Aplicaciones del módulo GPIO: Manejo de teclados matriciales

Sistemas Digitales II - Microcontroladores 2017-III

Henry Carrillo, Ph.D.

Contenido – Aplicaciones del módulo GPIO: Manejo de teclados matriciales.

- I. Introducción
- 2. Características
- 3. Uso mediante microcontroladores
 - 3.1 Serial.
 - 3.2 Paralelo.
- 4. Manejo de teclados matriciales mediante interrupciones

Introducción

Teclados Matriciales

- Que es un teclado matricial? Es un dispositivo mecánico de entrada de datos a sistemas microcontrolados, que contiene un arreglo de N x M pulsadores o interruptores.
 - Típicamente los teclados matriciales usan pulsadores.... Es posible tener sensores capacitivos (táctiles).
 - Los datos son estados lógicos → ALTO o BAJO (Nivel de voltaje definido por el usuario:TTL, CMOS....)

El tamaño del arreglo es variable
→ I x 4, 3x4, 4x4,...

Teclados Matriciales

AplicacionesTeléfonos fijos

Control de acceso

 Usados para ingreso de datos numéricos, alfabéticos o caracteres especiales por parte del usuario.

Características

Teclados Matriciales

Características I

- ► Típicamente los pulsadores se arreglan en filas y columnas → cada pulsador conecta una fila y columna en particular.
- Un teclado matricial tiene dos elementos.
 - Pulsadores o teclas que se designan con una etiqueta visual especifica.
 - Pines de fila y columna \rightarrow el número de pines es menor a tener pulsadores individuales... con N teclas se necesitan $2\sqrt(N)$ líneas de conexión.

Teclados Matriciales

Características II

- No necesitan polarización para funcionar → las filas y columnas se interceptan mecánicamente.
- Al presionar cada tecla muy probablemente se producirán rebotes.
- Se debe garantizar un estado lógico si el pulsador está abierto -> Resistencias de pull-up y pull-down.

Uso mediante microcontroladores

 Idea: Al apretar un pulsador habrá continuidad entre una fila y una columna → Excitar una fila y leer el valor de la columna.

- Problemas
 - Múltiples teclas conectadas a la misma columna.
 - Valor lógico de las columnas y filas.
- Posibles soluciones
 - Secuencial
 - Paralelo

 Idea: Al apretar un pulsador habrá continuidad entre una fila y una columna → Excitar una fila y leer el valor de la columna.

- Problemas
 - Múltiples teclas conectadas a la misma columna.
 - Valor lógico de las columnas y filas.
- Posibles soluciones
 - Secuencial
 - Paralelo

Teclados Matriciales – Lectura mediante microcontrolador "Secuencial"

- ► Idea: Al apretar un pulsador habrá continuidad entre una fila y una columna → Excitar una fila o columna y leer el valor de la columna o fila.
- ► Una solución secuencial → Controlar el estado lógico de las filas y verificar el estado de las columnas secuencialmente.
 - Se debe colocar en ALTO/BAJO la fila verificada y el resto en BAJO/ALTO
 - Se debe monitorear cual columna está en ALTO/BAJO
 - Problema : ¿Dos pulsadores de la misma columna activos?
 - Diodos
 - Problemas: ¿Rebotes de los pulsadores?
 - Rutinas de retraso

Teclados Matriciales – Lectura mediante microcontrolador "Secuencial"

- ► Idea: Al apretar un pulsador habrá continuidad entre una fila y una columna → Excitar una fila o columna y leer el valor de la columna o fila.
- ► Una solución secuencial → Controlar el estado lógico de las filas y verificar el estado de las columnas secuencialmente.

