## Amendment under Article 19(1)

Claims

[Claim 1] (Currently Amended)

A multinuclear rare earth complex formed by coordinating one or more types of molecules having a photosensitizing function and a vibrational energy quenching-suppressing function to a plurality of rare earth ions, which is represented by the general formula:

10  $L_pL'_q(Ln)_rX_s$ ,

wherein

L is a ligand having a photosensitizing function represented by the general formula:

[Chemical Formula 1]

15

$$R_3$$
 $R_4$ 
 $R_5$ 
 $R_1$ 
 $Y_1$ 
 $R_5$ 

wherein R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub> and R<sub>5</sub> are independently hydrogen, a hydroxide group, a substituted or

20 unsubstituted amino group, a substituted or unsubstituted aryl group, a nitro group, a cyano group, an alkyl group or a cycloalkyl group represented by -R, an alkoxy group represented by -OR, or an acyl group represented by -C(C=O)R, where R is a substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20;

 $Y_1$  is -OH; and  $Y_2$  is =0;

p is an integer of 1 to 40;

L' is a ligand which is a hydroxide ion;

5 q is an integer of 0 to 8;

Ln is a rare earth ion;

r is an integer of 2 to 20, where a plurality of Ln may be different from each other:

X is O, -OH, S, -SH, Se or Te;

s is an integer of 1 to 20, where a plurality of X may be different from each other when s is an integer of 2 to 20; and further, the integers p, r and s have a relationship indicated by the expression:

[Expression 1]

15

30

## $1 \le p/r \le 4$ , $1 \le r/s \le 4$

wherein a coordination manner of L to Ln is: Coordination Manner (A) where both Y<sub>1</sub> and Y<sub>2</sub> bind to the identical Ln;

Coordination Manner (B) where Y<sub>1</sub> and Y<sub>2</sub> bind to different Ln each other; and a combination thereof, wherein when Y<sub>1</sub> coordinates to Ln, a proton leaves from -OH represented by Y<sub>1</sub> to form -O-, thereby L coordinates to Ln via -O-.

[Claim 2] (Cancelled)

25 [Claim 3] (Cancelled)

[Claim 4] (Currently Amended)

The multinuclear rare earth complex according to claim 1, wherein at least one of substituents R1, R2, R3, R4 and R5 are an alkyl group or a cycloalkyl group represented by -R, an alkoxy group represented by -OR or

an acyl group represented by -C(=0)R, where R is substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20. [Claim 5]

The multinuclear rare earth complex according to claim 4, wherein  $R_5$  is represented by the formula: [Chemical Formula 2]

$$R_6$$
 $R_7$ 
 $R_8$ 
 $R_{10}$ 
 $R_9$ 

10

15

20

wherein  $R_6$ ,  $R_7$ ,  $R_8$ ,  $R_9$  and  $R_{10}$  are independently hydrogen, a hydroxide group, a substituted or unsubstituted amino group, a substituted or unsubstituted aryl group, a nitro group, a cyano group, an alkyl group or a cycloalkyl group represented by -R, an alkoxy group represented by -OR, or an acyl group represented by -C(C=0)R, where R is a substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20, where at least one of  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$ ,  $R_6$ ,  $R_7$ ,  $R_8$ ,  $R_9$  and  $R_{10}$  are an alkyl group or a cycloalkyl group represented by -R, an alkoxy group represented by -OR, or an acyl group represented by -C(C=0)R, where R is a substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20.

25 [Claim 6]

The multinuclear rare earth complex according to claim 4, wherein  $R_5$  is an alkyl group or a cycloalkyl

group represented by -R, an alkoxy group represented by -OR, or an acyl group represented by -C(C=0)R, where R is a substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20.

5 [Claim 7]

The multinuclear rare earth complex according to claim 5 or 6, wherein R is a substituted or unsubstituted alkyl group having a carbon number of 6 to 12.

10 [Claim 8]

The multinuclear rare earth complex according to claim 7, wherein R is a substituted or unsubstituted alkyl group having a carbon number of 8 to 12.

[Claim 9]

The multinuclear rare earth complex according to claim 1, wherein the rare earth ion is an ion of lanthanide selected from a group consisting of europium (Eu), terbium (Tb), neodymium (Nd), samarium (Sm), erbium (Er) and ytterbium (Yb) or a combination thereof.

