

MAY 30, 2023

SJB Artificial Seawater Medium Protocol

Michael

Cameron

Shelby J Barnes¹, Henson¹,

Thrash¹

¹University of Southern California

Shelby J Barnes

ABSTRACT

SJB Artificial Seawater Medium Protocol

SJB Artificial Seawater Medium is an amended version of JW and MWH generations of Thrash Lab artificial seawater medium.

OPEN ACCESS

dx.doi.org/10.17504/protocol s.io.rm7vzy615lx1/v1

Protocol Citation: Shelby J Barnes, Michael Henson, Cameron Thrash 2023. SJB Artificial Seawater Medium Protocol. protocols.io https://dx.doi.org/10.17504/p rotocols.io.rm7vzy615lx1/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Apr 14, 2022

Last Modified: May 30, 2023

PROTOCOL integer ID:

60802

Keywords: Artificial

Seawater

MATERIALS

Sterilized Pyrex Bottle

0.2um PES filters

Base Salts

Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q
Sal init y			1		2		3		4		4. 25		4. 5		5	
Ba se Sal ts	Ch em ical For mu la	For mu la We igh t	g/ L	Fin al M	g/ L	Fin al M	g/ L	Fin al M	g/ L	Fin al M	g/ L	Fin al M	g/ L	Fin al M	g/ L	Fin al M
so diu m chl ori de	Na Cl	58. 44 3	23 .5	0.4 02 10 1	15 .7	0.2 68 06 7	7. 83 33 3	0.1 34 03 36 67	3. 91 66 66 66 7	0.0 67 01 68 33	3. 01 28 20 51 3	0.0 51 55 14 1	2. 00 85 47 00 9	0.0 34 36 76 07	1. 00 42 73 50 4	0.0 17 18 38 03
pot ass iu m chl ori de	KCI	74. 55	0. 74 6	0.0 10 00 7	0. 49 7	0.0 06 67 13 33	0. 24 86 66 66 7	0.0 03 33 56 67	0. 12 43 33 33 33	0.0 01 66 78 33	0. 09 56 41 02 6	0.0 01 28 29 49	0. 06 37 60 68 4	0.0 00 85 52 99	0. 03 18 80 34 2	0.0 00 42 76 5

A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q
so diu m bic arb on ate	Na HC O3	84. 01	0. 84	0.0 09 99 9	0. 84	0.0 06 66 6	0. 42	0.0 03 33 3	0. 21	0.0 01 66 65	0. 16 15 38 46 2	0.0 01 28 19 23	0. 10 76 92 30 8	0.0 00 85 46 15	0. 05 38 46 15 4	0.0 00 42 73 08
so diu m sul fat e	Na 2S 04	14 2.0 4	4. 27	0.0 30 06 2	2. 85	0.0 20 04 13 33	1. 42 33 33 33 33	0.0 10 02 06 67	0. 71 16 66 66 7	0.0 05 01 03 33	0. 54 74 35 89 7	0.0 03 85 41 03	0. 36 49 57 26 5	0.0 02 56 94 02	0. 18 24 78 63 2	0.0 01 28 47 01
so diu m bro mi de	Na Br	10 2.8 9	0. 83	0.0 08 06 7	0. 55	0.0 05 37 8	0. 27 66 66 66 7	0.0 02 68 9	0. 13 83 33 33 3	0.0 01 34 45	0. 10 64 10 25 6	0.0 01 03 42 31	0. 07 09 40 17	0.0 00 68 94 87	0. 03 54 70 08 5	0.0 00 34 47 44
bor ic aci d	H3 B0 3	61. 83	0. 02 6	0.0 00 42 1	0. 01 7	0.0 00 28 06 67	0. 00 86 66 66 7	0.0 00 14 03 33	0. 00 43 33 33 3	7.0 16 67 E- 05	0. 00 33 33 33 33	5.3 97 44 E- 05	0. 00 22 22 22 22	3.5 98 29 E- 05	0. 00 11 11 11	1.7 99 15 E- 05
str ont iu m chl ori de	SrC I	15 8.5 3	0. 01 42	0.0 00 09	0. 00 94 67	0.0 00 06	0. 00 47 33 33 3	0.0 00 03	0. 00 23 66 66 7	0.0 00 01 5	0. 00 18 20 51 3	1.1 53 85 E- 05	0. 00 12 13 67 5	7.6 92 31 E- 06	0. 00 06 06 83 8	3.8 46 15 E- 06
so diu m flo uri de	Na F	41. 99	0. 00 23	0.0 00 05 5	0. 00 15	3.6 66 67 E- 05	0. 00 07 66 66 7	1.8 33 33 E- 05	0. 00 03 83 33 3	9.1 66 67 E- 06	0. 00 02 94 87 2	7.0 51 28 E- 06	0. 00 01 96 58 1	4.7 00 85 E- 06	9. 82 90 6E - 05	2.3 50 43 E- 06
ma gn esi um chl ori de he pta hy dra te	Mg Cl2 x 6H 2O	20 3.3	10 .6	0.0 52 14	7. 1	0.0 34 76	3. 53 33 33 33 33	0.0 17 38	1. 76 66 66 66 7	0.0 08 69	1. 35 89 74 35 9	0.0 06 68 46 15	0. 90 59 82 90 6	0.0 04 45 64 1	0. 45 29 91 45 3	0.0 02 22 82 05
cal ciu m chl ori de dih ydr ate	Ca Cl2 x 2H 20	14 7.0 1	1. 52	0.0 10 33 9	1. 01 3	0.0 06 89 26 67	0. 50 66 66 66 7	0.0 03 44 63 33	0. 25 33 33 33 33	0.0 01 72 31 67	0. 19 48 71 79 5	0.0 01 32 55 13	0. 12 99 14 53	0.0 00 88 36 75	0. 06 49 57 26 5	0.0 00 44 18 38

