

Skript Topologie II.

Mitschrift der Vorlesung "Topologie II." von Prof. Dr. Arthur Bartels

Jannes Bantje

2. November 2015

Aktuelle Version verfügbar bei

GitHub

https://github.com/JaMeZ-B/latex-wwu

✓

GitHub ist eine Internetplattform, auf der viele OpenSource-Projekte gehostet werden. Diese Plattform nutzen wir zur Zusammenarbeit, also findet man hier neben den PDFs auch die TFX-Dateien. Außerdem ist über diese Plattform auch direktes Mitarbeiten möglich, siehe nächste Seite.

Sciebo die Campuscloud

https://uni-muenster.sciebo.de/public.php?service=files&t=965ae79080a473eb5b6d927d7d8b0462

Sciebo ist ein Dropbox-Ersatz der Hochschulen in NRW, der von der Uni Münster in leitender Position auf Basis der OpenSource-Software Owncloud aufgebaut wurde. Wenn man auf den Link klickt, kann man die Freigabe zum eigenen Speicher hinzufügen und hat dann immer automatisch die aktuellste Version.

Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

BTSync ist ein peer-to-peer Dateisynchronisations-Tool. Dabei werden die Dateien nur auf den Computern der Teilnehmer an einer Freigabe gespeichert. Ein RasPi ist permanent online, sodass stets die aktuellste Version verfügbar ist. Clients ☑ gibt es für jedes Betriebssystem. Zugang ist über das obige "Secret" bzw. den QR-Code möglich.

Vorlesungshomepage

https://wwwmath.uni-muenster.de/das/ist/kein/echter/Link.htmla Hier ist ein Link zur offiziellen Vorlesungshomepage.

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Topologie II., WiSe 2015", gelesen von Prof. Dr. Arthur Bartels. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- ▶ Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.
 - Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") verständlicherweise Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹
- ▶ *Indirektes* Mitarbeiten: T_EX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss! Ich freue mich aber auch über solche Beiträge!

¹zB. https://try.github.io/levels/1/challenges/1🗹, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1 Kohomologie	1
2 Die Paarung zwischen Kohomologie und Homologie	5
3 Produkte auf Kohomologie	7
4 Kommutativität von ∪	10
Index	A
Abbildungsverzeichnis	В
Todo list	В

1 Kohomologie

1.1 Definition. Sei R ein Ring. Ein R-Kokettenkomplex (C^*, d^*) ist eine Folge von R-Moduln $(C^n)_{n \in \mathbb{N}}$ zusammen mit R-linearen Abbildungen $d^n \colon C^n \to C^{n+1}$, sodass $d^{n+1} \circ d^n = 0$ gilt. Der n-te Kohomologiemodul von (C^*, d^*) ist definiert als

$$H^{\mathbf{n}}(C^*, d^*) = \frac{\ker d^{\mathbf{n}} \colon C^{\mathbf{n}} \to C^{\mathbf{n}+1}}{\operatorname{im} d^{\mathbf{n}-1} \colon C^{\mathbf{n}-1} \to C^{\mathbf{n}}}$$

Sei (D^*,d^*) ein weiterer Kokettenkomplex. Eine *Kokettenabbildung* ist eine Folge von R-linearen Abbildungen $f^n\colon C^n\to D^n$, sodass $d^n_D\circ f^n=f^{n+1}\circ d^n_C$ für alle n gilt. Ist auch $g^n\colon C^n\to D^n$ eine Kokettenabbildung, so nennen wir eine R-lineare Abbildung $h^n\colon C^n\to D^{n-1}$ mit

$$f^n - g^n = h^{n+1} \circ d_C^n + d_D^{n-1} \circ h^n$$

eine Kokettenhomotopie zwischen f und g. Zu jeder Kokettenabbildung $f^n \colon C^n \to D^n$ gibt es eine induzierte Abbildung auf Kohomologie genau wie bei Homologie.

1.2 Bemerkung.

i) Sei (C_*, d_*) ein R-Kettenkomplex und V ein R-Modul. Dann erhalten wir einen R-Kokettenkomplex (C^*, d^*) durch

$$C^n := \operatorname{Hom}_R(C_n, V)$$

und $d^n \colon C^n \to C^{n+1}$ definiert durch $\alpha \mapsto \alpha \circ d_{n+1}$. Dieser Kokettenkomplex (C^*, d^*) heißt der V-duale Kokettenkomplex zu (C_*, d_*) .

ii) Benutzen wir $\mathbb Z$ statt $\mathbb N$ als Indexmenge, so können wir durch $(C^n,d^n)\leadsto (C_n\coloneqq C^{-n},d_n\coloneqq d^{-n})$ jeden Kokettenkomplex einem Kettenkomplex zuordnen. Dieser Prozess ist offensichtlich umkehrbar.

 $\textbf{1.3 Beispiel}.\quad \text{Es sei } (C_*,d_*) = \left(\mathbb{Z} \xleftarrow{d_1}{\mathbb{Z}} \mathbb{Z} \longleftarrow 0 \longleftarrow \ldots\right) \text{ ein Kettenkomplex. Dann ist}$

$$H_k(C_*, d_*) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & \text{falls } k = 0\\ 0, & \text{sonst} \end{cases}$$

Der Z-duale Kokettenkomplex hat dann folgende Gestalt

Damit ist die Kohomologie $H^k(C^*,d^*)=0$ für $k\neq 1$ und isomorph zu $\mathbb{Z}/2\mathbb{Z}$ für k=1. Es gilt also nicht immer $H^*(\mathrm{Hom}(C_*;R),d^*)=\mathrm{Hom}(H_*(C_*,d_*),R)$.

1.4 Definition. Sei (X, A) ein Paar von topologischen Räumen und V eine abelsche Gruppe. Der *singuläre Kokettenkomplex* von (X, A) mit Koeffizienten in V ist definiert durch

$$C^*_{\text{sing}}(X, A; V) \coloneqq \operatorname{Hom}_{\mathbb{Z}}(C^{\text{sing}}_*(X, A), V)$$

und $d_{\mathrm{sing}}^*(\alpha) \coloneqq -(-1)^{|\alpha|} \cdot \alpha \circ d_{*+1}^{\mathrm{sing}}$. Dabei ist $|\alpha| = n$ für $\alpha \in C_{\mathrm{sing}}^n(X,A;R)$. Die Kohomologie von $(C_{\mathrm{sing}}^*(X,A;V), d_{\mathrm{sing}}^*)$ heißt die *singuläre Kohomologie* von (X,A) mit Koeffizienten in R.

