

Model Development Phase Template

Date	15 July 2024
Team ID	739989
Project Title	Crop Prediction using machine learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Co	Confusion Matrix			
1. K Nearest Neighbors Model	A manage of the proposed states of the propo	0.98579	knnclassit y_pred=knr	1.00 0.74 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00	in,y_train redict(x_te rport(y_tes	i) est)	support 23 20 21 22 24 24 26 20 28 29 18 19 25 27 14 28 28 18 24 21 21 21 21 21 21 21 21 21 21 21 21 21

2. SVM Model	Section Control Contro	0.97784	svm=sVc() svm_sVc() sv
3.Decision Tree Model	Processor of the control of the	0.7613	### Operation Company Company
4. Random Forest Model	** Application of the second control of the	0.9954	● rfclassifie—tendemorestilassifier() rfclassifie—tendemorestilassifier() rpcdrclassifier(tt(trans,troid)) predcision recall f1-score support apple 1.00 1.00 1.00 23 banana 1.00 1.00 1.00 20 blackgram 1.00 1.00 1.00 20 chickpea 1.00 1.00 1.00 22 coconut 1.00 1.00 1.00 22 coconut 1.00 1.00 1.00 20 grapes 1.00 1.00 1.00 20 maize 1.00 1.00 1.00 25 maize 1.00 1.00 1.00 1.00 1.00 20 mango 1.00 1.00 1.00 1.00 25 maize 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0