Final Exam: IERG 6300

Total points: 50

The exam is due by 12:00 **noon** on Monday December 23rd, 2019 Even if you opt for this course to be Pass/Fail you need to answer this exam

This exam contains 2 pages (including this cover page) and 6 questions.

Important Notes

- Use of internet is not allowed.
- You may use the lecture notes and quote relevant results. You can also use standard theorems from analysis.
- 1. (a) (2 points) Let X be a non-negative random variable such that $\mathrm{E}(X^2) < \infty$. Let $0 \le a < \mathrm{E}(X)$. Show that

$$P(X > a) \ge \frac{(E(X) - a)^2}{E(X^2)}.$$

Hint: Apply Cauchy-Schwartz inequality to $X1_{X>a}$.

(b) (3 points) Let $\{A_n\}_{n\geq 1} \in \mathcal{F}$ such that $\sum_{n=1}^{\infty} P(A_n) = \infty$. Further let

$$\limsup_{n \to \infty} \frac{\left(\sum_{k=1}^{n} P(A_k)\right)^2}{\left(\sum_{1 \le j,k \le n} P(A_j \cap A_k)\right)} = \alpha > 0.$$

Show that $P(A_n \ i.o.) \geq \alpha$.

Hint: Use previous part with $X_n = \sum_{k=1}^n 1_{A_k}$ and $a_n = \lambda E(X_n)$.

2. (6 points) Suppose X and Y are [0,1]-valued random variables such that $\mathrm{E}(X^n)=\mathrm{E}(Y^n)$ for $n=1,2,\ldots$ Show that X has the same distribution as Y.

Hint: Recall (Weierstrass approximation theorem) that if h(x) is continuous in [0,1] then there exists a sequence of polynomials $p_n(x)$ such that $\sup_{x \in [0,1]} |h(x) - p_n(x)| \to 0$ as $n \to \infty$.

3. Let X be an \mathcal{F} -measurable random variable satisfying $\mathrm{E}(X^2)<\infty$. For any σ -algebra $\mathcal{G}\subseteq\mathcal{F}$ define

$$\operatorname{Var}(X|\mathcal{G}) = \operatorname{E}((X - \operatorname{E}(X|\mathcal{G}))^{2}|\mathcal{G}).$$

- (a) (3 points) Consider σ -algebras satisfying $\mathcal{G}_2 \subseteq \mathcal{G}_1 \subseteq \mathcal{F}$. Show that $\mathrm{E}(\mathrm{Var}(X|\mathcal{G}_2)) \geq \mathrm{E}(\mathrm{Var}(X|\mathcal{G}_1))$
- (b) (3 points) Show that for any σ -algebra $\mathcal{G} \subseteq \mathcal{F}$

$$E(X^2) = E(Var(X)|\mathcal{G}) + Var(E(X|\mathcal{G}))$$

4. Let s>0 and let $\{Z_n\}_{n\geq 1}$ be a sequence of independent random variables such that $P(Z_n=1)=P(Z_n=-1)=\frac{1}{2n^s}, \ P(Z_n=0)=1-\frac{1}{n^s}, \ n\geq 1.$ Let $Y_0=0$ and for $n\geq 1$, define

$$Y_n = n^s Y_{n-1} |Z_n| + Z_n 1_{\{Y_{n-1} = 0\}}.$$

- (a) (2 points) Show that $\{Y_n\}$ is a martingale w.r.t. to the canonical filtration $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_i = \sigma(Z_1, ..., Z_i), i \geq 1$.
- (b) (4 points) Show that

$$P(\max_{1 \le k \le n} Y_k \ge x) \le \frac{1}{2x} \left(1 + \sum_{k=2}^n \frac{1}{k^s} \left(1 - \frac{1}{(k-1)^s} \right) \right)$$

(Hint: Use Doob's inequality. Theorem 1 in lecture notes 6)

- (c) Show that
 - i. (2 points) $Y_n \to 0$ in probability.
 - ii. (3 points) $Y_n \to 0$ almost surely if and only if s > 1
 - iii. (1 point) For no value of s > 0 does $E(|Y_n|) \to 0$.
- 5. (6 points) For $n \geq 1$, let X_n, Y_n be non-negative integrable random variables adapted to the filtration \mathcal{F}_n . Assume that $\mathrm{E}(X_{n+1}|\mathcal{F}_n) \leq Y_n + X_n(1+Y_n)$. Further let $\sum_n Y_n < \infty$ almost surely. Show that X_n converges almost surely.

Hint: Construct a suitable non-negative supermartingale, i.e. one whose convergence implies the convergence of X_n , and use the Martingale Convergence Theorem for non-negative supermartingales in the lecture notes.

6. Let $\{X_i\}_{i\geq 1}$ denote a sequence of independent and identically distributed Bernoulli random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}.$$

Let $S_0 = 0$ and let $S_n = \sum_{i=1}^n X_i$. Further let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_i = \sigma(X_1, ..., X_i), i \geq 1$ denote the canonical filtration.

- (a) (2 points) Show that $P(S_n S_k \ge 0) \ge \frac{1}{2}$ for k = 1, ..., n.
- (b) (3 points) Fix a > 0. Let $\tau_a = \inf\{k \ge 1 : S_k > a\}$. Show that

$$P(S_n > a) \ge \sum_{k=1}^n P(\tau_a = k, S_n - S_k \ge 0) \ge \frac{1}{2} P(\tau_a = k).$$

(c) (1 point) Deduce that for any $n \ge 1$ and a > 0

$$P(\max_{1 \le k \le n} S_k > a) \le 2P(S_n > a).$$

(d) (3 points) For any $p, n \in \mathbb{N}$, show that

$$P(\max_{1 \le k \le n} S_k \ge p) = 2P(S_n \ge p) - P(S_n = p).$$

(e) (3 points) Let Z_n denote the number of **strict** sign changes within $\{S_0, S_1, ..., S_n\}$. Show that

$$P(Z_{2n+1} \ge p | S_1 = -1) = P(\max_{1 \le k \le 2n+1} S_k \ge 2p - 1 | S_1 = -1).$$

Hint: flip the signs of $\{X_i\}$'s between the odd and even strict sign changes of S_k .

(f) (3 points) Use the above parts to show that Z_{2n+1} has the same distribution as $\frac{|S_{2n+1}|-1}{2}$.