Lösungen und zusätzliche Bemerkungen

zu Übungsblatt 1

Jendrik Stelzner

8. Mai 2017

Aufgabe 3

Es sei R ein Integritätsbereich.

Bemerkung 1. Die Abbildung $i\colon R\to Q(R), r\mapsto r/1$ ist ein injektiver Ringhomomorphismus: Es handelt es sich um einen Ringhomomorphismus, denn für alle $r_1,r_2\in R$ gilt

$$i(r_1) + i(r_2) = \frac{r_1}{1} + \frac{r_2}{1} = \frac{r_1 + r_2}{1} = i(r_1 + r_2)$$

und

$$i(r_1) \cdot i(r_2) = \frac{r_1}{1} \cdot \frac{r_2}{1} = \frac{r_1 r_2}{1} = i(r_1 r_2),$$

und es gilt $i(1_R)=1_R/1_R=1_{Q(R)}$. Ist $r\in\ker i$, so gilt r/0=0/1 und somit $r\cdot 1=0\cdot 0$, also r=0. Deshalb ist $\ker i=\{0\}$ und i somit injektiv.

Da i ein injektiver Ringhomomorphismus ist, lässt sich i durch Einschränkung als ein Ringisomorphismus $R \to \operatorname{im} i$ auffassen, d.h. imi ist ein zu R isomorpher Unterring von Q(R), und ein entsprechender Isomorphismus ist durch $r \mapsto r/1$ gegeben.

Anschaulich gesehen ist Q(R) der "kleinstmögliche" Körper, der R enthält. Dies lässt sich durch die *universelle Eigenschaft des Quotientenkörpers* formalisieren:

Ist K ein beliebiger Körper und $j\colon R\to K$ ein injektiver Ringhomomorphismus, so gibt es einen eindeutigen Ringhomomorphismus $\bar{j}\colon Q(R)\to K$, der das folgende Diagramm zum kommutieren bringt:

$$Q(R) \xrightarrow{\overline{j}} K$$

$$(1)$$

Beweis. Für alle $r/s \in Q(R)$ muss

$$\overline{j}\left(\frac{r}{s}\right) = \overline{j}\left(\frac{r}{1}\left(\frac{s}{1}\right)^{-1}\right) = \overline{j}(i(r)i(s)^{-1}) = \overline{j}(i(r))\overline{j}(i(s))^{-1} = j(r)j(s)^{-1} = \frac{j(r)}{j(s)}$$

gelten, was die eindeutig von \overline{j} zeigt. (Hier nutzen wir, dass $\overline{j}(x^{-1})=\overline{j}(x)^{-1}$ für alle $x\in Q(R)$ mit $x\neq 0$ gelten muss, da $1_K=\overline{j}(1_{Q(R)})=\overline{j}(xx^{-1})=\overline{j}(x)\overline{j}(x^{-1})$ gilt.)

Andererseits definiert

$$\overline{j} \colon Q(R) \to K, \quad \frac{r}{s} \mapsto \frac{j(r)}{j(s)}$$

einen wohldefinierten Ringhomomorphismus:

Für $r/s = r'/s' \in Q(R)$ gilt rs' = r's und somit auch

$$j(r)j(s') = j(rs') = j(r's) = j(r')j(s).$$
 (2)

Wegen der Injektivität von j folgt aus $s, s' \neq 0$, dass auch $j(s), j(s') \neq 0$. In der Gleichung (2) lässt sich deshalb durch j(s) und j(s') teilen, wodurch sich j(r)/j(s) = j(r')/j(s') ergibt. Dies zeigt die Wohldefiniertheit von \bar{j} .

