En route to Data Science

Vitali Avagyan

Data Scientist TurinTech London, UK

updated on August 15, 2022

Essentials

- Communication skills
 - simplifying
 - explaining
 - demonstrating
 - visualising
- Networking
 - Big Data London
 - LinkedIn
 - reading blogs (e.g. MIT Technology Review) and writing blogs (e.g. Medium)
- reading conference papers and journals
 - NeurIPS, ICMLC, etc.
 - IEEE Transactions on Pattern Analysis and Machine Intelligence, Elsevier Pattern Recognition, IEEE Transactions on Neural Networks and Learning Systems, Journal of Machine Learning Research, etc.
 - google scholar, google-scholar alerts
 - Connected Papers

Python

- Python Fundamentals incl. Object-Oriented Programming (OOP) in Python
 - Modules, packages and paths
 - pip, Path (pathlib library), os, typing
 - pickle and json
 - Class vs Object; Encapsulation, Inheritance (+ Abstraction);
 Polymorphism
 - built-ins
 - DRY principle
 - f-string
 - properties, decorators
 - Hashable vs non-hashable data structures
 - list, dict, comprehensions, tuple, set
 - Iterators, generators and recursion
 - Exception handling and testing
 - assert; try ... except ...finally
 - mypy, pytest, unittest

Python for Data Science

- Python for Data Science
 - conda (anaconda), venv (python) -> environment management
 - Jupyter notebook (AWS SageMaker is a plus)
 - Pandas, Numpy, SciKit-Learn, Scipy
 - Tensorflow/Keras and Pytorch
 - Plotly, Bokeh, Matplotlib, Seaborn -> visualisation
 - Flask, Streamlit, Dash -> web applications

- Functional programming in R
 - Tools/Packages you should know on top of Base R
 - dplyr, data.table (dtplyr)
 - lubridate and hms
 - purrr, stringi/stringr, zoo
 - keras and reticulate (to work with Python)
 - ggplot2
 - DBI, RODBC and dbplyr (for database manipulations)
 - plumber and shiny (web applications)

SQL, IDEs, Linear Algebra

- Other languages: SQL (MySQL or Microsoft SQL Server, PostgreSQL is a plus)
- IDE/Interpreter
 - Visual Code (+ extensions), Posit (+ Posit Server for cloud), PyCharm
 - Databases; JSON, YML (YAML), flat files
- Linear Algebra
 - Vectors, Matrices, and Tensors, eigenvectors/eigenvalues, singular value decomposition

Statistics and Machine Learning

- Normal, Poisson, and Exponential distributions, Mean, SD, Percentiles; Gaussian and Markov-Chain processes
- Linear & Logistic Regressions; T-test/ANOVA (+ their non-parametric equivalents), error metrics (MSE, RMSE etc.); Monte-Carlo simulation; Sampling with (and without) replacement; Copulas
- Maximum Likelihood Estimator, Bayes rule, Prior/Posterior distributions, naive Bayes, K-means, KNN, Markov Chain, HMM, Decision Trees (+ Random Forest, XGBoost, LightGBM and CatBoost); Gaussian mixture models
- Neural Networks (feed-forward, CNNs, RNN variants (e.g. LSTM and GRU))
- Clustering (k-means); dimensionality reduction (PCA, UMAP AutoEncoders and t-SNE)

Times-series and Forecasting

- Weak and Strong Stationarity
 - Dickey-Fuller Test (Augmented Dickey Fuller Test)
 - Unit Roots, White Noise
 - Box-Jenkings and Yeo-Johnson transformations
- Autocorrelation and Partial Autocorrelation Function, multicolinearity
- <u>Traditional models:</u> ARIMA (SARIMA, SARIMAX), ETS, Prophet, Naive
- Deep Learning models: RNN variants (e.g. LSTM and GRU)), NeuralProphet
- Granger Causality, moderators, mediators, colliders and confounders
- Vector Auto Regression (VAR)
- ARCH and GARCH processes
- Anomaly Detection

