Chapter IV

Continuous Time Fourier Transform

- Representation of Aperiodic Signals: the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Sufficient conditions for the convergence of FT

$$x(t) \xrightarrow{\mathcal{CTFT}} X(jw)$$
 $X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$

$$\widehat{\boldsymbol{x}}(t) \xleftarrow{\mathcal{CTIFT}} X(jw)$$
 $\widehat{\boldsymbol{x}}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$

$$e(t) = \hat{x}(t) - x(t)$$

• If x(t) has finite energy

i.e., square integrable,
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty$$

 $\Rightarrow X(jw)$ is finite

$$\Rightarrow \int_{-\infty}^{+\infty} |e(t)|^2 dt = 0$$

Sufficient conditions for the convergence of FT

• Dirichlet conditions:

1.x(t) be absolutely integrable; that is, $\int_{-\infty}^{+\infty} |x(t)| dt < \infty$

2.x(t) have a finite number of maxima and minima within any finite interval

3.x(t) have a finite number of discontinuities within any finite interval Furthermore, each of these discontinuities must be finite

Example 4.1: $x(t) = e^{-at} u(t), \quad a > 0$ $\Rightarrow X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$ $= \int_{-\infty}^{\infty} e^{-at} u(t) e^{-jwt}dt$ $= \int_{0}^{\infty} e^{-at} e^{-jwt}dt$ $= \int_{0}^{\infty} e^{-at} e^{-jwt}dt$ $= \int_{0}^{\infty} e^{-at} e^{-jwt}dt$ $= \int_{0}^{\infty} e^{-(a+jw)t}dt$ $= \int_{0}^{\infty} e^{-(a+jw)t}dt$ $= \frac{1}{a+jw}e^{-(a+jw)0}$ $= \frac{1}{a+jw}, \quad a > 0$ ■ Example 4.1: $\Rightarrow X(jw) = \frac{1}{a+jw}, \quad a > 0$ $\Rightarrow |X(jw)| = \frac{1}{\sqrt{a^2 + w^2}}$ $\Rightarrow \langle X(jw) = -\tan^{-1}\left(\frac{w}{a}\right)$ $\Rightarrow \langle X(jw) = -\tan^{-1}\left(\frac{w}{a}\right)$

• sinc functions: $sinc(\theta) = \frac{\sin(\pi \theta)}{\pi \theta}$ $\frac{\sin(Wt)}{\pi t} = \frac{W}{\pi} sinc(\frac{Wt}{\pi})$ $x_1(t)$ $x_1(t)$ $x_2(t)$ $x_3(t)$ $x_2(jw)$ $x_2(jw)$ $x_3(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_2(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_2(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_2(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_2(jw)$ $x_3(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_2(jw)$ $x_3(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_3(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_2(jw)$ $x_3(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_3(jw)$ $x_3(jw)$ $x_1(jw)$ $x_2(jw)$ $x_3(jw)$ $x_3(jw)$ x

- Representation of Aperiodic Signals: the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

■ Example 4.7: $x(t) = \sin(w_0 t) = \frac{e^{jw_0 t} - e^{-jw_0 t}}{2j}$ $\Rightarrow a_1 = \frac{1}{2j} \quad a_{-1} = -\frac{1}{2j} \quad a_k = 0, \quad k \neq 1, -1$ $x(t) = \cos(w_0 t) = \frac{e^{jw_0 t} + e^{-jw_0 t}}{2}$

- Representation of Aperiodic Signals: the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Section	Property	
4.3.1	Linearity	
4.3.2	Time Shifting	
4.3.6	Frequency Shifting	
4.3.3	Conjugation	
4.3.5	Time Reversal	
4.3.5	Time and Frequency Scaling	
4.4	Convolution	
4.5	Multiplication	
4.3.4	Differentiation in Time	
4.3.4	Integration	
4.3.6	Differentiation in Frequency	
4.3.3	Conjugate Symmetry for Real Signals	
4.3.3	Symmetry for Real and Even Signals	
4.3.3	Symmetry for Real and Odd Signals	
4.3.3	Even-Odd Decomposition for Real Signals	
4.3.7	Parseval's Relation for Aperiodic Signals	

Fourier Transform Pair:

- Synthesis equation: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$
- Analysis equation: $X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$

