THÉORIE DE HODGE I

par PIERRE DELIGNE

On se propose de donner un dictionnaire heuristique entre énoncés en cohomologie l-adique et énoncés en théorie de Hodge. Ce dictionnaire a notamment pour sources [3] et la théorie conjecturale des motifs de Grothendieck [2]. Jusqu'ici, il a surtout servi à formuler, en théorie de Hodge, des conjectures, et il en a parfois suggéré une démonstration.

Définition 1.1. — Une structure de Hodge mixte H consiste en

- (a) Un \mathbb{Z} -module de type fini $H_{\mathbb{Z}}$ (le « réseau entier »);
- (b) Une filtration croissance finie W sur $H_{\mathbb{Q}} = H_{\mathbb{Z}} \otimes \mathbb{Q}$ (la « filtration par le poids »);
- (c) Une filtration décroissante finie F sur $H_{\mathbb{C}}=H_{\mathbb{Z}}\otimes\mathbb{C}$ (la « filtration de Hodge »).

Ces données sont soumises à l'axiome:

Il existe sur $Gr_W(H_{\mathbb{C}})$ une (unique) bigraduation par des sous-espaces $H^{p,q}$ telle que

$$(i) \operatorname{Gr}_{W}^{n}(H_{\mathbb{C}}) = \bigoplus_{p+q=n} H^{p,q}$$

(ii) la filtration F induit sur $\mathrm{Gr}_{\mathbf{W}}(H_{\mathbb{C}})$ la filtration

maybe
$$(\operatorname{Gr}_{W}(F)^{p}) = \bigoplus_{p' \geq p} H^{p',q'}$$

(iii) $\overline{H^{pq}} = H^{qp}$.

Un morphisme $f: H \to H'$ est un homomorphisme $f_{\mathbb{Z}}: H_{\mathbb{Z}} \to H'_{\mathbb{Z}}$ tel que $f_{\mathbb{Q}}: H_{\mathbb{Q}} \to H'_{\mathbb{Q}}$ et $f_{\mathbb{C}}: H_{\mathbb{C}} \to H'_{\mathbb{C}}$ soient respectivement compatibles aux filtrations W et F.

Les nombres de Hodge de H sont les entiers

$$(1.2) h^{pq} = \dim H^{pq} = h^{qp}.$$

On dit que H est pure de poids n si $h^{pq} = 0$ pour $p + q \neq n$ (i. e. si $Gr_W^i(H) = 0$ pour $i \neq n$). On dit encore que H est une structure de Hodge de poids n.

La structure de Hodge de Tate $\mathbb{Z}(1)$ est la structure de Hodge de poids -2, purement de type (-1, -1), pour laquelle $\mathbb{Z}(1)_{\mathbb{C}} = \mathbb{C}$ et $\mathbb{Z}(1)_{\mathbb{Z}} = 2\pi i \mathbb{Z} = \text{Ker} (\exp: \mathbb{C} \to \mathbb{C}^*) \subset \mathbb{C}$. On pose $\mathbb{Z}(n) = \mathbb{Z}(1)^{\otimes n}$.

On peut montrer que les structures de Hodge mixtes forment une catégorie abélienne. Si $f: H \to H'$ est un morphisme, alors $f_{\mathbb{Q}}$ et $f_{\mathbb{C}}$ sont strictement compatibles aux filtrations W et F ([1], 2.3.5).

2. Soient A un anneau normal intègre de type fini sur \mathbb{Z} , K son corps des fractions

et \overline{K} une clôture algébrique de K. Soit K_{nr} la plus grande sous-extension de \overline{K} non ramifiée en chaque idéal premier de A. On sait que, ou on pose

$$\pi_1 \text{ (Spec (A), } \overline{K} \text{)} = \text{Gal } (K_{nr}/K).$$

Pour chaque point fermé x de Spec (A), défini par un idéal maximal m_x de A, le corps résiduel $k_x = A/m_x$ est fini; le point x définit une classe de conjugaison de « substitutions de Frobenius » $\varphi_x \in \pi_1$ (Spec (A), K). On pose $q_x = \# k_x$ et $F_x = \varphi_x^{-1}$.

