VECTOR CALCULUS, Week 12

11.6 Directional Derivatives and the Gradient Vector

Def: Suppose f = f(x, y) is a real-valued function defined near (a, b).

• If $\vec{u} = \langle u_1, u_2 \rangle$ is a unit-length vector, then we define the directional derivative of f in the direction of \vec{u} at (a, b) to be

$$D_{\vec{u}}f(a,b) = \lim_{t \to 0} \frac{f(a+u_1t, b+u_2t) - f(a,b)}{t},$$

assuming this limit exists.

- If $\vec{v} \in \mathbf{R}^2$ with $\vec{v} \neq \vec{0}$, then we define the **directional derivative of** f in the direction of \vec{v} at (a,b) to be $D_{\frac{\vec{v}}{|\vec{v}|}}f(a,b)$, assuming this directional derivative exists.
- If $f_x(a,b)$, $f_y(a,b)$ exist, then we define the **gradient of** f **at** (a,b) to be

$$\nabla f(a,b) = \langle f_x(a,b), f_y(a,b) \rangle.$$

We make similar definitions for real-valued functions f = f(x, y, z).

Fact: Suppose f = f(x, y) is differentiable at (a, b), and suppose $\vec{u} = \langle u_1, u_2 \rangle$ is a unit-length vector.

- $D_{\vec{u}}f(a,b) = \vec{u} \cdot \nabla f(a,b) = u_1 f_x(a,b) + u_2 f_y(a,b).$
- Suppose ℓ is the line through (a,b) in the direction of \vec{u} , and consider the point-direction parameterization $\ell(t) = \langle a,b \rangle + t\vec{u}$ for $t \in \mathbf{R}$. $D_{\vec{u}}f(a,b)$ measures the instantaneous rate of change of f at (a,b) as we move along ℓ with increasing values of t. In other words, $D_{\vec{u}}f(a,b) = \frac{d}{dt}f(\ell(t))|_{t=0}$.

Similar facts are true for f = f(x, y, z).

Ex: Directional derivatives and gradients.

- 1. Compute the directional derivative of $f(x,y) = x^2 + e^{xy}$ in the direction of $\vec{v} = <2, 1>$ at (a,b)=(-1,1).
- 2. Compute the directional derivative of $f(x, y, z) = xyz^2$ in the direction of $\vec{v} = <1, 1, 2 > \text{at } (a, b) = (2, 3, 5)$.
- 3. Compute the instantaneous rate of change of $f(x,y) = x^2 + xy$ at (a,b) = (2,1) as we move along the line y = x 1 with increasing values of x.

Fact: If f = f(x, y) is differentiable at (a, b), then $\nabla f(a, b)$ points in the direction where the values of f increase the most, while $-\nabla f(a, b)$ points in the direction where the values of f decrease the most. The same is true for real-valued functions f = f(x, y, z).

Ex: Compute the direction in which the values of the given function f increase the most and decrease the most at the given point (a, b).

- 1. $f(x,y) = \sqrt{1-x^2-y^2}$ at (a,b) = (1/2,1/2).
- 2. $f(x, y, z) = x^2 + y^2 + z^2$ at (a, b, c) = (0, 2, 1).

Fact: Suppose $k \in \mathbf{R}$.

- If f = f(x, y) is differentiable at (a, b) and f(a, b) = k, then $\nabla f(a, b)$ is perpendicular at (a, b) to the level curve of f at k.
 - This means $\langle -f_y(a,b), f_x(a,b) \rangle$ is tangent at (a,b) to the level curve of f at k.
- If f = f(x, y, z) is differentiable at (a, b, c) and f(a, b, c) = k, then $\nabla f(a, b, c)$ is perpendicular at (a, b, c) to the level surface of f at k.

Ex:

- 1. For $f(x,y) = \sqrt{1-x^2-y^2}$, verify that $\nabla f(1/2,1/2)$ is perpendicular to the level curve f at k = f(1/2,1/2).
- 2. Find a vector which is perpendicular at (a, b, c) = (1/2, 1/2, 1/2) to the surface $z = 1 x^2 y^2$.