

Dozent

- Jörg Hettel
- Professor an der Hochschule Kaiserslautern,
- Fachbereich Informatik und Mikrosystemtechnik,
- Seit über 10 Jahren Vorlesungen zu den Themen:
 - Quanteninformation,
 - Quantencomputing.

Informatik und Mikrosystemtechnik Zweibrücken

Quantenkryptographie

Agenda Gesamtkursprogramm

Grundlagen des Quantencomputing, 1-3

Prof. Dr. Bettina Just, THM

Quantenkryptographie 1-3

Prof. Dr. Jörg Hettel, HS Kaiserslautern

Quantenalgorithmen und Implementierung 1-3

Prof. Dr. Gerhard Hellstern, DHBW Ravensburg

Quantenkryptographie

Prof. Dr. Jörg Hettel Hochschule Kaiserslautern

Chart 3

Sichere Kommunikation durch Anwendung kryptographischer Methoden.

 Quantencomputer können die heute verwendeten asymmetrischen Systeme brechen.

Quantenkryptographie

Lösungsmöglichkeiten

- Zwei Lösungsvarianten:
 - Einsatz von Post-Quantum-Kryptographie.
 - Algorithmen sind nach wie vor "berechnungssicher".
 - Kein echter Sicherheitsbeweis vorhanden. Beruhen bis jetzt auf (noch) nicht-beweisbaren Annahmen.
 - Einsatz von Quanten Key Distribution (QKD).
 - Realisiert einen "sicheren" Schlüsseltausch.
 - Sicherheit basiert auf der Detektion eines Lauschers.
 - Sicherheitsbeweise existieren unter bestimmten Annahmen.

Quantenkryptographie

Quanten Key Distribution

- Zwei Varianten:
 - □ Prepare-and-Measure-Protokolle, wie das BB84 (Kurs 1).
 - Entanglement-basierte Protokolle.
- Legen den Schwerpunkt auf die Verschränkung (Entanglement)!
- Phänomenologische Beschreibung steht im Mittelpunkt.
 - Darstellung nicht immer exakt.
 - Es wird dieses Mal mehr gerechnet.
 - Zeige auch (Rechen-) Beispiele mit Qiskit.
 - Das ist keine Qiskit-Einführung

Quantenkryptographie

Agenda

- 1. Einführung
- 2. Wiederholung BB84
- 3. Qubits und Messbasen
- 4. Zusammengesetzte Systeme
- 5. Verschränkung
- 6. Anwendung von Verschränkung
- 7. Shared Randomness
- 8. Schmidt-Darstellung
- 9. Dichtematrizen
- 10. Partielle Spur

- 11. Verschränkungsmaß
- 12. Entropie und Monogamie
- 13. Entanglement Swapping
- 14. Entanglement Distillation
- 15. CHSH-Ungleichung (klassisch)
- 16. CHSH-Ungleichung (Quantenversion)
- 17. CHSH-Ungleichung (Simulation)
- 18. Ekert-Protokoll
- 19. Sicherheit und DIQKD
- 20. Zusammenfassung

Quantenkryptographie

