Project presentation

Topic: Fractional Fourier neural operator on partial differential equations

Student: Suwei Yang

Advisor: Shandian Zhe

Outline

- Problem definition
- Motivation
- What did I do?
- Result
- Conclusion

Problem definition

$$rac{\partial u}{\partial t} + lpha rac{\partial u}{\partial x} = 0, \quad x \in [a,b], t > 0$$

Nonlinear map
$$G^{\dagger}: A \rightarrow U$$

Goal
$$G_{\theta}: A \rightarrow U$$

Observation
$$A \subset R^{d_a} \ U \subset R^{d_u}$$

 $\left\{a_j\;u_j\right\}_{j=1}^N$ and a_j is i. i. d sequence from probability , μ , measurement. u_i may be corrupted with noise.

Method
$$G: A \times \Theta \to U \quad \min_{\theta \in \Theta} E_{a \sim \mu}[cost(G_{\theta}(a, \theta), G^{\dagger}(a))]$$

Problem definition

People have done...

Fourier transform(FNO)

frequency

Wavelet transform (WNO)

frequency

Comparison:

FNO:

Fast 🙂

No time information (3)

WNO:

Slow 🥸

With time information \bigcirc

Fractional Fourier transform (FRFT)

Outline

- Problem definition
- Motivation
- What did I do?
- Result
- Conclusion

Motivation

Motivation

and $\{\mathcal{F}^4f\}(x) = f(x)$. The ath-order fractional Fourier transform $\{\mathcal{F}^af\}(x)$ of the function f(x) may be defined for 0 < |a| < 2 as

$$\mathcal{F}^{a}[f(x)] \equiv \{\mathcal{F}^{a}f\}(x) \equiv \int_{-\infty}^{\infty} B_{a}(x, x') f(x') dx',$$

$$B_{a}(x, x') \equiv A_{\phi} \exp\left[i\pi(x^{2} \cot \phi - 2xx' \csc \phi + x'^{2} \cot \phi)\right],$$

$$A_{\phi} \equiv \frac{\exp\left(-i\pi \operatorname{sgn}(\sin \phi)/4 + i\phi/2\right)}{|\sin \phi|^{1/2}} \tag{1}$$

where

$$\phi \equiv \frac{a\pi}{2} \tag{2}$$

and i is the imaginary unit. The kernel approaches $B_0(x,x')\equiv \delta(x-x')$ and $B_{\pm 2}(x,x')\equiv \delta(x+x')$ for a=0 and $a=\pm 2$, respectively. The definition is easily extended outside

Ref: Optimal Filtering in Fractional Fourier Domains Digital Computation of the Fractional Fourier Transform In this approach, we assume $a \in [-1, 1]$. Manipulating (1), we can write

$$f_a(x) = \exp\left[-i\pi x^2 \tan{(\phi/2)}\right] g'(x),$$
 (14)

$$g'(x) = A_{\phi} \int_{-\infty}^{\infty} \exp\left[i\pi\beta(x - x')^2\right] g(x') dx',$$
 (15)

$$g(x) = \exp\left[-i\pi x^2 \tan\left(\frac{\phi}{2}\right)\right] f(x) \tag{16}$$

where g(x) and g'(x) represent intermediate results, and $\beta = \csc \phi$.

 $Signal_{\alpha} = Chirp * Conv(Chirp, Chirp * signal_{t})$

Time Complexity: NlogN 🙂

Outline

- Problem definition
- Motivation
- What did I do?
- Result
- Conclusion

- Find cases
 - High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

Find cases

- High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

$$(\mathbf{k}^{2} - \nabla \mathbf{H}(\mathbf{s})\nabla)\mathbf{u}(\mathbf{s}) = \mathbf{W}(\mathbf{s})$$

$$\mathbf{k} > 0, \mathbf{s} \in \mathbf{D} = [\mathbf{A}_{1}, \mathbf{B}_{1}] \times [\mathbf{A}_{2}, \mathbf{B}_{2}] \subset \mathbf{R}^{2},$$

$$\nabla = [\frac{\partial}{\partial s_{1}}, \frac{\partial}{\partial s_{2}}]$$

H(s) = function with vector field,u(s) = nonstationary dataset,W(s) = standard gaussian white noise

