7 Limites et continuité

I - Notions de limite

1 - Illustration

• Soit f la fonction définie par

$$\forall x \in \mathbb{R}, \quad f(x) = x^2.$$

On étudie les valeurs de f(x) lorsque x se rapproche de 0.

x	-1	-0.5	-0.1	-0.01	0	0.01	0.1	0.5	1
f(x)									

On constate que plus x se rapproche de 0, plus x^2 se rapproche de 0.

On dit que x^2 tend vers 0 lorsque x tend vers 0 et on note

$$\lim_{x\to 0} x^2 = 0.$$

• Soit f la fonction définie par

$$\forall x \in \mathbb{R}^*, \quad f(x) = \frac{1}{x^2}$$

On étudie les valeurs de f(x) lorsque x se rapproche de 0.

х	-1	-0.5	-0.1	-0.01	0.01	0.1	0.5	1
f(x)								

On constate que plus x se rapproche de 0, plus $\frac{1}{x^2}$ devient "grand".

On dit que $\frac{1}{x^2}$ **tend vers** $+\infty$ **lorsque** x **tend vers** 0 et on note

$$\lim_{x \to 0} \frac{1}{x^2} = +\infty.$$

• Soit *f* la fonction définie par

$$\forall x \in \mathbb{R}^*, \quad f(x) = \frac{1}{x^2}.$$

On étudie les valeurs de f(x) lorsque x devient "grand".

x	1	5	10	100
f(x)				

On constate que plus x devient "grand", plus $\frac{1}{x^2}$ se rapproche de 0.

On dit que $\frac{1}{x^2}$ tend vers 0 lorsque x tend vers $+\infty$ et on note

$$\lim_{x \to +\infty} \frac{1}{x^2} = 0.$$

2 - Limite finie en un point

Soit f une fonction définie sur un intervalle comprenant un voisinage d'un réel a.

On dit que f admet ℓ pour limite en a lorsque f(x) devient aussi proche que l'on veut de ℓ , pourvu que l'on choisisse x suffisamment proche de a.

On note alors

$$\lim_{x \to a} f(x) = \ell.$$

Exemple 7.1 – Soit f la fonction définie sur]-2,4[par $f(x)=x^2+3x-5$. Calculer les limites suivantes.

•
$$\lim_{x\to 0} f(x)$$

•
$$\lim_{x \to 2} f(x)$$

•
$$\lim_{x \to 4} f(x)$$

3 - Limite à gauche et à droite en un point

Pour certaines fonctions, il peut être utile de distinguer le comportement en un point a, selon que l'on s'approche de a exclusivement par la gauche, par valeurs inférieures, i.e. pour des abscisses x < a, ou exclusivement par la droite, par valeurs supérieures, i.e. pour des abscisses x > a. Soit f une fonction définie sur un intervalle I contenant a.

Si lorsque x se rapproche de a par valeurs inférieures, f(x) se rapproche de ℓ, on dit que f admet ℓ pour limite à gauche en a et on note

$$\lim_{x \to a^{-}} f(x) = \ell \quad \text{ ou } \quad \lim_{\substack{x \to a \\ x < a}} f(x) = \ell.$$

 Si lorsque x se rapproche de a par valeurs supérieures, f(x) se rapproche de ℓ, on dit que f admet ℓ pour limite à droite en a et on note

$$\lim_{x \to a^+} f(x) = \ell \quad \text{ou} \quad \lim_{\substack{x \to a \\ x > a}} f(x) = \ell.$$

4 – Limite infinie en un point

Une fonction f peut également avoir une limite infinie en un point fini, *i.e.* prendre des valeurs positives ou négatives aussi grande que l'on veut.

