

Aprendizagem Automática

Regressão

Regressão

- A regressão é um técnica para modelar e analisar dados que são compostos por uma variável dependente (a variável de resposta) e uma ou mais variáveis independentes (as variáveis de entrada).
- Usado em predição, inferência, teste de hipóteses ...

Regressão: Formulação Matemática

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

resposta

entradas

 $egin{array}{ll} y & {
m processo} \ {
m verdadeiro} \ \hat{y} & {
m aproximação} \end{array}$

Necessário:

- Função paramétrica $\hat{y} = w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots$
- Conjunto com N amostras de entrada $\mathcal{X} = \{\mathbf{x}[1], \dots, \mathbf{x}[N]\}$
- ullet e as correspondentes N amostras de saída $\mathcal{Y} = \{y[1], \dots, y[N]\}$

Objectivo:

estimar os parâmetros w_1, w_2, \ldots

Como:

Minimizar a potência do erro

$$\mathcal{E} = \frac{1}{N} \sum_{n=1}^{N} (y[n] - \hat{y}[n])^{2}$$

Pressupostos:

- O ruído ϵ é uma variável aleatória de média nula.
- Amostras do ruído são independentes entre si.
- A potência do ruído é constante.
- As variáveis de entrada não têm ruído

Modelo Simples

Modelo Simples

Regressão Linear: equação de recta

Equação de recta:

$$\hat{y} = ax + b$$
$$y = \alpha x + \beta + \epsilon$$

Objectivo: estimar os parâmetros $(a \ e \ b)$ da recta que melhor descreve os dados Método: minimizar o erro quadrático médio \mathcal{E} (distância² vertical dos pontos à recta)

Erro:
$$e=y-(ax+b)=y-\hat{y}$$
 Erro quadrático:
$$\mathcal{E}=\frac{1}{N}\sum_{n=1}^N e[n]^2=\frac{1}{N}\sum_{n=1}^N (y[n]-(ax[n]+b))^2$$

Regressão Linear: equação de recta

Pontos + rectas com diferentes valores de a e b.

 \mathcal{E} para vários valores de a e b. \mathcal{E} é uma parábola: um único mínimo! Pode-se resolver analiticamente.

Mínimos Quadrados

Derivar \mathcal{E} em relação a e a b, e igualar a zero

Corresponde a minimizar a função do erro quadrático \mathcal{E} para os dois conjuntos \mathcal{X} e \mathcal{Y} (N amostras cada um):

$$\frac{\partial \mathcal{E}}{\partial a} = 0$$

$$0 = \frac{\partial}{\partial a} \frac{1}{N} \sum_{n=0}^{N} (y[n] - ax[n] - b)^{2}$$

$$0 = -\frac{2}{N} \sum_{n=0}^{N} (y[n]x[n] - ax[n]^{2} - bx[n])$$

$$0 = \frac{1}{N} \sum_{n=0}^{N} y[n]x[n] - \frac{a}{N} \sum_{n=0}^{N} x[n]^{2} - \frac{b}{N} \sum_{n=0}^{N} x[n]$$

$$0 = \frac{1}{N} \sum_{n=0}^{N} y[n]x[n] - \frac{a}{N} \sum_{n=0}^{N} x[n]^{2} - \frac{b}{N} \sum_{n=0}^{N} x[n]$$

$$0 = \frac{1}{N} \sum_{n=0}^{N} y[n] - \frac{a}{N} \sum_{n=0}^{N} x[n] - b$$

$$\frac{\partial \mathcal{E}}{\partial b} = 0$$

$$0 = \frac{\partial}{\partial b} \frac{1}{N} \sum_{n=0}^{N} (y[n] - ax[n] - b)^2$$

$$0 = -\frac{2}{N} \sum_{n=0}^{N} (y[n] - ax[n] - b)$$

$$0 = \frac{1}{N} \sum_{n=0}^{N} y[n] - \frac{a}{N} \sum_{n=0}^{N} x[n] - b$$

Pontos num plano:

Outra perspectiva

Pontos num plano:

Pontos + plano

Outra perspectiva

Modelo:
$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d = w_0 + \sum_{i=1}^d w_i x_i$$

Notação vectorial:

$$\hat{y} = \mathbf{w}^{\top} \mathbf{x} = \mathbf{x}^{\top} \mathbf{w}$$

onde:
$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$
 $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$

Modelo: $\hat{y} = \mathbf{w}^{\top} \mathbf{x}$

Erro Quadrático:
$$\mathcal{E} = \frac{1}{N} \sum_{n=1}^{N} (y[n] - \mathbf{x}[n]^{\top} \mathbf{w})^2 = \frac{1}{N} \sum_{n=1}^{N} e[n]^2$$

Sistema de equações:

$$\frac{\partial \mathcal{E}}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} \left\{ \frac{1}{N} \sum_{n=1}^{N} (y[n] - \mathbf{x}[n]^{\top} \mathbf{w})^{2} \right\} = 0$$

$$\Leftrightarrow \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial \mathbf{w}} \left\{ (y[n] - \mathbf{x}[n]^{\top} \mathbf{w})^{2} \right\} = 0$$

$$\Leftrightarrow \frac{1}{N} \sum_{n=1}^{N} -2 (y[n] - \mathbf{x}[n]^{\top} \mathbf{w}) \underbrace{\frac{\partial \left\{ \mathbf{x}[n]^{\top} \mathbf{w} \right\}}{\partial \mathbf{w}}}_{=\mathbf{x}[n]} = 0$$

Modelo: $\hat{y} = \mathbf{w}^{\top} \mathbf{x}$

Erro Quadrático:
$$\mathcal{E} = \frac{1}{N} \sum_{n=1}^{N} (y[n] - \mathbf{x}[n]^{\top} \mathbf{w})^2 = \frac{1}{N} \sum_{n=1}^{N} e[n]^2$$

Sistema de equações:

$$\frac{\partial \mathcal{E}}{\partial \mathbf{w}} = 0$$

$$\Leftrightarrow \underbrace{\frac{1}{N} \sum_{n=1}^{N} y[n] \mathbf{x}[n]}_{(d+1) \times 1} - \underbrace{\frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}[n] \mathbf{x}[n]^{\top})}_{(d+1) \times (d+1)} \mathbf{w} = 0$$

$$\Leftrightarrow \mathbf{w}_{\text{opt}} = \left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}[n] \mathbf{x}[n]^{\top}\right)^{-1} \left(\frac{1}{N} \sum_{n=1}^{N} y[n] \mathbf{x}[n]\right)$$
$$\Leftrightarrow \mathbf{w}_{\text{opt}} = \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{r}_{\mathbf{x}y}$$

Modelo: $\hat{y} = \mathbf{w}^{\top} \mathbf{x}$

Erro Quadrático:
$$\mathcal{E} = \frac{1}{N} \sum_{n=1}^{N} (y[n] - \mathbf{x}[n]^{\top} \mathbf{w})^2 = \frac{1}{N} \sum_{n=1}^{N} e[n]^2$$

Sistema de equações: $\frac{\partial \mathcal{E}}{\partial \mathbf{w}} = 0 \Leftrightarrow \mathbf{w}_{\mathrm{opt}} = \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{r}_{\mathbf{x}y}$

$$\mathbf{X} = \underbrace{\begin{bmatrix} \mathbf{x}[1] \quad \mathbf{x}[2] \quad \dots \quad \mathbf{x}[N] \end{bmatrix}}_{\text{matriz de } (d+1) \times N} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1[1] & x_1[2] & x_1[3] & \dots & x_1[N] \\ x_2[1] & x_2[2] & x_2[3] & \dots & x_2[N] \\ \vdots & \vdots & \ddots & \vdots \\ x_d[1] & x_d[2] & x_d[3] & \dots & x_d[N] \end{bmatrix}$$

$$\mathbf{Y} = \underbrace{\begin{bmatrix} y[1] & y[2] & \dots & y[N] \end{bmatrix}}_{\text{matriz de } 1 \times N} \text{ e } \hat{\mathbf{Y}} = \mathbf{w} \mathbf{X}$$

$$\mathbf{w}_{\mathrm{opt}} = \left(\mathbf{X}\mathbf{X}^{\top}\right)^{-1}\!\!\mathbf{X}\;\mathbf{Y}^{\top}$$

• Generalização da regressão linear: as entradas são pré-processadas por funções não lineares $\Phi(\mathbf{x})$:

$$\hat{y} = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \ldots + w_p \phi_p(\mathbf{x})$$

$$\hat{y} = w_0 + \sum_{j=1}^p w_j \phi_j(\mathbf{x}) = \underbrace{\begin{bmatrix} w_0 \ w_1 \ w_2 \ \dots \ w_p \end{bmatrix}}_{\mathbf{w}^\top} \underbrace{\begin{bmatrix} 1 \\ \phi_1(\mathbf{x}) \\ \phi_2(\mathbf{x}) \\ \vdots \\ \phi_p(\mathbf{x}) \end{bmatrix}}_{\Phi(\mathbf{x})} = \mathbf{w}^\top \Phi(\mathbf{x})$$

