Branching Random Walks with Selection

Patrik Gerber

Supervised by Prof. Julien Berestycki

Dissertation on a topic in Statistics presented for MMath in Mathematics and Statistics

February 4, 2019

Contents

0.1	Expor	nentially decaying tails	2
	0.1.1	Construction	2
	0.1.2	Assumptions	2
	0.1.3	Properties of the model	3
	0.1.4	Killed branching random walks	4
	0.1.5	Brunet-Derrida behaviour	5

0.1 Exponentially decaying tails

0.1.1 Construction

The first variation of the N-branching random walk that we consider is very similar to the one studied in [1] by Bérard and Gouéré. However, we treat a slightly more general case where the number of offspring of each particle is random, opposed to being fixed at two. Denote by $X=(X_n)_{n\geq 0}=(\sum_{i=1}^N \delta_{X_n(i)})_{n\geq 0}$ the N-branching random walk with particles at positions $X_n(1)\leq ...\leq X_n(N)$. At each timestep the system undergoes the following two steps:

- (i) Branching: Each particle dies and gives birth to a random number of offspring. The number of children is distributed with law q and is independent of the past of the process. Given the position of the parent, say x, each child's position follows the law $p(\cdot x)$ independently.
- (ii) Selection: Out of all children, the N rightmost are selected to form the population at the next timestep.

Construction. As before, let $X=(X_n)_{n\geq 0}$ denote the \mathcal{C}_N -valued discrete time Markov process defined by the branching-selection procedure detailed above. Note that we suppress the dependence on N in our notation for simplicity. We can construct X easily: Let $\mathcal{E}_N:=(\epsilon_{l,i,j})_{l\geq 0,i\in [\![1,N]\!],\,j\geq 1}$ and $\mathcal{M}_N:=(\tau_{l,i})_{l\geq 0,i\in [\![1,N]\!]}$ be i.i.d. collections of random variables distributed like p and q respectively, with the collections also independent from each other. Now, given the process up to time $n\geq 0$, we construct X_{n+1} as follows: define $Y_{n+1}:=\sum_{i=1}^N\sum_{j=1}^{\tau_{n,i}}\delta_{X_n(i)+\epsilon_{n,i,j}}$ and take X_{n+1} to given by the N rightmost particles of Y_{n+1} . This construction gives rise to an important monotonicity property that we record in the following Lemma:

LEMMA 0.1 ([1, Corollary 2]) — For any $1 \leq N_1 \leq N_2$ and $\tau_i \in \mathcal{C}_{N_i}$ with i = 1, 2 such that $\tau_1 \leq \tau_2$, there exists a coupling $(X_n^{(1)}, X_n^{(2)})_{n \geq 0}$ between two versions of the branching-selection particle system started from τ_1 and τ_2 respectively satisfying $X_n^{(1)} \leq X_n^{(2)}$ almost surely for all n > 0.

Proof. The proof is a straightworward extension of our construction. The idea is to take the i.i.d. families \mathcal{E}_{N_2} and \mathcal{M}_{N_2} defined as above and use them to define both processes. Note that the argument hinges on the fact that in our notation $X_n(1) \leq ... \leq X_n(N)$.

0.1.2 Assumptions

Let $\nu \in \mathcal{C}$ be a random, finite counting measure with the same distribution as the offspring of a single particle at origin in our branching-selection mechanism (the fact that $\nu \in \mathcal{C}$ follows from Assumption 3). In other words, the number of atoms of ν has distribution q and each atom is placed independently at position drawn from p. Let us now define the logarithmic moment generation function of ν :

$$\psi(t) := \mathbb{E} \int_{\mathbb{D}} e^{tx} d\nu(x).$$

Note that in their analysis Bérard and Gouéré define a slightly different function $\Lambda(t) = \psi(t) - \log 2$, however the branching random walk literature usually uses our definition. We now state the assumptions necessary to gain access to the results of [2].

Assumption 1. ψ is finite in some neighbourhood of 0.

Assumption 2. There exists $t^* > 0$ in the interior of the domain of ψ such that $t^*\psi'(t^*) = \psi(t^*)$.

Assumption 1 is in fact equivalent to the requirement that p have exponentially decaying tails, furthermore it implies that p has finite moments of all orders. The third assumption concerns the distribution q:

Assumption 3. q has exponentially decaying tails, q(0) = 0 and $\sum_{i=1}^{\infty} iq(i) > 1$.

We will use the notation $\mu := \int_{[1,\infty)} x dq(x) > 1$. The results that follow in this section are conditional upon Assumptions 1, 2 and 3 being satisfied. We now record a technical lemma that will help us later

LEMMA 0.2 — Let $\tau \in \mathbb{N}$ be a random variable with exponentially decaying tails and let $(\epsilon_i)_{i\geq 1}$ be an i.i.d. sequence of random variables with exponentially decaying tails, independent of τ . Then $M := \max_{1 \leq i \leq \tau} \epsilon_i$ has exponentially decaying tails.

Proof. Let $C, \gamma, t_0 > 0$ be such that $\mathbb{P}(|\epsilon_1| \leq t) \geq 1 - Ce^{-\gamma t}$ for all $t > t_0$. Then for $t > t_0$ Bernoulli's inequality gives

$$\mathbb{P}(M > t) = 1 - \mathbb{E}\left[\mathbb{P}\left(\epsilon_{1} \leq t\right)^{\tau}\right] \leq 1 - \mathbb{E}\left[\left(1 - Ce^{-\gamma t}\right)^{\tau}\right]$$
$$\leq 1 - \mathbb{E}\left[1 - Ce^{-\gamma t}\tau\right] = C\mathbb{E}\left[\tau\right]e^{-\gamma t}.$$

Similarly, looking at the lower tail we get

$$\mathbb{P}\left(M<-t\right)\leq 1-\mathbb{E}\left[\mathbb{P}\left(\left|\epsilon_{1}\right|\leq t\right)^{\tau}\right]\leq 1-\mathbb{E}\left[\left(1-Ce^{-\gamma t}\right)^{\tau}\right]\leq C\mathbb{E}\left[\tau\right]e^{-\gamma t}.$$

0.1.3 Properties of the model

Denote by $\max X_n$ and $\min X_n$ the right- and leftmost atom of X_n respectively. It is worth noting that $\min X_n$ and $\max X_n$ are integrable and hence finite by Assumptions 1 and 3 when started from any fixed $X_0 \in \mathcal{C}_N$. Indeed, by independence we have

$$\mathbb{E}|\max X_n| \le \mathbb{E}\left|\max X_0 + \sum_{l=0}^{n-1} \sum_{i=1}^N \sum_{j=1}^{\tau_{l,i}} \epsilon_{l,i,j}\right| \le |\max X_0| + Nn\mathbb{E}\left[\tau_{0,1}\right] \mathbb{E}|\epsilon_{0,1,1}|. \tag{0.1}$$

Denote by $d(X_n) := \max X_n - \min X_n$ the diameter of X_n . We have the following result, analogous to Corollary 1 of [1]:

PROPOSITION 0.1 — For any $N \ge 1$ and initial population $X_0 \in \mathcal{C}_N$, we have

$$\frac{d(X_n)}{n} \xrightarrow[n \to \infty]{a.s., L^1} 0.$$

Proof. Let $u_{\kappa} := \kappa \lceil \log N \rceil$ for some $\kappa \in \mathbb{N}_+$ and take $n \geq u_N$. Define $\mathcal{E} := \{\epsilon_{l,i,j} \mid l \in [n-u_N,n-1], i \in [1,N], j \in [1,\tau_{l,i}]\}$ and let $M := \max \mathcal{E}, m := \min \mathcal{E}$ noting that both have exponentially decaying tails by Lemma 0.2. Now consider the process X in the time-frame $[n-u_N,n]$ where the evolution of X is governed by \mathcal{E} . Write $y := \max X_{n-u_N}$ for the rightmost particle's position at time $n-u_N$. Suppose that for each $k \in [1,u_N]$ we have $\min X_{n-u_N+k} < y + km$. As all steps during branching are $\geq m$, this implies in particular that the descendents of the particle 'y' survive all selection steps until time n. Therefore, on the event $A_{\kappa} := \{\text{number of descendants of } y \text{ at time } n \text{ is } > N \}$ almost surely $\min X_{n-u_N+k} \geq y + k_0 m$ for some k_0 . By the definition of m this must also hold for all $k \in [k_0,u_N]$, in particular for $k=u_N$. Noting that $\max X_n \leq y + u_N M$, it follows that

