

SAR TEST REPORT

HCT CO., LTD

EUT Type:	GSM/ WCDMA/ LTE Phone with Blueton	oth/WLAN								
FCC ID:	V65C6522									
Model:	C6522N									
Date of Issue:	Jul. 12, 2013									
Test report No.:	HCTA1307FS07									
Test Laboratory:	HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-r TEL: +82 31 645 6300 FAX: +82 31 6									
Applicant :	Kyocera Corporation 1-34, Sanyo-cho, Daito-Shi, Osaka, 574	1-8501, JAPAN								
Testing has been carried out in accordance with:	47CFR §2.1093	FCC OET Bulletin 65(Edition 97-01), Supplement C (Edition 01-01) ANSI/ IEEE C95.1 – 1992								
Test result:	subject to the test. The test results and	requirements in respect of all parameters d statements relate only to the items tested except in full, without written approval of the								
Signature	Report prepared by : Young-Seok Yoo Test Engineer of SAR Part	Approved by : Jae-Sang So Manager of SAR Part								

Table of Contents

1. INTRODUCTION		4
2. TEST METHODOLOGY		5
3. DESCRIPTION OF DEVICE		6
4. DESCRIPTION OF TEST EQUIPMENT		8
5. SAR MEASUREMENT PROCEDURE	1	6
6. DESCRIPTION OF TEST POSITION	1	8
7. MEASUREMENT UNCERTAINTY	2	0
8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	2	1
9. SAR SYSTEM VALIDATION	2	2
10. SYSTEM VERIFICATION		
11. RF CONDUCTED POWER MEASUREMENT		
12. SAR Test configuration & Antenna Information	4	6
13. SAR TEST DATA SUMMARY		
13.1 Measurement Results (GSM850 Head SAR)	4	7
13.2 Measurement Results (GSM1900 Head SAR)		
13.3 Measurement Results (WCDMA850 Head SAR)	4	9
13.4 Measurement Results (WCDMA1700 Head SAR)	5	0
13.5 Measurement Results (WCDMA1900 Head SAR)	5	1
13.6 Measurement Results (LTE Band 17 Head SAR)	5	2
13.7 Measurement Results (LTE Band 4 Head SAR)		
13.8 Measurement Results (802.11b/g/n Head SAR)	5	4
13.9 Measurement Results (GSM850 Hotspot SAR)	5	5
13.10 Measurement Results (GSM1900 Hotspot SAR)		
13.11 Measurement Results (WCDMA850 Hotspot SAR)		
13.12 Measurement Results (WCDMA1700 Hotspot SAR)		
13.13 Measurement Results (WCDMA1900 Hotspot SAR)		
13.14 Measurement Results (LTE Band 17 Hotspot SAR)		
13.14 Measurement Results (LTE Band 4 Hotspot SAR)		
13.16 Measurement Results (802.11b/g/n Hotspot SAR)		
13.17 Measurement Results (Body-worn SAR)		
14. SAR Measurement Variability and Uncertainty		
15. SAR Summation Scenario	6	5
15.4 SPLSR Evaluation and Analysis	6	9
17. CONCLUSION	7	3
18. REFERENCES	7	4
Attachment 1. – SAR Test Plots	7	5
Attachment 2. – Dipole Verification Plots	1	4
Attachment 3. – Probe Calibration Data	2	5
Attachment 4. – Dipole Calibration Data	4	8

Revision History

Rev.	Issue DATE	DESCRIPTION
-	Jul. 12, 2013	Initial Issue

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$S A R = \frac{d}{d t} \left(\frac{d U}{d m} \right) = \frac{d}{d t} \left(\frac{d U}{\rho d v} \right)$$

Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

SAR = $\sigma E^2/\rho$ where: σ = conductivity of the tissue-simulant material (S/m) ρ = mass density of the tissue-simulant material (kg/m³) E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

HCT CO., LTD.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, IEEE Standard 1528-2003 & IEEE 1528a-2005 and the following published KDB procedures.

- FCC KDB Publication 941225 D01 SAR test for 3G devices v02
- FCC KDB Publication 941225 D02 Guidance for 3GPP R6 and R7 HSPA v02v01
- FCC KDB Publication 941225 D03 SAR Test Reduction GSM GPRS EDGE v01
- FCC KDB Publication 941225 D04 SAR for GSM E GPRS Dual Xfer Mode v01
- FCC KDB Publication 941225 D05 SAR for LTE Devices v02
- FCC KDB Publication 941225 D06 Hot Spot SAR v01
- FCC KDB Publication 248227 D01v01r02(SAR Considerationa for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 648474 D04 SAR Handsets Multi Xmiter and Ant v01
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01
- FCC KDB Publication 865664 D02 SAR Reporting v01

www.hct.co.kr

3. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

EUT Type	GSM/ WCDMA/	LTE Phone with Blue	tooth/WLAN					
FCC ID:	V65C6522							
Model:	C6522N,							
Trade Name	Kyocera Corpora	ation						
Application Type	Certification							
Mode(s) of Operation	GSM850/GSM19	900 /WCDMA850/WC	DMA 1700/W0	CDMA1900/LTE	4/LTE17/802.1	1b/g/n		
Tx Frequency	826.4 - 846.6 MHz / 1 852.4 – 1 907.6	Hz (GSM850) /1 850.20 (WCDMA850)/ 1712.4 MHz (WCDMA1900)/ E 17)/ 1710-1755 MHz	– 1752.6 MHz (\ 2 412- 2 462 MH	NCDMA 1700)				
Production Unit or Identical Prototype	Prototype							
	Band	Tx Frequency	Equipment	Reported 1g SAR (W/kg)				
		(MHz)	Class	Head	Body-worn	Hotspot		
	GSM850	824.2 - 848.8	PCE	0.505	0.316	0.783		
	GSM1900	1 850.2 -1 909.8	PCE	0.425	0.385	1.417		
	WCDMA 850	826.4 - 846.6	PCE	0.714	0.548	0.548		
Max SAR	WCDMA 1700	1712.4 - 1752.6	PCE	1.257	1.189	1.189		
	WCDMA 1900	1 852.4 - 1 907.6	PCE	0.978	0.798	0.798		
	LTE 17	704.0 - 716.0	PCE	0.554	0.381	0.381		
	LTE 4	1710.0 – 1755.0	PCE	1.437	1.080	1.080		
	ВТ	2 402.0 - 2 480.0	DSS	-	-	-		
	802.11b	2 412.0- 2 462.0	DTS	0.600	0.121	0.121		
Simultaneous SAF	R per KDB 690783	D01		1.570	1.276	1.538		
Date(s) of Tests	Jul.02, 2013 ~ .	Jul.11, 2013						
Antenna Type	Integral Antenn	a						
GPRS	Multislot Class:	12						
Key Feature(s)	This device sup	ports Mobile Hotspot	<u>.</u>					

3.1 KDB 941225 LTE information

Frequency Range:	Band 4: Band 17:											
Channel Bandwidth:	Band 4:				0 MHz 15	MHz 201	MHz					
	Band 17	5 MHZ	, 10 MHZ									
	1.41	N 41 1-	2.1/	II I=	- F.N		nd 4	MUI-	15	NALI—	20	NAL I—
	1.4 MHz Freq.		3 N	Freq.	5 10	5 MHz Freq.		10 MHz Freq.		15 MHz Freq.		MHz Freq.
Channel Number &	Ch.	(MHz)	Ch.	(MHz)	Ch.	(MHz)	Ch.	(MHz)	Ch.	(MHz)	Ch.	(MHz)
Frequency:	19957	1710.7	19965	1711.5	19975	1712.5	20000	1715.0	20025	1717.5	20050	1720.0
	20175	1732.5	20175	1732.5	20175	1732.5	20175	1732.5	20175	1732.5	20175	1732.5
	20393	1754.3	20385	1753.5	20375	1752.5	20350	1750.0	20325	1747.5	20300	1745.0
		Paral 47										
	Band 17 5 MHz 10 MHz											
	Ch. Freq.(MHz) Ch. Freq.(MHz)											
	23755 706.5 73780 709.0											
	23790	710.0	2379		10.0							
	23825	713.5	2380	0 7	11.0							
UE Category & Uplink	UE Cate	Category 3 QPSK, 16QAM										
Description of the LTE	This mod	del have	three Tx	antenna	is.							
•						IA850 ar	nd LTE 1	7. It can	not trans	mit simul	taneous	lv.
Transmitter & antenna		Low band antenna is for GSM850, WCDMA850 and LTE 17. It can not transmit simultaneously. High band antenna is for GSM1900 WCDMA1900 and LTE4 It can not transmit simultaneously										
	- The otl								not traine	onne onne	itarioodo	·y
					can not t	iansiint	Simultai	leously.				
	Please fi	nd the s	ection 12									
LTE voice/data	Data Onl	ly,										
requirements	LTE voice	e is avail	able via ˈ	VoIP. Co	nsiderind	the use	ers may	install 3rd	d party s	oftware		
roquiiomente	to enabl	e VoIP, L	TE Head	SAR is a	also evalu	ıated.						
Identify if MPR is	The EUT	incorpo	rates MP	R as per	3GPP T	S36.101.						
optional or mendatory	The MPF	R is perm	anently b	uilt-in by	design a	as a man	datory.					
	A-MPR is	s not imp	lemented	l.								
	During S	AR testir	ng, A-MP	R was di	sabled b	setting	NS=01	on the R8	S CMW	500.		
Maximum average			RF outpu									
(dBm)			•	•				•				
Identify all other U.S.	GSM85	0/GSM19	00 /WCDM	1A850/W0	CDMA170)/WCDMA	1900/LT	E4/LTE17				
,	: Head 8	k Body S	AR are re	eauired.								
wireless operating		-		-	t required	l as max	imum oı	utput pow	er < 12 r	nW.		
modes, device	- WiFi 2.4				-							
	**** - 2.	. 0	load, bod	,	na motop	0.07	o roquii c					
Maximum average												
conducted output												
·	See sect	ion 11 R	F output	power m	easurem	ents in th	ne SAR i	report.				
power for other wireless												
mode and frequency												
Simultaneous	This dev	ice supp	orts simu	taneous	transmis	sion. Ple	ase find	I the sect	ion 15.			
Power reduction	This dev	ice does	n't implen	nents po	wer redu	ction.						
Description of the test	LTE SAF	R Testing	was per	formed u	sing a Cl	MW500.						

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 4.1).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Figure 4.1 HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

FAX: +82 31 645 6401

www.hct.co.kr

HCT CO., LTD.
74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300

4.2 DASY4 E-FIELD PROBE SYSTEM

4.1 ET3DV6 Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection System

Built-in shielding against static charges

Calibration In air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and

1.8 GHz (accuracy: 8 %)

Frequency 10 MHz to > 3 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal probe axis)

Dynamic 5 $\mu M/g$ to > 100 mW/g;

Range Linearity: \pm 0.2 dB

Surface \pm 0.2 mm repeatability in air and clear liquids

Detection over diffuse reflecting surfaces.

