$\eta(1405)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

See also the $\eta(1475)$.

A REVIEW GOES HERE - Check our WWW List of Reviews

$\eta(1405)$ MASS

VALUE (MeV)

DOCUMENT ID

1408.8±1.8 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 2.1. See the ideogram below.

$\eta\pi\pi$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

The data in this block is included in the average printed for a previous datablock.

1406.2 2.3 OUR AVERAGE Error includes scale factor of 2.2. See the ideogram below.

1409.0 ± 1.7	743	ABLIKIM		$J/\psi \rightarrow \gamma (\pi^+\pi^-\pi^0)$
1407.0 ± 3.5	198	ABLIKIM	12E BES3	$J/\psi \rightarrow \gamma (\pi^0 \pi^0 \pi^0)$
$1399.8 \pm 2.2^{+2.8}_{-0.1}$		¹ ABLIKIM	11J BES3	$J/\psi ightarrow \ \omega (\eta \pi^+ \pi^-)$
1392 ± 14	900 ± 375	AMSLER	04B CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^+ \pi^- \eta$
1394 ± 8	$6.6\pm2.0 k$	AMSLER	04B CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \eta$
1404 ± 6	9082	MANAK	00A MPS	$18 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

HTTP://PDG.LBL.GOV

Page 1

1424	4 ± 6	2200	ALDE	97B GAM4	$100 \ \pi^- p \rightarrow \eta \pi^0 \pi^0 n$
1409	9 ± 3		AMSLER	95F CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \eta$
1400	0 ± 6		² BOLTON	92B MRK3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
1388	3 ± 4		FUKUI		8.95 $\pi^- p \to \eta \pi^+ \pi^- n$
1398	3 ± 6	261	³ AUGUSTIN	90 DM2	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
1420	0 ± 5		ANDO	86 SPEC	$8 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
	14/ 1			<i>c</i>	

• • • We do not use the following data for averages, fits, limits, etc. • • •

1385 \pm 7 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$

 $\eta(1405)$ mass, $\eta \pi \pi$ mode (MeV)

$K\overline{K}\pi$ MODE $(a_0(980)\pi$ or direct $K\overline{K}\pi)$

 VALUE (MeV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

The data in this block is included in the average printed for a previous datablock.

1413.9 1.7 OUR AVERAGE Error includes scale factor of 1.1.

1413	± 14		3651	⁴ NICHITIU	02	OBLX	
1416	\pm 4	± 2	20k				18 GeV $\pi^- p \to K^+ K^- \pi^0 n$
1405	\pm 5			⁵ CICALO			$0 \overline{p}_{P} \rightarrow K^{\pm} K^{0}_{S} \pi^{\mp} \pi^{+} \pi^{-}$
1407	\pm 5			⁵ BERTIN	97	OBLX	$0 \overline{p} p \rightarrow K^{\pm} (K^{0}) \pi^{\mp} \pi^{+} \pi^{-}$
1416	\pm 2			⁵ BERTIN	95	OBLX	$0 \; \overline{\rho} \rho \to \; K \overline{K} \pi \pi \pi$
1416	± 8	$^{+7}_{-5}$	700	⁶ BAI	90 C	MRK3	$J/\psi \to \gamma K_S^0 K^{\pm} \pi^{\mp}$
1413	\pm 5			⁶ RATH	89	MPS	21.4 $\pi^- p \rightarrow n K_S^0 K_S^0 \pi^0$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$\pi\pi\gamma$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1390±12	235 ± 91	AMSLER	04 B	CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^+ \pi^- \gamma$
• • • We do not ι	use the following	ng data for averag	es, fit	s, limits,	etc. • • •
$1424 \pm 10 \pm 11$	547	BAI			$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
1401 ± 18		^{8,9} AUGUSTIN	90	DM2	$J/\psi \rightarrow \pi^+\pi^-\gamma\gamma$
$1432\pm$ 8		⁹ COFFMAN	90	MRK3	$J/\psi \rightarrow \pi^+\pi^-2\gamma$
4 14005					