• Generalização da regressão linear: as entradas são pré-processadas por funções não lineares $\Phi(\mathbf{x})$:

$$\hat{y} = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \ldots + w_p \phi_p(\mathbf{x})$$

- Continua a ser um modelo linear em w!
- Erro é uma função quadrática (parábola: um único mínimo)
- Solução: mínimos quadráticos

$$ullet$$
 Modelo: $\hat{y} = w_0 + \sum_{j=1}^p w_j \phi_j(\mathbf{x}) = \mathbf{w}^\top \Phi(\mathbf{x})$

- 1. Regressão linear básica $(\mathbb{R} \to \mathbb{R})$: $\hat{y} = w_0 + w_1 x$
- 2. Regressão linear ($\mathbb{R}^d \to \mathbb{R}$): $\hat{y} = \mathbf{w} \top \mathbf{x}$
- 3. Regressão polinomial $(\mathbb{R} \to \mathbb{R})$:

$$\hat{y} = w_0 + w_1 x + w_2 x^2 + \ldots + w_p x^p = \mathbf{w}^{\top} \Phi(\mathbf{x})$$
 com: $\Phi(\mathbf{x}) = [1 \ x \ x^2 \ \ldots \ x^p]^{\top}$

4. Regressão polinomial ($\mathbb{R}^d \to \mathbb{R}$):

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2^2 + w_3 x_2 x_k^2 x_d + \dots + w_n x_1^2 x_2^5 + \dots
= \mathbf{w}^{\top} \Phi(\mathbf{x})
\Phi(\mathbf{x}) = \begin{bmatrix} 1 & x_1 & x_2^2 & x_2 x_k^2 x_d \dots & x_1^2 x_2^5 & \dots \end{bmatrix}^{\top}$$

- lacksquare Modelo: $\hat{y} = w_0 + \sum_{j=1}^p w_j \phi_j(\mathbf{x}) = \mathbf{w}^\top \Phi(\mathbf{x})$
- Funções de base $\phi_j(\cdot)$ permitem modelar comportamentos não lineares dos dados.
- Polinómios (ex. $\phi_j(x) = x^j$) são funções globais (afectam todo o espaço dos dados). Existem várias funções (locais e globais):
 - Splines (polinómios locais)
 - Gaussianas: $\phi_j(x) = \exp\left(\frac{1}{2\sigma^2} (x \mu_j)^2\right)$
 - Sigmóides: $\phi_j(x) = \frac{1}{1 + \exp \frac{x \mu_j}{\sigma}}$
 - FFTs, wavelets,...

$$lacksquare$$
 Modelo: $\hat{y} = w_0 + \sum_{j=1}^p w_j \phi_j(\mathbf{x}) = \mathbf{w}^\top \Phi(\mathbf{x})$

- Sistema de equações:

$$\mathbf{w}_{\text{opt}} = \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{r}_{\mathbf{x}y}$$

com:
$$\mathbf{r}_{\mathbf{x}y} = \frac{1}{N} \sum_{n=1}^{N} y[n] \Phi(\mathbf{x}[n])$$
 $\mathbf{R}_{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \Phi(\mathbf{x}[n]) \Phi(\mathbf{x}[n])^{\top}$

$$lacksquare$$
 Modelo: $\hat{y} = w_0 + \sum_{j=1}^p w_j \phi_j(\mathbf{x}) = \mathbf{w}^\top \Phi(\mathbf{x})$

Sistema de equações:

Sistema de equações:
$$\mathbf{\Psi} = [\Phi(\mathbf{x}[1]), \Phi(\mathbf{x}[2]), \cdots, \Phi(\mathbf{x}[N])] = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \phi(\mathbf{x}_1[1]) & \phi(\mathbf{x}_1[2]) & \cdots & \phi(\mathbf{x}_1[N]) \\ \phi(\mathbf{x}_2[1]) & \phi(\mathbf{x}_2[2]) & \cdots & \phi(\mathbf{x}_1[N]) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_d[1]) & \phi(\mathbf{x}_d[2]) & \cdots & \phi(\mathbf{x}_d[N]) \end{bmatrix}$$

$$\mathbf{w}_{ ext{opt}} = \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{r}_{\mathbf{x}y} = \left(\mathbf{\Psi} \mathbf{\Psi}^{ op}
ight)^{-1} \mathbf{\Psi} \mathbf{Y}^{ op}$$

