Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волгоградский государственный технический университет»

Факультет Электроники и Вычислительной техники Направление (специальность) 010700.62-физика Кафедра Физика Дисциплина Вакуумная и газоразрядная электроника

Утверждаю		
Зав. кафедрой		
«»	20	_г.

ЗАДАНИЕ на курсовую работу (проект)

Студент Слоква Виктория Игоревна $\frac{\text{Слоква Виктория Игоревна}}{\text{(фамилия, имя, отчество)}}$ Группа Φ -469

- 1. Тема: «Модернизация лабораторного макета: Исследование статических характеристик триода»
 Утверждена приказом от «24» октября 2013 г. №1569-ст
- 2. Срок предоставления работы (проекта) к защите «24» декабря 2013 г.
- 3. Содержание расчетно-пояснительной записки: Работа состоит из методического пособия из 6 частей:
 - 1) основные сведения;
 - 2) электроника триода;
 - 3) режим токоперехвата;
 - 4) режим возврата электронов;
 - 5) описание экспериментальной установки;
 - 6) методика проведения эксперимента.

4. Перечень графического мат	· гериала:	
5. Дата выдачи задания « <u>27</u> »	<u>сентября</u> 20 <u>13</u> г.	
Руководитель работы (проекта) _		
Задание принял к исполнению _	подпись, дата	инициалы и фамилия
	подпись, дата	инициалы и фамилия

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волгоградский государственный технический университет»

Факультет <u>Электроники и Вычислительной техники</u> Кафедра Физика

пояснительная записка

к курсовой работе (проекту)

по дисциплине <u>Вакуумная и газоразрядная электроника</u> на тему <u>«Модернизация лабораторного макета: Исследование статических характеристик триода»</u>

Студент Слоква Виктория	Игоревна	
(фамилия, имя, от	гчество)	
Группа <u>Ф-469</u>		
Руководитель работы (проекта)	подпись и дата подписания	
	подпись и дата подписания	инициалы и фамилия
Члены комиссии:		
подпись и дата подписания	инициалы и фамилия	
подпись и дата подписания	инициалы и фамилия	-
подпись и дата подписания	инициалы и фамилия	
Нормоконтролер	лата полписания	нипиалы и фамилия

Волгоград, 2013г.

Содержание

1.	Соде	ержани	не работы	4
	1.1.	Основ	ные сведения	4
	1.2.	Электр	роника триода	6
		1.2.1.	Режим токоперехвата	7
		1.2.2.	Режим возврата электронов	8
2.	Опи	сание	экспериментальной установки	11
3.	Мет	одика	проведения эксперимента	12

1. Содержание работы

1.1. Основные сведения

Триод является вакуумным электронным прибором, отличающимся от диода наличием третьего электрода, расположенного между катодом и анодом и называемого управляющей сеткой или просто сеткой.

На рисунке 1 показаны распространенные конструкции электродов триода.

Рисунок 1. Конструкция электродов триода

Действие управляющей сетки заключается в том, что она регулирует распределение пространственного заряда между катодом и анодом и, таким образом, управляет потоком электронов внутри лампы, то есть анодным током. Вследствие того, что сетка не является сплошной, она свободно пропускает электроны, летящие к аноду. С другой стороны, она формирует структуру поля, причем резко ослабляется влияние изменения анодного напряжения на поле вблизи катода — экранирует катод от анода и ослабляет действие анода на электроны, вылетающие с катода.

Напряжением на сетке или сеточным напряжением называют разность потенциалов между сеткой и катодом, то есть потенциал сетки относительно катода. В лампах с катодом прямого накала все напряжения отсчитывают относительного отрицательного конца катода.

На рисунке 2 показано распределение поля в триоде при различных величинах напряжения на сетке и фиксированном анодном напряжении. Видно, что сетка задерживает большую часть поля. Чем гуще сетка, тем сильнее экранирует она катод от влияния анода. Вследствие этого и отчасти потому, что сетка расположена ближе к катоду, чем к аноду, небольшие изменения потенциала на сетке оказывают гораздо более сильное действие на анодный ток, чем значительные изменения потенциала на аноде.

Рисунок 2. Распределение электростатического потенциала плоского триода при различных потенциалах сетки и одинаковом анодном напряжении

При небольшом отрицательном напряжении сетка отталкивает электроны, но часть их все же пролетает в ее просветы благодаря притяжению анода. Однако можно увеличить отрицательное напряжение настолько, что она будет отталкивать все электроны и анодный ток прекратится. Лампа будет заперта.

В этом случае условие прекращение анодного тока соответствует равенству

$$U_C = -DU_A, (1)$$

где D – проницаемость сетки, пропорциональная отношению диаметра сетки к периоду ее намотки, U_C – напряжение на сетке, U_A – напряжение на аноде.

При увеличении напряжения на сетке (но при условии, что $U_C < 0$) анодный ток совпадает по величине с катодным и растет по закону Ленгмюра (3).