Soient K un corps de type fini sur le corps premier de caractéristique p, \overline{K} une clôture algébrique de K, l un nombre premier $\neq p$ et H un \mathbb{Z}_{l^-} (ou un \mathbb{Q}_{l^-}) module de type fini muni d'une action continue ρ de Gal (\overline{K}/K) . On supposera toujours par la suite qu'il existe A comme plus haut, avec l inversible dans A, tel que ρ se factorise par π_1 (Spec (A), \overline{K}) = Gal (K_{nr}/K) . On dira que H est pur de poids n si pour tout point fermé x d'un ouvert non vide de Spec (A), les valeurs propres α de F_x agissant sur H sont des entiers algébriques dont tous les conjugués complexes sont de valeur absolue $|\alpha| = q_x^{n/2}$.

PRINCIPE 2.1. — Si le module galoisien H « provient de la géométrie algébrique », il existe sur $H_{\mathbb{Q}_1} = H \otimes_{\mathbb{Z}_1} \mathbb{Q}_1$ une (unique) filtration croissante W (la « filtration par le poids »), invariante par Galois, telle que $\operatorname{Gr}_n^W(H)$ soit pur de poids n.

On peut penser que $Gr_n^W(H)$ est de plus semi-simple.

Lorsqu'on dispose de la résolution des singularités, on peut souvent donner de W une définition conjecturale, dont la correction résulte des conjectures de Weil [5] (cf. 6).

Soit μ le sous-groupe de \overline{K}^* formé des racines de l'unité. Le module de T at $\mathbb{Z}_l(1)$, défini par

$$\mathbb{Z}_l(1) = \operatorname{Hom}\left(\mathbb{Q}_l/\mathbb{Z}_l, \mu\right)$$

est pur de poids -2. On pose $\mathbb{Z}_{l}(n) = \mathbb{Z}_{l}(1)^{\otimes n}$.

Il est trivial que tout morphisme $f: H \to H'$ est strictement compatible à la filtration par le poids.

Le principe 2.1 concorde avec le fait que toute extension de \mathbb{G}_m (« poids -2 ») par une variété abélienne (« poids -1>-2 ») est triviale.

3. Traduction. — Les modules galoisiens qui apparaissent en cohomologie l-adique ont pour analogue, sur \mathbb{C} , les structures de Hodge mixte. On a de plus le dictionnaire

module pur de poids n filtration par le poids homomorphisme compatible à Galois module de Tate $\mathbb{Z}_l(1)$

structure de Hodge de poids n filtration par le poids morphisme structure de Hodge de Tate $\mathbb{Z}(1)$

4. Soit X une variété algébrique complexe (= schéma de type fini sur \mathbb{C} , qu'on supposera séparé). Il existe un sous-corps K de \mathbb{C} , de type fini sur \mathbb{Q} tel que X puisse être défini sur K (i. e. provienne par extension des scalaires de K à \mathbb{C} d'un K-schéma X'). Soit K la fermeture algébrique de K dans \mathbb{C} . Le groupe de Galois Gal (K/K) agit alors sur les groupes de cohomologie l-adique l*(l, \mathbb{Z}_l); on a

$$H^*(X(\mathbb{C}), \mathbb{Z}) \otimes \mathbb{Z}_l = H^*(X, \mathbb{Z}_l) = H^*(X'_{\mathbb{K}}, \mathbb{Z}_l).$$

D'après 3, il y a lieu de s'attendre à ce que les groupes de cohomologie $H^n(X(\mathbb{C}), \mathbb{Z})$ portent des structures de Hodge mixtes naturelles. C'est ce qu'on peut prouver (voir [1], 3.2.5, pour le cas où X est lisse; la démonstration est algébrique, à partir de la théorie de Hodge classique [6]). Pour X projectif et lisse, les conjectures de Weil impliquent que $H^n(X, \mathbb{Z}_l)$ est pur de poids n, tandis que la théorie de Hodge classique munit $H^n(X, \mathbb{Z})$ d'une structure de Hodge de poids n. Pour tout morphisme $f: X \to Y$ et pour K assez grand, $f^*: H^*(Y, \mathbb{Z}_l) \to H^*(X, \mathbb{Z}_l)$ commute à Galois (par transport de structure); de même, $f^*: H^*(Y, \mathbb{Z}) \to H^*(X, \mathbb{Z})$ est un morphisme de structures de Hodge mixte. Pour X lisse, la classe de cohomologie dans $H^{2n}(X, \mathbb{Z}_l(n))$ d'un cycle algébrique de codimension n, n, défini sur n, est invariante par Galois, i. e. définit

$$c(Z) \in \operatorname{Hom}_{\operatorname{Gal}}(\mathbb{Z}_{l}(-n), H^{2n}(X, \mathbb{Z}_{l})).$$

