos".
- La mayoría son irritantes.
- Cambios de color en pigmentos naturales.
- o Reaccionan con los ácidos neutralizándolos.
- Las disoluciones acuosas de las bases conducen la corriente eléctrica.

RESEÑA HISTÓRICA

 En 1834 Michael Faraday descubrió que ácidos, bases y sales, disueltos en agua se disocian en partículas con carga o iones que pueden conducir la corriente eléctrica.

TEORÍA DE ARRENHIUS (1883)

Svante Arrhenius 1857-1927

Ácido

Sustancia que en solución acuosa produce iones H+

$$HCI_{(ac)} \rightarrow H^+ + CI^-$$

Base

Sustancia que en solución acuosa produce iones OH-

$$NaOH_{(ac)} \rightarrow Na^{+} + OH^{-}$$

 $NH_{3(ac)} + H_{2}O_{(I)} \rightarrow NH_{4}^{+} + OH^{-}$

TEORÍA DE ARRENHIUS (1883)

o <u>Limitaciones</u>: sólo se aplican a soluciones acuosas y a sustancias que producen H⁺ y OH⁻.

Svante August Arrhenius (1859 - 1927)

1903 - Tercer premio Nobel de Química

"En reconocimiento a los extraordinarios servicios que ha prestado al avance de la química mediante su teoría electrolítica de la disociación".

Ejercicios:

1.- Demuestre si las siguientes sustancias son ácidos o bases de Arrhenius:

a)
$$HNO_{3 (ac)} \rightarrow$$

b)
$$H_2SO_{4 (ac)} \rightarrow$$

c) KOH
$$_{(ac)}$$
 \rightarrow

d)
$$Mg(OH)_{2 (ac)} \rightarrow$$

TEORÍA DE BRONSTED-LOWRY (1923)

Johanes Bronsted 1879-1947

Thomas Lowry 1874-1936

Ácido

Sustancia que puede donar protones (H⁺)

Base

Sustancia que puede aceptar H⁺

De la misma manera que una reducción esta ligada a una oxidación, un donador de protones (ácido), siempre está acompañado de un aceptor de protones (base).

Par conjugado ácido-base

$$HCI + NH_3 \longrightarrow NH_4^+ + CI^-$$
ácido base AC BC

TEORÍA DE BRONSTED-LOWRY (1923)

Par conjugado:

Ácido + Base Conjugada. Base + Ácido Conjugado.

TEORÍA DE ARRENHIUS (1883)

o **Ventajas:**

- Explica las propiedades básicas de sustancias que no contienen iones hidróxido.
- No se limita a soluciones acuosas.

Desventaja:

Al igual que Arrhenius, el ácido debe tener protones.

Ejercicios:

2.- Complete las siguientes reacciones protolíticas, indicando los pares conjugados que se forman:

a)
$$NH_3 + H_2O \rightarrow$$

b)
$$HCI + H_2O \rightarrow$$

c)
$$HCIO_4 + H_2O \rightarrow$$

d)
$$HNO_3 + NH_3 \rightarrow$$

TEORÍA DE LEWIS (1923)

Ácido

Sustancia que puede aceptar (y compartir) un par de e

Gilbert Lewis 1875-1946

Base

Sustancia capaz de donar (y compartir) un par de e

$$H_2O + :NH_3 \to NH_4^+ + OH^-$$

$$BF_3 + :NH_3 \rightarrow BF_3:NH_3$$

TEORÍA DE LEWIS (1923)

TEORÍA DE LEWIS (1923)

o **Ventajas:**

- Ofrece una definición más general que la aportada por Bronsted y Lowry.
- Todos los ácidos de Bronsted y Lowry son ácidos de Lewis, pero no todos los ácidos de Lewis son ácidos de Bronsted y Lowry.
- El H⁺ es ácido de Lewis, pero no es el único.

IONIZACIÓN DE ÁCIDOS Y BASES

 Cuando un compuesto iónico es puesto en agua, éste se disocia en sus respectivos iones.

