ESO208: Computer Assignment - 1

Ayush Anand - 200238 29 August 2021

Question 1

$$f(x): 600x^4 - 550x^3 + 200x^2 - 20x - 1$$

Bisection Method

Starting Points: $x_l = 0.1, x_u = 1.0$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Output: Approximate solution of the equation is 0.23238525390625003

False Position Method

 $Starting\ Points: x_l = 0.1, x_u = 1.0$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Modified False Position Method

 $Starting\ Points: x_l = 0.1, x_u = 1.0$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Output: Approximate solution of the equation is 0.18146019007286995

Newton Raphson Method

Starting Point: $x_0 = 0.5$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Secant Method

 $Starting\ Points: x_{-1} = 0.1, x_0 = 1.0$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

$$f(x):e^{-x}-x$$

Bisection Method

Starting Points: $x_l = 0.0, x_u = 1.0$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Output: Approximate solution of the equation is 0.567138671875

False Position Method

 $Starting\ Points: x_l = 0.0, x_u = 1.0$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Modified False Position Method

 $Starting\ Points: x_l = 0.0, x_u = 1.0$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Output: Approximate solution of the equation is 0.567150214240495

Newton Raphson Method

Starting Point: $x_0 = 0.5$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Secant Method

 $Starting\ Points: x_{-1} = 0.1, x_0 = 1.0$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Question 2

$$f(x): 600x^4 - 550x^3 + 200x^2 - 20x - 1$$

Muller's Method

Starting Points : $x_0 = 0, x_1 = 0.1, x_2 = 0.3$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Output: Approximate solution of the equation is 0.23235296476091424

Bairstow's Method

 $Starting\ Points: r=-1, s=-1$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Output: The roots (both complex and real) are: $(0.1750883714381913 + 0.2581923060951063j) \\ (0.1750883714381913 - 0.2581923060951063j) \\ 0.2323529647491251 \\ -0.035839691866268036$

$$f(x): x^3 + x^2 - 4x - 4$$

Muller's Method

 $Starting\ Points: x_0=0, x_1=0.5, x_2=1$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Output: Approximate solution of the equation is 2.0000000000535696

Bairstow's Method

 $Starting\ Points: r = -1, s = -1$

 $Maximum\ Iterations: 20$

 $Maximum\ relative\ approximate\ error: 0.05\%$

Output: The roots (both complex and real) are:

-1.0000000000000067

-1.999999999999112

1.9999995594123512