	1A	2A	3A	4A	5A	6 A	Оценка	1 зад.	2 зад.	Σ баллов
ФИО										
группа										

Подпись преп. _

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

9 июня 2018 г.

Вариант А

- **1А.** (1,5) Акустический резонатор длиной L=70.0 см заполнен углекислым газом CO_2 при температуре 22,0 °C. Интервал между соседними резонансными частотами оказался равен $\Delta f=192$ Гц. Определить молярную теплоёмкость углекислого газа при постоянном объёме C_V .
- **2А.** (1,5) Сосуд объёмом V=1 мл, заполненный воздухом, помещён в термостат с температурой t=35 °C. Оценить, при каком давлении P в сосуде относительная среднеквадратичная флуктуация его внутренней энергии составит $\sqrt{\overline{\Delta E^2}}/E \sim 0.01\%$.
- **3А.** (1,5) В окрестности центра сферы радиусом R компактно сосредоточены $N\gg 1$ молекул с равновесным распределением по скоростям. Наиболее вероятная скорость молекул равна v_0 , масса молекулы m. Частицы разлетаются изотропно, не взаимодействуя между собой, и поглощаются стенками сферы. Найти давление на стенки в момент $t=R/v_0$.
- **4A.** (2) Горизонтально расположенный теплоизолированный цилиндрический сосуд разделён на две части поршнем, прикреплённым пружиной к его правой стенке (см. рис.). Слева от поршня находится идеальный одноатомный газ, справа вакуум. Пружина не деформирована, когда поршень находится у левой стенки сосуда. Исходно поршень удерживается защёлкой, при этом сила сжатия пружины в n=2 раза превосходит силу давления, оказываемого газом на поршень. В некоторый момент защёлку убирают. Найти изменение молярной энтропии газа ΔS к моменту установления равновесия.
- **5А.** (2) Закрытый сосуд с кипящей водой соединён с атмосферой через капилляр длины $\ell=10$ см и радиуса r=0,30 мм. Найти тепловую мощность W, которую необходимо подводить к жидкости для поддержания её кипения при температуре $t_1=101\,^{\circ}\mathrm{C}$. Атмосферное давление $P_{\mathrm{A}}=100\,\mathrm{k}\,\Pi\mathrm{a}$, вязкость водяного пара $\eta=1,2\cdot 10^{-5}\,\mathrm{Ha\cdot c}$, теплота парообразования $\lambda=2,3\,\mathrm{k}\,\mathrm{Дж}/\mathrm{r}$. Считать, что на всей длине капилляра установилось вязкое ламинарное течение.

6А. (2,5) Вертикально расположенная пробирка высотой h=5 см заполнена водой, в которой диспергированы в небольшом количестве наночастицы плотностью $\rho=4$ г/см³ каждая. Система исходно находится в равновесии при температуре $T_0=3\cdot 10^2$ K, а отношение максимальной и минимальной концентраций наночастиц равно $n_{\rm max}/n_{\rm min}=1,1$. На дне сосуда размещают адсорбент, поглощающий все попадающие на него наночастицы. Оценить время, требуемое для очистки воды от примеси. Считать, что частицы имеют сферическую форму, а их сила трения в жидкости описывается формулой Стокса $F=6\pi\eta rv$, где вязкость воды $\eta=10^{-3}$ Па \cdot с.

	1Б	2Б	3Б	4Б	5Б	6Б	Оценка		1 зад.	2 зад.	Σ баллов
ФИО											
группа								J			

Подпись преп. -

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

9 июня 2018 г.

Вариант Б

- **1Б.** (1,5) Акустический резонатор длиной L=45,0 см заполнен смесью гелия ⁴He и неона ²⁰Ne при температуре 24,0 °С. Минимальная резонансная частота оказалась равна $f_0 = 952 \, \Gamma$ ц. Определить мольные доли компонентов смеси.
- **2Б.** (1,5) Пылинка радиусом r=1 мкм находится в воздухе при нормальных условиях. Найти среднеквадратичную флуктуацию числа молекул $\sqrt{\overline{\Delta N^2}}$, ударяющихся о пылинку за $t=10^{-3}$ с.
- **3Б.** (1,5) В окрестности центра сферы радиусом R компактно сосредоточены $N \gg 1$ атомов с равновесным распределением по скоростям, таким что их среднеквадратичная скорость равна и. Масса атома m. Частицы разлетаются изотропно, не взаимодействуя между собой, и поглощаются стенками сферы. Найти плотность потока энергии на стенки в момент t = R/u.
- 4Б. (2) Горизонтально расположенный теплоизолированный цилиндрический сосуд разделён на две части поршнем, прикреплённым пружиной к правой стенке сосуда (см. рис.). Слева от поршня находится моль азота N₂ при комнатной температуре, справа — вакуум. Вначале пружина не деформирована, а поршень удерживается защёлкой. Защёлку убирают, и когда система приходит в равновесие, давление газа оказывается в n=3 раза меньше исходного. Считая газ идеальным, найти изменение его энтропии ΔS в этом процессе.
- **5Б.** (2) Закрытый сосуд с кипящей водой соединён с атмосферой через отверстие радиусом r=0.50 мм. Атмосферное давление равно $P_{\rm A}=103$ к Π а. Найти тепловую мощность W, которую необходимо подводить к жидкости для поддержания её кипения при температуре $T_1 = 376 \text{ K}$. Теплота парообразования $\lambda = 41 \ {\rm KДж/моль}$. Течение через отверстие считать изоэнтропическим. Вкладом колебаний в теплоёмкость водяного пара пренебречь.

6Б. (2,5) По длинному капилляру течёт жидкость, имеющая начальную температуру $t_0 = 0$ °C. На выходе из капилляра поддерживается температура $t_1 = 27$ °C. Скорость потока равна v = 0.4 мм/с. Найти установившуюся температуру жидкости на расстоянии L=1 см до края капилляра. Теплопроводность жидкости $\kappa = 8 \, \text{Bt/(m \cdot K)}$, теплоёмкость единицы объёма $C = 2 \, \text{Дж/(cm}^3 \cdot \text{K)}$. Теплопроводность

стенок считать пренебрежимо малой, жидкость считать идеальной.