Script 2

The Rationals

2.1 Journal

10/15: **Definition 2.1.** Let X be a set. A **relation** R on X is a subset of $X \times X$. The statement $(x, y) \in R$ is read "x is related to y by the relation R" and is often denoted $x \sim y$.

A relation is **reflexive** if $x \sim x$ for all $x \in X$.

A relation is **symmetric** if $y \sim x$ whenever $x \sim y$.

A relation is **transitive** if $x \sim z$ whenever $x \sim y$ and $y \sim z$.

A relation is an **equivalence relation** if it is reflexive, symmetric, and transitive.

Exercise 2.2. Determine which of the following are equivalence relations.

a) Any set X with the relation =. So $x \sim y$ if and only if x = y.

Proof. To prove that the relation = is reflexive, Definition 2.1 tells us that it will suffice to show that $x \sim x$ for all $x \in X$. Clearly, x = x for all $x \in X$. It follows by the definition of = that $x \sim x$ for all $x \in X$. For symmetry, we must verify that $x \sim y$ implies $y \sim x$ for any $x, y \in X$. Let $x \sim y$ for some $x, y \in X$. Consequently, by the definition of =, x = y. It follows that y = x, and thus that $y \sim x$. For transitivity, we must show that $x \sim y$ and $y \sim z$ imply that $x \sim z$ for any $x, y, z \in X$. Let $x \sim y$ and $y \sim z$ for some $x, y, z \in X$. By the definition of =, $x \sim y$ and $y \sim z$ imply that x = y and y = z, respectively. Thus, x = y = z, so x = z, meaning that $x \sim z$ by the definition of the relation =. Since the relation = is reflexive, symmetric, and transitive, it is an equivalence relation.

b) \mathbb{Z} with the relation <.

Proof. The relation < is neither reflexive nor symmetric, although it is transitive. Since demonstrating that < does not satisfy any one of the three properties proves that < is not an equivalence relation, we shall arbitrarily choose to prove that < is not reflexive. Consider $1 \in \mathbb{Z}$, and note that 1 = 1. Since $1 = 1, 1 \nleq 1$ by the trichotomy. Thus, $1 \nsim 1$ by the relation <, proving that < is not reflexive for all $z \in \mathbb{Z}$, i.e., < is not an equivalence relation.

c) Any subset X of \mathbb{Z} with the relation \leq . So $x \sim y$ if and only if $x \leq y$.

Proof. Here, we demonstrate a failure of symmetry. Let $X = \{1,2\}$. Clearly, $X \subset \mathbb{Z}$. Now, $1 \leq 2$, so $1 \sim 2$ by the relation \leq , but $2 \nleq 1$ so $2 \nsim 1$. Thus, $x \sim x'$ for $x, x' \in X$ does not necessarily imply that $x' \sim x$. It follows that \leq is not an equivalence relation on *any* subset of \mathbb{Z} .

d) $X = \mathbb{Z}$ with $x \sim y$ if and only if y - x is divisible by 5.

Proof. To prove that the described relation is an equivalence relation, Definition 2.1 tells us that we must verify that it is reflexive, symmetric, and transitive. To prove these properties, it will suffice to show that $x \sim x$ for all $x \in X$, $x \sim y$ implies $y \sim x$ for any $x, y \in X$, and $x \sim y$ and $y \sim z$ implies $x \sim z$ for any $x, y, z \in X$, respectively. Let's begin.

To prove that $x \sim x$ for all $x \in X$, the definition of \sim and Script 0 tell us that it will suffice to show that x - x = 5a for an arbitrary $x \in X$ and some $a \in \mathbb{Z}$. Let x be an arbitrary element of X. It follows that x - x = 0 = 5(0) where 0 = a is clearly an element of \mathbb{Z} . In sum, x - x = 5a for an $a \in \mathbb{Z}$, as desired

To prove that $x \sim y$ implies that $y \sim x$ for any such $x, y \in X$, the definition of \sim and Script 0 tell us that it will suffice to show that x-y=5a given that y-x=5b for $x,y\in X$ and some $a,b\in \mathbb{Z}$. Let y-x=5b. It follows that -(y-x)=-5b. But since -(y-x)=x-y and -5b=5(-b), this means that x-y=5(-b) where -b=a is clearly an element of \mathbb{Z} . In sum, x-y=5a for an $a\in \mathbb{Z}$, as desired.

