Frequent Patterns and Association Rules

PART 01

Frequent Pattern Analysis

Frequent Pattern Analysis

- □ Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?

What Is Frequent Pattern Analysis?

Applications

- Basket data analysis
- cross-marketing
- catalog design
- · sale campaign analysis
- Web log (click stream) analysis
- DNA sequence analysis

Why Is Freq. Pattern Mining Important?

An intrinsic and important property of datasets

Foundation for many essential data mining tasks

- Association, correlation, and causality analysis
- ☐ Sequential, structural (e.g., sub-graph) patterns
- Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
- Classification: discriminative, frequent pattern analysis
- ☐ Cluster analysis: frequent pattern-based clustering

Mining Association Rules

Transaction-id	Items bought
1	A, B, D
2	A, C, D
3	A, D, E
4	B, E, F
5	B, C, D, E, F

- Transaction data analysis. Given:
 - A database of transactions (Each tx. has a list of items purchased)
 - Minimum confidence and minimum support
- Find all association rules: the presence of one set of items implies the presence of another set of items

Diaper → Beer [0.5%, 75%] (support, confidence)

Mining Strong Association Rules in Transaction Databases (1/2)

Measurement of <u>rule strength</u> in a transaction database.

 $A \rightarrow B$ [support, confidence]

$$support(A \cup B) = Pr(A \cup B) = \frac{\text{# of tx containing all items in } A \cup B}{\text{total # of tx}}$$

confidence
$$(A \cup B) = \Pr(B \mid A) = \frac{\text{# of tx containing both } A \cup B}{\text{# of tx containing A}}$$

Note: support(AUB) means support for occurrences of transactions **X** and **Y** both appear. "U" is NOT the logical OR here.

Example of Association Rules

Transaction-id	Items bought	
1	A, B, D	
2	A, C, D	
3	A, D, E	
4	B, E, F	
5	B, C, D, E, F	

Let min. support = 50%, min. confidence = 50%

Frequent patterns: {A:3, B:3, D:4, E:3, AD:3}

• Association rules: $A \rightarrow D$ (s = 60%, c = 100%)

 $D \rightarrow A \ (s = 60\%, c = 75\%)$

Mining Strong Association Rules in Transaction Databases (2/2)

- We are often interested in only strong associations, i.e.,
 - support ≥ min_sup
 - confidence ≥ min_conf

•Examples:

- milk → bread [5%, 60%]
- tire and auto_accessories → auto_services [2%, 80%].

Figure to analyze

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- \square support, s, probability that a transaction contains $X \cup Y$
- confidence, c, conditional probability that a transaction having X also contains Y

$$support(A \Rightarrow B) = P(A \cup B) \\ confidence(A \Rightarrow B) = P(B|A).$$

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)} = \frac{support_count(A \cup B)}{support_count(A)}$$

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- **□** support(Beer ∪ Diaper)=3/5=60%
- □ confidence(Beer=>Diaper)=3/3=100%

Basic Concepts: Frequent Patterns

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- □ Find all the rules X → Y with minimum support and confidence
- **□** *Let minsup* = 50%, *minconf* = 50%
- ☐ Frequent Pattern:

Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer,

Diaper}:3, {Nurs, Diaper}:2

- Association rules: (many more!)
 - Beer → Diaper (60%, 100%)
 - Diaper → Beer (60%, 75%)

Two Steps for Mining Association Rules

- Determining "large (frequent) itemsets"
 - The main factor for overall performance
 - The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Generating rules

<u>Apriori</u>

A Candidate Generationand-Test Approach

Scalable Frequent Itemset Mining Methods

Brute-Force Approach

☐ List all items

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I2
Γ600 Ι2, Ι3	
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

Brute-Force Approach

- ☐ List all items
- But...
 - 1) Unnecessary itemset examination, i.e., constructing too many non-frequent itemsets

TID	List of item_IDs	
T100	I1, I2, I5	
T200	I2, I4	
T300 I2, I3		
Γ400 I1, I2, I4		
T500	I1, I2	
T600 I2, I3		
T700 I1, I3		
T800	I1, I2, I3, I5	
T900	I1, I2, I3	

Brute-Force Approach

- List all items
- □ But...
 - 1) Unnecessary itemset examination, i.e., constructing too many non-frequent itemsets
 - 2) Generating duplicate itemsets

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I2
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

To Avoid Unnecessary Examination

Apriori Pruning Principle, a.k.a Downward Closure Property

If there is any itemset which is infrequent, its superset should

not be generated/tested!

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer, Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,	
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$	
With support-based pruning,	
6 + 6 + 1 = 13	

To Avoid Generating Duplicate Itemsets

Join

- Joining 2 k-itemsets:
 2 k-itemsets I1, I2 could be joined into a (k+1)-itemset if I1 and I2 have the same first (k-1) items
- E.g., {A, B, C, D, E} join {A, B, C, D, F} = {A, B, C, D, E, F}
- However, {A, B, C, D, E} cannot join {A, B, C, E, F}

- Start with all 1-itemsets (C₁)
- Go through data and count their support and find all "large" 1-itemsets (L₁)
- Join them to form "candidate" 2-itemsets (C₂)
- Go through data and count their support and find all "large" 2-itemsets (L₂)
- Join them to form "candidate" 3-itemsets ... (C₃)

•••

 C_{I}

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 L_{I}

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

(

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

...

