FOUNDATIONS OF REPRESENTATION THEORY

7. Exercise sheet

Jendrik Stelzner

November 29, 2013

Exercise 22:

Let (e_1, \ldots, e_n) be a basis of A as a vector space.

$$(i) \Rightarrow (ii)$$

Let (b_1, \ldots, b_m) be a generating set of M as an A-module. We can write $x \in M$ as $x = \sum_{j=1}^m a_j b_j$ with $a_j \in A$ for all j. We can write each a_j as $a_j = \sum_{i=1}^n \lambda_i^j e_i$ with $\lambda_i^j \in K$ for all i. Thus we get

$$x = \sum_{j=1}^{m} a_j b_j = \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i^j e_i b_j.$$

Thus x is a linear combination of the e_ib_j . Because x is arbitrary it follows that $\{e_ib_j\}_{i=1,\ldots,n,j=1,\ldots,m}$ is a finite generating set of M as a vector space, so M is finite-dimensional.

$$(ii) \Rightarrow (i)$$

If (b_1, \ldots, b_m) is a basis of M as a vector space, then (b_1, \ldots, b_m) is also a generating set of M as an A-module, because $\lambda b_i = \lambda 1_A b_i$ for all $\lambda \in K$ and i.

(ii)
$$\Rightarrow$$
 (iii)

This follows directly from $l(M) \leq \dim(V) < \infty$.

$$\neg(ii) \Rightarrow \neg(iii)$$

We construct an ascending chain $U_0 \subsetneq U_1 \subsetneq U_2 \subsetneq \ldots$ of finite-dimensional submodules of M as follows: We start with $U_0 := 0$. If U_{n-1} is defined we choose some $v \in M \setminus U_{n-1}$ (this is possible because U_{n-1} is finite-dimensional but M is infinite-dimensional). The submodule $W = Av = \langle e_1v, \ldots, e_nv \rangle$ of M is not contained in U_{n-1} , so $U_{n-1} \subsetneq U_{n-1} + W =: U_n$. U_n is finite-dimensional because U_{n-1} and W are finite-dimensional.

For all $n \in \mathbb{N}$ the filtration

$$0 = U_0 \subsetneq U_1 \subsetneq U_2 \subsetneq \ldots \subsetneq U_{n-1} \subsetneq M$$

is of length n, so $l(M) \ge n$ for all $n \in \mathbb{N}$.

Exercise 24:

Let

 $P := \{p : p \text{ is a path from } i \text{ to } j \text{ such that there is no path from } j \text{ to } i\}.$

First we show that $P\subseteq J(KQ)$: Let $p\in P$ with s(p)=i and t(p)=j, i.e. with $p=pe_i=e_jp$. Let $x\in A$ with $\sum_{k=1}^n\lambda_kq_k$ for paths q_k and $\lambda_k\in K$. We find that

$$(px)^2 = \left(\sum_{k=1}^n \lambda_k p q_k\right)^2 = \sum_{k=1}^n \lambda_k \lambda_l p q_k p q_l = 0,$$

because $pyp = pe_iqe_jp = 0$ for all paths q, since otherwise q would be a path from j to i, which contradicts $p \in P$. Because px is nilpotent we find that 1-px is invertible. Because x is arbitrary is follows that $p \in J(KQ)$.

Now we show that P is a basis of J(KQ). We already know that P is linear independent, because all paths are linear independent, so all that's left to show is that every $x \in J(KQ)$ can be written as a linear combination of elements in P.

Assume that there is some $x \in J(KQ)$ which cannot be written as a linear combination of elements in P. Let $x = \sum_{k=1}^n \lambda_k x_k$ be a linear combination of x with $\lambda_k \neq 0$ for all k and the x_k being pairwise different paths. We can assume w.l.o.g. that $x_k \notin P$ for all k, because $P \subseteq J(KQ)$. We can also assume that $s(x_k) = s(x_l)$ and $t(x_k) = t(x_l)$ for all k, l, because otherwise we can replace x by $e_{t(x_1)}xe_{s(x_1)} \in e_{t(x_1)}J(KQ)e_{s(x_1)} \subseteq J(KQ)$.

Because $x_1 \notin P$ we find some path \bar{x} with $s(\bar{x}) = t(x_1)$ and $t(\bar{x}) = s(x_1)$. Because $x \in J(KQ)$ we know that $1 - \bar{x}x$ is invertible. Notice that

$$y := \bar{x}x = \sum_{k=1}^{n} \lambda_k \underbrace{\bar{x}x_k}_{:=y_k}$$

is non-zero with $s(y_k) = t(y_k) = s(y_l) = t(y_l) =: i$ for all k, l, i.e. the y_k are closed paths from i to i.

Because 1-y is invertible we find som $y'=\sum_{k=1}^m \mu_k w_k$ with $\mu_k\neq 0$ and the w_k being pairwise different paths, such that yy'=1. So we get

$$\sum_{j \in Q_0} e_j = 1 = (1 - y)y' = y' - yy' = \sum_{k=1}^m \mu_k w_k - \sum_{k=1}^n \sum_{l=1}^m \lambda_k \mu_l y_k w_l.$$
 (1)

For $j \in Q_0$ let

$$J_i := \{1 \le k \le m : t(w_k) = j\}$$

and $I := J_i$. By multiplying (1) from the left with e_i we get

$$e_i = \sum_{k \in I} \mu_k w_k - \sum_{k=1}^n \sum_{l \in I} \lambda_k \mu_l y_k w_l.$$

which contradicts the linear independence of the paths in Q.