

On the nested p-center problem

Christof Brandstetter, Markus Sinnl Institute of Business Analytics and Technology Transformation / JKU Business School, Johannes Kepler University Linz 2024-03-05

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria įku.at

Definition

• Given

- Given
 - o a set V of locations,

- Given
 - o a set V of locations,
 - $\circ p \in \mathbb{Z}$, and

- Given
 - o a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - distances d_{ij} from location $i \in V$ to $j \in V$

- Given
 - a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - distances d_{ij} from location $i \in V$ to $j \in V$
- · we want to
 - open p locations of V, such that

- Given
 - a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - distances d_{ij} from location $i \in V$ to $j \in V$
- · we want to
 - o open p locations of V, such that
 - the maximum distance of any location to its closest opened location is minimized.

Definition

• Given

- Given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and

- Given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open

- Given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open
 - where $p^h \le p^{h+1}$ for h = 1, ..., H-1

- Given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$
- the subsets $V^h \subseteq V$ with $|V^h| = p^h$

- Given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$
- the subsets $V^h \subseteq V$ with $|V^h| = p^h$
- are called nested iff $V^h \subset V^{h+1}$ for h = 1, ..., H-1

Definition

- Given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$
- the subsets $V^h \subseteq V$ with $|V^h| = p^h$
- are called nested iff $V^h \subset V^{h+1}$ for h = 1, ..., H-1

Introduced by Roodman and Schwarz 1975 and used in e.g., Albareda-Sambola et al. 2009; Bakker and Nickel 2024; Conforti et al. 2014 and reintroduced as nesting by McGarvey and Thorsen 2022

p-center problem vs nested p-center problem for $P = \{4, 5, 6\}$

Definition part I

• given a set of locations V,

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |V|$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |V|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

Definition part I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for h = 1, ..., H-1and
 - $\circ p^H \leq |V|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

Definition part II

 a feasible solution to the nested p-center problem consists of a set J^h ⊆ V

Definition part I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |V|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

- a feasible solution to the nested p-center problem consists of a set J^h ⊆ V
 - $\circ \text{ with } |\mathcal{J}^h| = p^h \text{ for } h \in \mathcal{H},$
 - for which $\mathcal{J}^h \subseteq \mathcal{J}^{h+1}$ for $h = 1, \dots, H-1$ holds

Definition part I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for h = 1, ..., H-1and
 - $\circ p^H \leq |V|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

- a feasible solution to the nested p-center problem consists of a set J^h ⊆ V
 - with $|\mathcal{J}^h| = p^h$ for $h \in \mathcal{H}$, • for which $\mathcal{J}^h \subseteq \mathcal{J}^{h+1}$ for $h = 1, \dots, H-1$ holds
- the goal is to find a feasible solution which minimizes $\sum_{h=1}^{H} d_h(\mathcal{J}^h)$,
 - where $d_h(\mathcal{J}) = \max_{i \in \mathcal{I}} \min_{j \in \mathcal{J}} d_{ij}$ for $h \in \mathcal{H}$

• variant of the *p*-center problem

- variant of the *p*-center problem
- part of the multi-period facility locations

- variant of the p-center problem
- part of the multi-period facility locations
- emergency medical services

- variant of the *p*-center problem
- part of the multi-period facility locations
- emergency medical services
- relief actions in humanitarian crisis

- variant of the p-center problem
- part of the multi-period facility locations
- emergency medical services
- relief actions in humanitarian crisis
- expansion into new markets/areas

Mixed Integer Linear Programming (MILP) Formulations

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

z^h... maximum distance between any customer *i* and its nearest open facility in period *h*

Decision variables

 $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \end{cases}$ $0 \dots \text{ otherwise}$

 z^h ... maximum distance between any customer i and its nearest open facility in period h

