A Review of Applied Probability Theory

Continuous Random Variables

Dr. Bahman Honari
Autumn 2022

Continuous Random Variables

- In this set of slides, we introduce a couple of continuous random variables and discuss their properties. Before this, we review some general properties of continuous R.Vs and related functions.
- Properties of the pdf of a continuous R.V:

$$f(x) \ge 0$$

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

Continuous Random Variables cont.

$$F(\alpha) = P(X \le \alpha) = \int_{-\infty}^{\alpha} f(x) dx$$

$$f(x) = \frac{dF(x)}{dx}$$

$$P(\alpha < X < \beta) = \int_{\alpha}^{\beta} f(x) dx = F(\beta) - F(\alpha)$$

$$P(X = \alpha) = \lim_{\varepsilon \to 0} \int_{\alpha}^{\alpha + \varepsilon} f(x) dx = \lim_{\varepsilon \to 0} \left[F(\alpha + \varepsilon) - F(\alpha - \varepsilon) \right] = 0$$

1- Uniform Distribution

$$f(x) = k \qquad a \le x \le b$$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{a}^{b} kdx = k(b-a) = 1 \qquad \to k = \frac{1}{b-a}$$

$$f(x) = \frac{1}{b-a} \qquad a \le x \le b$$

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{a+b}{2} \qquad , \qquad Var[X] = E[X^{2}] - E^{2}[X] = \frac{(b-a)^{2}}{12}$$

$$m_{X}(t) = E[e^{tX}] = \int_{a}^{b} e^{tx} \frac{1}{b-a} dx = \frac{e^{tb} - e^{ta}}{b-a}$$

$$P(\alpha < X < \beta) = \int_{a}^{\beta} \frac{1}{b-a} dx = \frac{\beta - \alpha}{b-a} \qquad (a < \alpha < \beta < b)$$

2- Exponential Distribution

$$f(x) = \lambda e^{-\lambda x}$$
 $x \ge 0$
$$E[X] = \frac{1}{\lambda}$$
 , $Var[X] = \frac{1}{\lambda^2}$
$$m_X(t) = E[e^{tX}] = \frac{\lambda}{\lambda - t}$$
 $t < \lambda$

The Exponential distribution is used to model the lifetime of electronic components.

• Theorem 1 – Exponential distribution is memoryless.

$$P(X > s + t \mid X > s) = P(X > t)$$

$$P(X > s + t \mid X > s) = \frac{P(X > s + t)}{P(X > s)} = \frac{\int_{s+t}^{\infty} \lambda e^{-\lambda x} dx}{\int_{s}^{\infty} \lambda e^{-\lambda x} dx}$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = \int_{t}^{\infty} \lambda e^{-\lambda x} dx = P(X > t) = \frac{P(X > t)}{1}$$

 Theorem 2 – Exponential distribution is the only continuous distribution that is memoryless.

$$P(X > s + t \mid X > s) = P(X > t) \quad \rightarrow \quad \frac{P(X > s + t)}{P(X > s)} = P(X > t) \quad \rightarrow \quad P(X > s + t) = P(X > s)P(X > t)$$

$$[1 - F(s + t)] = [1 - F(s)][1 - F(t)] \quad \rightarrow \quad G(s + t) = G(s)G(t) \quad \text{knowing that } 0 \le G(.) \le 1$$

$$s \rightarrow t \quad \rightarrow \quad G(2t) = G^2(t), \text{and similarly} \quad G(3t) = G^3(t), \dots, G(kt) = G^k(t) \quad \rightarrow \quad G(t) = G^{\frac{1}{k}}(kt)$$

$$then \ easily \quad \rightarrow \quad G\left(\frac{m}{n}t\right) = G^{\frac{m}{n}}(t) \quad \text{and therefore} \quad \rightarrow \quad G(xt) = G^x(t)$$

$$Now \ let \ t = 1 \quad \rightarrow G(x) = G^x(1) \quad therefore \quad G(x) = e^{x \ln G(1)}$$

$$1 - F(x) = e^{x \ln G(1)} \quad \rightarrow \quad F(x) = 1 - e^{x \ln G(1)}$$

$$\rightarrow \quad f(x) = -\ln G(1)e^{x \ln G(1)} \quad that \ is \ in \ form \ of \ Exponential \ distribution.$$

- Theorem 3 (link between Poisson and exponential distributions). If the number of events is a random variable Poisson distribution wit rate r, the time between two consecutive events has exponential distribution.
- Assume

X: number of Poisson events
T: Time between two consecutive events

$$P(T > t_0) = P(X_{t_0} = 0) = \frac{e^{-rt_0} (rt_0)^0}{0!} = e^{-rt_0}$$

on the other hand
$$P(T > t_0) = 1 - P(T \le t_0) = 1 - F_T(t_0)$$

we therefore have
$$1 - F_T(t_0) = e^{-rt_0}$$

and therefore
$$f_T(t_0) = re^{-rt_0}$$
 or $f_T(t) = re^{-r}$

that indicates exponential distribution with $\lambda = r$.

3- Erlang Distribution

If $X_1, X_2, ..., X_n$ are independent, identical Exponential RVs, then

$$X = X_1 + X_2 + \dots + X_n$$

has Erlang distribution with

$$f(x) = (\lambda x)^{n-1} \lambda e^{-\lambda}$$
 $x \ge 0$

and

$$E[X] = \frac{n}{\lambda}$$
 , $Var[X] = \frac{n}{\lambda^2}$

$$m_X(t) = E[e^{tX}] = \left(\frac{\lambda}{\lambda - t}\right)^n \quad t < \lambda$$

4- Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < +\infty$$

$$E[X] = \mu$$
, $Var[X] = \sigma^2$, $m_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$

$$Z = \frac{X - \mu}{\sigma}$$

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} - \infty < z < +\infty$$

$$E[Z] = 0$$
, $Var[Z] = 1$

4- Normal Distribution Cont.

$$\phi(\alpha) = \int_{-\infty}^{\alpha} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$
$$= P\left(Z < \frac{b - \mu}{\sigma}\right) - P\left(Z < \frac{a - \mu}{\sigma}\right) = \phi\left(\frac{b - \mu}{\sigma}\right) - \phi\left(\frac{a - \mu}{\sigma}\right)$$

4- Normal Distribution Cont.

α	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319

$$\phi(0.53) = 0.7019$$

 $\phi(1.05) = 0.8531$

$$\phi^{-1}(0.9292) = 1.47$$

Normal Approximation for Binomial Probabilities

We can show under some assumption as below, Normal distribution can be used to find approximate probabilities for both Binomial and Poisson distributions.

 $X \sim B(n, p)$, large n, and small p

$$P(X = x_0) = \binom{n}{x_0} p^{x_0} q^{n-x_0} \approx \phi \left(\frac{x_0 + \frac{1}{2} - \mu}{\sigma}\right) - \phi \left(\frac{x_0 - \frac{1}{2} - \mu}{\sigma}\right) \text{ where we put } \begin{cases} \mu = np \\ \sigma = \sqrt{npq} \end{cases}$$

Normal Approximation for Poisson Probabilities

• Using a visual illustration similar to the previous slide, we can show

$$X \sim P(\lambda)$$
, large λ

$$P(X = x_0) = \frac{e^{-\lambda} \lambda^{x_0}}{x_0!} \approx \phi \left(\frac{x_0 + \frac{1}{2} - \mu}{\sigma} \right) - \phi \left(\frac{x_0 - \frac{1}{2} - \mu}{\sigma} \right) \text{ where we put } \begin{cases} \mu = \lambda \\ \sigma = \sqrt{\lambda} \end{cases}$$