Problem 2.31 Find I_0 in the circuit of Fig. P2.31. Hint: Use the current division method.

Figure P2.31: Circuit for Problem 2.31.

Problem 2.33 Determine R_{eq} at terminals (a,b) in the circuit of Fig. P2.33.

Figure P2.33: Circuit for Problem 2.33.

Problem 2.39 Find R_{eq} at terminals (c,d) in the circuit of Fig. P2.38.

Problem 2.43 Apply voltage and current division to determine V_0 in the circuit of Fig. P2.43 given that $V_{\text{out}} = 0.2 \text{ V}$.

Problem 3.20 For the circuit in Fig. P3.20, determine the current I_x . Use Node-Voltage Technique.

Problem 3.15 Use the supernode concept to find the current I_x in the circuit of **Fig.** P3.15.

Figure P3.15: Circuit for Problem 3.15.

Problem 3.17 Determine V_x in the circuit of **Fig.** P3.17. Use Node-Voltage Technique.

Problem 3.43 Apply mesh analysis to the circuit of Fig. P3.43 to find I_x .

Figure P3.43: Circuit for Problem 3.43.

Problem 3.34 Apply mesh analysis to the circuit in Fig. P3.34 to determine V_x .

Problem 3.47 Apply mesh analysis to determine I_0 in the circuit in Fig. P3.47.

