(NAME: ASHWIN KRISHNA P, SRN: PES1201801465)

Test for Lossless Join Property:

We can apply Chase's algorithm to check whether a decomposition is Lossless or not.

1.

Let us first consider PASSENGER table. It has been decomposed into PASSENGER1, PASSENGER2 and PASSENGER3.

PASSENGER1 (PID, PASSPORTNO)

PASSENGER2(PASSPORTNO, FNAME, M, LNAME, ADDRESS, PHONE, AGE, SEX)

PASSENGER3 (PID, FLIGHT_CODE)

Functional Dependencies are:

PASSPORTNO \rightarrow { FNAME, M, LNAME, ADDRESS, PHONE, AGE, SEX }

PID → FLIGHT_CODE

Now filling the table according to the algorithm:-

	PID	PASSPORTNO	FNAME	M	LNAME	ADDRESS	PHONE	AGE	SEX	FLIGHT_CODE
PASSENGER1	A ₁	A ₂	B ₁₃	B ₁₄	B ₁₅	B ₁₆	B ₁₇	B ₁₈	B ₁₉	B _{1 10}
PASSENGER2	B ₂₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇	A ₈	A 9	B _{2 10}
PASSENGER3	A ₁	B ₃₂	B ₃₃	B ₃₄	B ₃₅	B ₃₆	B ₃₇	B ₃₈	B ₃₉	A ₁₀

	PID	PASSPORTNO	FNAME	М	LNAME	ADDRESS	PHONE	AGE	SEX	FLIGHT_CODE
PASSENGER1	A ₁	A ₂	B ₁₃ A ₃	B ₁₄ A ₄	B ₁₅ A ₅	B ₁₆ A ₆	B ₁₇₋ A ₇	B ₁₈ A ₈	B ₁₉ A ₉	B ₁₋₁₀ A ₁₀
PASSENGER2	B ₂₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇	A ₈	A ₉	B _{2 10}
PASSENGER3	A ₁	B ₃₂	B ₃₃	B ₃₄	B ₃₅	B ₃₆	B ₃₇	B ₃₈	B ₃₉	A ₁₀

Now we can see an entire row contains only alpha (A) values. According to the algorithm we conclude that the decomposition is Lossless.

2.

Let us consider **TICKET** table. It has been decomposed into **TICKET1**. **TICKET2**, and **TICKET3**.

TICKET1 (<u>TICKET_NUMBER</u>, SOURCE, DESTINATION, DATE_OF_BOOKING, DATE_OF_TRAVEL, SEATNO, CLASS, DATE_OF_CANCELLATION, PID, PASSPORTNO)

TICKET2 (DATE OF BOOKING, SOURCE, DESTINATION, CLASS, PRICE)

TICKET3 (DATE_OF_CANCELLATION, SURCHARGE)

Functional Dependencies are:

{ DATE_OF_BOOKING, SOURCE, DESTINATION, CLASS } \rightarrow PRICE

DATE_OF_CANCELLATION → SURCHARGE

Now filling the table according to the algorithm we get final table as:-

	TICKET_NUMBER	SOURCE	DESTINATION	DATE_OF_BOOKING	DATE_OF_CANCELLATION	DATE_OF_TRAVEL	SEATNO	CLASS	SURCHARGE	PID	PASSPORTNO	PRICE
TICKET1	А	Α	Α	Α	Α	Α	Α	Α	B- A	Α	Α	B-A
TICKET2	В	Α	Α	Α	В	В	В	Α	В	В	В	Α
TICKET3	В	В	В	В	Α	В	В	В	Α	В	В	В

So the decomposition is **Lossless.**

3.

Let us consider **EMPLOYEE** table. It has been decomposed into **EMPLOYEE1** and **EMPLOYEE2**.

EMPLOYEE1 (<u>SSN</u>, FNAME, M, LNAME, ADDRESS, PHONE, AGE, SEX, JOBTYPE, ASTYPE, ETYPE, SHIFT, POSITION, AP_NAME)

EMPLOYEE2(<u>JOBTYPE</u>, SALARY)

Functional Dependencies are:

JOBTYPE → SALARY

 $SSN \rightarrow \{FNAME, M, LNAME, ADDRESS, PHONE, AGE, SEX, PHONE, ADDRESS \}$

Now filling the table according to the algorithm:-

	SSN	FNAME	М	LNAME	ADDRESS	PHONE	AGE	SEX	JOBTYPE	ASTYPE	ETYPE	SHIFT	SALARY	AP_NAME
EMPLOYEE1	Α	Α	Α	Α	А	А	Α	Α	Α	Α	Α	А	B- A	Α
EMPLOYEE2	В	В	В	В	В	В	В	В	Α	В	В	В	Α	В

So this decomposition is also **Lossless**.