

J.R. Esteban

ÁLGEBRA LINEAL Y GEOMETRÍA

Doble Grado en CC. Matemáticas e Ingeniería Informática $2019\hbox{-}2020$

Ejercicios 24 a 30

24. Dada la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 1 & 5 \\ -2 & -4 & 0 & 4 & -2 \\ 1 & 2 & 2 & 4 & 9 \end{bmatrix},$$

utilizar el algoritmo de GRAM-SCHMIDT para calcular una base ortonormal de cada uno de los cuatro subespacios vectoriales

$$\operatorname{nul} \mathbf{A}^{\mathrm{T}}, \quad \operatorname{col} \mathbf{A}, \quad \operatorname{nul} \mathbf{A}, \quad \operatorname{col} \mathbf{A}^{\mathrm{T}}.$$

Escribir las bases ortonormales de \mathbb{R}^3 y de \mathbb{R}^5 obtenidas a partir de las anteriores y la correspondiente factorización ortogonal

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \mathbf{0} & \mathbf{C} \end{bmatrix} \mathbf{V}^{\mathrm{T}}$$

de la matriz \mathbf{A} , siendo $\mathbf{U} \in \mathbb{R}^{3 \times 3}$ y $\mathbf{V} \in \mathbb{R}^{5 \times 5}$ matrices ortogonales.

25. Calcular la factorización $\mathbf{A} = \mathbf{Q}\mathbf{R}$ de la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & -3 \\ 0 & 1 & 1 \end{bmatrix}.$$

Uțilizar la factorización obtenida para resolver los sistemas $\mathbf{A}\mathbf{x}=\mathbf{b}_1$ y $\mathbf{A}\mathbf{x}=\mathbf{b}_2$ cuando

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{b}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \\ 0 \end{bmatrix}$$

Explicar en qué sentido las soluciones obtenidas satisfacen el sistema.

26. A. Dado un vector $\mathbf{u} \in \mathbb{K}^n$, se llama reflector elemental⁴, respecto del subespacio \mathbf{u}^{\perp} , a la aplicación lineal determinada por

$$\mathbf{R} = \mathbf{I} - \frac{2}{\mathbf{u}^* \mathbf{u}} \mathbf{u} \mathbf{u}^* \,,$$

⁴ O también transformación de Householder.

$$\mathbf{R} = \mathbf{I} - 2\,\mathbf{u}\mathbf{u}^*\,,$$

cuando \mathbf{u} es unitario: $\|\mathbf{u}\|_{_2} = 1$.

Sea \mathbf{Q} la proyección ortogonal de \mathbb{K}^n sobre \mathbf{u}^{\perp} . Comparar $\mathbf{Q}\mathbf{R}$ con \mathbf{Q} y cada $\|\mathbf{x} - \mathbf{Q}\mathbf{x}\|_2$ con $\|\mathbf{Q}\mathbf{x} - \mathbf{R}\mathbf{x}\|_2$ para obtener una interpretación geométrica de la transformación lineal determinada por \mathbf{R} .

B. Comprobar que todo reflector elemental es unitario, hermítico e idempotente.

C. Sea $\mathbf{x} \in \mathbb{K}^n$ con $x_1 \neq 0$. Hallar \mathbf{u} tal que el reflector corespondiente satisface

$$\mathbf{R}\mathbf{x} = \mp \mu \|\mathbf{x}\|_{2} \, \mathbf{e}_{1}$$

para un $\mu \in \mathbb{K}$ a determinar.

D. Utilizar un reflector elemental para construir una base nornormal de \mathbb{R}^4 cuyo primer vector es

$$\mathbf{x} = \frac{1}{3} \begin{bmatrix} -1\\2\\0\\-2 \end{bmatrix}$$

27. A. Dada $\mathbf{A} \in \mathbf{K}^{m \times n}$ con rango $\mathbf{A} = r$, demostrar que son equivalentes :

- 1. $\operatorname{col} \mathbf{A} \perp_{_{2}} \operatorname{nul} \mathbf{A}$.
- 2. $\operatorname{col} \mathbf{A} = \operatorname{col} \mathbf{A}^*$.
- 3. $\operatorname{nul} \mathbf{A} = \operatorname{nul} \mathbf{A}^*$.
- 4. Existe **U** ortogonal (o unitaria, si $\mathbb{K} = \mathbb{C}$) tal que

$$\mathbf{A}\mathbf{U} = \mathbf{U} \begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \,,$$

donde \mathbf{C} es $r \times r$ e invertible.

B. Demostrar que toda matriz normal satisface las condiciones anteriores. Comprobar que la matriz

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ & & 0 \end{bmatrix}$$

las satisface y no es una matriz normal.

