Mathematik I – Lineare Algebra

Vorlesung 2

Wolfgang Globke

10. Oktober 2019

Geometrie in der Ebene:

• Punkte werden durch zwei Koordinaten x_1, x_2 eindeutig identifiziert. Dies liefert die Darstellung durch Vektoren $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Geometrie in der Ebene:

- Punkte werden durch zwei Koordinaten x_1, x_2 eindeutig identifiziert. Dies liefert die Darstellung durch Vektoren $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
- Vektoren können komponentenweise addiert und mit Skalaren multipliziert werden,

$$x + y = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}, \quad \lambda x = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix}.$$

• Somit können wir x als Linearkombination $x = x_1e_1 + x_2e_2$ von $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ schreiben.

Geometrie in der Ebene:

- Punkte werden durch zwei Koordinaten x_1, x_2 eindeutig identifiziert. Dies liefert die Darstellung durch Vektoren $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
- Vektoren können komponentenweise addiert und mit Skalaren multipliziert werden,

$$x + y = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}, \quad \lambda x = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix}.$$

- Somit können wir x als Linearkombination $x = x_1e_1 + x_2e_2$ von $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ schreiben.
- Nach dem Satz des Pythagoras ist die Norm (Länge) eines Vektors $||x|| = \sqrt{x_1^2 + x_2^2}$.

Lineare Transformationen und Matrizen:

• Geometrische Transformationen Φ sind häufig linear,

$$\Phi(\lambda x) = \lambda \Phi(x), \quad \Phi(x+y) = \Phi(x) + \Phi(y).$$

• Insbesondere $\Phi(x) = x_1 \Phi(e_1) + x_2 \Phi(e_2)$, also ist Φ durch $\Phi(e_1)$ und $\Phi(e_2)$ vollständig festgelegt.

Lineare Transformationen und Matrizen:

• Geometrische Transformationen Φ sind häufig linear,

$$\Phi(\lambda x) = \lambda \Phi(x), \quad \Phi(x+y) = \Phi(x) + \Phi(y).$$

- Insbesondere $\Phi(x) = x_1 \Phi(e_1) + x_2 \Phi(e_2)$, also ist Φ durch $\Phi(e_1)$ und $\Phi(e_2)$ vollständig festgelegt.
- Wir codieren Φ durch eine Matrix $A = \begin{pmatrix} a_1 & a_3 \\ a_2 & a_4 \end{pmatrix}$. Nach den Regeln der Matrix-Vektor-Multiplikation gilt

$$Ax = \begin{pmatrix} a_1x_1 + a_3x_2 \\ a_2x_1 + a_4x_2 \end{pmatrix} = \Phi(x).$$

Umgekehrt ermöglicht es diese Formel, für eine gegebene Matrix A eine lineare Transformation Φ_A zu definieren.

Lineare Transformationen und Matrizen:

• Geometrische Transformationen Φ sind häufig linear,

$$\Phi(\lambda x) = \lambda \Phi(x), \quad \Phi(x+y) = \Phi(x) + \Phi(y).$$

- Insbesondere $\Phi(x) = x_1 \Phi(e_1) + x_2 \Phi(e_2)$, also ist Φ durch $\Phi(e_1)$ und $\Phi(e_2)$ vollständig festgelegt.
- Wir codieren Φ durch eine Matrix $A = \begin{pmatrix} a_1 & a_3 \\ a_2 & a_4 \end{pmatrix}$. Nach den Regeln der Matrix-Vektor-Multiplikation gilt

$$Ax = \begin{pmatrix} a_1x_1 + a_3x_2 \\ a_2x_1 + a_4x_2 \end{pmatrix} = \Phi(x).$$

Umgekehrt ermöglicht es diese Formel, für eine gegebene Matrix A eine lineare Transformation Φ_A zu definieren.

 Wir können auch zwei Matrizen A, B miteinander multiplizieren, nach der Regel

$$AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}.$$

Lineare Transformationen und Matrizen:

• Geometrische Transformationen Φ sind häufig linear,

$$\Phi(\lambda x) = \lambda \Phi(x), \quad \Phi(x+y) = \Phi(x) + \Phi(y).$$

- Insbesondere $\Phi(x) = x_1 \Phi(e_1) + x_2 \Phi(e_2)$, also ist Φ durch $\Phi(e_1)$ und $\Phi(e_2)$ vollständig festgelegt.
- Wir codieren Φ durch eine Matrix $A = \begin{pmatrix} a_1 & a_3 \\ a_2 & a_4 \end{pmatrix}$. Nach den Regeln der Matrix-Vektor-Multiplikation gilt

$$Ax = \begin{pmatrix} a_1x_1 + a_3x_2 \\ a_2x_1 + a_4x_2 \end{pmatrix} = \Phi(x).$$

Umgekehrt ermöglicht es diese Formel, für eine gegebene Matrix A eine lineare Transformation Φ_A zu definieren.

 Wir können auch zwei Matrizen A, B miteinander multiplizieren, nach der Regel

$$AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}.$$

Dann ist

$$\Phi_{AB}(x) = ABx = \Phi_A(\Phi_B(x)).$$

Rotationen

Rotation um den Ursprung

Aufgabe:

Rotiere einen Vektor x um den Winkel $\alpha \in [-\pi, \pi]$ gegen den Uhrzeigersinn um den Ursprung.