To prove that $x \sim y$ and $y \sim z$ imply that $x \sim y$ for any such $x, y, z \in X$, the definition of \sim and Script 0 tell us that it will suffice to show that z - x = 5a given that y - x = 5b and z - y = 5c for $x, y, z \in X$ and some $a, b, c \in \mathbb{Z}$. Let y - x = 5b and z - y = 5c. It follows that z - y + y - x = 5c + 5b. Thus, z - x = 5(b + c) where b + c = a is clearly an element of \mathbb{Z} . In sum, z - x = 5a for an $a \in \mathbb{Z}$, as desired.

e) $X = \{(a,b) \mid a,b \in \mathbb{Z}, b \neq 0\}$ with the relation \sim defined by $(a,b) \sim (c,d) \iff ad = bc$.

Proof. Reflexivity: Let (a, b) be an arbitrary element of X. Since $a, b \in \mathbb{Z}$ and integer multiplication is commutative, it is true that ab = ba. Therefore, by the definition of the relation \sim , $(a, b) \sim (a, b)$.

Symmetry: Let $(a, b) \sim (c, d)$ for some $(a, b), (c, d) \in X$. By the definition of the relation \sim , ad = bc. Thus, cb = da by the symmetry of = (see part (a)) and the commutativity of integer multiplication. Consequently, by the definition of the relation \sim , $(c, d) \sim (a, b)$.

Transitivity: Let $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$ for some $(a,b), (c,d), (e,f) \in X$. By consecutive applications of the definition of \sim , ad = bc and cf = de. We now divide into two cases $(c \neq 0 \text{ and } c = 0$ — the reason for doing so will become clear later). Suppose first that $c \neq 0$. By the multiplicative property of equality, we can multiply an equal quantity to each side of ad = bc and still preserve the equality. As such, we choose to multiply cf = de to both sides, creating the equation $ad \cdot cf = bc \cdot de$. By the commutativity of multiplication, we have afcd = becd. Since $c \neq 0$ by assumption and $d \neq 0$ by the definition of X, $cd \neq 0$ and the cancellation law for multiplication applies, giving us af = bc. Therefore, by the definition of the relation \sim , $(a,b) \sim (e,f)$. Now suppose that c = 0. Consequently, bc = 0, implying by the equality ad = bc that ad = 0. Thus, a = 0 or d = 0 (or both) by the zero product property. Since $d \neq 0$ by the definition of X, we must have a = 0. A similar analysis can be performed on the equation cf = de to show that e = 0. Since e = 0 and e = 0, e = 0 and e = 0, implying by transitivity that e = 0. Therefore, by the definition of the relation e = 0, e = 0 and e = 0, e = 0 and e = 0, implying by transitivity that e = 0. Therefore, by the definition of the relation e = 0, e = 0 and e = 0, e = 0 and e = 0, e = 0 and e = 0, implying by transitivity that e = 0. Therefore, by the definition of the relation e = 0, e = 0 and e = 0, e = 0 and e = 0, e = 0, e = 0.

Remark 2.3. A partition of a set is a collection of non-empty disjoint subsets whose union is the original set. Any equivalence relation on a set creates a partition of that set by collecting into subsets all of the elements that are equivalent (related) to each other. When the partition of a set arises from an equivalence relation in this manner, the subsets are referred to as **equivalence classes**.

Remark 2.4. If we think of the set X in Exercise 2.2e as representing the collection of all fractions whose denominators are not zero, then the relation \sim may be thought of as representing the equivalence of two fractions.

Definition 2.5. As a set, the **rational numbers**, denoted \mathbb{Q} , are the equivalence classes in the set $X = \{(a,b) \mid a,b \in \mathbb{Z}, b \neq 0\}$ under the equivalence relation \sim as defined in Exercise 2.2e. If $(a,b) \in X$, we denote the equivalence class of this element as $\left[\frac{a}{b}\right]$. So

$$\left[\frac{a}{b}\right] = \{(x_1, x_2) \in X \mid (x_1, x_2) \sim (a, b)\} = \{(x_1, x_2) \in X \mid x_1 b = x_2 a\}$$

Then,

$$\mathbb{Q} = \left\{ \left\lceil \frac{a}{b} \right\rceil \middle| (a, b) \in X \right\}$$

Exercise 2.6. $\left[\frac{a}{b}\right] = \left[\frac{a'}{b'}\right] \iff (a,b) \sim (a',b')$

Proof. Suppose first that $\left[\frac{a}{b}\right] = \left[\frac{a'}{b'}\right]$. Since $(a,b) \sim (a,b)$ by Exercise 2.2e and clearly $(a,b) \in X$, it follows by Definition 2.5 that $(a,b) \in \left[\frac{a}{b}\right]$. Consequently, set equality implies that $(a,b) \in \left[\frac{a'}{b'}\right]$. But by Definition 2.5, this means that $(a,b) \sim (a',b')$, as desired. Now suppose that $(a,b) \sim (a',b')$. To prove that $\left[\frac{a}{b}\right] = \left[\frac{a'}{b'}\right]$, Definition 1.2 tells us that we must verify that every element of $\left[\frac{a}{b}\right]$ is an element of $\left[\frac{a'}{b'}\right]$ and vice versa. Let (x_1,x_2) be an arbitrary element of $\left[\frac{a}{b}\right]$. It follows by Definition 2.5 that $(x_1,x_2) \in X$ and that $(x_1,x_2) \sim (a,b)$. The latter result combined with the hypothesis that $(a,b) \sim (a',b')$ implies by the transitivity of \sim (see Exercise 2.2e) that $(x_1,x_2) \sim (a',b')$. This new finding coupled with the fact that $(x_1,x_2) \in X$ implies by Definition 2.5 that $(x_1,x_2) \in \left[\frac{a'}{b'}\right]$, as desired. The proof is symmetric if we first let that (x_1,x_2) be an arbitrary element of $\left[\frac{a'}{b'}\right]$.

Definition 2.7. We define the binary operations addition and multiplication on \mathbb{Q} as follows. If $\left[\frac{a}{b}\right]$, $\left[\frac{c}{d}\right] \in \mathbb{Q}$, then

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} +_{\mathbb{Q}} \begin{bmatrix} \frac{c}{d} \end{bmatrix} = \begin{bmatrix} \frac{ad + bc}{bd} \end{bmatrix}$$
$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} \cdot_{\mathbb{Q}} \begin{bmatrix} \frac{c}{d} \end{bmatrix} = \begin{bmatrix} \frac{ac}{bd} \end{bmatrix}$$

We use the notation $+_{\mathbb{Q}}$ and $\cdot_{\mathbb{Q}}$ to represent addition and multiplication in \mathbb{Q} so as to distinguish these operations from the usual addition (+) and multiplication (\cdot) in \mathbb{Z} .

Theorem 2.8. Addition in \mathbb{Q} is well-defined. That is, if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, then

$$\left[\frac{a}{b}\right] +_{\mathbb{Q}} \left[\frac{c}{d}\right] = \left[\frac{a'}{b'}\right] +_{\mathbb{Q}} \left[\frac{c'}{d'}\right]$$

Proof. By consecutive applications of the definition of \sim , we have from the hypotheses that

$$ab' = ba'$$
 $cd' = dc'$

It follows by the multiplicative property of equality that

$$ab'dd' = ba'dd'$$
 $bb'cd' = bb'dc'$

The above two results can be combined via the additive property of equality, giving the following, which will be algebraically manipulated further.

$$ab'dd' + bb'cd' = ba'dd' + bb'dc'$$

$$adb'd' + bcb'd' = bda'd' + bdb'c'$$

$$(ad + bc)(b'd') = (bd)(a'd' + b'c')$$

The last line above implies by the definition of \sim that $(ad+bc,bd) \sim (a'd'+b'c',b'd')$. It follows by Exercise 2.6 that

$$\left[\frac{ad+bc}{bd}\right] = \left[\frac{a'd'+b'c'}{b'd'}\right]$$

Therefore, by consecutive applications of Definition 2.7,

$$\left[\frac{a}{b}\right] +_{\mathbb{Q}} \left[\frac{c}{d}\right] = \left[\frac{a'}{b'}\right] +_{\mathbb{Q}} \left[\frac{c'}{d'}\right]$$

as desired. \Box

Theorem 2.9. Multiplication in \mathbb{Q} is well-defined. That is, if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, then

$$\left[\frac{a}{b}\right]\cdot_{\mathbb{Q}}\left[\frac{c}{d}\right] = \left[\frac{a'}{b'}\right]\cdot_{\mathbb{Q}}\left[\frac{c'}{d'}\right]$$

Proof. By consecutive applications of the definition of \sim , we have from the hypotheses that ab' = ba' and cd' = dc'. Multiplying these equations together, we have ab'cd' = ba'dc'. This can be algebraically rearranged into (ac)(b'd') = (bd)(a'c'). It follows by the definition of \sim that $(ac,bd) \sim (a'c',b'd')$. But this implies by Exercise 2.6 that

$$\left[\frac{ac}{bd}\right] = \left[\frac{a'c'}{b'd'}\right]$$

Consequently, by Definition 2.7,

$$\left[\frac{a}{b}\right]\cdot_{\mathbb{Q}}\left[\frac{c}{d}\right] = \left[\frac{a'}{b'}\right]\cdot_{\mathbb{Q}}\left[\frac{c'}{d'}\right]$$

as desired.

