Matrix Computations Chapter 1 Introduction

Section 1.2 Review of Linear Algebra

Jie Lu ShanghaiTech University

Notation

 \mathbb{R} the set of real numbers or real space the set of complex numbers or complex space \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n n-dimensional complex space $\mathbb{R}^{m \times n}$ the set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ the set of all $m \times n$ complex-valued matrices scalar in C а a* conjugate of $a \in \mathbb{C}$ x vector $x_i, [\mathbf{x}]_i$ ith entry of x Α matrix a_{ij} , $[\mathbf{A}]_{ij}$ (i,j)-entry of \mathbf{A} \mathbb{S}^n the set of all $n \times n$ real symmetric matrices, i.e, $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ for all $i, j = 1, \ldots, n$ \mathbb{H}^n the set of all $n \times n$ complex Hermitian matrices, i.e, $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $a_{ij} = a_{ii}^*$ for all i, j

Vector

• $\mathbf{x} \in \mathbb{R}^n$: \mathbf{x} is a real-valued *n*-dimensional column vector, i.e.,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad x_i \in \mathbb{R} \text{ for all } i$$

- $\mathbf{x} \in \mathbb{C}^n$: \mathbf{x} is a complex-valued *n*-dimensional column vector
- Transpose: $\mathbf{x}^T = \begin{bmatrix} x_1, & x_2, & \dots, & x_n \end{bmatrix}$
- Hermitian transpose: $\mathbf{x}^H = \begin{bmatrix} x_1^*, & x_2^*, & \dots, & x_n^* \end{bmatrix}$

Matrix

• $\mathbf{A} \in \mathbb{R}^{m \times n}$: **A** is a real-valued $m \times n$ matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R} \text{ for all } i, j$$

- $\mathbf{A} \in \mathbb{C}^{m \times n}$: \mathbf{A} is a complex-valued $m \times n$ matrix
- We may write

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, & \mathbf{a}_2, & \dots, & \mathbf{a}_n \end{bmatrix}$$

where $\mathbf{a}_i \in \mathbb{R}^m$ is the *i*th column of matrix A

Matrix (Cont'd)

- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to be
 - square if m = n;
 - tall if m > n;
 - fat if *m* < *n*.
- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be
 - upper triangular if $a_{ii} = 0$ for all i > j;
 - lower triangular if $a_{ij} = 0$ for all i < j.

Examples:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 \\ \frac{1}{8} & 3 & 0 \end{bmatrix}.$$

Matrix Transpose

Given a $m \times n$ matrix **A**.

$$\mathbf{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & & & \vdots \\ a_{1n} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \vdots \\ \mathbf{a}_{n}^{T} \end{bmatrix}$$

is a $n \times m$ matrix

- The following properties hold:

 - $(AB)^T = B^T A^T$ $(A^T)^T = A$ $(A + B)^T = A^T + B^T$

Matrix Transpose (Cont'd)

• Hermitian transpose: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$,

$$\mathbf{A}^{H} = \begin{bmatrix} a_{11}^{*} & a_{21}^{*} & \dots & a_{m1}^{*} \\ a_{12}^{*} & a_{22}^{*} & \dots & a_{m2}^{*} \\ \vdots & & & \vdots \\ a_{1n}^{*} & a_{m2}^{*} & \dots & a_{mn}^{*} \end{bmatrix} \in \mathbb{C}^{n \times m}$$

- The following properties hold:
 - $(AB)^H = B^H A^H$
 - $(\mathbf{A}^H)^H = \mathbf{A}$
 - $(\mathbf{A} + \mathbf{B})^H = \mathbf{A}^H + \mathbf{B}^H$

Matrix Trace and Matrix Power

• Given $\mathbf{A} \in \mathbb{R}^{n \times n}$, the trace of \mathbf{A} is

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

- $\operatorname{tr}(\mathbf{A}^T) = \operatorname{tr}(\mathbf{A})$
- $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$
- tr(AB) = tr(BA) for A, B of proper sizes
- Matrix power: Given $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\mathbf{A}^k = \underbrace{\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{k \text{ times}}$$

Some Common Vectors and Matrices

All-one vectors: We use the notation

$$\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

to denote a vector of all 1's

- Zero vectors or matrices: We use the notation 0 to denote either a vector of all zeros or a matrix of all zeros
- Unit vectors: We use the notation

$$\mathbf{e}_i = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T$$

to denote a unit vector whose i-th entry is 1 and other entries are all zero

Some Common Vectors and Matrices (Cont'd)

• Identity matrix:

$$\mathbf{I} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

The empty entries are assumed to be zero by default

Diagonal matrices: We use the notation

$$\operatorname{Diag}(a_1,\ldots,a_n) = \begin{bmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{bmatrix}$$

to denote a diagonal matrix whose diagonal entries are a_1, \ldots, a_n For $\mathbf{a} = \begin{bmatrix} a_1, \ldots, a_n \end{bmatrix}^T$, we use the shorthand notation $\mathrm{Diag}(\mathbf{a})$

