

→ 2. Aprendizado Supervisionado e Regressão Linear

Após fazer os exercícios deste laboratório responda ao questionário correspondente da aula no Moodle.

Caso: Estimando a emissão de gases CO2 de veículos

Neste Lab você vai empregar modelos de regressão simples e múltipla para estimar as emissões de CO2 de veículos a partir de suas características como consumo de combustível, marca ou tamanho do motor.

Dados: https://meusite.mackenzie.br/rogerio/TIC/FuelConsumptionCo2.csv

Exercício. Acesse e Explore os dados.

Acesse e explore os dados antes de contruir os seus modelos. Verifique as quantidades e tipos de dados envolvidos, a qualidade dos dados etc. é fundamental conhecer os dados antes de se construir modelos sobre eles.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

df = pd.read_csv("https://meusite.mackenzie.br/rogerio/TIC/FuelConsumptionCo2.csv")
df.head()

	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	TRANSMISSION	FUELTYPE
0	2014	ACURA	ILX	COMPACT	2.0	4	AS5	Z
1	2014	ACURA	ILX	COMPACT	2.4	4	M6	Z
2	2014	ACURA	ILX HYBRID	COMPACT	1.5	4	AV7	Z
3	2014	ACURA	MDX 4WD	SUV - SMALL	3.5	6	AS6	Z
4	2014	ACURA	RDX AWD	SUV - SMALL	3.5	6	AS6	Z

```
df.shape
df.dtypes
df.describe(include='all')
df.isnull().sum()

MODELYEAR
MAKE
MODEL
VEHICLECLASS
ENGINESIZE
CYLINDERS
```

TRANSMISSION FUELTYPE

FUELCONSUMPTION_CITY FUELCONSUMPTION_HWY

FUELCONSUMPTION_COMB

seu código

0

0

0

FUELCONSUMPTION_COMB_MPG 0
CO2EMISSIONS 0

dtype: int64

→ Exercício. Faça um gráfico de dispersão entre todos os pares de variáveis

Isso irá permitir você visualizar as relações de cada par de variáveis dos dados.

Dica: Empregue sns.pairplot(df)

seu código
sns.pairplot(df)
plt.plot()

▼ Exercício. Modelo Regressão Simples

Crie um modelo de regressão simples para estimar valores CO2EMISSIONS com base nos dados de consumo combinado dos veículos FUELCONSUMPTION COMB. Encontre os coeficientes, seus p-values, e o R2 do modelo.

```
# seu código
import statsmodels.formula.api as sm
model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION COMB', data=df)
result = model.fit()
print(result.summary())
    /usr/local/lib/python3.7/dist-packages/statsmodels/tools/ testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use
      import pandas.util.testing as tm
                            OLS Regression Results
    ______
                          CO2EMISSIONS
    Dep. Variable:
                                                                   0.796
                                       R-squared:
                                 OLS Adj. R-squared:
    Model:
                                                                   0.796
    Method:
                         Least Squares F-statistic:
                                                                   4153.
                      Wed, 09 Mar 2022 Prob (F-statistic):
    Date:
                                                                    0.00
                             18:31:22 Log-Likelihood:
    Time:
                                                                  -5092.7
    No. Observations:
                                 1067 AIC:
                                                                1.019e+04
    Df Residuals:
                                 1065
                                       BIC:
                                                                1.020e+04
    Df Model:
                                   1
    Covariance Type:
                            nonrobust
    ______
                                   std err
    Intercept
                         68.3871
                                    3.044
                                             22,467
                                                       0.000
                                                                 62.414
                                                                           74,360
                         16.2200
                                    0.252
                                             64,443
                                                                           16.714
    FUELCONSUMPTION COMB
                                                       0.000
                                                                 15.726
    Omnibus:
                              152.161
                                       Durbin-Watson:
                                                                   2.195
    Prob(Omnibus):
                                     Jarque-Bera (JB):
                                0.000
                                                                  240.073
                               -0.954 Prob(JB):
    Skew:
                                                                 7.39e-53
    Kurtosis:
                                4.325
                                       Cond. No.
                                                                    42.2
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

https://colab.research.google.com/github/Rogerio-mack/Machine-Learning-I-solucao/blob/main/ML2 Regressao ex solucao.ipynb#printMode=true

▼ Exercício. Predição

A partir do seu modelo empregue a função result.predict(x) para estimar a emissão de gases por veículos que apresentam consumo de combustível com valores 4 e 28.

