Solving Non-Linear SVM in Linear Time? A Nyström Approximated SVM with Applications to Image Classification

Ming-Hen Tsai, Academia Sinica, Taiwan (now at Google Inc.)

Joint work with

Yi-Ren Yeh, Intel-NTU Connected Context Computing Center Yuh-Jye Lee, Dept. CSIE, National Taiwan University Science & Technology Yu-Chiang Frank Wang, Research Center for IT Innovation, Academia Sinica

May 21, 2013

Outline

- Introduction
- The Nyström Method for Kernel Approximation
- The Nyström Method for Linear SVM Classification
- Experiments and Conclusions

Outline

- Introduction
- The Nyström Method for Kernel Approximation
- The Nyström Method for Linear SVM Classification
- Experiments and Conclusions

Visual Classification: Faces, Objects, and Beyond

Example: Some Image Classification Data Sets

We Have Known...

- Non-linear SVM: powerful but slow
- Linear SVM: simple but fast

Paper: "Training Linear SVMs in Linear Time" by Joachims

KDD'06

Software: LIBLINEAR, VW, etc.

We Had Always Wondered...

 But we want something powerful and fast: train faster than non-linear SVM and generate a more accurate model than linear SVM.

We Had Always Wondered...

 But we want something powerful and fast: train faster than non-linear SVM and generate a more accurate model than linear SVM.

Is this even possible?

We Had Always Wondered...

 But we want something powerful and fast: train faster than non-linear SVM and generate a more accurate model than linear SVM.

Is this even possible?

Yes. Do approximation!

Outline

- Introduction
- The Nyström Method for Kernel Approximation
- The Nyström Method for Linear SVM Classification
- Experiments and Conclusions

Definitions and a Brief Review (1/2)

- Input Data: $\{(\mathbf{y}, X)\} = \{(y_i, \mathbf{x}_i)\}_{i=1}^{\ell}$. y_i : label, \mathbf{x}_i : feature vector.
- Dimension of x_i : d
- Non-linear mapping $\phi(\mathbf{x})$ (e.g. bi-gram features)
- Kernel function: $K(\mathbf{u}, \mathbf{v}) = \phi(\mathbf{u})^T \phi(\mathbf{v})$, usually computed in linear time.
- For ease of representation, for $U = [\mathbf{u}_1, \dots, \mathbf{u}_\ell]$ and $V = [\mathbf{v}_1, \dots, \mathbf{v}_{\tilde{\ell}}]$, we define Q = K(U, V), where $Q_{ij} = K(\mathbf{u}_i, \mathbf{v}_i)$

Definitions and a Brief Review (1/2)

- Input Data: $\{(\mathbf{y}, X)\} = \{(y_i, \mathbf{x}_i)\}_{i=1}^{\ell}$. y_i : label, \mathbf{x}_i : feature vector.
- Dimension of x_i : d
- Non-linear mapping $\phi(\mathbf{x})$ (e.g. bi-gram features)
- Kernel function: $K(\mathbf{u}, \mathbf{v}) = \phi(\mathbf{u})^T \phi(\mathbf{v})$, usually computed in linear time.
- For ease of representation, for $U = [\mathbf{u}_1, \dots, \mathbf{u}_\ell]$ and $V = [\mathbf{v}_1, \dots, \mathbf{v}_{\bar{\ell}}]$, we define Q = K(U, V), where $Q_{ij} = K(\mathbf{u}_i, \mathbf{v}_j)$
- Lower bound for data storage and training: $\Omega(\ell d)$.

Definitions and a Brief Review (2/2)

Primal SVM:

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{\ell} \max(1 - y_i \mathbf{w}^T \phi(\mathbf{x}_i), 0)$$

• Dual SVM:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$
s.t. $0 < \alpha_{i} < C \quad \forall i$.

• Primal-Dual Correspondence: $\mathbf{w} = \sum_{i=1}^{\ell} y_i \alpha_i \phi(\mathbf{x}_i)$

Kernel in Non-linear SVM

• Dual form:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$
s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

• Kernel matrix Q with $Q_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$.

Kernel in Non-linear SVM

• Dual form:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$
s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

• Kernel matrix Q with $Q_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$. Computational time: $O(\ell^2 d) \sim \ell$ times data size. Space: $O(\ell^2)$.

