Sciences

Industrielles de

l'Ingénieur

TD 1

Micromanipulateur compact pour la chirurgie endosco pique (MC²E)

Concours Commun Mines Ponts 2016

Savoirs et compétences :

- Res1.C4.SF1: Proposer la démarche de réglage d'un correcteur proportionnel intégral
- Con.C2 : Correction d'un système asservi

1

Le robot $\mathrm{MC}^2\mathrm{E}$ est utilisé par des chirurgiens en tant que troisième main lors de l'ablation de la vésicule biliaire. La cinématique du robot permet de garantir que le point d'insertion des outils chirurgicaux soit fixe dans le référentiel du patient.

Le robot est constitué de 3 axes de rotations permettant de mettre en position une pince. La pince est animée d'un mouvement de translation permettant de tirer la vésicule pendant que le chirurgien la détache du foie.

L'axe en translation du MC²E est asservi en effort constant pour tirer (ou pousser) la vésicule au fur et à mesure que le chirurgien utilise son bistouri pour détacher la vésicule du foie. Le diagramme des exigences au dos décrit les principales exigences auxquelles est soumis le MC²E.

Objectif Modéliser et valider l'asservissement en effort.

Modèle de connaissance de l'asservissement

L'équation de mouvement est définie par l'équation différentielle suivante : $J\frac{\mathrm{d}^2\theta_m(t)}{\mathrm{d}t^2}=C_m(t)-C_e(t)$ avec :

- *J*, inertie équivalente à l'ensemble en mouvement, ramenée sur l'arbre moteur;
- C_e(t), couple regroupant l'ensemble des couples extérieurs ramenés à l'arbre moteur, notamment fonction de la raideur du ressort.

On notera $\theta_m(p)$, $\Omega_m(p)$, $C_m(p)$ et $C_e(p)$ les transformées de Laplace des grandeurs de l'équation de mouvement. On pose $C_e(t) = K_{C\theta} \theta_m(t)$ où $K_{C\theta}$ est une constante positive. On a de plus $\frac{\mathrm{d}\theta_m(t)}{\mathrm{d}t} = \omega_m(t)$. La régulation se met alors sous la forme du schéma-blocs à retour unitaire simplifié que l'on admettra :

Modèle simplifié du montage du capteur d'effort.

Avec:

- C_e(p), couple de sortie mesuré par le capteur d'effort situé sur le MC²E;
- $C_c(p)$, couple de consigne;
- $C_m(p)$, couple moteur;
- $H_{cor}(p)$, fonction de transfert du correcteur.

Dans un premier temps, on prendra $H_{cor}(p) = 1$.

Question 1 Déterminer les expressions des fonctions de transfert $H_1(p)$, $H_2(p)$ et $H_3(p)$.

Question 2 Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p)$ de l'asservissement d'effort.

Question 3 Quel sera le comportement de cet asservissement en réponse à un échelon d'amplitude C_0 ? Conclure.

Pour remédier au problème ainsi mis en évidence, le concepteur a choisi de mettre en place une boucle interne numérique, dite tachymétrique, de gain *B*. On s'intéresse ici à la définition analytique de *B*. Le schéma-blocs modifié est donné figure suivante.

Régulation avec retour tachymétrique

On règle B de telle façon que, pour $H_{\rm cor}(p)$ = 1, la fonction de transfert en boucle ouverte, notée $H_{\rm BO}(p)$, puisse être mise sous la forme suivante : $H_{\rm BO}(p)$ = $\frac{1}{\left(1+\tau\,p\right)^2}$.

Question 4 Donner l'expression analytique du gain B, en fonction de J et $K_{C\theta}$, permettant d'obtenir cette forme de fonction de transfert. En déduire l'expression analytique de la constante de temps τ .

Les exigences du cahier des charges sont données plus loin (exigences 1.2.2.1 à 1.2.2.4).

Afin de répondre à ces exigences, on choisit un correcteur proportionnel-intégral de gain K_i et de constante de temps T_i . Le schéma-blocs de la régulation se met sous la forme de la figure qui suit.