Theorem 2.10.

a) Commutativity of addition

$$\left[\frac{a}{b}\right] +_{\mathbb{Q}} \left[\frac{c}{d}\right] = \left[\frac{c}{d}\right] +_{\mathbb{Q}} \left[\frac{a}{b}\right] \text{ for all } \left[\frac{a}{b}\right], \left[\frac{c}{d}\right] \in \mathbb{Q}$$

Proof. By Definition 2.7,

$$\left[\frac{a}{b}\right] +_{\mathbb{Q}} \left[\frac{c}{d}\right] = \left[\frac{ad + bc}{bd}\right]$$

With integer algebra, we can rearrange the above expression into

$$= \left\lceil \frac{cb + da}{db} \right\rceil$$

By Definition 2.7 again, the above is

$$= \left[\frac{c}{d}\right] +_{\mathbb{Q}} \left[\frac{a}{b}\right]$$

b) Associativity of addition

$$\left(\left[\frac{a}{b}\right] +_{\mathbb{Q}} \left[\frac{c}{d}\right]\right) +_{\mathbb{Q}} \left[\frac{e}{f}\right] = \left[\frac{a}{b}\right] +_{\mathbb{Q}} \left(\left[\frac{c}{d}\right] +_{\mathbb{Q}} \left[\frac{e}{f}\right]\right) \text{ for all } \left[\frac{a}{b}\right], \left[\frac{c}{d}\right], \left[\frac{e}{f}\right] \in \mathbb{Q}$$

Proof. By consecutive applications of Definition 2.7,

$$\begin{split} \left(\left[\frac{a}{b}\right] +_{\mathbb{Q}} \left[\frac{c}{d}\right]\right) +_{\mathbb{Q}} \left[\frac{e}{f}\right] &= \left[\frac{ad + bc}{bd}\right] +_{\mathbb{Q}} \left[\frac{e}{f}\right] \\ &= \left[\frac{(ad + bc)(f) + (bd)(e)}{(bd)(f)}\right] \end{split}$$

With integer algebra, we can rearrange the above as follows.

$$= \left[\frac{adf + bcf + bde}{bdf}\right]$$
$$= \left[\frac{(a)(df) + (b)(df + de)}{(b)(df)}\right]$$

Now apply Definition 2.7 twice, again.

$$\begin{split} &= \left[\frac{a}{b}\right] +_{\mathbb{Q}} \left(\left[\frac{cf + de}{df}\right]\right) \\ &= \left[\frac{a}{b}\right] +_{\mathbb{Q}} \left(\left[\frac{c}{d}\right] +_{\mathbb{Q}} \left[\frac{e}{f}\right]\right) \end{split}$$

c) Existence of an additive identity

$$\left[\frac{a}{b}\right] +_{\mathbb{Q}} \left[\frac{0}{1}\right] = \left[\frac{a}{b}\right] \text{ for all } \left[\frac{a}{b}\right] \in \mathbb{Q}$$

Proof. Via Definition 2.7 and integer algebra, we can show that

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} +_{\mathbb{Q}} \begin{bmatrix} \frac{0}{1} \end{bmatrix} = \begin{bmatrix} \frac{a \cdot 1 + b \cdot 0}{b \cdot 1} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{a}{b} \end{bmatrix}$$

as desired.

d) Existence of additive inverses

$$\left[\frac{a}{b}\right] +_{\mathbb{Q}} \left[\frac{-a}{b}\right] = \left[\frac{0}{1}\right] \text{ for all } \left[\frac{a}{b}\right] \in \mathbb{Q}$$

Proof. Through various application of Definition 2.7 and integer algebra, we can show that

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} +_{\mathbb{Q}} \begin{bmatrix} \frac{-a}{b} \end{bmatrix} = \begin{bmatrix} \frac{ab+b\cdot -a}{bb} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{ab-ab}{bb} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{0}{bb} \end{bmatrix}$$

Since $0 \cdot 1 = 0$ and $bb \cdot 0 = 0$, transitivity implies that (0)(1) = (bb)(0). By the definition of \sim , this means that $(0,bb) \sim (0,1)$. It follows by Exercise 2.6 that the above equals the following, as desired.