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dissymmetry up to 3 GHz

Compliance tests of WCDMA/LTE Phones

Fast automatic scanning in arbitrary phantoms

Figure 4.1 Photograph of the probe and the Phantom

Figure 3.3 ET3DV6 E-field Probe

The SAR measurements were conducted with the dosimetric

probe

ET3DV6, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity

and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

4.2.1 EX3DV4 Probe Specification

Construction Symmetrical design with triangular core Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1810

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Figure 4.3 EX3DV4 E-field Probe

classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

4.3 PROBE CALIBRATION PROCESS

4.3.1 E-Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than \pm 10 %. The spherical isotropy was evaluated with the proper procedure and found to be better than \pm 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 $\Delta t = \text{exposure time (30 seconds)},$

C = heat capacity of tissue (brain or muscle),

ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field;

where:

σ = simulated tissue conductivity,

= Tissue density (1.25 g/cm³ for brain tissue)

Figure 4.4 E-Field and Temperature measurements at 900 MHz

Figure 4.5 E-Field and temperature measurements at 1.8 GHz

4.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dct_{i}}$$
 with $V_{i} = \text{compensated signal of channel i} (i=x,y,z)$
$$U_{i} = \text{input signal of channel i} (i=x,y,z)$$

$$U_{i} = \text{input signal of channel i} (i=x,y,z)$$

$$Ci = \text{crest factor of exciting field} (DASY parameter)$$

$$dcp_{i} = \text{diode compression point} (DASY parameter)$$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i = \text{compensated signal of channel i } (i = x,y,z)$$

$$Norm_i = \text{sensor sensitivity of channel i } (i = x,y,z)$$

$$\mu V/(V/m)^2 \text{ for E-field probes}$$

$$ConvF = \text{sensitivity of enhancement in solution}$$

$$E = \text{electric field strength of channel i in V/m}$$

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{lol}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{prox} = \frac{E_{tot}^2}{3770}$$
 with $P_{prox} = \text{equivalent power density of a plane wave in W/cm}^2$
 $E_{tot} = \text{total electric field strength in V/m}$

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

4.4 SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Shell Thickness 2.0 mm \pm 0.2 mm (6 \pm 0.2 mm at ear point)

Filling Volume about 25 L

Dimensions 810 mm x 1 000 mm x 500 mm (H x L x W)

Figure 4.6 SAM Phantom

Triple Modular Phantom consists of tree identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Covers prevent evaporation of the liquid. Phantom material is resistant to DGBE based tissue simulating liquids. The MFP V5.1 will be delivered including wooden support only (**non**-standard SPEAG support).

Applicable for system performance check from 700 MHz to 6 GHz (MFP V5.1C) or 800 MHz - 6 GHz (MFP V5.1A) as well as dosimetric evaluations for body-worn operation.

Shell Thickness 2.0 mm \pm 0.2 mm Filling Volume approx. 9.2 L

Dimensions 830 mm x 500 mm (L x W)

Figure 4.7 Triple Modular Phantom

4.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 4.8 Device Holder

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

4.6 Tissue Simulating Mixture Characterization

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to mach within 5%, per the FCC recommendations

Ingredients									
(% by weight)	75	0	835		1 90	00	2 450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	
Water	41.2	51.7	41.45	52.4	54.9	40.4	62.7	73.2	
Salt (NaCl)	1.4	1.0	1.45	1.4	0.18	0.5	0.5	0.04	
Sugar	57	47.2	56.0	45.0	0.0	58.0	0.0	0.0	
HEC	0.2	0.0	1.0	1.0	0.0	1.0	0.0	0.0	
Bactericide	0.2	0.1	0.1	0.1	0.0	0.1	0.0	0.0	
Triton X-100	0.00	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.00	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Diethylene glycol hexyl ether									

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Table 4.1 Composition of the Tissue Equivalent Matter

4.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
Staubli	Robot RX90L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F99/5A82A1/C/01	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE3	446	Jan. 16, 2013	Annual	Jan. 16, 2014
SPEAG	E-Field Probe ET3DV6	1798	Apr. 29, 2013	Annual	Apr. 29, 2014
SPEAG	E-Field Probe EX3DV4	3863	July 13, 2012	Annual	July 13, 2013
SPEAG	Dipole D750V3	1014	July. 18, 2012	Annual	July. 18, 2013
SPEAG	Dipole D835V2	441	Apr. 25, 2013	Annual	Apr. 25, 2014
SPEAG	Dipole D1800V2	2d007	Mar. 19, 2013	Annual	Mar. 19, 2014
SPEAG	Dipole D1900V2	5d038	May. 29, 2013	Annual	May. 29, 2014
SPEAG	Dipole D2450V2	743	Aug. 23, 2012	Annual	Aug. 23, 2013
Agilent	Power Meter(F) E4419B	MY41291386	Nov. 02, 2012	Annual	Nov. 02, 2013
Agilent	Power Sensor(G) 8481	MY41090870	Nov. 02, 2012	Annual	Nov. 02, 2013
HP	Dielectric Probe Kit 85070C	00721521		CBT	
HP	Dual Directional Coupler	16072	Nov. 02, 2012	Annual	Nov. 02, 2013
R&S	Base Station CMW500	1201.0002K50_116858	Jan. 17,2013	Annual	Jan. 17,2014
HP	Base Station E5515C	GB44400269	Feb. 14, 2013	Annual	Feb. 14, 2014
HP	Signal Generator 8664A	3744A02069	Nov. 02, 2012	Annual	Nov. 02, 2013
Hewlett Packard	11636B/Power Divider	11377	Nov. 11. 2012	Annual	Nov. 11. 2013
Agilent	N9020A/ SIGNAL	MY51110020	Jul. 31.2012	Annual	Jul. 31.2013
TESCOM	TC-3000C / BLUETOOTH	3000C000276	Jul. 11, 2012	Annual	Jul. 11, 2013

NOTE:

HCT CO., LTD.

^{1.} The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

^{2.} CBT(Calibrating Before Testing). Prior to testing, the dielectric probe kit was calibrated via the network analyzer, with the specified procedure(calibrated in pure water) and calibration kit(standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- 1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15 mm x 15 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- 3. Around this point, a volume of 32 mm x 32 mm x 30 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

Figure 5.1 SAR Measurement Point in Area Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extend, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the hightest E-field value to determine the averaged SASR-distribution over 10g.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01 quoted below

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

J			≤3 GHz	> 3 GHz			
Maximum distance from (geometric center of pro			5 ± 1 mm	½-8-ln(2) ± 0.5 mm			
Maximum probe angle : normal at the measuren		exis to phantom surface	30° ± 1°	20°±1°			
			≤2 GHz: ≤15 mm 2-3 GHz: ≤12 mm	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$			
Maximum area scan spa	atial resoluti	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of t measurement plane orientation measurement resolution must b dimension of the test device with point on the test device.	, is smaller than the above, the e ≤ the corresponding x or y			
Maximum zoom scan s	patial resolu	tion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2-3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*			
	uniform	grīd: Δz _{Zoom} (n)	≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm			
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm			
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$				
Minimum zoom scan volume x, y, z			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6. DESCRIPTION OF TEST POSITION

6.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

Figure 6.1 Side view of the phantom

Figure 6.2 Handset vertical and horizontal reference lines

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

6.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 1.0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

19 of 188

7. MEASUREMENT UNCERTAINTY

Error	Tol	Prob.			Standard	
Description		dist.	Div.	c _i	Uncertainty	V _{eff}
	(± %)	1			(± %)	
1. Measurement System						
Probe Calibration	6.00	N	1	1	6.00	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	∞
System Detection Limits	1.00	R	1.73	1	0.58	∞
Readout Electronics	0.30	N	1.00	1	0.30	∞
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	∞
2.Test Sample Related	•					
Device Positioning	2.90	N	1.00	1	2.90	145
Device Holder	3.60	N	1.00	1	3.60	5
Power Drift	5.00	R	1.73	1	2.89	∞
3.Phantom and Setup						
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	2.07	N	1	0.64	1.32	9
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	5.02	N	1	0.6	3.01	9
Combind Standard Uncertain	nty				11.13	
Coverage Factor for 95 %					k=2	
Expanded STD Uncertainty					22.25	

Table 7.1 Uncertainty (800 MHz- 2700 MHz)

8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
SPATIAL PEAK SAR * (Brain)	1.60	8.00		
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40		
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00		

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

9. SAR SYSTEM VALIDATION

Per FCC KCB 865664 D02v01, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01 v01. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

0.4.5	SAR Pro		-				Dielectric Parameters			CW Validation				dation
SAR System #	Probe	probe Type	Calibi Po	ration	Dipole	Date	Measured Permittivity	Measured conductivity	Sensitivity	Probe Linearity	Probe Isortopy	MOD. Type	Duty Factor	PAR
1	3863	EX3DV4	Head	750	1014	Dec.20,2012	41.5	0.91	PASS	PASS	PASS	N/A	N/A	N/A
1	3863	EX3DV4	Head	835	441	May.06,2013	42.01	0.92	PASS	PASS	PASS	GMSK	PASS	N/A
1	3863	EX3DV4	Head	1800	2d007	Apr.1,2013	41.2	1.41	PASS	PASS	PASS	GMSK	PASS	N/A
1	3863	EX3DV4	Head	1900	5d038	July.01,2013	40.2	1.42	PASS	PASS	PASS	GMSK	PASS	N/A
1	3863	EX3DV4	Head	2450	743	Dec.20,2012	38.1	1.83	PASS	PASS	PASS	OFDM	N/A	PASS

CAD	SAR Probe				Dielectric Parameters			CW Validation				dation		
System	Probe	probe Type	Calib	oration pint	Dipole	Date	Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isortopy	MOD.	Duty Factor	PAR
#														
6	1798	ET3DV6	Body	750	1014	May.07,2013	54.2	0.98	PASS	PASS	PASS	N/A	N/A	N/A
6	1798	ET3DV6	Body	835	441	May.06,2013	55.88	0.99	PASS	PASS	PASS	GMSK	PASS	N/A
6	1798	ET3DV6	Body	1800	2d007	May.09,2013	51.9	1.54	PASS	PASS	PASS	GMSK	PASS	N/A
6	1798	ET3DV6	Body	1900	5d038	July.01,2013	52.9	1.53	PASS	PASS	PASS	GMSK	PASS	N/A
6	1798	ET3DV6	Body	2450	743	May.08,2013	52.77	1.97	PASS	PASS	PASS	OFDM	N/A	PASS

SAR System Validation Summary

Note;

All measurement were performed using probes calibrated for CW signal only. Modulations in the table bove represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r01. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

