Técnicas de Integración - Esquema

1 INTEGRACIÓN DE FUNCIONES RACIONALES

Sean P y Q polinomios primos entre sí tal que $\dfrac{P(x)}{Q(x)}$ con $Q(x) \neq 0$, el grado de Q(x) mayor que el de P(x) y el coeficiente líder de Q(x) es 1, entonces podemos aplicar las siguientes sustituciones:

■ Tipo 1 (denominador con factor simple):

$$\int \frac{P(x)}{Q(x)} = \int \frac{A}{(x-a)}$$

■ Tipo 2 (denominador con factor múltiple):

$$\int \frac{P(x)}{Q(x)} = \int \frac{A}{(x-a)} + \int \frac{B}{(x-a)^2} + \dots + \int \frac{N}{(x-a)^n}$$

■ Tipo 3 (denominador con factor irreducible de grado 2):

$$\int \frac{P(x)}{Q(x)} = \int \frac{Mx + N}{x^2 + bx + c}$$

Tipo 4 (denominador con factor múltiple irreducible de grado
 2). El grado de P(x) es menor o igual que 2n - 1. Usaremos el método de Hermite:

$$\begin{split} \int \frac{P(x)}{Q(x)} &= \frac{F(x)}{(x^2 + bx + c)^{n-1}} + \int \frac{Mx + N}{x^2 + bx + c} = \\ \int \frac{dF}{dx} \left(\frac{F(x)}{(x^2 + bx + c)^{n-1}} \right) + \int \frac{Mx + N}{x^2 + bx + c} \end{split}$$

Donde F(x) es de grado 2n-3 por determinar.

2 Integración de funciones no racionales: Cambios de variable

2.1. Funciones trigonométricas

 Sustitución de Weierstrass. Cociente de sumas y productos de senos y cosenos:

$$t = tan\left(\frac{x}{2}\right), \quad x = g(t) = 2arctg(t), \quad dx = \frac{2}{1+t^2}dt$$

$$cos(x) = \frac{1-t^2}{1+t^2}$$
 $sen(x) = \frac{2t}{1+t^2}$

- Caso especial $\frac{sen^n(x)}{cos^m(x)}dx$:
 - n es impar: x = arccos(t)
 - m es impar: x = arcsen(t)
 - n y m son pares:

$$cos^{2}(x) = \frac{1 + cos(2x)}{2}, \quad sen^{2}(x) = \frac{1 - cos(2x)}{2}$$

2.2. Funciones trascendentes

Las funciones trascendentes son las funciones hiperbólicas:

$$sh(x) = \frac{e^x - e^{-x}}{2}, \quad ch(x) = \frac{e^x + e^{-x}}{2}, \quad th(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$x = g(t) = \ln(t), \quad dx = \frac{1}{t}dt$$

2.3. Irracionales en x

Si f es una función cociente de sumas y productos de potencias racionales de x tal que $x^{\frac{p_i}{q_i}}$, entonces

$$x = t^m$$
, $m = mcm\{q_1, q_2, \cdots, q_n\}$

2.4. Irracionales cuadráticas

- Funciones que son cociente de sumas y productos de x y $\sqrt{x^2-1}$: Sustituimos por $x=g(t)=\frac{1}{cos(t)}$ o por x=g(t)=ch(t) y
- Funciones que son cociente de sumas y productos de x y $\sqrt{1-x^2}$:

 Sustituimos x=g(t)=sen(t) y resolvemos como hemos
- Funciones que son cociente de sumas y productos de x y $\sqrt{1+x^2}$:

Sustituimos por x=g(t)=tg(t) o por x=g(t)=sh(t) y resolvemos como hemos visto.

3 INTEGRACIÓN POR PARTES

visto.

Sean dos funciones u,v^{\prime} derivables con $u^{\prime}v$ y uv^{\prime} integrables, entonces:

$$\int u \cdot dv = u \cdot v - \int v \cdot du$$

Regla mnemotécnica: Un día vi una vaca vestida de uniforme.