第3章 线性方程组

3.1 n 维向量及其线性相关性

3.1 n 维向量及其线性相关性

1. n元向量的概念

定义3.1 由n个数 a_1,a_2,\cdots,a_n 组成的有序数组称为n元向量,

记作 $(a_1,a_2,...,a_n)$, 其中 a_i 称为第i个分量。

如果 $a_i(i=1,2,...,n)$ 是实(复)数叫做实(复)向量。

行向量是 $1 \times n$ 矩阵,记作 $[a_1, a_2, ..., a_n]$; 列向量是 $n \times 1$ 矩阵,记作 $[a_1, a_2, ..., a_n]^{T_o}$ 如果 n 个分量全为零,叫做零向量,用 0 表示。 全体 n 元实向量组成的集合记作 \mathbf{R}^n 。 常用 α , β , γ 等表示 n 元向量。

2. 向量的线性运算

定义3.2 设 $\alpha = [a_1, a_2, \dots, a_n]^T \in F^n, \beta = [b_1, b_2, \dots, b_n]^T \in F^n, \lambda \in F_o$

 $\alpha = \beta$ 当且仅当 $a_i = b_i$, $i = 1, 2, ..., n_o$

F为数域

(2) α 与 β 之和: $\alpha + \beta = [a_1 + b_1, a_2 + b_2, ..., a_n + b_n]^T$

°(3)数 λ 与 α 之乘积: $\lambda \alpha = [\lambda a_1, \lambda a_2, ..., \lambda a_n]^T$,简称数乘。

向量的加法与数量乘法统称为向量的线性运算,其运算规 与矩阵的相同

$$k=-1$$
时, $-\boldsymbol{\alpha}=[-a_1,-a_2,...,-a_n]^T$ $\boldsymbol{\beta}-\boldsymbol{\alpha}=\boldsymbol{\beta}+(-\boldsymbol{\alpha})$

加法满足4条运算律:

$$(1)\alpha + \beta = \beta + \alpha$$
;

(2)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$$

(3)
$$\forall \alpha$$
有 α + $\mathbf{0}_n = \alpha$;

$$(4) \ \forall \alpha \ \overleftarrow{a} (-\alpha)$$
 , 使 $\alpha + (-\alpha) = \mathbf{0}_{n_o}$

数乘满足4条运算律:

$$orall oldsymbol{lpha}$$
, $oldsymbol{eta} \in F^n$, $orall \lambda$, $\mu \in F$ 有:
 $1 \alpha = \alpha$;
 $\lambda(\mu \alpha) = (\lambda \mu) \alpha$;
 $\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$;
 $(\lambda + \mu) \alpha = \lambda \alpha + \mu \alpha$.

其他:

- (1) $\forall \boldsymbol{\alpha}$ 有 $0\boldsymbol{\alpha} = \mathbf{0}_n$; $k\mathbf{0}_n = \mathbf{0}_{n_o}$
- (2) 若 $k \alpha = \mathbf{0}_n$ 则 $\alpha = \mathbf{0}_n$ 或 k=0。
- (3) 向量方程 $\alpha+x=\beta$ 有唯一解:

$$x = \beta - \alpha$$

定义3.3 数域 F上的全体 n 元向量,在其中定义了上述的加法和数乘运算,称为数域 F上的n维向量空间,记作 F^n (\mathbb{R}^n 为实空间)。

定义3.4 设 $\alpha_i \in F^n$, $\lambda_i \in F$ (i = 1, 2, ..., m), 则向量

$$\boldsymbol{\alpha} = \lambda_1 \, \boldsymbol{\alpha}_1 + \lambda_2 \, \boldsymbol{\alpha}_2 + \ldots + \lambda_m \, \boldsymbol{\alpha}_m \tag{1}$$

称为向量 α_1 , α_2 , ..., α_m 的线性组合,或 α 可用 $\{\alpha_1$, α_2 , ..., $\alpha_m\}$ 线性表示。

(1)式可表示为: $Ax = \alpha$ 。此时, $\alpha_1, \alpha_2, ..., \alpha_m, \alpha$ 为列向量,

矩阵
$$A=[\alpha_1, \alpha_2, ..., \alpha_m]$$
, $x=[\lambda_1, \lambda_2, ..., \lambda_m]^T$ 。

