A Bayesian model for data flow: BikeMi

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

A BAYESIAN MODEL FOR DATA FLOW: BIKEMI

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti February 19, 2020

Politecnico di Milano

What we are working on

The BikeMi stations net in Milan is rather large and travelled every day.

The two perspective of the problem

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

Our work is structured in two parts:

Global model

The total volume of travels in a specific day Y_t without considering the graph structure. This results in a single time series.

Network model

For each node, the analysis focuses on in and out bikes flow for specific time slots. The dimensionality is much higher.

Loglinear GLM: Poisson likelihood

MODEL

$$Y_t | \lambda_t \stackrel{ind}{\sim} \operatorname{Po}(\lambda_t)$$

 $\log \lambda_t = \boldsymbol{\beta}^T \mathbf{z}_t$

PRIOR

$$\beta_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_\beta^2)$$

Loglinear GLM: Poisson likelihood

Negative Binomial distribution

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

$$X \sim \text{NegBin}(p, r) \ if :$$

$$f(k; p, r) = \frac{\Gamma(k+r)}{k!\Gamma(r)} p^k (1-p)^r, \qquad k = 0, 1, 2...$$

$$\mathbb{E}[X] = \mu = \frac{r(1-p)}{p} \qquad Var(X) = \frac{r(1-p)}{p^2}$$

Moreover:

$$p = \frac{r}{r + \mu}$$

Loglinear GLM: NegBin likelihood (1)

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

MODEL

$$Y_t|p_t, r \stackrel{ind}{\sim} \text{NegBin}(p_t, r)$$

$$p_t = \frac{r}{r + \mu_t}$$

$$\log \mu_t = \boldsymbol{\beta}^T \mathbf{z}_t$$

PRIORS

$$\boldsymbol{\beta} \sim \mathcal{N}_p(\mathbf{0}, \sigma_{\beta}^2 \mathbf{I})$$

 $r \sim \mathcal{U}(0, 50)$

Loglinear GLM: NegBin likelihood (1)

Loglinear GLM: NegBin likelihood (2)

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

j=1:wday, j=2:wend

Model

$$p_{tj} = \frac{r_j}{r_j + \mu_{tj}}$$

 $\log \mu_{tj} = \beta_1 + \beta_2 R_t + \beta_3 T_t + \theta_j$

 $Y_{ti}|p_{ti},r_i \stackrel{ind}{\sim} \text{NegBin}(p_{ti},r_i)$

PRIORS

$$\beta_i | \tau_i \stackrel{ind}{\sim} \mathcal{N}(0, \tau_i) \ i = 1, 2, 3$$

$$\tau_i \stackrel{ind}{\sim} Gamma(2, 10)$$

$$\theta_j | \tilde{\tau}_j \stackrel{ind}{\sim} \mathcal{N}(0, \tilde{\tau}_j) \ j = 1, 2$$

$$\tilde{\tau}_j \stackrel{ind}{\sim} Gamma(2,10)$$

$$r_i \stackrel{ind}{\sim} Unif(0,50) \ j = 1,2$$

Loglinear GLM: NegBin likelihood (2)

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

- locally linear trend μ_t ,
- periodicity γ_t ,
- autoregressive component ρ_t ,
- regression $\beta^T \mathbf{z}$.

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

- locally linear trend μ_t ,
- periodicity γ_t ,
- autoregressive component ρ_t ,
- regression $\beta^T \mathbf{z}$.

indrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

- locally linear trend μ_t ,
- periodicity γ_t ,
- autoregressive component ρ_t ,
- regression $\beta^T \mathbf{z}$.

indrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

- locally linear trend μ_t ,
- periodicity γ_t ,
- autoregressive component ρ_t ,
- regression $\beta^T \mathbf{z}$.

Standard BSTS

MODEL

$$Y_{t} = \mu_{t} + \gamma_{t} + \rho_{t} + \boldsymbol{\beta}^{T} \mathbf{z}_{t} + \tau_{\epsilon}^{-\frac{1}{2}} \tilde{\epsilon}_{t}$$

$$\mu_{t} = \mu_{t-1} + \delta_{t-1} + \tau_{\eta}^{-\frac{1}{2}} \tilde{\eta}_{t}$$

$$\delta_{t} = \delta_{t-1} + \tau_{v}^{-\frac{1}{2}} \tilde{v}_{t}$$

$$\gamma_{t} = \sum_{i=1}^{S-1} \gamma_{t+i-S} + \tau_{w}^{-\frac{1}{2}} \tilde{w}_{t}$$

$$\rho_{t} = \alpha \rho_{t-1} + \tau_{u}^{-\frac{1}{2}} \tilde{u}_{t}$$

$$\tilde{\epsilon}_{t}, \tilde{\eta}_{t}, \tilde{v}_{t}, \tilde{w}_{t}, \tilde{u}_{t} \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$

