班级: 2021 整合科学班 学号: 2000012272 姓名: 张广欣 评分:

同组学生:陈相如,倪丹 实验名称:量子加密

1 实验8量子加密

1. 实验原理

(1) 光的偏振和量子通道

经典的现代通信体系基本建立在电磁波的基础上,目前该技术已经极为成熟。

1865 年麦克斯韦方程组被提出后,人们对电磁波的认识达到了相当深入的水平。在爱因斯坦和普朗克提出的光量子理论被验证后,人们知道了电磁波是由光子组成的。日常传输信息时所用的电磁波都是由巨量光子组成的,比如 4G 手机接收到的 1bit 信息都是由超过 100 万个光子携带,因此经典通信的信号稳定,不容易被噪声干扰且有很成熟的纠错编码方法(汉明码等);且目前人们可以通过调整电磁波的频率来传递,这样就和光的偏振方向无关,在传输过程中,光的偏振状态很难改变,强度可以通过中继放大器补偿。而对于量子通道,其稳定性远远不如经典信道,因此目前的量子通信只是用来远距离传输密钥。

在量子通信领域,人们几乎都是用光子来携带比特信息的,主要原因是:

- (1) 光在通常环境中量子效应仍然显著。
- (2) 经典信道中人们已经积累了很多光通信的技术。

量子通信将信息编码到光子的偏振态中,再将编码后的光字通过量子信道传输到远方,从这个角度上看,量子通信和经典通信可传输的信息并无不同。由于传输的信号是以单个光子为单位,很容易受到噪音干扰,量子信道对信道的要求极高,且并不能避免信号随距离的衰减,因此需要量子中继来补充光子,但又被量子的不可克隆性所限制,这一困难至今没有被完全克服,极大影响了量子通信的应用。

规定光子的水平偏振态为 $|0\rangle$, 垂直偏振态为 $|1\rangle$, 其他偏振态可视为 $\alpha |0\rangle + \beta |1\rangle$ 。

以某一方向的方解石状态为例:已知偏振态的光子从左边入射,如果偏振方向为水平 $|0\rangle$,那么将不受影响。如果偏振方向垂直 $|1\rangle$,光子将向下平移,从右侧射出后仍然保持原来的偏振状态。如果偏振态为 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$,那么该光子通过方解石后有 $|\alpha|^2 = |<\psi|0>|^2$ 的概率变成水平偏振, $|\beta|^2 = |<\psi|1>|^2$ 变成垂直偏振并向下发生偏移。

图 1: 偏振方向为水平

图 2: 偏振方向垂直

图 3: $\alpha |0\rangle + \beta |0\rangle$

如果旋转这块方解石与垂直方向偏离 45 度,这时可以不受影响穿过方解石的偏振态为 $|0_x\rangle =$

 $(|0\rangle+|1\rangle)/\sqrt{2}$; 而偏振态 $|1_x\rangle=(|0\rangle-|1\rangle)/\sqrt{2}$ 的光子通过此状态的方解石后会保持自己的偏振态。 因此称 $|0_x\rangle$ 为 45 度角偏振态,把 $|1_x\rangle$ 称为 135 度角偏振态。本实验采用的方案就是将方解石旋转到偏离垂直方向 45 度。

图 4: 单光子被调制到指定偏振角度,接收端通过一个偏振分波器将光子分束到 D1 或 D2 任一探测器

(2) 半玻片

波片,又称相位延迟片,它是由双折射的材料加工而成。用于调整光束的偏振状态。常见的波片由单轴晶体(如石英晶体)制作而成,其表面与光轴平行,垂直于光轴的偏振分量(o光)与平行于光轴的偏振分量(e光)在晶体中不发生双折射,但传播速度不同,因而通过波片后它们仍然沿着原有的方向传播,且会产生相位偏移。

偏振光通过半波片后,仍为线偏振光,但是,其合振动的振动面与入射线偏振光的振动面转过 2θ 。若 $\theta=45^\circ$,则出射光的振动面与原入射光的振动面垂直,也就是说,当 $\theta=45^\circ$ 时,半波片可以使偏振态旋转 90° 。

(3) BB84 协议

1984 年, Charles Henry Bennet 和 Gilles Brassard 首次提出以量子力学原理产生密码的方案,被称为 BB84。之后的各种量子加密方案(B92 等)与其基本流程相似: Alice 和 Bob 使用量子信道,与经典信道配合产生密钥,之后使用经典信道进行加密通信。

BB84 方案的流程:

- (1) Alice 随机产生 2 组等长的随机二进制数字 a,b,一组确定选用的基,另一组为发送的比特。
 - (2) Alice 以每对数字 a_k, b_k 向 Bob 发送一系列偏振态 $|\psi_{a_kb_k}\rangle$ 规则为:

$$|\psi_{00}\rangle = |0\rangle$$

$$|\psi_{10}\rangle = |1\rangle$$

$$|\psi_{01}\rangle = |0_x\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$$

$$|\psi_{11}\rangle = |1_x\rangle = (|0\rangle - |1\rangle)/\sqrt{2}$$

- (3) Bob 随机产生一列二进制数 b_k 并根据其以相似的方式来确定以何种偏振态来接收 Alice 发来的偏振光子,得到的结果以另一列二进制数 b' 表示。
- (4) Alcie 公布 b, Bob 将其和 b' 逐位比较,如果 $b_k = b'_k$,则保留 ak;如果 $b_k = b'_k$,则放弃 a'_k 。鲍勃通过经典信道告诉爱丽丝在哪些位数 k 上, $b_k = b'k$,并公布部分 b'k 对应 a'k 的测量值,若与 Alice 发送的 b_k 相同,则确认此信道没有受到监听,a'k 的其余部分则作为密钥。为了安全和 抗干扰,一般情况下,如果想得到一个 n 位的二进制密码 a,b 会被选成具有 $4n+\delta$ 位的二进制数,比较 δ 大,根据具体实际情况来确定。Alice 和 Bob 会从保留下的大约 2n 个 a_k 或 a'_k 中再随机选

出 \mathbf{n} 个,在经典信道中相比较,如果符合率很高,就保留没有公开的 a_k 和 a_k' ; 如果符合率很差,就重新开始。

在得到密钥后, Alice 便可以将所要所要传输的信息转化为二进制, 然后通过与密钥进行异或运算得到密闻, 然后从经典信道给 Bob 传输密文即可。

2. 实验过程

分工: Alice: 张广欣 Bob: 倪丹 Eve: 陈相如

- (1) 组装 Thorlab 的教学套件
- 之后的实验过程与实验原理中提到的基本相同。
- (2) Alice 以保密的偏振方式通过"量子信道"向 Bob 传输 52bit 信息, Bob 以随机方式接收。
- (3) Bob 公布自己接收偏振光的方式, Alice 告诉 Bob 在哪些位数上, 二者信息的收发方式相同。Bob 公布部分两者接收方式相同位数上自己的观测数据供 Alice 核对(与实验原理中提到的方法略有不同,但二者等价), 若公布的部分二者相同, 这判定没有被偷听, 二者相同偏振方式没有被公布的字符串作为密钥。反之则宣布失败, 重新开始。
- (4)得到密钥后, Alice 将想要传输的信息转化成二进制字符串,与密钥取异或运算得到密文,通过任何一种经典信道告诉 Bob 密文,本实验中采用直接告知。
- (5) Alice 和 Bob 中加入偷听的 Eve, Eve 在 Alice 传输信息时以随机偏振方式接收光子,并将此结果以完全相同的方式发送给 Bob。Bob 用上文提到的方案得知自己被偷听。

3. 实验结果

1.Alice 给 Bob 发送一系列偏振光子, Bob 随意接收(此过程发生在量子信道)

I	ı	ı	ı	ı	I	ı	I	ı	I	I	ı	I	l	ı	1	I	ı	
Alice	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Basis $(+ \text{ or } x)$	+	X	+	+	X	X	+	+	+	+	+	X	X	+	+	+	+	+
Bit(0 or 1)	0	1	0	1	1	0	1	0	0	0	0	0	1	1	1	0	0	1
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Basis(+ or x)	X	x	x	x	+	+	+	+	+	+	+	x	X	X	X	x	+	+
Bit(0 or 1)	1	1	0	0	0	1	0	1	1	0	1	0	0	0	0	1	0	1
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52		
Basis(+ or x)	X	+	+	+	+	+	+	+	+	X	x	x	+	+	+	+		
Bit(0 or 1)	1	1	0	1	0	0	1	1	1	0	1	1	1	1	0	1		
Bob	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Basis(+ or x)	+	x	+	+	x	+	x	+	X	+	x	x	+	X	+	+	x	x
Bit(0 or 1)	0	0	1	1	1	0	1	0	1	1	0	0	0	1	1	0	1	0
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Basis $(+ \text{ or } x)$	+	x	x	x	+	+	x	+	+	X	X	+	X	+	+	X	X	x
Bit(0 or 1)	1	1	0	0	1	1	0	1	1	1	1	1	0	0	0	1	1	0
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52		
Basis(+ or x)	+	X	x	+	+	X	x	+	+	+	X	+	X	X	+	+		
Bit(0 or 1)	1	0	1	1	0	0	1	1	1	0	1	0	1	1	1	1		

2.Bob 告诉 Ailce 自己所有的基, Alice 告诉 Bob 两者一样的基的位数, Bob 给 Ailice 发送部

分结果作为校验(此过程发生在经典信道)

相同基的序号	1	2	3	4	5	8	10	12	15	16	20	21	22	23	24	26	27	31	
bit (0 or 1)	0	1	0	1	1	0	0	0	1	0	1	0	0	0	1	1	1	0	
相同基的序号	34	40	41	44	45	47	51	52											
bit (0 or 1)	1	1	0	1	1	1	0	1											
校验位数	1	3	20	26	41	51													
检验码	0	0	1	1	0	0													
密码位数	2	4	5	8	10	12	15	16	21	22	23	24	27	31	34	40	44	45	
密钥	1	1	1	0	0	0	1	0	0	0	0	1	1	0	1	1	1	1	
密码位数	47	52																	
密钥	1	1																	