(nPC2) based on Gaar and Sinnl 2022

min
$$\sum z^h$$
 (1a)

min
$$\sum_{h \in \mathcal{H}} z^h$$
 (1a)
$$\sum_{j \in V} y_j^h = \rho^h$$

$$\forall h \in \mathcal{H}$$
 (1b)

$$z^{h} \geq d_{ij} - \sum_{j':d_{ij'} < d_{ij}} (d_{ij} - d_{ij'}) y_{j'}^{h} \qquad \forall i, j \in V, h \in \mathcal{H} \quad (1c)$$

$$y_{j}^{h} \geq y_{j}^{h-1} \qquad \forall j \in V, \forall h \in \mathcal{H} \setminus \{1\} \quad (1d)$$

$$y_j^h \ge y_j^{h-1}$$
 $\forall j \in V, \forall h \in \mathcal{H} \setminus \{1\}$ (1d)

$$(y,z) \in |V| |\mathcal{H}| \times \mathbb{R}_{\geq 0}$$
 (1e)

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

Decision variables

 $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

z^h... maximum distance between any customer i and its nearest open facility in period h

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

z^h... maximum distance between any customer i and its nearest open facility in period h

$$u_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \geq D_k \text{ in } \\ & \text{time period } h \end{cases}$$

Decision variables

$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

z^h... maximum distance between any customer i and its nearest open facility in period h

$$u_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \geq D_k \text{ in } \\ & \text{time period } h \end{cases}$$

(nPC3) based on Ales and Elloumi 2018

$$\min \sum_{h \in \mathcal{H}} z^{h}$$
s.t.
$$\sum_{j \in V} y_{j}^{h} = p^{h} \qquad \forall h \in \mathcal{H}$$

$$D_{0} + \sum_{k=1}^{K} (D_{k} - D_{k-1}) u_{k}^{h} \leq z^{h} \ \forall h \in \mathcal{H}$$

$$u_{k}^{h} + \sum_{j:d_{ij} < D_{k}} y_{j}^{h} \geq 1 \ \forall i \in V, \forall h \in \mathcal{H}, \forall k \in S_{i} \cup \{K\}$$

$$u_{k}^{h} \geq u_{k+1}^{h} \qquad \forall h \in \mathcal{H}, \forall k \in \mathcal{K} \setminus \{K\}$$

$$y_{j}^{h} \geq y_{j}^{h-1} \qquad \forall h \in \mathcal{H} \setminus \{1\}$$

$$(u, y, z) \in |V| \ |K| \times |V| \ |\mathcal{H}| \times \mathbb{R}_{>0}$$

Comparing formulations

Table: Comparison of complexity of the formulations

	(nPC1)	(nPC2)	(nPC3)
Variables	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{J} \mathcal{H})$	$\mathcal{O}((\mathcal{I} + \mathcal{K}) \mathcal{H})$
Constraints	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\text{min}(\mathcal{I} \mathcal{J} , \mathcal{I} \mathcal{K}) \mathcal{H})$

Comparing formulations

Table: Comparison of complexity of the formulations

	(nPC1)	(nPC2)	(nPC3)
Variables	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{J} \mathcal{H})$	$\mathcal{O}((\mathcal{I} + \mathcal{K}) \mathcal{H})$
Constraints	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\min(\mathcal{I} \mathcal{J} , \mathcal{I} \mathcal{K}) \mathcal{H})$

The pCP version of formulation (nPC3) has the best known linear programming LP-bounds for the pCP, while the pCP versions of (nPC1) and (nPC2) have equally but worse LP-bounds.

