Math 335, Homework 3

Due Wednesday, February 17

- 1. Let A, B, and C be sets, and let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Prove that if f and g are injective, then $g \circ f$ is injective.

Proof. Assume $f: A \to B$ and $g: B \to C$ are injective functions. Then by definition, $\forall a_1, a_2 \in A$,

$$f(a_1) = f(a_2) \implies a_1 = a_2,$$

and $\forall b_1, b_2 \in B$,

$$g(b_1) = g(b_2) \implies b_1 = b_2.$$

To prove $g \circ f$ is injective, we must show that

$$(g \circ f)(a_1) = (g \circ f)(a_2) \implies a_1 = a_2.$$

Assume $g(f(a_1)) = g(f(a_2))$. Notice that by applying $f(a_1) = b_1$ and $f(a_2) = b_2$ to our injective function g, we can conclude that $b_1 = b_2 = f(a_1) = f(a_2)$. Since f is also injective, $a_1 = a_2$. Hence $g \circ f$ is injective.

(b) Prove that if f and g are surjective, then $g \circ f$ is surjective.

Proof. Assume $f: A \to B$ and $g: B \to C$ are surjective functions. Then by definition, this means $\forall b \in B$ there exists $a \in A$ such that f(a) = b. Similarly, for every $c \in C$, there exists $f(a) = b \in B$ such that g(b) = g(f(a)) = c. Hence $g \circ f$ is surjective.

2. Prove that a function $f: A \to B$ is both injective and surjective if and only if it has an inverse function $f^{-1}: B \to A$.

Proof. For the forward direction, assume $f: A \to B$ is bijective. Since f is surjective, $\forall b \in B, \exists a \in A \text{ such that } f(a) = b$. Let $b \in B$ and define a function $f^{-1}: B \to A$ such that $f^{-1}(b) = a$. Since f is injective, $f(a_1) = f(a_2) \implies a_1 = a_2$, so each $a \in A$ is unique as is each $b \in B$.

Notice that $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b$ and $(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$, which means that f^{-1} is the inverse of f.

Conversely, assume that $f: A \to B$ has an inverse $f^{-1}: B \to A$. To prove that f is surjective, we must show that $\forall b \in B$ there exists $a \in A$ such that f(a) = b. Let $b \in B$ and $f^{-1}(b) = a$. Then $f(a) = f(f^{-1}(b)) = b$.

To prove that f is injective, assume $a_1, a_2 \in A$ and $f(a_1) = f(a_2) = b$. We must show that $a_1 = a_2$. Suppose that $f^{-1}(b) = a$. Notice that

$$a_1 = (f^{-1} \circ f)(a_1) = f^{-1}(f(a_1))$$

= $f^{-1}(b) = a$.

Also,

$$a_2 = (f^{-1} \circ f)(a_2) = f^{-1}(f(a_2))$$

= $f^{-1}(b) = a$.

Hence $a_1 = a = a_2$, which means that f is injective.

3. Consider the following two elements of S_8 , written in cycle notation:

$$f = (2, 3, 8, 4, 7) (5, 6)$$

 $q = (1, 2, 3, 4, 5) (6, 7, 8).$

(a) Write f in function notation. (That is, write $f(1) = \cdots, f(2) = \cdots$, et cetera.)

Answer:

$$f(1) = 1$$
 $f(3) = 8$ $f(5) = 6$ $f(7) = 2$
 $f(2) = 3$ $f(4) = 7$ $f(6) = 5$ $f(8) = 4$

(b) Compute f^{-1} . Express your answer in cycle notation.

Answer:

$$f^{-1} = (2,7,4,8,3)(5,6)$$

$$f^{-1}(1) = 1 f^{-1}(3) = 2 f^{-1}(5) = 6 f^{-1}(7) = 4$$

$$f^{-1}(2) = 7 f^{-1}(4) = 8 f^{-1}(6) = 5 f^{-1}(8) = 3$$

(c) Compute $f \circ g$. Express your answer in cycle notation, with each number only appearing once.

Answer:

$$f \circ g = (1, 3, 7, 4, 6, 2, 8, 5)$$

- 4. A transposition is defined as an element of S_n that swaps two numbers but sends every other number to itself; for example, (2,5) is a transposition in S_5 that swaps 2 and 5.
 - (a) Express the element

$$f = (2, 4, 5)$$

of S_5 as a composition of two transpositions.

Answer:

$$f \circ g$$

 $g = (2,5)$
 $f = (4,5)$

(b) Express the element

$$g = (1, 2, 3, 4)$$

of S_4 as a composition of transpositions. (**Hint**: If you want to send 2 to 3, you can first swap 1 and 2 and then swap 1 and 3.)

Answer:

$$f \circ g$$

$$g = (1,3)$$

$$f = (1,4)(2,3)$$
Also
$$g = (1,2)(3,4)$$

$$f = (1,3)$$

In fact, it's a theorem that every element of S_n can be expressed as a composition of transpositions. We won't cover this theorem in class, but you can find a proof in Gallian.

5. Explain in words how the group D_4 of symmetries of a square can be viewed as a subset of the symmetric group S_4 . Are all elements of S_4 symmetries of a square?

Answer:

Let us consider the symmetries of a square from the diagram below:

The group D_4 can be then described as follows:

Counterclockwise rotation: r = (1, 2, 3, 4)

Horizontal reflection: h = (1, 2)(3, 4)

Vertical reflection: v = (1,4)(2,3)

Diagonal reflection (along the 1 & 3 axis): d = (2,4)

Diagonal reflection (along the 2 & 4 axis): d' = (1,3)

Each of these operations on the symmetries of a square are a member of the symmetric group S_4 . In addition, all symmetries of the square can be produced by a composition of these operations. Nevertheless, not all elements of S_4 are symmetries of a square. As a counterexample, f = (1, 2) is not a member of the group D_4 as it will not produce a valid square.