

Ce qui nous interesse c'est les sous eus de 52 et on charche à les

P: P(2) -> con] probabilité

Voniable aléaboire:

Exercice 1 – Dés de Gardner

Dans un numéro de la revue *Scientific American* de 1974, M. Gardner proposait un jeu consistant à choisir un dé parmi les trois dés à 6 faces non pipés ci-dessous, de manière à essayer d'obtenir le nombre le plus élevé en lançant le dé une seule fois.

	1	
4	1	4
	4	
	4	
	(i)	

		3		
	3	3	3	
		3		
whois	on, a	3		
		(ii)		

	2	
5	2	5
	2	
	2	
	$\overline{(iii)}$	

- \mathbf{Q} 1.1 On vous propose de jouer au jeu à 2 joueurs suivant : chaque joueur mise M euros. Puis on vous demande de choisir un des dés ci-dessus, votre adversaire en choisit ensuite un autre et enfin chacun lance son dé. Celui qui obtient le nombre le plus élevé remporte la mise.
- **Q 1.1.1** Calculez, pour chaque couple (x, y) de dés la probabilité qu'en jouant avec le dé x on obtienne un résultat plus élevé qu'avec y.
- Q 1.1.2 Sachant que la mise est de 30 euros, devez-vous accepter de jouer et, le cas échéant, quel dé devez-vous choisir? Formellement, quel critère vous permet de statuer?

$$P(D_x = 1) = \frac{2}{6}$$

multiplication de Rondrions

Dx IL Dy, donc IP(Dx, Dy) = IP(Dx). IP(Dy)

danc IP(0,0100) = IP(0,00)

$$P(D_{(i)} = 1) = \frac{1}{3}$$
 $P(D_{(i)} = 3) = 1$ $P(D_{(i)} = 2) = \frac{2}{3}$ $P(D_{(i)} = 5) = \frac{1}{3}$

Oces vs Deres

- deshibution de proba

Somme = 1 et o = probas = 1

P(A1B) = P(A.B) là conditionnelle.

W(Oci) D(11) -> 90119

EP(Deiz, Delli) W = E E IP(a,b) & (a,b).

EP(O(iii), D(i)) W = = = 1.1+ 19.0+ 19.0+ 19.0+

Divs Di

Diii VS Dii

Si joueur 1 chareit Di, jouer 2 chaist Dii pour gagner Dii Dii

Conduson: Aucun de riest la mailleur. (resultat paradoral)

On drange lafor de cont a W+6 over a>0

Ep (ow+b) = a Ep Wtb

W = {-30,30} 60W-30

Exercice 2 – Indépendence

Soit deux dés à six faces non pipés, un de couleur blanc et un de couleur noir. Les deux sont jetés une fois. On définit les événement suivants :

- le dé blanc donne 1, 2 ou 3.
- le dé blanc donne 2, 3 ou 6.
- la somme des deux dés est égal à 9.
- les deux dés donnent deux nombres égaux, dont la somme est inférieure à 9.
- Q 2.1 Quel est la probabilité des ces événements?
- Q 2.2 Quels événements sont deux-à-deux indépendants?

IP(Bハロ)= IP((2,2) U(3,3))= は=生ま

Q 2.3 Les 4 évènements sont-ils mutuellement indépendants? Si non, trouvez les groupes de trois évènements qui sont mutuellement indépendants.

$$A = de \in \S1, 2, 3 \} = (1, -) \cup (2, -) \cup (3, -)$$

$$de \frac{d^{3}}{d^{3}} = de \in \S1, 2, 3 \} = (1, -) \cup (2, -) \cup (3, -)$$

$$de \frac{d^{3}}{d^{3}} = de \in \S1, 2, 3 \} = de \Rightarrow \text{numbradementy exclusions} = P(A) + P(B)$$

$$P(A) = (P(1, -)) + (P(2, -)) + (P(3, -))$$

$$= \sum_{i=1}^{n} P(A, a) + \sum_{i=1}^{n} P(2, b) + \sum_{i=1}^{n} P(3, c)$$

$$= 6 \cdot \frac{1}{3} + 6 \cdot \frac{1}{3} + 6 \cdot \frac{1}{3} = \frac{1}{3}$$

$$B = de \in \S2, 3, 6 \in P(B) = \frac{1}{3}$$

$$C = de + du = G \qquad (3, 6) \cup (4, 5) \cup (5, 4) \cup (6, 3)$$

$$P(C) = 4 \cdot \frac{1}{36} = \frac{1}{9}$$

$$D = de = du = de + de + du < G \qquad (4, 4) \cup (2, 2) \cup (3, 3) \cup (4, 4)$$

$$P(O) = \frac{1}{3}$$

$$P(A) = \frac{1}{2} P(A) = \frac{1}{2} P(C) = \frac{1}{3} P(D) = \frac{1}{3}$$

$$P(A) = P(A + a) = \frac{1}{3} \qquad \frac{1}{3} + \frac{1}{3} donc \quad A \neq B \quad pao \quad independents$$

$$P(A \cap D) = P((3, 6)) = \frac{1}{3} + \frac{1}{3} donc \quad A \neq C \quad pao \quad indep$$

$$P(A \cap D) = P((3, 6)) \cup (6, 8) = \frac{2}{36} = \frac{1}{18} = \frac{1}{3} \cdot \frac{1}{3} \quad Bet \subset \text{paol} \quad indep$$

$$P(B \cap C) = P((3, 6)) \cup (6, 8) = \frac{2}{36} = \frac{1}{18} = \frac{1}{3} \cdot \frac{1}{3} \quad Bet \subset \text{paol} \quad indep$$

