3. Likningssett og ulikheter

Ulike likninger, likningssett og ulikheter er nyttige verktøy for deg som ingeniørstudent, og som ferdig ingeniør. Det er derfor viktig at du øver på disse temaene.

3.1 Likningssett

Innsettingsmetode for å løse likningssett ved regning. Forsøk å velge å løse med hensyn på en variabel som gir enklest mulig regning. (Du kan ikke velge feil, men forsøk som alltid å unngå slurvefeil i utregningen)

Eksempel 1

I:
$$5x - 2y = 4$$

II:
$$x + y = 5$$

Løser likning II med hensyn på y: y = -x + 5 og setter uttrykket inn i likning I.

$$5x - 2y = 4$$

$$5x-2(-x+5)=4$$

$$5x + 2x - 10 = 4$$

$$7x = 14$$

$$\underline{x} = 2$$

Setter inn for å finne y – koordinaten: y = -x + 5 = -2 + 5 = 3

Løsningen er: x = 2, y = 3.

Sjekk også ut hvordan du kan gjøre dette på kalkulatoren. (= mulig fasit)

Bruksanvisning i Sinus, eller slå opp (på nett) i bruksanvisning for din kalkulator.

Eksempel 2

Løs likningssettet ved regning: I: 2x - y = 8 II: 3x + 4y = 1

Velger her å løse I med hensyn på y: I': y = 2x - 8 og setter så inn i likning II

1

$$H'$$
: $3x+4(2x-8)=1$
 $3x+8x-32=1$

$$11x = 33$$

$$\underline{x} = 3$$

Finner til slutt y: I': $y = 2x - 8 \Big|_{x=3} = 6 - 8 = -2$

«leses, y=2x-8, regnes ut for x = 3

Løsningen er: x = 3, y = -2

3.2 Ikke lineære likningssett

Her er det minst 1 av likningene som ikke gir en rett linje. (Har potenser av en eller flere variable, et produkt eller rasjonale uttrykk.)

Eksempel

I:
$$x^2 + y^2 - 2y = 7$$

II:
$$x - y = -1$$

Snur vi på likning II, får vi y = x+1Forsøk å velge den «letteste». Settes uttrykket for y inn i I, får vi

I':
$$x^2 + (x+1)^2 - 2(x+1) = 7$$

 $x^2 + x^2 + 2x + 1 - 2x - 2 = 7$
 $2x^2 = 8$

$$x^2 = 4$$

$$x = \pm 2$$

NB2 ulike x – verdier gir løsning.

Setter inn i likning II:

$$x_1 = -2$$

$$y_1 = -2 +$$

$$x_1 = -2$$
 gir $y_1 = -2 + 1$ Løsning: $(-2, -1)$

$$x_2 = 1$$

$$y_2 = 2 + 1$$

$$x_2 = 2$$
 gir $y_2 = 2+1$ Løsning: (2,3)

3.3 Ulikheter

Ulikheter likner på likninger, men vi bruker ulikhetstegn

- < mindre enn
- eventuelt ≤
- mindre eller lik større eller lik

- > større enn
- eventuelt ≥

Eksempel:

Regel:

1 Vi kan addere eller subtrahere samme tall på begge sider i en ulikhet uten at ulikhetens gyldighet endres.

Eller litt mer slurvete sagt:

1 b Vi kan flytte ledd fra en side til en annen av ulikhetstegnet dersom vi skifter fortegn på leddet.

x + 5 < 7x+5-5 < 7-5x < 2

Eller skrevet som intervall: $x \in \langle \leftarrow, 2 \rangle$

2 Vi kan multiplisere eller dividere med et positivt tall på begge sider i en ulikhet uten at ulikhetens gyldighet endres.

$$2x < 4$$

$$\frac{1}{2} \cdot 2x < 4 \cdot \frac{1}{2}$$

$$x < 2$$

2

3 Dersom vi vil multiplisere eller dividere med et *negativt* tall, må vi <u>snu</u> ulikhetstegnet for at ulikheten fortsatt skal være gyldig.

NB Vi kan ikke multiplisere med *x*, siden fortegnet er ukjent.

$$-2x < 4$$

$$\left(-\frac{1}{2}\right) \cdot \left(-2\right)x > 4 \cdot \left(-\frac{1}{2}\right)$$

$$x > -2$$
eller
$$x \in \left\langle -2, \rightarrow \right\rangle$$

3.4 Tallinje, intervall og doble ulikheter

I sammenheng med ulikheter er løsningsmengden gjerne et intervall., det vil si en del av tallinjen. Noen ganger kan vi bruke tallinjen for å konkretisere løsningen, men andreganger for å kunne «dele opp» og tenke på faktor for faktor.

Doble ulikheter (her er det dobbelt opp med ulikhetstegn ©)

Eksempel 1

$$11 < 2x + 1 < 17$$
 trekker fra 1

$$11 - 1 < 2x + 1 - 1 < 17 - 1$$

$$10 < 2x < 16$$
 dividerer med 2

$$5 < x < 8$$

$$x \in \langle 5, 8 \rangle$$
 Kan også skrive svaret slik: $5 < x < 8$

Eksempel 2 Når x forekommer flere steder, må vi dele ulikheten i to.

(Tegn gjerne en tallinje som hjelp for å se hva som blir løsningen.)