Álgebra Linear Avançada Bases Hiperbólicas e Ortogonais

Adriano Moura

Unicamp

2020

Contexto, Objetivo e Radicais de Subespacos

Denotaremos por $B_s(V)$ e $B_a(V)$ os subespaços de B(V) formados pelas formas bilineares simétricas e alternadas em V, respectivamente. Defina também $B_{as}(V) = B_s(V) \cup B_a(V)$.

Suporemos que dim $(V) < \infty$ e que $\phi \in B_{as}(V)$. Assim, \perp_{ϕ} é simétrica e $^{\perp_{\phi}}\alpha = \alpha^{\perp_{\phi}}$ para toda família de vetores α em V. Escreveremos apenas \perp ao invés de \perp_{ϕ} . O objetivo principal é desenvolver um procedimento que encontre base α de V de modo que $\alpha[\phi]_{\alpha}$ seja "o mais simples possível". Escreveremos simplesmente $[\phi]_{\alpha}$ ao invés de $_{\alpha}[\phi]_{\alpha}$.

Um subespaço W de V é dito degenerado (ou singular) com respeito a ϕ se $\phi|_W$ for degenerada. Defina

$$rad(W) = W \cap W^{\perp}$$

e note que o posto de $\phi|_W$ é dim(W) – dim(rad(W)). Assim, W é degenerado se, e somente se, $rad(W) \neq \{0\}$. Note também que $V = V^{\perp} \oplus W \quad \Rightarrow \quad \operatorname{rad}(W) = \{0\}.$ (1)

De fato, se $w \in \operatorname{rad}(W)$, então $v \perp w$ para todo $v \in V^{\perp}$ e $w' \perp w$ para todo $w' \in W$. Portanto, $w \in V^{\perp} \cap W = \{0\}$.

Degenerecência de Subespaços

Proposição 9.4.1

Suponha que ϕ é não degenerada e seja W um subespaço de V.

- $V = W + W^{\perp} \text{ se, e somente se, } W \cap W^{\perp} = \{0\}.$
- $(W^{\perp})^{\perp} = W.$
- rad $(W) = \text{rad}(W^{\perp})$. Em particular, W é não degenerado se, e somente se, W^{\perp} também o for.

Dem.: Seja $T: V \to W^*, v \mapsto_{\phi} D(v)|_{W}$. Como todo elemento de W^* é a restrição a W de um elemento de V^* (Exc. 9.2.3) e $_{\phi}D$ é sobrejetora (pois ϕ é não deg.), T é sobrejetora e $\dim(V) = \dim(W^*) + \dim(\mathcal{N}(T))$.

Por outro lado, $v \in \mathcal{N}(T) \Leftrightarrow \phi(v, w) = 0$ para todo $w \in W$. Ou seja, $\mathcal{N}(T) = W^{\perp}$, o que demonstra (a). A parte (b) é óbvia da (a). Como $W \subseteq (W^{\perp})^{\perp}$ (mesmo que ϕ seja deg.) e (a) \Rightarrow dim $((W^{\perp})^{\perp}) = \dim(W)$, (c) segue já que as dimensões são finitas. Finalmente, $\operatorname{rad}(W^{\perp}) = W^{\perp} \cap (W^{\perp})^{\perp} = W^{\perp} \cap W = \operatorname{rad}(W)$. \square

Degenerecência de Subespaços

Suponha que $V=\mathbb{F}^2$ e que $[\phi]_{\alpha}=\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ sendo α a base canônica. Seja $W=[e_2]$ e veja que $V^{\perp}=W$ e $W^{\perp}=V$ mostrando que a parte (a) da última proposição não é válida. Como $V=V+V^{\perp}$ e $V\cap V^{\perp}=[e_2]$, a parte (b) também falha. Além disso, $([e_1]^{\perp})^{\perp}=[e_2]^{\perp}=V$, mostrando que a parte (c) também falha. Finalmente, (d) falha pois $\mathrm{rad}([e_1])=\{0\}$ e $\mathrm{rad}([e_1]^{\perp})=\mathrm{rad}([e_2])=[e_2]$.