4π MODE

EVTS DOCUMENT ID TECN COMMENT VALUE (MeV)

• • • We do not use the following data for averages, fits, limits, etc. • • •

1420 ± 20						$\gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
1489 ± 12	3270	¹⁰ BISELLO	89 B	DM2	$J/\psi \rightarrow$	$4\pi\gamma$

$\overline{K}\pi$ MODE (unresolved)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do r	not use the f	following data for ave	erages	, fits, lin	nits, etc. • • •
1452.7 ± 3.3	_	^{11,12} ABLIKIM	13M	BES3	$\psi(2S) ightarrow \; \omega K K \pi$
1437.6 ± 3.2	249 ± 35	^{11,12} ABLIKIM	08E	BES2	$J/\psi \rightarrow \omega K_S^0 K^+ \pi^- + \text{c.c.}$
1445.9 ± 5.7	62 ± 18	^{11,12} ABLIKIM	08E	BES2	$J/\psi \rightarrow \omega K^+ K^- \pi^0$
$1442 \ \pm 10$	410	11 BAI	98 C	BES	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
$1445 \ \pm \ 8$	693	11 AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
$1433 \ \pm \ 8$	296		90	DM2	$J/\psi \rightarrow \gamma K + K - \pi^0$
$1413 \ \pm \ 8$	500	11 DUCH	89	ASTE	$\overline{p}p \rightarrow \pi^{+}\pi^{-}K^{\pm}\pi^{\mp}K^{0}$
$1453 \ \pm \ 7$	170	11 RATH	89	MPS	$21.4 \; \pi^- p \rightarrow \; K_S^0 K_S^0 \pi^0 n$
$1419 \ \pm \ 1$	8800	¹¹ BIRMAN	88	MPS	$8 \pi^- p \rightarrow K^+ \overline{K}{}^0 \pi^- n$
$1424 \ \pm \ 3$	620	¹¹ REEVES	86	SPEC	6.6 $p\overline{p} \rightarrow K\overline{K}\pi X$
$1421 \ \pm \ 2$		¹¹ CHUNG	85	SPEC	$8 \pi^- p \rightarrow K \overline{K} \pi n$
$1440 \begin{array}{c} +20 \\ -15 \end{array}$	174	¹¹ EDWARDS	82E	CBAL	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
$1440 \begin{array}{c} +10 \\ -15 \end{array}$		¹¹ SCHARRE	80	MRK2	$J/\psi ightarrow \gamma K_{\mathcal{S}}^{0} K^{\pm} \pi^{\mp}$
$1425 \ \pm \ 7$	800	^{11,13} BAILLON	67	HBC	$0 \ \overline{p}p \rightarrow K \overline{K} \pi \pi \pi$

¹ The selected process is $J/\psi \rightarrow \omega a_0(980) \pi$.

 $^{^2\,\}mathrm{From}$ fit to the $a_0(980)\,\pi$ 0 $^-\,+\,$ partial wave.

³ Best fit with a single Breit Wigner.

⁴ Decaying dominantly directly to $K^+K^-\pi^0$.

⁵ Decaying into $(K\overline{K})_S\pi$, $(K\pi)_S\overline{K}$, and $a_0(980)\pi$.

⁶ From fit to the $a_0(980)\pi$ 0 $^{-+}$ partial wave. Cannot rule out a $a_0(980)\pi$ 1 $^{++}$ partial wave. 7 Excluded from averaging because averaging would be meaningless.

⁸ Best fit with a single Breit Wigner.

⁹ This peak in the $\gamma \rho$ channel may not be related to the $\eta(1405)$.

¹⁰ Estimated by us from various fits.

 $^{^{11}}$ These experiments identify only one pseudoscalar in the 1400–1500 range. Data could also refer to $\eta(1475)$.

 $^{^{12}}$ Systematic uncertainty not evaluated.

¹³ From best fit of 0^{-} partial wave , 50% $K^*(892)K$, 50% $a_0(980)\pi$.

