DSCI353-353m-453: 01a-f Intro Class

2001-353-353m-453-00a-f-IntroClass

Roger H. French, Peitian Wang

14 January, 2020

Contents

1.1.1.1 Reading	g, Homeworks, Projects, SemProjects
1.1.1.2 If you as	re new to R (Or want a quick refresher)
1.1.1.3 Textboo	ks
1.1.1.3.1	Introduction to R and Data Science
1.1.1.3.2	Textbooks for this class
1.1.1.4 The DS	CI courses and class sections
1.1.1.4.1	In these Applied Data Science (DSCI) classes
1.1.1.4.2	The course sections
1.1.1.4.3	The specific courses
1.1.1.4.4	DSCI45x Graduate level courses
1.1.1.4.5	Semester Data Science Projects
1.1.1.5 Syllabus	3
1.1.1.6 Operation	ng Systems: Windows, OSX and Linux
1.1.1.6.1	Basic/Universal Rules
1.1.1.7 Quick In	ntroduction to R/Rstudio/Git
1.1.1.8 Things	you need to do
1.1.1.8.1	Online accounts
1.1.1.8.2	Also get ODS VDI access
1.1.1.8.3	High performance computing (HPC) resources we will use 6
1.1.1.8.4	Lab Exercises are submitted and graded on Canvas 6
1.1.1.8.5	Your Class Git Repo
1.1.1.9 Intro to	some R: Data Types
1.1.1.9.1	Simple Types
1.1.1.9.2	Example: Generating Random Data 6
1.1.1.10 Recomm	nended R Libraries
1.1.1.10.1	Basic useful packages (and many more than this)
1.1.1.10.2	Hadley Wickham Tidyverse packages
1.1.1.10.3	Statistical and Machine Learning
1.1.1.11 Links .	

License: CC-BY-SA 4.0

1.1.1.1 Reading, Homeworks, Projects, SemProjects

- Readings:
 - R4DS Chapters 1,2,3 In Explore section
 - If you are new to R, Read Peng-EDAwR
 - $\ast\,$ And his Youtube Playlists of Computing for Data Analysis
 - \ast Peng-Computing For Data Analysis Playlist

- Laboratory Exercises:
 - LE0, a no credit excercise, is a useful intro to R
 - For those new to R
- SemProjects:
 - SemProjects: have 4 parts, we'll have reports on Sect. 1,2 then 3,4
 - * SemProj Report Out #1 in Class w07a,07b, Tues/Thurs, Feb. 25,27
 - * SemProj Report Out #2 in Class w10a,10b, Tues/Thurs, March 24,26
 - * SemProj Report Out #3 in Class w14a,14b, Tues/Thurs April 21,23
 - * SemProj Report #4 is the full, comprehensive project due at final exam.
 - These are Peer Graded
 - Assistance on SemProjects is done in DSCI352-352m-452 Class
 - * DSCI352 meetings during Friday Community Hour, 12:45 to 1:45pm in Olin 303
 - * Is taught by Prof. Laura Bruckman (lsh41@case.edu)
- Office Hours:
 - Mondays, Wednesdays 4pm to 5pm in White 540
- Final Exam
 - Thursday March 30th, 2020, 12 noon to 3pm

1.1.1.2 If you are new to R (Or want a quick refresher)

- You can do Lab Excercise LE0a and LE0b
 - These are from Chapter 1,2 of Open Intro Stats (OISv3)

1.1.1.3 Textbooks

1.1.1.3.1 Introduction to R and Data Science

For students new to R, Coding, Inferential Statistics

- Peng: R Programming for Data Science
- Peng: Exploratory Data Analysis with R
- OIS = Diez, Barr, Çetinkaya-Runde: Open Intro Stat v4

1.1.1.3.2 Textbooks for this class

- R4DS = Wickham, Grolemund: R for Data Science
- ISLR = James, Witten, Hastie, Tibshirani: Intro to Statistical Learning with R
- ESL = Trevor Hastie, Tibshirani, Friedman: Elements of Statistical Learning
- DLwR = Chollet, Allaire: Deep Learning with R

