Discrete Mathematics

Relations and Functions

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2014

License

© 2001-2014 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

- ▶ Share copy and redistribute the material in any medium or format
- ► Adapt remix, transform, and build upon the material

Under the following terms:

- ▶ Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- ▶ NonCommercial You may not use the material for commercial purposes.
- ► ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

For more information:

https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2/78

Topics

Relations

Introduction Relation Properties Equivalence Relations

Functions

Introduction
Pigeonhole Principle
Recursion

Relation

1/78

Definition

relation: $\alpha \subseteq A \times B \times C \times \cdots \times N$

- ▶ tuple: an element of a relation
- ▶ $\alpha \subseteq A \times B$: binary relation
- ▶ $a\alpha b$ is the same as $(a,b) \in \alpha$

3 / 78

Relation Example

Example

$$A = \{a_1, a_2, a_3, a_4\}, B = \{b_1, b_2, b_3\}$$

$$\alpha = \{(a_1, b_1), (a_1, b_3), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3), (a_4, b_1)\}$$

	b_1	b_2	b_3
a_1	1	0	1
a_2	0	1	1
a_3	1	0	1
<i>a</i> ₄	1	0	0

$$M_{lpha} = egin{array}{cccc} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 0 & 0 \ \end{array}$$

Relation Composition

Definition

relation composition:

let
$$\alpha \subseteq A \times B$$
, $\beta \subseteq B \times C$
 $\alpha\beta = \{(a, c) \mid a \in A, c \in C, \exists b \in B \ [a\alpha b \land b\beta c]\}$

Example

Relation Composition

- $M_{\alpha\beta} = M_{\alpha} \times M_{\beta}$
- using logical operations:

$$1: T \quad 0: F \quad \cdot: \land \quad +: \lor$$

Example

$$M_eta = egin{array}{ccccc} 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 \end{array}$$

$$M_{lpha} = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 1 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} \hspace{1cm} M_{eta} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 \end{bmatrix} \hspace{1cm} M_{lphaeta} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 \end{bmatrix}$$

Relation Composition Associativity

$$(\alpha\beta)\gamma = \alpha(\beta\gamma).$$

$$(a,d) \in (\alpha\beta)\gamma$$

$$\Leftrightarrow \exists c \ [(a,c) \in \alpha\beta \land (c,d) \in \gamma]$$

$$\Leftrightarrow \exists c \ [\exists b \ [(a,b) \in \alpha \land (b,c) \in \beta] \land (c,d) \in \gamma]$$

$$\Leftrightarrow \exists b \ [(a,b) \in \alpha \land \exists c \ [(b,c) \in \beta \land (c,d) \in \gamma]]$$

$$\Leftrightarrow \exists b \ [(a,b) \in \alpha \land (b,d) \in \beta \gamma]$$

$$\Leftrightarrow$$
 $(a,d) \in \alpha(\beta\gamma)$

Relation Composition Theorems

- ▶ let $\alpha, \delta \subseteq A \times B$, and let $\beta, \gamma \subseteq B \times C$

- $(\alpha \cup \delta)\beta = \alpha\beta \cup \delta\beta$
- $(\alpha \cap \delta)\beta \subseteq \alpha\beta \cap \delta\beta$

Relation Composition Theorems

$$\alpha(\beta \cup \gamma) = \alpha\beta \cup \alpha\gamma.$$

$$(a,c) \in \alpha(\beta \cup \gamma)$$

- $\Leftrightarrow \exists b \ [(a,b) \in \alpha \land (b,c) \in (\beta \cup \gamma)]$
- $\Leftrightarrow \exists b \ [(a,b) \in \alpha \land ((b,c) \in \beta \lor (b,c) \in \gamma)]$
- $\Leftrightarrow \exists b [((a,b) \in \alpha \land (b,c) \in \beta) \\ \lor ((a,b) \in \alpha \land (b,c) \in \gamma)]$
- \Leftrightarrow $(a,c) \in \alpha\beta \lor (a,c) \in \alpha\gamma$
- \Leftrightarrow $(a, c) \in \alpha\beta \cup \alpha\gamma$

