Лабораторная работа 3.6.1 СПЕКТРАЛЬНЫЙ АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

Сафиуллин Роберт 12 ноября 2018 г.

1 Цель работы:

исследование кривых намагничивания ферромагнетиков с помощью баллистического гальванометра.

2 В работе используются:

генератор тока, блок питания, тороид, соленоид, баллистический гальванометр с осветителем и шкалой, амперметры, магазин сопротивлений, ЛАТР, разделительный трансформатор.

3 Экспериментальная установка:

4 Ход работы

1) СОбрали схему 2) Установили сопротивление 80 Ω и прошли по всей петле. 3) Убедившись, что зайчик нигде не выходит за шкалу, снимем показания:

							1110		
							530		12.2
							244		12.4
							147		9
							96		6.7
							65		5.1
I, mA	Δx]	I, mA	Δx	ا ا		50		3
					-		40		2
1470	0		0.00032	0.1	.		34		1.2
530	12		0.6	12			31		0.6
244	12		23	2.9			27		1
147	8.6		27	4.1			23		0.9
96	6.6		31	4.6			$\frac{25}{0.6}$		7.4
65	5.1		34	13.6			0,00032		0.1
50	3	Участок EFC'	40	23	C'E'			Δx	0.1
40	2		50	22			I, mA		
34	1,2		65	21.5			0.00032	0.1	
31	0,7		96	16.6			0.6	12	
27	1		147	15.6			23	2.9	
23	0.9		244	19.2			27	4.1	
0.6	7.2		540	15.4	1		31	4.6	
0,00032	0.1		1470	0			34	13.6	
0,0000	9.2	J			J	E'C	40	23	
							50	22	
							65	21.5	
							96	16.6	
							147	15.6	
							244	19.2	
							540	15.4	

I, mA

1470

1470

 Δx

0

I Исследование спектра периодической последовательности прямоугольных импульсов

1) Проанализируем как меняетсяя спектр при изменении параметров $\Delta \nu$ и f_{povt}

2) Установили $\tau=50$ мкс и $f_{povt}=1$ к Γ ц. Определим амплитуды и частоты гармоник спектра и результаты запишем в таблицу:

N	f_{povt} , к Γ ц	U, mB
0	0	20.6
1	0.997	2.89
2	1.996	2.77
3	3.015	2.52
4	3.994	2.46
5	5	2.3
6	6	2.27
7	7	2.2
8	7.99	2.1
9	9	2.0
10	10.01	1.7
11	11	1.6
12	12	1.4
13	13	1.17
14	14	0.92

По этим данным построим картину спектра:

3) Провели измерения зависимости ширины спектра от длительности импульса. Результаты занесли в таблицу:

τ , MKC	40	60	80	100	120	140	160	180
$\Delta \nu$, к Γ ц	20.5	15.44	11.79	9.8	8.6	7	5.9	5.3
$1/\tau, { m MKc}^{-1}$	0.025	0.016	0.0125	0.01	0.008	0.007	0.006	0.0055

Построим по ней график:

3) Соотношение неопределенности, полученное из графика, совпадает с теоретичеким: $1000*tg(a){\simeq}1$

II Исследование спектра периодической последовательности цугов гармонических колебаний

4) Установим несущую частоту, равную 25 к Γ ц и проследиим как меняется вид спектра при изменении длительности импульса вдвое:

Из изображений видно, что число прямоугольных импульсов уменьшается, при увеличении длительности импульса

5) Проследим, как меняется картина спектра при изменении несущей частоты ν_0 ($\nu_0=10,\ 25$ и 40 к Γ ц) и постоянной длительностью импульса $\tau{=}100$ мкс

Как видно из изображений, максимумы цугов сдвинуты по частоте на величину ν_0

6) Установили несущую частоту $\nu = 30$ к Γ ц, длительность импульса $\tau = 100$ мкс. Определим расстояние $\Delta \nu$ между соседними спектральными компонентами для разных частот повторения импульсов f_{povt} .

f_{povt} , к Γ ц	0.5	1	2	4	5
δu_0 , к Γ ц	0.5	1	2	4	5

Как видно из таблицы, угловой коэффицент графика зависимости $\delta\nu_0(f_{povt})$ равен 1, что снова подтверждает соотношение неопределенности

III Исследование спектра гармонических сигналов, модулированных по амплитуде

7) Меняя двойную амплитуду сигнала от 0,2 до 2 В измерим для каждого значения максимальную A_{max} и минимальную A_{min} амплитуды сигналов модулированного колебания и амплитуды спектральных компонент. Результаты запишем в таблицу:

U, B	0.2	0.5	0.8	1.1	1.4	1.7
$2A_{max}$, B	0.6	0.681	0.76	0.84	0.92	1.01
$2A_{min}$, B	0.48	0.4	0.32	0.24	0.16	0.08
a_{osn} , B	0.36	0.35	0.356	0.359	0.355	0.354
a_{bok} , B	0.018	0.045	0.069	0.097	0.126	0.15
a_{osn}/a_{bok}	0.05	0.13	0.19	0.27	0.35	0.42
m	0.1	0.26	0.4	0.56	0.7	0.85

Построим по этим данным график зависимости a_{bok}/a_{osn} от m:

Коэффицент наклона практически совпадает с теоретическим значением. ($a_{osn}{=}A_0,\ a_{bok}{=}A_0$ m/2, $k_{teor}{=}0.5$)