

南 开 大 学

计算机学院 并行程序设计期末实验报告

超级计算机调研

许洋

年级: 2023 级

专业:计算机科学与技术

指导教师:王刚

随着计算机的飞速发展,目前并行计算在提升计算能力上越来越重要,并行计算离不开并行计算机的架构和并行编程的能力。超级计算机采用优秀的并行架构和巨大的处理器和计算核心数目,达到高速运算的结果。超级计算机是国家科技实力的重要标志,涉及国防、气象、能源等关键领域。中国超算历经四十余年发展,从技术封锁到自主创新,形成了以"银河""天河""神威""曙光"为代表的完整技术体系,并在全球 TOP500 榜单中多次登顶,展现了中国超算技术的显著进步。我们调研了中国超级计算机从无到有、从技术引进到自主创新的发展脉络。同时,我们对国际上先进的超级计算机,如富岳、前沿等,以及国内的超级计算机神威·太湖之光进行了全面的技术剖析,涵盖硬件架构、软件生态等多个维度。通过对计算性能,硬件软件的生态的对比,分析得出了彼此的优缺点,找到了技术革新的方向。在此基础上,我们还对国内超级计算机的未来发展趋势做出了前瞻性预测,提出了中国超算在百亿亿次计算能力突破、国产化自主可控、人工智能与超算融合、绿色节能计算以及新型计算架构探索等方面的未来发展方向,希望能为相关领域的研究人员提供详实的参考依据。

关键字: 超级计算机, 神威·太湖之光, 富岳, 前沿, 发展

景目

_,	超级计算	算机简介														1
ᅼ,	中国超级	及计算机发	展史													1
三,	具体超级	及计算机的	架构分析	fi												2
(-	一) 富岳											 				2
	1.	硬件层面	i技术架	勾								 				2
	2.	软件层面	i技术架	勾								 				2
(_	二) 前沿	(Frontier)										 				3
	1.	技术架构	J									 				3
	2.	硬件层面	î									 				3
	3.	软件层面	î									 				4
(=	三) 神威	·太湖之光	(Sunwa	y Tai	huL	ight)						 				4
	1.	技术架构	J									 				4
	2.	硬件层面	î									 				4
	3.	软件层面	Î									 	•			5
四、	性能详细	田对比分析														6
(-	一) 计算	性能对比										 				6
(_	二)硬件	架构对比										 				6
(=	三) 软件	生态对比										 				7
Ŧi,	总结以》	&中国超算	的未来》	设展方	向预	页测										8
(-	一) 百亿	亿级(E 组	及) 超算	突破:	向	Exas	scale	迈	生.			 				8
(_	二) 完全	自主可控:	国产化	技术自	主	突破						 				8
(=	三) AI+	超算融合	: 超级计	·算智f	能化							 				8
(<u>p</u>	9) 绿色	计算:更 ^t	节能、更	高效								 				8
六、	附录															9

一、 超级计算机简介

超级计算机(巨型计算机)是相对于大型计算机而言的一种运算速度更高、存储容量更大、功能更完善的计算机。它通常是指每秒中能运算 5000 万次以上、存储容量超过百万个字节的电子计算机。超级计算机信息处理能力比个人计算机快一到两个数量级以上,它在密集计算、海量数据处理等领域发挥着举足轻重的作用。作为高性能计算技术产品的超级计算机,又称巨型机,是与高性能计算机或高端计算机相对应的概念。

超级计算机具有很强的计算和处理数据的能力,主要特点表现为高速度和大容量,配有多种外部和外围设备及丰富的、高功能的软件系统。超级计算机采用涡轮式设计,每个刀片就是一个服务器,能实现协同工作,并可根据应用需要随时增减。以我国第一台全部采用国产处理器构建的"神威·太湖之光"为例,它的持续性能为9.3亿亿次/秒,峰值性能可以达到12.5亿亿次/秒。通过先进的架构和设计,实现了存储和运算的分开,确保用户数据、资料在软件系统更新或CPU升级时不受任何影响,保障了存储信息的安全,真正实现了保持长时、高效、可靠的运算并易于升级和维护的优势。

