Logic

Paolo Bettelini

Contents

1	Boolean Algebra	2
2	Proof theory	3
	2.1 k -ary Boolean function	9
	2.2 0-ary Boolean function	9
	2.3 Biconditional logical connective	

1 Boolean Algebra

$$x \lor 0 = x$$

$$x \land 0 = 0$$

$$x \lor 1 = 1$$

$$x \land 1 = x$$

$$x \lor x = x$$

$$x \land x = x$$

$$x \land (x \lor y) = x$$

$$x \lor (x \land y) = x$$

$$x \lor \neg x = 0$$

$$x \lor \neg x = 1$$

$$\neg x \land \neg y = \neg (x \lor y)$$

$$\neg x \lor \neg y = \neg (x \land y)$$

2 Proof theory

2.1 k-ary Boolean function

A k-ary Boolean function is a mapping from $\{T, F\}^k \to \{T, F\}$

2.2 0-ary Boolean function

The 0-ary Boolean function are the *verum* (\top) and *falsum* (\bot) . The represent respectively the True value and the False value.

2.3 Biconditional logical connective

A biconditional logical connective (written as iff or xnor) is the relation of equivalence between two statements P and Q. The relation $P \iff Q$ is both a sufficient condition and a necessary condition.

$$P \iff Q \equiv (P \implies Q) \land (P \iff Q)$$