MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Round 1

A) Solution #1:

Since $i^4 = 1$, $(i^4)^{\text{any integer power}}$ equals 1.

Therefore, $i^A \cdot i^{2A} \cdot i^{4A} \cdot i^{8A} \cdot i^{16A} = i^A \cdot i^{2A} \cdot i^{2A} \cdot i^{2A} \cdot i^{2A} \cdot i^{2A} = i^A = i$

Solution #2:

$$i^{A} \cdot i^{2A} \cdot i^{4A} \cdot i^{8A} \cdot i^{16A} = i^{31A}$$

$$A = 1 \Rightarrow i^{31} = (i^{4})^{7} i^{3} = 1^{7} (-i) = -i$$

$$A = 2 \Rightarrow i^{62} = (i^{4})^{15} i^{2} = -1$$

$$A = 3 \Rightarrow i^{93} = (i^{4})^{23} i = i \Rightarrow A_{\min} = \underline{3}.$$

B)
$$z = 0.1 + 6i \Rightarrow \overline{z} = 0.1 - 6i$$
. If $a = \frac{1}{z + \overline{z}}$ and $bi = z - \overline{z}$,
 $a = \frac{1}{.2} = 5$, $b = 12 \Rightarrow |5 + 12i| = \sqrt{5^2 + 12^2} = \sqrt{169} = \underline{13}$ (or recall 5-12-13 Pythagorean Triple)

C)
$$(3+4i)^{\frac{1}{2}} = C + Di \Rightarrow (C+Di)^2 = 3+4i \Rightarrow \begin{cases} C^2 - D^2 = 3 \\ 2CD = 4 \end{cases} \Rightarrow (C, D) = (2, 1) \text{ or } (-2, -1).$$

$$(3+4i)^{\frac{3}{2}} = \left((3+4i)^{\frac{1}{2}}\right)^3 = (2+i)^3 = (2+i)^2(2+i) = (3+4i)(2+i) = 2+11i$$
Thus, $(A, B) = (2, 11)$.

(-2,-1) is rejected, since $(-2-i)^3 = (-1)^3 (2+i)^3 = -2-11i$ and it was required that A and B be positive integers.