Proposição 9.4.3

Seja Wum subespaço de V. Então $V=W\oplus W^{\perp}$ se, e somente se, W for não degenerado.

Dem.: Como rad $(W) = W \cap W^{\perp}$, se $V = W \oplus W^{\perp}$, segue que rad(W) = 0. Reciprocamente, sendo W não degenerado e $\psi := \phi|_W$, a transformação linear $T: V \to W^*, v \mapsto_{\phi} D(v)|_W$ é sobrejetora, pois $_{\phi}D|_W = _{\psi}D: W \to W^*$ que é um isomorfismo. A conclusão agora segue como na demonstração das partes (a) e (b) da proposição anterior. \square

Pares Hiperbólicos

Suponha que ϕ seja alternada. Um par ordenado (v,w) de vetores de V é dito hiperbólico se $\phi(v,w)=-1$. Neste caso, o subespaço por eles gerado é chamado de um plano hiperbólico. Diremos que V é um espaço hiperbólico se for soma direta de planos hiperbólicos mutuamente ortogonais.

Suponha que V seja hiperbólico, digamos $V = V_1 \oplus \cdots \oplus V_m$ com V_j um plano hiperbólico gerado por v_j, w_j com (v_j, w_j) um par hiperbólico para todo $1 \leq j \leq m$. Então, se $\alpha = v_1, w_1, \ldots, v_m, w_m$, temos

$$[\phi]_{\alpha} = H_m := \begin{bmatrix} H & 0 & 0 & \cdots & 0 \\ 0 & H & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \ddots & \ddots & H \end{bmatrix} \qquad \text{com} \qquad H = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

Em particular, ϕ é não degenerada.

Bases Hiperbólicas

Teorema 9.4.4

Se $\phi \in B_a(V)$, todo subespaço de V complementar a V^{\perp} é hiperbólico. Em particular, existe base α de V tal que

$$[\phi]_{\alpha} = \begin{bmatrix} 0 & 0 \\ 0 & H_m \end{bmatrix}$$
 com $m = \operatorname{pt}(\phi)/2$.

Dem.: A segunda afirmação é consequência imediata da primeira. Por (1), W é não degenerado e podemos supor spg que ϕ é não degenerada. Procederemos por indução em $\dim(V)$. Se $V=\{0\}$, não há nada para fazer. Caso contrário, $\exists \ v,u\in V \ \text{t.q.} \ \phi(v,u)=a \ \text{com} \ a\in \mathbb{F}\setminus\{0\}$. Definindo $w=-a^{-1}u$, segue que (v,w) é um par hiperbólico.

Sejam $V_1 = [v,w]$ e $V' = V_1^{\perp}$. Como V_1 é não degenerado (pois é um plano hiperbólico), segue da Proposição 9.4.3 que $V = V_1 \oplus V_1^{\perp}$ e, como ϕ é não degenerada, a Proposição 9.4.1(d) diz que V_1^{\perp} é não degenerado. Logo, por hipótese de indução, V_1^{\perp} é hiperbólico e, portanto, V também o é.

Exemplo 9.4.5

Suponha que \mathbb{F} tenha característica zero, $V = \mathbb{F}^4$ e que, se $v = (x_1, x_2, x_3, x_4)$ e $w = (y_1, y_2, y_3, y_4)$, então

$$\phi(v,w) = x_2y_1 - x_1y_2 - 2x_1y_4 + 2x_4y_1 + 3x_3y_4 - 3x_4y_3.$$

Sendo α a base canônica, temos

$$[\phi]_{\alpha} = \begin{bmatrix} 0 & -1 & 0 & -2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 2 & 0 & -3 & 0 \end{bmatrix}.$$

