

Projekt: MSS54 Modul: Diagnose Sondenheizung

Seite 1 von 8

Projekt: MSS54

Modul: Diagnose der Lambdasondenheizung

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	16.04.2013		5.10

Projekt: MSS54 Modul: Diagnose Sondenheizung

Seite 2 von 8

1. ALLGEMEINES	3
2. EINSCHALTBEDINGUNG FÜR DIE DIAGNOSE	3
3. HEIZLEISTUNGSDIAGNOSE ANHAND EINER WIDERSTANDSPRÜFUNG	4
3.1. Prüfkriterien	4
3.2. Fehlerprüfung	4
4. ERMITTLUNG DES HEIZERWIDERSTANDS	5
4.1. Strommessung über den Treiberbaustein	5
4.2. Widerstandsermittlung des Heizers	6
5. LSH-TREIBERDIAGNOSE	6
6. KONSTANTEN UND VARIABLEN	7
6.1. Konstanten	7
6.2. Variablen	8

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	16.04.2013		5.10

Projekt: MSS54 Modul: Diagnose Sondenheizung

Seite 3 von 8

1. Allgemeines

Die Lambdasondenheizung wird mit zwei Diagnosefunktionen überprüft:

- elektrische Diagnose
- Diagnose der Heizleistung

Die elektrische Diagnose wird über eine Treiberdiagnose durchgeführt. Der Treiber liefert die Informationen, ob es sich um einen Kurzschluß nach Masse, nach UBATT oder ob es sich um eine Unterbrechung handelt.

Zur Diagnose der Heizleistung wird für jeden Abgasstrang der Heizerstrom der VKAT- bzw. NKAT-Sondenheizung verwendet. Der Strom läßt sich über den für die Sondenheizung verwendeten Treiber messen. Die Ermittlung des Heizerstroms erfolgt alle 10ms, die Diagnose selber im Background Task.

2. Einschaltbedingung für die Diagnose

Beide Diagnosefunktionen besitzen gemeinsame Einschaltbedingungen.

Da der Heizerwiderstand bei einer kalten Sonde zuerst niederohmig ist, wird hier noch keine Diagnose angestoßen. Die Sondenheizung wird zunächst solange maximal geheizt, bis die Betriebsbereitschaft der Sonde erreicht wird. Dann wird mit verminderter Heizleistung geheizt bis der Taupunkt überschritten wird. Um sicher zu gehen, daß der Heizerstrom auf seinen stationären Wert gefallen ist, wird nach der Bedingung des Taupunktpüberschreitung noch eine gewisse Zeit gewartet, bis mit der Diagnose begonnen wird.

Bedingungen:

- alle Einschaltbedingungen für die Lambdasondenheizung sind erfüllt

=> B_LSHV1/2_EIN für die VKAT-Sonden B_LSHN1/2_EIN für die NKAT-Sonden

- der Taupunkt für die einzelnen Sonden ist überschritten
 - => !B_LSHV1/2_TAUP für die VKAT-Sonden
 - !B_LSHN1/2_TAUP für die NKAT-Sonden
- die Taupunktbedingung ist für die Zeit K_LSHV/N_TAUP_T erfüllt (die Zeit wird erst dann aufgezogen, wenn die Heizung eingeschalten wird)
- die Batteriespannung ubatt > K_ED_UBMIN ist
- die LS-Heizung nicht über DS2 angesteuert wird (!B_LSHxx_DS2)
- Überprüfung, ob es sich um einen einflutig bzw. zweiflutigeen Abgasstrang handelt. (B_CFG_S50 || B_CFG_S62)

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	16.04.2013		5.10

Projekt: MSS54 Modul: Diagnose Sondenheizung

Seite 4 von 8

3. Heizleistungsdiagnose anhand einer Widerstandsprüfung

3.1. Prüfkriterien

Als Diagnosekriterium wird der Heizerwiderstand der Sonden verwendet.

Für die VKAT und die NKAT-Sonden werden unterschiedliche Widerstandschwellen verwendet

VKAT: K_LSHV1/2_DIAG_RO obere Diagnoseschwelle (ca. 18,6 Ohm) K_LSHV1/2_DIAG_RU untere Diagnoseschwelle (ca. 4,5 Ohm)

NKAT: K_LSHN1/2_DIAG_RO obere Diagnoseschwelle (ca. 18,6 Ohm) K_LSHN1/2_DIAG_RU untere Diagnoseschwelle (ca. 4,5 Ohm)

3.2. Fehlerprüfung

Fehler - Heizleistung zu gering:

Ergibt die Widerstandsprüfung, daß der Heizerwiderstand

für die VKAT-Sonde:

lshv_diag_r1 bzw. lshv_diag_r2 > K_LSHV1/2_DIAG_RO

für die NKAT-Sonde:

lshn_diag_r1 bzw. lshn_diag_r2 > K_LSHN1/2_DIAG_RO

so ist die Heizleistung der Sondenheizung zu gering und es wird ein Fehler erkannt.