10. SYSTEM VERIFICATION

10.1 Tissue Verification

Freq. [MHz]	Date	Probe	Dipole	Liquid	Liquid Temp. [°C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]
750	Jul. 06,	3863		Head	21.5	8 r	41.9	42.2	+ 0.72	± 5
730	2013	3003	1014	Ticau	21.5	σ	0.89	0.908	+ 2.02	± 5
750	Jul. 08,	1798	1014	Body	21.3	٤r	55.5	54.7	- 1.44	± 5
7 30	2013	1730		Dody	21.0	σ	0.96	0.971	+ 1.15	± 5
835	Jul. 02,	3863		Head	Head 21.4 -	εr	41.5	40.4	- 2.65	± 5
000	2013	3003	441	ricau		σ	0.90	0.919	+ 2.11	± 5
835	Jul. 03,	1798	441	Body	ly 21.2	٤r	55.2	56.9	+ 3.08	± 5
000	2013	1730		Dody		σ	0.97	0.98	+ 1.03	± 5
1 800	Jul. 09,	3863		Head	Head 21.6	εr	40.0	39.5	- 1.25	± 5
1 000	2013	3003	2d007		21.0	σ	1.40	1.38	- 1.43	± 5
1 800	Jul. 10,	1798	20007	Body	Body .21.2	εr	53.3	55.1	+ 3.38	± 5
1 000	2013	1730		Dody	.21.2	σ	1.52	1.51	- 0.66	± 5
1 900	Jul. 04,	3863		Head	21.1	εr	40.0	39.8	- 0.50	± 5
1 300	2013	3003	5d038	Ticau	21.1	σ	1.40	1.41	+ 0.71	± 5
1 900	Jul. 05,	1798	30030	Body	21.4	ε r	53.3	52.2	- 2.06	± 5
1 900	2013	1790		Войу	21.4	σ	1.52	1.55	+ 1.97	± 5
2 450	Jul. 11,	3863		Head	21.3	€ r	39.2	41.0	+ 4.59	± 5
2 430	2013	3003	743	ricau	21.0	σ	1.80	1.80	+ 0.00	± 5
2 450	Jul. 11,	1798	143	Body	21.3	εr	52.7	53.5	+ 1.52	± 5
2 400	2013	1730		Dody	21.0	σ	1.95	1.99	+ 2.05	± 5

The Tissue dielectronic parameters were measured prior to the SAR evaluation using an Agilent 85070C Dielectronic Probe Kit and Agilent Network Analyzer.

10.2 System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 750 MHz/835 MHz /1 700 MHz/1 900 MHz/ 2 450MHz by using the system Verification kit. (Graphic Plots Attached)

Freq. [MHz]	Date	Probe (SN)	Dipole (SN)	Liquid	Amb. Temp. [°C]	Liquid Temp. [°C]	1 W Target SAR _{1q} (SPEAG) (mW/g)	Measured SAR _{1q} (mW/g)	1 W Normalized SAR _{1q} (mW/g)	Deviation [%]	Limit [%]
750	Jul. 06, 2013	3863	1014	Head	21.7	21.5	8.33	0.862	8.62	+ 3.48	± 10
750	Jul. 08, 2013	1798	1014	Body	21.5	21.3	8.75	0.894	8.94	+ 2.17	± 10
835	Jul. 02, 2013	3863	441	Head	21.6	21.4	9.68	0.982	9.82	+ 1.45	± 10
835	Jul. 03, 2013	1798	441	Body	21.4	21.2	9.69	0.956	9.56	- 1.34	± 10
1 800	Jul. 09, 2013	3863	2d007	Head	21.8	21.6	38.9	3.65	36.5	- 6.17	± 10
1 800	Jul. 10, 2013	1798	20007	Body	21.4	21.2	38.4	3.84	38.4	+ 0.00	± 10
1 900	Jul. 04, 2013	3863	5d038	Head	21.3	21.1	39.0	3.79	37.9	- 2.82	± 10
1 900	Jul. 05, 2013	1798	50036	Body	21.6	21.4	39.9	3.94	39.4	- 1.25	± 10
2 450	Jul. 11, 2013	3863	743	Head	21.5	21.3	52.7	5.06	50.6	- 3.98	± 10
2 450	Jul. 11, 2013	1798	743	Body	21.5	21.3	51.2	5.09	50.9	- 0.59	± 10

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

10.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the \pm 10 % of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

11. RF CONDUCTED POWER MEASUREMENT

Power measurements were performed using a base station simulator under digital average power. The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more then 5 % occurred, the tests were repeated.

11.1 Output Power Specifications.

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v05.

GSM

GSM850	GSM1900
Target Power : 32.1 dBm	Target Power : 30 dBm
GPRS850	PCS1900
GPRS 1tx : 32.1 dBm/ EGPRS 1tx : 26.0 dBm	GPRS 1tx : 30.0 dBm/ EGPRS 1tx : 26.0 dBm
GPRS 2tx : 31.5 dBm/ EGPRS 2tx : 25.5 dBm	GPRS 2tx : 30.0 dBm/ EGPRS 2tx : 26.0 dBm
GPRS 3tx : 30.0 dBm/ EGPRS 3tx : 24.5 dBm	GPRS 3tx : 30.0 dBm/ EGPRS 3tx : 26.0 dBm
GPRS 4tx : 30.0 dBm/ EGPRS 4tx : 24.5 dBm	GPRS 4tx : 30.0 dBm/ EGPRS 4tx : 26.0 dBm
Tune-up Tolerance : -1.5 dB/ +0.7 dB	

WCDMA

WCDMA850	WCDMA1900
Target Power : 24.0 dBm	Target Power : 23.5 dBm
WCDMA1700	
Target Power : 23.5 dBm	
Tune-up Tolerance: -1.5 dB/ +0.7 dB	

LTE

LTE Band 4	LTE Band 17
Target Power : 23.2 dBm	Target Power : 23.2 dBm
Tune-up Tolerance : -1.5 dB/ +0.7 dB	

Wifi

Ch. / Fre	equency	IEEE 802.11 (in dBm)						
		а	b	g	n			
1	2412	N/A	15.0	13.0	13.0			
6	2437	N/A	16.0	16.0	16.0			
11	2462	N/A	15.0	13.0	13.0			

Tune-up Tolerance : -1.5dB/ +1.0dB

BT.

Target (in dBm)
1.5
Tolerance : - 6.0 dB/ + 4.0 dB

HCT CO., LTD.
74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811
TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

11.2 GSM

Conducted output power measurements were performed using a base station simulator under digital average power.

Base Station Simulator RF Connector EUT

SAR Test for WWAN were performed with a base station simulator Agilent E5515C. Communication between the device and the emulator was established by air link. Set base station emulator to allow DUT to radiate maximum output power during all tests. Please refer to the below worst case SAR operation setup.

- GSM voice: Head SAR

- GPRS Multi-slots: Body SAR with GPRS Multi-slot Class12 with CS 1 (GMSK)

Note;

CS1/MCS7 coding scheme was used in GPRS/EDGE output power measurements and SAR Testing, as a condition where GMSK/8PSK modulation was ensured. Investigation has shown that CS1 - CS4/ MCS5 – MCS9 settings do not have any impact on the output levels in the GPRS/EDGE modes.

GSM Conducted output powers (Burst-Average)

	Channel	Voice	GI	PRS(GMSK	() Data – C	S1	EDGE Data				
Band		GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)	
GSM 850	128	31.8	31.85	31.53	29.7	29.34	25.15	25.2	24.1	23.99	
	190	32.1	32.12	31.19	29.83	29.47	25.13	25.18	24.06	24.0	
830	251	31.71	31.7	31.4	30.02	29.7	25.13	25.11	24.05	23.95	
CCM	512	30.53	30.6	30.44	30.26	29.95	25.2	25.27	25.1	24.9	
1900	661	30.61	30.67	30.52	30.31	30.0	25.23	25.3	25.07	24.92	
	810	30.29	30.24	30.05	29.9	29.6	25.5	25.4	25.1	24.91	

GSM Conducted output powers (Frame-Average)

Band	Channel	Voice	GI	PRS(GMSK	() Data – C	S1	EDGE Data				
		GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)	
0014	128	22.77	22.82	25.51	25.44	26.33	16.12	19.18	19.84	20.98	
GSM 850	190	23.07	23.09	25.17	25.57	26.46	16.1	19.16	19.8	20.99	
650	251	22.68	22.67	25.38	25.76	26.69	16.1	19.09	19.79	20.94	
0014	512	21.5	21.57	24.42	26	26.94	16.17	19.25	20.84	21.89	
GSM 1900	661	21.58	21.64	24.5	26.05	26.99	16.2	19.28	20.81	21.91	
1900	810	21.26	21.21	24.03	25.64	26.59	16.47	19.38	20.84	21.9	

Note:

Time slot average factor is as follows:

- 1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power 9.03 dB
- 2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power 6.02 dB
- 3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power 4.26 dB
- 4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power 3.01 dB

HCT CO., LTD.

11.2 WCDMA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

11.2.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3 GPP TS 34.121, using the appropriate RMC or AMR with TPC(transmit power control) set to all "1s".

11.2.2 Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

11.2.3 Body SAR Measurement

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

11.2.4 Handsets with Release 5 HSDPA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

Sub-Test 1 Setup for Release 5 HSDPA

Sub-test	β_c	βd	β _d (SF)	β_c/β_d	$\beta_{hs}^{(I)}$	CM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

11.2.5 Handsets with Release 6 HSPA (HSDPA/HSUPA)

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.1 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than $\frac{1}{4}$ dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurement should be used to test for head exposure.

Sub- test	βε	$\beta_{\rm d}$	β _d (SF)	β_c/β_d	β _{hs} (1)	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	(dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} ; 47/15 β _{ed2} ; 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15(4)	15/15(4)	64	15/15(4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{ls} = \beta_{ls}/\beta_c = 30/15 \Leftrightarrow \beta_{ls} = 30/15 * \beta_c$.