В результате характер изменения анодного тока в триоде может быть описан двумя характеристиками: анодно-сеточной, когда при фиксированном анодном напряжении изменяется напряжение на сетке (рис. 3), и анодной, когда напряжение на сетке остается постоянным, но варьируется величина напряжения на аноде (рис. 4). Обе характеристики взаимосвязаны — и по семейству анодно-сеточных характеристик легко построить анодную.

Рисунок 3. Семейство анодно-сеточных характеристик триода

Рисунок 4. Семейство анодных характеристик триода

1.2. Электроника триода

В общем случае анализ электроники триода основан на формуле для действующего потенциала сетки:

$$U_D = \sigma(U_C + DU_A), \tag{2}$$

где σ – параметр, который носит название остроты управления и равный приблизительно величине $\sigma \approx 1/(1+D)$.

Прохождение анодного тока через триод можно описать, введя представление эквивалентного диода, то есть такого диода, у которого плоскость анода совпадает с плоскостью сетки в триоде. В этом

случае катодный ток подчиняется классическому закону Ленгмюра:

$$I_k = P(U_C + DU_A)^{3/2}, (3)$$

где P – первеанс триода, зависящий от геометрических размеров триод.

Введем коэффициент токопрохождения $s=I_a/I_k$ и коэффициент токораспределения $k=I_a/I_c$. Оба эти коэффициента равнозначны, но чаще используют коэффициент s, зная который легко определяются величины всех токов:

$$I_a = sI_k;$$
 $I_c = (1-s)I_k;$ $\frac{s}{k} = 1-s.$

Выделяют два режима работы триода:

- режим токоперехвата (при $U_A > U_D$);
- режим возврата электронов (при $U_A < U_D$).

1.2.1. Режим токоперехвата

В данном режиме ток сетки будет определяться только теми электронами, которые будут перехватываться сеткой при их непосредственном движении от катода к аноду.

Рисунок 5. Режим токоперехвата

Предположим, что эмиссия электронов с катода равномерна и прямолинейна. Тогда коэффициент токопрохождения будет определяться отношением площади катода, не находящейся под поверхно-

стью сетки, к полной площади катода (рис. 5а):

$$s_0 = \frac{L_{\text{He под сеткой}}}{L} = \frac{L - 2R_c}{L} = 1 - \frac{2R_c}{L}.$$
 (4)

В зависимости от знака напряжения на сетке U_C может наблюдаться два случая: при $U_C < 0$ коэффициент токопрохождения s будет больше s_0 , а при $U_C > 0$ — меньше s_0 .

Рассмотрим второй случай.

Пускай электрон вылетает на некотором расстоянии $R_{9\varphi}$ от центра элемента сетки (рис. 5б).

По закону сохранения момента импульса (при нулевой начальной скорости электрона):

$$mv_dR_{\ni \phi} = mv_cR_c.$$

Выразим скорости из закона сохранения энергии:

$$\frac{mv_d^2}{2} = eU_D, \quad \frac{mv_c^2}{2} = eU_C; \quad \Rightarrow \quad v_d = \sqrt{\frac{2e}{m}U_D}, \quad v_c = \sqrt{\frac{2e}{m}U_C}.$$

Тогда $R_{
m 9 \phi} = R_c \cdot \sqrt{U_C/U_D}$. Подставляя в (4) $R_{
m 9 \phi}$ вместо R_c , получим

$$s = 1 - \frac{2R_{9\phi}}{L} = 1 - \frac{2R_c}{L} \sqrt{\frac{U_C}{U_D}}.$$
 (5)

Из формулы (2) следует, что $U_C = U_D/\sigma - DU_A$; подставим в (5):

$$s = 1 - \frac{2R_c}{L} \sqrt{\frac{U_D}{\sigma U_D} - \frac{DU_A}{U_D}} = 1 - \frac{2R_c}{L} \sqrt{\frac{1}{\sigma} - D\frac{U_A}{U_D}}.$$

1.2.2. Режим возврата электронов

Режим возврата электронов возникает, когда между сеткой и анодом действует тормозящее поле, возвращающее часть электронов обратно к сетке.

Представим траекторию электрона в виде ломаной кривой (рис. 6).

Рисунок 6. Режим возврата электронов

У крайнего электрона перпендикулярная аноду составляющая скорости равна нулю, пройдя область сетки он вылетает под углом $\alpha_{\rm kp}$:

$$e(U_D - U_A) = \frac{m(v_d \cos \alpha_{\rm KP})^2}{2}.$$

Так как $eU_D=mv_d^2/2$, то $\sin lpha_{\rm KP}=\sqrt{U_A/U_D}$.