INITIAL CONDITIONS

$$\begin{aligned} & \mu_0 \sim \mathcal{N}(m, \tau_\eta) & m \ hpm \\ & \delta_0 \sim \mathcal{N}(d, \tau_v) & d \ hpm \\ & \gamma_{0:(2-S)} \sim \mathcal{N}_{S-1}(\mathbf{g}, \tau_w \mathbf{I}) & \mathbf{g} \ hpm \\ & \rho_0 \sim \mathcal{N}(r, \tau_u) & r \ hpm \end{aligned}$$

PRIORS

$$\begin{split} \beta &\sim \mathcal{N}_p(\mathbf{0}, \tau_b \mathbf{I}) & \tau_b \quad hpm \\ \alpha &\sim \mathcal{N}(a, \tau_a) & a, \tau_a \quad hpm \\ \tau_\epsilon &\sim Unif(a_\epsilon, b_\epsilon) & a_\epsilon, b_\epsilon \quad hpm \\ \tau_\eta &\sim Unif(a_\eta, b_\eta) & a_\eta, b_\eta \quad hpm \\ \tau_v &\sim Unif(a_v, b_v) & a_v, b_v \quad hpm \\ \tau_w &\sim Unif(a_w, b_w) & a_w, b_w \quad hpm \\ \tau_u &\sim Unif(a_u, b_u) & a_u, b_u \quad hpm \end{split}$$

INDEPENDENCE

$$\begin{split} &\{\tilde{\epsilon}_t, \tilde{\eta}_t, \tilde{u}_t, \tilde{w}_t, \tilde{v}_t, \mu_0, \delta_0, \pmb{\gamma}_{0:(-S+2)}, \rho_0, \\ &\pmb{\beta}, \alpha, \tau_\epsilon, \tau_\eta, \tau_v, \tau_w, \tau_u\} \\ &\textit{family of } \pmb{\perp} \textit{ real random variables} \end{split}$$

Hyperparameters for BSTS

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

We fix the hyperparameters as follows:

	$ au_\epsilon$	$ au_{\eta}$	$ au_v$	$ au_w$	$ au_u$
a	1e-7	1e-5	1e-5	1e-5	$1\mathrm{e}{-5}$
b	1e-4	1e-4	1e-4	1e-4	1e-3

m and g according to frequentist stationarization

	$ au_{lpha}$	$ au_eta$	r	d
value	$1e{-5}$	1e-5	0	0

- performance is subject to correctness of modelling assumptions and proper diagnostics,
- use codified Beyesian tools to evaluate the worth of a model from a predictive viewpoint,
- in absence of strong evidence for a format let interpretability be the deciding factor,
- in case of a draw in the previous points, select the simplest paradigm.

Some diagnostics

Figure 1: Diagnostics for β_1 samples

Prediction

Figure 2: Sum of trend (blue), periodicity (green), autoregression (yellow) and regression (red)

Prediction

Figure 3: 90% credibility intervals in dark red, in black the true responses \boldsymbol{y}

Without temperature

Figure 4: Sum of trend (blue), periodicity (green), autoregression (yellow) and regression (red)

Robust version

We apply the lag operator

$$\mathcal{L}_t(\cdot)=rac{1}{2}(\cdot)_{t-1}+rac{1}{3}(\cdot)_{t-S}+rac{1}{6}(\cdot)_{t-2S}$$
 to the trend.

