Análise Sintática

Capítulo III

Histórico de revisões:

2010-2014 – Carlos M. Fonseca

2008-2010 - Luís Macedo

Anos anteriores – F. Amílcar Cardoso

Nullable, FIRST, FOLLOW, Tabela de Parsing

Exemplo:

$$Z \rightarrow d$$

 $Z \rightarrow X Y Z$

$$Y \rightarrow \varepsilon$$

 $Y \rightarrow c$

$$X \rightarrow Y$$

 $X \rightarrow a$

Nullable, FIRST, FOLLOW, Tabela de Parsing

Exemplo:

$$Z \rightarrow d$$

 $Z \rightarrow X Y Z$

$$Y \rightarrow \varepsilon$$

$$X \rightarrow Y$$

 $X \rightarrow a$

	Nullable	FIRST	FOLLOW
X	Sim	ас	a c d
Y	Sim	С	a c d
Z	Não	a c d	

Tabela do Analisador Preditivo

As células com mais do que uma produção revelam uma gramática com características que não se adequam ao algoritmo (gramática não é LL(1))

Análise Descendente Recursiva

- Características de gramáticas que impedem a utilização deste tipo de parsing, mas que podem ser alvo de transformação:
 - Ambiguidade (já vimos como resolver)
 - Recursividade à esquerda
 - Produções de uma mesma categoria gramatical começam (à direita) com mesmo símbolo
- Como se pode resolver estes problemas?
 - O segundo, à custa de uma reescrita usando recursividade à direita
 - O terceiro, à custa de factorização à esquerda

Eliminação de Recursividade à Esquerda

$$P \rightarrow P$$
 a $P \rightarrow b$

Reescrevem-se as produções com recursividade à direita:

$$P \rightarrow b P'$$

 $P' \rightarrow a P' \mid \epsilon$

Outro exemplo:

$$E \rightarrow E + T$$
 $E \rightarrow T E'$
 $E \rightarrow T E' \mid \epsilon$

Fatorização

Duas produções para um mesmo não-terminal que começam com mesmo símbolo :

```
S \rightarrow \text{if } E \text{ then } S \text{ else } S
S \rightarrow \text{if } E \text{ then } S
```

 Fatorizarão à esquerda: substituir a diferença por um símbolo não-terminal

```
S \rightarrow \text{if } E \text{ then } S X

X \rightarrow \text{else } S

X \rightarrow \varepsilon
```

Análise LL(1)

- As gramáticas livres de contexto que obedecem às características atrás descritas designam-se por Gramáticas LL(1):
 - L: left scan (leitura da esquerda para a direita - num passo)
 - L: leftmost derivation (derivação pela esquerda)
 - (1): 1-symbol lookahead (antecipação de 1 símbolo)

Análise LL(1) com Tabela de Parsing

Considere-se a gramática

Análise LL(1) com Tabela de Parsing

Calcular nullable, FIRST e FOLLOW

$$S \rightarrow E \ \$$$
 $E \rightarrow T E' \qquad T \rightarrow F T' \qquad F \rightarrow \text{id}$
 $E' \rightarrow + T E' \qquad T' \rightarrow * F T' \qquad F \rightarrow \text{num}$
 $E' \rightarrow - T E' \qquad T' \rightarrow / F T' \qquad F \rightarrow (E)$
 $E' \rightarrow \epsilon \qquad T' \rightarrow \epsilon$

	nullable	FIRST	FOLLOW
S		(id num	
E	no	(id num) \$
<i>E'</i>	yes	+-)\$
T	no	(id num) + - \$
T'	yes	* /) + - \$
$oldsymbol{F}$	no	(id num) * / + - \$

Análise LL(1) com Tabela de Parsing

Construir Tabela de Parsing

	nullable	FIRST	FOLLOW
S		(id num	
E	no	(id num)\$
E'	yes	+-)\$
T	no	(id num) + - \$
T'	yes	* /) + - \$
F	no	(id num) * / + - \$

