

Top 10 Hardest Questions

Core Pure 1 and 2, Edexcel 2019-2022 Papers

(no AS papers featured)

5. (a)

$$y = \tan^{-1} x$$

#10

Assuming the derivative of tan x, prove that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2}$$

(3)

$$f(x) = x \tan^{-1} 4x$$

(b) Show that

$$\int f(x) dx = Ax^2 \tan^{-1} 4x + Bx + C \tan^{-1} 4x + k$$

where k is an arbitrary constant and A, B and C are constants to be determined.

(5)

(c) Hence find, in exact form, the mean value of f(x) over the interval $\left[0, \frac{\sqrt{3}}{4}\right]$

Methods in Calculus

Average: 36.6%

5(a)	$y = \tan^{-1} x \Rightarrow \tan y = x \Rightarrow \frac{dx}{dy} = \sec^2 y$ $y = \tan^{-1} x \Rightarrow \tan y = x \Rightarrow \frac{dy}{dx} \sec^2 y = 1$	M1
	$\frac{dx}{dy} = 1 + \tan^2 y \text{ or } \frac{dy}{dx} (1 + \tan^2 y) = 1$	M1
	$\frac{dy}{dx} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2} *$	A1*
		(3)
(b)	$\frac{\mathrm{d}\left(\tan^{-1}4x\right)}{\mathrm{d}x} = \frac{4}{1+16x^2}$	B1
	$\int x \tan^{-1} 4x dx = \alpha x^2 \tan^{-1} 4x - \int \alpha x^2 \times \frac{4}{1 + 16x^2} dx$	M1
	$\int x \tan^{-1} 4x dx = \frac{x^2}{2} \tan^{-1} 4x - \int \frac{x^2}{2} \times \frac{4}{1 + 16x^2} dx$	A1
	$= \dots - \frac{1}{8} \int \frac{16x^2 + 1 - 1}{1 + 16x^2} dx = \dots - \frac{1}{8} \int \left(1 - \frac{1}{1 + 16x^2}\right) dx$	
	let $4x = \tan u \mathbf{P} \frac{1}{8} \frac{\dot{0}}{0} \frac{\tan^2 u}{1 + \tan^2 u} \frac{1}{4} \sec^2 u du$	M1
	$= \frac{x^2}{2} \tan^{-1} 4x - \frac{1}{8}x + \frac{1}{32} \tan^{-1} 4x + k$	A1
		(5)
(c)	Mean value = $\left(\frac{1}{\frac{\sqrt{3}}{4} - 0}\right) \left[\frac{x^2}{2} \tan^{-1} 4x - \frac{1}{8}x + \frac{1}{32} \tan^{-1} 4x\right]_0^{\frac{\sqrt{3}}{4}}$	M1
	$= \frac{4}{\sqrt{3}} \left(\left(\frac{3}{32} \times \frac{\pi}{3} - \frac{1}{8} \times \frac{\sqrt{3}}{4} + \frac{1}{32} \times \frac{\pi}{3} \right) - 0 \right)$	
	$=\frac{\sqrt{3}}{72}(4\pi-3\sqrt{3}) \text{ or } \frac{\sqrt{3}}{18}\pi-\frac{1}{8} \text{ oe}$	A1
		(2)

- 2. In an Argand diagram, the points A and B are represented by the complex numbers -3 + 2i and 5 4i respectively. The points A and B are the end points of a diameter of a circle C.
 - (a) Find the equation of C, giving your answer in the form

$$|z-a|=b$$
 $a\in\mathbb{C},\ b\in\mathbb{R}$

(3)

The circle D, with equation |z - 2 - 3i| = 2, intersects C at the points representing the complex numbers z_1 and z_2

(b) Find the complex numbers z_1 and z_2

(6)

Complex Numbers

Average: 35.3%

2(a)	Centre of circle C is $(1, -1)$	B1
	$r = \sqrt{(5-1)^2 + (-4+1)^2} = 5$	
	or $r = \sqrt{(-3-1)^2 + (2+1)^2} = 5$	
	$r = \sqrt{(-3-1)^2 + (2+1)^2} = 5$	M1
	or $r = \frac{1}{2}\sqrt{(-3-5)^2 + (2+4)^2} = 5$	
	2 '	
	z-1+i = 5 or $ z-(1-i) = 5$	A1
		(3)
(b)	$(x-1)^2 + (y+1)^2 = 25, (x-2)^2 + (y-3)^2 = 4$	
	$x^2 - 2x + 1 + y^2 + 2y + 1 = 25$	M1
	$x^2 - 4x + 4 + y^2 - 6y + 9 = 4$	
	$\Rightarrow 2x + 8y = 32$	
	$(16-4y)^2-4(16-4y)+4+y^2-6y+9=4$	
	or	M1
	$x^{2} - 4x + 4 + \left(\frac{16 - x}{4}\right)^{2} - 6\left(\frac{16 - x}{4}\right) + 9 = 4$	
	$17y^2 - 118y + 201 = 0$ or $17x^2 - 72x + 16 = 0$	A1
	$17y^2 - 118y + 201 = 0 \Rightarrow (17y - 67)(y - 3) = 0 \Rightarrow y = \frac{67}{17},3$	
	or	M1
	$17x^2 - 72x + 16 = 0 \Rightarrow (17x - 4)(x - 4) = 0 \Rightarrow x = \frac{4}{17}, 4$	
	$y = \frac{67}{17}, 3 \Rightarrow x = \frac{4}{17}, 4 \text{ or } x = \frac{4}{17}, 4 \Rightarrow y = \frac{67}{17}, 3$	M1
	$4+3i, \ \frac{4}{17}+\frac{67}{17}i$	A1
		(6)

