
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=4; day=4; hr=10; min=57; sec=23; ms=140;]

Validated By CRFValidator v 1.0.3

Application No: 10588140 Version No: 2.0

Input Set:

Output Set:

Started: 2008-03-25 11:51:39.770

Finished: 2008-03-25 11:51:40.868

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 98 ms

Total Warnings: 9

Total Errors: 3

No. of SeqIDs Defined: 9

Actual SeqID Count: 9

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (1)
W	213	Artificial or Unknown found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
E	257	Invalid sequence data feature in <221> in SEQ ID (8)
Ε	257	Invalid sequence data feature in <221> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
E	257	Invalid sequence data feature in <221> in SEQ ID (9)

SEQUENCE LISTING

<110> KIM, DO-MAN

KANG, HEE-KYOUNG

LEE, JIN-HA

<120> PROTEIN WITH ACTIVITY OF HYDROLYZING DEXTRAN, STARCH,
MUTAN, INULIN, AND LEVAN, GENE ENCODING THE SAME, CELL
EXPRESSING THE SAME, AND PRODUCTION METHOD THEREOF

<130> 44352-0010-00-US

<140> 10588140

<141> 2006-07-31

<150> PCT/KR05/00234

<151> 2005-01-27

<150> KR 10-2004-0006185

<151> 2004-01-30

<160> 9

<170> PatentIn Ver. 3.3

<210> 1

<211> 608

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic construct

<400>

Met Thr Leu Ile Tyr Val Pro Ser Ile Phe Thr Met Val Pro Ser Ile
1 5 10 15

Thr Arg Ile Val Leu Val Asn Ile Leu Leu Ala Thr Leu Val Leu Gly
20 25 30

Ala Ala Val Leu Pro Arg Asp Asn Arg Thr Val Cys Gly Ser Gln Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Cys Thr Trp Trp His Asp Ser Gly Glu Ile Asn Thr Gly Thr Pro Val
50 55 60

Gln Ala Gly Asn Val Arg Gln Ser Arg Lys Tyr Ser Val His Val Ser
65 70 75 80

Leu Ala Asp Arg Asn Gln Phe Tyr Asp Ser Phe Val Tyr Glu Ser Ile 85 90 95

Pro Arg Asn Gly Asn Gly Arg Ile Tyr Ser Pro Thr Asp Pro Pro Asn 100 105 110

Ser A	sn Thi		Asn	Ser	Ser	Ile 120	Asp	Asp	Gly	Ile	Ser 125	Ile	Glu	Pro
	eu Gly 30	'Ile	Asn	Met	Ala 135	Trp	Ser	Gln	Phe	Glu 140	Tyr	Arg	Arg	Asp
Val A: 145	sp Ile	. Lys	Ile	Thr 150	Thr	Ile	Asp	Gly	Ser 155	Ile	Leu	Asp	Gly	Pro 160
Leu A	sp Il∈	· Val	Ile 165	Arg	Pro	Thr	Ser	Val 170	Lys	Tyr	Ser	Val	Lys 175	Arg
Cys V	al Gly	Gly 180	Ile	Ile	Ile	Arg	Val 185	Pro	Tyr	Asp	Pro	Asn 190	Gly	Arg
Lys Pl	he Sei 195		Glu	Leu	Lys	Ser 200	Asp	Leu	Tyr	Ser	Tyr 205	Leu	Ser	Asp
_	er Glr 10	ı Tyr	Val	Thr	Ser 215	Gly	Gly	Ser	Val	Val 220	Gly	Val	Glu	Pro
Lys A:	sn Ala	ı Leu	Val	Ile 230	Phe	Ala	Ser	Pro	Phe 235	Leu	Pro	Arg	Asp	Met 240
Val P:	ro His	: Met	Thr 245	Pro	His	Asp	Thr	Gln 250	Thr	Met	Lys	Pro	Gly 255	Pro
Ile A	sn Asr	260	Asp	Trp	Gly	Ser	Lys 265	Pro	Ile	Leu	Tyr	Phe 270	Pro	Pro
Gly V	al Tyi 275	=	Met	Asn	Glu	Asp 280	Thr	Ser	Gly	Asn	Pro 285	Gly	Lys	Leu
-	er Asr 90	His	Met	Arg	Leu 295	Asp	Pro	Asn	Thr	Tyr 300	Trp	Val	His	Leu
Ala P: 305	ro Gly	'Ala	Tyr	Val 310	Lys	Gly	Ala	Ile	Glu 315	Tyr	Phe	Thr	Lys	Gln 320
Asn Pl			325	_		_		330		_			335	
Tyr G	ln Ala	340	Ala	Ala	Asp	Asn	Tyr 345	Tyr	Ala	Val	Lys	350	Asp	Gly
Thr S	er Lei 355	_	Met	Trp	Trp	His 360	Asn	Asn	Leu	Gly	Gly 365	Gly	Gln	Thr
=	he Cys 70	: Met	Gly	Pro	Thr 375	Ile	Asn	Ala	Pro	Pro 380	Phe	Asn	Thr	Met
Asp Pl 385	he Asr	ı Gly	Asn	Ser 390	Asn	Ile	Ser	Ser	Arg 395	Ile	Ser	Asp	Tyr	Lys 400
Gln V	al Gly	Ala	Tyr 405	Phe	Phe	Gln	Thr	Asp 410	Gly	Pro	Glu	Ile	Tyr 415	Glu