Notations:

$$X(jw) = \mathcal{F}\{x(t)\} \qquad \qquad \frac{1}{a+jw} = \mathcal{F}\{e^{-at}u(t)\}$$

$$\frac{1}{a+iw} = \mathcal{F}\{e^{-at}u(t)\}\$$

$$x(t) = \mathcal{F}^{-1}\{X(jw)\}\$$

$$x(t) = \mathcal{F}^{-1}\left\{X(jw)\right\} \qquad e^{-at}u(t) = \mathcal{F}^{-1}\left\{\frac{1}{a+jw}\right\}$$

$$x(t) \stackrel{\mathcal{C}\mathcal{TFT}}{\longleftarrow} X(jw)$$

$$x(t) \stackrel{\mathcal{CTFT}}{\longleftrightarrow} X(jw)$$
 $e^{-al}u(t) \stackrel{\mathcal{CTFT}}{\longleftrightarrow} \frac{1}{a+jw}$

Linearity:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(jw)$$

$$\Rightarrow a x(t) + b y(t)$$

$$a x(t) + b y(t)$$
 $\stackrel{\mathcal{F}}{\longleftrightarrow} a X(jw) + b Y(jw)$

Time Shifting:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}du$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$\Rightarrow x(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}X(jw)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dv$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$Y(jw) = \int_{-\infty}^{+\infty} x(t-t_0)e^{-jwt}dt$$

$$x(t-t_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jw(t-t_0)}dw$$

$$= \int_{-\infty}^{+\infty} x(\tau) e^{-jw(\tau+t_0)} d\tau$$

$$= \int_{-\infty}^{+\infty} x(\tau)e^{-jw(\tau+t_0)}d\tau$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(e^{-jwt_0}X(jw)\right)e^{jwt}dw$$

$$= e^{-jwt_0} \int_{-\infty}^{+\infty} x(\tau)e^{-jw\tau}d\tau$$

$$= e^{-jwt_0} \int_{-\infty}^{+\infty} x(\tau) e^{-jw\tau} d\tau$$

■ Time Shift → Phase Shift:

$$\mathcal{F}{x(t)} = X(jw) = |X(jw)|e^{j \not \sim X(jw)}$$

$$\mathcal{F}\lbrace x(t-t_0)\rbrace = e^{-jwt_0}X(jw) = |X(jw)|e^{j[X(jw)-wt_0]}$$

■ Example 4.9: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$ $X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$ $x(t) = \frac{1}{2}x_1(t - 2.5) + x_2(t - 2.5)$ $X_1(jw) = \frac{2\sin(w/2)}{w}$ $X_2(jw) = \frac{2\sin(3w/2)}{w}$ $\Rightarrow X(jw) = e^{-j5w/2} \left\{ \frac{\sin(w/2) + 2\sin(3w/2)}{w} \right\}$

■ Conjugation & Conjugate Symmetry: $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$ $x(t)^* \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(-jw)$ $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$

■ Conjugation & Conjugate Symmetry: $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$ $x(t)^* \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(-jw)$ • $x(t) = x^*(t) \Rightarrow X(-jw) = X^*(jw)$ • x(t) is real $\Rightarrow X(jw)$ is conjugate symmetric
• $x(t) = x^*(t) \& x(-t) = x(t)$ $\Rightarrow X(-jw) = X^*(jw) \& X(-jw) = X(jw)$ $\Rightarrow X(jw) = X^*(jw)$ x(t) is real & even $\Rightarrow X(jw)$ are real & even
• x(t) is real & odd $\Rightarrow X(jw)$ are purely imaginary & odd

• Conjugation & Conjugate Symmetry:

If x(t) is a real function $x(t) = \mathcal{E}v\{x(t)\} + \mathcal{O}d\{x(t)\} = x_e(t) + x_o(t)$ $\Rightarrow \mathcal{F}\{x(t)\} = \mathcal{F}\{x_e(t)\} + \mathcal{F}\{x_o(t)\}$ $\Rightarrow \mathcal{F}\{x_e(t)\} : \text{ a real function}$ $\Rightarrow \mathcal{F}\{x_o(t)\} : \text{ a purely imaginary function}$ $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$ $\mathcal{E}v\{x(t)\} \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{R}e\{X(jw)\}$ $\mathcal{O}d\{x(t)\} \stackrel{\mathcal{F}}{\longleftrightarrow} j \mathcal{I}m\{X(jw)\}$

