

Aerospace Environmental Support Center

Technical Memorandum 70-3

IONOSPHERIC ELECTRON DENSITY PROFILE MODEL

July 1970

bу

Thomas D. Damon

and

Franklin R. Hartranft

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RFLEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.

BLANK PAGES IN THIS DOCUMENT WERE NOT FILMED

TABLE OF CONTENTS

		Page
I.	Preface	1
II.	Introduction	2
III.	Development of the Model	3
IV.	Description of the Computer Program	4
٧.	Description of the Computer-Produced Profile	7
VI.	Evaluation of the Model	7
VII.	Summary and Conclusions	9
III.	References	10
	Figures 1 - 9	11
	Appendix A. Computer Program "MODEL"	51
	Appendix B. Sample Computer Output	31

I. Preface.

Recent investigation of the effects of ionospheric retardation and refraction on satellite tracking radars has generated a need for a means to predict the errors and correct for them. This paper describes a project undertaken by 4th Weather Wing to produce a realistic electron density profile based upon parameters which can be forecast reasonably accurately. The authors wish to acknowledge the help provided them in this project. Lt Colonel Hansrote provided the impetus for producing such a model. Capt Jack Wrobel solved our initial problems of scale height by providing "Wrobel's Equation." MSgt Birch and TSgt "uster analyzed and evaluated the model against actual observations. Mrs. Green accomplished the manuscript typing. Thanks, also to Lt Bo Eross for his system analysis suggestions.

Thomas D. Damon, Major, USAF Technical Development Branch Detachment 1, 4 WWg Franklin R. Hertranft, Captain, USAF Automation Branch Aerospace Sciences Division Hq 4 WWg

Il. Introduction.

The development of a computer program for predicting electron density profiles was prompted by the realization that ionospheric retardation and refraction produced errors in range and azimuth of satellite tracking radars. These errors are of the same order of magnitude as those produced by tropospheric effects when the UniF radars are operating above a few degrees elevation. Since the effects are rather small, it was assumed that a simple model from 100 km to 1000 km would be sufficient. However, as development work began, other requirements for electron density profiles became apparent. A three-dimensional ionosphere for HF ray tracing which requires considerably more accuracy in the lower ionosphere, was requested. In addition, total electron content for correcting for Faraday rotation in some navigational satellites requires a model extending higher than 1000 km.

The program described in this report has been used routinely for about eight months to predict electron density profiles for the FPS-85 radar at Eglin AFB, Fla. Results are encouraging enough to warrant publication. It should be considered an interim report, however, as improvements are sure to be required as its accuracy is evaluated for different purposes.

III. Development.

The ionospheric electron density profile model presented in this paper consists of the sum of three Chapman layers (E, Fl, and F2). Each layer is of the form

$$N_h = N_{max} \exp a[1-Z-exp(-Z)]$$

where $Z = (h-h_{max})/h_s$

Nh = electron dersity at height h

 N_{max} = electron density at the peak of the Chapman layer h_{max}

h_s = scale height at the peak (except for the topside of the F2 region)

The value of the constant, a, depends upon whether electrons are lost by attachment or by recombination. While neither process is unique in any layer, a is assumed to be 0.5 for the E-layer and 1.0 for the Fl and F2 layers.

Electron densities in the topside ionosphere are controlled by complex motions rather than a production-loss balance and cannot be successfully described strictly by a Chapman layer. An effort was made to keep from over-complicating the model and still obtain the best topside profile. After some experimentation a fit was obtained by simply using the Chapman equation for the topside ionosphere, but computing the electron densities by using a variable scale height throughout the region.

The scale neight profile is calculated from the equation

$$h_s = \frac{\log h}{2.186 \times 10^{-2}} - 203.447$$

This equation describes the scale height of a simple standard atmosphere and was derived by Capt J. Wrobel (private communication).

Critical frequencies for the E and Fl regions are determined from regression equations [1], [2].

$$f_0E = 0.9[(180 + 1.44R) \cos x]^{0.25}$$

$$f_0F1 = 1.26f_0E + 0.5$$

where R = the twelve-month running mean sunspot number

$$\chi$$
 = the solar zenith angle

When χ exceeds 90°, $f_{0}E$ is set to 0.7 MHz. When χ exceeds 135°, $f_{0}E$ is set to 0.3 MHz.

The F2 region critical frequency may be predicted from the ITS (ESSA) coefficients by predicting a sunspot number (R) [1]. It may also be predicted manually on a short-term basis by the Air Force Aerospace Environmental Support Center. For post analysis purposes, an observed value may be used.

The height of the peak of the E region is assumed to be 120 km. After some experimentation, the F1 peak was placed halfway between the E and F2 peaks.

The height of the £2 peak is calculated by using Shimazaki's equation [3]:

$$h_{\text{max}} = \frac{1^{1/90}}{M} - 176$$

where the M(3000) factor, M, may be predicted in a manner similar to the prediction of foF2, or observed. Computations of h_{max} using M(3000) were found to be accurate within 20 km at mid latitudes. If a more accurate measure of h_{max} is available,

such as h_p F2, an artificial M(3000) may be calculated from the Shimazaki equation and used as an input into the computer program.

IV. Description of the Computer Program.

A copy of the computer program used to compute an electron density profile is listed in Appendix A. The program is written in IBM 7090 FORTRAN IV. There are three input options (all of which are concerned with the method of obtaining foF2 and M(3000)). Two output options are available, depending upon the representation of the profile required.

The program computes electron densities independently for each of three regions (E, Fl and F2). The base of the profile is 100 km and computations are made at 5 km increments to 1000 km. The three regions are added toget or to give the total electron density at each increment of altitude. Electron density is not permitted to decrease with altitude, but is held constant across "valleys" in the profile.

Total electron content in a one square meter cross section up to a given altitude is also computed. An initial electron content is established at 95 km, to represent the total content below 100 km. A calculation of plasma frequency is made from the electron density for each 5 km interval.

Input parameters are read from data cards. The first data card indicates output options (Table 1). The second data card contains information pertaining to the geographic location of the profile. The format of the card is the same for all input options (Table 2).

