Combining Heuristics for Optimizing the Placement of IoT applications in the Fog

Ye XIA^{1,2}

supervisors: Thierry Coupaye¹ Frédéric Desprez²

Xavier Etchevers¹ Loïc Letondeur¹

¹Orange Labs first.last@orange.com

²INRIA first.last@inria.fr

The 33rd ACM/SIGAPP Symposium On Applied Computing 12 / 04 / 2018

Outline

- Context
- Problem Formulation
- 3 Placement Approach
- 4 Conclusion

from Cloud to Fog

How to satisfy a time-sensitive IoT application ?

from Cloud to Fog

How to avoid congestions in the core network?

from Cloud to Fog

Placement Problem Description

Placement Problem Description

Challenges

Challenges

- Locality
- Constraint Diversity & Heterogeneity
 - processing, storage, and network resources
 - Component 3 : a certain user's devices, certain OS
- Scalability

Outline

- Context
- 2 Problem Formulation
- Placement Approach
- 4 Conclusion

Model — Infrastructure

Infrastructure

- fog node : CPU, RAM, DISK
- appliance
- link : network latency (Lat), bandwidth (BW)

Model — Applications

Apps: the set of applications to place

Application

- component : reqCPU, reqRAM, reqDISK, Dedicated Zone
- connected object
- binding : reqBW, maximal latency

Constraints

Placement

• each component -> one fog node

$$\textit{a placement} \; = \; \left(\begin{array}{c} \textit{comp}_1, \textit{node}_i \\ \textit{comp}_2, \textit{node}_j \\ \dots \\ \textit{comp}_n, \textit{node}_k \end{array} \right)$$

A Solution must satisfy:

- Dedicated Zone
- Consumption of CPU / RAM / DISK
- Consumption of BW
- Binding's maximal latency

Solution Selection

How to select among multiple solutions?

Goal: minimizing applications' average response time

Objective Function

min: Weighted Average Latency (WAL)

$$WAL = \sum_{bind} \frac{bind.reqBW}{total_BW} imes bind.Lat$$

Objective Function Evaluation

Correlation: 0.8029574

Outline

- Context
- Problem Formulation
- Placement Approach
- 4 Conclusion


```
\{comp_1, comp_2\} \rightarrow \{node_1, node_2\}
```


 $\{comp_1, comp_2\} \rightarrow \{node_1, node_2\}$

 $\{comp_1, comp_2\} \rightarrow \{node_1, node_2\}$

Naive Placement Algorithms

Exhaustive Algorithm

- guarantee to return the optimal solution
- not scalable

FirstFit Algorithm

- more scalable
- no guarantee on returned solution's quality

Example – Impact of Fog Node Order

$$\emptyset$$
 — $($ comp $_1$, node $_2$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc co

 $comp_1, node_2$ $comp_2, node_2$

WAI 2

Heuristics

AFNO Process

1. Anchor Calculation

- 2. Fog Nodes Ordering
- 3. Search

AFNO Process

1. Anchor Calculation

- 2. Fog Nodes Ordering
- 3. Search

AFNO Process

1. Anchor Calculation

- 2. Fog Nodes Ordering
- 3. Search

Example – Impact of Component Order

 $\{comp_1, comp_2\} \rightarrow \{node_1, node_2\}$

Heuristics

Heuristics' Combination

Evaluation — Scalability

timeout: 30 mins

Place 1 application in a growing infrastructure

Evaluation — Scalability

timeout: 30 mins

Place more and more applications in an infrastructure with 20495 fog nodes

Evaluation — Result Quality

Average WAL

better result quality

AFNO-DCO: the best compromise in terms of scalability and quality

Outline

- Context
- Problem Formulation
- Placement Approach
- 4 Conclusion

Conclusion

Contribution

- Model, Objective Function
- Placement Algorithms (Exhaustive, FirstFit)
- Heuristics (AFNO, DCO)

Future Work

- Infrastructure Dynamicity (e.g., churn & mobility)
- Orange Labs internal testbed[3]

Conclusion

Contribution

- Model, Objective Function
- Placement Algorithms (Exhaustive, FirstFit)
- Heuristics (AFNO, DCO)

Future Work

- Infrastructure Dynamicity (e.g., churn & mobility)
- Orange Labs internal testbed[3]

Thanks for your attention!

References

- Ye Xia, Xavier Etchevers, Loïc Letondeur, Thierry Coupaye and Frédéric Desprez Combining Hardware Nodes and Software Components Ordering-based Heuristics for Optimizing the Placement of Distributed IoT Applications in the Fog. In: The 33rd ACM/SIGAPP Symposium On Applied Computing. ACM. 2018.
- [2] Ye Xia, Xavier Etchevers, Loïc Letondeur, Adrien Lebre, Thierry Coupaye and Frédéric Desprez
 Combining Heuristics to Optimize and Scale the Placement of IoT Applications in the Fog.
 - In: 11th IEEE/ACM International Conference on Utility and Cloud Computing. IEEE/ACM. 2018.
- [3] Loïc Letondeur, François-Gaël Ottogalli and Thierry Coupaye.

 A demo of application lifecycle management for IoT collaborative neighborhood in the fog Practical experiments and lessons learned around docker.

 In: Fog World Congress. IEEE. 2017.
- [4] Casanova Henri, Giersch Arnaud, Legrand Arnaud, Quinson Martin and Suter Frédéric
 - Versatile, scalable, and accurate simulation of distributed applications and platforms.

In: Journal of Parallel and Distributed Computing 74.10 (2014), pp. 2899-2917.