Introduction to Data Science (IDS) course

Instruction of Clustering and Frequent Item sets

Instruction 7

	Math	Physics
1	2	20
2	3	4
3	7	3
4	4	7
5	6	2
6	6	4
7	3	8
8	7	4
9	20	19

The following dataset shows the scores of two courses for nine students. We implement both k-means and k-medoids algorithms on this dataset and compare the results with each other.

Steps of K-means algorithm:

- (1) Randomly choose k examples from the dataset as initial centroids.
- (2) All the data points that are most similar to a centroid will create a cluster.
- (3) Now, we have new clusters which need centers. The new value of the centroid is going to be the mean of all the examples in a cluster.
- (4) We'll keep repeating steps 2 and 3 until the centroids stop moving.

(1) Points 2 and 8 are initial centroids. (3,4) and (7,4)

	Math	Physics
1	2	20
2	3	4
3	7	3
4	4	7
5	6	2
6	6	4
7	3	8
8	7	4
9	8	5
10	20	19

(2) All the data points that are most similar to a centroid will create a cluster.(Use

Euclidean distance)

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

	Math	Physics	Distance from C1	Distance from C2
1	2	20	16	16.76
2	3	4	0	
3	7	3	4.12	1
4	4	7	3.16	4.24
5	6	2	3.6	2.23
6	6	4	3	1
7	3	8	4	5.65
8	7	4		0
9	8	5	5.09	1.41
10	20	19	22	19.84

(3) Now, we have new clusters, which need centers. The new value of a centroid is going to be the mean of all the examples in a cluster.

New centers: (3, 9.75) (9, 6.16)

	Math	Physics	Distance from C1	Distance from C2
1	2	20	16	16.76
2	3	4	0	
3	7	3	4.12	1
4	4	7	3.16	4.24
5	6	2	3.6	2.23
6	6	4	3	1
7	3	8	4	5.65
8	7	4		0
9	8	5	5.09	1.41
10	20	19	22	19.84

	Math	Physics	Distance from C1	Distance from C2
1	2	20	16	16.76
2	3	4	0	
3	7	3	4.12	1
4	4	7	3.16	4.24
5	6	2	3.6	2.23
6	6	4	3	1
7	3	8	4	5.65
8	7	4		0
9	8	5	5.09	1.41
10	20	19	22	19.84

(2) All the data points that are most similar to a centroid will create a cluster.(Use

Euclidean distance)

	Math	Physics	Distance from C1	Distance from C2
1	2	20	10.29	15.5
2	3	4	5.75	6.37
3	7	3	7.84	3.73
4	4	7	2.92	5.06
5	6	2	8.31	5.12
6	6	4	6.48	3.69
7	3	8	1.75	6.27
8	7	4	7	2.94
9	8	5	6.89	1.52
10	20	19	20.11	17.15

(4) We'll keep repeating step 2 and 3 until the centroids stop moving.

No change in clusters occurred!
We have final clusters.

Some weaknesses of k-means algorithm

- Number of clusters needs to be decided beforehand.
- It is sensitive to outliers.
- It can only discover spherical clusters (compare to density-based methods).

(1) Choose randomly two medoids.

	Math	Physics
1	2	20
2	3	4
3	7	3
4	4	7
5	6	2
6	6	4
7	3	8
8	7	4
9	8	5
10	20	19

(2) Assign each object to the closet representative object. Use Manhattan metric.

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

	Math	Physics	Distance from C1	Distance from C2
1	2	20	17	21
2	3	4	0	
3	7	3	5	1
4	4	7	4	6
5	6	2	5	3
6	6	4	3	1
7	3	8	4	8
8	7	4		0
9	8	5	6	2
10	20	19	32	28

(2) Assign each object to the closet representative object. Use Manhattan metric.

d(i, j) =	$ x_{i1} - x_{i1} $	$ + x_{i2}$	$-x_{i2} +\cdots$	$\cdots + x_{ip} - x $	c_{iD}
(1)	1 11	1 12	121	1 12 1	JPT

	Math	Physics	Distance from C1	Distance from C2
1	2	20	17	21
2	3	4	0	
3	7	3	5	1
4	4	7	4	6
5	6	2	5	3
6	6	4	3	1
7	3	8	4	8
8	7	4		0
9	8	5	6	2
10	20	19	32	28

(2) Assign each object to the closet representative object. Use Manhattan metric.