$$=\left[\frac{0}{1}\right]$$

e) Commutativity of multiplication

$$\left[\frac{a}{b}\right]\cdot_{\mathbb{Q}}\left[\frac{c}{d}\right] = \left[\frac{c}{d}\right]\cdot_{\mathbb{Q}}\left[\frac{a}{b}\right] \ for \ all \ \left[\frac{a}{b}\right], \left[\frac{c}{d}\right] \in \mathbb{Q}$$

Proof. Via Definition 2.7 and integer algebra, we can show that

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} \cdot_{\mathbb{Q}} \begin{bmatrix} \frac{c}{d} \end{bmatrix} = \begin{bmatrix} \frac{ac}{bd} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{ca}{db} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{c}{d} \end{bmatrix} \cdot_{\mathbb{Q}} \begin{bmatrix} \frac{a}{b} \end{bmatrix}$$

as desired. \Box

Labalme 5

f) Associativity of multiplication

$$\left(\left[\frac{a}{b}\right]\cdot_{\mathbb{Q}}\left[\frac{c}{d}\right]\right)\cdot_{\mathbb{Q}}\left[\frac{e}{f}\right] = \left[\frac{a}{b}\right]\cdot_{\mathbb{Q}}\left(\left[\frac{c}{d}\right]\cdot_{\mathbb{Q}}\left[\frac{e}{f}\right]\right) \ for \ all \ \left[\frac{a}{b}\right], \left[\frac{c}{d}\right], \left[\frac{e}{f}\right] \in \mathbb{Q}$$

Proof. Through various application of Definition 2.7 and integer algebra, we can show that

$$\left(\left[\frac{a}{b} \right] \cdot_{\mathbb{Q}} \left[\frac{c}{d} \right] \right) \cdot_{\mathbb{Q}} \left[\frac{e}{f} \right] = \left[\frac{ac}{bd} \right] \cdot_{\mathbb{Q}} \left[\frac{e}{f} \right] \\
= \left[\frac{(ac)(e)}{(bd)(f)} \right] \\
= \left[\frac{(a)(ce)}{(b)(df)} \right] \\
= \left[\frac{a}{b} \right] \cdot_{\mathbb{Q}} \left(\left[\frac{ce}{df} \right] \right) \\
= \left[\frac{e}{d} \right] \cdot_{\mathbb{Q}} \left(\left[\frac{c}{d} \right] \cdot_{\mathbb{Q}} \left[\frac{e}{f} \right] \right)$$

as desired.

g) Existence of a multiplicative identity

$$\left[\frac{a}{b}\right] \cdot_{\mathbb{Q}} \left[\frac{1}{1}\right] = \left[\frac{a}{b}\right] \text{ for all } \left[\frac{a}{b}\right] \in \mathbb{Q}$$

Proof. Via Definition 2.7 and integer algebra, we can show that

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} \cdot_{\mathbb{Q}} \begin{bmatrix} \frac{1}{1} \end{bmatrix} = \begin{bmatrix} \frac{a \cdot 1}{b \cdot 1} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{a}{b} \end{bmatrix}$$

as desired.

h) Existence of multiplicative inverses for nonzero elements

$$\left[\frac{a}{b}\right]\cdot_{\mathbb{Q}}\left[\frac{b}{a}\right] = \left[\frac{1}{1}\right] \ for \ all \ \left[\frac{a}{b}\right] \in \mathbb{Q} \ such \ that \ \left[\frac{a}{b}\right] \neq \left[\frac{0}{1}\right]$$

Lemma. For all $\left[\frac{a}{a}\right] \in \mathbb{Q}$, $\left[\frac{a}{a}\right] = \left[\frac{1}{1}\right]$.

Proof. Since (a)(1)=(a)(1), we have by the definition of \sim that $(a,a)\sim(1,1)$. It follows by Exercise 2.6 that $\left[\frac{a}{a}\right]=\left[\frac{1}{1}\right]$, as desired.

Proof. By Definition 2.7,

$$\left[\frac{a}{b}\right] \cdot_{\mathbb{Q}} \left[\frac{b}{a}\right] = \left[\frac{ab}{ba}\right]$$

Since ab = ba, we have by the lemma that the above equals the following, as desired.

$$=\left[\frac{1}{1}\right]$$

as desired. \Box

i) Distributivity

$$\left[\frac{a}{b}\right] \cdot_{\mathbb{Q}} \left(\left[\frac{c}{d}\right] +_{\mathbb{Q}} \left[\frac{e}{f}\right]\right) = \left(\left[\frac{a}{b}\right] \cdot_{\mathbb{Q}} \left[\frac{c}{d}\right]\right) +_{\mathbb{Q}} \left(\left[\frac{a}{b}\right] \cdot_{\mathbb{Q}} \left[\frac{e}{f}\right]\right) \text{ for all } \left[\frac{a}{b}\right], \left[\frac{c}{d}\right], \left[\frac{e}{f}\right] \in \mathbb{Q}$$

Proof. By Definition 2.7 and integer algebra,

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} \cdot_{\mathbb{Q}} \left(\begin{bmatrix} \frac{c}{d} \end{bmatrix} +_{\mathbb{Q}} \begin{bmatrix} \frac{e}{f} \end{bmatrix} \right) = \begin{bmatrix} \frac{a}{b} \end{bmatrix} \cdot_{\mathbb{Q}} \begin{bmatrix} \frac{cf + de}{df} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{a(cf + de)}{bdf} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{acf + ade}{bdf} \end{bmatrix}$$

Use Theorem 2.10g.

$$= \left\lceil \frac{acf + ade}{bdf} \right\rceil \cdot \mathbb{Q} \left\lceil \frac{1}{1} \right\rceil$$

Use the lemma from the proof of Theorem 2.10h.

$$= \left\lceil \frac{acf + ade}{bdf} \right\rceil \cdot \mathbb{Q} \left\lceil \frac{b}{b} \right\rceil$$

Use various applications of Definition 2.7 and integer algebra to finish.

$$\begin{split} &= \left[\frac{(acf + ade)b}{(bdf)b}\right] \\ &= \left[\frac{acfb + adeb}{bdfb}\right] \\ &= \left[\frac{(ac)(bf) + (bd)(ae)}{(bd)(bf)}\right] \\ &= \left[\frac{ac}{bd}\right] +_{\mathbb{Q}} \left[\frac{ae}{bf}\right] \\ &= \left(\left[\frac{a}{b}\right] \cdot_{\mathbb{Q}} \left[\frac{c}{d}\right]\right) +_{\mathbb{Q}} \left(\left[\frac{a}{b}\right] \cdot_{\mathbb{Q}} \left[\frac{e}{f}\right]\right) \end{split}$$

as desired.

10/20: **Theorem 2.11.** \mathbb{Q} is countable.

Proof. By Exercise 1.39, $\mathbb{N} \times \mathbb{N}$ is countable, i.e.^[1], there exists a bijection $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. By Exercise 1.36, \mathbb{Z} is countable, i.e., there exists a bijection $g: \mathbb{Z} \to \mathbb{N}$. It follows that $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$ defined by h(a,b) = f(g(a),g(b)) is a bijection. Since $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \subset \mathbb{Z} \times \mathbb{Z}$, Exercise 1.37 implies $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ is countable.

Now the definitions of \mathbb{Q} and X (see Definition 2.5 and Exercise 2.2e) imply, among other things, that for all $\left[\frac{a}{b}\right] \in \mathbb{Q}$, $a,b \in \mathbb{Z}$ and $b \neq 0$, i.e., $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \setminus \{0\}$. Thus, the sets \mathbb{Q} and $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ are intimately related, but are *not* related by an *obvious* bijection. For example, the lemma from Theorem 2.10h proved that there are infinitely many "distinct" elements of \mathbb{Q} related to the single element $\left[\frac{1}{1}\right]$. Thus, if we were to define a function $f: \mathbb{Q} \to \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ by $f\left(\left[\frac{a}{b}\right]\right) = (a,b)$, the equivalence class $\left[\frac{1}{1}\right]$, for example, would map to (1,1), (2,2), (3,3), and infinitely many more distinct objects of $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, contradicting Definition 1.16 and asserting that f is not a function. However, we can see that, in a sense, $\mathbb{Q} \subset \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, implying by Exercise 1.37 that \mathbb{Q} is countable.

¹Let A be a set (such as $\mathbb{N} \times \mathbb{N}$). Technically, Definition 1.35 must be invoked to move from "A is countable" to "A is in bijective correspondence with \mathbb{N} ," and Definition 1.28 must be invoked to move from "A is in bijective correspondence with \mathbb{N} " to "there exists a bijection $f: A \to \mathbb{N}$." However, as we are no longer in Script 1, such justifications will not be supplied beyond this footnote.