Variance Reduction for Multiphysics Analysis of Moving Systems

Chelsea D'Angelo

Dec. 8, 2017

Shutdown Dose Rate Analysis

- Fusion Energy Systems (FES)
 - Burning plasma, D-T fusion
 - ${}^{2}H + {}^{3}H \rightarrow {}^{4}He + n$
- Neutrons penetrate deeply into system components, causing activation
- Radioisotopes persist long after shutdown
- Important to quantify the dose caused by decay photons

Figure: Cutaway view of ITER drawing.

SDR Analysis: Maintenance Operations

- During a maintenance procedure:
 - Need to move component(s) around facility
 - Interested in SDR at a particular location
 - SDR will change as a function of the activated component's position over time

SDR Solution Method

• Rigorous 2-Step Method (R2S)

Monte Carlo Radiation Transport

- Monte Carlo (MC) analysis of fusion energy systems is challenging due to the highly attenuating structural materials
 - Results scored in regions that have low particle flux, have higher statistical uncertainty
- To decrease statistical uncertainty:
 - Increase number of histories
 - Use variance reduction (VR) techniques

Figure: Photon flux in ITER tokamak building.

MC Variance Reduction Techniques

- Techniques to modify particle behavior
 - Preferentially sample events that will contribute to results of interest
- Statistical weight of particles is adjusted to keep playing a fair game

Hybrid Deterministic/MC VR Methods

- Use **deterministic** estimate of the adjoint flux, Ψ^+ , to generate **Monte Carlo** biasing prarameters
- Adjoint flux can define the importance of regions of phase space to the detector response

$$H^+\Psi^+ = q^+ \tag{1}$$

$$H^{+} = -\widehat{\Omega} \cdot \nabla + \sigma_{t}(\overrightarrow{r}, E) - \int_{0}^{\infty} dE' \int_{4\pi} d\Omega' \sigma_{s}(\overrightarrow{r}, E \to E', \widehat{\Omega} \to \widehat{\Omega}') \tag{2}$$

Hybrid Deterministic/MC VR Methods

- Consistent Adjoint Driven Importance Sampling (CADIS)
 - Use the adjoint flux to generate source and transport biasing parameters in a consistent manner
 - Source: sample from biased PDF
 - Transport: weight windows to control particle flow

Variance Reduction for SDR Analysis

- VR for photon transport step is straightforward
 - Can use CADIS method
 - Flux-to-dose conversion factors define adjoint source
- VR for neutron transport step is more complicated
 - Biasing function needs to capture
 - 1 Potential of regions to become activated
 - 2 Potential to produce photons that will contribute to the SDR

Variance Reduction for SDR Analysis

- Multi-Step (MS)-CADIS
 - VR method to optimize the initial radiation transport step of a coupled, multi-step process
 - When applied to SDR analysis, MS-CADIS will optimize the neutron transport
 - Use a function that represents the importance of the neutrons to the final dose rate

VR for SDR Analysis: GT-CADIS

- Groupwise Transmutation (GT)-CADIS
 - Implementation of MS-CADIS specifically for SDR analysis
 - Provides method to calculate optimal adjoint neutron source, q_n^+
 - This is used as the source in the deterministic calculation of the adjoint neutron flux, ϕ_n^+ , used as the importance function

$$q_n^+(E_n) = \int_{E_p} T(E_n, E_p) \phi_p^+(E_p) dE_p$$

VR for SDR Analysis: GT-CADIS

• Coupling term, T, defined by

$$q_p(E_p) = \int_{E_n} T(E_n, E_p) \phi_n(E_n) dE_n$$