Subspace

A subset S of \mathbb{R}^m is said to be a subspace if for any $\mathbf{x}, \mathbf{y} \in S$ and any $\alpha, \beta \in \mathbb{R}$,

$$\alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{S}$$

- If S is a subspace and $\mathbf{a}_1, \ldots, \mathbf{a}_n \in S$, then any linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$, i.e., $\sum_{i=1}^n \alpha_i \mathbf{a}_i$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, lies in S
- Let S_1, S_2 be subspaces of \mathbb{R}^m
 - $S_1 + S_2 := \{ \mathbf{x} + \mathbf{y} \mid \mathbf{x} \in S_1, \mathbf{y} \in S_2 \}$ is a subspace
 - $S_1 \cap S_2$ is a subspace

Span

The span of vectors $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ is defined as

$$\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\} = \left\{\mathbf{y} \in \mathbb{R}^m \;\middle|\; \mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, \; \alpha_1,\ldots,\alpha_n \in \mathbb{R}\right\}$$

- $\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ is the set of all linear combinations of $\mathbf{a}_1,\ldots,\mathbf{a}_n$
- $\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ is a subspace

Theorem

Let S be a subspace of \mathbb{R}^m . There exists a positive integer n and $\mathbf{a}_1, \ldots, \mathbf{a}_n \in S$ such that $S = \operatorname{span}\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$.

We can always represent a subspace by a span

Range and Nullspace

The range (space) of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{R}(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \mathbf{A}\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^n \}$$

• $\mathcal{R}(\mathbf{A})$ is the span of the columns of \mathbf{A}

The nullspace of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

- N(A) is a subspace
- $\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{B})$ for some integer r > 0 and $\mathbf{B} \in \mathbb{R}^{n \times r}$

Linear Independence

 $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are said to be linearly independent if

$$\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i} \neq \mathbf{0} \quad \text{for all } \alpha = \left[\alpha_{1}, \dots, \alpha_{n}\right]^{T} \in \mathbb{R}^{n} \text{ with } \alpha \neq \mathbf{0}$$

and linearly dependent otherwise

• Equivalent definition of linear dependence: $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are linearly dependent if there exists $\alpha \in \mathbb{R}^n$, $\alpha \neq \mathbf{0}$ such that

$$\sum_{i=1}^{n} \alpha_i \mathbf{a}_i = \mathbf{0}$$

• If $\mathbf{a}_1, \dots \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent, then any \mathbf{a}_j cannot be a linear combination of the other \mathbf{a}_i 's

• If $\mathbf{a}_1, \dots \mathbf{a}_n \in \mathbb{R}^m$ are linearly dependent, then there exists an \mathbf{a}_j such that \mathbf{a}_i is a linear combination of the other \mathbf{a}_i 's

• If $\mathbf{a}_1, \dots \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent, then $n \leq m$

• If $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent and $\mathbf{y} \in \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$, then the coefficient $\alpha = [\alpha_1, \dots, \alpha_n]^T$ for the representation

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i$$

is unique, i.e., there does *not* exist $\beta = [\beta_1, \dots, \beta_n]^T \in \mathbb{R}^n$, $\beta \neq \alpha$ such that $\mathbf{y} = \sum_{i=1}^n \beta_i \mathbf{a}_i$

Let $\{a_1, \ldots a_n\} \subset \mathbb{R}^m$, and denote $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$ as an index subset with $k \leq n$ and $i_j \neq i_\ell$ for all $j \neq \ell$. A vector subset $\{a_{i_1}, \ldots, a_{i_k}\}$ is called a maximal linearly independent subset of $\{a_1, \ldots a_n\}$ if both of the following conditions hold:

- 1. $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ is linearly independent
- 2. $\{a_{i_1}, \ldots, a_{i_k}\}$ is not contained by any other linearly independent subset of $\{a_1, \ldots a_n\}$
 - A set of non-redundant vectors from $\{a_1, \dots a_n\}$

Example:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

The linearly independent subsets of $\{a_1,a_2,a_3,a_4\}$ are

$$\begin{aligned} \{a_1\}, \{a_2\}, \{a_3\}, \{a_4\}, \\ \{a_1, a_2\}, \{a_1, a_3\}, \{a_1, a_4\}, \{a_2, a_3\}, \{a_2, a_4\}, \{a_3, a_4\}, \\ \{a_1, a_2, a_3\}, \quad \{a_1, a_2, a_4\}, \quad \{a_1, a_3, a_4\} \end{aligned}$$

The maximal linearly independent subsets are

Example:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

The linearly independent subsets of $\{a_1, a_2, a_3, a_4\}$ are

$$\begin{aligned} &\{a_1\}, \{a_2\}, \{a_3\}, \{a_4\}, \\ &\{a_1, a_2\}, \{a_1, a_3\}, \{a_1, a_4\}, \{a_2, a_3\}, \{a_2, a_4\}, \{a_3, a_4\}, \\ &\{a_1, a_2, a_3\}, \quad \{a_1, a_2, a_4\}, \quad \{a_1, a_3, a_4\} \end{aligned}$$

