Problem statement

National statistical systems are facing significant challenges. These challenges arise from increasing demands for high quality and trustworthy data to guide decision making, coupled with the rapidly changing landscape of the data revolution. To help create a mechanism for learning amongst national statistical systems, the World Bank has developed improved Statistical Performance Indicators (SPI) to monitor the statistical performance of countries.

Importing Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Dataset

```
In [2]:
    df=pd.read_csv(r"C:\Users\user\Downloads\spi index.csv")
    df
```

Out[2]:		country	iso3c	date	SPI.INDEX.PIL1	SPI.INDEX.PIL2	SPI.INDEX.PIL3	SPI.INDEX.PIL4	SPI.II
	0	Norway	NOR	2019	100.0	92.233333	77.56875	80.666667	
	1	Italy	ITA	2019	100.0	91.866667	75.28750	81.825000	
	2	Austria	AUT	2019	100.0	91.300000	74.55000	79.750000	
	3	Poland	POL	2019	100.0	95.100000	70.53750	79.716667	
	4	Slovenia	SVN	2019	100.0	96.933333	76.28125	71.441667	
	•••								
	3483	Virgin Islands (U.S.)	VIR	2004	20.0	NaN	NaN	NaN	
	3484	West Bank and Gaza	PSE	2004	20.0	NaN	NaN	NaN	
	3485	Yemen, Rep.	YEM	2004	20.0	NaN	NaN	NaN	

3486	Zambia	ZMB	2004	40.0	NaN	NaN	NaN
3487	Zimbabwe	ZWE	2004	20.0	NaN	NaN	NaN

country iso3c date SPI.INDEX.PIL1 SPI.INDEX.PIL2 SPI.INDEX.PIL3 SPI.INDEX.PIL4 SPI.IN

3488 rows × 79 columns

Data Cleaning and Data Preprocessing head-To display the specified data from first

In [3]:
 dat=df.head(50)
 dat

Out[3]:		country	iso3c	date	SPI.INDEX.PIL1	SPI.INDEX.PIL2	SPI.INDEX.PIL3	SPI.INDEX.PIL4	SPI.IN
	0	Norway	NOR	2019	100.0	92.233333	77.56875	80.666667	
	1	Italy	ITA	2019	100.0	91.866667	75.28750	81.825000	
	2	Austria	AUT	2019	100.0	91.300000	74.55000	79.750000	
	3	Poland	POL	2019	100.0	95.100000	70.53750	79.716667	
	4	Slovenia	SVN	2019	100.0	96.933333	76.28125	71.441667	
	5	United States	USA	2019	100.0	94.000000	63.11875	87.500000	
	6	Spain	ESP	2019	100.0	90.866667	75.53750	77.866667	
	7	Sweden	SWE	2019	100.0	94.866667	75.23750	72.516667	
	8	Finland	FIN	2019	100.0	94.933333	75.23750	72.216667	
	9	Korea, Rep.	KOR	2019	100.0	93.400000	75.61875	82.400000	

	country	iso3c	date	SPI.INDEX.PIL1	SPI.INDEX.PIL2	SPI.INDEX.PIL3	SPI.INDEX.PIL4	SPI.IN
10	Australia	AUS	2019	100.0	92.666667	74.07500	74.466667	
11	Netherlands	NLD	2019	100.0	98.500000	71.36250	69.916667	
12	Mexico	MEX	2019	100.0	92.933333	89.31875	80.283333	
13	Germany	DEU	2019	100.0	96.466667	71.10625	74.916667	
14	Canada	CAN	2019	100.0	93.200000	60.01250	84.116667	
15	Ireland	IRL	2019	100.0	94.733333	74.11250	66.341667	
16	Switzerland	СНЕ	2019	100.0	87.666667	76.55000	80.858333	
17	France	FRA	2019	100.0	90.800000	74.30000	66.641667	
18	Denmark	DNK	2019	90.0	98.700000	68.01875	73.866667	
19	Estonia	EST	2019	100.0	93.933333	67.49375	68.941667	
20	Japan	JPN	2019	90.0	90.533333	73.51250	80.000000	
21	Slovak Republic	SVK	2019	90.0	94.933333	69.95000	73.091667	
22	Portugal	PRT	2019	100.0	90.766667	71.03750	65.791667	
23	Greece	GRC	2019	100.0	87.500000	68.53750	70.766667	
24	New Zealand	NZL	2019	100.0	91.633333	71.51875	63.166667	
25	Czech Republic	CZE	2019	90.0	90.100000	74.58750	75.616667	
26	Lithuania	LTU	2019	100.0	91.833333	60.96875	71.866667	
27	Hungary	HUN	2019	100.0	86.866667	69.03750	68.266667	

	country	iso3c	date	SPI.INDEX.PIL1	SPI.INDEX.PIL2	SPI.INDEX.PIL3	SPI.INDEX.PIL4	SPI.IN
28	Turkey	TUR	2019	100.0	84.000000	86.08125	53.108333	
29	Latvia	LVA	2019	100.0	89.166667	61.38750	68.041667	
30	United Kingdom	GBR	2019	100.0	86.800000	74.02500	64.941667	
31	Chile	CHL	2019	100.0	76.966667	80.69375	59.525000	
32	Belgium	BEL	2019	100.0	83.933333	62.22500	65.916667	
33	Bulgaria	BGR	2019	100.0	90.100000	60.67500	70.841667	
34	Armenia	ARM	2019	100.0	84.966667	81.22500	59.941667	
35	Cyprus	СҮР	2019	100.0	92.266667	53.33125	73.308333	
36	Georgia	GEO	2019	100.0	86.466667	73.71875	60.116667	
37	Costa Rica	CRI	2019	100.0	86.466667	75.95625	66.466667	
38	Moldova	MDA	2019	100.0	94.233333	53.56250	58.816667	
39	Kyrgyz Republic	KGZ	2019	100.0	81.466667	73.63750	53.058333	
40	Kazakhstan	KAZ	2019	100.0	82.133333	78.31250	62.350000	
41	Luxembourg	LUX	2019	80.0	90.433333	61.28125	59.291667	
42	Russian Federation	RUS	2019	93.4	83.666667	58.51875	65.366667	
43	Israel	ISR	2019	100.0	85.733333	58.46250	46.483333	

