FPGA-конструктор советских ЭВМ

MC1201.03 MC1201.04 ДВК-3М ДВК-4

Описание процессорного модуля

Содержание

1. Введение	3
2. Процессор 1801ВМЗ	
2.1. Режим НАLT	
2.2. Адресация памяти в HALT-режиме	
3. Структура теневого адресного пространства	
4. Пультовый монитор	
4.1. Монитор версии 134	
4.1.1. Команды монитора 134	
4.1.2. Резидентные загрузчики	
4.2. Монитор версии 377	
5. Интервальный таймер	
6. Подсистема Unibus Mapping	
7. Управление и индикация	
8. Результаты тестирования	
9. Поддержка операционных систем	
Приложение 1. Список регистров страницы ввода-вывода	

1. Введение

Процессорные платы MC1201.03 и .04 - это самые старшие и развитые платы из всего славного семейства MC1201. Они основаны на процессоре 1801ВМЗ, работают с 22-битным физическим адресом и позволяют запускать практически любые операционные системы - RSX-11M, RSTS/E, XM-монитор RT-11. Платы выполнены в том же самом форм-факторе, что и предыдущие платы семейства MC1201, снаружи из них выходит все та же шина МПИ, и они спокойно встают в ДВКшную корзину. На основе этих плат были построены персональные ЭВМ ДВК-3М и ДВК-4.

Отличие плат .03 и .04 - в установленном объеме памяти. Модификация .03 имеет на борту 256К ОЗУ, собранной из микросхем 565РУ5, а модификация .04 - 1М ОЗУ из микросхем 565РУ7. Соответственно, на обоих платах используется совершенно разная схема контроллера DRAM, в остальном отличий между платами нет. В данном проекте можно создать конфигурацию и с 256К, и с 1М ОЗУ, а также включить полный банк памяти объемом 4М, чего не встречалось в реальной жизни.

2. Процессор 1801ВМ3

ЦП 1801ВМЗ - это уникальная советская разработка, не имеющая аналогов от фирмы DEC. По системе команд процессор наиболее близок к PDP11/34, но его диспетчер памяти умеет работать с полным 22-битным адресом. Также, вместо микропрограммного ODT, как в F11, здесь реализован теневой режим и программная реализация теневого монитора, как и во всех предыдущих процессорах серии 1801.

1801ВМЗ не имеет в своем составе процессора плавающей точки FPP. Эта функциональность вынесена во внешнюю микросхему сопроцессора 1801ВМ4. Эта микросхема была выпущена очень малой партией и в реальной жизни мне не встречалось схем с ее использованием. На плате 1201.03/04 возможность установки сопроцессора не предусмотрена, поэтому вся математика с плавающей точкой требует программной реализации.

2.1. Режим HALT

Как и все предыдущие процессоры линейки 1801, в процессоре ВМЗ присутствует программная реализация теневого НАLТ-режима. В этот режим процессор попадает при выполнении команды НАLТ, при двойной ошибке шины (ошибка шины при попытке выборки вектора 4 из памяти), а также через внешнее прерывание по входу НАLТ, подключенное к переключателю «программа-пульт». В этом режиме процессор исполняет программу теневого пультового монитора, хранящуюся в ПЗУ. При этом схема адресации памяти существенно отличается от обычного режима процессора.

Выход из режима HALT производится после первой же инструкции RTI или RTT.

2.2. Адресация памяти в HALT-режиме

В режиме HALT основной диспетчер памяти отключается, и никакой защиты адресного пространства с помощью описателей страниц PDR не производится. Адресация 22-битного адресного пространства производится через специальные регистры PARH0-PARH3, выполняющих функции регистров PAR обычного режима. Содержимое регистров PARH0,1 и 3 фиксировано, а регистр PARH2 доступен на шине по адресу 172512.

Выбор регистра производится двумя старшими битами виртуального адреса A14-A15. Адресный разряд A13 игнорируется. Таким образом, виртуальное адресное пространство делится на 4 части по 16K, но каждая из частей состоит из 2 повторяющихся сегментов по 8K.

Регистр	Содержимое	Виртуальные адреса	SEL	Физические адреса
PARH0	000000	000000-017777 020000-037777	*	00000000-00017777
PARH1	000000	040000-057777 060000-077777	*	00040000-00057777
PARH2	произвольное	100000-117777 120000-137777		любые

PARH3	177600	140000-157777	17760000-17777777
		160000-177777	

При обращении к адресному пространству через регистры PARH0 и 1 (виртуальные адреса 000000-077777) процессор формирует внешний сигнал SEL, показывая этим, что обращение идет не к основному, а к теневому адресному пространству. В этом пространстве располагается ПЗУ с программой теневого пультового монитора, и ОЗУ, которое использует монитор для хранения своих данных. Теневое адресное пространство изолировано, и доступно только в режиме HALT. Обычные программы пользователя доступа туда не имеют.

