Wearables: non-functional approaches

ENAR 2021

Overview

- Review of PA, SL, CR
- PA: Fragmentation
- SL: Review, summary measures, mid-point
- CR: parametric and non-parametric approaches
- JIVE for PA, SL, CR
- Empirical Mode Decomposition

Fragmentation

Fragmentation

Nonparametric

Metrics	Interpretation	Definition	Estimation	
AAC (μ)	average duration	Edi	T _n	
nAAC (* μ)	normalized average	$\frac{Ed_i}{*d}$		
$Gini\;(g)$	normalized variabilit	$\frac{E d_i-d_j }{2\mu}$	$\frac{\sum_{ij} d_i-d_j }{2n\sum_t d_t}$	
$\overline{AH}\;(ar{h})$	average hazard	$h(t) = \frac{F'(t)}{1 - F(t)}$	$ \frac{1}{m} \bar{h} = \frac{1}{m} \sum_{t \in \mathcal{D}} \hat{h}(t) $	
Systematic Derivation	n	$I_{\psi}(\hat{\mathcal{F}}$	$)=\int_0^{*d}\psi(\hat{F}(t))dt$	
AAC	$\hat{\mu} = \int_0^{*d} (1 - \hat{F}(t)) dt$	lt		
nAAC	$\hat{\mu} = \frac{1}{d} \int_0^d (1 - \hat{F}) dt$	(t))dt		
Gini	$\hat{g} = \frac{1}{\hat{\mu}} \int_0^{*d} \hat{F}(t) (1 - \frac{1}{\hat{\mu}})^{-1} dt$	$\hat{F}(t)$)dt		
АН	$\bar{h} = \frac{1}{*d} \int_0^* d \frac{\hat{F}(t) - \hat{F}(t-t)}{1 - \hat{F}(t-t)}$	$\frac{-1)}{1)}dt$		

Between-State Transition Probabilities

Assumption: two state system (sedentary (S) and active (A))

 $P_S = Pr(x_t = 0)$: proportion of time spent sedentary

 $P_A = Pr(x_t = 1)$: proportion of time spent active

0, 1 for sedentary and active bout respectively, x_t is the type of bout

Between-state transition probabilities

ASTP =
$$Pr(x_{t+1} = 0 | x_t = 1)$$

SATP = $Pr(x_{t+1} = 1 | x_t = 0)$

Estimation

$$\widehat{\text{SATP}} = \frac{n_A}{T_A} = 1$$
/average active bout $\widehat{\text{SATP}} = \frac{n_S}{T_S} = 1$ /average sedentary bout n_A, n_S : total number of active and sedentary bouts T_A, T_S : total number of active and sedentary time

Properties and Intuitions for ASTP and SATP

Figure 2. ASTP and SATP stratified by quartiles of total daily sedentary proportions (P_s).

Di, J., Leroux, A., Urbanek, J., Varadhan, R., Spira, A., Schrack, J., Zipunnikov, V. Patterns of Sedentary and Active Time Accumulation Are Associated with Mortality in US adults: The NHANES Study https://www.biorxiv.org/content/biorxiv/early/2017/08/31/182337.full.pdf

Three domain approach

- Interdependency: same 24-hour cycles from the same group of subjects.
- Domains represent different physiological systems.

Circadian Clock

Circadian Clock

- Suprachiasmatic nucleus (SCN) is a small region hypothalamus
- SCN receives input from melanopsincontaining ganglion cells in retina
- SCN modulates core body temperature and production of hormones (cortisol and melatonin)
- SCN allows entrainment of daily rhythms to the 24-hour cycles in nature
- Circadian dysregulation leads to circadian rhythm sleep disorders

Circadian Rhythmicity and Disregulation

Circadian markers (hard to measure)

- Melatonin
- Cortisol
- Core body temperature

Circadian Rhythmicity (Actigraphy)

- Cosinor-based models (period, amplitude, phase, phase-shifts)
- Wavelet-based methods (time-frequency transformations)
- Nonparametric methods: IV, IS, RA;

Telling the Time with a Broken Clock: Quantifying Circadian Disruption in Animal Models Laurence A. Brown †, Angus S. Fisk †, Carina A. Pothecary and Stuart N. Peirson; Biology (MDPI)

Sleep (PSG)

Polysomnography (golden standard)

Clinical Report:

- Time in REM, NREM (1,2,3)
- Desaturation summaries
- Fragmentation

Limitations:

- Invasive
- Impractical for ambulatory applications

Sleep (Actigraphy)

Actigraphy-Measured Sleep Quality

- Summaries
 - Total Sleep Time (TST)
 - Wake After Sleep Onset (WASO)
 - Number of Wake Bouts
 - Sleep Efficiency (SEFF)
 - Sleep Onset Latency
- Major Limitations
 - cannot discriminate between sleep stages
 - No oxygenation information

Joint and Individual Modelling of Sleep, Physical activity, Circadian Rhythmicity

Domain-specific Features

Domains	Thresholds	Features
PA	50,100	TAC, TLAC, LTAC, TST, pST, μ , λ , g , α
SL	20,40	SOL, SEFF, WASO, pWT, NWB, AWB, TSLT, pSLT, NSB,
		WSTP
CR	-	min, mesor, amplitude, α , β , ϕ , RA, IV (at both minute and
		hourly level), fPC_1 , fPC_2 ,, fPC_{10}

Physical Activity

Joint Variation

Circadian
Rhythmicity

Sleep

Baltimore Longitudinal Study of Aging

- 415 BLSA participants (aged 24 96 y.o.)
- 7 consecutive 24-hour periods measured with Actiwatch-2
- Days with more than 5% daily missing data (72) were excluded.
 Subjects with fewer than 3 days of valid days were excluded
- Features were averaged across days

Multi-Domain Data

Figure 9. 24-hour measurement for 6 days from BLSA

- Continuous actigraphy measurement enables us to study
 - Physical activity (PA): waking period

e.g. sedentary behavior and its accumulation patterns are risk factors for a wide range of diseases and mortality.

