Задача 1. Пусть Γ — окружность, описанная около остроугольного треугольника ABC. Точки D и E лежат на отрезках AB и AC соответственно, причем AD=AE. Серединные перпендикуляры к отрезкам BD и CE пересекают меньшие дуги AB и AC окружности Γ в точках F и G соответственно. Докажите, что прямые DE и FG параллельны или совпадают.

Решение. Пусть FG пересекает AC и AB в точках P и Q соответственно. Тогда для того, чтобы прямые DE и FG были параллельны достаточно показать, что треугольник APQ является равнобедренным, то есть $\angle APQ = \angle AQP$. Положим $\angle DAF = \varphi$, $\angle EAG = \gamma$, $\angle FDB = \angle FBD = \alpha$, $\angle GEC = \angle GCE = \beta$. Тогда $\angle AQP = \frac{1}{2}(\smile FB + \smile AG) = \varphi + \beta$ и $\angle APQ = \frac{1}{2}(\smile GC + \smile AF) = \alpha + \gamma$. То есть надо доказать, что $\gamma + \alpha = \beta + \varphi$. Заметим, что $\alpha = \varphi + \angle DFA$ (как внешний к $\triangle ADF$) и $\beta = \gamma + \angle EGA$ (как внешний к $\triangle AGE$). Таким образом, задача свелась к равенству углов $\angle DFA$ и $\angle EGA$.

Пусть $B' \in \Gamma$ и $C' \in \Gamma$ так, что G и F середины дуг $\smile CC'$ и $\smile BB'$ соответственно. Покажем, что AD = AB'. Для начала заметим, что AF — биссектриса угла $\angle BAB'$. Значит, симметрично отразив прямую AB относительно AF, мы получим прямую AB'. Пусть тогда D перейдет в D', тогда FD = FD'. Заметим, что $\angle ADF = 180^\circ - \angle FDB = 180^\circ - \angle FBD = 180^\circ - \angle AGF = \angle AB'F$. Следовательно, D' = B', а значит AD = AD' = AB'. Аналогично доказывается, что AE = AC'. Тогда AB' = AD = AE = AC'. Отсюда мгновенно следует, что $\angle DFA = \angle D'FA = \angle B'GA = \angle EGA$. Это нам и требовалось.