		文件	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 1 页 共 18 页

1.硬件说明

(1)集成串口屏支持UART串行口(TX和RX两根线),其中TX为主控的数据发送端, RX为主控的数据接收端,因此和SX32连接的接口只需要4根线即可。

(2) 集成串口屏默认为5V供电,如果系统使用的是2.8~3.3V供电的话,需修改背面 PCB的跳线电,具体如下:

电阻R4短路 电阻R2开路

(3) 由于下载的时候使用电脑的串口软件工具发送命令和文件,所以需要找到一款 USB转UART的工具,可以参考如下的工具,使用时接上电脑并更新驱动,然后把板子的TX和RX与工具的TX与RX顺接,并接上VDD与GND。

USB 转UART工具

		文件	名称		2.2 寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 2 页 共 18 页

连接方法

2.软件说明

- (1)编程前的预备知识
 - ① 显示屏的显存:

DDRAM就是显存,模块的显存和屏幕的分辨率是一一对应,176*220模块的显存为:176*220*2=77440字节,其中的2表示一个显存单元占2个字节(即16位),其对应关系即:

2字节 × 16位× 1像素× 5位 (红色) 6位 (绿色) 5位 (蓝色)

② 显存地址:

DDRAM的地址就是DDRAM的位置,其实就分解为X方向和Y方向两个位置,所以,DDRAM的地址就是X,Y的坐标,横屏模式从模块的左上角开始(注意模块要正放),X从左到右递增(从0开始直到219,再回到0点),Y从上到下递增(从0开始直到175,再回到0点),下图黑色方框为显示区域(即DDRAM),框内的蓝色的线表示的是扫描轨迹。注意,如果是坚屏模式的话,就要把屏幕竖过来,即X从0到175,Y从0到219.

		文件名	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 3 页 共 18 页

横屏模式的DDRAM地址排布

坚屏模式的DDRAM地址排布

③显示内容与显存地址的关系:

		文件	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 4 页 共 18 页

从上图可以看出,往显存中的(50,50)的开始位置写入'I',显示屏的内容与对应地址的内容——对应。同样显存的地址和屏幕的位置是一样的。

集成串口屏已经屏蔽掉显示屏操作的很多细节内容,用户只需要提供要显示屏幕的X,y位置给对应的指令,就能够在屏幕上面对应的位置显示对应的内容。

(2) 启动说明

集成串口屏上电后自动完成各个功能部件的初始化(LCD、FLASH、TPIC等),因此,主机需要等待1S左右,确保模块内部初始正常完成才能够对其送指令,流程如下:

(3) 软件指令集

指令	指令码	备注
模块软件	RESET;	
复位指令	通过此指令可以对模块进入软件复位,接收此指令后,模块的外围部件及系统参数将恢复上电的值。	
获取模块	VER;	
的版本信 息指令	通过VER;就可以获取此模块固化的版本信息,并显示在屏幕上面	
设置波特率	BPS(bps);	系统上电后默认的波特率为

