

Similarity-Aware Deep Adversarial Learning for Facial Age Estimation

Ningxia University, China
Hao Liu

Personal Introduction

☐ Hao Liu

- Associate Professor, Ningxia University, China
- Ph.D supervised by Professor *Jie Zhou* and Professor *Jiwen Lu* of Tsinghua University
- Researches on facial analysis, particularly face alignment and facial age estimation

□ Selected Publications

- ➤ **Hao Liu**, Jiwen Lu*, Minghao Guo, Suping Wu and Jie Zhou. Learning Reasoning-Decision Networks for Robust Face Alignment, *T-PAMI*, 2019
- ➤ **Hao Liu**, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Two-Stream Transformer Networks for Video-based Face Alignment, *T-PAMI*, 2018
- ➤ **Hao Liu**, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Ordinal Deep Learning for Facial Age Estimation, *T-CSVT*, 2019
- ➤ **Hao Liu,** Jiwen Lu*, Jianjiang Feng and Jie Zhou. Label-Sensitive Deep Metric Learning for Facial Age Estimation, *T-IFS*, 2018

Why Challenging?

☐ They are of nearly the same ages!

Zhi-ying Lin (45 years old)

De-gang Guo (46 years old)

Why Challenging?

☐ Apparent Age Estimation [ICCVW 15]

- ☐ Challenges
 - Large variances due to facial expressions and occlusions
 - Appearance changes with different facial make-up
 - Limited training samples/missing labels
 - Label correlation for our human ages (real world)

Conventional Methods

■ Facial Age Estimation Framework

- ☐ Conventional Methods for Facial Age Estimation:
 - ✓ Feature Extraction (*Requiring Much Strong Prior Knowledge*)
 - Hand-crafted Features: BIF, LBP, SIFT
 - Shallow Feature Learning: CS-LBFL [Lu et al, T-IP 2015]
 - ✓ Age Predictor (*Imbalance of Class/Training Sample*)
 - LDL [Geng et al, T-PAMI 2013]
 - OHRANK [Chen et al, CVPR 2012]

Age Estimation by Deep Learning

- Why Deep Feature Learning?
 - ✓ **Learning Features** directly from raw pixels
 - ✓ **Modeling Nonlinear Relationship** between Pixels and Labels
 - ✓ Transfer Learning (Fine-tuning)
- Label Correlation
 - ✓ Ordinal Regression [Niu et al, CVPR 2016]
 - ✓ Missing Labels [Liu et al, PR 2017]
- ☐ Goal: Jointly learning feature descriptors for face representation and exploiting the relationship of human age labels
- □ ISSUES
 - Hard/Semi-hard examples are meaningful (violates)
 - Hard-Mining in unobserved space [Duan el al, CVPR 2018]

Our Insight

- ☐ Two-fold criterions:
- The distance between each pair from different classes with a small age gap (circle and triangle) is smaller than that from a negative pair with a large age gap (circle and square).
- ✓ The distances of the pairs with same ages should become as smaller as possible.

Blue: existing training samples

Orange: generated hard-negatives

Main Contributions

- ➤ Our method aims to seek batches of unobserved hardnegative samples based on existing training samples, which typically reinforces the discriminativeness of the learned feature representation for facial ages.
- Motivated by the fact that age labels are usually correlated in real-world scenarios, we carefully develop a similarity-aware function to well measure the distance of each face pair based on the age value gaps.

Proposed Framework

Objective Formulation

$$\min_{\theta_g,\theta_d} J = G_{(i,j,k,l)} + \lambda D_{(i,j,k,l)},$$

- The generator G aims to generate hard-negative samples in which the learned metric would misclassify.
- The discriminator D optimizes a discriminative distance metric, where *the inter-class separability, intra-class compactness* and label correlation of age classes are exploited to characterize the feature similarity simultaneously.

