2. Basic Mathematical Analysis and Differential Calculus

2.1 Supremum & Infimum vs Maximum & Minimum

This week starts with some Analysis and Differential Calculus knowledge required to go through Optimization.

Not a lot of knowledge of mathematical analysis and differential calculus is needed.

Later actually, a concept of Lipschitz Continuous, Smoothness are needed later in Algorithms, but too far ahead.

√ Bounded Above

Let a set $A\subset R$ be bounded above if $\exists b\in R$ such that $\forall a\in A,\, a\leq b.$

b is called an *upper bound* of A.

√ Least Upper Bound = Supremum

Let $s \in R$ be the supremum of $A \in R$ if

- 1) s is an upper bound of A
- 2) If u is any upper bound of A , $s \leq u$.

√ Maximum

A real number m is a maximum of a set A if

- 1) m is an upper bound of A
- 2) $m \in A$
 - · Why important in This course?

Ex) $\min_{x,y\in R} x \ s. \ t.$

$$\begin{pmatrix} x & 1 \\ 1 & y \end{pmatrix} \succeq 0$$

Thus, use inf instead of min!

2.2 Basic Topology

√ Metric Space

A function $d:X imes X o \mathbb{R}$ is a metric on the set X if for all $x,y,z\in X$,

1) For x
eq y , d(x,y) > 0 and d(x,x) = 0 : Non-negativity

"distance between distinct points is positive"

2) d(x,y)=d(y,x) : Symmetry

"direction doesn't matter"

3) $d(x,z) \leq d(x,y) + d(y,z)$: Triangle Inequality

"Adding a midpoint increases the distance"

Then, call (X, d) a metric space.

√ Epsilon Ball

Let (M, d) be a metric space.

The epsilon-ball centered at $a\in M$ " $B_\epsilon(a)$ is set of points distance *less* than ϵ from a where $\epsilon>0$.

 $B_{\epsilon}(a)$ = $\{x|d(x,a)<\epsilon\}$.

Without any mention about the metric, think of "d" as the familiar l_2 norm. In $\mathbb R$, it is simply |x-a| .

√ Open Set

O is an Open set if $orall o \in O$, $\exists \epsilon > 0$ s.t. $B_{\epsilon}(o) \subseteq O$

ex) Open, bounded set in $\mathbb R$ works like (a,b).

Take any element x in (a,b). Then, I can "choose" ϵ as $\frac{\min(x-a,b-x)}{2}$ using the density of $\mathbb R$.

√ Limit Point

A point x is a limit point of a set F if every epsilon ball about x intersects F at some point other than x.

ex) $F=\left[a,b\right)$ then the set of limit points of F is $\left[a,b\right]$.

√ Closed

F is closed if it contains all of its limit points.

ex) Closed, bounded set in $\mathbb R$ works like [a,b].

* Practice *

 ϕ is *Open and Closed*. $\mathbb R$ is open and closed.

[a,b) is neither open nor closed.

√ Closure

Let E be a proper, nonempty subset of $\mathbb R$ and L be the set of all limit points of E. The closure of E,

$$ar{E}$$
 = $E \cup L$.

ex)
$$E=[a,b)$$
 then $ar{E}=[a,b]$

√ Boundary

Let E be a proper, nonempty subset of \mathbb{R} . $\partial(E)$, the boundary of E is set of points "a" where $\forall B_{\epsilon}(a)$ contains points in E and E^c .

✓ Interior

The interior of a set E, $E^o:=\{x\in E|\exists B_\epsilon(x)\subseteq E\}$

· Why important in This course?

The concept of *Relative Interior* is used in *Slater's condition*, a theory to satisfy $d^*=p^*$, the strong duality.

2.3 Differential Calculus

√ Differentiation in 1 dimensional space

f is differentiable at $a\in\mathbb{R}$ if f is defined on some open set U containing a and $\frac{d}{dx}f(x)|_{x=a}$ = f'(a) = $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$

 $rac{f(a+h)-f(a)}{h}$ is called *average rate of change* and f'(a) is called *instantaneous rate of change*.

√ Gradient of Mutivariable functions

The gradient of a function $f:R^n\to R$ at a point x where f is differentiable is defined as a column vector containing **first order partial derivative** of f w.r.t. x_1,x_2,\ldots,x_n .

$$\nabla f(x) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]^T$$

ex)
$$h(x) = 2x_1 + 3x_2 + x_3$$
 then $abla f(x) = [2,5,1]^T$

√ Hessian of Mutivariable functions

$$(H_{f(x)})_{ij}$$
 = $rac{\partial^2 f}{\partial x_i \partial x_j}$. Note that $(H_{f(x)}) \in R^{n imes n}$ and symmetric!

ex)
$$f(x) = 4x_1^2 + 5x_1x_2 + x_2^2$$
 then find the Hessian of f

√ Jacobian of vector valued functions

 $f:R^n o R^m$. a Jacobian of f is a matrix collecting all the first order derivatives. Jacobian of $f(x)=[f_1(x)\dots f_m(x)]^T$

$$(J_{f(x)})_{ij}=rac{\partial f_i}{\partial x_j}$$

ex)
$$f(x) = \left(egin{array}{c} 3x_1x_2 + 2x_1 \ 4x_2 \ 8x_1^2 \end{array}
ight)$$
 . Find the Jacobian of f .

 \checkmark Taylor Series Expansion of f:R o R.

Let $f \in C^{\infty}(a,b)$ and $x_0 \in (a,b).$ The taylor series of f centered at x_0 :

$$T(x) = \sum_{n=0}^{\infty} rac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$

ex)
$$e^x = \sum_{n=0}^\infty rac{x^n}{n!}$$
 , $x \in \mathbb{R}$

 \checkmark Second Order Approximation of $R^n o R$ at x .

$$f(y) = f(x) +
abla f(x)^T (y-x) + (y-x)^T H_{f(x)}(y-x)$$

Vector Derivative Practice)

 $n = \frac{||Ax-b||_2^2}{||Ax-b||_2}$ s.t. Gx=h, $A \in IR^{mxn}$, $b \in IR^m$, $G \in IR^{pxn}$, $h \in IR^p$, rank(A)=n

$$J(x, \gamma) = \|Ax - b\|_{2}^{2} + \gamma^{T}(Gx - h)$$

$$= (Ax - b)^{T}(Ax - b) + \gamma^{T}(Gx - h)$$

$$= (x^{T}A^{T} - b^{T})(Ax - b) + \gamma^{T}(Gx - h)$$

$$= x^{T}A^{T}Ax + (x^{T}G - 2b^{T}A)x - x^{T}h + b^{T}h$$

$$= x^{T}A^{T}Ax + (G^{T}r - 2A^{T}b)^{T}x - r^{T}h + b^{T}h$$
Using convexity of the Lagrangian w.r.t. x,
$$\nabla_{x} J(x, r) = 2A^{T}Ax + (G^{T}r - 2A^{T}b)x = 0$$

 $x^* = (A^T A)^{-1} \left(A^T b + G^T \left(G(A^T A)^{-1} G^T \right)^{-1} \left(h - G(A^T A)^{-1} A^T b \right) \right).$