Lab 13: Shortest Paths Module: Graphs

Collaboration level 0 (no restrictions). Open notes.

1. Step through Dijkstra(G, s, t) on the graph shown below. Complete the table below to show what the arrays d[] and p[] are at each step of the algorithm, and indicate what path is returned and what its cost is. Here D represents the set of vertices that have been removed from the PQ and their shortest paths found (in the notes we denoted it by S).

	d[s]	d[<i>u</i>]	d[v]	d[t]	p[s]	p[<i>u</i>]	p[v]	p[t]
When entering the first while loop	0	∞	∞	∞	None	None	None	None
for the first time, the state is:								
Immediately after the first ele-	0	3	∞	9	None	S	None	S
ment of D is added, the state is:								
Immediately after the second ele-								
ment of D is added, the state is:								
Immediately after the third ele-								
ment of D is added, the state is:								
Immediately after the fourth ele-								
ment of D is added, the state is:								

2. Consider the directed graph below and assume you want to compute SSSP(s).

- (a) Run Dijkstra's algorithm on the graph above step by step. Are there any vertices for which d[x] is correct? Are there any vertices for which d[x] is incorrect? Why?
- (b) Now run Bellman-Ford algorithm, and assume the edges are relaxed in the following order: $\{bd, cb, ab, sc, sa\}$. For each round of relaxation, show the distances d[x] at the end of that round.
- (c) How many rounds of relaxation are necessary for this graph? In general, what is the worst-case number of rounds in Bellman-Ford algorithm for a graph of |V| vertices? (in this case, |V| = 5) Why the difference? Can you connect the number of rounds necessary with something in the graph?
- (d) Give an order of relaxing edges for the graph above which correctly computes shortest paths for all vertices after just one round.
- 3. Give example of a graph G=(V,E) with an arbitrary number of vertices for which one round of relaxation in Bellman-Ford algorithm is always sufficient, no matter the order in which the edges are relaxed.
- 4. Give example of a graph G=(V,E) with an arbitrary number of vertices for which |V|-1 rounds of relaxation in Bellman-Ford algorithm are always necessary in the worst case.
- 5. Consider Bellman-Ford algorithm and remember that by one round of relaxation we mean that *all* edges in the graph are relaxed (in arbitrary order). Fill in the sentences below so that they are true:
 - (a) After one round of edge relaxation, it is guaranteed that $d[x] = \delta(s, x)$ for all vertices x whose shortest paths from s consist of
 - (b) After i rounds of edge relaxation, it is guaranteed that $d[x] = \delta(s, x)$ for all vertices x whose shortest paths from s consist of
- 6. Prove that the following claim is false by showing a counterexample:
 - Claim: Let G = (V, E) be a directed graph with negative-weight edges, but no negative-weight cycles. Let w, w < 0, be the smallest weight in G. Then one can compute SSSP in the following way: transform G into a graph with all positive weights by adding -w to all edges, run Dijkstra, and subtract from each shortest path the corresponding number of edges times -w. Thus, SSSP can be solved by Dijkstra's algorithm even on graph with negative weights.
- 7. You are given an image as a two-dimensional array of size $m \times n$. Each cell of the array represents a pixel in the image, and contains a number that represents the color of that pixel (for e.g. using the RGB model).

A segment in the image is a set of pixels that have the same color and are **connected**: each pixel in the segment an be reached from any other pixel in the segment by a sequence of moves up, down, left or right.

Design an efficient algorithm to find the size of the largest segment in the image.

Additional problems: Optional