Application for Recognition of Handwritten Mathematical Characters

Vadim Mazalov Dept. Computer Science, UWO

PUT IT INTO PRACTICE, Nov. 13, 2010.

This talk is about

Representation of digital handwriting

The basic concepts of recognition

 Real life application for handwritten input of math characters

Compact representation of characters

Digital handwriting

- Represented as a sequence of points $(x_0,y_0), (x_1,y_1), (x_2,y_2)...$
- Each point contains one value of certain channel

Decomposition of Channels

 Consider X and Y coordinates separately, as functions, say, of time:

$$(x_0,y_0),$$
 $(t_0,y_0),$ $(t_0,y_0),$ $(x_1,y_1),$ $(t_1,x_1),$ and $(t_1,y_1),$ $(x_2,y_2)...$ $(t_2,x_2)...$ $(t_2,y_2)...$

Then

Approximation of a Character

• A function can be approximated with orthogonal polynomials P_0 , P_1 , ...:

$$f(t) \approx \sum_{i=0}^{d} c_i P_i(t)$$

• We approximate X(t) and Y(t) and obtain

$$c_0^X, c_1^X, ..., c_d^X, c_0^Y, c_1^Y, ..., c_d^Y$$

Classifying a point

Classification

 Classification is based on the distance to convex hulls of nearest neighbours.

From Theory to Practice

 Students at ORCCA (Ontario Research Center for Computer Algebra, CSD, UWO) have developed this

Training the Application

Recognition

Compact Representation of Symbols

- We use Legendre-Sobolev inner product to generate orthogonal polynomials.
- Training samples are approximated with these polynomials.
- Coefficients of approximation describe samples compactly and precisely.

Compact Representation of Symbols

Approximation

Representation of the approx. sample is

<st>0.024;18.41;-17.67;11;2;-12;63;-71;-18;1;-76;14;14;8;5;-2;3;1;-7;5;8;-10;6;</st>

Interpretation of Representation

```
<st>0.024;18.41;-17.67;11;2;-12;63;-71;-18;1;-76;14;14;8;5;-2;3;1;-7;5;8;-10;6;</st>
```

- From left to right:
 - Size normalization weight
 - Coordinates of the first point
 - Normalized LS coefficients of approximation (multiplied by 256)
- Such representation is suitable for direct usage in recognition applications

Conclusion

 Recognition and compression of digital ink can go hand in hand and give high performance.

 The algorithms and software that we are working on is a stepping stone towards

$$\mathcal{T} = \frac{-\beta + \sqrt{\beta^2 - 4\alpha C}}{2a} \longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

References

- Representing and Characterizing Handwritten Mathematical Symbols Through Succinct Functional Approximation, Bruce W. Char and Stephen M. Watt, pp. 1198-1202, Proc. International Conference on Document Analysis and Recognition, (ICDAR), September 23-26 2007, Curitiba, Brazil, IEEE Computer Society.
- Online Stroke Modeling for Handwriting Recognition, Oleg Golubitsky and Stephen M.Watt, pp. 72-80, Proc. 18th Annual International Conference on Computer Science and Software Engineering, (CASCON 2008), October 27-30 2008, Toronto, Canada, IBM Canada, ISSN 1705-7345.
- Digital Ink Compression via Functional Approximation, Vadim Mazalov and Stephen Watt, Proc. 12th International Conference on Frontiers in Handwriting Recognition, (ICFHR 2010), November 16-18 2010, Kolkata, India, (accepted).

Thank you!