Intuition:

Découvrir (ou estimer) une fonction (ou une distribution) inconnue à partir d'un ensemble d'exemples

Apprentissage supervisé:

Apprentissage non supervisé:

Apprentissage semi supervisé:

Apprentissage supervisé:

Apprendre ...

• Apprendre par cœur ?

- Exemples (Input => Output)
 - {1, 2} => {3}
 - {4, 2} => {6}
 - {2, 2} => {4}
 - {8,13} => {21}

- Exemples (Input => Output)
 - {1, 2} => {3}
 - {4, 2} => {6}
 - {2, 2} => {4}
 - {8,13} => {21}
- Apprendre par cœur ?
 - Dictionnaire?

- Exemples (Input => Output)
 - {1, 2} => {3}
 - {4, 2} => {6}
 - $\{2, 2\} => \{4\}$
 - {8,13} => {21}
- Apprendre par cœur ?
 - Dictionnaire?
 - Aucune information sur le reste de l'espace d'entrée!

Apprendre ...

... n'a d'intérêt que si on généralise!

Qu'est-ce que généraliser ?

⇒Généraliser :

- ⇒Supposer qu'il existe une <u>fonction cible</u> qui a généré les exemples que nous avons à disposition.
- ⇒Essayer d'<u>approximer</u> les résultats de cette fonction cible à l'aide d'un modèle.
- ⇒Espérer © que si on approxime « bien » les résultats donnés sur les exemples étiquetés, on approximera « bien » sur l'ensemble de l'espace d'entrée

⇒Généraliser :

- ⇒Supposer qu'il existe une <u>fonction cible</u> qui a généré les exemples que nous avons à disposition.
- ⇒Essayer d'<u>approximer</u> les résultats de cette fonction cible à l'aide d'un modèle.

⇒Contre exemple abstrait:

⇒Contre exemple abstrait:

⇒Contre exemple de l'arnaque à la prédiction

Quelles validations théoriques ?

https://work.caltech.edu/telecourse.html

Inégalité de Hoeffding :

soit µ: probabilité d'obtenir un échantillon bleu dans un ensemble

soit v: proportion d'échantillons bleus dans un échantillonnage

Si N est mon nombre d'échantillons et ϵ un réel :

$$P[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

Ce qui nous amène à :

soit E_{in} : l'erreur de classement d'une hypothèse sur les échantillons par rapport à la fonction cible.

soit E_{out} : l'erreur de classement d'une hypothèse l'ensemble des entrées possibles par rapport à la fonction cible.

soit g: mon hypothèse

soit M : L'ensemble des hypothèses possibles pour mon modèle

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

Inégalité de Vapnik-Chervonenkis :

soit m_H : le nombre maximum de dichotomies réalisables sur un ensemble d'exemples par une classe d'hypothèse H.

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 4m_H(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

Conclusion théorique :

- Généraliser est parfois possible
- Cela dépend :
 - Du nombre d'exemples étiquetés à disposition
 - De la qualité de la généralisation que l'on cherche
 - De la complexité du modèle utilisé pour générer nos hypothèses

- Règle générale, approximative mais pratique :
 - Ne pas espérer obtenir une bonne généralisation si le nombre d'exemple à disposition n'est pas supérieur à **10 fois** le nombre de paramètres du modèle utilisé.

Classification VS Régression

Classification:

• Appartenance d'un exemple à un ensemble fini :

Classification VS Régression

Régression:

• Prédire une (ou plusieurs) valeurs réelles :

• Retours sur le Perceptron

• Retours sur le Perceptron

- Que l'on peut réécrire :
 - $out = Sign(\sum_{i=0}^{n} w_i x_i)$
- Ou sous forme matricielle:
 - $out = Sign(W^TX)$ en prenant soin d'ajouter le biais $(x_0 = 1)$

- Algorithmes d'apprentissages du perceptron pour la classification
- But du jeu : déterminer *W*
- Non supervisée
 - Règle de Hebb
- Supervisée
 - PLA ou Règle de Rosenblatt

- Perceptron Learning Algorithm (pour des sorties à -1 ou 1)
 - Initialiser W (random(-1,1) ou 0)
 - Répéter :
 - Prendre un exemple MAL classé (où $g(X^k) \neq Y^k$) au hasard et, mettre à jour W selon la règle :

$$W \leftarrow W + \alpha Y^k X^k$$

- Règle de Rosenblatt (pour des sorties à 0 ou 1) (marche aussi pour des sorties à -1 ou 1)
 - Initialiser W (random(-1,1) ou 0)
 - Répéter :

$$W \leftarrow W + \alpha (Y^k - g(X^k)) X^k$$

Avec:

- α le pas d'apprentissage
- X^k les paramètres de l'exemples k et le biais $x_0^k = 1$.
- Y^k la sortie attendue pour l'exemple k.
- $g(X^k)$ la sortie obtenue par le perceptron pour l'exemple k.

Régression linéaire

Minimiser le carré de l'erreur

• Notons
$$X = \begin{bmatrix} x_0^0 & \cdots & x_n^0 \\ \vdots & \ddots & \vdots \\ x_0^N & \cdots & x_n^N \end{bmatrix}$$
 et $Y = \begin{bmatrix} y_0^0 & \cdots & y_n^0 \\ \vdots & \ddots & \vdots \\ y_0^N & \cdots & y_n^N \end{bmatrix}$

- Supposons $n \leq N$
- Utilisation de la pseudo inverse pour calculer W en un coup :

$$W = ((X^T X)^{-1} X^T) Y$$