

Europäisches Patentamt
European Patent Office

Office européen des brevets

(11) EP 0 884 922 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

16.12.1998 Bulletin 1998/51

(51) Int. Cl.⁶: **H04Q 11/04**

(21) Application number: 98110206.4

(22) Date of filing: 04.06.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 13.06.1997 JP 171231/97

- (71) Applicant: NEC CORPORATION Tokyo (JP)
- (72) Inventor: Kanehara, Fumikazu Minato-ku, Tokyo (JP)
- (74) Representative: Betten & Resch Reichenbachstrasse 19 80469 München (DE)

(54) ATM cell multiplexing system

(57) An ATM multicast communication system for identifying and multiplexing ATM cells at a receiving node by using AAL5 cell. This system has an insertion means for inserting ATM cell having RC (Routing Cell) with past record information or route information, when ATM cell of AAL5 is multiplexed. As multiplexing may occur several times on the communication line, RC acts not only as the identifier between the multiplexed cells, but also as the carrier of the past record of multiplexing. More specifically, the ATM cells transported from plural different input ports are multiplexed in the multiplexing equipment. Every time the destined input port is exchanged, the RC is inserted in front of said ATM cell. At receiving node, the RC is monitored, and the following ATM cells are distributed for each RC.

F | G.1

30

40

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a multiplexing method and equipment for the multicast communication (selectively simultaneous communication) in ATM(Asynchronous Transfer Mode) communication.

1

2. Description of the Prior Art

There is known a multicast connection as one of the techniques supporting the multicast communication in ATM communication. In the point to multi point connection, among them, ATM cells from different transmitting nodes toward one receiving node are multiplexed into one UNI (User Network Interface) when transmitted. In this case, it is necessary that, at the receiving node, the ATM cells with the same VPI/VCI (Virtual Pass Identity / Virtual Channel Identity) addresses be identified for each receiving node and be re-combined into a packet of AAL(ATM Adaptation Layer).

Hitherto, the above mentioned identification was 25 implemented by by using MID (Multiplexing Identification) field of AAL3/4, as shown in ITU-T 1.363.

The ATM cell format of AAL3/4 is shown in Figure 7. As shown in (a) of Figure 7, the ATM cell of AAL3/4 has 10 bit MID field 71 for multiplexing. When the value of this field is set so as to be different for each receiving node, multiplexed ATM cells can be identified at the receiving node.

As shown in Figure 7, comparing the ATM cell of AAL3/4 with the ATM cell of AAL5 as recommended by ITU-T, the payload 73 of ATM cell of AAL5 is 48 octet payload, while that of AAL3/4 is 44 octet and therefore, has greater overhead than AAL5. Accordingly, the communication by using the ATM cell of AAL3/4 is less efficient than AAL5. Furthermore, the ATM cell of AAL3/4 is costly and complex in management, because AAL3/4 has 5 functional fields including MID field 71 in addition to the cell header.

On the other hand, when more efficient AAL5, instead of AAL3/4, is employed for multiplexing, there is the disadvantage that the multiplexed cells per se can not be distinguished at receiving node, because AAL5 has not any identification field corresponding to the MID field of AAL3/4 for multiplexing.

SUMMARY OF THE INVENTION

Therefore, an object of the present invention is to identify cells at receiving node, by using AAL5 in cell multiplexing for multicast communication, by using AAL5.

Another object of the present invention is to improve efficiency and performance of ATM multicast

communication, by constructing a multiplexing system, wherein the received cells can be identified at receiving port by using AAL5 which is more efficient than AAL3/4.

In accordance with the present invention, there is provided an ATM cell multiplexing system, which comprises ATM cell multiplexing means for inserting the ATM cells that have past record information or route information, as routing cell, when multiplexing said ATM cells inputted at different plural ports, and separation means for receiving said ATM cells, detecting routing cells from said ATM cells, separating said ATM cells on the basis of the information of said routing cells.

Further, in accordance with the present invention, there is provided a method of ATM communication wherein packets are transmitted as cells, which comprises the step of inserting routing cell to identify multiplexed ATM cells in receiving node, when multiplexing said ATM cells inputted at different plural ports.

As a result of inserting RC (Routing Cell), the present invention can improve the efficiency and the performance of ATM multicast communication, by implementing a multiplexing system such that the received cells can be identified at receiving node, by using AAL5 which is more efficient than usual AAL3/4.

BRIEF EXPLANATION OF THE DRAWINGS

Figure 1 is a block diagram of the mode of embodiment of the present invention.

Figure 2 is a block diagram explaining the whole system construction of the present invention.

Figure 3 is an illustration explaining the operation of the present invention.

Figure 4 is a figure showing the RC (Routing Cell) format used in the present invention.

Figure 5 is a flow chart explaining the operation of the present invention.

Figure 6 is a figure showing an example of the structure of the receiving node in the present invention.

Figure 7 (a) and Figure 7 (b) show the ATM format of AAL3/4 and AAL5.

DESCRIPTION OF THE PREFERRED EMBODI-MENTS

Referring to the accompanying drawings, the preferred embodiments of the present invention is explained. At first, an example of the construction of the whole system is shown in Figure 2. The ATM cells of AAL5 transmitted to receiving node 27 from transmitting node 21, 22 and 23 are multiplexed at multiplexing connection point 24 and 25, and received at receiving node 27 through ATM switchboard 26.

At multiplexing connection points 24 and 25, in Figure 2, RC(Routing Cell) 34 is inserted by multiplexing equipment 30 as shown in Figure 3. As shown in Figure 3, ATM cells 31,32 and 33 transported from different input ports are multiplexed, and outputted at single out-

55

20

30

4

put port.

RC 34 is inserted just in front of the ATM cell at each transporting input port.

The example of the construction of the multiplexing equipment shown in Figure 3 is shown in Figure 1. The inputted cell is once buffered at input ports 11~13. Then, by using, as a trigger, the control signal from control function block 15 to input ports 11~13, the inputted cells are transported from input ports 11~13 to multiplexing function block 16, and buffered here again.

The cell which is transported from input ports 11~13 to multiplexing function block 16, is transported simultaneously to control function block 15, and is analyzed there. As a result of the analysis, if RC be inserted, the control signal is sent from control function block 15 to RC generating function block 14, and RC generating function block 14, after detecting the control signal, generates RC (Routing Cell) 34 and transfer it to multiplexing function block 16.

Multiplexing function block 16 outputs immediately the transported RC. Control function block 15 sends uninterruptedly the control signal to multiplexing function block 16, and multiplexing function block 16 manages the buffered cell, detecting the control signal. After all, multiplexing function block 16 outputs the control signal, if the cell is a user cell. On the other hand, it discards the control signal, if the cell is RC. As a result of the analysis, if RC needs not to be inserted, the control signal is sent immediately from control function block 15 to multiplexing function block 16, and the cell buffered at multiplexing function block 16 is managed likewise.

Next, the self format of RC in the present invention is explained, referring to Figure 4. RC is based on OAM (Operation Administration and Maintenance) of end-end F5 flow. 5 octet cell header region 40 is header of ATM cell, and PTI (Payload Type identifier) has the value 101showing the OAM cell of end-end F5 flow of OAM cell. 4 bit OAM cell class region 41 uses the unused value (for example 0011) to indicate that it is RC(Routing Cell).

PADDING region 42 holds padding information. 10 bit error detection code region 44 is used for error detection by CRC 10. 45 octet route information 43 consists of the 8 bit Hop region for counting the number of multiplexing and RI region 46 for indicating past record of multiplexing.

For example, if the payload of RC received at receiving node is such that Hop = 3, RI[1] =2, RI[2] = 1, RI[3] = 3, it is understood that this specific packet passes three multiplexing connection points and that its transmitting node is identified by the value 3-1-2 seen from the receiving node.

Figure 5 shows a flow chart of the insertion of RC, corresponding to the actions of control function block 15 and RC generating block 14 in Figure 1. The function block which manages the flow of Figure 5 has Routing table 10, and the registers S and H, where routing table 10 of Hop (45 in Figure 4) and RI (46 in Figure 4) exists

for every input port. In Routing table 10, the port number n of Port [n] is shown actually.

First, in the step 1, the contents of the above mentioned registers S and H and Routing table 10 are initialized to 0.

Next, in the step 2, ATM cell transported from input port is analyzed, and header information (VPI/VCI) is stored in the register H.

Continuously, in the step 3, cell header and OAM function class field are inspected to identify whether the ATM cell is RC or not. In the step 3, if the ATM cell is found to be RC, the input port number [S] is memorized in the step 4, and the Routing table 10 is renewed according to the information of RC in the step 4.

Exactly, the value of Hop field of RC is copied into the Hop field of Port[S] in Routing table 10, and the corresponding value of RI of RC is copied into each RC field in the step 4. This RC is once terminated in the step 4.

After the step 4, RC is generated again immediately in the step5, and inserted in the step 6.

In the step 5, the value such that the value of Hop field of Port[S] is incremented by 1 is buried into the Hop field of the generated RC, and the value of the corresponding RI of Port[S] is copied into all the RI field, and, furthermore, the value of the register S indicating the port number is written in RI[Hop]of RC where Hop is the value after the increment.

Also, while the memorized value of H is written in the header of RC, PTI field is put to be 101, and the OAM cell class field is put to be 0011. Afterwards, Padding and CRC 10 are added.

Further, when ATM cell is not found to be RC in the step 3, then the step 7 is executed.

If the number of the input port where cell is transported is the same number as the value of the register S, the cell is outputted immediately without inserting RC in the step 9.

On the other hand, if they are not identical, the value of the number of the input port is set in the register S in the step 8, and then the step 5, the step6, the step 9 are followed.

Namely, concerning the cell transported continuously from the same port, when the cell is RC, the multiplexing means of the present invention once terminates the RC, increments its value of Hop by 1, inserts new RC by writing the port number in the RI[Hop], transports the following user cell as it is into output line. When cell is transported from different port, if the first cell is a user cell, then "1" is written in Hop, generates new RC[1], and insert it in front of the said user cell. Thereby, the payload information of RC can uniquely correspond to each physically different transmitting node, multiplexed cell can be distinguished at receiving node.

Figure 6 shows an example of the construction to restore AAL5 packet at receiving node, where block 60 is the characteristic portion of the present invention. Cell

55

sequence including RC is inputted in separation function block 61. In RC analysis function block 65, cell inputted into separation function block 61 is monitored, and RC is analyzed, and control signal is sent to separation function block 61.

Based on the above mentioned control signal, separation function block 61 distributes input cell sequences for buffer function blocks 62, 63 and 64 for each transmitting node. Then, the cell sequences are transported under packet unit to SAR (Segmentation And Re-assembly) function block 67 through multiplexing function block 66. Thereby, AAL5 packet is assembled normally in SAR function block 67.

As a result of inserting RC(Routing Cell), the present invention can improve the efficiency and performance of ATM multicast communication by implementing a multiplexing system, wherein ATM cells can be identified at receiving node by using AAL5 which is more efficient than usual AAL3/4.

Although the present invention has been shown and described with respect to the best mode embodiment thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions, and additions in the form and detail thereof may be made therein without departing from the spirit and scope of the present invention.

Claims

- A method of ATM communication, wherein packets are transmitted as cells, which comprises the step of inserting routing cell to identify multiplexed ATM cells in receiving node, when multiplexing said ATM cells inputted at different plural ports.
- The method of ATM communication according to claim 1, wherein said routing cell is accompanied by the past record of multiplexing point indicating the route information at the multiplexing connection point, based on the OAM self format of ATM.
- The method of ATM communication according to claim 1, wherein said ATM cells are the ATM cells of AAL5.
- 4. An ATM cell multiplexing equipment for multiplexing the ATM cells inputted at different plural ports, wherein insertion means is provide for inserting said ATM cells that have past record information or route information, as routing cells.
- 5. An ATM cell multiplexing system, which comprises:

ATM cell multiplexing means for inserting the ATM cells that have past record information or route information, as routing cell, when multiplexing said ATM cells inputted at different plural ports; and

separation means for receiving said ATM cells, detecting routing cells from said ATM cells, and distributing said ATM cells on the basis of the information of said routing cells.

6. A receiving node for restoring AAL5 packets, wherein cell sequence including routing cells is received, which comprises:

analysis means for analyzing said routing cells; separation means for distributing said cell sequence for each transmitting node on the basis of the control signal resulted from the analysis in said analysis means;

means for analyzing Routing Cells included in the received ATM cells;

means for separating the ATM cells on the basis of the Routing Cells;

plurality of buffer means corresponding one by one to said transmitting node for accepting and buffering each separated ATM cell;

multiplexing means for accepting and multiplexing said ATM cells from said buffer means;

re-assembly means for segmenting, re-assembling and transmitting said ATM cells multiplexed by said multiplexing means.

45

F | G.1

