Detecção de artefatos de arritmia utilizando Máquinas de Vetores de Suporte e Coeficientes de Energia Wavelet

Proposta de TCC

Gabriel Lechenco Vargas Pereira Cristiano Marcos Agulhari 2020

Universidade Tecnológica Federal do Paraná - UTFPR

Sumário

- 1. Introdução
- 2. Fundamentação Teórica
- 3. Revisão de Literatura
- 4. Proposta
- 5. Considerações Finais

Introdução

Introdução

Uma rede pode ser dividida nos seguintes planos:

- Plano de Dados
- Plano de Controle
- Plano de Gerenciamento

Introdução

Uma rede pode ser dividida nos seguintes planos:

- Plano de Dados
- Plano de Controle
- Plano de Gerenciamento

Fundamentação Teórica

Eletrocardiograma

Figure 1: Ciclo PQRST [1]

Arritmia

A falta de ritmo cardíaco tem ampla influência sobre a saúde do paciente.

- Deficiência no transporte e fornecimento de oxigênio.
- Podendo acarretar complicações em todo o corpo.
- Algumas capazes de levar ao óbito em poucos minutos.

Arritmia

A falta de ritmo cardíaco tem ampla influência sobre a saúde do paciente.

Imagem taquicardia ventricular

Arritmia

A falta de ritmo cardíaco tem ampla influência sobre a saúde do paciente.

Imagem fibrilação ventricular

Algoritmo de classificação binária que busca encontrar o hiperplano ótimo que seccione o hiperespaço onde os dados se encontram.

$$f(x) = \langle w, x \rangle + b = 0$$

Figure 2: Separação de dois planos por um hiperplano ótimo

Vantagens

- Otimização de natureza convexa
- Apresenta um unico mínimo global para problemas lineares
- Consegue bons resultados com poucos exemplos

Vantagens

- Otimização de natureza convexa
- Apresenta um unico mínimo global para problemas lineares
- Consegue bons resultados com poucos exemplos

Desvantagens

- A princípio resolve apenas problemas lineares
- Classificação binária

SVM's e problemas não lineares

Teorema de Cover

Dado um problema de classificação de padrões complexo, ao lançá-lo em um espaço com muitas dimensões é mais provável que este seja linearmente separável do que em um espaço com poucas dimensões, desde que o espaço não seja densamente preenchido. [2]

SVM's e problemas não lineares

A adição de diferentes kernels possibilita uma maior flexibilidade do algoritmo de SVM com uma pequena modificação no problema de otimização.

$$f(x) = \langle w, \psi(x) \rangle + b = 0$$

SVM's e problemas não lineares

Figure 2: SVM utilizando o kernel gaussiano para o problema XOR

Técnicas pra classificação não binária

- One Against One (OAO)
- One Against All (OAA)
- Directed Acyclic Graph SVM (DAGSVM)
- Binary Tree of SVM (BTS)

One Against One (OAO)

One Against All (OAA)

Directed Acyclic Graph SVM (DAGSVM)

Binary Tree of SVM (BTS)

Wavelet

Revisão de Literatura

Trabalhos Relacionados

Trabalho	Técnica
Govindan, Deng e	Coeficientes Wavelet + Redes Neurais
Power (1997)	
Zhao e Zhang	Coeficientes Wavelet $+$ SVM $+$ Modelagem
(2005)	Autorregressiva
Mora e Amaya	Entropia de Shannon $+$ Complexidade de
(2012)	${\sf Lempel-Ziv} + {\sf SVM-OAO} \ {\sf assimétrica}$
Rua et al. (2012)	Energia Wavelet + Redes Neurais
Azariadi et al.	${\sf Coeficientes\;Wavelet} + {\sf SVM}$
(2016)	
Tuncer et al.	Decomposição Wavelet + Localização de
(2019)	padrões locais hexadecimais $+ KNN$

Trabalhos Relacionados

Trabalho	Nº de classes	Nº de Exemplos no treinamento	Acurácia
Govindan, Deng e	4	10	$77\% \pm 9\%$
Power (1997)			
Zhao e Zhang (2005)	6	7940	99,68%
Mora e Amaya	5	637	90,72%
(2012)			
Rua et al. (2012)	2	-	99.46%
Azariadi et al. (2016)	2	104581	97%
Tuncer et al. (2019)	17	-	95.0%

Proposta

Proposta

Figure 3: Descrição do Método que será utilizado

Proposta

Bases de dados

- MIT-BIH Arrhythmia Database(mitdb)
- MIT-BIH Normal SinusRhythm Database(nsrdb)

Pré-processamento

Localizar e seccionar trechos selecionados:

- Ler anotações e comentários presentes nas bases de dados
- Localizar o início e término de eventos arrítmicos
- Seccionar trechos a cada 8 segundos
- Fazer o mesmo para os dados saudáveis

Pré-processamento

Padronizar sinais

• mitdb: $F_s = 360 Hz$

• nrsdb: $F_s = 128Hz$

Pré-processamento

Padronizar sinais

• mitdb: $F_s = 360Hz$

• nrsdb: $F_s = 128Hz$

• Padronizar todos com 128Hz

Extração de características

Figure 3: Decomposição Wavelet proposta

Aprendizado de Máquina

Máquinas de Vetores de Suporte (SVM)

- Aprendizado supervisionado
- Classificação entre 4 classes
- Comparação entre técnicas de classificação multiclasses

Testes e resultados

Cronograma

Data	Atividade
14/Agosto	Selecionar trechos relevantes dos sinais biológicos
	com base nas anotações do banco de dados
28/Agosto	Realizar o janelamento e padronização destes trechos
11/Setembro	Extrair Energias Wavelet
02/Outubro	Realizar Classificações
23/Outubro	Agrupar Resultados
20/Novembro	Descrever Resultados e Conclusões finais

Cronograma

Data	Atividade
14/Agosto	Selecionar trechos relevantes dos sinais biológicos
	com base nas anotações do banco de dados
28/Agosto	Realizar o janelamento e padronização destes trechos
11/Setembro	Extrair Energias Wavelet
02/Outubro	Realizar Classificações
23/Outubro	Agrupar Resultados
20/Novembro	Descrever Resultados e Conclusões finais

Considerações Finais

Considerações Finais

Perguntas?

References i

S. Faziludeen and P. V. Sabig.

ECG beat classification using wavelets and SVM.

In 2013 IFFF Conference on Information Communication Technologies, pages 815-818, Apr. 2013.

S. Haykin.

Neural Networks and Learning Machines, 3/E.

Pearson Education India, 2010.