Chap. 1 – Aléatoire et algorithmique HAI503I – Algorithmique 4

Bruno Grenet

Université de Montpellier - Faculté des Sciences

1. Rappels (?) de probabilités discrètes

Bits aléatoires ou pseudo-aléatoires

3. Simulation de lois

Probabilité

Le langage des probabilités permet de modéliser une expérience probabiliste

Espace probabilisé discret

- Univers : ensemble des résultats possibles de l'expérience probabiliste
 - Évènement primitif: un élément de l'univers / un résultat possible
 - Évènement : sous-ensemble de l'univers / ensemble de résultats possibles
- Probabilités :
 - lacktriangle Chaque évènement primitif a une probabilité associée ightarrow somme totale = 1
 - Probabilité d'un évènement : somme des probabilités de ses éléments

- $\blacktriangleright \ \ \mathsf{Univers}: \Omega = \{ \boxdot, \boxdot, •, •, •, •, •, •, \\$
- Probabilité associée à chaque élément : $\frac{1}{6}$
- Pr [dé au moins 5] = Pr $\left[\left\{ \boxdot, \boxminus\right\}\right] = 2 \times \frac{1}{6} = \frac{1}{3}$

Intuition graphique

- ► Univers : partie du plan d'aire 1
- ightharpoonup Évènement : sous-partie de l'univers ightharpoonup aire = probabilité de l'évènement

Variable aléatoire

Définitions

- Une variable aléatoire est une fonction $X:\Omega\to V$ de l'univers dans un ensemble V
- Si $V \subseteq \mathbb{R}$: variable aléatoire réelle
- ▶ Pour $v \in V$:
 - « X = v » est l'évènement $\{\omega \in \Omega : X(\omega) = v\}$ et $\Pr[X = v] = \sum_{\omega : X(\omega) = v} \Pr[\omega]$
 - « $X \le v$ » est l'évènement $\{\omega \in \Omega : X(\omega) \le v\}$ et $\Pr[X = v] = \sum_{\omega : X(\omega) \le v} \Pr[\omega]$
 - etc.

Une variable aléatoire n'est ni une variable, ni aléatoire!

- Nombre de point obtenus :
 - $X: \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \} \rightarrow \{1, 2, 3, 4, 5, 6\}$
- Parité du dé :

 - $ightharpoonup \Pr[Y=0] = \Pr[Y=1] = \frac{1}{2}$

Espérance

Définition

Soit $X : \Omega \to V$ une variable aléatoire réelle. Alors

$$\mathbb{E}[X] = \sum_{v \in V} v \times \Pr[X = v]$$

Remarques

- Intuitivement : résultat obtenu en moyenne
- lacktriangle Attention : la somme peut-être infinie ightarrow espérance non définie

►
$$\mathbb{E}[X] = \sum_{v=1}^{6} v \times \frac{1}{6} = \frac{7}{2}$$

$$\mathbb{E}[Y] = 0 \times \frac{1}{2} + 1 \times \frac{1}{2} = \frac{1}{2}$$

$$si\ Y:\Omega\to\{0,1\}, \mathbb{E}[Y]=\text{Pr}\left[Y=1\right]$$

Probabilité conditionnelle

Définition

- ► La probabilité de *E* sachant *F* est $Pr[E|F] = \frac{Pr[E \land F]}{Pr[F]}$
- L'espérance de X sachant F est $\mathbb{E}[X|F] = \sum_{v \in V} v \Pr[X = v|F]$

Remarque

- ► Graphiquement : Pr[E|F] =« proportion de F occupée par E »
- ► Toute probabilité est *conditionnelle* : $\Pr[E] = \Pr[E|\Omega]$ car $E \land \Omega = E$ et $\Pr[\Omega] = 1$

- ► $\Pr[X \ge 4 | Y = 0] = \Pr[X \ge 4 \land Y = 0] / \Pr[Y = 0] = \frac{1}{3} / \frac{1}{2} = \frac{2}{3}$
- $\mathbb{E}[X|Y=1] = \sum_{\nu} \nu \Pr[X=\nu|Y=1] = 1 \times \frac{1}{3} + 2 \times 0 + 3 \times \frac{1}{3} + 4 \times 0 + 5 \times \frac{1}{3} + 6 \times 0 = 3$

