

LAKE ERIE BASIN

ಾ ٦

SPRINGVILLE DAM

AD A 1 057

ERIE COUNTY, NEW YORK INVENTORY No. N.Y. 704

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

NEW YORK DISTRICT, CORPS OF ENGINEERS

AUGUST 1981

COPY 끹

DISTRIBUTION STATE LITE A

Approved for public release; Distribution Unlimited

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4D-A10.5	799
Phase I Inspection Report	5. TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report
Springville Dam	National Dam Safety Program
Lake Erie Basin, Eric County, NY Inventory No. 704	5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(4)	8. CONTRACT OR GRANT HUMBER(4)
ROBERT J. FARRELL	DACW51-81-C-0017
9. PERFORMING ORGANIZATION NAME AND ADDRESS .	10. PROGRAM ELEMENT, PROJECT, TASK
Erdman, Anthony, Associates 242, Andrews Street P.O. Box 9589 Rochester, New York P.14604	19P
	12. REPORT DATE
11. CONTROLLING OFFICE NAME AND ADDRESS	and the second s
Department of the Army 26 Federal Plaza New York District, CofE	27 August 1981
New York, New York 10287 14. MONITORING AGENCY NAME & ADDRESS(II diliterant from Controlling Office)	IS. SECURITY CLASS. (of this report)
Department of the Army 26 Federal Plaza New York District, Cofe	
• ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·-	UNCLASSIFIED
the product of the pr	Safety Program. Springville 'G y Number N.Y. 704), Lake
Erie Basin, F	rie County, New York. Phase
IS. DISTRIBUTION STATEMENT (of this Report) I Inspection	Report.
Approved for public release; Distribution unitables	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, it different in	m Report)
	.5.
	.
TOU STRATEMENTARY NOTES	and and control of the Company of th
	•
	-
10. KEY WORDS (Continue on reverse side if necessary and identify by block number, from Safety	•
Cational Dam Safety Program Spr	ingville Dam
Wisual Inspection Eri	e County
Aydrology, Structural Stability Lak	e Erie Basin
AUSTRACT (Continue experience after the coverer and identity by black number)	
! This report provides information and equal; sis on the	
lam as of the report date. Information and analysis impection or the date by the performing organization	is are based on visual
Examination of available documents and visual integrated not reveal conditions which constitute an imm life or property. However, the dam has some deficienci invest gation and remedial action.	ediate hazard to human
DD 1500 1573 Ferri of Dr. 1 NOV 5515 OREOUTS	1/2

The hydrologic/hydraulic analysis performed indicates that the spillway does not have sufficient capacity to discharge the peak outflow from one-half the Probable Maximum Flood (PMF). However, spillway discharges occurring during large storm events will cause water surface elevations in the downtown hazard area to rise to flood levels. A dam failure resulting from overtopping would not significantly increase the hazard to loss of life from that which would exist just prior to an overtopping failure. Therefore, the spillway is assessed as inadequate.

The original stability analysis for the spillway section of this dam could not be located. The structure relies on a combination of gravity and shear friction forces for stability. Analysis of such a structure is beyond the scope of a Phase I Investigation. In addition, the dam is located in Seismic Zone 3 and, in accordance with the Phase I Recommended Guidelines, a seismic stability analysis is warranted. Therefore, it is recommended that the services of a qualified registered professional engineer be retained to investigate the normal and seismic stability of the structure and the structural deficiences noted.

The investigation should be completed within 12 months of notification to the owner, and remedial actions resulting from the investigation completed in the subsequent 12 months.

The following remedial measures should be performed within one year of notification to owner:

- Repair the west sidewall of the spillway and the west core wall to restore them to their original configuration.
- Repair the eroded upstream channel banks by filling with suitable material.
- Install slope protection along both upstream channel banks to prevent future erosion.
- Clear trees and vegetation from the west embankment.
- Develop a formal written downstream warning system to alert the appropriate officials and residents in the event of an emergency.
- Develop and maintain a program of biannual technical inspections.

LAKE ERIE BASIN

SPRINGVILLE DAM

ERIE COUNTY, NEW YORK INVENTORY No. N.Y. 704

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

NEW YORK DISTRICT, CORPS OF ENGINEERS

AUGUST 1981

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the Investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I Inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event a finding that a spillway will not pass the Test Flood should not be interpreted as necessarily posing a highly inadequate condition. The Test Flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

TABLE OF CONTENTS

		PAGE
OVERVIEW PHOTO		
LOCATION MAP		
SECTION I	PROJECT INFORMATION	
1.2	General Description of Project Pertinent Data	1-1 1-1 1-3
SECTION 2	ENGINEERING DATA	
2.2 2.3 2.4 2.5	Geology Subsurface Investigation Design Records Construction Records Operation Records Evaluation of Data	2-1 2-1 2-1 2-1 2-1 2-1
SECTION 3	VISUAL INSPECTION	
3.1 3.2	Findings Evaluation of Observations	3-1 3-2
SECTION 4	OPERATION AND MAINTENANCE PROCEDURES	
4.2	Procedures Warning System in Effect Evaluation	4-1 4-1 4-1
SECTION 5	HYDRAULIC/HYDROLOGIC	
5.2 5.3 5.4 5.5 5.6	Drainage Area Characteristics Design Data Analysis Criteria Reservoir Capacity Experience Data Overtopping Potential Analysis of Downstream Impacts Evaluation	5-1 5-1 5-2 5-2 5-2 5-2 5-2 5-2

TABLE OF CONTENTS - con't.

		PAGE
SECTION 6	STRUCTURAL STABILITY	
6.2 6.3 6.4	Visual Observations Design and Construction Data Post Constructuion Changes Seismic Stability Structural Stability Analysis	6-1 6-1 6-1 6-1
SECTION 7	ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	
	Assessment Recommended Measures	7-1 7-2
APPENDICES		
APPENDIX A	INSPECTION CHECKLIST	A-1
APPENDIX B	ENGINEERING DATA	B-1
APPENDIX C	PHOTOGRAPHS	C-1
APPENDIX D	HYDRAULIC/HYDROLOGIC COMPUTATIONS	D-1
APPENDIX E	REFERENCES	E-1
APPENDIX F	PREVIOUS INSPECTION REPORTS/ AVAILABLE DOCUMENTS	F-1

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam: Springville Dam

State Located: New York

County Location: Erie

Stream: Chattaraugus

Basin: Lake Erie

Date of Inspection: May 22, 1981

ASSESSMENT

Examination of available documents and visual inspection of Springville Dam did not reveal conditions which constitute an immediate hazard to human life or property. However, the dam has some deficiencies which require further investigation and remedial action.

The hydrologic/hydraulic analysis performed indicates that the spillway does not have sufficient capacity to discharge the peak outflow from one-half the Probable Maximum Flood (PMF). However, spillway discharges occurring during large storm events will cause water surface elevations in the downtown hazard area to rise to flood levels. A dam failure resulting from overtopping would not significantly increase the hazard to loss of life from that which would exist just prior to an overtopping failure. Therefore, the spillway is assessed as inadequate.

The original stability analysis for the spillway section of this dam could not be located. The structure relies on a combination of gravity and shear friction forces for stability. Analysis of such a structure is beyond the scope of a Phase I Investigation. In addition, the dam is located in Seismic Zone 3 and, in accordance with the Phase I Recommended Guidelines, a seismic stability analysis is warranted. Therefore, it is recommended that the services of a qualified registered professional engineer be retained to investigate the normal and seismic stability of the structure and the structural deficiences noted.

The investigation should be completed within 12 months of notification to the owner, and remedial actions resulting from the investigation completed in the subsequent 12 months.

The following remedial measures should be performed within one year of notification to owner:

- Repair the west sidewall of the spillway and the west core wall to restore them to their original configuration.
- Repair the eroded upstream channel banks by filling with suitable material.
- Install slope protection along both upstream channel banks to prevent future erosion.
- Clear trees and vegetation from the west embankment.
- Develop a formal written downstream warning system to alert the appropriate officials and residents in the event of an emergency.
- Develop and maintain a program of biannual technical inspections.

Robert J. Farrell, P.E. New York No. 55983

Col. W.M. Smith, Jr.

New York District Engineer

Date:

Approved by:

27ay81

Springville Dam

OVERVIEW

Springville Dam

LOCATION PLAN

Scale: 1"= 2000

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

SPRINGVILLE DAM

SECTION I - PROJECT INFORMATION

1.1 GENERAL

a. Authority

The Phase I inspection reported herein was authorized by the New York District Corps of Engineers in a letter dated 24 February 1981, in fulfillment of the requirements of the National Dam Inspection Act, Public Law 92-367, dated 8 August 1972.

b. Purpose of Inspection

This inspection was conducted to evaluate the existing conditions of the dam, to identify deficiencies and hazardous conditions, to determine if these deficiencies constitute hazards to life and property, and to recommend remedial measures where required.

1.2 DESCRIPTION OF THE PROJECT

a. Description of Dam and Appurtenances

The dam consists of an earth embankment with a concrete core wall and a concrete ogee spillway section. There is an intake flume, forebay, powerhouse, and tail race located at the east end of the spillway near the center of the dam. The overall length of the dam is approximately 388 ft. Springville Dam is located immediately downstream from a wood dam constructed in the late 1800's. The wood dam is not visible when the water surface is at the ogee spillway crest.

An earth embankment with a 1.5 ft. thick concrete core wall extends from the forebay to the east abutment, and from the west end wall to the west abutment. The core wall is approximately 2.5 ft. higher than the top of the earthfill. According to available design information, the core wall is founded in rock, and existing embankments from a previous dam were used as berms.

The east embankment and core wall extends 118.5 ft. at elevation 1105.6 ft. (MSL). There is a 17.8 ft. opening in the section to permit vehicle passage. The opening was covered with wood flashboards to elevation 1103.8 ft. (MSL). The side slope of the valley at the east abutment is IV:1½H. The west embankment and core wall extends 44.5 ft. at elevation 1107.4 ft. (MSL). A level section of embankment extends another 15.0 ft. before intersecting the IV:1½H valley side slope.

The concrete ogee spillway section is 182.0 ft. long and 15 ft. high. There are three 5.0 ft. x 6.0 ft. wide openings in the spillway at the apron elevation of 1069.4 ft. (MSL). These openings are covered by wood beams. Once a year, during the summer months, the reservoir is drained by setting off a charge of dynamite in each of these openings. The operating head in the reservoir is increased during the summer months by approximately 33 in. by placing flashboards across the crest of the spillway.

The intake flume, forebay, powerhouse, and tailrace are located at the east end of the spillway. The intake flume is 11.0 ft. wide, contains a trash rack at the upstream end, and a stop log at the downstream end where it connects to the forebay. The forebay is 43.5 ft. long, 13 ft. wide at the upstream end, and 15 ft. wide at the downstream end. The 12.2 ft. long x 31.5 ft. wide distribution chamber feeds two 6.0 ft. diameter tubes that feed the 2 turbines. These tubes are equipped with butterfly valves. The tailrace is 28.8 ft. wide at the downstream end of the powerhouse, and tapers to 15.0 ft. at a point of 40.0 ft. downstream.

b. Location

The dam is located approximately 2 miles southwest of the Village of Springville, New York in the Town of Concord.

c. Size Classification

The dam is 40 ft. high as measured from the top of the west core wall to the channel invert. The reservoir has a storage capacity of 1170 acreft. at the top of the west core wall (elevation 1106.1 ft. (MSL)). The dam is classified as "INTERMEDIATE" in size (40 to 100 ft. in height).

d. Hazard Classification

The dam is classified as HIGH hazard due to the significant economic losses and high potential for loss of life downstream in the event of dam failure.

e. Ownership

The dam is owned and operated by:

The Village of Springville Mr. John Lipoff, Water & Light Superintendent 243 North Central Street Springville, New York 14141 Tele: (716) 592-4722

f. Purpose of Dam

The purpose of this dam is to generate hydroelectric power for the Village of Springville. The powerhouse is presently equipped with two 250KW generators.

g. Design and Construction History

The dam was designed by the Village of Springville Engineer, L.W., Bernstein Consulting Enginners, and the Corrugated Bar Company. For this inspection, copies of correspondence, records, 6 design drawings, 4 sheets of design calculations for the forebay, and a hydrograph of a historic flood on Cattaragus Creek were provided by the New York State Department of Environmental Conservation, Albany, New York.

The dam was constructed in 1921 by the Walter Bradley Construction Company. No records of the construction history are available.

h. Normal Operation Procedure

Water is released from the reservoir through the power generation facilities, and any excess is released over the uncontrolled ogee spillway section.

1.3 PERTINENT DATA

a. Drainage Area - 280 sq. miles

b. Discharge at Damsite

	Maximum known flood at damsite	Unknown
	Maximum discharge in last 26 years (according to Mr. John Lipoff, Superintendent of the Electric Department of the Village of Springville	14 ,25 1 cfs
	Principal Spillway	
	Maximum Pool (elevation 1103.8 ft.(MSL))	23,192
	Power Generation Facilities (Not operated during flood events)	
	Maximum Pool (elevation 1103.8 ft(MSL))	0
	Total Spillway Capacity at Maximum Pool Elevation	23,192
c.	Elevation (U.S.G.S. Datum)	
	Top of east endwall Top of west endwall Top of west core wall Top of east core wall Top of opening in east core wall Top of west embankment Ogee spillway crest	1108.2 ft. 1107.4 ft. 1106.1 ft. 1105.6 ft. 1103.8 ft. 1106.1 ft. 1093.7 ft.

d. Reservoir

Length of Normal Pool 8000 ft.

Length of Maximum Pool 12500 ft.

e. Storage

Normal Pool 52 acre-ft.

Maximum Pool 1170 acre-ft.

f. Reservoir Surface

Normal Pool 22 acres
Maximum Pool 92 acres

g. Dam

Type Earth embankment with concrete core

wall and gravity concrete

ogee spillway.

Length 388 ft.

Maximum Height 40 ft.

h. Reservoir Drains (3)

Type Openings in concrete ogee

spillway.

Size 5.0 ft. high x 6.0 ft.

wide

Closure Wood beams

i. Principal Spillway

Type Concrete gravity ogee crest

Length 182 ft.

Location Near center of reservoir

Support Bedrock

Downstream Reinforced concrete apron

j. Emergency Spillways

Type Embankment with core wall

Length:

East core wall

East core wall opening with flashboards

West core wall

West embankment (no core wall)

118.5 ft.

17.8 ft.

44.5 ft.

25.0 ft.

Side Slope IV:2H

SECTION 2 - ENGINEERING DATA

2.1 GEOLOGY

The stratigraphy in southern Erie County consists of relatively undeformed flat-lying sedimentary rocks of Upper Devonian Age (375-345 million years ago). The bedrock formations are interbedded shales and siltstones of the Canadaway Group, Gowanda Shale Member. The bedrock is an interbedded gray to black silty shale, and thin to thick bedded light gray siltstone forming a homocline which dips southward to southwestward at approximately 40 feet per mile. Small terraces and low folds locally modify this dip to essentially flat-lying over short distances. Only minor folding and faulting are found in the region with no major or active faults known to exist in the area.

The Village of Springville and the Springville Dam are in a region classified as Zone 3 seismicity, as shown on Figure No. 1 of the Recommended Guidelines for Safety Inspection of Dams.

Glaciation of the area was extensive. During the glacial period (Pleistocene Epoch), spanning about 1.5 million years, the area was over-ridden many times by a thick continental ice sheet moving southward over the region, from Quebec and Ontario, eroding the rock and changing drainage patterns. Deposition is by strongly aggrading streams flowing from the former ice sheets. Coarse alluvium is deposited in coalescent aprons near the ice sheet, and/or as valley trains, where streams, drain freely from the glacier margin. In recent times, these glacial deposits are infiltrating the valleys with alluvial material eroded from the uplands.

2.2 SUBSURFACE INVESTIGATION

According to the application for reconstruction of the dam dated August 10, 1921, there were no subsurface surveys conducted in conjunction with the project. The application states that the dam is founded on horizontally bedded argillaseous shale.

2.3 DESIGN RECORDS

The records available for the project consists of 6 design drawings which show the plans, section and details of the spillway, intake flume, forebay, power-house and tailrace. There are also several letters that discuss the design of the dam, 4 sheets of design calculations for the forebay, and a hydrograph of a historic flood on Cattaragus Creek. These records are on file with the New York State Department of Environmental Conservation, Albany, New York.

2.4 CONSTRUCTION RECORDS

There are no construction records for this dam.

2.5 OPERATION RECORDS

No written maintenance or operation records exist for the dam

2.6 EVALUATION OF DATA

Information obtained from the design drawings is consistent with observations made during this inspection. The information obtained from available data was considered adequate for the Phase I inspection and evaluation.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General

A visual inspection of Springville Dam was made on May 22, 1981. The weather was clear and the temperature was in the mid-seventies. At the time of the inspection, the impoundment level was at the crest of the dam, elevation 1093.7 ft. (MSL).

b. Earth Embankment

The top corners of the east core wall are moderately spalled over most of the wall length. Hairline cracks and effervescent stains cover 75 percent of the exposed surface area.

The east earth embankment is in good condition and is well-maintained. However, significant erosion was noted at the upstream end of the east spillway side wall resulting from the recent uprooting of a large tree. Light seepage was noted along the east side of the powerhouse.

The west core wall is seriously deteriorated. The entire top surface and 80 percent of the exposed side surfaces are spalled. At many locations in excess of 6 in. of concrete has spalled off.

There are many trees and thick vegetation growing on the west embankment.

c. Foundation

Bedrock at the site consists of a mixture of siltstones and silty shales. The rock is medium hard, thinly to very thinly bedded, fine grained, medium gray to gray-green, highly fissile shale/siltstone mixture with abundant zones of argillacevous rock. At the powerhouse, there is a horizontal seam approximately 3 ft. above the water surface. This seam is open and moderately weathered with rust precipitation staining the rock. Minor weeps exit the seam in isolated areas.

At the east downstream end of the concrete apron, rock erosion was noted. A hole approximately 2 ft. deep extends under the apron approximately 1 ft.

d. Spillway

The ogee spillway and both endwalls were resurfaced with gunite and wire mesh sometime after the dam was built. The spillway is in good condition; although minor cracking, spalling, surface erosion and gunite layer separation was observed. The west endwall is in poor condition. Approximately 90 percent

of the gunite has fallen off leaving the original heavily deteriorated concrete surface exposed. The east endwall, which is integral with the powerhouse intake structure, is covered with hairline cracks and effervescent stains. Evidence of recent surface patching was observed.

Across the crest of the dam there are steel stanchions approximately 30 in . high on 3 ft. centers. They support wood flashboards. At the time of the inspection all the stanchions were bent over and no flashboards were in place. According to the owner's representative, the stanchions and flashboards fail annually due to ice loads and are replaced during periods of low flow.

e. Downstream Channel

The downstream channel is gradually sloping bedrock. There is some debris in the channel. The soil cover on the banks shows signs of creep as the trees have a slight bow. An abandoned penstock has been partially filled with overburden.

f. Reservoir

The shore of the reservoir is generally medium to steeply sloping woodland. Although there has been some erosion at the waterline, the banks appear stable.

3.2 EVALUATION

Visual observations made during the course of the inspection did not indicate any serious problems which would adversely affect the adequacy of the dam. The following is a summary of the problem areas encountered in order of importance:

- 1. The gunite resurfacing of the west endwall of the spillway is highly deteriorated,
- 2. Significant erosion exists along the east channel bank at the upstream end of the east endwall of the spillway;
- 3. The west concrete core wall is heavily deteriorated.
- 4. Rock erosion (undermining) is occurring along the downstream edge of the concrete apron,
- Trees and vegetation cover the west embankment.

SECTION 4 - OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

No written operation and maintenance procedures exist for the project. The normal operation of the project consists of relieving water from the reservoir through the power generation facilities, and spilling any excess over the ogee spillway section.

4.2 WARNING SYSTEM IN EFFECT

No warning system is in effect or in preparation.

4.3 EVALUATION

The overall condition of the dam and appurtenant structures appears to be fair. Recommendations in connection with regular maintenance are discussed in Section 7.

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 DRAINAGE AREA CHARACTERISTICS

Springville Dam is located on Cattaraugus Creek in the Lake Erie basin, and has a drainage area of 280 square miles. The dam is situated approximately 2 miles southwest of the Village of Springville, New York. The topography of the watershed is rolling plateau, with woods and pastures.

5.2 DESIGN DATA

There exist no detailed computations for the design flow of this dam. The design flow for the dam according to a letter from the State Inspector of Docks and Dams to the State Engineer dated August 15, 1921 is 30,800 cfs (0.2 cfs/acre) and would overflow the crest of the spillway at a height of 13 ft. This height corresponds to elevation 1106.7 ft. (MSL). The abutment of the dam was given as 14.0 ft. The principal spillway consists of a 182 ft. concrete ogee section, at elevation 1093.7 ft. (MSL). On the east side of the spillway there is a concrete end wall at elevation 1108.2 ft. (MSL) that connects to the brick powerhouse and intake structure. The powerhouse contains two units with a total capacity of 500 Kw. A 1.5 ft. wide concrete core wall extends to the east for a distance of 118.5 ft. at elevation 1105.6 ft. (MSL). There is a 17.8 ft. opening in the wall with flashboards at elevation 1103.8 ft. (MSL). The core wall then extends into valley wall. On the west side of the spillway there is a concrete end wall at elevation 1107.4 ft. (MSL). A 1.5 ft. wide concrete core wall, 44.5 ft. in length, extends to the west at elevation 1106.1 ft. (MSL) and ties into the valley wall. There are three 5.0 ft. high x 6.0 ft. wide openings in the spillway at the apron elevation of 1069.4 ft. (MSL). Neither they nor the penstocks to the powerhouse were assumed to convey flow during the floods considered in this analysis.

5.3 ANALYSIS CRITERIA

The analysis of the spillway capacity of the dam and the storage of the reservoir was performed using the Corps of Engineers HEC-1 Dam Safety Version computer model. The unit hydrograph was defined by the Snyder Synthetic Unit Hydrograph method. Runoff from each of 4 sub-areas was routed by the muskingum routing method to the reservoir. The Modified Puls routing procedure was used to route the floods through the reservoir. The Probable Maximum Precipitation (PMP) was 22.2 in. (24 hours, 200 sq. miles) from Hydrometerological Report #33 in accordance with the Recommended Guidelines of the Corps of Engineers. The top of the west core wall is 40 ft. high and impounds approximately 1170 acre-ft. The PMF inflow of 148,276 cfs was routed through the reservoir and the peak outflow was determined to be 148,018 cfs. The peak PMF elevation is 1120.9 ft. (MSL) or 14.8 ft. above the top of the west core wall. The maximum elevation for one half the PMF is 1112.6 ft. (MSL) or 6.5 ft. above the top of the west core wall. The inflow and outflow for one half the PMF are 74,138 cfs and 74,054 cfs, respectively.

5.4 RESERVOIR CAPACITY

The reservoir capacities at the crest of the spillway and at the top of the west core wall are 52 acre-ft. and 1170 acre-ft., respectively. Surcharge storage between the spillway crest and the top of the west core wall is equivalent to 0.07 in. of runoff from the drainage area.

5.5 EXPERIENCE DATA

There are no flood records for the dam site. However, according to Mr. John Lipoff, Superintendent of the Electric Department of the Village of Springville, the highest water elevation observed in the last 26 years was approximately 7 ft. above the crest of the spillway (elevation 1101 ft. (MSL)). This reservoir elevation corresponds to a peak outflow of 14,251 cfs.

5.6 OVERTOPPING POTENTIAL

The maximum capacity of the spillway is 23,192 cfs (at elevation 1103.8 ft. (MSL)) which is less than the PMF peak outflow of 148,018 cfs. The dam is overtopped by the PMF and one half the PMF, the peak elevations being 14.8 ft. and 6.5 ft. above the top of the west core wall, respectively. The spillway will pass approximately 15 percent of the PMF.

5.7 ANALYSIS OF DOWNSTREAM IMPACTS

During the field investigation, dwellings and highways located downstream of the dam were identified and referenced to the channel invert. The cross section locations used in the downstream channel routing are shown beginning on Page D-2, Appendix D. The impacts of the PMF on dwellings located downstream of the dam are shown in Table 5.1. For the purposes of this analysis, a danger of loss of life was assumed to exist if the computed PMF water surface was above the first floor elevation of a structure. This situation occurs at several of the structures and 3 roads are overtopped during the PMF. These results show that the potential danger of loss of life and economic damage is substantial enough to warrant classification as a HIGH hazard dam.

5.8 EVALUATION

The spillway of Springville Dam will safely pass only 15 percent of the PMF without overtopping. The spillway, therefore, is assessed as inadequate, but not seriously inadequate.

ETL 1110-2-234, Section 5, gives the basis for determining whether or not a spillway should be classified as seriously inadequate. The results of this investigation indicate that there would not be a significant increase in the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure. This is illustrated by the elevation-discharge relationship shown in Figure 5.1. The increase in flow above the crests of the east and west core walls does not appear to be significant, therefore the spillway is assessed as inadequate. Potential problems include:

a) The danger of loss of life and economic damage downstream of the dam for floods in the 1/2 PMF to PMF range.

TABLE 5.1

SUMMARY OF DOWNSTREAM IMPACTS FOR PMF

Comments	ı	Danger of loss of life Road over- topped	Danger of loss of life	•	•		Danger of loss of life	Danger of loss of life Road over-topped.
Peak Stage (ft)		34.7	27.2	29.3	26.2	24.2	29.4	25.7
Peak Flow (cfs)	148,018	148,010	148,018	148,084	148,161	148,186	148,117	148,045
Structure Height Above Streambed* (ft)	ı	19.2	15	ı	,	25	21	23
# of Dwellings	,	-	-	1	1			-
Location	At Dam	1000 ft. d/s of Dam	1000 ft d/s of Loc. 1	5100 ft. d/s/ of Loc. 2	2720 ft. d/s of Loc. 3	4200 ft. d/s of Loc. 4	3800 ft. d/s of Loc. 5	900 ft. d/s of Loc. 6
Location # (See pg. D-2, Appendix D)	1		2	m	#	~	9	7

TABLE 5.1 - con't

SUMMARY OF DOWNSTREAM IMPACTS FOR PMF

Comments	Danger of loss of life	Danger of loss of life	ſ	f	ı	Danger of loss of life	Danger of loss of life
Peak Stage (ft)	18.9	23.5	34.3	30.8	32.2-	24.6	19.0
Peak Flow (cfs)	148,053	148,116	148,127	148,164	148,015	148,084	148,042
Structure Height Above Streambed* (ft)	7 7 10	\$ 8 7 7 11 15 5	•	,	1	20	15
# of Dwellings	2 trailer 2 I	l cottage 2 trailers 3 trailers 2 1 1	ı	ı	1	l cottage	
Location	1000 ft. d/s of Loc. 7	2700 ft d/s of Location 8	7300 ft. d/s of Loc. 9	4840 ft. d/s of Loc. 10	7900 ft. d/s of Loc. 11	3800 ft. d/s of Loc. 12	3300 ft. d/s of Loc. 13
Location (See pg. D-2, Appendix D)	∞	σ.	10	Ξ	12	13	14

TABLE 5.1- cont

SUMMARY OF DOWNSTREAM IMPACTS FOR PMF

Comments	Danger of loss of life Road overtopped.	Danger of loss of life.	Danger of loss of life.
Peak Stage (ft)	24.0	21.6	24.2
Peak Flow (cfs)	147,940	148,039	926,241
Structure Height Above Streambed* (ft)	11 11 20	13	20
# of Dwellings	l Restaurant I I	-	-
Location	3000 ft. d/s of Loc. 14	3300 ft. d/s of Loc. 15	1700 ft. d/s of Loc. 16
Location # (See pg. D-2, Appendix D)	15	16	17

^{*} The structure height above the streambed is the difference between the first floor elevation and the channel invert.

SPRINGVILLE DAM (N.Y. 704)
RATING CURVE

PHASE I DAM INSPECTION REPORT

DATE: JULY, 1981 FIGURE 5.1

SECTION 6 - STRUCTURAL STABILITY

6.1 VISUAL OBSERVATIONS

No significant displacement or distress associated with the embankment or structures was observed during this Phase I Inspection. There has been some loss of ground at the upstream face of embankment at the east spillway endwall, and rock erosion below the east end of the apron.

6.2 DESIGN AND CONSTRUCTION DATA

No records of structural stability analyses are available for this dam.

6.3 POST-CONSTRUCTION CHANGES

Since the dam was constructed, the forebay has been modified and the entire spillway has been resurfaced with gunite.

6.4 SEISMIC STABILITY

The dam is located in Seismic Zone 3 and, in accordance with the recommended Phase I guidelines, a seismic stability analysis is warranted. This should be accomplished by a qualified registered professional engineer and should be made a part of the record for this dam.

6.5 STRUCTURAL STABILITY ANALYSIS

The configuration of the spillway section of the dam and the integral apron makes reasonable prediction of the failure made for the dam virtually impossible without obtaining pertinent additional information regarding the rock and concrete material properties. Furthermore, the dam cannot be analyzed as a pure gravity dam, since it relies on a combination of gravity and substantial shear friction for stability. Investigation of such a structure is beyond the scope of this Phase I Investigation. Therefore, it is recommended that an in-depth investigation of the structural stability of the dam be conducted. That investigation should include the following:

- I. The actual magnitude and distribution of hydrostatic uplift pressures under the dam should be determined by installing and monitoring piezometers.
- 2. Core samples of the dam and foundation rock should be taken to determine in situ material properties.

SECTION 7 -ASSESSMENT/RECOMMENDATIONS

7.1 ASSESSMENT

a. Safety

Examination of the available documents and the visual inspection of Springville Dam did not reveal conditions which constitute an immediate hazard to human life or property. The concrete dam is considered to be stable under present conditions.

The spillway is inadequate based on the Corps of Engineers Recommended Guidelines. It will safely pass neither the PMF nor 1/2 the PMF without overtopping.

The dam is located in Seismic Zone 3; there is no record of a seismic stability analysis being performed.

b. Adequacy of Information

The information reviewed is considered adequate for a Phase I Inspection.

c. Need for Additional Investigations

It is recommended that the services of a qualified registered professional engineer be retained to:

- 1. Investigate the source of seepage through and around the powerhouse, and determine the proper method of sealing this seepage.
- 2. Evaluate the rock erosion along the downstream edge of the concrete apron and recommend appropriate remedial measures.
- 3. Investigate the normal and seismic structural stability of the spillway section of the dam.

d. Urgency

The investigations should be completed within 12 months of notification to the owner, and remedial actions resulting from these investigations completed in the subsequent 12 months. The remedial measures or actions listed below should be completed within one year from notification.

7.2 RECOMMENDED MEASURES

- 1. Implement those remedial measures or actions resulting from the aforementioned investigations.
- 2. Repair the west sidewall of the spillway and the west core wall to restore them to their original configuration.
- 3. Repair the eroded upstream channel banks by filling with suitable material.
- 4. Install slope protection along both upstream channel banks to prevent future erosion.
- 5. Clear trees and vegetation from the west embankment.
- 6. Develop a formal written downstream warning system to alert the appropriate officials and residents in the event of an emergency.
- 7. Develop and maintain a program of biannual technical inspections.

APPENDIX A

VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST

1)

<u>vata</u>					
General Name of Dam	Springville				
_	NY00704	DEC Dam No	104 565		
_		DEC Dam No	19A-363		
River Basin_		C	Fair a		
	wn Concord	County_	Erie		
	Cattaraugus				
	Lake Erie		,,, - -0		
	42 ⁰ 19.0'				
	Concrete and eart	th embankment wi	th core wall		
_	ory High				
	nspection May 20), 1981			
Weather Cond	itions Sunny, 70°				
	vel at Time of Inspe	ction 1093.7 1	t. (MSL)		
Reservoir Le Inspection P	vel at Time of Inspe ersonnel <u>Jeffrey Har</u>				
Reservoir Le	vel at Time of Inspe ersonnel <u>Jeffrey Har</u>				
Reservoir Le Inspection P Bidjan Rosta Persons Cont	vel at Time of Inspe ersonnel <u>Jeffrey Har</u> mi acted (including Add	din, Ray Kampff	, Bob Farrell	l, Ken Ave	
Reservoir Le Inspection P Bidjan Rosta	vel at Time of Inspersonnel Jeffrey Harmi acted (including Add ctric Dept.	din, Ray Kampff	, Bob Farrell	l, Ken Ave	
Inspection P Bidjan Rosta Persons Cont Supt. of Ele Village of Sp	vel at Time of Inspersonnel Jeffrey Harmi acted (including Add ctric Dept.	din, Ray Kampff	, Bob Farrell	l, Ken Ave	
Reservoir Le Inspection P Bidjan Rosta Persons Cont Supt. of Ele Village of Sp Nason Blvd.	ersonnel Jeffrey Harmi acted (including Add ctric Dept.	din, Ray Kampff	, Bob Farrell	l, Ken Ave	
Inspection P Bidjan Rosta Persons Cont Supt. of Ele Village of Sp	ersonnel Jeffrey Harmi acted (including Add ctric Dept. pringville (716)555-1212	din, Ray Kampff	, Bob Farrell	l, Ken Ave	
Reservoir Le Inspection P Bidjan Rosta Persons Cont Supt. of Ele Village of Sp Nason Blvd. History: Date Constru	ersonnel Jeffrey Harmi acted (including Add ctric Dept. pringville (716)555-1212	ress & Phone NoDate(s) Reco	Bob Farrell	l, Ken Ave	ry,
Reservoir Le Inspection P Bidjan Rosta Persons Cont Supt. of Ele Village of Sp Nason Blvd. History: Date Constru	ersonnel Jeffrey Harmi acted (including Add ctric Dept. oringville (716)555-1212	Date(s) Reco	, Bob Farrell) Mr. John nstructed	Lipoff Engineers,	village

(1)	Embankment Material Clay and sand mixture.
(2	Cutoff Type Corewall keyed into rock.
(3	Impervious Core Concrete corewall.
(4) Internal Drainage System <u>Unknown</u>
(5) Miscellaneous
	est) Vertical Alignment Good
(2	
(3) Surface Cracks None
(4) Miscellaneous
Up	stream Slope
(1 (2	
	one uprooted near right endwall.

ream Slope lope (Estimate - V:H) Variable Indesirable Growth or Debris, Animal Burrows loughing, Subsidence, or Depressions Some loss of ground near right ide of powerhouse. urface Cracks or Movement at Toe eepage Light seepage emanating from east side of powerhouse xternal Drainage System (Ditches, Trenches, Blanket) None noted
lope (Estimate - V:H) Variable Indesirable Growth or Debris, Animal Burrows loughing, Subsidence, or Depressions Some loss of ground near right ide of powerhouse. Uniface Cracks or Movement at Toe eepage Light seepage emanating from east side of powerhouse
loughing, Subsidence, or Depressions Some loss of ground near right ide of powerhouse. urface Cracks or Movement at Toe eepage Light seepage emanating from east side of powerhouse
loughing, Subsidence, or Depressions Some loss of ground near right ide of powerhouse. urface Cracks or Movement at Toe eepage Light seepage emanating from east side of powerhouse
urface Cracks or Movement at Toe
eepage Light seepage emanating from east side of powerhouse
eepage Light seepage emanating from east side of powerhouse
xternal Drainage System (Ditches, Trenches, Blanket) None noted
ondition Around Outlet Structure Some seepage and loss of ground
eepage Beyond Toe None noted
nts - Embankment Contact
abutment was observed from the right abutment due to difficult
ccess.
rosion at Contact None noted
eepage Along Contact None noted
r

(a)	Description of System None
(b)	Condition of System Not applicable
(c)	Discharge from Drainage System Not applicable
inst	rumentation (Momumentation/Surveys, Observation Wells, Weirs, Piczometers,
) None
	<u> </u>
	المنظم ا
	rvoir Generally good condition, some minor erosion
	rvoir Slopes Generally good condition, some minor erosion
a.	
a.	Slopes Generally good condition, some minor erosion Sedimentation has occurred up to the top of one of the reservoir drains (5.0 ft.)
a.	Slopes Generally good condition, some minor erosion
a.	Slopes Generally good condition, some minor erosion Sedimentation has occurred up to the top of one of the reservoir drains (5.0 ft.)
a. b.	Slopes Generally good condition, some minor erosion Sedimentation has occurred up to the top of one of the reservoir drains (5.0 ft.)
a. b.	Slopes Generally good condition, some minor erosion Sedimentation has occurred up to the top of one of the reservoir drains (5.0 ft.) Unusual Conditions Which Affect Dam None noted
a. b.	Slopes Generally good condition, some minor erosion Sedimentation has occurred up to the top of one of the reservoir drains (5.0 ft.) Unusual Conditions Which Affect Dam None noted Downstream of Dam Downstream Hazard (No. of homes, highways, etc) Refer to Table 5.1 for a list
a. b. Area	Slopes Generally good condition, some minor erosion Sedimentation has occurred up to the top of one of the reservoir drains (5.0 ft.) Unusual Conditions Which Affect Dam None noted Downstream of Dam Downstream Hazard (No. of homes, highways, etc) Refer to Table 5.1 for a list of downstream impacts

	Concrete ogee	spillway; resurfaced	d with gunite	
a.	General Goo	od except for west e	endwall which is in	poor Condition
b.	Condition of Se layer separation		ood; minor cracking	, spalling, erosion & gunite
c.	Condition of A	uxiliary Spillway_	Not applicable	
d.	Condition of D	ischarge Conveyance	Channel Not a	applicable
	rvoir Drain/Out			Other (3) 5'x6' openings
Type Mate	e: Pipeerial: Concrete_	Conduit_X Metal		Other
Type Mate Size	erial: Concrete_ erial: 5' x 6'	Conduit_X Metal		Other
Type Mate Size Inve	erial: Concrete_ erial: Concrete_ erial: Concrete_ erial: Concrete_ erial: Condition (Conduit X Metai Length Entrance 1069.4 (Describe):	MSL Exit	Other
Type Mate Size Inve	erial: Concrete :: 5' x 6' ert Elevations: 6 ical Condition Material:	Conduit X Metal Length Entrance 1069.4 (Describe): Good	MSL Exit	Other
Type Mate Size Inve	e: Pipe erial: Concrete_ e: 5' x 6' ert Elevations: I sical Condition Material: Joints:	Conduit X Metal Length Entrance 1069.4 (Describe): Good	MSL Exit	Other
Type Mate Size Inve	erial: Concrete_e: 5' x 6' ert Elevations: Is ical Condition (Material:	Conduit X Metal Length Entrance 1069.4 (Describe): Good	MSL Exit_	Other
Type Mate Size Inve	erial: Concrete_e: 5' x 6' ert Elevations: Esical Condition Material: Joints: Structural Into	Conduit X Metal Length Entrance 1069.4 (Describe): Good egrity: Good bility: No imp	MSL ExitAlignment	Other
Type Mate Size Inve	erial: Concrete_e: 5' x 6' ert Elevations: Estal Condition Material: Joints: Structural Into Hydraulic Capal Means of Contro Operation:	Conduit X Metal Length Entrance 1069.4 (Describe): Good egrity: Good bility: No imp ol: Gate : Operable	MSL Exit Alignment airments Valve Inoperable	Other

a.	Concrete Surfaces Generally good; west wall of spillway poor; 90% of gunite has fallen off
b.	Structural Cracking Minor on spillway & intake structure
c.	Movement - Horizontal & Vertical Alignment (Settlement) None observed
d.	Junctions with Abutments or Embankments Could not inspect
e.	Drains - Foundation, Joint, Face None
f.	Water Passages, Conduits, Sluices Good
g.	Seepage or Leakage Light seepage emanating from east side of powerhouse
h.	Joints - Construction, etc. Good

Approach & Outlet Channels See intake structure. Spalling on tail race concrete

Control Gates None - Butterfly valves located in powerhouse

Abutments Not applicable

j.

k.

