

Reti

(già "Reti di Calcolatori")

Livello Collegamento Data-Link e Medium Access Control

Renato Lo Cigno

http://disi.unitn.it/locigno/index.php/teaching-duties/computer-networks

Acknowledgement

Credits

- Part of the material is based on slides provided by the following authors
 - Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach," 4th edition, Addison-Wesley, July 2007
 - Douglas Comer, "Computer Networks and Internets,"
 5th edition, Prentice Hall
 - Behrouz A. Forouzan, Sophia Chung Fegan, "TCP/IP Protocol Suite," McGraw-Hill, January 2005
- La traduzione, se presente, è in generale opera (e responsabilità) del docente

Modello a strati

Livello Data Link

7 - Applicazione		Applicaz.: HTTP, E-mail
6 - Presentazione	Livelli di	
5 - Sessione	applicazione (utente)	Trasporto: TCP - UDP
4 - Trasporto		
3 - Rete		Rete: IP
2 - Collegamento dati	Livelli di rete	Collegamento dati: Ethernet, PPP, ATM,
1 - Fisico		Fisico

Livello Data Link

- Obiettivo principale: fornire al livello di rete di due macchine adiacenti un canale di comunicazione il più possibile affidabile
 - macchine adiacenti fisicamente connesse da un canale di comunicazione (es. un cavo coassiale, doppino telefonico)
 - canale di comunicazione → "tubo di bit", ovvero i bit sono ricevuti nello stesso ordine in cui sono inviati
- Per compiere questo obiettivo, come tutti i livelli OSI, il livello 2 offre dei servizi al livello superiore (livello di rete) e svolge una serie di funzioni
- Problema: il canale fisico non è ideale
 - errori di trasmissione tra sorgente e destinazione
 - necessità di dover gestire la velocità di trasmissione dei dati
 - ritardo di propagazione non nullo

Servizi offerti al livello superiore

- Servizio connectionless senza riscontro (ACK)
 - non viene attivata nessuna connessione
 - invio delle trame senza attendere alcun feedback dalla destinazione
 - Se una trama viene persa non ci sono tentativi per recuperarla, il compito viene lasciato ai livelli superiori
 - la maggior parte delle LAN cablate utilizzano questo servizio
- Servizio connectionless con acknowledge
 - non viene attivata nessuna connessione
 - ogni trama inviata viene "riscontrata" in modo individuale
 - le reti wireless LAN usano questo servizio
- Servizio connection-oriented con acknowledge
 - viene attivata una connessione e, al termine del trasferimento, essa viene abbattuta
 - ogni trama inviata viene "riscontrata" in modo individuale
 - le reti telefoniche/cellulari usano questo servizio

Visibilità della rete del livello 2

Visibilità estesa a tutta la rete

Visibilità limitata al singolo (ink (o sottorete)

Dove è implementato il livello DL?

- ☐ In tutti gli host
- È realizzato in un adattatore (NIC, *network interface card*)
 - scheda Ethernet, PCMCIA, 802.11
 - Implementa il livello di collegamento e fisico
- È una combinazione di hardware, software e firmware

Funzioni di competenza del livello 2

- Le principali funzioni svolte dal livello 2 sono:
 - framing
 - delimitazione delle trame
 - rilevazione/gestione errori
 - controlla se la trama contiene errori ed eventualmente gestisce il recupero
 - controllo di flusso
 - gestisce la velocità di trasmissione
 - controllo di accesso al canale per canali broadcast
 - MAC: Medium Access Control, coordina chi trasmette e chi riceve in canali con molte stazioni collegate

Framing

- Il livello 2 riceve dal livello superiore (rete) dei pacchetti
- Considerando che:
 - la lunghezza dei pacchetti (di livello 3) e delle corrispondenti trame (livello 2) è variabile
 - i sistemi non sono sincronizzati tra loro, ovvero non hanno un orologio comune che segna la stessa ora per tutti
 - il livello 1 tratta solo bit, e quindi non è in grado di distinguere se un bit appartiene ad una trama o a quella successiva
- ... nasce il problema della delimitazione delle trame
- La funzionalità di framing (frame = trama) è dunque di rendere distinguibile una trama dall'altra attraverso l'utilizzo di opportuni codici all'inizio e alla fine della trama stessa