When H(s) is a constant, u(s) is a **stationary dataset**. When H(s) has vector fields, u(s) is a **non-stationary dataset**.

$$H(s) = \gamma I_2 + Bv(s)v(s)^T, \gamma, B > 0$$

$$\begin{cases} \text{def H_s(s1,s2):} \\ \text{def vs(s1,s2):} \\ \text{#vector field, the place creates nonstationary property} \\ \text{v1 = 1.2*torch.sin(torch.tensor(2*torch.pi*10*s2*s2)*torch.cos(torch.tensor(s1*s2)))*} \\ \text{v2 = 1.4*torch.sin(torch.tensor(2*torch.pi*5*s2*s2))+torch.cos(torch.tensor(s1*s2)))*} \\ \text{v = torch.tensor([v1,v2])} \\ \text{return v} \\ \end{cases} \\ \begin{cases} \text{#H(s) = r*I2 + B*V(s)V(s)} \\ \text{r, B = 1, 100} \\ \text{I, V = torch.eye(2), vs(s1,s2)} \\ \text{H = r*I +B*V.reshape(2,1) @ V.reshape(1,2)} \\ \text{return H} \end{cases}$$

$$\mathbf{u}(\mathbf{s}) \propto \exp\left(-\frac{1}{2}\mathbf{s}^{\mathsf{T}}\mathbf{Q}\mathbf{s}\right)$$

$$\mathbf{Q} = \mathbf{A}^{\mathsf{T}}\mathbf{D}_{\mathsf{v}}\mathbf{A}$$

$$\mathbf{A} = \mathbf{D}_{\mathsf{v}}\mathbf{D}_{\mathsf{k}^2} - \mathbf{A}_{\mathsf{H}}$$

$$\mathbf{A}_{\mathsf{H}} \in \mathbf{R}^{\mathsf{MN} \times \mathsf{MN}}$$

$$\begin{split} (\mathbf{A_H})_{jM+i,jM+i} &= \\ &- \frac{h_y}{h_x} \left[H^{11}(\boldsymbol{s}_{i+1/2,j}) + H^{11}(\boldsymbol{s}_{i-1/2,j}) \right] \\ &- \frac{h_x}{h_y} \left[H^{22}(\boldsymbol{s}_{i,j+1/2}) + H^{22}(\boldsymbol{s}_{i,j-1/2}) \right]. \end{split}$$

The four closest neighbours have coefficients

$$\begin{split} \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,jM+i_p} &= \frac{h_y}{h_x} H^{11}(s_{i-1/2,j}) - \frac{1}{4} \left[H^{12}(s_{i,j+1/2}) - H^{12}(s_{i,j-1/2}) \right], \\ \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,jM+i_n} &= \frac{h_y}{h_x} H^{11}(s_{i+1/2,j}) + \frac{1}{4} \left[H^{12}(s_{i,j+1/2}) - H^{12}(s_{i,j-1/2}) \right], \\ \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,j_nM+i} &= \frac{h_x}{h_y} H^{22}(s_{i,j+1/2}) + \frac{1}{4} \left[H^{21}(s_{i+1/2,j}) - H^{21}(s_{i-1/2,j}) \right], \\ \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,j_pM+i} &= \frac{h_x}{h_y} H^{22}(s_{i,j-1/2}) - \frac{1}{4} \left[H^{21}(s_{i+1/2,j}) - H^{21}(s_{i-1/2,j}) \right]. \end{split}$$

Lastly, the four diagonally closest neighbours have coefficients

$$\begin{split} & (\mathbf{A_H})_{jM+i,j_pM+i_p} = +\frac{1}{4} \left[H^{12}(s_{i,j-1/2}) + H^{21}(s_{i-1/2,j}) \right], \\ & (\mathbf{A_H})_{jM+i,j_pM+i_n} = -\frac{1}{4} \left[H^{12}(s_{i,j-1/2}) + H^{21}(s_{i+1/2,j}) \right], \\ & (\mathbf{A_H})_{jM+i,j_nM+i_p} = -\frac{1}{4} \left[H^{12}(s_{i,j+1/2}) + H^{21}(s_{i-1/2,j}) \right], \\ & (\mathbf{A_H})_{jM+i,j_nM+i_n} = +\frac{1}{4} \left[H^{12}(s_{i,j+1/2}) + H^{21}(s_{i+1/2,j}) \right]. \end{split}$$

The rest of the elements of row jM + i are 0.