根据处理器的不同,可以把超级计算机分为两类,采用专用处理器或者采用标准兼容处理器。前者可以高效地处理同一类型问题,而后者则可一机多用,使用范围比较灵活、广泛。专一用途计算机多见于天体物理学、密码破译等领域。国际"象棋高手""深蓝"、日本的"地球模拟器"都属于这样的超级计算机,很多超级计算机是非专用系统,服务于军事、医药、气象、金融、能源、环境和制造业等众多领域。[8]

二、 中国超级计算机发展史

自 20 世纪 80 年代以来,中国在超级计算机领域取得了显著进展。从最初的银河系列到如今的天河、神威等高性能计算平台,中国超级计算机在科研、国防、气象、基因测序等多个领域 发挥了重要作用。

1983年,我国第一台亿次超级计算机"银河一号"研发成功,这是我国超级计算机研制的一个里程碑,也让我国成为继美国、日本后世界上第三个能够独立设计和制造超级计算机的国家。

2009 年,我国"天河一号"千万亿次超级计算机研制成功,使我国成为世界上第二个成功研制千万亿次超级计算机的国家。

2010 年, 我国自主研发的"星云"千万亿次计算机在第三十五届超级计算机 TOP500 排行榜荣获第二名的佳绩,进入世界超级计算机的前三甲。

2011 年, 我国"天河-1A"超级计算机运算速度世界排行榜第一位,"神威·蓝光"率先完成 CPU 国产化。

2018 年,我国累计有三台超级计算机进入了 E 级(每秒运算一百亿亿次)超算研发,分别是"曙光"、"天河"和"神威太湖之光",并实现了 CPU 和加速器的全面国产化。

2019 年,全球超级计算机 TOP500 排行榜显示中国超级计算机有 226 台进入了榜单,占比达到 45.2%,在数量上超过了美国。

2022 年, "神威太湖之光"进入 TOP500 榜单的第六名。[5]

这些超级计算机不仅展示了中国在高性能计算领域的技术实力,也为国家的科学研究和经济发展提供了强大的支撑。从早期的银河系列到如今的天河、神威等高性能计算平台,中国超级计算机的发展历程体现了自主创新、技术突破和工程化的高度结合。特别是神威·太湖之光和天河系列,多次在全球超级计算机排行榜中名列前茅,彰显了中国在高性能计算领域的领先地位。未来,随着 E 级超算的逐步实现和 AI 技术的深度融合,中国超级计算机将继续引领全球高性能计算的发展,为解决全球性科学问题和推动技术创新贡献力量。

三、 具体超级计算机的架构分析

(一) 富岳

1. 硬件层面技术架构

处理器 富岳的核心硬件组件是富士通定制的 A64FX 处理器,基于 ARMv8.2-A 架构,专为高性能计算优化。每个处理器拥有 48 个计算核心,支持 SVE(Scalable Vector Extensions)指令集,能够处理长达 512 位的向量操作,极大地提升了浮点运算能力和并行处理效率。这种设计使得富岳在科学计算、大数据分析等领域具有出色的表现。

内存系统 富岳采用高带宽内存(HBM),将内存颗粒直接封装在处理器芯片之上,提供极高的内存带宽和较低的延迟。这种紧密耦合的设计减少了数据在处理器与内存之间传输的时间,对于需要大量数据交换的计算密集型任务至关重要。

互连网络 富岳使用 Tofu 互联网络(TofuD)实现节点间的高速通信,支持多种通信模式和路由策略,确保大规模并行任务中的高效数据交换和任务协同。这种网络架构有利于大规模分布式计算,有效降低了通信瓶颈,提高了整个系统的并行计算效率。

图 1: 富岳 (Fugaku)

冷却系统 鉴于超级计算机的高能耗特性,富岳采用液冷散热方案。通过将冷却液直接流经处理器和其他关键发热部件,迅速带走热量,确保系统在高强度工作状态下保持稳定运行。这种冷却方式不仅提高了散热效率,还降低了风扇噪音,有助于营造安静的工作环境,并且在总体能耗控制方面表现出色。

