Elective II: VLSI Design

Code: CISM 402

Pritha Banerjee

Courtsey for slides: Debasis Mitra, NIT Durgapur

1

Floorplanning

Books:

- Chapter 5 of Naveed A. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic Publishers
- Chapter 2 (2.2) of M. Sarafzadeh and C. K. Wong, An introduction to VLSI Physical Design, The McGraw Hill Companies, Inc.

Physical Design Flow

Partitioning is over! What Next?

Partitioning leads to

Blocks with well-defined areas and shapes (rigid/hard blocks).

Blocks with approximated areas and no particular shapes (flexible/soft blocks).

A **netlist** specifying connections between the blocks.

Objectives

Find **locations** for all blocks.

Consider shapes of soft block and pin locations of all the blocks.

Floorplanning

To plan the *positions* and *shapes* of the modules at the beginning of the design cycle to optimize the circuit performance:

- Chip area
- Total wirelength
- Critical path delay
- Routability
- Others (eg, noise, heat dissipation etc.)

A non-optimal floorplan

5

Floorplanning Vs Placement

- Both determines block positions to optimize the circuit performance
- Floorplanning:
 - Details like shapes of blocks, I/O pin positions, etc. are not yet fixed
 - Blocks with flexible shape are called soft blocks
- Placement:
 - Details like module shapes and I/O pin positions are fixed
 - blocks with no flexibility in shape are called hard blocks

Floorplanning Problem

- Input:
 - n Blocks with areas A_1, \dots, A_n
 - Bounds r_i and s_i on the aspect ratio of block B_i
- Output:
 - Coordinates (x_i, y_i) , width w_i and height h_i for each block such that h_i $w_i = A_i$ and $r_i \le h_i/w_i \le s_i$
- Objective:
 - To optimize the circuit performance

A commonly used objective function: a weighted sum of area and wirelength (cost = $\alpha A + \beta L$)

where A is the total area of the packing, L is the total wirelength, and α and β are constants

7

Floorplanning

Aspect ratio (h_i/w_i)

- If there is no bound on the aspect ratios, can we pack everything tightly?
 - Yes

But we don't want to layout blocks as long strips, so we require a bound $(r_i \le h_i/w_i \le s_i)$ for each i

Floorplanning

Aspect ratio (h_i/w_i)

• Several shapes are allowed keeping AR within the range for soft blocks

• For hard blocks, the orientations can be changed

9

Floorplanning

Wirelength estimation:

- Exact wirelength of each net is not known until routing is done
- In floorplanning, even pin positions are not known yet.
- Some possible wirelength estimations:
 - Center-to-center estimation
 - Half-perimeter estimation

Floorplanning

Dead space:

• The space that is wasted:

- Minimizing area is the same as minimizing dead space
- Dead space percentage is computed as

$$(A - \Sigma_i D_i) / A \times 100\%$$

11

Floorplanning Algorithms

- Floorplanning problem belongs to the class of NP complete problems- thus heuristics
- Floorplanning requires:
 - Floorplanning topology generation: determine the relative location of modules/ blocks
 - Floorplan sizing : determining the exact shape (w, h) of each module
- such that area of floorplan is minimal and total wirelength is minimal
- Need to devise efficient representation of floorplan

Slicing and Non-Slicing Floorplan

Slicing Floorplan:

One that can be obtained by repetitively subdividing (slicing) rectangles horizontally or vertically

Non-Slicing Floorplan:

One that may not be obtained by repetitively subdividing alone

Otten (LSSS-82) pointed out that slicing floorplans are much easier to handle

13

Data structure: Slicing Floorplan

Example:

Data structure: Slicing Floorplan

Slicing Tree:

- A binary tree in which each leaf represents a partition (module) and each internal node represents a cut
- Slicing tree is of order 2

15

Slicing and Non-Slicing Floorplan

Slicing Tree:

A binary tree in which each leaf represents a partition and each internal node represents a cut

Slicing and Non-Slicing Floorplan

Slicing Tree:

A binary tree in which each leaf represents a partition and each internal node represents a cut

17

Slicing and Non-Slicing Floorplan

Slicing Tree:

A binary tree in which each leaf represents a partition and each internal node represents a cut

Slicing and Non-Slicing Floorplan

Slicing Tree:

A binary tree in which each leaf represents a partition and each internal node represents a cut

Slicing and Non-Slicing Floorplan

Slicing Tree:

A binary tree in which each leaf represents a partition and each internal node represents a cut

Polish Expression: postorder trversal: ABC-|DE|-HI|FG|-|20

19

Floorplan order: Non-Slicing

- Wheel: The smallest non-slicing floorplans (Wang and Wong, TCAD, Aug. 92).
- · Order of a floorplan: a slicing floorplan is of order 2.
- Floorplan tree: A tree representing the hierarchy of partitioning.