Kernel in Non-linear SVM

• Dual form:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$
s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

- Kernel matrix Q with $Q_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$. Computational time: $O(\ell^2 d) \sim \ell$ times data size. Space: $O(\ell^2)$.
- 1*M* images: 1*M* times more computational time than the linear counterpart.

The Nyström Method for Kernel Approximation

Nyström Method

A low-rank kernel approximation method. (Why?)

Nyström Method

- A low-rank kernel approximation method. (Why?)
- Sample $\tilde{\ell}(\ll \ell)$ feature vectors from X with a basis set $B = \{\mathbf{b}_i\}_{i=1}^{\tilde{\ell}}$.

The low-rank approximated kernel: $Q \sim \tilde{Q} = PW^{-1}P^{T}$, where $P_{ij} = K(\mathbf{x}_i, \mathbf{b}_j)$ and $W_{ij} = K(\mathbf{b}_i, \mathbf{b}_j)$.

Nyström Method

- A low-rank kernel approximation method. (Why?)
- Sample $\tilde{\ell}(\ll \ell)$ feature vectors from X with a basis set $B = \{\mathbf{b}_i\}_{i=1}^{\tilde{\ell}}$.

The low-rank approximated kernel: $Q \sim \tilde{Q} = PW^{-1}P^T$, where $P_{ij} = K(\mathbf{x}_i, \mathbf{b}_j)$ and $W_{ij} = K(\mathbf{b}_i, \mathbf{b}_j)$.

• Time: Basis Selection $+ O(\ell^2 \max(\tilde{\ell}, d))$ overall. (Alright...) Space: $O(\ell \max(\tilde{\ell}, d))$. (Good! Don't know how large is $\tilde{\ell}$...)

Nyström Method

- A low-rank kernel approximation method. (Why?)
- Sample $\tilde{\ell}(\ll \ell)$ feature vectors from X with a basis set $B = \{\mathbf{b}_i\}_{i=1}^{\tilde{\ell}}$.

The low-rank approximated kernel: $Q \sim \tilde{Q} = PW^{-1}P^{T}$, where $P_{ij} = K(\mathbf{x}_i, \mathbf{b}_j)$ and $W_{ij} = K(\mathbf{b}_i, \mathbf{b}_j)$.

- Time: Basis Selection $+ O(\ell^2 \max(\tilde{\ell}, d))$ overall. (Alright...) Space: $O(\ell \max(\tilde{\ell}, d))$. (Good! Don't know how large is $\tilde{\ell}$...)
- Set our basis size, $\tilde{\ell}$ to d. The space consumption is optimal.

Outline

- Introduction
- The Nyström Method for Kernel Approximation
- The Nyström Method for Linear SVM Classification
- Experiments and Conclusions

The Nyström Method for Linear SVM Classification

An Equivalent Representation (1/2)

• Bottleneck: kernel matrix Q of size $O(\ell^2)$. But observe the following...

An Equivalent Representation (1/2)

- Bottleneck: kernel matrix Q of size $O(\ell^2)$. But observe the following...
- $Q = \tilde{X}^T \tilde{X}$ by Cholesky decomposition. (This is valid because Q is PSD by definition.)
- Investigate the columns of $\tilde{X} = [\tilde{\mathbf{x}}_1 \dots \tilde{\mathbf{x}}_\ell]$. We have $\tilde{\mathbf{x}_i}^T \tilde{\mathbf{x}_j} = Q_{ij} = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = K(\mathbf{x}_i, \mathbf{x}_j)$.

An Equivalent Representation (1/2)

- Bottleneck: kernel matrix Q of size $O(\ell^2)$. But observe the following...
- $Q = \tilde{X}^T \tilde{X}$ by Cholesky decomposition. (This is valid because Q is PSD by definition.)
- Investigate the columns of $\tilde{X} = [\tilde{\mathbf{x}}_1 \dots \tilde{\mathbf{x}}_\ell]$. We have $\tilde{\mathbf{x}_i}^T \tilde{\mathbf{x}_j} = Q_{ij} = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = K(\mathbf{x}_i, \mathbf{x}_j)$.
- We represent the kernelized linear products as regular linear products. Let's call \tilde{X} a compact representation.