Dass \overline{j} ein Ringhomomorphismus ist, ergibt sich durch direktes Nachrechnen, denn für alle $r_1/s_1, r_2/s_2 \in Q(R)$ gilt

$$\begin{split} \overline{j}\left(\frac{r_1}{s_1}\right) + \overline{j}\left(\frac{r_2}{s_2}\right) &= \frac{j(r_1)}{j(s_1)} + \frac{j(r_2)}{j(s_2)} = \frac{j(r_1)j(s_2) + j(r_2)j(s_1)}{j(s_1)j(s_2)} \\ &= \frac{j(r_1s_2 + r_2s_1)}{j(s_1s_2)} = \overline{j}\left(\frac{r_1s_2 + r_2s_1}{s_1s_2}\right) = \overline{j}\left(\frac{r_1}{s_1} + \frac{r_2}{s_2}\right). \end{split}$$

sowie

$$\begin{split} \overline{j} \left(\frac{r_1}{s_1} \right) \cdot \overline{j} \left(\frac{r_2}{s_2} \right) &= \frac{j(r_1)}{j(s_1)} \cdot \frac{j(r_2)}{j(s_2)} = \frac{j(r_1)j(r_2)}{j(s_1)j(s_2)} = \frac{j(r_1r_2)}{j(s_1s_2)} = \overline{j} \left(\frac{r_1r_2}{s_1s_2} \right) \\ &= \overline{j} \left(\frac{r_1}{s_1} \cdot \frac{r_2}{s_2} \right), \end{split}$$

und es gilt
$$\bar{j}(1_{O(R)}) = \bar{j}(1_R/1_R) = j(1_R)/j(1_R) = 1_K/1_K = 1_K$$
.

Bemerkung 2. Ringhomomorphismen zwischen zwei Körpern sind stets injektiv: Sind K und L zwei Körper und ist $\varphi\colon K\to L$ ein Ringhomomorphismus mit $\ker \varphi\neq 0$, so gebe es ein $x\in K$ mit $x\neq 0$ und $\varphi(x)=0$. Dann würde auch

$$0 = 0 \cdot \varphi(x^{-1}) = \varphi(x) \cdot \varphi(x^{-1}) = \varphi(x \cdot x^{-1}) = \varphi(1) = 1,$$

gelten, was in Körpern per Definition nicht zugelassen wird. Folglich muss ker $\varphi=0$ gelten, und φ somit injektiv sein.

Inbesondere erhalten wir in dem kommutativen Diagram (1), dass der induzierte Ringhomomorphismus \bar{j} ebenfalls injektiv ist, und somit einen Isomorphismus von $Q(R) \to \text{im}\,\bar{j}$ induziert. Dies entspricht der Anschauung, dass jeder Körper, der den Integritätsbereich R enthält, auch schon den Quotientenkörper $\mathbb{Q}R$ enthalten muss.

So muss etwa jeder Körper, der die ganzen Zahlen $\mathbb Z$ enthält, auch schon die rationalen Zahlen $\mathbb Q$ enthalten.

Bemerkung 3. Auf die übliche Weise ergibt sich, dass das Paar (Q(R), i) durch die obige universelle Eigenschaft bis auf eindeutigen Isomorphismus eindeutig bestimmt ist:

Es sei (Q',i') ein weiteres Paar, bestehend aus einem Körper und einem injektiven Ringhomomorphismus $i'\colon R\to K$, so dass es für jeden anderen Körper K und jeden injektiven Ringhomomorphismus $j\colon R\to K$ einen eindeutigen Ringhomomorphismus $\bar{j}\colon Q'\to K$ gibt, so dass das folgende Diagramm kommutiert:

$$Q' \xrightarrow{i'} \stackrel{R}{\xrightarrow{\bar{j}}} K \tag{3}$$

Dann gibt es einen eindeutigen Ringhomomorphismus $\varphi \colon Q(R) \to Q'$ der das Diagramm

$$Q(R) \xrightarrow{\varphi} Q'$$

$$(4)$$

zum kommutieren bringt, und φ ist ein Isomorphismus:

Die Existenz und Eindeutigkeit von φ ergeben sich dadurch, dass man die universelle Eigenschaft des Paars (Q(R),i) auf den injektiven Ringhomomorphismus $i'\colon R\to Q'$ anwendet. Analog ergibt sich Anwenden der analogen Eigenschaft von (Q',i') auf den injektiven Ringhomomorphismus $i\colon R\to Q(Q)$, dass es einen eindeutigen Ringhomomorphismus $\psi\colon Q'\to Q(R)$ gibt, so dass das Diagramm

$$Q(R) \xleftarrow{i} \qquad \qquad i'$$

$$Q'$$

kommutiert. Durch Zusammenfügen von (4) und (5) ergibt sich das folgende kommutative Diagramm:

