Probability theory

Gabriel Ng

May 21, 2022

1 Measures and Inequalities

A measurable space is a pair (E,\mathcal{E}) where E is a set and \mathcal{E} is a sigma algebra on E. A probability space is a measurable space and a positive measure \mathbb{P} on our space such that $\mathbb{P}(E)=1$. We denote such a space by $(\Omega,\mathcal{F},\mathbb{P})$. The elements of \mathcal{F} are called events.

If $(\Omega \mathcal{F}, \mathbb{P})$ and (E, \mathcal{E}) are probability and measurable spaces respectively, a function $f: \Omega \to E$ is called a random variable if it is measurable. It is a real random variable when $E = \mathbb{R}$ and $\mathcal{E} = B(R)$ the Borel sigma algebra. When $\int X d\mathbb{P} < \infty$, we say X is integrable and denote this integral EX. Two random variables are equivalent if $\mathbb{P}(X = Y) = 1$.

The spaces L^p is defined by the set of f so that $(E|f|^p)^{1/p}$ is finite up to equivalence (equal a.s.). L^{∞} is defined by the set of f such that |f(x)| is finite aside from a subset of measure 0.

Proposition – Jensen's inequality

Let X be an integrable random variable on \mathbb{R}^m and let $\Phi: \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ be a lower semi-continuous convex function. Then $\Phi(X)$ is lower semi-integrable and

$$E\Phi(X) \ge \phi(EX).$$

Furthermore, if Φ is strictly convex and $\Phi(EX) < \infty$ then the inequality is strict unless X takes only 1 value a.s.

Proof. X is integrable so that EX is finite. Since Φ is convex, there is a line through EX and $\Phi(EX)$ such that the graph of Φ lies above this line (this is determined by the lower and upper derivatives). Hence $\Phi(X) \geq \Phi(EX) + c(X - EX)$ so that $E\Phi(X) \geq \Phi(EX)$. Now, unless $\Phi(X) = \Phi(EX)$, then our second statement holds.

Proposition - Holder's inequality

Let Z, W be positive random variables and α , β positive real numbers such that $\alpha + \beta = 1$. Then

$$E(Z^{\alpha}W^{\beta}) \le (EZ)^{\alpha}(EW)^{\beta}.$$

Proof. Consider first the convex function $\exp(X)$. We know this is convex since it is a smooth function and its second derivative is greater than 0. Setting $a = \alpha \log \left(\frac{|Z|}{\|Z\|_{\alpha}} \right)$ and $b = \beta \log \left(\frac{|W|}{\|(\|W)_{\beta}} \right)$, we get using the definition of convexity that $\frac{|f||g|}{\|f\|_{\alpha} \|g\|_{\beta}} \le \frac{|f|^{\alpha}}{\|f\|_{\alpha}^{\alpha}} + \frac{|g|^{\beta}}{\|g\|_{\beta}^{\beta}\beta}$ upon which we obtain our inequality after integrating.

Proposition - Minkowski's inequality

Let *X* and *Y* be real random variables and $p \ge 1$. Then

$$||X + Y||_p \le ||X||_p + ||Y||_p$$
.

Proof. Use the Holder inequality and show that $(a + b)^p \leq 2^{p-1}a^p + 2^{p-1}b^p$.

It follows immediately from Minkowski's lemma that L^p is a vector space. Furthermore, Jensen's inequality on the convex function $|x|^{p/q}$ gives the inclusion of L^p into L^q whenever $p \le q$.

2 Variance, Covariance and the distribution of a random variable

If *X* is a square integrable random variable $EX^2 < \infty$ or $X \in L^2$, its variance is the quantity

$$Var X = E[(X - EX)^{2}] = EX^{2} - (EX)^{2}.$$

We call the value EX^{α} the moment of order α (when it exists and is finite).

Proposition - Markov's inequality

For every $\delta > 0$ and $\beta > 0$, we have

$$\mathbb{P}(|X| \ge \delta) \le \frac{E|X|^{\beta}}{\delta^{\beta}}.$$

Proof. Consider $A = \{\omega : |X(\omega)| \ge \delta\}$. Then $\chi_A \le \chi_A \cdot (|X|^{\beta}/\delta^{\beta})$ so that integrating gives our inequality.

Corollary - Chebyshev's inequality

Let $X \in L^2$. Then for every $\alpha > 0$

$$\mathbb{P}(|X - EX| \ge \alpha) \le \frac{\operatorname{Var} X}{\alpha^2}.$$

We define the distribution of X as the measure on the pullback. More formally, given random variable $X:(\Omega,\mathcal{F},\mathbb{P})\to(E,\mathcal{E})$, for $A\in\mathcal{E}$, the measure μ_X is defined by $\mu_X(A)=\mathbb{P}(X^{-1}(A))$. We can compute integrals under the image law via the following proposition:

Proposition

Let $X:(\Omega,\mathcal{F},\mathbb{P})\to (E,\mathcal{E})$ be a random variable, μ_X its associated measure. Then a measurable function $f:(E,\mathcal{E})\to (\mathbb{R},B(R))$ is μ_X -integrable iff f(X) is \mathbb{P} -integrable and we have

$$\int_{E} f d\mu_{X} = \int_{\Omega} f \circ X d\mathbb{P}.$$

Proof. We show it is first true for characteristic functions, then it is true for simple random variables by linearity and hence positive random variables and so for all random variables. Let $f = \chi_A$ for some $A \in \mathcal{E}$. Then by definition we have our statement. Our proposition follows.

Given two measures μ and ν , we say μ is absolutely continuous with respect to ν if $\mu(A)=0$ implies $\nu(A)=0$. We denote this by $\mu\gg\nu$.

Proposition - Radon-Nikodym theorem

If $mu\gg \nu$ then there exists a random variable $f\geq 0$ such that

$$\nu(A) = \int_A f \mathrm{d}\mu.$$

The proof of this theorem is relegated to the appendix.

3 Appendix

3.1 Radon-Nikodym