Operating System

- interface bett ent user and hardwere

- interface beth application softwares s/w and hardware

-resource managers/ allocator which is managing all him resources

- control program which is controlling execution of all the programs which are running on the system

-CD/DYD/ISO - Core + Apply + System (Kernel)

Functions of Operating System

(Kernel)

- V1) Process Management
- 12) CPV scheduling
- v3> Memory Management
 - 4) File & IO Management
 - 5> Hardware Abstraction
 - 6> Vser Interfacing
 - 7> Methorking
 - 8) Security and Protection

Compulsor

2 optional

Process Management

Process-Program in execution Program - set of instructions to machine (CPU)

5> Debugger

Program

.out/.exe

Executable Header Tesit Data RO Data BSS Symbol Table

Executable File

Exe Header

- Magic Number (identity to file format)
- _ tirst 2 or 4 bytes
 - esse-Portable Frecutable (MZ)
 - out Executable Linking Format (& ELF)
- info about executable file type-CLI/GUI/Libran
- into about remain, sections (size, start, ends)
- noitonet throng potention

Text (Code)

- instructions of your program in the form of muchine code

 Data static & global variables (initialised) intrum=10)
- BSS-Steelic & global variables (uninitialised) intrumz;
- RO Data Read only date (Joing constants) chartphe "dad"
- Symbol Table - info about symbols of your programs
- symbols variables name, add, section, type
 - functions name, add return tipe, no./type Harys

Process

Process = All section + PCB of RAM

Process Life Cycle

Types of Operating System

1> Resident Monitor 2) Batch System 3) multiprogramming system - degree of multiprograming Lino. of programs bouded into RAM. - CPV time/burst - tîme spent on CPU - IO time larest - time spent on IO -cputime> Io time- CPV bound - Io time > CPU time - IO bound 4) Time sharing system multitusking :-Response time < 1 sec

5) multiple users can

access/control single computer

c) multiprocessing system

c) symmetric multiprocessing

symmetric multiprocessing

2) Asymmetric multiprocessing

OS's Data Structures

there

1) Job Queur/Process List - All the processes which are louded into RAM 2) Ready Queue - All processes which are ready for execution -CPV scheduler always. Select process from ready queue 3) Noiting Bueue - All processes which are weating for some IO or event. -mutiple (per device one) waiting queues are

Types of Scheduling

1) Running -> Terminated 2 Mon-preemptive 2) Running -> Waiting 3) Running > Ready ? Preemptive Whating > Ready Alporithms: NFCFS 2) SJF 3> P-010-17 **CPU Scheduling Criterias** 1) CPV Vtilization: (Max) 4) RR 5> Four share -desktop systems - 70%. -server systems - 90% 2> Throughput: (Max) - amount of work done in unit time 3) Naiting time: (Min) - Fine spent by process in ready queue 4) Response time: (min) L'time from crival of process Into ready que ue upto first time scheduled on CPU s> Turn Around Time: (min) - total time spend by process in RAM (memory) TAT = CPU + CPU + IO + time time + time

FCFS (First Come First Serve) (Non Breemptive)

					- .	
	Process	Arrival	CPU Burst	NT	RT	TAT
	P1	0	24	6	\bigcirc	24
	P2	0	3	24	24	2
4	P3	0	3	27	27	30
				,		

	Process	Arrival	CPU Burst	WT	RT	TAT
\	P3	0	3	0	0	3
	P2	0	3	3	3	6
4	(P1	0	24	6	6	30

Convoy Effect: due to longer process all other processes has to wait for longer time

SJF (Shootest Job First)

(Non-Preemptive)

(Preemptive) (Shortest Remaining Time First) **CPU Burst** Arrival **Process** P1 P2

Р3

WT	RT	TAT
9	0	16
)	\bigcirc	5
Ó	\bigcirc	J
2	2	Ś

Process	Arrival	CPU Burst	WT	RT	TAT
P1	0	7	6	\bigcirc	7
P2	2	4	6	9	10
P3	4	1	3	3	4
P4	5	4	7	7	15'
	_	_	,	/	'

Starration: due to longer CPV times burst, process will not get enough EPV time for execution.

Priority

(Non Preemptive)

Drocoss	Arrival	CPU Burst	Driority	WT	RT	TAT
Process	Allivai	CPO Buist	Priority	~ 1	$rac{1}{2}$	1
P1	0	10	3	6	6	16
P2	0	1	1 (4)	0	0)_
P3	0	2	4 (4)	16	16	18
P4	0	5	2		1	6

Process	Arrival	CPU Burst	Priority
P1	0	10	3
P2	1	1	1
Р3	3	2	4
P4	0	5	2

WT	RT	TAT
6	6	16
\bigcirc	\Diamond	J
13	13	15
	\bigcirc	6

	P2	P4	P)		P3	
C P P	2		6) ((<
Pu			P1 (6) P2 (9)- P3 (7) P4 (8) P6 (8) P6 (1)		P) P4 P3 P6 P7 P2	

			-	
P4 PZ	P4	PI	P	3
P1 P2	2 3 P3	6	16	18

Starvedinn: due to less priority process is not getting enough CPV time For execution

Aging: increase privoity of low priority process gradually

User Interfacing

Shell - intermediate between End user and OS Shell - Command Interpretor

- In Linux, default shell is bash(Bourne Again Shell)
- echo \$SHELL
- to change shell chsh

Linux File Structure

- Linux follows root "/" file structure
- In Linux file -> file and folder -> directory

Disks and Partitions - Naming Conventions

Disk:
Windows - disko, disk . - - Linux - /dev/sda, /dev/sdo - -
Partition:
Windows - c:, d:, e:

Linux - Aev/sda1, /dev/sda2, /dev/sda3