

Figur 1: Oppgave 5.2

Oppgaver til kapittel 5

- **5.1** (a) Usann. Moteksempel: 81 > 55, og 81 er et oddetall, da det ikke er delelig med 2. 81 er heller ikke et primtall, da det er delelig med 9.
 - (b) Anta for motsigelse at alle formler F som er slik at ¬F er en kontradiksjon, er falsifiserbare. At F er falsifiserbar, betyr at F for en gitt valuasjon v, er usann. For den samme valuasjonen v vil ¬F vaere sann, for det er slik ¬ tolkes. Dette er er en motsigelse. Vi gikk ut ifra at ¬F var en kontradiksjon, som altsaa ikke kan oppfylles. Paastanden er sann; den kan ikke vaere usann.
 - (c) Usann. \top er en tautalogi som ikke har noen tautalogier.
 - (d) Usann. Moteksempel: La F vaere slik at F = P. Dermed har vi at $\neg F = \neg P$. F oppfylles av valuasjonen som gjoer P sann, og $\neg F$ oppfylles av valuasjonen som gjoer P usann. Dermed er hverken F eller $\neg F$ en kontradiksjon, siden de begge kan oppfylles.
- **5.2** Se figur 1. MERK: Les \rightarrow som \Rightarrow Vi har at ogsaa at (c) \Leftrightarrow (d).

Forskjellen mellom (a) og (b) er at (a) kun sier noe om at det *eksisterer* en gitt valuasjon som gjoer F sann. (b) sier spesifikt at valuasjonen ν gjoer F sann. Vi kan ikke dedusere paa basis av (a) at noeyaktig valuasjonen ν gjoer F sann. Men gitt at (b) er sann, kan vi konkludere med at (a) er sann.

5.3 La G vaere tautalogien $(A \lor \neg A)$ og F vaere A.

Dermed kan $(F \to G)$ representeres ved $(A \to (A \lor \neg A))$, en tautalogi, jamfoer reglene for implikasjon (saa lenge det impliserte er sant, vil uttrykket alltid evalueres til aa bli sant).

For valuasjonen som gjoer A usann, ser vi at G er sann, mens F er usann, jamfoer reglene for implikasjon (dersom det som impliserer er usant, og det som blir implisert er sant, vil hele uttrykket falsifiseres). Alle valuasjoner gjoer ikke F sann, saa resonnementet holder ikke; det er ikke gyldig.

Anta for motsigelse at $(P \to (Q \to P))$ ikke er en tautalogi. Det betyr at det finnes en valuasjon ν som falsifiserer uttrykket. Isaafall maa ν gjoere P sann, og $(Q \to P)$ usann, for det er slik \to -formler tolkes. For at $(Q \to P)$ skal vaere usann, maa Q vaere sann, og P usann, jamfoer reglene for implikasjon. Men dette er en motsigelse, for ν vi har allerede slaatt fast at ν maa

gjoere P sann. P kan ikke vaere baade sann og usann samtidig. Paastanden om at uttrykket er en tautalogi, er gyldig; den kan ikke vaere usann.

Oppgaver til kapittel 6

- **6.1** (a) R er ikke refleksiv, ikke symmetrisk, ikke transitiv, ikke anti-symmetrisk, ikke irrefliksiv.
 - (b) R er refliksiv, symmetrisk, transitiv, antis-symmetrisk og ikke irrefliksiv.
 - (c) R er ikke irrefliksiv, ikke refliksiv, ikke anti-symmetrisk. R er transitiv og symmetrisk.
 - (d) R ikke refliksiv, ikke symmetrisk. R er irrefliksiv, transitiv og anti-symmetrisk.

R er anti-symmetrisk, irrefliksiv og transitiv. R er ikke refliksiv og ikke symmetrisk.

- **6.3** (a) $R = \{ <1, 1>, <2, 2>, <3, 3>, <1, 2>, <2, 1> \}$
 - (b) $R = \{ <1, 1>, <2, 2>, <3, 3> \}$
 - (c) $R = \emptyset$. Teknisk sett er det tomme settet irrefleksivt fordi det ikke finnes noen $x \in \{1, 2, 3\}$ slik at < x, x > er med. Det er ogsaa symmetrisk og transitiv, fordi "hvisdelen av disse kriteriene, aldri blir sann.
 - (d) $R = \{ <1,2>, <2,1>, <2,3>, <3,2><1,1> \}$
- **6.4** (a) $A = \{1, 2, 3\}$, $B = \{2, 3\}$. AEB, fordi $A \setminus B = \{1\}$. $A = \{1, 2, 3\}$, $B = \{3\}$. Disse to mengdene er ikke relatert til hverandre, fordi $A \setminus B = \{1, 2\}$.
 - (b) Dersom E er symmetrisk, vil det vaere slik at hvis AEB, saa BEA. La A og B vaere slik at $A = \{1, 2\}$ og $B = \{1\}$.

 $A \setminus B = \{2\}$, saa AEB.

 $B \setminus A = \emptyset$, som ikke har noe element. Derfor $\langle B, A \rangle \notin E$.

E er ikke symmetrisk.

(c) La M vaere en mengde slik at $M = \{\{1, 2, 3\}, \{2, 3\}, \{3\}\}$. Transitive relasjoner defineres slik: Dersom xRy og yRz, saa xRz.

 $\{1,2,3\}\setminus\{2,3\}=\{1\}$, saa disse to inngaar i relasjonen E.

 $\{2,3\}\setminus\{3\}=\{2\}$, saa disse to inngaar i relasjonen E.

Dersom E er en transitiv relasjon, vil $\{1, 2, 3\}E\{3\}$. Men dette stemmer ikke, fordi $\{1, 2, 3\} \setminus \{3\} = \{1, 2\}$.

E er ikke transitiv.

(d) Anta for motsigelse at E er ikke er irrefleksiv. Det betyr at det finnes minst to elementer A_1 og A_2 (to mengder) i relasjonen E paa en vilkaarlig mengde, som er slik at $A_1 = A_2$, og mengdedifferansen mellom disse bestaar av noeyaktig ett element. Dette er en motsigelse, fordi mengdedifferansen mellom to like mengder alltid er \emptyset . Paastanden kan ikke vaere usann; E er irrefleksiv.