Chapter 7: Microarchitecture

Multicycle Performance

Multicycle Processor Performance

- Instructions take different number of cycles:
 - 3 cycles: beq
 - 4 cycles: R-type, addi, sw, jal
 - − 5 cycles: lw
- CPI is weighted average
- SPECINT2000 benchmark:
 - **25%** loads
 - 10% stores
 - 13% branches
 - 52% R-type

Average CPI =
$$(0.13)(3) + (0.52 + 0.10)(4) + (0.25)(5) = 4.12$$

Multicycle Critical Path

Multicycle Processor Performance

Multicycle critical path:

- Assumptions:
 - RF is faster than memory
 - Writing memory is faster than reading memory

$$T_{c_multi} = t_{pcq} + t_{dec} + 2t_{mux} + \max(t_{ALU}, t_{mem}) + t_{setup}$$

Multicycle Performance Example

Element	Parameter	Delay (ps)
Register clock-to-Q	t_{pcq_PC}	40
Register setup	$t_{ m setup}$	50
Multiplexer	$t_{ m mux}$	30
AND-OR gate	$t_{ m AND-OR}$	20
ALU	$t_{ m ALU}$	120
Decoder (Control Unit)	$t_{ m dec}$	25
Extend unit	$t_{ m dec}$	35
Memory read	$t_{ m mem}$	200
Register file read	$t_{RF\text{read}}$	100
Register file setup	t_{RF} setup	60

$$T_{c_multi} = t_{pcq} + t_{dec} + 2t_{mux} + \max(t_{ALU}, t_{mem}) + t_{setup}$$

Multicycle Performance Example

For a program with **100 billion** instructions executing on a **multicycle** RISC-V processor

- **CPI** = 4.12 cycles/instruction
- Clock cycle time: T_{c_multi} = 375 ps

Execution Time = (# instructions) \times CPI \times T_c

Chapter 7: Microarchitecture

Pipelined RISC-V Processor

Pipelined RISC-V Processor

- Temporal parallelism
- Divide single-cycle processor into 5 stages:
 - Fetch
 - Decode
 - Execute
 - Memory
 - Writeback
- Add pipeline registers between stages

Single-Cycle vs. Pipelined Processor

Single-Cycle

Pipelined

Pipelined Processor Abstraction

Single-Cycle & Pipelined Datapaths

Signals in Pipelined Processor are appended with first letter of stage (i.e., PCF, PCD, PCE).

Corrected Pipelined Datapath

- Rd must arrive at same time as Result
- Register file written on falling edge of CLK

Pipelined Processor with Control

- Same control unit as single-cycle processor
- Control signals travel with the instruction (drop off when used)