η (1405) WIDTH

VALUE (MeV) DOCUMENT ID

51.0±2.9 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 1.8. See the ideogram below.

 $\eta(1405)$ width (MeV)

$\eta\pi\pi$ MODE

 VALUE (MeV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

The data in this block is included in the average printed for a previous datablock.

54 ± 4	OUR AVERAGE	Error includes scale	factor of 1.6.	See the ideogram below
48.3± 5.2	743	ABI IKIM	12F BES3	$J/\psi \rightarrow \gamma (\pi^+\pi^-\pi^0)$

40.5 \(\perp \) 3.2	743	ADLIMIN		$J/\psi \rightarrow \gamma (\pi \cdot \pi \cdot \pi)$
55.0 ± 11.0	198	ABLIKIM	12E BES3	$J/\psi \rightarrow \gamma (\pi^0 \pi^0 \pi^0)$
$52.8 \pm 7.6^{+0.1}_{-7.6}$		¹⁴ ABLIKIM	11J BES3	$J/\psi ightarrow \; \omega (\eta \pi^+ \pi^-)$
55 ±11	900 ± 375	AMSLER	04в CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^+ \pi^- \eta$
55 ± 12	6.6 ± 2.0 k	AMSLER	04в CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \gamma$
80 ± 21	9082	MANAK	00A MPS	$18 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
85 ± 18	2200	ALDE		$100 \pi^- p \rightarrow \eta \pi^0 \pi^0 n$
86 ± 10		AMSLER	95F CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \eta$
47 ± 13		¹⁵ BOLTON	92B MRK3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
59 ± 4		FUKUI	91c SPEC	8.95 $\pi^- p \to \eta \pi^+ \pi^- n$
53 ± 11		16 AUGUSTIN	90 DM2	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
31 ± 7		ANDO	86 SPEC	$8 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

HTTP://PDG.LBL.GOV

Page 4

 $\eta(1405)$ width $\eta \pi \pi$ mode (MeV)

$K\overline{K}\pi$ MODE $(a_0(980)\pi$ or direct $K\overline{K}\pi)$

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

The data in this block is included in the average printed for a previous datablock.

48± 4 OUR AVERAGE Error includes scale factor of 2.1. See the ideogram below.

$51\pm$ 6	3651	17 NICHITIU	02	OBLX	
$42\pm10\pm~9$	20k	ADAMS			18 GeV $\pi^- p \to K^+ K^- \pi^0 n$
50± 4		CICALO	99	OBLX	$0 \overline{p}_{P} \rightarrow K^{\pm} K_{S}^{0} \pi^{\mp} \pi^{+} \pi^{-}$
48± 5		¹⁸ BERTIN	97	OBLX	$0.0 \overline{p}p \rightarrow K^{\pm}(K^0)\pi^{\mp}\pi^{+}\pi^{-}$
50± 4		¹⁸ BERTIN	95	OBLX	$0 \overline{p} p \to K \overline{K} \pi \pi \pi$
75± 9		AUGUSTIN	92	DM2	$J/\psi ightarrow \gamma K \overline{K} \pi$
$91 + 67 + 15 \\ -31 - 38$		¹⁹ BAI	90 C	MRK3	$J/\psi \to \gamma K_S^0 K^{\pm} \pi^{\mp}$
19± 7		¹⁹ RATH	89	MPS	21.4 $\pi^- p \to n K_S^0 K_S^0 \pi^0$

 $\eta(1405)$ width $K\overline{K}\pi$ mode ($a_0(980)$ π dominant)

$\pi\pi\gamma$ MODE

AA / WODE					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
64 ±18	235 ± 91	AMSLER	04 B	CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^+ \pi^- \gamma$
ullet $ullet$ We do not	use the followi	ng data for average	s, fits	, limits,	etc. • • •
101.0± 8.8±8.8	547	BAI	04 J	BES2	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
174 ± 44		AUGUSTIN			$J/\psi \rightarrow \pi^+\pi^-\gamma\gamma$
90 ± 26		²⁰ COFFMAN	90	MRK3	$J/\psi \rightarrow \pi^+\pi^-2\gamma$
4π MODE					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