As previously mentioned, there are three input options which determine the method by which foF2 and M(3000) are introduced into the program. Data card number 3 contains information pertinent to the profile, including the input option variable IOPT. Table 3 lists the input parameters on the third data card and indicates which of them are used by the program under each of the three input options. If IOPT = 1, foF2 and M(3000) are computed from a card deck of ITS Prediction Coefficients. (Subroutines used to compute foF2 and M(3000) from ITS coefficients were extracted from a program published in [4].) If IOPT = 2, a long-term data tape containing sunspot dependent coefficients of foF2 and M(3000) is read to determine foF2 and M(3000). Finally, if IOPT = 3, foF2 and M(3000) are read explicitly from the data card.

TABLE 1

Card Column	Variable	Explanation
1	IPLOT	If IPLOT = 1, a profile of plasma frequency vs height is plotted. If IPLOT = 0, plot is suppressed.
2	IPNCH	If IPNCH = 1, the 17 most significant points depicting the profile are punched onto data cards. If IPNCH = 0, the punch routine is suppressed.
	TABLE 2	
Card Column	Variable	Explanation
1-6	CLAT	Latitude
7	NORS	Hemisphere (N, S)
8-13	CLONG	Longitude
14	IHEM	Hemisphere (E, W)
15-38	NAME	Name of Station

TABLE 3

Card Column	Variable	Required Under Option	Explanation
1-2	IYR	1, 2, 3	Year
3-4	MNTH1	1, 2, 3	Month
5-6	МИТН2	1, 2	Used if mean of two months coef-ficients are required.
7-8	IDA	3	Day
9 - 12	IBHR	1, 2, 3	Beginning time of set of con- secutive pro- files (GMT).
13-16	IEHR	1, 2, 3	Ending time of set of consecutive profiles (GMT).
17-18	INC	1, 2, 3	Increment of time step (hours).
19-21	JDAY	1, 2, 3	Julian Day
22	IOPT	1, 2, 3	Option
26-30	SSN	1, 2, 3	Sunspot Number
31-40	FOF2	3	<pre>foF2 (explicit) MHz and tenths</pre>
41-50	EM3000	3	M(300J)(explicit) hundredths
51-56	. IVB	1, 2	Beginning of valid time (i.e., 10 May).
57-62	IVE	1, 2	Ending of valid time (i.e., 20 May).

NOTE: All numbers are integers except SSN, FOF2, and EM3000. These three are floating point, punched with a decimal point, anywhere in the field.

V. Description of the Computer Produced Profile.

Appendix 2 is a sample profile produced by computer. The profile is in four sections. The first section provides a summary of input data and pertinent information for each of the three regions. The second section is the profile itself, listing values of height, E-region density, Fl-region density, F2-region density, total density, cumulative electron content, plasma frequency and scale height for each 5 km increment of the model. Output of the third section depends upon the value of the output option IPLOT (see Table 1), and plots a graph of plasma frequency vs height for the model. The fourth and final section depends upon the value of the output option IPNCH. If selected, the 17 most significant values of plasma frequency describing the profile are chosen objectively and written onto magnetic tape for punching onto data cards. In addition, a checklist of the points selected is printed.

VI. Evaluation of the Model.

An evaluation of this model was made by comparing with observed electron density profiles and with total electron content measurements.

Figures 1 to 8 show model monthly median profiles for Wallops Island, Va., during 1968, compared with the observed profiles available from World Data Center A. Boulder, Colorado. Excellent results are obtained during winter and at night. The July 1800Z (mid-day) is the worst case among several dozen such comparisons at various locations and times.

In Table 4, the total electron content calculated to 1000 km. 's compared with observations of total content from Bedford, Mass., to geostationary stellites, a path which passes through the F2 peak near Wallops Island. These observations, courtesy of Jack Klobuchar, Air Force Cambridge Research Laboratories, are converted to vertical incidence by assuming a cosine correction factor. As expected, the model is generally lower than the observations since it cuts off at 1000 km. It is interesting to note that in the summer daytime, when the model overestimates the bottomside content (Figure 6), it underestimates the total content. This implies that more electrons are present in the topside than the model predicts.

A third comparison is shown in Figure 9. Here, total content to 1000 km from the model is compared with the total content on near vertical incidence paths to synchronous satellites in the vicinity of Hawaii [5]. The shape of the diurnal curve is good and the results are again excellent at night but are underestimated at midday.

TABLE 4

TOTAL ELECTRON CONTENT

(10- M-2)

WALLOPS ISLAND 1968

GMT	OBSERVED TEC	MCDEL TO 1000 KM	PERCENT DIFFERENCE
January			
0100 0500 2000	1.2 .66 4.1	1.0 .56 3.5	-10 -15 -15
March			
0200 0500 1100 1600 2100	1.6 .98 .65 3.3 3.7	1.4 .95 .61 3.2 3.4	-13 -3 -6 -3 -8
May			
0300 0700 1200 1600 2200	1.5 .85 1.4 2.3 2.7	1.4 .93 1.2 2.0 2.1	-7 +9 -14 -13 -22
July			
0400 0800 1300 1800 2300	1.2 .62 1.4 1.8 2.1	1.1 .60 1.3 1.6	-8 -3 -7 -11 -24
September			
0100 0500 1000 1500 2000	1.4 .91 .42 2.4 2.9	1.4 .89 .46 2.4 2.7	0 -2 +10 0 -7
November			
0200 0600 1100 1600 2100	.75 .55 .39 3.2 3.2	.65 .52 .36 3.3 2.8	-13 -5 -8 +3 -13

VII. Summary and Conclusion.

The electron density profile model came about as an attempt to produce a reasonably simple method of predicting electron densities in the 100-1000 km range. This model should not be considered final, by any means, even for the current applications. The scale height profile should be improved to include diurnal and seasonal variations. The model should be extended from its upper limit of 1000 km to the plasmapause. Variations of electron density with geomagnetic activity should be included. Improved prediction or specification of any of the input parameters will, of course, improve the accuracy of the profile model. The height of the F2 maximum is probably the most important of these.

