

Predictive Modeling to Create a Personalized Rank-ordered List of the Seven Products Customers are Most Likely to Purchase

Background: Business Problem

- Santander Bank wants to support customers with a range of financial needs through personalized product recommendations
- Under their current system, a small number of Santander's customers receive many recommendations while many others rarely see any resulting in an uneven customer experience.
- With a more effective recommendation system in place, Santander can better meet the individual needs of all customers and ensure their satisfaction no matter where they are in life.

Client

- Santander Group is a multinational banking conglomerate
- Its chief holding is Banco Santander the largest bank in Spain
- They are actively looking to improve their business and customer experience with data driven approaches

Data

55:	fecha_dato	ncodpers	ind_empleado	pais_residencia	sexo	age	fecha_alta	ind_nuevo	antiguedad	i
0	2015-01-28	1375586	N	ES	Н	35	2015-01- 12	0.0	6	200
1	2015-01-28	1050611	N	ES	V	23	2012-08- 10	0.0	35	0000
2	2015-01-28	1050612	N	ES	V	23	2012-08- 10	0.0	35	5
3	2015-01-28	1050613	N	ES	н	22	2012-08- 10	0.0	35	i
4	2015-01-28	1050614	Ň	ES	V	23	2012-08- 10	0.0	35	

- Anonymized user data was given in the format of one record per user per month
- User product information was 24 binary values for whether they owned each of the 24 products in that given month
- The test set was records for customers in the month of June 2016 with product columns excluded
- The train set included 17 months from January 2015 to May 2016
- There were are also 22 columns offering varied demographic data

Demographic Columns:

Column Name	Description
fecha_dato	The table is partitioned for this column
ncodpers	Customer code
ind_empleado	Employee index: A active, B ex employed, F filial, N not employee, P pasive
pais_residencia	Customer's Country residence
sexo	Customer's sex
age	Age
fecha_alta	The date in which the customer became as the first holder of a contract in the bank
ind_nuevo	New customer Index. 1 if the customer registered in the last 6 months.
antiguedad	Customer seniority (in months)
indext	Foreigner index (S (Yes) or N (No) if the customer's birth country is different than the bank country)
conyuemp	Spouse index. 1 if the customer is spouse of an employee
canal_entrada	channel used by the customer to join
indfall	Deceased index. N/S
tipodom	Addres type. 1, primary address
cod_prov	Province code (customer's address)
nomprov	Province name
ind_actividad_c	Activity index (1, active customer; 0, inactive customer)
renta	Gross income of the household

Product Columns

ind_cco_fin_ult1	Current Accounts
ind_cder_fin_ult1	Derivada Account
ind_cno_fin_ult1	Payroll Account
ind_ctju_fin_ult1	Junior Account
ind_ctma_fin_ult1	Más particular Accour
ind_ctop_fin_ult1	particular Account
ind_ctpp_fin_ult1	particular Plus Accour
ind_deco_fin_ult1	Short-term deposits
ind_deme_fin_ult1	Medium-term deposits
ind_dela_fin_ult1	Long-term deposits
ind_ecue_fin_ult1	e-account
ind_fond_fin_ult1	Funds
ind_hip_fin_ult1	Mortgage
ind_plan_fin_ult1	Pensions
ind_pres_fin_ult1	Loans
ind_reca_fin_ult1	Taxes
ind_tjcr_fin_ult1	Credit Card
ind_valo_fin_ult1	Securities
ind_viv_fin_ult1	Home Account
ind_nomina_ult1	Payroll
ind_nom_pens_ult1	Pensions
ind_recibo_ult1	Direct Debit

Exploratory Data Analysis

EDA

Total Product Counts Over Time

Newly Purchased Product Counts Over Time

- Overall Evaluation Metric is Mean Adjusted Precision at 7 (MAP@7)
- Benchmark = 0.0042109
- Maximum Score on this Dataset = 0.031409

$$MAP@7 = rac{1}{|U|} \sum_{u=1}^{|U|} rac{1}{min(m,7)} \sum_{k=1}^{min(n,7)} P(k)$$

Neural Network Multiclass Classifier: MAP@7 = 0.0205575

• Collaborative Filtering: latent vector factorization

	Item 1	Item 2	Item 3	Item 4	14 mo#
User 1	0	3	0	3	(
User 2	4	0	0	2	C
User 3	0	0	3	0	C
User 4	3	0	4	0	3
User 5	4	3	0	4	C

- LightFM using only user-item interactions: MAP@7 = 0.0229795
- Random Forest Classifier with latent features: MAP@7 = 0.0233802
- Surprise! Using SVD algo on just May 2016 user-item interactions: MAP@7 = 0.0233802
- Surprise SVD May 2016 averaged with weights of June 2015 product distribution:
 MAP@7 = 0.024061
- Simply recommending the 7 most common newly purchased products in June 2015 that the customer does not already have: MAP@7 = 0.024061

 Neural Network without dropout layers trained on just records of newly purchased products in June 2015 with 5 month lags of products owned: MAP@7 = 0.030072

Recommendation to Client

- The most robust, agile solution is to employ SVD based collaborative filtering
- This can then be tuned to account for seasonal changes in purchasing patterns
- If maximally precise recommendations are required detailed seasonality analysis and lag feature engineering will accomplish that