20 [Claim 10]

The multinuclear rare earth complex according to claim 5, which is represented by the general formula:  $L_{10} \, (Ln) \, _4 X$ ,

wherein

25 L is a ligand represented by the formula: [Chemical Formula 3]

Ln is europium (Eu) ion; and X is o, and which has the following properties: Elementary Analysis: as  $C_{210}H_{250}O_{31}Eu_4$ ,

Theoretical values C, 65.04%; H, 6.50%; Eu, 15.67%

Observed values C, 64.90%; H, 6.39%; Eu, 15.41% IR (KBr, cm<sup>-1</sup>):  $(\nu_{CH})$ 2922,  $(\nu_{C=C})$ 1596,  $(\nu_{Ph-O})$ 1243  $^{1}$ H-NMR(CDCl<sub>3</sub>):  $\delta$ 12.7(1H,s),  $\delta$ 7.6-7.2(3H,m),  $\delta$ 6.5-6.4(5H,d),  $\delta$ 4.0(2H,t),  $\delta$ 1.8(2H,m),  $\delta$ 0.9(3H,t)

FAB-MS: m/z 3552.1 [Eu<sub>4</sub>(L<sup>-</sup>)<sub>9</sub>O<sup>2-</sup>]<sup>+</sup>.

10 [Claim 11]

The multinuclear rare earth complex according to claim 5, which is represented by the general formula:  $L_{10}\left(Ln\right){}_{4}X,$ 

wherein

25

15 L is a ligand represented by the formula: [Chemical Formula 4]



Ln is europium (Eu) ion; and

X is o, and which has the following properties:

20 Elementary Analysis: as C<sub>250</sub>H<sub>330</sub>O<sub>31</sub>Eu<sub>4</sub>,

Theoretical values C, 67.64%; H, 7.49%; Eu, 13.69% Observed values C, 67.50%; H, 7.45%; Eu, 13.49% IR (KBr, cm<sup>-1</sup>):  $(\nu_{CH})$ 2924,  $(\nu_{C=C})$ 1608,  $(\nu_{Ph-O})$ 1247  $^{1}$ H-NMR(CDCl<sub>3</sub>):  $\delta$ 12.7(1H,s),  $\delta$ 7.6-7.3(3H,m),  $\delta$ 6.5-6.4(5H,d),  $\delta$ 4.0(2H,t),  $\delta$ 1.8(2H,m),  $\delta$ 0.9(3H,t)

FAB-MS: m/z 4055.9 [Eu<sub>4</sub>(L<sup>-</sup>)<sub>9</sub>O<sup>2-</sup>]<sup>+</sup>. [Claim 12]

The multinuclear rare earth complex according to claim 6, which is represented by the general formula:

5  $L_{16}$   $L'_{8}$   $(Ln)_{9}X_{2}$ ,

wherein

L is a ligand represented by the formula: [Chemical Formula 5]



10 L' is OH;

Ln is terbium (Tb) ion; and

X is o, and which has the following properties:

Elementary Analysis: as C<sub>214</sub>H<sub>324</sub>O<sub>72</sub>NTb<sub>9</sub>,

Theoretical values C, 46.79%; H, 5.93%; Tb, 26.46%

Observed values C, 46.72%; H, 5.18%; Tb, 26.04%  $\text{IR (KBr, cm}^{-1}): (\nu_{\text{CH}})2957, \ 2931, \ (\nu_{\text{C=O}})1674, \ 1637, \\ (\nu_{\text{C=C}})1598, \ (\nu_{\text{Ph-O}})1243$ 

<sup>1</sup> H-NMR (CDCl<sub>3</sub>):  $\delta$ 10.9(1H),  $\delta$ 7.9-6.9(4H),  $\delta$ 4.3(2H),  $\delta$ 1.8(2H),  $\delta$ 1.4(6H),  $\delta$ 0.9 (3H)

20 FAB-MS: m/z 5140.2 [Tb<sub>9</sub>(L<sup>-</sup>)<sub>16</sub>(O<sup>2-</sup>)<sub>2</sub>(OH<sup>-</sup>)<sub>8</sub>+2H<sup>+</sup>]<sup>+</sup>. [Claim 13] (Currently Amended)

A fluorescent substance containing the multinuclear rare earth complex according to any one of claims 1, and 4 to 12.

25 [Claim 14]

A resin formed materials made by compounding the fluorescent substance according to claim 13.