1.

m.	Energy Dissipators (Plunge Pool, etc) None
n.	Intake Structures Forebay has many surface cracks but is well maintained
٥.	Stability Good. No problems observed
p.	Mi scellaneous
) <u>App</u> i	urtenant Structures (Power House, Lock, Gatchouse, Other)
a.	Description and Condition Powerhouse is in good condition

APPENDIX B

ENGINEERING DATA

APPENDIX B

TITLE	PAGE
Site Plan	B-2
Cross Sections, Top View of Head Rack	B-3
Plan & Sections of Extension to Intake	B-4
Plans & Elevations of Abutments	B-5

TRUE THE THE THE THE PROPERTY OF THE CONTROL OF THE

B-3

APPENDIX C

PHOTOGRAPHS

1. Downstream Channel

2. Upstream impoundment

3. Downstream face of dam and west abutment

4. Downstream face of dam and powerhouse

5. West face of west abutment. Note spalled concrete.

6. East face of west abutment. Note spalled concrete.

7. East face of west abutment. Note spalled concrete.

8. West wall beyond west abutment

9. Powerhouse intake structure

10. West face of inlet structure. Note cracked concrete.

11. Rock erosion under downstream apron

12. Powerhouse

13. Overview

APPENDIX D

HYDRAULIC AND HYDROLOGIC COMPUTATIONS

APPENDIX D

	PAGE
Cross Section Location Plan	D-2
HEC-1 Dam Safety Version Computer Program-Input	D-5
HEC-1 Dam Safety Version Computer Program-Output	D-9
Supporting Calculations	
 Hydrology 	D-37
Spillway Hydraulics	D-48
 Downstream Channel Routing 	D-52
Checklist for Hydrologic and Hydraulic Engineering Data	D-61

Springville Dam

CROSS SECTION LOCATION PLAN

(Sheet 1 of 3)

Scale: 1"= 2000'

Springville Dam

CROSS SECTION LOCATION PLAN

(Sheet 2 of 3)

Scale: 1 = 2000'

Springville Dam

CROSS SECTION LOCATION PLAN

(Sheet 3 of 3)

Scale: 1 2000

DAM NY 704

ANALYSIS OF DAM OVERTOPPING USING RATIOS OF PMF

D-5

=

1067

650

1055

1049

1210

1049

PAGE COO2

7

0.0622 580 0.0111 0.0022 800 0.0022 0.0017 0.0016 1010 900 1023 1060 1000 1055 1100 5100 1038 1100 2720 1038 1048 4200 1025 1100 3800 1040 1040 1000 1059 1100 \$4 13 22 42 47 285 \$\$1090.7 1093.7 1097.7 1100 1120 \$\$1093.7 \$U1103.8 \$L 17.8 136.3 205.8 209.8 231.3 245.6 \$V1103.8 1105.6 1106.1 1107.4 1108.2 1110.6 CHANNEL ROUTING -MOD PULS- REACH 4-5 CHANNEL ROUTING -MOD PULS- REACH 5-6 CHANNEL ROUTING -MOD PULS- REACH 0-1 CHANNEL ROUTING -MOD PULS- REACH 1-2 CHANNEL ROUTING -MOD PULS- REACH 2-3 CHANNEL ROUTING -MOD PULS- REACH 3-4 CHANNEL ROUTING -MOD PULS- REACH F-7 314 1060 574 1300 1100 1000 1700 1100 600 1100 1100 595 1400 1100 266 1150 1038 1048 1080 1032 1040 1040 1025 1031 1060 1055 1067 1100 1049 1060 1060 1019 1080 1025 0.1 590 1000 0.07 589 1100 0.07 300 620 0.035 1037 1040 0.045 1050 1060 0.035 1080 1038 0.45 1070 1080 0.45 1060 1059 1100 0.64 1038 1623 0.07 0 • 2 6 5 • 0 90.0 0 • 1 0 1220 530 1520 90.0 0.1 900

1038

D-6

1032

1032

1031

8 0 1

1025

) •

1017

755

1017

CHANNEL ROUTING -MOD PULS- REACH 7-8

365

1025

DAM NY 704
PMF
RATIOS OF
THE USING !
4 OVERTOPPING
NALYSIS OF DAM
Y

CHANNEL ROSE 10016 975 100					-							
D.66												
975 1018 507 1018 510 1015 683 1013 864 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	•	0.0	0.06	1914	1040	1000	0.002		5		
975 1020 1400 1015 1500 1010 1010 1 1 1 1 1 1 1 1 1		•	1018	205	~	916	2101	6 6 3	5	0	0101	
CHANNEL ROUTING -MOD PULE- REACH 8-9 1 0.06 0.04 0.06 1009 1100 2700 0.0022 5.13 1010 1100 1020 1100 1100 1100 1 1 0.06 0.04 0.06 992 1100 7300 0.0023 4.16 1000 150 1020 1200 1100 280 992 471 1 10 100 150 1020 1200 1100 280 992 471 1 10 100 150 1020 1200 1100 280 653 4.17 1000 150 1020 1200 1100 280 653 6.15 1000 1000 1100 1001 1100 1100 1100 1		975	1620	00+	1030	3800	240	•				
0.06		- .		2	į	9		-				
1		¥ 25			<u>,</u> -	b -						
0.00		-			•	•						
5.15 1100 310 102C 132 1017 350 1009 522 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.06	\$3.0	0.06	1009	1100	2700	0.0022				
5.33 1017 1400 1020 1800 1100 LHANKE ROUTING -MOD PULS-REACH 9-10 1.00 0.00 0.00 150 1020 1000 280 992 471 1.01 0.00 0.00 125 1000 1272 1000 280 992 471 CHANKEL ROUTING -MOD PULS-REACH 10-11 CHANKEL ROUTING -MOD PULS-REACH 11-12 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			1100	310	1020	142	1017	350	1009	525	1009	
CHANNEL ROUTING -MOD PULS - REACH 9-10 1 0.06 0.09 0.06 992 1100 7500 0.0023 1 0.00 150 150 1020 272 1000 280 992 471 CHANNEL ROUTING -MOD PULS - REACH 10-11 1 0.06 0.09 0.00 980 1100 4840 0.0017 CHANNEL ROUTING -MOD PULS - REACH 11-12 1 1	_	533	1017	1400	1020	1800	1100					
CHANNEL ROUTING -HOD PULS- REACH 9-10 10.06 0.06 0.07 10.00			10					-				
0.06 0.04 0.06 992 1100 7300 0.0023 992 471		CHA	œ		ŝ	ACH 9-1	_					
0.06 0.04 0.06 992 1100 7300 0.0023 977 1700 1100 1100 1100 1100 1100 1100												
0.06 0.04 0.06 992 1100 7500 280 992 477 1100 1100 1100 280 992 477 1100 1100 280 992 477 1100 1100 280 992 477 1100 1100 280 992 477 1100 1100 1100 280 992 477 1100 1100 1100 1100 1100 1100 1100	_	~					ļ	,				
1100 150 1020 272 1000 280 772 1110 1110 1110 1110 1110 1110 1 1 1 1	_	90.0	60.0	90.0	992	1100	7300	• 002		4		
THE TOOK 525 1020 1100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	0	1100	150	1020	212	0001	280	386	0 / 6	256	
CHANNEL ROUTING -HOD PULS- REACH 10-11 1 0.06 0.04 0.06 980 1100 4840 0.0017 6.75 1000 1000 1100 1100 1100 1 1 1 12	_	4 78	1000	525	1020	1200	1100	•				
CHANNEL ROUTING -MOD PULS- KLACH 10-11 1 0.06 0.04 0.06 980 1100 4840 0.0017 6.75 1000 1000 1100 1001 1100 1 1 12 100 1100 1						•		~				•
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CHA			S	-						
0.06 0.04 0.06 980 1100 4840 0.0017 675 1000 1000 1100 1001 1100 1 1 2 1 CHARNSEL ROUTING -MOD PULS- REACH 11-12 1 1 1 1 1 1 CHARNSEL ROUTING -MOD PULS- REACH 11-12 1 1 1 CHANNEL ROUTING -MOD PULS- REACH 12-13 1 1 3		•			-	-						
0.06 0.04 0.06 980 1100 4810 0.0011		_			1		•					
675 1600 1800 1800 1801 1100 1 1 12		ç	40.0	90.0	980	2 .	9 6	100.0		•	0	
CHANNEL ROUTING -MOD PULS- REACH 11-12 1		9 1	/ 66	264	484	0 0	200	679	0	٦.	200	
CHANNSEL ROUTING -MOD PULS- REACH 11-12 1 0.06	_	c •	3 .	0001	2017	7007	9077	•				
1		- 3	21	ا د	2 1110	11 85456	•	-				
1 0.06 0.09 0.0025 0.00		ב ב	35 L n			11	4					
0.06 0.04 0.06 960 1060 7900 0.0025 3+5 970 600 980 190 970 200 960 370 3+5 970 600 980 190 970 200 960 11 CHANNEL ROUTING -MOD PULS- REACH 12-13 1				•	•							
1 1060 150 980 190 970 200 960 371 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		90.0	40.0	٠	960	90	1900	0.0025				
365 976 600 980 700 1000 1 1 13 CHANNEL ROUTING -MOD PULS- REACH 12-13 10-06 0.04 C.06 946 974 3800 0.0032 863 956 900 960 672 956 680 948 855 11 14 11 11 11 11 CHANNEL ROUTING -MCD PULS- REACH 13-14 1 1 15 CHANNEL ROUTING -MCD PULS- REACH 13-14 1 1 15 CHANNEL ROUTING -MCD PULS- REACH 14-15 1 1000 1700 960 2357 945 2365 937 2554	_		1060	_	980	1.9	970	200	960	_	960	
1 13 CHANNEL ROUTING -MOD PULS- REACH 12-13 1 0.06 0.04 C.06 948 974 3800 0.0032 863 956 900 960 672 956 680 948 859 1 0.06 0.04 0.06 942 1300 3300 0.0018 1 1 1 15 0.06 0.04 0.06 942 1300 3300 0.0017 1 15 0.06 0.04 0.045 937 1200 3000 0.0017 1 1 15 0.04 0.045 937 1200 3000 0.0017 1 1 100 170 960 2357 945 2365 937 2554		3	976	600	980	002	1000					
CHANAEL ROUTING -HOD PULS- REACH 12-13 1		-	~					-				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	CHA			Ú.	EACH 12-						
1 0.06 0.04 C.06 94R 974 3R00 0.0032 948 85: 0.06 0.06 0.0032 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0		1				-						
0.06 0.04 C.06 94R 974 3R00 0.0032 863 956 900 960 672 956 680 948 853 1 14 12 1 CHANNEL ROUTING -MCD PULS- REACH 13-14 1 15 0.04 0.06 942 1000 3300 0.0018 1 150 946 2806 2101 1000 1 1 15 CHANNEL ROUTING -MOD PULS- REACH 14-15 1 15 0.04 0.045 937 1200 3000 0.0017 1 1 10 1000 170 960 2357 945 2365 937 254 2548 445 2600 960 2357 945 2355	_											
965 600 960 672 956 680 948 855 1100 974 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.06	0.04	90 • 0	948	974	3 P 0 0	.003				
863 956 900 960 1100 974 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	6	962	6.00	096	672	956	680	948	855	948	
1 14 14 17 18 18 18 18 18 18 18 18 18 18 18 18 18	-	863	926	900	960	1100	914					
CHANNEL ROUTING -MCD PULS- REACH 13-14 1		_	.					~				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	CE		11N6 -MCD	S	EACH	.					
1700 946 0.06 942 1300 3300 0.0018 942 1025 1700 946 846 946 1000 1700 1700 942 1025 942 1025 1700 940 1000 1 1 15 1 15 1 100 1000 1 1 1 15 1 100 100						****						
0.06 0.09 0.06 942 1300 3300 0.0018 0 946 846 946 845 942 1025 942 102 1730 960 2100 2101 1000 1 1 15 15 15 1 CHANNEL ROUTING -MOD PULS- REACH 19-15 1 1 0.04 0.045 937 1200 3000 0.0017 0 1000 170 960 2357 945 2365 937 254 2544 945 2500 960 2903 1000	_	-										
1700 946 846 946 850 942 1025 942 102 1700 960 2100 1000 1 1 15 1 15 15 100 PULS-REACH 14-15 1 0.04 0.045 937 1200 3000 0.0017 0 1000 170 960 2357 945 2365 937 254	-0	0.06	0.0	90.0	942	1300	3300	0.0018				
1730 960 2100 1000 2101 1000 1 1 15 CHANNEL ROUTING -MOD PULS- REACH 14-15 1 1 0.00 0.0017 0.1000 170 960 2357 945 2365 937 254 2548 945 2200 960 2900 1000	_	a	946	846	946	950	945	1025	945	8	946	
1 15 CHARNEL ROUTING -MOD PULS- REACH 14-15 1 1 1 1 1000 170 947 1200 3000 0.0017 6 1000 170 940 2257 945 2365 937 254 548 945 2650 960 2900 1000	~	1700	960	2100	3001	2101	1000					
CHANNEL ROUTING -MOD PULS- REACH 14-15 1 1 0.06 0.04 0.045 937 1200 3000 0.0017 0 1000 170 960 2357 945 2365 937 254 25549 045 2500 960 2900 1000		-	15					-				
1 1 0.04 0.045 937 1200 3000 0.0017 937 254 0.0548 937 254	_	CHA	1344		PULS.	A CH	15					
1 0.66 0.04 0.645 937 1200 3000 0.0017 0 1000 170 940 2357 945 2365 937 254 2548 945 2200 1600					~	-						
0.66 0.04 0.645 937 1200 3000 0.0017 0 1000 170 960 2357 945 2365 937 254 2544 945 2650 960 2900 1600	_	-						1				
0 1000 170 960 2557 945 2365 937 254 2548 945 2550 960 2960 1000	عد	•	40.0	6+0+0	937	1000	3000	0.0017		,	1	
254A 445 2650 960 2900	~		1000	170	96	23.57	5	2365	-	S	436	
-	_	Ş	S 4 5	2650	96	2760	3001					
÷		_	-									
	•	. 1		JA Distract	5 1110	THURST.	-	-				

•
ò
5
ະ
_
·
ی
•
۵.

	931	928
<u> </u>	1710	1982
	6	928
# d	0.0018 1701	1807
RAT10S C	3300 941 980 11	1700 935 980
USING	1000 1300 2700 1 1 EACH 16-	980 1800 2300
RTOPPING	931 940 940 PULST R	928 940 940
ANALYSIS OF DAM OVERTOPPING USING RATIOS OF PMF	1 0.04 0.045 931 1000 3300 0.06 0.04 0.005 940 1300 941 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	0.045 1200 2200
LYSIS 0F	0.04 1000 931 17	9.04 980 935
A A	1 0 - 0 6 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.06 0 1989 99

INPUT FILE ? NY704

ENTER PROJECT NUMBER

OK, SEG MHEC1DB 80166-00-10

```
SEGUENCE OF STREAM NETWORK CALCULATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C
UTFL OW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  COMBINE TO TO TO THE TO TO THE TO THE
                                                                                                                                                                                                           RUNOFF HYDROGRAPH AT
ROUTE HYDROGRAPH TO
RUNOFF HYDROGRAPH AT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ROUTE HYDROGRA!
End of Network
                                                                                                                                                                      9
                                                                                                                                                                      PREV 1EU
FLOOD MYDROGRAPH PACKAGE (HEC-1)
UAH SAFETY VERSION
LAST MODIFICATION 26 FEB 79
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FLOOD HYDROGRAPH PACKAGE (NEC-1)
DAM SAFFTY VERSION JULY 1978
LAST MODIFICATION 26 FEB 79
                                                                                                                          ***************
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          *******************
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DAM SAFFTY VERSION
```

ANALYSIS OF DAM OVERTOPPING USING RATIOS OF PWF DAM NY 704 HYDROLOGIC-HYDRAULIC ANALYSIS OF SAFIFY OF SPRINGVILLE DAM RATIOS OF PMF ROUTED THROUGH THE RESTRVOIR AND DOWNSTREAM

DATE: 8/11/ TIME: 4:04 PM

R UN

Ü

S

1 PL T -1 MF TRC TR ACE JOH SPECIFICATION 211 LROPI 1 I E 132 IDAY J01 [. A NE NA ¥. 103

NSTAN

IFRT

MULTI-PLAN ANALYSES TO RE PERFORMED NPLAN= 1 NRTIO= 6 LRTIO= 1 00 0.50 0.50 0.60 0.80 1.00

SUB-AREA RUNOFF COMPUTATION

IAUTO JPRT INAPE ISTAGE JPLT COMPUTE HYDROGRAPHS FOR SUB-AREA 1 ISTAG ICOMP IECON ITAPE 0

ISAME ISNON HYDROGRAPH DATA TAREA

LOCAL 0.000 SNAP TRSDA TRSPC 0.00 280.00 0.00 79.10 10HG 1 1HY DG

R72 R12 R24 R48 86.00 96.00 106.00 PRECIP DATA 86 76.00 0.00 22.20 TRSPC COMPUTED BY THE PROGRAM IS 0.889 PMS SPFE 0.00

RIJAP ALSHX 0.00 CNS1L 0.10 STR7L 1.00 1.00 R110K LOSS DATA ERAIN STRKS 0.00 0.00 0.00 1.00 STRKR 0.00 LROPT

UNIT HYBROGRAPH DATA TP= 8.89 CP=0.63 N

RECESSION DATA

RTIOR = 2.00

-0.10

QRCSN=

2.00

STRIG=

8.90 HOURS, CP= 0.62 VOL= 1.00 3248. 3553. 3696. 1406. 412. 121. 35. 3248. 1590. 466. 137. 1797 527 155 2779. UNIT HYDROGRAPH 49 END-OF-PERIOD ORDINATES. LAG= 2187. 2032. 596. 175. 1571. 674. 197. 58. 997. 2597. 761. 223. 65. 2936. 861. 252. 74. 495.

133. 3319.

973. 285. 84.

3619. 1100. 323. 55.

3696. 1244. 365. 107.

END-OF-PERIOD FLOW COMP 0 MO.D MO.DA HR.MN PERIOD RAIN FXCS

COMFO 3 SO 7 EXCS MO.DA HR.MN PERIOD RAIN LOSS

20.92 17.12 3.86 F990F4. (511.)(435.)(97.)(25458.63) SUM 20.92 17.12

HYDROGRAPH ROUTING

J

j

•

IAUTO ROUTE THE HYDROGRAPH FROM SUB-AREA I TO POINT P BY MUSKINGUM METHED
1STAG ICOMP ILCON 11APE JPLI JPRI INAME ISTAGE

DB
8HEC108
SEG
OK.

PAGE 0003

												COMF 0	1.8 C 807383.
-			:		0 0						35.43. 2795. 88.	1085	3.85
o	& O				1 1 AUTO	0 T 00 T		R11MP C.00			VOL= 1.00 3275. 1135. 336. 100.	EXCS	0.92 17.12
	1.57	1SPRAT D			ISTAGE	ISAME L	896 0.00	ALSHA 0 ° 0				RAIN	20.92
~		STOPA	:		INAPE			CNS11		2.00	4 CP 3	PERIOU	SUF
6	9791	TSK 0.000			JPRT	10 15NOL	8 R72	STR 1L 1 • 00	0	RT10R= 2	9.05 HOURS 2857. 1447. 429. 127. 38.	HR.MN F	
0	1001	X 0.2.00		UTATION	JPLT	A RAT10	R48 106.00	R1 10K	DATA	10	* • • • • • • • • • • • • • • • • • • •	A 0	
c	ROUTING DATA ES ISAME 0 1	AMSKK 0.740	*	SUB-AREA RUNOFF COMPUTATION	ITAPE	HYDROGRAPH DATA TRSDA TRSPC 280.00 0.00	P DATA R24 96.00	LOSS BATA STRKS R D.DD	UNIT HYDROGRAPH DATA 9.03 CP=0.63 N	RECESSION DATA ORCSN= -0.	ES+ LA	ERSOD F	
a	ROUTE IRES 0	LAG 2	:	EA RUND		HYDROGRA TRSDA 280.00	PREC1P R12 86.00		UNIT HYDR 9.03 C	RECESS ORCS		8 4800 8-30-0N	
~	0 • 0 0	NSTDL 0		SUB-AR	FOR SUB-AKEA 2 ICGMP IECON 0 0	SNAP 0.00	R6 76.00	L.	1Pz 9.	2.00	-PERIOD 1372. 2084. 618. 183.		
ආය	•		# # # # # #		RAPH FO	TAREA 71.10	PMS 22.26 389	R710L		STRTO=	49 END-OF 870. 2354. 698. 207.	EYES	
	000°0 0° 88073 SS	NSTPS 1	•		COMPUTE HYDROGRAPH ISTAD 2	лин6 1	SPFE 12.00 22.1 15 0.889	DLTKR 0.00		v)	SRAPH 2	RAIN	
	0.0		:		COMPUTE	1HY06 1	Æ	STRKR 0.00			UNIT HYDROC 432. 2658. 786. 234. 69.	PERIOD	
			***			~	8Y THE 1	LROPT			116. 3030. 890. 264.	FR. MN P	
			:				(PUTED E				m	0 MO.0M	
							TRSPC COMPUTFO BY THE PROGR					ĭ	

COMPINE HYDROGRAPHS

COSINE HYDREGREAPHS FROM SUP-APEAS I ARD 2 AT PCINT P.

83
u
¥
Ĭ
-
9
SE
S
¥
0

14010	0
ISTAGE	0
INAPE	-
JPRI	0
JPLI	٥
1 TAPE	0
1 E CON	9
ICOMP	~
ISTAG	æ

PAGE CDD4

2010	0		
104-01	0		
INAPL	-		
- x	٥		
))	٩		
コンダート	G		
× ∩ ~ ~	9		
CORP	2		
15140	æ		

SUB-AREA RUNOFF COMPUTATION

	14010	0	
	JPRT INAPE ISTAGE	0	
	INAPE	-	
		0	
	1790	a	
	ITAPE	0	
-AREA 3	IECON	0	
FOR SUR	ISTAG ICOMP	6	
COMPUTE HYDROGRAPH FOR SUB-AREA 3	ISTAG	5	
COMPUTE			

16.68 86.60 78.50 105.00 0.00	1 1 29.50 SPFE PMS	1HYD6 3	1UHG 1 SPFE	TAREA 29.50	00.00 88	HYDROGRAPH DATA TRSDA TRSPC 280.00 0.00 PRECIP DATA R12	TH DATA TRSPC 0.00 DATA R24	RAT10 0.000 R48	15NOU 0	ISANE 1 R96	0 CAL	
			00.0	22.20		30.00	76.00	106,00	000	0000		

TRSPC CUMPUTED BY THE PROGRAM IS 0.889

LDSS DATA
ERAIN SIRKS RTIOK STRTL
0.00 0.00 1.00 R110L 1.00 DL TKR 0.00 STRKR 0.00 LROP7

UNIT HYDROGRAPH DATA TP= 4.84 CP=0.63 NTA= 9

RECESSION DATA

QRCSN= -0.10 RTIOR= 2.00 2.00 STRTU=

585. 95. UNIT HYDROGRAPH 26 END-OF-PERIOB ORDINATES, LAG= 4.83 HOURS, CP= 0.64 VOL= 1.00 770. 1498. 2144. 2446. 2391. 1987. 1573. 1245. 617. 488. 386. 242. 191. 152. 120. 59. 47. 37. 29. 23.

