Sequences in London 2024

Sensitivity of string compressors and repetitiveness measures

Shunsuke Inenaga (Kyushu University)

Data Compression

Can you compress these files?

Boss

DNA databases

CACTCGCATCG... CACACGCATCG...

CTCTCGCATGG...

Which compressor should I use?

zip? gzip? lha? 7z? bzip2? xz?

New Criterion for Compressors

Review 1 for Compressor C

T = ababaaba...ab

C(T)

- (1) Excellent compression ratio!
- (2) Super fast (de)compression!
- (3) Searchable compression!

Review 2 for Compressor *C*

T' = aXabaaba..ab

C(T')

But the compressed size blew up just after a small edit operation!!

The compressor C looks great because it satisfies all the known criteria (1),(2),(3)!

What!? Can it happen? My company deals with dynamic data..., so it can be problematic.

New criterion (4) Compression Sensitivity

Compression Sensitivity

[Definition]

Sensitivity of compressor C

T' is any string that can be obtained by performing a single character edit operation on T.

Worst-case multiplicative sensitivity

 $\max\{|C(T')|/|C(T)|: T \in \Sigma^n, \text{EditDistance}(T, T') = 1\}$

Worst-case additive sensitivity

 $\max\{|C(T')|-|C(T)|: T \in \Sigma^n, \text{EditDistance}(T, T') = 1\}$

[Intuition]

Small sensitivity ⇔ Robust compression under edits/errors

Multiplicative Compression Sensitivity

Compressor / Measure	Upper Bound	Lower Bound
LZ77 z		
	V	ery few previous work
LZSS s		
Bidirectional scheme b		
Smallest grammar g^*		
BISECTION $g_{ m BISCTN}$		
GCIS $g_{ m GCIS}$		
LZ78 g ₇₈		$\Omega(n^{1/4})$ [Lagarde & Perifel SODA 2018]
RLBWT r		$\Omega(\log n)$ [SOFSEM 2021]
Substring complexity δ		

Lower Bound for RLBWT r

r: RLE size of the rightmost column of the lexicographically sorted rotations of the input string.

Reversed Fibonacci word s_i^{rev}

$s_6^{\sf rev} =$		ВW	/T
	baabaababaabb		_
2	aabaababaabab	b	
10	aababaabaabab	b	
5	aababaababaab	b	
13	abaabaababaab	b	
8	abaababaabaab	b	
3	abaababaababa	a	
11	ababaabaababa	a	
6	ababaababaaba	a	
1	baabaababaaba	a	
9	baababaabaaba	a	
4	baababaababaa	a	
12	babaabaababaa	a	
7	babaababaabaa	a	

	$(s_6b)^{rev} =$	BV	/T	
	bbaabaababaabb		_	
3	aabaababaababb	b	_ 	
6	aababaababbaab	b		
11	aababbaabaabab	b		
4	abaababaababba	a		
9	abaababbaabaab	b		
7	ababaababbaaba	а		
12	ababbaabaababa	а	;	- log 10
14	abbaabaababaab	b		$=\log_{\phi} n$
2	baabaababaabab	b		
5	baababaababbaa	а		
10	baababbaabaaba	a		
8	babaababbaabaa	a		
13	babbaabaababaa	a		
1	bbaabaababaaba	a		

$$r(s_i^{\text{rev}}) = 2$$

$$r(bs_i^{\text{rev}}) = \Omega(\log n)$$

Multi. Sensitivity of Repetitiveness Measures & Dictionary Comp.

