

Tema 3: Paralelismo de datos a gran escala con GPU

Un resumen rápido...

Hilo, warp, bloque y grid

Software

Hardware

- Warp: conjunto de 32 hilos que se ejecutan a la vez.
- Bloque: conjunto de hilos que se ejecuta en el mismo SM.
- Grid: conjunto de hilos que se ejecuta en el mismo dispositivo.

¿Qué es un SM?

Unidad de cómputo de la GPU. Contiene:

- Procesadores escalares (SPs).
- Unidades de funciones especiales (SFUs).
- Registros.
- Memoria compartida.

Jerarquia de memoria de la GPU

Registros

- Privada para cada hilo.
- float a=0.1;

Compartida

- Privada para cada bloque, compartida para hilos del mismo bloque.
- __shared__ float a=0.1;

Global

- Compartida para todo el grid.
- __device__ float a=0.1;

Coalescing

La GPU detecta accesos a memoria y los agrupa (coalesce) en accesos conjuntos para maximizar el ancho de banda

warp of threads:

GPU memory:

Daniel Perdices

Problemas de memoria

- Random access: si no se accede a los datos de manera secuencial, gran parte de las lecturas/escrituras malgastan ancho de bando.
- Unaligned access: si las direcciones no están alineadas, puede que no usemos el ancho de banda al complete o que necesitemos más transferencias.

Resumen U3 - CAP

Divergencia

Si dentro de un mismo warp, dos hilos "toman" flujos de ejecución diferentes, se produce divergencia.

Daniel Perdices

Soluciones a la divergencia

- Cambiar el algoritmo: juntamos en el mismo bloque hilos que no difieran mucho.
 - No siempre es posible.
- Dynamic warp forming
 - Juntamos hilos con mascaras compatibles.