$$d(X_n)\mathbb{1}_{A_n} \le u_N(M-m),\tag{0.2}$$

with probability one. A simple argument shows that $\mathbbm{1}_{A_{\kappa}} \to 1$ almost surely as $\kappa \uparrow \infty$:

$$\mathbb{P}(A_{\kappa}^{c}) \leq \sum_{k=0}^{N-1} \binom{u_{\kappa}}{k} q(1)^{u_{\kappa}-k} (1-q(1))^{k} \leq u_{\kappa}^{N-1} q(1)^{u_{\kappa}} \to 0 \text{ as } \kappa \uparrow \infty \text{ since } q(1) < 1.$$
 (0.3)

Fix $\epsilon > 0$ and take κ large enough so that $\mathbb{P}(A_{\kappa}^c) < \epsilon^2$. Consider the decomposition

$$\frac{d(X_n)}{n} = \frac{d(X_n)}{n} \mathbb{1}_{A_{\kappa}} + \frac{d(X_n)}{n} \mathbb{1}_{A_{\kappa}^c}.$$
 (0.4)

Taking expectations and then taking n to infinity, the first term vanishes by 0.2. The second term is upper by $(\mathbb{P}(A_{\kappa}^c)\mathbb{E}\left[d(X_n)^2/n^2\right])^{1/2}$ using Hölder's inequality. A rough bound on $d(X_n)$ suffices now: at each branching step $l \geq 0$ take the maximum and the minimum of the $\sum_{j=1}^N \tau_{l,j}$ random walk steps. The diameter certainly grows by no more than the difference between these two at each step. By Lemma 0.2 this yields $\mathbb{E}\left[d(X_n)^2\right] = \mathcal{O}(n^2)$ which implies that the second term in 0.4 is $\mathcal{O}(\epsilon)$. Taking ϵ to zero concludes the proof of L^1 convergence. Almost sure convergence is a consequence of the next Proposition.

PROPOSITION 0.2 ([1, Proposition 2]) — There exists $v_N = v_N(p) \in \mathbb{R}$ such that for any initial population $X_0 \in \mathcal{C}_N$ the following holds almost surely and in L^1 :

$$\lim_{n \to \infty} \frac{\min X_n}{n} = \lim_{n \to \infty} \frac{\max X_n}{n} = v_N. \tag{0.5}$$

Proof. First we treat the case $X_0 = N\delta_0$. Recall the definition of \mathcal{E}_N and \mathcal{M}_N from the construction of X. For each $l \geq 0$ we define the process $(X_n^l)_{n \geq 0}$ by shifting the origin of time by l. More precisely, given the process up to time $n \geq 0$, define X_{n+1}^l to be given by the N rightmost particles of $\sum_{i=1}^N \sum_{j=1}^{\tau_{n+l,i}} \delta_{X_n^l(i)+\epsilon_{n+l,i,j}}$. It is clear that each $(X_n^l)_{n\geq 0}$ is distributed as the N-branching random walk with offspring law p. For this proof we start $(X_n^l)_{n\geq 0}$ from $N\delta_0$ for each $l\geq 0$ so that $(X_n^0)_{n\geq 0} = (X_n)_{n\geq 0}$ almost surely. From Lemma 0.1 it follows easily that

$$\max X_{n+m}^0 \le \max X_n^0 + \max X_m^n \qquad \forall n, m \ge 0. \tag{0.6}$$

For notational simplicity define $Y_{i,j} = \max X_{j-i}^i$ for $0 \le i \le j$. Then 0.6 reads $Y_{0,j} \le Y_{0,i} + Y_{i,j}$ for all $0 \le i \le j$, which is familiar territory for Kingman's Subadditive Ergodic Theorem. We postpone showing that the conditions of the theorem hold to Lemma 0.3. Applying the theorem yields $\lim_{n\to\infty} n^{-1} \max X_n = \lim_{n\to\infty} \mathbb{E}\left[n^{-1} \max X_n\right] = \inf_n \mathbb{E}\left[n^{-1} \max X_n\right] = v_N \in \mathbb{R}$ where the first limit is almost sure. Noting that the process $(-X_n)_{n\ge 0}$ satisfies all the same assumptions as X, we can deduce from the identity $\min X_n = -\max(-X_n)$ that $\lim_{n\to\infty} n^{-1} \min X_n = \lim_{n\to\infty} \mathbb{E}\left[n^{-1} \min X_n\right] = \inf_n \mathbb{E}\left[n^{-1} \min X_n\right] = \tilde{v}_N \in \mathbb{R}$ exists too, where the first limit is almost sure. From the proof of Proposition 0.1 we immediately get $\tilde{v}_N = v_N$ by uniqueness of L^1 limits, which gives $\lim_{n\to\infty} n^{-1} d(X_n) = v_N - \tilde{v}_N = 0$ almost surely as claimed. The proof is complete in the case $X_0 = N\delta_0$. By translation invariance of the dynamics of the system the result also follows for initial conditions of the form $N\delta_{x_0}$ for any $x_0 \in \mathbb{R}$. Finally, for arbitrary $X_0 \in \mathcal{C}_N$ note that the result is a consequence of Lemma 0.1 and a sandwiching argument between the initial configurations $N\delta_{\min X_0}$ and $N\delta_{\max X_0}$.

LEMMA 0.3 — The random variables $Y_{i,j}$ as defined in the proof of Proposition 0.2 satisfy the hypothesis of Kingman's Subadditive Theorem.

Proof. For each $k \geq 1$ the sequence $\{Y_{k,2k},Y_{2k,3k},...\} = \{\max X_k^k,\max X_k^{2k},...\}$ is i.i.d. so stationary and ergodic. Clearly the distribution of $(Y_{i,i+k})_{k\geq 0} = (\max X_k^i)_{k\geq 0}$ is independent of i. $\mathbb{E}Y_{0,1}^+ = \mathbb{E}(\max X_1)^+ < \infty$ because $\max X_1 \in L^1$ by 0.1. Finally, $\mathbb{E}Y_{0,n} = \mathbb{E}\max X_n \geq n \, \mathbb{E}\min\{\epsilon_{0,i,j} \mid i \in [\![1,N]\!], j \in [\![1,\tau_{0,i}]\!]\}$ where the expectation is finite by Lemma 0.2. \square

Proposition 0.3 ([1, analogue of Proposition 3]) — The sequence $(v_N)_{N>1}$ is non-decreasing.

Proof. This is again a consequence of Lemma 0.1.

Remark 0.1. From Proposition 0.3 we can deduce that v_N increases to a possibly infinite limit v_∞ as N goes to infinity. Assumption 1 implies that Λ is smooth on the interior of $\mathcal{D}(\Lambda)$ so that both quantities $v := \phi'(t^*)$ and $\chi := \frac{\pi^2}{2} t^* \phi''(t^*)$ are finite. In Section 0.1.5 we will see that v_∞ is in fact equal to v.

0.1.4 KILLED BRANCHING RANDOM WALKS

Adapting the notation used in [1], we formally define a Branching Random Walk (BRW) to be a pair (\mathcal{T}, Φ) , where \mathcal{T} is a Galton-Watson tree with offspring distribution q and Φ is a map assigning a random variable $\Phi(u)$ to each vertex $u \in \mathcal{T}$, independently of \mathcal{T} . Φ must be such that $\Phi(\text{root}) = 0$ and $\{\Phi(v) - \Phi(u) \mid u \text{ is the parent of } v\}$ is i.i.d. with common distribution p. We call $\Phi(u)$ the value of the BRW at vertex u and write $\mathcal{T}(n)$ for the set of vertices in \mathcal{T} at depth n. We say a sequence of vertices $u_1, u_2, ...$ is a path if u_{i+1} is the parent of u_i for each $i \geq 1$. Suppose that we have a BRW (\mathcal{T}, Φ) and take $v \in \mathbb{R}$ and $m \geq 1$. We say that vertex u is (m, v)-good if there exists a path $u = u_0, u_1, ..., u_m$ such that $\Phi(u_i) - \Phi(u) \geq vi$ for all $i \in [0, m]$. This is essentially saying that there exists a path started from u that stays to the right of the space-time line through $(u, \Phi(u))$ with slope v, for at least m steps. The definition of an (∞, v) -good vertex is analogous. We now state two results from [2] that we will need to prove Theorem 0.6. Recall the definitions of v and χ from Remark 0.1.

THEOREM 0.4 ([2, Theorem 1.2]) — Let $\rho(\infty, \epsilon)$ denote the probability that the root of the BRW with offspring distribution q and step distribution p is $(\infty, v - \epsilon)$ – good. Then, as $\epsilon > 0$ goes to zero,

$$\rho(\infty, \epsilon) \le \exp\left(-\left(\frac{\chi + o(1)}{\epsilon}\right)^{1/2}\right).$$
(0.7)

A similar result can be stated for the probability of observing a $(m, v - \epsilon)$ -good root with m finite:

THEOREM 0.5 ([2, Consequence of proof of Theorem 1.2]) — Let $\rho(m, \epsilon)$ denote the probability that the root of the BRW with offspring distribution p is $(m, v - \epsilon)$ -good. For any $0 < \beta < \chi$, there exists $\theta > 0$ such that for all large m,

$$\rho(m,\epsilon) \le \exp\left(-\left(\frac{\chi-\beta}{\epsilon}\right)^{1/2}\right), \quad \text{with } \epsilon := \theta m^{-2/3}.$$

0.1.5 Brunet-Derrida behaviour

We are now ready to present and prove our main result in this section, the analogue of Bérard and Gouéré's Theorem 1:

Theorem 0.6 — As N goes to infinity,

$$v_{\infty} - v_N = \frac{\chi}{(\log N)^2} + o((\log N)^{-2}).$$

First let us describe the coupling between the N-branching random walk and N independent branching random walks which allows us to relate Theorems 0.4 and 0.8 to the N-branching random walk. Let $(BRW_i)_{i\in \llbracket 1,N\rrbracket} = ((\mathcal{T}_i,\Phi_i))_{i\in \llbracket 1,N\rrbracket}$ be a set of N independent copies of the BRW with offspring distribution q and step distribution p. Define $\mathbb{T}_n := \bigsqcup_{i=1}^N \mathcal{T}_i(n)$ to be the disjoint union of vertices at depth n in the N BRWs, and fix an arbitrary (nonrandom) total order on \mathbb{T}_n for each n. We now inductively define a sequence $(G_n)_{n\geq 0}$ of random subsets of \mathbb{T}_n , each with exactly N elements. These random subsets will correspond to the particles alive in the coupled N-braching random walk at time n. Define $G_0 = \mathbb{T}_0$ and given G_n , define H_n to be the vertices in \mathbb{T}_{n+1} that descend from vertices in G_n . Finally, set G_{n+1} to be the set of N vertices in H_n with the gratest value, resolving ties via the fixed total order on \mathbb{T}_{n+1} . If we now define (with some abuse of notation) $\mathfrak{X}_n = \sum_{u,i:u\in G_n\cap\mathcal{T}_i} \delta_{\Phi_i(u)}$ then $(\mathfrak{X}_n)_{n\geq 0}$ has the same distribution as X started from $N\delta_0$. Going forward we will alternate between the notation of the two constructions of the N-branching random walk that we have given. Concretely, we will refer to \mathcal{T} , Φ , $\epsilon_{n,i,j}$ and $\tau_{n,i}$ without mentioning explicitly the obvious relationships between these objects. Let us now record a technical lemma that will be used in the proof of the lower bound in Theorem 0.6.

LEMMA 0.7 ([3, Adapted by Bérard and Gouéré from Lemma 5.2]) — Let $v_1 < v_2 \in \mathbb{R}$ and $1 \le m \le n \in \mathbb{N}$. Suppose $0 =: x_0, ..., x_n$ is a sequence of real numbers such that $\max_{i \in [0, n-1]} (x_{i+1} - x_i) \le K$ for some K > 0, and define $I := \{i \in [0, n-m] \mid x_{i+j} - x_i \ge jv_1, \forall j \in [0, m]\}$. If $x_n \ge v_2 n$, then $|I| \ge \frac{v_2 - v_1}{K - v_1} \frac{m}{n} - \frac{K}{K - v_1}$.

