Mechatronics Systems Design
Laboratory
ECE 491

Igor Paprotny

Upcoming Checkout

- This week:
 - DC DC Converter Lab 6
- Next week:
 - DC DC Converter Lab 6

Quiz 2 (2/28/2017)

- 30 min at start of class
- Topics:
 - DC-DC converter
 - OP-Amps
 - Encoders (incl. today)

•		

PCB Board 1

- Designs to John by Wednesday 3/8/2017
 - Noon
- Use template provided for you
- Shall contain:
 - power supply (DC-DC)
 - Remember disconnect switch
 - Motor controllers

Midterm (3/14/2017)

- Open Book/Open Notes
- Topics:
 - Motors
 - Motor controllers
 - FET review
 - DC-DC converter
 - OP-Amps review
 - Encoders (incl. today)

Review: Power Supply for Autonomous Car Dattery 7.2 V Power Supply Power Supply Power Supply Sensor Schematic of the required power supply for the sub-systems

ī .		

Power Supply 1: Linear Voltage Regulator

- Reduces the supply voltage to a stable value set value Output voltage less than input voltage A variable (controlled) resistor
- Key parameters
- Key parameters
 Output voltage (e.g. 5 V)
 Input voltage range
 Output current
 Dropout

 E.g.: LM2940CT-5.0/NOPB

 - 5 Vout 0V to 26V input 1 A max output 500mV Dropout

Power Supply II: Boost Converter

- Used to boost the input voltage
- Uses a storage inductor as the storage element for the boost stage

Sensors - An Introduction

- Obtains the information about the environment
- Provides transduction between the physical (mechanical) and electrical domains
 - Transduction: Conversion of energy between energy domains

Review - Operational Amplifiers

- Operational Amplifiers (OpAmps) are commonly used to amplify (precondition) sensing signal for input to a microcontrollers
- OpAmps are analyzed as ideal

- High input impedance (i+ ≈ 0, i- ≈ 0)
 Low output impedance
 Infinite gain (A is very large)

Review - Operational Amplifiers

Two main configurations:

Non-inverting Amplifier

Optical Rotary Encoders and Velocity Sensing

- Velocity sensing is necessary for a car to reach a set velocity

 - Recall T ≈ I_m
 To reach the desired velocity, the car has to accelerate, i.e. increase I_m
 Once desired velocity is reach the car has to accelerate, i.e. ocunteract friction and drag
 - $-\ \ I_{\rm m}$ must be larger to maintain same velocity if traversing an incline
- Velocity = distance / time
- Assuming a no-slip condition:
- Resulting velocity:

Optical Rotary Encoders and Velocity Sensing

- Optical Rotary Encoders:

 - Non-contact way to measure rotation/angular velocity
 Can be purchased enclosed, or can be build onto the car wheel base

Optical Rotary Encoders and Velocity Sensing

- - Two ways to measure velocity:

 1. Count number of transitions (edges) within a fixed amount of time.

 2. Measure time between two transitions, i.e. the width of pulse or valley.
- Depends on the number of transitions v.s. sampling rate

Optical Rotary Encoders and Velocity Sensing

• Count number of edges in a fixed amount of time:

Optical Rotary Encoders and Velocity Sensing

Measure time between transitions:

Velocity Sensing – Alternative **Approaches**

- Optical encoder is just one way to measure velocity
- Other approaches include:

 Back EMF from the motors

 Other types of proximity sensors to mark a revolution of the wheel

 Good example is Hall-effect sensors

Summary: Optical Rotary Encoders and **Velocity Sensing**

- Non-contact way of measuring rotation, can be integrated on the wheel
- Assuming no-slip conditions, wheel rotation corresponds to distance traveled
- An optical rotary encoder wheel can be used to measure rotation
- Two approaches:
 - Measure time between transitions
 Count number of transitions within a time interval
- Which approach to chose depends on: velocity, sampling time, allowable error
- Other approaches, such as sensing back EMF or hall effect (magnetic) sensing can be used to estimate the velocity

Optical Line Camera and Line Following

- A vision system is a key component in any autonomously driving car
 Optical camera projects an image onto a surface composed of light sensitive
- Charge Coupled Device (CCD) image sensor:
 - An array of light sensitive pixels fabricated on a silicon chip, used to detect projects
 2D array an essential component in many digital cameras

- Sophisticated image reconstruction algorithms usually need
- Line or edge following can be constructed using a 1D CCD array, and a simplified algorithm.

Optical Line Camera and Line Following 1D CCD array (line) Lens to focus the image across the CCD array Within the image plane Image still projected on a plane Only one line of image detected

Optical Line Camera and Line Following Is (image elements) as array of 1's and 0's {1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1}

Optical Line Camera and Line Following

- Recommended line camera: TAOS TSL1401CL
 128 x 1 linear optical sensor array
 3 5 V V_{og} power supply

Optical Line Camera and Line Following

$$AO = V_{out} = V_{drk} + R_e \cdot E_e \cdot t_{int}$$

- The pixels are serially read
- SI marks the start of the readout sequence
- Each clock pulse marks the transition to a new pixel, accessible through AO
- During reading, pixels are in parallel exposed
- Exposure time (integration time):

$$t_{\rm int} = (129 - 18) \cdot t_{CLK} + t_{qt}$$

Optical Line Camera and Line Following ---1

Exposure Adjustment

5 KHz < f_{clock} < 8 MHz

- $AO = V_{out} = V_{drk} + R_e \cdot E_e \cdot t_{int}$ Recap sensor functionality: $t_{\text{int}} = (129 - 18) \cdot t_{CLK} + t_{qt}$
- Note exposure time is proportional to t_{int}
- Can adjust exposure by adjusting the integration time!
 - Lower CLK frequency (readout) in low-light conditions
 Higher CLK frequency (readout) in high-light conditions
- Potential problem
 - Slow down control loop
- CLK exceeds the ADC frequency
- Solution:

 - Two cycles, 1) exposure and 2) readout.
 Fast sequence expose only, ignore readout on AO
 Slow sequence readout only, read stored data in cycle 1)

Exposure Adjustment Exposure should be adjusted to maximize dynamic range Can be done online during line following Can be done during the control loop

Summary: Optical Line Camera and Line Following

- A 2D light-sensitive pixel array is used in cameras for image capture
- A 1D pixel array (line) can be used for line detection line camera
- Can be used for optical line following
 - Focus sensor on the line
- Thresholding can be used to determine the center of the line
- Line camera provided with the kit uses TAOS TSL1401CL sensor

 - 128 pixels
 Variable integration (exposure) time
 - Sequential (serial) output via AO, controlled through CLK and SI
- Exposure can be varied to accommodate changes in lighting conditions
 Changing the CLK frequency

 - Can be done dynamically to account for changes in light conditions

Module Outline

- Introduction to Feedback Control
- Nonholonomic Modeling of an Autonomous Car

 - Velocity controlSteering
- Summary and Conclusion

Introduction to Feedback Control

- Microcontroller provides control signals to the actuators
- Control System:
 - Describes the interaction between the microcontroller and the environment to perform some useful task

- A control system where interaction only is one way, is called open-loop control

Introduction to Feedback Control

- Microcontroller provides control signals to the actuators
 Control System:

- A control system where interaction only is two way, is called closed-loop control
 Most control systems are closed-loop

Introduction to Feedback Control

- Control System:
 System that describes the control algorithm and the interaction with the environment
- Control System Diagram:
 - Symbolic description of the control system