Indépendance et quelques propriétés

Définition

- ▶ Deux évènements sont indépendants si $Pr[E \land F] = Pr[E]Pr[F]$
- Deux variables aléatoires sont indépendantes si $Pr[X = v \land Y = w] = Pr[X = v] Pr[Y = w]$ pour tous v, w

Propriétés

- Soit E et F deux évènements :
 - $Pr [\neg E] = 1 Pr [E]$

Inégalité de Boole

- ► Soit $X, Y : \Omega \rightarrow V$ deux variables aléatoires réelles:

 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- ightharpoonup Si $\Omega = \bigsqcup_i F_i$,
 - $ightharpoonup \Pr[\overline{E}] = \sum_{i} \Pr[E|F_i] \Pr[F_i]$
 - $\mathbb{E}[X] = \sum_{i} \mathbb{E}[X|F_{i}] \Pr[F_{i}]$

Linéarité de l'espérance

formules des probabilités totales formules de l'espérance totale

1. Rappels (?) de probabilités discrètes

2. Bits aléatoires ou pseudo-aléatoires

3. Simulation de lois

Exemple d'algorithme probabiliste : calcul de π

CALCULPI(n):

- 1. $c \leftarrow 0$
- 2. Répéter *n* fois :
- 3. $x \leftarrow \text{r\'eel } al\'eatoire \text{ entre } 0 \text{ et } 1$
- 4. $y \leftarrow \text{r\'eel } al\'eatoire \text{ entre } 0 \text{ et } 1$
- 5. Si $x^2 + y^2 \le 1$: $c \leftarrow c + 1$
- 6. Renvoyer 4c/n

Exemple d'algorithme probabiliste : calcul de π

CALCULPI(n):

- 1. $c \leftarrow 0$
- 2. Répéter *n* fois :
- 3. $x \leftarrow \text{r\'eel } al\'eatoire \text{ entre } 0 \text{ et } 1$
- 4. $y \leftarrow \text{r\'eel } al\'eatoire \text{ entre } 0 \text{ et } 1$
- 5. Si $x^2 + y^2 \le 1$: $c \leftarrow c + 1$
- 6. Renvoyer 4c/n

Comment tirer des réels aléatoires ?

- Comment faire algorithmiquement (théorie)?
- ► Comment faire sur un ordinateur (pratique) ?

Bits aléatoires

La réponse théorique

- Accès à des bits aléatoires :
 - ► Random() renvoie 0 ou 1 avec probabilité ½
 - Appels consécutifs à Random() indépendants
- Construction d'objets aléatoires à partir des bits
 - entiers, rationnels, lettres d'un alphabet, ...
 - arbres, graphes, permutations, ...
- Simulation de lois
 - ► tirer un bit 0 avec probabilité $\frac{1}{3}$ et 1 avec probabilité $\frac{2}{3}$
 - tirer un point aléatoire dans un cercle

Bits aléatoires

La réponse théorique

- Accès à des bits aléatoires :
 - ► Random() renvoie 0 ou 1 avec probabilité ½
 - Appels consécutifs à Random() indépendants
- Construction d'objets aléatoires à partir des bits
 - entiers, rationnels, lettres d'un alphabet, ...
 - arbres, graphes, permutations, ...
- Simulation de lois
 - tirer un bit 0 avec probabilité $\frac{1}{3}$ et 1 avec probabilité $\frac{2}{3}$
 - tirer un point aléatoire dans un cercle

Difficulté

- Comment écrire une fonction RANDOM()?
- Vrai aléa impossible ? quantique ? autres solutions ?