Math, Linux and Containers

- Differential and Integral Calculus
 - Derivatives, Partial Derivatives
 - Interpolation, Taylor expansion
 - Optimisation (especially gradient descent-based algorithms);
 Lagrange multipliers; Constrained and Unconstrained
 Programming
- Linux/GNU and command-line proficiency
 - Understanding of namespaces
 - Use of SSH, use of Bash (or any other shell), and RegEx (it will save you tons of time)
 - re (Python)
 - awk and sed (shell)
 - Vi/Vim
 - PowerShell (preferable over CMD if on Windows)
 - git (the industry standard)
- Containerisation and Virtualisation
 - docker (understanding of microservices architecture and container orchestration (Kubernetes) is a plus)
 - Virtual Machines, Oracle VirtualBox, WSL (if on Windows 10)

Competitive Edge

- Cloud
 - Hands-on either with AWS, Azure, or GCP
 - cloud instances (ec2 etc.) and cloud storage systems (s3 etc.)
 - command-line interfaces (aws cli etc.), use of SDKs (paws, Boto3, etc.)
- Natural Language Processing
 - Bag-of-words
 - Transformers
 - Big pre-trained models (Word2Vec, GloVe, BERT, Albert) & Transfer Learning
- Reinforcement Learning
- DevOps and Infrastructure as a Code
 - Code review/debugging/testing
 - Ansible and Terraform
 - Configuration management (Chef or Puppet)
 - Automation (Jenkins)
- Computer Vision (CNN's and Transformers)

Big Data; Distributed Computing and AutoML

- Big Data
 - Distributed/parallel computing
 - map-reduce
 - apply family (base R) and map family from purrr library R
 - programming in Scala, Apache Spark (understanding of Hadoop helps), Apache Parquet file format
 - foreach, doParallel, doSnow (R)
 - joblib (Python); Ray; Dask (Python); PySpark
 - Understanding of RAM and computation in memory
- AutoML/Pipelines
 - EvoML (TurinTech)
 - DataRobot
 - Databricks
 - PyCaret
 - pickle, mlflow

Recommended Books - Machine Learning

- Machine Learning: An Applied Mathematics Introduction by Paul Wilmott (foundational)
- Machine Learning Engineering by Andriy Burkov (foundational)
- Deep Learning with Python, 2nd Edition by Francois Chollet (foundational and practical))
- Hands-On Machine Learning with Scikit-Learn, Keras and Tensorflow by Aurelien Geron (practical)

Recommended Books - Statistics

- Statistical Rethinking: A Bayesian Course with Examples in R and Stan, Second Edition by Richard McElreath (foundational and practical))
- Engineering Statistics by Douglas C Montgomery, George C Runger and Norma F Hubele (practical)
- Pattern Recognition and Machine Learning by Christopher Bishop (theoretical)
- The Elements of Statistical Learning by Hastie et al. (theoretical)

Recommended Books - Econometrics/Time-Series

- Basic Econometrics by Damodar Gujarati (foundational)
- Econometrics by Example, 2nd Edition by Damodar Gujarati (practical)
- Deep Learning for Time Series Forecasting by Jason Brownlee (practical)

Recommended Books - Software Engineering

- Expert Python Programming: Master Python by Learning the Best Coding Practices and Advanced Programming Concepts, 4th Edition by Michał Jaworski, Tarek Ziadé
- Python Object-Oriented Programming, Fourth Edition by Steven F. Lott & Dusty Phillips
- The Pragmatic Programmer, 20th Anniversary Edition by Andy Hunt and Dave Thomas

Other Resources

- Machine Learning Mastery (python)
- Statistical Rethinking lectures by Richard McElreath (statistics)
- ritvikmath (statistics)
- SoloLearn (programming)
- 3blue1brown (math)
- Kaggle (competitions)
- Abishek Thakur (practical ML)
- Super Data Science Podcast with Jon Krohn (podcast)
- Two Minute Papers (research)
- NeEDS Network of European Data Scientists (research)
- Jay Alammar (NLP)
- KodeKloud (DevOps)

Thank you

Connect with me in LinkedIn