

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k

F_k: Frequent itemset of size k

K := 1;

F_k := \{ \text{frequent items} \}; \ // \text{ frequent 1-itemset} 

While (F_k != \varnothing) \text{ do } \{ \ // \text{ when } F_k \text{ is non-empty} 

C_{k+1} := \text{ candidates generated from } F_k; \ // \text{ candidate generation} 

Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup; K := K + 1

K := K + 1
```

The Apriori Algorithm—An Example

Apriori: Implementation Tricks

- How to generate candidates?
 - □ Step 1: self-joining F_k 使埃
 - □ Step 2: pruning 女大ち
- Example of candidate-generation
 - \Box $F_3 = \{abc, abd, acd, ace, bcd\}$
 - \square Self-joining: $F_3 * F_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - \square acde is removed because ade is not in F_3
 - \Box $C_4 = \{abcd\}$

Candidate Generation: An SQL Implementation

self-join

<u>ab</u>d

<u>abc</u>

self-join

acde

pruned

<u>ace</u>

bcd

<u>acd</u>

- \square Suppose the items in F_{k-1} are listed in an order
- \square Step 1: self-joining F_{k-1} abcd insert into C_{k} select p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1} from F_{k-1} as p, F_{k-1} as qwhere $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$
- Step 2: pruning for all *itemsets c in C_k* do for all **(k-1)-subsets s of c** do if (s is not in F_{k-1}) then delete c from C_k