29.	Which of the following ions does not liberate hydrogen gas on reaction with dilute acids?							
	$(1) \text{Ti}^{2+}$		$(2) Cr^{2+}$	[JEE(Main)-2017 on line]				
	$(3) \text{ Mn}^{2+}$		$(4) V^{2+}$					
	. ,		. ,	SA0133				
30.	When metal 'M' is tree	oted with NoOH o	white geletinous precipi	tate 'X' is obtained, which is soluble				
30.				gives an oxide which is used in				
	chromatography as a	=	= -	[JEE(Main)-2018 off line]				
	(1) Ca	(2) Al	(3) Fe	(4) Zn				
	(1) Ca	(2) AI	(3) 10					
				SA0134				
31.		=	-	on which is neutral to litmus. When				
				white precipitate is obtained which				
	does not dissolve in o			[JEE(Main)-2018 on line]				
	(1) S^{2-}	(2) SO_4^{2-}	$(3) CO_3^{2-}$	(4) Cl ⁻				
				SA0135				
32.	The incorrect stateme	ent is :-		[JEE(Main)-2018 on line]				
	(1) Ferric ion gives blo	ood red colour with	potassium thiocyanate.					
	(2) Cu^{2+} and Ni^{2+} ions	s give black precipi	tate with H ₂ S in presence	ee of HCl solution.				
	(3) Cu ²⁺ salts give red coloured borax bead test in reducing flame.							
	(4) Cu ²⁺ ion gives chocolate coloured precipitate with potassium ferrocyanide solution.							
	(4) Cu foil gives enocolate coloured precipitate with potassium refroeyanide solution. SA0130							
33.	When YO is fused w	ith an alkali metal	hydrovide in presence c					
33.	a dark green product is formed which disproportionates in acidic solution to afford a dark purp							
		(2) C _n	(2) M	[JEE(Main)-2018 on line]				
	(1) Ti	(2) Cr	(3) V	(4) Mn				
24	C1.1 .:	*:1 1 1	1 1 1 1	SA0137				
34.	(1) Cl ⁻ and ClO ₂	with not and conc	entrated sodium nydrox	xide gives : [JEE MAIN 2019]				
	(2) Cl^- and ClO_2^-			S. (00) [0 == 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				
	(3) Cl ⁻ and ClO ⁻							
	(4) ClO_3^- and ClO_2^-							
35.	Iodine reacts with con	ncentrated HNO ₃ to	o yield Y along with oth	her products. The oxidation state of				
	iodine in Y, is :-			[JEE MAIN 2019]				
2.	(1) 5	(2) 3	(3) 1	(4) 7				
36.			with Na_2O_2 followed by molybdate to yield a y	y boiling with HNO ₃ . The resultant ellow precipitate.				
	Based on above observation, the element present in the given compound is :[JEE MAIN 2019]							

(3) Fluorine

37. Which one of the following is likely to give a precipitate with AgNO₃ solution ?[**JEE MAIN 2019**] (1) (CH₃)₃CCl (2) CHCl₃ (3) CH₂=CH-Cl (4) CCl₄

(4) Phosphorus

JEE-Chemistry

(1) Sulphur

(2) Nitrogen

$\stackrel{A}{\bullet}$	LLEN			Salt Analysis 57				
38.	Conside the fol	lowing reactions:		[JEE MAIN 2020]				
	NaCl + K ₂ Cr ₂ C	NaCl + $K_2Cr_2O_7$ + $H_2SO_4(Conc.) \rightarrow (A)$ + Side products						
		$(A) + NaOH \rightarrow (B) + Side product$						
	(B) + $H_2SO_4(d)$	(B) + H_2SO_4 (dilute) + $H_2O_2 \rightarrow$ (C) + Side product						
	The sum of the total number of atoms in one molecule each of (A), (B) and (C) is							
39.	-	compound (X). (X) or		an inert atmosphere of CO ₂ gives s compound (Y). The basicity of [JEE MAIN 2020]				
	(1) 4	(2) 1	(3) 2	(4) 3				
40.		precipitate with silver r	•	npounds (X) and (Y). Compound ond order between Cl and O atoms [JEE MAIN 2020]				
41.	For the followi	ng Assertion and Reas	son, the correct option is	[JEE MAIN 2020]				
	Assertion (A): When Cu (II) and sulphide ions are mixed, they react together extremely quickly to give a solid.							
	Reason (R): The equilibrium constant of Cu^{2+} (aq) + S^{2-} (aq) \rightleftharpoons $CuS(s)$ is high because the solubility product is low.							
	(1) Both (A) and (R) are true and (R) is the explanation for (A)							
	(2) Both (A) and (R) are false							
	(3) (A) is false and (R) is true							
	(4) Both (A) and (R) are true but (R) is not the explanation for (A)							
42.	Aqua regia is used for dissolving noble metals (Au, Pt, etc). The gas evolved in this process is :							
	(1) N_2	(2) N_2O_3		[JEE MAIN 2020]				
	(3) NO	(4) N_2O_5						
13	Reaction of an	inorganic culphite Y v	with dilute U.S.O. generates	compound V Reaction of V with				

Reaction of an inorganic sulphite X with dilute H₂SO₄ generates compound Y. Reaction of Y with NaOH gives X. Further, the reaction of X with Y and water affords compound Z. Y and Z, respectively, [JEE MAIN 2020] are:

(1) S and Na_2SO_3

(2) SO₂ and NaHSO₃

(3) SO_3 and $NaHSO_3$

(4) SO_2 and Na_2SO_3

EXERCISE # J-ADVANCED

- 1. Which of the following statement(s) is (are) correct with reference to the ferrous and ferric ions:
 - (A) Fe³⁺ gives brown colour with potassium ferricyanide

[JEE 1998]

- (B) Fe²⁺ gives blue precipitate with potassium ferricyanide
- (C) Fe³⁺ give red colour with potassium thiocyanate
- (D) Fe²⁺ gives brown colour with ammonium thiocyanate

SA0138

- 2. Which of the following statement(s) is /are correct. When a mixture of NaCl and K₂Cr₂O₇ is gently warmed with conc. H₂SO₄? [JEE 1998]
 - (A) A deep red vapours is evolved.
 - (B) The vapours when passed into NaOH solution gives a yellow solution of Na₂CrO₄
 - (C) Chlorine gas is evolved
 - (D) Chromyl chloride is formed.

SA0139

- **3.** An aqueous solution of a substance gives a white precipitate on treatment with dilute hydrochloric acid, which dissolves on heating. When hydrogen sulphide is passed through the hot acidic solution, [JEE 2000] a black precipitate is obtained. The substance is a:
 - (A) Hg₂⁺ salt
- (B) Cr²⁺ salt
- (C) Ag⁺ salt
- (D) Pb²⁺ salt

SA0140

- A gas 'X' is passed through water to form a saturated solution. The aqueous solution on treatment 4. with silver nitrate gives a white precipitate. The saturated aqueous solution also dissolves magnesium ribbon with evolution of a colourless gas 'Y'. Identify 'X' and 'Y': [JEE 2002(Mains)]
 - (A) $X = CO_2$, $Y = Cl_2$

(B) $X = Cl_2$, $Y = CO_2$

 $CX = Cl_2, Y = H_2$

(D) $X = H_2$, $Y = Cl_2$

SA0141

5. $[X] + H_2SO_4 \rightarrow [Y]$ a colourless gas with irritating smell [JEE 2003]

- $[Y] + K_2Cr_2O_7 + H_2SO_4 \longrightarrow$ green solution
- [X] and [Y] are:
- (A) SO_3^{2-} , SO_2

- (B) Cl^{-} , HCl (C) S^{2-} , H_2S (D) CO_3^{2-} , CO_2

6.	A sodium salt of an unknown anion when treated with $\mathrm{MgCl_2}$ give white precipitate only on boiling. The anion is: [JEE 2004]							
	(A) SO_4^{2-}	(B) HCO_3^-	(C) CO_3^{2-}	(D) NO_3^-				
					SA0143			
7.	$(NH_4)_2Cr_2O_7$ on heating gives a gas which is also given by: [JEE 2004]							
	(A) heating NH ₄ I	NO_2	(B) heating NH ₄ l	(B) heating NH ₄ NO ₃				
	(C) $Mg_3N_2 + H_2O$	O	(D) $NaNO_2 + H_2$	(D) $NaNO_2 + H_2O_2$				
					SA0144			
8.	A metal nitrate reacts with KI to give a black precipitate which on addition of excess of KI convert into orange colour solution. The cation of metal nitrate is: [JEE 2005]							
	(A) Hg^{2+}	(B) Bi ³⁺	(C) Pb^{2+}	(D) Cu+				
					SA0145			
9.	A solution when diluted with H ₂ O and boiled, it gives a white precipitate. On addition of excess NH ₄ Cl/NH ₄ OH, the volume of precipitate decreases leaving behind a white gelatinous precipitate. Identify the precipitate which dissolves in NH ₄ OH/NH ₄ Cl. [JEE 2006]							
	(A) $Zn(OH)_2$	(B) $Al(OH)_3$	(C) $Mg(OH)_2$	(D) Ca(OH) ₂				
					SA0146			
10.	CuSO ₄ decolourises on addition of excess KCN, the product is: [JEE 2006]							
	$(A) [Cu(CN)_4]^{2-}$		(B) Cu ²⁺ get redu	(B) Cu ²⁺ get reduced to form [Cu(CN) ₄] ³⁻				
	(C) Cu(CN) ₂		(D) CuCN	(D) CuCN				
					SA0147			
11.	Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using							
	diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is:							
	(A) 3	(B) 4	(C) 5	(D) 6	[JEE 2007]			
	(\mathbf{A}) 3	(D) 1	(C) 3	(D) 0	SA0148			
12.	The species present in solution when CO ₂ is dissolved in water are [JEE 2007]							
	(A) CO_2 , H_2CO_3	,HCO ₃ -,CO ₃ ²⁻	(B) H_2CO_3 , CO_3^2	(B) H_2CO_3, CO_3^{2-}				
	(C) CO_3^{2-}, HCO_3^{-}		(D) CO_2 , H_2CO_3	3				
					SA0149			

nodoO(16780 BA Vicia V.EEAdvaned) Ethius (Chemistry Shert Module Salt Araysis, Houning Effect 8.s, d Block Verg V(1) Salt Anaysis p65

13. Sodium fusion extract, obtained from aniline, on treatment with iron (II) sulphate and H₂SO₄ in presence of air gives a Prussian blue precipitate. The blue colour is due to the formation of:

[JEE 2007]

(A) $\operatorname{Fe}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}]_{3}$

(B) $Fe_3[Fe(CN)_6]_2$

 $(C) \operatorname{Fe}_{4}[\operatorname{Fe}(CN)_{6}]_{2}$

(D) $\operatorname{Fe}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}]_{3}$

SA0150

14. Column I

Column II

[JEE 2007]

- (A) $O_2^- \to O_2 + O_2^{2-}$
 - (P) Redox reaction
- (B) $\text{CrO}_4^{2-} + \text{H}^+ \rightarrow$

(Q) One of the products has trigonal planar structure

(C) $MnO_4^- + NO_2^- + H^+ \rightarrow$

- (R) Dimeric bridged tetrahedral metal ion
- (D) $NO_3^- + H_2SO_4 + Fe^{2+} \rightarrow$
- (S) Disproportionation

SA0151

15. A solution of a metal ion when treated with KI gives a red precipitate which dissolves in excess KI to give a colourless solution. Moreover, the solution of metal ion on treatment with a solution of cobalt (II) thiocyanate gives rise to a deep blue crystalline precipitate. The metal ion is

[JEE 2007]

- (A) Pb^{2+}
- (B) Hg^{2+}
- (C) Cu^{2+}
- (D) Co^{2+}

SA0152

- A solution of colourless salt H on boiling with excess NaOH produces a non-flammable gas. The **16.** gas evolution ceases after sometime. Upon addition of Zn dust to the same solution, the gas evolution restarts. The colourless salt(s) H is (are) [JEE 2008]
 - (A) NH₄NO₃
- (B) NH₄NO₂
- (C) NH₄Cl
- (D) $(NH_A)_2SO_A$

SA0153

Paragraph for Question Nos. 17 to 19

p-Amino-N, N-dimethylaniline is added to a strongly acidic solution of **X**. The resulting solution is treated with a few drops of aqueous solution of Y to yield blue coloration due to the formation of methylene blue. Treatment of the aqueous solution of Y with the reagent potassium hexacyanoferrate(II) leads to the formation of an intense blue precipitate. The precipitate dissolves on excess addition of the reagent. Similarly, treatment of the solution of Y with the solution of potassium hexacyanoferrate(III) [JEE 2009] leads to a brown coloration due to the formation of **Z**.

- **17.** The compound X is
 - (A) NaNO₃
- (B) NaCl
- (C) Na₂SO₄
- (D) Na₂S

25.

25. The compound N is -

(A) AgNO₃

(B) $Zn(NO_3)_2$

(C) $Al(NO_3)_3$

(D) $Pb(NO_3)$,

SA0159

nodeO6\B0B0-BA \Kota\LEE/Advanced\\Emiliuse\Chemistry\Shee\\Wodule-SaltAnalysis, Heaing Effect & s, of Block\Eng\(i) SaltAnalysis, p6 5

62

- 26. The final solution contains -
 - (A) $[Pb(NH_3)_4]^{2+}$ and $[CoCl_4]^{2-}$
- (B) $[Al(NH_3)_4]^{3+}$ and $[Cu(NH_3)_4]^{2+}$ (D) $[Ag(NH_3)_2]^{+}$ and $[Ni(NH_3)_6]^{2+}$
- (C) $[Ag(NH_3)_2]^+$ and $[Cu(NH_3)_4]^{2+}$

SA0159

- Which of the following hydrogen halides react(s) with AgNO₃(aq) to give a precipitate that dissolves 27. [JEE 2012] in $Na_2S_2O_3(aq)$:
 - (A) HCl
- (B) HF
- (C) HBr
- (D) HI

SA0160

- 28. The reaction of white phosphorus with aqueous NaOH gives phosphine along with another phosphorus containing compound. The reaction type; the oxidation states of phosphorus in phosphine [JEE 2012] and the other product are respectively
 - (A) redox reaction; -3 and -5
- (B) redox reaction; +3 and +5
- (C) disproportionation reaction; -3 and +1 (D) disproportionation reaction; -3 and +3

SA0161

29. For the given aqueous reactions, which of the statement(s) is (are) true? [JEE 2012]

- (A) The first reaction is a redox reaction.
- (B) White precipitate is $Zn_3[Fe(CN)_6]_2$.
- (C) Addition of filtrate to starch solution gives blue colour.
- (D) White precipitate is soluble in NaOH solution.

SA0162

- **30.** Upon treatment with ammonical H₂S, the metal ion that precipitates as a sulfide is -
 - (A) Fe(III)
- (B) Al(III)
- (C) Mg(II)
- (D) Zn (II)

[JEE 2013]

An aqueous solution of a mixture of two inorganic salts, when treated with dilute HCl, gave a precipitate (**P**) and a filtrate (**Q**). The precipitate (**P**) was found to dissolve in hot water. The filtrate (Q) remained unchanged, when treated with H₂S in a dilute mineral acid medium. However, it gave a precipitate (R) with H₂S in an ammoniacal medium. The precipitate R gave a coloured solution (S), when treated with H_2O_2 in an aqueous NaOH medium. [JEE 2013]

- 31. The coloured solution (S) contains
 - (A) $\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}$
- (B) CuSO₄
- (C) $ZnSO_4$

SA0164

- 32. The precipitate (**P**) contains
 - (A) Pb^{2+}
- (B) Hg_2^{2+} (C) Ag^+ (D) Hg^{2+}

SA0164

33. Consider the following list of reagents: [JEE Adv. 2014]

Acidified K₂Cr₂O₂, alkaline KMnO₄ CuSO₄, H₂O₂, Cl₂, O₃, FeCl₃, HNO₃ and Na₂S₂O₃. The total number of reagents that can oxidise aqueous iodide to iodine is

SA0165

34. Among PbS, CuS, HgS, MnS, Ag₂S, NiS, CoS, Bi₂S₃, and SnS₂ the total number of **BLACK** coloured sulphides is [JEE Adv. 2014]

SA0166

Paragraph for Q.No. 35 and 36

An aqueous solution of metal ion \mathbf{M}_1 reacts separately with reagents \mathbf{Q} and \mathbf{R} in excess to give tetrahedral and square planar complexes, respectively. An aqueous solution of another metal ion \mathbf{M}_2 always forms tetrahedral complexes with these reagents. Aqueous solution of \mathbf{M} , on reaction with reagent \mathbf{S} gives white precipitate which dissolves in excess of S. The reactions are summarized in the scheme given below.

[JEE Adv. 2014]

SCHEME:

Tetrahedral
$$\leftarrow \frac{Q}{\text{excess}} M_1 \xrightarrow{R} \text{Square planar}$$

Tetrahedral
$$\stackrel{Q}{\leftarrow}$$
 M_2 $\stackrel{R}{\leftarrow}$ Tetrahedral $\stackrel{S}{\leftarrow}$ S, stoichiometric amount $\stackrel{S}{\leftarrow}$ white precipitate $\stackrel{S}{\leftarrow}$ precipitate dissolves $\stackrel{M}{\leftarrow}$. O and $\stackrel{R}{\rightarrow}$ respectively are

- M₁, Q and R, respectively are **35.**
 - (A) Zn²⁺, KCN and HCl

(B) Ni²⁺, HCl and KCN

(C) Cd2+ , KCN and HCl

(D) Co²⁺, HCl and KCN

odeO6\B0BC-BA\Kota\LEE(Advanæd)\Enthuse\Chemistry\Shee\Wodule-Salh Analysis, Hsating Effect & s, d-Blodx\Eng\(i) Sdt Analysis, p6 5

ALLEN

- **36.** Reagent S is
 - (A) $K_{4}[Fe(CN)_{6}]$
- (B) Na, HPO,
- $(C) K_2CrO_4$
- (D) KOH

SA0167

Fe³⁺ is reduced to Fe²⁺ by using -

[JEE Adv. 2015]

- (A) H₂O₂ in presence of NaOH
- (B) Na₂O₂ in water
- (C) H₂O₂ in presence of H₂SO₄
- (D) Na₂O₂ in presence of H₂SO₄

SA0168

The pair(s) of ions where BOTH the ions are precipitated upon passing H₂S gas in presence of **38.** dilute HCl, is(are) [JEE Adv. 2015]

- (A) Ba²⁺, Zn²⁺
- (B) Bi³⁺, Fe³⁺
- (C) Cu^{2+} , Pb^{2+} (D) Hg^{2+} , Bi^{3+}

SA0169

The reagent(s) that can selectively precipiate S^{2-} from a mixture of S^{2-} and $SO_4^{\ 2-}$ in aqueous soltuion **39.** [JEE(Adv.)-2016] is(are):

- (A) CuCl,
- (B) BaCl₂
- (C) Pb(OOCCH₃)₂
- (D) Na₂[Fe(CN)₅NO]

SA0170

40. In the following reaction sequence in aqueous soluiton, the species X, Y and Z respectively, [JEE(Adv.)-2016] are -

$$S_2O_3^{2-}$$
 $\xrightarrow{Ag^+}$ X $\xrightarrow{Ag^+}$ Y $\xrightarrow{With time}$ Z clear white black solution precipitate

