the amplifying capability of the transistor. We shall discuss the amplifying property of transistor later in this chapter.

**Note.** There are two basic transistor types: the **bipolar junction transistor** (BJT) and **field-effect transistor** (FET). As we shall see, these two transistor types differ in both their operating characteristics and their internal construction. **Note that when we use the term transistor, it means bipolar junction transistor** (BJT). The term comes from the fact that in a bipolar transistor, there are two types of charge carriers (viz. electrons and holes) that play part in conductions. Note that bi means two and polar refers to polarities. The field-effect transistor is simply referred to as FET.

## 8.5 Transistor Symbols

In the earlier diagrams, the transistors have been shown in diagrammatic form. However, for the sake of convenience, the transistors are represented by schematic diagrams. The symbols used for *npn* and *pnp* transistors are shown in Fig. 8.6.



Note that emitter is shown by an arrow which indicates the direction of conventional current flow with forward bias. For *npn* connection, it is clear that conventional current flows out of the emitter as indicated by the outgoing arrow in Fig. 8.6 (i). Similarly, for *pnp* connection, the conventional current flows into the emitter as indicated by inward arrow in Fig. 8.6 (ii).

# 8.6 Transistor Circuit as an Amplifier

A transistor raises the strength of a weak signal and thus acts as an amplifier. Fig. 8.7 shows the basic circuit of a transistor amplifier. The weak signal is applied between emitter-base junction and output is taken across the load  $R_C$  connected in the collector circuit. In order to achieve faithful amplification, the input circuit should always remain forward biased. To do so, a d.c. voltage  $V_{EE}$  is applied in the input circuit in addition to the signal as



Fig. 8.7

shown. This d.c. voltage is known as bias voltage and its magnitude is such that it always keeps the input circuit forward biased regardless of the polarity of the signal.

As the input circuit has low resistance, therefore, a small change in signal voltage causes an appreciable change in emitter current. This causes almost the \*same change in collector current due to transistor action. The collector current flowing through a high load resistance  $R_C$  produces a large voltage across it. Thus, a weak signal applied in the input circuit appears in the amplified form in the collector circuit. It is in this way that a transistor acts as an amplifier.



Illustration. The action of a transistor as an amplifier can be made more illustrative if we consider typical circuit values. Suppose collector load resistance  $R_C = 5 \text{ k}\Omega$ . Let us further assume that a change of 0.1V in signal voltage produces a change of 1 mA in emitter current. Obviously, the change in collector current would also be approximately 1 mA. This collector current flowing through collector load  $R_C$ would produce a voltage =  $5 \text{ k}\Omega \times 1 \text{ mA} = 5 \text{ V}$ . Thus, a change of 0.1 V in the signal has caused a change of 5 V

in the output circuit. In other words, the transistor has been able to raise the voltage level of the signal from 0.1 V to 5 V *i.e.* voltage amplification is 50.

**Example 8.1.** A common base transistor amplifier has an input resistance of 20  $\Omega$  and output resistance of 100 k $\Omega$ . The collector load is 1 k $\Omega$ . If a signal of 500 mV is applied between emitter and base, find the voltage amplification. Assume  $\alpha_{ac}$  to be nearly one.

**Solution.** \*\*Fig. 8.8 shows the conditions of the problem. Note that output resistance is very high as compared to input resistance. This is not surprising because input junction (base to emitter) of the transistor is forward biased while the output junction (base to collector) is reverse biased.



- The reason is as follows. The collector-base junction is reverse biased and has a very high resistance of the order of mega ohms. Thus collector-base voltage has little effect on the collector current. This means that a large resistance  $R_C$  can be inserted in series with collector without disturbing the collector current relation to the emitter current viz.  $I_C = \alpha I_E + I_{CBO}$ . Therefore, collector current variations caused by a small base-emitter voltage fluctuations result in voltage changes in  $R_C$  that are quite high—often hundreds of times larger than the emitter-base voltage.
- \*\* The d.c. biasing is omitted in the figure because our interest is limited to amplification.