Sleep (SL): night time sleeping period

e.g. sleep has been shown to be associated with cognitive function and neurodegenerative disease.

· Circadian rhythms: 24 hour oscillation

e.g. misalignment of circadian rhythm is associated with adverse metabolic and cardiovascular consequences.

- Guided by specific questions, researches typically focus on one of the three domains without considering the joint dependence of features within and between the domains.
- It becomes crucial to understand the joint effect of all three domains

Multivariate within Each Domain

Domains	Threshold	Features
PA	50, 100	TAC, TLAC, LTAC, TST, WT, pST, μ , λ , g , α , \bar{h}
SL		TiB, SOL, SEFF, WASO, pWT, NWB, AWB, TSLT, pSLT, NSB, ImmbT, pImmb, NImmbB, AImmbB, TMT, pMT, NMB, AMB, N1ImmbB, p1ImmbB, Fragment
CR	Original scale Log-transformed	mesor, amp, acrophase, fPC1-6, IV, RA

- The list of features can be easily expanded with new summaries or by applying different thresholds.
- For multivariate data, dimension reduction can eliminate redundancy and capture most of relevant information.

Interdependency and Heterogeneity

- Interdependency: same 24-hour cycles from the same group of subjects.
- Heterogeneity: domains represent different physiological systems.

Joint and Individual Variation Explained (JIVE)

$$\mathbf{Y}^{1} = J^{1} + A^{1} + \epsilon^{1} = \Phi_{J}^{1}\Gamma_{J} + \Phi_{A}^{1}\Gamma_{A}^{1} + \epsilon^{1}$$

$$\vdots$$

$$\mathbf{Y}^{\mathbf{D}} = J^{D} + A^{D} + \epsilon^{D} = \Phi_{J}^{D}\Gamma_{J} + \Phi_{A}^{D}\Gamma_{A}^{D} + \epsilon^{D}$$

- Joint Structure: $\mathbf{J} = \begin{bmatrix} J^1 \\ \vdots \\ J^D \end{bmatrix}$, with score Γ_J and loading Φ_J , rank(\mathbf{J}) = r
- Individual structures: A^d , with scores Γ^d_A and loading Φ^d_A , rank(A^d) = r_d
- Orthogonality constraint: $\mathbf{J}A^{d^T} = 0$ (joint pattern unrelated to the individual pattern)

Lock, E.F., Hoadley, K.A., Marron, J.S. and Nobel, A.B., 2013. Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. *The annals of applied statistics*, 7(1), p.523.

Scientific Applications: Model Gait Speed with Scores

Predictors	Beta	95% CI	P Values	Predictors	Beta	95% CI	P Values
JT-PC1	0.13	(0.04, 0.22)	0.0048	SL-PC3	-0.141	(-0.32, 0.04)	0.13
JT-PC2	0.084	(-0.002, 0.17)	0.056	SL-PC4	-0.178	(-0.47, 0.11)	0.23
JT-PC3	-0.04	(-0.13, 0.05)	0.37	CR-PC1	-0.003	(-0.09, 0.08)	0.93
PA-PC1	-0.035	(-0.12, 0.05)	0.41	CR-PC2	-0.07	(-0.15, 0.02)	0.11
PA-PC2	0.155	(0.07, 0.24)	0.0006	CR-PC3	0.023	(-0.06, 0.11)	0.59
PA-PC3	-0.07	(-0.16, 0.016)	0.11	CR-PC4	0.03	(-0.05, 0.11)	0.48
SL-PC1	-0.203	(-0.33, -0.08)	0.0012	CR-PC5	-0.01	(-0.1, 0.08)	0.82
SL-PC2	0.043	(-0.04, 0.13)	0.32				

- The model is adjusted by age, gender, and BMI (adj-R2 = 0.24)
- PA-PC2 and SL-PC1 are highly loaded on activity and sleep fragmentation. (adj-R2 = 0.34)

[•] Di, J., Spira, A., Bai, J., Urbanek, J., Leroux, A., Wu, M., Resnick, S., Simonsick, E., Ferrucci, L., Schrack, J. and Zipunnikov, V., 2019. Joint and Individual Representation of Domains of Physical Activity, Sleep, and Circadian Rhythmicity. *Statistics in Biosciences*, pp.1-32.

Empirical Mode Decomposition

Focus Theme – Original Articles

Application of Empirical Mode Decomposition to Mother and Infant Physical Activity

Synchronization of Circadian Rhythms is Associated with Maternal Mental Health

Etsuko Shimizu¹; Toru Nakamura²; Jinhyuk Kim³; Kazuhiro Yoshiuchi⁴; Yoshiharu Yamamoto¹

¹Graduate School of Education, The University of Tokyo, Tokyo, Japan; ²Graduate School of Engineering Science, Osaka University, Osaka, Japan; ³Department of Biobehavioral Health, The Pennsylvania State University, PA, USA; ⁴Graduate School of Medicine, The University of Tokyo, Tokyo, Japan