Improving the formulations

Lemma 1

Let LB_h be a lower bound on the decision variable z_h of (nPC2) for every $i \in \mathcal{I}, j \in \mathcal{J}, h \in \mathcal{H}$ then

Lemma 1

Let LB_h be a lower bound on the decision variable z_h of (nPC2) for every $i \in \mathcal{I}, j \in \mathcal{J}, h \in \mathcal{H}$ then

$$z^h \ge max\{LB^h, d_{ij}\} - \sum_{j': d_{ij'} < d_{ij}} \left(max\{LB^h, d_{ij}\} - max\{LB^h, d_{ij'}\} \right) y_{j'}^h$$
 (nL-OPT)

Lemma 1

Let LB_h be a lower bound on the decision variable z_h of (nPC2) for every $i \in \mathcal{I}, j \in \mathcal{J}, h \in \mathcal{H}$ then

$$z^h \ge max\{LB^h, d_{ij}\} - \sum_{j': d_{ij'} < d_{ij}} \left(max\{LB^h, d_{ij}\} - max\{LB^h, d_{ij'}\} \right) y_{j'}^h$$
 (nL-OPT)

is a valid inequality for (nPC2), i.e., every feasible solution of (nPC2) fulfills (nL-OPT). The theorem is based on Lemma 5 in Gaar and Sinnl (2022).

Reducing set \mathcal{K} in (nPC3)

2024-03-05

Reducing set K in (nPC3)

Lemma 2

Let $\underline{z^h}$ be a valid lower bound and $\overline{z^h}$ be a valid upper bound on the decision variable z^h for $h \in \mathcal{H}$, then the distinct distance D_k can only be the optimal distance for z^h if $z^h < D^k < \overline{z^h}$ holds.

Reducing set \mathcal{K} in (nPC3)

Lemma 2

Let $\underline{z^h}$ be a valid lower bound and $\overline{z^h}$ be a valid upper bound on the decision variable z^h for $h \in \mathcal{H}$, then the distinct distance D_k can only be the optimal distance for z^h if $\underline{z^h} \leq D^k \leq \overline{z^h}$ holds.

Therfore let set $S_i^h \subseteq S_i$ for $h \in \mathcal{H}$, where S_i^h contains only the indices k where $\underline{z}^h \leq D^k \leq \overline{z}^h$ holds.

Depending on the bounds $\underline{z^h}$ and $\overline{z^h}$ the sets S_i^h can be much smaller than S_i .

Reducing set I

Observation 1

Let $\underline{z^h}$ be a valid lower bound and $\overline{z^h}$ be a valid upper bound on the decision variable z^h for $h \in \mathcal{H}$, then the distinct distance D_k can only be the optimal distance for z^h if $\underline{z^h} \leq D^k \leq \overline{z^h}$ holds.

Observation 2

Following Observation 1 we observe that decision variables $u_h^k = 0$ for $k : D_k > z^h$ and $u_h^k = 1$ for $k : D_k < \underline{z}^h$.

Reducing set II

Observation 3

Following Observation 2 we observe that for k where variables u_k^h have been set to either zero or one, the variables do not have to be created.

Lemma 3

Let z'^{h*} be the optimal objective function value of pCP with $p = p^h$ for $h \in \mathcal{H} = \{1, 2, ..., H\}$ where $p^h > p^{h+1}$,

Lemma 3

Let z'^{h*} be the optimal objective function value of pCP with $p = p^h$ for $h \in \mathcal{H} = \{1, 2, ..., H\}$ where $p^h > p^{h+1}$, then $UB = Hz'^{1*}$ is a valid upper bound on the optimal objective function value of n-pCP.

Lemma 3

Let z'^{h*} be the optimal objective function value of pCP with $p = p^h$ for $h \in \mathcal{H} = \{1, 2, ..., H\}$ where $p^h > p^{h+1}$, then $UB = Hz'^{1*}$ is a valid upper bound on the optimal objective function value of n-pCP.

Then

$$\overline{z^h} = \frac{UB - \sum_{x=h+1}^{H} z'^{x*}}{h}$$

Lemma 3

Let z'^{h*} be the optimal objective function value of pCP with $p = p^h$ for $h \in \mathcal{H} = \{1, 2, ..., H\}$ where $p^h > p^{h+1}$, then $UB = Hz'^{1*}$ is a valid upper bound on the optimal objective function value of n-pCP.

