Particle spectrograph

Wave operator and propagator

_												$\mathcal{A}_0^{\#1}$	+	f_{i}	$f_0^{"+}$ f	`#2 0+ <i>9</i> (#1 0 ⁻																
				⁴ 2	$\frac{1}{2}$		$\frac{(1 k^2)}{(2)^2}$	${\mathscr R}_0^{\sharp 1}$:	$+\frac{1}{2}$	$\frac{1}{2} (\alpha_0 + 4 (\alpha_1 + \alpha_2 + 3 \alpha_3) k^2)$					ro k)		$\sigma_0^{\!\#}$: <u>1</u> +	τ ₀ ^{#1}			$ au_0^{\#}$	² σ ₀ ^{#1}	ĺ		$\mathcal{A}_{2}^{\#1}_{\alpha\beta}$			$\mathcal{A}_{2^{-}\alpha\beta\chi}^{\#1}$	1	
$ au_{1}^{\#2}$	0	0	0	$\frac{4ik}{\alpha_0 + 2\alpha_0k^2}$	$\frac{\sqrt{2} k(\alpha_0 + 4 \alpha_1 k)}{(\alpha_0 + 2 \alpha_0 k^2)^2}$	0	$\frac{4k^2(\alpha_0+4\alpha_1k^2)}{(\alpha_0+2\alpha_0k^2)^2}$	$f_{0+}^{\#1}$	+			$\frac{i \alpha_0}{\sqrt{2}}$	<u>k</u>	()	0 ()	$\sigma_{0}^{\#1}$ †	t o			$-\frac{i\sqrt{2}}{\alpha_0 k}$		0	0	$\mathcal{A}_{2}^{\sharp 1} \dagger^{lphaeta}$	$\frac{1}{4}\left(-\alpha_0+\alpha_0\right)$		$(\alpha_2) k^2$ $\frac{i}{2}$	$\frac{\alpha_0 k}{\sqrt{2}}$	0		
					$\frac{2i\sqrt{2}}{\alpha_0}$		$-\frac{4k^2}{(\alpha_0)}$	$f_{0+}^{#2}$	†			0		())	$ au_{0}^{\#1}$ †	$+ \left \frac{i \sqrt{\alpha_0}}{\alpha_0} \right $	$\frac{\overline{2}}{k} - \frac{\alpha}{2}$	α ₀ +4 (α	$\frac{\alpha_1 + \alpha_2}{\alpha_0^2 k^2}$	+3 α ₃), 2	$\frac{k^2}{2} 0$	0	$f_{2+}^{#1}\dagger^{\alpha\beta}$	-	$-\frac{i \alpha_0 k}{2 \sqrt{2}}$		0	0		
${\mathfrak l}_{1}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	$\mathscr{R}_0^{\sharp_1}$ -	†			0			0	$0 \frac{\alpha}{3}$	<u>0</u> 2	$ au_{0}^{\#2}$ †				0		0		$\mathcal{A}_{2}^{\#1}\dagger^{\alpha\beta\chi}$		0		0	$-\frac{\alpha_0}{4}$		
				<u>.7</u>	$\frac{k^2}{2^{3/2}}$		$\frac{\alpha_1 k^2}{1}$		ies									$\sigma_0^{\#1}$ †	† 0		0		0	$\frac{2}{\alpha_0}$									
$\sigma_{1^-}^{\#2}{}_{lpha}$	0	0	0	$\frac{2\sqrt{2}}{\alpha_0 + 2\alpha_0 k^2}$	$\frac{2(\alpha_0 + 4\alpha_1 k^2)}{(\alpha_0 + 2\alpha_0 k^2)^2}$	0	$i \sqrt{2} k (\alpha_0 + 4 \alpha_1 k^2) $ $(\alpha_0 + 2 \alpha_0 k^2)^2$		Multiplicities							7.	3				$i \alpha_0 k$			•									
				-	$\frac{2(c)}{\alpha_0}$		$\frac{2i\sqrt{2}}{(\alpha_0)}$		Mult		М	ω	8		10	£#2			<i>-</i>	0	$-\frac{1}{2}$	0	0	0			χ χ - (θ) - (γ) -	$\frac{\delta}{3}\chi$) +]((^x				
α		0	0	0	$\frac{2\sqrt{2}}{\alpha_0 + 2\alpha_0 k^2}$	0	$\frac{4ik}{\alpha_0 + 2\alpha_0k^2}$				$\beta \chi$					f#1	, _	> c	>	0	0 :	0	0	0			$f^{\alpha\beta} \partial_{\beta} \mathcal{A}_{\alpha}^{X}$ $a \partial_{x} \mathcal{A}^{\beta X}$	$_{lpha}^{3}$) $\partial_{\delta}\mathcal{H}_{eta}^{\ \delta}$	$\partial_\zeta \mathcal{H}_{\delta}^{\ \ \ \ }$				
$\sigma_{1}^{\#1}$	0)))	- 2 - 2		$\frac{4}{\alpha_0+2}$				$\partial_\delta\partial^\delta\partial_\chi\partial_\beta\sigma^{lphaeta\chi}$		>	 -		£ 2	- C		>	0	$-\frac{\alpha_0}{2\sqrt{2}}$	0	0	0			$2 f^{\alpha\beta}$ $f^{\alpha} \hat{o}$	$\mathcal{A}^{\alpha\beta}_{\alpha}$	$\mathcal{A}^{eta\chi}$)				