Input current,  $I_E = \frac{\text{Signal}}{R_{in}} = \frac{500 \, \text{mV}}{20 \, \Omega} = 25 \, \text{mA}$ . Since  $\alpha_{ac}$  is nearly 1, output current,  $I_C = I_E = 25 \, \text{mA}$ .

Output voltage, 
$$V_{out} = I_C R_C = 25 \text{ mA} \times 1 \text{ k}\Omega = 25 \text{ V}$$
  
Voltage amplification,  $A_v = \frac{V_{out}}{\text{signal}} = \frac{25 V}{500 \, mV} = 50$ 

**Comments.** The reader may note that basic amplifying action is produced by transferring a current from a *low-resistance* to a *high-resistance* circuit. Consequently, the name transistor is given to the device by combining the two terms given in magenta letters below:

#### Transfer + Resistor → Transistor

#### 8.7 Transistor Connections

There are three leads in a transistor *viz.*, emitter, base and collector terminals. However, when a transistor is to be connected in a circuit, we require four terminals; two for the input and two for the output. This difficulty is overcome by making one terminal of the transistor common to both input and output terminals. The input is fed between this common terminal and one of the other two terminals. The output is obtained between the common terminal and the remaining terminal. Accordingly; a transistor can be connected in a circuit in the following three ways:

- (i) common base connection
- (ii) common emitter connection
- (iii) common collector connection

Each circuit connection has specific advantages and disadvantages. It may be noted here that regardless of circuit connection, the emitter is always biased in the forward direction, while the collector always has a reverse bias.

#### 8.8 Common Base Connection

In this circuit arrangement, input is applied between emitter and base and output is taken from collector and base. Here, base of the transistor is common to both input and output circuits and hence the name common base connection. In Fig. 8.9 (i), a common base *npn* transistor circuit is shown whereas Fig. 8.9 (ii) shows the common base *pnp* transistor circuit.



Fig. 8.9

1. Current amplification factor ( $\alpha$ ). It is the ratio of output current to input current. In a common base connection, the input current is the emitter current  $I_E$  and output current is the collector current  $I_C$ .

The ratio of change in collector current to the change in emitter current at constant collector-base voltage  $V_{CB}$  is known as current amplification factor i.e.

\*
$$\alpha = \frac{\Delta I_C}{\Delta I_E}$$
 at constant  $V_{CB}$ 

It is clear that current amplification factor is less than \*\*unity. This value can be increased (but not more than unity) by decreasing the base current. This is achieved by making the base thin and doping it lightly. Practical values of  $\alpha$  in commercial transistors range from 0.9 to 0.99.



Fig. 8.10

**2. Expression for collector current.** The whole of emitter current does not reach the collector. It is because a small percent-

age of it, as a result of electron-hole combinations occurring in base area, gives rise to base current. Moreover, as the collector-base junction is reverse biased, therefore, some leakage current flows due to minority carriers. It follows, therefore, that total collector current consists of:

- (i) That part of emitter current which reaches the collector terminal i.e. \*\*\* $\alpha I_F$
- (ii) The leakage current  $I_{leakage}$ . This current is due to the movement of minority carriers across base-collector junction on account of it being reverse biased. This is generally much smaller than  $\alpha I_E$ .

$$\therefore$$
 Total collector current,  $I_C = \alpha I_E + I_{leakage}$ 

It is clear that if  $I_E = 0$  (i.e., emitter circuit is open), a small leakage current still flows in the collector circuit. This  $I_{leakage}$  is abbreviated as  $I_{CBO}$ , meaning collector-base current with emitter open. The  $I_{CRO}$  is indicated in Fig. 8.10.

Relation (i) or (ii) can be used to find  $I_C$ . It is further clear from these relations that the collector current of a transistor can be controlled by either the emitter or base current.

Fig. 8.11 shows the concept of  $I_{CBO}$ . In CB configuration, a small collector current flows even when the emitter current is zero. This is the leakage collector current (*i.e.* the collector current when emitter is open) and is denoted by  $I_{CBO}$ . When the emitter voltage  $V_{EE}$  is also applied, the various currents are as shown in Fig. 8.11 (*ii*).

