Foundation Algebra for Physical Sciences & Engineering

CELEN036

Practice Problems SET-8

Topic: Binomial theorem

Type 1: Expansion using the Binomial theorem with
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

1. Evaluate and simplify:

$$(i) \qquad \binom{n}{n-1}$$

$$\binom{n}{k+1}$$

$$\binom{n}{k}$$

$$\binom{n}{k}$$

$$\binom{n}{k}$$

$$\binom{n}{k}$$

$$\binom{n}{k}$$

$$\binom{n}{k}$$

$$\binom{n}{k}$$

$$\binom{n}{k}$$

2. Prove that
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$
.

3. Expand the following expressions using the Binomial theorem:

(i)
$$(1+x)^7$$
 (ii) $(1+\frac{x}{4})^5$ (iii) $(1-\frac{x}{2})^6$

$$(iv)$$
 $(2x+5)^4$ (v) $(4-3x)^4$ (vi) $(2x+y)^4$

Type 2: To find the coefficient of certain term in the expansion

4. Find the coefficient of x^4 in the expansion of $(2x+3)^9$.

5. Find the coefficient of x^2 in the expansion of $(7-3x)^7$.

6. Find the coefficient of x^3 in the expansion of $\left(1 - \frac{x}{5}\right)^{15}$.

7. Find the coefficient of x^3 in the expansion of $\left(2x-\frac{1}{3x}\right)^9$.

8. Find the coefficient of x^4y^4 in the expansion of $\left(2x-y^2\right)^6$

9. Expand the expression $(\sqrt{2}+1)^5+(\sqrt{2}-1)^5$ using Binomial expansion.

- 10. In the Binomial expansion of $(x+ky)^8$, the coefficient of (x^5y^3) is -1512. Find the value of $k \in \mathbb{R}$.
- 11. Find the value of x if the 5th term in $\left(\frac{1}{2\sqrt{x}} \frac{1}{2}\right)^{10}$ is 105.
- 12. Consider the expansion of $(m+8)^n$, where m is a positive constant, n is a positive integer. Determin the value of m and n, given that the ratio between the coefficients of 12th term and 14th term is equal to $\frac{637}{4640}$ and that the ratio between the coefficients of 7th term and 9th term is $\frac{49}{1360}$.

Type 3:Application of the generalized Binomial theorems

- 13. Assuming that |x| < 1, obtain the Binomial expansions of the following expressions, up to the term with x^3 :
 - $(i) (1+x)^{-6}$ $(ii) (1-x)^{-3}$
- 14. Expand $\frac{1}{\sqrt{1-x^2}}$ using generalized Binomial theorem up to the term of x^6 .
- 15. Find the coefficient of x^2 in $\frac{1+x}{(1-2x)^5}$. $\left(\text{Hint:} \frac{1+x}{(1-2x)^5} = (1-2x)^{-5} + x(1-2x)^{-5}\right)$
- 16. Use generalized Binomial theorem to show that $\sqrt{\frac{1+4x}{1-x}} \approx 1 + \frac{5}{2}x \frac{5}{8}x^2$, as $|x| < \frac{1}{4}$.
- 17. Find the expansion of $\frac{\sqrt{1-\frac{1}{2}x}}{(1+x)^2}$ in ascending powers of x, up to and including the term in x^2 .
- 18. Apply the Binomial theorem to approximate the following values. Correct to 4 decimal places using the first **four** terms in the expansion.
 - $(i) \quad (1.01)^{-3} \qquad (ii) \quad (1.03)^{-2} \qquad (iii) \quad \sqrt{1.03} \qquad (iv) \quad \frac{1}{\sqrt[3]{1.02}}$
- 19. Use the first four terms of the Binomial expansion of $\left(1-\frac{1}{50}\right)^{1/2}$ to derive an approximation of $\sqrt{2}$ to 5 decimal places.
- 20. The radius of a sphere is measured as r, with an error of $\delta r=1.2\%$ of r. The volume of the sphere $V=\frac{4}{3}\pi r^3$ is then calculated using the measured r. Use the approximation $(1+x)^n\approx 1+nx+\frac{n(n-1)}{2}\cdot x^2 \quad \text{to find the resulting error } \delta V \text{ in the calculated volume}.$

Answers

$$\mathbf{1} \qquad (i) \quad n \qquad (ii) \quad \frac{(n+1)\,n}{2} \qquad (iii) \quad \frac{n-k}{k+1} \qquad (iv) \quad \frac{n+1}{r}$$

3 (i)
$$1 + 7x + 21x^2 + 35x^3 + 35x^4 + 21x^5 + 7x^6 + x^7$$
 (ii) $1 + \frac{5}{4}x + \frac{5}{8}x^2 + \frac{5}{32}x^3 + \frac{5}{256}x^4 + \frac{1}{1024}x^5$ (iii) $1 - 3x + \frac{15}{4}x^2 - \frac{5}{2}x^3 + \frac{15}{16}x^4 - \frac{3}{16}x^5 + \frac{1}{64}x^6$ (iv) $16x^4 + 160x^3 + 600x^2 + 1000x + 625$

(iii)
$$1 - 3x + \frac{15}{4}x^2 - \frac{5}{2}x^3 + \frac{15}{16}x^4 - \frac{3}{16}x^5 + \frac{1}{64}x^6$$
 (iv) $16x^4 + 160x^3 + 600x^2 + 1000x + 625$

$$(v) 256 - 768x + 864x^2 - 432x^3 + 81x^4 (vi) x^{10} - 5x^8y + 10x^6y^2 - 10x^4y^3 + 5x^2y^4 - y^5$$

6
$$-\frac{91}{25}$$

7
$$-\frac{1792}{9}$$

9
$$58\sqrt{2}$$

10
$$k = -3$$

11
$$\frac{1}{8}$$

12
$$m = 7, n = 41$$

13 (i)
$$1 - 6x + 21x^2 - 56x^3 + \cdots$$
 (ii) $1 + 3x + 6x^2 + 10x^3 + \cdots$

14
$$1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + \frac{5}{16}x^6 + \cdots$$

17
$$1 - \frac{9}{4}x + \frac{111}{32}x^2 + \cdots$$

19 1.414214

20
$$\delta V \approx 3.6432\% V$$