To sue or not to sue #2

Arthur Charpentier ¹. Pierre-Yves Geoffard ²

Commission Corporels, Mars 2023

¹ UQAM, Canada, ² Paris School of Economics, France

amount models (limited dependent)

$$\begin{cases} \text{neogiated settlement} &: \log(y_S) = \lambda_{S0} + \boldsymbol{\lambda}_{S1}^\top \mathbf{x} + \boldsymbol{\omega}_S + \varepsilon_S \\ \text{trial} &: \log(y_T) = \lambda_{T0} + \boldsymbol{\lambda}_{T1}^\top \mathbf{x} + \boldsymbol{\omega}_T + \varepsilon_T \end{cases}$$

 $y = y_5$ if d = 0, or $y = y_T$ (limited dependent variables, as in Madalla (1983))

procedure length models (limited dependent)

 $t = t_S$ if d = 0, or $t = t_T$ (limited dependent variables, as in Madalla (1983))

decision model

Agents have CARA (exponential) utility, $v(y) = -\exp(-\rho y)$, with $\rho > 0$, thus, if Y is Gaussian.

$$\mathbb{E}[v(Y)] = v\left(\mathbb{E}[Y] - \frac{\rho}{2}\mathsf{Var}[Y]\right)$$

With intertemporally separables preferences and a rate δ for time preference, victims go to court (time t) if

$$\exp(-\delta(T-S))\left[\mathbb{E}[Y_T] - \frac{\rho}{2}\mathsf{Var}[Y_T]\right] > Y_S$$

Arrondel & Masson (2005) defined four individuals types:

- \blacktriangleright Hotheads (low ρ , high δ),
- *Short-sighted prudent* (high ρ , high δ),
- \triangleright Entreprising (low ρ , low δ),
- ightharpoonup Armchairs investitor (high ρ , low δ),

Scatterplot of (y_S, \hat{y}_S) and (y_T, \hat{y}_T) .

decision to go to court, location parameter,

amount models, negociation y_S & trial y_T , location parameter,

amount models, negociation t_S & trial h, location parameter,

decision to go to court, location parameter,

amount models, negociation y_S & trial y_T , location parameter,

amount models, negociation t_S & trial h, location parameter,

Temporal Evolution, Aix-en-Provence Decision to go to court & negociation time t_5

Temporal Evolution, Aix-en-Provence Amount models, negociation y_S & trial y_T ,

Temporal Evolution, Rennes Decision to go to court & negociation time t_5

Temporal Evolution, Rennes Amount models, negociation y_S & trial y_T ,

Temporal Evolution, Rennes vs Aix Decision to go to court & negociation time t_5

Temporal Evolution, Rennes vs Aix Amount models, negociation y_S & trial y_T ,

Temporal Evolution, women indicator Decision to go to court & negociation time t_5

Temporal Evolution, women indicator Amount models, negociation y_S & trial y_T ,

Temporal Evolution, age 26-65 indicator Decision to go to court & negociation time t_5

Temporal Evolution, age 26-65 indicator Amount models, negociation y_S & trial y_T ,

Temporal Evolution, passenger (reference being driver) Decision to go to court & negociation time t_5

Temporal Evolution, passenter (reference being driver) Amount models, negociation y_S & trial y_T ,