Low frequency + stationery

High frequency + non-stationery

Find cases

- High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

$$\begin{aligned} \left(\mathbf{k}^2 - \nabla \mathbf{H}(\mathbf{s}) \nabla\right) \mathbf{u}(\mathbf{s}) &= \mathbf{W}(\mathbf{s}) \\ \mathbf{k} &> 0, \mathbf{s} \in \mathbf{D} = [\mathbf{A}_1, \mathbf{B}_1] \times [\mathbf{A}_2, \mathbf{B}_2] \subset \mathbf{R}^2, \\ \nabla &= \left[\frac{\partial}{\partial s_1}, \frac{\partial}{\partial s_2}\right] \end{aligned}$$

H(s) = function with vector field,u(s) = nonstationary dataset,W(s) = standard gaussian white noise

When H(s) is a constant, u(s) is a **stationary dataset.** When H(s) has vector fields, u(s) is a **non-stationary dataset.**

$$H(s) = \gamma I_2 + Bv(s)v(s)^T, \gamma, B > 0$$

Gets:

- 1. High frequency when s2 goes up
- 2. Non-stationary with s2

 $\mathbf{u}(\mathbf{s}) \propto \exp\left(-\frac{1}{2}\mathbf{s}^{T}\mathbf{Q}\mathbf{s}\right)$ $Q = A^{T}D_{v}A$ $A = D_{v}D_{k^{2}} - A_{H}$ $A_{H} \in R^{MN \times MN}$

$$\begin{split} (\mathbf{A_H})_{jM+i,jM+i} &= \\ &- \frac{h_y}{h_x} \left[H^{11}(\boldsymbol{s}_{i+1/2,j}) + H^{11}(\boldsymbol{s}_{i-1/2,j}) \right] \\ &- \frac{h_x}{h_y} \left[H^{22}(\boldsymbol{s}_{i,j+1/2}) + H^{22}(\boldsymbol{s}_{i,j-1/2}) \right]. \end{split}$$

The four closest neighbours have coefficients

$$\begin{split} \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,jM+i_p} &= \frac{h_y}{h_x} H^{11}(s_{i-1/2,j}) - \frac{1}{4} \left[H^{12}(s_{i,j+1/2}) - H^{12}(s_{i,j-1/2}) \right], \\ \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,jM+i_p} &= \frac{h_y}{h_x} H^{11}(s_{i+1/2,j}) + \frac{1}{4} \left[H^{12}(s_{i,j+1/2}) - H^{12}(s_{i,j-1/2}) \right], \\ \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,j_nM+i} &= \frac{h_x}{h_y} H^{22}(s_{i,j+1/2}) + \frac{1}{4} \left[H^{21}(s_{i+1/2,j}) - H^{21}(s_{i-1/2,j}) \right], \\ \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,j_pM+i} &= \frac{h_x}{h_y} H^{22}(s_{i,j-1/2}) - \frac{1}{4} \left[H^{21}(s_{i+1/2,j}) - H^{21}(s_{i-1/2,j}) \right]. \end{split}$$

Lastly, the four diagonally closest neighbours have coefficients

$$\begin{split} \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,j_pM+i_p} &= \frac{1}{4} \left[H^{12}(s_{i,j-1/2}) + H^{21}(s_{i-1/2,j}) \right], \\ \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,j_pM+i_n} &= -\frac{1}{4} \left[H^{12}(s_{i,j-1/2}) + H^{21}(s_{i+1/2,j}) \right], \\ \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,j_nM+i_p} &= -\frac{1}{4} \left[H^{12}(s_{i,j+1/2}) + H^{21}(s_{i-1/2,j}) \right], \\ \left(\mathbf{A}_{\mathbf{H}}\right)_{jM+i,j_nM+i_n} &= \frac{1}{4} \left[H^{12}(s_{i,j+1/2}) + H^{21}(s_{i+1/2,j}) \right]. \end{split}$$

The rest of the elements of row jM + i are 0.

