II INFORMATYKA

Algorytmy i struktury danych

Lista nr 7

- 1. Zaimplementuj operacje (napisz program, dalszy ciąg w następnym tygodniu):
 - BST-INORDER,
 - BST-INSERT,
 - BST-MEMBER,
 - BST-MAX,
 - BST-MIN,

na drzewie BST używając reprezentacji wielotablicowej. Składa się ona z czterech tablic rozmiaru [1..max] o nazwach p, key, left, right, a każdy element drzewa jest reprezentowany przez cztery elementy tablic o tym samym wskaźniku-indeksie elementu. Poniżej przykład drzewa T i jego implementacji czterotablicowej (Root(T) = 6).

	1	2	3	4	5	6	7	8	9	10	11	12	13	
p	12	9	10	9	10	0	4	4	6	6	3	2	??	
key	19	17	27	13	30	25	14	12	16	29	28	23	??	
left	0	0	0	8	0	9	0	0	4	3	0	1	??	
right	0	12	11	7	0	10	0	0	2	5	0	0	??	

Dla opeeracji BST-INORDER opracuj nierekurencyjną wersję procedury podanej na wykładzie.

Uwaga. Idea operacji BST-MEMBER jest taka sama jak w przypadku BST-INSERT; wyjście z pętli while może jednak nastąpić wcześniej - w przypadku, gdy key[y] = key[z].

Przeprowadź testy poprawności na danych wprowadzanych ręcznie oraz sprawdź, jaką wysokość mają drzewa BST dla dużych danych losowych.