End to End Learning for Self-Driving Cars

Daniel Dworakowski

Bernhard Firner

Davide Del Testa

Mariusz Bojarski

Mariusz Dojarski	Davide Dei Testa	Daniel Dworakowski	Delimara Piriter
NVIDIA Corporation	NVIDIA Corporation	NVIDIA Corporation	NVIDIA Corporation
Holmdel, NJ 07735	Holmdel, NJ 07735	Holmdel, NJ 07735	Holmdel, NJ 07735
Beat Flepp NVIDIA Corporation Holmdel, NJ 07735	Prasoon Goyal NVIDIA Corporation Holmdel, NJ 07735	Lawrence D. Jackel NVIDIA Corporation Holmdel, NJ 07735	Mathew Monfort NVIDIA Corporation Holmdel, NJ 07735
Urs Muller NVIDIA Corporation Holmdel, NJ 07735	Jiakai Zhang NVIDIA Corporation Holmdel, NJ 07735	Xin Zhang NVIDIA Corporation Holmdel, NJ 07735	Jake Zhao NVIDIA Corporation Holmdel, NJ 07735

Karol Zieba NVIDIA Corporation

Holmdel, NJ 07735

Abstract

We trained a convolutional neural network (CNN) to map raw pixels from a single front-facing camera directly to steering commands. This end-to-end approach proved surprisingly powerful. With minimum training data from humans the system learns to drive in traffic on local roads with or without lane markings and on highways. It also operates in areas with unclear visual guidance such as in parking lots and on unpaved roads.

The system automatically learns internal representations of the necessary processing steps such as detecting useful road features with only the human steering angle as the training signal. We never explicitly trained it to detect, for example, the outline of roads.

Compared to explicit decomposition of the problem, such as lane marking detection, path planning, and control, our end-to-end system optimizes all processing steps simultaneously. We argue that this will eventually lead to better performance and smaller systems. Better performance will result because the internal components self-optimize to maximize overall system performance, instead of optimizing human-selected intermediate criteria, e. g., lane detection. Such criteria understandably are selected for ease of human interpretation which doesn't automatically guarantee maximum system performance. Smaller networks are possible because the system learns to solve the problem with the minimal number of processing steps.

We used an NVIDIA DevBox and Torch 7 for training and an NVIDIA DRIVETM PX self-driving car computer also running Torch 7 for determining where to drive. The system operates at 30 frames per second (FPS).