1 Complex Algebra

a) Express the following values in polar forms: -1, j, -j, \sqrt{j} , and $\sqrt{-j}$. Recall $j^2 = -1$.

Answer

A complex number can be represented in the following forms:

$$z = a + jb = r\cos(\theta) + jr\sin(\theta) = re^{j\theta},$$
 (1)

where, $r = \sqrt{a^2 + b^2}$, $\theta = tan^{-1}\left(\frac{b}{a}\right)$ and a, b are real numbers.

$$-1 = j^{2} = e^{j\pi} = e^{-j\pi}$$

$$j = e^{j\frac{\pi}{2}} = \sqrt{-1}$$

$$-j = -e^{j\frac{\pi}{2}} = e^{-j\frac{\pi}{2}}$$

$$\sqrt{j} = (e^{j\frac{\pi}{2}})^{\frac{1}{2}} = e^{j\frac{\pi}{4}} = \frac{1+j}{\sqrt{2}}$$

$$\sqrt{-j} = (e^{-j\frac{\pi}{2}})^{\frac{1}{2}} = e^{-j\frac{\pi}{4}} = \frac{1-j}{\sqrt{2}}$$

b) Represent $\sin \theta$ and $\cos \theta$ using complex exponentials. (*Hint:* Use Euler's identity $e^{j\theta} = \cos \theta + j \sin \theta$.)

Answer

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}, \cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}.$$

c) For complex number z = x + jy show that $|z| = \sqrt{z\overline{z}}$, where \overline{z} is the complex conjugate of z.

Answer

We can follow the definition of complex conjugate and magnitude:

$$\sqrt{z\bar{z}} = \sqrt{(x+jy)(x-jy)} = \sqrt{x^2+y^2} = |z|$$

For the next four parts, let $A = 1 - j\sqrt{3}$ and $B = \sqrt{3} + j$.

d) Express *A* and *B* in polar form.

Answer

Following the definitions in part a:

$$|A| = 2$$
, $|B| = 2$, $\theta_A = -\frac{\pi}{3}$, $\theta_B = \frac{\pi}{6}$.

Hence,

$$A = 2e^{-j\frac{\pi}{3}}$$
 $B = 2e^{j\frac{\pi}{6}}$.

e) Find AB, $A\bar{B}$, $\frac{A}{B}$, $A + \bar{A}$, $A - \bar{A}$, \overline{AB} , $\bar{A}\bar{B}$, and \sqrt{B} .

Answer

$$AB = 4 \cdot e^{-j\frac{\pi}{6}} = 2\sqrt{3} - 2j$$

$$A\bar{B} = 4 \cdot e^{-j\frac{\pi}{2}} = -4j$$

$$\frac{A}{B} = e^{-j\frac{\pi}{2}} = -j$$

$$A + \bar{A} = 2$$

Note, $A + \overline{A}$ is a purely real number.

$$A - \bar{A} = -2i\sqrt{3}$$

Note, $A - \bar{A}$ is a purely imaginary number.

$$\overline{AB} = 2\sqrt{3} + 2j$$

$$\overline{AB} = (1 + j\sqrt{3})(\sqrt{3} - j) = \sqrt{3} + \sqrt{3} + j(3 - 1) = 2\sqrt{3} + 2j$$
 Note,
$$\overline{AB} = \overline{AB}.$$

$$\sqrt{B} = \sqrt{2} \cdot e^{j\frac{\pi}{12}}$$

f) Show the number *A* in complex plane, marking the distance from origin and angle with real axis.

Answer

Location of *A* in the complex plane is shown in the following figure.

Figure 1: Location of *A* in complex plane

g) Show that multiplying A with j is equivalent to rotating the magnitude of the complex number by $\pi/2$ or 90 degrees in the complex plane.

Answer

Multiplying *A* by j:

$$jA = e^{j\pi/2} \times 2e^{-j\pi/3} = 2e^{j\pi/6} = \sqrt{3} + j$$
 (2)

The rotation is demonstrated in the following complex plane plot.

Figure 2: Rotation of A because of multiplication by j

h) What are the roots of $z^2 = 1$? What about $z^3 = 1$? How many roots does $z^n = 1$ have? What is the general form for the solutions of $z^n = 1$?

Answer

For the roots of $z^2=1$, z^2 is a standard quadratic, so we have z=1, -1 by solving the quadratic equation. To solve $z^3=1$, we substitute $1=e^{j0}$, $e^{j2\pi}$, $e^{j4\pi}$, . . ., which are the complex representations of 1. For each complex representation of 1:

$$z^3 = e^{j0}$$
, $e^{j2\pi}$, $e^{j4\pi}$

Then take the cube root for each case:

$$z = e^{\frac{j0}{3}}, e^{\frac{j2\pi}{3}}, e^{\frac{j4\pi}{3}}$$

Notice that for $e^{j6\pi}$ and greater, the solutions repeat the above three solutions.

The general solution for $z^n = 1$ is

$$z=e^{j2\pi\frac{k}{n}}$$

for $0 \le k < n$.

Figure 3: Roots of unity for case of n = 3