	country	13030	aate	SI I.III DEX.I IEI	31 I.III DEX.I ILL	SI I.III DEX.I IES	SI I.III DEX.I IE	51 1.11
44	Iceland	ISL	2019	80.0	87.800000	59.70000	61.666667	
45	Romania	ROU	2019	90.0	87.166667	56.73125	73.641667	
46	Belarus	BLR	2019	100.0	79.233333	67.88125	53.558333	
47	Brazil	BRA	2019	90.0	83.300000	73.09375	62.375000	
48	Mongolia	MNG	2019	100.0	80.000000	77.47500	63.941667	
49	Thailand	THA	2019	100.0	76.466667	76.23750	57.850000	

country iso3c date SPI.INDEX.PIL1 SPI.INDEX.PIL2 SPI.INDEX.PIL3 SPI.INDEX.PIL4 SPI.IN

50 rows × 79 columns

tail-To display specified no of data from last

In [4]:	df.ta df	<pre>df.tail(50) df</pre>											
Out[4]:		country	iso3c	date	SPI.INDEX.PIL1	SPI.INDEX.PIL2	SPI.INDEX.PIL3	SPI.INDEX.PIL4	SPI.IN				
	0	Norway	NOR	2019	100.0	92.233333	77.56875	80.666667					
	1	Italy	ITA	2019	100.0	91.866667	75.28750	81.825000					
	2	Austria	AUT	2019	100.0	91.300000	74.55000	79.750000					
	3	Poland	POL	2019	100.0	95.100000	70.53750	79.716667					
	4	Slovenia	SVN	2019	100.0	96.933333	76.28125	71.441667					
	•••												
	3483	Virgin Islands (U.S.)	VIR	2004	20.0	NaN	NaN	NaN					

	country	iso3c	date	SPI.INDEX.PIL1	SPI.INDEX.PIL2	SPI.INDEX.PIL3	SPI.INDEX.PIL4	SPI.IN
3484	West Bank and Gaza	PSE	2004	20.0	NaN	NaN	NaN	
3485	Yemen, Rep.	YEM	2004	20.0	NaN	NaN	NaN	
3486	Zambia	ZMB	2004	40.0	NaN	NaN	NaN	
3487	Zimbabwe	ZWE	2004	20.0	NaN	NaN	NaN	
3488 r	ows × 79 c	olumn	S					
4								+

shape

```
In [5]:
    data=np.shape(df)
    data
```

Out[5]: (3488, 79)

size

```
In [6]: print(np.size(df))

275552

In [7]: df=df.fillna(value=0)
df
```

Out[7]:		country	iso3c	date	SPI.INDEX.PIL1	SPI.INDEX.PIL2	SPI.INDEX.PIL3	SPI.INDEX.PIL4	SPI.II
	0	Norway	NOR	2019	100.0	92.233333	77.56875	80.666667	
	1	Italy	ITA	2019	100.0	91.866667	75.28750	81.825000	
	2	Austria	AUT	2019	100.0	91.300000	74.55000	79.750000	
	3	Poland	POL	2019	100.0	95.100000	70.53750	79.716667	

	country	iso3c	date	SPI.INDEX.PIL1	SPI.INDEX.PIL2	SPI.INDEX.PIL3	SPI.INDEX.PIL4	SPI.IN
4	Slovenia	SVN	2019	100.0	96.933333	76.28125	71.441667	
3483	Virgin Islands (U.S.)	VIR	2004	20.0	0.000000	0.00000	0.000000	
3484	West Bank and Gaza	PSE	2004	20.0	0.000000	0.00000	0.000000	
3485	Yemen, Rep.	YEM	2004	20.0	0.000000	0.00000	0.000000	
3486	Zambia	ZMB	2004	40.0	0.000000	0.00000	0.000000	
3487	Zimbabwe	ZWE	2004	20.0	0.000000	0.00000	0.000000	

