$12a_{1158} \ (K12a_{1158})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{38} - u^{37} + \dots - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 38 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{38} - u^{37} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{9} - 4u^{7} - 5u^{5} + 3u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{22} - 9u^{20} + \dots + 4u^{2} + 1 \\ -u^{22} - 8u^{20} + \dots - 4u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{21} - 8u^{19} + \dots - 4u^{3} + 3u \\ -u^{23} - 9u^{21} + \dots + 4u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{37} - 14u^{35} + \dots + 10u^{3} - u \\ -u^{37} + u^{36} + \dots - u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -4u^{36} + 4u^{35} - 56u^{34} + 52u^{33} - 352u^{32} + 304u^{31} - 1276u^{30} + 1024u^{29} - 2804u^{28} + \\ 2080u^{27} - 3336u^{26} + 2240u^{25} - 364u^{24} + 36u^{23} + 5244u^{22} - 3388u^{21} + 7232u^{20} - 4040u^{19} + \\ 1692u^{18} - 560u^{17} - 5000u^{16} + 2612u^{15} - 4528u^{14} + 1744u^{13} + 384u^{12} - 536u^{11} + \\ 2024u^{10} - 736u^9 + 416u^8 + 104u^7 - 368u^6 + 192u^5 - 84u^4 - 12u^3 + 24u^2 - 12u - 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{38} - 13u^{37} + \dots - 3409u + 723$
c_2, c_3, c_8 c_9	$u^{38} + u^{37} + \dots - u - 1$
c_4, c_5, c_7 c_{10}	$u^{38} + u^{37} + \dots - 9u - 5$
c_6, c_{11}, c_{12}	$u^{38} - u^{37} + \dots - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{38} - 27y^{37} + \dots - 8344645y + 522729$
c_2, c_3, c_8 c_9	$y^{38} + 45y^{37} + \dots + 3y + 1$
c_4, c_5, c_7 c_{10}	$y^{38} - 47y^{37} + \dots - 41y + 25$
c_6, c_{11}, c_{12}	$y^{38} + 29y^{37} + \dots + 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.921549 + 0.026814I	19.0082 - 5.9978I	-13.8808 + 2.7631I
u = 0.921549 - 0.026814I	19.0082 + 5.9978I	-13.8808 - 2.7631I
u = -0.910401 + 0.016742I	-11.94600 + 3.74112I	-12.20309 - 3.92212I
u = -0.910401 - 0.016742I	-11.94600 - 3.74112I	-12.20309 + 3.92212I
u = 0.902816	-9.44212	-8.29230
u = -0.295584 + 1.071570I	-8.32513 - 0.58329I	-10.41542 - 0.50010I
u = -0.295584 - 1.071570I	-8.32513 + 0.58329I	-10.41542 + 0.50010I
u = 0.220657 + 1.122970I	-0.206300 - 0.496209I	-9.24627 - 0.65693I
u = 0.220657 - 1.122970I	-0.206300 + 0.496209I	-9.24627 + 0.65693I
u = -0.203175 + 1.232690I	2.53092 + 2.66616I	-0.99392 - 3.01578I
u = -0.203175 - 1.232690I	2.53092 - 2.66616I	-0.99392 + 3.01578I
u = -0.033249 + 1.263780I	4.26230 + 1.45522I	1.17782 - 5.08792I
u = -0.033249 - 1.263780I	4.26230 - 1.45522I	1.17782 + 5.08792I
u = 0.247059 + 1.268440I	1.06826 - 5.79649I	-5.38275 + 8.72620I
u = 0.247059 - 1.268440I	1.06826 + 5.79649I	-5.38275 - 8.72620I
u = -0.689534 + 0.138578I	-11.05530 + 4.25242I	-13.45193 - 4.29885I
u = -0.689534 - 0.138578I	-11.05530 - 4.25242I	-13.45193 + 4.29885I
u = 0.087911 + 1.303620I	-2.26439 - 2.76931I	-3.18945 + 3.50256I
u = 0.087911 - 1.303620I	-2.26439 + 2.76931I	-3.18945 - 3.50256I
u = -0.275003 + 1.294930I	-6.60950 + 7.69625I	-7.73538 - 6.48615I
u = -0.275003 - 1.294930I	-6.60950 - 7.69625I	-7.73538 + 6.48615I
u = 0.456153 + 1.266600I	-16.6317 + 1.0857I	-10.74929 + 0.I
u = 0.456153 - 1.266600I	-16.6317 - 1.0857I	-10.74929 + 0.I
u = -0.443090 + 1.271380I	-8.05649 + 1.09065I	-9.00721 + 0.I
u = -0.443090 - 1.271380I	-8.05649 - 1.09065I	-9.00721 + 0.I
u = 0.432187 + 1.283350I	-5.45541 - 4.77115I	-4.00000 + 2.96319I
u = 0.432187 - 1.283350I	-5.45541 + 4.77115I	-4.00000 - 2.96319I
u = 0.626097 + 0.102774I	-3.13828 - 2.66124I	-12.32538 + 6.29351I
u = 0.626097 - 0.102774I	-3.13828 + 2.66124I	-12.32538 - 6.29351I
u = -0.433822 + 1.297770I	-7.85499 + 8.54454I	-8.56346 - 6.86027I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.433822 - 1.297770I	-7.85499 - 8.54454I	-8.56346 + 6.86027I
u = 0.438829 + 1.307920I	-16.3117 - 10.8564I	-10.31831 + 5.56337I
u = 0.438829 - 1.307920I	-16.3117 + 10.8564I	-10.31831 - 5.56337I
u = 0.354367 + 0.402887I	-7.36308 - 1.41419I	-9.22771 + 4.33033I
u = 0.354367 - 0.402887I	-7.36308 + 1.41419I	-9.22771 - 4.33033I
u = -0.535584	-1.19956	-7.62450
u = -0.184566 + 0.290087I	-0.222289 + 0.830054I	-5.72806 - 8.07347I
u = -0.184566 - 0.290087I	-0.222289 - 0.830054I	-5.72806 + 8.07347I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{38} - 13u^{37} + \dots - 3409u + 723$
c_2, c_3, c_8 c_9	$u^{38} + u^{37} + \dots - u - 1$
c_4, c_5, c_7 c_{10}	$u^{38} + u^{37} + \dots - 9u - 5$
c_6, c_{11}, c_{12}	$u^{38} - u^{37} + \dots - u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{38} - 27y^{37} + \dots - 8344645y + 522729$
$c_2, c_3, c_8 \ c_9$	$y^{38} + 45y^{37} + \dots + 3y + 1$
c_4, c_5, c_7 c_{10}	$y^{38} - 47y^{37} + \dots - 41y + 25$
c_6, c_{11}, c_{12}	$y^{38} + 29y^{37} + \dots + 3y + 1$