

Reliable Two-Dimensional Graphing Methods for Mathematical Formulae with Two Free Variables

Jeff Tupper

Dynamic Graphics Project

University of Toronto

A Graph of a Circle

Example Graph

Isn't this already solved?

There are many utilities for doing this:

- **Computer Algebra Systems**
 - Mathematica, Maple, ...
- **Graphing Calculators**
 - Hewlett-Packard, Texas Instruments, ...
- **Graphing Software**
 - Curvus Pro, IAsolve, GraphingCalculator, ...

Mathematica 4 Plot Output

Mathematica 4 ImplicitPlot Output

Texas Instruments TI-83 Plus

Hewlett-Packard HP 39G

Connect-The-Dots Graphing

Curvus Pro 3.0.1

Curvus Pro 3.0.1

Floating-Point Arithmetic

Graphing Calculator 3.0.1

[Avitzur]

Connect-the-Dots Graphing

Problems:

- Not all dots should be connected
- Dots may be far from the curve

Connect-the-Dots Graphing

Fundamental Problem:

- We haven't defined the graph's semantics

Graph Semantics

Example Graph

Example Graph

Example Graph

Unfortunate Reality

- This naïve goal is impossible since graphing, as formalized, is not computable

Practical Graph Semantics

Iterative Graphing Algorithm

Reliable Graphing

- We now have a well-defined problem
- But how do we evaluate formulae?

Formula Evaluation

- Use interval arithmetic to evaluate formulae
- Interval arithmetic provides guaranteed bounds on accuracy

Interval Arithmetic

Interval Comparisons

Is $x+y^2 < y$? Yes.

Interval Comparisons

Is $x + y^2 < y$? Maybe.

Domain Tracking

Is $\sqrt{x} < y$ ~~?~~ Yes.

Domain Tracking

Is $\sqrt{x} < y$? Maybe.

Algorithm A

Pixel Boundaries

inner estimate

true pixel boundary

outer estimate

Graph from Algorithm A

Graph from Algorithm A

Graph from Algorithm A

IASolver 0.1β1 [Hickey et al.]

Interval Arithmetic

Interval Sets

Graph From Algorithm A with Interval Sets

Continuity Tracking

Continuity Tracking

Finding Solutions on Curves

y continuous: yes

$\text{Arctan} \tan x$ continuous: yes

Finding Solutions on Curves

y continuous: yes
Arctan $\tan x$ continuous: yes

Graph from Algorithm B

Graph from Algorithm B

Graph from Algorithm B

Graph from Algorithm 3.4

Conclusion

- **Most graphing programs are not reliable**
 - Reliable graphing programs do exist (GrafEq)
- **Red pixels are useful**
- **Be careful when using interval arithmetic**
 - Keeping track of the mathematical properties of evaluated formulae is possible and useful

Future Work

- **Use other colors besides red**
 - Display topological information
- **Tackle a larger class of formulae**
 - integration, differentiation, iteration, ...
- **Animation**
 - visualize role of parameters
- **3D**

Acknowledgements

I would like to thank:

- Alain Fournier;
- my supervisor, Eugene Fiume;
- John Hughes and the other paper reviewers, for their helpful comments.

Contact Information

Jeff Tupper:

- mooncake@dgp.toronto.edu
- www.dgp.toronto.edu/~mooncake

GraEq:

- www.peda.com/grafeq
- Creative Applications Lab 1PM-2PM Today

Example Graph

Graphing Calculator 3.0.1

[Avitzur]

