Math 221: LINEAR ALGEBRA

§Review session for test II

Le Chen¹

Emory University, 2020 Fall

(last updated on 10/01/2020)

Creative Commons Licens (CC BY-NC-SA)

¹ Slides are adapted from those by Karen Seyffarth from University of Calgary.

3.1.17 (H)

Problem

Show that
$$\det \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & x & x \\ 1 & x & 0 & x \\ 1 & x & x & 0 \end{bmatrix} = -3x^2$$
.

3.1.18 (H)

Problem

Show that

$$\det\begin{bmatrix} 1 & x & x^2 & x^3 \\ a & 1 & x & x^2 \\ p & b & 1 & x \\ q & r & c & 1 \end{bmatrix} = (1 - ax) (1 - bx) (1 - cx).$$

3.1.19 (H)

Problem

Given the polynomial $p(x) = a + bx + cx^2 + dx^3 + x^4$, the matrix

$$C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a & -b & -c & -d \end{bmatrix}$$

is called the companion matrix of p(x). Show that

$$\det(xI - C) = p(x).$$

3.1.20 (P)

Problem

Show that

 $\det \begin{pmatrix} a+x & b+x & c+x \\ b+x & c+x & a+x \\ c+x & a+x & b+x \end{pmatrix} = (a+b+c+3x) \left[(ab+ac+bc) - \left(a^2+b^2+c^2 \right) \right]$

3.2.30 (P)

Problem

Slow that $\det \begin{pmatrix} O & A \\ B & X \end{pmatrix} = \det A \det B$ when A and B are 2×2 . What if A and B are $n \times n$ for general $n \ge 2$?

3.2.32 (P)

Problem

If A is 3×3 and invertible, compute $\det \left(-A^2 \left(\operatorname{adj} A\right)^{-1}\right)$.

3.2.33 (H)

Problem

Show that $\operatorname{adj}(uA) = u^{n-1}\operatorname{adj}(A)$ for all $n \times n$ matrices A.

3.2.34 (P)

Problem

Let A and B denote invertible $n \times n$ matrices. Show that

- 1. $\operatorname{adj}(\operatorname{adj}(A)) = \det(A)^{n-2} A \text{ for } n \ge 2.$
- 2. $adj(A^{-1}) = adj(A)^{-1}$.
- 3. $\operatorname{adj}(A^{T}) = \operatorname{adj}(A)^{T}$
- 4. adj(AB) = adj(B)adj(A)

3.3.6 (L)

Problem

Find the characteristic polynomial of the $n\times n$ identity matrix I. Show that I has exactly one eigenvalue and find the eigenvectors.

3.3.14 (H)

Problem

If A is diagonalizable and 0 and 1 are the only eigenvalues, show that $\frac{\lambda^2}{2}$

3.3.16 (H)

Problem

If $P^{-1}AP$ and $P^{-1}BP$ are both diagonalizable, show that AB = BA.

3.3.20 (P)

Problem

Let A be an invertible $n \times n$ matrix.

- 1. Show that the eigenvalues of A are nonzero.
- 2. Show that the eigenvalues of A^{-1} are precisely the numbers $1/\lambda$, where λ is an eigenvalue of A.
- 3. Show that $c_{A^{-1}} = \frac{(-x)^n}{\det A} c_A \left(\frac{1}{x}\right)$.

3.3.21 (P, L)

Problem

Suppose λ is an eigenvalue of a square matrix A with eigenvector $\vec{x} \neq \vec{0}$.

- 1. Show that λ^2 is an eigenvalue of A^2 with the same eigenvector \vec{x} .
- 2. Show that $\lambda^3 2\lambda + 3$ is an eigenvalue of $A^3 2A + 3I$.
- 3. Show that $p(\lambda)$ is an eigenvalue of p(A) for any nonzero polynomial p(x).

If A is an $n \times n$ matrix, show that

$$c_{A^2}(x^2) = (-1)^n c_A(x) c_A(-x).$$

3.3.24 (P)

Problem

Let A be diagonalizable with real eigenvalues and assume that $A^m=I$ for some $m\geq 1$.

- 1. Show that $A^2 = I$.
- 2. If m is odd, show that A = I.

3.3.25 (P)

Problem

Let $A^2 = I$, and assume that $A \neq I$ and $A \neq -I$.

- 1. Show that the only eigenvalues of A are $\lambda = 1$ and $\lambda = -1$.
- 2. Show that A is diagonalizable.

(Hint: Verify that A(A+I) = A+I and A(A-I) = -(A-I), and then look at nonzero columns of A+I and of A-I.)