1.1.1.4 The DSCI courses and class sections

1.1.1.4.1 In these Applied Data Science (DSCI) classes

- We focus on teaching all necesary data science skills
 - Including coding in R
 - Use of Rmarkdown for data analysis reports and presentations
 - Git for code versioning and collaboration
 - Linear and non-linear regression and classification
 - Beyond linear modeling, including Support Vector Machines, Random Forest
 - Machine Learning, including Neural Networks, non-parametric regression
 - Deep Learning, including Keras/TensorFlow running on GPUs

1.1.1.4.2 The course sections

- DSCI35x (x = 1,3,2)
 - Is undergraduate class for "general" applied data science
- DSCI35xM (x=1,2,3) focuses on materials science systems
- DSCI45x (x=1,2,3)
 - Is a graduate level class
 - With the same class material and DSCI35x
 - Additionally the students do a 40 point Semester Data Analysis Project

1.1.1.4.3 The specific courses

- DSCI351, 351M, 451
 - Is an introduction to Exploratory Data Science
- DSCI353, 353M, 453
 - Focuses on Modeling, Prediction and Machine Learning
- DSCI 352, 352M, 452
 - Is a Semester long Data Science Project Class
 - Providing a data analysis for inclusion
 - In your Data Science Portfolio

1.1.1.4.4 DSCI45x Graduate level courses

- For graduate students,
 - DSCI451 is not a required prerequisite
- Therefore some DSCI453 grad. students
 - Do not have familiarity with Open Data Science, R, Git etc.
- For these "New to R" students
 - The initial 3 weeks in class have optional content
 - To get people familiar with Open Data Science

1.1.1.4.5 Semester Data Science Projects

- Are done in DSCI352, 352M by students who have completed both DSCI351,3
- And by graduate students in DSCI 451, 453 and 452

For DSCI45x students, their Semester Project is developed in DSCI352 class

- With Prof. Laura Bruckman
- During team meetings during Friday Community Hour
 - 12:45 to 1:45 in Olin 303
- And during class office hours
 - Monday/Wednesday 4pm to 5pm in White 540
- There are weekly SemProj updates due each week on progress
- And 3 SemProj Presentations in DSCI35x class

