FISH & RICHARDSON P.C.

August 31, 2000

Attorney Docket No.: 08305/078001/99-23

92122 Telephone 858 678-5070 Facsimile 858 678-5099 Web Site

www.fr.com

San Diego, California

4350 La Jolla Village Drive

Suite 500

Box Patent Application

Commissioner for Patents Washington, DC 20231

Presented for filing is a new patent application claiming priority from a provisional patent application of:

Applicant: VLADIMIR BEREZIN AND ALEXANDER I. KRYMSKI

Title:

CMOS APS PIXEL SENSOR DYNAMIC RANGE INCREASE

Enclosed are the following papers, including those required to receive a filing date under 37 CFR 1.53(b):

Pages
Specification 8
Claims 6
Abstract 1
Declaration [To be Filed at a Later Date]

Drawing(s) 3

Enclosures:

— Postcard.

Under 35 USC §119(e)(1), this application claims the benefit of prior U.S. provisional application 60/151,619, filed August 31, 1999.

Small Entity status established in the parent case is still proper and desired.

CERTIFICATE OF MAILING BY EXPRESS MAIL

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit

Signature

Rich Donovan

Typed or Printed Name of Person Signing Certificate

BOSTON
DALLAS
DELAWARE
NEW YORK
SAN DIEGO
SILICON VALLEY
TWIN CITIES
WASHINGTON, DC

FISH & RICHARDSON P.C.

Commissioner for Patents August 31, 2000 Page 2

Basic filing fee	\$0
Total claims in excess of 20 times \$9	\$0
Independent claims in excess of 3 times \$39	\$0
Fee for multiple dependent claims	\$0
Total filing fee:	\$0

No filing fee is being paid at this time.

If this application is found to be incomplete, or if a telephone conference would otherwise be helpful, please call the undersigned at (858) 678-5070.

Kindly acknowledge receipt of this application by returning the enclosed postcard.

Please send all correspondence to:

SCOTT C. HARRIS Fish & Richardson P.C. Customer Number: 20985 4350 La Jolla Village Drive, Suite 500 San Diego, CA 92122

Respectfully submitted,

Scott C. Harris Reg. No. 32,030 Enclosures SCH/rpi 10051443.doc

APPLICATION

FOR

UNITED STATES LETTERS PATENT

TITLE:

CMOS APS PIXEL SENSOR DYNAMIC RANGE

INCREASE

APPLICANT:

VLADIMIR BEREZIN AND ALEXANDER I. KRYMSKI

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail Label No. <u>EL558600007US</u>

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit

Signature

Rich Donovan

Typed or Printed Name of Person Signing Certificate

CMOS APS PIXEL SENSOR DYNAMIC RANGE INCREASE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional application no. 60/151,619, filed August 31, 1999.

5

10

BACKGROUND

It is desirable to reduce the power consumption of an image sensor. It may also be desirable to reduce the magnitude, e.g., voltage, of the voltage supply that drives the image sensor. For example, this can allow more flexibility in battery operated applications.

Lowering the voltage, however, can lower the dynamic range of the sensor.

The voltage can be boosted internally.

15

20

SUMMARY

The present application defines increasing the pixel voltage dynamic range in a photosensor, such as an active pixel sensor. This is done by using two controlling lines to control each pixel. Each pixel line can have its own voltage, thereby enabling applying separate voltages to different parts of the pixel. By selectively controlling the voltages on the different parts, dynamic range boosting can be carried out.

20

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects will be described in detail with reference to the accompanying drawings, wherein:

Figure 1 shows a basic active pixel sensor; and 5 Figure 2 shows the ways that the control lines are coupled to different parts of the circuits.

DETAILED DESCRIPTION

A single pixel of an active pixel sensor is shown in Figure 1. An array of these active pixel sensor elements can be formed on a single chip and formed using transistors which are compatible with CMOS techniques. A photoreceptor, e.g. a photodiode 100 is formed in the 15 substrate 99.

A first reset controlling line 115 controls a reset transfer gate 105 to reset the charge from the photodiode 100 based on a floating reset diffusion 110. diffusion is either floating when gate 105 is off, or connected to line 120, when gate 105 is on.

When gate 105 is off, the value on the floating diffusion 110 represents the charge on the photodiode 100. This charge level is buffered by a follower transistor 125, and also switched by an in pixel select transistor 130.

10

15

20

Additional pixels and circuitry may be also placed in the pixel as disclosed in US patent number 5,471,515.

All of the elements in this device can be formed from MOS and CMOS transistors. These transistors have a significant threshold voltage between 0.6 and 0.9 volts. The output voltages from the floating diffusion 110, the source follower transistor 125 and other voltages may be reduced or shifted downward by these thresholds.

