

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 May 2001 (25.05.2001)

PCT

(10) International Publication Number
WO 01/36639 A2

(51) International Patent Classification?: **C12N 15/12, 15/62; 5/10, C07K 14/705, 16/28, G01N 33/50**

(21) International Application Number: **PCT/US00/31674**

(22) International Filing Date:
17 November 2000 (17.11.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/166,285 18 November 1999 (18.11.1999) US
60/234,099 21 September 2000 (21.09.2000) US

(71) Applicant: **PIONEER HI-BRED INTERNATIONAL, INC.** [US/US]; 800 Capital Square, 400 Locust Street, Des Moines, IA 50309 (US).

(72) Inventors: **FLANNAGAN, Ronald, D.**; 512 N.W. Norton Circle, Grimes, IA 50111 (US). **MATHIS, John, P.**; 3808 6th Street, Apt. 15, Des Moines, IA 50313 (US). **MEYER, Terry, EuClaire**; 4338 - 101st Street, Urbandale, IA 50322 (US).

(74) Agents: **SPRUILL, Murray, W.** et al.; Alston & Bird LLP, P.O. Drawer 34009, Charlotte, NC 28234-4009 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: **NOVEL BT TOXIN RECEPTORS FROM LEPIDOPTERAN INSECTS AND METHODS OF USE**

(57) Abstract: The invention relates to *Bt* toxin resistance management. The invention particularly relates to the isolation and characterization of nucleic acid and polypeptides for a novel *Bt* toxin receptor. The nucleic acid and polypeptides are useful in identifying and designing novel *Bt* toxin receptor ligands including novel insecticidal toxins.

WO 01/36639 A2

NOVEL *Bt* TOXIN RECEPTORS FROM LEPIDOPTERAN INSECTS AND METHODS OF USE

FIELD OF THE INVENTION

The field of the invention is manipulating *Bt* toxin susceptibility in plant pests. The field of the invention relates to the isolation and characterization of nucleic acid and polypeptides for a novel *Bt* toxin receptor. The nucleic acid and polypeptides are useful in developing new insecticides.

5

BACKGROUND OF THE INVENTION

Traditionally, growers used chemical pesticides as a means to control agronomically important pests. The introduction of transgenic plants carrying the delta-endotoxin from *Bacillus thuringiensis* (*Bt*) afforded a non-chemical method of 10 control. *Bt* toxins have traditionally been categorized by their specific toxicity towards specific insect categories. For example, the Cryl group of toxins are toxic to Lepidoptera. The Cryl group includes, but is not limited to, CrylA(a), CrylA(b) and CrylA(c). See Hofte *et al* (1989) *Microbiol Rev* 53: 242-255.

Lepidopteran insects cause considerable damage to maize crops throughout 15 North America and the world. One of the leading pests is *Ostrinia nubilalis*, commonly called the European Corn Borer (ECB). Genes encoding the crystal proteins CrylA(b) and CrylA(c) from *Bt* have been introduced into maize as a means of ECB control. These transgenic maize hybrids have been effective in control of 20 ECB. However, developed resistance to *Bt* toxins presents a challenge in pest control. See McGaughey *et al.* (1998) *Nature Biotechnology* 16: 144-146; Estruch *et al.* (1997) *Nature Biotechnology* 15:137-141; Roush *et al.* (1997) *Nature Biotechnology* 15 816-817; and Hofte *et al* (1989) *Microbiol Rev* 53: 242-255.

The primary site of action of Cryl toxins is in the brush border membranes of 25 the midgut epithelia of susceptible insect larvae such as lepidopteran insects. CrylA toxin binding polypeptides have been characterized from a variety of Lepidopteran species. A CrylA(c) binding polypeptide with homology to an aminopeptidase N has been reported from *Manduca sexta*, *Lymantria dispar*, *Helicoverpa zea* and *Heliothis virescens*. See Knight *et al* (1994) *Mol Micro* 11: 429-436; Lee *et al.* (1996) *Appl*

Environ Micro 63: 2845-2849; Gill *et al.* (1995) *J Biol. Chem* 270: 27277-27282; and Garczynski *et al.* (1991) *Appl Environ Microbiol* 10: 2816-2820.

Another *Bt* toxin binding polypeptide (BTR1) cloned from *M. sexta* has homology to the cadherin polypeptide superfamily and binds Cry1A(a), Cry1A(b) and 5 Cry1A(c). See Vadlamudi *et al.* (1995) *J Biol. Chem* 270(10):5490-4, Keeton *et al.* (1998) *Appl Environ Microbiol* 64(6):2158-2165; Keeton *et al.* (1997) *Appl Environ Microbiol* 63(9):3419-3425 and U.S. Patent Patent No: 5,693,491.

A subsequently cloned homologue to BTR1 demonstrated binding to Cry1A(a) from *Bombyx mori* as described in Ihara *et al.* (1998) *Comparative Biochemistry and 10 Physiology, Part B* 120:197-204 and Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem.* 62(4):727-734.

Identification of the plant pest binding polypeptides for *Bt* toxins are useful for investigating *Bt* toxin-*Bt* toxin receptor interactions, selecting and designing improved toxins, developing novel insecticides, and new *Bt* toxin resistance management 15 strategies.

SUMMARY OF THE INVENTION

Compositions and methods for modulating susceptibility of a cell to *Bt* toxins are provided. The compositions include *Bt*-toxin receptor polypeptides, and 20 fragments and variants thereof, from the lepidopteran insects European corn borer(ECB, *Ostrinia nubilalis*), corn earworm (CEW, *Heliothis Zea*), and fall armyworm (FAW, *Spodoptera frugiperda*). The polypeptides bind Cry1A toxins, more particularly Cry1A(b). Nucleic acids encoding the polypeptides, antibodies specific to the polypeptides, as well as nucleic acid constructs for expressing the 25 polypeptides in cells of interest are also provided.

The methods are useful for investigating the structure-function relationships of *Bt* toxin receptors; investigating the toxin-receptor interactions; elucidating the mode of action of *Bt* toxins; screening and identifying novel *Bt* toxin receptor ligands including novel insecticidal toxins; and designing and developing novel *Bt* toxin 30 receptor ligands.

The methods are useful for managing *Bt* toxin resistance in plant pests, and protecting plants against damage by plant pests.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 schematically depicts the location of the signal sequence, putative glycosylation sites, cadherin-like domains, transmembrane segment, CrylA binding region and protein kinase C phosphorylation site of the *Bt* toxin receptor from *Ostrinia nubilalis*; the 5 nucleotide sequence of the receptor set forth in SEQ ID NO:1 and the corresponding deduced amino acid sequence in SEQ ID NO:2.

DETAILED DESCRIPTION OF THE INVENTION

10 The invention is directed to novel receptor polypeptides that bind *Bt* toxin, the receptor being derived from the order *lepidoptera*. The receptors of the invention include those receptor polypeptides that bind *Bt* toxin and are derived from the *lepidopteran* superfamily *Pyraloidea* and particularly from the species *Ostrinia*, specifically *Ostrinia nubilalis*; those derived from *Spodoptera frugiperda* (*S. frugiperda*); and those derived from *Heliothis Zea* (*H. Zea*). The polypeptides have homology to members of the cadherin superfamily of proteins.

15 Accordingly, compositions of the invention include isolated polypeptides that are involved in *Bt* toxin binding. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequences shown in SEQ ID NOs: 2, 4, and 6; or the nucleotide sequences having the DNA sequences deposited in a plasmid in a bacterial host as Patent Deposit No. PTA-278, PTA-1760, and PTA-2222. Further provided are polypeptides having an amino acid sequence encoded by a nucleic acid molecule described herein, for example those set forth in SEQ ID NOs: 1, 3, and 5; those deposited in a plasmid 20 in a bacterial host as Patent Deposit Nos. PTA-278, PTA-1760, and PTA-2222; and fragments and variants thereof.

25 Plasmids containing the nucleotide sequences of the invention were deposited with the Patent Depository of the American Type Culture Collection (ATCC), Manassas, Virginia on June 25, 1999; April 25, 2000; and July 11, 2000; and assigned Patent Deposit Nos. PTA-278, PTA-1760, and PTA-2222. These deposits will be maintained under the terms of the Budapest Treaty on the International Recognition of 30 the Deposit of Microorganisms for the Purposes of Patent Procedure. These deposits

were made merely as a convenience for those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. §112.

The term "nucleic acid" refers to all forms of DNA such as cDNA or genomic DNA and RNA such as mRNA, as well as analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecules can be single stranded or double stranded. Strands can include the coding or non-coding strand.

The invention encompasses isolated or substantially purified nucleic acid or polypeptide compositions. An "isolated" or "purified" nucleic acid molecule or polypeptide, or biologically active portion thereof, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Preferably, an "isolated" nucleic acid is free of sequences (preferably polypeptide encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. A polypeptide that is substantially free of cellular material includes preparations of polypeptide having less than about 30%, 20%, 10%, 5%, (by dry weight) of contaminating polypeptide. When the polypeptide of the invention or biologically active portion thereof is recombinantly produced, preferably culture medium represents less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or non-polypeptide-of-interest chemicals.

It is understood, however, that there are embodiments in which preparations that do not contain the substantially pure polypeptide may also be useful. Thus, less pure preparations can be useful where the contaminating material does not interfere with the specific desired use of the peptide. The compositions of the invention also encompass fragments and variants of the disclosed nucleotide sequences and the polypeptides encoded thereby.

The compositions of the invention are useful for, among other uses, expressing the receptor polypeptides in cells of interest to produce cellular or isolated preparations of the polypeptides for investigating the structure-function relationships of

Bt toxin receptors; investigating the toxin-receptor interactions; elucidating the mode of action of *Bt* toxins; screening and identifying novel *Bt* toxin receptor ligands including novel insecticidal toxins; and designing and developing novel *Bt* toxin receptor ligands including novel insecticidal toxins.

- 5 The isolated nucleotide sequences encoding the receptor polypeptides of the invention are expressed in a cell of interest; and the *Bt* toxin receptor polypeptides produced by the expression is utilized in intact cell or *in-vitro* receptor binding assays, and/or intact cell toxicity assays. Methods and conditions for *Bt* toxin binding and toxicity assays are known in the art and include but are not limited to those described
10 in United States Patent NO: 5,693,491; T.P. Keeton *et al.* (1998) *Appl. Environ. Microbiol.* 64(6):2158-2165; B.R. Francis *et al.* (1997) *Insect Biochem. Mol. Biol.* 27(6):541-550; T.P. Keeton *et al.* (1997) *Appl. Environ. Microbiol.* 63(9):3419-3425; R.K. Vadlamudi *et al.* (1995) *J. Biol. Chem.* 270(10):5490-5494; Ihara *et al.* (1998) *Comparative Biochem. Physiol. B* 120:197-204; Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem.* 62(4):727-734, herein incorporated by reference. Such methods could be modified by one of ordinary skill in the art to develop assays utilizing the polypeptides of the invention.

- 20 By "cell of interest" is intended any cell in which expression of the polypeptides of the invention is desired. Cells of interest include, but are not limited to mammalian, avian, insect, plant, bacteria, fungi and yeast cells. Cells of interest include but are not limited to cultured cell lines, primary cell cultures, cells *in vivo*, and cells of transgenic organisms.

- 25 The methods of the invention encompass using the polypeptides encoded by the nucleotide sequences of the invention in receptor binding and/or toxicity assays to screen candidate ligands and identify novel *Bt* toxin receptor ligands, including receptor agonists and antagonists. Candidate ligands include molecules available from diverse libraries of small molecules created by combinatorial synthetic methods. Candidate ligands also include, but are not limited to antibodies, peptides, and other small molecules designed or deduced to interact with the receptor polypeptides of the invention. Candidate ligands include but are not limited to peptide fragments of the receptor, anti-receptor antibodies, antiidiotype antibodies mimicking one or more receptor binding domains of a toxin, fusion proteins produced by combining two or more toxins or fragments thereof, and the like. Ligands identified by the screening

methods of the invention include potential novel insecticidal toxins, the insecticidal activity of which can be determined by known methods; for example, as described in U.S. Patent No: 5,407,454; U.S. Application NO: 09/218,942; U.S. Application No: 09/003,217.

5 The invention provides methods for screening for ligands that bind to the polypeptides described herein. Both the polypeptides and relevant fragments thereof (for example, the toxin binding domain) can be used to screen by assay for compounds that bind to the receptor and exhibit desired binding characteristics. Desired binding characteristics include, but are not limited to binding affinity, binding site specificity, 10 association and dissociation rates, and the like. The screening assays could be intact cell or *in vitro* assays which include exposing a ligand binding domain to a sample ligand and detecting the formation of a ligand-binding polypeptide complex. The assays could be direct ligand-receptor binding assays or ligand competition assays.

In one embodiment, the methods comprise providing at least one *Bt* toxin 15 receptor polypeptide of the invention, contacting the polypeptide with a sample and a control ligand under conditions promoting binding; and determining binding characteristics of sample ligands, relative to control ligands. The methods encompass any method known to the skilled artisan which can be used to provide the polypeptides of the invention in a binding assay. For *in vitro* binding assays, the 20 polypeptide may be provided as isolated, lysed, or homogenized cellular preparations. Isolated polypeptides may be provided in solution, or immobilized to a matrix. Methods for immobilizing polypeptides are well known in the art, and include but are not limited to construction and use of fusion polypeptides with commercially 25 available high affinity ligands. For example, GST fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates. The polypeptides can also be immobilized utilizing well techniques in the art utilizing conjugation of biotin and streptavidin. The 30 polypeptides can also be immobilized utilizing well known techniques in the art utilizing chemical conjugation (linking) of polypeptides to a matrix. Alternatively, the polypeptides may be provided in intact cell binding assays in which the polypeptides are generally expressed as cell surface *Bt* toxin receptors.

The invention provides methods utilizing intact cell toxicity assays to screen for ligands that bind to the receptor polypeptides described herein and confer toxicity upon a

cell of interest expressing the polypeptide. A ligand selected by this screening is a potential insecticidal toxin to insects expressing the receptor polypeptides, particularly entirely. This deduction is premised on theories that insect specificity of a particular Bt toxin is determined by the presence of the receptor in specific insect species, or that binding of the toxins is specific for the receptor of some insect species and is bind is insignificant or nonspecific for other variant receptors. See, for example Hofte *et al* (1989) *Microbiol Rev* 53: 242-255. The toxicity assays include exposing, in intact cells expressing a polypeptide of the invention, the toxin binding domain of the polypeptide to a sample ligand and detecting the toxicity effected in the cell expressing the polypeptide.

10 By "toxicity" is intended the decreased viability of a cell. By "viability" is intended the ability of a cell to proliferate and/or differentiate and/or maintain its biological characteristics in a manner characteristic of that cell in the absence of a particular cytotoxic agent.

In one embodiment, the methods of the present invention comprise providing at least one cell surface *Bt* toxin receptor polypeptide of the invention comprising an extracellular toxin binding domain, contacting the polypeptide with a sample and a control ligand under conditions promoting binding, and determining the viability of the cell expressing the cell surface *Bt* toxin receptor polypeptide, relative to the control ligand.

20 By "contacting" is intended that the sample and control agents are presented to the intended ligand binding site of the polypeptides of the invention.

By "conditions promoting binding" is intended any combination of physical and biochemical conditions that enables a ligand of the polypeptides of the invention to determinably bind the intended polypeptide over background levels. Examples of such conditions for binding of Cry1 toxins to *Bt* toxin receptors, as well as methods for assessing the binding, are known in the art and include but are not limited to those described in Keeton *et al.* (1998) *Appl Environ Microbiol* 64(6): 2158-2165; Francis *et al.* (1997) *Insect Biochem Mol Biol* 27(6):541-550; Keeton *et al.* (1997) *Appl Environ Microbiol* 63(9):3419-3425; Vadlamudi *et al.* (1995) *J Biol Chem* 270(10):5490-5494; Ihara *et al.* (1998) *Comparative Biochemistry and Physiology, Part B* 120:197-204; and Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem.* 62(4):727-734, the contents of which are herein incorporated by reference. In this aspect of the present invention, known and commercially available methods for

studying protein-protein interactions, such as yeast and/or bacterial two-hybrid systems could also be used. Two-hybrid systems are available from, for example, CLONTECH (Palo Alto, Ca) or Display Systems Biotech Inc. (Vista, Ca).

The compositions and screening methods of the invention are useful for
5 designing and developing novel *Bt* toxin receptor ligands including novel insecticidal toxins. Various candidate ligands; ligands screened and characterized for binding, toxicity, and species specificity; and/or ligands having known characteristics and specificities, could be linked or modified to produce novel ligands having particularly desired characteristics and specificities. The methods described herein for assessing
10 binding, toxicity and insecticidal activity could be used to screen and characterize the novel ligands.

In one embodiment of the present invention, the sequences encoding the receptors of the invention, and variants and fragments thereof, are used with yeast and bacterial two-hybrid systems to screen for *Bt* toxins of interest (for example, more
15 specific and/or more potent toxins), or for insect molecules that bind the receptor and can be used in developing novel insecticides.

By "linked" is intended that a covalent bond is produced between two or more molecules. Known methods that can be used for modification and/or linking of polypeptide ligands such as toxins, include but are not limited to mutagenic and
20 recombinogenic approaches including but not limited to site-directed mutagenesis, chimeric polypeptide construction and DNA shuffling. Such methods are described in further detail below. Known polypeptide modification methods also include methods for covalent modification of polypeptides. "Operably linked" means that the linked molecules carry out the function intended by the linkage.

25 The compositions and screening methods of the present invention are useful for targeting ligands to cells expressing the receptor polypeptides of the invention. For targeting, secondary polypeptides, and/or small molecules which do not bind the receptor polypeptides of the invention are linked with one or more primary ligands which bind the receptor polypeptides; including but not limited to Cry1A toxin; more
30 particularly Cry1A(b) toxin or a fragment thereof. By this linkage, any polypeptide and/or small molecule linked to a primary ligand could be targeted to the receptor polypeptide, and thereby to a cell expressing the receptor polypeptide; wherein the ligand binding site is available at the extracellular surface of the cell.

In one embodiment of the invention, at least one secondary polypeptide toxin is linked with a primary Cry1 A toxin capable of binding the receptor polypeptides of the invention to produce a combination toxin which is targeted and toxic to insects expressing the receptor for the primary toxin. Such insects include those of the order 5 *lepidoptera*, superfamily *Pyraloidea* and particularly from the species *Ostrinia*, specifically *Ostrinia nubilalis*. Such insects include the lepidopterans *S. frugiperda* and *H. Zea*. Such a combination toxin is particularly useful for eradicating or reducing crop damage by insects which have developed resistance to the primary toxin.

For expression of the *Bt* toxin receptor polypeptides of the invention in a cell of interest, the *Bt* toxin receptor sequences are provided in expression cassettes. The cassette will include 5' and 3' regulatory sequences operably linked to a *Bt* toxin receptor sequence of the invention. In this aspect of the present invention, by "operably linked" is intended a functional linkage between a promoter and a second 15 sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. In reference to nucleic acids, generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two polypeptide coding regions, contiguous and in the same reading frame. The cassette may additionally contain at least one 20 additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes.

Such an expression cassette is provided with a plurality of restriction sites for insertion of the *Bt* toxin receptor sequence to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable 25 marker genes.

The expression cassette will include in the 5'-3' direction of transcription, a transcriptional and translational initiation region, a *Bt* toxin receptor nucleotide sequence of the invention, and a transcriptional and translational termination region functional in host cells. The transcriptional initiation region, the promoter, may be 30 native or analogous, or foreign or heterologous to the plant host. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. By "foreign" is intended that the transcriptional initiation region is not found in the native host cells into which the transcriptional initiation region is introduced. As used

herein, a chimeric gene comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence.

While it may be preferable to express the sequences using heterologous promoters, the native promoter sequences may be used. Such constructs would 5 change expression levels of *Bt* toxin receptor in the cell of interest. Thus, the phenotype of the cell is altered.

The termination region may be native with the transcriptional initiation region, may be native with the operably linked DNA sequence of interest, or may be derived from another source.

10 Where appropriate, the gene(s) may be optimized for increased expression in a particular transformed cell of interest. That is, the genes can be synthesized using host cell-preferred codons for improved expression.

Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious 15 polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA 20 structures.

The expression cassettes may additionally contain 5' leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein *et al.* (1989) *PNAS USA* 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison *et al.* (1986); MDMV leader (Maize Dwarf Mosaic Virus); *Virology* 154:9-20), and human immunoglobulin heavy-chain binding polypeptide (BiP), (Macejak *et al.* (1991) *Nature* 353:90-94); untranslated leader from the coat polypeptide mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling *et al.* 25 (1987) *Nature* 325:622-625); tobacco mosaic virus leader (TMV) (Gallie *et al.* (1989) in *Molecular Biology of RNA*, ed. Cech (Liss, New York), pp. 237-256); and maize 30 chlorotic mottle virus leader (MCMV) (Lommel *et al.* (1991) *Virology* 81:382-385).

See also, Della-Cioppa *et al.* (1987) *Plant Physiol.* 84:965-968. Other methods known to enhance translation can also be utilized, for example, introns, and the like.

In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, *in vitro* mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.

Using the nucleic acids of the present invention, the polypeptides of the invention could be expressed in any cell of interest, the particular choice of the cell depending on factors such as the level of expression and/or receptor activity desired. Cells of interest include, but are not limited to conveniently available mammalian, plant, insect, bacteria, and yeast host cells. The choice of promoter, terminator, and other expression vector components will also depend on the cell chosen. The cells produce the protein in a non-natural condition (e.g., in quantity, composition, location, and/or time), because they have been genetically altered through human intervention to do so.

It is expected that those of skill in the art are knowledgeable in the numerous expression systems available for expression of a nucleic acid encoding a protein of the present invention. No attempt to describe in detail the various methods known for the expression of proteins in prokaryotes or eukaryotes will be made.

In brief summary, the expression of isolated nucleic acids encoding a protein of the present invention will typically be achieved by operably linking, for example, the DNA or cDNA to a promoter, followed by incorporation into an expression vector. The vectors can be suitable for replication and integration in either prokaryotes or eukaryotes. Typical expression vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the DNA encoding a protein of the present invention. To obtain high level expression of a cloned gene, it is desirable to construct expression vectors which contain, at the minimum, a strong promoter to direct transcription, a ribosome binding site for translational initiation, and a transcription/translation terminator. One

of skill would recognize that modifications can be made to a protein of the present invention without diminishing its biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids (e.g., poly His) placed on either terminus to create conveniently located restriction sites or termination codons or purification sequences.

Prokaryotic cells may be used as hosts for expression. Prokaryotes most frequently are represented by various strains of *E. coli*; however, other microbial strains may also be used. Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta lactamase (penicillinase) and lactose (lac) promoter systems (Chang *et al.* (1977) *Nature* 198:1056), the tryptophan (trp) promoter system (Goeddel *et al.* (1980) *Nucleic Acids Res.* 8:4057) and the lambda-derived P L promoter and N-gene ribosome binding site (Shimatake *et al.* (1981) *Nature* 292:128). The inclusion of selection markers in DNA vectors transfected in *E. coli* is also useful. Examples of such markers include genes specifying resistance to ampicillin, tetracycline, or chloramphenicol.

The vector is selected to allow introduction into the appropriate host cell. Bacterial vectors are typically of plasmid or phage origin. Appropriate bacterial cells are infected with phage vector particles or transfected with naked phage vector DNA. If a plasmid vector is used, the bacterial cells are transfected with the plasmid vector DNA. Expression systems for expressing a protein of the present invention are available using *Bacillus sp.* and *Salmonella* (Palva *et al.* (1983) *Gene* 22:229-235; Mosbach *et al.* (1983) *Nature* 302:543-545).

A variety of eukaryotic expression systems such as yeast, insect cell lines, plant and mammalian cells, are known to those of skill in the art. The sequences of the present invention can be expressed in these eukaryotic systems. In some embodiments, transformed/transfected plant cells are employed as expression systems for production of the proteins of the instant invention.

Synthesis of heterologous proteins in yeast is well known. Sherman, F. *et al.* (1982) *Methods in Yeast Genetics*, Cold Spring Harbor Laboratory is a well recognized work describing the various methods available to produce the protein in yeast. Two widely utilized yeast for production of eukaryotic proteins are

5 *Saccharomyces cerevisiae* and *Pichia pastoris*. Vectors, strains, and protocols for expression in *Saccharomyces* and *Pichia* are known in the art and available from commercial suppliers (e.g., Invitrogen). Suitable vectors usually have expression control sequences, such as promoters, including 3-phosphoglycerate kinase or alcohol oxidase, and an origin of replication, termination sequences and the like as desired.

10 A protein of the present invention, once expressed, can be isolated from yeast by lysing the cells and applying standard protein isolation techniques to the lysates. The monitoring of the purification process can be accomplished by using Western blot techniques or radioimmunoassay or other standard immunoassay techniques.

The sequences encoding proteins of the present invention can also be ligated 15 to various expression vectors for use in transfecting cell cultures of, for instance, mammalian, insect, or plant origin. Illustrative of cell cultures useful for the production of the peptides are mammalian cells. Mammalian cell systems often will be in the form of monolayers of cells although mammalian cell suspensions may also be used. A number of suitable host cell lines capable of expressing intact proteins 20 have been developed in the art, and include the COS, HEK293, BHK21, and CHO cell lines. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter (e.g., the CMV promoter, a HSV tk promoter or pgk (phosphoglycerate kinase promoter)), an enhancer (Queen *et al.* (1986) *Immunol. Rev.* 89:49), and necessary processing information sites, such as 25 ribosome binding sites, RNA splice sites, polyadenylation sites (e.g., an SV40 large T Ag poly A addition site), and transcriptional terminator sequences. Other animal cells useful for production of proteins of the present invention are available, for instance, from the American Type Culture Collection Catalogue of Cell Lines and Hybridomas (7th edition, 1992). A particular example of mammalian cells for expression of a Bt toxin receptor and assessing Bt toxin cytotoxicity mediated by the receptor, includes 30 embryonic 293 cells. See U.S. Patent NO. 5,693,491, herein incorporated by reference.

Appropriate vectors for expressing proteins of the present invention in insect cells are usually derived from the SF9 baculovirus. Suitable insect cell lines include mosquito larvae, silkworm, armyworm, moth and *Drosophila* cell lines such as a Schneider cell line (See Schneider *et al.* (1987) *J. Embryol. Exp. Morphol.* 27: 5 353-365).

