Lab3 zad3

Aleksander Wiśniewski

28 05 2020

Zadanie 3

Wzór

W zadaniu trzecim będziemy chcieli wyznaczyć ciepło topnienia lodu, korzystając z kalorymetru napełnionego wodą, do którego dodajemy kostki lodu.

W pierwszje kolejności wyznaczymy wzór na ciepło topnienia lodu. Bilans energetyczny takiego układu wygląda tak:

$$q_l m_l + m_l c_{wH2O} T_k = m_{1H2O} c_{wH2O} (T_{1H2O} - T_k) + m_k c_{wk} (T_{1H2O} - T_k)$$

Gdzie q_l jest ciepłem topnienia lodu, m_l to masa wrzucanego lodu, c_{wH2O} to ciepło właściwe wody wyliczone w 1 zadaniu, c_{wk} to ciepło właściwe kalorymetru wyliczone w 2 zadaniu, T_k to temperatura końcowa układu, m_{1H2O} to masa wody w kalorymetrze przed dodaniem lodu, T_{1H2O} to temperatura układu przed dodaniem lodu, T_k to temperatura końcowa układu, m_k to masa kalorymetru.

Chcemy z tego wzoru wyznaczyć wzór na ciepło topnienia lodu. Po prostych przekształceniach równania otrzymamy:

$$q_{l} = \frac{(m_{1H2O}c_{wH2O} + m_{k}c_{wk})(T_{1H2O} - T_{k})}{m_{l}} - c_{wH2O}T_{k}$$

Wyniki

Korzystając z pomiarów zapisanych przy wykonywaniu wirtualnego laboratorium, wypiszemy teraz dane oraz otrzymaną wartość ciepła topnienia lodu dla kolejnych pomiarów.

Table 1: Pomiary i wartości ciepła topnienia

$T_p[C]$	$T_k[C]$	$m_{H2O}[kg]$	$c_t[J/kg*K]$
60,0000	57,1442	1,0000	334608,7
57,1442	54,4029	1,0243	334597,1
54,4029	51,7692	1,0486	334618,1
51,7692	49,2369	1,0729	334635,0
49,2369	46,8004	1,0972	334618,6
46,8004	44,4542	1,1215	334640,5
44,4542	42,1934	1,1458	334654,5
42,1934	40,0135	1,1701	334649,1
40,0135	37,9102	1,1944	334652,1
37,9102	35,8795	1,2187	334662,8
35,8795	33,9178	1,2430	334649,5
33,9178	32,0215	1,2673	334672,5
32,0215	30,1875	1,2916	334664,5
30,1875	28,4127	1,3159	334677,5
28,4127	26,6943	1,3402	334684,4
26,6943	25,0297	1,3645	334678,5
25,0297	23,4163	1,3888	334703,5
23,4163	21,8519	1,4131	334692,4
21,8519	20,3343	1,4374	334682,1
20,3343	18,8613	1,4617	334709,6

W wyliczeniach przyjmowaliśmy za każdym razem:

Table 2: Wartości stałych

Masa lodu [kg]	0,0243
Masa kalorymetru [kg]	0,765
Ciepło właściwe wody [J/kg*K]	4200
Ciepło właściwe kalorymetru [J/kg*K]	901,1668

Analiza niepewności pomiarowych

Otrzymane wartości ciepła topnienia lodu każdorazowo obarczone są pewną niepewnością obliczeniową typu B, która wynika z niedokładności urządzeń pomiarowych oraz niepewności wartości ciepła właściwego wody oraz kalorymetru, wyliczonych w poprzednich poleceniach.

Niepewność typu B wartości ciepła topnienia lodu obliczymy metodą propagacji niepewności:

$$u_{B}(q_{l}) = \sqrt{\frac{(\frac{\partial q_{l}}{\partial c_{wH2O}})^{2} u_{B}^{2}(c_{wH2O}) + (\frac{\partial q_{l}}{\partial m_{1H2O}})^{2} u_{B}^{2}(m_{1H2O}) + (\frac{\partial q_{l}}{\partial c_{wk}})^{2} u_{B}^{2}(c_{wk}) + (\frac{\partial q_{l}}{\partial m_{l}})^{2} u_{B}^{2}(m_{l}) + (\frac{\partial q_{l}}{\partial T_{k}})^{2} u_{B}^{2}(T_{k}) + (\frac{\partial q_{l}}{\partial T_{1H2O}})^{2} u_{B}^{2}(T_{1H2O})}}$$

Poszczególne pochodne cząstkowe wyrażają się wzorami:

Table 3: Wzory pochodnych

$\frac{\partial q_l}{\partial c_{wH2O}}$	$\frac{m_{1H2O}(T_{1H2O} - T_k)}{m_l} - T_k$
$\frac{\partial q_l}{\partial m_{1H2O}}$	$\frac{c_{wH2O}(T_{1H2O} - T_k)}{m_l}$
$rac{\partial q_l}{\partial c_{wk}}$	$\frac{m_k(T_{1H2O}\!-\!T_k)}{m_l}$
$rac{\partial q_l}{\partial m_l}$	$\frac{(m_{1H2O}c_{wH2O} + m_k c_{wk})(T_{1H2O} - T_k)}{m_l^2}$
$\frac{\partial q_l}{\partial T_k}$	$\frac{(-T_k)(m_{1H2O}c_{wH2O} + m_k c_{wk})}{m_l} - c_{wH2O}$
$\frac{\partial q_l}{\partial T_{1H2O}}$	$\frac{T_{1H2O}(m_{1H2O}c_{wH2O} + m_k c_{wk})}{m_l}$

Natomiast ich wartości dla poszczególnych pomiarów są takie:

Table 4: Wartości pochodnych

Pomiar	$\frac{\partial q_l}{\partial r}$	$\frac{\partial q_l}{\partial r_l}$	$\frac{\partial q_l}{\partial c_{wk}}$	$\frac{\partial q_l}{\partial m_l}$	$\frac{\partial q_l}{\partial T_h}$	$\frac{\partial q_l}{\partial T_{1H2O}}$
1	$\frac{\partial c_{wH2O}}{60,37843}$	$\frac{\partial m_{1H2O}}{493595,1}$	89,90481	23646679	-11502160	$\frac{\partial I_{1H2O}}{12072574}$
2	61,14910	473804,9	86,30019	23172398	-11179076	11737966
3	61,88092	455207,4	82,91278	22718055	-10855520	11403369
4	62,56988	437681,5	79,72056	22281069	-10531521	11068750
5	63,21309	421123,5	76,70463	21859273	-10207135	10734116
6	63,82824	405516,0	73,86185	21454654	-9882349	10399497
7	64,40844	390755,6	71,17333	21064476	-9557190	10064856
8	64,95362	376772,8	68,62648	20687482	-9231696	9730202
9	65,47176	363533,3	66,21500	20324073	-8905878	9395553
10	65,96470	350985,2	63,92944	19973528	-8579744	9060901
11	66,42760	339059,3	61,75722	19633918	-8253334	8726238
12	66,87484	327755,6	59,69833	19307110	-7926626	8391588
13	67,29375	316987,7	57,73704	18989792	-7599664	8056916
14	67,69674	306755,6	55,87333	18683573	-7272441	7722251
15	68,07935	297007,4	54,09778	18386850	-6944974	7387574
16	68,44136	287708,6	52,40407	18098899	-6617286	7052890
17	68,79316	278859,3	50,79222	17821070	-6289359	6718211
18	69,12150	270390,1	49,24963	17550223	-5961237	6383508
19	69,43517	262301,2	47,77630	17287498	-5632929	6048815
20	69,74298	254592,6	46,37222	17034037	-5304406	5714133

Przedstawmy teraz wyliczone wartości ciepła topnienia lodu wraz z ich niepewnościami.

Table 5: Wartości ciepła topnienia i niepewności

$T_p[C]$	$T_k[C]$	$m_{H2O}[kg]$	$c_t[J/kg*K]$	$u_B(c_t)[J/kg*K]$
60,0000	57,1442	1,0000	334608,7	14346,864
57,1442	54,4029	1,0243	334597,1	13775,080
54,4029	51,7692	1,0486	334618,1	13237,654
51,7692	49,2369	1,0729	334635,0	12731,094
49,2369	46,8004	1,0972	334618,6	12252,407
46,8004	44,4542	1,1215	334640,5	11801,100
44,4542	42,1934	1,1458	334654,5	11374,180
42,1934	40,0135	1,1701	334649,1	10969,654
40,0135	37,9102	1,1944	334652,1	10586,529
37,9102	35,8795	1,2187	334662,8	10223,312
35,8795	33,9178	1,2430	334649,5	9878,009
33,9178	32,0215	1,2673	334672,5	9550,629
32,0215	30,1875	1,2916	334664,5	9238,675
30,1875	28,4127	1,3159	334677,5	8942,157
28,4127	26,6943	1,3402	334684,4	8659,581
26,6943	25,0297	1,3645	334678,5	8389,954
25,0297	23,4163	1,3888	334703,5	8133,285
23,4163	21,8519	1,4131	334692,4	7887,577
21,8519	20,3343	1,4374	334682,1	7652,841
20,3343	18,8613	1,4617	334709,6	7429,086

Wynik

Jako wynik naszych obliczeń weźmiemy średnią arytmetyczną wartości ciepła topnienia lodu, a jako niepewność pomiarową - największą z uzyskanych niepewności. W takim razie wyliczona przez nas wartość ciepła topnienia lodu wynosi: 334657,55(14346,86)[J/kg*K].