The maximal linearly independent subsets are

$$\{a_1, a_2, a_3\}, \{a_1, a_2, a_4\}, \{a_1, a_3, a_4\}$$

Facts:

- $\{\mathbf{a}_{i_1}, \ldots, \mathbf{a}_{i_k}\}$ is a maximal linearly independent subset of $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ if and only if $\{\mathbf{a}_{i_1}, \ldots, \mathbf{a}_{i_k}, \mathbf{a}_j\}$ is linearly dependent for any $j \in \{1, \ldots, n\} \setminus \{i_1, \ldots, i_k\}$
- If $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ is a maximal linearly independent subset of $\{\mathbf{a}_1, \dots \mathbf{a}_n\}$, then

$$\operatorname{span}\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k}\}=\operatorname{span}\{\mathbf{a}_1,\ldots\mathbf{a}_n\}$$

Basis

Let $S \subseteq \mathbb{R}^m$ be a subspace with $S \neq \{0\}$.

A vector set $\{\mathbf{b}_1, \dots, \mathbf{b}_k\} \subset \mathbb{R}^m$ is called a basis for S if both of the following hold:

- 1. $\mathbf{b}_1, \dots, \mathbf{b}_k$ are linearly independent
- 2. $S = \operatorname{span}\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$
 - If $\{a_{i_1},\ldots,a_{i_k}\}$ is a maximal linearly independent vector subset of $\{a_1,\ldots,a_n\}$, then $\{a_{i_1},\ldots,a_{i_k}\}$ is a basis for $\mathrm{span}\{a_1,\ldots,a_n\}$
- ullet Given ${\cal S}$, there can be multiple bases
- All bases for S have the same number of elements, i.e., if $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ and $\{\mathbf{c}_1, \dots, \mathbf{c}_\ell\}$ are bases for S, then $k = \ell$

Dimension of a Subspace

The dimension of a subspace S with $S \neq \{0\}$, denoted by dim S, is the number of elements of any basis for S

- $\dim\{\mathbf{0}\} = 0$
- represent effective degrees of freedom of the subspace

Examples:

- dim $\mathbb{R}^m = m$
- If k is the number of maximal linearly independent vectors of $\{a_1, \ldots, a_n\}$, then $\dim \operatorname{span}\{a_1, \ldots, a_n\} = k$

Dimension of a Subspace (Cont'd)

Let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces

- If $S_1 \subseteq S_2$, then dim $S_1 \leq \dim S_2$
- If $S_1 \subseteq S_2$ and dim $S_1 = \dim S_2$, then $S_1 = S_2$
- dim $S_1 = m$ if and only if $S_1 = \mathbb{R}^m$
- $\dim(S_1 + S_2) \leq \dim S_1 + \dim S_2$
 - $\dim(\mathcal{S}_1 + \mathcal{S}_2) = \dim \mathcal{S}_1 + \dim \mathcal{S}_2 \dim(\mathcal{S}_1 \cap \mathcal{S}_2)$

Rank

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted by $\operatorname{rank}(\mathbf{A})$, is the number of elements of a maximal linearly independent subset of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$

- Equivalently, rank(A) is the maximum number of linearly independent columns of A
- $\dim \mathcal{R}(\mathbf{A}) = \operatorname{rank}(\mathbf{A})$

Facts:

- $rank(\mathbf{A}) = rank(\mathbf{A}^T)$, i.e., the rank of \mathbf{A} is also the maximum number of linearly independent rows of \mathbf{A}
- $rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$
- $rank(AB) \le min\{rank(A), rank(B)\}$
 - The equality holds when the columns of A are linearly independent and the rows of B are linearly independent

Rank (Cont'd)

- Matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to
 - have full column rank if all the columns of A are linearly independent
 - $\mathbf{A} \in \mathbb{R}^{m \times n}$ full column rank $\iff m \ge n$, rank $(\mathbf{A}) = n$
 - have full row rank if all the rows of A are linearly independent
 - $\mathbf{A} \in \mathbb{R}^{m \times n}$ full row rank $\iff m \le n$, rank $(\mathbf{A}) = m$
 - have full rank if rank(A) = min{m, n}, i.e., it has either full column rank or full row rank
 - be rank deficient if $rank(\mathbf{A}) < min\{m, n\}$

Invertible Matrices

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be nonsingular or invertible if the columns of \mathbf{A} are linearly independent, and singular or non-invertible otherwise

• Alternatively, **A** is singular if Ax = 0 for some $x \neq 0$

The inverse of an invertible **A**, denoted by \mathbf{A}^{-1} , is a $n \times n$ square matrix satisfying

$$A^{-1}A = I$$
.

