

QTM 385 Quantitative Finance

Lecture 17: Bond prices

Instructor: Ruoxuan Xiong Suggested reading: Investments Ch 14

Bond value

- For simplify, assume there is one interest rate r for discounting cash flows of any maturity
- \bullet Bond value = Present value of coupons + Present value of par value • For a bond with T periods until maturity

 Bond value = $\sum_{t=1}^{T} \frac{\text{Coupon}}{(1+\tau)^t} + \frac{\text{Far value}}{(1+\tau)^T}$
 - = $Coupon \times \frac{1}{r} \left[1 \frac{1}{(1+r)^T}\right] + Par value \times \frac{1}{(1+r)^T}$
 - = $Coupon \times Annuity \ factor(r,T) + Par \ value \times PV \ factor(r,T)$

Yield to maturity

- · Yield to maturity: Interest rate that makes the present value of a bond's payments equal to its price
- Suppose an 8% coupon, 30-year semiannual bond is selling at \$1,276.76
- ullet The yield to maturity, denoted by r, is the value that satisfy the equation

$$1276.76 = \sum_{t=0}^{60} \frac{40}{(1+r)^t} + \frac{1000}{(1+r)^6}$$

 $1276.76 = \sum_{t=1}^{60} \frac{40}{(1+r)^t} + \frac{1000}{(1+r)^{60}}$

Yield to call

- · Callable bonds allow the issuer to repurchase the bond at a specified call price before the maturity date
- Call protection: an initial time during which the bonds are not callable
- A callable bond with par value \$1,000, an 8% coupon rate, and a 30-year to maturity, but callable at 110% of par value after 3 years
- Suppose the bond calls in \overline{n} periods, the yield to call, denoted by r, is the value that satisfies

Bond value = $\sum_{t=1}^{n} \frac{Coupon}{(1+r)^t} + \frac{Call price}{(1+r)^n}$

Solving yield to call in excel

 \bullet A callable bond with par value \$1,000, an 8% coupon rate, and a 30 year to maturity. This bond currently sells at \$1,150 and is called at 110% of par value after 3 years

Question 1

- Question: For a 10-year, 8% coupon semi-annual bonds with call price \$1,100, the yield to maturity is 7%. For simplicity, assume that bonds are called as soon as the present value of remaining payments exceeds the call price. If the market interest rate suddenly talls to 6%, what will be the capital gain the bond?
- - Step 1: calculate the current value of bond with yield to maturity 7%
 Step 2: calculate the value of bond when interest rate falls to 6%

Yield to call = Rate of return for callable bond

Band value = $\sum_{t=1}^{r} \frac{coupen}{(1+r)^t} + \frac{Par = chs}{(1+r)^t}$

107.1062

10/24/2022 10/24/2032 0.08

114.8775 0.0000 114.8775

Follow up: what if coupon rate is not 8% but 6% instead

varying maturity date 10/24/2022 10/24/2032 0.06 0.07 100 2 varying maturity date 10/24/2022 10/24/2032 0.06 0.06 100 2

Question 2

- Question: A N0-year maturity 9% semi-annual coupon bond is callable in five years at a call price of \$1,050. The bond currently sells at a yield to maturity of 8%. What is the yield to call?
- Hint:
 - Step 1: calculate the current value of bond with yield to maturity 8%
 - · Step 2: suppose the bond is called in five years, calculate the yield to call

Here, the price is higher than the call price, so it will be called and the issue will pay 110% of the parto the investor

So this is the new value of the bond with the call option, it will stay at 110, not go up to 114 $\,$

Realized compound return

• After an investment period T, we can calculate the realized compound return. Suppose the initial value is V_0 , final value is V_T and realized compound return r is

$$V_0(1+r)^T = V_T \\$$

$$\Rightarrow r = \left(\frac{V_T}{V}\right)^{1/T} - 1$$

 $\Rightarrow r = \left(\frac{V_T}{V_0}\right)^{1/T} - 1$ • Example: Consider, a 2-year bond selling at par value, paying a 10% coupon once a year and YTM is 10%. The coupon payment is reinvested at rate 10%

•
$$r = \left(\frac{1210}{1000}\right)^{1/2} - 1 = 10\% = YTM$$

Realized compound return vs YTM

- Coupons may not be reinvested to earn the bond's yield to maturity.
 Then realized compound return does not equal to YTM
- Initial value of the investment is $V_0=1000$. Final value of the investment is $V_2=1208$. The compound rate of return $r=\frac{(1208)^{1/2}}{(1000)^3}-1=9.91\%$

$$r = \left(\frac{1208}{1208}\right)^{1/2} - 1 = 9.91\%$$

Calculation of realized compound return

• Realized compound return can be calculated either after the horizon or using a forecast of future reinvestment rates

Bond prices over time

- \bullet A bond sells at par value when its coupon rate equals the market interest
- When coupon rate is lower than the market interest rate, price should be lower than the par value; vice versa $$^{100}_{-}$$

	alue, numbe
but usually the question	

10/24/203	10/24/2032
0.0	0.06
0.0	0.07
100	100
	2
value, number of coupon payme	ue, number of coupon payments
100.000	92.8938
	0
18:	182
0.000	0.0000
	92.8938

Bond will not be called

echnically capital gain is 1000 - 928.938 = \$7.1062

YTM versus holding-period return

- If YTM is unchanged over the holding period, the HPR on the bond equals YTM; Otherwise, a bond's HPR fluctuates with yields
 If YTM cises, then the bond price falls and HPR falls
 If YTM falls, then the bond price rises and HPR cises
- Example: Consider an 8% coupon, 30-year annual bond selling at par \$1,000
 - * If you hold the bond for a year and YTM remains 8% , then the price will remain at par and HPR is 8%
 - If YTM falls and the price rises to \$1,050, then the HPR is greater than 8%

$$HPR = \frac{80 + (1050 - 1000)}{1000} = 13\%$$

The yield curve

- . Yield curve: Yield to maturity as a function of time to maturity
 - Central to bond valuation
 - Gauge their expectations for future interest rates against those of the market

The yield curve and future interest rates

- The upward-sloping yield curve: short-term rates are going to be higher next year than they are now
- Spot rate: yield to maturity on zero-coupon bonds, meaning the rate that
 prevails today for a time period corresponding to the zero's maturity
- Short rate: refers to the interest rate for a given time interval (e.g., one year) available at different points in time

Spot rate and short rate

- · Consider two 2-year investment strategies with equal rate of returns
- buying and holding a 2-year zero-coupon bond
 buying a 1-year zero and rolling over the proceeds into a 1-year bond
- 2-year spot rate is an "average" of today's and next year's short rates
- This year's short rate r_1 . Next year's short rate r_2 . Two year's spot rate y_2

Spot rate and short rate

- · Consider two 3-year investment strategies with equal rate of returns
- buying and holding a 3-year zero-coupon bond
 buying a 2-year zero and rolling over the proceeds into a 1-year bond
- Finding the short rate r_3 in year 3
- $(1+y_3)^3 = (1+y_2)^2(1+r_3)$ Then $r_3 = \frac{(1+y_3)^3}{(1+y_2)^2} 1 = \frac{1.07^3}{1.06^2} 1 = 9.025\%$

Forward rate

- ullet Consider two n-year investment strategies with equal rate of returns
- buying and holding an n -year zero-coupon bond buying an (n-1)-year zero and rolling over the proceeds into a 1-year bond

