IMPORT LIBRARIES

import numpy as np In [1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy import stats

IMPORT DATASET

In [3]: df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")

In [4]: df

RusinessTravel DailyRate Department DistanceFromHome Age Attrition Out[4]:

		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Ed
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	
	•••								
	1465	36	No	Travel_Frequently	884	Research & Development	23	2	
	1466	39	No	Travel_Rarely	613	Research & Development	6	1	
	1467	27	No	Travel_Rarely	155	Research & Development	4	3	
	1468	49	No	Travel_Frequently	1023	Sales	2	3	
	1469	34	No	Travel_Rarely	628	Research & Development	8	3	

1470 rows × 35 columns

In [5]: df.head()

Out[5]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educa
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life
	4	27	No	Travel_Rarely	591	Research & Development	2	1	

5 rows × 35 columns

In [6]: df.tail()

Out[6]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Ed
	1465	36	No	Travel_Frequently	884	Research & Development	23	2	
	1466	39	No	Travel_Rarely	613	Research & Development	6	1	
	1467	27	No	Travel_Rarely	155	Research & Development	4	3	
	1468	49	No	Travel_Frequently	1023	Sales	2	3	
	1469	34	No	Travel_Rarely	628	Research & Development	8	3	

5 rows × 35 columns

In [7]: df.shape

Out[7]: (1470, 35)

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtyp	es: int64(26), object(9)		

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNum
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000

8 rows × 26 columns

Out[9]:

C:\Users\DELL\AppData\Local\Temp\ipykernel_3716\3182140910.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corr=df.corr()

\cap		[10]	١.
U	uч	TO	

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	En
Age	1.000000	0.010661	-0.001686	0.208034	NaN	
DailyRate	0.010661	1.000000	-0.004985	-0.016806	NaN	
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	NaN	
Education	0.208034	-0.016806	0.021042	1.000000	NaN	
EmployeeCount	NaN	NaN	NaN	NaN	NaN	
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	NaN	
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	NaN	
HourlyRate	0.024287	0.023381	0.031131	0.016775	NaN	
JobInvolvement	0.029820	0.046135	0.008783	0.042438	NaN	
JobLevel	0.509604	0.002966	0.005303	0.101589	NaN	
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	NaN	
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	NaN	
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	NaN	
NumCompaniesWorked	0.299635	0.038153	-0.029251	0.126317	NaN	
PercentSalaryHike	0.003634	0.022704	0.040235	-0.011111	NaN	
PerformanceRating	0.001904	0.000473	0.027110	-0.024539	NaN	
RelationshipSatisfaction	0.053535	0.007846	0.006557	-0.009118	NaN	
StandardHours	NaN	NaN	NaN	NaN	NaN	
StockOptionLevel	0.037510	0.042143	0.044872	0.018422	NaN	
TotalWorkingYears	0.680381	0.014515	0.004628	0.148280	NaN	
TrainingTimesLastYear	-0.019621	0.002453	-0.036942	-0.025100	NaN	
WorkLifeBalance	-0.021490	-0.037848	-0.026556	0.009819	NaN	
YearsAtCompany	0.311309	-0.034055	0.009508	0.069114	NaN	
YearsInCurrentRole	0.212901	0.009932	0.018845	0.060236	NaN	
YearsSinceLastPromotion	0.216513	-0.033229	0.010029	0.054254	NaN	
YearsWithCurrManager	0.202089	-0.026363	0.014406	0.069065	NaN	

26 rows × 26 columns

```
In [11]: plt.subplots(figsize=(22,15))
sns.heatmap(corr,annot=True,cmap="coolwarm")
```

Out[11]: <Axes: >

In [12]: df.Attrition.value_counts()

Out[12]: No 1233 Yes 237

Name: Attrition, dtype: int64

Checking for NULL Values

In [13]: df.isnull().any()

```
False
         Age
Out[13]:
         Attrition
                                      False
                                      False
         BusinessTravel
         DailyRate
                                      False
         Department
                                      False
         DistanceFromHome
                                      False
         Education
                                      False
         EducationField
                                      False
         EmployeeCount
                                      False
         EmployeeNumber
                                      False
         EnvironmentSatisfaction
                                      False
         Gender
                                      False
         HourlyRate
                                      False
         JobInvolvement
                                      False
         Jobl evel
                                      False
         JobRole
                                      False
         JobSatisfaction
                                      False
         MaritalStatus
                                      False
         MonthlyIncome
                                      False
         MonthlyRate
                                      False
         NumCompaniesWorked
                                      False
         Over18
                                      False
         OverTime
                                      False
         PercentSalaryHike
                                      False
         PerformanceRating
                                      False
         RelationshipSatisfaction
                                      False
         StandardHours
                                      False
         StockOptionLevel
                                      False
         TotalWorkingYears
                                      False
         TrainingTimesLastYear
                                      False
         WorkLifeBalance
                                      False
         YearsAtCompany
                                      False
         YearsInCurrentRole
                                      False
         YearsSinceLastPromotion
                                      False
         YearsWithCurrManager
                                      False
         dtype: bool
```

Data Visualization

```
In [15]: attrition_counts = df['Attrition'].value_counts()
    plt.figure(figsize=(6, 6))
    plt.pie(attrition_counts, labels=attrition_counts.index, autopct='%1.1f%%', startar
    plt.title('Attrition Distribution')
    plt.axis('equal')

plt.show()
```

