Polyglot Semantic Parsing in APIs

Kyle Richardson[†] Jonathan Berant [‡] Jonas Kuhn[†]

† Institute for Natural Language Processing, University of Stuttgart, Germany {kyle, jonas}@ims.uni-stuttgart.de

[‡] Tel-Aviv University, Israel joberant@cs.tau.ac.il

June 3, 2018

Understanding Source Code Documentation

Docstrings: High-level descriptions of internal software functionality.

Understanding Source Code Documentation

```
* Returns the greater of two long values

* % param a an argument

* % param b another argument

* % return the larger of a and b

* % see java.lang.Long#MAX_VALUE

*/
public static Long max(long a, long b)
```

- Docstrings: High-level descriptions of internal software functionality.
- ▶ **Difficult:** Understanding goes beyond information in software library.

Understanding Source Code Documentation

```
* Returns the greater of two long values

* ©param a an argument

* ©param b another argument

* ©return the larger of a and b

* ©see java.lang.Long#MAX.VALUE

*/

public static Long max(long a, long b)
```

- Docstrings: High-level descriptions of internal software functionality.
- ▶ **Difficult:** Understanding goes beyond information in software library.
- ► First step: Learning to translate high-level text to code representations.

Return the greater of two long values ightarrow Long max(long a, long b)

Source Code as a Parallel Corpus

► Tight coupling between high-level text and code, easy to extract text/code pairs automatically.

Source Code as a Parallel Corpus

► Tight coupling between high-level text and code, easy to extract text/code pairs automatically.

▶ Function signatures: Header-like representations, containing function name, (optionally typed) arguments, (optional) return value, namespace.

Main Task: Text to Function Signature Translation

text	Returns the greater of two long values		
signature	lang.Math long max(long a, long b)		

- ► Task: Given a training corpus of text/signatures pairs, learn a semantic parser: text → signature (Deng and Chrupała, 2014; Richardson and Kuhn, 2017b)
 - ▶ **Assumption**: predicting within finite signature/translation space.

Main Task: Text to Function Signature Translation

text	Returns the greater of two long values
signature	lang.Math long max(long a, long b)

- ► Task: Given a training corpus of text/signatures pairs, learn a semantic parser: text → signature (Deng and Chrupała, 2014; Richardson and Kuhn, 2017b)
 - ▶ **Assumption**: predicting within finite signature/translation space.
- Code Retrieval Analogy: Ordinary train/test split, at test time, retrieve function signature that matches input text specification:

Conventional Approach to Semantic Parsing

Approach of Richardson and Kuhn (2017b,a)

► Train individual models for each available parallel dataset, below current resources from Richardson and Kuhn (2017b,a)

dataset	description		
Stdlib	45 Stdlib docs, 11 programming languages, 8 natural languages.		
Py27	27 popular Python projects in English		

Conventional Approach to Semantic Parsing

Approach of Richardson and Kuhn (2017b,a)

► Train individual models for each available parallel dataset, below current resources from Richardson and Kuhn (2017b,a)

dataset	description		
Stdlib	45 Stdlib docs, 11 programming languages, 8 natural languages.		
Py27	27 popular Python projects in English		

Resource Problem: Individual datasets tend to be small, hard and unlikely to get certain types of parallel data, e.g., (de,Haskell).

Code Domain: Projects often lack documentation

- Ideally, we want to find large sets of function documentation specific to each target software project or API.
- Easy to find in bulk (focus of most studies in this area), but most projects are low-resourced, hard to build models to specific domains/projects.

Polyglot Models: Training on Multiple Datasets

Approach in this talk

- ▶ Idea: concatenate all datasets into one, build a single-model with shared parameters, capture redundancy (Herzig and Berant, 2017).
- ▶ Polyglot Translator: translates from any input language to any output (programming) language.

