# **Analyzing Hurricane Harvey**

This script analyzes the effects of Hurricane Harvey in the US; particularly the two states which were most affected. It has been divided into four section: Background, Visualization, Analysis and Conclusion. The background deals with importing the dataset we have and finding out the states which were most impacted by this storm. The visualization section has a few plots to understand the kind of events that we are dealing with, and their locations in the two states. Next, we analyze each state by grouping it into counties and counting the total number of events in each county, along with finding out which counties in each state had recorded the highest property damage cost. Finally, we summarize our findings and make a suggestion regarding the counties to be prioritized.

#### **Table of Contents**

| Background and Scope                                   | 1 |
|--------------------------------------------------------|---|
| Importing the Data                                     |   |
| Two States Most Impacted by Harvey                     | 2 |
| Table of Events for Two Most Impacted States           |   |
| Visualizations                                         |   |
| Figure of Event Types                                  | 3 |
| Figure of Event Locations                              | 4 |
| Analysis                                               | 5 |
| Three Counties with Most Events in Texas               | 5 |
| Three Counties with Most Events in Lousiana            | 5 |
| Three Counties with Highest Property Cost in Texas     | 6 |
| Three Counties with Highest Property Cost in Louisiana | 6 |
| Conclusions and Recommendations                        |   |

# **Background and Scope**

#### Importing the Data

We import the file with the necessary variables; while discarding columns not needed for this analysis.

```
Storms_2017 = importfile("StormEvents_2017_finalProject.csv");
Storms_2017 = Storms_2017(2:end,:)
```

```
Storms 2017 = 57005 \times 13 table
```

|   | State   | Year | Month | Event_Type        | CZ_Name    | Begin_Date_Time  | End_Date_Time  |
|---|---------|------|-------|-------------------|------------|------------------|----------------|
| 1 | NEW JER | 2017 | April | Thunderstorm Wind | GLOUCESTER | 2017-04-06 15:09 | 2017-04-06 15: |
| 2 | FLORIDA | 2017 | April | Tornado           | LEE        | 2017-04-06 09:30 | 2017-04-06 09: |
| 3 | ОНЮ     | 2017 | April | Thunderstorm Wind | GREENE     | 2017-04-05 17:49 | 2017-04-05 17: |
| 4 | ОНЮ     | 2017 | April | Flood             | CLERMONT   | 2017-04-16 17:59 | 2017-04-16 19: |

|    | State    | Year | Month   | Event_Type        | CZ_Name     | Begin_Date_Time    | End_Date_Time  |
|----|----------|------|---------|-------------------|-------------|--------------------|----------------|
| 5  | NEBRASKA | 2017 | April   | Hail              | CASS        | 2017-04-15 15:50   | 2017-04-15 15: |
| 6  | INDIANA  | 2017 | April   | Flash Flood       | SWITZERLAND | 2017-04-29 09:15   | 2017-04-29 11: |
| 7  | VIRGINIA | 2017 | April   | Thunderstorm Wind | WESTMOREL   | . 2017-04-21 19:15 | 2017-04-21 19: |
| 8  | GULF OF  | 2017 | October | Marine Thunders   | ATCHAFALA   | 2017-10-22 10:15   | 2017-10-22 10: |
| 9  | ОНЮ      | 2017 | April   | Flash Flood       | CLERMONT    | 2017-04-29 09:45   | 2017-04-29 11: |
| 10 | NEBRASKA | 2017 | April   | Thunderstorm Wind | BURT        | 2017-04-15 18:55   | 2017-04-15 18: |
| 11 | ARKANSAS | 2017 | April   | Hail              | FRANKLIN    | 2017-04-26 07:57   | 2017-04-26 07: |
| 12 | OKLAHOMA | 2017 | October | Hail              | KIOWA       | 2017-10-21 15:20   | 2017-10-21 15: |
| 13 | ATLANTI  | 2017 | October | Marine Strong W   | DE BAY WA   | 2017-10-24 02:24   | 2017-10-24 02: |
| 14 | ATLANTI  | 2017 | October | Marine High Wind  | DE BAY WA   | 2017-10-24 03:36   | 2017-10-24 03: |
|    |          |      |         |                   |             |                    |                |

Now, as given to us in the assignment introduction, we are going to focus on states that were most affected by Harvey: **Arkansas, Kentucky, Louisiana, Mississippi, North Carolina, Tennessee, and Texas.** We will also narrow our dates between August 17 and September 3rd, so as to focus solely on Harvey-related storms.