Fehler - Heizleistung zu hoch/ keine Heizleistung:

Ergibt die Widerstandsprüfung, daß der Heizerwiderstand

für die VKAT-Sonde:

lshv_diag_r1 bzw. lshv_diag_r2 < K_LSHV1/2_DIAG_RU

für die NKAT-Sonde:

lshn_diag_r1 bzw. lshn_diag_r2 < K_LSHN1/2_DIAG_RU

so ist die Heizleistung der Sondenheizung zu hoch oder es ist keine Heizleistung vorhanden; somit wird ein Fehler erkannt.

Mit Hilfe der Diagnosefunktion **ed_report**, wird sobald einer dieser Fehler festgestellt wird, die Fehlerart **"UNPLAUSIBEL"** in den Fehlerspeicher eingetragen.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	16.04.2013		5.10

Projekt: MSS54 Modul: Diagnose Sondenheizung

Seite 5 von 8

kein Fehler - Widerstandswert liegt innerhalb der Schwellen:

Liegt man mit dem ermittelten Widerstand des Heizers innerhalb der oberen und unteren Schwelle, so ist kein Fehler zu erkennen; d.h. die Lambdasondenheizung arbeitet ordnungsgemäß. Falls im Fehlerspeicher ein Fehler der Art "UNPLAUSIBEL" eingetragen ist, wird nun die Funktion **ed_report** mit der Fehlerart "Kein Fehler" aufgerufen, um diesen zu heilen.

4. Ermittlung des Heizerwiderstands

4.1. Strommessung über den Treiberbaustein

Der für die Lambdasondenheizung verwendete *Treiber ATM38* wird dazu verwendet, den Heizerstrom zu messen.

Die Erfassung der Treiberspannung geschieht am Slave an den Ports PQA4 - PQA7 (LHV1, LHV2, LHN1 und LHN2).

Diese Spannungswerte werden vom A/D-Wander in einen 10Bit-Wert umgwandelt (0V = 0; 5V = 1024) und in den Variablen AD_KANAL_LSHV1/2 und AD_KANAL_LSHN1/2 abgespeichert.

Es muß jedoch darauf geachtet werden, daß die Spannung bei keiner LSH-Ansteuerung 5V beträgt und bei einer Ansteuerung entsprechend sinkt. Das Signal ist somit invertiert, was softwaremäßig ausgeglichen wird.

Spannungsaufbereitung:

Laut Datenblatt:

 $i_sh = u_sh * 650 / 681 Ohm$ $u_sh = 5V - AD_KANAL-Wert$

Im Prozessor:

die Anzeige

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	16.04.2013		5.10

Projekt: MSS54 Modul: Diagnose Sondenheizung

Seite 6 von 8

4.2. Widerstandsermittlung des Heizers

Da die Batteriespannung eine bekannte Systemgröße ist, kann man mit Hilfe des ermittelten Stroms auf den tatsächlichen Heizerwiderstand schließen.

lshx_diag_ry = ub * LSH_OHM_FAK / lshx_iy

lshx_diag_ry: Widerstand des Heizers der VKAT-

bzw. NKAT-Sonden

Ishx_iy: Heizerstrom der VKAT- bzw. NKAT-Sonden

ub: gemessene Batteriespannung LSH_OHM_FAK: Umrechnungsfaktor vom AD-Wert

zum Stromwert (215dez)

Diese Widerstandsermittlung wird alle 10ms durchgeführt.

Da die Sondenheizung pulsweitenmoduliert angesteuert wird mit einer Periodendauer von 200msec, führt man, um den tatsächlichen Widerstandswert zu erhalten, eine Mittelung des Stroms durch. Hierfür wird über 2 Perioden alle 10ms ein Meßwert (AD-Wert) abgespeichert und aufsummiert. Auf diese Weise kann man nun über 40 Meßwerte einen Mittelwert errechnen. Dieser gemittelte Strom ist allerdings noch nicht der tatsächliche Stromwert, da die Mittelung auch über LOW-Zeiten des PWM-Signals geht. Es muß deshalb das verwendete Tastverhältnis mit eingerechnet werden.