IONIZACIÓN DE ÁCIDOS Y BASES

FUERZA

La facilidad de un ácido para ceder un protón y la de una base para aceptarlo

Ácido fuerte

Cede fácilmente un protón

 $\stackrel{\smile}{\Box}$ HCI, HCIO₄, H₂SO₄

Base fuerte

Acepta fácilmente un protón

 $\stackrel{\square}{\hookrightarrow}$ NaOH, KOH, Ca(OH)₂

Ácido débil

Cede con dificultad un protón $\triangleleft H_2CO_3$, HCN, HF

Base débil

Acepta un protón con dificultad $\prec H$ NH₃, C₆H₅NH₂

AUTOIONIZACIÓN DEL AGUA

 Una molécula en cada 500 millones transfiere un protón a otra, produciendo un ión hidronio (H+ hidratado) y un ión hidróxido.

$$H_2O_{(I)} + H_2O_{(I)} \rightleftharpoons H_3O^+_{(ac)} + OH^-_{(ac)}$$

$$H_2O_{(I)} \rightarrow H^+_{(ac)} + OH^-_{(ac)}$$

AUTOIONIZACIÓN DEL AGUA

Hydronium Hydroxide ion (H₃O⁺) ion (OH⁻)

AUTOIONIZACIÓN DEL AGUA

En el agua pura a 25 °C:

$$[H^+] = 1.0 \times 10^{-7} M$$

$$[OH^{-}] = 1.0 \times 10^{-7} M$$

$$Kw = K_{eq} \cdot [H_2O] = [H^+] \cdot [OH^-] = 1.0 \times 10^{-14} M$$

Constante del producto iónico del agua

Si aumenta la [H⁺], la [OH⁻] disminuirá hasta que el producto de las dos concentraciones sea igual a 1.10⁻¹⁴, y viceversa.

ESCALA DE PH (SÖRENSEN, 1929)

$$KW = [H^+] \cdot [OH^-] = 1.10^{-14} M$$

$$pK_w = pH + pOH = 14$$

 $pH = -log[H^+]$ $pOH = -log[OH^-]$

Escala de pH

Escala de 14 unidades a 25 °C

DISOLUCIÓN ÁCIDA

 $[H_3O^+] > [OH^-]$ pH < 7 DISOLUCIÓN NEUTRA

$$[H_3O^+] = [OH^-]$$

pH = 7

DISOLUCIÓN BÁSICA

$$[H_3O^+] < [OH^-]$$

pH > 7

Solución Ácida

Solución Básica

14

ÁCIDO

NEUTRO

BÁSICO Ó ALCALINO

$$pH = 7$$

$$[H_{+}] > [HO_{-}]$$
 $[H_{+}] = [HO_{-}]$ $[H_{+}] < [HO_{-}]$

$$[H^{+}] < [HO^{-}]$$

Ejercicios:

3.- Escriba la reacción protolítica correspondiente a la autoionización (autoprotólisis) de las sustancias:

a)
$$NH_3 + H_2O \rightarrow$$

b)
$$HCI + H_2O \rightarrow$$

c)
$$HCIO_4 + H_2O \rightarrow$$

d)
$$HNO_3 + NH_3 \rightarrow$$

LLUVIA ÁCIDA

o Óxido ácido + $H_2O \rightarrow \acute{A}cido$

Ejemplo: $CO_2 + H_2O \rightarrow H_2CO_3$

- El agua de lluvia pura puede tener un pH ≥ 5,5 debido a la presencia de CO₂ en la atmósfera.
- o Cualquier pH por debajo de 5,5 es considerado lluvia ácida.

LLUVIA ÁCIDA. FACTORES

LLUVIA ÁCIDA. DAÑOS

- Puede ocasionar la erosión de edificios y monumentos.
- Acidifica el suelo ocasionando la muerte de las raíces de las plantas.
- Acidifica el pH de lagos, ríos y mares ocasionando la muerte de la vida acuática.
- En el ser humano ocasiona muchas enfermedades entre ellas, varios tipos de cáncer.

LLUVIA ÁCIDA. DAÑOS

LLUVIA ÁCIDA. DAÑOS

Áreas del mundo donde enormes cantidades de dióxido de azufre son esparcidas en el aire

SOLUCIONES AMORTIGUADORAS

- Se prepara empleando un ácido débil y una sal del mismo ácido (o una base débil y una sal de esa base) en concentraciones aproximadamente iguales.
- Una solución amortiguadora contiene especies que van a reaccionar (y atrapar) con los iones H+ o los iones OH- agregados.

SOLUCIONES AMORTIGUADORAS

CH₃COOH + CH₃COONa

Adición de base

OH⁻(ac) + H⁺(ac)
$$\rightleftharpoons$$
 CH₃COO⁻(ac) + H⁺(ac)

A nivel sanguíneo: HCO₃-/H₂CO₃; H₂PO₄-/HPO₄²⁻; proteínas (-COO- y NH₄+)