Corollary 2.3.8. Let $\Sigma \subset (M, \xi)$ be a convex hypersurface with dividing set Γ . Fix a contact form β on Γ such that $\xi|_{\Gamma} = \ker \beta$ and consider $\Gamma \times \mathbb{R}^2_{x,y}$ equipped with the contact form $\alpha = \beta - ydx$. Let $D(R) \subset \mathbb{R}^2$ be the open disk of radius R. Then for any R > 0 there exists a contact embedding

$$j: (\Gamma \times D(R), \ker \alpha) \to (M, \xi)$$

such that $j|_{\Gamma \times \{0\}} = \mathrm{id}_{\Gamma}$.

Let Pyth contact form for $(E \times R_{,5})$. Then one can take $P \cap P$ as contact form on P since $d(P + ydt)(\partial_t, Y) = df(Y) \neq 0$ and $(\partial_t, Y, > \oplus T)^{-1} = T_{,M}$.

We construct a while differ.

Tx (-E,E)x /Rs -> M p, m, s -> F/n F/s p

(Yand Ot commute).

 $TY(\partial_{n}) = -nY$ $TY(\partial_{s}) = \partial_{t}$ $(\beta + fdt)(-nY \partial_{t}) = 1$ We also hrow $Y \in \text{Ker dP, Ker B}$ From this one can follow

(P+fdt) = BIT + uds

For for some $D(\varepsilon)$ true. We can embed $T \times D(R) \longrightarrow T \times (-\xi, \varepsilon) \times IR$, for any R by $P, X, Y \longrightarrow P, \stackrel{E}{R} \times, \stackrel{R}{\varepsilon} Y$