Biogeografía histórica Datos Moleculares II

Nelson R. Salinas

Universidad Distrital "Francisco José de Caldas"

Noviembre 7, 2020

Biogeografía histórica ¿En donde se originó un linaje?

Breve historia

- Escuela evolucionista (pre 1980): ajuste de teorías biogeográficas a hipótesis evolutivas preconcebidas, sin el empleo de métodos estandarizados ni replicables.
- Escuela cladística (80's y 90's): optimización de eventos o patrones biogeográficos a hipótesis filogenéticas experimentales. Métodos replicables basados en parsimonia.
- Escuela probabiística (desde 2000): optimización de modelos discretos de biogeografía a hipótesis filogenéticas experimentales. Métodos replicables basados en inferencia estadística (principamente ML).

Modelos de evolución geográfica

- Los modelos de substitución molecular modelan algunas mutaciones.
- Modelos biogeográficos modelan modelan procesos Anagenéticos o Cladogenéticos:
 - Dispersión (A o C).
 - Extinción (A).
 - Sympatría (C).
 - Vicarianza (C).

Anagenesis

a. Dispersal

b. Extirpation

©Landis 2019

Modelos de evolución geográfica

- Los modelos de substitución molecular modelan algunas mutaciones.
- Modelos biogeográficos modelan modelan procesos Anagenéticos o Cladogenéticos:
 - Dispersión (A o C).
 - Extinción (A).
 - Sympatría (C).
 - Vicarianza (C).

©Landis 2019

Modelos de evolución geográfica

- Modelos biogeograficos anagenéticos también son matrices de substutición markovianas.
- Estados corresponden zonas de distribución posibles.
- e_A , e_B , e_C : probabilidades de extinción.
- d_{AB}: probabilidad de dispersión desde A hacia B.

Modelo DEC (Ree & Smith 2008)

	Nulo	A	В	С	AB	AC	ВС	ABC
Nulo	s	0	0	0	0	0	0	0
A	e_A	S	0	0	d_{AB}	d_{AC}	0	0
В	e_B	0	s	0	d_{BA}	0	d_{BC}	0
С	e_C	0	0	s	0	d_{CA}	d_{CB}	0
AB	0	e_B	e_A	0	s	0	0	$d_{AC} + d_{BC}$
AC	0	e_C	0	e_A	0	S	0	$d_{AB} + d_{CB}$
CB	0	0	e_C	e_B	0	0	s	$d_{BA} + d_{CA}$
ABC	0	0	0	0	e_C	e_B	e_A	s

Modelos de evolución geográfica

- Procesos cladogenéticos incorporados por fuera de la matriz de substitución.
- j: probabilidad de especiación por dispersión a larga distancia.
- *y*, *s*: probabilidad de especiación simpatrica.
- *v*: probabilidad de especiación alopátrica (=vicarianza).

Ancestral range	Subdivided range after speciation	Inheritance scenarios for subdivided range			
	Scenario 1				
1000	00				
	Scenario 2				
000/000	Scenario 3				
					

Biogeografía histórica Implementación

- DEC implementado a través de Lagrange Python y Lagrange C++.
- Paquete BioGeoBEARS de R implementa DEC, BAYAREA, la versión paramétricas del modelo DIVA y sus respectivas modificaciones para permitir dispersión a larga distancia.
- RASP aparentemente implementa los mismos modelos que BioGeoBEARS y otros poco conocidos (p.e., BBM).