Geometria B - Prova intermedia

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2018/2019 11 gennaio 2019

Lo studente svolga i seguenti tre esercizi. **Ogni risposta deve essere adeguatamente motivata**. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Esercizio 1. Sia \mathbb{R} la retta reale, sia $\mathcal{P}(\mathbb{R})$ l'insieme delle parti di \mathbb{R} e sia τ la famiglia di sottoinsiemi di \mathbb{R} definita ponendo:

$$\tau := \{ A \in \mathcal{P}(\mathbb{R}) \mid 0 \notin A \} \cup \{ A \in \mathcal{P}(\mathbb{R}) \mid 0 \in A, \mathbb{R} \setminus A \text{ è finito} \}.$$

- (1a) Si dimostri che τ è una topologia su \mathbb{R} .
- (1b) Si dica se la funzione $f:(\mathbb{R},\tau) \longrightarrow (\mathbb{R},\tau)$ definita ponendo $f(x):=\cos(x)$ è continua.
- (1c) Si dimostri che (\mathbb{R}, τ) è totalmente sconnesso, cioè che la componente connessa di ogni punto x di (\mathbb{R}, τ) è uguale a $\{x\}$.
- (1d) Si dica se il sottoinsieme [0,1) di (\mathbb{R},τ) è compatto.
- (1e) Sia (\mathbb{R}^2, η) il prodotto topologico di (\mathbb{R}, τ) con se stesso e sia J il segmento $[1, 2] \times \{0\}$ di \mathbb{R}^2 . Si calcoli la chiusura di J in (\mathbb{R}^2, η) .

SOLUZIONE. (1a) $\emptyset \in \tau$ in quanto $0 \notin \emptyset$ e $\mathbb{R} \in \tau$ in quanto $0 \in \mathbb{R}$ e $\mathbb{R} \setminus \mathbb{R} = \emptyset$ è finito. Sia $\{A_i\}_{i \in I} \subset \tau$ una famiglia nonvuota di sottoinsiemi di \mathbb{R} appartenenti a τ . Se $0 \notin A_i$ per ogni $i \in I$ allora $0 \notin \bigcup_{i \in I} A_i$ e quindi $\bigcup_{i \in I} A_i \in \tau$. Se $0 \in A_j$ per qualche $j \in I$ allora $0 \in \bigcup_{i \in I} A_i$ e $\mathbb{R} \setminus \bigcup_{i \in I} A_i$ è finito in quanto $\mathbb{R} \setminus \bigcup_{i \in I} A_i \subset \mathbb{R} \setminus A_j$ è finito. Dunque anche in questo caso $\bigcup_{i \in I} A_i \in \tau$. Siano ora A_1 e A_2 due elementi di τ . Se $0 \in A_1 \cap A_2$ allora $\mathbb{R} \setminus A_1$ e $\mathbb{R} \setminus A_2$ sono finiti e quindi anche $\mathbb{R} \setminus (A_1 \cap A_2) = (\mathbb{R} \setminus A_1) \cup (\mathbb{R} \setminus A_2)$ lo è, e quindi $A_1 \cap A_2 \in \tau$. Se $0 \notin A_1 \cap A_2$ allora $A_1 \cap A_2 \in \tau$.

