```
In [1]:
import pandas as pd
import os
import ast
import seaborn as sns
import numpy as np
import random
from matplotlib import pyplot as plt
from tabulate import tabulate
from load data import *
from analysis import *
from main import *
In [2]:
review df = pd.read csv('data/review df.csv')
review_metadata_df = pd.read_csv('data/review_metadata_df.csv')
In [3]:
review_df.head()
Out[3]:
   Unnamed: Unnamed: Unnamed:
                                        reviewerID
                                                       asin reviewerName helpful reviewTextLength overall summaryLength unixReviewTime reviewTime n
                  0.1
                                                                 Amazon
          0
                   0
                                A1KLRMWW2FWPL4 0000031887
                                                                                                  5.0
                                                                                                                  5
                                                                                                                        1297468800 02 12, 2011
                             0
                                                                Customer
                                                                           NaN
                                                                                            35
                                                             "cameramom'
                                                                 Amazon
          1
                                 A2G5TCU2WDEZ65 0000031887
                                                                                                                 2
                                                                                                                        1358553600 01 19 2013
1
                   1
                                                                           NaN
                                                                                            61
                                                                                                  5.0
          2
                   2
                                                                                                                  6
                                                                                                                        1357257600
2
                             2 A1RLOXYNCMWRWN 0000031887
                                                                   Carola
                                                                           NaN
                                                                                            62
                                                                                                  5.0
                                                                                                                                   01 4, 2013
                                   A8U3FAMSJVHS5 0000031887
                                                                                                                        1398556800 04 27, 2014
                                                                 Caromcg
                                                                           NaN
                                                                                            76
                                                                                                  5.0
4
                                  A3GEOILWLK86XM 0000031887
                                                                     CJ
                                                                           NaN
                                                                                            80
                                                                                                  5.0
                                                                                                                        1394841600 03 15, 2014
In [4]:
review_metadata_df.head()
```

Out[4]:

Unnamed: 0		asin salesRank		title	productDescriptionLength price		bought_together
0	0	B00004SR8Z	1631.0	Lewis N. Clark Deluxe Neck Stash	0	12.80	NaN
1	1	B0000ZE74A	4742.0	Vanity Fair Women's Lollipop Plus Size Cuff Le	0	NaN	['B004PEHJ6U', 'B004A7XXJO', 'B0007YY8H0', 'B0
2	2	B00012O12A	4.0	Levi's Men's 505 Regular-Fit Jean	0	NaN	NaN
3	3	B0002XSXWC	300.0	Columbia Men's Bonehead Short Sleeve Fishing S	0	NaN	['B0031RFWMU', 'B0031RFWSE', 'B0050VLSLO', 'B0
4	4	B00066TWMU	1199.0	ASICS Mesh Backpack	0	12.41	['B00KOWEIAW', 'B00G3K71KS', 'B00CR60HLM', 'B0

Q1: What is the relation between the reviews and the helpfulness?

In [5]:

plot_histogram(None, review_df, HELPFULNESS)

In [6]:

plot_histogram(None, review_df, NUM_HELPFUL, log=True, max_samples=10000)

In [7]:

plot_histogram(None, review_df, NUM_UNHELPFUL, log=True, max_samples=10000, bins=100)

In [8]:

plot_histogram(None, review_df, REVIEW_WORD_COUNT, log=True, fill=True, max_samples=1000, bins=50)

In [9]:

joint_plot(None, review_df, REVIEW_WORD_COUNT, HELPFULNESS, alpha=0.25, max_samples=10000)

In [10]:

joint_plot(None, review_df, RATING, HELPFULNESS, max_samples=10000, alpha=0.25)

In [11]:

sns.regplot(RATING, HELPFULNESS, data=review_df)

In [12]:

```
print_correlation(review_df, HELPFULNESS, RATING, "helpfulness", "rating")
print_correlation(review_df, HELPFULNESS, REVIEW_WORD_COUNT, "helpfulness", "review word count")
print_correlation(review_df, HELPFULNESS, SUMMARY_LENGTH, "helpfulness", "summary length")
```

Correlation between helpfulness and rating = 18.1% Correlation between helpfulness and review word count = 5.4% Correlation between helpfulness and summary length = -0.1%

In [13]:

```
sns.barplot(x=RATING, y=HELPFULNESS, data=review_df, ci='sd', capsize=.2)
```

Out[13]:

<AxesSubplot:xlabel='overall', ylabel='helpful'>

In [14]:

joint_plot(None, review_df, HELPFULNESS, RATING, 10000, alpha=0.25)

Q2: What is the review behavior among different categories?

