# Clustering

Dr. Amit Praseed

#### What is clustering?

- Clustering is the task of grouping together similar data items in a dataset
- Eg: Similar users are grouped together in a recommendation system
- The class label is often absent in clustering algorithms, which differentiates it from classification



#### **Basic Clustering Techniques**

#### Partition Based Clustering

- divides the data into k groups such that each group must contain at least one object
- · exclusive cluster separation

#### · Hierarchical Clustering

· creates a hierarchical decomposition of the given set of data objects

#### Density based Clustering

 continue growing a given cluster as long as the density in the "neighborhood" exceeds some threshold

#### Grid Based Clustering

 quantizes the object space into a finite number of cells that form a grid structure

#### k-means Algorithm

- The centroid of a cluster denotes that cluster
  - · For the k-means algorithm, the mean is used to denote the centroid
- Quality of a cluster depends on how similar the items are within a cluster – minimize the within cluster variation

$$E = \sum_{i=1}^{K} \sum_{p \in C_i} dist(p, C_i)$$

- In general, the problem is NP-Hard
- · k-means algorithm uses a greedy approach to approximate the process

## Example

| Data Point | X | Y  |
|------------|---|----|
| A1         | 2 | 10 |
| A2         | 2 | 5  |
| A3         | 8 | 4  |
| A4         | 5 | 8  |
| A5         | 7 | 5  |
| A6         | 6 | 4  |
| A7         | 1 | 2  |
| A8         | 4 | 9  |



## Example

| Data Point  | X | Y  |
|-------------|---|----|
| A1 (Red)    | 2 | 10 |
| A2          | 2 | 5  |
| A3          | 8 | 4  |
| A4 (Yellow) | 5 | 8  |
| A5          | 7 | 5  |
| A6          | 6 | 4  |
| A7 (Green)  | 1 | 2  |
| A8          | 4 | 9  |



## Calculate Distance (Eg: Manhattan Distance)

| Data Point | Distance from<br>Red Cluster<br>(2,10) | Distance<br>from Yellow<br>Cluster (5,8) | Distance<br>from Green<br>Cluster (1,2) | Cluster |
|------------|----------------------------------------|------------------------------------------|-----------------------------------------|---------|
| A1 (2,10)  | 0                                      | 5                                        | 9                                       | Red     |
| A2 (2,5)   | 5                                      | 6                                        | 4                                       | Green   |
| A3 (8,4)   | 12                                     | 7                                        | 9                                       | Yellow  |
| A4 (5,8)   | 5                                      | 0                                        | 10                                      | Yellow  |
| A5 (7,5)   | 10                                     | 5                                        | 9                                       | Yellow  |
| A6 (6,4)   | 10                                     | 5                                        | 7                                       | Yellow  |
| A7 (1,2)   | 9                                      | 10                                       | 0                                       | Green   |
| A8 (4,9)   | 3                                      | 2                                        | 10                                      | Yellow  |

Amit Praseed

#### First Clusters

| Data Point  | X | Y  |
|-------------|---|----|
| A1 (Red)    | 2 | 10 |
| A2 (Green)  | 2 | 5  |
| A3(Yellow)  | 8 | 4  |
| A4 (Yellow) | 5 | 8  |
| A5(Yellow)  | 7 | 5  |
| A6(Yellow)  | 6 | 4  |
| A7 (Green)  | 1 | 2  |
| A8(Yellow)  | 4 | 9  |

| Clusters | Centroid  |  |  |
|----------|-----------|--|--|
| Red      | (2,8)     |  |  |
| Green    | (1.5,3.5) |  |  |
| Yellow   | (6,6)     |  |  |



## Recompute Clusters

| Data Point | Distance from<br>Red Cluster<br>(2,10) | Distance<br>from Yellow<br>Cluster (6,6) | Distance<br>from Green<br>Cluster<br>(1.5,3.5) | Cluster |
|------------|----------------------------------------|------------------------------------------|------------------------------------------------|---------|
| A1 (2,10)  | 0                                      | 8                                        | 7                                              | Red     |
| A2 (2,5)   | 5                                      | 5                                        | 2                                              | Green   |
| A3 (8,4)   | 12                                     | 4                                        | 7                                              | Yellow  |
| A4 (5,8)   | 5                                      | 3                                        | 8                                              | Yellow  |
| A5 (7,5)   | 10                                     | 2                                        | 7                                              | Yellow  |
| A6 (6,4)   | 10                                     | 2                                        | 5                                              | Yellow  |
| A7 (1,2)   | 9                                      | 9                                        | 2                                              | Green   |
| A8 (4,9)   | 3                                      | 5                                        | 8                                              | Red     |

