COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 4Bhthisc/retecedentosimulation (1)

Add WeChat powcoder

COMP9334

Week 4A: Queues with general arrival & service time

Queues with general inter-arrival and service time distributions

General Inter-arrivals time distribution General service time distribution

Assignment Project Exam Help

- M/G/1 queue
 - Can calculate de latt post / pewqoder.com // formula Add WeChat powcoder
- G/G/1 queue
 - No explicit formula, get a bound or approximation

$$W \le \frac{\lambda(\sigma_a^2 + \sigma_s^2)}{2(1 - \rho)}$$

Analytical methods for queues

- You had learnt how to solve a number of queues analytically (= mathematically) given their
 - Inter-arrival time probability distribution
 - Service time probability distribution
- Queues that you can solve now include M/M/1, M/M/m, M/G/1, M/G/1 with prigrities etger.com
 - If you know the analytical solution, this is often the most straightforwad way to pole hau of the straightforward way to be a solution.
- Unfortunately, many queueing problems are still analytically intractable!
- What can you do if we have an analytically intractable queueing problem?

T1,2021 COMP9334

Lectures 4B, 5A, 5B: Discrete event simulation

- For a number of lectures, we look at the topic of using discrete event simulation for queueing problems
 - Simulation is an imitation of the operation of real-life system over time.

Assignment Project Exam Help The topics to be covered are

- - (4B) What are distrested event sond as to 17
 - (4B) How to structure a discrete event simulation? Add WeChat powcoder
 - For 5A and 5B
 - How to choose simulation parameters?
 - How to analyse data?
 - What are the pitfalls that you need to avoid?
 - How to generate pseudo-random numbers for simulation?

Reproducibility

COMP9334 T1,2021

Motivating example

 Consider a single-server queue with only one bufferspigner(ent Proje waiting room)

If a customer arrives when he powce buffer is occupied, the customer is rejected.

Add WeChair

- Given the arrival times and service times in the table on the right, find
 - The mean response time
 - % of rejected customers
 Assuming an idle server at time = 0.

Customer number	Arrival time	Service time
1	3	4
e <mark>o</mark> t Exam F	le lp	3
oder.com	9	4
4	17	6
t powcode1	18	3
6	19	2
7	20	2
8	25	3
9	27	2

Let us try a graphical solution

- In the graphical solution, we will keep track of
 - The status of the server: busy or idle
 - The status of the buffer: occupied or vacant

A graphical solution (To be completed)

A graphical solution

T1,2021 COMP9334

Using the graphical solution (1)

Arrival pattern

We can find the response time of each customer & average response time

Departure from Server / Reject

Using the graphical solution (2)

From graphical solution to computer solution (1)

- How can we turn this graphical solution into a computer solution, i.e. a computer program that can solve the problem for us
- We need to Resignation of Profestations of Holyserver and the status of the buffer,
 https://powcoder.com
 This allows us to make decisions

 - E.g. If server is AUSIY who Chuffer is WCCIUPIED, an arriving customer is rejected.
 - E.g. If server is BUSY and buffer is VACANT, an arriving customer goes to the buffer.
 - E.g. If server is IDLE, an arriving customer goes to the sever
- What this means: We need to keep track of the status of some variables in our computer solution.

T1,2021 **COMP9334** 11

From graphical solution to computer solution (2)

Observation #1:

 An arriving or departing customer causes the server or buffer status to change

Examples:

• At time = 3, the annual Project Exam Help customer #1 causes the server to switch from Interest Project Exam Help (1)

 At time = 7, the departure of customer #1 causes the serve at powcoder to switch from BUSY to IDLE

 At time = 9, the arrival of customer #3 causes the buffer to switch from VACANT to OCCUPIED

• Etc.