1.1.1.5 Syllabus

1.1.1.6 Operating Systems: Windows, OSX and Linux

Command Line Environments

- Linux: Bash on Linux, or Git Bash on Windows
- Mac OSX: Bash in Terminal

Day:Date	Foundation	Practicum	Readings (optional)	Due (optional)
w01a:Tu:1/14/20	Open Data Science	R, Rstudio IDE, Git		(LE0)
w01b:Th:1/16/20	Intro R Markdown	Forking Class Repo	(R4DS-1,2,3)	
w02a:Tu:1/21/20	Statistical Learning	Pred. Analytics	ISLR2	(LE0)
w02b:Th:1/23/20	Data Analytic Style	Tidy Data Manip.	(R4DS-4,5,6)	LE1
w03a:Tu:1/28/20	Lin. Regr.	Pairs Plots (OIS7)		
w03b:Th:1/30/20	Mult. Lin. Regr.	Test Stats ISLR3 (R4DS-		
w04a:Tu:2/4/20	Logistic Regr.	Interaction Terms ISLR4		LE1:Due, LE2
w04b:Th:2/6/20	Classification		(OIS8)	
w05a:Tu:2/11/20*	Resample Cross-Valid.	Cluster Analysis ISLR5		
w05b:Th:2/13/20	Bootstrap	Steps of Data Analysis	DL1,2 (R4DS9-16)	LE2:Due
w06a:Tu:2/18/20	LMS: Subset	ISLR6		LE3
w06b:Th:2/20/20	LMS: Feature Selec.	Coeff. Uncertainties DL3,4 (R4DS17-2		
w07a:Tu:2/25/20*	BeyondL: Spline, GAM	SemProj1-453 ISLR7		
w07b:Th:2/27/20	MidTerm Review	SemProj1-3/452	DL5,6 (R4DS22-25)	LE3:Due
w08a:Tu:3/3/20	MIDTERM EXAM			
w08b:Th:3/5/20	Dim. Reduc. & PCA		ISLR8 (R4DS26-30)	
Tu:Th:3/9-13/20	SPRING BREAK			
w09a:Tu:3/17/20	Regr. Trees	Dec. Trees	ISLR9	LE4
w09b:Th:3/19/20	Bagging, Boosting	How DT Work	ISLR10	
w10a:Tu:3/24/20*	Support Vector Mach.	SemProj2-453	ESL11	LE4:Due
w10b:Th:3/26/20*	ML Overview, Caret	SemProj2-3/452	DLR1	LE5
w11a:Tu:3/31/20*	Neural Networks	MNIST digits DLR2		
w11b:Th:4/2/20*	NN Topo., Types, Train	ImageNet	DLR3	LE5:Due
w12a:Tu:4/7/20*	R-Keras/TensorFlow	CNN w TF	DLR4	LE6
w12b:Th:4/9/20	CNN w/TF	EL Image Sup. ML		
w13a:Tu:4/14/20	CNNs w/small data	DLwR 2.1		LE6:Due LE7
w13b:Th:4/16/20	Thoard, TFestimators	pretrained CNNS		
w14a:Tu:4/21/20	R Packaging	SemProj3-453		
w14b:Th:4/23/20	Final Exam Review	${ m SemProj 3-3/452}$		LE7:Due
	FINAL EXAM	Th. 3/30/2020, 12-	Nord 356	
		3pm		

Figure 1: Modeling, Prediction and Machine Learning Syllabus

- Windows: Command.com Terminal
- In R: R Console, or Console in RStudio

Item	Linux OS	X Mac Wi	ndows
folder demarcation	/	/	"\" don't use
directory listing	ls	ls	dir
present work. dir	pwd	pwd	
change directory	cd	cd	cd
drives	root	root	drive letters
NO SPACES in	filenames	spaces	don't work

1.1.1.6.1 Basic/Universal Rules

- No Spaces in Filenames
- Only 1 period in a filename, before file extension
- No other periods
- Only Letters, Underscore (_), and Dashes (-) in Filenames
- In code scripts, use forward slash in all file paths and directorys
- You can use CamelBack or $snake_case$ in variable or file names
 - To make code easier to read.
- Code Style is Rstudio or Google R style
- No use of = for Assignments
- Only use <- as the Assignment Operator in R
 - Rstudio Cheat Sheet says <- is "Alt -" in R code

1.1.1.7 Quick Introduction to R/Rstudio/Git

R is the statistical programming language

Rstudio is the Integrated Development Environment (IDE)

Git is the distributed content versioning system

1.1.1.8 Things you need to do

1.1.1.8.1 Online accounts

- Sign up for our Class Slack with your personal or case.edu email
- Sign up for a bitbucket.org account
 - with your case.edu address
- Sign up for a twitter account,
 - then follow @frenchrh, @hadleywickham, @dataandme, @JennyBryan
 - @minebocek, @juliasilge, @rdpeng, @jtleek, @robjhyndman
 - and others as you want, such as
 - @fchollet, @TensorFlow, @ylecun, @GoogleAI, @egorzakharovdl
- Sign up for a stack overflow account on stack exchange

1.1.1.8.2 Also get ODS VDI access

- You should have access to the following resources
 - Citrix Workspace. After installing the http address is https://myapps.case.edu

- Or CWRU AWS Portal to Citrix Xen Desktop for VDIs
 - A Open Data Science (ODS) VDI

1.1.1.8.3 High performance computing (HPC) resources we will use

- We will use Kaggle.com for Deep Learning with TensorFlow on GPUs
- We will also use CWRU's HPC Data Science Cluster
 - This will get you familiar with working in HPC
 - Using Linux on GPU compute nodes
 - For Keras/TensorFlow with R
 - For Deep Learning

1.1.1.8.4 Lab Exercises are submitted and graded on Canvas

• Assignment turn in pages will be posted when LE are given out.

