Causal Discovery of DSGE Models

Emmet Hall-Hoffarth

University of Oxford

emmet. hall-hoffarth@economics.ox.ac.uk

April 29, 2021

Overview

- Causal discovery uses algorithms and data to identify causal models.
- Suppose that some observed data can be rationalised by some DSGE model. I use some concepts from this literature to provide a test and algorithm to identify the log-linear (state-space) approximation of that model.
- Test and algorithm are asymptotically consistent for a unique solution.
- Performs well in small sample simulations and real data.

DSGE Models

Consumer problem

$$\max \sum_{t=0}^{\infty} \beta^{t} U(C_{t}, L_{t}, ...) \text{ s.t.}$$

$$\max P_{t} f(L_{t}, ...) - W_{t} L_{t} - ... \forall t$$

$$\lim_{T \to \infty} \beta^{T} \lambda_{x, T} x_{T} \to 0 \ \forall x \in \{K, B, ...\}$$
Firm problem

Competitive equilibrium, market clearing conditions ...

State Space Representation

Log-linear approximation yields the following general solution:

$$\vec{y_t} = \vec{A}\vec{x}_{t-1} + \vec{B}\vec{z}_t \tag{1}$$

$$\vec{x}_t = \vec{C}\vec{x}_{t-1} + \vec{D}\vec{z}_t \tag{2}$$

$$\vec{z_t} = \vec{E}\vec{z_{t-1}} + \vec{\epsilon_t} \tag{3}$$

- Partition variables \vec{w}_t into three categories:
 - $\vec{x_t}$: predetermined or endogenous state variables
 - $\vec{y_t}$: control variables or "jumpers"
 - $\vec{z_t}$: exogenous state variables
- Algorithm identifies partition (and $\vec{A} \vec{E}$).

Results (I)

- Baseline RBC model.
- 9 Observables, true partition is $\vec{z} = [g \ z]$, $\vec{x} = [k]$, $\vec{y} = [y \ c \ i \ r \ w \ l]$.
- \bullet With large sample of 10^6 observations algorithm uniquely identifies true partition.
- 834 models considered (models with $1 \le \#$ state variables ≤ 3).
- 19683 possible models reduced to just 1.

Results (II)

- 1000 iterations, 100 sample size
- Wins = number of times model selected, Valid = number of times model is valid relative to CI test

Index	Exogenous States	Endogenous States	Wins	Valid	ı
1	g z	k	944	944	
2	g w	k	27	729	
3	gy	k	27	571	ı
4	c g	k	2	8	
5	gly		0	340	ı
6	gry		0	421	
7	g r	k	0	576	
8	glz		0	716	ı
9	gir		0	781	
10	gil		0	629	ı
11	gi	k	0	867	
12	grw		0	609	
13	grz		0	858	ı
14	gkl		0	625	
15	glw		0	603	ı
16	gkr		0	779	
17	cgw		0	1	

Why is this useful?

- Reduction in the problem space
 - Given a set of observations over k variables there are 3^k possible state-space partitions. Reduce this to just one (or very small subset).
 - However, still doesn't reduce to a single structural model (microeconomic dissonance).
- Agnosticism
 - Assume nothing in particular about each variable treat them all the same.
 - As a result the solution produced reflects the data to the greatest extent possible.
- Inference
 - Is consumption predetermined? If so then habits important to explain behaviour.
 - Is inflation predetermined? If so then it is probably not fully rational / forward looking.

(Massively Oversimplified) Methodology

 State-Space model is also a DAG, therefore, it implies a set of conditional independence relationships:

$$x_t \perp \!\!\! \perp x_t' \mid |[\vec{x}_{t-1}, \vec{z}_t] \text{ for all } (x_t, x_t') \in [\vec{x}_t, \vec{y}_t]$$
 (4)

$$x_{t-1} \perp \!\!\!\perp z_t \mid\mid \vec{z}_{t-1} \text{ for all } x_{t-1} \in \vec{x}_{t-1} \text{ and } z_t \in \vec{z}_t$$
 (5)

$$x_t \perp \!\!\! \perp z_{t-1} \mid\mid [\vec{x}_{t-1}, \vec{z}_t] \text{ for all } x_t \in [\vec{x}_t, \vec{y}_t] \text{ and } z_{t-1} \in \vec{z}_{t-1}$$
 (6)

$$z_t \perp \!\!\! \perp z_t' || \vec{z}_{t-1} \text{ for all } z_t \neq z_t' \in \vec{z}_t$$
 (7)

- We test for these conditional independence relationships in the data.
- Iterate over all possible models until we find one that passes these tests.

DAGs

Github

 $https://github.com/e-hall-hoffarth/causal_dsge$