Package ISLET

March 24, 2020

Type Package	
Title ISLET	
Version 0.1.0	
Authors Anru Zhang, Yuetian Luo, Garvesh Raskutti, Ming Yuan	
Taintainer Yuetian Luo <yluo86@wisc.edu></yluo86@wisc.edu>	
Description This package can do fast low-rank tensor regression via importance sketching and fast low rank sparse tensor regression via importance sketching. The algorithm is quite scalable and can handle dimension ten million. See paper Zhang et al. (2020) for reference.	
License What license is it under?	
Encoding UTF-8	
LazyData true	
RoxygenNote 6.1.1	
Imports Rdpack	
RdMacros Rdpack	
R topics documented:	
ISLET matrix_ISLET select_r sparse_ISLET sparse_select_r	
Index	,
ISLET ISLET for regular tensor regression, 3-d case	

Description

This function do ISLET under the regular low-tucker rank tensor regression case. For detail about the procedure, see Zhang et al 2019.

2 matrix_ISLET

Usage

```
ISLET(X, y, r1, r2, r3, p1, p2, p3)
```

Arguments

Χ	input tensor, n*p1*p2*p3
у	input response y
r	input rank like r1,r2,r3
p	input dimension like p1, p2, p3

Value

Estimate of coefficient tensor A.

References

Zhang A, Luo Y, Raskutti G, Yuan M (2020). "ISLET Fast and Optimal Low-rank Tensor Regression via Importance Sketching." SIAM Journal on Mathematics of Data Science.

Examples

```
set.seed(2018)
n = c(1000); p = c(10); r = c(3); sig = c(5);
p1 = p2 = p3 = p
r1 = r2 = r3 = r
# Generate data
S.array = array(rnorm(r1*r2*r3), dim=c(r1,r2,r3)) # Core tensor
S = as.tensor(S.array)
E1 = matrix(rnorm(p1*r1), nrow = p1, ncol=r1)
E2 = matrix(rnorm(p2*r2), nrow = p2, ncol=r2)
E3 = matrix(rnorm(p3*r3), nrow = p3, ncol=r3)
X = as.tensor(array(rnorm(n*p1*p2*p3), dim=c(n,p1,p2,p3)))
# Parameter tensor
A = ttm(ttm(ttm(S, E1, 1), E2, 2), E3, 3)
eps = sig * rnorm(n) # Error
y = regression.product(X, A) + eps # response
snr <- sd(y)/sd(eps)</pre>
# Estimator
A_sketch <- sketch(X, y, r1, r2, r3, p1, p2, p3)
error <- fnorm(A_sketch$hatA - A)/ fnorm(A)</pre>
```

matrix_ISLET

Matrix ISLET, 2-d case

Description

Matrix ISLET, 2-d case

Usage

```
matrix_ISLET(X, y, r, p1, p2)
```

select_r 3

Arguments

Χ	input tensor data, n*p1*p2
У	input response y
r	input rank like r
р	input dimension like p1, p2

Value

Estimate of coefficient tensor A.

Examples

```
# EXAMPLE ISLET in Matrix case
n = c(5000); p = c(50); r = c(3); sig = c(5);
# data generation
S = diag(abs(rnorm(r))) # Core matrix
E1 = matrix(rnorm(p1*r), nrow = p1, ncol=r)
E2 = matrix(rnorm(p2*r), nrow = p2, ncol=r)
X = as.tensor(array(rnorm(n*p1*p2), dim=c(n,p1,p2)))
A = E1 %*% S %*% t(E2)
eps = sig * rnorm(n) # Error
y = matrix.regression.product(X, A) + eps # response
# Estimation
A_sketch <- matrix_sketch(X, y, r, p1, p2)
hatA <- A_sketch[[1]]
norm(hatA - A, type = "F")/norm(A, type = "F") # error</pre>
```

select_r

Estimate Rank when rank is unknown- 3-d case

Description

This function is used to estimate the rank r when the Tucker rank of tensor is unknown. For detail about the procedure, see reference Zhang et al 2019 and Zhang 2018 CROSS: Efficient low rank tensor completion.s

Usage

```
select_r(X, y, thres, r1, r2, r3, p1, p2, p3)
```

Arguments

```
X input tensor, n*p1*p2*p3
y input response y
thres thresholding in the autoselection of rank r, suggestion 1-2.
r input a conservative rank estimation r1_init,r2_init,r3_inits
p input dimension like p1, p2, p3
```

Value

Estimate Tucker rank of the parameter tensor

4 sparse_ISLET

References

Adummy A (2020). "Not avalable." Failed to insert reference with key = zhang2020cross from package = 'ISLET'. Possible cause — missing or misspelled key.