系统规模与布局 富岳由约 400 台机柜组成,每台机柜包含多个计算节点。这些节点通过高效互 联网络连接,形成一个庞大而高度协同的计算集群。系统整体设计注重空间利用率、散热效率和 维护便捷性,展现了高度工程化的硬件集成水平。

2. 软件层面技术架构

资源管理系统 富岳采用先进的作业调度系统,如 Slurm,对计算资源进行高效管理和分配。用户可以通过提交作业脚本,定义任务的资源需求(如 CPU 核数、内存大小、运行时间等),系统会自动调度任务在合适的时间和节点上运行,实现资源利用的最大化。

应用软件与库 富岳配备了丰富的科学计算、数据分析、人工智能等相关领域的应用软件和库,如 GROMACS、WRF、TensorFlow等,覆盖生物医学、气候模拟、材料科学、机器学习等多个科研和工业领域,为用户提供一站式解决方案。[7]

(二) 前沿 (Frontier)

1. 技术架构

Frontier 的设计目标计算性能是大于 1.5 百京每秒浮点运算次数 (PFlop/s), 预计成本为 6 亿美元。Frontier 计算系统被安装在 74 个 19 英寸 (48 厘米) 机柜中,每个机柜安装了 64 个包含 2 个节点的刀片服务器。每个节点配备 1 个高性能和 AI 计算负载优化的 AMD EPYC 7453s 64 核 CPU 和 4 个 AMD Radeon Instinct MI250X GPU。整套系统包括 9,472 个 CPU 和 37,888 个 GPU,总计 CPU 内核数达 606,208 个,GPU 内核数达 8,335,360 个。现今 Frontier 的功率为 22,703 千瓦,为降低其在运行时产生的热量,该系统配备水冷系统散热,其水冷系统拥有四个大功率水泵,每分钟可推动超过 25 吨水在机器周围流动。Frontier 采用慧与科技子公司克雷公司开发的 Cray OS 作为操作系统。

2. 硬件层面

处理器 Frontier 采用了 AMD 第三代 EPYC(霄龙)处理器。作为 Frontier 的核心计算引擎,AMD EPYC 处理器提供强大的多核计算能力,支持高并发任务处理和高效能效比。其 64 核架构、大容量缓存和先进的制程工艺确保了在科学计算、数据分析等高性能应用场景中的优异表现。

计算节点 Frontier 由大量独立的计算节点构成,每个节点内包含 EPYC 处理器、MI250X 加速卡以及高速内存。节点之间通过高效的内部互连机制紧密协作,形成一个高度并行的计算资源池。

HPE Slingshot **网络** 作为系统的关键互连组件, HPE Slingshot 提供极高的带宽、低延迟和高可扩展性,确保各计算节点间数据传输的高效性和可靠性。这种专用高性能网络技术能够适应大规模并行任务的执行需求,如大规模科学模拟、大数据分析和深度学习训练。

内存与存储系统

- **高速内存**:每个计算节点配备大量的 DDR4 或更高版本的 DRAM 内存,以提供充足的高速缓存空间,确保大规模数据集的快速访问和处理,减少 I/O 瓶颈。
- 并行文件系统与存储阵列: Frontier 采用先进的并行文件系统(如 Lustre 或 GPFS),配 合大规模存储阵列(如全闪存或混合存储),提供 PB 级甚至 EB 级的海量存储容量。这种设计确保了科研数据的高效存储、检索和共享,支持大规模并行读写操作,满足高吞吐量、低延迟的 I/O 需求。

能源管理与冷却技术

- **能效优化**: Frontier 在硬件设计和系统层级均考虑能效因素,如采用低功耗部件、动态电源管理策略等,以实现高性能与低能耗之间的平衡。
- 液冷散热系统:鉴于超级计算机的高发热特性,Frontier 可能采用了直接液冷、间接液冷或混合冷却技术,通过液体介质高效带走计算节点产生的热量,保持系统稳定运行,同时降低能耗和冷却成本。

