Professor Deng Cai

Homework 2

Collaborators:

Name: Shen Zijin

Student ID: 3160104734

Problem 2-1. A Walk Through Linear Models

(a) Perceptron

- 1. When training set is 10, the training error rate is 0, testing error rate is 10.5700%. When training set is 100, the training error rate is 0, testing error rate is 1.2600%.
- 2. When training set is 10, the average time of iteration is 5. When training set is 100, the average time of iteration is 31.
- 3. Since the training data is not linearly separable, the algorithm will loop endless.

Figure 1: The plotting result for perceptron when nTest = 10.

Figure 2: The plotting result for perceptron when nTest = 100.

(b) Linear Regression

- 1. When training set is 100, the training error rate is 3.9630%, testing error rate is 4.8720%.
- 2. If the training data is noisy and not linearly separable(nTrain=100), the training error rate is 13.6700%, testing error rate is 14.9010%.
- 3. For poly-case WITHOUT transformation, the training error rate is 49.0000%, testing error rate is 54.9600%.
- 4. For poly-case WITH transformation, the training error rate is 5.0000%, testing error rate is 6.6000%.

Figure 3: The plotting result for linear regression.

Figure 4: The plotting result for linear regression when training data is not linearly seperable.

(c) Logistic Regression

Answer:

1. When training set is 100, the training error rate is 0.3300%, testing error rate is 1.2300%.

2. If the training data is noisy and not linearly separable(nTrain=100), the training error rate is 12.7600%, testing error rate is 13.9067%.

Figure 5: The plotting result for logistic regression.

Figure 6: The plotting result for logistic regression when training data is not linearly seperable.

(d) Support Vector Machine

Homework 2 5

- 1. When training set is 30, the training error rate is 0, testing error rate is 3.3867%.
- 2. When training set is 100, the training error rate is 0.0060%, testing error rate is 0.9880%.

3. When training set is 100, the average time of iteration is 3.

Figure 7: The plotting result for SVM when nTrain is 30.

Figure 8: The plotting result for SVM when nTrain is 100.

Problem 2-2. Regularization and Cross-Validation

(a) Implement Ridge Regrssion, and use LOOCV to tune the regularization parameter λ .

Answer:

- 1. The λ chosen by LOOCV is 100.
- 2. With regularization, 0.1332, Without regularization, 1.0256.
- 3. With regularization, ETrain: 0,ETest, 5.9769%. Without regularization, ETrain: 0,ETest, 12.6067%.
- (b) Implement Logistic Regrssion, and use LOOCV to tune the regularization parameter λ .

Answer:

- 1. The λ chosen by LOOCV is 0.1.
- 2. With regularization: ETrain: 0, ETest: 6.0773%. Without regularization: ETrain: 0, ETest: 6.7303%.

Problem 2-3. Bias Variance Trade-off

Let's review the bias-variance decomposition first. Now please answer the following questions:

(a) True of False

- 1. False. Bigger the number of training examples will improve the test error of those models with high variance.
- 2. False. Because the training data set is small, models with high variance are more likely to perform worse.
- 3. True. The more complex the model, the higher the variance.
- 4. False. If the regularization parameter λ reaches a certain level, the model tends to be linear and its performance is reduced.
- 5. False.