Find cases

- High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

$$rac{\partial u}{\partial t} + lpha rac{\partial u}{\partial x} = 0, \quad x \in [a,b], t > 0$$

$$a = u(x,0)$$

$$u = u(x,t)$$

$$\mathbf{u}(s,\mathbf{0}) \propto \exp\left(-\frac{1}{2}\mathbf{s}^{\mathrm{T}}\mathbf{Q}\mathbf{s}\right)$$
 Add it as the initial condition

Burger's equation:
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{v \partial u}{\partial x^2},$$
 where $v = viscosity$

Goal: $u(x,0) \rightarrow u(x,t)$

Poisson equation:
$$k\nabla^2 u + f = 0$$
, where $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$ and $f =$ given function

Goal: $f(x,y) \rightarrow u(x,y)$

Wave equation:
$$\frac{\partial}{\partial x} \left(\frac{\partial c^2 u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial c^2 u}{\partial y} \right) = \frac{\partial^2 u}{\partial t^2},$$
 where $c =$ wave velocity

Goal: $u(x,y,0) \rightarrow u(x,y,t)$

Find cases

- High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

$$rac{\partial u}{\partial t} + lpha rac{\partial u}{\partial x} = 0, \quad x \in [a,b], t > 0$$

$$a = u(x,0)$$

$$u = u(x,t)$$

$$\mathbf{u}(s,\mathbf{0}) \propto \exp\left(-\frac{1}{2}\mathbf{s}^{\mathrm{T}}\mathbf{Q}\mathbf{s}\right)$$
 Add it as the initial condition

Burger's equation:
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{v \partial u}{\partial x^2},$$
 where $v = viscosity$

Goal: $u(x,0) \rightarrow u(x,t)$

Two cases:

v = 0, inviscid Burgers' equation $v \neq 0$, viscous Burgers' equation

Find cases

- High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

$$rac{\partial u}{\partial t} + lpha rac{\partial u}{\partial x} = 0, \quad x \in [a,b], t > 0$$

$$a = u(x,0)$$

$$u = u(x,t)$$

$$\mathbf{u}(s,\mathbf{0}) \propto \exp\left(-\frac{1}{2}s^{\mathrm{T}}\mathbf{Q}s\right)$$
 Add it as the initial condition

Burger's equation:
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{v \partial u}{\partial x^2},$$
 where $v = viscosity$

Goal: $u(x,0) \rightarrow u(x,t)$

Two cases:

 $\mathbf{v} = \mathbf{0}$, inviscid Burgers' equation (upwind scheme) $v \neq 0$, viscous Burgers' equation

$$\begin{split} &\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \text{introduce } f(u) = \frac{u^2}{2} \\ &\Rightarrow \frac{\partial u}{\partial t} + \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} = 0 \\ &\Rightarrow \frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0 \\ &\Rightarrow \frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{f(u_j^n) - f(u_{j+1}^n)}{\Delta x}, \end{split}$$

Where n: time point, and j: x points

Find cases

- High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

$$rac{\partial u}{\partial t} + lpha rac{\partial u}{\partial x} = 0, \quad x \in [a,b], t > 0$$

$$\mathbf{u}(s,0) \propto \exp\left(-\frac{1}{2}\mathbf{s}^{\mathrm{T}}\mathbf{Q}\mathbf{s}\right)$$

/ Add it as the initial condition

Burger's equation:
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{v \partial u}{\partial x^2},$$
 where $v = viscosity$

Goal: u(x,0)-> u(x,t)

Two cases:

 $\mathbf{v} = \mathbf{0}$, inviscid Burgers' equation (upwind scheme) $\mathbf{v} \neq \mathbf{0}$, viscous Burgers' equation

$$\begin{split} &\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \text{introduce } f(u) = \frac{u^2}{2} \\ &\Rightarrow \frac{\partial u}{\partial t} + \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} = 0 \\ &\Rightarrow \frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0 \\ &\Rightarrow \frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{f(u_j^n) - f(u_{j+1}^n)}{\Delta x}, \end{split}$$