Assim, $\phi \in B_a(V)$ e queremos encontrar uma base hiperbólica. Observe que o par (e_1, e_2) é um par hiperbólico, assim como os pares $(e_1, e_4/2)$ e $(e_3/3, -e_4)$. Seja $V_1 = [e_1, e_2]$ e encontremos V_1^{\perp} . Dado $v = (x_1, x_2, x_3, x_4)$, temos $v \in V_1^{\perp}$ se, e somente se, $v \perp e_1$ e $v \perp e_2$, isto é, $x_2 + 2x_4 = 0$ e $x_1 = 0$. Logo, $V_1^{\perp} = \{(0, -2x_4, x_3, x_4) : x_3, x_4 \in \mathbb{F}\}$ e $e_3, u = (0, -2, 0, 1)$ foram uma base de V_1^{\perp} . Observe que $\phi(e_3, u) = 3$ e, portanto, $(e_3, -u/3)$ é um par hiperbólico e a base $e_1, e_2, e_3, -u/3$ é uma base hiperbólica para V com respeito a ϕ .

Bases Ortogonais

Uma base α é dita ortogonal (com resp. a ϕ) se $v \perp v' \forall v, v' \in \alpha, v \neq v'$. Se $\alpha = v_1, \ldots, v_n$ for uma base ortogonal para $\phi \in B(V)$, então

$$\#\{i: \phi(v_i, v_i) \neq 0\} = \operatorname{pt}(\phi) \quad e \quad [\{v_i: 1 \leq i \leq n, \phi(v_i, v_i) = 0\}] = V^{\perp}.$$

Teorema 9.4.6

Se $car(\mathbb{F}) \neq 2$ e $\phi \in B_s(V)$, existe base ortogonal de V.

Se $car(\mathbb{F}) = 2$ isso não é sempre possível pois $B_a(V) \subseteq B_s(V)$.

Dem.: Se $\phi = 0$ ou $V = \{0\}$ não há nada a fazer. Caso contrário, como $\operatorname{car}(\mathbb{F}) \neq 2$, temos $B_s(V) \cap B_a(V) = \{0\}$. Portanto, ϕ não é alternada e existe $v_1 \in V$ tal que $\phi(v_1, v_1) \neq 0$. Definindo $V_1 = [v_1]$, segue da Proposição 9.4.3 que $V = V_1 \oplus V_1^{\perp}$. Como a restrição de ϕ a V_1^{\perp} é obviamente simétrica, podemos proceder por indução na dimensão para concluir que existe base ortogonal de V_1^{\perp} com respeito a ϕ que complementa v_1 a uma base de V que é ortogonal com respeito a ϕ .

Existência de Base Ortonormal

Seja W um subespaço complementar a V^{\perp} e $\beta = w_1, \ldots, w_p$ uma base ortogonal de W com respeito a ϕ . Suponha que, para todo $1 \leq i \leq p$,

$$\exists a_i \in \mathbb{F} \quad \text{tal que} \quad a_i^2 = \frac{1}{\phi(w_i, w_i)}.$$

Assim, tomando $v_i = a_i w_i$, segue que

$$\phi(v_i, v_i) = 1$$
 para todo $1 \le i \le p$.

Neste caso, se $\alpha = \gamma \cup \{v_1, \dots, v_p\}$ sendo γ uma base de V^{\perp} , temos

$$[\phi]_{\alpha} = \begin{bmatrix} 0 & 0 \\ 0 & I_p \end{bmatrix}.$$

Em particular, se ϕ é não degenerada, α é uma base ortonormal com respeito a ϕ . Tal normalização só é possível se \mathbb{F} contiver as raízes quadradas dos elementos $\phi(w_i, w_i)$. Se $\mathbb{F} \subseteq \mathbb{R}$, este pode não ser o caso pois podemos ter $w \in V$ satisfazendo

$$\phi(w, w) < 0.$$

Neste caso, podemos escolher $a \in \mathbb{R}$ tal que $a^2 = \frac{-1}{\phi(w,w)}$ de modo que, tomando v = aw, temos $\phi(v,v) = -1$.