- (1b) f non è continua in quanto $\mathbb{R} \setminus \{0\} \in \tau$ ma $f^{-1}(\mathbb{R} \setminus \{0\}) = \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z}) \notin \tau$ (infatti $0 \in \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z})$ ma $\frac{\pi}{2} + \pi \mathbb{Z}$ è infinito).
- (1c) Sia $x \in \mathbb{R}$ e sia $\mathcal{C}(x)$ la sua componente connessa in (\mathbb{R}, τ) . Supponiamo per assurdo che $\mathcal{C}(x)$ contenga un punto $y \neq x$. Se x = 0 allora $y \neq 0$ e $\mathcal{C}(0) = (\mathcal{C}(0) \cap (\mathbb{R} \setminus \{y\})) \cup \{y\}$, dove $\mathbb{R} \setminus \{y\} \in \tau$ e $\{y\} \in \tau$. Poiché $\mathcal{C}(0) \cap (\mathbb{R} \setminus \{y\}) \neq \emptyset$ (contiene 0) e $\{y\} \neq \emptyset$, segue che $\mathcal{C}(0)$ non è connesso, da cui l'assurdo. Similmente, se $x \neq 0$ allora $\mathcal{C}(x) = (\mathcal{C}(x) \cap (\mathbb{R} \setminus \{x\})) \cup \{x\}$. Segue che $\mathcal{C}(x)$ non è connesso, da cui l'assurdo.
- (1d) Sia $\{A_i\}_{i\in I}$ un ricoprimento aperto di [0,1) in (\mathbb{R},τ) , ovvero $A_i\in\tau$ per ogni $i\in I$ e $[0,1)\subset\bigcup_{i\in I}A_i$. Esiste dunque $j\in I$ tale che $0\in A_j$. Poiché $A_j\in\tau$, $\mathbb{R}\setminus A_j$ è finito. In particolare è finita l'intersezione $F:=[0,1)\cap(\mathbb{R}\setminus A_j)$. Se $F=\emptyset$ allora $[0,1)\subset A_j$ e quindi $\{A_j\}$ è un sottoricoprimento finito di [0,1) estratto da $\{A_i\}_{i\in I}$. Se $F\neq\emptyset$ e x_1,\ldots,x_n sono tutti gli elementi di F allora per ogni $k\in\{1,\ldots,n\}$ esiste $i_k\in I$ tale che $x_k\in A_{i_k}$. Segue che $\{A_j\}\cup\bigcup_{k=1}^n\{A_{i_k}\}$ è un sottoricoprimento finito di [0,1) estratto da $\{A_i\}_{i\in I}$. Dunque [0,1) è compatto in (\mathbb{R},τ) .

(1e) Ricordiamo che la chiusura \overline{J} di J in (\mathbb{R}^2, η) coincide con $\overline{[1,2]} \times \overline{\{0\}}$, dove $\overline{[1,2]}$ e $\overline{\{0\}}$ indicano rispettivamente le chiusure di [1,2] e di $\{0\}$ in (\mathbb{R}, τ) . Poiché $\mathbb{R} \setminus \{0\} \in \tau$, si ha che $\{0\}$ è chiuso in (\mathbb{R}, τ) e quindi $\overline{\{0\}} = \{0\}$. Osserviamo inoltre che, se $x \in \mathbb{R} \setminus (\{0\} \cup [1,2])$, allora $\{x\} \in \tau \cap \mathcal{N}_{\tau}(x)$ e $\{x\} \cap [1,2] = \emptyset$, dunque x non è aderente a [1,2] in (\mathbb{R}, τ) . Sia ora $U \in \mathcal{N}_{\tau}(0)$ e sia $A \in \tau$ tale che $0 \in A \subset U$. Esiste dunque un sottoinsieme finito F di $\mathbb{R} \setminus \{0\}$ tale che $A = \mathbb{R} \setminus F$. Poiché [1,2] è infinito, segue che $A \cap [1,2] = [1,2] \setminus F \neq \emptyset$. In particolare $U \cap [1,2] \neq \emptyset$ e quindi 0 è aderente a [1,2] in (\mathbb{R},τ) . Abbiamo così dimostrato che $\overline{[1,2]} = \{0\} \cup [1,2]$. Dunque $\overline{J} = (\{0\} \cup [1,2]) \times \{0\} = \{(0,0)\} \cup J$.