160 ± 30		BUGG	95	MRK3	$J/\psi \rightarrow$	$\gamma \pi^+ \pi^- \pi^+ \pi^-$
144 + 13	3270	21 RISELLO				

$K\overline{K}\pi$ MODE (unresolved)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do n	ot use the f	following data for ave	erages,	fits, lim	nits, etc. • • •
45.9 ± 8.2	_	22,23 ABLIKIM			$\psi(2S) ightarrow \omega K K \pi$
48.9 ± 9.0	249 ± 35	^{22,23} ABLIKIM			$J/\psi \rightarrow \omega K_S^0 K^+ \pi^- + \text{c.c.}$
$34.2\!\pm\!18.5$		^{22,23} ABLIKIM			$J/\psi \rightarrow \omega K^+ K^- \pi^0$
93 ± 14		²² AUGUSTIN			$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
105 ± 10	693	²² AUGUSTIN	90	DM2	$J/\psi ightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
62 ± 16	500	²² DUCH	89	ASTE	$\overline{p}p \rightarrow K\overline{K}\pi\pi\pi$
100 ± 11	170	²² RATH	89	MPS	21.4 $\pi^- p \to K_S^0 K_S^0 \pi^0 n$
					0 0

66	± 2	8800	²² BIRMAN	88	MPS	$8 \pi^- p \rightarrow K^+ \overline{K}^0 \pi^- n$
60	± 10		²² REEVES	86	SPEC	6.6 $p\overline{p} \rightarrow KK\pi X$
60	± 10		²² CHUNG	85	SPEC	$8 \pi^- p \rightarrow K \overline{K} \pi n$
55	$^{+20}_{-30}$	174	²² EDWARDS	82E	CBAL	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
50	$^{+30}_{-20}$			80	MRK2	$J/\psi ightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
80	± 10	800 ²²	^{2,24} BAILLON	67	HBC	$0.0 \ \overline{p}p \rightarrow K \overline{K} \pi \pi \pi$

¹⁴ The selected process is $J/\psi \rightarrow \omega a_0(980) \pi$.

η (1405) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$K\overline{K}\pi$	seen	
Γ_2	$\eta\pi\pi$	seen	
Γ_3	$a_0(980)\pi$	seen	
Γ_4	$\eta(\pi\pi)_{S ext{-}wave}$	seen	
Γ_5	$f_0(980) \eta$	seen	
Γ_6	4 π	seen	
Γ_7	ho ho	<58 %	99.85%
Γ ₈	$\gamma \gamma$		
Γ_9	$ ho^{0}\gamma$	seen	
Γ_{10}	$\phi \gamma$		
Γ_{11}	K*(892) K	seen	

$\eta(1405) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_1\Gamma_8/\Gamma$							
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT		
• • • We do	not us	se the following data	for a	verages,	fits, limits, etc. • • •		
< 0.035	90	^{25,26} AHOHE	05	CLE2	10.6 $e^+e^- \to e^+e^-$	$\kappa_S^0 \kappa^{\pm} \pi^{\mp}$	
$\Gamma(\eta\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_2\Gamma_8/\Gamma$							
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT		
<0.095	95	ACCIARRI	01 G	L3	183–202 $e^+e^- \rightarrow e^+$	$e^-\eta\pi^+\pi^-$	
HTTP://P	DG.LI	BL.GOV	Page	e 7	Created: 5/30/2	2017 17:20	

¹⁵ From fit to the $a_0(980)\pi$ 0 $^-+$ partial wave.

 $^{^{16}}$ From $\eta\pi^+\pi^-$ mass distribution - mainly $a_0(980)\pi$ - no spin–parity determination avail-

able. 17 Decaying dominantly directly to $K^+K^-\pi^0$.

¹⁸ Decaying into $(K\overline{K})_S\pi$, $(K\pi)_S\overline{K}$, and $a_0(980)\pi$.