Examples

```
# ISLET in the unknown rank setting
n = c(1000); p = c(10); r = c(3); sig = c(5);
p1 = p2 = p3 = p
r1 = r2 = r3 = r
thres = 1.5; # thresholding is greater than 1, and not too big. Suggestion is 1-2.
# data generate
A = ttm(ttm(ttm(S, E1, 1), E2, 2), E3, 3)
eps = sig * rnorm(n) # Error
y = regression.product(X, A) + eps # response
snr <- sd(y)/sd(eps)</pre>
# Get a estimate of rank
r1_init = r2_init = r3_init = 8
 r\_select <- \ select\_r(X, \ y, \ thres, \ r1\_init, \ r2\_init, \ r3\_init, \ p1, \ p2, \ p3) 
# Do estimation
A_sketch <- sketch(X, y, r_select[1], r_select[2], r_select[3], p1, p2, p3)
fnorm(A_sketch - A)/fnorm(A)
```

sparse_ISLET

Sparse ISLET

Description

This is the main function to do ISLET in the sparse tensor regression case with known rank r, the output is the estimation error and the running time

Usage

```
sparse_ISLET(X, y, sparse_mode, r1, r2, r3, p1, p2, p3)
```

Arguments

```
X input tensor, n*p1*p2*p3
y input response y
sparse_mode Indicator of the sparse mode of the coefficient tensor, i.e. c(TRUE, TRUE, TRUE)
r input rank like r1,r2,r3
p input dimension like p1, p2, p3
```

Value

Estimate of coefficient tensor A.

sparse_select_r 5

Examples

```
set.seed(2018)
library(gglasso)
# EXAMPLE: Sparse tensor regression
n = c(3000); p = c(20); r = c(3); sig = c(5); s = c(12)
p1 = p2 = p3 = p
r1 = r2 = r3 = r
s1 = s2 = s3 = s
# Generate data
S.array = array(rnorm(r1*r2*r3), dim=c(r1,r2,r3)) # Core tensor
S = as.tensor(S.array)
E1 = matrix(rnorm(p1*r1), nrow = p1, ncol=r1)
E2 = matrix(rnorm(p2*r2), nrow = p2, ncol=r2)
E3 = matrix(rnorm(p3*r3), nrow = p3, ncol=r3)
# Add sparsity structure
E1[(s1+1):p1,] <- 0
E2[(s2+1):p2,] <- 0
E3[(s3+1):p3,] <- 0
sparse\_mode = c(TRUE, TRUE, TRUE);
X = as.tensor(array(rnorm(n*p1*p2*p3), dim=c(n,p1,p2,p3)))
A = ttm(ttm(ttm(S, E1, 1), E2, 2), E3, 3) # Parameter tensor
eps = sig * rnorm(n) # Error
y = regression.product(X, A) + eps # response
snr <- sd(y)/sd(eps)
sparse_sketch_result <- sparse_sketch(X, y, sparse_mode, r1, r2, r3, p1, p2, p3)</pre>
fnorm(sparse_sketch_result$hatA - A)/fnorm(A) # errorss
sparse_sketch_result$running_time
```

sparse_select_r

Estimate rank in the sparse ISLET case with unknown rank

Description

This function is used to select rank r for the sparse tensor regression case when the rank is unknown

Usage

```
sparse_select_r(X, y, r1, r2, r3, p1, p2, p3, thres, sparse_mode)
```

Arguments

```
y input response y
thres a thresholding in the autoselection of rank r. Suggestion value 1-2.
r input conservative esimate rank
p input dimension
```

Value

Estimated rank

6 sparse_select_r

References

Zhang A, Luo Y, Raskutti G, Yuan M (2020). "ISLET Fast and Optimal Low-rank Tensor Regression via Importance Sketching." *SIAM Journal on Mathematics of Data Science*.

Examples

```
set.seed(2018)
n = c(3000); p = c(20); r = c(3); sig = c(5); s = c(12);
thres = c(2) # thresholding is greater than 1, and not too big. Suggestion is 1-2.
p1 = p2 = p3 = p
r1 = r2 = r3 = r
s1 = s2 = s3 = s
# Generate data
S.array = array(rnorm(r1*r2*r3), dim=c(r1,r2,r3)) # Core tensor
S = as.tensor(S.array)
E1 = matrix(rnorm(p1*r1), nrow = p1, ncol=r1)
E2 = matrix(rnorm(p2*r2), nrow = p2, ncol=r2)
E3 = matrix(rnorm(p3*r3), nrow = p3, ncol=r3)
# Add sparsity structure
E1[(s1+1):p1,] <- 0
E2[(s2+1):p2,] <- 0
E3[(s3+1):p3,] < -0
sparse\_mode = c(TRUE, TRUE, TRUE);
X = as.tensor(array(rnorm(n*p1*p2*p3), dim=c(n,p1,p2,p3)))
A = ttm(ttm(ttm(S, E1, 1), E2, 2), E3, 3)
eps = sig * rnorm(n) # Error
y = regression.product(X, A) + eps # response
snr <- sd(y)/sd(eps)</pre>
r1_init = 10; r2_init = 10; r3_init = 10; # an initial conservative estimator of rank
r_select = sparse_select_r(X, y,r1, r2, r3, p1, p2, p3, thres, sparse_mode)
sparse_sketch_result <- sparse_sketch(X, y, sparse_mode, r_select[1], r_select[2], r_select[3], p1, p2, p3)</pre>
fnorm(sparse_sketch_result$hatA - A)/fnorm(A) # errorss
sparse_sketch_result$running_time
```

Index

```
ISLET, 1
matrix_ISLET, 2
select_r, 3
sparse_ISLET, 4
sparse_select_r, 5
```