3488 rows × 79 columns

columns

info

```
In [9]:
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3488 entries, 0 to 3487
Data columns (total 79 columns):

Data	columns (total 79 columns):		
#	Column	Non-Null Count	Dtype
0	country	3488 non-null	object
1	iso3c	3488 non-null	object
2	date	3488 non-null	int64
3	SPI.INDEX.PIL1	3488 non-null	float64
4	SPI.INDEX.PIL2	3488 non-null	float64
5	SPI.INDEX.PIL3	3488 non-null	float64
6	SPI.INDEX.PIL4	3488 non-null	float64
7	SPI.INDEX.PIL5	3488 non-null	float64
8	SPI.INDEX	3488 non-null	float64
9	SPI.DIM1.5.INDEX	3488 non-null	float64
10	SPI.DIM2.1.INDEX	3488 non-null	float64
11	SPI.DIM2.2.INDEX	3488 non-null	float64
12	SPI.DIM2.4.INDEX	3488 non-null	float64
13	SPI.DIM3.1.INDEX	3488 non-null	float64
14	SPI.DIM3.2.INDEX	3488 non-null	float64
15	SPI.DIM3.3.INDEX	3488 non-null	float64
16	SPI.DIM3.4.INDEX	3488 non-null	float64
17	SPI.DIM3.4.INDEX	3488 non-null	float64
18	SPI.DIM4.1.SVY.INDEX	3488 non-null	
19	SPI.DIM4.1.3VY.INDEX	3488 non-null	float64
	SPI.DIM4.2.INDEX SPI.DIM4.3.INDEX	3488 non-null	float64
20			float64
21	SPI.DIM5.1.INDEX	3488 non-null	int64
22	SPI.DIM5.2.INDEX	3488 non-null	float64
23	SPI.DIM5.5.INDEX	3488 non-null	int64
24	SPI.D1.5.POV	3488 non-null	float64
25	SPI.D1.5.CHLD.MORT	3488 non-null	int64
26	SPI.D1.5.DT.TDS.DPPF.XP.ZS	3488 non-null	float64
27	SPI.D1.5.SAFE.MAN.WATER	3488 non-null	float64
28	SPI.D1.5.LFP	3488 non-null	float64
29	SPI.D2.1.GDDS	3488 non-null	float64
30	SPI.D2.2.Machine.readable	3488 non-null	float64
31	SPI.D2.2.Non.proprietary	3488 non-null	float64
32	SPI.D2.2.Download.options	3488 non-null	float64
33	SPI.D2.2.Metadata.available	3488 non-null	float64
34	SPI.D2.2.Terms.of.use	3488 non-null	float64
35	SPI.D2.2.Openness.subscore	3488 non-null	float64
36	SPI.D2.4.NADA	3488 non-null	float64
37	SPI.D3.1.POV	3488 non-null	float64
38	SPI.D3.2.HNGR	3488 non-null	float64
39	SPI.D3.3.HLTH	3488 non-null	float64
40	SPI.D3.4.EDUC	3488 non-null	float64
41	SPI.D3.5.GEND	3488 non-null	float64
42	SPI.D3.6.WTRS	3488 non-null	float64
43	SPI.D3.7.ENRG	3488 non-null	float64
44	SPI.D3.8.WORK	3488 non-null	float64
45	SPI.D3.9.INDY	3488 non-null	float64
46	SPI.D3.10.NEQL	3488 non-null	float64
47	SPI.D3.11.CITY	3488 non-null	float64
48	SPI.D3.12.CNSP	3488 non-null	float64
49	SPI.D3.15.LAND	3488 non-null	float64
50	SPI.D3.16.INST	3488 non-null	float64
51	SPI.D3.17.PTNS	3488 non-null	float64
52	SPI.D3.13.CLMT	3488 non-null	float64
53	SPI.D4.1.1.POPU	3488 non-null	float64
54	SPI.D4.1.2.AGRI	3488 non-null	float64
55	SPI.D4.1.3.BIZZ	3488 non-null	float64
56	SPI.D4.1.4.HOUS	3488 non-null	float64

```
57 SPI.D4.1.5.AGSVY
                                 3488 non-null
                                                float64
                                                float64
                                 3488 non-null
58 SPI.D4.1.6.LABR
                                 3488 non-null
                                                float64
59 SPI.D4.1.7.HLTH
                                 3488 non-null
                                               float64
60 SPI.D4.1.8.BZSVY
                                 3488 non-null
                                               float64
61 SPI.D4.2.3.CRVS
62 SPI.D4.3.GEO.first.admin.level 3488 non-null
                                               float64
                                 3488 non-null float64
63 SPI.D5.1.DILG
                                 3488 non-null float64
64 SPI.D5.2.1.SNAU
65 SPI.D5.2.2.NABY
                                 3488 non-null float64
                                 3488 non-null float64
66 SPI.D5.2.3.CNIN
                                3488 non-null float64
67 SPI.D5.2.4.CPIBY
68 SPI.D5.2.5.HOUS
                                3488 non-null float64
69 SPI.D5.2.6.EMPL
                                3488 non-null float64
70 SPI.D5.2.7.CGOV
                                3488 non-null float64
71 SPI.D5.2.8.FINA
                                3488 non-null float64
72 SPI.D5.2.9.MONY
                                3488 non-null float64
73 SPI.D5.2.10.GSBP
                                 3488 non-null float64
74 SPI.D5.5.DIFI
                                 3488 non-null float64
75 income
                                 3488 non-null object
76 region
                                 3488 non-null object
                                 3488 non-null int64
77 weights
                                 3488 non-null float64
78 population
dtypes: float64(70), int64(5), object(4)
```

memory usage: 2.1+ MB

```
In [17]:
          data=df[['population' ,'income','SPI.INDEX.PIL1', 'SPI.INDEX.PIL2',
                  'SPI.INDEX.PIL3', 'SPI.INDEX.PIL4', 'SPI.INDEX.PIL5', 'SPI.INDEX']]
          data
```

Out[17]:		population	income	SPI.INDEX.PIL1	SPI.INDEX.PIL2	SPI.INDEX.PIL3	SPI.INDEX.PIL4	SPI.INDE
	0	5347896.0	High income	100.0	92.233333	77.56875	80.666667	
	1	60297396.0	High income	100.0	91.866667	75.28750	81.825000	
	2	8877067.0	High income	100.0	91.300000	74.55000	79.750000	
	3	37970874.0	High income	100.0	95.100000	70.53750	79.716667	
	4	2087946.0	High income	100.0	96.933333	76.28125	71.441667	
	•••		•••					
	3483	108467.0	High income	20.0	0.000000	0.00000	0.000000	
	3484	3236626.0	Lower middle income	20.0	0.000000	0.00000	0.000000	
	3485	19540098.0	Low income	20.0	0.000000	0.00000	0.000000	
	3486	11550642.0	Lower middle income	40.0	0.000000	0.00000	0.000000	
	3487	12019912.0	Lower middle income	20.0	0.000000	0.00000	0.000000	

3488 rows × 8 columns

Line chart

