Prediction Assignment Writeup : Prediction of how was the Exercise Performed

Krishna Mahajan, 22 Dec, 2015

summary

Human activity recognition research has traditionally focused on discriminating between different activities. However, the "how (well)" investigation has only received little attention so far, even though it potentially provides useful information for a large variety of applications, such as sports training [http://groupware.les.inf.puc-rio.br/har]

For the prediction of how well individuals performed the assigned exercise six young health participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell Biceps Curl in five different fashions: exactly according to the specification

Class A: Exactly according to the specification Class B: Throwing the elbows to the front Class C: Lifting the dumbbell only halfway Class D: Lowering the dumbbell only halfway Class E: Throwing the hips to the front

Data Cleaning

The data for this project come was obtained from [http://groupware.les.inf.pucrio.br/har]. Two data set were available a training set and a test set for which 20 individuals without any classification for the class of exercise was available

```
#Data Loading
pmlTrain<-read.csv("pml-training.csv", header=T, na.strings=c("NA",
"#DIV/0!"))
pmlTest<-read.csv("pml-testing.csv", header=T, na.string=c("NA", "#DIV/0!"))</pre>
```

Training data was partitioned and preprocessed using the code described below. In brief, all variables with at least one "NA" were excluded from the analysis. Variables related to time and user information were excluded for a total of 51 variables and 19622 class measurements. Same variables were maintained in the test data set (Validation dataset) to be used for predicting the 20 test cases provided.

```
## NA exclusion for all available variables
noNApmlTrain<-pmlTrain[, apply(pmlTrain, 2, function(x) !any(is.na(x)))]
dim(noNApmlTrain)
## [1] 19622 60</pre>
```

```
## variables with user information, time and undefined
cleanpmlTrain
cleanpmlTrain(,-c(1:8))
dim(cleanpmlTrain)

## [1] 19622 52

## 20 test cases provided clean info - Validation data set
cleanpmltest<-pmlTest[,names(cleanpmlTrain[,-52])]
dim(cleanpmltest)

## [1] 20 51</pre>
```

Data Partitioning and Prediction Process

The cleaned downloaded data set was subset in order to generate a test set independent from the 20 cases provided set. Partitioning was performed to obtain a 75% training set and a 25% test set.

```
#data cleaning
library(caret)
inTrain<-createDataPartition(y=cleanpmlTrain$classe, p=0.75,list=F)
training<-cleanpmlTrain[inTrain,]
test<-cleanpmlTrain[-inTrain,]
#Training and test set dimensions
dim(training)
## [1] 14718 52
dim(test)
## [1] 4904 52</pre>
```

Result and conclusion

Random forest trees were generated for the training dataset using cross-validation. Then the generated algorithm was examnined under the partitioned training set to examine the accuracy and estimated error of prediction. By using 51 predictors for five classes using cross-validation at a 5-fold an accuracy of 99.2% with a 95% CI [0.989-0.994] was achieved accompanied by a Kappa value of 0.99.

```
library(caret)
set.seed(13333)
fitControl2<-trainControl(method="cv", number=5, allowParallel=T, verbose=T)
rffit<-train(classe~.,data=training, method="rf", trControl=fitControl2,
verbose=F)

## + Fold1: mtry= 2
## - Fold1: mtry= 2
## + Fold1: mtry=26
## - Fold1: mtry=26
## - Fold1: mtry=51
## - Fold1: mtry=51</pre>
```

```
## + Fold2: mtry= 2
## - Fold2: mtry= 2
## + Fold2: mtry=26
## - Fold2: mtry=26
## + Fold2: mtry=51
## - Fold2: mtry=51
## + Fold3: mtry= 2
## - Fold3: mtry= 2
## + Fold3: mtry=26
## - Fold3: mtry=26
## + Fold3: mtry=51
## - Fold3: mtry=51
## + Fold4: mtry= 2
## - Fold4: mtry= 2
## + Fold4: mtry=26
## - Fold4: mtry=26
## + Fold4: mtry=51
## - Fold4: mtry=51
## + Fold5: mtry= 2
## - Fold5: mtry= 2
## + Fold5: mtry=26
## - Fold5: mtry=26
## + Fold5: mtry=51
## - Fold5: mtry=51
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 26 on full training set
predrf<-predict(rffit, newdata=test)</pre>
confusionMatrix(predrf, test$classe)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                            C
                 Α
                      В
                                 D
                                      Ε
##
            A 1394
                      7
                                 0
                            0
                                      0
##
            В
                 0 936
                            5
                                 0
                                      0
##
            C
                 0
                      5 850
                                 5
                                      1
            D
                 0
                      1
                            0 797
                                      2
##
            Ε
                 1
##
                       0
                            0
                                 2
                                    898
##
## Overall Statistics
##
##
                  Accuracy : 0.9941
##
                    95% CI: (0.9915, 0.996)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.9925
   Mcnemar's Test P-Value : NA
```

```
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          0.9993
                                   0.9863
                                            0.9942
                                                     0.9913
                                                               0.9967
## Specificity
                          0.9980
                                   0.9987
                                            0.9973
                                                     0.9993
                                                               0.9993
## Pos Pred Value
                          0.9950
                                   0.9947
                                            0.9872
                                                     0.9963
                                                               0.9967
## Neg Pred Value
                          0.9997
                                   0.9967
                                            0.9988
                                                     0.9983
                                                               0.9993
## Prevalence
                          0.2845
                                   0.1935
                                            0.1743
                                                     0.1639
                                                               0.1837
## Detection Rate
                          0.2843
                                   0.1909
                                            0.1733
                                                     0.1625
                                                               0.1831
## Detection Prevalence
                          0.2857
                                   0.1919
                                            0.1756
                                                     0.1631
                                                               0.1837
## Balanced Accuracy
                          0.9986
                                   0.9925
                                            0.9957
                                                     0.9953
                                                               0.9980
pred20<-predict(rffit, newdata=cleanpmltest)</pre>
# Output for the prediction of the 20 cases provided
pred20
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
```