1P(C10) =0 + 1. & donc pas indep. ALB (2) 1P(A1B)=1P(A).1P(B)

Bet 10 sent indep.

Newtrelle (ndépendance
$$P(ANBNCND) = P(A) \cdot P(B) \cdot P(C) \cdot P(O)$$

et $V \cdot S \in A \cdot B \cdot C \cdot D$), $P(S) = T \cdot P(X)$
 $P(A \cdot B \cdot C \cdot D) = 0 \neq 1 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 4 \cdot 4 \cdot 3 \cdot 5 \cdot C \cdot D$ par nutreller $P(A \cdot B \cdot C \cdot D) = 1 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 4 \cdot 4 \cdot 3 \cdot C \cdot D$ par nutreller $P(A \cdot B \cdot C \cdot D) = 1 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 4 \cdot 3 \cdot C \cdot D$
 $P(A \cdot B \cdot C \cdot D) = 1 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 4 \cdot 3 \cdot C \cdot D$ par nutreller $P(A \cdot B \cdot C \cdot D) = 1 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot C \cdot D$

Mais $A \cdot P(B) \cdot A \cdot B \cdot C \cdot D$ rutreller indep.

Exercice 4 – Paradoxe de Simpson

Le recensement des jugements prononcés dans l'état de Floride entre 1973 et 1978 a permis d'établir le tableau suivant, qui présente les sentences en fonction de la couleur de peau de l'accusé :

meurtrier	peine de mort	autre sentence	
noir	59	2547	59+2547
blanc	72	2185	72+2185

Q 4.1 Calculez la probabilité d'obtenir la peine de mort sachant que l'on est noir, puis sachant que l'on est blanc. Qu'en concluez-vous?

 ${f Q}$ 4.2 En fait le tableau ci-dessus est une synthèse du tableau ci-dessous :

victime	meurtrier	peine de mort	autre sentence
blanche	noir	48	238
bidireire	blanc	72	2074
noire	noir	11	2309
	blanc	0	111

Calculez la probabilité d'obtenir la peine de mort conditionnellement à la couleur de peau de l'accusé et de la victime. La justice est-elle clémente envers les noirs dans l'état de Floride? Justifiez votre réponse.

Pow calcular los mangrinale, on supp frequence ~ proba_ 8: effectly grand_

P(P1CM)

M A $\frac{52}{2547459} \frac{2547}{2485472} \frac{1}{1} = \frac{2.765\%}{3.19\%} \frac{100-3.19\%}{100-3.19\%}$

Un accusé blanc > accusé noiv victime B accusé B < accusé N rois uctime N accusé B < accusé N

borogene of Elubero

Four por souris y & Yest we couse de X. Y peut être docluir de X.

et oni si y indep de X ou y couse de X.

Go 6. conseille

mers objet de se

ACTZ fer - sens de sous eus gus nons interessent

tous les sous-eun = tribu.?

IP(X): distibution de proba

see {03}. (P(x) = 1P({x=x}) @ [OM]

IP(X,Y)

xefon. St ye fr. Ft 1P(x.y) r P(X = x. Y = y) = P(fX = x.t) f Y = yt)

IP(X, 21Y, U) - 40 onec plain de matrices qui E=1.

(arec P(Y) >0) [P(X|Y) = P(X,Y) (>> IP(X,Y): P(Y) IP(X|Y). 4x. 4y. P(X=x, Y=0) = P(X=x1 Y=0) P(Y=0)

X 11 Y G> 1P(K, Y)= 1P(X) x 1P(Y).

X II Y 13 (3) P(X, Y) = (P(X, 2) x P(X, 3)

Exercice 8 - Indépendence et conjonction

Soit trois variables aléatoires X, Y, Z. Montrer que si X est indépendante du couple (Y, Z), et Y est indépendante de Z, alors Z est indépendante du couple (X, Y).

