Mo 9 4 16

Onp.:
$$\exists x \in \mathbb{R} \quad |x| := \begin{cases} \times, \times > 0 \\ -x, \times < 0 \end{cases}$$

(b- 69 Mogyn 9:

$$A) |x| \ge 0 , |x| = 0 \iff x = 0$$

$$(2)$$
 $(\times) = (-\times)$

$$3) -|x| \le x \le |x|$$

6)
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$$

$$\frac{1}{3} = \frac{1}{3}$$

$$\frac{1}$$

$$8) |x-y| \ge |x-y|$$

& Orpahurennocth Mu-Ba

$$\exists X \in \mathbb{R}, X \neq \emptyset$$

One. X-orp. cm3y, ecnu JmcR: YxeX: m < X
m-Wilhel Wamya
Onp.: X-020-100 <=> X-020. Chepxy u CHuzy
Neuma: X-orpan (=> JCER: IXI < C VXEX
D Heod xog-T6: $JX - oy = > m \le x \le M$ $\forall x \in X$ $C = max \{ m , M \}$
$-C \le - m \le m \le x \le M \le M \le C$
Contation Months: $J x \leq C \Rightarrow -C \leq x \leq C$
Onp.: ecnu Xmax EX u Xmax > X, YXEX, TO
X max - Hand. An.
Onp.: ecnu Xmin EX 4 Xmin EX, VXEX, TO
Xmin - Hour Jr.
$\chi_{min} = 0$, χ_{max}
Onp.: SUP X Haz. Hannehlmal berxnee ypamya X
Onp.: infX was handonomal hunches upamya X
Mp.: X = [0,1) Supuinfue Bceya
$\inf X = 0 \sup X = 4 \text{moy } T \text{out}$