The two possible wheels.

A filoorplan of order 5

Corresponding floorplan tree

Floorplanning approach

- Rectangular dual graph approach to floorplanning
- Hierarchical approach to floorplanning
 - Bottom-up
 - Top-down
- Simulated annealing based approach to floorplanning

Rectangular dual graph approach

Block Adjacency Graph:

- A floorplan is modeled by an undirected graph:
 - Vertex: block
 - Edge: (v_i, v_j) is an edge if the block corresponding to v_i is adjacent to the block corresponding to v_i

23

Graph Representation of Floorplan Block Adjacency Graph:

Example:

Block Adjacency Graph:

Example:

Every T junction represents a triangulated face of adjacency graph rectangular floorplan with T junction: planar triangulated graph

Graph Representation of Floorplan

Block Adjacency Graph:

Properties:

- The graph is planar and rectangular dualizable
- Every face (closed contour within which there is nothing) is a triangle
- There is no complex triangle (cycle (a,b,c) of length 3 is not a face)
 - No valid floorplan exist for this graph
- All interior vertices have degree ≥ 4
 - An interior block must have atleast 4 adjacencies
- There are atmost 4 vertices of degree 2
 - Degree 2 vertices represent corner blocks

Geometric dual

- Geometric dual (or simply dual) of a planar graph G is a graph which has a vertex for each face of G, and an edge for each edge in G joining two neighboring faces, for a certain embedding of G
- The term "dual" is used because this property is symmetric
 - i.e., if H is a dual of G, then G is a dual of H (if G is connected)

27

Floorplanning by Rectangular Dualization

Idea:

- Generates topology, i.e., determines dissection pattern based on neighborhood constraints
 - Sizing has to be taken care of separately
- Input: Neighborhood graph obtained from partitioning phase
- Steps:
 - Make sure that
 - The graph is planar
 - Every interior faces are triangles
 - There is no complex triangle
 - Construct the dual
 - Redraw it in a rectilinear fashion

Floorplanning by Rectangular Dualization *Example:*

29

Floorplanning by Rectangular Dualization *Example:* 16

Floorplanning by Rectangular Dualization

31

Floorplanning by Rectangular Dualization

Floorplanning by Rectangular Dualization

33

Floorplanning by Rectangular Dualization

Floorplanning by Rectangular Dualization

35

Floorplanning by Rectangular Dualization

Example:

Problems: netlist is hypergraph, obtaining planar triangulated graph for the netlist, block areas not considered

36

Hierarchical approach

- Divide and conquer paradigm, a small number of rectangles are considered
- Enumerate all possible floorplans for a small number of modules, say 3, w.r.t connectivity

- Bottom-up approach:
 - cluster modules depending on connectivity, when we have few super blocks, enumerate all possibilities and take the best one
- Top-down approach: recursively partition netlist and enumerate at each level of hierarchy

Graph Representation of Floorplan

Polar Graph representation:

- A floorplan is modeled by a pair of directed acyclic graphs:
 - Horizontal polar graph
 - Vertical polar graph
- For horizontal (vertical) polar graph,
 - Vertex: Vertical (horizontal) channel
 - Edge: 2 channels are on 2 sides of a block
 - Edge weight: Width (height) of the block

Hierarchical approach: bottom-up

39

Simulated annealing based approach

- Combinatorial optimization problems (like partitioning) can be thought as a State Space Search Problem.
- A State is just a configuration of the combinatorial objects involved.
- The State Space is the set of all possible states (configurations).
- A Neighbourhood Structure is also defined (which states can one go in one step).
- There is a cost corresponding to each state.
- Search for the min (or max) cost state.

