0.1 Multiplikasjon (Gonging)

Ganging med heltall: Innleidende definisjon

Når vi legger sammen like tall, kan vi bruke gange-symbolet \cdot for å skrive regnestykken våre kortere:

Eksempel

$$4 + 4 + 4 = 4 \cdot 3$$

$$8 + 8 = 8 \cdot 2$$

$$1+1+1+1+1=1\cdot 5$$

Språkboksen

Et gangestykke består av to eller flere faktorer og ett produkt. I gangestykket

$$4 \cdot 3 = 12$$

er 4 og 3 faktorer, mens 12 er produktet.

Vanlige måter å si $4 \cdot 3$ på er

- "4 ganger 3"
- $\bullet\,$ "4 ganget med 3"
- \bullet "4 multiplisert med 3"

Mange nettsteder og bøker på engelsk bruker symbolet \times i steden for \cdot . I di fleste programmeringsspråk er * symbolet for multiplikasjon.

Ganging av mengder

La oss nå bruke en figur for å se for oss gangestykket $2\cdot 3$:

Og så kan vi legge merke produktet til på $3\cdot 2$:

0.1 Multiplikasjon er kommutativ

Produktet er det samme uansett rekkefølge på faktorene.

Eksempel

$$3 \cdot 4 = 12 = 4 \cdot 3$$

$$6 \cdot 7 = 42 = 7 \cdot 6$$

$$8 \cdot 9 = 72 = 9 \cdot 8$$

Ganging på tallinja

Vi kan også bruke tallinja for å regne ut gangestykker. For eksempel kan vi finne hva $2 \cdot 4$ er ved å tenke slik:

"2 · 4 betyr å vandre 2 plasser mot høyre, 4 ganger."

Også tallinja kan vi bruke for å overbevise oss om at rekkefølgen i et gangestykke ikke har noe å si:

" $4 \cdot 2$ betyr å vandre 4 plasser mot høyre, 2 ganger."

Endelig definisjon av ganging med positive heltall

Det ligg kanskje nærmest å tolke "2 ganger 3" som "3, 2 ganger". Da er

"2 ganger
$$3$$
" = $3 + 3$

Innledingsvis presenterete vi $2 \cdot 3$, altså "2 ganger 3", som 2+2+2. Med denne tolkningen vil 3+3 svare til $3 \cdot 2$, men nettopp det at multiplikasjon er en kommutativ operasjon (Regel~0.1) gjør at den ene tolkningen ikke utelukker den andre; $2 \cdot 3 = 2 + 2 + 2$ og $2 \cdot 3 = 3 + 3$ er to uttrykk med same verdi.

0.2 Ganging som gjentatt addisjon

Ganging med et positivt heltal kan uttrykkes som gjentatt addisjon.

Eksempel 1

$$4+4+4=4\cdot 3=3+3+3+3$$

$$8+8=8\cdot 2=2+2+2+2+2+2+2$$

$$1+1+1+1+1=1\cdot 5=5$$

Merk

At ganging med positive heltal kan uttrykkes som gjentatt addisjon, utelukker ikke andre uttrykk. Det er ikke feil å skrive at $2\cdot 3=1+5$.

0.3 Ganging med 0

Viss 0 er en faktor, er produktet lik 0.

Eksempel 1

$$7 \cdot 0 = 0$$

$$0 \cdot 219 = 0$$