Theorem. If $Y \sim N_n(X\beta, \sigma^2 I_n)$, where $X_{n \times p}$ has rank r and $\hat{\beta} = (X'X)^- X'Y$ is a least squares solution of β ,

- (i) $X\hat{\beta} \sim N_n(X\beta, \sigma^2 P)$,
- (ii) $(\hat{\beta} \beta)' X' X (\hat{\beta} \beta) \sim \sigma^2 \chi_r^2$
- (iii) $X\hat{\beta}$ is independent of RSS = $(Y X\hat{\beta})'(Y X\hat{\beta})$. and
- (iv) RSS/ $\sigma^2 \sim \chi^2_{n-r}$ (independent of $X\hat{\beta}$)

Proof. (i) Since $X\hat{\beta} = X(X'X)^{-}X'Y = PY$, we have

$$X\hat{\beta} \sim N_n(PX\beta, \sigma^2 P^2) = N_n(X\beta, \sigma^2 P).$$

(ii) Since $X\hat{\beta} = PY$ and $X\beta = PX\beta$,

$$(\hat{\beta} - \beta)' X' X (\hat{\beta} - \beta) = (X \hat{\beta} - X \beta)' (X \hat{\beta} - X \beta)$$
$$= (Y - X \beta)' P (Y - X \beta) \sim \sigma^2 \chi_r^2$$

P being symmetric idempotent of rank r.

- (iii) We have $X\hat{\beta} = PY$, RSS = $(Y X\hat{\beta})'(Y X\hat{\beta}) = Y'(I P)Y$ and P(I P) = 0. Therefore independence of $X\hat{\beta}$ and RSS follows.
- (iv) Note again that

RSS =
$$Y'(I - P)Y = (Y - X\beta)'(I - P)(Y - X\beta) \sim \sigma^2 \chi_{n-r}^2$$
,

I-P being a projection matrix of rank n-r.

Estimability

Consider the Gauss-Markov model again: $Y = X\beta + \epsilon$, with $E(\epsilon) = 0$ and $Cov(\epsilon) = \sigma^2 I_n$. Now suppose rank of X is r < p.

Definition. A linear parametric function $a'\beta$ is said to be estimable if it has a linear unbiased estimate b'Y.

Theorem. $a'\beta$ is estimable iff $a \in \mathcal{M}_C(X') = \mathcal{M}_C(X'X)$.

Proof. $a'\beta$ is estimable iff there exists b such that $E(b'Y) = a'\beta$ for all $\beta \in \mathcal{R}^p$. i.e., $b'X\beta = a'\beta$ for all $\beta \in \mathcal{R}^p$. i.e., b'X = a' or a = X'b for some $b \in \mathcal{R}^n$.

Theorem (Gauss-Markov). If $a'\beta$ is estimable, and $\hat{\beta}$ is any least squares solution (i.e., solution of $X'X\beta = X'Y$),

- (i) $a'\hat{\beta}$ is unique,
- (ii) $a'\hat{\beta}$ is the BLUE of $a'\beta$.

Proof. (i) If $a'\beta$ is estimable, $a'\beta = b'X\beta = b'\theta$ for some $b \in \mathbb{R}^n$. Since $\hat{\theta}$ is the unique projection of Y onto $\mathcal{M}_C(X)$, we note $b'\hat{\theta} = b'X\hat{\beta} = a'\hat{\beta}$ is

unique. i.e., if $\tilde{\beta}$ is any other LS solution, then also $b'X\tilde{\beta} = b'X\hat{\beta} = a'\hat{\beta}$.

(ii) If d'Y is any other linear unbiased estimate of $a'\beta$, then

$$E(d'Y) = d'X\beta = d'\theta = a'\beta = b'X\beta = b'\theta \text{ for all } \beta \in \mathcal{R}^p.$$

i.e., $d'\theta = b'\theta$ for all $\theta \in \mathcal{M}_C(X)$.

i.e., $(d-b)'\theta = 0$ for all $\theta \in \mathcal{M}_C(X)$, or $(d-b) \perp \mathcal{M}_C(X)$. Consider $P = P_{\mathcal{M}_C(X)} = X(X'X)^-X'$. Then P(d-b) = 0 or Pd = Pb. Therefore,

$$Var(d'Y) - Var(a'\hat{\beta}) = Var(d'Y) - Var(b'\hat{\theta})$$

$$= Var(d'Y) - Var(b'PY) = Var(d'Y) - Var(d'PY)$$

$$= \sigma^{2}(d'd - d'Pd) = \sigma^{2}d'(I - P)d \ge 0,$$

with equality iff (I-P)d=0 or d=Pd=Pb. i.e., $d'Y=b'PY=b'\hat{\theta}=a'\hat{\beta}$.

Remark. Parametric functions $a'\beta$ are estimable when $a \in \mathcal{M}_C(X') = \text{Row}$ space of X.

Example. Consider again the model:

 $y_{ij} = \mu + \alpha_i + \tau_j + \epsilon_{ij}, i = 1, 2, 3, 4; j = 1, 2.$

Suppose comparing τ_1 and τ_2 is of interest. Since

$$Y = \begin{pmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \\ \vdots \\ y_{41} \\ y_{42} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \tau_1 \\ \tau_2 \end{pmatrix} + \epsilon,$$

 $\mu + \alpha_i + \tau_j$ is estimable for all i and j. Therefore, $(\mu + \alpha_i + \tau_1) - (\mu + \alpha_i + \tau_2) = \tau_1 - \tau_2$ is estimable.

 $(\mu + \alpha_i + \tau_1) - (\mu + \alpha_j + \tau_1) = \alpha_i - \alpha_j$ is estimable.

What else is estimable, apart from linear combinations of these?

Result. If $a'\beta$ is estimable, and $Y \sim N_n(X\beta, \sigma^2 I_n)$, a $100(1-\alpha)\%$ confidence interval for $a'\beta$ is given by

$$a'\hat{\beta} \pm t_{n-r}(1-\alpha/2)\sqrt{a'(X'X)^{-}a}\sqrt{\text{RSS}/(n-r)}.$$

Proof. Note that $a'\beta = c'X\beta = c'\theta$ for some c. Therefore, $a'\hat{\beta} = c'\hat{\theta} = c'PY \sim N(a'\beta, \sigma^2c'Pc)$. Now $c'Pc = c'X(X'X)^-X'c = a'(X'X)^-a$. Therefore,

$$\frac{a'\hat{\beta} - a'\beta}{\sqrt{\sigma^2 a'(X'X)^- a}} \sim N(0, 1).$$

Further, since RSS/ $\sigma^2 \sim \chi^2_{n-r}$ independent of $X\hat{\beta}$, and hence of $c'X\hat{\beta}=c'\hat{\theta}=a'\hat{\beta}$,

$$\frac{a'\hat{\beta} - a'\beta}{\sqrt{\sigma^2 a'(X'X)^{-}a}\sqrt{\text{RSS}/(\sigma^2(n-r))}} \sim t_{n-r}.$$

Hence,

$$P\left(|a'\hat{\beta} - a'\beta| \le t_{n-r}(1 - \alpha/2)\sqrt{a'(X'X)^{-}a}\sqrt{\frac{\text{RSS}}{n-r}}\right) = 1 - \alpha.$$