Naive Knapsack

Description

This is the classical multiple knapsack problem. There are N types of items and a knapsack with a capacity of C, where the quantity of each item is limited. The i-th item has a cost of v[i], a value of w[i], and a quantity of s[i].

The question is which items to choose and how many of each item to choose in order to maximize the total value.

Input Format

The first line includes two integers: N, C.

For the next N lines, each containing three integers v[i], w[i], s[i].

Output Format

You only need to print one integer, representing the maximum total value you can get.

Sample

Sample Input

```
2 5
1 1 2
2 2 1
```

Sample Output

4

```
For 40\% testcases: 1 \leq N, C, v[i], w[i], s[i] \leq 100.
```

For
$$80\%$$
 testcases: $1 \leq N, C, v[i], w[i], s[i] \leq 1000$.

For
$$100\%$$
 testcases: $1 \leq N, C, v[i], w[i], s[i] \leq 4000.$

Notes

You can use brute-force solution with ${\cal O}(N^3)$ time to pass the first 40% testcases.

You can use the optimized solution with $O(N^2logN)$ time to pass 80% testcases.

If you want to pass all testcases, make sure that your solution has a tight ${\cal O}(N^2)$ time.