#### Second Clusters

| Data Point  | X | Y  |
|-------------|---|----|
| A1 (Red)    | 2 | 10 |
| A2 (Green)  | 2 | 5  |
| A3(Yellow)  | 8 | 4  |
| A4 (Yellow) | 5 | 8  |
| A5(Yellow)  | 7 | 5  |
| A6(Yellow)  | 6 | 4  |
| A7 (Green)  | 1 | 2  |
| A8(Red)     | 4 | 9  |

| Clusters | Centroid   |
|----------|------------|
| Red      | (3,9.5)    |
| Green    | (1.5,3.5)  |
| Yellow   | (6.5,5.25) |



## Recompute Clusters (again ⊗)

| Data Point | Distance from<br>Red Cluster<br>(3,9.5) | Distance<br>from Yellow<br>Cluster<br>(6.5,5.25) | Distance<br>from Green<br>Cluster<br>(1.5,3.5) | Cluster |
|------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------|---------|
| A1 (2,10)  | 1.5                                     | 9.25                                             | 7                                              | Red     |
| A2 (2,5)   | 5.5                                     | 4.75                                             | 2                                              | Green   |
| A3 (8,4)   | 10.5                                    | 2.75                                             | 7                                              | Yellow  |
| A4 (5,8)   | 3.5                                     | 4.25                                             | 8                                              | Red     |
| A5 (7,5)   | 8.5                                     | 0.75                                             | 7                                              | Yellow  |
| A6 (6,4)   | 8.5                                     | 1.75                                             | 5                                              | Yellow  |
| A7 (1,2)   | 9.5                                     | 8.75                                             | 2                                              | Green   |
| A8 (4,9)   | 1.5                                     | 6.25                                             | 8                                              | Red     |

Dr. Amit Praseed

11

### Third Clusters

| Data Point | X | Y  |
|------------|---|----|
| A1 (Red)   | 2 | 10 |
| A2 (Green) | 2 | 5  |
| A3(Yellow) | 8 | 4  |
| A4 (Red)   | 5 | 8  |
| A5(Yellow) | 7 | 5  |
| A6(Yellow) | 6 | 4  |
| A7 (Green) | 1 | 2  |
| A8(Red)    | 4 | 9  |

| Clusters | Centroid  |
|----------|-----------|
| Red      | (3.67,9)  |
| Green    | (1.5,3.5) |
| Yellow   | (7,4.3)   |



## Recompute Clusters (again ⊗ ⊗)

| Data Point | Distance from<br>Red Cluster<br>(3.67,9) | Distance<br>from Yellow<br>Cluster<br>(7,4.3) | Distance<br>from Green<br>Cluster<br>(1.5,3.5) | Cluster |
|------------|------------------------------------------|-----------------------------------------------|------------------------------------------------|---------|
| A1 (2,10)  | 2.67                                     | 10.7                                          | 7                                              | Red     |
| A2 (2,5)   | 5.67                                     | 5.7                                           | 2                                              | Green   |
| A3 (8,4)   | 9.33                                     | 1.3                                           | 7                                              | Yellow  |
| A4 (5,8)   | 2.33                                     | 5.7                                           | 8                                              | Red     |
| A5 (7,5)   | 7.33                                     | 0.7                                           | 7                                              | Yellow  |
| A6 (6,4)   | 7.33                                     | 1.3                                           | 5                                              | Yellow  |
| A7 (1,2)   | 9.67                                     | 8.3                                           | 2                                              | Green   |
| A8 (4,9)   | 0.33                                     | 757: Amit Prasced                             | 8                                              | Red     |

13

## No Cluster Changes this time $\ensuremath{\odot}$

| Data Point | Distance from<br>Red Cluster<br>(3.67,9) | Distance<br>from Yellow<br>Cluster<br>(7,4.3) | Distance<br>from Green<br>Cluster<br>(1.5,3.5) | Cluster |
|------------|------------------------------------------|-----------------------------------------------|------------------------------------------------|---------|
| A1 (2,10)  | 2.67                                     | 10.7                                          | 7                                              | Red     |
| A2 (2,5)   | 5.67                                     | 5.7                                           | 2                                              | Green   |
| A3 (8,4)   | 9.33                                     | 1.3                                           | 7                                              | Yellow  |
| A4 (5,8)   | 2.33                                     | 5.7                                           | 8                                              | Red     |
| A5 (7,5)   | 7.33                                     | 0.7                                           | 7                                              | Yellow  |
| A6 (6,4)   | 7.33                                     | 1.3                                           | 5                                              | Yellow  |
| A7 (1,2)   | 9.67                                     | 8.3                                           | 2                                              | Green   |
| A8 (4,9)   | 0.33                                     | 757: Amit Prasced                             | 8                                              | Red     |