■ Example 4.10:
$$e^{-at}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a+jw}$$

$$e^{-a|t|} \stackrel{\mathcal{F}}{\longleftrightarrow} ?$$

$$x(t) = e^{-a|t|} = e^{-at}u(t) + e^{at}u(-t)$$

$$= 2\left[\frac{e^{-at}u(t) + e^{at}u(-t)}{2}\right] = 2\mathcal{E}v\left\{e^{-at}u(t)\right\}$$

$$\mathcal{E}v\left\{e^{-at}u(t)\right\} \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{R}e\left\{\frac{1}{a+jw}\right\}$$

$$\mathcal{O}d\left\{e^{-at}u(t)\right\} \stackrel{\mathcal{F}}{\longleftrightarrow} j Tm\left\{\frac{1}{a+jw}\right\}$$

$$X(jw) = 2\mathcal{R}e\left\{\frac{1}{a+jw}\right\} = \frac{2a}{a^2+w^2}$$

■ Differentiation & Integration:
$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$
 $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$ $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) \qquad e^{jwt} dw$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) \qquad e^{jwt} dw$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) \qquad e^{jwt} dw$ $\int_{-\infty}^{t} x(\tau)d\tau \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{jw} X(jw) + \pi X(0)\delta(w)$ dc or average value

■ Example 4.11:

$$x(t) = u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw) = ?$$

$$g(t) = \delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} G(jw) = 1$$

$$x(t) = \int_{-\infty}^{t} g(\tau) d\tau \qquad X(jw) = \frac{1}{jw} G(jw) + \pi G(0) \delta(w)$$

$$= \frac{1}{jw} + \pi \delta(w)$$

$$\delta(t) = \frac{d}{dt} u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jw \left[\frac{1}{jw} + \pi \delta(w) \right] = 1$$

■ Duality: $x(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}X(jw)$ $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$ $\stackrel{d}{dt}x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jwX(jw)$ $\int_{-\infty}^{t} x(\tau)d\tau \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{jw}X(jw) + \pi X(0)\delta(w)$ $-jtx(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{d}{dw}X(jw)$ $e^{jw_0t}x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j(w-w_0))$ $-\frac{1}{jt}x(t) + \pi x(0)\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{w} X(\eta)d\eta$

- Representation of Aperiodic Signals: the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

• Convolution Property: $x(t) \to h(t) \qquad y(t)$ $y(t) = x(t) * h(t) \longleftrightarrow Y(jw) = X(jw)H(jw)$ $= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$ • Multiplication Property: $x(t) \to h(t) \to Y(jw) = X(jw)H(jw)$ $= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$ $= \int_{-\infty}^{\infty} x(\tau)h(\tau-\tau)d\tau$ $= \int_{-\infty}^{\infty} x(\tau)h(\tau-\tau)d\tau$

From Superposition (or Linearity):
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$= \lim_{w_0 \to 0} \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0)e^{jkw_0t}w_0$$

$$\frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0)e^{jkw_0t}w_0$$

$$\frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0)H(jkw_0)e^{jkw_0t}w_0$$

$$x(t) \qquad \qquad Linear System \qquad \qquad y(t)$$

$$H(jkw_0) = \int_{-\infty}^{\infty} h(t)e^{-jkw_0t}dt$$

$$y(t) = \lim_{w_0 \to 0} \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0)H(jkw_0)e^{jkw_0t}w_0$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)H(jw)e^{jwt}dw$$

• From Superposition (or Linearity):
$$\frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0) e^{jkw_0 t} w_0 \longrightarrow \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0) H(jkw_0) e^{jkw_0 t} w_0$$

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) H(jw) e^{jwt} dw$$
Since
$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} Y(jw) e^{jwt} dw$$

$$\Rightarrow Y(jw) = X(jw) H(jw)$$

$$y(t) = x(t) * h(t) \longleftrightarrow Y(jw) = X(jw) H(jw)$$

Example 4.15: Time Shift $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$ $X(jw) = \int_{-\infty}^{+\infty} x(t) e^{-jwt} dt$ $X(jw) = \int_{-\infty}^{+\infty} x(t) e^{-jwt} dt$ $x(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0} X(jw)$ $h(t) = \delta(t-t_0)$ $\Rightarrow H(jw) = e^{-jwt_0}$ Y(jw) = H(jw)X(jw)

