arm in der Cloud

Hintergrund

- Effizienz hat hohe Priorität in der Cloud
 - o Ziel: Kosten Minimieren, Leistung Maximieren
- x64-CPUs verbrauchen viel Energie
- ARM Prozessoren bieten mögliche Effizienzsteigerung
 - Reduced Instruction Set CPU (RISC)
 - Weniger Transistoren und explizites Design für Energie-Effizienz
 - Mehr Register für effiziente Verarbeitung

Problemstellung

- Welche Cloud-Provider bieten bereits ARM basierte Services an?
- Welche Services werden auf ARM-Architektur angeboten?
- Welchen Performance pro Kosten / Watt kann man im Vergleich zu x32/x64
 CPUs erwarten?
- Welche Einschränkungen gibt es durch z.B. die geringere Anzahl an Instruktionen?

Unterstützung der Provider

Google Cloud	Azure	AWS
Compute Engine	Virtual Machine	EC2
2 Varianten	4+ Varianten	3 Varianten
Kubernetes Engine	Kubernetes Service	Aurora Batch CodeBuild / CodeCatalyst DocumentDB RDS ECR / ECS / EKS Lambda

Verwendete Instanzen

Google Cloud

- c4a-standard-4
- 3 GHz [15]
- 0,1725€ / h

- c4-standard-4 [14]
- 3.1 GHz / 4 GHz
- 0,1898€ / h

Azure

- Standard_B4pls_v2
- 3 GHz
- 0,114€ / h

- Standard_B4als_v2
- 3.5 GHz
- 0,128€ / h

AWS

- m7g.xlarge
- 2.7 GHz
- 0,1567€ / h

- m7i.xlarge
- 3.2 GHz
- 0,1936€ / h

PerfKitBenchmarker

- Cloud Benchmarking Tool von Google
- Unterstützt vielzahl an Providern
 - Google Cloud, Azure, AWS, Alibaba, IBM, Openstack,
- Unterstützung für verschieden Arten von Benchmarks
 - CPU, Disk, RAM, Netzwerk, NoSQL / Database Auslastung, Web Traffic,
- Automatisiert Provisionierung und Durchführung
 - Aufsetzen und Teardown von Netzwerk, Firewall, VM-Instanzen, SSH
 - Ergebnisse werden an lokales Gerät zurückgesandt

Ausgeführte Benchmarks

coremark

- Ebenfalls von Google für Tests der Instanzen verwendet
- Verschiedene realistische Operationen für Anwendungen
 - Listen-Operationen, Matrix-Berechnung, State-Machine
- Programmiert in C

scimark2

- Verschiedene Wissenschaftliche Berechnungen zur Schätzung der Mflops (Million flops / s) eines Systems
- Implementiert in Java
- Durchläufe: 1x coremark, 2x scimark2 auf je 2 Instanzen

Evaluation 1 (Kosten)

Evaluation 2 (Performance)

Evaluation 3 (Monatliche Kosten / Performance)

Einschränkungen

- Software muss explizit f
 ür Architektur gebaut werden
 - Eigene Builds / Erweitert werden umgestellt werden
 - Datenbanken, Webserver, etc. müssen ARM-Build bereitstellen
 - Gilt auch für Docker Images -> Lösung: Multi-Arch Images
- Jede vCPU entspricht genau einem Kern
 - o Bei allen getesteten Providern
 - Nur 1 Thread pro Kern möglich
- Provider spezifische Einschränkungen
 - o z.B. Keine verschachtelte Visualisierung, Secure-Start, Windows-Images, etc....

Anmerkung und Konklusion

- Bis zu 40% Einsparung sind bei den Kosten möglich
 - Konkrete Anwendung muss jedoch zuvor getestet werden
- AWS sieht die Cloud-Zukunft in ARM
 - Viele SAAS Angebote bereits auf ARM verfügbare
 - Guides f
 ür Migration, Optimierung und Benchmarking
 - Neueste Maschinen-Serie (M8) aktuell nur auf ARM verfügbar
- Präsentation ist die destillierte Variante der Dokumentation
 - Setup, Skripts, gefundene Bugs in PerfKitBenchmark, etc. in Doku
 - https://github.com/Pystronic/clc3-arm-testing