Statistica - 4ª lezione

7 marzo 2023

Valore atteso

Definizione

Il *valore atteso* di una v.a. assolutamente continua X è il numero reale

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{+\infty} \mathbf{z} \, f_X(z) \, \mathrm{d}z$$
 (A volte si scrive anche $\mu_X = \mathbb{E}\left[X\right]$)

- μ_X è il baricentro della densità di X
- Se f_X è simmetrica rispetto all'asse $x=x_0$, allora $\mu_X=x_0$
- Se $a, b \in \mathbb{R}$:

$$\mathbb{E}\left[aX+b\right]=a\mathbb{E}\left[X\right]+b \qquad \text{(linearità di }\mathbb{E}\text{)}$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \int_{-\infty}^{+\infty} (z - \mu_{X})^{2} f_{X}(z) dz$$

Definizione

La varianza di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \int_{-\infty}^{+\infty} (z - \mu_{X})^{2} f_{X}(z) dz$$

PROPRIETÀ:

• $\operatorname{var}[X] \geq 0$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \int_{-\infty}^{+\infty} (z - \mu_{X})^{2} f_{X}(z) dz$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$\operatorname{var}[X] = \int_{-\infty}^{+\infty} (z^2 - 2\mu_X z + \mu_X^2) f_X(z) dz$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$\operatorname{var}[X] = \int_{-\infty}^{+\infty} (z^2 - 2\mu_X z + \mu_X^2) f_X(z) dz$$
$$= \int_{-\infty}^{+\infty} z^2 f_X(z) dz - 2\mu_X \int_{-\infty}^{+\infty} z f_X(z) dz + \mu_X^2 \int_{-\infty}^{+\infty} f_X(z) dz$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- var[X] > 0
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$\operatorname{var}[X] = \int_{-\infty}^{+\infty} (z^2 - 2\mu_X z + \mu_X^2) f_X(z) dz$$

$$= \underbrace{\int_{-\infty}^{+\infty} z^2 f_X(z) dz}_{\mathbb{E}[X^2]} - 2\mu_X \underbrace{\int_{-\infty}^{+\infty} z f_X(z) dz}_{\mathbb{E}[X]} + \mu_X^2 \underbrace{\int_{-\infty}^{+\infty} f_X(z) dz}_{1}$$

Definizione

La *varianza* di una v.a. assolutamente continua *X* è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- var[X] > 0
 - $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$var [X] = \int_{-\infty}^{+\infty} (z^2 - 2\mu_X z + \mu_X^2) f_X(z) dz
= \int_{-\infty}^{+\infty} z^2 f_X(z) dz - 2\mu_X \int_{-\infty}^{+\infty} z f_X(z) dz + \mu_X^2 \int_{-\infty}^{+\infty} f_X(z) dz
= \mathbb{E} [X^2] - 2\mu_X \cdot \mu_X + \mu_X^2 \cdot 1$$

Definizione

La *varianza* di una v.a. assolutamente continua *X* è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$var[X] = \int_{-\infty}^{+\infty} (z^2 - 2\mu_X z + \mu_X^2) f_X(z) dz
= \int_{-\infty}^{+\infty} z^2 f_X(z) dz - 2\mu_X \int_{-\infty}^{+\infty} z f_X(z) dz + \mu_X^2 \int_{-\infty}^{+\infty} f_X(z) dz
= \mathbb{E}[X^2] - 2\mu_X \cdot \mu_X + \mu_X^2 \cdot 1$$

Definizione

La varianza di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mu_X^2$
- $var[aX + b] = a^2 var[X]$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mu_X^2$
- $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX+b\right]=\mathbb{E}\left[\left\{\left(aX+b\right)-\mathbb{E}\left[aX+b\right]\right\}^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

PROPRIETÀ:

- $\operatorname{var}[X] > 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX+b\right] = \mathbb{E}\left[\left\{\left(aX+b\right) - \mathbb{E}\left[aX+b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{\left(aX+b\right) - \left(a\mathbb{E}\left[X\right] + b\right)\right\}^{2}\right]$$

linearità di $\mathbb E$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mu_X^2$
- $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{\left(aX + b\right) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{\left(aX + b\right) - \left(a\mathbb{E}\left[X\right] + b\right)\right\}^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] > 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{(aX + b) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{(aX + b) - (a\mathbb{E}\left[X\right] + b)\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{a(X - \mathbb{E}\left[X\right])\right\}^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] > 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{\left(aX + b\right) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{\left(aX + b\right) - \left(a\mathbb{E}\left[X\right] + b\right)\right\}^{2}\right]$$
$$= \mathbb{E}\left[a^{2}\left\{\left(X - \mathbb{E}\left[X\right]\right)\right\}^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] > 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{\left(aX + b\right) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$

$$= \mathbb{E}\left[\left\{\left(aX + b\right) - \left(a\mathbb{E}\left[X\right] + b\right)\right\}^{2}\right]$$

$$= a^{2} \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] \quad \text{linearità di } \mathbb{E}$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- var[X] > 0
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $\operatorname{var}[aX + b] = a^2 \operatorname{var}[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{(aX + b) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{(aX + b) - (a\mathbb{E}\left[X\right] + b)\right\}^{2}\right]$$
$$= a^{2}\mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = a^{2}\operatorname{var}\left[X\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $\operatorname{var}[aX + b] = a^2 \operatorname{var}[X]$
- Per la *deviazione standard* $\operatorname{sd}[X] = \sqrt{\operatorname{var}[X]}$ si ha

$$\mathrm{sd}\left[aX+b\right]=\left|a\right|\mathrm{sd}\left[X\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

PROPRIETÀ:

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $var[aX + b] = a^2 var[X]$
- Per la *deviazione standard* $\operatorname{sd}[X] = \sqrt{\operatorname{var}[X]}$ si ha

$$\mathrm{sd}\left[aX+b\right]=\left|a\right|\mathrm{sd}\left[X\right]$$

(A volte si scrive anche $\sigma_X = \operatorname{sd}[X]$)

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

$$f_X(z) = egin{cases} rac{1}{b-a} & ext{se } z \in [a,b] \ 0 & ext{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

- $\mathbb{E}[X] = \frac{a+b}{2}$ perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$ dove

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 \, f_X(z) \, \mathrm{d}z$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2$$
 dove

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 f_X(z) dz = \int_a^b z^2 \frac{1}{b-a} dz$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

• $\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ dove

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 f_X(z) dz = \int_a^b z^2 \frac{1}{b-a} dz$$
$$= \frac{1}{b-a} \left[\frac{z^3}{3}\right]_{z=a}^{z=b}$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

• $\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ dove

$$\mathbb{E}\left[X^{2}\right] = \int_{-\infty}^{+\infty} z^{2} f_{X}(z) dz = \int_{a}^{b} z^{2} \frac{1}{b-a} dz$$
$$= \frac{1}{b-a} \left[\frac{z^{3}}{3}\right]_{z=a}^{z=b} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2$$

$$\mathbb{E}\left[X^{2}\right] = \int_{-\infty}^{+\infty} z^{2} f_{X}(z) dz = \int_{a}^{b} z^{2} \frac{1}{b-a} dz$$
$$= \frac{1}{b-a} \left[\frac{z^{3}}{3}\right]_{z=a}^{z=b} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2$$
$$= \frac{(b-a)^2}{12}$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

$$k=1$$
:

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

$$k = 2$$
: $\leq \frac{1}{2^2} = 25\%$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

$$k=3$$
:

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\operatorname{var}[X]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

DIMOSTRAZIONE:

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2 f_X(z)}_{\ge 0} dz + \int_{|z - \mu_X| < \varepsilon} \underbrace{(z - \mu_X)^2 f_X(z)}_{\ge 0} dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2}_{>\varepsilon^2} f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2}_{>\varepsilon^2} f_X(z) dz \ge \int_{|z - \mu_X| \ge \varepsilon} \varepsilon^2 f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2}_{\ge \varepsilon^2} f_X(z) dz \ge \varepsilon^2 \int_{|z - \mu_X| \ge \varepsilon} f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) \, dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz \ge \varepsilon^2 \int_{|z - \mu_X| \ge \varepsilon} f_X(z) \, dz$$

$$= \varepsilon^2 \mathbb{P}(|X - \mu_X| \ge \varepsilon)$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) \, dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz \ge \varepsilon^2 \int_{|z - \mu_X| \ge \varepsilon} f_X(z) \, dz$$

$$= \varepsilon^2 \mathbb{P}(|X - \mu_X| \ge \varepsilon) \quad \Rightarrow \quad \frac{\sigma_X^2}{\varepsilon^2} \ge \mathbb{P}(|X - \mu_X| \ge \varepsilon)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z-\mu}{\sigma} \right)^2 \right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z-\mu}{\sigma} \right)^2 \right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z-\mu}{\sigma} \right)^2 \right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z-\mu}{\sigma} \right)^2 \right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

è la densità gaussiana (o normale) di parametri μ e σ^2 :

$$X \sim N(\mu, \sigma^2)$$

N(0,1) è la densità *normale standard*

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right]$$

con $\mu \in \mathbb{R}$ e $\sigma >$ 0 fissati

•
$$\mu_X = q_{0.5}^X = \mu$$
 (per la simmetria)

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right]$$

con $\mu \in \mathbb{R}$ e $\sigma > 0$ fissati

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right]$$

con $\mu \in \mathbb{R}$ e $\sigma >$ 0 fissati

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right]$$

con $\mu \in \mathbb{R}$ e $\sigma >$ 0 fissati

•
$$\mu_X = q_{0.5}^X = \mu$$
 (per la simmetria)

•
$$\sigma_X^2 = \sigma^2$$
 (col calcolo)

•
$$aX + b \sim N(a\mu + b, (|a|\sigma)^2)$$
:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\frac{t-b}{a}-\mu}{\sigma}\right)^2\right]$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\frac{t-b}{a} - \mu}{\sigma}\right)^2\right]$$
$$= \frac{1}{|a|\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{t-a\mu-b}{a\sigma}\right)^2\right]$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\frac{t-b}{a} - \mu}{\sigma}\right)^2\right]$$
$$= \frac{1}{|a|\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{t-(a\mu+b)}{|a|\sigma}\right)^2\right]$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\frac{t-b}{a}-\mu}{\sigma}\right)^2\right]$$
$$= \frac{1}{|a|\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{t-(a\mu+b)}{|a|\sigma}\right)^2\right]$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z-\mu}{\sigma} \right)^2 \right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione)

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione):

$$\frac{X-\mu}{\sigma} = \frac{1}{\sigma}X + \frac{-\mu}{\sigma}$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione):

$$\frac{X - \mu}{\sigma} = \frac{1}{\sigma}X + \frac{-\mu}{\sigma} \sim N\left(\frac{1}{\sigma}\mu + \frac{-\mu}{\sigma}, \left(\left|\frac{1}{\sigma}\right|\sigma\right)^{2}\right)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione):

$$\frac{X-\mu}{\sigma} = \frac{1}{\sigma}X + \frac{-\mu}{\sigma} \sim N\left(\frac{1}{\sigma}\mu + \frac{-\mu}{\sigma}, \left(\left|\frac{1}{\sigma}\right|\sigma\right)^2\right) = N(0,1)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione)
- La f.d.r. di N(0,1) si indica con Φ e si trova tabulata

	Tav	ola della	a funzio	ne di rip	artizior	e della	distribu	zione N	(0,1)		$\Phi(0.36) =$
z	0.00	0.01	0.02	0.03	0.04	0.05	(0.06)	0.07	0.08	0.09	φ(0,0 ± 0,00)
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	$= \Phi(0.3+0.06)$
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	` ′
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	0.04050
(0.3)	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173	= 0.64058
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793	
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

PROPRIETÀ:

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione)
- La f.d.r. di N(0,1) si indica con Φ e si trova tabulata

		Tav	ola della	a funzio	ne di rip	artizior	e della	distribu	zione N	(0,1)		$\Phi(0.36) =$
\vdash	z	0.00	0.01	0.02	0.03	0.04	0.05	(0.06)	0.07	0.08	0.09	φ(0,0 ± 0,00)
	0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	$= \Phi(0.3+0.06)$
	0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	` ′
L	0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	0.04050
IC	0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173	= 0.64058
	0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793	
	0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	0.00
	0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	$q_{0.64058} = 0.36$
	0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524	70.04030

6/9

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}\left(0 < X < 5.1\right) = \mathbb{P}\left(\begin{array}{ccc} 0 & & & < X & & < 5.1 \end{array}\right)$$

ESEMPIO:

$$X \sim N(\underbrace{3.2}_{\mu}, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\begin{array}{cc} 0 - 3.2 \\ \end{array} < \begin{array}{c} X - \mu \\ \end{array} < \begin{array}{c} 5.1 - 3.2 \\ \end{array}\right)$$

ESEMPIO:

$$X \sim N(3.2, \underbrace{7.6}_{\sigma^2})$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \underbrace{\frac{X - \mu}{\sigma}}_{N(0,1)} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \underbrace{\frac{X - \mu}{\sigma}}_{N(0,1)} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \underbrace{\frac{X - \mu}{\sigma}}_{N(0,1)} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$

											_
L	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	(0.09)
	0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
	0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
	0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
	0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
(0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
	0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
	n s	0.78814	0.70103	ก 70380	0.70673	n 70055	0.80234	0.80511	0.80785	0.81057	0.81327

Densità gaussiana

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

Voglio calcolare

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$
$$= 0.75490$$

$\Phi(-1.161) =$	0.09	0.08	0.07	(0.06)	0.05	0.04	0.03	0.02	0.01	0.00	z
	0.53586	0.53188	0.52790	0.52392	0.51994	0.51595	0.51197	0.50798	0.50399	0.50000	0.0
	0.57535	0.57142	0.56749	0.56356	0.55962	0.55567	0.55172	0.54776	0.54380	0.53983	0.1
$= 1 - \Phi(1.161)$	U.83891	U.83b4b	0.83398	U.83147	0.82894	0.82639	0.82381	0.82121	U.81859	U.81594	0.9
,	0.86214	0.85993	0.85769	0.85543	0.85314	0.85083	0.84849	0.84614	0.84375	0.84134	1.0
= 1 - 0.87698	0.88298	0.88100	0.87900	0.87698	0.87493	0.87286	0.87076	0.86864	0.86650	0.86433	1.1
	0.90147	0.89973	0.89796	0.89617	0.89435	0.89251	0.89065	0.88877	0.88686	0.88493	1.2
	0.91774	0.91621	0.91466	0.91308	0.91149	0.90988	0.90824	0.90658	0.90490	0.90320	1.3

Densità gaussiana

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

Voglio calcolare

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$
$$= 0.75490 - (1 - 0.87698)$$

$\Phi(-1.161) =$	0.09	0.08	0.07	(0.06)	0.05	0.04	0.03	0.02	0.01	0.00	z
+ (1.101) —	0.53586	0.53188	0.52790	0.52392	0.51994	0.51595	0.51197	0.50798	0.50399	0.50000	0.0
	0.57535	0.57142	0.56749	0.56356	0.55962	0.55567	0.55172	0.54776	0.54380	0.53983	0.1
$= 1 - \Phi(1.161)$	0.83891	U.83b4b	0.83398	U.83147	0.82894	0.82639	0.82381	0.82121	U.81859	U.81594	0.9
`	0.86214	0.85993	0.85769	0.85543	0.85314	0.85083	0.84849	0.84614	0.84375	0.84134	1.0
= 1 - 0.87698	0.88298	0.88100	0.87900	0.87698	0.87493	0.87286	0.87076	0.86864	0.86650	0.86433	1.1
	0.90147	0.89973	0.89796	0.89617	0.89435	0.89251	0.89065	0.88877	0.88686	0.88493	1.2
	0.91774	0.91621	0.91466	0.91308	0.91149	0.90988	0.90824	0.90658	0.90490	0.90320	1.3

