

Pruebas de acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger libremente cinco ejercicios completos de los diez propuestos. Se expresará claramente cuáles son los elegidos. Si se resolvieran más, sólo se corregirán los 5 primeros que estén resueltos (según el orden de numeración de pliegos y hojas de cada pliego) y que no aparezcan totalmente tachados.

2.- CALCULADORA: Podrán usarse calculadoras no programables, que no admitan memoria para texto, ni para resolución de ecuaciones, ni para resolución de integrales, ni para representaciones gráficas.

CRITERIOS GENERALES DE EVALUACIÓN: Los 5 ejercicios se puntuarán sobre un máximo de 2 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

E1.- (Álgebra)

- a) Obtener todas las soluciones del sistema $\begin{cases} x + y + z = 1 \\ x + 2y z = 3 \end{cases}$ (1 punto)
- **b)** Determinar todos los $a, b \in \mathbb{R}$ para que x = 5, y = -2, z = -2 sea solución del sistema $\begin{cases} x + y + z = 1 \\ x + 2y z = 3 \\ ax + 2ay + bz = b \end{cases}$

¿Para cuáles de esos valores la solución del sistema es única? (1 punto)

E2.- (Álgebra)

Dadas las matrices $A = \begin{pmatrix} 1 & 1 \\ 0 & a \\ 1 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} 3 & -1 \\ a & 0 \\ 3 & -1 \end{pmatrix}$ con $a \in \mathbb{R} - \{0\}$.

- a) Calcular la matriz C, siendo $c_{11} = 2$, tal que AC = B. (1 punto)
- **b)** Si $D = B^t A$ siendo B^t la traspuesta de B, determinar los valores de a para los que D tiene matriz inversa. (1 punto)

E3.- (Geometría)

Dadas las rectas $r_1 \equiv \begin{cases} x = 1 + t \\ y = 2t \\ z = -1 + t \end{cases}$, $t \in \mathbb{R}$, $y r_2 \equiv \frac{x-1}{3} = \frac{y}{2} = \frac{z}{2}$.

- a) Razonar si existe un plano perpendicular a r_2 que contenga a r_1 . (1 punto)
- b) Calcular la recta con vector director perpendicular a los de las rectas r_1 y r_2 y que contiene al punto (1,0,0). (1 punto)

E4.- (Geometría)

Sea r la recta que pasa por los puntos (1,0,-1) y (0,1,1),

- a) Determinar el plano que contiene a la recta r y al punto P = (0,0,1). (1 punto)
- **b)** Calcular la distancia de la recta r al punto P = (0,0,1). (1 punto)

E5.- (Análisis)

Sea

$$f(x) = \begin{cases} \frac{1}{2-x} & si \quad x < 1\\ \ln(x) & si \quad x \ge 1 \end{cases}$$

a) Estudiar su continuidad y derivabilidad en x = 1. (1 punto)

b) Estudiar sus asíntotas verticales y horizontales. (1 punto)

E6.- (Análisis)

Dada la función $f(x) = x^2(x + 3)$, determinar su dominio de definición, puntos de corte de su gráfica con los ejes, intervalos de crecimiento y decrecimiento y extremos relativos.

(2 puntos)

E7.- (Análisis)

Calcular:

a)
$$\lim_{x \to 0} \frac{\text{sen}(x^2)}{x^3 + 4x^2}$$
 (1 punto)

$$\mathbf{b}) \int_0^{\frac{\pi}{2}} \operatorname{sen}(x) \cos^3(x) \, dx \tag{1 punto}$$

E8.- (Análisis)

Dadas las funciones $f(x) = -x^2$ y $g(x) = x^3$.

a) Comprobar que las gráficas de dichas funciones en [-1,0] sólo se cortan para x = -1 y x = 0.

Demostrar que en [-1,0] $g(x) \ge f(x)$ (1 punto)

b) Hallar el área del recinto limitado por las gráficas de dichas funciones. (1 punto)

E9.- (Probabilidad v Estadística)

Sean A, B y C sucesos de un experimento aleatorio con probabilidades P(A) = 0.3, P(B) = 0.4 y P(C) = 0.5 tales que A y B son independientes y A y C son incompatibles. Calcular las probabilidades $P(A \cap B)$, $P(A \cap C)$, $P(A \cap \overline{C})$, $P(A \cup B)$ y $P(\overline{A} \cup \overline{B})$ siendo \overline{A} , \overline{B} y \overline{C} los sucesos complementarios de A, B y C respectivamente. (2 puntos)

E10.- (Probabilidad y Estadística)

De las camionetas que recogen los envases reciclados de una localidad el 45% son de la marca C1, el 30% de la marca C2 y el 25% de la marca C3. La probabilidad de que una camioneta se averíe es: 0,02 si es de la marca C1, 0,05 si es de la marca C2 y 0,04 si es de la marca C3.

- a) Indicar las 6 probabilidades que aparecen en el enunciado (0,6 puntos)
- b) Si se selecciona una de esas camionetas al azar ¿qué probabilidad tiene de averiarse? (0,7 puntos)
- c) Suponiendo que una de esas camionetas se ha averiado, ¿cuál es la probabilidad de que haya sido una camioneta de la marca C3? (0,7 puntos)

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt$$

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9014
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9318
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9997	0,9997	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999