Note 2: CM = 1 for β_c/β_d =12/15, β_{hc}/β_c=24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

WCDMA 850

2000		3GPP 34.121			Cellular Ba	nd [dBm]			
3GPP Release Version	Mode	Subtest	UL 4132 (826.4)	Power reduction	UL 4183 (836.6)	Power reduction	UL 4233 (846.6)	Power reduction	MPR
Version			DL 4357	(dB)	DL 4408	(dB)	DL 4458	(dB)	
99	WCDMA	12.2 kbps RMC	24.07		24.05		23.9		-
99	WCDMA	12.2 kbps AMR	24		24.03		23.85		-
5		Subtest 1	22.88		22.76		22.7		0
5	HSDPA	Subtest 2	22.91	-0.03	22.8	-0.04	22.65	0.05	0
5	порра	Subtest 3	22.38	0.5	22.32	0.44	22.16	0.54	-0.5
5		Subtest 4	22.37	0.51	22.3	0.46	22.25	0.45	-0.5
6		Subtest 1	22.85		22.98		22.4		0
6	HSUPA	Subtest 2	21.93	0.92	21.89	1.09	21.79	0.61	-2
6	поина	Subtest 3	21.82	1.03	21.66	1.32	21.58	0.82	-1
6		Subtest 4	22.36	0.49	22.15	0.83	22	0.4	-2
6		Subtest 5	22.41	0.44	22.26	0.72	22.1	0.3	0

WCDMA 1700

WCDMA 1700										
3GPP		3GPP 34.121	Cellular Band [dBm]							
Release Version	Mode	Subtest	UL 9262 (1852.4)	Power reduction	UL 9400 (1880.0)	Power reduction (dB)	UL 9538 (1907.6)	Power reduction	MPR	
Version			DL 9662	(dB	DL 9800		DL 9938	(dB)		
99	WCDMA	12.2 kbps RMC	23.62		23.79		23.7		-	
99	WCDMA	12.2 kbps AMR	23.61		23.68		23.65		-	
5		Subtest 1	22.7		22.68		22.65		0	
5	ПСПВУ	Subtest 2	22.57	0.13	22.68	0	22.6	0.05	0	
5	HSDPA	HODEA	Subtest 3	22.15	0.55	22.16	0.52	22.14	0.51	-0.5
5		Subtest 4	22.14	0.56	22.14	0.54	22.12	0.53	-0.5	
6		Subtest 1	22.38		22.75		21.95		0	
6	HSUPA	Subtest 2	21.54	0.84	21.38	1.37	21.32	0.63	-2	
6		Subtest 3	21.43	0.95	21.68	1.07	21.48	0.47	-1	
6		Subtest 4	21.88	0.5	21.5	1.25	21.97	-0.02	-2	
6		Subtest 5	21.65	0.73	22.33	0.42	21.9	0.05	0	

WCDMA 1900

2000		3GPP 34.121	Cellular Band [dBm]							
3GPP Release Version	Mode	Subtest	UL 9262 (1852.4)	Power reduction	UL 9400 (1880.0)	Power reduction	UL 9538 (1907.6)	Power reduction	MPR	
10.00.			DL 9662	(dB	DL 9800	(dB)	DL 9938	(dB)		
99	WCDMA	12.2 kbps RMC	23.04		23.3		23.03		-	
99	WCDMA	12.2 kbps AMR	22.95		22.98		23		-	
5		Subtest 1	21.98		21.97		22.03		0	
5	HSDPA	Subtest 2	21.95	0.03	21.96	0.01	22.01	0.02	0	
5	HOUPA	HODI A	Subtest 3	21.4	0.58	21.44	0.53	21.55	0.48	-0.5
5		Subtest 4	21.39	0.59	21.43	0.54	21.54	0.49	-0.5	
6		Subtest 1	21.33		21.73		21.4		0	
6	HSUPA	Subtest 2	20.68	0.65	20.93	0.8	20.97	0.43	-2	
6		Subtest 3	20.89	0.44	20.9	0.83	20.68	0.72	-1	
6		Subtest 4	21	0.33	21.05	0.68	21.2	0.2	-2	
6		Subtest 5	21.93	-0.6	21.27	0.46	21.34	0.06	0	

WCDMA Average Conducted output powers

HCT CO., LTD.
74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811
TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

11.3 LTE

SAR testing was performed according to the FCC KDB 941225 D05v02 publication.

This DUT is developed base on MPR. The MPR is mandatory.

The device will not operate with any other MPR setting than that stated in the table as indicated.

SAR Testing was performed using a CMW500. UE transmits with Maximum output power during SAR testing. A-MPR has been disabled for all SAR tests by setting NS=01 on the R&S CMW500.

Note:

The EUT enables maximum power reduction in accordance with 3GPP 36.101. The MPR settings are configured during the manufacture process and are not configurable by the network, carrier, or end user.

FCC ID: Report No.: HCTA1307FS07 V65C6522 Date of Issue: Jul. 12, 2013

LTE Band 4

LTE Band 4 Conducted Power – 1.4 MHZ Bandwidth

Bandwidth	UL Channel	UL Freq.(MHz)	Modulation	RB Size	RB Offset	Max.Average Power (dBm)	Target MPR (dB)
				1	0	23.36	0
				1	3	23.38	0
			0.7017	1	5	23.33	0
			QPSK	3	0	23.38	0
				3	1	23.26	0
				3	3	23.32	0
1.4MHz	19956	1711.5		6 1	0	22.39 22.45	1
				1	3	22.45	1
				1	5	22.4	1
			16QAM	3	0	22.54	1
			TOQAM	3	1	22.42	1
				3	3	22.35	1
				6	0	21.22	2
	20175	1732.5	QPSK	1	0	23.2	0
				1	3	23.2	0
				1	5	23.15	0
				3	0	23.13	0
				3	1	23.14	0
				3	3	23.13	0
4 41411-				6	0	22.2	1
1.4MHz			16QAM	1	0	22.28	1
				1	3	22.21	1
				1	5	22.23	1
				3	0	22.32	1
				3	1	22.29	1
				3	3	22.28	1
				6	0	21.19	2
				1	0	23.08	0
				1	3	23.16	0
				1	5	23.18	0
			QPSK	3	0	23.11	0
				3	1	23.13	0
1.4MHz		1753.5		3	3	23.12	0
	20394			6	0	22.23	1
				1	0	22.13	1
				1	3 5	22.2 22.29	1
			16QAM	3	0	22.29	1
				3	1	22.18	1
				3	3	22.27	1
				6	0	21.15	2
		l		<u> </u>		21.10	۷.

LTE Band 4 Conducted Power – 3 MHZ Bandwidth

Bandwidth Channel Ch	LIE Band 4 Conducted Power – 3 MHZ Bandwidth								
MHz 19965 1711.5 OPSK OP	Bandwidth			Modulation	RB Size			Target MPR (dB)	
MHz 19965 1711.5 OPSK OP					1	n	23 31	0	
3MHz 19965 1711.5 1711.5 19965 1711.5 19965 1711.5 18 0 22.18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
3MHz 19965 1711.5									
3MHz 19965 1711.5 8				OPSK					
3MHz 19965 1711.5				Qi Oit					
3MHz 19965 1711.5									
3MHz 19965 1711.5									
3MHz 20175 173.5 16QAM 8 0 21.14 2 2 2 3 1 1 0 23.22 0 1 1 1 1 4 23.4 0 2 1 1 1 1 4 23.4 0 2 2 1 1 1 1 1 4 23.4 0 2 2 1 1 1 1 1 4 23.4 0 2 2 1 1 1 1 1 4 23.4 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3MHz	19965	1711.5						
3MHz 20175 1732.5 16QAM 1									
3MHz 20175 1732.5 176QAM 8 0 21.24 2 2 1 2 1 1 0 23.22 0 1 7 22.18 1 1 1 1 4 22.57 1 1 1 1 4 22.57 1 1 1 1 4 22.57 1 1 1 1 4 22.57 1 1 1 1 4 22.57 1 1 1 1 4 22.57 1 1 1 1 4 22.57 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 4 22.57 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
8 3 21.14 2 8 7 21.14 2 15 0 21.2 2 11 0 23.22 0 11 7 23.13 0 11 14 23.4 0 15 0 22.19 1 8 3 22.16 1 8 7 22.18 1 15 0 22.1 1 15 0 22.1 1 16QAM 16QAM 16QAM 20185 1753.5 8 7 21.1 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 15 0 21.17 2 16QAM 1 14 23.02 0 1 14 23.02 0 1 1 14 23.02 0 2 2.99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				16OAM					
B				100/11/1					
3MHz 20175 1732.5 1760 21.2 2 1 1 0 23.22 0 1 1 7 23.13 0 1 1 14 23.4 0 1 1 14 22.57 1 1 1 14 22.57 1 1 1 1 14 22.57 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
3MHz 20175 1732.									
3MHz 20175 1732.									
3MHz 20175 1732.		20175	1732.5	QPSK					
3MHz 20175 1732.5 1732.5 1732.5 1732.5 1732.5 1732.5 188									
3MHz 20175 1732.5 8									
3MHz 20175 1732.5									
3MHz 20175 1732.5 15 0 22.1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1									
3MHz 20175 1732.5 1									
3MHz 20385 16QAM 11	3MHz			16QAM					
16QAM									
3MHz 16QAM 8 0 21.18 2 8 7 21.1 2 15 0 23.04 0 1 7 22.95 0 1 1 1 4 23.02 0 1 1 1 8 7 22.11 1 8 3 22.11 1 8 3 22.04 1 1 8 7 22.06 1 15 0 22.11 1 1 1 1 1 1 1 1 1 1 1 1									
B 3 21.12 2									
B 7 21.1 2									
3MHz 20385 15 0 21.17 2 1 0 23.04 0 1 7 22.95 0 1 14 23.02 0 22.11 1 8 8 3 22.04 1 8 7 22.06 1 15 0 22.09 1 1 1 7 21.62 1 1 1 14 21.66 1 1 1 14 21.66 1 1 14 21.66 1 1 14 21.66 1 1 14 21.66 1 1 14 21.66 1 1 14 21.66 1 1 14 21.66 1 1 1 14 21.66 1 1 1 14 21.66 1 1 1 14 21.66 1 1 1 14 21.66 1 1 1 14 21.66 1 1 1 14 21.68 2 8 7 20.99 2									
3MHz 20385 1753.5 10									
3MHz 20385 1753.5 1 7 22.95 0 1 1 14 23.02 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
3MHz 20385 1753.5 1 14 23.02 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		20385	1753.5						
3MHz 20385 PSK 8 0 22.11 1 1 8 3 22.04 1 1 8 7 22.06 1 1 15 0 22.09 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
3MHz 20385 1753.5 8 3 22.04 1 1 8 7 22.06 1 1 15 0 22.09 1 1 1 0 21.68 1 1 7 21.62 1 1 14 21.66 1 1 14 21.66 1 1 14 21.66 1 1 14 21.08 2 1 1 1 14 21.08 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				OPSK					
3MHz 20385 1753.5 8 7 22.06 1 1 15 0 22.09 1 1 1 1 0 21.68 1 1 1 7 21.62 1 1 1 14 21.66 1 1 1 14 21.66 1 1 1 14 21.08 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Q. 010					
3MHz 20385 1753.5 15 0 22.09 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3MHz								
3MHZ 20385 1753.5 1 0 21.68 1 1 7 21.62 1 1 14 21.66 1 1 16QAM 8 0 21.15 2 8 3 21.08 2 8 7 20.99 2									
1 7 21.62 1 1 14 21.66 1 16QAM 8 0 21.15 2 8 3 21.08 2 8 7 20.99 2									
1 14 21.66 1 16QAM 8 0 21.15 2 8 3 21.08 2 8 7 20.99 2									
16QAM 8 0 21.15 2 8 3 21.08 2 8 7 20.99 2				16QAM					
8 3 21.08 2 8 7 20.99 2									
8 7 20.99 2									
					15	0	20.94	2	

