Аналогичным образом, если $\alpha=\inf X$, то, согласно определению 5, во-первых, число ограничивает снизу множество X, а вовторых, любое число уже не ограничивает снизу это множество, ибо число $\alpha'>\alpha$ является наибольшим среди всех таких чисел. Это означает, что для любого $\alpha'>\alpha$ найдется такой $x\in X$, что $x<\alpha'$. Следовательно, определение 5 можно перефразировать следующим образом.

Определение 5'. Число α называется нижней гранью множества X, если:

```
1^0) \forall x \in X : x > \alpha;
```

 2^0) $\forall \alpha' > \alpha \exists x \in X : x < \alpha'$.

Условие 2^0) эквивалентно условию

$$2'$$
) $\forall \varepsilon > 0 \exists x \in X : x < \alpha + \varepsilon$.

Для того, чтобы убедиться в эквивалентности условий 2^0) и 2'), достаточно взять $\alpha' = \alpha + \varepsilon$.

Сделаем несколько очевидных замечаний. Если непустое множество $X \subset \mathbf{R}$ имеет верхнюю грань $\beta \in \mathbf{R}$ (имеет нижнюю грань $\alpha \in \mathbf{R}$), то оно ограничено сверху (снизу). Это следует из условия 1^0 определения 4' (определения 5').

Если $\beta = \sup X$ ($\alpha = \inf X$) и число b (число a) ограничивает сверху (снизу) множество X, то $\beta \leq b$ (соответственно $a \leq \alpha$). Это следует из того, что верхняя (нижняя) грань множества является наименьшим (наибольшим) числом среди всех чисел, ограничивающих сверху (снизу) данное множество.

Если в множестве существует наибольшее (наименьшее) число, то оно является верхней (нижней) гранью этого множества. Вчастности, такая ситуация имеет место для конечных множеств: любое конечное чисел имеет наибольшее и наименьшие числа, а потому нижнюю и верхнюю грани. В принципе их можно найти простым перебором всех чисел из данного множества, так как оно конечно. Однако, вообще говоря, только в принципе, а не на практике: если в данном конечном множестве, заданном какими-то свойствами его элементов, будет «достаточно много» элементов, то перебрать из все будет, возможно, не под силу даже сверхмощной современной вычислительной машине.

Приведем примеры, иллюстрирующие понятие верхней и нижней граней множества.

Множество всех положительных действительных чисел (обозначим его R_+) ограничено снизу числом нуль, ибо для любого $x \in R_+$ имеет место х > 0; более того, $infR_+=0$. Множество R_+ не ограничено сверху, так как нет числа, которое бо граничивало сверху все положительные числа.

Если X = [a, b] — отрезок, то infX = a, supX = b. Если — интервал, то также infX = a, supX = b. Если, наконец, множество X состоит из двух точек a и b, $a \le b$, т. е. $X = \{a\} \cup \{b\}$, то снова infX = a, supX = b. Эти примеры показывают, в частности, что верхняя (нижняя) грань множества может как принадлежать самому множеству, так и не принадлежать ему.

Если $\xi = A|B$ — сечение в области действительных чисел (см. п. 2.5), то

$$\xi = \sup A = \inf B. \tag{3.1}$$

Выясним теперь вопрос: всегда ли у числового множества существует его верхняя (нижняя) грань? Если множество не ограничено сверху (снизу), то не существует чисел, которые бы ограничивали его сверху (снизу). Следовательно, не существует среди них и наименьшего (наибольшего). Таким образом, если множество не ограничено сверху (снизу), то у него нет верхней (нижней) грани. В этом случае ответ на поставленный вопрос получился совсем просто. Если же множество ограничено сверху (снизу), то ответ дается следующей теоремой.

Теорема 1. Всякое ограниченное сверху непустое числовое множество имеет верхнюю грань, а всякое граниченное снизу непустое числовое множество имеет нижнюю грань.

Доказательство. Пусть X — ограниченное сверху непустое числовое множество. Обозначим через Y множество всех чисел, ограничивающих сверху множество X. Множество X ограничено сверху, поэтому множество Y не пусто. Каждый элемент $y \in Y$ ограничивает сверху множество X, т. е. для любого элемента $x \in X$ выполняется неравенство $y \leq y$. Элементы x и y являются произвольными элементами соответственно множеств X и Y, поэтому, в силу свойства непрерывности действительных чисел (см. свойство Y в п. 2.1), существует такое число β , что для любых $x \in X$ и $y \leq y$ имеет место неравенсто

$$x \le \beta \le y. \tag{3.2}$$