```
In [13]:
          import pandas as pd
          from matplotlib import pyplot as plt
          import seaborn as sns
          import warnings
          warnings.filterwarnings('ignore')
In [2]:
          import os
 In [3]:
          os.getcwd()
         'C:\\Users\\Akarsh\\data science 6th january'
Out[3]:
 In [4]:
          os.chdir('C:\\Users\\Akarsh\\Desktop\\assignments')
 In [5]:
          os.getcwd()
         \verb|'C:/\Users/\Akarsh/\Desktop/\assignments||
Out[5]:
```

a) Check whether the MPG of Cars follows Normal Distribution

```
In [6]: cars=pd.read_csv('Cars.csv')
    cars
```

Out[6]:		НР	MPG	VOL	SP	WT
	0	49	53.700681	89	104.185353	28.762059
	1	55	50.013401	92	105.461264	30.466833
	2	55	50.013401	92	105.461264	30.193597
	3	70	45.696322	92	113.461264	30.632114
	4	53	50.504232	92	104.461264	29.889149
	•••					
	76	322	36.900000	50	169.598513	16.132947
	77	238	19.197888	115	150.576579	37.923113
	78	263	34.000000	50	151.598513	15.769625
	79	295	19.833733	119	167.944460	39.423099
	80	236	12.101263	107	139.840817	34.948615
	81 rows × 5 columns					

```
In [7]: cars['MPG'].mean()
Out[7]: 34.422075728024666
```

```
In [8]:
           cars['MPG'].median()
          35.15272697
 Out[8]:
 In [9]:
           cars['MPG'].mode()
              29.629936
 Out[9]:
          dtype: float64
In [10]:
           cars['MPG'].hist()
           plt.show()
          16
          14
          12
          10
           8
           6
           4
           2
                       20
                                  30
                                             40
In [14]:
           sns.distplot(cars['MPG'])
          plt.grid(True)
           plt.show()
            0.04
            0.03
          Density
0.02
            0.01
            0.00
                        10
                                20
                                                     50
                                                            60
                                       30
                                              40
                                        MPG
In [12]:
           cars['MPG'].skew()
          -0.17794674747025727
Out[12]:
```

```
In [15]: cars['MPG'].kurt()
Out[15]: -0.6116786559430913
In [16]: ##From above plot and values we can say that data is fairly symmetrical, i
```

b) Check Whether the Adipose Tissue (AT) and Waist Circumference(Waist) from wc-at data set follows Normal Distribution

```
In [17]:
          import pandas as pd
          from matplotlib import pyplot as plt
          import seaborn as sns
In [18]:
          df=pd.read csv('wc-at.csv')
In [19]:
          df.head()
Out[19]:
            Waist
                    AT
         0 74.75 25.72
           72.60 25.89
         2 81.80 42.60
           83.95 42.80
           74.65 29.84
In [20]:
          df.mean()
                  91.901835
         Waist
Out[20]:
                  101.894037
         dtype: float64
In [21]:
          df.mode()
Out[21]:
            Waist
                    AT
             94.5 121.0
            106.0 123.0
            108.5
                  NaN
In [22]:
          df.median()
                   90.80
         Waist
Out[22]:
                  96.54
         dtype: float64
```

```
In [23]:
            sns.distplot(df['Waist'])
            plt.show()
             0.030
             0.025
             0.020
             0.015
             0.010
             0.005
             0.000
                            60
                                       80
                                                 100
                                                            120
                                                                       140
                                            Waist
```

```
In [24]: sns.distplot(df['AT'])
  plt.show()
```



```
In [25]: sns.boxplot(df['Waist'])
  plt.show()

## mean> median, both the whisker are of same lenght, median is slightly si
```



```
In [26]:
    sns.boxplot(df['AT'])
    plt.show()

# mean> median, right whisker is larger than left whisker, data is positive
```



```
In [ ]:
```