Security Protocols and Verification Description of PSS Protocol

Dyvia Pugo, Marcella Scholze, Sylvie Sidler October 3, 2025

1 Description of the PSS Protocol

The PSS Protocol is described as follows:

- 1. $B \rightarrow A : N_B$
- 2. $A \to B : \{K_{AB}, A, N_A, N_B\}_{pk(B)}$
- 3. $B \to A : \{|\{N_B, N_A 1\}_{pk(A)}|\}_{K_{AB}}$
- 4. $A \to B : \{N_B 1\}_{K_{AB}}$

Initial knowledge

At the beginning of the protocol:

- A and B know each other's public keys, pk(A) and pk(B), respectively.
- A and B know their own private keys, sk(A) and sk(B), which correspond to their public keys.

Values generated during the protocol execution

- K_{AB} : session key, generated by A.
- N_A : Nonce generated by A.
- N_B : Nonce generated by B.

Protocol description

The protocol proceeds with the following messages:

- 1. $B \rightarrow A : N_B$. B initiates the protocol by sending a fresh nonce N_B to A, requesting key establishment.
- 2. $A \to B : \{K_{AB}, A, N_A, N_B\}_{pk(B)}$. A generates a session key K_{AB} and her own nonce N_A . A sends the session key K_{AB} , her identity A, and the two nonces (N_A, N_B) to B, all encrypted under B's public key, pk(B). Only B can decrypt this message to recover K_{AB} , A, N_A , and N_B .
- 3. $B \to A : \{|\{N_B, N_A 1\}_{pk(A)}|\}_{K_{AB}}$

B decrypts the second message using his private key sk(B), thus retrieving K_{AB} and N_A . B then encrypts his original nonce N_B and a value derived from A's nonce (N_A-1) using the established session key K_{AB} and pk(A).

4. $A \rightarrow B : \{N_B - 1\}_{K_{AB}}$. A decrypts the third message and verifies B's identity and knowledge of K_{AB} by checking $N_A - 1$. A completes the challenge by sending $N_B - 1$, encrypted with K_{AB} , proving to B that A knows K_{AB} and received B's nonce N_B .

Cost calculation

- 1. $B \rightarrow A : N_B$ $f(N_B) = 1$ Cost(message 1) = 1
- 2. $A \to B : \{K_{AB}, A, N_A, N_B\}_{pk(B)}$ $f(K_{AB}, A, N_A, N_B) = f((K_{AB}, (A, (N_A, N_B))))$ $f((N_A, N_B)) = 50 + f(N_A) + f(N_B) = 50 + 1 + 1 = 52$ $f((A, (N_A, N_B))) = 50 + f(A) + 52 = 50 + 1 + 52 = 103$ $f((K_{AB}, (A, (N_A, N_B)))) = 50 + f(K_{AB}) + 103 = 50 + 1 + 103 = 154$ $f(\{K_{AB}, A, N_A, N_B\}_{pk(B)}) = 1 + f((K_{AB}, (A, (N_A, N_B)))) + f(pk(B)) = 1 + 154 + 1 = 156$

Cost(message 2) = 156

3.
$$B \to A : \{|\{N_B, N_A - 1\}_{pk(A)}|\}_{K_{AB}}$$

 $f((N_B, N_A - 1)) = 50 + f(N_B) + f(N_A - 1) = 50 + 1 + 1 = 52$
 $f(\{(N_B, N_A - 1)\}_{pk(A)}) = 10 + f((N_B, N_A - 1)) + f(pk(A)) = 1 + 52 + 1 = 54$
 $f(\{|\{N_B, N_A - 1\}_{pk(A)}|\}_{K_{AB}}) = 10 + f(\{(N_B, N_A - 1)\}_{pk(A)}) + f(K_{AB}) = 10 + 54 + 1 = 65$
 $Cost(message 3) = 65$

4.
$$A \rightarrow B: \{N_B - 1\}_{K_{AB}}$$

 $f(N_B - 1) = 1$
 $f(\{N_B - 1\}_{K_{AB}}) = 10 + f(N_B - 1) + f(K_{AB}) = 10 + 1 + 1 = 12$
 $Cost(message 4) = 12$

$$c(P) = 1 + 156 + 65 + 12 = 234$$