- Large itemset (L_k) : itemset with support > s
- Candidate itemset (C_k) : itemset that may have support > s

The Apriori Algorithm—An Example

 $\{B, C, E\}$

 $\{B, C, E\}$

2

The Apriori Algorithm—An Example

From Large Itemsets to Rules

■ Recall that confidence is defined as:

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support_count(A \cup B)}{support_count(A)}$$

- For each large itemset /
 - For each subset s of l, if (sup(l) / sup(s) ≥ min_conf)
 - output the rule s=> (I-s)
 - conf. = sup(l)/sup(s)
 - support = sup(l)
- •E.g., /={B, C, E} with support =2 is a frequent 3-item set, assume min_conf=80%
- •Let $s=\{C,E\}$, sup(I) / sup(s) = 2/2 = 100% > 80%
- •Therefore, {C,E}=>{B} is an association rule with support = 50%, confidence = 100%

Database TDB

Tid	Items
100	A, C, D
200	В, С, Е
300	A, B, C, E
400	B, E

 L_2

2	Itemset	sup
	{A, C}	2
	{B, C}	2
-	{B, E}	3
	{C, E}	2

 L_3

Itemset	sup
{B, C, E}	2

Redundant Rules

For the same support and confidence, if we have a rule {a,d}
 →{c,e,f,g}, do we have:

•
$$\{a,d\} \rightarrow \{c,e,f\}$$
 ? Yes!
• $\{a\} \rightarrow \{c,e,f,g\}$? No!

- Consider the example in previous page
- I={B, C, E}, s={C,E}, then {C,E}->{B} is an association rule
- **However**, *I*={B, C, E}, *s*={C}, i.e., {C}->{B} is not

•
$$\{a,d,c\} \rightarrow \{e,f,g\}$$
 ? No!
• $\{a\} \rightarrow \{c,d,e,f,g\}$? No!

PART 02

Which Patterns Are Interesting? **Pattern Evaluation** Methods

Strong rules are not necessarily interesting

- ●10,000 transactions:
 - 6,000 include games, 7,500 include videos, 4,000 include both game and video
- A strong association rule is thus derived (min_sup=30%, min_conf=60%):

```
buys (X, "computer games") \Rightarrow buys (X, "videos")

[support = 40\%, confidence = 66\%].
```

- This rule is MISLEADING, because probability of videos is 75% > 66% (buying game and video together)
- In fact, games and videos are negatively associated
 Buying one actually decreases the likelihood of buying the other

Interestingness Measure: Correlations (Lift)

- games ⇒ not video [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift
 If the occurrence of A is independent of B => P(A ∪ B) = P(A)P(B)

$$lift(A, B) = \frac{P(A \cup B)}{P(A)P(B)} \quad \begin{array}{ll} lift(A, B) < 1 => A, \ B \ are \ negative \ correlated \\ lift(A, B) > 1 => A, \ B \ are \ positively \ correlated \\ lift(A, B) = 1 => A, \ B \ are \ independent \end{array}$$

$$lift(G,V) = \frac{4000/10000}{6000/10000*7500/10000} = 0.89$$

$$lift(G, \neg V) = \frac{2000/10000}{6000/10000 * 2500/10000} = 1.33$$

	Game	Not game	Sum (row)
Video	4000	3500	7500
Not video	2000	500	2500
Sum(col.)	6000	4000	10000

Interesting Measure: Chi-square(X^2)

$$\chi^{2} = \Sigma \frac{(observed - expected)^{2}}{expected}$$

$$= \frac{(4000 - 4500)^{2}}{4500} + \frac{(3500 - 3000)^{2}}{3000} + \frac{(2000 - 1500)^{2}}{1500} + \frac{(500 - 1000)^{2}}{1000}$$

$$= 555.6.$$

 χ^2 >1, and the observed value of (game, video)=4000, which is less than the expected value 4,5000

⇒ Buying game and buying video are negatively correlated

Consistent with the conclusion derived from the analysis of the lift measure

Pattern Evaluation Measures

•all_confidence: Minimum confidence of "A=>B" and "B=>A"

$$all_conf(A, B) = \frac{sup(A \cup B)}{max\{sup(A), sup(B)\}} = min\{P(A|B), P(B|A)\}$$