Esempio

Modalità di Framing

- Esistono diverse tecniche per implementare il framing:
 - inserire intervalli temporali fra trame consecutive
 - problema: per natura intrinseca le reti di telecomunicazione non danno garanzie sul rispetto delle caratteristiche temporali delle informazioni trasmesse
 - gli intervalli inseriti potrebbero essere espansi o ridotti generando problemi di ricezione
 - marcare inizio e termine di ogni trama
 - 1. Character count
 - 2. Character stuffing
 - 3. Starting and ending flags (bit stuffing)
 - 4. Physical layer coding violations

Framing: Character stuffing

- Ogni trama inizia e termina con una sequenza di caratteri ASCII ben definita
 - DLE (Data Link Escape) + STX (Start of TeXt)
 - DLE (Data Link Escape) + ETX (End of TeXt)
- Se nella trasmissione di dati binari, una sottosequenza di bit corrisponde ai caratteri speciali...

- …la sorgente duplica il carattere DLE
 - character stuffing

Framing: Bit Stuffing

- Ogni trama può includere un numero arbitrario di bit
- Ogni trama inizia e termina con uno speciale pattern di bit,
 01111110, chiamato byte di flag
- In trasmissione se la sorgente incontra 5 bit "1" consecutivi, aggiunge uno "0" (indipendentemente dal bit che segue)
 - bit stuffing
 - es. la sequenza "01111110" è trasmessa come "011111010"
- Il ricevitore quando riceve 5 "1" consecutivi elimina sempre lo 0 che segue, ripristinando la sequenza originale

Framing con violazione del livello fisico

- Tecnica basata su sistemi che utilizzano ridondanza a livello fisico
 - es. ogni bit di informazione viene trasmesso utilizzando una combinazione di due simboli "alto" e "basso" a livello fisico
 - '1' ⇒ 'AB'
 - '0' ⇒ 'BA'

 'AA' e 'BB' non sono usate per i dati e possono essere quindi utilizzate per delimitare la trama

Rilevazione dell'errore

- Il livello fisico offre un canale di trasmissione con errori
 - errori sul singolo bit
 - replicazione di bit
 - perdita di bit
- Per la rilevazione di tali errori, nell'header di ogni trama il livello 2 inserisce un campo di controllo (checksum)
- I checksum è il risultato di un calcolo fatto utilizzando i bit della trama
- la destinazione ripete il calcolo e confronta il risultato con il checksum: se coincide la trama è corretta

Controllo di flusso

- Realizzato con protocolli a finestra (v. liv. trasporto), in genere stop&wait
- Il controllo della velocità di trasmissione della sorgente è basato su feedback inviati alla sorgente dalla destinazione indicando
 - di bloccare la trasmissione fino a comando successivo
 - la quantità di informazione che la destinazione è ancora in grado di gestire
- I feedback possono essere
 - nei servizi con riscontro, gli ack stessi
 - nei servizi senza riscontro, dei pacchetti appositi

Correzione errori ARQ

- Spesso assente nelle reti locali cablate
- Presente invece normalmente nelle reti wireless LAN
- Presente nelle reti tradizionali di tipo geografico
- Come a livello trasporto basato su protocolli a finestra
 - normalmente stop&wait
 - sul singolo canale non ho problemi di ritardo variabile
- Ritrasmissione dell'intera trama, controllo basato su CRC

Il sotto-livello MAC

Introduzione di un nuovo sotto-livello

- Il livello 2 è direttamente collegato al livello fisico e al mezzo di comunicazione
- Il mezzo può essere:
 - dedicato (reti punto-punto)
 - condiviso (reti broadcast)
- Se il mezzo fisico è condiviso, è necessario coordinare l'accesso
 - gestione della competizione per la risorsa trasmissiva
 - selezione dell'host che ha il diritto di trasmettere
- Viene introdotto un sotto-livello al livello 2 che gestisce l'accesso
 - MAC (Medium Access Control)

Livello MAC

- 7 Applicazione
- 6 Presentazione
 - 5 Sessione
 - 4 Trasporto
 - 3 Rete
- 2 Collegamento dati
 - 1 Fisico

Gestisce le altre funzionalità del livello 2, in particolare il controllo di flusso

2high - Collegamento dati

2low – Medium Access Control

Gestisce le politiche/regole di accesso ad un mezzo condiviso

Definizione del problema

- Per mezzo condiviso si intende che un unico canale trasmissivo può essere usato da più sorgenti
 - laptop e smartphone collegati con WiFi condividono "l'etere" ovvero le onde radio che trasportano i segnali
 - PC collegati a un cavo coassiale condividono il cavo stesso
- È necessario definire una serie di regole per poter utilizzare il mezzo (tecniche di allocazione del canale)
 - se due sorgenti parlano contemporaneamente vi sarà collisione è l'informazione andrà persa

Tecniche di allocazione del canale

- Due categorie di allocazione del canale trasmissivo
 - allocazione statica
 - il mezzo trasmissivo viene "partizionato" e ogni porzione viene data alle diverse sorgenti
 - il partizionamento può avvenire in base:
 - al tempo: ogni sorgente ha a disposizione il mezzo per un determinato periodo
 - alla frequenza: ogni sorgente ha a disposizione una determinata frequenza
 - allocazione dinamica
 - il canale viene assegnato di volta in volta a chi ne fa richiesta

Allocazione statica

- Frequency Division Multiple Access (FDMA)
- Time Division Multiple Access (TDMA)
- Code Division Multiple Access (CDMA)
- Buona efficienza in situazioni di pochi utenti con molto carico costante nel tempo
- Meccanismi di semplice implementazione (FDM)
- Tuttavia ...
 - molti utenti
 - traffico discontinuo
- ... portano a scarsa efficienza di utilizzo delle risorse trasmissive
 - le risorse dedicate agli utenti "momentaneamente silenziosi" sono perse

Allocazione dinamica

- Il canale trasmissivo può essere assegnato:
 - a turno: viene distribuito il "permesso" di trasmettere; la durata viene decisa dalla sorgente
 - a contesa: ciascuna sorgente prova a trasmettere indipendentemente dalle altre
- Nel primo caso devono esistere meccanismi per l'assegnazione del permesso di trasmettere
 - overhead di gestione
 - sono i protocolli più usati nelle reti cellulari
- Nel secondo caso non sono previsti meccanismi particolari
 - sorgente e destinazione sono il più semplici possibile
 - sono i protocolli più usati nelle reti LAN

Riassunto

Allocazione dinamica con contesa

Ipotesi e regole del gioco per l'analisi delle caratteristiche e prestazioni dei protocolli a contesa

Single channel assumption

 unico canale per tutte le comunicazioni e tempo di propagazione trascurabile

Station model

- N stazioni indipendenti ognuna delle quali è sorgente di trame di livello 2
- trame generate secondo la distribuzione di Poisson con media G
- la lunghezza delle trame è <u>fissa</u>, ovvero il tempo di trasmissione è costante e pari a **T** (tempo di trama)
- una volta generata una trama, la stazione è bloccata fino al momento di corretta trasmissione

Collision assumption

- due trame contemporaneamente presenti sul canale generano collisione
- non sono presenti altre forme di errore

Tempo...

- continuo: la trasmissione della trama può iniziare in qualunque istante
- slotted: la trasmissione della trama può iniziare solo in istanti discreti

Ascolto del canale...

 carrier sense: le stazioni sono in grado di verificare se il canale è in uso prima di iniziare la trasmissione di una trama

Protocolli di accesso multiplo

- In letteratura sono disponibili molti algoritmi di accesso multiplo al mezzo condiviso con contesa
- Principali algoritmi (utilizzati dai protocolli):
 - ALOHA
 - Pure ALOHA
 - Slotted ALOHA
 - Carrier Sense Multiple Access Protocols
 - CSMA
 - CSMA-CD (Collision Detection: con rilevazione della collisione)
 - CSMA-CA (Collision Avoidance: con tecniche per ridurre la probabilità di collisione)

Pure ALOHA

- Definito nel 1970 da N. Abramson all'università delle Hawaii
- Algoritmo:
 - una sorgente può trasmettere una trama ogniqualvolta vi sono dati da inviare (continuous time)
- - un tempo deterministico porterebbe ad una situazione di collisione all'infinito

Periodo di vulnerabilità

- Si definisce "periodo di vulnerabilità" l'intervallo di tempo in cui può avvenire una collisione che invalida una trasmissione
- Detto T il tempo di trama e t₀ l'inizio della trasmissione da parte di una sorgente, il periodo di vulnerabilità è pari al doppio del tempo di trama
 - nel momento in cui inizia a trasmettere (t₀), nessuna altra sorgente deve aver iniziato la trasmissione dopo l'istante di tempo t₀ -T e nessuna altra sorgente deve iniziare la trasmissione fino a t₀ +T

