Rivestimenti ramificati

Definizione

Un *rivestimento ramificato* fra due superfici (chiuse, connesse e orientabili) $\widetilde{\Sigma}$ e Σ è una funzione continua

$$f:\widetilde{\Sigma}\longrightarrow \Sigma$$

che localmente si comporta come

$$\mathbb{C} \longrightarrow \mathbb{C}$$
$$\xi \longmapsto \xi^k.$$

- Il grado locale $k = k(\widetilde{x})$ dipende da $\widetilde{x} \in \widetilde{\Sigma}$, ed è uguale a 1 per quasi tutti i punti.
- Un punto $x \in \Sigma$ è di ramificazione se $k(\widetilde{x}) > 1$ per un qualche $\widetilde{x} \in f^{-1}(x)$.

Rivestimenti ramificati

Grado del rivestimento

Posto

- $\Sigma^{\bullet} = \Sigma \setminus \{\text{punti di ramificazione}\},\$
- $\widetilde{\Sigma}^{\bullet} = f^{-1}(\Sigma^{\bullet}),$

la restrizione $f^{\bullet} \colon \widetilde{\Sigma}^{\bullet} \to \Sigma^{\bullet}$ è un rivestimento di grado $d \ge 1$.

$$k(\widetilde{x}_1) + \ldots + k(\widetilde{x}_r) = d$$

Per ogni
$$x\in \Sigma$$
 vale
$$k(\widetilde{x}_1)+\ldots+k(\widetilde{x}_r)=d,$$
 dove $\{\widetilde{x}_1,\ldots,\widetilde{x}_r\}=f^{-1}(x).$

Possiamo associare a x la partizione di d

$$\pi(x) = [k(\widetilde{x}_1), \ldots, k(\widetilde{x}_r)].$$

Picture

Le informazioni combinatorie di f sono contenute nel dato di ramificazione

$$\mathcal{D}(f) = (\widetilde{\Sigma}, \Sigma; d; \pi(x_1), \dots, \pi(x_n)),$$

dove x_1, \ldots, x_n sono i punti di ramificazione.

Formula di Riemann-Hurwitz

Se $\mathcal{D}(f)=(\widetilde{\Sigma},\Sigma;d;\pi_1,\ldots,\pi_n)$ è un dato di ramificazione, allora $d\cdot\chi(\Sigma)-\chi(\widetilde{\Sigma})=d\cdot n-\ell(\pi_1)-\ldots-\ell(\pi_n). \tag{RF}$

$$d \cdot \chi(\Sigma) - \chi(\widetilde{\Sigma}) = d \cdot n - \ell(\pi_1) - \ldots - \ell(\pi_n).$$
 (RH)

• Una tupla $\mathcal{D} = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ che soddisfa la formula di Riemann-Hurwitz si dice dato compatibile.

Rivestimenti ramificati

Problema di esistenza di Hurwitz

- Un dato compatibile $\mathcal{D}=(\widetilde{\Sigma},\Sigma;d;\pi_1,\ldots,\pi_n)$ si dice *realizzabile* se è il dato di ramificazione di un qualche rivestimento ramificato $f:\widetilde{\Sigma}\to\Sigma$, *eccezionale* altrimenti.
- La formula di Riemann-Hurwitz è condizione necessaria, ma non sufficiente per la realizzabilità.

Ad esempio, il dato $\mathcal{D} = (\mathbb{S}, \mathbb{S}; 4; [2, 2], [2, 2], [3, 1])$ soddisfa

ma è eccezionale.

Problema di esistenza di Hurwitz

Quali dati compatibili sono realizzabili?

- Approcci generali: monodromia e dessins d'enfant.
- Soluzione completa nel caso $\ell(\pi_n) = 2$.

Monodromia

Gruppo fondamentale e monodromia del rivestimento

Sia Σ_g la somma connessa di $g \geq 0$ tori. Se

$$\Sigma_g^{\bullet} = \Sigma_g \setminus \{x_1, \ldots, x_n\},\,$$

il gruppo fondamentale di Σ_g^{ullet} ammette la presentazione

$$\pi_1(\Sigma_g^{\bullet}) = \langle a_1, \dots, a_n, b_1, \dots, b_g, c_1, \dots, c_g \mid [b_1, c_1] \cdots [b_g, c_g] \cdot a_1 \cdots a_n \rangle.$$

- Se $f: \widetilde{\Sigma} \to \Sigma_g$ è un rivestimento ramificato, $\pi_1(\Sigma_g^{\bullet}, x_0)$ agisce sulla fibra $f^{-1}(x_0)$ (monodromia del rivestimento $f^{\bullet}: \widetilde{\Sigma}^{\bullet} \to \Sigma_g^{\bullet}$).
- Questa azione induce un morfismo di gruppi

$$\mathfrak{m} \colon \pi_1(\Sigma_g^{\bullet}) \longrightarrow \mathfrak{S}(f^{-1}(x_0))^{\mathsf{op}} \simeq \mathfrak{S}_d.$$

Description Le lunghezze dei cicli di $\mathfrak{m}(a_i)$ corrispondono agli elementi di $\pi(x_i)$.

Un dato $\mathcal{D} = (\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \dots, \pi_n)$ è realizzabile se e solo se esistono permutazioni $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_g, \gamma_1, \dots, \gamma_g \in \mathfrak{S}_d$ tali che:

- $[\alpha_i] = \pi_i$ per ogni $1 \le i \le n$;
- $(\beta_1, \gamma_1) \cdots [\beta_g, \gamma_g] \cdot \alpha_1 \cdots \alpha_n = 1;$
- $(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_g,\gamma_1,\ldots,\gamma_g)$ agisce transitivamente su $\{1,\ldots,d\}$.

Esempio. Il dato $\mathcal{D}=(\mathbb{S},\mathbb{S};4;[2,2],[2,2],[1,3])$ è eccezionale. Se non lo fosse, avremmo $\alpha_1,\alpha_2,\alpha_3\in\mathfrak{S}_4$ tali che:

- $[\alpha_1] = [\alpha_2] = [2, 2] e [\alpha_3] = [1, 3];$
- $\alpha_1 \alpha_2 \alpha_3 = 1.$

Ma le permutazioni di tipo [2,2] generano un sottogruppo di ordine 4, che non contiene α_3 .