

FACULTAD DE INGENIERÍA

Domina Python y Conquista el Mundo de los Datos.

SESIÓN 05

PYTHON Y EL MUNDO DE LOS DATOS

Integración en un caso práctico de análisis de datos.

Logros de Aprendizaje					
General	Desarrollar competencias en programación con Python, desde fundamentos básicos hasta el manejo avanzado de datos con NumPy y Pandas. Los participantes aprenderán a implementar estructuras, funciones, conceptos de POO (herencia y encapsulamiento) y librerías de análisis, integrando estos conocimientos en un caso práctico para resolver problemas reales y presentar resultados de manera efectiva.				
Sesión	Al finalizar la sesión, el estudiante elabora soluciones de análisis de datos con las bibliotecas NumPy y Pandas mediante el desarrollo de un caso práctico.				

SESIÓN 05

PYTHON Y EL MUNDO DE LOS DATOS

Integración de los conceptos en un caso práctico.

- Uso conjunto de Python, NumPy y Pandas para resolver problemas reales.
- Limpieza de datos y análisis básicos: operaciones como media, máximo y mínimo.

INICIO - Conocimientos Previos

Caso práctico de análisis de datos en Python

UTILIDAD - Sesión 05

¿Cuál es la utilidad de integrar los conceptos de Python en un caso práctico de análisis de datos?

- Integrar conceptos de Python en un caso práctico de análisis de datos permite automatizar la recolección, limpieza, análisis e interpretación de grandes volúmenes de datos.
- Combinar estructuras como listas, diccionarios, bucles y condicionales, con bibliotecas como **NumPy** y **Pandas**, facilita la manipulación de datos.
- Otras herramientas, como Matplotlib, permiten la visualización de datos para identificar patrones y tendencias. Además, el uso de funciones y módulos ayuda a modularizar el código, haciéndolo más organizado y reutilizable.

Objetivos de la Clase

- Comprender la integración de conceptos clave de Python en un caso práctico.
- Aplicar bibliotecas como Pandas, NumPy y Matplotlib.
- Realizar un análisis de datos estructurado y visualización de información.
- Interpretar resultados para la toma de decisiones.

Herramientas y conceptos clave:

- Estructuras de Datos (Listas, Diccionarios, DataFrames)
- Cálculos Numéricos con NumPy.
- Manejo de Datos con Pandas.
- Visualización de Datos con Matplotlib.
- Análisis y Conclusiones.

Planteamiento del Caso

Escenario: El Fondo Mi Vivienda desea saber cómo se ha comportado el otorgamiento de créditos para adquisición de viviendas en el Perú entre los años 2020 y 2024.

Datos a analizar:

 Créditos Mi Vivienda otorgados entre los años 2020 a 2024 a nivel nacional, contenidos en el archivo mivivienda.csv

Objetivo: Obtener estadísticas clave e identificar las ciudades de mayor desarrollo del fondo.

Datos obtenidos de la Plataforma Nacional de Datos Abiertos (https://datosabiertos.gob.pe/).

Dataset

Variable	Descripción	Tipo de dato
FECHA_DESEMBOLSO	Es la fecha en la que se ejecuta el desembolso del crédito	Numérico
PRODUCTO	Nuevo Crédito MIVIVIENDA (NCMV), Mi Terreno (MT), Financiamiento Complementario Techo Propio (FCTP) y Servicio CRC (S-CRC) 1/	Numérico
DEPARTAMENTO	Nombre del departamento	Texto
PROVINCIA	Nombre de la provincia	Texto
DISTRITO	Nombre del distrito	Texto
UBIGEO	Codificación de la ubicación geográfica donde se encuentra ubicada la vivienda. Está conformada por 6 dígitos, siendo su estructura, recorriendo el valor de izquierda a derecha, la siguiente: - 1er y 2do dígito identifican el departamento (02) - 3er y 4to dígito identifican la provincia (02) - 5to y 6to dígito identifican el distrito (02)	Alfanumérico
IFI	Institución Financiera Intermediaria, que opera bajo el ámbito de supervisión de la SBS y es considerada como apta por el FMV para el otorgamiento de los créditos MIVIVIENDA.	Texto
TIPO_IFI	Las IFI se dividen en siete tipos: Banca Múltiple (Banco), Financiera, Cooperativa de Ahorro y Crédito (CAC), Caja Municipal de Ahorro y Crédito (CMAC), Caja Rural de Ahorro y Crédito (CRAC), Empresa de Créditos (Edpyme) y Empresas Administradoras Hipotecarias (Hipotecaria)	Texto
MONTO_CREDITO	Monto del crédito colocado	Numérico
MONTO_CUOTA_INICIAL	Monto de la cuota inicial	Numérico
PLAZOS	Es el número de meses del crédito	Numérico
TASA	Tasa de interés del crédito	Numérico
MONTO_VALOR_VIVIENDA	Monto del valor de la vivienda.	Numérico
FECHA_CORTE	Fecha de corte de información.	Numérico

