Multicolinearity

Multicollinearity happens when two or more independent variables in a regression model are highly correlated. This makes it difficult to determine which variable is actually affecting the dependent variable because their effects are overlapping.

Ways to Handle Multicolinearity

When dealing with multicollinearity, the goal is to reduce the overlap among variables

1. Remove One of the Correlated Variables

 If two variables are highly correlated (e.g., correlation coefficient > 0.8), consider dropping one of them. Select the variable with higher predictive power or business relevance.

2. Combine Features into a Single Variable

• Use domain knowledge to merge related features into a composite variable. For example, you can combine "length" and "width" into "area" for geometric datasets.

3. Apply PCA (Principal Component Analysis)

• PCA transforms correlated variables into a smaller set of uncorrelated components. This technique retains most of the variance while eliminating multicollinearity.

4. Use Regularization Techniques

- **Ridge Regression**: Shrinks coefficients by adding a penalty proportional to the square of their magnitude. This reduces the impact of multicollinearity.
- Lasso Regression: Performs feature selection by shrinking some coefficients to zero, effectively removing irrelevant features.