Aspects techniques des circuits logiques

A. MHAMDI Ingénieur ENIT Technologue en GE à l'ISET de BIZERTE

Année universitaire: 2013-2014

Ouvrages de référence

- 1. E. MESSERLI et Y. MEYER, Electronique Numérique, 1^{er} tome, Systèmes combinatoires, Hes.so, Septembre 2010.
- 2. J. BOUQUET et P. MAYE, Electronique numérique en 26 fiches, Dunod, Paris, 2010.
- 3. McGraw-Hill, Introduction aux circuits logiques, Deuxième édition, Letocha, Québec, 1985.
- 4. A. OUMNAD, Cours d'Electronique Numérique, EMI.

Avant-propos

Les principales technologies utilisées en automatisation :

Ces technologies, au nombre de quatre sont les suivantes :

- technologie pneumatique ;
- technologie hydraulique ;
- technologie électromécanique ;
- technologie électronique.

Chacune des technologies met en œuvre une grandeur physique que l'on peut commuter et mesurer.

Logique pneumatique (1/5)

La grandeur physique sur laquelle la technologie pneumatique est basée, c'est la pression de l'air. Ainsi, les détecteurs devront envoyer des signaux pneumatiques et les actionneurs devront réagir aussi à des signaux pneumatiques.

Symboles des fonctions de logique pneumatique

Logique pneumatique (2/5)

Mécanisme de la fonction logique NON

Logique pneumatique (3/5)

Mécanisme de la fonction logique OU

Les quatre cas possible de la fonction logique OU

Logique pneumatique (4/5)

Mécanisme de la fonction logique ET

Logique pneumatique (5/5)

Mécanisme de la fonction d'INHIBITION

Utilisé dans les détecteurs à <u>seuil de</u> pression Les quatre cas possible de la fonction d'INHIBITION

Autres logiques (1/2)

Logique hydraulique

La grandeur physique sur laquelle la technologie hydraulique est basée est la pression de l'huile.

Logique électromécanique

La technologie électromécanique est basée sur le courant électrique. Les détecteurs devront envoyer un courant électrique et les actionneurs devront réagir à la présence d'un courant électrique.

Autres logiques (2/2)

Logique électronique

On travaille avec une différence de potentiel avec la masse.

On distingue les familles logiques suivantes :

- RTL : Resistor Transistor Logique, 1964
- DTL : Diode Transistor Logique, 1964
- TTL: Transistor Transistor Logique, 1969

Ces grandeurs physiques sont utilisées de façon binaire. Il est assumé que le niveau logique est 0 en l'absence de grandeur physique et 1 en présence de cette grandeur.

Logique à diode

diodes

DTL

http://daniel.robert9.pagesperso-orange.fr/Digit/Pratique/Technologie_Digitale/Techno_Digit_2S.html/

TTL

http://www.liafa.jussieu.fr/~carton/Enseignement/Architecture/

NAND avec trois ontrées Symbole

NOR avec trois entrées Symbole

Les familles logiques (1/2)

• Famille TTL:

Série	commentaire	consommation (mW)	vitesse (ns)	usage
74	standard	10	10	dépassé
74H	High speed	20	5	dépassé
74L	Low power	1	30	dépassé
74S	Schottky	20	3	dépassé
74AS	Advanced Schottky	8	2	dépassé
74LS	Low power Schottky	2	10	normal
74ALS	Advanced LS	2	4	conseillé
74F	Fast	4	3	ponctuel

Les familles logiques (2/2)

• Famille CMOS:

Série	commentaire	consomma- tion (mW)	vitesse (ns)	usage
4000	alimentation de 38 V	0	100	dépassé
45	alimentation de 38 V	0	100	normal
74C	broche compatible TTL	0	50	dépassé
74HC	High speed CMOS	0	10	conseillé
74HCT	HC à niveau compatible TTL	0	10	conseillé
74AC	Advanced CMOS	0	3	nouveau
74ACT	AC à niveau compatible TTL	0	3	nouveau

Terminologie des circuits numériques

• Terminologie (Suite) :

- V_{CC}/V_{DD} : Tension d'alimentation (TTL/CMOS)
- zone du niveau haut [H]VHmin V_{IH}: Tension minimale d'entrée au niveau <u>haut</u>
- V_{IL}: Tension maximale d'entrée au niveau <u>bas</u>
- V_{IL} . Tension manimale de sortie au niveau hautone du niveau bas [L]GND
- V_{OL}: Tension maximale de sortie au niveau bas
- I_{CC} : Courant d'alimentation
- I_{CCH}/ I_{CCL}: Courant d'alimentation pour toutes les sorties au niveau

haut/bas

- I_{IH}: Courant minimal d'entrée au niveau <u>haut</u>
- I_{IL}: Courant maximal d'entrée au niveau bas
- I_{OH}: Courant minimal de sortie au niveau <u>haut</u>
- I_{OL}: Courant maximal de sortie au niveau <u>bas</u>
- I_{OS}: Courant de court-circuit (Sortie à la masse

 V_{cc}

zone indéterminéeVLmax

Sortance (Fan Out)

La sortance ou facteur de charge, est le nombre maximum de protes de la même famille que l'on peut connecter à la sortie d'une porte sans que les débits de courant n'altèrent les valeurs de la tension de sortie.