3. 软件层面

集群管理 Frontier 部署了专门的集群管理软件(如 Slurm、PBS Pro 或 LSF),用于作业调度、资源分配、监控和故障恢复,确保超级计算机高效、有序地执行大规模并行任务。

并行计算与编译器

- 并行计算任务: Frontier 计算系统安装在 74 个独立的机柜中,包括 9400 个 CPU 和 37000 个 GPU,这些 GPU 可用于呈现 3D 图形,也可用于其他一系列任务。该机器共有 8730112 个内核,能够执行并行计算任务。
- **高性能编译器**: Frontier 提供针对 AMD 架构优化的编译器工具链(如 GCC、Clang 或 AMD ROCm Compiler),确保源代码能够生成高效、针对性强的目标代码,最大限度发挥 硬件潜力。

AI 框架 Frontier 支持的 AI 框架与库包括 Megatron-DeepSpeed 分布式训练框架。研究人员 将这个框架移植到 Frontier 上,以支持在 AMD 硬件和 ROCM 软件平台上进行高效的分布式训练。[9]

(三) 神威·太湖之光 (Sunway TaihuLight)

1. 技术架构

神威·太湖之光系统由高速计算系统、辅助计算系统、高速计算互连网络、辅助计算互连网络、高速计算存储系统、辅助计算存储系统和相应的软件系统等组成,总体结构如图所示。

图 2: 神威·太湖之光技术架构

2. 硬件层面

处理器 神威·太湖之光搭载了中国自主设计的申威 26010 众核处理器。每个处理器包含 4 个运算核心(也称为"主核"),每个主核又内含 64 个运算单元(或称"微核")。这种众核架构设计使得单个处理器拥有 256 个计算核心,极大地提升了并行计算能力。

计算节点 计算机系统由 40 个计算柜组成,每个计算柜包含数百个计算节点。每个计算节点配备两块申威 26010 处理器,构成了庞大的计算阵列,提供了极高的浮点运算性能。

高速互连网络 为了保证各个计算节点间的数据高效传输,神威·太湖之光采用了自主设计的高效网络互联架构——SW26010 高带宽网络芯片。该网络芯片支持 16 路 PCIe 3.0 接口,提供高达 102.4GB/s 的双向带宽,确保了处理器之间的高速数据交换 [?]。

图 3: 神威·太湖之光体系结构

内存系统 每个计算节点配备大量的 DDR3 内存,形成大规模、高带宽的内存系统,满足处理器对数据的高速访问需求。通过优化内存控制器设计和内存层次结构,有效提高内存访问效率,降低访存延迟。

存储系统 神威·太湖之光配备了大容量、高速度的并行文件系统和分布式存储设备。采用多级缓存机制和智能数据调度算法,确保海量数据的高效读写和快速存取。

冷却系统 超级计算机的散热问题至关重要。神威·太湖之光采用全液冷技术,通过液体冷却板直接接触处理器和内存等发热元件,迅速吸收热量并传送到外部冷却系统,实现高效散热。这种冷却方式有助于降低系统能耗,提高能效比,同时保持运行环境稳定。

3. 软件层面

操作系统 神威·太湖之光运行基于 Linux 内核定制的国产操作系统,如麒麟操作系统 (Kylin OS)等。这些操作系统针对申威处理器进行了深度优化,提供了稳定、高效、安全的操作环境。

编译器与工具链 配备了针对申威处理器架构优化的编译器、汇编器、链接器等开发工具,支持Fortran、C/C++、OpenMP、MPI 等多种编程语言和并行编程模型,方便用户编写和调试高性能计算代码。

并行编程环境 支持主流的并行编程环境,如 OpenMP、MPI(Message Passing Interface)、SHMEM(Shared Memory)等,使得开发者能够充分利用处理器的众核特性,编写高效并行程序。

科学计算库与应用软件 集成了丰富的科学计算库,如 BLAS、LAPACK、FFT等,为数值计算、线性代数、信号处理等任务提供高效计算支持。同时,预装或支持各类高性能计算应用软件,如天气预报模型、分子动力学模拟软件等,满足不同领域的科研和工程计算需求。