Rotation um den Ursprung

Aufgabe:

Rotiere einen Vektor x um den Winkel $\alpha \in [-\pi, \pi]$ gegen den Uhrzeigersinn um den Ursprung.

Bezeichne diese Rotation mit Φ_{α} .

Um eine Formel für $\Phi_{\alpha}(x)$ zu bestimmen, verwende eine geschickte Darstellung (Polarkoordinaten):

Rotation um den Ursprung

Bei der Rotation $\Phi_{\alpha}(x)$ um den Winkel α wird x auf den Vektor

$$\Phi_{\alpha}(x) = \begin{pmatrix} r\cos(\alpha + \beta) \\ r\sin(\alpha + \beta) \end{pmatrix}$$

abgebildet (die Länge r bleibt dabei unverändert).

Drücke $\Phi_{\alpha}(x)$ durch die Koordinaten x_1, x_2 und den Drehwinkel α aus:

Drücke $\Phi_{\alpha}(x)$ durch die Koordinaten x_1, x_2 und den Drehwinkel α aus:

Mit den Additionstheoremen und $x_1 = r \cos(\beta)$, $x_2 = r \sin(\beta)$ gilt, erhalten wir

$$\Phi_{\alpha}(x) = \begin{pmatrix} r\cos(\alpha + \beta) \\ r\sin(\alpha + \beta) \end{pmatrix} = \begin{pmatrix} r\cos(\alpha)\cos(\beta) - r\sin(\alpha)\sin(\beta) \\ r\sin(\alpha)\cos(\beta) + r\cos(\alpha)\sin(\beta) \end{pmatrix} \\
= \begin{pmatrix} \cos(\alpha)x_1 - \sin(\alpha)x_2 \\ \sin(\alpha)x_1 + \cos(\alpha)x_2 \end{pmatrix}.$$

Drücke $\Phi_{\alpha}(x)$ durch die Koordinaten x_1, x_2 und den Drehwinkel α aus:

Mit den Additionstheoremen und $x_1 = r \cos(\beta)$, $x_2 = r \sin(\beta)$ gilt, erhalten wir

$$\begin{split} \Phi_{\alpha}(x) &= \begin{pmatrix} r\cos(\alpha+\beta) \\ r\sin(\alpha+\beta) \end{pmatrix} = \begin{pmatrix} r\cos(\alpha)\cos(\beta) - r\sin(\alpha)\sin(\beta) \\ r\sin(\alpha)\cos(\beta) + r\cos(\alpha)\sin(\beta) \end{pmatrix} \\ &= \begin{pmatrix} \cos(\alpha)x_1 - \sin(\alpha)x_2 \\ \sin(\alpha)x_1 + \cos(\alpha)x_2 \end{pmatrix}. \end{split}$$

Erinnern wir uns an die Matrix-Vektor-Multiplikation, so bemerken wir, dass dies wie folgt ausgedrückt werden kann:

$$\Phi_{\alpha}(x) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Die Rotation Φ_{α} ist also linear,

Drücke $\Phi_{\alpha}(x)$ durch die Koordinaten x_1, x_2 und den Drehwinkel α aus:

Mit den Additionstheoremen und $x_1 = r \cos(\beta)$, $x_2 = r \sin(\beta)$ gilt, erhalten wir

$$\begin{split} \Phi_{\alpha}(x) &= \begin{pmatrix} r\cos(\alpha+\beta) \\ r\sin(\alpha+\beta) \end{pmatrix} = \begin{pmatrix} r\cos(\alpha)\cos(\beta) - r\sin(\alpha)\sin(\beta) \\ r\sin(\alpha)\cos(\beta) + r\cos(\alpha)\sin(\beta) \end{pmatrix} \\ &= \begin{pmatrix} \cos(\alpha)x_1 - \sin(\alpha)x_2 \\ \sin(\alpha)x_1 + \cos(\alpha)x_2 \end{pmatrix}. \end{split}$$

Erinnern wir uns an die Matrix-Vektor-Multiplikation, so bemerken wir, dass dies wie folgt ausgedrückt werden kann:

$$\Phi_{\alpha}(x) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Die Rotation Φ_{α} ist also linear, und wird beschrieben durch die Rotationsmatrix

$$R_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

Verknüpfung von Rotationen

Hintereinanderausführung zweier Rotationen Φ_{β} und Φ_{α} liefert $\Phi_{\alpha+\beta}$:

$$\begin{split} \Phi_{\alpha}(\Phi_{\beta}(x)) &= R_{\alpha} R_{\beta} x \\ &= \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{pmatrix} x \\ &= \begin{pmatrix} \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) & -\cos(\alpha) \sin(\beta) - \sin(\alpha) \cos(\beta) \\ \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta) & -\sin(\alpha) \sin(\beta) + \cos(\alpha) \cos(\beta) \end{pmatrix} x \\ &= R_{\alpha + \beta} x \end{split}$$

Für die letzte Gleichheit wende wieder Additionstheoreme an.

Verknüpfung von Rotationen

Hintereinanderausführung zweier Rotationen Φ_{β} und Φ_{α} liefert $\Phi_{\alpha+\beta}$:

$$\begin{split} \Phi_{\alpha}(\Phi_{\beta}(x)) &= R_{\alpha} R_{\beta} x \\ &= \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{pmatrix} x \\ &= \begin{pmatrix} \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) & -\cos(\alpha)\sin(\beta) - \sin(\alpha)\cos(\beta) \\ \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) & -\sin(\alpha)\sin(\beta) + \cos(\alpha)\cos(\beta) \end{pmatrix} x \\ &= R_{\alpha + \beta} x \end{split}$$

Für die letzte Gleichheit wende wieder Additionstheoreme an.