Régulation avec correcteur PI.

Question 5 Donner l'expression de l'erreur statique en réponse à un échelon d'amplitude C_0 . Conclure vis-à-vis du cahier des charges.

On souhaite régler le correcteur pour que le système asservi ait une fonction de transfert en boucle fermée d'ordre 2 de la forme : $\frac{K_{\rm BF}}{2}$.

$$\frac{1}{1 + \frac{2\xi_{BF}}{\omega_{\text{OBF}}}p + \frac{p^2}{\omega_{\text{OBF}}^2}}$$

Question 6 Proposer une expression simple pour la constante de temps T_i .

Les courbes de la réponse fréquentielle en boucle ouverte pour $K_i = 1$ et les réponses fréquentielles en boucle fermée pour différentes valeurs de K_i sont données cidessous.

Question 7 En s'appuyant sur les diagrammes cidessous, proposer un choix de réglage pour K_i permettant (si possible) de vérifier toutes les performances.

Retour sur le cahier des charges

Question 8 Remplir le tableau et conclure sur la validation des critères de performance. Tracer l'allure de la réponse temporelle à un échelon C_{c0} en indiquant toutes les valeurs caractéristiques nécessaires.

Critère	Valeur	Valeur système	Écart
	CDCF	réglé	
Marges de gain			
Marges de phase			
Dépassement			
T5 %			
Erreur statique			

Corrigé résumé

1.
$$H_1(p) = \frac{1}{Jp}, H_2(p) = \frac{1}{p},$$

 $H_3(p) = K_{C\theta}.$

2.
$$H_{BF}(p) = \frac{KC\theta}{Jp^2 + 2K_{C\theta}}$$
.

3. Sinus d'amplitude $C_0/2$ et de pulsation ω_0 .

4.
$$\tau = \sqrt{\frac{J}{K_{C\theta}}}$$
 et $B = 2\sqrt{JK_{C\theta}}$.

5. Erreur statique nulle.

6. $\tau = T_i$.

7. $K_i = 0, 4(<1,58)$.

8. .

Micromanipulateur compact pour la chirurgie endoscopique (MC²E)

Concours Commun Mines Ponts 2016

Savoirs et compétences :

- Res1.C4.SF1 : Proposer la démarche de réglage d'un correcteur proportionnel intégral
- 🔳 Con.C2 : Correction d'un système asservi

Mise en situation

Le robot MC²E est utilisé par des chirurgiens en tant que troisième main lors de l'ablation de la vésicule biliaire. La cinématique du robot permet de garantir que le point d'insertion des outils chirurgicaux soit fixe dans le référentiel du patient.

Le robot est constitué de 3 axes de rotations permettant de mettre en position une pince. La pince est animée d'un mouvement de translation permettant de tirer la vésicule pendant que le chirurgien la détache du foie.

L'axe en translation du MC²E est asservi en effort constant pour tirer (ou pousser) la vésicule au fur et à mesure que le chirurgien utilise son bistouri pour détacher la vésicule du foie. Le diagramme des exigences au dos décrit les principales exigences auxquelles est soumis le MC^2E .

Objectif Modéliser et valider l'asservissement en effort.

Modèle de connaissance de l'asservissement

L'équation de mouvement est définie par l'équation différentielle suivante : $J \frac{\mathrm{d}^2 \theta_m(t)}{\mathrm{d}t^2} = C_m(t) - C_e(t)$ avec :

• J, inertie équivalente à l'ensemble en mouvement,

- ramenée sur l'arbre moteur;
- $C_e(t)$, couple regroupant l'ensemble des couples extérieurs ramenés à l'arbre moteur, notamment fonction de la raideur du ressort.

On notera $\theta_m(p)$, $\Omega_m(p)$, $C_m(p)$ et $C_e(p)$ les transformées de Laplace des grandeurs de l'équation de mouvement. On pose $C_e(t) = K_{C\theta} \theta_m(t)$ où $K_{C\theta}$ est une constante positive. On a de plus $\frac{\mathrm{d}\theta_m(t)}{\mathrm{d}t} = \omega_m(t)$. La régulation se met alors sous la forme du schéma-blocs à retour unitaire simplifié que l'on admettra :

Modèle simplifié du montage du capteur d'effort.