Invertible Matrices (Cont'd)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a nonsingular matrix

- A⁻¹ always exists and is unique
- A⁻¹ is nonsingular
- $AA^{-1} = I$
- $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$, where $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ are nonsingular
- $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$
 - As a shorthand notation, we denote $\mathbf{A}^{-T} = (\mathbf{A}^{T})^{-1}$

Determinant

The determinant of $\mathbf{A} \in \mathbb{R}^{m \times m}$, denoted by $det(\mathbf{A})$, is defined by induction

- For m = 1: $det(\mathbf{A}) = a_{11}$
- For $m \ge 2$:
 - Let $\mathbf{A}_{ij} \in \mathbb{R}^{(m-1)\times (m-1)}$ be a submatrix of \mathbf{A} obtained by deleting the ith row and jth column of \mathbf{A}
 - Let $c_{ij} = (-1)^{i+j} \det(\mathbf{A}_{ij})$
 - Cofactor expansion:

$$\det(\mathbf{A}) = \sum_{j=1}^{m} a_{ij} c_{ij}, \text{ for any } i = 1, \dots, m$$
$$\det(\mathbf{A}) = \sum_{j=1}^{m} a_{ij} c_{ij}, \text{ for any } j = 1, \dots, m$$

where c_{ij} 's are the cofactors and $det(\mathbf{A}_{ij})$'s are the minors

Determinant (Cont'd)

- Fact: Ax = 0 for some $x \ne 0$ if and only if det(A) = 0
- Interpretation: $|\det(\mathbf{A})|$ is the volume of the parallelepiped $\mathcal{P} = \{\mathbf{y} = \sum_{i=1}^{m} \alpha_i \mathbf{a}_i \mid \alpha_i \in [0,1] \ \forall i=1,\ldots,m\}$

Determinant (Cont'd)

Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times m}$

- det(AB) = det(A) det(B)
- $det(\mathbf{A}) = det(\mathbf{A}^T)$
- $det(\alpha \mathbf{A}) = \alpha^m det(\mathbf{A})$ for any $\alpha \in \mathbb{R}$
- $det(\mathbf{A}^{-1}) = 1/det(\mathbf{A})$ for any nonsingular \mathbf{A}
- $det(\mathbf{B}^{-1}\mathbf{A}\mathbf{B}) = det(\mathbf{A})$ for any nonsingular \mathbf{B}
- $\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})}\tilde{\mathbf{A}}$, where $\tilde{a}_{ij} = c_{ji}$ (the cofactor) for all i, j (\mathbf{A} is nonsingular)
 - Ã is the adjoint or adjugate matrix of A

Determinant (Cont'd)

• If $\mathbf{A} \in \mathbb{R}^{m \times m}$ is triangular, either upper or lower,

$$\det(\mathbf{A}) = \prod_{i=1}^{m} a_{ii}$$

- Proof: Apply cofactor expansion inductively
- If $\mathbf{A} \in \mathbb{R}^{m \times m}$ is *block* upper or lower triangular

$$\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{D} \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

where **B** and **D** are square (and can be of different sizes), then

$$det(\mathbf{A}) = det(\mathbf{B}) det(\mathbf{D})$$

Vector Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ is a vector norm if all of the following hold:

- 1. $f(\mathbf{x}) \ge 0$ for any $\mathbf{x} \in \mathbb{R}^n$
- 2. $f(\mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- 3. $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- 4. $f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$ for any $\alpha \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^n$

- Usually || · || denotes a norm
- ||x|| represents the "length" of vector x
- $\|\mathbf{x} \mathbf{y}\|$ represents the "distance" of vectors \mathbf{x}, \mathbf{y}

Vector Norms (Cont'd)

Examples:

- 2-norm or Euclidean norm: $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = (\mathbf{x}^T \mathbf{x})^{1/2}$
- 1-norm or Manhattan norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- ∞ -norm: $\|\mathbf{x}\|_{\infty} = \max_{i=1,\ldots,n} |x_i|$
- *p*-norm, $p \ge 1$: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$

ℓ_p Function

$$f_p(\mathbf{x}) = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \qquad p > 0$$

- (a) Region of $f_p(\mathbf{x})=1,\ p\geq 1.$ (b) Region of $f_p(\mathbf{x})=1,\ p\leq 1.$
 - Note that f_p is *not* a norm for 0
 - when $p \to 0$, f_p is like the cardinality function $\operatorname{card}(\mathbf{x}) = \sum_{i=1}^{n} \mathbb{1}\{x_i \neq 0\}$, where $\mathbb{1}\{x \neq 0\} = 1$ if $x \neq 0$ and $\mathbb{1}\{x \neq 0\} = 0$ if x = 0

Inner Product

The inner product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} y_i x_i = \mathbf{y}^T \mathbf{x}$$

- \mathbf{x} , \mathbf{y} are said to be orthogonal to each other if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$
- \mathbf{x} , \mathbf{y} are said to be parallel if $\mathbf{x} = \alpha \mathbf{y}$ for some α
 - $\langle \mathbf{x}, \mathbf{y} \rangle = \pm ||\mathbf{x}||_2 ||\mathbf{y}||_2$ for parallel \mathbf{x}, \mathbf{y}