9 / 78

11 / 78

10 / 78

Converse Relation

Definition

$$\alpha^{-1} = \{ (b, a) \mid (a, b) \in \alpha \}$$

$$M_{\alpha^{-1}} = M_{\alpha}^{T}$$

Converse Relation Theorems

$$(\alpha^{-1})^{-1} = \alpha$$

$$(\alpha \cup \beta)^{-1} = \alpha^{-1} \cup \beta^{-1}$$

$$(\alpha \cap \beta)^{-1} = \alpha^{-1} \cap \beta^{-1}$$

$$\overline{\alpha}^{-1} = \overline{\alpha^{-1}}$$

$$(\alpha - \beta)^{-1} = \alpha^{-1} - \beta^{-1}$$

Converse Relation Theorems

$$\overline{\alpha}^{-1} = \overline{\alpha^{-1}}.$$

$$(b,a)\in\overline{lpha}^{-1}$$

$$\Leftrightarrow$$
 $(a,b) \in \overline{\alpha}$

$$\Leftrightarrow$$
 $(a,b) \notin \alpha$

$$\Leftrightarrow$$
 $(b,a) \notin \alpha^{-1}$

$$\Leftrightarrow$$
 $(b,a) \in \overline{\alpha^{-1}}$

Converse Relation Theorems

$$(\alpha \cap \beta)^{-1} = \alpha^{-1} \cap \beta^{-1}.$$

$$(b,a)\in(\alpha\cap\beta)^{-1}$$

$$\Leftrightarrow$$
 $(a,b) \in (\alpha \cap \beta)$

$$\Leftrightarrow$$
 $(a,b) \in \alpha \land (a,b) \in \beta$

$$\Leftrightarrow$$
 $(b,a) \in \alpha^{-1} \land (b,a) \in \beta^{-1}$

$$\Leftrightarrow$$
 $(b,a) \in \alpha^{-1} \cap \beta^{-1}$

13 / 78

14 / 78

Converse Relation Theorems

$$(\alpha - \beta)^{-1} = \alpha^{-1} - \beta^{-1}$$
.

$$(\alpha - \beta)^{-1} = (\alpha \cap \overline{\beta})^{-1}$$
$$= \alpha^{-1} \cap \overline{\beta}^{-1}$$
$$= \alpha^{-1} \cap \overline{\beta}^{-1}$$
$$= \alpha^{-1} - \beta^{-1}$$

Relation Composition Converse

Theorem

$$(\alpha\beta)^{-1} = \beta^{-1}\alpha^{-1}$$

Proof.

$$(c,a) \in (\alpha\beta)^{-1}$$

$$\Leftrightarrow$$
 $(a,c) \in \alpha\beta$

$$\Leftrightarrow \exists b \ [(a,b) \in \alpha \land (b,c) \in \beta]$$

$$\Leftrightarrow \exists b \ [(b,a) \in \alpha^{-1} \land (c,b) \in \beta^{-1}]$$

$$\Leftrightarrow$$
 $(c,a) \in \beta^{-1}\alpha^{-1}$

15 / 78

16 / 78

Relation Properties

- ▶ let $\alpha \subseteq A \times A$
- $\triangleright \alpha^n$: $\alpha\alpha\cdots\alpha$
- ▶ identity relation: $E = \{(a, a) \mid a \in A\}$

Reflexivity

reflexive

 $\alpha \subseteq A \times A$ $\forall a [a\alpha a]$

- $ightharpoonup E \subseteq \alpha$
- nonreflexive: $\exists a \ [\neg(a\alpha a)]$
- irreflexive: $\forall a \ [\neg(a\alpha a)]$

17 / 78

18 / 78

Reflexivity Examples

Example

$$\begin{array}{ll} \mathcal{R}_1 \subseteq \{1,2\} \times \{1,2\} & \mathcal{R}_2 \subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R}_1 = \{(1,1),(1,2),(2,2)\} & \mathcal{R}_2 = \{(1,1),(1,2),(2,2)\} \end{array}$$

Example

$$\mathcal{R}_2 \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$$

 $\mathcal{R}_2 = \{(1, 1), (1, 2), (2, 2)\}$

 $ightharpoonup \mathcal{R}_1$ is reflexive

 $ightharpoonup \mathcal{R}_2$ is nonreflexive

Reflexivity Examples

Example

$$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$$
$$\mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$$

 $ightharpoonup \mathcal{R}$ is irreflexive

19 / 78

Reflexivity Examples

Example

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$
$$\mathcal{R} = \{(a, b) \mid ab \ge 0\}$$