```
In [11]:
        df.plot.line(subplots=True)
Out[11]: array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>,
             <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>,
<AxesSubplot:>, <AxesSubplot:>], dtype=object)
```

Line chart

500

1000

1500

2000

```
In [12]: df.plot.line()
```

2500

population)

Out[12]: <AxesSubplot:>

Bar chart

```
In [13]: dat.plot.bar()
Out[13]: <AxesSubplot:>
```


1e8

3.0

2.5

2.0

Histogram

```
In [14]: dat.plot.hist()
```

Out[14]: <AxesSubplot:ylabel='Frequency'>

50

40

30

Area chart

```
In [18]: data.plot.area()
```

Out[18]: <AxesSubplot:>

Box chart

Out[19]: <AxesSubplot:>

Pie chart

```
In [21]: dat.plot.pie(y='population' )
```

Out[21]: <AxesSubplot:ylabel='population'>

Scatter chart

```
In [23]: dat.plot.scatter(x='population' ,y='weights')
Out[23]: <AxesSubplot:xlabel='population', ylabel='weights'>
```


In [24]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3488 entries, 0 to 3487
Data columns (total 79 columns):

Data	columns (total 79 columns):		
#	Column	Non-Null Count	Dtype
0	country	3488 non-null	object
1	iso3c	3488 non-null	object
2	date	3488 non-null	int64
3	SPI.INDEX.PIL1	3488 non-null	float64
4	SPI.INDEX.PIL2	3488 non-null	float64
5	SPI.INDEX.PIL3	3488 non-null	float64
6	SPI.INDEX.PIL4	3488 non-null	float64
7	SPI.INDEX.PIL5	3488 non-null	float64
8	SPI.INDEX	3488 non-null	float64
9	SPI.DIM1.5.INDEX	3488 non-null	float64
10	SPI.DIM2.1.INDEX	3488 non-null	float64
11	SPI.DIM2.2.INDEX	3488 non-null	float64
12	SPI.DIM2.4.INDEX	3488 non-null	float64
13	SPI.DIM3.1.INDEX	3488 non-null	float64
14	SPI.DIM3.2.INDEX	3488 non-null	float64
15	SPI.DIM3.3.INDEX	3488 non-null	float64
16	SPI.DIM3.4.INDEX	3488 non-null	float64
17	SPI.DIM4.1.CEN.INDEX	3488 non-null	float64
18	SPI.DIM4.1.SVY.INDEX	3488 non-null	float64
19	SPI.DIM4.2.INDEX	3488 non-null	float64
20	SPI.DIM4.3.INDEX	3488 non-null	float64
21	SPI.DIM5.1.INDEX	3488 non-null	int64
22	SPI.DIM5.2.INDEX	3488 non-null	float64
23	SPI.DIM5.5.INDEX	3488 non-null	int64
24	SPI.D1.5.POV	3488 non-null	float64
25	SPI.D1.5.CHLD.MORT	3488 non-null	int64
26	SPI.D1.5.DT.TDS.DPPF.XP.ZS	3488 non-null	float64
27	SPI.D1.5.SAFE.MAN.WATER	3488 non-null	float64
28	SPI.D1.5.LFP	3488 non-null	float64
29	SPI.D2.1.GDDS	3488 non-null	float64
30	SPI.D2.2.Machine.readable	3488 non-null	float64
31	SPI.D2.2.Non.proprietary	3488 non-null	float64
32	SPI.D2.2.Download.options	3488 non-null	float64
33	SPI.D2.2.Metadata.available	3488 non-null	float64
34	SPI.D2.2.Terms.of.use	3488 non-null	float64
35	SPI.D2.2.Openness.subscore	3488 non-null	float64
36	SPI.D2.4.NADA	3488 non-null	float64
37	SPI.D3.1.POV	3488 non-null	float64
38	SPI.D3.2.HNGR	3488 non-null	float64
39	SPI.D3.3.HLTH	3488 non-null	float64
40	SPI.D3.4.EDUC	3488 non-null	float64
41	SPI.D3.5.GEND	3488 non-null	float64
42	SPI.D3.6.WTRS	3488 non-null	float64

```
43 SPI.D3.7.ENRG
                                                float64
                                 3488 non-null
                                                float64
44 SPI.D3.8.WORK
                                 3488 non-null
45 SPI.D3.9.INDY
                                 3488 non-null
                                                float64
                                 3488 non-null
                                                float64
46 SPI.D3.10.NEQL
                                 3488 non-null
                                                float64
47 SPI.D3.11.CITY
                                3488 non-null
                                               float64
48 SPI.D3.12.CNSP
                                3488 non-null
                                               float64
49 SPI.D3.15.LAND
50 SPI.D3.16.INST
                                3488 non-null
                                               float64
51 SPI.D3.17.PTNS
                                3488 non-null
                                               float64
52 SPI.D3.13.CLMT
                                3488 non-null
                                               float64
                                               float64
53 SPI.D4.1.1.POPU
                                3488 non-null
54 SPI.D4.1.2.AGRI
                                3488 non-null float64
55 SPI.D4.1.3.BIZZ
                                3488 non-null float64
56 SPI.D4.1.4.HOUS
                                3488 non-null float64
57 SPI.D4.1.5.AGSVY
                                3488 non-null float64
58 SPI.D4.1.6.LABR
                                 3488 non-null float64
59 SPI.D4.1.7.HLTH
                                 3488 non-null float64
60 SPI.D4.1.8.BZSVY
                                 3488 non-null float64
61 SPI.D4.2.3.CRVS
                                 3488 non-null float64
62 SPI.D4.3.GEO.first.admin.level 3488 non-null float64
                                 3488 non-null float64
63 SPI.D5.1.DILG
                                 3488 non-null float64
64 SPI.D5.2.1.SNAU
                                 3488 non-null float64
65 SPI.D5.2.2.NABY
66 SPI.D5.2.3.CNIN
                                 3488 non-null float64
                                3488 non-null float64
67 SPI.D5.2.4.CPIBY
68 SPI.D5.2.5.HOUS
                                3488 non-null float64
69 SPI.D5.2.6.EMPL
                                3488 non-null float64
                                3488 non-null float64
70 SPI.D5.2.7.CGOV
                                3488 non-null float64
71 SPI.D5.2.8.FINA
                                3488 non-null float64
72 SPI.D5.2.9.MONY
                                3488 non-null float64
73 SPI.D5.2.10.GSBP
                                 3488 non-null float64
74 SPI.D5.5.DIFI
                                 3488 non-null
75 income
                                               object
76 region
                                 3488 non-null
                                               object
                                 3488 non-null
77 weights
                                                int64
                                 3488 non-null
                                               float64
78 population
dtypes: float64(70), int64(5), object(4)
memory usage: 2.1+ MB
```

