

4. t분포에 의한 검정

- ① 모집단의 분산이나 표준편차를 알지 못할 때 모집단을 대표하는 표본으로부터 추정된 분산이나 표준편차를 가지고 검정하는 t분포에 의한 검정을 이용할 수 있다. t검정은 실제 경험·사회과학연구에서 자주 쓰이는 통계적 방법이다.
- ② 표본의 크기 n이 작으면 통계량 $(\overline{X}-\mu)/(s/\sqrt{n})$ 은 정규분포를 따르지 않는다. 이때, t분포에 의한 검정을 이용할 수 있다.
 - (예) 새로운 생산과정을 통해 얻어진 다이아몬드 제품을 평가하는 실험에서 6개의 제품만으로 실험을 하려고 한다. 이 6개의 다이아몬드 표본만으로 새로운 생산과정을 통해 얻어진 다이아몬드 제품의 중량의 평균에 대한 추론을 할 수 있을까?

4-1. t분포

- ① 1908년 영국의 고셋(W.S Gosset)이 연구논문의 저자이름으로 'student'라고 명기하여 오늘날까지 t분포라 한다.
- ② 모집단의 표준편차를 알지 못하여 표본의 표준편차로 모집단의 표준편차를 대신할 때 표본의 크기가 작을수록, 즉 자유도가 낮을수록 표준정규분포에서 벗어나는 확률분포를 나타낸다는 사실을 발견하였다.
- ③ t분포를 나타내는 확률밀도함수

$$f(t) = G(\nu) \left(1 + \frac{t^2}{\nu}\right)^{-\frac{(\nu+1)}{2}}$$
 (ν 는 자유도)

- ④ *t*분포의 특징은?
 - 자유도에 따라 형태가 다른 가족분포
 - ① Z분포처럼 t=0을 중심, 종 모양으로 대칭
 - □ 표준편차가 1보다 큼
 - ② Z분포와 비교했을 때, 두꺼운 꼬리를 보임

이유! Z통계량은 하나의 확률통계량인 \overline{X} 만 포함하고 있지만, t통계량은 두 개의 확률 통계량인 \overline{X} (표본의 평균)와 s(표본의 표준편차)를 갖고 있기 때문

www.topgrade.co.kr 96/148 Park, Ph.D

[예1] 자유도 5인 t분포에 대하여, 오른쪽 꼬리의 넓이가 0.05가 되는 t값은?

[풀이]

 $t_{0.050}$ 열 5번째 행의 값 t=2.015

[예2] 정규분포로부터 표본의 크기 10인 표본 추출, t값들의 영역의 넓이가 1%가 되는 t값은? [풀이]

자유도
$$df = 10-1=9$$
인 t 분포 곡선
$$\Rightarrow -t_{0.01} = -2.821$$

df	$t_{.100}$	$t_{.050}$	$t_{.025}$	$t_{.010}$	$t_{.005}$	df
1	3.078	6.314	12.706	31.821	63.657	1
2	1.886	2.920	4.303	6.965	9.925	2
3	1.638	2.353	3.182	4.541	5.841	3
4	1.533	2.132	2.776	3.747	4.604	4
5	1.476	2.015	2.571	3.365	4.032	5
6	1.440	1.943	2.447	3.143	3.707	6
7	1.415	1.895	2.365	2.998	3.499	7
8	1.397	1.860	2.306	2.896	3.355	8
9	1.383	1.833	2.262	2.821	3.250	9
	•	•	•	•		
		•		•-		•
•	•	•		•		
26	1.315	1.706	2.056	2.479	2.779	26
27	1.314	1.703	2.052	2.473	2.771	27
28	1.313	1.701	2.048	2.467	2.763	28
29	1.311	1.699	2.045	2.462	2.756	29
inf.	1.282	1.645	1.960	2.326	2.576	inf.

www.topgrade.co.kr 97/148 Park, Ph.D

4-2. t검정

- ① t검정(t-test)은 모집단의 분산이나 표준편차를 알지 못할 때 모집단을 대표하는 표본으로부터 추정된 분산이나 표준편차를 가지고 검정하는 방법이다.
- ② t검정을 위한 기본 가정은 Z검정과 같다.
 - ⊙ 종속변수가 양적변수이어야 한다.
 - 모집단의 분산, 표준편차를 알지 못한다.
 - © 모집단 분포가 정규분포이어야 한다.
 - ② 등분산 가정이 충족되어야 한다.
- ③ 기본 가정을 충족시킬 때, 단일표본 t검정, 두 독립표본 t검정, 두 종속표본 t검정을 사용할 수 있다.
- ④ 만약 모집단의 분포가 정규분포라는 가정을 충족시키기 못하면 비모수 통계(non-parametric statistics)를 사용해야 한다.
- ⑤ 두 집단의 분산이 같지 않아 등분산 가정을 충족시키지 못할 경우 두 독립표본 t검정 대신에 Welch-Aspin 검정을 사용해야 한다.

【참고】 비모수 통계란?

