Importante: Recuerde justificar las respuestas.

Duración del examen: 2 horas. Recuerde distribuir su tiempo para contestar los problemas de cada parte de la asignatura. No se permite el use de ningún tipo de material ni calculadora.

Parte A. Variable compleja.

1.-(1.5 puntos)

Usando las desigualdades estudiadas en el curso, demostrar que si z pertenece al conjunto $A = \{z, 1 \le |z| \le 2\}$ entonces se verifica que

$$\left|\frac{z-3i}{z^2+8iz-15}\right| \le \frac{5}{3}.$$

¿Es cierto para todos los z de A que

$$\left|\frac{z-3i}{z^2+8iz-15}\right| < \frac{5}{3}?$$

(Obs: según cómo se intente resolver el problema, puede ser útil recordar que |a-b| es el valor de la distancia entre los números complejos a y b en su representación en el plano.)

2.- (2 puntos)

Dado el conjunto $B = \{z, \text{Re}(z) \in [-3, -1] \text{ y Im}(z) \in [-1, 1]\},$ determinar

$$\{z, \operatorname{Log}(z^2) \in B\},\$$

donde Log es la rama principal del logaritmo complejo.

Determinar si existen o no, y si existen calcular, los límites

$$\lim_{z \to -1} \operatorname{Log}(z^2) \ y \ \lim_{z \to i} \operatorname{Log}(z^2).$$

Parte B. Ecuaciones diferenciales.

3.- (2 puntos)

Encontrar la solución general de la ecuación $y'' + y = \cos(x) + 3$.

4.- (2 puntos)

Realizando el cambio de variable $u=y^3$, resolver la ecuación diferencial $y'+y-\frac{e^x}{y^2}=0$.

5.-(2,5 puntos)

Dado el sistema de ecuaciones diferenciales

$$\begin{cases} x' = -x/2 - y/2 \\ y' = y/2 \end{cases},$$

determinar su solución general usando técnicas matriciales (autovalores y autovectores).

Representar el diagrama de fases del sistema, y clasificar la estabilidad de sus puntos críticos.

Importante: Recuerde justificar las respuestas.

Duración del examen: 2 horas. Recuerde distribuir su tiempo para contestar los problemas de cada parte de la asignatura. No se permite el use de ningún tipo de material ni calculadora.

Parte A. Variable compleja.

1.- (1,5 puntos)

Determinar, si existe alguna, todas la funciones holomorfas f(z) que verifiquen

$$\operatorname{Re}(f(x+iy)) = x^2 - y^2 - 2x + 2y \ y \ f(1) = -1 + 5i.$$

Si existen, dar las soluciones finales en función de z y no en función de x = Re(z) e y = Im(z).

2.- (2 puntos)

Dada f(z) la raíz cúbica principal, $f(re^{i\theta}) = \sqrt[3]{r}e^{\frac{i\theta}{3}}$, para $\theta \in (-\pi, \pi]$, y dada $g(z) = (2iz+3)^2$, determinar dónde es continua y dónde no la función f(g(z)).

Parte B. Ecuaciones diferenciales.

3.-(1.5 puntos)

Resolver la ecuación diferencial

$$2xy\,dy = (x+y^2)\,dx\,.$$

4.-(2.5 puntos)

Usando desarrollos en series de potencias centrados en 0, dar los 6 primeros términos de la solución general de la ecuación

$$y'' - xy' + 2y = \cos(x).$$

Indicar qué partes de esa solución general corresponden a los 6 primeros términos de dos soluciones linealmente independientes de la ecuación homogénea asociada.

5.-(2,5 puntos)

Determinar la solución general del sistema de ecuaciones

$$\begin{cases} x_1' = x_1 - 2x_2 + 1 \\ x_2' = -2x_1 + x_2 + t \end{cases}.$$

Importante: Recuerde justificar las respuestas.

Duración del examen: 2 horas. Recuerde distribuir su tiempo para contestar los problemas de cada parte de la asignatura. No se permite el use de ningún tipo de material ni calculadora.

Parte A. Variable compleja.

1.- (1,5 puntos)

Indicar razonadamente si existen los límites

$$\lim_{z \to \infty} e^{z^4} \quad \text{y} \quad \lim_{z \to -1} f(z^4) \,,$$

donde f es la rama principal de la raíz cúbica. Calcularlos si existen.

2.- (2 puntos)

Dada la función

$$g(z) = \frac{iz+i}{z-1},$$

determinar g(B), para

$$B = \{z, \operatorname{Im}(z) \ge 0 \text{ y } |z - 1| \le 1\}.$$

Parte B. Ecuaciones diferenciales.

3.- (2 puntos)

Dibujar esquemáticamente el diagrama de fases de la ecuación diferencial

$$x' = x^2(x-1)e^x.$$

Determinar la estabilidad de sus puntos críticos.

4.- (2 puntos)

Usando el cambio de variable $v = y^{-1/3}$, resolver el problema de valor inicial

$$x\frac{dy}{dx} + 6y = 3xy^{4/3}, \ y(3) = 27.$$

5.- (2,5 puntos)

Resolver, usando técnicas matriciales, el siguiente sistema de ecuaciones:

$$\begin{cases} x_1'(t) = -2x_1(t) + 3x_2(t) \\ x_2'(t) = -2x_2(t) \end{cases}.$$