LTE Band 4 Conducted Power – 5 MHZ Bandwidth

Bandwidth							
	UL Channel	UL Freq.(MHz)	Modulation	RB Size	RB Offset	Max.Average Power (dBm)	Target MPR (dB)
				1	0	23.41	0
				1	12	23.06	0
				1	24	23.01	0
			QPSK	12	0	22.2	1
				12	6	22.14	1
				12	11	21.99	1
5.44	40075	4740.5		25	0	21.99	1
5 MHz	19975	1712.5		1	0	22.42	1
				1	12	22.15	1
				1	24	22.12	1
			16QAM	12	0	21.23	2
			·	12	6	21.13	2
				12	11	20.99	2
				25	0	21.07	2
			QPSK	1	0	23.23	0
				1	12	23.21	0
				1	24	23.4	0
				12	0	22.15	1
				12	6	22.15	1
				12	11	22.22	1
				25	0	22.11	1
5 MHz	20175	1732.5	16QAM	1	0	22.23	1
				1	12	22.19	1
				1	24	22.3	1
				12	0	21.13	2
				12	6	21.16	2
				12	11	21.18	2
				25	0	21.09	2
				1	0	23.05	0
		1752.5		1	12	23.22	0
				1	24	23.21	0
			QPSK	12	0	22.15	1
				12	6	22.19	1
				12	11	22.2	1
				25	0	22.08	<u>·</u> 1
5 MHz	20375			1	0	21.7	1
				1	12	21.87	1
			16QAM	1	24	21.78	1
				12	0	21.14	2
				12	6	21.2	2
				12	11	21.14	2
				25	0	21.07	2

LTE Band 4 Conducted Power – 10 MHZ Bandwidth

LIE Band 4 Conducted Power – 10 MHZ Bandwigth								
Bandwidth	UL Channel	UL Freq.(MHz)	Modulation	RB Size	RB Offset	Max.Average Power (dBm)	Target MPR (dB)	
				1	0	23.19	0	
				1	24	23.05		
				1	49	22.81		
			QPSK	25	0	22.08	1	
				25	12	22.07	Bm) MPR (dB) 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 1 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 4 4 5 4 6 6 7 6 8 7 9	
				25	24	22.04		
40141	00000	4545		50	0	21.9		
10MHz	20000	1715		1	0	22.42		
				1	1 24 22.3	1		
				1	49	22.11		
			16QAM	25	0	21.1	2	
				25	12	21		
				25	24	21.05		
				50	0	20.83		
				1	0	23		
				1	12	23.09		
				1 24 23.02				
			QPSK	25	0	22.03		
				25	12	22.04		
				25	24	22.17		
				50	0	21.95		
10MHz	20175	1732.5	1732.5	1	0	21.7		
				1	24	21.66		
				1	49	21.6		
				25	0	21.03		
				25	12	21.11		
				25	24	21.18		
				50	0	21		
				1	0	23.1	0	
				1	24	23.05	0	
				1	49	23.16	0	
			QPSK	25	0	21.97	1	
				25	12	21.95	1	
				25	24	21.91	1	
400411	00050	4750		50	0	21.86	1	
10MHz	20350	1750		1	0	22.21	1	
				1	24	22.18		
				1	49	22.25		
			16QAM	25	0	20.96	2	
				25	12	20.95	2	
				25	24	20.93	2	
				50	0	20.76	2	

LTE Band 4 Conducted Power – 15 MHZ Bandwidth

	LTE Baild 4 Colludated Fower - 13 MITE Baildwidth								
Bandwidth	UL Channel	UL Freq.(MHz)	Modulation	RB Size	RB Offset	Max.Average Power (dBm)	Target MPR (dB)		
				1	0	23.31	0		
				1	37	23.07	0		
				1	74	23.04	0		
			QPSK	36	0	21.91	1		
				36	18	21.92	0 MPR (dB) 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
				36	38	21.82	1		
458411-	20025	4747 5		75	0	21.75	1		
15MHz	13101112 20023	1717.5		1	0 22.71	1			
				1	37	22.27	1		
				1	74	22.25	1		
			16QAM	36	0	20.95	Ax.Average wer (dBm) Target MPR (dB) 23.31 0 23.07 0 23.04 0 21.91 1 21.92 1 21.75 1 22.71 1 22.27 1 22.25 1 20.95 2 20.92 2 20.88 2 20.78 2 22.96 0 23.1 0 23.07 0 21.86 1 21.99 1 21.86 1 22.06 1 22.12 1 22.12 1 22.12 1 20.84 2 20.87 2 20.81 2 23.03 0 22.97 0 21.94 1 21.99 1		
				36	18	18 20.92 2	2		
				<u> </u>	20.88	2			
			75	0	20.78	2			
				1	0	22.96	0		
			1 37 23	23.1	0				
				1	74	23.07) MPR (dB) 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 0 0 0 0		
			QPSK	36	0	21.86			
				36	18	21.99			
				36	38	21.96			
45141-	00475	4700 5		75	0	21.86	1		
15MHz	20175	1732.5		1	0	22.06	1 1 1 1 1 1 1		
			1 37 22.12	22.12	1				
				1	74	22.16	1		
			16QAM		20.84	2			
				36	18	20.92	2		
				36	38	20.87	2		
				75	0	20.81	2		
				1	0	23.05	0		
				1	37	23.03	0		
				1	74	22.97	0		
			QPSK	36	0	21.94	1		
				36	18	21.99	1		
				36	38	21.95	1		
151411-	20225	1747 5		75	0	21.96	2 2 0 0 0 1 1 1 1 1		
15MHz	20325	1747.5		1	0	21.85	1		
				1	37	21.73	1		
				1	74		1		
			16QAM	36	0		2		
				36	18	20.97			
				36	38	20.91			
				75	0	20.89	2		

LTE Band 4 Conducted Power – 20 MHZ Bandwidth

		sand 4 Cond		201	Julia Dali		
Bandwidth	UL Channel	UL Freq.(MHz)	Modulation	RB Size	RB Offset	Max.Average Power (dBm)	Target MPR (dB)
				1	0	23.43	0
				1	49	22.99	0
				1	99	23.2	0
			QPSK	50	0	21.87	1
				50	25	21.89	1
				50	49	21.86	1
201411-	20MHz 20500	4700		100	0	21.84	1
20MHz	20500	1720		1	0	22.3	1
				1	49	22.04	1
			1 99 22.28 16QAM 50 0 20.7	1			
			16QAM		2		
					2		
			50	49	20.7	2	
				100	0	20.71	2
				1	0	22.9	0
				1	49	22.92	0
				1	99	23.05	0
			QPSK	50	0	21.85	1
				50	25	21.91	1
				50	49	21.93	1
20MHz	20175	1732.5		100	0	21.84	1
201011 12	20173	1732.5	2.5	1	0	21.53	1
				1	49	21.6	1
				1	99	21.65	1
			16QAM	50	0	20.9	2
				50	25	20.94	2
				50	49	20.92	2
				100	0	20.81	2
				1	0	23.1	0
				1	49	23	0
				1	99	22.93	0
			QPSK	50	0	21.85	1
				50	25	21.86	1
				50	49	21.97	1
20MHz	20300	1745		100	0	21.82	1
ZOIVII IZ	20300	1743		1	0	21.95	1
				1	49	21.84	1
				1	99	21.81	1
			16QAM	50	0	20.88	2
				50	25	20.91	2
				50	49	20.84	2
				100	0	20.77	2

HCTA1307FS07 Report No.: FCC ID: V65C6522 Date of Issue: Jul. 12, 2013

LTE Band 17

LTE Band 17 Conducted Power – 5 MHZ Bandwidth

Bandwidth	UL Channel	UL Freq.(MHz)	Modulation	RB Size	RB Offset	Max.Average Power (dBm)	Target MPR (dB)				
				1	0	23.49	0				
				1	12	23.23	0				
				1	24	23.22	0				
			QPSK	12	0	22.32	0 0				
				12	6	22.2	1				
				12	11	22.25	1				
5 MHz	22755	706.5		25	0	22.15	1				
5 IVIHZ	23755	706.5		1	0	22.8	1				
				1	12	22.6	1				
				1	24	22.54	1				
			16QAM	12	0	21.26	22.2 1 22.25 1 22.15 1 22.8 1 22.6 1 22.54 1 21.26 2 21.15 2 21.13 2 20.97 2 23.32 0 23.43 0 22.24 1 22.27 1 22.13 1 22.6 1 22.87 1 21.16 2				
				12	6	21.15	5 2 3 2 7 2 2 0				
			12	11	21.13	2					
				25	0	20.97	2				
				1	0	23.32	0				
				1	12	23.24	0				
				1	24	23.43	0				
			QPSK	12	0	22.24	1				
				12	6	22.22	1				
				12	11	22.27	1				
5 MHz	23790	710		25	0	22.13	1				
3 1011 12	23790	710		1	0	22.6	1 1 1 1 1				
			16QAM	1	12	22.55	1				
				1	24	22.87					
				12	0	21.16	2				
				12	6	21.13					
					12	11	21.27				
				25	0	21.03	2				
				1	0	23.31	0				
				1	12	23.47					
				1	24	22.97	0				
			QPSK	12	0	22.43	1				
				12	6	22.54					
				12	11	22.37					
5 MHz	23825	713.5		25	0	22.23					
0 IVII 12	20020	7 10.0		11	0	21.88					
				11	12	22.08					
				1	24	21.64					
			16QAM	12	0	21.4					
				12	6	21.52					
				12	11	21.46					
				25	0	21.3	2				

LTE Band 17 Conducted Power – 10 MHZ Bandwidth

Bandwidth	UL Channel	UL Freq.(MHz)	Modulation	RB Size	RB Offset	Max.Average Power (dBm)	Target MPR (dB)		
				1	0	23.35	0		
				1	24	23.15	0		
				1	49	23.54	0		
			QPSK	25	0	22.12	1		
				25	12	22.1	1		
				25	24	22.24	1		
400411-	00700	700		50	0	22.05	1		
10MHz	23780	709		1	0	21.91	1		
				1 24 21.73	21.73	1			
			1 49	22.05	1				
			16QAM	25	0 21.16 2	2			
				25	12	21.06	2		
				25	24	21.29	2		
				50	0	21.1	2		
				1	0	23.25	0		
				1	12	23.13	0		
				1	24	23.47	0		
			QPSK	25	0	22.06	1		
				25	12	22.16	1		
				25	24	22.32	1		
40041.1-	00700	740		25	0	22.09	1		
10MHz	23790	710	710	1	0	21.9	1		
						1	24	21.78	1
			16QAM	1	49	22.07	1		
				25	0	21.05	2		
				25	12	21.11	2		
				25	24	21.35	2		
				50	0	21.08	2		
				1	0	23.17	0		
				1	24	23.34	0		
				1	49	23.17	0		
			QPSK	25	0	22.02	1		
				25	12	22.13	1		
				25	24	22.31	1		
10MHz	23800	711		50	0	22.1	1		
IUIVITZ	23000	'''		1	0	22.34	1		
				1	24	22.44	1		
				1	49	22.34	1		
			16QAM	25	0	21.03	2		
				25	12	21.17	2		
				25	24	21.42	2		
				50	0	21.06	2		

11.4 WiFi

11.4.1 SAR Testing for 802.11b/g/n modes

General Device Setup

Normal Network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

Frequency Channel Configurations

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11.802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; Channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz § 15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11,15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels.

