Tarea # 3 (Conjunto Cerrados y Funciones Continuas)

David Cardozo

11 de febrero de 2015

Proposición 1.Si (X, τ) es un espacio *puerta* y además Hausdorff, entonces X tiene a lo sumo un punto límite.

Demostración

Sea (X, τ) un espacio puerta y de Hausdorff, Sean dos puntos u, v diferentes de X, por la propiedad de que el espacio es de Hausdorff, existen vecindades U y V (correspondientes a u y a v), que son disyuntas, i.e, $U \cap V = \emptyset$. Observar que $U \cup \{v\} - \{u\}$ es cerrado siempre que v es un punto limite. (Para ello lo demostramos en el siguiente lema).

Lema 1. Si v es un punto limite en un espacio puerta, entonces $U \cup \{v\} - \{u\}$ es cerrado

Demostración. Sea v un punto limite. Suponga por contradicción que $U \cup \{v\} - \{u\}$ es abierto, podemos tambien considerar el conjunto abierto $[U \cup \{v\} - \{u\}] \cap V$, pero, esta intersección tiene como único elemento a v, pero esto contradice el hecho que v es un punto limite. Por lo tanto concluimos $U \cup \{v\} - \{u\}$ no es abierto y utilizando la hipótesis que estamos en un espacio puerta, podemos entonces decir que $U \cup \{v\} - \{u\}$ es cerrado.

Por el lema anterior $U \cup \{v\} - \{u\}$ es abierto y su complemento es abierto. Tenemos entonces $[U \cup \{v\} - \{u\}]^c \cap U$ es abierto y por lo tanto, como $(U \cup \{v\} - \{u\})^c \cap U = \{u\}$. $\{u\}$ es abierto y no es punto limite de X para $u \neq v$. Concluimos que a lo sumo X tiene un punto limite. \square

Proposición 2. Sea $X\subseteq\mathbb{R}$ con la topología de subespacio. Si X es un espacio puerta entonces X es enumerable.

Demostración

Por contradicción, Suponga X subconjunto de $\mathbb R$ con la topología de subespacio y X es no enumerable.

Lema 2. $X \subseteq \mathbb{R}$ no enumerable entonces tiene al menos un punto límite

Demostración Suponga por contradicción X no tiene punto limite, como X subconjunto de \mathbb{R} implica que X es separable, entonces existe $D\subseteq X$ un conjunto denso contable. Observar que para todo $x\in X$ existe una vecindad

de x tal que $U_x - \{x\} \cap = \emptyset$. Ahora como D era un conjunto denso de X existe $d \in D$ para el cual $d \in U_x \cap X$ es abierto para todas las vecindades de cualquier x. Pero entonces esto implicaría que X = D, que contradice que X es enumerarle. Por lo tanto hay un punto límite. \square

Por un argumento similar entonces $X - \{x\}$ tiene un punto limite diferente de x, con lo que concluimos que X no es un espacio puerta, pues hay mas de un punto limite.

Proposición 3. Sea $A \subseteq S_{\Omega}$. Si A es enumerable entonces \bar{A} es enumerable. Demostración

Sea $A \subseteq S_{\Omega}$, A es enumerarle y por la anterior tarea hay un cota superior a tal que $a \in S_{\Omega}$.

Lema 3. Si x punto límite de A entonces $x \le a$

Demostración. Por contradicción, sea x un punto límite de A y x>a. Considere entonces $S=\{s\in S_{\Omega}|s>x\}$. Observemos entonces que S no es vacio, pues si S fuera vacío (min S,x) sería enumerable. Entonces S no vacio, significa que existe un elemento mínimo γ considere entonces el abierto de la forma (a,γ) en donde $x\in (a,\gamma)$ pero $(a,\gamma)\cap A=\{x\}$, lo cual contradice el hecho que x es un punto limite.

Concluimos entonces, que $\bar{A} \subseteq [\min S_{\omega}, a]$ y tenemos entonces que existe un $y \in S_{\Omega}$ tal que $\bar{A} \subseteq [\min S_{\omega}, y]$ que es enumerable. Conluimos entonces que \bar{A} es enumerable.

Proposición 4 Si $f: \mathbb{R}_{\ell} \to S_{\Omega}$ es una función continua entonces f no es inyectiva.

Demostración Siguiendo el hilo de todas las demostraciones (¡Sorpresa! Por contradicción). Sea f una functión continua y suponga que es inyectiva. Sea $\Sigma = \{\sigma \in S_{\Omega} | f(x) = s, x \in \mathbb{R}_{\ell}\}$ por construcción, observamos que $\Sigma \neq \emptyset$, y tenemos entonces que existe un elemento mínimo s. Por injectividad, podemos considerar el conjunto no vacio $\Sigma - \{s\}$, este también tiene un elemento mínimo s'. Definamos ahora A = [s, s') que es un abierto de S_{Ω} y observar que $f^{-1}(A)$ es equivalente a $f^{-1}(s)$, por lo tanto existe un $x \in \mathbb{R}_{\ell}$ tal que $f^{-1}(s) = x$, pero observar que $\{x\}$ no es un abierto de \mathbb{R}_{ℓ} , entonces tenemos la preimagen de un abierto, no ser un abierto. Lo cual contradice la hipótesis que f es continua. \square

Proposición 5 Sean $f:A\to B$ y $g:C\to D$ funciones contínuas. Definimos la función $f\times g:A\times C\to B\times D$ por la ecuación

$$(f \times g)(\langle a, c \rangle) = \langle f(a), g(c) \rangle$$

 $f \times g$ es contínua.

Demostración

Peligro: Demostración corta Sea un básico $U \times V$ de la topología producto $B \times D$, es decir, U abierto en B y V abierto en D. $(f \times g)^{-1}(U \times V) = \{\langle a,b\rangle \mid f(a) \in U, g(b) \in V\} = f^{-1}(U) \times g^{-1}(V)$ que es un producto de la forma $f^{-1}(U)$ abierto en A y $g^{-1}(V)$ abierto en C, debido a la continuidad de f y g, y estos son básicos de la topología producto de $A \times C$. Por lo tanto concluimos que $f \times G$ es continua.