3. Структура теневого адресного пространства

На плате MC1201.03/04 установлено ПЗУ размером 8K, хранящее в себе микропрограмму теневого монитора (прошивка 134 или 377), а также теневое ОЗУ размером 512 байт. Распределение нижней части адресного пространства теневого режима:

Адрес	Содержимое		
000000-013777	ПЗУ 00000-13777		
014000-017777	ОЗУ, 4 раза по 512 байт		

Таким образом, из ПЗУ используется только 6К при полной емкости микросхемы 8К. А из ОЗУ - только 256 байт при полной емкости 2*2К (на плате установлены 2 микросхемы 573РУ8 по 2К каждая).

Далее в адресном пространстве 020000-077777 еще 3 раза повторяется тот же самый блок - ПЗУ+ОЗУ. Такое бездарное использование емкости микросхем и адресного пространства сделано, согласно документации, для упрощения схемы дешифрации теневого адреса.

Пространство 100000-117777, адресуемое через регистр PARH2, исользуется для открытия окна в основное адресное пространство по любому адресу - через это окно теневой монитор получает доступ в основное ОЗУ.

И, наконец, пространство 160000-177777 используется монитором для доступа к странице ввода-вывода.

4. Пультовый монитор

Пультовый монитор выполняет функции аппаратного пульта (консольный ODT), и позволяет просматривать и модифицировать любые ячейки памяти, регистры процессора и периферии, а также запускать программы с любого адреса. Кроме того, монитор имеет в своем составе набор резидентных тестов процессора и периферии, а также набор загрузчиков с различных внешних устройств.

При включении питания ЭВМ монитор производит начальный набор тестов и выводит на терминал результаты тестирования и установленный объем ОЗУ. В остальных случаях при получении управления монитор выводит на терминал виртуальный адрес, который был в регистре РС перед входом в монитор. Если вход в монитор происходит по инструкции процессора HALT, то этот адрес будет адресом инструкции, следующей за HALT.

Затем монитор выводит на терминал промпт @, и переходит в режим ожидания команд.

Существует 2 версии прошивки монитора - 134 и 377. Версия 134 является стандартной для плат MC1201.03/04, а версия 377 устанавливалась на платы, поставляемые в составе ЭВМ ДВК-4. Монитор 377 имеет более развитый командный язык, но не содержит в себе загрузчик с диска DM:., а монитор версии 134 не имеет в своем составе загрузчика с дисков DX. В состав данного проекта входят обе версии монитора, а выбор монитора, включаемого в конфигурацию, производится в файле config.v.

4.1. Монитор версии 134

Это штатный пультовый монитор для плат МС1201.03/04. При первоначальном включении платы производит тест ОЗУ, выводит на экран его объем и промпт @.

4.1.1. Команды монитора 134

Во всех командах, использующих адресацию к памяти, используется полный 22-битный физический адрес. Монитор ничего не знает о виртуальных адресах и текущих настройках диспетчера памяти.

Монитор поддерживает набор команд, в основном являющийся подмножеством стандартного набора команд ОDT. реализованы следующие команды:

- ; отмена последнего введенного числа можно вводить его заново
- / открывает ячейку по указанному или последнему использованному адресу.
- CR закрывает ячейку, если было введено новое значение записывает его.
- **LF** открывает следующую ячейку (адрес+2)
- ^ открывает предыдующую ячейку (адрес-2)
- > открывает ячейку, используя младший байт текущей ячейки как смещение (адресация команды относительного перехода)
- $_{-}$ открывает ячейку, адрес которой равен <адрес текущей ячейки> + <содержимое текущей ячейки> + 2 (относительная адресация).

@ - закрывает текущую ячейку и открывает новую, адрес которой равен содержимому текущей ячейки (косвенная адресация)

\$n или **Rn** - открывает регистр процессора с номером n

RS - открывает текущее PSW

G - запуск программы по указанному адресу

Р - продолжение прерванной программы, адрес запуска берется из РС

В - переход в режим начальной загрузки.

