PH1140 OSCILLATION PROJECT

GROUP BETA

A SOVETKIN, A. SHEIKH, C. HO

(NOT IN ORDER OF CONTRIBUTION)

TABLE OF CONTENT

- 1) Objectives
- 2) Division of Labour
- 3) Theory
- 4) The Setup
- 5) Experimental Procedure
- 6) Results and Discussion
- 7) Conclusion

Aside: Generalisation to Fractional Order Oscillators

OBJECTIVES

Objectives:

- To investigate several harmonic oscillators including:
 - Simple Harmonic Oscillator
 - Damped Oscillator
 - Damped Driven Oscillators
- Compare how well our theoretical models fit the experimental results
 - Experimentally verify theory

DIVISION OF LABOUR

- Alex
 - Carry Out Experimental Procedure
 - Measurement
- Araaf
 - o Carry Out Experimental Procedure
 - o Measurement
- Conrad
 - o Theory
 - Plotting
 - o Write Up

THEORY

Recipe:

- Identity Set Up
- Consider its Lagrangian
- Euler-Lagrange Equation
- Solve the ODEs
- Theoretical Models

Let's consider see an example for Simple Harmonic Oscillator (SHO)

Set Up:

- Consider a point mass attached to a spring
- Mass, m (kg)
- Spring Constant, k (N/m)
- Move along the x-axis

https://courses.lumenlearning.com/atd-austincc-physics1/chapter/16-3-simple-harmonic-motion-a-special-periodic-motion/

Lagrangian

$$L = T - V$$

$$L = \frac{1}{2}mx'^2 - \frac{1}{2}kx^2$$

• Euler-Lagrange Equation

$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial x'} \right) = 0$$

Fun Fact:

Lagrange was only 19 when he collaborated with Euler for this equation!

Euler (1703-1783)

• Then we obtain the following expression:

$$mx'' + kx = 0$$
$$x'' = -\frac{k}{m}x$$

• Since the natural frequency $\omega = \sqrt{\frac{k}{m}}$. Hence: $x'' = -\omega^2 x$

Solve the homogenous ODE

We use the Ansatz $x = e^{rt}$ where $x, r \in \mathbb{C}$

Recall the ODE:

$$x'' = -\omega^2 x$$

By substituting in our ansatz:

$$r^2 + \omega^2 = 0$$

Solving the characteristic polynomial as above

• Characteristic Polynomial

$$r^2 + \omega^2 = 0$$
$$r = +\omega i$$

• By substituting into our general form of a 2^{nd} order ODE solution:

$$x(t) = c_0 cos(\omega t) + c_1 sin(\omega t)$$

• At time t = 0, x has to be the amplitude:

$$\chi(0) = A$$

• Hence:

$$x(t) = A\cos(\omega t)$$

Theoretical Model

THE SET-UP

EXPERIMENTAL PROCEDURE

- Set off recording
- Release pendulum from the marking at 3 arbitrary units:
- For the DDHO:
 - On top of our manual release, we also used a motor to drive the oscillator
 - Angular frequency: 2.42 rads^-1 from a measured period of 2.60s.
- Run for ~5 oscillations
 - To record the time of oscillations, use the iPhone software to record and slow down the footage of the oscillation to make accuracy and precision of measurements better
- Go through recordings in 0.5 s interval
- Record displacement for the respective time
- Plot!

SIMPLE HARMONIC OSCILLATOR

- The theoretical model is given to be:
 - $x(t) = A\cos(\omega t)$
- For small time, t, the model fits the theoreticalmodel but as time, t, we cam see that the displacement from the equilibrium is not constant, hence suggesting a dampening effect.
- This occurs, as a direct consequence to the frictional force as no system is frictionless, thus explaining why some minimal damping occurs.

See the appendix A for SHO data.

DAMPED HARMONIC OSCILLATOR

- The theoretical model is given to be:
- $x(t) = A\cos(\omega t) \exp(-\gamma t/2)$
- Unlike the damping in SHO, the damping in DHO is generated due to the magnetic field in the solenoid of component B, the denser the B-field, the greater the damping force.
- Outlier caused by non-uniform B-field?
- The initial amplitude, A was 3 (arbitrary units)

See Appendix B for DHO data.

DAMPED DRIVEN HARMONIC OSCILLATOR

- For this system, we did not fit it against a model
 - $ox(t) = A cos(\omega_D t + \phi)$
- However, we can still see the amplitude changing in relatively irregular manner (decreasing and increasing) compared to previous systems
- Therefore, we can confirm, there exists application of external force (i.e. the driving force from the motor.)
- The time period (T) and angular frequency (ω_0) :
 - $T = 3.34 s \pm 0.001 s$
 - $ω_0 = 2.51 \pm 0.001$ rad/s (using uncertainty formula)

See Appendix C for DDHO data.

AMPLITUDE-ANGULAR FREQUENCY

- Identify time of 1 full period of the motor.
- Use $2\pi/T$ to get angular frequency
- Recorded the associated max. displacement
- By increasing the setting on the motor, we obtained different value of angular frequency and displacement.
- Plotting max displacement against ω , we get the resonance graph (on the right)
- The result shows a Cauchy distribution

See Appendix D for x-omega data.