Ecm 3 hour 3n. when $X, to infX = min X$ Newma (o nepexope K Sup B her-le): J $Yx \in X$: $x < a$ ($/x > a$), $to yn$ Sup $X < a$ ($/inf X > a$) S $Tpunyur$ Apxumega Newma (o neore Z): Z heart he clerx, he 3my y J $M \in \mathbb{R}$: $\forall x \in Z$: $x < M$ $\exists x \in Z$: $x > M - 1$ $x \in M < x + 1 \in Z$ Therefore $X = X = X = X = X = X = X = X = X = X $	Nemma (o	Haurentmen	7n-Te):		
Neuma (O neverge K sup & her-le): J $\forall x \in X$: $x < a$ (/ $x > a$), toyan $\Rightarrow x \neq a$ (/inf $x > a$) S $\Rightarrow x \neq x \neq a$ (/inf $x \Rightarrow a$) Neuma (O neorp $x \neq x \neq a$): Z hear. He clerks, his 3 mysg J $\Rightarrow x \neq x \neq a$ (inf $x \Rightarrow a$) $\Rightarrow x \neq x \neq a$ New $\Rightarrow x \neq a$ Some canne: New $\Rightarrow x \neq a$ $\Rightarrow x \Rightarrow a$ $\Rightarrow x \neq a$ $\Rightarrow x \Rightarrow a$ $\Rightarrow x \Rightarrow a$ $\Rightarrow x \Rightarrow a$ $\Rightarrow x \Rightarrow a$ $\Rightarrow x$			'	n f X - min X	
J $\forall x \in X: x \geq a$ $(/x \geq a)$, Toyn $\sup X \leq a$ $(/\inf X \geq a)$ S $\bigcap punyur$ $Apxunega$ Neuma (o neorp \mathbb{Z}): Z neorp. hu clerxs, hu $3myy$ > $\exists M \in \mathbb{R}: \forall x \in \mathbb{Z}: x \leq M$ $\exists x \in \mathbb{Z}: x > M-1$ $x \in M < x + 1 \in \mathbb{Z}$ 1. i. \mathbb{Z} — uny yu $1 \cup \emptyset$ is 3 one canne: \mathbb{Z} neorpe cherxs Teorema ($\bigcap punyun$ $Apxunega$): $\exists x \in \mathbb{R}, x > 0$. Toya $\forall y \in \mathbb{R}$ $\exists k \in \mathbb{Z}: (k-1)x \leq y \leq kx$ $x \in \mathbb{Z}: x \leq x \leq x$ $x \in \mathbb{Z}: x \leq x \leq x$ $x \in \mathbb{Z}: x \leq x \leq x \leq x$ $x \in \mathbb{Z}: x \leq x \leq x \leq x \leq x \leq x$ $x \in \mathbb{Z}: x \leq x $	COM J	P(0 - 7 - 40]. 301			
J $\forall x \in X: x \geq a$ $(/x \geq a)$, Toyn $\sup X \leq a$ $(/\inf X \geq a)$ S $\bigcap punyur$ $Apxunega$ Neuma (o neorp \mathbb{Z}): Z neorp. hu clerxs, hu $3myy$ > $\exists M \in \mathbb{R}: \forall x \in \mathbb{Z}: x \leq M$ $\exists x \in \mathbb{Z}: x > M-1$ $x \in M < x + 1 \in \mathbb{Z}$ 1. i. \mathbb{Z} — uny yu $1 \cup \emptyset$ is 3 one canne: \mathbb{Z} neorpe cherxs Teorema ($\bigcap punyun$ $Apxunega$): $\exists x \in \mathbb{R}, x > 0$. Toya $\forall y \in \mathbb{R}$ $\exists k \in \mathbb{Z}: (k-1)x \leq y \leq kx$ $x \in \mathbb{Z}: x \leq x \leq x$ $x \in \mathbb{Z}: x \leq x \leq x$ $x \in \mathbb{Z}: x \leq x \leq x \leq x$ $x \in \mathbb{Z}: x \leq x \leq x \leq x \leq x \leq x$ $x \in \mathbb{Z}: x \leq x $	Neuna (E) he pexall	K Cup B he	1 - be)	
Perma (O neorp. \mathbb{Z}): Z neorp. hu cherry, hu 3 mm/y > \mathbb{Z} neorp. hu cherry, hu 3 mm/y > \mathbb{Z} Neorp. hu cherry, hu 3 mm/y > \mathbb{Z} Neorp. hu cherry. \mathbb{Z} X \mathbb{Z} X \mathbb{Z} X \mathbb{Z} M \mathbb{Z} X \mathbb{Z} X \mathbb{Z} X \mathbb{Z} M \mathbb{Z} X \mathbb{Z} X \mathbb{Z} X \mathbb{Z} M \mathbb{Z} X \mathbb{Z} X \mathbb{Z} X \mathbb{Z} X \mathbb{Z} M \mathbb{Z} Neorp. Cherry. Teopena (Trungun Aprunege): \mathbb{Z} X \mathbb{Z} X X X X X X X X X X X X X X X X X X X					
Menna (O neorp \mathbb{Z}): \mathbb{Z} neory. Hu cherry, hu 3 nmy y \mathbb{Z} 1 \mathbb{Z} 1 \mathbb{Z} 1 \mathbb{Z} 1 \mathbb{Z} 2 \mathbb{Z} 1 \mathbb{Z} 2 \mathbb{Z} 2 \mathbb{Z} 2 \mathbb{Z} 2 \mathbb{Z} 3 \mathbb{Z} 3 \mathbb{Z} 3 \mathbb{Z} 3 \mathbb{Z} 3 \mathbb{Z} 4 \mathbb{Z} 4 \mathbb{Z} 4 \mathbb{Z} 4 \mathbb{Z} 6 \mathbb{Z} 6 \mathbb{Z} 7 \mathbb{Z} 8 \mathbb{Z} 9 \mathbb{Z} 8 $$	7 Axe	$X: X \leq \alpha$	$(/\chi > 9)$	Toya SupX =	$\leq a (/inf X > a)$
Menna (O neorp. \mathbb{Z}): \mathbb{Z} neory. He cherry, his 3 may \mathbb{Z} \mathbb{Z} neory. He cherry, his 3 may \mathbb{Z}			8 17	000	
Z hear. An cleary, his 3 may y $y = y = y = y$ $y = y = y = y = y$ $y = y = y = y = y = y = y = y = y = y =$			5 1 phuyu	n Hpxumeg	