		文件名	名称		2.2 寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 5 页 共 18 页

<u>′ </u>					
指令	BPS为指令码,括号内为波特率的值。如果要把波特率设置为9600,则 BPS(9600);	115200.			
清屏指令	CLR(c);	注意c的范围是0~15,如果c的 - 值超过15系统将不响应该指			
	CLR为指令码,c为清屏使用的背景颜色,具体代码见下面颜色列表。如果要把屏幕填充为黑色,				
	则 CLR(0);	令,c值的范围查看下面的颜色 列表。			
LCD控制指	LCDON (on_off) ;	On_off的参数只有O或者1,系			
令	LCDON为指令码, on off 分别表示启动或者关闭LCD。如LCDON(1);表示启动LCD,LCDON(0);	· 统忽略其他参数。			
	美闭LCD.				
Flash中的图	FSIMG(addr,x ' y ' w,h,mode);	Mode为1时,图片的白色背景			
片显示指令	FSIMG为指令码,addr为图片存储在flash的地址,x,y为图片要在屏幕上面显示的开始位置,w为	将不会显示,此模式用于图标			
	图片的宽度,h为图片的高度,mode为图片显示方式:1为透明显示,0为正常显示。如FSIMG	与背景图片的叠加功能。addr			
	(2097152,0,0,240,400,1);表示从2097152的FLASH地址取出240*400的图片并在0,0的位置上透明显示。	为存储图片的flash开始地址, 必须从2097152开始			
图片下载到	FS_DLOAD(SIZE);	图片是会被下载到FLASH高			
FLASH指令	FS_DLOAD为指令码, SIZE为要下载的图片的总大小。如FS_DLOAD(192000);表示将192000字	2M的存储空间,因此从2M (2097152的位置开始存储图 片)共2M 此命令支持合并后的图片烧 写,不支持单图片文件的烧写。			
	节的图片下载到flash中,图片的总大小不能超过2097152字节,如果SIZE的赋值大于2097152字节,				
	系统只识别到2097152字节。				
	SDIMG 为指令码,x,y为图片要在屏幕显示的开始位置,w,h分别为图片的宽度和高度,'name'				
	为文件的名字,目前只支持英文名称。SDIMG(0,0,240,400,'6.bin');即表示把SD卡存储的6.bin的文				
	件在模块的0,0的位置显示出来				
横竖屏切换	DIR(H_V);	系统上电默认为竖屏显示			
指令	如DIR(0);为坚屏。DIR(1);为横屏				
设置背光灯	BL(p);其中BL为指令码,p为背光灯的亮度值,调节的范围为:0~255,其中0为全亮显示,255	系统上电后,背光的亮度为20			
的亮度	为关闭显示.				
	如BL(4);将背光的亮度设置为4				
画点指令	PS(x,y,c); 其中PS为指令码,x,y为显示的开始位置,c为点的颜色	此指令不适用于大面积的描			
		点,如果真有需求建议内置到			
	如PS(0,0,3);在0,0的位置画一蓝色的点	模块内部			
画线指令	PL (x1, y1, x2, y2, c) 其中PL为指令码, x1, y1为起点的位置, x2, y2为结束点的位置, c	注意c的范围是0~15,如果c的			
	为线的颜色	值超过15,系统将会忽略此操			
	如PL(0,0,50,50,1);表示将0,0 到50,50的两个点用红色连成线	作。			
画框指令	BOX(x1,y1,x2,y2,c)其中BOX为指令码,x1,y1,为起始点的位置,x2,y2为结束点的	注意C的范围是0~15,如果C的			
	位置,c为方框的颜色	值超过15,系统将会忽略此操			
	如BOX (0,0,50,50,1);表示以0,0 为起点到50,50的终止点,画一个红色的框	作。			

		文件名	称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 6 页 共 18 页

画填充框指	BOXF (x1,y1,x2,y2,c);其中BOXF为指令码,x1,y1,为起始点的位置,x2,y2为结束点	同上
令	的位置,c为方框的颜色	
	如BOXF (0,0,50,50,1);表示以0,0 为起点到50,50的终止点,画一个红色的填充框	
画圆指令	CIR(x,y,r,c);其中CIR为指令码,x,y为圆心的位置,r为圆的半径,c为圆的颜色	同上
	如CIR(10,10,3,0);表示以黑色在圓心10,10的位置画一半径为3的黑色的圓	
画填充圆指 令	CIRF(x,y,r,c);其中CIRF为指令码,x,y为圆心的位置,r为圆的半径,c为圆的颜色	同上
	如CIRF(10,10,3,0);表示以黑色在圓心10,10的位置画一半径为3的黑色的填充圓	
设置背景色指令	SBC(c);其中SBC为指令码,c为背景的颜色值,c的范围在0~63之间。	同上
	SBC(1);设置背景色为红色	
显示16高的	DC16(x,y,*str,c);其中DC16为指令码,x,y为字符的开始位置,*str为字符的指针,c为字符的颜色	同上
字符指令	DC16(0,0,'Uart显示屏',1);表示在0,0位置显示'Uart显示屏'字符	
显示24高的字符指令	DC24(x,y,*str,c);其中DC24为指令码,x,y为字符的开始位置,*str为字符的指针,c为字符的颜色	同上
· · · · · · ·	DC24(0,0,'Uart显示屏',1);表示在0,0位置显示'Uart显示屏'字符	
显示32高的字符指令	DC32(x,y,*str,c);其中DC32为指令码,x,y为字符的开始位置,*str为字符的指针,c为字符的颜色	同上
1 11 44 4	DC32(0,0,'Uart显示屏',1);表示在0,0位置显示'Uart显示屏'字符	
显示16高的	DCV16(x,y,*str,c);其中DCV16为指令码,x,y为字符的开始位置,*str为字符的指针,c为字符的	底色的设置由SBC指令确定
带底色的字 符指令	颜色 DCV16(0,0,'Uart显示屏',1);表示在0,0位置显示'Uart显示屏'字符	
显示24高的	DCV24(x,y,*str,c);其中DCV24为指令码,x,y为字符的开始位置,*str为字符的指针,c为字符的	底色的设置由SBC指令确定
带底色的字	颜色	
符指令	DCV24(0,0,'Uart显示屏',1);表示在0,0位置显示'Uart显示屏'字符	
显示32高的	DCV32(x,y,*str,c);其中DCV32为指令码,x,y为字符的开始位置,*str为字符的指针,c为字符的	底色的设置由SBC指令确定
字符带底色 的指令	颜色	
	DCV32(0,0,'Uart显示屏',1);表示在0,0位置显示'Uart显示屏'字符	