Vectors

O NOT WRITE IN THIS AF

NOT WRITE IN THIS AREA

7. The plane Π has equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

where λ and μ are scalar parameters.

- (a) Show that vector $2\mathbf{i} + 3\mathbf{j} 4\mathbf{k}$ is perpendicular to Π .
- (b) Hence find a Cartesian equation of Π .

The line *l* has equation

$$\mathbf{r} = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 6 \\ -3 \end{pmatrix}$$

where *t* is a scalar parameter.

The point A lies on l.

Given that the shortest distance between A and Π is $2\sqrt{29}$

(c) determine the possible coordinates of A.

(4)

(2)

(2)

Vectors

Average: 30.4%

		70
	S	75
- 1		Ō
- 1		ূ
- 1	\otimes	ু
		Ş
		Ş
		Š
		Š
		<u>्</u>
	$\ddot{\otimes}$	_ 1
		3
		3

7(a)	$\begin{vmatrix} -1 \\ 2 \\ 1 \end{vmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ -4 \end{vmatrix} = -2 + 6 - 4 = 0 \text{ and } \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = 4 + 0 - 4 = 0$ $\text{Alt: } \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \times 1 - 1 \times 0 \\ -(-1 \times 1 - 1 \times 2) \\ -1 \times 0 - 2 \times 2 \end{pmatrix} = \dots$	M1
	As $2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ is perpendicular to both direction vectors (two non-parallel vectors) of Π then it must be perpendicular to Π	A1
		(2)
(b)	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \Rightarrow \dots $	M1
	2x + 3y - 4z = 7	A1
		(2)
(c)	$\frac{\left 2(4+t)+3(-5+6t)-4(2-3t)-7\right }{\sqrt{2^2+3^2+(-4)^2}} = 2\sqrt{29} \Rightarrow t = \dots$	M1
	$t = -\frac{9}{8}$ and $t = \frac{5}{2}$	A1
	$r = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix} - \frac{9}{8} \begin{pmatrix} 1 \\ 6 \\ -3 \end{pmatrix} = \dots \text{ or } r = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 1 \\ 6 \\ -3 \end{pmatrix} = \dots$	M1
	$\left(\frac{23}{8}, -\frac{47}{4}, \frac{43}{8}\right)$ and $\left(\frac{13}{2}, 10, -\frac{11}{2}\right)$	A1
		(4)

- **6.** In an Argand diagram, the points A, B and C are the vertices of an equilateral triangle with its centre at the origin. The point A represents the complex number 6 + 2i.
- **#7**
- (a) Find the complex numbers represented by the points B and C, giving your answers in the form x + iy, where x and y are real and exact.

(6)

The points D, E and F are the midpoints of the sides of triangle ABC.

(b) Find the exact area of triangle *DEF*.

(3)