例如,在 \mathbf{R}^3 中,任一向量 $\boldsymbol{\alpha} = [\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3]^T$ 可由基本向量 $\boldsymbol{e}_1 = [1, 0, 0]^T$, $\boldsymbol{e}_2 = [0, 1, 0]^T$, $\boldsymbol{e}_3 = [0, 0, 1]^T$ 线性表示为

$$\boldsymbol{\alpha} = a_1 \, \boldsymbol{e}_1 + a_2 \, \boldsymbol{e}_2 + a_3 \, \boldsymbol{e}_3$$

在 \mathbb{R}^3 中,如果三个向量 α_1 , α_2 , α_3 共面,则至少有一个向量可以由另两个向量线性表示,如图,

$$\boldsymbol{\alpha}_3 = k_1 \, \boldsymbol{\alpha}_1 + k_2 \, \boldsymbol{\alpha}_2$$

即存在不全为 $\mathbf{0}$ 的 k_1 , k_2 , k_3 使 $k_1 \, \boldsymbol{\alpha}_1 + k_2 \, \boldsymbol{\alpha}_2 + k_3 \, \boldsymbol{\alpha}_3 = \mathbf{0}$

如果三个向量 α₁, α₂, α₃不共面,则任意一个向量都不能由其余两个向量线性表示,如

$$\boldsymbol{\alpha}_1 = a_1 \, \boldsymbol{e}_1$$
, $\boldsymbol{\alpha}_2 = a_2 \, \boldsymbol{e}_2$, $\boldsymbol{\alpha}_3 = a_3 \, \boldsymbol{e}_3$

向量与线性空间

行向量是 $1 \times n$ 矩阵,记作 $[a_1, a_2, ..., a_n]$; 列向量是 $n \times 1$ 矩阵,记作 $[a_1, a_2, ..., a_n]^{T_e}$ 全体 n 元实向量组成的集合记作 \mathbf{R}^n

线性空间R": 关于向量的数乘与加法运算封闭

设 $\alpha_i \in \mathbf{R}^n$, $\lambda_i \in \mathbf{R}$ (i = 1, 2, ..., m), 则向量

$$\boldsymbol{\alpha} = \lambda_1 \, \boldsymbol{\alpha}_1 + \lambda_2 \, \boldsymbol{\alpha}_2 + \ldots + \lambda_m \, \boldsymbol{\alpha}_m$$

称为向量 α_1 , α_2 , ..., α_m 的线性组合,或 α 可用 $\{\alpha_1$, α_2 , ..., α_m $\}$ 线性表示。

 e_i =[0, ..., 0, 1, 0,...,0]^T是第 i 个分量为 1 (i=1,2, , ..., n **)** 其余分量全为零的向量。

3. 向量的线性相关性

定义3.5 设 α_1 , α_2 , ..., $\alpha_m \in \mathbb{R}^n$, 如果存在不全为零的 λ_1 , λ_2 , ..., $\lambda_m \in \mathbb{R}$, 使

$$\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_m \alpha_m = \mathbf{0} \qquad (*)$$

成立,则称 $\alpha_1, \alpha_2, \ldots, \alpha_m$ 线性相关,否则,线性无关。

"否则"是指:不线性相关就是线性无关,

"仅当 $\lambda_1, \lambda_2, ..., \lambda_m$ 全为零时,才使(*)式成立"。这

等价于 "如果(*)式成立,则 λ_1 , λ_2 ,..., λ_m 必须全为零"。

定理3.1 向量组 $\alpha_1, \alpha_2, ..., \alpha_m (m \ge 2)$ 线性相关的充要条件是 $\alpha_1, \alpha_2, ..., \alpha_m$ 中至少有一个向量可由其余向量线性表示。

证必要性:设 α_1 , α_2 , ..., α_m 线性相关,则存在不全为零的数 λ_1 , λ_2 , ..., λ_m , 使得

$$\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \cdots + \lambda_m \alpha_m = 0$$

不妨设 $\lambda_1 \neq 0$, 于是

$$\boldsymbol{\alpha}_1 = -\lambda_1^{-1}\lambda_2 \boldsymbol{\alpha}_2 - \cdots - \lambda_1^{-1}\lambda_m \boldsymbol{\alpha}_m$$

充分性: 若 α_1 , α_2 , ..., α_m 中的一个向量可由其余向量线性表示, 如

$$\boldsymbol{\alpha}_{j} = \mu_{1} \boldsymbol{\alpha}_{1} + \cdots + \mu_{j-1} \boldsymbol{\alpha}_{j-1} + \mu_{j+1} \boldsymbol{\alpha}_{j+1} + \cdots + \mu_{m} \boldsymbol{\alpha}_{m}$$

$$\mu_1 \boldsymbol{\alpha}_1 + \cdots + \mu_{j-1} \boldsymbol{\alpha}_{-1} - \boldsymbol{\alpha}_j + \mu_{j+1} \boldsymbol{\alpha}_{j+1} + \cdots + \mu_m \boldsymbol{\alpha}_m = \mathbf{0}$$

