Assignment 2: HW8-9

Zhengyuan Zhu

ZHENGYUAN.ZHU@MAVS.UTA.EDU

1001778274

1. HW8

Explain why the K-means objective function decreases in each of the two steps in K-mean algorithm: (a) re-assign every data points to their nearest cluster centroids. (b) Given the grouping (or clustering), re-computer the cluster centroids.

1.1 Background

K-means objective function is to minimize the average Squared Euclidean distance of data points from their cluster centers where a cluster center is defines as the mean of centroid μ of the documents in a cluster w:

$$\hat{\mu}(w) = \frac{1}{|w|} \sum_{\hat{x}| \in w} \hat{x} \tag{1}$$

The objective function measures how well the centroid represent the members of their cluster, one available function is **residual sum of squares**(RSS)

$$RSS_k = \sum_{\hat{x} \in w_k} |\hat{x} - \hat{\mu}(w_k)|^2$$
(2)

$$RSS = \sum_{k=1}^{K} RSS_k \tag{3}$$

1.2 solution

Through reassigning documents to the cluster with the closest centroid, the objective function decreases since the distance that vector contributes to objective function decrease.

1.3 solution

And the objective decrease in the recompute the cluster centroid step because the new centroid is the vector for which objective reaches its minimum.

2. HW9

(A) Generate Three Gaussian distributions, each with 100 data points in 2 dimensions, with centers at (3,3), (-3,3), and (0,-3) and standard deviation $\sigma = 2$. Draw them in a

Figure. Set K=3, do K-means clustering. Show the clustering results in the same Figure and compute the converged K-mean loss. Repeat this 5 times. Submit the 5 figures and losses, each represent the result of each K-means clustering. (B) Everything are same as (A), but with $\sigma = 4$. Submit the 5 figures and losses.

2.1 Code template

In the code template, I use "numpy" to generate three gaussian distribution and concatenate them as a dataset. The use "sklearn" to initiate a Kmeans class to fit the dataset. The centers and losses are built-in parameters in the Kmeans object. The figures and losses are shown below.

Figure 1: 1st running Kmeans when $\sigma = 2$, accumulate loss = 1119.87

Figure 2: 2nd running Kmeans when $\sigma = 2$, accumulate loss = 1098.09

Figure 3: 3rd running Kmeans when $\sigma = 2$, accumulate loss = 1250.47

Figure 4: 4th running Kmeans when $\sigma = 2$, accumulate loss = 1154.10

Figure 5: 5th running Kmeans when $\sigma = 2$, accumulate loss = 1201.70

Figure 6: 1st running Kmeans when $\sigma=4,\,accumulate\,\,loss=1939.61$

Figure 7: 2nd running Kmeans when $\sigma = 4$, accumulate loss = 2058.36

Figure 8: 3rd running Kmeans when $\sigma = 4$, accumulate loss = 2056.30

Figure 9: 4th running Kmeans when $\sigma = 4$, accumulate loss = 1973.79

Figure 10: 5th running Kmeans when $\sigma=4,\,accumulate\,\,loss=1916.41$

References

- $\bullet \ \, https://ai6034.mit.edu/wiki/images/SVM_and_Boosting.pdf$
- $\bullet \ \, http://www.cs.cmu.edu/\ aarti/Class/10601/slides/svm_11_22_2011.pdf$
- $\bullet \ \, \rm http://people.csail.mit.edu/dsontag/courses/ml13/slides/lecture6.pdf$