An Equivalent Representation (2/2)

SVM Dual:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$
s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

An Equivalent Representation (2/2)

SVM Dual:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$

s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

SVM Primal:

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{\ell} \max(1 - y_i \mathbf{w}^T \tilde{\mathbf{x}}_i, 0)$$

An Equivalent Representation (2/2)

SVM Dual:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$
s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

SVM Primal:

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{\ell} \max(1 - y_i \mathbf{w}^T \tilde{\mathbf{x}}_i, 0)$$

• Issue: computing $\tilde{\mathbf{x}}_i$ requires the computation of the ℓ^2 -sized kernel.

The Nyström Method for Linear SVM Classification

Nyströms' Equivalent Representation

Let's go back to kernel approximation!

- Let's go back to kernel approximation!
- As $\tilde{Q} = PW^{-1}P^T$, we can find a matrix R such that $W^{-1} = RR^T$, and $(PR)^T$ is our a compact representation.

- Let's go back to kernel approximation!
- As $\tilde{Q} = PW^{-1}P^T$, we can find a matrix R such that $W^{-1} = RR^T$, and $(PR)^T$ is our a compact representation.

- Let's go back to kernel approximation!
- As $\tilde{Q} = PW^{-1}P^T$, we can find a matrix R such that $W^{-1} = RR^T$, and $(PR)^T$ is our a compact representation.

Time: Basis selection time $+ O(\ell \ell d)$ overall.

Space: $O(\ell \max(\tilde{\ell}, d))$.

- Let's go back to kernel approximation!
- As $\tilde{Q} = PW^{-1}P^T$, we can find a matrix R such that $W^{-1} = RR^T$, and $(PR)^T$ is our a compact representation.

Time: Basis selection time $+ O(\ell \ell d)$ overall.

Space: $O(\ell \max(\tilde{\ell}, d))$.

Needs a linear feature selection method!

Brief Recap

Nyström approximation

Nyström approximation for linear representation

Another View of Basis Selection (1/2)

- Recall that: $P_{i:} = [K(\mathbf{x}_i, \mathbf{b}_1), \dots, K(\mathbf{x}_i, \mathbf{b}_{\tilde{\ell}})]$
- Can we view PR as input data and do feature selection?

Another View of Basis Selection (1/2)

- Recall that: $P_{i:} = [K(\mathbf{x}_i, \mathbf{b}_1), \dots, K(\mathbf{x}_i, \mathbf{b}_{\tilde{\ell}})]$
- Can we view PR as input data and do feature selection?
- No! R introduces dependency between dimensions.

Another View of Basis Selection (1/2)

- Recall that: $P_{i:} = [K(\mathbf{x}_i, \mathbf{b}_1), \dots, K(\mathbf{x}_i, \mathbf{b}_{\tilde{\ell}})]$
- Can we view PR as input data and do feature selection?
- No! *R* introduces dependency between dimensions.
- We remove R! Each dimension is then independent of other basis vector.
- L1-regularized linear SVM which runs linear time in data size is used in the work.

The Nyström Method for Linear SVM Classification

Another View of Basis Selection (2/2)

• Does it hurt by removing *R*?

- Does it hurt by removing R?
- Say \mathbf{x}_+ and \mathbf{x}_- are two samples with different labels.

- Does it hurt by removing *R*?
- Say \mathbf{x}_+ and \mathbf{x}_- are two samples with different labels.
- If for a \mathbf{w} , $\mathbf{w}^T \mathbf{x}_+ > \mathbf{w}^T \mathbf{x}_-$ (separable), then $\mathbf{w}^T R^{T-1} R^T \mathbf{x}_+ > \mathbf{w}^T R^{T-1} R^T \mathbf{x}_-$.

- Does it hurt by removing R?
- Say \mathbf{x}_+ and \mathbf{x}_- are two samples with different labels.
- If for a \mathbf{w} , $\mathbf{w}^T \mathbf{x}_+ > \mathbf{w}^T \mathbf{x}_-$ (separable), then $\mathbf{w}^T R^{T-1} R^T \mathbf{x}_+ > \mathbf{w}^T R^{T-1} R^T \mathbf{x}_-$.
- R^{T-1} **w** separates R^T **p**₊ and R^T **p**₋.