From graphical solution to computer solution (3)

 Let us call the arrival of a customer or the departure of a customer an event

• The status of the status of the buffer remain the same between two types of the buffer remain the events

What this means: Add WeChat powcoder

 We need to keep track of the timing of the events

- Events can cause status transitions
- In between events, status remain the same

T1,2021 COMP9334

From graphical solution to computer solution (4)

- In our computer solution, we will use a master clock to keep track of the current time
- We will advance the master clock from event to event
- In order to see how the computer solution works, let us try it out on paparsing ment Project Exam Help

https://powcoder.com

Add WeChat powcoder

On paper simulation

- In our simulation, we keep track of a number of variables
 - MC = Master clock
 - Status of
 - Server: 1 = BUSY, 0 = IDLE
 - Buffer: 1 = OCCUPIED, 0 = VACANT
 - Event time:
 - Next arrival eigent and arrival time of this departure
 - The (arrival time, pervice time) of the customer in buffer
 - In order to compute the response time, we keep track of
 - The cumulative response time (T) powcoder Cumulative number of customers rejected (R)

MC	Next an	rival	Next departure		Server	Buffer status	Т	R
	Arrival time	Service time	Departure time	Arrival time of this departure	status	+ customer in buffer		
0	3	4	_	-	0	0	0	0
3	8	3	7	3	1	0	0	0
7	8	3	_	_	0	0	4	0

COMP9334 T1,2021

On paper simulation (To be completed)

МС	Next ar	rival	Next departure		Server	Buffer	Т	R
	Arrival	Service	Departure	Arrival time of this	status	status +		
	time	time	time	departure		Customer in buffer		
0	3	4	_	-	0	0	0	0
3	8	Ass	signm e n	t Project Exam	Help	0	0	0
7	8	3	https://	powcoder.com	0	0	4	0
			•					
			Add W	eChat powcod	er			
						1		
						,'		

Can you continue?

(Arrival time, service time) of the customer in the buffer.

On paper simulation

MC	Next an	rival	Next departure		Server	Buffer	Т	R
	Arrival time	Service time	Departure time	Arrival time of this departure	status	status + Customer		
						in buffer		
0	3	4	-	-	0	0	0	0
3	8	Ass	signmen	t Project Exam	Help	0	0	0
7	8	3	https://	powcoder.com	0	0	4	0
8	9	4	11	8	1	0	4	0
9	17	6	Add₁₩	eChat powcod	er 1	1	4	0
						(9,4)		
11	17	6	15	9	1	10	7	0
15	17	6	-	_	0	, 0	13	0

Can you continue?

(Arrival time, service time) of the customer in the buffer.

Logic of the program (1)

 At each step, we advance to the next event that will take place

Assignment Project Exam Help

Handling an departure event

Two cases according to the buffer status

Departure event

- Update the cumulative response time
 - T ← T + current time arrival time of the departing customer

Assignment Project Exam Help

Buffer VACANT

https://powcoder.com

Buffer OCCUPIED

- Change server status to Add We Chad are we departure event with IDLE information of the customer in the buffer
- Next departure event becomes empty

- Next departure time =
 current time + service time of the
 customer in the buffer
- Change buffer status to VACANT

Discrete event simulation

- The above computer program is an example of a discrete event simulation
- It allows you to solve a queueing problem with one server and one buffer space
- You can generalisentle talboyeconocedure to
 - Multi-server https://powcoder.com
 Finite or infinite buffer space

 - Different queueing de spielie de la powcoder
- Let us generalise it to the case of single-server with infinite buffer

COMP9334 T1,2021

Single server with infinite buffer simulation

- In this case, we will use buffer status to denote the number of customers in buffer
 - Buffer status = 0, 1, 2, 3, ...
- We also need to store all the (arrival time, service time) of all the customers in the truffect Exam Help
- Compare with the single-server single-buffer case, we only need to change the handling of
 - An arrival eventAdd WeChat powcoder
 - A departing event

Handling an arrival event

Two cases according to the server status

- Add a departure exercises the exercise that the buffer by 1 service time of the arrivalttps://powcodestoranthe arrival time and
- Change server status to BUSY service time of this arrival with Add WeChat powified aftermation

<u>†</u>

Look up the list of arrival to fill in the information for the next arrival

Departure event

- Update the cumulative response time
 - T ← T + current time arrival time of the departing customer

