TD 4 : Modèles

Mathilde Noual, Marc Lasson

8 mars 2011

Exercice 0

Dans chacun des langages ci-dessous, trouver une formule qui sépare les deux structures données avec le langage :

Exercice 1 : Une théorie infinitaire

On considère la théorie \mathcal{T} dont le langage est formé à partir d'un unique symbole de prédicat $r(\sqcup, \sqcup)$ et dont les axiomes sont :

```
 \begin{array}{ll} (A_1) & \exists x \; \exists y \; r(x,y) \\ (A_2) & \forall x \; \neg r(x,x) \\ (A_3) & \forall x \; \forall y \; \forall z \; (r(x,y) \land r(y,z) \Rightarrow r(x,z)) \\ (A_4) & \forall x \; \forall y \; (r(x,y) \Rightarrow \exists z \, (r(x,z) \land r(z,y))) \end{array}
```

- 1. Donner plusieurs modèles de \mathcal{T} . En déduire que \mathcal{T} est cohérente.
- 2. Montrer que tout modèle de \mathcal{T} est infini.
- 3. Montrer que pour tout $i \in [1..4]$, la théorie $\mathcal{T}_i = \mathcal{T} A_i$ admet un modèle fini. On exhibera un modèle minimal pour chaque valeur de i.

Exercice 2 : Théories égalitaires

Soit \mathcal{T} une théorie égalitaire. On dit qu'un modèle \mathcal{M} de \mathcal{T} est égalitaire lorsque le prédicat d'égalité est interprété par la relation d'égalité dans le modèle, c'est-à-dire : $(=)^{\mathcal{M}}(v_1, v_2) = 1$ ssi $v_1 = v_2$ (pour tous $v_1, v_2 \in \mathcal{M}$).

Montrer que tout modèle \mathcal{M} d'une théorie égalitaire \mathcal{T} peut être transformé en un modèle égalitaire \mathcal{M}' de \mathcal{T} tel que pour toute formule close de \mathcal{T} on ait $\mathcal{M} \models A$ ssi $\mathcal{M}' \models A$. On justifiera la construction du modèle \mathcal{M}' , ainsi que l'équivalence $\mathcal{M} \models A$ ssi $\mathcal{M}' \models A$.

Dans tout ce qui suit, on ne considère que des modèles égalitaires.

Exercice 3 : Le rouge et le noir

On considère le langage défini par un symbole de fonction $f(_{\sqcup})$ et trois symboles de prédicat $_{\sqcup} = _{\sqcup}$, $R(_{\sqcup})$, $B(_{\sqcup})$, ainsi que la théorie égalitaire définie sur ce langage par les axiomes suivants :

$$\forall x \ (R(x) \Leftrightarrow \neg B(x))$$

$$\forall x \ \forall y \ (f(x) = f(y) \Rightarrow x = y)$$

$$\forall x \ (R(x) \Leftrightarrow B(f(x)))$$

- 1. Donner deux modèles (égalitaires et non isomorphes) de cette théorie.
- 2. Montrer (dans \mathcal{T}) que : $\forall x (B(x) \Leftrightarrow R(f(x)))$
- 3. Montrer que tout modèle fini de la théorie est de cardinal pair.
- 4. Montrer que la théorie n'est pas complète, en exhibant une formule close A telle que $\mathcal{T} \not\vdash A$ et $\mathcal{T} \not\vdash \neg A$.

Exercice 4: Théories finitaires

On se place dans une théorie égalitaire quelconque :

- 1. Pour chaque entier $n \in \mathbb{N}$, formaliser les énoncés suivants :
 - $-\phi_n$: la structure a au moins n éléments.
 - $-\psi_n$: la structure a au plus n éléments.
 - $-E_n$: la structure a exactement n éléments.

On appelle le spectre de $\mathcal T$ l'ensemble des cardinaux de ses modèles finis égalitaires.

2. Donner des exemples de théories ayant les spectres suivants :

$$\begin{array}{lll} \varnothing, & \mathbb{N}, & \mathbb{N}^*, & \{2\}, & 2\mathbb{N}^*, & \{p^2 \ : \ p \in \mathbb{N}^*\}, \\ \{n \in \mathbb{N}^* \ : \ n \ \text{n'est pas premier}\} \end{array}$$

- 3. Montrer que toute théorie égalitaire dont le spectre est infini admet un modèle égalitaire infini.
- 4. Montrer que toute théorie égalitaire dont le spectre contient plusieurs éléments n'est pas complète.
- Montrer que la théorie des groupes finis n'est pas axiomatisable au premier ordre.

Exercice 5

On considère le langage défini par un symbole de fonction $s(\Box)$ et deux symboles de prédicat $\Box = \Box$ et $r(\Box, \Box)$, ainsi que la théorie égalitaire définie par les axiomes suivants :

$$\exists x \ \forall y \ r(x,y)$$

$$\forall x \ \forall y \ (sx = sy \Rightarrow x = y)$$

$$\forall x \ (sx \neq x)$$

$$\forall x \ \forall y \ (r(x,y) \land r(y,s(x)) \Leftrightarrow x = y \lor y = sx)$$

$$\forall x \ \forall y \ (r(x,y) \land r(y,x) \Leftrightarrow x = y)$$

$$\forall x \ \forall y \ \forall z \ (r(x,y) \land r(y,z) \Rightarrow r(x,z))$$

- 1. Donner deux modèles non-isomorphes de T
- 2. Pouvez-vous trouver une formule qui distingue ces deux modèles?

Exercice 6: relations sans cycles

Soit le langage formé par un seul symbole de relation binaire R. Pour chaque entier $n \geq 2$ on considère la formule

$$F_n \equiv \forall x_1 \cdots \forall x_n \ \neg (R(x_1, x_2) \land R(x_2, x_3) \land \cdots \land R(x_{n-1}, x_n) \land R(x_n, x_1))$$

exprimant l'absence de cycle de longueur n, et on note \mathcal{T} la théorie sur le langage dont les axiomes sont les formules F_n pour tout $n \geq 2$.

- 1. Donner, pour chaque $n \geq 2$, un modèle de : $F_2 \wedge \cdots \wedge F_n \wedge \neg F_{n+1}$.
- 2. Montrer que si G est une formule close de telle que $\mathcal{T} \vdash G$, il existe au moins un entier $p \geq 2$ tel que la formule G soit satisfaite dans toute -structure dans laquelle l'interprétation de R n'admet aucun cycle d'ordre inférieur où égal à p.
- 3. Montrer que toute formule close G telle que $\mathcal{T} \vdash G$ admet au moins un modèle avec cycle.
- 4. Montrer que \mathcal{T} n'est équivalente à aucune théorie finie. (Donc la notion de relation binaire sans cycle n'est pas finiment axiomatisable dans .)

Exercice 7 : ensembles bien ordonnés

On rappelle qu'un ensemble bien ordonné est un ensemble ordonné dans lequel toute partie non vide de cet ensemble admet un plus petit élément.

- 1. Montrer que tout ensemble bien ordonné est totalement ordonné.
- 2. Donner plusieurs exemples d'ensembles bien ordonnés infinis.

Soit maintenant \mathcal{T} une théorie égalitaire dont le langage contient au moins un symbole de relation binaire \leq satisfaisant les axiomes de relation d'ordre total (réflexivité, transitivité, antisymétrie et totalité).

3. Montrer que si \mathcal{T} admet un modèle infini, alors \mathcal{T} admet un modèle dans lequel l'interprétation de la relation \leq n'est pas un bon ordre.