- Does it hurt by removing R?
- Say \mathbf{x}_+ and \mathbf{x}_- are two samples with different labels.
- If for a \mathbf{w} , $\mathbf{w}^T \mathbf{x}_+ > \mathbf{w}^T \mathbf{x}_-$ (separable), then $\mathbf{w}^T R^{T-1} R^T \mathbf{x}_+ > \mathbf{w}^T R^{T-1} R^T \mathbf{x}_-$.
- R^{T-1} **w** separates R^T **p**₊ and R^T **p**₋.
- When doing the linear tranformation by R, we preserve separability.

The Algorithm Workflow

- **1** Input data: (\mathbf{y}, X) , a kernel K.
- 2 Run basis selection on K(X, B).
- **3** Compute the new data $\tilde{X} = RK(X, B)$, where $R^T R = K(B, B)^{-1}$.
- lacktriangledown Train on (\mathbf{y}, \tilde{X})

The Algorithm Workflow

- **1** Input data: (\mathbf{y}, X) , a kernel K.
- 2 Run basis selection on K(X, B).
- **3** Compute the new data $\tilde{X} = RK(X, B)$, where $R^T R = K(B, B)^{-1}$.
- Train on (\mathbf{y}, \tilde{X}) If we use $\tilde{\ell}$ samples to do Step 2.

The Algorithm Workflow

- **1** Input data: (\mathbf{y}, X) , a kernel K.
- 2 Run basis selection on K(X, B).
- **3** Compute the new data $\tilde{X} = RK(X, B)$, where $R^T R = K(B, B)^{-1}$.
- Train on (\mathbf{y}, \tilde{X})

If we use $\tilde{\ell}$ samples to do Step 2.

Time: $O(\ell \tilde{\ell} d)$ overall.

Space: $O(\ell \max(\tilde{\ell}, d))$.

Outline

- Introduction
- The Nyström Method for Kernel Approximation
- The Nyström Method for Linear SVM Classification
- Experiments and Conclusions

Experimental Settings

- We conduct experiments on two benchmark datasets: USPS and MNIST.
- We randomly split 70% of the data for training and the remaining 30% for testing. (Repeat 5 times)
- We perform a five-fold cross validation to select the parameters γ and C.

Table: Dataset descriptions (with the number ℓ of instances and the dimension d of the data). The sizes for storing the data ℓd and the associated kernel matrices ℓ^2 are also listed.

	ℓ	d	kernel size ℓ^2	data size ℓd
USPS	7291	256	53M	2M
MNIST	60000	780	3.6G	47M

Compare Accuracy between Different Types of Methods

- Our method achieved improved accuracy than linear SVMs
- The time for training and testing using our proposed model is comparable to that of linear SVMs
- ullet The standard nonlinear SVM utilizes the full kernel matrix whose time complexity is quadratically scaled-up with $\ell.$

USPS	Accuracy	Training Time	Testing Time
Nyström primal SVM	97.057 ± 0.402	3.764	0.320
nonlinear SVM	98.007 ± 0.198	14.507	4.129
linear SVM	95.009 ± 0.275	2.274	0.079
MNIST	Accuracy	Training Time	Testing Time
MNIST Nyström primal SVM	Accuracy 93.833 ± 0.115	Training Time 24.6092	Testing Time 2.006
**********	,		•

Comparisons to Random Basis Selection

- Compare basis matrix determined by our method to
- the random sampling basis selection strategy

Conclusion

 Primal low-rank representation of Nytröm-approximated dual SVM.

Training: linearly in time and space.

Accuracy: almost as good as non-linear SVM.

Prediction: nearly as fast as linear SVM. (e.g. Realtime robot vision applications.)

 Connect feature selection with basis selection in Nyström method.

A basis selection method that preserves separability.

 Applications: Large-Scale Image Retrieval, Realtime Machine Vision (training/test should be nearly as fast as feature extraction,) etc.

Thank You

The most update-to-date code and slides are at https://github.com/scan33scan33.
Feel free to drop me questions and discussions.