Stromwertermittlung:

Ishx_iy = Ishx_iy_sum * (100/LSH_I_SUM_FAK) / Ishxy_ta

lshxy_ta: Tastverhältnis für LSH- VKAT

bzw. NKAT

lshx_iy_sum: aufsummierte Stromwerte

LSH_I_SUM_FAK: 40 Meßwerte

5. LSH-Treiberdiagnose

Der LSH -Treiber **ATM38** diagnostiziert weiterhin folgende elektrische Fehler:

- openload = Unterbrechung
- Kurzschluß nach UB
- Kurzschluß nach Masse

Bei der Treiberbausteinauswertung muß jedoch beachtet werden, daß das Auslesen des Treibers winkelsynchron erfolgt. Um "turbo-Effekte" zu vermeiden, darf die Treiberdiagnose nicht mehrmals innerhalb der LSH-Periodendauer stattfinden (treiberspezifisch). Da die

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	16.04.2013		5.10

Projekt: MSS54 Modul: Diagnose Sondenheizung

Seite 7 von 8

Heizleistungsdiagnose nach jeder zweiten Periodendauer stattfindet, wird diese Diagnose ebenfalls in diesem Raster durchgeführt.

Die Treiberdiagnose ist priorer als die Heizleistungsdiagnose, was bedeutet, daß ein von der elektr. Diagnose eingetragener Fehler durchkommt und die Heizleistungsdiagnose übergangen wird.

Mit Hilfe der Diagnosefunktion **ed_report**, wird sobald ein Fehler festgestellt wird, die entsprechende Fehlerart in den Fehlerspeicher eingetragen.

Liegt kein elektr. Fehler vor und ist im Fehlerspeicher ein Fehler der Art "SH_TO_UB, SH_TO_GND oder OPENLOAD" eingetragen, wird die Funktion **ed_report** mit der Fehlerart "Kein Fehler" aufgerufen, um diesen zu heilen.

Folgende Übergabeparameter an den ed_report sind nun in Summe möglich:

0x00: kein Fehler (NO_FEHLER)
0x01: short to battery (SH_TO_UB)
0x02: short to ground (SH_TO_GND)

0x04: openload

0x08: unplausibel (Heizleistung)

Sobald ein Fehler in den Fehlerspeicher eingetragen wird, wird der Zustand B LSHV1/2 FEHLER für die VKAT- bzw. B LSHN1/2 FEHLER für die NKAT-Sonde gesetzt.

Ein Diagnosefehler der Sondenheizung hat Einfluß auf:

- die Freigabe des NKAT-Reglers (laaktiv.c)
- die Sondendiagnose des VKAT's und NKAT's (ladiag.c)
- Katalysatorkonvertierung (la_obd.c)
- Lambdasondenalterungüberwachung (la_obd.c)

6. Konstanten und Variablen

6.1. Konstanten

K_LSH_TAUP_T	Zeit, die abgelaufen sein muß nach dem Überschreiten de		
	Taupunktes		
K_LSHV1_DIAG_RU	untere Widerstandsschwelle für die Diagnose VKAT1		
K_LSHV2_DIAG_RU	untere Widerstandsschwelle für die Diagnose VKAT2		
K_LSHN1_DIAG_RU	untere Widerstandsschwelle für die Diagnose NKAT1		
K_LSHN2_DIAG_RU	untere Widerstandsschwelle für die Diagnose NKAT2		

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	16.04.2013		5.10

Projekt: MSS54 Modul: Diagnose Sondenheizung

K_LSHV1_DIAG_RO
 K_LSHV2_DIAG_RO
 K_LSHV2_DIAG_RO
 K_LSHN1_DIAG_RO
 K_LSHN1_DIAG_RO
 Obere Widerstandsschwelle für die Diagnose NKAT1
 K_LSHN2_DIAG_RO
 Obere Widerstandsschwelle für die Diagnose NKAT2

6.2. Variablen

lshn1/2_tr_ed

Stromwert VKAT1/2 lshv_i1/2 Ishn_i1/2 Stromwert NKAT1/2 Ishv_i1_ad "invertierter" AD-Wert VKAT2 (Strom) lshn_i2_ad "invertierter" AD-Wert NKAT2 (Strom) Ishv_i1/2_counter Zähler, um die Stromwerte VKAT1/2 aufzusummieren lshn_i1/2_counter Zähler, um die Stromwerte NKAT1/2 aufzusummieren aufsummierte AD-Werte VKAT1/2 lshv_i1/2_sum aufsummierte AD-Werte NKAT1/2 lshn_i1/2_sum Ishv_diag_r1 tatsächlicher Widerstandswert VKAT1 lshv_diag_r2 tatsächlicher Widerstandswert VKAT2 Ishn_diag_r1 tatsächlicher Widerstandswert NKAT1 tatsächlicher Widerstandswert NKAT2 lshn_diag_r2 Ishv1/2_ed Fehlerstatusvariable für VKAT1/2 Ishn1/2_ed Fehlerstatusvariable für NKAT1/2 lshv1/2_tr_ed Treiberstatusvariable für VKAT1/2

Treiberstatusvariable für NKAT1/2

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	16.04.2013		5.10