Q	1/	9																				_
	Expla	in the	steps	require	d to fir	nd the I	ength	of a cu	rve y=	f(x) be	tween	x=aa	ınd x =	b .								_
	Choos	Choose the correct answer below.																				
	() A.																					
		Determine if f has a continuous derivative on [a,b]. If so, calculate $f'(x)$. Then evaluate the integral $\int_a \sqrt{1 + f'(x)} dx$.																				
	○ B.			:£ £ 1		•:			r- h1	¥		4 - El /	Then			i	- L C (1	. #/	\ al			_
			Determine if f has a continuous derivative on [a,b]. If so, calculate $f'(x)$. Then evaluate the integral $\int_a (1+f'(x)) dx$.																			
	♂ C.		ermine	if f has	a con	tinuous	s deriva	ative or	n [a,b].	If so,	calcula	te f'(x	and f	'(x) ² . T	hen ev	aluate	the int	egral	√1+1	$f'(x)^2$ d	x.	_
	O D													, ,				8		, ,		
	O D.		ermine	if f has	a con	tinuous	s deriva	ative or	[a,b].	If so,	calcula	te f'(x	and f	'(x) ² . T	hen ev	aluate	the int	egral	(1+f	'(x) ²) o	ix.	
																		£	3			_
																						_
																						_
																						_
																						_
																						_
																						_
																						_

- a. Write and simplify the integral that gives the arc length of the following curve on the given interval.
- b. If necessary, use technology to evaluate or approximate the integral.

$$y = -2x^2 + 3$$
, for $-2 \le x \le 1$

The profile of the cables on a suspension bridge may be modeled by a parabola. The central span of the bridge is 1260 m long and 147 m high. The parabola $y = 0.00037x^2$ gives a good fit to the shape of the cables, where $|x| \le 630$, and x and y are measured in meters. Approximate the length of the cables that stretch between the tops of the two towers.

$$f' = \frac{d}{dx} \left(0.00037x^{2} \right) \qquad f'^{2} = \left(0.00074x \right)^{2}$$

$$= 0.00074x \qquad = 5.476 \times 10^{-7}x^{2}$$

_ '									6	_
Find	d a curve that pas	ses through th	e point (1,5) and has	an arc len	gth on the	interval [2,6] given by	∫√1+16x ⁻	⁶ dx?
								b		
_	Rev	erse Engi	inler	144)	r - 6	+		$\sqrt{1+f}$	$(x)^2$	lx
_		J					Ja			
	f(x)	- /14	x-6							
		$= \sqrt{\frac{16}{\chi^6}}$	$-\frac{1}{dx}$	=	- = dx =	= + 4	- dx			
				1 x	7	~ -Z 7				
		$= \int \frac{4}{x^{25}} dx$	2x = 4	-3+1	= 4/-	2 =	$= -2\left(\frac{1}{x}\right)$	= -	$\frac{2}{\chi^2} + C$	
					or					
_		$= \int -\frac{4}{x^3} dx$	x = -4 f-	x-3+1 -3+1	= -4/-	$\frac{y^{-2}}{2} = $	$2\left(\frac{1}{x^2}\right)$	$=\frac{2}{\chi^2}$	+ 0	
			L		-	J	,			
	The C	urve y	=f(x)	= + 2	2 - + C					
	posses	urve y through	the	point	, (1,	5)				
		J		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
	- x2	+ 0	2		1 + x = c	$C = \frac{2}{(1)^2}$ $= 2 + 1$	L (
		5 = - (1)2		7	$= (1)^{2}$ $= 2 + 1$	- ()			
		5 = - 5-2 = C	2 + 0	′						
		7 = 0		-	2	, = 0				
			2 + 7	or -	$\frac{2}{\gamma^2} + \frac{1}{2}$,				
		 				_				

a.
$$\int_{a/2}^{b/2} \sqrt{1 + f'(2x)^2} dx$$

b.
$$\int_{a/c}^{b/c} \sqrt{1 + f'(cx)^2} dx \text{ if } c \neq 0$$

a. Evaluate
$$\int_{a/2}^{b/2} \sqrt{1 + f'(2x)^2} dx \text{ in terms of L. Select the correct answer below.}$$

$$\bigcirc A. \int_{a/2}^{b/2} \sqrt{1 + f'(2x)^2} dx = 2L$$

$$\bigcirc$$
 B. $\int_{a/2}^{b/2} \sqrt{1 + f'(2x)^2} dx = L$

$$^{b/2}$$
 $\int_{a/2}^{b/2} \sqrt{1 + f'(2x)^2} dx = \frac{L}{2}$

a / 2
b / 2
D.
$$\int_{a/2}^{b/2} \sqrt{1 + f'(2x)^2} dx = \frac{2L}{3}$$

b. Evaluate
$$\int_{a/c}^{b/c} \sqrt{1 + f'(cx)^2} dx$$
 in terms of L. Select the correct answer below.

$$\bigcirc A. \int_{a/c}^{b/c} \sqrt{1 + f'(cx)^2} dx = Lc^2$$

$$B. \int_{a/c}^{b/c} \sqrt{1 + f'(cx)^2} dx = \frac{L}{c}$$

$$\bigcirc C. \int_{a/c}^{b/c} \sqrt{1 + f'(cx)^2} dx = \frac{L}{c^2}$$

a/c

b/c

$$\int_{a/c} \sqrt{1+f'(cx)^2} dx = Lc$$