	ML.
Page No.	21
Date	

Practical - 05.

* dim - Implement the K nearest neighbours algorithm
on diabetes csv dataset. Compute confusion mairix,
accuracy, error, rate, pricegion and recall
on the given dataset.

* Theory:

1) KNN-

- · K-nearest neighbours is a non parametric, instance based learning method used for classification.
- * It predicts the class of a test sample by looking at the majority class among its k closest training samples in the feature space.

2) Algorithm steps-

- 1 Step 1: load the dataset and split it into feature X and target y
 - Step 2: Split the data into training and testing sets in 80:20 scution
 - Step 3: Normalize/ standardize the features to improve distance calculation

Page No. 22. Date
Step 4: Choose a suitable value of k (eg. 3,5,=
Step 5:- For each test point, compute the eudidean distance from all training points
Step 6: Identify the k neavest neighbours.
Step 7: Assign the test point the class that appears most frequently among its neighbours
step 8: After predictions, compute the confusion matrix , accuracy, error rate, precision, and recall.
Dataset description-
Features -
· Pregnancies. · BMI
· Glucose · Pedignee function.
Age of Age
· Skin Thideness . Outcome . Insulin
Pre processing steps-
· Load the dataset with Pandas
· Split into feature materix X and target

3]

4)

- · Train test split (80%, 20% or 70% or 30%)
- Normalization/ Standardization of features to improve distance computation (Standard scaler from scikit learn)
- 1 Model Building and evaluation -
 - · KNN model Create KNeighbours Classifier (eg. k=5)
 - · Train on training set
 - · Predict on test set
 - · Metrics -
 - · Confusion Matrix:

TN FP

- · Sauracy = (TP+ TN) / (TP+ FP+ TN+ FN)
- · Error rate = | accuracy.
- · Precision = TP/(TP + FP)
- · Recall = TP/ (TP + FN).

CONCLUSION :

* By applying the K-nearest neighbours algorithm
to the diabetes dutaset—

we can classify patients as diabetic or non—
diabetic based on medical measurements

Page No.	24.
Date	

Normalization of data improves the accuracy of distance based algorithms like KNN.

- · Evaluation using accuracy, everor rate, precision, recall and confusion matrix helps us understand the classifiers performance beyond just a single metric.
- "With a peroperly chosen k, KNN perovides a simple yet powerful baseline for medical diagnostic classification tasks.

* * * * * * * *

V. 7 1 11 1