Table 1. Base Salts

The range of salinities are shown in order of highest (#1) to lowest (#5).

Trace Metal Mix (100,000x Stock)

A	В	С	D	E
Compound	Chemical Formula	FW	g/100mL	Final M (nM)
manganese dichloride tetrahydrate	MnCl2 x 4H2O	197.91	0.018	9
zinc sulfate monohydrate	ZnSO4 X H2O	179.47	0.002	1
cobalt(II) chloride	CoCl2	129.839	0.001	0.5
sodium molybdate	Na2MoO4	205.92	0.001	0.3
sodium selenite	Na2SeO3	172.94	0.002	1
nickel(II) chloride	NiCl2	129.5994	0.001	1

Vitamin Mix (100,000x)

A	В	С	D	E
Compound	Chemical Formula	FW	g/100mL	Final M (nM)
B1/thiamine	C12H17CIN4O S · HCl	337.27	1.69	500 nM
B2/riboflavin	C17H20N4O6	376.36	0.0026	0.7 nM
B3/niacin	C6H5NO2	123.12	0.985	800 nM
B5/pantothen ate	HOCH2C(CH3) 2CH(OH)CON HCH2CH2CO2 ·1/2Ca	238.27	1.013	425 nM
B6/pyridoxine	C8H11NO3 · HCl	205.64	1.028	500 nM
B7/biotin	C10H16N2O3 S	244.31	0.0098	4 nM
B9/folic Acid	C19H19N7O6	441.4	0.0177	4 nM
B12/cyanocob alamin	C63H88CoN14 014P	1355.37	0.0095	0.7 nM
myo-inositol	C6H12O6	180.16	0.901	500 nM
4- aminobenzoic Acid	C7H7NO2	137.14	0.0823	60 nM

Amino Acid Mix (5,000x)

MEM Amino Acids (50x) Solution Merck MilliporeSigma (Sigma-Aldrich) Catalo #M5550- 100mL

A	В	С	D	E
Compound	Chemical Formula	FW	g/100mL	Final M
L-arginine x HCl	HN=C(NH2)NH(C H2)3CH(NH2)CO OH · HCl	210.7	0.632	0.000000599 9050783
L-cystine x 2HCl	C6H12N2O4S2 · 2HCl	313.22	0.1564	0.000000099 86590895
L-histidine x HCl x H20	C6H9N3O2 · HCI · H2O	209.65	0.21	0.000000200 3338898
L-Isoleucine	C2H5CH(CH3)C H(NH2)CO2H	131.17	0.2625	0.000000400 2439582
L-leucine	CH3)2CHCH2CH (NH2)CO2H	131.17	0.262	0.000000399 4815888
L-lysine x HCl	H2N(CH2)4CH(N H2)CO2H·HCl	182.69	0.3625	0.000000396 8471181
L-methionine	CH3SCH2CH2CH (NH2)CO2H	149.21	0.0755	0.000000101 1996515
L- phenylalanine	C6H5CH2CH(NH 2)CO2H	165.19	0.165	0.000000199 7699619
L-threonine	CH3CH(OH)CH(N H2)CO2H	119.12	0.238	0.000000399 597045
L-tryptophan	C11H12N2O2	204.23	0.051	0.000000049 94369094
L-tyrosine	4- (HO)C6H4CH2C H(NH2)CO2H	181.19	0.18	0.000000198 6864617
L-valine	(CH3)2CHCH(NH 2)CO2H	117.15	0.234	0.000000399 4878361

Miscellaneous Mix (20,000x)

A	В	С	D	E	F
Compound	Chemical Formula	FW	g/100mL	mL/100mL	Final M
L-glutamine	C5H10N2O 2	146.14	0.14614		0.0000005
dextrose	C6H12O6	180.16	0.18016		0.0000005
D-ribose	C5H10O5	150.13	0.15013		0.0000005
sodium pyruvate	C3H3NaO3	110.04	0.11004		0.0000005
sodium citrate	C6H5Na3O 7	294.1	0.2941		0.0000005
oxaloacetic acid	C4H4O5	132.07	0.13207		0.0000005