管理系统与监控工具 配备了完善的系统管理和监控工具,如作业调度系统、资源监控系统、性能分析工具等,帮助管理员高效调度计算任务,实时监控系统状态,优化系统性能,确保超级计算机稳定、高效运行。[6]

四、 性能详细对比分析

超级计算机在科学研究、气象模拟、人工智能等领域起着至关重要的作用。Frontier、Fugaku和 Sunway TaihuLight 分别代表了美国、日本和中国在高性能计算(HPC)领域的技术巅峰。通过不同方面的对比分析我们可以得出他们的优缺点(根据相关报表由于 El Capitan 的空降第一,导致 Frontier 现排名第二,但是基于检索到的数据资源,El Capitan 相关数据较少,我们对比 El Capitan 空降之前的数据资源,认为 Frontier 是超算第一名)。[4]

(一) 计算性能对比

表 1: 计算性能对比

	[2] [1] [3]		
计算机名称	Linpack 性能 (Rmax)	理论峰值 (Rpeak)	HPCG 性能
功耗 (kW)	Linpack 能效比 (GFLOPS/W)		
Frontier	1,353.00 PFlop/s	2,055.72 PFlop/s	14,054.0 TFlop/s
24,607.00	55.0		
Fugaku	442.01 PFlop/s	537.21 PFlop/s	$16{,}004.5~\mathrm{TFlop/s}$
29,899.23	14.8		
Sunway TaihuLight	93.01 PFlop/s	125.44 PFlop/s	480.848 TFlop/s
15,371.00	6.05		

Frontier

• **优缺点**世界最快超算, Linpack 实测达到 1,353 PFlop/s, 比 Fugaku 快 3 倍, 比 Sunway TaihuLight 快 14 倍。其理论峰值可达 2,055 PFlop/s, 计算资源最强。比较适用于 AI 计算,支持 GPU 加速,并行计算效率高。能效比最高(55.0 GFLOPS/W),得益于 AMD 先进制程和 GPU 并行计算。功耗较高,有 24,607 kW,虽然比 Fugaku 低,但远高于 Sunway TaihuLight。

Fugaku

• **优缺点** HPCG(实际计算负载)性能最强(16,004.5 TFlop/s),适用于科学模拟、流体力学等 领域。Linpack 性能远低于 Frontier,只有 442 PFlop/s。功耗最高(接近 30,000 kW),基于 ARM 设计,功耗优化有限。

Sunway TaihuLight

• **优缺点** Linpack 性能较低(93.01 PFlop/s),计算速度远逊于 Frontier 和 Fugaku。HPCG 计算效率较差,通用计算优化不足。功耗最低(15,371 kW),比 Frontier 低 37%,比 Fugaku 低50%,能效比高。能效比(6.05 GFLOPS/W)较低,其架构在计算效率上有待提升。

(二) 硬件架构对比

Frontier

表 2: 硬件架构对比

[2] [1] [3]

计算机名称	处理器	核心数	主频	互连网络	
Frontier	AMD Optimized EPYC 64C 2.0GHz	9,066,176	$2.0~\mathrm{GHz}$	Slingshot-11	
Fugaku	Fujitsu A 64 FX 48 C 2.2 GHz	7,630,848	$2.2~\mathrm{GHz}$	Tofu interconnect D	
Sunway TaihuLight	Sunway SW26010 260C 1.45GHz	10,649,600	$1.45~\mathrm{GHz}$	Sunway 网络	

• **优缺点**采用 AMD EPYC 处理器,基于 x86 架构,兼容传统 HPC 应用,易于移植。互连网络 Slingshot-11,低延迟、高带宽,优化大规模并行计算。 核心数量较少,对于代码优化度要求较高。

Fugaku

• **优缺点**基于 ARM 处理器(A64FX),支持高带宽 HBM2 内存,提高数据吞吐量。互连网络 Tofu D,优化计算节点间通信,适用于 CFD(计算流体力学)、气象模拟等任务。 核心数量较少,对于代码优化度要求较高。

