Linguagens Formais e Autômatos

Linguagens Livres de Contexto

Eduardo Furlan Miranda

Baseado em: GARCIA, A. de V.; HAEUSLER, E. H. Linguagens Formais e Autômatos. Londrina: EDA, 2017.

Hierarquia de Chomsky

R aⁿb ε, b, ab, aab LC aⁿbⁿ ab, aabb SC aⁿbⁿcⁿ abc, aabbcc I a^{2^n} a, aa, aaaa

2/20

apenas estas

Gramáticas	Regras	Ex. de linguagens geradas
GR (tipo 3) Regulares	A \rightarrow aB, A \rightarrow b, (A \rightarrow ϵ , se permitido, apenas para o símbolo inicial) A, B \in V (variáveis) a, b \in T (terminais)	$\{ \epsilon, b, ab, aab, aaab, \}$ = $\{ a^n b \mid n \ge 0 \} \cup \{ \epsilon \}$
GLC (tipo 2) Livres de Contexto	$A \rightarrow \alpha$ $A \in V$, $\alpha \in (V \cup T)^*$ A: 1 única variável	{ ab, aabb, aaabbb, aaaabbbb, } = { $a^n b^n \mid n > 0$ }
GSC (tipo 1) Sensíveis ao Contexto	$\alpha \rightarrow \beta$ $\alpha \in (V \cup T)^+$, $\beta \in (V \cup T)^*$ $ \alpha \leq \beta $ $S \rightarrow \epsilon$, se S não aparece do lado direito de nenhuma regra	{ abc, aabbcc, aaabbbccc, } $= \{ a^n b^n c^n \mid n > 0 \}$
GI (tipo 0) Irrestrita ou geral	$\alpha \rightarrow \beta$ $\alpha, \beta \in (V \cup T)^*$ α : pelo menos 1 símbolo de V	{ a, aa, aaaa, aaaaaaaa, } = { $a^{2^n} n \ge 0$ }

Linguagens Livres de Contexto (LLC)

- Se uma Linguagem L é gerada por uma Gramática Livre de Contexto (GLC) G ,
 - dizemos que L é uma Linguagem Livre de Contexto (LLC)

• Ex. 1:

- linguagem sobre o alfabeto $\Sigma = \{ a, b \}$, definida como $L_R = \{ w \mid w^R = w \}$, onde
 - w^R é a cadeia w revertida (de trás para frente)
 - L_R é linguagem cuja cadeia revertida é igual à cadeia original
 "L de R"
- L_R é uma LLC porque é gerada pela GLC: S → aSa | bSb | a | b | ε
 - S → aSa → abSb → abbSb → abbbba :
 - Linguagem gerada: "abbbba"

• Visto anteriormente: se L é uma Linguagem Regular (LR), então seu complemento, \overline{L} , também o é

```
- Ex.: L = \{ w \in \{ a, b \} * | w \text{ contém um número par de } a's \}
- O complemento de L é definido como todas as cadeias que não estão em L.
Assim, Lc = \{ w \in \{ a, b \} * | w \text{ contém um número ímpar de } a's \}.
```

- Dada a GLC que gera a linguagem \overline{L}_R
 - S → aSa | bSb | aAb | bAa
 - A → aAa | bAb | aAb | bAa | a | b | ε

cadeia com terminais e variáveis obtida aplicando as regras de produção da gramática

- A forma sentencial gerada possui exatamente uma variável: A ou S
 - Ex.: a partir do símbolo inicial S, podemos derivar:
 S → aSa → aaAbax

é uma forma sentencial, pois contém terminais (a, a, b, a) e uma variável (A)

(continua)

- Uma derivação a partir de S apresentará até determinada regra apenas S como variável na forma sentencial (S → aSa),
 - mas depois da aplicação de uma das regras S → aAb ou
 S → bAa , as formas sentenciais terão apenas A como variável
 (S → aSa → aaAba)
- O funcionamento da gramática é tal que as formas sentenciais que têm a variável S são simétricas, ou seja
 - são iguais quando lidas de trás para frente,
 - enquanto que as formas sentenciais que têm a variável A são assimétricas, ou seja
 - são diferentes quando lidas de trás para a frente