Avec:

- $C_e(p)$, couple de sortie mesuré par le capteur d'effort situé sur le MC²E;
- $C_c(p)$, couple de consigne;
- $C_m(p)$, couple moteur;
- $H_{cor}(p)$, fonction de transfert du correcteur.

Dans un premier temps, on prendra $H_{cor}(p) = 1$.

Question 9 Déterminer les expressions des fonctions de transfert $H_1(p)$, $H_2(p)$ et $H_3(p)$.

Question 10 Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p)$ de l'asservissement d'effort.

Question 11 Quel sera le comportement de cet asservissement en réponse à un échelon d'amplitude C_0 ? Conclure.

Pour remédier au problème ainsi mis en évidence, le concepteur a choisi de mettre en place une boucle interne numérique, dite tachymétrique, de gain B. On s'intéresse ici à la définition analytique de B. Le schéma-blocs modifié est donné figure suivante.

Régulation avec retour tachymétrique

On règle B de telle façon que, pour $H_{cor}(p) = 1$, la fonction de transfert en boucle ouverte, notée $H_{\rm BO}(p)$, puisse être mise sous la forme suivante : $H_{\rm BO}(p) = \frac{1}{\left(1 + \tau \, p\right)^2}$.

Question 12 Donner l'expression analytique du gain B, en fonction de J et $K_{C\theta}$, permettant d'obtenir cette forme de fonction de transfert. En déduire l'expression analytique de la constante de temps τ .

Les exigences du cahier des charges sont données plus loin (exigences 1.2.2.1 à 1.2.2.4).

Afin de répondre à ces exigences, on choisit un correcteur proportionnel-intégral de gain K_i et de constante de temps T_i . Le schéma-blocs de la régulation se met sous la forme de la figure qui suit.

Régulation avec correcteur PI.

Question 13 Donner l'expression de l'erreur statique en réponse à un échelon d'amplitude C_0 . Conclure vis-à-vis du cahier des charges.

On souhaite régler le correcteur pour que le système asservi ait une fonction de transfert en boucle fermée d'ordre 2 de la forme : $\frac{K_{\rm BF}}{2}$.

$$\frac{1}{1 + \frac{2\xi_{BF}}{\omega_{0BF}}p + \frac{p^2}{\omega_{0BF}^2}}$$

Question 14 Proposer une expression simple pour la constante de temps T_i .

Les courbes de la réponse fréquentielle en boucle ouverte pour $K_i = 1$ et les réponses fréquentielles en boucle fermée pour différentes valeurs de K_i sont données cidessous.

Question 15 En s'appuyant sur les diagrammes cidessous, proposer un choix de réglage pour K_i permettant (si possible) de vérifier toutes les performances.

Retour sur le cahier des charges

Question 16 Remplir le tableau et conclure sur la validation des critères de performance. Tracer l'allure de la réponse temporelle à un échelon C_{c0} en indiquant toutes les valeurs caractéristiques nécessaires.

Critère	Valeur CDCF	Valeur système réglé	Écart
Marges de gain			
Marges de phase			
Dépassement			
T5 %			
Erreur statique			

TD 1 - Corrigé

Micromanipulateur compact pour la chirurgie endoscopique (MC²E)

Concours Commun Mines Ponts 2016

Savoirs et compétences :

- Res1.C4.SF1: Proposer la démarche de réglage d'un correcteur proportionnel intégral
- □ Con.C2: Correction d'un système asservi

Mise en situation

Modèle de connaissance de l'asservissement

Question 17 Déterminer les expressions des fonctions de transfert $H_1(p)$, $H_2(p)$ et $H_3(p)$.

