Automate de Glushkov : rationnel \implies reconnaissable

- Une expression rationnelle est **linéaire** si chaque lettre y apparaît au plus une fois : $a(d+c)^*b$ est linéaire mais pas ac(a+b).
- Soit L un langage. On définit :
 - $-\ P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
 - $-\ S(L) = \{a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
 - $-F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)
 - L est local si, pour tout mot $u = u_1 u_2 ... u_n \neq \varepsilon$:

$$u \in L \iff u_1 \in P(L) \land u_n \in S(L) \land \forall k, u_k u_{k+1} \in F(L)$$

Il suffit donc de regarder la première lettre lettre, la dernière lettre et les facteurs de taille 2 pour savoir si un mot appartient à un langage local.

Remarques:

- $* \Longrightarrow \operatorname{est}$ toujours vrai donc il suffit de prouver \Longleftarrow .
- * Définition équivalente :

$$L \text{ local} \iff L \setminus \{\varepsilon\} = (P(L) \cap S(L)) \setminus N(L)$$

où $N(L) = \Sigma^2 \setminus F(L)$.

Exemples:

- $\overline{-\operatorname{Si} L_2} = (ab)^*$ alors $P(L_2) = \{a\}$, $S(L_2) = \{b\}$ et $F(L_2) = \{ab, ba\}$. De plus si $u = u_1 u_2 ... u_n \neq \varepsilon$ avec $u_1 \in P(L), u_n \in S(L)$, et $\forall k, u_k u_{k+1} \in F(L)$ alors $u_1 = a, u_n = b$ et on montre (par récurrence) que $u = abab...ab \in \mathbb{Z}$. Donc L_2 est local.
- Si $L_3 = a^* + (ab)^*$ alors $P(L_3) = \{a\}$, $S(L_3) = \{a, b\}$, $F(L_3) = \{aa, ab, ba\}$. Soit u = aab. La première lettre de u est dans $P(L_3)$, la dernière dans $S(L_3)$ et les facteurs de u sont aa et ba qui appartiennent à $F(L_3)$. Mais $u \notin L_3$, ce qui montre que L_3 n'est pas local.
- Un automate déterministe (Σ, Q, q_0, F, E) est **local** si toutes les transitions étiquetées par une même lettre aboutissent au même état : $(q_1, a, q_2) \in E \land (q_3, a, q_4) \in E \implies q_2 = q_4$
- Un langage local L est reconnu par un automate local.

<u>Preuve</u>: L est reconnu par (Σ, Q, q_0, F, E) où:

- $-\ Q = \Sigma \cup \{q_0\}$: un état correspond à la dernière lettre lue
- -F = S(L) si $\varepsilon \notin L$, sinon $F = S(L) \cup \{q_0\}$.
- $E = \{ (q_0, a, a) \mid a \in P(L) \} \cup \{ (a, b, b) \mid ab \in F(L) \}$
- L'algorithme de Berry-Sethi permet de construire un automate à partir d'une expression rationnelle e.

Exemple avec $e = a(a+b)^*$:

- 1. On linéarise e en e', en remplaçant chaque occurrence de lettre dans e par une nouvelle lettre : $e' = e_1(e_2 + e_3)^*$
- 2. On peut montrer que L(e') est un langage local.
- 3. Un langage local est reconnu par l'automate local $A = (\Sigma, Q, q_0, F, E)$

/workspaces/tikz-pdf/automata/glushkov/local

4. On fait le remplacement inverse de 1. sur les transitions de A pour obtenir un automate reconnaissant L(e):

/workspaces/tikz-pdf/automata/glushkov/glush

Automate de Thompson : rationnel \implies reconnaissable

- Une ε -transition est une transition étiquetée par ε .
- Un automate avec ε -transitions est équivalent à un automate sans ε -transitions.

<u>Preuve</u>: Si $A = (\Sigma, Q, I, F, \delta)$ est un automate avec ε -transitions, on définit $A' = (\Sigma, Q, I', F, \delta')$ où :

- -I' est l'ensemble des états atteignables depuis un état de I en utilisant uniquement des ε -transitions.
- $-\delta'(q,a)$ est l'ensemble des états q' tel qu'il existe un chemin de q à q' dans A étiqueté par un a et un nombre quelconque de ε (ce qui peut être trouvé par un parcours de graphe).
- L'automate de Thompson est construit récursivement à partir d'une expression rationnelle e :
 - Cas de base:

	Élimination des états : reconnaissable \implies rationnel
/workspaces/tikz-pdf/automata/thompsom/thomp	• Tout automate est équivalent à un automate avec un unique état initial sans transition entrante et un unique état final sans transition sortante. Preuve: On ajoute un état initial q_i et un état final q_f et des transitions ε depuis q_i vers les états initiaux et depuis les etats finaux vers q_f .
	• Méthode d'élimination des états : On considère un automate A comme dans le point précédent. Tant que A possède au moins 3 états, on choisit un état $q \notin \{q_i, q_f\}$ et on supprime q en modifiant les transitions :
$-T(e_1e_2)$: ajout d'une ε -transition depuis chaque état final de $T(e_1)$ vers chaque état initial de $T(e_2)$.	/workspaces/tikz-pdf/a@ntomat/aw/oerkismpiaccetsi/ctni/kzp-/popff/aput/fon
	Exemple:
/workspaces/tikz-pdf/automata/thompson/	npson2.pdf
	/workspaces/tikz-pdf/automata/a4/a4.pdf
$-T(e_1 e_2)$: union des états initiaux et des états finaux.	1. On commence par se ramener à un automate avec un état initial sans transition entrante et un état final sans transition sortante :
/workspaces/tikz-pdf/automata/tho	mpson/thompson3.pdf
$-T(e_1^*)$: ajout d'une ε -transition depuis chaque état final vers chaque état initial.	/workspaces/tikz-pdf/automata/elimination/ex/
/workspaces/tikz-pdf/automata/tho	mpson/thompson4.pdf
	2. Suppression de l'état 1 :

x1.pdf /workspaces/tikz-pdf/automata/elimination/ex/
Suppression de l'état 2 :
/workspaces/tikz-pdf/automata/elimination/ex/ex2.pdf On obtient l'expression rationnelle $a a(bu)^*bu(au au(bu)^*bu)$,
où $u = b^*ba$. Sionnel \iff reconnaissable
héorème de Kleene: un langage est rationnel si et seule- ent si il est reconnaissable par un automate. es théorèmes sur les automates s'appliquent aussi aux lan- ages rationnels, et inversement. Notamment, les langages tionnels sont stables par union, concaténation, étoile, in- resection, complémentaire, différence.
; 1 1,1