光学自测练习-参考解答

一、选择题

1. D 2. B 3. A 4. C 5. D 6. D 7. A 8. C 9. B 10. A 11. A

二、填空题

- 1. 光在该方向单位立体角内发出的光通量(Candela)
- 2. 略
- 3. $8.0 \times 10^{-6} m$
- 4. 1.000655
- 5. 600nm
- 6. 6.32mm
- 7. 750nm
- 8. 1:3
- 9. 60°/120°
- 10. 略
- 11. 1000cm
- 12. <

三、综合计算题

1. 解: 空气中
$$f = \frac{1}{(n-1)(\frac{1}{r_1} - \frac{1}{r_2})} = 20cm$$
, $r_1 = 20cm$, $r_2 = -25cm$, $r_3 = 1.56$

水中
$$n_w = 1.33$$
, $f_W = \frac{n_o}{(n - n_o)(\frac{1}{r_1} - \frac{1}{r_2})} = 64.3cm$

成像:
$$\frac{1}{S} + \frac{1}{S'} = \frac{1}{f_w}$$
, $\frac{1}{100} + \frac{1}{S'} = \frac{1}{64.3}$, $\therefore S' = 180cm$

成像于透镜后方 180cm 处

2. 解: (1) 从 E 处观察,呈圆环状明暗相间的干涉条纹,条纹内疏外密,中心为亮斑。

(2) 第
$$k$$
 级暗环: $2e_k = (2k-1)\frac{\lambda}{2}$, $k=3$: $e_3 = \frac{5}{4}\lambda$

半径:
$$r_k^2 = R^2 - (R - e_k)^2 \approx 2e_k R$$

:. 第 3 级暗环的半径:
$$r_3 = \sqrt{2e_3R} = 3.68mm$$

(3) M_1 向下平移时,条纹向内收缩。

3.
$$\Re: (1) (a+b)\sin\theta = k\lambda$$
, $2400\sin 30^0 = 2\lambda$, $\therefore \lambda = 600nm$

$$\frac{a+b}{a} = 3, \qquad \therefore a = \frac{a+b}{3} = 800nm$$

(2)
$$D_{\theta} = \frac{k}{d\cos\theta_k} = \frac{2}{d\cos\theta_2} = 9.6 \times 10^{-4} / nm$$

(3)
$$(a+b)\sin\theta_1 = 2\lambda_1$$
, $(a+b)\sin\theta_2 = 2\lambda_2$

$$\therefore \Delta\theta = \theta_2 - \theta_1 = 19.8$$

$$(4)$$
 $(a+b)\sin\frac{\pi}{2} > k_m\lambda$, $\therefore k_m < 4$, 屏上可见 $0,\pm 1,\pm 2$ 级次谱线 30° 角斜入射时: $(a+b)(\sin\frac{\pi}{2} + \sin 30^{\circ}) > k_m\lambda$, $\therefore k_m < 6$ 屏上最高可以看到第 5 级谱线

4. 解: 1) 透过 C 后为圆偏振光, 故此时旋转 P2透射光强无变化.

2) 透过
$$P_1$$
: $E_1^2 = \frac{I_o}{2}$

透过 C:
$$E_{1e} = E_1 \cos 60^\circ$$
; $E_{1o} = E_1 \sin 60^\circ$; $\delta_{oe} = \frac{\pi}{2}$

透过
$$P_2$$
: $E_{2e}=E_{1e}\cos 30^\circ$; $E_{2o}=E_{1o}\cos 60^\circ$; $\delta'_{oe}=\frac{\pi}{2}+\pi$

:: 出射光强:
$$E_2^2 = E_{2e}^2 + E_{2o}^2 + 2E_{2e}E_{2o}\cos\delta_{oe}'$$

$$=E_{2e}^2+E_{2o}^2=\frac{3}{8}E_1^2=\frac{3}{16}I_0$$

3)此时透过 C 后为椭圆偏振光,故旋转 P_2 透射光强在极大和极小之间交替变化,无消光。