Where n: time point, and j: x points

45	def Burger(n, timestep):
76	
77	#integral from initial condition
78	<pre>u = odeint(dudt_upwind, u_init, t, args=(dx,))</pre>

Find cases

- High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

$$rac{\partial u}{\partial t} + lpha rac{\partial u}{\partial x} = 0, \quad x \in [a,b], t > 0$$

$$a = u(x,0)$$

$$u = u(x,t)$$

$$\mathbf{u}(s,\mathbf{0}) \propto \exp\left(-\frac{1}{2}s^{\mathrm{T}}\mathbf{Q}s\right)$$
 Add it as the initial condition

Burger's equation:
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{v \partial u}{\partial x^2},$$
 where $v = viscosity$

Goal: u(x,0)-> u(x,t)

 $u_t + uu_x = vu_{xx}$

Two cases:

v = 0, inviscid Burgers' equation $v \neq 0$, viscous Burgers' equation (applying FFT)

After FFT

$$\Rightarrow \hat{\mathbf{u}}_t + \mathbf{u}(\mathbf{i}\mathbf{k} * \hat{\mathbf{u}}(\mathbf{w}, \mathbf{t})) = \mathbf{v}(-\mathbf{k}^2 \hat{\mathbf{u}}(\mathbf{w}, \mathbf{t}))$$

where w = x in fourier domain,

 $\hat{\mathbf{u}} = \mathbf{u}$ in fourier domain,

 $k = 2\pi f$

After IFFT

$$\begin{split} & \Rightarrow \mathbf{u}_{\mathsf{t}} = \mathbf{F}^{-1} \left(\mathbf{v} \left(-\mathbf{k}^2 \hat{\mathbf{u}}(\mathbf{w}, \mathsf{t}) \right) \right) - \mathbf{F}^{-1} \left(\mathbf{u} \left(\mathbf{i} \mathbf{k} * \hat{\mathbf{u}}(\mathbf{w}, \mathsf{t}) \right) \right) \\ & \Rightarrow \mathbf{u}(\mathbf{x}, \mathsf{t}) = \int \mathbf{F}^{-1} \left(\mathbf{v} \left(-\mathbf{k}^2 \hat{\mathbf{u}}(\mathbf{w}, \mathsf{t}) \right) \right) - \mathbf{F}^{-1} \left(\mathbf{u} \left(\mathbf{i} \mathbf{k} * \hat{\mathbf{u}}(\mathbf{w}, \mathsf{t}) \right) \right) dt \end{split}$$

- Find cases
 - High-frequ 84
- Prove it work
 - Applying F 88

$$rac{\partial u}{\partial t} + lpha rac{\partial u}{\partial x} = 0, \quad x^{rac{9}{9}}$$

$$\mathbf{u}(s,\mathbf{0}) \propto \exp\left(-\frac{1}{2}\mathbf{s}^{\mathrm{T}}\mathbf{Q}\mathbf{s}\right)$$

Add it as the initial condition

Burger's equation: $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{v \partial u}{\partial x^2}$

```
#Def of the initial condition

u0 = NSGRF(N_x,2) #np.exp(-(X-3)**2/2) #Single space variable fonction the

# viz_tools.plot_a_frame_1D(X,u0,0,L_x,0,1.2,'Initial condition')

#PDE resolution (ODE system resolution)

U = odeint(burg_system, u0, T, args=(k,mu,nu,),mxstep=5000, hmin=1e-50) #

I W() CaSeS:
```

v = 0, inviscid Burgers' equation

 $v \neq 0$, viscous Burgers' equation (applying FFT)

$$u_t + uu_x = vu_{xx}$$

After FFT
 $\Rightarrow \hat{u}_t + u(ik * \hat{u}(w, t)) = v(-k^2\hat{u}(w, t))$

where w = x in fourier domain,

 $\hat{u} = u$ in fourier domain,

 $k = 2\pi f$

After IFFT

$$\Rightarrow \mathbf{u}_{t} = \mathbf{F}^{-1} \left(\mathbf{v} \left(-\mathbf{k}^{2} \hat{\mathbf{u}}(\mathbf{w}, t) \right) \right) - \mathbf{F}^{-1} \left(\mathbf{u} \left(\mathbf{i} \mathbf{k} * \hat{\mathbf{u}}(\mathbf{w}, t) \right) \right)$$

$$\Rightarrow \mathbf{u}(\mathbf{x}, t) = \int \mathbf{F}^{-1} \left(\mathbf{v} \left(-\mathbf{k}^{2} \hat{\mathbf{u}}(\mathbf{w}, t) \right) \right) - \mathbf{F}^{-1} \left(\mathbf{u} \left(\mathbf{i} \mathbf{k} * \hat{\mathbf{u}}(\mathbf{w}, t) \right) \right) dt$$