М - печатает причину перехода в пультовый режим

Tn - запускает тест под номером n(0..7)

4.1.2. Резидентные загрузчики

После ввода команды В монитор на новой строке выводит промпт \$, приглашая ввести двухбуквенное имя и номер устройства для загрузки. Поддерживаются следующие устройства:

DKn - диск RK-03 (DK:)

DMn - диск RK-06/07 (DM:)

DBn - диск RP06 (DB:)

MXn - дискета одинарной плотности (MX:)

МҮп - дискета двойной плотности (МҮ:)

DWn - жесткий диск (DW:)

MTn - магнитная лента ТМ-11 (МТ:)

ММп - магнитная лента двойной плотности (ММ:)

СТп - кассетная магнитная лента (СТ:)

DPn - диск RP02/03/04 (DP:)

DUn - диск MSCP

RSn - Диск RS04 (DS:)

И еще есть какой-то устройство RR, но что это такое я не разбирался.

В штатном ПЗУ 134 практически все загрузчики содержат в себе несколько грубых ошибок и неработоспособны. Нормально работают только загрузчики DW, МҮ и МХ. Скорее всего, диски всех других типов никто никогда не подключал к плате МС1201.02/03 и работу загрузчиков никто не проверял.

Я исправил программный код всех загрузчиков, используемых в проекте. Теперь возможна загрузка со всех устройств, имеющихся в проекте, кроме гибких дисков DX.

4.2. Монитор версии 377.

Монитор 377, по сравнению с 134, имеет гораздо более развитые средства работы с памятью и отладки программ. Он позволяет работать не только с абсолютными физическими, но и с виртуальными адресами обоих пространств KERNEL и USER в соответствии с текущими настройками диспетчера памяти. Можно делать поиск слов в памяти, устанавливать точки останова программы, работать не только со словами, но и с байтами. Набор поддерживаемых загрузчиков с внешних устройств несколько изменен по сравнению с монитором 134 - имеются загрузчики VM,MY,DW,LL,LA,MX,DU,MT,DK,DP,DB,DS,DX.

Причем все загрузчики вполне работоспособны, в отличие от монитора 134. К сожалению, отсутствует загрузчик с диска DM. Поэтому я доработал монитор, заменив загрузчик DU на загрузчик DM, поскольку реализация поддержки MSCP-дисков не входит в планы развития проекта. Теперь монитор поддерживает все диски, входящие в проект.

Этот монитор подробно описан в штатной документации, находящейся в файле doc/377.pdf, здесь описание команд я приводить не буду.

5. Интервальный таймер.

Процессор 1801ВМЗ имеет отдельный вход EVNT, через который внешняя схема может вызывать периодические прерывания по вектору 100 с приоритетом 6. Так организуется подсчет системного времени. На плате 1201.03/04 на этот вход подаются просто импульсы с частотой 50 Гц, программное отключение таймера невозможно. В данной разработке реализована подсистема Line Time Clock (LTC), такая же, какая используется в машинах, основанных на плате KDF11В. Это упрощенный вариант сетевого таймера KW11L, имеющий единственный регистр по адресу 17777546, через который прерывания можно отключить. Значимые биты регистра:

D6 - IE, разрешение прерываний

D5 - LTCMON, монитор импульсов таймера.

Бит D5 сбрасывается записью в него 0, а устанавливается фронтом импульса прерывания от таймера.

Если подсистема LTC не нужна, то можно закомментировать переменную LTC в файле конфигурации config.v — тогда на вход процессора EVNT будут просто подаваться импульсы с частотой 50 Гц, как на оригинальных платах.

6. Подсистема Unibus Mapping

Большинство устройств, используемых в проекте, в режиме DMA умеют формировать только 18-битный адрес. Только дискета MY и MSCP-диск RH70 умеют формировать полный 22-битный адрес.

Если в системе установлено только 256К ОЗУ (плата МС1201.03), то это не создает никаких проблем - адресное пространство укладывается в 18 бит. Однако при больших объемах памяти прямое исользование 18-битных устройств становится невозможным. Для снятия этого ограничения фирмой DEC разработана подсистема Unibus Mapping (UMR), предназначенная для преобразования 18-битного адреса, выставляемого устройством на адресную шину при DMA, в полный 22-битный адрес. Подсистема работает аналогично диспетчеру памяти, но не имеет никакх средств защиты - любая программа, имеющая доступ к странице ввода-вывода, может запустить DMA-обмен с любым физическим адресом.

На платах МС1201.03/04 эта подсистема отсутствует. У МС1201.03 всего 256К ОЗУ, а к МС1201.04 никто никогда не подключал устройств, использующих 18-битный DMA. Но сам процессор ВМЗ имеет выход UMAP, предназначенный для включения UMR через регистр SR3. А раз так, то я эту подсистему в своем проекте реализовал - иначе работа с большинством диском становится невозможным. Если подсистема все же не нужна, то можно исключить ее из схемы, закомментировав переменную UMAP в файле config.v. При этом использование дисков DK и DM становится невозможным, а диски DB будут работать только в massbus-режиме контроллера.

7. Управление и индикация

На внешние порты процессорной платы выведены несколько сигналов, предназначенных для вывода на индикаторные светодиоды LED1-LED3:

- LED1 признак нахождения процессора в режиме пульта (HALT-режим)
- LED2 признак включения подсистемы UNIBUS Mapping
- **LED3** признак включения диспетчера памяти MMU

Эти сигналы позволяют понять, в каком режиме работает процессор, и очень помогают в отладке.

Также на внешний порт bt_halt выведен вход принудительного перевода процессора в режим пульта. На оригинальных машинах ДВК к этому входу подключен переключатель «программа-пульт». При его включении процессор переходит в пультовый режим после каждой выполненной инструкции, что позволяет трассировать программу командой Р. Если такая возможность не требуется, то к этому входу лучше подключить не переключатель, а кнопку, нажатие на которую вызывает вход в пультовый режим. Тогда по команде Р программа пользователя просто продолжит работу, не уходя в пульт после каждой инструкции.

8. Результаты тестирования

Полученная в результате аппаратная модель плат MC1201.03/04 полностью проходит тесты XXDP:

FKAA - базовый тест инструкции 11/34

FKAB - тест перываний и исключений 11/34

FKAC - тест EIS 11/34

FKTH - тест MMU 11/34 (18-битный режим)

JKDA - тест MMU KDF11 (22-битный режим)

Это, конечно, не доказывает, что в процессоре нет ошибок, поскольку эти тесты проходили изначально, еще на референсной схеме от VSLAV, а вот все ОС кроме RT-11SJ/FB и XXDP/SM отказывались грузиться. В результате в схеме процессора мной было выявлено 2 ошибки, которые VSLAV оперативно исправил. Возможно, есть еще ошибки, не влияющие на функционирование протестированного системного и прикладного ПО, которые буду выявлены в дальнейшем.

9. Поддержка операционных систем

Были протестированы следующие операционные системы:

XXDP

RT-11, включая XM-монитор

RAFOS, включая XM и TS-мониторы

TSX-11

RSX-11M

RSX-11M-PLUS

RSTS/E

Все системы работают практически без выявленных проблем. Единственная проблема, известная на данный момент - программа SAV систем RSX-11M и RSX-11M-Plus требует, чтобы контроллер диска RP06 (DB:) работал в режиме MSCP (RH70). В противном случае сохранение и восстановление системы работает неправильно. С причиной данной проблемы я пока не разобрался.

Таким образом, впервые появилась возможность запустить полноценные RSX-11M и RSTS/E на настоящем процессоре 1801BM3. До этого мне известно только об одном случае успешного запуска RSX-11M+ на ДВК-4, но там систеу запускали с дискет МҮ, что потребовало ее кастрировать до возможного минимума. Здесь же можно полноценно поработать с системой, языками программирования и прикладными пакетами. 8 дисков RP06 хватит под все задачи.

Приложение 1. Список регистров страницы вводавывода.

Начальный адрес	Конечный адрес	Размер, слов	Описание
17770200	17770376	122	Регистры адреса подсистемы Unibus Mapping
17772140	17772142	2	Дискета двойной плотности (МҮ:)
17772300	17772316	8	Регистры PDR режима KERNEL
17772340	17772356	8	Регистры PAR режима KERNEL
17772512	17772512	1	Регистр теневого адреса PARH2
17772516	17772516	1	MMR3
17774000	17774036	16	НЖМД (DW:)
17776500	17776506	4	Дополнительный ИРПС
17776640	17776646	4	Графический контроллер КГД
17777170	17777172	2	Дискета RX02 (DX:)
17777400	17777416	8	диск RK05 (DK:)
17777440	17777476	16	Диск RK07 (DM:)
17777514	17777516	2	ИРПР, порт принтера (LP:)
17777560	17777566	4	ИРПС консольного терминала
17777572	17777572	1	MMR0
17777574	17777574	1	MMR1
17777576	17777576	1	MMR2
17777600	17777616	8	Регистры PDR режима USER
17777640	17777656	8	Регистры PAR режима USER
17777776	17777776	1	Текущее PSW