其中 μ_1 , ..., μ_{j-1} , -1, μ_{j+1} , ..., μ_m 不全为零, 充分性得证。

定理3.1 的等价命题: $\alpha_1, \alpha_2, ..., \alpha_m (m \ge 2)$ 线性无关的充要条件是其中任一个向量都不能由其余向量线性表示。

例1 **R**ⁿ中的 e_1 , e_2 , ..., e_n 是线性无关的。 其中 e_i =[0, ..., 0, 1, 0, ..., 0]^T是第 i 个分量为 1 (i=1,2, , ..., n) 其余分量全为零的向量。

解: 因为,由

$$\lambda_1 \boldsymbol{e}_1 + \lambda_2 \boldsymbol{e}_2 + \dots + \lambda_n \boldsymbol{e}_n = \boldsymbol{0}$$
$$[\lambda_1, \lambda_2, \dots, \lambda_n] = [0, 0, \dots, 0]$$
$$\lambda_1 = \lambda_2 = \dots = \lambda_n = 0.$$

即必有

注意: (1) 单个向量 α 线性相关的充分必要条件是:

α为零向量

因为 $\exists \lambda \neq 0$ 使 $\lambda \alpha = 0$ 成立的充要条件是 $\alpha = 0$;

(2) 两个非零向量 α , β 线性相关的充分必要条件是:

 α , β 成比例

即存在 $\beta = k\alpha$ 或 $\alpha = l\beta$ 。

(3) \mathbb{R}^3 中三个向量 α , β , γ 线性相 关的充分必要条件是 α , β , γ 共面

例2 含零向量的任何向量组 $\{0, \alpha_1, \alpha_2, \ldots, \alpha_m\}$ 都线性相关。

$$1 \cdot 0 + 0 \boldsymbol{\alpha}_1 + 0 \boldsymbol{\alpha}_2 + \cdots + 0 \boldsymbol{\alpha}_n = \boldsymbol{0}$$

例3 如果向量组{ $\alpha_1, \alpha_2, \ldots, \alpha_m$ }中有一部分向量线性相关,则整个向量组也线性相关。

证:不妨设{ $\alpha_1, \alpha_2, ..., \alpha_k$ }线性相关,于是有不全为零的 $\lambda_1, \lambda_2, ..., \lambda_k$,使 $\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + ... + \lambda_k \alpha_k = \mathbf{0}$ 成立,从而有不全为零的 $\lambda_1, \lambda_2,, \lambda_k$,0,...,0 使 $\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + ... + \lambda_k \alpha_k + 0$ $\alpha_{k+1} + 0$ $\alpha_{k+2} + ... + 0$ $\alpha_m = \mathbf{0}$ 成立,所以{ $\alpha_1, \alpha_2, ..., \alpha_m$ }线性相关。

例如, $\boldsymbol{\beta}_1 = [1, -2, 1]^T$, $\boldsymbol{\beta}_2 = [-2, 4, -2]^T$, $\boldsymbol{\beta}_3 = [1, 1, 3]^T$ 。因为 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$ 线性相关(成比例),所以, $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 线性相关。 **例3 的等价命题是:** 线性无关向量组的任一子集(任一部分向量)都线性无关。

总之: 向量组部分线性相关,则整体线性相关;整体线性无关,则任一部分都线性无关。

定理3.2 设 $\alpha_1, \alpha_2, \ldots, \alpha_s \in F^n$, 其中 $\alpha_1 = [a_{11}, a_{21}, \ldots, a_{n1}]^T$,

$$\boldsymbol{\alpha}_2 = [a_{12}, a_{22}, ..., a_{n2}]^T, ..., \boldsymbol{\alpha}_s = [a_{1s}, a_{2s}, ..., a_{ns}]^T,$$

则 α_1 , α_2 , ..., α_s 线性相关的充要条件是 s 元线性齐次方程组 Ax=0

有非零解,其中
$$\mathbf{A} = [\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_s], \mathbf{x} = [x_1, x_2, \dots, x_s]^T$$
,

即
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1s}x_s = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2s}x_3 = 0 \\ \dots & \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{ns}x_s = 0 \end{cases}$$
 有非零解。

