Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans: The optimal parameter for Ridge regression, denoted as alpha, is determined to be 2, while for Lasso regression, the optimal value is 0.001. With these chosen alpha values, the R2 score of the model is approximately 0.83.

Upon doubling the alpha values in both Ridge and Lasso, the predictive accuracy remains consistent at around 0.82. However, there is a subtle alteration in the coefficient values. The updated model is showcased in the Jupyter notebook, highlighting the modifications in the coefficients.

Ridge Regression

	Ridge Co-Efficient		Ridge Doubled Alpha Co-Efficient
Total_sqr_footage	0.169122	Total_sqr_footage	0.149028
GarageArea	0.101585	GarageArea	0.091803
TotRmsAbvGrd	0.067348	TotRmsAbvGrd	0.068283
OverallCond	0.047652	OverallCond	0.043303
LotArea	0.043941	LotArea	0.038824
CentralAir_Y	0.032034	Total_porch_sf	0.033870
LotFrontage	0.031772	CentralAir_Y	0.031832
Total_porch_sf	0.031639	LotFrontage	0.027526
Neighborhood_StoneBr	0.029093	Neighborhood_StoneBr	0.026581
Alley_Pave	0.024270	OpenPorch SF	0.022713
OpenPorchSF	0.023148	MSSubClass_70	0.022189
MSSubClass_70	0.022995	Alley_Pave	0.021672
RoofMatl_WdShngl	0.022586	Neighborhood_Veenker	0.020098
Neighborhood_Veenker	0.022410	BsmtQual_Ex	0.019949
SaleType_Con	0.022293	KitchenQual_Ex	0.019787
HouseStyle_2.5Unf	0.021873	HouseStyle_2.5Unf	0.018952
PavedDrive_P	0.020160	MasVnrType_Stone	0.018388
KitchenQual_Ex	0.019378	PavedDrive_P	0.017973
LandContour_HLS	0.018595	RoofMatl_WdShngl	0.017856
Sale Type_Oth	0.018123	PavedDrive_Y	0.016840

Lasso Regression

	Lasso Co-Efficient		Lasso Doubled Alpha Co-Efficient
Total_sqr_footage	0.202244	Total_sqr_footage	0.204642
GarageArea	0.110863	GarageArea	0.103822
TotRmsAbvGrd	0.063161	TotRmsAbvGrd	0.064902
OverallCond	0.046686	OverallCond	0.042168
LotArea	0.044597	CentralAir_Y	0.033113
CentralAir_Y	0.033294	Total_porch_sf	0.030659
Total_porch_sf	0.028923	LotArea	0.025909
Neighborhood_StoneBr	0.023370	BsmtQual_Ex	0.018128
Alley_Pave	0.020848	Neighborhood_StoneBr	0.017152
OpenPorchSF	0.020776	Alley_Pave	0.016628
MSSubClass_70	0.018898	OpenPorchSF	0.016490
LandContour_HLS	0.017279	KitchenQual_Ex	0.016359
KitchenQual_Ex	0.016795	LandContour_HLS	0.014793
BsmtQual_Ex	0.016710	MSSubClass_70	0.014495
Condition1_Norm	0.015551	MasVnrType_Stone	0.013292
Neighborhood_Veenker	0.014707	Condition1_Norm	0.012674
MasVnrType_Stone	0.014389	BsmtCond_TA	0.011677
PavedDrive_P	0.013578	SaleCondition_Partial	0.011236
LotFrontage	0.013377	LotConfig_CulDSac	0.008776
PavedDrive_Y	0.012363	PavedDrive_Y	0.008685

Overall since the alpha values are small, we do not see a huge change in the model after doubling the alpha.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

- The optimal lambda values for Ridge and Lasso are determined as follows:
 - Ridge -2
 - Lasso -0.0001
- The Mean Squared Errors for Ridge and Lasso are as follows:
 - Ridge 0.0018396090787924262
 - Lasso 0.0018634152629407766

• Both models exhibit nearly identical Mean Squared Errors. Considering Lasso's capability for feature reduction, where the coefficient values of some features become zero, Lasso holds a distinct advantage over Ridge. As a result, Lasso is recommended as the preferred final model.

Question 3

After building the model, you realized that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

The five most crucial predictor variables in the existing Lasso model are:

- Total sqr footage
- GarageArea
- TotRmsAbvGrd
- OverallCond
- LotArea

After excluding these attributes from the dataset, we constructed a new Lasso model in the Jupyter notebook. The R2 of the updated model, without the top 5 predictors, decreases to 0.73. Simultaneously, the Mean Squared Error sees an increase to 0.0028575670906482538.

The top 5 features are

	Lasso Co-Efficient
LotFrontage	0.146535
Total_porch_sf	0.072445
HouseStyle_2.5Unf	0.062900
HouseStyle_2.5Fin	0.050487
Neighborhood_Veenker	0.042532

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

According to Occam's Razor, when confronted with two models demonstrating similar performance on finite training or test data, it is advisable to choose the one that makes fewer assumptions. This preference for simplicity is grounded in several key reasons:

- Simpler models tend to be more generic and widely applicable.
- They require fewer training samples for effective training, making them easier to train.
- Simpler models often exhibit greater robustness compared to complex ones.

Complex models, with low bias and high variance, can behave erratically with changes in the training dataset. On the other hand, simpler models, characterized by high bias and low variance, may make more errors in the training set but are less prone to overfitting and more adaptable to new data.

To strike a balance between simplicity and utility, regularization is employed. Regularization involves introducing a regularization term to the cost function, which penalizes the absolute values or squares of the model parameters. This process ensures that the model remains simple without becoming overly naive.

Furthermore, embracing model simplicity contributes to the Bias-Variance Trade-off:

- Complex models are highly sensitive to changes in the dataset, leading to instability.
- Simpler models, abstracting essential patterns from data, are less likely to undergo drastic changes with additions or removals of data points.

Bias quantifies the model's likely accuracy on test data, and a complex model can be accurate with sufficient training data. However, overly naive models exhibit a high bias, as they fail to discriminate among test inputs effectively.

Variance refers to the model's susceptibility to changes in the training data. Striking a balance between bias and variance is essential for maintaining model accuracy, as illustrated in the accompanying graph, which minimizes the total error. This balance ensures that the model is both accurate and adaptable across different datasets.