Beobachtung

Da $\alpha + \beta = \beta + \alpha$ ist, zeigt dies, dass die Hintereinanderausführung von Rotationen in der Ebene unabhängig von der Reihenfolge ist.

Verknüpfung von Rotationen

Hintereinanderausführung zweier Rotationen Φ_{β} und Φ_{α} liefert $\Phi_{\alpha+\beta}$:

$$\begin{split} \Phi_{\alpha}(\Phi_{\beta}(x)) &= R_{\alpha} R_{\beta} x \\ &= \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{pmatrix} x \\ &= \begin{pmatrix} \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) & -\cos(\alpha)\sin(\beta) - \sin(\alpha)\cos(\beta) \\ \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) & -\sin(\alpha)\sin(\beta) + \cos(\alpha)\cos(\beta) \end{pmatrix} x \\ &= R_{\alpha + \beta} x \end{split}$$

Für die letzte Gleichheit wende wieder Additionstheoreme an.

Beobachtung

Da $\alpha + \beta = \beta + \alpha$ ist, zeigt dies, dass die Hintereinanderausführung von Rotationen in der Ebene unabhängig von der Reihenfolge ist.

(Dies gilt nicht mehr, wenn man in den 3D-Raum übergeht!)

Spiegelungen

Bei einer Spiegelung wird an einer gegebenen Achse ein Vektor *x* entlang seines Lots auf diese Achse reflektiert.

Bei einer Spiegelung wird an einer gegebenen Achse ein Vektor *x* entlang seines Lots auf diese Achse reflektiert.

Als einfaches Beispiel betrachten wir die Spiegelung Σ_1 an der e_1 -Achse.

Bei einer Spiegelung wird an einer gegebenen Achse ein Vektor *x* entlang seines Lots auf diese Achse reflektiert.

Als einfaches Beispiel betrachten wir die Spiegelung Σ_1 an der e_1 -Achse.

Wir können Σ_1 durch die folgende Matrix S_1 darstellen,

$$S_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Bei einer Spiegelung wird an einer gegebenen Achse ein Vektor *x* entlang seines Lots auf diese Achse reflektiert.

Als einfaches Beispiel betrachten wir die Spiegelung Σ_1 an der e_1 -Achse.

Wir können Σ_1 durch die folgende Matrix S_1 darstellen,

$$\mathbf{S_1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Prüfe direkt, dass gilt:

$$S_1 x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}.$$

Insbesondere ist die Spiegelung Σ_1 linear.

Auf die gleiche Weise finden wir die Spiegelung an der e_2 -Achse. Sie wird dargestellt durch die Matrix $S_2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Auf die gleiche Weise finden wir die Spiegelung an der e_2 -Achse. Sie wird dargestellt durch die Matrix $S_2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Es ist nicht auf den ersten Blick ersichtlich, wie die Spiegelung Σ_L an einer beliebigen Achse L durch den Ursprung zu beschreiben ist.

Auf die gleiche Weise finden wir die Spiegelung an der e_2 -Achse. Sie wird dargestellt durch die Matrix $S_2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Es ist nicht auf den ersten Blick ersichtlich, wie die Spiegelung Σ_L an einer beliebigen Achse L durch den Ursprung zu beschreiben ist.

Trick:

Führe Σ_L auf die leicht zu berechnende Spiegelung Σ_1 an der e_1 -Achse zurück. Dazu gehen wir in drei Schritten vor. . .

Es sei α der Winkel zwischen der Achse L und der e_1 -Achse. Rotiere die Ebene um den Winkel $-\alpha$ (also um α im Uhrzeigersinn).

Dadurch wird L auf die e_1 -Achse abgebildet, und x auf den Vektor $\Phi_{-\alpha}(x)$.

Nun spiegele den neuen Vektor $\Phi_{-\alpha}(x)$ an der e_1 -Achse durch die oben beschriebene Spiegelung Σ_1 .

Rotiere nun die Ebene um den Winkel α .

Rotiere nun die Ebene um den Winkel α .

- Die e_1 -Achse wird zurück auf die Achse L rotiert,
- $\Phi_{-\alpha}(x)$ wird zurück auf x rotiert, und
- der gespiegelte Vektor $\Sigma_1(\Phi_{-\alpha}(x))$ wird auf die Spiegelung von x an der Achse L abgebildet.

Rotiere nun die Ebene um den Winkel α .

- Die e_1 -Achse wird zurück auf die Achse L rotiert,
- $\Phi_{-\alpha}(x)$ wird zurück auf x rotiert, und
- der gespiegelte Vektor $\Sigma_1(\Phi_{-\alpha}(x))$ wird auf die Spiegelung von x an der Achse L abgebildet.