As with yeast, when higher animal or plant host cells are employed, polyadenylation or transcription terminator sequences are typically incorporated into the vector. An example of a terminator sequence is the polyadenylation sequence from the bovine growth hormone gene. Sequences for accurate splicing of the transcript may also be included. An example of a splicing sequence is the VP1 intron from SV40 (Sprague *et al.* (1983) *J. Virol.* 45:773-781). Additionally, gene sequences to control replication in the host cell may be incorporated into the vector such as those found in bovine papilloma virus-type vectors. Saveria-Campo, M., Bovine Papilloma Virus DNA a Eukaryotic Cloning Vector in *DNA Cloning Vol. II a Practical Approach*, D.M. Glover, ed., IRL Pres, Arlington, Virginia pp. 213-238 (1985).

In a particular embodiment of the invention, it may be desirable to negatively control receptor binding; particularly, when toxicity to a cell is no longer desired or if it is desired to reduce toxicity to a lower level. In this case, ligand-receptor polypeptide binding assays can be used to screen for compounds which bind to the receptor but do not confer toxicity to a cell expressing the receptor. The examples of a molecule that can be used to block ligand binding include an antibody that specifically recognizes the ligand binding domain of the receptor such that ligand binding is decreased or prevented as desired.

In another embodiment, receptor polypeptide expression could be blocked by the use of antisense molecules directed against receptor RNA or ribozymes specifically targeted to this receptor RNA. It is recognized that with the provided nucleotide sequences, antisense constructions, complementary to at least a portion of the messenger RNA (mRNA) for the *Bt* toxin receptor sequences can be constructed. Antisense nucleotides are constructed to hybridize with the corresponding mRNA. Modifications of the antisense sequences may be made as long as the sequences hybridize to and interfere with expression of the corresponding mRNA. In this manner, antisense constructions having 70%, preferably 80%, more preferably 85%

sequence similarity to the corresponding antisensed sequences may be used. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, or greater may be used.

5 Fragments and variants of the disclosed nucleotide sequences and polypeptides encoded thereby are encompassed by the present invention. By "fragment" is intended a portion of the nucleotide sequence, or a portion of the amino acid sequence, and hence a portion of the polypeptide encoded thereby. Fragments of a nucleotide sequence may encode polypeptide fragments that retain the biological 10 activity of the native polypeptide and, for example, bind *Bt* toxins. Alternatively, fragments of a nucleotide sequence that are useful as hybridization probes generally do not encode fragment polypeptides retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length nucleotide sequence 15 encoding the polypeptides of the invention.

A fragment of a *Bt* toxin receptor nucleotide sequence that encodes a biologically active portion of a *Bt* toxin receptor polypeptide of the invention will encode at least 15, 25, 30, 50, 100, 150, 200 or 250 contiguous amino acids, or up to the total number of amino acids present in a full-length *Bt* toxin receptor polypeptide 20 of the invention (for example, 1717, 1730, and 1734 amino acids for SEQ ID NOs:2, 4, and 6, respectively. Fragments of a *Bt* toxin receptor nucleotide sequence that are useful as hybridization probes for PCR primers generally need not encode a biologically active portion of a *Bt* toxin receptor polypeptide.

Thus, a fragment of a *Bt* toxin receptor nucleotide sequence may encode a 25 biologically active portion of a *Bt* toxin receptor polypeptide, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. A biologically active portion of a *Bt* toxin receptor polypeptide can be prepared by isolating a portion of one of the *Bt* toxin receptor nucleotide sequences of the invention, expressing the encoded portion of the *Bt* toxin receptor polypeptide 30 (e.g., by recombinant expression *in vitro*), and assessing the activity of the encoded portion of the *Bt* toxin receptor polypeptide. Nucleic acid molecules that are fragments of a *Bt* toxin receptor nucleotide sequence comprise at least 16, 20, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 1,000,

1,100, 1,200, 1,300, or 1,400 nucleotides, or up to the number of nucleotides present in a full-length *Bt* toxin receptor nucleotide sequence disclosed herein (for example, 5498, 5527, and 5614 nucleotides for SEQ ID NOs: 1, 3, and 5, respectively).

By "variants" is intended substantially similar sequences. For nucleotide sequences, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the *Bt* toxin receptor polypeptides of the invention. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis, but which still encode a *Bt* toxin receptor protein of the invention. Generally, variants of a particular nucleotide sequence of the invention will have at least about 40%, 50%, 60%, 65%, 70%, generally at least about 75%, 80%, 85%, preferably at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, and more preferably at least about 98%, 99% or more sequence identity to that particular nucleotide sequence as determined by sequence alignment programs described elsewhere herein using default parameters.

By "variant" protein is intended a protein derived from the native protein by deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C-terminal end of the native protein; deletion or addition of one or more amino acids at one or more sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Variant proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, that is, activity as described herein (for example, *Bt* toxin binding activity). Such variants may result from, for example, genetic polymorphism or from human manipulation. Biologically active variants of a native *Bt* toxin receptor protein of the invention will have at least about 40%, 50%, 60%, 65%, 70%, generally at least about 75%, 80%, 85%, preferably at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, and more preferably at least about 98%, 99% or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs described elsewhere herein using default parameters. A biologically active variant of a

protein of the invention may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.

The polypeptides of the invention may be altered in various ways including 5 amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of the *Bt* toxin receptor polypeptides can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985) *Proc. Natl. Acad. Sci. USA* 82:488-492; 10 Kunkel *et al.* (1987) *Methods in Enzymol.* 154:367-382; US Patent No. 4,873,192; Walker and Gaastra, eds. (1983) *Techniques in Molecular Biology* (MacMillan Publishing Company, New York) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the 15 protein of interest may be found in the model of Dayhoff *et al.* (1978) *Atlas of Protein Sequence and Structure* (Natl. Biomed. Res. Found., Washington, D.C.), herein incorporated by reference. Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be preferable.

Thus, the genes and nucleotide sequences of the invention include both the naturally occurring sequences as well as mutant forms. Likewise, the proteins of the 20 invention encompass both naturally occurring proteins as well as variations and modified forms thereof. Such variants will continue to possess the desired toxin binding activity. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See, 25 EP Patent Application Publication No. 75,444.

The deletions, insertions, and substitutions of the protein sequences encompassed herein are not expected to produce radical changes in the characteristics of the protein.

For example, it is recognized that at least about 10, 20, 50, 100, 150, 200, 250, 30 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, and up to 960 amino acids may be deleted from the N-terminus of a polypeptide that has the amino acid sequence set forth in SEQ ID NO:2, and still retain binding function. It is further recognized that at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and up to

119 amino acids may be deleted from the C-terminus of a polypeptide that has the amino acid sequence set forth in SEQ ID NO:2, and still retain binding function. Deletion variants of the invention that encompass polypeptides having these deletions. It is recognized that deletion variants of the invention that retain binding function 5 encompass polypeptides having these N-terminal or C-terminal deletions, or having any deletion combination thereof at both the C- and the N-termini.

However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays. That is, the activity can be 10 evaluated by receptor binding and/or toxicity assays. See, for example, United States Patent NO: 5,693,491; T.P. Keeton *et al.* (1998) *Appl. Environ. Microbiol.* 64(6):2158-2165; B.R. Francis *et al.* (1997) *Insect Biochem. Mol. Biol.* 27(6):541-550; T.P. Keeton *et al.* (1997) *Appl. Environ. Microbiol.* 63(9):3419-3425; R.K. Vadlamudi *et al.* (1995) *J. Biol. Chem.* 270(10):5490-5494; Ihara *et al.* (1998) 15 *Comparative Biochem. Physiol. B* 120:197-204; Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem.* 62(4):727-734, herein incorporated by reference.

Variant nucleotide sequences and polypeptides also encompass sequences and polypeptides derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, one or more different toxin receptor coding 20 sequences can be manipulated to create a new toxin receptor, including but not limited to a new *Bt* toxin receptor, possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined *in vitro* or *in vivo*. For example, using this 25 approach, sequence motifs encoding a domain of interest may be shuffled between the *Bt* toxin receptor gene of the invention and other known *Bt* toxin receptor genes to obtain a new gene coding for a polypeptide with an improved property of interest, such as an increased ligand affinity in the case of a receptor. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) *Proc. Natl. Acad. Sci. USA* 91:10747-10751; Stemmer (1994) *Nature* 370:389-391; Cramer *et al.* (1997) *Nature Biotech.* 15:436-438; Moore *et al.* (1997) *J. Mol. Biol.* 272:336-347; Zhang *et al.* (1997) *Proc. Natl. Acad. Sci. USA* 94:4504-4509; Cramer *et al.* (1998) *Nature* 391:288-291; and U.S. Patent Nos. 5,605,793 and 5,837,448.

Where the receptor polypeptides of the invention are expressed in a cell and associated with the cell membrane (for example, by a transmembrane segment), in order for the receptor of the invention to bind a desired ligand, for example a Cry1A toxin, the receptor's ligand binding domain must be available to the ligand. In this aspect, it is 5 recognized that the native *Bt* toxin receptor of the invention is oriented such that the toxin binding site is available extracellularly.

Accordingly, in methods comprising use of intact cells, the invention provides cell surface *Bt*-toxin receptors. By a "cell surface *Bt* toxin receptor" is intended a membrane-bound receptor polypeptide comprising at least one extracellular *Bt* toxin 10 binding site. A cell surface receptor of the invention comprises an appropriate combination of signal sequences and transmembrane segments for guiding and retaining the receptor at the cell membrane such that that toxin binding site is available extracellularly. Where native *Bt* toxin receptors are used for expression, deduction of the composition and configuration of the signal sequences and transmembrane segments is 15 not necessary to ensure the appropriate topology of the polypeptide for displaying the toxin binding site extracellularly. As an alternative to native signal and transmembrane sequences, heterologous signal and transmembrane sequences could be utilized to produce a cell surface receptor polypeptide of the invention.

It is recognized that it may be of interest to generate *Bt* toxin receptors that are 20 capable of interacting with the receptor's ligands intracellularly in the cytoplasm, in the nucleus or other organelles, in other subcellular spaces; or in the extracellular space. Accordingly, the invention encompasses variants of the receptors of the invention, wherein one or more of the segments of the receptor polypeptide is modified to target the polypeptide to a desired intra- or extracellular location.

Also encompassed by the invention are receptor fragments and variants that are useful, among other things, as binding antagonists that will compete with a cell surface receptor of the invention. Such a fragment or variant can, for example, bind a toxin but not be able to confer toxicity to a particular cell. In this aspect, the invention provides secreted receptors, more particularly secreted *Bt* toxin receptors; or receptors that are not 25 membrane bound. The secreted receptors of the invention can contain a heterologous or homologous signal sequence facilitating its secretion from the cell expressing the receptors; and further comprise a secretion variation in the region corresponding to transmembrane segments. By "secretion variation" is intended that amino acids

- corresponding to a transmembrane segment of a membrane bound receptor comprise one or more deletions, substitutions, insertions, or any combination thereof; such that the region no longer retains the requisite hydrophobicity to serve as a transmembrane segment. Sequence alterations to create a secretion variation can be tested by
- 5 confirming secretion of the polypeptide comprising the variation from the cell expressing the polypeptide.

The polypeptides of the invention can be purified from cells that naturally express it, purified from cells that have been altered to express it (i. e. recombinant) or synthesized using polypeptide synthesis techniques that are well known in the art. In one embodiment, the polypeptide is produced by recombinant DNA methods. In such methods a nucleic acid molecule encoding the polypeptide is cloned into an expression vector as described more fully herein and expressed in an appropriate host cell according to known methods in the art. The polypeptide is then isolated from cells using polypeptide purification techniques well known to those of ordinary skill in the art.

15 Alternatively, the polypeptide or fragment can be synthesized using peptide synthesis methods well known to those of ordinary skill in the art.

The invention also encompasses fusion polypeptides in which one or more polypeptides of the invention are fused with at least one polypeptide of interest. In one embodiment, the invention encompasses fusion polypeptides in which a heterologous polypeptide of interest has an amino acid sequence that is not substantially homologous to the polypeptide of the invention. In this embodiment, the polypeptide of the invention and the polypeptide of interest may or may not be operatively linked. An example of operative linkage is fusion in-frame so that a single polypeptide is produced upon translation. Such fusion polypeptides can, for example, facilitate the purification of a recombinant polypeptide.

In another embodiment, the fused polypeptide of interest may contain a heterologous signal sequence at the N-terminus facilitating its secretion from specific host cells. The expression and secretion of the polypeptide can thereby be increased by use of the heterologous signal sequence.

30 The invention is also directed to polypeptides in which one or more domains in the polypeptide described herein are operatively linked to heterologous domains having homologous functions. Thus, the toxin binding domain can be replaced with a toxin binding domain for other toxins. Thereby, the toxin specificity of the receptor is based

on a toxin binding domain other than the domain encoded by *Bt* toxin receptor but other characteristics of the polypeptide, for example, membrane localization and topology is based on *Bt* toxin receptor.

Alternatively, the native *Bt* toxin binding domain may be retained while
5 additional heterologous ligand binding domains, including but not limited to heterologous toxin binding domains are comprised by the receptor. Thus, the invention also encompasses fusion polypeptides in which a polypeptide of interest is a heterologous polypeptide comprising a heterologous toxin binding domains. Examples of heterologous polypeptides comprising Cry1 toxin binding domains include, but are
10 not limited to Knight et al (1994) *Mol Micro* 11: 429-436; Lee et al. (1996) *Appl Environ Micro* 63: 2845-2849; Gill et al. (1995) *J Biol Chem* 270: 27277-27282; Garczynski et al. (1991) *Appl Environ Microbiol* 10: 2816-2820; Vadlamudi et al. (1995) *J Biol Chem* 270(10):5490-4, U.S. Patent No5,693,491.

The *Bt* toxin receptor peptide of the invention may also be fused with other
15 members of the cadherin superfamily. Such fusion polypeptides could provide an important reflection of the binding properties of the members of the superfamily. Such combinations could be further used to extend the range of applicability of these molecules in a wide range of systems or species that might not otherwise be amenable to native or relatively homologous polypeptides. The fusion constructs could be substituted
20 into systems in which a native construct would not be functional because of species specific constraints. Hybrid constructs may further exhibit desirable or unusual characteristics otherwise unavailable with the combinations of native polypeptides.

Polypeptide variants encompassed by the present invention include those that contain mutations that either enhance or decrease one or more domain functions. For
25 example, in the toxin binding domain, a mutation may be introduced that increases or decreases the sensitivity of the domain to a specific toxin.

As an alternative to the introduction of mutations, increase in function may be provided by increasing the copy number of ligand binding domains. Thus, the invention also encompasses receptor polypeptides in which the toxin binding domain is provided
30 in more than one copy.

The invention further encompasses cells containing receptor expression vectors comprising the *Bt* toxin receptor sequences, and fragments and variants thereof. The expression vector can contain one or more expression cassettes used to transform a cell

of interest. Transcription of these genes can be placed under the control of a constitutive or inducible promoter (for example, tissue - or cell cycle-preferred).

Where more than one expression cassette utilized, the cassette that is additional to the cassette comprising at least one receptor sequence of the invention, can comprise
5 either a receptor sequence of the invention or any other desired sequences.

The nucleotide sequences of the invention can be used to isolate homologous sequences in insect species other than *ostrinia*, particularly other lepidopteran species, more particularly other *Pyraloidea* species.

The following terms are used to describe the sequence relationships between
10 two or more nucleic acids or polynucleotides: (a) "reference sequence", (b)
"comparison window", (c) "sequence identity", (d) "percentage of sequence identity",
and (e) "substantial identity".

(a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety
15 of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.

(b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps)
20 compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.
25

Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) *CABIOS* 4:11-17; the local homology algorithm of Smith *et al.* (1981) *Adv. Appl. Math.* 2:482; the homology alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443-453; the search-for-similarity-method of Pearson and Lipman (1988) *Proc. Natl. Acad. Sci.* 85:2444-2448; the algorithm of Karlin and Altschul (1990) *Proc.*

Natl. Acad. Sci. USA 87:2264, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci. USA* 90:5873-5877.

Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations 5 include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0); the ALIGN PLUS program (version 3.0, copyright 1997); and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8 (available from Genetics Computer Group (GCG), 575 Science Drive, Madison, 10 Wisconsin, USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins *et al.* (1988) *Gene* 73:237-244 (1988); Higgins *et al.* (1989) *CABIOS* 5:151-153; Corpet *et al.* (1988) *Nucleic Acids Res.* 16:10881-90; Huang *et al.* (1992) *CABIOS* 8:155-65; and Pearson *et al.* (1994) *Meth. Mol. Biol.* 24:307-331. The ALIGN and the ALIGN 15 PLUS programs are based on the algorithm of Myers and Miller (1988) *supra*. A PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul *et al* (1990) *J. Mol. Biol.* 215:403 are based on the algorithm of Karlin and Altschul (1990) *supra*. BLAST nucleotide searches can be 20 performed with the BLASTN program, score = 100, wordlength = 12, to obtain nucleotide sequences homologous to a nucleotide sequence encoding a protein of the invention. BLAST protein searches can be performed with the BLASTX program, score = 50, wordlength = 3, to obtain amino acid sequences homologous to a protein or polypeptide of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul *et al.* (1997) *Nucleic Acids Res.* 25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between 25 molecules. See Altschul *et al.* (1997) *supra*. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See <http://www.ncbi.nlm.nih.gov>. Alignment may also be performed manually by inspection.

Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: % identity using GAP Weight of 50 and Length Weight of 3; % similarity using Gap Weight of 12 and Length Weight of 4, or any equivalent program. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by the preferred program.

GAP uses the algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48: 443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.

GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the

Wisconsin Genetics Software Package is BLOSUM62 (see Henikoff and Henikoff (1989).*Proc. Natl. Acad. Sci. USA* 89:10915).

(c) As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have "sequence similarity" or "similarity". Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California).

(d) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.

(e)(i) The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70% sequence identity,

preferably at least 80%, more preferably at least 90%, and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 60%, more preferably at least 70%, 80%, 90%, and most preferably at least 95%.

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. However, stringent conditions encompass temperatures in the range of about 1°C to about 20°C lower than the T_m , depending upon the desired degree of stringency as otherwise qualified herein. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is when the polypeptide encoded by the first nucleic acid sequence is immunologically cross reactive with the polypeptide encoded by the second nucleic acid sequence.

(e)(ii) The term "substantial identity" in the context of a peptide indicates that a peptide comprises a sequence with at least 70% sequence identity to a reference sequence, preferably 80%, more preferably 85%, most preferably at least 90% or 95% sequence identity to the reference sequence over a specified comparison window. Preferably, optimal alignment is conducted using the homology alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443-453. An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution. Peptides that are "substantially similar" share sequences as noted above except that residue positions that are not identical may differ by conservative amino acid changes.

The nucleotide sequences of the invention can be used to isolate corresponding sequences from other organisms, particularly other insects, more particularly other lepidopteran species. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein. Sequences isolated based on their sequence identity to the entire *Bt* toxin receptor sequences set forth herein or to fragments thereof are encompassed by the present invention. Such sequences include sequences that are orthologs of the disclosed sequences. By "orthologs" is intended genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share substantial identity as defined elsewhere herein. Functions of orthologs are often highly conserved among species.

In a PCR approach, oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any organism of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York). See also Innis *et al.*, eds. (1990) *PCR Protocols: A Guide to Methods and Applications* (Academic Press, New York); Innis and Gelfand, eds. (1995) *PCR Strategies* (Academic Press, New York); and Innis and Gelfand, eds. (1999) *PCR Methods Manual* (Academic Press, New York). Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like.

In hybridization techniques, all or part of a known nucleotide sequence is used as a probe that selectively hybridizes to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as ^{32}P , or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the *Bt* toxin receptor sequences of the

invention. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

5 For example, the entire *Bt* toxin receptor sequence disclosed herein, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding *Bt* toxin receptor sequences and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among *Bt* toxin receptor sequences and are preferably at least about 10
10 nucleotides in length, and most preferably at least about 20 nucleotides in length. Such probes may be used to amplify corresponding *Bt* toxin receptor sequences from a chosen plant organism by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism. Hybridization techniques include
15 hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York)).

Hybridization of such sequences may be carried out under stringent conditions. By "stringent conditions" or "stringent hybridization conditions" is
20 intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can
25 be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, preferably less than 500 nucleotides in length.

Typically, stringent conditions will be those in which the salt concentration is
30 less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of

destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37°C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37°C, and a wash in 0.5X to 1X SSC at 55 to 60°C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 0.1X SSC at 60 to 65°C. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours.

Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T_m can be approximated from the equation of Meinkoth and Wahl (1984) *Anal. Biochem.* 138:267-284: $T_m = 81.5^\circ\text{C} + 16.6(\log M) + 0.41(\%GC) - 0.61(\% \text{form}) - 500/L$; where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T_m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T_m is reduced by about 1°C for each 1% of mismatching; thus, T_m , hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with $\geq 90\%$ identity are sought, the T_m can be decreased 10°C. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4°C lower than the thermal melting point (T_m); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10°C lower than the thermal melting point (T_m); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20°C lower than the thermal melting point (T_m). Using the equation, hybridization and wash compositions, and desired T_m , those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T_m of less than 45°C (aqueous solution) or 32°C (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature

can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) *Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes*, Part I, Chapter 2 (Elsevier, New York); and Ausubel *et al.*, eds. (1995) *Current Protocols in Molecular Biology*, Chapter 2
5 (Greene Publishing and Wiley-Interscience, New York). See Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

Thus, isolated sequences that encode for a *Bt* toxin receptor protein and which hybridize under stringent conditions to the *Bt* toxin receptor sequences disclosed
10 herein, or to fragments thereof, are encompassed by the present invention. Such sequences will be at least about 40% to 50% homologous, about 60%, 65%, or 70% homologous, and even at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%,
15 95%, 96%, 97%, 98%, 99% or more homologous with the disclosed sequences. That is, the sequence identity of sequences may range, sharing at least about 40% to 50%, about 60%, 65%, or 70%, and even at least about 75%, 80%, 85%, 90%, 91%, 92%,
93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity.

The compositions and screening methods of the invention are useful for identifying cells expressing the BT toxin receptors of the invention, and variants and homologues thereof. Such identification could utilize detection methods at the protein
20 level, such as ligand-receptor binding; or at the nucleotide level. Detection of the polypeptide could be *in situ* by means of *in situ* hybridization of tissue sections but may also be analyzed by bulk polypeptide purification and subsequent analysis by Western blot or immunological assay of a bulk preparation. Alternatively, receptor gene expression can be detected at the nucleic acid level by techniques well known to those of ordinary skill in any art using complimentary polynucleotides to assess the levels of
25 genomic DNA, mRNA, and the like. As an example, PCR primers complimentary to the nucleic acid of interest can be used to identify the level of expression. Tissues and cells identified as expressing the receptor sequences of the invention are determined to be susceptible to toxins which bind the receptor polypeptides.

30 Where the source of the cells identified to express the receptor polypeptides of the invention is an organism, for example an insect plant pest, the organism is determined to be susceptible to toxins capable of binding the polypeptides. In a

particular embodiment, identification is in a lepidopteran plant pest expressing the *Bt* toxin receptor of the invention.

The invention encompasses antibody preparations with specificity against the polypeptides of the invention. In further embodiments of the invention, the antibodies
5 are used to detect receptor expression in a cell.

In one aspect, the invention is particularly drawn to compositions and methods for modulating susceptibility of plant pests to *Bt* toxins. However, it is recognized that the methods and compositions could be used for modulating susceptibility of any cell or organism to the toxins. By "modulating" is intended that
10 the susceptibility of a cell or organism to the cytotoxic effects of the toxin is increased or decreased. By "susceptibility" is intended that the viability of a cell contacted with the toxin is decreased. Thus the invention encompasses expressing the cell surface receptor polypeptides of the invention to increase susceptibility of a target cell or organ to *Bt* toxins. Such increases in toxin susceptibility are useful for medical and
15 veterinary purposes in which eradication or reduction of viability of a group of cells is desired. Such increases in susceptibility are also useful for agricultural applications in which eradication or reduction of population of particular plant pests is desired.

Plant pests of interest include, but are not limited to insects, nematodes, and the like. Nematodes include parasitic nematodes such as root-knot, cyst, lesion, and
20 renniform nematodes, etc.

The following examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL

25 EXAMPLE 1: Isolation of EC *Bt* toxin receptor

Standard recombinant methods well known to those of ordinary skill in the art were carried out. For library construction, total RNA was isolated from the midgut of European corn borer (ECB), *Ostrinia nubilalis*. Corn borer larvae (for example, a mix of stage 2, 3, and 4, equal weight) can be pulverized in liquid nitrogen, homogenized, and
30 total RNA extracted by standard procedures. PolyA RNA can be isolated from the total RNA with standard PolyA isolation procedures, such as the PolyATact system from Promega Corporation, Madison, WI. cDNA synthesis can then be performed and, for example, unidirectional cDNA libraries can be constructed according to known and

commercial procedures, such as the ZAP Express cDNA synthesis kit from Stratagene, La Jolla, CA. cDNA can be amplified by PCR, sized and properly digested with restriction fragments to be ligated into a vector. Subcloned cDNA can be sequenced to identify sequences with the proper peptide to identity corresponding to published 5 sequences. These fragments can be used to probe genomic or cDNA libraries corresponding to a specific host, such as *Ostrinia nubilalis*, to obtain a full length coding sequence. Probes can also be made based on Applicants disclosed sequences. The coding sequence can then be ligated into a desired expression cassette and used to transform a host cell according to standard transformation procedures. Such an 10 expression cassette can be part of a commercially available vector and expression system; for example, the pET system from Novagen Inc. (Madison, WI). Additional vectors that can be used for expression include pBKCMV, pBKRSV, pPbac and pMbac (Stratagene Inc.), pFASTBac1 (Gibco BRL) and other common bacterial, baculovirus, mammalian, and yeast expression vectors.

15 All vectors were constructed using standard molecular biology techniques as described for example in Sambrook *et al.*, (1989) *Molecular Cloning: A Laboratory Manual* (2nd ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y.).