The angle between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined as

$$\theta = \cos^{-1}\left(\frac{\mathbf{y}^T \mathbf{x}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}\right)$$

- \mathbf{x}, \mathbf{y} are orthogonal if $\theta = \pm \pi/2$
- **x**, **y** are parallel if $\theta = 0$ or $\theta = \pm \pi$

Hölder Inequality

Hölder Inequality: For any p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$,

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q$$

Proof. **Young's Inequality**: For any $a, b \ge 0$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$,

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$

Hölder Inequality (Cont'd)

Hölder Inequality: For any p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$,

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q$$

• Cauchy-Schwartz Inequality: Let p = q = 2 in Hölder Inequality

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2$$

where the equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$

• Hölder Inequality holds for p = 1 and $q = \infty$

$$|\mathbf{x}^T \mathbf{y}| \le \sum_{i=1}^n |x_i y_i| \le \max_j |y_j| (\sum_{i=1}^n |x_i|) = \|\mathbf{x}\|_1 \|\mathbf{y}\|_{\infty}.$$

Equivalence of Norms

All norms on \mathbb{R}^n are equivalent in the sense that if $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are norms on \mathbb{R}^n , then there exist $c1, c_2 > 0$ such that

$$c_1 \|\mathbf{x}\|_{\alpha} \le \|\mathbf{x}\|_{\beta} \le c_2 \|\mathbf{x}\|_{\alpha}, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

- $\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le \sqrt{n} \|\mathbf{x}\|_2$
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{\infty}$
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty}$

Projections on Subspaces

Let $S \subseteq \mathbb{R}^m$ be a nonempty closed set (not necessarily a subspace) Given $\mathbf{y} \in \mathbb{R}^m$, a projection of \mathbf{y} onto S is any solution to

$$\min_{\boldsymbol{z} \in \mathcal{S}} \ \|\boldsymbol{z} - \boldsymbol{y}\|_2^2$$

- ullet a point in ${\cal S}$ that is closest to ${f y}$
 - Projection of $\mathbf{y} \in \mathcal{S}$ onto \mathcal{S} is \mathbf{y} itself
- If for any $\mathbf{y} \in \mathbb{R}^m$, there always exists a unique projection of \mathbf{y} onto \mathcal{S} , then we denote

$$\Pi_{\mathcal{S}}(\mathbf{y}) = \arg\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} - \mathbf{y}\|_2^2$$

and $\Pi_{\mathcal{S}}$ is called the projection (or projection operator) of **y** onto \mathcal{S}

Projection Theorem

Theorem (Projection Theorem)

Let S be a subspace of \mathbb{R}^m .

- 1. For any $\mathbf{y} \in \mathbb{R}^m$, there exists a unique vector $\mathbf{y}_s \in \mathcal{S}$ that minimizes $\|\mathbf{z} \mathbf{y}\|_2^2$ over $\mathbf{z} \in \mathcal{S}$ (so that we can use the notation $\Pi_{\mathcal{S}}(\mathbf{y}) = \arg\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} \mathbf{y}\|_2^2$).
- 2. Given $\mathbf{y} \in \mathbb{R}^m$,

$$\mathbf{y}_s = \Pi_{\mathcal{S}}(\mathbf{y}) \iff \mathbf{y}_s \in \mathcal{S}, \quad \mathbf{z}^T(\mathbf{y}_s - \mathbf{y}) = 0 \text{ for all } \mathbf{z} \in \mathcal{S}.$$

- Statement 1 of Projection Theorem also holds for closed convex set (more general)
 - Very important to convex optimization

Projection Theorem (Cont'd)

Orthogonal Complement

Let $S \subseteq \mathbb{R}^m$ be a nonempty closed set The orthogonal complement of S is defined as

$$S^{\perp} = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{z}^T \mathbf{y} = 0 \text{ for all } \mathbf{z} \in S \}$$

- S^{\perp} is a subspace (Why?)
- Any $\mathbf{z} \in \mathcal{S}$ and any $\mathbf{y} \in \mathcal{S}^{\perp}$ are orthogonal
- Either $S \cap S^{\perp} = \{ \mathbf{0} \}$ or $S \cap S^{\perp} = \emptyset$
- Facts:
 - $\mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^{T})$
 - $\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{A}^T)^{\perp}$
 - Recall that range and nullspace of a matrix are subspaces

Orthogonal Complement of Subspace

Theorem

Let $S \subseteq \mathbb{R}^m$ be a subspace. For any $\mathbf{y} \in \mathbb{R}^m$, there uniquely exists $(\mathbf{y}_s, \mathbf{y}_c) \in S \times S^{\perp}$ such that

$$\mathbf{y} = \mathbf{y}_s + \mathbf{y}_c$$
.