Ergebnis: Es ist

$$\Sigma_L(x) = \Phi_{\alpha}(\Sigma_1(\Phi_{-\alpha}(x))).$$

Spiegelung an beliebigen Achsen (4)

Die Matrix S_L der Spiegelung Σ_L ist das Produkt der Matrizen R_{α} , S_1 und $R_{-\alpha}$:

$$S_{L} = R_{\alpha} S_{1} R_{-\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(-\alpha) & \cos(\alpha) \end{pmatrix}$$
$$= \begin{pmatrix} \cos(2\alpha) & \sin(2\alpha) \\ \sin(2\alpha) & -\cos(2\alpha) \end{pmatrix}.$$

Spiegelung an beliebigen Achsen (4)

Die Matrix S_L der Spiegelung Σ_L ist das Produkt der Matrizen R_{α} , S_1 und $R_{-\alpha}$:

$$\begin{split} S_L &= R_{\alpha} S_1 R_{-\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(-\alpha) & \cos(\alpha) \end{pmatrix} \\ &= \begin{pmatrix} \cos(2\alpha) & \sin(2\alpha) \\ \sin(2\alpha) & -\cos(2\alpha) \end{pmatrix}. \end{split}$$

Bemerkung

Spiegelungen und Rotationen haben gemeinsam, dass sie Winkel und Abstände erhalten. Darauf werden wir im späteren Verlauf der Vorlesung noch genauer eingehen.

Vergleich: Spiegelung und Rotation

Ein Scherung ist eine Transformation Φ

- mit einer Fixpunktachse L durch den Ursprung,
- die alle Punkte x der Ebene parallel zu L verschiebt,
- um eine Distanz proportional zum Abstand von x zu L.

Ein Scherung ist eine Transformation Φ

- mit einer Fixpunktachse L durch den Ursprung,
- die alle Punkte x der Ebene parallel zu L verschiebt,
- um eine Distanz proportional zum Abstand von x zu L.

Scherung mit $L = e_1$ -Achse:

Ein Scherung ist eine Transformation Φ

- mit einer Fixpunktachse L durch den Ursprung,
- die alle Punkte x der Ebene parallel zu L verschiebt,
- um eine Distanz proportional zum Abstand von x zu L.

Scherung mit $L = e_1$ -Achse:

Ein Scherung ist eine Transformation Φ

- mit einer Fixpunktachse L durch den Ursprung,
- die alle Punkte x der Ebene parallel zu L verschiebt,
- um eine Distanz proportional zum Abstand von x zu L.

Scherung mit $L = e_1$ -Achse:

Ein Scherung ist eine Transformation Φ

- mit einer Fixpunktachse L durch den Ursprung,
- die alle Punkte x der Ebene parallel zu L verschiebt,
- um eine Distanz proportional zum Abstand von x zu L.

Scherung mit $L = e_1$ -Achse:

Es gilt

$$\Phi_1(x) = \begin{pmatrix} x_1 + ax_2 \\ x_2 \end{pmatrix} = Nx, \quad \text{mit } N = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}.$$

Scherungen mit beliebiger Achse

Den Ausdruck für eine Scherung Φ_L parallel zu einer beliebigen Achse L durch den Ursprung, können wir uns analog zum Vorgehen für Spiegelungen herleiten.

Scherungen mit beliebiger Achse

Den Ausdruck für eine Scherung Φ_L parallel zu einer beliebigen Achse L durch den Ursprung, können wir uns analog zum Vorgehen für Spiegelungen herleiten.

Es gilt dann

$$\Phi_L(x) = \Phi_{\alpha}(\Phi_1(\Phi_{-\alpha}(x))) = R_{\alpha}NR_{-\alpha}x,$$

wobei Φ_{α} die Rotation um den Winkel α gegen den Uhrzeigersinn bezeichnet, und R_{α} ihre Rotationsmatrix ist.

Eine Skalierung ist eine Transformation der Form

$$\Lambda(x) = \begin{pmatrix} \lambda_1 x_1 \\ \lambda_2 x_2 \end{pmatrix}, \quad \text{mit } \lambda_1, \lambda_2 > 0.$$

Eine Skalierung ist eine Transformation der Form

$$\Lambda(x) = \begin{pmatrix} \lambda_1 x_1 \\ \lambda_2 x_2 \end{pmatrix}, \quad \text{mit } \lambda_1, \lambda_2 > 0.$$

Beispiel

Die x_1 -Koordinate wird mit $\lambda_1 = \frac{1}{2}$ multipliziert (also gestaucht), und die x_2 -Koordinate wird mit $\lambda_2 = 2$ multipliziert (also gestreckt).

Eine Skalierung ist eine Transformation der Form

$$\Lambda(x) = \begin{pmatrix} \lambda_1 x_1 \\ \lambda_2 x_2 \end{pmatrix}, \quad \text{mit } \lambda_1, \lambda_2 > 0.$$

Beispiel

Die x_1 -Koordinate wird mit $\lambda_1 = \frac{1}{2}$ multipliziert (also gestaucht), und die x_2 -Koordinate wird mit $\lambda_2 = 2$ multipliziert (also gestreckt).

Die Skalierung Λ wird durch die Diagonalmatrix

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

dargestellt, also sind auch Skalierungen linear.

Die Skalierung Λ wird durch die Diagonalmatrix

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

dargestellt, also sind auch Skalierungen linear.

Bemerkung 1

Skalierungen entlang anderer Achsen als der e_1 - und e_2 -Achsen können erneut durch Kombination mit Rotationen erhalten werden.

Die Skalierung Λ wird durch die Diagonalmatrix

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

dargestellt, also sind auch Skalierungen linear.