Regressão polinomial: $\hat{y} = w_0 + w_1 x + w_2 x^2 + \ldots + w_p x^p$

Conjunto com 15 pontos

Regressão polinomial: $\hat{y} = w_0 + w_1 x + w_2 x^2 + \ldots + w_p x^p$

 1^a linha com 15 pontos e a 2^a com 150

- Mais pontos ajuda! Modelos complexos melhor comportados
- Factoide: 10 pontos por parâmetro

- Generalização é fundamental para obter um bom desempenho com novos dados
- Sobre aprendizagem resulta numa fraca capacidade de generalização

←sobre aprendizagem!

Regularização

Ao aumentar a ordem do modelo, também aumentamos o valor dos coeficientes w_i

$$p = 1$$

	p=1	p=3	p=5	p=9
w_0	1.26			
w_1	-0.39			
w_2				
w_3				
w_4				
w_5				
w_6				
w_7				
w_8				
w_9				

Regularização

m D Ao aumentar a ordem do modelo, também aumentamos o valor dos coeficientes w_i

$$p = 3$$

	p=1	p=3	p = 5	p=9
w_0	0.96	-0.33		
w_1	-0.35	2.39		
w_2		-1.13		
w_3		0.12		
w_4				
w_5				
w_6				
w_7				
w_8				
w_9				

Regularização

Ao aumentar a ordem do modelo, também aumentamos o valor dos coeficientes w_i

$$p = 5$$

	p=1	p=3	p = 5	p=9
w_0	0.96	-0.60	0.52	
w_1	-0.35	2.37	-2.76	
w_2		-1.05	4.32	
w_3		0.11	-2.13	
w_4			0.41	
w_5			-0.03	
w_6				
w_7				
w_8				
w_9				

Regularização

m D Ao aumentar a ordem do modelo, também aumentamos o valor dos coeficientes w_i

$$p = 9$$

	p=1	p=3	p = 5	p = 9
w_0	0.96	-0.60	0.07	6.3
w_1	-0.35	2.37	-0.60	-45.2
w_2		-1.05	2.27	117.5
w_3		0.11	-1.35	-120.2
w_4			0.28	75.3
w_5			-0.02	-28.5
w_6				6.7
w_7				-0.9
w_8				0.1
w_9				0.0

Regularização

Penalizar pesos com valor elevado - incluir termo de penalização na função do erro

$$\mathcal{E}_{\text{Tot}} = \mathcal{E}_{\text{Q}}(\mathbf{x}, \mathbf{w}) + \lambda \mathcal{E}_{\text{W}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (y[n] - \mathbf{w}^{\top} \Phi(\mathbf{x}[n]))^{2} + \lambda \mathcal{E}_{\text{W}}(\mathbf{w})$$

onde λ é um parâmetro que controla a influência do termo de regularização na função total do erro.

Regularização

- Penalizar pesos com valor elevado incluir termo de penalização na função do erro
- Soma do valor quadrático dos coeficientes:

$$\mathcal{E}_{W}(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}$$

$$\mathcal{E}_{Tot} = \frac{1}{N} \sum_{n=1}^{N} (y[n] - \mathbf{w}^{\top} \Phi(\mathbf{x}[n]))^{2} + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$$

Também conhecido por weight decay e por ridge regression

Regularização

- Penalizar pesos com valor elevado incluir termo de penalização na função do erro
- Outras formas de regularização:

$$\mathcal{E}_{\text{Tot}} = \frac{1}{N} \sum_{n=1}^{N} (y[n] - \mathbf{w}^{\top} \Phi(\mathbf{x}[n]))^{2} + \frac{\lambda}{2} \sum_{j=1}^{p} |w_{j}|^{q}$$

com q > 0

- Solução analítica através de multiplicadores de Lagrange.
- ightharpoonup q=2 regualrizador quadrático, q=1 lasso

Regularização

Penalizar pesos com valor elevado - incluir termo de penalização na função do erro

$$\begin{aligned} p &= 9 \\ \mathbf{w} \text{ calculado com um média de } 10 \\ \text{estimações, com conjuntos de } 15 \\ \text{pontos} \end{aligned}$$

	$\lambda = 0$	$\lambda = 10^{-5}$	$\lambda = 1$
w_0	-44.2		
w_1	170.4		
w_2	-266.0		
w_3	228.8		
w_4	-120.3		
w_5	40.5		
w_6	-8.8		
w_7	1.2		
w_8	-0.01		
w_9	0		

Regularização

Penalizar pesos com valor elevado - incluir termo de penalização na função do erro

$$\begin{aligned} p &= 9 \\ \mathbf{w} \text{ calculado com um média de } 10 \\ \text{estimações, com conjuntos de } 15 \\ \text{pontos} \end{aligned}$$

	$\lambda = 0$	$\lambda = 10^{-5}$	$\lambda = 1$
w_0	-44.2	-0.70	
w_1	170.4	3.11	
w_2	-266.0	-3.72	
w_3	228.8	3.49	
w_4	-120.3	-2.20	
w_5	40.5	0.90	
w_6	-8.8	-0.24	
w_7	1.2	0.04	
w_8	-0.01	0	
w_9	0	0	

Regularização

Penalizar pesos com valor elevado - incluir termo de penalização na função do erro

p = 9					
\mathbf{w} calculado	com	um	média	de	10
estimações,	com	con	juntos	de	15
pontos					

	$\lambda = 0$	$\lambda = 10^{-5}$	$\lambda = 1$
w_0	-44.2	-0.70	0.22
w_1	170.4	3.11	0.23
w_2	-266.0	-3.72	0.18
w_3	228.8	3.49	0.10
w_4	-120.3	-2.20	-0.03
w_5	40.5	0.90	-0.08
w_6	-8.8	-0.24	0.04
w_7	1.2	0.04	-0.01
w_8	-0.01	0	0
w_9	0	0	0

Compromisso: Variância vs Polarização

- Modelo $\mathcal{F}(\mathbf{x}, \mathbf{w})$ estimado com N amostras de \mathbf{x} (modelo estimado com o par de conjuntos $\mathcal{D} = \{\mathcal{X}, \mathcal{Y}\}$)
- Qual o erro se tivéssemos um número infinito de conjuntos $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_{\infty}$?

Notação: \mathbf{x} entradas $y=\mathcal{H}(\mathbf{x})+\epsilon$ processo verdadeiro ruído gaussiano média nula: $\mathcal{N}(0,\sigma^2)$ $\hat{y}=\mathcal{F}(\mathbf{x},\mathbf{w})$ aproximação obtida com o conjunto \mathcal{D}

- Erro em todos os conjuntos:

$$\mathcal{E}_{\text{Tot}} = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathcal{E}_k = \mathbb{E} \left\{ (y - \mathcal{F}(\mathbf{x}, \mathbf{w}))^2 \right\}$$

Compromisso: Variância vs Polarização

Erro médio:

$$\mathcal{E}_{\text{Tot}} = \iint_{\mathbf{x}, y} (y - \mathcal{F}(\mathbf{x}, \mathbf{w}))^2 p(y, \mathbf{x}) d\mathbf{x} dy$$
$$= \mathbb{E} \left\{ (y - \hat{y})^2 \right\} = \mathbb{E} \left\{ (y - \mathcal{H}(\mathbf{x}) + \mathcal{H}(\mathbf{x}) - \hat{y})^2 \right\}$$

Com algumas manipulações resulta:

$$egin{aligned} \mathcal{E}_{\mathrm{Tot}} &= \mathbb{E}\left\{\epsilon^2\right\} + \mathbb{E}\left\{(y - \mathbb{E}\{\hat{y}\})^2\right\} + \mathbb{E}\left\{(\hat{y} - \mathbb{E}\{\hat{y}\})^2\right\} \ &= \mathbb{V}\left\{\mathrm{ru}(\mathsf{do})\right\} + \mathsf{polariza}(\hat{\mathsf{qo}})^2 + \mathbb{V}\left\{\hat{y}\right\} \end{aligned}$$

O erro é a soma da variância do ruído (não podemos controlar) mais a polarização (ao quadrado) do modelo mais a variância do modelo.

Compromisso: Variância vs Polarização

- **Promédio** = $\mathbb{V}\left\{\text{ruído}\right\}$ + polarização² + $\mathbb{V}\left\{\hat{y}\right\}$
- Compromisso variância vs polarização:
 - $oldsymbol{\wp}$ λ elevados resultam, numa polarização elevada
 - $ightharpoonup \lambda$ pequenos resultam numa variância elevada
 - O melhor modelo é o que consegue obter um balanço óptimo entre os dois casos