Proof of lower bound in Theorem 0.6. As before, set $X_0 = N\delta_0$. Our aim is to show $v_N := \lim_{n\to\infty} \mathbb{E}\left[n^{-1}\max X_n\right] \leq v_\infty - \chi/(\log N)^2 + o((\log N)^{-2})$. However, we shall show this with v_∞ replaced by v, which combined with the upper bound also proves that $v_\infty = v$. Let $\beta \in (0,\chi)$ and let $\theta > 0$ be as in Theorem 0.8. Let $\lambda > 0$, and define

$$m := \left[\theta^{3/2} \left(\frac{(1+\lambda)\log N}{(\chi-\beta)^{1/2}} \right)^3 \right], \tag{0.8}$$

and $\epsilon := \theta \, m^{-2/3}$. The scale of ϵ and m is carefully chosen so that by Theorem 0.8,

$$\rho(m,\epsilon) < N^{-(1+\lambda)} \qquad \text{for all large } N.$$
(0.9)

Take $\gamma \in (0,1)$ and define $v_1 = v - \epsilon$ and $v_2 = v - (1 - \gamma)\epsilon$ noting that $v_1 < v_2 < v$. Finally, let $n = \lceil N^{\xi} \rceil$ for some $0 < \xi < \lambda$ and consider the following inequality with $\delta > 0$:

$$\mathbb{E}\left[n^{-1} \max X_{n}\right] = \mathbb{E}\left[n^{-1} \max X_{n} \left[\mathbb{1}_{\{\max X_{n} < nv_{2}\}} + \mathbb{1}_{\{nv_{2} \leq \max X_{n} < n(v+\delta)n\}} + \mathbb{1}_{\{(v+\delta)n \leq \max X_{n}\}}\right]\right] \\ \leq v_{2} + (v+\delta) \underbrace{\mathbb{P}\left(\max X_{n} \leq v_{2}n\right)}_{(I)} + \underbrace{\mathbb{E}\left[n^{-1} \max X_{n} \mathbb{1}_{\{(v+\delta)n \leq \max X_{n}\}}\right]}_{(II)}. \tag{0.10}$$

The strategy for the proof is to show that both (I) and (II) are $o((log N)^{-2})$. The result then follows, as $v_2 = v - (1 - \gamma)(\chi - \beta)(1 + \lambda)^{-2}(\log N)^{-2}$ where γ, β, λ can be taken arbitrarily small.

Let B_n be the number of vertices in $\sqcup_{i=1}^n G_i$ that are (m,v_1) -good with respect to their respective BRWs. Define $K = \kappa \log(2Nn)$ for some $\kappa > 0$ and notice that the quantity $\frac{v_2 - v_1}{K - v_1} \frac{m}{n} - \frac{K}{K - v_1} = \Theta(N^{\xi}(\log N)^{-4})$ so that for large enough N it is positive. Let $u_0, u_1, ..., u_n$ be a path in \mathcal{T}_{i_0} for some $i_0 \in [\![1,N]\!]$ such that $u_0 = root_{i_0}$ and $u_n \in G_n$ with $\Phi_{i_0}(u_n) = \max X_n$. In other words, let $u_0, ..., u_n$ be the path from the root to the rightmost particle at time n of the coupled N-branching random walk. On the event $E := \{\max X_n \geq v_2 n\}$, we apply Lemma 0.7 to the sequence of real numbers $(\Phi_{i_0}(u_i))_{i \in [\![1,n]\!]}$ to see that either there is an (m,v_1) -good vertex among the u_i or one of the random walk steps along the path is $\geq K$. These events are respectively included in the events that $B_n \geq 1$ and that $M := \max\{\epsilon_{l,i,j} \mid l \in [\![0,n-1]\!], \ i \in [\![1,N]\!], \ j=1,2\} \geq K$. We can use this to bound the probability of E:

$$\mathbb{P}(E) < \mathbb{P}(M > K) + \mathbb{P}(B_n > 1). \tag{0.11}$$

Consider a vertex $u \in \mathcal{T}_{i_0}(d)$ for some $i_0 \in [\![1,N]\!]$ at depth $d \in [\![0,n]\!]$. The event $\{u \in G_d\}$ is measurable with respect to the sigma algebra generated by the random variables $\{\Phi_j(v) \mid j \in [\![1,N]\!], \mathcal{T}_j \ni v'$ s depth $\leq d\}$. On the other hand, the event $\{u \text{ is } (m,v_1)\text{-good}\}$ is determined by the variables $\{\Phi_{i_0}(v) - \Phi_{i_0}(u) \mid \mathcal{T}_{i_0} \ni v'$ s depth $> d\}$, so that the two events are independent. We can write B_n as

$$B_n = \sum_{i \in \llbracket 1, N \rrbracket, \ u \in \mathcal{T}_i} \mathbb{1}_{\{u \text{ is } (n, v_1) \text{-good}\}} \mathbb{1}_{\{u \in G_d \text{ for some } d \in \llbracket 0, n \rrbracket\}}.$$