证: 设
$$x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + \cdots + x_s\boldsymbol{\alpha}_s = \mathbf{0}$$

[
$$\boldsymbol{\alpha}_1$$
, $\boldsymbol{\alpha}_2$, \cdots , $\boldsymbol{\alpha}_s$] $\begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_s \end{vmatrix} = 0$, 或 $\mathbf{A}\mathbf{x} = 0$

有非零解 $\Leftrightarrow \alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关。

此定理的等价命题是: $\alpha_1, \alpha_2, ..., \alpha_s$ 线性无关的充要条件是 Ax=0 只有零解。

推论. 任意 $s \uparrow n$ 维向量, 当 s > n 时都线性相关。

因为s个未知量,n个方程的齐次线性方程组必有非零解,即 s>n 时 $A_{n\times s}$ **x**=**0** 必有非零解。故 $\geq n+1$ 个n维向量必线性相关。

定理3.3 若向量组 $\{\alpha_1, \alpha_2, ..., \alpha_r\}$ 线性无关,而向量组 $\{\beta, \alpha_1, \alpha_2, ..., \alpha_r\}$ 线性相关,则 β 可由 $\alpha_1, \alpha_2, ..., \alpha_r$ 线性表示,且表示法唯一。

 $\overline{\mathbf{u}}$: 由于向量组{ β , α_1 , α_2 , ..., α_r }线性相关,所以存在不全零的数 λ_1 , λ_1 , λ_2 , ..., λ_r 使得

$$\lambda \boldsymbol{\beta} + \lambda_1 \boldsymbol{\alpha}_1 + \lambda_2 \boldsymbol{\alpha}_2 + \dots + \lambda_r \boldsymbol{\alpha}_r = \mathbf{0}$$

其中 λ 必不等于零(如果 $\lambda = 0$,则由 $\{\alpha_1, \alpha_2, ..., \alpha_r\}$ 线性无关 又得 $\lambda_1, \lambda_2, ..., \lambda_r$ 全为零,与题设矛盾),于是

$$\boldsymbol{\beta} = -\lambda^{-1} \lambda_1 \boldsymbol{\alpha}_1 - \lambda^{-1} \lambda_2 \boldsymbol{\alpha}_2 - \dots - \lambda^{-1} \lambda_r \boldsymbol{\alpha}_r$$

则 β 可由 $\alpha_1, \alpha_2, \ldots, \alpha_r$ 线性表示。

再证表示法唯一。设有两种表示法:

$$\boldsymbol{\beta} = b_1 \boldsymbol{\alpha}_1 + b_2 \boldsymbol{\alpha}_2 + \dots + b_r \boldsymbol{\alpha}_r$$
$$\boldsymbol{\beta} = \boldsymbol{c}_1 \boldsymbol{\alpha}_1 + c_2 \boldsymbol{\alpha}_2 + \dots + c_r \boldsymbol{\alpha}_r$$

于是,
$$(b_1-c_1)\boldsymbol{\alpha}_1 + (b_2-c_2)\boldsymbol{\alpha}_2 + ... + (b_r-c_r)\boldsymbol{\alpha}_r = \mathbf{0}$$

而{ α_1 , α_2 , ..., α_r }线性无关,所以 $b_i = c_i$ (i = 1, 2, ..., r),

故 β 由 $\alpha_1,\alpha_2,\ldots,\alpha_r$ 表示是唯一的。

推论 如果 $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ 是 \mathbb{R}^n 中线性无关的 n 个向量,则 \mathbb{R}^n 中任一个向量 α 可由 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性表示,且表示法 唯一。

这是因为 \mathbf{R}^n 中任何 n+1个向量都线性相关。故 α , α_1 , α_2 , ..., α_n 线性相关,由 定理3.3,向量 α 可由 α_1 , α_2 , ..., α_n 线性表示,且表示法 唯一。

例4 (1) a 取何值时, $\boldsymbol{\beta}_1 = [1, 3, 6, 2]^T$, $\boldsymbol{\beta}_2 = [2, 1, 2, -1]^T$, $\boldsymbol{\beta}_3 = [1, -1, a, -2]^T$ 线性无关?

