Data Valorization Solution Labs 1: Exercise 1.2

Cyprien GILET and Lionel Fillatre

Exercice 1.2

Recall 1. (Central Limit Theorem). Let Y_1, \ldots, Y_n be n real independent and identically distributed (i.i.d.) random variables such that $\mathbb{E}[Y_i] = \mu$ and $\text{Var}(Y_i) = \sigma^2$ for all $i \in \{1, \ldots, n\}$. Then,

$$\bar{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i \xrightarrow[n \to \infty]{\mathcal{L}} Z \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

Let $\mu = 5$ and $\sigma = 2$. The data matrix $X \in \mathbb{R}^{n \times k}$ is generated as follow:

$$X := \left[\begin{array}{ccc} & \vdots & \\ & \ddots & X_{ij} & \cdots \\ & \vdots & \end{array} \right] n$$

where, for all $i \in \{1, ..., n\}$ and all $j \in \{1, ..., k\}$, $X_{ij} \sim \mathcal{N}(\mu, \sigma^2)$. To generate X_{ij} according to a normal distribution, we can use the R command rnorm.

Then, the one-row matrix $\bar{X} \in \mathbb{R}^k$ is given by:

$$\bar{X} := \overbrace{\left[\begin{array}{cc} \ddots & \\ \hline & \bar{X}_j & \cdots \end{array} \right]}^k \} 1$$

where, for all $j \in \{1, \ldots, k\}$,

$$\bar{X}_j = \frac{1}{n} \sum_{i=1}^n X_{ij}.$$

From the central limit theorem, for n sufficiently large, we get

$$\forall j \in \{1, \dots, k\}, \quad \bar{X}_j \underset{n \to +\infty}{\sim} \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

We can note that, in practice, when n increases, the variance $\frac{\sigma^2}{n}$ of \bar{X}_j decreases until 0.

In this exercise, since all the variables X_{ij} are normal, the variable \bar{X}_j follows exactly a normal distribution. However, the proposed approach holds for any distribution satisfying the central limit theorem. For example, you can replace the R command rnorm by rexp which generates some random samples from the exponential distribution. In the case of an exponential distribution of parameter λ , the mean of \bar{X}_j will be $\frac{1}{\lambda}$ and its variance will be $\frac{1}{n\lambda^2}$.