

Oberflächenspannung von Wasser

Aufgabennummer: B_268		
Technologieeinsatz:	möglich ⊠	erforderlich

Die Oberfläche von Wasser verhält sich ähnlich einer gespannten, elastischen Folie. Diese Oberflächenspannung von Wasser ist abhängig von dessen Temperatur und kann näherungsweise durch die folgende Funktion σ beschrieben werden:

$$\sigma(T) = 59.2 + 53.8 \cdot \ln\left(\frac{644 - T}{273,15}\right) \text{ mit } 273,15 \le T \le 370$$

T... Wassertemperatur in Kelvin (K)

 $\sigma(T)$... Oberflächenspannung bei einer Wassertemperatur T in Mikronewton pro Meter (μ N/m)

273,15 Kelvin entsprechen 0 Grad Celsius (°C).

Eine Temperaturveränderung um 1 Kelvin entspricht einer Veränderung um 1 °C.

- a) Berechnen Sie die Oberflächenspannung von Wasser bei 25 °C.
 - Erklären Sie mithilfe der Funktionsgleichung, warum die Oberflächenspannung mit steigender Wassertemperatur abnimmt.
 - Berechnen Sie die Funktionswerte der 1. Ableitung von σ für T = 274 K und für T = 350 K.
 - Vergleichen Sie die Ergebnisse der berechneten Werte im gegebenen Sachzusammenhang.

- b) Ausgehend von $\sigma(T) = 59.2 + 53.8 \cdot \ln \left(\frac{644 T}{273.15} \right)$ wurden Umformungen durchgeführt.
 - Kreuzen Sie diejenige Umformung an, die korrekt ist. [1 aus 5]

$e^{\sigma(T)} = e^{59.2} + 53.8 \cdot \left(\frac{644 - T}{273, 15}\right)$	
$\sigma(T) - 59.2 = 53.8 \cdot \frac{\ln(644 - T)}{\ln(273, 15)}$	
$273,15 \cdot e^{\frac{\sigma(7) - 59,2}{53,8}} = 644 - T$	
$\frac{\sigma(T)}{53.8} = 59.2 + \ln(644 - T) - \ln(273.15)$	
$\sigma(T) - 59.2 + \ln(273.15) = 53.8 \cdot \ln(644 - T)$	

- c) Modellieren Sie die Funktion σ so, dass die Temperatur in Grad Celsius eingesetzt werden kann. Verwenden Sie in der veränderten Funktion für die Temperatur in °C die Bezeichnung $T_{\rm C}$ (0 K = -273,15 °C, $\Delta T = \Delta T_{\rm C}$).
- d) Die Oberflächenspannung in Abhängigkeit von der Temperatur kann vereinfacht auch durch eine lineare Funktion beschrieben werden.

Temperatur in K	275	285	295	305	315	325	335	345	355
Oberflächenspannung in µN/m	75,38	73,90	72,38	70,82	69,21	67,55	65,83	64,06	62,23

- Ermitteln Sie für diese Daten eine lineare Ausgleichsfunktion.
- Interpretieren Sie die Steigung dieser Ausgleichsfunktion im gegebenen Sachzusammenhang.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Möglicher Lösungsweg

a) $\sigma(298,15) = 74,92...$

Die Oberflächenspannung beträgt bei 25 °C (298,15 K) ungefähr 71,9 µN/m.

Steigt T, wird der Bruch $\frac{644-T}{273,15}$ kleiner, und damit sinkt auch $53.8 \cdot \ln\left(\frac{644-T}{273,15}\right)$. Es wird also ein immer kleiner werdender Wert zu 59.2 addiert.

$$\sigma'(274) \approx -0.1454 \frac{\mu N/m}{m \cdot K}$$

$$\sigma'(350) \approx -0.183 \frac{\mu N/m}{m \cdot K}$$

Die Oberflächenspannung pro Kelvin sinkt bei 350 K stärker als bei 274 K.

b)

[]	
[]	
$273,15 \cdot e^{\frac{\sigma(T) - 59,2}{53,8}} = 644 - T$	\boxtimes
[]	
[]	

c)
$$\sigma(T_{\rm C}) = 59.2 + 53.8 \cdot \ln\left(\frac{644 - (273.15 + T_{\rm C})}{273.15}\right)$$

d) Ermittlung durch lineare Regression: $\sigma(T) = -0.16... \cdot T + 120.74...$ Bedeutung der Steigung: Nimmt die Temperatur um 1 K zu, nimmt die Oberflächenspannung um rund 0.16 μ N/m ab.

Klassifikation

□ Teil A 🗵 Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 4 Analysis
- b) 2 Algebra und Geometrie
- c) 3 Funktionale Zusammenhänge
- d) 5 Stochastik

Nebeninhaltsdimension:

- a) 2 Algebra und Geometrie
- b) —
- c) 2 Algebra und Geometrie
- d) 3 Funktionale Zusammenhänge

Wesentlicher Bereich der Handlungsdimension:

- a) D Argumentieren und Kommunizieren
- b) C Interpretieren und Dokumentieren
- c) A Modellieren und Transferieren
- d) B Operieren und Technologieeinsatz

Nebenhandlungsdimension:

- a) B Operieren und Technologieeinsatz, C Interpretieren und Dokumentieren
- b) —
- c) —
- d) C Interpretieren und Dokumentieren

Schwierigkeitsgrad:

Punkteanzahl:

a)	mittel		a)	4
b)	mittel		b)	1
c)	mittel	1	c)	1
d)	mittel		d)	2

Thema: Sonstiges

Quellen: -