A Guided Tour of Chapter 4: Markov Decision Process and Bellman Equations

Ashwin Rao

ICME, Stanford University

Developing Intuition on Optimal Sequential Decisioning

- Chapter 1 covered "Sequential Uncertainty" and notion of "Rewards"
- Here we extend the framework to include "Sequential Decisioning"
- Developing intuition by revisiting the Inventory example
- Over-ordering risks "holding costs" of overnight inventory
- Under-ordering risks "stockout costs" (empty shelves more damaging)
- Orders influence future inventory levels, and consequent future orders
- Also need to deal with delayed costs and demand uncertainty
- Intuition on how challenging it is to determine Optimal Actions
- Cyclic interplay between the Agent and Environment
- Unlike supervised learning, there's no "teacher" here (only Rewards)

Cyclic Interplay between Agent and Environment

3/31

MDP Definition for Discrete Time, Countable States

Definition

A Markov Decision Process (MDP) comprises of:

- A countable set of states \mathcal{S} (State Space), a set $\mathcal{T} \subseteq \mathcal{S}$ (known as the set of Terminal States), and a countable set of actions \mathcal{A}
- A time-indexed sequence of environment-generated pairs of random states $S_t \in \mathcal{S}$ and random rewards $R_t \in \mathcal{D}$ (a countable subset of \mathbb{R}), alternating with agent-controllable actions $A_t \in \mathcal{A}$ for time steps $t=0,1,2,\ldots$
- Markov Property: $\mathbb{P}[(R_{t+1}, S_{t+1}) | (S_t, A_t, S_{t-1}, A_{t-1}, \dots, S_0, A_0)] = \mathbb{P}[(R_{t+1}, S_{t+1}) | (S_t, A_t)]$ for all $t \ge 0$
- Termination: If an outcome for S_T (for some time step T) is a state in the set T, then this sequence outcome terminates at time step T.

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \dots, S_{T-1}, A_{T-1}, R_T, S_T$$

Ashwin Rao (Stanford) MDP Chapter 4/31

Time-Homogeneity, Transition Function, Reward Functions

- Time-Homogeneity: $\mathbb{P}[(R_{t+1}, S_{t+1})|(S_t, A_t)]$ independent of t
- \Rightarrow Transition Probability Function $\mathcal{P}_R : \mathcal{N} \times \mathcal{A} \times \mathcal{D} \times \mathcal{S} \rightarrow [0,1]$

$$\mathcal{P}_{R}(s, a, r, s') = \mathbb{P}[(R_{t+1} = r, S_{t+1} = s') | S_{t} = s, A_{t} = a]$$

• State Transition Probability Function $\mathcal{P}: \mathcal{N} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$:

$$\mathcal{P}(s, a, s') = \sum_{r \in \mathcal{D}} \mathcal{P}_{R}(s, a, r, s')$$

• Reward Transition Function $\mathcal{R}_{\mathcal{T}}: \mathcal{N} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ defined as:

$$\mathcal{R}_{T}(s, a, s') = \mathbb{E}[R_{t+1} | (S_{t+1} = s', S_t = s, A_t = a)]$$

$$= \sum_{r \in \mathcal{D}} \frac{\mathcal{P}_{R}(s, a, r, s')}{\mathcal{P}(s, a, s')} \cdot r = \sum_{r \in \mathcal{D}} \frac{\mathcal{P}_{R}(s, a, r, s')}{\sum_{r \in \mathcal{D}} \mathcal{P}_{R}(s, a, r, s')} \cdot r$$

• Reward Function $\mathcal{R}: \mathcal{N} \times \mathcal{A} \to \mathbb{R}$ defined as:

$$\mathcal{R}(s, a) = \mathbb{E}[R_{t+1} | (S_t = s, A_t = a)] = \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{D}} \mathcal{P}_R(s, a, r, s') \cdot r$$

Ashwin Rao (Stanford) MDP Chapter 5/31

Policy: Function defining the Behavior of the Agent

ullet A Policy is an Agent-controlled function $\pi:\mathcal{N} imes\mathcal{A} o[0,1]$

$$\pi(s, a) = \mathbb{P}[A_t = a | S_t = s]$$
 for all time steps $t = 0, 1, 2, \dots$

- Above definition assumes Policy is Markovian and Stationary
- If not stationary, we can include time in State to make it stationary
- ullet We denote a deterministic policy as a function $\pi_D: \mathcal{N}
 ightarrow \mathcal{A}$

$$\pi(s,\pi_D(s))=1$$
 and $\pi(s,a)=0$ for all $a\in\mathcal{A}$ with $a\neq\pi_D(s)$

[MDP, Policy] := MRP

$$\mathcal{P}_{R}^{\pi}(s,r,s') = \sum_{a \in \mathcal{A}} \pi(s,a) \cdot \mathcal{P}_{R}(s,a,r,s')$$
 $\mathcal{P}^{\pi}(s,s') = \sum_{a \in \mathcal{A}} \pi(s,a) \cdot \mathcal{P}(s,a,s')$
 $\mathcal{R}_{T}^{\pi}(s,s') = \sum_{a \in \mathcal{A}} \pi(s,a) \cdot \mathcal{R}_{T}(s,a,s')$
 $\mathcal{R}^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(s,a) \cdot \mathcal{R}(s,a)$

```
class MarkovDecisionProcess(ABC, Generic[S, A]):
    @abstractmethod
    def actions(self , state: NonTerminal[S]) \
            -> Iterable [A]:
        pass
    @abstractmethod
    def step(self , state: NonTerminal[S] , action: A) \
            -> Distribution [Tuple [State [S], float]]:
        pass
```

```
def apply_policy(self , policy: Policy[S, A]) \
       —> MarkovRewardProcess[S]:
    mdp = self
    class RewardProcess(MarkovRewardProcess[S]):
        def transition_reward(
            self.
            st: NonTerminal[S]
        ) -> Distribution [Tuple [State [S], float]]:
           actions: Distribution [A] = policy.act(st)
           return actions.apply(
               lambda a: mdp.step(st, a)
    return RewardProcess()
```

Finite Markov Decision Process

- Finite State Space $S = \{s_1, s_2, \dots, s_n\}, |\mathcal{N}| = m \leq n$
- Action Space $\mathcal{A}(s)$ is finite for each $s \in \mathcal{N}$
- Finite set of (next state, reward) transitions
- ullet We'd like a sparse representation for \mathcal{P}_R
- Conceptualize $\mathcal{P}_R : \mathcal{N} \times \mathcal{A} \times \mathcal{D} \times \mathcal{S} \rightarrow [0,1]$ as:

$$\mathcal{N} o (\mathcal{A} o (\mathcal{S} imes \mathcal{D} o [0,1]))$$

10 / 31

```
\label{eq:StateReward} StateReward = FiniteDistribution[Tuple[State[S], & float]] \\ ActionMapping = Mapping[A, StateReward[S]] \\ StateActionMapping = Mapping[NonTerminal[S], & ActionMapping[A, S]] \\ \end{aligned}
```

```
class FiniteMarkovDecisionProcess (
        MarkovDecisionProcess[S, A]
):
   m: StateActionMapping[S, A]
    nt_states: Sequence[NonTerminal[S]]
   def __init__(self, m: Mapping[S, Mapping[A,
                FiniteDistribution[Tuple[S, float]]]])
        nt: Set[S] = set(mapping.keys())
        self.m = \{NonTerminal(s): \{a: Categorical(s)\} \}
            {(NonTerminal(s1) if s1 in nt else
             Terminal(s1), r): p for (s1, r), p in
             v.table().items()}) for a, v in
             d.items() for s, d in mapping.items() }
        self.nt_states = list(self.m.keys())
```

```
-> StateReward:
        return self.mapping[state][action]
@dataclass(frozen=True)
class FinitePolicy(Policy[S, A]):
    policy_map: Mapping[S, FiniteDistribution[A]]
   def act(self , state: NonTerminal[S]) \
           -> FiniteDistribution[A]:
        return self.policy_map[state.state]
```

def step(self , state: NonTerminal[S] , action: A) \

With this, we can write a method for FiniteMarkovDecisionProcess that takes a FinitePolicy and produces a FiniteMarkovRewardProcess