VIII. References.

- 1. Barghausen, A. F., J. W. Finner, L. L. Proctor, and L. D. Shultz (1969), Predicting Long-Term Operational Parameters of High-Frequency Sky-Wave Telecommunications Systems, ESSA Technical Report ERL 110-ITS 78.
- 2. Haydon, G. W. and D. L. Lucas (1968), "Predicting Ionospheric Electron Density Profiles," Radio Science, Vol 3 (New Series) No 1, III.
- 3. Shimazaki, T. (1955), "World-Wide Daily Variations in the Height of the Maximum Electron Density of the Ionospheric F2 Layer," J. Radio Res. Labs, Japan, 2, 85-97.
- 4. Jones, W. B., R. P. Graham, and M. Leftin (1969), Advances in Ionospheric Mapping by Numerical Methods, ESSA Technical Report ERL 107-ITS 75.
- 5. Yuen, P. C. and T. H. Roelofs, Atlas of Total Electron Content Plots, Vol 3, Radio Science Lab, University of Hawaii, Honolulu.

THE THE PERSON ASSESSMENT OF THE PERSON ASSESS 1000 15.0 Innertendental conferentiation of the co (15° 20° 250 30¢ 35¢ 4¢¢ 45¢ 50¢ 55¢ 60¢ 65¢ 7¢¢ 75¢ 80¢ 85¢ 90¢ 95¢ 1 306 UNCLASSIFIED XXX XXX XX HE I GHT (KM) 250 13.0 1..... 3.0 IXXXX 1.0 6.0 0. 0. 11.0 2.0 0. Y 12.0 13.0 9.0 14.0 WALLOPS XBLAND 0500Z

Figure 1

UNCLASSIFIED HE I GHT (XM) 10.c I....l.... 13.0 12.0

> Sigure 14

UNCLASSIFIED	C 200 25C 3C0 350 CO 450 50C 55C 60C 650 700 75C 8C0 850 900 950 1000	\[X\]	XXXX	XXXX XXXX	X XXX	XX XX	XXI	XX XX XX										The second secon
	130 150 1 0.0	AXXXXX		27	3.0 [S 4.0	\$ 2.0 M		D WD	IAN AU	0.0	0.00	211-0	V 12.00 I	13.6	14.5	15.5 [see 18	

