2/2

2/2

2/2

2/2

0/2

2/2

0/2

0/2

2/2

2/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas) :
OUDEA Brieg	
6	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il d'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +221/1/xx+···+221/5/xx+.	
Q.2 La distance d'édition (avec les opérations le dense est de :	ettre à lettre insertion et suppression) entre les mots danse et
□ 1 □ 3	□ 0 ■ 2 □ 5
Q.3 Pour $L_1 = \{a, b\}^*, L_2 = (\{a\}^* \{b\}^*)^*$:	
$\square L_1 \subseteq L_2 \qquad \square L_1 \not\subseteq L$	$L_1 = L_2 \qquad \qquad \square L_1 \supseteq L_2$
Q.4 Que vaut $L \cdot \emptyset$?	
□ {ε} ®	0
	_
Q.5 Que vaut <i>Pref</i> ({ab, c}):	
$\square \{b,c,\varepsilon\} \qquad \square \{b,\varepsilon\} $	
Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$	
Q.7 Pour toute expression rationnelle e , on a $e + \emptyset \equiv \emptyset + e \equiv e$.	
☐ fau:	x 🛚 vrai
Q.8 Pour toutes expressions rationnelles e, f , on a $(ef)^*e \equiv e(fe)^*$.	
⊠ vra	i 🔲 faux
 Q.9 Un langage quelconque □ est toujours récursif □ est toujours récursivement énumérable ☑ est toujours inclus (⊆) dans un langage rationnel □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle Q.10 Si e et f sont deux expressions rationnelles, quelle identité n'est pas nécessairement vérifiée? 	
	$e(fe)^* \qquad \square \emptyset^* \equiv \varepsilon \qquad \square \qquad (ef)^* \equiv e(fe)^* f$ $f(f)^* \equiv (f^*(ef)^* e^*)^* \qquad \square \qquad (ef)^* \equiv e(fe)^* f$

0/2

0/2

Quelle(s) opération(s) préserve(nt) la rationnalité?

- Complémentaire Différence Union Différence symétrique 0.4/2Intersection Aucune de ces réponses n'est correcte.
 - Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles.
- ☐ Rec ⊈ Rat 0/2 \boxtimes Rec = Rat Rec ⊇ Rat
 - Q.24 🕏 Quelle(s) opération(s) préserve(nt) la rationnalité?
- Suff Sous − mot ✓ Pref 0/2Transpose ☐ Aucune de ces réponses n'est correcte.
 - Q.25 On peut tester si un automate nondéterministe reconnaît un langage non vide.
- 0/2rarement oui, toujours jamais souvent
 - En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il. . .
- a des transitions spontanées accepte le mot vide accepte un langage infini 2/2 est déterministe
 - On peut tester si un automate déterministe reconnaît un langage non vide. Q.27
- ☐ Cette question n'a pas de sens Seulement si le langage n'est pas rationnel Oui 0/2□ Non
 - Si L et L' sont rationnels, quel langage ne l'est pas nécessairement? Q.28
- $\{u^nv^n\mid u\in L, v\in L', n\in\mathbb{N}\}$ 2/2
 - Il est possible de déterminer si une expression rationnelle et un automate correspondent au même Q.29 langage.
 - vrai en temps fini faux en temps infini faux en temps fini □ vrai en temps constant Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}? Q.30
- 2/2 ☐ Il n'existe pas. □ 6

+221/4/1+

Quels états peuvent être fusionnés sans changer le langage reconnu.

☐ 2 avec 4

- 3 avec 4
- ☐ 1 avec 3 ☐ 0 avec 1 et avec 2
- 1 avec 2
- ☐ Aucune de ces réponses n'est correcte.

Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}.$

0/2

2/2

0/2

- \square Il existe un ε -NFA qui reconnaisse $\mathcal P$ P ne vérifie pas le lemme de pompage
- \square II existe un DFA qui reconnaisse $\mathcal P$
- \square Il existe un NFA qui reconnaisse $\mathcal P$

Q.33

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

- \Box $a^* + b^* + c^*$
- ☐ (abc)*
- \Box $(a+b+c)^*$

Q.34

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- $\Box (ab^* + (a+b)^*)(a+b)^+$

Q.35 Sur $\{a,b\}$, quel est le complémentaire de

a, bSur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de

2/2

+221/5/60+

Fin de l'épreuve.