PATENT

Listing of Claims:

1	1-31. (Canceled)
1	32. (Currently amended) A probe nucleic acid compound having the formula
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2	× ο ο γ
3	wherein,
4	NA is a nucleic acid chain comprising nucleic acid monomers selected from the
5	group consisting of natural nucleic acids, modified nucleic acids and
6	combinations thereof;
7	R ¹ , R ² , R ³ and R ⁴ are linker moieties independently selected from the group
8	consisting of substituted or unsubstituted alkyl and substituted or
9	unsubstituted heteroalky1;
10	Nu1 and Nu2 are members independently selected from the group consisting of
11	nucleotide residues and nucleoside residues;
12	R is a molecular energy transfer donor;
13	Q is a molecular energy acceptor; and
14	X and Y are the same or different and are non-nucleic acid stabilizing moieties
15	that interact to bring R and Q into operative proximity, thereby enabling
16	transfer of energy from R to Q, wherein said probe nucleic acid sequence
17	is not hybridized to a target nucleic acid.
1	33. (Previously Presented) The compound according to claim 32, wherein
2	said molecular energy transfer donor is a fluorophore.
1	34. (Previously Presented) The compound according to claim 32, wherein
2	said molecular energy acceptor is a fluorescence quencher.
	-

1	35. (Previously Presented) The compound according to claim 32, wherein X
2	and Y are both hydrophobic moieties.
1	36. (Previously Presented) The compound according to claim 35, wherein X
2	and Y are members independently selected from the group consisting of saturated hydrocarbons
3	unsaturated hydrocarbons, steroids, fatty acids, fatty alcohols and hydrophobic peptides.
1	37. (Previously Presented) The compound according to claim 32, wherein
2	natural nucleic acids are members selected from the group consisting of deoxyribonucleotides,
3	ribonucleotides and combinations thereof.
1	38. (Previously Presented) The compound according to claim 32, wherein
2	said modified nucleic acids are peptide nucleic acids.
1	39. (Previously Presented) The compound according to claim 32, wherein
2	said nucleic acid monomers are joined by linkages that are members independently selected from
3	the group consisting of phosphodiesters and modified phosphodiesters.
1	40. (Previously Presented) The compound according to claim 39, wherein
2	said modified phosphodiesters are members selected from the group consisting of
3	phosphorothicates and phosphoramidates.
1	41. (Previously Presented) The compound according to claim 32, wherein
2	said nucleic acid chain further comprises a hybridization enhancing moiety.
1	42. (Previously Presented) The compound according to claim 41, wherein
2	said hybridization enhancing moiety is a member selected from the group consisting of
3	intercalating agents, minor groove binders and modified exocyclic bases.
1	43. (Cancel)

PATENT

- 1 44. (Previously Presented) The compound according to claim 32, wherein 2 said compound is immobilized on a solid surface.
- 1 45. (Previously Presented) A method for amplifying a polynucleotide, 2 wherein a compound according to claim 32 is a primer in said method, said method comprising:
- 3 (a) hybridizing said primer to said polynucleotide; and
- 4 (b) amplifying said polynucleotide.
- 1 46. (Previously Presented) The method according to claim 45, wherein said 2 amplifying is a member selected from the group consisting of polymerase chain reaction (PCR), 3 nucleic acid sequence based amplification (NASBA), strand displacement amplification (SDA) 4 and combinations thereof.
- 1 47. (Previously Presented) A method for detecting or quantitating a nucleic 2 acid, wherein the compound according to claim 32 is used as a probe, said method comprising:
- 3 (a) hybridizing said compound to said nucleic acid; and
- 4 (b) detecting a change in fluorescence of said compound, thereby detecting or quantitating said nucleic acid.
- 1 48. (Previously Presented) The method according to claim 47, wherein said 2 method comprises a member selected from the group consisting of 5'-nuclease assay, rolling 3 circle amplification and combinations thereof.
- 1 49. (Previously Presented) A kit for quantitating nucleic acid, said kit comprising a compound according to claim 32.
- 1 50. (Previously Presented) A compound having the formula:

2

PATENT

4 wherein, 5 CHOL is a cholesterol derivative: R¹, R², R³ and R⁴ are linker moieties independently selected from the group 6 consisting of substituted or unsubstituted alkyl and substituted or 7 unsubstituted heteroalky1; 8 Nu¹ and Nu² are members independently selected from the group consisting of 9 nucleotide residues and nucleoside residues; 10 11 NA is a nucleic acid sequence; D is a donor of light energy; and 12 13 Q is a quencher of light energy, 14 wherein the CHOL moieties interact to bring D and Q into operative proximity. 15 thereby enabling transfer of energy from D to Q. 1 51. (Previously Presented) The compound according to claim 50, wherein R2-CHOL and R3-CHOL are independently selected and have structures according to the 2 3 formula:

5 wherein,

4

6

7

R¹¹ is a member selected from the group consisting of substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;

8 PEG is polyethylene glycol;

9 Y³ is an organic functional group adjoining said PEG to said CHOL.

1 52. (Previously Presented) The compound according to claim 51, wherein 2 said PEG has from about 2 to about 20 ethylene glycol subunits.

PATENT

- 1 53. (Previously Presented) The compound according to claim 51 in which R¹¹ is substituted or unsubstituted alkyl. 2
- 54. 1 (Previously Presented) The compound according to claim 53, wherein R¹¹ 2 is C₁-C₆ substituted or unsubstituted alkyl.
- 1 55. (Previously Presented) The compound according to claim 51, wherein Y³-CHOL has the structure: 2

56. (Previously Presented) The compound according to claim 50, wherein 1

Nu¹ and Nu² are nucleotides having an exocyclic amine group to which -R¹-D and -R⁴O are

3 attached, respectively.

3

2

1

57. (Previously Presented) A compound having the formula:

3 wherein.

NA is a nucleic acid sequence;

Nu¹ and Nu² are members independently selected from the group consisting of nucleotide residues and nucleoside residues; 6

PATENT

7	Y^1 and Y^2 are linking groups independently selected from the group consisting of
8	substituted or unsubstituted alkyl and substituted or unsubstituted
9	heteroalkyl;
10	R ⁵ and R ⁶ are linking groups independently selected from the group consisting of
11	substituted or unsubstituted alkyl and substituted or unsubstituted
12	heteroalkyl;
13	D is a donor of light energy; and
14	Q is a quencher of light energy,
15	wherein each CHOL interacts with the other CHOL to bring D and Q into operative
16	proximity, thereby enabling transfer of energy from D to Q.
1	58. (Previously Presented) The compound according to claim 57, wherein Y
2	and Y^2 are members independently selected from substituted or unsubstituted heteroalkyl.

- (Previously Presented) The compound according to claim 58, wherein Y1 1 59. and Y² are polyethylene glycol. 2
- I 60. (Previously Presented) The compound according to claim 59, wherein 2 said polyethylene glycol has from about 2 to about 20 ethylene glycol subunits.
- 1 (Previously Presented) The compound according to claim 57, wherein 61. Y¹-CHOL and Y²-CHOL have the structure: 2

1 62. (Cancel)