

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 1 310 571 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:15.02.2006 Bulletin 2006/07

(51) Int Cl.: C12Q 1/70 (2006.01) C12N 15/86 (2006.01) C12Q 1/68 (2006.01)

C07K 14/015 (2006.01) C12N 15/10 (2006.01) C12N 5/10 (2006.01)

(21) Application number: 02257826.4

(22) Date of filing: 12.11.2002

(54) A Method of identifying unknown adeno-associated virus (AVV) sequences and a kit for the method

Verfahren zur Identifizierung von Adeno-assoziiertem Virus (AAV) Sequenzen sowie Kit zur Ausführung der Methode

Une méthode d'identification de séquences de virus adéno-associés et kit permettant d'appliquer la méthode

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
IE IT LI LU MC NL PT SE SK TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 13.11.2001 US 350607 P 17.12.2001 US 341117 P 01.05.2002 US 377066 P 05.06.2002 US 386675 P

- (43) Date of publication of application: 14.05.2003 Bulletin 2003/20
- (73) Proprietor: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
 Philadelphia,
 Pennsylvania 19104-6283 (US)
- (72) Inventors:
 - Gao, Guangping Rosemont, Pennsylvania 19010 (US)
 - Wilson, James M.
 Gladwyne, Pennsylvania 19035 (US)
 - Alvira, Maricio Philadelphia, Pennsylvania 19104 (US)
- (74) Representative: Hale, Stephen Geoffrey et al Bromhead Johnson, Kingsbourne House, 229-231 High Holborn London WC1V 7DP (GB)

(56) References cited: WO-A-02/18659

- GAO GUANG-PING ET AL: "Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy."
 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 99, no. 18, 3 September 2002 (2002-09-03), pages 11854-11859, XP002229849 http://www.pnas.org September 3, 2002 ISSN: 0027-8424
- FORSLUND OLA ET AL: "A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin." JOURNAL OF GENERAL VIROLOGY, vol. 80, no. 9, 1999, pages 2437-2443, XP002229850 ISSN: 0022-1317
- XIAO WEIDONG ET AL: "Gene therapy vectors based on adeno-associated virus type 1." JOURNAL OF VIROLOGY, vol. 73, no. 5, May 1999 (1999-05), pages 3994-4003, XP002229851 ISSN: 0022-538X
- GENE THERAPY, vol. 10, 2003, pages 194-196.
- PROC. NATL. ACAD. SCI. USA, vol. 100, no. 10, 2003, pages 6081-6086,
- J. VIROL., vol. 78, no. 12, 2004, pages 6381-6388,

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

BACKGROUND OF THE INVENTION

[0001] Adeno-associated virus (AAV), a member of the Parvovirus family, is a small nonenveloped, icosahedral virus with single-stranded linear DNA genomes of 4.7 kilobases (kb) to 6 kb. AAV is assigned to the genus, Dependovirus, because the virus was discovered as a contaminant in purified adenovirus stocks. AAV's life cycle includes a latent phase at which AAV genomes, after infection, are site specifically integrated into host chromosomes and an infectious phase in which, following either adenovirus or herpes simplex virus infection, the integrated genomes are subsequently rescued, replicated, and packaged into infectious viruses. The properties of non-pathogenicity, broad host range of infectivity, including non-dividing cells, and potential site-specific chromosomal integration make AAV an attractive tool for gene transfer.

[0002] Recent studies suggest that AAV vectors may be the preferred vehicle for gene therapy. To date, there have been 6-different serotypes of AAVs isolated from human or non-human primates (NHP) and well characterized. Among them, human serotype 2 is the first AAV that was developed as a gene transfer vector; it has been widely used for efficient gene transfer experiments in different target tissues and animal models. Gene therapy vectors based on adeno-associated virus type 1 have also been disclosed (Xiao et al. J. Virology; May 1999; pages 3994-4008). Clinical trials of the experimental application of AAV2 based vectors to some human disease models are in progress, and include such diseases as cystic fibrosis and hemophilia B.

[0003] A general PCR method suitable for detecting human papillomavirus types in cutaneous tumours and normal skin is known (Forslund et al J. of General Virology: 1999 80: P2437-2443).

[0004] What are desirable are AAV-based constructs for gene delivery.

SUMMARY OF THE INVENTION

25

[0005] In one aspect, the invention provides a novel method of identifying unknown AAV sequences from cellular DNAs of various human and non-human primate (NHP) tissues using bioinformatics analysis, PCR based gene amplification and cloning technology, based on the nature of latency and integration of AAVs in the absence of helper virus co-infection, the method being defined in claim 1 hereinafter.

[0006] In another aspect the invention provides a kit for use in the method of the invention, the kit being as defined in claim 23 hereinafter.

DETAILED DESCRIPTION OF THE INVENTION

[0007] In the present invention, the inventors have found a method which takes advantage of the ability of adeno-associated virus (AAV) to penetrate the nucleus, and, in the absence of a helper virus co-infection, to integrate into cellular DNA and establish a latent infection. This method utilizes a polymerase chain reaction (PCR)-based strategy for detection, identification of sequences of AAVs from DNAs from tissues of human and non-human primate origin as well as from other sources.

[0008] Nucleic acid sequences can be identified according to the method of the invention. One such adeno-associated virus is of the serotype, termed herein serotype 7 (AAV7). Other novel adeno-associated virus serotypes identified by the method include AAV10, AAV11, and AAV12.

[0009] Among particularly desirable AAV fragments which can be identified are the cap proteins, including the vp1, vp2, vp3, the hypervariable regions, the rep proteins, including rep 78, rep 68, rep 52, and rep 40, and the sequences encoding these proteins. Each of these fragments may be readily utilized in a variety of vector systems and host cells. Such fragments may be used alone, in combination with other AAV sequences or fragments, or in combination with elements from other AAV or non-AAV viral sequences. In one particularly desirable embodiment, a vector contains the AAV cap and/or rep sequences.

[0010] As described herein, alignments are performed using any of a variety of publicly or commercially available Multiple Sequence Alignment Programs, such as "Clustal W", accessible through Web Servers on the internet. Alternatively, Vector NTI utilities are also used. There are also a number of algorithms known in the art which can be used to measure nucleotide sequence identity, including those contained in the programs described above. As another example, polynucleotide sequences can be compared using Fasta, a program in GCG Version 6.1. Fasta provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences. For instance, percent sequence identity between nucleic acid sequences can be determined using Fasta with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) as provided in GCG Version 6.1. Similar programs are available for amino acid sequences, e.g., the "Clustal X" program. Generally, any of these programs are used at default settings, although one of skill in the art can alter these settings as needed. Alternatively, one of skill in the art can utilize

another algorithm or computer program which provides at least the level of identity or alignment as that provided by the referenced algorithms and programs.

[0011] The term "substantial homology" or "substantial similarity," when referring to a nucleic acid, or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 95 to 99% of the aligned sequences. Preferably, the homology is over full-length sequence, or an open reading frame thereof, or another suitable fragment which is at least 15 nucleotides in length. Examples of suitable fragments are described herein.

[0012] The term "substantial homology" or "substantial similarity," when referring to amino acids or fragments thereof, indicates that, when optimally aligned with appropriate amino acid insertions or deletions with another amino acid, there is amino acid sequence identity in at least about 95 to 99% of the aligned sequences. Preferably, the homology is over full-length sequence, or a protein thereof, e.g., a cap protein, a rep protein, or a fragment thereof which is at least 8 amino acids, or more desirably, at least 15 amino acids in length. Examples of suitable fragments are described herein. [0013] By the term "highly conserved" is meant at least 80% identity, preferably at least 90% identity, and more preferably, over 97% identity. Identity is readily determined by one of skill in the art by resort to algorithms and computer programs known by those of skill in the art.

[0014] The term "percent sequence identity" or "identical" in the context of nucleic acid sequences refers to the residues in the two sequences which are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over the full-length of the genome, the full-length of a gene coding sequence, or a fragment of at least about 500 to 5000 nucleotides, is desired. However, identity among smaller fragments, e.g. of at least about nine nucleotides, usually at least about 20 to 24 nucleotides, at least about 28 to 32 nucleotides, at least about 36 or more nucleotides, may also be desired. Similarly, "percent sequence identity" may be readily determined for amino acid sequences, over the full-length of a protein, or a fragment thereof. Suitably, a fragment is at least about 8 amino acids in length, and may be up to about 700 amino acids. Examples of suitable fragments are described herein.

[0015] The AAV sequences and fragments thereof are useful in production of rAAV, and are also useful as antisense delivery vectors, gene therapy vectors, or vaccine vectors.

[0016] As described herein, the vectors containing the AAV capsid proteins are particularly well suited for use in applications in which the neutralizing antibodies diminish the effectiveness of other AAV serotype based vectors, as well as other viral vectors. The rAAV vectors are particularly advantageous in rAAV readministration and repeat gene therapy.

[0017] As used throughout this specification and the claims, the terms "comprising" and "including" and their variants are inclusive of other components, elements, integers, steps and the like. Conversely, the term "consisting" and its variants is exclusive of other components, elements, integers, steps and the like.

I. Methods of the Invention

10

15

25

30

A. Detection of Sequences Via Molecular Cloning

[0018] In one aspect, the invention provides a method of identifying target (unknown) nucleic acid sequences in a sample. This method is particularly well suited for detection of viral sequences which are integrated into the chromosome of a cell, e.g., adeno-associated viruses (AAV) and retroviruses, among others.

[0019] As used herein, a sample is any source containing nucleic acids, e.g., tissue, tissue culture, cells, cell culture, and biological fluids including, without limitation, urine and blood. These nucleic acid sequences may be DNA or RNA from plasmids, natural DNA or RNA from any source, including bacteria, yeast, viruses, and higher organisms such as plants or animals. DNA or RNA is extracted from the sample by a variety of techniques known to those of skill in the art, such as those described by Sambrook, Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory). The origin of the sample and the method by which the nucleic acids are obtained for application of the method of the invention is not a limitation of the present invention. Optionally, the method of the invention can be performed directly on the source of DNA, or on nucleic acids obtained (e.g., extracted) from a source.

[0020] The method of the invention involves subjecting a sample containing DNA to amplification via polymerase chain reaction (PCR) using a first set of primers specific for a first region of double-stranded nucleic acid sequences, thereby obtaining amplified sequences.

[0021] As used herein, each of the "regions" is predetermined based upon the alignment of the nucleic acid sequences of at least two serotypes (e.g., AAV) or strains (e.g., lentiviruses), and wherein each of said regions is composed of sequences having a 5' end which is highly conserved, a middle which is variable, and a 3' end which is highly conserved, each of these being conserved or variable relative to the sequences of at least AAV1-AAV6. The 5' and 3' ends are highly conserved over at least 18 base pairs (bp). However, one or both of the sequences at the 5' or 3' end may be conserved over more than 18 bp, more than 25 bp, more than 30 bp, or more than 50 bp at the 5' end. With respect to the variable region, there is no requirement for conserved sequences, these sequences may be relatively conserved, or may have less than 90, 80, or 70% identity among the aligned serotypes or strains.

[0022] Each of the regions may span about 100 bp to about 10 kilobase pairs in length, provided that the first region is at least 250 bp in length. However, it is particularly desirable that one of the regions is a "signature region", i.e., a region which is sufficiently unique to positively identify the amplified sequence as being from the target source. For example, in one embodiment, the first region is about 250 bp in length, and is sufficiently unique among known AAV sequences, that it positively identifies the amplified region as being of AAV origin. Further, the variable sequences within this region are sufficiently unique that can be used to identify the serotype from which the amplified sequences originate. Once amplified (and thereby detected), the sequences can be identified by performing conventional restriction digestion and comparison to restriction digestion patterns for this region in any of AAV1, AAV2, AAV3, AAV4, AAV5, or AAV6, or that of AAV7, AAV10, AAV11, AAV12, or any of the other novel serotypes identified by the invention, which is predetermined and provided by the present invention.

[0023] Given the guidance provided herein, one of skill in the art can readily identify such regions among other integrated viruses to permit ready detection and identification of these sequences. Thereafter, an optimal set of generic primers located within the highly conserved ends can be designed and tested for efficient amplification of the selected region from samples. This aspect of the invention is readily adapted to a diagnostic kit for detecting the presence of the target sequence (e.g., AAV) and for identifying the AAV serotype, using standards which include the restriction patterns for the AAV serotypes described herein or isolated using the techniques described herein. For example, quick identification or molecular serotyping of PCR products can be accomplished by digesting the PCR products and comparing restriction patterns.

[0024] Thus, in one embodiment, the "signature region" for AAV spans about bp 2800 to about 3200 of AAV 1 [SEQ ID NO:6], and corresponding base pairs in AAV 2, AAV3, AAV4, AAV5, and AAV6. More desirably, the region is about 250 bp, located within bp 2886 to about 3143 bp of AAV 1 [SEQ ID NO:6], and corresponding base pairs in AAV 2 [SEQ ID NO:7], AAV3 [SEQ ID NO8], and other AAV serotypes. To permit rapid detection of AAV in the sample, primers which specifically amplify this signature region are utilized. However, the present invention is not limited to the exact sequences identified herein for the AAV signature region, as one of skill in the art may readily alter this region to encompass a shorter fragment, or a larger fragment of this signature region.

[0025] The PCR primers are generated using techniques known to those of skill in the art. Each of the PCR primer sets is composed of a 5' primer and a 3' primer. See, e.g., Sambrook et al, cited herein. The term "primer" refers to an oligonucleotide which acts as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product which is complementary to a nucleic acid strand is induced. The primer is preferably single stranded. However, if a double stranded primer is utilized, it is treated to separate its strands before being used to prepare extension products. The primers may be about 15 to 25 or more nucleotides, and preferably at least 18 nucleotides. However, for certain applications shorter nucleotides, e.g., 7 to 15 nucleotides are utilized.

[0026] The primers are selected to be sufficiently complementary to the different strands of each specific sequence to be amplified to hybridize with their respective strands. Therefore, the primer sequence need not reflect the exact sequence of the region being amplified. For example, a non-complementary nucleotide fragment may be attached to the 5' end of the primer, with the remainder of the primer sequence being completely complementary to the strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the primer, provided that the primer sequence has sufficient complementarity with the sequence of the strand to be amplified to hybridize therewith and form a template for synthesis of the extension product of the other primer.

[0027] The PCR primers for the signature region are based upon the highly conserved sequences of two or more aligned sequences (e.g., two or more AAV serotypes). The primers can accommodate less than exact identity among the two or more aligned AAV serotypes at the 5' end or in the middle. However, the sequences at the 3' end of the primers correspond to a region of two or more aligned AAV serotypes in which there is exact identity over at least five, preferably, over at least nine base pairs, and more preferably, over at least 18 base pairs at the 3' end of the primers. Thus, the 3' end of the primers is composed of sequences with 100% identity to the aligned sequences over at least five nucleotides. However, one can optionally utilize one, two, or more degenerate nucleotides at the 3' end of the primer. [0028] For example, the primer set for the signature region of AAV was designed based upon a unique region within the AAV capsid, as follows. The 5' primer was based upon nt 2867-2891 of AAV2 [SEQ ID NO:7], 5'-GGTAATTCCTCCGGAAATTGGCATT3'. The 3' primer was designed based upon nt 3096-3122 of AAV2 [SEQ ID NO:7], 5'-GACTCATCAACAACAACTGGGGATTC-'3. However, one of skill in the art may have readily designed the primer set based upon the corresponding regions of AAV 1, AAV3, AAV4, AAV5, AAV6, or based upon the information provided herein, AAV7. AAV10, AAV11, AAV12, or another novel AAV. In addition, still other primer sets can be readily designed to amplify this signature region, using techniques known to those of skill in the art.

B. Isolation of Target Sequences

40

45

[0029] As described herein, the present invention uses a first primer set which specifically amplifies the signature region of the target sequence, e.g., an AAV serotype, in order to permit detection of the target. In a situation in which

further sequences are desired, e.g., if a novel AA V serotype is identified, the signature region may be extended. Thus, the invention may further utilize one or more additional primer sets.

[0030] Suitably, these primer sets are designed to include either the 5' or 3' primer of the first primer set and a second primer unique to the primer set, such that the primer set amplifies a region 5' or 3' to the signature region which anneals to either the 5' end or the 3' end of the signature region. For example, a first primer set is composed of a 5' primer, P1 and a 3' primer P2 to amplify the signature region. In order to extend the signature region on its 3' end, a second primer set is composed of primer P1 and a 3' primer P4, which amplifies the signature region and contiguous sequences downstream of the signature region. In order to extend the signature region on its 5' end, a third primer set is composed of a 5' primer, P5, and primer P2, such that the signature region and contiguous sequences upstream of the signature region are amplified. These extension steps are repeated (or performed at the same time), as needed or desired. Thereafter, the products results from these amplification steps are fused using conventional steps to produce an isolated sequence of the desired length.

[0031] The second and third primer sets are designed, as with the primer set for the signature region, to amplify a region having highly conserved sequences among the aligned sequences. Reference herein to the term "second" or "third" primer set is for each of discussion only, and without regard to the order in which these primers are added to the reaction mixture, or used for amplification. The region amplified by the second primer set is selected so that upon amplification it anneals at its 5' end to the 3' end of the signature region. Similarly, the region amplified by the third primer set is selected so that upon amplification it anneals at its 3' end anneals to the 5' end of the signature region. Additional primer sets can be designed such that the regions which they amplify anneal to the either the 5' end or the 3' end of the extension products formed by the second or third primer sets, or by subsequent primer sets.

15

20

25

30

40

50

55

[0032] For example, where AAV is the target sequence, a first set of primers (P1 and P2) are used to amplify the signature region from the sample. In one desirable embodiment, this signature region is located within the AAV capsid. A second set of primers (P1 and P4) is used to extend the 3' end of the signature region to a location in the AAV sequence which is just before the AAV 3' ITR, i.e., providing an extension product containing the entire 3' end of the AAV capsid when using the signature region as an anchor. In one embodiment, the P4 primer corresponds to nt 4435 to 4462 of AAV2 [SEQ ID NO:7], and corresponding sequences in the other AAV serotypes. This results in amplification of a region of about 1.6 kb, which contains the 0.25 kb signature region. A third set of primers (P3 and P2) is used to extend the 5' end of signature region to a location in the AAV sequences which is in the 3' end of the rep genes, i.e., providing an extension product containing the entire 5' end of the AAV capsid when using the signature region as an anchor. In one embodiment, the P3 primer corresponds to nt 1384 to 1409 of AAV2 [SEQ ID NO:7], and corresponding sequences in the other AAV serotypes. This results in amplification of a region of about 1.7 kb, which contains the 0.25 kb signature region. Optionally, a fourth set of primers are used to further extend the extension product containing the entire 5' end of the AAV capsid to also include the rep sequences. In one embodiment, the primer designated P5 corresponds to nt 108 to 133 of AAV2 [SEQ ID NO:7], and corresponding sequences in the other AAV serotypes and is used in conjunction with the P2 primer.

[0033] Following completion of the desired number of extension steps, the various extension products are fused, making use of the signature region as an anchor or marker, to construct an intact sequence. In the example provided herein, AAV sequences containing, at a minimum, an intact AAV cap gene are obtained. Larger sequences may be obtained, depending upon the number of extension steps performed.

[0034] Suitably, the extension products are assembled into an intact AAV sequence using methods known to those of skill in the art. For example, the extension products may be digested with Dralll, which cleaves at the Dralll site located within the signature region, to provide restriction fragments which are re-ligated to provide products containing (at a minimum) an intact AAV cap gene. However, other suitable techniques for assembling the extension products into an intact sequence may be utilized. See, generally, Sambrook et al, cited herein.

[0035] As an alternative to the multiple extension steps described above, another embodiment of the invention provides for direct amplification of a 3.1 kb fragment which allows isolation of full-length cap sequences. To directly amplify a 3.1 kb full-length cap fragment from NHP tissue and blood DNAs, two other highly conserved regions were identified in AAV genomes for use in PCR amplification of large fragments. A primer within a conserved region located in the middle of the rep gene is utilized (AV1ns: 5' GCTGCGTCAACTGGACCAATGAGAAC 3', nt of SEQ ID NO:6) in combination with the 3' primer located in another conserved region downstream of the Cap gene (AV2cas: 5' CGCAGAGACCAAAGT-TCAACTGAAACGA 3', SEQ ID NO: 7) for amplification of AAV sequences including the full-length AAV cap. Typically, following amplification, the products are cloned and sequence analysis is performed with an accuracy of ≥ 99.9%. Using this method, the inventors have isolated at least 50 capsid clones which have subsequently been characterized. Among them, 37 clones were derived from Rhesus macaque tissues (rh.1 - rh.37), 6 clones from cynomologous macaques (cy.1 - cy.6), 2 clones from Baboons (bb.1 and bb.2) and 5 clones from Chimps (ch.1 - ch.5). These clones are identified elsewhere in the specification, together with the species of animal from which they were identified and the tissues in that animal these novel sequences have been located.

II. Diagnostic Kit

20

25

40

[0036] In another aspect, the invention provides a diagnostic kit as defined in claim 23 hereinafter for detecting the presence of an unknown adeno-associated virus (AAV) in a sample. Such a kit may contain a first set of 5' and 3' PCR primers specific for a signature region of the AAV nucleic acid sequence. Alternatively, or additionally, such a kit can contain a first set of 5' and 3' PCR primers specific for the 3.1 kb fragment which includes the full-length AAV capsid nucleic acid sequence identified herein (e.g., the AV1ns and AV2cas primers.) Optionally, a kit of the invention may further contain two or more additional sets of 5' and 3' primers, as described herein, and/or PCR probes. These primers and probes are used according to the present invention to amplify signature regions of each AAV serotype, e.g., using quantitative PCR.

[0037] Such a kit may further include one or more restriction enzymes, standards for AAV serotypes providing their "signature restriction enzyme digestions analyses", and/or other means for determining the serotype of the AAV detected. [0038] In addition, kits of the invention may include, instructions, a negative and/or positive control, containers, diluents and buffers for the sample, indicator charts for signature comparisons, disposable gloves, decontamination instructions, applicator sticks or containers, and sample preparator cups, as well as any desired reagents, including media, wash reagents and concentration reagents. Such reagents may be readily selected from among the reagents described herein, and from among conventional concentration reagents. In one desirable embodiment, the wash reagent is an isotonic saline solution which has been buffered to physiologic pH, such as phosphate buffered saline (PBS); the elution reagent is PBS containing 0.4 M NaCl, and the concentration reagents and devices. For example, one of skill in the art will recognize that reagents such as polyethylene glycol (PEG), or NH₄SO₄ may be useful, or that devices such as filter devices. For example, a filter device with a 100 K membrane would concentrate rAAV.

[0039] The kits provided by the present invention are useful for performing the methods described herein, and for study of biodistribution, epidemiology, mode of transmission of novel AAV serotypes in human and NHPs.

[0040] Thus, the methods and kits of the invention permit identification of target AAV sequences, particularly integrated AAV sequences.

[0041] In one notable example, the method of the invention facilitated analysis of cloned AAV sequences by the inventors, which revealed heterogeneity of proviral sequences between cloned fragments from different animals, all of which were distinct from the known six AAV serotypes, with the majority of the variation localized to hypervariable regions of the capsid protein. Surprising divergence of AAV sequences was noted in clones isolated from single tissue sources, such as lymph node, from an individual rhesus monkey. This heterogeneity is best explained by apparent evolution of AAV sequence within ind ividual animals due, in part, to extensive homologous recombination between a limited number of co-infecting parenteral viruses. These studies suggest sequence evolution of widely disseminated virus during the course of a natural AAV infection that presumably leads to the formation of swarms of quasispecies which differ from one another in the array of capsid hypervariable regions. This is the first example of rapid molecular evolution of a DNA virus in a way that formerly was thought to be restricted to RNA viruses.

[0042] Sequences of several novel AAV serotypes identified by the method of the invention and characterization of these serotypes is provided.

III. Novel AAV Serotypes

A. Nucleic Acid Sequences

[0043] Nucleic acid sequences of novel AAV serotypes identified by the methods of the invention are provided. See, SEQ ID NO:1, 9 - 59, and 117 - 120. See also and the sequence listing.

[0044] For novel serotype AAV7, the full-length sequences, including the AAV 5' ITRs, capsid, rep, and AAV 3' ITRs are provided in SEQ ID NO:1.

[0045] For other novel AA V serotypes, the approximately 3.1 kb fragment isolated according to the method of the invention is provided. This fragment contains sequences encoding full-length capsid protein and all or part of the sequences encoding the rep protein. These sequences include the clones identified below.

[0046] For still other novel AAV serotypes, the signature region encoding the capsid protein is provided. For example, the AAV10 nucleic acid sequences include those illustrated in See, SEQ ID NO:117, which spans 255 bases. The AAV11 nucleic acid sequences include the DNA sequences illustrated in SEQ ID NO:118 which spans 258 bases. The AAV12 nucleic acid sequences include the DNA sequences illustrated in SEQ ID NO: 119, which consists of 255 bases. Using the methodology described above, further AAV10, AAV11 and AAV 12 sequences can be readily identified and used for a variety of purposes, including those described for AAV7 and the other novel serotypes herein.

[0047] Novel NHP sequences identified by the invention include those provided in the following Table I, which are identified by clone number:

Table 1

AAV Cap Sequence	Clone Number	Source		
	·	Species	Tissue	SEQ ID NO (DNA)
[Rh.I]	Clone 9 ⁻ (AAV9)	Rhesus	Heart	5
Rh.2	Clone 43.1	Rhesus	MLN	. 39
Rh.3	Clone 43.5	Rhesus	MLN	40
Rh.4	Clone 43.12	Rhesus	MLN	41
Rh.5	Clone 43.20	Rhesus	MLN	42
Rh.6	Clone 43.21	Rhesus	MLN	43
Rh.7	Clone 43.23	Rhesus	MLN	44

Table 1 (cont'd)

5	
_	

		·		Υ
Rh.8	Clone 43.25		MLN	45
Rh.9	Clone 44.1	Rhesus	Liver	46
Rh.10	Clone 44.2	Rhesus	Liver	59
Rh.11	Clone 44.5	Rhesus	Liver	47
Rh.12	Clone	Rhesus	MLN	30
	42.1B			
Rh.13	42.2	Rhesus	MLN	9
Rh.14	Clone	Rhesus	MLN	32
	42.3A			
Rh.15	Clone	Rhesus	MLN	36
	42.3B			
Rh.16	Clone 42.4	Rhesus	MLN	33
Rh.17	Clone	Rhesus	MLN	34
	42.5A			
Rh.18	Clone	Rhesus	MLN	29
	42.5B			
Rh.19	Clone	Rhesus	MLN	38
	42.6B			
Rh.20	Clone 42.8	Rhesus	MLN	27
Rh.21	Clone 42.10	Rhesus	MLN	35
Rh.22	Clone 42.11	Rhesus	MLN	37
Rh.23	Clone 42.12	Rhesus	MLN	58
Rh.24	Clone 42.13	Rhesus	MLN	31
Rh.25	Clone 42.15	Rhesus	MLN	28
Rh.26_	Clone 223.2	Rhesus	Liver	49
Rh.27	Clone 223.4	Rhesus	Liver	50
Rh.28	Clone 223.5	Rhesus	Liver	51
Rh.29	Clone 223.6	Rhesus	Liver	52
Rh.30	Clone 223.7	Rhesus	Liver	53
Rh.31	Clone	Rhesus	Liver	48
	223.10			
Rh.32	Clone C1	Rhesus	Spleen, Duo,	19
			Kid & Liver	
Rh.33	Clone C3	Rhesus		20
Rh.34	Clone C5	Rhesus		21
Rh.35	Clone F1	Rhesus	Liver	22
Rh.36	Clone F3	Rhesus		23
Rh.37	Clone F5	Rhesus		24
Cy.1	Clone 1.3	Cyno	Blood	14
Cy.2	Clone	Cyno	Blood	15
	13.3B			
Cy.3	Clone 24.1	Cyno	Blood	16
Cy.4	Clone 27.3	Cyno	Blood	17
Cy.5 Cy.6	Clone 7.2	Супо	Blood	18
	Clone 16.3			

	Table 1 (cont'd)									
bb.l	Clone 29.3	Baboon	Blood	11						
bb.2	Clone 29.5	Baboon	Blood	13						
Ch.1	Clone A3.3	Chimp	Blood	57						
Ch.2	Clone A3.4	Chimp	Blood	54						
Ch.3	Clone A3.5	Chimp	Blood	55						
Ch.4	Cione A3.7	Chimp	Blood,	56						

[0048] A novel NHP clone was made by splicing capsids fragments of two chimp adenoviruses into an AAV2 rep construct. This new clone, A3.1, is also termed Ch.5 [SEQ ID NO:20]. Additionally, the present invention includes two human AAV sequences, termed H6 [SEQ ID NO:25] and H2 [SEQ ID NO:26].

10

15

20

25

30

40

45

[0049] The AAV nucleic acid sequences further encompass the strand which is complementary to the strands provided in the sequences provided in the Sequence Listing [SEQ ID NO:1, 9 - 59, 117-120], nucleic acid sequences, as well as the RNA and cDNA sequences corresponding to the sequences provided in the Sequence Listing [SEQ ID NO:1, 9 - 59, 117-120], and their complementary strands. Also included in the nucleic acid sequences are natural variants and engineered modifications of the sequences of the Sequence Listing [SEQ ID NO:1, 9 - 59, 117-120], and their complementary strands. Such modifications include, for example, labels which are known in the art, methylation, and substitution of one or more of the naturally occurring nucleotides with a degenerate nucleotide.

[0050] Further included are nucleic acid sequences which are greater than 85%, preferably at least about 90%, more preferably at least about 95%, and most preferably at least about 98 to 99% identical or homologous to the sequences of the invention, including the Sequence Listing [SEQ ID NO:1, 9 - 59, 117-120]. These terms are as defined herein.

[0051] Also included are fragments of the novel AAV sequences identified by the method described herein. Suitable fragments are at least 15 nucleotides in length, and encompass functional fragments, i.e., fragments which are of biological interest. In one embodiment, these fragments are fragments of the novel sequences of the Sequence Listing [SEQ ID NO:1, 9 - 59, 117-120], their complementary strands, cDNA and RNA complementary thereto.

[0052] Examples of suitable fragments are provided with respect to the location of these fragments on AAV1, AAV2, or AAV7. However, using the alignment provided herein (obtained using the Clustal W program at default settings), or similar techniques for generating an alignment with other novel serotypes of the invention, one of skill in the art can readily identify the precise nucleotide start and stop codons for desired fragments.

[0053] Examples of suitable fragments include the sequences encoding the three variable proteins (vp) of the AAV capsid which are alternative splice variants: vp1 [e.g., nt 825 to 3049 of AA V7, SEQ ID NO: 1]; vp2 [e.g., nt 1234 - 3049 of AAV7, SEQ ID NO: 1]; and vp 3 [e.g., nt 1434 - 3049 of AAV7, SEQ ID NO:1]. It is notable that AAV7 has an unusual GTG start codon. With the exception of a few house-keeping genes, such a start codon has not previously been reported in DNA viruses. The start codons for vp1, vp2 and vp3 for other AAV serotypes have been believed to be such that they permit the cellular mechanism of the host cell in which they reside to produce vp1, vp2 and vp3 in a ratio of 10%:10%:80%, respectively, in order to permit efficient assembly of the virion. However, the AAV7 virion has been found to assemble efficiently even with this rare GTG start codon. Thus, the inventors anticipate this it is desirable to alter the start codon of the vp3 of other AAV serotypes to contain this rare GTG start codon, in order to improve packaging efficiency, to alter the virion structure and/or to alter location of epitopes (e.g., neutralizing antibody epitopes) of other AAV serotypes. The start codons may be altered using conventional techniques including, e.g., site directed mutagenesis. The altered AAV virions may be of any selected serotype, composed of a vp 3, and/or optionally, vp 1 and/or vp2 having start codons altered to GTG.

[0054] Other suitable fragments of AAV, include a fragment containing the start codon for the AAV capsid protein [e.g., nt 468 to 3090 of AAV7, SEQ ID NO:1, nt 725 to 3090 of AAV7, SEQ ID NO:1, and corresponding regions of the other AAV serotypes]. Still other fragments of AAV7 and the other novel AAV semtypes identified using the methods described herein include those encoding the rep proteins, including *rep* 78 [e.g., initiation codon 334 for AAV7], *rep* 68 [initiation codon nt 334 for AAV7], *rep* 52 [initiation codon 1006 for AAV7], and *rep* 40 [initiation codon 1006 for AAV7] Other fragments of interest may include the AAV 5' inverted terminal repeats ITRs, [nt 1 to 107 for AAV7]; the AA V 3' ITRs [nt 4704 to 4721 for AAV7], P19 sequences. AAV P40 sequences, the rep binding site, and the terminal resolute site (TRS). Still other suitable fragments wilt be readily apparent to those of skill in the art.

[0055] In addition to the nucleic acid sequences provided in the figures and Sequence Listing, there are nucleic acid molecules and sequences which are designed to express the amino acid sequences, proteins and peptides of the AAV serotypes of the invention. These include nucleic acid sequences which encode the following novel AAV amino acid sequences: C1 [SEQ ID NO:60], C2 [SEQ ID NO:61], C5 [SEQ ID NO:62], A3-3 [SEQ ID NO:66], A3-7 [SEQ ID NO:67],

A3-4 [SEQ ID NO:68], A3-5 [SEQ ID NO: 69], 3.3b [SEQ ID NO: 62], 223.4 [SEQ ID NO: 73], 223-5 [SEQ ID NO:74], 223-10 [SEQ ID NO:75], 223-2 [SEQ ID NO:76], 223-7 [SEQ ID NO: 77], 223-6 [SEQ ID NO: 78], 44-1 [SEQ ID NO: 79], 44-5 [SEQ ID NO:80], 44-2 [SEQ ID NO:81], 42-15 [SEQ ID NO: 84], 42-8 [SEQ ID NO: 85], 42-13 [SEQ ID NO:86], 42-3A [SEQ ID NO:87], 42-4 [SEQ ID NO:88], 42-5A [SEQ ID NO:89], 42-1B [SEQ ID NO:90], 42-5B [SEQ ID NO:91], 43-1 [SEQ ID NO: 92], 43-12 [SEQ ID NO: 93], 43-5 [SEQ ID NO:94], 43-21 [SEQ ID NO:96], 43-25 [SEQ ID NO: 97], 43-20 [SEQ ID NO:99], 24.1 [SEQ ID NO: 101], 42.2 [SEQ ID NO:102], 7.2 [SEQ ID NO: 103], 27.3 [SEQ ID NO: 104], 16.3 [SEQ ID NO: 105], 42.10 [SEQ ID NO: 106], 42-38 [SEQ ID NO: 107], 42-11 [SEQ ID NO: 108], F1 [SEQ ID NO: 109], F5 [SEQ ID NO: 110], F3 [SEQ ID NO:111], 42-6B [SEQ ID NO: 112], and/or 42-12 [SEQ ID NO: 113], and artificial AAV serotypes generated using these sequences and/or unique fragments thereof.

[0056] As used herein, artificial AAV serotypes include, without limitation. AAV with a non-naturally occurring capsid protein. Such an artificial capsid may be generated by any suitable technique, using a novel AAV sequence (e.g., a fragment of a vp1 capsid protein) in combination with heterologous sequences which may be obtained from another AAV serotype (known or novel), non-contiguous portions of the same AAV serotype, from a non-AAV viral source, or from a non-viral source. An artificial AAV serotype may be, without limitation, a chimeric AAV capsid, a recombinant AAV capsid, or a "humanized" AAV capsid.

B. AAV Amino Acid Sequences, Proteins and Peptides

[0057] The invention provides proteins and fragments thereof which are encoded by the nucleic acid sequences of the novel AAV serotypes identified herein, including, e.g., AA V7 [nt 825 to 3049 of AA V7, SEQ ID NO: 1] the other novel serotypes provided herein. Thus, the capsid proteins of the novel serotypes of the invention, including: H6 [SEQ ID NO: 25], H2 [SEQ ID NO: 26], 42-2 [SEQ ID NO:9], 42-8 [SEQ ID NO:27], 42-15 [SEQ ID NO:28], 42-5b [SEQ ID NO: 29], 42-1b [SEQ ID NO:30]; 42-13 [SEQ ID NO: 31], 42-3a [SEQ ID NO: 32], 42-4 [SEQ ID NO:33], 42-5a [SEQ ID NO: 34], 42-10 [SEQ ID NO:35], 42-3b [SEQ ID NO: 36], 42-11 [SEQ ID NO: 37], 42-6b [SEQ ID NO:38], 43-1 [SEQ ID NO: 39], 43-5 [SEQ ID NO: 40], 43-12 [SEQ ID NO:41], 43-20 [SEQ ID NO:42], 43-21 [SEQ ID NO: 43], 43-23 [SEQ ID NO:44], 43-25 [SEQ ID NO: 45], 44.1 [SEQ ID NO:47], 44.5 [SEQ ID NO:47], 223.10 [SEQ ID NO:48], 223.2 [SEQ ID NO:49], 223.4 [SEQ ID NO:50], 223.5 [SEQ ID NO:51], 223.6 [SEQ ID NO:57], 42.12 [SEQ ID NO: 58], and 44.2 [SEQ ID NO: 59], can be readily generated using conventional techniques from the open reading frames provided for the above-listed clones.

[0058] The sequences, proteins, and fragments may be produced by any suitable means, including recombinant production, chemical synthesis, or other synthetic means. Such production methods are within the knowledge of those of skill in the art.

35 IV. Production of rAAV with novel AAV capsids

[0059] Novel, wild-type AAV serotypes can be identified by the invention, the sequences of which wild-type AAV serotypes are free of DNA and/or cellular material with these viruses are associated in nature. In another aspect, the present invention provides molecules which utilize the novel AAV sequences of the invention, including fragments thereof, for production of molecules useful in delivery of a heterologous gene or other nucleic acid sequences to a target cell.

[0060] The following examples illustrate several aspects and embodiments of the invention.

EXAMPLES

40

Example 1: PCR amplification, cloning and characterization of novel AAV sequences.

[0061] Tissues from nonhuman primates were screened for AAV sequences using a PCR method based on oligonucleotides to highly conserved regions of known AAVs. A stretch of AAV sequence spanning 2886 to 3143 bp of AAV1 [SEQ ID NO:6] was selected as a PCR amplicon in which a hypervariable region of the capsid protein (Cap) that is unique to each known AAV serotype, which is termed herein a "signature region," is flanked by conserved sequences. In later analysis, this signature region was shown to be located between conserved residues spanning hypervariable region 3.

[0062] An initial survey of peripheral blood of a number of nonhuman primate species revealed detectable AAV in a subset of animals from species such as rhesus macaques, cynomologous macaques, chimpanzees and baboons. However, there were no AAV sequences detected in some other species tested, including Japanese macaques, pig-tailed macaques and squirrel monkeys. A more extensive analysis of vector distribution was conducted in tissues of rhesus monkeys of the University of Pennsylvania and Tulane colonies recovered at necropsy. This revealed AAV sequence throughout a wide array of tissues.

A. Amplification of an AAV signature region

[0063] DNA sequences of AAV1-6 and AAVs isolated from Goose and Duck were aligned to each other using "Clustal W" at default settings. Sequence similarities among AAVs were compared.

[0064] In the line of study, a 257 bp region spanning 2886 bp to 3143 bp of AAV 1 [SEQ ID NO: 6], and the corresponding region in the genomes of AAV 2-6 genomes was identified by the inventors. This region is located with the AAV capsid gene and has highly conserved sequences among at both 5' and 3' ends and is relatively variable sequence in the middle. In addition, this region contains a DrallI restriction enzyme site (CACCACGTC, SEQ ID NO:15). The inventors have found that this region serves as specific signature for each known type of AAV DNA. In other words, following PCR reactions, digestion with endonucleases that are specific to each known serotypes and gel electrophoresis analysis, this regions can be used to definitively identify amplified DNA as being from serotype 1, 2, 3, 4, 5, 6, or another serotype.

[0065] The primers were designed, validated and PCR conditions optimized with AAV1, 2 and 5 DNA controls. The primers were based upon the sequences of AAV2: 5' primer, 15: bp 2867-2891 of AAV2 (SEQ ID NO:7) and 3' primer,

18as, bp 3095-3121 of AAV2 (SEQ ID NO:7).

[0066] Cellular DNAs from different tissues including blood, brain, liver, lung, testis, etc. of different rhesus monkeys were studied utilizing the strategy described above. The results revealed that DNAs from different tissues of these monkeys gave rise to strong PCR amplifications. Further restriction analyses of PCR products indicated that they were

amplified from AAV sequences different from any published AAV sequences.

[0067] PCR products (about 255 bp in size) from DNAs of a variety of monkey tissues have been cloned and sequenced. Bioinformatics study of these novel AAV sequences indicated that they are novel AAV sequences of capsid gene and distinct from each other. Multiple sequence alignment analysis was performed using the Clustal W (1.81) program. The percentage of sequence identity between the signature regions of AAV 1-7 and AAV 10-12 genomes is provided below.

Table 1. Sequences for Analysis

Table 1. Sequences for Analysis								
Sequence#	AAV Serotype	Size (bp)						
1	AAV1	258						
2 .	AAV2	255						
3	AAV3	255						
4	AAV4	246						
5	AAV5	258						
6	AAV6	258						
7	AAV7	258						
10	AAV10	255						
11	AAV11	258						
12	AAV12	255						

Table 3. Pairwise Alignment (Percentage of Identity)

	AAV2	AAV3	AAV4	AAV5	AAV6	AAV7	AAV10	AAV11	AAV12
AAV1	90	90	81	76	97	91	93	94	93
AAV2		93	79	78	90	90	93	93	92
AAV3			80	76	90	92	92	92	92
AAV4				76	81	84	82	81	79
AAV5					75	78	79	79	76
AAV6						91	92	94	94
AAV7							94	92	92
AAV10								95	93

20

15

30

35

40

45

50

Table continued

	AAV2	AAV3	AAV4	AAV5	AAV6	AAV7	AAV10	AAV11	AAV12
AAV11									94

[0068] Over 300 clones containing novel AAV serotype sequences that span the selected 257 bp region were isolated and sequenced. Bioinformatics analysis of these 300+ clones suggests that this 257 bp region is critical in serving as a good land marker or signature sequence for quick isolation and identification of novel AAV serotype.

B. Use of the signature region for PCR amplification.

[0069] The 257 bp signature region was used as a PCR anchor to extend PCR amplifications to 5' of the genome to cover the junction region of rep and cap genes (1398 bp - 3143 bp, SEQ ID NO:6) and 3' of the genome to obtain the entire cap gene sequence (2866 bp - 4600 bp, SEQ ID NO:6). PCR amplifications were carried out using the standard conditions, including denaturing at 95°C for 0.5-1 min, annealing at 60-65°C for 0.5-1 min and extension at 72° C for I min per kb with a total number of amplification cycles ranging from 28 to 42.

[0070] Using the aligned sequences as described in "A", two other relative conserved regions were identified in the sequence located in 3' end of rep genes and 5' to the 257 bp region and in the sequence down stream of the 257 bp fragment but before the AAV' 3 ITR. Two sets of new primers were designed and PCR conditions optimized for recovery of entire capsid and a part of rep sequences of novel AAV serotypes. More specifically, for the 5' amplification, the 5' primer, AV1Ns, was GCTGCGTCAACTGGACCAATGAGAAC [nt 1398-1423 of AAV1, SEQ ID NO:6] and the 3' primer was 18as, identified above. For the 3' amplification, the 5' primer was 1s, identified above, and the 3' primer was AV2Las, TCGTTTCAGTTGAACTTTGGTCTCTGCG [nt 4435-4462 of AAV2, SEQ ID NO:7].

[0071] In these PCR amplifications, the 257 bp region was used as a PCR anchor and land marker to generate overlapping fragments to construct a complete capsid gene by fusion at the DrallI site in the signature region following amplification of the 5' and 3' extension fragments obtained as described herein. More particularly, to generate the intact AAV7 cap gene, the three amplification products (a) the sequences of the signature region; (b) the sequences of the 5' extension; and (c) the sequences of the 3' extension were cloned into a pCR4-Topo [Invitrogen] plasmid backbone according to manufacturer's instructions. Thereafter, the plasmids were digested with DrallI and recombined to form an intact cap gene.

[0072] In this line of work, about 80 % of capsid sequences of AAV7 and AAV 8 were isolated and analyzed. Another novel serotype, AAV9, was also discovered from Monkey #2.

[0073] Using the PCR conditions described above, the remaining portion of the rep gene sequence for AAV7 is isolated and cloned using the primers that amplify 108 bp to 1461 bp of AAV genome (calculated based on the numbering of AAV2, SEQ ID NO:7). This clone is sequenced for construction of a complete AAV7 genome without ITRs.

C. Direct Amplification of 3.1 kb Cap fragment

[0074] To directly amplify a 3.1 kb full-length Cap fragment from NHP tissue and blood DNAs, two other highly conserved regions were identified in AAV genomes for use in PCR amplification of large fragments. A primer within a conserved region located in the middle of the rep gene was selected (AV1ns: 5' GCTGCGTCAACTGGACCAATGAGAAC 3', nt 1398-1423 of SEQ ID NO:6) in combination with the 3' primer located in another conserved region downstream of the Cap gene (AV2cas: 5' CGCAGAGACCAAAGTTCAACTGAAACGA 3', SEQ ID NO:7) for amplification of full-length cap fragments. The PCR products were Topo-cloned according to manufacturer's directions (Invitrogen) and sequence analysis was performed by Qiagengenomics (Qiagengenomics, Seattle, WA) with an accuracy of ≥ 99.9%. A total of 50 capsid clones were isolated and characterized. Among them, 37 clones were derived from Rhesus macaque tissues (rh.1 - rh.37), 6 clones from cynomologous macaques (cy.1 - cy.6), 2 clones from Baboons (bb.1 and bb.2) and 5 clones from Chimps (ch.1 - ch.5).

[0075] To rule out the possibility that sequence diversity within the novel AAV family was not an artifact of the PCR, such as PCR-mediated gene splicing by overlap extension between different partial DNA templates with homologous sequences, or the result of recombination process in bacteria, a series of experiments were performed under identical conditions for VP1 amplification-using total cellular DNAs. First, intact AAV7 and AAV8 plasmids were mixed at an equal molar ratio followed by serial dilutions. The serially diluted mixtures were used as templates for PCR amplification of 3.1 kb VP1 fragments using universal primers and identical PCR conditions to that were used for DNA amplifications to see whether any hybrid PCR products were generated. The mixture was transformed into bacteria and isolated transformants to look for hybrid clones possibly derived from recombination process in bacterial cells. In a different experiment, we restricted AAV7 and AAV8 plasmids with Msp I, Ava I and Hael, all of which cut both genomes multiple times at different

positions, mixed the digestions in different combinations and used them for PCR amplification of VP1 fragments under the same conditions to test whether any PCR products could be generated through overlap sequence extension of partial AAV sequences. In another experiment, a mixture of gel purified 5' 1.5 kb AAV7 VP1 fragment and 3' 1.7 kb AAV8 VP1 fragment with overlap in the signature region was serially diluted and used for PCR amplification in the presence and absence of 200 ng cellular DNA extracted from a monkey cell line that was free of AAV sequences by TaqMan analysis. None of these experiments demonstrated efficient PCR-mediated overlap sequence production under the conditions of the genomic DNA Cap amplification (data not shown). As a further confirmation, 3 pairs of primers were designed, which were located at different HVRs, and were sequence specific to the variants of clone 42s from Rhesus macaque F953, in different combinations to amplify shorter fragments from mesenteric lymph node (MLN) DNA from F953 from which clone 42s were isolated. All sequence variations identified in full-length Cap clones were found in these short fragments (data not shown).

Example 2: Adeno-Associated Viruses Undergo Substantial Evolution in Primates During Natural Infections

20

30

[0076] Sequence analysis of selected AAV isolates revealed divergence throughout the genome that is most concentrated in hypervariable regions of the capsid proteins. Epidemiologic data indicate that all known serotypes are endemic to primates, although isolation of clinical isolates has been restricted to AAV2 and AAV3 from anal and throat swabs of human infants and AAV5 from a human condylomatous wart. No known clinical sequalae have been associated with AAV infection.

[0077] In an attempt to better understand the biology of AAV, nonhuman primates were used as models to characterize the sequiae of natural infections. Tissues from nonhuman primates were screened for AAV sequences using the PCR method of the invention based on oligonucleotides to highly conserved regions of known AAVs (see Example 1). A stretch of AAV sequence spanning 2886 to 3143 bp of AAV1 [SEQ ID NO:6] was selected as a PCR amplicon in which conserved sequences are flanked by a hypervariable region that is unique to each known AAV serotype, termed herein a "signature region."

[0078] An initial survey of peripheral blood of a number of nonhuman primate species including rhesus monkeys, cynomologous monkeys, chimpanzees, and baboons revealed detectable AAV in a subset of animals from all species. A more extensive analysis of vector distribution was conducted in tissues of rhesus monkeys of the University of Pennsylvania and Tulane colonies recovered at necropsy. This revealed AAV sequence throughout a wide array of tissues. [0079] The amplified signature sequences were subcloned into plasmids and individual transformants were subjected to sequence analysis. This revealed substantial variation in nucleotide sequence of clones derived from different animals. Variation in the signature sequence was also noted in clones obtained within individual animals. Tissues harvested from two animals in which unique signature sequences were identified (i.e., colon from 98E044 and heart from 98E056) were further characterized by expanding the sequence amplified by PCR using oligonucleotides to highly conserved sequences. In this way, complete proviral structures were reconstructed for viral genomes from both tissues as described herein. These proviruses differ from the other known AAVs with the greatest sequence divergence noted in regions of the Cap gene.

[0080] Additional experiments were performed to confirm that AAV sequences resident to the nonhuman primate tissue represented proviral genomes of infectious virus that is capable of being rescued and form virions. Genomic DNA from liver tissue of animal 98E056, from which AAV8 signature sequence was detected, was digested with an endonuclease that does not have a site within the AAV sequence and transfected into 293 cells with a plasmid containing an E1 deleted genome of human adenovirus serotype 5 as a source of helper functions. The resulting lysate was passaged on 293 cells once and the lysate was recovered and analyzed for the presence of AAV Cap proteins using a broadly reacting polyclonal antibody to Cap proteins and for the presence and abundance of DNA sequences from the PCR amplified AAV provirus from which AAV8 was derived. Transfection of endonuclease restricted heart DNA and the adenovirus helper plasmid yielded high quantities of AAV8 virus as demonstrated by the detection of Cap proteins by Western blot analysis and the presence of 10⁴ AAV8 vector genomes per 293 cell. Lysates were generated from a large-scale preparation and the AAV was purified by cesium sedimentation. The purified preparation demonstrated 26 nm icosohedral structures that look identical to those of AAV serotype 2. Transfection with the adenovirus helper alone did not yield AAV proteins or genomes, ruling out contamination as a source of the rescued AAV.

[0081] To further characterize the inter and intra animal variation of AAV signature sequence, selected tissues were subjected to extended PCR to amplify entire Cap open reading frames.

[0082] The resulting fragments were cloned into bacterial plasmids and individual transformants were isolated and fully sequenced. This analysis involved mesenteric lymph nodes from three rhesus monkeys (Tulane/V223 - 6 clones; Tulane/T612 - 7 clones; Tulane/F953 - 14 clones), liver from two rhesus monkeys (Tulane/V251 - 3 clones; Penn/00E033 - 3 clones), spleen from one rhesus monkey (Penn/97E043 - 3 clones), heart from one rhesus monkey (IHGT/98E046-1 clone) and peripheral blood from one chimpanzee (New Iberia/X133 - 5 clones), six cynomologous macaques (Charles River/A1378, A3099, A3388, A3442, A2821, A3242 - 6 clones total) and one Baboon (SFRB/8644 - 2 clones). Of the

50 clones that were sequenced from 15 different animals, 30 were considered non-redundant based on the finding of at least 7 amino acid differences from one another. The non-redundant VP1 clones are numbered sequentially as they were isolated, with a prefix indicating the species of non-human primate from which they were derived. The structural relationships between these 30 non-redundant clones and the previously described 8 AAV serotypes were determined using the SplitsTree program [Huson, D. H. SplitsTree: analyzing and visualizing evolutionary data. *Bioinformatics* 14, 68-73 (1998)] with implementation of the method of split decomposition. The analysis depicts homoplasy between a set of sequences in a tree-like network rather than a bifurcating tree. The advantage is to enable detection of groupings that are the result of convergence and to exhibit phylogenetic relationships even when they are distorted by parallel events. Extensive phylogenetic research will be required in order to elucidate the AAV evolution, whereas the intention here only is to group the different clones as to their sequence similarity.

[0083] To confirm that the novel VP1 sequences were derived from infectious viral genomes, cellular DNA from tissues with high abundance of viral DNA was restricted with an endonuclease that should not cleave within AAV and transfected into 293 cells, followed by infection with adenovirus. This resulted in rescue and amplification of AAV genomes from DNA of tissues from two different animals (data not shown).

[0084] VP1 sequences of the novel AAVs were further characterized with respect to the nature and location of amino acid sequence variation. All 30 VP1 clones that were shown to differ from one another by greater than 1% amino acid sequence were aligned and scored for variation at each residue. An algorithm developed to determine areas of sequence divergence yielded 12 hypervariable regions (HVR) of which 5 overlap or are part of the 4 previously described variable regions [Kotin, cited above; Rutledge, cited above]. The threefold-proximal peaks contain most of the variability (HVR5-10). Interestingly the loops located at the 2 and 5 fold axis show intense variation as well. The HVRs 1 and 2 occur in the N-terminal portion of the capsid protein that is not resolved in the X-ray structure suggesting that the N-terminus of the VP1 protein is exposed on the surface of the virion.

[0085] Real-time PCR was used to quantify AAV sequences from tissues of 21 rhesus monkeys using primers and probes to highly conserved regions of Rep (one set) and Cap (two sets) of known AAVs. Each data point represents analysis from tissue DNA from an individual animal. This confirmed the wide distribution of AAV sequences, although the quantitative distribution differed between individual animals. The source of animals and previous history or treatments did not appear to influence distribution of AAV sequences in rhesus macaques. The three different sets of primers and probes used to quantify AAV yielded consistent results. The highest levels of AAV were found consistently in mesenteric lymph nodes at an average of 0.01 copies per diploid genome for 13 animals that were positive. Liver and spleen also contained high abundance of virus DNA. There were examples of very high AAV, such as in heart of rhesus macaque 98E056, spleen of rhesus macaque 97E043 and liver of rhesus macaque RQ4407, which demonstrated 1.5, 3 and 20 copies of AAV sequence per diploid genome respectively. Relatively low levels of virus DNA were noted in peripheral blood mononuclear cells, suggesting the data in tissue are not due to resident blood components (data not shown). It should be noted that this method would not necessarily capture all AAVs resident to the nonhuman primates since detection requires high homology to both the oligonucleotides and the real time PCR probe. Tissues from animals with high abundance AAV DNA was further analyzed for the molecular state of the DNA, by DNA hybridization techniques, and its cellular distribution, by *in situ* hybridization.

30

[0086] The kind of sequence variation revealed in AAV proviral fragments isolated from different animals and within tissues of the same animals is reminiscent of the evolution that occurs for many RNA viruses during pandemics or even within the infection of an individual. In some situations the notion of a wild-type virus has been replaced by the existence of swarms of quasispecies that evolve as a result of rapid replication and mutations in the presence of selective pressure. One example is infection by HIV, which evolves in response to immunologic and pharmacologic pressure. Several mechanisms contribute to the high rate of mutations in RNA viruses, including low fidelity and lack of proof reading capacity of reverse transcriptase and non-homologous and homologous recombination.

[0087] Evidence for the formation of quasispecies of AAV was illustrated in this study by the systematic sequencing of multiple cloned proviral fragments. In fact, identical sequences could not be found within any extended clones isolated between or within animals. An important mechanism for this evolution of sequence appears to be a high rate of homologous recombination between a more limited number of parenteral viruses. The net result is extensive swapping of hypervariable regions of the Cap protein leading to an array of chimeras that could have different tropisms and serologic specificities (i.e., the ability to escape immunologic responses especially as it relates to neutralizing antibodies). Mechanisms by which homologous recombination could occur are unclear. One possibility is that + and - strands of different single stranded AAV genomes anneal during replication as has been described during high multiplicity of infections with AAV recombinants. It is unclear if other mechanisms contribute to sequence evolution in AAV infections. The overall rate of mutation that occurs during AAV replication appears to be relatively low and the data do not suggest high frequencies of replication errors. However, substantial rearrangements of the AAV genome have been described during lytic infection leading to the formation of defective interfering particles. Irrespective of the mechanisms that lead to sequence divergence, with few exceptions, vp1 structures of the quasispecies remained intact without frameshifts or nonsense mutations suggesting that competitive selection of viruses with the most favorable profile of fitness contribute to the population

dynamics.

10

20

- 25

30

35

40

50

[0088] These studies have implications in several areas of biology and medicine. The concept of rapid virus evolution, formerly thought to be a property restricted to RNA viruses, should be considered in DNA viruses, which classically have been characterized by serologic assays. It will be important in terms of parvoviruses to develop a new method for describing virus isolates that captures the complexity of its structure and biology, such as with HIV, which are categorized as general families of similar structure and function called Clades. An alternative strategy is to continue to categorize isolates with respect to serologic specificity and develop criteria for describing variants within serologic groups.

Example 3: Vectorology of recombinant AAV genomes equipped with AAV2 ITRs using chimeric plasmids containing AAV2 rep and novel AAV cap genes for scrological and gene transfer studies in different animal models.

[0089] Chimeric packaging constructs are generated by fusing AAV2 rep with cap sequences of novel AAV serotypes. These chimeric packaging constructs are used, initially, for pseudotyping recombinant AAV genomes carrying AAV2 ITRs by triple transfection in 293 cell using Ad5 helper plasmid. These pseudotyped vectors are used to evaluate performance in transduction-based serological studies and evaluate gene transfer efficiency of novel AAV serotypes in different animal models including NHP and rodents, before intact and infectious viruses of these novel serotypes are isolated.

A. pAAV2GFP

[0090] The AAV2 plasmid which contains the AAV2 ITRs and green fluorescent protein expressed under the control of a constitutitive promoter. This plasmid contains the following elements: the AAV2 ITRs, a CMV promoter, and the GFP coding sequences.

B. Cloning of trans plasmid

[0091] To construct the chimeric trans-plasmid for production of recombinant pseudotyped AAV7 vectors, p5E18 plasmid (Xiao et al., 1999, J. Virol 73:3994-4003) was partially digested with Xho I to linearize the plasmid at the Xho I site at the position of 3169 bp only. The Xho I cut ends were then filled in and ligated back. This modified p5E18 plasmid was restricted with Xba I and Xho I in a complete digestion to remove the AAV2 cap gene sequence and replaced with a 2267 bp Spe I/Xho I fragment containing the AAV7 cap gene which was isolated from pCRAAV7 6-5+15-4 plasmid. [0092] The resulting plasmid contains the AAV2 rep sequences for Rep78/68 under the control of the AAV2 P5 promoter, and the AAV2 rep sequences for Rep52/40 under the control of the AAV2 P19 promoter. The AAV7 capsid sequences are under the control of the AAV2 P40 promoter, which is located within the Rep sequences. This plasmid further contains a spacer 5' of the rep ORF.

C. Production of Pseudotyped rAAV

[0093] The rAAV particles (AAV2 vector in AAV7 capsid) are generated using an adenovirus-free method. Briefly, the cis plasmid (pAAV2.1 lacZ plasmid containing AAV2 ITRs), and the trans plasmid pCRAAV7 6-5+15-4 (containing the AAV2 rep and AAV7 cap) and a helper plasmid, respectively, were simultaneously co-transfected into 293 cells in a ratio of 1:1:2 by calcium phosphate precipitation.

[0094] For the construction of the pAd helper plasmids, pBG 10 plasmid was purchased from Microbix (Canada). A RsrII fragment containing L2 and L3 was deleted from pBHG10, resulting in the first helper plasmid, pAd Δ F13. Plasmid Ad Δ F1 was constructed by cloning Asp700/SalI fragment with a Pmel/Sgfl deletion, isolating from pBHG10, into Bluescript. MLP, L2, L2 and L3 were deleted in the pAd Δ F1. Further deletions of a 2.3 kb NruI fragment and, subsequently, a 0.5 kb RsrII/NruI fragment generated helper plasmids pAd Δ F5 and pAd Δ F6, respectively. The helper plasmid, termed p Δ F6, provides the essential helper functions of E2a and E4 ORF6 not provided by the E1-expressing helper ceII, but is deleted of adenoviral capsid proteins and functional E1 regions).

[0095] Typically, 50 μg of DNA (cis:trans:helper) was transfected onto a 150 mm tissue culture dish. The 293 cells were harvested 72 hours post-transfection, sonicated and treated with 0.5% sodium deoxycholate (37°C for 10 min.) Cell lysates were then subjected to two rounds of a CsCl gradient. Peak fractions containing rAAV vector are collected, pooled and dialyzed against PBS.

Example 4: Creation of infectious clones carrying intact novel AAV serotypes for study of basic virology in human and NHP derived cell lines and evaluation of pathogenesis of novel AAV serotypes in NHP and other animal models.

[0096] To achieve this goal, the genome walker system is employed to obtain 5' and 3' terminal sequences (ITRs)

and complete construction of clones containing intact novel AAV serotype genomes.

[0097] Briefly, utilizing a commercially available Universal Genome Walker Kit [Clontech], genomic DNAs from monkey tissues or cell lines that are identified as positive for the presence of AAV7 sequence are digested with Dra I, EcoR V, Pvu II and Stu I endonucleases and ligated to Genome Walker Adaptor to generate 4 individual Genome Walker Libraries (GWLs). Using DNAs from GWLs as templates, AAV7 and adjacent genomic sequences will be PCR-amplified by the adaptor primer 1 (API, provided in the kit) and an AAV7 specific primer 1, followed by a nested PCR using the adaptor primer 2 (AP2) and another AAV7 specific primer 2, both of which are internal to the first set of primers. The major PCR products from the nested PCR are cloned and characterized by sequencing analysis.

[0098] In this experiment, the primers covering the 257 bp or other signature fragment of a generic AAV genome are used for PCR amplification of cellular DNAs extracted from Human and NHP derived cell lines to identify and characterize latent AAV sequences. The identified latent AAV genomes are rescued from the positive cell lines using adenovirus helpers of different species and strains.

[0099] To isolate infectious AAV clones from NHP derived cell lines, a desired cell line is obtained from ATCC and screened by PCR to identify the 257 bp amplicon, i.e., signature region of the invention. The 257 bp PCR product is cloned and serotyped by sequencing analysis. For these cell lines containing the AAV7 sequence, the cells are infected with SV-15, a simian adenovirus purchased from ATCC, human Ad5 or transfected with plasmid construct housing the human Ad genes that are responsible for AAV helper functions. At 48 hour post infection or transfection, the cells are harvested and Hirt DNA is prepared for cloning of AAV7 genome following Xiao et al., 1999, J. Virol, 73:3994-4003.

Example 5 - Production of AAV Vectors

5

20

30

35

40

45

50

55

[0100] A pseudotyping strategy similar to that of Example 3 for AAV1/7 was employed to produce AAV2 vectors packaged with AAV1, AAV5 and AAV8 capsid proteins. Briefly, recombinant AAV genomes equipped with AAV2 ITRs were packaged by triple transfection of 293 cells with cis-plasmid, adenovirus helper plasmid and a chimeric packaging construct where the AAV2 rep gene is fused with cap genes of novel AAV serotypes. To create the chimeric packaging constructs, the Xho I site of p5E18 plasmid at 3169 bp was ablated and the modified plasmid was restricted with Xba I and Xho I in a complete digestion to remove the AAV2 cap gene and replace it with a 2267 bp Spe I/Xho I fragment containing the AAV8 cap gene [Xiao, W., et al., (1999) J Virol 73, 3994-4003]. A similar cloning strategy was used for creation of chimeric packaging plasmids of AAV2/1 and AAV2/5. All recombinant vectors were purified by the standard CsCl₂ sedimentation method except for AAV2/2, which was purified by single step heparin chromatography.

[0101] Genome copy (GC) titers of AAV vectors were determined by TaqMan analysis using probes and primers targeting SV40 poly A region as described previously [Gao, G., et al., (2000) *Hum Gene Ther* 11, 2079-91].

[0102] Vectors were constructed for each serotype for a number of *in vitro* and *in vivo* studies. Eight different transgene cassettes were incorporated into the vectors and recombinant virions were produced for each serotype. The recovery of virus, based on genome copies, is summarized in Table 4 below. The yields of vector were high for each serotype with no consistent differences between serotypes. Data presented in the table are average genome copy yields with standard deviation x 10¹³ of multiple production lots of 50 plate (150 mm) transfections.

Table 4 Production of Recombinant Vectors

	Table 4. Floudction of Recombinant Vectors										
	AAV2/1	AAV2/2	AAV2/5	AAV2/7	AAV2/8						
CMV LacZ	7.30 ± 4.33 (n=9)	4.49 ± 2.89 (n=6)	5.19 ± 5.19 (n=8)	3.42 (n=1)	0.87 (n=1)						
CMV EGFP	6.43 ± 2.42 (n=2)	3.39 ± 2.42 (n=2)	5.55 ± 6.49 (n=4)	2.98 ± 2.66 (n=2)	3.74 ± 3.88 (n=2)						
TBG LacZ	4.18 (n=1)	0.23 (n=1)	0.704 ± 0.43 (n=2)	2.16 (n=1)	0.532 (n=1)						
Alb A1AT	4.67 ± 0.75 (n=2)	4.77 (n=1)	4.09 (n=1)	5.04 (n=1)	2.02 (n=1)						
CB A1AT	0.567 (n=1)	0.438 (n=1)	2.82 (n=1)	2.78 (n=1)	0.816 ± 0.679 (n=2)						
TBG rhCG	8.51 ± 6.65 (n=6)	3.47 ± 2.09 (n=5)	5.26 ± 3.85 (n=4)	6.52 ± 3.08 (n=4)	1.83 ± 0.98 (n=5)						
TBG cFIX	1.24 ± 1.29 (n=3)	0.63 ± 0.394 (n=6)	3.74 ± 2.48 (n=7)	4.05 (n=1)	15.8 ± 15.0 (n=5)						

Example 6 - Serologic Analysis of Pseudotyped Vectors

[0103] C57BL/6 mice were injected with vectors of different serotypes of AAVCBA1AT vectors intramuscularly (5 x

10¹¹ GC) and serum samples were collected 34 days later. To test neutralizing and cross-neutralizing activity of sera to each serotype of AAV, sera was analyzed in a transduction based neutralizing antibody assay [Gao, G. P., et al., (1996) *J Virol* 70, 8934-43]. More specifically, the presence of neutralizing antibodies was determined by assessing the ability of serum to inhibit transduction of 84-31 cells by reporter viruses (AAVCMVEGFP) of different serotypes. Specifically, the reporter virus AAVCMVEGFP of each serotype [at multiplicity of infection (MOI) that led to a transduction of 90% of indicator cells] was pre-incubated with heat-inactivated serum from animals that received different serotypes of AAV or from naïve mice. After 1-hour incubation at 37° C, viruses were added to 84-31 cells in 96 well plates for 48 or 72- hour, depending on the virus serotype. Expression of GFP was measured by Fluorolmagin (Molecular Dynamics) and quantified by Image Quant Software. Neutralizing antibody titers were reported as the highest serum dilution that inhibited transduction to less than 50%.

[0104] The availability of GFP expressing vectors simplified the development of an assay for neutralizing antibodies that was based on inhibition of transduction in a permissive cell line (i.e., 293 cells stably expressing E4 from Ad5). Sera to selected AAV serotypes were generated by intramuscular injection of the recombinant viruses. Neutralization of AAV transduction by 1:20 and 1:80 dilutions of the antisera was evaluated (See Table 5 below). Antisera to AAV1, AAV2, AAV5 and AAV8 neutralized transduction of the serotype to which the antiserum was generated (AAV5 and AAV8 to a lesser extent than AAV1 and AAV2) but not to the other serotype (i.e., there was no evidence of cross neutralization suggesting that AAV 8 is a truly unique serotype).

Table 5. Serological Analysis of New AAV Serotypes.

		% Infection on 84-31 cells with AAVCMVEGFP virus:									
		AA	AAV2/1		AAV2/1 AAV2/2 AAV2/5		V2/5	AAV2/7		AAV2/8	
		Serum dilution: Serum dilution: Serum dilutio		dilution:	: Serum dilution:		Serum dilution:				
Sera:	Immunization Vector	1/20	1/80	1/20	1/80	1/20	1/80	1/20	1/80	1/20	1/80
Group 1	AAV2/1	0	0	100	100	100	100	100	100	100	100
Group 2	AAV2/2	100	100	0	0	100	100	100	100	100	100
Group 3	AAV2/5	100′	100	100	100	16.5	16.5	100	100	100	100
Group 4	AAV2/7	100	100	100	100	100	100	61.5	100	100	100
Group 5	AAV2/8	100	100	100	100	100	100	100	.100	26.3	60

[0105] Human sera from 52 normal subjects were screened for neutralization against selected serotypes. No serum sample was found to neutralize AAV2/7 and AAV2/8 while AAV2/2 and AAV2/1 vectors were neutralized in 20% and 10% of sera, respectively. A fraction of human pooled IgG representing a collection of 60,000 individual samples did not neutralize AAV2/7 and AAV2/8, whereas AAV2/2 and AAV2/1 vectors were neutralized at titers of serum equal to 1/1280 and 1/640, respectively.

Example 7 - In vivo Evaluation of Different Serotypes of AAV Vectors

[0106] In this study, 7 recombinant AAV genomes, AAV2CBhAIAT, AAV2AlbhAIAt, AAV2CMVrhCG, AAV2TBGrhCG, AAV2TBGcFIX, AAV2CMVLacZ and AAV2TBGLacZ were packaged with capsid proteins of different serotypes. In all 7 constructs, minigene cassettes were flanked with AAV2 ITRs. cDNAs of human α -antitrypsin (AIAT) [Xiao, W., et al., (1999) J Virol 73, 3994-4003] β -subunit of rhesus monkey choriogonadotropic hormone (CG) [Zoltick, P. W. & Wilson, J. M. (2000) *Mol Ther* 2, 657-9] canine factor IX [Wang, L., et al., (1997) *Proc Natl Acad Sci USA* 94, 11563-6] and bacterial β -glactosidase (i.e., Lac Z) genes were used as reporter genes. For liver-directed gene transfer, either mouse albumin gene promoter (Alb) [Xiao, W. (1999), cited above] or human thyroid hormone binding globulin gene promoter (TBG) [Wang (1997), cited above] was used to drive liver specific expression of reporter genes. In muscle-directed gene transfer experiments, either cytomegalovirus early promoter (CMV) or chicken β -actin promoter with CMV enhancer (CB) was employed to direct expression of reporters.

[0107] For muscle-directed gene transfer, vectors were injected into the right tibialis anterior of 4-6 week old NCR nude or C57BL/6 mice (Taconic, Germantown, NY). In liver-directed gene transfer studies, vectors were infused intraportally into 7-9 week old NCR nude or C57BL/6 mice (Taconic, Germantown, NY). Serum samples were collected intraorbitally at different time points after vector administration. Muscle and liver tissues were harvested at different time points for cryosectioning and Xgal histochemical staining from animals that received the lacZ vectors. For the re-administration experiment, C56BL/6 mice initially received AAV2/1, 2/2, 2/5, 2/7 and 2/8CBAIAT vectors intramuscularly and followed for A1AT gene expression for 7 weeks. Animals were then treated with AAV2/8TBGcFIX intraportally and studied for cFIX gene expression.

20

30

40

45

[0108] ELISA based assays were performed to quantify serum levels of hA1AT, rhCG and cFIX proteins as described previously [Gao, G. P., et al., (1996) *J Virol* 70, 8934-43; Zoltick, P. W. & Wilson, J. M. (2000) *Mol Ther* 2, 657-9; Wang, L., et al., *Proc Natl Acad Sci U S A* 94, 11563-6]. The experiments were completed when animals were sacrificed for harvest of muscle and liver tissues for DNA extraction and quantitative analysis of genome copies of vectors present in target tissues by TaqMan using the same set of primers and probe as in titration of vector preparations [Zhang, Y., et al., (2001) *Mol Ther* 3, 697-707].

[0109] The performance of vectors base on the new serotypes were evaluated in murine models of muscle and liver-directed gene transfer and compared to vectors based on the known serotypes AAV1, AAV2 and AAV5. Vectors expressing secreted proteins (alpha-antitrypsin (A1AT) and chorionic gonadotropin (CG)) were used to quantitate relative transduction efficiencies between different serotypes through ELISA analysis of sera. The cellular distribution of transduction within the target organ was evaluated using lacZ expressing vectors and X-gal histochemistry.

[0110] The performance of AAV vectors in skeletal muscle was analyzed following direct injection into the tibialis anterior muscles. Vectors contained the same AAV2 based genome with the immediate early gene of CMV or a CMV enhanced β-actin promoter driving expression of the transgene. Previous studies indicated that immune competent C57BL/6 mice elicit limited humoral responses to the human A1AT protein when expressed from AAV vectors [Xiao, W., et al., (1999) *J Virol* 73, 3994-4003].

[0111] In each strain, AAV2/1 vector produced the highest levels of A I AT and AAV2/2 vector the lowest, with AAV2/7 and AAV2/8 vectors showing intermediate levels of expression. Peak levels of CG at 28 days following injection of nu/nu NCR mice showed the highest levels from AAV2/7 and the lowest from AAV2/2 with AAV2/8 and AAV2/1 in between. Injection of AAV2/1 and AAV2/7 lacZ vectors yielded gene expression at the injection sites in all muscle fibers with substantially fewer lacZ positive fibers observed with AAV2/2 and AAV 2/8 vectors. These data indicate that the efficiency of transduction with AA V2/7 vectors in skeletal muscle is similar to that obtained with AAV2/1, which is the most efficient in skeletal muscle of the previously described serotypes [Xiao, W. (1999), cited above; Chao, H., et al., (2001) *Mol Ther* 4, 217-22; Chao, H., et al., (2000) *Mol Ther* 2, 619-23].

[0112] Similar murine models were used to evaluate liver-directed gene, transfer. Identical doses of vector based on genome copies were infused into the portal veins of mice that were analyzed subsequently for expression of the transgene. Each vector contained an AAV2 based genome using previously described liver-specific promoters (i.e., albumin or thyroid hormone binding globulin) to drive expression of the transgene. More particularly, CMVCG and TBGCG minigene cassettes were used for muscle and liver-directed gene transfer, respectively. Levels of rhCG were defined as relative units (RUs x 10³). The data were from assaying serum samples collected at day 28, post vector administration (4 animals per group). As shown in Table 3, the impact of capsid proteins on the efficiency of transduction of A1AT vectors in nu/nu and C57BL/6 mice and CG vectors in C57BL/6 mice was consistent (See Table 6).

Table 6. Expression of β-unit of Rhesus Monkey Chorionic Gonadotropin (rhCG)

	•				(
Vector				Muscle	Liver
		AAV2/1		4.5 ± 2.1	1.6 ± 1.0
	•. •	AAV2	•	0.5 ± 0.1	0.7 ± 0.3
		AAV2/5		ND*	4.8 ± 0.8
		AAV2/7		14.2 ± 2.4	8.2 ± 4.3
		AAV2/8		4.0 ± 0.7	76.0 ± 22.8

^{*} Not determined in this experiment.

30

35

40

45

[0113] In all cases, AAV2/8 vectors yielded the highest levels of transgene expression that ranged from 16 to 110 greater than what was obtained with AAV2/2 vectors; expression from AAV2/5 and AAV2/7 vectors was intermediate with AAV2/7 higher than AAV2/5. Analysis of X-Gal stained liver sections of animals that received the corresponding lacZ vectors showed a correlation between the number of transduced cells and overall levels of transgene expression. DNAs extracted from livers of C57BL/6 mice who received the A1AT vectors were analyzed for abundance of vector DNA using real time PCR technology.

[0114] The amount of vector DNA found in liver 56 days after injection correlated with the levels of transgene expression (See Table 7). For this experiment, a set of probe and primers targeting the SV40 polyA region of the vector genome was used for TaqMan PCR. Values shown are means of three individual animals with standard deviations. The animals were sacrificed at day 56 to harvest liver tissues for DNA extraction. These studies indicate that AAV8 is the most efficient vector for liver-directed gene transfer due to increased numbers of transduced hepatocytes.

Table 7 - Real Time PCR Analysis for Abundance of AAV Vectors in nu/nu Mouse Liver Following Injection of 1x10¹¹ Genome Copies of Vector.

AAV vectors/Dose		Genome Copies per Cell
	AAV2/1AlbA1AT	0.6 ± 0.36
	AAV2AlbA1AT	0.003 ± 0.001
	AAV2/5AlbA1AT	0.83 ± 0.64
	AAV2/7AlbA1AT	2.2 ± 1.7
	AAV2/8AlbA1AT	18 ±, 11

[0115] The serologic data described above suggest that AAV2/8 vector should not be neutralized *in vivo* following immunization with the other serotypes. C57BL/6 mice received intraportal injections of AAV2/8 vector expressing canine factor IX (10^{11} genome copies) 56 days after they received intramuscular injections of A1AT vectors of different serotypes. High levels of factor IX expression were obtained 14 days following infusion of AAV2/8 into naïve animals ($17\pm2~\mu$ g/ml, n=4) which were not significantly different that what was observed in animals immunized with AAV2/1 ($31\pm23~\mu$ g/ml, n=4), AAV2/2 ($16~\mu$ g/ml, n=2), and ÅAV2/7($12~\mu$ g/ml, n=2). This contrasts to what was observed in AAV2/8 immunized animals that were infused with the AAV2/8 factor IX vector in which no detectable factor IX was observed (< $0.1~\mu$ g/ml, n=4). [0116] Oligonucleotides to conserved regions of the cap gene did amplify sequences from rhesus monkeys that represented unique AAVs. Identical cap signature sequences were found in multiple tissues from rhesus monkeys derived from at least two different colonies. Full-length rep and cap open reading frames were isolated and sequenced from single sources. Only the cap open reading frames of the novel AAVs were necessary to evaluate their potential as vectors because vectors with the AAV7 or AAV8 capsids were generated using the ITRs and rep from AAV2. This also simplified the comparison of different vectors since the actual vector genome is identical between different vector serotypes. In fact, the yields of recombinant vectors generated using this approach did not differ between serotypes.