$S \rightarrow E $ \$		
$E \rightarrow T E'$	$T \rightarrow F T'$	$F \rightarrow id$
$E' \rightarrow + T E'$ $E' \rightarrow - T E'$ $E' \rightarrow \varepsilon$	$T' ightarrow * F T'$ $T' ightarrow / F T'$ $T' ightarrow \epsilon$	$F \rightarrow \text{num}$ $F \rightarrow (E)$

)		+	*	id	()	\$
(parciai)	S			S ightarrow E \$	S ightarrow E ightarrow \$		
(pa	\boldsymbol{E}			$E \rightarrow T E'$	$E \rightarrow T E'$		
	E'	$E' \rightarrow + T E'$				E' o arepsilon	E' o arepsilon
	T			$T \rightarrow F T'$	$T \rightarrow F T'$		
	T'	T' → ε	$T' \rightarrow * F T'$			T' → ε	T' o arepsilon
	F			$F \rightarrow id$	$F \rightarrow (E)$		

Compiladores - 2013/2014

Gramática:

- $I \rightarrow ABc \mid B$
- $A \rightarrow Aa \mid a$
- $B \rightarrow b$

frase:

aabc

Parsing LR:

L: scans left to right

R: rightmost-derivation

Parsing bottom-up

- Recurso a uma Pilha
- Sucessão de operações deslocar/reduzir
- Objectivo: reduzir string a símbolo inicial da gramática

$S \rightarrow$	I \$	
$l \rightarrow l$	АВс	B
$f A \rightarrow$	Aa	а
B o	b	

Pilha	Input	Acção		
	aabc\$	desloca		
a	abc\$	$\operatorname{reduz}\left(A\to a\right)$		
A	abc\$	desloca		
Aa	bc\$	$\operatorname{reduz}\left(A\to Aa\right)$		
A	bc\$	desloca		
Ab	c\$	$reduz (B \rightarrow b)$		
AB	c\$	desloca		
ABc	\$	$\operatorname{reduz}\left(I \to ABc \right)$		
I	\$	aceita		

- Quando reduzir (reduce), quando deslocar (shift)?
 - DFA aplicado sobre a Pilha

Exemplo:

Parsing da frase:

$$a := 7$$
; $b := c + (d := 5 + 6, d)$

Tabela de parsing:

	id	num	print	;	,	+	:=	()	\$	S	\boldsymbol{E}	L
1	s4		s7								g2		
2				s3						a			
2 3	s4		s7								g5		
4							s6				5		
4 5				ri	r1		00			r1			
6	s20	s10			11			s8		11		a11	
	320	210										g11	
7			_					s9					
8 9	s4		s7							,	g12		
	s20	s10						s8				g15	g14
10				r5	r5	r5			r5	r5			
11				r2	r2	s16				r2			
12				s3	s18								
13				r3	r3					r3			
14					s19				s13	••			
15					r8				r8				
16	s20	s10			10			s8	10			-17	
	820	310			m£.	-16		80				g17	
17	20	10		rб	r6	s16		_	r6	r6			
18	s20	s10						s8				g21 g23	
19	s20	s10						82				g23	
20				r4	r4	r4			r4	r4			
21									s22			-	
22				r7	r7	r7			r7	r7			
23					r9	s16			r9				
,												-	

