LAST NAME:	FIRST NAME:	CIRCLE:	
		Zweck 10:00am	Khafizov 2:30pm

1	/10	2	/10	3	/10	4	/10	5	/10		
6	/10	7	/10	8	/10	9	/10	10	/10	Т	/100

MATH 2415 Final Exam, Spring 2016

No books or notes! **NO CALCULATORS! Show all work and give complete explanations**. This 2 hours 45 mins exam is worth 100 points.

(1) [10 pts] Evaluate the double integral $\iint_D 2\frac{y}{x} dA$, where D is bounded by y = x and $y = x^2$. Write your final answer in the box, and explain the reasons for your answer in the space below.

(2) [10 pts] (a) Use the Chain Rule to find $\partial z/\partial t$ if $z=e^{xy}$, $x=\sin t$, $y=t^2$. Write your final answer in
the box, and explain the reasons for your answer in the space below.
Final Answer:

(b) Suppose that 2x + 3y = 5 is the tangent line to a curve f(x, y) = 4 at the point $(x_0, y_0) = (1, 1)$. Find a unit vector that is either in the direction or in the opposite direction of ∇f at the point (x_0, y_0) . Write your final answer in the box, and explain the reasons for your answer in the space below.

- (3) [10 pts]
- (a) Let z = f(x, y) be a function of two variables. State the limit definition of the partial derivative of f with respect to y at a point (x_0, y_0) .

(b) Let z = f(x, y) be a function of two variables. Write a sentence and draw a picture that explains the geometrical meaning of the partial derivative of f with respect to y at a point (x_0, y_0) .

(c) Now let $z = f(x, y) = e^{4y} \sin(x^2 + y^2)$. Calculate the partial derivative of f with respect to y at a point $(x_0, y_0) = (-4, 3)$.

(4) [10 pts] Find (a) the local maximum values, (b) the local minimum values and (c) saddle point(s) of $f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$, if they exist. Write your final answer in the box, and explain the reasons for your answer in the space below.

(5) [10 pts] Use a triple integral to find the volume of the solid enclosed by surfaces $y = x^2$, z = 0, and y + z = 1. Write your final answer in the box, and explain the reasons for your answer in the space below. Final Answer:

(6) [10 pts] Let D be the domain in the plane given by $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{4}\right)^2 \le 1$. Use the Change of Variables Theorem to calculate $\iint_D 16x^2 + 9y^2 \, dx \, dy$. Hint: Use the change of variables $u = \frac{x}{3}$, $v = \frac{y}{4}$. Write your final answer in the box, and explain the reasons for your answer in the space below.

(7) [10 pts] Let S be the surface parametrized by $(x, y, z) = \mathbf{r}(u, v) = (u \cos v, u \sin v, u)$. Find a parametrization for the tangent plane to S at the point where $(u, v) = (2, \frac{\pi}{3})$.

(8) [10 pts] Make sketches of parametrized curves below. Be sure to label the axes and indicate which sketch goes with which curve.

$$(x, y, z) = \mathbf{r}_1(t) = (\cos t, \sin t, t)$$
 for $0 \le t \le 2\pi$
 $(x, y, z) = \mathbf{r}_2(t) = (\sin t, \cos t, t)$ for $0 \le t \le 2\pi$

$$(x, y, z) = \mathbf{r}_2(t) = (\sin t, \cos t, t)$$
 for $0 \le t \le 2\pi$

- (9) [10 pts]
- (a) Let **F** be the vector field given by $\mathbf{F}(x, y, z) = z^2 y \mathbf{i} + (x^2 z^2) \mathbf{j} + xz \mathbf{k}$. Calculate the curl of **F**.

(b) Let **F** be the vector field given by $\mathbf{F}(x, y, z) = \frac{x}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{i} + \frac{y}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{j} + \frac{z}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{k}$. Show that div **F** = 0 everywhere it is defined.

(10)	[10]	pts	This	problem	is	about	the	vector	field	\mathbf{F}	(x,y)	$_{I}) =$	-y	$\mathbf{i} + x$	j.

(10) [10 pts] This problem is about the vector near $\mathbf{r}(\omega, g) = g - g$.

(a) Let C be the unit circle oriented counter clockwise. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

(b) Use your answer to (a) to determine whether or not the vector field ${\bf F}$ is conservative.

(c) Use a different approach from (b) to determine whether or not ${\bf F}$ is conservative.

Pledge: I have neither given nor received aid on this exam

Signature: