Szoftverellenőrzési technikák

A szoftver tesztelés alapjai

Micskei Zoltán, Majzik István

http://www.inf.mit.bme.hu/

Hol tartunk a félévi anyagban?

- Követelményspecifikáció ellenőrzése
- Ellenőrzések a tervezési fázisban
- Forráskód verifikáció technikái
- Tesztelési módszerek és folyamatok
 - A szoftver tesztelés alapjai
 - Specifikáció és struktúra alapú teszttervezési módszerek
 - Tesztelés a fejlesztés különböző fázisaiban
 - Teszt környezet és teszt automatizálás
 - Modell alapú tesztelés
- Validáció
 - GUI tesztelés
 - Stressz és robusztusság tesztelés, hibainjektálás

A tesztelés definíciói (1)

"Testing is an activity performed for evaluating product quality, and for improving it, by identifying defects and problems."

- Forrás: IEEE, "Software Engineering Body of Knowledge" (SWEBOK)
 URL: http://www.computer.org/portal/web/swebok/
- Általános definíció
- Kulcs: "evaluating product quality"
 - Quality: "the degree to which a system, component, or process meets specified requirements"

A tesztelés definíciói (2)

"An activity in which a system or component is executed under specified conditions, the results are observed or recorded, and an evaluation is made of some aspect of the system or component."

- Forrás: IEEE, "IEEE Standard for Software and System Test Documentation," *IEEE Std 829-2008*, 2008
- Kicsit specifikusabb
- Kulcs: végrehajtjuk a rendszert vagy komponenst

A tesztelés definíciói (3)

"The process consisting of all lifecycle activities, both static and dynamic, concerned with planning, preparation and evaluation of software products and related work products

- to determine that they satisfy specified requirements,
- to demonstrate that they are fit for purpose and
- to detect defects.
 - Forrás: International Software Testing Qualifications Board (ISTQB), URL: http://istqb.org/
 - Sokkal bővebb definíció
 - Kulcs:
 - Tesztelés egy folyamat
 - Statikus és dinamikus technikák is

A tesztelés lehetséges céljai

A tesztelés lehetséges céljai

- Bizonyosságot szerezni a rendszer minőségi állapotáról
- Információ a döntéshozáshoz (pl. release / no release)
- Hibák keresése
- Hibák megakadályozása

Mottók:

- Dijkstra: A tesztelés a hibák jelenlétét, és nem a hibamentességet tudja kimutatni.
- Hoare: A tesztelés egy induktív bizonyítás része:
 Ha a program jól működik egy adott teszt adatra, akkor várhatóan hasonló adatokra is jól működik.

Alapelvek (7 testing principles)

- Csak a hibák meglétét tudja kimutatni
- A kimerítő tesztelés legtöbbször lehetetlen
 - Hány teszt kéne egy 3 integer paraméterű függvényhez?
- Tesztelés már a korai fázisokban szükséges
- Hibák csoportosulása (defect clustering)
 - A komponensek egy kis részében van a hibák nagy része
- Féregirtó paradoxon (pesticide paradox)
 - Teszt újra és újra futtatva egyre kevésbé hatékony
 - Minden módszer után marad még valami más típusú hiba
- A tesztelés függ a körülményektől (context dependent)
- Hibamentes rendszer téveszméje
 - Hibamentes tesztlefutás még nem jelent jó rendszert

Alapfogalmak

- Teszteset (test case)
 - Bemeneti értékek és végrehajtási előfeltételek
 - Várt eredmények és végrehajtási utófeltételek halmaza
- Tesztkészlet (test suite)
- Orákulum (test oracle)
 - Várt eredmények származtatása, összehasonlítása
- Eredmény (verdict)
 - Sikeres (pass), sikertelen (fail)
 - Nem meggyőző (inconclusive), hiba (error)
- Tesztelés != Hibakeresés (debugging)

Tesztelési környezet (eszközök)

Alap problémák

- Teszt kiválasztás (test selection)
 - Milyen teszt bemeneteket használjunk?
 - Ld. működési profil szerepe
- Kilépési feltétel (exit criteria)
 - Meddig teszteljünk?
 - Specifikáció fedése, kód fedése, hibák fedése?
 - Ld. megbízhatóság előrejelzése
- Orákulum
 - Honnan lesz jó teszt orákulum?
- Tesztelhetőség (testability)
 - Megfigyelhetőség (observability)
 - Vezérelhetőség (controllability)

A megbízhatóság előrejelzése

- Alapkérdés: A tesztelési folyamat során hogyan változik a szoftver megbízhatósága?
 - Hibák detektálása és javítása:
 Meghibásodási gyakoriság csökken
- Megbízhatóság növekedési modellek
 - Legegyszerűbb: Lépcsős függvény modell
 - Tökéletes hibajavítás
 - Azonos gyakoriságú hibák
 - Komplikáltabb: Véletlen ugrású lépcsős függvény
 - A hibajavítás újabb hibát bevihet
 - A javított hibák különböző gyakoriságúak
 - Folytonos modellek
 - Adott feltételek mellett alkalmazhatók (feladattípus, paradigma, komplexitás, fejlesztők, ...)
 - Mért hibajavítási adatok illesztése szükséges