- Dado o alfabeto $\Sigma = \{ a, b \}$, considere a linguagem sobre Σ definida como $L_1 = \{ a^n \ b^{2n} \mid n \geq 1 \}$
- Podemos dizer que L₁ é uma LLC porque é gerada pela GLC:
 - $S \rightarrow aSbb$
 - S → abb
- Ex.: para gerar aabbbb, podemos usar a derivação
 - $S \Rightarrow aSbb \Rightarrow aabbbb$

LLC são fechadas em relação à união

- Se pegarmos duas linguagens livres de contexto (LLCs), a união dessas duas linguagens resultará em outra linguagem livre de contexto (são fechadas em relação à união)
 - Em outras palavras, a propriedade de ser livre de contexto é preservada quando duas dessas linguagens são unidas
- Isso significa que, dadas duas LLC, L₁ e L₂, a linguagem L₁ υ L₂ também será livre de contexto
- Se L_1 é gerada por uma GLC G_1 com símbolo inicial S_1 , e L_2 por uma GLC G_2 com símbolo inicial S_2 ,
 - podemos criar um novo símbolo inicial S e adicionar as regras
 S → S₁ | S₂ às regras das duas gramáticas, obtendo assim uma GLC
 G₃ que gera L₁ ∪ L₂

Exemplo - união

- $L_1: \{a^n b^n \mid n \ge 0\}$; $G_1: S_1 \to aS_1b \mid \epsilon$
- $L_2: \{c^n d^n \mid n \ge 0\}$; $G_2: S_2 \to cS_2 d \mid \epsilon$
- Para unir L_1 e L_2 , criamos um novo símbolo inicial S e adicionamos as regras $S \to S_1 \mid S_2$ às regras de G_1 e G_2 : $L_1 \cup L_2$: $\{a^n b^n \mid n \ge 0\} \cup \{c^n d^n \mid n \ge 0\}$
- **G**₃:
 - $S \rightarrow S_1 \mid S_2$
 - $S_1 \rightarrow aS_1b \mid \epsilon$
 - $S_2 \rightarrow cS_2d \mid \epsilon$
- Dessa forma, G₃ gera a união de L₁ e L₂

LLC e concatenação

- Dado duas LLC, L₁ e L₂
- A sua concatenação é uma LLC
 - $L_1 \circ L_2 = \{ \omega_1 \circ \omega_2 \mid \omega_1 \in L_1 \ e \ \omega_2 \in L_2 \}$
- Se L_1 é gerada por uma GLC G_1 com símbolo inicial S_1 , e L_2 é gerada por uma GLC G_2 com símbolo inicial S_2 ,
 - podemos criar um novo símbolo inicial S, acrescentar as regras S →
 S₁S₂ à união das regras das duas gramáticas e obter assim uma GLC
 G₃ que gera L₁ ° L₂

Exemplo - concatenação

- $L_1 = \{ a^n b^{2n} \mid n \ge 1 \}$ é gerada pela GLC :
 - $S_1 \rightarrow aS_1bb \mid abb$
- $L_2 = \{ a^{2n} b^n \mid n \ge 1 \}$ é gerada pela GLC :
 - $S_2 \rightarrow aaS_2b \mid aab$
- Portanto, a linguagem L₁ ° L₂ pode ser gerada pela gramática
 - $S \rightarrow S_1S_2$
 - $S_1 \rightarrow aS_1bb \mid abb$
 - $S_2 \rightarrow aaS_2b \mid aab$

LLC e fecho de Kleene

- Se L₁ é uma LLC, então L₁* também o é
- Este fato pode ser verificado através de uma construção com gramáticas
- Se L₁* é gerada por uma GLC G₁ com símbolo inicial S₁,
 - para criarmos uma gramática que gera L₁* basta criarmos um novo símbolo inicial S , e acrescentarmos as regras S → SS₁ | ε à gramática original

Exemplo - fecho de Kleene

- Seja $L_1 = \{ a^n b^{2n} | n \ge 1 \}$
- A linguagem é gerada pela GLC:
 - $S_1 \rightarrow aS_1bb \mid abb$
- Portanto, a linguagem L₁* pode ser gerada pela gramática:
 - $S \rightarrow SS_1 \mid \epsilon$
 - $S_1 \rightarrow aS_1bb \mid abb$