In particular, $\mathbf{y}_s = \Pi_{\mathcal{S}}(\mathbf{y}), \mathbf{y}_c = \mathbf{y} - \Pi_{\mathcal{S}}(\mathbf{y}) = \Pi_{\mathcal{S}^{\perp}}(\mathbf{y}).$

• Proof sketch: From Statement 2 of the Projection Theorem,

$$\mathbf{y}_s \in \mathcal{S}, \ \mathbf{y} - \mathbf{y}_s \in \mathcal{S}^{\perp} \iff \mathbf{y}_s \in \Pi_{\mathcal{S}}(\mathbf{y})$$

Orthogonal Complement of Subspace (Cont'd)

Let $\mathcal{S} \subseteq \mathbb{R}^m$ be a subspace. It follows from the above theorem that

- $S + S^{\perp} = \mathbb{R}^m$
- $\dim S + \dim S^{\perp} = m$
 - Proof: $\dim S + \dim S^{\perp} = \dim(S + S^{\perp}) + \dim(S \cap S^{\perp}) = \dim(S + S^{\perp}) + 0 = \dim\mathbb{R}^m$
- $(S^{\perp})^{\perp} = S$

Example: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$

- $\dim \mathcal{R}(\mathbf{A}) + \dim \mathcal{R}(\mathbf{A})^{\perp} = \dim \mathcal{R}(\mathbf{A}) + \dim \mathcal{N}(\mathbf{A}^{T}) = m$
- Rank-Nullity Theorem: $\dim \mathcal{N}(\mathbf{A}) = n \dim \mathcal{R}(\mathbf{A}^T) = n \operatorname{rank}(\mathbf{A})$

Orthogonal and Orthonormal Vectors

A collection of *nonzero* vectors $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are said to be

- orthogonal if $\mathbf{a}_i^T \mathbf{a}_j = 0$ for all i, j with $i \neq j$
- orthonormal if they are orthogonal and $\|\mathbf{a}_i\|_2 = 1$ for all i

Same definition applies to complex \mathbf{a}_i 's by replacing transpose (T) with Hermitian transpose (H)

Example: Any vectors from $\{\mathbf{e}_1, \dots, \mathbf{e}_m\}$ are orthonormal and $\{\mathbf{e}_1, \dots, \mathbf{e}_m\} \subset \mathbb{R}^m$ is an orthonormal basis for \mathbb{R}^m

Orthonormal vectors are linearly independent

Orthogonal and Orthonormal Vectors (Cont'd)

Fact: Let $\{\mathbf{a}_1, \dots, \mathbf{a}_n\} \subset \mathbb{R}^m$ be an orthonormal set of vectors and $\mathbf{y} \in \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$. Then, the coefficient α for the representation

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i$$

is uniquely given by $\alpha_i = \mathbf{a}_i^T \mathbf{y}, i = 1, \dots, n$

Fact: Every subspace S with $S \neq \{0\}$ has an orthonormal basis

• It can be shown using Gram-Schmidt

Orthogonal Matrix

A real matrix **Q** is said to be

- orthogonal if it is square and its columns are orthonormal
- semi-orthogonal if its columns are orthonormal
 - a semi-orthogonal Q must be tall or square

A complex matrix \mathbf{Q} is said to be unitary if it is square and its columns are orthonormal, and semi-unitary if its columns are orthonormal

Example: Consider the transformation y = Qx with

$$\mathbf{Q} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \quad \text{rotation counterclock-wise by } \theta \in [0, 2\pi)$$

$$\mathbf{Q} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix} \quad \text{reflection about the } \theta/2 \text{ line, } \theta \in [0, 2\pi)$$

The rotation and reflection matrices are orthogonal

Orthogonal Matrix (Cont'd)

Facts:

- $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$ and $\mathbf{Q} \mathbf{Q}^T = \mathbf{I}$ for orthogonal \mathbf{Q}
- $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$ (but *not* necessarily $\mathbf{Q} \mathbf{Q}^T = \mathbf{I}$) for semi-orthogonal \mathbf{Q}
- $\|\mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ for orthogonal \mathbf{Q}
 - For example, rotation and reflection do not change the vector length
- For any tall and semi-orthogonal matrix $\mathbf{Q}_1 \in \mathbb{R}^{n \times k}$, there exists a matrix $\mathbf{Q}_2 \in \mathbb{R}^{n \times (n-k)}$ such that $[\mathbf{Q}_1 \mathbf{Q}_2]$ is orthogonal

Matrix Product Representations

Let $\mathbf{A} \in \mathbb{R}^{m \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times n}$. Consider

$$C = AB$$

• Column representation:

$$\mathbf{c}_i = \mathbf{A}\mathbf{b}_i, \quad i = 1, \ldots, n$$

where c_i and b_i are the *i*th columns of C and B

• Inner-product representation: Let $\tilde{\mathbf{a}}_i^T \in \mathbb{R}^{1 \times k}$ be the *i*th row of **A**

$$\mathbf{AB} = \begin{bmatrix} \tilde{\mathbf{a}}_1^T \\ \vdots \\ \tilde{\mathbf{a}}_m^T \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{a}}_1^T \mathbf{b}_1 & \cdots & \tilde{\mathbf{a}}_1^T \mathbf{b}_n \\ \vdots & & \vdots \\ \tilde{\mathbf{a}}_m^T \mathbf{b}_1 & \cdots & \tilde{\mathbf{a}}_m^T \mathbf{b}_n \end{bmatrix}$$