Polyglot Models: Training on Multiple Datasets

Approach in this talk

- ▶ Idea: concatenate all datasets into one, build a single-model with shared parameters, capture redundancy (Herzig and Berant, 2017).
- Polyglot Translator: translates from any input language to any output (programming) language.
 - 1. Multiple Datasets: Does this help learn better translators?
 - 2. **Zero-Short Translation** (Johnson et al., 2016): Can we translate between different APIs and unobserved language pairs?

<Polyglot Decoding>

Polyglot Models: Training on Multiple Datasets

► **Challenge**: Building a polyglot decoder, or translation mechanism that facilitates crossing between (potentially unobserved) language pairs.

Polyglot Models: Training on Multiple Datasets

- ► **Challenge**: Building a polyglot decoder, or translation mechanism that facilitates crossing between (potentially unobserved) language pairs.
 - Constraint 1: Ensure well-formed code output (not guaranteed in ordinary MT, cf. Cheng et al. (2017); Krishnamurthy et al. (2017))
 - ► Constraint 2: Must be able to translate to target APIs/programming languages on demand.

Graph Based Approach

 Idea: Exploit finite-ness of target translation space, represent full search space as directed acyclic graph (DAG).

Graph Based Approach

- Idea: Exploit finite-ness of target translation space, represent full search space as directed acyclic graph (DAG).
- Trick: Prepend to each signature an artificial token that identifiers the API project or programming language (Johnson et al., 2016).

Graph Based Approach

- Idea: Exploit finite-ness of target translation space, represent full search space as directed acyclic graph (DAG).
- Trick: Prepend to each signature an artificial token that identifiers the API project or programming language (Johnson et al., 2016).
- **Decoding**: Reduces to finding a path given an input **x**:

x : The ceiling of a number

Can be solved using variant of single-source shortest path (SSSP) problem (Cormen et al., 2009), extendible to k-SSSP paths.

▶ Standard SSSP: assumes a DAG $\mathcal{G} = (V, E)$, a weight function: $w : E \to \mathbb{R}$, (initialized) vector $d \in \infty^{|V|}$, unique source node b

```
0: d[b] \leftarrow 0.0
```

1: for vertex $u \in V$ in top sorted order

2:
$$\operatorname{do} d(v) = \min_{(u,v,z) \in E} \left\{ d(u) + w(u,v,z) \right\}$$

3: **return** $\min_{v \in V} \{d(v)\}$

▶ Standard SSSP: assumes a DAG $\mathcal{G} = (V, E)$, a weight function: $w : E \to \mathbb{R}$, (initialized) vector $d \in \infty^{|V|}$, unique source node b

0:
$$d[b] \leftarrow 0.0$$

1: for vertex $u \in V$ in top sorted order
2: $do \ d(v) = \min_{\substack{(u,v,z) \in E}} \left\{ d(u) + w(u,v,z) \right\}$
3: return $\min_{v \in V} \left\{ d(v) \right\}$

Variant: replace w(..) with translation model, dynamically generates weights correspond. to translation scores for x and labels in SSSP search.

Neural Sequence to Sequence Models

- ▶ Encoder Model: neural sequence model, builds a *distributed* representation of the source sentence and its words $\mathbf{x} = (h_1, h_2, ..., h_{|\mathbf{x}|})$:
- Decoder Model: RNN language model additionally conditioned on input x/Encoder states.

$$p(\mathbf{z} \mid \mathbf{x}) = \prod_{i}^{|\mathbf{z}|} p_{\Theta}(z_i \mid z_{< i}, \mathbf{x})$$

Neural Sequence to Sequence Models

- **Encoder Model:** neural sequence model, builds a *distributed* representation of the source sentence and its words $\mathbf{x} = (h_1, h_2, ..., h_{|\mathbf{x}|})$:
- Decoder Model: RNN language model additionally conditioned on input x/Encoder states.

$$p(\mathbf{z} \mid \mathbf{x}) = \prod_{i}^{|\mathbf{z}|} p_{\Theta}(z_i \mid z_{< i}, \mathbf{x})$$

▶ Modification (at decode/test time): Constrain search (each new z_i) to ensure well-formed translation output.

