This is the k-nearest neighbors workbook for ECE C147/C247 Assignment #2

Please follow the notebook linearly to implement k-nearest neighbors.

Please print out the workbook entirely when completed.

The goal of this workbook is to give you experience with the data, training and evaluating a simple classifier, k-fold cross validation, and as a Python refresher.

Import the appropriate libraries

```
In [21]:
```

```
import numpy as np # for doing most of our calculations
import matplotlib.pyplot as plt# for plotting
from utils.data_utils import load_CIFAR10 # function to load the CIFAR-10 dataset.

# Load matplotlib images inline
%matplotlib inline

# These are important for reloading any code you write in external .py files.
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2
```

The autoreload extension is already loaded. To reload it, use: %reload ext autoreload

```
In [22]:
```

```
# Set the path to the CIFAR-10 data
cifar10_dir = '/Users/wangyuchen/desktop/COM SCI 247/HW/HW2/hw2_Questions/code/cifar
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
```

```
Training data shape: (50000, 32, 32, 3)
Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)
Test labels shape: (10000,)
```

In [23]:

```
# Visualize some examples from the dataset.
# We show a few examples of training images from each class.
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 't
num classes = len(classes)
samples per class = 7
for y, cls in enumerate(classes):
    idxs = np.flatnonzero(y train == y)
    idxs = np.random.choice(idxs, samples_per_class, replace=False)
    for i, idx in enumerate(idxs):
        plt idx = i * num classes + y + 1
        plt.subplot(samples_per_class, num_classes, plt_idx)
        plt.imshow(X train[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls)
plt.show()
```


In [24]:

```
# Subsample the data for more efficient code execution in this exercise
num_training = 5000
mask = list(range(num_training))
X_train = X_train[mask]
y_train = y_train[mask]

num_test = 500
mask = list(range(num_test))
X_test = X_test[mask]
y_test = y_test[mask]

# Reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
print(X_train.shape, X_test.shape)
```

(5000, 3072) (500, 3072)

K-nearest neighbors

In the following cells, you will build a KNN classifier and choose hyperparameters via k-fold cross-validation.

```
In [54]:
```

```
# Import the KNN class
from nndl import KNN
```

```
In [55]:
```

```
# Declare an instance of the knn class.
knn = KNN()

# Train the classifier.
# We have implemented the training of the KNN classifier.
# Look at the train function in the KNN class to see what this does.
knn.train(X=X_train, y=y_train)
```

Questions

- (1) Describe what is going on in the function knn.train().
- (2) What are the pros and cons of this training step?

Answers

- (1) This function reads in and stores the whole training dataset.
- (2) Pros: This is very simple to understand and implement. Also, it is fast. Cons: This is memory-intensive since we have to memorize all pictures in this dataset.

KNN prediction

In the following sections, you will implement the functions to calculate the distances of test points to training points, and from this information, predict the class of the KNN.

```
In [56]:
```

```
# Implement the function compute_distances() in the KNN class.
# Do not worry about the input 'norm' for now; use the default definition of the nor
# in the code, which is the 2-norm.
# You should only have to fill out the clearly marked sections.

import time
time_start =time.time()

dists_L2 = knn.compute_distances(X=X_test)

print('Time to run code: {}'.format(time.time()-time_start))
print('Frobenius norm of L2 distances: {}'.format(np.linalg.norm(dists_L2, 'fro')))
Time to run code: 22.409882068634033
```

Time to run code: 22.409882068634033 Frobenius norm of L2 distances: 7906696.077040902

Really slow code

Note: This probably took a while. This is because we use two for loops. We could increase the speed via vectorization, removing the for loops.

If you implemented this correctly, evaluating np.linalg.norm(dists_L2, 'fro') should return: ~7906696

KNN vectorization

The above code took far too long to run. If we wanted to optimize hyperparameters, it would be time-expensive. Thus, we will speed up the code by vectorizing it, removing the for loops.

```
In [57]:
```

```
# Implement the function compute_L2_distances_vectorized() in the KNN class.
# In this function, you ought to achieve the same L2 distance but WITHOUT any for lo
# Note, this is SPECIFIC for the L2 norm.

time_start =time.time()
dists_L2_vectorized = knn.compute_L2_distances_vectorized(X=X_test)
print('Time to run code: {}'.format(time.time()-time_start))
print('Difference in L2 distances between your KNN implementations (should be 0): {}
Time to run code: 0.31713294982910156
Difference in L2 distances between your KNN implementations (should be 0): 0.0
```

Speedup

Depending on your computer speed, you should see a 10-100x speed up from vectorization. On our computer, the vectorized form took 0.36 seconds while the naive implementation took 38.3 seconds.

Implementing the prediction

Now that we have functions to calculate the distances from a test point to given training points, we now implement the function that will predict the test point labels.

In [59]:

```
# Implement the function predict labels in the KNN class.
# Calculate the training error (num incorrect / total samples)
  from running knn.predict labels with k=1
error = 1
# ----- #
# YOUR CODE HERE:
  Calculate the error rate by calling predict labels on the test
  data with k = 1. Store the error rate in the variable error.
predicatey = knn.predict labels(dists L2 vectorized, 1)
error = np.count nonzero(predicatey != y test) / len(y test) #find the number of
                                          #predicated y that
                                          #is different
                                          #from real y
# END YOUR CODE HERE
# ------ #
print(error)
```

0.726

If you implemented this correctly, the error should be: 0.726.

This means that the k-nearest neighbors classifier is right 27.4% of the time, which is not great, considering that chance levels are 10%.

Optimizing KNN hyperparameters

In this section, we'll take the KNN classifier that you have constructed and perform cross-validation to choose a best value of k, as well as a best choice of norm.

Create training and validation folds

First, we will create the training and validation folds for use in k-fold cross validation.

```
In [44]:
```

```
# Create the dataset folds for cross-valdiation.
num folds = 5
X train folds = []
y train folds = []
# YOUR CODE HERE:
  Split the training data into num folds (i.e., 5) folds.
#
  X train folds is a list, where X train folds[i] contains the
#
    data points in fold i.
#
  y train folds is also a list, where y train folds[i] contains
#
    the corresponding labels for the data in X_train_folds[i]
# ----- #
X train folds = np.array split(X train, num folds)
Y_train_folds = np.array_split(y_train, num_folds)
# ----- #
# END YOUR CODE HERE
# ----- #
```

Optimizing the number of nearest neighbors hyperparameter.

In this section, we select different numbers of nearest neighbors and assess which one has the lowest k-fold cross validation error.

```
In [47]:
```

```
time start =time.time()
ks = [1, 2, 3, 5, 7, 10, 15, 20, 25, 30]
# ------ #
# YOUR CODE HERE:
#
   Calculate the cross-validation error for each k in ks, testing
#
   the trained model on each of the 5 folds. Average these errors
#
   together and make a plot of k vs. cross-validation error. Since
   we are assuming L2 distance here, please use the vectorized code!
   Otherwise, you might be waiting a long time.
crossv error = []
for k in ks: #for each k
   curerror = 0
   for i in range (0, num folds):
      xtraink = []
      ytraink = []
      xtraink = np.concatenate(X_train_folds[:i] + X_train_folds[i+1:]) #training
      ytraink = np.concatenate(Y_train_folds[:i] + Y_train_folds[i+1:]) #training
      knn.train(X=xtraink, y=ytraink) #train the model based on the training fold
      distsL2 vectorized = knn.compute L2 distances vectorized(X=np.array(X train
      predy = knn.predict_labels(distsL2_vectorized, k)
      curerror += np.count nonzero(predy != Y train folds[i]) / predy.shape[0]
      aveerror = curerror / num folds #average the error
   print(k, ":", aveerror)
   crossv error.append(aveerror)
plt.plot(ks, crossv_error) #plot of k vs. cross-validation error
plt.show()
# END YOUR CODE HERE
print('Computation time: %.2f'%(time.time()-time start))
1: 0.7344
2: 0.7626000000000002
3: 0.750400000000001
5: 0.726799999999999
7: 0.7256
```


Computation time: 26.12

Questions:

(1) What value of k is best amongst the tested k's?

(2) What is the cross-validation error for this value of k?

Answers:

(1) 10 is the value of k which is best amongst the tested k's.

(2) The cross-validation error for k = 10 is 0.7198

Optimizing the norm

Next, we test three different norms (the 1, 2, and infinity norms) and see which distance metric results in the best cross-validation performance.

```
In [53]:
```

```
time start =time.time()
L1 norm = lambda x: np.linalg.norm(x, ord=1)
L2 norm = lambda x: np.linalg.norm(x, ord=2)
Linf norm = lambda x: np.linalq.norm(x, ord= np.inf)
norms = [L1 norm, L2 norm, Linf norm]
# YOUR CODE HERE:
   Calculate the cross-validation error for each norm in norms, testing
   the trained model on each of the 5 folds. Average these errors
   together and make a plot of the norm used vs the cross-validation error
#
#
   Use the best cross-validation k from the previous part.
#
#
   Feel free to use the compute distances function. We're testing just
#
   three norms, but be advised that this could still take some time.
#
   You're welcome to write a vectorized form of the L1- and Linf- norms
#
   to speed this up, but it is not necessary.
normerror = []
for n in norms: #for each norm
   curerror = 0
   for i in range (0, num folds):
      xtraink = []
      ytraink = []
      xtraink = np.concatenate(X_train_folds[:i] + X_train_folds[i+1:]) #training
      ytraink = np.concatenate(Y_train_folds[:i] + Y_train_folds[i+1:]) #training
      knn.train(X=xtraink, y=ytraink) #train the model based on the training fold
      distsL2 = knn.compute distances(X=np.array(X train folds[i]), norm = n)
      prednewy = knn.predict_labels(distsL2, 10)
      curerror += np.count nonzero(prednewy != Y train folds[i]) / prednewy.shape[
       aveerror = curerror / num folds #average the error
   print(n, ":", aveerror)
   normerror.append(aveerror)
plt.plot(["L1 norm", "L2 norm", "Linf norm"], normerror) #plot of norms
                                                 #vs. cross-validation error
plt.show()
# END YOUR CODE HERE
print('Computation time: %.2f'%(time.time()-time start))
<function <lambda> at 0x7fc888bfc0d0> : 0.6886000000000001
<function <lambda> at 0x7fc888bfcc10> : 0.7198
```

<function <lambda> at 0x7fc8bc637040> : 0.8370000000000001

Computation time: 445.57

Questions:

- (1) What norm has the best cross-validation error?
- (2) What is the cross-validation error for your given norm and k?

Answers:

- (1) L1_norm has the best cross-validation error.
- (2) Under L1_norm and k = 10, the cross-validation error is 0.688600000000001.

Evaluating the model on the testing dataset.

Now, given the optimal k and norm you found in earlier parts, evaluate the testing error of the k-nearest neighbors model.

In [61]:

Error rate achieved: 0.722

Question:

How much did your error improve by cross-validation over naively choosing k = 1 and using the L2-norm?

Answer:

The error was 0.726 under k = 1 and the L2-norm. It has decreased by 0.004 by using L1_norm and k = 10.