颜色列表

颜色	索引c值
黑色	0
红色	1
绿色	2

		文件。	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 7 页 共 18 页

蓝色	3
黄色	4
青色	5
紫色	6
灰色	7
浅灰	8
褐色	9
墨绿色	10
深蓝色	11
深黄色	12
橙色	13
浅红	14
白色	15

(4)指令需等待时间总结

	AND FITTE	HE O M O	#5.4.4.7.=***/********************************
NUM	指令名称	指令简介	指令执行需等待时间
1	RESET;	模块复位指令	230ms
2	VER;	获取模块版本号	105ms
3	BPS(bps);	设置串口波特率	1ms
4	CLR(c);	用c颜色清屏幕	25ms
5	LCDON (on_off);	开关显示屏	28ms/230ms
6	FSIMG(addr,x , y , w,h,mode);	显示FLASH中的图片,可切换为图层叠加方式显示	需根据图形大小来确定:非 叠加模式全屏需50ms,叠加 模式需要250ms
7	FS_DLOAD(SIZE);	通过电脑下载图片到模块的FLASH	需根据图形大小来确定
8	DIR(H_V);	横竖屏切换	1ms
9	BL(p);	设置背光的亮度	1ms
10	PS(x , y , c) ;	画点	3us
11	PL(x1,y1,x2,y2,c)	连线	需根据图形大小来确定
12	BOXF (x1, y1, x2, y2, c)	画矩形的框或者填充框	需根据图形大小来确定
13	CIRF(x,y,r,c);	画圆或者填充圆	需根据图形大小来确定
14	SBC(c);	设置背景色	1ms
15	DCV16(x,y ,*str,c);	显示16的中英文字符,可切换为图层叠加方式显示	需根据字符的数量来确定
16	DCV24(x,y ,*str,c);	显示24的中英文字符,可切换为图层叠加方式显示	需根据字符的数量来确定
17	DCV32(x,y ,*str,c);	显示32的中英文字符,可切换为图层叠加方式显示	需根据字符的数量来确定

		文件。	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 8 页 共 18 页

(5)指令下发时注意事项:

- ①指令的个数必须严格按照上面列表的内容,并且用括号括起来。
- ②每条指令的必须使用分号结束,每个操作必须用换行结束。分号字符为:; 换行字符为:'\r\n'
- ③系统上电后,必须保证主控的串口按照如下的初始化参数进行设置:115200的波特率,无检验位,1个停止位。

(6)编程实例:

主控(STM32F103RBT6) 串口初始化:

```
void uart_init(u32 bound){
```

// GPIO_InitTypeDef GPIO_InitStructure;

USART_InitTypeDef USART_InitStructure;

NVIC_InitTypeDef NVIC_InitStructure;

 $RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO, \\$

ENABLE);//USART1_TX PA.9

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

GPIO_Init(GPIOA, &GPIO_InitStructure);

//USART1_RX PA.10

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

GPIO_Init(GPIOA, &GPIO_InitStructure);

//Usart1 NVIC ÅäÖÃ

NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;

 $NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3\ ;$

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

 $USART_InitStructure.USART_BaudRate = bound; //\grave{O} \\ \text{``a\'e} \\ \tilde{a}\hat{b}\hat{O}\hat{A}\hat{l}^{a}9600;$

USART_InitStructure.USART_WordLength = USART_WordLength_8b;

		文件和	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 9 页 共 18 页

```
USART_InitStructure.USART_StopBits = USART_StopBits_1;
                USART_InitStructure.USART_Parity = USART_Parity_No;
                USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
                USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
               USART_Init(USART1, &USART_InitStructure);
               USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//
               USART_Cmd(USART1, ENABLE);
                void UartSend(char * databuf) // 串口发送函数
                     u8 i=0;
                     while (1)
          if (databuf[i]!=0)//
          USART_SendData(USART1, databuf[i]); //
          while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){}; //
     else return;
}
int main(void)
{
     SystemInit();//初始化RCC 设置系统主频为72MHZ
     delay_init(72);
                                 //延时初始化
     uart_init(115200); //串口初始化为115200
     delay_ms(500);
     for(;;)
     {
```