▶ Standard SSSP: assumes a DAG $\mathcal{G} = (V, E)$, a weight function: $w : E \to \mathbb{R}$, (initialized) vector $d \in \infty^{|V|}$, unique source node b

```
0: d[b] \leftarrow 0.0

1: for each vertex u \in V in top sorted order

2: \mathbf{do}\ d(v) = \min_{\substack{(u,v,z) \in E}} \left\{ d(u) + w(u,v,z) \right\}

3: return \min_{v \in V} \left\{ d(v) \right\}
```

► Translation models: Any model can be used, we experiment with lexical SMT models (see paper) and attentive encoder-decoder models.

▶ Standard SSSP: assumes a DAG $\mathcal{G} = (V, E)$, a weight function: $w : E \to \mathbb{R}$, (initialized) vector $d \in \infty^{|V|}$, unique source node b

```
0: d[b] \leftarrow 0.0

1: for each vertex u \in V in top sorted order

2: \operatorname{do} d(v) = \min_{(u,v,z) \in E} \left\{ d(u) + w(u,v,z) \right\}

3: \operatorname{return} \min_{v \in V} \left\{ d(v) \right\}
```

- Translation models: Any model can be used, we experiment with lexical SMT models (see paper) and attentive encoder-decoder models.
- ▶ Neural Variant: assumes input x, \mathcal{G} , neural decoder parameters Θ (trained normally), d, and s (state map):

```
0: d[b] \leftarrow 0.0

1: for each vertex u \in V in top sorted order

2: \mathbf{do}\ d(v) = \min_{\substack{(u,v,z) \in E}} \left\{ d(u) + -\log p_{\Theta}(z \mid z_{< i}, \mathbf{x}) \right\}

3: \mathbf{s}[v] \leftarrow \text{RNN} state for min edge

4: return \min_{v \in V} \left\{ d(v) \right\}
```

Neural Variant: assumes input x, \mathcal{G} , neural decoder parameters Θ (trained normally), d, and s (state map):

```
0: d[b] \leftarrow 0.0

1: for each vertex u \in V in top sorted order

2: \mathbf{do}\ d(v) = \min_{\{u,v,z\} \in E} \left\{ d(u) + -\log p_{\Theta}(z \mid z_{< i}, \mathbf{x}) \right\}

3: \mathbf{s}[v] \leftarrow \text{RNN} state for min edge

4: return \min_{v \in V} \left\{ d(v) \right\}
```

- Making Our Decoders Behave by restricting search to paths in the graph (represents full search space, similar to grammar constraints).
 - big topic now in neural SP (Yin and Neubig, 2017; Krishnamurthy et al., 2017), see NAACL tutorial by Neubig and Allamanis.

<Results>

Polyglot vs. Monolingual Decoding

- ► The difference is the type of input data, and starting point (i.e., source node) in the graph search.
- ► Any Language Decoding: Letting the decoder decide.

Polyglot vs. Monolingual Decoding

- ► The difference is the type of input data, and starting point (i.e., source node) in the graph search.
- ▶ Any Language Decoding: Letting the decoder decide.

1.	Source API (stdlib): (es, PHP)	Input: Devuelve el mensaje asociado al objeto lanzado.
Ħ	Language: PHP	Translation: public string Throwable::getMessage (void)
Output	Language: Java	Translation: public String lang.getMessage(void)
Ιō	Language: Clojure	Translation: (tools.logging.fatal throwable message & more)
2.	Source API (stdlib): (ru, PHP)	Input: конвертирует строку из формата UTF-32 в формат UTF-16.
Ħ	Language: PHP	Translation: string PDF_utf32_to_utf16 ()
Output	Language: Ruby	Translation: String#toutf16 => string
Ιō	Language: Haskell	Translation: Encoding.encodeUtf16LE :: Text -> ByteString
3.	Source API (py): (en, stats)	Input: Compute the Moore-Penrose pseudo-inverse of a matrix.
Ħ	Project: sympy	Translation: matrices.matrix.base.pinv_solve(B,)
utput	Project: sklearn	Translation: utils.pinvh(a, cond=None,rcond=None,)
ο̈	Project: stats	Translation: tools.pinv2(a,cond=None,rcond=None)

- Our Focus: Does training on multiple datasets (i.e., polyglot models) improve monolingual decoding?
 - ▶ Monolingual models: current best models, primarily SMT based.

