Space Complexity

Space complexity refers to the total space taken by an algorithm or program including the variable data and input data sizes.

It is total storage occupied by Variables + auxiliary space taken by program

Time Complexity

Time complexity represents the number of times the statement is executed. It does not give actual time taken by the program but it gives a basic idea of program time irrespective of processor speeds.

- Constant Time Complexity: O(1): in this kind of algorithms, the time taken does not gets affected by the size of the data.
- Linear: O(n): the time taken increases linearly with data increase. Algorithm processes n arguments, for example, We need to print every element of an array one by one or add numbers one by one.
- O(n log n): This is very efficient time complexity in this we use recursions to divide the number of processes into halves in every statement causing it to use only log n time to process
- O(n2): Nested for loops runs as n2 times as, for rvrty n loop there are another n loops.
- Exponential (2^n): These kind of algorithms are those when we don't know the optimum method.

Data Structures - JAVA OOB DS

Data structures in Java includes

- 1. Arrays: linear, contiguous
- 2. Linked Lists: dynamic in size,
- 3. Stack: It's first in last out data structure
- 4. Queue: First in First out algorithm, push happens from below
- 5. Binary Tree: Hierarchical structure
- 6. Binary search tree: It is a sorted binary tree, Left node must be less than and right node is greater than the root node.
- 7. Heaps
- 8. Hash Maps: using hash functions they're mapped into address of storage.
- Graph: it is collections of edges and vertices. It can be directed or undirected