For a supply voltage of 3.3 volts, the voltage on the floating diffusion may extend between 1.2 volts and 2.7 volts, e.g. the dynamic range may equal 1.5 volts. A boosted reset pulse may be used to increase the floating diffusion level, for example by 0.5 volts. This could correspondingly increase the signal dynamic range.

The present application teaches a way to expand dynamic range, maintain low dark current, and provide an operational mode in which quantum efficiency is increased by all the photodiode PN junctions in the pixel being kept near zero potential during the integration time. The improved pixel uses a combination of three different techniques for increasing its performance.

A first technique uses in-pixel boosting. In the present technique, the photodiode voltage only increases during the time of integration.

15

The channel of the pixel source follower is filled with charge during reset. The charge dumps from the channel into the drain during the readout time. The readout line is kept grounded during reset.

In a typical active pixel sensor circuit, this can result in a large current, since the drain on the source follower shares its VDD with the drain of the reset transistor.

The present system may separate the biases to switching elements (e.g. transistors), within a single pixel. This is done by using an additional metal line in each pixel. The circuit as described herein also uses a shared reset/select line which forms a reset for a first line, and a select for a different line. In this way the drain of the reset transistor for a specific pixel is separated from the drain of the source follower transistor for that pixel. By applying pulses to the transistors at different times, the power supplies can be effectively separated.

20 The VDD lines are run horizontally. As described herein, a special dynamic readout regime is used to minimize the DC current along that line, and thereby minimize voltage drop along that line.

Figures 2 and 3 show an embodiment. An active pixel sensor circuit 200 is used which has special characteristics.

As shown in Figure 2, the active pixel sensor circuit

5 200 has a plurality of bias lines extending through the circuit. In this special circuit, the number of horizontal lines is increased by a factor of two over the prior art active pixel sensor as described in U.S Patent number 5,471,515. This system provides a VDD_{N-1} line 205 for biasing the follower in each row of pixels and a separate reset/select line for the reset transistor in that row. This compares with prior systems in which the VDD potential was shared among all source follower and reset transistor drains.

Each VDD line, such as 205, is connected to two separate row drivers; here line N-1 and line N. As shown by waveform 209, this provides the VDD voltage only during the time of the two select pulses, i.e. during almost one row time. During the rest of the frame time, VDD remains grounded.

In operation, the VDD_{N-1} line 205 first rises at 210. This boosts the voltage on the floating diffusion on line N. This also boosts the reset on line N-1 and also begins the first selecting pulse time period. During the second

20

selecting pulse time 226, the VDD line raises the level on the source follower 215.

The gate of the source follower 215 for line N-1 is connected to the photodiode 220 for line N.

1 After signal sampling is completed, the voltage on VDD line N-1 drops to 0 at 224 during the reset time for photodiode 225 for line N-1. This means that the floating diffusion for that photodiode 225 will be charged to the reset level when the output column is grounded and the surface potential under the source follower gate is minimum. This may increase the cell capacitance.

After reset is completed, the voltage on the VDD line N-1 is raised again to begin the period 226. The surface potential under the source follower gate is then maximized, thereby minimizing the capacitance of the source follower gate.

Reference sampling then occurs during time period 226.

At the end of the reference sampling, the voltage on VDD line n-1 drops down at 227 and remains low for the remainder of the frame period.

If the capacitances of the photodiode and of the source follower gate are approximately equal, then the pixel can be boosted by half of the potential swing under

the source follower gate. This could reach 1 volt for VDD = 3.3 volts and a typical reset boosting.

The line 230 shows the photodiode boosting that During the reset pulse, the output is boosted by an amount 232. Importantly, the drains of the reset transistor 216 and the source follower 215 for the same photodiode are connected to different VDD lines. The joint VDD contact for the reset transistor drain of one photodiode is connected to the source follower drain of 10 another photodiode. For example, Figure 2 shows the gate of source follower 215 being connected to the drain of the reset transistor 225 for a separate line. This layout can save pixel space, provide improve FF, quantum efficiency, and have a relatively small pixel pitch.

15 It could be undesirable to have a steady current from the VDD row driver to ground throughout the horizontal VDD line and vertical output column. In order to avoid this, a special dynamic source follower mode may be used. Figure 2, the bottom horizontal VLN line 250 is connected 20 to a gate of a current sink transistor 252. This current sink transistor is turned on to provide a timed pulse (e.g. of 3.3 volts) instead of continuous DC voltage. This causes the transistors which are biased by the voltage line 254, which includes the transistors 215, 216 and

10

15

20

corresponding transistors of other pixels, to operate as switches instead of steady state current generators. This also provides two column modes. An "on" mode connects the columns to ground and an "off" mode provides floating

columns. In this way, all pixel source followers operate in a dynamic mode. This may increase the output source follower voltage by an extra 0.2 to 0.4 volts. It may keep the output columns at zero voltage for a part of the row period and cause them to float at readout/select time.

This system as described above can increase dynamic range, improve quantum efficiency, and reduce power consumption by reduction of the source follower static DC current.