Le pseudo-aléa

Solution

- Générateurs pseudo-aléatoires
 - la algorithme qui produit des bits qui semblent aléatoires
 - aspects théoriques et pratiques
- ► Générateurs de bits, mais aussi directement d'entiers, flottants, etc.
- $\blacktriangleright \ \ Biblioth\`e ques \ logicielles \rightarrow {\tt random} \ dans \ Python$

Le pseudo-aléa

Solution

- Générateurs pseudo-aléatoires
 - algorithme qui produit des bits qui semblent aléatoires
 - aspects théoriques et pratiques
- ► Générateurs de bits, mais aussi directement d'entiers, flottants, etc.
- ▶ Bibliothèques logicielles → random dans Python

Remarques

- ► Algorithmes déterministes → suite fixée
- ► Entrée de l'algorithme : graîne
 - changer la graîne doit modifier complètement la suite
 - choix de graîne : quelque chose d'imprévisible ou au contraire de fixé

Exemple: générateurs congruentiels linéaires

Suite
$$(X_n)$$
 définie par $X_{n+1} = (aX_n + c) \mod m$

- ► X₀ doit être fixé : *graîne* du générateur
- a, c et m définissent le générateur
- ightharpoonup parfois : seuls certains bits de X_n sont utilisés

Quelques choix classiques

- ightharpoonup m premier, c = 0, a primitif modulo m (Lehmer)
- $m = 2^k, c = 0, a = 3 \text{ ou } 5 \text{ mod } 8$
- ightharpoonup m et c premiers entre eux, a-1 divisible par les facteurs premiers de m

Exemples

- rand de stdlib.h: $m = 2^{31}$, a = 1103515245, c = 12345
- ▶ minstd_rand de C++11 : $m = 2^{31} 1$, a = 48271, c = 0
- ightharpoonup java.util.Random: $m=2^{48},\,a=25214903917,\,c=11$, bits 16 à 47

Conclusion sur l'aléa et le pseudo-aléa

Problématique du pseudo-aléa

- Construire des bons générateurs est difficile
- Limitations intrinsèques (période, etc.)

Bon, on fait quoi alors?

- En théorie : on suppose l'accès à des bits parfaitement aléatoires
- En pratique : on utilise les générateurs des bibliothèques, en général suffisants
- Dans les deux cas : on dispose d'une source d'aléa, on simule des lois

1. Rappels (?) de probabilités discrètes

Bits aléatoires ou pseudo-aléatoires

3. Simulation de lois

Problématique

On sait

- tirer des bits aléatoires, ou
- tirer des entiers aléatoires, ou
- **...**

On veut

- ▶ tirer des bits *biaisés* : $Pr[b = 0] \neq Pr[b = 1]$
- choisir un élément dans un ensemble, *non uniformément* : par ex. un dé qui tombe une fois sur deux sur !!
- tirer un nombre réel aléatoire
- tirer un graphe aléatoire
- **...**

Problématique

On sait

- tirer des bits aléatoires, ou
- tirer des entiers aléatoires, ou
- ▶ ...

On veut

- ▶ tirer des bits *biaisés* : $Pr[b = 0] \neq Pr[b = 1]$
- choisir un élément dans un ensemble, *non uniformément* : par ex. un dé qui tombe une fois sur deux sur 🔢
- tirer un nombre réel aléatoire
- tirer un graphe aléatoire
- ...

But

Construire des algorithmes pour ces tirages

Lois de probabilité

Définition informelle

La loi d'une variable aléatoire $X : \Omega \to V$ est la donnée de $\Pr[X = v]$ pour tout $v \in V$.

→ c'est la définition de la variable aléatoire!

Quelques lois usuelles $(X : \Omega \rightarrow V)$

- ▶ Uniforme : Pr[X = v] = 1/|V| pour tout $v \in V$
- Bernoulli(p): $V = \{0, 1\}$ et Pr[X = 1] = pPILE OU FACE

 Pingminlo(p, p): $V = \{0, 1\}$ et $Pr[X = k] = \binom{n}{2} p_k^k (1 p)^k$
- ▶ Binomiale(p, n): $V = \{0, ..., n\}$ et $\Pr[X = k] = \binom{n}{k} p^k (1 p)^k$ n pièces : #PILE
- Géométrique $(p): V = \mathbb{N}$ et $\Pr[X = n] = p(1-p)^{n-1}$ #lancers avant PILE

Lois de probabilité

Définition informelle

La loi d'une variable aléatoire $X : \Omega \to V$ est la donnée de $\Pr[X = v]$ pour tout $v \in V$.