A	В	С	D	E	F
sodium acetate	C2H3NaO2	82.03	0.08203		0.000005
sodium succinate dibasic hexahydrat e	NaOOCCH2 CH2COONa · 6H2O	270.14	0.27014		0.0000005
a- ketoglutaric acid	C5H6O5	168.08	0.16808		0.0000005
urea	CH4N2O	60.6	0.606		0.000005
gylcerol	C3H8O3	92.09	0.09209		0.000005
glycine betaine	C5H11NO2	153.61	0.15361		0.0000005
choline	(CH3)3N(CI) CH2CH2OH	139.62	0.13962		0.0000005
sodium thiosulfate	Na2S2O3	158.11	0.15811		0.0000005
potassium cyanate	KOCN	81.11	0.0032444		2.00E-08
dmso	C2H6OS	78.13	0.0062504	0.05682181 818	4.00E-08
dmsp	C5H10O2S	134.967	0.01079736		4.00E-08
L-glycine	C2H5NO2	75.07	0.07507		0.0000005
nucleotides (dNTPs)	-	-	-	0.01	0.00000001
galactose	C6H12O6	180.16	0.18016		0.0000005
lactose monohydrat e	C12H24O12	360.31	0.36031		0.0000005
glyoxylic acid sodium monohydrat e	C2H3NaO4	114.03	0.11403		0.0000005
tmao	СЗН9NO	75.11	0.07511		0.0000005
L-alanine	C3H7NO2	89.09	0.08909		0.000005
L- asparagine	C4H8N2O3	132.12	0.13212		0.0000005
L-aspartic acid	C4H7NO4	133.1	0.1331		0.0000005
L-cysteine hydrochlori de	C3H8CINO2 S	157.62	0.17563		0.0000005
L-glutamic acid	C5H9NO4	147.13	0.14713		0.0000005
L-proline	C5H9NO2	115.13	0.11513		0.0000005

A	В	С	D	E	F
L-serine	C3H7NO3	105.09	0.10509		0.0000005
sodium alginate	C6H9NaO7	216.12	0.21612		0.0000005
catalase	C9H10O3	2,000-5,000 U/mg	0.00054285 7		10 U
glucosamin e	C6H13NO5	221.21	0.22121		0.0000005

Phosphate Mix (1,000x)

А	В	С	D	E	F
Compound	Chemical Formula	FW	g/100mL	mL/100mL	Final M
ortho phosphona te	C3H9O3P	124.076		0.002167	0.0000002
potassium phosphate monobasic	KH2P04	136.09	0.068045		0.000005

Fatty Acid Mix (2,000,000x)

A	В	С	D	E	F
Compound	Chemical Formula	FW	g/100mL	mL/100mL	Final M
octanoic acid	CH3(CH2)6C OOH	144.21		15.8472527 5	0.0000005
decanoic acid	CH3(CH2)8C OOH	172.26	17.226		0.0000005
isobutyric acid	(CH3)2CHC0 2H	88.11		9.27473684 2	0.0000005
butyric acid	CH3CH2CH2 COOH	88.11		9.14004149 4	0.0000005
valeric acid	C5H10O2	102.13		10.8764643 2	0.0000005
ethanol	СН3СН2ОН	46.068		54.8615045 9	0.00000469 8025433

Inorganic Nitrogen (2,000x)

A	В	С	D	E
	Chemical Formula	FW	g/100mL	Final M
sodium nitrate	NaNO3	84.99	0.645924	0.000038
sodium nitrite	NaNO2	69	0.0276	0.000002

A	В	С	D	E
ammonium chloride	NH4CI	53.49	0.05349	0.000005

Iron and NTA Mix (1,000x)

A	В	С	D	E
Compound	Chemical Formula	FW	g/100mL	Final M (nM)
iron (II) sulfate heptahydrate	FeSO4 x 7H2O	278.01	0.0028	101
nitrilotriacetic acid disodium salt	NTA NA2 salt	235.1	0.0081	345

Stock Preparation

- 1 Prepare the following stocks prior to medium assembly.
- **1.1** Iron mix (1,000x)

Trace Metals (100,000x)

Vitamins (100,000x)

AA mix (500x)

Misc. mix (20,000x)

Phosphate mix (1000x)

Inorganic Nitrogen mix (2,000x)

Fatty Acid mix (2,000,000x)

1.2 Filter sterilize stocks using 0.2 µM PES filter.

Base Salts

2 Using an acid-washed and autoclaved one Liter screw-top Pyrex bottle, combine basic salts in 997.4095 mL MilliQ-filtered water. (stock volumes subtracted)

2.1 Mix continuously with stir bar or invert the tightly capped bottle.

Each chemical should be fully dissolved before next addition.

Stock Addition

3 Stocks should be added in a Biosafety cabinet or hood with appropriate ventilation.

Swirl or invert media between stock additions.

3.1 Add (per Liter):

 $10 \, \mu L$ Trace Metal Mix

10µL Vitamin Mix

20 µL Amino Acid Mix

50 μL Misc. Mix

500 μL Inorganic Nitrogen Mix

0.5 µL Fatty Acid Mix

1mL Iron Mix

1mL Phosphate Mix

- 4 When in the biosafety cabinet or laminar fume hood filter-sterilize medium using a **0.2 μm filter** into another sterilized one Liter Pyrex bottle.
- **5** pH and record.

Media can be stored at room temp (~25 °C) in the tightly closed Pyrex bottle.