 $ightharpoonup \mathcal{R}$ is reflexive

Symmetry

symmetric

$$\alpha \subseteq A \times A$$

 $\forall a, b \ [(a = b) \lor (a\alpha b \land b\alpha a) \lor (\neg(a\alpha b) \land \neg(b\alpha a))]$
 $\forall a, b \ [(a = b) \lor (a\alpha b \leftrightarrow b\alpha a)]$

- $\sim \alpha^{-1} = \alpha$
- ▶ asymmetric: $\exists a, b \ [(a \neq b) \land ((a \alpha b \land \neg (b \alpha a)) \lor (\neg (a \alpha b) \land b \alpha a))]$
- antisymmetric:

$$\forall a, b \ [(a = b) \lor (a\alpha b \to \neg(b\alpha a))]$$

$$\Leftrightarrow \forall a, b \ [(a = b) \lor \neg(a\alpha b) \lor \neg(b\alpha a)]$$

$$\Leftrightarrow \forall a, b \ [\neg(a\alpha b \land b\alpha a) \lor (a = b)]$$

$$\Leftrightarrow \forall a, b \ [(a\alpha b \land b\alpha a) \to (a = b)]$$

22 / 78

Symmetry Examples

Example

$$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$$

 $\mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$

 $ightharpoonup \mathcal{R}$ is asymmetric

Symmetry Examples

Example

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

 $\mathcal{R} = \{(a, b) \mid ab \ge 0\}$

 $ightharpoonup \mathcal{R}$ is symmetric

23 / 78

21 / 78

Symmetry Examples

Example

$$\mathcal{R} \subseteq \{1,2,3\} \times \{1,2,3\}$$

$$\mathcal{R} = \{(1,1),(2,2)\}$$

 $ightharpoonup \mathcal{R}$ is symmetric and antisymmetric

Transitivity

transitive

$$\alpha \subseteq A \times A$$
$$\forall a, b, c \ [(a\alpha b \wedge b\alpha c) \rightarrow (a\alpha c)]$$

- $ightharpoonup \alpha^2 \subseteq \alpha$
- ▶ nontransitive: $\exists a, b, c \ [(a\alpha b \land b\alpha c) \land \neg(a\alpha c)]$
- ▶ antitransitive: $\forall a, b, c \ [(a\alpha b \land b\alpha c) \rightarrow \neg(a\alpha c)]$

25 / 78

26 / 78

Transitivity Examples

Example

$$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$$

 $\mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$

 $ightharpoonup \mathcal{R}$ is antitransitive

Transitivity Examples

Example

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$\mathcal{R} = \{(a, b) \mid ab \ge 0\}$$

 $ightharpoonup \mathcal{R}$ is nontransitive

27 / 78

Converse Relation Properties

Theorem

The reflexivity, symmetry and transitivity properties are preserved in the converse relation.

Closures

reflexive closure:

$$r_{\alpha} = \alpha \cup E$$

> symmetric closure:

$$s_{\alpha} = \alpha \cup \alpha^{-1}$$

transitive closure:

$$t_{\alpha} = \bigcup_{i=1,2,3,\dots} \alpha^i = \alpha \cup \alpha^2 \cup \alpha^3 \cup \dots$$

29 / 78

30 / 78

Special Relations

predecessor - successor

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$
 $\mathcal{R} = \{(a, b) \mid a - b = 1\}$

- irreflexive
- antisymmetric
- antitransitive

Special Relations

adjacency

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$
 $\mathcal{R} = \{(a, b) \mid |a - b| = 1\}$

- irreflexive
- symmetric
- antitransitive

31 / 78

Special Relations

strict order

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$\mathcal{R} = \{(a, b) \mid a < b\}$$

- irreflexive
- antisymmetric
- transitive

Special Relations

partial order

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$\mathcal{R} = \{(a, b) \mid a \le b\}$$

- reflexive
- antisymmetric
- transitive

Special Relations

preorder

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

 $\mathcal{R} = \{(a, b) \mid |a| \le |b|\}$

- reflexive
- asymmetric
- transitive

Special Relations

limited difference

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}, m \in \mathbb{Z}^+$$

 $\mathcal{R} = \{(a, b) \mid |a - b| \le m\}$

- reflexive
- symmetric
- nontransitive

34 / 78

35 / 78

33 / 78

Special Relations

comparability

$$\mathcal{R} \subseteq \mathbb{U} \times \mathbb{U}$$

 $\mathcal{R} = \{(a, b) \mid (a \subseteq b) \lor (b \subseteq a)\}$

- reflexive
- symmetric
- nontransitive

Special Relations

sibling

- ▶ irreflexive
- symmetric
- ► transitive
- ▶ can a relation be symmetric, transitive and irreflexive?