$$\begin{split} \textbf{Correction} \quad &\text{On a } p \, \theta_m(p) = \Omega_m(p) \text{ et donc } H_2(p) = \frac{\theta_m(p)}{\Omega_m(p)} = \frac{1}{p}. \\ &\text{De plus } J \, p^2 \, \theta_m(p) = C_m(p) - C_e(p) \Longleftrightarrow J \, p \, \Omega_m(p) = \Omega_m(p) \text{ et donc } H_1(p) = \frac{\Omega_m(p)}{C_m(p) - C_e(p)} = \frac{1}{J \, p}. \\ &\text{Enfin, } H_3(p) = \frac{C_e(p)}{\theta_m(p)} = K_{C\theta}. \end{split}$$

Question 18 Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p)$ de l'asservissement d'effort.

Correction D'une part,
$$F(p) = \frac{H_1(p)H_2(p)H_3(p)}{1 + H_1(p)H_2(p)H_3(p)} = \frac{\frac{1}{Jp}\frac{1}{p}K_{C\theta}}{1 + \frac{1}{Jp}\frac{1}{p}K_{C\theta}} = \frac{K_{C\theta}}{Jp^2 + K_{C\theta}}.$$

D'autre part, $H_{BF}(p) = \frac{\frac{K_{C\theta}}{Jp^2 + K_{C\theta}}}{1 + \frac{K_{C\theta}}{Jp^2 + K_{C\theta}}} = \frac{K_{C\theta}}{Jp^2 + 2K_{C\theta}}.$

Question 19 Quel sera le comportement de cet asservissement en réponse à un échelon d'amplitude C_0 ? Conclure.

Correction Il s'agit d'un système du second ordre avec un coefficient d'amortissement nul. Le gain est de $\frac{1}{2}$ et la pulsation est de $\frac{1}{\omega_0^2} = \frac{J}{2K_{C\theta}} \Rightarrow \omega_0 = \sqrt{\frac{2K_{C\theta}}{J}}$.

Pour une entrée échelon d'ampitude C_0 , le système répondra par un sinus d'amplitude $\frac{C_0}{2}$ (valeur crête à crête C_0) de pulsation ω_0 .

Question 20 Donner l'expression analytique du gain B, en fonction de J et $K_{C\theta}$, permettant d'obtenir cette forme de fonction de transfert. En déduire l'expression analytique de la constante de temps τ .

Correction

D'une part,
$$F_1(p) = \frac{H_1(p)}{1 + H_1(p)B}$$
.

$$\text{D'autre part, } H_{\text{BO}}(p) = \frac{\frac{H_1(p)}{1 + H_1(p)B} H_2(p) H_3(p)}{1 + \frac{H_1(p)}{1 + H_1(p)B} H_2(p) H_3(p)} = \frac{H_1(p) H_2(p) H_3(p)}{1 + H_1(p) B + H_1(p) H_2(p) H_3(p)} = \frac{\frac{K_{C\theta}}{J p^2}}{1 + \frac{B}{J p} + \frac{K_{C\theta}}{J p^2}} = \frac{K_{C\theta}}{J p^2 + B p} + K_{C\theta}$$

$$= \frac{1}{\frac{J}{K_{C\theta}} p^2 + \frac{B}{K_{C\theta}} p + 1} .$$

$$\text{Enfin, } (1 + \tau p)^2 = 1 + 2\tau p + \tau^2 p^2. \text{ Donc nécessairement } \tau^2 = \frac{J}{K_{C\theta}} \Rightarrow \tau = \sqrt{\frac{J}{K_{C\theta}}} \text{ et } 2\tau = \frac{B}{K_{C\theta}} \Leftrightarrow B = 2\tau K_{C\theta} = 2\sqrt{JK_{C\theta}}.$$

Question 21 Donner l'expression de l'erreur statique en réponse à un échelon d'amplitude C_0 . Conclure vis-à-vis du cahier des charges.

Correction La boucle ouverte est de classe 1. L'erreur statique (entrée échelon) est donc nulle ce qui est conforme à l'exigence 1.2.2.1 du cahier des charges.

