Dual Prompt-Based Few-Shot Learning for Automated Vulnerability Patch Localization

Junwei Zhang

Xing Hu

Lingfeng Bao

Xin Xia

Shanping Li

SANER 2024, Rovaniemi, Finland

The IEEE International Conference on Software Analysis, Evolution and Reengineering

What is a security vulnerability?

A vulnerability is an issue or inherent weakness that can result in a successful attack.

What is the CVE:

CVE, which stands for Common Vulnerabilities and Exposures, is a list of publicly disclosed network security vulnerabilities.

CVEs Received and Updated-14 August 2023 in CVEdetails.com [1]

Time Period	New C Receiv	CVEs red by NVD	CVEs Analyzed by NVD
One Day	135		265
Last Week	809		1500
Last Month	2279		4358

NVD: National Vulnerability Database

Example of CVE with missing code commit link

Vulnerability Report

CVE ID: CVE-2020-7248

Disclosure Date: July, 03, 2019

Vulnerability Description:

libubox in OpenWrt before 18.06.7 and 19.x before 19.07.1 has a tagged binary data JSON serialization vulnerability that may cause a stack based buffer overflow.

CVSS Score: 5.0

Vulnerability Type: Overflow

```
Security Patch
Commit ID: 03d7712b4bcd47bfe0fe14ba2fffa87e111fa086
Commit Date: Jul. 31, 2019
Commit Message:
    qemu-bridge-helper: restrict interface name to IFNAMSIZ
    The network interface name in Linux is defined to be of size
    IFNAMSIZ(=16), including the terminating null('\0') byte.
    Reported-by: Riccardo Schirone <rschiron@redhat.com>
    Signed-off-by: Prasad J Pandit <pip@fedoraproject.org>
    Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Code Changes:
qemu-bridge-helper.c
@@ -109,6 +109,13 @@ static int parse acl file(const char *filename, ACLList *acl list)
109
110
      *argend = 0;
111
        if (!g str equal(cmd, "include") && strlen(arg) >= IFNAMSIZ) {
        fprintf(stderr, "name '%s' too long: %zu\n", arg, strlen(arg));
113 +
114 +
         fclose(f);
115 +
         errno = EINVAL;
116 +
         return -1;
117 + }
118 +
      if (strcmp(cmd, "deny") == 0) {
119
         acl rule = g malloc(sizeof(*acl rule));
120
121
         if (strcmp(arg, "all") == 0) {
```

Vulnerability Report

CVE ID: CVE-2020-7248 **Disclosure Date:** Oct. 06, 2022

Vulnerability Description:

libubox in OpenWrt before 18.06.7 and 19.x before 19.07.1 has a tagged binary data JSON serialization vulnerability that may cause a stack based buffer overflow.

CVSS Score: 5.0

Vulnerability Type: Overflow

References:

MISC:https://github.com/openwrt/op

enwrt/commits/master

Challenges with Existing Approaches

Searching-based approaches

Searching CVE-ID or CVE-related URLs, patch-related URLs, git-related URLs in CVE description.

Learning-based approaches

Neural network based models:

PatchScout [2]

PLMs-based models: VCMatch [3],

VulCurator [4]

The Coverage Rate of the Patches Located for Disclosed Vulnerabilities in Searching-based Approaches

Approach	Coverage Rate
A1	8.52%
A2	6.53%
A3	12.48%
A4	19.61%
A1+A2+A3+A4	38.17%

A1: Searching CVE-ID or CVE-related URLs in commit message;

A2: Searching patch-related URLs in vulnerability descriptions;

A3: Searching git-related URLs in vulnerability descriptions;

A4: Searching bug-related keywords in vulnerability descriptions.

- 1. They cannot perform well, especially in data scarcity scenarios.
- 2. They are less effective in exploring semantic correlations between vulnerability descriptions and code commits.

Overview of PromVPat

To alleviate the above two limitations:

- 1. Utilize the prompt tuning method to fine-tune PLMs
- 2. Propose a novel dual prompt tuning channel with two prompts

Module 1:Semantic Matching Module - Dual Prompt Tuning Channel

Code Change Prompt Generator 1:

The CVE $[x_1]$ is fixed by the code $[x_2]$. [z]

Commit Message Prompt Generator 2:

The CVE $[x_1]$ means $[x_3]$. Is it correct? [z]

Encoder:

We adopt **CodeT5** as the encoder to generate the input representations. Initially, we freeze the CodeT5's parameters and derive the embeddings of the prompt tokens $P \in \mathbb{R}^{p \times d}$.

