Rob 501 - Mathematics for Robotics Recitation #09

Nils Smit-Anseeuw (Courtesy: Abhishek Venkataraman, Wubing Qin)

Nov 27, 2018

1 Singular Value Decomposition

- 1. **Theorem**: Any matrix $A \in \mathbb{R}^{m \times n}$ can be factored as $A = U \Sigma V^{\top}$, where
 - $U \in \mathbb{R}^{m \times m}$ is an orthogonal matrix, and its columns are eigenvectors of AA^{\top}
 - $V \in \mathbb{R}^{n \times n}$ is an orthogonal matrix. and its columns are eigenvectors of $A^{\top}A$
 - $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular matrix and its diagonal elements σ_i are singular values of A, i.e., σ_i^2 are eigenvalues of AA^{\top} or $A^{\top}A$.

This is called (full) singular value decomposition (SVD) of A. Moreover,

- When $m \neq n$ and $k = \min\{m, n\}$, SVD can be reduced to thin SVD where $U \in \mathbb{R}^{m \times k}$, $\Sigma \in \mathbb{R}^{k \times k}$, $V \in \mathbb{R}^{n \times k}$.
- When the number of non-zero singular values is p and $p < \min\{m, n\}$, SVD can be further reduced to compact SVD where $U \in \mathbb{R}^{m \times p}$, $\Sigma \in \mathbb{R}^{p \times p}$, $V \in \mathbb{R}^{n \times p}$.
- 2. Remarks: SVD has the following properties:
 - $\forall i, Av^i = \sigma_i u^i$, where v^i and u^i are the *i*-th column of V and U, respectively. v^i -s and u^i -s are called right singular vectors and left singular vectors of A, respectively.
 - SVD might not be unique. (See Ex.(b))
 - For general square matrix, SVD and eigen-decomposition are not necessarily the same. (See Ex.(d)) For symmetric positive definite matrix, SVD and eigen-decomposition are the same. (See Ex.(e))
- 3. SVD and Rank:

Let $\{\sigma_1, \sigma_2, \dots, \sigma_p\}$ be the singular values of A. $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \dots \geq \sigma_p \geq 0$, where $p = \min(m, n)$.

$$A = U\Sigma V^{\top} = \sum_{i=1}^{p} \sigma_i u_i v_i^{\top}$$

What is the rank of $u_i v_i^{\top}$?

$$A - \sigma_p u_p v_p^{\top} = \sum_{i=1}^{p-1} \sigma_i u_i v_i^{\top}$$

 σ_p is the distance of A from the nearest singular matrix.

Fact: Suppose that rank (A) = r, so that σ_r is the smallest non-zero singular value. Then

- (i) if an $n \times m$ matrix E satisfies $||E|| \le \sigma_r$, then rank (A+E)=r
- (ii) $\exists E \text{ with } ||E|| = \sigma_r, \text{ s.t. } \text{rank } (A + E) < r$
- 4. Ex:

(a)
$$A = \begin{bmatrix} 2 & 1 \\ -1 & -2 \\ 0 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$(c) A = \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}$$

(d)
$$A = \begin{bmatrix} 2 & 1 \\ -1 & -2 \end{bmatrix}$$

(e)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

2 QR Factorization

- (a) **Theorem**: Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, rank $\{A\} = n$. Then there exists a matrix Q with orthonormal columns and an upper triangular matrix R such that A = QR. Moreover,
 - If $Q \in \mathbb{R}^{m \times n}$, $R \in \mathbb{R}^{n \times n}$, A = QR is called reduced QR decomposition.
 - If $Q \in \mathbb{R}^{m \times m}$, $R \in \mathbb{R}^{m \times n}$, A = QR is called full QR decomposition.
- (b) How to compute Q and R ?
- (c) Ex:

i.
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

ii.
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}$$