

N-Channel Enhancement Mode Field Effect Transistor

FEATURES

- 100V, 36A, $R_{DS(ON)} = 53m\Omega$ @ $V_{GS} = 10V$.
- Super high dense cell design for extremely low R_{DS(ON)}.
- High power and current handing capability.
- Lead free product is acquired.
- TO-220 & TO-263 package.

ABSOLUTE MAXIMUM RATINGS T_C = 25°C unless otherwise noted

Parameter	Symbol	Limit	Units
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _{GS}	±20	V
Drain Current-Continuous	I _D	36	Α
Drain Current-Pulsed ^a	I _{DM}	120	Α
Maximum Power Dissipation @ T _C = 25°C	В	140	W
- Derate above 25°C	P _D	0.91	W/℃
Single Pulsed Avalanche Energy d	E _{AS}	310	mJ
Single Pulsed Avalanche Current ^d	I _{AS}	18	Α
Operating and Store Temperature Range	T_J,T_stg	-55 to 175	°C

Thermal Characteristics

Parameter	Symbol	Limit	Units
Thermal Resistance, Junction-to-Case	Reuc	1.1	°C/W
Thermal Resistance, Junction-to-Ambient	Reja	62.5	°C/W

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Parameter	Symbol	Test Condition	Min	Тур	Max	Units			
Off Characteristics	•								
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	100			V			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 100V, V _{GS} = 0V			25	μΑ			
Gate Body Leakage Current, Forward	I _{GSSF}	V _{GS} = 20V, V _{DS} = 0V			100	nA			
Gate Body Leakage Current, Reverse	Igssr	V _{GS} = -20V, V _{DS} = 0V			-100	nA			
On Characteristics b									
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2		4	V			
Static Drain-Source		V _{GS} = 10V, I _D = 18A		45	53	mΩ			
On-Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 10 A		45	53	11152			
Dynamic Characteristics °	•								
Forward Transconductance	g _{FS}	V _{DS} = 25V, I _D = 18A		14		S			
Input Capacitance	C _{iss}	V _{DS} = 25V, V _{GS} = 0V, f = 1.0 MHz		1300		pF			
Output Capacitance	C _{oss}			196		pF			
Reverse Transfer Capacitance	C _{rss}	1		28		pF			
Switching Characteristics °									
Turn-On Delay Time	t _{d(on)}			17	34	ns			
Turn-On Rise Time	t _r	$V_{DD} = 50V, I_{D} = 18A,$		10	20	ns			
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 10V, R_{GEN} = 5.1\Omega$		36	72	ns			
Turn-Off Fall Time	t _f			5	10	ns			
Total Gate Charge	Qg	\/ 00\/ L 40A		28	56	nC			
Gate-Source Charge	Q _{gs}	$V_{DS} = 80V, I_{D} = 18A, V_{GS} = 10V$		6		nC			
Gate-Drain Charge	Q _{gd}	- 65		9		nC			
Drain-Source Diode Characteristics and Maximun Ratings									
Drain-Source Diode Forward Current	I _S				36	А			
Drain-Source Diode Forward Voltage b	V _{SD}	V _{GS} = 0V, I _S = 18A			1.3	V			

Notes :

Notes: \Box An Albertive Rating: Pulse width limited by maximum junction temperature. \Box b.Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%. \Box C. Guaranteed by design, not subject to production testing. \Box d.L = 1.9mH, I_{AS} = 18A, V_{DD} = 50V, R_S = 25 Ω , Starting T_J = 25 $^{\circ}$ C

Figure 1. Output Characteristics

Figure 3. Capacitance

Figure 5. Gate Threshold Variation with Temperature

Vgs, Gate-to-Source Voltage (V)

Figure 2. Transfer Characteristics

Figure 4. On-Resistance Variation with Temperature

Figure 6. Body Diode Forward Voltage Variation with Source Current

Figure 7. Gate Charge

Figure 8. Maximum Safe Operating Area

Figure 9. Switching Test Circuit

Figure 10. Switching Waveforms

Figure 11. Normalized Thermal Transient Impedance Curve