38 / 78

Compatibility Relations

Definition

compatibility relation: $\boldsymbol{\gamma}$

- reflexive
- symmetric
- ▶ when drawing, lines instead of arrows
- ▶ matrix representation as a triangle matrix
- $ightharpoonup lpha lpha^{-1}$ is a compatibility relation

Compatibility Relation Example

Example

$$A = \{a_1, a_2, a_3, a_4\}$$

$$\mathcal{R} = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_1, a_2), (a_2, a_1), (a_2, a_4), (a_4, a_2), (a_3, a_4), (a_4, a_3)\}$$

 $\begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{vmatrix}$

 $\begin{vmatrix}
1 & & & \\
0 & 0 & & \\
0 & 1 & 1
\end{vmatrix}$

39 / 78

37 / 78

Compatibility Relation Example

Example $(\alpha \alpha^{-1})$

P: persons, L: languages

$$P = \{p_1, p_2, p_3, p_4, p_5, p_6\}$$

$$L = \{l_1, l_2, l_3, l_4, l_5\}$$

$$\alpha \subseteq P \times L$$

$$M_{lpha} = egin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$
 $M_{lpha^{-1}} = egin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$

Compatibility Relation Example

Example
$$(\alpha \alpha^{-1})$$

 $\alpha \alpha^{-1} \subset P \times P$

$$M_{lphalpha^{-1}} = egin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 \ 1 & 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 0 \ 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

42 / 78

Compatibility Block

Definition

compatibility block: $C \subseteq A$ $\forall a, b \ [a \in C \land b \in C \rightarrow a\gamma b]$

- maximal compatibility block: not a subset of another compatibility block
- ▶ an element can be a member of more than one MCB
- ightharpoonup complete cover: C_{γ} set of all MCBs

Compatibility Block Example

Example $(\alpha \alpha^{-1})$

$$ightharpoonup C_1 = \{p_4, p_6\}$$

$$ightharpoonup C_2 = \{p_2, p_4, p_6\}$$

►
$$C_3 = \{p_1, p_2, p_4, p_6\}$$
 (MCB)

$$C_{\gamma} = \{\{p_1, p_2, p_4, p_6\}, \\ \{p_3, p_4, p_6\}, \\ \{p_4, p_5\}\}$$

43 / 78

41 / 78

Equivalence Relations

Definition

equivalence relation: ϵ

- reflexive
- symmetric
- transitive
- equivalence classes (partitions)
- every element is a member of exactly one equivalence class
- **ightharpoonup** complete cover: C_{ϵ}

Equivalence Relation Example

Example

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

 $\mathcal{R} = \{(a, b) \mid \exists m \in \mathbb{Z} [a - b = 5m]\}$

 $ightharpoonup \mathcal{R}$ partitions \mathbb{Z} into 5 equivalence classes

46 / 78

References

Required Reading: Grimaldi

- ► Chapter 5: Relations and Functions
 - ▶ 5.1. Cartesian Products and Relations
- ► Chapter 7: Relations: The Second Time Around
 - ▶ 7.1. Relations Revisited: Properties of Relations
 - ▶ 7.4. Equivalence Relations and Partitions

Supplementary Reading: O'Donnell, Hall, Page

► Chapter 10: Relations

Functions

Definition

function: $f: X \to Y$ $\forall x \in X \ \forall y_1, y_2 \in Y \ [(x, y_1), (x, y_2) \in f \to y_1 = y_2]$

- ► X: domain, Y: codomain (or range)
- ightharpoonup y = f(x) is the same as $(x, y) \in f$
- ▶ y is the *image* of x under f
- ▶ let $f: X \to Y$ and $X_1 \subseteq X$ subset image: $f(X_1) = \{f(x) \mid x \in X_1\}$