$$Q(R) \xrightarrow{i} \downarrow_{i'} \downarrow_{i'} \downarrow_{i'} \qquad (6)$$

$$Q(R) \xrightarrow{\varphi} Q' \xrightarrow{\psi} Q(R)$$

Hieraus ergibt sich durch Vergessen des mittleren vertikalen Pfeils das folgende kommutative Diagramm:

$$Q(R) \xrightarrow{i} Q(R)$$

$$Q(R) \xrightarrow{\psi \circ \varphi} Q(R)$$

$$(7)$$

Nach der universellen Eigenschaft von (Q(R),i) ist $\psi \circ \varphi$ damit bereits der *eindeutige* Ringhomomorphismus $Q(R) \to Q(R)$, der das Diagramm (7) zum kommutieren bringt. Andererseits bringt auch id $Q(R): Q(R) \to Q(R)$ das Diagramm zum kommutieren. Somit muss

bereits $\psi \circ \varphi = \mathrm{id}_{Q(R)}$ gelten. Analog ergibt sich, dass auch $\varphi \circ \psi = \mathrm{id}_{Q'}$ gilt. Also ist φ ein Isomorphismus mit $\varphi^{-1} = \psi$.

Aufgabe 4

(a)

Da I eine Untergruppe der additiven Gruppe von R ist, ist aus der Linearen Algebra I ist bekannt, dass

- \sim eine Äquivalenz relation auf R definiert,
- durch $\overline{x} + \overline{y} \coloneqq \overline{x+y}$ eine wohldefiniert binäre Verknüpfung von R/I definiert wird,
- R/I durch + zu einer abelschen Gruppe wird.

Es bleibt zu zeigen, dass

- durch $\overline{x} \cdot \overline{y} = \overline{xy}$ eine wohldefiniert binäre Verknüpfüng auf R/I definiert wird,
- diese Multiplikation \cdot auf R/I assoziativ ist,
- diese Multiplikation \cdot auf R/I kommutativ ist,
- es für diese Multiplikation auf R/I ein Einselement gibt,
- die Distributivgesetze für die Addition + und Multiplikation \cdot auf R/I gelten.

Für die Wohldefiniertheit der Multiplikation seien $x,x,y,y'\in R$ with $\overline{x}=\overline{x'}$ und $\overline{y}=\overline{y'}$. Dann gilt $x-x',y-y'\in I$ und somit auch

$$xy - x'y' = xy - xy' + xy' - x'y' = x\underbrace{(y - y')}_{\in I} + \underbrace{(x - x')}_{\in I} y' \in I,$$

also $\overline{xy}=\overline{x'y'}$. Das zeigt die Wohldefiniertheit der Multiplikation. Für alle $\overline{x},\overline{y},\overline{z}\in R/I$ gilt

$$\overline{x} \cdot (\overline{y} \cdot \overline{z}) = \overline{x} \cdot \overline{y} \overline{z} = \overline{x} \overline{y} \overline{z} = \overline{x} \overline{y} \cdot \overline{z} = (\overline{x} \cdot \overline{y}) \cdot \overline{z},$$

was die Assoziativität der Multiplikation zeigt. Für alle $\overline{x}, \overline{y} \in R/I$ gilt

$$\overline{x} \cdot \overline{y} = \overline{xy} = \overline{yx} = \overline{y} \cdot \overline{x},$$

was die Kommutativität der Multiplikation zeigt. Das Element $\overline{1} \in R/I$ ist ein Einselement für die Multiplikation, denn für alle $\overline{x} \in R/I$ gilt

$$\overline{1} \cdot \overline{x} = \overline{1 \cdot x} = \overline{x}.$$

Die Distributivität der Multiplikation im ersten Argument ergibt sich darus, dass für alle $\overline{x}, \overline{y}, \overline{z} \in R/I$ die Gleichheit

$$(\overline{x} + \overline{y}) \cdot \overline{z} = \overline{x + y} \cdot \overline{z} = \overline{(x + y)z} = \overline{xz + yz} = \overline{xz} + \overline{yz} = \overline{x} \cdot \overline{z} + \overline{y} \cdot \overline{z}$$

gilt. Da die Multiplikation auf R/I kommutativ ist, ergibt sich hieraus auch die Distributivität im zweiten Argument.