¹⁹ From fit to the $a_0(980)\pi$ 0 $^{-+}$ partial wave , but $a_0(980)\pi$ 1 $^{++}$ cannot be excluded.

²⁰ This peak in the $\gamma \rho$ channel may not be related to the η (1405).

 $^{^{21}}$ Estimated by us from various fits.

²² These experiments identify only one pseudoscalar in the 1400–1500 range. Data could also refer to $\eta(1475)$.

 $^{^{23}}$ Systematic uncertainty not evaluated. 24 From best fit to 0 $^-+$ partial wave , 50% $K^*(892)\,K$, 50% $a_0(980)\,\pi$.

$\Gamma(\rho^0\gamma) \times \Gamma(\gamma\gamma)$	$()/\Gamma_{\text{total}}$					$\Gamma_{9}\Gamma_{8}/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not u	se the foll	owing data for avera	ages,	fits, limi	ts, etc. • • •	
<1.5	95	ALTHOFF	84E	TASS	$e^+e^- ightarrow e^-$	$+e^-\pi^+\pi^-\gamma$
25 Using $\eta(1405)$	mass and	width 1410 MeV an	d 51 N	ЛeV, res	pectively.	
²⁶ Assuming three	-body pha	ase-space decay to <i>h</i>	$\langle {}^0_S K^{\pm} \rangle$	$\models_{\pi}\mp$.		
	η	(1405) BRANCH	ING	RATIO	S	
$\Gamma(\eta\pi\pi)/\Gamma(K\overline{K})$	π)					Γ_2/Γ_1
VALUE	•	DOCUMENT ID	1	TECN	COMMENT	
\bullet \bullet We do not u	se the foll	owing data for avera	ages,	fits, limi	ts, etc. • • •	
1.09 ± 0.48		²⁷ AMSLER	04E	CBAR	$0 \overline{p}p \rightarrow \pi^{+}$	$-\pi^{-}\pi^{+}\pi^{-}\eta$
< 0.5	90	EDWARDS	83E		$J/\psi ightarrow \eta \pi$	
<1.1	90	SCHARRE			$2 J/\psi \rightarrow \eta \pi$	$\pi \gamma$
<1.5	95	FOSTER	68E	HBC	0.0 p p	
$\Gamma(\rho^0\gamma)/\Gamma(\eta\pi\pi)$						Γ_9/Γ_2
VALUE		<u>DOCUMENT</u>	ID	TEC	N COMMENT	
0.111 ± 0.064		AMSLER	C	4 в СВ	AR 0 p p	
$\Gamma(a_0(980)\pi)/\Gamma($		DOCUMENT ID		TECN	COMMENT	Γ_3/Γ_1
VALUE		DOCUMENT ID owing data for average				
	se the foll				$0 \ \overline{p} p \rightarrow K \overline{K}$,
~ 0.15 ~ 0.8	500				$\overline{p}p \rightarrow KK$ $\overline{p}p \rightarrow \pi^{+}\pi^{-}$	
~ 0.75	300				$6.6 \ p\overline{p} \rightarrow K$	
	, ,				, ,	
$\Gamma(a_0(980)\pi)/\Gamma($						Γ_3/Γ_2
VALUE		DOCUMENT ID				
• • • We do not u	se the foll	owing data for avera				
0.29 ± 0.10		ABELE			$0 p \overline{p} \rightarrow \eta \pi^0$	
0.19 ± 0.04	2200	²⁹ ALDE	97B	GAM4	$100 \pi^- p \rightarrow$	$\eta \pi^{0} \pi^{0} n$
$0.56 \pm 0.04 \pm 0.03$		²⁹ AMSLER	95F	CBAR	$0 \ \overline{p}p \rightarrow \pi^{+}$	$\pi^-\pi^0\pi^0\eta$
$\Gamma(a_0(980)\pi)/\Gamma($						Γ_3/Γ_4
VALUE		DOCUMENT ID				
• • • We do not u	se the foll	owing data for avera	_			
$0.91\!\pm\!0.12$		ANISOVICH			$0.0 \ \overline{p}p \rightarrow \eta \eta$	
0.15 ± 0.04	9082	30 MANAK	00A	MPS	18 $\pi^- p \rightarrow \tau$	$\eta \pi^+ \pi^- n$
$0.70\pm0.12\pm0.20$		³¹ BAI	99	BES	$J/\psi \rightarrow \gamma \eta \pi$	$+\pi^-$
$\Gamma(ho^0\gamma)/\Gamma(K\overline{K}\tau)$	۲)					Γ_9/Γ_1
VALUE	,	DOCUMENT	ID	TEC	N COMMENT	- •
0.0152±0.0038		32 COFFMAN			K3 $J/\psi \rightarrow \gamma$	
					, ,	,