Bemerkung 1

Skalierungen entlang anderer Achsen als der e_1 - und e_2 -Achsen können erneut durch Kombination mit Rotationen erhalten werden.

Bemerkung 2

Wenn man auch negative Skalierungsfaktoren λ erlaubt, so ist die resultierende Transformation eine Kombination einer Skalierung mit Spiegelungen.

Invertierbare Matrizen und Iwasawa-Zerlegung

Grundbausteine

Die vier Typen

- Rotationen,
- Spiegelungen,
- Scherungen,
- Skalierungen

sind die Grundbausteine aller geometrischen Transformationen der Ebene.

Um diese Aussage genauer zu verstehen, untersuchen wir zunächst ein paar allgemeine Eigenschaften von Matrizen.

Die Einheitsmatrix (genauer: 2 × 2-Einheitsmatrix) ist

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Die Einheitsmatrix (genauer: 2 × 2-Einheitsmatrix) ist

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Rechne nach: Für jeden Vektor x und jede Matrix T gilt

$$I_2x = x, \quad I_2T = TI_2 = T.$$

Die Einheitsmatrix (genauer: 2 × 2-Einheitsmatrix) ist

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Rechne nach: Für jeden Vektor x und jede Matrix T gilt

$$I_2x = x$$
, $I_2T = TI_2 = T$.

Also beschreibt I_2 eine "triviale Transformation", die überhaupt nichts tut.

Die Einheitsmatrix (genauer: 2×2 -Einheitsmatrix) ist

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Rechne nach: Für jeden Vektor x und jede Matrix T gilt

$$I_2x = x$$
, $I_2T = TI_2 = T$.

Also beschreibt I_2 eine "triviale Transformation", die überhaupt nichts tut.

Eine Matrix A ist invertierbar, wenn eine Matrix A^{-1} existiert, mit

$$AA^{-1} = I_2 = A^{-1}A.$$

Die Einheitsmatrix (genauer: 2×2 -Einheitsmatrix) ist

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Rechne nach: Für jeden Vektor x und jede Matrix T gilt

$$I_2x = x$$
, $I_2T = TI_2 = T$.

Also beschreibt I_2 eine "triviale Transformation", die überhaupt nichts tut.

Eine Matrix A ist invertierbar, wenn eine Matrix A^{-1} existiert, mit

$$AA^{-1} = I_2 = A^{-1}A.$$

Die Matrix A^{-1} wir dann das Inverse von A genannt.

Die Einheitsmatrix (genauer: 2×2 -Einheitsmatrix) ist

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Rechne nach: Für jeden Vektor x und jede Matrix T gilt

$$I_2x = x$$
, $I_2T = TI_2 = T$.

Also beschreibt I_2 eine "triviale Transformation", die überhaupt nichts tut.

Eine Matrix A ist invertierbar, wenn eine Matrix A^{-1} existiert, mit

$$AA^{-1} = I_2 = A^{-1}A.$$

Die Matrix A^{-1} wir dann das Inverse von A genannt.

Geometrisch können wir uns A^{-1} als eine Transformationsmatrix vorstellen, die den Effekt von A wieder rückgängig macht.

Beispiele

Die vier Typen von Transformationsmatrizen, die wir bisher kennengelernt haben, sind alle invertierbar.

Beispiele

Die vier Typen von Transformationsmatrizen, die wir bisher kennengelernt haben, sind alle invertierbar.

Beispiel 1

Eine Rotationsmatrix R_{α} ist invertierbar, mit inverser Matrix $R_{\alpha}^{-1} = R_{-\alpha}$, denn es gilt ja

$$R_{\alpha}R_{-\alpha} = R_{\alpha-\alpha} = R_0 = I_2 = R_{-\alpha}R_{\alpha}.$$

Beispiele

Die vier Typen von Transformationsmatrizen, die wir bisher kennengelernt haben, sind alle invertierbar.

Beispiel 1

Eine Rotationsmatrix R_{α} ist invertierbar, mit inverser Matrix $R_{\alpha}^{-1} = R_{-\alpha}$, denn es gilt ja

$$R_{\alpha}R_{-\alpha} = R_{\alpha-\alpha} = R_0 = I_2 = R_{-\alpha}R_{\alpha}.$$

Beispiel 2

Eine Spiegelungsmatrix S ist ihre eigene inverse Matrix:

$$SS = I_2$$
,

also $S = S^{-1}$.

Beispiel 3

Das Inverse einer Scherungsmatrix N ist

$$N^{-1} = \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix},$$

denn

$$NN^{-1} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -a+a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2,$$

und analog $N^{-1}N = I_2$.

Beispiel 3

Das Inverse einer Scherungsmatrix N ist

$$N^{-1} = \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix},$$

denn

$$NN^{-1} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -a+a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2,$$

und analog $N^{-1}N = I_2$.

Beispiel 4

Für eine Skalierungsmatrix A mit Diagonaleinträgen λ_1, λ_2 ist das Inverse durch

$$A^{-1} = \begin{pmatrix} \lambda_1^{-1} & 0\\ 0 & \lambda_2^{-1} \end{pmatrix}$$

gegeben. Man prüft leicht nach, dass $AA^{-1} = I_2 = A^{-1}A$ gilt, indem man die Diagonaleinträge miteinander multipliziert.