Plus précisément, pour une fonction f, on dit que f(x) tend vers $+\infty$ lorsque x tend vers a, si f(x) peut prendre des valeurs **positives** aussi grandes que l'on veut, pourvu que l'on choisisse x suffisamment proche de a. On note alors

$$\lim_{x \to a} f(x) = +\infty.$$

De même, on dit que f(x) tend vers $-\infty$ lorsque x tend vers a, si f(x) peut prendre des valeurs **négatives** aussi grandes que l'on veut, pourvu que l'on choisisse x suffisamment proche de a. On note alors

$$\lim_{x \to a} f(x) = -\infty.$$

Si la fonction n'est définie qu'à gauche de a (resp. qu'à droite de a), on note de manière similaire

$$\lim_{x \to a^{-}} f(x) = \pm \infty \qquad \Big(\text{ resp. } \lim_{x \to a^{+}} f(x) = \pm \infty \Big).$$

Limite "à gauche" de *a* :

5 - Limite finie en l'infini

 $\lim_{x \to a^+} f(x) = -\infty$

Lorsqu'une fonction f est définie au voisinage de $+\infty$ ou de $-\infty$, on peut s'intéresser au comportement de f(x) lorsque x devient très grand, dans les positifs ou dans les négatifs. Soit $f: [a, +\infty[\to \mathbb{R}.$ On dit que f admet ℓ pour limite en $+\infty$ lorsque f(x) devient aussi proche que l'on veut de ℓ , pourvu que l'on choisisse x suffisamment grand. On note alors

 $\lim_{x \to a^{-}} f(x) = -\infty$

$$\lim_{x \to +\infty} f(x) = \ell.$$

Il en va de même pour définir $\lim_{x \to -\infty} f(x) = \ell$.

 $\lim_{x\to +\infty} f(x) = \ell$: f(x) est aussi proche que l'on veut de ℓ à condition de choisir x suffisamment grand.

6- Limite infinie en l'infini

Soit f une fonction définie sur un intervalle de la forme $[A, +\infty[$, où A est un réel quelconque.

1. Dire que la fonction f a pour limite $+\infty$ en $+\infty$ signifie que f(x) prend des valeurs positives aussi grandes que l'on veut, pourvu que l'on choisisse x suffisamment grand. On note

$$\lim_{x \to +\infty} f(x) = +\infty.$$

2. Dire que la fonction f a pour limite $-\infty$ en $+\infty$ signifie que f(x) prend des valeurs négatives aussi grandes que l'on veut, pourvu que l'on choisisse x suffisamment grand. On note

 $\lim_{x \to +\infty} f(x) = -\infty$

Soit f une fonction définie sur un intervalle de la forme $]-\infty,A]$, où A est un réel quelconque.

1. Dire que la fonction f a pour limite $+\infty$ en $-\infty$ signifie que f(x) prend des valeurs positives aussi grandes que l'on veut, pourvu que l'on choisisse x négatif suffisamment grand. On note

$$\lim_{x \to -\infty} f(x) = +\infty.$$

2. Dire que la fonction f a pour limite $-\infty$ en $-\infty$ signifie que f(x) prend des valeurs négatives aussi grandes que l'on veut, pourvu que l'on choisisse x négatif suffisamment grand. On note

$$\lim_{x \to -\infty} f(x) = -\infty.$$

II - Calculs de limites

1 – <u>Limites des fonctions usuelles</u>

Fonction	Définie sur	Courbe	Limite en $-\infty$	Limite en 0	Limite en +∞
$x \mapsto c$ $c \in \mathbb{R}$	R	<i>y</i> ↑			
$x \mapsto x^n$ $n \in \mathbb{N}^* \text{ pair}$	R	<i>y</i>			
$x \mapsto x^n$ $n \in \mathbb{N}^* \text{ impair}$	R	$y \rightarrow x \rightarrow $			
$x \mapsto \sqrt{x}$	\mathbb{R}_+	<i>y</i>			
$x \mapsto \frac{1}{x^n}$ $n \in \mathbb{N}^* \text{ pair}$	ℝ*	$\begin{array}{c c} \\ \hline \\ $			
$x \mapsto \frac{1}{x^n}$ $n \in \mathbb{N}^* \text{ impair}$	₽*	$y \uparrow $ $x \rightarrow x$			

Exemple 7.2 – Calculer les limites suivantes.