Note. Owing to improved construction techniques, the magnitude of  $I_{CBO}$  for general-purpose and low-powered transistors (especially silicon transistors) is usually very small and may be neglected in calculations. However, for high power applications, it will appear in microampere range. Further,  $I_{CBO}$  is very much temperature dependent; it increases rapidly with the increase in temperature. Therefore, at higher temperatures,  $I_{CBO}$  plays an important role and must be taken care of in calculations.

- If only d.c. values are considered, then  $\alpha = I_C/I_E$
- At first sight, it might seem that since there is no current gain, no voltage or power amplification could be possible with this arrangement. However, it may be recalled that output circuit resistance is much higher than the input circuit resistance. Therefore, it does give rise to voltage and power gain.

$$\alpha \ = \ \frac{I_C}{I_E} \quad \therefore \quad I_C = \alpha \, I_E$$

In other words,  $\alpha I_R$  part of emitter current reaches the collector terminal.

change in emitter current  $(\Delta I_E)$  at constant collector-base voltage  $(V_{CR})$  i.e.

Input resistance, 
$$r_i = \frac{\Delta V_{BE}}{\Delta I_E}$$
 at constant  $V_{CB}$ 

In fact, input resistance is the opposition offered to the signal current. As a very small  $V_{EB}$  is sufficient to produce a large flow of emitter current  $I_E$ , therefore, input resistance is quite small, of the order of a few ohms.

**2.** Output characteristic. It is the curve between collector current  $I_C$  and collector-base voltage  $V_{CB}$  at \*constant emitter current  $I_E$ . Generally, collector current is taken along y-axis and collector-base voltage along x-axis. Fig. 8.15 shows the output characteristics of a typical transistor in CB arrangement.

The following points may be noted from the characteristics:

- (i) The collector current  $I_C$  varies with  $I'_{CB}$  only at very low voltages (< 1 V). The transistor is *never* operated in this region.
- (ii) When the value of  $V_{CB}$  is raised above 1-2 V, the collector current becomes constant as indicated by straight horizontal curves. It means that now  $I_C$  is independent of  $V_{CB}$  and depends upon  $I_E$  only. This is consistent with the theory that the emitter current flows almost entirely to the collector terminal. The transistor is always operated in this region.



Fig. 8.15

(iii) A very large change in collector-base voltage produces only a tiny change in collector current. This means that output resistance is very high.

**Output resistance.** It is the ratio of change in collector-base voltage  $(\Delta V_{CB})$  to the resulting change in collector current  $(\Delta I_C)$  at constant emitter current *i.e.* 

Output resistance, 
$$r_o = \frac{\Delta V_{CB}}{\Delta I_C}$$
 at constant  $I_E$ 

The output resistance of CB circuit is very high, of the order of several tens of kilo-ohms. This is not surprising because the collector current changes very slightly with the change in  $V_{CB}$ .

#### 8.10 Common Emitter Connection

In this circuit arrangement, input is applied between base and emitter and output is taken from the collector and emitter. Here, emitter of the transistor is common to both input and output circuits and hence the name common emitter connection. Fig. 8.16 (i) shows common emitter *npn* transistor circuit whereas Fig. 8.16 (ii) shows common emitter *pnp* transistor circuit.

<sup>\*</sup>  $I_B$  has to be kept constant because any change in  $I_E$  will produce corresponding change in  $I_C$ . Here, we are interested to see how  $V_{CB}$  influences  $I_C$ .



Fig. 8.16

1. Base current amplification factor ( $\beta$ ). In common emitter connection, input current is  $I_R$ and output current is  $I_C$ .

The ratio of change in collector current  $(\Delta I_{c})$  to the change in base current  $(\Delta I_{B})$  is known as base current amplification factor i.e.

$$\beta^* = \frac{\Delta I_C}{\Delta I_B}$$

In almost any transistor, less than 5% of emitter current flows as the base current. Therefore, the value of  $\beta$  is generally greater than 20. Usually, its value ranges from 20 to 500. This type of connection is frequently used as it gives appreciable current gain as well as voltage gain.

