2016-03-1

Здравствуйте, меня зовут Григорий Калабин, мой научный руководитель — Сергей Михайлович Машарский, а рецензент — Василий Николаевич Малозёмов. Тема моей дипломной работы — Оконное преобразование Уолша. Я применяю данный подход для обработки цифровых дискретных аудио сигналов, поэтому для начала я расскажу про особенности их обработки

 Сигнал может быть достаточно длинным 44.1 kHz = 44 100 значений в секунду 2 минуты такого аудио - 5 292 000 отсчётов

Особенности обработки сигналов

Первое, что нужно учитывать при обработке аудио, то, что объёмы данных могут быть достаточно большими, поэтому обрабатывать сигналы необходимо с помощью быстрых алгоритмов Теперь рассмотрим определения объектов, используемых в работе

- Сигнал может быть достаточно длинным 44.1 kHz = 44 100 значений в секунду
- 2 минуты такого аудио 5 292 000 отсчётов Изменения аудио во время прослушивания Пример: эквализация

Зачастую возникает необходимость изменять сигнал во время прослушивания. Подобная ситуация возникает при работе с эквалайзером, например, когда мы хотим устранить некоторые шумы. Теперь рассмотрим определения объектов, используемых в работе

Особенности обработки сигналов

- Сигнал может быть достаточно длинным 44.1 kHz = 44 100 значений в секунду
- 2 минуты такого аудио 5 292 000 отсчётов Изменения аудио во время прослушивания Пример: эквализация
- Обработка сигнала в реальном времени Пример: передача голоса

Ещё одна особенность, часто встречающаяся в наши дни — потоковая обработка аудиосигналов. Например, когда мы разговариваем по телефону, наш голос оцифровывается, проходит обработку (такую, как шумоподавление и эхоподавление) и передаётся собеседнику. Априори неизвестно сколько продлится разговор, и обрабатывать сигнал нужно в реальном времени. Теперь рассмотрим определения объектов, используемых в работе

Множество сигналов обозначим как \mathbb{C}_N . Потоком данных будем называть бесконечный в обе стороны сигнал.

Сигналом длины N будем называть целочисленную функцию комплексного аргумента с носителем от нуля до N.

Пространство сигналов обозначим как \mathbb{C}_N . Поток данных — бесконечный в обе стороны сигнал

-Предварительные сведения

Предварительные сведения $N=2^{n}, \Delta_{n}=2^{n-1}.$ Пусть $k=(k_{n-1},k_{n-2},\ldots,k_{n}),\ j=(j_{n-1},j_{n-2},\ldots,j_{n}).$ Положим $(k_{j})_{n}=\sum_{k}k_{jk},\ k_{j}\in 0, \Delta_{n+1}-1.$ Функции

 $u_k(j) = (-1)^{(k,l)_4}, \qquad k,j \in 0: \mathsf{N}-1$

Мы будем рассматривать сигналы, длина которых представляется степенью двойки. Дискретными функциями Уолша называются функции, задаваемые формулой два.

Дискретные функции Уолша образуют базис в \mathbb{C}_N . Этот базис называется базисом Уолша-Адамара. Пусть $j\in 0: 2^v-1$ и $j=(j_{\nu-1},j_{\nu-2},\ldots,j_0)_2$. Введём обозначение

 $\text{rev}_{\nu}(j) = (j_0, j_1, \dots, j_{\nu-1})_2$.

Обозначим $\tilde{v}_k = v_{cov_k(k)}$. Функции \tilde{v}_k тоже образуют ортогональный базис в пространстве \mathbb{C}_N который называется базисом Уолша-Пэлм.

Частота функции у» равна геу»(k).

 $x = \frac{1}{N} \sum_{k=0}^{N-1} X(k) v_k = \frac{1}{N} \sum_{k=0}^{N-1} X(\text{rev}_x(k)) \hat{v}_k.$ (3)

Известно, что функции Уолша образуют базис в \mathbb{C}_N , этот базис называется базисом Уолша-Адамара. Переупорядочим функции V_{ν} по частоте, получим базис

Переупорядочим функции v_k по частоте, получим базис

Уолша-Пэли, его и будем использовать.

$r_0 = \dot{r}_0$	11	11	11	$v_t = \mathcal{C}_k$	_	\perp	_
$e_k = e_1$	11			$v_5=\hat{v}_5$			
$v_2 = t_3$		П	11	$v_2=\hat{u}_0$		Ц	
$c_0 = \tilde{c}_2$			11	$v_7 = \dot{v}_7$		H	

На рисунке представлены функции Уолша для N=8

Будем использовать разложение сигнала по базису Уолша-Пали, так как этот базису гровдомен по частоте. Поэтому необходимо уметь вычислять коэффициенты Будем использовать быстрое преобразование Уолша, быстрое проекцианием по времени. Эта скема использует сложения в количестве Июд, И операций и допускает обращение с той же скоростью.

Для вычисления компонент разложения по базису Уолша-Пели будем использовать быстрое преобразование Уолша со скоростью $N\log_2N$

где [L:R] — заданный интервал.

–Оконная функция

Оконной функцией будем называть весовую функцию, равную нулю вне заданного интервала.