1 Kohomologie

- **1.5 Bemerkung.** Sei R ein kommutativer Ring und V ein R-Modul. Dann ist $(C^*_{\text{sing}}(X, A; V), d^*_{\text{sing}})$ isomorph zum V-dualen R-Kokettenkomplex des R-Kettenkomplexes $(C^*_{*}(X, A; R), d^*_{*})$.
- **1.6 Definition.** Sei $f: (X, A) \to (Y, B)$ eine stetige Abbildung von Paaren. Dann erhalten wir eine Kokettenabbildung $f^*: C^*_{\text{sing}}(Y, B; V) \to C^*_{\text{sing}}(X, A; V)$ durch

$$f^*(\alpha) := \alpha \circ f_*$$

- **1.7 Bemerkung.** Ist $g: (Y, B) \to (Z, C)$ eine weitere Abbildung von Paaren, so gilt $(g \circ f)^* = f^* \circ g^*$.
- **1.8 Definition.** Seien $\mathcal C$ und $\mathcal D$ Kategorien. Ein *kontravarianter Funktor* $F \colon \mathcal C \to \mathcal D$ ordnet jedem Objekt C in $\mathcal C$ ein Objekt D in $\mathcal D$ zu und jedem Morphismus $f \colon C \to C'$ einem Morphismus $F(f) \colon F(C') \to F(C)$ in $\mathcal D$ zu. Dabei muss gelten:
 - i) $F(id_C) = id_{F(C)}$
 - ii) Für $C \xrightarrow{f} C' \xrightarrow{f'} C''$ gilt $F(f' \circ f) = F(f) \circ F(f')$.

Kürzer ist ein kontravarianter Funktor $F: \mathcal{C} \to \mathcal{D}$ das selbe wie ein kovarianter Funktor $\mathcal{C} \to \mathcal{D}^{\mathrm{op}}$.

- **1.9 Beispiel.** Es gibt zahlreiche Beispiele für kontravariante Funktoren:
 - i) id: $\mathcal{C} \to \mathcal{C}^{\mathrm{op}}$ ist kontravariant.
 - ii) Sei V eine abelsche Gruppe. Wir erhalten einen kontravarianten Funktor

$$\operatorname{Hom}(-,V)\colon \mathbb{Z}\operatorname{-Mod}\longrightarrow \mathbb{Z}\operatorname{-Mod}$$

iii) Sei V eine abelsche Gruppe. Dann sind

$$C^*_{\mathrm{sing}}(-,V)\colon \mathsf{Top}^2\longrightarrow \mathbb{Z} ext{-Kokettenkomplexe}$$
 $\mathsf{H}^*_{\mathrm{sing}}ig(C^*_{\mathrm{sing}}(-,V),\mathsf{d}^*_{\mathrm{sing}}ig)\colon \mathsf{Top}^2\longrightarrow \mathsf{Gr} ext{-}\mathbb{Z} ext{-}\mathsf{Mod}$

kontravariante Funktoren.

- 1.10 Satz. Singuläre Kohomologie hat die folgenden Eigenschaften:
 - i) **Dimensionsaxiom:** Es gilt $H_{\text{sing}}^n(\{\text{pt}\};V)=V$, falls n=0 ist und sonst 0.
 - ii) Paarfolge: Es gibt eine natürliche Transformation \mathfrak{d}^* : $H^*(A;V) \to H^{*+1}(X,A;V)$ sodass für jedes Paar

$$0 \, \longrightarrow \, H^0(X,A;V) \, \longrightarrow \, H^0(X,V) \, \longrightarrow \, H^0(A;V) \, \stackrel{\vartheta}{\longrightarrow} \, H^1(X,A;V) \, \longrightarrow \, \ldots$$

eine lange exakte Folge ist. 8 bezeichnet man auch als verbindende Abbildung.

- **iii) Ausschneidung:** Sei $L \subseteq A$ mit $\overline{L} \subseteq \mathring{A}$. Dann induziert die Inklusion $i: (X \setminus L, A \setminus L) \hookrightarrow (X, A)$ einen Isomorphismus $i^*: H^*(X, A; V) \to H^*(X \setminus L, A \setminus L; V)$.
- **iv) Homotopieinvarianz:** Sind $f, g: (X, A) \to (Y, B)$ homotope Abbildungen von Paaren, so gilt $f^* = g^*$ für die induzierten Abbildungen in singulärer Kohomologie.

2 1 Kohomologie

ere Teile Übungen nehmen **Beweis:** Für singuläre Homologie haben wir die entsprechenden Aussagen schon bewiesen. In allen vier Fällen folgt die Aussage für Kohomologie aus schon bewiesenen Aussagen über den singulären Kettenkomplex.

Wir führen dies an dieser Stelle nur für iv) aus. Seien f, g: $X \to Y$ homotop. Dann gibt es eine Kettenhomotopie H: $C_*^{\text{sing}}(X) \to C_{*+1}^{\text{sing}}(Y)$ zwischen den auf dem singulären Kettenkomplex induzierten Abbildungen f_* und g_* . Es gilt also

$$d_{n+1} \circ H + H \circ d_n = f_* - g_*$$

$$\begin{split} \text{H induziert $H^\#\colon C^*_{\rm sing}(Y;V) \to C^{*-1}_{\rm sing}(X;V)$ mit $H^\#(\alpha) \coloneqq (-1)^{|\alpha|} \cdot \alpha \circ H$. Es gilt nun für $\alpha \in C^n_{\rm sing}(Y;V)$ \\ & \big(d^{n-1} \circ H^\# + H^\# \circ d^n\big)(\alpha) = d^{n-1} \circ H^\#(\alpha) + H^\# \circ d^n(\alpha) \\ & = d^{n-1} \big((-1)^n \cdot (\alpha \circ H)\big) - (-1)^n \cdot H^\#(\alpha \circ d_{n+1}) \\ & = (-1)^n \cdot \big((-1)^n \alpha \circ H \circ d_n - (-1)^{n+1} \alpha \circ d_{n+1} \circ H\big) \\ & = \alpha \circ H \circ d_n + \alpha \circ d_{n+1} \circ H \\ & = \alpha (f_* - g_*) = f^*(\alpha) - g^*(\alpha) \end{split}$$