- **Find cases**
 - High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

$$rac{\partial u}{\partial t} + lpha rac{\partial u}{\partial x} = 0, \quad x \in [a,b], t > 0$$

$$\mathbf{u}(s,\mathbf{0}) \propto \exp\left(-\frac{1}{2}s^{\mathrm{T}}\mathbf{Q}s\right)$$
 Add it as the initial condition

Poisson equation: $k\nabla^2 u + f = 0$, where $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$ and f = given function, k is a constant

Goal: f(x,y) -> u(x,y)

Applying finite difference method:

$$\begin{split} \frac{\partial^{2} u}{\partial x^{2}} &\cong \frac{\frac{u_{i+1,j} - u_{i,j}}{\Delta x} - \frac{u_{i,j} - u_{i-1,j}}{\Delta x}}{\Delta x} = \frac{u_{i+1,j} + u_{i-1,j} - 2u_{i,j}}{\Delta x^{2}} \\ \frac{\partial^{2} u}{\partial y^{2}} &\cong \frac{\frac{u_{i,j+1} - u_{i,j}}{\Delta x} - \frac{u_{i,j} - u_{i,j-1}}{\Delta x}}{\Delta y} = \frac{u_{i,j+1} + u_{i,j-1} - 2u_{i,j}}{\Delta y^{2}} \end{split}$$

Au = -f, where

A = derivative matrix, u = solution, -f = given function

Find cases

- High-frequency + Non-stationary dataset
- Prove it works

$$\mathbf{u}(s,0) \propto \exp\left(-\frac{1}{2}\mathbf{s}^{\mathrm{T}}\mathbf{Q}\mathbf{s}\right)$$

Add it as the initial condition

Poisson equation: $k\nabla^2 u + f = 0$, where $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$ and f = given function, k is a constant

Goal: f(x,y) -> u(x,y)

Applying finite difference method:

$$\frac{\partial^{2} u}{\partial x^{2}} \cong \frac{\frac{u_{i+1,j} - u_{i,j}}{\Delta x} - \frac{u_{i,j} - u_{i-1,j}}{\Delta x}}{\frac{\Delta x}{\Delta x}} = \frac{u_{i+1,j} + u_{i-1,j} - 2u_{i,j}}{\Delta x^{2}}$$

$$\frac{\partial^{2} u}{\partial y^{2}} \cong \frac{\frac{u_{i,j+1} - u_{i,j}}{\Delta x} - \frac{u_{i,j} - u_{i,j-1}}{\Delta x}}{\frac{\Delta x}{\Delta y}} = \frac{u_{i,j+1} + u_{i,j-1} - 2u_{i,j}}{\Delta y^{2}}$$

Au = -f, where

A = derivative matrix, u = solution, -f = given function

Find cases

- High-frequency + Non-stationary dataset
- Prove it works
 - Applying FRFT to it

$$rac{\partial u}{\partial t} + lpha rac{\partial u}{\partial x} = 0, \quad x \in [a,b], t > 0$$

$$\mathbf{u}(s,\mathbf{0}) \propto \exp\left(-\frac{1}{2}s^{\mathrm{T}}\mathbf{Q}s\right)$$
 Add it as the initial condition

Wave equation:
$$\frac{\partial}{\partial x} \left(\frac{\partial c^2 u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial c^2 u}{\partial y} \right) = \frac{\partial^2 u}{\partial t^2},$$
 where $c =$ wave velocity, set 1.