Classifier:

A SoftMax classifier uses the learned input text representation to determine the answer word distribution.

Module 2:Handcrafted Feature Extraction Module

Vulnerability Identifier Features

Number of CVE IDs, Bug IDs in commit messages

Whether the CVE IDs, Bug IDs, CWE IDs in commit messages

Number, Ratio of same words between CVE description and commit messages

Max, Sum, Average, Variance frequencies of same words between CVE descriptions and commit messages

Number, Ratio of same words between CVE descriptions and code changes

Max, Sum, Average, Variance frequencies of same words between CVE descriptions and code changes

Vulnerability Location Features

Number, Ratio of same file paths between CVE descriptions and commits

Number of file paths that is in commits but not mentioned in CVE descriptions

Number, Ratio of same files between CVE descriptions and commits

Number of files in commits but not mentioned in CVE descriptions

Number, Ratio of functions between CVE descriptions and commits

Number of functions in commits but not mentioned in CVE descriptions

Module 3: Feature Fusion & Patch Location Module

We apply the **dot-production attention mechanism** to merge the extracted features and produce the attentive correlation features \hat{C} . Finally, we use an **MLP classifier** to generate the final correlation probability \hat{y} .

$$\hat{y} = Softmax \left(MLP \left(tanh(\hat{C}) \right) \right)$$

$$\mathcal{L}(\hat{y}, y) = -y \cdot log(\hat{y}) + (1 - y) \cdot log(1 - \hat{y})$$

Research Questions:

RQ1: How effective is PromVPat compared to the state-of-the-art baselines on locating security patches for disclosed vulnerabilities?

RQ2: What are the effects of different prompt tuning design choices for the proposed model?

RQ3: What are the effects of different handcrafted features for the proposed model?

RQ4: Can PromVPat outperform existing localization approaches in data scarcity scenarios

Baseline:

- 1. Traditional classification models: XGBoost, LightGBM
- 2. Neural network based models: PatchScout
- 3. PLMs-based models: VCMatch, VulCurator

• Metrics:

- 1. Recall@K
- 2.NDCG(Normalized Discounted Cumulative Gain)@K

• Dataset:

Dataset	VCMatch	SAP
# Vulnerability	1,318	566
# Total Commits	705,456	7,165
# Training Commits	564,364	5,719
# Validation Commits	70,546	756
# Test Commits	70,546	690

RQ1: Effectiveness on Patch Localization

Table 1. Performance Comparisons of Our Approach with Other Baselines

Model\ Detect		VCMatc	h Dataset			SAP I	Dataset	
Model\Dataset	Recall@1	NDCG@1	Recall@5	NDCG@5	Recall@1	NDCG@1	Recall@5	NDCG@5
XGBoost	74.24%	31.72%	78.03%	32.74%	17.52%	13.33%	39.43%	30.14%
LightGBM	76.51%	32.69%	78.79%	33.29%	19.30%	14.22%	40.13%	33.35%
PATCHSCOUT	75.76%	32.36%	78.79%	33.18%	19.12%	21.57%	41.99%	34.17%
VCMatch	75.76%	32.36%	81.81%	34.95%	19.71%	22.21%	43.62%	35.73%
VulCurator	78.79%	37.54%	79.55%	26.52%	21.37%	27.45%	56.21%	44.92%
PromVPat	90.15%	38.51%	91.67%	38.92%	39.87%	34.95%	66.01%	45.92%
Improvement	14.42%	0.97%	12.05%	11.36%	86.57%	27.32%	17.43%	2.23%

- 1. Our approach achieves the best performance regarding all metrics.
- 2. Traditional classifiers (i.e., XGBoost and LightGBM) are limited in locating the security patches.
- 3. PLMs-based models (i.e., VCMatch, VulCurator, and PromVPat) outperform the other baseline models.

RQ2: Effect of Different Prompt Tuning Designs

Evaluation Results of the Effect of Dual Prompt Tuning Channel

Method	Metrics					
Menioa	R@1	N@1	R@5	N@5		
PromVPat-mess	87.88%	37.54%	88.64%	37.74%		
PromVPat-code	82.58%	35.28%	83.33%	35.40%		
PromVPat-single	77.27%	33.01%	81.06%	34.03%		
PromVPat	90.15%	38.51%	91.67%	38.92%		

- (1) **PromVPat-mess** only considers the prompt tuning in the message channel.
- (2) PromVPat-code only adopts the prompt tuning method in the code change channel.
- (3) **PromVPat-single** does not use dual prompt channels but directly stitches the vulnerability description and code commit together to calculate the association probabilities
- 1. PromVPat outperforms all its variants across four metrics.
- 2. The performance improvement of PromVPat over PromVPat-mess in Recall is less than the improvement over PromVPat-code.