Then

$$\overline{z^h} = \frac{UB - \sum_{x=h+1}^{H} z'^{x*}}{h}$$

where $\overline{z^h}$ is a valid upper bound on the decision variable z^h of the n-pCP for $h \in \mathcal{H}$.

• C++, CPLEX 20.1

2024-03-05

- C++, CPLEX 20.1
- preprocessing

- C++, CPLEX 20.1
- preprocessing
 - Solving p-center problem with $p = p^H$
 - Use optimal solution value for p-center problem with $p = p^{H-1}$
 - Repeat for remaining p^h
- (nPC2)

- C++, CPLEX 20.1
- preprocessing
 - Solving p-center problem with $p = p^H$
 - Use optimal solution value for p-center problem with $p = p^{H-1}$
 - Repeat for remaining p^h
- (nPC2)
 - branch-and-cut algorithm
 - separation similar to fixedCustomer from Gaar and Sinnl 2022

- C++, CPLEX 20.1
- preprocessing
 - Solving p-center problem with $p = p^H$
 - Use optimal solution value for p-center problem with $p = p^{H-1}$
 - Repeat for remaining p^h
- (nPC2)
 - branch-and-cut algorithm
 - separation similar to fixedCustomer from Gaar and Sinnl 2022
- (nPC3)

- C++, CPLEX 20.1
- preprocessing
 - Solving p-center problem with $p = p^H$
 - Use optimal solution value for p-center problem with $p = p^{H-1}$
 - Repeat for remaining p^h
- (nPC2)
 - branch-and-cut algorithm
 - separation similar to fixedCustomer from Gaar and Sinnl 2022
- (nPC3)
 - o branch-and-bound algorithm
 - \circ starting with the reduced set ${\mathcal K}$

noPP: without preprocessing or any lifting

noPP: without preprocessing or any lifting

• PP: with preprocessing

- noPP: without preprocessing or any lifting
- PP: with preprocessing
 - \circ (nPC2): set upper bounds on z^h and using lower bounds in (nL-OPT)
 - \circ (nPC3): problem initialized on reduced set ${\cal K}$

- noPP: without preprocessing or any lifting
- PP: with preprocessing
 - \circ (nPC2): set upper bounds on z^h and using lower bounds in (nL-OPT)
 - \circ (nPC3): problem initialized on reduced set ${\cal K}$
- PH: PP with starting heuristic

Results

Instance from literature

- computational setup
 - o single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - o timelimit of 3600 seconds

Instance from literature

- computational setup
 - single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - timelimit of 3600 seconds
- instance set PMED Çalık and Tansel 2013; D. Chen and R. Chen 2009; Contardo, lori, and Kramer 2019
 - 40 instances
 - $\circ \mathcal{P} = \{p, p + 1, p + 2\}, p \text{ from 5 to 200, } |V| \text{ from 100 and 900 nodes}$

Instance from literature

- computational setup
 - single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - o timelimit of 3600 seconds
- instance set PMED Çalık and Tansel 2013; D. Chen and R. Chen 2009; Contardo, lori, and Kramer 2019
 - o 40 instances
 - $\circ P = \{p, p+1, p+2\}, p \text{ from 5 to 200}, |V| \text{ from 100 and 900 nodes}$
- instance set TSPLIB Contardo, Iori, and Kramer 2019; Gaar and Sinnl 2022
 - 80 instances
 - $\circ \mathcal{P} = \{4, 5, 6\}, |V| \text{ from 51 and 1002 nodes}$

Setting comparison on formulation (nPC1)

Setting comparison on formulation (nPC2)

Setting comparison on formulation (nPC3)

