# **Neural Kernel Without Tangents**

ICML'20 Citation: 37

Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Ludwig Schmidt, Jonathan Ragan-Kelley, Benjamin Recht

UC Berkeley, MIT

## **Motivation**

- NTK, CNTK... do not match the performance of neural networks on most tasks of interest.
- The NTK constructions themselves are not only hard to compute, but their mathematical formulae are difficult to even write down.

### **Problem Formulation**

- Are there computationally tractable/easier kernels that approach the expressive power of neural networks?
- Is there a correlation between neural architecture performance and the performance of the associated kernel?

# **Outline**

- Main Idea
- Experiments
- Conclusion

## Main Idea

- Construct CNN architecture using only  $3 \times 3$  convolutions,  $2 \times 2$  average pooling, ReLU.
- Compositional Kernel: Kernelize 1...,L layers as kernel functions  $k_1...,k_L$  and compute the kernel hierarchily  $k_L(k_{L-1}(...k_1(x,y)))$  as the kernel of the corresponding CNN architecture.
- 5-layers compositional kernel(in Myrtle5 architecture) can significantly outperform(about 10% classification accuracy) than 14-layers CNTK on CIFAR-10(Arora et al. 2020) while the training samples are less than 1000.



Figure 2. A 5 layer network from the "Myrtle" family (Myrtle5).

# Methodology

- **Bag of features** is simply a generalization of a matrix or tensor: whereas a matrix is an indexed list of vectors, a bag of features is a collection of elements in a Hilbert space  $\mathcal{H}$  with a finite, structured index set  $\mathcal{B}$ .
- EX: we can consider an image to be a bag of features where the index set  $\mathcal{B}$  is the pixel's row and column location and  $\mathcal{H}$  is  $\mathbb{R}^3$ : at every pixel location, there is a corresponding vector encoding RGB in  $\mathbb{R}^3$ .
- ullet Given two bags of features with the same  $(\mathcal{B},\mathcal{H})$ , we define the kernel function

$$k(\mathbf{X}, a, \mathbf{Z}, b) = \langle \mathbf{X}_a, \mathbf{Z}_b 
angle$$

It defines a kernel matrix between two bags of features: we compute the kernel function for each pair of indices in  $\mathcal{B} \times \mathcal{B}$  to form a  $|\mathcal{B}| \times |\mathcal{B}|$  matrix

# Input Kernel

Input kernel. The input kernel function  $k_0$  relates all pixel vectors between all pairs of images in our dataset. Computationally, given N images, we can use an image tensor T of shape  $N \times D_1 \times D_2 \times 3$  to represent the whole dataset of images, and map this into a kernel tensor  $K_{out}$  of shape  $N \times D_1 \times D_2 \times N \times D_1 \times D_2$ . The elements of  $K_{out} = k_0(T)$  can be written as:

$$K_{out}[i, j, k, \ell, m, n] = \langle T[i, j, k], T[\ell, m, n] \rangle$$
.

All subsequent operations operate on 6-dimensional tensors with the same indexing scheme.

## **Convolution Kernel**

**Convolution.** The convolution operation  $c_w$  maps an input tensor  $K_{in}$  to an output tensor  $K_{out}$  of the same shape:  $N \times D_1 \times D_2 \times N \times D_1 \times D_2$ . w is an integer denoting the size of the convolution (e.g. w = 1 denotes a  $3 \times 3$  convolution).

The elements of  $K_{out} = c_w(K_{in})$  can be written as:

$$K_{out}[i, j, k, \ell, m, n] = \sum_{dx=-w}^{w} \sum_{dy=-w}^{w} K_{in}[i, j + dx, k + dy, \ell, m + dx, n + dy]$$

For out-of-bound location indexes, we simply zero pad the  $K_{in}$  so all out-of-bound accesses return zero.

# **Average Pooling Kernel**

Average pooling. The average pooling operation  $p_w$  downsamples the spatial dimension, mapping an input tensor  $K_{in}$  of shape  $N \times D_1 \times D_2 \times N \times D_1 \times D_2$  to an output tensor  $K_{out}$  of shape  $N \times (D_1/w) \times (D_2/w) \times N \times (D_1/w) \times (D_2/w)$ . We assume  $D_1$  and  $D_2$  are divisible by w.