Iwasawa-Zerlegung

Erinnerung: Rotationen und Spiegelungen erhalten Winkel und Abstände, und wir fassen daher Matrizenprodukte K=RS von Rotations- und Spiegelungsmatrizen zu orthogonalen Matrizen zusammen.

Iwasawa-Zerlegung

Erinnerung: Rotationen und Spiegelungen erhalten Winkel und Abstände, und wir fassen daher Matrizenprodukte K = RS von Rotations- und Spiegelungsmatrizen zu orthogonalen Matrizen zusammen.

Satz 1.1 (Iwasawa 1949)

Jede invertierbare 2×2 -Matrix T lässt sich in eindeutiger Weise als Produkt

$$T = KAN$$

schreiben. Dabei ist

- K eine orthogonale Matrix (also ein Produkt aus einer Rotationsmatrix und einer Spiegelungsmatrix),
- A eine Skalierungsmatrix, und
- N eine Scherungsmatrix.

Iwasawa-Zerlegung

Erinnerung: Rotationen und Spiegelungen erhalten Winkel und Abstände, und wir fassen daher Matrizenprodukte K = RS von Rotations- und Spiegelungsmatrizen zu orthogonalen Matrizen zusammen.

Satz 1.1 (Iwasawa 1949)

Jede invertierbare 2×2 -Matrix T lässt sich in eindeutiger Weise als Produkt

$$T = KAN$$

schreiben. Dabei ist

- K eine orthogonale Matrix (also ein Produkt aus einer Rotationsmatrix und einer Spiegelungsmatrix),
- A eine Skalierungsmatrix, und
- N eine Scherungsmatrix.

Bemerkung

Dabei ist es natürlich möglich, dass die einzelnen Teile trivial sind, also durch die Einheitsmatrix repräsentiert werden. Ist etwa T eine Rotationsmatrix, $T=R_{\alpha}$, so ist die Iwasawa-Zerlegung T=KAN mit $K=R_{\alpha}$, $A=I_2$, $N=I_2$.

Projektionen

Projektionen

Betrachte nun eine Klasse von geometrischen Abbildungen, die *nicht invertierbar* sind.

Eine Projektion Π auf eine Achse L durch den Ursprung in der Ebene bildet jeden Vektor x auf seinen Lotpunkt in L ab.

Projektion auf e_1 -Achse

Ist speziell L die e_1 -Achse, so ist $\Pi_1(x)$ gerade der Vektor

- mit Komponente x_1 in e_1 -Richtung
- und Komponente 0 in e₂-Richtung.

Entsprechend für die Projektion $\Pi_2(x)$ auf die e_2 -Achse.

Projektion auf e_1 -Achse

Ist speziell L die e_1 -Achse, so ist $\Pi_1(x)$ gerade der Vektor

- mit Komponente x_1 in e_1 -Richtung
- und Komponente 0 in e₂-Richtung.

Entsprechend für die Projektion $\Pi_2(x)$ auf die e_2 -Achse.

Diese Projektionen erlauben uns somit, x in seine Komponenten zu zerlegen. Es gilt daher

$$x = \Pi_1(x) + \Pi_2(x).$$

Projektionen nicht invertierbar

Die Matrizen für Π_1 und Π_2 sind

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Projektionen nicht invertierbar

Die Matrizen für Π_1 und Π_2 sind

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Diese Matrizen sind nicht invertierbar!

Projektionen nicht invertierbar

Die Matrizen für Π_1 und Π_2 sind

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Diese Matrizen sind nicht invertierbar! Ist nämlich $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ eine beliebige Matrix, so gilt

$$AP_1 = \begin{pmatrix} a_{11} & 0 \\ a_{21} & 0 \end{pmatrix}.$$

 \rightsquigarrow es ist niemals möglich, dass $AP_1 = I_2$ gilt. Somit kann P_1 kein Inverses haben. (Analog für P_2 .)

Nicht-Invertierbarkeit geometrisch

Angenommen, P_1 wäre invertierbar.

- Inverse Matrix P_1^{-1} definiert Transformation Π_1^{-1} , die den Effekt von Π_1 rückgängig macht.
- Also $\Pi_1^{-1}(\Pi_1(x)) = x$ für jeden Vektor x.

Nicht-Invertierbarkeit geometrisch

Angenommen, P_1 wäre invertierbar.

- Inverse Matrix P_1^{-1} definiert Transformation Π_1^{-1} , die den Effekt von Π_1 rückgängig macht.
- Also $\Pi_1^{-1}(\Pi_1(x)) = x$ für jeden Vektor x.
- Es gibt aber zu jedem $\Pi_1(x)$ (unendlich) viele verschiedene Vektoren, die auf $\Pi_1(x)$ projiziert werden.

Nicht-Invertierbarkeit geometrisch

Angenommen, P_1 wäre invertierbar.

- Inverse Matrix P_1^{-1} definiert Transformation Π_1^{-1} , die den Effekt von Π_1 rückgängig macht.
- Also $\Pi_1^{-1}(\Pi_1(x)) = x$ für jeden Vektor x.
- Es gibt aber zu jedem Π₁(x) (unendlich) viele verschiedene Vektoren, die auf Π₁(x) projiziert werden.

• Wenn wir $\Pi_1(x)$ kennen, ist also überhaupt nicht eindeutig definiert, welches der ursprüngliche Vektor x ist. Somit kann es keine Transformation Π_1^{-1} geben.