14

### Final Clusters

| Data Point | X | Y  |
|------------|---|----|
| A1 (Red)   | 2 | 10 |
| A2 (Green) | 2 | 5  |
| A3(Yellow) | 8 | 4  |
| A4 (Red)   | 5 | 8  |
| A5(Yellow) | 7 | 5  |
| A6(Yellow) | 6 | 4  |
| A7 (Green) | 1 | 2  |
| A8(Red)    | 4 | 9  |

| Clusters | Centroid  |
|----------|-----------|
| Red      | (3.67,9)  |
| Green    | (1.5,3.5) |
| Yellow   | (7,4.3)   |



#### Summary of k-means Algorithm

- · Not guaranteed to provide a globally optimum solution
- · Choosing the optimal k-value is tricky
- · Only defined for data types for which mean is defined
  - · K-modes is a possible modification
- · Can be made more scalable using sampling

#### k- Medoids Algorithm

- In the k-means algorithm, the centroid is not necessarily one of the data points
  - · Sensitive to outliers
- k-medoids algorithm uses a representative element within the group as the "centroid" and computes the clusters based on the medoids
- Partitioning Around Medoids (PAM) algorithm is an example

## Example

| Data Point | X | Y |
|------------|---|---|
| Al         | 2 | 6 |
| A2         | 3 | 4 |
| A3         | 3 | 8 |
| A4         | 4 | 7 |
| A5         | 6 | 2 |
| A6         | 6 | 4 |
| A7         | 7 | 3 |
| A8         | 7 | 4 |
| A9         | 8 | 5 |
| A10        | 7 | 6 |



## Example

| Data Point  | X | Y |
|-------------|---|---|
| Al          | 2 | 6 |
| A2 (Yellow) | 3 | 4 |
| A3          | 3 | 8 |
| A4 (Green)  | 4 | 7 |
| A5          | 6 | 2 |
| A6          | 6 | 4 |
| A7          | 7 | 3 |
| A8          | 7 | 4 |
| A9          | 8 | 5 |
| A10         | 7 | 6 |



### Calculate Distance (Eg: Manhattan Distance)

| Data Point | Distance from<br>Yellow Cluster<br>(3,4) | Distance<br>from Green<br>Cluster (4,7) | Cluster |
|------------|------------------------------------------|-----------------------------------------|---------|
| A1 (2,6)   | 3                                        | 3                                       | Yellow  |
| A2 (3,4)   | 0                                        | 4                                       | Yellow  |
| A3 (3,8)   | 4                                        | 2                                       | Green   |
| A4 (4,7)   | 4                                        | 0                                       | Green   |
| A5 (6,2)   | 5                                        | 5                                       | Yellow  |
| A6 (6,4)   | 3                                        | 5                                       | Yellow  |
| A7 (7,3)   | 5                                        | 7                                       | Yellow  |
| A8 (7,4)   | 4                                        | 6                                       | Yellow  |
| A9 (8,5)   | 6                                        | 6                                       | Yellow  |
| A10 (7,6)  | 6                                        | 4<br>Dr. Amit Presend                   | Green   |

In case of clashes, a point is allotted to the Yellow Cluster by default

20

## Example

| Data Point  | X | Y |
|-------------|---|---|
| A1 (Yellow) | 2 | 6 |
| A2 (Yellow) | 3 | 4 |
| A3 (Green)  | 3 | 8 |
| A4 (Green)  | 4 | 7 |
| A5 (Yellow) | 6 | 2 |
| A6 (Yellow) | 6 | 4 |
| A7 (Yellow) | 7 | 3 |
| A8 (Yellow) | 7 | 4 |
| A9 (Yellow) | 8 | 5 |
| A10 (Green) | 7 | 6 |



#### Compute Absolute Error

| Data Point      | Distance from<br>Yellow Cluster<br>(3,4) | Distance<br>from Green<br>Cluster (4,7) | Cluster |
|-----------------|------------------------------------------|-----------------------------------------|---------|
| A1 (2,6)        | 3                                        | 3                                       | Yellow  |
| A2 (3,4) Medoid | 0                                        | 4                                       | Yellow  |
| A3 (3,8)        | 4                                        | 2                                       | Green   |
| A4 (4,7) Medoid | 4                                        | 0                                       | Green   |
| A5 (6,2)        | 5                                        | 5                                       | Yellow  |
| A6 (6,4)        | 3                                        | 5                                       | Yellow  |
| A7 (7,3)        | 5                                        | 7                                       | Yellow  |
| A8 (7,4)        | 4                                        | 6                                       | Yellow  |
| A9 (8,5)        | 6                                        | 6                                       | Yellow  |
| A10 (7,6)       | 6                                        | 4<br>Dr. Amit Proseed                   | Green   |

E = (A1-A2) + (A5-A2)+ (A6-A2) + (A7-A2) + (A8-A2)+(A9-A2) + (A3-A4)+ (A10-A4) = (3+4+3+5+4+6)+(2+4) =31

22

## Example

| Data Point            | X | Y |
|-----------------------|---|---|
| A1 (Yellow)           | 2 | 6 |
| A2 (Yellow)           | 3 | 4 |
| A3 (Green)            | 3 | 8 |
| A4 (Green)<br>Medoid  | 4 | 7 |
| A5 (Yellow)           | 6 | 2 |
| A6 (Yellow)<br>Medoid | 6 | 4 |
| A7 (Yellow)           | 7 | 3 |
| A8 (Yellow)           | 7 | 4 |
| A9 (Yellow)           | 8 | 5 |
| A10 (Green)           | 7 | 6 |



## Compute Absolute Error

| Data Point      | Current<br>Cluster | Distance from<br>Yellow Cluster<br>(6,4) | Distance from<br>Green Cluster<br>(4,7) | Cluster | Error |
|-----------------|--------------------|------------------------------------------|-----------------------------------------|---------|-------|
| A1 (2,6)        | Yellow             | 6                                        | 3                                       | Green   | 3     |
| A2 (3,4)        | Yellow             | 3                                        | 4                                       | Yellow  | 3     |
| A3 (3,8)        | Green              | 7                                        | 2                                       | Green   | 2     |
| A4 (4,7) Medoid | Green              | 5                                        | 0                                       | Green   | 0     |
| A5 (6,2)        | Yellow             | 2                                        | 5                                       | Yellow  | 2     |
| A6 (6,4) Medoid | Yellow             | 0                                        | 5                                       | Yellow  | 0     |
| A7 (7,3)        | Yellow             | 2                                        | 7                                       | Yellow  | 2     |
| A8 (7,4)        | Yellow             | 1                                        | 6                                       | Yellow  | 1     |
| A9 (8,5)        | Yellow             | 3                                        | 6                                       | Yellow  | 3     |
| A10 (7,6)       | Green              | 3                                        | 4                                       | Yellow  | 3     |
|                 |                    | Dr.:                                     | Amit Praseed                            |         | 19    |

## Example

| Data Point            | X | Y |
|-----------------------|---|---|
| A1 (Yellow)           | 2 | 6 |
| A2 (Yellow)           | 3 | 4 |
| A3 (Green)            | 3 | 8 |
| A4 (Green)<br>Medoid  | 4 | 7 |
| A5 (Yellow)           | 6 | 2 |
| A6 (Yellow)<br>Medoid | 6 | 4 |
| A7 (Yellow)           | 7 | 3 |
| A8 (Yellow)           | 7 | 4 |
| A9 (Yellow)           | 8 | 5 |
| A10 (Green)           | 7 | 6 |
|                       |   |   |

The error reduces, so we use the new set of medoids



#### PAM Algorithm

- The algorithm starts with a randomly selected set of medoids
- Each point is allocated to a particular cluster based on how close they are to the representative elements
- Randomly select a non-representative element to replace an existing representative element
- If the cost after replacement reduces, the new set of representative elements is retained, else it is discarded
- · More robust than k-means
- High complexity O(k(n-k)<sup>2</sup>)

#### Scalable Versions of PAM

- Clustering LARge Applications (CLARA)
  - · Select a random sample from the data points and perform the PAM algorithm
  - · Success depends on how well the sample represents the population
- Clustering Large Applications based on RANdomised Search (CLARANS)
  - Confine the set of candidate replacement medoids to a random sample of the data

#### Hierarchical Clustering

- · Groups data objects into a hierarchy or "tree" of clusters
- · Agglomerative Hierarchical Clustering:
  - · Bottom Up
  - · Starts with every point in a separate cluster
  - · Clusters are merged together based on how "close" they are
  - · Finally, you get one "super cluster"
- · Divisive Hierarchical Clustering:
  - Top Down
  - · Starts with a single "super cluster"
  - · Iteratively splits the clusters so that cohesion within the cluster improves
  - · Finally every point becomes its own cluster

Dr. Amit Proposed

28

### Linkage Measures between Clusters







20

## Dendrogram Representation



#### **Density Based Clustering**

- The density of an object o can be measured by the number of objects close to o.
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise) finds core objects, that is, objects that have dense neighborhoods.
  - It connects core objects and their neighborhoods to form dense regions as clusters.
- A user-specified parameter ε is used to specify the radius of a neighborhood we consider for every object.
- An object is a core object if the  $\varepsilon$  neighborhood of the object contains at least *MinPts* objects.



Assuming that MinPts=3, points A, C and D are core objects, because their \varepsilon-neighbourhood contains at least 3 points. Point B is not a core object.

Dr. Amit Praseed

### Core, Border and Noise Objects



Assuming that MinPts=4, object A is a core object because its ε-neighbourhood contains 5 objects



Assuming that MinPts=4, object B is called a Border object, because it lies in the neighbourhood of a core object (A), but is itself not a core object



Assuming that MinPts=4, object E is called a Noise Object, because it is neither a core object, nor a border object





reachable from N.
Hence, we say that A and N
are density connected.

Here N is density reachable from A and A is density

We cannot say the same for A and M.

X, Y and Z are said to be direct density reachable from A

M and N are said to be density reachable from A

#### Let MinPts=2



For every unvisited node in N, assign it to the current cluster (green) and add its neighbours to N if it is a core node

Select a random, unvisited object. If it is a core object assign it to a cluster, say green and add all of its neighbours into a candidate set N. Otherwise mark it as a noise node.







At this point, the set N becomes empty. So DBSCAN picks another unvisited node and adds it to a new cluster.





Finally, when no more unvisited nodes are left...



38

#### Summary of DBSCAN Algorithm

- Capable of detecting non-spherical clusters
- · Drawbacks:
  - Algorithm is sensitive to the value of  $\epsilon$  and MinPts, which are difficult to estimate
  - In real world scenarios, use of a global density value may not yield good results

#### Clustering in the Presence of Query Conditions

- One of the common applications of clustering is spatial data mining
- It is common to encounter problems where the required clusters have conditions attached to them
  - Eg: Select the maximal regions that have at least 100 houses per unit area and at least 70% of the house prices are above \$400K and with total area at least 100 units with 90% confidence
- Every query requires a separate clustering operation
  - Each clustering operation depends on the number of objects n in the dataset
  - Extensive computation required per query

#### **Grid Based Clustering**

- · Grid-based clustering method takes a space-driven approach
  - · Partition the embedding space into cells
  - · Independent of the distribution of the input objects
- Quantizes the object space into a finite number of cells that form a grid structure
- · Fast processing time, typically independent of the number of data
  - dependent on only the number of cells in each dimension in the quantized space.
- Eg: STING, CLIQUE

#### STING Algorithm

- STING (STatistical Information Grid) is a grid based clustering algorithm for answering queries
  - Eg: Select the maximal regions that have at least 100 houses per unit area and at least 70% of the house prices are above \$400K and with total area at least 100 units with 90% confidence
- · Divides the entire search space hierarchically into cells
- At the bottom layer, metrics such as number of points, mean, standard deviation, min, max etc. are maintained
- The information of higher layers can be computed from the information at lower layers.

#### STING Algorithm

- · Query answering starts at a particular layer.
  - Cells which satisfy the constraints are selected based on confidence interval
  - · Processing at the next layer only requires selected cells
  - · Proceed till the last layer
- · Query independent
- · Cost depends on the granularity at the lowest level
- · All cluster shapes are isothetic

#### **CLIQUE Algorithm**

- CLIQUE (CLustering In QUEst) is a grid based method for finding density based clusters in subspaces
- · Uses the Apriori property:
  - A k-dimensional cell c can have at least l points only if every (k-1)-dimensional projection of c has at least l points
- Dense clusters are identified in (k-1) dimension and the candidate clusters for the kth dimension are found similar to apriori algorithm