Complex Numbers

1						
6(a)	Examples:	M1	(b) Way 2	$D\left(\frac{3-\sqrt{3}}{2}, \frac{3\sqrt{3}+1}{2}\right)$ $OD = \sqrt{\left(\frac{3-\sqrt{3}}{2}\right)^2 + \left(\frac{3\sqrt{3}+1}{2}\right)^2} = \sqrt{10}$ $Area DOF = \frac{1}{2}\sqrt{10}\sqrt{10}\sin 120^\circ$	M1	2.1
	or			Area $DEF = 3DOF$	dM1	3.1a
	$\frac{\sqrt{40}e^{i\arctan(\frac{2}{6})}e^{i(\frac{2}{7})}}{\left(-3-\sqrt{3}\right) \text{ or } \left(3\sqrt{3}-1\right)i}$	A1		$= 3 \times \frac{1}{2} \times \sqrt{10} \sqrt{10} \times \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{2}$	A1	1.1b
	$ (-3-\sqrt{3})+(3\sqrt{3}-1)i $ Examples: $ \begin{pmatrix} \cos 240 & -\sin 240 \\ \sin 240 & \cos 240 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \dots \text{ or } (6+2i) \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) $	A1	(b) Way 3	$AB = \sqrt{(9 + \sqrt{3})^2 + (3 - 3\sqrt{3})^2} = \sqrt{120}$ Area $ABC = \frac{1}{2}\sqrt{120}\sqrt{120}\sin 60^\circ (= 30\sqrt{3})$	M1	2.1
	(sin 240 cos 240)(2)			Area $DEF = \frac{1}{4}ABC$	dM1	3.1a
	$\sqrt{40} \left(\cos \arctan\left(\frac{2}{6}\right) + i \sin \arctan\left(\frac{2}{6}\right)\right) \left(\cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right)\right)$ or	M1	-	$= \frac{1}{4} \times 30\sqrt{3} = \frac{15\sqrt{3}}{2}$	Al	1.1b
	$ \sqrt{40} \left(\cos \left(\arctan \left(\frac{2}{6} \right) + \frac{4\pi}{3} \right) + i \sin \left(\arctan \left(\frac{2}{6} \right) + \frac{4\pi}{3} \right) \right) $ or $ \sqrt{40} e^{i \arctan \left(\frac{2}{6} \right)} e^{i \left(\frac{4\pi}{3} \right)} $ $ \left(-3 + \sqrt{3} \right) \text{ or } \left(-3\sqrt{3} - 1 \right) i $	A1	(b) Way 4	$D\left(\frac{3-\sqrt{3}}{2}, \frac{3\sqrt{3}+1}{2}\right), E\left(-3, -1\right), F\left(\frac{3+\sqrt{3}}{2}, \frac{-3\sqrt{3}+1}{2}\right)$ $DE = \sqrt{\left(\frac{3-\sqrt{3}}{2}+3\right)^2 + \left(\frac{3\sqrt{3}+1}{2}+1\right)^2} \left(=\sqrt{30}\right)$	M1 d M1	2.1 3.1a
	$\left(-3+\sqrt{3}\right)+\left(-3\sqrt{3}-1\right)i$	A1 (6)		Area $DEF = \frac{1}{2}\sqrt{30}\sqrt{30}\sin 60^\circ$		
(b) Way 1	Area $ABC = 3 \times \frac{1}{2} \sqrt{6^2 + 2^2} \sqrt{6^2 + 2^2} \sin 120^\circ$	(6) M1	-	$=\frac{15\sqrt{3}}{2}$	A1	1.1b
	Area $AOB = \frac{1}{2}\sqrt{6^2 + 2^2}\sqrt{6^2 + 2^2}\sin 120^\circ$	WII	(b) Way 5	Area $ABC = \frac{1}{2} \begin{vmatrix} 6 & -3 - \sqrt{3} & \sqrt{3} - 3 & 6 \\ 2 & 3\sqrt{3} - 1 & -3\sqrt{3} - 1 & 2 \end{vmatrix} = 30\sqrt{3}$	M1	2.1
	Area $DEF = \frac{1}{4}ABC$ or $\frac{3}{4}AOB$	d M1		$Area DEF = \frac{1}{4} ABC$	dM1	3.1a
	$= \frac{3}{8} \times 40 \times \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{2}$	A1		$=\frac{1}{4}\times30\sqrt{3}=\frac{15\sqrt{3}}{2}$	A1	1.1b
		(3)		т 2		

6. The curve *C* has equation

$$r = a(p + 2\cos\theta) \qquad 0 \leqslant \theta < 2\pi$$

$$0 \leqslant \theta < 2\pi$$

where a and p are positive constants and p > 2

There are exactly four points on C where the tangent is perpendicular to the initial line.

(a) Show that the range of possible values for p is

$$2$$

(5)

(b) Sketch the curve with equation

$$r = a(3 + 2\cos\theta)$$
 $0 \le \theta < 2\pi$ where $a > 0$

$$0 \leqslant \theta < 2\pi$$

where
$$a > 0$$

(1)

John digs a hole in his garden in order to make a pond.

The pond has a uniform horizontal cross section that is modelled by the curve with equation

$$r = 20(3 + 2\cos\theta) \qquad 0 \leqslant \theta < 2\pi$$

$$0 \leqslant \theta < 2\pi$$

where r is measured in centimetres.

The depth of the pond is 90 centimetres.

Water flows through a hosepipe into the pond at a rate of 50 litres per minute.

Given that the pond is initially empty,

(c) determine how long it will take to completely fill the pond with water using the hosepipe, according to the model. Give your answer to the nearest minute.

(7)

(d) State a limitation of the model.

(1)

6(a)