In [15]:

Out[15]:

((278677, 16), (23033, 9), (278677, 24))

In [40]:

n error or misinterpretation.

FutureWarning

In [41]:

review_by_category_df

Out[41]:

	category	overall_mean	overall_count	asin_nunique	reviews_per_product
0	Patio, Lawn & Garden	4.506306	555	19	29.210526
1	Sports & Outdoors	4.392251	8311	730	11.384932
2	Watches	4.338580	10166	993	10.237664
3	Home & Kitchen	4.319905	2110	178	11.853933
4	Jewelry	4.316975	29179	2635	11.073624
5	Toys & Games	4.283582	2211	244	9.061475
6	Shoes	4.276943	69238	5975	11.587950
7	Health & Personal Care	4.246779	1009	95	10.621053
8	Clothing	4.197557	139752	10768	12.978455
9	Beauty	3.933333	750	71	10.563380

```
In [44]:
```

```
### TODO: add plot
top_categories = review_by_category_df[CATEGORY].tolist()
filtered_df = joined_df[joined_df[CATEGORY].isin(top_categories)]
sns.barplot(CATEGORY, metric, data=filtered_df, ci='sd', capsize=.2)
# sns.boxplot(CATEGORY, metric, data=filtered_df)

plt.xticks(rotation=90)
plt.xlabel(get_label(CATEGORY))
plt.ylabel(get_label(metric))
# plt.ylim(2, 5)
plt.show()
```

/home/asharma/anaconda3/envs/develop/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke or or misinterpretation.

FutureWarning

Q3: Is there a relationship between price and reviews?

```
In [48]:
```

/home/asharma/Personal/Shabana/takeaway/main.py:38: FutureWarning: Index.ravel returning ndarray is deprecated; in a future ve view on self. product_metric_df.columns = ["_".join(x) for x in product_metric_df.columns.ravel()]

Correlation between Price and Mean Review Word Count = 40.9%

In [20]:

```
# joint_plot(None, product_price_wordcount_df, PRICE, f'{REVIEW_WORD_COUNT}_mean', 250, alpha=0.25)
```

In [47]:

```
product_price_rating_df = get_average_metric_with_price(review_df, review_metadata_df, RATING)
plt.ylabel(get_label(f'{RATING}_mean'))
plt.show()
```

Correlation between Price and Mean Rating = 9.9%

/home/asharma/Personal/Shabana/takeaway/main.py:38: FutureWarning: Index.ravel returning ndarray is deprecated; in a future ve ew on self.
product_metric_df.columns = ["_".join(x) for x in product_metric_df.columns.ravel()]


```
In [22]:
```

```
filtered_df = product_price_wordcount_df[product_price_wordcount_df[CATEGORY].isin(top_categories)]

g = sns.FacetGrid(filtered_df, col=CATEGORY, height=5, col_wrap=2)
g.map(sns.scatterplot, PRICE, f'{REVIEW_WORD_COUNT}_mean', marker='+', alpha=0.3)
g.set_axis_labels(get_label(PRICE), get_label(f'{REVIEW_WORD_COUNT}_mean'))
plt.xlim(0,300)
plt.ylim(0,300)
plt.show()
category = Sports & Outdoors

category = Toys & Games
```


In [23]:

```
filtered_df = product_price_rating_df[product_price_rating_df[CATEGORY].isin(top_categories)]

g = sns.FacetGrid(filtered_df, col=CATEGORY, height=5, col_wrap=2)
g.map(sns.regplot, PRICE, f'{RATING}_mean', marker='+', scatter_kws={'alpha':0.2})
g.set_axis_labels(get_label(PRICE), get_label(f'{RATING}_mean'))
plt.xlim(0,300)
plt.ylim(2,5)
plt.show()
```


Q4: Which group of reviewers is more valuable to the business?

```
In [24]:
  reviewer_summary_df = review_df.groupby([REVIEWER_ID, REVIEWER_NAME]) \
           .agg({NUM_HELPFUL: ['sum'], NUM_UNHELPFUL: ['sum'], PRODUCT_ID: ['count']})
 reviewer\_summary\_df.columns = ["\_".join(x) for x in reviewer\_summary\_df.columns.ravel()]
  reviewer summary df['net helpfulness'] = reviewer summary df[f'{NUM HELPFUL} sum'] - reviewer summary df[f'{NUM UNHELPFUL} s
In [25]:
# reviewer summary df.sort values('net helpfulness', ascending=False).head(10)
In [26]:
reviewer_summary_df = joined_df.groupby([REVIEWER_ID, REVIEWER_NAME]) \
         .agg({PRICE: ['mean'], PRODUCT_ID: ['count']})
reviewer_summary_df.columns = ["_".join(x) for x in reviewer_summary_df.columns.ravel()]
/home/asharma/anaconda3/envs/develop/lib/python3.7/site-packages/ipykernel_launcher.py:4: FutureWarning: Index.ravel returning
a future version this will return a view on self.
  after removing the cwd from sys.path.
In [27]:
reviewer_summary_df['Number of Reviews'] = reviewer_summary_df[f'{PRODUCT_ID}_count']
joint_plot(None, reviewer_summary_df, f'{PRICE}_mean', 'Number of Reviews', max_samples=500, alpha=0.6)
   30
Number of Reviews
   20
  10
   0
```

```
In [28]:
```

