

Que-1

Vortex state in superconductor is a fascinating phenomenon that occurs in a type II separconductors.

And Vortex state is that state at which superconductivity and magnetism coexist.

(b) HTS

Those semiconductor with critical temperature above 77K, the boiling point of liquid nitrogen is termed as Migh Temperature Semiconductor.

eg; Morwy Barium Thallium Copper oxide

Ove-2

Transition Temperature! - The Temperature at which electrical resistivity of the material suddenly drops of Zero & the material change from normal conductor to a superconductor.

Critical current | - The current that can be passed in a spper - conductor without destroying superconductivity.

Critical hagnetic field! - The minimum value of applied magnetic field when superconductivity losses its superconductivity or superconducting state.

persistent corrent! - Persistent current in semiconductors rejet to the phenomenon where electric currents continue to flow indefinitely without any applied voltage or power source.

6 Superconductivity

The phenomenon of losing resultivity when sufficient cooled to a very low temperature (below Tc), is called super conductivity.

@ Effect of Temperature on superconductor:

It is well known that electrical resustance is a function of temperature that typically decrease as temperature decreases & Superconductors have no electrical resistance when their temperature decreases below a critical Temperature.

Ove-3

Isotope effect!

It has been observed that critical Temperature of superconductor varies with isotopic mans. The transition Temp.

Changes when different isotopes of same elements are mixed.

M1/2 2 TC

[TCM1/2 = constant]

We know;
$$H_c = H_o \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

$$\frac{A \cdot T \cdot 0}{S_{0_1}} \quad T = T_c$$

$$\frac{S_{0_1}}{H_c = 0}$$

Son value of critical field of a super conductor at transition temperature is OT.

Ove-4

a Meissner effect !-

When a superconducting moterial is placed in a magnetic field & cooled below the To Coritical Temp), It is behaves as a diamagnetic & supell magnetic line of force. This effect is known as Meissner effect. And B

- There are some properties which shows change in superconducting state in comparison to normal states.
 - · Zero electrical resistance
 - · Perfect Diamagnetism
 - · Entrophy is lower in superconductor, Hence superconducting electrons are more ordered.