Thus,

$$c_{ij} = \tilde{\mathbf{a}}_i^T \mathbf{b}_i$$
, for all i, j

Matrix Product Representations (Cont'd)

• Outer-product representation: Let $\tilde{\mathbf{b}}_i^T \in \mathbb{R}^{1 \times n}$ be the *i*th row of **B**

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{I} \cdot \mathbf{B} = \mathbf{A} \left(\sum_{i=1}^{k} \mathbf{e}_{i} \mathbf{e}_{i}^{T} \right) \mathbf{B} = \sum_{i=1}^{k} (\mathbf{A} \mathbf{e}_{i}) (\mathbf{e}_{i}^{T} \mathbf{B})$$

$$\mathbf{C} = \sum_{i=1}^{k} \mathbf{a}_{i} \tilde{\mathbf{b}}_{i}^{T}$$

Thus,

Matrix Product Representations (Cont'd)

- A matrix of the form X = ab^T for some a, b is called a rank-one outer product
- $rank(\mathbf{X}) \leq 1$, and $rank(\mathbf{X}) = 1$ if $\mathbf{a} \neq \mathbf{0}, \mathbf{b} \neq \mathbf{0}$
- The outer-product representation $\mathbf{C} = \sum_{i=1}^k \mathbf{a}_i \tilde{\mathbf{b}}_i^T$ is a sum of k rank-one outer product
- rank(**C**) =?
 - $\operatorname{rank}(\mathbf{C}) \leq \sum_{i=1}^{k} \operatorname{rank}(\mathbf{a}_{i} \mathbf{b}_{i}^{T}) \leq k$ is true ¹
 - $\operatorname{rank}(\mathbf{C}) = \sum_{i=1}^{k} \operatorname{rank}(\mathbf{a}_{i} \mathbf{b}_{i}^{T})$ may not be true
 - Counterexample: k = 2, $\mathbf{a}_1 = \mathbf{a}_2$, $\mathbf{b}_1 = -\mathbf{b}_2$ leads to $\mathbf{C} = \mathbf{0}$
 - $rank(\mathbf{C}) = k$ only when **A** has full-column rank and **B** has full-row rank

 $^{^{1}}$ rank($\mathbf{A} + \mathbf{B}$) \leq rank(\mathbf{A}) +rank(\mathbf{B})

Block Matrix Manipulations

It is more convenient to manipulate matrices in block forms

• Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$. By partitioning

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

where $\mathbf{A}_1 \in \mathbb{R}^{m \times n_1}$, $\mathbf{A}_2 \in \mathbb{R}^{m \times n_2}$, $\mathbf{x}_1 \in \mathbb{R}^{n_1}$, $\mathbf{x}_2 \in \mathbb{R}^{n_2}$ with $n_1 + n_2 = n$, we can write

$$\mathbf{A}\mathbf{x} = \mathbf{A}_1\mathbf{x}_1 + \mathbf{A}_2\mathbf{x}_2$$

Similarly, by partitioning properly,

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix},$$

we can write

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{A}_{11}\mathbf{x}_1 + \mathbf{A}_{12}\mathbf{x}_2 \\ \mathbf{A}_{21}\mathbf{x}_1 + \mathbf{A}_{22}\mathbf{x}_2 \end{bmatrix}$$

Block Matrix Manipulations (Cont'd)

• Consider AB. By partitioning properly,

$$\mathbf{AB} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix} = \mathbf{A}_1 \mathbf{B}_1 + \mathbf{A}_2 \mathbf{B}_2$$

· Similarly,

$$\mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1\mathbf{B}_1 & \mathbf{A}_1\mathbf{B}_2 \\ \mathbf{A}_2\mathbf{B}_1 & \mathbf{A}_2\mathbf{B}_2 \end{bmatrix}$$

• Easily extended to multi-block partitioning

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1q} \\ \vdots & & \vdots \\ \mathbf{A}_{p1} & \cdots & \mathbf{A}_{pq} \end{bmatrix}$$

Extension from \mathbb{R}^n to \mathbb{C}^n

- The previous concepts for vectors apply to the complex case
- Only need to replace every " \mathbb{R} " with " \mathbb{C} ", and every "T" with "H"

• Examples:

- span $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\} = \{\mathbf{y} \in \mathbb{C}^m \mid \mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, \ \alpha \in \mathbb{C}^n\}$
- $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^H \mathbf{x}$
- $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^H \mathbf{x}}$

Extension from \mathbb{R}^n to $\mathbb{R}^{m \times n}$

- The previous concepts for vectors apply to the matrix case
 - · For example,

$$\mathrm{span}\{\mathbf{A}_1,\ldots,\mathbf{A}_k\}=\{\mathbf{Y}\in\mathbb{R}^{m\times n}\mid\mathbf{Y}=\textstyle\sum_{i=1}^k\alpha_i\mathbf{A}_i,\ \alpha\in\mathbb{R}^k\}.$$