sn: shift; transitar para estado n gn: transitar para estado n

rk: reduce pela regra k

a: aceitar

Stack			Input		Action
1	a := 7	; b := c +	(d := 5 + 6, d)	\$	shift
1 1 d 4	:= 7	; b := c +	(d:=5+6,d)	2	snift
1 1d 4 :=6	7	; b := c +	(d := 5 + 6, d)	4	snift
₁ 104 :=6 num ₁₀		; b := 'C +	(a := 5 + b , a)	Þ	reauce £ → num
1 id4 :=6 E ₁₁		; b := c +	(d:=5+6,d)	\$	reduce $S \rightarrow 10 := E$
$_1$ S_2		; b := c +	(d:=5+6,d)	\$	shift
₁ S ₂ ; ₃		b := c +	(d:=5+6,a)	Þ	snijt
₁ S ₂ ; ₃ id ₄		:= C +	(d:=5+6,d)	\$	shift
$_{1} S_{2};_{3} id_{4}:=_{6}$		C +	•		shift
₁ S ₂ ; ₃ id ₄ :=6 id ₂₀		+	(d:=5+6,d)	\$	reduce $E \rightarrow id$
$_{1}S_{2};_{3}id_{4}:=_{6}E_{11}$		+	(d:=5+6,d)	\$	shift
$_{1}S_{2};_{3}id_{4}:=_{6}E_{11}$	+16		(d:=5+6,d)	\$	shift
1 S2 ;3 id4 :=6 E11	+16 (8		d:=5+6,d)	\$	shift
$_{1} S_{2};_{3} id_{4}:=_{6} E_{11}$	+16 (8 ic	14	:= 5 + 6 , d)	\$	shift
1 S2 ;3 id4 :=6 E11	+16 (8 ic	14:=6	5 + 6 , d)	\$	shift
$_{1}S_{2};_{3}id_{4}:=_{6}E_{11}$	+16 (8 ic	i ₄ :=6 num ₁₀	+ 6 , d)	\$	reduce $E \rightarrow \text{num}$
$_{1}S_{2};_{3}id_{4}:=_{6}E_{11}$	+16 (8 ic	$\mathbf{I_4} :=_6 E_{11}$	+ 6 , d)	\$	shift
$_{1} S_{2};_{3} id_{4} :=_{6} E_{11}$	+16 (8 ic	$\mathbf{i_4} :=_6 E_{11} +_{16}$	6 , d)	\$	shift
$_{1} S_{2};_{3} id_{4} :=_{6} E_{11}$			num_{10} , d)	\$	reduce $E \rightarrow \text{num}$
$_{1}S_{2};_{3}id_{4}:=_{6}E_{11}$	+16 (8 i	$\mathbf{I}_4 :=_6 E_{11} +_{16}$	<i>E</i> ₁₇ , d)	\$	reduce $E \to E + E$
1 S2:3 id4:=6 E11	+16 (8 i	$\mathbf{d}_{4} := 6E_{11}$, d)	\$	$reduce S \rightarrow id : = E$
$_{1}S_{2};_{3}id_{4}:=_{6}E_{11}$	+16 (8 5	12	, d)	\$	shift
1 So :a ida :=6 E11	+16 (8 S	12 -18	d)	\$	shift
$_{1} S_{2};_{3} id_{4}:=_{6} E_{11}$	+16 (8.5	12,18 id ₂₀)	\$	reduce $E \rightarrow id$
$_{1}S_{2}$; $_{3}id_{4}:=_{6}E_{11}$				\$	shift
$1 S_2 : 3 id_4 : = 6 E_{11}$				\$	reduce $E \rightarrow (S, E)$
1 S2 :2 id4 :=6 E11	$\pm 16 E_{17}$			\$	reduce $E \rightarrow E + E$
$_{1}S_{2};_{3}id_{4}:=_{6}E_{11}$		<u>"</u>		\$	reduce $S \to id : = E$
1 S2 ;3 S5				\$	reduce $S \to S$; S
1 S2				\$	accept
· ·		CUIIIVIIau	UICS - ZUIJ/ZUI4		

O parser sabe o estado do DFA correspondente a cada símbolo colocado na pilha, conjugado com o estado anterior

Analisador Sintático LR(0)

- Parser LR(0):
 - trabalha olhando apenas para o topo da pilha
- Gramática:

- Início:
 - pilha vazia
 - frase completa à entrada, seguida de '\$'

Estado 1

$$S' \rightarrow ... S \$$$
 $S \rightarrow ... (L)$
itens
 $S \rightarrow ... X$
estado 1

 $(A \rightarrow \alpha.\beta)$ indica que

- a sequência α está no topo da pilha
- na cabeça de leitura está uma cadeia derivável de β

$$S' \rightarrow S$$
\$ $L \rightarrow S$ $S \rightarrow (L)$ $L \rightarrow L, S$ $S \rightarrow X$

Estado 1

Se no Estado 1 temos x para ler, desloca-se x (uma operação shift)...