Z hear. he cleary, he zamzy I define the cleary and the service of the service	Danna 1	5 110-00 7/).		
>] $\exists M \in \mathbb{R} : \forall x \in \mathbb{Z} : x \neq M$ $\exists x \in \mathbb{Z} : x > M - 1$ $x \in M < x + 1 \in \mathbb{Z} \text{t.v.} \mathbb{Z} - \text{ung yu } \text{ 1.6 ps}$ $\exists \text{ ame range} : N \text{ neods cherxy}$ $\exists x \in \mathbb{R}, x > 0 \text{Torga} \forall y \in \mathbb{R} \exists \forall x \in \mathbb{Z} : (x - 1)x \neq y \leq x \times x$ $x \Rightarrow x \Rightarrow$					
$\exists x \in \mathbb{Z}$: $x > M - 1$ $x \in M < x + 1 \in \mathbb{Z}$ $\exists x \in \mathbb{Z}$ $\exists x \in M < x + 1 \in \mathbb{Z}$ $\exists x \in $	// Ken	or. hu cles	xy, hu 3 mz	}	
$\exists x \in \mathbb{Z}$: $x > M - 1$ $x \in M < x + 1 \in \mathbb{Z}$ $\exists x \in \mathbb{Z}$ $\exists x \in M < x + 1 \in \mathbb{Z}$ $\exists x \in $		7 4 1 60	,		
3 a me ranne: \mathbb{N} near actions: \mathbb{N} near act	>]	JME K:	$\forall x \in \mathbb{Z}$:	$x \leq M$	
3 a me ranne: \mathbb{N} near actions: \mathbb{N} near act	7)	x E 77 :	x>M-1		
3 ameranne: M neorp. cherxy Teorema (Thomsun Apxunega): $J \times G R$, $X > 0$. Torga $\forall y \in R$ $\exists ! K \in \mathbb{Z}' : (K-1) \times \not= y \angle K \times \times$				G / TK	7/ - 440 W 24 8 WS
Teorema (Moungan Apxunega): $\exists x \in \mathbb{R}, x > 0$. Torga $\forall y \in \mathbb{R} \exists x \in \mathbb{Z} : (x-1)x \neq y \neq x$ x x x x x x x		, , <u>, , , , , , , , , , , , , , , , , </u>			2.1 99. 1
Teorema (Mounyan Apxunega): $\exists x \in \mathbb{R}, x > 0$. Torga $\forall y \in \mathbb{R} \exists ! x \in \mathbb{Z} : (k-1)x \neq y \neq kx$ \times \times \times \times \times \times \times	3 3 ame 1 an	14P · M/ 14	ent Cherry		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		O . QV	34, 34, 4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Teorem	a (Mountin	Apxunela):		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					· (1/ 1)
$X = \{ t \in \mathbb{Z} : \frac{d}{x} < t \}$ $T \neq \emptyset \text{in } \text{out.} \text{cm3y} = \} \exists \text{ in } fT \emptyset$		$x \in \mathbb{K}, x > 0$	O. Torja V	y ∈ [K ±!K ∈ Z	· (1/-1/x = y = kx
$T = \{ t \in \mathbb{Z} : \frac{1}{x} < t \}$ $T \neq \emptyset \text{in our consy} = \Rightarrow \exists m : infT$		X			
T= {t $\in \mathbb{Z}$: $\frac{1}{x} < t$ } T $\neq \emptyset$ u ord cm3y => \exists m: infT		×	x		
T= {t $\in \mathbb{Z}$: $\frac{1}{x} < t$ } T $\neq \emptyset$ u ord cm3y => \exists m: infT					Southo steam to
T ≠ Ø u orl. cm3y => I m= infT		T= {te>	7: = < t	7	
JUST: 12 // 12 // Ocm // dT ->					//
3KET: m < K < m+1 => K-1 < m, K-1 & T =>		KET: m	< K < m +1 =	=7 k-1 < m	K-1 & T =>

```
ChefcTbul:
1) YE>0 Inc M: 0<1/2
     3 4
2) Ecan \forall \varepsilon > 0 : 0 \leq x \leq \varepsilon, to x = 0
3) \forall \times \in \mathbb{R} \exists ! K \in \mathbb{Z} : K \leq x < K + 1
                              K= [x] - yenal lacTb
Newna (O MOTWETH Q & R):
∀0,6 € R, a < B 3 9 € Q: a < 9, < B
D b-a = 6>0
    3 n c N : 1 < E
     y = [ha] +1
     q \leq \frac{h\alpha + 1}{h} = \alpha + \frac{1}{h} < q + \mathcal{E} = \beta
q < \beta \rightarrow \alpha < q < \ell
Nemma (0 MOTHOCIL II & R):
Valber, a < b ] i e II: a < i < b
→ 19 € Q : α - 52 < 9 < 6 - 52 => 9 < 9 + 52 < 6 € II
                                  T. M. X+9 E I
                                           VXE OR VYEI
```

	8	1/				
	ST.	. Кантора	n. bopen 7 -	· /leder a; /	1. O hpegenbh	rú TOZK4
Ohp		Lan; bn J	b no she mulit	3 M 11 A M	c [N Cm, bn e]	P
Ten pe	ma K	CHTOPA O	Bno shehnbis	r otpezkax		
Oh	[On;	βn] — βno	ic. otp-u Tor	ya new	ya new [an	7
	JX	= {0,,9,	,} \(Δ;, β;: O	; \(\beta_i \) =>	JC € R: a:, b: J V; ∈ N
			=>	C E A	[91, 8;]	
)o hy c 1	FUM, UTO E	$C_1 \neq C_2 \in$	i e IN	; b;] => (nporubope we
3ave	Za Hue .					
٦)	gnl	\triangle	l. he bephi			
2)	918	2]) [] unjertand (0; n) =		D		
	h=1	(, n)	P			

