### MR Fluid Damper

- MR passage
  - Flow rate controlled by magnetic choke
- Accumulator
  - Bladder with nitrogen pressurized at 300 psi
  - Account for volume of fluid displaced by piston





#### MR Fluid Damper

#### Force versus Velocity Envelope for MR Fluid Damper



Damper may be controlled to produce a force that is any arbitrary function of displacement, velocity or acceleration.

## **Experimental Setup**

- Obtain MR damper characteristics
- Shaker: produce excitation
- Load cell: measure damping force
- Laser vibrometer: measure displacement and velocity



### MR Damper Characteristics





- Force vs. velocity & displacement for different voltages
- Offset in the damping force due to the accumulator
- Hysteretic looping

## MR Damper Model



- Relation between force and other parameters (displacement, velocity, voltage input)
- Bouc-Wen model: hysteretic modeling

#### MR Damper Model



$$F = c_1 \dot{y} + k_1 (x - x_0)$$

$$c_1 \dot{y} = \alpha z + k_0 (x - y) + c_0 (\dot{x} - \dot{y})$$

$$\alpha = \alpha(u) = \alpha_a + \alpha_b u$$

$$c_1 = c_1(u) = c_{1a} + c_{1b}u$$

$$c_0 = c_0(u) = c_{0a} + c_{0b}u$$

Rheological equilibrium

Bouc-Wen model:

$$\dot{z} = -\gamma |\dot{x} - \dot{y}| |z|^{n-1} z - \mu (\dot{x} - \dot{y}) |z|^{n} + A(\dot{x} - \dot{y}) \qquad \dot{u} = -\eta (u - v)$$

#### **Model Parameters**

• Minimizing the error

$$J = \sum (f_{\text{experiment}} - f_{\text{model}})^2$$

 Accurately predicts the behavior of the damper



#### MR Suspended Seat





Performance for an MR semi-active controlled suspended seat

# Car Suspension System





(a) Twin buildings of New York World Trade Center(b) Model of a multistory building



Free-body diagram for multistory building dynamics



Distributed array of MR dampers as part of a civil engineering structure. Seismic motion causes one floor to shear relative to next floor



Linear, lumped-parameter model of the structure





Schematic of MR fluid seismic damper

Performance for 20-ton MR damper



Completed 20-ton MR fluid damper





Commercial MR fluid rotary brake

Schematic of MR fluid rotary brake



Exercise machine with MR brake