Expression is tested by ligand blotting and testing for *Bt* toxin binding. Ligand blotting, binding, and toxicity are tested by known methods; for example, as described in 20 Martinez-Ramirez (1994) *Biochem. Biophys. Res. Comm.* 201: 782-787; Vadlamudi *et al.* (1995) *J Biol Chem* 270(10):5490-4, Keeton *et al.* (1998) *Appl Environ Microbiol* 64(6):2158-2165; Keeton *et al.* (1997) *Appl Environ Microbiol* 63(9):3419-3425; Ihara *et al.* (1998) *Comparative Biochemistry and Physiology, Part B* 120:197-204; Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem.* 62(4):718-726 and Nagamatsu 25 *et al.* (1998) *Biosci. Biotechnol. Biochem.* 62(4):727-734.

Identifying the CrylA(b) binding polypeptide in ECB was done by ligand blotting brush border membrane vesicle polypeptides and probing those polypeptides for binding with CrylA(b) toxin. Two polypeptides, approximately 210 and 205 kDa, were found to bind to CrylA(b). Blotting and binding were done essentially as 30 described in the preceding paragraph.

Degenerate primers for RT-PCR were designed based on known Cry1 toxin binding polypeptide sequences from *Manduca sexta* and *Bombyx mori*. The primers are shown below. cDNA was constructed from total midgut RNA (cDNA synthesis

kit GibcoBrL). Degenerate primers were used to amplify products of the expected size. The annealing temperature used was 53°C in generation of the 280 bp fragment and 55°C when generating the 1.6 kb fragment.

A 280bp fragment was obtained from ECB midgut RNA. Upon cloning and sequencing, the fragment was identified as having homology with the *Bt* toxin receptor 1 polypeptide (BTR1) described in Vadlamudi *et al.* (1995) *J Biol Chem* 270(10):5490-4.

- A similar approach was used to generate a 1.6 kilobase pair clone. The sequence of primers used to generate the 280 base pair fragment were:
- 10 Primer BTRD1S: 5'GTTAMYGTGAGAGAGGGCAGAYCC3' (SEQ ID NO:8), and
Primer BTRD5A: 5'GGATRTTAAGMGTCAKYACWCCG3' (SEQ ID NO:9).
- The sequence of primers used to generate the 1.6 kb fragment were:
- 15 Primer BTRD6S: 5'TCCGAATTCTTCTTYAACCTCATCGAYAACTT3' (SEQ ID NO:10), and
Primer BTRD7A: 5'CGCAAGCTTACTTGGTCGATGTTRCASGTCAT3' (SEQ ID NO:11)

The 1.6 kb fragment clone was ligated in an *E. coli* expression vector, pET-28a-c(+), and expressed using the pET system (Novagen Inc., Madison, WI). Purified polypeptide encoded by this 1.6kb fragment demonstrated binding to Cry1A(b) in ligand blots. An ECB midgut cDNA library was generated and screened using this 1.6kb clone, generating 120 positive plaques. Thirty of these plaques were chosen for secondary screening and fifteen of those plaques were purified and sent for DNA sequencing.

The obtained nucleotide sequence of the selected *Bt* toxin receptor clone from ECB is set forth in SEQ ID NO: 1. The total length of the clone is 5498 base pairs. The coding sequences are residues 162-5312. The Cry1A binding site is encoded by residues 4038-4547. The predicted transmembrane domain is encoded by residues 4872-4928. The corresponding deduced amino acid sequence for this *Bt* toxin receptor clone from ECB is set forth in SEQ ID NO: 2.

30 The purified polypeptide generated from the 1.6kb fragment set forth in SEQ ID NO:7 was used to inoculate rabbits for the production of polyclonal antibodies. On zoe western blots prepared from brush border membrane vesicles from various insect species, this set of antibodies specifically recognized ECB *Bt* toxin receptor

polypeptides, in comparison to *Bt* toxin receptor homologues polypeptides from other insect species. Rabbit polyclonal antibodies were also raised from a purified polypeptide corresponding to amino acids 1293-1462 of SEQ ID NO:2.

5 Example 2: Isolation of CEW and FAW *Bt* toxin receptor orthologues:

cDNA encoding a full-length *Bt* toxin receptor from corn earworm (CEW, *Heliothis Zea*) was isolated. The nucleotide sequence for this cDNA is set forth in SEQ ID NO: 3. Nucleotides 171-5360 correspond to the open reading frame. Nucleotides 4917-4973 correspond to the transmembrane region. Nucleotides 4083-4589 correspond to the Cry1A binding site. The deduced corresponding amino acid sequence for the CEW *Bt* toxin receptor is set forth in SEQ ID NO: 4.

cDNA encoding a full-length *Bt* toxin receptor from fall armyworm (FAW, *Spodoptera frugiperda*) was isolated. The nucleotide sequence for this cDNA is set forth in SEQ ID NO: 5. Nucleotides 162-5363 correspond to the open reading frame.

15 Nucleotides 4110-4616 correspond to the Cry1A binding site. Nucleotides 4941-4997 correspond to the transmembrane region. Nucleotides 162-227 correspond to a signal peptide. The deduced corresponding amino acid sequence for the FAW *Bt* toxin receptor is set forth in SEQ ID NO: 6.

20 Example 3: Binding and cell death in *lepidopteran* insect cells expressing the *Bt* toxin receptors of the invention:

An *in vitro* system is developed to demonstrate the functionality of a *Bt* toxin receptor of the invention. The results disclosed in this example demonstrate that the ECB *Bt* toxin receptor of the invention (SEQ ID NOs:1 and 2) is specifically involved 25 in the binding and killing action of Cry1Ab toxin.

Well known molecular biological methods are used in cloning and expressing the ECB *Bt* toxin receptor in Sf9 cells. A baculovirus expression system (Gibco BRL Catalogue No. 10359-016) is used according to the manufacturer's provided protocols and as described below. *S. frugiperda* (Sf9) cells obtained from ATCC (ATCC-CRL 30 1711) are grown at 27°C in Sf-900 II serum free medium (Gibco BRL, Catalogue No. 10902-088). These cells, which are not susceptible to Cry1Ab toxin, are transfected with an expression construct (pFastBac1 bacmid, Gibco BRL catalogue NO. 10360-014) comprising an operably linked *Bt* toxin receptor of the invention (SEQ ID NO:1)

downstream of a polyhedrin promoter. Transfected Sf9 cells express the ECB *Bt* toxin receptor and are lysed in the presence of Cry1Ab toxin. Toxin specificities, binding parameters, such as Kd values, and half maximal doses for cellular death and/or toxicity are also determined.

5 For generating expression constructs, the ECB *Bt* toxin receptor cDNA (SEQ ID NO:1) is subjected to appropriate restriction digestion, and the resulting cDNA comprising the full-length coding region is ligated into the donor plasmid pFastBac1 multiple cloning site. Following transformation and subsequent transposition, recombinant bacmid DNA comprising the ECB *Bt* toxin receptor (RBECB1) is isolated. As a control, recombinant bacmid DNA comprising the reporter gene β -glucuronidase (RBGUS) is similarly constructed and isolated.

10 For transfection, 2 μ g each RBECB1 or RBGUS DNA is mixed with 6 μ l of CellFectin (GibcoBRL catalogue NO. 10362-010) in 100 μ l of Sf900 medium, and incubated at room temperature for 30 minutes. The mixture is then diluted with 0.8 ml 15 Sf-900 medium. Sf9 cells (10^6 /ml per 35 mm well) are washed once with Sf-900 medium, mixed with the DNA/CellFectin mixture, added to the well, and incubated at room temperature for 5 hours. The medium is removed and 2 ml of Sf-900 medium containing penicillin and streptomycin is added to the well. 3-5 days after transfection, Western blotting is used to examine protein expression.

20 For Western blotting, 100 μ l of cell lysis buffer (50 mM Tris, pH7.8, 150mM NaCl, 1% Nonidet P-40) is added to the well. The cells are scraped and subjected to 16,000xg centrifugation. Pellet and supernatant are separated and subjected to 25 Western blotting. An antibody preparation against ECB *Bt* toxin receptor (Example 1) is used as first antibody. Alkaline phosphatase-labelled anti-rabbit IgG is used as secondary antibody. Western blot results indicate that the full length ECB *Bt* toxin receptor of the invention (SEQ ID NOs:1 and 2) is expressed in the cell membrane of these cells.

For determining GUS activity, the medium of the cells transfected with RBGUS is removed. The cells and the medium are separately mixed with GUS 30 substrate and assayed for the well known enzymatic activity. GUS activity assays indicate that this reporter gene is actively expressed in the transfected cells.

For determining toxin susceptibility, Cry toxins including but not limited to Cry1A, Cry1B, Cry1C, Cry1D, Cry1E, Cry1F, Cry1I, Cry2, Cry3, and Cry9 toxins

(Schnepp E. et al. (1998) *Microbiology and Molecular Biology Reviews* 62(3): 775-806) are prepared by methods known in the art. Crystals are dissolved in pH 10.0, 50 mM carbonate buffer and treated with trypsin. Active fragments of Cry proteins are purified by chromatography. Three to five days after transfection, cells are washed 5 with phosphate buffered saline (PBS). Different concentrations of active fragments of Cry toxins are applied to the cells. At different time intervals, the cells are examined under the microscope to readily determine susceptibility to the toxins. Alternatively, cell death, viability and/or toxicity is quantified by methods well known in the art. See, for example, In Situ Cell Death Detection Kits available from Roche 10 Biochemicals (Catalogue Nos. 2 156 792, 1 684 809, and 1 684 817), and LIVE/DEAD® Viability/Cytotoxicity Kit available from Molecular Probes (catalogue No. L-3224).

A dose-dependent response of RBEBC1-transfected cells to Cry1Ab is readily observed, with determined Kd values well within the range for many receptors. 15 Control cells, e.g. those transfected with pFastBac1 bacmid without an insert or those transfected with RBGus are not significantly affected by Cry1Ab. Interaction with other Cry toxins are similarly characterized.

This *in vitro* system is not only be used to verify the functionality of putative Bt-toxin receptors, but also used as a tool to determine the active site(s) and other 20 functional domains of the toxin and the receptor. Furthermore, the system is used as a cell-based high throughput screen. For example, methods for distinguishing live versus dead cells by differential dyes are known in the art. This allows for aliquots of transfected cells to be treated with various toxin samples and to serve as a means for screening the toxin samples for desired specificity or binding characteristics. Since the 25 system is used to identify the specificity of Cry protein receptors, it is a useful tool in insect resistance management.

Example 4: Expression of the ECB Bt toxin receptor in toxin susceptible stages of the insect's life cycle:

30 Total RNA was isolated from the eggs, pupae, adults, and the 1st through the 5th instar developmental stages, using TRIzol Reagent (Gibco BRL) essentially as instructed by the manufacturer.(Gibco BRL). The RNA was quantitated and 20 ug of each sample was loaded onto a formaldehyde agarose gel and electrophoresed at

constant voltage. The RNA was then transferred to a nylon membrane via neutral capillary transfer and cross-linked to the membrane using ultraviolet light. For hybridization, a 460 base pair ECB *Bt* toxin receptor DNA probe (bases 3682 to 4141 in SEQ ID NO:1) was constructed from a 460 base pair fragment prepared according to the manufacturer's protocol for Amersham Rediprime II random prime labeling system. The denatured probe was added to the membrane that had been prehybridized for at least 3 hours at 65°C and allowed to incubate with gentle agitation for at least 12 hours at 65°C. Following hybridization, the membranes were washed at 65°C for 1 hour with 1/4X 0.5M NaCl, 0.1M NaPO₄ (ph 7.0), 6mM EDTA and 1% SDS solution followed by two 1 hour washes in the above solution without SDS. The membrane was air dried briefly, wrapped in Saran Wrap and exposed to X-ray film.

An ECB *Bt* toxin receptor transcript of 5.5 kilobase was expressed strongly in the larval instars with much reduced expression in the pupal stage. The expression levels appeared to be fairly consistent from first to fifth instar, while decreasing markedly in the pupal stage. There were no detectable transcripts in either the egg or adult stages. These results indicate that the ECB *Bt* toxin transcript is being produced in the susceptible stages of the insects life cycle, while not being produced in stages resistant to the toxic effects of Cry1Ab.

20 Example 5: Tissue and subcellular expression of the ECB *Bt* toxin receptor:

Fifth instar ECB were dissected to isolate the following tissues: fat body (FB), malpighian tubules (MT), hind gut (HG), anterior midgut (AM) and posterior midgut (PM). Midguts from fifth instar larvae were also isolated for brush border membrane vesicle (BBMV) preparation using the well known protocol by Wolfersberger *et al.* (1987) *Comp. Biochem. Physiol.* 86A:301-308. Tissues were homogenized in Tris buffered saline, 0.1 % tween-20, centrifuged to pellet insoluble material, and transferred to a fresh tube. 50 ug of protein from each preparation was added to SDS sample buffer and B-mercaptoethanol, heated to 100°C for 10 minutes and loaded onto a 4-12% Bis-Tris gel (Novex). After electrophoresis, the proteins were transferred to a nitrocellulose membrane using a semi-dry apparatus. The membrane was blocked in 5% nonfat dry milk buffer for 1 hour at room temperature with gentle agitation. The primary antibody (Example 1) was added to a final dilution of 1:5000 and allowed to hybridize for 1 hour. The blot was then washed three times for 20

minutes each in nonfat milk buffer. The blot was then hybridized with the secondary antibody (goat anti-rabbit with alkaline phosphatase conjugate) at a dilution of 1:10000 for 1 hour at room temperature. Washes were performed as before. The bands were visualized by using the standard chemiluminescent protocol (Tropix western light protein detection kit).

The ECB *Bt* toxin receptor protein was only visible in the BBMV enriched lane, and not detected in any of the other ECB tissues types. This result indicates that the expression of the ECB *Bt* toxin receptor protein is at very low levels, since the BBMV preparation is a 20-30 fold enriched fraction of the midgut brush border. The 10 result supports propositions that the ECB *Bt* toxin receptor is an integral membrane protein uniquely associated with the brush border. It also demonstrates that the ECB *Bt* toxin receptor is expressed in the envisioned target tissue for CrylAb toxins. However, the result does not necessarily rule out expression in other tissue types, albeit the expression of this protein in those tissues may be lower than in the BBMV 15 enriched fraction.

All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and 20 individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Applicant's or agent's file reference 35718/204291	International application No.
---	-------------------------------

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**

(PCT Rule 13bis)

A. The indications made below relate to the deposited microorganism or other biological material referred to in the description on page 3, lines 23, 26 and 31	
B. IDENTIFICATION OF DEPOSIT	
Name of depository institution American Type Culture Collection	
Address of depositary institution (<i>including postal code and country</i>) 10801 University Blvd. Manassas, VA 20110-2209 US	
Date of deposit 25 June 1999 (25.06.99)	Accession Number PTA-278
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)	
This information is continued on an additional sheet <input type="checkbox"/>	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indicators are not for all designated States</i>)	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)	
The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)	

For receiving Office use only

This sheet was received with the international application

ROUS 17 NOV 2001

Authorised officer
Yanica Harrod
PCT/Internat'l Appl Processing Div.
(703) 305-3670

For International Bureau use only

This sheet was received with the International Bureau on:

Authorized officer

Applicant's or agent's file reference	35718/204291	International application No.
---------------------------------------	--------------	-------------------------------

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**

(PCT Rule 13bis)

A. The indications made below relate to the deposited microorganism or other biological material referred to in the description on page 3, lines 23, 26 and 31		
B. IDENTIFICATION OF DEPOSIT		Further deposits are identified on an additional sheet <input type="checkbox"/>
Name of depository institution American Type Culture Collection		
Address of depositary institution (<i>including postal code and country</i>) 10801 University Blvd. Manassas, VA 20110-2209 US		
Date of deposit	25 April 2000 (25.04.00)	Accession Number PTA-1760
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)		This information is continued on an additional sheet <input type="checkbox"/>
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indicators are not for all designated States</i>)		
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)		
The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)		

For receiving Office use only

This sheet was received with the international application

Ronja 17 NOV 2000

Authorized officer
Isolanda Harrod
PCT/intern'l Appl Processing Div.
(703) 305-9670

For International Bureau use only

This sheet was received with the International Bureau on:

Authorized officer

Applicant's or agent's file reference	35718/204291	International application No.
--	--------------	-------------------------------

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**

(PCT Rule 13bis)

- A.** The indications made below relate to the deposited microorganism or other biological material referred to in the description on page 3, lines 23, 26 and 31

B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet

Name of depository institution

American Type Culture Collection

Address of depositary institution (*including postal code and country*)

10801 University Blvd.
Manassas, VA 20110-2209 US

Date of deposit

11 July 2000 (11.07.00)

Accession Number

PTA-2222

C. ADDITIONAL INDICATIONS (leave blank if not applicable)

This information is continued on an additional sheet

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indicators are not for all designated States)

E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)

The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit")

For receiving Office use only

This sheet was received with the international application

RO/US 17 NOV 2000

Authorized officer

Yolanda Harrod

PCT/Internat'l Appl Processing Div.
(703) 305-3670

For International Bureau use only

This sheet was received with the International Bureau on:

Authorized officer

THAT WHICH IS CLAIMED:

1. An isolated nucleic acid molecule having a nucleotide sequence encoding a *Bt* toxin receptor, said sequence selected from the group consisting of:
 - a) a nucleotide sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5;
 - 5 b) a nucleotide sequence having at least about 60 % identity to the nucleotide sequence of a);
 - c) a nucleotide sequence having at least about 70 % identity to the nucleotide sequence of a);
 - d) 10 a nucleotide sequence having at least about 75 % identity to the nucleotide sequence of a);
 - e) 15 a nucleotide sequence having at least about 85 % identity to the nucleotide sequence of a);
 - f) a nucleotide sequence having at least about 95 % identity to the nucleotide sequence of a);
 - g) 20 a nucleotide sequence consisting of at least 22 contiguous nucleotides of the nucleotide sequence set forth in SEQ ID NO:1;
 - h) a nucleotide sequence consisting of at least about 15 contiguous nucleotides of the nucleotide sequence set forth in SEQ ID NO:3, or SEQ ID NO:5 ;
 - i) 25 conditions to the nucleotide sequence of a); and
2. The nucleic acid molecule of claim 1, wherein said toxin is a Cry1A toxin.
3. 30 The nucleic acid of claim 2, wherein said Cry1A toxin is a Cry1A(b) toxin.
4. An isolated polypeptide having the amino acid sequence selected from the group consisting of:
 - a) an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO: 4, or SEQ ID NO: 6;
 - b) an amino acid sequence having at least about 52% identity to

the amino acid sequence set forth in SEQ ID NO: 2;

- c) an amino acid sequence having at least about 60 % identity to the amino acid sequence of a);
- d) an amino acid sequence having at least about 70 % identity to the 5 amino acid sequence of a);
- e) an amino acid sequence having at least about 75 % identity to an amino acid sequence of a);
- f) an amino acid sequence having at least about 85 % identity to an amino acid sequence of a);
- 10 g) an amino acid sequence having at least about 95 % identity to an amino acid sequence of a);
- h) an amino acid comprising at least about 15 contiguous residues of the amino acid nucleotide sequence of a);
- i) an amino acid sequence encoded by a nucleotide sequence 15 according to claim 1;
- j) a variant of the amino acid sequence of a);
- k) a fragment of the amino acid sequence of a); and
- l) a fragment of the amino acid sequence of a) that binds *Bt* toxin.

20 5. A fusion polypeptide comprising the polypeptide of claim 4, and at least one polypeptide of interest.

6. The fusion polypeptide of claim 5, wherein said polypeptide of interest is a toxin receptor.

25 7. An expression cassette comprising a nucleotide sequence encoding the fusion polypeptide of claim 5, wherein said nucleotide sequence is operably linked to a promoter that drives expression in a cell of interest.

30 8. The expression cassette of claim 7 wherein said polypeptide of interest is a toxin receptor.

9. An antibody preparation specific for the polypeptide of claim 4.

10. An expression cassette comprising at least one nucleotide sequence according to claim 1, wherein said nucleotide sequence is operably linked to a promoter that drives expression in a cell of interest.

5

11. The expression cassette of claim 10, wherein said cell of interest is an insect or mammalian cell.

12. The expression cassette of claim 10 wherein said cell of interest is a 10 microorganism.

13. The expression cassette of claim 12 wherein said microorganism is yeast or bacteria.

15 14. A vector for delivery of a nucleotide sequence to a cell of interest, the vector comprising at least one nucleotide sequence according to claim 1.

15. A cell containing the vector of claim 14.

20 16. A transformed cell of interest having stably incorporated within its genome a nucleotide sequence selected from the group consisting of:

a) a nucleotide sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5;

25 b) a nucleotide sequence having at least about 60 % identity to the nucleotide sequence of a);

c) a nucleotide sequence having at least about 70 % identity to the nucleotide sequence of a);

d) a nucleotide sequence having at least about 75 % identity to the nucleotide sequence of a);

30 e) a nucleotide sequence having at least about 85 % identity to the nucleotide sequence of a);

f) a nucleotide sequence having at least about 95 % identity to the nucleotide sequence of a);

- g) a nucleotide sequence consisting of at least 22 contiguous nucleotides of the nucleotide sequence set forth in SEQ ID NO:1;
- 5 h) a nucleotide sequence consisting of at least about 15 contiguous nucleotides of the nucleotide sequence set forth in SEQ ID NO:3, or SEQ ID NO:5 ;
- i) a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of a); and

17. The transformed cell of claim 16 , wherein said cell is a plant cell.

10

18. The transformed cell of claim 17, wherein said plant cell is monocotyledonous.

19. A method for screening for ligands that bind *Bt* toxin receptor, said 15 method comprising:

- i) providing at least one *Bt* toxin receptor polypeptide according to claim 4;
- ii) contacting said polypeptide with a sample and a control ligand under conditions promoting binding; and
- 20 iii) determining binding characteristics of said sample ligand, relative to said control ligand.

20. A method for screening for ligands that bind *Bt* toxin receptor, said method comprising:

- 25 i) providing at least one *Bt* toxin receptor polypeptide having the amino acid sequence selected from the group consisting of a, b, c, d, e, f, g, h , i, and j of claim 4 in cells expressing said polypeptide wherein said polypeptide comprises a toxin binding domain ;
- ii) contacting said cells with a sample and a control ligand under 30 conditions promoting binding; and
- iii) determining binding characteristics of said sample ligand, relative to said control ligand.

21. The method of claim 20 wherein said toxin is a Cry1A toxin.

22. A method for screening for toxins that bind Bt toxin receptor, said method comprising the steps of claim 20; further comprising determining viability of said cells contacted with a sample ligand relative to said cells contacted with a control ligand.

23. The method of claim 20, wherein said sample ligand is a chimeric polypeptide comprising at least one primary polypeptide that binds a polypeptide having the amino acid sequence selected from the group consisting of:

- 10 a) an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO: 4, or SEQ ID NO: 6;
- b) an amino acid sequence having at least about 52% identity to the amino acid sequence set forth in SEQ ID NO: 2;
- 15 c) an amino acid sequence having at least about 60 % identity to the amino acid sequence of a);
- d) an amino acid sequence having at least about 70 % identity to the amino acid sequence of a);
- e) an amino acid sequence having at least about 75 % identity to an amino acid sequence of a);
- 20 f) an amino acid sequence having at least about 85 % identity to an amino acid sequence of a);
- g) an amino acid sequence having at least about 95 % identity to an amino acid sequence of a);
- 25 h) an amino acid comprising at least about 15 contiguous residues of the amino acid nucleotide sequence of a);
- i) an amino acid sequence encoded by a nucleotide sequence having at least about 60 % identity to the nucleotide sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5; and
- j) a variant of the amino acid sequence of a).

30 24. The method of claims 21, wherein said sample ligand is a chimeric polypeptide comprising at least one primary polypeptide that binds a polypeptide having the amino acid sequence selected from the group consisting of:

- a) an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO: 4, or SEQ ID NO: 6;
- b) an amino acid sequence having at least about 52% identity to the amino acid sequence set forth in SEQ ID NO: 2;
- 5 c) an amino acid sequence having at least about 60 % identity to the amino acid sequence of a);
- d) an amino acid sequence having at least about 70 % identity to the amino acid sequence of a);
- e) an amino acid sequence having at least about 75 % identity to an amino acid sequence of a);
- 10 f) an amino acid sequence having at least about 85 % identity to an amino acid sequence of a);
- g) an amino acid sequence having at least about 95 % identity to an amino acid sequence of a);
- 15 h) an amino acid comprising at least about 15 contiguous residues of the amino acid nucleotide sequence of a);
- i) an amino acid sequence encoded by a nucleotide sequence having at least about 60 % identity to the nucleotide sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5; and
- 20 j) a variant of the amino acid sequence of a).

25. The method of claims 22, wherein said sample ligand is a chimeric polypeptide comprising at least one primary polypeptide that binds a polypeptide having the amino acid sequence selected from the group consisting of:
- a) an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO: 4, or SEQ ID NO: 6;
 - b) an amino acid sequence having at least about 52% identity to the amino acid sequence set forth in SEQ ID NO: 2;
 - 30 c) an amino acid sequence having at least about 60 % identity to the amino acid sequence of a);
 - d) an amino acid sequence having at least about 70 % identity to the amino acid sequence of a);

- e) an amino acid sequence having at least about 75 % identity to an amino acid sequence of a);
- f) an amino acid sequence having at least about 85 % identity to an amino acid sequence of a);
- 5 g) an amino acid sequence having at least about 95 % identity to an amino acid sequence of a);
- h) an amino acid comprising at least about 15 contiguous residues of the amino acid nucleotide sequence of a);
- i) an amino acid sequence encoded by a nucleotide sequence having at 10 least about 60 % identity to the nucleotide sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5; and
- j) a variant of the amino acid sequence of a).

Gly = putative glycosilation sites

Cad = cadherin-like domain

FIGURE 1

SEQUENCE LISTING

<110> Flannagan, Ronald D.
 Mathis, John P.
 Meyer, Terry E.