Figure

Appendix A

Computer Program "MODEL"

```
SIBFTC MOULL
      CIMENSION SCALE(182), IHGT(182)
      CIMENSION VAL(91), NAME(4), STOR(182)
      COMMON /8/ K(14),U(17,76),KX(14),UX(17,76),K1(14),KX1(14),
     1U1(17,76),UX1(17,76)
      CATA IE, IS/1HE, 1HS/
C+++++ SET UP CONSTANTS FOR RADIAN CONVERSION *****
      C180=3.1415927
      PI2=C180/2.0
      4K=C18C/180.0
      BK=180.0/C180
      GLT=1.36135662
      GLG=1.22173030
      KARL =C
C**** SCALE HEIGHT COMPUTATION (WROBEL-S EQUATION) ***
      CO 10 I=1,182
      SCALE(1)=(ALOG(H)/2.186E-02)-203.447
      IHGT(I)=H
      IF(I.EQ.1) SCALE(I)=6.6
     H=H+5.0
10
C
    ***PEAD OUTPUT OPTIONS ***
      REAU (5,11) IPLOT, IPNCH
      FORMAT (211)
C*****READ LOCATION OF STATION *****
     READ (5,4) CLAT, NORS, CLONG, IHEM, (NAME(1), I=1,4)
    FORMAT (2(F6.1,A1),4A6)
     .. CHECK FOR BLANK CARD (END OF ALL DATA) .....
      IF(CLAT.EQ.0.0) GO TO 777
        CHECK FOR EASTERN OR SOUTHERN HEMISPHERE
      IF(NORS.EQ.IS) CLAT =- 1. *CLAT
      IF (IHEM.EQ.IE) CLONG=-1.C"CLONG
      REAU (5,44) IYR, MNTH1, MNTH2, IDA, IBHR, 1EHR, INC, JDAY, IOPT, SSN, FCF2,
     TEM3000, TVB, IVE
      FORMAT (412,214,12,13,11,3X,F5.1,2F10.5,2A6)
      IHR= IBHR
     INC = 1NC + 100
                       1 = ITS COEFFICIENTS READ FROM CARUS
2 = LONG TERM DATA TAPE
                        3 = FCF2 AND M(30CO) EXPLICIT
C
```

```
IF(IOPT.EQ.1.AND.KARD.EQ.C) GO TO 1
      IF(IOPT.EQ.1.AND.KARD.EQ.1) GO TO 34
      IF(ICPT.EQ.2) GO TO 2
IF(ICPT.EC.3) GO TO 3
      GO TO 33
         IOPT = 1, READ CARDS *****
      CALL READU(K,U)
      CALL READU(KX,UX)
      IF(MNTH2.GT.O) CALL READU(K1,U1)
      IF(MNTH2.GT.O) CALL READU(KX1,UX1)
      KARU=1
      GO TO 34
        IOPT = 2, READ LONG-TERM DATA TAPE *****
      CALL LTAPE(MNTH1, SSN, K, U, KX, UX)
      IF(MNTH2.GT.O) CALL LTAPE(MNTH2,SSP,K1:U1,KX1,UX1)
34
      CONTINUE
      CALL DOIT(SLAT, CLONG, IHR, FOF2, EM3COO, MNTH1, MNTH2)
800
      GO TO 3
33
      WRITE (6,333)
333
      FORMAT (1H1, 13HERROR IN TOPT)
      GO TO 777
      CONTINUE
C***** IOPT = 3, BEGIN COMPUTATIONS *****
         NOW HAVE FOF2 AND M3000 BY ONE OF THREE METHODS
         CALCULATE SULAR ZENITH ANGLE
      IFRST=IHR/100
      SECND=IHR-IFRST+1CC
      SECND=SECND/60.
      GMT=FLCAT(IFRST)+SECND
      IF (GMT.EC.0.0) GM1=24.
      C=JDAY
      SSP=-23.45*COS((U+10.)/365.*C180*2.)
      SSP=SSP+AK
      SSL=15.0*GMT-180.0
      Z=(SSL-CLONG) *AK
      COMP=SIN(CLAT+AK)+SIN(SSP)+COS(CLAT+AK)+COS(SSP)+COS(Z)
      COMP = ARCOS (COMP)
      COMP=ABS(COMP)
      RANG=COMP
      ZANG=COMP+BK+0.5
           CALCULATE GEOMAGNETIC LATITUDE
```

```
GAT=ARCOS(SIN(GLT)+SIN(CLAT+AK)+COS(GLT)+CUS(CLAT+AK)
     1 *CCS(CLONG*AK-GLG))
      GLAT=(PI2-GAT)+BK
     R= SSN
C+++++ NOW HAVE NEEDED PARAMETERS FOR EQUATIONS
C***** HEIGHT OF E-REGION SET TO 120 KM *****
  HE=120.0
C***** COMPUTE SCALE HEIGHT OF E-REGICN
 TE=(ALOG(HE)/2.185E-02)-203.447
C***** COMPUTE FOE
      PART=0.9*((180.0+1.44*R)*COS(RANG))
      IF(PART.GE.O.) FOE=PART++0.25
     IF(PART.LT.O.) FOE=0.7
C***** IF SOLAR ZENITH ANGLE GREATER THAN 130 DEG. FOE SET 10 0.3 ****
   1F(ZANG.GE.90.0) FOE=G.7
C***** IF SCLAR ZENITH ANGLE GREATER THAN 90 DEG. FOE SET TO C.7
IF(ZANG.GE.130.) FOE=0.3
C**** COMPUTE FOF1 *****
   FOF1=1.26+FOE+0.5
C**** COMPUTE MAX DENSITY OF E-REGION *****
  ENE=1.24E04+(FOE)++2
C***** COMPUTE MAX DENSITY OF F1-REGION ****
   FNMAX=1.24EC4+(FOF1)++2
C+++++ COMPUTE MAX DENSITY OF F2-REGION
ENMAX=1.24E04+(FOF2)++2
C+**** COMPUTE HEIGHT OF MAX DENSITY (SHIMAZAKI EQUATION)
      HMAX=1490.0/EM3000-176.0
_ C ___
    *** COMPUTE SCALE HEIGHT OF F2-REGION ****
      TF=(ALUG(HMAX)/2.186E-02)-203.447
```

```
* HEIGHT OF F1-REGION SET TO MIDPOINT OF E- AND F2-REGIONS
       HMAX 1= (HMAX+120.)/2.
C
           COMPUTE SCALE HEIGHT OF FI-REGION
C.
C
        TF1=(ALOG(HMAX1)/2.186E-C2)-203.447
       IF(IOPT.LT.3) WRITE (6,990) IVB, IVE, LYR, IHR
        F(IDPT.EQ.3) WRITE (6,99) TYR, MNTH1, IDA, IHR
C.... DUTPUT SECTION .....
           WRITE HEADING FOR SUMMARY PAGE
Ċ
       FORMAT (1H1,26HIONOSPHERIC PROFILE VALID ,A6,2X,A6,2X,I2,I5,1HZ) FORMAT (1H1,24HIONOSPHERIC PROFILE FOR ,313,I5,1HZ)
990
99
       WRITE (6,100) CLAT, NORS, CLONG, IHEM, (NAME(I), I=1,4)
       FORMAT (1HO, 17HSTATION LOCATION , 21F6.1, A1)//15X, 4A6)
100
       IF(IOPT.EQ.1) WRITE (6,1000)
IF(IOPT.EQ.2) WRITE (6,1001)
       FURMAT (1HO, +3HTHIS PROFILE BASED UPON LONG-TERM DATA TAPE)
1001
       FORMAT (1HO, 7X, 40HTHIS PROFILE BASED UPON ITS COEFFICIENTS)
1000
        WRITE (6,101) FOF2, EM3000, FOE, FOF1
        FORMAT (1H0,7HF0F2 = ,F5.2,10X,8HM3000 = ,F5.2,10X,6HF0E = ,F7.2,
101
      110X,7HF0F1 = ,F7.21
       WRITE (6,102) GLAT, ZANG, R
       FORMAT (1HG, 23HGEDMAGNETIC LATITUDE = ,F7.2,5X,
102
      121HSOLAR ZENITH ANGLE = ,F7.2//1X,17HSUNSPOT NUMBER = ,F5.0)
        WRITE (6,103) TE, HE, ENE
        FORMAT (1HO, 19HVALUES FOR E-REGION//
103
      15X,15HSCALE HEIGHT =,F7.2,3H KM/
25X,9HHEIGHT = ,F7.2,3H KM/
      35X, LOHDENSITY = .F8.0, 13H ELECTRONS/CC)
        WRITE (6,1040) TF1, HMAX1, FNMAX
       FURMAT (1HO, 20HVALUES FOR F1-REGION//.
      13X,15HSCALE HEIGHT =, F7.2,3H KM/
25X,9HHEIGHT = , F7.2,3H KM/
35X,10HDENSITY = ,F8.0,13H ELECTRONS/CC)
       WRITE (6,1Q4) TF, HMAX, ENMAX
104 FURMAT (1HO, 20HVALUES FOR F2-REGION//
15X,15HSCALE HEIGHT =,F7.2,3H KM/
25X,9HHEIGHT = ,F7.2,3H KM/
35X,10HDENSITY = ,F8.0,13H ELECTRONS/CC)
C****** WRITE HEADING FOR PROFILE PAGE *****
       WRITE (6,201)
201
        FURMAT (1H1,10X,24HELECTRON DENSITY PROFILE//5X,2HKM,5X,
      18HF-REGION, 5X, 9HF1-REGION, 5X, 9HF2-REGION, 7X, 5HYOTAL, 7X,
      210HCUMULATIVE, 5x, 16HPLASMA FREQUENCY, 5x, 5HSCALE)
       ENP1=0.
        ENSAV=0.
```

```
C
          COMPUTE AND PRINT VALUES FOR EACH 5 KM LEVEL
      H=95.
      UO 200 I=1,182
      J=1/2
      FZE=(H-HMAX1)/TF1
      EZE=(H-HE)/TE
C..... ELECTRON DENSITIES COMPUTED FOR F2-REGION BASED ON A
              CONSTANT SCALE HEIGHT IF BELOW THE F2-PEAK AND
              UN A VARIABLE SCALE HEIGHT IF ABOVE THE F2-PEAK
C. . . . . . .
C.
      IF(H.GT.HMAX) ZEE=(H-HMAX)/SCALE(I)
      IF(H.LE.HMAX) ZEE=(H-HMAX)/TF
EE=ENE *EXP(0.5*(1.0-EZE-EXP(-1.0*EZE)))
      EN=ENMAX+EXP
                         (1.0-ZEE-EXP(-1.0*ZEE))
      FN=FNMAX+EXP
                         (1.0-FZE-EXP(-1.0+FZE))
      ENP=EN+EE+FN
      IF(H.GT.HE.AND.H.LT.HMAX1.AND.ENP.LT.ENE) ENP-ENE
      IF(H.GT.HMAX).AND.H.LT.HMAX.AND.ENP.LT.FNMAX) ENP=FNMAX IF(ENP.LT.ENP1.AND.H.LT.HMAX) ENP=ENP1
      ENP1=ENP
      PLAS=8.97E-03+SQRT(ENP)
      STOR(I)=PLAS
      IF(MOU(1,2).EQ.O) VAL(J)=PLAS
      ENSAV=ENSAV+ENP+5.0EC9
IF(I.EQ.1) SU TO 200
      IH≅H
      WRITE (6,202) IH, EE, FN, EN, ENP, ENSAV, PLAS, SCALE(I)
      FORMAT (3X,14,1X,4(4X,F9.0),5X,17616.8,6X,0PF7.2,7X,F7.2)
202
      H=H+5.0
2C0
C***** CALL PLOT KOUTINE IF REQUESTED *****
      IF(IPLOT.GT.O) CALL PLOT(VAL)
C***** CALL PUNCH ROUTINE IF REQUESTED *****
     IFTIPNCH.GT.O) CALL SIGISTOR, INGT, IVB, IVE, IVR, IHRY
C****** IF IOPT EQUALS 3, ONLY ONE STATION ANALYZED PER FOF2 AND M(3000
      IF(10PT.EQ.3) GO TO 999
C***** INCREMENT HOUR *****
C
      IHR=IHR+INC
      IF(IHR.GT.IEHR) GO TO 999
      40 TC 800
C. * * * * * EXIT AND TERMINATE RUN
      CONTINUE
      ENDFILE 9
      REWING 9
      STCP
      END
```

```
SIBFIC CURVE
        SUBROUTINE PLOTIVAL)
        INTEGER GRID(46,91), ABSC(46), FREQ(46)
        INTEGER EYE, BLANK, DOT, DASH, EX
        REAL VAL(91)
        CATA EYE, BLANK, DOT, CASH, EX/1HI, 1H , 1H., 1H-, 1HX/
        CATA(ABSC(I), I=1,46)/1H ,1H ,1H ,1H ,1H ,1HP,1H ,1HL,1H ,
       11HA,1H ,1HS,1H ,1HM,1H ,1HA,1H ,1H ,1H ,1HF,1H ,1HR,1H ,1HE,
       21H , 1HQ, 1H , 1HU, 1H , 1HE, 1H , 1HN, 1H , 1HC, 1H , 1HY, 1H , 1H , 1H , 1H
       31H , 1H , 1H , 1H /
                                           . + 4H
        CATA(FREQ(1), [=1,46)/4H 0.0,4H
                                                   ,4H 1.0,4H
                                                                  .4H
                                            , 4H
                                                                  , 4H
       14H 2.C,4H
                             ,4H 3.0,4H
                                                   ,4H 4.0,4H
                     , 4H
                                            , 4H
                      , 4H
                             .4H 6.0,4H
                                                   ,4H 7.0,4H
       24H 5.0,4H
                                                                  .4H
       34H 8.0,4H
                     , 4H
                             ,4H 4.0,4H
                                            ,4H
                                                   ,4H10.0,4H
                                                                  , 4H
       44H11.0,4H
                     ,4H
                             ,4H12.0,4H
                                            ,4H
                                                   ,4H13.0,4H
                                                                  , 4H
                             ,4H15.0/
                     , 4H
       54H14.0,4H
        DO 200 I=1.46
        CO 200 J=1,91
        GRID(I, J)=BLANK
        IF(I.EQ.1) GRID(I.J)=DOT
        1F(I.EQ.1.AND.MOD(J,5).EQ.1) GRID(I,J)=EYE
        IF(I.EC.16) GRID(I.J)=DOT
        IF(I.EQ.16.AND.MOD(J,5).EQ.1) GRID(I,J)=EYE
        IF(1.EQ.31) GRID(1, J)=00T
        IF(I.EQ.31.AND.MOD(J,5).EQ.1) GRID(I,J)=EYE
        IF(1.EC.46) GRID(1, J)=DOT
        IF(I.Eq.46.AND.MOD(J,5).Eq.1) GRID(I,J)=EYE
 200
        CONTINUE
        UO 300 [=1,46
        GRIU(1,1)=EYE
        GRID(1,91)=EYE
 300
        CONT INUE
        00 1C I=1,91
        LOC=3.C+VAL(I)+1.6
 10
        GRID(LOC, I) = EX
        WRITE (6,50)
 50
        FORMAT (1H1,40X,10HHEIGHT(KM))
        WRITE (6,51)
        FORMAT(1H0,11X,3H10C,2X,3H15C,2X,3H200,2X,3H250,2X,3H300,5X,
       13H350,2X,3H400,2X,3H450,2X,3H500,2X,3H550,2X,3H600,2X,3H650,2X,
       23H700,2X,3H750,2X,3H800,2X,3H850,2X,3H900,2X,3H950,2X,4H1000)
        DO 49 I=1,46
        WRITE (6,30) ABSC([], FREQ([], (GRID([,J),J=1,91)
 3 C
        FORMAT (5X,A1,2X,A4,1X,91A1)
49
        CONTINUE
        RETURN
        END
```