A boosting algorithm was also run to confirm and be able to compare predictions. Data is not shown but the boosting approach presented less accuracy (96%) (Data not shown). However, when the predictions for the 20 test cases were compared match was same for both ran algorimths.

```
fitControl2<-trainControl(method="cv", number=5, allowParallel=T, verbose=T)</pre>
gmbfit<-train(classe~.,data=training, method="gbm", trControl=fitControl2,</pre>
verbose=F)
## + Fold1: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## - Fold1: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## + Fold1: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## - Fold1: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## + Fold1: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
## - Fold1: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
## + Fold2: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## - Fold2: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## + Fold2: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## - Fold2: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## + Fold2: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
```

```
## - Fold2: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
## + Fold3: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## - Fold3: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## + Fold3: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## - Fold3: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## + Fold3: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
## - Fold3: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
## + Fold4: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## - Fold4: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## + Fold4: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## - Fold4: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## + Fold4: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
## - Fold4: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
## + Fold5: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## - Fold5: shrinkage=0.1, interaction.depth=1, n.minobsinnode=10,
n.trees=150
## + Fold5: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## - Fold5: shrinkage=0.1, interaction.depth=2, n.minobsinnode=10,
n.trees=150
## + Fold5: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
## - Fold5: shrinkage=0.1, interaction.depth=3, n.minobsinnode=10,
n.trees=150
## Aggregating results
## Selecting tuning parameters
## Fitting n.trees = 150, interaction.depth = 3, shrinkage = 0.1,
n.minobsinnode = 10 on full training set
gmbfit$finalModel
## A gradient boosted model with multinomial loss function.
## 150 iterations were performed.
## There were 51 predictors of which 43 had non-zero influence.
class(gmbfit)
```

```
## [1] "train"
                         "train.formula"
predgmb<-predict(gmbfit, newdata=test)</pre>
confusionMatrix(predgmb, test$classe)
## Confusion Matrix and Statistics
##
##
              Reference
## Prediction
                             C
                                        Ε
                  Α
                       В
                                  D
                                  0
##
             A 1374
                      27
                             0
                                        0
                                  9
             В
                     888
                            21
                                       10
##
                 14
             C
                  4
                      30
                           824
                                 20
##
                                       11
##
            D
                  2
                       1
                             8
                                765
                                       10
             Ε
                       3
                             2
##
                  1
                                 10
                                     870
##
## Overall Statistics
##
##
                   Accuracy : 0.9627
##
                     95% CI: (0.957, 0.9678)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9528
##
    Mcnemar's Test P-Value : 0.0001673
##
## Statistics by Class:
##
##
                          Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                            0.9849
                                      0.9357
                                               0.9637
                                                         0.9515
                                                                   0.9656
## Specificity
                            0.9923
                                      0.9863
                                               0.9839
                                                         0.9949
                                                                   0.9960
## Pos Pred Value
                            0.9807
                                      0.9427
                                               0.9269
                                                         0.9733
                                                                   0.9819
## Neg Pred Value
                            0.9940
                                      0.9846
                                               0.9923
                                                         0.9905
                                                                   0.9923
## Prevalence
                            0.2845
                                      0.1935
                                               0.1743
                                                         0.1639
                                                                   0.1837
## Detection Rate
                            0.2802
                                      0.1811
                                               0.1680
                                                         0.1560
                                                                   0.1774
## Detection Prevalence
                            0.2857
                                      0.1921
                                               0.1813
                                                         0.1603
                                                                   0.1807
## Balanced Accuracy
                            0.9886
                                      0.9610
                                               0.9738
                                                         0.9732
                                                                   0.9808
predtrain<-predict(gmbfit, newdata=training)</pre>
confusionMatrix(predtrain, training$classe)
## Confusion Matrix and Statistics
##
##
              Reference
                                        Ε
## Prediction
                             C
                                  D
                  Α
                       В
             A 4150
                      75
                                  0
                                        0
##
                             0
##
                 25 2713
                            48
                                 13