[0117] Vectors based on AAV7 and AAV8 appear to be immunologically distinct (i.e., they are not neutralized by antibodies generated against other serotypes). Furthermore, sera from humans do not neutralize transduction by AAV7 and AAV8 vectors, which is a substantial advantage over the human derived AAVs currently under development for which a significant proportion of the human population has pre-existing immunity that is neutralizing [Chirmule, N., et al., (1999) Gene Ther 6, 1574-83].

[0118] The tropism of each new vector is favorable for *in vivo* applications. AAV2/7 vectors appear to transduce skeletal muscle as efficiently as AAV2/1, which is the serotype that confers the highest level of transduction in skeletal muscle of the primate AAVs tested to date [Xiao, W., cited above; Chou (2001), cited above, and Chou (2000), cited above]. Importantly, AAV2/8 provides a substantial advantage over the other serotypes in terms of efficiency of gene transfer to liver that until now has been relatively disappointing in terms of the numbers of hepatocytes stably transduced. AAV2/8 consistently achieved a 10 to 100-fold improvement in gene transfer efficiency as compared to the other vectors. The basis for the improved efficiency of AAV2/8 is unclear, although it presumably is due to uptake via a different receptor that is more active on the basolateral surface of hepatocytes. This improved efficiency will be quite useful in the development of liver-directed gene transfer where the number of transduced cells is critical, such as in urea cycle disorders and familial hypercholesterolemia.

[0119] Thus, the present invention provides a novel approach for isolating new AAVs based on PCR retrieval of genomic sequences. The amplified sequences were easily incorporated into vectors and tested in animals. The lack of pre-existing immunity to AAV7 and the favorable tropism of the vectors for muscle indicates that AAV7 is suitable for use as a vector in human gene therapy and other *in vivo* applications. Similarly, the lack of pre-existing immunity to the AAV serotypes of the invention, and their tropisms, renders them useful in delivery of therapeutic molecules and other useful molecules.

Example 9 - Tissue Tropism Studies

5

10

15

30

35

45

50

[0120] In the design of a high throughput functional screening scheme for novel AAV constructs, a non-tissue specific and highly active promoter, CB promoter (CMV enhanced chicken β actin promoter) was selected to drive an easily detectable and quantifiable reporter gene, human α anti-trypsin gene. Thus only one vector for each new AAV clone needs to be made for gene transfer studies targeting 3 different tissues, liver, lung and muscle to screen for tissue tropism of a particular AAV construct. The following table summarizes data generated from 4 novel AAV vectors in the tissue tropism studies (AAVCBA1AT), from which a novel AAV capsid clone, 44.2, was found to be a very potent gene transfer vehicle in all 3 tissues with a big lead in the lung tissue particularly. Table 8 reports data obtained (in μg A1AT/mL serum) at day 14 of the study.

Table 8

Vector	Target Tissue						
	Lung	Liver	Muscle				
AAV2/1	ND	ND	45±11				
AAV2/5	0.6±0.2	ND	ND				
AAV2/8	ND	84±30	·ND				
AAV2/rh.2 (43.1)	14±7	25±7.4	35±14				
AAV2/rh.10 (44.2)	23±6	53±19	46±11				
AAV2/rh.13 (42.2)	3.5±2	2±0.8	3.5±1.7				
AAV2/rh.21 (42.10)	3.1±2	2±1.4	4.3±2				

A couple of other experiments were then performed to confirm the superior tropism of AAV 44.2 in lung tissue. First, AAV vector carried CC10hA1AT minigene for lung specific expression were pseudotyped with capsids of novel AAVs were given to Immune deficient animals (NCR nude) in equal volume (50 μ I each of the original preps without dilution) via intratracheal injections as provided in the following table. In Table 9, 50 μ I of each original prep per mouse, NCR Nude, detection limit \geq 0.033 μ g/mI, Day 28

Table 9

		lable 9		
Vector	Total GC in 50 μl vector	µg of A1AT/ml with 50µl vector	μg of A1AT/ml with 1x10 ¹¹ vector	Relative Gene transfer as compared to rh.10 (clone 44.2)
2/1	3x10 ¹²	2.6±0.5	0.09±0.02	2.2
2/2	5.5x10 ¹¹	<0.03	<0.005	<0.1
2/5	3.6x10 ¹²	0.65±0.16	0.02=0.004	0.5
2/7	4.2x10 ¹²	1±0.53	0.02±0.01	0.5
2/8	7.5x10 ¹¹	0.9±0.7	0.12±0.09	2.9
2/ch.5 (A.3.1)	9x10 ¹²	1±0.7	0.01±0.008	0.24
2/rh.8 (43.25)	4.6x10 ¹²	26±21	0.56±0.46	13.7
2/rh.10 (44.2)	2.8x10 ¹²	115±38	4.1±1.4	100
2/rh.13 (42.2)	6x10 ¹²	7.3±0.8	0.12±0.01	2.9
2/rh.21 (42.10)	2.4x10 ¹²	9±0.9	0.38±0.04	9.3
2/rh.22 (42.11)	2.6x10 ¹²	6±0.4	0.23±0.02	5.6
2/rh.24 (42.13)	1.1x10 ¹¹	0.4±0.3	0.4±0.3	1

The vectors were also administered to immune competent animals (C57BL/6) in equal genome copies (1x10¹¹ GC) as shown in the Table 10. (1x10¹¹ GC per animal, C57BL/6, day 14, detection limit \geq 0.033 μ g/ml)

Table 10

AAV Vector	μg of A1AT/ml with 1x10 ¹¹ vector	Relative Gene transfer as compared to rh.10 (clone 44.2)
2/1	0.076±0.031	2.6
2/2	0.1±0.09	3.4
2/5	0.0840.033	2.9

Table continued

AAV Vector	μg of A1AT/ml with 1x10 ¹¹ vector	Relative Gene transfer as compared to rh.10 (clone 44.2)
2/7	0.33±0.01	11
2/8	1.92±1.3	2.9
2/ch.5 (A.3.1)	· 0.048±0.004	1.6
2/rh.8 (43.25)	1.7±0.7	58
2/rh.10 (44.2)	2.93±1.7	100
2/巾.13 (42.2)	0.45±0.15	15
2/rh.21 (42.10)	0.86±0.32	29
2/rh.22 (42.11)	0.38±0.18	13
2/rh.24 (42.13)	0.3±0.19	10

[0121] The data from both experiments confirmed the superb tropism of clone 44.2 in lung-directed gene transfer.

[0122] Interestingly, performance of clone 44.2 in liver and muscle directed gene transfer was also outstanding, close to that of the best liver transducer, AAV8 and the best muscle transducer AAV1, suggesting that this novel AAV has some intriguing biological significance.

[0123] To study serological properties of those novel AAVs, pseudotyped AAVGFP vectors were created for immunization of rabbits and in vitro transduction of 84-31 cells in the presence and absence of antisera against different capsids. The data are summarized below:

Table 11a. Cross-NAB assay in 8431 cells and adenovirus (Adv) coinfection in 6431 cells (coinfected with Adv) with:

Serum from rabbit immunized with:	10 ⁹ GC	10 ⁹ GC	10 ⁹ GC	10 ¹⁰ GC
	rh.13	rh.21	rh.22	rh.24
	AAV2/42.2	AAV2/42.10	AAV2/42.1	AAV2/42.13
AAV2/1	1/20	1/20	1/20	No NAB
AAV2/2	1/640	1/1280	1/5120	No NAB
AAV2/5	No NAB	1/40	1/160	No NAB
AAV2/7	1/81920	1/81920	1/40960	1/640
AAV2/8	1/640	1/640	1/320	1/5120
Ch.5 AAV2/A3	1/20	1/160	1/640	1/640
<i>rh.8</i> AAV2/43.25	1/20	1/20	1/20	1/320
rh.10 AAV2/44.2	No NAB	No NAB	No NAB	1/5120
rh.13 AAV2/42.2	1/5120	1/5120	1/5120	No NAB
<i>rh.21</i> AA V2/42.10	1/5120	1/10240	1/5120	1/20
<i>rh.22</i> AAV2/42.11	1/20480	1/20480	1/40960	No NAB
<i>rh.24</i> . AAV2/42.13	No NAB	1/20	1/20	1/5120

Table 11b. Cross-NAB assay in 8431 cells and Adv coinfection Infection in 8431 cells (coinfected with Adv) with:

Serum from rabbit immunized with:	10 ⁹ GC	10 ¹⁰ GC	10 ¹⁰ GC	10 ⁹ GC	10 ⁹ GC
·	rh.12	ch.5	rh. 8	rh.10	rh.20
	AAV2/42.1B	AAV2/A3	AAV2/43.25	AAV2/44.2	AAV2/42.8.2
AAV2/1	No NAB	1/20480	No NAB	1/80	ND
AAV2/2	1/20	No NAB	No NAB	No NAB	ND '
AAV2/5	No NAB	1/320	No NAB	No NAB	ND
AAV2/7	1/2560	1/640	1/160	1/81920	ND
AAV2/8	1/10240	1/2560	1/2560	1/81920	ND
<i>ch.5</i> AAV2/A3	1/1280	1/10240	ND	1/5120	1/320
rh.8 AAV2/43.25	1/1280	ND	1/20400	1/5120	1/2560
rh.10 AAV2/44.2	1/5120	ND	ND	1/5120	1/5120
rh.13 AAV2/42.2	1/20	ND	ND	No NAB	1/320
rh.21 AAV2/42.10	1/20	ND	ND	1/40	1/80
<i>rh.22</i> AAV2/42.1 1	No NAB	ND	ND	ND	No NAB
rh.24 AAV2/42.13	1/5120	ND	ND	ND	1/2560

Table 12

	Titer of rabbit s	Titer after Boosting	
	Vector	Titer d21	
ch.5	AAV2/A3	1/10,240	1/40,960
rh.8	AAV2/43.25	1/20,400	1/163,840
rh.10	AAV2/44.2	1/10,240	1/527,680
rh.13	AAV2/42.2	1/5,120	1/20,960
rh.21	AAV2/42.10	1/20,400	1/81,920
rh.22	AAV2/42.11	1/40,960	ND
rh.24	AAV2/42.13	1/5,120	ND

Table 13 a. Infection in 8431 cells (coinfected with Adv) with GFP

	109 GC/well	10 ⁹ GC/weli	10 ⁹ GC/well	10 ⁹ GC/well	109 GC/well	109 GC/well
						ch.5
	AAV2/1	AAV2/2	AAV2/5	AAV2/7	AAV2/8	AAV2/A3
	128	>200	95	56	13	1
# GFU/field	83	>200	65	54	11	1 '

5
_

7	C	7	

		Table 13b. Infec	Table 13b. Infection in 8431 cells (coinfected with Adv) with GFP	ls (coinfected wi	ith Adv) with GF	Ь	•
	109 GC/well	109 GC/well	10 ⁹ GC/well	109 GC/well	109 GC/well	109 GC/well	109 GC/well
	rh.8	rh. 10	rh.13	rh.21	rh.22	rh.24	rh. 12
	AAV2/43 25	AAV2/44.2	AAV2/43 25 AAV2/44.2 AAV2/42.2 AAV2/42.10 AAV2/42.11 AAV2/42.13 AAV2/42.1B	AAV2/42.10	AAV2/42.11	AAV2/42.13	AAV2/42.1B
	3	13	. 24	62	10	3	18
# GFU/field	2	12 .	7.1	09	14	2	. 20
			48	47	16	3	12
					1		

Example 10 - Mouse Model of Familial Hypercholesterolemia

[0124] The following experiment demonstrates that the AAV2/7 construct of the invention delivers the LDL receptor and express LDL receptor in an amount sufficient to reduce the levels of plasma cholesterol and triglycerides in animal models of familial hypercholesterolemia.

A. Vector Construction

5

20

30

35

45

55

[0125] AAV vectors packaged with AAV7 or AAV8 capsid proteins were constructed using a pseudotyping strategy [Hildinger M, et al., J. Virol 2001; 75:6199-6203]. Recombinant AAV genomes with AAV2 inverted terminal repeats (ITR) were packaged by triple transfection of 293 cells with the *cis*-plasmid, the adenovirus helper plasmid and a chimeric packaging construct, a fusion of the capsids of the novel AAV serotypes with the rep gene of AAV2. The chimeric packaging plasmid was constructed as previously described [Hildinger et al, cited above]. The recombinant vectors were purified by the standard CsCl₂ sedimentation method. To determine the yield TaqMan (Applied Biosystems) analysis was performed using probes and primers targeting the SV40 poly(A) region of the vectors [Gao GP, et al., Hum Gene Ther. 2000 Oct 10;11(15):2079-91]. The resulting vectors express the transgene under the control of the human thyroid hormone binding globulin gene promoter (TBG).

B. Animals

[0126] LDL receptor deficient mice on the C57Bl/6 background were purchased from the Jackson Laboratory (Bar Harbor, ME, USA) and maintained as a breeding colony. Mice were given unrestricted access to water and obtained a high fat Western Diet (high % cholesterol) starting three weeks prior vector injection. At day -7 as well at day 0, blood was obtained via retroorbital bleeds and the lipid profile evaluated. The mice were randomly divided into seven groups. The vector was injected via an intraportal injection as previously described ([Chen SJ et al., Mol Therapy 2000; 2(3), 256-261]. Briefly, the mice were anaesthetized with ketamine and xylazine. A laparotomy was performed and the portal vein exposed. Using a 30g needle the appropriate dose of vector diluted in 100ul PBS was directly injected into the portal vein. Pressure was applied to the injection site to ensure a stop of the bleeding. The skin wound was closed and draped and the mice carefully monitored for the following day. Weekly bleeds were performed starting at day 14 after liver directed gene transfer to measure blood lipids. Two animals of each group were sacrificed at the time points week 6 and week 12 after vector injection to examine atherosclerotic plaque size as well as receptor expression. The remaining mice were sacrificed at week 20 for plaque measurement and determination oftransgene expression.

Table 14

	Vector	dose	п
Group 1	AAV2/7-TBG-hLDLr	1x 10 ¹² gc	12
Group 2	AAV2/7-TBG-hLDLr	3x 10 ¹¹ gc	12
Group 3	AAV2/7-TBG-hLDLr	1x 10 ¹¹ gc	12
Group 4	AAV2/8-TBG-hLDLr	1x 10 ¹² gc	12
Group 5	AAV2/8-TBG-hLDLr	3x 10 ¹¹ gc	12
Group 6	AAV2/8-TBG-hLDLr	1x 10 ¹¹ gc	12
Group 7	AAV2/7-TBG-LacZ	1x 10 ¹¹ gc	16

C. Serum lipoprotein and liver function analysis

[0127] Blood samples were obtained from the retroorbital plexus after a 6 hour fasting period. The serum was separated from the plasma by centrifugation. The amount of plasma lipoproteins and liver transaminases in the serum were detected using an automatized clinical chemistry analyzer (ACE, Schiapparelli Biosystems, Alpha Wassermann)

D. Detection of transgene expression

[0128] LDL receptor expression was evaluated by immuno-fluorescence staining and Western blotting. For Western Blot frozen liver tissue was homogenized with lysis buffer (20 mM Tris, pH7.4, 130mM NaCl, 1% Triton X 100, proteinase inhibitor (complete, EDTA-free, Roche, Mannheim, Germany). Protein concentration was determined using the Micro

BCA Protein Assay Reagent Kit (Pierce, Rockford, IL). 40 μg of protein was resolved on 4- 15% Tris-HCl Ready Gels (Biorad, Hercules, CA) and transferred to a nitrocellulose membrane (Invitrogen,). To generate Anti-hLDL receptor antibodies a rabbit was injected intravenously with an AdhLDLr prep (1x10¹³ GC). Four weeks later the rabbit serum was obtained and used for Western Blot. A 1:100 dilution of the serum was used as a primary antibody followed by a HRP-conjugated anti-rabbit IgG and ECL chemiluminescent detection (ECL Western Blot Detection Kit, Amersham, Arlington Heights, IL).

E. Immunocytochemistry

5

10

20

25

30.

40

45

50

[0129] For determination of LDL receptor expression in frozen liver sections immunohistochemistry analyses were performed. 10um cryostat sections were either fixed in acetone for 5 minutes, or unfixed. Blocking was obtained *via a* 1 hour incubation period with 10% of goat serum. Sections were then incubated for one hour with the primary antibody at room temperature. A rabbit polyclonal antibody anti-human LDL (Biomedical Technologies Inc., Stoughton, MA) was used diluted accordingly to the instructions of the manufacturer. The sections were washed with PBS, and incubated with 1:100 diluted fluorescein goat anti-rabbit IgG (Sigma, St Louis, MO). Specimens were finally examined under fluorescence microscope Nikon Microphot-FXA. In all cases, each incubation was followed by extensive washing with PBS. Negative controls consisted of preincubation with PBS, omission of the primary antibody, and substitution of the primary antibody by an isotype-matched non-immune control antibody. The three types of controls mentioned above were performed for each experiment on the same day.

F. Gene transfer efficiency

[0130] Liver tissue was obtained after sacrificing the mice at the designated time points. The tissue was shock frozen in liquid nitrogen and stored at -80°C until further processing. DNA was extracted from the liver tissue using a QIAamp DNA Mini Kit (QIAGEN GmbH, Germany) according to the manufacturers protocol. Genome copies of AAV vectors in the liver tissue were evaluated using Taqman analysis using probes and primers against the SV40 poly(A) tail as described above.

G. Atherosclerotic plaque measurement

[0131] For the quantification of the atherosclerotic plaques in the mouse aorta the mice were anaesthetized (10% ketamine and xylazine, ip), the chest opened and the arterial system perfused with ice-cold phosphate buffered saline through the left ventricle. The aorta was then carefully harvested, slit down along the ventral midline from the aortic arch down to the femoral arteries and fixed in formalin. The lipid-rich atherosclerotic plaques were stained with Sudan IV (Sigma, Germany) and the aorta pinned out flat on a black wax surface. The image was captured with a Sony DXC-960 MD color video camera. The area of the plaque as well as of the complete aortic surface was determined using Phase 3 Imaging Systems (Media Cybernetics).

H. Clearance of I125 LDL

[0132] Two animals per experimental group were tested. A bolus of I¹²⁵-labeled LDL (generously provided by Dan Rader, U Penn) was infused slowly through the tail vein over a period of 30 sec (1,000,000 counts of [I¹²⁵]-LDL diluted in 100 µl sterile PBS/ animal). At time points 3min, 30 min, 1.5hr, 3hr, 6hr after injection a blood sample was obtained via the retro-orbital plexus. The plasma was separated off from the whole blood and 10 µl plasma counted in the gamma counter. Finally the fractional catabolic rate was calculated from the lipoprotein clearance data.

I. Evaluation of Liver Lipid accumulation

[0133] Oil Red Staining of frozen liver sections was performed to determine lipid accumulation. The frozen liver sections were briefly rinsed in distilled water followed by a 2 minute incubation in absolute propylene glycol. The sections were then stained in oil red solution (0.5% in propylene glycol) for 16 hours followed by counterstaining with Mayer's hematoxylin solution for 30 seconds and mounting in warmed glycerin jelly solution.

[0134] For quantification of the liver cholesterol and triglyceride content liver sections were homogenized and incubated in chloroform/methanol (2:1) overnight. After adding of $0.05\%~H_2SO_4$ and centrifugation for 10 minutes, the lower layer of each sample was collected, divided in two aliquots and dried under nitrogen. For the cholesterol measurement the dried lipids of the first aliquot were dissolved in 1% Triton X-100 in chloroform. Once dissolved, the solution was dried under nitrogen. After dissolving the lipids in ddH $_2$ 0 and incubation for 30 minutes at 37°C the total cholesterol concentration was measured using a Total Cholesterol Kit (Wako Diagnostics). For the second aliquot the dried lipids were dissolved

in alcoholic KOH and incubated at 60°C for 30 minutes. Then 1 M MgCl2 was added, followed by incubation on ice for 10 minutes and centrifugation at 14,000 rpm for 30 minutes. The supernatant was finally evaluated for triglycerides (Wako Diagnostics).

[0135] All of the vectors pseudotyped in an AAV2/8 or AAV2/7 capsid lowered total cholesterol, LDL and triglycerides as compared to the control. These test vectors also corrected phenotype of hypercholesterolemia in a dose-dependent manner. A reduction in plaque area for the AAV2/8 and AAV2/7 mice was observed in treated mice at the first test (2 months), and the effect was observed to persist over the length of the experiment (6 months).

Example 10 - Functional Factor IX Expression and Correction of Hemophilia

A. Knock-Out Mice

[0136] Functional canine factor IX (FIX) expression was assessed in hemophilia B mice. Vectors with capsids of AAV1, AAV2, AAV5, AAV7 or AAV8 were constructed to deliver AAV2 5' ITR - liver-specific promoter [LSP] - canine FIX - woodchuck hepatitis post-regulatory element (WPRE) - AAV2 3' ITR. The vectors were constructed as described in Wang et al, 2000, *Molecular Therapy* 2: 154-158), using the appropriate capsids.

[0137] Knock-out mice were generated as described in Wang et al, 1997. *Proc. Natl. Acad. Sci. USA* 94: 11563-11566. This model closely mimic the phenotypes of hemophilia B in human.

[0138] Vectors of different serotypes (AAV1, AAV2, AAV5, AAV7 and AAV8) were delivered as a single intraportal injection into the liver of adult hemophiliac C57Bl/6 mice in a dose of 1x10¹¹ GC/mouse for the five different serotypes and one group received an AAV8 vector at a lower dose, 1x10¹⁰ GC/mouse. Control group was injected with 1 x 10¹¹ GC of AAV2/8 TBG LacZ3. Each group contains 5-10 male and female mice. Mice were bled bi-weekly after vector administration.

1. ELISA

[0139] The canine FIX concentration in the mouse plasma was determined by an ELISA assay specific for canine factor IX, performed essentially as described by Axelrod et al, 1990, *Proc.Natl.Acad.Sci. USA*, 87:5173-5177 with modifications. Sheep anti-canine factor IX (Enzyme Research Laboratories) was used as primary antibody and rabbit anti-canine factor IX ((Enzyme Research Laboratories) was used as secondary antibody. Beginning at two weeks following injection, increased plasma levels of cFIX were detected for all test vectors. The increased levels were sustained at therapeutic levels throughout the length of the experiment, i.e., to 12 weeks. Therapeutic levels are considered to be 5% of normal levels, i.e., at about 250 ng/mL.

[0140] The highest levels of expression were observed for the AAV2/8 (at 10¹¹) and AAV2/7 constructs, with sustained superphysiology levels cFIX levels (ten-fold higher than the normal level). Expression levels for AAV2/8 (10¹¹) were approximately 10 fold higher than those observed for AAV2/2 and AAV2/8 (10¹⁰). The lowest expression levels, although still above the therapeutic range, were observed for AAV2/5.

2. In Vitro Activated Partial Thromboplastin time (aPTT) Assay

[0141] Functional factor IX activity in plasma of the FIX knock-out mice was determined by an *in vitro* activated partial thromboplastin time (aPTT) assay-Mouse blood samples were collected from the retro-orbital plexus into 1/10 volume of citrate buffer. The aPTT assay was performed as described by Wang et al, 1997, *Proc. Natl. Acad. Sci. USA* 94: 11563-11566.

[0142] Clotting times by aPTT on plasma samples of all vector injected mice were within the normal range (approximately 60 sec) when measured at two weeks post-injection, and sustained clotting times in the normal or shorter than normal range throughout the study period (12 weeks).

[0143] Lowest sustained clotting times were observed in the animals receiving AAV2/8 (10¹¹) and AAV2/7. By week 12, AAV2/2 also induced clotting times similar to those for AAV2/8 and AAV2/7. However, this lowered clotting time was not observed for AAV2/2 until week 12, whereas lowered clotting times (in the 25 - 40 sec range) were observed for AAV2/8 and AAV2/7 beginning at week two.

[0144] Immuno-histochemistry staining on the liver tissues harvested from some of the treated mice is currently being performed. About 70-80% of hepatocytes are stained positive for canine FIX in the mouse injected with AAV2/8.cFIX vector.

B. Hemophilia B Dogs

[0145] Dogs that have a point mutation in the catalytic domain of the F.IX gene, which, based on modeling studies.

26

10 .

5

25 1.

30

appears to render the protein unstable, suffer from hemophilia B [Evans et al, 1989, Proc. Natl. Acad. Sci. USA, 86:10095-10099). A colony of such dogs has been maintained for more than two decades at the University of North Carolina, Chapel Hill. The homeostatic parameters of these dogs are well described and include the absence of plasma F.IX antigen, whole blood clotting times in excess of 60 minutes, whereas normal dogs are 6-8 minutes, and prolonged activated partial thromboplastin time of 50-80 seconds, whereas normal dogs are 13-28 seconds. These dogs experience recurrent spontaneous hemorrhages. Typically, significant bleeding episodes are successfully managed by the single intravenous infusion of 10 ml/kg of normal canine plasma; occasionally, repeat infusions are required to control bleeding. [0146] Four dogs are injected intraportally with AAV.cFIX according to the schedule below. A first dog receives a single injection with AAV2/2.cFIX at a dose of 3.7x10¹¹ genome copies (GC)/kg. A second dog receives a first injection of AAV2/2.cFIX (2.8x10¹¹ GC/kg), followed by a second injection with AAV2/7.cFIX (2.3x10¹³ GC/kg) at day 1180. A third dog receives a single injection with AAV2/2.cFIX at a dose of 4.6x10¹² GC/kg. The fourth dog receives an injection with AAV2/2.cFIX (2.8x10¹² GC/kg) and an injection at day 99.5 with AAV2/7.cFIX (5x10¹² GC/kg).

[0147] The abdomen of hemophilia dogs are aseptically and surgically opened under general anesthesia and a single infusion of vector is administered into the portal vein. The animals are protected from hemorrhage in the peri-operative period by intravenous administration of normal canine plasma. The dog is sedated, intubated to induce general anesthesia, and the abdomen shaved and prepped. After the abdomen is opened, the spleen is moved into the operative field. The splenic vein is located and a suture is loosely placed proximal to a small distal incision in the vein. A needle is rapidly inserted into the vein, then the suture loosened and a 5 F cannula is threaded to an intravenous location near the portal vein bifurcation. After hemostasis is secured and the catheter balloon inflated, approximately 5.0 ml of vector diluted in PBS is infused into the portal vein over a 5 minute interval. The vector infusion is followed by a 5.0 ml infusion of saline. The balloon is then deflated, the callula removed and venous hemostasis is secured. The spleen is then replaced, bleeding vessels are cauterized and the operative wound is closed. The animal is extubated having tolerated the surgical procedure well. Blood samples are analyzed as described. [Wang et al, 2000, *Molecular Therapy* 2: 154-158]

²⁵ [0148] Results showing correction or partial correction are anticipated for AAV2/7.

SEQUENCE LISTING

[0149]

30

35

40

45

50

55

5

15

20

<110> The Trustees of The University of Pennsylvania

<120> A Method of Detecting and/or Identifying Adeno-Associated Virus (AAV) Sequences and Isolating Novel Sequences Identified Thereby

<130> UPN-02735ff

<150> US 60/350,607 <151> 2001-11-13

<150> US 60/341,117

<151> 2001-12-17

<150> US 60/377,066 <151> 2002-05-01

<150> US 60/386,675

<151> 2002-06-05

<170> Patentln version 3.1

<210> 1

<160> 120

<211> 4721

<212> DNA

<213> adeno-associated virus serotype 7

<400> 1

_	ttggccactc	cctctatgcg	cgctcgctcg	ctcggtgggg	cctgcggacc	aaaggtccgc	60
5	agacggcaga	gctctgctct	gccggcccca	ccgagcgagc	gagcgcgcat	agagggagtg	120
	gccaactcca	tcactagggg	taccgcgaag	cgcctcccac	gctgccgcgt	cagcgctgac	180
	gtaaatcacg	tcatagggga	gtggtcctgt	attagctgtc	acgtgagtgc	ttttgcgaca	240
10	ttttgcgaca	ccacgtggcc	atttgaggta	tatatggccg	agtgagcgag	caggatetee	300
	attttgaccg	cgaaatttga	acgagcagca	gccatgccgg	gtttctacga	gatcgtgatc	360
	aaggtgccga	gcgacctgga	cgagcacctg	ccgggcattt	ctgactcgtt	tgtgaactgg	420
15	gtggccgaga	aggaatggga	gctgcccccg	gattctgaca	tggatctgaa	tctgatcgag	480
	caggcacccc	tgaccgtggc	cgagaagctg	cagcgcgact	tcctggtcca	atggcgccgc	540
	gtgagtaagg	ccccggaggc	cctgttcttt	gttcagttcg	agaagggcga	gagctacttc	600
20	caccttcacg	ttctggtgga	gaccacgggg	gtcaagtcca	tggtgctagg	ccgcttcctg	660
	agtcagattc	gggagaagct	ggtccagacc	atctaccgcg	gggtcgagcc	cacgctgccc	720
	aactggttcg	cggtgaccaa	gacgcgtaat	ggcgccggcg	gggggaacaa	ggtggtggac	780
25	gagtgctaca	tccccaacta	cctcctgccc	aagacccagc	ccgagctgca	gtgggcgtgg	840
	actaacatgg	aggagtatat	aagcgcgtgt	ttgaacctgg	ccgaacgcaa	acggctcgtg	900

gcgcagcacc	tgacccacgt	cagccagacg	caggagcaga	acaaggagaa	tctgaacccc	960
aattctgacg	cgcccgtgat	caggtcaaaa	acctccgcgc	gctacatgga	gctggtcggg	1020
tggctggtgg	accggggcat	cacctccgag	aagcagtgga	tccaggagga	ccaggcctcg	1080
tacatctcct	tcaacgccgc	ctccaactcg	cggtcccaga	tcaaggccgc	gctggacaat	1140
gccggcaaga	tcatggcgct	gaccaaatcc	gcgcccgact	acctggtggg	gccctcgctg	1200
cccgcggaca	ttaaaaccaa	ccgcatctac	cgcatcctgg	agctgaacgg	gtacgatcct	1260
gcctacgccg	gctccgtctt	tctcggctgg	gcccagaaaa	agttcgggaa	gcgcaacacc	1320
atctggctgt	ttgggcccgc	caccaceggc	aagaccaaca	ttgcggaagc	catcgcccac	1380
gccgtgccct	tctacggctg	cgtcaactgg	accaatgaga	actttccctt	caacgattgc	1440
gtcgacaaga	tggtgatctg	gtgggaggag	ggcaagatga	cggccaaggt	cgtggagtcc	1500
gccaaggcca	ttctcggcgg	cagcaaggtg	cgcgtggacc	aaaagtgcaa	gtcgtccgcc	1560
cagatcgacc	ccacccccgt	gategteace	tccaacacca	acatgtgcgc	cgtgattgac	1620
gggaacagca	ccaccttcga	gcaccagcag	ccgttgcagg	accggatgtt	caaatttgaa	1680
ctcacccgcc	gtctggagca	cgactttggc	aaggtgacga	agcaggaagt	caaagagttc	1740
ttccgctggg	ccagtgatca	cgtgaccgag	gtggcgcatg	agttctacgt	cagaaagggc	1800
ggagccagca	aaagacccgc	ccccgatgac	gcggatataa	gcgagcccaa	gcgggcctgc	1860
ccctcagtcg	cggatccatc	gacgtcagac	gcggaaggag	ctccggtgga	ctttgccgac	1920
aggtaccaaa	acaaatgttc	tcgtcacgcg	ggcatgattc	agatgctgtt	tccctgcaaa	1980
acgtgcgaga	gaatgaatca	gaatttcaac	atttgcttca	cacacggggt	cagagactgt	2040
ttagagtgtt	tccccggcgt	gtcagaatct	caaccggtcg	tcagaaaaaa	gacgtatcgg	2100
aaactctgcg	cgattcatca	tctgctgggg	cgggcgcccg	agattgcttg	ctcggcctgc	2160
gacctggtca	acgtggacct	ggacgactgc	gtttctgagc	aataaatgac	ttaaaccagg	2220
tatggctgcc	gatggttatc	ttccagattg	gctcgaggac	aacctctctg	agggcattcg	2280
cgagtggtgg	gacctgaaac	ctggagcccc	gaaacccaaa	gccaaccagc	aaaagcagga	2340
caacggccgg	ggtctggtgc	ttcctggcta	caagtacctc	ggaccettca	acggactcga	2400
caagggggag	cccgtcaacg	cggcggacgc	agcggccctc	gagcacgaca	aggcctacga	2460
ccagcagete	aaagcgggtg	acaatccgta	cctgcggtat	aaccacgccg	acgccgagtt	2520
tcaggagcgt	ctgcaagaag	atacgtcatt	tgggggcaac	ctcgggcgag	cagtcttcca	2580
ggccaagaag	cgggttctcg	aacctctcgg	tciggttgag	gaaggcgcta	agacggctcc	2640
tgcaaagaag	agaccggtag	agccgtcacc	tcagcgttcc	cccgactcct	ccacgggcat	2700
cggcaagaaa	ggccagcagc	ccgccagaaa	gagactcaat	ttcggtcaga	ctggcgactc	2760
agagtcagtc	cccgaccctc	aacctctcgg	agaacctcca	gcagcgccct	ctagtgtggg	2820

atctggtaca gtggctgcag gcggtggcgc accaatggca gacaataacg aaggtgcc	ga 2880
cggagtgggt aatgcctcag gaaattggca ttgcgattcc acatggctgg gcgacaga	gt 2940
cattaccact agraccogaa cotgggoodt goodacctac aacaaccaco totacaag	ca 3000
aatctccagt gaaactgcag gtagtaccaa cgacaacacc tacttcggct acagcacc	c 3060
ctgggggtat tttgacttta acagattcca ctgccacttc tcaccacgtg actggcag	eg (3120
actcatcaac aacaactggg gattccggcc caagaagctg cggttcaagc tcttcaaca	at 3180
ccaggicaag gaggicacga cgaatgacgg cgitacgacc atcgctaata accitacca	ag 3240
cacgattcag gtattctcgg actcggaata ccagctgccg tacgtcctcg gctctgcgc	a 3300
ccagggctgc ctgcctccgt tcccggcgga cgtcttcatg attcctcagt acggctac	st 3360
gactotcaac aatggcagto agtotgtggg acgttoctoc ttotactgco tggagtact	t 3420
cccctctcag atgctgagaa cgggcaacaa ctttgagttc agctacagct tcgaggacg	rt 3480
gcetttecae ageagetaeg cacacageca gageetggae eggetgatga atcecetes	t 3540
cgaccagtac ttgtactacc tggccagaac acagagtaac ccaggaggca cagctggca	a 3600
togggaactg cagttttacc agggegggcc ttcaactatg geogaacaag ccaagaatt	g 3660
gttacctgga ccttgcttcc ggcaacaaag agtctccaaa acgctggatc aaaacaaca	a 3720
cagcaacttt gettggaetg gtgccaccaa atateacetg aacggcagaa actegttgg	t 3780
taatcccggc gtcgccatgg caactcacaa ggacgacgag gaccgctttt tcccatcca	g 3840
cggagtcctg atttttggaa aaactggagc aactaacaaa actacattgg aaaatgtgt	t 3900
aatgacaaat gaagaagaaa ttcgtcctac taatcctgta gccacggaag aatacggga	t 3960
agreageage aacttacaag eggetaatae tgeageeeag acacaagttg teaacaace	a 4020
gggagcctta cctggcatgg tctggcagaa ccgggacgtg tacctgcagg gtcccatct	g 4080
ggccaagatt cctcacacgg atggcaactt tcacccgtct cctttgatgg gcggctttg	g 4140
acttaaacat cogootooto agatootgat caagaacact coogttooog ctaatooto	= 4200
ggaggtgttt actcctgcca agtttgcttc gttcatcaca cagtacagca ccggacaag	4260
cagegragaa ategagtagg agetgeagaa ggaaaacage aagegetaga acceggaga	4320
tcagtacace tecaactttg aaaagcagac tggtgtggac tttgccgttg acagccagg	4380
tgtttactct gagcctcgcc ctattggcac tcgttacctc acccgtaatc tgtaattgca	4440
tgttaatcaa taaaccggtt gattcgtttc agttgaactt tggtctcctg tgcttcttat	4500
cttatcggtt tccatagcaa ctggttacac attaactgct tgggtgcgct tcacgataac	4560
aacactgacg tcaccgcggt accectagtg atggagttgg ccactecete tatgcgcget	4620
cgctcgctcg gtggggcctg cggaccaaag gtccgcagac ggcagagctc tgctctgccg	4680
gccccaccga gcgagcgagc gcgcatagag ggagtggcca a	4721

<210> 2 <211> 737

<212> PRT

<213> capsid protein of adeno-associated virus serotpye 7

	<400> 2)														
5	,,,,,															
	Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	qeA	Trp 10	Leu	Glu	qeA	Asn	Leu 15	Se
10 ` `	Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Азр	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
15	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asn	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
20	Val 65	Asn	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 08
25	Gln	Gln	Leu		Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	_	Gly
30	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
35	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Ala	Lys	Lys	Arg
	Pro 145	Val	Glu	Pro	Ser	Pro 150	Gln	Arg	șer	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
40	Gly	Lys	Lys	GЛÀ	Gln 165	Gln	Pro	Ala	Arg	Lys 170	Arg	Leu	Asn	Phe	Gly 175	Gln
45 ·	Thr	Gly	Asp	Ser 180	Glu	Ser	Val	Pro	Asp 185	Pro	Gln	Pro	Leu	190		Pro
	Pro	Ala	Ala 195	Pro	Ser	Ser	Val	Gly 200	Ser	Gly	Thr	Val	Ala 205	Ala		Gly
50	Gly	Ala. 210	Pro	Met	Ala	Asp	Asn 215	Asn	Glu	GJY	Ala	Asp 220	Gly	Val	Gly	Asn
55	Ala 225	Ser	Gly	aeA	Trp	His 230	Суз	qeA	Ser	Thr	Trp 235	Leu	Gly	Asp	Arg	Val 240

5	11	e Th	r Thi	Ser	Thr 245		, Thr	Trp	Ala	250		Thr	Туг	Asn	255	His
•	Le	ц Ту	c Lys	Gln 260		Ser	Ser	: Glu	265		. Gly	/ Ser	Thr	Asn 270		asA o
10	Th	т Ту	275	Gly	Tyr	Ser	: Thr	Pro 280		Gly	Tyr	Phe	285		Asr	Arg
15	Ph	e His 290	e Cys	His	Phe	Ser	Pro 295		qeA	Trp	Gln	A≍g 300		Ile	Asn	aeA
	As 30		Gly	Phe	Arg	Pro 310		Lys	Leu	Arg	Phe 315		Leu	Phe	Asn	Ile 320
20	G1:	n Val	. Lys	Glu	Val 325	Thr	Thr	Asn	qeA	Gly 330	Val	Thr	Thr	Ile	Ala 335	Asn
25	As	n Leu	Thr	Ser 340	Thr	Ile	Gln	Val	Phe 345	Ser	Asp	Ser	Glu	Tyr 350	Gln	Leu
	Pro	Tyr	Val 355	Leu	Gly	Ser	Ala	His 360	Gln	Gly	Суз	Leu	Pro 365	Pro	Phe	Pro
30	Ala	370	Val	Phe	Met	Ile	Pro 375	Gln	Tyr	Gly	Tyr	Leu 380	Thr	Leu	Asn	Asn
35	G1; 385	y Ser	Gln	Ser	Val	390	Arg	Ser	Ser	Phe	Tyr 395	Cys	Leu	Glu	Tyr	Phe 400
	Pro) Ser	Gln	Met	Leu 405	Arg	Thr	Gly	Asn	Asn 410	Phe	G lu	Phe	Ser	Tyr 415	Ser
40	Ph€	: Glu	Asp	Val 420	Pro	Phe	His	Ser	Ser 425	Tyr	Ala	His	Ser	Gln 430	Ser	Leu
45	qe A	Arg	Leu 435	Met	Asn	Pro	Leu	Ile 440	Asp	Gln	Tyr	Leu	Tyr 445	Tyr	Leu	Ala
	Arg	Thr 450	Gln	Ser	Asn	Pro	Gly 455	Gly	Thr	Ala	Gly	Asn 460	Arg	Glu	Leu	Gln
50	Phe 465	Tyr	Gln	Gly		Pro 470	Ser	Thr	Met	Ala	Glu 475	Gln	Ala	Lys	Asn	Trp 480
55	Leu	Pro	Gly	Pro	Cys 485	Phe	Arg	Gln	Gln	Arg 490	Val	Ser	Lys	Thr	Leu 495	Asp

5		Glr	a Asn	Asn	500		: Asn	Phe	: Ala	7rp 505		: Gly	Ala	Thr	510	•	His
		Lev	a Asn	Gly 515		Asn	Ser	Leu	Val 520		Pro	Gly	Va]	Ala 525		: Ala	Thr
10	. ,	His	Lys 530		Asp	Glu	dsY	Arg 535		Phe	Pro	Ser	Sex 540		Val	Leu	Ile
15		Phe 545		Lys	Thr	Gly	Ala 550		neA	Lys	Thr	Thr 555		Glu	. Asn	Val	Leu 560
		Met	Thr	neA	Glu	Glu 565		Ile	Arg	Pro	Thr 570		Pro	Val	Ala	Thr 575	Glu
20		Glu	Tyr	Gly	Ile 580	Val	Ser	ser	Asn	Leu 585	Gln	Ala	Ala	Asn	Thr 590	Ala	Ala
25	•	Gln	Thr	Gln 595	Val	Val	aeA	Asn	Gln 600	Gly	Ala	Leu	Pro	Gly 605	Met	Val	Trp
		Gln	Asn 610	Arg	Asp.	Val	Tyr	Leu 615	Gln	Gly	Pro	Ile	Trp 620	Ala	Lys	Ile	Pro
30		His 625	Thr	Asp	Gly	Asn	Phe 630	His	Pro	Ser	Pro	Leu 635	Met	Gly	Gly	Phe	Gly 640
35		Leu	Lys	His	Pro	Pro 645	Pro	Gln	Ile	Leu	Ile 650	ГÀЗ	Asn	Thr	Pro	Val 655	Pro
		Ala	Asn	Pro	Pro 660	Glu	Val	Phe	Thr	Pro 665	Ala	Lys	Phe	Ala	Ser 670	Phe	Ile
40		Thr	Gln .	Tyr 675	Ser	Thr	ely	Gln	Val 680	Ser	Val	Glu	Ile	Glu 685	Trp	Glu	Leu
45		Gln	Lys 690	Glu	Asn	Ser	Гуз	Arg 695	Trp	Asn	Pro	Glu	Ile 700	Gln	Tyr	Thr	Ser
		Asn 705	Phe	Glu	Lys	Gln	Thr 710	Gly	Val	qeA	Phe	Ala 715	Val	qeA	Ser	Gln	Gly 720
50		Val	Tyr	Ser	Glu	Pro 725	Arg	Pro	Ile		Thr 730	Arg	Tyr	Leu	Thr	Arg 735	Asn
55		Leu															

<210> 3

<211> 623 <212> PRT

<213> rep protein of adeno-associated virus serotype 7

5	<400> 3	3															
10		Met 1	Pro	Gly	Phe	Tyr 5	Glu	Ile	· Val	. Ile	Lys 10	Val	. Pro	Ser	qe <i>A</i>	Leu 15	Asp
70		Glu	His	Leu	Pro 20	Gly	Ile	Ser	Asp	Ser 25	Phe	Val	Asn	Trp	Val 30	Ala	Glu
15		Lys	Glu	Trp 35	Glu	·Leu	Pro	Pro	Asp 40	Ser	Asp	Met	Asp	Leu 45	Asn	Leu	Ile
20		Glu	Gln 50	Ala	Pro	Leu	Thr	Val 55	Ala	Glu	Lys	Leu	Gln 60	Arg	Asp	Phe	Leu
		Val 65	Gln	Trp	Arg	Arg	Val 70	Ser	Lys	Ala	Pro	Glu 75	Ala	Leu	Phe	Phe	Val 80
25						85					90					95	Glu
30					100					105					110		Ile
				115				•	120					125			Leu
35			130					135					140				Gly
40		145					150					155			Leu		160
						165					170				Glu	175	
45					180					185					Ala 190		
50				195					200					205	Asn		
			210					215					220		Ala		
55		Met 225	Glu	Leu	Val	Gly	Trp 230	Leu	Val .	Asp		Gly 235	Ile	Thr	Ser	Glu	Lys 240

	Gln	Trp	Ile	: Gln	Glu 245		Gln	Ala	ser	250		ser	Phe	: Asr	Ala 255	Ala
5	Ser	A.S.D.	Ser	Arg 260		Gln	Ile	Lys	265		Lev	Asp	Asn	Ala 270		Lys
10	Ile	Met	Ala 275		Thr	ГÀз	Ser	Ala 280		Asp	Tyr	Leu	Val 285		Pro	Ser
	Leu	Pro 290		Asp	Ile	Lys	Thr 295	Asn	Arg	Ile	Tyr	Arg 300		Leu	Glu	Leu
15	Asn 305	Gly	Tyr	Asp	Pro	Ala 310		Ala	Gly	Ser	Val 315	Phe	Leu	Gly	Trp	Ala 320
20	Gln	Lys	Lys	Phe	Gly 325	Lys	Arg	Asn	Thr	Ile 330		Leu	Phe	Gly	Pro 335	Ala
25	Thr	Thr	Gly	Lys 340	Thr	Дзn	Ile	Ala	Glu 345	Ala	Ile	Ala	His	Ala 350	Val	Pro
25	Phe	Tyr	Gly 355	Cys	Val	neA	Trp	Thr 360	Asn	Glu	Asn	Phe	Pro 365	Phe	Asn	ДЗр
30	Cys	Val 370	qeA	r ya	Met	Val	Ile 375	Trp	Trp	Glu	Glu	Gl y 380	Lys	Met	Thr	Ala
35	Lys 385	Val	Val	Glu [,]	Ser	Ala 390	Lys	Ala	lle	Leu	Gly 395	elà	Ser	Lys	Val	Arg 400
	Val	Asp	Gln	Lys	Cys 405	Lys	Ser	Ser	Ala	Gln 410	Ile	Asp	Pro	Thr	Pro 415	Val
40	Ile	Val	Thr	Ser 420	Asn	Thr	Asn	Met	Cys 425	Ala	Val	Ile	qeA	Gly 430	Asn	Ser
45	Thr	Thr	Phe 435	Glu	His	Gln	Gln	Pro 440	Leu	Gln	Asp	Arg	Met 445	Phe	Lys	Phe
	Glu	Leu 450	Thr	Arg	AIg	Leu	Glu 455	His	Asp	Phe	Gly	Lys 460	Val	Thr	ГУэ	Gln
50	Glu 465	Val	Lys	Glu	Phe	Phe 470	Arg	Trp	Ala	Ser	Asp 475	His	Val	Thr	G1u	Val 480
55	Ala	His	Glu	Phe	Tyr 485	Val	Arg	Lys	Gly	Gly 490	Ala	ser	Lys	Arg	Pro 495	Ala

=		Pro	Asp	Дзр	Ala 500	Asp	Ile	Ser	Glu	Pro 505		Arg	Ala	Cys	Pro 510		Val
5		Ala	Asp	Pro 515	Ser	Thr	Ser	Ąsp	Ala 520	Glu	Gly	Ala	Pro	Val 525	Asp	Phe	Ala
10		qeA	Arg 530	Tyr	Gln	Asn		Cys 535	Ser	Arg	His	Ala	Gly 540	Met	Ile	Gln	Met
15		Leu 545	Phe	Pro	Суз	Lys	Thr 550	Суз	Glu	Arg	Met	Asn 555	Ğln	Asn	Phe	Asn	Ile 560
.0		Cys	Phe	Thr	His	Gly 565	Val	Arg	qeA	Cys	Leu 570	Glu	Суз	Phe	Pro	Gly 575	Val
20		Ser	Glu	Ser	Gln 580	Pro	Val	Val	Arg	Lys 585	Lys	Thr	Tyr	Arg	Lys 590	Leu	Суз
25	٠	Ala	Ile	His 595	His	Leu	Leu	Gly	Arg 600	Ala	Pro	Glu	Ile	Ala 605	Cys	Ser	Ala
		Суз	Asp 610	Leu	Val	neA	Val	Asp 615	Leu	Asp	qeA	Суз	Val 620	Ser	Glu	Gln	
<i>30</i>	<210> 4																
	<211> 43																
	<212> DI		oood!	atad ··	i=1.0 c.		. 0										
	<213> ac	ieno-a	ISSOCI	aleo V	irus Se	erotype	₽ŏ										
35	<400> 4																
													-	•			

cagagagga	grggccaact	ccatcactag	gggtagcgcg	aagcgcctcc	cacgctgccg	60
cgtcagcgct	gacgtaaatt	acgtcatagg	ggagtggtcc	tgtattagct	gtcacgtgag	120
tgcttttgcg	gcattttgcg	acaccacgtg	gccatttgag	gtatatatgg	ccgagtgagc	180
gagcaggatc	tccattttga	ccgcgaaatt	tgaacgagca	gcagccatgc	cgggcttcta	240
cgagatcgtg	atcaaggtgc	cgagcgacct	ggacgagcac	ctgccgggca	tttctgactc	300
gtttgtgaac	tgggtggccg	agaaggaatg	ggagctgccc	ccggattctg	acatggatcg	360
gaatctgatc	gagcaggcac	ccctgaccgt	ggccgagaag	ctgcagcgcg	acttcctggt	420
ccaatggcgc	cgcgtgagta	aggccccgga	ggccctcttc	tttgttcagt	tcgagaaggg	480
cgagagctac	tttcacctgc	acgttctggt	cgagaccacg	ggggtcaagt	ccatggtgct	540
aggccgcttc	ctgagtcaga	ttcgggaaaa	gcttggtcca	gaccatctac	ccgcggggtc	60 0
gagccccacc	ttgcccaact	ggttcgcggt	gaccaaagac	gcggtaatgg	cgccggcggg	660
ggggaacaag	gtggtggacg	agtgctacat	ccccaactac	ctcctgccca	agactcagcc	720
cgagctgcag	tgggcgtgga	Ctaacatqqa	ggagtatata	agcgcgtgct	tgaacctggc	780

	cgagcgcaaa	cggctcgtgg	cgcagcacct	gacccacgt	c agccagacg	c aggagcagaa	840
5	caaggagaat	ctgaacccca	attctgacgo	gcccgtgat	c aggtcaaaa	a cctccgcgcg	900
·	ctatatggag	ctggtcgggt	ggctggtgga	ccggggcat	c acctccgag	a agcagtggat	960
	ccaggaggac	caggcctcgt	acatotoott	caacgccgc	c tocaactog	c ggtcccagat	1020
10	caaggccgcg	ctggacaatg	ccggcaagat	catggcgct	g accaaatcc	g cgcccgacta	10.80
	cstggtgggg	ccctcgctgc	ccgcggacat	tacccagaad	cgcatctac	gcatcctcgc	1140
	tctcaacggc	tacgaccctg	cctacgccgg	ctccgtctt	t ctcggctgg	g ctcagaaaaa	1200
15	gttcgggaaa	cgcaacacca	tctggctgtt	tggacccgcc	accaccggca	a agaccaacat	1260
	tgcggaagcc	atogcccacg	ccgtgccctt	ctacggctgc	gtcaactgga	ccaatgagaa	1320.
	ctttcccttc	aatgattgcg	tcgacaagat	ggtgatctgg	tgggaggagg	gcaagatgac	1380
20	ggccaaggtc	gtggagtccg	ccaaggccat	tctcggcggc	agcaaggtgc	gcgtggacca	1440
	aaagtgcaag	tegteegeee	agatogacco	cacccccgtg	atogtoacct	ccaacaccaa	1500
	catgtgcgcc	gtgattgacg	ggaacagcac	caccttcgag	caccagcagc	ctctccagga	1560
25	ccggatgttt	aagttcgaac	tcacccgccg	tctggagcac	gactttggca	aggtgacaaa	1620
	gcaggaagtc	aaagagttct	tccgctgggc	cagtgatcac	gtgaccgagg	tggcgcatga	1680
	gttttacgtc	agaaagggcg	gagccagcaa	aagacccgcc	cccgatgacg	cggataaaag	1740
30	cgageceaag	cgggcctgcc	cctcagtcgc	ggatccatcg	acgtcagacg	cggaaggagc	1800
	tccggtggac	tttgccgaca	ggtaccaaaa	caaatgttct	cgtcacgcgg	gcatgcttca	1860
	gatgctgttt						1920
35	acacggggtc a	agagactgct	cagagtgttt	ccccggcgtg	tcagaatctc	aaccggtcgt	1980
	cagaaagagg a	acgtatcgga .	aactctgtgc	gattcatcat	ctgctggggc	gggctecega	2040
	gattgcttgc t	teggeetgeg	atctggtcaa	cgtggacctg	gatgactgtg	tttctgagca	2100
40	ataaatgact t						2160
	acctctctga g	ggcattcgc (gagtggtggg	cgctgaaacc	tggagccccg	aagcccaaag	2220
	ccaaccagca a	aagcaggac (gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	2280
45	gaccetteaa e	ggactcgac a	aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	2340
	agcacgacaa g	gcctacgac o	eagcagctgc	aggcgggtga	caatccgtac	ctgcggtata	2400
	accacgccga c	gccgagttt d	aggagcgtc '	tgcaagaaga	tacgtctttt	gggggcaacc	2460
50	tcgggcgagc a	gtcttccag g	rccaagaagc q	gggttctcga	acctctcggt	ctggttgagg	2520
	aaggcgctaa g	acggctcct g	gaaagaaga g	gaccggtaga	gccatcaccc	cagegttete	2580
	cagactecte t	acgggcatc g	gcaagaaag g	gccaacagcc	cgccagaaaa	agactcaatt	2640
55	ttggtcagac t	ggcgactca g	agtcagttc o	cagaccetca	acctctcgga	gaacctccag	2700

	cagegeeete	rggrgrggga	CCTARTACAA	rggcrgcagg	cggtggcgca	ccaatggcag	2 / 60
	acaataacga	aggcgccgac	ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	2820
	catggctggg	cgacagagtc	atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	2880
	acaaccacct	ctacaagcaa	atctccaacg	ggacatcggg	aggagccacc	aacgacaaca	2940
`	cctacttcgg	ctacagcacc	ccctgggggt	attttgactt	taacagattc	cactgccact	3000
,	tttcaccacg	tgactggcag	cgactcatca	acaacaactg	gggattccgg	cccaagagac	3060
	tcagcttcaa	gctcttcaac	atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	3120
	ccatcgccaa	taacctcacc	agcaccatcc	aggtgtttac	ggactcggag	taccagctgc	3180
	cgtacgttct	cggctctgcc	caccagggct	gootgootco	gttcccggcg	gacgtgttca	3240
	tgattcccca	gtacggctac	ctaacactca	acaacggtag	tcaggccgtg	ggacgctcct	3300
	ccttctactg	cctggaatac	tttccttcgc	agatgctgag	aaccggcaac	aacttccagt	3360
	ttacttacac	cttcgaggac	gtgcctttcc	acagcagcta	cgcccacagc	cagagettgg	3420
	accggctgat	gaatcctctg	attgaccagt	acctgtacta	cttgtctcgg	actcaaacaa	3480
	caggaggcac	ggcaaatacg	cagactctgg	gcttcagcca	aggtgggcct	aatacaatgg	3540
	ccaatcaggc	aaagaactgg	ctgccaggac	cctgttaccg	ccaacaacgc	gtctcaacga	3600
	caaccgggca	aaacaacaat	agcaactttg	cctggactgc	tgggaccaaa	taccatctga	3660
	atggaagaaa	ttcattggct	aatcctggca	tegetatgge	aacacacaaa	gacgacgagg	3720
	agcgtttttt	tcccagtaac	gggatcctga	tttttggcaa	acaaaatgct	gccagagaca	3780
	atgcggatta	cagcgatgtc	atgctcacca	gcgaggaaga	aatcaaaacc	actaaccctg	3840
	tggctacaga	ggaatacggt	atcgtggcag	ataacttgca	gcagcaaaac	acggctcctc	3900
	aaattggaac	tgtcaacagc	cagggggcct	tacccggtat	ggtctggcag	aaccgggacg	3960
	tgtacctgca	gggtcccatc	tgggccaaga	ttcctcacac	ggacggcaac	ttccacccgt	4020
	ctccgctgat	gggeggettt	ggcctgaaac	atcctccgcc	tcagatcctg	atcaagaaca	4080
	cgcctgtacc	tgcggatcct	ccgaccacct	tcaaccagtc	aaagctgaac	tctttcatca	4140
:.	cgcaatacag	caccggacag	gtcagcgtgg	amattgamtg	ggagctgcag	aaggaaaaca	4200
	gcaagcgctg	gaaccccgag	atccagtaca	cctccaacta	ctacaaatct	acaagtgtgg	4260
	actttgctgt	taatacagaa	ggcgtgtact	ctgaaccccg	ccccattggc	accegttace	4320
	tcacccgtaa	tctgtaattg	cctgttaatc	aataaaccgg	ttgattcgtt	tcagttgaac	4380
	tttggtctct	gcg					4393

<210> 5

<211> 4385

<212> DNA

<213> adeno-associated virus serotype 9

<400> 5

						_	
	cagagaggg	a gtggccaact	ccatcactag	g gggtaatcgc	gaagegeet	ccacgetgee	60
	gcgtcagcg	c tgacgtagat	tacgtcatag	gggagtggtc	ctgtattage	tgtcacgtga	120
5	gtgcttttg	c gacattttgc	gacaccacat	ggccatttga	ggtatatat	g gccgagtgag	180
	cgagcagga	t ctccattttg	accgcgaaat	ttgaacgagc	agcagccato	ccgggcttct	240
	acgagattg	t gatcaaggtg	ccgagcgacc	tggacgagca	cetgecága	atttctgact	300
10	cttttgtga	a ctgggtggcc	gagaaggaat	gggagetgee	cccggattct	gacatggatc	360
	ggaatctga	t cgagcaggca	cccctgaccg	tggccgagaa	gctgcagcgc	gacttcctgg	420
	tccaatggc	g ccgcgtgagt	aaggccccgg	aggccctctt	ctttgttcag	ttcgagaagg	480
15	gcgagagct	a ctttcacctg	cacgttctgg	tcgagaccac	gggggtcaag	tccatggtgc	540
	taggccgct	cctgagtcag	attcgggaga	agctggtcca	gaccatctac	cgcgggatcg	600
	agccgaccci	gcccaactgg	ttcgcggtga	ccaagacgcg	taatggcgcc	ggcgggggga	660
20	acaaggtggt	ggacgagtgc	tacatcccca	actacetect	gcccaagact	cagcccgagc	720
	tgcagtggg	gtggactaac	atggaggagt	atataagcgc	gtgcttgaac	ctggccgagc	780
25	gcaaacggct	cgtggcgcag	cacctgaccc	acgtcagcca	gacgcaggag	cagaacaagg	84.0
25	agaatctgaa	ccccaattct	gacgcgcccg	tgatcaggtc	a aaaacctcc	gcgcgctaca	900
	tggagctggt	cgggtggctg	gtggaccggg	gcatcacctc	cgagaagcag	tggatccagg	960
30	aggaccaggo	ctcgtacatc	tccttcaacg	ccgcctccaa	ctcgcggtcc	cagatcaagg	1020
30	ccgcgctgga	caatgccggc	aagatcatgg	cgctgaccaa	atccgcgccc	gactacctgg	1080
		acttccggtg					1140
35	acggctacga	ccctgcctac	gccggctccg	tetttetegg	ctgggcacaa	aagaagttcg	1200
	ggaaacgcaa	caccatorgg	ctgtttgggc	cggccaccac	gggaaagacc	aacatcgcag	1260
	aagccattgo	ccacgccgtg	cccttctacg	gctgcgtcaa	ctggaccaat	gagaactttc	1320
40	ccttcaacga	ttgcgtcgac	aagatggtga	tctggtggga	ggagggcaag	atgacggcca	1380
	aggtcgtgga	gtccgccaag	gccattotog	gcggcagcaa	ggtgcgcgtg	gaccaaaagt	1440
	gcaagtcgtc	cgcccagatc	gaccccactc	ccgtgatcgt	cacctccaac	accaacatgt	1500
45	gcgccgtgat	tgacgggaac	agcaccacct	tcgagcacca	gcagcctctc	caggaccgga	1560
	tgtttaagtt	cgaactcacc	egeegtetgg	agcacgactt	tggcaaggtg	acaaagcagg	1620
	aagtcaaaga	gttcttccgc	tgggccagtg	atcacgtgac	cgaggtggcg	catgagtttt	1680
50	acgtcagaaa	gggcggagcc	agcaaaagac	ccgcccccga	tgacgcggat	aaaagcgagc	1740
50	ccaagcgggc	ctgcccctca	gtcgcggatc	catcgacgtc	agacgcggaa	ggagctccgg	1800
	tggactītgc	cgacaggtac	caaaacaaat	gttctcgtca	cgcgggcatg	cttcagatgc	1860.
55	tgcttccctg	caaaacgtgc	gagagaatga	atcagaattt	caacatttgc	ttcacacacg	1920

	gggtcagaga ctgctcagag tgtttccccg gcgtgtcaga atctcaaccg gtcgtcagaa	1980
	agaggacgta toggaaacto tgtgogatto atcatotgot ggggogggot coogagattg	2040
5	cttgctcggc ctgcgatctg gtcaacgtgg acctggatga ctgtgtttct gagcaataaa 2	2100
	tgacttaaac caggtatggc tgccgatggt tatcttccag attggctcga ggacaacctc 2	2160
	tetgagggea ttegegagtg gtgggegetg aaacetggag eecegaagee caaagecaae 2	2220
10	cagcaaaagc aggacgacgg ccggggtctg gtgcttcctg gctacaagta cctcggaccc 2	2280
	ttcaacggac tcgacaaggg ggagcccgtc aacgcggcgg acgcagcggc cctcgagcac 2	2340
	ggcaaggcet acgaccagca getgcaggeg ggtgacaate egtacetgeg gtataaceae 2	400
15	gccgacgccg agtttcagga gcgtctgcaa gaagatacgt cttttggggg caacctcggg 2	460
	cgagcagtet tecaggecaa gaagegggtt etegaacete teggtetggt tgaggaagge 2	520
	gctaagacgg ctcctggaaa gaagagaccg gtagagccat caccccagcg ttctccagac 2	580
20	tectetacgg geateggeaa gaaaggeeaa cageeegeea gaaaaagaet caattttggt 2	640
	cagactggcg actcagagtc agttccagac cctcaacctc tcggagaacc tccagcagcg 2	700
	ccctctggtg tgggacctaa tacaatggct gcaggcggtg gcgcaccaat ggcagacaat 2	7 60
25	aacgaaggeg cegacggagt gggtaattee tegggaaatt ggcattgega ttecacatgg 2	820
	ctgggggaca gagtcatcac caccagcacc cgaacctggg cattgcccac ctacaacaac 2	880
20	cacctctaca agcasatctc caatggaaca tcgggaggaa gcaccaacga caacacctac 2	940
30	tttggctaca gcacccctg ggggtatttt gacttcaaca gattccactg ccacttctca 3	000
	ccacgtgact ggcagcgact catcaacaac aactggggat teeggecaaa gagactcaac 3	060
35	ttcaagetgt teaacateca ggteaaggag gttaegaega acgaaggeae caagaecate 3	120
`	gccaataacc ttaccagcac cgtccaggtc tttacggact cggagtacca gctaccgtac 3	180
	gtoctaggot otgoccacca aggatgootg coaccgttto otgoagacgt ottoatggtt 3	240
40	cctcagtacg gctacctgac gctcaacaat ggaagtcaag cgttaggacg ttcttctttc 3	300
40	tactgtctgg aatacttccc ttctcagatg ctgagaaccg gcaacaactt tcagttcagc 33	360
	tacactttcg aggacgtgcc tttccacagc agctacgcac acagccagag tctagatcga 34	120
45	ctgatgaacc ccctcatcga ccagtaccta tactacctgg tcagaacaca gacaactgga 34	180
70	actgggggaa ctcaaacttt ggcattcagc caagcaggcc ctagctcaat ggccaatcag 35	540
	gctagaaact gggtacccgg gccttgctac cgtcagcagc gcgtctccac aaccaccaac 36	00
50	caaaataaca acagcaactt tgcgtggacg ggagctgcta aattcaagct gaacgggaga 36	60
50	gactegetaa tgaateetgg egtggetatg geategeaca aagaegaega ggacegette 37	120
	tttccatcaa gtggcgttct catatttggc aagcaaggag ccgggaacga tggagtcgac 37	80
55	tacagecagg tgctgattac agatgaggaa gaaattaaag ccaccaaccc tgtagecaca 38	140

	gaggaatacg	gagcagtggc	catcaacaac	caggccgcta	acacgcaggc	gcaaactgga	3900
5	cttgtgcata	accagggagt	tattcctggt	atggtctggc	agaaccggga	cgtgtacctg	3960
,	cagggcccta	tttgggctaa	aatacctcac	acagatggca	actttcaccc	gtctcctctg	4020
	atgggtggat	ttggactgaa	acacccacct	ccacagattc	taattaaaaa	tacaccagtg	4080
10	ccggcagatc	ctcctcttac	cttcaatcaa	gccaagctga	actctttcat	cacgcagtac	4140
70	agcacgggac	aagtcagcgt	ggaaatcgag	tgggagctgc	agaaagaaaa	cagcaagcgc	4200
	tggaatccag	agatccagta	tacttcaaac	tactacaaat	ctacaaatgt	ggactttgct	4260
15	gtcaatacca	aaggtgttta	ctctgagcct	cgccccattg	gtactcgtta	cctcacccgt	4320
	aatttgtaat	tgcctgttaa	tcaataaacc	ggttaattcg	tttcagttga	actttggtct	4380
	ctgcg						4385
20							
	<210> 6						
	<211> 4718						
	<212> DNA						
	<213> adeno-assoc	iated virus serot	ype 1				
25							
	<400> 6						

<400>6

30

35

40

45

50

55

ttgcccactc cctctctgcg cgctcgctcg ctcggtgggg cctgcggacc aaaggtccgc 60 agacggcaga gctctgctct gccggcccca ccgagcgagc gagcgcgcag agagggagtg 120 ggcaactcca tcactagggg taatcgcgaa gcgcctccca cgctgccgcg tcagcgctga 180 cgtaaattac gtcatagggg agtggtcctg tattagctgt cacgtgagtg cttttgcgac 240 attttgcgac accacgtggc catttagggt atatatggcc gagtgagcga gcaggatctc 300 cattttgacc gcgaaatttg aacgagcagc agccatgccg ggcttctacg agatcgtgat 360 caaggtgeeg agegaeetgg acgageaeet geegggeatt tetgaetegt ttgtgagetg 420 ggtggccgag aaggaatggg agctgcccc ggattctgac atggatctga atctgattga 480 gcaggcaccc ctgaccgtgg ccgagaagct gcagcgcgac ttcctggtcc aatggcgccg 540 cgtgagtaag gccccggagg ccctcttctt tgttcagttc gagaagggcg agtcctactt 600 ccacctccat attotggtgg agaccacggg ggtcaaatcc atggtgctgg gccgcttcct 660 gagtcagatt agggacaagc tggtgcagac catctaccgc gggatcgagc cgaccctgcc 720 caactggttc gcggtgacca agacgcgtaa tggcgccgga ggggggaaca aggtggtgga 780 cgagtgctac atccccaact acctcctgcc caagactcag cccgagctgc agtgggcgtg 840 gactaacatg gaggagtata taagcgcctg tttgaacctg gccgagcgca aacggctcgt 900 ggcgcagcac ctgacccacg tcagccagac ccaggagcag aacaaggaga atctgaaccc 960 caattetgae gegeetgtea teeggteaaa aaceteegeg egetacatgg agetggtegg 1020 gtggctggtg gaccggggca tcacctccga gaagcagtgg atccaggagg accaggcctc 1080

. . 30

gtacatctc	c ttcaacgcc	g cttccaact	c gcggtccca	g atcaaggcc	g ctctggacaa	1140
tgccggcaa	g atcatggcg	c tgaccaaat	cgcgcccga	tacctggta	g gccccgctcc	1200
gcccgcgga	c attaaaacc	a accgcatct	a cogcatect	g gagctgaac	g gctacgaacc	1260
tgcctacgc	ggctccgtct	ttotoggot	g ggcccagaaa	a aggttcggg	agcgcaacac	1320
catctggct	g tttgggccg	g ccaccacgg	g cajagaccaac	atogoggaag	, ccatcgccca	1380
cgccgtgcc	ttctacggct	gegteaact	gaccaatgag	, aactttccct	tcaatgattg	1440
cgtcgacaa	g atggtgatct	ggtgggagga	gggcaagatg	acggccaagg	tcgtggagtc	1500
cgccaaggc	attotoggog	gcagcaaggt	: gcgcgtggac	: caaaagtgca	agtcgtccgc	1560
ccagatcgac	ccaccccg	tgatcgtcac	: ctccaacacc	: aacatgtgcg	ccgtgattga	1620
cgggaacagc	accaccttcg	agcaccagca	gccgttgcag	gaccggatgt	tcaaatttga	1680
actcacccgc	cgtctggagc	atgactttgg	caaggtgaca	aagcaggaag	tcaaagagtt	1740
cttccgctgg	gegeaggate	acgtgaccga	ggtggcgcat	gagttctacg	tcagaaaggg	1800
tggagccaac	aaaagacccg	cccccgatga	cgcggataaa	agcgagccca	agcgggcctg	1860
cccctcagtc	gcggatccat	cgacgtcaga	cgcggaagga	gctccggtgg	actttgccga	1920
caggtaccaa	aacaaatgtt	ctcgtcacgc	gggcatgctt	cagatgctgt	ttccctgcaa	1980
gacatgcgag	agaatgaatc	agaatttcaa	catttgcttc	acgcacggga	cgagagactg	2040
ttcagagtgc	ttccccggcg	tgtcagaatc	tcaaccggtc	gtcagaaaga	ggacgtatcg	2100
gaaactctgt	gccattcatc	atctgctggg	gc g ggctccc	gagattgctt	gctcggcctg	2160
cgatctggtc	aacgtggacc	tggatgactg	tgtttctgag	caataaatga	cttaaaccag	2220
gtatggctgc	cgatggttat	cttccagatt	ggctcgagga	caácctctct	gagggcattc	2280
gcgagtggtg	ggacttgaaa	cctggagccc	cgaagcccaa	agccaaccag	cassagcagg	2340
acgacggccg	gggtctggtg	cttcctggct	acaagtacct	cggacccttc	aacggactcg	2400
acaaggggga	gcccgtcaac	gcggcggacg	cagcggccct	cgagcacgac	aaggcctacg	2460
accagcagct	caaagcgggt	gacaatccgt	acctgcggta	taaccacgcc	gacgccgagt	2520
ttcaggagcg	tctgcaagaa	gatacgtctt	tt g ggggcaa	cctcgggcga	gcagtcttcc	2580
aggccaagaa	gcgggttctc	gaacctctcg	gtctggttga	ggaaggcgct	aagacggctc	2640
ctggaaagaa	acgtccggta	gagcagtcgc	cacaagagcc	agactcctcc	tcgggcatcg	2700
gcaagacagg	ccagcagccc	gctaaaaaga	gactcaattt	tggtcagact	ggcgactcag	2760
agtcagtccc	cgatccacaa	cctctcggag	aacctccagc	aaccccgct	gctgtgggac	2820
ctactacaat	ggcttcaggc	ggtggcgcac	caatggcaga	caataacgaa	ggcgccgacg	2880
gagtgggtaa	tgcctcagga	aattggcatt	gcgattccac	atggctgggc	gacagagtca	2940
tcaccaccag	cacccgcacc	tgggccttgc	ccacctacaa	taaccacctc	tacaagcaaa	3000

	tetecagig	c ttcaacgggg	gccagcaac	g acaaccact	a cttcggctac	agcacccct	3060
5	gggggtatt	t tgatttcaac	agattccact	gccactttt	c accacgtgac	: tggcagcgac	3120
J	tcatcaaca	a caattgggga	ttccggccca	a agagactca	a cttcaaactc	ttcaacatcc	3180
	aagtcaagg	a ggtcacgacg	aatgatggc	tcacaaccat	t cgctaataac	cttaccagca	3240
10	cggttcaag	t cttctcggac	tcggagtacc	agcttccgt	a cgtcctcggc	tetgegeace	3300
	agggctgcct	t coctoogtto	ccggcggacg	f tgttcatgat	tccgcaatac	ggctacctga	3360
	cgctcaacaa	a tggcagccaa	gccgtgggac	gttcatcctt	ttactgcctg	gaatatttcc	3420
15	cttctcagat	gctgagaacg	ggcaacaact	ttaccttcag	ctacaccttt	gaggaagtgc	3480
-	ctttccacag	g cagctacgcg	cacagccaga	gcctggaccg	gctgatgaat	cctctcatcg	3540
	accaatacct	gtattacctg	aacagaactc	aaaatcagtc	cggaagtgcc	caaaacaagg	3600
20	acttgctgtt	tagccgtggg	tctccagctg	gcatgtctgt	tcagcccaaa	aactggctac	3660
	ctggaccctg	ttatcggcag	cagcgcgttt	ctaaaacaaa	aacagacaac	aacaacagca	3720
	attttacctg	gactggtgct	tcaaaatata	acctcaatgg	gcgtgaatcc	atcatcaacc	3780
25	ctggcactgc	tatggcctca	cacaaagacg	acgaagacaa	gttctttccc	atgagcggtg	3840
	tcatgatttt	tggaaaagag	agcgccggag	cttcaaacac	tgcattggac	aatgtcatga	3900
	ttacagacga	agaggaaatt	aaagccacta	accctgtggc	caccgaaaga	tttgggaccg	3960
30	tggcagtcaa	tttccagagc	agcagcacag	accctgcgac	cggagatgtg	catgctatgg	4020
	gagcattacc	tggcatggtg	tggcaagata	gagacgtgta	cctgcagggt	cccatttggg	4080
	ccaaaattcc	tcacacagat	ggacactttc	acceptetee	tcttatgggc	ggctttggac	4140
35	tcaagaaccc	gcctcctcag	atcctcatca	aaaacacgcc	tgttcctgcg	aatcctccgg	4200
	cggagttttc	agctacaaag	tttgcttcat	tcatcaccca	atactccaca	ggacaagtga	4260
	gtgtggaaat	tgaatgggag	ctgcagaaag	aaaacagcaa	gcgctggaat	cccgaagtgc	4320
40	agtacacatc	caattatgca	aaatctgcca	acgttgattt	tactgtggac	aacaatggac	4380
	tttatactga	gcctcgcccc	attggcaccc	gttaccttac	ccgtcccctg	taattacgtg	4440
	ttaatcaata	aaccggttga	ttcgtttcag	ttgaactttg	gtctcctgtc	cttcttatct	4500
45	tatcggttac	catggttata	gcttacacat	taactgcttg	gttgcgcttc	gcgataaaag	4560
	acttacgtca	tcgggttacc	cctagtgatg	gagttgccca	ctccctctct	gcgcgctcgc	4620
	tcgctcggtg	gggcctgcgg .	accaaaggtc	cgcagacggc	agagetetge	tctgccggcc	4680
50	ccaccgagcg	agcgagcgcg	cagagagga	gtgggcaa			4718

```
<210> 7
<211> 4675
<212> DNA
<213> adeno-associated virus serotype 2
```