These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

		be sold	A 200 D 100 D	Turbo	-De	fault Test C	hanne	ls"
Mo	ode	GHz	Channel	Channel		.247	UNII	
		2200			802.11b	802.11g	C.411	
		2.412	1		- 10	V		-
802.1	1 b/g	2.437	6	6	V	V.		
	_	2.462	- 11		W.	V	_	_
		5.18	36				1	
		5.20	40	42 (5.21 GHz)				-
		5.22	44	SALE OF SALES				-
		5.24	48	50 (5:25 GHz)	_		1	
		5.26	52	Section 1			V	
		5.28	56	58 (5.29 GHz)				-
		5.30	60					
		5.32	64				V	-
	475	5.500	100					
	UNI	5.520	104				-1	
		5.540	108					
802.11a		5.560	112				_	
		5,580	116	CONTRACTOR OF			- 6	
		5.600	120	Unknown	1			
		5.620	124				4	
		5.640	128		-			
		5.660	132					
		5.680	136				4.	
		5.700	140					
	UNII	5.745	149		V		- 4	
	or	5,765	153	152 (5.76 GHz)	-			-
	§15.247	5.785	157	700 17 00 000	N.			
	03.5.048	5.805	161	160 (5.80 GHz)			4	
	§15.247	5.825	165		N.			

802.11 Test Channels per FCC Requirements

HCTA1307FS07 FCC ID: V65C6522 Date of Issue: Jul. 12, 2013 Report No.:

■ TEST RESULTS-Average

Conducted Output Power Measurements (802.11b Mode)

802.11b	Mode		Measured	
Frequency[MHz]	Channel No.	Rate (Mbps)	Power(dBm) + Duty Cycle Factor	Limit (dBm)
2412		1 Mbps	14.98	30
	4	2 Mbps	15.07	30
	1	5.5 Mbps	15.14	30
		11 Mbps	15.25	30
		1 Mbps	15.94	30
0.407		2 Mbps	15.95	30
2437	6	5.5 Mbps	16.06	30
		11 Mbps	16.18	30
		1 Mbps	14.92	30
	44	2 Mbps	15.01	30
2462	11	5.5 Mbps	15.06	30
		11 Mbps	15.15	30

Conducted Output Power Measurements (802.11g Mode)

802.11g	Mode		Measured		
		Rate	Power(dBm)	Limit	
Frequency[MHz]	Channel No.	(Mbps)	5 , 5 , 5 ,	(dBm)	
			Duty Cycle Factor		
		6 Mbps	13.10	30	
		9 Mbps	13.15	30	
		12 Mbps	13.18	30	
2412	1	18 Mbps	13.21	30	
2412	ı	24 Mbps	13.24	30	
		36 Mbps	13.32	30	
		48 Mbps	13.33	30	
		54 Mbps	13.35	30	
		6 Mbps	15.57	30	
		9 Mbps	15.55	30	
		12 Mbps	15.63	30	
2437	6	18 Mbps	15.68	30	
2431		24 Mbps	15.70	30	
		36 Mbps	15.76	30	
		48 Mbps	15.80	30	
		54 Mbps	15.83	30	
		6 Mbps	12.66	30	
		9 Mbps	12.68	30	
		12 Mbps	12.72	30	
2462	11	18 Mbps	12.70	30	
2462	11	24 Mbps	12.71	30 30 30 30 30 30 30 30 30 30 30	
		36 Mbps	12.85	30	
		48 Mbps	12.78	30	
		54 Mbps	12.83	30	

Conducted Output Power Measurements (802.11n Mode)

802.11n	Mode		Measured	
Frequency[MHz]	Channel No.	Rate (Mbps)	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		6.5 Mbps	12.92	30
		13 Mbps	13.04	30
		19.5 Mbps	13.07	30
2412	1	26 Mbps	13.04	30
2412	ı	39 Mbps	13.12	30
		52 Mbps	13.13	30
		58.5 Mbps	13.15	30
		65 Mbps	13.14	30
		6.5 Mbps	15.58	30
		13 Mbps	15.69	30
		19.5 Mbps	15.70	30
2437	6	26 Mbps 15.72	15.72	30
2437	0	39 Mbps	15.79	30
		52 Mbps	14.78	30
		58.5 Mbps	14.78	30
		65 Mbps	13.90	30
		6.5 Mbps	12.61	30
		13 Mbps	12.74	30
		19.5 Mbps	12.79	30
2462	44	26 Mbps	13.12 30 13.13 30 13.15 30 13.14 30 15.58 30 15.69 30 15.70 30 15.72 30 15.79 30 14.78 30 13.90 30 12.61 30 12.74 30	30
2462	11	39 Mbps	12.78	30
		52 Mbps	12.84	30
		58.5 Mbps	12.85	30
		65 Mbps	12.99	30

Note;

SAR testing was performed according to the FCC KDB 248227D01

HCT CO., LTD.

11.4 SAR Test Exclusions Applied

11.4.1 Wi-Fi/BT

Per FCC KDB 447498 D01v05, The SAR exclusion threshold for distance < 50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel(mW)}}{\textit{Test Separation Distance (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

. Mode	Frequency	Maximum Allowed Power	Separatuin Distance	< 2.0
	[MHz]	[mW]	[mm]	≤ 3.0
Bluetooth	2440	4	10	0.55

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth SAR was not required $[(4/10)^*\sqrt{2.440}] = 0.55 < 3.0$.

his device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6W/kg. When standalone SAR is not required to be measured per FCC KDB 447498 D01v05 4.3.22, the following equation must be used to estimate the standalone 1-g SAR for simultaneous transmission assessment involving that transmitter

Estimated SAR =
$$\frac{\sqrt{f(\text{GHZ})}}{7.5} * \frac{(\text{Max Power of channel mW})}{\text{Min Seperation Distance}}$$
.

. Mode	Frequency	Maximum	Maximum Separatuin	
		Allowed Power	Distance (Body)	(Body)
	[MHz]	[mW]	[mm]	[W/kg]
Bluetooth	2440	4	10	0.07

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. The Estimated SAR results were determined according to FCC KDB447498 D01v05

12. SAR Test configuration & Antenna Information

12.1 Mobile Hotspot sides for SAR Testing configurations

Mode	Rear	Front	Left	Right	Bottom	Тор
GSM 850	Yes	Yes	Yes	No	Yes	No
GSM 1 900	Yes	Yes	No	Yes	Yes	No
WCDMA 850	Yes	Yes	Yes	No	Yes	No
WCDMA 1 700	Yes	Yes	No	Yes	Yes	No
WCDMA 1 900	Yes	Yes	No	Yes	Yes	No
LTE Band 4	Yes	Yes	No	Yes	Yes	No
LTE band 17	Yes	Yes	Yes	No	Yes	No
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes

12.2 Antenna and Device Information

[Back side View]

Note;

Per FCC KDB Publication 941225 D06v01, we performed the SAR testing at 1 cm from the top & bottom surfaces and also from side edges with a transmitting antenna \leq 2.5 cm from an edge.

*Please see the C6522N_Antenna distance for futher information.

13. SAR TEST DATA SUMMARY

13.1 Measurement Results (GSM850 Head SAR)

Frequency		Modulation	Conducted Power	Power Drift Battery		Phantom Measured	Measured	Scaling	Scaled	Plot
MHz	Channel	oud.duo	(dBm) (dB) Position SAI	SAR(mW/g)	Facor	SAR(mW/g)	No.			
836.6	190		32.10	0.019	Standard	Left Ear	0.430	1.175	0.505	1
836.6	190		32.10	- 0.063	Standard	Left Tilt	0.216	1.175	0.254	-
836.6	190	GSM850	32.10	0.087	Standard	Right Ear	0.270	1.175	0.317	-
836.6	190		32.10	0.019	Standard	Right Tilt	0.208	1.175	0.244	-
	ANSI/ IEEE C95.1 - 1992 Safety Limit					Head				
	Spatial Peak					1.6 W/kg (mW/g)				
	Uncontrolled Exposure/ General Population						Average	ed over 1 gran	n	

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Battery Type Standard Extended Slim Batteries are fully charged for all readings.
- 6 Test Signal Call Mode $\ \square$ Manual Test cord $\ \boxtimes$ Base Station Simulator
- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.

HCT CO., LTD.

13.2 Measurement Results (GSM1900 Head SAR)

Free	Frequency Modulatio		Conducted Power Power Drift		Battery	Phantom Position	Measured SAR(mW/g)	Scaling	Scaled	Plot No.
MHz	Channel	Woddiation	(dBm) (dB)	Facor	SAR(mW/g)					
1 880.0	661		30.36	0.071	Standard	Left Ear	0.376	1.081	0.407	-
1 880.0	661		30.36	- 0.131	Standard	Left Tilt	0.102	1.081	0.110	-
1 880.0	661	GSM 1900	30.36	0.024	Standard	Right Ear	0.393	1.081	0.425	2
1 880.0	661	1	30.36	- 0.071	Standard	Right Tilt	0.159	1.081	0.172	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							Head .6 W/kg (mW/g raged over 1 gr		

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001]
2	All modes of operation were investigated and the worst-case are reported

3 Measured Depth of Simulating Tissue is $15.0 \text{ cm} \pm 0.2 \text{ cm}$.

4	Tissue parameters	and temperatures are liste	d on the SAR plot.	
5	Battery Type	Standard	□ Extended	☐ Slim
		Batteries are fully of	harged for all readings.	

6 Test Signal Call Mode $\ \square$ Manual Test cord $\ \boxtimes$ Base Station Simulator

According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.

HCT CO., LTD.

13.3 Measurement Results (WCDMA850 Head SAR)

Fre	equency			Power Drift Battery		Phantom Position	Measured	Scaling	Scaled	Plot
MHz	Channel	Modulation	(dBm) (dB)	SAR(mW/g)	Facor		SAR(mW/g)	No.		
836.6	4183		24.05	0.017	Standard	Left Ear	0.615	1.161	0.714	3
836.6	4183		24.05	- 0.134	Standard	Left Tilt	0.327	1.161	0.380	-
836.6	4183	WCDMA850	24.05	0.041	Standard	Right Ear	0.373	1.161	0.433	-
836.6	4183		24.05	- 0.047	Standard	Right Tilt	0.286	1.161	0.332	-
	ANSI/ IEEE C95.1 - 1992 Spatial Peak					Head 1.6 W/kg (mW/g)				
	Uncontrolled Exposure/ General Population					Averaged over 1 gram				

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typical	
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 200]	1].

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.

•	nicodo paramietoro ama t	omporataroo aro notoa or	o, p.o	
5	Battery Type	Standard	□ Extended	☐ Slim
		Batteries are fully charg	ged for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulator	•

- 7 According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 8 WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

HCT CO., LTD.