	SIBFTC SIGNIF
• · ·	SUBROUTINE SIG(STOR, IHGT, IVB, IVE, IYR, IHR)
	DIMENSION STOR(182), IHGT(182), PLASQ(17)
	INTEGER HEIT(17)
	HEIT(1)=IHGT(2)
	HEIT(2)=IHGT(6)
	HEIT(15)=IHGT(182)
	HEII(16)=IHGT(22)
	PLASQ(16)=STOR(22)
	HEIT(17)=IHGT(32)
	PLASQ(1)=STOR(2)
	PLASQ(17)=STOR(32)
	PLASQ(2)=STOR(6)
	PLASQ(15)=STOR(182)
	CO 1 I=1:181
	IF(STOR(I).EQ.STOR(I+1)) GO TO 4
	1 CONTINUE
	HEIT(3)=IHGT(12)
	PLASQ(3)=STOR(12)
	K=12
	GO TO 5
-	4 HEIT(3)=IHGT(I)
	PLASQ(3)=STOR(1)
	K=I
	5
	6 CONTINUE
	HEIT(4)=IHGT(22)
	PLASQ(4)=STOR(22)
	K=22
•••	GO TO 8 7 HETT(4)=IHGT(T)
	PLASQ(4)=STOR(1)
	K=I
	8 DO 9 I=K, 181 IF(STOR(I).LY.STOR(I+I)) GO TO 9
	HEIT(7)=IHGT(I)
	PLASQ(7)=STOR(1)
Philippe seeks o	GO TO TO 9 CONTINUE
	10 K=I-5
	L=1-16
	LL=I+5
	HEIT(8)=THGT(LL)
	HEIT(6)=1HGT(K)
	HEIT(5)=1HGT(L)
	PLASQ(8)=STOR(LL)
	PLASQ(6)=STOR(K)
	PLASQ(5)=STOR(L)
	HETT(9)=[HGTT52]
	and the state of t
	Control to the control appropriate the control of t

```
PLASQ(9)=STOR(52)
      K=62
      IF(HEIT(9).G1.370) K=72
      HEIT(10)=IHGT(K)
      PLASU(10)=STOR(K)
      HEIT(11)=IHGT(82)
      PLASQ(11)=STOR(82)
      HEIT(12)=IHGT(102)
      PLASC(12) = STOR(102)
      HEIT(13)=IHGT(132)
      PLASQ(13)=STOR(132)
      HEIT(14) = [HGT(162)]
      PLASQ(14)=STOR(162)
15
      DO 100 I=2,17
      IF(HEIT(I).GE.HEIT(I-1)) GO TO 100
101
      ITEMP=HEIT(I)
      HEII(I)=HEIT(I-1)
      HEIT(I-1)=ITEMP
      TEMP=PLASQ(1)
      PLASQ(1)=PLASQ(1-1)
      PLASQ(I-1)=TEMP
      CO TO 15
190
      CONTINUE
      IHR1=IHR-70
      IF(IHR1.LT.0) IHR1=2330
      IHR2=IHR+30
      IHR1=IHR1+1000C
      WRITE (9,99) IVB, IYR, IVE, IYR, IHR1, IHR2
      WRITE (6,98) IVB, IYR, IVE, IYR, IHR1, IHR2
      FORMAT (6HVALID , A6, 13, 3H - , A6, 13, 1X, 14, 5HZ TO , 14,
     132HZ REMOVE THIS CARD BEFORE USING)
98
      FORMAT (1H1, 26HIONOSPHERIC PROFILE VALID, A6, 13, 3H - , A6, 13, 1X, 14,
     15HZ TO , [4,1HZ)
00 200 [=1,17
      WRITE (5,97) HEIT(I), PLASQ(I)
WRITE (9,96) HEIT(I), PLASQ(I)
200
      CONTINUE
      FORMAT (1X,4HICNC,12X,14,F12.2)
97
      FORMAT (4HIONO, 12X, 14, F12.2)
96
      RETURN
       END
```

