Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao February 10, 2023

What we have seen last time

- Higher Diophantine equations
- Modular world
 - congruence and modulus
 - modular arithmetic

Today's topics

- Modular arithmetic
 - Division in \mathbb{Z}/m
- Modular dynamic
 - Additive dynamic
 - Multiplicative dynamic
 - Euler's totient φ
 - Euler-Fermat theorem

Modular Arithmetic

Modular Arithmetic

Question (Linear congruent equation)

Find integer $x \in \mathbb{Z}$ such that

$$ax \equiv b \pmod{m}$$
.

Equivalently, find congruence class $X \in \mathbb{Z}/m$ such that

$$[a]_{m} \cdot X = [b]_{m}.$$

Theorem 13.1 (Cancelling)

If a is invertible modulo m, then

$$a \cdot x \equiv a \cdot y \pmod{m} \Longrightarrow x \equiv y \pmod{m}$$
.

$$3 \cdot 3 \equiv 3 \cdot 0 \mod 9$$

$$3 \not\equiv 0 \mod 9$$

$$3 \not\equiv 0 \mod 9$$

Modular Arithmetic

Example 13.2

Solve: $15 \cdot x \equiv 4 \pmod{37}$.

1. Verify if 15 is coprime to 37. i.e. invertibe mod 37

$$37 = 2 \cdot 15 + 7$$
 $1 = 15 - 2 \cdot 7$
 $15 = 2 \cdot 7 + 1$ $= 15 - 2 \cdot (37 - 2 \cdot 15)$
 $7 = 7 \cdot 1 + 0$ $= 5 \cdot 15 - 2 \cdot 37$.

- 2. Find a multiplicative inverse of 15 modulo 37.
- 3. Cancelling: = mult with its inverse

$$15 \cdot x \equiv 4 \pmod{37} \Longrightarrow x \equiv 5 \cdot 4 \equiv 20 \pmod{37}$$
.

Definition 13.3A dynamic on a set X means to keep track of elements under a function $f: X \rightarrow X$:

$$X \xrightarrow{f} X \xrightarrow{f} X \xrightarrow{f} \cdots$$

Example 13.4 (Collatz conjecture) Consider the set $X = \mathbb{N}$ and the function

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ 3n+1 & \text{if } n \text{ is odd.} \end{cases}$$

It is conjectured that the dynamic of any $n \in \mathbb{N}$ under f eventually falls in repeating cycle $4 \rightarrow 2 \rightarrow 1 \rightarrow 4$.

Definition 13.5

An *additive modular dynamic* is a dynamic given by

$$+a \pmod{m}$$
: $\mathbb{Z}/m \longrightarrow \mathbb{Z}/m$
 $\overline{x} \longmapsto \overline{x+a}$

Theorem 13.6

Let m be a modulus and a be an integer. Then the dynamic of $+a \pmod{m}$ consists of gcd(a, m) circles of the same length.

Proof. First note that the function $+a \pmod{m}$ is invertible. Hence, in this dynamic, any node must have exactly one input and one output. Therefore, the dynamic only consists of circles and lines. But the entire set \mathbb{Z}/m is finite. Hence, the dynamic cannot contain any lines. It remains to show each circle has the same length.

Proof. Let's look at the circle containing \overline{b} (for any $b \in \mathbb{Z}$):

$$\overline{b} \longmapsto \overline{b+a} \longmapsto \overline{b+2a} \longmapsto \cdots \longmapsto \overline{b+\ell a} = \overline{b} \longmapsto \cdots$$

Here ℓ is the length of the circle.

The identity $\overline{b} + \ell a = \overline{b}$ means $m \mid \ell a$. On the other hand, for any $0 < k < \ell$, we must have $m \nmid ka$, otherwise the length of the circle will be at most k. Therefore, ℓa is the smallest common multiple of a and m, hence lcm(a, m).

Since we start with an arbitrary $b \in \mathbb{Z}$, all circles have the same length. Then the number of circles is $m / \frac{\text{lcm}(a,m)}{a} = \gcd(a,m)$.

Definition 13.7

An *multiplicative modular dynamic* is a dynamic given by

$$\begin{array}{c}
\cdot a \pmod{m} \\
\overline{x} \longmapsto \overline{x} \cdot \overline{a}
\end{array}$$

$$m = 14$$
 $\alpha = 6$

Note that condom is not invertible (this corresponds to the fact that condom may be unsolvable). Hence, the dynamic could be complicated.

Definition 13.8

Let m be a modulus. We will use $\Phi(m)$ to denote the set of natural representatives of *units* in \mathbb{Z}/m . The **Euler totient function** $\varphi(m)$ counts its elements.

- Recall that a is invertible modulo m if and only if a is coprime to m (Theorem 12.18).
- The bijection $\mathbb{Z}/m \to \{0, 1, \dots, m-1\}$ allows us to identify $\Phi(m)$ with the set $(\mathbb{Z}/m)^{\times}$ of units in \mathbb{Z}/m . Moreover, we may translate the monoid structure $((\mathbb{Z}/m)^{\times}, \cdot, \mathbf{1})$ to the set $\Phi(m)$. In this way, we obtain an operation on $\Phi(m)$:

 $(a,b) \in \Phi(m) \times \Phi(m) \longrightarrow$ natural representative of ab modulo m.