- Sometimes it is more convenient to *vectorize* \mathbf{X} as a vector $\mathbf{x} \in \mathbb{R}^{mn}$, and use the same treatment as in the vector case
- Inner product for $\mathbb{R}^{m \times n}$:

$$\langle \mathbf{X}, \mathbf{Y} \rangle = \sum_{i=1}^m \sum_{j=1}^n x_{ij} y_{ij} = \operatorname{tr}(\mathbf{Y}^T \mathbf{X})$$

 The matrix version of the Euclidean norm is called the Frobenius norm:

$$\|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |x_{ij}|^2} = \sqrt{\operatorname{tr}(\mathbf{X}^T\mathbf{X})}$$

• Likewise, we can extend the above to $\mathbb{C}^{m\times n}$

Matrix Norm

A function $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a matrix norm if all of the following hold:

- 1. $f(\mathbf{A}) \geq 0$ for any $\mathbf{A} \in \mathbb{R}^{m \times n}$
- 2. $f(\mathbf{A}) = 0$ if and only if $\mathbf{A} = \mathbf{0}$
- 3. $f(\mathbf{A} + \mathbf{B}) \leq f(\mathbf{A}) + f(\mathbf{B})$ for any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$
- 4. $f(\alpha \mathbf{A}) = |\alpha| f(\mathbf{A})$ for any $\alpha \in \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{m \times n}$

Most commonly used matrix norms:

- Frobenius norm: $\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\operatorname{tr}(\mathbf{A}^T \mathbf{A})}$
- p-norm $(p \ge 1)$:

$$\|\mathbf{A}\|_{p} = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}}$$
$$= \sup_{\mathbf{x} \neq \mathbf{0}} \|\mathbf{A}\frac{\mathbf{x}}{\|\mathbf{x}\|_{p}}\|_{p} = \sup_{\mathbf{x}: \|\mathbf{x}\|_{p}=1} \|\mathbf{A}\mathbf{x}\|_{p}$$

- $\|\mathbf{A}\|_p$ is the *p*-norm of the largest vector obtained by applying **A** to a unit *p*-norm vector
- Induced by the vector p-norm

Matrix p-Norm

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$

$$\|\mathbf{A}\|_1 = \sup_{\mathbf{x}: \|\mathbf{x}\|_1 = 1} \|\mathbf{A}\mathbf{x}\|_1 = \max_j \sum_{i=1}^m |a_{ij}|$$
 the largest absolute column sum

$$\|\mathbf{A}\|_{\infty} = \sup_{\mathbf{x}: \|\mathbf{x}\|_{\infty} = 1} \|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{i} \sum_{i=1}^{n} |a_{ij}|$$
 the largest absolute row sum

$$\|\boldsymbol{\mathsf{A}}\|_2 = \sup_{\boldsymbol{\mathsf{x}}: \|\boldsymbol{\mathsf{x}}\|_2 = 1} \|\boldsymbol{\mathsf{A}}\boldsymbol{\mathsf{x}}\|_2 \quad \text{spectral norm}$$

• $\|\mathbf{A}\|_2^2$ is equal to the largest eigenvalue of A^TA (will be discussed later)

Matrix p-Norm (Cont'd)

Facts: $\|\mathbf{AB}\|_{p} \leq \|\mathbf{A}\|_{p} \cdot \|\mathbf{B}\|_{p}$, $\forall \mathbf{A} \in \mathbb{R}^{m \times n}$, $\forall \mathbf{B} \in \mathbb{R}^{n \times q}$

Properties: For any $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$\begin{split} \|\mathbf{A}\|_{2} &\leq \|\mathbf{A}\|_{F} \leq \sqrt{\min\{m,n\}} \|\mathbf{A}\|_{2} \\ \max_{i,j} |a_{ij}| &\leq \|\mathbf{A}\|_{2} \leq \sqrt{mn} \max_{i,j} |a_{ij}| \\ \frac{1}{\sqrt{n}} \|\mathbf{A}\|_{\infty} &\leq \|\mathbf{A}\|_{2} \leq \sqrt{m} \|\mathbf{A}\|_{\infty} \\ \frac{1}{\sqrt{m}} \|\mathbf{A}\|_{1} &\leq \|\mathbf{A}\|_{2} \leq \sqrt{n} \|\mathbf{A}\|_{1} \\ \|\mathbf{A}(i_{1}:i_{2},j_{1}:j_{2})\|_{p} &\leq \|\mathbf{A}\|_{p}, \quad 1 \leq i_{1} \leq i_{2} \leq m, \ 1 \leq j_{1} \leq j_{2} \leq n \\ \|\mathbf{A}\|_{2} &\leq \sqrt{\|\mathbf{A}\|_{1} \|\mathbf{A}\|_{\infty}} \end{split}$$