Projektion auf beliebige Achse

Den Ausdruck für eine Projektion Π_L auf eine beliebige Achse L durch den Ursprung erhalten wir wie üblich:

- Rotiere L auf die e_1 -Achse.
- Führe Projektion auf die e_1 -Achse durch.
- Rotiere diese auf die ursprüngliche Achse L zurück.

Projektion auf beliebige Achse

Den Ausdruck für eine Projektion Π_L auf eine beliebige Achse L durch den Ursprung erhalten wir wie üblich:

- Rotiere L auf die e_1 -Achse.
- Führe Projektion auf die e_1 -Achse durch.
- Rotiere diese auf die ursprüngliche Achse L zurück.

Somit ist

$$\Pi_L(x) = \Phi_{\alpha}(\Pi_1(\Phi_{-\alpha}(x))),$$

wobei α der Winkel zwischen L und der e_1 -Achse ist.

Verschiebungen und affine Transformationen

Wähle einen Vektor v.

Die Verschiebung (auch Translation) um v ist die Transformation

$$T_v(x) = x + v$$
.

Wähle einen Vektor v.

Die Verschiebung (auch Translation) um v ist die Transformation

$$T_v(x) = x + v$$
.

Beobachtung

Es sei $v \neq 0$ (Nullvektor). Für Vektoren x, y gilt

$$T_v(x+y) = (x+y) + v$$

Wähle einen Vektor v.

Die Verschiebung (auch Translation) um v ist die Transformation

$$T_v(x) = x + v$$
.

Beobachtung

Es sei $v \neq 0$ (Nullvektor).

Für Vektoren x, y gilt

$$T_v(x + y) = (x + y) + v \neq (x + y) + 2v$$

Wähle einen Vektor v.

Die Verschiebung (auch Translation) um v ist die Transformation

$$T_v(x) = x + v$$
.

Beobachtung

Es sei $v \neq 0$ (Nullvektor).

Für Vektoren x, y gilt

$$T_v(x+y) = (x+y) + v \neq (x+y) + 2v = (x+v) + (y+v) = T_v(x) + T_v(y).$$

Wähle einen Vektor v.

Die Verschiebung (auch Translation) um v ist die Transformation

$$T_v(x) = x + v$$
.

Beobachtung

Es sei $v \neq 0$ (Nullvektor).

Für Vektoren x, y gilt

$$T_v(x+y) = (x+y) + v \neq (x+y) + 2v = (x+v) + (y+v) = T_v(x) + T_v(y).$$

Somit ist T_v nicht linear!

Bisher:

- Rotationen um Ursprung.
- Spiegelung an Achsen durch Ursprung.
- Scherung parallel zu Achsen durch Ursprung.

Bisher:

- Rotationen um Ursprung.
- Spiegelung an Achsen durch Ursprung.
- Scherung parallel zu Achsen durch Ursprung.

Unter Hinzunahme von Verschiebungen erhalten wir:

- Rotationen um beliebige Punke.
- Spiegelung an beliebigen Achsen.
- Scherung parallel zu beliebigen Achsen.

Bisher:

- Rotationen um Ursprung.
- Spiegelung an Achsen durch Ursprung.
- Scherung parallel zu Achsen durch Ursprung.

Unter Hinzunahme von Verschiebungen erhalten wir:

- Rotationen um beliebige Punke.
- Spiegelung an beliebigen Achsen.
- Scherung parallel zu beliebigen Achsen.

Erläuterung anhand des folgenden Beispiels:

Realisiere eine Rotation $\Psi_{\alpha,v}$ um den Punkt $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ um den Winkel α .

Rotation um beliebigen Punkt (1)

Verschiebe durch T_{-v} alle Punkte der Ebene um den konstanten Vektor -v. (Das Rotationszentrum v wird in den Ursprung verschoben.)

Rotation um beliebigen Punkt (2)

Rotiere nun wie gehabt durch die Rotation Φ_{α} um den Winkel α gegen den Uhrzeigersinn um den Ursprung.

Rotation um beliebigen Punkt (3)

Verschiebe alle Punkte der Ebene durch T_v .

Dies liefert die Rotation

$$\Psi_{\alpha,v}(x) = T_v(\Phi_{\alpha}(T_{-v}(x)))$$

sämtlicher Punkte um den Punkt v um den Winkel α gegen den Uhrzeigersinn.

Affine Transformationen

Eine Transformation Ψ , die sich aus einer linearen Transformation Φ und einer Verschiebung T_v zusammensetzt, bezeichnen wir als affine Transformation,

$$\Psi(x) = T_v(\Phi(x)) = \Phi(x) + v.$$

Affine Transformationen

Eine Transformation Ψ , die sich aus einer linearen Transformation Φ und einer Verschiebung T_v zusammensetzt, bezeichnen wir als affine Transformation,

$$\Psi(x) = T_v(\Phi(x)) = \Phi(x) + v.$$

Sowohl der lineare Teil Φ als auch der Verschiebungsteil v können trivial sein: Lineare Transformationen und Verschiebungen sind jeweils Spezialfälle von affinen Translationen.

Erweiterte ("homogene") Koordinaten

Verschiebungen sind nicht linear \Rightarrow keine Darstellung durch Matrizen

Verschiebungen sind nicht linear ⇒ keine Darstellung durch Matrizen ... oder doch?