Prestazioni

- Ipotesi
 - trame di lunghezza fissa (o distribuite in modo esponenziale, non cambia)
 - tempo di trama: tempo (medio) necessario per trasmettere una trama
 - numero di stazioni infinito (o comunque molto grande)
- Traffico generato (numero di trame per tempo di trama) segue la distribuzione di Poisson con media G
 - G ingloba anche il numero di ri-trasmissioni dovuto a collisioni
- Il throughput reale è dato da
 - numero medio di trasmissioni * probabilità che non ci siano trasmissioni per tutto il periodo di vulnerabilità (2 tempi di trama consecutivi)

 \rightarrow S = G*P[0 trasmissioni per 2T], ovvero

$$S = G \cdot e^{-2G}$$

G = numero medio di trame trasmesse nel tempo di trama

S = numero medio di trame trasmesse con successo (throughput)

Prestazioni

Throughput

 ALOHA permette al massimo di sfruttare il 19% del tempo, il massimo si ha quando il traffico offerto è ~0.5 volte la capacità del canale. Protocollo instabile!!

Slotted ALOHA

- Proposto nel 1972 da Roberts per migliorare la capacità di Pure ALOHA
- Basato su ipotesi di slotted time (tempo suddiviso ad intervalli discreti)
- Algoritmo:
 - Pure ALOHA
 - la trasmissione di una trama può iniziare solo ad intervalli discreti
 - necessaria sincronizzazione tra stazioni
- Periodo di vulnerabilità: T (tempo di trama)

Prestazioni

Il periodo di vulnerabilità è dimezzato, quindi il throughput reale è dato da

$$S = G \cdot e^{-G}$$

Slotted ALOHA permette al massimo di sfruttare il 37% degli slot liberi a carico ~1

Il protocollo è instabile!!

Bisogna distribuire un sincronismo

Carrier Sense Multiple Access (CSMA)

- Le stazioni possono monitorare lo stato del canale di trasmissione
- Le stazioni sono in grado di "ascoltare" il canale prima di iniziare
 a trasmettere per verificare se c'è una trasmissione in corso
 - se il canale è libero, si trasmette
 - se è occupato, sono possibili diverse varianti
 - non-persistent (0-persistent)
 - rimanda la trasmissione ad un nuovo istante $t_1 >> t_0+T$, scelto in modo casuale
 - persistent (1-persistent)
 - nel momento in cui si libera il canale, la stazione inizia a trasmettere
 - se c'è collisione, come in ALOHA, si attende un tempo casuale e poi si cerca di ritrasmettere

CSMA: modalità p-persistent

- ascolta il canale
 - se il canale è libero si trasmette;
 - se è occupato, si attende che il canale diventi libero
 - quando il canale è libero
 - si trasmette con probabilità p
 - con probabilità (1-p) si rimanda la trasmissione ad un nuovo istante $t_1 >> t_0+T$, scelto in modo casuale
 - se c'è collisione
 - si rimanda la trasmissione ad un nuovo istante t₁ >> t₀+T,
 scelto in modo casuale

CSMA: Periodo di vulnerabilità

- legato al ritardo di propagazione del segnale τ, e al tempo necessario a rilevare il segnale sul canale T_a
 - se una stazione ha iniziato a trasmettere, ma il suo segnale non è ancora arrivato a tutte le stazioni, qualcun altro potrebbe iniziare la trasmissione
 - periodo di vulnerabilità $T_v = \tau + T_a$
- In generale, il CSMA viene usato in reti in cui il ritardo di propagazione τ è << di T (tempo di trama)

Confronto efficienza algoritmi

Collision Detection (CSMA-CD)

- Miglioramento
 - le stazioni che sta trasmettendo rilevano la collisione, interrompono immediatamente la trasmissione
- In questo modo, una volta rilevata collisione, non si spreca tempo a trasmettere trame già corrotte
- CSMA-CD 1p diventa molto efficiente e si può rendere stabile
- Per rilevare una collisione si ascolta il canale se la potenza presente è superiore a quella che sto trasmettendo ...
- CD si può usare solamente sulle reti cablate perché sulle reti wireless è sostanzialmente impossibile rilevare un segnale "aggiuntivo" rispetto a quello trasmesso

Collision Avoidance (CSMA-CA)

- Se non è possibile rilevare le collissioni e se T >> τ + T_a
 - Situazione tipica delle reti Wireless LAN
- Non conviene mai comportarsi in modo 1p perchè le collissioni costano molto care
- Collision Avoidance consiste nel comportarsi in modo p-persistente
- Termine introdotto nelle wireless LAN con CSMA, per differenziare il nome del protocollo da quello usato sulle reti cablate
- Maggiori dettagli nella parte dedicata a Ethernet e WiFi.