```
# seu código

X_novo = pd.DataFrame()
X_novo['FUELCONSUMPTION_COMB'] = [4,28]
result.predict(X_novo)

0     133.267015
1     522.546301
dtype: float64
```

▼ Exercício. Regressão Múltipla

Faça agora um modelo de regressão múltipla para estimar as emissões de CO2 a partir de FUELCONSUMPTION_COMB e ENGINESIZE. Em seguida faca a predição de emissões para um veículo com FUELCONSUMPTION COMB = 10 e ENGINESIZE = 2.

```
# seu código

# define o modelo
model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION_COMB + ENGINESIZE', data=df)

# calcula o modelo e mostra os resultados
result = model.fit()
print(result.summary())

# faz a previsão
X_novo = pd.DataFrame()
```

```
X_novo['FUELCONSUMPTION_COMB'] = [10]
X_novo['ENGINESIZE'] = [2]
print(result.predict(X_novo))
```

OLS Regression Results

Dep. Variable:	 CO2EMISSI	ONS	===== R-sa	======= uared:		0.858	
Model:		OLS		R-squared:		0.858	
Method:	Least Squa	res	-	atistic:		3220.	
Date:	Wed, 09 Mar 2			(F-statistic	:):	0.00	
Time:	18:31			Likelihood:	,	-4898.4	
No. Observations:		.067	AIC:			9803.	
Df Residuals:		.064	BIC:			9818.	
Df Model:		2					
Covariance Type:	nonrob	ust					
=======================================	========	-===		========	=======		:======
	coef	std	err	t	P> t	[0.025	0.975]
Intercept	78.3068	2	.579	30.360	0.000	73.246	 83.368
FUELCONSUMPTION_COMB	9.7300	0	.366	26.569	0.000	9.011	10.449
ENGINESIZE	19.4963	0	.902	21.626	0.000	17.727	21.265
Omnibus:	60.	372	===== Durb	======= in-Watson:	=======	1.740	
<pre>Prob(Omnibus):</pre>	0.	000	Jarq	ue-Bera (JB):		91.765	
Skew:	-0.	462		(JB): `´		1.18e-20	
Kurtosis:	4.	101	Cond	. No.		44.9	
=======================================	=========			========	=======	========	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0 214.598964
dtype: float64

▼ Exercício. Regressão com Atributos Categóricos (RESOLVIDO)

Faça agora um modelo de Regressão Múltipla adicionando o atributo categórico VEHICLECLASS ao modelo anterior. Sendo um atributo categórico o statsmodel fará automaticamente o *hot encode* desse atributo (o *hot encode* é uma importante técnica para tornar numérico atributos categóricos e é importante para uma série de modelos que requerem dados numéricos como a regressão. Se você não conhece, pesquise ou pergunte ao professor sobre esta transformação).

