L'impacte de sa consommation alimentaire sur l'environnement

Une analyse des données Agribalyse

LU3IN036 - mai 2023 Un projet de : **Tristan Charpentier** Zhile Zhang

Données synthèse : Ce poster explique en détail notre analyse des données synthèses lci, toutes les colonnes de facteurs environnementaux sont utilise.

Synthèse

Pré-traitement

Méthodes

Apprentissage Supervisé

Pre-traitement des données :

- Élimination des données de trop faible qualité selon le critère DOR (DOR < 3.0)
- Normalisation des données

Attribution de label :

Nous calculons un nouveau score « Environnement Total » a partir de la somme des facteurs environnementaux. Nous regardons ensuite la medianne et attribuons dans une nouvelle colonne « Environment Classe »

Environment Classe = 1: Si > median -1: Si ≤ median

KNN

Meilleur k: 1 Accuracy moyenne: 0.927

Perceptron

Meilleur learning rate: 0.0007 Accuracy movenne: 0.979

Perceptron Biais

Meilleur learning rate: 0.0051 Accuracy movenne: 0.979

Arbres

Du au nombre d'éléments classes, il est impossible d'afficher l'arbre complet de décision. En voici un extrait :

Accuracy moyenne accuracy: 0.981

Évaluation

Des tests de validation croisée en 10 ont été réalises sur chacune des 4 méthodes pour évaluer la performance de prédiction

Méthode	Accuracy
KNN	0.927
Perceptron	0.979
Perceptron Biais	0.961
Arbres	0.981

Apprentissage non-supervisé

Clustering hierarchique

Pre-traitement des données :

- Normalisation des données
- GroupeBy sous-groupe alimentaire

Sous-groupes uniques:

- aides culinaires et ingrédients divers, aides
- aides culinaires et ingrédients divers, algues
- 54. viandes, œufs, poissons, œufs

Linkage simple

Linkage complet

K-means

Pour trouver le meilleur k, on utilise la « Elbow method ». Ceci est la méthode standard utilisé dans l'analyse K-means.

Meilleur K trouve : **k=22**

On utilise la méthode TSNE pour faciliter l'affichage des clusters.

Pré-traitement

Méthodes

L'impacte de sa consommation alimentaire sur l'environnement

Une analyse des données Agribalyse

Données étapes : On utilise la somme de l'impacte environnementale de pour chaque étape de production. On fini avec 6 dimensions.

Nom des colonnes d'entrées (sommes):

Agriculture

Transformation Emballage

Transport

Supermarché et distribution

Consommation

Étapes

Apprentissage Supervisé

Attribution de label :

Élimination des données de trop faible qualité selon le critère DOR (DOR < 3.0)

Normalisation des données

Pre-traitement des données :

Nous calculons un nouveau score pour chaque étape de la distribution des aliments a partir de la somme de ces étapes. Nous regardons ensuite le médian et attribuons dans une nouvelle colonne « Environment Classe »

Environment Classe = 1: Si > médian

-1 : Si ≤ médian

Meilleur learning rate: 0.0037 Accuracy moyenne: 0.810

Meilleur learning rate: 0.005 Accuracy moyenne: 0.832

Arbres

Du au nombre d'éléments classes, il est impossible d'afficher l'arbre complet de décision. En voici un extrait :

Accuracy moyenne: 0.930

Évaluation

Des tests de validation croisée en 10 ont été réalises sur chacune des 4 méthodes pour évaluer la performance de prédiction

Méthode	Accuracy
KNN	0.933
Perceptron	0.810
Perceptron Biais	0.832
Arbres	0.930

Apprentissage non-supervisé

Clustering hierarchique

Pre-traitement des données :

- Normalisation des données
- GroupeBy sous-groupe alimentaire

Sous-groupes uniques:

- 0. aides culinaires et ingrédients divers, aides culinaires
- 1. aides culinaires et ingrédients divers, algues

LU3IN036 - mai 2023

Tristan Charpentier

Un projet de :

Zhile Zhang

54. viandes, œufs, poissons, œufs

Linkage simple

Linkage complet

K-means

Pour trouver le meilleur k, on utilise la « Elbow method » . Ceci est la méthode standard utilisé dans l'analyse K-means.

Meilleur K trouve : **k=9**

On utilise la méthode TSNE pour faciliter l'affichage des clusters.

L'impacte de sa consommation alimentaire sur l'environnement

Une analyse des données Agribalyse

Données Ingrédients: Ici, on se base sur 4 facteurs environnementaux pour essayer de prédire l'Écotoxicité pour écosystèmes aquatiques d'eau douce.

LU3IN036 - mai 2023 Un projet de : **Tristan Charpentier** Zhile Zhang

Données d'entrées : Acidification terrestre et eaux douces Eutrophisation eaux douces Eutrophisation marine **Eutrophisation terrestre** Écotoxicité pour écosystèmes aquatiques d'eau douce

Ingrédients

Pré-traitement

Méthodes

Apprentissage Supervisé

Pre-traitement des données :

- Correction des données (décalage des
- Normalisation des données

Attribution de label :

Nous regardons le médian de la colonne « Écotoxicité pour écosystèmes aquatiques d'eau douce. » douce pour y attribuer un label.

Écotoxicité pour écosystèmes aquatiques = 1 : Si ≤ médian -1: Si > médian d'eau douce.

KNN

Meilleur k: 19 Accuracy moyenne: 0.989

Perceptron

Meilleur learning rate: 0.0001 Accuracy movenne: 0.984

Perceptron Biais

Meilleur learning rate: 0.0051 Accuracy movenne: 0.989

Arbres

Du au nombre d'éléments classes, il est impossible d'afficher l'arbre complet de décision. En voici un extrait :

Accuracy moyenne: 0.980

Évaluation

Des tests de validation croisée en 10 ont été réalises sur chacune des 4 méthodes pour évaluer la performance de prédiction

Méthode	Accuracy
KNN	0.989
Perceptron	0.984
Perceptron Biais	0.989
Arbres	0.980

Apprentissage non-supervisé

Clustering hierarchique

Pre-traitement des données :

- Normalisation des données
- GroupeBy sous-groupe alimentaire

Sous-groupes uniques:

- aides culinaires et ingrédients divers, aides
- 1. aides culinaires et ingrédients divers, algues
- 54. viandes, œufs, poissons, œufs

Linkage simple

Linkage complet

K-means

Pour trouver le meilleur k, on utilise la « Elbow method ». Ceci est la méthode standard utilisé dans l'analyse K-means.

Meilleur K trouve : **k=5**

On utilise la méthode TSNE pour faciliter l'affichage des clusters.