Figure 5: Cumulative action of trend (blue), periodicity (green), autoregression (yellow) and regression (red) in robust model

Evaluation of multiple BSTS

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

According to the criteria we have the following results:

	standard	no temperature	robust
Mean standardized residuals	0.5809041	0.6066627	0.6031869
Mean tail probabilities	0.2979543	0.298591	0.2908414
$elpd_{loo}$	-362.6	-365.4	-364.1

Future prediction

We try to predict one week ahead

Figure 6: Predicted traffic with the model

Standard BSTS with time zones

MODEL

$$Y_{F(t-1)+h} = \mu_t + \gamma_t + \chi_{F(t-1)+h} + \beta^T \mathbf{z}_{th} + \tau_\epsilon^{-\frac{1}{2}} \tilde{\epsilon}_{F(t-1)+h}$$

$$\mu_t = \mu_{t-1} + \delta_{t-1} + \tau_\eta^{-\frac{1}{2}} \tilde{\eta}_t$$

$$\delta_t = \delta_{t-1} + \tau_v^{-\frac{1}{2}} \tilde{v}_t$$

$$\gamma_t = \sum_{i=1}^{S-1} \gamma_{t+i-S} + \tau_w^{-\frac{1}{2}} \tilde{w}_t$$

$$\chi_{F(t-1)+h} = \sum_{i=1}^{F-1} \chi_{F(t-1)+h+j-F} + \gamma_t^{-\frac{1}{2}} \tilde{v}_t$$

$$\begin{split} & + \tau_u^{-\frac{1}{2}} \tilde{u}_{F(t-1)+h} \\ \tilde{\epsilon}_{F(t-1)+h}, \tilde{\eta}_t, \tilde{v}_t, \tilde{w}_t, \tilde{u}_{F(t-1)+h} \overset{iid}{\sim} \mathcal{N}(0,1) \end{split}$$

INITIAL CONDITIONS

$$\begin{aligned} & \mu_0 \sim \mathcal{N}(m, \tau_\eta) & m \ hpm \\ & \delta_0 \sim \mathcal{N}(d, \tau_v) & d \ hpm \\ & \gamma_{0:(2-S)} \sim \mathcal{N}_{S-1}(\mathbf{g}, \tau_w \mathbf{I}) & \mathbf{g} \ hpm \\ & \chi_{0:(2-F)} \sim \mathcal{N}_{F-1}(\mathbf{c}, \tau_u \mathbf{I}) & \mathbf{c} \ hpm \end{aligned}$$

PRIORS

$$\begin{split} \boldsymbol{\beta} &\sim \mathcal{N}_{p}(\mathbf{0}, \tau_{b}\mathbf{I}) & \tau_{b} \quad hpm \\ \boldsymbol{\tau}_{\epsilon} &\sim Unif(a_{\epsilon}, b_{\epsilon}) & a_{\epsilon}, b_{\epsilon} \quad hpm \\ \boldsymbol{\tau}_{\eta} &\sim Unif(a_{\eta}, b_{\eta}) & a_{\eta}, b_{\eta} \quad hpm \\ \boldsymbol{\tau}_{v} &\sim Unif(a_{v}, b_{v}) & a_{v}, b_{v} \quad hpm \\ \boldsymbol{\tau}_{w} &\sim Unif(a_{w}, b_{w}) & a_{w}, b_{w} \quad hpm \\ \boldsymbol{\tau}_{u} &\sim Unif(a_{u}, b_{u}) & a_{u}, b_{u} \quad hpm \end{split}$$

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

INDEPENDENCE

$$\{\tilde{\epsilon}_t, \tilde{\eta}_t, \tilde{w}_t, \tilde{v}_t, \mu_0, \delta_0, \boldsymbol{\gamma}_{0:(-S+2)},$$

$$\boldsymbol{\chi}_{0:(2-F)}, \boldsymbol{\beta}, \tau_{\epsilon}, \tau_{\eta}, \tau_{v}, \tau_{w}, \tau_{u} \}$$

 $family\ of\ \bot\ real\ random\ variables$

Division in time zones

Figure 7: Global time series per slot

day-phases

Network models

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

In the network models we deal with the flows of bicycles inward and outward a cluster of station, given a time interval.

The problem is the with the very high dimensionality of the data, and the computational weight due to the high number of parameters.

To shrink the model we first introduced a prior clusterization with a modified DBSCAN and later using simplifying hypothesis.