<120> Novel Bt Toxin Receptors From
 Lepidopteran Insects and Methods of Use

<130> 35718/204291

<150> 60/166,285
 <151> 1999-11-18

<160> 11

<170> FastSEQ for Windows Version 4.0

<210> 1
 <211> 5498
 <212> DNA
 <213> Ostrinia nubilalis

<220>

<221> CDS

<222> (162)...(5312)

<400> 1

cataataaca ataaagagga agtgtgtgtg aaaaacgaag aagttataaa acctggataa	60
ttaaacctga aaaaaaccgg tggtaatgt gaattttgc tgaaggacaa ccgtgggata	120
gctcaaatat taaaattcta cataactaag gatcatgcaa a atg ggg gtt gag agg	176
Met Gly Val Glu Arg	
1	5

ttc ttc cca gca gtg cta ctg gtc tct tta gcc tct gcc gca cta gcc	224
Phe Phe Pro Ala Val Leu Leu Val Ser Leu Ala Ser Ala Ala Leu Ala	
10 15 20	

aac caa cga tgt tcg tac att atc gca ata cca aga ccg gag act ccg	272
Asn Gln Arg Cys Ser Tyr Ile Ile Ala Ile Pro Arg Pro Glu Thr Pro	
25 30 35	

gaa ctg ccg cct att gat tac gaa gga aaa tca tgg agt gaa cag cct	320
Glu Leu Pro Pro Ile Asp Tyr Glu Gly Lys Ser Trp Ser Glu Gln Pro	
40 45 50	

cta ata ccc ggc ccg acc cga gag gaa gta tgt atg gag aac ttc tta	368
Leu Ile Pro Gly Pro Thr Arg Glu Glu Val Cys Met Glu Asn Phe Leu	
55 60 65	

ccg gat caa atg att cag gtc ata tac atg gag gaa gaa atc gaa gga	416
Pro Asp Gln Met Ile Gln Val Ile Tyr Met Glu Glu Glu Ile Glu Gly	
70 75 80 85	

gac gtc atc att gcg aag ctt aac tat caa ggg tcc aac acg ccg gtg	464
Asp Val Ile Ile Ala Lys Leu Asn Tyr Gln Gly Ser Asn Thr Pro Val	
90 95 100	

ctg tcg att atg tca ggc cag ccc aga gcc cag ctg ggc cct gag ttt	512
---	-----

Leu Ser Ile Met Ser Gly Gln Pro Arg Ala Gln Leu Gly Pro Glu Phe			
105	110	115	
cga cag aat gaa gca gac ggc caa tgg agc ctt gtt att acg caa aga		560	
Arg Gln Asn Glu Ala Asp Gly Gln Trp Ser Leu Val Ile Thr Gln Arg			
120	125	130	
caa gac tac gag aca gca acc atg cag agc tat gtg ttc tca atc caa		608	
Gln Asp Tyr Glu Thr Ala Thr Met Gln Ser Tyr Val Phe Ser Ile Gln			
135	140	145	
gtg gag ggt gaa tca cag gcc gta ctg gtg gcg ctg gag ata gtc aac		656	
Val Glu Gly Glu Ser Gln Ala Val Leu Val Ala Leu Glu Ile Val Asn			
150	155	160	165
atc gac gac aat ccg ccc atc ctg caa gtg gtc agc gcc tgc gta att		704	
Ile Asp Asp Asn Pro Pro Ile Leu Gln Val Val Ser Ala Cys Val Ile			
170	175	180	
cca gaa cat ggc gag gct aga ctg acc gac tgc gtg tac caa gtg tca		752	
Pro Glu His Gly Glu Ala Arg Leu Thr Asp Cys Val Tyr Gln Val Ser			
185	190	195	
gac cgc gac ggt gaa atc agc acc cgc ttc atg acg ttc cgt gtc gac		800	
Asp Arg Asp Gly Glu Ile Ser Thr Arg Phe Met Thr Phe Arg Val Asp			
200	205	210	
agc agc agg gct gca gat gaa agc atc ttc tac atg gtt gga gaa tac		848	
Ser Ser Arg Ala Ala Asp Glu Ser Ile Phe Tyr Met Val Gly Glu Tyr			
215	220	225	
gac ccc agc gac tgg ttc aat atg aag atg act gtg ggg atc aat tcg		896	
Asp Pro Ser Asp Trp Phe Asn Met Lys Met Thr Val Gly Ile Asn Ser			
230	235	240	245
ccc ttg aac ttc gag aca act cag ctt cat ata ttt agc gtc aca gct		944	
Pro Leu Asn Phe Glu Thr Thr Gln Leu His Ile Phe Ser Val Thr Ala			
250	255	260	
tct gac tcg cta ccg aac aac cac acg gtc acc atg atg gtg caa gtg		992	
Ser Asp Ser Leu Pro Asn Asn His Thr Val Thr Met Met Val Gln Val			
265	270	275	
gag aac gta gag tct cgg ccc cct cgc tgg gtg gag atc ttc tca gtg		1040	
Glu Asn Val Glu Ser Arg Pro Pro Arg Trp Val Glu Ile Phe Ser Val			
280	285	290	
cag cag ttt gac gag aag act aat cag agc ttc tcc ctc cgc gcg ata		1088	
Gln Gln Phe Asp Glu Lys Thr Asn Gln Ser Phe Ser Leu Arg Ala Ile			
295	300	305	
gac ggg gac acg gga atc aat agg gcc atc aac tat acc ctc atc agg		1136	
Asp Gly Asp Thr Gly Ile Asn Arg Ala Ile Asn Tyr Thr Leu Ile Arg			
310	315	320	325
gat gac gct gac gac ttc ttt tcc ctg gag gtg att gaa gac gga gct		1184	
Asp Asp Ala Asp Asp Phe Phe Ser Leu Glu Val Ile Glu Asp Gly Ala			
330	335	340	
att ctg cac gtg act gag atc gac cgc gac aag ctt gaa aga gag ctt		1232	
Ile Leu His Val Thr Glu Ile Asp Arg Asp Lys Leu Glu Arg Glu Leu			
345	350	355	

ttc aac ctc acc atc gtt tac aaa tct act gac gct agc ttt gca - 1280
 Phe Asn Leu Thr Ile Val Ala Tyr Lys Ser Thr Asp Ala Ser Phe Ala
 360 365 370

 aca gag gcc cac att ttc atc atc gtc aac gac gtc aat gat cag cga - 1328
 Thr Glu Ala His Ile Phe Ile Ile Val Asn Asp Val Asn Asp Gln Arg
 375 380 385

 ccc gag ccg ctg cat aaa gaa tac agt att gat atc atg gag gaa act - 1376
 Pro Glu Pro Leu His Lys Glu Tyr Ser Ile Asp Ile Met Glu Glu Thr
 390 395 400 405

 cca atg act cta aac ttc aat gaa gaa ttt gga ttc cat gat cga gat - 1424
 Pro Met Thr Leu Asn Phe Asn Glu Glu Phe Gly Phe His Asp Arg Asp
 410 415 420

 ttg ggt gaa aac gctcaa tac aca gtg gaa ctt gag gac gtg ttc ccg - 1472
 Leu Gly Glu Asn Ala Gln Tyr Thr Val Glu Leu Glu Asp Val Phe Pro
 425 430 435

 cca ggg gcg gcg tcc gca ttc tac atc gcg ccg ggg agc ggc tac cag - 1520
 Pro Gly Ala Ala Ser Ala Phe Tyr Ile Ala Pro Gly Ser Gly Tyr Gln
 440 445 450

 agg cag acc ttc atc atg ggc acc ata aac cac acc atg ctg gat tac - 1568
 Arg Gln Thr Phe Ile Met Gly Thr Ile Asn His Thr Met Leu Asp Tyr
 455 460 465

 gaa gat gtc att ttt cag aac atc atc att aag gtc aaa gca gtg gac - 1616
 Glu Asp Val Ile Phe Gln Asn Ile Ile Lys Val Lys Ala Val Asp
 470 475 480 485

 atg aac aac gct agc cac gtg ggc gag gcg ctg gtg tac gtg aac ctg - 1664
 Met Asn Asn Ala Ser His Val Gly Glu Ala Leu Val Tyr Val Asn Leu
 490 495 500

 atc aac tgg aac gac gaa ctt ccc atc ttc gag gag agc agc tac tcc - 1712
 Ile Asn Trp Asn Asp Glu Leu Pro Ile Phe Glu Glu Ser Ser Tyr Ser
 505 510 515

 gcg tcg ttt aag gag acc gtc ggc gcc ggc ttc ccg gtg gcc acg gtg - 1760
 Ala Ser Phe Lys Glu Thr Val Gly Ala Gly Phe Pro Val Ala Thr Val
 520 525 530

 ctc gcc ctc gac aga gac atc gac gac gta gta gtg cat tca ttg atg - 1808
 Leu Ala Leu Asp Arg Asp Ile Asp Asp Val Val His Ser Leu Met
 535 540 545

 ggc aac gct gtt gac tac ctg ttc ata gat gaa tca acg gga gag atc - 1856
 Gly Asn Ala Val Asp Tyr Leu Phe Ile Asp Glu Ser Thr Gly Glu Ile
 550 555 560 565

 ttc gtg agc atg gac gat gcc ttc gac tac cac cga cag aac act cta - 1904
 Phe Val Ser Met Asp Asp Ala Phe Asp Tyr His Arg Gln Asn Thr Leu
 570 575 580

 ttt gtt cag gtg cgc gct gac gat act ttg ggc gac ggc cca cac aac - 1952
 Phe Val Gln Val Arg Ala Asp Asp Thr Leu Gly Asp Gly Pro His Asn
 585 590 595

 aca gtg acc acc cag ctg gtg ata gaa ctg gag gat gtc aac aac act - 2000

Thr Val Thr Thr Gln Leu Val Ile Glu Leu Glu Asp Val Asn Asn Thr			
600	605	610	
cct ccc acc cta cgc ttg ccc cgt tcg act cca agc gtc gag gag aac		2048	
Pro Pro Thr Leu Arg Leu Pro Arg Ser Thr Pro Ser Val Glu Glu Asn			
615	620	625	
gtt ccc gaa gga tac gag ata tcc cgg gaa atc act gct acc gac ccg		2096	
Val Pro Glu Gly Tyr Glu Ile Ser Arg Glu Ile Thr Ala Thr Asp Pro			
630	635	640	645
gac acc agc gcc tac ctg tgg ttc gag atc gac tgg gac tcc acc tgg		2144	
Asp Thr Ser Ala Tyr Leu Trp Phe Glu Ile Asp Trp Asp Ser Thr Trp			
650	655	660	
gcc acc aag cag ggc aga gag acc aac cct act gaa tac gtc ggg tgt		2192	
Ala Thr Lys Gln Gly Arg Glu Thr Asn Pro Thr Glu Tyr Val Gly Cys			
665	670	675	
ata gtt atc gaa acg ata tac ccc acc gag ggc aac cgg ggt tcc gcc		2240	
Ile Val Ile Glu Thr Ile Tyr Pro Thr Glu Gly Asn Arg Gly Ser Ala			
680	685	690	
atc ggg cgc ctc gtg gtg caa gag atc cgg gac aac gtc acc atc gac		2288	
Ile Gly Arg Leu Val Val Gln Glu Ile Arg Asp Asn Val Thr Ile Asp			
695	700	705	
tcc gag gaa ttc gag atg ctt tac ctc acc gtc cgc gtg agg gac ctc		2336	
Phe Glu Glu Phe Glu Met Leu Tyr Leu Thr Val Arg Val Arg Asp Leu			
710	715	720	725
aac act gtc atc gga gat gac tac gat gag gcg acg ttc acg atc aca		2384	
Asn Thr Val Ile Gly Asp Asp Tyr Asp Glu Ala Thr Phe Thr Ile Thr			
730	735	740	
ata atc gac atg aac gac aac gcg ccg atc ttc gcg aac ggc acg ctg		2432	
Ile Ile Asp Met Asn Asp Asn Ala Pro Ile Phe Ala Asn Gly Thr Leu			
745	750	755	
acg cag acg atg cgc gtg cgc gag ctg gcg gcc agc ggc acg ctc atc		2480	
Thr Gln Thr Met Arg Val Arg Glu Leu Ala Ala Ser Gly Thr Leu Ile			
760	765	770	
ggc tcc gtg ctc gcc acc gac atc gac ggc ccg ctc tac aac caa gtg		2528	
Gly Ser Val Leu Ala Thr Asp Ile Asp Gly Pro Leu Tyr Asn Gln Val			
775	780	785	
cgc tac act ata caa cct aga aac aac act ccc gag gga tta gtg aag		2576	
Arg Tyr Thr Ile Gln Pro Arg Asn Asn Thr Pro Glu Gly Leu Val Lys			
790	795	800	805
att gac ttc aca act ggt caa att gag gtg gat gcg aac gag gcg atc		2624	
Ile Asp Phe Thr Thr Gly Gln Ile Glu Val Asp Ala Asn Glu Ala Ile			
810	815	820	
gat gca gac gaa ccc tgg cgc ttc tac ttg tac tac acc gtc atc gct		2672	
Asp Ala Asp Glu Pro Trp Arg Phe Tyr Leu Tyr Tyr Thr Val Ile Ala			
825	830	835	
agc gac gag tgc tcc ctg gaa aac cgc acg gaa tgt cct cca gat tcc		2720	
Ser Asp Glu Cys Ser Leu Glu Asn Arg Thr Glu Cys Pro Pro Asp Ser			
840	845	850	

aac tac ttc gaa gtt cca ggc gat atc gaa ata gaa atc atc gac aca Asn Tyr Phe Glu Val Pro Gly Asp Ile Glu Ile Glu Ile Asp Thr 855 860 865	- 2768
aac aac aaa gtg cct gag ccg ctc act gag aag ttc aac acg acg gtg Asn Asn Lys Val Pro Glu Pro Leu Thr Glu Lys Phe Asn Thr Thr Val 870 875 880 885	2816
tac gtc tgg gag aat gcc acg agc ggc gac gag gtg gtc cag ctg tac Tyr Val Trp Glu Asn Ala Thr Ser Gly Asp Glu Val Val Gln Leu Tyr 890 895 900	2864
tcc cac gac cgt gac aga gac gag ttg tac cac acg gta cga tac acg Ser His Asp Arg Asp Arg Asp Glu Leu Tyr His Thr Val Arg Tyr Thr 905 910 915	2912
atg aac ttt gcg gtg aac ccc cga ctg cgg gat ttc ttc gag gtg gac Met Asn Phe Ala Val Asn Pro Arg Leu Arg Asp Phe Glu Val Asp 920 925 930	2960
ctg gac act ggt cgc ctt gag gtg cat tac ccg ggg gac gaa aaa ttg Leu Asp Thr Gly Arg Leu Glu Val His Tyr Pro Gly Asp Glu Lys Leu 935 940 945	3008
gac cgc gat ggg gat gag cct aca cat act atc ttt gta aat ttc atc Asp Arg Asp Gly Asp Glu Pro Thr His Thr Ile Phe Val Asn Phe Ile 950 955 960 965	3056
gat aac ttc ttt tct gat ggt gac ggt agg aga aac cag gac gaa gtt Asp Asn Phe Phe Ser Asp Gly Asp Gly Arg Arg Asn Gln Asp Glu Val 970 975 980	3104
gaa ata ttt gtc gtt cta ttg gat gtg aac gac aac gct cct gag atg Glu Ile Phe Val Val Leu Asp Val Asn Asp Asn Ala Pro Glu Met 985 990 995	3152
cca ttg cct gat gaa ctc cgg ttt gat gtt tcc gaa gga gca gtt gct Pro Leu Pro Asp Glu Leu Arg Phe Asp Val Ser Glu Gly Ala Val Ala 1000 1005 1010	3200
ggt gtc cgt gta ctc cca gaa atc tac gca ccg gac agg gat gaa cca Gly Val Arg Val Leu Pro Glu Ile Tyr Ala Pro Asp Arg Asp Glu Pro 1015 1020 1025	3248
gac acg gac aac tcg cgt gtc ggt tac gga atc ctg gac ctc acg atc Asp Thr Asp Asn Ser Arg Val Gly Tyr Gly Ile Leu Asp Leu Thr Ile 1030 1035 1040 1045	3296
acc gac cga gac atc gag gtg ccg gat ctc ttc acc atg atc tcg att Thr Asp Arg Asp Ile Glu Val Pro Asp Leu Phe Thr Met Ile Ser Ile 1050 1055 1060	3344
gaa aac aaa act ggg gaa ctt gag acc gct atg gac ttg agg ggg tat Glu Asn Lys Thr Gly Glu Leu Glu Thr Ala Met Asp Leu Arg Gly Tyr 1065 1070 1075	3392
tgg ggc act tac gaa ata ttc att gag gcc ttc gac cac ggc tac ccg Trp Gly Thr Tyr Glu Ile Phe Ile Glu Ala Phe Asp His Gly Tyr Pro 1080 1085 1090	3440
cag cag agg tcc aac gag acg tac acc ctg gtc atc cgc ccc tac aac	3488

Gln Gln Arg Ser Asn Glu Thr Tyr Thr Leu Val Ile Arg Pro Tyr Asn 1095 1100 1105	
ttc cac cac cct gtg ttc gtg ttc ccg caa ccc gac tcc gtc att cgg Phe His His Pro Val Phe Val Phe Pro Gln Pro Asp Ser Val Ile Arg 1110 1115 1120 1125	3536
cgt tct agg gag cgc gca aca gaa ggc ggc gtt ctg gcg acg gct gcc Leu Ser Arg Glu Arg Ala Thr Glu Gly Val Leu Ala Thr Ala Ala 1130 1135 1140	3584
aac gag ttc ctg gag ccg atc tac gcc acc gac gag gac ggc ctc cac Asn Glu Phe Leu Glu Pro Ile Tyr Ala Thr Asp Glu Asp Gly Leu His 1145 1150 1155	3632
gcg ggc agc gtc acg ttc cac gtc cag gga aat gag gag gcc gtt cag Ala Gly Ser Val Thr Phe His Val Gln Gly Asn Glu Glu Ala Val Gin 1160 1165 1170	3680
tac ttt gat ata act gaa gtg gga gca gga aat agc ggg cag ctt Tyr Phe Asp Ile Thr Glu Val Gly Ala Gly Glu Asn Ser Gly Gln Leu 1175 1180 1185	3728
ata tta cgc cag ctt ttc cca gag caa atc aga caa ttc agg atc acg Ile Leu Arg Gln Leu Phe Pro Glu Gln Ile Arg Gln Phe Arg Ile Thr 1190 1195 1200 1205	3776
atc cgg gcc acg gac ggc ggc acg gag ccc ggc ccc ctt tgg acc gac Ile Arg Ala Thr Asp Gly Gly Thr Glu Pro Gly Pro Leu Trp Thr Asp 1210 1215 1220	3824
gtc acg ttt tcg gtg gtc ttc gta ccc aca cag ggc gac cca gtg ttc Val Thr Phe Ser Val Val Phe Val Pro Thr Gln Gly Asp Pro Val Phe 1225 1230 1235	3872
agc gaa aat gca gct act gtc gcc ttc ttc gag ggt gaa gaa ggc ctc Ser Glu Asn Ala Ala Thr Val Ala Phe Phe Glu Gly Glu Glu Gly Leu 1240 1245 1250	3920
cgt gag agt ttt gag ctg ccg caa gca gaa gac ctt aaa aac cac ctc Arg Glu Ser Phe Glu Leu Pro Gln Ala Glu Asp Leu Lys Asn His Leu 1255 1260 1265	3968
tgc gaa gat gac tgc caa gat atc tac tac agg ttt att gac ggc aac Cys Glu Asp Asp Cys Gln Asp Ile Tyr Tyr Arg Phe Ile Asp Gly Asn 1270 1275 1280 1285	4016
aac gag ggt ctt ttc gta ctg gac cag tca agc aac gtc atc tcc ctt Asn Glu Gly Leu Phe Val Leu Asp Gln Ser Ser Asn Val Ile Ser Leu 1290 1295 1300	4064
gcg cag gag ttg gac cgc gag gtg gcc acg tct tac acg ctg cac atc Ala Gln Glu Leu Asp Arg Glu Val Ala Thr Ser Tyr Thr Leu His Ile 1305 1310 1315	4112
gcg gcg agc aac tcg ccc gac gcc act ggg atc cct ctg cag act tcc Ala Ala Ser Asn Ser Pro Asp Ala Thr Gly Ile Pro Leu Gln Thr Ser 1320 1325 1330	4160
atc ctc gtt gtc acg gtc aat gta aga gaa ggc aac ccg cgc cca att Ile Leu Val Val Thr Val Asn Val Arg Glu Ala Asn Pro Arg Pro Ile 1335 1340 1345	4208

ttc gag cag gac ctt tac aca gcg ggc att tcg acg ttg gac agc att Phe Glu Gln Asp Leu Tyr Thr Ala Gly Ile Ser Thr Leu Asp Ser Ile 1350 1355 1360 1365	4256
ggc cg ^g gaa ttg ctt act gtc agg gcg agc cac aca gaa gac gac acc Gly Arg Glu Leu Leu Thr Val Arg Ala Ser His Thr Glu Asp Asp Thr 1370 1375 1380	4304
atc acg tac acc ata gac cgt gcg agc atg cag ctg gac agc agc cta Ile Thr Tyr Thr Ile Asp Arg Ala Ser Met Gln Leu Asp Ser Ser Leu 1385 1390 1395	4352
gaa gcc gtg cgc gac t ^c g gcc ttc g ^c g ctg cat g ^c g acc acc ggc gtg Glu Ala Val Arg Asp Ser Ala Phe Ala Leu His Ala Thr Thr Gly Val 1400 1405 1410	4400
ctt tcg ctc aat atg cag ccc acc gct tcc atg cac ggc atg ttc gag Leu Ser Leu Asn Met Gln Pro Thr Ala Ser Met His Gly Met Phe Glu 1415 1420 1425	4448
ttc gac gtc atc gct acg gat aca gct tct gca atc gac aca g ^c c cgt Phe Asp Val Ile Ala Thr Asp Thr Ala Ser Ala Ile Asp Thr Ala Arg 1430 1435 1440 1445	4496
gtg aaa gtc tac ctc atc tca tcg caa aac cgc gtg acc ttc att ttc Val Lys Val Tyr Leu Ile Ser Ser Gln Asn Arg Val Thr Phe Ile Phe 1450 1455 1460	4544
gat aac caa ctt gag acc gtt gag cag aac aga aat ttc ata g ^c g gcc Asp Asn Gln Leu Glu Thr Val Glu Gln Asn Arg Asn Phe Ile Ala Ala 1465 1470 1475	4592
acg ttc agc acc ggg ttc aac atg acg tgc aac atc gac cag gtg gtg Thr Phe Ser Thr Gly Phe Asn Met Thr Cys Asn Ile Asp Gln Val Val 1480 1485 1490	4640
ccg ttc agc gac agc agc ggc gtg g ^c g caa gac gac acc acc gag gtg Pro Phe Ser Asp Ser Ser Gly Val Ala Gln Asp Asp Thr Thr Glu Val 1495 1500 1505	4688
cgc g ^c g cac ttc atc cgg gac aac gtg ccc gtg cag gca caa gag gtc Arg Ala His Phe Ile Arg Asp Asn Val Pro Val Gln Ala Gln Glu Val 1510 1515 1520 1525	4736
gag gcc gtc cgc agc gac acg gtg ctg ctg cgc acc atc cag ctg atg Glu Ala Val Arg Ser Asp Thr Val Leu Leu Arg Thr Ile Gln Leu Met 1530 1535 1540	4784
ctg agc acc aac agc ctg gtg ctg caa gac ctg gtg acg ggt gac act Leu Ser Thr Asn Ser Leu Val Leu Gln Asp Leu Val Thr Gly Asp Thr 1545 1550 1555	4832
ccg acg cta ggc gag gag tca atg cag atc g ^c c gtc tac gca cta gcc Pro Thr Leu Gly Glu Ser Met Gln Ile Ala Val Tyr Ala Leu Ala 1560 1565 1570	4880
g ^c g ctc tcc gct gtg cta ggc ttc ctc tgc ctc gta ctg ctt ctc gca Ala Leu Ser Ala Val Leu Gly Phe Leu Cys Leu Val Leu Leu Ala 1575 1580 1585	4928
ttg ttc tgt agg aca aga gca ctg aac cgg cag ctg caa gca ctc tcc	4976

Leu Phe Cys Arg Thr Arg Ala Leu Asn Arg Gln Leu Gln Ala Leu Ser			
1590	1595	1600	1605
atg acg aag tac ggc tcg gtg gac tcc ggg ctg aac cgc gcc ggg ctg			5024
Met Thr Lys Tyr Gly Ser Val Asp Ser Gly Leu Asn Arg Ala Gly Leu			
1610	1615	1620	
gcg ccg ggc acc aac aag cac gcc gtc gag ggc tcc aac ccc atg tgg			5072
Ala Pro Gly Thr Asn Lys His Ala Val Glu Gly Ser Asn Pro Met Trp			
1625	1630	1635	
aac gag gcc atc cgc gcg ccc gac ttc gac gcc atc agt gac gcg agt			5120
Asn Glu Ala Ile Arg Ala Pro Asp Phe Asp Ala Ile Ser Asp Ala Ser			
1640	1645	1650	
gac gac tcc gac ctg atc ggc atc gag gac atg ccg caa ttc cgc gac			5168
Gly Asp Ser Asp Leu Ile Gly Ile Glu Asp Met Pro Gln Phe Arg Asp			
1655	1660	1665	
gac tac ttc ccg ccc ggc gac aca gac tca agc agc ggc atc gtc ttg			5216
Asp Tyr Phe Pro Pro Gly Asp Thr Asp Ser Ser Ser Gly Ile Val Leu			
1670	1675	1680	1685
cac atg ggc gaa gcc acg gac aac aag ccc gtg acc acg cat ggc aac			5264
His Met Gly Glu Ala Thr Asp Asn Lys Pro Val Thr Thr His Gly Asn			
1690	1695	1700	
aac ttc ggg ttc aag tcc acc ccg tac ctg cca cag ccg cac cca aag			5312
Asn Phe Gly Phe Lys Ser Thr Pro Tyr Leu Pro Gln Pro His Pro Lys			
1705	1710	1715	
taactgccag ggtataacct gtccagggtg cctacgccgc gCGAAGTGCg cacacgcgtt			5372
tatcatcggg aaacatttagc atgaagatac ctatgtacat attgtaaatt gtaacatatac			5432
tatTTTATA caaatatatt ttatTTATAT ttgctaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa			5492
ctcgag			5498
<210> 2			
<211> 1717			
<212> PRT			
<213> Ostrinia nubilalis			
<400> 2			
Met Gly Val Glu Arg Phe Phe Pro Ala Val Leu Leu Val Ser Leu Ala			
1 5 10 15			
Ser Ala Ala Leu Ala Asn Gln Arg Cys Ser Tyr Ile Ile Ala Ile Pro			
20 25 30			
Arg Pro Glu Thr Pro Glu Leu Pro Pro Ile Asp Tyr Glu Gly Lys Ser			
35 40 45			
Trp Ser Glu Gln Pro Leu Ile Pro Gly Pro Thr Arg Glu Glu Val Cys			
50 55 60			
Met Glu Asn Phe Leu Pro Asp Gln Met Ile Gln Val Ile Tyr Met Glu			
65 70 75 80			
Glu Glu Ile Glu Gly Asp Val Ile Ile Ala Lys Leu Asn Tyr Gln Gly			
85 90 95			
Ser Asn Thr Pro Val Leu Ser Ile Met Ser Gly Gln Pro Arg Ala Gln			
100 105 110			
Leu Gly Pro Glu Phe Arg Gln Asn Glu Ala Asp Gly Gln Trp Ser Leu			
115 120 125			
Val Ile Thr Gln Arg Gln Asp Tyr Glu Thr Ala Thr Met Gln Ser Tyr			
130 135 140			
Val Phe Ser Ile Gln Val Glu Gly Glu Ser Gln Ala Val Leu Val Ala			
145 150 155 160			