Proceso:

- 1. Carga de datos de archivo *mivivienda.csv*
- 2. Limpieza de los datos.
- 3. Análisis de los datos.
 - a. Monto de crédito promedio por producto.
 - b. Distribución de los créditos por departamento.
 - c. Número de créditos otorgados por cada año.
 - d. Cantidad de dinero otorgado como crédito por departamento.
- 4. Presentación de resultados.

1. Carga de datos de archivo *mivivienda.csv*

```
FECHA_DESEMBOLSO, PRODUCTO, DEPARTAMENTO, PROVINCIA, DISTRITO, UBIGEO, IFI, TIPO_IFI, MONTO_C
20200107, NCMV, LIMA, LIMA, CHORRILLOS, 150108, CREDITO, BANCO, 300357.96, 34374.30, 228, 7.10
20200107, NCMV, LAMBAYEQUE, LAMBAYEQUE, LAMBAYEQUE, 140301, CREDITO, BANCO, 79800.00, 24398.00
20200107, NCMV, LIMA, LIMA, RIMAC, 150128, CREDITO, BANCO, 62798.08, 19990.00, 120, 8.30, 99900
20200107, NCMV, LIMA, LIMA, ATE, 150103, CREDITO, BANCO, 162062.14, 19992.00, 240, 7.50, 199916.
20200107, NCMV, LAMBAYEQUE, CHICLAYO, CHICLAYO, 140101, CREDITO, BANCO, 97500.00, 19500.00, 240
20200107, NCMV, LAMBAYEQUE, CHICLAYO, JOSE LEONARDO ORTIZ, 140105, CREDITO, BANCO, 99384.62, 1
20200107, NCMV, CAJAMARCA, JAEN, JAEN, 060801, CREDITO, BANCO, 100000.00, 42000.00, 180, 9.70, 1
20200107, NCMV, LAMBAYEQUE, LAMBAYEQUE, LAMBAYEQUE, 140301, CREDITO, BANCO, 133536.54, 26802.
20200107, NCMV, LAMBAYEQUE, CHICLAYO, JOSE LEONARDO ORTIZ, 140105, CREDITO, BANCO, 138213.59
20200107, NCMV, LIMA, LIMA, RIMAC, 150128, CREDITO, BANCO, 54461.54, 34000.00, 120, 10.90, 10524
20200107, NCMV, LA LIBERTAD, TRUJILLO, TRUJILLO, 130101, CREDITO, BANCO, 123350.00, 15150.00,
20200107, NCMV, AREQUIPA, AREQUIPA, CERRO COLORADO, 040104, CREDITO, BANCO, 173570.00, 20730.
20200107, NCMV, LIMA, LIMA, COMAS, 150110, CONTINENTAL, BANCO, 50375.00, 54000.00, 60, 8.50, 120
20200107, NCMV, LIMA, LIMA, COMAS, 150110, CONTINENTAL, BANCO, 101038.46, 13120.00, 240, 8.00,
20200107, NCMV, LIMA, LIMA, SURQUILLO, 150141, CREDITO, BANCO, 307155.34, 55830.00, 240, 6.90, 3
20200107, NCMV, AREQUIPA, AREQUIPA, CERRO COLORADO, 040104, CREDITO, BANCO, 172349.51, 45980.
20200107, NCMV, LIMA, LIMA, LINCE, 150116, CREDITO, BANCO, 243951.46, 28630.00, 240, 7.50, 28630
20200107, NCMV, LIMA, LIMA, JESUS MARIA, 150113, CREDITO, BANCO, 226796.12, 60000.00, 240, 8.5
20200107, NCMV, LIMA, LIMA, RIMAC, 150128, CREDITO, BANCO, 190912.62, 50760.00, 120, 9.00, 25380
20200107, NCMV, LIMA, LIMA, SAN MIGUEL, 150136, CREDITO, BANCO, 332980.16, 60524.04, 204, 7.02
20200107, NCMV, LIMA, LIMA, JESUS MARIA, 150113, CREDITO, BANCO, 310718, 45, 35560, 00, 240, 7
```

```
import pandas as pd

ruta_archivo = "<ruta>\\mivivienda.csv"

df = pd.read_csv(ruta_archivo)
print(df.head())
```

	FECHA_DESEMBOLSO	PRODUCTO	DEPARTAMENTO	PROVINCIA	DISTRITO	UBIGEO	IFI	TIPO_IFI	MONTO_CREDITO	MONTO_CUOTA_INICIAL	PLAZOS	TASA	MONTO_VALOR_VIVIENDA	FECHA_CORTE
0	20200107	NCMV	LIMA	LIMA	CHORRILLOS	150108	CREDITO	BANCO	300357.96	34374.3	228.0	7.10	343743.0	20230811
1	20200107	NCMV	LAMBAYEQUE	LAMBAYEQUE	LAMBAYEQUE	140301	CREDITO	BANCO	79800.00	24398.0	180.0	8.20	121990.0	20230811
2	20200107	NCMV	LIMA	LIMA	RIMAC	150128	CREDITO	BANCO	62798.08	19990.0	120.0	8.30	99900.0	20230811
3	20200107	NCMV	LIMA	LIMA	ATE	150103	CREDITO	BANCO	162062.14	19992.0	240.0	7.50	199916.0	20230811
4	20200107	NCMV	LAMBAYEQUE	CHICLAYO	CHICLAYO	140101	CREDITO	BANCO	97500.00	19500.0	240.0	10.45	130000.0	20230811

2. Limpieza de los datos

```
# registros con alguna columna nula
nro_filas_invalidas = df.isna().all(axis=1).sum()
print("Filas no válidas: ", nro filas invalidas)
if nro filas invalidas > 0:
    df = df.dropna()
    print("Filas actuales: ", df.shape[0])
# registros duplicados
nro filas duplicadas = df.duplicated().sum()
print("Filas duplicadas: ", nro_filas_duplicadas)
if nro filas duplicadas > 0:
    df = df.drop duplicates()
    print("Filas actuales: ", df.shape[0])
# removemos la columna FECHA CORTE
df = df.drop("FECHA CORTE", axis = 1)
print("Filas válidas finales: ", df.shape[0])
```

```
Filas no válidas: 0
Filas duplicadas: 435
Filas actuales: 55133
Filas válidas finales: 55133
```


3. Análisis de los datos » a. Monto de crédito promedio por producto.

i. Agrupamos los registros por producto

ii. Calculamos el promedio (*mean*) de los montos de crédito otorgados

```
df_PromCredito_x_Producto = df.groupby(["PRODUCTO"])["MONTO_CREDITO"].mean()
print(df_PromCredito_x_Producto.reset_index(name = "PROMEDIO_CREDITO"))
```

```
PRODUCTO PROMEDIO_CREDITO
0 FCTP 34974.239788
1 NCMV 164067.375289
2 NMIV 188610.460900
3 S-CRC 343921.417201
```

iii. Genera un nuevo DataFrame con el index reiniciado

3. Análisis de los datos » b. Distribución de los créditos por departamento.

```
df_creditos_departamento = df.groupby(["DEPARTAMENTO"]).size()
print(df_creditos_departamento.reset_index(name = 'NUMERO_CREDITOS'))
```

	DEPARTAMENTO NUMER	O CREDITOS
0	AMAZONAS	67
1	ANCASH	266
2	APURIMAC	15
3	AREQUIPA	1451
4	AYACUCHO	99
5	CAJAMARCA	467
6	CALLAO	2495
7	CUSCO	203
8	HUANCAVELICA	30
9	HUANUCO	54
10	ICA	3677
11	JUNIN	1261
12	LA LIBERTAD	2979