Question 22 *Proposer une expression simple pour la constante de temps* T_i .

Correction

Pour avoir une FTBF d'ordre 2, il faut que la BO soit d'ordre 2. En conséquence, vu la forme de correcteur proposé, on peut envisager que le correcteur compense un pôle du système.

Ainsi pour
$$\tau = T_i$$
, on a $\frac{C_e(p)}{C_C(p)} = \frac{\frac{K_i}{\tau p(1+\tau p)}}{1+\frac{K_i}{\tau p(1+\tau p)}} = \frac{K_i}{\tau p(1+\tau p)+K_i} = \frac{K_i}{\tau^2 p^2 + \tau p + K_i} = \frac{1}{\frac{\tau^2}{K_i}p^2 + \frac{\tau}{K_i}p + 1}.$

Question 23 En s'appuyant sur les diagrammes ci-dessous, proposer un choix de réglage pour K_i permettant (si possible) de vérifier toutes les performances.

Correction

- Marge de gain 10 dB : la boucle ouverte est d'ordre 2. La phase est donc toujours supérieure à -180° et la marge de gain est infinie. Le critère est respecté.
- Marge de phase supérieure à 70° : il est donc nécessaire que le gain (dB) de la boucle ouverte soit nul lorsque

la phase est égale à 120°. D'après la réponse fréquentielle en BO, il faut donc que $20 \log K_i \le 4 \Rightarrow K_i \le 10^{20} = 1,58$.

• Dépassement inférieur à 15% : l'abaque ci-dessous montre que pour une marge de phase de 70°, le dépassement sera inférieur à 15%. Ainsi, avec une marge de phase de 70°, le dépassement sera donc d'environ 2% et

le coefficient d'amortissement sera d'environ 0,8.

• Temps de réponse à 5% inférieur à 0,5 s : en utilisant la réponse fréquentielle pour un gain de 0,4 (<1,58) on a $\omega_0 \simeq 15 \, \mathrm{rad} \, \mathrm{s}^{-1}$. En utilisant l'abaque du temps de réponse réduit, on a $\omega_0 \cdot T_{r5\%} \simeq 3,5$; donc $T_{r5\%} \simeq \frac{3,5}{15} = 0,23 \, \mathrm{s}$.

• D'après le diagramme de Bode en BF, le gain basse fréquence est nul. Le gain de la fonction de transfert est donc unitaire. L'erreur statique est donc nulle.

On propose donc $K_i = 0, 4(<1,58)$.

Retour sur le cahier des charges

Question 24 Remplir le tableau et conclure sur la validation des critères de performance. Tracer l'allure de la réponse temporelle à un échelon C_{c0} en indiquant toutes les valeurs caractéristiques nécessaires.

Correction

Critère	Valeur	Valeur système	Écart
	CDCF	réglé	
Marges de gain	10 dB	∞	OK
Marges de phase	70°	70°	OK
Dépassement	< 15 %	2%	OK
T5 %	< 0,5 s	0,23 s	OK
Erreur statique	Nulle	Nulle	OK

Le cahier des charges est donc respecté. (Réponse indicielle d'un second ordre avec un coefficient d'amortissement de 0,8 et un gain unitaire).

Corrigé résumé

1.
$$H_1(p) = \frac{1}{Jp}$$
, $H_2(p) = \frac{1}{p}$, $H_3(p) = K_{C\theta}$.
2. $H_{BF}(p) = \frac{K_{C\theta}}{Jp^2 + 2K_{C\theta}}$.
3. Sinus d'amplitude $C_0/2$ et de pulsation ω_0 .

2.
$$H_{BF}(p) = \frac{K_{C\theta}}{J p^2 + 2K_{C\theta}}$$

4.
$$\tau = \sqrt{\frac{J}{K_{C\theta}}}$$
 et $B = 2\sqrt{JK_{C\theta}}$.

5. Erreur statique nulle.

6. $\tau = T$.

6.
$$\tau = T_i$$

6. $\tau = T_i$. 7. $K_i = 0, 4(<1,58)$. 8. .