$x = r\cos\theta = a(p + 2\cos\theta)\cos\theta$
Leading to $\frac{dx}{d\theta} = \alpha \sin\theta \cos\theta + \beta \sin\theta (p + 2\cos\theta)$
$\operatorname{or} \frac{\mathrm{d}x}{\mathrm{d}\theta} = \alpha \sin\theta \cos\theta + \beta \sin\theta$
or
$x = a(p\cos\theta + 2\cos^2\theta) = a(\cos 2\theta + p\cos\theta + 1)$
eading to $\frac{dx}{d\theta} = \alpha \sin 2\theta + \beta \sin \theta$
$\frac{\mathrm{d}x}{\mathrm{d}\theta} = a \Big[-2\sin\theta\cos\theta - \sin\theta \Big(p + 2\cos\theta \Big) \Big]$
or
$\frac{dx}{d\theta} = -4a\sin\theta\cos\theta - ap\sin\theta \text{ or } \frac{dx}{d\theta} = -2a\sin\theta - ap\sin\theta$
$a[-2\sin\theta\cos\theta - \sin\theta(p + 2\cos\theta)] = 0$
$\pm a (4\sin\theta\cos\theta + p\sin\theta) = 0$
$a\sin\theta\big(4\cos\theta+p\big)=0$
Either $\sin \theta = 0$ or $\cos \theta = -\frac{p}{4}$
$\sin\theta=0$ implies 2 solutions (tangents which are perpendicular to the initial line) e.g. $\theta=0,\pi$
Therefore two solutions to $\cos \theta = -\frac{P}{4}$ are required

	$\frac{1}{2} \int_{0}^{2\pi} \left[20(3 + 2\cos\theta) \right]^{2} d\theta = 200 \int_{0}^{2\pi} \left(9 + 12\cos\theta + 4\cos^{2}\theta \right) d\theta$ $or = \int_{0}^{2\pi} \left(1800 + 2400\cos\theta + 800\cos^{2}\theta \right) d\theta$	
	$\cos^{2}\theta = \frac{1}{2} + \frac{1}{2}\cos 2\theta \Rightarrow$ $A = \int (9 + 12\cos\theta + 2 + 2\cos 2\theta) d\theta = \alpha\theta \pm \beta\sin\theta \pm \lambda\sin 2\theta$	MI
	$= 400[11\theta + 12\sin\theta + \sin 2\theta] \text{ or } = 200[11\theta + 12\sin\theta + \sin 2\theta]$	Al
	Using limits $\theta=0$ and $\theta=\pi$ or $\theta=0$ and $\theta=2\pi$ as appropriate and subtracts the correct way round provided there is an attempt at integration	
	$= 400[11\pi - 0] = 4400\pi = 13823.0 \text{ (cm}^2\text{)}$	MI
	or	
	$= 200 [11(2\pi) - 0] = 4400\pi = 13823.0 (cm2)$	
	Volume = area $\times 90 = 396\ 000\ \pi = 1\ 244\ 070.691\ (cm^3)$	Ml
	time = $\frac{1244070.691}{50000}$ = or volume = 1244 litres therefore time = $\frac{1244}{50}$ =	MI
	25 (minutes)	Al
		(7)
(d)	For example	
,	Polar equation is not likely to be accurate.	
	Some comment that the sides will not be smooth and draws an appropriate conclusion.	В1
	The hole may not be uniform depth	
	The pond may leak/ ground may absorb some water	

Correct shape and position.

Condone cusp

 $-\frac{p}{4} > -1 \Rightarrow p < 4$ as p is a positive constant 2 *

(c) Area =
$$2 \times \frac{1}{2} \int_{0}^{\pi} \left[20(3 + 2\cos\theta) \right]^{2} d\theta = 400 \int_{0}^{\pi} (9 + 12\cos\theta + 4\cos^{2}\theta) d\theta$$
or =
$$\int_{0}^{\pi} (3600 + 4800\cos\theta + 1600\cos^{2}\theta) d\theta$$

4. In this question you may assume the results for

$$\sum_{r=1}^{n} r^3$$
, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r$

(a) Show that the sum of the cubes of the first *n* positive odd numbers is

$$n^2(2n^2-1)$$

(5)

The sum of the cubes of 10 consecutive positive odd numbers is 99 800

(b) Use the answer to part (a) to determine the smallest of these 10 consecutive positive odd numbers.

(4)

Average: 28.0%

4(a)	A complete attempt to find the sum of the cubes of the first <i>n</i> odd numbers using three of the standard summation formulae.	
	Attempts to find $\sum (2r+1)^3$ or $\sum (2r-1)^3$ by expanding and using	M1
	summation formulae	
	$\sum_{r=1}^{n} (2r-1)^{3} = \sum_{r=1}^{n} (8r^{3}-12r^{2}+6r-1) = 8\sum_{r=1}^{n} r^{3}-12\sum_{r=1}^{n} r^{2}+6\sum_{r=1}^{n} r-\sum_{r=1}^{n} 1$	
	or	M1
	$\sum_{r=0}^{n-1} (2r+1)^3 = \sum_{r=0}^{n-1} (8r^3 + 12r^2 + 6r + 1) = 8\sum_{r=0}^{n-1} r^3 + 12\sum_{r=0}^{n-1} r^2 + 6\sum_{r=0}^{n-1} r + \sum_{r=0}^{n-1} 1$	
	$=8\frac{n^2}{4}(n+1)^2-12\frac{n}{6}(n+1)(2n+1)+6\frac{n}{2}(n+1)-n$	
	or	M1
	$=8\frac{(n-1)^2}{4}(n)^2+12\frac{(n-1)}{6}(n)(2n-1)+6\frac{(n-1)}{2}(n)+n$	A1
	Multiplies out to achieve a correct intermediate line for example	
	$n + 1 2n^2 - 2n + 1 - n = 2n^4 - 2n^3 + n^2 + 2n^3 - 2n^2 + n - n$	
	$2n^4 + 4n^3 + 2n^2 - 4n^3 - 6n^2 - 2n + 3n^2 + 3n - n$	A1 *
	leading to	
	$= n^2 \left(2n^2 - 1\right) \cos *$	
		(5)