### Two States Most Impacted by Harvey

We wish to find the two states most affected by Hurricane Harvey in terms of Property Cost. We will do so by grouping the table by State and then sorting the column 'Property\_Cost' of the table.

```
property_cost_by_state = grpstats(Harvey, {'State'},'sum',"DataVars",'Property_Cost')
```

 $property_cost_by_state = 7 \times 3 table$ 

|                  | State     | GroupCount | sum_Property_Cost |
|------------------|-----------|------------|-------------------|
| 1 ARKANSAS       | ARKANSAS  | 52         | 61000             |
| 2 KENTUCKY       | KENTUCKY  | 20         | 435000            |
| 3 LOUISIANA      | LOUISIANA | 85         | 75277000          |
| 4 MISSISSIPPI    | MISSISS   | 39         | 915000            |
| 5 NORTH CAROLINA | NORTH C   | 59         | 12338500          |
| 6 TENNESSEE      | TENNESSEE | 46         | 504000            |
| 7 TEXAS          | TEXAS     | 271        | 7.7427e+10        |

```
property_cost_by_state = sortrows(property_cost_by_state,'sum_Property_Cost','descend')
max_two_states = property_cost_by_state.State(1:2)
```

 $max_two_states = 2x1 categorical$ 

```
TEXAS
LOUISIANA
```

So, from this, we have our findings that the two states most affected in property by the storm Harvey are **Texas** and **Louisiana**.

### **Table of Events for Two Most Impacted States**

Now, we will make a table of the events of Harvey just for these states to be able to study them in more detail.

```
Texas_and_Louisiana = Harvey(ismember(Harvey.State, {'TEXAS', 'LOUISIANA'}),:)
```

Texas and Louisiana =  $356 \times 13$  table

|    | State | Year | Month  | Event_Type        | CZ_Name     | Begin_Date_Time  | End_Date_Time  |
|----|-------|------|--------|-------------------|-------------|------------------|----------------|
| 1  | TEXAS | 2017 | August | Tropical Storm    | MONTGOMERY  | 2017-08-25 12:00 | 2017-08-30 00: |
| 2  | TEXAS | 2017 | August | Tropical Storm    | FORT BEND   | 2017-08-26 00:00 | 2017-08-30 00: |
| 3  | TEXAS | 2017 | August | Tropical Storm    | GALVESTON   | 2017-08-25 12:00 | 2017-08-30 00: |
| 4  | TEXAS | 2017 | August | Tropical Storm    | SAN JACINTO | 2017-08-25 12:00 | 2017-08-30 00: |
| 5  | TEXAS | 2017 | August | Tropical Storm    | WALKER      | 2017-08-25 12:00 | 2017-08-30 00: |
| 6  | TEXAS | 2017 | August | Tropical Storm    | POLK        | 2017-08-25 12:00 | 2017-08-30 00: |
| 7  | TEXAS | 2017 | August | Flash Flood       | EL PASO     | 2017-08-23 16:15 | 2017-08-23 17: |
| 8  | TEXAS | 2017 | August | Thunderstorm Wind | EL PASO     | 2017-08-25 18:10 | 2017-08-25 18: |
| 9  | TEXAS | 2017 | August | Flash Flood       | EL PASO     | 2017-08-25 18:48 | 2017-08-25 20: |
| 10 | TEXAS | 2017 | August | Flash Flood       | HARDIN      | 2017-08-27 12:40 | 2017-08-30 16: |
| 11 | TEXAS | 2017 | August | Flash Flood       | JASPER      | 2017-08-29 22:29 | 2017-08-30 16: |
| 12 | TEXAS | 2017 | August | Flash Flood       | NEWTON      | 2017-08-29 22:29 | 2017-08-30 16: |
| 13 | TEXAS | 2017 | August | Flash Flood       | FORT BEND   | 2017-08-26 00:45 | 2017-08-26 02: |
| 14 | TEXAS | 2017 | August | Thunderstorm Wind | MIDLAND     | 2017-08-22 20:59 | 2017-08-22 20: |