Hard-Negative Generation

$$\min_{\theta_g,\theta_d} J = G_{(i,j,k,l)} + \lambda D_{(i,j,k,l)},$$

$$\min_{\theta_g} G_{(i,j,k,l)} = G_{hard} + G_{reg} + G_{adv},$$

Subject to

$$\mathbf{to} = \begin{cases}
\sum_{(i,j,k)} [\|\tilde{x}_k - x_i\|_2^2 + \|\tilde{x}_k - x_k\|_2^2 \\
+ \max(0, d_f(x_i, \tilde{x}_k)[-Q(y_i, y_k)] - \tau)^2], \\
C_{(i,j,k,l)} = \begin{cases}
\sum_{(i,j,l)} [\|\tilde{x}_l - x_j\|_2^2 + \|\tilde{x}_l - x_l\|_2^2 \\
+ \max(0, d_f(x_j, \tilde{x}_l)[-Q(y_j, y_l)] - \tau)^2],
\end{cases}$$

Similarity-Aware Function

$$Q(y_m, y_n) = \begin{cases} \frac{1}{L} \ln(1 + \frac{|y_n - y_m|}{\varepsilon}), & |y_m - y_n| \le L \\ \frac{|y_n - y_m|}{L} - C, & otherwise \end{cases}$$

Age Smoothness

- With this function, the face pair with a larger age gap has a higher weight than that with a smaller age gap.
- At the same time, we amplify the differences between the pairs with interval *L* in the transformed feature space.

Deep Adversarial Learning

$$\min_{\theta_g, \theta_d} J = G_{(i, j, k, l)} + \lambda D_{(i, j, k, l)},$$

$$\min_{\theta_d} D_{(i, j, k, l)} = D_{(i, k)} + D_{(j, l)} + D_{(i, j)},$$

Subject to

$$\begin{split} D_{(i,j,k,l)} &= \sum_{(i,j,k,l)} [\max_{(i,k) \in \hat{N}} (0,\tau - d_f(x_i, \tilde{x}_k) Q(y_i, y_k))^2 \\ &+ \max_{(j,l) \in \hat{N}} (0,\tau - d_f(x_j, \tilde{x}_l) Q(y_j, y_l)) \\ &+ \max_{(i,j) \in \hat{N}} (0, d_f(x_i, x_j))^2]. \end{split}$$

Experimental Results on Morph

Comparisons of MAEs with state-of-the-arts

Method	MAE	Year
BIF+KNN	9.64	-
OHRanker [6]	6.49	2011
LDL [7]	5.69	2013
CPNN [7]	5.67	2013
CA-SVR [22]	4.87	2013
CS-LBFL [9]	4.52	2015
CS-LBMFL [9]	4.37	2015
CSOHR [23]	3.74	2015
DeepRank [24]	3.57	2015
DeepRank+ [24]	3.49	2015
OR-CNN [13]	3.27	2016
ODFL [14]	3.12	2017
LSDML [10]	3.08	2018
M-LSDML [10]	2.89	2018
SADAL	2.75	-

Comparisons of MAEs with different deep learning approaches

Method	MAE
unsupervised VGG + KNN	7.21
unsupervised VGG + OHRanker	4.58
VGG + Single Label	3.63
VGG + Gaussian Label	3.44
ODFL [14]	3.12
SADAL	2.75

Experimental Results on FG-NET

Comparisons of MAEs compared with state-of-the-art approaches.

Method	MAE	Year
BIF+KNN	8.24	-
OHRanker [6]	4.48	2011
LDL [7]	5.77	2013
CPNN [7]	4.76	2013
CSOHR [23]	4.70	2015
CS-LBFL [9]	4.43	2015
CS-LBMFL [9]	4.36	2015
ODFL [14]	3.89	2017
LSDML [10]	3.92	2018
M-LSDML [10]	3.74	2018
SADAL	3.67	-

References

- Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou: Label-Sensitive Deep Metric Learning For Facial Age Estimation. In IEEE Transactions on Information Forensics and Security (T-IFS), 13(2): 292-305 (2018).
- Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu* and Jie Zhou: Deep Adversarial Metric Learning. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2780-2789 (2018).
- **Hao Liu**, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Ordinal Deep Learning for Facial Age Estimation, IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT), 2018.
- Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Group-Aware Deep Feature Learning for Facial Age Estimation, Pattern Recognition (PR), 2017.
- Hao Liu, Penghui Sun, Jiaqiang Zhang, Suping Wu, Zhenhua Yu and Xuehong Sun: Similarity-Aware and Variational Deep Adversarial Learning for Robust Facial Age Estimation. In IEEE Transactions on Multimedia (T-MM), Under Review.

THANK YOU! Q&A