(b)	$\sum_{r=n}^{n+9} (2r-1)^3 = \sum_{r=1}^{n+9} (2r-1)^3 - \sum_{r=1}^{n-1} (2r-1)^3$ $= (n+9)^2 \left(2(n+9)^2 - 1 \right) - (n-1)^2 \left(2(n-1)^2 - 1 \right) = 99800$ or $\sum_{r=n+1}^{n+10} (2r-1)^3 = \sum_{r=1}^{n+10} (2r-1)^3 - \sum_{r=1}^{n} (2r-1)^3$ $= (n+10)^2 \left(2(n+10)^2 - 1 \right) - (n)^2 \left(2n^2 - 1 \right) = 99800$ or $\sum_{r=n-9}^{n} (2r-1)^3 = \sum_{r=1}^{n} (2r-1)^3 - \sum_{r=1}^{n-10} (2r-1)^3$ $= (n)^2 \left(2(n)^2 - 1 \right) - (n-10)^2 \left(2(n-10)^2 - 1 \right) = 99800$	M1
	$80n^{3} + 960n^{2} + 5820n - 86760 = 0$ or $80n^{3} + 1200n^{2} + 7980n - 79900 = 0$ or $80n^{3} - 1200n^{2} + 7980n - 119700 = 0$ Solves cubic equation	A1
	1	<u> </u>
	Achieves $n = 6$ and the smallest number as 11 or Achieves $n = 5$ and the smallest number as 11 or Achieves $n = 15$ and the smallest number as 11	A1
		(4)
	The state of the s	

(6)

9. (a) Use a hyperbolic substitution and calculus to show that

$$\int \frac{x^2}{\sqrt{x^2 - 1}} dx = \frac{1}{2} \left[x\sqrt{x^2 - 1} + \operatorname{arcosh} x \right] + k$$

where k is an arbitrary constant.

Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$y = \frac{4}{15}x \operatorname{arcosh} x$$
 $x \geqslant 1$

The finite region R, shown shaded in Figure 1, is bounded by the curve C, the x-axis and the line with equation x = 3

(b) Using algebraic integration and the result from part (a), show that the area of R is given by

$$\frac{1}{15} \Big[17 \ln \left(3 + 2\sqrt{2} \right) - 6\sqrt{2} \, \Big]$$

Methods in Calculus

A	ve	ra	g	e:	1	6.	8	0

9(a)	$\int \frac{x^2}{\sqrt{x^2 - 1}} dx \to \int f(u) du$ Uses the substitution $x = \cosh u$ fully to achieve an integral in terms of u only, including replacing the dx	M1
	$\int \frac{\cosh^2 u}{\sqrt{\cosh^2 u - 1}} \sinh u (\mathrm{d}u)$	A1
	Uses correct identities $\cosh^2 u - 1 = \sinh^2 u$ and $\cosh 2u = 2 \cosh^2 u - 1$ to achieve an integral of the form $A \int (\cosh 2u \pm 1) du$ $A > 0$	M1
	Integrates to achieve $A\left(\pm \frac{1}{2}\sinh 2u \pm u\right)(+c)$ $A > 0$	M1
	Uses the identity $\sinh 2u = 2 \sinh u \cosh u$ and $\cosh^2 u - 1 = \sinh^2 u$ $\rightarrow \sinh 2u = 2x\sqrt{x^2 - 1}$	M1
	$\frac{1}{2} \left[x \sqrt{x^2 - 1} + \operatorname{ar} \cosh x \right] + k * \operatorname{cso}$	A1*
		(6)
(b)	Uses integration by parts the correct way around to achieve $\int \frac{4}{15} x \operatorname{arcoshxd} x = Px^2 \operatorname{arcoshx} - Q \int \frac{x^2}{\sqrt{x^2 - 1}} dx$	M1
	$= \frac{4}{15} \left(\frac{1}{2} x^2 \operatorname{arcosh} x - \frac{1}{2} \int \frac{x^2}{\sqrt{x^2 - 1}} \mathrm{d}x \right)$	A1
	$= \frac{4}{15} \left(\frac{1}{2} x^2 \operatorname{arcosh} x - \frac{1}{2} \left(\frac{1}{2} \left[x \sqrt{x^2 - 1} + \operatorname{arcosh} x \right] \right) \right)$	B1ft
	Uses the limits $x = 1$ and $x = 3$ the correct way around and subtracts $= \frac{4}{15} \left(\frac{1}{2} (3)^2 \operatorname{arcosh} 3 - \frac{1}{2} \left(\frac{1}{2} \left[3\sqrt{(3)^2 - 1} + \operatorname{arcosh} 3 \right] \right) \right) - \frac{4}{15} (0)$	dM1
	$= \frac{4}{15} \left(\frac{9}{2} \ln \left(3 + \sqrt{8} \right) - \frac{3\sqrt{8}}{4} - \frac{1}{4} \ln \left(3 + \sqrt{8} \right) \right)$ $= \frac{1}{15} \left[17 \ln \left(3 + 2\sqrt{2} \right) - 6\sqrt{2} \right] *$	A1*
	150 , / 3	(5)

