PC = Program Counter	
PC = Program Counter : -stores next in	struction address
IN TOUR MAN ROLL WAY	-
- holds current	instruction for deceding
- holds current MAR = Memory Address - outputs add MDR = Memory Data R - holds data	Register
- outputs add	ross to memory
MDR = Memory Data R	legister
- holds data	Hostrom memory
Harvard Architecture	vs Von Neumann Architecture
-separate memories for	- one memory for instructions
-separate memories for instructions and data	and data
- instruction execution e.g. ADD R2,	tan register, existen
- instruction execution	dostinative sperand register
	immediate operand
e.g. ADD R2,	R1, #50
t: tetch (instruction)	MAREPC, bus read, IRE MOR
and increment PC	PC C PC+4
A	TO [400]
1): de code (figure out	IR ADD 2 1 50
D: de code (figure out what to do)	opcode dot src immed.
	0 ()
C: compute	result < R1 +50
	20.
W15: Write back (result	R2 = result
WB: write back (result to a register)	
0	

- ISA: Instruction Set Architecture,
- describes processor functionality (instruction encuding, memory model, register set, exception handling)
- abstraction layer between hw and sw
- ISA types

CISC ______ RISC

- complex instruction-set computer - popular 1960s - mid 1980s - variable-length instructions - reduced instr.-set comp. - introduced mid-80s - fixed-length instructions - each instruction can do simple instructions - shorter programs - longer programs
- pipelined execution =>
1 cycle per instr. - multiple instruction FOCMB e.g. ARM 3-stage IBM Power 9 12-stages

2) Memo	ry					[3,3]
- Ci70	me fives	Langle		internation interest	mal nical technical mmission	
3100	système	internationale		interectro	Hechnission mm ission	
SI		magnitude	LIEC		magnitu	ude_
K	Kilo	0103	ki	Kibi	0210=	:1024
1	mega	10 9	Mi	mebi	230	
6	giga	10 12	T:	gibi.	240	
þ	peta	1015	P;	pesi	250	
É	exa	10 18	Ei	exbi	260	
182	, ,		- 6. 2	1 1	P 11	
- meme	ry 15 51	zed in power	3 07 2	but s	of requesty	/
e s	1 kB	ately) reported be	1 ki	B = 102	4 buter	
- hade	Lydrives	(HDD) are	sized	in pow	ers of	10
	lisk o	and Caccur	ately) (eported u	with SI	prefixes
ed	, 1 Tf	3 HPD has	1012	bytes	(not 240	bytes)
- 000	onin a of	e multi-L	6 1 de	ih mema	rle	
01 00	1/	multi-by		-		
e.	9. 0x	12, 34 AB	CD,			/ .)
	0 -	Lmost significial Endian	I leas	t significa	and byle 1	(LSB)
		- most signin	Heart by	te const	S)	
	ß	sig-Endian		Little-	Endian	
	0	12 MSB		0 4	LSB	
	1	34		1 AZ	3	
	2	CD LSB		3 12	Med	
	3			n	MSB	

5
2.1) Storage (Memory) Technology
- non-volatile memory retains data when powered off
e.g. ROM read-only memory - contents are programmed at the foundry - used for startup code (BIOS)
eg. Flash reprogrammable memory - can only be reprogrammed in blocks; uses a transistor of 16-128 kib some gute drain - also used for startup circle
- also used for startup cede (e.g. in LPC 1768)
- volatite memory loses data when powered off
eg, SRAM, static RAM i uses an invertor - a fast, expensive memory pair - used in caches
e.g. DRAM dynamic RAM - a slower, cheaper nemony juses a capacitor - used for main memory

- hard disk drives (1400)

- data is stored on spinning magnetic platters - the read write head seeks to the correct track,

then waits for the night sector to spin under it

- data is stored in sectors of 512 B on 4 kiB

- HDDs are very slow (~10 ms latency) but have large capacity and high bandwidth

- experation:
- stores recently used data
-retrieves data from momory in blocks (this
takes advantage of memory's high bandwidth)

- cache	blocks are	"tagged"	with their memory				
- cache blocks are "tagged" with their memory address - for every processor memory access: -it will check the tags for a matching address -if found "hit" - returns data -if not found "miss" - retrieve block from							
memory, then return the data							
- there are often multiple levels of cache e.g. L1, L2, L3 -Ismalter caches are faster (L1) - larger caches have higher hit rates (L3)							
eg dual-core L1-I:L1 instr. \$							
	processor		L1-DiL1 data \$				
unified —	L1-I L1-D L2	L1-I L1-D L2	2-cycle latency 256 kiB				
combine instr. + data		3	10-cycle latency				
		1	40-cycle latency				
main memory							

3) Microcontroller Unit (MCU)

-an MCU integrates the processor, memory, real-time clock (RTC), and I/O devices on one chip

- I-code bus: For instructions (connects to Flash) ? Harvard - D-code bus: For data (connects to SRAM) S Architectu - System bus: For I/O - ARM Contex-M3 processor

- word size = 32 bits (all registers are 32 bits)
- it can address 4 GiB of memory (232 = 46i)

- it has 16 general-purpose registers (RØ-R15); RIS is the PC

- it can do 8-bit, 16-bit and 32-bit data transfers

-no cache