Noncontact Laser Sensing Technology for Structural Health Monitoring and Nondestructive Testing

Hoon Sohn

Professor
Department of Civil and Environmental Engineering
KAIST, Daejeon, South Korea

Director ICT Bridge Research Center KAIST, Daejeon, South Korea

Plenary Talk at SPIE Smart Structures/NDE on March 10, 2014

Presentation Outline

1. Noncontact Laser Ultrasonics

- Notch detection for metallic structures
- Delamination detection for composite & wind turbine structures
- Fiber guided laser ultrasonic system for nuclear power plant monitoring

2. Contact/Noncontact Nonlinear Ultrasonic Wave Modulation

- PZT based crack detection for an aircraft fitting lug
- ACT based crack detection for a rotating shaft
- Laser based nonlinear ultrasonics wave modulation

3. Laser Lock-in Thermography

- Surface crack detection for high-speed train bogies
- Micro crack detection for semiconductor chips

4. LiDAR/LADAR

- Noncontact dynamic displacement estimation
- Dimension estimation for precast concrete slabs
- Surface defect detection for concrete panels

5. Laser based Power/Data Transmission

Noncontact Laser Ultrasonic Scanning System

* Y.K. An, B.J. Park, H. Sohn, Smart Materials and Structures, Vol. 22, 025022. 2013

KAIST - Smart Structures and Systems Laboratory

٠,

Hidden Notch Detection for an Aluminum Plate (Sponsored by National Research Foundation of Korea)

KAIST - Smart Structures and Systems Laboratory

Wave Propagation Images for Intact & Damage Cases

Delamination Detection in a Composite Plate (Sponsored by US Air Force Research Laboratory)

.....

6

Wave Propagation Imaging and Application of Laplacian Filtering

Wind Turbine Blade Monitoring using Laser Ultrasonic System (Sponsored by Korea Institute of Energy Technology Evaluation and Planning)

Hidden Damage Detection in a Rotating Blade

10

* B. Park, H. Sohn, C.M. Yeum, et al., Structural Health Monitoring An International Journal, Vol. 12, pp. 494-506, 2013

KAIST - Smart Structures and Systems Laboratory

Monitoring of Pipelines inside Nuclear Power Plants insored by KAIST Initiative on Energy, Environment, Water & Sustainability

KAIST - Smart Structures and Systems Laboratory

11

Optical Fiber Guided Ultrasonic Excitation and Sensing

* H.S. Lee, J.Y. Yang, H. Sohn, Structural Health Monitoring An International Journal, Vol. 11, PP. 684-695, 2012

KAIST - Smart Structures and Systems Laboratory

Test under High Temperature Environment

Courtesy of SKI Co. Ltd.

- Temperature ranges:
 - 260°C, 300°C, 340°C
- Signal changes at high temperature
- Reduction in signal amplitude
- Slower wave speed

KAIST - Smart Structures and Systems Laboratory

1

Test Under High Radiation Environment

Single-mode

Ultrasonic

Radiation facility (KAERI)

Gamma ray irradiation dose:

- 125 kGy for 10 years
- 20 kGy/h (NPP: 1 kGy/h~10 MGy/h

Signal changes after high radiation

- Amplitude reduction observed

AIST - Smart Structures and Systems Laboratory

14

Presentation Outline

1. Noncontact Laser Ultrasonics

- Notch detection for metallic structures
- Delamination detection for composite & wind turbine structures
- Fiber guided laser ultrasonic system for nuclear power plant monitoring

2. Contact/Noncontact Nonlinear Ultrasonic Wave Modulation

- PZT based crack detection for an aircraft fitting lug
- ACT based crack detection for a rotating shaft
- Laser based nonlinear ultrasonics wave modulation

3. Laser Lock-in Thermography

- Surface crack detection for high-speed train bogies
- Micro crack detection for semiconductor chips

4. LiDAR/LADAR

- Noncontact dynamic displacement estimation
- Dimension estimation for precast concrete slabs
- Surface defect detection for concrete panels

5. Laser based Power/Data Transmission

KAIST - Smart Structures and Systems Laboratory

15

Norking Principle of Nonlinear Wave Modulation

Nonlinear wave modulation uses the modulation between a low frequency (LF) signal and a high frequency (HF) signal that occurs in the presence of structural nonlinearity such as fatigue cracks [de Lima and Hamilton (2003)]

KAIST - Smart Structures and Systems Laboratory

1

PZT based Nonlinear Modulation for Aircraft Fitting Lug (Supported by US Air Force Research Laboratory)

F-15 Aircraft

ratigue test

Fitting-lug mock up specimen

Fatigue crack on the specimen

KAIST - Smart Structures and Systems Laboratory

17

First Sideband Spectrum for Fatigue Crack Detection

^{*} H. Sohn, H.J. Lim, M.P. DeSimio, et al., Journal of Sound and Vibration, Vol. 333, PP. 1473-1484, 2013

KAIST - Smart Structures and Systems Laboratory

Monitoring of a Drop Lift in Automobile Assembly Lines (Sponsored by Hyundai/KIA Motors)

ACT based Nonlinear Modulation for Rotating Shan (Sponsored by KIA Motors)

KAIST - Smart Structures and Systems Laboratory

2

Laser based Nonlinear Ultrasonic Modulation (In collaboration with Prof. T. Kundu from Univ. of Arizona, Brain Pool Program

* Eiras et al., Journal of Nondestructive Evaluation, Vol. 32(3), pp. 300-314, 2013.

KAIST - Smart Structures and Systems Laboratory

21

Overview of Laser based Nonlinear Ultrasonic Modulation

KAIST - Smart Structures and Systems Laboratory

22

Fatigue Grack Detection using Laser based Nonlinear Ultrasonic Modulation

Specimen II Specimen III Specimen III

KAIST - Smart Structures and Systems Laboratory

23

3.03µm

Sideband Peak Counting (SPC) Result

^{*} All the reference data is collected before the cracks are introduced

(AIST - Smart Structures and Systems Laboratory

2

^{*} P.P. Liu, H. Sohn, T. Kundu, The 166th Meeting of the Acoustical Society of America, 2013