•	- _{wave})/Γ(η	•	DOCUMENT ID		TECN C		₄ /Γ ₂
			ata for average				
0.81 ± 0.04		2200	ALDE	97 B	GAM4 1	$00 \pi^- p \rightarrow \eta \pi^0$	π^{0} n
Γ(f ₀ (980) <u>VALUE</u>	$\eta)/\Gamma (\eta \pi \pi)$		DOCUMENT ID		<u>TECN</u> <u>C</u>		₅ /Γ ₂
	o not use the	following d	ata for average	s, fits,	limits, etc	. • • •	
0.32 ± 0.07		33	ANISOVICH	00	SPEC 0	$.9-1.2 \; \overline{p} p \rightarrow \eta 3$	π^0
$\Gamma(\rho\rho)/\Gamma_{to}$		GL N/	DOCUMENT II	5	TECN		Γ ₇ /Γ
<u>∨ALUE</u> <0.58		<u>CL%</u> 99.85 27,3	<u>DOCUMENT II</u> B4 AMSLER				
) <i>K</i>)/Γ(a ₀ (9	$980)\pi)$					₁ /Γ ₃
		following d 30 ADAM:	ata for average			$ \begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & p \rightarrow & K^+ K^- \end{array} $	0
0.084 ± 0.02 $\Gamma(\phi\gamma)/\Gamma($		99 ADAM	2 01R F	3852	18 GeV $ au$		π [∘] η ₀/Γο
		CL%	DOCUMENT ID		TECN C		
• • • We d	o not use the	following d	ata for average	s, fits,	limits, etc	. • • •	
< 0.77		95 35	BAI	04 J	BES2 J	$/\psi \rightarrow \gamma \gamma K^+ K^-$	_
27 Using the data of BAILLON 67 on $\overline{\rho}p \to K\overline{K}\pi$. 28 Assuming that the $a_0(980)$ decays only into $K\overline{K}$. 29 Assuming that the $a_0(980)$ decays only into $\eta\pi$. 30 Statistical error only. 31 Assuming that the $a_0(980)$ decays only into $\eta\pi$. 32 Using $B(J/\psi \to \gamma\eta(1405) \to \gamma K\overline{K}\pi) = 4.2 \times 10^{-3}$ and $B(J/\psi \to \gamma\eta(1405) \to \gamma\gamma\rho^0) = 6.4 \times 10^{-5}$ and assuming that the $\gamma\rho^0$ signal does not come from the $f_1(1420)$. 33 Using preliminary Crystal Barrel data. 34 Assuming that the $\eta(1405)$ decays are saturated by the $\pi\pi\eta$, $K\overline{K}\pi$ and $\rho\rho$ modes. 35 Calculated by us from $B(J/\psi \to \eta(1405)\gamma \to \phi\gamma\gamma) < 0.82 \times 10^{-4}$ and $B(J/\psi \to \eta(1405)\gamma \to \rho^0\gamma\gamma) = (1.07 \pm 0.17 \pm 0.11) \times 10^{-4}$.							
		$\eta(14$	105) REFERE	NCE	S		
ABLIKIM ABLIKIM ABLIKIM ABLIKIM AHOHE AMSLER BAI NICHITIU ACCIARRI ADAMS ANISOVICH ANISOVICH MANAK BAI CICALO ABELE		3 182001 7 182001 032005 072001 3 23 4 47 5 261 1 1 5 264 0 567 2 168 012003 5 356 2 453	M. Ablikim et M. Ablikim et M. Ablikim et M. Ablikim et R. Ahohe et a C. Amsler et a J.Z. Bai et al. F. Nichitiu et M. Acciarri et G.S. Adams et A.V. Anisovich A.V. Anisovich J.J. Manak et J.Z. Bai et al. C. Cicalo et a A. Abele et al	al. al. al. al. al. al. al. t al. et al. et al. al.		(BES III Collab (BES III Collab (BES III Collab (BES Collab (CLEO Collab (Crystal Barrel Collab (BES Collab (DBELIX Collab (BNL E852 Collab (BNL E852 Collab (BNL E852 Collab (COBELIX Collab (COBELIX Collab (COBELIX Collab	.) .) .) .) .) .) .) .) .) .) .) .) .)
HTTP://I	PDG.LBL.G	OV	Page 9		Created	: 5/30/2017 1	7:20