A megbízhat

- Alapkérdés: A tesztel változik a szoftver me
 - Hibák detektálása és jav Meghibásodási gyakoris
- Megbízhatóság növek
 - Legegyszerűbb: Lépcsős
 - Tökéletes hibajavítás
 - Azonos gyakorisád
 - Komplikáltabb: Vélet
 - A hibajavítás újabb
 - A javított hibák külön
 - Folytonos modellek
 - Adott feltételek melle paradigma, komplexit
 - Mért hibajavítási adat

A tesztelési fogalmak áttekintése

Tesztelési stratégia

Általános irányelvek

- Milyen metodológiát?
- Milyen típusú teszteket?
- Milyen eszközöket?
- Ki fogja használni?
- Milyen kilépési feltétellel?
- Milyen dokumentáció kell?

– ...

Példák az irányelvekre:

- Test-driven development
- Modul & rendszer
- JUnit & GUI Tester
- Fejlesztő és teszt csapat
- 90% utasítás lefedettség & minden használati eset

Teszt terv (test plan)

- Teszt stratégia leképezése az aktuális projektre
 - Tesztelési célok, irányelvek, környezet...
 - Tesztelendő funkciók
 - Erőforrások, szerepek, ütemezés
- Tesztelési fázisok definiálása
 - Fázisok hossza
 - Kilépési feltétel
 - Tesztelés minőségét hogyan fogjuk mérni
- Egyszerű példa: http://bazman.tripod.com/

Teszt dokumentáció

Level Test Plan Outline (full example)

1. Introduction

- 1.1. Document identifier
- 1.2. Scope
- 1.3. References
- 1.4. Level in the overall sequence
- 1.5. Test classes and overall test conditions

2. Details for this level of test plan

- 2.1 Test items and their identifiers
- 2.2 Test Traceability Matrix
- 2.3 Features to be tested
- 2.4 Features not to be tested
- 2.5 Approach
- 2.6 Item pass/fail criteria
- 2.7 Suspension criteria and resumption requirements
- 2.8 Test deliverables

3. Test management

- 3.1 Planned activities and tasks; test progression
- 3.2 Environment/infrastructure
- 3.3 Responsibilities and authority
- 3.4 Interfaces among the parties involved
- 3.5 Resources and their allocation
- 3.6 Training
- 3.7 Schedules, estimates, and costs
- 3.8 Risk(s) and contingency(s)

4. General

- 4.1 Quality assurance procedures
- 4.2 Metrics
- 4.3 Test coverage
- 4.4 Glossary
- 4.5 Document change procedures and history

- IEEE 829 Standard for Software and System Test Documentation (1998)
 - Test Plan (SPACEDIRT:
 Scope, People, Approach,
 Criteria, Environment,
 Deliverables, Incidentals,
 Risks, Tasks)
 - Test specifications: Test
 Design, Test Case, Test
 Procedure Specifications
 - Test reporting: Test Item
 Transmittal Report, Test
 Log, Test Incident Report,
 Test Summary Report

Ismétlés: A tesztelés tervezése

Tesztelés gyakorlati kérdései

- Tesztelés a fejlesztési költség több mint 50%-a!
 - Teszt adatok generálása
 - Teszt kód írása
 - Tesztek futtatása
 - Eredmények kiértékelése

- Az automatizálás alapja: pl. UML modell
 - Osztálydiagram: modul interfészek
 - → Teszt vezérlők és teszt csonk váz generálása
 - Szekvencia diagram: modulok együttműködése
 - → Teszt szekvencia származtatása
- Lásd majd a modell-alapú tesztelés előadást!

Testing @ Microsoft

- Software Developer Engineer in Test (SDET)
- Kb. ugyanannyi tesztelő, mint fejlesztő
- Fejlesztőivel egyenrangú karrierút
 - Tesztelő nem belépő pozíció
 - Teszt menedzser nem előléptetés, hanem külön út
- 10 éves támogatási ciklus az OS verziókhoz
 - Megéri automatizálni a tesztelést

"How we test software at Microsoft", Microsoft Press, ISBN 0735624259, 2008.

Testing @ Google

- Software Engineer in Test (SET) és Test Engineer (TE) szerepek
- "The burden of quality is on the shoulders of those writing the code."
- "Ne vegyünk fel túl sok tesztelőt"

További információk

- International Software Testing Qualifications Board (ISTQB), URL: http://istqb.org/
 - ISTQB Glossary of Testing Terms
 - Foundation Level Syllabus (2011)
 - Magyarul is: http://www.hstqb.com/index.php?title=Downloads
- IEEE, Software Engineering Body of Knowledge (SWEBOK), URL: http://www.computer.org/portal/web/swebok/
 - Chapter 5: Software Testing
- IEEE, Software and Systems Engineering Vocabulary (SE VOCAB), URL: http://pascal.computer.org/sev_display/
 - Definíciók kereshető jegyzéke