•
$$\lim_{x \to -\infty} x^3 =$$

•
$$\lim_{x \to +\infty} x^2 =$$

•
$$\lim_{x \to 0^-} \frac{1}{x^2} =$$

•
$$\lim_{x \to -\infty} \frac{1}{x^3} =$$

2 - Limite d'une somme de deux fonctions

Ce tableau récapitule l'ensemble des cas possibles pour la limite d'une somme de deux fonctions u et v selon les limites de ces deux fonctions.

$$\lim_{x \to \alpha} u(x) + v(x) =$$

$\lim_{x \to \alpha} v(x)$ $\lim_{x \to \alpha} u(x)$	$\ell' \in \mathbb{R}$	+∞	-∞
$\ell\in\mathbb{R}$	$\ell + \ell'$	+∞	-∞
+∞	+∞	+∞	F.I.
-∞	-∞	F.I.	-∞

Exemple 7.3 – Calculer les limites suivantes.

•
$$\lim_{x \to +\infty} x^2 + \frac{1}{x}$$

$$\bullet \quad \lim_{x \to 0^+} 2x - \frac{2}{x}$$

3 – Limite d'un produit de deux fonctions

Ce tableau récapitule l'ensemble des cas possibles pour la limite d'un produit de deux fonctions u et v selon les limites de ces deux fonctions.

$$\lim_{x \to \alpha} u(x) \times v(x) =$$

$\lim_{x \to \alpha} v(x)$ $\lim_{x \to \alpha} u(x)$	$\ell' \in \mathbb{R}^*$	0	±∞
$\ell\in\mathbb{R}^*$	$\ell imes \ell'$	0	±∞
0	0	0	F.I.
±∞	±∞	F.I.	±∞

Lorsque la limite du produit est infinie, c'est la règle des signes du produit qui permet de déterminer le résultat entre $+\infty$ et $-\infty$.

Exemple 7.4 – Calculer les limites suivantes.

$$\bullet \quad \lim_{x \to 0^+} (2x+1) \times \frac{1}{x}$$

•
$$\lim_{x \to +\infty} (-2x+1)\sqrt{x}$$

4 - Limite d'un quotient de deux fonctions

Ce tableau récapitule l'ensemble des cas possibles pour la limite d'un quotient de deux fonctions u et v selon les limites de ces deux fonctions.

$$\lim_{x \to \alpha} \frac{u(x)}{v(x)} =$$

$\lim_{x \to a} \nu(x)$ $\lim_{x \to a} u(x)$	$\ell' \in \mathbb{R}^*$	0	±∞
$\ell\in\mathbb{R}^*$	$rac{\ell}{\ell'}$	$\pm \infty$	0
0	0	F.I.	0
±∞	±∞	±∞	EI.

Lorsque la limite du quotient est infinie, c'est la règle des signes du quotient qui permet de déterminer le résultat entre $+\infty$ et $-\infty$.

Exemple 7.5 – Calculer les limites suivantes.

•
$$\lim_{x \to 2^+} \frac{2x-1}{x-2}$$

$$\bullet \lim_{x\to 1^-}\frac{1}{-x+1}$$

•
$$\lim_{x \to -\infty} \frac{1}{x^2 + 1}$$

•
$$\lim_{x \to 3^{-}} \frac{x}{x^2 - 5x + 6}$$

5 - Composition de limites

Théorème 7.6 - Composition de limites

Soient f et g deux fonctions et a, b et c des valeurs réelles ou $\pm \infty$.

Si $\lim_{x \to a} f(x) = b$ et que $\lim_{X \to b} g(X) = c$, alors $\lim_{x \to a} g \circ f(x) = c$.