Base de Sylvester Positividade

Isso mostra que, se $\mathbb{F} = \mathbb{R}$ e p é o posto de ϕ , existem $0 \le i \le p$ e base

Isso mostra que, se
$$\mathbb{F} = \mathbb{R}$$
 e p é o posto de ϕ , exis $\alpha = v_1, \dots, v_n$ de V tais que
$$[\phi]_{\alpha} = \begin{bmatrix} -I_i & 0 & 0 \\ 0 & I_{p-i} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
 Quando $\mathbb{F} \subset \mathbb{R}$, nos referiremes a uma base desta

Quando $\mathbb{F} \subseteq \mathbb{R}$, nos referiremos a uma base deste tipo como uma base de Sylvester para V com respeito ϕ (não é uma terminologia comum).

Se $\mathbb{F} \subseteq \mathbb{R}$, diz-se que $\phi \in B_s(V)$ é semi-definida positiva se $\phi(v,v) > 0 \ \forall \ v \in V(\leadsto \phi > 0)$

e positiva definida se

$$\phi(v,v)>0 \ \forall \ v\in V(\leadsto \phi>0).$$

Lembre: $A \in M_n(\mathbb{C})$ é positiva definida se $X^*AX \in \mathbb{R}_{>0} \ \forall \ X \in M_{n,1}(\mathbb{C})$.

Dada uma base α de V, como ϕ é simétrica se, e só se $[\phi]_{\alpha}$ for simétrica (e portanto diagonalizável sobre \mathbb{R}), segue que ϕ é um produto interno se, e só se, ϕ for definida positiva ou, equivalentemente, $[\phi]_{\alpha}$ for positiva definida (e, portanto, todos seus autovalores são positivos pelo Teorema 7.1.8).

Indice de uma Forma Bilinear Real

Analogamente definem-se os conceitos de ϕ ser (semi-)definida negativa. Defina também

$$i(\phi) = \max\{\dim(W) : W \text{ \'e subespaço tal que } \phi|_W < 0\}.$$

Evidentemente,
$$i(\phi) \le pt(\phi)$$
, $\phi \ge 0 \Leftrightarrow i(\phi) = 0$ e $\phi < 0 \Leftrightarrow i(\phi) = \dim(V)$.
Chamaremos $i(\phi)$ de o índice de negatividade de ϕ . O número

$$sign(\phi) := pt(\phi) - 2i(\phi)$$

é chamado de a assinatura de ϕ .

Teorema 9.4.7 (Lei da Inércia de Sylvester)

Suponha que $\mathbb{F} \subseteq \mathbb{R}$ e sejam $\phi \in B_s(V)$ e $\alpha = v_1, \dots, v_n$ uma base ortogonal para V com respeito a ϕ . Então, $i(\phi) = \#\{j : \phi(v_i, v_i) < 0\}$.

Dem.: Seja $i = \#\{j : \phi(v_i, v_i) < 0\}$. Evidentemente, $i \le p = \operatorname{pt}(\phi)$. Suponha, sem perda de generalidade, que $\phi(v_i, v_i) = 0$ se j > p e que $\phi(v_i, v_i) < 0$ para $j \le i$. Sejam $W^- = [v_1, \dots, v_i] \in W^+ = [v_{i+1}, \dots, v_p]$. Como $\phi|_{W^-} < 0$, segue que $i \leq i(\phi)$. Assim, basta mostrar que $\phi|_W < 0 \implies \dim(W) \le i.$

Por sua vez, isso segue se mostrarmos que

(2)
$$\phi|_W < 0 \qquad \Rightarrow \qquad W \cap (V^{\perp} \oplus W^+) = \{0\}.$$

De fato, como $V^{\perp} = [v_{p+1}, \dots, v_n]$, temos $V = W^- \oplus W^+ \oplus V^{\perp}$ e segue de (2) que

$$n \ge \dim(W) + \dim(V^{\perp}) + \dim(W^{+}) = \dim(W) + (n-p) + (p-i)$$

= $\dim(W) + n - i$,

mostrando que dim $(W) \leq i$. Para mostrar (2), tome $w \in W \cap (V^{\perp} \oplus W^{+})$, digamos w = u + v com $u \in W^{+}$ e $v \in V^{\perp}$ e veja que

$$\phi(w,w) = \phi(u,u) + 2\phi(u,v) + \phi(v,v) = \phi(u,u) \ge 0.$$

Como $\phi|_W < 0$, segue que w = 0.

