ETH Zurich Institut für Theoretische Informatik Prof. Dr. Angelika Steger Prof. Dr. Emo Welzl

Prof. Dr. Peter Widmayer

Algorithms Lab

Exercise – Even pairs

You are part of a team to develop a new kind of pseudorandom number generator (PRNG). To gauge how good your algorithm is at producing random sequences of bits, you are running several different statistical tests.

For example, if x_1, \ldots, x_n was a truly random sequence of bits, then it would have the property that the sum $x_i + \cdots + x_j$ is even for about half of the pairs $1 \le i \le j \le n$ (and odd for the other half).

To check whether this is the case if x_1, \ldots, x_n are generated by your PRNG, you need to be able to count the number of pairs $1 \le i \le j \le n$ for which the sum is even.

Input The first line of the input contains the number $1 \le t \le 30$ of test cases. Each of the t test cases is described as follows:

- It starts with a line that contains an integer n such that $1 \le n \le 50000$.
- The next line contains n values x_1, \ldots, x_n , separated by spaces. Each value x_i is either 0 or 1.

Output For each test case output a line containing the number of pairs $1 \le i \le j \le n$ such that the sum $x_i + \cdots + x_j$ is even.

Points There are three test sets, worth 100 points in total.

- 1. For the first test set, worth 40 points, you may assume that $1 \le n \le 200$.
- 2. For the second test set, worth 30 points, you may assume that $1 \le n \le 5000$.
- 3. For the third test set, worth 30 points, there are no additional assumptions.

Corresponding sample test sets are contained in test i. in/out, for $i \in \{1, 2, 3\}$.

##