Quiz1: $D = \frac{k_B T}{\gamma} + C \cdot e^{-\sqrt{k_B}T}$ $(x^2) = 2Dt = \frac{2k_B T}{\gamma} \cdot t \cdot (t > m/\gamma)$. $(x^2) = 2Dt = \frac{2k_B T}{\gamma} \cdot t \cdot (t > m/\gamma)$. $D = 8k_B T$. if D = D', then $\frac{D}{\gamma} = 8 \cdot D' = > 8 = 1$. $(x^2) = 2Dt$. (in this case $m \to \infty$, y = 1.) $(x^2) = \int x^2 f(x,t) dx = 2Dt$. $(x^2) = \int x^2 f(x,t) dx = 2Dt$. $(x^2) = \int x^2 f(x,t) dx = 2Dt$. $(x^2) = \int x^2 f(x,t) dx = 2Dt$. $(x^2) = \int x^2 f(x,t) dx = 2Dt$. $(x^2) = \int x^2 f(x,t) dx = 2Dt$.

Quiz 2: $\int_{-\infty}^{\infty} f(y) \cdot g(x-y) dy$ (=(f+g)(x))

= $\int_{-\infty}^{\infty} e^{iky} \cdot \frac{1}{2\pi 6^2} \cdot e^{-\frac{1}{2} \cdot \frac{6x}{6^2}} dy$ = $\int_{2\pi 6^2}^{\infty} e^{iky} \cdot e^{-\frac{1}{2} \cdot \frac{6x}{6^2}} dy$, $\frac{1}{2} t = y - x$ = $\frac{e^{ikx}}{\sqrt{2\pi 6^2}} \cdot \int_{-\infty}^{\infty} e^{-ikt} \cdot e^{-\frac{1}{2} \cdot \frac{1}{2}} dt$. $\frac{1}{2} \frac{e^{-\frac{1}{2} \cdot \frac{1}{2}}}{\sqrt{2\pi 6^2}} \cdot \int_{-\infty}^{\infty} e^{-\frac{1}{2} \cdot \frac{1}{2}} e^{-\frac{1}{2} \cdot \frac{1}{2}} dt$. $\frac{1}{2} \frac{e^{-\frac{1}{2} \cdot \frac{1}{2}}}{\sqrt{2\pi 6^2}} \cdot \int_{-\infty}^{\infty} e^{-\frac{1}{2} \cdot \frac{1}{2}} e^{-\frac{1}{2} \cdot \frac{1}{2}} dt$. $\frac{1}{2} \frac{e^{-\frac{1}{2} \cdot \frac{1}{2}}}{\sqrt{2\pi 6^2}} \cdot \int_{-\infty}^{\infty} e^{-m^2} dm \cdot \sqrt{2\pi 6} dt$. $\frac{1}{2} \frac{1}{2\pi 6} \cdot \frac{1}{2\pi 6$