```
In [25]:
```

```
df.columns
```

```
'SPI.DIM4.1.SVY.INDEX', 'SPI.DIM4.2.INDEX', 'SPI.DIM4.3.INDEX',
                                        'SPI.DIM5.1.INDEX', 'SPI.DIM5.2.INDEX', 'SPI.DIM5.5.INDEX', 'SPI.D1.5.POV', 'SPI.D1.5.CHLD.MORT', 'SPI.D1.5.DT.TDS.DPPF.XP.ZS',
                                        'SPI.D1.5.SAFE.MAN.WATER', 'SPI.D1.5.LFP', 'SPI.D2.1.GDDS', 'SPI.D2.2.Machine.readable', 'SPI.D2.2.Non.proprietary', 'SPI.D2.2.Download.options', 'SPI.D2.2.Metadata.available',
                                         'SPI.D2.2.Terms.of.use', 'SPI.D2.2.Openness.subscore', 'SPI.D2.4.NADA',
                                        'SPI.D2.2.Terms.or.use', SPI.D2.2.Openness.subscore', SPI.D2.4.NADA
'SPI.D3.1.POV', 'SPI.D3.2.HNGR', 'SPI.D3.3.HLTH', 'SPI.D3.4.EDUC',
'SPI.D3.5.GEND', 'SPI.D3.6.WTRS', 'SPI.D3.7.ENRG', 'SPI.D3.8.WORK',
'SPI.D3.9.INDY', 'SPI.D3.10.NEQL', 'SPI.D3.11.CITY', 'SPI.D3.12.CNSP',
'SPI.D3.15.LAND', 'SPI.D3.16.INST', 'SPI.D3.17.PTNS', 'SPI.D3.13.CLMT'
'SPI.D4.1.1.POPU', 'SPI.D4.1.2.AGRI', 'SPI.D4.1.3.BIZZ',
'SPI.D4.1.4.HOUS', 'SPI.D4.1.5.AGSVY', 'SPI.D4.1.6.LABR',
'SPI.D4.1.7.HLTH', 'SPI.D4.1.8.BZSVY', 'SPI.D4.2.3.CRVS',
'SPI.D4.3.GEO.finst.admin.level', 'SPI.D5.1.DIG', 'SPI.D5.2.1.SNAUL'
                                         'SPI.D4.3.GEO.first.admin.level', 'SPI.D5.1.DILG', 'SPI.D5.2.1.SNAU',
                                        'SPI.D5.2.2.NABY', 'SPI.D5.2.3.CNIN', 'SPI.D5.2.4.CPIBY', 'SPI.D5.2.5.HOUS', 'SPI.D5.2.6.EMPL', 'SPI.D5.2.7.CGOV', 'SPI.D5.2.8.FINA', 'SPI.D5.2.9.MONY', 'SPI.D5.2.10.GSBP', 'SPI.D5.5.DIFI', 'income', 'region', 'weights', 'population'],
                                      dtype='object')
```

```
In [26]:
            df.describe()
Out[26]:
                         date SPI.INDEX.PIL1 SPI.INDEX.PIL2 SPI.INDEX.PIL3 SPI.INDEX.PIL4 SPI.INDEX.PIL5
           count 3488.000000
                                  3488.000000
                                                  3488.000000
                                                                  3488.000000
                                                                                  3488.000000
                                                                                                  3488.000000
                  2011.500000
                                    45.928440
                                                    11.868014
                                                                    47.938459
                                                                                     9.662335
                                                                                                    10.688073
           mean
             std
                     4.610433
                                    26.206034
                                                    26.404537
                                                                    21.481061
                                                                                    21.334042
                                                                                                    24.446254
```

0.000000

0.000000

0.000000

0.000000

100.000000

0.000000

39.950000

53.078125

63.629688

90.937500

0.000000

0.000000

0.000000

0.000000

92.600000

0.000000

0.000000

0.000000

0.000000

100.000000

8 rows × 75 columns

max 2019.000000

2004.000000

2007.750000

2011.500000

2015.250000

min

25%

75%

EDA AND VISUALIZATION

0.000000

20.000000

40.000000

60.000000

100.000000

```
In [30]: sns.pairplot(df1[0:50])
```

Out[30]: <seaborn.axisgrid.PairGrid at 0x1d8ff336f10>

In [31]: sns.displot(df['income'])

Out[31]: <seaborn.axisgrid.FacetGrid at 0x1d8c3fc2fd0>