**Relation between \beta and \alpha.** A simple relation exists between  $\beta$  and  $\alpha$ . This can be derived as follows:

$$\beta = \frac{\Delta I_C}{\Delta I_B} \qquad ...(i)$$

$$\alpha = \frac{\Delta I_C}{\Delta I_E} \qquad ...(ii)$$
Now
$$I_E = I_B + I_C$$
or
$$\Delta I_E = \Delta I_B + \Delta I_C$$
or
$$\Delta I_B = \Delta I_E - \Delta I_C$$
Substituting the value of  $\Delta I_E$  in exp. (i) we get

Substituting the value of  $\Delta I_B$  in exp. (i), we get,

$$\beta = \frac{\Delta I_C}{\Delta I_E - \Delta I_C} \qquad ...(iii)$$

Dividing the numerator and denominator of R.H.S. of exp. (iii) by  $\Delta I_E$ , we get,

$$\beta = \frac{\Delta I_C / \Delta I_E}{\Delta I_E} - \frac{\Delta I_C}{\Delta I_E} = \frac{\alpha}{1 - \alpha} \qquad \left[ \because \quad \alpha = \frac{\Delta I_C}{\Delta I_E} \right]$$
$$\beta = \frac{\alpha}{1 - \alpha}$$

It is clear that as  $\alpha$  approaches unity,  $\beta$  approaches infinity. In other words, the current gain in common emitter connection is very high. It is due to this reason that this circuit arrangement is used in about 90 to 95 percent of all transistor applications.

. . . . . . . . . . . . . . . . .

or

or

∴.

If d.c. values are considered,  $\beta = I_C/I_B$ .

**2.** Expression for collector current. In common emitter circuit,  $I_B$  is the input current and  $I_C$  is the output current.

$$I_E = I_B + I_C \qquad ...(i)$$
 and 
$$I_C = \alpha I_E + I_{CBO} \qquad ...(ii)$$
 From exp. (ii), we get, 
$$I_C = \alpha I_E + I_{CBO} = \alpha (I_B + I_C) + I_{CBO}$$
 or 
$$I_C (1 - \alpha) = \alpha I_B + I_{CBO}$$
 or 
$$I_C = \frac{\alpha}{1 - \alpha} I_B + \frac{1}{1 - \alpha} I_{CBO} \qquad ...(iii)$$

From exp. (iii), it is apparent that if  $I_B = 0$  (i.e. base circuit is open), the collector current will be the current to the emitter. This is abbreviated as  $I_{CEO}$ , meaning collector-emitter current with base open.

$$I_{CEO} = \frac{1}{1-\alpha} I_{CBO}$$
 Substituting the value of  $\frac{1}{1-\alpha} I_{CBO} = I_{CEO}$  in exp. (iii), we get, 
$$I_C = \frac{\alpha}{1-\alpha} I_B + I_{CEO}$$
 or 
$$I_C = \beta I_B + I_{CEO}$$
  $(\because \beta = \frac{\alpha}{1-\alpha})$ 

**Concept of I**<sub>CEO</sub>. In CE configuration, a small collector current flows even when the base current is zero [See Fig. 8.17 (i)]. This is the collector cut off current (i.e. the collector current that flows when base is open) and is denoted by  $I_{CEO}$ . The value of  $I_{CEO}$  is much larger than  $I_{CBO}$ .



Fig. 8.17

When the base voltage is applied as shown in Fig. 8.17 (ii), then the various currents are:

Base current = 
$$I_B$$
  
Collector current =  $\beta I_B + I_{CEO}$   
Emitter current = Collector current + Base current  
=  $(\beta I_B + I_{CEO}) + I_B = (\beta + 1) I_B + I_{CEO}$ 

It may be noted here that:

$$I_{CEO} = \frac{1}{1-\alpha} I_{CBO} = (\beta+1) I_{CBO} \qquad \left[\because \frac{1}{1-\alpha} = \beta+1\right]$$

## 8.11. Measurement of Leakage Current

A very small leakage current flows in all transistor circuits. However, in most cases, it is quite small and can be neglected.

