Universitatea Tehnica a Moldovei Facultatea Calculatoare, Informatica si Microelectronica Departamentul Informatica Sofware si Automate

RAPORT

despre lucrarea de laborator nr. 1 la disciplina Metode si modele de calcul

Tema:

A efectuat: st. gr. TI-173 Heghea Nicolae

A verificat: Tutunaru

Cuprins

1.	Me	etoda grafică	3
2.	Me	etoda ananitică	4
3.	Me	etodele iterative Coardelor, Secantelor	5
		Noțiuni generale	
		Schema bloc	
	3.3	Rezultate	.11
4.	Co	ncluzia	.11

1. Metoda grafică

$$f(x) = x^3 + 3x^2 - 3.5 = 0$$
$$= > x^3 = -3x^2 + 3.5$$

sau

$$f_1(x) = x^3$$

$$f_2(x) = -3x^2 + 3.5$$

Din grafic observăm că avem 3 intersecții pe intervalele :

$$[-3; -2], [-2; -1], [-1; 1].$$

Verificare:

$$f(-3) = (-3)^3 + 3(3)^2 - 3.5 = -27 + 27 - 3.5 = -3.5 = -$$

$$f(-2) = (-2)^3 + 3(2)^2 - 3.5 = -8 + 12 - 3.5 = +0.5 = +$$

$$f(-1) = (-1)^3 + 3(1)^2 - 3.5 = -1 + 3 - 3.5 = -0.5 = -$$

$$f(1) = (1)^3 + 3(1)^2 - 3.5 = 1 + 3 - 3.5 = +0.5 = +$$

2. Metoda ananitică

$$f(x) = x^3 - 0.2x^2 + 0.5x - 1$$

$$k = 1 + \frac{a_{max}}{|a_0|} = > k = 1 + \frac{1}{1} = 2 = > k = [-2, 2]$$

$$f'(x) = 3x^2 - 0.4x + 0.5$$
 $\Delta = 0.4^2 - 4 * 3 * 0.5 = -5.84 < 0$ nu are soluții $f''(x) = 6x - 0.4$ $x = \frac{0.4}{6}$

o singura soluție

x	-2	-1	0.1	1	2
semn f(x)	_	_	_	+	+

$$f(-2) = (-2)^3 - 0.2(-2)^2 + 0.5(-2) - 1 = -10.8$$

$$f(-1) = (-1)^3 - 0.2(-1)^2 + 0.5(-1) - 1 = -2.7$$

$$f(0.1) = (0.1)^3 - 0.2(0.1)^2 + 0.5(0.1) - 1 = -0.951$$

$$f(1) = (1)^3 - 0.2(1)^2 + 0.5(1) - 1 = +0.3$$

$$f(2) = (2)^3 - 0.2(2)^2 + 0.5(2) - 1 = +7.2$$

$$f'(0.1) = 3(0.1)^2 - 0.4(0.1) + 0.5 = +0.49 => +$$

 $f'(1) = 3(1)^2 - 0.4(1) + 0.5 = +3.1 => +$

$$f''(0.1) = 6(0.1) - 0.4 = +0.2 => +$$

 $f''(1) = 6(1) - 0.4 = +5.6 => +$

Rezultă că avem o singură rădăcină pe segmentul [0.1; 1].

3. Metodele iterative Coardelor, Secantelor

3.1 Noțiuni generale

Metoda Coardelor

Formula generală : $x_{n+1} = x_n \cdot \frac{f(x_n) \cdot (x_f - x_n)}{f(x_f) - f(x_n)}$

Condiția de alegere a punctului de pornire :

$$f(a) \cdot f''(a) < 0 \implies \begin{cases} x_0 = a \\ x_f = b \end{cases} \qquad f(a) \cdot f''(a) \ge 0 \implies \begin{cases} x_0 = b \\ x_f = a \end{cases}$$

Condiția de stop : $|x_{n+1} - x_n| \le \xi$ de obicei $\xi = 10^{-4}$

Metoda Secantelor

Formula generală : $x_{n+1} = x_n \cdot \frac{f(x_n) \cdot (x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$

