PERTEMUAN 14: POHON BINER

A. TUJUAN PEMBELAJARAN

Pada bab ini akan dijelaskan mengenai pohon biner pada struktur data. Di modul ini, Anda harus mampu:

14.1Merepresentasikan dan membuat aplikasi pohon biner dalam bahasa pemrograman.

B. URAIAN MATERI

Tujuan Pembelajaran 14.1:

Aplikasi binary Tree

Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam pohon. Pohon dilengkapi dengan *Root (akar)*.

I. Ilustrasi

Gambar. 1. Tree

II. Istilah

- a. Pohon :susunan dari satu atau lebih simpul (node) yang terdiri dari satu simpul khusus yang disebut akat (root) sedang sisanya membentuk subtree dari akar.
- b. Simpul/Vertex/Node: A, B,..., N
- c. Busur/Edge/Arc: garis yang menghubungkan antar simpul
- d. Superordinat/Father/Parent dan Subordinat/Son/Children.
 - i. Simpul A merupakan superordinat bagi simpul B, C, D
 - ii. Simpul B, C,D merupakan subordinat bagi simpul A
- e. Root/Akar: simpul yang tidak mempunyai superordinat. Pada gambar diatas: A.
- f. Leaf/Daun: simpul yang tidak mempunyai subordinat. Pada gambar diatas: C, E, G, I, J, K, L, M, N.
- g. Level/Tingkat : Simpul A berada pada level 0, simpul B, C, D berada pada level 1, dst.
- h. Depth/kedalaman: Level tertinggi dari suatu pohon. Pada gambar 1, depth = 3.
- Derajat/Degree sebuah simpul jumlah simpul subordinat dari simpul tersebut.
- j. Derajat/degree sebuah pohon adalah derajat tertinggi dari derajat simpul yang ada pada pohon tersebut.

III. M-ary Tree dan Binary Tree

M-ary atau K-ary. M atau K menyatakan derajat dari pohon.

Contoh pohon 3-ary:

Gambar. 2. Pohon 3-ary

Binary Tree. Khusus untuk K = 2 disebut pohon Binary Tree atauphon biner.

Contoh pohon biner:

Gambar. 3. Pohon biner

IV. Struktur Pohon


```
struct Node{
   int INFO;
   struct Node *Link1;
   struct Node *Link2;
   struct Node *Link3;
};
```



```
struct Node{
    int INFO;
    struct Node *LEFT;
    struct Node *RIGHT;
};
```

V. LINK

Gambar. 4. Pohon 3-ary

Link: Pointer yang digunakan untuk menunjuk simpul subordinat

Null-Link : link yang bernilai Null, yaitu link yang tidak menunjuk

subordinat

Bukan Null-Link/Busur: link yang menunjuk simpul subordinat.

Jika,

n : jumlah simpul k : derajat pohon maka berlaku hubungan :

Jumlah Link: $n \times k$ Jumlah Null-Link: n(k-1)+1

Jumlah Bukan Null-Link : n-1

Dari gambar 4, diperoleh :

n = 7, k = 3

Jumlah Link $: 7 \times 3 = 21$

Jumlah Null-Link : 7(2)+1 = 15

Jumlah Bukan Null-Link : 7-1 = 6

V. Konversi K-ary ke Binary

Aturan yang digunakan:

- Cabang kiri Binary = anak paling kiri K-ary
- Cabang kanan Binary = saudaranya pada K-ary

Contoh:

Gambar. 5. Konversi 3-ary ke binary

VI. Pohon Biner

Gambar 6. Full Binary Tree

Pada pohon Full Binary Tree berlaku:

- 1. Pada level k, jumlah simpul = 2^k
- 2. Pohon dengan kedalaman d, jumlah simpul = $2^{(d+1)}-1$
- 3. Pohon dengan level k,
 - a. Jumlah simpul daun = 2^k
 - b. Jumlah simpul bukan daun = 2^k-1
- 4. Bilajumlah seluruh simpul = n,
 - a. Kedalaman pohon = $log_2(n+1)-1$

Complete Binary Tree

Gambar 7. Complete Binary Tree

Pada Complete Binary Tree:

- 1. Setiap simpul yang berada dibawah level d-1, mempunyai dua subordinat
- 2. Bila pada level d-1 subpohon kanan ada simpul yang mempunyai subordinat maka setiap simpulpada level d-1 subpohon kiri harus mempunyai subordinat kiri dan kanan.

Contoh bukan Complete Binary Tree:

VII. Penomoran Simpul Pohon Biner

- 1. Bila sebuah simpul bernomor n, maka subordinat kiri bernomor 2n dan subordinat kanan bernomor 2n+1
- 2. Simpul awal diberi nomor 1

Gambar 8. Penomoran simpul

Representasi pohon biner kedalam array:

												15
	Α	В	С	D	Е	G		J	Κ		Ν	

	Maks jml	Maks jml	No simpul	No simpul		
Level	simpul pd	simpul	terkiri	terkanan		
	level	sampai level	pada level	pada level		
1	1	1	1	1		
2	2	3	2	3		
3	4	7	4	7		
4	8	15	8	15		
5	16	31	16	31		
6	32	63	32	63		
7	64	127	64	127		
8	128	255	128	255		
9	256	511	256	511		
10	512	1023	512	1023		
k	2 ^k	2 ^(k+1) -1	2 ^k	2 ^(k+1) -1		

Latihan

- 1. Pohon dengan jumlah simpul=273 merupakan Full atau atau Complete tree
- 2. Berapa kedalamannya?
- 3. Nomor berapa simpul terkiri dari level tersebut?
- 4. Berapa jumlah maksimum simpul pada level 7
- 5. Nomor berapa anak kanan dari simpul ke 180? Ada dilevel berapa anak tersebut
- 6. Nomor berapa orang tua dari simpul ke 83? Ada di level berapa orang tua tertsebut?

C. DAFTAR PUSTAKA

Buku

- Esakov, Jeffrey, Tom Weiss, Data Structures An Advanced Approach Using C, Prentice-Hall, Inc. 1989
- 2. Hariyanto, Bambang, Struktur Data, Informatika Bandung, Pebruari 2000
- 3. Kadir, Abdul, Pemrograman Dasar Turbo C, Andi Offset, Yogyakarta, 1991
- 4. Kruse, Robert L. Data Structures & Program Design, Prentice-Hall, Inc. 1987
- Standish, Thomas A. Data Structures, Algorithms & Software Principles In C, Addison Wesley, 1995