1.1.1.8.5 Your Class Git Repo

- My "Professor" Repo is 20s-dsci353-353m-453-prof
 - On bitbucket, you will fork this repo to your own account
 - Each day prior to class, update your fork from my prof. repo

1.1.1.9 Intro to some R: Data Types

- Primitives (numeric, integer, character, logical, factor)
- Data Frames
- Lists
- Tables
- Arrays
- Environments
- Others (functions, closures, promises..)

1.1.1.9.1 Simple Types

```
x <- 1
class(x)
## [1] "numeric"

y <- "Hello World"
class(y)
## [1] "character"

z <- TRUE
class(z)
## [1] "logical"

as.integer(z)
## [1] 1</pre>
```

1.1.1.9.2 Example: Generating Random Data

```
randomWalk <- function(N)(cumsum(ifelse(rbinom(prob = 0.5, size = 1, N) == 0,-1,1)))
AUDUSD <- 1.2345 + randomWalk(1000)*.0001
plot(AUDUSD, type = '1')</pre>
```


1.1.1.10 Recommended R Libraries

We're running R 3.6.2, named "Dark and Stormy Night"

All our "Standard R Packages" are loaded in the ODS VDI

1.1.1.10.1 Basic useful packages (and many more than this)

- Rcpp Convenient C++ interface
- zoo/xts Time series libraries
- Matrix Enhanced matrix library

1.1.1.10.2 Hadley Wickham Tidyverse packages

- This is the content of R for Data Science (R4DS) book.
 - Using Pipes "%>%" to replace loops
 - Makes syntax more compact and readable
 - Makes code faster
- Tidyverse Style Guide
 - Using tidy dataframes
- ggplot2 Mini-DSL (domain specific language) for data visualization
- plyr/reshape Data reshaping/manipulation
- dplyr
- data.table Faster data.frame manipulation
- knitr for markdown processing
- among others like purrr etc.

1.1.1.10.3 Statistical and Machine Learning

- e1071 Functions for latent class analysis, short time Fourier transform, fuzzy clustering, support vector machines, shortest path computation, bagged clustering, naive Bayes classifier etc (142479 downloads)
- MASS tools for variable selection etc.
- rpart Recursive Partitioning and Regression Trees. (135390)
- igraph A collection of network analysis tools. (122930)
- nnet Feed-forward Neural Networks and Multinomial Log-Linear Models. (108298)
- randomForest Breiman and Cutler's random forests for classification and regression. (105375)
- caret package (short for Classification And REgression Training) is a set of functions that attempt to streamline the process for creating predictive models. (87151)
- kernlab Kernel-based Machine Learning Lab. (62064)
- glmnet Lasso and elastic-net regularized generalized linear models. (56948)
- ROCR Visualizing the performance of scoring classifiers. (51323)
- gbm Generalized Boosted Regression Models. (44760)
- party A Laboratory for Recursive Partitioning. (43290)
- arules Mining Association Rules and Frequent Itemsets. (39654)
- tree Classification and regression trees. (27882)
- klaR Classification and visualization. (27828)
- RWeka R/Weka interface. (26973)
- ipred Improved Predictors. (22358)
- lars Least Angle Regression, Lasso and Forward Stagewise. (19691)
- earth Multivariate Adaptive Regression Spline Models. (15901)
- CORElearn Classification, regression, feature evaluation and ordinal evaluation. (13856)
- mboost Model-Based Boosting. (13078)

1.1.1.11 Links

http://www.r-project.org

Rory Winston, for the Learning R intro http://www.theresearchkitchen.com/archives/1017

R for Data Science http://r4ds.had.co.nz/

- Or pull the R4DS repo from Bitbucket https://bitbucket.org/cwrudsci/r4ds
- Peng-Computing For Data Analysis Playlist

Kaggle, Runs Open Data Science Competitions https://www.kaggle.com/