

AD-A087 392

ANOTHER GENERALIZATION OF CARATHÉODORY'S THEOREM

bу

Victor Klee

Technical Report No. 67

May 1980

Contract NO0014-67-0103 003

Project Number NR044 353

Department of Mathematics
University of Washington
Seattle, Washington 98195

IC FILE COPY

This research was supported in part by the Office of Naval Research.

Reproduction in whole or part is permitted for any purpose of the

United States Government.

This document has been approved for public relarse and sale; its distribution is unlimited.

80 7 7 013

Security Classification				
	ITROL DATA - R & D of constation must be entered when the avoiall report in classified)			
1. OHIGINATING ACTIVITY (Corporate author)	20. REPORT SECURITY ELASSIFICATION			
	Unclassified			
University of Washington	2b. SROUP			
3. REPORT TITLE				
ANOTHER GENERALIZATION OF CARATHEODORY'S	THEOREM. (11) May 80			
Technical Pepto				
S- au Tino Rio: (Firet name, faiddle intilut, tales pame)				
Victor/Klee (14	TR-67 (12)77			
6. REPORT DATE	78. TOTAL NO. OF PAGES 78. NO. OF REFS			
May 1980	4 6			
M. CONTRACT OR GRANT NO.	M. ORIGINATOR'S REPORT NUMBER(S)			
N00014-67-A-0103-0003				
A. PROJECT NO.	Technical Report No. 67			
NRO44 353				
c.	9b. OTHER REPORT NO(5) (Any other numbers that may be essigned this report)			
}				
4.	_\			
10. DISTRIBUTION STATEMENT	This document has been approved			
{	for public release and sale; its			
Releasable without limitations on dissemi	nation distribution is unlimited.			
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY			
Į.	}			
	<u> </u>			

When P is a d-dimensional convex polytope with vertex-set V, w V-simplex to denote a d-simplex whose vertices all belong to V. A slight variant of Carathéodory's theorem asserts that for each $v \in V$ there is a collection \underline{S} of V-simplices such that $P = \cup S$ and $v \in \cap S$. In connection with some constructions in ring theory, Kenneth Goodearl has conjectured there is a collection S of V-simplices such that $P = con \cup S$ and $dim \cap S = d$. For $0 \le k < d$ the present note establishes a theorem concerning the generation of P by V-simplices in conjunction with the operation con_{k+1} , where $con_n X$ is the set of all convex combinations of n or fewer points of $X \gg When k = 0$ the theorem is Carathéodory's and when k = d-1 it is a slight sharpening of Goodearl's conjecture.

(PAGE 1) S/N 0101-807-6811

14. KEY WORDS		LINK A		LINK		LINE C	
		WT	ROLE	WT	HOLE	WT	
Caratheodory convex convex combination polytope simplex vertex Accession For MTIS Graki DDC TAB Unnimounced Justification By Distributer/ Availability Codes Availability Codes Availability Codes Availability Codes Availability Codes Availability Codes	HOLE	WY	ROLE	W 7	HOLE	W	
•							

DD . 1473 (BACK)

ANOTHER GENERALIZATION OF CARATHÉODORY'S THEOREM VICTOR KLEE

When P is a d-dimensional convex polytope with vertex-set V, we use the term V-simplex to denote a d-simplex whose vertices all belong to V. A slight variant of Carathéodory's theorem [2] asserts that for each $v \in V$ there is a collection S of V-simplices such that P = uS and $v \in nS$. In connection with some constructions in ring theory, Kenneth Goodearl has conjectured there is a collection S of V-simplices such that P = con uS and dim nS = d. (This result is used in [4].) For $0 \le k < d$ the present note establishes a theorem concerning the generation of P by V-simplices in conjunction with the operation con_{k+1} , where $con_k X$ is the set of all convex combinations of n or fewer points of X. When k = 0 the theorem is Carathéodory's and when k = d-1 it is a slight sharpening of Goodearl's conjecture.

THEOREM Suppose that P is a d-dimensional convex polytope with vertex-set V,

0 & k < d, and F is a k-face of P. Then there is a collection S of V-simplices

such that

 $P = con_{k+1} \cup S$ and dim(Fn(nS)) = k.

When k = d-1 the intersection of is d-dimensional. If V is in general position then con_{k+1} may be replaced by con_{k+1} decreased by con_{k+1}

Proof. Observe first that if H is a (j-1)-flat in a j-flat G, Q is one of the two closed halfspaces into which H divides G, and B is a finite collection of j-dimensional convex subsets of Q such that the set C = $\text{Hn}(\cap \mathbb{R})$ is (j-1)-dimensional, then $\cap \mathbb{R}$ is j-dimensional. Indeed, choose points c and q in the relative interiors of C and Q respectively, and note that for each B \in B there exists $\lambda_B > 0$ such that $(1-\lambda_B)c+\lambda_Bq$ With $\epsilon = \min\{\lambda_B: B \in \mathbb{R}\} > 0$, $\cap \mathbb{R}$ contains the J-dimensional set

con (C \cup {(1- ε)e+ ε q}).