13.4 Measurement Results (WCDMA1700 Head SAR)

Freq	Frequency Modulation		Conducted Power	Power Drift	Battery	Phantom Position	Measured SAR(mW/g)	Scaling Facor	Scaled SAR(mW/g)	Plot No.
MHz	Channel		(dBm)	(dB)		1 0010011	e, a (mv/g)	1 4001	S, a (mv/g)	110.
1 712.4	1312		23.62	- 0.052	Standard	Left Ear	0.859	1.143	0.982	-
1 732.4	1412		23.79	- 0.093	Standard	Left Ear	0.833	1.099	0.915	-
1 752.6	1512		23.70	- 0.079	Standard	Left Ear	0.833	1.122	0.935	-
1 732.4	1412		23.79	0.086	Standard	Left Tilt	0.308	1.099	0.338	-
1 712.4	1312	WCDMA1700	23.62	0.127	Standard	Right Ear	1.10	1.143	1.257	4
1 732.4	1412		23.79	0.123	Standard	Right Ear	1.08	1.099	1.187	-
1 752.6	1512		23.70	0.139	Standard	Right Ear	1.04	1.122	1.167	-
1 732.4	1412		23.79	0.054	Standard	Right Tilt	0.365	1.099	0.401	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							Head 6 W/kg (mW/g raged over 1 g		

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- Tissue parameters and temperatures are listed on the SAR plot.

•	Tree are parameters are a		o p.o	
5	Battery Type	Standard	□ Extended	\square Slim
		Batteries are fully charg	ged for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulator	•

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 8 WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

HCT CO., LTD.

13.5 Measurement Results (WCDMA1900 Head SAR)

Freq	uency Channel	Modulation	Conducted Power (dBm)	Power Drift (dB)	Battery	Phantom Position	Measured SAR(mW/g)	Scaling Facor	Scaled SAR(mW/g)	Plot No.
			,	, ,						
1 852.4	9262		23.04	0.025	Standard	Left Ear	0.732	1.306	0.956	-
1 880.0	9400		23.30	- 0.032	Standard	Left Ear	0.651	1.230	0.801	-
1 907.6	9538		23.03	0.075	Standard	Left Ear	0.689	1.309	0.902	-
1 880.0	9400		23.30	- 0.087	Standard	Left Tilt	0.194	1.230	0.239	-
1 852.4	9262	WCDMA1900	23.04	0.077	Standard	Right Ear	0.749	1.306	0.978	5
1 880.0	9400		23.30	0.139	Standard	Right Ear	0.730	1.230	0.898	-
1 907.6	9538		23.03	0.194	Standard	Right Ear	0.736	1.309	0.964	-
1 880.0	9400		23.30	- 0.048	Standard	Right Tilt	0.288	1.230	0.354	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							Head 6 W/kg (mW/g raged over 1 g		

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001]
2	All modes of operation were investigated and the worst-case are reported.

- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.

-			p	
5	Battery Type			☐ Slim
		Batteries are fully charg	ged for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulator	

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 8 WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

HCT CO., LTD.

13.6 Measurement Results (LTE Band 17 Head SAR)

Fred	quency	Modula	Conducted Power	Power Drift	Battery	Phantom	RB	RB	Measured SAR	Scaling	Scaled SAR	MPR.	Plot
MHz	ch.	tion	(dBm)	(dB)		Position	Size	Offset	(mW/g)	Facor	(mW/g)		No
709	23780		23.54	0.143	Standard	Left Ear	1	49	0.510	1.086	0.554	0	6
710	23790		22.32	0.198	Standard	Left Ear	25	24	0.421	1.143	0.481	1	-
709	23780		23.54	0.117	Standard	Left Tilt	1	49	0.255	1.086	0.277	0	-
710	23790	OBOK	22.32	0.097	Standard	Left Tilt	25	24	0.194	1.143	0.222	1	-
709	23780	QPSK	23.54	0.115	Standard	Right Ear	1	49	0.366	1.086	0.398	0	-
710	23790		22.32	0.028	Standard	Right Ear	25	24	0.288	1.143	0.329	1	-
709	23780		23.54	- 0.004	Standard	Right Tilt	1	49	0.272	1.086	0.296	0	-
710	23790		22.32	0.099	Standard	Right Tilt	25	24	0.216	1.143	0.247	1	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population									Head W/kg (mW/g ged over 1 g	. ,		

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 7 According to FCC KDB 941225 D05v02:
 - a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configuration and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configuration for that channel.
 - b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
 - c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocationsis less than the highest maximum output power of the 1RB and 50% RB allocation and the reported SAR for the 1RB and 50% RB allocation is < 0.8 W/kg.</p>
 - d. Per Section 5.2.4 and 5.3, SAR test for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configuration determined by Sections 5.2.1 through 5.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/kg.</p>

52 of 188

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- 9 LTE VoIP is 3rd Party applications possibly installed and used by the end-user

13.7 Measurement Results (LTE Band 4 Head SAR)

Frequ	uency	Modula	Conducted	Power		Phantom	RB	RB	Measured	Scaling	Scaled		Plot
MHz	ch.	tion	Power	Drift	Battery	Position	Size	Offset	SAR (mW/g)	Facor	SAR	MPR.	No
IVII IZ	OH.	tion	(dBm)	(dB)		1 0010011	0.20	Onoci	O/ ii t (iii v//g)	1 4001	(mW/g)		110
1 720.0	20050		23.43	- 0.019	Standard	Left Ear	1	0	0.941	1.114	1.049	0	-
1 720.0	20050		21.89	- 0.134	Standard	Left Ear	50	25	0.685	1.262	0.864	1	-
1 720.0	20050		21.84	- 0.079	Standard	Left Ear	100	0	0.709	1.276	0.905	1	-
1 732.5	20175		23.05	0.041	Standard	Left Ear	1	99	0.960	1.216	1.168	0	-
1 732.5	20175		21.93	0.030	Standard	Left Ear	50	49	0.712	1.250	0.890	1	-
1 745.0	20300		23.10	- 0.028	Standard	Left Ear	1	0	0.977	1.202	1.175	0	-
1 745.0	20300		21.97	0.095	Standard	Left Ear	50	49	0.695	1.239	0.861	1	-
1 745.0	20300		21.82	0.030	Standard	Left Ear	100	0	0.691	1.282	0.886	1	
1 720.0	20050		23.43	- 0.128	Standard	Left Tilt	1	0	0.389	1.114	0.433	0	-
1 745.0	20300	OBOK	21.97	0.145	Standard	Left Tilt	50	49	0.279	1.239	0.346	1	-
1 720.0	20050	QPSK	23.43	0.003	Standard	Right Ear	1	0	1.29	1.114	1.437	0	7
1 720.0	20050		21.89	0.007	Standard	Right Ear	50	25	0.875	1.262	1.104	1	-
1 720.0	20050		21.84	0.073	Standard	Right Ear	100	0	0.934	1.276	1.192	1	-
1 732.5	20175		23.05	0.101	Standard	Right Ear	1	99	1.18	1.216	1.435	0	-
1 732.5	20175		21.93	0.101	Standard	Right Ear	50	49	0.869	1.250	1.086	1	-
1 745.0	20300		23.10	0.040	Standard	Right Ear	1	0	1.18	1.202	1.419	0	-
1 745.0	20300		21.97	0.081	Standard	Right Ear	50	49	0.850	1.239	1.053	1	-
1 745.0	20300		21.82	0.020	Standard	Right Ear	100	0	0.644	1.282	0.826	1	
1 720.0	20050		23.43	- 0.110	Standard	Right Tilt	1	0	0.379	1.114	0.422	0	-
1 745.0	20300		21.97	0.062	Standard	Right Tilt	50	49	0.285	1.239	0.353	1	-
		ANSI/ IEE	E C95.1 - 199	2- Safety L	imit		Head						
	Spatial Peak							1.6 W/kg (mW/g)					
	Uncontrolled Exposure/ General Population								Avera	ged over 1 gra	m		

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- $\begin{tabular}{lll} 5 & Battery Type & & \boxtimes Standard & \square Extended & \square Slim \\ & & Batteries are fully charged for all readings. \\ \end{tabular}$
- 6 Test Signal Call Mode \qed Manual Test cord \qed Base Station Simulator
- 7 According to FCC KDB 941225 D05v02:
 - a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configuration and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configuration for that channel.
 - b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
 - c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocationsis less than the highest maximum output power of the 1RB and 50% RB allocation and the reported SAR for the 1RB and 50% RB allocation is < 0.8 W/kg.
 - d. Per Section 5.2.4 and 5.3, SAR test for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configuration determined by Sections 5.2.1 through 5.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/kg.</p>
- 8 LTE VoIP is 3rd Party applications possibly installed and used by the end-user

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

13.8 Measurement Results (802.11b/g/n Head SAR)

Fred	quency	Modulation	Conducted Power Power Drift Battery		Battery	Phantom	Data	Measured	Scaling	Scaled	Plot
MHz	Channel			(dB)	<i>Jane</i> .,	Position	Rate	SAR(mW/g)	Facor	SAR(mW/g)	No.
		802.11b	15.94	0.102	Standard	Left Ear	1Mbps	0.289	1.276	0.369	-
0.407			15.94	0.139	Standard	Left Tilt	1Mbps	0.248	1.276	0.317	-
2 437	7 6		15.94	0.044	Standard	Right Ear	1Mbps	0.464	1.276	0.592	-
			15.94	0.041	Standard	Right Tilt	1Mbps	0.470	1.276	0.600	8
		SI/ IEEE C95.1 Spat atrolled Expos	tial Peak					He 1.6 W/kg Averaged o	(mW/g)		

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001]

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.

5	Battery Type	⊠ Standard	☐ Extended	☐ Slim
		Batteries are fully charge	d for all readings.	
6	Test Signal Call Mode		☐ Base Station Simulator	•

- 7 IEEE 802.11g(including 802.11n) SAR testing is required when the conducted powers are equal to or greater than 0.25 dB Than the conducted powers in IEEE 802.11b.
- For 2.4GHz WLAN, Highest average power channel for the lowest data rate was selected for SAR evaluation based on KDB 248227. Other channels are not necessary because 1g-average SAR < 0.8 W/Kg and peak SAR < 1.6W/Kg per KDB 248227.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

13.9 Measurement Results (GSM850 Hotspot SAR)

Frequency		Modulation	Conducted Power	Power Drift	Configuration	Separation	Measured	Scaling Facor	Scaled	Plot	
MHz	Channel	modulation	(dBm)	(dB)	Comigaration	Distance	SAR(mW/g)	County 1 door	SAR(mW/g)	No.	
836.6	190		29.47	0.008	Rear	1.0 cm	0.571	1.327	0.758	-	
836.6	190	GPRS 4Tx	29.47	0.186	Front	1.0 cm	0.590	1.327	0.783	9	
836.6	190	GFR3 41X	29.47	0.082	Left	1.0 cm	0.559	1.327	0.742	-	
836.6	190		29.47	0.063	Bottom	1.0 cm	0.204	1.327	0.271	-	
	Α	NSI/ IEEE C95	5.1 - 1992– Sa	fety Limit		Body					
	Unc	Sp ontrolled Expo	atial Peak sure/ Genera	l Populati	on	1.6 W/kg (mW/g) Averaged over 1 gram					

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-body position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].