→ c'est la définition de la variable aléatoire!

Quelques lois usuelles $(X : \Omega \rightarrow V)$

- ▶ Uniforme : Pr[X = v] = 1/|V| pour tout $v \in V$
- ► Bernoulli(p): $V = \{0,1\}$ et Pr[X = 1] = p

PILE OU FACE

- ▶ Binomiale(p, n): $V = \{0, ..., n\}$ et $\Pr[X = k] = \binom{n}{k} p^k (1 p)^k$ n pièces : #PILE
- Géométrique $(p): V = \mathbb{N}$ et $\Pr[X = n] = p(1-p)^{n-1}$ #lancers avant PILE

Comment les simuler?

- ► Uniforme : tirer un entier aléatoire entre 1 et *V*
- ▶ Bernoulli : si $p = \frac{1}{2}$, on tire un bit aléatoire... sinon ?
- ▶ Binomiale : n Bernoulli $\rightarrow O(n)$
- Géométrique : Bernoulli jusqu'à avoir $1 \rightarrow O(n)$

Tirer un bit biaisé

Idée de base

- 1. $x \leftarrow$ réel aléatoire entre 0 et 1
- 2. Si $x \le p$: renvoyer 1
- 3. Sinon: renvoyer 0

Tirer un réel aléatoire entre 0 et 1

- Question à se poser : à quelle précision (nombre de bits) ?
- ► Si précision n: tirer n bits aléatoires b_1, \ldots, b_n et renvoyer $\overline{0, b_1 \cdots b_n}^2$
- Pour un bit biaisé : tirer des bits jusqu'à savoir si $x \leq p$

En pratique

random dans différent langages renvoie $x \in [0,1]$

Exemple de loi plus complexe

Comment tirer (x, y) aléatoirement dans le disque D de centre (0, 0) et de rayon 1?

$$D = \{(x, y) : -1 \le x, y \le 1, x^2 + y^2 \le 1\}$$

- ▶ On sait tirer x et y dans [0,1] et on les veut dans $[-1,1] \rightarrow 2 \cdot RANDOM() 1$
- ► On veut que $x^2 + y^2 \le 1$ → méthode du *rejet*

Algorithme

- 1. $(x, y) \leftarrow (1, 1)$
- 2. Tant que $x^2 + y^2 > 1$:
- 3. $x \leftarrow 2 \cdot \text{RANDOM}() 1$
- 4. $y \leftarrow 2 \cdot \text{RANDOM}() 1$
- 5. Renvoyer (x, y)

Propriétés

- L'algorithme renvoie bien $(x, y) \in D$
- ▶ On peut montrer qu'ils sont uniformément répartis
- Complexité : $\Pr[(x, y) \in D] = \frac{\pi}{4}$ \rightarrow espérance de $\frac{4}{\pi}$ essais : O(1)

Bilan des simulations de loi

Simuler des lois dans un algorithme

- ▶ Brique de base :
 - ▶ source d'aléa : bits, entiers, flottants, ... (objet et loi simple)
 - source parfaite (théorie) ou non (pseudo-aléa)
- ► Simulation de loi = algorithme
 - ightharpoonup preuve de correction ightarrow s'assurer qu'on obtient la distribution voulue
 - ightharpoonup preuve de complexité ightarrow la simulation doit être rapide

Parfois difficile!

- Certaines lois sont difficiles à simuler : temps de calcul élevé
- ▶ Pour certains problèmes : algorithme efficace ← simulation efficace
- Pas dans ce cours...

Bilan final

Utiliser de l'aléa en algorithmique

- On suppose une source parfaite
- On utilise des lois simples
- ightharpoonup Si loi complexe ightharpoonup algorithme
- Implantations :
 - bibliothèque random de Python (pseudo-aléa)
 - On ignore la différence avec le vrai aléa

Preuves en présence d'aléa

- ► Aléa parfait → probabilités
- Propriétés de base (probabilités conditionnelles, espérance, ...)

Revoir les probabilités

- Exercices au TD1
- Poly « Probabilités discrètes » sur Moodle

souvent rarement