```
In [33]: sns.heatmap(df1.corr())
```

Out[33]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [183... x=df[['weights','SPI.DIM5.1.INDEX']]
    y=df['population']

In [184... from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [185...
            from sklearn.linear_model import LinearRegression
            lr=LinearRegression()
            lr.fit(x_train,y_train)
           LinearRegression()
Out[185...
In [186...
            lr.intercept_
            31943906.726010595
Out[186...
In [187...
            coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
                               Co-efficient
Out[187...
                                 0.000000
                     weights
            SPI.DIM5.1.INDEX 38385.429968
In [188...
            prediction =lr.predict(x_test)
            plt.scatter(y_test,prediction)
           <matplotlib.collections.PathCollection at 0x1d90aceca30>
Out[188...
            3.20
            3.15
            3.10
            3.05
            3.00
            2.95
            2.90
            2.85
            2.80
                                      0.6
                                             0.8
                                                    1.0
```

ACCURACY

```
In [189... lr.score(x_test,y_test)
Out[189... -0.005454678054893858
In [190... lr.score(x_train,y_train)
```

```
0.00017360799921994907
Out[190...
```

Ridge and Lasso

```
In [191...
           from sklearn.linear_model import Ridge,Lasso
In [192...
           rr=Ridge(alpha=10)
           rr.fit(x_train,y_train)
Out[192...
          Ridge(alpha=10)
         Accuracy(Ridge)
In [193...
           rr.score(x_test,y_test)
          -0.005454676808237746
Out[193...
```

```
0.00017360799921894987
Out[194...
```

rr.score(x_train,y_train)

```
In [195...
            la=Lasso(alpha=10)
            la.fit(x_train,y_train)
```

```
Lasso(alpha=10)
Out[195...
```

In [194...

```
In [196...
            la.score(x_train,y_train)
```

0.0001736079992200601 Out[196...

Accuracy(Lasso)

```
In [197...
            la.score(x_test,y_test)
           -0.005454677975616384
Out[197...
```

Elastic Net regression

```
In [198...
            from sklearn.linear_model import ElasticNet
            en=ElasticNet()
            en.fit(x_train,y_train)
           ElasticNet()
Out[198...
In [199...
            en.coef_
```

```
Out[199... array([ 0. , 38373.21575689])

In [200... en.intercept_

Out[200... 31942936.094027862

In [201... prediction=en.predict(x_test)

In [202... en.score(x_test,y_test)

Out[202... -0.005454525954040834
```

Evaluation Metrics

```
from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))
    print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))

46923236.340679206
2.434104758717166e+16
```

Logistic Regression

156016177.32521093

```
In [204... df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3488 entries, 0 to 3487
Data columns (total 79 columns):

#	Column	Non-Null Count	Dtype
0	country	3488 non-null	object
1	iso3c	3488 non-null	-
2	date	3488 non-null	int64
3	SPI.INDEX.PIL1	3488 non-null	float64
4	SPI.INDEX.PIL2	3488 non-null	float64
5	SPI.INDEX.PIL3	3488 non-null	float64
6	SPI.INDEX.PIL4	3488 non-null	float64
7	SPI.INDEX.PIL5	3488 non-null	float64
8	SPI.INDEX	3488 non-null	float64
9	SPI.DIM1.5.INDEX	3488 non-null	float64
10	SPI.DIM2.1.INDEX	3488 non-null	float64
11	SPI.DIM2.2.INDEX	3488 non-null	float64
12	SPI.DIM2.4.INDEX	3488 non-null	float64
13	SPI.DIM3.1.INDEX	3488 non-null	float64
14	SPI.DIM3.2.INDEX	3488 non-null	float64
15	SPI.DIM3.3.INDEX	3488 non-null	float64
	SPI.DIM3.4.INDEX	3488 non-null	float64
17	SPI.DIM4.1.CEN.INDEX	3488 non-null	float64
18	SPI.DIM4.1.SVY.INDEX	3488 non-null	float64
19	SPI.DIM4.2.INDEX	3488 non-null	float64
20	SPI.DIM4.3.INDEX	3488 non-null	float64
	SPI.DIM5.1.INDEX	3488 non-null	int64
22	SPI.DIM5.2.INDEX	3488 non-null	float64
23	SPI.DIM5.5.INDEX	3488 non-null	int64

