Instituto Superior de Engenharia de Lisboa

Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores

As perguntas de escolha múltipla podem ter uma ou mais respostas certas. Assinale as repostas certas com "V" e todas as falsas com "F". SE não colocar nada não conta nem desconta na cotação da pergunta.

Elemento de consulta exclusivo: Duas folhas A4, manuscritas e originais (não podem ser fotocópias), não podem conter perguntas e/ou respostas. Devem conter o número do aluno no canto superior direito e a rubrica deste.

Durante a prova todas as folhas em cima da mesa devem conter o número do aluno e estarem rubricadas.

Telemóveis e/ou relógios com ligação à Internet devem ser guardados fora de vista e sem som.

Nome	seis e/ou relogios com ligação a internet devem sei guardados fora de vista e sem som:
	Turma:Docente: VA □, JF □, JS □, JV □
V/F	
1) Seg	undo a norma IEEE802.1Q numa rede poderão coexistir no máximo, cerca de:
	1000 VLAN
	2000 VLAN
	4000 VLAN #
	8000 VLAN
•	no é que um <i>switch</i> que recebe uma trama <i>Ethernet</i> numa porta <i>trunk</i> sabe se a trama transporta c mero da VLAN:
	A trama transporta no campo EtherType o valor 0x8100
	Devido ao comprimento do <i>header</i> da trama ser maior do que 4 bytes
	Numa ligação Trunk a trama transporta sempre o número da VLAN a que pertence
☐ e da	A trama inclui 4 bytes adicionais contendo o valor 0x8100 e mais dois bytes com o número da prioridade VLAN #
3) Pod	emos forçar um switch a ser root bridge numa topologia spanning tree configurando-o com:
	Um bridge ID maior
	Um bridge ID menor #
	Um valor numérico para a prioridade maior
	Um valor numérico para a prioridade menor #
4) Os 6	estados de uma porta de uma bridge spanning tree (STP) em que são processados BPDU são:
	Blocking #
	Listening #
	Learning #
	Forwarding #

5) Um	a porta de uma <i>bridge</i> RSTP passa para o papel de <i>Alternate</i> se:
	Se estiver ligada a um link full-duplex
	Se estiver ligado a um segmento onde haja outro switch RSTP com uma porta no modo Alternate
	Se estiver ligado a um segmento onde haja outro switch RSTP com uma porta no papel de Designated #
O SW	Se estiver ligado a um segmento onde haja outro <i>switch</i> RSTP com uma porta no papel de Backup # (se v tem um porta backup é porque tem outra designated)
6) No	RIP:
	O valor máximo de <i>hops</i> possíveis é 15 #
	Novos destinos propagam-se lentamente
	A implementação do count to infinity auxilia a deteção de loops
	Destinos inatingíveis propagam-se mais rapidamente (por timeout)
7) Um	a rede RIP pode possuir até:
	8 routers

 \Box 15 routers

☐ 16 routers

Sem limite definido dependendo da topologia #

8) Tendo em consideração o RIPv2, preencha a tabela de encaminhamento do *router* R4. Assinale na coluna respetiva a origem das rotas "C" (*Connected*) e as aprendidas pelo protocolo "R". Assuma que todas as redes usam máscara CIDR /24.

Nota: Em vez de endereços IP pode utilizar a referência *router-interface* para referir as interfaces dos *routers*

Origem (C/R)	Destino	Máscara	Por onde	Para onde	Métrica
			enviar	enviar	
R	LAN 1	/24	R4-e0	R1-e1	2
С	LAN 2	/24	R4-e0	-	-
R	LAN 3	/24	R4-e1	R3-e1	2
С	LAN 4	/24	R4-e1	-	-
R	LAN 99	/24	R4-e0	R5-e1	2
R	S_R1-R3	/24	R4-e0	R1-e1	2
R	S_R1-R3	/24	R4-e1	R3-e1	2
	_				

9) Assumindo que a rede anterior utiliza OSPF e que apenas existe uma única área, indique quantos LSA de cada tipo existem na LSDB do *router* 2.

Router	LSA 1	LSA 2	LSA 3	LSA 4	LSA 5	LSA 7
R2	5	4	0	0	0	0

10) Assumindo que a rede acima utiliza OSPF e que existem duas áreas e que os *routers* R1 e R3 são *routers* de fronteira ficando as redes LAN 1 e LAN 3 na área 1, indique quantos LSA existem nas tabelas dos *routers*. A ligação R3-s0/R1-s0 pertence à área de *backbone*.

Router	LSA 1	LSA 2	LSA 3	LSA 4	LSA 5	LSA 7	Área
R5	4	2	2	0	0	0	Área 0
R2	3	2	4	0	0	0	Área 1

- LSA tipo 1
- ☐ LSA tipo 3
- LSA tipo 4 #
- ☐ LSA tipo 5 #

12) Considere um router configurado com os seguintes comandos:

router ospf 200 network 192.168.16.0 0.0.0.255 area 2 network 192.168.17.0 0.0.0.255 area 0 area 2 stub

- O router é um ABR #
- O router não pode ser um ASBR
- A área 2 está configurada como Area Totally Stub
- ☐ Na falta do comando "area <area-id> default-cost <cost>" o ABR anuncia um custo igual ao número de "saltos" sobre os *routers*
- 13) Quanto aos routers com a função de ASBR:
 - Como ASBR geram LSA tipo 4
 - Como ASBR geram LSA tipo 5 #
 - Podem também ser ABR simultaneamente #
 - Podem gerar LSA tipo 7 se estiverem numa área totally stub

Considere 3 routers RTA, RTB e RTC ligados entre si através das portas série (RTA<->RTB; RTA<->RTC).