Ecco un altro modo di risolvere il presente esercizio. Per ogni $x \in \mathbb{R}$, sia $\mathcal{V}(x)$ il sistema fondamentale di intorni di x in (\mathbb{R},τ) definito ponendo $\mathcal{V}(x) := \{A \in \tau \mid x \in A\}$. Segue che, per ogni $(x,y) \in \mathbb{R}^2$, la famiglia $\mathcal{V}^*(x,y) := \{U \times V \in \mathcal{P}(\mathbb{R}^2) \mid U \in \mathcal{V}(x), V \in \mathcal{V}(y)\}$ è un sistema fondamentale di intorni di (x,y) in (\mathbb{R}^2,η) . Sia $(x,y) \in \mathbb{R}^2 \setminus J$. Se $x \neq 0$ e $y \neq 0$, allora $\{(x,y)\} \in \mathcal{V}^*(x,y)$ e $\{(x,y)\} \cap J = \emptyset$, dunque (x,y) non è aderente a J in (\mathbb{R}^2,η) . Se $x \neq 0$ e quindi $x \notin \{0\} \cup [1,2]$ e y = 0, allora $\{x\} \times \mathbb{R} \in \mathcal{V}^*(x,y)$ e $\{(x\} \times \mathbb{R}) \cap J = \emptyset$, dunque (x,y) non è aderente a J in (\mathbb{R}^2,η) . Sia infine (x,y) = (0,0) e sia $U \times V \in \mathcal{V}^*(0,0)$. Allora esistono due sottoinsiemi finiti $F \in G$ di $\mathbb{R} \setminus \{0\}$ tali che $U = \mathbb{R} \setminus F$ e $V = \mathbb{R} \setminus G$. Si osservi che $U \times V \supset (\mathbb{R} \setminus F) \times \{0\}$. Poiché $(\mathbb{R} \setminus F) \cap [1,2] = [1,2] \setminus F \neq \emptyset$, segue che $(U \times V) \cap J \supset ([1,2] \setminus F) \times \{0\} \neq \emptyset$ e quindi (0,0) è aderente a J in (\mathbb{R}^2,η) . Abbiamo così dimostrato che la chiusura di J in (\mathbb{R}^2,η) è uguale a $\{(0,0)\} \cup J$.

Esercizio 2. Sia X l'intervallo [-1,1] della retta reale \mathbb{R} dotato della topologia indotta da quella euclidea di \mathbb{R} . Definiamo la relazione di equivalenza \mathcal{R} su X ponendo:

$$x \mathcal{R} y$$
 se e soltanto se $(|x| = |y| \text{ e } |x| < 1)$ oppure $(x = y \text{ e } |x| = 1)$.

Indichiamo con X/\mathfrak{R} lo spazio topologico quoziente di X modulo \mathfrak{R} e con $\pi: X \to X/\mathfrak{R}$ l'applicazione di passaggio al quoziente.

- (2a) Si dimostri che X/\Re è uno spazio topologico T_1 ma non T_2 .
- (2b) Si costruisca un sottoinsieme non vuoto e compatto di $X/_{\mathcal{R}}$ che non sia chiuso in $X/_{\mathcal{R}}$.