Whenever P is a d-polytope with vertex-set V, $0 \le k \le d$, and

 $\mathbf{F}_1 \subset \dots \subset \mathbf{F}_k$ is a sequence of faces of P with dim $\mathbf{F}_1 = \mathbf{i}$ for each i, let $\mathbf{S}_p(\mathbf{F}_0, \dots, \mathbf{F}_k)$ denote the collection of all sets of the form $\mathbf{con}\{\mathbf{v}_0, \dots, \mathbf{v}_d\}$ such that

- (i) for $0 \le i \le k$, $v_i \in F_i$
- (ii) for $1 \le i \le d$, $v_i \in V = \{v_0, \dots, v_{i-1}\}$.

 Plainly each member of $S_p(F_0, \dots, F_k)$ is a V-simplex. A straightforward induction on i, based on the observation of the preceding paragraph, shows that for $0 \le k \le k$,

$$\dim \mathsf{NS}_{\mathsf{F}_{\mathbf{i}}}(\mathsf{F}_{\mathbf{0}},\cdots,\mathsf{F}_{\mathbf{i}})=\mathtt{i}.$$

To construct the S whose existence is claimed by the theorem, simply set $S = S_{\mathbb{P}}(F_0, \dots, F_k) \text{ for an arbitrary sequence of faces } F_0 \subseteq F_1 \subseteq \dots \subseteq F_k \text{ with}$ $F_k = F \text{ and dim } F_i = 1 \text{ for all i. Plainly dim } (F \cap (\cap S)) = k, \text{ for } \cap S \supseteq \cap S_{F_k}(F_0, \dots, F_k).$ And since

$$\mathbf{x}_{\mathbf{p}}^{(F_{o}, \dots, F_{d-1})} = \mathbf{x}_{\mathbf{p}}^{(F_{o}, \dots, F_{d-1}, P)},$$

 $\cap S$ is d-dimensional when k = d-1.

It remains to show that $P = \operatorname{con}_r \cup \S$ with r = k+1 in general and $r = \lceil d/(d-k) \rceil$ (the smallest integer $\geq d/(d-k)$) when V is in general position. With $v_o \in F_o$, consider an arbitrary point $p \in P^{-}\{v_o\}$ and let q be the last point of the ray from v_o through p that belongs to P. If $q \in \operatorname{con}_r \cup \S$ then $p \in \operatorname{con}_r \cup \S$ because $p \in [v_o, q]$ and each member of \S is a convex set that contains v_o .

Let j denote the dimension of the smallest face G of P that contains q. By Carathéodory's theorem, $q \in \text{con } X$ for an affinely independent set X consisting of j+1 points of VnG. If $G \subseteq F_k$ then j < k and for each $x \in X$ there is a member S_x of S which contains x. Hence $q \in \text{con}_k \cup S$.

Suppose, on the other hand that $G \notin F_k$, and let W be the vertex-set of an arbitrary member of $\mathcal{E}_{F_k(F_0,\ldots,F_k)}$. Let mil denote the cardinality of the

maximal affinely independent subsets of WuX. From the facts that W \notin G and X \notin F_k it follows that m > k and m < j. Since W is affinely independent, there is a set Y \in X such that the set WuY is affinely independent and of cardinality m+1, whence |Y| = m-k. Plainly WuY lies in a member of S_i as does each of that (j+1)-(m-k) remaining points of X. Hence p \in con_{r+1} uS with $r = (j+1)-(m-k) \le k$.

Now suppose, finally, that the vertex-set V of P is in general position, meaning that each set of d+l points of V is affinely independent. Then all proper faces of P are simplices, and S consists merely of all V-simplices that contain F_k . Consider v_o , p, q, G, X, $v_i = V$ as described earlier. Then WuY is affinely independent for each set $Y \subset X \cap W$ with $|Y| \le d-k$. Hence $X \cap W$ can be covered by |(j+1)/(d-k)| members of S, and since j < d it follows that q (and hence p) belongs to con |d/(d-k)| US. That completes the proof.

To see that the theorem cannot be improved by reducing the subscripts k+1

and ki/(d-k), consider a d-polytope P = con V where V is the union of the vertex-act

Wofak-simplex F and the vertex-set

A X of a (d-1)-simplex. Let S be the collection of all V-simplices S such that

Then |XAS| = d-k

dim(FnS) = k, for each S \in S, whence the centroid of con X does not belong to

con |d/(d-k)|-1 US. If a translate W' of W is contained in X then |W'nS| = 1

for each S \in S, whence the centroid of con W' does not belong to con, US.

•

y other generalizations of Carathéodory's theorem appear in the re. Some of them can be found in the references below.

REFERENCES

Bonnice and V. Klee, The generation of convex hulls. Math. Ann (1963) 1-29.

Carathéodory, Über den Variabilitätsbereich der Koeffizienten von enzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64 (1907) 115.

Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives. wexity (V. Klee, ed.), Amer. Math. Soc. Proc. Symp. Pure Math. 962) 101-180.

Goodearl and R. Warfield, State spaces of K_{0} of Noetherian rings. appear.

1. Motzkin, Polyhedra as unions of simplices. Proceedings of the loquium on Convexity, Copenhagen, 1965 (W. Fenchel ed.), 202-204. Ititute of Mathematics, University of Copenhagen, 1967.

Reay, Generalizations of a theorem of Carathéodory. Mem. Amer. Math. :. No. 54. 1965.