Taking expectations gives

$$\mathbb{E}[B_n] \le N(n+1)\rho(m,\epsilon) = \mathcal{O}(N^{\xi-\lambda}) = o((\log N)^{-2})$$
 as N goes to infinity,

where we used that G_n has N elements for all n. Recall that the distribution p has exponentially decaying tails, so that there exist $C, \gamma > 0$ such that $\mathbb{P}_{X \sim p}(X > t) \leq C \exp(-\gamma t)$ for all large t. This gives $\mathbb{P}(M \geq K) \leq 1 - (1 - \exp(-\gamma \kappa \log(2Nn)))^{2Nn} \leq (2Nn)^{1-\gamma\kappa} = o((\log N)^{-2})$, for $\kappa > \gamma^{-1}$. Together with ?? this shows that $(I) = o((\log)^{-2})$.

To show that $(II) = o((\log N)^{-2})$ first consider the obvious inequality $\exp(t \max X_n) \leq \sum_{i \in [\![1,N]\!], u \in \mathcal{T}_i(n)} \exp(t\Phi_i(u))$. Taking expectations gives $\mathbb{E}\left[\exp(t \max X_n)\right] \leq N2^n \exp(n\Lambda(t))$, where we used a telescoping sum along the path connecting the root and u and the fact that $\#\mathcal{T}_i(n) = 2^n$ for each i. Recalling from Assumption 2 and Remark 0.1 that $\Lambda(t^*) = vt^* - \log 2$, we obtain

$$\mathbb{E}\left[\exp(t^* \max X_n)\right] \le N \exp(vnt^*). \tag{0.12}$$

LEMMA 0.8 — Let b > 0. Then for all large enough a,

$$x\mathbb{1}_{\{x\geq a\}} \leq \exp\left(b\left(x - \frac{a}{2}\right)\right), \quad \forall x \in \mathbb{R}.$$
 (0.13)

Proof. Differentiate the map $f: x \mapsto \exp(b(x-a/2)) - x$ to find that for large enough a, f is increasing on $[a, \infty)$. Noting that $f(a) \ge 0$ for all large a concludes the proof.

Apply Lemma 0.8 with $X = \max X_n - vn$, $a = \delta n$, $b = t^*$ and take expectations to get

$$\mathbb{E}\left[\left(\max X_n - vn\right)\mathbb{1}_{\left\{\max X_n \ge (v+\delta)n\right\}}\right] \le \mathbb{E}\left[\exp(t^*(X_n - vn - \delta n/2))\right],$$

which combined with 0.14 and a Chernoff bound gives

$$(II) = \mathbb{E}\left[\max X_n \mathbb{1}_{\{\max X_n \ge (v+\delta)n\}}\right] \le N \exp(-\delta n/2)(1 + |v|n) = o((\log N)^{-2}).$$

We have shown that for any choice of $\gamma \in (0,1)$, $\beta \in (0,\chi)$ and $\lambda > \xi > 0$, for all N large enough

$$\mathbb{E}\left[\left\lceil N^{\xi}\right\rceil^{-1} \max X_{\lceil N^{\xi}\rceil}\right] \le v - (1 - \gamma) \frac{\chi - \beta}{(1 + \lambda)^2 (\log N)^2} + o((\log N)^{-2}). \tag{0.14}$$

Recall from the proof of Proposition 0.2 that $v_N = \inf_n n^{-1} \mathbb{E} [\max X_n]$, so the left hand side in 0.16 can be replaced by v_N . Taking γ, β, λ and ξ to zero gives the desired result.

References

- [1] Jean Bérard and Jean-Baptiste Gouéré. Brunet-derrida behavior of branching-selection particle systems on the line. *Communications in Mathematical Physics*, 298(2):323–342, 2010.
- [2] Nina Gantert, Yueyun Hu, and Zhan Shi. Asymptotics for the survival probability in a super-critical branching random walk. arXiv preprint arXiv:0811.0262, 2008.
- [3] Robin Pemantle. Search cost for a nearly optimal path in a binary tree. *The Annals of Applied Probability*, pages 1273–1291, 2009.