	DEPARTAMENTO	NUMERO_CREDITOS	
13	LAMBAYEQUE	4292	
14	LIMA	32047	
15	LORETO	80	
16	MADRE DE DIOS	4	
17	MOQUEGUA	156	
18	PASCO	53	
19	PIURA	4067	
20	PUNO	314	
21	SAN MARTIN	430	
22	TACNA	485	
23	TUMBES	12	
24	UCAYALI	129	

3. Análisis de los datos » c. Número de créditos otorgados por cada año.

Creando una nueva columna para almacenar el año de desembolso del crédito

	AÑO_DESEMBOLSO	NUMERO_CREDITOS
0	2020	8285
1	2021	12710
2	2022	13378
3	2023	11424
4	2024	9336

3. Análisis de los datos » d. Cantidad de dinero otorgado como crédito por departamento.

Establecemos el formato de los valores con decimales

	DEPARTAMENTO	TOTAL_CREDITO
14	LIMA	6408217000.83
13	LAMBAYEQUE	490105591.05
6	CALLAO	468893158.65
19	PIURA	378416641.97
12	LA LIBERTAD	320357226.00
10	ICA	275511693.46
3	AREQUIPA	259639140.88
11	JUNIN	131201780.32

	DEPARTAMENTO	TOTAL_CREDITO
5	CAJAMARCA	43645677.19
22	TACNA	41585926.74
7	CUSCO	36503423.02
20	PUNO	32997778.70
21	SAN MARTIN	28365972.98
1	ANCASH	22643802.34
17	MOQUEGUA	15482009.40
4	AYACUCH0	10179602.59
15	LORETO	7663921.14

	DEPARTAMENTO	TOTAL_CREDITO
9	HUANUCO	5933777.90
24	UCAYALI	5283552.50
0	AMAZONAS	4433386.43
18	PASCO	4100216.00
8	HUANCAVELICA	2934178.35
2	APURIMAC	2214019.46
23	TUMBES	1098119.30
16	MADRE DE DIOS	495900.00


```
plt.figure(figsize=(10, 6))
plt.bar(df_PromCredito_x_Producto.index, df_PromCredito_x_Producto.values)
plt.title('Crédito promedio por producto')
plt.xlabel('Producto')
                                                                    Crédito promedio por producto
plt.ylabel('Crédito promedio')
                                                  350000
plt.show()
                                                  300000
                                                  250000
                                                 200000
                                                150000
                                                  100000
                                                  50000
                                                                     NCMV
                                                                                NMIV
                                                                                          S-CRC
                                                                          Producto
```



```
plt.figure(figsize=(10, 6))
plt.bar(df_creditos_departamento.index, df_creditos_departamento.values)
plt.title('Distribución de los créditos por departamento')
plt.xlabel('Departamento')
                                                                                      Distribución de los créditos por departamento
plt.ylabel('Créditos otorgados')
                                                                      30000
plt.xticks(rotation=90)
                                                                     25000
plt.show()
                                                                    20000
                                                                     15000
                                                                     10000
                                                                      5000
                                                                           AMAZONAS -
ANCASH -
APURIMAC -
AREQUIPA -
AYACUCHO -
CAJAMARCA -
                                                                                       CALLAO
                                                                                                        LORETO
DE DIOS
QUEGUA
PASCO
PIURA
PUNO
VI MARTIN
TACNA
TUMBES
UCAYALI
```



```
arr_años = np.array(df_creditos_x_año["AÑO_DESEMBOLSO"]).astype(str)
arr_frecuencias = np.array(df_creditos_x_año["NUMERO_CREDITOS"])

plt.title('Número de créditos otorgados por cada año')
plt.xlabel('Año')
plt.ylabel('Créditos otorgados')
plt.ylabel('Créditos otorgados')
plt.xticks(range(len(df_creditos_x_año)), arr_años)
plt.plot(arr_frecuencias, '.r-', linewidth = 1)
plt.show()
```


Conclusiones del Análisis

- Lima es, con significativa diferencia, la ciudad que más créditos ha gestionado, seguida por Lambayeque, Callao, Piura y La Libertad.
- La mayor cantidad de créditos han sido otorgados a través de Cajas de Ahorro y Crédito.
- Los años de mayor crecimiento fueron 2021 y 2022, notándose una tendencia decreciente significativa en los dos años siguientes.

Caso Práctico: Análisis de ventas de una tienda en línea.

