Combinatorics

Thomas Fleming

October 22, 2021

Contents

Lecture 24

1 Psuedo-Random Graphs

Fri 22 Oct 2021 10:22

1

I originally missed this class.

Lecture 25: Psuedo-Random Graphs

Fri 22 Oct 2021 10:23

1 Psuedo-Random Graphs

Definition 1.1 (Psuedo-Random Graph). A **psuedo-random graph** is a *d*-regular graph of order n with $\sigma_2\left(G\right) \leq \lambda$ and $\lambda = o\left(d\right)$. We denoted this (n,d,λ)

Let G be a $\left(n, n^{\frac{2}{3}}, 2n^{\frac{1}{2}}\right)$. Then, we derive some nice conditions on the hamiltonicity of G.

Proposition 1.1 (Expander Mixing Lemma). Let G be a d-regular graph of order n, then for every $X,Y\subseteq V\left(G\right) ,$ we find

$$\left| e\left(X,Y\right) -\frac{d}{n}\left| X\right| \left| Y\right| \right| \leq \sigma_{2}\left(G\right)\sqrt{\left| X\right| \left| Y\right| }.$$

Proof. Note here $e\left(X,Y\right)$ double counts edges in the intersection $X\cap Y$. Hence, $e\left(X,X\right)=2e\left(X\right)$. Then, note $\frac{d}{n}=\frac{dn}{n^2}=\frac{e\left(G\right)}{n^2}$, the density of G.

Now, let $X \subseteq M$ and define a vector $j_X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ with $x_i = \begin{cases} 1, & i \in X \\ 0, & i \notin X \end{cases}$

Then, note that $\langle j_X, j_X \rangle = |X|$ and $\langle j_X, j_Y \rangle = |X \cap Y|$.

Then, letting $X \subseteq [n]$ to be a subsets of all numbers less than or equal to n, then we see letting A be a (0,1) matrix which is $n \times n$, we have $\langle Aj_X, j_Y \rangle = e(Y,X) = e(X,Y)$. Lastly, $\langle J_n j_X, j_Y \rangle = |X| |Y|$ Defining $B = A - \frac{s}{n^2} J_n$, we

see $\frac{s}{n^2} = \frac{d}{n}$, hence $B = A - \frac{d}{n}J_n$. Then, note $\langle Bj_X, j_Y \rangle = e\left(X,Y\right) - \frac{d}{n}\left|X\right|\left|Y\right|$. Hence, we have reduced the left hand side to $\langle Bj_X, j_Y \rangle$. Then, note that $|\lambda_i| \leq \sigma_2\left(G\right) \leq \lambda$ for $2 \leq i \leq n$. Then, as $\lambda_1\left(G\right) = \lambda_1\left(\frac{d}{n}J\right) = d$, we see $\lambda_1\left(B\right) = 0$ and $\lambda_j\left(B\right) = \lambda_j\left(A\right)$ for all $2 \leq j \leq n$. Clearly