# **Visualizations**

# **Figure of Event Types**

First we want to understand and get a sense of what kind of events we are dealing with. So, we will make a histogram of the event types in the two states.

```
h = histogram(Texas_and_Louisiana.Event_Type, "DisplayOrder", 'descend', 'NumDisplayBins'
```



Clearly, Flash Floods are the most common storm occurrences due to Hurricane Harvey in Texas and Louisiana.

### **Figure of Event Locations**

We will plot the locations of the storms in Texas and Louisiana, and we will mark them with different colours to differentiate between the two.

```
Texas = Texas_and_Louisiana(Texas_and_Louisiana.State == 'TEXAS', :);
Louisiana = Texas_and_Louisiana(Texas_and_Louisiana.State == 'LOUISIANA',:);

geoscatter(Texas.Begin_Lat, Texas.Begin_Lon, 25, "red")
hold on
geoscatter(Louisiana.Begin_Lat, Louisiana.Begin_Lon, 25, "blue")
hold off
```



# **Analysis**

#### Three Counties with Most Events in Texas

Let us analyze the event distribution in Texas by counties, and identify the three counties with most events in Texas.

```
counties_texas = groupcounts(Texas, 'CZ_Name');
counties_texas = sortrows(counties_texas, 'GroupCount', 'descend');
max_three_counties_texas = counties_texas.CZ_Name(1:3)

max_three_counties_texas = 3x1 categorical
HARRIS
GALVESTON
FORT BEND
```

Hence, we have the names of the counties which had the most events in Texas.

#### Three Counties with Most Events in Lousiana

We apply the same procedure to the state of Louisiana.

```
counties_ls = groupcounts(Louisiana, 'CZ_Name');
counties_ls = sortrows(counties_ls, 'GroupCount', 'descend');
max_three_counties_ls = counties_ls.CZ_Name(1:3)
```

max three counties  $ls = 3 \times 1$  categorical

### **Three Counties with Highest Property Cost in Texas**

Now, we find out the three counties that reported the highest property costs in Texas.

```
counties_by_cost_tx = grpstats(Texas, "CZ_Name", "sum", "DataVars", "Property_Cost");
counties_by_cost_tx = sortrows(counties_by_cost_tx, "sum_Property_Cost", "descend");
max_three_cost_tx = counties_by_cost_tx(1:3, [1 3])
```

max\_three\_cost\_tx = 3×2 table

CZ\_Name sum\_Property\_Cost

1 GALVESTON 2.0000e+10

2 FORT BEND FORT BEND 1.6004e+10

3 MONTGOMERY MONTGOMERY 1.4000e+10

# Three Counties with Highest Property Cost in Louisiana

We do the same for Louisiana.

```
counties_by_cost_ls = grpstats(Louisiana, "CZ_Name", "sum", "DataVars", "Property_Cost");
counties_by_cost_ls = sortrows(counties_by_cost_ls, "sum_Property_Cost", "descend");
max_three_cost_ls = counties_by_cost_ls(1:3, [1 3])
```

max\_three\_cost\_ls = 3×2 table

CZ\_Name sum\_Property\_Cost

1 CALCASIEU 60000000

2 BEAUREGARD BEAUREGARD 15000000

3 ACADIA ACADIA 200000

#### Conclusions and Recommendations

Notice that we narrowed down the dataset to two of the most impacted states. Within the states, we identified the counties with the most events and those with the highest amounts of property costs. As can be seen, in Texas, the property costs are much higher than those in Louisiana, by several orders of magnitude. So, I would recommend the company to send its people to these counties first, followed by some others from Texas which have a very high property cost. I would prioritize the counties of Louisiana after the most damaged ones in Texas.