RQ2: Effect of Different Prompt Tuning Designs

Evaluation Results of Different Prompt Templates

Channel	Prompt Templates	Metrics		
Type	Frompt Templates	R@1	N@1	
Code	$[x_1]$ means $[x_3]$? Is it correct? $[z]$.	88.64%	37.86%	
Change	Code: $[x_3]$ fix $[x_1]$? Is it correct $[z]$.	84.85%	36.24%	
Channel	Code: $[x_3]$ CVE: $[x_1]$ Relevant $[z]$	87.12%	37.22%	
Chamie	CVE $[x_1]$ is fixed by code $[x_3]$ $[z]$	90.15%	38.51%	
Commit	$[x_1]$ means $[x_4]$? Is it correct? $[z]$.	90.15%	38.51%	
Message	Message $[x_4]$ describe $[x_1]$ Is it correct? $[z]$	84.85%	36.25%	
Channel	CVE: $[x_1]$ Message: $[x_4]$ Relevant $[z]$	84.09%	35.92%	
Chaille	CVE $[x_1]$ is described by message $[x_4]$ $[z]$	86.36%	36.89%	

- 1. The choice of prompt templates significantly impacts our approach's effectiveness.
- 2. PromVPat achieves the best performance in all metrics.

RQ2: Effect of Different Prompt Tuning Designs

Evaluation Results of Different PLMs.

DI M Type	Metrics			
PLM Type	Recall@1	NDCG@1		
PromVPat-CodeBERT	88.64%	37.86%		
PromVPat	90.15%	38.51%		
PromVPat-GPT2	84.09%	35.92%		

PromVPat-CodeBERT and PromVPat-GPT2 use CodeBERT and GPT2 to encode the input text, respectively.

1. PromVPat achieves superior results, outperforming its counterparts using PromVPat-CodeBERT and PromVPat-GPT.

• RQ3: Effect of different handcrafted features for the proposed model?

Evaluation Results of Different Handcrafted Features

Footure Types	Metrics					
Feature Types	R@1	N@1	R@5	N@5		
Without Identifier	81.81%	34.95 %	84.09%	35.52%		
Without Location	89.39%	38.19 %	90.15%	38.31%		
PromVPat	90.15%	38.51%	91.67%	38.92%		

- 1. Each category significantly boosts the performance of our approach.
- 2. The vulnerability identifier features contribute the most

RQ4: Effectiveness in Data Scarcity Scenarios

Evaluation Results in the Cross-Language Low-Resource Scenario

Method	Different Shots					
Method	1 Shot	4 Shots	8 Shots	16 Shots		
Fine-Tuning	48.78%	49.39%	48.78%	52.44%		
Prompt-Tuning	51.21%	53.05%	53.66%	54.88%		

Evaluation Results in the Cross-Project Low-Resource Scenario

Method	Different Shots					
Method	1 Shot	4 Shots	8 Shots	16 Shots		
Fine-Tuning	78.03%	78.03%	77.27%	78.03%		
Prompt-Tuning	78.79%	78.79%	78.03%	84.84%		

1. Prompt tuning achieves better performance than fine-tuning in all fewshot settings

RQ2: Effect of Different Prompt Tuning Designs

Evaluation Results of the Effect of Dual Prompt Tuning Channel

Method	Metrics					
Method	R@1	N@1	R@5	N@5		
PromVPat-mess	87.88%	37.54%	88.64%	37.74%		
PromVPat-code	82.58%	35.28%	83.33%	35.40%		
PromVPat-single	77.27%	33.01%	81.06%	34.03%		
PromVPat	90.15%	38.51%	91.67%	38.92%		

- (1) PromVPat-mess only considers the prompt tuning in the message channel.
- (2) PromVPat-code only adopts the prompt tuning method in the code change channel.
- (3) **PromVPat-single** does not use dual prompt channels but directly stitches the vulnerability description and code commit together to calculate the association probabilities
- 1. PromVPat outperforms all its variants across four metrics.
- 2. the performance improvement of PromVPat over PromVPat-mess in Recall is less than the improvement over PromVPat-code.

