Formes n-linéaires antisymétriques sur un espace de dimension n

Vincent Humilière

21 octobre 2016

Soit $n \in \mathbb{N}$,

E un \mathbb{K} -espace vectoriel de dimension n,

 $\mathcal{B} = (e_1, ..., e_n)$ une base de E,

 $\alpha: E^n \to \mathbb{K}$ une forme *n*-linéaire antisymétrique.

Rappels

 α est n-linéaire :

$$\forall (a,b,c_1,...,c_{n-1}) \in E^{n+1}, \forall \lambda \in \mathbb{K},$$

$$\alpha(c_1,...,\lambda a+b,...,c_{n-1}) = \lambda \alpha(c_1,...,a,...,c_{n-1}) + \alpha(c_1,...,b,...,c_{n-1})$$

 α est antisymétrique :

$$\forall (a_1, ..., a_n) \in E^n, 1 \leqslant i, j \leqslant n, i \neq j$$

$$\alpha(a_1, ..., a_j, ..., a_i, ..., a_n) = -\alpha(a_1, ..., a_i, ..., a_j, ..., a_n)$$

Soit
$$(v_1, ..., v_n) \in E^n$$
,
On note, $\forall i \in [1, n], v_i = \sum_{j=1}^n v_{ij}e_j$

$$\alpha(v_1,...,v_n) = \alpha(\sum_{j=1}^n v_{1j}e_j,v_2,...,v_n)$$
(Linéarité pour v_1) = $\sum_{j=1}^n v_{1j}\alpha(e_j,v_2,...,v_n)$

$$= \sum_{j=1}^n v_{1j}\alpha(e_j,\sum_{k=1}^n v_{2k}e_k,v_3,...,v_n)$$
(Linéarité pour v_2) = $\sum_{j=1}^n \sum_{k=1}^n v_{1j}v_{2k}\alpha(e_j,e_k,v_3,...,v_n)$

On note j_1, j_2, j_3, \ldots au lieu de $j, k, l \ldots$

$$\sum_{j_1=1}^n \sum_{j_2=1}^n v_{1j_1} v_{2j_2} \alpha(e_{j_1}, e_{j_2}, v_3, ..., v_n) = \sum_{j_1=1}^n ... \sum_{j_n=1}^n v_{1j_1} ... v_{nj_n} \alpha(e_{j_1}, ..., e_{j_n})$$

Or α est antisymétrique, donc $\alpha(e_{j_1},...,e_{j_n})=0$ s'il existe deux j_k et j_l égaux. Donc $\alpha(e_{j_1},...)$ ne peut être non nul que si tous les j_k sont distincts, i.e. si $\begin{cases} 1,...,n \end{cases} \xrightarrow{j_i} \begin{cases} 1,...,n \end{cases}$ est une bijection.

Donc
$$\alpha(v_1, ..., v_n) = \sum_{\substack{j_1, ..., j_n = 1 \\ \text{où } i \mapsto j_i \text{ est} \\ \text{une bijection}}}^n v_{1j_1} \dots v_{nj_n} \alpha(e_{j_1}, ..., e_{j_n})$$

$$= \sum_{\sigma \in \mathfrak{S}_n} v_{1\sigma(1)} \dots v_{n\sigma(n)} \alpha(e_{\sigma(1)}, ..., e_{\sigma(n)})$$

Ainsi, puisque α est antisymétrique,

$$\alpha(v_1, ..., v_n) = \left(\sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) v_{1\sigma(1)} \dots v_{n\sigma(n)}\right) \alpha(e_1, ..., e_n)$$
 (1)

Définition 1. On appelle déterminant des vecteurs $v_1, ..., v_n$ dans la base $\mathcal{B} = (e_1, ..., e_n)$ le scalaire

$$\det_{\mathcal{B}}(v_1, ..., v_n) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) v_{1\sigma(1)} \dots v_{n\sigma(n)}$$

Proposition 1. Pour toute forme n-linéaire α sur E (où dim(E) = n) il existe un scalaire $\lambda \in \mathbb{K}$ tel que $\alpha = \lambda \det_{\mathcal{B}}$. De plus $\lambda = \alpha(\mathcal{B})$.

Démonstration. En effet

$$\alpha(v_1, ..., v_n) = \underbrace{\alpha(e_1, ..., e_n)}_{\alpha(\mathcal{B})} \det_{\mathcal{B}}(v_1, ..., v_n)$$

d'après l'équation (??).

Proposition 2. $\det_{\mathcal{B}}$ est *n*-linéaire antisymétrique.

Démonstration. Sera faite la fois prochaine.

Proposition 3. Soit $\mathcal{B}, \mathcal{B}'$ deux bases de E

Pour tous vecteurs $v_1, ..., v_n$ dans E,

$$\det_{\mathcal{B}'}(v_1, ..., v_n) = \det_{\mathcal{B}'}(\mathcal{B}) \det_{\mathcal{B}}(v_1, ..., v_n)$$

Interprétation géométrique

Dans \mathbb{R}^2

 $\mathcal{B}_0 = (e_1, e_2)$ base canonique,

 $u, v, u_1, u_2 \in \mathbb{R}^2$,

 $\mathcal{A}(u,v)$ l'aire orientée du parallèlogramme engendré par u et v.

$$\mathcal{A}(v, u) = -\mathcal{A}(u, v)$$

$$\mathcal{A}(u_1 + u_2) = \mathcal{A}(u_1, v) + \mathcal{A}(u_2, v)$$

$$\mathcal{A}(\lambda u, v) = \lambda \mathcal{A}(u, v)$$

Donc \mathscr{A} est une forme bilinéaire antisymétrique, donc \mathscr{A} est un multiple du déterminant.

$$\mathscr{A}(u,v) = \mathscr{A}(e_1,e_2) \det_{\mathcal{B}_0}(u,v)$$

Or $\mathscr{A}(e_1, e_2) = 1$, d'où :

$$\mathscr{A}(u,v) = \det_{\mathcal{B}_0}(u,v)$$

De même dans \mathbb{R}^3