Mathematik Nach-Klausur

über das 3. + 4. Semester (Lineare Algebra und WS/Statistik)

Prüfer: Dr. Jens Bohlmann (Lineare Algebra)

Dr. Klaus Röber (Wahrscheinlichkeitsrechnung und Statistik)

Name:	MatrikelNr:	Zenturie:
Datum:	16. 12. 2003	
Bearbeitungszeit:	120 Minuten	
Erlaubte Hilfsmittel:	lfsmittel: Nicht programmierbarer Taschenrechner, ausgeteilte	
	Formelsammlungen und Tabellen	
Punktzahl für 100%:	100	
Erreichte Punktzahl:	Lineare Algebra:	
	WS und Statistik:	
	Gesamt:	

Note:

Die Klausur ist Bestandteil der Diplomvorprüfung im Sinne der Prüfungsordnung.

- Versehen Sie bitte jedes Blatt mit Ihrem Namen und einer Seitenzahl.
- Bitte kennzeichnen Sie deutlich die Zugehörigkeit von Antwort zu Aufgabe.
- Bitte schreiben Sie leserlich.
- Die Aufgabenblätter sowie die ausgeteilten Formelsammlungen und Tabellen sind am Ende der Klausur abzugeben.

Aufgabe 5 ist eine Zusatzaufgabe, deren Bearbeitung freiwillig ist.

1. Teil: Lineare Algebra:

Aufgabe 1: 10 Punkte

Für welche $\lambda \in \mathbb{R}$ ist die Matrix

$$A(\lambda) = \begin{pmatrix} 5-\lambda & 1 \\ -3 & 1-\lambda \end{pmatrix}$$

nicht invertierbar?

Wie lauten für diese Werte von λ die Lösungen der Gleichung

$$A(\lambda)\vec{x} = \vec{\sigma}$$
?

Aufgabe 2: a) 4 Punkte b) 4 Punkte c) 6 Punkte

Überprüfen Sie, ob die nachstehend angegebenen Teilmengen des \mathbb{R}^2 Unterräume des \mathbb{R}^2 sind.

a)
$$U = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid x \cdot y = 0 \}$$
,

b)
$$V = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 | 3x - 2y = 5 \},$$

c)
$$W = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 | \begin{vmatrix} x & 4 \\ y & 1 \end{vmatrix} = 0 \}.$$

Aufgabe 3: a) 4 Punkte b) 10 Punkte

Seien
$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, und sei $T : \mathbb{R}^2 \to \mathbb{R}^2$

eine lineare Abbildung mit

$$T(\vec{e_1}) = 4\vec{e_1} - \vec{e_2}$$
 and $T(\vec{e_2}) = \vec{e_1} + 3\vec{e_2}$.

- a) Geben Sie bitte die Matrixdarstellung dieser linearen Abbildung bezüglich der kanonischen Basis $B_1 = \{\vec{e_1}, \vec{e_2}\}$ im Bild- und Urbildraum an.
- b) Ermitteln Sie bitte die Matrixdarstellung der betrachteten linearen Abbildung bezüglich der kanonischen Basis B_4 im Bildraum und der Basis

$$\mathbb{B}_2 = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{ im Urbildraum.}$$

<u>Aufgabe 4</u>: 12 Punkte

Sei $G: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ eine lineare Abbildung mit

$$\mathcal{L}(\vec{e}_1) = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad \mathcal{L}(\vec{e}_2) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \mathcal{L}(\vec{e}_3) = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix};$$

$$\vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Ermitteln Sie bitte Bild und Kern dieser linearen Abbildung. Geben Sie für das Bild und den Kern bitte jeweils eine Basis an.

Aufgabe 5: a) 10 Punkte b) 4 Punkte c) 4 Punkte

Sei
$$V = \{ f \mid f(t) = a_2t^2 + a_1t + a_0; a_2, a_1, a_0, t \in \mathbb{R} \}$$

der dreidimensionale Vektorraum der reellwertigen Polynome zweiten Grades.

a) Zeigen Sie bitte, daß die durch

$$[H(f)](x) := \int_{0}^{x} f(t) dt, x \in \mathbb{R},$$

definierte Abbildung $H:V \longrightarrow ?$ eine lineare Abbildung von V in den Vektorraum der reellwertigen Polynome dritten Grades ist.

- b) Ist die Abbildung **H** surjektiv?
- c) Ist die Abbildung \boldsymbol{H} injektiv?

2. Teil: Wahrscheinlichkeitsrechnung und Statistik

Aufgabe 6: a) 6 Punkte, b) 6 Punkte

- a) Auf wie viele Arten lassen sich sieben gleiche Kugeln auf 12 Urnen verteilen, wenn in jede Urne höchstens eine Kugel kommt?
- b) Für die Kennzeichnung von Gegenständen werden "Wörter" mit je vier Buchstaben des Alphabets (26 Buchstaben) verwendet. Für wie viele Gegenstände reicht das?

<u>Aufgabe 7</u>: a) 6 Punkte, b) 6 Punkte

- a) Was verstehen Sie unter einem Ereignisfeld?
- b) Wie ist eine Wahrscheinlichkeitsbelegung eines Ereignisfeldes definiert?

Aufgabe 8: a) 6 Punkte b) 4 Punkte

- a) Was verstehen Sie unter dem "schwachen Gesetz der großen Zahlen" bzw. unter dem "starken Gesetz der großen Zahlen"?
- b) Was sagen diese Gesetze aus?

Aufgabe 9: a) 4 Punkte b) 12 Punkte

- a) Wie lautet die Tschebyscheffsche Ungleichung für eine Zufallsgröße?
- b) Zu einer Wahrscheinlichkeitsverteilung mit $\mu = 17.8$ und $\sigma^2 = 1.3$ ist mit der Tschebyscheff'schen Ungleichung ein Intervall zu bestimmen, in dem die Zufallsvariable X mit einer Wahrscheinlichkeit von mindestens 90% liegt.