Asp Ser Val Val His Asp Val Phe Trp His Val Asn Asp Asp Ala Ile 425 420 Lys Thr Tyr Tyr Ser Gly Ala Ser Ile Ser Arg Ala Thr Ile Trp Lys 440 Cys His Asn Asp Pro Ile Ile Gln Met Gly Trp Thr Ser Arg Asn Leu 450 455 Thr Gly Ile Ser Ile Asp Asn Leu His Val Ile His Thr Arg Tyr Phe 470 465 475 Lys Ser Glu Thr Val Val Pro Ser Ala Ile Ile Gly Ala Ser Pro Phe 485 490 Tyr Ala Ser Gly Met Thr Val Asp Pro Ser Glu Ser Ile Ser Met Thr 500 505 Ile Ser Asn Val Val Cys Glu Gly Leu Cys Pro Ser Leu Phe Arg Ile 520 Thr Pro Leu Gln Ser Tyr Asn Asn Leu Val Val Lys Asn Val Ala Phe 530 535 Pro Asp Gly Leu Gln Thr Asn Pro Ile Gly Ile Gly Glu Ser Ile Ile 545 550 555 560 Pro Ala Ala Ser Gly Cys Thr Met Asp Leu Glu Ile Thr Asn Trp Thr 565 570 Val Lys Gly Gln Lys Val Thr Met Gln Asn Phe Gln Ser Gly Ser Leu 580 585 Gly Gln Phe Asp Ile Asp Gly Ser Tyr Trp Gly Gln Trp Ser Ile Asn 600 <210> 2 <211> 2052 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic construct <220> <221> CDS <222> (42)..(1865) <400> 2 tgggtgtgtc ccttgctctg ccaacgttgt tgattgtttt c atg aca tta atc tac 56 Met Thr Leu Ile Tyr 1

gtg cct tca ata ttt aca atg gtc ccc tca atc aca cgg att gta ctg $\,$ $\,$ 104

Val Pro Ser Ile Phe Thr Met Val Pro Ser Ile Thr Arg Ile Val Leu

10 15 20

_			_	_		_	_	_	_	gga Gly	_	_	-			152
_	-		_		_	_	222	_		ctc Leu	_					200
-										gta Val	-	-			_	248
_			_	_			_			agc Ser 80	_	_	_	_		296
			_			-		-	_	ata Ile						344
	_						_			aac Asn	_			_		392
_	_		-	-					-	cca Pro						440
_	_			_		_		_	_	gat Asp	_	_		_		488
act	aca				4								\rightarrow + +	~++	a + +	
Thr 150			-				-	-	gly ggc	Pro 160	_	-		-		536
150 cgg	Thr ccg	Ile act	Asp	Gly	Ser 155 aag	Ile tac	Leu	Asp	Gly	Pro	Leu	Asp	Ile ggt	Val ggt	Ile 165 atc	536
150 cgg Arg	Thr ccg Pro	Ile act Thr	Asp tct Ser	Gly gtt Val 170	Ser 155 aag Lys tat	Ile tac Tyr	Leu tca Ser	Asp gtc Val	Gly aaa Lys 175	Pro 160 aga	Leu tgt Cys	Asp gtg Val	Ile ggt Gly	Val ggt Gly 180 gtt	Ile 165 atc Ile	
cgg Arg att Ile	Thr ccg Pro att Ile	act Thr aga Arg	Asp tct Ser gtc Val 185 gac	Gly gtt Val 170 cct Pro	Ser 155 aag Lys tat Tyr	tac Tyr gat Asp	tca Ser ccc Pro	Asp gtc Val aat Asn 190 ctc	Gly aaa Lys 175 ggt Gly	Pro 160 aga Arg	tgt Cys aaa Lys	Asp gtg Val ttc Phe	ggt Gly tct Ser 195	Val ggt Gly 180 gtt Val	Ile 165 atc Ile gag Glu gtg	584
cgg Arg att Ile tta Leu	Thr ccg Pro att Ile aag Lys tct	act Thr aga Arg agt ser 200	Asp tct Ser gtc Val 185 gac Asp	Gly gtt Val 170 cct Pro ctt Leu agc	ser 155 aag Lys tat Tyr tac Tyr	tac Tyr gat Asp agt Ser	tca ser ccc Pro tac Tyr 205	Asp gtc Val aat Asn 190 ctc Leu gtg	aaa Lys 175 ggt Gly tcc Ser	Pro 160 aga Arg cga Arg	tgt Cys aaa Lys ggt Gly	gtg Val ttc Phe tcg Ser 210	ggt Gly tct Ser 195 caa Gln	Val ggt Gly 180 gtt Val tat Tyr	Ile 165 atc Ile gag Glu gtg Val	584 632

	cac His	_				_	_	_			_				_	824
	ggt Gly		_						_			_			_	872
	gag Glu	-							_						-	920
	ctg Leu 295	-						-			-			-		968
	aaa Lys		-					_	_					-	_	1016
	cat His		-							-		-	-		-	1064
_	gat Asp				-	-	_	_	-			-	_	_	_	1112
	tgg Trp												-	-		1160
	acc Thr 375			_	_	_			_	_	_					1208
	aat Asn			_			_	_		_	_	-		-		1256
	ttc Phe			_		_					_	_	_	_		1304
_	gtc Val				-		_	_	-		_					1352
	gct Ala				-	-				_	-			-	-	1400
	ata Ile 455	_	_			_		_						_		1448

gat aac ctg cac gtc atc cac acg aga tat ttc aaa tct gaa aca gtg Asp Asn Leu His Val Ile His Thr Arg Tyr Phe Lys Ser Glu Thr Val 470 475 480 480	1496									
gtt cct tca gca atc att gga gcg tct cca ttc tac gca agt gga atg Val Pro Ser Ala Ile Ile Gly Ala Ser Pro Phe Tyr Ala Ser Gly Met 490 495 500	1544									
act gtt gat ccc agc gag tcc atc agc atg acc atc tct aac gtg gtg Thr Val Asp Pro Ser Glu Ser Ile Ser Met Thr Ile Ser Asn Val Val 505 510 515	1592									
tgt gag ggt cta tgc ccc tca ctg ttc cgt atc act ccg ctt cag agc Cys Glu Gly Leu Cys Pro Ser Leu Phe Arg Ile Thr Pro Leu Gln Ser 520 525 530	1640									
tac aac aac ctt gtt gtc aag aac gtg gcc ttt ccc gat gga ctg cag Tyr Asn Asn Leu Val Val Lys Asn Val Ala Phe Pro Asp Gly Leu Gln 535 540 540 545	1688									
aca aat cca atc gga ata gga gag agc att ata cca gca gct tcc ggc Thr Asn Pro Ile Gly Ile Gly Glu Ser Ile Ile Pro Ala Ala Ser Gly 550 555 560 565	1736									
tgt aca atg gac ttg gaa atc aca aac tgg acc gtc aaa gga caa aaa Cys Thr Met Asp Leu Glu Ile Thr Asn Trp Thr Val Lys Gly Gln Lys 570 575 580	1784									
gtc acc atg caa aac ttt cag tcc ggg tca ctt ggc cag ttc gat atc Val Thr Met Gln Asn Phe Gln Ser Gly Ser Leu Gly Gln Phe Asp Ile 585 590 595	1832									
gat ggt tca tac tgg ggt caa tgg tcc ata aac taaagctatt cccattcac Asp Gly Ser Tyr Trp Gly Gln Trp Ser Ile Asn 600 605	c 1885									
tgagtatttt cgtgggttca atgagttctt gttactgatg gggcccttgc tagtggtaa	a 1945									
agtagaggga cttgtcctcg ccgggcgcca aggaagttca tgtcttctag ttgaatagt	a 2005									
tttgtttctt ctctctcgtt aaaaaaaaa aaaaaaaaa aaaaaaa	2052									
<210> 3 <211> 18										
<212> DNA <213> Artificial Sequence										
<223> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer										
<400> 3 gtcccttgag ctcccaac	18									

```
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 4
                                                                   23
tcaactagaa ttcatgaact tcc
<210> 5
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 5
gagagagaga gagagaga actagtctcg agttttttt tttttttt
                                                                   50
<210> 6
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 6
acctggcaya grdmm
                                                                   15
<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     primer
<400> 7
gsykccsacc tgcttrta
                                                                   18
<210> 8
<211> 6
<212> PRT
<213> Artificial Sequence
```

<220>

```
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD_RES
<222> (5)
<223> Asp or Asn
<220>
<221> MOD_RES
<222> (6)
<223> Asn, Ser or Thr
<400> 8
Thr Trp Trp His Xaa Xaa
1
<210> 9
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD_RES
<222> (6)
<223> Ser or Ala
<400> 9
Tyr Lys Gln Val Gly Xaa
```