

Introduction to Scientific Computing

Week 1

Chapter 0

S. Pradono Suryodiningrat

People Innovation Excellence

Course Introduction

No.	Components		Percentage		Learning Outcomes
1.	Class Participation		10	%	LO 1, LO 2, LO 3, LO 4, LO 5
2.	Assignment		30	%	LO 1, LO 2, LO 3, LO 4, LO 5
3.	Mid Examination		30	%	LO 1, LO 2, LO 3, LO 4
4.	Final Examination		30	%	LO 1, LO 2, LO 3, LO 4, LO 5
		Total	100	%	

Book

• Sipser, M, (2013). Introduction to the Theory of Computation (3rd Ed). Cengage Learning. ISBN: 978-1-133-18779-0

0.1 – Automata, Computability, and Complexity

- What are the fundamental capabilities and limitations of computers?
 - Complexity
 - Computability
 - Automata

Complexity Theory

What makes some problems computationally hard and others easy?

- 1. By understanding which aspect of the problem is at the root of the difficulty, you may be able to alter it so that the problem is more easily solvable
- 2. You may be able to settle for less than a perfect solution to the problem
- 3. Some problems are hard only in the worst-case situation, but easy most of the time. Depending on the application, you may be satisfied with a procedure that occasionally is slow but usually runs quickly
- 4. You may consider alternative types of computation, such as randomized computation, that can speed up certain tasks

Computability Theory

- First half of the twentieth century
- Kurt Godel, Alan Turing, and Alonzo Church
- Basic problems cannot be solved by computers
 - True or false
 - Bread and butter of mathematicians
- In complexity theory
 - the objective is to classify problems as easy ones and hard ones; whereas in computability theory, the classification of problems is by those that are solvable and those that are not.
- Computability theory introduces several of the concepts used in complexity theory.

Automata Theory

- Deals with the definitions and properties of mathematical models of computation
- Finite automata
 - used in text processing, compilers, and hardware design
- context-free grammar
 - used in programming languages and artificial intelligence

0.2 – Mathematical Notion and Terminology

• Sets

- A group of objects represented as a unit
- May contain any type of object, including numbers, symbols, and even other sets
- The objects in a set are called its elements or members

$$S = \{7, 21, 57\}$$

$$S = \{7, 21, 57\}$$

- The sets contains the elements 7, 21, 57
- Symbols ∈ and ∕∈ denote set membership and non-membership
- We write $7 \in \{7, 21, 57\}$ and $8 \not\in \{7, 21, 57\}$
- A is a subset of B, written A ⊆ B, if every member of A also is a member of B
- A is a proper subset of B, written A!⊆B, if A is a subset of B and not equal to B

- The set with zero members is called the empty set and is written \emptyset .
- A set with one member is sometimes called a singleton set
- a set with two members is called an unordered pair
- two sets A and B, the union of A and B, written AUB, is the set we get by combining all the elements in A and B into a single set.
- The intersection of A and B, written A ∩ B, is the set of elements that are in both A and B.
- The complement of A, written A, is the set of all elements under consideration that are not in A.

• For sets, we use a type of picture called a Venn diagram

Sequences and Tuples

- objects is a list of these objects in some order
- (7, 21, 57)
- The order doesn't matter in a set, but in a sequence it does

Tuples

- Finite sequences often are
- A sequence with k elements is a k-tuple
- Thus (7, 21, 57) is a 3-tuple
- A 2-tuple is also called an ordered pair

Tuples

- Cartesian product or cross product
- If $A = \{1, 2\}$ and $B = \{x, y, z\}$,
- A x B = { (1, x), (1, y), (1, z), (2, x), (2, y), (2, z) }.
- A x B x A = { (1, x, 1), (1, x, 2), (1, y, 1), (1, y, 2), (1, z, 1), (1, z, 2), (2, x, 1), (2, x, 2), (2, y, 1), (2, y, 2), (2, z, 1), (2, z, 2) }

$$\overbrace{A \times A \times \cdots \times A}^{k} = A^{k}.$$

Functions

- an object that sets up an input-output relationship
- A function takes an input and produces an output
- If f is a function whose output value is b when the input value is a, we write f(a) = b
- Mapping
- The set of possible inputs to the function is called its domain.
- The outputs of a function come from a set called its range.
- The notation for saying that f is a function with domain D and range R is

$$f: D \rightarrow R$$

Graphs

• a set of points with lines connecting some of the points

FIGURE 0.13 Cheapest nonstop airfares between various cities

FIGURE 0.14 Graph G (shown darker) is a subgraph of H

FIGURE 0.15 (a) A path in a graph, (b) a cycle in a graph, and (c) a tree

FIGURE 0.16 A directed graph

FIGURE **0.18** The graph of the relation beats

• Strings

- are fundamental building blocks in computer science
- Alphabet
- Symbos

SOCIETY NATION

Innovation Excellence

Boolean Logic

• a mathematical system built around the two values TRUE and FALSE

AND	OR	NOT
$0 \wedge 0 = 0$	$0 \lor 0 = 0$	-0 = 1
$0 \wedge 1 = 0$	$0 \lor 1 = 1$	-1 = 0
$1 \wedge 0 = 0$	$1 \lor 0 = 1$	
$1 \wedge 1 = 1$	1 V 1 = 1	

• Boolean Logic

Exclusive OR	Equality	Implication	
(XOR)			
$0 \oplus 0 = 0$	$0 \longleftrightarrow 0 = 1$	$0 \rightarrow 0 = 1$	
0 🕀 1 = 1	$0 \leftrightarrow 1 = 0$	$0 \rightarrow 1 = 1$	
1 🕀 0 = 1	$1 \leftrightarrow 0 = 0$	$1 \rightarrow 0 = 0$	
1 🕀 1 = 0	$1 \leftrightarrow 1 = 1$	$1 \rightarrow 1 = 1$	

0.3 Definition, Theorems, And Proofs

Definitions

- describe the objects and notions that we use.
- may be simple, as in the definition of set given earlier in this chapter, or complex as in the definition of security in a cryptographic system.
- Precision is essential to any mathematical definition. When defining some object, we must make clear what constitutes that object and what does not.

Theorem

- a mathematical statement proved true.
- Occasionally we prove statements that are interesting only because they assist in the proof of another, more significant statement called lemmas.
- Occasionally a theorem or its proof may allow us to conclude easily that other, related statements are truecalled corollaries of the theorem.

Proof

• is a convincing logical argument that a statement is true

Excellence

- Proof by construction
 - Prove such a theorem is by demonstrating how to construct the object
- Proof by contradiction
 - we assume that the theorem is false and then show that this assumption leads to an obviously false consequence
- Proof by Induction
 - is an advanced method used to show that all elements of an infinite set have a specified property

Cheers!