(i) Circuit for  $I_{CEO}$  test. Fig. 8.18 shows the circuit for measuring  $I_{CEO}$ . Since base is open

1. Input characteristic. It is the curve between base current  $I_B$  and base-emitter voltage  $V_{BE}$  at constant collector-emitter voltage  $V_{CE}$ 

The input characteristics of a CE connection can be determined by the circuit shown in Fig. 8.29. Keeping  $V_{CE}$  constant (say at 10 V), note the base current  $I_B$  for various values of  $V_{BE}$ . Then plot the

readings obtained on the graph, taking  $I_B$  along y-axis and  $V_{BE}$  along x-axis. This gives the input characteristic at  $V_{CE} = 10 \text{V}$  as shown in Fig. 8.30. Following a similar procedure, a family of input characteristics can be drawn. The following points may be noted from the characteristics:

- (i) The characteristic resembles that of a forward biased diode curve. This is expected since the base-emitter section of transistor is a diode and it is forward biased.
- (ii) As compared to CB arrangement,  $I_B$  increases less rapidly with  $V_{BE}$ . Therefore, input resistance of a CE circuit is higher than that of CB circuit.

**Input resistance.** It is the ratio of change in base-emitter voltage  $(\Delta V_{BE})$  to the change in base current  $(\Delta I_B)$  at constant  $V_{CE}$  i.e.



Fig. 8.30

Input resistance, 
$$r_i = \frac{\Delta V_{BE}}{\Delta I_B}$$
 at constant  $V_{CE}$ 

The value of input resistance for a CE circuit is of the order of a few hundred ohms.

2. Output characteristic. It is the curve between collector current  $I_{\rm C}$  and collector-emitter voltage  $V_{\rm CE}$  at constant base current  $I_{\rm R}$ .

The output characteristics of a CE circuit can be drawn with the help of the circuit shown in Fig. 8.29. Keeping the base current  $I_B$  fixed at some value say, 5  $\mu$ A, note the collector current  $I_C$  for various values of  $V_{CE}$ . Then plot the readings on a graph, taking  $I_C$  along y-axis and  $V_{CE}$  along x-axis. This gives the output characteristic at  $I_B = 5 \mu$ A as shown in Fig. 8.31 (i). The test can be repeated for  $I_B = 10 \mu$ A to obtain the new output characteristic as shown in Fig. 8.31 (ii). Following similar procedure, a family of output characteristics can be drawn as shown in Fig. 8.31 (iii).



The following points may be noted from the characteristics:

(i) The collector current  $I_C$  varies with  $V_{CE}$  for  $V_{CE}$  between 0 and 1 V only. After this, collector current becomes *almost* constant and independent of  $V_{CE}$ . This value of  $V_{CE}$  upto which collector

current  $I_C$  changes with  $V_{CE}$  is called the knee voltage  $(V_{knee})$ . The transistors are always operated in the region above knee voltage.

- (ii) Above knee voltage,  $I_C$  is almost constant. However, a small increase in  $I_C$  with increasing  $V_{CE}$  is caused by the collector depletion layer getting wider and capturing a few more majority carriers before electron-hole combinations occur in the base area.
- (iii) For any value of  $V_{CE}$  above knee voltage, the collector current  $I_C$  is approximately equal to  $\beta \times I_{R}$

**Output resistance.** It is the ratio of change in collector-emitter voltage ( $\Delta V_{CE}$ ) to the change in collector current  $(\Delta I_C)$  at constant  $I_R$  i.e.

Output resistance, 
$$r_o = \frac{\Delta V_{CE}}{\Delta I_C}$$
 at constant  $I_B$ 

It may be noted that whereas the output characteristics of CB circuit are horizontal, they have noticeable slope for the CE circuit. Therefore, the output resistance of a CE circuit is less than that of CB circuit. Its value is of the order of 50 k $\Omega$ .

#### 8.13 Common Collector Connection

In this circuit arrangement, input is applied between base and collector while output is taken between the emitter and collector. Here, collector of the transistor is common to both input and output circuits and hence the name common collector connection. Fig. 8.32 (i) shows common collector npn transistor circuit whereas Fig. 8.32 (ii) shows common collector pnp circuit.