Leu Glu Ile Val Asn Ile Asp Asp Asn Pro Pro Ile Leu Gln Val Val
 165 170 175
 Ser Ala Cys Val Ile Pro Glu His Gly Glu Ala Arg Leu Thr Asp Cys
 180 185 190
 Val Tyr Gln Val Ser Asp Arg Asp Gly Glu Ile Ser Thr Arg Phe Met
 195 200 205
 Thr Phe Arg Val Asp Ser Ser Arg Ala Ala Asp Glu Ser Ile Phe Tyr
 210 215 220
 Met Val Gly Glu Tyr Asp Pro Ser Asp Trp Phe Asn Met Lys Met Thr
 225 230 235 240
 Val Gly Ile Asn Ser Pro Leu Asn Phe Glu Thr Thr Gln Leu His Ile
 245 250 255
 Phe Ser Val Thr Ala Ser Asp Ser Leu Pro Asn Asn His Thr Val Thr
 260 265 270
 Met Met Val Gln Val Glu Asn Val Glu Ser Arg Pro Pro Arg Trp Val
 275 280 285
 Glu Ile Phe Ser Val Gln Gln Phe Asp Glu Lys Thr Asn Gln Ser Phe
 290 295 300
 Ser Leu Arg Ala Ile Asp Gly Asp Thr Gly Ile Asn Arg Ala Ile Asn
 305 310 315 320
 Tyr Thr Leu Ile Arg Asp Asp Ala Asp Asp Phe Phe Ser Leu Glu Val
 325 330 335
 Ile Glu Asp Gly Ala Ile Leu His Val Thr Glu Ile Asp Arg Asp Lys
 340 345 350
 Leu Glu Arg Glu Leu Phe Asn Leu Thr Ile Val Ala Tyr Lys Ser Thr
 355 360 365
 Asp Ala Ser Phe Ala Thr Glu Ala His Ile Phe Ile Ile Val Asn Asp
 370 375 380
 Val Asn Asp Gln Arg Pro Glu Pro Leu His Lys Glu Tyr Ser Ile Asp
 385 390 395 400
 Ile Met Glu Glu Thr Pro Met Thr Leu Asn Phe Asn Glu Glu Phe Gly
 405 410 415
 Phe His Asp Arg Asp Leu Gly Glu Asn Ala Gln Tyr Thr Val Glu Leu
 420 425 430
 Glu Asp Val Phe Pro Pro Gly Ala Ala Ser Ala Phe Tyr Ile Ala Pro
 435 440 445
 Gly Ser Gly Tyr Gln Arg Gln Thr Phe Ile Met Gly Thr Ile Asn His
 450 455 460
 Thr Met Leu Asp Tyr Glu Asp Val Ile Phe Gln Asn Ile Ile Ile Lys
 465 470 475 480
 Val Lys Ala Val Asp Met Asn Asn Ala Ser His Val Gly Glu Ala Leu
 485 490 495
 Val Tyr Val Asn Leu Ile Asn Trp Asn Asp Glu Leu Pro Ile Phe Glu
 500 505 510
 Glu Ser Ser Tyr Ser Ala Ser Phe Lys Glu Thr Val Gly Ala Gly Phe
 515 520 525
 Pro Val Ala Thr Val Leu Ala Leu Asp Arg Asp Ile Asp Asp Val Val
 530 535 540
 Val His Ser Leu Met Gly Asn Ala Val Asp Tyr Leu Phe Ile Asp Glu
 545 550 555 560
 Ser Thr Gly Glu Ile Phe Val Ser Met Asp Asp Ala Phe Asp Tyr His
 565 570 575
 Arg Gln Asn Thr Leu Phe Val Gln Val Arg Ala Asp Asp Thr Leu Gly
 580 585 590
 Asp Gly Pro His Asn Thr Val Thr Thr Gln Leu Val Ile Glu Leu Glu
 595 600 605
 Asp Val Asn Asn Thr Pro Pro Thr Leu Arg Leu Pro Arg Ser Thr Pro
 610 615 620
 Ser Val Glu Glu Asn Val Pro Glu Gly Tyr Glu Ile Ser Arg Glu Ile
 625 630 635 640
 Thr Ala Thr Asp Pro Asp Thr Ser Ala Tyr Leu Trp Phe Glu Ile Asp
 645 650 655

Trp Asp Ser Thr Trp Ala Thr Lys Gln Gly Arg Glu Thr Asn Pro Thr
 660 665 670
 Glu Tyr Val Gly Cys Ile Val Ile Glu Thr Ile Tyr Pro Thr Glu Gly
 675 680 685
 Asn Arg Gly Ser Ala Ile Gly Arg Leu Val Val Gln Glu Ile Arg Asp
 690 695 700
 Asn Val Thr Ile Asp Phe Glu Glu Phe Glu Met Leu Tyr Leu Thr Val
 705 710 715 720
 Arg Val Arg Asp Leu Asn Thr Val Ile Gly Asp Asp Tyr Asp Glu Ala
 725 730 735
 Thr Phe Thr Ile Thr Ile Ile Asp Met Asn Asp Asn Ala Pro Ile Phe
 740 745 750
 Ala Asn Gly Thr Leu Thr Gln Thr Met Arg Val Arg Glu Leu Ala Ala
 755 760 765
 Ser Gly Thr Leu Ile Gly Ser Val Leu Ala Thr Asp Ile Asp Gly Pro
 770 775 780
 Leu Tyr Asn Gln Val Arg Tyr Thr Ile Gln Pro Arg Asn Asn Thr Pro
 785 790 795 800
 Glu Gly Leu Val Lys Ile Asp Phe Thr Thr Gly Gln Ile Glu Val Asp
 805 810 815
 Ala Asn Glu Ala Ile Asp Ala Asp Glu Pro Trp Arg Phe Tyr Leu Tyr
 820 825 830
 Tyr Thr Val Ile Ala Ser Asp Glu Cys Ser Leu Glu Asn Arg Thr Glu
 835 840 845
 Cys Pro Pro Asp Ser Asn Tyr Phe Glu Val Pro Gly Asp Ile Glu Ile
 850 855 860
 Glu Ile Ile Asp Thr Asn Asn Lys Val Pro Glu Pro Leu Thr Glu Lys
 865 870 875 880
 Phe Asn Thr Thr Val Tyr Val Trp Glu Asn Ala Thr Ser Gly Asp Glu
 885 890 895
 Val Val Gln Leu Tyr Ser His Asp Arg Asp Arg Asp Glu Leu Tyr His
 900 905 910
 Thr Val Arg Tyr Thr Met Asn Phe Ala Val Asn Pro Arg Leu Arg Asp
 915 920 925
 Phe Phe Glu Val Asp Leu Asp Thr Gly Arg Leu Glu Val His Tyr Pro
 930 935 940
 Gly Asp Glu Lys Leu Asp Arg Asp Gly Asp Glu Pro Thr His Thr Ile
 945 950 955 960
 Phe Val Asn Phe Ile Asp Asn Phe Phe Ser Asp Gly Asp Gly Arg Arg
 965 970 975
 Asn Gln Asp Glu Val Glu Ile Phe Val Val Leu Leu Asp Val Asn Asp
 980 985 990
 Asn Ala Pro Glu Met Pro Leu Pro Asp Glu Leu Arg Phe Asp Val Ser
 995 1000 1005
 Glu Gly Ala Val Ala Gly Val Arg Val Leu Pro Glu Ile Tyr Ala Pro
 1010 1015 1020
 Asp Arg Asp Glu Pro Asp Thr Asp Asn Ser Arg Val Gly Tyr Gly Ile
 1025 1030 1035 1040
 Leu Asp Leu Thr Ile Thr Asp Arg Asp Ile Glu Val Pro Asp Leu Phe
 1045 1050 1055
 Thr Met Ile Ser Ile Glu Asn Lys Thr Gly Glu Leu Glu Thr Ala Met
 1060 1065 1070
 Asp Leu Arg Gly Tyr Trp Gly Thr Tyr Glu Ile Phe Ile Glu Ala Phe
 1075 1080 1085
 Asp His Gly Tyr Pro Gln Gln Arg Ser Asn Glu Thr Tyr Thr Leu Val
 1090 1095 1100
 Ile Arg Pro Tyr Asn Phe His His Pro Val Phe Val Phe Pro Gln Pro
 1105 1110 1115 1120
 Asp Ser Val Ile Arg Leu Ser Arg Glu Arg Ala Thr Glu Gly Gly Val
 1125 1130 1135
 Leu Ala Thr Ala Ala Asn Glu Phe Leu Glu Pro Ile Tyr Ala Thr Asp
 1140 1145 1150

Glu Asp Gly Leu His Ala Gly Ser Val Thr Phe His Val Gln Gly Asn
 1155 1160 1165
 Glu Glu Ala Val Gln Tyr Phe Asp Ile Thr Glu Val Gly Ala Gly Glu
 1170 1175 1180
 Asn Ser Gly Gln Leu Ile Leu Arg Gln Leu Phe Pro Glu Gln Ile Arg
 1185 1190 1195 1200
 Gln Phe Arg Ile Thr Ile Arg Ala Thr Asp Gly Gly Thr Glu Pro Gly
 1205 1210 1215
 Pro Leu Trp Thr Asp Val Thr Phe Ser Val Val Phe Val Pro Thr Gln
 1220 1225 1230
 Gly Asp Pro Val Phe Ser Glu Asn Ala Ala Thr Val Ala Phe Phe Glu
 1235 1240 1245
 Gly Glu Glu Gly Leu Arg Glu Ser Phe Glu Leu Pro Gln Ala Glu Asp
 1250 1255 1260
 Leu Lys Asn His Leu Cys Glu Asp Asp Cys Gln Asp Ile Tyr Tyr Arg
 1265 1270 1275 1280
 Phe Ile Asp Gly Asn Asn Glu Gly Leu Phe Val Leu Asp Gln Ser Ser
 1285 1290 1295
 Asn Val Ile Ser Leu Ala Gln Glu Leu Asp Arg Glu Val Ala Thr Ser
 1300 1305 1310
 Tyr Thr Leu His Ile Ala Ala Ser Asn Ser Pro Asp Ala Thr Gly Ile
 1315 1320 1325
 Pro Leu Gln Thr Ser Ile Leu Val Val Thr Val Asn Val Arg Glu Ala
 1330 1335 1340
 Asn Pro Arg Pro Ile Phe Glu Gln Asp Leu Tyr Thr Ala Gly Ile Ser
 1345 1350 1355 1360
 Thr Leu Asp Ser Ile Gly Arg Glu Leu Leu Thr Val Arg Ala Ser His
 1365 1370 1375
 Thr Glu Asp Asp Thr Ile Thr Tyr Thr Ile Asp Arg Ala Ser Met Gln
 1380 1385 1390
 Leu Asp Ser Ser Leu Glu Ala Val Arg Asp Ser Ala Phe Ala Leu His
 1395 1400 1405
 Ala Thr Thr Gly Val Leu Ser Leu Asn Met Gln Pro Thr Ala Ser Met
 1410 1415 1420
 His Gly Met Phe Glu Phe Asp Val Ile Ala Thr Asp Thr Ala Ser Ala
 1425 1430 1435 1440
 Ile Asp Thr Ala Arg Val Lys Val Tyr Leu Ile Ser Ser Gln Asn Arg
 1445 1450 1455
 Val Thr Phe Ile Phe Asp Asn Gln Leu Glu Thr Val Glu Gln Asn Arg
 1460 1465 1470
 Asn Phe Ile Ala Ala Thr Phe Ser Thr Gly Phe Asn Met Thr Cys Asn
 1475 1480 1485
 Ile Asp Gln Val Val Pro Phe Ser Asp Ser Ser Gly Val Ala Gln Asp
 1490 1495 1500
 Asp Thr Thr Glu Val Arg Ala His Phe Ile Arg Asp Asn Val Pro Val
 1505 1510 1515 1520
 Gln Ala Gln Glu Val Glu Ala Val Arg Ser Asp Thr Val Leu Leu Arg
 1525 1530 1535
 Thr Ile Gln Leu Met Leu Ser Thr Asn Ser Leu Val Leu Gln Asp Leu
 1540 1545 1550
 Val Thr Gly Asp Thr Pro Thr Leu Gly Glu Glu Ser Met Gln Ile Ala
 1555 1560 1565
 Val Tyr Ala Leu Ala Ala Leu Ser Ala Val Leu Gly Phe Leu Cys Leu
 1570 1575 1580
 Val Leu Leu Ala Leu Phe Cys Arg Thr Arg Ala Leu Asn Arg Gln
 1585 1590 1595 1600
 Leu Gln Ala Leu Ser Met Thr Lys Tyr Gly Ser Val Asp Ser Gly Leu
 1605 1610 1615
 Asn Arg Ala Gly Leu Ala Pro Gly Thr Asn Lys His Ala Val Glu Gly
 1620 1625 1630
 Ser Asn Pro Met Trp Asn Glu Ala Ile Arg Ala Pro Asp Phe Asp Ala
 1635 1640 1645

Ile Ser Asp Ala Ser Gly Asp Ser Asp Leu Ile Gly Ile Glu Asp Met
 1650 1655 1660
 Pro Gln Phe Arg Asp Asp Tyr Phe Pro Pro Gly Asp Thr Asp Ser Ser
 1665 1670 1675 1680
 Ser Gly Ile Val Leu His Met Gly Glu Ala Thr Asp Asn Lys Pro Val
 1685 1690 1695
 Thr Thr His Gly Asn Asn Phe Gly Phe Lys Ser Thr Pro Tyr Leu Pro
 1700 1705 1710
 Gln Pro His Pro Lys
 1715

<210> 3
<211> 5527
<212> DNA
<213> Heliothis zea

<220>
<221> CDS
<222> (171)...(5360)

<400> 3
gtggattgtt gttctaaaaa cagaaaaaaaa acgcagttt aaaaaagttt tttttgtat 60
atttgtgtaa agtgtatgt taaaataattt ggcattgctg taaaggatta aagagtgttc 120
caattgatca cccagaggtg gatcgaccag actagacaca gaactatgag atg gca 176
Met Ala
1

gtc gac gtg aga ata ttg acg gca gcg gtt ttc att atc gct gct cac 224
Val Asp Val Arg Ile Leu Thr Ala Ala Val Phe Ile Ile Ala Ala His
5 10 15

ttg act ttc gcg caa gat tgt agc tac atg gta gca ata ccc aga cca 272
Leu Thr Phe Ala Gln Asp Cys Ser Tyr Met Val Ala Ile Pro Arg Pro
20 25 30

gag cga cca gat ttt cca agt cta aat ttc gat gga ata cca tgg agt 320
Glu Arg Pro Asp Phe Pro Ser Leu Asn Phe Asp Gly Ile Pro Trp Ser
35 40 45 50

cgg tat ccc ctg ata cca gtg gag ggt aga gaa gat gtg tgc atg aac 368
Arg Tyr Pro Leu Ile Pro Val Glu Arg Glu Asp Val Cys Met Asn
55 60 65

gaa ttc cag cca gat gcc ttg aac cca gtt acc gtc atc ttc atg gag 416
Glu Phe Gln Pro Asp Ala Leu Asn Pro Val Thr Val Ile Phe Met Glu
70 75 80

gag gag ata gaa ggg gat gtg gct atc gcg agg ctt aac tac cga ggt 464
Glu Glu Ile Glu Gly Asp Val Ala Ile Ala Arg Leu Asn Tyr Arg Gly
85 90 95

acc aat act ccg acc att gta tct cca ttt agc ttt ggt act ttt aac 512
Thr Asn Thr Pro Thr Ile Val Ser Pro Phe Ser Phe Gly Thr Phe Asn
100 105 110

atg ttg ggg ccg gtc ata cgt aga ata cct gag aat ggt ggc gac tgg 560
Met Leu Gly Pro Val Ile Arg Arg Ile Pro Glu Asn Gly Gly Asp Trp
115 120 125 130

cat ctc gtc att aca cag aga cag gac tac gag acg cca ggt atg cag 608
His Leu Val Ile Thr Gln Arg Gln Asp Tyr Glu Thr Pro Gly Met Gln
135 140 145

cag tac atc ttc gac gtg agg gta gac gat gaa ccg cta gtg gcc acg Gln Tyr Ile Phe Asp Val Arg Val Asp Asp Glu Pro Leu Val Ala Thr 150 155 160	- - - 656
gtg atg ctg ctc att gtc aac atc gat gac aac gat cct atc ata cag Val Met Leu Leu Ile Val Asn Ile Asp Asp Asn Asp Pro Ile Ile Gln 165 170 175	704
atg ttt gag cct tgt gat att cct gaa cgc ggt gaa aca ggc atc aca Met Phe Glu Pro Cys Asp Ile Pro Glu Arg Gly Glu Thr Gly Ile Thr 180 185 190	752
tca tgc aag tac acc gtg agc gat gct gac ggc gag atc agt aca cgt Ser Cys Lys Tyr Thr Val Ser Asp Ala Asp Gly Glu Ile Ser Thr Arg 195 200 205 210	800
ttc atg agg ttc gaa atc agc agc gat cga gac gat gac gaa tat ttc Phe Met Arg Phe Glu Ile Ser Ser Asp Arg Asp Asp Asp Glu Tyr Phe 215 220 225	848
gaa ctc gtc aga gaa aat ata caa gga caa tgg atg tat gtt cat atg Glu Leu Val Arg Glu Asn Ile Gln Gly Gln Trp Met Tyr Val His Met 230 235 240	896
aga gtt cac gtc aaa aaa cct ctt gat tat gag gaa aac ccg cta cat Arg Val His Val Lys Lys Pro Leu Asp Tyr Glu Glu Asn Pro Leu His 245 250 255	944
ttg ttt aga gtt aca gct tat gat tcc cta cca aac aca cat aca gtg Leu Phe Arg Val Thr Ala Tyr Asp Ser Leu Pro Asn Thr His Thr Val 260 265 270	992
acg atg atg gtg caa gta gag aac gtt gag aac aga ccg ccg cga tgg Thr Met Met Val Gln Val Glu Asn Val Glu Asn Arg Pro Pro Arg Trp 275 280 285 290	1040
atg gag ata ttt gct gtc cag cag ttc gat gag aag acg gaa caa tcc Met Glu Ile Phe Ala Val Gln Gln Phe Asp Glu Lys Thr Glu Gln Ser 295 300 305	1088
ttt agg gtt cga gcc atc gat gga gat acg gga atc gat aaa cct att Phe Arg Val Arg Ala Ile Asp Gly Asp Thr Gly Ile Asp Lys Pro Ile 310 315 320	1136
ttc tat agg atc gaa act gaa aaa gga gag gaa gac ttg ttc agc att Phe Tyr Arg Ile Glu Thr Glu Lys Gly Glu Asp Leu Phe Ser Ile 325 330 335	1184
caa acg ata gaa ggt ggt cga gaa ggc gct tgg ttt aac gtc gct cca Gln Thr Ile Glu Gly Arg Glu Gly Ala Trp Phe Asn Val Ala Pro 340 345 350	1232
ata gac agg gac act cta gag aag gaa gtt ttc cac gtg tcc ata ata Ile Asp Arg Asp Thr Leu Glu Lys Glu Val Phe His Val Ser Ile Ile 355 360 365 370	1280
gcg tac aaa tat ggc gat aat gac gtg gaa ggc agt tcg tca ttc cag Ala Tyr Lys Tyr Gly Asp Asn Asp Val Glu Gly Ser Ser Phe Gln 375 380 385	1328
tcg aaa acc gat gtg gtc atc atc gtg aac gat gtc aat gat cag gcg	1376

Ser Lys Thr Asp Val Val Ile Ile Val Asn Asp Val Asn Asp Gln Ala			
390	395	400	
ccg ctt cct ttc ccg gaa gag tac tcc att gaa att atg gag gaa act		1424	
Pro Leu Pro Phe Arg Glu Glu Tyr Ser Ile Glu Ile Met Glu Glu Thr			
405	410	415	
gag atg acc ctg aat tta gaa gac ttt ggg ttc cat gat aga gat ctc		1472	
Ala Met Thr Leu Asn Leu Glu Asp Phe Gly Phe His Asp Arg Asp Leu			
420	425	430	
ggc cct cac gca caa tac aca gta cac tta gag agc atc cat cct ccc		1520	
Gly Pro His Ala Gln Tyr Thr Val His Leu Glu Ser Ile His Pro Pro			
435	440	445	450
cga gct cac gag gcg ttc tac ata gca ccg gag gtt ggc tac cag cgc		1568	
Arg Ala His Glu Ala Phe Tyr Ile Ala Pro Glu Val Gly Tyr Gln Arg			
455	460	465	
cag tcc ttc att atg ggc acg cag aac cat cac atg ctg gac ttc gaa		1616	
Gln Ser Phe Ile Met Gly Thr Gln Asn His His Met Leu Asp Phe Glu			
470	475	480	
gtg cca gag ttc cag aat ata caa ctg agg gcc gta gcg ata gac atg		1664	
Val Pro Glu Phe Gln Asn Ile Gln Leu Arg Ala Val Ala Ile Asp Met			
485	490	495	
gac gat ccc aaa tgg gtg ggt atc gcg ata atc aac att aaa ctg atc		1712	
Asp Asp Pro Lys Trp Val Gly Ile Ala Ile Ile Asn Ile Lys Leu Ile			
500	505	510	
aac tgg aac gat gag ctg ccg atg ttc gag agt gac gtg caa act gtc		1760	
Asn Trp Asn Asp Glu Leu Pro Met Phe Glu Ser Asp Val Gln Thr Val			
515	520	525	530
agc ttc gat gag aca gag ggc gca ggc ttc tat gtg gcc act gtt gtg		1808	
Ser Phe Asp Glu Thr Glu Gly Ala Gly Phe Tyr Val Ala Thr Val Val			
535	540	545	
gcg aag gac cgg gat gtt ggt gat aaa gtc gaa cac tct cta atg ggt		1856	
Ala Lys Asp Arg Asp Val Gly Asp Lys Val Glu His Ser Leu Met Gly			
550	555	560	
aac gca gta agc tac ctg agg atc gac aag gaa acc ggc gag ata ttc		1904	
Asn Ala Val Ser Tyr Leu Arg Ile Asp Lys Glu Thr Gly Glu Ile Phe			
565	570	575	
gtc aca gaa aac gaa gca ttc aac tat cac agg cag aac gaa ctc ttt		1952	
Val Thr Glu Asn Glu Ala Phe Asn Tyr His Arg Gln Asn Glu Leu Phe			
580	585	590	
gtg cag ata cca gct gac gac acg ctg ggc gag cct tac aac acc aac		2000	
Val Gln Ile Pro Ala Asp Asp Thr Leu Gly Glu Pro Tyr Asn Thr Asn			
595	600	605	610
act act cag ttg gtg atc aag ctg cgg gac att aac aac acc cct cct		2048	
Thr Thr Gln Leu Val Ile Lys Leu Arg Asp Ile Asn Asn Thr Pro Pro			
615	620	625	
acg ctc agg ctg cct cgc gcc act cca tca gtg gaa gag aac gtg ccc		2096	
Thr Leu Arg Leu Pro Arg Ala Thr Pro Ser Val Glu Asn Val Pro			
630	635	640	

gac ggg ttt gtg atc ccc acg cag ctg cac gcc acg ccc gac act -		2144	
Asp Gly Phe Val Ile Pro Thr Gln Leu His Ala Thr Asp Pro Asp Thr			
645	650	655	
aca gct gag ctg cgc ttc gag atc gac tgg cag aac tcg tat gct acc		2192	
Thr Ala Glu Leu Arg Phe Glu Ile Asp Trp Gln Asn Ser Tyr Ala Thr			
660	665	670	
aag cag gga cgg aat act gac tct aag gag tat atc ggt tgg ata gaa		2240	
Lys Gln Gly Arg Asn Thr Asp Ser Lys Glu Tyr Ile Gly Cys Ile Glu			
675	680	685	690
atc gag acg ata tac ccg aat ata aac cag cga ggc aac gcc atc ggc		2288	
Ile Glu Thr Ile Tyr Pro Asn Ile Asn Gln Arg Gly Asn Ala Ile Gly			
695	700	705	
cgc gtg gta gtg cga gag atc cgg gac ggc gtc acc ata gac tat gag		2336	
Arg Val Val Val Arg Glu Ile Arg Asp Gly Val Thr Ile Asp Tyr Glu			
710	715	720	
atg ttt gaa gtt cta tac ctc acc gtc att gtg agg gat ctc aac acc		2384	
Met Phe Glu Val Leu Tyr Leu Thr Val Ile Val Arg Asp Leu Asn Thr			
725	730	735	
gtt att gga gaa gac cat gat ata tcc aca ttc acg atc acg ata ata		2432	
Val Ile Gly Glu Asp His Asp Ile Ser Thr Phe Thr Ile Thr Ile Ile			
740	745	750	
gac atg aac gac aac cct ccc ctg tgg gtg gaa ggc acc ctg acg caa		2480	
Asp Met Asn Asp Asn Pro Pro Leu Trp Val Glu Gly Thr Leu Thr Gln			
755	760	765	770
gag ttc cgt gtg cga gag gtg gca gcc tca gga gtt gtt ata gga tcc		2528	
Glu Phe Arg Val Arg Glu Val Ala Ala Ser Gly Val Val Ile Gly Ser			
775	780	785	
gta ctg gcc act gat atc gac gga ccg ctg tat aat caa gtg cgg tat		2576	
Val Leu Ala Thr Asp Ile Asp Gly Pro Leu Tyr Asn Gln Val Arg Tyr			
790	795	800	
act att act ccc aga cta gac act cca gaa gac cta gtg gac ata gac		2624	
Thr Ile Thr Pro Arg Leu Asp Thr Pro Glu Asp Leu Val Asp Ile Asp			
805	810	815	
ttc aac acg ggt cag atc tcc gta aag tta cac cag gct ata gac gcg		2672	
Phe Asn Thr Gly Gln Ile Ser Val Lys Leu His Gln Ala Ile Asp Ala			
820	825	830	
gac gag ccg ccg cgt cag aac ctc tac tac acc gtc ata gct agt gac		2720	
Asp Glu Pro Pro Arg Gln Asn Leu Tyr Tyr Thr Val Ile Ala Ser Asp			
835	840	845	850
aag tgt gac ctc ctt act gtc act gag tgt ccg cct gac cct act tac		2768	
Lys Cys Asp Leu Leu Thr Val Thr Glu Cys Pro Pro Asp Pro Thr Tyr			
855	860	865	
ttt gag aca ccg gga gag att acc atc cac ata acg gac acg aac aac		2816	
Phe Glu Thr Pro Gly Glu Ile Thr His Ile Thr Asp Thr Asn Asn			
870	875	880	
aag gtg cct caa gtg gaa gac gac aag ttc gag gcg acg gtg tac atc		2864	