Background Methodology **Evaluation** Summary Reference

RQ1: Effectiveness on Patch Localization

Table 1. Performance Comparisons of Our Approach with Other Baselines

Madall Dataset	VCMatch Dataset				SAP Dataset			
Model\Dataset	Recall@1	NDCG@1	Recall@5	NDCG@5	Recall@1	NDCG@1	Recall@5	NDCG@5
XGBoost	74.24%	31.72%	78.03%	32.74%	17.52%	13.33%	39.43%	30.14%
LightGBM	76.51%	32.69%	78.79%	33.29%	19.30%	14.22%	40.13%	33.35%
PATCHSCOUT	75.76%	32.36%	78.79%	33.18%	19.12%	21.57%	41.99%	34.17%
VCMatch	75.76%	32.36%	81.81%	34.95%	19.71%	22.21%	43.62%	35.73%
VulCurator	78.79%	37.54%	79.55%	26.52%	21.37%	27.45%	56.21%	44.92%
PromVPat	90.15%	38.51%	91.67%	38.92%	39.87%	34.95%	66.01%	45.92%
Improvement	14.42%	0.97%	12.05%	11.36%	86.57%	27.32%	17.43%	2.23%

- Our approach achieves the best performance regarding all metrics.
- 2. Traditional classifiers (i.e., XGBoost and LightGBM) are limited in locating the security patches.
- 3. PLMs-based models (i.e., VCMatch, VulCurator, and PromVPat) outperform the other baseline models.

Background Methodology **Evaluation** Summary Reference

• RQ2: Effect of Different Prompt Tuning Designs

Evaluation Results of Different Prompt Templates

Channel	[无标题]	Metrics	
Type	mplates	R@1	N@1
Code	$[x_1]$ means $[x_3]$? Is it correct? $[z]$.	88.64%	37.86%
Change Channel	Code: $[x_3]$ fix $[x_1]$? Is it correct $[z]$.	84.85%	36.24%
	Code: $[x_3]$ CVE: $[x_1]$ Relevant $[z]$	87.12%	37.22%
	CVE $[x_1]$ is fixed by code $[x_3]$ $[z]$	90.15%	38.51%
Commit Message Channel	$[x_1]$ means $[x_4]$? Is it correct? $[z]$.	90.15%	38.51%
	Message $[x_4]$ describe $[x_1]$ Is it correct? $[z]$	84.85%	36.25%
	CVE: $[x_1]$ Message: $[x_4]$ Relevant $[z]$	84.09%	35.92%
	CVE $[x_1]$ is described by message $[x_4]$ $[z]$	86.36%	36.89%

- 1. The choice of prompt templates significantly impacts our approach's effectiveness.
- 2. PromVPat achieves the best performance in all metrics.

RQ2: Effect of Different Prompt Tuning Designs

Evaluation Results of Different PLMs.

DI M. Tomo	Metrics		
PLM Type	Recall@1	NDCG@1	
PromVPat-CodeBERT	88.64%	37.86%	
PromVPat	90.15%	38.51%	
PromVPat-GPT2	84.09%	35.92%	

PromVPat-CodeBERT and PromVPat-GPT2 use CodeBERT and GPT2 to encode the input text, respectively.

1. PromVPat achieves superior results, outperforming its counterparts using PromVPat-CodeBERT and PromVPat-GPT.

14

Background Methodology **Evaluation** Summary Reference

• RQ4: Effectiveness in Data Scarcity Scenarios

Evaluation Results in the Cross-Language Low-Resource Scenario

Mothod	Different Shots			
Method	1 Shot	4 Shots	8 Shots	16 Shots
Fine-Tuning	48.78%	49.39%	48.78%	52.44%
Prompt-Tuning	51.21%	53.05%	53.66%	54.88%

Evaluation Results in the Cross-Project Low-Resource Scenario

Method	Different Shots			
Method	1 Shot	4 Shots	8 Shots	16 Shots
Fine-Tuning	78.03%	78.03%	77.27%	78.03%
Prompt-Tuning	78.79%	78.79%	78.03%	84.84%

1. Prompt tuning achieves better performance than fine-tuning in all fewshot settings

Thanks for listening Q & A

Contact E-mail: jw.zhang@zju.edu.cn

Code Link: https://zenodo.org/records/10520971

Reference

- [1] https://www.cvedetails.com/
- [2] Tan X, Zhang Y, Mi C, et al. Locating the security patches for disclosed oss vulnerabilities with vulnerability-commit correlation ranking[C]//Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2021: 3282-3299.
- [3] Wang S, Zhang Y, Bao L, et al. Vcmatch: a ranking-based approach for automatic security patches localization for OSS vulnerabilities[C]//2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2022: 589-600.
- [4] Nguyen T G, Le-Cong T, Kang H J, et al. Vulcurator: a vulnerability-fixing commit detector[C]//Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2022: 1726-1730.