2 All modes of operation were investigated and the worst-case are reported.

3	Measured	Depth of	Simulating	Tissue is	15.0 cm \pm 0.2 cm.	
---	----------	----------	------------	-----------	-----------------------	--

4	rissue	parameters	and ten	nperatu	res a	are iist	tea on t	ne SAR	piot.	
_		_								

5	Battery Type	Standard Standard	☐ Extended	☐ Slim
		Batteries are fully charge	ed for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulator	
7	Test Configuration	☐ With Holster	Without Holster	

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 9 For body SAR testing, the EUT was set in GPRS multi-slot class12 with 4uplink slots for GSM850 due to maximum source-based time-averaged output power.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

55 of 188

13.10 Measurement Results (GSM1900 Hotspot SAR)

Frequ	ency	Modulation	Conducted Power	Power Drift	Configuration	Separation	Measured SAR	Scaling	Scaled SAR	Plot
MHz	Channel		(dBm)	(dB)		Distance	(mW/g)	Facor	(mW/g)	No.
1 850.2	512		29.95	- 0.043	Rear	1.0 cm	0.956	1.189	1.136	-
1 880.0	661		30.00	- 0.083	Rear	1.0 cm	0.898	1.175	1.055	-
1 909.8	810		29.60	-0.106	Rear	1.0 cm	0.729	1.288	0.939	-
1 850.2	512		29.95	- 0.070	Front	1.0 cm	1.19	1.189	1.414	10
1 880.0	661		30.00	- 0.091	Front	1.0 cm	1.14	1.175	1.339	-
1 909.8	810	GPRS 4Tx	29.60	0.193	Front	1.0 cm	1.10	1.288	1.417	11
1 880.0	661		30.00	0.087	Right	1.0 cm	0.553	1.175	0.650	-
1 850.2	512		29.95	- 0.009	Bottom	1.0 cm	0.883	1.189	1.049	-
1 880.0	661		30.00	- 0.024	Bottom	1.0 cm	0.790	1.175	0.928	-
1 909.8	810		29.60	0.019	Bottom	1.0 cm	0.776	1.288	1.000	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population						Body 1.6 W/kg (mW/g) Averaged over 1 gram			

NOTES:

1	•			oody position set in a typical 65, Supplement C [July 2001].						
2	All modes of operation were investigated and the worst-case are reported.									
3	Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.									
4	Tissue parameters and temperatures are listed on the SAR plot.									
5	Battery Type	Standard	□ Extended	☐ Slim						
		Batteries are fully charge	ged for all readings.							
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Sir	mulator						
7	Test Configuration	☐ With Holster								
8	According to KDB 44749	98, Testing of other re	quired channels with	nin the operating mode of a						

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.
- 9 For body SAR testing, the EUT was set in GPRS multi-slot class12 with 4uplink slots for GSM1900 due to maximum source-based time-averaged output power.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

56 of 188

HCTA1307FS07 FCC ID: Date of Issue: Report No .: V65C6522 Jul. 12, 2013

13.11 Measurement Results (WCDMA850 Hotspot SAR)

Free	quency	Modulation	Conducted Power	Power Drift	Configuration	Separation	Measured	Scaling	Scaled	Plot
MHz	Channel		(dBm)	(dB)	Distance	SAR(mW/g)	Facor	SAR(mW/g)	No.	
836.6	4183	WCDMA850	24.05	- 0.034	Rear	1.0 cm	0.464	1.161	0.539	-
836.6	4183		24.05	- 0.161	Front	1.0 cm	0.472	1.161	0.548	12
836.6	4183	WCDIVIA030	24.05	- 0.009	Left	1.0 cm	0.370	1.161	0.430	-
836.6	4183		24.05	- 0.028	Bottom	1.0 cm	0.120	1.161	0.139	-
		ANSI/ IEEE C95.1 Spar controlled Expos	tial Peak	•	0.093Body 1.6 W/kg (mW/g) Averaged over 1 gram					

NOTES:

	LO.									
1	The test data reported are the worst-case SAR value with the antenna-Body position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].									
2	All modes of operation were investigated and the worst-case are reported.									
3	Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.									
4	Tissue parameters and temperatures are listed on the SAR plot.									
5	Battery Type	Standard	□ Extended	☐ Slim						
		Batteries are fully charge	d for all readings.							
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulator	r						
7	Test Configuration	☐ With Holster	Without Holster ■							

According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.

WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

HCT CO., LTD.

13.12 Measurement Results (WCDMA1700 Hotspot SAR)

Frequ	uency Channel	Modulation	Conducted Power (dBm)	Power Drift Configuration (dB)		Separation Distance	Measured SAR (mW/g)	Scaling Facor	Scaled SAR (mW/g)	Plot No.
1 712.4	1312		23.62	- 0.125	Rear	1.0 cm	1.04	1.143	1.189	13
1 732.4	1412		23.79	- 0.024	Rear	1.0 cm	1.05	1.099	1.154	14
1 752.6	1512		23.70	- 0.053	Rear	1.0 cm	0.977	1.122	1.096	-
1 712.4	1312	WODAA 4700	23.62	- 0.045	Front	1.0 cm	1.01	1.143	1.154	-
1 732.4	1412	WCDMA1700	23.79	0.020	Front	1.0 cm	0.982	1.099	1.079	-
1 752.6	1512		23.70	- 0.044	Front	1.0 cm	0.921	1.122	1.033	-
1 732.4	1412		23.79	- 0.072	Right	1.0 cm	0.369	1.099	0.406	-
1 732.4	1412		23.79	- 0.001	Bottom	1.0 cm	0.677	1.099	0.744	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population						0.093Body 1.6 W/kg (mW/g) Averaged over 1 gram			

NOTES

100 MHz.

VO	1E5:								
1	•			Body position set in a typical 65, Supplement C [July 2001].					
2	All modes of operation were investigated and the worst-case are reported.								
3	Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.								
4	Tissue parameters and temperatures are listed on the SAR plot.								
5	Battery Type	Standard	□ Extended	☐ Slim					
		Batteries are fully charg	ged for all readings.						
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Sin	mulator					
7	Test Configuration	☐ With Holster							
8	According to KDB 4474	198, Testing of other re	equired channels with	nin the operating mode of a					
	frequency band is not red	quired when the reported	1-g or 10-g SAR for t	he mid-band or highest output					
	power channel is ≤ 0.8 W	/kg or 2.0 W/kg, for 1-g o	r 10-g respectively, wl	nen the transmission band is \leq					

13.13 Measurement Results (WCDMA1900 Hotspot SAR)

Frequ	Frequency		Conducted	Power Drift	Configuration .	Separation	Measured	Scaling	Scaled	Plot
MHz	Channel	oud.au.o	(dBm)	(dB)	Distance	SAR(mW/g)	Facor	SAR(mW/g)	No.	
1 880.0	9400	WCDMA1900	23.30	- 0.080	Rear	1.0 cm	0.605	1.230	0.744	-
1 880.0	9400		23.30	- 0.086	Front	1.0 cm	0.649	1.230	0.798	15
1 880.0	9400	WCDINA 1900	23.30	- 0.065	Right	1.0 cm	0.241	1.230	0.296	-
1 880.0	9400		23.30	- 0.081	Bottom	1.0 cm	0.474	1.230	0.583	-
		ANSI/ IEEE C95.1 Spar	tial Peak	•	0.093Body 1.6 W/kg (mW/g) Averaged over 1 gram					

NOTES:

100 MHz.

1	The test data reported are the worst-case SAR value with the antenna-Body position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001]. All modes of operation were investigated and the worst-case are reported.								
2	All modes of operation we	ere investigated and the v	orst-case are reported.						
3	Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.								
4	Tissue parameters and temperatures are listed on the SAR plot.								
5	Battery Type	Standard	□ Extended	☐ Slim					
		Batteries are fully charg	ed for all readings.						
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulate	or					
7	Test Configuration	☐ With Holster	Without Holster						
8	According to KDB 4474	98, Testing of other red	quired channels within th	e operating mode of a					
	frequency band is not rec	uired when the reported	1-g or 10-g SAR for the mi	d-band or highest output					
	power channel is ≤ 0.8 W.	/kg or 2.0 W/kg, for 1-g or	10-g respectively, when the	e transmission band is \leq					

13.14 Measurement Results (LTE Band 17 Hotspot SAR)

Frequ	uency	Modula	Conducted	Power Drift	Configuration	RB Size	RB	Separation	Measured	Scaling	Scaled SAR	MPR.	Plot	
MHz	ch.	tion	Power (dBm)	Power (dBm)		Comigaration	TE CIZO	Offset	Distance	SAR (mW/g)	Facor	(mW/g)	Will TX.	No.
709	23780	QPSK	23.54	0.161	Rear	1	49	1.0 cm	0.306	1.086	0.332	0	-	
710	23790	QPSK	22.32	0.028	Rear	25	24	1.0 cm	0.254	1.143	0.290	1	-	
709	23780	QPSK	23.54	- 0.084	Front	1	49	1.0 cm	0.351	1.086	0.381	0	16	
710	23790	QPSK	22.32	0.011	Front	25	24	1.0 cm	0.288	1.143	0.329	1	-	
709	23780	QPSK	23.54	- 0.071	Left	1	49	1.0 cm	0.307	1.086	0.334	0	-	
710	23790	QPSK	22.32	- 0.063	Left	25	24	1.0 cm	0.253	1.143	0.289	1	-	
709	23780	QPSK	23.54	- 0.051	Bottom	1	49	1.0 cm	0.109	1.086	0.118	0	-	
710	23790	QPSK	22.32	- 0.041	Bottom	25	24	1.0 cm	0.085	1.143	0.097	1	-	
	<u> </u>						·							

ANSI/ IEEE C95.1 - 1992 – Safety Limit

Spatial Peak
Uncontrolled Exposure/ General Population

Body 1.6 W/kg (mW/g) Averaged over 1 gram

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.

•	nicodo parametero ana te	inporataree are netea en	o, p.o	
5	Battery Type	Standard	☐ Extended	☐ Slim
		Batteries are fully charg	ged for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simula	itor
_				

- 7 According to FCC KDB 941225 D05v02:
 - e. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configuration and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configuration for that channel.
 - f. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
 - g. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocationsis less than the highest maximum output power of the 1RB and 50% RB allocation and the reported SAR for the 1RB and 50% RB allocation is < 0.8 W/kg.
 - h. Per Section 5.2.4 and 5.3, SAR test for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configuration determined by Sections 5.2.1 through 5.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/kg.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

60 of 188