Inventory MDP

- ullet $\alpha:=$ On-Hand Inventory, $\beta:=$ On-Order Inventory
- h := Holding Cost (per unit of overnight inventory)
- p := Stockout Cost (per unit of missed demand)
- C := Shelf Capacity (number of inventory units shelf can hold)
- $S = \{(\alpha, \beta) : 0 \le \alpha + \beta \le C\}$
- $\mathcal{A}((\alpha,\beta)) = \{\theta : 0 \le \theta \le C (\alpha+\beta)\}$
- $f(\cdot) := \mathsf{PMF}$ of demand, $F(\cdot) := \mathsf{CMF}$ of demand $\mathcal{R}_T((\alpha, \beta), \theta, (\alpha + \beta i, \theta)) = -h\alpha$ for $0 \le i \le \alpha + \beta 1$

$$\mathcal{R}_{T}((\alpha,\beta),\theta,(0,\theta)) = -h\alpha - p(\sum_{j=\alpha+\beta+1}^{\infty} f(j) \cdot (j-(\alpha+\beta)))$$
$$= -h\alpha - p(\lambda(1-F(\alpha+\beta-1)) - (\alpha+\beta)(1-F(\alpha+\beta)))$$

State-Value Function of an MDP for a Fixed Policy

• Define the Return G_t from state S_t as:

$$G_t = \sum_{i=t+1}^{\infty} \gamma^{i-t-1} \cdot R_i = R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \dots$$

- $\gamma \in [0,1]$ is the discount factor
- State-Value Function (for policy π) $V^{\pi}: \mathcal{N} \to \mathbb{R}$ defined as:

$$V^{\pi}(s) = \mathbb{E}_{\pi,\mathcal{P}_R}[G_t|S_t = s]$$
 for all $s \in \mathcal{N}, \text{ for all } t = 0,1,2,\dots$

ullet V^{π} is Value Function of π -implied MRP, satisfying MRP Bellman Eqn

$$V^{\pi}(s) = \mathcal{R}^{\pi}(s) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}^{\pi}(s, s') \cdot V^{\pi}(s')$$

• This yields the MDP (State-Value Function) Bellman Policy Equation

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(s, a) \cdot (\mathcal{R}(s, a) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot V^{\pi}(s'))$$
(1)

Action-Value Function of an MDP for a Fixed Policy

• Action-Value Function (for policy π) $Q^{\pi}: \mathcal{N} \times \mathcal{A} \to \mathbb{R}$ defined as:

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi,\mathcal{P}_R}[G_t|(S_t=s,A_t=a)] ext{ for all } s \in \mathcal{N}, a \in \mathcal{A}$$
 $V^{\pi}(s) = \sum \pi(s,a) \cdot Q^{\pi}(s,a)$ (2)

• Combining Equation (1) and Equation (2) yields:

$$Q^{\pi}(s, a) = \mathcal{R}(s, a) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot V^{\pi}(s')$$
 (3)

Combining Equation (3) and Equation (2) yields:

$$Q^{\pi}(s,a) = \mathcal{R}(s,a) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}(s,a,s') \sum_{a' \in \mathcal{A}} \pi(s',a') \cdot Q^{\pi}(s',a') \quad (4)$$

MDP Prediction Problem: Evaluating $V^{\pi}(\cdot)$ and $Q^{\pi}(\cdot)$ for fixed policy π

