Performance Metrics

IT461: Practical Machine Learning

Supervised Learning

- Supervised learning requires labeled data.
- ▶ Supervised learning model is used to **predict target variables** based on features or input data.
- ▶ Based on predictions or output from supervised learning models, the predictive tasks are primarily divided into two categories based on the nature of the output variable: classification and regression.
- ▶ Classification tasks employ algorithms to categorize data into different classes or labels, while regression focuses on predicting continuous or numeric values based on input features.
- In supervised learning, the dataset is divided into training and testing sets. The training set teaches the model, while the testing set assesses its performance on unseen data.

Model Performance

- ▶ The model's performance on the testing set provides *an estimate of how well it will perform on unseen data*.
 - ▶ If the model performs well on the testing set, it indicates that it has learned the underlying patterns and can make accurate predictions.
 - ▶ If the model performs poorly on the testing set, it may be overfitting the training data or failing to capture the true relationships.
- Overfitting occurs when a model becomes too complex and memorizes the training data, resulting in poor performance on unseen data.
- Underfitting happens when a model is too simplistic and fails to capture data complexity.

Evaluation metrics for regression

- ► Several metrics can assess the effectiveness of regression models, each providing a different perspective on the model's overall accuracy and fit, such as **R-squared** (**R**²), **MSE**, and **MAE**.
- ► Evaluating regression models requires carefully considering the metrics in the context of the specific application and the implications of prediction errors.
- ► Considering multiple metrics to get a comprehensive view of the model's performance is often helpful.

R-squared (R²)

- ▶ **R-squared**, also known as *the coefficient of determination*, quantifies the proportion of the variance in the dependent variable that is predictable from the independent variables.
- ▶ R² values range from 0 to 1, where a value of 1 indicates that the regression predictions perfectly fit the data.
- R-squared measures how effectively the model explains the dependent variable.
 - Arr R² = 0.9 would indicate that 90% of the variance of the dependent variable being studied is explained by the variance of the independent variable.
 - ▶ The more variance can be explained, the better the model is.
- ▶ Although a higher R² might suggest a better fit, it doesn't always mean a better model, especially if the model is overfitting.

Adjusted R²

- ightharpoonup R² is influenced by the number of independent variables used.
 - ▶ The more independent variables are included in the model, the greater the variance resolution R².
 - ▶ R² either increases or remains the same when new predictors are added to the model.
 - ightharpoonup To resolve this, the adjusted R^2 is used.
- ▶ **Adjusted R**² is a modified version of R² that has been adjusted for the number of predictors in the model.
- ► The adjusted R2 *decreases* when adding the extra predictor variables that don't improve the existing model.

Mean Squared Error (MSE)

- ▶ Mean Squared Error (MSE) represents the average squared differences between observed and predicted values.
- ▶ MSE emphasizes more significant errors over smaller errors since it squares the residuals. This means that it is *sensitive to outliers*.
- ► A model with a lower MSE is generally considered better.

Mean Absolute Error (MAE)

- ▶ Mean Absolute Error (MAE) calculates the average absolute differences between observed and predicted values.
- ▶ Unlike MSE, MAE treats all errors equally, so it is less sensitive to outliers compared to MSE.
- ▶ Similar to MSE, a lower MAE indicates a better model fit to the data.

Evaluation metrics for classification

- Classification is a primary task in machine learning.
- ► Once you build a classification model, you need to evaluate its performance accurately.
- ► Multiple metrics have been developed to measure the effectiveness of classification models, including accuracy, precision, recall, and the confusion matrix.
- ► While building classification models, it's important not to rely on just one metric.
- ► The choice of the metric should align with the specific goals and requirements of the problem at hand.

Accuracy

- ▶ **Accuracy** represents the ratio of correctly predicted instances to the total instances in the data set.
- ▶ It measures the correctness of a model's predictions.
- ▶ The accuracy metric is beneficial when the class distribution is balanced. However, in cases where there's a class imbalance, accuracy can be misleading.
 - ▶ For instance, if 95% of the samples belong to Class A and only 5% belong to Class B, a naive model predicting everything as Class A will still have an accuracy of 95%.

Precision and recall

- ▶ **Precision** is the proportion of positive instances that were correctly predicted by the model, to the total number of positive predictions (true and false positives).
- Precision is an indicator of the accuracy of the positive predictions made by the model.
- ▶ Recall measures the proportion of positive instances correctly detected by the classifier.
- Recall is a good indicator of the ability of the model to identify the positive class.
- ▶ Precision and recall are especially important when false positives and false negatives carry different costs.
 - ▶ For instance, a false negative (disease present but not detected) can be far more dangerous in medical tests than a false positive (disease absent but indicated as present).
- ▶ Models inherently tradeoff between precision and recall; typically, the higher the precision, the lower the recall, and vice versa.

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

F1 Score

- ▶ **F1 score** is a single evaluation metric that aims to account for and optimize both precision and recall.
- ▶ It is defined as the harmonic mean between precision and recall.
- ▶ A model will have a high F1 score if both precision and recall are high.
- ► However, a model will have a low F1 score if one factor is low, even if the other is 100 percent.