- N MA
- #3

$$1 + z + z^2 + z^3 + \dots$$

(1)

(b) Given that $z = \frac{1}{2}(\cos\theta + i\sin\theta)$,

9. (a) Given that |z| < 1, write down the sum of the infinite series

(i) use the answer to part (a), and de Moivre's theorem or otherwise, to prove that

$$\frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \dots = \frac{2\sin\theta}{5 - 4\cos\theta}$$

(5)

(ii) show that the sum of the infinite series $1 + z + z^2 + z^3 + ...$ cannot be purely imaginary, giving a reason for your answer.

(2)

9(a)	$\frac{1}{1-z}$	В1			#4
		(1)	_		#
(b)(i)	$\begin{aligned} &1+z+z^2+z^3+\dots\\ &=1+\left(\frac{1}{2}(\cos\theta+\mathrm{i}\sin\theta)\right)+\left(\frac{1}{2}(\cos\theta+\mathrm{i}\sin\theta)\right)^2+\left(\frac{1}{2}(\cos\theta+\mathrm{i}\sin\theta)\right)^3+\dots\\ &=1+\frac{1}{2}(\cos\theta+\mathrm{i}\sin\theta)+\frac{1}{4}(\cos2\theta+\mathrm{i}\sin2\theta)+\frac{1}{8}(\cos3\theta+\mathrm{i}\sin3\theta)+\dots \end{aligned}$	M1	M1	$\frac{1}{1-z} = \frac{1}{1-\frac{1}{2}e^{i\theta}} \times \frac{1-\frac{1}{2}e^{-i\theta}}{1-\frac{1}{2}e^{-i\theta}}$	M1
	$\frac{1}{1-z} = \frac{1}{1-\frac{1}{2}(\cos\theta + i\sin\theta)} \times \frac{1-\frac{1}{2}\cos\theta + \frac{1}{2}i\sin\theta}{1-\frac{1}{2}\cos\theta + \frac{1}{2}i\sin\theta}$	M1		$\frac{1 - \frac{1}{2}e^{-i\theta}}{1 - \frac{1}{4}e^{i\theta} - \frac{1}{4}e^{-i\theta} + \frac{1}{4}} = \frac{4 - 2e^{-i\theta}}{5 - 2(e^{i\theta} + e^{-i\theta})} = \frac{4 - 2(\cos\theta - i\sin\theta)}{5 - 2(2\cos\theta)}$	M1
	or $\frac{1}{1-z} = \frac{2}{2 - (\cos\theta + i\sin\theta)} \times \frac{2 - (\cos\theta - i\sin\theta)}{2 - (\cos\theta - i\sin\theta)}$			Select the imaginary part $\frac{2\sin\theta}{5-4\cos\theta}$	M1
	1		_	$\frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \dots = \frac{2\sin\theta}{5 - 4\cos\theta} *$	A1*
	$\left\{\frac{1}{2}(\sin\theta) + \frac{1}{4}(\sin 2\theta) + \frac{1}{8}(\sin 3\theta) + \ldots\right\} = \frac{\frac{1}{2}\sin\theta}{\left(1 - \frac{1}{2}\cos\theta\right)^2 + \left(\frac{1}{2}\sin\theta\right)^2}$				(5)
	or	MI	(b)(ii)	$\frac{1 - \frac{1}{2}\cos\theta}{\frac{5}{4} - \cos\theta} = 0 \Rightarrow \cos\theta = 2$	M1
	$\left\{\frac{1}{2}(\sin\theta) + \frac{1}{4}(\sin 2\theta) + \frac{1}{8}(\sin 3\theta) + \ldots\right\} = \frac{2\sin\theta}{\left(2 - \cos\theta\right)^2 + \left(\sin\theta\right)^2}$			As $(-1 \le)\cos\theta \le 1$ therefore there is no solution to $\cos\theta = 2$ so there will also be a real part, hence the sum cannot be purely imaginary.	A1
	$\left[\left(1 - \frac{1}{2}\cos\theta\right)^2 + \left(\frac{1}{2}\sin\theta\right)^2 = 1 - \cos\theta + \frac{1}{4}\cos^2\theta + \frac{1}{4}\sin^2\theta$		-	Alternative 1 Imaginary part is $\frac{4-2\cos\theta}{5-4\cos\theta} = \frac{1}{2} + \frac{3}{2(5-4\cos\theta)}$	M1
	$= \frac{5}{4} - \cos \theta$ or	M1		$-1 \le \cos \theta \le 1$ therefore $\frac{1}{6} < \frac{3}{2(5-4\cos \theta)} < \frac{3}{2}$ so sum must contain real part	Al
	$(2-\cos\theta)^2 + (\sin\theta)^2 = 4 - 4\cos\theta + \cos^2\theta + \sin^2\theta$ $= 5 - 4\cos\theta$			Alternative 2 $\frac{1}{1-z} = ki \Rightarrow z = 1 + \frac{i}{k}$	M1
	$\frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \dots = \frac{\frac{1}{2}\sin\theta}{\frac{5}{-\cos\theta}} = \frac{2\sin\theta}{5 - 4\cos\theta}$	A1*		$\mod z > 1$ contradiction hence cannot be purely imaginary	A1
	$\frac{2}{4} + \frac{3}{4} - \cos\theta$		_		(2)
	Alternative $1+z+z^2+z^3+$ $=1+\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)+\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^2+\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^3+$ $=1+\frac{1}{2}(\cos\theta+i\sin\theta)+\frac{1}{4}(\cos2\theta+i\sin2\theta)+\frac{1}{2}(\cos3\theta+i\sin3\theta)+$	M1			