Sunway TaihuLight

 优缺点国产 Sunway SW26010 处理器, 具有 1,064 万个核心, 适合大规模并行计算。 主频较低(1.45 GHz), 限制了单核性能。

(三) 软件生态对比

表 3: 软件生态对比

[2] [1] [3]

] [] [_]			
计算机名称	操作系统	主要编译器	数学库	MPI	
Frontier	HPE Cray OS	gcc/hipcc	ROCm/mkl	Cray-MPICH	
Fugaku	RHEL Linux	Fujitsu Suite	Fujitsu Suite	Fujitsu Suite	
Sunway TaihuLight	Sunway RaiseOS	国产编译器	国产数学库	国产 MPI	

Frontier

• 优缺点基于 x86 生态, 兼容性好, 适用于 AI、HPC 和数据科学。

Fugaku

• 优缺点专为 ARM 架构优化,但对 x86 软件兼容性较弱。

Sunway TaihuLight

• 优缺点完全国产化,确保安全性和自主可控性,但国际兼容性较差。

五、 总结以及中国超算的未来发展方向预测

中国超级计算机(超算)近年来取得了举世瞩目的成就,如天河系列、神威系列和曙光系列, 尤其是**神威·太湖之光(Sunway TaihuLight)**曾一度登顶全球最快超算榜首。面对国际竞争和 未来计算需求的不断增长,中国超算将有新的发展方向。

(一) 百亿亿级(E 级)超算突破: 向 Exascale 迈进

目标是突破 1EFlop/s 大关。目前,世界首台 E 级超算 Frontier 已投入使用,中国的 E 级超算项目(如神威·E 级、天河三号等)已接近完成,预计在 2025 年前后投入运行。未来超算将向多 EFlop/s(百亿亿次级计算)发展,确保在全球范围内保持竞争力。关键技术包括新一代国产处理器(更高性能、更低功耗)、先进互连架构(更快的数据传输速率)和优化并行计算架构(突破计算瓶颈)。预计到 2025-2030 年,中国有望建成世界领先的 E 级超算,甚至在某些领域超越 Frontier。

(二) 完全自主可控:国产化技术自主突破

目标是打破技术封锁,实现全链路国产化。自主芯片研发方面,神威 SW26010 是完全国产化的处理器,未来将迎来新一代升级(可能是 SW28010 或 SW3 系列)。龙芯、飞腾、海光、鲲鹏、昇腾等国产芯片也将逐步进入超算领域,形成多元化生态。RISC-V 可能成为未来超算架构的新方向,降低对国外 IP 架构的依赖。国产操作系统方面,Sunway RaiseOS 已经投入使用,未来将持续优化,提升兼容性和计算效率。银河麒麟、统信 UOS 等国产 Linux 系统可能被更多超算采用,替代国外系统(如 Red Hat)。国产高性能网络方面,未来超算将进一步优化高吞吐、低延迟网络(如 Sunway 互连、天河互连),减少对国际封锁风险。预计到 2030 年,中国有望打造一套完全自主可控的超算生态体系,减少对美国和其他国家的技术依赖。

(三) AI+ 超算融合: 超级计算智能化

目标是将人工智能(AI)与高性能计算(HPC)结合。未来超算不仅仅用于传统科学计算,还会深度结合人工智能、大数据、自动化决策等新兴领域。AI 训练与推理加速方面,AI 模型(如 Chat GPT、Stable Diffusion 等)对计算需求极高,超算可以极大提升 AI 训练速度。中国的 AI 大模型(如悟道、文心、盘古)未来可能直接运行在国产超算平台上。自动化调度与优化方面,采用 AI 进行任务调度、资源管理、功耗优化,提高超算利用率。例如,结合深度强化学习自动优化算法,提高大规模并行计算效率。量子计算 + 超算方面,未来可能融合量子计算技术,使部分计算任务由量子计算机完成,提高整体效率。预计到 2030 年,超算 + AI 将成为计算中心的主流架构,中国有望建成世界级 AI 超算中心。

