Séquence 05 - TP01 - Îlot 03

Lycée Dorian Renaud Costadoat Françoise Puig

Théorie des mécanismes

S05 - TP01 - I03 Référence

Compétences A3-C6: Transmetteurs de puissance

Mod2-C12: Modélisation cinématique des liaisons entre solides

Mod2-C14: Modèle cinématique d'un mécanisme

Conc1-C2: Démarche de conception appliquée aux fonctions techniques

Conc1-C3: Les fonctions techniques Com2-C4: Outils de communication

Description

Le système de solides, la théorie des mécanismes. Hyperstatisme et mo-

bilités. Proposer des solutions pour le rendre isostatique et justifier les

choix de conception

Système PHP15

Problématique du TP:

Gérer l'hyperstatisme d'un système

ANALYSER

Détecter le sources d'hyperstatisme

Question 1 : Décrire le système grâce à un graphe de liaison du système.

Question 2 : A partir du graphe de liaison, compter le nombre de cycle indépendants.

Question 3: Pour chaque cycle, déterminer :

- le nombre de pièces,
- le nombre de mobilités,
- le nombre d'inconnues de liaison

Question 4 : Calculer le degré d'hyperstatisme du système.

La suite de l'étude va permettre de déterminer l'hyperstatisme qui apparaît entre les liaisons élémentaires.

Question 5 : Proposer un graphe de contacts pour le système. Pour chaque liaison, déterminer :

- le nombre de mobilités,
- le nombre d'inconnues de liaison

Question 6 : Calculer le degré d'hyperstatisme de chacune des liaisons équivalentes.

- MODELISER -

Activité 2 : Modélisation du système

Dans cette partie, vous modéliserez les liaisons par des torseurs cinématiques. Vous utiliserez le modèle de la pompe issu de la valise d'assemblage.

Question 7 : Déterminer les coordonnées des vecteurs en les prélevant sur le système.

 $-\overrightarrow{AB}$, $-\overrightarrow{BC}$.

Question 8 : Déterminer le torseur de la liaison équivalente entre un engrenage et le corps de la pompe. Vous écrirez pour cela les torseurs des différentes liaisons élémentaires.

Question 9 : Déterminer alors le degré d'hyperstatisme ainsi que les mobilités du système. Les résultats seront à comparer avec ceux de l'activité 1.

EXPERIMENTER

Solution technique du système

En s'appuyant sur le système réel, ainsi que sur la maquette d'assemblage, vous répondrez aux questions suivantes sur la conception du système.

Question 10 : A partir du montage de la pompe fourni dans la mallette, mesurer les diamètres de tous les cylindres impliqués dans la liaison entre un engrenage et le corps. Conclure quant à la présence de jeu dans la liaison. Écrire alors sous la forme d'un torseur les déplacements autorisés par ce jeu.

$$\mathsf{ex}:\left\{P_{1/2}\right\} = \left\{\begin{array}{cc} r_x & j_x \\ r_y & j_y \\ r_z & j_z \end{array}\right\}_P$$

Où

— r_i représente un petit angle autorisé par le jeu (en degré),

— j_i représente un petit déplacement autorisé par le jeu (en mm).

Question 11: Proposer un moyen, pour chaque liaison, afin de déterminer les torseurs de petits déplacement liés au jeu dans les autres liaisons. Vous produirez un média (photo ou vidéo pour montrer le jeu dans une des liaisons).

Question 12 : Proposer un procédé de fabrication pour les **surfaces fonctionnelles** du système. Vous vous aiderez pour cela des documents de la bibliothèque.

ANALYSER

Respect du cahier des charges

Le système qui sert de support à votre étude n'a pas encore été utilisé, il est donc nécessaire que vous proposiez une introduction afin de le présenter à la classe.

L'assemblage d'un mécanisme possède des degrés d'hyperstatisme (activités 1 et 2), il est nécessaire de trouver des solutions techniques (activité 3) qui permettent son assemblage. Votre travail consistera à mettre ces deux aspects en correspondance.

Question 13: Vous classerez parmi les suivantes les principales exigences liées au système, vous les présenterez sous la forme d'un diagramme des exigences SysMI.

- rigidité (le système doit supporter de gros efforts),
- mobilité (le système doit pouvoir se déplacer dans beaucoup de directions),
- le système n'accepte que très peu de jeu (si c'est le cas, vous préciserez la raison).

Question 14 : Après avoir mis en évidence à l'aide des activités 1 et 2, les composantes hyperstatique du système, vous utiliserez le résultat de l'activité 3 afin de montrer les solutions qui ont été utilisées afin de le résoudre.