		$\frac{\alpha_2(k^2)}{2}$	$\frac{\alpha_2(k^2)}{2}$								0,000		rβ + σκ	$2 \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\mu\lambda}^{\lambda} + 2 \partial_{\delta}\partial^{\nu}\partial_{\chi}\sigma^{\mu\nu}^{\lambda}$ $\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$ $\partial_{\nu}\partial^{\chi}\tau^{\beta\alpha} + 2 \partial_{\delta}\partial_{\nu}\partial^{\beta}\sigma^{\alpha\chi}^{\delta}$		# ₁			5	0	$+ \alpha_1 k^2$	$\frac{\alpha_0}{2\sqrt{2}}$	0	$\frac{i\alpha_0 k}{2}$			$\beta x + 2$ $\beta x + 2$ $\beta x + 2$	^χ -2 <i>∂</i> × <i>A</i> ^{αβ}	$lpha_{2} (\partial_{\chi} \mathcal{A}_{\delta}^{\ \zeta} \partial^{\delta} \mathcal{A}^{eta\chi}_{\ eta} + (\partial_{eta} \mathcal{A}^{eta\chi\delta} - 2 \partial^{\delta} \mathcal{A}^{eta\chi}_{\ eta}) \partial_{\zeta} \mathcal{A}_{\delta\chi}^{\ \zeta}))]$				
${\mathfrak r}_1^{\#1}{}_{\!$	$\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	$\frac{+2(\alpha_1-\alpha_1-\alpha_2)}{2(1+k^2)}$	$\frac{+2(\alpha_1-}{2(1+k^2)}$	0	0	0	0		,,	,	$^{\alpha\beta}$ + 2	βα	$\partial_{\chi}\partial^{\chi}\tau^{c}$	$2 \partial_{\delta} \partial^{\alpha} + + \partial^{\beta} \sigma^{\alpha} $							$\frac{\alpha_0}{4}$ +	- 2		<u> </u>			$\alpha \beta \alpha \beta \alpha \beta \beta$	$+ (\partial_{\alpha} \mathcal{A}^{\alpha\beta\chi})^{-}$	$_{3}\mathcal{A}^{eta\chi\delta}$				
~	a	$\frac{2ik(\alpha_0+2(\alpha_1-\alpha_2)k^2)}{\alpha_0^2(1+k^2)^2}$	$\frac{2k^2(\alpha_0+2(\alpha_1-\alpha_2)k^2)}{\alpha_0^2(1+k^2)^2}$:	Fundamental fields		$=\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}+2$	$\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{etalpha}$	$-\partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$	$_{\chi}\partial^{lpha}\sigma^{ u}\chi^{lpha}+2\partial_{\delta}\partial^{ u}\partial_{\gamma}$ $^{i}+\partial_{\chi}\partial^{eta}\tau^{lpha\chi}+$ $^{i}\beta^{lpha}+2\partial_{\delta}\partial_{\gamma}\partial^{eta}\sigma^{lpha\chi\delta}$:s	$f_{1}^{\#1}$		2 √2	>	0	0	0	0	0			т	\sim	$^{\lambda}$	>	<		
-		•							ental	\circ \Box	χ == <i>δ</i> ,	3χ == <i>∂</i> ,	$+ \partial_{\chi} \partial^{\beta}$	$(\partial_{\chi}\partial^{\alpha}G^{\dagger})^{-1}$	generators:	A#2	$\frac{\alpha_0}{\alpha_0}$	2 √2	>	0	0	0	0	0			$\mathcal{A}^{\alpha_l}_{\alpha}$	$lpha_1 \left(\partial_\chi \mathcal{A}_eta^{~~\delta}_{~~\delta} \partial^\chi \mathcal{A}^{lphaeta}_{~~lpha} ight) \ 4 ~ lpha_3 \partial_eta \mathcal{A}^{lphaeta}_{~~lpha} \partial_\delta \mathcal{A}^{\chi\delta} .$	i 35 A ^{BX} y dix dit	$\sigma_{2}^{\#1}$ $\alpha eta \chi$	0	0	$-\frac{4}{\alpha_0}$