MDP State-Value Function Bellman Policy Equation

Ashwin Rao (Stanford) MDP Chapter 16/31

MDP Action-Value Function Bellman Policy Equation

Optimal Value Functions

• Optimal State-Value Function $V^*: \mathcal{N} \to \mathbb{R}$ defined as:

$$V^*(s) = \max_{\pi \in \Pi} V^\pi(s)$$
 for all $s \in \mathcal{N}$

where Π is the space of all stationary (stochastic) policies

- For each s, maximize $V^{\pi}(s)$ across choices of $\pi \in \Pi$
- Does this mean we could have different maximizing π for different s?
- We'll answer this question later
- Optimal Action-Value Function $Q^* : \mathcal{N} \times \mathcal{A} \to \mathbb{R}$ defined as:

$$Q^*(s,a) = \max_{\pi \in \Pi} Q^{\pi}(s,a)$$
 for all $s \in \mathcal{N}, a \in \mathcal{A}$

Bellman Optimality Equations

$$V^*(s) = \max_{a \in A} Q^*(s, a) \tag{5}$$

$$Q^*(s,a) = \mathcal{R}(s,a) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}(s,a,s') \cdot V^*(s')$$
 (6)

These yield the MDP State-Value Function Bellman Optimality Equation

$$V^*(s) = \max_{a \in \mathcal{A}} \{ \mathcal{R}(s, a) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot V^*(s') \}$$
 (7)

and the MDP Action-Value Function Bellman Optimality Equation

$$Q^*(s,a) = \mathcal{R}(s,a) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}(s,a,s') \cdot \max_{a' \in \mathcal{A}} Q^*(s',a')$$
(8)

MDP Control Problem: Computing $V^*(\cdot)$ and $Q^*(\cdot)$

MDP State-Value Function Bellman Optimality Equation

MDP Action-Value Function Bellman Optimality Equation

21/31

Optimal Policy

- Bellman Optimality Equations don't directly solve Control
- Because (unlike Bellman Policy Equations), these are non-linear
- But these equations form the foundations of DP/RL algos for Control
- But will solving Control give us the Optimal Policy?
- What does Optimal Policy mean anyway?
- What if different π maximize $V^{\pi}(s)$ for different s?
- So define an *Optimal Policy* π^* as one that "dominates" all other π :
 - $\pi^* \in \Pi$ is an Optimal Policy if $V^{\pi^*}(s) \geq V^{\pi}(s)$ for all π and for all s
- Is there an Optimal Policy π^* such that $V^*(s) = V^{\pi^*}(s)$ for all s?

Optimal Policy achieves Optimal Value Function

Theorem

For any (discrete-time, countable-spaces, time-homogeneous) MDP:

- There exists an Optimal Policy $\pi^* \in \Pi$, i.e., there exists a Policy $\pi^* \in \Pi$ such that $V^{\pi^*}(s) \geq V^{\pi}(s)$ for all policies $\pi \in \Pi$ and for all states $s \in \mathcal{N}$
- All Optimal Policies achieve the Optimal Value Function, i.e. $V^{\pi^*}(s) = V^*(s)$ for all $s \in \mathcal{N}$, for all Optimal Policies π^*
- All Optimal Policies achieve the Optimal Action-Value Function, i.e. $Q^{\pi^*}(s,a) = Q^*(s,a)$ for all $s \in \mathcal{N}$, for all $a \in \mathcal{A}$, for all Optimal Policies π^*

Proof Outline

- ullet For any Optimal Policies π_1^* and π_2^* , $V^{\pi_1^*}(s) = V^{\pi_2^*}(s)$ for all $s \in \mathcal{N}$
- Construct a candidate Optimal (Deterministic) Policy $\pi_D^* : \mathcal{N} \to \mathcal{A}$:

$$\pi_D^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q^*(s,a) \text{ for all } s \in \mathcal{N}$$

