

CONTENT

Definitions
Binomial trees
Binomial heaps
Operations on Binomial Heaps
Creating a new heap
Finding the minimum key
Union
Insert a node
Extract minimum
Deleting a key
Decreasing a key

MCCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

OPERATIONAL COSTS ON HEAPS

		Heaps		
Operation	Linked List	Binary	Binomial	Fibonacci *
make-heap	1	1	1	1
insert	1	log N	log N	1
find-min	N	1	log N	1
delete-min	N	log N	log N	log N
union	1	N	log N	1
decrease-key	1	log N	log N	1
delete	N	log N	log N	log N
is-empty	1	1	1	1

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

3

INTRODUCTION

- Heap is a data structure that has enormous utility.
 - We saw how a binary heap was used to design an efficient heapsort algorithm.
 - Heaps are used to implement priority queues.
 - Priority queue maintains elements according to their keys.
 - Min-priority queue supports the following operations:
 - ■Insert(Qx) insert an element x
 - Minimum(Q) returns the element with the smallest key
 - Extract-Min(Q) removes and return the min element
 - Decrease-Key(Q,x,k) decrease the value of the key of x to k.
 - For example, priority queues are used to schedule jobs on shared computer resources.

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

л

INTRODUCTION

- Mergeable heaps, support the following operations:
 - Make-Heap() creates and returns an empty heap.
 - Insert(H,x) inserts a node x with a key into a heap H.
 - Minimum(H) returns a pointer to the node whose key is minimum.
 - Extract-Min(H) deletes the minimum node and returns its pointer.
 - Union(H1, H2) creates and returns a new heap that contains all nodes from H1 and H2.
 - DECREASE-KEY(H, x, k) assigns to node x within heap H the new key value k, which is assumed to be no greater than its current key value.1
 - DELETE(H, x) deletes node x from heap H.

Binary heaps work well if we don't need the Union operation that takes $\Theta(n)$ time.

The Union on binomial heaps takes O(lg n) time.

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

5

BINOMIAL TREES

- An ordered tree is a rooted tree, where the order of children nodes matters.
- The binomial tree B_k is an ordered tree defined recursively:
 - $\blacksquare B_0$ consists of a single node.

O B₀

- \blacksquare B_k consists of two binomial trees B_{k-1} that are linked together:
 - The root of one B_{k-1} tree is the leftmost child of the root of another tree

 B_k

IPEC

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

Binomial Trees: Properties For the binomial tree B_k, 1. There are 2^k nodes, 2. The height of the tree is k 3. There are exactly (^k_i) nodes at depth i for i=0,1,...,K 4. The root has degree k, which is greater than any other node; moreover if children of the root are numbered left to right by k-1,k-2,...,0, the child i is the root of subtree b_i. IPEC KCS-503. Design and Analysis of Algorithms Dr. Ragini Karwayun

Q

Binomial Trees Properties - Proof

■ The proof is by induction on k. Verifying all properties for B_0 is trivial. For the inductive step, we assume that the lemma holds for B_{k-1} .

Property 1: There are 2^k nodes in B_k tree.

The Binomial tree B_k consists of two copies of B_{k-1} , hence B_k has

$$2^{k-1} + 2^{k-1} = 2^k$$
 nodes

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

a

Binomial Trees Properties - Proof

Property 2: The height of the tree is k

- Because of the way in which two copies of B_{k-1} are linked together to form B_k the maximum depth of a node in B_k is one greater than the maximum depth in B_{k-1} .
- the height of B_k is increased by one compared to B_{k-1} . Hence its maximum depth is k-1+1=k

Dr. Ragini Karwayun

Binomial Trees Properties - Proof

Property 3: There are exactly $\binom{k}{i}$ nodes at depth i for i=0,1,...,K

- Let D(k,i) the number of nodes at depth i of binomial tree B_k . Since B_k is composed of two copies of B_{k-1} linked together, a node at depth i in B_{k-1} appears in B_k once at depth i and once at depth i+1.
- In other words, the number of nodes at depth i in B_k is the number of nodes at depth i in B_{k-1} plus the number of nodes at depth i-1 in B_{k-1} .
- Thus D(k,i) = D(k-1,i) + D(k-1,i-1)