- ① 통계기법은 변수의 측정을 위해 사용된 척도와 모집단에 대한 연구자가 갖고 있는 정보수준에 따라 모수통계분석과 비모수 통계분석으로 분류되다.
- ② 모수통계(parametric statistics)는 모집단의 특성에 대한 정보(분포의 형태와 모수에 대한 사전정보)가 충분하고 변수의 척도가 등간척도 이상으로 측정된 경우 적용될 수 있는 통계분석이다.
- ③ 비모수 통계(非母數統計, Non-parametric statistics)는 통계학에서 모수에 대한 가정을 전제로 하지 않고 모집단의 형태에 관계없이 주어진 데이터에서 직접 확률을 계산하여 통계학적 검정을 하는 분석법이다. 즉 모집단의 분포형태나 모수에 대한 정보가 부족해 모집단의 특성에 대한 가정을 세우기 어렵거나 자료의 척도가 명목척도나 서열척도인 경우 적용되는 통계기법이다.
- ④ 비모수 통계법 사용의 조건은 ①자료가 나타내는 모집단의 현상이 정규분포가 아닐 때 ②자료가 나타내는 모집단의 현상이 정규분포로 적절히 변환되지 못할 때 ②자료의 표본(sample) 수가 적을 때 ②자료들이 서로 독립적일 때 ②변인의 척도가 명명척도나 서열척도일 때이다.
- ⑤ 비모수 통계의 특징은
 - ① 가정을 만족시키지 못한 상태에서 그대로 모수 통계분석을 함으로써 발생할 수 있는 오류를 줄일 수 있다.
 - ① 질적척도로 측정된 자료도 분석이 가능하다.
 - E 비교적 신속하고 쉽게 통계량을 구할 수 있으며 결과에 대한 해석 및 이해 또한 용이하다.
 - ② 많은 표본을 추출하기 어려운 경우에 사용하기 적합하다.
- ⑥ 중간값을 통한 비모수적 검정법들로는 ⑦부호검정(관측치들 간에 '같다' 혹은 '크거나 작다'라는 주장이 사실인지 아닌지를 검정) ⑥윌콕슨 부호순위검정(크거나 작음을 나타내는 부호뿐만 아니라 관측치 간의 차이의 크기 순위까지를 고려하여 검정) ⓒ만-위트니 검정 ②크루스칼-왈리스 검정(3개 이상 집단의 중앙값 차이를 검점)이다.

www.topgrade.co.kr 98/148 Park, Ph.D

4-3. 단일표본 t검정

① 대표본에 대한 추론과 같이 소표본에 대한 추론도 추정과 가설검정으로 구분된다. 단, 표본이 30보다 작으면 자유도가 (n-1)인 스튜던트 t-분포를 표본분포로 하는 표본통계량은

$$T = \frac{\left(\overline{X} - \mu\right)}{\frac{s}{\sqrt{n}}}$$

으로 설명한다.

『예』 임계값에 의한 방법

A회사, 다이아몬드 제품 생산을 위해 새 공정과정을 도입. 공정과정을 통해 생산된 다이아몬드제품의 평균 중량이 0.5캐럿보다 크면 많은 이윤을 남길 수 있기에 이를 알아보기 위하여, 새 공정과정을 통해 생산된 다이아몬드 제품 6개를 확인한 결과 중량이 0.46, 0.61, 0.52, 0.48, 0.57, 0.54캐럿. 새로운 공정과정에서 생산된 다이아몬드제품의 평균 중량이 0.5캐럿보다 크다고 할 수 있는 충분한 증거가되겠는지 유의수준=0.05에서 검정하여라.

[풀이]

 \bigcirc 새로운 공정과정을 통해 생산된 다이아몬드 중량의 모평균을 μ 라 하면

$$H_0: \mu = 0.5$$

$$H_1: \mu > 0.5$$

© 6개의 다이아몬드 중량의 평균 = 0.53, 표준편차= 0.0559

© 검정통계량
$$T = \frac{0.53 - 0.5}{0.0559/\sqrt{6}} = 1.32$$

[[a]] 위의 예제에서 μ 에 대한 90% 신뢰구간은? 이 정보에 근거하여 위의 가설검정을 평가하여라.

[풀이]

① 90% 신뢰구간
$$[0.53 - T_{0.05} \left(\frac{0.0559}{\sqrt{6}} \right), \ 0.53 + T_{0.05} \left(\frac{0.0559}{\sqrt{6}} \right)]$$

$$= [0.53 - 2.015 \frac{0.0559}{\sqrt{6}}, \ 0.53 + 2.015 \frac{0.0559}{\sqrt{6}}]$$

$$= [0.484, \ 0.579]$$

© 이 구간은 다이아몬드 평균 중량이 0.5캐럿보다 작거나 같거나 큰 영역을 모두 포함하고 있다. 따라서 μ 가 0.5를 넘는다는 가설검정은 잘못된 것이다.

www.topgrade.co.kr 99/148 Park, Ph.D

[n] p-값에 의한 방법

어떤 페인트 생산 공장, 페인트 1통으로 표면적 $400 {
m ft}^2$ 를 칠할 수 있다고 주장. 이 주장이 맞는지 검정하기 위해, 이 공장에서 생산된 흰색 페인트 10통을 임의로 추출하여 동일한 도구를 이용하여 같은 면적을 칠하는 실험을 한 기록.

이 자료를 통해 평균 표면적이 400ft²과 다르다고 할 만한 충분한 근거가 있다고 할 수 있겠는가?

[풀이]

- 10통의 페인트로 칠한 면적의 평균=365.2, 표준편차=48.417
- © 검정통계량 $T = \frac{365.2 400}{48.417 / \sqrt{10}} = -2.27$
- ② 자유도 df=n-1=9인 t-분포의 임계값은 0을 중심으로 대칭이므로 $t_{\alpha/2}=2.27$ 인 $\alpha/2$ 를 예측한다. 즉, $t_{0.025}=2.262< t_{\alpha/2}=2.27< t_{0.010}=2.821$ 이다.

따라서 $0.01 < \frac{1}{2}(p - \stackrel{.}{\text{tr}}) < 0.025$ 또는 0.02 이다.

- 『예』 실제 평균 표면적의 범위는 얼마인가? 95% 신뢰구간을 구하여라.

[풀이]

$$\overline{X} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right) = 365.2 \pm 2.262 \left(\frac{48.417}{\sqrt{10}} \right) = 365.2 \pm 34.63$$

즉. 이 상표의 페인트 1통 당 칠할 수 있는 면적의 평균은 330.6과 399.8 사이이다. 여기서 신뢰구 간의 상한이 이 페인트공장에서 주장한 400ft²와 근접해 있다는 사실에 주목할 수 있다.

www.topgrade.co.kr 100/148 Park, Ph.D

4-4. 두 종속표본 t검정

- ① 두 모집단으로부터 추출된 종속 상황의 표본을 검정할 때 사용하다.
 - ⊙ 부부에서 남자와 여자를 무선적으로 추출
 - ① 사전-사후검사, 모집단에서 n명의 표본을 무선추출하여 사전검사를 실시한 후 새로운 교수법에 의하여 학습을 시킨 다음 사후검사를 실시하여 학습효과가 있는지의 여부를 검정
 - © 자동차 타이어 마모 정도 비교 실험(타이어 유형 A 5개, 유형 B 5개; 5대의 자동차 뒷바퀴에 각각 장착); 마모정도를 짝을 지워 비교, 대응비교(paried comparison) 또는 쌍체비교
 - [예] 다음 자료는 타이어의 유형 A, B에 대한 평균 마모정도의 차이가 난다에 대한 충분한 근거를 제시하고 있는가? 유의수준 $\alpha=0.05$ 에서 가설 검정하여라.

번호	A	В	D=A-B
1	10.6	10.2	0.4
2	9.8	9.4	0.4
3	12.3	11.8	0.5
4	9.7	9.1	0.6
5	8.8	8.4	0.5

[풀이]

 \bigcirc 두 타이어의 평균 마모정도 μ_d 에 대한 가설

$$H_0: \mu_d = 0, \quad H_1: \mu_d \neq 0$$

○ 5개의 차이들에 대한 평균과 표준편차

:
$$\bar{d}$$
= 0.48, s_d = 0.0837

© 검정통계량
$$T = \frac{\overline{d} - 0}{s_d/\sqrt{n}} = \frac{0.48}{0.0837/\sqrt{5}} = 12.8$$

- ② 양측 검정에 대한 t의 임계값은 $\alpha = 0.05$ 이고, 자유도 4이므로 $t_{0.025} = 2.776$.
- © 2.776 < 12.8이므로 타이어의 유형 A와 B에 대한 평균 마모정도는 차이가 난다.
- [예] 마모정도의 평균치에 대한 95% 신뢰구간을 구하여라.

[풀이]

© $0.38 < \mu_1 - \mu_2 < 0.58$ 로 마모의 정도에 분명히 차이가 나므로 연구가설을 주장하는 것이 유의하다.

www.topgrade.co.kr 101/148 Park, Ph.D

[예] 컴퓨터 보조학습의 효과 유무를 알기 위하여 5명에게 사전검사를 실시한 후 컴퓨터 학습을 실시하고 사후검사를 실시하였다. 컴퓨터 보조학습의 효과가 있는지 유의수준 0.01에서 검정하여라.

학습	사전검사	사후검사
A	4	6
В	3	5
С	5	5
D	4	6
Е	4	6

[풀이]

- \bigcirc 가설검정을 위한 가설 $H_0: \mu_d = 0, \quad H_1: \mu_d \neq 0$
- ⓒ 평균=1.6,

표준면치=
$$\sqrt{rac{\sum (d_i-\overline{d})^2}{n-1}}=0.894$$
 표준오치= $\frac{0.894}{\sqrt{5}}=0.4$

- © $T = \frac{1.6}{0.4} = 4$
- ② 자유도 4, 양방적 검정 $t_{0.005} = 4.604$ 이므로 귀무가설을 기각하지 못한다. 즉, 컴퓨터에 의한 사후검사의 평균과 사전검사의 평균간의 차이는 0이다.