Appendix B

Sample Computer Output

UNCLASS	IFIED	
IDNOSPHERIC PROFILE VALID 23 MAY 07 JUN 70 19007		
STATION LUCATION 24.0N 85.0W		
EGLIN FANGE	· · · · · · · · · · · · · · · · · · ·	
THIS PROFILE BASED UPON ITS COEFFICIENTS		
FOF2 = 9.25 M3000 = 2.76 FOE = 4.04	FOF1 =	5, 59
GEOMAGNETIC LATITUDE = 35.48 SOLAR ZENITH ANGLE = 18.11		
SUNSPOT NUMBER = 90.		
VALUES FOR E-REGION	Printer (British Communication of the Communication	
SCALE HEIGHT = 15.56 KM HEIGHT = 120.00 KM DENSITY = 202076. ELECTRUNS/CC		
VALUES FOR F1-REGION		
SCALE HEIGHT = 47.56 KM HEIGHT = 241.54 KM DENSITY = 386989. ELECTRONS/CC		
VALUES FOR F2-REGION		
SCALE HEIGHT = 66.21 KM HEIGHT = 363.07 KM DENSITY = 106182 . ELECTRONS/CC		
	a a rei samirii re i que	*****
		And the same
	· · · · · · · · · · · · · · · · · · ·	
33		
٠, ١		

ELECTRON DENSITY PREFILE

;0

1. 46.561289E 15

8. 4761675E 15

1. 49.77271E 16

1. 15.99410E 16

1. 55.500503E 16

2. 56.600501E 16

3. 56.000501E 16

4. 72.600501E 16

5. 56.000501E 16

4. 72.600501E 16

4. 72.600501E 16

4. 72.600501E 16

4. 72.600501E 16

5. 56.000501E 16

6. 56.000501E 16

7. 50.000501E 17

1. 50.000501E 17

1. 50.000501E 17

1. 50.000501E 17

1. 4. 37.51 17

1. 4. 37.51 16

1. 4. 37.51 16

1. 4. 37.51 17

1. 4. 37.51 16

1. 4. 37.51 17

1. 4. 37.51 16

1. 4. 37.51 17

1. 4. 37.51 17

1. 4. 37.51 17

1. 4. 37.51 17

1. 4. 37.51 17

1. 4. 37.51 17

1. 4. 37.51 17

1. 4. 37.51 17

1. 4. 37.51 17 424087°
436733°
436733°
456353°
484993°
598010°
535679°
668243°
647371° 937059. 981057. 1020936. 1085903. 1108845. 1126159. 1142105. 1142105. 1134322. 1122569. 740500. 790606. 840686. 64962. 88597. 119101. 119101. 196283. 196283. 248614. 343246. 426710. 492711. 692428. 0.0 7.5 7.5 113.0 1 181338-166755-146147-116147-116974-116974-116974-116974-116974-11697-106336.
202076.
202076.
202076.
202076.
202076.
118027.
118145.
118145.
118145.
118145.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.
11818.

