

Visualización 3D con técnicas de filtrado por longitud de onda y desplazamiento espacial

Guías de Prácticas de Laboratorio

Identificación:
GL-AA-F-1

Número de Páginas:
Revisión No.:

Fecha Emisión: **2018/01/31**

Laboratorio de: Realidad virtual

Titulo de la Práctica de Laboratorio: Visualización 3D con técnicas de filtrado por longitud de onda y desplazamiento espacial

Elaborado por:	Revisado por:	Aprobado por:	
Byron Alfonso Pérez Gutiérrez	Ricardo Castillo	Comité de area de robótica	
Docente tiempo completo Ing. Mecatrónica	Jefe de área robótica	Ingeniería Mecatrónica	

Visualización 3D con técnicas de filtrado por longitud de onda y desplazamiento espacial

Control de Cambios

Descripción del Cambio	Justificación del Cambio	Fecha de Elaboración / Actualización
Reemplazo de equipos de laboratorio a equipos de los estudiantes	Presencialidad remota	23/07/2020
Revisión de procedimientos e inclusión de contenido	Retorno a la presencialidad	04/02/2022

Visualización 3D con técnicas de filtrado por longitud de onda y desplazamiento espacial

1. FACULTAD O UNIDAD ACADÉMICA: Ingeniería

2. PROGRAMA: Ingeniería Mecatrónica

3. ASIGNATURA: Realidad Virtual

4. SEMESTRE: IX

5. OBJETIVO:

Identificar, formular y resolver el problema de visualización 3D utilizando los principios de filtrado por longitud de onda (anaglifo) y desplazamiento espacial (lado-a-lado y arriba-abajo)

6. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS DEL LABORATORIO:

DESCRIPCIÓN (Material, reactivo, instrumento, software, hardware, equipo)	CANTIDAD	UNIDAD DE MEDIDA
NA		

7. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS DEL ESTUDIANTE:

DESCRIPCIÓN (Material, reactivo, instrumento, software, hardware, equipo)	CANTIDAD	UNIDAD DE MEDIDA
Computador	1	NA
Cámara digital / Webcam / Cámara de computador	1	NA
Software de programación	1	NA
Material para marco de gafas	1	NA
Papel celofán rojo y cian	1	Octavo de pliego

8. PRECAUCIONES CON LOS MATERIALES, REACTIVOS, INSTRUMENTOS Y EQUIPOS A UTILIZAR:

Utilizar adecuadamente el equipo de cómputo y cámara digital para realizar la práctica de laboratorio.

Visualización 3D con técnicas de filtrado por longitud de onda y desplazamiento espacial

9. PROCEDIMIENTO, MÉTODO O ACTIVIDADES:

- 1. Utilizando la cámara digital, tomar dos fotografías de la misma escena (puede ser en interiores o exteriores) teniendo en cuenta que no existan cambios en los elementos (p.e. movimiento) y que cada una esté separada de la otra una distancia equivalente a la distancia inter pupilar (aproximadamente 5cm a nivel horizontal). Con esto se busca simular la vista desde la perspectiva desde el ojo izquierdo y ojo derecho de una persona.
- 2. Escribir un programa utilizando un software de programación (p.e. Matlab, Visual C++, Java, Python, etc) con los siguientes requerimientos:
 - El usuario debe poder seleccionar los archivos de las imágenes izquierda y derecha utilizando una interfaz gráfica.
 - El software debe permitir filtrar las imágenes de acuerdo con las técnicas de filtrado por longitud de onda (anaglifo), y desplazamiento espacial: lado-a-lado para visión paralela y cruzada (side by side), y arriba-a-abajo (top-down)
 - Finalmente mostrar la imagen 3D de acuerdo con cada técnica en pantalla completa.
- 3. Diseñar unas gafas de anaglifo, realizar planos de ingeniería y construirlas en un material elegido. Los lentes se pueden implementar con papel celofán o material similar que ofrezca el color adecuado y que sea traslúcido.

10. RESULTADOS ESPERADOS:

El estudiante debe estar en capacidad de explicar los fundamentos físicos de las técnicas de filtrado por longitud de onda y desplazamiento espacial, e implementar un programa computacional donde se puedan aplicar estas técnicas a dos imágenes arbitrarias. Adicionalmente se espera un proceso adecuado de diseño y construcción de un prototipo funcional de gafas de anaglifo.

11. CRITERIO DE EVALUACIÓN A LA PRESENTE PRÁCTICA:

Visualización 3D con técnicas de filtrado por longitud de onda y desplazamiento espacial

La evaluación de la práctica se hará teniendo en cuenta la siguiente rúbrica establecida de acuerdo con las metas ABET¹ 2019 para acreditación internacional.

El estudiante debe entregar el programa funcionando con su código fuente, los planos de construcción y el prototipo físico de las gafas. También debe sustentar su funcionamiento para los indicadores 1 y 2.

Meta ABET	Definición	Indicador	Aspectos a evaluar	No cumple	Cumple parcialmente	Cumple totalmente	Porcentaje
1 Habilidad para identificar, formular y resolver problemas complejos de Ingeniería aplicando principios de Ingeniería, ciencias y matemáticas.	identificar, formular y	I. Identifica y aplica leyes, teoremas, principios para la solución de problemas de ingeniería	Identificación de los fundamentos físicos de la visión estéreo y diferentes tipos de filtrado	0	0.5	1	20
	Propone y/o formula modelos que representan las relaciones de las variables de un problema	Plantea un modelo matemático para expresar el filtrado por longitud de onda y desplazamiento espacial	0	0.5	1	20	
	ciencias y	Maneja las herramientas tecnológicas y computacionales para la solución de problemas complejos de ingeniería	Implementación computacional del sistema de visión estéreo usando filtrado por longitud de onda y desplazamiento espacial	0	0.5	1	30
		Maneja las herramientas tecnológicas y computacionales para la solución de problemas complejos de ingeniería	Diseño, planos e implementación de un prototipo funcional de gafas de anaglifo	0	0.5	1	30
						Total	100

El uso no autorizado de su contenido así como reproducción total o parcial por cualquier persona o entidad, estará en contra de los derechos de autor

Pagina 5 de 5

¹ https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2018-2019/