Exercice 9 – Indépendances conditionnelles

La loi de probabilité jointe de 3 variables aléatoires X, Y et Z, est donnée par le tableau suivant dans lequel, par exemple, la case 1/12 représente la probabilité $P(X=x_2,Y=y_1,Z=z_1)$:

		$Y = y_1$	$Y = y_2$	$Y = y_3$
$Z=z_1$	$X = x_1$	1/24	1/15	1/8
	$X = x_2$	1/12	7/120	1/8
		$Y = y_1$	$Y = y_2$	$Y = y_3$
$Z=z_2$	$X = x_1$	3/40	1/20	13/120
	$X = x_2$	1/20	3/40	17/120
	$Z = z_1$ $Z = z_2$	$X = x_2$ $Z = z_2 X = x_1$	$Z = z_1$ $X = x_1$ $1/24$ $X = x_2$ $1/12$ $Y = y_1$ $Z = z_2$ $X = x_1$ $3/40$	$Z = z_1$ $X = x_1$ $1/24$ $1/15$ $X = x_2$ $1/12$ $7/120$ $Y = y_1$ $Y = y_2$ $Z = z_2$ $X = x_1$ $3/40$ $1/20$

On note respectivement $X \perp\!\!\!\perp Y$ et $X \perp\!\!\!\perp Y | Z$ l'indépendance probabiliste entre X et Y, et l'indépendance probabiliste entre X et Y conditionnellement à Z.

Q 9.1 D'un point de vue probabiliste, a-t-on $X \perp\!\!\!\perp Y$, $X \perp\!\!\!\!\perp Z$, $Z \perp\!\!\!\!\perp Y$? Rappel : si A et B sont indépendants, $P(A,B) = P(A) \times P(B)$.

Q 9.2 A-t-on $X \perp \!\!\!\perp Y | Z$, $X \perp \!\!\!\perp Z | Y$, $Z \perp \!\!\!\perp Y | X$?

por de o dans la toble de propos.

 $\mathbb{L}(\chi\lambda(5) = \frac{1L(5)}{L(\chi'\lambda'5)}$

(3) (P(X, Y) Z) = (P(X) Z) (P(Y) Z)

$$P(X_1Y) = 22$$

$$\frac{2}{40} = 22$$

$$\frac{1}{20} = 22$$

$$P(X_1Z = 22)$$

$$\frac{1}{40} = \frac{13}{120}$$

$$\frac{1}{20} = P(Z = 22)$$

$$P(Y_1Z = 22)$$

$$\frac{1}{10} = P(Z = 22)$$

Quand == 21. Il viy a poor de proportion natité entre les lignes => X # Y | 2 = 21.

Exercice 13 - Modélisation

Nous nous intéressons à la modélisation de phénomène réels par des lois de probabilités standard.

Q 13.1 Soit une base d'images $X = {\mathbf{x}^{(i)}}$. Dans une image \mathbf{x} , nous avons 256 pixels x_j noirs ou blancs.

 ${f Q}$ 13.1.1 Quelle loi utiliser pour modéliser un pixel j? Que signifient le (ou les) paramètre(s) de cette loi?

Q 13.1.2 Nous voulons calculer $p(x_j)$ en fonction de la valeur de x_j (0 ou 1) et du (ou des) paramètre(s) de la loi précédente. Comment factoriser l'écriture du calcul pour tenir compte des deux possibilités de valeur du pixel?

(1.1) On modelize be pixel; pour une v.a. benaive sevent une Bennaulli de ponouvetre p_i $Y_i \sim \cancel{\mathbb{P}}(p_i) \qquad \mathbb{P}(X_j = 1) = p_j.$

I= χ_1 ..., χ_{256} . If a 256 parametres à fixer, si tous les privels sont indépendents S: par indépendence, on auroub 2^{256} parametres $P(\chi_j=x_j)=P_j$ si $x_j=1$ et $1-P_j$ somm = $P_j^{x_j}(1-P_j)^{1-x_j}$

Y = /mage = (x1.... x216).

Q 13.2 Imaginons que nous sommes dans un problème bi-classe, impliquant des chiens et des chats et que nous disposons de 2 modèles optimisés pour chaque classe. Ces modèles font l'hypothèse que tous les pixels sont indépendants dans une image.

Q 13.2.1 Pour fournir ces modèles optimisés, combien de valeurs numériques faut-il donner? A quoi correspondent elles?

Q 13.2.2 Une nouvelle image arrive dont le seul pixel visible exploitable, x_{18} , est allumé : comment déterminer s'il s'agit d'un chien ou d'un chat?

Q 13.2.3 Pour une image entière $\mathbf{x} \in \{0, 1\}^{256}$, comment déterminer la classe associée au sens de la vraisemblance?

$$P(Y|\mathcal{I}) = P(x_1... x_{256}|Y)$$

$$= \prod_{i=1}^{256} P(x_i|\mathcal{I})$$

$$= \prod_{i=1}^{256} P^{2x_i} (1-p_i^2)^{1-x_i}$$

$$P(Y|A) = \prod_{i=1}^{256} p_i^{3x_i} (1-p_i^3)^{1-x_i}$$

$$P(Y|A) = \prod_{i=1}^{256} p_i^{3x_i} (1-p_i^3)^{1-x_i}$$

& P(YIA) > IP(YII) Alors your de tope A