14) Considere as seguintes configurações dos routers RTA, RTB:

RTA: Serial0/0 is up, line protocol is up
Internet address 10.0.0.1/30, area 0
Transmit Delay is 1 sec, State DR, Priority 1
No backup designated router on this network
Timer intervals configured, Hello 5, Dead 20, Wait 20, Retransmit 5
RTB: Serial0/0 is up, line protocol is up
Internet address 10.0.0.2/30, area 0
Transmit Delay is 1 sec, State DR, Priority 1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 20, Retransmit 5

Os timers dead e hello não estão bem configurados #
Deve ser adicionado um backup designated router à rede
Os routers têm prioridades iguais pelo que podem ser vizinhos

15) Considere o comando e o resultado apresentados sem nenhuma configuração adicional

- /					0
RTA: show ip	interface brie	f			
interface	IP Adress	OK?	Method	Status	Protocol
Ethernet0/0	192.168.0.1	YES	NVRAM	up	up
Serial0/0	10.0.0.1	YES	NVRAM	up	up
Loopback0	192.168.2.1	YES	NVRAM	up	up
Loopback1	192.168.3.1	YES	NVRAM	up	up

Estes routers apesar de estarem ligados entre si não estabelecem uma relação de vizinhança #

Assumindo prioridades iguais, qual o *router* ID do *router* (Cisco) onde foi executado o comando apresentado? 192.168.3.1

Considere a seguinte rede, onde os *routers* têm como IP das interfaces físicas o endereço acabado no seu número pertencente à rede onde estão ligados (Ex.: R2 (f0/1)=10.0.13.2/24) e existem sessões BGP estabelecidas entre os routers fisicamente adjacentes.

16) Se o AS 65004 pretender fazer trânsito para o tráfego entre o AS 65002 e o AS 65003:

	Redes de Internet - Exame de Época Especial - 27/02/2020
	Não necessita de fazer nenhuma configuração adicional #
	Deve colocar a 0 o atributo weight nas rotas recebidas do AS65002 e AS65003
	Deve alterar o local-preference para o valor 10 nas rotas enviadas para o AS65002 e AS65003
_ pa	Deve colocar nas rotas enviadas para o AS65002 e para o AS65003 valores MED mais baixos que o usado ra as redes internas
17) E	Em que situações é possível observar num AS_Path o mesmo identificador de AS múltiplas vezes?
	Quando é efectuado <i>Prepending</i> #
de	Quando existe um <i>loop</i> no caminho #, os <i>loops</i> são evitados mas podem aparecer sendo a informação scartada
	Sempre que um AS pretender que esse caminho seja o preferido para lhe entregarem tráfego
	Sempre que o anuncio do path sai por uma interface com um local-preference superior aos demais
	Ima empresa obtém conectividade Internet via dois ISP (fornecedores de serviço Internet) ligados ao seu outer e utilizando o protocolo BGP para os anúncios de rotas:
atr	É possível selecionar o percurso do tráfego de saída para a Internet utilizando valores distintos no ributo MED no seu <i>router</i>
col	É possível selecionar todo o percurso do tráfego da Internet destinado à empresa solicitando aos ISP que loquem nos seus <i>routers</i> valores distintos de "MED"
gra	Se do ISP_A se receber via BGP apenas uma rota <i>default</i> e do ISP_B a tabela completa da Internet, a ande maioria do tráfego sai via ISP_B #, rota mais específica
red	Os atributos AS_PATH recebidos listam os <i>routers</i> que se encontram no percurso entre a empresa e as des destino
19) E	m relação ao IGMP, indique quais as afirmações corretas:
	Antes de enviar uma mensagem IGMP Query não é necessário fazer um pedido de ARP #
um	O IGMP é um protocolo que permite enviar mensagens de erro caso exista algum problema a entregar n datagrama
☐ int	No IGMP versão 1 não existem mensagens para notificar os <i>routers</i> que uma máquina já não está eressada num grupo <i>Multicast</i> #
too	Quando numa rede existem <i>routers</i> a correr IGMPv1 e IGMPv2 é necessário configurar manualmente dos os <i>routers</i> para correrem IGMPv1 #
20) R	elativamente ao abandono de um grupo em IGMPv2:
	A máquina envia uma mensagem de IGMP Leave #
	Ocorre de forma passiva, deixando a máquina de enviar IGMP Reports
	O router responde com uma mensagem de Group specific query, após o abandono #
	A máquina tem de enviar um IGMP Leave e esperar que o router confirme a recepção com uma

mensagem IGMP Ack enviada diretamente para o IP da máquina