Let $A = \begin{bmatrix} B & O \\ O & C \end{bmatrix}$ where B and C are square matrices.

- 1. If B and C are diagonalizable via Q and R, that is $Q^{-1}BQ$ and $R^{-1}CR$ are diagonal, show that A is diagonalizable via $\begin{bmatrix} Q & O \\ O & R \end{bmatrix}$.
- 2. Use (1) to diagonalize $A = \begin{bmatrix} 5 & 3 & 0 & 0 \\ 3 & 5 & 0 & 0 \\ 0 & 0 & 7 & -1 \\ 0 & 0 & -1 & 7 \end{bmatrix}$

Let $A = \begin{bmatrix} B & O \\ O & C \end{bmatrix}$ where B and C are square matrices.

- 1. Show that $c_A(x) = c_B(x)c_C(x)$.
- 2. If \vec{x} and \vec{y} are eigenvectors of B and C, respectively, show that $\begin{bmatrix} \vec{x} \\ \vec{0} \end{bmatrix}$ and $\begin{bmatrix} \vec{0} \end{bmatrix}$ are eigenvectors of A, and show how every eigenvector of A arises

 $\begin{bmatrix} 0 \\ \vec{y} \end{bmatrix}$ are eigenvectors of A, and show how every eigenvector of A arises from such eigenvectors.

- 112. Let λ be an eigenvalue of the matrix A. Select the correct statements:
 - 1. λ^2 is an eigenvalue of A^2
 - 2. $A^2 = \lambda I$
 - 3. λA is invertible
 - 4. $\lambda 3$ is an eigenvalue of A = 3I
 - 5. $AX = \lambda X$ for every column $X \neq 0$

- 112. Let λ be an eigenvalue of the matrix A. Select the correct statements:
 - 1. λ^2 is an eigenvalue of A^2
 - 2. $A^2 = \lambda I$
 - 3. λA is invertible
 - 4. $\lambda 3$ is an eigenvalue of A = 3I
 - 5. $AX = \lambda X$ for every column $X \neq 0$

Answer: 1,4.

124. For
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, find the eigenvalues of A and determine

whether A is diagonalizable.

- 1. 3, -1, -1; not diagonalizable
- 2. 1, 1, 1; not diagonalizable
- 3. 3, 1, 1; not diagonalizable
- 4. 3, 1, 1; diagonalizable
- 5. -3, 1, 1; diagonalizable
- 6. 3, -1, -1; diagonalizable

124. For
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, find the eigenvalues of A and determine

whether A is diagonalizable.

- 1. 3, -1, -1; not diagonalizable
- 2. 1, 1, 1; not diagonalizable
- 3. 3, 1, 1; not diagonalizable
- 4. 3, 1, 1; diagonalizable
- 5. -3, 1, 1; diagonalizable
- 6. 3, -1, -1; diagonalizable

Answer: 4

99. If $A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$ then $P^{-1}AP$ is diagonal if P is (choose the correct

1.
$$\begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$$

$$\begin{array}{c|c}
2. & \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \\
3. & \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}
\end{array}$$

$$3. \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$$

4.
$$\begin{bmatrix} 1 & -2 \\ -1 & 1 \\ -2 & 1 \end{bmatrix}$$

$$5. \begin{bmatrix} -2 & 3 \\ 4 & 3 \end{bmatrix}$$

6.
$$\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

99. If $A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$ then $P^{-1}AP$ is diagonal if P is (choose the correct answers):

$$1. \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$$

4.
$$\begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}$$
5.
$$\begin{bmatrix} -2 & 3 \\ 4 & 3 \end{bmatrix}$$

$$6. \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

Answer: 2, 3, 5.

5. $\begin{bmatrix} 1001 & 3003 \\ 0 & -1001 \end{bmatrix}$

$$1. \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

$$\begin{bmatrix} -1 & -3 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -3 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \end{bmatrix}$$

$$\begin{bmatrix} -1001 & - \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1001 & -1$$

5.
$$\begin{bmatrix} 1001 & 3003 \\ 0 & -1001 \end{bmatrix}$$

$$\begin{bmatrix} 1001 & 3003 \\ 0 & -1001 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 3^{1001} \\ 0 & 1 \end{bmatrix}$$

- 118. Suppose A is 3×3 and has 2 and 3 as its only eigenvalues. Then (select the correct answers):
 - 1. A is not diagonalizable
 - 2. $A^2 = 0$
 - 3. A is invertible
 - 4. A is not invertible
 - 5. A has an eigenvalue of multiplicity 2.

