fnet

Kuan Yu kuanyu@uni-potsdam.de

May 25, 2018

outline

complex output

adversarial network

attention

evaluation

stft

$$fs = 16,000$$

 $x : [-1,1)^{3fs}$

```
from scipy.signal import stft f, t, s = stft(x, fs) s: \mathbb{C}^{129,376}
```

mel

plt.pcolormesh(t, np.log1p(f/700), np.log(np.abs(s)))

istft

```
from scipy.signal import istft
t2, x2 = istft(s, fs)
assert np.allclose(x, x2)
```

frames vs samples

- predicting frames takes much fewer steps
- an individual sample has no interpretable meaning
- a model predicting samples has to model much more complicated dependencies across a much longer time

vocoder

- most of the models we've seen has a trainable vocoder (wavenet, samplernn)
- ▶ to reconstruct the samples from frames
- which is unnecessary when we have complex-valued frames

complex network for speech

- 2016 Drude el al. "inappropriate for speech enhancement"
- ▶ 2016 Hu et al. "initial investigation"
- ▶ 2017 Fu el al. "complex spectrogram enhancement"
- ▶ 2018 Nakashika el al. "complex-valued rbm"

objective

output expected complex-valued frames

	min	max	mean
s.real	-0.08	0.10	0.00
s.imag	-0.14	0.12	0.00
s.abs	6.65^{-09}	0.14	0.17^{-02}

▶ how to define the loss?

adversary

frames
$$s:$$
 $\mathbb{C}^{f,t}$ generator $g:$ $? \to \mathbb{C}^{f,t}$ discriminator $d:$ $\mathbb{C}^{f,t} \to \{0,1\}$

- ightharpoonup zero-sum game $\arg\min_{g} \max_{d} v(g, d)$
- ightharpoonup payoff $v(g, d) = \mathbb{E}_{s \sim p_{data}} \log d(s) + \mathbb{E}_{s \sim p_{model}} \log (1 d(s))$

attenttion

▶ lots of attention

problem

▶ how to evaluate

baby steps

- ▶ not to explode
- to drop the loss
- ▶ to output more than noises