Ingesamt zeig dies, dass R/I mit der gegeben Addition und Multiplikation ein kommutativer Ring ist.

(b)

Als Ringhomomorphismus ist φ insbesondere ein Gruppenhomomorphismus zwischen den unterliegenden additiven Gruppen von R und S; deshalb gilt

$$\varphi(0) = 0$$

und somit $0 \in \ker \varphi$, und für jedes $x \in \ker \varphi$ gilt

$$\varphi(-x) = -\varphi(x) = -0 = 0$$

und somit auch $-x \in \ker \varphi$. Für alle $x,y \in \ker \varphi$ gilt außerdem

$$\varphi(x+y) = \varphi(x) + \varphi(y) = 0 + 0 = 0,$$

und somit auch $x+y\in\ker\varphi$. Das zeigt, dass $\ker\varphi$ eine Untergruppe der additiven Gruppe von R ist. Für alle $r\in R$ und $x\in\ker\varphi$ gilt

$$\varphi(rx) = \varphi(r)\varphi(x) = \varphi(r) \cdot 0 = 0,$$

und somit auch $rx \in \ker \varphi$. Somit ist $\ker \varphi$ bereits ein Ideal in R.

(c)

Wir betrachten den kommutativen Ring R/I und die Abbildung $\pi\colon R\to R/I, x\mapsto \overline{x}$. Dies ist ein Ringhomomorphismus, denn für alle $x,y\in R$ gilt

$$\pi(x+y) = \overline{x+y} = \overline{x} + \overline{y} = \pi(x) + \pi(y)$$

sowie

$$\pi(x \cdot y) = \overline{x \cdot y} = \overline{x} \cdot \overline{y} = \pi(x) \cdot \pi(y)$$

sowie $\pi(1) = \overline{1} = 1_{R/I}$. Für den Ringhomomorphismus π gilt

$$\ker \pi = \{ x \in R \mid \pi(x) = 0 \} = \{ x \in R \mid \overline{x} = 0 \}$$
$$= \{ x \in R \mid x \sim 0 \} = \{ x \in R \mid x \in I \} = I,$$

was die gegebene Behauptung zeigt.

Bemerkung 4. Die Konstruktion des Quotientenringes R/I funktioniert auch für einen nicht-kommutativen Ring, sofern man fordert, dass I ein beidseitiges Ideal ist, d.h. dass $rx, xr \in I$ für alle $x \in I$ und $r \in R$ gilt. Analog zu den letzten beiden Aufgabenteilen ergibt sich dann, dass $I \subseteq R$ genau dann beidseitiges Ideal ist, wenn es einen Ring S und einen Ringhomomorphismus $\varphi \colon R \to S$ mit ker $\varphi = I$ gibt.

Bemerkung 5. Im Falle $R=\mathbb{Z}$ und $I=(n)=n\mathbb{Z}=\{an\mid a\in\mathbb{Z}\}$ ist die Konstruktion von $R/I=\mathbb{Z}/n\mathbb{Z}$ bereits aus der Linearen Algebra I bekannt.

Aufgabe 5

(a)

Die Kommutativität des Diagrams

$$R \xrightarrow{\varphi} S$$

$$\downarrow^{\pi} \nearrow_{\overline{\varphi}}$$

$$R/I$$

ist äquivalent dazu, dass $\overline{\varphi}(\overline{x}) = \varphi(x)$ für alle $x \in R/I$. Dies zeigt die Eindeutigkeit von $\overline{\varphi}$. Zum Beweis der Existenz gilt es zu zeigen, dass durch

$$\overline{\varphi} \colon R/I \to S, \quad \overline{x} \mapsto \varphi(x)$$

ein wohldefinierter Ringhomomorphismus gegeben ist:

Für $x,y\in R$ mit $\overline{x}=\overline{y}$ gilt $x-y\in\ker\varphi$ und somit $0=\varphi(x-y)=\varphi(x)-\varphi(y)$, also $\varphi(x)=\varphi(y)$. Dies zeigt die Wohldefiniertheit von $\overline{\varphi}$. Dass $\overline{\varphi}$ ein Ringhomomorphismus ist, ergibt sich durch direktes Nachrechnen, denn für alle $\overline{x},\overline{y}\in R/I$ gilt

$$\overline{\varphi}(\overline{x}+\overline{y})=\overline{\varphi}(\overline{x+y})=\varphi(x+y)=\varphi(x)+\varphi(y)=\overline{\varphi}(\overline{x})+\overline{\varphi}(\overline{y}).$$

und

$$\overline{\varphi}(\overline{x} \cdot \overline{y}) = \overline{\varphi}(\overline{x} \cdot \overline{y}) = \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = \overline{\varphi}(\overline{x}) \cdot \overline{\varphi}(\overline{y}),$$

und es gilt $\overline{\varphi}(1_{R/I}) = \overline{\varphi}(\overline{1_R}) = \varphi(1_R) = 1_S$.

(b)

Es gilt

$$\operatorname{im} \overline{\varphi} = \{ \overline{\varphi}(\overline{x}) \mid \overline{x} \in R/I \} = \{ \varphi(x) \mid x \in R \} = \operatorname{im} \varphi,$$

also ist $\overline{\varphi}$ genau dann surjektiv, wenn φ surjektiv ist. Außerdem gilt

$$\ker \overline{\varphi} = \{ \overline{x} \in R/I \mid \overline{\varphi}(\overline{x}) = 0 \} = \{ \overline{x} \in R/I \mid \varphi(x) = 0 \}$$
$$= \{ \overline{x} \in R/I \mid x \in \ker \varphi \} = \{ \overline{x} \mid x \in \ker \varphi \} = \{ x + I \mid x \in \ker \varphi \} = (\ker \varphi)/I.$$

Deshalb gilt

$$\overline{\varphi}$$
 ist injektiv $\iff \ker \overline{\varphi} = \{0\} \iff (\ker \varphi)/I = \{0\} \iff \ker \varphi = I.$

Das Bild im φ ist ein kommutativer Unterring von S:

Es gilt $0=\varphi(0)\in \operatorname{im}\varphi$. Für $y\in \operatorname{im}\varphi$ gibt es $x\in R$ mit $y=\varphi(x)$, we shalb auch $-y=-\varphi(x)=\varphi(-x)\in \operatorname{im}\varphi$. Für $y_1,y_2\in \operatorname{im}\varphi$ gibt es $x_1,x_2\in R$ mit $y_1=\varphi(x_1)$ und $y_2=\varphi(x_2)$, we shalb auch $y_1+y_2=\varphi(x_1)+\varphi(x_2)=\varphi(x_1+x_2)\in \operatorname{im}\varphi$. Das zeigt, dass im φ eine Untergruppe der additiven Gruppe von S ist. Es gilt $1_S = \varphi(1_R) \in \operatorname{im} \varphi$. Für alle $y_1, y_2 \in \operatorname{im} \varphi$ gibt es $x_1, x_2 \in R$ mit $y_1 = \varphi(x_1)$ und $y_2 = \varphi(x_2)$, we shalb auch $y_1y_2 = \varphi(x_1)\varphi(x_2) = \varphi(x_1x_2) \in \operatorname{im} \varphi$. Das zeigt, dass im φ bereits ein Unterring von S ist.

Wir können nun φ als einen surjektiven Ringhomorphismus $\varphi \colon R \to \operatorname{im} \varphi$ auffassen. Aus den bereits gezeigten Aussagen erhalten wir, dass φ einen bijektiven Ringhomomorphismus, also einen Ringisomorphismus $\overline{\varphi} \colon R/I \to \operatorname{im} \varphi, \overline{x} \mapsto \varphi(x)$ induziert. Somit gilt $R/I \cong \operatorname{im} \varphi$.

Beispiel 6. 1. Nach der universellen Eigenschaft des Polynomrings gibt es einen eindeutigen Homomorphismus von \mathbb{R} -Algebren $\varphi\colon \mathbb{R}[X]\to \mathbb{C}$ mit $\varphi(X)=i$. Für alle $a,b\in \mathbb{R}$ gilt $a+ib=\varphi(a+bX)\in \mathrm{im}\, \varphi,$ weshalb φ surjektiv.