(四) 绿色计算: 更节能、更高效

目标是提高能效比,减少能耗。目前全球超算的功耗普遍较高,例如 Frontier 为 24,607 kW, Fugaku 为 29,899 kW, 而 Sunway TaihuLight 为 15,371 kW (最节能)。未来超算必须提高能效比 (FLOPS/W)。低功耗国产芯片方面,采用更先进的制程工艺 (5nm/3nm 甚至 2nm),减少功耗。液冷 + 光子计算方面,未来超算将全面应用液冷技术降低热耗,提高散热效率。同时,研究光子计算技术(光子芯片)降低电子计算的能耗。预计到 2035 年,中国超算的功耗预计降低30%-50%,实现更绿色的高性能计算。

六、 附录

表 4: 中国超级计算机谱系表

计算机名称	研制成功时间	运行速度(亿次每秒)	备注
银河	1983 年	1	中国国防科技大学
银河	1994 年	10	中国国防科技大学
银河	1997 年	130	中国国防科技大学
银河	2000年	10,000	中国国防科技大学
银河	未知	未知	军用
天河一号	2009 年	12,060,000	国家超级计算天津中心
天河二号	2013年	33,860,000	国家超级计算广州中心
天河三号	2018 2019 年	13,000,000,000	国家超级计算天津中心
天河星逸	2023 年	300,000,000	国家超级计算广州中心
曙光一号	1992 年	6	无
曙光 1000	1995 年	25	无
曙光 1000A	1996 年	40	无
曙光 2000	1998 年	200	中科院超级计算中心
曙光 2000	1999 年	1,117	中科院超级计算中心
曙光 3000	2000年	4,032	中华大基因中心
曙光 4000L	2003年	42,000	无
曙光 4000A	2004年	110,000	无
曙光 4000H	2005年	50,000	无
曙光 5000A	2008年	2,300,000	无
曙光星云	2010年	12,710,000	国家超级计算深圳中心
曙光 E	2022 年,已推迟	(目标) 20,000,000,000	国家超级计算深圳中心
KD-50-I	2008年	10,000	中国科学技术大学与深圳大学自研 U
KD-60	2010年	10,000	中国科学技术大学与深圳大学自研
KD-90	2012年	10,000	中国科学技术大学与深圳大学自研
神威	1999 年	3,840	国家气象中心
神威 3000A	2007年	180,000	国家海洋环境预报中心
神威蓝光	2010年	79,500,000	国家超级计算济南中心
神威·太湖之光	2015年	930,146,000	国家超级计算无锡中心
神威·海洋之光	2021年3月	10,500,000,000	崂山实验室(青岛国实)超算中心
深腾 1800	2002年	10,000	联想公司自研
深腾 6800	2003年	53,000	联想公司自研
深腾 7000	2008年	1,065,000	联想公司自研
深腾 X	在研	10,000,000	联想公司自研
嵩山	未知	(理论) 1,000,000,000	无
昆仑	未知	信息未详	无
太行一号	未知	3,000,000,000	无
秦岭	未知	信息未详	无

参考文献

- [1] Fujitsu. Supercomputer fugaku supercomputer fugaku, a64fx 48c 2.2ghz, tofu interconnect d.
- [2] HPE. Frontier hpe cray ex235a, amd optimized 3rd generation epyc 64c 2ghz, amd instinct mi250x, slingshot-11, hpe cray os.
- [3] NRCPC. Sunway taihulight sunway mpp, sunway sw26010 260c 1.45ghz, sunway.
- [4] TOP500. November 2024 | top500.
- [5] wikipedia. 中国计算机谱系表.
- [6] 国家并行计算机工程技术研究中心. 全球第一台性能超过十亿亿次的计算机: 神威·太湖之光.
- [7] 日本理化学研究所(RIKEN)和富士通公司. 日本最快的超级计算机:富岳(fugaku).
- [8] 百度百科. 超级计算机.
- [9] 美国橡树岭国家实验室(ORNL). 世界最快的超级计算机: 前沿 (frontier).