COL₂

PRESS

- Se debe colocar en ALTO/BAJO la fila verificada y el resto en BAJO/ALTO
- Se debe monitorear cual columna está en ALTO/BAJO

Teclados Matriciales – Interfaz con el microcontrolador "Secuencial"

- Todos los pines del teclado matricial se deben conectar a puertos
 E/S del microcontrolador
 - El menor entre filas y columnas se conecta como entradas
 - El mayor entre filas y columnas se conecta como salidas

Teclados Matriciales – Interfaz con el microcontrolador "Secuencial"

- Todos los pines del teclado matricial se deben conectar a puertos
 E/S del microcontrolador
 - El menor entre filas y columnas se conecta como entradas
 - El mayor entre filas y columnas se conecta como salidas

Teclados Matriciales – Lectura mediante microcontrolador "Secuencial"

Pseudocódigo de una posible implementación

```
void leer_teclado_mat(*RSLT)
{ char found_key = 0;
 *RSLT[0] = *(RSLT+1)= 99; // Condición no encontrado
 for (i = 0; i<row_num; i++)
     { ROW PORT = BAJO;
       ROW_i = ALTO; // ¿Cómo se implementa ROW_i?
       wait antirebote (); //opcional
           for (j=0; j < col num; j++)
              \{ if (COL j == ALTO) \}
                    {*RLST = i;}
                     *(RLST+I) = i;
                     found_key = I;
                      break;}
       if (found_key == I) {ROW_PORT = BAJO; return;}
ROW PORT = BAJO; return;
```


Teclados Matriciales – Lectura mediante microcontrolador "Secuencial"

Ejercicio: Complete el código tal que envíe un ALTO lógico a un pin (0...3) del Puerto C, desde un teclado matricial conectado al puerto B. Solo un Pin debe estar en ALTO al mismo tiempo. Las teclas validas son [1...4]

```
#include <xc.h>
#define XTAL_FREQ 4000000
#include <plib/delays.h>

void main()
{
    ****** //Configurar pines
    while(I) //infinite loop
    {
        ****// Leer teclado
        ****// Decodificar teclado y ejecutar tarea
        ****// ¿Está el teclado libre?
    }
}
```


 Idea: Al apretar un pulsador habrá continuidad entre una fila y una columna → Excitar una fila y leer el valor de la columna.

- Problemas
 - Múltiples teclas conectadas a la misma columna.
 - Valor lógico de las columnas y filas.
- Posibles soluciones
 - Secuencial
 - Paralelo

- ► Idea: Al apretar un pulsador habrá continuidad entre una fila y una columna → Excitar una fila o columna y leer el valor de la columna o fila.
 - ▶ Problema → Múltiples teclas conectadas/apretadas a la misma columna
- ► Una solución paralela → activar todas las filas y verificar las columnas. Seguido activar todas las columnas y verificar las filas.
 - > Se debe cambiar la dirección de los pines conectados al teclado
 - Se debe guardar los pines en alto en cada verificación
 - Problemas: Rebotes de los pulsadores?
 - Rutinas de retraso

Teclados Matriciales – Interfaz con el microcontrolador "Paralelo"

- Todos los pines del teclado matricial se deben conectar a puertos
 E/S del microcontrolador
 - ▶ Todos los pines necesitan resistencias de Pull.
 - No se requieren los diodos.

- Se necesita mantener los niveles lógicos → Resistencias de pull en los pines de entrada
 - Pull-up → Lógica negada
 - Pull-down → Lógica estándar

Pseudocódigo de una posible implementación void leer_teclado_mat(* RSLT)

```
\{ char found key = 0; \}
*RSLTI = *(RSLTI+I)= 99; // Condición no encontrado
*RSLT2 = *(RSLT2+1)= 99; // Condición no encontrado
 set col input(); // Direcciona los pines de las columnas
 set row output(); // Direcciona los pines de las filas
 ROW PORT = ALTO;
Switch (COL PORT)
    CASE 0XIF: *RSLTI = 0; break; // Valor depende de los pines conectados
    CASE 0X2F: *RSLTI = I; break;
    CASE 0X4F: *RSLT1 = 2; break;
    Default:*RSLT = 99;
    ROW PORT = BAJO;
```

Pseudocódigo de una posible implementación

Ejercicio: Complete el código tal que un usuario que digite una clave de cuatro dígitos seguido de "*" y esta sea igual a "1234" envíe un ALTO lógico a un pin (RC0) del Puerto C que encenderá un LED. Cualquier clave invalida apagará el LED.

```
#include <xc.h>
#define XTAL_FREQ 4000000
#include <plib/delays.h>
void main()
{
    ****** //Configurar pines
    while(I) //infinite loop
    {
        ****// Leer teclado
        ****// Decodificar teclado y ejecutar tarea
        ****// Está el teclado libre?
    }
}
```