		文件	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 10 页 共 18 页

UartSend("SBC(15);DIR(0);FSIMG(2329472,0,0,176,220,0);DIR(1);SBC(10);\r

```
n";
       CheckBusy();
       UartSend("DC32(0,0,'系统正在开机',1);\r\n");
       CheckBusy();
       UartSend("DC24(0,32,'模组型号JC-V01',2);\r\n");
       CheckBusy();
       UartSend("DC24(0,56,'2.2寸176X220分辨率',4)
       CheckBusy();
       UartSend("DC16(0,80,'支持横竖屏切换',3);\r\n");
       CheckBusy();
       UartSend("DC16(0,96,'能实现图层叠加功能',1);\r\n");
       CheckBusy();
       UartSend("DC16(0,112,'背光亮度可以调节',1);\r\n");
       CheckBusy();
       UartSend("PS(10,10,14);\r\n");
       CheckBusy();
       UartSend("BOX(120,140,150,160,3);\r\n");
```

		文件名	称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 11 页 共 18 页

CheckBusy();

```
UartSend("CIRF(70,150,20,1);\r\n");
```

CheckBusy();

```
while(1);
}
```

}

完整的STM32测试工程请联系我司业务员索取。

		文件。	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 12 页 共 18 页

(7) 编程技巧:

- ① 如系统的实时性要求很高的话,指令与指令之间可以不需要忙等,主控可以通过侦测模块反馈回来的OK\r\n这三个字符来确定该指令是否执行完,可以提高程序的实时性。 具体可以参考完整的测试代码。
- ②模块允许串口一次性最多发送24条指令,这样可以大大提高编程的效率,但一定要注意 指令的最后一定也要以\r\n为结束符,发送后的等待时间为最后一条指令的等待时间。

3.图片存储及读取操作说明(注意:如下的范例为240x400的 图片,此模块为176x220,实际操作时记得调整这个参数)

(1) 如用户需要存储的图片总大小小于2M时,可以把图片存入到模块为用户开辟的 2M图片存储空间中(即FLASH的高2M空间)。

板子的FLASH芯片

低2M

(0~2097151)

系统参数存储空间

高2M

(2097152~4194303)用

户图片存储空间

4M的存储空间分布

		文件	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 13 页 共 18 页

(2)要下载的图片文件的获取方法:

①从美工设计部门获取bmp后缀的图片素材(此BMP为24位格式),如果素材是其他格式的图片(例如jpeg或者png),就必须另存为BMP格式。

如上均为要显示的bmp格式的素材图片

②打开Image2Lcd.exe取模软件,导入图片,注意红色框中的设置一定要和图片中的一致,蓝色框的分辨率需要根据具体的图片大小来确定。

		文件名	吕称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 14 页 共 18 页

导入图片后的软件界面

- ③点击软件左上方的保存按键,即可以保存为bin文件,使用同样的方法,将需要的 图片都保存为bin文件。
- ④打开EzOSD.exe文件,选中"Merge",选择左上方的路径并从右下方双击选中刚刚保存的bin文件,选中的文件会显示在右方的列表中。

		文件	名称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 15 页 共 18 页

注意,此时我只选择了2个bin文件,第一张为240x400的全屏图片,第二张为90x100的

窗口图片,两个图片的总大小为:210000字节

⑤点击右下方的Merge按钮,合并并保存为Pic.bin

注意 Pic_TBL.TXT为图片合并的信息(包括偏移地址和大小),如下图

此时,要烧录的Pic.bin就已经制作完成。

		文件名	吕称		2.2寸	集成串口屏应用文档
文件编号	LC10/AN	版	次	A	页码	第 16 页 共 18 页

- (3)将Pic.bin下载到模块中(使用串口终端下载)
 - ①打开串口终端SSCOM 3.3 exe,将模块和电脑的串口连接好,设置好终端的波特率等参数。

②注意要选择发送新行复选框,此时用115200的波特率向模块发送

FS_DLOAD(210000);命令,接收命令后模块会向终端返回FLASH正在擦除的信息, 等待FLASH擦除完成。

③擦除完成后,通过"打开文件"按钮即可导入刚刚生成的Pic.bin文件。

文件已经导入,点击"发送文件"按钮

④等待烧录完成。

(5) 显示下载到FLASH中的图片

①FSIMG(2097152,0,0,240,400,0);

在模块的0,0处开始显示显示第一张图片,其中2097152为图片存储的开始地址.,图片的大小为240*400。

2FSIMG(2097152+192000,0,0,90,100,0);

显示第二张图片,其中偏移地址+192000,即表示第二张图片是紧接着第一张图片的位置存取。