Calculate the cost: The dissimilarity of each non-medoid point with the medoids is calculated:

cost: 17+4+4+1+3+1+2+28=60

(3)For each representative object, randomly select a non representative object O random

- □ Choose a random object O1 (2,20).
- Swap O8 and O1.
- Calculate the cost again.

(4) Assign each object to the closet representative object. Use Manhattan metric.

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

	Math	Physics	Distance from C1	Distance from C2
1	2	20		0
2	3	4	0	
3	7	3	5	22
4	4	7	4	15
5	6	2	5	22
6	6	4	3	20
7	3	8	4	13
8	7	4	4	21
9	8	5	6	21
10	20	19	32	19

(4) Assign each object to the closet representative object. Use Manhattan metric.

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

Cost:

5+4+5+3+4+4+6+19=50

	Math	Physics	Distance from C1	Distance from C2
1	2	20		0
2	3	4	0	
3	7	3	5	22
4	4	7	4	15
5	6	2	5	22
6	6	4	3	20
7	3	8	4	13
8	7	4	4	21
9	8	5	6	21
10	20	19	32	19

(4) Assign each object to the closet representative object. Use Manhattan metric.

If new cost is less than previous cost replace the representative object with o random.

50<60 It is good to replace O8 and O3.

- (6) we try other non-medoids points to get minimum distance...
- (7) Back to step 1, until no change.

Comparison of k-means and k-medoids

- K-medoids is more robust to noise and outliers but:
- □ The complexity of each iteration is high: O(k(n-k)^2)
 (k: number of representative objects, n: total number of objects)

Frequent Itemsets

Basic ideas of Apriori algorithm

 Apriori rule: All the non-empty sub-itemsets of frequent itemsets must be frequent.

TID	Items
1	Sugar, fruit, water
2	bread, fruit, juice
3	Sugar, bread, fruit, juice
4	Bread, juice
5	Sugar, fruit, juice

Min- Count=

Itemset	Count
sugar	3
bread	3
juice	4
fruit	4
water	1

L1 Itemset Count
sugar 3
bread 3
juice 4
fruit 4

Min- C2
support
count=
2

Itemset	Count
{sugar, bread}	1
{sugar, juice}	2
{sugar, fruit}	3
{bread, juice}	3
{bread, fruit}	2
{juice, fruit}	3

L2

Itemset	Count
{sugar, juice}	2
{sugar, fruit}	3
{bread, juice}	3
{bread, fruit}	2
{juice, fruit}	3

Min- C3
support
count=

If an itemset is frequent, each subset of that should be frequent

Itemset	In L2
{sugar, juice, fruit} {sugar, juice},{juice, fruit},{sugar, fruit}	Yes
{sugar, juice, bread} {sugar, juice},{sugar, bread},{juice, bread}	No
{sugar, fruit, bread} {sugar, fruit},{sugar, bread},{fruit, bread}	No
{bread, fruit, juice} {bread, fruit},{fruit, juice},{bread, juice}	Yes

C3

Itemset	Support
{sugar, juice, fruit}	2
{bread, fruit, juice}	2

Minsupport
count=
2

L3

Itemset	Support
{sugar, juice, fruit}	2
{bread, fruit, juice}	2

For making L4, look at the first dataset.

C4

Itemset	In L4
<pre>{sugar, juice, fruit, bread} {sugar, juice, fruit},{sugar, juice, bread},{fruit, juice, bread}</pre>	No

- ✓ The Apriori algorithm takes the advantage of the fact that any subset of a frequent item set should also be frequent.
- ✓ All infrequent itemsets can be pruned if it has an infrequent subset.