De même, la classe de cohomologie $c(Z) \in H^{2n}(X(\mathbb{C}), \mathbb{Z})$ est purement de type (n, n), i. e. correspond à

$$c(Z) \in \operatorname{Hom}_{H.M.}(\mathbb{Z}(-n), H^{2n}(X(\mathbb{C}), \mathbb{Z})).$$

5. Si $f: H \to H'$ est un morphisme, compatible à Galois, entre \mathbb{Q}_{t} -vectoriels de poids différents, on a f = 0. De même, si $f: H \to H'$ est un morphisme de structures de Hodge mixte pures de poids différents, alors f est de torsion. Une remarque plus utile est la

Scholie 5.1. — Soient H et H' des structures de Hodge de poids n et n', avec n > n'. Soit $f: H_{\mathbb{Q}} \to H'_{\mathbb{Q}}$ un homomorphisme tel que $f: H_{\mathbb{C}} \to H'_{\mathbb{C}}$ respecte F. Alors f = 0.

6. Soient X une variété projective et lisse sur \mathbb{C} , $D = \sum_{i=1}^{n} D_i$ un diviseur à croisements normaux dans X, somme de diviseurs lisses, et j l'inclusion dans X de U = X - D. Pour $Q \subset [1, n]$, on pose $D_Q = \bigcap_{i \in Q} D_i$.

En cohomologie l-adique, on a canoniquement

$$(6.1) R^q j_* \mathbb{Z}_l = \bigoplus_{\#Q=q} \mathbb{Z}_l (-q)_{D_Q},$$

et la suite spectrale de Leray pour j s'écrit

$$(6.2) E_2^{pq} = \bigoplus_{\#Q = q} H^p(D_Q, \mathbb{Q}_i) \otimes \mathbb{Z}_i(-q) \Rightarrow H^{p+q}(U, \mathbb{Q}_i).$$

D'après les conjectures de Weil [5], $H^p(D_Q, \mathbb{Q}_l)$ est pur de poids p, de sorte que E_2^{pq} est pur de poids p+2q. En tant que quotient d'un sous-objet de E_r^{pq} , E_r^{pq} aussi est pur de poids p+2q. D'après 5, $d_r=0$ pour $r\geq 3$, car les poids p+2q et p+2q-r+2 de E_r^{pq} et E_r^{pq} et E_r^{pq} et E_r^{pq} on a donc $E_3^{pq}=E_\infty^{pq}$. A une renumérotation près, la filtration par le poids de $H^*(U_r, \mathbb{Q}_l)$ est l'aboutissement de (6-2)

(6.3)
$$\operatorname{Gr}_{n}^{W}(H^{k}(U, \mathbb{Q}_{l})) = E_{3}^{2k-n, n-k}$$

7. En cohomologie entière, pour la topologie usuelle, la suite spectrale de Leray pour j s'écrit

$$(7.1) 'E_2^{pq} = \bigoplus_{\# O = q} H^p(D_Q, \mathbb{Z}) \Rightarrow H^{p+q}(U, \mathbb{Z}).$$

Puisque chaque D_Q est une variété projective non singulière, E_2^{pq} est muni d'une structure de Hodge de poids p. On pose $E_2^{pq} = E_2^{pq} \otimes \mathbb{Z}(-q)$ (structure de Hodge de poids p+2q). Comme groupe abélien, $E_2^{pq} = E_2^{pq}$; il y a intérêt à considérer (7.1) comme une suite spectrale de terme initial E_2^{pq} . D'après 3, il faut s'attendre à ce que $d_2: E_2^{pq} \to E_2^{p+2,q-1}$ soit un morphisme de structure de Hodge. On le prouve en interprétant d_2 comme un morphisme de Gysin. Dès lors, E_3^{pq} est muni d'une structure de Hodge de poids p+2q. D'après 3, on s'attend à ce que, modulo torsion, la suite spectrale (6.4) dégénère au terme E_3 ($E_3=E_\infty$), et à ce que la nullité des d_r ($r\geq 3$) soit une application de 5.1. Ce programme est mené à bien dans [1] 3.2. On y définit la filtration par le poids de $H^*(U, \mathbb{Q})$ comme aboutissement de (7.1), à la renumérotation (6.3) près.

