CAP II.- SISTEMAS DE FUERZAS

Profesor : Ing. Guido Gomez U.

Departamento de: Ingeniería Mecánica

FCyT - UMSS

FUERZA Y MOMENTO

FUERZA Y MOMENTO

1er Parcial Ing. Industrial

Hallar la fuerza resultante R Yel moment resol Tante M

$$F_{1} = 1000 \hat{1} + 1000 \hat{1}$$

$$F_{2} = \sqrt{|f_{2}|} = 3000 \text{ kg}$$

$$F_{3} = +2000 \hat{1} + 0 \hat{1}$$

$$F_{4} = 0 \hat{1} + 3000 \hat{1}$$

$$\Rightarrow x \Rightarrow |R| = \frac{1}{R} = (Rx, Ry) = ???$$

$$\Rightarrow x \Rightarrow |R| = \frac{1}{R} = (Rx, Ry) = ???$$

- a) R= (5121, 1879) R=5454 Kg Ang=20,14°
 - b) Mz= -17121 kg. m

SISTEMA DE FUERZAS

GRADOS DE LIBERTAD

TIPOS DE APOYOS Y REACCIONES

Se regulere otros retudos Como: * retudo de Inercia) Salidoenequilibrio 1) I sostatico - "Esta en oquilibrio" + 11 de Energias + " do ale mentos finitos + " Computacionales # Fc. L Ind = No Inc. Puide solucionarse solo con + ETC. las Ec. de la estatica 3) Hiposstático > Inestable (mueue) 2) Hiperestatico -> Esta en equilibrio N°Ec.L.I > N°InC.

4) Cuando el apoyo es ona cuer da = Ila dirección de la seacción # Fc. L. Ind < N° Inc.
No so puede Solucionar solo con las
Esuaciones de la estatica - 20 Tiono la dirección do Lacolida

TIPOS DE CARGAS

1.- Carga puntual... (kg), (Nt)

2.- Carga uniforme distribuida.. (Kg/m), (Nt/m)

3.- Carga uniforme triangular .. (Kg/m)

P=Υ*h