- Our Focus: Does training on multiple datasets (i.e., polyglot models) improve monolingual decoding?
 - ▶ Monolingual models: current best models, primarily SMT based.

		Method	Acc@1	Acc@10	MRR
	mono.	Best Monolingual Model	29.9	69.2	43.1
≗	poly.	Lexical SMT SSSP	33.2	70.7	- 4 5.9 -
std		Best Seq2Seq SSSP	13.9	36.5	21.5
	mono.	Best Monolingual Model	32.4	73.5	46.5
27	poly.	Lexical SMT SSSP	41.3	77.7	_ <u>5</u> 4.T
Ę,		Best Seq2Seq SSSP	9.0	26.9	15.1

- Our Focus: Does training on multiple datasets (i.e., polyglot models) improve monolingual decoding?
 - ▶ Monolingual models: current best models, primarily SMT based.

		Method	Acc@1	Acc@10	MRR
	mono.	Best Monolingual Model	29.9	69.2	43.1
.≘	poly.	Lexical SMT SSSP	33.2	70.7	⁻ 45.9 ⁻
std		Best Seq2Seq SSSP	13.9	36.5	21.5
	mono.	Best Monolingual Model	32.4	73.5	46.5
27	poly.	Lexical SMT SSSP	41.3	77.7	54.1
<u>Š</u>		Best Seq2Seq SSSP	9.0	26.9	15.1

Findings: Polyglot models can improve performance using SMT models, do not work for Seq2Seq models.

- Our Focus: Does training on multiple datasets (i.e., polyglot models) improve monolingual decoding?
 - ▶ Monolingual models: current best models, primarily SMT based.

		Method	Acc@1	Acc@10	MRR
	mono.	Best Monolingual Model	29.9	69.2	43.1
≗	poly.	Lexical SMT SSSP	33.2	70.7	⁻ 45.9 ⁻
St		Best Seq2Seq SSSP	13.9	36.5	21.5
	mono.	Best Monolingual Model	32.4	73.5	46.5
2	poly.	Lexical SMT SSSP	41.3	77.7	54.1
<u>Š</u>		Best Seq2Seq SSSP	9.0	26.9	15.1

- ► **Findings:** Polyglot models can improve performance using SMT models, do not work for Seq2Seq models.
 - Standard set of tricks: copying à la Jia and Liang (2016), lexical biasing (Arthur et al., 2016).

Polyglot Modeling on Benchmark SP Tasks

▶ Our Focus: Does this help on benchmark semantic parsing tasks?

		Method	Acc@1 (averaged)
		UBL Kwiatkowski et al. (2010)	74.2
<u>a</u> ~	ė	TreeTrans Jones et al. (2012)	76.8
l go e	₫	Lexical SMT SSSP	68.6
Aultilingu Geoquer	-	Best Seq2Seq SSSP	78.0
<u> </u>	<u>-×</u>	Lexical SMT SSSP	67.3
Σ	8	Best Seq2Seq SSSP	79.6

▶ Multilingual Geoquery: monolingual/polyglot models on Geoquery in en, de, gr, th, polyglot setting improves accuracy, neural Seq2Seq models perform best (consistent with recent findings, (Dong and Lapata, 2016)).

Polyglot Modeling on Benchmark SP Tasks

Our Focus: Does this help on benchmark semantic parsing tasks?

		Method	Acc@1 (averaged)
		UBL Kwiatkowski et al. (2010)	74.2
<u></u>	ē	TreeTrans Jones et al. (2012)	76.8
l gu	₫	Lexical SMT SSSP	68.6
Jultilin	-	Best Seq2Seq SSSP	78.0
1 # 18	<u></u>	Lexical SMT SSSP	67.3
Σ 0	8	Best Seq2Seq SSSP	79.6

- Multilingual Geoquery: monolingual/polyglot models on Geoquery in en, de, gr, th, polyglot setting improves accuracy, neural Seq2Seq models perform best (consistent with recent findings, (Dong and Lapata, 2016)).
 - Recall that these same Seq2Seq models do not work in the technical documentation tasks.

Benchmark SP Tasks: Mixed Language Decoding

▶ Introduced a new *mixed language* GeoQuery test set, each sentence contains NPs from two or more languages.

Mixed Lang. Input: Wie hoch liegt der höchstgelegene punkt in Αλαμπάμα?

LF: answer(elevation_1(highest(place(loc_2(stateid('alabama'))))))

	Method	Acc@1 (averaged)	Acc@10 (averaged)
Mixed	Best Monolingual Seq2Seq	4.2	18.2
	Polyglot Seq2Seq	75.2	90.0

Learning from multiple datasets: Conclusions

- Polyglot modeling: Useful technique for improving semantic parsing (SP), transfer learning, zero-shot translation, mixed language parsing.
- ► Constrained MT: Constrained MT decoding using graphs, related to other efforts in neural SP that use grammar constraints.
- ► **Technical Docs**: has features of a low-resource translation task, difficult for neural SPs, shows limitations of benchmark tasks.

Code https://github.com/yakazimir/zubr_public
Datasets https://github.com/yakazimir/Code-Datasets

Thank You

References I

- Arthur, P., Neubig, G., and Nakamura, S. (2016). Incorporating Discrete Translation Lexicons into Neural Machine Translation. arXiv preprint arXiv:1606.02006.
- Cheng, J., Reddy, S., Saraswat, V., and Lapata, M. (2017). Learning an executable neural semantic parser. arXiv preprint arXiv:1711.05066.
- Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2009). *Introduction to Algorithms*. MIT Press.
- Deng, H. and Chrupała, G. (2014). Semantic approaches to software component retrieval with English queries. In *Proceedings of LREC-14*, pages 441–450.
- Dong, L. and Lapata, M. (2016). Language to logical form with neural attention. arXiv preprint arXiv:1601.01280.
- Herzig, J. and Berant, J. (2017). Neural semantic parsing over multiple knowledge-bases. In *Proceedings of ACL*.
- Jia, R. and Liang, P. (2016). Data recombination for neural semantic parsing. arXiv preprint arXiv:1606.03622.
- Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F., Wattenberg, M., Corrado, G., et al. (2016). Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. arXiv preprint arXiv:1611.04558.
- Jones, B. K., Johnson, M., and Goldwater, S. (2012). Semantic parsing with Bayesian Tree Transducers. In *Proceedings of ACL-2012*, pages 488–496.

References II

- Krishnamurthy, J., Dasigi, P., and Gardner, M. (2017). Neural Semantic Parsing with Type Constraints for Semi-Structured Tables. In *Proceedings of EMNLP*.
- Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). Inducing probabilistic CCG grammars from logical form with higher-order unification. In *Proceedings of EMNLP-2010*, pages 1223–1233.
- Richardson, K. and Kuhn, J. (2017a). Function Assistant: A Tool for NL Querying of APIs. In *Proceedings of EMNLP-17*.
- Richardson, K. and Kuhn, J. (2017b). Learning Semantic Correspondences in Technical Documentation. In *Proceedings of ACL-17*.
- Yin, P. and Neubig, G. (2017). A Syntactic Neural Model for General-Purpose Code Generation. arXiv preprint arXiv:1704.01696.