CONF Q 1055 END-OF-PERIOD FLOW
COMP G MO.DA HR.MN PERIOD RAIN EXCS D MO.DA HR.MN PERIOD RAIN EXCS LOSS SUM 20.92 17.12 3.86 255545. (531.)(435.)(97.)(10096.22)

COMBINE HYDROGRAPHS

)

1 A U T O INAPE ISTAGE COMBINE HYDROGRAPHS FROM SUR-AREAS 1-2 AND 3 AT POINT B 1STAD ICOMP 1ECOM 11APE JPLI JPRT B 2 0 0 0 0 ********* ********* *********

HYDROGRAPH ROUTING

	IAUTO	0					
1 + 0D	ISTAGE	0		LSTR	0	ISPRAT	0
INGUP ME	INAPE	-				STORA	-1-
BY MUSK	JPRT	0		IPMP	0	1 SK	
B 10 C	JP.L.1	0		IOPI	٥	×	0.200
TNION MO	ITAPE	0	ING DATA	ISAME	0	AMSKK	2.350
SRAPH FR	I E CON	•	ROUT	IRES	•	LAG	'n
D HYDRO	1 COMP	-		AVG	00.0	NSIDL	o
THE COMPINE	ISTAG	U	ROUTING DATA	CLOSS	0 0 0 0	NSTPS	-
ROUTE				OLOSS	0.0		

SUB-AREA RUNOFF COMPUTATION

	IHYDG	1 10HG	STAG 1	SNAP 1E	ECON 0 HYDROGR TRSDA 280.00	ISTA ICOMP IECON ITAPE 1 0 0 0 0 HYDROGRAPH DATA 1 1 100.30 0.00 280.00 0.00	JPLT JPRT INAME ISTAGE 0 0 1 0 RATIO ISNOW ISAME LOCA 0.000 0	JPRT INA 0 1SNOU	NAFE ISTA 1 1 1SAME 1	STAGE B LOCAL D	1AU 10 0
IRSPC COMPUTED BY	SPFE P 0.00 22. THE PROGRAM IS 0.889	SPFE 0.00 1 IS 0.	PMS 22.20 889	R6 76.00	PRECIP (R12 86.00	P DATA R24 96.00	R48 106.00	R72 0.00	R96		

ALSFX 0.00 CNSTL 0.10 STRTL 1.00 LOSS DATA ERAIN STRKS RTIOK 0.00 0.00 1.00 R 7 10L 1.00 0.1KR STRKR 0.00 LROPT

R T IMP 0.00

UNIT HYDROGRAPH DATA TP= 6.94 CP=0.63 N

RTIOR = 2.00 RECESSION DATA GRESNE -6.10 2.00 STRT0=

00.	. 4447.			
V01= 1	5223.	1045	209	
CP= 0.63	5872.	1227.	246.	• 6 •
6.89 HOURS,	6012.	1442.	288.	58.
LAG≈	5606.	1693.	339.	е Э
	4755.			
OF-PER 100	3560.	2336.	467.	94.
APH 38 END-	1198. 2287. 3560.	2744.	549.	110.
HYDROGR	1148.	3223.	645	129.
LIND		3786.		

COMF Q 1055 MO.DA HR.MN PERIOD RAIN EXES END-OF-PERIOD FLOW COMP 0 HO.D RAIN EXCS LOSS MO.DA HR.MN PERIOD SUM 20.92 17.12 3.86 11686.38. (531.)(435.)(97.)(33092.11)

COMBINE HYDROGRAPHS

COMBINE ALL HYDROGRAPHS AT POINT C - INFLOW TO RESERVOIR

CALCULATION OF OUTFLOW 151AD 150MP 1	N ITAPE JPLT JPRT INAME ISTAGE 1AUTO 0 0 0 0 0 0	HYDROGRAPH ROUTING	HYOROGRAPH FROM RESERVOIR SECON STAPE JPLT JPRT INAPE ISTAGE SAUTO DOILTING DATA	S ISAME 10PT IPMP LSTR	G AMSKK X 15K STORA ISPRAT 0 0.000 0.000 0.000 -10941	.75 1170.00 1102.00 1101.80 1105.60 1106.10 110:.40	.00 11425.00 17277.00 23192.00 29661.00 31550.00 36535.00	285.	3265.	. 1120.	EXPU ELEVI COOL CAREA EXFL G.3 0.0 0.0 0.0	DAM DATA COGD EXPO DAMWID 3 0.0 0.0 0.	210. 231. 246.	7.4 1108.2 1110.6						
1093.70 108.20 0.60 0.60 0.60 0.60 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	(A) 1COMP 1EC	н	OUTFLOW SCOMP	AVG IR	NSTDL 0		~					109	206.	1106.1					51.05 HOURS	
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	181		CALCULATION ISI UTFL		N.S.1	1095.00					CREL 1093.7				1 3ME	1 1 ME	TIME	AT 1146	118440. AT TIME 51	
STAGE 100 SURFACE AREA= CAPACITY= CREST LENGIN AT OR BFLOW ELEVATION= PEAK OUTFLOW IS PEAK OUTFLOW IS PEAK OUTFLOW IS						STAGE 1093.70 1108.20	FLOW 89895.00	SURFACE AREA=	CAPACITY=	FLEVATION= 10			CREST LENGTH	2	QUIFLOW IS	<u>s</u>	OUTFLOW IS	SI	PFAK UUTFLOW IS 1184	

********	•	***		•			*****	:	•	* * * * * * * * * * * * * * * * * * * *	
				HYDROGR,	HYDROGRAPH ROUTING	ING					
CHANNEL ROUTING -MOD PULS- REACH 0-1 ISTAG ICOMP IECON ITAPE 1 1 0 0 0	R0	UTING - ISTAQ	HOD PULS- ICOMP 1	REACH DIECON	CON ITAPE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JPLT 0	TR QL 0	INAPE 1	INAME ISTAGE 1 0	1AU 10	
0.0		00000	A V G	IRES ISAME 1	1 SAME	10P1 0	1 P F P		LSTR	•	
		NSTPS 1	NSTOL 0	LAG	AMSKK 0.000	× 0000•0	1 SK 0 • 0 0 0	STORA 0.	ISPRAT 0		
MORMAL DEPTH CHANNEL ROUTING		ELNVI	ELMAX	RLNTH SEL	SEL						
DINAT	, H	100.0	ELEV, STA,	ELEVET(11055.00	•	646.00 1055.00		650.00 1067.00	6		
10.98	98	F)	22•18 346•36	33.59 397.79		45.21 450.52	57.05 504.53		78.13 559.84	116.00	157.36
296.07	20	933	947.89	1878.94	3060.74		4477.53	1670	6091.54	11479.78	253632.81

D-15

22131.53 250702.31

22131-53

253632-81

11475.78

6091.54 187046.72

4477-53

3060.74

1878.94

947.89

296.07

0.00

FLCW

1080.5 1082.3 1084.0 1087.0

1075.8

MAYIMUP STAGE 1S MAXIMUM STAGE 1S ********

........

........

1089.1

MAXIMUM STAGE IS

)

1076.32

1072.95

1071.58

1069.21

1066.84

1064.47

1062.11 1085.79

1059.74

1057.37

1055.00 1078.68

STAGE

201.21

0

MAXIMUM STAGE 1S MAXIMUP STAGE 1S MAYINUP STAGE IS

HYDROGRAPH ROUTING

	IAUTO	0					
	ISTAGE	9		LSTR	•	1SPRA 7	9
	INAPE					STORA	
	JPRT	0		IPHP	•	X TSK	00000
	_	0		Р	0	×	0.0.0
1-2	ITAPE	0	TING DATA	ISAME	-	AMSKK	000.0
REACH	1 E CON	0	ROU	IRES	~	LAG	•
MOD PULS-	ICOMP			9 A V	00.0	NSTOL	•
- SNITTO	ISTAO	~		SSOTJ	00000	NSTPS	-
CHANNEL R				SS070	0.0	NSTPS NSTOL LAG AMSKK	

NORMAL DEPTH CHANNEL ROUTING ******************

RLN1H SEL 1000. 0.00600 GN(1) DN(2) GN(3) ELNYT ELMAX 0.1000 0.4500 0.1000 1049.0 1100.0

73547.97 13547.97 38 (.46 132 e.72 1070.47 294.73 46442.61 533502.00 46442.61 533502.00 1067.79 24937.07 216.65 24957.07 1065.10 CROSS SECTION COORDINATES--STA-FLEV.STA.FLEV~ETC 0.00 1060.00 900.00 1060.00 1000.00 1000.00 1010.00 1010.00 1049.00 1210.00 1045.00 1220.00 1059.00 1500.00 1060.00 1700.00 1100.00 9711.88 399584.19 9711.88 128.23 1062.42 53.85 2705-32 2705,32 1059.74 1649.25 1649.25 38.46 833.92 1057.05 25.31 840.31 840.31 1054.37 12.49 265.22 265,22 1051.68 1078.52 0.00 0.00 556.88 0.00 1049.00 FLOU STAGE OUTFLOW

1(5676,88

467.84

1072.16

1 (587 (+88

1065.7 MAXIMUM STAGE IS

106331 HAXIMUM STAGE 15

1070.5 1071.7 NANIPUP STAGE IS HAYIPUP STAGE IS 1074.1 MAXIMUM STAGF 15

(.

MAKEMUN STAGE

HYDROGRAPH ROUTING

INAPE ISTAGE 1AUTO JPRT JPL1 CHABINEL POUTING -MOD PULS- BEACH 2-3 1STAG 100MP 1800N 11APS

8
₫
Ü
摧
=
ی
-
S
٠
×

PAGE 0009

						35 217(-13 59 606(-69	27 148672.47 25 713406.38	10 1067.37 73 110C.00	27 148673.47 25 713406.38								
						1815.3	113462.27	1064.1	113462.27 632273.25								
0						1466.81 5232.72	82351.28 564513.13	1060.84	£2351.28 564513.13							********	
1 0	LSTR	A ISPRAT			0 0 0	1125.36 4828.08	£7589.53 500154.94	1057.58 1090.21	£7585.53 500154.94							•	
		STCRA 0.			1046		ī.		r.							:	
•	0 M d I	1 SK 0 • 0 0 0			0 810.00 1048.00	793.15	37952.52 439232.13	1054.31	37952.52 439232.13								
•	1001	× 00 0 • 0			800.00 1038.00	470.29 4037.50	23052.35 381785.00	1051.05 1083.68	23052.35 381785.00								1 NG
0 0 ROUTING DATA	I SAME	AMSKK 0.000		0.00220		40	2306		2305							*******	HYDROGRAPH ROUTING
Rout	=	LAG		8100. 0.	ELEV.STA.ELEVETC 0 600.00 1038.00 0 1100.00 1100.00	240.43	13929.94 327859.81	1047.79	13929.94 327859.81							•	HYDROGR
-	A V G	NSTDL		ELMAX 1100.0	ELEV.ST. 0 600.0	157.80 3271.86	7082.63 277512.44	1044.53 1077.16	7082.63							• • • •	
n	0.000	NSTPS 1		ELNVT 1038.0	• 0 0	32	27									•	
	0.0		UTING	GN(3) 0.1000 1	COORDINATE 00 590.00	77.65 2898.38	2229.99 230809.03	1041.26 1073.89	2229,99 230809,03	1052.5	1057.8	1059.7	1061.5	1064.6	1967.3	•	
			1 CHANNEL RO	(1) ON(2)	CROSS SECTION COORDINATESSTA. 0.0C 1050.00 590.00 1046.0 900.00 1060.00 1000.00 1080.0	0.00	0.00 187829.91	1038.09	0.00 187829.91	STAGE 1S 105	STAGE 1S 105	STAGE 18 105		18		* * * * * * * * * * * * * * * * * * * *	
			NORMAL DEPTH CHANNEL ROUTING	GN(1) 0.1000	CRC	STORAGE	001FLOW	STAGE	FLOW	MAXIMUM STAG	MAXIMUP STAG	PAYIPUP STAG	MAXIMUM STAGE IS	MAXIMUM STAGE	PAYINUM STAGE IS		

D-17

IAUTO

INAPE ISTAGE

JPR1 0

396*0

3•0 0•3

LSTA 0

19 P.P

1001

NSTPS NSTDL LAG AMSKK X TSK STORA ISPRAT 1 0 0 0.000 0.000 0.000 0.

HORMAL DEPTH CHANNEL ROUTING

CROSS SECTION COORDINATES--STA.ELFV.STA.ELFV.-ETC
0.00 1080.00 300.00 1040.00 314.00 1038.00 320.00 1032.00 526.00 1032.00
530.00 1038.00 620.00 1040.00 1060.00 1048.00

1 (9026.83 1 (9026.83 712.52 1054.74 1086.00 84379.14 84379.14 457207.19 586.16 1984.19 1052.21 £2819.47 407745.56 462.80 1830.94 1045.68 62819.47 407745.56 44916.45 360928.44 343.48 44916.45 1047.16 241.87 1044.63 31092,90 316768.19 31092.90 316768.19 20271.78 20271.78 275282.13 162.18 1042.10 12072.75 1039.58 12072.75 104.39 6071.69 6071.69 66.32 1109.51 1037.05 32.83 1919.42 1034.53 136638.91 167127.66 1919.42 0.00 0.00 136638.91 1032.00 0.00 FLOW OUTFLOW STAGE STORAGE

MAXIMUM STAGE IS 1044.3

MAXIMUM STAGE 1S 1049.2

MAYIMUM STAGE IS 1051.0 MAXIMUM STAGE IS 1052.7

MAXIMUP STAGE IS 1058.2

1055.6

MAXIMUR STAGE IS

HYDROGRAPH ROUTING

IAUTO LSTR ISPRAT ISTAGE STCRA INAPE 1 SK JPRI IPHP 000.6 JPLI IOPT 0.000 RCUTING DATA ITAPE APSKK 006.5 ISAME REACH 4-5 LECON 1 A C IRES CHANNEL ROUTING -MOD PULS-AVG 0.00 1013h 1COMP **NSIPS** ISTAG CLOSS 000.0 OLOSS

)

4.7

PAGE CO11

NORMAL DEPTH CHANNEL ROUTING

SEL	0.00170
RLNJH	4200.
FLMAX	1100.0
ELNVT	1025.0
DN(3)	0.0700
QN(2)	0.0356
CNCID	0.0700

٠	2422.31 283£.80 7076.47 760?.65	267151.88 342734.31 1362522.00 1512757.50	1056.58 106(.53 1096.05 110(.00	267151.88 342734.31 1362522.00 1512751.50
	2011.88 2. 6560.55 7	199540.28 267 1219596.25 1362	1052.63 1092.10	
1031.00	1607.45 6055.89	140320.38 1083991.00	1048.68 1088.16	140320.38 199540.28 1083991.00 1219596.25
00 801.00	1209.03 5562.51	89997.69 955724.50	1044.74	89997.69
795.00 1025	816.63	49299.20 834824.63	1040.79 1080.26	49299.20 834824.63
A,ELEVETC 00 1025.00 00 1100.00	440.12 4609.54	23193.57 721329.00	1036.84	23193.57
-STA,ELEV,ST 031.00 595. 060.00 1400.	179-10	10273.50	1032.89	10273.50
COORDINATES- 00 589.00 1 00 1100.00 1	3701.64	3462.65 516775.88	1028.95	3462.65 516775.88
CROSS SFCTION COORDINATESSTA*ELEV*STA*FLEVETC 0.00 1037.00 589.00 1031.00 595.00 1025.00 795.00 1025.00 801.00 1031.00 1020.00 1040.00 1100.00 1060.00 1400.00 1100.00	0 • 0 326 • • 59	0.00 425880.19	1025.06 1664.47	0.00 425880.19
g -	STORAGE	OUTFLOW	STAGE	FLOW

MAXIMUM STAGE IS 1037.8
MAXIMUM STAGE IS 1041.8
MAXIMUM STAGE IS 1043.2
MAXIMUM STAGE IS 1044.6
MAXIMUM STAGE IS 1047.0

HYDROGRAPH ROUTING

1049.2

MAXIMUM STAGE IS

14010	0					
JPLT JPRT INAME ISTAGE	0		LSTR	0	ISPRAT	0
INAME	-				STORA	•
JPRT	•		1PMP		TSK	00000
JPLT	0		1001	0	×	000000
i-6 ITAPE	0	ING DATA	ISAME	-	AMSKK	
REACH 5	0	ROUI	IRFS		LAG	0
MOD PULS- ICOMP	-		AVG	00.0	NSTOL	0
OUTING -	3		CLOSS	000.0	NSTPS	-
CHANNEL ROUTING -MOD PULS- REACH 5-6 ISTAG ICOMP IECON ITAPE JPLT JPRT I			OLOSS	0.0		

NORMAL GEFTH CHARREL ROUTING

)

۔ د	
SEL 0.00160	
8LNTH 3890.	
ELMAX 1100.0	
ELNV1 1019.0	
0090.0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
.0600	

	5906.66	274356.94	11057-37	274356.94
	1832.68 548£.95	269899.38	1052-10	2 (9899.38 1150036.50
	1492.03	152888.53 1026823.13	1048.84	152888°53
1015.00	1156.76	103760.33 910575.75	1044.58	103760.33 910575.75
00 365.00 1	823.85 4307.03	63139.75 801334.63	1040.31	63139.75 801334.63
359.00 1025.	524.73	37291.75 698603.00	1036.05 1078.68	37291.75
A.ELEVETC 00 1040.00 00 1040.00	299°71 3581°44	19980.77 600821.25	1031.79	19980.77 600821.25
-STA.ELEV.ST 080.00 260. 025.00 1150.	148.99	9205•21 509340•19	1027.53	9205-21
COORDINATES- 00 175.00 1 00 546.00 1	66.67	2927.39	1023.26	2927.39 424310.25
CROSS SECTION COORDINATESSTA.ELEV.STA.ELEVETC 0.00 1100.00 175.00 1080.00 260.00 1040.00 359.00 1025.00 365.00 1015.00 546.00 1619.00 546.00 1025.00 1150.00 1040.00	0.00	01°0 345909.19	1019.00	00.00
S	STORAGE	OUTFLOW	STAGE	FLOW

1039.7 1041.5 1043.0 1045.9 1048.4 1034.2 MAXIMUM STAGE 1S MAXIMUM STAGE 1S MAXIMUM STAGE 15 MAXIMUM STAGE IS MAXIMUM STAGE IS MAXIMUM STAGE IS HYDROGRAPH ROUTING

1 AU 10		
JPRT INAME ISTAGE TAUTO	LSTR	1SPRAT 0
INAFE		STORA 0.
JPRT	1P P P	7 S K
JPLT	1011	× 00 0 0
5-7 ITAPE	ING DATA	A M S K K
REACH (1ECON	ROUT IRCS 1	ر 4 م م
MOD PULS- ICOMP	A V G 0 • 0 D	NSTOL 0
OUTING -	000.0	NSTPS
CHANNEL R	ROUTING DATA 0LOSS CLOSS AVG IRES ISAME 10PT 1PPP 0.3 0.000 0.00 1 1 1 0	

J

CADEDD CANED GALED FLANT ELMAX RLNTH SFL C.DEDD C.DGDD C.DGAD 1317-0 1366-0 930-0.03220 NORMAL DEPTH CHANNEL ROLLTING

PAGE 0013

	CROSS 0. 761.	SECTION 00 1038 00 1023	CROSS SECTION COORDINATESSTATELEVISIATELYEIC 0.00 1038.00 500.00 1023.00 574.00 1023.00 761.00 1023.00 1200.00 1040.00 1300.00 1060.00			580.00 1017	580.00 1017.00 755.00 1017.00	1017.00			
STORAGE		26.00	8.29	16.79	27.07	44.59 508.49	68,37 566,89	98.40	134.69	177.24	221.05
GUTFLOW		105895.39	1189.69	3769.59	7516.78 208522.25	13108,47	20901.98	31248.63	391531-69	£0889.18	(0781.11 5(1151.56
STAGE		1017.00	1819.26	1021.53	1023,79	1026.05	1028.32	1030.58	1032-84	1036-10	1031.57
FLOW		105895.39	1189.69	3769.59	7516.78 208522.25	13108.47	20901.98	341152,56	44475,40	£0889=18 444884=44	60781.11 5(1157.56
MAXIMUM STAGE IS	STAGE I		1030+2								
MAXIMUM STAGE 15	STAGE 1		1834.9								
MAXIMUM STAGE IS	STAGE I		1036.6								
HANTHUP STAGE IS	STAGE 1		1038.1								
MAXIMUM STAGE IS	STAGE I		1040.6								
MAXIMUM STAGE IS	STAGE 1		1042.7								
	•	***************************************		***	•	***	***************************************		******		
					HYDROGRA	HYDROGRAPH ROUTING					