Una tienda en línea desea analizar sus ventas para identificar tendencias, productos más vendidos y áreas de mejora. Los datos están almacenados en un archivo CSV llamado *ventas.csv*, que contiene información sobre las transacciones realizadas.

Objetivos del Análisis:

- Cargar los datos desde el archivo CSV.
- 2. Limpiar los datos (valores nulos, duplicados, etc.).
- 3. Realizar un análisis exploratorio y responder:
 - a) ¿Cuál es el producto más vendido?
 - b) ¿Cuál es el total recaudado en ventas por categoría?
 - c) ¿Cuál es el día de la semana con más ventas?
- 4. Visualizar resultados y presentar un reporte final con los hallazgos.

```
practica_sesion_05 > caso_ventas >  ventas.csv

id,fecha,producto,categoria,cantidad,precio_unitario

1,2023-10-01,Laptop XYZ,Electrónica,5,1200

2,2023-10-01,Smartphone ABC,Electrónica,10,800

4,2023-10-02,Tablet DEF,Electrónica,7,500

4,2023-10-02,Camisa Casual,Ropa,15,40

5,2023-10-03,Zapatos Deportivos,Calzado,8,90

7,2023-10-03,Zapatos Deportivos,Calzado,8,90

8,2023-10-03,Laptop XYZ,Electrónica,3,1200

7,2023-10-04,Smartphone ABC,Electrónica,12,800

8,2023-10-04,Jeans Clásicos,Ropa,20,NaN

9,2023-10-05,Tablet DEF,Electrónica,6,500
```


1. Carga de datos desde el archivo .csv

```
import numpy as np
import pandas as pd

# 1. Carga de datos desde el archivo .csv
df = pd.read_csv("<ruta>\\ventas.csv")

print(df.head()) # Mostramos los primeros registros

print("Nro de registros: ", df.shape[0]) # Usando Pandas
print("Nro de registros: ", np.shape(df)[0]) # Usando NumPy
```

	id	fecha	producto	categoria	cantidad	precio_unitario
0	1	2023-10-01	Laptop XYZ	Electrónica	5	1200.0
1	2	2023-10-01	Smartphone ABC	Electrónica	10	800.0
2	3	2023-10-02	Tablet DEF	Electrónica	7	500.0
3	4	2023-10-02	Camisa Casual	Ropa	15	40.0
4	5	2023-10-03	Zapatos Deportivos	Calzado	8	90.0
Nro	o de	registros:	23			
Nro	o de	registros:	23			

2. Limpieza de los datos:

```
# Verificamos valores nulos
print(df.isnull().sum())
```

Nro de registros: 21

2. Limpieza de los datos:

```
# Verificar duplicados
print("Filas duplicadas: ", df.duplicated().sum())
# Eliminación de filas duplicadas
df = df.drop duplicates()
print("Nro de registros: ", df.shape[0])
# Convertimos la columna fecha a tipo datetime
df['fecha'] = pd.to datetime(df["fecha"])
# Mostramos información del DataFrame
df.info()
```

```
Filas duplicadas: 1
```

```
Nro de registros: 20
```

```
Data columns (total 6 columns):
                     Non-Null Count Dtype
    Column
                    20 non-null
                                    int64
    fecha
                     20 non-null
                                    datetime64[ns]
                    20 non-null
    producto
                                    object
                    20 non-null
    categoria
                                    object
                     20 non-null
    cantidad
                                    int64
    precio unitario 20 non-null
                                    float64
```


3. Análisis de datos. Pregunta 1: ¿Cuál es el producto más vendido?

```
productos_vendidos = df.groupby('producto')['cantidad'].sum().sort_values(ascending = False)
print(productos_vendidos)
```

```
producto
Smartphone ABC 41
Camisa Casual 37
Jeans Clásicos 35
Tablet DEF 22
Laptop XYZ 18
Zapatos Deportivos 15
Zapatos Formales 9
Name: cantidad, dtype: int64
```

```
print(productos_vendidos.idxmax(), 'con', productos_vendidos.max(), 'unidades vendidas')
```

Smartphone ABC con 41 unidades vendidas

3. Análisis de datos.

Pregunta 2: ¿Cuál es el total recaudado en ventas por categoría?

```
categoria
Electrónica 65400.0
Ropa 3580.0
Calzado 2430.0
Name: total, dtype: float64
```