```
24 SPI.D1.5.POV
                                                       float64
                                      3488 non-null
                                                      int64
25 SPI.D1.5.CHLD.MORT
                                      3488 non-null
26 SPI.D1.5.DT.TDS.DPPF.XP.ZS
                                      3488 non-null
                                                      float64
                                      3488 non-null
                                                      float64
27 SPI.D1.5.SAFE.MAN.WATER
                                     3488 non-null
                                                      float64
28 SPI.D1.5.LFP
                                                     float64
                                     3488 non-null
29 SPI.D2.1.GDDS
30 SPI.D2.2.Machine.readable 3488 non-null float64
31 SPI.D2.2.Non.proprietary 3488 non-null float64
32 SPI.D2.2.Download.options 3488 non-null float64
33 SPI.D2.2.Metadata.available 3488 non-null float64
34 SPI.D2.2.Terms.of.use 3488 non-null float64
35 SPI.D2.2.Openness.subscore 3488 non-null float64
36 SPI.D2.4.NADA 3488 non-null float64
                                     3488 non-null float64
36 SPI.D2.4.NADA
                                     3488 non-null float64
37 SPI.D3.1.POV
38 SPI.D3.2.HNGR
                                     3488 non-null float64
                                     3488 non-null float64
39 SPI.D3.3.HLTH
                                    3488 non-null float64
40 SPI.D3.4.EDUC
                                    3488 non-null float64
41 SPI.D3.5.GEND
42 SPI.D3.6.WTRS
                                    3488 non-null float64
43 SPI.D3.7.ENRG
                                    3488 non-null float64
                                    3488 non-null float64
44 SPI.D3.8.WORK
                                    3488 non-null float64
45 SPI.D3.9.INDY
46 SPI.D3.10.NEQL
                                    3488 non-null float64
47 SPI.D3.11.CITY
                                    3488 non-null float64
48 SPI.D3.12.CNSP
                                    3488 non-null float64
49 SPI.D3.15.LAND
                                    3488 non-null float64
50 SPI.D3.16.INST
                                    3488 non-null float64
51 SPI.D3.17.PTNS
                                    3488 non-null float64
52 SPI.D3.13.CLMT
                                    3488 non-null float64
53 SPI.D4.1.1.POPU
                                    3488 non-null float64
54 SPI.D4.1.2.AGRI
                                    3488 non-null float64
                                    3488 non-null float64
55 SPI.D4.1.3.BIZZ
                                    3488 non-null float64
56 SPI.D4.1.4.HOUS
                                     3488 non-null float64
57 SPI.D4.1.5.AGSVY
                                     3488 non-null float64
58 SPI.D4.1.6.LABR
                                     3488 non-null float64
59 SPI.D4.1.7.HLTH
                                     3488 non-null float64
60 SPI.D4.1.8.BZSVY
                                      3488 non-null float64
61 SPI.D4.2.3.CRVS
62 SPI.D4.3.GEO.first.admin.level 3488 non-null float64
63 SPI.D5.1.DILG
                                      3488 non-null float64
64 SPI.D5.2.1.SNAU
                                      3488 non-null float64
65 SPI.D5.2.2.NABY
                                     3488 non-null float64
66 SPI.D5.2.3.CNIN
                                     3488 non-null float64
                                    3488 non-null float64
67 SPI.D5.2.4.CPIBY
                                    3488 non-null float64
68 SPI.D5.2.5.HOUS
69 SPI.D5.2.6.EMPL
                                    3488 non-null
                                                     float64
70 SPI.D5.2.7.CGOV
                                    3488 non-null
                                                     float64
71 SPI.D5.2.8.FINA
                                    3488 non-null
                                                     float64
72 SPI.D5.2.9.MONY
                                     3488 non-null
                                                      float64
73 SPI.D5.2.10.GSBP
                                     3488 non-null
                                                      float64
74 SPI.D5.5.DIFI
                                      3488 non-null
                                                      float64
75 income
                                      3488 non-null
                                                      obiect
76 region
                                      3488 non-null
                                                      object
77
    weights
                                      3488 non-null
                                                       int64
78 population
                                      3488 non-null
                                                      float64
dtypes: float64(70), int64(5), object(4)
memory usage: 2.1+ MB
from sklearn.linear_model import LogisticRegression
feature_matrix=df[['SPI.DIM5.5.INDEX']]
target_vector=df['SPI.DIM5.1.INDEX']
feature matrix.shape
```

In [205...

In [206...

In [207...

```
(3488, 1)
Out[207...
In [208...
            target_vector.shape
           (3488,)
Out[208...
In [209...
            from sklearn.preprocessing import StandardScaler
In [210...
            fs=StandardScaler().fit_transform(feature_matrix)
In [211...
            logr=LogisticRegression()
            logr.fit(fs,target_vector)
           LogisticRegression()
Out[211...
In [212...
            observation=[[1]]
In [213...
            prediction=logr.predict(observation)
            print(prediction)
           [1]
In [214...
            logr.classes_
           array([-99,
                          0,
                               1], dtype=int64)
Out[214...
In [215...
            logr.score(fs,target_vector)
           0.9905389908256881
Out[215...
In [216...
            logr.predict_proba(observation)[0][0]
Out[216...
           0.3502335092476515
In [217...
            logr.predict proba(observation)
           array([[0.35023351, 0.07283107, 0.57693542]])
Out[217...
```

Random Forest