The elements of  $K_{out} = p_w(K_{in})$  can be written as:

$$K_{out}[i, j, k, \ell, m, n] = \frac{1}{w^4} \sum_{a=1}^{w} \sum_{b=1}^{w} \sum_{c=1}^{w} \sum_{d=1}^{w} \sum_{d=1}^{w} \left( K_{in}[i, wj + a, wk + b, \ell, wm + c, wn + d] \right)$$

## ReLU Kernel

The ReLU embedding,  $k_{relu}$ , is shape preserving, mapping an input tensor  $\mathbf{K}_{in}$  of shape  $N \times D_1 \times D_2 \times N \times D_1 \times D_2$  to an output tensor  $\mathbf{K}_{out}$  of shape  $N \times D_1 \times D_2 \times N \times D_1 \times D_2$ . To ease the notation, we define two auxiliary tensors:  $\mathbf{A}$  with shape  $N \times D_1 \times D_2$  and  $\mathbf{B}$  with shape  $N \times D_1 \times D_2 \times N \times D_1 \times D_2$ , where the elements of each are:

$$A[i, j, k] = \sqrt{K_{in}[i, j, k, i, j, k]}$$
$$B[i, j, k, \ell, m, n] = \arccos\left(\frac{K_{in}[i, j, k, \ell, m, n]}{A[i, j, k]A[\ell, m, n]}\right)$$

### ReLU Kernel

The elements of  $K_{out} = k_{relu}(K_{in})$  can be written as:

$$K_{out}[i, j, k, \ell, m, n]$$

$$= \frac{1}{\pi} \left( A[i, j, k] A[\ell, m, n] \sin(B[i, j, k, \ell, m, n]) + (\pi - B[i, j, k, \ell, m, n]) \cos(B[i, j, k, \ell, m, n]) \right)$$

It's the same as the arccosine kernel used in NTK. Refers to NIPS'09 Kernel Methods for Deep Learning

## **Gaussian Kernel**

In addition to the ReLU kernel, we also work with a normalized Gaussian kernel. The elements of  $K_{out} = k_{gauss}(K_{in})$  can be written as:

$$K_{out}[i, j, k, \ell, m, n]$$

$$= A[i, j, k] A[\ell, m, n] \exp(B[i, j, k, \ell, m, n] - 1)$$

The normalized Gaussian kernel has a similar output response to the ReLU kernel (shown in Figure 1). Experimentally, we find the Gaussian kernel to be marginally faster and more numerically stable.

### Related to Neural Network

Let a simple convolution layer as

$$\Psi(U) = relu(W * U)$$

Where  $W\in\mathbb{R}^{(2w+1)\times(2w+1)\times D_3\times D_4}$  is a weight tensor and  $U\in\mathbb{R}^{N\times D_1\times D_2\times D_3}$  is the input, which can be N images. Suppose the entries of W are appropriately scaled random Gaussian variables. We can evaluate the following expectation according to the calculation

$$\mathbb{E}[\sum_{c=1}^{D_4} \Psi(U)[i,j,k,c] \Psi(U)[l,m,n,c]] = k_{relu}(c_w(k_0(U)))[i,j,k,l,m,n]$$

# **Algorithm**

#### **Algorithm 1** Compositional Kernel

#### **Input**

- $\mathcal{N}$  Input architecture of m layers from  $\mathcal{A}$
- $\mathcal{K}$  Map from  $\mathcal{A}$  to layerwise operators
- **X** Tensor of input images, shape  $(N \times D \times D \times 3)$

#### **Output**

 $\boldsymbol{K}_m$  Compositional kernel matrix, shape  $(N \times N)$ 

$$egin{aligned} m{K}_0 &= k_0(m{X}) \ & ext{for } i = 1 ext{ to } m ext{ do} \ & k_i \leftarrow \mathcal{K}(\mathcal{N}_i) \ & m{K}_i \leftarrow k_i(m{K}_{i-1}) \ & ext{end for} \end{aligned}$$

# **Experiment Setup**

### MNIST, CIFAR-10, CIFAR-10.1, CIFAR-100 Dataset

- Myrtle5, 7, 10 with ReLU kernel
- ZCA whitening preprocessing
- Flip data augmentation to our kernel method by flipping every example in the training set across the vertical axis
- Kernel ridge regression with respect to one-hot labels

#### 90 UCI Dataset

- Myrtle5, 7, 10 with Gaussian kernel
- Hinge loss with libSVM

#### **Architecture**

All architectures that can be represented as a list of operations from the set {conv3, pool2, relu} as the "Myrtle" family. The right one is Myrtle7 and the left on is Myrtle10





Figure 1: a) 7 layer b) 10 layer variants of the Myrtle architectures

## **MNIST**

*Table 1.* Classification performance on MNIST. All methods with convolutional structure have essentially the same performance.

| Method                          | MNIST    |  |
|---------------------------------|----------|--|
|                                 | Accuracy |  |
| NTK                             | 98.6     |  |
| ArcCosine Kernel                | 98.8     |  |
| Gaussian Kernel                 | 98.8     |  |
| Gabor Filters + Gaussian Kernel | 99.4     |  |
| LeNet-5 (LeCun et al., 1998a)   | 99.0     |  |
| CKN (Mairal et al., 2014)       | 99.6     |  |
| Myrtle5 Kernel                  | 99.5     |  |
| Myrtle5 CNN                     | 99.5     |  |

# CIFAR-100

*Table 2.* Accuracy on CIFAR-100. All CNNs were trained with cross entropy loss.