C. Demostrar que toda matriz normal $\mathbf{A} \in \mathbb{K}^{n \times n}$ verifica:

1. Si λ y **u** son autovalor y vector propio de **A** entonces λ^* y el mismo **u** son autovalor y vector propio de **A***. Dicho de otro modo,

$$\operatorname{nul}(\mathbf{A} - \lambda \mathbf{I}) = \operatorname{nul}(\mathbf{A}^* - \lambda^* \mathbf{I}).$$

2. Si λ y μ son autovalores de \mathbf{A} con $\lambda \neq \mu$ entonces

$$\operatorname{nul}(\mathbf{A} - \lambda \mathbf{I}) \perp_{2} \operatorname{nul}(\mathbf{A} - \mu \mathbf{I}).$$

28. Considérese el espacio vectorial $\mathcal{P}_n(\mathbb{C})$ de los polinomios de grado $\leq n$ con coeficientes en $\mathbb C$. Calcular la base dual

$$\mathcal{B}' = \{ \boldsymbol{d}_0, \boldsymbol{d}_1, \boldsymbol{d}_2, \dots, \boldsymbol{d}_n \}$$

de la base

$$\mathcal{B}' = \left\{ d_0, d_1, d_2, \dots, d_n \right\}.$$

$$\mathcal{B} = \left\{ 1, z, z^2, \dots, z^n \right\} \quad \text{de } \mathcal{P}_n(\mathbb{C}).$$

Elegido un $a\in\mathbb{C}$, considérese la aplicación lineal $f:\mathcal{P}_n(\mathbb{C})\longrightarrow\mathbb{C}$ dada por

$$f(\mathbf{p}) = \mathbf{p}(a) - \mathbf{p}'(a) + \mathbf{p}''(a) + \dots + (-1)^n \mathbf{p}^{(n)}(a)$$

para calcular las coordenadas de f en \mathcal{B}' .

29. Sea E el \mathbb{C} -espacio vectorial formado por todas las aplicaciones lineales

$$f: \mathfrak{P}_n(\mathbb{C}) \longrightarrow \mathbb{C}$$

 $f\,:\,\mathbb{P}_n(\mathbb{C})\longrightarrow\mathbb{C}\,.$ Elegidos $z_0\,,z_1\,,\ldots\,,z_n\,\in\,\mathbb{C}$ y distintos entre sí, consideramos, para cada $j=0,1,\ldots,n$, la aplicación lineal

$$oldsymbol{\delta}_j: \mathcal{P}_n(\mathbb{C}) \longrightarrow \mathbb{C}$$

dada por

$$\boldsymbol{\delta}_i(\mathbf{p}) = \mathbf{p}(z_i)$$

- A. Demostrar:
 - 1. $\delta_0, \delta_1, \ldots, \delta_n$ son linealmente independientes en E.
 - 2. Para toda $\boldsymbol{f} \in E$, los vectores

$$f, oldsymbol{\delta}_0, oldsymbol{\delta}_1, \ldots, oldsymbol{\delta}_n$$

son linealmente dependientes en E.

- B. Calcular la base \mathcal{B}_0 en $\mathcal{P}_n(\mathbb{C})$ dual de la base de E formada por los $\boldsymbol{\delta}_0, \boldsymbol{\delta}_1, \ldots, \boldsymbol{\delta}_n$.
- C. Supongamos ahora que los z_0, z_1, \ldots, z_n son números reales del intervalo (-1,1). Consideramos la aplicación lineal

$$I: \mathfrak{P}_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

que a cada polinomio $\mathbf{p} \in \mathcal{P}_n(\mathbb{R})$ hace corresponder

$$\mathbf{I}(\mathbf{p}) = \int_{-1}^{1} \mathbf{p}(t) dt.$$

Demostrar que existen $w_0, w_1, \ldots, w_n \in \mathbb{R}$ tales que

$$\int_{-1}^{1} \mathbf{p}(t) dt = w_0 \mathbf{p}(z_0) + w_1 \mathbf{p}(z_1) + \dots + w_n \mathbf{p}(z_n), \quad \text{para todo } \mathbf{p} \in \mathcal{P}_n(\mathbb{R}).$$

Calcular cada w_j en términos de la base \mathcal{B}_0 .

30. A. Supongamos que $\mathbf{A} \in \mathbb{R}^{n \times n}$ es tal que

$$\left\| \mathbf{A}_{\,:\,,\,j} \right\|_{_2} = 1\,, \qquad \text{para cada } j = 1,2,\ldots,n$$

Calcular

 $\operatorname{Traza} \mathbf{A}^{\mathsf{T}} \mathbf{A}$

y demostrar que

$$\left|\det \mathbf{A}\right| \leq 1$$
.

B. Demostrar que toda $\mathbf{A} \in \mathbb{R}^{n \times n}$ satisface

$$\left|\det\mathbf{A}\right| \leq \prod_{j=1}^{n} \left\|\mathbf{A}_{:,j}\right\|_{2},$$

llamada Desigualdad de HADAMARD.

C. Demostrar que la igualdad tiene lugar en (15) si y sólo si

$$\left\{\mathbf{A}_{:,1},\mathbf{A}_{:,2},\ldots,\mathbf{A}_{:,n}\right\}$$

forman una base ortonormal de \mathbb{R}^n . Dar una interpretación geométrica de la desigualdad.