State Space Search Problem

- $3\ 2\ 1\ cost = 1$ (only one element (2) is in proper place)
- $3\ 1\ 2\ cost = 2$ (none is in proper place)
- $1 \ 3 \ 2 \ cost = 1$ (only one element (1) is in proper place)
- $1\ 2\ 3\ cost = 0$ (all the tree elements are in proper place)
- $2\ 1\ 3\ cost = 1$ (only one element (3) is in proper place)
- $2\ 3\ 1\ cost = 2$ (none is in proper place)

41

Greedy Algorithm

- A very simple technique for State Space Search Problem.
- Start from any state.
- Always move to a neighbor with the min cost (assume minimization problem).
- Stop when all neighbors have a higher cost than the current state.

Simulated Annealing

- Very general search technique.
- Try to avoid being trapped in local minimum by making probabilistic moves.
- Popularize as a heuristic for optimization by:
 - Kirkpatrick, Gelatt and Vecchi, "Optimization by Simulated Annealing", Science, 220(4598):498-516, May 1983.

43

Simulated Annealing

Movement of ball on terrain

Upon a large no. of iterations, SA converges to this solution.

Simulated Annealing

Motivation

- Annealing in metals
- Heat the solid state metal to a high temperature
- Cool it down very slowly according to a specific schedule
- If the heating temperature is sufficiently high to ensure random state and the cooling process is slow enough to ensure thermal equilibrium, then the atoms will place themselves in a pattern that corresponds to the global energy minimum of a perfect crystal
- Attaining a min cost state in simulated annealing is analogous to attaining a good crystal structure in annealing

45

Simulated Annealing

The procedure:

Let t be the initial temperature.

Repeat

Repeat

- Pick a neighbor of the current state randomly.
- Let c = cost of current state.
 Let c' = cost of the neighbour picked.
- If c' < c, then move to the neighbour (downhill move).
- If c' > c, then move to the neighbour with probablility $e^{-(c'-c)/t}$ (uphill move).

Until equilibrium is reached.

Reduce t according to cooling schedule.

Until Freezing point is reached.

Simulated Annealing

Things to be decided while using SA:

- The state space
- The neighborhood structure
- The cost function
- The initial state
- The initial temperature
- The cooling schedule (how to change t)
- The freezing point

47

Simulated Annealing for floorplanning

Given: set of modules and finite number of shapes(w,h)

Solution Space: a valid slicing floorplan having non overlapping modules

Obtaining new solution: rules to generate a new solution from the current solution

Cost function: minimize area and total wire length

Simulated Annealing for floorplanning

Start with an initial floorplan: Initial slicing tree

Simulated Annealing for floorplanning

- A Polish expression E = e₁ e₂ ... e_{2n-1} is called normalized iff E has no consecutive operators of the same type (H or V).
- Given a normalized Polish expression, we can construct a unique rectangular slicing structure.

Simulated Annealing for floorplanning

- •Obtaining new floorplan configuration /solution:
- •3 types of moves:

M1 (**Operand Swap**): Swap two adjacent operands □ operands.

M2 (Chain Invert): Complement some chain (V = H, H = V).

M3 (**Operator/Operand Swap**): Swap two adjacent operand and operator.

•New configuration is also normalized polish expression

Graph Representation of Floorplan

Polar Graph representation:

Example:

Polar Graph representation:

Example:

53

Graph Representation of Floorplan

Channel digraph representation:

- A floorplan is modeled by a directed graph:
 - Vertex: channel or cut
 - Edge: (v_i, v_j) is an edge if the cut corresponding to v_i is the base an the cut corresponding to v_j is the crosspiece of a T-junction

Channel digraph representation:

Example:

55

Graph Representation of Floorplan Channel digraph representation:

Example:

Channel digraph representation:

Example:

57

Graph Representation of Floorplan Channel digraph representation:

Example:

Channel digraph representation:

Properties:

- A vertex in channel digraph corresponding to a through cut (a cut whose each end touches the boundary) has outdegree = 0
 - A through cut cannot be a base
- A floorplan is slicible iff its channel digraph is acyclic
- 4-cycle theorem: A floorplan is non-slicible iff there exist at least one cycle of length 4 in the corresponding channel digraph
 - The channel digraph of the simplest non-slicing floorplan (shown in the previous foil) is a 4-cycle

59