Verschiebungen sind nicht linear ⇒ keine Darstellung durch Matrizen ... oder doch?

• Nicht möglich mit 2 × 2-Matrizen!

Verschiebungen sind nicht linear ⇒ keine Darstellung durch Matrizen ... oder doch?

- Nicht möglich mit 2 × 2-Matrizen!
- Trick: Verwende 3 × 3-Matrizen.

Verschiebungen sind nicht linear ⇒ keine Darstellung durch Matrizen ... oder doch?

- Nicht möglich mit 2 × 2-Matrizen!
- Trick: Verwende 3 × 3-Matrizen.
- Dazu führen wir erweiterte Koordinaten ein: Dem Vektor $x = {x \choose x_2}$ in der Ebene wird der dreidimensionale Vektor

$$\hat{x} = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

zugeordnet.

(Schreibe auch kürzer $\binom{x}{1}$ dafür, wenn klar ist, dass x einen Vektor bezeichnet.)

Verschiebungen sind nicht linear ⇒ keine Darstellung durch Matrizen ... oder doch?

- Nicht möglich mit 2 × 2-Matrizen!
- Trick: Verwende 3 × 3-Matrizen.
- Dazu führen wir erweiterte Koordinaten ein: Dem Vektor $x = {x \choose x_2}$ in der Ebene wird der dreidimensionale Vektor

$$\hat{x} = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

zugeordnet.

(Schreibe auch kürzer $\binom{x}{1}$ dafür, wenn klar ist, dass x einen Vektor bezeichnet.)

Erweiterte Koordinaten werden gelegentlich auch als homogene Koordinaten bezeichnet (nicht ganz korrekt).

Matrizen für Translationen

Die Verschiebung T_v können wir in erweiterten Koordinaten durch die Matrix

$$\hat{T}_v = \begin{pmatrix} 1 & 0 & v_1 \\ 0 & 1 & v_2 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

darstellen.

Matrizen für Translationen

Die Verschiebung T_v können wir in erweiterten Koordinaten durch die Matrix

$$\hat{T}_v = \begin{pmatrix} 1 & 0 & v_1 \\ 0 & 1 & v_2 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

darstellen.

Probe:

Multipliziere \hat{T}_v mit \hat{x} :

$$\hat{T}_v\hat{x} = \begin{pmatrix} x_1 + v_1 \\ x_2 + v_2 \\ 1 \end{pmatrix} = \widehat{T_v(x)},$$

also in der Tat die erweiterten Koordinaten von $T_v(x)$.

Affine Transformationen in erweiterten Koordinaten

Ist eine affine Transformation $\Psi_{A,v}$ mit

- Linearteil Φ_A (für eine Matrix A),
- ullet Verschiebungsteil T_v (für einen Vektor v), gegeben,

Affine Transformationen in erweiterten Koordinaten

Ist eine affine Transformation $\Psi_{A,v}$ mit

- Linearteil Φ_A (für eine Matrix A),
- Verschiebungsteil T_v (für einen Vektor v),

gegeben, so kann sie in erweiterten Koordinaten durch

$$\left(\begin{array}{c|cc} A & v \\ \hline 0 & 1 \end{array}\right) = \left(\begin{array}{c|cc} a_{11} & a_{12} & v_1 \\ a_{21} & a_{22} & v_2 \\ \hline 0 & 0 & 1 \end{array}\right)$$

dargestellt werden.

Affine Transformationen in erweiterten Koordinaten

Ist eine affine Transformation $\Psi_{A,v}$ mit

- Linearteil Φ_A (für eine Matrix A),
- Verschiebungsteil T_v (für einen Vektor v),

gegeben, so kann sie in erweiterten Koordinaten durch

$$\left(\begin{array}{c|cc} A & v \\ \hline 0 & 1 \end{array}\right) = \left(\begin{array}{c|cc} a_{11} & a_{12} & v_1 \\ a_{21} & a_{22} & v_2 \\ \hline 0 & 0 & 1 \end{array}\right)$$

dargestellt werden.

Probe:

$$\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} Ax + v \\ 1 \end{pmatrix} = \widehat{Ax + v} = \widehat{\Psi_{A,v}(x)}.$$

Beispiel: Affine Transformation

Die affine Transformation Ψ sei in erweiterten Koordinaten durch

$$\begin{pmatrix}
\cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) & -1 \\
\sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) & 1 \\
0 & 0 & 1
\end{pmatrix}$$

dargestellt.

Beispiel: Affine Transformation

Die affine Transformation Ψ sei in erweiterten Koordinaten durch

$$\begin{pmatrix}
\cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) & -1 \\
\sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) & 1 \\
0 & 0 & 1
\end{pmatrix}$$

dargestellt.

Ihre Wirkung besteht in einer Drehung um $\frac{\pi}{4}$ (= 45°) und einer anschließenden Verschiebung um 1 nach links und 1 nach oben.

Beispiel: Affine Transformation

Die affine Transformation Ψ sei in erweiterten Koordinaten durch

$$\begin{pmatrix}
\cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) & -1 \\
\sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) & 1 \\
0 & 0 & 1
\end{pmatrix}$$

dargestellt.

Ihre Wirkung besteht in einer Drehung um $\frac{\pi}{4}$ (= 45°) und einer anschließenden Verschiebung um 1 nach links und 1 nach oben.

