MA 323 (2020) Monte Carlo Simulation: LAB 12 Jay Vikas Sabale 180123019

Problem I:

[The	fir	st 25 values o	of the V	an	der	Corput	sequence	are:
	N	Van der Corpu	it(N)					
0	0	0.6	0000					
1	1	0.5	0000					
2	2	0.2	25000					
3	3	0.7	75000					
4	4	0.1	2500					
5	5	0.6	2500					
6	6	0.3	37500					
7	7	0.8	37500					
8	8	0.6	6250					
9	9	0.5	6250					
10	10	0.3	1250					
11	11	0.8	31250					
12	12	0.1	8750					
13	13	0.6	8750					
14	14	0.4	3750					
15	15	0.9	3750					
16	16	0.6	3125					
17	17	0.5	3125					
18	18	0.2	8125					
19	19	0.7	8125					
20	20	0.1	5625					
21	21	0.6	5625					
22	22	0.4	0625					
23	23	0.9	0625					
24	24	0.6	9375			-	п п п	

1000 Values of Van der Corput Sequence using radical inverse function, plotted as (x_i, x_{i+1}) :

Observations:

1. The above graph shows that, x(i) and x(i+1) are wee distributed in the interval [0, 1]. They acquire a **triangular shape** which is suggestive of a **sufficient variation** in consecutive values.

Comparison between the sampled distributions of 100 and 1,00,000 values generated by Van der Corput and Linear Congruence Generator.

Linear Congruence Generator Used:

- 1. a = 51749
- 2. b = 1352
- 3. m = 244944
- 4. $x_0 = 3$

Problem II:

(Halton Sequence Actual)

(Halton Sequence Scattered)

Observations:

1. From the above graphs, we can observe that the absolute difference in the values of phi_3(i) and phi_2(i) increases with increasing i. With phi_2(i) being greater than phi_3(i) for sufficiently large i.