DO NOT WRITE IN THIS AREA

8. Two different colours of paint are being mixed together in a container.

The paint is stirred continuously so that each colour is instantly dispersed evenly throughout the container.

Initially the container holds a mixture of 10 litres of red paint and 20 litres of blue paint.

The colour of the paint mixture is now altered by

- adding red paint to the container at a rate of 2 litres per second
- · adding blue paint to the container at a rate of 1 litre per second
- pumping fully mixed paint from the container at a rate of 3 litres per second.

Let *r* litres be the amount of red paint in the container at time *t* seconds after the colour of the paint mixture starts to be altered.

(a) Show that the amount of red paint in the container can be modelled by the differential equation

$$\frac{\mathrm{d}r}{\mathrm{d}t} = 2 - \frac{r}{\alpha}$$

where α is a positive constant to be determined.

(2)

(b) By solving the differential equation, determine how long it will take for the mixture of paint in the container to consist of equal amounts of red paint and blue paint, according to the model. Give your answer to the nearest second.

(6)

It actually takes 9 seconds for the mixture of paint in the container to consist of equal amounts of red paint and blue paint.

(c) Use this information to evaluate the model, giving a reason for your answer.

(1)

Differential Equations

Average:	1	4.	9	9	
----------	---	----	---	---	--

#	2

8(a)	Volume of paint = 30 litres therefore Rate of paint out = $3 \times \frac{r}{30}$ litres per second $\frac{dr}{dt} = 2 - \frac{r}{10}$				
			(2)		
(b)	Rearranges $\frac{dr}{dt} + \frac{r}{10} = 2$ and attempts integrating factor IF = $e^{\int \frac{1}{10} dt} =$	Separates the variables $\int \frac{1}{20-r} dr = \frac{1}{10} dt$ \Rightarrow	M1		
	$re^{\frac{t}{10}} = \int 2e^{\frac{t}{10}} dt \Rightarrow re^{\frac{t}{10}} = \lambda e^{\frac{t}{10}} (+c)$	Integrates to the form $\lambda \ln (20-r) = \frac{1}{10}t(+c)$	M1		
	$re^{\frac{t}{10}} = 20e^{\frac{t}{10}} + c$ $-\ln(20 - r) = \frac{1}{10}t + c$				
	$t = 0, r = 10 \Rightarrow c = \dots$				
	$r = \frac{20e^{\frac{t}{10}} - 10}{e^{\frac{t}{10}}} = 15 \text{ rearranges to}$ achieve $e^{\frac{t}{10}} = \alpha$ and solves to find a value for t or $r = 20 - 10e^{-\frac{t}{10}} = 15 \text{ rearranges to}$ achieve $e^{-\frac{t}{10}} = \beta$ and solves to find a value for t	$-\ln(20-15) = \frac{1}{10}t - \ln 10$ Leading to a value for t	M1		
	t = awrt 7 seconds				
			(6)		
(c)	The model predicts 7 seconds but it actually takes 9 seconds so (over) 2 seconds out (over 20%), therefore it is not a good model				
			(1)		

2.

$$\mathbf{A} = \begin{pmatrix} 4 & -2 \\ 5 & 3 \end{pmatrix}$$

#1

The matrix A represents the linear transformation M.

Prove that, for the linear transformation M, there are no invariant lines.