Manejo de teclados matriciales mediante interrupciones

- ► Idea: Al apretar un pulsador habrá continuidad entre una fila y una columna → Excitar una fila y leer el valor de la columna.
 - Problemas
 - Posibles soluciones: Secuencial Paralelo
 - **▶** Mediante interrupciones → Interrupciones externas

```
#include <xc.h>
#define XTAL_FREQ 4000000
#include <plib/delays.h>
void main()
{
    ****** //Configurar pines
    while(I) //infinite loop
    {
        ****// Leer teclado
        ****// Decodificar teclado y ejecutar tarea
        ****// Está el teclado libre?
```


- Idea: Al apretar un pulsador habrá continuidad entre una fila y una columna → Excitar una fila y leer el valor de la columna.
 - Posibles soluciones: Secuencial Paralelo
 - ▶ Mediante interrupciones → Interrupciones externas
 - Se inicia la secuencia de lectura del teclado una vez se detecte un cambio en el puerto mediante interrupciones....Filas en alto-columnas en bajo

```
#include <xc.h>
#define XTAL_FREQ 4000000
#include <plib/delays.h>
void main()
{ ****** //Configurar pines
   while(I) //infinite loop
   { if (interrupt){
        ****// Leer teclado
        ****// Decodificar teclado y ejecutar tarea
        ****// Está el teclado libre? }
```


- ▶ Registros asociados a los mecanismos de interrupción en el PIC18F2550
 - ▶ RCON → Reset Control Register
 - Contiene al bit IPEN que determina si se utiliza prioridad en las fuentes de interrupción. Además contiene banderas para determinar fuentes de interrupción desde reset o modo hibernación.
 - ► INTCON, INTCON2 e INTCON3 → Interrupt Control Register
 - Permite controlar la habilitación global de las interrupciones y algunas individuales provenientes de fuentes de interrupción externas.
 - ▶ PIE1 y PIE2 → Peripheral Interrupt Enable Registers
 - Permite controlar individualmente la habilitación de las diferentes fuentes de interrupción, principalmente provenientes de fuentes de interrupción internas.
 - ▶ PIR1 y PIR2 → Peripheral Interrupt Request Registers
 - Permite verificar el estado individual de la interrupciones. Cada bit indica el evento de una interrupción en particular.
 - ▶ IPRI e IPR2 → Peripheral Interrupt Priority Registers
 - Permite cambiar individualmente la prioridad de las fuentes de interrupénéresidad

Registros asociados a los mecanismos de interrupción en el PIC18

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

bit 7 GIE/GIEH: Global Interrupt Enable bit

When IPEN = 0:

1 = Enables all unmasked interrupts

0 = Disables all interrupts

When IPEN = 1:

1 = Enables all high-priority interrupts

0 = Disables all interrupts

bit 6 PEIE/GIEL: Peripheral Interrupt Enable bit

When IPEN = 0:

1 = Enables all unmasked peripheral interrupts

0 = Disables all peripheral interrupts

When IPEN = 1:

1 = Enables all low-priority peripheral interrupts (if GIE/GIEH = 1)

0 = Disables all low-priority peripheral interrupts

INTCON, INTCON2 e INTCON3

→ Interrupt Control Register

Permite controlar la habilitación global de las interrupciones y algunas individuales provenientes de fuentes de interrupción externas