Compressor / Measure	Edit Operation	Upper Bound	Lower Bound
Substring complexity δ	del	1.5	1.5
	ins/sub	2	2
Smallest string attractor γ	any	$O(\log n)$	$2.5^{\scriptscriptstyle [Bannaietal.}_{\scriptscriptstyle ESA2022]}$
Didirectional schome h	ins/sub	2	2
Bidirectional scheme b	del	2	1.5
LZ77 z	any	2	2
LZSS s	ins	2	2
	del/sub	3	3
LZ78 g ₇₈	ins	$O((n / \log n)^{2/3})$	$\Omega(n^{1/4})$ [Lagarde & Perifel SODA 2018]
	del/sub	$O((n/\log n)^{2/3})$	$\Omega(n^{1/4})$
LZEnd $z_{ m End}$	any	$O(\log^2(n/d))$	2
RLBWT r	any	$O(\log r \log n)$	$\Omega(\log n)$

Multiplicative Sensitivity of Grammar Compressors

Grammar compressors	Edit Operation	Upper Bound	Lower Bound
Smallest grammar g^*	any	2	_
lpha-balanced	201/	$O(\log (n / \alpha^*))$	
AVL-grammar	any	$ O(\log (n/g^*)) $	_
RePair			
Longest-Match	any	$O((n/\log n)^{2/3})$	-
Greedy			
Bisection	sub	2	2
	ins/del	$ \Sigma +1$	$ \Sigma $
GCIS	any	4	4
CDAWG	sub	8	2
	ins/del	13	2

Multi. Sensitivity of Repetitiveness Measures & Dictionary Comp.

Compressor / Measure	Edit Operation	Upper Bound	Lowe Bound	
Substring complexity δ	del	1.5	1.5	
	ins/sub	2	2	
Smallest string attractor γ	any	$O(\log n)$	2	
Bidirectional scheme b	ins/sub	I will talk about this		
	del			
LZ77 z	any		2	
LZSS s	ins		2	
	del/sub	3	3	
LZ78 g ₇₈	ins	$O((n/\log n)^{2/3})$	$\Omega(n^{1/4})$ [Lagarde & Perifel SODA 2018]	
	del/sub	$O((n / \log n)^{-3})$	$\Omega(n^{1/4})$	
LZEnd $z_{ m End}$	any	$O(\log^2(n/d))$	2	
RLBWT r	any	$O(\log r \log n)$	$\Omega(\log n)$	

LZSS [Storer-Szymanski, 1982]

$$T= {f a} {f b} {f a} {f a} {f b} {f a} {f b}$$

- at each fresh letter, or
- at the ending position of the longest previously occurring substring.

LZSS [Storer-Szymanski, 1982]

- at each fresh letter, or
- at the ending position of the longest previously occurring substring.

LZSS [Storer-Szymanski, 1982]

- at each fresh letter, or
- at the ending position of the longest previously occurring substring.

LZSS [Storer-Szymanski, 1982]

$$T = a b a a b a b a b a b a b$$

The ending position of the longest previously occurring substring.

- at each fresh character, or
- at the ending position of the longest previously occurring substring.

LZSS [Storer-Szymanski, 1982]

LZSS [Storer-Szymanski, 1982]

LZSS [Storer-Szymanski, 1982]

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \ a & b & a & b & a & b & a & b & a & b \ \end{vmatrix}$$

LZSS [Storer-Szymanski, 1982]

LZSS [Storer-Szymanski, 1982]

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \ a & b & a & b & a & b & a & b & a & b \ \end{vmatrix}$$

LZSS [Storer-Szymanski, 1982]

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \ a & b & a & b & a & b & a & b & a & b \ \end{vmatrix}$$
(a) (b)(1, 1) (1, 3) (2, 3) (5, 8) (5, 7)

Compression size (# of phrases) = 7

LZSS [Storer-Szymanski, 1982]

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ a & b & a & b & a & b & a & b & a & b & a & b & a & b \end{vmatrix}$$
(a) (b)(1, 1) (1, 3) (2, 3) (5, 8) (5, 7)

Compression size (# of phrases) = 7

LZSS with self-references

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \ a & b & a & b & a & b & a & b & a & b \ a & (5, 13) \end{vmatrix}$$

Compression size (# of phrases) = 5

s: LZSS compression size before edit

s': LZSS compression size after edit

Theorem

For any string, we have the following:

Multiplicative sensitivity for LZSS is $s'/s \le 3$.

Additive sensitivity for LZSS is $s' - s \le 2s - 2$.

