Homework

- Modify the gridworld you created last week to create a 4x4 version
 - No obstacles
 - Rewards of -1 on all transitions
 - Goal in the top left corner entering the goal state ends the episode
- Given this environment and a uniform random policy, implement 2 versions of policy evaluation
 - The in-place version, as presented in the book
 - A two-array version, which only updates the value function after looping through all states (see pg 75)
 - Use a threshold value of $\theta = 0.01$
 - NB: Careful of how you handle the terminal state!!
- For a given γ , record the number of iterations of policy evaluation until convergence

By next week's lecture, submit on Moodle (groups of up to 4):

- 1. A 2d heatmap plot of the value function for $\gamma = 1$
- 2. A combined plot of both versions of policy evaluation for different discount rates
 - 1. The x-axis should be the discount rate. The range of discounts should be specified by np.logspace(-0.2, 0, num=20)
 - 2. The y-axis should be the number of iterations to convergence
- 3. Your code