Formulation comparison on setting PH

Managerial insights

(i) Relative regret of the optimal solution value

Managerial insights

(k) Relative regret of the optimal solution value

(I) Relative regret of # of opened facilities

Conclusion

- (nPC3) best performance in runtimes and optimality gap
- The (nPC2) outperforms the (nPC1)
- Preprocessing brings a large speed up on all formulations
- Starting heuristic little effect, shows good upper bound obtained in preprocessing
- Maximal relative regret of the optimal objective function value of 15%
- Maximal relative regret of number of opened facilities above 150%

On the nested p-center problem

Christof Brandstetter, Markus Sinnl Institute of Business Analytics and Technology Transformation / JKU Business School, Johannes Kepler University Linz 2024-03-05

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

References I

- [1] M. Albareda-Sambola et al. The multi-period incremental service facility location problem. In: Computers & Operations Research 36.5 (2009), pp. 1356–1375.
- [2] Z. Ales and S. Elloumi. Compact MILP formulations for the p-center problem. In: Combinatorial Optimization: 5th International Symposium, ISCO 2018, Marrakesh, Morocco, April 11–13, 2018, Revised Selected Papers 5. 2018, pp. 14–25.
- [3] H. Bakker and S. Nickel. The Value of the Multi-period Solution revisited: When to model time in capacitated location problems. In: Computers & Operations Research 161 (2024), p. 106428.

References II

- [4] H. Çalık and B. C. Tansel. Double bound method for solving the p-center location problem. In: Computers & Operations Research 40.12 (2013), pp. 2991–2999.
- [5] D. Chen and R. Chen. New relaxation-based algorithms for the optimal solution of the continuous and discrete p-center problems. In: Computers & Operations Research 36.5 (2009), pp. 1646–1655.
- [6] M. Conforti et al. Integer programming models. Springer, 2014.
- [7] C. Contardo, M. Iori, and R. Kramer. A scalable exact algorithm for the vertex p-center problem. In: Computers & Operations Research 103 (2019), pp. 211–220.

References III

- [8] M. S. Daskin. Network and Discrete Location: Models, Algorithms, and Applications, Second Edition. John Wiley & Sons, Ltd, 2013.
- [9] E. Gaar and M. Sinnl. A scaleable projection-based branch-and-cut algorithm for the p-center problem. In: European Journal of Operational Research 303.1 (2022), pp. 78–98.
- [10] R. G. McGarvey and A. Thorsen. Nested-solution facility location models. In: Optimization letters 16.2 (2022), pp. 497–514.
- [11] G. M. Roodman and L. B. Schwarz. Optimal and heuristic facility phase-out strategies. In: AIIE transactions 7.2 (1975), pp. 177–184.

Decision variables

 $x_{ij}^h \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

Decision variables

$$x_{ij}^h \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ & \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

Decision variables

$$X_{ij}^h \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ & \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

 $z^h \dots$ maximum distance between any customer i and its nearest open facility in period h

Decision variables

$$x_{ij}^h \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

z^h... maximum distance between any customer i and its nearest open facility in period h

(nPC1) based on Daskin 2013

$$\min \sum_{h \in \mathcal{H}} z^h \tag{3a}$$

s.t.
$$\sum_{j \in V} y_j^h = p^h \quad \forall h \in \mathcal{H}$$
 (3b)

$$\sum_{j\in V} x_{ij}^h = 1 \qquad \forall i\in V, h\in \mathcal{H} \qquad (3c)$$

$$x_{ij}^h \le y_j^h \qquad \forall i, j \in V, h \in \mathcal{H} \quad (3d)$$

$$\sum_{j\in V} d_{ij}x_{ij}^h \le z^h \qquad \forall i\in V, h\in \mathcal{H} \qquad (3e)$$

$$y_j^h \ge y_j^{h-1} \quad \forall h \in \mathcal{H} \setminus \{1\}$$
 (3f)

$$(x, y, z) \in |V|^2 |\mathcal{H}| \times |V| |\mathcal{H}| \times \mathbb{R}_{\geq 0}$$
 (3g)