| Method                           | CIFAR-100 |
|----------------------------------|-----------|
|                                  | Accuracy  |
| Myrtle10-Gaussian Kernel         | 65.3      |
| Myrtle10-Gaussian Kernel + Flips | 68.2      |
| Myrtle10 CNN                     | 64.7      |
| Myrtle10 CNN + Flips             | 71.4      |
| Myrtle10 CNN + BatchNorm         | 70.3      |
| Myrtle10 CNN + Flips + BatchNorm | 74.7      |

## **90 UCI**

Table 4. Results on 90 UCI datasets for the NTK and Gaussian kernel (both tuned over 4 eval folds).

| Classifier                  | Friedman<br>Rank | Average<br>Accuracy (%)            | P90<br>(%) | PMA<br>(%)                       |
|-----------------------------|------------------|------------------------------------|------------|----------------------------------|
| SVM NTK SVM Gaussian kernel | 14.3<br>11.6     | $83.2 \pm 13.5$<br>$83.4 \pm 13.4$ | , , , ,    | $97.3 \pm 3.8$<br>$97.5 \pm 3.7$ |

- Friedman rank: The ranking metric reports the average ranking of a given classifier compared to all other classifiers on datasets. The lower, the better.
- **P90/P95**: The percentage of datasets on which the classifier achieves more than 90%/95% of the maximum achievable accuracy. The higher, the better.
- PMA: The average percentage of the maximum accuracy of the classifier for datasets. The higher, the better.

### CIFAR-10

- Evaluate on 10,000 test images from CIFAR-10 and the additional 2,000 "harder" test images from CIFAR-10.1
- For all kernel results on CIFAR-10, we gained an improvement of roughly 0.5% with Leave-One-Out tilting and ZCA augmentation techniques.
- A substantial drop in accuracy for the compositional kernel without ZCA preprocessing.

Table 3. Classification performance on CIFAR-10.

| Table 5. Classification performance on CIFAR-10. |          |            |  |  |  |  |
|--------------------------------------------------|----------|------------|--|--|--|--|
| Method                                           | CIFAR-10 | CIFAR-10.1 |  |  |  |  |
|                                                  | Accuracy | Accuracy   |  |  |  |  |
| Gaussian Kernel                                  | 57.4     | -          |  |  |  |  |
| CNTK + Flips (Li et al., 2019)                   | 81.4     | -          |  |  |  |  |
| CNN-GP + Flips (Li et al., 2019)                 | 82.2     | -          |  |  |  |  |
| CKN (Mairal, 2016)                               | 85.8     | -          |  |  |  |  |
| Coates-NG + Flips (Recht et al., 2019)           | 85.6     | 73.1       |  |  |  |  |
| Coates-NG + CNN-GP + Flips (Li et al., 2019)     | 88.9     | -          |  |  |  |  |
| ResNet32                                         | 92.5     | 84.4       |  |  |  |  |
| Myrtle5 Kernel + No ZCA                          | 77.7     | 62.2       |  |  |  |  |
| Myrtle5 Kernel                                   | 85.8     | 71.6       |  |  |  |  |
| Myrtle7 Kernel                                   | 86.6     | 73.1       |  |  |  |  |
| Myrtle10 Kernel                                  | 87.5     | 74.5       |  |  |  |  |
| Myrtle10-Gaussian Kernel                         | 88.2     | 75.1       |  |  |  |  |
| Myrtle10-Gaussian Kernel + Flips                 | 89.8     | 78.3       |  |  |  |  |
| Myrtle5 CNN + No ZCA                             | 87.8     | 75.8       |  |  |  |  |
| Myrtle5 CNN                                      | 89.8     | 79.0       |  |  |  |  |
| Myrtle7 CNN                                      | 90.2     | 79.7       |  |  |  |  |
| Myrtle10 CNN                                     | 91.2     | 79.9       |  |  |  |  |
| Myrtle10 CNN + Flips                             | 93.4     | 84.8       |  |  |  |  |
| Myrtle10 CNN + Flips + CutOut + Crops            | 96.0     | 89.8       |  |  |  |  |

# **Subsampled CIFAR-10**

- Subsampled datasets are class balanced
- Compositional kernel and NTK in the low data regime
- Network with the same
   architecture as compositional
   kernel severely underperforms
   both the compositional kernel
   and NTK in the low data regime
- After adding batch normalization, the network outperforms both compositional kernel and the NTK



Figure 3. Accuracy results on random subsets of CIFAR-10, with standard deviations over 20 trials. The 14-layer CNTK results are from Arora et al. (2020).

## Conclusion

- Provide a promising starting point for designing practical, high performance, domain specific kernel functions
- Some notion of **compositionality and hierarchy** may be necessary to build kernel predictors that match the performance of neural networks
- NTKs themselves may not actually provide particularly useful guides to the practice of kernel methods.
- We may underscores the importance of proper preprocessing for kernel methods
- There still performance gaps between kernel methods and neural networks and the reasons remain unknown.

## Reference

- Preprocessing for deep learning: from covariance matrix to image whitening
- 知乎 CNN数值——ZCA
- NIPS'09 Kernel Methods for Deep Learning
- ICLR'20 Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks