Day are
Section 4.1 Max and Min
values of the
function f(oc)
~ P .
Def. 1 Let C) be the number in the domain D of the function
the domain to of the function
₹(x) \ h ₽м
e f(c) is an abs. max if
1(c) 15 an aos. max H
$f(c) \geqslant f(\infty)$ for all ∞ in \Re
• f(c) is an abs. min if
$f(c) \leq f(x)$ for all x in x
Def 2
· The number f(c) is a loc. max
if $f(c) \ge f(\infty)$ only for
I near C

and it is 5 abs. max f(4)=5 f(x) has an abs. min at x=6and it is - 3 abs. min f(6)=-3 Example loc max/min DNE C (The Extreme Value Theorem) Theorem (als max f min) values the f(x) is continuous on closed interval [a, b], +(x) attains its als. maximum and minimum values

Example

Fermat's Theorem	
The Closed Interval	Method:

SECTION 4.1: MAXIMUM & MINIMUM VALUES

- 1. Sketch a graph f(x) whose domain is the interval [-1,4] with the following properties:
 - (a) f is continuous, has a local minimum at x = 0, an absolute minimum at x = 4 and an absolute maximum at x = 2.
- (b) *f* has an absolute minimum but no absolute maximum
- (c) f has a critical point at x = 1 but no maximum or minimum (of any type) at x = 1.

2. Find the absolute maximum and minimum values of $f(x) = x - x^{1/3}$ on the interval [-1,4]. Determine where those absolute maximum and minimum values occur.

3. Find the absolute maximum and minimum values of $f(x) = x + \frac{1}{x}$ on the interval [1/5, 4]. Determine where those absolute maximum and minimum values occur.

4. Find the absolute maximum and minimum values of $f(x) = x^{2/3}$ on the interval [-8, 8]. Determine where those absolute maximum and minimum values occur.