Анода будут достигать те электроны, которые вылетают под углом $\alpha < \alpha_{\rm kp}.$

Действие сетки на электрон аналогично действию рассеивающей линзы-диафрагмы, оптическая сила которой:

$$\frac{1}{f} = \frac{1}{4\sqrt{U_0}} \int_{-\infty}^{\infty} \frac{U_0''}{\sqrt{U_0}} dz.$$

Считая, что $U_0'' \neq 0$ только при z=0, то $U_0=U_D$ и

$$rac{1}{f}=rac{1}{4U_D}\int\limits_{-\infty}^{\infty}U_0''\,dz=rac{1}{4U_D}\left(rac{U_A-U_D}{d_{ ext{ca}}}-rac{U_D}{d_{ ext{KC}}}
ight).$$

Тогда фокусное расстояние:

$$f = 4U_D \frac{d_{\rm ca} d_{\rm KC}}{d_{\rm KC} (U_A - U_D) - d_{\rm ca} U_D} = 4U_D \frac{d_{\rm ca} d_{\rm KC}}{d_{\rm KC} U_A - d_{\rm Ka} U_D},$$

где $d_{\rm Ka} = d_{\rm KC} + d_{\rm Ca}$ – расстояние от катода до анода.

Так как $d_{\rm KC} \ll d_{\rm Ka}$, то

$$f \approx -4U_D \frac{d_{\rm ca} d_{\rm KC}}{d_{\rm Ka} U_D} = -4 \frac{d_{\rm ca} d_{\rm KC}}{d_{\rm Ka}}.$$

Тогда $\lg \alpha_{\rm kp} = y_{\rm kp}/f$, а так как $\alpha_{\rm kp}$ мало, то $\lg \alpha_{\rm kp} \sim \sin \alpha_{\rm kp}$. Получаем, что

$$y_{ ext{\tiny KP}} = f \sin lpha_{ ext{\tiny KP}} = f \sqrt{rac{U_A}{U_D}} = 4 rac{d_{ ext{\tiny Ca}} d_{ ext{\tiny KC}}}{d_{ ext{\tiny KA}}} \sqrt{rac{U_A}{U_D}}.$$

Таким образом, коэффициент токопрохождения, аналогично (4):

На рисунке 7 приведена типичная кривая токораспределения (без учета начальных скоростей электронов и полей пространственного заряда).

Рисунок 7. Кривая токораспределения в плоском триоде I – область возврата электронов; II – область токоперехвата

2. Описание экспериментальной установки

На рисунке 8 приведен внешний вид экспериментальной установки по изучению статических характеристик триода.

Рисунок 8. Внешний вид экспериментальной установки

Рисунок 9. Принципиальная электрическая схема установки

- 1. Вольтметр.
- 2. Амперметр.
- 3. Регулятор сеточного напряжения.
- 4. Регулятор анодного напряжения.
- 5. Переключатель измеряемого напряжения.
- 6. Выключатель сетевого напряжения.

Принципиальная схема экспериментальной установки представлена на рисунке 9.

3. Методика проведения эксперимента

- 4.1. Включив сеть, дать прибору прогреться не менее 3 мин.
- 4.2. Переключатель 5 должен находиться в положении « U_A », а регулятор 3 должен быть повернут вправо до упора.
- 4.3. Подать на анод максимально возможное напряжение регулятором 4 ($U_{a_m} \sim 40$ В). Зафиксировать значение анодного тока.
- 4.4. Переключив тумблер 5 в положение « U_C », повысить по модулю напряжение на сетке на одно деление регулятором 3. Переключить 5 в положение « U_A » и регулятором 4 вернуть напряжение на аноде к U_{a_m} . Записать значение анодного тока.
- 4.5. Повторяя пункт 4 для различных U_{a_m} , снять зависимость $I_a(U_c)$ при $U_a={
 m const.}$ Данные занести в таблицу 1.

Таблица 1. Семейство анодно-сеточных характеристик

$U_{a_{01}}$	U_c , B				
	I_{a_1} , м A				
	I_{a_2} , mA				
	I_{a_3} , mA				
	$\langle I_a \rangle$, м A				
$U_{a_{02}}$ и т. д.	U_c , B				
	I_{a_1} , мА				
	I_{a_2} , mA				
	I_{a_3} , мА				
	$\langle I_a \rangle$, м A				

- 4.6. Зафиксировав напряжение на сетке регулятором 3, изменять напряжение на аноде регулятором 4 и снять зависимость $I_a(U_a)$ при $U_c={
 m const.}$
- 4.7. Повторить пункт 6 для различных напряжениях на сетке $U_c={
 m const.}$ Результаты занести в таблицу 2.

Таблица 2. Семейство анодных характеристик триода

$U_{c_{01}}$	U_a , B				
	I_{a_1} , мА				
	I_{a_2} , mA				
	I_{a_3} , мА				
	$\langle I_a \rangle$, м A				
$U_{c_{02}}$ ит.д.	U_a , B				
	I_{a_1} , мА				
	I_{a_2} , мА				
	I_{a_3} , мА				
	$\langle I_a \rangle$, м A				

- 4.8. Построить графики анодно-сеточной и анодной характеристик на миллиметровой бумаге.
- 4.9. По экспериментально определенным анодно-сеточным характеристикам построить семейство анодных характеристик и сравнить с анодными характеристиками, полученными экспериментально.