

CLAIMS

What is claimed is:

- 1 1. A method of treating a surface of a substrate, the method
2 comprising:
 - 3 (a) forming hydroxyl groups on an oxide surface by exposing the
4 surface to a plasma;
 - 5 (b) reacting a first gas comprising epoxy-functional molecules with
6 the surface hydroxyl groups *in situ* in the absence of plasma to provide surface-bound
7 spacer chains.
- 1 2. The method of claim 1, further comprising immobilizing
2 biomolecules on the surface by reacting the biomolecules with the surface-bound
3 spacer chains.
- 1 3. The method of claim 2, wherein the biomolecules are amine-
2 functionalized or amine-containing biomolecules.
- 1 4. The method of claim 1, wherein the oxide surface comprises a
2 silicon oxide.
- 1 5. The method of claim 4, wherein the oxide surface comprises
2 silica, glass or quartz.
- 1 6. The method of claim 1, wherein the oxide surface comprises a
2 metal oxide.
- 1 7. The method of claim 6, wherein the metal oxide comprises a
2 native oxide of stainless steel.
- 1 8. The method of claim 1, wherein the plasma is formed from a
2 source gas comprising water, oxygen or a mixture thereof.
- 1 9. The method of claim 1, wherein the epoxy-functional
2 molecules are epihalohydrin molecules.

1 10. The method of claim 9, wherein the epihalohydrin molecules
2 are epichlorohydrin molecules.

1 11. The method of claim 1, wherein the epoxy-functional
2 molecules are diepoxide molecules.

1 12. The method of claim 11, wherein the diepoxide molecules are
2 1,4-butanediol diglycidyl ether molecules.

1 13. The method of claim 2, wherein the biomolecule is selected
2 from the group consisting of oligonucleotides, aptamers, cDNA and RNA.

1 14. The method of claim 2, wherein the biomolecule is a protein.

1 15. The method of claim 1, further comprising extending the spacer
2 chains by reacting the spacer chains with spacer molecules *in situ* in the absence of
3 plasma to provide extended spacer chains.

1 16. The method of claim 15, wherein the spacer molecules
2 comprise an amine group capable of reacting with the epoxy functionality of the
3 spacer chains.

1 17. The method of claim 15, still further comprising immobilizing
2 biomolecules on the extended spacer chains by reacting the biomolecules with the
3 extended spacer chains.

1 18. An inorganic oxide substrate comprising:
2 (a) an inorganic oxide substrate surface;
3 (b) one or more molecular spacer chains covalently bound to the
4 surface, the one or more spacer chains having a length of at least 2.5 nm; and
5 (c) one or more biomolecules covalently bound to the one or more
6 molecular spacer chains.

1 19. The substrate of claim 18, wherein the substrate surface
2 comprises an inorganic oxide selected from the group consisting of glass, silica and
3 quartz.

1 20. The substrate of claim 18, wherein the substrate surface
2 comprises a metal oxide.

1 21. The substrate of claim 20, wherein the metal oxide is a native
2 oxide of stainless steel.

1 22. The substrate of claim 18, wherein the one or more spacer
2 chains have a length of at least 4 nm.

1 23. The substrate of claim 18, wherein the one or more spacer
2 chains have a length of at least 5 nm.

1 24. The substrate of claim 18, wherein the one or more
2 biomolecules are proteins.

1 25. The substrate of claim 18, wherein the one or more
2 biomolecules are enzymes.

1 26. The substrate of claim 18, wherein the one or more
2 biomolecules are oligonucleotides.

1 27. A method of treating a surface of a substrate, the method
2 comprising:

3 (a) implanting silicon-chlorine functionalities into the substrate
4 surface by exposing the surface to a chlorine-containing plasma;

5 (b) forming hydroxyl groups on the surface by exposing the
6 silicon-chlorine functionalities to a gas comprising water, oxygen or a mixture
7 thereof; and

8 (c) reacting a gas comprising epoxy-functional molecules with the
9 surface hydroxyl groups *in situ* in the absence of plasma to provide surface-bound
10 spacer chains.

1 28. The method of claim 27, wherein the chlorine-containing
2 plasma is ignited from a gas selected from the group consisting of dichlorosilane,
3 silicon tetrachloride, hexachlorodisilane and mixtures thereof.

1 29. The method of claim 27, wherein the epoxy-functional
2 molecules are epihalohydrin molecules.

1 30. The method of claim 27, wherein the epoxy-functional
2 molecules are diepoxide molecules.

1 31. The method of claim 27, further comprising immobilizing
2 biomolecules on the surface by reacting the biomolecules with the surface-bound
3 spacer chains.

1 32. The method of claim 27, further comprising extending the
2 spacer chains by reacting the spacer chains with spacer molecules in situ in the
3 absence of plasma to provide extended spacer chains.

1 33. The method of claim 32, further comprising immobilizing
2 biomolecules on the extended spacer chains by reacting the biomolecules with the
3 extended spacer chains.