CONCLUSION

We discussed:

- Theoretical Model
- Experimental Set Up
- Experimental Procedure
- Results
- Relevant Uncertainties and their Effects on Results

Based on experimental results, it matches and verifies our theories!

CONRAD HO

(PLEASE FEEL FREE TO TALK TO ME IF YOU FIND THIS INTERESTING! WOULD BE HAPPY GO INTO MORE DEPTH!)

- Replace the order of the ODEs into fractional order α
- Note:

$$D_t^{\alpha} \leftrightarrow \frac{d^{\alpha}}{dt^{\alpha}}, \qquad 0 < \alpha < 1, \alpha \in \mathbb{C}$$

For example, our SHO ODE becomes:

$$D_t^{2\alpha}x(t) = -\omega^2 x$$

We solve this Fractional ODE (FODE) numerically using python library fodeint

Note: We can solve this analytically but for simplicity's sake and convenience in plotting, we did this numerically

Result:

- Plotting $\alpha = 0.9$ against our data and theoretical model
- As lim α -> 1, we recovers
 the integer order model
- Not an exponential decay!
- This gives rise to interesting physical investigation

Theoretical Explanation:

- Integral and Differential is a continuum in fractional order
 - Gives rise to the differintegral operator
- A non-local operator!
- Associated memory effects:
 - Not only instantaneous
 - It considers its history
 - Hence the decay

Future Work:

- Optimise α to a data set from an experiment
- Investigate non-exponential decay in Oscillators
- Physical implication of fractional order
- Experimental realisation
- Apply to Quantum Harmonic Oscillators?

Recommended Reading:

- [1] Tarasov VE. Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer Science & Business Media; 2011 Jan 4.
- [2] Jin B. Fractional differential equations. Cham, Switzerland: Springer International Publishing; 2021.
- [3] Herrmann R. Fractional calculus: an introduction for physicists. 2011 Feb 21.
- [4] Hilfer R, editor. Applications of fractional calculus in physics. World scientific; 2000 Mar 2.
- [5] Diethelm K, Kiryakova V, Luchko Y, Machado JT, Tarasov VE. Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dynamics. 2022 Mar; 107(4):3245-70.
- [6] Tarasov VE, editor. Handbook of fractional calculus with applications. Berlin, Germany: de Gruyter; 2019.

APPENDIX A: RAW DATA FOR SHO

V V	Time, t +/- 0.01	Displacement , x +/- 0.01
No	s	arbitrary units
1	0.0	3.0
2	0.5	3.0
3	1.0	-2.8
4	1.5	-0.2
5	2.0	2.5
6	2.5	-0.3
7	3.0	-2.3
8	3.5	0.3
9	4.0	2.1
10	4.5	-0.5
11	5.0	-1.9
12	5.5	0.6
13	6.0	1.6
14	6.5	-0.8
15	7.0	-1.6
16	7.5	0.8
17	8.0	1.2
18	8.5	-1.0
19	9.0	-1.2
20	9.5	1.0
21	10.0	-1.0

APPENDIX B: RAW DATA FOR DHO

y y 		
	t +/- 0.01	x +/- 0.01
no	s	arbitrary units
1	0.0	3.0
2	0.5	0.2
3	1.0	-3.0
4	1.5	0.1
5	2.0	2.9
6	2.5	-0.6
7	3.0	-2.8
8	3.5	0.9
9	4.0	2.6
10	4.5	1.1
11	5.0	-2.4
12	5.5	1.0
13	6.0	2.2
14	6.5	-1.2
15	7.0	-2.0
16	7.5	0.8
17	8.0	2.0
18	8.5	-1.8
19	9.0	-1.8
20	9.5	1.9
21	10.0	1.6
22	10.5	-1.1

APPENDIX C: RAW DATA FOR DDHO

No	Time ,t, (s) +/- 0.01 Displacement , x (arbitrary units) +/- 0.01	
1	0.0	3.0
2	0.5	0.5
3	1.0	-1.5
4	1.5	0.8
5	2.0	1.1
6	2.5	-2.0
7		
8	3.5	2.4
9		
10	4.5	-2.2
11		
12	5.5	
13	6.0	
14	6.5	-0.2
15		-1.5
16		
17	8.0	0.01
18	8.5	-0.9
19	9.0	0.7
20	9.5	1.9
21	10.0	-0.1
22	10.5	-2.7
23		
24	11.5	2.2
25	12.0	1.5

APPENDIX D:
RAW DATA
FOR XOMEGA

Period (s)	Angular freq rad/s	Max. Di (arbitra)	splacement ry unit)
	3.44	1.83	1.5
	2.78	2.26	1.7
	2.45	2.57	2.2
	2.19	2.87	3.9
	1.96	3.21	7.6
	1.69	3.72	3.1
	1.64	3.84	1.8
	1.44	4.37	0.95
	1.25	5.03	0.9