```
model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION_COMB + ENGINESIZE + VEHICLECLASS', data=df)
result = model.fit()
print(result.summary())
```

OLS Regression Results

=============	=======================================		=========
Dep. Variable:	CO2EMISSIONS	R-squared:	0.870
Model:	OLS	Adj. R-squared:	0.868
Method:	Least Squares	F-statistic:	414.5
Date:	Wed, 09 Mar 2022	<pre>Prob (F-statistic):</pre>	0.00
Time:	18:31:22	Log-Likelihood:	-4850.3
No. Observations:	1067	AIC:	9737.
Df Residuals:	1049	BIC:	9826.
DC 14 1 7	4=		

Df Model: 17 Covariance Type: nonrobust

		========	========	========		=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	85.1547	3.314	25.694	0.000	78.652	91.658
VEHICLECLASS[T.FULL-SIZE]	-1.1773	3.158	-0.373	0.709	-7.375	5.020
VEHICLECLASS[T.MID-SIZE]	-4.5891	2.482	-1.849	0.065	-9.460	0.282
VEHICLECLASS[T.MINICOMPACT]	0.7377	3.801	0.194	0.846	-6.720	8.196
VEHICLECLASS[T.MINIVAN]	0.8707	6.444	0.135	0.893	-11.774	13.516
VEHICLECLASS[T.PICKUP TRUCK - SMALL]	27.1642	6.916	3.928	0.000	13.593	40.735
VEHICLECLASS[T.PICKUP TRUCK - STANDARD]	1.4902	3.745	0.398	0.691	-5.858	8.839
VEHICLECLASS[T.SPECIAL PURPOSE VEHICLE]	18.1171	8.881	2.040	0.042	0.690	35.544
<pre>VEHICLECLASS[T.STATION WAGON - MID-SIZE]</pre>	-5.8249	9.569	-0.609	0.543	-24.601	12.952
VEHICLECLASS[T.STATION WAGON - SMALL]	7.4700	4.217	1.771	0.077	-0.804	15.744
VEHICLECLASS[T.SUBCOMPACT]	7.6220	3.381	2.255	0.024	0.988	14.256
VEHICLECLASS[T.SUV - SMALL]	11.4515	2.580	4.439	0.000	6.390	16.513
VEHICLECLASS[T.SUV - STANDARD]	9.9109	3.148	3.148	0.002	3.734	16.088

VEHICLECLASS[T.TWO-SEATER]	10.3299	3.306	3.125	0.002	3.843	16.817
VEHICLECLASS[T.VAN - CARGO]	13.0886	5.854	2.236	0.026	1.601	24.576
<pre>VEHICLECLASS[T.VAN - PASSENGER]</pre>	33.0287	5.860	5.636	0.000	21.530	44.528
FUELCONSUMPTION_COMB	8.0833	0.435	18.600	0.000	7.231	8.936
ENGINESIZE	21.7192	0.924	23.495	0.000	19.905	23.533

 Omnibus:
 44.735
 Durbin-Watson:
 1.679

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 59.488

 Skew:
 -0.408
 Prob(JB):
 1.21e-13

 Kurtosis:
 3.820
 Cond. No.
 180.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

result.params

Intercept	85.154742
VEHICLECLASS[T.FULL-SIZE]	-1.177255
VEHICLECLASS[T.MID-SIZE]	-4.589137
VEHICLECLASS[T.MINICOMPACT]	0.737737
VEHICLECLASS[T.MINIVAN]	0.870664
VEHICLECLASS[T.PICKUP TRUCK - SMALL]	27.164208
VEHICLECLASS[T.PICKUP TRUCK - STANDARD]	1.490240
VEHICLECLASS[T.SPECIAL PURPOSE VEHICLE]	18.117114
VEHICLECLASS[T.STATION WAGON - MID-SIZE]	-5.824881
VEHICLECLASS[T.STATION WAGON - SMALL]	7.469977
VEHICLECLASS[T.SUBCOMPACT]	7.622019
VEHICLECLASS[T.SUV - SMALL]	11.451534
VEHICLECLASS[T.SUV - STANDARD]	9.910910
VEHICLECLASS[T.TWO-SEATER]	10.329937
VEHICLECLASS[T.VAN - CARGO]	13.088594
VEHICLECLASS[T.VAN - PASSENGER]	33.028659
FUELCONSUMPTION_COMB	8.083254
ENGINESIZE	21.719247
dtyne: float64	

dtype: float64

result.params.index

O modelo acima é ainda melhor que os modelos anteriores. Ele apresenta, além do R2, um R2-Ajustado melhor (que inclui uma penalidade para o aumento do número de variáveis preditoras).

Produtos pagos do Colab - Cancelar contratos