

Compilers

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions
 - Context-free grammars

 The appropriate formalism for type checking is logical rules of inference

- Inference rules have the form

 If Hypothesis is true, then Conclusion is true
- Type checking computes via reasoning

 If E_1 and E_2 have certain types, then E_3 has a certain type

 Rules of inference are a compact notation for "If-Then" statements

The notation is easy to read with practice

Start with a simplified system and gradually add features

- Building blocks
 - Symbol ∧ is "and"
 - Symbol ⇒ is "if-then"
 - $-\underline{x}:T$ is " \underline{x} has type \underline{T} "

then
$$e_1 + e_2$$

$$(e_1 \text{ has type Int } \land e_2 \text{ has type Int}) \Rightarrow$$

type Int

$$e_1 + e_2 has$$

$$\left[(e_1: Int \wedge e_2: Int) \Rightarrow e_1 + e_2: Int \right]$$

The statement

$$(e_1: Int \land e_2: Int) \implies e_1 + e_2: Int)$$
 is a special case of

 $\mathsf{Hypothesis}_1 \land \ldots \land \mathsf{Hypothesis}_n \Rightarrow \mathsf{Conclusion}$

This is an inference rule

By tradition inference rules are written

Cool type rules have hypotheses and conclusions

means "it is provable that . . ."

 These rules give templates describing how to type integers and + expressions

 By filling in the templates, we can produce complete typings for expressions

1 is an int literal 2 is an int literal
$$\vdash 1 : Int \qquad \vdash 2 : Int$$
 $\vdash 1 + 2 : Int$

- A type system is <u>sound</u> if
 - Whenever ⊢ e: Ţ
 - Then evaluates to a value of type

- We only want sound rules
 - But some sound rules are better than others!

Choose the type rules that are sound

Type Checking \vdash e₁: T₁

$$\vdash e_1: I_1$$

 $\vdash e_2: T_2$

$$\vdash e_n : T_n$$
 $\vdash \{e_1; e_2; ... e_n; \} : T_n$

[Sequence]

- Type checking proves facts <u>e: T</u>
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each AST node
- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e's subexpressions
 - Conclusion is the type of e
- Types are computed in a bottom-up pass over the AST

