Lambda Calculus and Turing Machines Semester Project

Anurag Sharma

Department of Mathematics and Statistics IIT Kanpur

April 15, 2017

- Introduction
 - Motivation
 - Competing ideas
- 2 Lambda Calculus
 - Syntax
 - Rules of evaluations
 - Computations using Lambda Calculus
- Turing Machines
- Proof of Equivalence
 - Overview

- Introduction
 - Motivation
 - Competing ideas
- 2 Lambda Calculus
 - Syntax
 - Rules of evaluations
 - Computations using Lambda Calculus
- Turing Machines
- Proof of Equivalence
 - Overview

Motivation for the problem

Ideas of "Effective" Computability

A thing in 1930's

What does it mean for a function $f: \mathcal{N} \to \mathcal{N}$ to be computable

Kurt Gödel

Alan Turing

Alonzo Church

- Introduction
 - Motivation
 - Competing ideas
- 2 Lambda Calculus
 - Syntax
 - Rules of evaluations
 - Computations using Lambda Calculus
- Turing Machines
- Proof of Equivalence
 - Overview

Competing ideas

To each his own

Alonzo Church

Defined an idealized programming language called the **lambda calculus**, and postulated that a function is computable if and only if it can be written as a lambda term.

Competing ideas

To each his own

Alonzo Church

Defined an idealized programming language called the **lambda calculus**, and postulated that a function is computable if and only if it can be written as a lambda term.

Alan Turing

Proposed an idealized computer we now call a **Turing machine**, and postulated that a function is computable if and only if it can be computed by such a machine.

- Introduction
 - Motivation
 - Competing ideas
- 2 Lambda Calculus
 - Syntax
 - Rules of evaluations
 - Computations using Lambda Calculus
- Turing Machines
- Proof of Equivalence
 - Overview

Lambda Calculus

Syntax and other such things

- A countable set of variables $V = x, y, z \dots$
- Special symbols " λ ", "(", ")", "."

Lambda terms : $x \mid (MN)[Application] \mid (\lambda x. M)[Abstraction]$

Lambda Calculus

Syntax and other such things

- A countable set of variables $V = x, y, z \dots$
- Special symbols " λ ", "(", ")", "."

Lambda terms : $x \mid (MN)[Application] \mid (\lambda x. M)[Abstraction]$

Let Λ^* be the set of strings (finite sequences) made using the the special symbols and variables of the language. The set of lambda terms is the smallest subset $\Lambda \subseteq \Lambda^*$ such that:

- Whenever $x \in V$ then $x \in \Lambda$
- Whenever $M, N \in \Lambda$ then $(MN) \in \Lambda$
- Whenever $x \in V$ and $M \in \Lambda$ then $(\lambda x.M) \in \Lambda$

Free and Bound variables

Free Variables: Variables not bound by a lambda abstraction.

Examples:

y is free variable in
$$\lambda x.(xy)$$

Rules:

$$FV(x) = \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

Free and Bound variables

Free Variables: Variables not bound by a lambda abstraction.

Examples:

y is free variable in
$$\lambda x.(xy)$$

Rules:

$$FV(x) = \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

Example:

Free variables in $\lambda x.(xyz)$ are y and zFree variables in $(\lambda x.(xyz))(\lambda y.(xy))$ are x, y and z

- Introduction
 - Motivation
 - Competing ideas
- 2 Lambda Calculus
 - Syntax
 - Rules of evaluations
 - Computations using Lambda Calculus
- Turing Machines
- Proof of Equivalence
 - Overview

Equivalences

Rules of evaluation

 α $\mathbf{equivalence} :$ Terms are equivalent up to renaming of bounded terms

Example: $\lambda x.xy \equiv_{\alpha} \lambda z.zy$

Equivalences

Rules of evaluation

 α **equivalence**: Terms are equivalent up to renaming of bounded terms

Example: $\lambda x.xy \equiv_{\alpha} \lambda z.zy$

 β reduction: $(\lambda x.e_1)e_2 \rightarrow_{\beta} e_1[e_2/x]$ where $e_1[e_2/x]$ denotes the result of substituting e_2 for all free occurrences

of x in e_1

Example:

- $(\lambda x.xy)z \rightarrow_{\beta} zy$
- $(\lambda x.xx)(\lambda y.y) \rightarrow_{\beta} (\lambda y.y)(\lambda y.y)$
- $(\lambda x.x^2)(3) \to_{\beta} 3^2 = 9$

- Introduction
 - Motivation
 - Competing ideas
- 2 Lambda Calculus
 - Syntax
 - Rules of evaluations
 - Computations using Lambda Calculus
- Turing Machines
- Proof of Equivalence
 - Overview

Computations using Lambda Calculus

Arithmetic operations

For each natural number n, we define a lambda term \overline{n} , called the n^{th} Church numeral, as $\overline{n} = \lambda f x. f^n x$.

$$\overline{1} = \lambda f x. f x$$

$$\overline{2} = \lambda f x. f (f x)$$

. . .