```
In [253...
          x=df[['SPI.DIM5.5.INDEX']]
          y=df['SPI.DIM5.1.INDEX']
In [268...
          g1={"SPI.DIM5.1.INDEX":{'-99':5,'1':6,'0':7}}
          df=df.replace(g1)
          print(df)
                             country iso3c date SPI.INDEX.PIL1 SPI.INDEX.PIL2
                                                  100.0
                                      NOR 2019
          0
                              Norway
                                                                     92.233333
          1
                                       ITA 2019
                                                          100.0
                                                                     91.866667
                               Italy
          2
                                      AUT 2019
                                                         100.0
                                                                     91.300000
                             Austria
          3
                              Poland
                                     POL 2019
                                                         100.0
                                                                     95.100000
          4
                                      SVN 2019
                                                         100.0
                                                                     96.933333
                            Slovenia
                                       . . .
                                           . . .
                                                           . . .
                                     VIR 2004
          3483 Virgin Islands (U.S.)
                                                         20.0
                                                                      0.000000
                                                          20.0
                  West Bank and Gaza
                                     PSE 2004
                                                                      0.000000
          3484
                                                          20.0
                                      YEM 2004
          3485
                         Yemen, Rep.
                                                                      0.000000
                              Zambia
                                       ZMB 2004
                                                          40.0
          3486
                                                                      0.000000
                                       ZWE 2004
                                                           20.0
          3487
                            Zimbabwe
                                                                      0.000000
               SPI.INDEX.PIL3 SPI.INDEX.PIL4 SPI.INDEX.PIL5 SPI.INDEX \
          a
                     77.56875 80.666667
                                              100.0 90.093750
          1
                     75.28750
                                   81.825000
                                                       100.0 89.795833
                                                      100.0 89.120000
          2
                     74.55000
                                  79.750000
                                                      100.0 89.070833
          3
                     70.53750
                                   79.716667
          4
                     76.28125
                                   71.441667
                                                      100.0 88.931250
                                                       ...
                      0.00000
                                    0.000000
                                                               0.000000
          3483
                                                        0.0
                                     0.000000
                      0.00000
                                                        0.0
                                                               0.000000
          3484
                                     0.000000
                      0.00000
                                                         0.0
                                                               0.000000
          3485
                                     0.000000
          3486
                      0.00000
                                                         0.0
                                                               0.000000
                      0.00000
                                     0.000000
          3487
                                                         0.0
                                                               0.000000
               SPI.DIM1.5.INDEX ... SPI.D5.2.6.EMPL SPI.D5.2.7.CGOV \
                            1.0 ...
          0
                                                1.0
                                                                  1.0
                            1.0 ...
                                                 1.0
          1
                                                                  1.0
          2
                            1.0 ...
                                                 1.0
                                                                  1.0
          3
                            1.0 ...
                                                 1.0
                                                                  1.0
          4
                            1.0 ...
                                                 1.0
                                                                  1.0
                                                 . . .
                            3483
                            0.2 ...
                                                 0.0
                                                                  0.0
          3484
                            0.2 ...
                                                 0.0
                                                                  0.0
          3485
                            0.2 ...
                                                 0.0
                                                                  0.0
          3486
                            0.4
                                                 0.0
                                                                  0.0
                                . . .
          3487
                            0.2 ...
                                                 0.0
                                                                  0.0
               SPI.D5.2.8.FINA SPI.D5.2.9.MONY SPI.D5.2.10.GSBP SPI.D5.5.DIFI \
          0
                           1.0
                                           1.0
                                                             1.0
                                                                           1.0
          1
                           1.0
                                           1.0
                                                             1.0
                                                                           1.0
          2
                           1.0
                                           1.0
                                                             1.0
                                                                           1.0
          3
                           1.0
                                           1.0
                                                             1.0
                                                                           1.0
          4
                           1.0
                                           1.0
                                                             1.0
                                                                           1.0
                           . . .
                                           . . .
                                                             . . .
          3483
                           0.0
                                           0.0
                                                             0.0
                                                                           0.0
          3484
                           0.0
                                           0.0
                                                             0.0
                                                                           0.0
          3485
                           0.0
                                           0.0
                                                             0.0
                                                                           0.0
          3486
                           0.0
                                           0.0
                                                             0.0
                                                                           0.0
          3487
                           0.0
                                           0.0
                                                             0.0
                                                                           0.0
                            income
                                                       region weights population
          0
                       High income
                                         Europe & Central Asia
                                                                       5347896.0
                       High income
                                         Europe & Central Asia
                                                                    1 60297396.0
          2
                       High income
                                         Europe & Central Asia
                                                                       8877067.0
                       High income
          3
                                         Europe & Central Asia
                                                                   1 37970874.0
                       High income
          4
                                         Europe & Central Asia
                                                                       2087946.0
                                                                   . . .
```

```
3483
                                      Latin America & Caribbean
                                                                         1
                                                                              108467.0
                         High income
           3484 Lower middle income
                                      Middle East & North Africa
                                                                         1
                                                                             3236626.0
                                      Middle East & North Africa
           3485
                                                                         1 19540098.0
                          Low income
           3486 Lower middle income
                                              Sub-Saharan Africa
                                                                         1 11550642.0
           3487 Lower middle income
                                               Sub-Saharan Africa
                                                                         1 12019912.0
           [3488 rows x 79 columns]
In [269...
           from sklearn.ensemble import RandomForestClassifier
In [270...
           rfc=RandomForestClassifier()
           rfc.fit(x_train,y_train)
           RandomForestClassifier()
Out[270...
In [271...
           parameters={'max_depth':[1,2,3,4,5],
                        'min_samples_leaf':[5,10,15,20,25],
                        'n_estimators':[10,20,30,40,50]
           }
In [273...
           from sklearn.model_selection import GridSearchCV
           grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
           grid_search.fit(x_train,y_train)
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:666: Us
          erWarning: The least populated class in y has only 1 members, which is less than n_s
          plits=2.
            warnings.warn(("The least populated class in y has only %d"
          GridSearchCV(cv=2, estimator=RandomForestClassifier(),
Out[273...
                        param_grid={'max_depth': [1, 2, 3, 4, 5],
                                     'min_samples_leaf': [5, 10, 15, 20, 25],
                                     'n_estimators': [10, 20, 30, 40, 50]},
                        scoring='accuracy')
In [275...
           grid_search.best_score_
          0.0081933647507418
Out[275...
In [277...
           rfc_best=grid_search.best_estimator_
```

Conclusion

Accuracy

linear regression

```
In [278... lr.score(x_test,y_test)
Out[278... -0.005454678054893858
```

Ridge regression

```
In [279... rr.score(x_test,y_test)

Out[279... -0.005454676808237746
```

Lasso regression

```
In [280... la.score(x_test,y_test)

Out[280... -0.005454677975616384
```

Elastic net regression

```
In [281... en.score(x_test,y_test)

Out[281... -0.005454525954040834
```

Logistic regression

```
In [282... logr.score(fs,target_vector)

Out[282... 0.9905389908256881
```

Random forest

```
In [283... grid_search.best_score_
Out[283... 0.0081933647507418
```

Accuracy for logistic regression is higher so it is the best fit model