•max_confidence: Maximum confidence of "A=>B" and "B=>A"

$$max_conf(A, B) = max\{P(A | B), P(B | A)\}$$

•Kulczynski: Average confidence of "A=>B" and "B=>A"

$$Kulc(A, B) = \frac{1}{2}(P(A|B) + P(B|A))$$

•Cosine:
$$cosine(A, B) = \frac{P(A \cup B)}{\sqrt{P(A) \times P(B)}} = \frac{sup(A \cup B)}{\sqrt{sup(A) \times sup(B)}}$$
$$= \sqrt{P(A|B) \times P(B|A)}.$$

Comparison of Interestingness Measures

m and c:

- positively correlated in D_1 , D_2 , i.e., $mc(10,000) > \bar{m}c(1,000) = m\bar{c}(1,000)$
- negatively correlated in D₃.
- neutral in D₄

	milk	milk	$\Sigma_{\sf row}$	
coffee	mc	mc	с	
coffee	mc	\overline{mc}	\overline{c}	
Σ_{col}	m	\overline{m}	Σ	

Data										
Set	mc	$\overline{m}c$	т̄с	mc	χ^2	lift	all_conf.	max_conf.	Kulc.	cosine
$\overline{D_1}$	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

Comparison of Interestingness Measures

m and c:

- **positively correlated** in D_1 , D_2 , i.e., $mc(10,000) > \bar{m}c(1,000) = m\bar{c}(1,000)$
- negatively correlated in D₃.
- neutral in D₄

All the four new measures show m and c are strongly positively associated

Data						- 6				
Set	mc	$\overline{m}c$	m̄c	mc	χ^2	lift	all_conf.	max_conf.	Kulc.	cosine
D_1	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

Comparison of Interestingness Measures

m and c:

- positively correlated in D₁, D₂
- negatively correlated in D₃
- neutral in D₄

In real-world scenarios, \overline{mc} is usually huge and unstable

 χ^2 and lift generate dramatically different measures

Due to their sensitivity to \overline{mc}

	Data				to me							
	Set	mc	mc	mc	mc	χ ²	lift 🦊	all_conf.	max_conf.	Kulc.	cosine	
1	D_1	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	0.91	
١	D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91	
	D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09	
	D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5	
	D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29	
	D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10	

Comparison of Interestingness Measures

m and c:

- positively correlated in D₁, D₂
- negatively correlated in D₃
- neutral in D₄

All the four new measures show m and c are strongly nagtively associated

Data Set	mc	<u>m</u> c	тīс	mc	χ²	lift	all_conf.	max_co	Kulc.	cosine
$\overline{D_1}$	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

Comparison of Interestingness Measures

m and c:

- positively correlated in D₁, D₂
- negatively correlated in D₃
- neutral in D₄

 χ^2 and lift: values are between D₁ and D₂

Data						\overline{y}				
Set	mc	mc	m̄c	mc	χ^2	lif	all_conf.	max_conf.	Kulc.	cosine
$\overline{D_1}$	10,000	1000	1000	100,000	90557	.26	0.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

Comparison of Interestingness Measures

m and c:

- positively correlated in D₁, D₂,
- negatively correlated in D₃.
- neutral in D₄

χ² and lift: show that D4 is positive associated between m and c

Data										
Set	mc	mc	m̄c	mc	χ^2	lift	_conf.	max_conf.	Kulc.	cosine
$\overline{D_1}$	10,000	1000	1000	100,000	90557	9.26	.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

Comparison of Interestingness Measures

m and c:

- positively correlated in D₁, D₂
- negatively correlated in D₃.
- neutral in D₄

It is neutral as indicated by the four measures.

A customer buys coffee (or milk), the probability of buying milk (of coffee) is exactly 50%

Data Set	mc	<u>m</u> c	т̄с	mc	χ²	lift	all_conf.	max_conf.	Kulc.	sir
$\overline{D_1}$	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

Why are lift X^2 and so poor?

Null-transactions

- Transaction that does not contain any of the itemsets being examined
- E.g., \overline{mc} is the number of null-transactions
- lift and χ^2 are strongly influenced by \overline{mc}
- The other four measures are good indicators
 - Their definitions remove the influence of \overline{mc}

Which Null-Invariant Measure Is Better?

IR (Imbalance Ratio): measure the imbalance of two itemsets A

and B in rule implications

$$IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)} \quad \text{occurs also} \\ \bullet \text{ m occurs strongly suggests c}$$

• c occurs strongly suggests m

unlikely occur Diverse

Data									Kely C	
Set	mc	$\overline{m}c$	mc	mc	χ^2	lift	all_conf.	out	come	s!!
D_1	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

 $IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)}$

Which Null-Invariant Measure Is Better?

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - D₄ is balanced & neutral (IR(m,c)=0 => perfect balanced)
 - D₅ is imbalanced & neutral (IR(m,c)=0.89 => imbalanced)
 - D₆ is very imbalanced & neutral (IR(m,c)=0.99 => very skewed)

Data										
Set	mc	$\overline{m}c$	mc	mc	χ^2	lift	all_conf.	max_conf.	Kulc.	cosine
$\overline{D_1}$	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

2017 THANK YOU!