Precision =
$$\frac{TP}{TP + FP}$$

F1-Score = $\frac{2 \times Precision \times Recall}{Precision + Recall}$

Recall = $\frac{TP}{TP + FN}$

Confusion Matrix

- ▶ The confusion matrix is a table that describes the performance of a classification model on a set of data for which you know the true values.
- ► The matrix typically consists of four values: True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).
- True positives and true negatives indicate correct classifications, whereas false positives and false negatives indicate errors.
- ▶ Beyond precision and recall, the confusion matrix provides a detailed view of how the predictions distribute across different classes and where the model makes mistakes.

Confusion Matrix

Confusion Matrix

Example: Precision vs. Recall

Precision is 600/(600+100) = 0.86.

When predicting "spam," the model was correct in 86% of cases.

Recall is 600/(600+300) = 0.67.

The model correctly found 67% of spam emails.

Confusion Matrix for Multiclassification

Example : Confusion Matrix

Calculation of class "Airplane":

- ightharpoonup TP = 9
- FN = 1+5 = 6
- FP = 6+3 = 9
- TN = 7+4+2+8 = 21
- Precision = TP/(TP+FP) = 9/(9+9) = 0.5
- Recall = TP/(TP+FN) = 9/(9+6) = 0.6
- F1 = 2*(0.5*0.6)/(0.5+0.6) = 5.55

Classification Report

	precision	recall	f1-score	support
Airplane Car Train	0.50 0.70 0.47	0.60 0.41 0.62	0.55 0.52 0.53	15 17 13
accuracy macro avg weighted avg	0.56 0.57	0.54 0.53	0.53 0.53 0.53	45 45 45

- **Precision**: It is referred to the proportion of correct predictions among all predictions for a particular class.
- ▶ **Recall**: It is referred to the proportion of examples of a specific class that have been predicted by the model as belonging to that class.
- ▶ **F1 Score**: The Harmonic mean of precision and recall.
- ▶ **Accuracy (Micro Precision):** It is calculated by considering the total TP, TN, FN, and TN irrespective of class to calculate Precision.
- ▶ **Macro avg**: It is referred to as the unweighted mean of the measure for each class.
- ▶ **Weighted avg**: Unlike macro, it is the weighted mean of the measure. **Weights** are the total number of samples per class.

Example : Classification Report

- ► Global TP = TP(airplane) + TP(car) + TP(train) = 9+7+8 = 24
- Global FP = FP(airplage) + FP(car) + FP(train) = (6+3) + (1+2) + (5+4) = 21
- Micro Precision = Global TP / (Global TP + Global FP) $= \frac{24}{(24+21)} = 0.533$
- Macro Precision = (P(airplane) + P(car) + P(train)) / #classes= (0.50 + 0.70 + 0.47)/3 = 0.556
- ▶ Weighted Precision = $(15 \times 0.50 + 17 \times 0.70 + 13 \times 0.47)/45 = 0.566$ (15 airplanes, 17 cars, and 13 trains which aggregated to 45 in total.)

Exercise: Calculate Macro Recall and Weighted Recall.

ROC

- ▶ ROC stands for **R**eceiver **O**perating **C**haracteristic.
- ▶ A ROC curve is a graphical representation of the performance of a binary classification model for all classification thresholds.
- ▶ The ROC curve plots the True Positive rate (recall) against the False Positive rate.
- ▶ Using the ROC curve, we can compare different classification models.

Area under the Curve (AUC) value

- ▶ The **AUC** represents the area under the ROC curve and gives a scalar value, which indicates *the model's ability to distinguish between the positive and negative classes*.
- ▶ AUC represents the probability that a true positive and true negative data points will be classified correctly.
- An AUC value of 0.5 suggests no discrimination (equivalent to random guessing), while a value of 1 indicates perfect discrimination.

True Positive Rate (TPR) False Positive Rate (FPR)

True Positive Rate =
$$\frac{True \ Positives}{True \ Positives + False \ Negatives}$$
Correctly classified Incorrectly classified as "diseased" as "healthy"

Plot the ROC Curve

- For each threshold, calculate the TPR and the FPR.
- ▶ Then, these two values are plotted on the ROC curve.
- ► The TPR is plotted on the y-axis and the FPR on the x-axis.

Plot the ROC Curve

Plot the ROC Curve

At this point, 80% of the diseased people were correctly classified as "diseased" and 20% of the healthy people were incorrectly classified as "diseased".

Exercise:

- \circ we have a data set with n=15 points and predictions $s(x)\in[0,1]$
- \circ there are $n_1 = 7$ positive and $n_0 = 8$ negative examples

	Prediction	True class	$\tau = 1.001$
	0.953	1	
	0.920	1	
	0.799	1	$\tau = 0.794$
	0.788	0	$\tau = 0.769$
	0.750	1	
	0.679	1	
-	0.612	1	$\tau = 0.598$
	0.583	0	
	0.477	0	
	0.378	0	$\tau = 0.373$
	0.367	1	$\tau = 0.306$
	0.248	0	
	0.214	0	
	0.157	0	
	0.112	0	$\tau = 0.000$
			. 0.000

▶ Plot the ROC curve and Calculate the AUC.