These upper bounds hold for both versions of LZSS with/without self-references.

Proof for $s' \leq 3s$ (without self-references)

Claim 1: For the phrase w that contains the edited position i, # phrases starting in the interval for w can increase to at most 3.

1 T' \$

Proof for $s' \leq 3s$ (without self-references)

Claim 1: For the phrase w that contains the edited position i, # phrases starting in the interval for w can increase to at most 3.

Proof for $s' \leq 3s$ (without self-references)

Claim 1: For the phrase w that contains the edited position i, # phrases starting in the interval for w can increase to at most 3.

Proof for $s' \leq 3s$ (without self-references)

Claim 1: For the phrase w that contains the edited position i, # phrases starting in the interval for w can increase to at most 3.

Proof for $s' \leq 3s$ (without self-references)

Claim 2: For any phrase w to the right of the edited position i, # phrases starting in the interval for w can increase to at most 3.

Theorem (Upper Bound)

For any string, we have the following:

Multiplicative sensitivity for LZSS is $s'/s \leq 3$.

Additive sensitivity for LZSS is $s' - s \le 2s - 2$.

Theorem (Lower Bound)

There exists a family of strings of length *n* such that:

Multiplicative sensitivity for LZSS is $\lim_{s\to\infty}\inf(s'/s)=3$.

Additive sensitivity for LZSS is $s' - s = 2s - \Theta(\sqrt{s}) = \Omega(\sqrt{n})$.

For the lower bound, we showed strings that have the aforementioned worst-case situations for most of their phrases.

Sensitivity of Compression Software

Does similar happen for a real-world compression software?

We tested compression software

- > 7zip = LZSS + RangeCoder.
- Supports .7z compression format.
- Compression ratio of 7zip is usually better than that of zip by 30-70%.

Zip
Zip(パスワード)
7z
BZip2
GZip
自己解凍形式
詳細設定

Sensitivity of Compression Software (7zip)

stringX: length 1,172,887 (1.12 MB)

```
!"#$%&'()*+,./0123456789:;⇔?@ABCDEFGHIJKLMN!"#$%&'()*+,./01234
56789:;⇔?@ABCDEFGHIJKLM!"#$%&'()*+,./0123456789:;<=>?@ABCDEF
GHIJKL!"#$%&'()*+,./0123456789:;<=>?@ ABCDE ... '!"#$%&!
"#$%!"#$!"#!"!!{OOPOPQOPQROPQRSOPQRSTOPQRSTUOPQRST ...
```

stringXp

Replace the 1083rd letter " { " with " ~ "

```
!"#$%&'()*+,./0 23456789:;<⇒?@ABCDEFGHIJKLMN!"#$%&'()*+,./01234 56789:;<⇒?@ABCDEFGHIJKLM!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLM!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLM!"#$%&'()*+,./0123456789:;<=>?@ABCDE ... '!"#$%&!"#$%!"#$!"#!"!!~OOPOPQOPQROPQRSOPQRSTOPQRSTUOPQRST ...
```

7zip compressed size	stringX.7z	4,884 byte
	stgingXp.7z	7,189 byte

1.5 times bigger!

References

- 1. Sensitivity of string compressors and repetitiveness measures.
 - T. Akagi, M. Funakoshi, S. Inenaga (Information & Computation 2023)
- 2. Novel results on the number of runs of the Burrows-Wheeler-transform.
 - S. Giuliani, S. Inenaga, Z. Lipták, N. Prezza, M. Sciortino, A. Toffanello (SOFSEM 2021)
- 3. Bit Catastrophes for the Burrows-Wheeler Transform.
 - S. Giuliani, S. Inenaga, Z. Lipták, G. Romana, M. Sciortino, C. Urbina (DLT 2023)
- 4. On Sensitivity of Compact Directed Acyclic Word Graphs.
 - H. Fujimaru, Y. Nakashima, S. Inenaga (WORDS 2023)
- 5. Sensitivity of CDAWGs is constant.
 - R. Hamai, S. Inenaga (Unpublished)