Class 6: R functions

Leah Kim (A16973745)

Table of contents

1.	Functions
2.	Generate DNA Function
3.	Generate Protein Function

1. Functions

Let's start writing our first silly function to add some numbers.

Every R function has 3 things - name (we get to pick this) - input arguments (there can be loads of these separated by a comma) - the body (the R code that does the work)

```
add <- function(x, y=10, z=0){
  x + y + z
}
```

I can just use this function

```
add(1, 100)
```

[1] 101

```
add(1)
```

[1] 11

Functions can either have "required" input arguments and "optional" input arguments. The optional arguments are defined with an equals default value (y = 10) in the function definition

```
add(1, 100, 10)
```

[1] 111

2. Generate DNA Function

Q. Write a function to return a DNA sequence of a user specified length. Call it generate_dna()

```
#generate_dna <- function(size = 5) {}
students <- c("jeff", "jeremy", "peter")
sample(students, size = 1)</pre>
```

[1] "jeremy"

```
sample(students, size = 5, replace=TRUE)
```

```
[1] "jeff" "peter" "peter" "jeff" "peter"
```

Now work with bases rather than students

```
bases <- c("A", "C", "G", "T")
sample(bases, size = 10, replace = TRUE)</pre>
```

```
[1] "T" "G" "C" "A" "A" "A" "C" "A" "T" "T"
```

Now I have a working 'snippet' of code I can use.

```
generate_dna <- function(size = 5) {
  bases <- c("A", "C", "G", "T")
sample(bases, size = size, replace = TRUE)
}</pre>
```

```
generate_dna(100)
```

```
generate_dna()
```

```
[1] "T" "T" "G" "C" "T"
```

I want the ability to return a sequence like "AGTACCTG" i.e. a one element vector where the bases are all together.

```
generate_dna <- function(size = 5, together = TRUE) {
  bases <- c("A", "C", "G", "T")
  sequence <- sample(bases, size = size, replace = TRUE)
  if(together) {
    sequence <- paste(sequence, collapse = "")
  }
  return(sequence)
}</pre>
```

3. Generate Protein Function

We can ge thte set of 20 natural animo-acids from the bio3d package

Q. Write a protein sequence generating function that will return sequences of a user specified length.

```
generate_protein <- function(size = 5, together = TRUE) {
    #get the 20 amino acids as a vector
    aa <- bio3d::aa.table$aa1[1:20]
    sequence <- sample(aa, size = size, replace = TRUE)

#optionally return a single element string
    if(together) {</pre>
```

```
sequence <- paste(sequence, collapse = "")
}
return(sequence)
}</pre>
```

Q. Generate random proteins equences of length 6-12 amino acids.

```
#generate_protein(6:12) returns an error
```

We can fix this inability to generate multiple sequences by either editing and adding to the function body code (e.g. a for loop) or by using the R apply family of utility functions

```
ans <- sapply(6:12, generate_protein)
ans</pre>
```

```
[1] "DYKFYI" "TRKMRSN" "PFHQESGI" "EWPLWAPDI" "MLGRHYRRPW"
[6] "WGNATTWFRTV" "AYPKWFWLYITV"
```

It would be cool and useful if I could get FASTA format output. I want this to look like

>ID.6 HLDVLV >ID.7 VREAIQN >ID.8 WPRSKACN

The functions cat and paste can help us here.

```
ans <- sapply(6:12, generate_protein)
cat(paste(">ID.",6:12, sep="", "\n", ans), sep ="\n")
```

```
>ID.6
LYMSWP
>ID.7
CYHYSCK
>ID.8
TLYCIPGW
>ID.9
FCDMILALV
```

```
>ID.10
HWQAQRDGLG
>ID.11
LCTGCAMYMYW
>ID.12
TDLAHPYEMWGS
```

Q. Determine if any of these sequences can be found in nature or are they unique? Why or why not?

The sequences generated are as followes:

>ID.6
SFDRHS
>ID.7
HQNLFYY
>ID.8
DSMEMNDL
>ID.9
STYFCEKGC
>ID.10
CVDIIEFNKR
>ID.11
ECFMCPHRVDN
>ID.12
PSRKPESIFEHE

I BlastP my FASTA format sequences against NR and found that the sequences of lengths 6 through 8 are not unique and found in the databases with 100% coverage and identity.

Random sequences of length 9 and above are unique and cannot be foud in the databases.