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

Binomial Trees Properties - Proof

Property 3: There are exactly. k nodes at depth i for i=0,1,...,K

So,

$$D(k,i) = D(k-1,i) + D(k-1,i-1)$$

$$= {\binom{k-1}{i}} + {\binom{k-1}{i-1}}, \text{ by ind. hyp.}$$

$$= \frac{(k-1)!}{i!(k-1-i)!} + \frac{(k-1)!}{(i-1)!(k-i)!}$$

$$= \frac{(k-1)!(k-i) + i(k-1)!}{i!(k-i)!}$$

$$= \frac{k! - i(k-1)! + i(k-1)!}{i!(k-i)!}$$

$$= {\binom{k}{i}}$$

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

13

Binomial Trees Properties - Proof

4. The only node with the greater degree in B_k than B_{k-1} is the root, which has one more child.

Root degree of
$$B_k = 1 + \text{root degree of } B_{k-1}$$

= 1 + k-1
= k

By inductive hypothesis children of B_{k-1} are roots of B_{k-2} , B_{k-3} , ..., B_0 . Once B_{k-1} is linked to B_{k-1} from the left, the children of the resulting root are B_{k-1} , B_{k-2} , ..., B_0 .

IPEC

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

Corollary -19.2

The maximum degree of any node in an n-node binomial tree is lg n.

Proof.

Property 1/says :: There are 2^k nodes in B_k tree.

Property 4 says : Root degree of $B_k = k$

The poot has the maximum degree k, and $n = 2^k$

Therefore $k = \lg n$.

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

15

Binomial Heaps

A binomial heap H is a set of binomial trees that satisfies the following properties:

- 1. Each binomial tree in H obeys the min-heap property:
 - the key of a node >= the key of its parent
 - this ensures that the root of the min-heap-ordered tree contains the smallest key.
- 2. For any $k \ge 0$, there is at most one binomial tree in H whose root has degree k.
 - this implies that an n-node binomial heap H consists of at most (lg n + 1) binomial trees.
 - \blacksquare it can be observed by a binary representation of n as ($\lg n + 1$) bits.
 - A bit i = 1 only if a tree B_i is in the heap.

IPEC

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

Binomial Heaps: Representation

- Each binomial tree within a binomial heap is stored in the left-child, right-sibling representation.
- Each node has the following fields:
 - key[x]
 - p[x] pointer to the parent.
 - child[x] pointer to the leftmost child. (left child)
 - sibling[x] pointer to the sibling immediately to the right. (right sibling)
 - degree[x] the number of children of x.
- The roots of the binomial trees in the heap are organized in a linked list, -- root list.
 - The degrees of roots increase when traversing to the right.
- A heap H is accessed by the field head[H], which is the pointer to the first root in the root list of H.

IPEC

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

Creating a New Binomial Heap
 To make an empty binomial heap, the MAKE-BINOMIAL-HEAP procedure simply allocates and returns an object H,
 where head[H] = NIL.
 Running time = Θ(1).

Finding the Minimum

This procedure returns a node with the minimum key in an *n*-node heap *H*. Note that in the min-heap-ordered heap, the minimum key must reside in a root node

```
Binomial-Heap-Minimum(H)
```

```
1 y = NIL
```

2 x = head[H]

3 min = ∞

4 while x≠NIL

5 if key[x] < min

6 min = key[x]

9 return y

Because there are at most $\lfloor \log_2 N \rfloor + 1$ roots to check, the running time of this algorithm is $O(\lg n)$.

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

23

Uniting Two Binomial Heap

- The operation of uniting two heaps is used as a subroutine by most of other operations.
- The procedure is implemented by repeatedly linking binomial trees whose roots have the same degree.
 - ► It uses an auxiliary Binomial-Link procedure to link two trees.
 - It also uses an auxiliary Binomial-Heap-Merge procedure to merge two root lists into a single linked list sorted by degree.
- Initing two heaps H1 and H2 returns a new heap and destroys H1 and H2 in the process.

IPEC

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

Binomial Link

This procedure links the B_{k-1} tree rooted at node y to the B_{k-1} tree rooted at node z. Node z becomes the root of a B_k tree. The procedure is straightforward because of the left-child, right-sibling representation of trees.

Binomial-Link(y,z)

- 1 p[y] = z
- 2 sibling[y] = child[z]
- 3 child[z] = y
- 4/degree[z] = degree[z]+1
 - The procedure simply updates pointers in constant time $\Theta(1)$.