Densità gaussiana

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

Voglio calcolare

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$

$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$

$$= \Phi(0.689) - \Phi(-1.161)$$

$$= 0.75490 - (1 - 0.87698)$$

$$= 0.63188 = 63.188\%$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

S è un insieme discreto quando tutti i suoi punti sono isolati

 \Rightarrow S è finito o al più numerabile

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

S è un insieme discreto quando tutti i suoi punti sono isolati

 \Rightarrow S è finito o al più numerabile

ESEMPIO:
$$S = \{-4, -2.\overline{6}, -0.9, \sqrt{3}, \pi, 4.5\}$$
 $I = (-2.1, 3.8)$

Si richiede
$$\mathbb{P}(X \in (-2.1, 3.8)) = \mathbb{P}(X \in \{-0.9, \sqrt{3}, \pi\})$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$:

$$\mathbb{P}\left(X\in\mathcal{S}\right)=\mathbb{P}\left(X\in\mathbb{R}\cap\mathcal{S}\right)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$:

$$\mathbb{P}(X \in \mathcal{S}) = \mathbb{P}(X \in \mathbb{R} \cap \mathcal{S}) = \mathbb{P}(X \in \mathbb{R})$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$:

$$\mathbb{P}(X \in S) = \mathbb{P}(X \in \mathbb{R} \cap S) = \mathbb{P}(X \in \mathbb{R}) = 1$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$\rho_X: S \to [0,1]$$
 $\rho_X(k) := \mathbb{P}(X = k)$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

•
$$\mathbb{P}(X \in I) = \sum_{k \in I \cap S} p_X(k)$$
 per ogni $I \subseteq \mathbb{R}$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S) = \mathbb{P}("X = k_1" \lor \dots \lor "X = k_n")$$

$$con I \cap S = \{k_1, \dots, k_n\}$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S) = \mathbb{P}("X = k_1" \vee \ldots \vee "X = k_n")$$

$$\stackrel{(3)}{=} \mathbb{P}(X = k_1) + \ldots + \mathbb{P}(X = k_n) \quad \text{con } I \cap S = \{k_1, \ldots, k_n\}$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S) = \mathbb{P}("X = k_1" \vee \ldots \vee "X = k_n")$$

$$= \mathbb{P}(X = k_1) + \ldots + \mathbb{P}(X = k_n) \quad \text{con } I \cap S = \{k_1, \ldots, k_n\}$$

$$= \sum_{k \in I \cap S} p_X(k)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S o [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

- $\mathbb{P}(X \in I) = \sum_{k \in I \cap S} p_X(k)$ per ogni $I \subseteq \mathbb{R}$
- $p_X(k) \in [0,1]$ per ogni $k \in S$ (positività) perché $p_X(k) = \mathbb{P}(X=k)$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

- $\mathbb{P}(X \in I) = \sum_{k \in I \cap S} p_X(k)$ per ogni $I \subseteq \mathbb{R}$
- $p_X(k) \in [0,1]$ per ogni $k \in S$ (positività)
- $\sum_{k \in S} p_X(k) = 1$ (normalizzazione) perché $\mathbb{P}(X \in S) = 1$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S o [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

- $\mathbb{P}(X \in I) = \sum p_X(k)$ per ogni $I \subseteq \mathbb{R}$
- $p_X(k) \in [0,1]$ per ogni $k \in S$ (positività) $\sum p_X(k) = 1$ (normalizzazione)

proprietà fondamentali

ESEMPIO:

X = numero che uscirà nel lancio di un dado

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \mathbb{P}(X = k) = \mathbb{P}(\text{"uscirà }k")$$

tutti i $k \in S$ sono equiprobabili

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \mathbb{P}(X = k) = \mathbb{P}(\text{"uscirà } k")$$
tutti i $k \in S$ sono equiprobabili
$$\sum_{k \in S} p_X(k) = 1$$

$$p_X(k) = p_X(k') \quad \forall k, k' \in S$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1, 2, 3, 4, 5, 6\})$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1,2,3,4,5,6\})$$

$$\mathbb{P}(2.3 \le X < 5) = ???$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1,2,3,4,5,6\})$$

$$\mathbb{P}(2.3 \le X < 5) = \sum_{k \in \{3,4\}} p_X(k)$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1, 2, 3, 4, 5, 6\})$$

$$\mathbb{P}\left(2.3 \le X < 5\right) = \sum_{k \in \{3,4\}} p_X(k) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