Although only a few embodiments have been disclosed in detail above, other modifications are possible. All such modifications are intended to be encompassed within the following claims.

For example, other photoreceptors, such as photogates, pinned photodiodes, or other devices could be used. The photogate could require a separate transfer gate to be added.

What is claimed is:

applying a reset level;

1. An image sensor, comprising:

a plurality of units, each unit associated with

5 accepting a pixel of an image, and each unit having a
photoreceptor therein, a follower transistor, connected to
said photoreceptor, a select transistor connected to said
photoreceptor, and a reset transistor which controls

a first bias line providing power to at least one of said transistors for a first unit, and a second bias line providing power to another of said transistors, different than said one of said transistors of said first unit, such that said one and said another transistors are separately powered by separate bias lines.

2. An image sensor as in claim 1 wherein said first bias line powers the follower transistor and said second bias line powers a reset transistor.

20

3. An image sensor as in claim 1 wherein said photoreceptor is a photodiode.

4. An image sensor as in claim 3 wherein said photodiode is connected to a follower transistor for a first unit, and connected to be reset by a reset transistor of a second unit.

5

10

15

- 5. An image sensor as in claim 1 wherein said sensor is an active pixel sensor, formed of transistors which are compatible with CMOS techniques, and each of a plurality of pixels of which includes an in pixel follower transistor an in pixel selection transistor and an in pixel reset transistor.
- 6. An image sensor as in claim 5 wherein said select and reset transistors are connected to said first bias source and said follower transistors connected to said second bias source.
- 7. An image sensor as in claim 6 wherein said second bias source is connected commonly to a first plurality of followers in a first row of said pixels and a second plurality of reset transistors in a second row of pixels different than said first row of pixels.

- 8. An image sensor as in claim 1 wherein said photoreceptor is a photogate, and further comprising a floating diffusion portion in the substrate connected to said follower transistor, and further comprising a transfer gate, coupled between said photogate and said floating diffusion, which is activated to allow charge in said photogate to dump into said floating diffusion.
- 9. An image sensor as in claim 8 further comprising a reset diffusion storing a reset level, and wherein said reset transistor is connected between said floating diffusion and said reset level.
 - 10. An active pixel sensor comprising:
- including a photoreceptor, an in pixel follower connected to an output of said photoreceptor, and a select line connected to said follower transistor;
- a reset transistor connected to reset a level of charge produced by said photoreceptor; and
 - a pair of biasing connections including a first biasing connection connected to said reset transistor, and a second biasing connection, separated from said first biasing connection, connected to said follower.

Attorney Docket No: 08305/078001/99-23

10

- 11. A sensor as in claim 10 wherein said photoreceptor is connected between a reset transistor of first line, and a follower of a second line different than said first line.
- 12. A sensor as in claim 10 further comprising a dynamic mode read out transistor, associated with at least one of said biasing connections, and allowing said biasing connection to be active for only a part, but not all, of a period.
- 13. A sensor as in claim 10 further comprising a connection which is activated to cause said pixels to be referenced to a ground reference, and is opened to cause said pixels to be floated.
- 14. An active pixel sensor comprising:

 an array of pixels, each pixel including a

 20 photosensor, and at least first and second transistors

 associated with said photosensor in said each pixel, said

 first transistor connected to receive power from a first

 power supply source over a first line, and said second

transistor connected to receive power from a second power

15

supply source over a second line totally separate from said first power supply line.

- 15. A sensor as in claim 14, wherein said first transistor and said second transistor have drains which are not electrically connected.
 - 16. A sensor as in claim 14, further comprising a steady state current generator, providing a first, "on" mode connecting the columns to ground and a second "off" mode which provides floating columns.
 - 17. A method of acquiring an image, comprising:

 acquiring image pixels during a first part of a cycle;

 resetting the level of charge that image pixels during

 the second part of the cycle, wherein said reset level is

 boosted during said second part of said cycle and not

 during said first part of said cycle.
- 20 18. A method as in claim 17, wherein said resetting comprises using a first bias source to bias a follower transistor, and using a separate second bias source to bias a reset transistor.

19. An image sensor, comprising:

a plurality of units, each unit associated with accepting a pixel of an image, and each unit having a photoreceptor therein, a follower transistor, connected to said photoreceptor, a select transistor connected to said photoreceptor, and a reset transistor which controls applying a reset level a unit that is different than the unit in which said reset transistor is physically located.

- 10 20. An image sensor as in claim 19, further comprising
 - a first line controlling a selection of said unit; and
 - a second line providing bias for said unit.
- 15 21. An image sensor as in claim 19, wherein said second line provides bias for a follower of a first unit and for a reset level associated with a second unit.

ABSTRACT

Signal dynamic range in a CMOS active pixel is increased by using separate set and reset lines.

5

10051394.doc

F162

F143