ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)»

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Курсовая работа

по предмету «Теория автоматов»

Выполнил студент группы ВВ-2-06 Котомин Иван (шифр ВВ-21-06/036)

Преподаватель Антик М.И.

Содержание

Техническое задание)3
Интерфейс разрабатываемого устройства	
Описание аппаратного интерфейса	
Используемые форматы данных	
Математическое обоснование используемых алгоритмов	
Сложение чисел в формате с плавающей запятой	∠
Вычитание чисел в дополнительном коде	∠
Тестовые примеры	4
Микропрограммы в содержательном виде	6
Таблицы заполнения управляющей памяти	8
Назначения управляющих сигналов	8
Таблица управляющих сигналов	8
Таблица заполнения управляющей памяти	9
Функциональные схемы операционного и управляющего автоматов	9
Управляющий автомат	9
Операционный автомат	10
Литература	11

Техническое задание

Разработать вычислительное устройство, состоящее из двух взаимосвязанных частей – операционного и управляющего автоматов, и выполняющее следующие операции:

- 1. Вычитание двух целых чисел в дополнительном коде.
- 2. Сложение двух чисел, представленных в формате с плавающей запятой.

Управляющий автомат – схема с сокращенным тактом.

Числа 32-х разрядные, суммарное число входных и выходных контактов ≤ 40.

Интерфейс разрабатываемого устройства

Описание аппаратного интерфейса

Интерфейс устройства можно представить схематически:

IO Bus (*In-Out Bus*) – шина ввода/вывода, разрядность 32 бит

Ri (*Ready Input*) – сигнал устройству о подаче входных данных. Непосредственно перед этим, за 1 такт, на этот вход необходимо подать 1.

Коп (*Код операции*) – определяет выполняемую над данными задачу и формат используемых операндов. Принимаемые значения:

- 0 Сложение чисел, представленных в формате с плавающей запятой;
- 1 Вычитание двух чисел в дополнительном коде.

Ro (*Ready Out*) — признак окончания работы устройства. При этом либо на шине вводавывода находится результат, либо на шине ошибок — код возникшей ошибки.

Err (*Error Bus*) – шина кодов ошибок, разрядность 2 бита. На ней могут формироваться следующие коды:

- 00 ошибки не произошло
- 10 ошибка во входных данных, числа не нормализованы (для чисел в плавающем формате)
- 11 возникло неисправимое переполнение.

Суммарное число контактов 37.

Используемые форматы данных

Код операции	Формат числа							
	31	3024	230					
0	Знак	Порядок в смещенном коде	Нормализованная мантисса в прямом коде					
1	310 Число в дополнительном коде							

Математическое обоснование используемых алгоритмов

Сложение чисел в формате с плавающей запятой

Сложение чисел в формате с плавающей запятой можно разделить на 3 этапа:

- 1. Выравнивание порядков и мантисс в сторону большего числа
- 2. Сложение мантисс
- 3. Нормализация результата.

На первом этапе происходит определение числа с максимальным порядком и циклическое увеличение порядка другого числа с одновременным сдвигом его мантиссы вправо.

На втором этапе происходит преобразование мантисс из прямого кода в дополнительный и их подача на сумматор. При выполнении сложения мантисс с одинаковыми знаками возможно возникновение переполнения, выражающегося в «порче» знакового разряда. Такой вид переполнения является устранимым путем увеличения порядка результата и сдвига мантиссы вправо с одновременным внесением разряда переполнения. Итоговый знак определяется исходя из знаков исходных чисел.

При увеличении порядка возможно возникновение неустранимого переполнения, выражающегося в обнулении порядка.

На третьем этапе происходит проверка знака мантиссы и ее перевод в прямой код, а затем нормализация путем циклического сдвига мантиссы влево одновременно с уменьшением итогового порядка. При этом также выполняется контроль обнуления порядка.