Goal: u(x,y,0) -> u(x,y,t)

Applying finite difference method to solve it

$$\begin{split} &\frac{\partial^{2} u}{\partial t^{2}} = \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \\ &\Rightarrow \frac{u_{i,j}^{t+1} + u_{i,j}^{t-1} - 2u_{i,j}^{t}}{\Delta t^{2}} = \frac{u_{i+1,j}^{t} + u_{i-1,j}^{t} - 2u_{i,j}^{t}}{\Delta x^{2}} + \frac{u_{i,j+1}^{t} + u_{i,j-1}^{t} - 2u_{i,j}^{t}}{\Delta y^{2}} \\ &\Rightarrow u_{i,j}^{t+1} = 2u_{i,j}^{t} - u_{i,j}^{t-1} + \frac{\Delta t^{2}}{\Delta x^{2}} \left(u_{i+1,j}^{t} + u_{i-1,j}^{t} - 2u_{i,j}^{t} \right) + \\ &\frac{\Delta t^{2}}{\Delta y^{2}} \left(u_{i,j+1}^{t} + u_{i,j-1}^{t} - 2u_{i,j}^{t} \right) \end{split}$$

Adding initial velocity(v) when t=1(some applications might need)

$$\Rightarrow u_{i,j}^{t+1} = 2u_{i,j}^{t} - u_{i,j}^{t-1} - 2\Delta t v_{i,j} + \frac{\Delta t^{2}}{\Delta x^{2}} \left(u_{i+1,j}^{t} + u_{i-1,j}^{t} - 2u_{i,j}^{t} \right) + \frac{\Delta t^{2}}{\Delta v^{2}} \left(u_{i,j+1}^{t} + u_{i,j-1}^{t} - 2u_{i,j}^{t} \right)$$

- Prove it works
 - Applying FRFT to it

$$\frac{\partial u}{\partial t} + \alpha \frac{\partial u}{\partial x} = 0, \quad x \in [a, b], t > 0$$

$$a = u(x, 0)$$

$$u = u(x, t)$$

$$\mathbf{u}(s,\mathbf{0}) \propto \exp\left(-\frac{1}{2}\mathbf{s}^{\mathrm{T}}\mathbf{Q}\mathbf{s}\right)$$
 Add it as the initial condition

Goal: u(x,y,0) -> u(x,y,t)

Applying finite difference method to solve it

$$\begin{split} &\frac{\partial^{2} u}{\partial t^{2}} = \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \\ &\Rightarrow \frac{u_{i,j}^{t+1} + u_{i,j}^{t-1} - 2u_{i,j}^{t}}{\Delta t^{2}} = \frac{u_{i+1,j}^{t} + u_{i-1,j}^{t} - 2u_{i,j}^{t}}{\Delta x^{2}} + \frac{u_{i,j+1}^{t} + u_{i,j-1}^{t} - 2u_{i,j}^{t}}{\Delta y^{2}} \\ &\Rightarrow u_{i,j}^{t+1} = 2u_{i,j}^{t} - u_{i,j}^{t-1} + \frac{\Delta t^{2}}{\Delta x^{2}} \left(u_{i+1,j}^{t} + u_{i-1,j}^{t} - 2u_{i,j}^{t} \right) + \\ &\frac{\Delta t^{2}}{\Delta y^{2}} \left(u_{i,j+1}^{t} + u_{i,j-1}^{t} - 2u_{i,j}^{t} \right) \end{split}$$

Adding initial velocity(v) when t=1(some applications might need)

$$\Rightarrow u_{i,j}^{t+1} = 2u_{i,j}^{t} - u_{i,j}^{t-1} - 2\Delta t v_{i,j} + \frac{\Delta t^{2}}{\Delta x^{2}} \left(u_{i+1,j}^{t} + u_{i-1,j}^{t} - 2u_{i,j}^{t} \right) + \frac{\Delta t^{2}}{\Delta y^{2}} \left(u_{i,j+1}^{t} + u_{i,j-1}^{t} - 2u_{i,j}^{t} \right)$$