• π_D^* achieves the Optimal Value Functions V^* and Q^* :

$$V^*(s)=Q^*(s,\pi_D^*(s))$$
 for all $s\in\mathcal{N}$
$$V^{\pi_D^*}(s)=V^*(s) ext{ for all } s\in\mathcal{N}$$
 $Q^{\pi_D^*}(s,a)=Q^*(s,a) ext{ for all } s\in\mathcal{N}, ext{ for all } a\in\mathcal{A}$

• π_D^* is an Optimal Policy:

 $V^{\pi_D^*}(s) \geq V^{\pi}(s)$ for all policies $\pi \in \Pi$ and for all states $s \in \mathcal{N}$

State Space Size and Transitions Complexity

- Tabular Algorithms for State Spaces that are not too large
- In real-world, state spaces are very large/infinite/continuous
- Curse of Dimensionality: Size Explosion as a function of dimensions
- Curse of Modeling: Transition Probabilities hard to model/estimate
- Dimension-Reduction techniques, Unsupervised ML methods
- Function Approximation of the Value Function (in ADP and RL)
- Sampling, Sampling ... (in ADP and RL)

Action Space Sizes

- Large Action Spaces: Hard to represent, estimate and evaluate:
 - Policy π
 - Action-Value Function for a policy Q^{π}
 - Optimal Action-Value Function Q*
- Large Actions Space makes it hard to calculate $argmax_a Q(s, a)$
- Optimization over Action Space for each non-terminal state
- Policy Gradient a technique to deal with large action spaces

26 / 31

Time-Steps Variants and Continuity

- Time-Steps: terminating (episodic) or non-terminating (continuing)
- Discounted or Undiscounted MDPs, Average-Reward MDPs
- Continuous-time MDPs: Stochastic Processes and Stochastic Calculus
- When States/Actions/Time all continuous, Hamilton-Jacobi-Bellman

Ashwin Rao (Stanford) MDP Chapter 27 /

Partially-Observable Markov Decision Process (POMDP)

- Two different notions of State:
 - ullet Internal representation of the environment at each time step $t\left(S_t^{(e)}
 ight)$
 - The agent's state at each time step t (let's call it $S_t^{(a)}$)
- We assumed $S_t^{(e)} = S_t^{(a)} (= S_t)$ and that S_t is fully observable
- ullet A more general framework assumes agent sees Observations O_t
- Agent cannot see (or infer) $S_t^{(e)}$ from history of observations
- This more general framework is called POMDP
- POMDP is specified with *Observation Space* \mathcal{O} and observation probability function $\mathcal{Z}: \mathcal{S} \times \mathcal{A} \times \mathcal{O} \rightarrow [0,1]$ defined as:

$$\mathcal{Z}(s', a, o) = \mathbb{P}[O_{t+1} = o | (S_{t+1} = s', A_t = a)]$$

- ullet Along with the usual transition probabilities specification \mathcal{P}_R
- MDP is a special case of POMDP with $O_t = S_t^{(e)} = S_t^{(a)} = S_t$

Ashwin Rao (Stanford) MDP Chapter 28 / 31

Belief States, Tractability and Modeling

- Agent doesn't have knowledge of S_t , only of O_t
- So Agent has to "guess" S_t by maintaining Belief States

$$b(h)_t = (\mathbb{P}[S_t = s_1 | H_t = h], \mathbb{P}[S_t = s_2 | H_t = h], \ldots)$$

where history H_t is all data known to agent by time t:

$$H_t := (O_0, R_0, A_0, O_1, R_1, A_1, \dots, O_t, R_t)$$

- H_t satisfies Markov Property $\Rightarrow b(h)_t$ satisfies Markov Property
- POMDP yields (huge) MDP whose states are POMDP's belief states
- Real-world: Model as accurate POMDP or approx as tractable MDP?

Ashwin Rao (Stanford) MDP Chapter 30 / 31

Key Takeaways from this Chapter

- MDP Bellman Policy Equations
- MDP Bellman Optimality Equations
- Existence of an Optimal Policy, and of each Optimal Policy achieving the Optimal Value Function