<400> 7

ttggccacto	cctctctgcg	cgctcgctcg	ctcactgagg	ccgggcgacc	aaaggtcgcc	60
cgacgcccgg	gctttgcccg	ggcggcctca	gtgagcgagc	gagcgcgcag	agagggagtg	120
gccaactcca	tcactagggg	ttcctggagg	ggtggagtcg	tgacgtgaat	tacgtcatag	180
ggttagggag	gtcctgtatt	agaggtcacg	tgagtgtttt	gcgacatttt	gcgacaccat	240
gtggtcacgc	tgggtattta	agcccgagtg	agcacgcagg	gtctccattt	tgaagcggga	300
ggtttgaacg	cgcagccgcc	atgccggggt	tttacgagat	tgtgattaag	gtccccagcg	360
accttgacgg	gcatctgccc	ggcatttctg	acagctttgt	gaactgggtg	gccgagaagg	420
aatgggagtt	gccgccagat	tctgacatgg	atctgaatct	gattgagcag	gcacccctga	480
ccgtggccga	gaagctgcag	cgcgactttc	tgacggaatg	gcgccgtgtg	agtaaggccc	540
cggaggccct	tttctttgtg	caatttgaga	agggagagag	ctacttccac	atgcacgtgc	600
tcgtggaaac	caccggggtg	aaatccatgg	ttttgggacg	tttcctgagt	cagattcgcg	660
aaaaactgat	tcagagaatt	taccgcggga	tcgagccgac	tttgccaaac	tggttcgcgg	720
tcacaaagac	cagaaatggc	gccggaggcg	ggaacaaggt	ggtggatgag	tgctacatcc	780
ccaattactt	gctccccaaa	acccagectg	agctccagtg	ggcgtggact	aatatggaac	840
agtatttaag	cgcctgtttg	aatctcacgg	agcgtaaacg	gttggtggcg	cagcatctga	900
cgcacgtgtc	gcagacgcag	gagcagaaca	aagagaatca	gaatcccaat	tctgatgcgc	960
cggtgatcag	atcaaaaact	tcagccaggt	acatggagct	ggtcgggtgg	ctcgtggaca	1020
aggggattac	ctcggagaag	cagtggatcc	aggaggacca	ggcctcatac	atctccttca	1080
atgcggcctc	caactcgcgg	tcccaaatca	aggctgcctt	ggacaatgcg	ggaaagatta	1140
tgagcctgac	taaaaccgcc	cccgactacc	tggtgggcca	gcagcccgtg	gaggacattt	1200
ccagcaatcg	gatttataaa	attttggaac	taaacgggta	cgatccccaa	tatgcggctt	1260
ccgtctttct	gggatgggcc	acgaaaaagt	tcggcaagag	gaacaccatc	tggctgtttg	1320
ggcctgcaac	taccgggaag	accaacatcg	cggaggccat	agcccacact	gtgcccttct	1380
acgggtgcgt	aaactggacc	aatgagaact	ttcccttcaa	cgactgtgtc	gacaagatgg	1440
tgatctggtg	ggaggagggg	aagatgaccg	ccaaggtcgt	ggagtcggcc	aaagccattc	1500
tcggaggaag	caaggtgcgc	gtggaccaga	aatgcaagtc	ctcggcccag	atagaccega	1560
ctcccgtgat	cgtcacctcc	aacaccaaca	tgtgcgccgt	gattgacggg	aactcaacga	1620
ccttcgaaca	ccagcagccg	ttgcaagacc	ggatgttcaa	atttgaactc	accogcogto	1680
tggatcatga	ctttgggaag	gtcaccaagc	aggaagtcaa	agactttttc	cggtgggcaa	1740
aggatcacgt	ggttgaggtg	gagcatgaat	tctacgtcaa	aaagggtgga	gccaagaaaa	1800
gacccgcccc	cagtgacgca	gatataagtg	agcccaaacg	ggtgcgcgag	tcagttgcgc	1860
agccatcgac	gtcagacgcg	gaagcttcga	tcaactacgc	agacaggtac	caaaacaaat	1920

	gttctcgtca	cgtgggcatg	aatctgatgo	tgtttccctg	r cagacaatgo	gagagaatga	1980
	atcagaattc	aaatatctgc	ttcactcacg	gacagaaaga	ctgtttagag	tgctttcccg	2040
	tgtcagaatc	tcaacccgtt	tetgtegtea	aaaaggcgta	tcagaaactg	tgctacattc	2100
	atcatatcat	gggaaaggtg	ccagacgctt	gcactgcctg	cgatctggtc	aatgtggatt	2160
	tggatgactg	catctttgaa	caataaatga	tttaaatcag	gtațggctgc	cgatggttat	2220
	cttccagatt	ggctcgagga	cactctctct	gaaggaataa	gacagtggtg	gaagctcaaa	2280
	cctggcccac	caccaccaaa	gcccgcagag	cggcataagg	acgacagcag	gggtcttgtg	2340
	cttcctgggt	acaagtacct	cggacccttc	aacggactcg	acaagggaga	gccggtcaac	2400
	gaggcagacg	ccgcggccct	cgagcacgta	caeagcctac	gaccggcagc	tcgacagcgg	2460
	agacaacccg	tacctcaagt	acaaccacgc	cgacgcggag	tttcaggagc	gccttaaaga	2520
	agatacgtct	tttgggggca	acctcggacg	agcagtcttc	caggcgaaaa	agagggttct	2580
	tgaacctctg	ggcctggttg	aggaacctgt	taagacggct	ccgggaaaaa	agaggccggt	2640
•	agagcactct	cctgtggagc	cagactcctc	ctcgggaacc	ggaaaggcgg	gccagcagcc	2700
	tgcaagaaaa	agattgaatt	ttggtcagac	tggagacgca	gactcagtac	ctgaccccca	2760
	gcctctcgga	cagccaccag	cagoccocto	tggtctggga	actaatacga	tggctacagg	2820
	cagtggcgca	ccaatggcag	acaataacga	gggcgccgac	ggagtgggta	attecteegg	2880
	aaattggcat	tgcgattcca	catggatggg	cgacagagtc	atcaccacca	gcacccgaac	2940
	ctgggccctg	cccacctaca	acaaccacct	ctacaaacaa	atttccagcc	aatcaggagc	3000
	ctcgaacgac	aatcactact	ttggctacag	caccccttgg	gggtattttg	acttcaacag	3060
	attccactgc	cacttttcac	cacgtgactg	gcaaagactc	atcaacaaca	actggggatt	3120
	ccgacccaag	agactcaact	tcaagctctt	taacattcaa	gtcaaagagg	tcacgcagaa	3180
	tgacggtacg	acgacgattg	ccaataacct	taccagcacg	gttcaggtgt	ttactgactc	3240
	ggagtaccag	ctcccgtacg	tcctcggctc	ggcgcatcaa	ggatgcctcc	cgccgttccc	3300
	agcagacgtc	ttcatggtgc	cacagtatgg	atacctcacc	ctgaacaacg	ggagtcaggc	3360
	agtaggacgc	tcttcatttt	actgcctgga	gtactttcct	tctcagatgc	tgcgtaccgg	3420
	aaacaacttt	accttcagct	acacttttga	ggacgttcct	ttccacagca	gctacgctca	3480
	cagccagagt	ctggaccgtc	tcatgaatcc	tctcatcgac	cagtacctgt	attacttgag	3540
	cagaacaaac	actccaagtg	gaaccaccac	gcagtcaagg	cttcagtttt	ctcaggccgg	3600
	agcgagtgac	attcgggacc	agtctaggaa.	ctggcttcct	ggaccctgtt	accgccagca	3660
	gcgagtatca	aagacatctg	cggataacaa	caacagtgaa	tactcgtgga	ctggagctac	3720
	caagtaccac	ctcaatggca	gagactetet	ggtgaatccg	gccatggcaa	gccacaagga	3780
	cgatgaagaa	aagttttttc	ctcagagcgg	ggttctcatc	tttgggaagc	aaggctcaga	3840

gaaaacaaat	gtgaacattg	aaaaggtcat	gattacagac	gaagaggaaa	tcggaacaac	3 900
caatcccgtg	gctacggagc	agtatggttc	tgtatctacc	aacctccaga	gaggcaacag	3 9 6 0
acaagcagct	accgcagatg	tcaacacaca	aggcgttctt	ccaggcatgg	tctggcagga	4020
cagagatgtg	taccttcagg	ggcccatctg	ggcaaagatt	ccacacacgg	acggacattt	4080
tcaccctct	cccctcatgg	gtggattcgg	acttaaacac	cctcctccac	agattotoat	4140
caagaacacc	ccggtacctg	cgaatccttc	gaccaccttc	agtgcggcaa	agtttgcttc	4200
cttcatcaca	cagtactcca	cgggacacgg	tcagcgtgga	gatcgagtgg	gagctgcaga	4260
aggaaaacag	caaacgctgg	aatcccgaaa	ttcagtacac	ttccaactac	aacaagtctg	4320
ttaatcgtgg	acttaccgtg	gatactaatg	gcgtgtattc	agagcctcgc	cccattggca	4380
ccagatacct	gactcgtaat	ctgtaattgc	ttgttaatca	ataaaccgtt	taattcgttt	4440
cagttgaact	ttggtctctg	cgtatttctt	tcttatctag	tttccatggc	tacgtagata	4500
agtagcatgg	cgggttaatc	attaactaca	aggaacccct	agtgatggag	ttggccactc	4560
cctctctgcg	cgctcgctcg	ctcactgagg	ccgggcgacc	aaaggtcgcc	cgacgcccgg	4620
gctttgcccg	ggcggcctca	gtgagcgagc	gagcgcgcag	agagggagtg	gccaa	4675

<210> 8

5

10

15

20

25

35

40

45

50

55

<211> 4726

<212> DNA

30 <213> adeno-associated virus serotype 3

<400> 8

ttggccactc cototatgcg cactegoteg cteggtgggg cetggcgacc aaaggtegee 60 agacggacgt getttgcacg teeggeeeca eegagegage gagtgegeat agagggagtg 120 gccaactcca tcactagagg tatggcagtg acgtaacgcg aagcgcgcga agcgagacca 180 cgcctaccag ctgcgtcagc agtcaggtga cccttttgcg acagtttgcg acaccacgtg 240 googotgagg gtatatatto togagtgago gaaccaggag otocattttg accgogaaat 300 ttgaacgagc agcagccatg ccggggttct acgagattgt cctgaaggtc ccgagtgacc tggacgageg cetgeeggge atttetaact egtttgttaa etgggtggee gagaaggaat 420 gggacgtgcc gccggattct gacatggatc cgaatctgat tgagcaggca cccctgaccg 480 tggccgaaaa getteagege gagtteetgg tggagtggeg cegegtgagt aaggeeeegg 540 aggeeetett ttttgteeag ttegaaaagg gggagaeeta etteeacetg caegtgetga 600 ttgagaccat cggggtcaaa tccatggtgg tcggccgcta cgtgagccag attaaagaga 660 agetggtgac cegeatetac egeggggteg agecgeaget teegaactgg ttegeggtga 720 ccaaaacgcg aaatggcgcc gggggcggga acaaggtggt ggacgactgc tacatcccca 780 actacctgct ccccaagacc cagcccgagc tccagtgggc gtggactaac atggaccagt 840

		atttaagcgc	ctgtttgaat	ctcgcggagc	gtaaacggct	ggtggcgcag	catctgacgc	900
_		acgtgtcgca	gacgcaggag	cagaacaaag	agaatcagaa	ccccaattct	gacgcgccgg	960
5		tcatcaggtc	aaaaacctca	gccaggtaca	tggagctggt	cgggtggctg	gtggaccgcg	1020
		ggatcacgtc	agaaaagcaa	tggattcagg	aggaccaggc	ctcgtacatc	tccttcaacg	1080
10		ccgcctccaa	ctegeggtee	cagatcaagg	ccgcgctgga	caàtgcctòc	aagatcatga	1140
10		gcctgacaaa	gacggctccg	gactacctgg	tgggcagcaa	cccgccggag	gacattacca	1200
		aaaatcggat	ctaccaaatc	ctggagctga	acgggtacga	tccgcagtac	geggeeteeg	1260
15		tcttcctggg	ctgggcgcaa	aagaagttcg	ggaagaggaa	caccatctgg	ctctttgggc	1320
,,		cggccacgac	gggtaaaacc	aacatcgcgg	aagccatcgc	ccacgccgtg	cccttctacg	1380
		gctgcgtaaa	ctggaccaat	gagaactttc	ccttcaacga	ttgcgtcgac	aagatggtga	1440
20	•	tctggtggga	ggagggcaag	atgacggcca	aggtcgtgga	gagėgecaag	gccattctgg	1500
		gcggaagcaa	ggtgcgcgtg	gaccaaaagt	gcaagtcatc	ggcccagatc	gaacccactc	1560
		ccgtgatcgt	cacctccaac	accaacatgt	gcgccgtgat	tgacgggaac	agcaccacct	1620
25		tcgagcatca	gcagccgctg	caggaccgga	tgtttgaatt	tgaacttacc	cgccgtttgg	1680
		accatgactt	tgggaaggtc	accaaacagg	aagtaaagga	ctttttccgg	tgggcttccg	1740
		atcacgtgac	tgacgtggct	catgagttct	acgtcagaaa	gggtggagct	aagaaacgcc	1800
30		ccgcctccaa	tgacgcggat	gtaagcgagc	caaaacggga	gtgcacgtca	cttgcgcagc	1860
		cgacaacgtc	agacgcggaa	gcaccggcgg	actacgcgga	caggtaccaa	aacaaatgtt	1920
		ctcgtcacgt	gggcatgaat	ctgatgcttt	ttccctgtaa	aacatgcgag	agaatgaatc	1980
35		aaatttccaa	tgtctgtttt	acgcatggtc	aaagagactg	tggggaatgc	ttccctggaa	2040
		tgtcagaatc	tcaacccgtt	tctgtcgtca	aaaagaagac	ttatcagaaa	ctgtgtccaa	2100
		ttcatcatat	cctgggaagg	gcacccgaga	ttgcctgttc	ggcctgcgat	ttggccaatg	2160
40		tggacttgga	tgactgtgtt	tctgagcaat	aaatgactta	aaccaggtat	ggctgctgac	2220
		ggttatcttc	cagattggct	cgaggacaac	ctttctgaag	gcattcgtga	gtggtgggct	2280
		ctgaaacctg	gagtccctca	acccaaagcg	aaccaacaac	accaggacaa	ccgtcggggt	2340
45		cttgtgcttc	cgggttacaa	atacctcgga	cccggtaacg	gactcgacaa	aggagagccg	2400
		gtcaacgagg	cggacgcggc	agccctcgaa	cacgacaaag	cttacgacca	gcagctcaag	2460
		gccggtgaca	accegtacet	caagtacaac	cacgccgacg	ccgagtttca	ggagcgtctt	2520
50		caagaagata	cgtcttttgg	gggcaacctt	ggcagagcag	tcttccaggc	caaaaagagg	2580
		atccttgagc	ctcttggtct	ggttgaggaa	gcagctaaaa	cggctcctgg	aaagaagggg	2640
		gctgtagatc	agtotootca	ggaaccggac	tcatcatctg	gtgttggcaa	atcgggcaaa	2700
55		cageetgeea	gaaaaagact	aaatttcggt	cagactggag	actcagagtc	agtcccagac	2760

	cctcaacctc	tcggagaacc	accagcagco	cccacaagtt	tgggatctae	tacaatggct	2820
	tcaggcggtg	gcgcaccaat	ggcagacaat	aacgagggtg	ccgatggagt	gggtaattcc	2880
	tcaggaaatt	ggcattgcga	ttcccaatgg	ctgggcgaca	gagtcatcac	caccagcacc	2940
	agaacctggg	ccctgcccac	ttacaacaac	catctctaca	agcaaatctc	cagccaatca	3000
	ggagcttcaa	acgacaacca	ctactttggc	tacagcacco	cttgggggta	ttttgacttt	3060
	aacagattcc	actgccactt	ctcaccacgt	gactggcagc	gactcattaa	caacaactgg	3120
	ggattccggc	ccaagaaact	cagcttcaag	ctcttcaaca	tccaagttag	aggggtcacg	3180
	cagaacgatg	gcacgacgac	tattgccaat	aaccttacca	gcacggttca	agtgtttacg	3240
	gactcggagt	atcagctccc	gtacgtgctc	gggtcggcgc	accaaggctg	tctcccgccg	3300
	tttccagcgg	acgtcttcat	ggtccctcag	tatggatacc	tcaccctgaa	caacggaagt	3360
	caagcggtgg	gacgctcatc	cttttactgc	ctggagtact	tcccttcgca	gatgctaagg	3420
	actggaaata	acttccaatt	cagctatacc	ttcgaggatg	taccttttca	cagcagetae	3480
	gctcacagcc	agagtttgga	tcgcttgatg	aatcctctta	ttgatcagta	tctgtactac	3540
	ctgaacagaa	cgcaaggaac	aacctctgga	acaaccaacc	aatcacggct	gctttttagc	3600
	caggctgggc	ctcagtctat	gtctttgcag	gccagaaatt	ggctacctgg	gccctgctac	3660
	cggcaacaga	gactttcaaa	gactgctaac	gacaacaaca	acagtaactt	tccttggaca	3720
	gcggccagca	aatatcatct	caatggccgc	gactcgctgg	tgaatccagg	accagetatg	3780
	gccagtcaca	aggacgatga	agaaaaattt	ttccctatgc	acggcaatct	aatatttggc	3840
	aaagaaggga	caacggcaag	taacgcagaa	ttagataatg	taatgattac	ggatgaagaa	3900
	gagattcgta	ccaccaatcc	tgtggcaaca	gagcagtatg	gaactgtggc	aaataacttg	3960
•	cagageteaa	atacagetee	cacgactgga	actgtcaatc	atcagggggc	cttacctggc	4020
	atggtgtggc	aagatcgtga	cgtgtacctt	caaggaccta	tctgggcaaa	gattcctcac	4080
	acggatggac	actttcatcc	ttctcctctg	atgggaggct	ttggactgaa	acatccgcct	4140
	cctcaaatca	tgatcaaaaa	tactccggta	ccggcaaatc	ctccgacgac	tttcagcccg	4200
	gccaagtttg	cttcatttat	cactcagtac	tccactggac	aggtcagcgt	ggaaattgag	4260
	tgggagctac	agaaagaaaa	cagcaaacgt	tggaatccag	agattcagta	cacttccaac	4320
	tacaacaagt	ctgttaatgt	ggactttact	gtagacacta	atggtgttta	tagtgaacct	4380
	cgccctattg	gaacccggta	tctcacacga	aacttgtgaa	tcctggttaa	tcaataaacc	4440
	gtttaattcg	tttcagttga	actttggctc	ttgtgcactt	CTTTATCTTT	atcttgtttc	4500
	catggctact	gcgtagataa	gcagcggcct	gcggcgcttg	cgcttcgcgg	tttacaactg	4560
	ctggttaata	tttaactctc	gccatacctc	tagtgatgga	gttggccact	ccctctatgc	4620
	gcactcgctc	gctcggtggg	gcctggcgac	caaaggtcgc	cagacggacg	tgctttgcac	4680

	gtccggcccc	accgagcgag	cgagtgcgca	tagagggagt	ggccaa		4726
5	<210> 9 <211> 3098 <212> DNA <213> new AAV s	serotype clope	12.2				
		serotype, clone	+			•	
10	<400> 9						
	gaattcgccc	tttctacggc	tgcgtcaact	: ggaccaatga	gaactttccc	ttcaacgatt	60
15	gcgtcgacaa	gatggtgatc	: tggtgggagg	agggcaagat	gacggccaag	gtcgtggagt	120
.5	ccgccaaggc	cattctcggc	ggcagcaagg	tgcgcgtgga	ccaaaagtgo	: aagtcttccg	180
	cccagatcga	tcccacccc	gtgatcgtca	cttccaacac	caacatgtgo	gctgtgattg	240
20	acgggaacag	caccaccttc	gagcaccago	agccgttaca	agaccggatg	ttcaaatttg	300
20	aactcacccg	ccgtctggag	cacgactttg	gcaaggtgac	aaagcaggaa	gtcaaagagt	360
	tcttccgctg	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttctac	gtcagaaagg	420
25	gtggagccaa	caagagaccc	gcccccgatg	acgcggataa	aagcgagccc	aagcgggcct	480
25	gcccctcagt	cgcggatcca	tcgacgtcag	acgcggaagg	agctccggtg	gactttgccg	540
	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	tttccctgca	600
30	agacatgcga	gagaatgaat	cagaatttca	acatttgctt	cacgcacggg	accagagact	660
	gttcagaatg	tttccccggc	gtgtcagaat	ctcaaccggt	cgtcagaaag	aggacgtatc	720
	ggaaactctg	tgccattcat	catctgctgg	ggcgggctcc	cgagattgct	tgctcggcct	780
<i>35</i>	gcgatctggt	caacgtggac	ctggatgacc	gtgtttctga	gcaataaatg	acttaaacca	840
33	ggtatggctg	ccgatggtta	tcttccagat	tggctcgagg	acaacctctc	tgagggcatt	900
	cgcgagtggt	gggacttgaa	acctggagcc	ccgaaaccca	aagccaacca	gcaaaagcag	960
40	gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	tcggaccctt	caacggactc	1020
70	gacaagggag	agccggtcaa	cgaggcagac	gccgcggccc	tcgagcacga	caaggcctac	1080
	gacaagcagc	tcgagcaggg	ggacaacccg	tacctcaagt	acaaccacgc	cgacgccgag	1140
45	tttcaggagc	gtcttcaaga	agatacgtct	tttgggggca	acctcgggcg	agcagtotto	1200
70	caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaaggcgc	taagacggct	1260
	cctggaaaga	agagacccat	agaatcccc	gactcctcca	cgggcatcgg	caagaaaggc	1320
50	cagcagcccg	ctaaaaagaa	gctcaacttt	gggcagactg	gcgactcaga	gtcagtgccc	1380
30	gaccccaac	ctctcggaga	acctcccgcc	gcgccctcag	gtctgggatc	tggtacaatg	1440
	gctgcaggcg						1500
55	gcctccggaa						1560
55	acccgcacct (1620
	agcggggcta (1680
	1						1000

	ttcaacagat tccactgcca cttctcacca cgtgactggc agcgactcat caacaacaac	1740
5	tggggattcc ggcccagaaa gctgcggttc aagttgttca acatccaggt caaggaggtc	1800
J	acgacgaacg acggcgttac gaccateget aataacetta ccagcacgat teaggtette	1860
	teggaetegg agtaceaact geogtaegte eteggetetg egeaceaggg etgeeteeet	1920
10	ccgttccctg cggacgtgtt catgattcct cagtacggat atctgactct aaacaacggc	1980
	agteagtetg tgggaegtte etecttetae tgeetggagt acttteette teagatgetg	2040
	agaacgggca ataactttga attcagctac acctttgagg aagtgccttt ccacagcagc	2100
15	tatgogoaca gocagagoot ggacoggotg atgaatooco toatogacoa gtacotgtac	2160
	tacctggccc ggacccagag cactacgggg tccacaaggg agctgcagtt ccatcaggct	2220
	gggcccaaca ccatggccga gcaatcaaag aactggctgc ccggaccctg ttatcggcag	2280
20	cagagactgt caaaaaacat agacagcaac aacaacagta actttgcctg gaccggggcc	2340
	actaaatacc atctgaatgg tagaaattca ttaaccaacc cgggcgtagc catggccacc	2400
	aacaaggacg acgaggacca gttctttccc atcaacggag tgctggtttt tggcgaaacg	2460
- 25	ggggctgcca acaagacaac gctggaaaac gtgctaatga ccagcgagga ggagatcaaa	2520
	accaccaatc cogtggctac agaagaatac ggtgtggtct ccagcaacct gcaatcgtct	2580
	acggccggac cccagacaca gactgtcaac agccaggggg ctctgcccgg catggtctgg	2540
30	cagaaccggg acgtgtacct gcagggtccc atctgggcca aaattcctca cacggacggc	2700
	aactttcacc cgtctcccct gatgggcgga tttggactca aacacccgcc tcctcaaatt	2760
	ctcatcaaaa acaccccggt acctgctaat cctccagagg tgtttactcc tgccaagttt	2820
35	gcctcattta tcacgcagta cagcaccggc caggtcagcg tggagatcga gtgggaactg	2880
	cagaaagaaa acagcaaacg ctggaatcca gagattcagt acacctcaaa ttatgccaag	2940
	tctaataatg tggaatttgc tgtcaacaac gaaggggttt atactgagcc tcgccccatt	3000
40	ggcaccegtt acctcacceg taacctgtaa ttgcctgtta atcaataaac cggttaatte	3060
	gtttcagttg aactttggtc tctgcgaagg gcgaattc	3098
45	<210> 10 <211> 3098 <212> DNA <213> new AAV serotype, clone 16.3	
	· <400> 10	
50		
	gaattegeee ttegeagaga ceaaagttea actgaaaega atcaaceggt ttattgatta	60
	acaagtaatt acaggttacg ggtgaggtaa cgggtgccaa tggggcgagg ctcagtataa	120
<i>55</i>	accentegt tgttgacage aaattecaca ttattagact tggcataatt tgaggtgtac	180
	tgaatetetg gattecageg titgetgtti tetttetgea gittecaete gatetecaeg	240

	ctgacctgg	cggtgctgta	ctgcgtgata	aatgaggcae	actaggcagg	agtaaacacc	300
5	cctggaggat	tagcaggtac	cggggtgttt	ttgatgagae	tttgaggagg	cgggtgtttg	360
J	agtccaaato	cgcccatcag	gggagacggg	tgaaagttgo	: cgtccgtgtg	aggaattttg	420
	gcccagatgg	gaccctgcag	gtacacgtcc	cggttctgcc	agaccatgcc	gggcagagcc	480
10	ccctggctgt	tgacagtctg	tgtctggggt	ccggccgtag	acgattgcag	gttgctggag	540
	accacaccgt	attettetgt	agccacggga	ttggtggttt	tgatctcctc	ctcgctggtc	600
	attagcacgt	tttccagcgt	tgtcttgttg	gcagcccccg	ttttgccaaa	aaccagcact	660
15	ccgttgatgg	gaaagaactg	gccctcgtcg	tccttgttgg	tggccatggc	tacgcccggg	720
	ttggttaatg	aatttctacc	attcagatgg	tatttagtgg	ccccggtcca	ggcaaagtta	.780
	ctgttgttgt	tgctgtctat	gttttttgac	agtctctgct	gccgataaca	gggtccgggc	840
20	agccagttct	ttgattgctc	ggccatggtg	ttgggcccag	cctgatggaa	ctgcagctcc	900
	cttgtggacc	ccgtagtgct	ctgggtccgg	gccaggtagt	acaggtactg	gtcgatgagg	960
	ggattcatca	gccggtccag	gctctggctg	tgcgcatagc	tgctgtggaa	aggcacttcc	1020
25	tcaaaggtgt	agctgaattc	aaagttattg	cccgttctca	gcatctgaga	aggaaagtac	1080
	tccaggcagt	agaaggagga	acgtcccata	gactgactgc	cgttgtttag	agtcagatat	1140
	ccgtactgag	gaatcatgaa	cacgtccgca	gggaacggag	ggaggcagcc	ctggtgcgca	1200
30	gagccgagga	cgtacggcag	ttggtactcc	gagtccgaga	agacctgaat	cgtgctggta	1260
	aggttattag	cgatggtcgt	aacgccgtcg	ttcgtcgtga	cctccttgac	ctggatgttg	1320
	aacaacttga	accgcagctt	tctgggcsgg	aatccccagt	tgttgttgat	gagtcgctgc	1380
<i>35</i> .	cagtcacgtg	gtgagaagtg	gcagtggaat	ctgttgaagt	caaaatagcc	ccagggggtg	1440
	ctgtagccga	agaagtggtt	gtcgttggta	gccccgctct	gacttgatat	ctgcttgtag	1500
	aggtggttgt	tgtaggtggg	cagggcccag	gtgcgggtgc	tggtggtgat	gactctgtcg	1560
40	cccagccatg	tggaatcgca	atgccaattt	ccggaggcat	tacccactcc	gtcggcgcct	1620
	tcgttattgt	ctgccattgg	tgcgccaccg	cctgcagcca	ttgtaccaga	tcccagacct	1680
	gagggcgcgg	cgggaggttc	tccgagaggt	tgggggtcgg	gcactgacts	tgagtcgcca	1740
45	gtctgcccaa	agttgagctt	ctttttagcg	ggctgctggc	ctttcttgcc	gatgcccgtg	1800
	gaggagtcgg	gggattctat	gggtctcttc	tttccaggag	ccgtcttagc	gccttcctca	1860
	accagaccga	gaggttcgag	aacccgcttc	ttggcctgga	agactgctcg	cccgaggttg	1920
50	ccccaaaag	acgtatcttc	ttgaagacgc	tcctgaaact	cagcgtcggc	grggrrgrac	1980
	ttgaggtacg	ggttgtcccc	ctgctcgagc	tgcttgtcgt	aggccttgtc	gtgctcgagg	2040
	gccgcggcgt	ctgcctcgtt	gaccggctct	cccttgtcga	gtccgttgaa	gggtccgagg	2100
55	tacttgtagc	caggaagcac	cagaccccgg	ccgtcgtcct	gcttttgctg	gttggctttg	2160

9900009999	cccaggett	- uay cccac	cactegegae	tycccttaga	gaggeegee	2220
tcgagccaat	ctggaagata	accatcggca	gccatacctg	gtttaagtca	tttattgctc	2280
agaaacacag	tcatccaggt	ccacgttgac	cagatogoag	gccgagcaag	caatctcggg	2340
agcccgcccc	agcagatgat	gaatggcaca	gagtttccga	tacgtcctct	ttctgacgac	2400
cggttgagat	tctgącacgc	cggggaaaca	ttctgaacag	tctctggtcc	cgtgcgtgaa	2460
gcaaatgttg	aaattctgat	tcattctctc	gcatgtcttg	cagggaaaca	gcatctgaag	2520
catgcccgcg	tgacgagaac	atttgttttg	gtacctgtcg	gcaaagtcca	ccggagctcc	2580
ttccgcgtct	gacgtcgatg	gateegegae	tgaggggcag	gcccgcttgg	gctcgctttt	2640
atccgcgtca	tcgggggcgg	gcctcttgtt	ggctccaccc	tttctgacgt	agaactcatg	2700
cgccacctcg	gtcacgtgat	cctgcgccca	gcggaagaac	tctttgactt	cctgctttgt	2760
caccttgcca	aagtcctgct	ccagacggcg	ggtgagttca	aatttgaaca	tccggtcttg	2820
taacggctgc	tggtgctcga	aggtggtgct	gttcccgtca	atcacggcgc	acatgttggt	2880
gttggaagtg	acgatcacgg	gggtgggatc	gatctgggcg	gacgacttgc	acttttggtc	2940
cacgcgcacc	ttgctgccgc	cgagaatggc	cttggcggac	tccacgacct	tggccgtcat	3000
cttgccctcc	tcccaccaga	tcaccatctt	gtcgacgcaa	tcgttgaagg	gaaagttctc	3060
attggtccag	ttgacgcagc	cgtagaaagg	gcgaattc			3098

<210> 11

<211> 3121 <212> DNA

<213> new AAV serotype, clone 29.3

<400> 11

gaattcgccc	ttcgcagaga	ccaaagttca	actgaaacga	atcaaccggt	ttattgatta	60
acaagcaatt	acagattacg	ggtgaggtaa	cgggtgccga	tggggcgagg	ctcagaataa	120
gtgccatctg	tgttaacagc	aaagtccaca	tttgtagatt	tgtagtagtt	ggaagtgtat	180
tgaatctctg	ggttccagcg	tttgctgttt	tctttctgca	gctcccattc	aatttccacg	240
ctgacctgtc	cggtgctgta	ctgcgtgatg	aacgacgcca	gcttagcttg	actgaaggta	300
gttggaggat	ccgcgggaac	aggtgtattc	ttaatcagga	tctgaggagg	cgggtgtttc	360
agtccaaagc	ccccatcag	cggcgaggga	tgaaagtttc	cgtccgtgtg	aggaatcttg	420
gcccagatag	gaccctgcag	gtacacgtcc	cggttctgcc	agaccatgcc	aggtaaggct	480
ccttgactgt	tgacggcccc	tacaatagga	gcggcgtttt	gctgttgcag	gttatcggcc	540
accacgccgt	actgttctgt	ggccactggg	ttggtggttt	taatttcttc	ctcactggtt	600
agcataacgc	tgctatagtc	cacgttgcct	tttccagctc	cctgtttccc	aaacattaag	660
actccgctgg	acggaaaaaa	tegetetteg	tegteettgt	gggttgccat	agcgacaccg	720
ggatttacca	gagagtetet	gccattcaga	tgatacttgg	tggcaccqqt	ccaggcaaag	780

.

		ttgctgttg	t tattttgcge	cagtgtcgt	g gagacgcgt	t gctgccggt	a gcagggcccg	840
	5	ggtagccag	t ttttggcctg	agccgacat	g ttattaggc	c cggcctgaga	a aaatagcaac	900
		tgctgagtt	c ctgcggtacc	tecegtggad	tgagtccgaq	g acaggtagta	a caggtactgg	960
		tcgatgagg	g ggttcatcag	ccggtccag	g ctttggctgi	gegegtaget	gctgtgaaaa	1020
	10	ggcacgtcc	t caaactggta	gctgaactca	a aagttgttg	ccgttctcag	r catttgagaa	1080
		ggaaagtact	t ccaggcagta	gaaggaggaa	cggcccacgg	; cctgactgcc	: attgttcaga	1140
		gtcaggtac	cgtactgagg	aatcatgaag	acgtccgccg	ggaacggagg	caggcagccc	1200
	15	tggcgcgcag	g agccgaggac	gtacgggagc	tggtattccg	agtccgtaaa	gacctgaatc	1260
		gtgctggtaa	ggttattggc	gatggtcttg	gtgccttcat	tctgcgtgac	ctccttgacc	1320
		tggatgttga	agagcttgaa	gttgagtctc	ttgggccgga	atccccagtt	gttgttgatg	1380
	20	agtcgctgcc	agtcacgtgg	tgagaagtgg	cagtggaatc	tgttaaagtc	aaaatacccc	1440
		cagggggtgc	tgtagccgaa	gtaggtgttg	tegttggtge	ttcctcccga	agtcccgttg	1500
		gagatttgct	tgtagaggtg	gttgttgtag	gtggggaggg	cccaggttcg	ggtgctggtg	156 0
2:	25	gtgatgactc	tgtcgcccag	ccatgtggaa	tcgcaatgcc	aatttcctga	ggaactaccc	1620
		actccgtcgg	cgccttcgtt	attgtctgcc	attggagcgc	caccgcctgc	agccattgta	1680
		ccagatccca	gaccagaggg	gcctgcgggg	ggttctccga	ttggttgagg	gtcgggcact	1740
	30	gactctgagt	cgccagtctg	cccaaagttg	agtctcttt	tcgcgggctg	ctggcctttc	1800
		ttgccgatgc	ccgtagtgga	gtctggagaa	cgctggggtg	atggctctac	cggtctcttc	186 0
		tttccaggag	ccgtcttagc	gccttcctca	accagaccga	gaggttcgag	aacccgcttc	1920
:	35	ttggcctgga	agactgctcg	tccgaggttg	ccccaaaag	acgtatette	ttgcagacgc	1980
		tcctgaaact	cggcgtcggc	gtggttatac	cgcaggtacg	gattgtcacc	cgctttgagc	2040
		tgctggtcgt	aggccttgtc	gtgctcgagg	gccgctgcgt	ccgccgcgtt	gacgggctcc	2100
4	10	cccttgtcga	gtccgttgaa	gggtccgagg	tacttgtage	caggaagcac	cagaccccgg	2160
		ccgtcgtcct	gcttttgctg	gttggctttg	ggcttcgggg	ctccaggttt	cagcgcccac	222 0
		cactcgcgaa	tgccctcaga	gaggttgtcc	tcgagccaat	ctggaagata	accatcggca	2280
4	5	gccatacctg	atctaaatca	tttattgttc	aaagatgcag	tcatccaaat	ccacattgac	2340
		cagatcgcag	gcagtgcaag	cgtctggcac	ctttcccatg	atatgatgaa	tgtagcacag	2400
		tttctgatac	gcctttttga	cgacagaaac	gggttgagat	tctgacacgg	gaaagcactc	2460
5	o	taaacagtct	ttctgtccgt	gagtgaagca	gatatttgaa	ttctgattca	ttctctcgca	2520
		ttgtctgcag	ggaaacagca	tcagattcat	gcccacgtga	cgagaacatt	tgttttggta	2580
		cctgtccgcg	tagttgatcg	aagcttccgc	gtctgacgtc	gatggctgcg	caactgactc	264 0
5	5	gcgcacccgt	ttgggctcac	ttatatctgc	gtcactgggg	gcgggtcttt	tcttggctcc	270 0
			•					

	accettttt	g acgtagaatt	catgctccac	ctcaaccacg	tgatcctttg	cccaccggaa	2760
5	aaagtettte	acttectget	tggtgacctt	cccaaagtca	tgatccagac	ggcgggtgag	2820
	ttcaaatttg	aacatccggt	cttgcaacgg	ctgctggtgt	tcgaaggtcg	ttgagttccc	2880
	gtcaatcacg	gcgcacatgt	tggtgttgga	ggtgacgatc	acgggagtcg	ggtctatctg	2940
10	ggccgaggac	ttgcatttct	ggtccacgcg	caccttgctt	cctccgagaa	tggctttggc	3000
	cgactccacg	accttggcgg	tcatcttccc	ctcctcccac	cagatcacca	tcttgtcgac	3060
	acagtogttg	aagggaaagt	tctcattggt	ccagttgacg	cagccgtaga	agggcgaatt	3120
15	c ·	•					3121
	<210> 12 <211> 3121						
20	<212> DNA						
	<213> new AAV se	erotype, clone 29	.4				
	<400> 12						•
25		•					
	:	•			•		
30							
	•						
35							
	•						
40							
45							
	,						
				•			
50							

gaattcgccc	ttctacggct	gcgtcaactg	gaccaatgag	aactttccct	tcaacgactg	60
tgtcgacaag	atggtgatct	ggtgggagga	ggggaagatg	accgccaagg	tcgtggagtc	120
ggccaaagcc	attctcggag	gaagcaaggt	gcgcgtggac	cagaaatgca	agtcctcggc	180
ccagatagac	ccgactcccg	tgatcgtcac	ctccaacacc	aacatgtgcg	ccgtgattga	240
cgggaactca	acgaccttcg	aacaccagca	gccgttgcaa	gaccggatgt	tcaaatttga	300
actcacccgc	cgtctggatc	atgactttgg	gaaggtcacc	aagcaggaag	tcaaagactt	360
tttccggtgg	gcaaaggatc	acgtggttga	ggtggagcac	gaattctacg	tcaaaaaggg	420
tggagccaag	aaaagacccg	ccccagtga	cgcagatata	agtgagccca	aacgggtgcg	480
cgagtcagtt	gcgcagccat	cgacgtcaga	cgcggaagct	tcgatcaact	acgcagacag	540
gtaccaaaac	aaatgttctc	gtcacgcggg	catgaatctg	atgctgtttc	cctgcagaca	600
atgcgagaga	atgaatcaga	attcaaatat	ctgcttcact	cacggacaga	aagactgttt	660
agagtgcttt	cccgtgtcag	aatctcaacc	cgtttctgtc	gtcaaaaagg	cgtatcagaa	720
actgtgctac	attcatcata	tcatgggaaa	ggtgccagac	gcttgaactg	cotgcgatct	780
ggtcgatgtg	gatttggatg	actgcatctt	tgaacaataa	atgatttaaa	tcaggtatgg	840
ctgccgatgg	ttatcttcca	gattggctcg	aggacaacct	ctctgagggc	attcgcgagt	900
ggtgggcgct	gaaacctgga	gccccgaagc	ccaaagccaa	ccagcaaaag	caggacggcg	960
gccggggtct	ggtgcttcct	ggctacaagt	acctcggacc	cttcaacgga	ctcgacaagg	1020
 gggagcccgt	caacgcggcg	gacgcagcgg	ccctcgagca	cgacaaggcc	tacgaccagc	1080
agctcaaagc	gggtgacaat	ccgtacctgc	ggtataacca	cgccgacgcc	gagtttcagg	1140
agcgtctgca	agaagatacg	tcttttgggg	gcaacctcgg	gcgagcagtc	ttccaggcca	1200

	agaagegggt tetegaacet eteggtetgg ttgaggaagg egetaagaeg geteetggaa	
	•	1260
5		1320
		1380
		.440
10	gtacaatggc tgcaggcggt ggcgctccaa tggcagacaa taacgaaggc gccgacggag l	.500
10	tgggtagttc ctcaggaaat tggcattgcg attccacatg gctgggcgac tgagtcatca 1	560
	ccaccagcac ccgaacctgg gccctcccca cctacaacaa ccacctctac aagcaaatct 1	620
45	ccaacgggac ttcgggagga agcaccaacg acaacaccta cttcggctac agcaccccct 1	68 O
15	gggggtattt tgactttaac agattccact gccacttctc accacgtgac tggcagcgac 1	740
	tcatcaacaa caactgggga ttccggccca agagactcaa cttcaagctc ttcaacatcc 1	800
	aggtcaagga ggtcacgcag aatgaaggca ccaagaccat cgccaataac cttaccagca 1	860
∙20	cgattcaggt ctttacggac tcggaatacc agctcccgta cgtcctcggc tctgcgcacc 1	920
	agggetgeet gesteegtte eeggeggaeg tetteatgat testeagtae gggtacetga 19	980
	ctctgaacaa tggcagtcag gccgtgggcc gttcctcctt ctactgcctg gagtactttc 20	040
25	cttctcaaat gctgagaacg ggcaacaact ttgagttcag ctaccagttt gaggacgtgc 23	100
	cttttcacag cagctacgeg cacagecaaa geetggaeeg getgatgaae eeeetcateg 21	.60
	accagtacet gtactacetg teteggaete agtecaeggg aggtacegea ggaacteage 22	20
30	agttgctatt ttctcaggcc gggcctaata acatgtcggc tcaggccaaa aactggctac 22	80
	cegggeeetg etaceggeag taacgegtet ceacgacaet gtegcaaaat aacaacagea 23	40
•	actttgtctg gaccggtgcc accaagtatc atctgaatgg cagagactct ctggtagatc 24	00
35	ceggtgtege tatggcaace cacaaggaeg acgaagageg attttteeg tecageggag 24	60
	tcataatgtt tgggaaacag ggagctggaa aagacaacgt ggactatagc agcgtcatgc 25	20
· ·	taaccagtga ggaagaaatt aaaaccacca acccagtggc cacagaacag tacggcgtgg 25	80
40	tggccgataa cctgcaacag caaaacgccg ctcctattgt aggggccgtc aacagtcaag 26	40
	gageettace tggcatggte tggcagaace gggaegtgta cetgcagggt cetacetggg 270	00
	ccaagattcc tcacacggac ggaaactttc atccctcgcc gctgatggga ggctttggac 270	60
45	tgaaacaccc gootootoag atootgatta agaatacaco tgttooogog gatootocaa 282	20
	ctaccttcag tcaagctaag ctggcgtcgt tcatcacgca gtacagcacc ggacaggtca 288	30
	gegtggaaat tgaatgggag etgeaggaag aaaacagcaa acgetggaac ccagagatte 294	10
50	aatacacttc caactactac aaatctacaa atgtggactt tgctgttaac acagatggca 300	
	cttattctga gcctcgcccc atcggcaccc gttacctcac ccgtaatctg taattgcttg 306	
	ttaatcaata aaccggttga ttcgtttcag ttgaactttg gtctctgcga agggcgaatt 312	
55	- 7 7 7	. •

		Lr 1 310 3/1 B1	
	c		3121
5	<210> 13 <211> 3121 <212> DNA		
10 .	<213> new AAV serotype, clone 29.5 <400> 13	V	
15			
20	· .		
25	,		•

	gaattcgccc	: ttcgcgagac	caaagttcaa	ctgaaacgaa	tcaaccggtt	tattgattaa	60
	caagcaatta	cagattacgg	gtgaggtaac	gggtgccgat	ggggcgaggc	tcagaataag	120
5	tgccatctgt	gttaacagca	aagtccacat	ttgtagattt	gtagtagttg	gaagtgtatt	180
	gaatctctgg	gttccagcgt	ttgctgtttt	ctttctgcag	ctcccattca	atttccacge	240
	tgacctgtcc	ggtgctgtac	tgcgtgatga	acgacgccag	cttagcttga	ctgaaggtag	300
10	ttggaggatc	cgcgggaaca	ggtgtattct	taatcaggat	ctgaggaggc	gggtgtttca	360
	gtccaaagcc	tcccatcagc	ggcgagggat	gaaagtttcc	gtccgtgtga	ggaatcttgg	420
	cccagatagg	accctgcagg	tacacgtccc	ggttctgcca	gaccatgcca	ggtaaggctc	48 C
15	cttgactgtt	gacggcccct	acaataggag	cggcgttttg	ctgttgcagg	ttatcggcca	540
	ccacgccgta	ctgttctgtg	gccactgggt	tggtggtttt	aatttcttcc	tcactggtta	600
	gcataacgct	gctatagtcc	acgttgtctt	ttccagctcc	ctgtttccca	aacattaaga	660
20	ctccgctgga	cggaaaaaat	cgctcttcgt	cgtccttgtg	ggttgccata	gcgacaccgg	720
	gatttaccag	agagtctctg	ccattcagat	gatacttggt	ggcaccggtc	caggcaaagt	780
	tgctgttgtc	attttgcgac	agtgtcgtgg	agacgcgttg	ctgccggtag	cagggcccgg	840
25	gtagccagtt	tttggcctga	gccgacatgt	tattaggccc	ggcctgagaa	aatagcaact	900
	gctgagttcc	tgcggtacct	cccgtggact	gagtccgaga	caggtagtac	aggtactggt	960
	cgatgagggg	gttcatcagc	cggtccaggc	tttggctgtg	cgcgtagctg	ctgtgaaaag	1020
30	gcacgtcctc	aaactggtag	ctgaactcaa	agttgttgcc	cgttctcagc	atttgagaag	1080
	gaaagtactc	caggcagtag	aaggaggaac	ggcccacggc	ctgactgcca	ttgttcagag	1140
	tcaggtaccc	gtactgagga	atcatgaaga	cgtccgccgg	gaacggaggc	aggcagccct	1200
35	ggtgcgcaga	gccgaggacg	tacgggagct	ggtattçcga	gtccgtaaag	acctgaatcg	1260
	tgctggtaag	gttattggcg	atggtcttgg	tgccttcatt	ctgcgtgacc	tccttgacct	1320
	ggatgttgaa	gagcttgaag	ttgaggctct	tgggccggaa	tccccagttg	ttgttgatga	1380
40	gtcgctgcca	gtcacgtggt	gagaagtggc	agtggaatct	gttaaagtca	aaataccccc	1440
	agggggtgct	gtagccgaag	taggtgttgt	cgttggtgct	tcctcccgaa	gtcccgttgg	1500
	agatttgctt	gtagaggtgg	EtgEtgtagg	tggggagggc	ccaggttcgg	gtgctggtgg	1560
45	tgatgactcc	gtcgcccagc	catgtggaat	cgcaatgcca	atttcctgag	gaactaccca	1620
	ctccgtcggc	gccttcgtta	ttgtctgcca	ttggagcgcc	accgcctgca	gccattgtac	1680

	cagatcccag	accagaggg	cctgcggggg	gttctccgat	tggttgaggg	tcgggcactg	1740
	actctgagtc	gccagtstgc	ccaaagttga	gtctctttt	cgcgggctgd	tggcctttct	1800
5	tgccgatgcc	cgtagaggag	tctggagaac	gctggggtga	tggctctacc	ggtstettet	1860
	ttccaggagc	cgtcttagcg	ccttcctcaa	ccagaccgag	aggttcgaga	accegettet	1920
	tggcctggaa	gactgctcgc	ccgaggttgc	ccccaaaaga	cgtatcttct	tgcagacgct	1980
10	cctgaaactc	ggcgtcggcg	tggttatacc	gcaggtacgg	attgtcaccc	gctttgagct	2040
	gctggtcgta	ggccttgtcg	tgctcgaggg	ccgctgcgtc	cgccgcgttg	acgggctccc	2100
	ccttgtcgag	tccgttgaag	ggtccgaggt	acttgtagcc	aggaagcacc	agaccccggc	2160
15	cgtcgtcctg	cttttgctgg	ttggctttgg	gettegggge	tccaggtttc	agcgcccacc	2220
	actcgcgaat	gccctcagag	aggttgtcct	cgagccaatc	tggaagataa	ccatcggcag	2280
	ccatacctga	tttaaatcat	ttattgttca	aagatgcagt	catccaaatc	cacattgacc	2340
20	agatcgcagg	cagtgcaagc	gtctggcacc	tttcccatga	tatgatgaat	gtagcacagt	2400
	ttctgatacg	cctttttgac	gacagaaacg	ggttgagatt	ctgacacggg	aaagcactct	2460
	aaacagtctt	tctgtccgtg	agtgaagcag	atatttgaat	tctgattcat	tctctcgcat	2520
25	tgtctgcagg	gaaacagcat	cagattcatg	cccacgtgac	gagaacattt	gttttggtac	2580
	ctgtctgcgt	agttgatcga	agcttccgcg	tctgacgtcg	atggctgcgc	aactgactcg	2640
20	cgcacccgtt	tgggctcact	tatatctgcg	tcactggggg	cgggtctttt	cttggctcca	2700
30 .	ccctttttga	cgtagaattc	atgctccacc	tcaaccacgt	gatcctttgc	ccaccggaaa	2760
	aagtotttga	cttcctgctt	ggtgaccttc	ccaaagtcat	gatccagacg	gcgggtgagt	2820
35	tcaaatttga	acatccggtc	ttgcaacggc	tgctggtgtt	cgaaggtcgt	tgagttcccg	2880
33	tcaatcacgg	cgcacatgtt	ggtgttggag	gtgacgatca	cgggagtcgg	gtctatctgg	2940
	gccgaggact	tgcatttctg	gtccacgcgc	accttgcttc	ctccgagaat	ggctttggcc	3000
40	gactccacga	ccttggcggt	catcttcccc	tecteccace	agatcaccat	cttgtcgaca	3060
40	cagtcgttga	agggaaagtt	ctcattggtc	cagttgacgc	agccgtagaa	agggcgaatt	3120
	C						3121
45	<210> 14 <211> 3131 <212> DNA <213> new AAV se	rotype, clone 1-3	3				
50	<400> 14						
	gcggccgcga	attogcostt	ggctgcgtca	actggaccaa	tgagaacttt	cccttcaatg	60
55	attgcgtcga	caagatggtg	atctggtggg	aggagggcaa	gatgacggcc	aaggtcgtgg	120
	agtccgccaa	ggccattctc	ggcggcagca	aggEgegege	GGACCAAAA~	tacaeatcat	180

	ccgcccaga	t cgaccccacc	cccgtgatcq	g tcacctccaa	a caccaacato	tgcgccgtga	240
5	ttgacggga	a cagcaccaco	ttcgagcac	agcagcctct	ccaggaccgg	g atgtttaagt	300
J	tcgaactca	cegeegtetg	gagcacgact	ttggcaaggt	gacaaagcag	gaagtcaaag	360
	agttcttcc	g ctgggccagt	gatcacgtga	a ccgaggtggc	gcatgagttt	tacgtcagaa	420
10	agggcggag	cagcaaaaga	. cccgccccc	, atgacgcgga	taaaagcgag	cccaagcggg	480
	cctgcccct	agtcgcggat	ccatcgacgt	cagacgcgga	aggageteeg	gtggactttg	540
	ccgacaggta	ccaaaacaaa	tgttctcgtc	acgcgggcat	gcttcagatg	ctgtttccct	600
15	gcaaaacgtg	, cgagagaatg	aatcggaatt	tcaacatttg	cttcacacac	ggggtcagag	660
	actgctcaga	gtgtttcccc	ggcgtgtcag	aatctcaacc	ggtcgtcaga	aagaggacgt	720
	atcggaaact	ccgtgcgatt	catcatctgc	tggggcgggc	tcccgagatt	gcttgctcgg	780
20	cctgcgatct	ggtcaacgtg	gacctggatg	actgtgtttc	tgagcaataa	atgacttaaa	840
	ccaggtatgg	ctgccgatgg	ttatcttcca	gattggctcg	aggacaacct	ctctgagggc	900
	attcgcgagt	ggtgggcgct	gaaacctgga	gccccgaagc	ccaaagccaa	ccagcaaaag	960
25	caggacgacg	gccggggtct	ggtgcttcct	ggctacaagt	acctcggacc	cttcaacgga	1020
	ctcgacaagg	gggagcccgt	caacgcggcg	gacgcagcgg	ccctcgagca	cgacaaggct	1080
	tacgaccagc	agctgcaggc	gggtgacaat	ccgtacctgc	ggtataacca	cgccgacgcc	1140
30	gagtttcagg	agcgtctgca	agaagatacg	tettttgggg	gcaacctcgg	gcgagcagtc	1200
	ttccaggcca	agaagcgggt	tctcgaacct	ctcggtctgg	ttgaggaagg	cgctaagacg	1260
	gctcctggaa	agaagagacc	ggtagagcca	tcaccccagc	gttctccaga	ctcctctacg	1320
35	ggcatcggca	agaaaggcca	acagecegee	agaaaaagac	tcaattttgg	tcagactggc	1380
	gactcagagt	cagttccaga	ccctcaacct	ctcggagaac	ctccagcagc	gccctctggt	1440
	gtgggaccta	atacaatggc	tgcaggcggt	ggcgcaccaa	tggcagacaa	taacgaaggc	1500
40	gccgacggag	tgggtagttc	ctcgggaaat	tggcattgcg	attccacatg	gctgggcgac	1560
	agagtcatca	ccaccagcac	ccgaacctgg	gccctgccca	cctacaacaa	ccacctctac	1620
	aagcaaatct	ccaacgggac	atcgggagga	gccaccaacg	acaacaccta	cttcggctac	1680
45	agcaccccct	gggggtattt	tgactttaac	agattccact	gccacctttc	accacgtgac	1740
	tggcagcgac	tcatcaacaa	caactgggga	ttccgaccca	agagactcag	cttcaagctc	1800
	ttcaacatcc	aggtcaagga	ggtcacgcag	aatgaaggca	ccaagaccat	cgccaataac	1860
50	ctcaccagca	ccatccaggt	gtttacggac	tcggagtacc	agctgccgta	cgttctcggc	1920
	tctgtccacc	agggctgcct	gcctccgttc	ccggcggacg	tgttcatgat	tecceagtae	1980
	ggctacctaa	cactcaacaa	cggtagtcag	gccgtgggac	gctcctcctt	ctactgcctg	2040
55	gaatactttc	cttcgcagat	gctgagaacc	ggcaacaact	tccagtttac	ttacaccttc	2100

	gaggacgtgc	ctttccacag	cagctacgcc	cacagctaga	gcttggaccg	gctgatgaat	2160
	cctctgattg	accagtacct	gtactacttg	tctcggactc	aaacaacagg	aggcacggca	2220
5	aatacgcaga	ctctgggctt	cagccaaggt	gggcctaata	caatggccaa	tcaggcaaag	2280
	aactggctgc	caggaccctg	ttaccgccaa	caacgcgtct	caacgacaac	cgggcaaaac	2340
	aacaatagca	actttgcctg	gactgctggg	accaaatacc	atctgaatgg	aagaaattca	2400
10	ttggctaatc	ctggcatcgc	tatggcaaca	cacaaagacg	acgaggagcg	ttttttccc	2460
	agtaacggga	tcctgatttt	tggcaaacaa	aatgctgcca	gagacaatgc	ggattacagc	2520
. 15	gatgtcatgc	tcaccagcga	ggaagaaatc	aaaaccacta	accctgtggc	tacagaggaa	2580
15	tacggtatcg	tggcagataa	cttgcagcag	caaaacacgg	ctcctcaaat	tggaactgtc	2640
	aacagccagg	gggccttacc	cggtatggtc	tggcagaacc	gggacgtgta	cctgcagggt	2700
20	cccatctggg	ccaagattcc	tcacacggac	ggcaacttcc	accegtetee	gctgatgggc	2760
-	ggctttggcc	tgaaacatcc	tccgcctcag	atcctgatca	agaacacgcc	tgtacctgcg	2820
	gatcctccga	ccaccttcaa	ccagtcaaag	ctgaactctt	tcatcacgca	atacagcacc	2880
25	ggacaggtca	gcgtggaaat	tgaatgggag	ctgcagaagg	aaaacagcaa	gcgctggaac	2940
	cccgagatcc	agtacacctc	caactactac	aaatctataa	gtgtggactt	tgctgttaat	3000
	acagaaggcg	tgtactctga	accccgcccc	attggcaccc	gttacctcac	ccgtaatctg	3060
30	taattgcctg	ttaatcaata	aaccggttga	ttcgtttcag	ttgaactttg	gtctctgcga	3120
	agggcgaatt	c .					3131

<210> 15 35 <211> 3127 <212> DNA <213> new AAV serotype, clone 13-3b

<400> 15

40

45

50

55

gcggccgcga	attcgccctt	cgcagagacc	aaagttcaac	tgaaacgaat	caaccggttt	60
attgattaac	atgcaattac	agattacggg	tgaggtaacg	agtgccaata	gggcgaggct	120
cagagtaaac	accctggctg	tcaacggcaa	agtccacacc	agtctgcttt	tcaaagttgg	180
aggtgtactg	aatctccggg	tcccagcgct	tgctgttttc	cttctgcagc	toccactoga	240
tttccacgct	gacttgtccg	gtgctgtact	gtgtgatgaa	cgaagcaaac	ttggcaggag	300
taaacacctc	cggaggatta	gcgggaacgg	gagtgttctt	gatcaggatc	tgaggaggcg	360
gatgtttaag	tccaaagccg	cccatcaaag	gagacgggtg	aaagttgcca	tccgtgtgag	420
gaatcttggc	ccagatggga	ccctgcaggt	acacgtcccg	gttctgccag	accatgccag	480
gtaaggctcc	ctggttgttġ	acaacttgtg	tctgggctgc	agtattagcc	gcttgtaagt	540
tgctgctgac	tatcccgtat	tettéegtgg	ctacaggatt	agtaggacga	atttcttctt	600
catttgtcat	taacacattt	tccaatgtag	ttttgttagt	tgctccagtt	tttccaaaaa	660

	tcaggactco	gctggatgg	g aaaaagcggt	cctcgtcgt	cttgtgagtt	gccatggcga	720
5 .	cgccgggatt	aaccaacgag	tttctgccgt	tcaggtgate	tttggtggca	ccagtccaag	780
•	caaagttgct	gttgttgttt	tgatccagcg	ttttggagad	cotttgttgc	cggaagcagg	840
	gtccaggtaa	ccaattcttg	gcttgttcgg	ccatagttga	aggcccgccc	: tggtaaaact	900
10	gcagttcccg	attgccagct	gtgcctcctg	ggtcactctg	tgttctggcc	: aggtagtaca	960
	agtactggtc	gatgagggga	ttcatcagcc	ggtccaggct	ctggctgtgt	gcgtagctgc	1020
	tgtggaaagg	cacgtcctcg	aagctgtagc	tgaactcaaa	gttgttgccc	gttctcagca	1080
15	tctgagaggg	gaagtactcc	aggcagtaga	aggaggaacg	tcccacagac	tgactgccat	1140
	tgttgagagt	caggtagccg	tactgaggaa	tcatgaagac	gtccgccggg	aacggaggca	1200
	ggcagccctg	gtgcgcagag	ccgaggacgt	acggcagctg	gtattccgag	tccgagaata	1260
20	cctgaatcgt	gctggtaagg	ttattagcga	tggtcgtaac	gccgtcattc	gtcgtgacct	1320
	ccttgacctg	gatgttgaag	agcttgaacc	gcagcttctt	gggccggaat	ccccagttgt	1380
	tgttgatgag	tcgctgccag	tcacgtggtg	agaagtggca	gtggaatctg	ttaaagtcaa	1440
25	aataccccca	gggggtgctg	tagccgaagt	aggtgttgtc	gttggtacta	cctgcagttt	1500
	cactggagat	ttgctcgtag	aggtggttgt	tgtaggtggg	cagggcccag	gttcgggtgc	1560
	tggtggtaat	gactctgtcg	cccagccatg	tggaatcgca	atgccaattt	cctgaggcat	1620
30	tacccactcc	gtcggcacct	tcgttattgt	ctgccattgg	tgcgccaccg	cctgcagcca	1680
	ctgtaccaga	tcccacacta	gagggcgctg	ctggaggttc	tccgagaggt	tgagggtcgg	1740
	ggactgactc	tgagtcgcca	gtctgaccga	aattgagtct	ctttctggcg	ggctgctggc	1800
35	ccttcttgcc	gatgcccgtg	gaggagtcgg	gggaacgctg	aggtgacggc	tctaccggtc	1860
	tcttctttgc	aggagccgtc	ttagcgcctt	cctcaaccag	accgagaggt	tcgagaaccc	1920
	gcttcttggc	ctggaagact	gctcgcccga	ggttgcccc	aaatgacgta	tcttcttgca	1980
40	gacgctcctg	aaactcggcg	tcggcgtggt	tataccgcag	gtacgggttg	tcacccgcat	2040
	tgagctgctg	gtcgtaggcc	ttgtcgtgct	cgagggccgc	tgcgtccgcc	gcgttgacgg	2100
	gctcccctt	gtcgagtccg	ttgaagggtc	cgaggtactt	gtagccagga	agcaccagac	2160
45	cccggccgtt	gtcctgcttt	tgctggttgg	ctttgggttt	cggggctcca	ggtttcaggt	2220
	cccaccactc	gcgaatgccc	tcagagaggt	tgtcctcgag	ccaatctgga	agataaccat	2280
	cggcagccat	acctgattta	aatcatttat	tgttcaaaga	tgcagtcatc	caaatccaca	2340
50	ttgaccagat	cgcaggcagt	gcaagcgtct	ggcacctttc	ccatgatatg	atgaatgtag	2400
	cacagtttct	gatacgcctt	tttgacgaca	gaaacgggtt	tagattctga	cacgggaaag	2460
	cactctaaac	agtctttctg	tccgtgagtg	aagcagatat	ttgaattctg	attcattctc	2520
55	togcattgto	tgcagggaaa	cagcatcaga	ttcatgccca	cgtgacgaga	acatttgttt	2 580

	tggtacctgt	ctgcgtagtt	gatcgaagct	tccgcgtctg	acgtcgatgg	ctgcgcaact	2640
5	gactcgcgca	cccgtttggg	ctcacttata	tctgcgtcac	tgggggcggg	tottttettg	2700
	gctccaccct	ttttgacgta	gaattcatgc	tccacctcaa	ccacgtaatc	ctttgcccac	2760
	cggaaaaagt	ctttgacttc	ctgcttggtg	accttcccaa	agtcatgatc	cagacggcgg	2820
0		atttgaacat	ccggtcttgc	aacggctgct	ggtgttcgaa	ggtcgttgag	2880
	ttcccgtcga	tcacggcgca	catgttggtg	ttggagatga	cgatcgcggg	agtcgggtct	2940
	atctgggccg	aggacttgca	tttctggtcc	acgcgcacct	tgcttcctcc	gagaatggct	3000
5	ttggccgact	ccacgacett	ggcggtcatc	ttcccctcct	cccaccagat	caccatcttg	3060
	tcgacacagt	cgttgaaggg	aaagttctca	ttggtccagt	tgacgcagcc	gtagaaaggg	3120
	cgaattc						3127
0							

20

<210> 16

<211> 3106

<212> DNA

<213> new AAV serotype, cione 24-1

<400> 16

30

25

35

40

45

50

. 5

. 15

gcggccgcga	attcgccctt	cgcagagacc	aaagttcaac	tgaaacgaat	caaccggttt	60
attgattaac	aagtaattac	aggttacggg	tgaggtaacg	ggtgccaatg	gggcgaggct	120
cagtataaac	cocttogttg	ttgacagcaa	attccacatt	attagacttg	gcataatttg	180
aggtgtactg	aatctctgga	ttccagcgtt	tgctgttttc	tttctgcagt	tcccactcga	240
tctccacgct	gacctggccg	gtgctgtact	gcgtgataaa	tgaggcaaac	ttggcaggag	300
taaacacctc	tggaggatta	gcaggtaccg	gggtgttttt	gatgagaatt	tgaggaggcg	360
ggtgtttgag	tccaaatccg	cccatcaggg	gagacgggtg	aaagttgccg	tccgtgtgag	420
gaattttggc	ccagatggga	ccctgcaggc	acacgtcccg	gttctgccag	accatgccgg	480
gcagagcccc	ctggctgttg	acagtctgtg	tctggggtcc	ggccgtagac	gattgcaggt	540
tgctggagac	cacaccgtat	tcttctgtag	ccacgggatt	ggtggttttg	atctcctcct	600
cgctggtcat	tagcacgttt	tccagcgttg	tcttgttggc	agcccccgtt	ttgccaaaaa	660
ccagcactcc	gttgatggga	aagaactggt	cctcgtcgtc	cttgttggtg	gccatggcta	720
cgcccgggtt	ggttaatgaa	tttctaccat	tcagatggta	tttagtggcc	ccggtccagg	780
caaagttact	gttgttgttg	ctgtctatgt	tttttgacag	tctctgctgc	cgataacagg	840
gtccgggcag	ccagttcttt	gattgctcgg	ccatggtgtt	gggcccagcc	tgatggaact	900
gcagctccct	tgtggacccc	gtagtgctct	gggtccgggc	caggtagtac	aggtactggt	960
cgatgagggg	attcatcagc	cggtctaggc	tctggctgtg	cacatagctg	ctgtggaaag	1020
gcacttcctc	aaaggtgtag	ctgaattcaa	agttattqcc	cqttctcagc	atctgagaag	1080

	gaaagtacto	caggcagtag	g aaggaggaac	gtcccacage	a ctgactgcc	g ttgtttagag	1140
5	tcagatatco	gtactgagga	a atcatgaaca	a cgtccgcag	g gaacggagg	g aggcagccct	1200
3	ggtgcgcaga	gccgaggacg	g tacggcagtt	ggtactccga	gtccgagaa	g acctgaatcg	1260
	tgctggtaag	gttattagco	g atggtcgtaa	cgccgtcgtt	cgtcgtgac	tccttgacct	1320
10	ggatgttgaa	caacttgaac	cgcagctttc	tgggccggaa	tccccagtt	g ttgttgatga	1380
	gtcgctgcca	gtcacgtggt	gagaagtggc	agtggaatct	gttgaagtca	a aaatagcccc	1440
	agggggtgct	gtagctgaag	aagtggttgt	cgttggtagc	cccgctctga	a cttgatatct	1500
15	gcttgtagag	gtggttgttg	taggtgggca	gggcccaggt	gegggtgetg	gtggtgatga	1560
	ctctgtcgcc	cagccatgtg	gaatcgcaat	gccaatttcc	ggaggcatta	cccactccgt	1620
	cggcgccttc	gttattgtct	gccattggtg	cgccaccgcc	tgcagccatt	gtaccagatc	1680
20	ccagacctga	gggcgcggcg	ggaggttctc	cgagaggttg	ggggtcgggc	actgactctg	1740
	agtcgccagt	ctgcccaaag	ttgagcttct	ttttagcggg	ctgctggcct	ttcttgccga	1800
	tgcccgtgga	ggagtcgggg	gattctatgg	gtctcttctt	tccaggagcc	gtcttagcga	1860
25	cttcctcaac	cagaccgaga	ggttcgagaa	cccgcttctt	ggcctggaag	actgctcgcc	1920
	cgaggttgcc	cccaaaagac	gtatcttctt	gaagacgctc	ctgaaactcg	gcgtcggcgt	1980
	ggttgtactt	gaggtacggg	ttgtccccct	gctcgagctg	cttgtcgtag	gccttgtcgt	2040
30	gctcgagggc	cgcggcgtct	gcctcgttga	coggetates	cttgtcgagt	ccgttgaagg	2100
	gtctgaggta	cttgtagcca	ggaagcacca	gaccccggcc	gtcgtcctgc	ttttgctggt	2160
	tggctttggg	tttcggggct	ccaggtttca	agtcccacca	ctcgcgaatg	ccctcagaga	2220
35	ggttgtcctc	gagccaatct	ggaagataac	catcggcagc	catacctggt	ttaagtcatt	2280
	tattgctcag	aaacacagtc	atccaggtcc	acgttgacca	gatcgcaggc	cgagcaagca	2340
	atctcgggag	cccgccccag	cagatgatga	atggcacaga	gtttccgata	cgtcctcttt	2400
40	ctgacgaccg	gttgagattc	tgacacgccg	gggaaacatt	ctgaacagtc	tctggtcccg	2460
	tgcgtgaagc	aaatgttgaa	attctgattc	actototogo	atgtcttgca	gggaaacagc	2520
	atctgaagca	tgcccgcgtg	acgagaacat	ttgttttggt	acctgtcggc	aaagtccacc	2580
45	ggageteett	ccgcgtctga	cgtcgatgga	ttcgcgactg	aggggcaggc	ccgcttgggc	2640
	tegettttat	ccgcgtcatc	ggg _, ggcgggt	ctcttgttgg	ccccaccctt	tctgacgtag	2700
	aacccatgcg	ccacctcggt	cacgtgatcc	tgcgcccagc	ggaagaacct	tttgacttcc	2760
50	tgctttgtca	ccttgccaaa	gttatgctcc	agacggcggg	tgggttcaaa	tttgaacatc	2820
	cggtcctgca /	acggctgctg	gtgctcgaag	gtggcgctgt	tcccgtcaat	cacggcgcac	2880
	atgttggtgt	tggaggtgac	ggtcacgggg	gtggggtcga	tctgggcgga	cgacttgcac	2940
55	ttttggtcca (cgcgcacctt	gctgccgccg	agaatggcct	tggcggactc	cacgaccttg	3000
			•				

	accatcatct	taeceteere	ccaccagate	200240777	0.666.600.000	gttgaaggga	20.50
						gregaagga	3060
5	aagtteteat	tggtccagtt	gacgcagccg	tagaaagggc	gaatte		3106
	<210> 17 <211> 3102						
10	<212> DNA <213> new AAV s	serotype, clone 2	7-3	,	·		
	<400> 17						
15		÷					
20							
25							
	e e tare e gran						
30							
35							
					٠.,		
40							
							•
45							

	geggeegeg	a attogocott	cgcagagac	aaagttcaa	c tgaaacgaat	caaccggttt	60
	attgattaa	c aagtaattac	: aggttacgg	j tgaggtaac	g ggtgccaat@	gggcgaggct	120
5	cagtataaa	cccttcgttc	ttgacagcae	attccacatt	attagacttç	gcataatttg	180
	aggtgtact	g aatctctgga	ttccagcgtt	tgctgtttt	tttctgcagt	tcccactcga	240
	tctccacgct	gacctggccg	gtgctgtact	gcgtgataaa	tgaggcaaac	ttggcaggag	300
10	taaacaccto	tggaggatta	gcaggtaccg	gggtgtttt	gatgagaatt	tgaggaggcg	360
	ggtgtttgag	, tccaaatccg	cccatcaggg	gagacgggtg	aaagttgccg	tccgtgtgag	420
	gaatttcggc	ccagatggga	ccctgcaggt	acacgtcccg	gttctgccag	accatgccgg	480
15	gcagagcccc	ctggctgttg	acagtctgtg	tccggggtcc	ggccgtagac	gattgcaggt	540
	tgctggagac	: cacaccgtat	tcttctgtag	ccacgggatt	ggtggttttg	atctcctcct	600
	cgctggtcat	tagcacgttt	tccagcgttg	tcttgttggc	agcccccgtt	ttgccaaaaa	660
20	ccagcactcc	gttgatggga	aggaactggt	cctcgtcgtc	cttgttggtg	gccatggcta	720
	egccegggtt	ggttaatgaa	tttctaccat	tcagatggta	tttagtggcc	ccggtccagg	780
	caaagttact	gttgttgttg	ctgtctatgt	tttttgacag	tctctgctgc	cgataacagg	840
25	gtccgggcag	ccagttcttt	gattgctcgg	ccacggtgtt	gggcccagcc	tgatggaact	900
	gcagctccct	tgtggacccc	gtagtgctct	gggtccgggc	caggtagtac	aggtactggt	960
	cgatgagggg	attcatcagc	cggtccaggc	tctggctgtg	cgcatagctg	ctgtggaaag	1020
30	gcacttcctc	aaaggtgtag	ctgaattcaa	agttattgcc	cgttctcage	atctgagaag	1080
	gaaagtactc	caggcagcag	aaggaggaac	gtcccacaga	ctgactgccg	ttgtttagag	1140
	tcagatatcc	gtactgagga	atcatgaaca	cgtccgcagg	gaacggaggg	aggcagccct	1200
35	ggtgcgcaga	gccgaggacg	tacggcagtt	ggtactccga	gtccgagaag	acctgaatcg	1260
	tgctggtaag	gttattagcg	atggtcgtaa	cgccgtcgtt	cgtcgtgacc	tccttgacct	1320
	ggatgttģaa	caacttgaac	cgcagctttc	tgggccggaa	tccccagttg	ttgttgatga	1380
40	gtcgctgcca	gtcacgtggt	gagaagtggc	agtggaatct	gttgaagtca	aaatagcccc	1440
	agggggtgct	gtagccgaag	aagtggttgt	cgttggtagc	cccgctctga	cttgatatct	1500
	gcttgtagag	gtggttgttg	taggtgggca	gggcccaggt	gcgggtgctg	gtggtgatga	1560
45	statatoaca	carccatrtr	MARTCACORT	555537 7 7756			

cggcgccttc gttattgtct gccartggtg cgccaccgcc tgcagccatt gtaccagatc

ccagacctga gggcgcggcg ggaggttctc cgagaggttg ggggtcgggc actgactctg

5	agtogocagt otgoccasag ttgagottot ttttagoggg otgotggoot ttottgooga	1800
	tgcccgtgga ggagtcgggg gattctatgg gtctcttctt tccggaagcc gtcttagcgc	1860
	ctteeteaac cagacegaga ggttegagaa eeegettett ggeetggaag actgetegee	1920
10	cgaggttgcc cccaaaagac gtatcttctt gaagacgctc ctgaaactcg gcgtcggcgt	1980
	ggttgtactt gaggtacggg ttgtccccct gctcgagctg cttgtcgtag gccttgtcgt	2040
	gctcgagggc cgcggcgtct gcctcgttga ccggctctcc cttgtcgagt ccgttgaagg	2100
15	gtccgaggta cttgtagcca ggaagcacca gaccccggcc gtcgtcctgc ttttgctggt	2160
	tggctttggg tttcggggct ccaggtttca agtcccacca ctcgcgaatg ccctcagaga	2220
	ggttgtcctc gagccaatct ggaagataac catcggcagc catacctggt ttaagtcatt	2280
20	tattgeteag aaacacagte atccaggtee acgttgacca gategeagge egageaagea	2340
	atctcgggag cccgccccag cagatgatga atggcacaga gtttccgata cgtcctcttt	2400
0.5	ctgacgaccg gttgagattc tgacacgccg gggaaacatt ctgaacagtc tctggtcccg	2460
25	tgcgtgaagc aaatgttgaa attctgattc attctctcgc atgtcttgca gggaaacagc	2520
	atotgaagca tgooogogtg acgagaacat ttgttttggt acctgtoggo aaagtocaco	2580
30	ggageteett eegegtetga egtegatgga teegegaetg aggggeaage eegettggge	2640
30	togettttat ecgegteate gggggegggt etettgttgg etecaceett tetgaegtag	2 70 0
	aactcatgcg ccacctcggt cacgtgatcc tgcgcccagc ggaagaactc tttgacttcc	2760
35	tgctttgtca ccttgccaaa gtcatgctcc agacggcggg tgagttcaaa tttgaacatc	2820
	cggtcttgta acggctgctg gtgctcgaag gtggtgctgt tcccgtcaat cacggcgcac	2880
	atgttggtgt tggaagtgac gatcacgggg gtgggatcga tctgggcgga cgacttgcac	2940
40	ttttggtcca cgcgcacctt gctgccgccg agaatggcct tggcggactc cacgaccttg	3000
	geogreatet tgeesteete ceaccagate accatettgt egacgeaate gttgaaggga	3060
	aagttotoat tggtocagtt gaogoagoog aagggogaat to	3102
45	<210> 18	
	<211> 3106	
	<212> DNA <213> new AAV serotype, clone 7-2	
50		
50	<400> 18 · · · · · · · · · · · · · · · · · ·	
	gcggccgcga attcgccctt cgcagagacc asagttcaac tgaaacgaat cagccggttt	60
55	attgattaac aagtaattac aggttacggg tgaggtaacg ggtgccaatg gggcgaggct	120
	cagtataaac cocttogttg ttgacagcaa attocacatt attagacttg gcataatttg	180

	aggtgtact	g aatctctgg	a ttccagcgt	t tgctgtttt	c tttctgcag	t toccactoga	240
	totocacgo	t gacctggcc	g gtgctgtac	t gegtgataa	a tgaggcaaa	c ttggcaggag	300
	taaacaccto	tggaggatt	a gcaggtacc	g gggtgttt	t gatgagaat	t tgaggaggcg	360
	ggtgtttgag	g tccasatcc	g cccatcagg	g gagacgggt	g aaagttgcc	g tccgtgtgag	420
	gaattttggd	ccagatggg	a ccctgcagg	t acacgtccc	g gttctgcca	g accatgeegg	480
,	gcagagccc	ctggctgtt	g acagtctgt	g tetggggte	c ggccgtagad	gattgcaggt	540
	tgctggagac	cacaccgtat	tottotgtag	ccacgggat	t ggtggttttg	atctcctcct	600
	cgctggtcat	tagcacgttt	tccagcgttq	tettgttgg	c agcccccgtt	ttgccaaaaa	660
	ccagcactco	gttgatggga	aagaactggt	cctcgtcgt	c cttgttggtg	gccatggcta	720
	cġcccgggtt	ggttaatgas	tttctaccat	tcagatggta	a tttagtggcc	ccggtccagg	780
	caaagttact	gttgttgttg	ctgtctatgt	tttttgacag	g tototgotgo	cgataacagg	840
	gtccgggcag	ccagttcttt	gattgctcgg	ccatggtgtt	gggcccagcc	tgatggaact	900
	gcagctccct	tgtggacccc	gtagtgctct	gggtccggg	caggtagtac	aggtactggt	960
	cgatgagggg	attcatcago	cggtccaggc	tctggctgtg	g cgcatagetg	ctgtggaaag	1020
	gcacttcctc	aaaggtgtag	ctgaattcaa	agttatcgcc	: cgttctcagc	atctgagaag	1080
	gaaagtactc	caggcagtag	aaggaggaac	gtcccacaga	ctgactgccg	ttgtttagag	1140
	tcagatatcc	gtactgagga	atcatgaaca	cgtccgcagg	gaacggaggg	aggcagccct	1200
	ggtgcgcaga	gccgaggacg	tacggcagtt	ggtactccga	gtccgagaag	acctgaatcg	1260
	tgctggtaag	gttattagcg	atggtcgtaa	cgccgtcgtt	cgtcgtgacc	tccttgacct	1320
	ggatgttgaa	caacttgaac	cgcagctttc	tgggccggaa	tccccagttg	ttgttgatga	1380
	gtcgctgcca	gtcacgtggt	gagaagtggc	agtggaatct	gttgaagtca	aaatagcccc	1440
	agggggtgct	gtagccgaag	aagtggttgt	cgttggtagc	cccgctctga	cttgatatct	1500
	gcttgtagag	gtggttgttg	taggtgggca	gggcccaggt	gcgggtgctg	gtggtgatga	1560
	ctctgtcgcc	cagccatgtg	gaatcgcaat	gccaatttcc	ggaggcatta	cccactccgt	1620
	eggegeette	gttattgtct	gccattggtg	cgccaccgcc	tgcagccatt	gtaccagate	1680
	ccagacctga	gggcgcggcg	ggaggttctc	cgagaggttg	ggggtcgggc	actgactctg	1740
	agtcgccagt	ctgcccaaag	ttgagcttct	ttttagcggg	cggctggccg.	ttcttgccga	1800
	tgcccgtgga	ggagtcgggg	gattctatgg	gtctcttctt	tccaggagcc	gtcttagcgc	1860
	cttcctcaac	cagaccgaga	ggttcgagaa	cccgcttctt	ggcctggaag	actgctcgcc	1920
	cgaggttgcc	cccaaaagac	gtatottott	gaagacgctc	ctgaaactcg	gcgtcggcgt	1980
	ggttgtactt	gaggtacggg	ttgtccccct	gctcgagctg	cttgtcgtag	gccttgtcgt	2040
	gctcgagggc	cgcggcgtct	gcctcgttga .	ccggctctcc	cttgtcgagt	ccgttgaagg	2100

	gtccgaggta	cctgtagcca	ggaagcacca	gaccccggcc	gtcgtcctgc	ttttgctggt	216
	tggctttggg	tttcggggct	ccaggtttca	agtcccacca	ctcgcgaatg	ccctcagaga	2220
	ggttgccctc	gagccaatct	ggaagataac	catcggcagc	catacctggt	ttaagtcatt	2280
	tattgctcag	aaacacagtc	atccaggtcc	acgttggcca	gatcgcaggc	cgagcaagca	2340
	atctcgggag	cccgccccag	cagatgatga	atggcacaga	gtttccgata	cgtcctcttt	2400
	ctgacgaccg	gttgagattc	tgacacgccg	gggaaacatt	ctgaacagtc	tetggteeeg	2460
	tgcgtgaagc	aaatgttgaa	attctgattc.	attctctcgc	atgtcttgca	ggggaacagc	2520
	atctgaagca	tgcccgcgtg	acgagaacat	ttgttttggt	acctgtcggc	aaagtccacc	2580
1	ggagctcctt	ccgcgtctga	cgtcgatgga	tccgcgactg	aggggcaggc	ccgcttgggc	2640
	tegettttat	ccgcgtcatc	gggggcgggt	ctcttgttgg	ctccaccctt	tctgacgtag	2700
•	aactcatacg	ccacctcggt	cacgtgatcc	tgcgcccagc	ggaagaactc	tttgacttcc	2760
1	tgctttgtca	ccttgccaaa	gtcatgctcc	agacggcggg	tgagttcaaa	tttgaacatc	2820
•	cggtcttgta	acggctgctg	gtgctcgaag	gtggtgctgt	tcccgtcaat	cacggcgcac	2880
2	atgttggtgt	tggaagtgac	gatcacgggg	gtgggatcga	tctgggcgga	cgacttgcac	2940
t	tttggtcca	cgcgcacctt	gctgccgccg	agaatggcct	tggcggactc	cacgaccttg	3000
٥	gccgtcatcc	tgccctcctc	ccaccagatc	accatcttgt	cgacgcaatc	gttgaaggga	3060
ě	agttctcat	tqqtccaqtt	gacgcagccg	tagaaagggc	gaattc		3106

