Ejercicios Parcial II

Santiago Martínez, Román Contreras

12 de septiembre de 2017

1. Semana V

1.1. Haces y campos tensoriales

Ejercicio 1.1. Sea $\omega = f(x,y)dx + g(x,y)dy$ una 1-forma diferencial en \mathbb{R}^2 . Es decir, f, g son funciones diferenciables sobre \mathbb{R}^2 y dx, dy son las 1-formas duales a los campos $\frac{\partial}{\partial x}, \frac{\partial}{\partial x}$.

duales a los campos $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$.

Decimos que ω determina una ecuación diferencial y que una curva γ : $(-\epsilon, \epsilon) \to \mathbb{R}^2$ es una curva integral de la ecuación diferencial determinada por ω si $\omega(\dot{\gamma}(t)) = 0$ es decir, para todo t el vector $\dot{\gamma}(t)$ yace en el núcleo de la transfomración lineal $\omega_{\gamma(t)}: T_{\gamma(t)} \to \mathbb{R}$. Decimos que ω es exacta si existe una función h tal que $d(h) = \omega$.

- 1. Sea γ una curva integral de la ecuación diferencial determinada por ω . Encuentra la ecuación lineal que satisface $\dot{\gamma}(t)$ en términos de f y g.
- 2. Supongamos que $\omega=d(h)$, es decir, ω es exacta. Demuestra que una curva γ es curva integral de ω si y sólo si es una parametrización de un conjuto de nivel de h.
- 3. Sea $h: \mathbb{R}^2 \to \mathbb{R}$ la función dada por $h(q,p) = -\cos(q) + p^2$ (la energía del péndulo matemático). Esboza los conjuntos de nivel de h y encuentra d(h). Encuentra los puntos en donde d(h) es identicamente cero.

Ejercicio 1.2. Demuestra que \mathbb{S}^1 es paralelizable, es decir, que $T\mathbb{S}^1 \cong \mathbb{S}^1 \times \mathbb{R}$ como haces vectoriales sobre \mathbb{S}^1 .

Ejercicio 1.3. ¿ La esfera \mathbb{S}^2 es paralelizable también? Construye un campo vectorial sobre \mathbb{S}^2 con exactamente dos ceros, y otro campo vectorial con exactamente un cero.

Ejercicio 1.4. Demuestra que una variedad M de dimensión n es paralelizable si y sólo si existen n campos vectoriales $\{X_i\}$ definidos sobre todo M tal que para cada punto $p \in M$ los vectores $X_1(p), \ldots, X_n(p)$ forman una base de T_pM .