NORMAL DEPTH CHANNFL ROUTING

1AUTO

INAPE ISTAGE

JP R T 0

JPLT

A V G

000000

0.0

ISPRAT

STORA

T SK 0.000

000.0

AMSKK 0.000

9 Y 7

NSTOL

NSTPS

LSTR

1949

1001

PLNTH SEL 1000. 0.00200 GN(1) GN(2) GN(3) ELNVT FLMAX P.DGDD D.D4CC O.NGDD 1014.0 1049.0 CROSS SECTION CODRDINATES--STA-FLEV.STA-FLEV--ETC
0.00 1019-00 507-00 1019-00 510-00 1015.00 685.00 1015.00 688.00 1018.00
975.00 1020.00 1400.00 1030.00 1030.00 1030.00 1040.10

, D-21 ,

ን

STORAGE	0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 °	1.4B 293.03	33	7.05 6.66	13.94	39.11	69.63	563	102,30	e in	136.79 580.70	172011 634066	211.26	
OUTFLOW		55.20	732.04 100593.78		1842.91 120854.16	3939-54	9089.27		16666.07 192358.06		26343456 219886444	21456.54 249086.55	:0565.07 2E021:-19	
STAGE	1014.00	1015.37	101	6.74	1018.11	1019-47	1020.84	8 KJ	1022-21		1023.58 1037.26	1024.95 1038.63	1026.32 1046.60	
FLOW	80°49459	55.20 82334.92	10059	,	1842.91	3939.54	9089-27 166725-50		16666.07 192358.06		26143.56 219806.44	249086.53	:0565.07 2:0215.19	
MAXIMUM STAGE	12	1024.0												
HAXIMUR STAGE	15	1027.1												
HAYIMUM STAGE	18	1028.4												
MAXIMUM STAGE	SI	1029.6												
MAXIMUN STAGE	18	1031.6												
MAXIMUM STAGE	18	1033.5												
	***	*	**	:	•	****				•	# # # # # # # # # # # # # # # # # # #			
					HYDROGRI	HYDROGRAPH ROUTING								
		CHANNEL ROUTING	G 6	-MOD PULS- ICOMP	REA IEC	TAPE	JPLI JPRI		INAPE 15	ISTAGE 0	JAU10 B			
		0.0	00000	A V G	HOUT 1RES 1	FOUTTHE DATE 1	1001	0201		LSTR				
			NSTPS	NS FOL O	LAG	0.000 0.0	× 50	1 SK S	STORA IS	ISPRAT 0				
NORMAL DEP	NORMAL DEPTH CHANNEL ROUTING	COUTING												
с .	anci) anci) 0.0600 0.0400	0.0600	1009.0 I	ELMAX 1100.0	RLN7H 2700. 0.	8.00220								
J	CROSS SECTION COORDINATES51A 0.00 110C-50 315.00 1620-533.00 1017.00 1400.00 1020-	055 SECTION COORDINATES5TA,EL 0.00 1106.50 315.03 1620.68 533.00 1017.00 1400.00 1020.00	ESSTA .E	*ELEV.STA.F CC 342.60 00 1800.00	*ELEV*STA*FLEV17C CC 342.00 1017.00 00 1800.00 1100.00	1 350.00 1009.00		525.0 <i>0 1005.</i> 00	00.500					
STORAGE	0.00 0.00 54.3705	55,53	22.2	132.59	\$\$0\$\$ \$368\$ \$368\$	3 4860-87		1136.68 5338.43	1494.67 582P.60	.60	1871.28	2264.51	2667.35 7374.83	

D-22

٦

)

OUTFLOW	0.00 693754.75	4141.31 841674.38	3.0		41240.64 1176372.00	89570.06 1363083.75		154526.25 1562709.50	234630.25 1775278.25		329046.81 2000838.25	437250.88	5 (889 6.88
STAGE	1009.00	1013.79		018.58	1023.37		1028.16 1076.05	1032.95 1080.84		1037.74 1085.63	1042.53	1047.31	1052.10 110 C. 00
FLOW	0.00 693754.75	4141.31 841674.38	1 13652.95 8 1002563.00		41240.64	89570.06 1363083.75		154526.25 1562709.50	234630.25 1775278.25		329046.81 2000838.25	437250-88	5:8896.88 24:1187.00
MAXIMUP ST.	STAGE 1S 11	1021.3											
MAXIMUM ST	STAGE IS 10	1025,2						•					-
MAXIMUM ST	STAGE IS 10	1026.6											
MAXIMUM ST.	STAGF 1S 11	1028.1											
MAXINUM ST.	STAGE 1S 10	1030.3											
MANIMUM STAGE IS		1032.5											
		:	*	*	•	***		***************************************	:	:			
					HYDROGR	HYDROGRAPH ROUTING	1NG						
		CHANNEL ROUTING ISTAC		-MOD PULS- ICOMP	RE A 1EC	1-10 ITAPE	JPLT 0	JPRT	IN APE 1	ISTAGE 0	1 A U T O		
		0.0	00000	A V G	# #	ROUTING DATA (ES ISAME 1	1001	1 P M P		LSTR			
			NSTPS 1	NSTOL	LAG 0	AMSKK 0.000	× 0 0 0 • 0	T SK 0.000	STORA 0.	ISPRAT 0			
NORMAL DEP	NORMAL DFPTH CHANNEL ROUTING	ROUTING											
0 •	ON(1) ON(2) 0.0600 0.0400	0 0.0600	ELNV1	ELMAX 1100.0	RLNTH 7300. 0.	SEL 0.00230							
ű	CROSS SECTION COORDINATESSTA	N COORDINATE	ESSTA 91	FLEV.STA	•FLEV•STA•ELEVETC	ن							

CROSS SECTION COORDINATES--STA,FLEV,STA,FLEV--ETC 0.06 1100.00 150.00 1620.00 272.00 1000.00 280.00 992.00 470.00 992.00 478.00 1000.00 525.00 1020.00 1200.00 1100.09

327555.94 257957.72 2601.06 10681.48 1037.47 197654.31 2100.11 9622.17 1631.79 146203.22 1655.01 8615.70 1026.11 103291.42 1265.73 1520.42 927.98 6779.27 68310.28 831250.63 1614.74 636.00 5943.31 40583.07 708234.88 1969.25 19854.78 596807.75 389.77 1003.37 186.41 4438.90 6114.27 997.68 0.00 3779.45 90206 DUTFLOW STAGE STORAGE

J

3157.83

1042.16

_
C108
WHEC 108
256
ž

9101 39#d

1965.78														
EL ROUTING -HOD PULS- REACH 10-11 ISTAO 1COMP 1ECON 11APE JPL1 JPRT INAPE 15 CLOSS AVG 1RES 15ARE 10PT 1PMP 0.0 0.000 0.00 1 1 1 1 0 0 0.000 0.000 0.000 0.000 1 1 1 0 0 0.000 0.00 0.	· •		6114.27 196523.06	1985		40583.07 708234.88			03291.42			157654.31	257957.72 1447868.50	327555.94 16:5272.00
HYDROGRAPH ROUTING EL ROUTING -HOD PULS - REACH 10-11 15740 1106			•											
HYDROGRAPH ROUTING EL ROUTING -MOD PULS - REACH 10-11 15140 1008 CLOSS AVG IRES 15AHE 10-17 11 100-0 0.000 11 1 1 0 0.000 11 1 1 0 0.000 11 1 1 0 0.000 11 1 1 0 0.000 11 1 1 0 0.000 11 1 0 0.000 11 1 0 0.000 12 12 12 12 12 12 12 12 12 12 12 12 12 1			6											
EL ROUTING -HOD PULS- REACH 10-11 1510 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1			~											
EL ROUTING -MOD PULS- REACH 10-11 137			-											•
HYDROGRAPH ROUTING EL ROUTING -MOD PULS- REACH 10-11 15		1022	•											
##PROGRAPH ROUTING HYDROGRAPH ROUTING HYDROGRAPH ROUTING			'n											
EL ROUTING -MOD PULS- REACH 10-11 15740 1COMP 1ECON 1TAPE JPL1 JPR1 INAPE 10 0 0 0 0 1 1 11 1 0 0 0 0 0 0 1 11 1 0 0 0 0	:	•				•	•		•		:			
EL ROUTING -HOD PULS- REACH 10-11 1STAG 1COMP 1ECON 1TAPE JPLT JPRT 1NAPE 11						HYDROGR	APH ROUTI	NG NG						
0.5.5 CLOSS AVG IRES ISAHE IOPT IPMP 0.0 0.000 0.000 1 0.000 1 0 0.000 0		ជំ	IANNEL ROI	JI ING -MC I STAQ 11		REA 1EC	0-11 17APE	JPL1	JPR1		ISTAGE	14010		
NSTPS			0.0	0.00.0	A V G	IRES 1	ISAME 1SAME 1	1001	IP MP		LSTR			
3) ELNVI ELMAX RLNIH SEL 00 980.0 1100.0 4640. 0.00170 1NATESSTA,ELEV.STA,ELEVETC 42.00 988.00 450.00 940.00 625.00 980.00 633.00 988 27.24 323.65 734.91 1213.37 1706.25 66.01 5559.72 6167.83 6790.34 7427.26 15.22 19152.46 46360.55 93772.50 156245.00 23 14.13 943372.88 1162371.25 1272647.00 145*159.00 164 86.52 992.63 998.95 1065.26 1011.58 49.47 1055.79 1062.10 1068.42 1074.74				NSTPS 1	NSTDL 0	LAG 0		× 0 0 0 0	T SK 0 • 0 0 0		ISPRAT 0			
CROSS SECTION COORDINATES——STA,ELEV,STA,ELEV——ETC 0.00 997.00 492.00 988.00 1100.0 940.0 960.00 625.0 980.00 633.00 986 0.00 997.00 492.00 988.00 450.00 940.00 625.0 980.00 633.00 986 0.00 127.24 323.65 734.91 1213.27 1706.25 4386.71 4966.01 5559.72 6167.83 6790.34 7427.26 0.00 5815.22 19152.46 46360.55 93772.50 156245.00 164 960.00 5815.22 19152.46 46360.55 93772.50 1454159.00 164 970.00 986.32 992.63 998.95 1065.76 1074.74 1074.74 2.02 5815.22 19152.47 4055.79 1065.70 1068.42 1074.74	PTH CHAI	NNEL ROUT	1 N G											
CROSS SFCTION COORDINATESSTA,ELEV.STA,ELEVETC 0.00 997.00 442.00 988.00 450.00 980.00 625.00 980.00 633.00 988 675.00 1070.00 1000.20 1100.00 1001.00 1100.00 0.00 127.24 323.65 734.91 1213.27 1706.25 4366.71 4966.01 5559.72 6167.83 6790.34 7427.26 0.00 5815.22 19152.46 46360.55 93772.50 156245.00 234 96.00 986.32 998.95 1065.76 1011.58 1243.16 1049.47 1055.79 1062.10 1068.42 1074.74 2.02 5815.22 19152.46 46360.55 93772.50 156245.00 75		·	~ 0		00.0		SEL 00170							
0.00 127.24 323.65 734.91 1213.27 1706.25 0.00 5815.22 19152.46 46360.55 93772.50 156245.00 21 0.00 5815.22 19152.46 46360.55 93772.50 156245.00 21 0.00 586.52 19152.46 102371.25 1272647.00 1454159.00 164 0.00 986.52 998.95 1062.26 1011.58 1043.16 1049.47 1055.79 1062.10 1062.40 1074.74 20.00 5817.22 19152.47 46360.55 93772.50 156245.00 70	CROSS S 0.01 675.0	FCTION CC 0 997.00 0 1030.00	00RDINATE: 1 442.00	5STA,EL 988.00 1100.00	EV.STA.	ELEVET(980.00		980.00	633.0	988•00				
0.00 5815.22 19152.46 46360.55 93772.50 156245.00 659485.25 795714.13 943372.48 1162371.25 1272647.00 1454159.00 960.00 986.32 998.95 1065.26 1011.58 1943.16 1049.47 1055.79 1062.10 1068.42 1074.74		0.00 0.01	127.24		3.65	734.91	1213	F # # # # # # # # # # # # # # # # # # #	1706.25	22 1 80 7	3.53 8.58	2735.22 8744.31	3271.31	3821.81 1011 E.97
940.00 986.32 992.63 998.95 1005.26 1011.58 1343.16 1049.47 1055.79 1062.10 10f8.42 1074.74 7 3.03 5815.22 19152.47 42560.55 93772.50 156245.00		O-10	5815.22 195714.13	σ.		46360.55 (2371.25	93772 1272647		56245.00 54159.00	23218		320877.13 1850815.00	421862.88 2065951.25	52481C.88 2252305.00
3.03 581F.22 19152.47 42360.55 93772.50 156245.00	-	F.A.OG 43.16	986.32 1049.47		59.	998.95 1062.10	1005 1008	. 26	1011.58	101	1.89	1024-21	1030.53	1036.84
795714.13 947372.KB 1102371.25 1272647.00 1454159.00			5815.22 195114.13	ς.		46360.55 1102371.25	93772.50		156245.00 1454159.00	222181.59 1646885.25		320877-13 1850815-00	421862.88 2015951.25	52481[.88 2252305.00

1002.6 1.544 10001 ~ _ 1110

1007.B S BOVIS MONIETA

1004.6

Š

STATE CIALS

1010.8 MAKINUM STAGE IS HYDROGRAPH ROUTING

.........

IAUTO ISPRAT INAPE STORA ċ JPVP 1 SK 0 • 0 0 0 JPRT 000.0 JP L 1 1001 ROUTING DATA CHANNSEL ROUTING -MOD PULS- REACH 11-12 ISTAO ICOH[®] IECON ITAPE AMSKK 0.000 LAG ? RES A V G NSTOL CL0SS NSTPS 0 • 0 0 • 0

NORMAL DEPTH CHANNEL ROUTING

RLNTH SEL 7900. 0.00250 FLNVT FLMAX 960.0 1060.0 GN(2) GN(3) 0.0400 0.0600 0.000.0 GNCI)

CROSS SECTION COORDINATES--STA*FLEV*STA*FLEV--FTC
0.00 1060.00 150.00 980.00 190.00 970.00 200.00 960.00 375.00 960.00
385.00 970.00 600.00 980.00 700.00 1000.00

258276.97 3026.98 9143.22 1002-10 258270.97 1324775.00 2471.68 996.84 195303.63 195303.63 141991.16 10£1002.25 1946.90 991.58 141991.16 97036.20 934731.88 97038.20 1460-66 7209-47 986.32 1038.95 60661.17 60661.17 815634.25 1006.96 981.05 1033.68 617.75 5967.39 34297.48 703798.50 34.97.48 975.19 1028.42 354.76 5360.4R 16434.64 599332.00 970.53 1023.16 16434.64 599332.00 5164.27 502362.94 5164.27 965.26 1017.89 172.06 4762.98 0.00 0.00 0.00 4174.89 00.036 1012.63 413053.A1 413053.81 FLOW DUTFLOW STAGF

311604.25

14 82161.50

1007.37 1066.00

3596.23 980 f .65 3:1604.25

> 474.4 MAXIMUM STAGE IS

.)

MAYIMUM STAGE IS

980 .R

983.0 985.1 988.8 992.2

MAYIMUP STAGE IS

MAXIMUM STAGE 1S MAXIMUP STAGE IS

MAXIMUM STAGE IS

	•		•		HYDROGR	HYDROGRAPH ROUTING	9 N.C						
		CHANNEL ROUTING ISTA		-MOD PULS- ICOMP	REA JEC	CH 12-13 ON ITAPE 0 0 0	JPLT	JPRT	INAPE	ISTAGE	1AU10 0		
		0.0	000°0	A V G 0 • 0 0	IRES 1	ISAME	1001	O O		LSTR			
			NSTPS 1	NSTDL 0	LAG 0	AMSKK 0.000	× 0 0 0 • 0	1 SK 0 • 0 0 0	STORA 0.	ISPRAT			
HORMAL DEPTH CHANNEL ROUTING	CHANNEL RC	0UTING											
00(1)	0 0.040C	0090.0	ELNVT 948.0	ELMAX 974.0	RLNTH SEL 3800. 0.00320	SEL 00320							
CROS:	10SS SECTION COO 0.00 962,00 863.00 956.00	CROSS SFCTION COORDINATESSTA 0.00 962.00 600.00 960.0 863.00 956.00 900.00 960.0		-SIA,FLEV,SIA,ELEVETC 960.00 672.00 956.00 960.00 1100.00 974.00	ELEVET(956.00 974.00	680•00	948.00	855.00	946.00				
STORAGE	0.00	21.05	٠,	42.43	64.14		86.18 754.93	108.54 875.74	999	131.27 998.88	156.98 1124.36	187-15	221.01
OUTFLOW	31057.53	620.97 39523.02	19 501	1968.71 50121.06	3865.01 62506.30	6236.59 76566.23		9038.73 92228.02	-		16058.63 128167.23	20376.83 148379.34	25146.95 170055.53
STAGE	948.00 961.68	949.37 963.05		950.74 964.42	952.11 965.79		953.47 967.16	954.84 968.53		956.21 965.89	957.58 971.26	958.95 972.63	96 (. 32 974 - 00
FLOW	0.00 31057.53	620.97 39523.02	19	1968.71 0121.06	3865.91 62506.30	6236.59 76566.23		9038.73		12264.50	1605P.63 128167.23	20376.83 148375.34	15145.95 170055.53
HAVIPUP STAGE IS		961.3											
MAXIMUM STAGE IS		4.534								٠			
MAXIPUM STAGF IS		966.0											
MAXIMUM STAGE IS		oth.2											

910.5	972.6	
12	SI.	
STAGE	STAGE	
MAXIMUP	MAXIMUR	

电电子存储性电位 化放射性电压性电子电 中国中国电影技术电影	HYDROGRAPH ROUTING		ITAPE JPLI JPRI INAME ISTAGE IAUTO	0 0 1 0	TING DATA	ISAME 10P1 IPMP LSTR		LAG AMSKK X TSK STOFA ISPRAT	
•	HYDR	D PULS- REAC	1COMP 1ECO		a	GLOSS CLOSS AVG IRES ISAME	00.0	NSTOL LA	
******		ROUTING -HO	ISTAO	1.		S CLOSS	0.0 0.00	NSTPS	
*****		CHANNEL				aros	• 0		

	3300. 0.00180
	3300.
	ELNVT ELMAX 942.0 1000.0
UTING	0990*0
ANNEL RO	0940°0
NORMAL DEPTH CHANNEL ROUTING	00611

				1 , 1 , 2 , 4		TORROR OFFICE AND THE STREET STREET				
STORAGE	0.00 3174.08	41.18 3599.72	226.40	504.62	816.67	1162.55 5372.86	1542.13 5832.80	1939.53	2342.99	2755.51 7258.95
OUTFLOW	0.00 442725.38	1774.60 542709.38	8039.04 651302.50	24715.16 768335.38	51046.B2 893669.88	87121.52 1027191.00	133968.88	196793.34	269469.50 1475991.75	3:1556.31
STAGE	942.00	945.05 975.58	948.11 978.63	951.16 981.68	954.21 984.74	957.26 987.79	960.32	963.37 993.89	966.42 996.95	965.47 1000-00
FLOW	0.00	1778.60 542709.38	8039.04 651302.50	24715.16	51046.82 893669.88	87121.52	133968.88	196793.34	269469.50 1475991.75	3:1556.31

6,43 MAXIMUM STAGE 1S MAXIMUM STAGE 1S

956.2 629.3 957.4 MAYIPUP STAGE IS MAXIMUP STAGE IS MAXIMUP STAGE IS

.)