47 / 78

45 / 78

Subset Image Examples

Example

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x^2$$

$$f(\mathbb{Z}) = \{0, 1, 4, 9, 16, \dots\}$$

$$f(\{-2,1\}) = \{1,4\}$$

Function Properties

Definition

$$f: X \to Y$$
 is one-to-one (or injective): $\forall x_1, x_2 \in X \ [f(x_1) = f(x_2) \to x_1 = x_2]$

Definition

 $f: X \to Y$ is onto (or surjective): $\forall y \in Y \ \exists x \in X \ [f(x) = y]$

$$ightharpoonup f(X) = Y$$

Definition

 $f: X \to Y$ is bijective:

f is one-to-one and onto

49 / 78

50 / 78

One-to-one Function Examples

Example

$$f: \mathbb{R} \to \mathbb{R}$$

 $f(x) = 3x + 7$

$$\Rightarrow 3x_1 + 7 = 3x_2 +
\Rightarrow 3x_1 = 3x_2
\Rightarrow x_1 = x_2$$

Counterexample

$$g: \mathbb{Z} \to \mathbb{Z}$$

 $g(x) = x^4 - x$

$$f(x_1) = f(x_2)$$
 $g(0) = 0^4 - 0 = 0$
 $\Rightarrow 3x_1 + 7 = 3x_2 + 7$ $g(1) = 1^4 - 1 = 0$

Onto Function Examples

Example

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x^3$$

Counterexample

$$f: \mathbb{Z} \to \mathbb{Z}$$
$$f(x) = 3x + 1$$

51 / 78

Function Composition

Definition

let $f: X \to Y$ and $g: Y \to Z$

$$g \circ f : X \to Z$$

 $(g \circ f)(x) = g(f(x))$

- ▶ function composition is not commutative
- ▶ function composition is associative:

$$f\circ (g\circ h)=(f\circ g)\circ h$$

Function Composition Examples

Example (commutativity)

$$f:\mathbb{R} \to \mathbb{R}$$

$$f(x) = x^2$$

$$g:\mathbb{R} o \mathbb{R}$$

$$g(x) = x + 5$$

$$g \circ f : \mathbb{R} \to \mathbb{R}$$

$$(g\circ f)(x)=x^2+5$$

$$f\circ g:\mathbb{R}\to\mathbb{R}$$

$$(f\circ g)(x)=(x+5)^2$$

53 / 78

54 / 78

Composite Function Theorems

Theorem

let $f: X \to Y$ and $g: Y \to Z$

f is one-to-one \land g is one-to-one \Rightarrow $g \circ f$ is one-to-one

Proof.

$$(g \circ f)(a_1) = (g \circ f)(a_2)$$

$$\Rightarrow g(f(a_1)) = g(f(a_2))$$

$$\Rightarrow f(a_1) = f(a_2)$$

$$\Rightarrow a_1 = a_2$$

Composite Function Theorems

Theorem

let $f: X \to Y$ and $g: Y \to Z$

f is onto \wedge g is onto \Rightarrow $g \circ f$ is onto

Proof.

$$\forall z \in Z \ \exists y \in Y \ g(y) = z$$

$$\forall y \in Y \ \exists x \in X \ f(x) = y$$

$$\Rightarrow \forall z \in Z \ \exists x \in X \ g(f(x)) = z$$

55 / 78

56 / 78

Identity Function

Definition

identity function: 1_X

$$1_X: X \to X$$
$$1_X(x) = x$$

Inverse Function

Definition

 $f: X \to Y$ is invertible:

$$\exists f^{-1}: Y \to X \ [f^{-1} \circ f = 1_X \wedge f \circ f^{-1} = 1_Y]$$

 $ightharpoonup f^{-1}$: inverse of function f

58 / 78

Inverse Function Examples

Example

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = 2x + 5$$

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$
$$f^{-1}(x) = \frac{x-5}{2}$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(2x+5) = \frac{(2x+5)-5}{2} = \frac{2x}{2} = x$$
$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(\frac{x-5}{2}) = 2\frac{x-5}{2} + 5 = (x-5) + 5 = x$$

Inverse Function

Theorem

If a function is invertible, its inverse is unique.