En fait, pour munir des groupes de cohomologie H^* d'une structure de Hodge mixte, le point clef a toujours été jusqu'ici de trouver une suite spectrale E d'aboutissement H^* telle que Tanalogue l-adique de E_2^{pq} soit conjecturalement pur (de poids p+2q); E_2^{pq} doit alors porter une structure de Hodge naturelle (de poids p+2q), et la filtration W est l'aboutissement de E.

8. Soit Spec (V) le spectre d'un anneau de valuation discrète hensélien (un trait hensélien) de corps de fractions K et de corps résiduel k de type fini sur le corps premier de caractéristique p. Soient K une clôture algébrique de K et H un vectoriel de dimension finie sur Q₁ (l ≠ p), sur lequel Gal (K/K) agit continûment. D'après Grothendieck, on sait ([4], appendice) qu'un sous-groupe d'indice fini du groupe d'inertie I agit de façon unipotente. Remplaçant V par une extension finie, on se ramène au cas où l'action de I tout entier est unipotente (cas semi-stable); elle se factorise alors le plus grand pro-l-groupe I₁ quotient de I, canoniquement isomorphe à Z₁(1).

PRINCIPE 8.1. — Dans le cas semi-stable, si le module galoisien H « provient de la géométrie algébrique », il existe une (unique) filtration croissante W de H (la « filtration par le poids ») telle que I agisse trivialement sur $\operatorname{Gr}_n^W(H)$ et que $\operatorname{Gr}_n^W(H)$, en tant que module galoisien sous $\operatorname{Gal}(\overline{K}/K)/I$, soit pur de poids n.

On comparera à 2.1 et à l'appendice de [4].

Lorsqu'on dispose de la résolution des singularités, on peut parfois donner de W une définition conjecturale, dont la validité résulte des conjectures de Weil. A l'aide de la résolution et de Weil, il est souvent facile de montrer qu'en tout cas H se dévisse en modules galoisiens (sous Gal (\overline{k}/k)) purs.

Supposons H semi-stable. Pour $T \in I_l$, on définit log T comme la somme finie $-\sum_{n>0} (Id-T)^n/n$. L'application $(T, x) \to \log T(x)$ s'identifie à un homomorphisme

$$(8.2) M: \mathbb{Z}_{l}(1) \otimes H \to H.$$

Puisque $\mathbb{Z}_{l}(1)$ est de poids -2, on a nécessairement (cf. 5)

$$(8.3) M(\mathbb{Z}_{l}(1) \otimes W_{n}(H)) \subset W_{n-2}(H)$$

et M induit

(8.4)
$$\operatorname{Gr}(M): \mathbb{Z}_{l}(1) \otimes \operatorname{Gr}_{n}^{W}(H) \to \operatorname{Gr}_{n-2}^{W}(H).$$

8.5. Si X est une variété projective non singulière sur un corps algébriquement clos k_0 , on définit

$$L: \mathbb{Z}_l(-1) \otimes H^*(X, \mathbb{Z}_l) \rightarrow H^*(X, \mathbb{Z}_l)$$

comme étant le cup-produit avec la classe de cohomologie d'une section hyperplane. On notera une analogie formelle entre L et M; de même que M est défini par une action de $\mathbb{Z}_l(1)$, on peut regarder L comme défini par une action de $\mathbb{Z}_l(-1)$; L augmente le degré de 2, et Gr M (8.4) le diminue de 2.

9. Soient D le disque unité, $D^* = D - \{0\}$ et X

$$X \xrightarrow{f} \mathbb{P}^r(\mathbb{C}) \times D$$

$$pr_2$$

une famille de variétés projectives paramétrée par D, avec f propre et $f \mid D^*$ lisse. Gardons les notations de 8, et rappelons que dans l'analogie entre trait hensélien et petit voisinage de 0 dans la droite complexe on a le dictionnaire suivant (noter que le spectre de l'anneau des germes de fonctions holomorphes en 0 est un trait hensélien):

9.1.
$$D$$

$$D^*$$
un revêtement universel \widetilde{D}^* de D^*
groupe fondamental $\pi_1(D^*)$
(avec $\pi_1(D^*) = \mathbb{Z} \simeq \mathbb{Z}(1)_{\mathbb{Z}}$)
$$X$$

$$X^* = f^{-1}(D^*)$$

$$X \times X_E$$
système local $R^if_*\mathbb{Z} \mid D^*$

$$H^i(\widetilde{X}, \mathbb{Z})$$
Spec (V)
Spec (K)
groupe d'inertie I
(avec $I_l = \mathbb{Z}_l(1)$)
schéma projectif X sur Spec (V)

$$X_K$$

$$X_K$$
module galoisien $H^i(X_K, \mathbb{Z}_l)$

On notera que \widetilde{X} est homotopiquement équivalent à chacune des fibres $X_t = f^{-1}(t)$ $(t \in D^*): H^i(X_K, \mathbb{Z}_l)$ a encore pour analogue $H^i(X_t, \mathbb{Z})$ et à l'action de I correspond la transformation de monodromie T.