<210> 19 <211> 3105 <212> DNA <213> new AAV serotype, clone C1

<400> 19

. 20

gaattcgccc	ttgctgcgtc	aactggacca	atgagaactt	tcccttcaac	gattgcgtcg	60
acaagatggt	gatctggtgg	gaggagggca	agatgaccgc	caaggtcgtg	gagtccgcca	120
aggccattct	gggcggaagc	aaggtgcgcg	tggaccaaaa	gtgcaagtca	tcggcccaga	180
togaccccac	gcccgtgatc	gtcacctcca	acaccaacat	gtgcgccgtg	atcgacggga	240
acagcaccac	cttcgagcac	cagcagccgc	tgcaggaccg	catgttcaag	ttcgagctca	300
cccgccgtct	ggagcacgac	tttggcaagg	tgaccaagca	ggaagtcaaa	gagttcttcc	360
gctgggctca	ggatcacgtg	actgaggtgg	cgcatgagtt	ctacgtcaga	aagggcggag	420
ccaccaaaag	acccgccccc	agtgacgcgg	atataagcga	gcccaagcgg	gcctgcccct	480
cagttgcgga	gccatcgacg.	tcagacgcgg	aagcaccggt	ggactttgcg	gacaggtacc	540
aaaacaaatg	ttctcgtcac	gcgggcatgc	ttcagatgct	gtttccctgc	aagacatgcg	600
agagaatgaa	tcagaatttc	aacgtctgct	tcacgcacgg	ggtcagagac	tgctcagagt	660
gcttccccgg	cgcgtcagaa	tctcaacccg	tcgtcagaaa	aaagacgtat	cagaaactgt	720

	gcgcgattca	tcatctgctg	gggcgggcac	ccgagattgc	gtgttcggcc	cgcgatctcg	780
	tcaacgtgga	cttggatgac	tgtgtttctg	agcaataaat	gacttaaacc	aggtatggct	840
5	gctgacggtt	atcttccaga	ttggctcgag	gacaacctct	ctgagggcat	tcgcgagtgg	900
	tgggacctga	aacctggagc	ccccaagccc	aaggccaacc	agcagaagca	ggacgacggc	960
	cggggtctgg	tgcttcctgg	ctacaagtac	ctcggaccct	tcaacggact	cgacaagggg	1020
10	gagecegtea	acgcggcgga	cgcagcggcc	ctcgagcacg	acaaggccta	cgaccagcag	1080
	ctcaaagcgg	gtgacaatcc	gtacctgcgg	tataaccacg	ccgacgccga	gtttcaggag	1140
45	cgtctgcaag	aagatacgtc	ttttgggggc	aacctcgggc	gagcagtctt	ccaggccaag	1200
15	aagagggtac	tcgaacctct	gggcctggtt	gaagaaggtg	ctaagacggc	tcctggaaag	1260
	aagagaccgt	tagagtcacc	acaagagccc	gactcctcct	caggaatcgg	caaaaaaggc	1320
20	aaacaaccag	ccaaaaagag	actcaacttt	gaagaggaca	ctggagccgg	agacggaccc	1380
	cctgaaggat	cagataccag	cgccatgtct	tcagacattg	aaatgcgtgc	agcaccgggc	1440
	ggaaatgctg	tcgatgcggg	acaaggttcc	gatggagtgg	gtaatgcctc	gggtgattgg	1500
25	cattgcgatt	ccacctggtc	tgagggcaag	gtcacaacaa	cctcgaccag	aacctgggtc	1560
	ttgcccacct	acaacaacca	cttgtacctg	cggctcggaa	caacatcaaa	cagcaacacc	1620
•	tacaacggat	tctccacccc	ctggggatac	tttgacttta	acagattcca	ctgtcacttc	1680
30	tcaccacgtg	actggcaaag	actcatcaac	aacaactggg	gactacgacc	aaaagccatg	1740
	cgcgttaaaa	tcttcaatat	ccaagttaag	gaggtcacaa	cgtcgaacgg	cgagactacg	1800
	gtcgctaata	accttaccag	cacggttcag	atatttgcgg	actcgtcgta	tgagctcccg	1860
35	tacgtgatgg	acgctggaca	agagggaagt	ctgtctcctt	tccccaatga	cgtcttcatg	1920
•	gtgcctcaat	atggctactg	tggcattgtg	actggcgaaa	atcagaacca	gacggacaga	1980
•	aatgctttct	actgcctgga	gtattttcct	tcacaaatgc	tgagaactgg	caataacttt	2040
40	gasatggctt	acaactttgg	gaaggtgccg	ttccactcaa	tgtatgctta	cagccagagc	2100
	ccggacagac	tgatgaatcc	cctcctggac	cagtacctgt	ggcacttaca	gtcgaccacc	2160
	tctggagaga	ctctgaatca	aggcaatgca	gcaaccacat	ttggaaaaat	caggagtgga	2220
45	gactttgcct	tttacagaaa	gaactggctg	cctgggcctt	gtgttaaaca	gcagagactc	2280
	tcaaaaactg	ccagtcaaaa	ttacaagatt	cctgccagcg	ggggcaacgc	tctgttaaag	2340
	tatgacaccc	actatacctt	aaacaaccgc	tggagcaaca	tagcgcctgg	acctccaatg	2400
50	gcaacagctg	gaccttcaga	tggggacttc	agcaacgccc	agctcatctt	ccctggacca	2460
	tcagtcaccg	gaaacacaac	aacctcagca	aacaatctgt	tgtttacatc	agaagaagaa	2520
	attgctgcca	ccaacccaag	agacacggac	atgtttggtc	agattgctga	caataatcag	2580
55	aatgctacaa	ctgctcccat	aaccggcaac	gtgactgcta	tgggagtgct	tcctggcatg	2640

	gtgtggcaaa	acagagacat	ttactaccaa	gggccaattt	gggccaagat	cccacacgcg	2700
5						teegeeteee	2760
	cagatattta	tcaaaaacac	ccccgtacct	gccaatcctg	cgacaacctt	cactgcagcc	2820
	agagtggact	ctttcatcac	acaatacagc	accggccagg	togotgitca	gattgaatgg	2880
10	gaaatcgaaa	aggaacgctc	caaacgctgg	aatcctgaag	tgcagtttac	ttcaaactat	2940
	gggaaccagt	cttctatgtt	gtgggctccc	gatacaactg	ggaagtatac	agagccgcgg	3000
	gttattggct	ctcgttattt	gactaatcat	ttgtaactgc	ctagttaatc	aataaaccgt	3060
15	gtgattcgtt	tcagttgaac	tttggtctct	gcgaagggcg	aattc		3105
	<210> 20	•					
	<211> 3105						
20	<212> DNA						

<212> DNA <213> new AAV serotype, clone C3

<400> 20

.

gaattcgccc	ttgctgcgtc	aactggacca	atgagaactt	tcccttcaac	gattgcgtcg	60
acaagatggt	gatctggtgg	gaggagggca	agatgaccgc	caaggtcgtg	gagtccgcca	120
aggccattct	gggcggaagc	aaggtgcgcg	tggaccaaaa	gtgcaagtca	tcggcccaga	180
tcgaccccac	gcccgtgatc	gtcacctcca	acaccaacat	gtgcgccgtg	atcgacggga	240
acagcaccac	cttcgagcac	cagcagccgc	tgcaggaccg	catgttcaag	ttcgagctca	300
cccgccgtct	ggagcacgac	tttggcaagg	tgaccaagca	ggaagtcaaa	gagttcttcc	360
gctgggctca	ggatcacgtg	actgaggtgg	cgcatgagtt	cțacgtcaga	aagggcggag	420
ccaccaaaag	acccgcccc	agtgacgcgg	atataagcga	gcccaagcgg	gcctgcccct	480
cagttgcgga	gccatcgacg	tcagacgcgg	aagcaccggt	ggactttgcg	gacaggtacc	540
aaaacaaatg	ttctcgtcac	gcgggcatgc	ttcagatgct	gtttccctgc	aagacatgcg	600
agagaatgaa	tcagaatttc	aacgtctgct	tcacgcacgg	ggtcagagac	tgctcagagt	660
gcttccccgg	cgcgtcagaa	tctcaacccg	tcgtcagaaa	aaagacgtat	cagaaactgt	720
gcgcgattca	tcatctgctg	gggcgggcac	ccgagattgc	gtgttcggcc	tgcgatctcg	780
tcaacgtgga	cttggatgac	tgtgtttctg	agcaataaat	gacttaaacc	aggtatggct	840
gctgacggtt	atcttccaga	ttggctcgag	gacaacctct	ctgagggcat	tcgcgagtgg	900
tgggacctga	aacctggagc	ccccaagctc	aaggccaacc	agcagaagca	ggacgacggc	960
cggggtctgg	tgcttcctgg	ctacaagtac	ctcggaccct	tccacggact	cgacaagggg	1020
gagcccgtca	acgeggegga	cgcagcggcc	ctcgagcacg	acaaggccta	Cgaccagcag	1080
ctcaaagcgg	gtgacaatcc	gtacctgcgg	tataaccacg	ccgacgccga	gtttcaggag	1140
cgtctgcaag	aagatacgtc	ttttgggggc	aacctcgggc	gagcagtott	CCAGGCCAAG	1200

	aagagggta	c tcgaaccact	gggcctggt1	t gaagaaggt	g ctaagacgg	tcctggaaag	1260
5	aagagaccg	t tagagtcacc	acaagagcc	gactcctcc	t caggaatcg	g caaaaaaggc	1320
J	aaacaacca	g ccaaaaagag	actcaactti	t gaagaggac	a ctggagccg	g agacggaccc	1380
	cctgaagga	t cagataccag	cgccatgtct	tcagacatt	g aaatgcgtg	agcaccgggc	1440
10	ggaaatgct	g tcgatgcggg	acaaggttco	gatggagtg	g gtaatgccto	gggtgattgg	1500
	cattgcgatt	ccacctggtc	tgagggcaag	gtcacaacaa	a cetegaceag	aacctgggtc	1560
	ttgcccacct	acaacaacca	cttgtacctg	cggctcggaa	a caacatcaaa	cagcaacacc	1620
15	tacaacggat	tetecacece	ctggggatac	tttgacttta	acagattcca	ctgtcacttc	1680
	tcaccacgt	, actggcaaag	actcatcaac	aacaactggg	gactacgaco	aaaagccatg	1740
	cgcgttaaaa	tcttcaatat	ccaagttaag	gaggtcacaa	cgtcgaacgg	cgagactacg	1800
20	gtcgctaata	accttaccag	cacggttcag	atatttgcgg	actogtogta	tgagctcccg	1860
	tacgtgatgg	acgctggaca	agagggaagt	ctgcctcctt	tccccaatga	cgtcttcatg	1920
	gtgcctcaat	atggctactg	tggcattgtg	actggcgaaa	atcagaacca	gacggacaga	1980
25	aatgctttct	actgcctgga	gtattttcct	tcacaaatgc	tgagaactgg	caataacttt	2040
	gaaatggctt	acaactttga	gaaggtgccg	ttccactcaa	tgtatgctca	cagccagagc	2100
	ctggacagac	tgatgaatcc	cctcctggac	cagtacctgt	ggcacttaca	gtcgaccacc	2160
30	tctggagaga	ctctgaatca	aggcaatgca	gcaaccacat	ttggaaaaat	caggagtgga	2220
	gactttgcct	tttacagaaa	gaactggctg	cctgggcctt	gtgttaaaca	gcagagattc	2280
•	tcaaaaactg	ccagtcaaaa	ttacaagatt	cctgccagcg	ggggcaacgc	tctgttaaag	2340
35	tatgacaccc	actatacctt	aaacaaccgc	tggagcaaca	tagcgcctgg	acctccaatg	2400
	gcaacagctg	gaccttcaga	tggggacttc	agcaacgccc	agctcatctt	ccctggacca	2460
	tcagtcaccg	gaaacacaac	aacctcagca	aacaatctgt	tgtttacatc	agaaggagaa	2 520
40	attgctgcca	ccaacccaag	agacacggac	atgtttggtc	agattgctga	caataatcag	2580
	aatgctacaa	·ctgctcccat	aaccggcaac	gtgactgcta	tgggagtgct	tcctggcatg	2640
	gtgtggcaaa	acagagacat	ttactaccaa	gggccaattt	gggccaagat	cccacacgcg	270 0
45	gacggacatt	ttcatccttc	accgctaatt	ggcggttttg	gactgaaaca	teegeeteee	2760
	cagatattta	tcaaaaacac	ccccgtacct	gccaatcctg	cgacaacctt	cactgcagcc	2820
	agagtggact	ctttcatcac	acaatacagc	accggccagg	tegetgttca	gattgastgg	2880
50	gaaatcgaaa	aggaacgctc	caaacgccgg	aatcctgaag	tgcagtttac	ttcaaactat	2940
	gggaaccagt	cttctatgtt	gtgggctccc	gatacaactg	ggaagtatac	agagccgcgg	3000
	gttattggct	ctcgttattt	gactaatcat	ttgtaactgc	ctagttaatc	aataaaccgt	3060
55	gtgattcgtt	tcagttgaac	tttggtctct	gcgaagggcg	aattc		3105

<210> 21

<211> 3105 <212> DNA <213> new AAV serotype, clone C5

<400> 21

	gaattcgccc	ttcgcagaga	ccaaagttca	actgaaacga	atcacacggt	ttattgatta	. 60
10	actaggcagt	tacaaatgat	tagtcaaata	acgagagcca	ataacccgcg	gctctgtata	120
	cttcccagtt	gtatcgggag	cccacaacat	agaagactgg	ttcccacagt	ttgaagtaaa	180
	ctgcacttca	ggattccagc	gtttggagcg	ttccttttcg	atttcccatt	caatctgaac	240
15	agcgacctgg	ccggtgctgt	attgtgtgat	gaaagagtcc	actctggctg	cagtgaaggt	300
	tgtcgcagga	taggcaggta	cgggggtgtt	tttgataaat	atctggggag	gcggatgttt	360
	cagtccaaaa	ccgccaatta	gcggtgaagg	atgaaaatgt	ccgtccgcgt	gtgggatett	420
20	ggcccaaatt	ggcccttggt	agtamatgtc	tctgttttgc	cacaccatgc	caggaagcac	480
	tcccatagca	gtcacgttgc	cggttatggg	agcagttgta	gcattctgat	tattgtcagc	540
	aatctgacca	aacatgtccg	tgtctcttgg	gttggtggca	gcaatttctt	cttctgatgt	600
25	aaacaacaga	ttgtttgctg	aggttgttgt	gtttccggtg	actgatggtc	cagggaagat	660
	gagctgggcg	ttgctgaagt	ccccatctga	aggtccagct	gttgccattg	gaggtccagg	720
	cgctatgttg	ctccagcggt	tgtttaaggt	atagtgggtg	tcatacttta	acagagcgtt	780
30	geceegetg	gcaggaatct	tgtaattttg	actggcagtt	tttgagaatc	tetgetgttt	840
	aacacaaggc	ccaggcagcc	agttctttct	gtaaaaggca	aagtctccac	tcctgatttt	900
	tccaaatgtg	gttgctgcat	tgccttgatt	cagagtctct	ccagaggtgg	tcgactgtaa	960
35	gtgccacagg	tactggtcca	ggaggggatt	catcagtccg	tccaggctct	ggctgtgagc	1020
	atacattgag.	tggaacggca	ccttctcaaa	gttgtaagcc	gtttcaaagt	tattgccagt	1080
	tctcagcatt	tgtgaaggaa	aatactccag	gcagtagaaa	gcatttctgt	ccgtctggtt	1140
40	ctgattttcg	ccagtcacaa	tgccacagta	gccatattga	ggcaccatga	agacgtcatt	1200
	gggaaagga	ggcagacttc	cctcttgtcc	agcgtccatc	acgtacggga	gctcatacga	1260
	cgagtccgca	aatatctgaa	ccgtgctggt	aaggttatta	gcgaccgtag	totogoogtt	1320
45	cgacgttgtg	acctccttaa	cttggatatt	gaagatttta	acgcgcatgg	cttttggtcg	1380
	tagtccccag	ttgttgttga	tgagtctttg	ccagtcacgt	ggtgagaagt	gacagtggaa	1440
	tctgttaaag	tcaaagtatc	cccagggggt	ggagaatccg	ttgtaggtgt	tgctgtttga	1500
50	tgttgttccg	agccgcaggt	acaagtggtt	gttgtaggtg	ggcaagaccc	aggttctggt	1560
	cgaggttgtt	gtgaccttgc	cctcagacca	ggtggaatcg	caatgccaat	cacccgaggc	1620
	attacccact	ccatcggaac	cttgtcccgc	atcgacagca	tttccgcccg	gtgctgcacg	1680
55	catttcaatg	tctgaagaca	tggcgctggt	atctgatcct	tcagggggtc	cgtctccggc	1740

1800

1860

tocagtgtcc tottcaaagt tgagtotott tttggctggt tgtttgcctt ttttgccgat

tectgaggag gagteggget ettgtggtga etetaaeggt etettette eaggageegt

		1860
5	cttagcacct tottcaacca ggcccagagg ttcgagtacc ctcttcttgg cctggaagac	1920
	tgctcgcccg aggttgcccc caaaagacgt atcttcttgc agacgctcct gaaactcggc	1980
	gtcggcgtgg ttataccgca ggtacggatt gtcacccgct ttgagctgct ggtcgtaggc	2040
10	cttgtcgtgc tcgagggccg ctgcgtccgc cgcgttgacg ggctccccct tgtcgagtcc	2100
	gttgaagggt ccgaggtact cgtagccagg aagcaccaga ccccggccgt cgtcctgctt	2160
	ctgctggttg gccttgggct tgggggctcc aggtttcagg tcccaccact cgcgaatgcc	2220
15	ctcagagagg ttgtcctcga gccaatctgg aagataaccg tcagcagcca tacctggttt	2280
	aagtcattta ttgctcagaa acacagtcat ccaagtccac gttgacgaga tcgcaggccg	2340
20	aacacgcaat ctcgggtgcc cgccccagca gatgatgaat cgcgcacagt ttctgatacg	2400
20	tetttttet gaegaegggt tgagattetg aegegeeggg gaageaetet gageagtete	2460
	tgaccccgtg cgtgaagcag acgttgaaat tctgattcat tctctcgcat gtcttgcagg	2520
25	gaaacagcat ctgaagcatg cccgcgtgac gagaacattt gttttggtac ctgtccgcaa	2580
	ggtccaccgg tgcttccgcg tctgacgtcg atggctccgc aactgagggg caggcccgct	2640
	tgggctcgct tatatccgcg tcactggggg cgggtctttt ggtggctccg ccctttctga	2700
30	cytagaactc atgcgccacc tcagtcacgt gatcctgagc ccagcggaag aactctttga	2760
	cttectgett ggtcacettg ccaaagtegt getecagaeg gegggtgage tegaaettga	2820
	acatgoggto otgoagoggo tgotggtgot ogaaggtggt gotgttocog togatoaogg	2880
35	cgcacatgtt ggtgttggag gtgacgatca cgggcgtggg gtcgatctgg gccgatgact	2940
•	tgcacttttg gtccacgege acettgette egeccagaat ggcettggeg gactecacga	3000
•.	cettggeggt catettgeec tecteccace agateaccat ettgtegaeg caategttga	3060
40	agggaaagtt ctcattggtc cagttgacgc agcaagggcg aattc	3105
	<210> 22	
	<211> 3094	
	<212> DNA	
45	<213> new AAV serotype, clone F1	
	<400> 22	
50	gaattogooc ttgotgogto aactggacca agagaacttt coottcaacg attgogtoga	60
30	caagatggtg atctggtggg aggagggcaa gatgacggcc aaggtcgtgg agtccgccaa	120
	agccattctg ggcggaagca aggtgcgcgt cgaccaaaag tgcaagtcct cggcccagat	180
55	cgateccase ecogtgateg teacetecaa caccaacatg tgegeegtga tegaegggaa	240
	cagcaccacc ttcgagcacc agcagccgtt gcaggaccgg atgttcaaat ttgaactcac	300

	ccgccgtct	g gaacacgact	ttggcaaggt	gaccaagca	g gaagtcaaaq	agttetteeg	360
5	ctgggctag	t gatcacgtga	ctgaggtgac	gcatgagtto	tacgtcagaa	agggcggagc	420
	cagcaaaag	a cccgcccccg	atgac g cgga	tataagcgag	g cccaagcggg	cctgtccctc	480
	agtcacgga	c ccatcgacgt	cagacgcgga	aggagetee	gtggactttg	ccgacaggta	540
10	ccaaaacaa	a tgttctcgtc	acgcgggcat	gcttcagatg	ctgtttecer	gcaaaacgtg	600
	cgagagaatq	g aatcagaatt	tcaacatttg	cttcacgcac	ggggtcagag	actgtttaga	660
	atgtttccc	ggcgtgtcag	aatctcaacc	ggtcgtcaga	aaaaagacgt	atcggaagct	720
15	gtgtgcgatt	catcatctgc	tggggcgggc	acccgagatt	gcttgctcgg	cctgcgacct	780
	ggtcaacgtg	gacctggacg	actgtgtttc	tgagcaataa	atgacttaaa	ccgggtatgg	840
	ctgccgatgg	ttatcttcca	gattggctcg	aggacaacct	ctctgagggc	attcgcgagt	900
20	ggtgggacct	gaaacctgga	gccccgaaac	ccaaagccaa	ccagcaaaag	caggacgacg	960
	gccggggtct	ggtgcttcct	ggctacaagt	acctcggacc	cttcaacgga	ctcgacaagg	1020
	gggagccegt	caacgcggcg	gacgcagcgg	ccctcgagca	cgacaaggcc	tacgaccagc '	1080
25	agctcaaagc	gggtgacaat	ccgtacctgc	ggtataacca	cgccgacgcc	gagtttcagg	1140
	agcgtctgca	agaagatacg	tcatttgggg	gcaacctcgg	gcgagcagtc	ttccaggcca	1200
	agaagcgggt	tctcgaacct	ctcggtctgg	ttgaggaagg	cgctaagacg	gctcctggaa	1260
30	agaagagacc	catagactet	ccagactcct	ccacgggcat	cggcaaaaaa	ggccagcagc	1320
	ccgctaaaaa	gaagctcaat	tttggtcaga	ctggcgactc	agagtcagtc	cccgaccctc	1380
	aacctcttgg	agaacctcca	gcagcgccct	ctagtgtggg	atctggtaca	atggctgcag	1440
35	gcggtggcgc	accaatggca	gacaataacg	aaggtgccga	cggagtgggt	aatgcctcag	1500
	gaaattggca	ttgcgattcc	acatggctgg	gcgacagagt	catcaccacc	agcaccagaa	1560
	cctgggccct	ccccacctac	aacaaccacc	tctacaagca	aatctccagc	agcagctcag	1620
40	gagccaccaa	tgacaaccac	tacttcggct	acagcacccc	ctgggggtat	tttgacttta	1680
	acagattcca	ctgccacttc	tcaccacgtg	actggcagcg	actcatcaac	aacaactggg	1740
	gattccggcc	caagaagctg	cggttcaagc	tcttcaacat	ccaggtcaag	gaggtcacaa	1800
45	cgaatgacgg	cgtcacgacc	atcgctaata	accttaccag	cacggttcag	gtcttctcgg	1860
	actoggaata	ccagctgccg	tacgtcctcg	gctctgcgca	ccagggctgc	ctgcctccgt	1920
	tcccggcgga	cgtcttcatg	attecteagt	acggctacct	gactctgaac	aacggcagcc	1980
50	aatcggtggg	ccgttcctcc	ttctactgcc	tggaatattt	cccctctcaa	atgctgagaa	2040
	cgggcaacaa	ctttgagttc	agttacagct	tcgaggacgt	gcctttccac	agcagctacg	2100
	cgcacagcca	gagcctagac	cggctgatga	acceteteat	cgaccagtac	ctgtactacc	2160
55	tggcccggac	ccagagcacc .	acgggttcca	ccagggaact	gcaatttcat	caagctgggc	2220

	ccaatactat	ggccgagcag	tcaaagaact	ggctgcctgg	accetgetat	aggcaacagg	2280
<i>E</i>	gactgtcaaa	gaacttggac	tttaacaaca	acagcaattt	tgcctggact	gctgccacta	2340
5	aatatcatct	gaatggcaga	aactctttga	ccaatcctgg	cattcccatg	gcaaccaaca	2400
	aggatgatga	ggaccagttc	tttcccatca	acggggtact	ggtttttggc	aagacgggag	2460
10	ctgccaacaa	aactacgctg	gaaaacgttc	tgatgaccag	cgaggaggag	atcaagacca	2520
	ctaaccctgt	ggctacagaa	gaatacggtg	tggtctccag	caacctgcag	ccgtctacag	2580
	ccgggcctca	atcacagact	atcaacagcc	agggagcact	gcctggcatg	gtctggcaga	2640
15	accgggacgt	gtatctgcag	ggtcccatct	gggccaaaat	tcctcacacg	gatggcaact	2700
. –	ttcacccgtc	tcctctgatg	ggcggttttg	gactcaaaca	cccgcctcca	cagatootga	2760
	tcaaaaacac	acctgtacct	gctaatcctc	cggaggtgtt	tactcctgcc	aagtttgcct	2820
20	ccttcatcac	gcagtacagc	accggacaag	tcagcgtgga	aatcgagtgg	gagctgcaga	2880
	aagaaaacag	caagcgctgg	aacccagaaa	ttcagtatac	ttccaattat	gccaagtcta	2940
	ataatgttga	atttgctgtg	aaccctgatg	gtgtttatac	tgagcctcgc	cccattggca	3000
?5	ctcgttacct	ccccgtaat	ctgtaattgc	ttgttaatca	ataaaccggt	tgattcgttt	3060
	cagttgaact	ttggtctctg	cgaagggcga	attc			3094

30 <210> 23 <211> 3095 <212> DNA

<213> new AAV serotype, clone F3

35 <400> 23

40

45

50

	gaattcgccc	ttcgcagaga	ccaaagttca	actgaaacga	atcaaccggt	ttattgatta	60
	acaagcaatt	acagattacg	ggtgaggtaa	cgagtgccaa	tggggcgagg	ctcagtataa	120
	acaccatcag	ggttcacagc	aaattcaaca	ttattagact	tggcataatt	ggaagtatac	180
	tgaatttctg	ggttccagcg	cttgctgttt	tctttctgca	gctcccactc	gatttccacg	240
•	ctgacttgtc	cggtgctgta	ctgcgtgatg	aaggaggcaa	acttggcagg	agtaaacacc	300
	tccggaggat	tagcaggtac	aggtgtgttt	ttgatcagga	tctgtggagg	cgggtgtttg	360
	agtccaaaac	cgcccatcag	aggagacggg	tgaaagttgc	catccgtgtg	aggaattttg	420
	gcccagatgg	gaccctgcag	atacacgtcc	cggttctgcc	agaccatgcc	aggcagtgct	480
	ccctggctgt	tgatagtctg	tgattgaggc	ccggctgtag	acgactgcag	gttgctggag	540
	accacaccgt	attcttctgt	agccacaggg	ttagtggtct	tgatctcctc	ctcgctggtc	600
	atcagaacgt	tttccagcgt	agttttgttg	gcagctcccg	tcttgccaaa	aaccagtacc	660
	ccgttgatgg	gaaagaactg	gtcctcatca	tccttgttgg	ttgccatggg	aatgccagga	720
	ttggtcaaag	agtttctgcc	attcagatga	tatttagtgg	cagcagtcca	ggcaaaattg	780

	ctgttgttg	t taaagtcca	a gttctttga	c agtototgti	t gcctatagc	a gggtccaggc	840
5	agccagttct	ttgactgct	c ggccatagt	a ttgggccca	g cttgatgaa	a ttgcagttcc	900
-	ctggtggaac	ccgtggtgc	t ctgggtccg	g gccaggtagt	t acaggtact	g gtcgatgaga	960
	gggttcatca	gccggtcta	g gctctggċt	g tgcgcgtago	c tgctgtgga	a aggcacgtcc	1020
10	tcgaagctgt	aactgaact	s aaagttgtt	g cccgttctce	gcatttgag	a ggggaaatat	1080
	tccaggcagt	agaaggagg	a acggeceae	s gattggctgc	cgttgtccaq	g agtcaggtag	1140
	ccgtactgag	gaatcatgaa	a gacgtccgc	gggaacggag	gcaggcagco	ctggtgcgca	1200
15	gagccgagga	cgtacggcag	ctggtattco	: gagtccgaga	agacctgaac	: cgtgctggta	1260
	aggttattag	cgatggtcgt	gacgccgtca	ttcgttgtga	cctccttgac	ctggatgttg	1320
	aggagcttga	accgcagett	cttgggccgg	, aatccccagt	tgttgttgat	gagtegetge	1380
20	cagtcacgtg	gtgagaagtg	gcagtggaat	ctgttaaagt	caaaatacco	ccagggggtg	1440
	ctgtagccga	agtagtggtt	gtcattggtg	gctcctgagc	tgctgctgga	gatttgcttg	1500
	tagaggtggt	tgttgtaggt	ggggagggcc	caggttctgg	tgctggtggt	gatgactctg	1560
25	tcgcccagcc	atgtggaatc	gcaatgccaa	tttcctgagg	cattacccac	tccgtcggca	1620
	ccttcgttat	tgtctgccat	tggtgcgcca	ccgcctgcag	ccattgtacc	agatcccaca	1680
	ctagagggcg	ctgctggagg	ttctccaaga	ggttgagggt	cggggactga	ctctgagtcg	1740
30	ccagtctgac	caaaattgag	cttcttttta	gcgggctgct	ggcctttttt	gccgatgccc	. 1800
	gtggaggagt	ctggagagcc	tatgggtctc	ttctttccag	gagccgtctt	agcgccttcc	1860
	tcaaccagac	cgagaggttc	gagaacccgc	ttcttggcct	ggaagactgc	tegecegagg	1920
35	ttgcccccaa	atgacgtatc	ttcttgcaga	cgctcctgaa	acteggegte	ggcgtggtta	1980
	taccgcaggt	acggattgtc	acccgctttg	agctgctggt	cgtaggcctt	gtcgtgctcg	2040
	agggccgctg	cgtccgccgc	gttgacgggc	tececettgt	cgagtccgtt	gaagggtccg	2100
40	aggtacttgt	agccaggaag	caccagaccc	cggccgtcgt	cctgcttttg	ctggttggct	2160
	ttgggtttcg	gggctccagg	tttcaggtcc	caccactcgc	gaatgccctc	agagaggttg	2220
	tcctcgagcc	eatctggaag	ataaccatcg	gcagccatac	ctggtttaag	tcatttattg	2280
45	ctcagaaaca	cagtcgtcca	ggtccacgtt	gaccaggtcg	caggccgagc	aagcaatctc	2340
•	gggtgcccgc	cccagcagat	gatgaatcgc	acacagette	cgatacgtct	tttttctgac	2400
	gaccggttga	gattctgaca	cgccggggaa	acatictaaa	cagtctctga	cccgtgcgt	2460
50	gaagcaaatg	ttgaaattct	gattcattct	ctcgcacgtt	ttgcagggaa	acagcacctg	2520
	aagcatgccc	gcgtgacgag	aacatttgtt	ttggtacctg	tcggcaaagt	ccaccggagc	2580
	tccttccgcg	tctgacgtcg	atgggtccgt	gactgaggga	cgggcccgct	tgggctcgct	2640
55	tatatccgcg	tcatcggggg	cgggtctttt	gctggctccg	ccctttctga	cgtagaactc	2700

	atgcgtcacc	tcagtcacgt	gatcactagc	ccagcggaag	aactctttga	cttcctgctt	2760
5	tgtcaccttg	ccaaagtcgt	gttccagacg	gcgggtgagt	tcaaatttga	acatccggtc	2820
3	ctgcaacggt	tgctggtgct	cgaaggtggt	gctgttcccg	tcgatcacgg	cgcacatgtt	2880
	ggtgttggag	gtgacgatca	cgggggtggg	atcgatctgg	gcggacgact	tgcacttttg	2940
10	gtccacgcgc	accttgctgc	cgccgagaat	ggccttggcg	gactccacga	ccttggccgt	3000
	catcttgccc	tcctcccacc	agatcaccat	cttgtcgacg	caatcgttga	agggaaagtt	3060
	ctcattggtc	cagttgacgc	agcaagggcg	aattc			3095
15							
	<210> 24						
	<211> 3095						
	<212> DNA						
	<213> new AAV s	erotype, clone F	5				•
20		, ,					
	<400> 24	• •	•				•
							٠.
25							,
30						•	

gaattcgccc	ttcgcagaga	ccaaagttca	actgaaacga	atcaaccggt	ttattgatta	60
acaagcaatt	acagattacg	ggtgaggtaa	cgagtgccae	tggggcgagg	ctcagtataa	120
acaccatcag	ggttcacagc	aaattcaaca	ttattagact	tggcataatt	ggaagtatac	180
tgaatttctg	ggttccagcg	cttgctgttt	tctttctgca	gctcccactc	gatttccacg	240
ctgacttgtc	cggtgctgta	ctgcgtgatg	aaggaggcaa	acttggcagg	agtaaacacc	300
tccggaggat	tagcaggtac	aggtgtgttt	ttgatcagga	tctgtggagg	cgggtgttcg	360
agtccaaaac	cgcccatcag	aggagacggg	tgaaagttgc	catccgtgtg	aggaattttg	420
gcccagatgg	gaccctgcag	atacacgtcc	cggttctgcc	agaccatgcc	aggcagtgct	480
ccctggctgt	tgatagtctg	tgattgaggc	ccggctgtag	acgactgcag	gttgctggag	540
accacaccgt	attcttctgt	agccacaggg	ttagtggtct	tgatctcctc	ctcgctggtc	600
atcagaacgt	tttccagcgt	agttttgttg	gcagctcccg	tcttgccaaa	aaccagtacc	660
ccgttgatgg	gaaagaactg	gtcctcatca	tccttgttgg	ttgccatggg	aatgccagga	720
ttggtcaaag	agtttctgcc	attcagatga	tatttagtgg	cagcagtcca	ggcaaaattg	780
ctgttgttgt	taaagtccaa	gttctttgac	agtetetgtt	gcctatagca	gggtccaggc	840
agccagttct	ttgactgctc	ggccatagta	ttgggcccag	cttgatgaaa	ttgcagttcc	900
ctggtggaac	ccgtggtgct	ctgggtccgg	gccaggtagt	acaggtactg	gtcgatgaga	960
gggttcatca	gccggtctag	gctctggctg	tgcgcgtagc	tgctgtggaa	aggcacgtcc	1020
tcgaagctgt	aactgaactc	aaagttgttg	cccgttctca	gcatttgaga	ggggaaatat	1080
tccaggcagt	agaaggagga	acggcccacc	gattggctgc	cgttgttcag	agtcaggtag	1140
ccgtactgag	gaatcatgaa	gacgtccgcc	gggaacggag	gcaggcagcc	ctggtgcgca	1200
gagccgagga	cgtacggcag	ctggtattcc	gagtccgaga	agacctgaac	cgtgctggta	1260
aggttattag	cgatggtcgt	gacgccgtca	ttcgttgtga	cctccttgac	ctggatgttg	1320

aagagcttga	accgcagctt	cttgggccg	g aatccccagt	tgttgttgat	gagtcgctgc	1380
cagtcacgto	g gtgagaagtg	gcagtggaat	ctgttaaagt	caaaataccc	ccagggggtg	1440
ctgtagccg	agtagtggtt	gtcattggto	g gctcctgagc	tgctgctgga	gatttgcttg	1500
tagaggtggt	: tgttgtaggt	ggggagggc	: caggttctgg	tgctggtggt	gatgactctg	1560
tegeccaged	atgtggaatc	gcaatgccaa	tttcctgagg	cattacccac	tccgtcggca	1620
ccttcgttat	tgtctgccgt	tggtgcgcca	ccgcctgcag	ccattgtacc	agatoccaca	1680
ctagagggcg	ctgctggagg	ttctccaage	ggttgagggt	cggggactga	ctctgagtcg	1740
ccagtctgac	caaaattgag	cttcttttta	gcgggctgct	ggccttttt	gccgatgccc	1800
gtggaggagt	ctggagagtc	tatgggtctc	ttctttccag	gagccgtctt	agcgccttcc	1860
tcaaccagac	cgagaggttc	gagaacccgc	ttcttggcct	ggaagactgc	tcgcccgagg	1920
ttgcccccaa	atgacgtatc	ttcttgcagg	cgctcctgaa	actcggcgtc	ggcgtggtta	1980
taccgcaggt	acggattgtc	accegetttg	agctgctggt	cgtaggcctt	gtcgtgctcg	2040
agggccgctg	cgtccgccgc	gttgacgggc	tececettgt	cgagtccgtt	gaagggtccg	21.00
aggtacttgt	agccaggaag	caccagaccc	cggccgtcgt	cctgcttttg	ctggttggct	2160
ttgggtttcg	gggctccagg	tttcaggtcc	caccactege	gaatgccctc	agagaggttg	2220
tcctcgagcc	aatctggaag	ataaccatcg	gcagccatac	ctggtttaag	ccatttattg	2280
ctcagaaaca	cagtcgtcca	ggtccacgtt	gaccaggtcg	caggccgagc	aggcaatctc	2340
gggtgcccgc	cccagcagat	gatgaatcgc	acacagette	cgatacgtct	tttttctgac	2400
gaccggttga	gattctgaca	cgccggggaa	acattctaaa	cagtctctga	ccccgtgcgt	2460
gaagcaaatg	ttgaaattct	gattcattct	ctcgcacgtt	ttgcagggaa	acagcatctg	2520
aagcatgccc	gcgtggcgag	aacatttgtt	ttggtacctg	toggcaaagt	ccaccggagc	2580
tccttccgcg	tctgacgtcg	atgggtccgt	gactgaggga	caggcccgct	tgggctcgct	2640
tatatccgcg	tcatcggggg	cgggtctttt	gctggctccg	ccctttctga	cgtagaactc	2700
atgcgtcacc	tcagtcacgt	gatcactagc	ccagcggaag	aactctttga	cttcctgctt	2760
tgtcaccttg	ccaaagtcgt	gttccagacg	gcgggtgagt	tcaaatttga	acatccggtc	2820
ctgcaacggc	tgctągtgct	cgaaggtggt	gctgttcccg	tcgatcacgg	cgcgcatgtt	2880
ggtgttggag	gtgacgatca	cgggggtggg	atcgatctgg	gcggacgact	tgcacttttg	2940
gtccacgcgc	accttgctgc	cgccgagaat	ggccttggcg	gactccacga	ccttggccgt	3000
catcttgccc	tcctcccacc	agatcaccat	cttgtcgacg	caatcgttga	agggaaagtt	3060
ctcattggtc	cagttgacgc	agcaagggcg	aattc			3095

<210> 25 55 <211> 3142 <212> DNA

<213> new AAV serotype, clone H6

<400> 25

	aaaacgacg	g gccagtgat	t gtaatacga	tcactatage	g gcgaaattg	a aattagcggc	60
5	cgcgaatto	g cotttegea	g agaccaaagt	tcaactgaaa	cgaattaaa	c ggtttattga	120
	ttaacaagc	a attacagati	acgagtcagg	tatctggtgc	caatggggc	g aggctctgaa	180
	tacacacca	t tagtgtccad	agtaaagtco	: acattaacag	acttgttgt	a gttggaagtg	240
10 	tactgaatt	t cgggattcce	gegtttgetg	ttctccttct	gcagctccca	a ctcgatctcc	300
	acgctgacc	t gtcccgtgga	atactgtgtg	atgaaagaag	caaacttgg	agaactgaag	360
4.5	tttgtggga	g gattggctgg	aacgggagtg	tttttgatca	tgatctgago	g aggcgggtgt	420
15	ttgagtcca	a aacctcccat	cagtggagaa	ggatgaaagt	gtccatcggt	gtgaggaatc	480
	ttggcccaa	a tgggtccctg	caggtacacg	tctcgatcct	gccacaccat	accaggtaac	540
20	gctccttgg	t gattgacagt	tccagtagtt	ggaccagtgt	ttgagttttg	caaattattt	600
20	gacacagtco	cgtactgctc	cgtagccacg	ggattggtgg	ccctgatttc	ttcttcatct	660
	gtaatcatg	a cattttccaa	atccgcgtcg	ttggcatttg	ttccttgttt	accaeatatc	720
25	agggttccat	gcatggggaa	aaacttttct	togtcatest	tgtgactggc	catagctggt	780
	cctggattas	a ccaacgagtc	ccggccattt	agatgatact	ttgtagctgc	agtccaggga	840
	aagttgctgt	tgttgttgtc	gtttgcctgt	tttgacagac	gctgctgtct	gtagcaaggt	900
30	ccaggcagco	agtttttagc	ttgaagagac	atgttggttg	gtccagcttg	gctaaacagt	960
50	agccgagact	gctgaagagt	tccactattt	gtttgtgtct	tgttcagata	atacaggtac	1020
	tggtcgatca	gaggattcat	cagccgatcc	agactctggc	tgtgagcgta	gctgctgtgg	1080
35	aaaggcacgt	cttcaaaagt	gtagctgaac	tgaaagttgt	ttccagtacg	cagcatctga	1140
	gaaggaaagt	actccaggca	gtaaaaggaa	gagcgtccta	ccgcctgact	cccgttgttc	1200
	agggtgaggt	atccatactg	tgggaccatg	aagacgtccg	ctggaaacgg	cgggaggcat	1260
40	ccttgatgcg	ccgagcccag	gacgtacggg	agctggtact	ccgagtcagt	aaacacctga	1320
	accgtgctgg	taaggttatt	ggcaatcgtc	gtcgtaccgt	cattctgcgt	gacctctttg	1380
	acttgaatat	taaagagctt	gaagttgagt	cttttgggcc	ggaatccccg	gttgttgttg	1440
45	acgagtcttt	gccagtcacg	tggtgaaaag	tggcagtgga	atctgttgaa	gtcaaaatac	1500
	ccccaggggg	tgctgtagcc	aaagtagtgg	ttgtcgttgc	tggctcctga	ttggctggag	1560
	atttgcttgt	agaggtggtt	gttgtatgtg	ggcagggccc	aggttcgggt	gctggtggtg	1620
50	atgactctgt	cgcccagcca	ttgggaatcg	caatgccaat	ttcctgagga	attacccact	1680
	ccatcggcac	cctcgttatt	gtctgccatt	ggtgcgccac	tgcctgtagc	cattgtagta	1740

	gateccagae cagagggge tgetggtgge tgteegagag getgggggte aggtaeggag	1800
	tetgegtete cagtetgace aaaatttaat ettttettg caggetgetg geeegetttt	1860
5	coggition aggaggagto tggotocaca ggagagigot ciacoggoot cittiticoo	1920
	ggagccgtct taacaggctc ctcaaccagg cccagaggtt caagaaccct cttttcgcc	1980
	, tggaagactg ctcgtccgag gttgccccca aaagacgtat cttctttaag gègetcctga	2040
10	aactctgcgt cggcgtggtt gtacttgagg tacgggttgt ctccgctgtc gagctgccgg	2100
	tegtaggeet tgtegtgete gagggeegeg gegtetgeet egttgacegg etceceettg	2160
	tcgagtccgt tgaagggtcc gaggtacttg tacccaggaa gcacaagacc cctgctgtcg	2220
15	tecttatgee getetgeggg etttggtggt ggtgggeeag gtttgagett ceaccactgt	2280
	cttattcctt cagagagagt gtcctcgagc caatctggaa gataaccatc ggcagccata	2340
	cctgatttaa atcatttatt gttcagagat gcagtcatcc aaatccacat tgaccagatc	2400
20	gcaggcagtg caagcgtctg gcacctttcc catgatatga tgaatgtagc acagtttctg	2460
	atacgcottt ttgacgacag aaacgggttg agattotgac acgggaaagc actotagaca	2520
45	gtetttetgt eegtgagtga ageagatatt tgaattetga tteattetet egeattgtet	2580
25	gcagggaaac agcatcagat tcatgcccac gtgacgagaa catttgtttt ggtacctgtc	2640
	egegtagttg ategaagett eegegtetga egtegatgge tgegeaactg actegegege	2700
20	cegtttgggc tcacttatat ctgcgtcact gggggcgggt cttttcttag ctccaccett	2760
30	tttgacgtag aattcatget ceaceteaac caegtgatee tttgeceace ggaaaaagte	2820
	tttcacttcc tgcttggtga cctttccaaa gtcatgatcc agacggcggg taagttcaaa	2880
35	tttgaacate eggtettgea aeggetgetg gtgetegaag gtegttgagt teeegteaat	2940
00	cacggegeae atgttggtgt tggaggtgae gateaeggga gtegggteta tetgggeega	3000
	ggacttgcat ttctggtcca cacgcacctt gettecteca agaatggett tggccgacte	3060
40	cacgacettg geggteatet tecceteete ceaceagate accatettgt egacgeaatg	3120
	gtaaaaggaa agttotoatt gg	3142
	<210> 26	
45	<211> 3075 <212> DNA	
	<213> new AAV serotype, clone H2	
	<400> 26	
50	tgagaacttt cettteaacg attgegtegg acaagatggt gatetggtgg gaggagggga	60
	agatgaccgc caaggtcgtg gagtcggcca aagccattct tggaggaagc aaggtgcgtg .	120
	tggaccagaa atgcaagtcc tcggcccaga tagacccgac tcccgtgatc gtcacctcca	180
55	acaccaacat gtgcgccgtg attgacggga actcaacgac cttcgagcac cagcagccgt	240
•	tgcaagaccg gatgttcaaa tttgaactta cccgccgtct ggatcatgac tttggaaagg	300

	tcaccaagca go	gaagtgaaa	gactttttcc	ggtgggcaa	a ggatcacgt	g gttgaggtgg	360
	agcatgaatt ct	acgtcaaa	aagggtggag	r ctaagaaaa	g accegeece	c agtgacgcag	420
5	atataagtga go	ccaaacgg	gcgcgcgagt	cagttgcgc	a gccatcaac	g tcagacgcgg	480
	aagcttcgat ca	actacgcg	gacaggtacc	aaaaacaaa	t gttctcgtca	a cgtgggcatg	540
	aatctgatgc tg	rttccctg	cagacaatgo	gagagaatga	a atcagaatto	aaatatctgc	600
10	ttcactcacg ga	cagaaaga	ctgtttagag	tgctttccc	g tgtcagaato	tcaaccegtt	660
	tctgtcgtca aa	aaggcgta	tcagaaactg	tgctacatto	atcatatcat	gggaaaggtg	720
	ccagacgctt gc	actgcctg	cgatctggtc	aatgtggatt	: tggatgactg	catctctgaa	780
15	caataaatga tt	taaatcag	gtatggctgc	cgatggttat	cctccagatt	ggctcgagga	840
	cactetetet ga	agggataa	gacagtggtg	gaagctcaaa	cctggcccac	caccaccaaa	900
20	gcccgcagag cg	gcataagg	acgacagcag	gggtcttgtg	cttcctgggt	acaagtacct	960
20	cggaccette aa	cggactcg	acaaggggga	gccggtcaac	gaggcagacg	ccgcggccct	1020
	cgagcacgac aa	ggcctacg	accggcagct	cgacagcgga	gacaacccgt	acctcaagta	1080
25	caaccacgcc gad	cgcagagt '	ttcaggagcg	ccttaaagaa	gatacgtctt	ttgggggcaa	1140
25	cctcggacga gca	agtettee a	aggcgaaaaa	gagggttctt	gaacctctgg	gcctggttga	1200
	ggaacctgtt aag	gacggctc (cgggaaaaaa	gaggccggta	gagcactctc	ctgtggagcc	1260
30	agactcctcc tog	ggaaccg d	gaaaagcggg	ccagcggcct	gcaagaaaaa	gattaaattt	1320
	tggtcagact gga						1380
	agcccctet ggt						1440
<i>35</i>	caataacgag ggt	gccgatg g	gagtgggtaa	ttcctcagga	aattggcatt	gcgattccca	1500
	atggctgggc gac						1560
	caaccacete tac						1620
40	tggctacagc acc	ccctggg g	gtattttga	cttcaacaga	ttccactgcc	acttttcacc	1680
	acgtgactgg caa						1740
	caagctcttt aat						1800
45	caataacctt acc						1860
	cctgggctcg gcg						1920
	acagtatgga tac			•			1980
50	ctgcctggag tac						2040
	cacttttgaa gac						2100
	gatgaateet etge						2160
55	aactcttcag cagt	cctcggc t	actgtttag (caagctgga	ccaaccaaca	tgtctcttca	2220

	agctaaaaac	tggctgcctg	gaccttgcta	cagacagcag	cgtctgtcaa	aacaggcaaa	2280
	cgacaacaac	aacagcaact	ttccctggac	tgcagctaca	aagtatcatc	taaatggccg	2340
5	ggactcgttg	gttaatccag	gaccagctat	ggccagtcac	aaggatgacg	aagaaaagtt	2400
	tttccccatg	catggaaccc	tgatatttgg	taaacaagga	acaaatgcca	acgacgcgga	2460
	tttggaaaat	gtcatgatta	cagatgaaga	agaaatcagg	gccaccaatc	ccgtggctac	2520
10	ggagcagtac	gggactgtgt	caaataattt	gcaaaactca	aacactggtc	caactactgg	2580
	aactgtcaat	cgccaaggag	cgttacctgg	tatggtgtgg	caggatcgag	acgtgtacct	2640
	gcagggaccc	atttgggcca	agattcctca	caccgatgga	cactttcatc	cttctccact	2700
15	gatgggaggt	tttggactca	aacacccgcc	tcctcagatc	atgatcaaaa	acactcccgt	2760
	tccagccaat	cctcccacaa	acttcagttc	tgccaagttt	gcttctttca	tcacacagta	2820
00	ttccacggga	caggtcagcg	tggagatcga	gtgggagctg	cagaaggaga	acageaaacg	288 0
20	ctggaatccc	gaaattcagt	acacttccaa	ctacaacaag	tctgttaatg	tggactttac	29 40
	tgtggacact	aatggtgtgt	attcagagcc	tegececatt	ggcaccagat	acctgactcg	3000
25	taatctgtaa	ttgcttgtta	atcaataaac	cgtttaattc	gtttcagttg	aactttggtc	30 60
25	tctgcgaagg	gcgaa					3075

<210> 27
30 <211> 3128
<212> DNA
<213> new AAV serotype, clone 42.8

<400> 27

.

gaattcgccc	tttctacggc	tgcgtcaact	ggaccaatga	gaactttccc	ttcaacgatt	60
gcgtcgacaa	gatggtgatc	tggtgggagg	agggcaagat	gaçggccaag	gtcgtggagt	120
ccgccaaggc	cattctcggc	ggcagcaagg	tgcgcgtgga	ccaaaagtgc	aagtcttccg	180
cccagatcga	tcccacccc	gtgatcgtca	cttccaacac	caacatgtgc	gccgtgattg	240
acgggaacag	caccaccttc	gagcaccagc	agccgttaca	agaccggatg	ttcaaatttg	300
aactcacccg	ccgtctggag	cacgactttg	gcaaggtgac	aaagcaggaa	gtcaaagagt	360
tcttccgctg	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttctac	gtcagaaagg	420
gtggagccaa	caagagaccc	gcccccgatg	acgcggataa	aagcgagccc	aagcgggcct	480
gcccctcagt	cgcggatccá	tcgacgtcag	acgcggaagg	agctccggtg	gactttgccg	54 0
acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	tttccctgca	60 0
agacatgcga	gagaatgaat	cagaatttca	acatttgctt	cacgcacggg	accagagact	660
gttcagaatg	tttccccggc	gtgtcagaat	ctcaaccggt	cgtcagaaag	aggacgtatc	720
ggaaactctg	tgccattcat	catctgctag	ggcgggctcc	cgagattgct	tactcaacct	78 G

,-,	c caacycyga	cotygutyau	- gogettety	gcaaraaar	, acttaaatta	840
ggtatggct	g ccgatggtt:	a tettecagai	t tggctcgag	g acaacctctc	tgagggcatt	900
cgcgagtggt	gggacttgaa	a acctggage	ccgaaaccca	aagccaacca	gcaaaagcag	960
gacgacggc	ggggtctggt	t getteetgg	tacaagtac	teggaceett	: caacggactc	1020
gacaaggggg	g agcccgtca	a cgcggcggac	gcagcggcc	: tcgagcacga	caaggcctac	1080
gaccagcago	: tcaaagcggg	; tgacaatccg	, tacctgcggt	ataaccacgo	cgacgccgag	1140
tttcaggagc	gtctgcaaga	agatacgtct	tttgggggca	acctcgggcg	agcagtette	1200
caggccaaga	agcgggttct	: cgaacctctc	ggtctggttg	aggaaggege	taagacggct	1260
cctggaaaga	agagaccggt	: agagccatca	ccccagcgtt	ctccagactc	ctctacgggc	1320
atcggcaaga	. caggccagca	gcccgcgaaa	aagagactca	actttgggca	gactggcgac	1380
tcagagtcag	tgcccgaccc	tcaaccaatc	ggagaacccc	ccgcaggccc	ctctggtctg	1440
ggatctggta	caatggctgc	aggcggtggc	gctccaatgg	cagacaataa	cgaaggcgcc	1500
gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	gggcgacaga	1560
gtcatcacca	ccagcacccg	aacctgggcc	ctccccacct	acaacaacca	cctctacaag	1620
caaatctcca	acgggacatc	gggaggaagc	accaacgaca	acacctactt	cggctacagc	1680
acccctggg	ggtattttga	ctttaacaga	ttccactgcc	acttctcacc	acgtgactgg	1740
cagcgactca	tcaacaacaa	ctggggattc	cggcccaaga	gactcaactt	caagctcttc	1800
aacatccagg	tcaaggaggt	cacgcagaat	gaaggcacca	agaccatcgc	caataacctt	1860
accagcacga	ttcaggtctt	tacggactcg	gaataccagc	tecegtaegt	cctcggctct	1920
gcgcaccagg	gctgcctgcc	teegtteeeg.	gcggacgtct	tcatgattcc	tcagtacggg	1980
tacctgactc	tgaacaacgg	cagtcaggcc	gtgggccgtt	cctccttcta	ctgcctggag	2040
tactttcctt	ctcaaatgct	gagaacgggc	aacaactttg	agttcagcta	ccagtttgag	2100
gacgtgcctt	ttcacagcag	ctacgcgcac	agccaaagcc	tggaccggct	gatgaacccc	2160
ctcatcgacc	agtacctgta	ctacctgtct	cggactcagt	ccacgggagg	taccgcagga	2220
actcagcagt	tgctattttc	tcaggccggg	cctaataaca	tgtcggctca	ggccaaaaac	2280
tggctacccg	ggccctgcta	ccggcagcaa	cgcgtctcca	cgacactgtc	gcaaaataac	2340
aacagcaact	ttgcttggac	cggtgccacc	aagtatcatc	tgaatggcag	agactctctg	2400
gtaaatcccg	gtgtcgctat	ggcaacgcac	aaggacgacg	aagagcgatt	ttttccatcc	2460
agcggagtct	tgatgtttgg	gaaacaggga	gctggaaaag	acaacgtgga	ctatagcagc	2520
gttatgctaa	ccagtgagga	agaaatcaaa	accaccaacc	cagtggccac	agaacagtac	2580
ggcgtggtgg	ccgataacct	gcaacagcaa	aacgccgctc	ctattgtagg	ggccgtcaac	2640
agtcaaggag	ccttacctgg	catggtctgg	cagaaccggg	acgtgtacct	gcagggtcct	2700

				1 310 3/1 61			
	atctgggcca	agattootca	cacggacggc	aactttcatc	cttcgccgct	gatgggaggc	2760
	tttggactga	aacacccgcc	tcctcagatc	ctgattaaga	atacacctgt	tcccgcggat	2820
5	cctccaacta	ccttcagtca	agccaagctg	gcgtcgttca	tcacgcagta	cagcaccgga	2880
	caggtcagcg	tggaaattga	atgggagctg	cagaaagaga	acagcaagcg	ctggaaccca	2940
,	gagattcagt	atacttccaa	ctactacaaa	tctacaaatg	tggactttgc	tgtcaatact	3000
10	gagggtactt	attcagagcc	tcgccccatt	ggcacccgtt	acctcacccg	taacctgtaa	3060
	ttgcctgtta	atcaataaac	cggctaattc	gtttcagttg	aactttggtc	tctgcgaagg	3120
	gcgaattc						3128
15							
	<210> 28						
	<211> 3128 <212> DNA			•			
20	<212> DNA <213> new AAV	serotype, clone	42.15				
	<400> 28						•
25							
30					•		

	944-009400	cececacyge	cycyccaacc	ggaccaacga	gaactttcc	ctcaacgatt	60
	gcgtcgacaa	gatggtgatc	tggtgggagg	agggcaagat	gacggccaag	gtcgtggagt	120
5	ccgccaaggc	cattctcggc	ggcagcaagg	tgcgcgtgga	ccaaaagtgo	: aagtcgtccg	180
	cccagatcga	CCCCACCCCC	gtgatcgtca	cctccaacac	caacatgtgc	gccgtgattg	240
	acgggaacag	caccaccttc	gagcaccagc	agccgttgca	ggaccggatg	ttcaaatttg	300
10	aactcacccg	ccgtctggag	catgactttg	gcaaggtgac	aaagcaggaa	gtcaaagagt	360
	tottoogetg	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttctac	gtcagaaagg	420
	gtggagccaa	caagagaccc	gcccccgatg	acgcggataa	aagcgagccc	aagcgggcct	480
15	gcccctcagt	cgcggatcca	tcgacgtcag	acgcggaagg	agctccggtg	gactttgccg	540
	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	tttccctgca	600
	agacatgcga	gagaatgaat	cagaatttca	acatttgctt	cacgcgcggg	accagagact	660
20	gttcagaatg	tttcccgggc	gtgtcagaat	ctcaaccggt	cgtcagaaag	aggacgtatc	720
	ggaaactctg	tgccattcat	catctgctqg	ggcgggctcc	cgagattgct	tgctcggcct	780
	gcgatctggt	caacgtggac	ctggatgact	gtgtttctga	gcaataaatg	acttaaacca	840
25	ggtatggctg	ccgatggtta	tcttccagat	tggctcgagg	acaacctctc	tgagggcatt	900
	cgcgagtggt	gggacttgaa	acctggages	ccgaaaccca	aagccaacca	gcaaaagcag	960
	gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	tcggaccctt	caacggactc	1020
30	gacaaggggg	agcccgtcaa	cgcggcggac	gcagcggccc	tcgagcacga	caaggcctac	1080
	gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	cgacgccgag	1140
	tttcaggagc	gtctgcaaga	agatacgtct	tttgggggca	acctcgggcg	agcagtotto	1200
35	caggccaaga	agcgggttct	cgaacctctc	ggtctggtta	aggaaggcgc	taagacggct	1260

	cctggaaag	a agagaccggt	agagccatca	a ccccagegt	t ctccagacto	ctctacgggc	1320
_	atcggcaag	a caggccagca	gcccgcgaaa	a aagagactc	a actttgggca	gactggcgac	1380
5	tcagagtca	g tgcccgaccc	tcaaccaato	ggagaaccc	ccgcaggccc	ctctggtctg	1440
	ggatctggt	caatggctgc	aggcggtggc	gctccaatg	, cagacaataa	cgaaggcgcc	1500
10	gacggagtg	g gtagttcctc	aggaaattgg	, cattgcgatt	ccacatggct	gggcgacaga	1560
,,,	gtcatcacca	a ccagcacccg	aacctgggcc	ctccccacct	acaacaacca	cctctacaag	1620
	caaatctcca	acgggacatc	gggaggaagc	accaacgaca	acacctactt	cggctacagc	1680
15	acccctgg	g ggtattttga	ctttaacaga	ttccactgcc	acttctcacc	acgtgactgg	1740
-	cagcgactca	tcaacaacaa	ctggggattc	cggcccaaga	gactcaactt	caagctcttc	1800
	aacatccagg	tcaaggaggt	cacgcagaat	gaaggcacca	agaccatcgc	caataacctt	1860
20	accagcacga	ttcaggtctt	tacggactcg	gaataccagc	tcccgtacgt	cctcggctct	1920
	gcgcaccagg	gctgcccgcc	teegtteeeg	gcggacgtct	tcatgattcc	tcagtacggg	1980
	tacctgacto	tgaacaacgg	cagtcaggcc	gtgggccgtt	cctccttcta	ctgcctggag	2040
25	tactttcctt	ctcaaatgcg	gagaacgggc	aacaactttg	agttcagcta	ccagtttgag	2100
	gacgtgcctt	ttcacagcag	ctacgcgcat	agccaaagcc	tggaccggct	gatgaacccc	2160
	ctcatcgacc	agtacctgta	ctacctgtct	cggactcagt	ccacgggagg	taccgcagga	2220
30	actcagcagt	tgctattttc	tcaggccggg	cctaataaca	tgtcggctca	ggccaaaaac	2280
	tggctacccg	ggccctgcta	ccggcagcaa	cgcgtctcca	cgacactgtc	gcaaaataac	2340
	aacagcaact	ttgcttggac	cggtgccacc	aagtatcatc	tgaatggcag	agactctctg	2400
35	gtaaatcccg	gtgtcgctat	ggcaacgcac	aaggacgacg	aagagcgatt	ttttccatcc	2460
	agcggagtct	tgatgtttgg	gaaacaggga	gctggaaaag	acaacgtgga	ctatagcagc	2520
•	gttatgctaa	ccagtgagga	agaaatcaaa	accaccaacc	cagtggccac	agaacagtac	2580
40	ggcgtggtgg	ccgataacct	gcaacagcaa	aacgccgctc	ctattgtagg	ggccgtcaac	2640
	agtcaaggag	ccttacctgg	catggtctgg	cagaaccggg	acgtgtacct	gcagggtcct	2700
	atctgggcca	agattcctca	cacggacggc	aactttcatc	cttcgccgct	gatgggaggc	2760
45	tttggactga	aacacccgcc	tcctcagatc	ctgattaaga	atacacctgt	tcccgcggat	2820
	cctccaacta	ccttcagtca	agccaagctg	gcgtcgttca	tcacgcagta	cagcaccgga	2880
	caggtcagcg	tggaaattga	atgggagctg	cagaaagaga	acagcaagcg	ctggaaccca	2940
50	gagattcagt	atacttccaa	ctactacaaa	tctacaaatg	tggactttgc	tgtcaatact	3000
	gagggtactt	attcagagcc	tcgccccatt	ggcacccgtt	acctcacccg	taacctgtaa	3060
	ttgcctgtta	atcaataaac	cggttaattc	gtttcagttg	aactttggtc	tctgcgaagg	3120
55	gcgaattc						3128

<210> 29

<211> 3197 <212> DNA <213> new AAV serotype. clone 42.5b

<400> 29

gaattcgcc	c tttctacgg	c tgcgtcaact	ggaccaatge	gaactttcco	ttcaacgatt	60
gcgtcgaca	a gatggtgat	c tggtgggagg	g agggcaagat	gacggccaag	gtcgtggagt	120
ccgccaagg	cattctcgg	c ggcagcaagg	ı tgcgcgtgga	ccaaaagtgo	aagtcgtccg	180
cccagatcg	cccacccc	gtgatcgtca	cctccaacac	caacatgtgo	gccgtgattg	240
acgggaaca	g caccacctto	gagcaccago	agccgttaca	agaccggatg	ttcaaatttg	300
aactcaccc	ccgtctggag	g cacgactttg	gcaaggtgac	aaagcaggaa	gtcaaagagt	360
tetteegete	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttctac	gtcagaaagg	420
gtggagccae	caagagacco	gccccgatg	acgcggataa	aagcgagccc	aagcgggcct	480
gcccctcagt	cgcggatcca	tcgacgtcag	acgcggaagg	agctccggtg	gactttgccg	540
acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	tttccctgca	600
agacatgcga	_gagaatgaat	cagaatttca	acatttgctt	cacgcacggg	accagagact	660
gttcagaatg	tttccccggc	gtgtcagaat	ctcaaccggt	cgtcagaaag	aggacgtatc	720
ggaaactctg	tgccattcat	catctgctgg	ggegggetee	cgagattgct	tgctcggcct	.£780
gcgatctggt	caacgtggac	ctggatgact	gtgtttctga	gcaataaatg	acttaaacca	840
ggtatggctg	ccgatggtta	tcttccagat	tggctcgagg	acaacctctc	tgagggcatt	900
cgcgagtggt	gggacttgaa	acctggagcc	ccgaaaccca	aagccaacca	gcaaaagcag	960
- gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	tcggaccctt	caacggactc	1020
gacaagggag	agccggtcaa	cgaggcagac	gccgcggccc	tcgagcacga	caaggcctac	1080
gacaagcagc	tcgagcaggg	ggacaacccg	tacctcaagt	acaaccacgc	cgacgccgag	1140
tttcaggagc	gtcttcaaga	agatacgtct	tttgggggca	acctcgggcg	agcagtcttc	1200
caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaaggcgc	taagacggct	1260
cctggaaaga	agagaccggt	agagccatca	cccagcgtt	ctccagactc	ctctacgggc	1320
atcggcaaga	caggccagca	gcccgcgaaa	aagagactca	actttgggca	gactggcgac	1380
tcagagtcag	tgcccgaccc	tcaaccaatc	ggagaacccc	ccgcaggccc	ctctggtctg	1440
ggatctggta	caatggctgc	aggcggtggc	gctccaatgg	cagacaataa	cgaaggcgcc	1500
gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	gggcgacaga	1560
gtcatcacca	ccagcacccg	aacctgggcc	ctcccacct	acaacaacca	cctctacaag	1620 .
caaatctcca	acgggacatc	gggaggaagc	accaacgaca	acacctactt	cggctacagc	1680
accccctggg	ggtattttga	ctttaacaga	ttccactgcc	acttctcacc	acgtgactgg	1740

	cagegactea teaacaacaa etggggatte eggeceaaga gaeteaactt caagetette	3 9 0 0
		1800
5	aacatccagg tcaaggaggt cacgcagaat gaaggcacca agaccatcgc caataacctt	1860
	accagcacga treaggrett taeggaeteg gaataceage teeegtaegt eeteggetet	1920
	gegeaceagg getgeetgee teegtteeeg geggaegtet teatgattee teagtaeggg	1980
10	tacctgactc tgaacaacgg cagtcaggcc gtgggccgtt cctccttcta ctgcctggag	2040
	tactttcctt ctcaaatgct gagaacgggc aacaactttg agttcagcta ccagtttgag	2100
	gacgtgcctt ttcacagcag ctacgcgcac agccaaagcc tggaccggct gatgaacccc	2160
	ctcatcgacc agtacctgta ctacctgtct cggactcagt ccacgggagg taccgcagga	2220
15	actcagcagt tgctattttc tcaggccggg cctaataaca tgtcggctca ggccaaaaac	2280
	tggctacccg ggccctgcta ccggcagcaa cgcgtctcca cgacactgtc gcaaaataac	2340
	aacagcaact ttgcttggac cggtgccacc aagtatcatc tgaatggcag agactctctg	2400
20	gtaaatcccg gtgtcgctat ggcaacgcac aaggacgacg aagagcgatt ttttccatcc	2460
	agcggagtet tgatgtttgg gaaacaggga getggaaaag acaacgtgga etatagcage	2520
	gttatgctaa ccagtgagga agaaatcaaa accaccaacc cagtggccac agaacagtac	2580
25	ggcgtggtgg ccgataacct gcaacagcaa aacgccgctc ctattgtagg ggccgtcaac	2640
	agtcaaggag cettacetgg catggtetgg cagaaceggg acgtgtacet gcagggteet	2700
	atctgggcca agattectca caeggaegge aacttteate ettegeeget gatgggagge	2760
30	tttggactga aacacccgcc tcctcagatc ctgattaaga atacacctgt tcccgcggat	2820
	cctccaacta ccttcagtca agccaagctg gcgtcgttca tcacgcagta cagcaccgga	2880
	caggicageg iggaaatiga aigggageig cagaaagaga acagcaageg eiggaaceca	2940
35	gagattcagt atacttccaa ctactacaaa tctacaaatg tggactttgc tgtcaatact	3000
	gagggtactt attcagagcc tegececatt ggcaccegtt aceteaceeg taacetgtaa	3060
	ttgcctgtta atcaataaac cggttaattc gtttcagttg aactttggtc tctgcgaagg	3120
40	gcgaattcgt ttaaacctgc aggactagtc cctttagtga gggttaattc tgagcttggc	
	gtaatcatgg gtcatag	3180
	goddod ag godd ag	3197
45	<210> 30	
•	<211> 2501	
	<212> DNA <213> new AAV serotype, cione 42:1b	
	12105 New ANV Selotype, Glorie 42.10	
50	<400> 30	
	gaattegeee trggetgegt caactggace aatgagaact trecetteaa egattgegte	60
	gacaagatgg tgatctggtg ggaggagggc aagatgacgg ccaaggtcgt ggagtccgcc	
55		120
	aaggecatte ateatetget ggggeggget eeegagattg ettgetegge etgegatetg	180
	gtcaacgtgg acctggatga ctgtgtttct gagcaataaa tgacttaaac caggtatqqc	240

	tgccgatgg	t tatottoca	g attggctcg	a ggacaacct	c tctgagggc	ttcgcgagtg	300
E	gtgggactt	g agacctgga	g ccccgaaac	caaagccaa	c cagcaaaagc	: aggacgacgg	360
5	ccggggtct	g gtgcttcct	g gctacaagt	a cctcggacc	ttcaacggac	tcgacaaggg	420
	agagccggt	c aacgaggca	g acgccgcgg	cctcgagcad	gacaaggcct	acgacaagca	480
10	gctcgagca	g ggggacaac	cgtacctcas	gtacaaccad	gccgacgccg	agtttcagga	540
.0	gcgtcttca	a gaagatacgt	cttt tgg ggg	r caacctegg	g cgagcagtct	tccaggccaa	600
	gaagcgggt	t ctcgaacctc	teggtetggt	tgaggaaggo	gctaagacgg	ctcctggaaa	660
. 15	gaagagacc	c atagaatccc	ccgactcctc	cacgggcato	ggcaagaaag	gccagcagcc	720
• • •	cgctaaaaa	g agactcaact	ttgggcagac	tggcgactca	gagtcagtgc	ccgaccctca	780
	accaatcgg	a gaaccccccg	caggococto	tggtctggga	tctggcacaa	tggctgcagg	840
20	cggtggcgc	t ccaatggcag	acaataacga	aggcgccgac	ggagtgggta	gttcctcagg	900
	aaattggca	t tgcgattcca	catggctggg	cgacagagtc	atcaccacca	gcacccgaac	960
	ctgggccct	cccacctaca	acaaccacct	ctacaagcaa	atctccaacg	ggacatcggg	1020
25	aggaagcac	aacgacaaca	cctacttcgg	ctacagcacc	ccctgggggt	attttgactt	1080
	taacagatto	cactgccact	tctcaccacg	tgactggcag	cgactcatca	acaacaactg	1140
	gggattccg	g cccaagagac	tcaacttcaa	gctcttcaac	atccaggtca	aggaggtcac	1200
30	gcagaatga	ggcaccaaga	ccatcgccaa	taaccttacc	agcacgattc	aggtctttac	1260
	ggactcggaa	taccagetee	cgtacgtcct	cggctctgcg	caccagggct	gcctgcctcc	1320
	gttcccggcg	gacgtcttca	tgattcctca	gtacgggtac	ctgactctga	acaacggcag	1380
35	tcaggccgtg	ggccgttcct	ccttctactg	cctggagtac	tttccttctc	aaatgctgag	1440
	aacgggcaac	aactttgagt	tcagctacca	gtttgaggac	gtgccttttc	acagcagcta	1500
	tgcgcacago	Caaagcctgg	accggctgat	gaaccccctc	atcgaccagt	acctgtacta	1560
40	cctgtctcgg	actcagtcca	cgggaggtac	cgcaggaact	cagcagttgc	tattttctca	1620
	ggccgggcct	aataacatgt	cggctcaggc	caaaaactgg	ctacccgggc	cctgctaccg	1680
	gcagcaacgc	gtctccacga	cagtgtcgca	aaataacaac	agcaactttg	cttggaccgg	1740
45	tgccaccaag	tatcatctga	atggcagaga	ctctctggta	aatcccggtg	tcgctatggc	1800
	aacgcacaag	ggcgacgaag	agcgattttt	tccatccagc	ggagtcttga	tgtttgggaa	1860
	acagggagct	ggaaaagaca	acgtagacta	tagcagcgtt	atgctaacca	gtgaggaaga	1920
50	aatcaaaacc	accaacccag	tggccacaga	acagtacggc	gtggtggccg	ataacctgca	1980
	acagcaaaac	gccgctccta	ttgtaggggc	cgtcaacagt	caaggagcct	tacctggcat	2040
	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctate	tgggccaaga	ttcctcacac	2100
55	ggacggcaac	tttcatcctt	cgccgctgat	gggaggcttt	ggactgaaac	acccgcctcc	2160

	tcagatcctg	attaagaata	cacctgttcc	cgcggatcct	ccaactacct	tcagtcaagc	2220
5	caagctggcg	togttcatca	cgcagtacag	caccggacag	gtcagcgtgg	aaattgaatg	2280
	ggagctgcag	aaagagaaca	gcaagcgctg	gaacccagag	attcagtata	cttccaacta	2340
	ctacaaatct	acaaatgtgg	actttgctgt	caatactgag	ggtacttatt	cagagcctcg	2400
10	ccccattggc	accegttace	tcacccgtaa	cctgtaattg	cctgttaatc	aataaaccgg	2460
	ttgattcgtt	tcagttgaac	tttggtctca	agggcgaatt	С		2501
15	<210> 31 <211> 3113 <212> DNA <213> new AAV sero	otype, clone 42.1	3				
20	<400> 31			·			
25							
20							

	gaactegeee	. ccccacgga	tgegteaact	ggaccaatge	gaactttcc	ttcaacgatt	60
	gcgtcgacaa	gatggtgatc	tggtgggagg	agggcaagat	gacggccaac	gtcgtggagt	120
5	ccgccaaggc	cattctcggc	ggcagcaagg	tgcgcgtgga	ccaaaagtgo	: aagtcgtccg	180
	cccagatcga	teccacece	gtgatcgtca	cttccaacac	caacatgtgo	gccgtgattg	240
	acgggaacag	caccaccttc	gagcaccagc	agccgttaca	agaccggatg	ttcaaatttg	300
10	aactcacccg	ccgtctggag	catgactttg	gcaaggtgac	aaagcaggaa	gtcaaagagt	360
	tetteegetg	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttctac	gtcagaaagg	420
	gtggagccaa	caagagaccc	gcccccgatg	acgcggataa	aagcgagccc	aagcgggcct	480
15	gcccctcagt	cgcggatcca	tcgacgtcag	acgcggaagg	agctccggtg	gactttgccg	540
	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	tttccctgca	600
	agacatgcga	gagaatgaat	cagaatttca	acatttgctt	cacgcacggg	accagagact	660
20	gttcagaatg	tttccccggc	gtgtcagaat	ctcaaccggt	cgtcagaaag	aggacgtatc	720
	ggaaactctg	tgccattcat	catctgctgg	ggcgggctcc	cgagattgct	tgctcggcct	780
	gcgatctggt	caacgtggac	ctggatgact	gtgtttctga	gcaataaatg	acttaaacca	840
25	ggtatggctg	ccgatggtta	tcttccagat	tggctcgagg	acaacctctc	tgagggcatt	900
	cgcgagtggt	gggacttgaa	acctggagcc	ccgaaaccca	aagccaacca	gcaaaagcag	960
	gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	tcggaccctt	caacggactc	1020
30	gacaaggggg	agcccgtcaa	cgcggcggac	gcagcggccc	tcgagcacga	caaggcctac	1080
	gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	cgacgccgag	1140
	tttcaggagc	gtcttcaaga	agatacgtct	tttgggggca	acctcgggcg	agcagtcttc	1200
35	caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaaggcgc	taagacggct	1260
	cctggaaaga	agagacccat	agaatccccc	gactcctcca	cgggcatcgg	caagaaaggc	1320
10	cagcagcccg	ctaaaaagaa	gctcaacttt	gggcagactg	gcgactcaga	gtcagtgccc	1380
40							

```
gaccetcaac caateggaga acceeegga ggeeeetetg gtetgggate tggtacaatg
                                                                     1440
 gctgcaggcg gtggcgctcc aatggcagac aataacgaag gcgccgacgg agtgggtagt
                                                                     1500
 tectcaggaa attggcattg cgattecaca tggetgggeg acagagteat caccaccage
                                                                     1560
accegaacet gggccetece cacetacaac aaccacetet acaagcaaat etecaacggg
                                                                     1620
acategggag gaagcaccaa egacaacace tacttegget acagcaccee etgggggtat
                                                                     1680
tttgacttta acagattcca ctgccacttc tcaccacgtg actggcageg actcatcaac
                                                                     1740
aacaactggg gattccggcc caagagactc aacttcaagc tcttcaacat ccaggtcaag
                                                                     1800
gaggtcacgc agaatgaagg caccaagacc atcgccaata accttaccag cacgattcag
                                                                     1860
gtotttacgg actoggaata coagetocog tacgtootog gototgogoa coagggotgo
                                                                     1920
etgeeteegt teeeggegga egtetteatg attecteagt aegggtacet gaetetgaae
                                                                     1980
aacggcagtc aggccgtggg ccgttcctcc ttctactgcc tggagtactt tccttctcaa
                                                                     2040
atgctgagaa cgggcaacaa ctttgagttc agctaccagt ttgaggacgt gccttttcac
                                                                    2100
agcagetatg egeacageea aageetggae eggetgatga acceettat egaccagtae
                                                                    2160
ctgtactacc tgtctcggac tcagtccacg ggaggtaccg caggaactca gcagttgcta
                                                                    2220
ttttctcagg ccgggcctaa taacatgtcg gctcaggcca aaaactggct acccgggccc
                                                                    2280
tgctaccggc agcaacgcgt ctccacgaca gtgtcgcaaa ataacaacag caactttgct
                                                                    2340
tggaccggtg ccaccaagta tcatctgaat ggcagagact ctctggtaaa tcccggtgtc
                                                                    2400
gctatggcaa cgcacaaggg cgacgaagag cgattttttc catccagegg agtcttgatg
                                                                    2460
tttgggaaac agggagctgg aaaagacaac gtggactata gcagcgttat gctaaccagt
                                                                    2520
gaggaagaaa tcaaaaccac caacccagtg gccacagaac agtacggcgt ggtggccgat
                                                                    2580
aacctgcaac agcaaaacgc cgctcctatt gtaggggccg tcaacagtca aggagcctta
                                                                    2640
cotggcatgg totggcagaa cogggacgtg tacotgcagg gtoctatotg ggccaagatt
                                                                    2700
ceteacaegg aeggeaactt teateetteg eegetgatgg gaggetttgg aetgaaacae
                                                                    2760
cogecteste agatestgat taagaataca cotgtteecg eggatestee aactacette
                                                                    2820
agtcaagcca agctggcgtc gttcatcacg cagtacagca ccggacaggt cagcgtggaa
                                                                    2880
attgaatggg agctgcagaa agagaacagc aagcgctgga acccagagat tcagtatact
                                                                    2940
tocaactact acasatctac asatgtggac tttgctgtca atactgaggg tacttattca
                                                                    3000
gagectegee ceattggeae cegttacete accegtagee tgtaattgee tgttaatcaa
                                                                    3060
taaaccggtt gattcgtttc agttgaactt tggtctctgc gaagggcgaa ttc
                                                                    3113
```

<210> 32

5

10

15

20

25

30

35

40

45

50

55

<211> 3113

<212> DNA

<213> new AAV serotype, clone 42.3a

<400> 32

	gaattogooc tttotacggo tgogtcaact ggaccaatga gaactttooc ttcaacgatt	60
	gcgtcgacaa gatggtgatc tggtgggagg agggcaagat gacggccaag gtcgtggagt	120
5	ccgccaaggc cattctcggc ggcagcaagg tgcgcgtgga ccaaaagtgc aagtcgtccg	180
	cccagatega teccacece gtgategtea ettecaacae caacatgtge geegtgattg	240
	açgggaacag caccaccttc gagcaccagc agccgttaca agaccggatg ttcaaatttg	300
10	aactcacccg ccgtctggag catgactttg gcaaggtgac aaagcaggaa gtcaaagagt	360
	tottccgctg ggcgcaggat cacgtgaccg aggtggcgca tgagttctac gtcagaaagg	420
	gtggagccaa caagagaccc gcccccgatg acgcggataa aagcgagccc aagcgggcct	480
15	gcccctcagt cgcggatcca tcgacgtcag acgcggaagg agctccggtg gactttgccg	540
	acaggtacca aaacaaatgt tetegteacg egggcatget teagatgetg etteectgea	600
	agacatgcga gagaatgaat cagaatttca gcatttgctt cacgcacggg accagagact	660
20	gttcagaatg tttccccggc gtgtcagaat ctcaaccggt cgtcagaaag aggacgtatc 7	720
	ggaaactetg tgecatteat catetgetgg ggegggetee egagattget tgeteggeet 7	780
	gcgatctggt caacgtggac ctggatgact gtgtttctga gcaataaatg acttaaacca 8	40
25	ggtatggctg cegatggtca tettecagat tggctcgagg acaacetete tgagggcatt 9	00
	cgcgagtggt gggacttgaa acctggagcc ccgaaaccca aagccaacca gcaaaagcag	60
_	gacgacggcc ggggtctggt gcttcctggc tacaagtacc tcggaccctt caacggactc 10	20
30	gacaaggggg agcccgtcaa cgcggcggac gcagcggccc tcgagcacga caaggcctac 10	80
	gaccagcage teaaageggg tgacaateeg tacetgeggt ataaccaege egacgeegag 11	40
	tttcaggage gtettcaaga agataegtet tttgggggca acetegggeg agcagtette 12	00
35	caggccaaga agcgggttct cgaacctctc ggtctggttg aggaaggcgc taagacggct 12	60
	cctggaaaga agagacccat agaatccccc gactcctcca cgggcatcgg caagaaaggc 13	20
	cagcageceg ctaaaaagaa geteaaettt gggeagaetg gegaeteaga gteagtgeec 13	80
40	gaccotcaac caatoggaga accoccogea ggoodcototg gtotgggato tggtacaatg 14	40
/•	gctgcaggcg gtggcgctcc aatggcagac aataacgaag gcgccgacgg agtgggtagt 150	00
	tcctcaggaa attggcattg cgattccaca tagctgggcg acagagtcat caccaccagc 156	60
45	accegaacet gggeeeteee cacetacaac aaccacetet acaagcaaat etecaacggg 162	2 0
	acatogggag gaagcaccaa cgacaacacc tacttoggot acagcaccce otgggggtat 168	3 O
	tttgacttta acagattcca ctgccacttc tcaccacgtg actggcagcg actcatcaac 174	10
50	aacagetggg gatteeggee caagagaete aactteaage tetteaacat ceaggteaag 180	00
	gaggtcacgc agaatgaagg caccaagacc atcgccaata accttaccag cacgattcag 186	50
	gtetttacgg acteggaata ceageteeeg tacgteeteg getetgegea ecagggetge 192	: 0

	orgeoteege	receggegga	cyccccaty	actecteage	acgggtacct	gactetgaac	1980
	aacggcagtc	aggccgtggg	cegtteetee	ttctactgcc	tggagtactt	tccttctcaa	2040
5	atgctgagaa	cgggcaacaa	ctttgagttc	agctaccagt	ttgaggacgt	gccttttcac	2100
	agcagctacg	cgcacagcca	aagcctggac	cggctgatga	acccctcat	cgąccagtac	2160
10	ctgtactacc	tgtctcggac	tcagtccacg	ggaggtaccg	caggaactca	gcagttgcta	2220
10	ttttctcagg	ccgggcctaa	taacatgtcg	gctcaggcca	aaaactggct	acccgggccc	2280
	tgctaccggc	agcaacgcgt	ctccacgaca	ctgtcgcaaa	ataacaacag	caactttgct	2340
15	tggaccggtg	ccaccaagta	tcatctgaat	ggcagagact	ctctggtaaa	tcccggtgtc	2400
.5	gctatggcaa	cgcacaagga	cgacgaagag	cgattttttc	catccagcgg	agtcttgatg	2460
	tttgggaaac	agggagctgg	aaaagacaac	gtggactata	gcagcgttat	gctaaccagt	2520
20	gaggaagaaa	tcaaaaccac	caacccagtg	gccacagaac	agtacggcgt	ggtggccgat	2580
	aacctgcaac	agcaaaacgc	cgctcctatt	gtaggggccg	tcaacagtca	aggagcctta	2640
	cctggcatgg	tctggcagaa	ccgggacgtg	tacctgcagg	gtcctatctg	ggccaagatt	2700
25	cctcacacgg	acggcaactt	tcatccttcg	ccgctgatgg	gaggctttgg	actgasacac	2760
	ccgcctcctc	agatcctgat	taagaataca	cctgttcccg	cggatcctcc	aactaccttc	2820
	agtcaagcca	agctggcgtc	gttcatcacg	cagtacagca	ccggacaggt	cagcgtggaa	2880
30	attgaatggg	agctgcagaa	agagaacagc	aagcgctgga	acccagagat	tcagtatact	2940
	tccaactact.	acaaatctac	aaatgtggac	tttgctgtca	atactgaggg	tacttattca	3000
	gagcctcgcc	ccattggcac	ccgttacctc	acccgtaacc	tgtaattgcc	tgttaatcaa	3060
35	taaaccggtt	aattcgtttc	agttgaactt	t ggtctct gc	gaagggcgaa	ttc	3113

<210> 33

<211> 2504

<212> DNA

<213> new AAV serotype, clone 42.4

<400> 33

50

45

40

gaattcgccc	tttctacggc	tgcgtcaact	ggaccaatga	gaactttccc	ttcaacgatt	60
gcgtcgacaa	gatggtgatc	tggtgggagg	agggcaagat	gacggccaag	gtcgtggagt	120
ccgccaaggc	cattcatcat	ctgctggggc	gggctcccga	gattgcttgc	teggeetgeg	180
atctggtcaa	cgtggacctg	gatgactgtg	tttctgagca	ataaatgact	taaaccaggt	240
atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	300
gagtggtggg	acttgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	360
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	420
aagggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	480
aagcagctcg	agcaggggga	caacccgtac	ctcaagtaca	accacgccga	cgccgagttt	540

caggagcgt	ttcaagaaga	a tacgtetttt	gggggcaac	c tcgggcgagc	: agtcttccag	600
gccaagaago	gggttctcga	acctctcggt	ctggttgagg	g aaggogotaa	gacggctcct	660
ggaaagaaga	gacccatage	atccccgac	tcctccacg	g gcatcggcaa	gaaaggccag	720
cagcccgcta	aaaagaagct	caactttggg	r cagactggcç	g actcagagto	agtgcccgac	780
cctcaaccae	tcggagaacc	ccccgcaggc	ccctctggto	tgggatctgg	tacaatggct	840
gcaggcggtg	gcgctccaat	ggcagacaat	aacgaaggcg	ccgacggagt	gggtaatgcc	900
tccggaaatt	ggcattgcga	ttccacatgg	ctgggcgaca	gagtcatcac	caccagcacc	960
cgcacctggg	ccctgcccac	ctacaacaac	cacctctaca	agcagatatc	aagtcagagc	1020
ggggctacca	acgacaacca	cttcttcggc	tacagcaccc	cctggggcta	ttttgacttc	1080
aacagattcc	actgccactt	ctcatcacgt	gactggcagc	gactcatcaa	caacaactgg	1140
ggattccggc	ccaagagact	caacttcaag	ctcttcaaca	tccaggtcaa	ggaggtcacg	1200
cagaatgaag	gcaccaagac	catcgccaat	aaccttacca	gcacgattca	ggtctttacg	1260
gactcggaat	accggctccc	gtacgtcctc	ggctctgcgc	accagggctg	cctgcctccg	1320
ttcccggcgg	acgtcttcat	gattcctcag	tacgggtacc	tgactctgaa	caacggcagt	1380
caggccgtgg	geogtteete	cttctactgc	ctggagtact	ttccttctca	aatgctgaga	1440
acgggcaaca	actttgagtt	cagctaccag	tttgaggacg	tgccttttca	cagcagctac	1500
gcgcacagcc	aaagcctgga	ccggctgatg	aaccccctca	tcgaccagta	cctgtactac	1560
ctgtctcgga	ctcagtccac	gggaggtacc	gcaggaactc	agcagttgct	attttctcag	1620
gccgggccta	ataacatgtc	ggctcaggcc	aaaaactggc	tacccgggcc	ctgctaccgg	1680
cagcaacgcg	tctccacgac	actgtcgcaa	aataacaaca	gcaactttgc	ttggaccggt	1740
gccaccaagt	atcatctgaa	tggcagagac	tctctggtaa	atcccggtgt	cgctatggca	1800
acgcacaagg	acgacgaaga	gcgattttt	ccatccagcg	gagtcttgat	gtttgggaaa	1860
cagggagctg	gaaaagacaa	cgtggactat	agcagcgtta	tgctaaccag	tgaggaagaa	1920
atcaaaacca	ccaacccagt	ggccacagaa	cagtacggcg	tggtggccga	taacctgcaa	1980
cagcaaaacg	ccgctcctat	tgtaggggcc	gtcaacagtc	aaggagcctt	acctggcatg	2040
gtctggcaga	accgggacgt	gtacctgcag	ggtcctatct	gggccaagat	tcctcacacg	2100
gacggcaact	ttcatccttc	gccgctgatg	ggaggctttg	gactgaaaca	cccgcctcct	2160
cagatcctga	ttaagaatac	acctgttccc	gcggatcctc	caactacctt	cagtcaagcc	2220
aagccggcgt	cgttcatcac	gcagtacagc	accggacagg	tcagcgtgga	aattgaatgg	2280
gagctgcaga	aagagaacag	caagegetgg	aacccagaga	ttcagtatac	ttccaactac	2340
tacaaatcta	caaatgtgga	ctttgctgtc	aatactgagg	gtacttattc	agagcctcgc	2400
cccattggca	cccgttacct	cacccgtaac	ctgtaattgc	ctgttaatca :	ataaaccggt	2460

	EP 1 310 5/1 B1	
	taattegttt cagttgaact ttggtctctg cgaagggega atte	2504
5		
	<210> 34	
	<211> 3106	
	<212> DNA	
	<213> new AAV serotype, clone 42.5a	
10	·	
	<400> 34	
45		
15		
20		

	gaattcgccc	ttctacggct	gcgtcaactg	gaccaatga	aactttccct	tcaacgattg	60
	cgtcgacaag	atggtgatct	ggtgggagga	gggcaagat	acggccaag	tcgtggagtc	120
5	cgccaaggcc	attctcggcg	gcagcaaggt	gcgcgtggad	caaaagtgca	agtogtocgo	180
	ccagatcgac	cccacccccg	tgatcgtcac	ctccaacac	: aacatgtgcg	ccgtgattga	240
	cgggaacagc	accaccttcg	agcaccagca	gccgttgcag	gaccggatgt	tcaaatttga	300
10	actcacccgc	cgtctggagc	atgactttgg	caaggcgaca	aagcaggaag	tcasagagtt	360
	cttccgctgg	gcgcaggate	acgtgaccga	ggtggcgcat	gagttctacg	tcagaaaggg	420
_	tggagccaac	aagagacccg	ccccgatga	cgcggataaa	agcgagccca	agcgggcccg	480
15	ccctcagtc	geggatecat	cgacgtcaga	cgcggaagga	gctccggtgg	actttgccga	540
	caggtaccaa	aacaaatgtt	ctcgtcacgc	gggcatgctt	cagatgctgt	ttccctgcaa	600
	aacatgcgag	agaatgaatc	agaatttcaa	catttgcttc	acgcacggga	ccagagactg	660
20	ttcagaatgt	ttccccggcg	tgtcagaatc	tcaaccggtc	gtcagaaaga	ggacgtatcg	720
	gaaactctgt	gccattcatc	atctgctggg	gcgggctccc	gagattgctt	gctcggcctg	780
	cgatctggtc	aacgtggacc	tggatgactg	tgtttctgag	caataaatga	cttaaaccag	840
25	gtatggctgc	cgatggttat	cttccagatt	ggctcgagga	caacctctct	gagggcattc	900
	gcgagtggtg	ggacttgaaa	cctggagccc	cgaaacccaa	agccaaccag	caaaagcagg	960
	acgacggccg	gggtctggtg	cttcctggct	acaagtacct	cggacccttc	aacggactcg	1020
30	acaagggaga	gccggtcaac	gaggcagacg	ccgcggccct	cgagcacgac	aaggcctacg	1080
	acaagcagct	cgagcagggg	gacaacccgt	acctcaagta	caaccacgcc	gacgccgagt	1140
	ttcaggagcg	tcttcaagaa	gatacgtctt	ttgggggcaa	cctcgggcga	gcagtcttcc	1200
35	gggccaagaa	gcgggttctc	gaacctctcg	gtctggttga	ggaaggcgct	aagacggctc	1260
	ctggaaagaa	gagacccata	gaatcccccg	actcctccac	gggcatcggc	aagaaaggcc	1320
	agcagcccgc	taaaaagaag	ctcaactttg	ggcagactgg	cgactcagag	tcagtgcccg	1380
40	accccaacc	tctcggagaa	cctcccgccg	cgccctcagg	tctgggatct	ggtacaetgg	1440
	ctgcaggcgg	tggcgcacca	atggcagaca	ataacgaagg	cgccgacgga	gtgggtaatg _.	1500
	cctccggaaa	ttggcattgc	gattccacat	ggctgggcga	cagagtcatc	accaccagca	1560
45	cccgcacctg	ggccctgccc a	acctacaaca	accacctcta	caagcagata	tcaagtcaga	1620
	gcggggctac	caacgacaac (cacttcttcg	gctacagcac	ccctggggc	tattttqact	1680

	CCAACAGAC	ccactgcca	c ttctcacca	graactaac	a gcgactcat	c aacaacaacc	1740
5	ggggattcc	g gcccagaaa	g ctgcggttc	a agttgttca	a catccaggt	c aaggaggtca	1800
-	Cgacgaacga	a cggcgttac	g accateget	a ataaccttad	cagcacgat	t caggtettet	1860
	cggactcgga	gtaccaacto	g ccgtacgtcd	teggetetge	gcaccaggg	tgcctccctc	1920
10	cgttccctgc	ggacgtgttc	atgattccto	: agtacggata	tctgactcta	a aacaacggca	1980
	gtcagtctgt	gggacgttco	tccttctact	gcctggagta	ctttccttct	cagatgctga	2040
	gaacgggcaa	taactttgaa	ttcagctacc	agtttgagga	cgtgcccttt	cacagcagct	2100
15	acgegeacag	ccasageetg	gaccggctga	tgaaccccct	catcgaccag	tacctgtact	2160
	acctgtctcg	gactcagtcc	acgggaggta	ccgcaggaac	tcagcagttg	ctattttctc	2220
	aggccgggcc	taataacatg	tcggctcagg	ccaaaaactg	gctacccggg	ccctgctacc	2280
20						gcttggaccg	2340
						gtcgctatgg	2400
						atgtttggga	2460
25			aacgtggact				2520
			gtggccacag				2580
			attgtagggg				2640
30			gtgtacctgc				27 00
			tcgccgctga				2760
	ctcagatect						2820
35			acgcagtaca				2880
	gggagctgca		•				2940
	actacaaatc						3000
40	gcccattgg					caataaaccg	3060
	gttaattcgt	ttcagttgaa	ctttggtctc	tgcgaagggc	gaattc		3106

<210> 35 45

<211> 2489

<212> DNA

<213> new AAV serotype, clone 42.10

<400> 35

55

gaattcgccc	tttctacggc	tgcgtcaact	ggaccaatga	gaactttccc	ttcaacgatt	60
gcgtcgacaa	gatggtgatc	tggtgggagg	agggcaagat	gacggccaag	gtcgtgaagt	120
ccgccaaggc	cattcatcat	ctgctggggc	gggctcccga	gattgcttgc	teggestgeg	180
atctggtcaa	cgtggacctg	gatgactgtg	tttctgagca	ataaatgact	taaaccaggt	240
arggcrgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	300

	gagtggtgg] acttgaaac	tggagccccg	aaacccaaag	ccaaccagc	a aaagcaggac	3 60
	gacggccgg	g gtctggtgc	tcċtggctac	aagtacctcg	gaccettca:	a cggactcgac	420
	aagggagag	cggtcaacga	ggcagacgcc	geggeeeteg	agcacgacaa	ggcctacgac	480
	aagcagctco	agcaggggg	caacccgtac	ctcaagtaca	accacgccga	gccgagttt	540
	caggagcgto	ttcaagaaga	tacgtctttt	gggggcaacc	tegggegage	agtottocag	600
	gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	660
	ggaaagaaga	gacccataga	atcccccgac	tcctccacgg	gcatcggcag	gaaaggccag	720
	cagcccgcta	amangangct	caactttggg	cagactggcg	actcagagto	agtgcccgac	780
	cctcaaccaa	tcggagaacc	ccccgcaggc	ccctctggtc	tgggatctgg	tacaatggct	840
	gcaggcggtg	gcgctccaat	ggcagacaat	aacgaaggcg	ccgacggagt	gggtaatgcc	900
	tccggaaatt	ggcattgcga	ttccacatgg	ctgggcgaca	gagtcatcac	caccagcacc	960
	cgcacctggg	ccctgcccac	ctacaacaac	cacctctaca	agcagatatc	aagtcagagc	1020
	ggggctacca	acgacaacca	cttcttcggc	tacagcaccc	cctggggcta	ttttgacttc	1080
	aacagattcc	actgccactt	ctcaccacgt	gactggcagc	gactcatcaa	caacaactgg	1140
	ggattccggc	ccagaaagct	gcggttcaag	ttgttcaaca	tccaggtcaa	ggaggtcacg	1200
	acgaacgacg	gcgttacgac	categecaat	aaccttacca	gcacgattca	ggtcttctcg	1260
	gactcggagt	accaactgcc	gtacgtcctc	ggctctgcgc	accagggctg	cctccctccg	1320
	ttccctgcgg	acgtgttcat	gattcctcag	tacggatatc	tgactctaaa	caacggcagt	1380
	cagtctgtgg	gacgttcctc	cttctactgc	ctggagtact	ttccttctca	gatgctgaga	1440
	acgggcaata	actttgaatt	cagctacacc	tttgaggaag	tgcctttcca	cagcagctat	1500
	gcgcacagcc	agagcctgga	ccggctgatg	aatcccctca	tcgaccagta	cctgtactac	1560
	ctggcccgga	cccagagcac	tacggggtcc	acaagggagc	tgcagttcca	tcaggctggg	1620
	cccaacacca	tggccgagca	atcasagasc	tggctgcccg	gaccctgtta	tcggcagcag	1680
	agactgtcaa	aaaacataga	cagcaacaac	aacagtaact	ttgcctggac	cggggccact	1740
	asataccatc	tgaatggtag	aaattcatta	accaacccgg	gcgtagccat	ggccaccaac	1800
	aaggacgacg	aggaccagtt	ctttcccatc	aacggagtgc	tggtttttgg	caaaacgggg	1860
	gctgccaaca	agacaacgct	ggaaaacgtg	ctaatgacca	gcgaggagga	gatcaaaacc	1920
٠	accaatcccg	tggctacaga	agaatacggt	gtggtctcca	gcaacctgca	atogtotacg	1980
	gccggacccc	agacacagac	tgtcaacagc	cagggggctc	tgcccggcat	ggtctggcag	2040
	aaccgggacg	tgtacctgca	gggtcccatc	tgggccaaaa	ttcctcacac	ggacggcaac	2100
	tttcacccgt	ctcccctgat	gggcggattt	ggactcaàac	accegeetee	tcaaattctc	2160
	atcassasca	ccccggtacc	tgctaatcct	ccagaggtgt	ttactcctgc	caagtttgcc	2220

			CP 13	010 2/1 B1			
	tcatttatca	cgcagtacag	caccggccag	gtcagcgtgg	agatcgagtg	ggaactgcag	2280
	aaagaaaaca	gcaaacgctg	gaatccagag	attcagtaca	cctcaaatta	tgccaagtct	2340
5	aataatgtgg	aatttgctgt	caacaacgaa	ggggtttata	ctgagcctcg	ccccattggc	2400
	accegttace	tcacccgtaa	cctgtaattg	cctgttaatc	aataaaccgg	ttaattcgtt	2460
	tcagttgaac	tttggtcaag	ggcgaattc				2489
10							
	<210> 36			•	·		
	<211> 2495						
15	<212> DNA						
15	<213> new AAV ser	otype, clone 42.	3b				
	<400> 36						
20							
25							
	1.1.	•					,

	gaarregeed	tttctacggc	tgcgtcaact	agaccaatge	a gaactttcc	ttcaacgatt	6
	gcgtcgacaa	gatggtgatc	tggtgggagg	agggcaagat	gacggccaag	gtcgtggagt	120
5	ccgccaaggc	cattcatcat	ctgctggggc	gggctcccge	a gattgcttgc	: tcggcctgcg	180
	atctggtcaa	cgtggacctg	gatgactgtg	tttctgagca	ataaatgact	taaaccaggt	240
	atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	300
10	gagtggtggg	acttgaaacc	tggagccccg	asacccaaag	ccaaccagca	aaagcaggac	360
	· · · gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gaccetteaa	cggactcgac	420
	aagggagagc	cggtcaacga	ggcagacgcc	geggeeeteg	agcacgacaa	ggcctacgac	480
15	aagcagctcg	agcaggggga	caacccgtac	ctcaagtaca	accacgccga	cgccgagttt	540
	caggagcgtc	ttcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	600
	gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	660
20	ggaaagaaga	gacccataga	atcccccgac	testesacgg	gcatcggcaa	gaaaggccag	720
	cagcccgcta	aaaagaagct	caactttggg	cagactggcg	actcagagtc	agtgcccgac	780
	cctcaaccaa	tcggagaacc	ccccgcaggc	ccctctggtc	tgggatctgg	tacaatggct	840
25	gcaggcggtg	gcgctccaat	ggcagacaat	aacgaaggcg	ccgacggagt	gggtaatgcc	900
	tccggaaatt	ggcattgcga	ttccacatgg	ctgggcgaca	gagtcatcac	caccagcacc	960
	cgcacctggg	ccctgcccac	ctacaacaac	cacctctaca	agcagatatc	aagtcagagc	1020
30	ggggctacca	acgacaacca	cttcttcggc	tacagcaccc	cctggggcta	ttttgacttc	1080
	aacagattcc	actgccactt	ctcaccacgt	gactggcagc	gactcatcaa	caacaactgg	1140
	ggattccggc	ccagaaagct	gcggttcaag	ttgttcaaca	tccaggtcaa	ggaggtcacg	1200
35	acgaacgacg	gcgttacgac	catcgctaat	aaccttacca	gcacgattca	ggtcttctcg	1260
	gactcggagt	accaactgcc	gtacgtcctc	ggctctgcgc	accagggctg	cctccctccg	1320
	ttecctgegg	acgtgttcat	gattcctcag	tacggatatc	tgactctaaa	caacggcagt	1380
40	cagtctgtgg	gacgttcctc	cttctactgc	ctggagtact	ttccttctca	gatgctgaga	1440

...

50

	acgggcaata	actttgaatt	cagctacacc	tttgaggaag	tgcctttcca	cagcagctat	1500			
	gcgcacagcc	agagcctgga	ccggctgatg	aatcccctca	tcgaccagta	cctgtactac	1560			
5	ctggcccgga	cccagagcac	tacggggtcc	acaagggagc	tgcagttcca	tcaggctggg	1620			
	cccaacacca	tggccgagca	atcaaagaac	tggctgcccg	gaccctgtta	tcggcagcag	1680			
	agactgtcaa	äaaacataga	cagcaacaac	accagtaact	ttgcctggac	cggggccact	1740			
10	aaataccatc	tgaatggtag.	aaattcatta	accaacccgg	gcgtagccat	ggccaccaac	1800			
	aaggacgacg	aggaccagtt	ctttcccatc	aacggagtgc	tggtttttgg	caaaacgggg	1860			
	gctgccaaca	agacaacgct	ggaaaacgtg	ctaatgacca	gcgaggagga	gatcaaaacc	1920			
15	accaatcccg	tggctacaga	acagtacggt	gtggtctcca	gcaacctgca	atcgtctacg	1980			
	gccggacccc	agacacagac	tgtcaacagc	cagggggctc	tgcccggcat	ggtctggcag	2040			
	aaccgggacg	tgtacctgca	gggtcccatc	tgggccaaaa	ttcctcacac	ggacggcaac	2100			
20	tttcacccgt	ctccctgat	gggcggattt	ggactcaaac	acccgcctcc	tcaaattctc	2160			
	atcaaaaaca	cccggtacc	tgctaatcct	ccagaggtgt	ttactcctgc	caagtttgcc	2220			
	tcatttatca	cgcagtacag	caccggccag	gtcagcgtgg	agatcgagtg	ggaactgcag	2280			
25	aaagaaaaca	gcaaacgctg	gaatccagag	attcagtaca	cctcaaatta	tgccaagtct.	2340			
	aataatgtgg	aatttgctgt	caacaacgaa	ggggtttata	ctgagcctcg	ccccattggc	2400			
	acccgttacc	tcacccgtaa	cctgtaattg	cctgttaatc	aataaaccgg	ttaattcgtt	2460			
30	tcagttgaac	tttggtctct	gcgaagggcg	aattc			249.5			
	<210> 37									
	<211> 3098									
35	<212> DNA									
	<213> new AAV serotype, clone 42.11									
	<400> 37	,								
10	gaattcgccc	tttctacggc	tgcgtcaact	ggaccaatga	gaactttccc	ttcaacgatt	60			
	gcgtcgacaa	gatggtgatc	tggtgggagg	agggcaagat	gacggccaag	gtcgtggagt	120			
	ccgccaaggc	cattctcggc	ggcagcaagg	tgcgcgtgga	ccaaaagtgc	aagtcttccg	180			
15	cccagatcga	tcccaccccc	gtgatcgtca	cttccaacac	caacatgtgc	gccgtgattg	240			
	acgggaacag	caccaccttc	gagcaccagc	agccgttaca	agaccggatg	ttcaaatttg	300			
	aactcacccg	ccgtctggag	cacgactttg	gcaaggtgac	aaagcaggaa	gtcaaagagt	360			
iO	tetteegetg	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttctac	gtcagaaagg	420			
	gtggagccaa	caagagaccc	gcccccgatg	acgcggataa	aagcgagccc	aagcgggcct	480			
	gcccctcagt	cgcggatcca	tcgacgtcag	acgcggaagg	agctccggtg	gactttgccg	540			
i 5	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	tttccctgca	600			
	anacatnena	gagaatgaat	campattten		CDCGCDCGGG					

	gttcagaatg tttccccggc gtgtcagaat ctcaaccggt cgtcagaaag aggacgtatc	720
£	ggaaactetg tgecatteat catetgetgg ggegggetee egagattget tgeteggeet	780
5	gcgatctggt caacgtggac ctggatgact gtgtttctga gcaataaatg acttaaacca	840
	ggtatggetg cegatggtta tettecagat tggetegagg acaacetete tgagggeatt	900
10	cgcgagtggt gggacttgaa acctggagcc ccgaaaccca aagccaacca gcaaaagcag	960
	gacgacggcc ggggtctggt gcttcctggc tacaagtacc tcggaccctt caacggactc	1020
	gacaagggag agccggtcaa cgcggcggac gcagcggccc tcgagcacga caaggcctac	1080
15	gaccagcage teaaageggg tgacaateeg tacetgeggt ataaccaege egacgeegag l	L140
15	tttcaggagc gtcttcaaga agatacgtct tttgggggca acctcgggcg agcagtcttc 1	200
	caggccaaga agcgggttct cgaacctctc ggtctggttg aggaaggcgc taagacggct l	.260
20	cctggaaaga agagacccat agaatccccc gactcctcca cgggcatcgg caagaaaggc l	.320
	cageageeeg ctaaaaagaa geteaaettt gggeagaetg gegaeteaga gteagtgeee l	380
	gacecteaac caateggaga acceeegca ggcceetetg gtetgggate tggtacaatg 1	440
25	getgeaggeg gtggegetee aatggeagae aataaegaag gegeegaegg agtgggtaat 1	500
	geoteeggaa attggcattg cgattecaca tggctgggcg acagagteat caccaccage 1	560
	accegeacet gggecetgee cacetacaac aaccacetet acaagcagat atcaagteag 1	620
30	ageggggeta ceaacgacaa ceaettette ggetacagea ecceetgggg etattttgae 10	680
	ttcaacagat tccactgcca cttctcacca cgtgactggc agcgactcat caacaacaac l	740
	tggggattcc ggcccagaaa gctgcggttc aagttgttca acatccaggt caaggaggtc 18	800
35	acgacgaacg acggcgttac gaccatcgct aataacctta ccagcacgat tcaggtcttc le	360
	teggaetegg agtaceaact geegtaegte eteggetetg egeaceaggg etgeeteect 19	920
	cegtteeetg eggaegtgtt catgatteet cagtaeggat atetgaetet aaacaaegge 19	980
40	agtcagtctg tgggacgttc ctccttctac tgcctggagt actttccttc tcagatgctg 20	940
	agaacgggca ataactttga attcagctac acctttgagg aagtgccttt ccacagcagc 21	-00
	tatgogoaca godagagoot ggacoggotg atgaatooco toatogacoa gtacotgtac 21	.60
45	tacctggccc ggacccagag cactacgggg tccacaaggg agctgcagtt ccatcaggct 22	20
	gggcccaaca ccatggccga gcaatcaaag aactggctgc ccggaccctg ttatcggcgg 22	80
	cagagactgt caaaagacat agacagcaac aacaacagta actttgeetg gaccggggce 23	40
50	actamatace atctgmatgg tagamattca ttmmccamec egggegtage catggecace 24	00
	aacaaggacg acgaggacca gttctttccc atcaacggag tgctggtttt tggcaaaacg 24	60
	ggggctgcca acaagacaac gctggaaaac gtgctaatga ccagcgagga ggagatcaaa 25	20
55	accaccaatc cogtggctac agaagaatac ggtgtggtct ccagcaacct gcaatcgtct 25	80

	acggccggac	cccagacaca	gactgtcaac	agccaggggg	ctctgcccgg	catggtctgg	2640		
_	cagaaccggg	acgtgtacct	gcagggtccc	atctgggcca	aaattcctca	cacggacggc	2700		
5	aactttcacc	cgtctcccct	gatgggcgga	tttggactca	aacacccgcc	tcctcaaatt	2760		
	ctcatcaaaa	acaccccggt	acctgctaat	cctccagagg	tgtttactcc	tgccaagttt	2820		
10	gcctcattta	tcacgcagta	cagcaccggc	caggtcagcg	tggagatcga	gtgggaactg	2880		
10	cagaaagaga	acagcaaacg	ctggaatcca	gagattcagt	acacctcaaa	ttatgccaag	2940		
	tctaataatg	tggaatttgc	tgtcaacaac	gaaggggttt	atactgagcc	togoccoatt	3000		
15	ggcacccgtt	acctcacccg	taacctgtaa	ttacttgtta	atcaataaac	cggttgattc	3060		
	gtttcagttg	aactttggtc	tctgcgaagg	gcgaattc	¥.*		3098		
	<210> 38								
20	<211> 3276	•							
	<212> DNA								
	<213> new AAV serotype, clone 42.6a								
	<400> 38								
25									
		•	•						

	gaattcgccc	ttcgcagaga	ccaaagttca	actgaaacga	attaaccggt	ttattgatta	60
	acaggcaatt	acaggttacg	ggtgaggtaa	cgggtgccaa	tggggcgagg	ctcagtataa	120
5	accccttcgt	tgttgacage	aaattccaca	ttattagact	tggcataatt	tgaggtgtac	180
	tgaatctctg	gattccagcg	tttgctgttt	tetttetgea	gttcccactc	gatctccacg	240
,	ctgacctggc	cggtgctgta	ctgcgtgata	aatgaggcaa	acttggcagg	agtaaacacc	300
10	tctggaggat	tagcaggtac	cggggtgtt	ttgatgagaa	tttgaggagg	cgggtgtttg	360
	agtccaaatc	cgtccatcag	gggagacggg	tgaaagttgc	cgtccgtgtg	aggaattttg	420
	gcccagatgg	gaccctgcag	gtacacgtcc	eggttetgee	agaccatgcc	gggcagagcc	48 Q
15	ccctggctgt	tgacagtctg	tgtctggggt	ccggccgtag	acgattgcag	gttgctggag	540
	accacaccgt	attcttctgt	agccacggga	ttggtggttt	tgatctcctc	ctcgctggtc	600
	attagcacgt	tttccagcgt	tgtcttgttg	gcagcccccg	ttttgccaaa	aaccagcact	660
20	ccgttgatgg	gaaagaactg	gtcctcgtcg	teettgttgg	tggccatggc	tacgcccggg	720
	ttggttaatg	aatttctacc	attcagatgg	tatttagtgg	ccccggtcca	ggcaaagtta	780
	ctgttgttgt	tgctgtctat	gttttttgac	agtototgot	gccgataaca	gggtccgggc	840
25	agccagttct	ttgattgctc	ggccatggtg	ttgggcccag	cctgatggaa	ctgcagctcc	900
	cttgtggacc	ccgtagtgct	ctgggtccgg	gccaggtagt	acaggtactg	gtcgatgagg	960
	ggattcatca	gccggtccag	gctctggcta	tgcgcatagc	tgctgtggaa	aggcacttcc	1020
30	tcaaaggtgt	agctgaattc	aaagttattg	cccgttctca	gcatctgaga	aggaaagtac	1080
	tccaggcagt	agaaggagga	acgteceaca	gactgactgc	cgttgtttag	agtcagatat	1140
	ccgtactgag	gaatcatgaa	cacgtccgca	gggaacggag	ggaggcagcc	ctggtgcgca	1200
<i>35</i>							

	gagccgagga	cgtacggcag	ttggtactcc	gagtccgaga	agacctgaat	cgtgctggta	1260
_	aggttattag	cgatggtcgt	aacgccgtcg	teegtegtga	cctccttgad	ctggatgttg	1320
5	aacaacttga	accgcagctt	tctgggccgg	aatccccagt	tgttgttgat	gagtcgctgc	1380
	cagtcacgtg	gtgagaagtg	gcagtggaat	ctgttaaagt	caaaatacco	ccagggggtg	1440
40	ctgtagccga	agtaggtgtt	gtcgttggtg	cttcctcccg	atgtcccgtt	: ggagatttgc	1500
10	ttgtagaggt	ggttgttgta	ggtgggagg	gcccaggttc	gggtgctggt	ggtgatgact	1560
	ctgtcgccca	gccatgtgga	atcgcaatgc	caatttcctg	aggaactaco	cactccgtcg	1620
15	gcgccttcgt	tattgtctgc	cattggagcg	ccaccgcctg	cagccattgt	accagatccc	1680
15	agaccagagg	ggcctgcggg	gggttctccg	attggttgag	ggtcgggcac	tgactctgag	1740
	togccagtot	gcccaaagtt	gagtetettt	ttcgcgggct	gctggcctgt	cttgccgatg	1800
20	cccgtagagg	agtctggaga	acgctggggt	gatggctcta	ceggtetett	ctttccagga	1860
20	gccgtcttag	egectteete	aaccagaccg	agaggttcga	gaacccgctt	cttggcctgg	1920
	aagactgctc	gcccgaggtt	gcccccaaaa	gacgtatett	cttgaagacg	ctcctgaaac	1980
25	tcggcgtcgg	cgtggttgta	cttgaggtac	gggttgtccc	cctgctcgag	ctgcttgtcg	2040
25	taggccttgt	cgtgctcgag	ggccgcggcg	tctgcctcgt	tgaccggctc	tcccttgtcg	2100
	agtccgttga	agggtccgag	gtacttgtag	ccaggaagca	ccagaccccg	gccgtcgtcc	2160
20	tgcttttgct	ggttggcttt	gggtttcggg	gctccaggtt	tcaagtccca	ccactcgcga	2220
30	atgccctcag	agaggttgtc	ctcgagccaa	tctggaagat	aaccatcggc	agccatacct	2280
	ggtttaagtc	atttattgct	cagaaacaca	gtcatccagg	tccacgttga	ccagatcgca	2340
25	ggccgagcaa	gcaatctcgg	gagcccgccc	cagcagatga	tgaatggcac	agagtttccg	2400
35	atacgtcctc	tttctgacga	ccggttgaga'	ttctgacacg	ccggggaaac	attctgaaca	2460
	gtetetggte	ccgtgcgtga	agcaaatgtt	gaaattctga	ttcattctct	cgcatgtctt	2520
10	gcagggaaac	agcatctgaa	gcatgecege	gtgacgagaa	cacttgtttt	ggtacctgtc	2580
40	ggcaaagtcc	accggagete	cttccgcgtc	tgacgtcgat	ggatgcaaaa	tgtcgcaaaa	2640
	gcactcacgt	gacagctaat	acaggaccac	tcccctatga	cgtgatttac	gtcagcgcta	2700
45	tgcccgcgtg	acgagaacat	ttgttttggt	acctgtcggc	aaagtccacc	ggagctcctt	2760
45	ccgcgtctga (cgtcgatgga	teegegactg	aggggcaggc	ccgcttgggc	togottttat	2820
	ccgcgtcatc	gggggcgggt (ctcttgttgg	ctccaccctt	tctgacgtag	aactcatgcg	2880
50	ccacctcggt (cacgtgatcc	tgcgcccagc	ggaagaactc	tttgacttcc	tgctttgtca	2940
50	ccttgccaaa (gtcatgetee a	agacggcggg ·	tgagttcaaa '	tttgaacatc	cggtcctgca	3000
	acggctgctg (gtgctcgaag (gtggtgctgt	tcccgtcaat	cacggcgcac	atgttggtgt	3060
	tggaagtgac g	gatcacgggg (gtgggatcga	tctgggcgga a	agacttgcac	ttttggtcca	3120
55							

				•			
	cgcgcacctt	gctgccgccg	agaatggcct	tggcggactc	cacgaccttg	gccgtcatct	3180
	tgccctcctc	ccaccagatc	accatcttgt	cgacgcaatc	gttgaaggga	aagttctcat	3240
5	tggtccagtt	gacgcagccg	tagaaagggc	gaattc			3276
10	<210> 39 <211> 3084 <212> DNA <213> new AAV sero	otype, clone 43.1	i				
15 .	<400> 39			. •			
20							
25							

gaattcgccc	tttctacggo	tgcatcaact	ggaccaatge	gaactttccc	ttcaacgatt	60
gcgtcgacaa	gatggtgatc	tggtgggag	g agggcaagat	gacggccaag	gtcgtggagt	120
ccgccaaggc	: cattctcggc	ggcagcaagg	g tgcgcgtgga	ccaaaagtgc	aagtcgtccg	180
cccagatcga	cccacccc	gtgatcgtca	cctccaacac	: caacatġtgc	gccgtgattg	240
acgggaacag	caccaccttc	gagcaccago	agccgttgca	. ggaccggatg	ttcaagttcg	300
aactcacccg	ccgtctggag	cacgactttg	gcaaggtgac	caagcaggaa	gtcaaagagt	360
tetteegetg	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttctac	gtcagaaagg	420
gcggagccag	caaaagaccc	gcccccgatg	acgcggatat	aagcgagccc	aagcgggcct	480
geceeteagt	cgcggatcca	tcgacgtcag	acgcggaagg	agctccggtg	gactttgccg	540
acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	tttccctgca	600
aaacgtgcga	gaaaatgaat	cagaatttca	acatttgctt	cacgcacggg	gtcagagact	660
gctcagaatg	tttccccggt	gcatcagaat	ctcaaccggt	cgtcagaaaa	aaaacgtatc	720
agaaactgtg	tgccattcat	catctgctgg	ggcgggcacc	cgagattgct	tgctcggcct	780
gcgatctggt	caacgtggac	ctggacgact	gtgtttctga	gcaataaatg	acttaaacca	840
ggtatggctg	ccgatggtta	tcttccagat	tggcttgagg	acaacctctc	tgagggcatt	900
cgcgagtggt	gggacctgaa	acctggagcc	ccgaaaccca	aagccaacca	gcaaaagcag	960
gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	toggaccett	caacggactc	1020
gacaaggggg	agcccgtcaa	cgcggcggac	gcagcggccc	tcgagcacga	caaggcctac	1080
gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	cgacgccgag	1140
tttcaggagc	gtctgcaaga	agatacgtst	tttgggggca	acctcgggcg	agcagtette	1200
caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaaggcgc _.	taagacggct	1260
cctggaaaga	agagaccggt	agagccatca	cctcagcgtt	ccccgactc	ctccacgggc	1320
atcggcaaga	aaggccacca	gcccgcgaga	aagagactga	actttgggca	gactggcgac	1380
tcggagtcag	teccegacee	tcaaccaatc	ggagaaccac	cagcaggecc	ctctggtctg	1440
ggatctggta	caatggctgc	aggcggtggc	gctccaatgg	cagacaataa	cgaaggcgcc	1500
gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	gggcgacaga	1560

	gtcatcacca	ccagcacccg	aacctgggcc	ctgcccacct	acaacaacca	tctctacaag	1620
	caaatctcca	acgggacatc	gggaggaagc	actaacgaca	. acacctactt	tggctacagc	1680
5	accccctggg	ggtattttga	cttcaacaga	ttccactgcc	acttctcacc	acgtgactgg	1740
	cagcgactca	tcaacaataa	ctggggattc	cggcccaaga	gactcaactt	caagctcttc	1800
	aacatccagg	tcaaggaggt	cacgcagaat	gaaggcacca	agaccatcgc	caataacctt	,1860
10	accagcacga	ttcaggtgtt	tacggactcg	gaataccagc	tcccgtacgt	ccccggctct	1920
	gcgcaccagg	gctgcctccc	tccgttcccg	gcggacgtct	tcatgattcc	tcagtacggg	1980
	tatctgaccc	taaacaatgg	cagtcaggct	gtgggccgtt	cctccttcta	ctgcctggaa	2040
15	tacttccctt	ctcaaatgct	gaggacgggc	aacaactttg	aattcagcta	caccttcgag	2100
	gacgtgcctt	tccacagcag	ctacgcgcac	agccagagcc	tggaccggct	gatgaaccct	2160
	ctcatcgacc	agtacctgta	ttacttatcc	agaactcagt	ccacaggagg	aactcaaggt	2220
20	actcagcaat	tgttattttc	tcaagccggg	cccgcaaaca	tgtcggctca	ggccaagaac	2280
	tggctacctg	gaccgtgtta	ccgtcagcaa	cgagtttcca	cgacactgtc	gcaaaacaac	2340
0.5	aacagcaatt	ttgcttggac	cggtgccacc	aagtatcacc	tgaatggcag	agactccctg	2400
25	gttaatcccg	gcgttgccat	ggctacccac	aaggacgacg	aggagcgctt	cttcccgtca	2460
	agcggagttc	taatgtttgg	caagcagggg	gctggaaaag	acaatgtgga	ctacagcagc	2520
20	gtgatgctca	ccagcgaaga	agaaattaaa	actactaacc	cagtggctac	agagcagtat	2580
30	ggtgtggtgg	cagacaacct	gcagcagacc	aacggagctc	ccattgtggg	aactgtcaac	2640
	agccaggggg	ccttacctgg	tatggtctgg	caaaaccggg	acgtgtacct	gcagggcccc	2700
35 •	atctgggcca	aaattcctca	cacggacggc	aactttcatc	cttcgccgct	gatgggaggc	2760
J J	tttggactga	aacacccgcc	tcctcagatc	ctggtgaaaa	acactcctgt	tcctgcggat	2820
	cctccgacca	ccttcagcca	ggccaagetg	gcttctttta	tcacgcagta	cagcaccgga	2880
40	caggtcagcg	tggaaatcga	atgggagetg	cagaaagaaa	acagcaagcg	ctggaaccca	2940
40	gagattcagt	atacttccaa	ctactacaaa	tctacaaatg	tggactttgc	tgtcaatact	3000
	gagggtactt	attcagagcc	togoccoatt	ggcactcgtt	atctcacccg	taatctgtaa	3060
45	ttgcttgtta	atcaatasac	cggt				3084
· -							

<210> 40

<211> 2370

<212> DNA

<213> new AAV serotype, clone 43.5

<400> 40

55

	EP 1 310 571 B1								
	gaattcgccc	tttctacggc	tgcgtcaact	ggaccaatga	gaactttccc	ttcaacgatt	· 60		
	gcgtcgacaa						120		
5	ccgccaaggc	cattctcggc	ggcagcaagg	tgcgcgtgga	ccaaaagtgc	aagtcgtccg	180		
						. •••	٠		
5									
10									
15									
					•				
20									
•									
25			•						

35			

.

cccagaccy	a ceceatete	- grgacegee	· ccccaaca	Caacacycyc	. googlegating	24
acgggaaca	g caccacette	c gagcaccago	agccgttgca	a ggaccggatg	f ttcaagttcg	30
aactcaccc	g ccgtctggag	g cacgacttt	g gcaaggtgad	c caagcaggaa	gtcaaagagt	36
tetteegete	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttctac	gtcagaaagg	42
gcggagccag	r caaaagacco	gcccccgatg	acgcggatat	aagcgagees	aagcgggcct	48
gcccctcagt	cgcggatcca	tcgacgtcag	acgcggaagg	, agctccggtg	gactttgccg	54
acaggtacca	aaacaaatgt	tetegteacg	cgggcatgct	: tcagacgctg	tttccctgca	60
aaacgtgcga	gagaatgaat	: cagaatttca	acatttgctt	: cacgcacggg	gtcagagact	66
gctcagaatg	tttccccggt	gcatcagaat	ctcaaccggt	cgtcagaaaa	aaaacgtatc	720
agaaactgtg	tgccattcat	catctgctgg	ggcgggcacc	cgagattgct	tgctcggcct	780
gcgatctggt	caacgtggac	ctggacgact	gtgtttctga	gcaataaatg	acttaaacca	840
ggtatggctg	ccgatggtta	tettecagat	tggcttgagg	acaacctctc	tgagggcatt	900
cgcgagtggt	gggacctgaa	acctggagcc	ccgaaaccca	aagccaacca	gcaaaagcag	960
gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	teggaccett	caacggactc	1020
gacaaggggg	agcccgtcaa	cgcggcggac	gcagcggccc	tcgagcacga	caaggcctac	1080
gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	cgacgccgag	1140
tttcaggagc	gtctgcaaga	agatacgtct	tttgggggca	acctcgggcg	agcagtcttc	1200
caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaaggcgc	taagacggct	1260
cctggaaaga	agagaccggt	agagccatca	cctcagcgtt	ccccgactc	ctccacgggc	1320
atcggcaaga	aaggccacca	gcccgcgaga	aagagactga	actttgggca	gactggcgac	1380
tcggagtcag	tccccgaccc	tcaaccaatc	ggagaaccac	cagcaggccc	ctctggtctg	1440
ggatctggta	caatggctgc	aggcggtggc	gctccaatgg	cagacaataa	cgaaggcgcc	1500
gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	gggcgacaga	1560
gtcatcacca	ccagcacccg	aacctgggcc	ctgcccacct	acaacaacca	tctctacaag	1620
caaatctcca	acgggacatc	gggaggaagc	actaecgaca	acacctactt	tggctacagc	1680
accccctggg	ggtattttga	cttcaacaga	ttccactgcc	acttctcacc	acgtgactgg	1740
cagcgactca	tcaacaataa	ctggggattc	cggcccaaga	gactcaactt	caagctcttc	1800
aacatccagg	tcaaggaggt	cacgcagaat	gaaggcacca	agaccatcgc	caataacctt	1860
accagcacga	ttcaggtgtt	tacggactcg	gaataccagc	tcccgtacgt	cctcggctct	1920
gcgcaccagg	gctgcctccc	tccgttcccg	gcggacgtct	tcatgattcc	tcagtacggg	1980
tatctgaccc	taaacaatgg	cagtcaggct	gtgggccgtt	cctccttcta	ctgcctggaa	2040
tacttccctt	ctcaaatgct	gaggacgggc	aacaactttg	aattcagcta	caccttcgag	2100

		•					
	gacgtgcctt	tecacageag	ctacgcgcac	agccagagcc	tggaccggct	gatgaaccct	2160
5	ctcatcgacc	agtacctgta	ttacttatcc	agaactcagt	ccacaggagg	aactcaaggt	2220
	actcagcaat	tgttattttc	tcaagccggg	cccgcaaaca	tgtyggctca	ggccaagaac	2280
	tągctacctg	gaccgtgtta	ccgtcagcaa	cgagtttcca	cgacactgtc	gcaaaacaac	2340
10	aacagcaatt	ttgctggacc	ggtgccacca				2370
	<210> 41						
	<211> 3123						
15	<212> DNA	•					
	<213> new AAV sero	otype, clone 43.	12				
	<400> 41						
20							
25							

	,	gg.c.geg.	· oauceggac	. accyagaac	. ceccee	a cyarcycytc	0.0
	gacaagatg	g tgatctggtg	ggaggaggg	aagatgacg	g ccaaggtcg	t ggagtccgcc	120
	aaggccatto	teggeggeag	caaggtgcgc	gtggaccaa	agtgcaagt	c gtccgcccag	180
	atcgacccca	cccccgtgat	cgtcacctcc	aacaccaaca	tgtgcgccgi	gattgacggg	240
	aacagcacca	ccttcgagca	ccagcagccg	ttgcaggaco	ggatgttca	gttcgaactc	300
	acccgccgtc	tggagcacga	ctttggcaag	gtgaccaago	aggaagtcaa	agagttette	360
	cgctgggcgc	aggatcacgt	gaccgaggtg	gcgcatgagt	tctacgtcag	aaagggcgga	420
	gccagcaaaa	gacccgcccc	cgatgacgcg	gatataagcg	agcccaagcg	ggcctgcccc	480
	tcagtcgcgg	atccatcgac	gtcagacgcg	gaaggagctc	cggtggactt	tgccgacagg	540
	taccaaaaca	astgttctcg	tcacgcgggc	atgctccaga	tgctgtttcc	ctgcaaaacg	600
	tgcgagagaa	tgaatcagaa	tttcaacatt	tgcttcacge	acggggtcag	agactgctca	660
	gaatgtttcc	ccggtgcatc	agaatctcaa	ccggtcgtca	gaaaaaaac	gtatcagaaa	720
	ctgtgtgcca	ttcatcatct	gctggggcgg	gcacccgaga	ttgcttgctc	ggcctgcgat	780
	ctggtcaacg	tggacctgga	cgactgtgtt	tctgagcaat	aaatgactta	aaccaggtat	840
	ggctgccgat	ggttatcttc	cagattggct	tgaggacaac	ctctctgagg	gcattcgcga	900
	gtggtgggac	ctgasacctg	gagccccgaa	acccanagec	aaccagcaaa	agcaggacga	960
	cggccggggt	ctggtgcttc	ctggctacaa	gtacctcgga	cccttcaacg	gactcgacaa	1020
	gggggagccc	gtcaacgcgg	cggacgcagc	ggccctcgag	cacgacaagg	cctacgacca	1080
	gcagctcaaa	gcgggtgaca	atccgtacct	gcggtataac	cacgccgacg	ccgagtttca	1140
•	ggagcgtctg	caagaagata	cgtcttttgg	gggcaacctc	gggcgagcag	tcttccaggc	1200
••	caagaagcgg	gttctcgaac	ctctcggtct	ggttgaggaa	ggcgctaaga	cggctcctgg	1260
	aaagaagaga	ccggtagagc	catcacctca	gcgttcccc	gactcctcca	cgggcatcgg	1320
	caagaaaggc	caccagcccg	cgagaaagag	actgaacttt	gggcagactg	gcgactcgga	1380
	gtcagtcccc	gacceteaac	caatcggaga	accaccagca	aacccctcta	atctaggato	1440

· 30

	tggtacaat	g gctgcaggc	g gtggcgctc	c aatggcaga	c aataacgaa	g gcgccgacgg	1500
-	agtgggtag	t tootcagga	a attggcatt	g cgattccac	a tggctgggc	g acagagtcat	1560
5	caccaccago	c acccgaacc1	gggccctgc	c cacctacaac	aaccatctc	t acaagcaaat	1620
	ctccaacgg	g acatcgggag	gaagcactaa	a cgacaacac	tactttggc	acagcacccc	1680
10	ctgggggtat	tttgacttca	acagattcca	a ctgccactto	tcaccacgt	g actggcagcg	1740
76	actcatcaac	aataactggg	gattccggcd	caagagacto	aacttcaago	tcttcaacat	1800
	ccaggtcaag	gaggtcacgo	agaatgaagg	; caccaagaco	atcgccaata	accttaccag	1860
15	cacgattcag	gtgtttacgg	actoggaata	ccageteeeg	tacgtcctcg	gctctgcgca	1920
.5	ccagggctgc	ctccctccgt	tcceggcgga	cgtcttcatg	attootoagt	acgggtatct	1980
	gaccctaaac	aatggcagtc	aggctgtggg	cegttectee	ttctactgcc	tggaatactt	2040
20	cccttctcaa	atgctgagga	cgggcaacaa	ctttgaattc	agctacacct	tcgaggacgt	2100
	gcctttccac	agcagctacg	cgcacagcca	gagcctggac	cggctgatga	acceteteat	2160
	cgaccagtac	ctgtattact	tatccagaac	tcagtccaca	ggaggaactc	aaggtactca	2220
25	gcaattgtta	ttttctcaag	ccgggcccgc	asacatgtcg	gctcaggcca	agaactggct	2280
	acctggaccg	tgttaccgtc	agcaacgagt	ttccacgaca	ctgtcgcaaa	acaacaacag	2340
	caattttgct	tggaccggtg	ccaccaagta	tcacctgaat	ggcagagact	ccctggttaa	2400
30		gccatggcta					24 60
		tttggcaagc					2520
		gaagaagaaa					2580
35		aacctgcagc			•		2640
		cctggtatgg					2700
		cctcacacgg					2760
40		ccgcctcctc					2820
		agccaggcca					2880
		atcgaatggg					2940
45		tccaactact					3000
		gagectegee					3060
	tgttaatcaa	taaaccggtt	aattogttto	agttgaactt	tggtctctgc	gaagggcgaa	3120
50	ttc						3123

<210> 42

<211> 3122

<212> DNA

55

<213> new AAV serotype, clone 43.20

<400> 42

gaattegee	tttctacaa	tacatcaaci	- aascestas	GARCETTCC	ttcsaccatt	60
					ttcaacgatt	
gcgccgacaa	a garggrgatc	: rggrgggag	g agggcaagat	: gacygccaag	gtcgtggagt	120
ccgccaaggo	cattctcggc	ggcagcaag	g tgcgtgt g ga	ccaaaagtgo	aagtcttccg-	180
cccagatcga	tcccacccc	gtgatcgtca	a cctccaacac	caacatgtgo	gccgtgattg	240
acgggaacag	cgccacette	gagcaccago	agccgttgca	ggaccggatg	ttcaaatttg	300
aactcacccg	ccgtctggag	catgactttg	gcaaggtgac	gaagcaggaa	gtcaaagagt	360
tcttccgctg	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttccac	gtcagaaagg	420
gtggagccaa	caagagaccc	gcccccgatg	acgcggatat	aagcgagccc	aagcgggcct	480
gcccctcagt	cgcggatcca	tcgacgtcag	acgcggaagg	agctccggtg	gactttgccg	540
acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	tttccctgca	600
agacatgcga	gagaatgaat	cagaatttca	acatttgctt	cacgcacggg	accagagact	660
gttcagaatg	tttccccggc	gtgtcagaat	ctcaaccggt	cgtcagaaag	aggacgtatc	720
ggaaactctg	tgcgattcat	catctgctgg	ggcgggctec	cgagattgct	tgctcggcct	780
gcgatctggt	caacgtggac	ctggatgact	gtgtttctga	gcaataaatg	acttaaacca	840
ggtatggctg	ccgatggtta	tcttccagat	tggctcgagg	acaacctctc	tgagggcatt	900
cgcgagtggt	gggacttgaa	acctggagcc	ccgaaaccca	aagccaacca	gcaaaagcag	960
gacgacggcc	ggggtctggt	getteetgge	tacaagtacc	tcggaccctt	caacggactc	1020
gacaaggggg	agcccgtcaa	cgcggcggac	gcagcggccc	tcgagcacga	caaagcctac	1080
gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataatcacgc	cgacgccgag	1140
tttcaggagc	gtctgcaaga	agatacgtct	tttgggggca	acctcgggcg	agcagtcttc	1200
caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaaggcgc	taagacggct	1260
cctggaaaga	agagactggt	agagcagtcg	ccacaagagc	cagactcctc	ctcgggcatc	1320
ggcaagacag	gccagcagcc	cgctaaaaag	agactcaatt	ttggtcagac	tggcgactca	1380
gagtcagtcc	ccgacccaca	acctctcgga	gaacctccag	cagccccctc	aggtctggga	1440
cctaatacaa	tggcttcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	1500
ggagtgggta	attcctcggg	aaattggcat	tgcgattcca	catggctggg	ggacagagtc	1560
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	1620
atctccaacg	gcacctcggg	aggaagcacc	aacgacaaca	cctattttgg	ctacagcacc	1680
ccctgggggt	attttgactt	caacagattc	cactgtcact	tttcaccacg	tgactggcaa	1740
cgactcatca	acaacaattg	gggattccgg	cccaaaagac	tcaacttcaa	gctgttcaac	1800
atccaggtca	aggaagtcac	gacgaacgaa	ggcaccaaga	ccatcgccaa	taatctcacc	1860
agcaccgtgc	aggtctttac	ggactcggag	taccagttac	cgtacgtgct	aggatccgct	1920

1980

2040

caccagggat gtctgcctcc gttcccggcg gacgtcttca cggttcctca gtacggctat

ttaactttaa acaatggaag ccaagccctg ggacgttcct ccttctactg tctggagtat

	ttcccatcgc	agatgctgag	aaccggcaac	aactttcagt	tcagctacac	cttcgaggac	2100
	gtgcctttcc	acagcageta	cgcgcacago	cagagectgg	acaggctgat	gaatcccctc	2160
10	atcgaccagt	acctgtacta	cctggtcaga	acgcaaacga	ctggaactgg	agggacgcag	2220
10	actctggcat	tcagccaagc	gggtcctagc	tcaatggcca	accaggetag	aaattgggtg	2280
	cccggacctt	gctaccggca	gcagcgcgtc	tccacgacaa	ccaaccagaa	caacaacagc	2340
15	aactttgcct	ggacgggagc	tgccaagttt	aagctgaacg	gccgagactc	tctaatgaat	2400
10	cegggegtgg	caatggcttc	ccacaaggat	gacgacgacc	gcttcttccc	ttcgagcggg	2460
	gtcctgattt	ttggcaagca	aggagccggg	aacgatggag	tggattacag	ccaagtgctg	2520
20	attacagatg	aggaagaaat	caaggctacc	aaccccgtgg	ccacagaaga	atatggagca	2580
	gtggccatca	acaaccaggc	cgccaatacg	caggcgcaga	ccggactcgt	gcacaaccag	2640
	ggggtgattc	ccggcatggt	gtggcagaat	agagacgtgt	acctgcaggg	tcccatctgg	2700
25	gccaaaattc	ctcacacgga	cggcaacttt	cacccgtctc	ccctgatggg	cggctttgga	276 0
	ctgaagcacc	cgcctcctca	aattctcatc	aagaacacac	cggttccagc	ggacccgccg	2820
	cttaccttca	accaggccaa	gctgaactct	ttcatcacgc	agtacagcac	cggacaggtc	2880
30	agcgtggaaa	tcgagtggga	gctgcagaaa	gaaaacagca	aacgctggaa	tccagagatt	294 0
	caatacactt	ccaactacta	caaatctaca	aatgtggact	ttgctgtcaa	cacggaagga	3000
	gtttatagcg	agcctcgccc	cattggcacc	cgttacctca	cccgcaacct	gtaattacat	30 60
35	gttaatcaat	aaaccggtta	attogtttca	gttgaacttt	ggtctctgcg	aagggcgaat	312 0
	tc						3122
40	<210> 43 <211> 3117						
	<212> DNA <213> new AAV so	oratuno alono 4º	2 24				
		erotype, clone 4.	3,21				
45	<400> 43	•					
	gaattcgccc	ttggctgcgt	caactggacc	aatgagaact	ttcccttcaa	cgattgcgtc	60
	gacaagatgg						120
50	aaggccattc						180
	atcgatccca						240
	aacagcacca						30 0
55	acccgccgtc						36 0
	cgctgggcgc						420
					5 5	- 333-35-	

	gccaacaag	a gacccgccc	cgatgacgcg	g gatataagco	agcccaagcg	ggcctgcccc	480
	tcagtcgcg	g atccatcgad	gtcagacgcg	gaaggagcto	cggtggactt	tgccgacagg	540
5	taccaaaac	a aatgttctcg	; tcacgcgggc	: atgcttcaga	tgctgtttcc	ctgcaagaca	600
	tgcgagaga	a tgaatcagaa	tttcaacatt	: tgcttcacgc	acgggaccag	agactgttca	660
	gaatgtttc	c ccggcgtgtc	: agaatotoaa	ccggtcgtca	gaaagaggac	gtatcggaaa	720
10	ctctgtgcg	a ttcatcatct	gctggggegg	gctcccgaga	ttgcttgctc	ggcctgcgat	780
	ctggtcaac	g tggacctgga	tgactgtgtt	totgageaat	aaatgactta	aaccaggtat	840
	ggctgccga	t ggttatcttc	cagattggct	cgaggacaac	ctctctgagg	gcattcgcga	900
15	gtggtggga	c ttgaaacctg	gagccccgaa	acccaaagcc	aaccagcaaa	agcaggacga	960
	caaccaaaa	t ctggtgcttc	ctggctacaa	gtacctcgga	cccttcaacg	gactcgacaa	1020
	gggggagcc	c gtcaacgcgg	cggacgcagc	ggccctcgag	cacgacaaag	cctacgacca	1080
20	gcagctcaa	a gcgggtgaca	atccgtacct	gcggtataat	cacgccgacg	ccgagtttca	1140
	ggagcgtctq	g caagaagata	cgtcttttgg	gggcaacctc	gggcgagcag	tcttccaggc	1200
25	caagaagcg	g gttctcgaac	ctctcggtct	ggttgaggaa	ggcgctaaga	cggctcctgg	1260
25	aaagaagaga	à ceggtagage	agtcgccaca	agagccagac	tectectegg	gcatcggcaa	1320
	gacaggccag	g cagcccgcta	aaaagagact	caattttggt	cagactggcg	actcagagtc	1380
30	agtccccgac	ccacaacctc	tcggagaacç	tccagcagcc	ccctcaggtc	tgggacctaa	1440
50	tacaatggct	tcaggcggtg	gcgctccaat	ggcagacaat	aacgaaggcg	ccgacggagt	1500
	gggtaattco	tegggaaatt	ggcattgcga	ttccacatgg	ctgggggaca	gagtcatcac	1560
35	. caccagcacc	: cgaacctggg	ccctgcccac	ctacaacaac	cacctctaca	agcaaatctc	1620
55	caacggcacc	tcgggaggaa	gcaccaacga	caacacctat	tttggctaca	gcaccccctg	1680
•	ggggtattt	gacttcaaca	gattccactg	tcacttttca	ccacgtgact	ggcaacgact	1740
40	catcaacaac	aattggggat	tccggcccaa	aagactcaac	ttcaagctgt	tcaacatcca	1800
-	ggtcaaggaa	gtcacgacga	acgaaggcac	caagaccatc	gccaataatc	tcaccagcac	1860
	cgtgcgggtc	tttacggact	cggagtacca	gttaccgtac	gtgctaggat	ccgctcacca	1920
45	gggatgtctg	cctccgttcc	cggcggacgt	cttcatggtt	cctcagtacg	gctatttaac	1980
-	tttaaacaat	ggaagccaag	ccctgggacg	tteeteette	tactgtctgg	agtatttccc	2040
	atcgcagatg	ctgagaaccg	gcaacaactt	tcagttcagc	tacaccttcg	aggacgtgcc	2100
50	tttccacagc	agctacgcgc	acagccagag	cctggacagg	ctgatgaatc	ccctcatcga	2160
	ccagtacctg	tactacctgg	tcagaacgca	aacgactgga	actggaggga	cgcagactct	2220
	ggcattcagc	caagcgggtc	ctagctcaat	ggccaaccag	gctagaaatt	gggtgcccgg	2280
55	accttgctac	cggcagcagc	gcgtctccac	gacaaccaac	cagagcaaca	acagcaactt	2340

	tgcctggacg	ggagctgcca	agtttaagct	gaacggccga	gactctctaa	tgaatccggg	2400
5	cgtggcaatg	gcttcccaca	aggatgacga	cgaccgcttc	ttcccttcga	gcggggtcct	2460
J	gatttttggc	aagcaaggag	ccgggaacga	tggagtggat	tacagccaag	tgctgattac	2520
	agatgaggaa	gaaatcaagg	ctaccaaccc	cgtggccaca	gaagaatatg	gagcagtggc	2580
10	catcaacaac	caggccgcca	atacgcaggc	gcagaccgga	ctcgtgcaca	accagggggt	2640
	gattcccggc	atggtgtggc	agaatagaga	cgtgtacctg	cagggtccca	tctgggccaa	2700
	aattcctcac	acggacggca	actttcaccc	gtctcccctg	atgggcggct	ttggactgaa	2760
15	gcacccgcct	cctcaaattc	tcatcaagaa	cacaccggtt	ccagcggacc	cgccgcttac	2820
	cttcaaccag	gccaagctga	actctttcat	cacgcagtac	agcaccggac	aggtcagcgt	2880
	ggaaatcgag	tgggagctgc	agaaagaaaa	cagcanacgc	tggaatccag	agattcaata	2940
20	cacttccaac	tactacaaat	ctacaaatgt	ggactttgct	gtcaacacgg	aaggagttta	3000
	tagcgagcct	cgcccattg	gcacccgtta	cctcacccgc	aacctgtaat	tacatgttaa	3060
	tcaataaacc	ggttaattcg	tttcagttga	actttggtct	ctgcgaaggg	cgaattc	3117

<210> 44

<211> 3121

<212> DNA

<213> new AAV serotype, clone 43.23

<400> 44

	gaattcgccc	ttctacggct	gcgtcaactg	gaccaatgag	aactttccct	tcaacgattg	6
	cgtcgacaag	atggtgatct	ggtgggagga	gggcaagatg	acggccaagg	tcgtggagtc	120
	cgccaaggcc	attctcggcg	gcagcaaggt	gcgtgtggac	caaaagtgca	agtottooge	180
	ccagatcgat	cccacccccg	tgatcgtcac	ctccaacacc	aacatgtgcg	ccgtgattga	240
	cgggaacagc	accaccttcg	agcaccagca	gccgttgcag	, gaccggatgt	tcasatttga	300
	actcacccgc	cgtctggagc	atgastttgg.	caaggtgacg	aagcaggaag	tcaaagagtt	360
	cttccgctgg	gcgcaggatc	acgtgaccga	ggtggcgcat	gagttccacg	tcagaaaggg	420
	tggcgccaac	aagagacccg	ccccgatga	cgcggatata	agcgagccca	agcgggcctg	480
•	ccctcagtc	gcggatccat	cgacgtcaga	cgcggaagga	gctccggtgg	actttgccga	540
•	caggtaccaa	aacaaatgtt	ctcgtcacgc	gggcatgctt	cagatgctgt	ttccctgcaa	600
•	gacatgcgag	agaatgaatc	agaatttcaa	catttgcttc	acgcacggga	ccagagactg	660
1	ttcagaatgt	ttccccggcg	tgtcagaatc	tcaaccggtc	gtcagaaaga	ggacgtatcg	720
•	gaaactctgt	gcgattcatc	atctgctggg	gcgggctccc	gagattgctt	gctcggcctg	780
•	cgatctggtc	aacgtggacc	tggatgactg	tgtttctgag	caataaatga	cttaaaccag	840
٩	gtatggctgc	cgatggttat	cttccagatt	ggctcgagga	caacctctct	gagggcattc	900
ç	gcgagtggtg	ggacttgaaa	cctggaqccc	CGBBBCCCBB	accaaccac	caaaaacaaa	960

acgacggcc	g gggtctggt	g cttcctg g c	t acaagtacc	t cggaccett	c aacggactcg	1020
acaaggggg	a gcccgtcaa	c gcggcggac	g ca g cggccc	t cgagcacga	c aaagcctacg	1080
accagcagc	t caaagcggg	t gacaatccg	t acctgcggt	a taatcacgc	c gacgccgagt	1140
ttcaggagc	g tctgcaaga	a gatacgtcc	t ttgggggca	a cctcgggcg	a gcagtcttcc	1200
aggccaaga	a gogggttot	c gaacctctc	g gtetggttg:	a ggaaggcgci	aagacggctc	1260
ctggaaaga	a gagaccggt	a gagcagteg	c cacaagagc	agactcctcc	tegggeateg	1320
gcaagacag	g ccagcagcc	c gctaaaaag	a gactcaatt	tggtcagact	ggcgactcag	1380
agtcagtcc	cgacccacae	a cctctcgga	g aacctccago	agccccctca	ggtctgggac	1440
ctaatacaat	ggcttcaggo	ggtggcgct	c caatggcaga	a caataacgaa	ggcgccgacg	1500
gagtgggtas	ttcctcggge	aattggcatt	gcgattccac	atggctgggg	gacagagtca	1560
tcaccaccag	g cacccgaacc	: tgggccctgd	: cCacctacaa	caaccaccto	tacaagcaaa	1620
 tctccaacgg	, cacctcggge	ggaagcacca	acgacaacac	ctattttggc	tacagcaccc	1680
cctgggggta	ttttgacttc	aacagatico	actgtcactt	ttcaccacgt	gactggcaac	1740
gactcatcaa	Caacaattgg	ggattccggc	ccaasagact	caacttcaag	ctgttcaaca	1800
tccaggtcaa	ggaagtcacg	acgaacgaag	gcaccaagac	catcgccaat	aatctcacca	1860
gcaccgtgca	ggtctttacg	gacttggagt	accagttacc	gtacgtgcta	ggatccgctc	1920
accagggatg	tetgeeteeg	ttcccggcgg	acgtcttcat	ggttcctcag	tacggctatt	1980
taactttaaa	caatggaagc	caagccctgg	gacgttcctc	cttctactgt	ctggagtatt	2040 (
teccategea	gatgccgaga	accggcaaca	actttcagtt	cagctacacc	ttcgaggacg	2100
tgcctttcca	cagcagctac	gcgcacagcc	agagcctgga	caggctgatg	aatcccctca	2160
tcgaccagta	cctgtactac	ctggtcagaa	cgcaaacgac	tggaactgga	gggacgcaga	2220
ctctggcatt	cagccaagcg	ggtcctagct	caatggccaa	ccaggctaga	aattgggtgc	2280
ccggaccttg	ctaccggcag	cagcgcgtct	ccacgacaac	caaccagaac	aacaacagca	2340
actttgcctg	gacgggagct	gccaagttta	agctgaacgg	ccgagactct	ctaatgaatc	2400
cgggcgtggc	aatggcttcc	cacaaggatg	acgacgaccg	cttcttccct	tcgagcgggg	2460
tcctgatttt	tggcaagcaa	ggagccggga	acgatggagt	ggattacagc	caagtgctga	2520
ttacagatga	ggaagaaatc	aaggctacca	accccgtggc	cacagaagaa	tatggagcag	2580
tggccatcaa	caaccaggcc	gccaatacgc	aggcgcagac	cggactcgtg	cacaaccagg	2640
gggtgattcc	cggcatggtg	tggcagaata	gagacgtgta	cctgcagggt	cccatctggg	2700
ccaaaattcc	tcacacggac	ggcaactttc	accegtetee	cctgatgggc	ggctttggac	2760
tgaagcaccc	gcctcctcaa	attctcatca	agaacacacc	ggttccagcg	gacccgccgc	2820 [.]
ttaccttcaa	ccaggccaag	ctgaactctt	tcatcacgca	gtacagcacc	ggacaggtca	2880

	gcgtggaaat cgagtgggag Ctgcagaaag aaaacagcaa acgctggaat ccagagattc	2940
	aatacactto caactactac aaatotacaa atgtggactt tgctgtcaac acggaaggag	3000
5	tttatagega geetegeeee attggeacee gttaceteae eegeaacetg taattacatg	3060
	ttaatcaata aaccggttaa ttcgtttcag ttgaactttg gtctctgcga agggcgaatt	3120
	c '.	3121
10		
	<210> 45	
	<211> 3122	
	<212> DNA <213> new AAV serotype, clone 43.25	
15	12107 New AAV Selotype, Clone 45.25	
	<400> 45	
	gaattegeee tttetaegge tgegteaact ggaccaatga gaacttteee tteaaegatt	60
20	gcgtcgacaa gatggtgatc tggtgggagg agggcaagat gacggccaag gtcgtggagt	120
	ccgccaaggc cattetcggc ggcagcaagg tgcgtgtgga ccaaaagtgc aagtettccg	180
	cccagatoga teccacece gigatogica cetecaacae caacaigige geogigatig	240
25	acgggaacag caccaccttc gagcaccagc agccgttgca ggaccggatg ttcaaatttg	300
•	aactcacccg cegtetggag catgactttg gcaaggtgae gaagcaggaa gtcaaagggt	360
	tottccgctg ggcgcaggat cacgtgaccg aggtggcgca tgagttccac gtgcgagccc	420
30	aagegggeet geeesteagt egeggateea tegaegteag accagaaagg gtggageeaa	480
	caagagaccc geeceegatg aegeggatat aageggaagg ageteeggtg gaetttgeeg	540
0.5	acaggtacca aaacaaatgt totogtoacg ogggoatgot toagatgotg tttocotgoa	600
<i>35</i>	agacatgcga gagaatgaat cagaatttca acatttgctt cacgcacggg accagagact	660
	gttcagaatg tttccccggc gtgtcagaat ctcaaccggt cgtcagaaag aggacgtatc	720
40	ggaaactetg tgegatteat catetgetgg ggegggetee egagattget tgeteggeet	780
40	gcgatctggt caacgtggac ctggatgact gtgtttctga gcaataaatg acttaaacca	840
	ggtatggctg ccgatggtta tettecagat tggetegagg acaacetete tgagggcatt	900
45	cgcgagtggt gggacttgaa acctggagcc ccgaaaccca aagccaacca gcaaaagcag	960
45	gacgacggcc ggggtctggt gcttcctggc tacaagtacc tcggaccctt caacggactc	1020
	gacaaggggg agcccgtcaa cgcggcggac gcagcggccc tcgagcacga caaagcctac	1080
50	gaccagcagc tcaaagcggg tgacaatccg tacctgcggt ataatcacgc cgacgccgag	1140
50	tttcaggagc gtctgcaaga agatacgtct tttgggggca acctcgggcg agcagtcttc	1200
	caggocaaga agogggttot ogaacototo ggtotggttg aggaaggogo taagaoggot	1260
55	cctggaaaga agagaccggt agagcagtcg ccacaagagc cagactcctc ctcgggcatc	1320
55	ggcaagacag gccagcagcc cgctaaaaag agactcaatt ttggtcagac tggcgactca	1380
	gagtcagtee eegacecaea acetetegga gaaceteeag cageeeeete aggtetggga	1440

	cctaatacaa tggc	ttcagg cggtggcgc	t ccaatggcag	acaataacg	a aggcgccgac	1500
	ggagtgggta atto	ctcggg aaattggca	t tgcgattcca	catggctggg	ggacagagtc	1560
5	atcaccacca gcac	ccgaac ctgggccct	g cccacctaca	acaaccacct	ctacaagcaa	1620
	atotocaacg goac	ctcggg aggaagcac	c aacgacaaca	cctattttgg	ctacagcacc	1680
	ccctgggggt attt	tgactt caacagatt	c cactgtcact	tttcaccacg	tgactggcaa	1740
10	cgactcatca acaa	caattg gggattccg	g cccaaaagac	tcaacttcaa	gctgttcaac	1800
	atccaggtca agga	agtcac gacgaacga	a ggcaccaaga	ccatcgccaa	taatctcacc	1860
4.5	agcaccgtgc aggt	ctttac ggactcgga	g taccagttac	cgtacgtgct	aggatccgct	1920
15	caccagggat gtct	geetee gtteeegge	g gacgtcttca	tggttcctca	gtacggctat	1980
	ttaactttaa acaa	ggaag ccaagccct	g ggacgttcct	ccttctactg	tctggagtat	2040
20	ttcccatcgc agat	gctgag aaccggcaa	aactttcagt	tcagctacac	cttcgaggac	2100
20	gtgcctttcc acago	ageta egegeacage	cagageetgg	acaggctgat	gaatcccctc	2160
	atcgaccagt acct	gtacta cctggtcaga	acgcaaacga	ctggaactgg	agggacgcag	2220
25	actetggeat teage	caage gggteetage	tcaatggcca	accaggctag	aaattgggtg	2280
25	cccggacctt gctad	eggea geagegegt	tccacgacaa	ccaaccagaa	caacaacagc	2340
	aactttgcct ggacg	ggagc tgccaagttt	aagctgaacg	gccgagactc	tctaatgaat	2400
30	ccgggcgtgg caatg	gette ceacaaggat	gacgacgacc	gcttcttccc	ttcgagcggg	2460
	gtcctgattt ttggc	aagca aggagccggg	aacgatggag	tggattacag	ccaagtgctg	2520°
	attacagatg aggae	gaaat caaggetace	aaccccgtgg	ccacagaaga	atatggagca	2580
35	gtggccatca acaac	cagge egecaataeg	caggcgcaga	ccggactcgt	gcacaaccag	2640
	ggggtgattc ccggc	atggt gtggcagaat	agagacgtgt	acctgcaggg	tcccatctgg	2700
	gccaaaattc ctcac	acgga cggcaacttt	cacccgtctc	ccctgatggg	cggctttgga	2760
40	ctgaagcacc cgcct	cctca aattctcatc	aagaacacac	cggttccagc	ggacccgccg	2820
	cttaccttca accag	gccaa gctgaactct	ttcatcacgc	agtacagcac	cggacaggtc	2880
	agcgtggaaa tcgag	tggga gctgcagaaa	gaaaacagca	aacgctggaa	tccagagatt	2940
45		tacta caaatctaca				3000
	gtttatagcg agcct					3060
	gttaatcaat aaacc	ggtta attcgtttca	gttgaacttt (ggtctctgcg	aagggcgaat	3120
50	tc					3122