- Find cases
 - High-frequency + Non-stationary dataset

- **Prove it works**
 - Applying FRFT to it

Outline

- Problem definition
- Motivation
- What did I do?
- Result
- Conclusion

Result - burger's equation

- A: Fourier layer, B: FRFT layer
- Architecture: AABB(v=0), ABBB(v=0.001)
- Dataset size 200
 - u(x,0)=1x1024, u(x,t)=1x1024
- Test sequence:
 - Train1:dataset[:30], Test1: dataset[-100:]
 - Train2 dataset[30:60], Test2 dataset[-100:]
 - Train3 dataset[60:90], Test3 dataset[-100:]
 - Train4 dataset[-30:], Test 4 dataset[:100]

Burger Test l2 error	V=0	V=0.001
Train 1& Test 1	0.335549	0.371378
Train 2 & Test 2	0.335588	0.370999
Train 3 & Test 3	0.335466	0.371433
Train 4 & Test 4	0.332224	0.36674
FNO vanilla avg.	0.334707	0.370138

Test l2 error	V=0	V=0.001
Train 1& Test 1	0.083705	0.045617
Train 2 & Test 2	0.089063	0.045515
Train 3 & Test 3	0.082765	0.048091
Train 4 & Test 4	0.09321	0.04524
FNO all modes avg.	0.087186	0.046116

Test l2 error	V=0	V=0.001
Train 1& Test 1	0.069647	0.032559
Train 2 & Test 2	0.064908	0.031946
Train 3 & Test 3	0.067103	0.0264
Train 4 & Test 4	0.055544	0.026487
FRFTNO avg.	0.064300	0.029348

Result - poisson's equation

- A: Fourier layer, B: FRFT layer
- Architecture: BAAA
- Dataset size 200
 - f(x,y)=1x64x64, u(x,y)=1x64x64
- Test sequence:
 - Train1:dataset[:30], Test1: dataset[-100:]
 - Train2 dataset[30:60], Test2 dataset[-100:]
 - Train3 dataset[60:90], Test3 dataset[-100:]
 - Train4 dataset[-30:], Test 4 dataset[:100]

Poisson Test l2 error	
Train 1& Test 1	0.771226
Train 2 & Test 2	0.792926
Train 3 & Test 3	0.750082
Train 4 & Test 4	0.795369
FNO vanilla avg.	0.777400

Test l2 error	
Train 1& Test 1	0.448968
Train 2 & Test 2	0.449978
Train 3 & Test 3	0.444467
Train 4 & Test 4	0.445845
FNO all modes avg.	0.447315

Test l2 error	
Train 1& Test 1	0.371117
Train 2 & Test 2	0.354186
Train 3 & Test 3	0.334832
Train 4 & Test 4	0.355024
FRFTNO avg.	0.353790

Result - wave's equation

- A: Fourier layer, B: FRFT layer
- Architecture: BAAB(V=0), BBAB(V=0.001)
- Dataset size 200
 - u(x,y,t1)=1x64x64x1, u(x,y,t2)=1x64x64x1
- Test sequence:
 - Train1:dataset[:30], Test1: dataset[-100:]
 - Train2 dataset[30:60], Test2 dataset[-100:]
 - Train3 dataset[60:90], Test3 dataset[-100:]
 - Train4 dataset[-30:], Test 4 dataset[:100]

Wave Test l2 error	V=0	V=0.001
Train 1& Test 1	0.083385	0.084923
Train 2 & Test 2	0.08481	0.084671
Train 3 & Test 3	0.083464	0.084933
Train 4 & Test 4	0.082462	0.082445
FNO vanilla avg	0.083530	0.084243

Test l2 error	V=0	V=0.001
Train 1& Test 1	0.07214	0.067753
Train 2 & Test 2	0.069251	0.07335
Train 3 & Test 3	0.073995	0.072818
Train 4 & Test 4	0.072781	0.070534
FNO all modes avg.	0.072042	0.071114

Test l2 error	V=0	V=0.001
Train 1& Test 1	0.06064	0.062344
Train 2 & Test 2	0.060401	0.060734
Train 3 & Test 3	0.061143	0.060232
Train 4 & Test 4	0.059051	0.063212
FRFTNO avg	0.06031	0.061631

Outline

- Problem definition
- Motivation
- What did I do?
- Result
- Conclusion

Conclusion

- High-frequency dataset
- Non-stationary dataset
- Fractional Fourier transform
- Future work:
 - A general method for architecture
 - Weights decomposition
 - Linear canonical transform

5/6/2024 28