0.130

MAYIMUM STAGE IS

HYDROGRAPH ROUTING

	_						
	1AU10						
	ISTAGE			LSTR	9	1SPRAT 0	
	INAPE					STORA	
	18 AC	0		IPMP	0	1 SK	
	JPLI	0		1001		× 00 0 • 0	
14-15	ITAPE	0	TING DATA	ISAME	~	AMSKK 0.000	
REACH	IECON	0	ROU	IRES		LAG	
MOD PULS-	ICOMP	-		AVG	2 1 0.00 0.000 0.0	NSTOL	
- DNI LNC	1 ST A 0	\$2		CLOSS	0.00.0	NSTPS	
CHANNEL RI				SS0 10	0.0		

NORMAL DEPTH CHANNEL ROUTING

			40,00			
96.40.0	157.0 IUUO	3000. 0.001/0	0/100			
COCRDINATES	SSTA FELEV	CROSS SECTION COCRDINATES STA, ELEV, STA, ELEV ETC	Ü			
00 170.00	960.00 23	0.00 1000.00 170.00 960.00 2357.00 945.00 2365.00 937.00 2540.00 937.00	2365.00 93	379 2549.00	937.00	
00 2800.00	960.00 29	2548,00 945.00 2800.00 960.00 2900.00 1000.00				
40.72	82.95	5 147.66	325-13	625.70	1045.39	1595.95
4640.39	4664.28	8 5293.28	5927.39	6566.61	7210.94	7860.38
1974.60	6254.13	3 12780.81	24963.97	46599.53	86694.28	130537.27
522832.25	654591.88	8 798580.75	954384438	1121676.25	1300151.50	1489566.25
940.32	943.6	3 946.95	950.26	953.58	956.89	960.21
973.47	916.19			986.74	990.05	993.37
1974.60	6254.13	3 12780.81	24963.97	46599.53	£0694.28	120537.27
522832,25	654591,88	8 798580.75	954389.38	1121676.25	1300151.50	1489566.25

2:8135.81 19:038:00

2(6666,56 1689705,00

966.84 1000.00

962.53 996.68

258135,81

2 (666 £.56 1689705.00

2801.95

2195,40

554.8 956.2 4.126 4.656 MAKIMUP STAGE IS MAYIMUM STAGE IS MAKEMUM STAGE 15 MANIMUM STAGE IS

961.0 MAXIMUM STAGE 15

)

D-28

********* •••••••

1

HYDROGRAPH ROUTING

1 A U T O		
ISTAGE	LSTR	I SPRAT 0
INAME		STORA 0.
3P.R.T.	1 P M P 0	X T X 000.0
JPLT	1001	× 0
15-16 17APE 0	TING DATA ISAME 1	LAG AMSKK
REACH 15con	ROU IRES	LAG
MOD PULS- ICOMP	, AVG	NSTDL
- ISTAG	CL055	NSTPS
CHANNEL RC	ALDSS CLOSS AVG IRES ISAME I 0.0 0.000 0.00 1 1 1	

NORMAL DEPTH CHANNEL ROUTING

SEL 0.00180
3300.
ELMAX 1030.0
ELNVT 931.0
0N(3)
0N(2)
QN(1)

	2631•35 9256•05	317790.88	960.05	317790-88
	2104.95	227653.31 1812760.25	956.42	227653.31 1812760.25
951.00	1607.00 7803.76	151616.84 1582311.00	952.79	151616.84 1582311.00
00.1710.00	1137.51	89873.34 1365991.75	949.16	89873.34 1365991.75
1701.00 940.	696.47 6384.78	42944.45 1164118.75	945.53 981.84	42944.45
*ELEVETC 0 941.00 1	283.90	12199.45 982116.50	941.89	12199.45 982116.50
CROSS SECTION COORDINATESSTA.ELEV.STA.ELEVETC 0.00 1000-00 500.00 940.00 1300.00 941.00 1701.00 940.00 1710.00 951.00 1885.00 931.00 1894.00 940.00 2700.00 980.00	100.29	7574.29 820236.25	938-26 974-58	7574.29 820236.25
COORDINATES- 00 500.00 00 1894.00	4381.30	2378.86 673065.00	934.63	2378.86
05S SECTION 0.00 1000.	0.00	00°8 00°8 80°8	931.00	0 • 0 • 0 • 5 • 6 • 8 • 8 • 8 • 8 • 8
CF.	STORAGE	OUTFLOW	STAGE	F101

422008.06 2315028.00

963.68 1001.00

3186.21

947.9 950.8 9.256 943.9 946.8 949.1 MAXIMUM STAGE IS MAXIMUM STAGE IS MAXIMUM STAGE IS MANIMUM STAGE 15 MAXIMUP STAGE 1S MAXIMUP STAGE IS

HYDROGRAPH ROUTING

.........

)

CHANNEL GOUTTHE -MOD PULT - REACH 16-17

80
2
ü
Ħ
â
_
9
Š
_
•
š

9 0 10 0			
1STAGE 0	LSTR	ISPRAT	•
INAFE		STORA	•
A d. ₽ a	19 14 9 1	3 Y	0.00.0
JPL1		-	X 0 0 0 0
ITAPE	ROUTING DATA	-	AMSKK 0.000
1E CON	ROUT	-	LAG 0
JCOMP	- 3	00.0	NSTOL
ISTAO	11	0.000	NSTPS
		01055	

ROUTING	
CHANNEL	i
DEPTH	
4000	14525

	477.56 617.96	2265.12 19928.33 112126.89 149794.44 19928.33 1502.9,75 848304.50		112		÷						
	928.00 356.65			53206.49	513830.75							
	928.00 1982.00	1834.81	495245.44	30.636	495245.44							
SEL 3180		128.15	11451.623	966.32	1755.623 422880.81							
RLN1H SEL 1700. 0.00180	1. 9	1438-49	9369.77 356600.94	936.21 963.58	9369.77 356600.94							
1 ELMAX .0 980.0	-STA+ELEV+STA+E 940.00 1800.00 940.00 2300.00	38.55	4677.44	933.47	4677.44							
QN(3) ELNVT 0.0450 928.0	CROSS SECTION COORDINATESSTA-10-00 0.00 980.00 1200.00 940.00 1989.00 950.00 940.00	18,98	1476-53	930.74 958.10	1476.53	941.2	945.0	946.5	6.146	950*3	952.5	
QN(2)	ROSS SECTION C. 0.00 980.0	0.00	0.00	928.00	0.00 192981•84							
QN(1)	CROS	STORAGE	OUTFLOW	STAGE	FLOW	MAKIMUP STAGE 1S	MAYIMUP STAGE IS	MAXIMUM STAGE IS	MAXIMUM STAGE 1S	MAXIMUM STAGE IS	HAXIMUP STAGF IS	

******* ********

PEAK FLOW AND STCRAGE (END OF PERTUD) SUMMARY FOR MULTIPLE PLAN-RATIO ECCNOMIC COPPUTATIONS PEAS PER SECEND)
FLOWS IN CURIC FEET PEK SECOND (CURIC MITERS)
AREA IN SQUARE MILES (SQUARE KILOMFIEHS)

J

_
∞,
8
~
J
w
I
*
ی
w
S
•
×

0	OPERATION	v	STATION	AREA	PLAN	RATIG	RATIO 2	RATIOS API	ວ້າ	FLOWS RATIG 5	8ATIO 6
I	HYDROGRAPH	1 A 1	-	79.10	-	27	· 60	. 99	32.48	43109	54137
œ	ROUTED TO		·	79.10	,		21441.	• • •	32162.	42882	53603°
z	HYDROGRAPH	¥ *	~~	71.10		9652.	19304.	24130.		38608. 1093-25)	4826 1366.5
	2 COMPINED	£0	€ ~	150.20	~~	19627.	_	49069.	58882. 1667.36)(98137-
I	HYOROGRAPH	F	m ~	29.50	~	6483.	12966.	16208.	19449.	25932.	32415.
	2 COMBINED	£0	£ ~	179.70	-~	22684.	45368.	56710. 1605.84)(68052. 1927.00)(90735.	113419.
Œ	ROUTED TO		υ ¨	179.70	٦ [~]	21801.	43602.	54503.	65403.	87204.	109006. 3086.69)(
I	HYOROGRAPH	F 4	• ~	100.30	~	16919.	33838. 958.1910	42298. 1197.73) (50757.	67676.	84595.
	2 COMBINED	£0	ິ	280.00 725.191	~~	29655. 839.74)(59310.	74138.	88966.	118621.	148276.
α.	ROUTED TO		UTFLOW	280.00	~~	29621. 838.761(59250.	74054.	88855. 2516.08)(118449.	148018.
Œ	ROUTED TO		, ~	280.00	- ~	29634. 839.14)(59263.	74043.	88826.	118429.	148010.
œ	ROUTFD 10		~ ~	280.00	, ,	29639. 839.29)(59254.	74043.	88850.	118441.	148018.
æ	ROUTED TO		ຄັ	280.00 725.19)	~ ~	29624. 838.85)(59255. 1677-9110	74051.	88840. 2515.6710	118484.	148084.
Œ	ROUTED TO		*	280.00	_	29633. 839.10)(59231. 1677.2310	74131.	88837. 2515.5910	118458.	148161.
æ	ROUTED TO		5	286.00 725.191	~~	29625. 838.88)(59286. 1678.80)(74073.	88934.	118489.	148186.
u z	KOUTED TO		ټ	280.00 725.191	-	29618. 838.70)(59255.	74028.	88977.	118493.	148117.
Œ	ROUTEC TO		,	240.30 725.191	-~	296.18. 838.76)(59245.	74035-	88965. 2519-22)(118572.	148045.
QL.	PCUTEG TC		٤ -	286.CA	-	29121. RIP.7711	1677-5731	74021.	88959. 2519.931(118636. 3359.411(148053.

											TIME OF FAILLRE HOLRS	00.0	00.00	000							
5. 148116. 336 4194.1836	3. 148127. 3)(4194.48)(5. 148164. 1)(4195.53)(3. 148015.	148084.	3. 148042.	7. 147940. 7)(4189.19)(5. 148035. 3)(4191.99)(3. 147976.		0F DAM 03.80 513.	TIME OF MAX OUTFLEW HOURS	51.00 1.00	00.15	51.00	51.00						
118686. 11 3360.80) (118519.	118466.	118429.	118344.	. 118340.)(3351.00)(118367	. 118346. 3351.193	118379.	\$18	10F 0F 1103 231	DURATION OVER TOP HOURS	12.00	00.42	26.00	32.00	+	TIME	52.00	51.00	51.00)))
88869.		88841.	88778.	88758.	88734 2512.68	88768.	88798 2514.47	88841.	SAFETY ANALYSI	11, 1093.70 1093.70 52. 0.	MAXIHUM DO	23.			148018.	AT ION	MAXIMUM	1075.8	1080.5	1084.0	
74084.	2097.471	74066.	74065.	74004.	74037.	74062.	74100.	73943	OF DAM SAF	SP 1.L1				•		STA	MAXIMUM		59263.	88826. 118429.	
59234.	59288. 1678.85)(59293.	59215.	59230.	59194.	59187. 1675.97)(59192.	59324. 1679.88)(SUMMARY	INITIAL VALUE 1093.70 52. 0.	NAXIMUM STORAGE AC-FT	-	156	167	351	PL AN 1					•
29605. 838.32)(29580.	29589. 837.87)(29612.	29606. 838.361(29614.	29567. 837.25)(29555. 836.89)(29608. 838.41)(LTINI	MAXIMUM DEPTH DVFR DAM	1.68	8.82	10.67	17.07		4 0	0.20	0 0 4 4 0 0 0	00 H 0	
_ ~	~ ~	- ~	 ~	~ ~	~~	-~	-	-	,	ELEVATION Storage Outflow	HAXIMUM RESERVOIR VISIEV	1105.48	1112.62	1114.47	1120.87						
280.00	280.00	280.00 725.191	280.00 725.191	280.00	280.00	280.00 725.191	280.00 725.19)	280.00 725.19)			_	0.0			00						
6	01	111	12	13	**	115	16	17		4 4 9 9 9	eć -	ပ်င	. 5	<u>ق</u> (.						
ROUTED TO	ROUTED TO	ROUTED TO	ROUTED TO	ROUTED TO	ROUTED TO	ROUTED TO	ROUTED 10	KOUTED TO	1	PLAN											

52.00	84	11ME HOURS 51.00 51.00 51.00 51.00 52.00	3 114E 114E 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11ME HOURS 52.00 52.00 52.00 52.00 52.00	5 11ME HOURS 52.00	0 ~
1089.7	STATION	MAXIMUM STAGE: FT 1065.7 1069.1 1070.5 1074.1	STATION MAXIMUM STAGE,FT 1052-5 1059-7 1061-5 1061-5	STATION HAXIHUM STAGE-FT 1049-2 1051-0 1055-7 1058-2	STATION MAXIMUM STAGE of T 1057.8 1041.8 1044.6 1044.6 1049.2 STATION STATION STAGE of T	1039.
148010.	AN 2	MAXIMUM FLOW.CFS 29639- 59254- 74043- 88850- 118481- 148018-	AN 1 HAXIMUM FLOW-CFS 29624- 59255- 74051- 88840- 118484- 14868-	LAN 1 MAXIHUM FLOW.CFS 29633. 59231. 74131. 88837. 11848161.	PLAN 1 PLOW.CFS 29625. 59286. 74073. 88934. 1188186. 148186. PLAN 1 PANTHUM FLUW.CFS 29618.	9255
1.00	1	A A A D D D D D D D D D D D D D D D D D	PL 0.20 0.20 0.40 0.50 0.50 0.50	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

525 525 525 525 535 535 535 535 535 535	12 HE HOURS 52 00 00 00 00 00 00 00 00 00 00 00 00 00	11ME 11ME 52.00 52.00 52.00 52.00	7 TIME HOURS 52.00	1 TIME HOURS 53.00 52.00 52.00 52.00 52.00
1041.5 1043.0 1045.9	A110N MAXIMUM STAGE+FT 1036-6 1036-6 1036-1 1040-6	STATION MAXIMUM STAGE*FT 1027*1 1028*4 1028*4 1033*5	STAFION MAXIMUM STAGE-FT 1021-3 1025-2 1026-6 1028-1 1030-3	STATION 10 MAXIMUM STAGE+FT 1012-9 1012-7 1015-7 1015-1 1020-4 1020-4 1020-3
74028* 88977* 118493* 149117*	AN 1 HAYIMUM FLOW-CFS 29618- 59245- 74035- 88965- 118572- 14045-	PLAN 1 MAXIMUM FLOW-CFS 29243- 59243- 74021- 88959- 118636-	MAXIMUM FLON•CFS 29605- 59234- 74384- 88869- 118666- 14816-	LAN 1 MAXIMUM FLOW, CF S 29580. 59288. 79580. 118519. 118519. 148127.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PL. 0.20 0.40 0.50 0.60 0.60	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

D-34

_ .

HDURS 53.40 52.00 52.00 52.00 52.00	11ME HOURS 53.00 53.00 53.00 52.00 52.00	4 HOURS HOUR	11ME HOURS 53.00 53.00 53.00 53.00 11ME HOURS 53.00	3.0
STAGE.FT 1000-7 1000-7 1002-6 1004-6 1007-8	1A110N MAXIMUM STAGE, FT 974.4 980.8 983.0 985.1 988.8	TATION MAXIMUM STAGE.67 961.3 966.9 966.9 970.5	MAXIN MAXIN 956 956 956 957 957 958 968 968 968 968 968 968 968 96	57.
FLOW.CFS 29589. 59293. 74066. IRB446. IA466.	AN 1 MAXIMUM FLOW-CFS 296.12- 59215- 74065- 188778- 118429-	AN 3 MAXIMUM FLOW-CFS 29606- 59230- 7404- 118344- 118084-	AN 1 MAXIMUM FLOW-CFS 29514- 59194- 74037- 8A737- 8A737- 118340- 148042- 148042- 148042- 148042- 148042- 148042- 179061-	8768 8367 7940
A A A A A A A A A A A A A A A A A A A	PL10 0.40 0.50 0.50 0.50 0.50	PL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RA110 0.20 0.40 0.40 0.60 0.60 1.00 1.00 0.20 0.20 0.20	

D-35

11

4146 54.00 53.00 53.00 53.00 53.00

MAXIMUH STACE «FT 943.9 946.8 947.9 950.8

MAX1HUM FLOW.CFS 29555. 59192. 74100. 88798. 118346.

STATION

PLAN 1

•			- •
		:	28 :
		•	C-1) 1978 79
			# > £ *
•	•	•	E GE
		:	A G E 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		:	¥ .
		•	A Z Z
			SI S
			ER :
•		:	ROG Y V DIF
		:	E TO
		•	E E
		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	FLOOD HYDROGRAPH PACKAGE (HEC-1) DAM SAFETY VERSION JULY 1971 LAST MODIFICATION 26 FEB 79
		:	P A C
		Ä	

	TIME	HOUR S	3.0	53.00		3.0		3.0	
17									
STAT 10N	IMC	4	4	45.	46.	47.	950.3	52.	
PLAN 1	MAXIMUM	FLOWACFS	•	9324	394	88	83	97	
1		RA110	5	•	0.50	9	8	1.00	

D-36

;

DE SINGLE SINGLE SAME DATE SINGLE SUBJECT PART 704 - Hudrica Sub-Sheet NO. /

OWNER PROJECT NAME Dam Injusting (20166-00,10)

Dan 704 - Hydroleau

The dicting one for Spannville Dan was subdivided into 4 smiller dictinage and as shown. JOHNSON BURG ARCADE SAROWIA B-155 SPRINGUILLE 3 ASFURD WEST YALLEY DELEVAN FREEDOM

Summany of Reserved Data

			\/					
Sub Hier Resch	Drainage Arre (ni2)	MILES	Lea MILES	emp Rainteill	REACH LENGIA	1. pt	rivitance.	(Je) (
1	79.1 ("	16.17	9.47	22.2]		
1. to B	71.1	15.78	10.26	22.2	23000	.0059	0.74	2.2
3	29.5	7.30	2.56	22.2				
Bto C	15.0.3 280.0 v	13.81	4.73 D-37 —	22.2	7/,600	1027	2.35	5.2

____xUD > 1/2/2 N/1 30

BY	3:54	DATE	5	1/2/0	<u>/</u> ER	DMAN	, ANT	HONY,	ASSOCIAT	res	SHEET	_2_	OF	<u> </u>	
.D	R.R.	DATE	5	1211	8/SUBJECT) cm	754	- Hadie	lear	SUB-SI	HEET NO.	2			
					PROJECT				ي. بيترين		-cc.10)				

Federates:

(1) "Sertice Water Records of New York - 1963" U.S. Cont. of It-in,
Geological Screen - Mark. Records Oblishen., p. 200.

(2) "Sertice Water Records of New York - 1964" U.S. Dept. of India,
Geological Screen - Water Resources Division., p. 344.

Rotina	dram in the state
Constant roof remains a 3 F	1
Rufe D' to print (A) II	12
Tompke mark his in the D	2
Total (R) and Contain power And the	17.2
Contracting to any of the 3	3
Cast : (1R+Z) and -(3)	123
Paute 18-2-3 to dom	173R
Carried to do a to the	4
100 Burk (A) (200 Burk (400 B)	12342

DAM # 704 SPEINGVILLE DAM SUR-SELT. # 1, # 2, # 3 & #4

DILAMAGE DISTANCE SCALE 1"= 250,000"

SUB-AREA #1 1101 MEAC. DIST X COEF = L. DISTANCE LENGTH 4.1" x 259000 = 1,025,000" = 85,417 ft LCA DISTANCE JEHTRIOD x 255,000 = 600,000 = 50,000 ft DISTANCE = 2.4" SUB- AREA # 2 ₹2.2 L. DISTANCE Lehgen = x 250,000 = 10000000'' = 83333 ft 4.0 JE HEROID حد کا DISTANCE : 2.6 × 250,000 = 650,000 = 54167 ft SUR AREA # 3 Nº 3 L - DISTANCE LENGTH =

LENGTH = 1.55 × 250,000 = 1.52,500" = 38542 ft

LENGTH = 1.65 × 250,000 = 1.62,500 = 1.3542 ft

LENGTH = 0.65 × 250,000 = 1.62,500 = 1.3542 ft

SUB-AREA #A

L-DISTANCE

LENSTH = 3.5 × 250,000 = 375,000 " = 77917 ft

CENTROID

C.STANCE : 1.2 × 250,000 = 300,000 " = 25000 ft

Y B.R. DATE 5/15/31 ERDMAN, ANTHONY, ASSOCIATES SHEET 4 OF 24

KD KPH DATE 5/20/81 SUBJECT THE TOLD SUB-SHEET NO. 4

OWNER PROJECT NAME DAM WERE TIRLY BOUGHT - CO. 10

SUC- AREA NO. 1

DETERMINATION OF SNYDER'S LAG TIME

$$\frac{T_{p} = c_{+} (L_{e}L_{ca})^{0.3}}{T_{r} = \frac{T_{p}}{5.5}}, \qquad c_{+} = 2.00$$

$$c_{+} = 0.63$$

$$T_{pR} = T_p + 0.25 (T_R - T_r)$$

$$L = 85,417'/ = \frac{85,417'}{5280} = 16.18$$
 MILES /

$$L_{ca} = 50,000 / = \frac{50000'}{5280} = 9.47$$
 illes

$$\tau_{\rho} = 2 (L_{e} \times L_{ea})^{0.3} = 9.05 \text{ hrs.} V$$

$$T_r = \frac{9.05}{5.5} = 1.65 \text{ Ms.} T_R = 1.75 \text{ Ms.}$$

THE PROJECT NAME THAT INSPECTION BOLGE-02.0

JUE - AREA NO.2

DETERMINATION OF SNYDER'S LAG TIME

$$L = \frac{10000000}{5280x12} = \frac{15.78}{5280x12} = 15.78 \quad \text{MILES} V$$

$$L_{2a} = \frac{650,000}{5280x12} = \frac{650.000}{5280x12} = 10.26 \quad \text{MILES} V$$

$$T_{P} = \frac{2}{5.5} \left(\frac{1}{1.67} + \frac{9.20}{5.5} \right) = \frac{9.20}{5.5} \quad \text{MIS} V$$

$$T_{PR} = \frac{9.20}{5.5} = 1.67 \quad \text{MIS} V \implies T_{R} = \frac{1}{1.67} + \frac{1}{1.67} = \frac{9.03}{5.5} = \frac{1}{1.67} + \frac{1}{1.67} = \frac{9.03}{5.5} = \frac{1}{1.67} + \frac{1}{1.67} = \frac{$$

SUB - AREA NO.3

DETERMINATION OF SNYDER'S LAG TIME

$$L_{e} = 462,500'' = \frac{462.500}{5280 \times 12} = 7.30 \quad \text{Milles} \quad V$$

$$L_{ea} = 162,500'' = \frac{162500}{5280 \times 12} = 2.56 \quad \text{Milles} \quad V$$

$$T_{p} = 2 \left(L_{e} \times L_{ea} \right)^{0.3} = 4.81 \quad \text{M/s} \quad V$$

$$T_{r} = \frac{4.81}{5.5} = 0.86 \quad \text{M/s} \quad \rightarrow \quad T_{g} = 1 \quad \text{Mrs} \quad V$$

$$T_{p} = 4.81 + 0.25 \left(1 - 0.86' \right) = 4.33 \quad \text{Mrs} \quad V$$

CD TATE DATE 5/3/A SUBJECT OF 11 104 HYDN'OLD! SUB-SHEET NO. 7

OWNER PROJECT NAME DAIN INSTEAT OF BOLGGOOD!