(5)

Linear Transformations

2	$ \begin{pmatrix} 4 & -2 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ mx+c \end{pmatrix} = \begin{pmatrix} X \\ mX+c \end{pmatrix} $ leading to an equation in x , m , c and a $ 4x-2(mx+c) = X $ and $5x+3(mx+c) = mX+c $ $ 5x+3(mx+c) = m(4x-2(mx+c))+c $					
	leading to		M1			
	$5+3m=4m-2m^2$	(3c = -2mc + c)				
	$2m^2 - m + 5 = 0 \Rightarrow b^2 - 4ac =$	Solves $3c = -2mc + c \Rightarrow m =$	dM1			
	$(-1)^2 - 4(2)(5) = \dots$	Bolves se = 2me + e = m =	divii			
	Correct expression for the discriminant = $\{-39\}$ < 0 therefore there are no invariant lines.	$m = -1$ and shows a contradiction in $5+3m = 4m-2m^2$ therefore there are no invariant lines.	A1			
	$\begin{pmatrix} 4 & -2 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} X \\ mX \end{pmatrix}$ leading to an equation in x , m and X					
	4x - 2(mx) = X and $5x + 3(mx) = mX$					
	5x+3(mx) = m(4x-2(mx)) leading to $5+3m = 4m-2m^2$		M1			
	$2m^2 - m + 5 = 0 \Rightarrow b^2 - 4ac = (-1)^2 - 4(2)(5) = \dots$					
	$nant = \{-39\} < 0$ therefore there sugh the origin no invariant lines.	Al				

Number	Question	Year	Paper	Mark	Total	Percentage	
1	2	2021	CP2	0.63	5	12.6%	
2	8	2021	CP1	1.34	9	14.9%	
3	9	2021	CP2	1.34	8	16.8%	
4	9	2021	CP1	1.85	11	16.8%	
5	4	2021	CP2	2.52	9	28.0%	
6	6	2021	CP2	4.04	14	28.9%	
7	6	2019	CP2	2.67	9	29.7%	
8	7	2021	CP1	2.43	8	30.4%	
9	2	2020	CP2	3.18	9	35.3%	
10	5	2020	CP2	3.66	10	36.6%	
11	3	2021	CP2	2.43	6	40.5%	
12	2	2021	CP1	2.9	7	41.4%	
13	6	2021	CP1	5.01	12	41.8%	
14	9	2022	CP2	3.37	8	42.1%	
15	7	2020	CP1	4.84	11	44.0%	
16	8	2021	CP2	4.84	11	44.0%	
17	3	2021	CP1	2.67	6	44.5%	
18	6	2020	CP2	6.25	14	44.6%	
19	5	2021	CP1	3.15	7	45.0%	
20	1	2021	CP1	2.72	6	45.3%	
21	2	2019	CP1	3.18	7	45.4%	
22	5	2021	CP2	3.65	8	45.6%	
23	4	2019	CP1	2.29	5	45.8%	
24	7	2020	CP2	5.05	11	45.9%	
25	1	2021	CP2	2.38	5	47.6%	
26	5	2019	CP1	6.3	13	48.5%	
27	3	2020	CP2	6.96	14	49.7%	
28	7	2021	CP2	4.6	9	51.1%	
29	4	2020	CP1	4.61	9	51.2%	
30	5	2020	CP1	8.73	17	51.4%	
31	4	2019	CP2	4.23	8	52.9%	
32	4	2022	CP2	3.18	6	53.0%	
33	4	2021	CP1	4.92	9	54.7%	

34	5	2019	CP2	6.8	12	56.7%
35	4	2020	CP2	5.67	10	56.7%
36	8	2019	CP2	6.31	11	57.4%
37	2	2020	CP1	4.04	7	57.7%
38	6	2020	CP1	7.03	12	58.6%
39	7	2019	CP1	4.11	7	58.7%
40	3	2019	CP2	3.61	6	60.2%
41	1	2020	CP2	4.24	7	60.6%
42	3	2020	CP1	5.54	9	61.6%
43	10	2022	CP1	8.68	14	62.0%
44	7	2019	CP2	7.02	11	63.8%
45	8	2019	CP1	11.59	18	64.4%
46	7	2022	CP2	6.65	10	66.5%
47	9	2022	CP1	4.04	6	67.3%
48	1	2019	CP2	6.95	10	69.5%
49	2	2019	CP2	5.81	8	72.6%
50	8	2022	CP1	8.86	12	73.8%
51	3	2022	CP1	4.46	6	74.3%
52	6	2019	CP1	4.47	6	74.5%
53	2	2022	CP1	3	4	75.0%
54	8	2022	CP2	9.77	13	75.2%
55	4	2022	CP1	5.38	7	76.9%
56	6	2022	CP1	5.38	7	76.9%
57	3	2022	CP2	8.92	11	81.1%
58	7	2022	CP1	5.68	7	81.1%
59	3	2019	CP1	8.18	10	81.8%
60	5	2022	CP2	4.91	6	81.8%
61	2	2022		6.6	8	82.5%
62	1	2020		8.39	10	83.9%
63	5	2022		5.08	6	84.7%
64	6	2022		8.59	10	85.9%
65	1	2022		5.28	6	88.0%
66	1	2022		2.69	3	89.7%
67	1	2019		8.25	9	91.7%
			_, ,	0.20	•	