- (A) $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$, Ag_2S (B) $[Ag(S_2O_3)_3]^{5-}$, Ag_2SO_3 , Ag_2S (C) $[Ag(SO_3)_3]^{3-}$, Ag_2SO_3 , A
- (C) $[Ag(SO_3)_2]^{3-}$, $Ag_2S_2O_3$, Ag_3
- (D) $[Ag(SO_3)_3]^{3-}$, Ag_2SO_4 , Ag

SA0171

- Which of the following combination will produce H₂ gas ? 41.
- [JEE(Adv.)-2017]

(A) Zn metal and NaOH(aq)

- (B) Au metal and NaCN(aq) in the presence of air
- (C) Cu metal and conc. HNO₃
- (D) Fe metal and conc. HNO₃

SA0172

42. Addition of excess aqueous ammonia to a pink coloured aqueous solution of MCl₂. 6H₂O (X) and NH₄Cl gives an octahedral complex Y in the presence of air. In aqueous solution, complex Y behaves as 1:3 electrolyte. The reaction of X with excess HCl at room temperature results in the formation of a blue coloured complex Z. The calculated spin only magnetic moment of X and Z is 3.87 B.M., whereas it is zero for complex Y. **JEE(Adv.)-2017**]

Among the following options, which statements is(are) correct?

- (A) The hybridization of the central metal ion in Y is d²sp³
- (B) Z is tetrahedral complex
- (C) Addition of silver nitrate to Y gives only two equivalents of silver chloride
- (D) When X and Z are in equilibrium at 0°C, the colour of the solution is pink

nodeO6\B0BO-BA \Kota\LEE/Advanæd|\Enthuse\Chemistry\Shee\Module-SaltAnalysis, HootingEffect & s, d-Block\Eng\(i) SaltAnalysis, p6 5

- The correct option(s) to distinguish nitrate salts of Mn²⁺ and Cu²⁺ taken separately is (are):-43.
 - (A) Mn²⁺ shows the characteristic green colour in the flame test

- (B) Only Cu²⁺ shows the formation of precipitate by passing H₂S in acidic medium
- (C) Only Mn²⁺ shows the formation of precipitate by passing H₂S in faintly basic medium
- (D) Cu²⁺/Cu has higher reduction potential than Mn²⁺/Mn (measured under similar conditions)

SA0174

The green colour produced in the borax bead test of a chromium(III) salt is due to-44.

[JEE(Adv.)-2019]

- (1) $Cr(BO_2)_3$
- (2) CrB
- (3) $Cr_{2}(B_{4}O_{7})_{3}$
- (4) Cr₂O₃

SA0175

- 45. A colorless aqueous solution contains nitrates of two metals, X and Y. When it was added to an aqueous solution of NaCl, a white precipitate was formed. This precipitate was found to be partly soluble in hot water to give a residue P and a solution Q. The residue P was soluble in aq. NH, and also in excess sodium thiosulfate. The hot solution Q gave a yellow precipitate with KI. The metals X and Y, respectively, are [JEE(Adv.)-2020]
 - (A) Ag and Pb
- (B) Ag and Cd
- (C) Cd and Pb
- (D) Cd and Zn
- **46.** An acidified solution of potassium chromate was layered with an equal volume of amyl alcohol. When it was shaken after the addition of 1 mL of 3% H₂O₂, a blue alcohol layer was obtained. The blue color is due to the formation of a chromium (VI) compound 'X'. What is the number of oxygen atoms bonded to chromium through only single bonds in a molecule of X?

[JEE(Adv.)-2020]

