NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING

EXAMINATION FOR Semester 2 AY2011/12

CS5226 - Database Tuning

April 2012

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains SEVEN (7) questions and comprises SEVEN (7) printed pages, including this page.
- 2. Answer **ALL** questions.
- 3. This is an **OPEN BOOK** examination.
- 4. Please write your Matriculation Number below.

MATRICULATION NUMBE	}.	

EXAMINER'S USE ONLY

Question	Points	Score
1	4	
2	6	
3	7	
4	4	
5	7	
6	8	
7	4	
Total:	40	

- 1. (4 points) Consider the four relations R, S, and T (where the key attribute of each relation is underlined) and queries Q_1 and Q_2 .
 - $R(\underline{A},B,C)$
 - S(<u>D</u>,E,F)
 - $T(\underline{G},H,I)$

Q_1 :	coloat	distinct C, D	Q_2 :	select	distinct A, G
•		,		from	R, S, T
	\mathbf{from}	R, S, T			, ,
	where			\mathbf{where}	B = H
	where	$\mathbf{r} = \mathbf{r}$		and	D = 50
	and	C = G			
	~~ 4	B = 10		and	I = 100
	anu	:D === 111			

- (a) State whether the following statement is true or false:

 Based on the algorithm discussed in class, we can't conclude that the distinct clause in Q_1 is redundant.
- (b) State whether the following statement is true or false:

 Based on the algorithm discussed in class, we can't conclude that the distinct clause in Q_2 is redundant.
- 2. (6 points) Consider the following query Q on the table R(A, B, C, D, E).

select A, C, E from R where A < 100and B = 5and C > 20

Write down all possible optimal indexes for Q.

- 3. (7 points) Consider a database consisting of three relations R, S, and T (where the key attribute of each relation is underlined) and three queries Q_1 , Q_2 , and Q_3 .
 - $R(\underline{A},B,C,D,E,F)$
 - $S(\underline{I},J,K,L,M,N)$
 - $T(\underline{U}, V, W, X, Y, Z)$

Q_1 :	\mathbf{select}	C	Q_2 :	select	I, X	Q_3 :	select	D, M
	from	R		\mathbf{from}	S, T		from	R, S
	where	A = 100		where	I = W		where	$\dot{A} = N$
				and	L < 30		and	F < 50

Suggest a vertical partitioning for each of the tables such that the three queries can be processed efficiently with both the number of redundant data scans as well as the number of joins among partitioned sub-tables minimized.

Your answer should be presented in the following form. For each table, show the schema of each of its partitioned sub-tables. For example, if you are partitioning table R into three sub-tables R_1 , R_2 , and R_3 , then write down their schema: $R_1(\cdots)$, $R_2(\cdots)$, $R_3(\cdots)$.

4.	(4 p that	points) Let A be an application that consists of three transactional programs $\{P_1, t SDG(A) \text{ does not contain any dangerous structure.}$	P_2, P_3 } st	ıch
	Sup of fo	pose we create a new application A' from A by adding an additional program P_4 ; i.e. our transactional programs $\{P_1, P_2, P_3, P_4\}$.	, A' consi	sts
	In t	he following, note that parts (a) and (c) are not related and they are to be answered in	dependent	tly.
	(a)	If all the programs in A contain no update statements (i.e, they are all read-only state whether the following statement is $true$ or $false$:		
		SDG(A') does not contain any dangerous structure.	()
	(b)	Justify your answer in (a)	·	•
	/ 1			
	(c)	If P_4 does not contain any update statement (i.e., it is a read-only program), state following statement is <i>true</i> or <i>false</i> :	whether	the
		SDG(A') does not contain any dangerous structure.	()
	(d)	Justify your answer in (c)	(/
	` ,			

5. (7 points) Consider a database consisting of three relations $R_1(\underline{K_1}, A_1)$, $R_2(\underline{K_2}, A_2)$, and $R_3(\underline{K_3}, A_3)$, where the key of each R_i is K_i . Consider an application that consists of the following four transactional programs, W, X, Y, and Z.

	$\mathbf{Program} \ \mathbf{X}(\mathbf{V})$	$ Program \ Y(V) $	$\operatorname{Program} \mathbf{Z}(\mathbf{V})$
SELECT A ₁ into :A	UPDATE R_2	SELECT A ₂ into :A	SELECT A_2 into :A
FROM R_1	SET $A_2 = A_2 - 1$	FROM R ₂	FROM R_2
WHERE $K_1 = :V;$	WHERE $K_2 = :V;$	WHERE $K_2 = :V;$	WHERE $K_2 = :V;$
UPDATE R_2 SET $A_2 = A_2 + 1$ WHERE $K_2 = :A;$	COMMIT;	UPDATE R_3 SET $A_3 = A_3 - 2$ WHERE $K_3 = :A;$	SELECT A_3 into :B FROM R_3 WHERE $K_3 = :V$;
COMMIT;		COMMIT;	UPDATE R_1 SET $A_1 = A_1 + :B$ WHERE $K_1 = :A;$
			COMMIT;

(a) Show the static dependency graph for this application.

(b) State the minimum number of programs that need to be modified so that the application can become serializable under Snapshot Isolation. Support your answer by showing the necessary modifications for each program to be modified. Note that you only need to show the program statements (i.e., SELECT/UPDATE statements) that are modified; do not repeat any unmodified program statements.

6.	(8 points) Consider the following s	set of transactions $S = \{T_1, T_2, T_3, T_4\}$:
	T_2 : T_3 :	$R_1(a), R_1(d), W_1(a), R_1(b), W_1(c)$ $R_2(d), W_2(d), R_2(e), W_2(e)$ $W_3(f), R_3(g), W_3(g)$ $W_4(a), R_4(e), R_4(g), W_4(e)$
	Write down each of the following:	
	(a) FineChop (T_1)	

(b) FineChop (T_2)

(c) FineChop (T_3)

(d) FineChop (T_4)

7.	(4 points) Let chop (T_1) , chop (T_2) , and chop (T_3) denote a rollback-safe chopping of tran T_2 , and T_3 , respectively.	sactions	T_1			
	Let G_{12} denote the chopping graph consisting of $\{chop(T_1), chop(T_2)\}$, G_{13} denote the chopping graph consisting of $\{chop(T_1), chop(T_3)\}$, G_{23} denote the chopping graph consisting of $\{chop(T_2), chop(T_3)\}$ and G_{123} denote the chopping graph consisting of $\{chop(T_1), chop(T_2), chop(T_3)\}$.					
	(i) Which of the following statements is the most appropriate about G_{12} , G_{13} , G_{23} , and	ad G_{123}	?			
	(a) If each of G_{12} , G_{13} , and G_{23} does not contain any SC-cycle, then G_{123} does any SC-cycle.	not con	taiı			
	(b) If G_{123} does not contain any SC-cycle, then each of G_{12} , G_{13} , and G_{23} does any SC-cycle.	not con	tai			
	(c) (a) or (b)					
	(d) (a) and (b)	1	,			
	(e) None of the above.	(
	(ii) Justify your answer in (i)					

END OF PAPER