 $= e^{-jwt_0}X(jw)$

 $\Rightarrow y(t) = x(t-t_0)$

■ Example 4.18: Ideal Lowpass Filter $H(jw) = \begin{cases} 1, & |w| < w_c \\ 0, & |w| > w_c \end{cases}$ $\Rightarrow h(t) = \frac{1}{2\pi} \int_{-w_c}^{+w_c} e^{jwt} dw$ $= \frac{\sin(w_c t)}{\pi t}$ $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$ $X(jw) = \int_{-\infty}^{\infty} x(t) e^{-jwt} dt$

- Representation of Aperiodic Signals: the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

• Convolution & Multiplication:

$$y(t) = x(t) * h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(jw) = X(jw)H(jw)$$
$$= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

$$r(t) = s(t)p(t) \stackrel{\mathcal{F}}{\longleftrightarrow} R(jw) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\theta)P(j(w-\theta))d\theta$$

- Multiplication of One Signal by Another:
 - Scale or modulate the amplitude of the other signal
 - Modulation

$$\begin{array}{c|c}
 & p(t) \\
\hline
 & s(t) \\
\hline
 & X
\end{array}$$

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-a}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
e lwg!	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$
x(t) = 1	$2\pi \delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$

$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	_
u(t)	$\frac{1}{j\omega} + \pi \hat{\sigma}(\omega)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t)$, $\Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t)$, $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	Marine
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	_

- Representation of Aperiodic Signals: the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

■ A useful class of CT LTI systems:
$$a_N \frac{d^N y(t)}{dt^N} + a_{N-1} \frac{d^{N-1} y(t)}{dt^{N-1}} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t)$$

$$= b_M \frac{d^M x(t)}{dt^M} + b_{M-1} \frac{d^{M-1} x(t)}{dt^{M-1}} + \dots + b_1 \frac{dx(t)}{dt} + b_0 x(t)$$

$$\sum_{k=0}^N a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^M b_k \frac{d^k x(t)}{dt^k}$$

$$x(t) \longrightarrow \text{LTI System} \qquad y(t)$$

$$Y(jw) = X(jw)H(jw) \qquad H(jw) = \frac{Y(jw)}{X(jw)}$$

$$\mathcal{F}\left\{\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k}\right\} = \mathcal{F}\left\{\sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}\right\}$$

$$\sum_{k=0}^{N} a_k \mathcal{F}\left\{\frac{d^k y(t)}{dt^k}\right\} = \sum_{k=0}^{M} b_k \mathcal{F}\left\{\frac{d^k x(t)}{dt^k}\right\}$$

$$\sum_{k=0}^{N} a_k (jw)^k Y(jw) = \sum_{k=0}^{M} b_k (jw)^k X(jw)$$

$$Y(jw)\left[\sum_{k=0}^{N} a_k (jw)^k\right] = X(jw)\left[\sum_{k=0}^{M} b_k (jw)^k\right]$$

$$\Rightarrow H(jw) = \frac{Y(jw)}{X(jw)} = \frac{\sum_{k=0}^{M} b_k (jw)^k}{\sum_{k=0}^{N} a_k (jw)^k} = \frac{b_M(jw)^M + \dots + b_1(jw) + b_0}{a_N(jw)^N + \dots + a_1(jw) + a_0}$$

■ Examples 4.24 & 4.25:
$$\frac{dy(t)}{dt} + ay(t) = x(t) \Rightarrow H(jw) = \frac{1}{jw + a}$$

$$(jw)Y(jw) + aY(jw) = X(jw) \Rightarrow h(t) = e^{-at}u(t)$$

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$

$$\Rightarrow H(jw) = \frac{(jw) + 2}{(jw)^2 + 4(jw) + 3} = \frac{(jw + 2)}{(jw + 1)(jw + 3)}$$

$$= \frac{1/2}{jw + 1} + \frac{1/2}{jw + 3}$$

$$\Rightarrow h(t) = \frac{1}{2}e^{-t}u(t) + \frac{1}{2}e^{-3t}u(t)$$