Proof.

let $f: X \to Y$

let $g, h: Y \rightarrow X$ such that:

$$g \circ f = 1_X \wedge f \circ g = 1_Y$$

$$h \circ f = 1_X \wedge f \circ h = 1_Y$$

$$h = h \circ 1_Y = h \circ (f \circ g) = (h \circ f) \circ g = 1_X \circ g = g$$

59 / 78

57 / 78

Invertible Function

Theorem

A function is invertible if and only if it is one-to-one and onto.

Invertible Function

If invertible then one-to-one.

 $f:A\rightarrow B$

$$f(a_{1}) = f(a_{2}) \qquad b$$

$$\Rightarrow f^{-1}(f(a_{1})) = f^{-1}(f(a_{2})) \qquad = 1_{B}(b)$$

$$\Rightarrow (f^{-1} \circ f)(a_{1}) = (f^{-1} \circ f)(a_{2}) \qquad = (f \circ f^{-1})(b)$$

$$\Rightarrow 1_{A}(a_{1}) = 1_{A}(a_{2}) \qquad = f(f^{-1}(b))$$

$$\Rightarrow a_{1} = a_{2}$$

If invertible then onto.

$$f:A\to B$$

П

$$b = 1_B(b) = (f \circ f^{-1})(b) = f(f^{-1}(b))$$

62 / 78

Invertible Function

If bijective then invertible.

 $f:A\rightarrow B$

- ▶ f is onto $\Rightarrow \forall b \in B \exists a \in A \ f(a) = b$
- ▶ let $g: B \rightarrow A$ be defined by a = g(b)
- ▶ is it possible that $g(b) = a_1 \neq a_2 = g(b)$?
- ▶ this would mean: $f(a_1) = b = f(a_2)$
- ▶ but *f* is one-to-one

Pigeonhole Principle

Definition

pigeonhole principle (Dirichlet drawers):

If m pigeons go into n holes and m > n,

then at least one hole contains more than one pigeon.

- ▶ let $f: X \to Y$ $|X| > |Y| \Rightarrow f$ is not one-to-one
- $ightharpoonup \exists x_1, x_2 \in X \ [x_1 \neq x_2 \land f(x_1) = f(x_2)]$

61/78

63 / 78

Pigeonhole Principle Examples

Example

- ▶ Among 367 people, at least two have the same birthday.
- ▶ In an exam where the grades are integers between 0 and 100, how many students have to take the exam to make sure that at least two students will have the same grade?

Generalized Pigeonhole Principle

Definition

generalized pigeonhole principle:

If *m* objects are distributed to *n* drawers, then at least one of the drawers contains $\lceil m/n \rceil$ objects.

Example

Among 100 people, at least 9 ($\lceil 100/12 \rceil$) were born in the same month.

66 / 78

65 / 78

Pigeonhole Principle Example

Theorem

In any subset of cardinality 6 of the set $S = \{1, 2, 3, \dots, 9\}$ there are two elements which total 10.

Pigeonhole Principle Example

Theorem

Let S be a set of positive integers smaller than or equal to 14, with cardinality 6. The sums of the elements in all nonempty subsets of S cannot be all different.

Proof Trial

 $A \subseteq S$

 s_A : sum of the elements of A

holes:

$$1 \le s_A \le 9 + \dots + 14 = 69$$
 $1 \le s_A \le 10 + \dots + 14 = 60$

Proof.

look at the subsets for which $|A| \leq 5$

holes:

$$1 \le s_A \le 10 + \cdots + 14 = 60$$

▶ pigeons: $2^6 - 1 = 63$ ▶ pigeons: $2^6 - 2 = 62$

68 / 78

Pigeonhole Principle Example

Theorem

Among any 101 elements chosen from the set $S = \{1, 2, 3, ..., 200\}$ there are at least two numbers such that one divides the other.

Proof Method

- ▶ we first show that $\forall n \exists ! p \ [n = 2^r p \land r \in \mathbb{N} \land \exists t \in \mathbb{Z} \ [p = 2t + 1]]$
- ▶ then, by using this theorem we prove the main theorem

Pigeonhole Principle Example

Theorem

 $\forall n \; \exists! p \; [n = 2^r p \land r \in \mathbb{N} \land \exists t \in \mathbb{Z} \; [p = 2t + 1]]$

Proof of existence.