3. Análisis de datos.

Pregunta 3: ¿Cuál es el día de la semana con más ventas?

```
df['dia_semana'] = df['fecha'].dt.day_name()

df_ventas_por_dia = df.groupby('dia_semana')['total'].sum().sort_values(ascending = False)
```

```
dia_semana
Monday 20100.0
Wednesday 15300.0
Sunday 14630.0
Friday 11200.0
Tuesday 5280.0
Thursday 3600.0
Saturday 1300.0
Name: total, dtype: float64
```

Monday con S/. 20100.0 en ventas

4. Visualizar resultados y presentar un reporte final con los hallazgos.

Número de registros en ventas.csv: 23

Filas con valores nulos: 2

Filas duplicadas: 2

Registros válidos tras depuración: 20

Producto más vendido: Smartphone ABC, con 41 unidades vendidas

Recaudación por categoría:
Electrónica 65400.0
Ropa 3580.0
Calzado 2430.0

Día de la semana con más ventas: Lunes, con S/.20100.0 en ventas

ESPACIO PRÁCTICO (tarea) – Sesión 5

Utilice el archivo *empleados.csv* proporcionado para realizar el proceso de carga, limpieza y análisis de datos, y responder a las siguientes preguntas:

- a. Obtener el salario máximo, mínimo y promedio.
- b. Mostrar la cantidad de empleados que trabajan en cada departamento.
- c. Mostrar la cantidad de empleados por rango de salario (rangos de 1000 soles)

```
practica_sesion_05 > 🗟 empleados.csv > 🛅 data
        dni,nombres,apellidos,telefono,sexo,salario,departamento
        00191447, Juan, Alvarado Castro, 976216789, M, 2500.00, Administración General
        00190447, William, Alvarez Gonzales, 976345123, M, 3400.00, Investigación y Desarrollo (I+D)
        00731314,Roberto,Aguirre Díaz,976207535,M,4000.00,Investigación y Desarrollo (I+D)
        00900327, Martin, Oya Salazar, 976264536, M, 3000.00, Dirección Estratégica
        00284073, Ramiro, Ortega Rios, 976476589, M, 2000.00, Dirección Estratégica
        00562803, Percy, Ortiz Romero, 976698571, M, 1200.00, Administración General
        00823624, Ana Maria, Araujo Montenegro, 976468945, F, 3500.00, Administración General
        00783820, Luis, Otoya Siesquen, 976458923, M, 2000.00, Investigación y Desarrollo (I+D)
        00340805, Yvan, Orna López, 976458921, M, 3000.00, None
        00007945, Alberto, Ordoñez Trujillo, 976257058, M, 2400.00, Logística
        00374765, Carlos, Aragón Sanchez, 976235664, M, 2800.00, Administración General
        73675420, IRENE, Atalaya Urrutia, 978565955, F, 2360.00, Finanzas
        00120344, Alex, Olenka Rivera, 976481263, M, 3200.00, Administración General
        00466975, Julio, Adrianzen Tello, 976246578, M, 4500.00, Dirección Estratégica
        00915406, Rosa, Arce Rodríguez, 976221785, F, 2800.00, Dirección Estratégica
        00190380, Priscila, Oliden Larios, 976425843, F. 4000.00, Logística
        00558692, Christian, Albujar Colchado, 976348996, M, 3400.00, Investigación y Desarrollo (I+D)
        00246980, Olguin, Santa Cruz Mirian, 976225874, M, 3000.00, Logística
        00282384, Carlos, Alcides Fernandez, 976228965, M, 3800.00, Dirección Estratégica
        00775642, Juan, Ortiz Carrion, 976526978, M, 2500.00, Dirección Estratégica
        00640532, Angela, Aguilar Suarez, 976206567, F, 4500.00, Dirección Estratégica
        01479628, Martin, Leyva Cruzado, 976224587, M, 3000.00, None
```

CIERRE - Sesión 05

Describe cómo podemos leer un archivo con Pandas ¿En qué consiste el proceso de limpieza de datos en un DataFrame?

Menciona cinco operaciones que podemos realizar sobre un DataFrame

python™ Gracias por su atención

32 MBA Ing. David Lazo Neira