Damit ist $f^* - g^* = 0$ in Kohomologie, da die linke Seite für $\alpha \in \ker d^n$ im Bild von d^{n-1} liegt. \square Revision

1.11 Bemerkung. Sei (X,A) ein Paar von topologischen Räumen. Der Verbindungshomomorphismus $\mathfrak{d}\colon H^n(A;V)\to H^{n+1}(X,A;V)$ kann wie folgt beschrieben werden: Sei $\alpha\colon C_n(A)\to V$ ein Kozykel. Setze α zu $\hat{\alpha}\colon C_n(X)\to V$ fort. Dann ist

Da muss ich nochmal drüber nachdenken...

$$\partial[\alpha] = [d^n \hat{\alpha}] \in H^{n+1}(X, A; V)$$

- **1.12 Beispiel.** Die Gruppe $H^0(X; V)$ ist die Gruppe aller Abbildungen $\xi: X \to V$, die konstant auf Wegzusammenhangskomponenten ist. Die Gruppe $H^0(X, A; V)$ besteht aus allen solchen Abbildungen, die zusätzlich auf A trivial sind.
- **1.13 Definition.** Seien $(V_i)_{i\in I}$ R-Moduln. Mit $V\coloneqq\prod_{i\in I}V_i$ bezeichnen wir das *Produkt* der V_i . Element in V sind I-Folgen $(\nu_i)_{i\in I}$ mit $\nu_i\in V_i$. Die R-Modulstruktur ist erklärt durch

$$\begin{split} (\nu_i)_{i \in I} + (w_i)_{i \in I} &\coloneqq (\nu_i + w_i)_{i \in I} \\ r \cdot (\nu_i)_{i \in I} &\coloneqq (r \cdot \nu_i)_{i \in I} \end{split}$$

Für jedes $i_0 \in I$ erhalten wir $\pi_{i_0} : V \to V_{i_0}$, $(v_i)_{i \in I} \mapsto v_{i_0}$

- **1.14 Bemerkung** (Universelle Eigenschaft des Produktes). Seien V_i , $i \in I$ R-Moduln. Sei W ein weiterer R-Modul. Dann gibt es zu jeder Folge $(f_i \colon W \to V_i)_{i \in I}$ von R-linearen Abbildungen eine eindeutige R-lineare Abbildung $f \colon W \to \prod_{i \in I} V_i$ mit $f_i = \pi_i \circ f$. Diese ist gegeben durch $f(w) \coloneqq (f_i(w))_{i \in I}$.
- 1.15 Bemerkung. Ist I endlich, so gilt

$$\bigoplus_{i \in I} V_i = \prod_{i \in I} V_i$$

1.16 Bemerkung. Es seien V_i , $i \in I$ R-Moduln. Sei W ein weiterer R-Modul. Seien $j_{i_0} \colon V_{i_0} \to \bigoplus_{i \in I} V_i$ die Inklusionen $\nu_{i_0} \mapsto (\nu_i)_{i \in I}$ mit $\nu_i = \nu_{i_0}$ für $i = i_0$ und 0 sonst. Dann erhalten wir einen Isomorphismus

$$\begin{array}{ccc} \operatorname{Hom}_R \left(\bigoplus_i V_i, W \right) & \stackrel{\cong}{\longrightarrow} & \prod_{i \in I} \operatorname{Hom}_R (V_i, W) \\ f & \longmapsto & (f \circ j_i)_{i \in I} \end{array}$$

3

1.17 Satz. Sei $X = \coprod_{i \in I} X_i$ die Summe von topologischen Räumen X_i . Dann induzieren die Inklusionen $j_i \colon X_i \to X$ einen Isomorphismus

$$\begin{array}{ccc} H^*(X,V) & \longrightarrow \prod_{i \in I} H^*(X_i,V) \\ & \xi & \longmapsto \big((j_i)^*(\xi) \big)_{i \in I} \end{array}$$

Beweis: Die $(j_i)_{i\in I}$ induzieren einen Isomorphismus von Kettenkomplexen $\phi\colon\bigoplus_{i\in I}C_*(X_i)\to C_*(X), (a_i)_{i\in I}\mapsto \sum_{i\in I}(j_i)_*(a_i).$ Wegen

$$\operatorname{Hom}\Bigl(\bigoplus\nolimits_{\mathfrak{i}\in I}C_*(X_{\mathfrak{i}}),V\Bigr)=\prod_{\mathfrak{i}\in I}\operatorname{Hom}(C_*(X_{\mathfrak{i}}),V)$$

erhalten wir einen Isomorphismus von Kokettenkomplexen

$$\begin{array}{ccc} C^*(X,V) & \stackrel{\cong}{\longrightarrow} \prod_{i \in I} C^*(X_i,V) \\ \alpha & \longmapsto & \left(j_i^*(\alpha)\right)_{i \in I} \end{array}$$

Dieser induziert den behaupteten Isomorphismus in Kohomologie.

1.18 Definition. Die reduzierte Kohomologie von X, $\tilde{H}^*(X;V)$ ist definiert als der Kokern von $p^* \colon H^*(\{\mathrm{pt}\};V) \to H^*(X;V)$.