$\sigma_{1}^{\#2}$	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$\frac{(\alpha_1 - \alpha_2)}{(1 + k^2)^2}$	$\frac{2(\alpha_1 - \alpha_2)}{1 + k^2)^2}$	0	0	0	0		ndan	$\partial_{eta}\partial_{lpha}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{eta\chi}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}==\dot{\alpha}$	$+\chi_{g}^{1} {}_{\nu} e^{\chi} e$	$2\partial_{\delta}\partial_{\chi}$ $\partial_{\chi}\partial^{\alpha}\mathbf{t}^{\chi\beta}$. $\partial_{\lambda}\partial^{\chi}\mathbf{t}^{f}$	gene	(A)										$^{\prime}$ $\sigma_{lphaeta\chi}$	$\mathcal{A}_{\alpha\chi\beta}\mathcal{A}^{\alpha}$ $2\partial_{\beta}\mathcal{A}^{\alpha\beta}$	ABOS	As E			2) k ²)	
σ_1^{\dagger}	$\frac{2}{\alpha_0^+}$	$\frac{2(\alpha_0 + 2(\alpha_1 - \alpha_2))}{\alpha_0^2(1 + k^2)^2}$	$\frac{2ik(\alpha_0+2(\alpha_1-\alpha_2)k^2)}{\alpha_0^2(1+k^2)^2}$						교	∂_{β}	0	∂_{χ}	0		 Jauge	9	$\perp \alpha \rho$	11 - 42)	101	<u> </u>						ee) action $\tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi}$	$rac{1}{2} \alpha_0 \left(\mathcal{A}_{\alpha\chi\beta} \right)$	$lpha_1 \left(\partial_\chi \mathcal{H}_{eta}^{\ \delta} _{\ \delta} ight) \ 4 \ lpha_3 \partial_{eta} \mathcal{H}_{eta}^{lpha}$	$lpha_2 \left(\partial_\chi \mathcal{A}_{arsigma_\zeta^\zeta} ight) \ t, x, y, z] dz dy$	τ_{2}^{*1}	$\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2(\alpha_0-2(\alpha_1+\alpha_2)k^2)}{\alpha_0^2k^2}$	0
etax			_					raints			$\frac{#2}{1}^{\alpha} ==$, + αβ ==		ints/g	#1 + 1			2 \(\frac{7}{2} \)	$-\frac{2\sqrt{2}}{2\sqrt{2}}$	0	0	0	0		ee) ac $\tau_{\alpha\beta}$ +			t, ,,			2 (a0-2	
$\sigma_{1}^{\#1}$	0	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2i\sqrt{2}k}{\alpha_0+\alpha_0k^2}$	0	0	0	0	Source constraints	reps		$\tau_1^{\#2^\alpha} + 2ik \ \sigma_1^{\#2^\alpha}$	0	$+ik\sigma_{1+}^{\#2}\alpha \beta$:				$\frac{1}{2}$	4 \ \(\frac{4}{4} \)								Quadratic (free) action $S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta})$				$\sigma_{2}^{\#1}$	0	$\frac{2i\sqrt{2}}{\alpha_0k}$	0
_	$\sigma_1^{\#1} +^{lphaeta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{#2} + \alpha$	$\tau_{1}^{#1} + \alpha$	$\tau_1^{\#2} + \alpha$	onrce	SO(3) irreps	$\tau_0^{\#2} = 0$	-zα+ '.	$\tau_{1}^{\#1}{}^{\alpha} == 0$			talcc		$a = 1 + \alpha \beta$	\mathcal{A}_{1}^{+} \mathcal{A}_{2}^{+}	_ ~	f_1^{*} † † $^{\mu \rho}$	$\mathcal{A}_{1}^{\#1} +^{lpha}$	$\mathcal{A}_{1}^{\#2} \dagger^{\alpha}$	$f_{1}^{#1} + \alpha$	$f_1^{\#2} + \alpha$		uadra == ∭				J	$\sigma_{2}^{\#1} + ^{\alpha\beta}$	$\tau_2^{#1} + \alpha \beta$	$\alpha \beta \chi$
	$\sigma_{1}^{\#}$	$\sigma_{1}^{\#,}$	1,4	\mathcal{P}_{L}	\mathcal{J}_1	$ au_1^{\sharp}$	τ_1^{\pm}	SC) 	1 1 1 1 1 1 1 1 1 1	1,1	$ au_1^{\#}$	$\tau_1^{\#}$		16		#	F # #	ζ_{1}	$f_{1}^{\#}$	\mathcal{L}_{1}	\mathcal{L}_{L}	f_1^{\sharp}	f_1^{\sharp}		الم الم					$\sigma_{2}^{\#1}$	$\tau_2^{\#1}$	$\sigma_{2^{-}}^{\#1} +^{lphaeta\chi}$

Massive and massless spectra

(No massive particles)

Unitarity conditions