(2) a = -2时, β_3 可否由 β_1 , β_2 线性表示?若可以,求表示式。

解 (1)设
$$x_1 \beta_1 + x_2 \beta_2 + x_3 \beta_3 = 0$$
 (*)

当
$$a \neq -2$$
时,方程组(*)只有零解: $x_1 = x_2 = x_3 = 0$,所以 $\beta_1, \beta_2, \beta_3$ 线性无关。

得 $x_2 = 4/5$

 $x_1 = -3/5$

$$\mathbf{\beta}_3 = x_1 \mathbf{\beta}_1 + x_2 \mathbf{\beta}_2$$
 (**)

$$\begin{bmatrix} \mathbf{\beta}_{2}, \mathbf{\beta}_{3} \end{bmatrix} = \begin{bmatrix} 1 & 2 & \vdots & 1 \\ 3 & 1 & \vdots & -1 \\ 6 & 2 & \vdots & -2 \end{bmatrix} \xrightarrow{\text{fresh}} \begin{bmatrix} 1 & 2 & \vdots & 1 \\ 0 & -5 & \vdots & -4 \\ 0 & 0 & \vdots & 0 \end{bmatrix};$$

例5 若 α_1 , α_2 , α_3 线性无关,问:

$$\beta_1 = 2\alpha_1 - 2\alpha_2$$
, $\beta_2 = 2\alpha_1 - 2\alpha_2 + \alpha_3$, $\beta_3 = \alpha_2 + 4\alpha_3$ 是否线性无关?

解 设 $x_1\boldsymbol{\beta}_1 + x_2\boldsymbol{\beta}_2 + x_3\boldsymbol{\beta}_3 = \mathbf{0}$, 则

$$x_1(2\alpha_1 - 2\alpha_2) + x_2(2\alpha_1 - 2\alpha_2 + \alpha_3) + x_3(\alpha_2 + 4\alpha_3) = 0,$$

 $\exists \Box (2x_1 + 2x_2)\alpha_1 + (-2x_1 - 2x_2 + x_3)\alpha_2 + (x_2 + 4x_3)\alpha_3 = 0,$

由于 α_1 , α_2 , α_3 线性无关,所以,它的系数必须全部为 α_3 即

$$\begin{cases} 2x_1 + 2x_2 = 0 \\ -2x_1 - 2x_2 + x_3 = 0 \\ x_2 + 4x_3 = 0 \end{cases}$$

解方程组得 $x_1=x_2=x_3=0$,所以, β_1 , β_2 , β_3 线性无关。

注:若方程组存在非零解,则 β_1 , β_2 , β_3 线性相关。

思考:由定理3.2,若向量组{ α_1 , α_2 , ..., α_r }线性无关,对每一个 α_i 各增加m个分量得到的向量组{ β_1 , β_2 , ..., β_r } 也线性无关。其逆否命题是什么?

3.2 向量组的秩及其极大线性无关组

定义3.6 向量组 $\{\alpha_1, \alpha_2, ..., \alpha_s\}$ 中存在r个线性无关的向量: $\alpha_{i-1}, \alpha_{i-2}, ..., \alpha_{i-r}$

且任意一个向量均可由它们线性表示,则称向量组的秩为r,记作

秩 $\{\alpha_1, \alpha_2, ..., \alpha_s\} = r$ 或 r $\{\alpha_1, \alpha_2, ..., \alpha_s\} = r$

称 α_{i_1} , α_{i_2} ,..., α_{i_r} 是一个极大线性无关组。

注意:一个向量组的秩是唯一确定的,但它的极大线性 无关组不是唯一的。例如

$$\alpha_1$$
=[1, 0]; α_2 =[0, 1]; α_3 =[1, 2]; α_4 =[2, -1]
秩{ α_1 , α_2 , α_3 , α_4 }=2

其中任意两个 α_i , α_j (i, j =1,2,3,4且 $i\neq j$) 都线性无关,都是 α_1 , α_2 , α_3 , α_4 的一个极大线性无关组。

定义3.7 若向量组 β_1 , β_2 , ..., β_k 中每个向量均可由向量 组 α_1 , α_2 ,..., α_s 线性表示,则称 β_1 , β_2 ,..., β_k 可由向量组 α_1 , $\alpha_0,...,\alpha_c$ 线性表示。如果它们可以互相线性表示,则称它 们等价,记作

$$\{\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, ..., \, \boldsymbol{\alpha}_s\} \sim \{\boldsymbol{\beta}_1, \, \boldsymbol{\beta}_2, ..., \, \boldsymbol{\beta}_k\}$$

定理3.4 设向量 β_1 , β_2 , ..., β_s 可由另一向量组 α_1 , α_2 ,..., α_{r} 线性表示。如果 s > r,则 β_{1} , β_{2} ,…, β_{s} 线性相关。