Lys Val Pro Gln Val Glu Asp Asp Lys Phe Glu Ala Thr Val Tyr Ile		
885	890	895
tac gag ggc gcg gac gat gga caa cat gtc gtg cag atc tac gcc agc		2912
Tyr Glu Gly Ala Asp Asp Gly Gln His Val Val Gln Ile Tyr Ala Ser		
900	905	910
gat ctg gat aga gat gaa atc tac cac aaa gtg agc tac cag atc aac		2960
Asp Leu Asp Arg Asp Glu Ile Tyr His Lys Val Ser Tyr Gln Ile Asn		
915	920	925
930		
tac gcg atc aac tct cgt ctc cgc gac ttc ttc gag atg gac ctg gag		3008
Tyr Ala Ile Asn Ser Arg Leu Arg Asp Phe Phe Glu Met Asp Leu Glu		
935	940	945
tcc ggc ctc gtg tac gtc aac aac acc gcc ggc gag ctg ctg gac agg		3056
Ser Gly Leu Val Tyr Val Asn Asn Thr Ala Gly Glu Leu Leu Asp Arg		
950	955	960
gac ggc gac gag ccc aca cat cgc atc ttc ttc aat gtc atc gat aac		3104
Asp Gly Asp Glu Pro Thr His Arg Ile Phe Phe Asn Val Ile Asp Asn		
965	970	975
ttc tat gga gaa gga gat ggc aac cgc aat cag aac gag aca caa gtg		3152
Phe Tyr Gly Glu Gly Asp Gly Asn Arg Asn Gln Asn Glu Thr Gln Val		
980	985	990
tta gta gta ttg ctg gac atc aat gac aac tat ccg gaa ctg cct gaa		3200
Leu Val Val Leu Leu Asp Ile Asn Asp Asn Tyr Pro Glu Leu Pro Glu		
995	1000	1005
1010		
act atc cca tgg gct atc tct gag agc tta gag ctg ggt gag cgt gta		3248
Thr Ile Pro Trp Ala Ile Ser Glu Ser Leu Glu Leu Gly Glu Arg Val		
1015	1020	1025
cag cca gaa atc ttt gcc cgg gac cgc gac gaa ccc gga aca gac aac		3296
Gln Pro Glu Ile Phe Ala Arg Asp Arg Asp Glu Pro Gly Thr Asp Asn		
1030	1035	1040
tcc cgc gtc gcc tat gcc atc aca ggc ctc gcc agc act gac cgg gac		3344
Ser Arg Val Ala Tyr Ala Ile Thr Gly Leu Ala Ser Thr Asp Arg Asp		
1045	1050	1055
ata caa gtg cct aat ctc ttc aac atg atc act ata gag agg gac agg		3392
Ile Gln Val Pro Asn Leu Phe Asn Met Ile Thr Ile Glu Arg Asp Arg		
1060	1065	1070
gga att gat cag aca gga ata ctt gag gca gct atg gat ttg aga ggc		3440
Gly Ile Asp Gln Thr Gly Ile Leu Glu Ala Ala Met Asp Leu Arg Gly		
1075	1080	1085
1090		
tat tgg ggc acc tat caa ata gat att cag gcg tat gac cat gga ata		3488
Tyr Trp Gly Thr Tyr Gln Ile Asp Ile Gln Ala Tyr Asp His Gly Ile		
1095	1100	1105
cct caa agg att tca aat cag aag tac ccg ctg gtg att aga cct tac		3536
Pro Gln Arg Ile Ser Asn Gln Lys Tyr Pro Leu Val Ile Arg Pro Tyr		
1110	1115	1120
aac ttc cac gac cca gtg ttc gtg ttc cct caa cct gga tcc act atc		3584
Asn Phe His Asp Pro Val Phe Val Phe Pro Gln Pro Gly Ser Thr Ile		
1125	1130	1135

aga ctg gca aag gag cga gca gta gtc aac ggt ata ctg gct aca gta		3632	
Arg Leu Ala Lys Glu Arg Ala Val Val Asn Gly Ile Leu Ala Thr Val			
1140	1145	1150	
gac ggc gaa ttt ctg gac aga atc gtt gcc acc gac gag gat ggt tta		3680	
Asp Gly Glu Phe Leu Asp Arg Ile Val Ala Thr Asp Glu Asp Gly Leu			
1155	1160	1165	1170
gaa gct gga ctt gtc aca ttc tct atc gcc gga gat gat gaa gat gct		3728	
Glu Ala Gly Leu Val Thr Phe Ser Ile Ala Gly Asp Asp Glu Asp Ala			
1175	1180	1185	
cag ttc ttc gac gtg ttg aac gac gga gtg aac tcg ggt gct ctc acc		3776	
Gln Phe Phe Asp Val Leu Asn Asp Gly Val Asn Ser Gly Ala Leu Thr			
1190	1195	1200	
ctc acg cgg ctc ttc cct gaa gag ttc cga gag ttc cag gtg acg att		3824	
Leu Thr Arg Leu Phe Pro Glu Glu Phe Arg Glu Phe Gln Val Thr Ile			
1205	1210	1215	
cgt gct acg gac ggt gga act gag cct ggt cca agg agt acg gac tgc		3872	
Arg Ala Thr Asp Gly Gly Thr Glu Pro Gly Pro Arg Ser Thr Asp Cys			
1220	1225	1230	
ttg gtg acc gta gtg ttt gta ccc acg cag gga gag ccc gtg ttc gag		3920	
Leu Val Thr Val Val Phe Val Pro Thr Gln Gly Glu Pro Val Phe Glu			
1235	1240	1245	1250
gat agg act tac acg gtt gct ttt gtt gaa aaa gat gag ggt atg tta		3968	
Asp Arg Thr Tyr Thr Val Ala Phe Val Glu Lys Asp Glu Gly Met Leu			
1255	1260	1265	
gag gag gcg gaa cta cct cgc gcc tca gac cca agg aac atc atg tgt		4016	
Glu Glu Ala Glu Leu Pro Arg Ala Ser Asp Pro Arg Asn Ile Met Cys			
1270	1275	1280	
gaa gat gat tgt cac gac acc tat tac agc att gtt gga ggc aat tcg		4064	
Glu Asp Asp Cys His Asp Thr Tyr Ser Ile Val Gly Gly Asn Ser			
1285	1290	1295	
ggt gaa cac ttc aca gta gac cct cgt acc aac gtg cta tcc ctg gtg		4112	
Gly Glu His Phe Thr Val Asp Pro Arg Thr Asn Val Leu Ser Leu Val			
1300	1305	1310	
aag ccg ctg gac cgc tcc gaa cag gag aca cac acc ctc atc att gga		4160	
Lys Pro Leu Asp Arg Ser Glu Gln Glu Thr His Thr Leu Ile Ile Gly			
1315	1320	1325	1330
gcc agc gac act ccc aac ccg gcc gtc ctg cag gct tct aca ctc		4208	
Ala Ser Asp Thr Pro Asn Pro Ala Ala Val Leu Gln Ala Ser Thr Leu			
1335	1340	1345	
act gtc act gtt aat gtt cga gaa gcg aac ccg cga cca gtg ttc caa		4256	
Thr Val Thr Val Asn Val Arg Glu Ala Asn Pro Arg Pro Val Phe Gln			
1350	1355	1360	
aga gca ctc tac aca gct ggc atc tct gct ggc gat ttc atc gaa aga		4304	
Arg Ala Leu Tyr Thr Ala Gly Ile Ser Ala Gly Asp Phe Ile Glu Arg			
1365	1370	1375	
aat ctg ctg act tta gta gcg aca cat tca gaa gat ctg ccc atc act		4352	

Asn Leu Leu Thr Leu Val Ala Thr His Ser Glu Asp Leu Pro Ile Thr			
1380	1385	1390	
tac act ctg ata caa gag tcc atg gaa gca gac ccc aca ctc gaa gct			4400
Tyr Thr Leu Ile Gln Glu Ser Met Glu Ala Asp Pro Thr Leu Glu Ala			
1395	1400	1405	1410
gtt cag gag tca gcc ttc atc ctc aac cct gag act gga gtc ctg tcc			4448
Val Gln Glu Ser Ala Phe Ile Leu Asn Pro Glu Thr Gly Val Leu Ser			
1415	1420	1425	
ctc aac ttc cag cca acc gcc tcc atg cac ggc atg ttc gag ttc gaa			4496
Leu Asn Phe Gln Pro Thr Ala Ser Met His Gly Met Phe Glu Phe Glu			
1430	1435	1440	
gtc aaa gcc act gat tca agg aca gaa act gcc cgc acg gaa gtg aag			4544
Val Lys Ala Thr Asp Ser Arg Thr Glu Thr Ala Arg Thr Glu Val Lys			
1445	1450	1455	
gtg tac ctg ata tca gac cgc aac cga gtg ttc ttc acg ttc aat aac			4592
Val Tyr Leu Ile Ser Asp Arg Asn Arg Val Phe Phe Thr Phe Asn Asn			
1460	1465	1470	
cca ctg cct gaa gtc aca ccc cag gaa gat ttc ata gcg gag acg ttc			4640
Pro Leu Pro Glu Val Thr Pro Gln Glu Asp Phe Ile Ala Glu Thr Phe			
1475	1480	1485	1490
acg gca ttc ttc ggc atg acg tgc aac atc gac cag tcg tgg tgg gcc			4688
Thr Ala Phe Phe Gly Met Thr Cys Asn Ile Asp Gln Ser Trp Trp Ala			
1495	1500	1505	
agc gat ccc gtc acc ggc gcc acc aag gac gac cag act gaa gtc agg			4736
Ser Asp Pro Val Thr Gly Ala Thr Lys Asp Asp Gln Thr Glu Val Arg			
1510	1515	1520	
gct cat ttc atc agg gac gac ctt ccc gtg cct gct gag gag att gaa			4784
Ala His Phe Ile Arg Asp Asp Leu Pro Val Pro Ala Glu Glu Ile Glu			
1525	1530	1535	
cag tta cgc ggt aac cca act cta gta aat agc atc caa cga gcc ctg			4832
Gln Leu Arg Gly Asn Pro Thr Leu Val Asn Ser Ile Gln Arg Ala Leu			
1540	1545	1550	
gag gaa cag aac ctg cag cta gcc gac ctg ttc acg ggc gag acg ccc			4880
Glu Glu Gln Asn Leu Gln Leu Ala Asp Leu Phe Thr Gly Glu Thr Pro			
1555	1560	1565	1570
atc ctc ggc ggc gac gcg cag gct cga gcc ctg tac gcg ctg gcg gcg			4928
Ile Leu Gly Gly Asp Ala Gln Ala Arg Ala Leu Tyr Ala Leu Ala Ala			
1575	1580	1585	
gtg gcg gca ctc gcg ctg att gtt gtt gtg ctg ctg att gtg ttc			4976
Val Ala Ala Ala Leu Ala Ile Val Val Val Leu Leu Ile Val Phe			
1590	1595	1600	
ttt gtt agg act agg act ctg aac cgg cgc ttg caa gct ctg tcc atg			5024
Phe Val Arg Thr Arg Thr Leu Asn Arg Arg Leu Gln Ala Leu Ser Met			
1605	1610	1615	
acc aag tac agt tcg caa gac tct ggg ttg aac cgc gtc ggt ttg gcg			5072
Thr Lys Tyr Ser Ser Gln Asp Ser Gly Leu Asn Arg Val Gly Leu Ala			
1620	1625	1630	

gcg ccg ggc acc aat aag cac gct gtc gag ggc tcc aac ccc atc tgg . . . 5120
 Ala Pro Gly Thr Asn Lys His Ala Val Glu Gly Ser Asn Pro Ile Trp
 1635 1640 1645 1650

 aat gaa acg ttg aag gct ccg gac ttt gac gct ctt agc gag cag tcg 5168
 Asn Glu Thr Leu Lys Ala Pro Asp Phe Asp Ala Leu Ser Glu Gln Ser
 1655 1660 1665

 tac gac tca gac cta atc ggc atc gaa gac ttg ccg cag ttc agg aac 5216
 Tyr Asp Ser Asp Leu Ile Gly Ile Glu Asp Leu Pro Gln Phe Arg Asn
 1670 1675 1680

 gac tac ttc cca cct gag gag ggc agc tcc atg cga gga gtc gtc aat 5264
 Asp Tyr Phe Pro Pro Glu Glu Gly Ser Ser Met Arg Gly Val Val Asn
 1685 1690 1695

 gaa cac gtg cct gaa tca ata gca aac cat aac aac ttc ggg tt 5312
 Glu His Val Pro Glu Ser Ile Ala Asn His Asn Asn Phe Gly Phe
 1700 1705 1710

 aac tct act ccc ttc agc cca gag ttc gcg aac acg cag ttc aga aga 5360
 Asn Ser Thr Pro Phe Ser Pro Glu Phe Ala Asn Thr Gln Phe Arg Arg
 1715 1720 1725 1730

 taaaatatta aagcattta aattataata ttatgtaccc gtgaaatacc atacttatat 5420
 ttacctaagt atatattaaat gtgagattaa gtaagatact cgtattaaat aagagcattt 5480
 attttttaa atacaaaaca attaaactaa aaaaaaaaaa aaaaaaaaaa 5527

 <210> 4
 <211> 1730
 <212> PRT
 <213> Heliothis zea

 <400> 4
 Met Ala Val Asp Val Arg Ile Leu Thr Ala Ala Val Phe Ile Ile Ala
 1 5 10 15
 Ala His Leu Thr Phe Ala Gln Asp Cys Ser Tyr Met Val Ala Ile Pro
 20 25 30
 Arg Pro Glu Arg Pro Asp Phe Pro Ser Leu Asn Phe Asp Gly Ile Pro
 35 40 45
 Trp Ser Arg Tyr Pro Leu Ile Pro Val Glu Gly Arg Glu Asp Val Cys
 50 55 60
 Met Asn Glu Phe Gln Pro Asp Ala Leu Asn Pro Val Thr Val Ile Phe
 65 70 75 80
 Met Glu Glu Glu Ile Glu Gly Asp Val Ala Ile Ala Arg Leu Asn Tyr
 85 90 95
 Arg Gly Thr Asn Thr Pro Thr Ile Val Ser Pro Phe Ser Phe Gly Thr
 100 105 110
 Phe Asn Met Leu Gly Pro Val Ile Arg Arg Ile Pro Glu Asn Gly Gly
 115 120 125
 Asp Trp His Leu Val Ile Thr Gln Arg Gln Asp Tyr Glu Thr Pro Gly
 130 135 140
 Met Gln Gln Tyr Ile Phe Asp Val Arg Val Asp Asp Glu Pro Leu Val
 145 150 155 160
 Ala Thr Val Met Leu Leu Ile Val Asn Ile Asp Asp Asn Asp Pro Ile
 165 170 175
 Ile Gln Met Phe Glu Pro Cys Asp Ile Pro Glu Arg Gly Glu Thr Gly
 180 185 190
 Ile Thr Ser Cys Lys Tyr Thr Val Ser Asp Ala Asp Gly Glu Ile Ser
 195 200 205
 Thr Arg Phe Met Arg Phe Glu Ile Ser Ser Asp Arg Asp Asp Asp Glu

210	215	220
Tyr Phe Glu Leu Val Arg	Glu Asn Ile Gln Gly	Gln Trp Met Tyr Val
225	230	235
His Met Arg Val His Val Lys Lys Pro	Leu Asp Tyr Glu Glu Asn Pro	240
245	250	255
Leu His Leu Phe Arg Val Thr Ala	Tyr Asp Ser Leu Pro Asn Thr His	
260	265	270
Thr Val Thr Met Met Val Gln Val	Glu Asn Val Glu Asn Arg Pro Pro	
275	280	285
Arg Trp Met Glu Ile Phe Ala Val Gln Gln Phe Asp Glu Lys Thr Glu		
290	295	300
Gln Ser Phe Arg Val Arg Ala Ile Asp Gly Asp Thr Gly Ile Asp Lys		
305	310	315
Pro Ile Phe Tyr Arg Ile Glu Thr Glu Lys Gly Glu Asp Leu Phe		320
325	330	335
Ser Ile Gln Thr Ile Glu Gly Arg Glu Gly Ala Trp Phe Asn Val		
340	345	350
Ala Pro Ile Asp Arg Asp Thr Leu Glu Lys Glu Val Phe His Val Ser		
355	360	365
Ile Ile Ala Tyr Lys Tyr Gly Asp Asn Asp Val Glu Gly Ser Ser Ser		
370	375	380
Phe Gln Ser Lys Thr Asp Val Val Ile Ile Val Asn Asp Val Asn Asp		
385	390	395
Gln Ala Pro Leu Pro Phe Arg Glu Glu Tyr Ser Ile Glu Ile Met Glu		400
405	410	415
Glu Thr Ala Met Thr Leu Asn Leu Glu Asp Phe Gly Phe His Asp Arg		
420	425	430
Asp Leu Gly Pro His Ala Gln Tyr Thr Val His Leu Glu Ser Ile His		
435	440	445
Pro Pro Arg Ala His Glu Ala Phe Tyr Ile Ala Pro Glu Val Gly Tyr		
450	455	460
Gln Arg Gln Ser Phe Ile Met Gly Thr Gln Asn His His Met Leu Asp		
465	470	475
Phe Glu Val Pro Glu Phe Gln Asn Ile Gln Leu Arg Ala Val Ala Ile		480
485	490	495
Asp Met Asp Asp Pro Lys Trp Val Gly Ile Ala Ile Ile Asn Ile Lys		
500	505	510
Leu Ile Asn Trp Asn Asp Glu Leu Pro Met Phe Glu Ser Asp Val Gln		
515	520	525
Thr Val Ser Phe Asp Glu Thr Glu Gly Ala Gly Phe Tyr Val Ala Thr		
530	535	540
Val Val Ala Lys Asp Arg Asp Val Gly Asp Lys Val Glu His Ser Leu		
545	550	555
Met Gly Asn Ala Val Ser Tyr Leu Arg Ile Asp Lys Glu Thr Gly Glu		560
565	570	575
Ile Phe Val Thr Glu Asn Glu Ala Phe Asn Tyr His Arg Gln Asn Glu		
580	585	590
Leu Phe Val Gln Ile Pro Ala Asp Asp Thr Leu Gly Glu Pro Tyr Asn		
595	600	605
Thr Asn Thr Thr Gln Leu Val Ile Lys Leu Arg Asp Ile Asn Asn Thr		
610	615	620
Pro Pro Thr Leu Arg Leu Pro Arg Ala Thr Pro Ser Val Glu Glu Asn		
625	630	635
Val Pro Asp Gly Phe Val Ile Pro Thr Gln Leu His Ala Thr Asp Pro		640
645	650	655
Asp Thr Thr Ala Glu Leu Arg Phe Glu Ile Asp Trp Gln Asn Ser Tyr		
660	665	670
Ala Thr Lys Gln Gly Arg Asn Thr Asp Ser Lys Glu Tyr Ile Gly Cys		
675	680	685
Ile Glu Ile Glu Thr Ile Tyr Pro Asn Ile Asn Gln Arg Gly Asn Ala		
690	695	700
Ile Gly Arg Val Val Val Arg Glu Ile Arg Asp Gly Val Thr Ile Asp		

705	710	715	720
Tyr Glu Met Phe Glu Val Leu Tyr Leu Thr Val Ile Val Arg Asp Leu			
725	730	735	
Asn Thr Val Ile Gly Glu Asp His Asp Ile Ser Thr Phe Thr Ile Thr			
740	745	750	
Ile Ile Asp Met Asn Asp Asn Pro Pro Leu Trp Val Glu Gly Thr Leu			
755	760	765	
Thr Gln Glu Phe Arg Val Arg Glu Val Ala Ala Ser Gly Val Val Ile			
770	775	780	
Gly Ser Val Leu Ala Thr Asp Ile Asp Gly Pro Leu Tyr Asn Gln Val			
785	790	795	800
Arg Tyr Thr Ile Thr Pro Arg Leu Asp Thr Pro Glu Asp Leu Val Asp			
805	810	815	
Ile Asp Phe Asn Thr Gly Gln Ile Ser Val Lys Leu His Gln Ala Ile			
820	825	830	
Asp Ala Asp Glu Pro Pro Arg Gln Asn Leu Tyr Tyr Thr Val Ile Ala			
835	840	845	
Ser Asp Lys Cys Asp Leu Leu Thr Val Thr Glu Cys Pro Pro Asp Pro			
850	855	860	
Thr Tyr Phe Glu Thr Pro Gly Glu Ile Thr Ile His Ile Thr Asp Thr			
865	870	875	880
Asn Asn Lys Val Pro Gln Val Glu Asp Asp Lys Phe Glu Ala Thr Val			
885	890	895	
Tyr Ile Tyr Glu Gly Ala Asp Asp Gly Gln His Val Val Gln Ile Tyr			
900	905	910	
Ala Ser Asp Leu Asp Arg Asp Glu Ile Tyr His Lys Val Ser Tyr Gln			
915	920	925	
Ile Asn Tyr Ala Ile Asn Ser Arg Leu Arg Asp Phe Phe Glu Met Asp			
930	935	940	
Leu Glu Ser Gly Leu Val Tyr Val Asn Asn Thr Ala Gly Glu Leu Leu			
945	950	955	960
Asp Arg Asp Gly Asp Glu Pro Thr His Arg Ile Phe Phe Asn Val Ile			
965	970	975	
Asp Asn Phe Tyr Gly Glu Gly Asp Gly Asn Arg Asn Gln Asn Glu Thr			
980	985	990	
Gln Val Leu Val Val Leu Leu Asp Ile Asn Asp Asn Tyr Pro Glu Leu			
995	1000	1005	
Pro Glu Thr Ile Pro Trp Ala Ile Ser Glu Ser Leu Glu Leu Gly Glu			
1010	1015	1020	
Arg Val Gln Pro Glu Ile Phe Ala Arg Asp Arg Asp Glu Pro Gly Thr			
1025	1030	1035	1040
Asp Asn Ser Arg Val Ala Tyr Ala Ile Thr Gly Leu Ala Ser Thr Asp			
1045	1050	1055	
Arg Asp Ile Gln Val Pro Asn Leu Phe Asn Met Ile Thr Ile Glu Arg			
1060	1065	1070	
Asp Arg Gly Ile Asp Gln Thr Gly Ile Leu Glu Ala Ala Met Asp Leu			
1075	1080	1085	
Arg Gly Tyr Trp Gly Thr Tyr Gln Ile Asp Ile Gln Ala Tyr Asp His			
1090	1095	1100	
Gly Ile Pro Gln Arg Ile Ser Asn Gln Lys Tyr Pro Leu Val Ile Arg			
1105	1110	1115	1120
Pro Tyr Asn Phe His Asp Pro Val Phe Val Phe Pro Gln Pro Gly Ser			
1125	1130	1135	
Thr Ile Arg Leu Ala Lys Glu Arg Ala Val Val Asn Gly Ile Leu Ala			
1140	1145	1150	
Thr Val Asp Gly Glu Phe Leu Asp Arg Ile Val Ala Thr Asp Glu Asp			
1155	1160	1165	
Gly Leu Glu Ala Gly Leu Val Thr Phe Ser Ile Ala Gly Asp Asp Glu			
1170	1175	1180	
Asp Ala Gln Phe Phe Asp Val Leu Asn Asp Gly Val Asn Ser Gly Ala			
1185	1190	1195	1200
Leu Thr Leu Thr Arg Leu Phe Pro Glu Glu Phe Arg Glu Phe Gln Val			