. <210> 46 <211> 3128 <212> DNA <213> new AAV serotype, clone 44.1

<400> 46

	gaattegeee tttetaegge tgegteaact ggaceaatga gaacttteee tteaacgatt	60
	gcgtcgacaa gatgttgatc tggtgggagg agggcaagat gacggccaag gtcgtggagt	120
5	ccgccaaggc cattctcggc ggcagcaaag tgcgcgtgga ccaaaagtgc aagccgtccg	180
	cccagatega ccccacccc gtgategtca cctccaacac caacatgtgc gccgtgattg	240
	acgggaacag caccacctte gagcaccage agecgttgeg ggaceggatg ttcaagtttg	300
10	aactcacccg ccgtctggag cacgactttg gcaaggtgac aaagcaggaa gtcagagagt	360
	tottoogotg ggogcaggat cacgtgacog aggtggogca cgagttotac gtoagaaagg	420
	gtggagccaa caagagacce gcccccgatg acgcggataa aagcgagccc aagcgggcct	480
15	gcccctcagt cgcggatcca tcgacgtcag acgcggaagg agctccggtg gactttgccg	540
	acaggtacca aaacaaatgt totogtoacg ogggoatgot toagatgotg titocotgoa	600
	aaacatgcga gagaatgaat cagaatttca acatttgctt cacgcacggg accagagact	660
20	gttcagaatg tttccccggc gtgtcagaat ctcaaccggt cgtcagaaaa aagacgtatc	720
	ggaaactetg tgegatteat catetgetgg ggegggeace egagattget tgeteggeet	780
	gcgatctggt caacgtggac ctagatgact gtgtttctga gcaataaatg acttaaacca	840
25	ggtatggctg ccgatggtta tcttccagat tggctcgagg acaacctctc tgagggcatt	900
	cgcgagtggt gggacttgaa acctggagcc ccgaaaccca aagccaacca gcaaaagcag	960
	gacgacggcc ggggtctggt gcttcctggc tacaagtacc tcggaccctt caacggactc	1020
30	gacaaggggg agcccgtcaa cgcggcggac gcagcggccc tcgagcacga caaggcctac	1080
	gaccagcage teasageggg tgacasteeg tacetgeggt ataseesege egacgeegag	1140
	tttcaggagc gtctgcaaga agatacgtct tttgggggca acctcgggcg agcagtcttc	1200
35	caggecaaga agegggttet egaacetete ggtetggttg aggaaggege taagaegget	1260
	cctggaaaga agagaccggt agagccatca ccccagcgtt ctccagactc ctctacgggc	1320
	atoggcaaga aaggccagca gcccgcgaaa aagagactca actttgggca gactggcgac	1380
40	tragagtrag tgcccgacco traaccasto ggagaaccor cogcaggood ctctggtotg	1440
	ggatotggta caatggotgo aggoggtggo gotocaatgg cagacaataa cgaaggogoo	1500
	gacggagtgg gtagttcctc aggaaattgg cattgcgatt ccacatggct gggcgacaga	156 0
45	gtcatcacca ccagcacccg aacctgggcc ctccccacct acaacaacca cctctacaag	1620
	caaateteea aegggaette gggaggaage aecaaegaea aeaectaett eggetaeage	1680
	accccctggg ggtattttga ctttaacaga ttccactgcc acttctcacc acgtgactgg	1740
50	cagcgactca tcaacaacaa ctggggattc cggcccaaga gactcaactt caagctcttc	1800
	aacatccagg tcaaggaggt cacgcagaat gaaggcacca agaccatcgc caataacctt	1860
	accagcacga trcaggtott tacggactcg gaataccage tecegtacgt ecteggetet	1920
55		

	gcgcaccagg gctgcctgcc tccgttcccg gcggacgtct tcatgattcc tcagtacggg	1980
	tacctgactc tgaacaatgg cagtcaggcc gtgggccgtt cctccttcta ctgcctggag	2040
5	tactttcctt ctcaaatgct gagaacgggc aacaactttg agttcagcta ccagtttgag	2100
	gacgtgcctt ttcacagcag ctacgcgcac agccaaagcc tggaccggct gatgaacccc	2160
•	ctcatcgacc agtacctgta ctacctgtot cggactcagt ccacgggagg taccgcagga	2220
10	actcagcagt tgctattttc tcaggccggg cctaataaca tgtcggctca ggccaaaaac	2280
	tggctacccg ggccctgcta ccggcagcaa cgcgtctcca cgacactgtc gcaaaataac	2340
	aacagcaact gtaaatcccg gtgtcgctat ggcaacccac aaggacgacg aagagcgatt	2400
15	ttgcctggac cggtgccacc aagtatcatc tgaatggcag agactctctg ttttccgtcc	2460
	agoggagtot taatgtttgg gaaacaggga gotggaaaag acaacgtgga ctatagcago	2520
	gttatgctaa ccagtgagga agaaattaaa accaccaacc cagtggccac ggaacagtac	2580
20	ggcgtggtgg ccgataacct gcaacagcaa aacgccgctc ctattgtagg ggccgtcaac	2640
	agtcaaggag cottacotgg catggtotgg cagaacoggg acgtgtacot gcagggtoot	2700
_	atctgggcca agattcctca cacggacgga aactttcatc cctcgccgct gatgggaggc	2760
25	tttggactga aacacccgcc tcctcagatc ctgattaaga atacacctgt tcccgcggat	2820
	cctccaacta ccttcagtca agetaagetg gegtegttea teaegeagta cageacegga	2880
	caggtcagcg tggaaattga atgggagctg cagaaagaaa acagcaaacg ctggaaccca	2940
30	gagattcaat acacttccaa ctactacaaa tctacaaatg tggacttcgc tgttaacaca	3000
	gatggcactt attotgaged tegeocoatt ggcaceegtt aceteaceeg taatetgtaa	3060
_	ttgctcgtta atcaataaac cggttgattc gtttcagttg aactttggtc tctgcgaagg	3120
35	gcgaattc	3128
	<210> 47	
	<211> 3128	
	<212> DNA	
	<213> new AAV serotype, clone 44.5	
	<400> 47	
5	gaattogooc titotacggo tgogtoaact ggaccaatga gaactitoco ticaacgatt	60
	gcgtcgacaa gatggtgatc tggtgggagg agggcaagat gacggccaag gtcgtggagt	120
	cegecaagge cattetegge ggeageaaag tgegegtgga ceaaaagtge aagtegteeg	180
0		240
	acgggaacag caccacette gageaceage ageegttgea ggaceggatg tteaagtttg	300
	aactcacccg ccgtctggag cacgactttg gcaaggtgac aaagcaggaa gtcagagagt	360
5	TOTTOGRAPH CACACAGAST CREATERED CO. D. C.	420
	atanana an annana an annana an an an an an	480

gcccctcagt	cgcggatcca	tcgacgtcag	g acgcggaag	g agctccggtq	gactttgccg	540
acaggtacca	asacasatgt	tctcgtcac	g cgggcatgc	t tcagatgcto	tttccctgca	600
aaacatgcga	gagaatgaat	cagaatttca	a acatttgct	t cacgcacgg	accagagact	. 660
gttcagaatg	tttccccggc	gtgtcagaat	ctcaaccgg	t tgtcagaaa	aagacgtatc	720
ggaaactctg	tgcgattcat	catctgctgg	ggcgggcac	cgagattgct	tgctcggcct	780
gcgatctggt	caacgtggac	ctagatgact	gtgtttctga	gcaataaatg	ACTTABACCA	840
ggtatggctg	ccgatggtta	tettecagat	tggctcgag	acaacctctc	tgagggcatt	900
cgcgagtggt	gggacttgaa	acctggagco	ccgaaaccca	aagccaacca	gcaaaagcag	960
gacgacggcc	ggggtctggt	gcttcctggc	tacaagtaco	toggaccett	caacggactc	1020
gacaaggggg	agcccgtcaa	cgcggcggac	gcagcggccc	tcgagcacga	caaggcctac	1080
gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	cgacgccgag	1140
tttcaggagc	gtctgcaaga	agatacgtct	tttgggggca	acctegggeg	agcagtcttc	1200
caggccaaga	agegggttet	cgaacctctc	ggtctggttg	aggaaggcgc	taagacggct	1260
cctggaaaga	agagaccggt	agagccatca	ccccagcgtt	ctccagactc	ctctacgggc	1320
atcggcaaga	aaggccagca	gcccgcgaaa	aagagactca	actttgggca	gactggcgac	1380
tcagagtcag	tgcccgaccc	tcaaccaatc	ggagaacccc	ccgcaggccc	ctctggtctg	1440
ggatctggta	caatggctgc	aggcggtggc	gctccaatgg	cagacaataa	cgaaggcgcc	1500
gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	gggcgacaga	1560
gtcatcacca	ccagcacccg	aacctgggcc	ctccccacct	acaacaacca	cctctacaag	1620
caaatctcca	acgggacttc	gggaggaagc	accaacgaca	acacctactt	cggctacagc	1680
accccctggg	ggtattttga	ctttaacaga	ttccactgcc	acttctcacc	acgtgactgg	1740
cagcgactca	tcaacaacaa	ctggggattc	cggcccaaga	gacccaactt	caagctcttc	1800
aacatccagg	tcaaggaggt	cacgcagaat	gaaggcacca	agaccatcgc	caataacctt	1860
accagcacga	ttcaggtctt	tacggactcg	gaataccagc	tcccgtacgt	cctcggctct	1920
gcgcaccagg	gctgcctgcc	tccgttcccg	gcggacgtct	tcatgattcc	tcagtacggg	1980
tacctgactc	tgaacaatgg	cagtcaggcc	grgggccgtt	cctccttcta	ctgcctggag	2040
tactttcctt	ctcaaatgct	gagaacgggc	ascasctttg	agttcagcta	ccagtttgag	2100
gacgtgcctt	ttcacagcag	ctacgcgcac	agccaaagcc	tggaccggct	gatgaacccc	2160
ctcatcgacc	agtacctgta	ctacctgtct	cggactcagt	ccacgggagg	taccgcagga	2220
actcagcagt	tgctattttc	tcaggccggg	cctaataaca	tgtcggctca	ggccaaaaac	2280
tggctacccg	ggccctgcta	ccggcagcaa	cgcgtctcca	cgacactgtc	gcaaaataac	2340·
aacagcaact	ttgcctggac	cggtgccacc	aagtatcatc	tgaatggcag	agactctctg	2400

gtaaatcccg	gtgtcgctat	ggcaacccac	aaggacgacg	aagagcgatt	ttttccgtcc	2460
agcggagtct	taatgtttgg	gaaacaggga	gctggaaaag	acaacgtgga	ctatagcagc	2520
gttatgctaa	ccagtgagga	agaaattaaa	accaccaacc	cagtggccac	agaacagtac	2580
ggcgtggtgg	ccgataacct	gcaacagcaa	aacgccgctc	ctattgtagg	ggccgtcaac	2640
agtcaaggag	ccttacctgg	catggtctgg	cagaaccggg	acgtgtacct	gcagggtcct	2700
atctgggcca	agatteetea	cacggacgga	aactttcatc	cctcgccgct	gatgggaggc	2760
tttggactga	aacacccgcc	tcctcagatc	ctgattaaga	atacacctgt	tcccgcggat	2820
cctccaacta	ccttcagtca	agctaagctg	gcgtcgttca	tcacgcagta	cagcaccgga	2880
caggtcagcg	tggaaattga	atgggagctg	cagaaagaaa	acagcaaacg	ctggaaccca	2940
gagattcaat	acacttccaa	ctactacaaa	tctacaaatg	tgġactttgc	tgttaacaca	3000
gatggcactt	attctgagcc	togoccoatt	ggcacccgtt	acctcacccg	taatctgtaa	3060
ttgcttgtta	atcaataaac	cggttgattc	gtttcagttg	aactttggtc	tctgcgaagg	3120
gcgaattc						3128

25

5

10

15

20

<210> 48

<211> 1933

<212> DNA

<213> new AAV serotype, clone 223.10

30

<221> misc_feature

<222> (1302)..(1302)

<223> can be a, c, g or t

<400> 48

<220>

40

35

45

50

	caaggcctac	gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	60
	cgacgccgag	tttcaggagc	gtcttcaaga	agatacgtct	tttgggggca	acctcgggcg	120
	agcagtcttc	caggccaaaa	agcgggttct	cgaacctctt	ggtctggttg	agacgccagc	180
	taagacggca	cctggaaaga	agcgaccggt	agactcgcca	gactccacct	cgggcatcgg	240
	caagaaaggc	cagcagcccg	cgaaaaagag	actcaacttt	gggcagactg	gcgactcaga	300
	gtcagtcccc	gaccctcaac	caatcggaga	accaccagca	ggcccctctg	gtctgggatc	360
	tggtacaatg	gctgcaggcg	gtggcgcacc	aatggctgac	aataacgagg	gcgccgacgg	420
,	agtgggtaat	gcctcaggaa	attggcattg	cgattccaca	tggctgggcg	acagagtcat	480
	caccaccagc	acccgaacct	gggccctgcc	Cacctacaac	aaccacctct	acaagcaaat	540
	ctccagtcag	tcagcaggga	gcaccaacga	taacgtctat	ttcggctaca	gcaccccctg	600
•	ggggtatttt	gacttcaaca	gattccattg	ccacttctca	ccacgtgact	ggcagcgact	660
1	tatcaacaac	aactggggat	tccggcccaa	gaagctcaac	ttcaagctct	tcaacatcca	720
ç	gtcaaggag	gtcacgacga	atgacggtgt	cacaaccatc	gctaataacc	ttaccagcac	780

	35	- 0000099400	. oggaatatee	accyccyca	greeregger	. ccgcgcacca	84
	gggctgcct	g cctccgttcc	: cggcagacgt	gttcatgati	ccgcagtacg	gatacctgac	90
5	tctgaacaat	ggcagccaat	cggtaggccg	ttectccttc	tactgcctgg	agtactttcc	960
	ttctcagato	g ctgagaacgg	gcaacaactt	cacctttago	tacaccttcg	aggacgtgcc	1020
	tttccacago	agctacgcgc	acagccagag	tctggaccgg	ctgatgaatc	ccctcatcga	1080
10	ccagtacctg	tactacttgg	ccagaacaca	gagcaacgca	ggaggtactg	ctggcaatcg	1140
	ggaactgcag	tittatcagg	gcggacctac	caccatggcc	gaacaagcaa	agaactggct	1200
	gcccggacct	tgcttccggc	aacagagagt	atccaagacg	ctggatcaaa	ataacaacag	1260
15	caactttgcc	tggactggtg	ccacaaaata	ccatttaaat	gnaagaaatt	cattggttaa	1320
	tcccggtgtc	gccatggcaa	cccacaagga	cgacgaggaa	cgcttcttcc	cttcgagcgg	1380
20	agttctaatt	tttggcaaaa	ctggagcagc	taataaaact	acattagaaa	acgtgctcat	1440
20	gacaaatgaa	gaagaaattc	gtcctaccaa	cccggtagct	accgaggaat	acgggattgt	1500
	aagcagcaac	ttgcaggcgg	ctagcaccgc	agcccagaca	caagttgtta	acaaccaggg	1560
25	agcettacet	ggcatggtct	ggcagaaccg	ggacgtgtac	ctgcaaggtc	ccatttgggc	1620
20	caagattcct	cacacggacg	gcaactttca	cccgtctcct	ctaatgggtg	gctttggact	1680
	gaaacacccg	cctcccaga	tcctgatcaa	aaacacaccg	gtacctgcta	atcctccaga	1740
30	agtgtttact	cctgccaagt	ttgcttcctt	catcacgcag	tacagcaccg	ggcaagtcag	1800
55	cgttgagatc	gagtgggagc	tgcagaaaga	gaacagcaag	cgctggaacc	cagagattca	1860
	gtacacctcc	aactttgaca	aacagactgg	agtggacttt	gctgttgaca	gccagggtgt	1920
35	ttactctgag	cct					1933

<210> 49

<211> 1933

<212> DNA

<213> new AAV serotype, clone 223.2

<400> 49

50

40

45

caaggcctac	gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	60
cgacgccgag	tttcaggagt	gtcttcaaga	agatacgtct	tttgggggca	acctcgggcg	120
agcagtette	caggccaaaa	agcgggttct	cgaacctctt	ggtctggttg	agacgccagc	180
taagacggca	cctggaaaga	agcgaccggt	agactogoca	gactccacct	cgggcatcgg	240
caagaaaggc	cagcagcccg	cgaaaaagag	actcaacttt	gggcagactg	gcgactcaga	300
gtcagtcccc	gaccctcaac	caatcggaga	accaccagca	ggcccctctg	gtctgggatc	360
tggtacaatg	gttgcaggcg	gtggcgcacc	aatggctgac	aataacgagg	gcgccgacgg	420
agtgggtaat	gcctcaggaa	attggcattg	cgattccaca	tggctgggcg	acagagtcat	480
caccaccagc	acccgaacct	gggccctgcc	cacctacaac	aaccacctct	acaagcaaat	540

	ctccagtcag	, tcagcaggga	gcaccaacga	taacgtctat	ttcggctaca	gcaccccctg	60
5	ggggtatttt	gacttcaaca	gattccattg	ccacttctca	ccacgtgact	ggcagcgact	66
_	tatcaacaac	: aactggggat	tccggcccaa	gaagctcaac	ttcaagctct	tcaacatcca	72
	ggtcaaggag	gtcacgacga	atgacggtgt	cacaaccato	gctaataacc	ttaccagcac	78
10	ggttcaggtc	ttttcggact	cggaatatca	actgccgtac	gtoctoggot	ccgcgcacca	84
	gggctgcctg	cctccgttcc	cggcagacgt	gttcatgatt	ccgcagtacg	gatacctgac	90
	tctgaacaat	ggcagccaat	cggtaggccg	ttcctccttc	tactgcctgg	agtactttcc	960
15	ttctcagatg	ctgagaacgg	gcaacaactt	cacctttagc	tacaccttcg	aggacgtgcc	1020
	tttccacagc	agctacgcgc	acagccagag	tctggaccgg	ctgatgaatc	ccctcatcga	1080
	ccagtacctg	tactacttgg	ccagaacaca	gagcaacgca	ggaggtactg	ctggcaatcg	1140
20	ggaactgcag	ttttatcagg	gcggacctac	`caccatggcc	gaacaagcaa	agaactggct	1200
	gcccggacct	tgcttccggc	aacagagagt	atccaagacg	ctggatcaaa	ataacaacag	1260
	caactttgcc	tggactggtg	ccacaaaata	ccatttaaat	ggaagaaatt	cattggttaa	1320
25	teceggtgte	gccatggcaa	cccacaagga	cgacgaggaa	cgcttctccc	cttcgagcgg	1380
	agttctaatt	tttggcaaaa	ctggagcagc	taataaaact	acattagaaa	acgtgctcat	1440
	gacaaatgaa	gaagaaattc 	gtcctaccaa	cccggtagct	accgaggaat	acgggattgt	1500
30	aagcagcaac	ttgcaggcgg	ctagcaccgc	agcccagaca	caagttgtta	acaaccaggg	1560
	agccttacct	ggcatggtct	ggcagaaccg	ggacgtgtac	ctgcaaggtc	ccatttgggc	1620
	caagattcct	cacacggacg	gcaactttca	cccgtctcct	ctaatgggtg	gctttggact .	1680
35					gtacctgcta		1740
					tacagcaccg		1800
					cgctggaacc	•	1860
40	gtacacctcc	aactttgaca	aacagactgg	agtggacttt	gctgttgaca	gccagggtgt	1920
	ttactctgag	cct					1933

<210> 50 45

<211> 1933

<212> DNA

<213> new AAV serotype, clone 223.4

<400> 50

55

	caaggeetae gaccageage teaaageggg tgacaateeg tacetgeggt ataaccaege	60
	cgacgccgag tttcaggagc gtcttcaaga agatacgtct tttgggggca acctcgggcg	120
5	agcagtette caggecaaaa agegggttet egaacetett ggtetggttg agaegecage	180
	taagacggca cetggaaaga agegaceggt agactegcea gactecacet egggeategg	240
	caagaaaggc cagcagcccg cgaaaaagag actcaacttt gggcagactg gcgactcaga	300
10		
	gccagtcccc gaccctcaac caatcggaga accaccagca ggcccctctg gtctgggatc	360
	tggtacaatg gctgcaggcg gtggcgcacc aatggctgac aataacgagg gcgccgacgg	420
15	agtgggtaat gcctcaggaa attggcattg cgattccaca cggctgggcg acagagtcat	480
	caccaccage accegaacet gggeeetgee cacctacaae aaccacetet acaagcaaat	540
	ctccagtcag tcagcaggga gcaccaacga taacgtctat ttcggctaca gcacccctg	600
20	ggggtatttt gacttcaaca gattccattg ccacttctca ccacgtgact ggcagcgact	660
	tatcaacaac aactggggat teeggeecaa gaageteaae tteaagetet teaacateca	720
	ggtcaaggag gtcacgacga atgacggcgt cacaaccatc gctaataacc ttaccagcac	780
25	ggttcaggtc ttttcggact cggaatatca actgccgtac gtcctcggct ccgcgcacca	840
	gggctgcctg cctccgttcc cggcagacgt gttcatgatt ccgcagtacg gatacctgac	900
	totgaacaat ggcagccaat oggtaggoog trootcotto tactgootgg agtactttoo	960
30	ttctcagatg ctgagaacgg gcaacaactt cacetttage tacacetteg aggacgtgce	1020
	tttccacage agetacgege acagecagag tetgggeegg etgatgaate eceteatega	1080
	ccagtacctg tactacttgg ccagaacaca gagcaacgca ggaggtactg ctggcaatcg	1140
35	ggaactgcag ttttatcagg gcggacctac caccatggcc gaacaagcaa agaactggct	1200
	gcccggacct tgcttccggc aacagagagt atccaagacg ctggatcaaa ataacaacag	1260
	caactttgcc tggactggtg ccacaaaata ccatttaaat ggaagaaatt cattggttaa	1320
40	teceggigte gecatggeaa eccacaagga egacgaggaa egettettee ettegagegg	1380
	agttctaatt tttggcaaaa ctggagcagc taataaaact acattagaaa acgtgctcat	1440
15	gacaaatgaa gaagaaatto gtootaccaa cooggtagot acogaggaat acgggattgt	1500
45	aagcagcaac ttgcaggcgg ctagcaccgc agcccagaca caagttgtta acaaccaggg	1560
	agecttacet ggcatggtet ggcagaaceg ggacgtgtae etgcaaggte ecatttggge	1620
50	caagatteet cacaeggaeg geaactttea eeegteteet etaatgggtg getttggaet	1680
50	gaaacacccg cetececaga teetgateaa aaacacaccg gtacetgeta ateetecaga	1740
	agtgtttact cotgocaagt ttgottoott catcaogoag tacagoacog ggcaagtoag	1800
55	cgttgagatc gaatgggagc tgcagaaaga gaacagcaag cgctggaacc cagagattca	1860
33	gtacacetee aactttgaca aacagactgg agtggacttt getgttgaca gecagggtgt	1920
	ttactctgag cct	1933

	EP 1 310 571 B1						
5	<210> 51 <211> 1933 <212> DNA <213> new AAV s	erotype, clone 22	23.5				
	<400> 51						
	caaggcctac	gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc'	60
10							
15		•					
20							
				. •			
25							
							•,

	cgacgccgag tttcaggagc (gtcttcaaga a	gatacgtct	tttgggggca	acctcgggcg	120
	agcagtotto caggocaaaa a	agegggttet e	gaacctctt	ggtctggttg	agacgccagc	180
5	taagacggca cctggaaaga a	agcgaccggt ag	gactcgcca	gactccacct	cgggcatcgg	240
	caagaaaggc cagcagcccg c	cgaaaaagag ac	ctcaacttt	gggcagactg	gcgactcaga	300
,	gccagtcccc gaccctcaac c	caatcggaga ac	ccaccagca	ggcccctctg	gtctgggatc	360
10	tggtacaatg gctgcaggcg g	gtggcgcacc aa	atggctgac	aataacgagg	gcgccgacgg	420
	agtgggtaat gcctcaggaa a	attggcattg cg	gattccaca	cggctgggcg	acagagtcat	480
15	caccaccage accegaacet g	ggccctgcc ca	cctacaac	aaccacctct	acaagcaaat	540
15	ctccagtcag tcagcaggga g	caccaacga ta	acgtctat	ttcggctaca	gcaccccctg	600
	ggggtatttt gacttcaaca g	attccattg cc	acttetea	ccacgtgact	ggcagcgact	660
20	tatcaacaac aactggggat t	ccggcccaa ga	agctcaac	ttcaagctct	tcaacatcca	720
20	ggtcaaggag gtcacgacga a	tgacggcgt ca	caaccatc (gctaataacc	ttaccagcac	780
•	ggttcaggtc ttttcggact c	ggaatatca ac	tgccgtac	gtcctcggct	ccgcgcacca	840
25	gggctgcctg cctccgttcc c	ggcagacgt gt	tcatgatt o	ccgcagtacg	gatacctgac	900
23	totgaacaat ggcagccaat c	ggtaggccg tt	cctccttc t	actgcctgg	agtactttcc	960
	ttctcagatg ctgagaacgg go	caacaactt ca	cctttagc _, t	acaccttcg	aggacgtgcc	1020
30	tttccacage agetacgege ad	cagccagag to	tgggccgg d	tgatgaatc	ccctcatcga	1080
	ccagtacetg tactacttgg co	cagaacaca ga	gcaacgca g	gaggtactg	ctggcaatcg	1140
	ggaactgcag ttttatcagg go	cggacctac cad	ccatggcc g	aacaagcaa	agaactggct	1200
35	geceggaeet tgetteegge as	acagagagt ato	ccaagacg c	tggatcaaa	ataacaacag	1260
	caactttgcc tggactggtg co	cacaaaata cca	atttaaat g	gaagaaatt	cattggttaa	1320
	teceggigie gecatggeaa ee	ccacaagga cga	acgaggaa c	gcttcttcc	cttcgagcgg	1380
40	agttctaatt tttggcaaaa ct	tggagcagc taa	ataaaact a	cattagaaa	acgtgctcat	1440
	gacaaatgaa gaagaaattc gt	cctaccaa cco	eggtaget a	ccgaggaat	acgggattgt	1500
	aagcagcaac ttgcaggcgg ct					1560
45	agccttacct ggcatggtct gg					1620
	caagattoot cacaoggaeg go					1680
	gaaacacccg cctccccaga tc	ctgatcaa aaa	cacaccg g	tacctgcta	atcctccaga	1740
50	agtgtttact cctgccaagt tt	gcttcctt cat	cacgcag t	acagcaccg	ggcaagtcag	1800
	cgttgagatc gaatgggagc tg	cagaaaga gaa	cagcaag c	gctggaacc (cagagattca	1860
	gtacacctcc aactttgaca aa	cagactgg agt	ggacttt g	ctgttgaca (gccagggtgt	1920
55	ttactctgag cct			•		1933

<211> 1933 <212> DNA

<213> new AAV serotype, clone 223.6

<400> 52

,	caaggeetae gaccagcage teaaageggg tgacaateeg tacetgeggt ataaccaege	60
10	cgacgccgag tttcaggagc gtcttcaaga agatacgtct tttggggggca acctcgggcg	120
	agcagtette caggecaaaa agegggttet egaacetett ggtetggttg agaegecage	180
	taagacggca cctggaaaga agcgaccggt agactcgcca gactccacct cgggcatcgg	240
15	caagaaaggc cagcagcccg cgaaaaagag actcaacttt gggcagactg gcgactcaga	300
	gtcagtcccc gaccetcaac caatcggaga accaccagca ggcccetetg gtctgggate	360
	tggtacaatg gctgcaggcg gtggcgcacc aatggctgac aatagcgagg gcgccgacgg	420
20	agtgggtaat gcctcaggaa attggcattg cgattccaca tggctgggcg acagagtcat	480
	caccaccage accegaacet gggccetgee cacetacaae aaccacetet acaagcaaat	540
	ctccagtcag tcagcaggga gcaccaacga taacgtctat ttcggctaca gcacccctg	600
25	ggggtatttt gacttcaaca gattccattg ccacttctca ccacgtgact ggcagcgact	660
	tatcaacaac aactggggat tccggcccaa gaagctcaac ttcaagctct tcaacatcca	720
	ggtcaaggag gtcacgacga atgacggtgt cacaaccatc gctaataacc ttaccagcac	780
30	ggttcaggtc ttttcggact cggaatatca actgccgtac gtcctcggct ccgcgcacca	84 O
	gggctgcctg cctccgttcc cggcagacgt gttcatgatt ccgcagtacg gatacctgac	900
	totgaacaat ggcagocaat eggtaggeeg treeteette tactgeetgg agtactttee	960
35	tteteagatg ctgagaaegg geaacaaett cacetttage tacacetteg aggaegtgee	1020
	tttccacage agctacgege acagecagag tetggacegg etgatgaate eceteatega	1080
	ccagtacctg tactacttgg ccagaacaca gagcaacgca ggaggtactg ctggcaatcg	1140
40	ggaactgcag ttttatcagg gcggacctac caccatggcc gaacaagcaa agaactggct	1200
	gcccggacct tgcttccggc aacagagagt atccaagacg ctggatcaaa ataacaacag	1260
	caactttgcc tggactggtg ccacaaaata ccatttaaat ggaagaaatt cattggttaa	1320
45	tcccggtgtc gccatggcaa cccacaagga cgacgaggaa cgcttcttcc cttcgagcgg	1380
	agttetaatt tttggcaaaa etggagcage taataaaaet acattagaaa acgtgeteat	1440
	gacaaatgaa gaagaaatto gtootaccaa cooggtagot acogaggaat acgggattgt l	1500
50	aagcagcaac ttgcaggcgg ctagcaccgc agcccagaca caagttgtta acaaccaggg l	1560
	agcettacet ggeatggtet ggeagaaceg ggaegtgtae etgeaaggte ceatttggge l	620
	caagatteet caeaeggaeg geaaetttea ceegteteet etaatgggtg getttggaet 1	.680
55	gaaacacccg cctccccaga tcctgatcaa aaacacaccg gtacctgcta atcctccaga 1	.740

•							
	agtgtttact	cctgccaagc	ttgcttcct	t catcacgca	g tacagcacc	g ggcaagtcag	1800
	cgttgagatc	gagtgggagc	tgcagaaag	a gaacagcaa	g cgctggaac	c cagagattca	18 60
5	gtaçacetec	aactttgaca	aacagactg	g agtggactt	t gctgttgac	a gccagggtgt	1920
٠	ttactctgag	cct					1933
	•				•		
10	<210> 53 <211> 1933						
	<212> DNA						
	<213> new AAV se	erotype, clone 2	23.7				
15	<400> 53	•					
	caaggcctac	gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	60
00	cgacgccgag	tttcaggagc	gtcttcaaga	agatacgtct	tttgggggca	acctcgggcg	120
20	agcagtcttc	caggccaaaa	agcgggttct	cgaacctett	ggtctggttg	agacgccagc	180
	taagacggca	cctggaaaga	agcgaccggt	agactcgcca	gactccacct	cgggcatcgg	240
	caagaaaggc	cagcagcccg	cgaaaaagag	actcaacttt	gggcagactg	gcgactcaga	300
25	gtcagtcccc	gaccctcaac	caatcggaga	accaccagca	ggcccctctg	gtctgggatc	360
	tggtacaatg	gctgcaggcg	gtggcgcacc	aatggctgac	aataacgagg	gcgccgacgg	420
	agtgggtaat	gcctcaggaa	attggcattg	cgattccaca	tggctgggcg	acagagtcat	480
30	caccaccage	acccgaacct	gggccctgcc	cacctacaac	aaccacctct	acaagcaaat	54 O
	ctccagtcag	tcagcaggga	gcaccaacga	taacgtctat	ttcggctaca	gcaccccctg	600
25	ggggtatttt	gacttcaaca	gattccattg	ccacttctca	ccacgtgact	ggcagcgact	660
35	tatcaacaac	aactggggat	tccggcccaa	gaagctcaac	ttcaagctct	tcaacatcca	720
	ggtcaaggag g	gtcacgacga	atgacggcgt	cacaaccatc	gctaataacc	ttaccagcac	780
10	ggttcaggtc t	tttcggacc	cggaatatca	actgccgtac	gtcctcggct	ccgcgcacca	840
40	gggctgcctg d	ctccgttcc	cggcagacgt	gttcatgatt	ccgcagtacg	gatacctgac	900
	tctgaacaat g	gcagccaat (cggtaggccg	ttcctccttc	tactgcctgg	agtactttcc	960
45	ttctcagatg c	tgagaacgg	gcaacaactt	cacctttagc	tacaccttcg	aggacgtgcc	1020
45	tttccacage a	gctacgcgc (acagccagag	tctggaccgg	ctgatgaatc	ccctcatcga	1080
	ccagtacctg t	actacttgg (ccagaacaca	gagcaacgca	ggaggtactg	ctggcaatcg	1140
	ggaactgcag t	tttatcagg o	gcggacctac	caccatggcc	gaacaagcaa	agaactggct	1200
50	gcccggacct t	gcttccggc &	aacagagagt	atccaagacg	ctggatcaaa	ataacaacag	1260
	caactttgcc t	ggactggtg	cacaaaata	ccatttaaat	ggaegaaatt	cattggttaa	1320
	tcccggtgtc g	ccatggcaa d	ccacaagga	cgacgaggaa	cgcttcttcc	cttcgagcgg	1380
55	agttctaatt t	ttggcaaaa d	tggagcagc	taataaaact	acattagaaa	acgtgctcat	1440

1500

gacaaatgaa gaagaaatto gtootaccaa cooggtagot accgaggaat acgggattgt

	aagcagcaac ttgcaggcgg ctagcaccgc agcccagaca caagttgtta acaaccaggg	1560
	agecttacet ggcatggtet ggcagaaceg ggaegtgtae etgcaaggte ccatttggge	1620
5	caagatteet cacaeggaeg geaactttea ecegteteet etaatgggtg getttggaet	1680
	gaaacacccg cetecceaga teetgateaa aaacacaccg gtacctgeta ateetecaga	1740
	agtgtttact cctgccaaga ttgcttcctt catcacgcag tacagcaccg ggcaagtcag	1800
10	cgttgagatc gagtgggagc tgcagaaaga gaacagcaag cgctggaacc cagagattca	1860
	gtacacetee aactttgaca aacagactgg agtggacttt getgttgaca gecagggtgt	1920
	ttactctgag cct	1933
15	<210> 54 <211> 3123 <212> DNA	
20	<213> new AAV serotype, clone A3.4	
	<400> 54	
	gaattegeee tttetaegge tgegteaact ggaceaatga aaacttteee tteaacgatt	60
25	gcgtcgacaa gatggtgatc tggtgggagg agggaaagat gaccgccaag gtcgtggaat	120
	ctgccaaagc cattctgggt ggaagcaagg ttcgtgtgga ccagaaatgc aagtcttcgg	180
	cccagatoga coogactoog gtgattgtca cototaacao caacatgtgo googtgattg	240
30	acggaaactc gaccaccttc gagcaccagc agccgttgca agaccggatg ttcaaatttg	300
	aacttacccg ccgtttggat catgactttg ggaaggtcac caagcaggaa gtcaaagact	360
	ttttccggtg ggctcaagat cacgtgactg aggtggagca tgagttctac gtcaaaaagg	420
<i>35</i>	gtggagccaa gaaaaggccc gcccccgatg atgtatatat aaatgagccc aagcgggcgc	480
	gcgagtcagt tgcgcagcca tcgacgtcag acgcggaagc ttcgataaac tacgcgggca	540
	ggtaccasas casatgttct cgtcacgtgg gcatgastct gatgctgttt ccctgtcgac	600
40	aatgcgaaag aatgaatcag aattcaaata tctgcttcac acacgggcaa aaagactgtt	660
	tggaatgett tecegtgtea gaateteaae eegtttetgt egteagaaaa aegtateaga	720
	aactttgtta cattcatcat atsatgggaa aagaaccaga cgcctgcact gcctgcgacc	780
45	tggtaaatgt ggacttggat gactgtattt ctgagcaata aatgacttaa atcaggtatg	840
	gctgctgacg gttatettec agattggctc gaggacactc tctctgaagg aatcagacag	900
	tggtggaage tcaaacctgg cccaccaccg ccgaaaccta accaacaaca ccgggacgac	960
50	agtaggggtc ttgtgcttcc tgggtacaag tacctcggac ccttcaacgg actcgacaaa	1020
	ggagageegg teaaegagge agaegeegeg geeetegage aegaeaaage etaegaeeae	1080
	cageteaage aaggggacaa ecegtacete aaatacaace aegeggaege tgaattteag	1140
55	gagogtotto aagaagatao gtotttoggg ggcaacotog ggogagoagt ottocaggoo	1200
	aaaaagaggg tactcgagcc tcttggtctg gttgaggaag ctgttaagac ggctcctgga	1260

			,	. gaareggaet		,	1320
	tcaggccago	agcccgctaa	. gaasagacto	aattttggto	: agactggcga	cacagagtca	1380
5	gtcccagaco	ctcaaccaat	cggagaaccc	cccgcagccc	cctctggtgt	gggatctaat	1440
	acaatggctt	: caggcggtgg	ggcaccaatg	gcagacgata	acgaaggcgc	cgacggagtg	1500
	ggtaattcct	: cgggaaattg	gcattgcgat	tccacatgga	tgggcgacag	agttatcacc	1560
10	accagcacaa	gaacctgggc	cctcccacc	tacaataatc	acctctacae	gcasatctcc	1620
	agcgaatcgg	gagccaccaa	cgacaaccac	tacttcggct	acagcacccc	ctgggggtat	1680
	tttgacttta	acagattcca	ctgtcacttc	tcaccacgtg	actggcagcg	actcatcaac	1740
15	aacaactggg	gatttagacc	caagaaactc	aatttcaagc	tcttcaacat	ccaagtcaag	1800
	gaggtcacgc	agaatgatgg	aaccacgacc	atcgccaata	accttaccag	cacggtgcag	1860
	gtcttcacag	actctgagta	ccagetgece	tacgtcctcg	gttcggctca	ccagggctgc	1920
20	cttccgccgt	tcccagcaga	cgtcttcatg	attcctcagt	acggctactt	gactctgaac	1980
	aatggcagcc	aagcggtagg	acgttcttca	ttctactgtc	tagagtattt	teceteteag	2040
	atgctgagga	cgggaaacaa	cttcaccttc	agctacactt	ttgaagacgt	gcctttccac	2100
25	agcagctacg	cgcacagcca	gagtctggat	cggctgatga	atcototoat	tgaccagtac	2160
	ctgtattacc	tgagcaaaac	tcagggtaca	agtggaacaa	cgcagcaatc	gagactgcag	2220
	ttcagccaag	ctgggcctag	ctccatggct	cagcaggcca	aaaactggct	accgggaccc	2280
30	agctaccgac	agcagcgaat	gtctaagacg	gctaatgaca	acaacaacag	tgaatttgct	2340
	tggactgcag	ccaccaaata	ttacctgaat	ggaagaaatt	ctctggtcaa	tecegggeee	2400
35	ccaatggcca	gtcacaagga	cgatgaggaa	aagtatttcc	ccatgcacgg	aaatctcatc .	2460
	tttggaaaac	aaggcacagg	aactaccaat	gtggacattg	aatcagtgct	tattacagac	2520
		tcagaacaac					2580
40		gtcaggacac					2640
		tgtggcagga .					2700
		acggacactt					2760
45		agatcctgat					2820
		agtttgcttc					2880
		agctgcagaa					2940
50						tgtttattct	3000
		ctattggcac					3060
	taaaccgatt	tatgcgtttc	agttgaactt	tggtctctgc	gaagggcgaa	ttcgcggccg	3120
	cta						3123

<210> 55 <211> 3113

<212> DNA <213> new AAV serotype, clone A3.5

<400> 55

5

gaattcgccc tttctacggc tgcgtcaact ggaccaatga aaactttccc ttcaacgatt 60 gcgtcgacaa gatggtgatc tggtgggagg agggaaagat gaccgccaag gtcgtggaat 120 ctgccaaagc cattitgggt ggaagcaagg ttcgtgtgga ccagaaatgc aagtittcgg 180 10 cccagatcga cccgactccg gtgattgtca cctctaacac caacatgtgc gccgtgattg 240 acggaaactc gaccaccttc gagcaccagc agccgttgca agaccggatg ttcaaatttg 300 aacttacccg cogtttggat catgactttg ggaaggtcac caagcaggaa gtcaaagact 360 15 ttttccggtg ggctcaagat cacgtgactg aggtggagca tgagttctac gtcaaaaagg 420 gtggagccaa gaaaaggccc gcccccgatg atgtatatat aaatgagccc aagcgggcgc 480 gcgagtcagt tgcgcagcca tcgacgtcag acgcggaagc ttcgataaac tacgcggaca 20 540 ggtaccaaaa caaatgttot ogtoacgtgg geatgaatet gatgetgttt coctgtogac 600 aatgcgaaag aatgaatcag aattcaaata tctgcttcac acacgggcaa aaagactgtt 660 tggaatgett tecegtgtea gaateteaae eegtteetgt egteagaaaa aegtateaga 25 720 aactttgtta cattcatcat atcatgggaa aagtaccaga cgcctgcact gcctgcgacc 780 tggtaaatgt ggacttggat gactgtattt ctgagcaata aatgacttaa atcaggtatg 840 getgetgacg gttatettee agattggete gaggacaete tetetgaagg aateagacag 30 900 tggtggaage tcaaacctgg cccaccaccg ccgaaaccta accaacaaca ccgggacgac 960 agtaggggtc ttgtgcttcc tgggtacaag tacctcggac ccttcaacgg actcgacaaa 1020 35 ggagagccgg tcaacgaggc agacgccgcg gccctcgagc acgacaaagc ctacgaccac 1080 cageteaage aaggggacaa ecegtacete aaatacaace aegeggaege tgaattteag 1140 gagegtette aagaagatae gtettteggg ggeaaceteg ggegageagt etteeaqqee 1200 aaaaagaggg tactcgagcc tottggtotg gttgaggaag ctgttaagac ggctcctgga 40 1260 anaaagagac ctatagagca gtctcctgca gaaccggact cttcctcggg catcggcaaa 1320 tcaggccage agcccgctaa gaaaagactc aattttggtc agactggcga cacagagtca 1380 gtoccagaco otcaaccaat oggagaacco occgoageco cetetggtgt gggatetaat 45 1440 acaatggctt caggcggtgg ggcaccaatg gcagacaata acgaaggcgc cgacggagtg 1500 ggtaattcct cgggaaattg gcattgcgat tccacatqqa tqqqcqacaq aqttatcacc 1560 50 accagcacaa gaacctgggc Cctccccacc tacaataatc acctctacaa gcaaatctcc 1620 agcgaatcgg gagccaccaa cgacaaccac tacttcggct acagcacccc ctgggggtat 1680 tttgacttta acagattcca ctgtcacttc tcaccacgtg actggcagcg actcatcaat 1740

		aacaactggg	gatttagaco	caagaaactc	aatttcaago	tcttcaacat	ccaagtcaag	1800
5		gaggtcacgo	agaatgatgg	aaccacgacc	atcgccaata	accttaccag	cacggtgcag	1860
,		gtcttcacag	actetgagta	ccagetgese :	tacgtcctcg	gttcggctca	ccagggctgc	1920
		cttccgccgt	tcccagcaga	cgtcttcatg	attcctcagt	acggctactt	gactctgaac	1980
10		aatggcagcò	aagcggtagg	, acdttcttca	ttctactgtc	tagagtattt	teceteteag	2040
		atgctgagga	cgggaaacaa	cttcaccttc	agctacactt	ttgaagacgt	gcctttccac	2100
		agcagctacg	cgcacagcca	gagtctggat	cggctgatga	atcctctcat	tgaccagtac	2160
15		ctgtattacc	tgagcaaaac	tcagggtaca	agtggaacaa	cgcagcaatc	gagactgcag	2220
		ttcaaccaag	ctgggcctag	ctccatggct	cagcaggcca	aaaactggct	accgggaccc	2280
	•	agctaccgac	agcagcgaat	gtctaagacg	gctaatgaca	acaacaacag	tgaatttgct	2340
20		tggactgcag	ccaccaaata	ttacccgaat	ggaagaaatt	ctctggtcaa	tcccgggccc	2400
		ccaatggcca	gtcacaagga	cgatgaggaa	aagtatttcc	ccatgcacgg	aaatctcatc	2460
		tttggaaaac	aaggcacagg	aactaccaat	gtggacattg	aatcagtgct	tattacagac	2520
25		gaagaagaaa	tcagaacgac	taatcctgtg	gctacagaac	aatacggaca	ggttgccacc	2580
		aaccgtcaga	gtcagaacac	cacagcttcc	tatggaagtg	tggacagcca	gggaatctta	2640
	* 1, #**	·cctggaatgg	tgtggcagga	ccgcgatgtc	tatcttcaag	gtcccatttg	ggccaaaact	2700
30			acggacactt					2760
			agatcctgat					2820
			agtttgcttc					2880
<i>35</i>			agctgcagaa			•		2940
			acaagtcggt				•	3000
			ctattggcac					3060
40		taaaccgatt	tatgcgtttc	agttgaactt	tggtctctgc	gaagggcgaa	ttc	3113

<210> 56

<211> 3122

<212> DNA

45 <213> new AAV serotype, cione A3.7

<400> 56

55

	agcggccgcg	aattcgccct	ttctacggct	gcgtcaactg	gaccaatgaa	aactttccct	60
	tcaacgattg	cgtcgacaag	atggtgatct	ggtgggagga	gggaaagatg	accgccaagg	120
5	tcgtggaatc	tgccaaagcc	attctgggtg	gaagcaaggt	togtgtggac	cagaaatgca	180
	ggtcttcggc	ccagatcgac	ccgactccgg	tgattgtcac	ctctaacacc	aacatgtgcg	240
	ccgtgattga	cggaaactcg	accaccttcg	agcaccagca	gccgttgcaa	gaccggatgt '	300
10	tcaaatttga	acttacccgc	cgtttggatc	atgactttgg	gaaggtcacc	aagcaggaag	360

	tcaaagactt	tttccggtgg	gctcaagato	acgtgactga	ggtggagcat	gagttctacg	420
	tcaaaaaggg	tggagccaag	aaaaggcccg	ccccgatga	tgtatatata	aatgagccca	480
	agegggegeg	cgagtcagtt	gegeageeat	: cgacgtcaga	cgcggaagct	tcgataaact	540
	acgcggacag	gtaccasasc	aaatgttctc	gtcacgtggg	catgaatctg	atgctgtttc	600
	cctgtcgaca	atgcgaaaga	atgaatcaga	attcaaatat	ctgcttcaca	cacgggcaaa	660
	aagactgttt	ggaatgcttt	cccgtgtcag	aatctcaacc	cgtttctgtc	gtcagaaaaa	720
	cgtatcagaa	actttgttac	attcatcata	tcatgggaaa	agtaccagac	gcctgcactg	780
	cctgcgacct	ggtaaatgtg	gacttggatg	actgtatttc	tgagcaataa	atgacttaaa	840
	tcaggtatgg	ctgctgacgg	ttatcttcca	gattggctcg	aggacactct	ctctgaagga	900
	atcagacagt	ggtggaagct	caaacctggc	ccaccaccgc	cgaaacctaa	ccaacaacac	960
	cgggacgaca	gtaggggtct	tgtgcttcct	gggtacaagt	acctcggacc	cttcaacgga	1020
	ctcgacaaag	gagagccggt	caacgaggca	gacgccgcgg	ccctcgagca	cgacaaagcc	1080
	tacgaccacc	agctcaagca	aggggacaac	ccgtacctca	aatacaacca	cgcggacget	1140
:	gaatttcagg	agcgtcttca	agaagatacg	tctttcgggg	gcaacctcgg	gcgagcagtc	1200
	ttccaggcca	aaaagagggt	actcgagcct	cttggtctgg	ttgaggaagc	tgttaagacg	1260
	gctcctggaa	aaaagagacc	tatagagcag	tctcctgcag	aaccggactc	ttcctcggge	1320
	atcggcaaat	caggccagca	gcccgctaag	aaaagactca	attttggtca	gactggcgac	1380
	acagagtcag	tcccagaccc	tcaaccaatc	ggagaacccc	ccgcagcccc	ctctggtgtg	1440
	ggatctaata	caatggcttc	aggcggtggg	gcaccaatgg	cagacaataa	cgaaggcgcc	1500
	gacggagtgg	gtaattcctc	gggaaattgg	cattgcgatt	ccacatggat	gggcgacaga	1560
	gttatcacca	ccagcacaag	aacctgggcc	ctccccacct	acaataatcg	cctctacaag	1620
	caaatctcca	gcgaatcggg	agccaccaac	gacaaccact	acttcggcta	cagcaccccc	1680
	tgggggtatt	ttgactttaa	cagattccac	tgtcácttct	caccacgtga	ctggcagcga	1740
	ctcatcaaca	acaactgggg	atttagaccc	aagaaactca	atttcaagct	cttcaacatc	1800
	caagtcaagg	aggtcacgca	gaatgatgga	accacgacca	tcgccaataa	ccttaccagc	1860
	acggtgcagg	tcttcacaga	ctctgagtac	cagctgccct	acgtectegg	ttcggctcac	1920
	cagggctgcc	ttccgccgtt	cccagcagac	gtcttcatga	ttcctcagta	cggctacttg	1980
	actctgaaca	atggcagcca	agcggtagga	cgttcttcat	tctactgtct	agagtatttt	2040
	ccctctcaga	tgctgaggac	gggaaacaac	ttcaccttca	gctacacttt	tgaagacgt g	2100
	cctttccaca	gcagctacgc	gcacagccag	agtctggatc	ggctgatgaa	tcctctcatt	2160
	gaccagtacc	tgtattacct	gagcaaaact	cagggtacaa	gtggaacaac	gcagcaatcg	2220
	agactgcagt	tcagccaagc	tgggcctagc	tccatggctc	agcaggccaa	aaactggcta	2280
					4		

ccgggaccca	gctaccgaca	gcagcgaatg	tctaagacgg	ctaatgacaa	caacaacagt	2340
gaattigett	ggactgcagc	caccaaatat	tacctgaatg	gaagaaattc	totggtcaat	2400
cccgggcccc	caatggccag	tcacaaggac	gatgaggaaa	agtatttccc	catgcacgga	2460
aatotcatot	ttggaaaaca	aggcacagga	actaccaatg	tggacattga	atcagtgctt .	2520
attacagacg	aagaagaaat	cagaacaact	aatcctgtgg	ctacagaaca	atacggacag	2580
gttgccacca	accatcagag	tcagaacacc	acagetteet	atggaagtgt	ggacagccag	2640
ggaatcttac	ctggaatggt	gtggcaggac	cgcgatgtct	atcttcaagg	tcccatttgg	2700
gccaaaactc	ctcacacgga	cggacacttt	catccttctc	cgctcatggg	aggctttgga	2760
ctgaaacacc	ctcctcccca	gatectgate	aaaaacacac	ctgtgccagc	gaatcccgcg	2820
accactttca	ctcctggaaa	gtttgcttcg	ttcattaccc	agtattccac	cggacaggtc	2880
agcgtggaaa	tagagtggga	gctgcagaaa	gaaaacagca	aacgctggaa	cccagaaatt	2940
cagtacacct	ccaactacaa	caagtcggtg	aatgtggagt	ttaccgtgga	cgcaaacggt	3000
gtttattctg	эээээээвв	tattggcact	cgttacctta	cccggaactt	gtaatttcct	3060
gttaatgaat	aaaccgattt	atgcgtttca	gttgaacttt	ggtetetgeg	aagggcgaat	3120
tc					•	3122

<210> 57 <211> 3123 <212> DNA <213> new AAV serotype, clone A3.3

<400> 57

	gaattcgccc	tttctacggc	tgcgtcaact	ggaccaatga	aaactttccc	ttcaacgatt	60
	gcgtcgacaa	gatggtgatc	tggtgggagg	agggaaagat	gaccgccaag	gtcgtggaat	120
5	ctgccaaagc	cattctgggt	ggaggcaagg	ttcgtgtgga	ccagaaatgc	aagtcttcgg	180
	cccagatcga	cccgactccg	gtgattgtca	cctctaacac	caacatgtgc	gccgtgattg	240
	acggaaactc	gaccaccttc	gagcaccagc	agccgttgca	agaccggatg	ttcaaatttg	300
10	aacttacccg	ccgtttggat	catgactttg	ggaaggtcac	caagcaggaa	gtcaaagact	360
	ttttccggtg	ggctcaagat	cacgtgactg	aggtggagca	tgagttctac	gtcaaaaagg	420
	gtggagccaa	gaaaaggccc	gcccccgatg	atgtatatat	aaatgagccc	aagcgggcgc	480
15	gcgagtcagt	tgcgcagcca	tcgacgtcag	acgcggaagc	ttcgataaac	tacgcggaca	540
	ggtaccaaaa	caaatgttct	cgtcacgtgg	gcatgaatct	gatgctgttt	ccctgtcgac	60 O
	aatgcgaaag	aatgaatcag	aattcaaata	totgcttcac	acacgggcaa	aaagactgtt.	660
20	tggaatgctt	tcccgtgtca	gaatctcaac	cogtttctgt	cgtcagaaaa	acgtatcaga	720
	aactttgtta	cattcatcat	atcatgggaa	aagtaccaga	cgcctgcact	gcctgcgacc	780
	tggtaaatgt	ggacttggat	gactgtattt	ctgagcaata	aatgacttaa	atcaggtatg	840

	gctgctgac	g gttatcttcc	agattggct	c gaggacact	c tctctgaag	g aatcagacag	900
	tggtggaag	c tcaaacctgg	cccaccacce	g cogaaacct	a accaacaac	a ccgggacgac	960
5	agtaggggt	c ttgtgcttcc	tgggtacaaq	g tacctcgga	c ccttcaacg	g actcgacaaa	1020
	ggagagccg	g tcaacgaggo	agacgccgcg	g gccctcgag	c acgacaaag	c ctacgaccac	10,80
	cagctcaag	c aaggggacaa	cccgtaccto	: aaatacaac	c acgcggacg	tgaatttcag	1140
10	gagcgtctt	aagaagatac	gtctttcggg	ggcaacctc	g ggcgagcagt	cttccaggcc	1200
	aaaaagagg	g tactcgagcc	tcttggtctg	gttgaggaaq	g ctgttaagad	ggctsctgga	1260
45	aaaaagaga	c ctatagagca	gtctcctgca	gaaccggact	cttcctcgg	, catcggcaaa	1320
15	tcaggccago	agocogotaa	gaaaagactc	aattttggto	agactggcga	cacagagtca	1380
	gtcccaggc	ctcaaccaat	cggagaaccc	cccgcagcco	cctctggtgt	gggatctaat	1440
20	acaatggctt	: caggeggtgg	ggcaccaatg	gcagacaata	acgaaggege	cgacggagtg	1500
20	ggtaattcct	cgggaaattg	gcattgcgat	tccacatgga	tgggcgacag	agttatcacc	1560
	accagcacaa	gaacctgggc	cctcccacc	tacaataatc	acctctacaa	gcaaatctcc	1620
25	agcgaatcgg	gagccaccaa	cgacaaccac	tacttcggct	acagcacccc	ctgggggtat	1680
	tttgacttta	acagattcca	ctgtcacttc	tcaccacgtg	actggcagcg	actcatcaac	1740
	aacaactggg	gatttagacc	caagaaactc	aatttcaagc	tcttcaacat	ccaagtcaag	1800
30	gaggtcacgc	agaatgatgg	aaccacgacc	atcgccaata	accttaccag	cgcggtgcag	1860
	gtcttcacag	actctgagta	ccagctgccc	tacgtcctcg	gttcggctca	ccagggctgc	1920
	cttccgccgt	tcccagcaga	cgtcttcatg	attcctcagt	acggctactt	gactctgaac	1980
35	aatggcagcc	aagcggtagg	acgttcttca	ttctactgtc	tagagtattt	tccctctcag	2040
	atgctgagga	cgggaaacaa	cttcaccttc	agctacactt	ttgaagacgt	gcctttccac	2100
	agcagctacg	cgcacagcca	gagtctggat	cggctgatga	atcctctcat	tgaccagtac	2160
40	ctgtattacc	tgagcaaaac	tcagggtaca	agtggaacaa	cgcagcaatc	gagactgcag	2220
	ttcagccaag	ctgggcctag	ctccatggct	cagcaggcca	aaaactggct	accgggaccc	2280
	agctaccgac	agcagcgaat	gtctaagacg	gctaatgaca	acaacaacag	tgaatttgct	2340
45	tggactgcag	ccaccaaata	ttacctgaat	ggaagaaatt	ctctggtcaa	tecegggeee	2400
	ccagtggcca	gtcacaagga	cgatgaggaa	aagtatttcc	ccatgcacgg	aaatctcatc	2460
	tttggaaaac	aaggcacagg	aactaccaat	gtggacattg	aatcagtgct	tattacagac	2520
50	gaagaagaaa	tcagaacaac	taatcctgtg	gctacagaac	aatacggaca	ggttgccacc	2580
	aaccatcaga	gtcagaacac	cacagettee	tatggaagtg	tggacagcca	gggaatctta	2640
	cctggaatgg	tgtggcagga	ccgcgatgtc	tatcttcaag	gtcccatttg	ggccaaaact	2700
55	cctcacacgg	acggacactt 1	tcatcettet	ccgctcatgg	gaggctttgg	actgaaacac	2760

	cctcctcccc	agatectgat	caaaaacaca	cctgtgcċag	cgaatcccgc	gaccactttc	2820
	actcctggaa	agtttgcttc	gttcattacc	cagtattcca	cctgacaggt	cagcgtggaa	2880
5	atagagtggg	agctgcagaa	agaaaacagc	aaacgctgga	acccagaaat	tcagtacacc	2940
	tccaactaca	acaagtcggt	gaatgtggag	tttaccgtgg	acgcaaacgg	tgtttattct	3000
	gaaccccgcc	ctattggcac	tcgttacctt	acccggaact	tgtaatttcc	tgttaatgaa	3060
10	taagccgatt	tatgcgtttc	agttgaactt	tggtctctgc	gaagggcgaa	ttcgtttaaa	3120
	cct						3123
15	<210> 58	•					
	<211> 2969						
	<212> DNA						
	<213> new AAV s	erotype, clone 4	2.12				
20	<400> 58		•				
		•					

	gaattcgccc	tttctacggc	tgcgtcaact	ggaccaatga	gaactttccc	ttcaacgatt	60
	gcgtcgacaa	gatggtgatc	tggtgggagg	agggcaagat	gacggccaag	gtcgtggagt	120
5	ccgccaaggc	cattctcggc	ggcagcaagg	tgcgcgtgga	ccaaaagtgc	aagtcgtccg	180
	cccagatcga	CCCCACCCC	gtgatcgtca	cctccaacac	caacatgtgc	gccgtgattg	240
	acgggaacag	caccaccttc	gagcaccagc	agccgttaca	agaccggatg	ttcaaatttg	300
10	aactcacccg	ccgtctggag	cacgactttg	gcaaggtgac	aaagcaggaa	gtcaaagagt	360
	tetteegetg	ggcgcaggat	cacgtgaccg	aggtggcgca	tgagttctac	gtcagaaagg	420
	gtggagccaa	caagagaccc	gcccccgatg	acgcqgataa	aagcgagccc	aagcgggcct	480
15	gccctcagt	cgcggatcca	tcgacgtcag	acgcggaagg	agctccggtg	gactttgccg	540
	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	tttccctgca	600
	agacatgcga	gagaatgaat	cagaatttca	acatttgctt	cacgcacggg	accagagact	660
20	gttcagaatg	tttccccggc	gtgtcagaat	ctcaaccggt	cgtcagaaag	aggacgtatc	720
	ggaaactctg	tgccattcat	catctgctgg	ggcgggctcc	cgagattgct	tgctcggcct	780
	gcgatctggt	caacgtggac	ctggatgact	gtgtttctga	gcaataaatg	acttaaacca	840
25	ggtatggctg	ccgatggtta	tcttccagat	tggctcgagg	acaacctctc	tgagggcatc	900
	cgcgagtggt.	gggacttgaa	acctggagcc	ccgaaaccca	aagccaacca	gcaaaagcag	960
	gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	teggaceett	caacggactc	1020
30	gacaagggag	agccggtcaa	cgaggcagac	gccgcggccc	tcgagcacga	caaggcctac	1080
	gacaagcagc	tcgagcaggg	ggacaacccg	tacctcaagt	acaaccacgc	cgacgccgag	1140
	tttcaggagc	gtcttcaaga	agatacgtct	tttgggggca	acctcgggcg	agcagtcttc	1200
35	caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaaggcgc	taagacggct	1260
	cctggaaaga	agagaccggt	agagccatca	cccagcgtt	ctccagactc	ctctacgggc	1320

```
atoggcaaga caggocagoa gooogogaaa aagagaotoa actttgggca gaotggogao
                                                                                 1380
           tragagtrag tgcccgaccr traaccaatr ggagaacccr regeaggers retriggintg
                                                                                1440
           ggatctggta caatggctgc aggcggtggc gctccaatgg cagacaataa cgaaggcgcc
                                                                                1500
           gacggagtgg gtagttcctc aggaaattgg cattgcgatt ccacatggct gggcgacaga
                                                                                1560
           gtcatcacca ccagcacccg aacctgggcc ctcccacct acaacaacca cctctacaag
                                                                                1620
 10
           caaatctcca acgggacatc gggaggaagc accaacgaca acacctactt cggctacagc
                                                                                1680
          accccctggg ggtattttga ctttåacaga ttccactgcc acttctcacc acgtgactgg
                                                                                1740
           cagogactca toaacaacaa ctggggatto cggcccaaga gactcaactt caagototto
                                                                                1800
 15
          ascatccagg tcaaggaggt cacgcagaat gaaggcacca agaccatcgc caataacctt
                                                                                1860
          accagcacga ttcaggtett tacggacteg gaataccage tecegtacgt ecteggetet
                                                                                1920
          gegeaceagg getgeetgee teegtteeeg geggaegtet teatgattee teagtaeggg
                                                                                1980
20
          tacctgactc tgaacaacgg cagtcaggcc gtgggccgtt cctccttcta ctgcctggag
                                                                                2040
          tactttcctt ctcaaatgct gagaacgggc aacaactttg agttcagcta ccagtttgag
                                                                                2100
          gacgtgcctt ttcacagcag ctacgcgcac agccaaagcc tggaccggct gacgaacccc
                                                                                2160
25
          ctcatcgacc agtacctgta ctacctggcc cggacccaga gcactacggg gtccacaagg
                                                                                2220
          gggctgcagt tccatcaggc tgggcccaac accatggccg agcaatcaaa gaactggctg
                                                                               2280
          cccggaccct gttatcggca gcagagactg tcaaaaaaca tagacagcaa caacaacagt
                                                                               2340
30
          aactttgcct ggaccggggc cactaaatac catctgaatg gtagaaattc attaaccaac
                                                                               2400
          ccgggcgtag ccatggccac caacaaggac gacgaggacc agttetttec catcaacgga
                                                                               2460
          gtgctggttt ttggcaaaac gggggctgcc aacaagacaa cgctggaaaa cgtgctaatg
                                                                               2520
35
          accagcgagg aggagatcaa aaccaccaat cccgtggcta cagaagaata cggtgtggtc
                                                                               2580
          tecageaace tgeaategte taeggeegga ecceagaeae agaetgteaa cageeagggg
                                                                               2640
         getetgeeeg geatggtetg geagaacegg gaegtgtace tgeagggtee catetgggee
                                                                               2700
40
         aaaattcctc acacggacgg caactttcac ccgtctcccc tgatgggcgg atttggactc
                                                                               2760
         agacaccege etecteagat teteateag tataetteea actaetacaa atetacaaat
                                                                               2820
         gtggactttg ctgtcaatac tgagggtact tattcagagc ctcgccccat tggcacccgt
                                                                               2880
45
         tacctcaccc gtaacctgta attgcctgtt aatcaataaa ccggttaatt cgtttcagtt
                                                                               2940
         gaactttggt ctctgcgaag ggcgaattc
                                                                               2969
50
       <210> 59
       <211> 3129
       <212> DNA
       <213> new AAV serotype, clone 44.2
```

55

<400> 59

	gaattcgccc	tttctacggc	tgcgtcaact	ggaccaatga	gaactttccc	ttcaacgatt	60
5							
10			•	•			
15	. • •						
20	•					`	
25							
30							
35	·						
10							
15							

gcgtcgacaa	gatggtgato	tggtgggag	g agggcaaga	t gacggccaaq	g gtcgtggagt	120
ccgccaaggc	cattctcggc	ggcagcaaa	g tgcgcgtgg	a ccaasagtgo	aagtcgtccg	180
cccagatcga	cccacccc	gtgatcgtca	cctccaaca	c caacatgtgo	gccgtgattg	240
acgggaacag	caccacctto	gagcaccago	agccgttgc	a ggaccggatg	ttcaagtttg	300
aactcacccg	ccgtctggag	cacgacttt	gcaaggtgad	aaagcaggaa	gtcagagagt	, 360
tcttccgctg	ggcgcaggat	cacgtgaccg	aggtggcgc	a cgagttctac	gtcagaaagg	420
gtggagccaa	caagagaccc	gccccgatg	acgcggataa	a aagcgagcc	aagcgggcct	480
gcccctcagt	cgcggatcca	tegacgteag	acgcggaagg	ageteeggtg	gactttgccg	540
acaggtacca	asacaaatgt	tctcgtcacg	cgggcatgct	: tcagatgctg	tttccctgca	600
aaacatgcga	gagaatgaat	cagaatttca	acatttgctt	caegcaeggg	accagagact	660
gttcagaatg	tttccccggc	gtgtcagaat	ctcaaccggt	cgtcagaaaa	aagacgtatc	720
ggaaactctg	tgcgattcat	catctgctgg	gggcgggcac	ccgagattgc	ttgctcggcc	780
tgcgatctgg	tcaacgtgga	cctagatgac	tgtgtttctg	agcaataaat	gacttaaacc	840
aggtatggct	gccgatggtt	atcttccaga	ttggctcgag	gacaacctct	ctgagggcat	900
tcgcgagtgg	tgggacttga	aacctggagc	cccgaaaccc	aaagccaacc	agcaaaagca	960
ggacgacggc	cggggtctgg	tgcttcctgg	ctacaagtac	ctcggaccct	tcaacggact	1020
cgacaagggg	gagcccgtca	acgcggcgga	cgcagcggcc	ctcgagcacg	acaaggccta	1080
cgaccagcag	ctcaaagcgg	gtgacaatcc	gtacctgcgg	tataaccacg	ccgacgccga	1140
gtttcaggag	cgtctgcaag	aagatacgtc	ttttgggggc	aacctcgggc	gagcagtctt	1200
ccaggccaag	aagcgggttc	tcgaacctct	cggtctggtt	gaggaaggcg	ctaagacggc	1260
tcctggaaag	aagagaccgg	tagagccatc	accccagcgt	tctccagact	cctctacggg	1320
catcggcaag	aaaggccagc	agcccgcgaa	aaagagactc	aactttgggc	agactggcga	1380
ctcagagtca	gtgcccgacc	ctcaaccaat	cggagaaccc	cccgcaggcc	cctctggtct	1440
gggatctggt	acaatggctg	caggcggtgg	cgctccaatg	gcagacaata	acgaaggcgc	1500
cgacggagtg	ggtagttcct	caggaaattg	gcattgcgat	tccacatggc	tgggcgacag	1560
agtcatcacc	accagcaccc	gaacstgggc	cctccccacc	tacaacaacc	acctctacaa	1620
gcaaatctcc	aacgggactt	cgggaggaag	caccaacgac	aacacctact	tcggctacag	1680
cacccctgg	gggtattttg	actttaacag	attocactgo	cacttctcac	cacgtgactg	1740
gcagcgactc	atcaacaaca	actggggatt	ccggcccaag	agactcaact	tcaagctctt	1800
caacatccag	gtcaaggagg	tcacgcagaa	tgaaggcacc	aagaccatcg	ccaataacct	1860
taccagcacg	attcaggtct	ttacggactc	ggaataccag	ctcccgtacg	tecteggete	1920
tgcgcaccag	ggctgcctgc	ctccgttccc	ggcggacgtc	ttcatgattc	ctcagtacgg	1980

	gracergae	cegaacaacg	gcagccaggc	cgrgggccgc		actgeetgga	2040
	gtactttcct	tstcaaatgc	tgagaacggg	caacaacttt	gagttcagct	accagtttga	2100
5	ggacgtgcct	tttcacagca	gctacgcgca	cagccaaagc	ctggaccggc	tgatgaaccc	2160
	cctcatcgac	cagtacctgt	actacctgtc	tcggactcag	tccacgggag	gtaccgcagg	2220
	aactcagcag	ttgctatttt	ctcaggccgg	gcctaataac	atgtcggctc	aggccaaaaa	2280
10	ctggctaccc	gggccctgct	accggcagca	acgcgtctcc	acgacactgt	cgcaaaataa	2340
	caacagcaac	tttgcctgga	ccggtgccac	caagtatcat	ctgaatggca	gagactctct	2400
4.5	ggtaaatccc	ggtgtcgcta	tggcaaccca	caaggacgac	gaagagegat	tttttccgtc	2460
15	cagcggagtc	ttaatgtttg	ggaaacaggg	agctggaaaa	gacaacgtgg	actatagcag	2520
	cgttatgcta	accagtgagg	aagaaattaa	aaccaccaac	ccagtggcca	cagaacagta.	2580
20	cggcgtggtg	gccgataacc	tgcaacagca	aaacgccgct	cctattgtag	gggccgtcaa	2640
20	cagtcaagga	gccttacctg	gcatggtctg	gcagaaccgg	gacgtgtacc	tgcagggtcc	2700
	tatctgggcc	aagattcctc	acacggacgg	aaactttcat	ccctcgccgc	tgatgggagg	2760
25	ctttggactg	aaacacccgc	ctcctcagat	cctgattaag	aatacacctg	ttcccgcgga	2820
	tcctccaact	accttcagtc	aagctaagct	ggcgtcgttc	atcacgcagt	acagcaccgg	2880
	acaggtcagc	gtggaaattg	aatgggagct	gcagaaagaa	aacagcaaac	gctggaaccc	2940
30	agagattcaa	tacacttcca	actactacaa	atctacaaat	gtggactttg	ctgttaacac	3000
	agatggcact	tattctgagc	ctcgccccat	cggcacccgt	tacctcaccc	gtaatctgta	3060
	attgcttgtt	aatcaataaa	ccggttgått	cgtttcagtt	gaactttggt	ctctgcgaag	3120
35	ggcgaattc						3129

<210> 60 <211> 733

<212> PRT

<213> capsid protein of AAV serotype, clone C1VP1

<400> 60

55

50

40

	Met 1	Ala	Ala	qeA	Gly 5	Tyr	Leu	Pro	qeA	Trp 10	Leu	Glu	qeA	Asn	Leu 15	Ser
5	Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
10	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Ąsp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	ely	Glu	Pro
15																
20																
ne.											٠					
25																

4. j. +4+4

5	65					70	4 71	a Ale	2 16	. G.	75	, AS	р гу	3 AL	а 1у.	80
	Gli	a Gli	a Lei	ı Lys	85	a Gl	y Ası	re.A	a Pro	90	Let	ı Ar	g Ty	r As	n Hi: 95	3 Ala
10	Ası	Ala	Glu	Phe 100		ı Glı	ı Arç	J Leu	1 Glr 105		qeA ı	Thi	c Se:	r Phe		/ Gly
15	Asr	Leu	Gly 115		Ala	Val	. Phe	Glm 120		Lys	Lys	Arg	7 Val 125		ı Glu	Pro
	Lev	Gly 130	Leu	. Val	Glu	Glu	Gly 135		Lys	Thr	Ala	Pro 140		, Lys	Lys	Arg
20	Pro 145	Leu	Glu	Ser	Pro	Gln 150		Pro	Asp	Ser	Ser 155		: Gly	' Ile	: Gly	Lys 160
25	Lys	Gly	Lys	Gln	Pro 165		Lys	Lys	Arg	Leu 170	Asn	Phe	Glu	Glu	Asp 175	Thr
	Gly	Ala	Сĵλ	Asp 180	Gly	Pro	Pro	Glu	Gly 185	Ser	Ąsp	Thr	Ser	Ala 190		Ser
30	Ser	Asp	Ile 195	Glu	Met	Arg	Ala	Ala 200	Pro	Gly	Сlу	Asn	Ala 205		qeA	Ala
35	Gly	Gln 210	Gly	Ser	Asp	Gly	Val 215	Gly	Asn	Ala	Ser	Gly 220	Asp	Trp	His	Суз
	Asp 225	Ser	Thr	Trp	ser	Glu 230	Gly	Lys	Val	Thr	Thr 235	Thr	Ser	Thr	Arg	Thr 240
40	Trp	Val	Leu	Pro	Thr 245	Tyr	Asn	Asn	His	Leu 250	Tyr	Leu	Arg	Leu	Gly 255	Thr
45	Thr	Ser	Asn	Ser 260	Asn	Thr	Tyr		Gly 265		Ser	Thr	Pro	Trp 270	Gly	Tyr
	Phe	Asp	Phe 275	Asn	Arg	Phe	His	Cys 280	His	Phe	Ser	Pro	Arg 285	Asp	Trp	Gln
50	Arg	Leu 290	Ile	Asn	Asn	neA	Trp 295	Gly	Leu	Arg	Pro	Lys 300	Ala	Met	Arg	Vаl
55	Lys 305	Ile	Phe	Asn	Ile	Gln 310	Val	Lys	Glu		Thr 315	Thr	Ser	neA	Gly	Glu 320