Fig. 8.32

(i) Current amplification factor γ. In common collector circuit, input current is the base current  $I_B$  and output current is the emitter current  $I_E$ . Therefore, current amplification in this circuit arrangement can be defined as under:

The ratio of change in emitter current  $(\Delta I_R)$  to the change in base current  $(\Delta I_R)$  is known as current amplification factor in common collector (CC) arrangement i.e.

$$\gamma = \frac{\Delta I_E}{\Delta I_R}$$

This circuit provides about the same current gain as the common emitter circuit as  $\Delta I_E \simeq \Delta I_C$ . However, its voltage gain is always less than 1.

#### Relation between y and a

$$\gamma = \frac{\Delta I_E}{\Delta I_B} \qquad \dots (i)$$

$$\gamma = \frac{\Delta I_E}{\Delta I_B} \qquad ...(i)$$

$$\alpha = \frac{\Delta I_C}{\Delta I_E} \qquad ...(ii)$$

Now 
$$I_E = I_B + I_C$$
 or 
$$\Delta I_E = \Delta I_B + \Delta I_C$$
 or 
$$\Delta I_B = \Delta I_E - \Delta I_C$$

Substituting the value of  $\Delta I_R$  in exp. (i), we get,

$$\gamma = \frac{\Delta I_E}{\Delta I_E - \Delta I_C}$$

Dividing the numerator and denominator of R.H.S. by  $\Delta I_{E}$ , we get,

point of R.H.S. by 
$$\Delta I_E$$
, we get,
$$\gamma = \frac{\frac{\Delta I_E}{\Delta I_E}}{\frac{\Delta I_E}{\Delta I_E} - \frac{\Delta I_C}{\Delta I_E}} = \frac{1}{1 - \alpha} \qquad \left( \because \alpha = \frac{\Delta I_C}{\Delta I_E} \right)$$

$$\gamma = \frac{1}{1 - \alpha}$$

(ii) Expression for collector current

٠.

We know 
$$I_C = \alpha I_E + I_{CBO} \qquad (\text{See Art. 8.8})$$
 Also 
$$I_E = I_B + I_C = I_B + (\alpha I_E + I_{CBO})$$
 
$$\therefore \qquad I_E (1 - \alpha) = I_B + I_{CBO}$$
 or 
$$I_E = \frac{I_B}{1 - \alpha} + \frac{I_{CBO}}{1 - \alpha}$$
 or 
$$I_C \simeq I_E = *(\beta + 1) I_B + (\beta + 1) I_{CBO}$$

(iii) Applications. The common collector circuit has very high input resistance (about 750 k $\Omega$ ) and very low output resistance (about 25  $\Omega$ ). Due to this reason, the voltage gain provided by this circuit is always less than 1. Therefore, this circuit arrangement is seldom used for amplification. However, due to relatively high input resistance and low output resistance, this circuit is primarily used for impedance matching i.e. for driving a low impedance load from a high impedance source.

# 8.14 Comparison of Transistor Connections

The comparison of various characteristics of the three connections is given below in the tabular form

| S. No. | Characteristic    | Common base                     | Common emitter                   | Common collector         |
|--------|-------------------|---------------------------------|----------------------------------|--------------------------|
| 1.     | Input resistance  | Low (about 100 Ω)               | Low (about 750 Ω)                | Very high (about 750 kΩ) |
| 2.     | Output resistance | Very high (about 450 kΩ)        | High (about 45 kΩ)               | Low (about 50 Ω)         |
| 3.     | Voltage gain      | about 150                       | about 500                        | less than 1              |
| 4.     | Applications      | For high frequency applications | For audio frequency applications | For impedance matching   |
| 5.     | Current gain      | No (less than 1)                | High (β)                         | Appreciable              |

The following points are worth noting about transistor arrangements: 
$$* \quad \beta = \frac{\alpha}{1-\alpha} \quad \therefore \quad \beta+1 = \frac{\alpha}{1-\alpha}+1 = \frac{1}{1-\alpha}$$