		A	NSWER K	KEY		•		
EXERCISE # I								
1. (A)	2. (C)	3. (C)	4. (D)	5. (D)	6. (A,B)			
7. $(A) \rightarrow 1$	$R,S;(B) \rightarrow Q;(C)$	$(C) \rightarrow P,Q,S,T$	P ; (D) $\rightarrow P$,Q,S,	T	8. (1)			
9. (D)	10. (D)	11. (C)	12. (D)	13. (B)	14. (C)	15. (B)		
16. (A)	17. (C)	18. (B)	19. (B)	20. (D)	21. (C)	22. (A)		
23. (B)	24. (B)	25. (D)	26. (B)	27. (C)	28. (A,B)	29. (A)		
30. (C)	31. (2)	32. (4)	33. (2)	34. (D)	35. (B)	36. (D)		
37. (C)	38. (C)	39. (C , D)	40. (B)	41. (B)	42. (D)	43. (D)		
		I	EXERCISE :	# II				
1. (B)	2. (C)	3. (C)	4. (A)	5. (B)	6. (B)	7. (B)		
8. (B)	9. (B)	10. (D)	11. (B)	12. (B)	13. (A,B,C,	D) 14. (C)		
15. (C)	16. (C)	17. (B)	18. (B)	19. (B)	20. (D)	21. (C)		
22. (B)	23. (B)	24. (D)	25. (C)	26. (B)	27. (C)	28. (C)		
29. (C)	30. (B)	31. (A)	32. (B)	33. (D)	34. (D)	35. (C)		
36. (B)	37. (D)	38. (C)	30.(D)	40. (A)	41. (C)	42. (A,C,D)		
43. (C)	44. (A)	45. (A,B,C)	46. (B,C,D)	47. (A,C,D)	48. (B , D)	49. (D)		
50. (A)	51. (D)	52. (E)	53. (A,C)	54. (D)	55. (B)	56. (C)		
57. (B)	58. (A,B)	59. (D)	60. (B)	61. (B)	62. (B)	63. (A)		
64. (A)	65. (C)	66. (B)	67. (C)	68. (D)				
$69. (A) \rightarrow 0$	$Q, R; (B) \rightarrow Q; (C$	$C) \rightarrow P; (D) -$	>S,T	70. (A) \rightarrow P;	$(B) \rightarrow S; (C) -$	$\rightarrow R; (D) \rightarrow Q, R$		
71. (B)	72. (D)	73. (8)	74. (3)	75. (2)				
		EXER	CISE # JEE	E MAINS				
1. (4)	2. (4)	3. (4)	4. (2)	5. (2)	6. (2)	7. (1)		
8. (2)	9. (2)	10. (3)	11. (4)	12. (4)	13. (3)	14. (4)		
15. (3)	16. (1)	17. (4)	18. (2)	19. (3)	20. (4)	21. (1)		
22. (4)	23. (3)	24. (1)	25. (4)	26. (3)	27. (4)	28. (2)		
29. (3)	30. (2)	31. (4)	32. (2)	33. (4)				
34. (2)	35. (1)	36. (4)	37. (1)	38. (18.00)	39. (2)			
40. (1.66 t	o 1.67)	41. (4)	42. (3)	43. (2)				
		EXER	CISE # J-AD	VANCED				
1. (A, B, C	2. (A, B, D)			5. (A)	6. (B)	7. (A)		
8. (B)	9. (A)		11. (D)		13. (A)	` '		
	$P, S; (B) \rightarrow R$					17. (D)		
18. (C)	19. (B)		$P,S;(B) \rightarrow Q,S;$			21. (A)		

1. (A, B, C)	2. (A, B, D)	3. (D)	4. (C)	5. (A)	6. (B)	7. (A)
8. (B)	9. (A)	10. (B)	11. (D)	12. (A)	13. (A)	
14. $(A) \rightarrow P$	$S : (B) \rightarrow R :$	$(C) \rightarrow P, Q$	$(D) \rightarrow P$	15. (B)	16. (A) , (B)	17. (D)
18. (C)	19. (B)	20. (A) \rightarrow P	S ; (B) \rightarrow Q,S;	$(C) \rightarrow R,T;$	$(\mathbf{D}) \to \mathbf{Q}, \mathbf{T}$	21. (A)
22. (A,C,D)	23. (B,C,D)	24. (B)	25. (A)	26. (C)	27. (A,C,D)	28. (C)
29. (A,C,D)	30. (D)	31. (D)	32. (A)	33. (7)	34. (6) / (7)	35. (B)
36. (D)	37. (A, B)	38. (C,D)	39. (A OR A	., C)	40. (A)	41. (A)
42. (A , B , D)	43. (B , D)	44. (1)	45. (A)	46. (4)		

E