Exemple 7.7 - Calculer les limites suivantes.

•
$$\lim_{x \to +\infty} \sqrt{\frac{1}{x} + 4}$$

•
$$\lim_{x \to 0^+} \left(\frac{1}{x} + x \right)^2$$

6 – Limites de fonctions polynômes ou rationnelles en $\pm\infty$

Théorème 7.8

La limite d'une fonction polynomiale en $\pm \infty$ est égale à la limite de son terme de plus haut degré.

Exemple 7.9 – Calculer les limites suivantes.

•
$$\lim_{x \to +\infty} x^2 - 4x + 3$$

$$\bullet \lim_{x \to -\infty} x^3 - 5x^2 - 3$$

Théorème 7.10

La limite d'une fonction rationnelle en $\pm \infty$ est égale à la limite du quotient du terme de plus haut degré du numérateur par le terme de plus haut degré du dénominateur.

Exemple 7.11 – Calculer les limites suivantes.

•
$$\lim_{x \to +\infty} \frac{x^2 + 2x - 3}{x^3 + 2x - 1}$$

$$\bullet \lim_{x \to -\infty} \frac{-2x^2 + 1}{x - 3}$$

Méthode 7.12 - Lever une indétermination

Il est avant tout important de bien connaître toutes les formes indéterminées pour savoir les identifier :

"
$$+\infty-\infty$$
", " $\infty\times 0$ ", " $\frac{0}{0}$ " et " $\frac{\infty}{\infty}$ ".

Lorsque l'on rencontre une forme indéterminée, on peut distinguer deux cas :

- Si on doit calculer la limite d'un polynôme ou d'une fraction rationnelle en $\pm \infty$, alors il suffit de se référer aux théorèmes précédents.
- Sinon, il faut chercher à réécrire la fonction dont on veut calculer la limite, de manière à ne plus avoir de forme indéterminée.

Exemple 7.13 – Calculer $\lim_{x\to 0^+} 1 + \frac{1}{x} - \frac{1}{x^2}$.

III - Asymptotes et branches infinies

1 – Asymptotes

Définition 7.14 – Soit a un réel. Si $\lim_{x \to a^-} f(x) = \pm \infty$ et/ou que $\lim_{x \to a^+} f(x) = \pm \infty$, alors la droite d'équation x = a est **asymptote verticale** à la courbe représentative de la fonction f en a.

Définition 7.15 – Soit ℓ un réel. Si $\lim_{x \to +\infty} f(x) = \ell$ (resp. si $\lim_{x \to -\infty} f(x) = \ell$), alors la droite d'équation $y = \ell$ est **asymptote horizontale** à la courbe représentative de la fonction f en $+\infty$ (resp. $-\infty$).

Définition 7.16 – Soient f une fonction définie sur un intervalle de borne $+\infty$ ou $-\infty$ et \mathcal{D} une droite d'équation y = ax + b.

Si $\lim_{x \to +\infty} (f(x) - (ax + b)) = 0$ (resp. $\lim_{x \to -\infty} (f(x) - (ax + b)) = 0$), on dit alors que la droite d'équation y = ax + b est une **asymptote oblique** à la courbe représentative de la fonction f en $+\infty$ (resp. $-\infty$).

Exemple 7.17 – Soit f la fonction définie sur $\left] -\infty, -\frac{3}{2} \right[\cup \left] -\frac{3}{2}, +\infty \right[\text{ par } f(x) = \frac{5x-1}{2x+3}.$

Étudier les limites de f aux bornes de son ensemble de définition et en déduire les équations de ses éventuelles asymptotes.

Méthode 7.18 - Montrer qu'une droite est asymptote oblique à une courbe

Pour montrer que la droite d'équation y = ax + b est asymptote oblique à la courbe C_f :

- 1. On calcule l'écart f(x) y entre la courbe de la fonction et la droite.
- 2. On montre que cet écart tend vers 0, *i.e.* $\lim_{x \to +\infty} f(x) y = 0$.