Оконное преобразование Уолша 2016-03-1 -Идея оконного преобразования

Имеется исходный поток данных, который необходимо

- Зафиксируем N ∈ N. 2. Определим сигнал x, как очередные N отсчётов
- исходного потока данных. Произведём обработку х и получим х' ∈ С_N.
- 4. Запишем х' в некоторый буфер.
- 5. Будем повторять шаги 2-4 пока не обработаем весь поток данных. Буфер будет содержать результат обработки исходного потока.

Длиной окна будем называть натуральное число N. Возьмём очередные N отсчётов исходного потока данных, обработаем их и запишем в некий буфер. Будем повторять процедуру, пока не закончим обработку, в итоге буфер будет содержать результат обработки.

Формальные определения прямого и обратного преобразования Уолша даны на следующих двух слайдах

18	Оконное преобразование Уолша
016-03-	Определение оконного Уолша
\overline{A}	

-Определение оконного преобразования Уолша

прямое... (раз-два-три)

Определение оконного преобразования

Пусть у нас есть некоторый поток данных х и прямоугольная оконная функция w с носителем 0: N-1. Оконным преобразованием Уолша потока данных х называется матрица Х, задаваемая следующим равенством:

 $STWT\{x\}(d, k) = X(d, k) = \frac{1}{N} \sum_{i=1}^{N-1} x[j + d]w[j]\hat{v}_k(j),$ (4)

где $k \in 0: N-1, \ d \in (-\infty; +\infty)$. Индекс d матрицы соответствует точке во времени, а индекс k - частоте. Таким образом, данная матрица позволяет по времени и частоте узнать магнитуду исходного сигнала.

Оконное преобразование Уолша

—Обратное оконное преобразование Уолша

Обратное оконное преобразование Уолша

Ооратное оконное преооразование Уолша

Для каждого оконного спектра X(d,k) вычислим обратное преобразование Уолша и получим часть исходного потока

$$x(d,j) = \sum_{k=0}^{N-1} X(d,k) \hat{v}_k(j), \quad j \in 0 : N-1, \ d \in (-\infty; +\infty).$$

k=0
Поскольку в данной работе рассматривается оконное преобразование с прямоугольным окном, то можно перейти от матрицы x/t), к исходному потоку данных x/t)

следующим образом:

$$x(t) = \frac{1}{N} \sum_{i=0}^{N-1} x(t - j, j), \quad t \in (-\infty; +\infty).$$

и обратное... (раз-два-три)

© Оконное преобразование Уолша СО 10-9 — Результаты

101010	
	по реализовано оконное изыке јача и были проведены

Vival St. wav	Ospensa	25 CBK	2 921 541 (1 460 752)	Антонио Вивальди, «Веска», часть 1 Аллегро
chopin wav - 0	ортепиано	13 cex	1 178 548 (589 203)	Фридерих Шоген, «нактюри N/2»
netalica.wav	Гитара	24 cex.	2 190 902 (1 095 429)	Tpynna «Metallica», «Nothing else matters»
VOICE WAY	Pirks	J CER.	702 644 (351 300)	Жанская речь

 ъыло установлено, что при помощь оконного преобразования Уолша возможна достаточно эффективная обработка сигналов.

В рамках данной работы были написаны два приложения для демонстрации того, что с помощью оконного преобразования Уолша возможна эффективная обработка сигналов.

Были проведены различные эксперименты на различных аудиозаписях, информация о которых представлена в таблице.

Был проведён эксперимент в котором из спектра выреались вериние частоты, то есть к исходному сигналу применялся простейший низкочастотный фильтр. При проведении эксперимента использовалось прямоугольное сико без наложений с длиной равной 4096 отсейтам. В результате было получено, что при вырезании 15/16

В результате было получено, что при вырезании 15/16 верхних частот результат фильтрации вполне узнаваем Можно сделать вывод, что верхние частоты при разлюжении сигналь по базису Уолша воспринимаются человеком значительно меньше, чем низкие.

Первым приложением написаным в рамках данной работы является эквалайзер. С его помощью можно изменять мощность восьми диапазонов частот. Выяснилось, что при обнулении 15/16 верхних частот результат вполне различим. Этот факт говорит о том, что возможно эффективно сжимать аудио с помощью оконного преобразования Уолша, например, для передачи информации по узким каналам связи.

Оконное преобразование Уол	пша
----------------------------	-----

Сжатие звука

Для сжатия данных использовался алгоритм DEFLATE. Компрессия применялась не к каждому отдельному окну, а ко всему сигналу целиком.

Название файла	Без фильтрации	1/2 спектра	1/4 спектра	1/8 спектра
vivaldi.wav	1.25	2.32	4.36	8.21
metallica.mav	1.22	2.28	4.32	8.15
chopin.wav	1.21	2.27	4.31	8.11
VOICE, TEST	1.21	2.26	4.27	8.10

Сжатие звука

Второе приложение, написанное в рамках данной работы позволяет сжимать аудио на основе оконного преобразования Уолша. В таблице представлены коэффициенты сжатия при указанной ненулевой части спектра.