1.19 Bemerkung. Für reduzierte Kohomologie gilt

$$H^{\mathfrak{n}}(X;V)\cong\begin{cases} \tilde{H}^{\mathfrak{n}}(X;V), & \text{falls } \mathfrak{n}\neq 0\\ \tilde{H}^{\mathfrak{0}}(X;V)\oplus V, & \text{falls } \mathfrak{n}=0 \end{cases}$$

1.20 Beispiel. Die reduzierte Kohomologie der Sphäre ist gegeben durch

$$\tilde{\mathsf{H}}^{\mathfrak{l}}(S^{\mathfrak{n}};V) \cong \mathsf{H}^{\mathfrak{l}}\big(\mathsf{D}^{\mathfrak{n}},S^{\mathfrak{n}-1};V\big) \cong \begin{cases} V, & \text{falls } \mathfrak{l}=\mathfrak{n} \\ \mathfrak{0}, & \text{sonst} \end{cases}$$

4 1 Kohomologie

2 Die Paarung zwischen Kohomologie und Homologie

2.1 Definition. Sei V ein \mathbb{Z} -Modul, (X, A) ein Paar von topologischen Räumen. Wir definieren die *Paarung*

$$H^{n}(X, A; V) \times H_{n}(X, A) \longrightarrow V$$

$$(\xi, x) \longmapsto \xi(x)$$

wie folgt: Wähle $\alpha \in C^n_{\mathrm{sing}}(X,A;V)$ mit $[\alpha] = \xi$ und $\alpha \in C^{\mathrm{sing}}_n(X,A)$ mit $[\alpha] = x$. Dann setze $\xi(x) \coloneqq \alpha(\alpha)$.

2.2 Bemerkung. Sei $\beta \in C^{n-1}_{sing}(X,A;V)$ und $b \in C^{sing}_{n+1}(X,A)$. Dann

$$\big(\alpha+d^{n-1}(\beta)\big)(\alpha+d_{n+1}(b))=\alpha(\alpha)+\underbrace{\frac{\alpha\big(d_{n+1}(b)\big)}{=0\text{ da }d^n\alpha=0}}+\underbrace{\frac{d^{n-1}(\beta)(\alpha+d_{n+1}(b))}{\pm\beta\big(d_n(\alpha+d_{n+1}(b))\big)}}$$

2.3 Bemerkung. Für $r \in \mathbb{Z}$, $x, x' \in H_n(X, A)$, $\xi, \xi' \in H^n(X, A; V)$ gilt

$$(\mathbf{r} \cdot \xi)(\mathbf{x}) = \mathbf{r} \cdot \xi(\mathbf{x}) = \xi(\mathbf{r} \cdot \mathbf{x})$$
$$(\xi + \xi')(\mathbf{x}) = \xi(\mathbf{x}) + \xi'(\mathbf{x})$$
$$\xi(\mathbf{x} + \mathbf{x}') = \xi(\mathbf{x}) + \xi(\mathbf{x}')$$

2.4 Bemerkung. Wir können $(\xi, x) \mapsto \xi(x)$ auch als interpretieren als Homomorphismus

$$f: H^n(X, A; V) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(H_n(X, A), V)$$

mit $f(\xi) = (x \mapsto \xi(x))$.

- **2.5 Satz.** Für die eben definierte Abbildung $f: H^n(X, A; V) \to \operatorname{Hom}_{\mathbb{Z}}(H_n(X, A), V)$ gilt
 - (i) f ist surjektiv
 - (ii) Ist V ein Q-Vektorraum, so ist f auch injektiv.

Um den Satz beweisen zu können, benötigen wir zunächst zwei technische Aussagen:

2.6 Lemma. Untergruppen freier abelscher Gruppen sind frei.

Beweis: Sei C eine Untergruppe von $\mathbb{Z}[S]$. Sei \mathbb{M} die Menge der Tripel (T, R, φ) mit

- ▶ $T \subseteq R \subseteq S$.
- $\phi: \mathbb{Z}[T] \to \mathbb{Z}[R] \cap C$ ein Isomorphismus.

Wir definieren eine partielle Ordnung auf M durch

$$(T,R,\phi)\leqslant (T',R',\phi'):\iff T\subseteq T',R\subseteq R',\phi'|_T=\phi$$

Das Lemma von Zorn liefert uns die Existenz eines maximalen Elements $(T,R,\phi)\in \mathcal{M}$. Zu zeigen bleibt R=S. Angenommen es existiert ein $s\in S\setminus R$. Ist $C\cap \mathbb{Z}[R\cup \{s\}]=C\cap \mathbb{Z}[R]$, so ist $(T,R,\phi)\nsubseteq (T,R\cup \{s\},\phi)\in \mathcal{M}$ im Widerspruch zur Maximalität von (T,R,ϕ) . Sei also $\mathbb{Z}[R]\cap C\subsetneq \mathbb{Z}[R\cup \{s\}]\cap C$. Betrachte die kurze exakte Sequenz

Diagramm vervollständigen

$$\begin{split} \mathbb{Z}[R] \cap C & \longleftarrow \mathbb{Z}[R \cup \{s\}] \cap C & \longrightarrow \mathbb{Z}[R \cup \{s\}] \cap C / \mathbb{Z}[R] \cap C \\ & \downarrow i_0 & \downarrow i_1 & \downarrow i_2 \\ \mathbb{Z}[R] & \longleftarrow \mathbb{Z}[R \cup \{s\}] & \stackrel{p}{\longrightarrow} \mathbb{Z}[\{s\}] \end{split}$$

Nun ist $\mathbb{Z}[R] \cap C = (\mathbb{Z}[R]) \cap (\mathbb{Z}[R \cup \{s\}] \cap C)$. Damit muss dann die von i_0 und i_1 induzierte Abbildung $i_2 \colon \mathbb{Z}^{[R \cup \{s\}] \cap C}/\mathbb{Z}_{[R] \cap C} \to \mathbb{Z}[\{s\}]$ injektiv sein. Es folgt, dass $\operatorname{im} i_2 = \mathbb{Z}[\{m \cdot s\}]$ ist für ein m > 0. Sei $c \in \mathbb{Z}[R \cup \{s\}] \cap C$ ein Urbild von $m \cdot s$ unter $p \circ i_1$. Nun können wir ϕ durch $s \mapsto c$ zu $\phi^+ \colon \mathbb{Z}[T \cup \{s\}] \to \mathbb{Z}[R \cup \{s\}] \cap C$. Es folgt, dass ϕ^+ ein Isomorphismus ist im Widerspruch zur Maximalität von (T, R, ϕ) .