Gramáticas Livres de Contexto Sem Regras Nulas (GSRN)

- Definida por Hopcroft; Ullman (1969) como uma GLC onde
 - a cadeia vazia ε não é permitida no lado direito da regra,
 - exceto no caso da regra S → ε , onde S é o símbolo inicial, e S não ocorre no lado direito de outra regra
- Ex.: seja a linguagem L = {aⁿ bⁿ | n ≥ 0}, onde a quantidade de 'a's é igual à quantidade de 'b's. A GLC correspondente pode ser definida por G : S → aSb | ε
 - Para transformá-la em GSRN: S → aSb | ab
 - removemos a regra nula S → ε
 - e adaptamos a gramática para preservar a igualdade entre a quantidade de 'a's e 'b's

GSRN - definição

- Dizemos que uma GLC G = (V,T,P,S) é uma Gramática Livre de Contexto Sem Regras Nulas (GSRN) se todas as suas regras são da forma:
 - A $\rightarrow \alpha$, onde: A \in V e $\alpha \in (V \cup T)^+$ fecho positivo
 - e desde que S (símbolo inicial) não esteja do lado direito de uma regra, é permitido S → ε

 $\alpha \in (V \cup T)^+$ define que α é uma string composta por um ou mais símbolos, sendo cada símbolo um terminal ou variável da gramática, excluindo a possibilidade de α ser a string vazia

 A definição de Hopcroft; Ullman (1969) não altera o poder de expressividade das GLC, isto é,

- se uma linguagem L é gerada por uma GLC G ,
- então a mesma linguagem é gerada por uma GSRN G¹
- Existe um algoritmo para dada uma GLC G obtermos uma GSRN G¹ equivalente
 - O primeiro passo deste algoritmo é identificar as variáveis que podem gerar a cadeia vazia, chamadas de símbolos nulificáveis

Exemplo - nulificáveis

• A gramática:

- S → aA
- A → aB | B
- $B \rightarrow b \mid \epsilon$
- Possui as
 - variáveis {S, A, B} e as
 - variáveis nulificáveis {A, B}
 - Derivando B, chegamos em ε: B ⇒* ε
 - O mesmo ocorre para A: A ⇒* ε

- A pode derivar B (pela regra $A \rightarrow B$)
- B já sabemos que é nulificável
- A também pode derivar a cadeia vazia via $A \rightarrow B \Rightarrow \varepsilon$
- Portanto, A é nulificável porque pode derivar B, e B pode derivar ε

GSRN equivalente

- Uma vez que sabemos quais são os símbolos nulificáveis de uma GLC, podemos construir uma GSRN equivalente
- A ideia é, cada vez que um símbolo nulificável ocorre do lado direito de uma regra, acrescentar uma regra nova à GLC original sem a ocorrência deste símbolo
- Por exemplo, na gramática anterior havia a regra S → AB
 - A esta regra serão acrescentadas as regras
 - S → A (substituindo B pela cadeia vazia)
 - S → B (substituindo A pela cadeia vazia)

- Evitamos acrescentar a regra S → ε (substituindo tanto A como B pela cadeia vazia) porque queremos gerar uma GSRN
- Essa ideia simples n\u00e3o funciona caso a cadeia vazia seja gerada pela gram\u00e1tica, isto \u00e9, se S \u00e9 um s\u00eambolo nulific\u00e1vel
 - Neste caso, devemos acrescentar um novo símbolo inicial que gere a cadeia vazia

- Considere a gramática
 - S → AB
 - A → a | ε
 - B → b
- Primeiro, identificamos os símbolos nulificáveis
 - A (é nulificável porque $A \rightarrow \epsilon$)
- Aplicamos o algoritmo para construir a GSRN equivalente:
 - Para a regra S → AB :
 - Acrescentamos S → A (substituindo B pela cadeia vazia)
 - Acrescentamos S → B (substituindo A pela cadeia vazia)

- Para a regra A → a :
 - Como ela não contém ε diretamente, essa regra não precisa ser modificada no contexto de eliminação de regras nulas
- Para a regra B → b :
 - Não precisamos adicionar mais regras, pois B não é nulificável
- Regras resultantes na GSRN equivalente:
 - S → AB | A | B
 - A → a
 - B → b