n = 1: r = 0, p = 1 $n \le k$: assume $n = 2^r p$ n = k + 1: n = 2: r = 1, p = 1

n prime
$$(n > 2)$$
: $r = 0, p = n$
 $\neg (n \text{ prime})$: $n = n_1 n_2$

 $n = 2^{r_1} p_1 \cdot 2^{r_2} p_2$ $n = 2^{r_1 + r_2} \cdot p_1 p_2$ Proof of uniqueness.

if not unique:

$$n = 2^{r_1}p_1 = 2^{r_2}p$$

$$\Rightarrow 2^{r_1-r_2}p_1 = p_2$$

$$\Rightarrow 2|p_2$$

70 / 78

Pigeonhole Principle Example

Theorem

Among any 101 elements chosen from the set $S = \{1, 2, 3, ..., 200\}$ there are at least two numbers such that one divides the other.

Proof.

- ► $T = \{t \mid t \in S, \exists i \in \mathbb{Z} [t = 2i + 1]\}, |T| = 100$
- ▶ let $f: S \to T$ and $r \in \mathbb{N}$ $s = 2^r t \to f(s) = t$
 - ▶ if 101 elements are chosen from S, at least two of them will have the same image in T: $f(s_1) = f(s_2) \Rightarrow 2^{m_1}t = 2^{m_2}t$

$$\frac{s_1}{s_2} = \frac{2^{m_1}t}{2^{m_2}t} = 2^{m_1-m_2}$$

Recursive Functions

Definition

recursive function: a function defined in terms of itself

$$f(n) = h(f(m))$$

► inductively defined function: a recursive function where the size is reduced at every step

$$f(n) = \begin{cases} k & \text{if } n = 0\\ h(f(n-1)) & \text{if } n > 0 \end{cases}$$

П

71 / 78

69 / 78

Recursion Examples

Example

$$f91(n) = \begin{cases} n - 10 & \text{if } n > 100\\ f91(f91(n+11)) & \text{if } n \le 100 \end{cases}$$

Example (factorial)

$$f(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot f(n-1) & \text{if } n > 0 \end{cases}$$

Euclid Algorithm

Example (greatest common divisor)

$$gcd(a,b) = \begin{cases} b & \text{if } b \mid a \\ gcd(b, a \mod b) & \text{if } b \nmid a \end{cases}$$

$$gcd(333,84) = gcd(84,333 \mod 84)$$

= $gcd(84,81)$
= $gcd(81,84 \mod 81)$
= $gcd(81,3)$
= 3

74 / 78

Fibonacci sequence

Fibonacci Sequence

$$F_n = fib(n) = \begin{cases} 1 & \text{if } n = 1 \\ 1 & \text{if } n = 2 \\ fib(n-2) + fib(n-1) & \text{if } n > 2 \end{cases}$$

 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 ... 1 1 2 3 5 8 13 21 ...

Fibonacci Sequence

Theorem $\sum_{i=1}^{n} F_i^2 = F_n \cdot F_{n+1}$

 $\sum_{i=1}^{r} F_i = F_n \cdot F_r$

Proof. n = 2: $\sum_{i=1}^{2} F_i^2 = F_1^2 + F_2^2 = 1 + 1 = 1 \cdot 2 = F_2 \cdot F_3$

n = k: $\sum_{i=1}^{k} F_i^2 = F_k \cdot F_{k+1}$

 $n = k + 1: \sum_{i=1}^{k+1} F_i^2 = \sum_{i=1}^k F_i^2 + F_{k+1}^2$ $= F_k \cdot F_{k+1} + F_{k+1}^2$ $= F_{k+1} \cdot (F_k + F_{k+1})$ $= F_{k+1} \cdot F_{k+2}$

75 / 78

73 / 78

Ackermann Function

Ackermann function

$$ack(x,y) = \begin{cases} y+1 & \text{if } x=0\\ ack(x-1,1) & \text{if } y=0\\ ack(x-1,ack(x,y-1)) & \text{if } x>0 \land y>0 \end{cases}$$

References

77 / 78

Required Reading: Grimaldi

- ► Chapter 5: Relations and Functions
 - ▶ 5.2. Functions: Plain and One-to-One
 - ▶ 5.3. Onto Functions: Stirling Numbers of the Second Kind
 - ▶ 5.5. The Pigeonhole Principle
 - ► 5.6. Function Composition and Inverse Functions

Supplementary Reading: O'Donnell, Hall, Page

► Chapter 11: Functions