TIEMPO EN EL SISTEMA MÍNIMO

ALBERTO VERDEJO

Tiempo en el sistema mínimo

- ightharpoonup Tenemos n tareas, cada una de las cuales requiere un tiempo de ejecución t_i .
- ► Todas están disponibles para ser ejecutadas, por un único procesador, en secuencia.
- Queremos minimizar el tiempo medio de estancia de una tarea en el sistema, esto es, el tiempo transcurrido desde el comienzo de todo el proceso hasta que la tarea termina de ejecutarse.

Tiempo en el sistema mínimo

- ▶ T_i es el *tiempo en el sistema* de la tarea i, que es la suma de su tiempo de ejecución t_i , más los tiempos de ejecución de las tareas que se ejecutan antes que ella.
- El problema consiste en minimizar el tiempo medio en el sistema

$$TM = \frac{1}{n} \sum_{i=1}^{n} T_i$$

▶ Pero como *n* está fijo, esto es equivalente a minimizar el tiempo total

$$T = \sum_{i=1}^{n} T_i$$

Ejemplo

$$n = 3$$
, $t_1 = 5$, $t_2 = 10$, $t_3 = 3$

► Si el orden de ejecución es 1, 2, 3:

$$T = 5 + (5 + 10) + (5 + 10 + 3) = 38$$

► Si el orden de ejecución es 1, 3, 2:

$$T = 5 + (5+3) + (5+3+10) = 31$$

► Si el orden de ejecución es 3, 1, 2:

$$T = 3 + (3 + 5) + (3 + 5 + 10) = 29$$

Planificación óptima

- La planificación óptima consiste en atender a las tareas por *orden creciente* de tiempo de ejecución.
- ▶ Sea $l = i_1, i_2, ..., i_n$ una permutación cualquiera de los enteros del 1 al n.

$$T(I) = t_{i_1} + (t_{i_1} + t_{i_2}) + (t_{i_1} + t_{i_2} + t_{i_3}) + \dots + (t_{i_1} + t_{i_2} + \dots + t_{i_n})$$

$$= nt_{i_1} + (n-1)t_{i_2} + \dots + 2t_{i_{n-1}} + t_{i_n}$$

$$= \sum_{k=1}^{n} (n-k+1)t_{i_k}$$

► Sabemos que $t_a \le t_b$

► Proponemos intercambiar en Y las tareas a y b, para hacer Y más parecida a X.

$$T(Y) = \left(\sum_{\substack{i=1\\i\neq j,k}}^{n} (n-i+1)t_{y_i}\right) + (n-j+1)t_b + (n-k+1)t_a$$

$$T(Z) = \left(\sum_{\substack{i=1\\i\neq j,k}}^{n} (n-i+1)t_{Z_i}\right) + (n-j+1)t_a + (n-k+1)t_b$$

$$T(Y) - T(Z) = (n-j+1)t_b + (n-k+1)t_a - (n-j+1)t_a - (n-k+1)t_b$$

$$= -jt_b + kt_b - kt_a + jt_a$$

$$= t_b(k-j) - t_a(k-j)$$

$$= (k-j)(t_b - t_a)$$

$$\geq 0$$

- Cualquier solución $Y = (y_1, y_2, ..., y_n)$ que no siga la estrategia voraz se puede mejorar.
- Si Y no está ordenada de forma no decreciente, tiene que existir una posición j tal que $t_{y_i} > t_{y_{i+1}}$.
- Si las intercambiamos, la tarea y_{j+1} no tendrá que esperar a y_j , pero y_j tendrá que esperar a y_{j+1} .
- Tras el intercambio, el tiempo será $T(Y) t_{y_j} + t_{y_{j+1}} < T(Y)$.