SPRINT 4

Date	16 NOVEMBER 2022
Team ID	PNT2022TMID02143
Project Name	Smart Farmer-IoT Enabled Smart Farming Application

RECEIVING COMMANDS FROM IBM CLOUD USING PYTHON PROGRAM

import time import
sys
import ibmiotf.application
import ibmiotf.device import

Provide your IBM Watson Device Credentials

"orgId": "ck2tfo",

"typeId": "NodeMLIC",

"deviceId": "1234"

"token": "87654321"

random

Initialize GPIO

```
def myCommandCallback(cmd): print("Command
received: %s" % cmd.data['command'])
status=cmd.data['command'] if status=="motoron":
print ("motor is on") elif status == "motoroff": print
("motor is off") else :
    print ("please send proper command")
try:
```

deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)

```
#.....
except Exception as e:
      print("Caught exception connecting device: %s" %
str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as
an event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from
DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
  data = { 'temp' : temp, 'Humid': Humid,
'Mois': Mois}
    #print data def
myOnPublishCallback(
):
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
     success = deviceCli.publishEvent("IoTSensor", "json",
data, qos=0,on publish=myOnPublishCallback) if not success:
print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
*SMARTFARMER.PY - C:\Users\Priya\AppData\Local\Programs\Python\Python31T\SMARTFARMER.PY (3.11.0)*
                                                                                   File Edit Format Run Options Window Help
import time
import sys
import ibmio.application
import ibmiotf.device
import random
#provide your IBM Watson Device Credentials
organization = "ck2tfo"
deviceType - "NodeMLIC"
deviceID = "1234"
authMethod - "token"
authToken = "87654321"
#Initialize GPIO
def myCommandCallback(cmd):
   print("message received from IBM lot Platform: %s" %cmd.data['command'])
   m=cmd.data['command']
   if (m -- "motoron"):
       print("motor is switched on")
   elif(m=="motoroff"):
      print("motor is switched OFF")
   else
print("please send proper command")
try :
   deviceoptions = ("org": organization, "type":deviceType, "id":deviceId, "auth-method":authme
   devicecli = ibmiotf.device.client(deviceoptions)
#.....
```


FLOW CHART:

OBSERVATION AND RESULT:

TEMPERATURE

HUMIDITY

MOISTURE

ADVANTAGES AND DISADVANTAGES

Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

CONCLUSION

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.

BIBLIOGRAPHY

IBM cloud reference: https://cloud.ibm.com/

IoT simulator: https://watson-iot-sensor-simulator.mybluemix.net/

OpenWeather: https://openweathermap.org/