Вычитание чисел в дополнительном коде

Вычитание чисел в дополнительном коде сводится к сложению уменьшаемого и вычитаемого, взятого с противоположным знаком. Для получения числа, противоположного данному, нужно это число поразрядно проинвертировать и прибавить к младшему разряду 1. Это прибавление единицы может быть произведено совместно со сложением уменьшаемого и проинвертированного вычитаемого, путем ее подачи на вход

переноса сумматора. Результат сложения будет представлен на выходе сумматора в дополнительном коде, причем при возникновении переноса его можно откинуть.

Тестовые примеры

{этот кусок я написал при Антике от руки, так что сами придумайте ;) }

Микропрограммы в содержательном виде

© Ёжич, BB-2-06

Скачано с http://vv206.selfip.org/

Таблицы заполнения управляющей памяти

Назначения управляющих сигналов

- **У1, У2, У11, У12**: (0) хранение, (1) запись;
- **(У3, У4)**, **(У5, У6)**: (00) хранение, (01) сдвиг вправо, (10) сдвиг влево, (11) запись;
- **(У7, У8)**, **(У9, У10)**: (00) хранение, (01) инкремент, (10) декремент, (11) запись;
- **Y13**: (0) 0, (1) 1;
- **(У14, У15)**: (00) хранение, (01) последовательная запись, (10) сдвиг влево, (11) параллельная запись;
- **У16, У17, У18, У23**: (0) хранение, (1) запись;
- **У19, У20**: (0) буфер закрыт, (1) буфер открыт;
- **У21, У22**: биты кода ошибки.

Таблица управляющих сигналов

	Y	Y	Y	Y	Y	Υ	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	r
М	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	0
1	1	0	1	1	0	0	1	1	0	0									0	0	0	0	0	0
2	0	1	0	0	1	1	0	0	1	1									0	0	0	0	0	0
3	0	0	0	1	0	0	0	1	0	0									0	0	0	0	0	0
4	0	0	0	0	0	1	0	0	0	1									0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1				0	0	0	0	0	0
6	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1				0	0	0	0	0	0
7	0	0					4						0	1	1				0	0	0	0	0	0
8	0	0					1	0					0	1	0				0	0	0	0	0	0
9	0	0											0						1	0	0	0	0	1
10	0	0											0						0	0	1	0	1	1
11	0	0											0						0	0	1	1	1	1
12	0	0			\								0						0	0	1	1	1	1
13																1	0	0	0	0	0	0	0	0
14				V ,												0	1	0	0	0	0	0	0	0
15																		1	0	0	0	0	0	0
16																		0	0	0	1	1	1	0
17				,														0	0	1	0	0	0	1
02																		0	0	0	0	0	1	0
012													1					0	0	0	0	0	0	0

Таблица заполнения управляющей памяти

F	ROM0										
A`	Y	Н	A	p							
0	m01	1	0	X							
1	m1	1	2	X							
2	m03	1	2	X							
3	m04	3	4	X							
4	m10	0	0	0							
5	m06	5	6	X							
6	m3	4	5	X							
7	m5	0	8	0							
8	m08	6	9	X							
9	m010	8	12	X							
10	m09	7	11	X							
11	m010	8	12	X							
12	m011	9	14	X							
13	m7	9	14	X							
14	m8	0	15	0							
15	m013	7	16	X							
16	m12	0	0	0							
17	m015	1	17	x							
18	m016	0	19	0							
19	m15	10	20	x							
20	m17	0	0	0							
21	m17	0	0	0							

F	ROM1			
A`	Y	Н	A	p
0	m02	2	1	X
1	m13	1	17	x
2	m2	0	3	0
3	m04	3	4	x
4	m05	4	5	X
5	m07	0	7	0
6	m4	4	5	X
7	m5	0	8	0
8	m08	6	9	X
9	m6	0	10	0
10	m09	7	11	X
11	m11	0	0	0
12	m012	0	13	0
13	m7	9	14	X
14	m9	0	0	0
15	m013	7	16	X
16	m014	9	14	X
17	m14	0	18	0
18	m016	0	19	0
19	m15	10	20	X
20	m16	0	21	0
21	m17	0	0	0

Функциональные схемы операционного и управляющего автоматов

Управляющий автомат

Операционный автомат

Литература

1. М.И. Антик «Синхронные цифровые автоматы», -М.: МИРЭА, 2006 -99 стр.