																														and the state of t																	1			
A. A.A.	84.04	70.06	70.64	71.20	71.17	72.32	72.87	13.61	13.24	75.00	75.51	76.02	76.53	77.03	25.17	18.01	76.90	04.00	79.92	80.38	80.84	81.30	81.75	02.28	N 1. DR	83.51	83.94	64.36	84.70	85.62	06.03	86.44	86.84	87.63	88.03	68.42	68.80	89.18	40.04	90.31	99.06	91.05	91.42	81.16	\$1.76	65.56	03.20	93.54	93.89	94.23
9.25	91.0	6.07	8.89	8.75	6.51	8.47	8.32	, c	7.86	7.71	7.56	7.41	7.26	7.11	96.9	6.81	0.0	0.27	6.26	219	5.99	5,86	5.74	19.6	2.31	5.26	5.15	5.04		4.77	4.62	4.53	4.43	4.75	2,16	4.07	3.90	3.90	3.74	3.67	3.59	3.52	3.45	3,38	3.31	3.24	2.12	3.05	2.90	2.93
1.460272607	1.652634616 17	1.703177966 17	1.7522d611F 17	1.79590587E 17	1.84600301E 17	I.89055862E 17	1.93356672E 17	1.9/5015/2/E 1/	7.05434400781	2.000350035 17	7.175851691 17	2-15994650E 17	11 3/2/2/2/2	2.22405797E 17	Z-25415034E 17	2.28301811E 17	7 227175595 17	11 39661116697	2-38688022F 17	2.410170055 17	2.43247390E 17	Z.45383227E 17	2.47428450E 17	11 3088986572	7.530540135 17	2-54777730E 17	2.56424662E 17	2.58001998E 17	2.4095921E 17	2.62346351E 17	2.636746148 17	2.64947340E 17	2.66166985E 17	2.68456349E 17	7.69530463€ 17	2.705602978 17	2.71547809E 17	2.72494870E 17	2. 742 744 ADE 17	Z-75110757E 17	2.75913036E 17	2.76682994F 17	2.174220415 17	71 3813151812	2./8812/06E 1/	2-80005045F 17	2 A0698 60 BE 17	2.81278226E 17	2.819352346 17	2-82373496E 17
1063529	1038159	1010101	9R2163.	952395	95:343.	891112.	860162.	704741	74RA02.	739013	/1007/	681857	6544210	627809.	602048	577156.	530002	230001	486347	465797.	446077°	427167.	409045.	39166	359161	343943	329387.	315467.	289437	277276.	265653.	254545	243924	224089	214823	205967.	197503.	189412	174785	167215.	160456.	153492.	147809.	141896.	136238	130826	1 20489	115944	111402.	107053
1014406	• •	970718.	94585B.	\$19599	892326	864375	H36632.	770107	750849	723042	695674	668877.	642723	617266	592548	568596.	523050	26.3000	430711	460721	441505.	423050	405337.	388347	356453	341505	327192.	313491.	287836	275833.	264355	253376.	242811	223235	214055	205276.	195880.	168852	73830	66807.	160088.	53661.	147511.	141627	135997	125650	120513	117.35	111 5.	106424
45056-	44377	40124	36264.	32761.	29587.	26711.	24108	10674	17699	15960	14390	12972.	11692.	10537.	9495	5556	*064	2362	5634	\$075	4570	4116.	3707.	3338	2707	24.37	2194.	1976.	. 402	1442.	1298.	1169.	1052.	853	768.	691.	622.	560.	454	409	364.	331.	298.	269.	246	196.	176.	159	143.	129.
67.	2.5	64.	41.	35.	30.	25.	22.5	9			01	ď	1.	•9	2.	***			. ~	2.	2.	-	-	: .	: :	: .:	-	°		0.	°	ė «		•	0	0	0	•	.	0	•	9.	o	.	•	o d		• •	0.0	
385	360	395	204	405	410	415	620	430	435	077	445	450	455	460	455	24	480	207	400	495	200	505	530	21.5	525	530	515	540	545	555	560	565	2/0	580	585	290	595	909	600	615	920	625	630	635	744	665	0.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	665	670

() ()

	ı
8	
_	İ
-	1
S	ŀ
3	1
ž	
<u>۔</u>	١

•

6485 695 695 695 695 700 700 700 715 715 725 725 725 725 725 725 725 72	94,9495,94985,94985,94985,9134,92985,9134,92,92,92,92,92,92,92,92,92,92,92,92,92,	9890C 95079, 95079, 95079, 87911, 8455C, 8455C, 7578C, 7578C, 7578C, 7578C, 7578C, 7578C, 7578C, 7578C, 7578C, 7578C, 87107, 67107, 67107, 67107, 67107, 67107, 67107,	2. 833 794 335 17	2.82	94.91 95.25 95.58	
		95079, 91419, 87911, 84550, 84550, 78241, 75280, 75280, 75780, 67107, 64601, 64601, 659891, 57677,	11 310073000		95.25 95.58 05.91	
		84556. 84556. 84556. 81319. 78241. 67119. 64601. 64601. 659891.	2 643116176 17	2.77	05.91	
		64556 1829 18241 75780 75780 6717 6717 64601 64601 59891 57677		2.66		
		61329. 76241. 75280. 72410. 69719. 64601. 64601. 59891.	-	2,61	96.24	•
		78241. 7528C. 72441. 69719. 67107. 64601. 62197. 59891.	_	2,56	96.56	
		69719- 69719- 67107- 64601- 62197- 59891- 57677-	→ }-	14.5	900 89	a manager than approximate to an estimate mount
		69719. 67107. 64601. 62197. 59891.	2.86710683E 17	2.41	97.53	
		67107. 64601. 62197. 59891. 57677.		2.37	97.64	
		64601. 62197. 59891. 57677.	2.87394807E 17	2,32	98.16	
		52197. 59891. 57677.		2.2A	98.47	
		57677.	2. 88028798F 17	2.20	98.18	
000000000000000000000000000000000000000			2.88616630E 17	2,15	99.39	
3 3 3 3 5 5 5 5 5		55551.	Г	11.2	99.70	
? O O O O O O O		53511.	2.89161938E 17	2.07	100.00	
		51552	2.89419696E 17	2.04	100, 30	
		44010	-1	79	00.001	
00000		46127	2.901379946 17	1,93	101-19	
0000		0954	2.90360290E 17	1.89	101.48	
• • • •		42857.	2.90574574E 17	1.86	101.77	
•0		41317.	2.9078115RE 17	1.62	102.06	
.		39837.	90980342t 1	1.79	102.34	
°		38414.	2.91172406E 17	1.76	102.63	
		37,040	2.913370305 17	10.0	10501	
		34466	2-91708615E 17	1.67	103.47	
0.		33249.	-	1.64	103.75	
•0		32079.	2.92C35258E 17	1.61	104.03	
• 6		29873	2.92339373F 17	10.15	104,30	
0		28828	1	1.52	104,85	
•0		27825.	2.92622632E 17	1.50	105.12	
•0		26839.		1.47	105.39	
•0		25930.	2.92886576E 17	1.66	105.65	
• •		24173	2-93011/495 1/	7***	105-18	
			11 30220766	45.0	74.90	
°c		22544.	2.93362051E 17	1.35	106.70	
50		21775.	2.934709196 17	1,32	106.96	
•0	210	21033.	7	1.30	101.22	
• •		10630	2-917758245 17	1.26	107-73	
0		18967	2.93870655E 17	1.24	167.99	
•0		18328.	2.93962294E 17	1.21	108.24	
•0		11711	2,94050848E 17	1.19	108.49	
•0		17117.	2.941364325 17	7.7	47.40	
• •		15993	2.94244154E 17	1,13	109-73	
		15460	2.94376415E 17	(1.1	109.48	
• 0		14947	2.94451147E 17	1.10	109.72	
0.		14452.		1.08	109.96	
•0	100	13974.	2.94593266E 17	1.06	110.21	
•0	0. 13513.	13513	2.94660830E 17	1.04	110.45	
•0		1 2440	-ر•		110.92	
• •		13336	2-04850405E 17	0000	111-16	

i				!	;	
; ;				t .		
111.663 1112.09 112.32		:				
1000 LD		:				
100000000000000000000000000000000000000	1				-	
34 17		:				
2.95075704E 2.95075704E 2.95075704E 2.95177517F			1	:		
	,					
1156.0 1156.0 10700 10020		!				
114-00 11679- 10769- 10352- 10629-		1		-		
			:			
36.5	:			2 1		
3 2 3		9				
1		:				
0000 1000		i				
	1	1				

.

1

UNCLASSIFIED

	HEIGHT (KM)	100 150 200 250 300 350 400 450 500 550 600 650 700 756 800 850 900 950 1000 0.0 [1 C-1			1 3.0 x	×	S 4.C I XXXXXXXX I	5.0 IIxIxIIxIxIxI	××	8.0 I ×× I 0.40	×	× 1 1 ×	E %•0 I ×	I	I XXX	E 10.0 Issuelssuelssuelssuelssuelssuelssuelssue	I 10 0 II		Y 12.0 I	13.0 1		1 4.0 I	IIs.ol iIIIIIII		
--	-------------	---	-------	--	--	---------	---	--------------------	-------------------	----	-----------------	---	---------	-----------	---	-------	---	-----------	--	----------	--------	--	---------	-----------------	--	--

\mathbf{I}_{i} \mathbf{N}_{i} 0 0 0 0 0 0	C PROFILE VALLE	, 23 MAY 70 -	C7 JUN 7	0 18367 TH 19307
LUND	100	2.89		
1 () N ₋)	12:	4.03		
LUND	190	4.03		
1-140	193	4.07		
ICNO	200	4.53		-
JUNG	240	6.02		
IC NO	365	H. 22	•	
1 GND	: 53	9.22		
I DNI)	350	5.57		
LUMO	353	4.54		
IONII	3 H Q	3.25		
LUNG	400	8.89		
IONO	5(11)	5.99		
IONO	50 c	3.90		
TONO	750	2.15	* ** *** * *** ***	
LONG	400	1.20		
1.000	1000	0.90		-

- - -

رازا والمتروا المتراوي والمترون والمترون والمترون والمترون والمترون والمترون والمترون والمترون والمترون

39

Security Classification						
DOCUMENT CONTROL DATA - R & D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)						
1 ORIGINATING ACTIVITY (Composeto author)	annotation must be entered when the overall report is classified)	عن المحمد				
Dot 3 II III (MAG)	INOLAGGIBIED					
Det 1, 4 Wwg (MAC) Ent AFB, CO 80912	26. GROUP	UNCLASSIFIED 26. GROUP				
Ent AFB, 00 50912	N/A	N/A				
3 REPORT TITLE						
Lerospace Environmental Support Center Technical Memorandum						
IONOSPHERIC ELECTRON DENSITY PROFILE MODEL						
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)						
Technical Memorandum						
5. AUTHOR(S) (First name, middle initial, last name)						
Thomas D. Damon, Major, USAF						
Franklin R. Hartranft, Capt, USAF						
6. REPORT DATE	76. TOTAL NO. OF PAGES 76. NO. OF REFS					
July 1970 Re. CONTRACT OR GRANT NO.	4] 5					
	SA. ORIGINATOR'S REPORT NUMBER(S)					
N/A b. project no.	Technical Memorandum 70-3					
N/A						
e.	9b. OTHER REPORT NO(8) (Any other numbers that may be seeing	tned				
	thie report) N/A					
d.						
10. DISTRIBUTION STATEMENT						
This document has been approved for public release and sale; its						
distribution is unlimited.						
II. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY					
N/A	4 WWg (MAC)					
•	Ent AFB, CO 80912					
13. ABSTRACT						

This paper describes a project undertaken by 4th weather Wing to produce a realistic electron density profile based upon parameters which can be forecast with reasonable accuracy. The ionospheric electron density profile model presented in this paper consists of the sum of three Chapman layers (E, Fl, F2). Electron densities in the topside ionosphere are controlled by complex motions rather than a production-loss balance and cannot be successfully described strictly by a Chapman layer. After some experimentation a best fit was obtained by simply using the Chapman equation for the topside ionosphere, but computing the electron densities by using a variable scale height throughout the region. The program described in this report has been used routinely for eight months to predict profiles for radar refraction. This report should be considered interim as improvements in accuracy are sure to be required as the model is evaluated for different purposes.

DD FORM .. 1473

Unclassified

Security Classification