1205	1210	1215
Thr Ile Arg Ala Thr Asp Gly Gly	Thr Glu Pro Gly Pro Arg Ser Thr	
1220	1225	1230
Asp Cys Leu Val Thr Val Val Phe Val Pro Thr Gln Gly Glu Pro Val		
1235	1240	1245
Phe Glu Asp Arg Thr Tyr Thr Val Ala Phe Val Glu Lys Asp Glu Gly		
1250	1255	1260
Met Leu Glu Glu Ala Glu Leu Pro Arg Ala Ser Asp Pro Arg Asn Ile		
1265	1270	1275
Met Cys Glu Asp Asp Cys His Asp Thr Tyr Tyr Ser Ile Val Gly Gly		1280
1285	1290	1295
Asn Ser Gly Glu His Phe Thr Val Asp Pro Arg Thr Asn Val Leu Ser		
1300	1305	1310
Leu Val Lys Pro Leu Asp Arg Ser Glu Gln Glu Thr His Thr Leu Ile		
1315	1320	1325
Ile Gly Ala Ser Asp Thr Pro Asn Pro Ala Ala Val Leu Gln Ala Ser		
1330	1335	1340
Thr Leu Thr Val Thr Val Asn Val Arg Glu Ala Asn Pro Arg Pro Val		
1345	1350	1355
Phe Gln Arg Ala Leu Tyr Thr Ala Gly Ile Ser Ala Gly Asp Phe Ile		1360
1365	1370	1375
Glu Arg Asn Leu Leu Thr Leu Val Ala Thr His Ser Glu Asp Leu Pro		
1380	1385	1390
Ile Thr Tyr Thr Leu Ile Gln Glu Ser Met Glu Ala Asp Pro Thr Leu		
1395	1400	1405
Glu Ala Val Gln Glu Ser Ala Phe Ile Leu Asn Pro Glu Thr Gly Val		
1410	1415	1420
Leu Ser Leu Asn Phe Gln Pro Thr Ala Ser Met His Gly Met Phe Glu		
1425	1430	1435
Phe Glu Val Lys Ala Thr Asp Ser Arg Thr Glu Thr Ala Arg Thr Glu		1440
1445	1450	1455
Val Lys Val Tyr Leu Ile Ser Asp Arg Asn Arg Val Phe Phe Thr Phe		
1460	1465	1470
Asn Asn Pro Leu Pro Glu Val Thr Pro Gln Glu Asp Phe Ile Ala Glu		
1475	1480	1485
Thr Phe Thr Ala Phe Phe Gly Met Thr Cys Asn Ile Asp Gln Ser Trp		
1490	1495	1500
Trp Ala Ser Asp Pro Val Thr Gly Ala Thr Lys Asp Asp Gln Thr Glu		
1505	1510	1515
Val Arg Ala His Phe Ile Arg Asp Asp Leu Pro Val Pro Ala Glu Glu		1520
1525	1530	1535
Ile Glu Gln Leu Arg Gly Asn Pro Thr Leu Val Asn Ser Ile Gln Arg		
1540	1545	1550
Ala Leu Glu Glu Gln Asn Leu Gln Leu Ala Asp Leu Phe Thr Gly Glu		
1555	1560	1565
Thr Pro Ile Leu Gly Gly Asp Ala Gln Ala Arg Ala Leu Tyr Ala Leu		
1570	1575	1580
Ala Ala Val Ala Ala Leu Ala Leu Ile Val Val Val Leu Leu Ile		
1585	1590	1595
Val Phe Phe Val Arg Thr Arg Thr Leu Asn Arg Arg Leu Gln Ala Leu		1600
1605	1610	1615
Ser Met Thr Lys Tyr Ser Ser Gln Asp Ser Gly Leu Asn Arg Val Gly		
1620	1625	1630
Leu Ala Ala Pro Gly Thr Asn Lys His Ala Val Glu Gly Ser Asn Pro		
1635	1640	1645
Ile Trp Asn Glu Thr Leu Lys Ala Pro Asp Phe Asp Ala Leu Ser Glu		
1650	1655	1660
Gln Ser Tyr Asp Ser Asp Leu Ile Gly Ile Glu Asp Leu Pro Gln Phe		
1665	1670	1675
Arg Asn Asp Tyr Phe Pro Pro Glu Glu Gly Ser Ser Met Arg Gly Val		1680
1685	1690	1695
Val Asn Glu His Val Pro Glu Ser Ile Ala Asn His Asn Asn Phe		

1700	1705	1710	
Gly Phe Asn Ser Thr Pro Phe Ser Pro Glu Phe Ala Asn Thr Gln Phe -			-
1715	1720	1725	
Arg Arg			
1730			
<210> 5			
<211> 5592			
<212> DNA			
<213> Spodoptera frugiperda			
<220>			
<221> CDS			
<222> (162) ... (5363)			
<400> 5			
gacattctgt ggtaaaaaca ttttttattt attttttctt agtggttgtt gggtaacatgt taaacatttt ggaatattgt taaagatttc ggaatattgt taaagtatttg acagataaaag ctgttaacatc actagagaag tgagaactgc aagatcatga g atg gcg gtc gat gtg			60
Met Ala Val Asp Val			120
1		5	176
cga ata ctg aca gca aca ttg ctg gta ctc acc act gct aca gca cag			224
Arg Ile Leu Thr Ala Thr Leu Leu Val Leu Thr Thr Ala Thr Ala Gln			
10	15	20	
cga gat cga tgt ggc tac atg gta gaa ata ccc aga cca gac agg cct			272
Arg Asp Arg Cys Gly Tyr Met Val Glu Ile Pro Arg Pro Asp Arg Pro			
25	30	35	
gac ttc cca cct caa aat ttt gac ggt tta acá tgg gct cag cag cca			320
Asp Phe Pro Pro Gln Asn Phe Asp Gly Leu Thr Trp Ala Gln Gln Pro			
40	45	50	
cta tta cca gct gag gat cga gaa gag gtc tgc ctc aat gac tat gaa			368
Leu Leu Pro Ala Glu Asp Arg Glu Glu Val Cys Leu Asn Asp Tyr Glu			
55	60	65	
cct gat ccc tgg agc aac aac cat ggt gac cag aga att tac atg gag			416
Pro Asp Pro Trp Ser Asn Asn His Gly Asp Gln Arg Ile Tyr Met Glu			
70	75	80	85
gag gag atc gaa ggt ccc gta gtc att gcg aaa att aac tac caa gga			464
Glu Glu Ile Glu Gly Pro Val Val Ile Ala Lys Ile Asn Tyr Gln Gly			
90	95	100	
aac acc cct cct caa ata aga tta cct ttt cgt gtt ggt gca gcc cac			512
Asn Thr Pro Pro Gln Ile Arg Leu Pro Phe Arg Val Gly Ala Ala His			
105	110	115	
atg ctt gga gca gaa att cgt gaa tat cct gac gca act gga gac tgg			560
Met Leu Gly Ala Glu Ile Arg Glu Tyr Pro Asp Ala Thr Gly Asp Trp			
120	125	130	
tat ctt gta att act caa agg cag gac tat gaa act cct gat atg cag			608
Tyr Leu Val Ile Thr Gln Arg Gln Asp Tyr Glu Thr Pro Asp Met Gln			
135	140	145	
aga tac acg ttc gat gtg agt gtg gaa ggc cag tcg ctg gtt gta acg			656
Arg Tyr Thr Phe Asp Val Ser Val Glu Gly Gln Ser Leu Val Val Thr			
150	155	160	165

gtg agg ctg gat att gtg aac atc gac gac aat gcg ccc atc att gag Val Arg Leu Asp Ile Val Asn Ile Asp Asp Asn Ala Pro Ile Ile Glu	704
170 175 180	
atg tta gag cct tgc aac tta ccg gaa ctt gtt gaa ccc cat gtt aca Met Leu Glu Pro Cys Asn Leu Pro Glu Leu Val Glu Pro His Val Thr	752
185 190 195	
gaa tgt aaa tat atc gtg tcc gac gca gac ggt ctg atc agt aca agt Glu Cys Lys Tyr Ile Val Ser Asp Ala Asp Gly Leu Ile Ser Thr Ser	800
200 205 210	
gtt atg agt tat cat ata gac agc gag aga gga gac gaa aaa gta ttc Val Met Ser Tyr His Ile Asp Ser Glu Arg Gly Asp Glu Lys Val Phe	848
215 220 225	
gaa ctg atc aga aaa gat tat ccg ggc gat tgg acg aag gtg tat atg Glu Leu Ile Arg Lys Asp Tyr Pro Gly Asp Trp Thr Lys Val Tyr Met	896
230 235 240 245	
gtt ctt gaa ttg aaa aaa tct ctt gat tac gaa gag aat cct cta cac Val Leu Glu Leu Lys Ser Leu Asp Tyr Glu Glu Asn Pro Leu His	944
250 255 260	
ata ttc aga gtc acg gct tct gat tcc tta cca aac aat agg acc gtg Ile Phe Arg Val Thr Ala Ser Asp Ser Leu Pro Asn Asn Arg Thr Val	992
265 270 275	
gtc atg atg gtt gaa gta gag aac gtc gaa cat aga aat cct cgg tgg Val Met Met Val Glu Val Asn Val Glu His Arg Asn Pro Arg Trp	1040
280 285 290	
atg gag atc ttt gct gtc caa cag ttt gat gaa aaa cag gcg aaa tcg Met Glu Ile Phe Ala Val Gln Gln Phe Asp Glu Lys Gln Ala Lys Ser	1088
295 300 305	
ttc aca gtc cga gct att gat ggc gac acg gga atc aat aaa cct ata Phe Thr Val Arg Ala Ile Asp Gly Asp Thr Gly Ile Asn Lys Pro Ile	1136
310 315 320 325	
ttc tat cgt ata gaa act gaa gat gaa gac aaa gag ttc ttc agc att Phe Tyr Arg Ile Glu Thr Glu Asp Glu Asp Lys Glu Phe Phe Ser Ile	1184
330 335 340	
gag aac ata ggg gaa ggc aga gac ggt gcc aga ttc cac gtg gct cct Glu Asn Ile Gly Glu Gly Arg Asp Gly Ala Arg Phe His Val Ala Pro	1232
345 350 355	
ata gac aga gac tac ctg aaa agg gat atg ttt cat ata aga ata att Ile Asp Arg Asp Tyr Leu Lys Arg Asp Met Phe His Ile Arg Ile Ile	1280
360 365 370	
gca tat aaa caa ggt gat aat gac aaa gaa ggt gaa tca tcg ttc gag Ala Tyr Lys Gln Gly Asp Asn Asp Lys Glu Gly Glu Ser Ser Phe Glu	1328
375 380 385	
acc tca gca aat gtc acg att ata att aac gat ata aat gat cag agg Thr Ser Ala Asn Val Thr Ile Ile Asn Asp Ile Asn Asp Gln Arg	1376
390 395 400 405	
cca gaa ccc ttc cat aaa gaa tac acg atc tcc ata atg gaa gaa act Pro Glu Pro Phe His Lys Glu Tyr Thr Ile Ser Ile Met Glu Glu Thr	1424

410	415	420	
gct atg acc tta gat ttg caa gag ttt ggt ttc cat gac cgt gac att Ala Met Thr Leu Asp Leu Gln Glu Phe Gly Phe His Asp Arg Asp Ile 425	430	435	1472
ggc ccc cac gct cag tac gac gtt cac tta gag agt ata cag cca gag Gly Pro His Ala Gln Tyr Asp Val His Leu Glu Ser Ile Gln Pro Glu 440	445	450	1520
ggg gcc cat acc gct ttc tac atc gcc cct gaa gaa ggt tac cag gcc Gly Ala His Thr Ala Phe Tyr Ile Ala Pro Glu Glu Gly Tyr Gln Ala 455	460	465	1568
cag tct ttc acc ata ggt act aga atc cat aac atg ttg gat tat gaa Gln Ser Phe Thr Ile Gly Thr Arg Ile His Asn Met Leu Asp Tyr Glu 470	475	480	1616
gat gac gac tac aga cca gga ata aag cta aag gca gta gca att gac Asp Asp Asp Tyr Arg Pro Gly Ile Lys Leu Lys Ala Val Ala Ile Asp 490	495	500	1664
aga cac gat aac aat cac att ggg gaa gca att att aac att aac ctt Arg His Asp Asn Asn His Ile Gly Glu Ala Ile Ile Asn Ile Asn Leu 505	510	515	1712
atc aat tgg aat gat gag cta cct ata ttc gac gag gac gcc tac aac Ile Asn Trp Asn Asp Glu Leu Pro Ile Phe Asp Glu Asp Ala Tyr Asn 520	525	530	1760
gtg aca ttt gag gag acg gtc ggt gat ggc ttc cac att ggt aaa tac Val Thr Phe Glu Glu Thr Val Gly Asp Gly Phe His Ile Gly Lys Tyr 535	540	545	1808
cgg gct aaa gac aga gac atc ggt gac ata gtc gag cac tcg ata ttg Arg Ala Lys Asp Arg Asp Ile Gly Asp Ile Val Glu His Ser Ile Leu 550	555	560	1856
ggc aac gct gca aac ttc ctg aga att gac ata gat act gga gat gtg Gly Asn Ala Ala Asn Phe Leu Arg Ile Asp Ile Asp Thr Gly Asp Val 570	575	580	1904
tac gtg tca cgg gac gat tac ttt gat tat caa aga cag aac gaa atc Tyr Val Ser Arg Asp Asp Tyr Phe Asp Tyr Gln Arg Gln Asn Glu Ile 585	590	595	1952
ata gtt cag att ctg gct gtt gat aca cta ggt tta cct cag aac agg Ile Val Gln Ile Leu Ala Val Asp Thr Leu Gly Leu Pro Gln Asn Arg 600	605	610	2000
gct acc aca cag ctc acg ata ttt ttg gaa gac atc aac aac acg cca Ala Thr Thr Gln Leu Thr Ile Phe Leu Glu Asp Ile Asn Asn Thr Pro 615	620	625	2048
cct ata ctg cga ctg cca cgt tcc agt cca agt gta gaa gag aac gtt Pro Ile Leu Arg Leu Pro Arg Ser Ser Pro Ser Val Glu Glu Asn Val 630	635	640	2096
gaa gtc ggg cac ccg att acc gag ggg cta acg gcg aca gac cca gac Glu Val Gly His Pro Ile Thr Glu Gly Leu Thr Ala Thr Asp Pro Asp 650	655	660	2144

acc aca gcc gat tta cac ttc gag atc gat tgg gac aat tct tac gct 2192
 Thr Thr Ala Asp Leu His Phe Glu Ile Asp Trp Asp Asn Ser Tyr Ala-
 665 670 675

 acg aag cag ggc acc aat gga ccc aac act gca gac tac cac gga tgc 2240
 Thr Lys Gln Gly Thr Asn Gly Pro Asn Thr Ala Asp Tyr His Gly Cys
 680 685 690

 gta gaa atc ctg acg gta tac cca gat cct gac aat cac ggg aga gct 2288
 Val Glu Ile Leu Thr Val Tyr Pro Asp Pro Asp Asn His Gly Arg Ala
 695 700 705

 gag ggt cac ttg gtg gca cgt gag gtc agt gat ggc gtg acc atc gat 2336
 Glu Gly His Leu Val Ala Arg Glu Val Ser Asp Gly Val Thr Ile Asp
 710 715 720 725

 tac gag aag ttt gag gtg ctg tac ctc gtc gtc agg gtg ata gat cgc 2384
 Tyr Glu Lys Phe Glu Val Leu Tyr Leu Val Val Arg Val Ile Asp Arg
 730 735 740

 aac act gtc att ggc cct gat tat gac gaa gca atg ctg acg gtg acg 2432
 Asn Thr Val Ile Gly Pro Asp Tyr Asp Glu Ala Met Leu Thr Val Thr
 745 750 755

 ata atc gat atg aac gac aac tgg ccg ata tgg gcc gac aac acg ctg 2480
 Ile Ile Asp Met Asn Asp Asn Trp Pro Ile Trp Ala Asp Asn Thr Leu
 760 765 770

 cag cag aca ctg cgc gtg cgc gag atg gcc gac gaa gga gtc atc gtc 2528
 Gln Gln Thr Leu Arg Val Arg Glu Met Ala Asp Glu Gly Val Ile Val
 775 780 785

 ggt aca ctg ctc gcc acc gac ttg gat ggc cct ctc tac aac cga gtc 2576
 Gly Thr Leu Leu Ala Thr Asp Leu Asp Gly Pro Leu Tyr Asn Arg Val
 790 795 800 805

 cgc tac acc atg gtc ccc atc aag gac act cct gat gac cta ata gcg 2624
 Arg Tyr Thr Met Val Pro Ile Lys Asp Thr Pro Asp Asp Leu Ile Ala
 810 815 820

 atc aac tac gtc acc ggt cag ctg act gtg aac aag ggg caa gca att 2672
 Ile Asn Tyr Val Thr Gly Gln Leu Thr Val Asn Lys Gly Gln Ala Ile
 825 830 835

 gac gca gat gat cca cct cgc ttc tac ctg tat tac aag gtc act gcc 2720
 Asp Ala Asp Asp Pro Pro Arg Phe Tyr Leu Tyr Tyr Lys Val Thr Ala
 840 845 850

 agc gat aag tgc tct ctt gac gag ttc ttc cct gtg tgc cca cct gac 2768
 Ser Asp Lys Cys Ser Leu Asp Glu Phe Phe Pro Val Cys Pro Pro Asp
 855 860 865

 ccc act tac tgg aat acc gag gga gag ata gcg atc gcg ata acc gat 2816
 Pro Thr Tyr Trp Asn Thr Glu Gly Glu Ile Ala Ile Ala Ile Thr Asp
 870 875 880 885

 acg aac aac aaa att cca cgc gcg gaa aca gat atg ttc cct agt gaa 2864
 Thr Asn Asn Lys Ile Pro Arg Ala Glu Thr Asp Met Phe Pro Ser Glu
 890 895 900

 aag cgc atc tat gag aac aca ccc aat ggt acc aag atc acg acg atc 2912
 Lys Arg Ile Tyr Glu Asn Thr Pro Asn Gly Thr Lys Ile Thr Thr Ile

905	910	915		
atc gct agt gac cag gac aga gat cga cca aat aac gcg ctg acg tac Ile Ala Ser Asp Gln Asp Arg Asp Arg Pro Asn Asn Ala Leu Thr Tyr 920	925	930	2960	
aga atc aac tac gca ttc aac cac agg ctg gag aac ttc ttc gca gtg Arg Ile Asn Tyr Ala Phe Asn His Arg Leu Glu Asn Phe Phe Ala Val 935	940	945	3008	
gac cct gat act ggt gaa ctg ttt gtc cac ttc acc act agc gaa gtg Asp Pro Asp Thr Gly Glu Leu Phe Val His Phe Thr Thr Ser Glu Val 950	955	960	3056	
ttg gac aga gac gga gag gaa ccg gag cat agg atc atc ttc acc atc Leu Asp Arg Asp Gly Glu Glu Pro Glu His Arg Ile Ile Phe Thr Ile 970	975	980	3104	
gtc gat aac ttg gaa ggc gct gga gat ggc aat cag aac aca atc tcc Val Asp Asn Leu Glu Gly Ala Gly Asp Gly Asn Gln Asn Thr Ile Ser 985	990	995	3152	
acg gag gtg cgt gtt ata ctg ctt gat ata aac gac aat aag ccg gaa Thr Glu Val Arg Val Ile Leu Leu Asp Ile Asn Asp Asn Lys Pro Glu 1000	1005	1010	3200	
cta cca att cct gat ggc gaa ttt tgg acc gtt tcc gaa ggt gaa gtg Leu Pro Ile Pro Asp Gly Glu Phe Trp Thr Val Ser Glu Gly Glu Val 1015	1020	1025	3248	
gag gga aaa cgc att cca cca gag att cac gca cac gac aga gat gaa Glu Gly Lys Arg Ile Pro Pro Glu Ile His Ala His Asp Arg Asp Glu 1030	1035	1040	1045	3296
cca ttc aac gac aac tct cgc gtg gga tat gaa att cga tcg atc aaa Pro Phe Asn Asp Asn Ser Arg Val Gly Tyr Glu Ile Arg Ser Ile Lys 1050	1055	1060	3344	
ttg atc aat aga gac atc gag ctt cct caa gat cca ttc aaa ata ata Leu Ile Asn Arg Asp Ile Glu Leu Pro Gln Asp Pro Phe Lys Ile Ile 1065	1070	1075	3392	
acg att gat gat ctc gat acc tgg aaa ttc gtt gga gag ttg gag act Thr Ile Asp Asp Leu Asp Thr Trp Lys Phe Val Gly Glu Leu Glu Thr 1080	1085	1090	3440	
acc atg gac ctt aga gga tac tgg gga acc tat gat gtc gag ata cgt Thr Met Asp Leu Arg Gly Tyr Trp Gly Thr Tyr Asp Val Glu Ile Arg 1095	1100	1105	3488	
gcg ttt gac cac ggt ttc ccg atg ctg gat tca ttc gag acc tac caa Ala Phe Asp His Gly Phe Pro Met Leu Asp Ser Phe Glu Thr Tyr Gln 1110	1115	1120	1125	3536
cta acc gtc agg cca tac aac ttc cat tca ccg gtg ttt gtg ttc cca Leu Thr Val Arg Pro Tyr Asn Phe His Ser Pro Val Phe Val Phe Pro 1130	1135	1140	3584	
act cct ggc tca acc atc agg ctt tct agg gag cgt gct ata gtc aat Thr Pro Gly Ser Thr Ile Arg Leu Ser Arg Glu Arg Ala Ile Val Asn 1145	1150	1155	3632	

ggt atg ctg gct ctg gct aat atc gcg agc gga gag ttc ctc gac aga	3680
Gly Met Leu Ala Leu Ala Asn Ile Ala Ser Gly Glu Phe Leu Asp Arg	
1160 1165 1170	
ctc tct gcc act gat gaa gat ggg cta cac gca ggc aga gta act ttc	3728
Leu Ser Ala Thr Asp Glu Asp Gly Leu His Ala Gly Arg Val Thr Phe	
1175 1180 1185	
tcc ata gct gga aac gat gaa gct gcg gaa tat ttc aat gtg ttg aac	3776
Ser Ile Ala Gly Asn Asp Glu Ala Ala Glu Tyr Phe Asn Val Leu Asn	
1190 1195 1200 1205	
gac ggt gac aac tca gca atg ctc acg ctg aag caa gca ttg ccc gct	3824
Asp Gly Asp Asn Ser Ala Met Leu Thr Leu Lys Gln Ala Leu Pro Ala	
1210 1215 1220	
ggc gtc cag cag ttt gag ttg gtt att cgg gcc acg gac ggc ggg acg	3872
Gly Val Gln Gln Phe Glu Leu Val Ile Arg Ala Thr Asp Gly Gly Thr	
1225 1230 1235	
gag ccg gga cct agg agt acc gac tgc tcc gtc act gtg gtg ttt gtg	3920
Glu Pro Gly Pro Arg Ser Thr Asp Cys Ser Val Thr Val Val Phe Val	
1240 1245 1250	
atg acg cag gga gac ccc gtg ttc gac gac aac gca gct tct gtc cgc	3968
Met Thr Gln Gly Asp Pro Val Phe Asp Asp Asn Ala Ala Ser Val Arg	
1255 1260 1265	
ttc gtt gaa aag gaa gct ggt atg tcg gaa aag ttt cag ctg cct cag	4016
Phe Val Glu Lys Glu Ala Gly Met Ser Glu Lys Phe Gln Leu Pro Gln	
1270 1275 1280 1285	
gcc gat gac ccc aaa aac tac agg tgt atg gac gac tgc cat acc atc	4064
Ala Asp Asp Pro Lys Asn Tyr Arg Cys Met Asp Asp Cys His Thr Ile	
1290 1295 1300	
tac tac tct atc gtt gat ggc aac gat ggt gac cac ttc gcc gtg gag	4112
Tyr Tyr Ser Ile Val Asp Gly Asn Asp Gly Asp His Phe Ala Val Glu	
1305 1310 1315	
ccg gag act aac gtg atc tat ttg ctg aag ccg ctg gac cgc agc caa	4160
Pro Glu Thr Asn Val Ile Tyr Leu Leu Lys Pro Leu Asp Arg Ser Gln	
1320 1325 1330	
cag gag cag tac agg gtc gtg gtg gcg gct tcc aac acg cct ggc ggc	4208
Gln Glu Gln Tyr Arg Val Val Ala Ala Ser Asn Thr Pro Gly Gly	
1335 1340 1345	
acc tcc acc ttg tcc tcc tca ctc ctc acc gtc acc atc ggc gtt cga	4256
Thr Ser Thr Leu Ser Ser Leu Leu Thr Val Thr Ile Gly Val Arg	
1350 1355 1360 1365	
gaa gca aac cct aga ccg atc ttc gaa agt gaa ttt tac aca gct ggc	4304
Glu Ala Asn Pro Arg Pro Ile Phe Glu Ser Glu Phe Tyr Thr Ala Gly	
1370 1375 1380	
gtc tta cac acc gat agc ata cac aag gag ctc gtt tac ctg gcg gca	4352
Val Leu His Thr Asp Ser Ile His Lys Glu Leu Val Tyr Leu Ala Ala	
1385 1390 1395	
aaa cat tca gaa ggg ctt cct atc gtc tac tcg ata gat caa gaa acc	4400
Lys His Ser Glu Gly Leu Pro Ile Val Tyr Ser Ile Asp Gln Glu Thr	

