	Waves		Total internal reflection	
	Learning objectives	MUST (6)	Recall definitions of total internal reflection and critical angle, and derive the equation for critical angle	
		SHOULD (7)	Explain the structure and purpose of optical fibres	
		COULD (8/9)	Apply the equations to multi-step problems	

STARTER: Austin Powers has kindly lent us this lovely 1970s lamp.

Groovy!

But hang on - we've always been told that light travels in straight lines. Why does the light still travel along the fibres, even when we bend them? **EXTENSION:** What, if anything, would change about the light when it entered the fibre?

Waves

Critical angle and optical fibres

MUST (6)

Recall definitions of total internal reflection and critical angle, and derive the equation for critical angle

When a wave is passing from a **higher** to **lower** refractive index - such as from water to air - it is possible for **total internal reflection** to occur. This is when all of the wave is reflected from the surface, and none passes through.

TIR occurs if angle of incidence is greater than a 'critical angle', C.

Remember Snell's Law for refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (n_1 is the denser medium here)

What's the angle of refraction at the critical angle?

The angle of refraction is 90°, so at the critical angle C Snell's law becomes:

 $n_1 sinC = n_2 sin90^\circ$

Because $\sin 90 = 1$, we can say: $n_1 \sin \theta c = n_2$

Can rearrange: $\sin C = n_2/n_1$, and $C = \sin^{-1}(n_2/n_1)$

The refractive index for air is 1, so if the light is going from a substance with refractive index *n* to air:

$$\sin C = \frac{1}{n}$$

Waves			Total internal reflection
	MUST (6)	Recall	definitions of total internal reflection and critical angle
Learning objectives	SHOULD (7)	Explain the structure and purpose of optical fibres	
	COULD (8/9)	Apply	the equations to multi-step problems

PLENARY: Greenland was probably discovered because of total internal reflection; the Vikings knew that an island was there, even though they couldn't have actually seen it directly, and sailed towards it. Look at the diagram - can you suggest how? Clue - think about cold air and hot air.

What properties would you think differ?

EXTENSION: Would you expect this effect to remain as they sailed closer towards it? Explain.

picture of a 'superior mirage'.

Here is a picture of a different kind of mirage that you might be familiar with; a shimmering on tarmac on a very hot day. Can you explain?