We will denote this operation as $ab \pmod{m}$.

Theorem 13.9

A modulus m is a prime number if and only if $\varphi(m) = m - 1$.

Proof. If m is a prime number, then any positive integer larger than 1 can either be a multiple of m, or coprime to m since m has no proper divisor other than 1. Hence, all members of $\{1, \dots, m-1\}$ are in $\Phi(m)$ since they are less than m.

Conversely, suppose $\varphi(m) = m - 1$. Since 0 is never coprime to m, all other natural representatives must be in $\Phi(m)$. But this implies that there is no positive integer between 1 and m can divide m. Namely, m is a prime number.

Hence, it is more reasonable to consider the following:

Definition 13.10

An multiplicative modular dynamic (on $\Phi(m)$) is a dynamic given by

Theorem 13.11

Let m be a modulus and a be an integer coprime to m. Then the dynamic of $a \pmod{m}$ on $\Phi(m)$ consists of circles of the same length.

Proof. First note that the function $a \pmod{m}$ is invertible. Hence, in this dynamic, any node must have exactly one input and one output. Therefore, the dynamic only consists of circles and lines. But the entire set $\Phi(m)$ is finite. Hence, the dynamic cannot contain any lines. It remains to show each circle has the same length.

Proof. We start with the circle $(a^i)_i$ and let ℓ be its length.

For any $b \in \Phi(m)$, we claim that the circle $(ba^i \pmod m)_i$ has the same length ℓ . Indeed, since $a^{\ell} \equiv 1 \pmod m$, we have $b \rightarrow ba \rightarrow ba^2 \rightarrow \cdots$

$$ba^{\ell} \equiv b \pmod{m}$$
.

Hence, the length k must be at most ℓ .

k
$$\leq$$
 l $b \rightarrow ba^2 \rightarrow ba^2 \rightarrow ba^k \equiv b$

But whenever we have $ba^k \equiv b \pmod{m}$, we must have

$$a^k \equiv 1 \pmod{m}$$

$$b \in \mathcal{L}(m)$$

due to the cancelling property of $b \in \Phi(m)$. Therefore, k cannot be less than ℓ .

Definition 13.12

We will use $\ell_m(a)$ to denote the length of each circle contained in the dynamic of $a \pmod{m}$ on $a \pmod{m}$.

Then theorem 13.11 tells us $\ell_{\mathbf{m}}(\mathbf{a}) \mid \varphi(\mathbf{m})$.

$$\mathcal{L}_{4}(9) = 3$$

Definition 13.12

We will use $\ell_m(a)$ to denote the length of each circle contained in the dynamic of $a \pmod m$ on $a \pmod m$.

Then theorem 13.11 tells us $\ell_m(a) \mid \varphi(m)$.

Let's say $\varphi(\mathbf{m}) = \mathbf{k} \cdot \ell_{\mathbf{m}}(\mathbf{a})$. Then we have

$$\mathbf{a}^{\varphi(\mathbf{m})} = (\mathbf{a}^{\ell_{\mathbf{m}}(\mathbf{a})})^k \equiv \mathbf{1}^k = \mathbf{1} \pmod{\mathbf{m}}.$$

We thus proved:

Theorem 13.13 (Euler-Fermat)

Let m be a modulus and $a \in \Phi(m)$. Then

$$\mathbf{a}^{\varphi(\mathbf{m})} \equiv 1 \pmod{\mathbf{m}}.$$

Example 13.14

Let 9 be the modulus. Then $\Phi(9) = \{1, 2, 4, 5, 7, 8\}$. Hence, $\varphi(9) = 6$.

- We have $2^{2023} \equiv 2 \pmod{9}$ since $2023 \equiv 1 \pmod{6}$.
- Note that $3^6 \equiv (3^2)^3 = 0 \pmod{9}$.

Corollary 13.15 (Fermat's little theorem)

If p is a prime number, then for any integer a,

$$a^p \equiv a \pmod{p}$$
.

Proof. When $p \mid a$, this is clear. When $p \nmid a$, the congruence follows from theorems 13.9 and 13.13

then α is capille to ρ

$$Q(p) = | p - 1$$

After Class Work

Exercise 13.1

- 1. Compute the length of the cycles in the dynamics of $xa \pmod 8$ for every $a \in \Phi(8)$. Compare the length with $\varphi(8)$.
- 2. Compute the length of the cycles in the dynamics of $xa \pmod{14}$ for every $a \in \Phi(14)$. Compare their length with $\varphi(14)$.
- 3. Compute the natural representative of 3^{10¹⁰ modulo 8 and 14 respectively.}

Terminology

Terminology

Let $(R, +, 0, \cdot, 1)$ be a (commutative) ring. Then the set R^{\times} of units in $(R, \cdot, 1)$ inherits the monoid structure of $(R, \cdot, 1)$. Moreover, $(R^{\times}, \cdot, 1)$ is a group, called the *unit group* in the ring $(R, +, 0, \cdot, 1)$.

Example 13.16

 $((\mathbb{Z}/m)^{\times}, \cdot, \mathbf{1})$ is the unit group in the residue ring $(\mathbb{Z}/m, +, \mathbf{0}, \cdot, \mathbf{1})$.