Exemple 7.19 – On considère f la fonction définie sur $\mathbb{R} \setminus \{3\}$ par $f(x) = \frac{2x^2 + 7x + 4}{x + 3}$. On note \mathcal{C}_f la courbe représentative de la fonction f dans un repère orthonormé. Montrer que la droite d'équation y = 2x + 1 est asymptote à la courbe \mathcal{C}_f en $+\infty$.

Méthode 7.20 - Tracer une courbe à partir du tableau de variation

Pour tracer une courbe à partir du tableau de variation :

- 1. On commence par tracer les asymptotes (verticales, horizontales, obliques).
- 2. On place les points de la courbe dont on connaît les coordonnées.
- 3. On trace la courbe en respectant les asymptotes, les variations de la fonction et en passant par les points précédemment placés.

Exemple 7.21 – Tracer la courbe de la fonction f dont le tableau de variation est donné ci-dessous.

D'après le tableau de variation, il y a deux asymptotes horizontales : l'une d'équation y = -2 en -∞ et l'autre d'équation y = 1 en +∞. Par ailleurs, il y a une asymptote verticale d'équation x = -2.
Je commence donc par tracer les droites

Je commence donc par tracer les droites d'équations y = -2, y = 1 et x = -2.

 Toujours d'après le tableau de variation, la courbe passe par les points de coordonnées (-3, -5) et (-1,4). Je place donc ces points sur le graphique.

• Il ne me reste plus qu'à tracer la courbe, en respectant les asymptotes et les variations, et en passant par les points que je viens de placer.

IV- Continuité

1 - Définition

Soit f une fonction définie sur un intervalle I de \mathbb{R} . Intuitivement, dire que f est continue sur I signifie que sa courbe représentative peut être tracée en un seul morceau (la courbe ne présente aucun saut, aucun trou). Mathématiquement, cela se traduit de la manière suivante :

Définition 7.22 – Soient f une fonction définie sur un intervalle I et a un point de I.

• La fonction f est dite **continue** en a lorsque

$$\lim_{x \to a^{-}} f(x) = f(a) = \lim_{x \to a^{+}} f(x).$$

Sinon f est dite **discontinue** en a.

• f est dite **continue sur l'intervalle** I lorsqu'elle est continue en tout point $a \in I$.

Exemple 7.23 – Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \begin{cases} -x & \text{si } x \le 0, \\ x^2 & \text{si } x > 0. \end{cases}$$

Étudier la continuité de f en 0.

Exemple 7.24 – Soit f une fonction définie sur un intervalle I et a un réel de I.

On note C_f la courbe représentative de la fonction f et A le point de la courbe C_f d'abscisse a. Pour tout réel x de l'intervalle I, on considère le point M de la courbe C_f d'abscisse x.

La fonction f est continue.

La fonction f n'est pas continue en a.

Pour tout réel a de I, on peut rendre f(x) aussi proche que l'on veut de f(a), pourvu que x soit suffisamment proche de a.

Ici la courbe C_f présente un saut au point d'abscisse a. Le point M n'est pas proche du point A lorsque x est proche de a.

2 - Opérations sur les fonctions continues

Théorème 7.25 - Continuité des fonctions de référence

- Une fonction polynomiale est continue sur \mathbb{R} .
- Une fraction rationnelle est continue sur tout intervalle inclus dans son ensemble de définition.
- La fonction inverse est continue sur $]-\infty,0[$ et sur $]0,+\infty[$.
- La fonction racine carrée est continue sur R₊.

Théorème 7.26

- Si f et g sont deux fonctions continues, alors la somme f+g et le produit fg sont continues. Si de plus, g ne s'annule pas, alors le quotient $\frac{f}{g}$ est aussi continue.
- Si f et g sont continues, alors $g \circ f$ est continue.