

Curso Demografía - Licenciatura en Estadística

Docentes:

Daniel Ciganda Facundo Morini

2^{da} Clase 26 de Agosto de 2025

Modelos del Proceso Reproductivo

Trajectoria Reproductiva (Fecundidad Natural)

Heterogeneidad

Dos fuentes importantes de heterogeneidad con respecto a la fecundabilidad:

- Entre mujeres $\rightarrow \phi_i \sim \text{Beta}(\alpha, \beta)$
- En el tiempo $\rightarrow \phi_{i,t}$

Fecundabilidad en el Tiempo

Coale and Trussell (1974) concluyeron que, independientemente del nivel, el patron de la fecundidad (natural) por edad es similar en distintas sociedades

Age	Relative marital fertility level
20-24	100
25-29	94
30-34	86
35-39	70
40-44	36
45-49	5

Figure 1: Fecundabilidad Relativa - Coale and Trussell (1974)

FIGURE 2.1. Absolute and relative age-specific marital fertility rates of selected populations.

Modelo de Coale & Trussell

Figure 2: Evolución de las Tasas de Fecundidad Según Edad

Función Logística

$$f(x) = \frac{L}{1 + e^{-r(x-x_0)}}$$

L, Valor Máximo
r, Tása de Crecimiento / Pendiente
x₀, Punto de Inflexión

Propuesta por Pierre François Verhulst como modelo del crecimiento poblacional limitado.

Se utiliza para modelar múltiples procesos en varias disciplinas, ej: Difusión de enfermedades, tecnología, ideas.

Figure 3: Función Logística como Modelo de Crecimiento Poblacional

Modelo Fecundabilidad Decreciente

- Modelo relativo: valores entre 0 y 1; cerca de 1 a edades tempranas.
- x_0 "dónde cae": edad (en meses) donde $f_{t} = 0.5$. Mueve la curva a la izquierda/derecha sin cambiar su forma.
- r "qué tan rápido cae": rapidez de la transición alrededor de x₀.
 Mayor r ⇒ caída más corta y abrupta; menor r ⇒ más larga y suave.