Remarque:

- La plupart des familles ont des sortances haute et basse différentes. Lors de la conception des systèmes, nous prendrons en compte la valeur la plus défavorable.
- Pour les circuits CMOS, la résistance d'entrée extrêmement.

Immunité aux bruits (1/3)

"L'immunité au bruit est la tolérance d'amplitude que supporte le circuit pour identifier correctement les signaux"

- Marges de sensibilité aux bruits :
 - \triangleright V_{NH} (Noise High)
 - > V (Noise Low)

Immunité aux bruits (2/3)

• Comparateur à hystérésis ou trigger de Schmitt :

$$V_{1} = \frac{+R_{1}U + R_{2}V_{Ref}}{R_{1} + R_{2}}$$

$$V_{2} = \frac{-R_{1}U + R_{2}V_{Ref}}{R_{1} + R_{2}}$$

Immunité aux bruits (3/3)

Le système n'oscille pas si l'écart entre les seuils est l'écart entre les seuils est supérieur à l'amplitude des fluctuations du signal d'entrée

Les caractéristiques temporelles

tPHL : Temps de commutation du niveau <u>haut</u> au niveau <u>bas</u>

tPLH: Temps de commutation du niveau <u>bas</u> au

ni tpd : Temps de propagation, tpd = (tpHL + tpLH)/2

Temps de pré positionnement et de maintien (Circuits séquentiels)

- T_{SU} (Set up time) : La durée minimale pendant laquelle la donnée présente sur l'entrée doit être stable avant le front actif du signal d'horloge.
- T_H (Hold time) : La durée minimale pendant laquelle la donnée présente sur l'entrée doit rester satble après le front actif du signal d'horloge

Collecteur ouvert

- Une sortie à collecteur ouvert comporte un transistor bipolaire fonctionnant en commutation.
- Une sortie à drain ouvert est l'équivalent d'une sortie à collecteur ouvert, mais avec un transistor MOS.

Une résistance de rappel (appelée aussi résistance de tirage) est indispensable pour fixer la tension à l'état haut.

Porte trois états (Tri-state gate) (Temps d'activation et de désactivation)

tpZH : Temps d'<u>activation</u> à l'état <u>haut</u> tpZL : Temps d'<u>activation</u> à l'état <u>bas</u>

tpHZ : Temps de <u>désactivation</u> à l'état <u>haut</u> tpLZ : Temps de <u>désactivation</u> à l'état <u>bas</u>

Application

In bus reliedix sorties trois états et quatre entréps de rigiques logiques des sorties trois états sont :

 $I_{\rm OL}$ = 24mA ; $I_{\rm OH}$ = -2.6mA ; $I_{\rm OZL}$ = -20 μ A ; $I_{\rm OZH}$ = 20 μ A et ceux desentrées sont :

$$I_{IL} = -0.4 \text{mA} ; I_{IH} = 20 \mu \text{A}$$

- 11. Combien del sorties trois états per une et le le se être ve et inées en mêmestemps de la principa de la combien del sorties trois états per une et le le se être ve et inées en mêmes de la combien del sorties trois états per une et le le se être ve et inées en mêmes de la combien del sorties trois états per une et le le se être ve et inées en mêmes de la combien del sorties trois états per une et le le se être ve et inées en mêmes de la combien del sorties trois états per une et le le se être ve et inées en mêmes de la combien de la combie
- 22. Quelle le condition ny art-il sur les commants le le sbus de l'était le les este de le plemplie les valeurs pur membrie de sonnées ?
- 3. Quelle le condition y a-t-il sur les contrants le le sous à l'étail était? ha littre le strette licempaile save cules nualétique au de réque données ? Conclure

Interface d'adaptation de niveaux logiques

Au niveau bas :

$$nI_{IL} < I_{OL}$$
 et $V_{OL} < V_{IL}$

• Au niveau haut : $nI_{IH} < I_{OH}$ et $V_{OH} > V_{IH}$

Problème: La tension de sortie du niveau haut de 2.4V des circuits TTL n'est pas compatible avec celle d'entrée des circuits CMOS (3.5V).

TTL vs. CMOS

Famille logique	Avantages	Inconvénients
TTL	 Les entrées laissées en 'l'air' ont un état logique à 1 par défaut. Une bonne immunité au bruit. Un temps de propagation faible. 	à 5V +/- 5 % sinon on risque de détruire le circuit.
CMOS	 L'alimentation peut aller de 3V à 18V. Le courant d'entrée est nul, car elle est réalisée avec des transistors à effet de champs. (Les transistors à effet de champs sont commandés en tension). Une excellente immunité 	La vitesse de commutation est plus faible que pour la technologie TTL.