Assignment Project Exam Help

Buffer = 0

https://powcoder.com

Buffer ≠ 0

- IDI F
- Departure event becomes empty
- Change server status to Add Wechat powcoder customer in the buffer
 - Next departure time = current time + service time of the first customer in the buffer
 - Delete first customer from buffer
 - Decrement number of customers in the buffer by 1

T1,2021 **COMP9334** 24

One missing piece

- We know how to write a discrete event simulation program to simulate a single-server queue with infinite buffer assuming that we have the arrival times and service times
- Where do ar Aivai gimes ta Project i Ceatim Les home from?

https://powcoder.com

- If we want to simulate an M/M/1 queue
 - The inter-arrival time is exponentally cost of the content of th
 - The service time is exponentially distributed
- We can get the arrival times and service times if we can generate exponentially distributed random numbers

The Python random library

- The library can be used to generate random numbers from many probability distributions
- random.expovariate() can be used to generate exponentially distributed random numbers

```
Assignment Project Exam Help
import random
https://powcoder.com
lamb = 2
Add WilChafandom.expovariate(lamb)
i2 = random.expovariate(lamb)
i3 = random.expovariate(lamb)
```

Name 📥	Туре	Size	Value
i1	float	1	0.886333566840348
i2	float	1	0.5129872509130181
i3	float	1	0.2597444444294557

Exponential distributed random numbers

```
# To produce 10,000 numbers that are exponentially distributed
lamb = 2
n = 10000
x = []
for i in range(n):
    x.append(random.expovariate(lamb))
    Assignment Project Exam Help
```

- Generate 10,000
 exponentially
 distributed number
 and plot the histogram
- File: hist_random_expo.py
- Note: lambda is a
 Python keyword.
 Cannot use lambda as a variable name

Arrival and service times

Simulating M/M/1 queue

- In order to test how well our discrete event simulation program works, we will use it to simulate an M/M/1 queue and compare it with the expected result
- An M/M/1 simulation program is given in sim_mm1.py
 (available on the gamese repetite) xam Help

 An M/M/1 simulation program is given in sim_mm1.py
- We will:
 - Take a look at the program
 - Run it and make As of the Control of the control

Observations from running the simulation

- The mean response time from simulation can be close to (but not equal to) the theoretical mean simulation time
- Each simulation run gives a different mean response time Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Trace driven simulation

We considered this example in the beginning of this lecture Assignment Proj

We simulated using

A sequence (or trace) of arrival times

A sequence of service times

We call this trace driven simulatione Char

- Trace driven simulation is useful
 - You have a server and you have a log of the arrival time and service time of the job
 - You are considering changing to a new server
 - You can use the traces that you have and simulation to calculate the response time of the new server

Customer number	Arrival time	Service time
1	3	4
<mark>eg</mark> t Exam F	le lp	3
oder.com	9	4
4	17	6
t powcode	18	3
6	19	2
7	20	2
8	25	3
9	27	2

COMP9334 T1,2021 31

Trace driven simulation

- An example of trace driven simulation is in the file sim_1server_trace.py
 - Note that sim_1server_trace.py assumes infinite buffer rather than finite buffer
- Earlier we used random pumber generators to produce inter-arrival and service time
 - For trace driven bit polation, when a low and service time are read from the supplied trace
 Add WeChat powcoder

References

- Discrete event simulation of single-server queue
 - Winston, "Operations Research", Sections 23.1-23.2
 - Law and Kelton, "Simulation modelling and analysis", Section 1.4
- Generation of random numbers
 - Raj Jain, "The Aghor Entre Putgie Stytem Performance Analysis"
 - Sections 26.1 and 26.2 on LCG
 - Section 28.1 https://persecondstoreOmethods
- Note: We have only touched on the basic of discrete event simulations. For a more complete treatment, see
 - Law and Kelton, "Simulation modelling and analysis"
 - Harry Perros, "Computer Simulation Techniques: The definitive introduction", an e-book that can be downloaded from
 - http://www4.ncsu.edu/~hp/files/simulation.pdf