Simple linear regression

We will use a car data set and our dependent variable is mpg (miles per gallon) vs our independent variable car weight.

Description of our response variable and predictor variable but lets first create our global variables

```
global ylist mpg
global xlist weightl
```

. describe \$y	list \$xli:	st			
variable name	storage type	display format	value label	variable label	
mpg weight1	byte float	%8.0g %9.0g		miles per gallon car weight in 1,000 pounds	

Data Summary

				st \$x11st	summarize \$ylis
Max	Min	Std. Dev.	Mean	Obs	Variable
35	14	4.757504	20.92308	26	mpg
4.33	2.02	.6950794	3.099231	26	weight1

. sum	nmarize \$ylist,	detail		
		miles per ga	llon	
	Percentiles	Smallest		
1%	14	14		
5%	14	14		
L0%	15	15	Obs	26
25%	17	16	Sum of Wgt.	26
) 응	21		Mean	20.92308
		Largest	Std. Dev.	4.757504
5%	23	25		
90%	26	26	Variance	22.63385
15%	29	29	Skewness	.8806144
98	35	35	Kurtosis	4.243808

Question

Can the weight of a car statistically significantly predict a car's miles per gallon?

Hypothesis

H0: Car weight can not statistically significantly predict a car's miles per gallon Ha: Car weight can statistically significantly predict a car's miles per gallon

The level of significance

alpha = 0.05

ASSUMPTIONS

Determine if data meets requirements to perform a linear regression.

Assumption #1: Your response variable should be measured on a continuous scale. **Assumption #2**: Your independent variable should be measured at the continuous or categorical level.

Assumption #5: There should be no significant outliers. We can use box plot

We can see that our response variable mpg has an extreme value, let's drop it.

Let us view the box plot again

And now we are good.

Assumption #3: There needs to be a linear relationship between the dependent and independent variables. Let's plot a scatter plot and check

As seen above the two variables appear to be linearly related

Assumption #4: You should have independence of observations. which you can easily check using the **Durbin-Watson statistic**, which is a simple test to run using Stata.

Values of 1.5 < d < 2.5 generally show that there is no autocorrelation in the data while values

0 to 2< means there is positive autocorrelation and values >2 to 4 means there is negative autocorrelation.

Assumption #6: Your data needs to show homoscedasticity, which is where the variances along the line of best fit remain similar as you move along the line.

One of the major assumptions given for type ordinary least squares regression is the homogeneity in the case of variance of the residuals. In the case of a well-fitted model, if you plot residual values versus fitted values, you should not see any particular pattern. Now,

what if the variance given by the residuals is not a constant? In this case, the **residual variance** is called **heteroscedastic**. The most commonly used way to detect heteroscedasticity is by plotting residuals versus predicted values. We should not have any side narrower than the other.

. rvfplot, yline(0)

We can also use non-graphical commands as shown below. The first test on heteroscedasticity given by imtest is the White's test and the second one given by hettest is the Breusch-pagan test.

estat imtest Cameron & Trivedi's decomposition of IM-test chi2 Source Heteroskedasticity 3.37 2 0.1853 Skewness 5.09 1 0.0241 Kurtosis 1.45 1 0.2278 Total 9.91 4 0.0419 . estat hettest Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of mpg chi2(1) 0.61 Prob > chi2 = 0.4349

Both test the null hypothesis that the variance of the residuals are homogenous.

Assumption #7: Finally, you need to check that the residuals (errors) of the regression line are approximately normally distributed.

First we run the regression as shown below

```
reg $ylist $xlist
                                                 Number of obs
                                                                          25
                                                                      45.78
                                   239.456142
                                                 Prob > F
                                                                      0.0000
    Model
              239.456142
                                                R-squared
              120.303858
                                                                      0.6656
                                   5.23060252
                                                                      0.6511
                                                 Adj R-squared
                 359.76
                               24
                                        14.99
                                                                      2.2871
                                                        [95% Conf. Interval]
      mpg
              -4.694151
                                             0.000
                                                       -6.129338
                                                                   -3.258964
                         2.227593
                35.1109
                                             0.000
                                                        30.50277
                                                                   39.71903
```

We the use the predict command to generate residuals

```
. predict elhat, resid
```

We finally use kdensity command to plot a kernel density plot with a normal option requesting that a normal density be overlaid on the plot.

. pnorm elhat

. qnorm elhat

We can also use Shapiro-Wilk W test for normal data as shown below. The p value is based on the assumption that the distribution is normal.

As seen above this assumption is satisfied as the Shapiro-Wilk W test is not significant.

Simple linear interpretation

Source SS Model 239.456142		df M		Number of obs			25
		1	239.45614		F(1, 23) Prob > F		45.78
Residual	120.303858	23	5.2306025	2 R-sq	uared		0.6656
				— Adj	R-squared		0.6511
Total	359.76	24	14.9	99 Root	MSE		2.2871
mpg	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
weight1	-4.694151	.693777	-6.77	0.000	-6.129338	3	-3.258964
cons	35.1109	2.227593	15.76	0.000	30.50277	7	39.71903

A linear regression established that weight of a car could statistically significantly predict mpg (miles covered by the car per gallon), F(1, 23) = 45.78, p < .05 and the weight of a car accounted for 66.56% of the explained variability in miles covered by the car per gallon. The regression equation was: predicted miles covered by the car per gallon = 35.1109 - 4.694 x (weight of the car).

Plotting a regression line

