2072U Computational Science I Winter 2022

Week	Topic
1	Introduction
1–2	Solving nonlinear equations in one variable
3–4	Solving systems of (non)linear equations
5–6	Computational complexity
6–8	Interpolation and least squares
8–10	Integration & differentiation
10-12	Additional Topics

1. Error plotting

2. Recursion

3. Newton-Raphson iteration

2072U, Winter 2022 1/7

Evaluate function only.

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].
- ▶ Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.
- Works only for one unknown.

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.
- Works only for one unknown.

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.
- Works only for one unknown.

Newton/secant

Uses function and derivative/two initial points.

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.
- Works only for one unknown.

- Uses function and derivative/two initial points.
- Function must be continuously differentiable /continuous around x*.

- Evaluate function only.
- that f is continuous and has unique zero on [a, b].

Need to find a and b such

- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.
- Works only for one unknown.

- Uses function and derivative/two initial points.
- Function must be continuously differentiable /continuous around x*.
- Need one/two initial guesses.

- Evaluate function only.
- that f is continuous and has unique zero on [a, b].

Need to find a and b such

- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.
- ► Works only for one unknown.

- Uses function and derivative/two initial points.
- Function must be continuously differentiable /continuous around x*.
- Need one/two initial guesses.
- ► Error estimate: $\epsilon^{(k)} \approx |\delta x^{(k)}|$.

Evaluate function only.

Need to find a and b such

- that f is continuous and has unique zero on [a, b].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.
- Works only for one unknown.

- Uses function and derivative/two initial points.
- Function must be continuously differentiable /continuous around x*.
- Need one/two initial guesses.
- Error estimate: $\epsilon^{(k)} \approx |\delta x^{(k)}|$.
- Decreases as $\epsilon^{(k+1)} \approx (\epsilon^{(k)})^2 \dots$

Evaluate function only.

Need to find a and b such

- that *f* is continuous and has unique zero on [*a*, *b*].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.
- Works only for one unknown.

- Uses function and derivative/two initial points.
- Function must be continuously differentiable /continuous around x*.
- Need one/two initial guesses.
- Error estimate: $\epsilon^{(k)} \approx |\delta x^{(k)}|$.
- Decreases as $\epsilon^{(k+1)} \approx (\epsilon^{(k)})^2 \dots$
- ... so that $\epsilon^{(k)} \approx (\epsilon^{(0)})^{2^k}$. aka **quadratic** convergence.

- Evaluate function only.
- Need to find a and b such that f is continuous and has unique zero on [a, b].
- Upper bound for error: $|x^{(k)}-x^*| \le \epsilon^{(k)} = |b^{(k)}-a^{(k)}|$
- Decreases as $\epsilon^{(k+1)} = \epsilon^{(k)}/2 \dots$
- ... so that $\epsilon^{(k)} = \epsilon^{(0)}/2^k$. aka **linear** convergence.
- Straight line on semilog plot.
- ► Works only for one unknown.

- Uses function and derivative/two initial points.
- Function must be continuously differentiable /continuous around x*.
- Need one/two initial guesses.
- Error estimate: $\epsilon^{(k)} \approx |\delta x^{(k)}|$.
- Decreases as $\epsilon^{(k+1)} \approx (\epsilon^{(k)})^2 \dots$
- ... so that $\epsilon^{(k)} \approx (\epsilon^{(0)})^{2^k}$. aka **quadratic** convergence.
- Steeper than linear on semilog plot.

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

Simple example of *recursive* programming:

```
def bisection(a, b, kMax, epsX, epsF):
    mid = (a+b)/2; x = mid
    err = abs(a-b)/2
    fm = func(mid)
    res = abs(fmid)
    if (kMax > 0):
        if err > epsX or res > epsF:
            fa = func(a)
            if (fm*fa > 0):
                a = mid
            else:
                b = mid
            x, err, res = bisection(a, b, kMax-1, epsX
                                    , epsF)
    else:
        print("Warning: no convergence...")
    return x, err, res
```

2072U, Winter 2022 4/7

Pros:

Pros:

- clean, concise, elegant code;
- conceptually clear.

Cons:

Pros:

- clean, concise, elegant code;
- conceptually clear.

Cons:

- code harder to follow;
- uses more memory;
- small mistake can give bad crash!

2072U, Winter 2022 5/7

Newton iteration can be generalized to *n* equations with *n* unknowns.

Alternative derivation in 1D:

$$f(x + \delta x) \approx f(x) + f'(x)\delta x = 0 \Rightarrow \delta x = -\frac{f(x)}{f'(x)}$$

Now in 2D. We want to find x_1 and x_2 such that

$$f_1(x_1, x_2) = 0$$

 $f_1(x_1, x_2) = 0$

Note that, in general, we need the same number of equations and unknowns to find (isolated) solutions...

$$f_{1}(x_{1} + \delta x_{1}, x_{2} + \delta x_{2}) \approx f_{1}(x_{1}, x_{2}) + \frac{\partial f_{1}}{\partial x_{1}}(x_{1}, x_{2})\delta x_{1} + \frac{\partial f_{1}}{\partial x_{2}}(x_{1}, x_{2})\delta x_{2}$$

$$f_{2}(x_{1} + \delta x_{1}, x_{2} + \delta x_{2}) \approx f_{2}(x_{1}, x_{2}) + \frac{\partial f_{2}}{\partial x_{1}}(x_{1}, x_{2})\delta x_{1} + \frac{\partial f_{2}}{\partial x_{2}}(x_{1}, x_{2})\delta x_{2}$$

which gives:

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_1, x_2) & \frac{\partial f_1}{\partial x_2}(x_1, x_2) \\ \frac{\partial f_2}{\partial x_1}(x_1, x_2) & \frac{\partial f_2}{\partial x_2}(x_1, x_2) \end{pmatrix} \begin{pmatrix} \delta x_1 \\ \delta x_2 \end{pmatrix} = -\begin{pmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{pmatrix}$$

ロトオタトオミトオミト ミ めのの