2.7 Lemma. Sei A_0 eine Untergruppe der abelschen Gruppe A, V ein Q-Vektorraum und β_0 : $A_0 \to V$ ein Gruppenhomomorphismus. Dann gibt es eine Fortsetzung β : $A \to V$ von β_0 zu einem Gruppenhomomorphismus.

Beweis: Die Inklusion i: $A_0 \rightarrow A$ induziert einen injektiven¹ \mathbb{Q} -Vektorraum-Homomorphismus

$$\mathbb{Q} \otimes i : \mathbb{Q} \otimes A_0 \longrightarrow \mathbb{Q} \otimes A$$
, $q \otimes a_0 \mapsto q \otimes i(a_0)$

Nun können wir die \mathbb{Q} -lineare Abbildung $q \otimes a_0 \mapsto q \cdot \beta_0(a_0) \in V$ von $\mathbb{Q} \otimes A_0$ zu $\overline{\beta} \colon \mathbb{Q} \otimes A \to V$ fortsetzen. Dann ist $a \mapsto \overline{\beta}(1 \otimes a)$ die gesuchte Fortsetzung von β_0 .

Beweis (von Satz 2.5):

(i) Sei ϕ : $H_n(X,A) \to V$ gegeben. Sei \mathfrak{p} : $\ker d_n \twoheadrightarrow H_n(X,A)$ die Projektion. Betrachte die kurze exakte Folge

$$\ker d_n \stackrel{\iota}{\longleftarrow} C_n^{\mathrm{sing}}(X,A) \stackrel{d_n}{\longrightarrow} \operatorname{im} d_n$$

Als Untermodul des freien Moduls $C_{n-1}^{\mathrm{sing}}(X,A)$ ist nach Lemma 2.6 im d_n frei, insbesondere spaltet die kurze exakte Sequenz, insbesondere ist $C_n^{\mathrm{sing}}(X,A) \cong \ker d_n \oplus \mathrm{im} \ d_n$. Daher können wir $\phi \circ p \colon \ker d_n \to V$ zu $\alpha \colon C_n^{\mathrm{sing}}(X,A) \to V$ fortsetzen. Genauer: Sei $\mathfrak{s} \colon \mathrm{im} \ d_n \to C_n^{\mathrm{sing}}(X,A)$ ein Spalt. Dann können wir $\alpha \colon C_n^{\mathrm{sing}}(X,A) \to V$ definieren durch

$$\alpha(\alpha) \coloneqq \phi \circ p\big(\alpha - s\big(d_n(\alpha)\big)\big)$$

Es folgt $d_n \circ \alpha = 0$ und $f([\alpha]) = \varphi$.

(ii) Sei $\alpha \in C^n_{\mathrm{sing}}(X,A;V)$ mit $d^n(\alpha) = 0$. Sei $[\alpha] \in \ker f$, also $\alpha(\alpha) = 0$ für alle $\alpha \in \ker d_n$. Dann faktorisiert α über im $d_n \subseteq C_{n-1}(X,A)$: α induziert β_0 : im $d_n \to V$ mit $\alpha = \beta_0 \circ d_n$. Ist V ein Q-Vektorraum, so können wir β_0 nach Lemma 2.7 zu β : $C_{n-1}(X,A) \to V$ fortsetzen. Es folgt $[\alpha] = [\beta \circ d_n] = \pm (d^{n+1}\beta) = 0$.

2.8 Korollar. Es gilt
$$H^n(X, A; \mathbb{Q}) \cong \operatorname{Hom}(H_n(X, A); \mathbb{Q})$$

2.9 Bemerkung. Es gilt sogar $H^n(X, A; \mathbb{Q}) \cong \operatorname{Hom}_{\mathbb{Q}}(H_n(X, A; \mathbb{Q}), \mathbb{Q}).$

¹ nach Übungsaufgabe

3 Produkte auf Kohomologie

3.1 Definition. Sei $\sigma: |\Delta^n| \to X$ ein singulärer Simplex in X. Für $0 \le p \le n$ definieren wir

$$\sigma|_{[0,\dots,p]}\colon |\Delta^p|\longrightarrow X\quad,\qquad \sigma|_{[\mathfrak{p},\dots,\mathfrak{n}]}\colon |\Delta^{\mathfrak{n}-\mathfrak{p}}|\longrightarrow X$$

durch
$$\sigma|_{[0,...,p]}(t_0,...,p) = \sigma(t_0,...,t_p,0,...,0)$$
 und $\sigma|_{p,...,n}(t_p,...,t_n) = \sigma(0,...,0,t_p,...,t_n)$

- **3.2 Bemerkung.** Wir schreiben auch $\sigma|_{[0,...,\ell,...,n]}$ für die i-te Seite von σ .
- **3.3 Definition.** Sei R ein Ring und A, B \subseteq X. Wir definieren das *Cup-Produkt* (\cup -Produkt) auf dem singulären Kokettenkomplex

$$\cup \colon C^p_{\scriptscriptstyle \mathrm{sing}}(X,A;R) \otimes C^q_{\scriptscriptstyle \mathrm{sing}}(X,B;R) \longrightarrow C^{p+q}_{\scriptscriptstyle \mathrm{sing}}(X,A \cup B;R)$$

$$durch \ (\alpha \cup \beta)(\sigma) := (-1)^{p \cdot q} \cdot \alpha(\sigma|_{[0,...,p]}) \cdot \beta(\sigma|_{[p,...,p+q]}).$$

Zeichnung für n = 2 einfügen

- 3.4 Lemma.
 - 1) $d^{p+q}(\alpha \cup \beta) = d^p(\alpha) \cup \beta + (-1)^p \cdot \alpha \cup d^q(\beta)$
 - 2) Das ∪-Produkt ist assoziativ.
 - 3) Für $f: X \to X'$ mit $f(A) \subseteq A'$, $f(B) \subseteq B'$ gilt $f^*(\alpha \cup \beta) = f^*(\alpha) \cup f^*(\beta)$ für $\alpha \in C^p_{\rm sing}(X', A'; R)$, $\beta \in C^q_{\rm sing}(X', B'; R)$.
 - **4)** Sei $1_X \in C^0_{\text{sing}}(X; R)$ mit $1_X(\sigma) = 1_R$ für alle $\sigma: |\Delta^0| \to X$. Dann gilt $1_X \cup \alpha = \alpha = \alpha \cup 1_X$.