▶ Registros asociados a los mecanismos de interrupción en el PIC18

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit						
	1 = Enables the TMR0 overflow interrupt0 = Disables the TMR0 overflow interrupt	INTCON, INTCON2 e INTCON3					
bit 4	INT0IE: INT0 External Interrupt Enable bit 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt	→ Interrupt Control Register Permite controlar la habilitación					
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt	global de las interrupciones y algunas individuales provenientes de fuentes de interrupción externas					
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit						
	1 = TMR0 register has overflowed (must be cleared in softwat0 = TMR0 register did not overflow	are)					
bit 1	INT0IF: INT0 External Interrupt Flag bit						
	1 = The INTO external interrupt occurred (must be cleared in0 = The INTO external interrupt did not occur	software)					
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾						
	1 = At least one of the RB7:RB4 pins changed state (must be0 = None of the RB7:RB4 pins have changed state	e cleared in software) UNIVERSIDAD SERGIO ARBOLED					

Registros asociados a los mecanismos de interrupción en el PIC18

REGISTER 9-2: INTCON2: INTERRUPT CONTROL REGISTER 2

	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP
bit 7							bit 0

bit 6	INTEDG0: External Interrupt 0 Edge Select bit
	1 = Interrupt on rising edge0 = Interrupt on falling edge
bit 5	INTEDG1: External Interrupt 1 Edge Select bit
	1 = Interrupt on rising edge0 = Interrupt on falling edge
bit 4	INTEDG2: External Interrupt 2 Edge Select bit
	1 = Interrupt on rising edge
	0 = Interrupt on falling edge
bit 3	Unimplemented: Read as '0'
bit 2	TMR0IP: TMR0 Overflow Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 1	Unimplemented: Read as '0'
bit 0	RBIP: RB Port Change Interrupt Priority bit
	1 = High priority
	0 = Low priority

INTCON, INTCON2 e INTCON3

→ Interrupt Control Register

Permite controlar la habilitación global de las interrupciones y algunas individuales provenientes de fuentes de interrupción externas

Registros asociados a los mecanismos de interrupción en el PIC18

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	INT1IP	_	INT2IE	INT1IE	-	INT2IF	INT1IF
bit 7 bit 0							

bit 7	INT2IP: INT2 External Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 6	INT1IP: INT1 External Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 5	Unimplemented: Read as '0'
bit 4	INT2IE: INT2 External Interrupt Enable bit
	1 = Enables the INT2 external interrupt
	0 = Disables the INT2 external interrupt
bit 3	INT1IE: INT1 External Interrupt Enable bit
	1 = Enables the INT1 external interrupt
	0 = Disables the INT1 external interrupt
bit 2	Unimplemented: Read as '0'
bit 1	INT2IF: INT2 External Interrupt Flag bit
	1 = The INT2 external interrupt occurred (must be cleared in software)
	0 = The INT2 external interrupt did not occur
bit 0	INT1IF: INT1 External Interrupt Flag bit
	1 = The INT1 external interrupt occurred (must be cleared in software)
	0 = The INT1 external interrupt did not occur

INTCON, INTCON2 e INTCON3

→ Interrupt Control Register

Permite controlar la habilitación global de las interrupciones y algunas individuales provenientes de fuentes de interrupción externas

- Idea: Al apretar un pulsador habrá continuidad entre una fila y una columna → Excitar una fila y leer el valor de la columna.
 - Posibles soluciones: Secuencial Paralelo
 - ▶ Mediante interrupciones → Interrupciones externas
 - Se inicia la secuencia de lectura del teclado una vez se detecte un cambio en el puerto mediante interrupciones.

Teclados Matriciales

▶ Ejercicio: Muestre en un LCD alfanumérico los valores numéricos escritos en un teclado matricial. El valor numérico se mostrará en pantalla una vez se digiten los números (máximo cuatro) y se presione la tecla #. La conexión del teclado al microcontrolador es la dada en la figura.

Teclados Matriciales

▶ Ejercicio: Muestre en un display 7-segmentos los valores numéricos escritos en un teclado matricial. El valor numérico se mostrará en pantalla una vez se digiten los números (máximo dos) y se presione la tecla #. La conexión del teclado al microcontrolador es la dada en la figura.

Gracias!

Henry Carrillo

http://hcarrillo.co henry.carrillo@usa.edu.co

Escuela de Ciencias Exactas e Ingeniería

Universidad Sergio Arboleda Calle 75 No. 15-22 Piso 1°

Bogotá - Colombia Tel: (+57) (1) 325 7500 ext 2574