Ici encore, on sait qu'un sous-groupe d'indice fini de $\pi_1(D^*)$ agit de façon unipotente sur $H^i(\widetilde{X}, \mathbb{Q}) = H^i(X_t, \mathbb{Q})$. Plaçons-nous dans le cas semi-stable où $\pi_1(D^*)$ tout entier agit de façon unipotente (ceci revient à remplacer D par un revêtement fini), et soit T l'action du générateur canonique de $\pi_1(D^*)$.

Par 3 et 8, on s'attend à ce que $H^i(\tilde{X}, \mathbb{Q}) \simeq H^i(X_t, \mathbb{Q})$ soit muni d'une filtration croissante W, que $\operatorname{Gr}_n^W(H^i(\tilde{X}, \mathbb{Q}))$ soit muni d'une structure de Hodge de poids n, que $\log T(W_n) \subset W_{n-2}$ et que $\log T$ induise un morphisme de structures de Hodge

$$M_n: \mathbb{Z}(-1) \otimes \operatorname{Gr}_n^W(H^i) \to \operatorname{Gr}_{n-2}^W(H^i).$$

On aimerait de plus que (8.2), et non seulement (8.3) et (8.4), aient un analogue.

On parvient en fait à définir, pour chaque vecteur u de l'espace tangent à D en $\{0\}$, une structure de Hodge mixte \mathcal{H}_u sur $H^i(\widetilde{X}, \mathbb{Z})$. La filtration W et les structures de Hodge sur les $Gr_n^W(H^i)$ sont indépendantes de u, et la dépendance en u de \mathcal{H}_u s'exprime

simplement en terme de T. En analogie avec (8.2), on trouve que, quel que soit u, log T induit un homomorphisme de structures de Hodge mixtes

$$M: \mathbb{Z}(1) \otimes H^{i}(\tilde{X}, \mathbb{Z}) \rightarrow H^{i}(\tilde{X}, \mathbb{Z}).$$

Enfin, l'analogie 8.5 n'est pas trompeuse (mais ici, le fait que $f \mid D^*$ soit supposé propre et lisse est sans doute essentiel). On prouve que

$$(\log T)^k$$
: $\operatorname{Gr}_{n+k}^W(H^n(\widetilde{X}, \mathbb{Q})) \to \operatorname{Gr}_{n-k}^W(H^n(\widetilde{X}, \mathbb{Q}))$

est un isomorphisme pour tout k (cf. [6], IV 6, cor. au th. 5). Ceci caractérise la filtration W. Jusqu'ici, on ne dispose d'un analogue du théorème de positivité de Hodge (cf. [6], IV 7, cor. au th. 7) que dans des cas très particuliers. On espère que les structures mixtes \mathcal{H}_u déterminent le comportement asymptotique, pour $t \to 0$, de la famille de structures pures $H^i(X_t, \mathbb{Z})$ $(t \in D^*)$.

BIBLIOGRAPHIE

- [1] P. Deligne. Théorie de Hodge, à paraître aux Publ. Math. I. H. E. S., 40.
- [2] M. Demazure. Motifs des variétés algébriques, Sém. Bourbaki (1969-1970), exp. 365.
- [3] J.-P. SERRE. Analogues kählériens de certaines conjectures de Weil, Ann. of Math., 71, 2 (1960), pp. 392-394.
- [4] and J. TATE. Good reduction of abelian varieties, Ann. of Math., 88, 3 (1968), pp. 492-517.
- [5] A. Weil. Number of solutions of equations in finite fields, Bull. Amer. math. Soc., 55 (1949), pp. 497-508.
- [6] —. Introduction à l'étude des variétés kählériennes, Act. Sci. et Ind., 1267, Hermann (1958).

I. H. E. S. 35, route de Chartres, 91-Bures-sur-Yvette (France)