OBJECTIVE

To apply Computer Engineering principles to research towards a Master of Science thesis.

EDUCATION

ROCHESTER INSTITUTE OF TECHNOLOGY, ROCHESTER, NY

B.S./M.S., Computer Engineering, expected May 2021

GPA: 3.64 / 4.00

Dean's List Honors: Fall 2016, Spring 2017, Fall 2017, Spring 2018

Relevant Courses:

- Assembly Language Prog. with Lab
- o Intro to Software Engineering
- o Computer Organization, Architecture
- o Computer Science I, II with Lab
- Digital System Design I, II with Lab
- Circuit Analysis I, II with Lab
- Electronics I with Lab
- o Applied Programming in C with Lab
- o Interface & Digital Electronics with Lab
- Data & Communication Networks

SKILLS

PROGRAMMING: C, C++, C#, VHDL, Verilog, SystemVerilog, Assembly (ARM, MIPS), Java, Python HARDWARE: Xilinx MicroBlaze, QSFP+, SFP, VCU108 Evaluation Kit, Nexys 3 Board, NXP FRDM (KL46Z, K64F), Raspberry Pi, Arduino, Breadboard, Electrical Lab Equipment

SOFTWARE: GNU Bash, Xilinx (ISE, Vivado, SDK), ModelSim, Keil μVision 5, OrCAD (CIS, PSPICE), EAGLE (Schematic, Layout), Altera Quartus, Git, Maven, Xamarin

WORLD LANGUAGES: Fluent Urdu, Advanced Spanish, Beginner Arabic, Beginner ASL

EXPERIENCE

COMPUTER ENGINEERING CO-OP, PRECISION OPTICAL TRANSCEIVERS, SUMMER 2019

- Transferred existing embedded C code from SFP+ to QSFP+ memory format
- Communicated with vendors, researched existing functionality, and documented changes

COMPUTER ENGINEERING CO-OP, PRECISION OPTICAL TRANSCEIVERS, FALL 2018 - SPRING 2019

- Implemented a VCU108-based transceiver test system in support of AIM Photonics
- Designed and implemented the hardware framework necessary to interact with and characterize the performance of a custom QSFP-based photonic device
- Wrote embedded C code that controlled the system and its peripherals and interacted with a host PC
- Spent time in the ITAR-controlled Rochester Imaging Detector Laboratory in RIT's Center for Detectors
- Managed a team of students by delegating tasks, setting goals, and documenting weekly progress

TEACHING ASSISTANT, ASSEMBLY LANGUAGE PROGRAMMING, RIT, SPRING 2018

Assisted students in weekly lab sessions to write and debug embedded ARM Assembly code

LABS & PROJECTS

- In an Agile/Scrum team of four, designed and implemented an online checkers game in Java
- Implemented an autonomous model car for the NXP Freescale Cup
- Designed and implemented a heartrate monitor using an OPB-745 opto-isolator
- Designed and implemented an ARM Assembly game in which users identify pseudo-randomly generated LED patterns on a KL46 board
- Designed, implemented, and packaged a JavaFX calculator for pre-, post-, and infix notation math
- Designed and implemented a Python program to sort and view a database of consumer complaints

PERSONAL PROJECTS

- Disassembled an electric guitar to repair cosmetic damage and replace all electronic parts
- Competed in BrickHack V with three other students to write a social media app for iOS and Android
- Implemented a remote-controlled video car that used a Raspberry Pi web server to accept input from and stream video to any compatible internet-connected device
- Designed and implemented a robot that used LEGO NXT and ROBOTC to navigate a maze

ACTIVITIES

Honors Program, Brick City Boppers, Weightlifting, Running, Photography, Electric & Acoustic Guitar