BAI ALDE	98C 97B	PL B440 217 PAN 60 386 Translated from YAF 60	J.Z. Bai <i>et al.</i> D. Alde <i>et al.</i>	(BES Collab.) (GAMS Collab.)
BERTIN	97	PL B400 226	A. Bertin <i>et al.</i>	(OBELIX Collab.)
AMSLER	95F	PL B358 389	C. Amsler et al.	(Crystal Barrel Collab.)
BERTIN	95	PL B361 187	A. Bertin <i>et al.</i>	(OBELIX Collab.)
BUGG	95	PL B353 378	D.V. Bugg et al.	(LOQM, PNPI, WASH)
AUGUSTIN	92	PR D46 1951	J.E. Augustin, G. Cosme	(DM2 Collab.)
BOLTON	92B	PRL 69 1328	T. Bolton et al.	(Mark III Collab.)
FUKUI	91C	PL B267 293	S. Fukui <i>et al.</i>	(SUGI, NAGO, KEK, KYOT+)
AUGUSTIN	90	PR D42 10	J.E. Augustin et al.	(DM2 Collab.)
BAI	90C	PRL 65 2507	Z. Bai et al.	(Mark III Collab.)
COFFMAN	90	PR D41 1410	D.M. Coffman et al.	(Mark III Collab.)
BISELLO	89B	PR D39 701	G. Busetto et al.	` (DM2 Collab.)
DUCH	89	ZPHY C45 223	K.D. Duch et al.	(ASTERIX Collab.) JP
RATH	89	PR D40 693	M.G. Rath et al.	(NDAM, BRAN, BNL, CUNY+)
BIRMAN	88	PRL 61 1557	A. Birman et al.	(BNL, FSU, IND, MASD) JP
ANDO	86	PRL 57 1296	A. Ando <i>et al.</i>	(KEK, KYOT, NIRS, SAGA+) IJP
REEVES	86	PR D34 1960	D.F. Reeves et al.	(FLOR, BNL, IND+) JP
CHUNG	85	PRL 55 779	S.U. Chung et al.	(BNL, FLOR, IND+) JP
ALTHOFF	84E	PL 147B 487	M. Althoff et al.	(TASSO Collab.)
EDWARDS	83B	PRL 51 859	C. Edwards et al.	(CIT, HARV, PRIN+)
EDWARDS	82E	PRL 49 259	C. Edwards et al.	(CIT, HARV, PRIN+)
Also		PRL 50 219	C. Edwards et al.	(CIT, HARV, PRIN+)
SCHARRE	80	PL 97B 329	D.L. Scharre et al.	(SLAC, LBL)
FOSTER	68B	NP B8 174	M. Foster et al.	(CÈRN, CDEF)
BAILLON	67	NC 50A 393	P.H. Baillon et al.	(CERN, CDEF, IRAD)
				· · · · · · · · · · · · · · · · · · ·