SOLUZIONE. (2a) Sia $x \in [-1, 1]$. Dobbiamo dimostrare che il singoletto $\{\pi(x)\}$ è chiuso in $X/_{\mathcal{R}}$. Poiché $\pi^{-1}(\pi(x))$ è uguale al chiuso $\{-x, x\}$ di [-1, 1] se $x \in [-1, 1] \setminus \{-1, 0, 1\}$ ed è uguale al chiuso $\{x\}$ di [-1, 1] se $x \in \{-1, 0, 1\}$, segue che $X/_{\mathcal{R}}$ è T_1 . Supponiamo per assurdo che $X/_{\mathcal{R}}$ sia anche T_2 . Siano $\alpha := \pi(-1)$ e $\beta := \pi(1)$ due punti (distinti) di $X/_{\mathcal{R}}$. Siano anche U un intorno aperto di α in $X/_{\mathcal{R}}$ e V un intorno aperto di β in $X/_{\mathcal{R}}$ tali che $U \cap V = \emptyset$. Segue che $\pi^{-1}(U)$ è un intorno aperto π -saturo di 1 in [-1,1] e $\pi^{-1}(U) \cap \pi^{-1}(V) = \emptyset$. Poiché $\pi^{-1}(U)$ e $\pi^{-1}(U)$ sono aperti in [-1,1], esiste $\varepsilon > 0$ tale che $[-1,-1+\varepsilon) \subset \pi^{-1}(U)$ e $(1-\varepsilon,1] \subset \pi^{-1}(V)$. D'altra parte gli insiemi $\pi^{-1}(U)$ e $\pi^{-1}(U)$ sono π -saturi e quindi $[-1,-1+\varepsilon) \cup (1-\varepsilon,1] \subset \pi^{-1}(U)$ e $(-1,-1+\varepsilon) \cup (1-\varepsilon,1] \subset \pi^{-1}(V)$. Segue che

$$(-1,-1+\varepsilon)\cup(1-\varepsilon,1)\subset\pi^{-1}(U)\cap\pi^{-1}(V)=\emptyset,$$

da cui l'assurdo.

(2b) Il sottoinsieme $\pi([0,1])$ di X/\Re è compatto in quanto immagine continua di un compatto, ma non è chiuso in X/\Re in quanto $\pi^{-1}(\pi([0,1])) = (-1,1]$ che non è chiuso in [-1,1] (-1 è aderente a (-1,1] ma non appartiene a (-1,1]).

NOTA. L'esistenza di un sottoinsieme compatto non chiuso di $X/_{\Re}$, come $\pi([0,1])$, implica che $X/_{\Re}$ non è T_2 (infatti, in uno spazio topologico T_2 , ogni sottoinsieme compatto è chiuso). Anche in questo modo si poteva dimostrare la seconda parte del precedente punto (2a).

Esercizio 3. Sia Y uno spazio topologico di Hausdorff e siano L e M due sottoinsiemi nonvuoti e compatti di Y tali che $L \cap M = \emptyset$. Si dimostri che esistono due aperti A e B di Y tali che $L \subset A$, $M \subset B$ e $A \cap B = \emptyset$.

SOLUZIONE. Per ogni $(x,y) \in L \times M$, si ha che $x \neq y$ e quindi, grazie alla condizione di Hausdorff, esistono due aperti $A_{x,y}$ e $B_{x,y}$ di Y tali che $x \in A_{x,y}$, $y \in B_{x,y}$ e $A_{x,y} \cap B_{x,y} = \emptyset$. Fissiamo $y \in M$. Poiché $\bigcup_{x \in L} A_{x,y} \supset L$ e L è compatto in Y, esiste un sottoinsieme finito L(y) di L tale che $A_y := \bigcup_{x \in L(y)} A_{x,y} \supset L$. Poniamo $B_y := \bigcap_{x \in L(y)} B_{x,y}$. Si osservi che B_y è un intorno aperto di y disgiunto dall'intorno aperto A_y di L. Infatti vale:

$$A_y \cap B_y = \bigcup_{x \in L(y)} (A_{x,y} \cap B_y) \subset \bigcup_{x \in L(y)} (A_{x,y} \cap B_{x,y}) = \emptyset.$$

Poiché $\bigcup_{y\in M} B_y \supset M$ e M è compatto in Y, esiste un sottoinsieme finito M' di M tale che $B:=\bigcup_{y\in M'} B_y\supset M$. Poniamo $A:=\bigcap_{y\in M'} A_y$. Si osservi che B è un intorno aperto di M disgiunto dall'intorno aperto A di L. Infatti vale:

$$A \cap B = \bigcup_{y \in M'} (A \cap B_y) \subset \bigcup_{y \in M'} (A_y \cap B_y) = \emptyset.$$