3.Alice 将信息转化为二进制后与密钥进行亦或运算得到密文,密文直接通过经典信道传输(不再需要量子信道)。Bob 直接对密文与密钥进行异或运算,得到信息。

发送的信息	F	A	D
Representation			$oxed{ \mid 0 \mid 0 \mid 0 \mid 0 \mid 1 \mid 1 \mid}$
密钥			$oxed{ \mid 0 \mid 0 \mid 1 \mid 1 \mid 0 \mid 1 \mid}$
密文			$oxed{ \mid 0 \mid 0 \mid 1 \mid 1 \mid 1 \mid 0 \mid }$
发送的信息	E		
Representation			
密钥			
密文			

4. 有 EVE 存在时, 重复密钥分发的方案

Alice	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Basis(+ or x)	+	+	+	X	X	+	+	X	+	+	+	X	X	X	+	+	+	X	
Bit(0 or 1)	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
Basis(+ or x)	x	+	+	X	+	+	+	+	+	X	X	+	+	X	X	X	+	+	
Bit(0 or 1)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52			
Basis(+ or x)	X	X	x	+	+	+	X	X	X	+	+	+	X	X	X	+			
Bit(0 or 1)	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
	x	x	+	+	+	X	+	X	X	X	+	+	X	+	x	X	X	+	
EVE 使用的基	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	l

	+	+	+	+	X	+	x	X	+	+	X	+	X	X	x	+	+	X
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52		
	+	x	+	+	+	+	x	+	X	x	+	+	X	+	+	+		
Bob	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Basis(+ or x)	+	+	X	+	X	+	+	X	X	x	+	+	+	+	x	X	+	X
Bit(0 or 1)	0	0	1	1	1	1	0	0	1	1	0	0	1	0	0	0	0	0
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Basis(+ or x)	+	X	+	+	X	X	+	X	X	X	X	+	+	+	+	X	+	x
Bit(0 or 1)	1	1	1	1	0	0	1	1	1	1	0	0	0	1	1	0	1	0
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52		
Basis(+ or x)	+	X	X	+	+	+	x	X	X	X	+	+	+	+	X	+		
Bit(0 or 1)	1	1	0	0	0	0	1	1	1	0	1	1	1	1	1	0		

5. Bob 告诉 Ailce 自己所有的基, Alice 告诉 Bob 两者一样的基的位数, Bob 给 Ailice 发送部分结果作为校验(此过程发生在经典信道), 发现错误, 本轮通信终止。

如果选中标红的数据进行校验,会发现这一问题,但如果没有选中可能会没有发现 Eve 的存在。真实情况中可以通过加长密钥生成序列让这种可能趋于零。

Alice、Bob 选取的基相同	1	2	5	6	7	8	11	17	18	21	25	28	29	30	31	34	35
Basis(+ or x)	+	+	X	+	+	X	+	+	X	+	+	X	X	+	+	X	+
Alice 发送的 Bits	0	0	1	1	1	1	0	0	0	1	1	0	0	0	0	1	1
Basis(+ or x)	+	+	X	+	+	X	+	+	X	+	+	X	X	+	+	X	+
Alice 接收的 Bits	0	0	1	1	0	0	0	0	0	1	1	1	0	0	0	0	1
Alice、Bob 选取的基相同	39	40	41	42	43	44	45	47	48	51	52						
Basis(+ or x)	X	+	+	+	X	X	X	+	+	X	+						
Alice 发送的 Bits	1	0	0	0	0	0	1	1	1	0	0						
Basis(+ or x)	X	+	+	+	X	X	X	+	+	X	+						
Alice 接收的 Bits	0	0	0	0	1	1	1	1	1	1	0						

4. 本次实验的局限性

实际上,本次所用仪器仅为教学演示实验用,与真实的量子信道相距甚远

- (1) 真实的量子信道中,传输的信息单位是单光子,本次单次触发便传输了右眼可见的巨量光子,完全可以被监听而不被发现。
- (2) 本次对被监听的判断为 Alice 和 Bob 公布的接收方式的相通的比特位上有不同的比特即判定为被窃听。实际上任何信道都存在噪音,信号也有衰减的问题,应对设计好的信道反复进行大量测试,得到一个稳定的错误比例,二者核对信息时超过此比例才判定被窃听或通过更复杂的方式。
- (3) 本次传输信号的比特数过小,在信息论中,信道传输信息的性质应在"反复无限次传输"后才能较好确定,基于如此小样本的数据进行概率分析意义不大。

参考文献

- [1] C. H. Bennett and G. Brassard. "Quantum cryptography: Public key distribution and coin tossing". In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, volume 175, page 8. New York, 1984.
- [2]Bennett, Charles H.; Brassard, Gilles (2014-12-04). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. Theoretical Aspects of Quantum Cryptography—celebrating 30 years of BB84. 560, Part 1: 7–11.
- [3] 吴飚. 简明量子力学 [M]. 1. 北京大学出版社, 2020.