Successor Function

$$succ = \lambda nfx.f(nfx)$$

succ
$$\overline{n} = (\lambda n f x. f(n f x))(\lambda f x. f^n x)$$

 $\rightarrow_{\beta} \lambda f x. f((\lambda f x. f^n x) f x)$
 $\rightarrow_{\beta} \lambda f x. f(f^n x)$
 $= \lambda f x. f(f^{n+1} x)$
 $= \overline{n+1}$

Arithmetic operations

Addition

$$\mathbf{add} = \lambda nmfx.nf(mfx)$$
Applying it to $\overline{1}$ and $\overline{2}$

$$\overline{1} = \lambda fx.fx$$

$$\overline{2} = \lambda fx.f(fx)$$

$$\mathbf{add} \ \overline{1} \ \overline{2} = \lambda nmfx.nf(mfx)\overline{1} \ \overline{2}$$

$$\rightarrow_{\beta} \lambda fx.\overline{1}f(\overline{2}fx)$$

$$\rightarrow_{\beta} \lambda fx.(\lambda fx.fx)f((\lambda fx.ffx)fx)$$

$$\rightarrow_{\beta} \lambda fx.(\lambda fx.fx)fffx$$

$$\rightarrow_{\beta} \lambda fx.fffx$$

$$= \overline{3}$$

Similarly we can define other functions:

$$\mathbf{mult} = \lambda nmf.n(mf)$$
$$\mathbf{or} = \lambda ab.aab$$

Turing Machines

Brief Introduction

Figure: Turing Machine

- An infinite tape
- Read and Write header
- A set of states $(p, q, r \dots)$ and symbols $(a, b \dots)$

Turing Machines

Brief Introduction

Figure: Turing Machine

Depending on the current state and the currently scanned input symbol, the machine erases the symbol and writes a new symbol into that cell. It moves the current position one cell to the left or right, and changes to a new state.

- Introduction
 - Motivation
 - Competing ideas
- 2 Lambda Calculus
 - Syntax
 - Rules of evaluations
 - Computations using Lambda Calculus
- Turing Machines
- Proof of Equivalence
 - Overview

Proof of Equivalence Setup

Proof Technique: For every λ -definable sequence we construct a Turing Machine that computes the sequence.

Proof Technique: For every λ -definable sequence we construct a Turing Machine that computes the sequence.

We say that a sequence γ whose n^{th} figure is $\phi_{\gamma}(n)$ is λ -definable or effectively calculable if $1+\phi_{\gamma}(n)$ is a λ -definable function of n. i.e there is a well-formed-formula M_{γ} such that following holds true for all integers n:

$$\{M_\gamma\}(N_n) \twoheadrightarrow_\beta N_{1+\phi_\gamma(n)}$$

i.e $\{M_{\gamma}\}(N_n)$ is convertible into $\lambda xx^{||}.x(x(x^{||}))$ or into $\lambda xx^{||}.x(x^{||})$ according as the n^{th} figure of γ is 1 or 0.

Proof of Equivalence

Overview

We need three Turing machines:

 \mathcal{L}_1 , which if supplied with a well-formed-formula, M obtains any formula into which M is convertible.

 \mathcal{L}_2 which successively obtains all the formulae into which M is convertible \mathcal{L}_3 compares each of the reduction with N_1 or N_0 and writes 1 or 0 on the tape.

Proof of Equivalence

Overview

Now the machine \mathcal{L} is such that it has n-sections each for computing the n^{th} figure of the sequence γ . The first stage in each of the section is the formation of $\{M_{\gamma}\}(N_n)$. This formula is sent to \mathcal{L}_2 which subsequently obtains each formula to which it can be converted. And then \mathcal{L}_3 does the comparison and writes 0 or 1 on the tape.