Beweis: Übung bzw. Notizen auf Homepage

T_EXen wenn Zeit

3.5 Definition. Die vom ∪-Produkt auf dem singulären Kokettenkomplex induzierte Abbildung in Kohomologie

$$\cup: H^p(X, A; R) \otimes H^q(X, B; R) \longrightarrow H^{p+q}(X, A \cup B; R)$$

ist das \cup -Produkt in Kohomologie $[\alpha] \cup [\beta] := [\alpha \cup \beta]$. Mit 1) folgt, dass das Cup-Produkt in Kohomologie wohldefiniert ist. Nach 2) ist es assoziativ. Nach 3) sind induzierte Abbildungen in Kohomologie multiplikativ. Nach 4) ist $[1_X] \in H^0(X; R)$ ein Einselement bezüglich \cup in H^* .

3.6 Definition. Seien (X, A) und (Y, B) zwei Paare von topologischen Räumen. Seien $p_X \colon X \times Y \to X$ und p_Y die Projektionen. Das \times -Produkt

$$\times: H^p(X, A; R) \otimes H^q(Y, B; R) \longrightarrow H^{p+q}(X \times Y, A \times Y \cup X \times B; R)$$

ist definiert durch $\xi \times \zeta := p_X^*(\xi) \cup p_Y^*(\zeta).$

3.7 Bemerkung. Das \cup -Produkt kann wie folgt aus dem \times -Produkt zurückgewonnen werden: Sei $\Delta\colon (X,A\cup B)\to (X\times X,A\times X\cup X\times B)$ die Diagonalabbildung $\Delta(x):=(x,x)$, dann gilt für $\xi\in H^p(X,A;R),\,\zeta\in H^q(X,B;R)$

$$\xi \cup \zeta = \Delta^*(\xi \times \zeta)$$

3.8 Beispiel. Wir betrachten das \cup -Produkt auf in der 0-ten Kohomologie \cup : $H^0(X;R) \otimes H^0(X;R) \to H^0(X;R)$. Sei $A,B \subseteq X$ beide Vereinigungen von Wegzusammenhangskomponenten von X. Seien $1_A,1_B \in C^0(X;R)$ definiert durch

$$1_{A}(\sigma) = \begin{cases} 1, & \text{falls im } \sigma \subseteq A \\ 0, & \text{sonst} \end{cases}$$

und 1_B analog. Dann ist $[1_A] \cup [1_B] = [1_{A \cap B}]$.

3.9 Lemma. Sei (X, A) ein Paar von topologischen Räumen und Y ein weiterer topologischer Raum. Seien ∂ : $H^p(A; R) \to H^{p+1}(X, A; R)$ und ∂^{\times} : $H^{p+q}(A \times Y; R) \to H^{p+q+1}(X \times Y, A \times Y; R)$ die Verbindungshomomorphismen in den Paarfolgen. Dann gilt für $\xi \in H^p(A; R)$ und $\zeta \in H^q(X; R)$

$$\mathfrak{d}^{\times}(\xi \times \zeta) = (\mathfrak{d}\xi) \times \zeta$$

Beweis: Sei $\xi = [\alpha]$ und $\zeta = [\beta]$. Setze $\alpha \colon C_p(A) \to R$ durch $\hat{\alpha}(\sigma) = 0$ für $\sigma \colon |\Delta^p| \to X$ mit Bild nicht in A zu $\hat{\alpha} \colon C_p(X) \to R$ fort. Dann ist $\left[(d^p \hat{\alpha}) \right] = \mathfrak{d}[\alpha]$ Weiter ist

$$\vartheta^\times(\xi\times\zeta)=\vartheta^\times(p_A^*\xi\cup p_Y^*\zeta)=\vartheta^\times\big[p_A^*\alpha\cup p_Y^*\beta\big]=\Big(d^{p+q}\big(p_X^*(\hat\alpha)\cup p_Y^*(\beta)\big)\Big)$$

da $p_X^*(\hat{\alpha}) \cup p_Y^*(\beta)$ eine Fortsetzung von $p_Y^*(\alpha) \cup p_Y^*(\beta)$ ist. Weiter gilt

$$\begin{split} &= \left[p_X^*(d^p(\hat{\alpha})) \cup p_Y^*(\beta) \pm p_X^*(\hat{\alpha}) \cup p_Y^*(d^q\beta) \right] \\ &= p_X^* \left[d^p(\hat{\alpha}) \right] \cup p_Y^*[\beta] = \left[d^p(\alpha) \right] \times [\beta] \\ &= \delta \xi \times \zeta \end{split}$$

3.10 Lemma. Sei $\xi \in H^1(D^1, \partial D^1; R)$ ein Erzeuger. Dann ist für jeden Raum X die Abbildung

$$H^p(X;R) \longrightarrow H^{p+1}(D^1 \times X, \partial D^1 \times X;R)$$
, $\eta \longmapsto \xi \times \eta$

ein Isomorphismus.

