1 (c) Shaw-Mohler

The fitness of a mutant in a resident population is:

$$W(a, a_star) = m(a) v_male(a_star) + f(a) v_female(a_star)$$

To calculate the fitness of a mutant in a resident population, we'll need:

- m(a): number of surviving sons
- f(a): number of surviving daughters
- $v_male(a_star)$: male reproductive value in resident population
- $v_female(a_star)$: female reproductive value in resident population

1.1 (c.5) Fitness

As a reminder, the fitness formula for a mutant in a resident population is:

$$W\left(a, a_star\right) = m\left(a\right) v_male\left(a_star\right) + f\left(a\right) v_female\left(a_star\right)$$

Plugging in the four functions above:

$$W\left(a, \, a_star\right) = \frac{0.5\, \left(0.5 - 0.5\, a\right)\, \left(\left(1 - \, a_star\right)\, e_son + 0.5\, e_daughter + \, a_star\, e_abort\right)}{\left(0.5 - 0.5\, a_star\right)\, \left(\left(1 - a\right)\, e_son + 0.5\, e_daughter + \, a\, e_abort\right)}$$

The fitness of the resident population is:

$$W(a_star, a_star) = m(a_star) \ v_male(a_star) + f(a_star) \ v_female(a_star)$$

Plugging in the four functions (with $a = a_star$) above, this simplifies to:

$$W\left(a_star, a_star\right) = 0.5$$

The relative fitness of the mutant on the resident population:

1.2 (c.1) Surviving sons

General formula of surviving sons:

$$m(s, a) = S(a) P_son C(s, a)$$

Plug in C(s, a):

$$m\left(s,a\right) =\frac{S\left(a\right) \,P_{-}son\,E}{\left(e_{-}daughter\,\left(1-s\right) +\left(1-a\right) \,e_{-}son+a\,e_{-}abort\right) \,s}$$

Set s = 1/2:

$$m\left(a\right) = \frac{2.0\,S\left(a\right)\,P_son\,E}{\left(1-a\right)\,e_son + 0.5\,e_daughter + a\,e_abort}$$

Also plug in S(a):

$$m\left(a\right) = \frac{2.0\,\left(0.5 - 0.5\,a\right)\,P_son\,E}{\left(1 - a\right)\,e_son + 0.5\,e_daughter + a\,e_abort}$$

1.3 (c.2) Surviving daughters

General formula of surviving daughters:

$$f(s,a) = (1 - S(a)) P_{-}daughter C(s,a)$$

Plug in C(s, a):

$$f\left(s,a\right) = \frac{\left(1 - S\left(a\right)\right) \, P_daughter \, E}{\left(e_daughter \, \left(1 - s\right) + \left(1 - a\right) \, e_son + a \, e_abort\right) \, s}$$

Set s = 1/2:

$$f\left(a\right) = \frac{2.0\,\left(1 - S\left(a\right)\right)\,P_daughter\,E}{\left(1 - a\right)\,e_son + 0.5\,e_daughter + a\,e_abort}$$

Also plug in S(a):

$$f(a) = \frac{2.0 (0.5 a + 0.5) P_{-}daughter E}{(1 - a) e_{-}son + 0.5 e_{-}daughter + a e_{-}abort}$$

1.4 (c.3) Male reproductive value

General formula for male reproductive value:

$$v_male\left(a_star\right) = \frac{\alpha}{m\left(a_star\right)}$$

Filling in alpha = 1/2:

$$v_male\left(a_star\right) = \frac{0.5}{m\left(a_star\right)}$$

Filling in $m(a_star)$:

$$v_male\left(a_star\right) = \frac{0.25\ ((1-a_star)\ e_son + 0.5\ e_daughter + a_star\ e_abort)}{(0.5-0.5\ a_star)\ P_son\ E}$$

1.5 (c.4) Female reproductive value

General formula for female reproductive value:

$$v$$
_female $(a_star) = \frac{\alpha}{f(a_star)}$

Filling in alpha = 1/2:

$$v_female\left(a_star\right) = \frac{0.5}{f\left(a_star\right)}$$

Filling in $f(a_star)$:

$$v_female\left(a_star\right) = \frac{0.25\;((1-a_star)\;e_son + 0.5\;e_daughter + a_star\;e_abort)}{(0.5\;a_star + 0.5)\;P_daughter\;E}$$

2 (b) Secondary sex ratio

Secondary sex ratio with no sons aborted:

$$S(a=0) = 1/2$$

Secondary sex ratio with all aborted:

$$S(a=1) = 0$$

Secondary sex ratio in general:

$$S(a) = 0.5 - 0.5 a$$

Plotted:

Secondary sex ration for different male abortion rates

3 (a) Clutch size

Clutch size is dependent on multiple variables:

Symbol	description
a	fraction of sons aborted
C	clutch size
E	total energy invested in clutch
$e_daughter$	energy investment to produce one healthy daughter
e_son	energy investment to produce one healthy son
s	primary sex ratio

Clutch size general formula without abortion:

$$C\left(s\right) = \frac{E}{e_son\ s + e_daughter\ (1 - s)}$$

Clutch size general formula with all sons aborted:

$$C\left(s\right) = \frac{E}{e_abort\,s + e_daughter\,\left(1 - s\right)}$$

Clutch general formula, where a denotes the fraction of sons that are aborted:

$$C\left(s,a\right) = \frac{E}{\left(e_daughter\left(1-s\right) + \left(1-a\right)\ e_son + a\ e_abort\right)\ s}$$

Assuming s = 0.5, this results in:

$$C\left(0.5,a\right) = \frac{2.0\,E}{\left(1-a\right)\,e_son + 0.5\,e_daughter + a\,e_abort}$$