                                       15
             В
##
             C
                  6
                      56 2489
                                 69
                                       24
                  4
##
            D
                       0
                            26 2316
                                       19
##
             Ε
                  0
                       4
                             4
                                 14 2648
## Overall Statistics
```

```
##
##
                   Accuracy : 0.9727
##
                     95% CI: (0.9699, 0.9753)
##
       No Information Rate: 0.2843
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa : 0.9654
    Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
                         Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                           0.9916
                                     0.9526
                                              0.9696
                                                        0.9602
                                                                  0.9786
## Specificity
                           0.9929
                                     0.9915
                                              0.9872
                                                        0.9960
                                                                  0.9982
## Pos Pred Value
                           0.9822
                                     0.9641
                                              0.9414
                                                        0.9793
                                                                  0.9918
## Neg Pred Value
                           0.9967
                                     0.9887
                                              0.9935
                                                        0.9922
                                                                  0.9952
## Prevalence
                           0.2843
                                     0.1935
                                              0.1744
                                                        0.1639
                                                                  0.1839
## Detection Rate
                                                                  0.1799
                           0.2820
                                     0.1843
                                              0.1691
                                                        0.1574
## Detection Prevalence
                           0.2871
                                     0.1912
                                              0.1796
                                                        0.1607
                                                                  0.1814
## Balanced Accuracy
                           0.9923
                                     0.9720
                                              0.9784
                                                        0.9781
                                                                  0.9884
predtrain<-predict(gmbfit, newdata=training)</pre>
confusionMatrix(predtrain, training$classe)
## Confusion Matrix and Statistics
##
##
              Reference
                                       Ε
                       В
                            C
                                  D
## Prediction
                 Α
##
            A 4150
                      75
                            0
                                  0
                                       0
##
            В
                 25 2713
                           48
                                 13
                                      15
##
            C
                  6
                      56 2489
                                 69
                                      24
##
            D
                  4
                       0
                           26 2316
                                      19
##
                       4
                            4
                                 14 2648
##
## Overall Statistics
##
##
                   Accuracy : 0.9727
##
                     95% CI: (0.9699, 0.9753)
##
       No Information Rate: 0.2843
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9654
   Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
                                              0.9696
## Sensitivity
                                     0.9526
                                                        0.9602
                           0.9916
                                                                  0.9786
## Specificity
                           0.9929
                                     0.9915
                                              0.9872
                                                        0.9960
                                                                  0.9982
## Pos Pred Value
                           0.9822
                                     0.9641
                                              0.9414
                                                        0.9793
                                                                 0.9918
```

```
## Neg Pred Value
                          0.9967
                                   0.9887
                                            0.9935
                                                     0.9922
                                                              0.9952
## Prevalence
                          0.2843
                                   0.1935
                                                     0.1639
                                                              0.1839
                                            0.1744
## Detection Rate
                          0.2820
                                                     0.1574
                                                              0.1799
                                   0.1843
                                            0.1691
## Detection Prevalence
                          0.2871
                                   0.1912
                                            0.1796
                                                     0.1607
                                                              0.1814
## Balanced Accuracy
                          0.9923
                                   0.9720
                                            0.9784
                                                     0.9781
                                                              0.9884
```

Once, the predictions were obtained for the 20 test cases provided, the below shown script was used to obtain single text files to be uploaded to the courses web site to comply with the submission assignment. 20 out of 20 hits also confirmed the accuracy of the obtained models.

```
getwd()
## [1] "C:/Users/Krish/Google Drive/Coursera/backup/Practical Machine
Learning/Project"

pml_write_files = function(x){
    n = length(x)
    for(i in 1:n){
        filename = paste0("problem_id_",i,".txt")

write.table(x[i],file=filename,quote=FALSE,row.names=FALSE,col.names=FALSE)
    }
}
pml_write_files(pred20)
```