5	Th	r Thi	Val	. Ala	325		lev	Thi	s Sez	330		l Glr	lle	Phe	335	Asp
	Sei	s Ser	Tyr	340		Pro	Tyr	Val	345		Ala	Gly	Gln	. Glu 350	-	/ Ser
10	Let	ser	Pro 355		Pro	Asn	Asp	Val 360		Met	Val	. Pro	Gln 365		Gly	Tyr
15		370		٠			375					380				Ala
00	385					390					395					Asn 400
20					405		Asn			410					415	
25				420			Pro Gln		425					430		
			435				Thr	440					445			
	Ala	450				Asn	455 Trp					460				
35	465 Arg	Leu	Ser	Lys	Thr 485	470 Ala	ser	Gln	Asn		475 Lys	Ile	Pro	Ala		480 Gly
40	Gly	Asn	Ala	Leu 500		Lys	Tyr	Asp	Thr 505	490 His	Tyr	Thr	Leu	Asn 510	495 Asn	Arg
45	Trp	Ser	Asn 515	Ile	Ala	Pro	Gly	Pro 520	Pro	Met	Ala	Thr	Ala 525		Pro	Ser
	Ąsp	Gly 530	Asp	Phe	Ser	Asn	Ala 535	Gln	Leu	Ile	Phe	Pro 540	Gly	Pro	Ser	Val
50	Thr 545	Gly	Asn	Thr	Thr	Thr 550	Ser	Ala	Asn		Leu 555	Leu	Phe	Thr		Glu 560
55	Glu	Glu	Ile .		Ala 565	Thr	Asn	Pro	Arg	Asp '	Thr	Asp	Met		Gly 575	Gln

5		Ile	: Ala	Asp	85 083		Gln	Asn	Ala	Thr 585		Ala	Pro	Ile	Th= 590		neA
3		Val	Thr	Ala 595	Met	Gly	Val	Leu	Pro 600		Met	Val	Trp	Gln 605	Asn	Arg	Asp
10		Ile	Tyr 610	Tyr	Gln	Gly	Pro	Ile 615	Trp	Ala	Lys	Ile	Pro 620	His	Ala	Asp	Gly
15		His 625	Phe	His	Pro	Ser	Pro 630	Leu	Ile	Gly	Gly	Phe 635	Gly	Leu	Lys	His	Pro 640
		Pro	Pro	Gln	Ile	Phe 645	Ile	Lys	Asn	Thr	Pro 650	Val	Pro	Ala	Asn	Pro 655	Ala
20		Thr	Thr	Phe	Thr 660	Ala	Ala	Arg	Val	Asp 665	Ser	Phe	Ile	Thr	Gln 670	Tyr	Ser
25		Thr	Gly	Gln 675	Val	Ala	Val	Gln	Ile 680	Glu	Trp	Glu	Ile	Glu 685	Lys ·	Glu	Arg
		Ser	690 Lys	Arg	Trp	Asn	Pro	Glu 695	Val	Gln	Phe	Thr	Ser 700	Asn	Tyr	Gly	Asn
30 .		Gln 705	Ser	Ser	Met	Leu	Trp 710	Ala	Pro	Asp	Thr	Thr 715	Gly	Lys	Tyr	Thr	Glu 720
35		Pro	Arg	Val	Ile	Gly 725	Ser	Arg	Tyr	Leu	Thr 730	Asn	His	Leu			
	<210> 61 <211> 733 <212> PRT																
40	<213> caps	id prot	tein of	AAV s	seroty	pe, cic	ne C2	VP1									
	<400> 61																

							E	P 1 3	10 57	′1 B1							
		Met 1	Ala	Ala	qeA	Gly 5	Tyr	Leu	Pro	qeA	Trp 10	Leu	Glu	qeA	Asn	Leu 15	Ser
5		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	qeA	Leu 25	Lys	Pro	Gly		Pro 30	Lys	Leu
10		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Азр 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
	,	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	His	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15		Val 65	Asn	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala		qeA 08
20																	
25																	

	Gln	Gln	Leu	ГЛЗ	Ala 85	Gly	qeA	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
5	qeA	Ala	Glu	Phe 100		Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
10 .	Asn	`Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
,	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
15 .	Pro 145	Leu	Glu	Ser	Pro	Gln 150	Glu	Pro	Asp	Ser	Ser 155	Ser	Gly	Ile	Gly	Lys 160
20	Lys	Gly	Lys	Gln	Pro 165	Ala	Lys	Lys	Arg	Leu 170	neA	Phe	Glu	Glu	Asp 175	Thr
	Gly	Ala	Gly	Asp 180	Gly	Pro	Pro	Glu	Gly 185	Ser	Ąsp	Thr	Ser	Ala 190	Met	Ser
25	Ser	Asp	Ile 195	Glu	Met	Arg	Ala	Ala 200	Pro	Gly	eJÀ	Asn	Ala 205	Val	Asp	Ala
30	ely	Gln 210	Gly	Ser	Asp	Gly	V al 215	Gly	Asn	Ala	Ser	Gly 220	Asp	Trp	His	Суз
	Asp 225		Thr	Trp	Ser	Glu 230	Gly	Lys	Val	Thr	Thr 235	Thr	Ser	Thr	Arg	Thr 240
35	Trp	Val	Leu	Pro	Thr 245	Tyr	Asn	Asn	His	Leu 250	Tyr	Leu	Arg	Leu	Gly 255	Thr
40	Thr	Ser	Asn	Ser 260	Asn	Thr	Tyr	neA	Gly 265	Phe	Ser	Thr	Pro	Trp 270	Gly	Tyr
	Phe	Ąsp	Phe 275	Asn	Arg	Phe	His	Cys 280	His	Phe	Ser	Pro	Arg 285	qeA	Trp	Gln
45	Arg	Leu 290	Ile	Asn	Asn	neA	Trp 295	eĵà	Leu	Arg	Pro	Lys 300	Ala	Met	Arg	Val
50	Lys 305	Ile	Phe	Asn	Ile	Gln 310	Val	Lys	Glu	Val	Thr 315	Thr	Ser	Asn	Gly	Glu 320
	Thr	Thr	Val	Ala	Asn 325	aeA	Leu	Thr	Ser	Thr 330	Val	G∫⊅	Ile	Phe	Ala 335	qeA
c c																

	Ser	Ser	Tyr	Glu 340		Pro	Tyr	Val	. Met 345		Ala	. Gly	/ Gln	350		Ser
5	Leu	Pro	Pro 355		Pro	neA	Asp	Val 360		Met	Val	Pro	365		Gly	Tyr
10	Суз	Gly 370	Ile	Val	Thr	Gly	Glu 375		Gln	Asn	Gln	Thr 380		Arg	Asn	Ala
15	Phe 385		Cys	Leu	Glu	Tyr 390		Pro	Ser	Gln	Met 395	Leu	. Arg	Thr	Gly	Asn 400
	Asn	Phe	Сĵπ	Met	Ala 405	Tyr	Asn	Phe	Glu	Lys 410	Val	Pro	Phe	His	Ser 415	
20	Tyr	Ala	His	Ser 420	Gln	Ser	Leu	Asp	Arg 425	Leu	Met	Asn	bio	Leu 430	Leu	Asp
	Gln	Tyr	Leu 435	Trp	His	Leu	Gln	Ser 440	Thr	Thr	Ser	Gly	Glu 445	Thr	Leu	Asn
25	Gln	Gly 450	Asn	Ala	Ala	Thr	Thr 455	Phe	Gly	Lys	Ile	Arg 460	Ser	Gly	Asp	Phe
30	Ala 465	Phe	Tyr	Arg	Lys	Asn 470	Trp	Leu	Pro	ely	Pro 475	Cys	Val	Lys	Gln	Gln 480
	Arg	Phe	Ser	Lys	Thr 485	Ala	Ser	Gln	Asn	туг 490	Lys	Ile	Pro	Ala	Ser 495	Gly
35	Gly	Asn	Ala	Leu 500	Leu	Lys	Tyr .	qeA	Thr 505	His	Tyr	Thr	Leu	Asn 510	Asn	Arg
40 		Ser	Asn 515		Ala	Pro	Gly	Pro 520	Pro	Met	Ala	Thr	Ala 525	Gly	Pro	Ser
	Asp	Gly 530	qeA	Phe	Ser	Asn	Ala 535	Gln	Leu	Ile	Phe	Pro 540	Gly	Pro	Ser	Val
<i>45</i>	Thr .	Gly	neA	Thr	Thr	Thr 550	Ser	Ala	Asn	neA	Leu 555	Leu	Phe	Thr	Ser	Glu 560
50	Gly	Glu	Ile		Ala 565	Thr	Asn	Pro		Asp 570	Thr	Asp	Met	Phe	Gly 575	Gln
	Ile	Ala	Asp	Asn 580	Asn	Gln	Asn	Ala	Thr 585	Thr	Ala	Pro	Ile	Thr 590	Gly	Asn
66																

		Val	The	595	Met	: Gly	Val	l Leu	Pro 600	Gly	/ Met	: Val	l Trp	Glr 605		Arg	g Asp
5		Ile	Tyr 610	туг	: Gln	Gly	Pro	Ile 615	Trp	Ala	Lys	Ile	Pro 620	His	Ala	Asp	Gly
10		His 625	Phe	His	Pro	Ser	Pro 630	Leu	Ile	Gly	Gly	Phe 635		Leu	Lys	His	Pro 640
		Pro	Pro	Gln	Ile	Phe 645	Ile	Lys	Asn	Thr	Pro 650	Val	Pro	Ala	Asn	Pro 655	Ala
15		Thr	Thr	Phe	Thr 660	Ala	Ala	Arg	Val	Asp 665	Ser	Phe	Ile	Thr	Gln 670	Tyr	Ser
20		Thr	Gly	Gln 675	Val	Ala	Val	Gln	Ile 680	Glu	Trp	Glu	Ile	Glu 685	Lys	Glu	Arg
		Ser	Lys	Arg	Arg	neA	Pro	Glu 695	Val	Gln	Phe	Thr	Ser 700	Asn	Tyr	GЈУ	Asn
25		Gln 705	Ser	Ser	Met	Leu	Trp 710	Ala	Pro	qeA	Thr	Thr 715	Gly	Lys	Tyr	Thr	Glu 720
30		Pro	Arg	Val	Ile	Gly 725	Ser	Arg	Tyr	Leu	Thr .	Asn	His	Leu			
35	<210> 6 <211> 7 <212> P <213> c	33 RT	proteir	n of Av	AV sei	rotype	, clone	e C5VI	P1@2								
	<400> 6			-					-0-								
40																	

	Met 1	Ala	Ala	qeA	Gly 5	Tyr	Leu	Pro	qeA	Trp 10	Leu	Glu	qeA	Asn	Leu 15	Ser
5	Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
10 .	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
•	Gly	туr 50	Glu	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Азр 60	Lys _'	Gly	Glu	Pro
15	Val 65	neA	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	qeA 08
20	Gln	Gln	Leu	Lys	Ala 85	Gly	qeA	Aśn	Pro	Tyr 90	Leu	Arg	Tyr		His 95	Ala

	qeA	Ala Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
•	Asn :	Leu Gly 115	_	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125		Glu	Pro
10		Gly Leu 130	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140		Lys	Lys	Arg
15	Pro 1 145	Leu Glu	Ser	Pro	Gln 150	Glu	Pro	Asp	Ser	Ser 155	Ser	Gly	Ile	Gly	Lys 160
	Lys (Sly _, Lys	Gln	Pro 165	Ala	Lys	Lys	Arg	Leu 170	Asn	Phe	Glu	Glu	Asp 175	Thr
20	Gly A	Ala Gly	Asp 180	eīà	Pro	Pro	Glu	Gly 185	Ser	Asp	Thr	Ser	Ala 190	Met	Ser
25	Ser A	Asp Ile 195		Met	Arg	Ala	Ala 200	Pro	Gly	Gly	Asn	Ala 205	Val	Asp	Ala
	Gly G	Sln Gly 210	Ser	Ąsp	Gly	Val 215	Gly	Asn	Ala	Ser	Gly 220	Asp	Trp	His	Суз
30 .	Asp S 225	er Thr	Trp	Ser	Glu 230	Gly	Lys	Val	Thr	Thr 235	Thr	Ser	Thr	Arg	Thr 240
35	Trp V	/al Leu	Pro	Thr 245	Tyr	Asn	Asn	His	Leu 250	Tyr	Leu	Arg	Leu	Gly 255	Thr
	Thr S	er Asn	Ser 260	Asn	Thr	Tyr	Asn	Gly 265	Phe	Ser	Thr	Pro	Trp 270	Gly	Tyr
40	Phe A	sp Phe 275	Asn	Arg	Phe		Cys 280	His	Phe	Ser	Pro	Arg 285	Азр	Trp	Gln
45		eu Ile 90	Asn	Asn		Trp 295	Gly	Leu .	Arg	Pro	Lys 300	Ala	Met	Arg	Val
	Lys I 305	le Phe	Asn	Ile	Gln 310	Val	Lys	Glu		Thr 315	Thr	Ser	Asn	Gly	Glu 320
50	Thr T	hr Val		Asn 325	Asn	Leu	Thr		Thr 330	Val	Gln	Ile	Phe	Ala 335	Asp
55	Ser S	er Tyr	Glu 340	Leu	Pro	Tyr		Met . 345	Asp .	Ala	Gly	Gln	Glu 350	Gly	Ser

	Le	u Pro	355		Pro	Asr	y Yab	360		e Met	Val	L Pro	365		c Gly	y Tyr
5	Cy	s Gly 370	/ Ile	Val	Thr	G13	/ Glu 375		n Glr	a Asr	ı Glr	1 Thi 380		Arg	, Asr	Ala
10	Phe 385	е Т уг 5	: Cys	Leu	Glu	Tyr 390		Pro	Ser	Glr	Met 395		Arg	Thi	: Gly	400
	Asr	n Phe	Glu	Thr	Ala 405		Asn	Phe	Glu	Lys 410		Pro	Phe	: His	Ser 415	Met
15	Tyz	: Ala	His	Ser 420	Gln	Ser	Leu	Asp	Gly 425		Met	Asn	Pro	Leu 430		qeA
20	Gln	Tyr	Leu 435	Trp	His	Leu	Gln	Ser 440		Thr	Ser	Gly	Glu 445		Leu	Asn
	Gln	Gly 450	Asn	Ala	Ala	Thr	Thr 455	Phe	Gly	Lys	Ile	Arg 460	Ser	Gly	Asp	Phe
25	Ala 465	Phe	Tyr	Arg	Lys	Asn 470	Trp	Leu	Pro	Gly	Pro 475	Cys	Val	Lys	Gln	Gln 480
30	Arg	Phe	Ser	Lys	Thr 485	Ala	Ser	Gln	Asn	Tyr 490	Lys	Ile	Pro	Ala	Ser 495	Gly
	Gly	Asn	Ala	Leu 500	Leu	Lys	Tyr	qeA	Thr 505	His	Tyr	Thr	Leu	Asn 510	ne.A	Arg
35	Trp	Ser	Asn 515	Ile	Ala	Pro	Gly	Pro 520	Pro	Met	Ala	Thr	Ala 525	Ġly	Pro	Ser
40	Asp	Gly 530	Asp	Phe	ser	Asn	Ala 535	Gln	Leu	Ile	Phe	Pro 540	Gly	Pro	Ser	Val
	Thr 545	Gly	Asn	Thr	Thr	Thr 550	Ser	Ala	Asn	Asn	Leu 555	Leu	Phe	Thr	Ser	Glu 560
45	Glu	Glu	Ile'	Ala .	Ala 565	Thr	Asn	Pro	Arg	Asp 570	Thr	Asp	Met	Phe	Gly 575	Gln
50	Ile	Ala	Asp .	Asn . 580	Asn	Gln	Asn	Ala	Thr 585	Thr	Ala	Pro	Ile	Thr 590	Gly	neA
	Val	Thr	Ala 1 595	Met (Gly	Val	Leu	Pro 600	Gly	Met	Val	Trp	Gln 605	Asn	Arg	qeA
55																

		Ile	Tyr 610		Gln	Gly	Pro	Ile 615		Ala	Lys	Ile	Pro 620		Ala	Asp	Gly
5		His 625	Phe	His	Pro	Ser	Pro 630	Leu	Ile	Gly	Gly	Phe 635	Gly	Leu	Lys	His	Pro 640
10		Pro	Pro	Gln	Ile	Phe 645	Ile	Lys	Asn	Thr	Pro 650	Val	Pro	Ala	Tyr	Pro 655	Ala
		Thr	Thr	Phe	Thr 660	Ala	Ala	Arg	Val	Asp 665	Ser	Phe	Ile	Thr	Gln 670	Tyr	Ser
15		Thr	Gly	Gln 675	Val	Ala	Val	Gln	Ile 680	Glu	Trp	Glu	Ile	Glu 685	Lys	Glu	Arg
20		Ser	Lys 690	Arg	Trp	Asn	Pro	Glu 695	Val	Gln	Phe	Thr	Ser 700	Asn	Cys	Gly	Asn
		Gln 705	Ser	Ser	Met	Leu	Trp 710	Ala	Pro	Asp	Thr	Thr 715	Gly	Lys	Tyr	Thr	Glu 720
25		Pro	Arg	Val	Ile	Gly 725	Ser	Arg	Tyr	Leu	Thr 730	Asn	His	Leu			
30	<210> 63 <211> 73- <212> PR <213> cap	4- !T	 rotein	of AA	V sero	otype,	clone	AAV4	IVP1			•					
35	<400> 63										•						
														*	,		• • •

	Met 1	Thr	qeA	Gly	Tyr 5	Leu	Pro	Asp	Trp	Leu 10	Glu	qeA	neA	Leu	Ser 15	Glu
5	Gly	Val	Arg	Glu 20	Trp	Trp	Ala	Leu	Gln 25	Pro	Gly	Ala	Pro	Lys 30	Pro	Lys
10	, Ala	neA	Gln 35	Gln	His	Gln	Asp	Asn 40	Ala	Arg	Gly	Leu	Val 45	Leu	Pro	ejà
· · · .	Tyr	Lys 50	Tyr	Leu	Gly	Pro	Gly 55	neA	Gly	Leu	qeA	Lys 60	Gly	Glu	Pro	Val
15 .	Asn 65	Ala	Ala	Asp	Ala	Ala 70	Ala	Leu	Glu	His	Asp 75	Lys	Ala	Tyr	Ąsp	Gln 80
. 20	Gln	Leu	Lys	Ala	G1y 85	qeA	Asn	Pro	Tyr	Leu 90	Lys	Tyr	Asn	His	Ala 95	qeA
	Ala	Glu	Phe	Gln 100	Gln	Arg	Leu	Gln	Gly 105	Asp	Thr	Ser	Phe	Gly 110	ejÀ	Asn
25																
30																
35																

		Let	1 GT	y Ar		a Va	l Ph	e Glı	n Ala 12	-	s Ly	s Arq	y Vai	1 Le 12		u Pr	o Leu
5		Gly	/ Let	u Vai	l Gli	ı Glı	n Ala	a Gly 135		u Th.	r Ala	a Pro	140		s Ly	s Ar	g Pro
10		Leu 145	ı Ile	e Glu	Ser	Pro	150		n Pro	As _l	o Se	r Ser 155		Gl:	y Il	e G 1;	y Lys 160
15		Lys	Gly	/ Lys	Gln	Pro 165		Lys	Lys	Ly:	170		Phe	e Glu	ı Ası	9 Gli 175	Thr
15		Gly	Ala	. Gly	180	Gly	Pro	Pro	Glu	185		Thr	Ser	: Gl)	/ Ala 190		: Ser
20		qzA	d e V	Ser 195	Glu	Met	Arg	Ala	Ala 200		Gly	Gly	Ala	Ala 205		. Glu	Gly
25		ejà	Gln 210	Gly	Ala	Asp	Gly	Val 215	Gly	Asn	Ala	Ser	Gly 220		Trp		Cys
25	:	Asp 225	Ser	Thr	Trp	Ser	Glu 230	Gly	His	Val	Thr	Thr 235	Thr	Ser	Thr	Arg	Thr 240
30	;	ı, r.b	Val	Leu	Pro	Thr 245	Tyr	Asn	Asn	His	Leu 250	Tyr	Lys	Arg	Leu	Gly 255	Glu
35	:	Ser	Leu	Gln	Ser 260	Asn	Thr	Tyr	Asn	Gly 265	Phe	Ser	Thr	Pro	Trp 270	Gly	Tyr
33	I	?he	qeA	Phe 275	Asn	Arg	Phe	His	Cys 280	His	Phe	Ser	Pro	Arg 285	Asp	Trp	Gln
40	P	L rg	Leu 290	Ile	Asn	Asn	Asn	Trp 295	Gly	Met	Arg	Pro	300	Ala	Met	Arg	Val
45	1 3	ys 105	Ile	Phe	Asn	Ile	Gln 310	Val	Lys	Glu	Val	Thr 315	Thr	Ser	Asn	Gly	Glu 320
43	T	'hr	Thr	Val	Ala	Asn 325	Asn	Leu	Thz	Ser	Thr 330	Val	Gln	Ile	Phe	Ala 335	Asp
50	s	er .	Ser	Tyr	Glu 340	Leu	Pro	Tyr		Met 345	Asp	Ala	Gly	Gln	Glu 350	вlў	Ser
££	L	eu :	Pro	Pro 355	Phe	Pro	Asn		Val 360	Phe	Met	Val	Pro	Gln 365	Tyr	Gly	Tyr
5 5																	

	Cys	Gly 370		Val	. Thr	: Gly	7 Asn 375		Ser	: Glr	Gln	38 ₀		reA :) Arg	neA t
5	Ala 385		Tyr	Cys	Leu	. Glu 390		Phe	Pro	Ser	Gln 395		Lev	Arg	Thr	Gly
. 10	Asn	Asn	Phe	Glu	Ile 405		Tyr	Ser	Phe	Glu 410	_	Val	Pro	Phe	His 415	Ser
15	Met	Tyr	Ala	His 420		Gln	Ser	Leu	Asp 425		Leu	Met	Asn	Pro 430		Ile
	Ąsp	Gln	Tyr 435		Trp	elà	Leu	Gln 440		Thr	Thr	Thr	Gly 445		Thr	Leu
20	Asn	Ala 450	Gly	Thr	Ala	Thr	Thr 455	neA	Phe	Thr	Lys	Leu 460		Pro	Thr	Asn
25	Phe 465	Ser	neA	Phe	Lys	Lys 470	Asn	Trp	Leu	Pro	Gly 475	Pro	Ser	Ile	Lys	Gln 480
-	Gln	Gly	Phe	Ser	Lys 485	Thr	Ala	Asn	Gln	Asn 490	Tyr	Lys	Ile	Pro	Ala 495	Thr
30	Gly	Ser	qeA	Ser 500	Leu	Ile	Lys	Tyr	Glu 505	Thr	His	Ser	Thr	Leu 510	Ąsp	Gly
35	Arg	Trp	ser 515	Ala	Leu	Thr	Pro	Gly 520	Pro	Pro	Met	Ala	Thr 525	Ala	GlΫ	Pro
	Ala	Asp 530	Ser	Lys	Phe	Ser	Asn 535	Ser	Gln	Leu	Ile	Phe 540	Ala	Gly	Pro	Lys .
40	Gln 545	Asn	Gly	Asn	Thr	Ala 550	Thr	Val	Pro	Gly	Thr 555	Leu	Ile	Phe	Thr	Ser 560
<i>15</i>	Glu	Glu	Glu	Leu	Ala 565	Ala	Thr	Asn	Ala	Thr 570	Asp	Thr	Asp	Met	Trp 575	Gly
	Asn	Leu	Pro	Gly 580	Gly	Asp	Gln	Ser	Asn 585	Ser	neA	Leu		Thr 590	Val	Asp
5 0	Arg	Leu	Thr 595	Ala	Leu	еĵЪ		Val 600	Pro	Gly	Met		Trp 605	Gln	asa	Arg
55		Ile 610	Tyr	Tyr	Gln	GJY	Pro 615	Ile	Trp	Ala		Ile 620	Pro	His	Thr	Asp

		625		File	1113	FIU	630		Dec	1 116	. 617	635		. Gly	, 160	Lys	640
5																	
		Pro	Pro	Pro	Gln	11e 645		Ile	Lys	Asn	650		Val	. Pro	Ala	Asn 655	
10		Ala	Thr	Thr	Phe 660		Ser	Thr	Pro	Val 665		ser	Phe	Ile	Thr 670	Gln	Tyr
15		Ser	Thr	Gly 675		Val	Ser	Val	Gln 680		Asp	Trp	Glu	Ile 685		Lys	Glu
		Arg	Ser 690		Arg	Trp	Asn	Pro 695	Glu	Val	Gln	Phe	Thr 700		Asn	туr	Gly
20		Gln 705		Asn	Ser	Leu	Leu 710	Trp	Ala	Pro	qeA	Ala 715	Ala	Gly	Lys	Tyr	Thr 720
25		Glu	Pro	Arg	Ala	Ile 725	Gly	Thr	Arg	Tyr	Leu 730	Thr	His	His	Leu		
	<210> 6 <211> 7 <212> P	36 RT															
30	<213> ca		proteir	of AA	∖V ser	otype,	, clone	AAV	1								
	V 4 002 0.				-	e i											
35		Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Asn	Leu 15	Ser
		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	qeA	Leu 25	Lys	Pro	Ġly	Ala	Pro 30	Lys	Pro
40		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
4 5		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
		Val 65	Asn	Ala	Ala	qeA	Ala 70	Ala	Ala	Leu	Glu	His 75	qeA	Lys	Ala	Tyr	qeA 08
50		Gln	Gln	Leu	Lys	Ala 85	Gly	qeA	Asn	Pro	Туг 90	Leu	Arg	Tyr	Asn	His 95	Ala
55		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro

5		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135		Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
		Pro 145		Glu	Gln	Ser	Pro 150	Gln	Glu	Pro	Asp	Ser 155	Ser	ser	Gly	Ile	Gly 160
10		Lys	Thr	Gly	Gln'	Gln 165	Prò	Ala	Lys	Lys	Arg 170	Leu	Asn	Phe	Gly	Gln 175	Thr
15		Gly	qeK	ser	Glu 180	Ser	Val	Pro	qeA	Pro 185	Gln	Pro	Leu	Gly	Glu 190	Pro	Pro
15		Ala	Thr	Pro 195	Ala	Ala	Val	Gly	Pro 200	Thr	Thr	Met	Ala	Ser 205	Gly	Gly	Gly
20		Ala	Pro 210	Met	Ala	qeA	Asn	Asn 215	Glu	Gly	Ala	qeA	Gly 220	Val	Gly	neA	Ala
25		Ser 225	Gly	Asn	Trp	His	Cys 230	qeA	Ser	Thr	Trp	Leu 235	GŢĀ	Asp	Arg	Val	Ile 240
23		Thr	Thr	Ser	Thr	Arg 245	Thr	Trp	Ala	Leu	Pro 250	Thr	Tyr	Asn	Asn	His 255	Leu
30		Tyr	Lys	Gln	Ile 260	Ser	Ser	Ala	Ser	Thr 265	ely	Ala	Ser	Asn	Asp 270	Asn	His
35		Tyr	Phe	Gly 275	Tyr	Ser	Thr	Pro	Trp 280	Gly	Tyr	Phe	Ąsp	Phe 285	Asn	Arg	Phe
33		His	Cys 290	His	Phe	Ser	Pro	Arg 295	Asp	Trp	Gln	Arg	Leu 300	Ile	Asn	Asn	Asn
40		Trp 305	Gly	Phe	Arg	Pro	Lys 310	Arg	Leu	Asn	Phe	Lys 315	Leu	Phe	Asn	Ile	Gln 320
45		Val	Lys	Glu	Val	Thr 325	Thr	Asn	qeA	Gly	Val 330	Thr	Thr	Ile	Ala	Asn 335	Asn
45		Leu	Thr	Ser	Thr 340	Val	Gln	Val	Phe	Ser 345	Asp	Ser	Glu	Tyr	Gln 350	Leu	Pro
50	,	Tyr	Val	Leu 355	Gly	Ser	Ala	His	Gln 360	Gly	Cys	Leu	Pro	Pro 365	Phe	Pro	Ala
55		Asp	Val 370	Phe	Met	Ile	Pro	Gln 375	Tyr	Gly	Tyr	Leu	Thr 380	Leu	Asn	neA	Gly
<i>55</i>																	

	385		Ala	Val	Gly	Arg 390		Ser	Phe	туг	395		Glu	Туг	Phe	400
5	Ser	Gln	Met	Leu			Gly	Asn	neA			Phe	ser	Tyr	Thr 415	Phe
š	-1			_	405					410			-1	•		
10	GIU	Glu	. Val	420	Phe	His	Ser	Ser	Tyr 425	Alg	HIS	ser	Gln	430		Asp
-	Arg	Leu	Met 435	neA	Pro	Leu	Ile	Asp 440	Gln	Tyr	Leu	Tyr	Tyr 445	Leu	neA	Arg
15	Thr	Gln 450		Gln	Ser	Gly	Ser 455	Ala	Gln	Asn	Lys	Asp 460	Leu	Leu	Phe	Ser
20	Arg 465		Ser	Pro	Ala	Gly 470	Met	Ser	Val	Gln	Pro 475	Lys	Asn	Ţŗp	Leu	Pro 480
25	Gly	Pro	Суз	Tyr	Arg 485	Gln	Gln	Arg	Val	Ser 490	Lys	Thr	Lys	Thr	Asp 495	Asn
		neA		Asn 500	Phe	Thr	Trp	Thr	Gly 505	Ala	Ser	Lys	Tyr	Asn 510		Asn
30	Gly	Arg	Glu 515	Ser	Ile	Ile	Asn	Pro 520	Gly	Thr	Ala	Met	Ala 525	Ser	His	Lys
35	Asp	де Д 530	€1 <i>n</i>	Asp	Lys	Phe	Phe 535	Pro	Met	Ser	Gly	Val 540	Met	Ile	Phe	Gly
	Lys 545	Glu	Ser	Ala	Gly	Ala 550	Ser	Asn	Thr	Ala	Leu 555	qeA	Asn	Val	Met	Ile 560
40	Thr	Asp	Glu	Glu	Glu 565	Ile	Lys	Ala	Thr	Asn 570	Pro	Val	Ala	Thr	Glu 575	Arg
45	Phe	Gly	Thr	Val 580	Ala	Val	neA	Phe	Gln 585	Ser	Ser	Ser	Thr	A sp 590	Pro	Ala
·•	Thr	eſà	Asp 595	Val	His	Ala	Met	600 GJA	Ala	Leu 	Pro	Gly	Met 605	Val	Trp	Gln
50	qeA	Arg 610	Asp	Val	Tyr	Leu	Gln 615	Gly	Pro	Ile	Trp	Ala 620	Lys	Ile	Pro	His
	Thr 625	Asp	Gly	His	Phe	His 630	Pro	Ser	Pro	Leu	Met 635	Gly	Gly	Phe	Gly	Leu 640
5.5																

5		Lys	neA	Pro	Pro	Pro 645	Gln	Ile	Leu	Ile	Lys 650	Asn	Thr	Pro	Val	Pro 655	Ala
		neA	Pro	Pro	Ala 660	Glu	Phe	Ser	Ala	Thr 665	Lys	Phe	Ala	Ser	Phe 670	Ile	Thr
10		Gln	Tyr	ser 675	Thr	Gly	Gln	val	Ser 680	Val	Glu	Ile	Glu	Trp 685	Glu	Leu'	Gln
15 .		Lys	Glu 690	Asn	Ser	Lys	Arg	Trp 695	Asn	Pro	Glu	Val	Gln 700	Tyr	Thr	ser	neA
		Tyr 705	Ala	Lys	Ser	Ala	Asn 710	Val	Asp	Phe	Thr	Val 715	Asp	Asn	neA	ely	Leu 720
20		Tyr	Thr	Glu	Pro	Arg 725	Pro	Ile	Gly	Thr	Arg 730	Tyr	Leu	Thr	Arg	Pro 735	Leu
	<210> 65											÷					
25	<211> 736 <212> PRT																
	<213> caps	id pro	tein of	AAV	seroty	pe, cl	one A	AV6VI	P1								
	<400> 65																
30																	

	Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	aeA	Leu 15	Ser
5	Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
; 10	Lys	Ala ,	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
	еĵ	Tyr 50	ГÀЗ	Tyr	Гел	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	neA	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
20	Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	neA	His 95	Ala
	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	e)n	qeA	Thr	Ser	Phe 110	Gly	Gly
25	neA	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30	Phe	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg

5	Pro 145		Gli	ı Gln	ser	Pro 150		Glu	Pro	Asr) Ser 155		: Sex	: Gly	, Ile	160
·	Lys	Thr	: G1 ₃	, Gln	165		Ala	Lys	Lys	170		Asn	Phe	e Gly	Gln 175	Thr
10	Gly	Asp	Sez	: Glu 180		Val	Pro	Asp	Pro 185		Pro	Leu	Gly	Glu 190		Pro
15	Ala	Thr	Pro 195		Ala	Val	Gly	Pro 200		Thr	Met	Ala	Ser 205		Gly	Gly
		Pro 210		Ala	Asp	Asn	Asn 215		Сĵу	Ala	Asp	Gly 220	Val	Gly	Asn	Ala
20 .	Ser 225	Gly	Asn	Trp	His	Суз 230	Asp	Ser	Thr	Trp	Leu 235	Gly	Asp	Arg	Val	Ile 240
25	Thr	Thr	Ser	Thr	Arg 245	Thr	Trp	Ala	Leu	Pro 250	Thr	Tyr	Дэп	Asn	His 255	Leu
	Tyr	Lys	Gln	Ile 260	Ser	ser	Ala	Ser	Thr 265	Gly	Ala	Ser	aeA	Asp 270	Asn	His
. 30	Tyr	Phe	Gly 275	Tyr	Ser	Thr	Pro	Trp 280	Gly	Tyr	Phe	Asp	Phe 285	Asn	Arg	Phe
35	His	Cys 290	His	Phe	Ser	Pro	Arg 295	Ąsp	Trp	Gln	Arg	Leu 300	Ile	Asn	Asn	Asn
	Trp 305	ely	Phe	Arg	Pro	Lys 310	Arg	Leu	Asn	Phe	Lys 315	Leu	Phe	neA.	Ile	Gln 320
40	Val	Lys	Glu	Val	Thr 325	Thr	neA	qeA	Gly	Val 330	Thr	Thr	Ile	Ala	Asn 335	Asn
45	Leu	Thr	Ser	Thr 340	Val	Gln	Val	Phe	Ser 345	ĄsĄ	Ser	Glu	Tyr	Gln 350	Leu	Pro
	Tyr	Val	Leu 355	Gly	Ser	Ala	His	Gln 360	Gly	Суз	Leu	Pro	Pro 365	Phe	Pro	Ala
50	Asp	Val 370	Phe	Met	Ile	Pro	Gln 375	Tyr	Gly	Tyr	Leu	Thr 380	Leu	Asn	neA	Gly
55	Ser 385	Gln	Ala	Val	G] À	Arg 390	Ser	Ser	Phe	Tyr	Cys 395	Leu	Glu	Tyr	Phe	Pro 400

		S	er G	ln M	et L	eu A 4	rg T 05	hr G	ly A	Asn A	lsn :	Phe '	Thr :	Phe	Ser	Tyr	Th:	
5		G:	lu A	sp V	al P.	ro P 20	he H	is S	er S	er 1	yr 2 25	Ala 1	dis S	Ber (Ser 430	Lev	z Asg
10		Aı	g L	eu Me 43	et As 35	an P	ro L	eu I	le A 4	sp G 40	ln T	yr I	eu I		yr :	Leu	neA	Arg
		Th	r G: 45	in As 50	sn Gl	ln Se	er G	ly 5	er A 55	la G	ln A	sn L	ys A 4	sp L 60	eu 1	Leu	Phe	Ser
15		Ar 46	g G1 5	y Se	r Pr	:o Al	la G) 47	Ly Me	et S	er V	al G	ln P 4	ro L 75	ys A	sn 1	rp.	Leu	Pro 480
20		Gl	y Pr	o Cy	з Ту	r Ar 48	g G1	n Gl	n A	rg Va	al S 4:	er L 90	ys T	hr L	ys I		Asp 495	Asn
		As	a As	n Se	r As 50	n Ph O	e Th	r Tr	p Tl	ır G1 50	.y A.: 15	la S	er Ly	ys T		.sn 1	Leu	Asn
25		Gly	y Ar	g Gl: 51	u Se: 5	r Il	e Il	e As	n Pr 52	o G1	y Tì	nr Al	ia Me	t Al 52	La S	er 1	eiß	Lys
30		Asp	530	D Lys	a Ası	Ly	s Pho	e Ph	e Pr 5	o Me	t Se	r Gl	.y ·Va 54	l Me	t I	le F	he.	Gly
		Lys 545	Glu	ı Ser	: Ala	Gl;	y Ala 550	a Se	r As	n Th.	r Al	a Le 55	u As 5	p As	n Vi	al M		Ile 560
35		Thr	Asp	Glu	Glu	61: 56:	ı Ile	Lys	Al.	a Thi	7 As:	n Pr O	o Va	l Al	a Tì		lu : 75	Arg ~^
40		Phe	Gly	Thr	Val 580	Ala	Val	. Asn	Lei	Glr 585	s Se	r Se.	r Se	r Th	r As 59		ro j	Ala
45		Thr	Gly	Asp 595	Val	His	Val	Met	G13	Ala	Lei	ı Pro	el)	/ Met 60:	t Va	1 T	cb @	Sln
45		Asp	Arg 610	Asp	Val	Tyr	Leu	Gln 615	Gly	Pro	Ile	Trp	Ale 620	Lys	ıı	e Pr	ю н	lis
50		Thr 625	Asp	Gly	His	Phe	His 630	Pro	Ser	Pro	Leu	Met 635	Gly	. el?	Ph	e Gl		eu 40
	•	Lys	His	Pro	Pro	Pro 645	Gln	Ile	Leu	Ile	Lys 650	Asn	Thr	Pro	Va:	l Pr 65		la
55																		

5		Asn	Pro	Pro	Ala 660	Glu	Phe	Ser	Ala	Thr 665		Phe	Ala	Ser	Phe 670	Ile	Thr
		Gln	Tyr	Ser 675	Thr	Gly	Gln	Val	Ser 680	Val	Glu	Ile	Glu	Trp 685	Glu	Leu	Gln
10		Lys	Glu 690	Asn	Ser	Lys	Arg		Asn	Pro	Glu	Val	Gln 700	Tyr	Thr	Ser	neA
15		Tyr 705	Ala	Lys	Ser	Ala	Asn 710	Val	Asp	Phe	Thr	Val 715	Asp	Asn	neA	Gly	Leu 720
		Tyr	Thr	Glu	Pro	Arg 725	.Pro	Ile	Gly	Thr	Arg 730	Tyr	Leu	Thr	Arg	Pro 735	Leu
20																	
	<210> 66																
	<211> 735			•													
•	<212> PR		atain a	-£ A A \.	/ t												
25	<213> cap	isiu pi	oteni (JI AAV	seroi	ype, c	one A	43.3									
	<400> 66															•	
30				`.												,	
35 ′																	

	Met 1	Ala	Ala	qeA	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Thr	Leu 15	Ser
5	Glu	Gly	Ile	Arg 20	Gln	Trp	Trp	ГÅз	Leu 25	Lys	Pro	Gly	Pro	Pro 30	Pro	Pro
10	Lys	Pro	Asn 35	Gln	Gln	His	Arg	Asp 40	Asp	Ser	Arg	Gly	Leu 45	Val	Leu	Pro
	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	GĴΥ	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	Asn	Glu	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Ąsp	Lys	Ala	Tyr	qeA 08
20	His	Gln	Leu	Lys	Gln 85	ej À	Asp	Asn	Pro	Tyr 90	Leu	Lys	Tyr	neA	His 95	Ala
	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu _.	qeA	Thr	Ser	Phe 110	Gly	Gly
25	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
. 30	Leu	Gly 130	Leu	Val	Glu	Glu	Ala 135	Val	Lys	Thr		Pro 140	Gly	Lys	Lys	Arg

.

5	Pro 145		e Gl	ı Glr	ı Se	2 Pro 150		a Gli	u Pro	geA c	Ser 155		r Se	c Gl	y Il	e Gly 160
3	Lys	Ser	: Gly	Glr.	165		Ala	a Lys	s Lys	170		Ası	n Phe	e Gl	y Gl: 17	n Thr 5
10	Gly	Asp	Thr	Glu 180		. Val	. Pro	Gly	/ Pro 185		Pro	Ile	: G13	/ 'Gl: 190		o Pro
15	Ala	Ala	Pro 195		Gly	Val	Gly	9er 200		Thr	Met	Ala	Ser 205	_	/ Gly	, Gly
15	Ala	Pro 210		Ala	Ąsp	Asn	Asn 215		Gly	Ala	qeA	Gly 220		Gly	/ Asn	ser .
20	Ser 225	Gly	Asn	Trp	His	Cys 230	Asp	Ser	Thr	Trp	Met 235	Gly	qzA	Arg	Val	Ile 240
25	Thr	Thr	Ser	Thr	Arg 245		Trp	Ala	Leu	Pro 250	Thr	Tyr	Asn	neA	His 255	Leu
	Tyr	Lys	Gln	Ile 260	Ser	Ser	Glu	Ser	Gly 265	Ala	Thr	Asn	Ąsp	Asn 270		Tyr
30	Phe	Gly	Tyr 275	Ser	Thr	Pro	Trp	Gly 280	Туг	Phe	Asp	Phe	Asn 285	Arg	Phe	His
35	Суз	His 290	Phe	Ser	Pro	Arg	Asp 295	Trp	Gln	Arg	Leu	Ile 300	Asn	neA	Asn	Trp
	Gly 305	Phe	Arg	Pro	Lys	Lys 310	Leu	Asn	Phe	Lys	Leu 315	Phe	Asn	Ile	Gln	Val 320
40	Lys	Glu	Val	Thr	Gln 325	Asn	Asp	Gly	Thr	Thr 330	Thr	Ile	Ala	Asn	Asn 335	Leu
45	Thr	Ser	Ala	Val 340	Gln	Val	Phe	Thr	Asp 345	ser	Glu	Tyr	Gln	Leu 350	Pro	Tyr
	Val	Leu	Gly 355	Ser	Ala	His	Gln	Gly 360	Cys	Leu	Pro	Pro	Phe 365	Pro	Ala	Asp
50	Val	Phe 370	Met	Ile	Pro	Gln	Tyr 375	Gly	Tyr	Leu		Leu 380	neA	Asn	Gly	Ser
55	Gln 385	Ala	Val	Gly	Arg	Ser 390	Ser	Phe	Tyr		Leu - 395	Glu	Tyr	Phe	Pro	Ser 400

5	Glr	Met	Lev	Arg	Thr 405	_	'Asn	ДЗГ	Phe	410		e Ser	тул	Thi	Phe 415	e Glu
	Asp	Val	. Pro	Phe 420		Ser	Ser	Tyr	Ala 425		Ser	Gln	Ser	130		Arg
10	Leu	Met	Asn 435		Leu	Ile	Asp	Gln 440		Leu	Tyr	Tyr	Leu 445		Lys	Thr
15	Gln	Gly 450	Thr	Ser	Gly	Thr	Thr 455		Gln	Ser	Arg	Leu 460		Phe	Ser	Gln
	Ala 465		Pro	Ser	Ser	Met 470		Gln	Gln	Ala	Lys 475		Trp	Leu	Pro	Gly 480
20	Pro	Ser	Tyr	Arg	Gln 485		Arg	Met	Ser	Lys 490		Ala	Asn	Asp	Asn 495	neA
25	Asn	Ser	Glu	Phe 500	Ala	Trp	Thr	Ala	Ala 505	Thr	Lys	Tyr	Tyr	Leu 510	Asn	Gly
	Arg	Asn	Ser 515	Leu	Val	Asn	Pro	Gly 520	Pro	Pro	Val	Ala	Ser 525	His	Lys	Asp
30	Asp	Glu 530	Glu	Lys	Tyr	Phe	Pro 535	Met	His	Gly	Asn	Leu 540	Ile	Phe	Gly	ГÀЗ
35	Gln 545	Gly	Thr	Gly	Thr	Thr 550	Asn	Val	qeA	Ile	Glu 555	Ser	Val	Leu	Ile	Thr 560
	Asp	Glu	Glu	Glu	Ile 565	Arg	Thr	Thr	Asn	Pro 570	Val	Ala	Thr	Glu	Gln 575	Tyr
40	Gly	Gln	Val	Ala 580	Thr	Asn	His	Gln	Ser 585	Gln	Asn	Thr	Thr	Ala 590	Ser	Tyr
45	Gly	Ser	Val 595	qeA	Ser	Gln	GJA	Ile 600	Leu	Pro	Gly	Met	Val 605	Trp	Gln	qeA
	Arg	Asp 610	Val	Tyr	Leu		Gly 615	Pro	Ile	Trp	Ala	Lys 620	Thr	Pro	His	Thr
50	Asp 625	Gly	His	Phe		Pro 630	Ser	Pro	Leu :		Gly 635	Gly	Phe	Сĵу	Leu	Lys 640
55	His	Pro	Pro		Gln 645	Ile	Leu	Ile		Asn 650	Thr	Pro	Val		Ala 655	neA

5		Pro	Ala	Thr	Thr 660	Phe	Thr	Pro	Gly	Lys 665	Phe	Ala	ser	Phe	Ile 670	Thr	Gln
		Tyr	Ser	Thr 675	Gly	Gln	Val	Ser	Val 680	Glu	Ile	Glu	Trp	Glu 685	Leu	Gln	Lys
10		Glu	Asn 690	Ser	Lys	Arg	Trp	Asn 695	Pro	Glu	Ile	Gln ,	Tyr 700	Thr	Ser	Asn	,
. 15		Asn 705	Lys	ser	Val	Asn	Val 710	Glu	Phe	Thr	Val	Asp 715	Аļа	Asn	Gly	Val	Tyr 720
		Ser	Glu	Pro	Arg	Pro 725	Ile	Gly	Thr	Arg	Tyr 730	Leu	The	Arg	Asn	Leu 735	
20																	
	<210> 67																
	<211> 735																
	<212> PR7	Γ															
	<213> cap	sid pro	otein c	of AAV	serot /	уре, с	one A	۸3.7									
25																	
	<400> 67				•												
30 -										,							

	Met 1	Ala	Ala	qeA	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Thr	Leu 15	Se:
5	Glu	Gly	Ile	Arg 20	Gln	Ţŗp	Trp	Lys	Leu 25	Lys	Pro	Gly	Pro	Pro 30	Pro	Pr
10	Lys	Pro	Asn 35	Gln	Gln	His	Arg	Asp 40	Asp	Ser	Arg	, Gly	Leu 45	Val	Leu	Pro
	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA	ely	Leu	qeA 00	Lys	Gly	Glu	Pro
15	Val 65	neA	Glu	Ala	qeA	Ala 70	Ala	Ala	Leu	Glu	His 75	Азр	Lys	Ala	Tyr	geA 08
20	His	Gln	Leu	Lys	Gln 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Lys	Tyr	Asn	His 95	Ala
	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Ąsp	Thr	Ser	Phe 110	Gly	Gly
25	Asņ	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30	Leu	Gly 130	Leu	Val	Glu	Glu	Ala 135	Val	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
	Pro 145	Ile	Glu	Gln	Ser	Pro 150	Ala	Glu	Pro		Ser 155	Ser	Ser	Gly		Gly 160
35									•							

5	Ly	s Sei	GL)	y Glr	165	n Pro	Ala	a Lys	Lys	170		l Ası	n Phe	e Gly	y Glr 175	
J	Gl	y Asp	Thr	180		Val	Pro	Asp	Pro 185		Pro	Ile	e Gly	/ Glu 190		Pro
10	Ala	Ala	Pro 195		: Gly	Val	Æ13	, Ser 200		Thr	: Met	Ala	Ser 205		Gly	Gly
15	Ala	Pro 210		: Ala	Asp	Asn	Asn 215		Gly	Ala	Asp	Gly 220		Gly	' Asn	Ser
	Ser 225		Asn	Trp	His	Cys 230	Asp	Ser	Thr	Trp	Met 235	Gly	qeA v	Arg	Val	Ile 240
20	Thr	Thr	Ser	Thr	Arg 245	Thr	Trp	Ala	Leu	Pro 250		Tyr	ne.A	Asn	Arg 255	Leu
	Tyr	Lys	Gln	Ile 260	Ser	Ser	Glu	Ser	Gly 265		Thr	Asn	qeA	Asn 270	His	Tyr
25	Phe	Gly	туr 275	Ser	Thr	Pro	Trp	Gly 280	Tyr	Phe	'Asp	Phe	Asn 285	Arg	Phe	His
30	Cys	His 290	Phe	Ser	Pro	Arg	Asp 295	Trp	Gln	Arg	Leu	Ile 300	Asn	neA	Asn	Trp
	Gly 305	Phe	Arg	Pro	Lys	Lys 310	Leu	Asn	Phe	Lys	Leu 315	Phe	Asn	Ile	Gln	Val 320
<i>35</i>	Lys	Glu	Val	Thr	Gln 325	Asn	Asp	Gly	Thr	Thr 330	Thr	Ile	Ala	Asn	Asn 335	Leu
40	Thr	Ser	Thr	Val 340	Gln	Val	Phe		Asp 345	Ser	Glu	Tyr	Gln	Leu 350	Pro	Tyr
45	Val	Leu	Gly 355	Ser	Ala	His	Gln	360 Gly	Суз	Leu	Pro	Pro	Phe 365	Pro	Ala	Asp
••	Val	Phe 370	Met	Ile	Pro	Gln	Tyr 375	Gly	Tyr	Leu	Thr	Leu 380	Asn	Asn	ely	Ser
50	Gln 385	Ala	Val	Gly	Arg	Ser 390	Ser	Phe .	Tyr	Суз	Leu 395	Glu	Tyr	Phe	Pro	Ser 400
:	Gln	Met	Leu	Arg	Thr 405	Gly	Asn	Asn		Thr 410	Phe	Ser	Tyr	Thr	Phe 415	Glu
רר																

	Asj	p Va	l Pro	420	e His	3 Se.	r Se	r Ty.	r Al 42	а Ні. 5	s Se	r Glr	s Sei	430		p Arg
5	Lei	ı Me	435	Pro) Lev	Ile	e Asp	Gl: 440	n Ty :	r Lei	и ту:	Tyr	145		Ly.	s Thr
10	Glr	450	y Thr	Ser	: Gly	Thị	455	Glr	n Gli	n Sei	r Ar	460		Phe	≥ Se:	r Gln
	Ala 465	Gly	Pro	Ser	Ser	Met 470	: Ala	Gln	Glr	Ala	475		Trp	Leu	Pro	Gly 480
15	Pro	Ser	Tyr	Arg	Gln 485	Gln	Arg	Met	Ser	Lys 490		Ala	Asn	qeA	Asr 495	a Asn
20	neA	Ser	, Glu	Phe 500	Ala	Trp	Thr	Ala	Ala 505	Thr	Lys	Tyr	Tyr	Leu 510		Gly
	Arg	Asn	Ser 515	Leu	Val	neA	Pro	Gly 520	Pro	Pro	Met	Ala	ser 525	His	Lys	Asp
	Asp	Glu 530	Glu	Lys	Tyr	Phe	Pro 535	Met	His	Gly	Asn	Leu 540	Ile	Phe	Gly	Lys
30	Gln 545	Gly	Thr	Gly	Thr	Thr 550	Asn	Val	qeA	Ile	Glu 555	Ser	Val	Leu	Ile	Thr 560
	Ąsp	Glu	Glu	Glu	Ile 565	Arg	Thr	Thr	Asn	Pro 570	Val	Ala	Thr	Glu	Gln 575	Tyr
	Gly	Gln	Val	Ala 580	Thr	Asn	His	Gln	ser 585	Gln	Asn	Thr	Thr	Ala 590	Ser	Tyr
40	Gly	Ser	Val 595	Asp	Ser	Gln	Gly	Ile 600	Leu	Pro	Gly	Met	Val 605	Trp	Gln	Asp
	Arg	Asp 610	Val	Tyr	Leu	Gln	Gly 615	Pro	Ile	Trp	Ala	Lys 620	Thr	Pro	His	Thr
	Asp 625	Gly	His	Phe	His	Pro 630	Ser	Pro	Leu	Met	Gly 635	Gly	Phe	Gly	Leu	Lys 640
50	His	Pro	Pro :	Pro (Gln : 645	Ile	Leu :	Ile	Lys	Asn 650	Thr	Pro 1	Val :		Ala 655	Asn
	Pro .	Ala	Thr :	Thr :	Phe :	Thr	Pro (Sly :	Lys 665	Phe .	Ala :	Ser i		Ile 1 670	Thr	Gln

		Tyr	Ser	Thr 675		Gln	Val	Ser	Val 680		Ile	Glu	Trp	Glu 685		Gln	Lys	
5		Glu	Asn 690	Ser	Lys	Arg	Trp	Asn 695		Glu	Ile	Gln	Tyr 700	Thr	Ser	Asn	Tyr	
10		Asn 705		Ser	Val	Asn	Val 710		Phe	Thr	Val	Asp 715		Asn	Gly	Val	Tyr 720	
		Ser	Glu	Pro	Arg	Pro 725	Ile	Gly	Thr	Arg	Tyr 730	Leu	Thr	Arg	Asn	Leu 735		
15	<210> 68 <211> 73 <212> Pf <213> ca	35 RT	rotein	of AA	V cor	otvoe	cione	A31										
20	<400> 68		or Oten	0170	W 301	отуре,	CIOTIC	70.4										
25		Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	qeA	Thr	Leu 15	Ser	
		Glu	Gly	Ile	Arg 20	Gln	Trp	Trp	Lys	Leu 25	Lys	Pro	Gly	Pro	Pro 30	Pro	Pro	
30		ГÀЗ	Pro	Asn 35	Gln	Gln	His	Arg	Asp 40	Asp	Ser	Arg	Gly	Leu 45	Val	Leu	Pro	
35		Gly	Tyr 50	Lys	Tyr	Leu	GŢĀ	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro	
		Val 65	Asn	Glu	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80	
40		His	Gln	Leu	Lys	Gln 85	Gly	qeA	Asn	Pro	Tyr 90	Leu	Lys	Tyr	Asn	His 95	Ala	
45		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	qeA	Thr	Ser	Phe 110	Gly	Gly	
		neA	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro	
50		Leu	Gly 130	Leu	Val	Glu	Glu	Ala 135	Val	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg	
55		Pro 145	Ile	Glu	Gln	Ser	Pro 150	Ala	Glu	Pro	Asp	Ser 155	Ser	ser	Gly	Ile	Gly 160	
		Glu	Ser	Gly		Gln 165	Pro	Ala	Lys		Arg 170	Leu	Asn	Phe	GJA	Gln	Thr	

5		G13	/ Asp	Thr	180		· Val	l Pro) Asp) Pro 185		Pro) Ile	e Gly	/ Glu	Pro	Pro
J		Ala	Ala	Pro 195		Gly	val	. Gly	Ser 200		Thr	Met	Ala	Ser 205	_	e1y	Gly
10		Ala	210		Ala	Asp	Asp	Asn 215		Gly	' Ala	qeA	Gly 220		Gly	Asn	. Sèr
15		Ser 225		Asn	Trp	His	Cys 230		Ser	Thr	Trp	Met 235		qeA	Arg	Val	Ile 240
		Thr	Thr	Ser	Thr	Arg 245	Thr	Trp	Ala	. Leu	Pro 250	Thr	Tyr	Asn	Asn	His 255	
20	-	Tyr	Lys	Gln	Ile 260	Ser	Ser	Glu	Ser	Gly 265		Thr	Asn	Asp	Asn 270	His	Tyr
25		Phe	Gly	Tyr 275	Ser	Thr	Pro	Trp	Gly 280		Phe	Asp	Phe	Asn 285	Arg	Phe	His
		Суз	His 290	Phe	Ser	Pro	Arg	Asp 295	Trp	Gln	Arg	Leu	Ile 300	Asn	Asn	Asn	Trp
30		Gly 305	Phe	Arg	Pro	Lys	Lys 310	Leu	Asn	Phe	Lys	Leu 315	Phe	Asn	Ile	Gln	Val 320
35		Lys	Glu	Val	Thr	Gln 325	us Y	Asp	GЈĀ	Thr	Thr 330	Thr	Ile	Ala	neA	Asn 335	Leu
		Thr	Ser	Thr	Val 340	Gln	.Val	Phe	Thr	Asp 345	Ser	Glu	Tyr	Gln	Leu 350	Pro	Tyr
40		Val	Leu	Gly 355	Ser	Ala	His	Gln	360	Cys	Leu	Pro	Pro	Phe 365	Pro	Ala	qeA
45		Val	Phe 370	Met	Ile	Pro	Gln	Tyr 375	Gly	Tyr	Leu	Thr	Leu 380	Asn	Asn	Gly	Ser
		Gln 385	Ala	Val	Gly	Arg	Ser 390	Ser	Phe	Tyr	Cys	Leu 395	Glu	Tyr	Phe	Pro	Ser 400
50		Gln	Met	Leu	Arg	Thr 405	Gly	Asn	neA	Phe	Thr 410	Phe	Ser	Tyr	Thr	Phe 415	Glu
55		Asp	Val		Phe 420	His	Ser	Ser	Tyr	Ala 425	His	Ser	Gln	Ser	Leu 430	qeA	Arg

5	Leu	ı Met	435		Leu	ılle	: Asp	Glr 440		Lev	ту:	Ty:	1 Let		Ly	s Thr	
	Glr	450		: Ser	Gly	Thr	Thr 455		Gln	Ser	Arg	1 Let 460		n Phe	Sei	Gln	
10	Ala 465	Gly	Pro	Ser.	Ser	Met 470		Gln	Gln	. Ala	Lys 475		ı Trp) Lev	Pro	Gly 480	
15	Pro	Ser	Tyr	Arg	Gln 485		Arg	Met	Ser	Lys 490		Ala	Asr	Asp	Asn 495	Asn	
	Asn	Ser	Glu	Phe 500	Ala	Trp	Thr	Ala	Ala 505	Thr	Lys	Tyr	Tyr	Leu 510		Gly	
20	Arg	Asn	Ser 515	Leu	Val	Asn	Pro	Gly 520	Pro	Pro	Met	Ala	Ser 525		Lys	Asp	
25	Азр	Glu 530	Glu	Lys	Tyr	Phe	Pro 535	Met	His	Gly	Asn	Leu 540		Phe	Gly	Lys	
	Gln 545	Gly	Thr	Gly	Thr	Thr 550	Asn	Val	Asp	Ile	Glu 555	Ser	Val	Leu	Ile	Thr 560	
30	Asp	Glu	Glu	Glu	11e 565	Arg	Thr	Thr	Asn	Pro 570	Val	Ala	Thr	Glu	Gln 575	Tyr	
35	Gly	Gln	Val	Ala 580	Thr	Asn	His	Gln	Ser 585	Gln	Asp	Thr	Thr	Ala 590	Ser	Tyr	
	Gly	Ser	Val 595	Aïsp	Ser	Gln	Gly	Ile 600	Leu	Pro	Gly	Met	Val 605	Trp	Gln	Asp	
40	Arg	Asp 610	Val	Tyr	Leu	Gln	Gly 615	Pro	Ile	Trp	Ala	Lys 620	Thr	Pro	His	Thr	
45	Asp 625	Gly	His	Phe	His	Pro 630	Ser	Pro	Leu	Met	Gly 635	Gly	Phe	Gly	Lеи	Lys 640	
	His	Pro	Pro	Pro	Gln 645	Ile	Leu	Ile	Lys	Asn 650	Thr	Pro	Val	Pro	Ala 655	neA	
50	Pro	Ala	Thr	Thr 660	Phe	Thr	Pro	Gly	Lys 665	Phe	Ala	Ser	Phe	Ile 670	Thr	Gln	`
<i>55</i>	Tyr	Ser	Thr, 675	Gly	Gln	Val		Val 680	Glu	Ile	Glu	Trp	Glu 685	Leu	Gln	Lys	

5		GIU	690	ser	гуs	Arg	TIP	Asn 695	Pro	GIN	Ile	GIn	700	Thr	Ser	Asn	Tyr		
3		Asn 705	Lys	Ser	Val	nsA	Val 710	Glu	Phe	Thr	Val	Asp 715	Ala	neA	Gly	Val	Tyr 720		
10		Ser	Glu	Pro	Arg	Pro 725	Ile	Gly	Thr	Arg	Tyr 730	Leu	Thr	Arg	Asn	Leu 735			
15	<210> 69 <211> 735 <212> PR' <213> cap	Т	otein (of AA\	/ sero	type, (clone /	A3.5							• •	•			
	<400> 69																		
20										,									
25																			
30																•			
35																		·	
40	-																		
45																			÷-
50																			

		Met 1	Α <u>L</u> a	Хlа	Ąsp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	ipr	Leu 15	Ser
5		Glu	Gly	Ile	Arg 20	Gln	Trp	Trp	Lys	Leu 25	Lys	Pro	Gly	Pro	Pro 30	Pro	Pro
10		Lys	Pro	Asn 35	Gln	Gln	His	Arg '	Азр 40	Asp	Ser	Arg	Gly	Leu 45	Val	Leu	Pro
		ely	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA	ely	Leu	Азр 60	Lys	Gly	Glu	Pro
15		Val 65	neA	Glu	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	qeA	Lys	Ala	Tyr	Asp 80
20		His	Gln	Leu	Lys	Gln 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Lys	Tyr	neA	His 95	Ala
	,	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
25		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30		Leu	Gly 130	Leu	Val	Glu	Glu	Ala 135	Val	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
		Pro 145	Ile	Glu	Gln	Ser	Pro 150	Ala	Glu	Pro	Asp	Ser 155	Ser	Ser	Gly	Ile	Gly 160
35		Lys	Ser	Gly	Gln	Gln 165	Pro	Ala	Lys	Lys	Arg 170	Leu	Asn	Phe	Gly	Gln 175	Thr
40		Gly	Asp	Thr	Glu 180	ser	Val	Pro		Pro 185	Gln	Pro	Ile	GJA	Glu 190	Pro	Pro

		Ala	a Ala	19:	o Sei S	r Gl	y Val	l Gly	200	c Ası	n Th	r Met	: Ala	20:		y Gl	y Gly
5		Ala	210	Met	E Ala	a Asj	p Asr	215		Gly	y Ala	a Asp	Gl ₂ 220		l Gl	y As	n Ser
10		Se: 225	c Gly	, Asr	Trp	Hi:	230		Ser	Thi	r Trj	235		geA v	Ar	y Vai	l Ile 240
		Thr	Thr	: Ser	Thr	245		Trp	Ala	Lev	250		Туг	: Asr	ASI	1 Hi: 25	3 Leu 5
15 ·		Tyr	Lys	Gln	1 Ile 260	Sez	Ser	Glu	Ser	Gly 265	Ala	Thr	aeA	Asp	270		Tyr
20		Phe	Gly	Tyr 275	Ser	Thr	Pro	Trp	Gly 280		Phe	Asp	Phe	Asn 285		Phe	His
		Суз	His 290	Phe	Ser	Pro	Arg	Asp 295	Trp	Gln	Arg	Leu	Ile 300	Asn	Asn	Asn	Trp
25		Gly 305	Phe	Arg	Pro	Lys	Lys 310	Leu	Asn	Phe	Lys	Leu 315	Phe	Asn	Ile	Gln	Val 320
30		Lys	Glu	Val	Thr	Gln 325	Asn	Азр	GЉ	Thr	Thr 330	Thr	Ile	Ala	Asn	Asn 335	Leu
		Thr	Ser	Thr	Val 340	Gln	Val	Phe	Thr	Asp 345	Ser	Glu	Tyr	Gln	Leu 350	Pro	Tyr
35		Val	Leu	Gly 355	Ser	Ala	His	Gln	360 Gly	Суз	Leu	Pro	Pro	Phe 365	Pro	Ala	Asp
40		Val	Phe 370	Met	Ile	Pro	Gln	Tyr 375	Gly	Tyr	Leu		Leu 380	Asn	neA	Gly	Ser
		Gln 385	Ala	Val	Gly	Arg	Ser 390	Ser				Leu 395		Tyr	Phe		Ser 400
45		Gln	Met	Leu	Arg	Thr 405	Gly	Asn .	Asn	Phe	Thr 410	Phe	Ser	Tyr	Thr	Phe 415	Glu
50		Asp ·	Val	Pro	Phe 420	His	Ser	Ser		Ala 425	His	Ser (Gln	Ser	Leu 430	Asp	Arg
	:	Leu	Met	Asn 435	Pro	Leu	Ile .	qeA	Gln '	Tyr	Leu	Tyr '		Leu 445	Ser	Lys	Thr
55																	

	G1	in Gl 45	y Th	ır Se	er Gl	ly Tì	or Th	r G1	.n G]	ln Se	r Ar	g Le 46	u G1 0	n Pi	ne A	sn Gl
5	A1 46	.a Gl 5	y Pr	o Se	r se	r Me 47	t Al	a Gl	n Gl	n Al	a Ly:	з А. з: 5	n Tr	p Le	eu Pr	:0 Gly 480
10	Pr	o Se	г ту	r Ar	g Gl 48	n Gl 5	n Ar	g Me	t Se	r Ly: 49		r Ale	a As	n As	p As 49	n Asn 5
	As	n Se:	r Gli	2 Ph 50	e Al 0	a Tr	p Th	r Ala	a Al 50	a Thi	. Lys	з Туг	Ty:	r Pr 51		n Gly
15	Ar	g Ası	515	Lei	u Vaj	l As	n Pro	520	y Pro	o Pro	Met	: Ala	Se: 525	r Hi	s Ly	s Asp
20	ge.A	530	ı Glu	Lys	з Туг	r Phe	9rc 535	Met S	: His	Gly	' Asn	Leu 540	Ile	Phe	e Gly	/ Lys
	Glr 545	a Gly	Thr	GJ	Thr	Thr 550	Asn	Val	Asp	Ile	Glu 555	Ser	Val	Let	ı Ile	Thr 560
25	Asp	Glu	Glu	Glu	11e 565	Arg	Thr	Thr	Asn	Pro 570	Val	Ala	Thr	Glu	Glr 575	Tyr
30	Gly	Gln	·Val	Ala 580	Thr	Asn	. Arg	Gln	Ser 585	Gln	neA	Thr	Thr	Ala 590		Tyr
	Gly	Ser	Val 595	Asp	Ser	Gln	Gly	Ile 600	Leu	Pro	Gly	Met	Val 605	Trp	Gln	Asp
35	Arg	Asp 610	Val	Tyr	Leu	Gln	Gly 615	Pro	Ile	Trp	Ala	Lys 620	Thr	Pro	His	Thr
40	Asp 625	Gly	His	Phe	His	Pro 630	Ser	Pro	Leu	Met	Gly 635	Gly	Phe	Gly	Leu	Lys 640
	His	Pro	Pro	Pro	Gln 645	Ile	Leu	Ile	Lys	Asn 650	Thr	Pro	Val	Pro	Ala 655	Asn
45	Pro		Thr	Thr 660	Phe	Thr	Pro	Gly	Lys 665	Phe .	Ala :	Ser	Phe	Ile 670	Thr	Gln
50	Tyr	Ser		Gly	Gln	Val	Ser	Val 680	Glu	Ile (Slu :		Glu 685	Leu	Gln	Lys
	Glu .	Asn : 690	Ser :	Lys	Arg	Trp	Asn : 695	Pro (Glu	Ile (Sln 9	ryr :	Thr :	Ser	Asn	Tyr
<i>5</i> 5																

		Asn 705		Ser	Val	Asn	Val 710	Glu	Phe	Thr	Val	Asp 715	Ala	Asn	Gly	Val	Tyr 720
5		Ser	Glu	Pro	Arg	Pro 725	Ile	Gly	Thr	Arg	Tyr 730	Leu	Thr	Arg	neA	Leu 735	
10	<210> 70 <211> 73: <212> PR <213> cap	T	otein	of AA'	V serc	otype,	clone	AAV2									`
15	<400> 70				•												
		Met 1	Ala	Ala	Ąsp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Thr	Leu 15	Ser
20		Glu	GΊγ	Ile	Arg 20	Gln	Trp	Trp	Lys	Leu 25	Lys	Pro	Gly	Pro	Pro 30	Pro	Pro
25		Lys	Pro	Ala 35	Glu	Arg	His	Lys	Asp 40	Asp	Ser	Arg	Gly	Leu 45	Val	Leu	Pro
		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA	Gly	Leu	Asp 60	Гуз	ely	Glu	Pro
30	•	Val 65	Asn	Glu	Ala	qeA	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	туг	Asp 80
35		Arg	Gln	Leu	Asp	Ser 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Lys	Tyr	Asn	His 95	Ala
		Asp	Ala	Glu	Phe 100	Gln.	Glu	Arg	Leu	Lys 105	Glu	qeA	Thr	Ser	Phe 110	GJĀ	Gly
40		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
45		Геп	Gly 130	Leп	Val	Glu		Pro 135	Val	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
50		Pro 145	Val	Glu	His		Pro 150	Val	Glu	Pro	Asp	ser 155	Ser	Ser	Gly	Thr	Gly 160
		Lys	Ala	Gly		Gln 165	Pro	Ala	Α±g		Arg 170	Leu .	Asn	Phe	Gly	Gln 175	Thr
55		Gly .	qeA		Asp 180	Ser '	Val	Pro		Pro 185	Gln	Pro :	Leu (Gly	Gln 190	Pro	Pro

	Ala	a Ala	Pro 195		Gly	Leu	Gly	Thr 200		Thr	Met	Ale	205		/ Ser	Gly
5	Ala	Pro 210		Ala	qeA	Asn	Asn 215		. Gly	Ale	qe <i>A</i>	Gly 220		G13	/ Asn	Ser
10	Ser 225	Gly	Asn	Trp	His	Cys 230	_	Ser	Thr	Trp	Met 235		Asp	Arg	Val	Ile 240
_	Thr	Thr	Ser	Thr	Arg 245		Trp	Ala	Leu	Pro 250		Tyr	neA	Asn	His 255	
15	Tyr	Lys	Gln	Ile 260	Ser	Ser	Gln	Ser	Gly 265		Ser	Asn	Asp	Asn 270		туг
20	Phe	Gly	Tyr 275		Thr	Pro	Trp	Gly 280		Phe	Asp	Phe	Asn 285	•	Phe	His
25	СУз	His 290		Ser	Pro	Arg	Asp 295	Trp	Gln	Arg	Leu	Ile 300	Asn	Asn	Asn	Trp
-	Gly 305	Phe	Arg	Pro	Lys	Arg 310	Leu	Asn	Phe	Lys	Leu 315	Phe	neA	Ile	Gln	Val 320
30	Lys	Glu	Val	Thr	Gln 325	Asn	Asp	Gly	Thr	Thr 330	Thr	Ile	Ala	Asn	Asn 335	Leu
35	Thr	Ser	Thr	Val 340	Gln	Val	Phe	Thr	Азр 345	Ser	Glu	Туг	Gln	Leu 350	Pro	Tyr
	Val	Leu	Gly 355	Ser	Ala	His	Gln	360 Gly	Суз	Leu	Pro	Pro	Phe 365	Pro	Ala	Asp
40	Val	Phe 370	Met	Val	Pro	Gln	Tyr 375	Gly	Tyr	Leu	Thr	Leu 380	Asn	Asn	Gly	Ser
45	Gln 385	Ala	Val	Gly	Arg	Ser 390	Ser	Phe	Tyr	Cys	Leu 395	Glu	Tyr	Phe	Pro	Ser 400
	Gln	Met	Leu	Arg	Thr 405	Gly	Asn	Asn	Phe	Thr 410	Phe	Ser	Tyr	Thr	Phe 415	Glu
50	Asp	Val	Pro	Phe 420	His	Ser	Ser	Tyr	Ala 425	His	Ser	Gln	Ser	Leu 430	Asp	Arg
55	Leu	Met	Asn 435	Pro	Leu	Ile	qsA	Gln 440	Tyr	Leu	Tyr	Tyr	Leu 445	Ser	Arg	Thr

5	Ası	450		Ser	Gly	Th	455		r Glr	n Sei	. Arg	460		n Phe	e Se	r Gln
·	Ala 465	Gly	/ Ala	s Ser	qeA	470		, Ası	Glr	1 Ser	475		Tr) Lev	ı Pro	6ly 480
10	Pro	Cys	Туг	Arg	Gln 485		Arg	Va]	Ser	Lys 490		`Ser	: Ala	l Asp	Ası 495	n Asn
15	Asn	Ser	Glu	Tyr 500	Ser	Trp	Thr	Gly	Ala 505		Lys	Tyr	His	510		Gly
	Arg	Asp	Ser 515	Leu	Val	Asn	Pro	Gly 520		Ala	Met	Ala	Ser 525		Lys	Asp
20	Asp	Glu 530		Lys	Phe	Phe	Pro 535	Gln	Ser	Gly	Val	Leu 540		Phe	Gly	Lys
25	Gln 545	Gly	Ser	Glu	Lys	Thr 550	neA	Val	Asp	Ile	Glu 555	Lys	Val	Met	Ile	Thr 560
					565					570					575	Tyr
30				580					585					590	•	Thr
35			595					600					605			Asp
		610					615					620				Thr
40	625			Phe		630					635			_		640
15				Pro	645					650					655	
				Thr 660					665					670		
			675	Gly				680					685			
5	Glu	Asn 690	Ser	Lys	Arg		Asn 695	Pro	Сĵπ	Ile		Tyr 700	Thr	Ser	Asn	Tyr

															•		
		Asn 705	Lys	Ser	Val	Asn	710	Asp	Phe	Thr	Val	Asp 715	Thr	neA	e1A	Val	Tyr 720
5		Ser	Glu	Pro	Arg	Pro 725	Ile	Gly	Thr	Arg	Tyr 730	Leu	Thr	Arg	Asn	Leu 735	
10	<210> <211> <212> <213>	736 PRT	prote	in of A	\ AV s∈	erotyp	e, clo:	ne AA\	V 3								
15	<400>	71															
20																	
25																	
30											·						

	Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	neA o	· Leu 15	Ser
5	Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Ala	Leu 25	Lys	Pro	Gly	Val	. Pro 30	Gln	Pro
10	Lys	Ala	Asn 35	Gln	Gln	His		Азр 40	Asn	Arg	Arg	Gly	Leu 45	Val	Leu	Pro
	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Gly	Asn	Gly	Leu	Asp 00	Lys	Gly	Glu	Pro
15	Val 65	Asn	Glu	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 08
20	Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Lys	Tyr	Asn	His 95	Ala
	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
25	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Ile 125	Leu	Glu	Pro
30	Leu	Gly 130	Leu	Val	Glu	Glu	Ala 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Gly
	Ala 145	Val	qeA	Gln	Ser	Pro 150	Gln	Glu	Pro	qeA	Ser 155	Ser	Ser	Gly	Val	Gly 160
35	Lys	Ser	Gly	Lys	Gln 165	Pro	Ala	Arg		Arg 170	Leu	Asn	Phe	Gly	Gln 175	Thr
40	Gly	Asp	Ser	Glu 180	Ser	Val	Pro		Pro 185	Gln	Pro	Leu	Gly	Glu 190	Pro	Pro
	Ala	Ala	Pro 195	Thr	Ser	Leu		Ser 200	neA	Thr	Met	Ala	Ser 205	Gly	Gly	Gly
45																

5		Ala	210		t Ala	As)	Asr	215		u G1;	y Ala	a Ası	220 220		. Gly	/ Ası	n Ser
		Se: 225		/ Asi	Trp	His	230		Se1	Glr	n Trp	235		/ Asp	Arg	y Val	l Ile 240
10		Thi	`Thr	. Sei	Thr	245		Trp	Ala	a Leu	250		Tyr	: Asn	Asr	His 255	s Leu 5
15		Tyr	. Lys	Glr	11e 260	Ser	Ser	Gln	Ser	Gly 265		. Ser	Asn	Asp	Asn 270		Tyr
		Phe	Gly	Tyr 275		Thr	Pro	Trp	Gly 280		Phe	Asp	Phe	Asn 285		Phe	His
20		Cys	His 290	Phe	Ser	Pro	Arg	Asp 295		Gln	Arg	Leu	Ile 300	Asn	Asn	Asn	Trp
25		Gly 305	Phe	Arg	Pro	Lys	Lys 310	Leu	Ser	Phe	Lys	Leu 315		Asn	Ile	Gln	Val 320
		Arg	Gly	Val	Thr	Gln 325	Asn	Asp	Gly	Thr	Thr 330	Thr	Ile	Ala	Asn	Asn 335	Leu
30	٠	Thr	Ser	Thr	Val 340	Gln	Val	Phe	Thr	Asp 345	Ser.	Glu	Tyr	Gln	Leu 350	Pro	Tyr
35		Val	Leu	Gly 355	Ser	Ala	His	Gln	Gly 360	Суз	Leu	Pro	Pro	Phe 365	Pro	Ala	Asp
		Val	Phe 370	Met	Val	Pro	Gln	Tyr 375	Gly	Tyr	Leu	Thr	Leu 380	Asn	Asn	Glý	Ser
40		Gln 385	Ala	Val	Gly	Arg	Ser 390	Ser	Phe	Tyr	Cys	Leu 395	Glu	Tyr	Phe	Pro	Ser 400
45		Gln	Met	Leu	Arg	Thr 405	Gly	Asn	neA	Phe	Gln 410	Phe	Ser 	Tyr	Thr	Phe 415	Glu
		Asp	Val	Pro	Phe 420	His	Ser '	Ser	Tyr	Ala 425	His	Ser	Gln	Ser	Leu 430	Asp	Arg
50	÷	Leu	Met	Asn 435	Pro	Leu	Ile		Gln 440	Tyr	Leu	Tyr		Leu 445	Asn	Arg	Thr
55		Gln	Gly 450	Thr	Thr	Ser	Gly	Thr '	Thr	Asn	Gln	Ser	Arg 460	Leu	Leu	Phe	Ser

