

Plataforma Inter-S Experimental (PIE)

Primeiros passos

Sumário

1.	O que é o Inter-S?	3
2.	Plataforma Inter-S Experimental	3
3.	Exemplos de aplicação	6
	3.1. Exemplo 1: Semáforo de LEDs	6
	3.2. Exemplo 2: Teclado de massinha de modelar	. 10
	3.3. Exemplo 3: Cancela eletrônica	. 14
	3.4. Exemplo 4: Controle de um servo motor com potenciômetro	. 17
4.	Esquema para montagem da PIE	. 21
5.	Comandos INTER-S para operações com a plataforma PIE	. 24
	5.1. Estado_USB	. 24
	5.2. Mostra_Placa	. 24
	5.3. Ative digitais / analógicas	. 25
	4.4. Desative digitais / analógicas	. 25
	5.5. Liga_Saída	. 25
	5.6. Desliga_Saída	. 26
	5.7. Servo_Motor_n / LServo_Motor_n	. 26
	5.8. Analógica	. 26
	5.9. Digital	. 27
	5.10. P_Saídas	. 27

1. O que é o Inter-S?

Inter-S é um acrônimo do termo "Interpretador de Soluções", cujo significado expressa literalmente o seu objetivo, ou seja, é uma ferramenta que possibilita ao usuário escrever algoritmos lógicos (programas) que serão interpretados e executados pelo computador.

O Inter-S é um ambiente de programação dirigido aos iniciantes, desenvolvido especialmente para finalidades educacionais, servindo como ferramenta de apoio ao aprendizado da lógica e das técnicas de programação. O aplicativo utiliza uma linguagem simples, de fácil entendimento e com regras sintáticas claras baseadas na língua portuguesa, o que torna o desenvolvimento de programas uma tarefa descomplicada e intuitiva.

2. Plataforma Inter-S Experimental

A Plataforma Inter-S Experimental (PIE) é uma placa microcontrolada especialmente desenvolvidas para o ambiente Inter-S. Essa plataforma, assim como os novos recursos de programação do Inter-S, têm como objetivo propiciar ao estudante ferramentas simples, tanto em nível de *hardware* como em nível de *software*, para o desenvolvimento de aplicações nas áreas de eletrônica e robótica.

A PIE é uma placa eletrônica que integra um microcontrolador PIC18F2550® (*Microchip Technology Inc.*), cuja conexão ao computador é feita através de uma porta USB utilizando o protocolo HID (*Human Interface Device*), não necessitando, portanto, de nenhum recurso adicional de *driver* para o seu reconhecimento pelo computador. A Figura 1, a seguir, apresenta o aspecto físico da plataforma PIE. (Na seção 4 deste documento você encontrará os detalhes técnicos da PIE, incluindo o seu diagrama esquemático, lista de componentes, *firmware* e outras informações necessárias para a sua confecção).

Figura 1 - Aspecto físico da Plataforma Inter-S Experimental

Para que você conheça os recursos da PIE, a Tabela 1 (apresentada a seguir) mostra uma breve descrição dos elementos que a integram. Nesta tabela, a localização de cada elemento está indicada por uma seta amarela.

Tabela 1: Descrição dos elementos da Plataforma Inter-S Experimental

Indicação do elemento (em amarelo)

Descrição

Conector USB (tipo B - fêmea)

Este componente permite a conexão da plataforma ao computador através de um cabo USB.

Botão "Reset"

Este botão reinicia a plataforma, estabelecendo nova conexão com o computador.

Saídas digitais

A plataforma disponibiliza oito saídas digitais identificadas pelos números de 0 a 7. Essas saídas são acionadas por meio de programa e podem assumir nível lógico "um" (ligada) ou nível lógico "zero" (desligada). Para cada saída existe um led acoplado que indica o estado da mesma (led aceso = ligada / led apagado = desligada). Existe também uma barra de terminais, onde cada terminal está ligado a uma saída. Esses terminais podem ser utilizados para ligações externas (para acionamento de leds, relés, motores, etc.).

Saídas para Servos Motores

As quatro primeiras saídas digitais (saídas 0 a 3) também podem ser utilizadas para o controle de servos-motores, os quais são identificados pelos números 1, 2 ,3 e 4 e estão associados às saídas 0, 1, 2 e 3, respectivamente.

Entradas analógicas

Existem três entradas analógicas que podem ser utilizadas para a leitura de potenciômetros ou sensores diversos. Cada entrada possui conversor analógico-digital de 8 bits, podendo gerar um valor entre 0 e 255, de acordo com a tensão de entrada, a qual pode variar entre 0 e 5 volts. Para facilitar a conexão de sensores e principalmente potenciômetros, cada entrada analógica contém um pino que fornece 5 volts, um pino terra (GND), além do pino específico da entrada (pino central).

Entradas digitais

São utilizadas para a conexão de chaves, botões ou sensores digitais externos (componentes que podem assumir apenas dois estados: ligado ou desligado).

Essas entradas são identificadas pelos números de 1 a 4 e podem ser acessadas pelos terminais correspondentes, os quais estão dispostos em uma única barra de terminais.

Botões

A plataforma experimental possui quatro botões táteis dispostos em forma de "joystick", os quais estão acoplados às entradas digitais 1, 2, 3 e 4. Esses botões são ligados às entradas digitais por meio de uma montagem do tipo *pull-up*, ou seja, quando pressionados eles fornecem valor lógico zero (0 volt) à entrada correspondente, e quando soltos, fornecem valor lógico um (5 volts).

Saída de tensão

Esta saída fornece tensão de 5 volts extraída diretamente da porta USB do computador, podendo ser utilizada para a alimentação de pequenos dispositivos externos que não exijam correntes altas.

Existem três terminais que fornecem 5 volts cada e três terminais terra (GND).

Jumper LEDS (J1)

Este *jumper* ativa os leds que estão conectados às saídas digitais. Se for preciso desativar esses leds, basta remover o *jumper* J1.

Jumper Botões (J2)

Este *jumper* ativa os botões táteis que estão conectados às entradas digitais. Se for preciso desativar esses botões, basta remover o *jumper* J2.

3. Exemplos de aplicação

Nesta seção serão apresentados alguns exemplos que ilustram a utilização da Plataforma Inter-S Experimental.

3.1. Exemplo 1: Semáforo de LEDs

Neste exemplo serão demonstrados os procedimentos para a elaboração de um simples semáforo construído com três LEDs (*Light-Emitting Diode* - Diodo emissor de luz), cuja montagem é apresentada na Figura 2.

Figura 2 - Montagem do semáforo de LEDS

Materiais necessários:

- Plataforma Inter-S Experimental;
- Matriz de contatos (protoboard);
- 3 resistores de 470Ω;
- 3 leds (vermelho, amarelo e verde);
- Fios para ligações.

Nota: Para testar o programa proposto não é necessária a realização da montagem mostrada na Figura 2. Com apenas a Plataforma Experimental é possível realizar o projeto, pois, o funcionamento do semáforo pode ser observado por meio dos LEDs existentes na própria plataforma (LEDs acoplados às saídas digitais). Também é possível executar este programa mesmo que você não tenha a plataforma PIE, neste caso, o resultado do processamento pode ser observado na imagem virtual da plataforma, que é exibida ao lado da janela de execução do Inter-S.

Programa

Usando o Inter-S, devemos elaborar um programa para realizar os seguintes passos:

Passo 1: Acender o LED vermelho e apagá-lo após 5 segundos

Passo 2: Acender o LED verde e apagá-lo após 3 segundos

Passo 3: Acender o LED amarelo e apagá-lo após 2 segundos

Passo 4: Repetir os procedimentos a partir do passo 1

A Figura 3 a seguir mostra o programa proposto após sua digitação na janela de edição do Inter-S.

```
Inter-S Versão 3.0 (PIE_semaforo_simples.ALG)

Arquivo Editar Executar Diversos Sair

Novo Abrir Salvar Imprimir Indentar Executar Tabela de cores Ajuda Porta serial Porta serial

Rotina

Declare tecla Numérico

Mostra_Placa
Repita

tecla=Ftecla

Liga_Saída 0; Atrase 5000; Desliga_Saída 0

Liga_Saída 2; Atrase 3000; Desliga_Saída 2

Liga_Saída 1; Atrase 2000; Desliga_Saída 1

AtéQue tecla=27

FimRotina
```

Figura 3 - Programa digitado na janela de edição do Inter-S

Comentários sobre o programa

Na primeira linha temos a instrução "Rotina", que é obrigatória para determinar o início do programa. Em seguida, por meio da instrução "Declare", devemos declarar as variáveis que serão utilizadas na rotina (neste caso usaremos apenas a variável "tecla", que será responsável pelo recebimento do código da tecla digitada pelo usuário durante a execução do programa).

Na terceira linha da rotina temos a instrução "mostra_placa", que exibe na tela uma imagem virtual da Plataforma Inter-S Experimental, na qual é possível verificar, em tempo real, o estado da plataforma conectada ao computador (este recurso pode ser usado mesmo que a plataforma não esteja conectada, permitindo dessa forma a realização de simulações).

A instrução "Repita" inicia uma estrutura de repetição, na qual as instruções entre "Repita" e "AtéQue tecla=27" serão executadas repetidamente até que a variável "tecla" tenha conteúdo igual a 27. O código 27 corresponde à tecla "ESC", dessa forma, a estrutura de repetição será encerrada quando o usuário pressionar "ESC".

Na quinta linha da rotina temos a instrução "tecla=Ftecla". Esta instrução é responsável por fazer uma varredura no teclado do computador e atribuir à variável "tecla" o código correspondente à tecla pressionada (caso alguma tecla esteja pressionada nesse momento). Caso nenhuma tecla tenha sido pressionada, a variável "tecla" receberá valor 0 (zero).

A sexta linha da rotina contém três instruções, sendo elas: "Liga_Saída 0" (liga a saída digital número 0, acendendo o LED vermelho), "Atrase 5000" (gera uma pausa de 5000 milissegundos - 5 segundos) e "Desliga_Saída 0 (desliga a saída digital número 0, apagando o LED vermelho). Observe que essas instruções realizam o passo 1 da nossa rotina: " Acender o LED vermelho e apagá-lo após 5 segundos".

Da mesma forma, a sétima linha contém três instruções que realizam o passo 2 da nossa rotina: "Acender o LED verde e apagá-lo após 3 segundos". Com a mesma ideia, a oitava linha realiza o passo 3: " Acender o LED amarelo e apagá-lo após 2 segundos".

A nona linha da rotina, que contém a instrução "AtéQue tecla=27", determina a condição de finalização da estrutura de repetição. Como citado anteriormente, a estrutura de repetição será

finalizada quando o valor da variável "tecla" for igual a 27, o que indica que o usuário pressionou a tecla "ESC".

A décima e última linha da rotina, que contém a instrução "FimRotina", finaliza o programa.

Melhorias no programa

Se você construiu e executou o programa proposto, deve ter percebido que a janela de execução do Inter-S permaneceu em branco durante todo o processamento (somente a imagem virtual da Plataforma Experimental apresentou animação). Para construir uma interface gráfica que nos mostre o funcionamento do semáforo em tempo real, podemos utilizar alguns recursos do Inter-S para gerar uma animação durante o processamento. O programa proposto a seguir, cujo código é mostrado na Figura 4, exibirá na janela de execução do Inter-S um semáforo virtual que funcionará em conformidade com a Plataforma Experimental.

Figura 4 - Programa "semáforo" com interface gráfica

Comentários sobre o novo programa

A tabela a seguir mostra as instruções comentadas do novo programa.

Instruções	Comentários
Rotina	Inicio da rotina
Declare tecla NUMÉRICO	Declaração da variável utilizada (tecla)
Mostra_Placa	Exibe imagem virtual da plataforma experimental
Moldura 5,35,9,45,branca	Exibe na tela uma moldura branca, da linha 5 e coluna 35 até a linha 9 e coluna 45, simbolizando o sinal vermelho apagado.
Moldura 11,35,15,45,branca	Exibe na tela uma moldura branca, da linha 11 e coluna 35 até a linha 15 e coluna 45, simbolizando o sinal amarelo apagado.
Moldura 17,35,21,45,branca	Exibe na tela uma moldura branca, da linha 17 e coluna 35 até a linha 21 e coluna 45, simbolizando o sinal verde apagado.
Repita	Inicia a estrutura de repetição principal
tecla=Ftecla	Verifica se alguma tecla foi pressionada e coloca o valor da mesma na variável "tecla"

Liga_Saída 0	Liga a saída 0 (acende o LED vermelho)
Moldura 5,35,9,45,vermelho	Exibe na tela uma moldura com preenchimento vermelho, da linha 5 e
	coluna 35 até a linha 9 e coluna 45, indicando sinal "PARE" aceso.
Atrase 5000	Gera uma pausa de 5000 ms (5 segundos)
Moldura 5,35,9,45,branco	Exibe na tela uma moldura branca, da linha 5 e coluna 35 até a linha 9 e
	coluna 45, indicando sinal vermelho apagado.
Desliga_Saída 0	Desliga a saída 0 (apaga o LED vermelho)
Liga_Saída 2	Liga a saída 2 (acende o LED verde)
M-1 draw 17 25 21 45	Exibe na tela uma moldura com preenchimento verde, da linha 17 e
Moldura 17,35,21,45,verde+	coluna 35 até a linha 21 e coluna 45, indicando sinal "SIGA" aceso.
Atrase 3000	Gera uma pausa de 3000 ms (3 segundos)
M-1 days 17 25 21 45 harres	Exibe na tela uma moldura branca, da linha 17 e coluna 35 até a linha 21
Moldura 17,35,21,45,branco	e coluna 45, indicando sinal verde apagado.
Desliga_Saída 2	Desliga a saída 2 (apaga o LED verde)
Liga_Saída 1	Liga a saída 1 (acende o LED amarelo)
M-1 down 11 25 15 45	Exibe na tela uma moldura com preenchimento amarelo, da linha 11 e
Moldura 11,35,15,45,amarelo	coluna 35 até a linha 15 e coluna 45, indicando sinal "ATENÇÃO" aceso.
Atrase 2000	Gera uma pausa de 2000 ms (2 segundos)
M-1 days 11 25 15 45 haven	Exibe na tela uma moldura com preenchimento branco, , da linha 11 e
Moldura 11,35,15,45,branco	coluna 35 até a linha 15 e coluna 45 para indicar sinal amarelo apagado.
Desliga_Saída 1	Desliga a saída 1 (apaga o LED amarelo)
utéQue tecla=27	Se a variável "tecla" for igual a 27 (o que indica que o usuário
	pressionou a tecla "ESC") o programa será encerrado, caso contrário, as
	instruções dentro da estrutura de repetição principal serão executadas
	novamente.
FimRotina	Fim da rotina
	•

3.2. Exemplo 2: Teclado de massinha de modelar

Neste exemplo serão demonstrados os procedimentos para a construção de um pequeno teclado de três teclas confeccionadas com massinha de modelar, cuja montagem é apresentada na Figura 5.

Materiais necessários:

- Plataforma Inter-S Experimental;
- Matriz de contatos (protoboard);
- 3 resistores de 330KΩ;
- Massinha de modelar;
- Fios para ligações.

Nota: As teclas de massinha de modelar devem ser conectadas ao circuito por meio de cabos tipo "jumper" ou fios com extremidades descascadas, conforme mostra a Figura 6.

Figura 6 - Forma de conexão das teclas de massinha com o circuito

Programa

Para testar o teclado, o programa Inter-S deve realizar os seguintes passos:

Passo 1: Exibir na tela 3 molduras com preenchimento verde escuro (estas molduras indicarão o acionamento das teclas de massinha, ou seja, quando o usuário tocar em uma tecla de massinha, a moldura correspondente a ela será preenchida com a cor verde claro);

Passo 2: Ler as entradas analógicas e guardar os valores lidos;

Passo 3: Verificar se o valor lido de cada entrada analógica é menor que 220, o que significa que o usuário tocou na tecla de massinha correspondente àquela entrada. Neste caso, o programa deve alterar a cor de preenchimento da moldura para verde claro.

Breve explicação sobre as entradas analógicas

As entradas analógicas da plataforma PIE possuem conversores analógicos-digitais de 8 bits, isso significa que os valores apresentados por essas entradas podem variar de 0 a 255. Por exemplo, se alimentarmos uma entrada analógica com 5 volts (máximo), o valor apresentado por ela será 255; se alimentarmos com 2,5 volts, o valor apresentado será 128 (aproximadamente a metade de 255); se alimentarmos com 0 volt, o valor apresentado será 0 (zero). Matematicamente, podemos então definir o valor apresentado por uma entrada analógica por meio da seguinte equação:

$$X = \frac{255 \times Vi}{5}$$

onde:

X = Valor apresentado pela entrada analógica Vi = Tensão aplicada na entrada (em volts)

Por exemplo, se aplicarmos 1 volt em uma determinada entrada analógica, teremos como resposta o valor 51:

$$X = \frac{255 \times 1}{5} = 51$$

Conforme montagem apresentada na Figura 5, as entradas analógicas 1, 2 e 3 são alimentadas com 5V, isso faz com que os seus valores cheguem ao máximo (255). Quando o usuário tocar em uma das teclas de massinha, segurando ao mesmo tempo o fio que está conectado ao GND (terra), ocorrerá um fechamento de circuito entre a entrada analógica e o terminal GND, o qual apresenta OV (zero volt), desta forma, a tensão de entrada tenderá a zero, fazendo com que o valor apresentado pela entrada analógica seja também zero. Em resumo, quando o usuário tocar em uma das teclas de massinha, o valor apresentado pela entrada analógica será próximo de zero. Por outro lado, quando a tecla não for tocada, o valor apresentado será próximo de 255.

A Figura 7 a seguir mostra o programa já digitado na janela de edição do Inter-S.

Figura 7 - Programa proposto

Comentários sobre o programa

Instruções	Comentários
Rotina	Inicio da rotina
Deales and a Control of Market Control	Declaração das variáveis utilizadas (a1, a2 e a3 serão usadas para guardar os valores lidos das entradas
Declare a1,a2,a3,tecla NUMÉRICO	analógicas. A variável tecla será usada para encerrar o programa mediante opção do usuário)
mostra_placa	Exibe imagem virtual da plataforma experimental
Ative analógicas	Ativa a leitura das entradas analógicas
Moldura 12,16,17,26,verde	Exibe na tela uma moldura com preenchimento verde
Moraura 12,10,17,20, Verde	escuro, correspondente à 1ª tecla de massinha.
Moldura 12,36,17,46,verde	Exibe na tela uma moldura com preenchimento verde
Moraura 12,30,17,40, verde	escuro, correspondente à 2ª tecla de massinha.
Moldura 12 56 17 66 verde	Exibe na tela uma moldura com preenchimento verde
Moldura 12,56,17,66,verde	escuro, correspondente à 3ª tecla de massinha.
Repita	Inicia a estrutura de repetição principal.
	Verifica se alguma tecla foi pressionada (no teclado
tecla=Ftecla	do computador) e coloca o valor da mesma na
	variável "tecla".
a1=analógica 1;a2=analógica 2;a3=analógica 3	Lê as entradas analógicas 1, 2 e 3 e armazena os
	valores lidos nas variáveis a1, a2 e a3.
Se al < 220 então	Verifica se o valor de a1 é menor que 220, o que
	significa que a tecla de massinha da entrada analógica
	1 foi tocada. Caso positivo

Moldura 12,16,17,26,lima	muda a cor da moldura para verde claro (lima)
Liga_Saída 0	liga a saída 0 (acende o led 0 da PIE)
Senão	Caso contrário (se o valor não for menor que 220)
Desliga_Saída 0	desliga a saída 0 (apaga o led 0 da PIE)
Moldura 12,16,17,26,verde	muda a cor da moldura para verde escuro
FimSe	Finaliza a estrutura de decisão
	Verifica se o valor de a2 é menor que 220, o que
Se a2 < 220 então	significa que a tecla de massinha da entrada analógica
	2 foi tocada. Caso positivo
Moldura 12,36,17,46,1ima	muda a cor da moldura para verde claro (lima)
Liga_Saída 1	liga a saída 1 (acende o led 1 da PIE)
Senão	Caso contrário (se o valor não for menor que 220)
Desliga_Saída 1	desliga a saída 1 (apaga o led 1 da PIE)
Moldura 12,36,17,46,verde	muda a cor da moldura para verde escuro
FimSe	Finaliza a estrutura de decisão
	Verifica se o valor de a3 é menor que 220, o que
Se a3 < 220 então	significa que a tecla de massinha da entrada analógica
	3 foi tocada. Caso positivo
Moldura 12,56,17,66,1ima	muda a cor da moldura para verde claro (lima)
Liga_Saída 2	liga a saída 2 (acende o led 2 da PIE)
Senão	Caso contrário (se o valor não for menor que 220)
Desliga_Saída 2	desliga a saída 2 (apaga o led 2 da PIE)
Moldura 12,56,17,66,verde	muda a cor da moldura para verde escuro
FimSe	Finaliza a estrutura de decisão
	Se a variável "tecla" for igual a 27 (o que indica que o
	usuário pressionou a tecla "ESC" do teclado do
AtéQue tecla=27	computador) o programa será encerrado, caso
	contrário, as instruções dentro da estrutura de
	repetição principal serão executadas novamente.
FimRotina	Fim da rotina

3.3. Exemplo 3: Cancela eletrônica

Neste exemplo, iremos construir um dispositivo para acionar uma cancela eletrônica montada sobre um servo motor. O objetivo do dispositivo é promover a abertura da cancela quando for detectada a presença de um veículo e, após a passagem desse veículo, promover o fechamento da cancela. Para a detecção do veículo, usaremos um LDR (*Light Dependent Resistor* - Resistor Dependente de Luz) acoplado à entrada analógica 3, conforme montagem apresentada na Figura 8.

Figura 8 - Montagem do circuito da cancela eletrônica

Materiais necessários:

- Plataforma Inter-S Experimental;
- Matriz de contatos (protoboard);
- 1 resistor de 1KΩ;
- 1 LDR (resistor dependente de luz)
- 1 servo-motor pequeno;
- Fios para ligações.

Programa

Usando o Inter-S, devemos escrever um programa para realizar as seguintes ações:

- Verificar se o usuário pressionou a tecla "ESC". Caso positivo, o programa deve ser encerrado;
- Se a tecla "ESC" não foi pressionada, o programa deve ler o valor da entrada analógica 3, na qual está acoplado o LDR;
- Se o valor da entrada analógica 3 for menor que 120, isso significa que a incidência de luz sobre o LDR é pequena, o que indica a presença de um "veículo" em frente ao sensor. Neste caso, o servo-motor deve ser acionado para que a cancela se abra;
- Após a abertura da cancela, o programa deve aguardar até que a entrada analógica 3 tenha um valor superior a 120, o que indica que o "veículo" não se encontra mais em frente ao sensor. Neste caso, o programa deve aguardar 1 segundo e em seguida acionar o servo-motor para fechar a cancela. Após o fechamento, repete-se o processo até que a tecla "ESC" seja pressionada, o que causará o encerramento do programa.

A Figura 9 a seguir mostra o programa já digitado na janela de edição do Inter-S.

```
Inter-S Versão 3.0 (C:\Users\Roberto\Desktop\EXEMPLOS_INTERS\_PIE_cancela.ALG3)
 Arquivo Editar Executar Diversos Sair
Novo Abrir Salvar Imprimir Indentar Executar Tabela de cores Ajuda Porta serial
                                                                ∨ ♦ Baud Rates
                                                                                 ∨ Linha: 31
   Declare al, tecla, estado Numéricos
   Mostra Placa
   Ative analógicas
   LServo Motor 1 13
   Escreva "CANCELA FECHADA"
   estado=0
   [inicio]
   tecla=Ftecla
   Se tecla = 27 Então
      Interrompa
   FimSe
   al=analógica 3
   Se al < 120 e estado=0 Então
      Limpa
      Escreva "CANCELA ABERTA"
      LServo_Motor_1 55
      estado=1
   Senão
      Se al >= 120 e estado=1 Então
         Atrase 1000
         Limpa
         Escreva "CANCELA FECHADA"
         LServo Motor 1 13
          estado=0
      FimSe
   FimSe
   VaPara inicio
FimRotina
```

Figura 9 - Programa proposto

Comentários sobre o programa

Instruções	Comentários
Rotina	Inicio da rotina
Declare al, tecla, estado Numéricos	Declaração das variáveis utilizadas. A variável "a1" será usada para guardar o valor lido da entrada analógica 3; a variável "tecla" será usada para encerrar o programa mediante opção do usuário e a variável "estado" indicará se a cancela está aberta (0) ou fechada (1).
Mostra_Placa	Exibe imagem virtual da plataforma experimental

Ative analógicas	Ativa a leitura das entradas analógicas.
	Aciona o servo-motor 1 levando-o para o ângulo de 13 graus
I Contro Motor 1 13	(este ângulo corresponde à posição da cancela fechada -
LServo_Motor_1 13	você deve alterar esse ângulo de acordo com a sua
	montagem).
Escreva "CANCELA FECHADA"	escreve na tela a expressão "CANCELA FECHADA"
estado=0	Atribui valor 0 (zero) à variável "estado" (isso indica que a
estado-0	cancela está fechada).
	Este é um rótulo que indica um ponto de retorno do
[inicio]	programa. Não pode ser acentuado e deve ser escrito entre
	colchetes.
tecla=Ftecla	Verifica se alguma tecla foi pressionada (no teclado do
tecia-rtecia	computador) e coloca o valor da mesma na variável "tecla".
	Inicia uma estrutura de decisão que verifica se o valor da
Se tecla = 27 Então	variável "tecla" é igual a 27 (que corresponde à tecla "ESC").
	Caso positivo
Interrompa	encerra o programa.
FimSe	Finaliza a estrutura de decisão.
	Lê a entrada analógica 3 e guarda o valor lido na variável
al=analógica 3	"a1".
	Inicia uma estrutura de decisão que verifica se o valor de
	"a1" é menor que 120 e se o valor da variável "estado" é
Se a1 < 120 e estado=0 Então	igual a zero, o que significa que existe um "veículo" em
	frente ao sensor e a cancela está fechada. Caso o resultado
	da verificação for verdadeiro
Limpa	limpa a tela,
Escreva "CANCELA ABERTA"	escreve na tela a expressão "CANCELA ABERTA",
LServo_Motor_1 55	aciona o servo-motor 1 levando-o para o ângulo de 55
HSelvo_Mocol_1 33	graus (abre a cancela) e
estado=1	atribui o valor 1 (um) à variável "estado", o que indica
CSCAGO I	que a cancela está aberta.
Senão	Caso contrário (se "a1" não for menor que 120 ou "estado"
	for diferente de zero)
	Inicia outra estrutura de decisão que verifica se o valor de
	"a1" é maior ou igual a 120 e se o valor da variável "estado"
Se a1 >= 120 e estado=1 Então	é igual a 1, o que significa que não existe "veículo" em frente
	ao sensor e a cancela está aberta. Caso o resultado da
	verificação for verdadeiro
Atrase 1000	gera uma pausa de 1000ms (1 segundo),
Limpa	limpa a tela,
Escreva "CANCELA FECHADA"	escreve na tela a expressão "CANCELA FECHADA",
LServo_Motor_1 13	aciona o servo-motor 1 levando-o para o ângulo de 13
HOCTVO_MOCOT_T TO	graus (fecha a cancela).
estado=0	atribui o valor 0 (zero) à variável "estado", o que indica
	que a cancela está fechada.
FimSe	Finaliza a estrutura de decisão "Se a1 >= 120 e estado=1"
FimSe	Finaliza a estrutura de decisão "Se a1 < 120 e estado=0"
	Desvia o programa para o rótulo [inicio], gerando uma
VaPara inicio	estrutura de repetição que só será finalizada quando o
	usuário pressionar a tecla "ESC".
FimRotina	Fim da rotina

3.4. Exemplo 4: Controle de um servo motor com potenciômetro

Neste exemplo iremos construir um pequeno dispositivo para controlar um servo motor por meio de um potenciômetro acoplado à entrada analógica 1 da plataforma experimental. O giro do servo motor deverá acompanhar o potenciômetro, isto é, quando o usuário girar o eixo do potenciômetro, o servo motor deverá também girar na mesma proporção e direção.

Usaremos um potenciômetro de $1K\Omega$, acoplando o seu terminal da esquerda no conector 5V, o seu terminal da direita no conector GND (0V) e o seu terminal central na entrada analógica 1. Dessa forma, quando o eixo do potenciômetro for girado totalmente para a esquerda, serão enviados 5 volts para a entrada analógica (valor máximo). Por outro lado, quando o eixo for girado totalmente para a direita, será enviado zero volt para a entrada analógica (valor mínimo).

Sabendo-se que as entradas analógicas da plataforma experimental PIE são dotadas de conversores A/D (analógicos/digitais) de 8 bits, teremos nas saídas desses conversores um valor entre 0 (zero) e 255 (duzentos e cinquenta e cinco). Dessa forma, quando o potenciômetro estiver com seu eixo totalmente voltado para a esquerda, a entrada analógica receberá 5 volts, apresentando um valor de 255 (máximo), e quando o seu eixo estiver totalmente voltado para a direita, a entrada analógica recebera zero volt, apresentando valor zero (mínimo). Quando o eixo estiver em uma posição qualquer, o valor recebido pela entrada analógica será uma fração do valor máximo de 5 volts, proporcional à posição do eixo.

O motor que iremos usar é um servo de 180°, que permite um deslocamento angular dentro da faixa de 0° a 180° apenas. Devemos então considerar que quando o valor apresentado pela entrada analógica for 255 (máximo), o ângulo do servo motor deve ser 180°, e quando o valor apresentado for zero (mínimo), o ângulo do servo deve ser 0°. Dessa forma, podemos usar uma simples regra de três para encontrar o ângulo certo em função do valor apresentado pela entrada analógica. Matematicamente, teremos:

$$\hat{A}ngulo = \frac{180 \times Valor da entrada analógica 1}{255}$$

A Figura 10 apresenta a montagem do circuito proposto.

Figura 10 - Montagem do dispositivo

Materiais necessários:

- Plataforma Inter-S Experimental;
- 1 potenciômetro linear de 1KΩ;
- 1 servo-motor pequeno;
- Fios para ligações.

Programa

Usando o Inter-S, devemos escrever um programa para realizar os seguintes passos:

- 1. Verificar se o usuário pressionou a tecla "ESC". Caso positivo, o programa deve ser encerrado;
- 2. Se a tecla "ESC" não foi pressionada, o programa deve ler o valor da entrada analógica 1, na qual está acoplado o potenciômetro;
- 3. Usar a regra de três para encontrar o ângulo em função do valor apresentado pela entrada analógica 1;
- 4. Enviar o ângulo encontrado para o servo motor;
- 5. Exibir na tela de execução uma imagem representando o servo motor e o ângulo no qual está posicionado (animação de tela);
- 6. Repetir os procedimentos a partir do passo 1.

A Figura 11 mostra o programa já digitado na janela de edição do Inter-S.

```
Inter-S Versão 3.0 (C:\Users\Roberto\Desktop\EXEMPLOS_INTERS\_PIE_servo.ALG3)
 Arquivo
        Editar
              Executar
                      Diversos
Novo Abrir Salvar Imprimir
                                                                   ∨ ♦ Baud Rates
                                                      Porta serial
                                                                                     ∨ Linha: 38
                      Indentar Executar Tabela de cores Ajuda
Rotina
   Declare pi, x, y, angulo, raio Numéricos
Declare tecla, al Numéricos
   Declare radianos Numéricos
   pi=3.14159
   raio=25
   Mostra Placa
   Ative analógicas
   Escala 10
   TamanhoPonto 8
   CorPonto ouro
   CorFundo branco
   [volta]
   tecla=Ftecla
   Se tecla=27 Então
       Limpa
       Interrompa
   FimSe
   al=analógica 1
   angulo=(180*a1)/255
   Servo Motor 1 angulo
   Limpa
   Círculo 0,0,10,celeste
   radianos = angulo*(pi/180)
   x=cos(radianos)*raio
   y=seno(radianos)*raio
   Linha 0,0/x,y
   Posicione 19,35
   Escreva "Ângulo: ",trunca(angulo),"°"
   VaPara volta
FimRotina
```

Figura 11 - Programa proposto (controle de servo motor com potenciômetro)

Comentários sobre o programa

Instruções	Comentários
Rotina	Inicio da rotina
Noteria	Declaração das variáveis utilizadas. A variável "pi"
	armazenará o valor do PI radiano (π); as variáveis "x" e "y"
	armazenarão a coordenada gráfica para indicar na tela o
Declare pi,x,y,angulo,raio Numéricos	ângulo atual do servo motor; a variável "angulo" armazenará
	o ângulo para posicionamento do servo motor; a variável
	"raio" armazenará o comprimento da haste que
	representará o eixo do servo motor na tela.
	Declaração das variáveis utilizadas. A variável "tecla"
Declare tecla, al Numéricos	armazenará o código da tecla digitada pelo usuário; a
	variável "a1" armazenará o valor fornecido pela entrada
	analógica 1.
	Declaração da variável "radianos", que será usada para
	converter o ângulo de graus para radianos. Essa conversão
Declare radianos Numéricos	será necessária porque as funções trigonométricas "seno" e
	"cosseno" do Inter-S trabalham com argumentos em
	radianos.
pi=3.14159	Atribui à variável "pi" o valor do PI radiano (π) Atribui à variável "raio" o valor 25 (comprimento, em pontos
raio=25	gráficos, da haste que será exibida na tela para representar o eixo
	do servo motor)
Mostra_Placa	Exibe imagem virtual da plataforma experimental
Ative analógicas	Ativa a leitura das entradas analógicas.
	Determina o número de pontos gráficos da grade da área
	gráfica. O valor 10 (dez) determina que o espaço entre as
	linhas que formam a grade conterá 10 pontos gráficos tanto
Escala 10	na horizontal como na vertical. A área gráfica é tratada como
	um plano cartesiano, onde a origem (ponto 0,0) fica no
	centro da janela de execução. Consulte o módulo de ajuda
	do Inter-S para maiores detalhes sobre a área gráfica.
TamanhoPonto 8	Define o tamanho do pronto gráfico (número de pixels).
CorPonto ouro	Define a cor dos pontos gráficos (ouro).
CorFundo branco	Define a cor do fundo da janela gráfica (branco).
[volta]	Este é um rótulo que indica um ponto de retorno do programa.
Lead a Plant	Verifica se alguma tecla foi pressionada (no teclado do
tecla=Ftecla	computador) e coloca o valor da mesma na variável "tecla".
	Inicia uma estrutura de decisão que verifica se o valor da
Se tecla = 27 Então	variável "tecla" é igual a 27 (que corresponde à tecla "ESC").
	Caso positivo
Limpa	limpa (apaga) a tela e
Interrompa	encerra o programa.
FimSe	Finaliza a estrutura de decisão.
.1 1 (1	Lê a entrada analógica 1 e guarda o valor lido na variável
al=analógica 1	"a1".
	Aplica a regra de três para calcular o ângulo que deve ser
angula_ (190*a1) /255	enviado ao servo motor, com base no valor obtido na
angulo=(180*a1)/255	entrada analógica 1. Observe que a variável "angulo"
	receberá o resultado do cálculo (180*a1)/255.
Servo_Motor_1 angulo	Envia para o servo motor o ângulo calculado. Esta instrução
	fará com que o servo motor se posicione no ângulo
	informado.
	Limpa a tela.
Limpa	· ·
	Desenha um círculo preenchido com cor celeste, com centro
Limpa Círculo 0,0,10,celeste	Desenha um círculo preenchido com cor celeste, com centro na coordenada 0,0 (centro da tela) e com raio de 10 pontos.
Círculo 0,0,10,celeste	Desenha um círculo preenchido com cor celeste, com centro
	Desenha um círculo preenchido com cor celeste, com centro na coordenada 0,0 (centro da tela) e com raio de 10 pontos. Atribui à variável "radianos" o valor do ângulo convertido em radianos.
Círculo 0,0,10,celeste	Desenha um círculo preenchido com cor celeste, com centro na coordenada 0,0 (centro da tela) e com raio de 10 pontos. Atribui à variável "radianos" o valor do ângulo convertido em radianos. Calcula o valor da variável "x", que representa a abscissa
Círculo 0,0,10,celeste	Desenha um círculo preenchido com cor celeste, com centro na coordenada 0,0 (centro da tela) e com raio de 10 pontos. Atribui à variável "radianos" o valor do ângulo convertido em radianos.

y=seno(radianos)*raio	Calcula o valor da variável "y", que representa a ordenada (coordenada Y) do ponto correspondente ao ângulo para apresentação na tela (somente para efeito de animação).
Linha 0,0/x,y	Traça uma linha do centro da tela (coordenada 0,0) até a coordenada x,y (somente para efeito de animação). Os valores de "x" e "y" foram calculados nas instruções anteriores e representam a posição (ângulo) em que se encontra o servo motor.
Posicione 19,35	Posiciona o cursor na linha 19 e coluna 35.
Escreva "Ângulo: ",trunca(angulo),"°"	Escreve na tela, a partir da posição do cursor, a expressão "Ângulo: " seguida do valor truncado do ângulo (valor sem casas decimais) e do símbolo de grau (°). Dessa forma, além da animação de tela que representa a movimentação do servo motor, o usuário terá a indicação do ângulo atual.
VaPara volta	Desvia o programa para o rótulo [volta], gerando uma estrutura de repetição que só será finalizada quando o usuário pressionar a tecla "ESC".
FimRotina	Fim da rotina

4. Esquema para montagem da PIE

O circuito da Plataforma Inter-S Experimental (PIE) segue o modelo clássico recomendado pelo próprio fabricante do microcontrolador PIC (*Microchip Technology Inc.*), com a adição de alguns componentes de interfaceamento, como botões, conectores e leds de sinalização, que permitem ao usuário realizar suas montagens experimentais com maior facilidade. A Figura 12 mostra o diagrama esquemático da plataforma.

Figura 12 - Diagrama esquemático da Plataforma Inter-S Experimental

Lista de materiais

- 1 microcontrolador PIC18F2550 I/ISP (DIP28 slim)
- 1 soquete DIP28 slim estampado
- 9 resistores de 200Ω (R1 a R9)
- 5 resistores de 10KΩ (R10 a R14)
- 2 capacitores cerâmicos de 22pF (C2 e C3)
- 2 capacitores cerâmicos de 100nF (C1 e C4)
- 1 cristal oscilador de 20MHz, caneca baixa (X1)
- 4 leds retangulares de 3mm, verdes (D1 a D4)
- 4 leds retangulares de 3mm, amarelos (D5 a D8)
- 1 led retangular de 3mm, vermelho (D9)
- 5 botões táteis, 8x8mm, 4 terminais (B1 a B4 e RESET)
- 1 conector USB, tipo B, fêmea, para soldagem em placa (CON1)
- Barra de terminais 11,2mm macho e 2 jumpers (J1 e J2)
- Barra de pinos 11,2mm fêmea (saídas digitais, entradas digitais, entradas analógicas, GND e 5V)

Imagens e máscaras para a confecção da PCI

Aspecto da placa (lado dos componentes)

Lado cobreado (trilhas) Imagem espelhada

Lado dos componentes (máscara) Imagem normal

Lado dos componentes (referências)

Firmware da plataforma PIE

Para que a plataforma PIE opere adequadamente, é necessário que um *firmware* específico (programa de controle) seja gravado no microcontrolador PIC18F2550. Você pode baixar este *firmware* através do link http://vichinsky.com.br/inters/NEW HID INTERS.ZIP.

Para gravar o *firmware* você deve utilizar um gravador adequado. Sugerimos o gravador/programador PICKIT2, cujo manual pode ser obtido no site do fabricante (*Microchip Technology Inc.*): http://ww1.microchip.com/downloads/en/devicedoc/51553e.pdf.

5. Comandos INTER-S para operações com a plataforma PIE

Nesta seção são apresentados os comandos do Inter-S direcionados exclusivamente às operações com a Plataforma Experimental. Informações sobre esses comandos também podem ser encontradas no módulo de "Ajuda" do próprio *software*.

5.1. Estado_USB

Fornece o estado da porta USB, indicando se a Plataforma Inter-S Experimental (PIE) está conectada ou não.

```
Sintaxe: Var = Estado_USB
```

A variável "Var" deve ser declarada no início do programa como numérica.

```
Exemplo: X = Estado_USB
```

No exemplo acima, a variável numérica X receberá o valor que indica o estado da porta USB (se o dispositivo PIE estiver conectado, o valor de X será 1, caso contrário será 0)

Programa exemplo:

```
Rotina

Declare U Numérico
[VERIFICA]

Limpa

Escreva "Localizando dispositivo USB"

U=ESTADO_USB

Se U = 0 Então

Escreva "Dispositivo USB não conectado."

Escreva "Conecte a plataforma experimental e tecle algo."

Pausa

VaPara VERIFICA

FimSe

Escreva "Dispositivo USB conectado."

...

FimSubRotina
```

No exemplo acima, o algoritmo entrará em uma estrutura de repetição até que a plataforma PIE seja conectada ao computador.

5.2. Mostra_Placa

Esta instrução mostra uma imagem virtual da Plataforma Inter-S Experimental (PIE), na qual é possível observar o estado e o comportamento da mesma em tempo real, durante a execução do algoritmo. A exibição virtual da Plataforma Experimental independe de sua conexão física, sendo assim, é possível utilizar este recurso para realizar simulações que não requerem leitura das entradas.

Sintaxe: Mostra_Placa

A figura abaixo ilustra o processo de execução de um algoritmo que utiliza o comando "Mostra_Placa". Observe que a imagem virtual da Plataforma Experimental é exibida ao lado da janela de execução.

5.3. Ative digitais / analógicas

Ativa as entradas digitais ou analógicas.

Sintaxe: Ative [digitais / analógicas]

Exemplos: Ative digitais (Ativa as entradas digitais permitindo a leitura de seus valores)

Ative analógicas (Ativa as entradas analógicas permitindo a leitura de seus valores)

Observação: Por padrão, as entradas analógicas e digitais são ativadas na iniciação do algoritmo. O uso da instrução "Ative" é recomendado nos casos em que se deseja obter uma maior velocidade ao acesso às entradas. Para exemplificar, se utilizarmos a instrução "Ative digitais", o Inter-S fará apenas a leitura das entradas digitais em ciclos de 50 milissegundos, permitindo maior velocidade na atualização dos valores gerados pela plataforma PIE. Da mesma forma, se utilizarmos a instrução "Ative analógicas", o Inter-S fará apenas a leitura das analógicas em ciclos de 50 milissegundos.

4.4. Desative digitais / analógicas

Desativa as entradas digitais ou analógicas.

Sintaxe: Desative [digitais / analógicas]

Exemplos: Desative digitais (Desativa a leitura das entradas digitais)

Desative analógicas (Desativa a leitura das entradas analógicas)

5.5. Liga Saída

Esta instrução envia um sinal de nível lógico alto para uma determinada saída digital da Plataforma Experimental PIE.

Sintaxe: Liga_Saída n

Onde n é o número da saída que será ligada, podendo ser de 0 a 7.


```
Exemplos: Liga_Saída 0 (coloca a saída 0 em nível lógico alto - saída 0 ligada)

s=3

Liga_Saída s (coloca a saída 3 em nível lógico alto - saída 3 ligada)
```

5.6. Desliga_Saída

Esta instrução envia um sinal de nível lógico baixo para uma determinada saída digital da Plataforma Experimental.

```
Sintaxe: Desliga_Saída n
```

Onde n é o número da saída que será desligada, podendo ser de 0 a 7.

```
Exemplos: Desliga_Saída 0 (coloca a saída 0 em nível lógico baixo - saída 0 desligada)

s=5

Desliga_Saída s (coloca a saída 5 em nível lógico baixo - saída 5 desligada)
```

5.7. Servo_Motor_n / LServo_Motor_n

Permite o controle de um servo-motor conectado à Plataforma Experimental. É possível controlar até 4 servos de 180° em uma mesma aplicação na plataforma PIE.

```
Sintaxe: Servo_Motor_n <ang> ou LServo_Motor_n <ang>
```

Onde n é o número do servo-motor, que pode ser 1, 2, 3 ou 4. O parâmetro <ang>corresponde ao ângulo para posicionamento do servo-motor indicado. A instrução LServo_Motor_n (iniciada com a letra L) promove o deslocamento lento, ao passo que a instrução Servo_Motor_n promove o deslocamento padrão (rápido).

```
Exemplos: Servo_Motor_1 90 (Move o servo 1 para a posição 90°)

a=45
Servo_Motor_2 a (Move o servo 2 para a posição 45°)
```

5.8. Analógica

Faz a leitura de uma determinada entrada analógica da Plataforma Inter-S Experimental.

```
Sintaxe: var = Analógica n
```

Onde "var" é uma variável numérica declarada no início do programa e "n" é o número da entrada analógica (que pode ser 1, 2 ou 3).

```
Exemplos: x = Analógica 1 (Atribui a x o valor existente na entrada analógica 1) z = Analógica 2 (Atribui a z o valor existente na entrada analógica 2)
```

Observação: Os valores possíveis de uma entrada analógica estão no intervalo de 0 a 255.

5.9. Digital

Faz a leitura de uma determinada entrada digital da Plataforma Inter-S Experimental (PIE).

```
Sintaxe: var = Digital n
```

Onde "var" é uma variável numérica declarada no início do programa e "n" é o número da entrada digital (que pode ser 1, 2, 3 ou 4).

```
Exemplos: x = Digital 1 (Atribui a x o valor existente na entrada digital 1) z = Digital 2 (Atribui a z o valor existente na entrada digital 2)
```

Observação: Os valores possíveis de uma entrada digital são 0 (zero) e 1 (um). Na Plataforma Inter-S Experimental existem 4 botões táteis, dispostos em montagem do tipo *pull-up*, conectados aos terminais das entradas digitais. Esses botões podem ser utilizados em testes como entradas digitais 1, 2, 3 e 4, respectivamente, desde que ativados por meio do *jumper J2* existente na plataforma. Quando um botão é pressionado, o valor do terminal associado a ele será 0 (zero), por outro lado, enquanto o botão estiver "solto", o valor do terminal associado a ele será 1 (um).

5.10. P_Saídas

Envia um valor entre 0 e 255 para ativação das saídas digitais da plataforma PIE.

```
Sintaxe: P_Saídas n
```

Onde n é um valor (constante numérica ou variável) entre 0 e 255.

Exemplos:

```
P_Saídas 0 (envia o valor 0 para as saídas - desativa todas elas)
P_Saídas 255 (envia o valor 255 para as saídas - ativa todas elas)
x=128
P_Saídas x (envia o valor 128 para as saídas - ativa apenas a saída 7)
```

Observação: Para entender o comportamento da função P_Saídas, é necessário converter o valor do parâmetro para a notação binária, de forma a obter 8 dígitos binários. Os dígitos, da direita para a esquerda, estão associados às saídas de 0 a 7, respectivamente. Se o dígito de uma determinada posição for 0 (zero), a saída associada a ele será desligada. Por outro lado, se o dígito for 1 (um), a saída associada a ele será ligada. Exemplo:

```
P_Saídas 170
```

O valor 170 do exemplo acima, convertido para notação binária, corresponde a 10101010. Lendo esse número binário da direita para a esquerda, podemos concluir que a saídas 0, 2, 4 e 6 serão desligadas, e as saídas 1, 3, 5 e 7 serão ligadas:

```
1 0 1 0 1 0 1 0 0 -> Número 170 convertido para binário
7 6 5 4 3 2 1 0 -> Número das saídas associadas às posições dos dígitos
```