Crystal Structure – why?

Density of Electrons

Density of Atoms * Electrons/Atom

Atomic Arrangement

Atomic Arrangements

www.nanohub.org

Cu. GaAs. SiO.

Crystal Lattice

Lattice: Regular, repeated arrangement of points

French physicist Auguste Bravais, who identified that there are 14 unique lattice types in three-dimensional space

Bravais Lattice: looks the same from every lattice point

Including distance and angle.

Primitive vectors

Lattice vector

Bravais Lattice: can be generated by

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2$$

Bravais?

Not a Bravais Lattice because each lattice point doesn't follow the same ordering and orientation

Basis

We can convert a non-Bravais Lattice into a Bravais Lattice by changing the type of lattice points i.e. making similar configurations associated with a single type of entity and other similar lattice points associated with another type of entity. Example - done below.

Body Centered Hexagonal Lattice

Not Bravais

Bravais (hexagonal) with a basis of two

Bravais Lattice Classification – 3D

Learn the Mnemonic to remember them.

CUBIC

$$a=b=c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

TETRAGONAL

$$a = b \neq c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

ORTHORHOMBIC

$$a \neq b \neq c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

HEXAGONAL

$$a = b \neq c$$

 $\alpha = \beta = 90^{\circ}$
 $\gamma = 120^{\circ}$

$$a = b = c$$

 $\alpha = \beta = \gamma \neq 90^{\circ}$

MONOCLINIC

$$a \neq b \neq c$$

 $\alpha = \gamma = 90^{\circ}$
 $\beta \neq 120^{\circ}$

P

C = Side-Centred

TRICLINIC

4 Types of Unit Cell P = Primitive

I = Body-Centred

F = Face-Centred

7 Crystal Classes

→ 14 Bravais Lattices

Basis (3D)

Changing the position of the Body Centered lattice point to one of the corners will again in turn form another Bravais lattice. This occurs for the whole crystal with the same effects.

•

Basis (3D)

1 amu = 1.66054e-27 kgs

Non-Bravais: Zinc-blende (GaAs), Diamond (Si, Ge)

Bravais (FCC) with a basis of two

Atomic density (volume)

Atomic density = Effective number of atoms in unit cell

Volume of unit cell

Density of a material/element = mass of one atom (gms) * atomic density (/m3)

Atoms in unit cell:

$$8 \times 1/8 + 1 = 2$$

Vol. of unit cell:

$$a^3$$

Atomic density:

$$2/a^3$$

 $(8.6 \times 10^2) * 55.845 * (1.6605 \times 10^2) * 10^6 = 7974.8335 \text{ kg/m}$

For BCC Fe Lattice constant a = 2.856Å

Relative atomic mass = 55.845

8.6 x 10²² cm⁻³ Atomic density =

Calculate the density of Fe; look up its value on the web.

Atomic density (surface)

Atomic density = Effective number of atoms on 'unit surface'

Area of 'unit surface'

Atoms on 'pink surface' element:

$$4 \times 1/4 + 1 = 2$$

Area of 'pink surface' element:

$$\sqrt{2}a^2$$

Atomic density on 'pink surface':

$$\sqrt{2}/a^2$$

BCC Fe: a = 2.856Å

Atomic density = $1.7 \times 10^{15} \text{ cm}^{-2}$

(i) What is the atomic density for BCC Fe on the 'blue surface'?

(ii) Will these calculations hold for the actual surface of the solid?

Anisotropic etching is a process used in microfabrication and nanofabrication to selectively remove material from a substrate, where the etch rate depends on the crystallographic orientation of the material. This leads to a highly directional etch, creating well-defined structures with sharp, precise geometries.

Anisotropic Etching

Anisotropic = Unidirectional

and

Isotropic = Uniform in all directions

Solar cell surface texturing

III-nitride quantum wire

Benefits: Reduces Reflection of Light, Increases Light Absorption, Enhances Photon Collection, Facilitates Anti-Reflective Coatings

Why does the surface of a solar cell need to be rough?

Naming planes & directions: Miller Indices

Plane || to Z: (a b 0)

MI for plane: (2 3 3)

MI for direction: [2 3 3]

Naming planes & directions: Miller Indices

MI for direction: [2 3 3]

Miller Indices for cubic crystal
Miller Indices consisting of only 1s and 0s will be

the same as the direction triplet (normalized intercepts) because they are already Inverted and Rationalized.

Can you construct MI for hexagonal crystal?

Other than 0s and 1s will have to be Inverted and

Finis

Artwork Sources:

- 1. www.myscienceacademy.org
- 2. home.iitk.ac.in
- 3. <u>www2.latech.edu</u>
- 4. www.tf.uni-kiel-de
- 5. <u>users.aber.ac.uk</u>
- 6. <u>www.flickriver.com</u>
- 7. <u>commons.wikimedia.org</u>