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

25

Binomial Heap Union Algorithm

```
Binomial – Heap – Union(H_1, H_2)
   H \leftarrow Make - Binomial - Heap()
   head[H] \leftarrow Binomial - Heap - Merge(H_1, H_2)
   free H<sub>1</sub> and H<sub>2</sub> but not the lists they point to
   if head[H] = NIL then return H
   prev-x \leftarrow NIL
   x \leftarrow head[H]
   next-x \leftarrow sibling[H]
   while ( next-x \neq NIL )do
        if (degree[x] \neq degree[next-x]) or
           (sibling[next-x] \neq NIL and
            degree[sibling[next-x]] = degree[x]) then
              prev-x \leftarrow x
                                   Case1 and 2
             x \leftarrow next-x
            KCS-503. Design and Analysis of Algorithms
                                                                     Dr. Ragini Karwayun
```


4 cases of BINOMIAL-HEAP-UNION 1. if (degree[x] ≠ degree[next-x]) x = next-x; 2. If (degree[x] = degree[next-x]] = degree[sibling[next-x]) then x = next-x; if degree[x] = degree[next-x]!= degree[sibling[next-x]] then case 3 or case 4 3. if key[x] ≤ key[next-x] then Link(next-x, x) 4. if key[x] > key[next-x] then Link(x, next-x); PEC (KCS-503. Design and Analysis of Algorithms) DT. Ragini Karwayun

Binomial Heap Union Procedure

- The Binomial Heap union procedure has two phases:
- First phase is performed by Binomial-Heap-Merge, that merges the root list of the heaps H1 and H2 into a single linked list H that is sorted by degree into monotonically increasing order. There might be as many as two roots (but no more of each degree).
- The second phase links roots of equal degree until at most one root remains of each degree.
- Throughout the union procedure, we maintain three pointers to root list:
 - x points to the root currently being examined
 - prev_x points to the root preceding x on the root list
 - next_x points to the root following x on the root list

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

Example - Binomial-heap-union

1. Heap H₁ has 7 keys: 111 $B_2 B_1 B_0$

2. Heap H₂ has 19 keys: $B_4 B_1 B_0$ 10011

11010 3. Heap H has 26 keys: $B_4 B_3 B_1$

Created heap H that is union of heaps H₁ and H₂ contains number of nodes that are equal to the sum of nodes of both heaps.

Binomial Heap Union is analogous to binary addition.

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

Heap Union: Performance

- The running time of Binomial-Heap-Union is $O(\lg n)$, where n is the total number of nodes in binomial heaps H_1 and H_2 .
 - Let H_1 contain n_1 nodes and H_2 contain n_2 nodes: $n=n_1+n_2$.
 - $\stackrel{\blacktriangleright}{H}_1$ contains at most $\lg n_1 + 1$ roots
 - \blacksquare H₂ contains at most lg n₂ +1 roots
 - After merging two heaps, H contains at most $\lg n_1 + \lg n_2 + 2 \le 2 \lg n + 2 \le 0 (\lg n)$ roots.
 - ► Hence the time to perform Binomial-Heap-Merge is O(lg n).
 - Each iteration of the while loop takes $\Theta(1)$ time, and there are at most $\lg n1 + \lg n2 + 2 = O(\lg n)$ iterations.
 - Each iteration either advances the pointers one position down the root list, or removes a root from the root list.

KCS-503. Design and Analysis of Algorithms

Dr. Ragini Karwayun

35

Extracting the node with minimum key Binomial – Heap – Extract - Min(H) { 1. find and remove the root with the min key in the root list of H 2. H' ← Make - Binomial - Heap() 3. reverse the order of the linked list of x's children and set head[H'] to point to the head of the resulting list 4. H ← Binomial - Heap - Union(H, H') 5. return x } Runs in O(lg n) time

BINOMIAL-HEAP-EXTRACT-MIN 1 is minimum key (a) head[H] 10 16 12 25 28 13 8 14 29 26 23 18 **11 17** 38 **(27)** is removed (b) head[H] 37 **10** 16 12 25 8 14 29 26 23 18 KCS-503. Design and Analysis of Algorithms Dr. Ragini Karwayun

Decreasing a key

Binomial – Heap – Decrease - Key(H, x, k)

{

if k > key[x] then error "k > key[x]" $key[x] \leftarrow k$ $y \leftarrow x$ $z \leftarrow p[y]$ while ($z \neq NIL$ and key[y] < key[z]) do

{

exchange $key[y] \leftrightarrow key[z]$ and other fields $y \leftarrow z$ $z \leftarrow p[y]$ }

Running time = O(lg n)

Dr. Ragini Karwayun

Questions Discuss the relationship between inserting into a binomial heap and incrementing a binary number and the relationship between uniting two binomial heaps & adding two binary numbers. KCS-503. Design and Analysis of Algorithms Dr. Ragini Karwayun