Se no Estado 1 temos '(' para ler, desloca-se para a pilha...

$$S \rightarrow (L)$$
 $S \rightarrow (L)$ $L \rightarrow L$, $S \rightarrow X$ $L \rightarrow S$ estado 3

Estado 1

$$S' \rightarrow S \ \ \, L \rightarrow S$$

 $S \rightarrow (L) \ \ \, L \rightarrow L \ \, , S$
 $S \rightarrow X$

$$S' \rightarrow ... S \$$$
 $S \rightarrow ... (L)$
 $S \rightarrow ... X$ estado 1

Se no Estado 1 S está no topo da pilha...

$$S' \rightarrow S$$
 \$ estado 4

... salta-se para o Estado 4

ou seja, fez-se reduce para S

Closure(I):

 acrescentar novos itens ao conjunto I quando o ponto está à esquerda de um nãoterminal

```
Closure(I) =
repeat
for any item A \rightarrow \alpha.X\beta in I
for any production X \rightarrow \gamma
I \leftarrow I \cup \{X \rightarrow .\gamma\}
until I does not change.
return I
```

Exemplo:

```
S' \rightarrow ... S \$
S \rightarrow ... (L)
S \rightarrow ... X estado 1
```

Goto(*I*, *X*):

 Devolve conjunto de itens que resulta de se mover o ponto para a direita de X em todos os itens Goto(I, X) =
set J to the empty set
for any item $A \rightarrow \alpha . X\beta$ in I
add $A \rightarrow \alpha X . \beta$ to J
return Closure(J)

- T: conjunto de estados já visitados
- E: conjunto de arestas já percorridas

```
Initialize T to {Closure(\{S' \to .S\})}
Initialize E to empty.

repeat

for each state I in T

for each item A \to \alpha.X\beta in I

let J be Goto(I, X)

T \leftarrow T \cup \{J\}

E \leftarrow E \cup \{I \xrightarrow{X} J\}

until E and T did not change in this iteration
```

Reduções:

$$R \leftarrow \{\}$$

for each state I in T

for each item $A \rightarrow \alpha$. in I
 $R \leftarrow R \cup \{(I, A \rightarrow \alpha)\}$

Comphisions - 2013/2014

Diagrama de Estados

Tabela de Parsing

Construção da Tabela do Analisador LR(0)

- □ Para cada aresta $I \rightarrow_X J$,
 - se X é terminal, coloca-se shift J na posição (I, X) da tabela
 - se X é não-terminal, coloca-se goto J na posição (I, X)
- Para cada estado I contendo um item S'→S.\$, coloca-se um accept em (I, \$)
- Para cada estado contendo um item $A \rightarrow \gamma$. coloca-se uma *redução n* em (*I*, *Y*) para cada token *Y*; *n* é número da produção $A \rightarrow \gamma$

Analisador Sintático LR(0)

Um exemplo em que há um problema:

Resumo

- Algoritmo de análise descendente
- Algoritmo de análise ascendente:
 - Construção do Diagrama de Estados
 - Construção da Tabela de Parsing
 - Como se processa a análise
- Próxima aula:
 - Outras variantes de análise ascendente

Exercício

- Construa o analisador LR(0) para a seguinte gramática:
- □ S -> E \$
- □ E -> id
- □ E -> id (E)
- □ E -> E + id