SUL- AREA NO. 4

DETERMINATION OF SHYDER'S LAK TIME

$$L = 575,000' = \frac{£75,000}{5280 \times 12} = 13.£1 \text{ MILESV}$$

$$L_{2a} = 300,000'' = \frac{300,000}{5280 \times 12} = 4.73 \text{ MILESV}$$

$$T_{p} = 2(L \times L_{2a})^{0.3} = 7.01 \text{ hrsv}$$

$$T_{r} = \frac{7.01}{5.5} = 1.27 \text{ hrs.} \longrightarrow T_{r} = / \text{ hrs.} \longrightarrow$$

$$T_{pr} = 7.01 + 0.25(1-1.27) = 6.74 \text{ hrs.} \longrightarrow$$

DATE CITS SI ERDMAN, ANTHONY, ASSOCIATES SHEET 8 OF 24

ID P. K. DATE 5/18/81 SUBJECT CAM 704 HYDLOLOGY SUB-SHEET NO. 8

OWNER PROJECT NAME DAM DEPLECTION SOIGE-00:10

CARINGVILLE DAM - MUSKINGUM METHOD ROUTING & CLOPE

DEF. QUAD MARE ARCADE, SALDIHIA & ASHFORD HOLLOW SCALE HORIZ. 1"= 2000"

C'OR-SELTION Nº 2 CATTARAUGUS CREEK

LENCH LENGTH

LEMMA 1 = 11.6 $\frac{2 = 11.4}{2.000}$ Ava. $\frac{2.000}{2.000}$

ELL PE

START OF REACH CONTOUR 1250

END OF REACH CONTOUR 1250

135 # + 22,000 #= 0.0059

SUR. SECTION Nº4 LATTARAUGUE CIEEK

REACH LEASTH

NEKELEHAM # 1= 35.8 2= 35.8 71.6 = 2= 35.8 x 2000 ft= 71,6 00. ft.

CLOPE

ETALL OF REACH SURVER 1260

END AT VAM 1065

195 - 716 00 ft = 0.0027

MUSKINGIM ROUTING

DETERMINATION OF K

ASSUME RECTANGULAR CROSS SECTION

$$R = y$$

$$G = \frac{1.49}{M} AR^{2/3} S_0^{1/2}$$

$$G = \frac{1.49}{\eta} Byy^{2/3} S_{5}^{1/2} = \frac{1.49}{\eta} By^{5/3} S_{5}^{1/2}$$

SOLVE EG. () FOR Y:
$$y = \left[\frac{\eta Q}{1.49 \text{ Sp}^{1/2} B}\right]^{3/5}$$

$$A = yB$$

$$V = \frac{Q}{A}$$

$$k=T=\frac{L}{V}$$

$$y = \left[\frac{n Q}{1.49 \, \text{s}^{1/2} \, \text{B}} \right]$$

$$V = \frac{1}{A}$$

$$k = T = \frac{L}{V}$$

$$Y = \left[\frac{M R}{1.49 \text{ s}^{1/2} R}\right]$$

$$Note: k \cong Travel time$$

BY B.R. DATE 5/12/81 ERDMAN, ANTHONY, ASSOCIATES SHEET 10 OF 27

10 YRA DATE 5/28/81 SUBJECT DISH 704 HYDROLOGY SUB-SHEET NO. 10

UNDER PROJECT NAME DAM INSPECTION 80146-00:10

REACH A-B

 $K = 0.146 LB^{\frac{2}{5}} - \frac{2}{5} = 0.3$ $G \cong 1.5 \times 79.1 \times 640 = 75936 \text{ STSV}$ ASSUME AN AVEKAGE OF 700' FOR B L = 23000', L = 0.0059 $K = 0.146 \times 23000' \times 900^{\frac{2}{5}} \times 75930 \times 5.0059$

K = 2656.7 SEC. = 0.74 his.

REACH B-C

 $A = 79.1 + 71.1 + 29.5 = 179.70 \text{ Mi/e}^{2} = 115008. \text{ ac.}$ $Q = 1.5 \times 115008 = 172512 \text{ efs.}$ $A = 71600 / , \quad S_{0} = 0.0027 / \text{ issume in AVENHAE of 1200' FOK B.}$ $K = 0.146 \times 71600 \times 1200^{\frac{2}{5}} \times 172512^{\frac{-2}{5}} \times c.cc27^{\frac{-3}{5}} = 8448.93.$ K = 2.35 hrs.

BY S.K. DATE 5/28/01 ERDMAN, ANTHONY, ASSOCIATES SHEET 11 OF 24

ID TIPA DATE 5/28/01 SUBJECT 22 AND HYDRAFIGUE SUB-SHEET NO. 11

OWNER PROJECT NAME TAKE SPECIAL FOIGH-CC-10

MUSKINGUM ROUTING

CHECK THE VALUE OF K

TEACH AS

where
$$z = \frac{K}{2}$$
 \Rightarrow $\Delta t = \frac{0.74}{2} = .37$ i.e. $x = 0.2$

$$\frac{\Delta T}{2(1-x)} \left(K \left(\frac{\Delta T}{2x} \right) \right)$$

$$\frac{.37}{2(1-0.2)}$$
 < 0.74 < $\frac{.37}{2.0.2}$

MATH BC

ASSUME LT =
$$\frac{K}{3}$$
 $2.35 = 0.79 \text{ hV.}$
 1.79 hV.

BY F	DATE	-1',	ERDMAN	, ANTHO	NY, ASSOCIAT	ES SHEET	12 OF 27
(D - /)	DATE	14	SUBJECT		121112	SUB-SHEET NO.	<u> </u>
OWNER		- <i>-</i>	PROJECT NAME		are de d	1016.	:110

OVERFLOW EPILLWAY HYDRAILIES

AST. OFEN CHANNEL FLOW BY HENDERSON HAZE 130

9=3.97 H PER UNIT WIDTH.

AUC MATIONS .

- ARE PLUGGED WITH BURRS.
- 2) POWER PLANT'S INTAKE EMANNELS ARE ELOCED DURING FLOODING EVENTS

SHEET 13 OF 24 ERDMAN, ANTHONY, ASSOCIATES SUB-SHEET NO. 2 OWNER PROJECT NAME 432.5-----182 + 21.5 > ELEV. 1109.7 - ELEV. 1103.8 LEN. 1105.6 - ELEN. 1110. 69.5 OF LEVEL BROUND. ELE. 1106.10 - ELEV. 1195.6 -- ELEPE = 0.67 __ ELE. 1110.6 PLAN VIEW 9 = 2.97 H - - voit midter $G = 3.97 \, \text{H}^{3/2} \times 182^{'}$ $Q = 722.54 \, H^{3/2}$

BY	11	DATE	4-1-17:4	ERDMAN	, ANTH	ONY, ASSOCIAT	ES SHEET	14	OF 24
KD	1 1	DATE	1/2/2	SUBJECT SAM	70:	HYDRAULICS	SUB-SHEET NO.	3	
	CD			DOO ISCT NAME		11.7 - 2 - 2 - 2 - 2 - 1	7	011.4	00.10

1 1. 5-EV. 118 = 1093.7 FILE 3-10-D CHEETS 2 OF 25 & 9 0F 25

	ELEVATION STORAGE	ANEA MELATIONSHIP
	ELEVATION	RESERLOIR SURFICE
	1090.7	13 Ac.
···· ,	1093.7	22 A.S.
(TO - O- DRIA)	1097-7	42 A.S.
	1100	47 itc
1	1120	285 A2
!		

84	DATE	. 1 · 1 · 1 · 1	RDMAN,	ANTH	ONY, ASSOCIAT	ES SHEET	15 OF 24
CF (DATE	n/ · SUBJEC	T ングパ	121	H/Dr 2 10 165	SUB-SHEET NO.	4
OWNER		PROJEC	T NAME		10 3 PER 4 10 V	20165 -	00.10

TEFE . FILE 3-10-D SHEETS 2, 5, 9 OF 25 3) USGS. CONTOUR MAYS

		DISCHARGE ELEVATION RELATIONS IN $C = 722.54 \text{ H}^{1.5}$						
	ELEVATION	月份	Q (Efs)	STL KIRGE AREA				
- 2 3 4 5 7 7 7 7 7	1093.7 1097.7 1097.7 1002.8 1102.1	0 5 3 4 0 3 3 10 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 11 11 11 11 11 11 11 11 11 11 11	0 1071 4331 5780 11425 17277 23192 29661 31550 36639	22 AC 28 AC AC AC AC	3			
10 11 12 13 14 15 16 17 8 19 19 19	11 20 11 22 11 23 • 7	14.5 16.9 19.3 21.3 26.3 28.3	39899 39899 50199 61263 71026 108725 108725 1120526	285 AC				
INITIAL ETERRISE AREA, OIL YI-T COLD ELEY. 1093.7 STOURISE ANEA = 22								

Dam overtapping Data is contained on the arc. tV rands and contapping begins at elevation 1103.8.

Epungyille CAM

REFF. DOLL MAP - JOLLING CENTER N.Y. ASHFORD HOLLOW N.Y.

CAN IN THEY ART @ LORDH POTE 1 Sheet 2 825

FOR DAM ELEVATIONS SEE NOTE: FILE 3-10-D SHEEF 90=25

LUIST ELEVATION 1155 = 1009/66 of the 1592 pam. 1007.36

SO IF 118.0 = 105/66 than 132.0 = 1102.66 \$ 93.7 = 1066/32

1093.67

1,02,54 | 100,000 = 1000°

REACH Z LENGTH = 1000

JEOS: SECT. 666 1059 1049 - 1349 1059 1060, 1053 1100 V

SLOPE: RE. 1 MV. - RE. 7 MV. = h + L = SLOPE 1055 - 1049 = 6 + 1000 = 0,006

eross sect. 1060 1060 1059 1049 1049 1059 1060 1166 0 900 1000 1010 1210 1220 1300 1765

JOHTHUER ON CHEET 2

CHEINSVILLE DAM

KTILLA 2 LEHATA = 5100'

CHAM: RE, RIMY-RESIGN = h ; L = 543PE

1049 - 1035 = 12 + 5100 = 5,002

W. ACH A LEHRING STRO

Clare Gran. 1000 1010 1010 1020 1020 1038 1040 1048

Clare: Le Einv. - De Langu = N : L = Slore

1025 - 1021 - 101125 = 0.0022.

19talb & Leverte = 4000'

20000 Cost. 1027 1031 1070 1020 1040 1040 1040

Share: Re. 2 (NV. - Re. 5 (NV. = 10 + L = 60000

1022 - 1025 = 7 ; 4200' = 5.0017

LTACK 3 1003971 - 2300' 1025 359LUMBS CHOP 1130 1086 1040 1017 1019 1025 1040 0 175 260 365 540 545 1150

ELDIN: 120. E107. - 120. 3 107 - 10 ÷ L = 5150E

1025 - 1019 = 6 + 3800 = 6,00.5

Lower work on the it 3

. ۲	<u> </u>	DATE A E 3	ERDMAN, ANTHONY, ASSOCIATION	TES SHEET	18 OF 24	
1/2		DATE	SUBJECT 1 10 704 - 20 THIS	SUB-SHEET NO.	_3	
	NCO		PROJECT NAME 15 N. / 15	1:m: 1.1	3: 3:33.13	

CHILLIANILE LAND KERCH 7 LENGTH = 700/ 1073 574 1023 1017 1017 1063 1040 1068 600 590 755 761 1200 1000 1023 (L. MET CE. 4 MAY. - DE. 7 MAY = 1 + 1 = CLOPE 10 11 - 1017 = 1 + 000 - 3.2000 1018 FEACH & LENGTH = 1000 688 1018 1018 1015 1015 1020 0 507 510 685 1975 1040 KINDS RETTIAL - LESSING DE LE CLOPE 1017 - 1015 = 2+1000=0.002 HENDER O LENGEL = 700 1012 1012 110 11012 C. Nort Co 31471- Ke. 9 0 1014 -1012 2.0024 PLACE 10 1-4474 - 1200 1 322 July 1015 1313 1313 570 950 1900 (15P% Z. PINV. - PE. 10 mV. TEN + LICESIE 1013-1010 = 3×1200 = 0.00 a.f

DATE 2 2 **ERDMAN, ANTHONY, ASSOCIATES** DIR. DATE W/// SUBJECT CAM TO A LOUTING SUB-SHEET NO. PROJECT NAME TELL 2. 19 DAM LASPECTION OWNER

> C'HEINSYILLE CLM 2700

FRENCH FLENGER - DOOL 1013

 $\frac{342}{500} = \frac{1155}{500} = \frac{1525}{510} = \frac{1004}{350} = \frac{1534}{525} = \frac{1017}{532} = \frac{1020}{1400} = \frac{1100}{1300}$

-32: 12 1014V - 15. 11MV = 1 + L = CLOPE 1015 - 1000 = 6:2700 = 5.00=2

LEADY IN LENGTH = 7600'

Just to the how - he to go = h + L = CLOPE - 100° - 44° = 17 +7300' = 0.00002

Mark 18 18 4340

21 DEC CRIE 277 988 430 950 1300 1100 1100 1100

CLOPE & The Minor - 100, 12 my = h + L = SLOTE 992 - 986 = 6:4840= 3.3017

12

KUAZH 14 10 37H = 7/00' 375 375

1000 150 1000 950 960 960 950 1000

C'MSPIC: RE. 12 14V. - DE. 14 14V. - h + L: CLOPE 980 - 965 = 25; 735= 0.0015 - COLLINGVILLE LAM

13

15 SEH 15 LENGTH = 3800

11:000 CHOTH = 00-- 863 21:000 CHOTH 962 963 677 415 943 250 974 0 500 650 655 1900 1100

CLOPE: LE. 14 HV. - - " CHY. = h + L = SLOPE 965 - 145 = 12' + 3300 = 0.5032

. . таки об свнати = 3300°

 $\frac{1029}{846} = \frac{946}{846} = \frac{946}{350} = \frac{942}{1025} = \frac{946}{1025} = \frac{946}$

746

ELDOT: RE. 15 INV. - RE. 16 INV = h : L - SLOPE 948 - 942 = 61 : 946 = 0.0063 15

LEACH IT LENGTH = 2000

CESSE SECT. 1000 960 945 137 137 945 960 1000 0 170 2312 2350 2550 2556 2800 2900

SLOVE: RE. 16 INV. - RE. 17 INV. = h : L = SLOPE

942 - 937 = 5' + 2001 = 6.5017

REACH y'S LENGTH = 3,300

10355 SELF. 1000 940 941 940 731 931 940 950 0 500 1300 1701 1710 1885 1394 2700

SLAPE: RE, 17 MV. - RE, 13 MV. = 17 : L= SLAPE 427 - 931 = 6 - 3300 = 5.0018 RY D. T. DATE 13 31 ERDMAN, ANTHONY, ASSOCIATES SHEET Z1 OF Z4

CD LK DATE 6/4/1/ SUBJECT LANITS FOOTING SUB-SHEET NO. 6

OWNER PROJECT NAME 182-1 DR DAM 12 PROJECT ON 16

SPRINGVILLE DAM

17 REACH 19 LENSTH = 1700

JEDSC SECT. 980 940 935 928 928 935 940 73.

ELSPE. LE. 1314V. - BE. 1914V = h = L= SLSPE 931 - 928 = 3 + 1700 = 0.00 | 8

ERDMAN, ANTHONY, ASSOCIATES

KD YPH DATE 6/23/81 SUBJECT DAM 704 DEXINCTERM COSTS SETTINGSUB-SHEET NO. 3

UWNER PROJECT NAME DEM INSPECTICS (0166-00-10)

SECTIONS 13 \$ 14

1

CHECK LIST FOR DAMS HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

(DAM NY 704)

AREA-CAPACITY DATA: .

		Elevation (ft.)	Surface Area (acres)	Storage Capacity (acre-ft.)
1)	Top of Dam (west core wall)	1106.1	92_	1170
2)	Design High Water (Max. Design Pool)	1106.7		1230
3)	Auxiliary Spillway Crest	1103.8	· 	840
4)	Pool Level with Flashboards	1096.5		140
5)	Service Spillway	1093.7	22	52

				_
-		A TT	RGE	·e
	131.	п м	IN I O E	

	DISCHARGES	volume (cfs)
••	Average Daily	unknown
1)	Spillway @ Maximum High Water (Top of West Core Wall)	31,550
		33,867
	Spillway @ Design High Water	23,192
4)	Spillway @ Auxiliary Spillway Crest Elevation	•
	Low Level Outlet (powerhouse - not operational during	33 405
	Total (of all facilities) @ Maximum High Water	32,000
7)	Maximum Known Flood (reservoir elev. = 1100.7)	14,251
	At Time of Inspection (reservoir elev. = 1093.7)	

CREST: (West core wall)	ELEVATION:
Type: broad crested : earth	embankment of core wall
	Length 69.5 ft.
Spillover <u>Service spillway</u>	
Location west end of dam	
SPILLWAY:	
SERVICE	AUXILIARY (Past core well +
	n 1/05.6 17.8 opening in core wall
Ungated Ogel Crest Type	broad crested
	//8.5 ft.
Type of Contr	01
Uncontrolle	
Controlled	:
. Туре	Flashboards @ elev. 1103.8
(Flashboards; ga	te)
Number	
Size/Length	
Invert Materia	1
Anticipated Len of operating ser	gth vice
N/A Chute Length	
Vertical Upstream Height Between Spil	lway Crest5ft.
face of dam & Approach Channe (Weir Flow	

HINKOMETEROLOGICAL GAG	
Туре :	None
Location:	•
Records:	
Date	
Max. Reading	g
FLOOD WATER CONTROL SY	YSTEM:
Warning System:	None
Method of Controll	led Releases (mechanisms):
	None at high flows. At low flows
power house	intake controls reservoir elevation.

33-15-4(9/80)

AlìAGE AREA:		Sq. mi.		······································	
AINAGE BASIN	RUNOFF CHARACTERIST	rics:		•	•
Land Use -	Type: minor de	rvelopment, w	oods an	d paster	·ይፓ .
	ellef: rolling				
Surface - S	oii: glacial	till over s	hallow	bedrack	
	ntial (existing or		alterati		
-	None				
					
	About 5 H.	em areas (natura) . of sedimenta			
_/16	reservoir.			· ·	
	ackwater problem anding surcharge stor		: maximum	storage ca	pacity
	None				
					·
	<u> </u>				
	odwalls (overflow & voir perimeter:	inon-overflow) -	- Low reac	hes along	the
Locat	ion: None	·			
Eleva	tion:				
Reservoir:				•	
	•			-	
Lengt	h @ Maximum Pool _	±2.4		-	(Miles)

APPENDIX E

REFERENCES

APPENDIX E

REFERENCES

- 1) U.S. Department of Commerce, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, May, 1961.
- 2) F.M. Henderson, Open Channel Flow, Macmillian Publishing Co., Inc., 1966.
- 3) H.W. King and E.F. Brater, <u>Handbook of Hydraulics</u>, 5th Edition, McGraw-Hill, 1963.
- 4) T. W. Lambe and R.V. Whitman, <u>Soil Mechanics</u>, John Wiley and Sons, 1969.
- 5) W.D. Thornbury, <u>Principles of Geomorphology</u>, John Wiley and Sons, 1969.
- 6) University of the State of New York, Geology of New York, Education Leaflet 20, Reprinted 1973.
- 7) Cornell University Agriculture Experiment Station (compiled by M.G. Cline and R.L. Marshall), General Soil Map of New York State and Soils of New York Landscapes, Information Bulletin 119, 1977.
- 8) U.S. Department of Commerce, Hydrometeorological Report No. 33, Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas From 10 to 1000 Square Miles and Durations of 6, 12, 24, and 48 hours, April 1956.
- 9) U.S. Department of the Army, Engineering Manual 1110-2-1411, Standard Project Flood Determinations, March 1952.
- 10) U.S. Army Corps of Engineers, The Hydrologic Engineering Center, Flood Hydrograph Package (HEC-1) Users Manual for Dam Safety Investigations, September, 1978.

APPENDIX F

PREVIOUS INSPECTION REPORTS/
AVAILABLE DOCUMENTS

FEDERAL ENERGY REGULATORY COMMISSION

MAR 2 7 1980

New York Regional Office
26 FEDERAL PLAZA
New York, New York 10007

March 21, 1980

L. ERIE 565

Mr. George Koch
Supervisor, Dam Safety Section
N.Y. State Department of
Environmental Conservation
50 Wolf Road
Albany, N.Y. 12233

19A 565 NY 745 704

Re: The Village of Springville, NY
Dam and Hydro Works - LP No. 2802

Dear Mr. Koch:

We wish to advise that the referenced application for FERC minor license has been dismissed by order of the Commission dated November 30, 1979. The application was dismissed for lack of jurisdiction.

The Springville Project consists of a concrete dam approximately 25-feet high, a reservoir containing minimal storage, conduits, flume, a brick powerhouse containing two units with a total capacity of 500 kw and appurtenant facilities.

As the FERC no longer has jurisdiction at this facility, this matter is referred to your office for appropriate considerations.

: Sincerely,

James D. Hebson Regional Engineer

James D. Hebson

-				1		 		
)am Number	River Basin	Town	County	Hazard Class	Date & Inspector		
	565	LK.ERIZ	CARCERD	ERIC	<u> </u>	Elistry		
	Stream = CATTARAUGUS CREEK Owner = Village of Spingville							
	Type of (Construction			Use			
	Earth w	Concrete Spillwa	У		☐ Water Supply			
	Earth w	Drop Inlet Pipe			Power Village	Para 5-pply		
1	Earth w	Stone or Riprap	Spillway		-	High Density		
4	☑ Concrete				Fish and Wil	dlife		
	Stone				Farm Pond			
1	☐ Timber				No Apparent	Use-Abandoned		
]	Other _				☐ Flood Contro	I		
	420 1	kiefi.	eres atspille	i az	Other			
E	timated Impor	R.e F7. 22 A undment Size 42 A	Acres##	Estimated H	eight of Dam abov	e Streambed <u>30</u> Ft.		
			Condit	ion of Spill	way Penskik H	pena plat		
	-X Service	satisfactory		P	🕇 Auxiliary sati	sfactory		
	☐ In need	of repair or mai	ntenance		In need of rep	air or maintenance		
	Explain:			· · · · · ·				
		Co	ndition of	Non-Overflo	w Section	•		
	Satisface Satisfa	ctory			In need of repair	or maintenance		
	Explain:							
		2 ., <u>C</u> c	ndition of	Mechanical	Equipment			
	X Satisfac	ctory			In need of repair	or maintenance		
	Explain:							
	Si	ltation	☐ High.		Low			
	Explain:			_				
	Remarks:	C. HAZ	Bride	500' douns	see.			
			and lane	n Flad	0/4 1-3 pm	les davestrem		
			7.00-00	11. 1000				
	•			<u> </u>				
		Ev	valuation (From Visual	Inspection)			
	Repair					eyond normal maint.		

EDWARDS AND MONCREIFF, P. C.

ENGINEERS AND SURVEYORS

Lee B. Edwards, P. E. & L. S.
ILLEN D. MONCREIFF, JR., P. E.
I IANK J. JANER, P. E.
ROGER C. BURGESON, P. E.

482 S. CASCADE DRIVE ROUTE 219 SPRINGVILLE, N. Y. 14141 716 599-2851

April 8, 1977

565 Ene

Mr. Stanfield Zoccollo, P.E. N.Y.S. Department of Environmental Conservation Room 414 50 Wolf Road Albany, New York 12233

1)

RE: Village of Springville
Dam on Cattaraugus Creek

Dear Mr. Zoccollo:

We appreciate your efforts earlier this year in researching the files relative to the Springville Dam. We have now put together a set of prints consisting of 25 sheets some of which we obtained from you and some from other sources. We are transmitting herewith one set of prints to you for your records. These should provide a much more legible and more complete record for your office.

Again we appreciate your past efforts and hope these prints will be of some value.

Very truly yours, EDWARDS & MONCREIFF, P.C.

Lee S. Edwards, P.E. President

LSE/dss
Enc.
cc: Gail Dayton

Sepherber:22, 1921.

VI. 7. J. CEGT. VIllage Clerk. Egring Ville, N. I.

Denr Sir:

We have received from Village ongineer.

He La Botsford drawing \$6 rhich has ocen substituted for sheet \$5. showing the reinforced concrete forebet in Dor \$565 Ele Watershed near Springville.

The rovised plen is approved in so lar as the matter involved the jurisdiction conferred upon this office by Seation 22 of the Conservation

Chreful inspection of the vork should be made, for the reason that the safety of the forecast demends largely on fool sortmanship. The ateal should be placed to form hears where concentrated loadings occur, especially above and be low the gates of the west wall. All of the walls should be well tied together either by dending the reinforcement of by placing additional short steel grands at the corners of the would recommend also that enother law square bar he placed in the outside face of Band A of the Borth well.

Yours very truly.

FRANKE WILLIAMS.

Denuty State Insinoer

Corrugated Bar Company, Inc. Mutual Life Building

CORRUGATED BAR

CORRBAR

September 13, 1921.

Mr. Alexander R. McKinn, Inspector of New York State Docks & Dams, Conservation Commission, Albany, N. Y.

Dear Sir:

Mr. H. L. Botsford, an engineer of Springville, N.Y. who is in charge of the erection of a new dam at this point, has requested us to prepare a design for a four-bay to be used in connection with this dam. ngiseb ruo ebsm eW and submitted copies of it to him yesterday. He requested that copies of our drawing be sent you for your reviewal. These two blue prints are being sent you today by first class mail, and we trust will reach you promptly.

In making a design for this four-bay, several assumptions in regard to pressures and stresses can be made. We used what we term a conservative basis in designing this structure. The steel stress was kept within 10,000 pounds per square inch and the concrete stress does not exceed 500 pounds per square inch in cross bending.

You will note from the plans that we have designed the structure so that the main reinforcing steel will be in a horizontal position. This method gives exceptionally short spans for the thick walls. By framing the structure in this manner additional strength is obtained thru arch action, which additional strength, however, is not taken into account. We are attaching a copy of our design for the south wall and the east wall. These two calculations will give you our methods and we believe that you will agree with us in this connection.

The structure is assumed to be empty and the water level on the outside is taken to the very top. This water pressure exists on the west wall and also on the south wall. south wall has an earth embankment against it and is not supposed to receive any water pressure from the outside. However, we have assumed that it might receive this pressure in view of the fact that the core wall does not ward it off.

The east wall and the north wall, as well as the south wall, are assumed to take a full head of water pressure from the inside, in which case the earth pressure from the outside is entirely neglected.

The writer was at the building site yesterday and found the contractor in a position where he is ready to erect this four-bay. Won't you therefore kindly write Mr. Botsford as soon as you have gone over these plans. If there are any points which we have not made clear, or upon which you desire more explanation, do not hesitate to call on us.

We thank you for your attention and trust that you can go over this proposition promptly.

Very truly yours,

CORRUGATED BAR COMPANY, Inc.

Assistant Chief Engineer

APS G

P. WILLIAMS, SPECIAL DEPUTY STATE ENGINEER

LIAMS, STATE ENGINEER

STATE OF NEW YORK

PERARTMENT OF STATE ENGINEER AND SURVEYOR

SENIOR ASSISTANT ENGINEER'S OFFICE

MATE ENGINEER'S DEFT

MANAY, M. Y.

Sept. 6, 1921.

MEMORANDUM ON SAMPLES OF SAND AND GRAVEL PROPOSED FOR WSE ON DAM AT SPRINGVILLE, N. Y., ON THE CATTARAUGUS CREEK.

We have received two samples of sand and gravel from the Village of Springville, N. Y., which are proposed for use on a dam on the Cattaraugus Creek.

The enclosed report on the result sof tests of the first sample shows that the sand and gravel contains a large percentage of loam. Except for this the materials would be satisfactory for use in concrete. But because of the large amount of loam the sand and gravel should be washed before being used.

A small second sample of sand and gravel was received from the same village. The sample was too small for tests. An examination of it, however, shows that it is composed of the same type of materials as is the larger sample, that it does not contain quite as much loam but would also have to be washed before being used.

Yours very truly,

Sen. Asst. Engineer, in charge of tests.

F-8

DEPARTMENT OF STATE ENGINEER AND SURVEYOR TESTING LABORATORY ALBANY

Tests of Sa	and from Of	ielage 1	Spingrie	U bank at	Sum	gnill	N. Y.,		
for use on Cont			v	, on Callan		Nesture	Division.		
direct Sample No. 124 taken ; received at Laboratory ; made up. O. 24									
Sand is N. A. d.	70 James	A .	//	menty of a	• //	. /			
-ut soul limited and finger of grant - all chates with lian									
reentage of Voids 32: Loam //: Organic matter									
Parts of sand to cement by weight :- 3 sand to 1 cement. Per cent water used									
mperature of water used in mixing 7. Fahr. Briquettes kept in moist air 24 hours and then immersed.									
Cement used in tests, Standard Blund. This cement tested as follows:—									
ts (determined by Vicat needle):—Initial, {in									
Constancy of Volume Tests:—Normal air Grand: Normal water Grand; Accelerated Grand									
neness (per cent passing standard sieve No. 100) 9.7.8 (Requirement, 92%)									
" ("	" (" " No. 200) d/. (Requirement, 78%)								
TENSILE STRENGTH IN POUNDS PER SQUARE INCH SIZE OF SAND									
STANDARD SAND		NATURAL SAND		WASHED SAND		PASSING SIEVE			
7 Days	28 Days	7 Days	28 Days	7 Days	28 Days	No.	Per Cent		
di i e simesa	MARKE AND STREET	in and the state of the state o			ನಿಜ್ಞನ ಇಲ್ಲಾ	-			
32/_	454	286		318		4_	100.0		
320	460	264		320		6	93.2		
292	462	270		312		10	79.6		
: 294_	450	276	`	306		20	52.0		
3/8	448	275		304		30	29.6		
1545	2274	. 1371		1560		40	. 15.0		
309	455"	274"		3/2		60	الم. ح		
						74	6.0		
1,		i			•	100	، ۵.ج		
*** *** ***					• • •	140	2.6		
3					•	200	2.0		
.									
Acmarks:	avarana en	لنميي د نمت سد درائ او و	**************************************	∥reen wete nel A	ratio a ma ro e e e	il			
demarks bank as conford many of small feller I sandsome,									
." westone	, calcul	and sh		el cratio	Inch!	loam)	•		
_ CENTIFY that	this is a true of	stract laken fro	m the records o	of tests	~ (b	<u></u>	19. <u>_</u>		
· Yourned them									
Sr. Ass't Engineer in Charge of Tests									
							,		
	April 180	•							

A WISCY-H

Dam 565
Erie Watershed
Village of Springville

Soptember 3, 1921

Mr. P. J. Cady, Village Clerk, Springville, N. Y.

Dear Sir:-

We have received from your Village Engineer. H. L. Botsford, drawings 1, 2, 3, 4 and 5 for Dam No. 565, Erie Watershed at Springville, owned by the Village of Springville. The forebay drawing on sheets Nos. 1, 2 and 4 are superseded by sheet No. 5.

On August 15th we approved of the dam and apron section of the application which are shown on drawings 2 and 3. He hereby approve of the west abutment and embankments shown on drawing No. 4 and the penstock forebay and east abutment as shown on drawing No! 5. This completes application No. 426 which has been submitted.

This approval shall not be deemed to authorize any invasion of property rights, either public or private, in carrying out the above work; nor to create any claim or demand against the State of New York; nor to be considered as authorizing the flooding of State lands, nor as acquiescing in the flooding of such lands.

If flashboards are to be used in the spillway, they should be so designed as to give way entirely when the pond level reaches two-thirds the height of the spillway so that the whole spillway may be available for floods. The design of these flashboards, giving the span and dimensions, should be submitted to and approved by this office before they are used.

Please acknowledge the receipt of this letter promptly.

Very truly yours,

رسوري مغروم تثمرتها

Frank M. WILLIAMS

State Engineer

Ву

Dennity State Engineer

Copy for-

ARLIOK-F.

Approval of Dam #565, Eric Watershed, Springville, N. Y.

September 3, 1921.

Hon. Frank H. Williams, State Engineer and Surveyor, Albany, H. Y.

Dear Sir:-

On August 15th, you approved of the dam and apron section for this application. The unapproved portion has been very carefully studied and checked up. The penstock forebay particularly has been given considerable time and attention as it had to be gone over several times on account of inadequate reinforcement and poor design. Assistant Engineer Gibson has checked this over and done good work there on. The site has been inspected by Senior Assistant Engineer Wildes on the foundation bed.

I consider the entire dam as now shown by the plans submitted to have ample provisions for the protection of life and property below the dam and therefore respectfully recommend your approval.

Very truly yours,

Inspector of Docks and Dams.

Angust 18, 1921.

Mr. L. C. Hulburd.

Division Engineer.

Rochester, R. Y.

19A 565 NY 704.

Dear Sir:-

On August 15, in company with the local engineer, Mr. E. L. Botsford, I inspected the foundations of the proposed dam of the Springville Municipal plant. This is being located about 60 feet below the old timber spillway dam, and extends east and west across the lower end of a gorge in Catteraugus Creek. A concrete Ogee section for about 182 feet (same length as old spillway), concrete abutments tying in with old stone masonry abutments and clay dikes, with concrete core walls extending into each hillside and utilizing the old dikes as upstream bermes will comprise the structure. The rock foundation is a generally firm and well preserved shale which, where long exposed on the hillsides, has rotted and scaled conspicuously. Where cleaned off in the stream-bed, it exhibits approximately horizontal cleavage, occasionally intersected by vertical cleavage planes. There is enough evidence of water action to indicate that the rock will stand considerable attrition before shattering along cleavage planes.

The entire cross-section of the stream-bed has scoured to a depth of about 7 to 20 feet, on account of the Overflow at the old spillway. The down-stream edge of this pocket has been utilized as a tos-hold for the new structure. Thus it is planned to build this dam on the existing surface with necessary cleaning up by hand tools and very little drilling or excavition, and I concur in Ir. Botsford's view that, where avoidable, it is distinctly better not to blast and disturb existing surface. No cut-off is planned at the up-stream side or under the apron.

The Walter Bradley Construction Co., Contractors, have installed a concrete plant and chute, and prepared the foundation of the most westerly section of spillway (which is to be 45 feet long), except for drilling and cutting into the hillside, so as to square the excavation at the deeper level, westerly to the abutment. Since the up-stream face of the new dam is near the midale of the pocket in the stream-bed, the horizontal seams would be exposed to water pressure below the level of the stream-bed at the ends of the hole and, also, in the center of the valley where the hole is deepest up-stream from the dam. These exposed surfaces at the ends, it is proposed to seal with concrete extending up-stream from the structure, and the rock had already been prepared for this at the west end. The question of lining the deeper hole at the center with concrete was

being considered and I recommended its adoption.

I was asked particularly to page on the foundation as prepared, for the westerly block. The lower level was flat, clean and firm at an elevation about 7 feet below the normal stream-bed. The irregular step and higher level satisfied me, although there were two close vertical seams or cleavage planes extending through the section at 45° with the dam. A similar seam has widened into a small channel in the creek below here and these seams may carry some leakage and in time need attention. No explotatory holes have been drilled here; but the evidence of the old dam which has stood over twenty years with only three foot lower creat, is reasonable assurance that there are no serious sub-foundation difficulties. I therefore informed I'm. Botsford that I should report the foundation as satisfactory for this section, excepting the west end, still to be excavated. In so reporting I understand that the dam has been figured to resist upward pressure.

The general plan for the remainder of the spillway foundation appears to one adequate; but if complete inspection is required, it will be necessary to pass on the sections separately—it being the intention to have another one ready in a few days.

In regard to the clay section of dam. I would say the valley soil appears to be good clay. Abundant gravel may be had if desired from the hilltops, and I would suggest that this be mixed with the clay especially on the down-stream side. It was Mr. Botsford's intention to excavate the corewell foundation a little into rock, but using possibly 12-inch steps. I recommend at least 5-foot steps and a 2-foot minimum cutting. The natural rock here slopes about 1 on 1 where exposed on the west hillside.

The watershed. Er. Botsford stated to be about 265 square miles, reservoir area some 45 acres. Greatest height of flow on the old dam about 10 feet or nearly to the point of overtopping. The new dam provides for 14' on crest before overtopping; but the computations were said to be figured on basis of 10' overflow and provide for 43000 c.f.s. or 150 sec. ft. per sq. mile. This would seem, however to provide for less than 20000 c.f.s. or for some 30000 c.f.s. with 14' head. The recorded gagings below at Versailles, when provated according to drainage areas, would indicate less than 20000 c.f.s. flood at Springville.

The height of crest above river bed (nearly 30 ft), the amount of overflow and the extent of the scour below the old dam, namely, about 60 ft., would seem to indicate that the 24-foot apron as planned is none too long for secuting.

Very truly yours.

Walds J. Wildes

ਜ਼ਰੂਜ/**ਜ**਼

Senior Assistant Engineer

Brie Watershed, Cattaraugus Creek.

Mr. H. L. Botsfort, Village Engineer, Village of Epringville, Epringville, H. Y.

Dear Sir:-

en in de de la completa de la company de la completa del completa de la completa de la completa del completa de la completa della della completa de la completa della completa della completa de la completa della compl

We have received the application, together with sheets hos. 1, 2 and 3 and a survey sheet dated July 19th, for the reconstruction of Dam No. 565. Bris Watershed, on Cattaraugus Creek at Springville, owned by the Village of Springville, which we approve for the dam and apron section and permission to November 1, 1922, is given for the construction of this part of the dam in accordance with the said plans. Additional plans · must be submitted for approval for the forebay and the earth embankment. For the core well of the earth embankment we sugges a top width of at least 18 inches and a batter of 1/2 horizontal to 12 vertical on each side. The trench for this core well should be dug into the natural bed for a depth of 6 feet and entirely filled with the concrete core base.

This dam section is approved in so far as the matter involves the jurisdiction conferred upon this office by Section 22 of the Conservation Law. This approval shall not be deemed to authorize any invasion of property rights, either public or private, in carrying out the above work; nor create any claim or demand against the State of New York; nor to be considered as authorizing the flooding of State lands, nor in acquiescing in-the flooding of such State lands.

Very truly yours,

FRAIK M. HILLIALS Deputy State Engineer. State Engineer.

AFMOZ-F.

August 15, 1921.

Hon. Frank M. Williams, State Engineer, Albany, N. I.

Dear Sir: -

The Village of Springville has submitted an application and plans for the reconstruction of their dam No. 565. Erie stershed on Cattaraugus Creek. The drainage of the pond formed by this dam is about 280 square miles - this section of the State is unmapped. The probable maximum flow would be 50800 feet and would overflow the crest of the spillway at a height of 13 feet. The abutment of the old dam was 10 feet and of the proposed dam 14 feet so that the spillway will be ample to take this flood. The forces for this resultant are well within the middle third.

I find the dam as proposed to have ample dimensions for the protection of life and property and therefore respectfully recommend your approval.

Very truly yours.

Inspector of Docks and Dams.

Form W-97 Ace. 380	(Springville)	
Filed19	المسروعة	Watershed Grie
Disposition Approved 15 Aug 1981		426
Inspected site19	- ,	
Foundation seen19		
Construction O. K19		
APPL CATION FOR CONSTRUCT	TION OR RECONSTRUCTION	OF A DAM
Application is hereby made to the Conservation	ti t	
the provisions of Chap. LXV of the Consolidated		
specifications and plans, marked 5	le Dam Sheets 1	\$ 3
herewith submitted for the { construction reconstruction } of the	dam located as stated below. A	ll provisions of law will be
complied with in the erection of the said dam.		
LOCATION A	ND GENERAL DATA	•
		·
O G	(ame of stream)	
a branch of Lake Crie		within the
limits of the town of Concord . Erie	Vanue of streams augus Co. Co	Cattarengue, County of Land Cried
Som is 500 ft above Scales (Give approximate distance from well-known bridge, dam, village or	Bridge on the roa	between Springvil
and Eist Otto, and ab	^	
of Springville.		
Purpose of dam 1+ ydeo Electric	Plane of Village is	of Springville
	0	
Reasons for making changes in existing structure	Present timber of	Can badly decayed
	***************************************	1904 The calls the Gat Till Labour & Turner & William (1904), a calls the second

Monthledusenteenthintees and two dates executements of the contract of the con	The state of the s	
and 10, 1921 Signatur	re of) 1):14 1	
(Data) applican	ie }_uuage of	ungues
	W.L. Botalmo	6- Village Engineer.
•		ing for Applicant simulation authority