PMath 450 Assignment #1 due Friday May 22, 2015

1. Recall that for $1 \le p < \infty$,

$$\ell^p = \{(x_n)_{n=1}^{\infty} : \|(x_n)\|_p = \left(\sum |x_n|^p\right)^{1/p} < \infty\}.$$

- (a) Prove that $||(x_n)||_2 = \sup\{|\sum x_n y_n| : ||(y_n)||_2 \le 1\}.$
- (b) Show that the closed unit ball $B = \{(x_n)_{n=1}^{\infty} : ||(x_n)||_p \leq 1\}$ in ℓ^p is not compact.
- (c) Prove that ℓ^p is separable, i.e., has a countable dense subset.
- 2. (a) Show that $m^*([a,b)) = b a$
 - (b) Show that if $A \subseteq \mathbb{R}$ is Lebesgue measurable, then A + t is measurable for all $t \in \mathbb{R}$.
- 3. Suppose $E \subseteq \mathbb{R}$ is a Lebesgue measurable set. Show that

$$m(E) = \sup\{m(K) : K \subseteq E, K \text{ compact}\}.$$

Hint: Do this first for sets with $m(E) < \infty$.

- 4. Prove that every open set in \mathbb{R} is a countable union of open intervals.
- 5. (a) Determine the Lebesgue measure of the Cantor set.
 - (b) Find the cardinality of the set of Lebesgue measurable sets.
 - (c) Show that for every $0 < \alpha < 1$ there is a perfect, totally disconnected subset of
 - [0,1] whose Lebesgue measure is equal to α .