Formas Quadráticas

Uma forma quadrática em n variáveis a valores em \mathbb{F} é uma função polinomial proveniente de um polinômio homogêneo de grau 2 com coeficientes em \mathbb{F} .

Uma maneira de produzir um tal polinômio é a partir de uma forma bilinear $\phi \in B(V)$ e uma base α de um \mathbb{F} -espaço vetorial V:

$$q_{\phi}(x_1,\ldots,x_n) = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} [\phi]_{\alpha} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Reciprocamente, dado um polinômio homogêneo de grau 2, digamos

$$q(x_1,\ldots,x_n) = \sum_{1 \le i \le j \le n} c_{i,j} x_i x_j,$$

escolha matriz $A=(a_{i,j})_{1\leq i,j\leq n}$ t.q. $a_{i,j}+a_{j,i}=c_{i,j}$ \forall $1\leq i< j\leq n$ e $a_{i,i}=c_{i,i}$ \forall $1\leq i\leq n$, e seja $\phi\in B(V)$ t.q. $[\phi]_{\alpha}=(a_{i,j})_{1\leq i,j\leq n}$.

Veja que, se $\operatorname{car}(\mathbb{F}) \neq 2$, podemos escolher A simétrica: $a_{i,j} = a_{j,i} = c_{i,j}/2$ para todo $1 \leq i < j \leq n$. Assim, o estudo de formas quadráticas está intimamente relacionado ao estudo de formas bilineares simétricas.

Sistema de Eixos Principais

Objetivo: encontrar mudança linear de variáveis

$$(x_1,\ldots,x_n) \leftrightarrow (y_1,\ldots,y_n)$$
 de modo que

$$q(y_1, \dots, y_n) = \sum_{i=1}^n b_i \ y_i^2.$$

Os eixos do correspondente novo sistema de coordenadas são frequentemente chamados de um sistema de eixos principais para q.

Observe que encontrar tal sistema de eixos é equivalente a encontrar uma base de \mathbb{F}^n que seja ortogonal com respeito à correspondente forma bilinear simétrica.

No caso que $\mathbb{F} = \mathbb{R}$, em muitos casos é de interesse que esta nova base seja ortonormal com respeito ao produto interno usual de \mathbb{R}^n . Isto é possível devido ao Teorema Espectral (Corolário 7.5.8(b)).

Teorema Espectral Real para Matrizes

Uma matriz $A \in M_n(\mathbb{R})$ é ortogonalmente diagonalizável se, e somente se, for simétrica.

Diagonalização Ortogonal

Lembre que uma matriz $P \in M_n(\mathbb{R})$ é dita ortogonal se $P^tP = I$ e que $A \in M_n(\mathbb{R})$ é dita ortogonalmente diagonalizável se existir $P \in M_n(\mathbb{R})$ ortogonal tal que P^tAP é diagonal.

Exercício 9.3.2: Se α e β são bases de V, vale $[\phi]_{\beta} = ([I]_{\alpha}^{\beta})^t [\phi]_{\alpha} [I]_{\alpha}^{\beta}$.

O conceito de matriz ortogonal está relacionado ao conceito de operador linear ortogonal. Na Seção 9.5 estudaremos a generalização deste conceito no contexto de formas bilineares simétricas e alternadas.

O Teorema Espectral é o ponto culminante da teoria de operadores auto-adjuntos estudada no Capítulo 7. Na Seção 9.6 estenderemos esta teoria ao contexto de formas bilineares simétricas e alternadas.