The euclidian distance isn't versatile enough

- We fed the classic DBSCAN a different semidistance, $smd(x,y) = \frac{p(y) + p(x)}{2} ||x-y||.$
- $p(x)=g(||x-x_0||)$ where x_0 are the coordinates of the Duomo, and $g(u)=\max\{\beta,e^{(\frac{u}{\alpha})^2\log{(1-\gamma)}}+\gamma\}$
- We fitted the parameters in a way to minimize the autorings, and to break down the biggest clusters

A Bayesian model for data flow: BikeMi

Preprocessing

The two flows are structured as 168 x 109 matrices where the columns are the nodes and the rows are the evolving time

ndrea De Gobbis, orenzo Ghilotti, Giorgio Meretti

Correlations between the flows in the same node

The likelihood is a Bivariate Poisson, a distribution over $\mathbb{N} \times \mathbb{N}$.

$$\begin{cases} Y_{j} = X_{0} + X_{j} & j = 1, 2 \\ X_{j} \sim \text{Po}(\lambda_{j}) & j = 0, 1, 2 \end{cases}$$
 (1)

In this way $Cov(Y_1,Y_2)=Var(X_0)=\lambda_0$. And marginally $Y_j\sim Po(\lambda_0+\lambda_j)$.

Some simplifying hypothesis

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

TWO WAY MIXED EFFECT

$$\beta_{ith} \cdot \mathbf{x} \Rightarrow (\alpha_t + \gamma_h) \cdot \mathbf{x}$$

OFFSETS

$$\log(\frac{\lambda_{ith}}{O_i}) = (\alpha_t + \gamma_h) \cdot \mathbf{x}$$

$$\Rightarrow \log(\lambda_{ith}) = \log(O_i) + (\alpha_t + \gamma_h) \cdot \mathbf{x}$$

$$\begin{cases} \log(\lambda_{ith}^{(j)}) = (\theta^{(j)} + \alpha_t^{(j)} + \gamma_h^{(j)}) \cdot \mathbf{x} + \log(O_i) \\ \theta^{(j)}|a, B \stackrel{iid}{\sim} \mathcal{N}(a, B) \\ \alpha_t^{(j)}|\Sigma \stackrel{iid}{\sim} \mathcal{N}(0, \Sigma) \\ \gamma_h^{(j)}|\Omega \stackrel{iid}{\sim} \mathcal{N}(0, \Omega) \\ a \sim \mathcal{N}(a_0, A_0) \\ B \sim invWishart(B_0, p + 1) \\ \Sigma, \Omega \stackrel{iid}{\sim} invWishart(C_0, p + 1) \end{cases}$$

$$(2)$$

Where $\alpha_t^{(j)}, \beta_h^{(j)}, \theta^{(j)}, a \in \mathbb{R}^3$, $\Sigma, \Omega, B \in \mathbb{R}^{3 \times 3}$ are the parameters, $A_0, B_0, C_0 \in \mathbb{R}^{3 \times 3}, \quad a_0 \in \mathbb{R}^3$ are the hyperparameters, and \mathbf{x} are the covariates. The offsets are the the average of the traffic of the first 12 days.

The parametric offsets (PO) model

The offsets are now grouped with the other parameters.

$$\begin{cases} \log(\lambda_{ith}^{(j)}) = (\theta^{(j)} + \alpha_t^{(j)} + \beta_h^{(j)}) \cdot \mathbf{x} + \Phi_i \\ \theta^{(j)} | a, B \stackrel{iid}{\sim} \mathcal{N}(a, B) \\ \alpha_t^{(j)} | \Sigma \stackrel{iid}{\sim} \mathcal{N}(0, \Sigma) \\ \beta_h^{(j)} | \Omega \stackrel{iid}{\sim} \mathcal{N}(0, \Omega) \\ \Phi_i \stackrel{iid}{\sim} \mathcal{N}(\Phi_0, F_0) \\ a \sim \mathcal{N}(a_0, A_0) \\ B \sim invWishart(B_0, p + 1) \\ \Sigma, \Omega \stackrel{iid}{\sim} invWishart(C_0, p + 1) \end{cases}$$
(3)

Where $\alpha_t^{(j)}, \beta_h^{(j)}, \theta^{(j)}, a \in \mathbb{R}^3$, $\Sigma, \Omega, B \in \mathbb{R}^{3 \times 3}$, $\Phi_i \in \mathbb{R}$ are the parameters, $A_0, B_0, C_0, F_0 \in \mathbb{R}^{3 \times 3}$, $a_0 \in \mathbb{R}^3, \Phi_0 \in \mathbb{R}$ are the hyperparameters, and \mathbf{x} are the covariates.

Posterior with JAGS

	N^{IN}	N^{OUT}
Offsets	41.0%	62.2%
PO	39.7%	38.6%

The results are unsatisfactory, the iterations are not enough to stabilize the MCMC and the autocorrelation is too high. The predictive power is low.

Bayesian model for data flow: BikeMi