100

Mean Price

150

200

```
# print_correlation(reviewer_summary_df, f'{PRICE}_mean', f'{PRODUCT_ID}_count',
# f'{PRICE}_mean', f'{PRODUCT_ID}_count')
```

Q5: Is there a relation between reviews from products which are bought together?

In [29]:

```
rating_pair_df = sample_products_bought_together(review_df, review_metadata_df, num_samples=1000)
print_correlation(rating_pair_df, 'Rating_1', 'Rating_1', 'Rating_2')
/home/asharma/Personal/Shabana/takeaway/main.py:62: FutureWarning: Index.ravel returning ndarray is deprecated; in a future ve ew on self.
    product_rating_df.columns = ["_".join(x) for x in product_rating_df.columns.ravel()]
```

Correlation between Rating_1 and Rating_2 = 28.3%

In [30]:

rating pair df.head(10)

Out[30]:

Product_ID_1 Rating_1 Product_ID_2 Rating_2 B00DHKYE52 3.200000 B00DHKL51I 3.571429

1 B008E3CCF6 4.447368 B00A97X6Y6 4.555556

B003U7BK90 3.833333 B003U7CXBY 4.454545
 B001UL8SJS 4.750000 B006P4NDFE 4.428571

4 B002AQSQ76 4.714286 B004UDMETS 3.900000

5 B006TQLRL0 4.357143 B006TQLR42 3.375000

6 B004VMOSWE 4.375000 B0052OPAM2 4.250000

7 B00EQ81GKA 4.833333 B005EOIQRQ 4.538462

8 B007JZ983Y 5.000000 B005H0JHM0 5.000000

9 B0074ZVIX2 4.181818 B00E924N9O 4.200000

In [31]:

joint_plot(None, rating_pair_df, 'Rating_1', 'Rating_2', max_samples=1000, alpha=0.5)

Q6: Temporal analysis of reviews

sns.lineplot(data=rating df, x="year", y="overall")

```
In [32]:
YEAR = 'year'
lsuffix='', rsuffix='_right').reset_index()
In [33]:
# filtered_df = time_joined_df[time_joined_df[CATEGORY]=='Clothing']
\# rating_df = filtered_df[[YEAR, PRODUCT_ID, RATING]].groupby([YEAR, PRODUCT_ID]).mean(RATING).reset_index()
# rating_df = rating_df.groupby([YEAR]).mean(RATING).reset_index()
In [35]:
```

```
In [36]:
```

```
# top_3_categories = ['Clothing', 'Shoes', 'Jewelry']
# filtered_df = time_joined_df[time_joined_df[CATEGORY].isin(top_3_categories)]
# rating_df = filtered_df[[YEAR, CATEGORY, PRODUCT_ID, RATING]].groupby([YEAR, CATEGORY, PRODUCT_ID]).mean(RATING).reset_index
# g = sns.FacetGrid(rating_df, col=CATEGORY, height=5, col_wrap=1)
# g.map(sns.lineplot, YEAR, RATING)
```

In [37]:

```
metric = REVIEW_WORD_COUNT
rating_df = time_joined_df[[YEAR, PRODUCT_ID, metric]].groupby([YEAR, PRODUCT_ID]).mean(metric).reset_index()
joint_plot(None, rating_df, YEAR, metric, alpha=0.75, max_samples=10000)
plt.ylim(0, 600)
plt.show()
```


In [38]:

```
metric = RATING
rating_df = time_joined_df[[YEAR, PRODUCT_ID, metric]].groupby([YEAR, PRODUCT_ID]).mean(metric).reset_index()
joint_plot(None, rating_df, YEAR, metric, alpha=0.75, max_samples=10000)
plt.show()
```


In [39]:

metric = HELPFULNESS
rating_df = time_joined_df[[YEAR, PRODUCT_ID, metric]].groupby([YEAR, PRODUCT_ID]).mean(metric).reset_index()
joint_plot(None, rating_df, YEAR, metric, alpha=0.75, max_samples=10000)
plt.show()