Attrition Distribution


```
In [16]: plt.figure(figsize=(8, 6))
    sns.countplot(x="Attrition", data=df)
    plt.title("Attrition Count")
    plt.show()
```



```
In [17]: plt.figure(figsize=(8, 6))
    sns.histplot(data=df, x="Age", kde=True)
    plt.title("Distribution of Age")
    plt.show()
```



```
In [18]: plt.figure(figsize=(35, 8))
sns.boxplot(data=df)
plt.title('Box Plots for all the attributes')
plt.show()

South the first training to the distributes

South the control of the distributes

The figure (figsize=(35, 8))
sns.boxplot(data=df)
plt.show()

In [19]: sns.boxplot(data=df, x='YearsInCurrentRole')
plt.title('Years In Current Role')
plt.xlabel('Fare')
plt.show()
```

Years In Current Role


```
In [20]: sns.boxplot(data=df, x='MonthlyIncome')
  plt.title('Monthly Income')
  plt.xlabel('Fare')
  plt.show()
```

Monthly Income


```
In [21]: from scipy import stats

z_scores = stats.zscore(df['MonthlyIncome'])
z_score_threshold = 3
    df_cleaned = df[(np.abs(z_scores) <= z_score_threshold)]

In [22]: sns.boxplot(data=df_cleaned, x='MonthlyIncome')
plt.title('Monthly Income')
plt.xlabel('Fare')
plt.show()</pre>
```

Monthly Income

So the outliers are in large quantity, and they are inside the threshold, so let us not remove the outliers SPLITTING INDEPENDENT AND DEPENDENT VARIABLES

4

Name: Attrition, dtype: object

ENCODING

In [26]: categorical_features = x.select_dtypes(include=['object']).columns.tolist() x_encoded = pd.get_dummies(x, columns=categorical_features, drop_first=True)

In [27]: x_encoded.head()

Out[27]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	Environmer
0	41	1102	1	2	1	1	
1	49	279	8	1	1	2	
2	37	1373	2	2	1	4	
3	33	1392	3	4	1	5	
4	27	591	2	1	1	7	

5 rows × 47 columns

FEATURE SCALING

In [28]: from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

x_scaled = pd.DataFrame(scaler.fit_transform(x_encoded), columns=x_encoded.columns)

In [29]: x_scaled.head()

Out[29]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	Enviro
(0.446350	0.742527	-1.010909	-0.891688	0.0	-1.701283	
•	1.322365	-1.297775	-0.147150	-1.868426	0.0	-1.699621	
2	0.008343	1.414363	-0.887515	-0.891688	0.0	-1.696298	
3	-0.429664	1.461466	-0.764121	1.061787	0.0	-1.694636	
4	-1.086676	-0.524295	-0.887515	-1.868426	0.0	-1.691313	

5 rows × 47 columns

In [30]: x=x_scaled

Train and test split

In [32]: from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_sta

MODEL BUILDING

In [33]: # Import the necessary libraries

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

from joblib import dump

```
logreg_model = LogisticRegression(random_state=42)
In [34]:
         dt model = DecisionTreeClassifier(random state=42)
         logreg_model.fit(x_train, y_train)
In [35]:
         dt_model.fit(x_train, y_train)
Out[35]:
                  DecisionTreeClassifier
         DecisionTreeClassifier(random state=42)
In [36]: logreg_predictions = logreg_model.predict(x_test)
         dt_predictions = dt_model.predict(x_test)
         logreg_accuracy = accuracy_score(y_test, logreg_predictions)
         print("Logistic Regression Accuracy:", logreg_accuracy)
         dt_accuracy = accuracy_score(y_test, dt_predictions)
         print("Decision Tree Accuracy:", dt accuracy)
         logreg_report = classification_report(y_test, logreg_predictions)
         print("Classification Report for Logistic Regression:\n", logreg_report)
         dt_report = classification_report(y_test, dt_predictions)
         print("Classification Report for Decision Tree Classifier:\n", dt_report)
         logreg_conf_matrix = confusion_matrix(y_test, logreg_predictions)
         print("Confusion Matrix for Logistic Regression:\n", logreg_conf_matrix)
         dt_conf_matrix = confusion_matrix(y_test, dt_predictions)
         print("Confusion Matrix for Decision Tree Classifier:\n", dt_conf_matrix)
         Logistic Regression Accuracy: 0.8809523809523809
         Decision Tree Accuracy: 0.7721088435374149
         Classification Report for Logistic Regression:
                       precision recall f1-score support
                           0.92
                                   0.95
                   No
                                               0.93
                                                         255
                                                         39
                  Yes
                           0.56
                                   0.46
                                               0.51
                                                         294
             accuracy
                                               0.88
                           0.74
                                  0.70
            macro avg
                                               0.72
                                                         294
         weighted avg
                           0.87
                                    0.88
                                               0.88
                                                         294
         Classification Report for Decision Tree Classifier:
                       precision recall f1-score support
                  Nο
                           0.87
                                    0.86
                                               0.87
                                                         255
                                    0.18
                                               0.17
                                                         39
                  Yes
                           0.17
                                               0.77
                                                         294
             accuracy
                           0.52
                                    0.52
                                               0.52
                                                         294
            macro avg
                           0.78 0.77
                                              0.78
                                                         294
         weighted avg
         Confusion Matrix for Logistic Regression:
          [[241 14]
          [ 21 18]]
         Confusion Matrix for Decision Tree Classifier:
          [[220 35]
          [ 32
                7]]
```

In []: