Surname (COGNOME)	
Name	
POLIMI Personal Code	
Signature	

Politecnico di Milano, 11 September, 2024

Course on Advanced Computer Architectures

Prof. C. Silvano

EX1	(5 points)
EX2	(5 points)
EX3	(5 points)
Q1	(5 points)
Q2	(5 points)
QUIZZES	(8 points)
TOTAL	(33 points)

EXERCISE 1 – DEPENDENCY ANALYSIS + TOMASULO (5 points)

1. Let's consider the following assembly code containing multiple types of intra-loop dependences. Complete the following table by inserting all types of true-data-dependences, anti-dependences and output dependences for each instruction:

144	TVDE OF INICTOLICATION	ANALYSIS OF DEDENDESS	
I#	TYPE OF INSTRUCTION	ANALYSIS OF DEPENDECES:	
		1. True data dependence with I# for \$Fx	
		2. Anti-dependence with I# for \$Fy	
		3. Output-dependence with I# for \$Fz	
10	FOR:LD \$F2, A(\$R1)	None	
11	FADD \$F2, \$F2, \$F2	Truedata dependence with I0 for \$ F2 Output-dependence with I0 for \$F2	
12	FADD \$F4, \$F4, \$F0	None	
13	SD \$F2, A(\$R1)	True data dependence with I1 for \$F2	
14	SD \$F4, B(\$R1)	True data dependence with I2 for \$F4	
15	ADDUI \$R1, \$R1, 8	Anti-dependence with I0, I3, I4 for \$R1	
16	BNE \$R1, \$R2, FOR	True data dependence with I5 for \$R1	

Let's consider the previous assembly code to be executed on a CPU with dynamic scheduling based on **TOMASULO algorithm** with all cache HITS, a single Common Data Bus and:

- 2 RESERV. STATIONS (RS1, RS2) with 2 LOAD/STORE units (LDU1, LDU2) with latency 4
- 2 RESERVATION STATION (RS3, RS4) with 2 FP unit12 (FPU1, FPU2) with latency 3
- 2 RESERVATION STATION (RS5, RS6) with 2 INT ALU/BR units (ALU1, ALU2) with latency 2

Please complete the following table:

INSTRUCTION	ISSUE	START EXEC	WRITE RESULT	Hazards Type	RSi	UNIT
FOR:LD \$F2, A(\$R1)	1	2	6	None	RS1	LDU1
I1: FADD \$F2, \$F2, \$F2	2	7	10	RAW \$F2 WAW sloved	RS3	FPU1
12: FADD \$F4, \$F4, \$F0	3	4	7	None	RS4	FPU2
I3: SD \$F2, A(\$R1)	4	11	15	RAW \$F2	RS2	LDU2
I4: SD \$F4, B(\$R1)	7	8	12	Structure RS1 nad LDU1 RAW \$F4	RS1	LDU1
I5: ADDUI \$R1, \$R1, 8	8	9	11	WAR I0, I3, I4	RS5	ALU1
I6: BNE \$R1, \$R2, FOR	9	12	14	RAW \$R1	RS6	ALU2

Calculate the CPI =

EXERCISE 2 – VLIW SCHEDULING (5 points)

Let's consider the following LOOP code, where \$Ri are integer registers and \$Fi are floating-point registers.

LOOP: LD \$F2, 0 (\$R1)
LD \$F4, 0 (\$R2)
FADD \$F6, \$F2, \$F2
FADD \$F8, \$F0, \$F0
FADD \$F4, \$F4, \$F6
FADD \$F10, \$F0, \$F0
SD \$F6, 0 (\$R1)
SD \$F4, 0 (\$R2)
SD \$F10, 0 (\$R3)
ADDDUI \$R1, \$R1, 4
ADDDUI \$R2, \$R2, 4
ADDDUI \$R3, \$R3, 4
BNE \$R1, \$R5, LOOP

Given a 3-issue VLIW machine with fully pipelined functional units:

- 1 Memory Units with 3 cycles latency
- 1 FP ALUs with 3 cycles latency
- 1 Integer ALU with 1 cycle latency to next Int/FP/L/S & 2 cycle latency to next Branch The branch is completed with 1 cycle delay slot (branch solved in ID stage). No branch prediction. In the Register File, it is possible to read and write at the same address at the same clock cycle. Considering one iteration of the loop, complete the following table by using the list-based scheduling (do NOT introduce any software pipelining, loop unrolling and modifications to loop indexes) on the 4-issue VLIW machine including the BRANCH DELAY SLOT. Please do not write in NOPs.

	Memory Unit	Floating Point Unit	Integer Unit
C1	LD \$F2, 0 (\$R1)		
C2			
C3			
C4			
C5			
C6			
C7			
C8			
C9			
C10			
C11			
C12			
C13			
C14			
C15			

How long is the critical path for a single iteration?	
How much is the code efficiency for a single iteration?	

EXERCISE 3: DIRECTORY-BASED PROTOCOL (5 points)

Consider a directory-based protocol for a distributed shared memory system with 4 nodes (N0, N1, N2, N3) where **Directory N1 Block B1** | **State: Modified** | **Sharer Bits 1000** |

After a Write Miss on B1 from Node 2, please answer to the following questions:

Which is the home node ?	
What is the definition of home node ?	
Which is the local node ?	
What is the definition of local node ?	
Which is the remote node ?	
What is the definition of remote node ?	
What is the message sent from the home node in reply to the Write Miss?	

Course on Advanced Computer Architectures – prof. C. Silvano EXAM 11 Sept. 2024 – Please write in CAPITAL LETTERS AND BLACK/BLUE COLORS!!!

What is the coherence state of the block B1 in the remote cache?	
What is the next message sent from the remote node to the home node?	
What is the next message sent from the home node to the local node?	
What is the coherence state of the block B1 in the Directory of the home node?	
What is the coherence state of the block B1in the local cache?	
Which is the new owner of the block B1?	

QUESTION 1: BRANCH PREDICTION (5 points)

Let's consider the STATIC and DYNAMIC branch prediction techniques used in modern microprocessors. *Answer to the following questions:*

	STATIC BRANCH PREDICTION	DYNAMIC BRANCH PREDICTION
Explain the main concepts for these two branch prediction techniques.		
What are the main benefits of each branch prediction technique?		

Course on Advanced Computer Architectures – prof. C. Silvano EXAM 11 Sept. 2024 – Please write in CAPITAL LETTERS AND BLACK/BLUE COLORS!!!

What are the main drawbacks of each branch prediction technique?	
Explain the possible ways how to schedule an instruction in the branch delay slot	
Explain the main concepts of the correlating branch prediction technique	

Course on Advanced Computer Architectures – prof. C. Silvano EXAM 11 Sept. 2024 – Please write in CAPITAL LETTERS AND BLACK/BLUE COLORS!!!

QUESTION 2: REORDER BUFFER (5 points) Let's consider the ReOrder Buffer used in modern microprocessors. Answer to the following questions: Explain the main purpose to introduce the ReOrder buffer in a dynamically scheduled processor. How can the Reorder Buffer support the speculation in the Tomasulo architecture?

Course on Advanced Computer Architectures – prof. C. Silvano EXAM 11 Sept. 2024 – Please write in CAPITAL LETTERS AND BLACK/BLUE COLORS!!!

	1.Busy field:
List the fields of each row entry in a RoB	
Explain what are the four stages of the Speculative Tomasulo pipelined architecture.	
Explain what happens in a Speculative Tomasulo architecture in the case of a branch misprediction	

Course on Advanced Computer Architectures – prof. C. Silvano EXAM 11 Sept. 2024 – Please write in CAPITAL LETTERS AND BLACK/BLUE COLORS!!!

QUIZZES

Question 1 (format Multiple Choice – Single answer)

Let's consider a fully associative write-back cache with many cache entries that at cold start is empty and receives the following sequence of 5 memory accesses:

Write Mem[AAAA] Write Mem[AAAA] Read Mem[BBBB] Write Mem[BBBB] Write Mem[AAAA]

What are the number of cache hits and misses when using a "write allocate" versus a "nowrite allocate" policy?

(SINGLE ANSWER)

1 point

Answer 1: Write allocate has 2 hits & 3 misses | No-write allocate has 1 hit & 4 misses

Answer 2: Write allocate has 3 hits & 2 misses | No-write allocate has 1 hit & 4 misses

Answer 3: Write allocate has 1 hit & 4 misses | No-write allocate has 3 hits & 2 misses

Answer 4: Write allocate has 4 hits & 1 miss | No-write allocate has 1 hit & 4 misses

Answer 5: Write allocate has 1 hit & 4 misses | No-write allocate has 2 hits & 3 misses

Motivate your answer:

<mark>1 point</mark>

Question 2 (format Multiple Choice – Single answer)

Let's consider the following code:

```
for (i=0; i<255; i++)
if (X[i] != 0)
Y[i] = X[i] + Y[i];
```

Which code transformation can be applied to be executed by the VMIPS Vector Processor with a Vector Register File composed of 8 registers of 32 elements and 64 bits/element?

(SINGLE ANSWER)

1 point

Answer 1: Trace scheduling

Answer 2: Software pipeling

Answer 3: Vector strip mining

Answer 4: Vector mask registers

Answer 5: Memory striding

Course on Advanced Computer Architectures – prof. C. Silvano EXAM 11 Sept. 2024 – Please write in CAPITAL LETTERS AND BLACK/BLUE COLORS!!! *Motivate your answers:* 1 point Question 3 (format Multiple Choice – Multiple answer) How does a MESI write-invalidate write-back protocol manage a Write Hit on an Exclusive cache block? (MULTIPLE ANSWERS) 1 point Answer 1: The status of the cache block becomes Modified **Answer 2:** The cache block is retrieved from memory Answer 3: An invalidate is broadcasted on the bus to the other copies of the block **Answer 4:** The cache block is retrieved from another cache **Answer 5:** The cache block is overwritten in the processor's cache Question 4 (format Multiple Choice – Multiple answer) How does a MESI write-invalidate write-back protocol manage a Write Miss on a cache block which is Exclusive in another cache? (MULTIPLE ANSWERS) 1 point Answer 1: The status of the cache block becomes Modified **Answer 2:** The cache block is retrieved from memory Answer 3: An invalidate is broadcasted on the bus to the other copies of the block Answer 4: The cache block is retrieved from another cache **Answer 5:** The cache block is overwritten in the processor's cache **Question 5 (format True/False)** To obtain a loop unrolling version of a code, we need to use register renaming if there are some true data dependences in the original code. (format True/False) 1 point Answer 1: True / False *Motivate your answer:* 1 point