118. Suppose A is 3×3 and has 2 and 3 as its only eigenvalues. Then (select the correct answers):

- 1. A is not diagonalizable
- 2. $A^2 = 0$
- 3. A is invertible
- 4. A is not invertible
- 5. A has an eigenvalue of multiplicity 2.

Answer: 3, 5

110. If a 2 \times 2, invertible matrix A has eigenvalues 2 and 5, find the correct statements:

- 1. A is invertible
- 2. A is diagonalizable
- 3. A is symmetric
- $4. A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$
 - 5. $P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ for some invertible 3
- 6. $A^2 = 10I$.

110. If a 2×2 , invertible matrix A has eigenvalues 2 and 5, find the correct statements:

- 1. A is invertible
- 2. A is diagonalizable
- 3. A is symmetric
- $4. A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$
- 5. $P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ for some invertible B
- 6. $A^2 = 10I$.

Answer: 1, 2, 5.

56. If A and B are symmetric (that is $A^{T} = A$), which of the following are true:

- (i) A B is symmetric.
- (ii) AB is symmetric.
- (iii) If A is invertible, A^{-1} is symmetric.
- (iv) B^2 is symmetric.
- (v) $AB^{T} = BA^{T}$.
 - 1. (i) and (ii) only
 - 2. (i), (iii) and (iv) only
 - 3. (iii) and (iv) only
 - 4. (ii) and (iv) only
 - 5. none of them are true
 - 6. all of them are true

56. If A and B are symmetric (that is $A^{T} = A$), which of the following are true:

- (i) A B is symmetric.
- (ii) AB is symmetric.
- (iii) If A is invertible, A^{-1} is symmetric.
- (iv) B^2 is symmetric.
- (v) $AB^T = BA^T$.
 - 1. (i) and (ii) only
 - 2. (i), (iii) and (iv) only
 - 3. (iii) and (iv) only
 - 4. (ii) and (iv) only
 - 5. none of them are true
- 6. all of them are true

Answer: 2.

20. For
$$A = \begin{bmatrix} -9 & -8 & -4 \\ 18 & 17 & 9 \\ -14 & -14 & -8 \end{bmatrix}$$
, find the eigenvalues of A and determine

whether A is diagonalizable.

- 1. 2, -1, -1; not diagonalizable
- $\mathbf{2.}\ \ 2,2,1$; diagonalizable
- 3. 2, 2, -1; not diagonalizable
- 4. 2, 2, -2; diagonalizable
- 5. -2, 1, 1; diagonalizable
- 6. 2, -1, -1; diagonalizable

20. For
$$A = \begin{bmatrix} -9 & -8 & -4 \\ 18 & 17 & 9 \\ -14 & -14 & -8 \end{bmatrix}$$
, find the eigenvalues of A and determine

whether A is diagonalizable.

- 1. 2, -1, -1; not diagonalizable
- 2. 2, 2, 1; diagonalizable
- 3. 2, 2, -1; not diagonalizable
- 4. 2, 2, -2; diagonalizable
- 5. -2, 1, 1; diagonalizable
- 6. 2, -1, -1; diagonalizable

Answer: 6.

16. Let A be a diagonalizable matrix. If $\lambda^3 = \lambda$ for each eigenvalue λ of A, then (select the correct answers):

- 1. A is not invertible
- 2. A = I, -I or 0
- 3. $A^{T} = -A$
- 4. A = -I
- 5. $A^2 = A$
- 6. $A^3 = A$.

16. Let A be a diagonalizable matrix. If $\lambda^3 = \lambda$ for each eigenvalue λ of A, then (select the correct answers):

- 1. A is not invertible
- 2. A = I, -I or 0
- 3. $A^{T} = -A$
- 4. A = -I
- 5. $A^2 = A$
- 6. $A^3 = A$.

Answer: 6.

126. For
$$A = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$
, find the eigenvalues of A and determine

whether A is diagonalizable.

- 1. 3, 1, 1; not diagonalizable
- 2. 3, -1, -1; diagonalizable
- 3. -3, 1, 1; not diagonalizable
- 4. 3, -1, -1; not diagonalizable
- 5. -3, 1, 1; diagonalizable
- 6. 3, 1, 1; diagonalizable

126. For
$$A = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$
, find the eigenvalues of A and determine

whether A is diagonalizable.

- 1. 3, 1, 1; not diagonalizable
- 2. 3, -1, -1; diagonalizable
- 3. -3, 1, 1; not diagonalizable
- 4. 3, -1, -1; not diagonalizable
- 5. -3, 1, 1; diagonalizable
- 6. 3, 1, 1; diagonalizable

Answer: 6.