1400	1405	1410	
atg aaa ata gac gag tcg ttg caa aca gtt gtg gag gac gcc ttc gac Met Lys Ile Asp Glu Ser Leu Gln Thr Val Val Glu Asp Ala Phe Asp 1415	1420	1425	4448
att aac tct gca acc gga gtc ata tcg ctg aac ttc cag cca aca tct Ile Asn Ser Ala Thr Gly Val Ile Ser Leu Asn Phe Gln Pro Thr Ser 1430	1435	1440	4496
gtc atg cac ggc agt ttc gac ttc gag gtg gtg gct agt gac acg cgt Val Met His Gly Ser Phe Asp Phe Glu Val Val Ala Ser Asp Thr Arg 1450	1455	1460	4544
gga gcg agt gat cga gca aaa gtg tca att tac atg ata tcg act cgc Gly Ala Ser Asp Arg Ala Lys Val Ser Ile Tyr Met Ile Ser Thr Arg 1465	1470	1475	4592
gtt aga gta gcc ttc ctg ttc tac aac acg gaa gct gaa gtt aac gag Val Arg Val Ala Phe Leu Phe Tyr Asn Thr Glu Ala Glu Val Asn Glu 1480	1485	1490	4640
aga aga aat ttc att gca caa acg ttc gcc aac gcg ttt ggt atg aca Arg Arg Asn Phe Ile Ala Gln Thr Phe Ala Asn Ala Phe Gly Met Thr 1495	1500	1505	4688
tgt aac ata gac agc gtg ctg ccg gct acc gac gcc aac ggc gtg att Cys Asn Ile Asp Ser Val Leu Pro Ala Thr Asp Ala Asn Gly Val Ile 1510	1515	1520	4736
cgc gag ggg tac aca gaa ctc cag gct cac ttc ata cga gac gac cag Arg Glu Gly Tyr Thr Glu Leu Gln Ala His Phe Ile Arg Asp Asp Gln 1530	1535	1540	4784
ccg gtg cca gcc gac tat att gag gga tta ttt acg gaa ctc aat aca Pro Val Pro Ala Asp Tyr Ile Glu Gly Leu Phe Thr Glu Leu Asn Thr 1545	1550	1555	4832
ttg cgt gac atc aga gag gta ctg agt act cag caa ttg acg cta ctg Leu Arg Asp Ile Arg Glu Val Leu Ser Thr Gln Gln Leu Thr Leu Leu 1560	1565	1570	4880
gac ttt gcg gcg gga ggg tcg gca gtg ctg ccc ggc gga gag tac gcg Asp Phe Ala Ala Gly Gly Ser Ala Val Leu Pro Gly Gly Glu Tyr Ala 1575	1580	1585	4928
cta gcg gtg tac atc ctc gcc ggc atc gca gcg tta ctc gcc gtc atc Leu Ala Val Tyr Ile Leu Ala Gly Ile Ala Ala Leu Leu Ala Val Ile 1590	1595	1600	4976
tgt ctc gct ctc atc gct ttc ttc att agg aac cga aca ctg aac Cys Leu Ala Leu Ile Ala Phe Phe Ile Arg Asn Arg Thr Leu Asn 1610	1615	1620	5024
cgg cgc atc gaa gcc ctc aca atc aaa gat gtt cct acg gac atc gag Arg Arg Ile Glu Ala Leu Thr Ile Lys Asp Val Pro Thr Asp Ile Glu 1625	1630	1635	5072
cca aac cac gcg tca gta gca gtg cta aac att aac aag cac aca gaa Pro Asn His Ala Ser Val Ala Val Leu Asn Ile Asn Lys His Thr Glu 1640	1645	1650	5120

cct ggt tcc aat ccc ttc tat aac ccg gat gtt aag aca cct aac ttc 5168
 Pro Gly Ser Asn Pro Phe Tyr Asn Pro Asp Val Lys Thr Pro Asn Phe-
 1655 1660 1665

gac act ata agc gaa gta tcc gat gac ctg ctt gat gtc gaa gac ttg 5216
 Asp Thr Ile Ser Glu Val Ser Asp Asp Leu Leu Asp Val Glu Asp Leu
 1670 1675 1680 1685

gaa cag ttt gga aag gat tac ttc cca ccc gaa aac gaa att gag agc 5264
 Glu Gln Phe Gly Lys Asp Tyr Phe Pro Pro Glu Asn Glu Ile Glu Ser
 1690 1695 1700

ctg aat ttt gca cgt aac ccc ata gcg aca cac ggg aac aac ttt ggc 5312
 Leu Asn Phe Ala Arg Asn Pro Ile Ala Thr His Gly Asn Asn Phe Gly
 1705 1710 1715

gta aac tca agc ccc tcc aac cca gag ttc tcc aac tcc cag ttt aga 5360
 Val Asn Ser Ser Pro Ser Asn Pro Glu Phe Ser Asn Ser Gln Phe Arg
 1720 1725 1730

agt taaaactaaat acacttttat cacttgcata gacttatgtta tttataatt 5413
 Ser

ttacatttt tacatcaa ataaatgttt tatatgtaa aatagtgtga taaaatgtac 5473
 gtaacaatca acatacgctgt ttaggttcg taaataacat actcgtaatg tataagtgtt 5533
 atgtttatat atagaataaa aaatattaaa tattaaaaaa aaaaaaaaaa aaaaaaaaaa 5592

<210> 6
<211> 1734
<212> PRT
<213> Spodoptera frugiperda

<400> 6
Met Ala Val Asp Val Arg Ile Leu Thr Ala Thr Leu Leu Val Leu Thr
 1 5 10 15
Thr Ala Thr Ala Gln Arg Asp Arg Cys Gly Tyr Met Val Glu Ile Pro
 20 25 30
Arg Pro Asp Arg Pro Asp Phe Pro Pro Gln Asn Phe Asp Gly Leu Thr
 35 40 45
Trp Ala Gln Gln Pro Leu Leu Pro Ala Glu Asp Arg Glu Glu Val Cys
 50 55 60
Leu Asn Asp Tyr Glu Pro Asp Pro Trp Ser Asn Asn His Gly Asp Gln
 65 70 75 80
Arg Ile Tyr Met Glu Glu Glu Ile Glu Gly Pro Val Val Ile Ala Lys
 85 90 95
Ile Asn Tyr Gln Gly Asn Thr Pro Pro Gln Ile Arg Leu Pro Phe Arg
 100 105 110
Val Gly Ala Ala His Met Leu Gly Ala Glu Ile Arg Glu Tyr Pro Asp
 115 120 125
Ala Thr Gly Asp Trp Tyr Leu Val Ile Thr Gln Arg Gln Asp Tyr Glu
 130 135 140
Thr Pro Asp Met Gln Arg Tyr Thr Phe Asp Val Ser Val Glu Gly Gln
 145 150 155 160
Ser Leu Val Val Thr Val Arg Leu Asp Ile Val Asn Ile Asp Asp Asn
 165 170 175
Ala Pro Ile Ile Glu Met Leu Glu Pro Cys Asn Leu Pro Glu Leu Val
 180 185 190
Glu Pro His Val Thr Glu Cys Lys Tyr Ile Val Ser Asp Ala Asp Gly
 195 200 205
Leu Ile Ser Thr Ser Val Met Ser Tyr His Ile Asp Ser Glu Arg Gly
 210 215 220

Asp Glu Lys Val Phe Glu Leu Ile Arg Lys Asp Tyr Pro Gly Asp Trp
 225 230 235 240
 Thr Lys Val Tyr Met Val Leu Glu Leu Lys Lys Ser Leu Asp Tyr Glu
 245 250 255
 Glu Asn Pro Leu His Ile Phe Arg Val Thr Ala Ser Asp Ser Leu Pro
 260 265 270
 Asn Asn Arg Thr Val Val Met Met Val Glu Val Glu Asn Val Glu His
 275 280 285
 Arg Asn Pro Arg Trp Met Glu Ile Phe Ala Val Gln Gln Phe Asp Glu
 290 295 300
 Lys Gln Ala Lys Ser Phe Thr Val Arg Ala Ile Asp Gly Asp Thr Gly
 305 310 315 320
 Ile Asn Lys Pro Ile Phe Tyr Arg Ile Glu Thr Glu Asp Glu Asp Lys
 325 330 335
 Glu Phe Phe Ser Ile Glu Asn Ile Gly Glu Gly Arg Asp Gly Ala Arg
 340 345 350
 Phe His Val Ala Pro Ile Asp Arg Asp Tyr Leu Lys Arg Asp Met Phe
 355 360 365
 His Ile Arg Ile Ile Ala Tyr Lys Gln Gly Asp Asn Asp Lys Glu Gly
 370 375 380
 Glu Ser Ser Phe Glu Thr Ser Ala Asn Val Thr Ile Ile Ile Asn Asp
 385 390 395 400
 Ile Asn Asp Gln Arg Pro Glu Pro Phe His Lys Glu Tyr Thr Ile Ser
 405 410 415
 Ile Met Glu Glu Thr Ala Met Thr Leu Asp Leu Gln Glu Phe Gly Phe
 420 425 430
 His Asp Arg Asp Ile Gly Pro His Ala Gln Tyr Asp Val His Leu Glu
 435 440 445
 Ser Ile Gln Pro Glu Gly Ala His Thr Ala Phe Tyr Ile Ala Pro Glu
 450 455 460
 Glu Gly Tyr Gln Ala Gln Ser Phe Thr Ile Gly Thr Arg Ile His Asn
 465 470 475 480
 Met Leu Asp Tyr Glu Asp Asp Tyr Arg Pro Gly Ile Lys Leu Lys
 485 490 495
 Ala Val Ala Ile Asp Arg His Asp Asn Asn His Ile Gly Glu Ala Ile
 500 505 510
 Ile Asn Ile Asn Leu Ile Asn Trp Asn Asp Glu Leu Pro Ile Phe Asp
 515 520 525
 Glu Asp Ala Tyr Asn Val Thr Phe Glu Glu Thr Val Gly Asp Gly Phe
 530 535 540
 His Ile Gly Lys Tyr Arg Ala Lys Asp Arg Asp Ile Gly Asp Ile Val
 545 550 555 560
 Glu His Ser Ile Leu Gly Asn Ala Ala Asn Phe Leu Arg Ile Asp Ile
 565 570 575
 Asp Thr Gly Asp Val Tyr Val Ser Arg Asp Asp Tyr Phe Asp Tyr Gln
 580 585 590
 Arg Gln Asn Glu Ile Ile Val Gln Ile Leu Ala Val Asp Thr Leu Gly
 595 600 605
 Leu Pro Gln Asn Arg Ala Thr Thr Gln Leu Thr Ile Phe Leu Glu Asp
 610 615 620
 Ile Asn Asn Thr Pro Pro Ile Leu Arg Leu Pro Arg Ser Ser Pro Ser
 625 630 635 640
 Val Glu Glu Asn Val Glu Val Gly His Pro Ile Thr Glu Gly Leu Thr
 645 650 655
 Ala Thr Asp Pro Asp Thr Thr Ala Asp Leu His Phe Glu Ile Asp Trp
 660 665 670
 Asp Asn Ser Tyr Ala Thr Lys Gln Gly Thr Asn Gly Pro Asn Thr Ala
 675 680 685
 Asp Tyr His Gly Cys Val Glu Ile Leu Thr Val Tyr Pro Asp Pro Asp
 690 695 700
 Asn His Gly Arg Ala Glu Gly His Leu Val Ala Arg Glu Val Ser Asp
 705 710 715 720

Gly Val Thr Ile Asp Tyr Glu Lys Phe Glu Val Leu Tyr Leu Val Val
 725 730 735
 Arg Val Ile Asp Arg Asn Thr Val Ile Gly Pro Asp Tyr Asp Glu Ala
 740 745 750
 Met Leu Thr Val Thr Ile Ile Asp Met Asn Asp Asn Trp Pro Ile Trp
 755 760 765
 Ala Asp Asn Thr Leu Gln Gln Thr Leu Arg Val Arg Glu Met Ala Asp
 770 775 780
 Glu Gly Val Ile Val Gly Thr Leu Leu Ala Thr Asp Leu Asp Gly Pro
 785 790 795 800
 Leu Tyr Asn Arg Val Arg Tyr Thr Met Val Pro Ile Lys Asp Thr Pro
 805 810 815
 Asp Asp Leu Ile Ala Ile Asn Tyr Val Thr Gly Gln Leu Thr Val Asn
 820 825 830
 Lys Gly Gln Ala Ile Asp Ala Asp Asp Pro Pro Arg Phe Tyr Leu Tyr
 835 840 845
 Tyr Lys Val Thr Ala Ser Asp Lys Cys Ser Leu Asp Glu Phe Phe Pro
 850 855 860
 Val Cys Pro Pro Asp Pro Thr Tyr Trp Asn Thr Glu Gly Glu Ile Ala
 865 870 875 880
 Ile Ala Ile Thr Asp Thr Asn Asn Lys Ile Pro Arg Ala Glu Thr Asp
 885 890 895
 Met Phe Pro Ser Glu Lys Arg Ile Tyr Glu Asn Thr Pro Asn Gly Thr
 900 905 910
 Lys Ile Thr Thr Ile Ile Ala Ser Asp Gln Asp Arg Asp Arg Pro Asn
 915 920 925
 Asn Ala Leu Thr Tyr Arg Ile Asn Tyr Ala Phe Asn His Arg Leu Glu
 930 935 940
 Asn Phe Phe Ala Val Asp Pro Asp Thr Gly Glu Leu Phe Val His Phe
 945 950 955 960
 Thr Thr Ser Glu Val Leu Asp Arg Asp Gly Glu Glu Pro Glu His Arg
 965 970 975
 Ile Ile Phe Thr Ile Val Asp Asn Leu Glu Gly Ala Gly Asp Gly Asn
 980 985 990
 Gln Asn Thr Ile Ser Thr Glu Val Arg Val Ile Leu Leu Asp Ile Asn
 995 1000 1005
 Asp Asn Lys Pro Glu Leu Pro Ile Pro Asp Gly Glu Phe Trp Thr Val
 1010 1015 1020
 Ser Glu Gly Glu Val Glu Gly Lys Arg Ile Pro Pro Glu Ile His Ala
 1025 1030 1035 1040
 His Asp Arg Asp Glu Pro Phe Asn Asp Asn Ser Arg Val Gly Tyr Glu
 1045 1050 1055
 Ile Arg Ser Ile Lys Leu Ile Asn Arg Asp Ile Glu Leu Pro Gln Asp
 1060 1065 1070
 Pro Phe Lys Ile Ile Thr Ile Asp Asp Leu Asp Thr Trp Lys Phe Val
 1075 1080 1085
 Gly Glu Leu Glu Thr Thr Met Asp Leu Arg Gly Tyr Trp Gly Thr Tyr
 1090 1095 1100
 Asp Val Glu Ile Arg Ala Phe Asp His Gly Phe Pro Met Leu Asp Ser
 1105 1110 1115 1120
 Phe Glu Thr Tyr Gln Leu Thr Val Arg Pro Tyr Asn Phe His Ser Pro
 1125 1130 1135
 Val Phe Val Phe Pro Thr Pro Gly Ser Thr Ile Arg Leu Ser Arg Glu
 1140 1145 1150
 Arg Ala Ile Val Asn Gly Met Leu Ala Leu Ala Asn Ile Ala Ser Gly
 1155 1160 1165
 Glu Phe Leu Asp Arg Leu Ser Ala Thr Asp Glu Asp Gly Leu His Ala
 1170 1175 1180
 Gly Arg Val Thr Phe Ser Ile Ala Gly Asn Asp Glu Ala Ala Glu Tyr
 1185 1190 1195 1200
 Phe Asn Val Leu Asn Asp Gly Asp Asn Ser Ala Met Leu Thr Leu Lys
 1205 1210 1215

Gln Ala Leu Pro Ala Gly Val Gln Gln Phe Glu Leu Val Ile Arg Ala
 1220 1225 1230
 Thr Asp Gly Gly Thr Glu Pro Gly Pro Arg Ser Thr Asp Cys Ser Val
 1235 1240 1245
 Thr Val Val Phe Val Met Thr Gln Gly Asp Pro Val Phe Asp Asp Asn
 1250 1255 1260
 Ala Ala Ser Val Arg Phe Val Glu Lys Glu Ala Gly Met Ser Glu Lys
 1265 1270 1275 1280
 Phe Gln Leu Pro Gln Ala Asp Asp Pro Lys Asn Tyr Arg Cys Met Asp
 1285 1290 1295
 Asp Cys His Thr Ile Tyr Tyr Ser Ile Val Asp Gly Asn Asp Gly Asp
 1300 1305 1310
 His Phe Ala Val Glu Pro Glu Thr Asn Val Ile Tyr Leu Leu Lys Pro
 1315 1320 1325
 Leu Asp Arg Ser Gln Gln Glu Gln Tyr Arg Val Val Ala Ala Ser
 1330 1335 1340
 Asn Thr Pro Gly Gly Thr Ser Thr Leu Ser Ser Leu Leu Thr Val
 1345 1350 1355 1360
 Thr Ile Gly Val Arg Glu Ala Asn Pro Arg Pro Ile Phe Glu Ser Glu
 1365 1370 1375
 Phe Tyr Thr Ala Gly Val Leu His Thr Asp Ser Ile His Lys Glu Leu
 1380 1385 1390
 Val Tyr Leu Ala Ala Lys His Ser Glu Gly Leu Pro Ile Val Tyr Ser
 1395 1400 1405
 Ile Asp Gln Glu Thr Met Lys Ile Asp Glu Ser Leu Gln Thr Val Val
 1410 1415 1420
 Glu Asp Ala Phe Asp Ile Asn Ser Ala Thr Gly Val Ile Ser Leu Asn
 1425 1430 1435 1440
 Phe Gln Pro Thr Ser Val Met His Gly Ser Phe Asp Phe Glu Val Val
 1445 1450 1455
 Ala Ser Asp Thr Arg Gly Ala Ser Asp Arg Ala Lys Val Ser Ile Tyr
 1460 1465 1470
 Met Ile Ser Thr Arg Val Arg Val Ala Phe Leu Phe Tyr Asn Thr Glu
 1475 1480 1485
 Ala Glu Val Asn Glu Arg Arg Asn Phe Ile Ala Gln Thr Phe Ala Asn
 1490 1495 1500
 Ala Phe Gly Met Thr Cys Asn Ile Asp Ser Val Leu Pro Ala Thr Asp
 1505 1510 1515 1520
 Ala Asn Gly Val Ile Arg Glu Gly Tyr Thr Glu Leu Gln Ala His Phe
 1525 1530 1535
 Ile Arg Asp Asp Gln Pro Val Pro Ala Asp Tyr Ile Glu Gly Leu Phe
 1540 1545 1550
 Thr Glu Leu Asn Thr Leu Arg Asp Ile Arg Glu Val Leu Ser Thr Gln
 1555 1560 1565
 Gln Leu Thr Leu Leu Asp Phe Ala Ala Gly Gly Ser Ala Val Leu Pro
 1570 1575 1580
 Gly Gly Glu Tyr Ala Leu Ala Val Tyr Ile Leu Ala Gly Ile Ala Ala
 1585 1590 1595 1600
 Leu Leu Ala Val Ile Cys Leu Ala Leu Leu Ile Ala Phe Phe Ile Arg
 1605 1610 1615
 Asn Arg Thr Leu Asn Arg Arg Ile Glu Ala Leu Thr Ile Lys Asp Val
 1620 1625 1630
 Pro Thr Asp Ile Glu Pro Asn His Ala Ser Val Ala Val Leu Asn Ile
 1635 1640 1645
 Asn Lys His Thr Glu Pro Gly Ser Asn Pro Phe Tyr Asn Pro Asp Val
 1650 1655 1660
 Lys Thr Pro Asn Phe Asp Thr Ile Ser Glu Val Ser Asp Asp Leu Leu
 1665 1670 1675 1680
 Asp Val Glu Asp Leu Glu Gln Phe Gly Lys Asp Tyr Phe Pro Pro Glu
 1685 1690 1695
 Asn Glu Ile Glu Ser Leu Asn Phe Ala Arg Asn Pro Ile Ala Thr His
 1700 1705 1710

Gly Asn Asn Phe Gly Val Asn Ser Ser Pro Ser Asn Pro Glu Phe Ser
 1715 1720 1725
 Asn Ser Gln Phe Arg Ser
 1730

<210> 7
<211> 1604

<212> DNA

<213> Ost

tccgaaat

<210> 8

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide

<400> 8

gttamygtga gagaggcaga ycc

23

213 A

<220>

<223>

223 SYNTHETIC Oligonucleotides

400

ggatccaaatggccagtcacwccg

210 10

<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 10
tccgaattct tcttyaacct catcgayaac tt

32

<210> 11
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 11
cgcaagctta cttggtcgat gttrcasgtc at

32

THIS PAGE BLANK (USPTO)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 May 2001 (25.05.2001)

PCT

(10) International Publication Number
WO 01/36639 A3

(51) International Patent Classification⁷: C12N 15/12. 15/62, 5/10, C07K 14/705, 16/28, G01N 33/50

(21) International Application Number: PCT/US00/31674

(22) International Filing Date:
17 November 2000 (17.11.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/166,285 18 November 1999 (18.11.1999) US
60/234,099 21 September 2000 (21.09.2000) US

(71) Applicant: PIONEER HI-BRED INTERNATIONAL,
INC. [US/US]; 800 Capital Square, 400 Locust Street, Des
Moines, IA 50309 (US).

(72) Inventors: FLANNAGAN, Ronald, D.; 512 N.W. Norton
Circle, Grimes, IA 50111 (US). MATHIS, John, P.; 3808
6th Street, Apt. 15, Des Moines, IA 50313 (US). MEYER,
Terry, EuClaire; 4338 - 101st Street, Urbandale, IA 50322
(US).

(74) Agents: SPRUILL, Murray, W. et al.; Alston & Bird
LLP, Bank of America Plaza, 101 South Tryon Street, Suite
4000, Charlotte, NC 28280-4000 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AT
(utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA,
CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility
model), DK, DK (utility model), DM, DZ, EE, EE (utility
model), ES, FI, FI (utility model), GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK
(utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
22 November 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BT TOXIN RECEPTORS FROM LEPIDOPTERAN INSECTS AND METHODS OF USE

Gly = putative glycosylation sites

Cad = cadherin-like domain

WO 01/36639 A3
(57) Abstract: The invention relates to *Bt* toxin resistance management. The invention particularly relates to the isolation and characterization of nucleic acid and polypeptides for a novel *Bt* toxin receptor. The nucleic acid and polypeptides are useful in identifying and designing novel *Bt* toxin receptor ligands including novel insecticidal toxins.

INTERNATIONAL SEARCH REPORT

Intern. Appl. No
PCT/US 00/31674

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	C12N15/12	C12N15/62	C12N5/10	C07K14/705	C07K16/28
G01N33/50					

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C07K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, CAB Data, STRAND, BIOSIS, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	NAGAMATSU YASUNORI ET AL: "Cloning, sequencing, and expression of the <i>Bombyx mori</i> receptor for <i>Bacillus thuringiensis</i> insecticidal CryIA(a) toxin." <i>BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY</i> , vol. 62, no. 4, April 1998 (1998-04), pages 727-734, XP002164759 ISSN: 0916-8451 cited in the application the whole document -----	1,2,4, 9-15
X	WO 96 12964 A (UNIV WYOMING) 2 May 1996 (1996-05-02) the whole document ----- -----	1,2,4, 9-15, 19-22

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

13 June 2001

Date of mailing of the international search report

29.06.01

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040; Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Hornig, H

INTERNATIONAL SEARCH REPORT

Intern. Appl. Application No.
PCT/US 00/31674

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>VADLAMUDI RATNA K ET AL: "Cloning and expression of a receptor for an insecticidal toxin of <i>Bacillus thuringiensis</i>." <i>JOURNAL OF BIOLOGICAL CHEMISTRY</i>, vol. 270, no. 10, 1995, pages 5490-5494, XP002164760 ISSN: 0021-9258 cited in the application the whole document</p>	1,2,4, 9-15
X	<p>KEETON TIMOTHY P ET AL: "Ligand specificity and affinity of BT-R-1, the <i>Bacillus thuringiensis</i> Cry1A toxin receptor from <i>Manduca sexta</i>, expressed in mammalian and insect cell cultures." <i>APPLIED AND ENVIRONMENTAL MICROBIOLOGY</i>, vol. 63, no. 9, 1997, pages 3419-3425, XP002164761 ISSN: 0099-2240 cited in the application the whole document</p>	1,2,4, 9-15
X	<p>KEETON TIMOTHY P ET AL: "Effects of midgut-protein-preparative and ligand binding procedures on the toxin binding characteristics of BT-R1, a common high-affinity receptor in <i>Manduca sexta</i> for Cry1A <i>Bacillus thuringiensis</i> toxins." <i>APPLIED AND ENVIRONMENTAL MICROBIOLOGY</i>, vol. 64, no. 6, June 1998 (1998-06), pages 2158-2165, XP002164762 ISSN: 0099-2240 cited in the application the whole document</p>	1,2,4, 9-15
A	<p>GILL SARJEET S ET AL: "Identification, isolation, and cloning of a <i>Bacillus thuringiensis</i> CryIAc toxin-binding protein from the midgut of the lepidopteran insect <i>Heliothis virescens</i>." <i>JOURNAL OF BIOLOGICAL CHEMISTRY</i>, vol. 270, no. 45, 1995, pages 27277-27282, XP002164763 ISSN: 0021-9258 cited in the application the whole document</p>	-/-

INTERNATIONAL SEARCH REPORT

Internat'l Application No
PCT/US 00/31674

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>LEE MI KYONG ET AL: "Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for <i>Bacillus thuringiensis</i> CryIAc toxin." <i>APPLIED AND ENVIRONMENTAL MICROBIOLOGY</i>, vol. 62, no. 8, 1996, pages 2845-2849, XP002164764 ISSN: 0099-2240 cited in the application the whole document</p>	
E	<p>WO 01 34807 A (CANDAS MEHMET ;BULLA LEE A JR (US)) 17 May 2001 (2001-05-17) claims 1-28; figures 1,2</p>	1-15
A	<p>GARCZYNSKI S F ET AL: "IDENTIFICATION OF PUTATIVE INSECT BRUSH BORDER MEMBRANE-BINDING MOLECULES SPECIFIC TO <i>BACILLUS-THURINGIENSIS</i> DELTA ENDOTOXIN BY PROTEIN BLOT ANALYSIS" <i>APPLIED AND ENVIRONMENTAL MICROBIOLOGY</i>, vol. 57, no. 10, 1991, pages 2816-2820, XP000992668 ISSN: 0099-2240 the whole document</p>	
A	<p>OLTEAN DANIELA I ET AL: "Partial purification and characterization of <i>Bacillus thuringiensis</i> CryIA toxin receptor A from <i>Heliothis virescens</i> and cloning of the corresponding cDNA." <i>APPLIED AND ENVIRONMENTAL MICROBIOLOGY</i>, vol. 65, no. 11, November 1999 (1999-11), pages 4760-4766, XP002169506 ISSN: 0099-2240 the whole document</p>	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 00/31674

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/USA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: (1-25)-partially

An isolated nucleic acid molecule having the nucleotide sequence encoding a Bt toxin receptor, selected from *Ostrinia nubilalis* respectively SEQ ID No. 1; said nucleic acid, wherein said toxin is Cry1A/Cry1A(b); an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO. 2; a fusion polypeptide comprising said polypeptide, an expression cassette comprising a nucleotide sequence encoding said fusion polypeptide; an antibody preparation specific for said polypeptide; a vector comprising said expression cassette; a cell comprising said vector; a transformed cell of interest having stably incorporated within its genome said nucleotide sequence, SEQ ID No.1; a method for screening for ligands that bind said Bt toxin receptor comprising SEQ ID No. 2;

2. Claims: (1-25)-partially

Idem as invention 1 but limited to *Heliothis zea*, respectively SEQ ID Nos. 3 and 4;

3. Claims: (1-25)-partially

Idem as invention 1 but limited to *Spodoptera frugiperda*, respectively SEQ ID Nos. 5 and 6;

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US 00/31674

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9612964	A 02-05-1996	US 5693491 A AU 711066 B AU 4001595 A CA 2200427 A EP 0787299 A JP 10508198 T NZ 296265 A US 6007981 A ZA 9508851 A	02-12-1997 07-10-1999 15-05-1996 02-05-1996 06-08-1997 18-08-1998 28-05-1999 28-12-1999 11-06-1996
WO 0134807	A 17-05-2001	NONE	

THIS PAGE BLANK (USPTO)