在 \mathbf{R}^3 中的几何背景是:如果 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$ 线性无关, $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 可 由 α_1 , α_2 线性表示,则 β_1 , β_2 , β_3 都位于 α_1 , α_2 所确定的平面 上,故 β_1 , β_2 , β_3 线性相关。

证:设
$$\boldsymbol{\beta}_j = \sum_{i=1}^r \lambda_{ij} \boldsymbol{\alpha}_{i}, \quad j = 1, \dots, s$$

 $x_1 \boldsymbol{\beta}_1 + x_2 \boldsymbol{\beta}_2 + \cdots + x_s \boldsymbol{\beta}_s = \mathbf{0}$

$$\mathbb{RP} \quad \sum_{j=1}^{s} x_j \mathbf{\beta}_j = \sum_{j=1}^{s} x_j \left(\sum_{i=1}^{r} \lambda_{ij} \mathbf{\alpha}_i \right) = \sum_{i=1}^{r} \left(\sum_{j=1}^{s} \lambda_{ij} x_j \right) \mathbf{\alpha}_i = 0$$

令 $\sum_{i=1}^{r} \left(\sum_{j=1}^{s} \lambda_{ij} x_{j} \right) \alpha_{i} = 0 \quad + \alpha_{i} (i = 1, 2, \dots, n) 的 系数全为零, 即$

$$\sum_{j=1}^{S} \lambda_{ij} x_j = 0 \qquad (i = 1, \dots, r) \tag{*}$$

此式是关于 x_1, x_2, \dots, x_s 的齐次线性方程组,由于r < s(方程个数 < 未知数个数),必有非零解,从而有不全为零的

 $x_1, x_2, ..., x_s$ 使 (*) 式成立,即有不全为零的 $x_1, x_2, ..., x_s$ 使 $x_1 \beta_1 + x_2 \beta_2 + ... + x_s \beta_s = \mathbf{0}$

故 $\{\beta_1, \beta_2, \cdots, \beta_s\}$ 线性相关。

推论1(定理3.4的等价命题,即逆否命题):在定理3.4的条件下,

性论2 若秩 $\{\alpha_1, \alpha_2, ..., \alpha_s\} = r$,则 $\alpha_1, \alpha_2, ..., \alpha_s$ 中任意 r+1

个向量都是线性相关的。

因为任意r+1个向量都可经线性无关的r个向量线性表示。

若秩 $\{\alpha_1, \alpha_2, ..., \alpha_s\} = r$,则 $\alpha_1, \alpha_2, ..., \alpha_s$ 中任意r个线性无关的向量都是 $\alpha_1, \alpha_2, ..., \alpha_s$ 的一个极大线性无关组。

推论3 若向量组 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, ..., $\boldsymbol{\beta}_k$ 可由向量组 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, ..., $\boldsymbol{\alpha}_s$ 线性表示,则

秩 $\{\beta_1, \beta_2, \dots, \beta_k\} \leq$ 秩 $\{\alpha_1, \alpha_2, \dots, \alpha_s\}$

证 设 β_1 , β_2 , ..., β_r 和 α_1 , α_2 , ..., α_p 分别是 β_1 , β_2 , ..., β_k 和 α_1 , α_2 ,..., α_s 的一个极大线性无关组,则 β_1 , β_2 , …, β_r 可经 β_1 , β_2 , …, β_k 线性表示。 已知 β_1 , β_2 , …, β_k 可由 α_1 , α_2 ,..., α_s 线性表示,又 α_1 , α_2 ,..., α_s 可经其极大线性 无关组 $\alpha_1, \alpha_2, ..., \alpha_p$ 线性表示。因此, $\beta_1, \beta_2, ..., \beta_r$ 可经 α_1 , α_2 ,..., α_p 线性表示,由推论1得 $r \leq p$ 。

推论4 若向量组{ β_1 , β_2 , ..., β_k } ~{ α_1 , α_2 , ..., α_s }, 则 秩{ β_1 , β_2 , ..., β_k } = 秩{ α_1 , α_2 , ..., α_s }

推论4的逆命题不成立。例如,

$$\alpha_1 = [1, 0, 0]; \alpha_2 = [0, 1, 0]; \alpha_3 = [0, 0, 1]$$

秩{ α_1 , α_2 }=秩{ α_1 , α_3 }=2

但 $\{\alpha_1, \alpha_2\}$ 和 $\{\alpha_1, \alpha_3\}$ 不是等价向量组。

除掌握秩和极大线性无关组的定义外,还要掌握秩和极大线性无关组的求法,以及向量组中的一个向量如何用极大线性无关组线性表示。