Deep Learning Workflow

N.Ravitha Rajalakshmi

Agenda

- Google Colab
- Numpy
- Image Processing with scikit-image
 - Image Enhancement
 - Segmentation
 - Feature Extraction
- Machine Learning with scikit learn
- Deep Learning with keras

Google Colab

- Executable document -> Write, Run, Share Code (Google Drive)
- Colab is built on the top Jupyter Notebook
- Notebook Document is composed of cells, which can contain code, text, images and more.
- A runtime is associated with notebook (UNIX system) and it runs in browser.
- Execute the python code without any setup

FREE GPU!!

Data Representation in Neural Network

- Basic Data Structure for Neural Network Tensor
- Container for Numbers
- Property of Tensor Dimension (or) Axis (or) Rank
 - 0D Tensor (Scalar)
 - 1D Tensor (Vector)
 - 2D Tensor (Matrix)
 - 3D Tensor (Cube of Numbers)

Tensor Properties

- Number of Axes (or) rank (ndim)
- Shape (shape)
- Data Type (dtype)

Numpy

ndarray acts as a container for multidimensional items of same type and size

Numpy Arrays

0D Tensor	np.array(3)
1D Tensor	np.array([4,5,6,8])
2D Tensor	np.array([[3,2], [3,1]])
3D Tensor	np.array([[[3,2],[3,1]],[[6,1],[7,8]]])

Scikit - image

- Scikit Image represents images as numpy arrays
- It contains various modules for processing the images.

Histogram Equalization

Histogram represents the distribution of pixels

Histogram -> Contrast + Threshold

Contrast Adjustment

Cumulative Distribution Function

Segmentation (Thresholding)

Automatic Thresholding (Otsu Method)

$$\sigma_{within}^2 = n_B(T) \bullet \sigma_B^2(T) + n_F(T) \bullet \sigma_F^2(T)$$

Edge Detection

Convolution

Significance of Filters

<u>1</u> 9	<u>1</u> 9	<u>1</u> 9
19	<u>1</u> 9	19
<u>1</u>	<u>1</u>	<u>1</u>

0	-1	0
- 1	4	- 1
0	- 1	0

Sobel

Mean

Laplacian

-1	0	+1
-2	0	+2
-1	0	+1

Gx

+1	+2	+1
0	0	0
-1	-2	-1

Gy

Applications

1. Differentiate between various classes of images

(i) Normal WBC

(ii) ALL (Acute Lymphoblastic Leukemia)

2. Identifying Objects in an image

Machine Learning Workflow

Deep Learning Workflow

Artificial Neural Network

Web Links for Reference

- https://research.google.com/seedbank
- Colab.research.google.com
- http://yann.lecun.com/exdb/mnist/