Behauptung 7. Es gilt ker
$$\varphi = (X^2 + 1) = \{f \cdot (X^2 + 1) \mid f \in \mathbb{R}[X]\}.$$

Damit ergibt sich, dass φ einen Ringisomorphismus $\overline{\varphi} \colon \mathbb{R}[X]/(X^2+1) \to \mathbb{C}$, $f \mapsto f(i)$ induziert. Anschaulich bedeutet dies, dass \mathbb{C} aus \mathbb{R} durch hinzufügen eines Elements X mit X^2+1 entsteht.

2. Es sei

$$C := \{(a_n)_{n \in \mathbb{N}} \mid a_n \in \mathbb{Q} \text{ für alle } n \in \mathbb{N}, (a_n)_{n \in \mathbb{N}} \text{ ist eine Cauchyfolge} \}$$

der Raum der rationalen Cauchyfolgen. Sind $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}} \in C$ zwei rationale Cauchyfolgen, so sind auch $(a_n+b_n)_{n\in\mathbb{N}}$ und $(a_n\cdot b_n)_{n\in\mathbb{N}}$ rationale Cauchyfolgen. Zusammen mit dieser Addition und Multiplikation bildet C einen kommutativen Ring; das Einselement ist durch die konstante 1-Folge $(1)_{n\in\mathbb{N}}$ gegeben.

Da jede rationale Cauchyfolge in $\mathbb R$ kovergiert, ergibt es eine wohldefinierte Abbildung

$$\lim : C \to \mathbb{R}, \quad (a_n)_{n \in \mathbb{N}} \mapsto \lim_{n \to \infty} a_n.$$

Die Abbildung lim ist ein Ringhomomorphismus, denn für alle $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}\in C$ gilt

$$\begin{aligned} \lim((a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}}) &= \lim((a_n + b_n)_{n\in\mathbb{N}}) = \lim_{n\to\infty} (a_n + b_n) \\ &= (\lim_{n\to\infty} a_n) + (\lim_{n\to\infty} b_n) = \lim((a_n)_{n\in\mathbb{N}}) + \lim((b_n)_{n\in\mathbb{N}}). \end{aligned}$$

und

$$\lim((a_n)_{n\in\mathbb{N}}\cdot(b_n)_{n\in\mathbb{N}}) = \lim((a_nb_n)_{n\in\mathbb{N}}) = \lim_{n\to\infty}(a_nb_n)
= (\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n) = \lim((a_n)_{n\in\mathbb{N}})\cdot\lim((b_n)_{n\in\mathbb{N}}).$$

Da jede reelle Zahle als Grenzwert einer rationalen Cauchyfolge geschrieben werden kann (da $\mathbb Q$ als Teilmenge von $\mathbb R$ dicht ist) ist lim surjektiv. Dabei gilt

$$\ker \lim = \{(a_n)_{n \in \mathbb{N}} \mid \lim ((a_n)_{n \in \mathbb{N}}) = 0\} = \{(a_n)_{n \in \mathbb{N}} \mid \lim_{n \to \infty} a_n = 0\},\$$

d.h. der Kern von lim besteht aus den rationalen Cauchyfolgen, die auch Nullfolgen sind. Da aber jede Nullfolge bereits eine Cauchyfolge ist, ist der Kern von lim durch

$$N\coloneqq \{(a_n)_{n\in\mathbb{N}}\mid a_n\in\mathbb{Q} \text{ für alle } n\in\mathbb{N}, a_n\to 0 \text{ für } n\to\infty\}$$

gegeben. Somit ist Nein Ideal in C,und lim induziert einen Ringisomorphismus

$$C/N \to \mathbb{R}, \quad \overline{(a_n)_{n \in \mathbb{N}}} \mapsto \lim_{n \to \infty} a_n.$$

Dies führt dazu, dass sich die reellen Zahlen als Äquivalenzklassen von rationalen Cauchyfolgen konstruieren lassen, wobei zwei rationale Cauchyfolgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ genau dann äquivalent sind, wenn $(a_n)_{n\in\mathbb{N}}-(b_n)_{n\in\mathbb{N}}$ eine Nullfolge ist.