Beweis: Wir betrachten folgendes Diagramm

$$H^{0}(D^{1};R) \otimes H^{p}(X;R) \xrightarrow{\times} H^{p}(D^{1} \times X;R)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{0}(\partial D^{1};R) \otimes H^{p}(X;R) \xrightarrow{\times} H^{p}(\partial D^{1} \times X;R)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{1}(D^{1},\partial D^{1};R) \otimes H^{p}(X;R) \xrightarrow{\times} H^{p+1}(D^{1} \times X,\partial D^{1} \times X;R)$$

Behauptung: Beide Spalten sind kurz exakt:

Betrachte

$$0 \longrightarrow H^0(D^1;R) \stackrel{j^*}{\longrightarrow} H^0(\partial D^1;R) \longrightarrow H^1(D^1,\partial D^1;R) \longrightarrow 0$$

Seien $j\colon \partial D^1\hookrightarrow D^1$ und $i_\pm\colon \{\pm 1\}\hookrightarrow \partial D^1$ die Inklusionen. Sei weiter $\mathfrak{p}\colon D^1\to \{-1\}$ die Projektion. Dann gilt $\mathfrak{p}^*\circ i_-^*\circ j^*=\mathrm{id}_{H^0(D^1;R)}$. Insbesondere spaltet die Sequenz und bleibt exakt nach $\otimes H^p(X;R)$. Genauso überlegt man sich, dass die Paarfolge

$$\ldots \longrightarrow H^p \big(D^1 \times X, \partial D^1 \times X; R \big) \stackrel{0}{\longrightarrow} H^p \big(D^1 \times X; R \big) \longrightarrow H^p \big(\partial D^1 \times X; R \big) \longrightarrow \ldots$$

8

in eine kurze exakte Folge

$$0 \longrightarrow H^p \big(D^1 \times X; R \big) \longrightarrow H^p \big(\partial D^1 \times X; R \big) \longrightarrow H^{p+1} \big(D^1 \times X, \partial D^1 \times X; R \big) \longrightarrow 0$$

zerfällt. Die ersten zwei \times -Produkte sind Isomorphismen. Dies folgt für das erste aus $H^0(D^1) \cong R$ und der Betrachtung des Erzeugers $1_R \in R$. Für das zweite \times -Produkt betrachte

Diagramm vervollständigen

$$\begin{array}{c} H^0(\{-1\}) \otimes H^p(X) \\ & \downarrow^{(p_{-1})^* \otimes \operatorname{id}} \\ H^0(\partial D^1) \otimes H^p(X) \stackrel{\times}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} H^p(\partial D^1 \times X) \\ & \downarrow^{(\mathfrak{i}_{+1} \times \operatorname{id}_X)} \end{array}$$

Nach Lemma 3.9 kommutiert das Diagramm und damit ist auch das dritte \times -Produkt ein Isomorphismus. \Box

3.11 Proposition. Sei X ein topologischer Raum. Dann ist $H^p(S^1 \times X; R) \cong H^p(X; R) \oplus H^{p-1}(X; R)$.

Beweis: Die Paarfolge zu $(S^1 \times X, \{pt\} \times X)$ zerfällt in kurze exakte Folgen

$$H^p(S^1 \times X, \{pt\} \times X; r) \longleftrightarrow H^p(S^1 \times X; R) \xrightarrow{i^*} H^p(\{pt\} \times X; R)$$

Die Surjektivität folgt, da $\pi(\lambda, x) = (\mathrm{pt}, x)$ einen Spalt induziert. Damit folgt $H^p(S^1 \times X; R) \cong H^p(X; R) \oplus H^p(S^1 \times X, \{\mathrm{pt}\} \times X; R)$. Die Behauptung folgt mittels Ausschneidung:

$$H^{p}\big(S^{1}\times X,\{\mathrm{pt}\}\times X;R\big)\cong H^{p}\big(D^{1}\times X,\partial D^{1}\times X;R\big)\overset{3.10}{\cong}H^{p-1}(X;R)$$

3.12 Bemerkung. Sei $\xi \in H^1(S^1; R)$ ein Erzeuger und $\pi_X \colon S^1 \times X \to X$ die Projektion. Dann ist der Isomorphismus aus Proposition 3.11 gegeben durch

$$H^p(X; R) \oplus H^{p-1}(X; R) \longrightarrow H^p(S^1 \times X; R)$$
, $(\eta_1, \eta_2) \longmapsto (\pi_X^*(\eta_1) + \xi \times \eta_2)$

4 Kommutativität von ∪

4.1 Definition. Eine *graduierte Algebra* ist ein graduierter Modul $A^* = \bigoplus_p A^p$ zusammen mit einer R-Algebrastruktur, für die das Produkt mit der Graduierung verträglich ist: Für $a \in A^p$ und $b \in A^q$ ist $a \cdot b \in A^{p+q}$. Sie heißt *graduiert-kommutativ*, falls gilt

$$a \cdot b = (-1)^{p \cdot q} \cdot b \cdot a$$

für alle $a \in A^p$ und $b \in A^q$.

- **4.2 Bemerkung.** Das \cup -Produkt auf $C^*_{\text{sing}}(X; R)$ ist *nicht* graduiert kommutativ. (siehe 3.3)
- **4.3 Lemma**. Für $\sigma: |\Delta^p| \to X$ sei $\overline{\sigma}: |\Delta^n| \to X$ definiert durch

$$\overline{\sigma}(t_0,\ldots,t_p):=(-1)^{\frac{p\,(p+1)}{2}}\sigma(t_p,\ldots,t_0)$$

Sei $\operatorname{Sp}: C_{\mathfrak{p}}(X,A;R) \to C_{\mathfrak{p}}(X,A;R)$ definiert durch $\operatorname{Sp}(\sigma) := \overline{\sigma}$. Sei $\operatorname{Sp}^*: C^{\mathfrak{p}}(X,A;R) \to C^{\mathfrak{p}}(X,A;R)$ definiert durch $\operatorname{Sp}^*(\alpha) := \alpha \circ \operatorname{Sp}$. Es gilt

- a) Sp ist eine Kettenabbildung, Sp* ist eine Kokettenabbildung
- **b)** Ist R kommutativ, so gilt $\beta \cup \alpha = (-1)^{p \cdot q} \operatorname{Sp}^*(\operatorname{Sp}^*(\alpha) \cup \operatorname{Sp}^*(\beta))$