Condiția de alegere a punctului de pornire :

$$f(a) \cdot f''(a) < 0 \implies \begin{cases} x_0 = b \\ x_1 = b - \xi \end{cases} \qquad f(a) \cdot f''(a) \ge 0 \implies \begin{cases} x_0 = a \\ x_1 = a + \xi \end{cases}$$

Condiția de stop : $|x_{n+1} - x_n| \le \xi$ de obicei $\xi = 10^{-4}$

3.2 Schema bloc

Metoda Coardelor

Metoda Secantelor


```
package app.components;
import static app.components.Function2Data.F;
import static app.components.Function2Data.F2;
import static java.lang.Math.abs;
public class Methods {
   public double eps;
   public double a;
   public double b;
   public double[] xC;
   public double[] fxC;
   public double[] xS;
   public double[] fxS;
   public int
                  nrItrC;
   public int
               nrItrS;
   public int
                  nrItrMaxChord;
   public int
                  nrItrMaxSecant;
   public void runChord() {
        double xf, fa, fxf, q, w;
       xC = new double[nrItrMaxChord];
       fxC = new double[nrItrMaxChord];
       validData();
       fa = F(a);
        if (fa * F(b) < 0) {
           if (fa * F2(a) < 0) {
               xC[0] = a;
               xf = b;
           } else {
               xC[0] = b;
               xf = a;
           }
```

```
fxC[0] = F(xC[0]);
        fxf = F(xf);
        nrItrC = 0;
        do {
            nrItrC++;
            q = fxC[nrItrC - 1] * (xf - xC[nrItrC - 1]);
            w = fxf - fxC[nrItrC - 1];
            xC[nrItrC] = xC[nrItrC - 1] - q / w;
           fxC[nrItrC] = F(xC[nrItrC]);
        } while (abs(xC[nrItrC] - xC[nrItrC - 1]) > eps);
   }
}
public void runSecant() {
    double fa, q, w;
    xS = new double[nrItrMaxChord];
   fxS = new double[nrItrMaxChord];
    validData();
    fa = F(a);
    if (fa * F(b) < 0) {
        if (fa * F2(a) > 0) {
           xS[0] = a;
           xS[1] = a + eps;
        } else {
           xS[0] = b;
           xS[1] = b - eps;
        }
        fxS[0] = F(xS[0]);
        fxS[1] = F(xS[1]);
        nrItrS = 1;
        do {
            nrItrS++;
```

```
q = fxS[nrItrS - 1] * (xS[nrItrS - 1] - xS[nrItrS - 2]);
                w = fxS[nrItrS - 1] - fxS[nrItrS - 2];
                xS[nrItrS] = xS[nrItrS - 1] - q / w;
                fxS[nrItrS] = F(xS[nrItrS]);
            } while (abs(xS[nrItrS] - xS[nrItrS - 1]) >= eps);
        }
    }
    private void validData() {
        if (a > b) {
           double temp = a;
            a = b;
            b = temp;
        }
   }
}
package app.components;
public class Function2Data {
    // F(x).
    public static double F(double x) {
        return x * x * x - 0.2 * x * x + 0.5 * x - 1.0;
    }
    // derivata 1 F'(x).
    public static double F1(double x) {
        return 3 * x * x - 0.4 * x + 0.5;
    }
   // derivata 2 F"(x).
    public static double F2(double x) {
        return (6 * x - 0.4);
    }
}
```

3.4 Rezultate

4. Concluzia

Separarea rădăcinilor prin metoda grafică este simplu și ușor, dar sunt funcții care nu pot fi reprezentate ușor pe grafic. Pentru asemenea funcții se aplică metoda analitică de separare a rădăcinilor. Care ne dă același rezultat.

Cele două metode iterative converg destul de repede. Metodele au atât avantaje cât și dezavantaje. Și aceste 2 metode sunt similare.

Avantaje:

- 1. nu au nevoie de derivate în iterațiilor
- 2. necesită evaluare doar la o singură funcție

Dezavantaje:

- 1. poate să nu conveargă
- 2. are probleme atunci când $f'(\beta) = 0$. Aceasta inseamnă ca graful funcției este tangent la axa OX.