Beweis: a) Sei $\sigma: |\Delta^p| \to X$ ein singulärer Simplex. Dann gilt

$$\begin{split} \operatorname{Sp}(d_p\sigma) &= \operatorname{Sp}\Biggl(\sum_{i=0}^p (-1)^i\sigma|_{[0,...,\not i',...,p]}\Biggr) = \sum_{i=0}^p (-1)^i\operatorname{Sp}\bigl(\sigma|_{[0,...,\not i',...,p]}\bigr) \\ &= \sum_{i=0}^p (-1)^i(-1)^{\frac{p(p-1)}{2}}\bigl(\sigma|_{[p,...,\not i',...,o]}\bigr) \end{split}$$

wobei \not i an der p - i-ten Stellen von vorn steht. Weiter ist

$$\begin{split} d_p\big(\mathrm{Sp}(\sigma)\big) &= d_p\Big((-1)^{\frac{p\,(p+1)}{2}}\sigma|_{[p,...,0]}\Big) = (-1)^{\frac{p\,(p+1)}{2}}\sum_{i=0}^p (-1)^i\sigma|_{[p,...,p],...,0]} \\ &= (-1)^{\frac{p\,(p+1)}{2}}\sum_{i=0}^p (-1)^{p-i}\sigma|_{[p,...,p],...,0]} \end{split}$$

fertig machen

Nun ist $\frac{p(p-1)}{2} \equiv \frac{p(p+1)}{2} + p =$ und es folgt die Gleichheit.

b) Für $\sigma: |\Delta^n| \to X$ gilt

$$\begin{split} (\mathrm{Sp}^*(\mathrm{Sp}^*(\alpha) \cup \mathrm{Sp}^*(\beta)))(\sigma) &= (-1)^{\frac{n(n+1)}{2}} \cdot (\mathrm{Sp}^*(\alpha) \cup \mathrm{Sp}^*(\beta)) \big(\sigma|_{[n,...,0]}\big) \\ &= (-1)^{\frac{n(n+1)}{2}} (-1)^{p \cdot q} \, \mathrm{Sp}^*(\alpha) \big(\sigma_{[n,...,n-p]}\big) \cdot \mathrm{Sp}^*(\beta) \big(\sigma|_{[n-p,...,0]}\big) \\ &= (-1)^{\frac{n(n+1)}{2}} (-1)^{p \cdot q} (-1)^{\frac{p(p+1)}{2}} (-1)^{\frac{q(q+1)}{2}} \alpha \big(\sigma|_{[q,...,n]}\big) \beta (\sigma|_{0,...,q}) \\ &= (-1)^{\frac{n(n+1)}{2}} (-1)^{p \cdot q} (-1)^{\frac{p(p+1)}{2}} (-1)^{\frac{q(q+1)}{2}} \beta (\sigma|_{0,...,q}) \alpha \big(\sigma|_{[q,...,n]}\big) \\ &\stackrel{!}{=} (-1)^{p \cdot q} (\beta \cup \alpha) (\sigma) = (-1)^{p \cdot q} (-1)^{p \cdot q} \beta (\sigma|_{0,...,q}) \alpha \big(\sigma|_{[q,...,n]}\big) \end{split}$$

Weiter gilt nun

$$\frac{n(n+1)}{2} + \frac{p(p+1)}{2} + \frac{q(q+1)}{2} = (1+\ldots+n) + (1+\ldots+p) + (1+\ldots+q)$$

$$\equiv ((p+1)+\ldots+n) + (1+\ldots+q)$$

$$= (n+1)q = (p+q+1)q = pq + q^2 + q \equiv p \cdot q$$

da
$$q^2 \equiv q$$
.

- **4.4 Lemma.** Sp: $C_*(X, A) \rightarrow C_*(X, A)$ ist kettenhomotop zur Identität.
- **4.5 Satz.** Das ∪-Produkt in Kohomologie ist graduiert kommutativ.

Beweis: Seien $\xi \in H^p(X,A;R)$, $\eta \in H^q(X,B;R)$. Wähle $\alpha \in C^p(X,A;R)$, $\beta \in C^q(X,B;R)$ mit $\xi = [\alpha]$ und $\eta = [\beta]$. Dann ist

$$\begin{split} \xi \cup \eta &= [\alpha \cup \beta] = (-1)^{p\,q} \cdot [\operatorname{Sp}^*(\operatorname{Sp}^*(\beta) \cup \operatorname{Sp}^*(\alpha))] = (-1)^{p\,q} \cdot (\operatorname{Sp}^*(\beta) \cup \operatorname{Sp}^*(\alpha)) \\ &= (-1)^{p\,q} \cdot [\operatorname{Sp}^*(\beta)] \cup [\operatorname{Sp}^*(\alpha)] \\ &= (-1)^{p\,q} \cdot [\beta] \cup [\alpha] = (-1)^{p\,q} \cdot \eta \cup \xi \end{split} \quad \Box$$

4.6 Proposition. Sei $\tau_*\colon C_*^{\sin g}\to C_*^{\sin g}$ eine natürliche Transformation durch Kettenabbildungen. Induziert τ die Identität auf $H_0(\{pt\})$, so ist τ_* kettenhomotop zur Identität, das heißt es gibt eine natürliche Transformation $\eta_*\colon C_*^{\sin g}\to C_*^{\sin g}$ mit

$$d_{*+1}^{\scriptscriptstyle \mathrm{sing}} \circ \eta_* + \eta_{*+1} \circ d_*^{\scriptscriptstyle \mathrm{sing}} = \operatorname{id} - \tau_*$$

4 Kommutativität von ∪]]]

Index

Die Seitenzahlen sind mit Hyperlinks versehen und somit anklickbar

Ausschneidung, 2

Cup-Produkt, ∪-Produkt, 7

Dimensionsaxiom, 2

graduiert-kommutativ, 10 graduierte Algebra, 10

Homotopieinvarianz, 2

induzierte Abbildung Kohomologie, 1 singuläre Kokettenkomplexe, 2

Kohomologiemodul, 1 Kokettenabbildung, 1 Kokettenhomotopie, 1 Kokettenkomplex, 1 V-dualer Kokettenkomplex, 1 kontravarianter Funktor, 2

Paarfolge, 2 Paarung, 5 Produkt, 3

singuläre Kohomologie, 1 singuläre Kokettenkomplex, 1

verbindende Abbildung, 2

Index A

Abbildungsverzeichnis

To-do's und andere Baustellen

Andere Teile aus Ubungen übernehmen	3
Revision	3
Diagramm vervollständigen	5
Zeichnung für $n=2$ einfügen	7
T _E Xen wenn Zeit	7
Diagramm vervollständigen	9
fertig machen	10

Abbildungsverzeichnis