5		46		a G1;	y PIC	9 611	470		. 56.	r Dei	u GI	475		g Asi	a TI	р те	480
		G1;	y Pro	C C ys	з Туг	485		Glr	a Arq	g Let	1 Se:		Th:	r Ala	a Ası	n Asp 495	
10		Ası	n Asr	n Sez	500		Pro	Trp	Thi	505		s Sez	Lys	з Туг	His 510		ı Asn
15	-	Gly	/ Arg	1 Asp 515	Ser	Leu	Val	. Asn	520		Pro	Ala	Met	Ala 525		: His	Lys
		Asp	530	Glu	Glu	Lys	Phe	Phe 535		Met	: His	Gly	7 Asn 540		Ile	Phe	ely
20		Lys 545	Glu	Gly	Thr	Thr	Ala 550		Asn	Ala	Glu	Leu 555		Asn	Val	Met	Ile 560
25		Thr	qeA	Glu	Glu	Glu 565	Ile	Arg	Thr	Thr	Asn 570		Val	Ala	Thr	Glu 575	Gln
		Tyr	Gly	Thr	Val 580	Ala	Asn	Asn	Leu	Gln 585	Ser	Ser	Asn	Thr	Ala 590	Pro	Thr
30		Thr	Gly	Thr 595	Val	aeA	His	Gln	Gly 600	Ala	Leu	Pro	Gly	Met 605	Val	Trp	Gln
35		Asp	Arg 610	Asp	Val	Tyr	Leu	Gln 615	Gly	Pro	Ile	Trp	Ala 620	Lys	Ile	Pro	His
		Thr 625	qeA	Gly	His	Phe	His 630	Pro	Ser	Pro	Leu	Met 635	GJĀ	Gly	Phe	ely	Leu 640
40		Lys	His	Pro	Pro	Pro 645	Gln	Ile	Met	Ile	Lys 650	Asn	Thr	Pro	Val	Pro 655	Ala
45		Asn	Pro	Pro	Thr 660	Thr	Phe	Ser		Ala 665		Phe	Ala	Ser	Phe 670	Ile	Thr
		Gln	Tyr	Ser 675	Thr	Gly	Gln	Val	Ser 680	Val	Glu	Ile	Glu	Trp 685	Glu	Leu	G1n
50		Lys	Glu 690	Asn	Ser	Lys		Trp 6 9 5	Asn	Pro	Glu		Gln 700	Tyr	Thr	Ser	Asn
55		Tyr 705	neA	Lys	Ser '	Val	Asn 710	Val	Asp	Phe	Thr	Val 715	qeA	Thr	Asn	_	Val 720

Tyr Ser Glu	Pro Arg Pr	o Ile Gly T	hr Arg Tyr Leu	Thr Arg Asn Leu
	725		730	7 3 5

	<211> <211> <212>	737 PRT	1					0 0									
10	<213> <400>		prote	ein ot <i>F</i>	WV,S6	erotyp	e, clor	ne 3.31	OVP1								
15		Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	. Pro	Ąsp	Trp 10	Leu	Glu	qeA :	Asn	Leu 15	Ser
20		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Ąsp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
20		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asn	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
25		Gly	Туг 50	Lys	Tyr	Leu	Gly	Pro S5	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
3 <i>0</i>		Val 65	neA	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
		Gln	Gln	Leu	neA	Ala 85	Gly	qeA	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
35		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
10		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
	-	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Ala	Lys	Lys	Arg
15		Pro 145	Val	Glu	Pro	Ser	Pro 150	Gln	Arg	Ser	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
50		Gly	Lys	Lys	Gly	Gln 165	Gln	Pro	Ala	.Arg	Lys 170	Arg	Leu	Asn	Phe	Gly 175	Gln
		Thr	Gly	qeA	Ser 180	Glu	Ser	Val	Pro	Asp 185	Pro	Gln	Pro	Leu	Gly 190	Glu	Pro
55		Pro	Ala	Ala 195	Pro	Ser	Ser	Val	Gly 200	Ser	Gly	Thr	Val	Ala 205	Ala	GŢĀ	Gly

		Gl	y Ala 210	A Pro	Met	= Ala	ı Ası	215		n Gl	u Gly	Y Ala	220		y Va:	l Gli	reA v
5		Ala 225	a Sei	: Gly	/ Asr	Tr	230		e Asi	Se:	r Thu	235		ı Gl	ley A	P Arg	7 Val 240
10	,	Ile	Thr	Thr	: Ser	Thi 245		Thr	Tr	LA c	a Lev 250		r Thi	ту	: Asr	Asr 255	
		Lev	Tyr	Glu	Gln 260	Ile	Ser	Ser	Glu	265		Gly	/ Sei	The	270	Asp	ne.A
15 .		Thr	Tyr	Phe 275	Gly	Tyr	Ser	Thr	Pro 280		Gly	Tyr	Phe	285		: Asn	Arg
20		Phe	His 290	СУЗ	His	Phe	Ser	Pro 295		Asp	Trp	Gln	Arg 300		Ile	. Asn	Asn
		Asn 305	Trp	Gly	Phe	Arg	Pro 310	Lys	Lys	Leu	Arg	Phe 315		Leu	Phe	Asn	Ile 320
25		Gln	Val	Lys	Glu	Val 325	Thr	Thr	Asn	Asp	Gly 330	Val	Thr	Thr	Ile	Ala 335	Asn
30		Asn	Leu	Thr	Ser 340	Thr	Ile	Gln	Val	Phe 345		qeA	Ser	Glu	Tyr 350	Gln	Leu
		Pro	Tyr	Val 355	Leu	ejà	Ser	Ala	His 360	Gln	Gly	Суз	Leu	Pro 365	Pro	Phe	Pro
35		Ala	Asp 370	Val	Phe	Met	Ile	Pro 375	Gln	Tyr	Gly	Tyr	Leu 380	Thr	Leu	лея	пеA
40		Gly 385	Ser	Gln	Ser	Val	Gly 390	Arg	Ser	Ser	Phe	Tyr 395	Суз	Leu	Glu	Tyr	Phe 400
		Pro	Ser	Gln	Met	Leu 405	Arg	Thr	Gly	Asn	Asn 410	Phe	Glu	Phe	Ser	Tyr 415	
45		Phe	Glu	Asp	Val 420	Pro	Phe	His	Ser	Ser 425	Tyr	Ala	His	Ser	Gln 430	Ser	Leu
50		Asp	Arg	Leu 435	Met	neA	Pro	Leu	Ile 440	qeA	Gln	Tyr	Гөп	Tyr 445	Tyr	Leu	Ala
		Arg	Thr 450	Gln	Ser	Asp	Pro	Gly 455	Gly	Thr	Ala		Asn 460	Arg	Glu	Leu	Gln
55																	

5	Phe 465		: Gln	Gly	. elà	470		Th:	Met	: Ala	475		1 Ala	Lys	: Ası	1 Trp 480
	Leu	Pro	Gly	Pro	Cys 485		Arg	Glr	a Glr	490		. Ser	: Lys	Thr	195	a Asp
10	Gln	Asn	neA ı	Asn 500		Asn	Phe	Ala	Trp 505		Gly	Ala	Thr	Lys 510		His
15	Leu	Asn	61y 515		Asn	Ser	Leu	Val 520		Pro	Gly	Val	Ala 525		Ala	Thr
	His	Lys 530		qeA	Glu	qeA	Arg 535	Phe	Phe	Pro	Ser	Ser 540	_	Val	Leu	Ile
20	Phe 545		Lys	Thr	GJy	Ala 550		neA	Lys	Thr	Thr 555	Leu	Glu	Asn	Val	Leu 560
25	Met	Thr	Asn	Glu	Glu 565	Glu	Ile	Arg	Pro	Thr 570		Pro	Val	Ala	Thr 575	Glu
•	Glu	Tyr	Gly	Ile 580	Val	Ser	Ser	asA	Leu 585	Gln	Ala	Ala	Asn	Thr 590	Ala	Ala
30	Gln	Thr	Gln 595	Val	Val	neA	Asn	Gln 600	Gly	Ala	Leu	Pro	Gly 605	Met	Val	Trp
35	Gln	Asn 610	Arg	Asp	Val	Tyr	Leu 615	Gln	Gly	Pro	Ile	Trp 620	Ala	Lys	Ile	Pro
	His 625	Thr	Asp	Gly	Asn	Phe 630	His	Pro	Ser	Pro	Leu 635	Met	СſÀ	вĵу	Phe	Gly 640
40	Leu	Lys	His	Pro	Pro 645	Pro	Gln	Ile	Leu	Ile 650	Lys	Asn	Thr	Pro	Val 655	Pro
45	Ala	Asn	Pro	Pro 660	Glu	Val	Phe	Thr	Pro 665	Ala	Lys	Phe	Ala	Ser 670	Phe	Ile
	Thr	Gln	Tyr 675	Ser	Thr	Gly	Gln	Val 680	Ser	Val	Glu	Ile	Glu 685	Trp	Glu	Leu
	Gln	Lys 690	Glu	Asn	Ser	Lys	Arg 695	Trp	qeA	Pro	Glu	Ile 700	Gln	Tyr	Thr	Ser
55	Asn 705	Phe	G1u	Lys	Gln	Thr 710	Gly	Val	Asp	Phe	Ala 715	Val	Asp	Ser	Gln	Gly 720

		Va:	l Ty:	r Se.	r Glu	725		g Pr	o Il	e Gl	y Th 73	-	g Ty	r Le	u Thi	73:	Asn S
5		Lei	7														
10	<210><211><211><212><213>	644 PRT	d prote	ein of	AAV s	erotyp	oe, clo	ne 22	` 3-4								
15	<400>	73															
		Lys 1	Ala	Туг	ge <i>A</i> :	Gln 5	Gln	Lev	Ly:	Ala	Gly 10	Asp	Asn	Pro	Tyr	Leu 15	Arg
20		туг	Asn	. His	Ala 20	Asp	Ala	Glu	Phe	Gln 25	Glu	Arg	Leu	Gln	Glu 30	Asp	Thr
25		Ser	Phe	Gly 35	Gly	Asn	Leu	Gly	Arg 40	Ala	. Val	. Phe	Gln	Ala 45	Lys	Lys	Arg
		Val	Leu 50	Glu	Pro	Leu	Gly	Leu 55	Val		Thr	Pro	Ala 60	Lys	Thr	Ala	Pro
30		Gly 65	Lys	Lys	Arg	Pro	Val 70	Дзр	Ser	Pro	qzA	Ser 75	Thr	Ser	Gly	Ile	80 GJ y
35		Lys	Lys	Gly	Gln	Gln 85	Pro	Ala	Lys	Lys	Arg 90	Leu	Asn	Phe	Gly	Gln 95	Thr
		Gly	Asp	Ser	Glu 100	Pro	Val	Pro	Asp	Pro 105	Gln	Pro	Ile	Gly	Glu 110	Pro	Pro
40		Ala	Gly	Pro 115	Ser	Gly	Leu	 Gly	Ser 120	Gly	Thr	Met	Ala	Ala 125	Gly	Gly	Gly
45		Ala	Pro 130	Met	Ala	qeA	aeA	Asn 135	G1u	GЉ	Ala	Asp	Gly 140	Val	Gly	Asn	Ala
	•	Ser 145	Gly	neA	Trp	His	Cys 150	Asp	Ser	Thr	Arg	Leu 155	Gly	Asp	Arg	Val	Ile 160
50	:	The	Thr	Ser	Thr	Arg 165	Thr	Trp	Ala	Leu	Pro 170	Thr	Tyr	Asn	Asn	His 175	Leu
55	,	Tyr	Lys	Gln	Ile 180	Ser .	Ser	Gln		Ala 185	Gly	Ser	Thr	Asn	Asp . 190	Asn	Val
	,	Tyr		Gly 195	Tyr	Ser (Phr	Pro	Trp 200	Gly	Tyr	Phe		Phe 205	Asn i	Arg	Phe

5	His	Cys 210		Phe	Ser	Pro	Arg 215		Trp	Gln	Arg	Leu 220	Ile	Asn	neA	Asn
	Trp 225		Phe	Arg	Pro	Lys 230		Leu	Asn	Phe	Lys 235	Leu	Phe	Asn	Ile	Gln 240
10	Val	Lys	Glu	Val	Thr 245		Asn	qėA	Gly	Val 250		Thr	Ile	Ala	Asn 255	Asn
15	Leu	Thr	Ser	Thr 260	Val	Gln	Val	Phe	Ser 265	qeA	Ser	Glu	Tyr	Gln 270	Leu	Pro
	Tyr	Val	Leu 275	Gly	Ser	Ala	His	Gln 280	Gly	Cys	Leu	Pro	Pro 285	Phe	Pro	Ala
20	Asp	Val 290	Phe	Met	Ile	Pro	Gln 295	Tyr	Gly	Tyr	Leu	Thr 300	Leu	asA	Asn	Gly
25	Ser 305		Ser	Val	GΊΥ	Arg 310	Ser	Ser	Phe	Tyr	Cys 315	Гел	eĵп	Tyr	Phe	Pro 320
	Ser	Gln	Met	Leu	Arg 325	Thr	Gly	Asn	Asn 	Phe 330	Thr	Phe	Ser	Tyr	Thr 335	Phe
30	Glu	Asp	Val	Pro 340	Phe	His	Ser	Ser	Tyr 345	Aļa	His	Ser	Gln	ser 350	Leu	Gly
35			355	Asn				360					365			
		370		Asn			375					380				
	385			Gly		390					395					400
45	Pro	Gly	Pro	Суз	Phe 405	Arg	Gln	Gln	Arg	Val 410	Ser	Lys	Thr	Leu	Asp 415	Gln
· · · · · · · · · · · · · · · · · · ·	Asn	Asn	Asn	Ser 420	Asn	Phe	Ala	Trp	Thr 425	Gly	Ala	Thr	Lys	Tyr 430	His	Leu
50	Asn	Gly	Arg 435	asa	Ser	Leu	Val	Asn 440	Pro	Gly	Val	Ala	Met 445	Ala	Thr	His
55	Lys	Asp 450	qeA	Glu	Glu	Arg	Phe 455	Phe	Pro	Ser	Ser	Gly 460	Val	Leu	Ile	Phe

5		Gly 465		Thr	Gly	Ala	Ala 470		Lys	Thr	Thr	Leu 475		Asn	Val	Leu	Met 480
		Thr		GJ <i>n</i>	G1u	Glu 485	Ile	Arg	Pro	Thr	Asn 490	Pro	Val	Ala	Thr	Glu 495	G]π
10		Tyr			Val 500	Ser	Ser	Asn	Leu	Gln 505	Ala	Ala	Ser	Thr	Ala 510	Ala	Gln
15		Thr	Gln	Val 515		Asn	Asn	Gln	Gly 520	Ala	Leu	Pro	Gly	Met 525	Val	Trp	Gln
		Asn	Arg 530	Ąsp	Val	Tyr	Leu	Gln 535	Gly	Pro	Ile	Trp	Ala 540	Lys	Ile	Pro	His
20		Thr 545	Asp	Gly	Asn		His 550	Pro	Ser	Pro	Leu	Met 555	Gly	eīà	Phe	Gly	Leu 560
25		Lys	His	Pro	Pro	565	Gln	Ilė	Leu	Ile	Lys 570	Asn	Thr	Pro	Val	Pro 575	Ala
		Asn	Pro	Pro	Glu 580	Val	Phe	Thr	Pro	Ala 585	Lys	Phe	Ala	Ser	Phe 590	Ile	Thr
30		Gln	Tyr	Ser 595	Thr	Gly	Gln	Val	ser 600	Val	Glu	Ile	Glu	Trp 605	Glu	Leu	Gln
35		Lys	Glu 610	Asn	Ser	Lys	Arg	Trp 615	Asn	Pro	Glu	Ile	Gln 620	Tyr	Thr	Ser	Asn
		Phe 625	Asp	Lys	Gln	Thr	Gly 630	Val	Asp	Phe	Ala	Va1 635	Asp	Ser	Gln	Gly	Val 640
40		Tyr	Ser	Glu	Pro												
45	<210> 74 <211> 64 <212> PR <213> cap	T	otein d	of AA\	/ sero	type, c	cione :	223.5		•							

<400> 74

50

55

		Lys 1	Ala	Tyr	Asp	Gln 5	Gln	Leu	Lys	Ala	Gly 10	Asp	Asn	Pro	Tyr	Leu 15	Arg
5		Tyr	neA	His	Ala 20	qeA	Ala	Glu	Phe	Gln 25	Glu	Arg	Leu	Gln	Glu 30	Asp	Thr
10	٠.	Ser	Phe	Gly 35	Gly	Asn	Leu	Gly	Arg 40	Ala	Val	Phe ,	Gln	Ala 45	Lys	Lys	Arg
15																	
20																	
25																	
30																	
35																	
40																	
45																	
50	,																
55																	

Gly Lys Lys Arg Pro Val Asp Ser Pro Asp Ser Thr Ser Gly Ile Gly 65 Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 85 Gly Asp Ser Glu Pro Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 100 Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly 115 Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly 115 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 130 Ser Gly Asn Trp His Cys Asp Ser Thr Arg Leu Gly Asp Arg Val Ile 145 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 160 Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn Val 180 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 195 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Asn 210 Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln 225 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 270 Tyr Val Leu Gly Ser Ala His Gly Cly Cyr Val Thr Thr Ile Ala Asn Asn 245 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 270 Tyr Val Leu Gly Ser Ala His Gly Cyr Val Dyn Dan Asn Cyr Cyr Val Leu Fro 270 Tyr Val Leu Gly Ser Ala His Gly Cyr Val Dyn Dyn Dyn Dyn Cyr Cyr Cyr Val Leu Fro 270	5	Vē	al Le 50	eu G]	lu Pr	o Le	u Gl	y Le 55	u Va	l Gl	u Th	r Pr	60	a Ly	s Th	r Al	a Pr
Gly Asp Ser Glu Pro Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 100 115 Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly 115 Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Gly 115 135 130 Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 130 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 130 Asn Trp His Cys Asp Ser Thr Arg Leu Gly Asp Arg Val Ile 145 155 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 165 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 170 Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn Val 186 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 195 Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Asn Asn 210 Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln 225 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 265 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 270 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Pro Pro Ala 275 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 280 Nal Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly	3	G1 65	y Ly	s Ly	's Ar	g Pr	0 Va 70	l As	p Se	r Pro	o Ası	9 Se	r Thi	r Se	r Gl	y Il	
Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly 115 Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly 125 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 130 Ser Gly Asn Trp His Cys Asp Ser Thr Arg Leu Gly Asp Arg Val Ile 145 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 170 Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn Val 180 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 195 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn 220 Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln 225 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 245 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 270 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 285 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly	10	Ly	's Ly	s Gl	y Gl	n Gli 85	n Pr	o Ala	a Ly:	s Lys	a Arg	, Leu	reA ı	n Phe	e Gl		n Thi
Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly 115	15	Gl	у Аз	p Se	r Gli 100	Pro	Va:	l Pro	geA o	Pro 105	Gln	Pro	lle	: Gl			o Pro
Ser Gly Asn Trp His Cys Asp Ser Thr Arg Leu Gly Asp Arg Val Ile 145 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 175 Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn Val 180 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 195 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Asn 210 Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln 225 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 255 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 265 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 285 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly		Ala	a Gl	y Pro	o Ser 5	: Gly	Let	ı Gly	7 Ser 120	Gly	Thr	Met	Ala			y Gly	y Gly
The The Ser The Arg The Trp Ala Leu Pro The Tyr Asn Asn His Leu 175 Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser The Asn Asn Arg Phe 185 Tyr Phe Gly Tyr Ser The Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 195 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Asn 2210 Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln 225 Val Lys Glu Val The The Asn Asp Gly Val The The Ile Ala Asn Asn 245 Leu The Ser The Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 270 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 280 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu The Leu Asn Asn Gly	20	Ala	130	Me1	Ala	qsA	Asn	Asn 135	Glu	Gly	Ala	Asp	Gly 140	Val	. Gly	/ Asr	Ala
Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn Val 180 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 205 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Asn Gly Val Leu Asn Asn Gly Phe Asp Val 220 Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln 240 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 255 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 260 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly	25	Ser 145	Gly	Asr	Trp	His	Cys 150	qeA	Ser	Thr	Arg	Leu 155	Gly	qeA	Arg	Val	
Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Ash Arg Phe 195 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Ash Ash Ash Ash 210 Trp Gly Phe Arg Pro Lys Lys Leu Ash Phe Lys Leu Phe Ash Ile Gln 225 Val Lys Glu Val Thr Thr Ash Asp Gly Val Thr Thr Ile Ala Ash Ash 245 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 260 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 280 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Ash Ash Gly		Thr	Thr	Ser	Thr	Arg 165	Thr	Trp	Ala	Leu	Pro 170	Thr	Tyr	neA	Asn		
His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln 225 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 255 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 260 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 285 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly	30	Tyr	Lys	Gln	Ile 180	Ser	Ser	Gln	Ser	Ala 185	GΊγ	Ser	Thr	Asn			Val
His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Asn 210 Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln 225 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 255 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 270 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 285 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly	35	Tyr	Phe	Gly 195	Tyr	Ser	Thr	Pro	Trp 200	Gly	Tyr	Phe	qeA		ae A	Arg	Phe
Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 255 Leu Thr Ser Thr Val Gln Val Fhe Ser Asp Ser Glu Tyr Gln Leu Pro 260 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 285 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly		His	Cys 210	His	Phe	Ser	Pro	Arg 215	Asp	Trp	Gln	Arg	Leu 220	Ile	Asn	Asn	Asn
Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 260 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 275 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly	40	Trp 225	Gly	Phe	Arg	Pro	Lys 230	Lys	Leu	Asn	Phe	Lys 235	Leu	Phe	Asn	Ile	
Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 260 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 275 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly	45	Val	Lys	Glu	Val	Thr 245	Thr	Asn	Asp	Gly	Val ' 250	Thr	Thr	Ile	Ala		Asn
Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly	.•	Leu	Thr	Ser	Thr 260	Val	Gln	Val	Phe	Ser 2 265	Asp :	Ser (slu '			Leu	Pro
Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly	50	Tyr	Val	Leu 275	Gly	Ser 2	Ala	His	Gln (280	Gly (Cys I	Leu 1			Phe	Pro	Ala
		qeA	Val 290	Phe	Met	Ile :	Pro	Gln : 295	Tyr	Gly 7	Tyr I			Leu i	Asn.	Asn	Gly

	Ser 305		Ser	Val	Gly	Arg 310		Ser	Phe	Tyr	315		Glu	Tyr	Phe	320
5	Ser	Gla	Met	Leu	Arg 325		Gly	Asn	Asn	Phe 330		Phe	Ser	Tyr	Thr 335	Phe
10	Glu	qeA	Val	Pro 340		His	Ser	Ser	Tyr 345		His	Ser	·Gln	Ser 350		Gly
15	Arg	Leu	Met 355	Asn	Pro	Leu	Ile	Asp 360	Gln	Tyr	Leu	Tyr	Tyr 365	Leu	Ala	Arg
	Thr	Gln 370	Ser	Asn	Ala	Gly	Gly 375	Thr	Ala	Gly	Asn	Arg 380	Glu	Leu	Gln	Phe
20	Tyr 385		Gly	Gly	Pro	Thr 390	Thr	Met	Ala	Glu	Gln 395	Ala	Lys	Asn	Trp	Leu 400
25	Pro	Gly	Pro	Суз	Phe 405	-	Gln	Gln	Arg	Val 410	Ser	Lys	Thr	Leu	Asp 415	Gln
	aeA	Asn	Asn	Ser 420	Asn	Phe	Ala	Trp	Thr 425	Gly	Ala	Thr	Lys	Tyr 430	His	Leu
30	Asn	Gly	Arg 435		Ser	Leu	Val	Asn 440	Pro	Сĵу	Val	Ala	Met 445	Ala	Thr	His
<i>35</i>	Lys	Asp 450	Asp	Glu	Glu	Arg	Phe 455	Phe	Pro	Ser	Ser	Gly 460	Val	Leu	Ile	Phe
	Gly 465		Thr	Gly	Ala	Ala 470	Asn	Lys	Thr	Thr	Leu 475	Glu	Asn	Val	Leu	Met 480
40	Thr	Asn	Glu	Glu	Glu 485	Ile	Arg	Pro	Thr	Asn 490	Pro	Val	Ala	Thr	Glu 495	Glu
	Tyr	Gly	Ile	Val 500	Ser	Ser	Asn	Leu	Gln 505	Ala	Ala	Ser	Thr	Ala 510	Ala	Gln
	Thr	Gln	Val 515	Val	Asn	Asn	Gln	Gly 520	Ala	Leu	Pro	Сĵу	Met 525	Val	Trp	Gln
50	Asn	Arg 530	qeA	Val	Tyr	Leu	Gln 535	Gly	Pro	Ile	Trp	Ala 540	Lys	Ile	Pro	His
55	Thr 545	Asp	Gly	neA	Phe	His 550	Pro	Ser	Pro	Leu	Met 555	Gly	Gly	Phe	Gly	Leu 560

		Ly	s Hi	s Pr	o Pr	565		n Il	e Le	u Il	E Lys 570		n Th	r Pr	o Va	1 Pr 57	o Ala 5
5		Ası	n Pro	o Pr	0 Gl: 580	u Val	Phe	e Th	r Pr	585		Phe	a Ala	a Se	r Ph 59		e Thr
10		Glr	ту:	5 Se.	Thi	Gly	Glr	n Vaļ	L Sei 600		Glu	Ile	e Glu	60:		u Le	u Gln
		Lys	610	L Ası	n Ser	Lys	Arg	Trp 615	Asr	n Pro	Glu	Ile	Glr 620		Th	r Se	r Asn
15		Phe 625	Asp	Lys	Gln	Thr	630	Val	qeA .	Phe	Ala	Val 635	Asp	Ser	Glr	, el	7 Val 640
20		Tyr	Ser	Glu	Pro	,											
25	<210> 75 <211> 644 <212> PRT <213> capsid protein of AAV serotype, clone 223.10																
30	<220> <221> MISC_FEATURE <222> (434)(434) <223> can be any amino acid																
	<400> 75				·												
35		Lys 1	Ala	Tyr	Asp	Gln 5	Gln	Leu	Lys	Ala	Gly 10	qeA	Asn	Pro	Tyr	Leu 15	Arg
40		Tyr	Asn	His	Ala 20	Asp	Ala	Glu	Phe	Gln 25	Glu	Arg	Leu	Gln	Glu 30	Asp	Thr
		Ser	Phe	Gly 35	Gly	Asn	Leu	Gly	Arg 40	Ala	Val	Phe	Gln	Ala 45	Lys	Lys	Arg
45		Val	Leu 50	Glu	Pro	Leu	Gly	Leu 55	Val	Glu	Thr		Ala 60	Lys	Thr	Ala	Pro
						Dra 1	Va ì	Asn	Ser	Pro	Asp :	Ser '	Thr	Ser	G) v	Tle	C1
50	,	Gly 65	Lys	Lys	Arg		70	, iop				75			,	116	80 .
50	,				Gln		70			Lys .	•	75				Gln 95	80

5	Ala	ı Gly	Pro 115		: Gly	/ Leu	Gly	Ser 120		Thi	. Met	Ala	Ala 125		, el?	A CJA
	Ala	130		: Ala	Asp	Asn	135		Gly	/ Ala	Asp	Gly 140		Gly	Asr	Ala
10	Ser 145		Asn	Trp	His	Cys 150		Ser	Thr	Trp	Leu 155		Asp	Arg	Val	. Ile 160
15	Thr	Thr	Ser	Thr	Arg 165		Trp	Ala	Leu	Pro 170		Tyr	Asn	Asn	His 175	Leu
	Tyr	Lys	Gln	Ile 180	Ser	Ser	Gln	Ser	Ala 185		Ser	Thr	Asn	Asp 190		Val
20	Tyr	Phe	Gly 195		Ser	Thr	Pro	Trp 200	Gly	Tyr	Phe	qeA	Phe 205	Asn	Arg	Phe
25	His	Cys 210	His	Phe	Ser	Pro	Arg 215	Asp	Trp	Gln	Arg	Leu 220	Ile	neA	Asn	neA
	Trp 225	Gly.	Phe	Arg	Pro	Lys 230	Lys	Leu	Asn	Phe	Lys 235	Leu	Бре	neA	Ile	Gln 240
30	Val	Lys	Glu	Val	Thr 245	Thr	Asn	Asp	Gly	Val 250	Thr	Thr	Ile	Ala	Asn 255	Asn
35	Leu	Thr	Ser	Thr 260	Val	Gln	Val	Phe	Ser 265	Asp	Ser	Glu	Tyr	Gln 270	Leu	Pro
	Tyr	Val	Leu 275	Gly	Ser	Ala	His	Gln 280	Gly	Суз	Leu	Pro	Pro 285	Phe	Pro	Ala
40	qeA	Val 290	Phe	Met	Ile	Pro	Gln 295	Tyr	Gly	Tyr	Leu	Thr 300	Leu	Asn	nzA	Gly
45	ser 305	Gln	Ser	Val	Gly	Arg 310	Ser	Ser	Phe	Tyr	Cys 315	Leu	Gl u	Tyr	Phe	Pro 320
	Ser	Gln	Met	Leu .	Arg 325	Thr	Gly	Asn	Asn	Phe 330	Thr	Phe	Ser	Tyr	Thr 335	Phe
- ,	Glu	Ąsp	Val	Pro 340	Phe	His	Ser		Tyr 345	Ala	His:	Ser		Ser 350	Leu	Asp
55	Arg	Leu	Met 355	Asn	Pro	Leu		Asp 360	Gln	Tyr	Leu '		Tyr 365	Leu	Ala	Arg

5		Thr	Gln 370		Asn	Ala	Gly	Gly 375		Ala	Gly	Asn	Arg 380		Leu	Glr	Phe
		Tyr 385		Gly	Gly	Pro	390		Met	Ala	. Glu	Gln 395		Lys	neA	Trp	400
10		Pro	Gly	Pro	Cys	Phe 405	-	Gln	Gln	Arg			Lys	Thr	Leu	Asp 415	Gln
15		Asn	Asn	Asn	Ser 420		Phe	Ala	Trp	Thr 425	-	Ala	Thr	Lys	Tyr 430		Leu
		Asn	Xaa	Arg 435		Ser	Leu	Val	Asn 440		GJY	Val	Ala	Met 445	Ala	Thr	His
20		Lys	Asp 450	Asp	Glu	Glu	Arg	Phe 455	Phe	Pro	Ser	Ser	Gly 460	Val	Leu	Ile	Phe
25		Gly 465	Lys	Thr	Gly	Ala	Ala 470	Asn	Lys	Thr	Thr	Leu 475	Glu	Asn	Val	Leu	Met 480
		Thr	Asn	Glu	Glu	Glu 485	Ile	Arg	Pro	Thr	Asn 490	Pro	Val	Ala	Thr	Glu 495	Glu
30		Tyr	Gly	Ile	Val 500	Ser	Ser	Asn	Leu	Gln 505	Ala	Ala	Ser	Thr	Ala 510	Ala	Gln
35		Thr	Gln	Val 515	Val	Asn	Asn	Gln	Gly 520	Ala	Leu	Pro	GЉ	Met 525	Val	Trp	Gln
		Asn	Arg 530	Asp	Val	Tyr	Leu	Gln 535	Gly	Pro	Ile	Trp	Ala 540	Lys	Ile	Pro	His
40		Thr 545	Asp	Gly	Asn	Phe	His 550	Pro	Ser	Pro	Гел	Met 555	Gly	Gly	Phe	Gly	Leu 560
45		Lys	His	Pro	Pro	Pro 565	Gln	Ile	Leu	Ile	Lys 570	Asn	Thr	Pro	Val	Pro 575	Ala
	·	Asn	Pro	Pro	Glu 580	Val	Phe	Thr	Pro	Ala 585	Lys	Phe	Ala	Ser	Phe 590	Ile	Thr
50			Tyr	Ser 595	Thr	ely	Gln	Val	Ser 600	Val	Glu	Ile	Glu	Trp 605	Glu	Leu	Gln
55		Lys	Glu 610	Asn	Ser	Lys		Trp 615	neA	Pro	Glu	Ile	Gln 620	Tyr	Thr	Ser	neA

5		Phe 625		Lys	Gln	Thr	630		qeA .	Phe	: Ala	Val 635		Ser	Gln	Gly	Val 640
		Tyr	Ser	Glu	Pro												
10	<210> 76 <211> 644 <212> PRT <213> caps	id pro	tein of	f AAV	seroty	/pe, ci	ione 2	23.2									`
15	<400> 76		Ala	Tyr	qeA		Gln	Leu	Lys	Ala		Asp	neA	Pro	Tyr		Arg
20		1 Tyr	Asn	His	Ala 20	5 Asp	Ala	Glu	Phe	Gln 25	10 Glu	Суз	Leu	Gln	Glu 30	15 Asp	Thr
25 ·				35	_		Leu		40					45		-	
		•	50				Gly	55					60				
30		65					Val 70					75					80
35						85	Pro				90					95	
					ioo		Val			105					110		
40				115			Leu		120					125		_	_
45			130				Asn	135					140				
		145		•			Cys 150					155					160
50	,	Thr	Thr	Ser		Arg 165	Thr	Trp	Ala	Leu	Pro 170	Thr	Tyr	Asn	Asn	His 175	Leu
55		Tyr	Lys		Ile 180	Ser	Ser	Gln	Ser	Ala 185	Gly	Ser	Thr	Asn	Asp 190	neA	Val
		Tyr	Phe	Gly 195	Tyr	9er	Thr	Pro	Trp 200	Gly	Tyr	Phe	qeA	Phe 205	Asn	Arg	Phe

5	Hi	210	His	Phe	s Sei	r Pro	215		Trp	Glr	Arg	220		: Asr	reA a	Asn
Y	Tr; 225	el ²	Phe	Arg	Pro	230		Leu	Asr	n Phe	Lys 235		Phe	e Asr	lle	Gln 240
10	Val	Lys	Glu	. Val	Thr 245		: Asn	Asp	Gly	Val 250		Thr	Ile	Ala	Asn 255	asA
15	Leu	Thr	Ser	Thr 260	Val	. Gln	Val	Phe	Ser 265		Ser	Glu	Tyr	Gln 270		Pro
	Tyr	Val	Leu 275	Gly	Ser	Ala	His	Gln 280		Суз	Leu	Pro	Pro 285	Phe	Pro	Ala
20	qeA	Val 290	Phe	Met	Ile	Pro	Gln 295	Tyr	Gly	Tyr	Leu	Thr 300	Leu	пеA	Asn	Gly
25 ,	Ser 305	GJW	Ser	Val	Gly	Arg 310	Ser	Ser	Phe	Tyr	Cys 315	Leu	Glu	Tyr	Phe	Pro 320
	Ser	Gln	Met	Leu	Arg 325	Thr	Gly	Asn	Asn	Phe 330	Thr	Phe	Ser	Tyr	Thr 335	Phe
30	Glu	Asp	Val	Pro 340	Phe	His	Ser	Ser	Tyr 345	Ala	His	Ser	Gln	Ser 350	Leu	qeA
35	Arg	Leu	Met 355	Asn	Pro	Leu	Ile	Asp 360	Gln	Tyr	Leu	Tyr	Tyr 365	Leu	Ala	Arg
	Thr	Gln 370	Ser	Asn	Ala	СŢУ	Gly 375	Thr	Ala	Gly	Asn	Arg 380	Glu	Leu	Gln	Phe
40	Tyr 385	Gln	Gly	Gly	Pro	Thr 390	Thr	Met	Ala	Glu	Gln 395	Ala	ГЛа	Asn	Trp	Leu 400
45	Pro	Gly	Pro	Cys	Phe 405	Arg	Gln	Gln	Arg	Val 410	Ser	Lys	Thr	Leu	Asp 415	Gln
	Asn	Asn	Asn	Ser 420	Asn	Phe	Ala		Thr 425	Gly .	Ala '	Thr	Lys	Tyr 430	His	Leu
50 .	Asn		Arg . 435	neA	Ser	Leu		Asn 440	Pro	Gly	Val :		Met . 445	Ala	Thr	His
55	Lys	Asp 450	Asp (Glu (Glu	Arg :	Phe 455	Ser	Pro	Ser		Gly 460	Val	Leu	Ile	Phe .

5		465		Thr	: Gly	Ala	470		. Lys	Thr	Thr	475		l Asr	ı Val	Leu	480
		Thr	Asn	Glu	Glu	Glu 485		Arg	Pro	Thr	Asn 490		Val	Ala	Thr	Glu 495	Glu
10		Tyr	Gly	Ile	Val 500	Ser	Ser	Asn	Leu	Gln 505		Ala	Ser	Thr	Ala 510		Gln
15		Thr	Gln	Val 515		Asn	Asn	Gln	Gly 520	Ala	Leu	Pro	Gly	Met 525		Trp	Gln
		Asn	Arg 530		Val	Tyr	Leu	Gln 535	Gly	Pro	Ile	Trp	Ala 540	Lys	Ile	Pro	His
20		Thr 545	Asp	Gly 	Asn	Phe	His 550	Pro	Ser	Pro	Leu	M et 5 55	Gly	Gly	Phe	Gly	Leu 560
25		Lys	His	Pro	Pro	Pro 565	Gln	Ile	Leu	Ile	Lys 570	Asņ	Thr	Pro	Val	Pro 575	Ala
	٠	Asn	Pro	Pro	Glu 580	Val	Phe	Thr	Pro	Ala 585	Lys	Phe	Ala	Ser	Phe 590	Ile	Thr
30		Gln	Tyr	Ser 595	Thr	Gly	Gln	Val	ser 600	Val	Glu	Ile	Glu	Trp 605	Glu	Leu	Gln
35		Lys	Glu 610	neA	Ser	Lys	Arg	Trp 615	Asn	Pro	G1u	Ile	Gln 620	Tyr	Thr	Ser	Asn
		Phe 625	Ąsp	Lys	Gln	Thr	Gly 630	Val	Asp	Phe	Ala	Val 635	Ąsp	Ser	Gln	Gly	Val 640
40		Tyr	Ser	Glu	Pro												
45	<210> 77 <211> 644 <212> PR1 <213> cap	Γ	otein o	f AAV	serot	ype, c	lone 2	23.7									
	<400> 77																
50	• .	Lys 1	Ala	Tyr	Asp	Gln 5	Gln	Leu	Lys	Ala	Gly 10	Asp	Asn	Pro	Tyr	Leu 15	Arg
55		Tyr	Asn	His	Ala 20	qeA	Ala	Glu	Phe	Gln 25	Glu	Arg	Leu	Gln	Glu 30	Asp	Thr

5	Se	r Pne	35	, етл	Asn	ı Lei	ı er?	40	, Ale	A VAI	. Phe	GII	45	Lys	з гуз	Arg
	Va	1 Lev 50	ı Glu	Pro	Leu	Gly	, Leu 55	Val	Glu	Thr	Pro	Ala 60	ı Lys	Thr	Ala	Pro
10	G1; 65	y Lys	Lys	Arg	Pro	70	. Asp		Pro	Asp	Ser 75	The	Sei	: Gly	, / Ile	BO BO
15	Lys	s Lys	Gly	Gln	61n	Pro	Ala	Lys	Lys	Arg 90	Leu	Asn	Phe	Gly	Gln 95	Thr
	G17	qeA y	Ser	Glu 100	Ser	Val	Pro	Asp	Pro 105		Pro	Ile	Gly	Glu 110		Pro
20	Ale	. Gly	Pro 115	Ser	Gly	Leu	Gly	Ser 120		Thr	Met	Ala	Ala 125		Gly	Gly
25	Ala	130		Ala	Asp	Asn	Asn 135	Glu	Gly	Ala	Asp	Gly 140	Val	Gly	Asn	Ala
	Ser 145	Gly	Asn	Trp	His	Cys 150	qeA	Ser	Thr	Trp	Leu 155	Gly	Asp	Arg	.Val	Ile 160
30	Thr	Thr	Ser	Thr	Arg 165	Thr	Trp	Ala	Leu	Pro 170	Thr	Tyr	Asn	Asn	His 175	Leu
35	Туг	Lys	Gln	11e 180	Ser	Ser	Gln	Ser	Ala 185	Gly	Ser	Thr	Asn	Asp 190	Asn	Val
		Phe	195					200					205			
40	His	Cys 210	His	Phe	Ser	Pro	Arg 215	qeA	Trp	Gln	Arg	Leu 220	Ile	neA	Asn	Asn
45	Trp 225	Gly	Phe	Arg	Pro	Lys 230	Lys	Leu	Asn	Phe	Lys 235	Leu	Phe	Asn	Ile	Gln 240
	Val	Lys	Glu	Val	Thr 245	Thr	Asn	Asp	Gly	Val 250	Thr	Thr	Ile	Ala	Asn 255	neA
50		Thr		260					265					270		
55	Tyr	Val	Leu 275	Gly	Ser	Ala	His	Gln 280	Gly	Суз	Leu	Pro	Pro 285	Phe	Pro	Ala

	As	p Va 29	l Ph	e Me	t Ile	e Pr	o G1: 29	n Ty 5	r Gl	у Ту	r Le	30		u Asr	a As	n Gly
5 .	Se. 30.	r Gl	n Se	r Val	l G1)	/ Arg 310	g Se: D	r Se	r Ph	е Ту	r Cy:		u Gli	u Tyr	Ph	e Pro 320
10	Se	r Gli	n Met	Leu	Arg 325	Thi	c Gly	y Ası	n Ası	a Pho 330		Phe	e Sei	r Tyř	Th:	r Phe
	Gli	ı Ası	Val	Pro 340	Phe	His	s Ser	Ser	7 Tyr 345	= Ala	. His	Ser	e Glr	Ser 350		Asp
15	Arg	, Lev	355	Asn	Pro	Leu	ı Ile	Asp 360	Gln	Туг	Leu	Туг	Tyr 365		Ala	Arg
20	Thr	Glm 370	Ser	Asn	Ala	Gly	Gly 375		Aļa	. Gly	Aan	Arg 380		Leu	Gln	Phe
25	Tyr 385	Gln	Gly	Gly	Pro	Thr 390	Thr	Met	Ala	Glu	Gln 395	Ala	Lys	Asn	Trp	Leu 400
25	Pro	Gly	Pro	Суз	Phe 405	Arg	Gln	Gln	Arg	Val 410	Ser	Lys	Thr	Leu	Asp 415	Gln
30	Asn	Asn	Asn	Ser 420	Asn	Phe	Ala	Trp	Thr 425	Gly	Ala	Thr	Lys	Tyr 430	His	Leu
35	Asn	Gly	Arg 435	Asn	Ser	Leu	Val	Asn 440	Pro	Gly	Val	Ala	Met 445	Ala	Thr	His
3,5	Lys	Asp 450	Asp	Glu	Glu	Arg	Phe 455	Phe	Pro	Ser	Ser	Gly 460	Val	Leu	Ile	Phe
40	Gly 465	Lys	Thr	Gly	Ala	Ala 470	Asn	Lys	Thr	Thr	Leu 475	Glu	Asn	Val	Leu	Met 480
15	Thr	Asn	Glu	Glu	Glu 485	Ile	Arg	Pro	Thr	Asn 490	Pro	Val	Ala	Thr	Glu 495	G1u
45	Tyr	Gly	Ile	Val : 500	Ser	Ser .	Asn	Leu	Gln 505	Ala	Ala	Ser		Ala 2 510	Ala	Gln
50	Thr	Gln	Val 515	Val 2	Asn i	Asn	Gln	Gly 520	Ala	Leu	Pro (Met 525	Val :	rp	Gln
	Asn .	Arg . 530	Asp '	Val 3	ryr I	Leu (Gln (Gly	Pro	Ile '		Ala : 540	Lys :	Ile 1	Pro 1	His
E E																

		Th: 545	т Д в;	p Gl	y Ası	n Ph	e Hi: 550		o Se	r Pr	o Le	и Ме 55		y GJ	y Ph	e Gl	y Leu 560
5		Lys	3 Hi	s Pr	o Pro	9r 56	o Gli 5	n Il	e Le	u Il	e Ly 57		n Tì	ır Pr	o Va	l Pr 57	o Ala 5
10		Asr	n Pro) Šr	580	Va:	l Phe	Th.	r Pro	58:	a Ly. 5	s Il	e Al	a Se	r Ph 59		e Thr
		Gln	Туг	595	Thr	Gly	/ Glm	va:	1 Se: 600	val	l Gl	u Il	e Gl	u Tr 60		u Le	ı Gln
15		Lys	Glu 610	Asn)	Ser	Lys	Arg	Trp 615	e Asi	Pro	o Glu	ı Ile	62 62		r Th	c Se	. Asn
20		Phe 625	Asp	Lys	Gln	Thr	630	Val	Asp	Phe	≥ Ala	Val 635		p Se	r Gli	Gly	/ Val 640
		Tyr	Ser	Glu	Pro												
25	<210> 78 <211> 64 <212> Pi <213> ca	14 RT	rotein	of A	\V ser	otype	, clone	e 223.	6								
30	<400> 78	3															
<i>35</i>		Lys 1	Ala	Tyr	Asp	Gln 5	Gln	Leu	ĻLys	Ala	Gly 10	Asp	Asn	Pro	Tyr	Leu 15	Arg
		Tyr	Asn	His	Ala 20	Asp	Ala	Glu	Phe	Gln 25	Glu	Arg	Leu	Gln	Glu 30	Asp	Thr
40		Ser	Phe	Gly 35	Gly	Asn	Leu	Gly	Arg 40	Ala	Val	Phe	Gln	Ala 45	Lys	Lys	Arg
45		Val	Leu 50	Glu	Pro	Leu	Gly	Leu 55	Val	Glu	Thr	Pro	Ala 60	Lys	Thr	Ala	Pro
		Gly 65	Lys	Lys	Arg	Pro	Val . 70	Asp	Ser	Pro	qeA	Ser 75	Thr	Ser	Gly	Ile	Gly 80
50		Lys	Lys	Gly	Gln (Gln 85	Pro .	Ala	Lys	Lys	Arg 90	Leu	Asn	Phe	Gly	Gln 95	Thr
55		Gly :	qeA	Ser	Glu : 100	Ser	Val	Pro		Pro 105	Gln	Pro	Ile	Gly	Glu 110	Pro	Pro
		Ala (51y	Pro 115	Ser (Sly	Leu (Gly	Ser 120	Gly	Thr	Met	Ala	Ala 125	Gly	Gly	Gly

_	Ala	130		: Ala	Asp	Asr.	Ser 135		1 Gl	/ Ala	a Asp	140		r e17	/ Asi	n Ala
5	Ser 145		/ Asn	Trp	His	Cys 150		Ser	Thr	Trp	155		Asp) Arg	, Val	Ile 160
10 .	Thr	Thr	: Ser	Thr	Arg 165		Trp	Ala	Leu	170		Туг	: Asn	. Asn	His	Leu
15	Tyr	Lys	Gln	Ile 180		Ser	Gln	Ser	Ala 185		Ser	Thr	Asn	Asp 190		. Val
	Tyr	Phe	Gly 195		Ser	Thr	Pro	Trp 200		Tyr	Phe	Asp	Phe 205		Arg	Phe
20	His	Суз 210		Phe	Ser	Pro	Arg 215	Asp	Trp	Gln	Arg	Leu 220	Ile	neA	neA	Asn
25	Trp 225	Gly	Phe	Arg	Pro	Lys 230	Lys	Leu	neA	Phe	Lys 235	Leu	Phe	Asn	Ile	Gln 240
	Val	Lys	Glu	Val	Thr 245	Thr	Asn	Asp	ely	Val 250	Thr	Thr	Île	Ala	Asn 255	Asn
<i>30</i> .	Leu	Thr	Ser	Thr 260	Val	Gln	Val	Phe	Ser 265	Asp	Ser	Glu	Tyr	Gln 270	Leu	Pro
35	Tyr	Val	Leu 275	Gly	Ser	Ala	His	Gln 280	Gly	Суз	Leu	Pro	Pro 285	Phe	Pro	Ala
	Asp	Val 290	Phe	Met	Ile.	Pro	Gln 295	Tyr	Gly	Tyr	Leu	Thr 300	Leu	Asn	Asn	Gly
40	Ser 305	Gln	Ser	Val	Gly	Arg 310	Ser	Ser	Phe	Tyr	Cys 315	Leu	Glu	Tyr	Phe	Pro 320
45	Ser	Gln	Met	Leu	Arg 325	Thr	Gly	Asn	Asn	Phe 330	Thr	Phe	Ser	Tyr	Thr 335	Phe
•	Glu	Asp	Val	Pro 340	Phe	His	Ser	Ser	Tyr 345	Ala	His	ser	Gln	Ser 350	Leu	qeA
50	Arg	Leu	Met 355	Asn	Pro	Leu	Ile	Asp 360	Gln	Tyr	Leu	Tyr	Tyr 365	Leu	Ala	Arg
	Thr	Gln 370	Ser	Asn	Ala	Gly	Gly 375	Thr	Ala	Gly	Asn	Arg 380	Glu	Leu	Gln	Phe

		Ту: 385		Gly	GJÀ	Pro	390		Met	Ala	Glu	395		Lys	Asn	Trp	100
5		Pro	Gly	Pro	Cys	Phe 405	-	Gln	Gln	Arg	Val 410		Lys	Thr	Leu	Asp 415	
10	3	Asn	asA .	Asn	Ser 420	Asn	Phe	Ala	Trp	Thr 425		Ala	Thr	Lys	Туг 430	His	Leu
		Asn	Gly	Arg 435		Ser	Leu	Val	Asn 440	Pro	Gly	Val	Ala	Met 445	Ala	Thr	His
15		Lys	Asp 450	_	Glu	Glu	Arg	Phe 455	Phe	Pro	Ser	Ser	Gly 460	Val	Leu	Ile	Phe
20		Gly 465	_	Thr	Gly	Ala	Ala 470	Asn	Lys	Thr	Thr	Leu 475	Glu	Asn	Val	Leu	Met 480
		Thr	Asn	Glu	Glu	Glu 485	Ile	Arg	Pro	Thr	Asn 490	Pro	Val	Ala	Thr	Glu 495	Glu
25		Tyr	Gly	Ile	Val 500	ser	Ser	Asn	Leu	Gln 505	Ala	Ala	Ser	Thr	Ala 510	Ala	Gln
30		Thr	Gln	Val 515	Val	Asn	neA	Gln	Gly 520	Ala	Leu	Pro	Gly	Met 525	Val	Trp	Gln
05		ne.A	Arg 530	Asp	Val	Tyr	Leu	Gln 535	Gly	Pro	Ile	Trp	Ala 540	Lys	Ile	Pro	His
35		Thr 545	qeA	Gly	Asn	Phe	His 550	Pro	Ser	Pro	Leu	Met 555	Gly	Gly	Phe	Gly	Leu 560
40		Lys	His	Pro	Pro	Pro 565	Gln	Ile	Leu	Ile	Lys 570	Asn	Thr	Pro	Val	Pro 575	Ala
45		Asn	Pro	Pro	Glu 580	Val	Phe	Thr	Pro	Ala 585	Lys	Leu	Ala	Ser	Phe 590	Ile	Thr
45		Gln	Tyr	Ser 595	Thr	Gly	Gln	Val	Ser 600	Val	Glu	Ile	Glu	Trp 605	Glu	Leu	Gln
50		Lyś	Glu 610	Asn	ser	Lys	Arg	Trp 615		Pro	Glu	Ile	Gln 620	Tyr	Thr	ser	neA
<i>EE</i>		Phe 625	Asp	Lys	Gln	Thr	Gly 630	Val	Asp	Phe	Ala	Val 635	qeA	Ser	Gln	Gly	Val 640
55																	

Tyr Ser Glu Pro

	<210> 79 <211> 73 <212> PF	8											,				
10	<213> ca		rotein	of AA	V sero	otype,	clone	44.1									
	14007 73																
15		Met 1	: Ala	Ala	Asp	Gly 5	Тул	Leu	Pro	Asp	Trp 10	Lev	Glu	Asp	Asn	Leu 15	Ser
20		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Азр	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
		Lys	Ala	Asn 35	Gln	Gln	. Lys	Gln	Asp 40	Asp	eJà	Arg	Gly	Leu 45		Leu	Pro
25	• • •	ejÄ	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
30		val	Asn	Aļa	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
		Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
35		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	The	Ser	Phe 110	Gly	Gly
10		Asn	Leu	G1y 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Eya	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
5		Pro 145	Val	Glu	Pro	Ser	Pro 150	GŢÞ	Arg	Ser	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
0		Gly	Lys	Lys	Gly	Gln 165	Gln	Pro	Ala	Lуз	Lys 170	Arg	Leu	Asn	Phe	Gly 175	Gln
	÷	Thr	Gly	qeA	Ser 180	Glu	Ser	Val	Pro	Asp 185	Pro	Gln	Pro	Ile	Gly 190	Glu	Pro
5		Pro	Ala	Gly 195	Pro	Ser	ely	Leu	Gly 200	Ser	Gly	Thr	Met	Ala 205	Ala	Gly	Gly

	G)	Ly Al 21	a Pr .0	o Met	Ala	a As	P As: 21	n As: 5	n Gl	u Gl	y Al	a Asy 220		y Val	Gl	y Ser
5	S e 2 2	r Se	r Gl	у Азг	ı Tr	230	з Су:	s Asj	p Se	r Th	r Tr: 235		ı Gl	qeA y) Ar	7 Val 240
10	Il	e Th	r Th	r Ser	Thr 245	: Arg	Thi	c Trp	Ala	250	ı Pro	Thi	туг	neA:	Asr 255	His
15	Le	u Ty	r Lys	Gln 260	Ile	Ser	neA :	Gly	Thr 265	Ser	: Gly	Gly	' Ser	Thr 270		Asp
15	Ası	n Th	Tyr 275	Phe	Gly	Tyr	Ser	Thr 280	Pro	Trp	Gly	Tyr	Phe 285	Asp	Phe	Asn
20	Arg	290	e His	Cys	His	Phe	Ser 295	Pro	Arg	Asp	Trp	Gln 300	Arg	Leu	Ile	Asn
25	305	Asr	Trp	Gly	Phe	Arg 310	Pro	Lys	Arg	Leu	Asn 315	Phe	Lys	Leu	Phe	Asn 320
-	Ile	Gln	.Val	Lys	Glu 325	Val	Thr	Gln	Asn	Glu 330	Gly	Thr	Lys	Thr	Ile 335	Ala
30	neA	Asn	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345	Phe	Thr	qeA	Ser	Glu 350	Tyr	Gln
35	Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	Gly	Cys	Leu 365	Pro	Pro	Phe
	Pro	Ala 370	Asp	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Tyr 380	Leu	Thr :	Leu .	Asn .
40	Asn 385	Gly	Ser	Gln 2	Ala '	Val (Gly .	Arg	Ser .	Ser	Phe '	Tyr	Cys :	Leu (Tyr 400
45	Phe	Pro	Ser	Gln N	det 1 105	Leu 1	Arg '	Thr (sly ;	Asn 2 410	Asn 1	Phe (Glu :		er :	Tyr
•	Gln	Phe	Glu .	Asp \ 420	/al 1	Pro 1	Phe 1	His S	Ser S 125	Ser :	fyr J	Ala E	His S	Ber G	in s	Ser
50	Leu	Asp	Arg : 435	Leu M	iet #	lsn I	Pro I	140	le A	Asp 6	in 1	yr I	Leu 1	yr T	yr I	.eu
55	Ser .	Arg 450	Thr (3ln S	er T	hr G	ly 6			la G		hr G	in G	ln L	eu L	eu

5		Phe 465		Gln	Ala	Gly	Pro 470		Asn	Met	Ser	Ala 475		Ala	Lys	Asn	1rp
J		Leu	Pro	Gly	Pro	Cys 485	-	Arg	Gln	Gln	Arg 490		Ser	Thr	Thr	Leu 495	Ser
10		Gln	neA _.	Asn	Asn 500		Asn	Phe	Ala	Trp 505		Gly	Ala	Thr	Lys 510	_	His
15		Leu	neA	Gly 515	_	Asp	Ser	Leu	Val 520	Asn	Pro	Gly	Val	Ala 525	Met	Ala	Thr
15		His	Lys 530	-	Asp	Glu	Glu	Arg 535	Phe	Phe	Pro	Ser	Ser 540	Gly	Val	Leu	Met
20		Phe 545	_	Lys	Gln	Gly	Ala 550	Gly	Lys	Asp	Asn	Val 555	Asp	Tyr	Ser	Ser	Val 560
25		Met	Leu	Thr	ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	Thr
25		Glu	Gln	Tyr	Gly 580	Val	Val	Ala	qzA	Asn 585	Leu	Gln	Gln	Gln	Asn 590	Ala	Ala
30		Pro	Ile	Val 595	ĠŢĀ	Ala	Val	Asn	Ser 600	Gln	Gly	Ala	Leu	Pro 605	Gly	Met	Val
25		Trp	Gln 610	Asn	Arg	Asp	Val	Tyr 615	Leu	Gln	Gly	Pro	Ile 620	Trp	Ala	Lуз	Ile
35		Pro 625	His	Thr	Asp	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	Gly	Phe 640
40		Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Ile	Lys	Asn	Thr	Pro 655	Val
45		Pro	Ala	Asp	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln	Ala	Lys	Leu	Ala 670	Ser	Phe
45		Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Сј'n
50		Leu	Gln 690	Lys	Glu	Asn	ser	Lys 695	Arg	Trp	Asn	Pro	Glu 700	Ile	Gln	Tyr	Thr
	• •	Ser 705	Asn	Tyr	Tyr	Lys	Ser 710	Thr	Asn	Val	Asp	Phe 715	Ala	Val	neA	Thr	Asp 720
5 5																	

Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<210> 80

<211> 738

<212> PRT

<213> capsid protein of AAV serotype, clone 44.5

<400> 80

		Met 1	: Ala	a Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Gl:	ieA n	reA o	15	ser
5		Glu	61)	/ Ile	Arg 20	Glu	Trp	Trp	Asp	Lev 25	Lys	Pro	Gl	y Ala	Pro 30) Lys	Pro
10	•	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	ely	Arg	G13	7 Leu 45	. Val	. Lev	Pro
		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15		Val 65	Asn	Als	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Туг	Asp 80
20		Gln	Gln	Leu	Lys	Ala 85	Gly	qek	Asn	Pro	Tyr 90	Len	Arg	Tyr	Asn	His 95	Ala
		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
25		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
 30		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
		Pro 145	Val	Glu	Pro	Ser	Pro 150	Gln	Arg	Ser		Asp 155	Ser	Ser	Thr	GJA	Ile 160
35		Gly	Lys	Lys	Gly	Gln 165	Gln	Pro	Ala	Lys	Lys 170	Arg	Leu	Asn	Phe	Gly 175	Gln
40		Thr	Gly	Asp	Ser 180	Glu	Ser	Val	Pro	Аз р 185	Pro	Gln	Pro	Ile	Gly 190	Glu	Pro
		Pro	Ala	Gly 195	Pro	Ser	Gly	Leu	Gly 200	Ser	Gly '	Thr	Met	Ala 205	Ala	Gly	Gly
45																	

		G1	y Al 21	a Pr .0	o Me	t Al	a As	p As 21	n As 5	n Gl	u Gl	y Al	a As 22		y Va	l Gl	y Se
<i>5</i>		Se 22	r Se	r Gl	y As	n Tr	р Ні 23	s Су 0	s As	p Se	r Th	r Tr 23	p Le	u Gl	y As	p Ar	g Va. 24
10	s	Il	e Th	r Th	r Se	r Th. 24	r Ar	g Th	r Tr	P Al	a Lei 251	u Pro	o Th	r Ty	r As	n As: 25:	
15		Le	u Ty	r Ly	s Glr 260	n Ile	e Se	r Ası	o Gly	7 Th: 26	r Sei	c Gly	y Gly	y Sei	Th. 27	r Ası	a Ası
15		reA	n Thi	27!	r Phe	G13	у Туг	s Ser	280	Pro	Tr	Gly	Tyr	285		Phe	≙ Asr
20		Arg	290	e His	s Cys	His	Phe	295	Pro	Arg	, Asp	Trp	Gln 300	Arg	Let	ı Ile	: Asn
25		Asn 305	Asr	Trp	Gly	Phe	310	Pro	Lys	Arg	Pro	Asn 315	Phe	Lys	Lev	Phe	Asn 320
		Ile	: Gln	Val	Lys	Glu 325	Val	Thr	Gln	Asn	Glu 330	Gly	Thr	Lys	Thr	11e 335	
30		Asn	. Asn	. Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345	Phe	Thr	qeA	Ser	Glu 350	Тух	Gln
<i>35</i>		Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	Βĵλ	Суз	Leu 365	Pro	Pro	Phe
		Pro	Ala 370	Дзр	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Tyr 380	Leu	Thr	Leu	Asn
40		Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Tyr	Суз	Leu	.Glu	Tyr 400
45	-	Phe	Pro	Ser	Gln	Met 405	Leu	Arg	Thr	Gly	Asn 410	Asn	Phe	Glu	Phe	Ser 415	Tyr
		Gln.	Phe	Glu	Asp 420	Val	Pro	Phe	His .	Ser 425	Ser	Tyr .	Ala		Ser 430	Gln	Ser
50		Leu	Asp	Arg 435	Leu i	Met	Asn	Pro :	Leu :	Ile .	Asp (Gln '		Leu 445	Tyr	Tyr	Leu
55	;	Ser	Arg 450	Thr	Gln :	Ser	Thr	Gly (455	Gly :	Phr :	Ala (Thr (Gln (Gln	Leu	Leu

	Pr 46	ne Se 55	r Gl	LA a	a Gl	y Pr 47	ся оз 0	n As	n Me	t Se	r Al 47	a G1 5	n Al	a Ly	ıs As	3n Trp 480
5	Le	eu Pr	o G1	y Pr	o Cy 48	s Ту 5	r Ar	g Gl	n Gl	n Ar 49	g Va O	l Se	r Th	r Th	r Le 49	u Ser 5
10	.g1	n Ası	n As:	n Ası 500	n Se. O	r As	n Pho	e Ala	a Try	p Thi	r Gl	y Al	a' Th	r Ly 51		r His
	Le	u Ası	51:	y Arc	J Ası	p Se:	r Lei	val 520	L Ası	n Pro	Gly	y Val	1 Ala 52		t Al	a Thr
15	Hi	s Lys 530	Asy)	qeA o	Gl:	ı GJ/	Arg 535	Phe	Phe	Pro	Ser	540		y Va	l Le	u Met
20	Phe 545	e Gly 5	' Lys	Gln	Gly	7 Ala 550	a Gly	Lys	Asp	Asn	Val 555	Asp	ту:	: Sej	r Sei	r Val 560
	Met	: Leu	Thr	Ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn ,	Pro	Va]	1 Ala 575	Thr
25	Glu	Gln	Tyr	Gly 580	Val	Val	Ala	Asp	Asn 585	Leu	Gln	Gl¤	Gln	Asn 590		Ala
30	Pro	Ile	Val 595	Gly	Ala	Val	Asn	Ser 600	Gln	Gly	Ala	Leu	Pro 605	Gly	Met	Val
	Trp	Gln 610	Asn	Arg	qeA	Val	Tyr 615	Leu	Gln	Gly	Pro	11e 620	Trp	Ala	Lys	Ile
35	Pro 625	His	Thr	Asp	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	Gly	Phe 640
40	Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Ile	Lys	Asn	Thr	Pro 655	Val
	Pro	Ala	qeA	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln	Ala	Lys	Leu	Ala 670	Ser	Phe
45	Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Gl u	Ile 685	Glu	Trp	Glu
50	Leu	Gln 690	Lys	Glu .	Asn	Ser	Lys . 695	Arg '	Trp :	neA		Glu 700	Ile	Gln	Tyr	Thr
	Ser 705	Asn	Tyr	Tyr :	Lys	Ser 710	Thr	' neA	Val i	Asp]	Phe 7	Ala	Val	Asn	Thr	Asp 720
55																

5		Thr	Tyr	Ser	Glu 725	Pro	Arg	Pro	Ile	Gly 730	Thr	Arg	Tyr	Leu	Thr 735	Arg
10	<210> 81 <211> 738 <212> PRT <213> capsid p	rotein c	of AAV	sero'	type, c	clone 4	44.2									
15	<400> 81															
20						-						,				
25								•						,		
30																

	Met 1	: Ala	a Ala	Asp	61 y 5	Ty:	r Lei	ı Pro	e Ası	7 Tr 10	p Le	o Gl	u As _l	neA q	Lei 15	u Ser
5	Glu	Gly	y Ile	Arg 20	Glu	Tr	Trp	eA o	Let 25	Ly:	Pro	, Gl	y Ala	a Pro	Lys	Pro
10	Lys	Ala	a Asņ 35	Gln	Gln	Lys	Glr	A 27 40	Asp	Gly	/ Arç	el?	/ Let 45	ı Val	. Lev	Pro
	Gly	Tyr 50	: Lys	Tyr	Leu	G7?	Pro 55	Phe	: Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	Asn	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	qsA 08
20	Gln	Gln	Leu	Lys	Ala 85	Gly	qeA	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
25	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr.	Ala	Pro 140	Gly	Lys	Lys	Arg
	Pro 145	Val	Glu	Pro	Ser	Pro 150	Gln	Arg	Ser	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
35	Gly	L ys	Lys	Gly	Gln 165	Gln	Pro	Ala	Lys	Lys 170	Arg	Leu	Asn		Gly 175	Gln
40	Thr	Gly	Ąsp	Ser	Glu	Ser	Val	Pro	Asp 185	Pro	Gln	Pro	Ile	Gly 190	Glu	Pro
	Pro 2	Ala	Gly :	Pro :	Ser (Gly	Leu	Gly 200	Ser	Gly	Thr	Met	Ala 205	Ala (ely	Gly

5	Gl	210 210		Met	: Ala	. Asp	215		Gl:	r ell	/ Ala	220		y Val	L Gly	/ Ser
	Ser 225		Gly	Asn	Trp	His 230		qeA	Ser	Thr	Trp 235		. Gly	Asp	Arg	Val 240
10	Ile	Thr	Thr	Ser	Thr 245		Thr	Trp	Ala	Leu 250		Thr	туг	: Asn	255	His
15	Leu	Tyr	Lys	Gln 260		Ser	Asn	Gly	Thr 265		Gly	ely	Ser	Thr 270		qeA ı
	neA	Thr	Tyr 275		Gly	Tyr	Ser	Thr 280	Pro	Trp	Gly	Tyr	Phe 285		Phe	neA
20	Arg	Phe 290	His	Cys	His	Phe	Ser 295	Pro	Arg	Дзр	Trp	Gln 300		Leu	Ile	Asn
25	Asn 305	Asn	Trp	Gly	Phe	Arg 310	Pro	Lys	Arg	Leu	Asn 315	Phe	Lys	Leu	Phe	Asn 320
	Ile	Gln	Val	Lys	Glu 325	Val	Thr	Gln	Asn	Glu 330	eĵà	Thr	Lys	Thr	Ile 335	Ala
30	Asn	Asn	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345	Phe	Thr	Asp	Ser	Glu 350	Tyr	Gln
35	Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	Gly	Суз	Leu 365	Pro	Pro	Phe
	Pro	Ala 370	Asp	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Tyr 380	Leu	Thr	Leu	Asn
40	Asn 385	Gly	Ser	Gln	Ala	Val 390	еīЛ	Arg	Ser	Ser	Phe 395	Tyr	Cys	Leu	Glu	Tyr 400
45	Phe	Pro	Ser	Gln	Met 405	Leu	Arg	Thr	Gly	Asn 410	Asn	Phe	Glu	Phe	Ser 415	-
	Gln	Phe	Glu	Asp 420	Val	Pro	Phe		Ser 425	Ser	Tyr	Ala	His	Ser 430	Gln	Ser
50	Leu	qeA	Arg 435	Leu	Met	Asn	Pro	Lėu 440	Ile	qeA	Gln	Tyr	Leu 445	Tyr	Tyr	Leu
	Ser	Arg 450	Thr	Gln	Ser		Gly 455	Gly	Thr	Ala		Thr 460	Gln	Gln	Leu	Leu

5	Phe 4 65		Gln	Ala	Gly	Pro 470		neA	Met	Ser	Ala 475		Ala	Lys	Asn	Trp 480
-	Leu	Pro	Gly	Pro	Cys 485		Arg	Gln	Gln	Arg 490		Ser	Thr	Thr	Leu 495	Ser
10	Gln	asa.	Asn	Asn 500	Ser	Asn	Phe	Ala	Trp 505		Gly	Ala	Thr	Lys 510	Tyr	Ris
15	Leu	Asn	Gly 515	_	Asp	Ser	Leu	Val 520		Pro	Gly	Val	Ala 525	Met	Ala	Thr
	His	Lys 530	_	Asp	Glu	Glu	Arg 535	Phe	Phe	Pro	Ser	Ser 540	Gly	Val	Leu	Met
20	Phe 545		ГÀЗ	Gln	Gly	Ala 550	Gly	Lys	qeA	Asn	Val 555		Tyr	Ser	Ser	Val 560
25	Met	Leu	Thr	Ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	Thr
	Glu	Gln	Tyr	Gly 580	Val	Val	Ala	qeA	Asn 585	Leu	Gln	Gln	Gln	Asn 590	Ala	Ala
30	Pro	Ile	Val 595	Gly	Ala	Val	Asn	ser 600	Gln	Gly	Ala	Leu	Pro 605	Gly	Met	Val
<i>35</i>	Trp	Gln 610	neA	Arg,	Asp	Val	Tyr 615	Leu	Gln	Gly	Pro	Ile 620	Trp	Ala	Lys	Ile
	Pro 625	His	Thr	Asp	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	Gly	Phe 640
40	Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Ile	Lys	Asn	Thr	Pro 655	Val
45	Pro	Ala	Asp	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln	Ala	Lys	Leu	Ala 670	Ser	Phe
·	Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
50	Leu	Gln 690	Lys	Glu	Asn	Ser	Lys 695	Arg	Trp	Asn	Pro	Glu 700	Ile	Gln	Tyr	Thr
55	Ser 705	Asn	Tyr	Tyr	Lys	Ser 710	Thr	пеA	Val	Asp	Phe 715	Ala	Val	Asn		Asp 720

	Gly	Thr	Tyr	Ser	Glu 725	Pro	Arg	Pro	Ile	Gly 730	Thr	Arg	Tyr	Leu	Thr 735	Arg
. 5																
	neA	Leu														
	,															
10	<210> 82 <211> 738 <212> PRT				•			•								
	<213> capsid p	rotein	of AA	V ser	otype,	clone	29.3	/P1								
15	<400> 82			•								•				
20																

	Met 1	Ala	Ala	qzA	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Asn	Leu 15	Ser
5	Glu	Gly	Ile	Arg 20	.Glu	Trp	Trp	Ala	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
10	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	, Asp 40	Asp	Gly	Arg	Gly	Leu 4,5	Val	Leu	Pro
	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	Asn	Ala	Ala	Asp	Ala 70	Aļa	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Туқ	08 qeA
20	Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	asa	His 95	Ala
20	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
25	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
30	Pro 145	Val	Glu 	Pro	Ser	Pro 150	Gln	Arg	Ser	Pro	Asp 155	Ser	Thr	Thr	вĵу	Ile 160
35.	Gly	Lys	Lys	Gly	Gln 165	Gln	Pro	Ala	Lys	Lys 170	Arg	Leu	Asn	Phe	Gly 175	Gln
	Thr	Gly	Asp	Ser 180	Glu	Ser	Val	Pro	Asp 185	Pro	Gln	Pro	Ile	Gly 190	Glu	Pro
40	Pro	Ala	Gly 195	Pro :	Ser	Gly		Gly 200	Ser	Gly	Thr	Met	Ala 205	Ala	ely	Gly

5	Gly	/ Ala 210		Met	Ala	Asp	215		Glu	Gly	Ala	Asp 220	-	/ Val	. Gly	/ Ser
	Ser 225	Ser	G1 y	neA		His 230		Asp	Ser	Thr	Trp 235		Gly	qeA v	Arg	7 Val 240
	Ile	Thr	Thr	Ser	Thr 245		Thr	Trp	Ala	Leu 250		Thr	Туг	ne.A	Asn 255	His
15	Leu	Tyr	Lys	Gln 260	Ile	Ser	Asn	Gly	Thr 265		Gly	Gly	Ser	Thr 270		Asp
	Asn	Thr	Tyr 275	Phe	Gly	Tyr	Ser	Thr 280	Pro	Trp	ely	Tyr	Phe 285		Phe	Asn
20	Arg	Phe 290	His	Cys	His	Phe	Ser 295	Pro	Arg	Asp	Trp	Gln 300	Arg	Leu	Ile	Asn
25	Asn 305		Trp	eīà	Phe	Arg 310	Pro	Lys	Arg	Leu	Asn 315	Phe	Lys	Leu	Phe	Asn 320
	Ile	Gln	Val	Lys	Glu 325	Val	Thr	Gln	Asn	Glu 330	Gly	Thr	Lys	Thr	Ile 335	
30 .	Asn	Asn	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345	Phe	Thr	Asp	Ser	Glu 350	Tyr	Gln
35	Leu	Pro	Tyr 355	Val	Leu	ely	Ser	Ala 360	Arg	Gln	GŢĀ	Суз	Leu 365	Pro	Pro	Phe
	Pro	Ala 370	Asp	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	GЈÀ	Tyr 380	Leu	Thr	Leu	Asn
40	Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Tyr	СУз	Leu	Glu	Tyr 400
45	Phe	Pro	Ser	Gln	Met 405	Leu	Arg	Thr	Gly	Asn 410	asA	Phe	Glu	Phe	Ser 415	Tyr
	Gln	Phe	Glu	Asp 420	Val	Pro	Phe		Ser 425	Ser	Tyr	Ala	His	Ser 430	Gln	Ser
50	Leu		Arg 435	Leu	Met	neA	Pro	Leu 440	Ile	Asp	Gln		Leu 445	Tyr	Tyr	Leu
55	Ser	Arg 450	Thr	Gln	Ser	Thr	Gly 455	Gly	Thr	Ala		Thr 460	Gln	Gln	Leu	Leu

5		Pho 46:	e Se:	r Gli	n Ala	a Gl	470		n Ası	n Met	: Se	47		a Ala	a Lys	ASI	1 Trp 480
		Le₁	l Pro	Gl;	Y Pro	485		: Arç	; Glr	Glr	490		l Ser	Thi	Thr	195	Ser
10		Glī	Asr	n Ası	500		: Asī	Phe	Àla	505		: Gl)	/ Ala	Thr	Lys 510		His
15		Leu	a Asn	61 ₅ 515		Asp	Ser	Leu	Val 520		Pro	Gly	Val	Ala 525		Ala	Thr
		. His	Lys 530	qeA	qeA	Glu	Glu	Arg 535		Phe	Pro	Ser	Ser 540	Gly	Val	Leu	Met
20		Phe 545	Gly	Lys	Gln	Gly	Ala 550	Gly	Lys	Gly	Asn	Val 555		туг	Ser	Ser	Val 560
25		Met	Leu	Thr	Ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	Thr
		Glu	Gln	Tyr	Gly 580	Val	Val	Ala	Asp	Asn 585	Leu	Gln	Gln	Gln	Asn 590	Ala	Ala
30		Pro	Ile	Val 595	Gly	Ala	Val	neA	Ser 600	Gln	Gly	Ala	Leu	Pro 605	Gly	Met	Val
35		Trp	Gln 610	Asn	Arg	qeA	Val	Tyr 615	Leu	Gln	G1y	Pro	Ile 620	Trp	Ala	Lys	Ile
		Pro 625	His	Thr	qeA	e7À	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	Gly	Phe 640
40	· · · ·	Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Ile	Lys	neA	Thr	Pro 655	Val
45		Pro	Ala	Asp	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln	Ala	Lys	Leu	Ala 670	ser	Phe
		Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
50	;	Leu	Gln 690	Lys	Glu	Asn	Ser	Lys 695	Arg	Trp	Asn	Pro	Glu 700	Ile	Gln	Tyr	Thr
<i>55</i>		ser 705	Asn	Tyr	Tyr	Lys	Ser 710	Thr	Asn	Val :		Phe 715	Ala	Val	Asn '		Asp 720

Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

5																	
		Ası	a Lei	1													
					٠	•											
10	<210> (<211>)<211>)<213> (738 PRT	prote	in of A	AV s	erotyp	e clo	ne 29	5VP1								
						, _P	0, 0.0		•••								
15	<400> 8	83				•											
		Met 1	: Ala	Ala	Asp	Gly 5	Ty	Leu	Pro	qeA o	Trp 10	Lev	ı Glı	ı Ası	z Ası	Lev 15	Se
20																13	
		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Ala	Leu 25	Lys	Pro	Gly	/ Ale	Pro 30	Lys	Pro
		Tara	715	7	c1-	~1 <u>~</u>	7	~ 3	•								
25		гдз	WIG	35	GIN	GIN	гì	GIN	40	qeA o	GIA	' Arg	Gly	45	ı Val	. Leu	Pro
		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
30						•										-	
		Val 65	Asn	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
<i>35</i>		Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
																•	
		Asp	Ala	Glu ,	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Ąsp	Thr	ser	Phe 110	еĵЪ	Gly
40			•						_								
	•	Asn	Leu	115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
45		Leu	Gly 130	Leu	Val	Glu	Glu	Gly	Ala	Lys	Thr				Lys	Lys	Arg
			100					135					140				
	·	Pro 145	Val	Glu	Pro	Ser	Pro 150	Gln	Arg	Ser	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
50																	
	•	Gly	Lys	Lys	Gly	Gln 165	Gln	Pro	Ala		Lys 170	Arg	Leu	Asn	Phe	Gly 175	Gln
55		Thr	Gly	Asp	Ser 180	Glu	Ser	Val		Asp 185	Pro	Gln	Pro	Ile		Glu	Pro
										103					190		

	P;	ro A	la G	ly P 95	ro S	er G	ly L	eu G	ly s 00	er G	ly T	hr M	let.	Ala 205	Al.	a G	ly Gl
5	G	Ly A. 2:	la P: 10	ro M	et A	la A	sp A 2	sn A 15	sn G	lu G	ly A	la A 2	.sp :20	Gly	Va:	1 G1	y Sez
10	S e 2 2	er Se !5	er G	ly A:	sn Ti	rp H: 23	is C ₂ 30	ys As	sp S	er T	hr T.	rp ['] L 35	eu (Sly	Ası	G1	y Val 240
15	Il	e Th	ir Th	r Se	r Th	r Ar S	g Tì	ur Tr	p A	la L. 2!	eu P: 50	co T	hr 1	yr	Asn	As : 2 5:	n His 5
15	Le	u Ty	r Ly	s G1 26	n Il 0	e Se	er As	n Gl	у Тì 26	nr Se 55	er Gl	.у G	ly s	er	Thr 270	Ası	n Asp
20	As	n Th	т Ту. 27.	r Ph 5	e Gl	у Ту	r Se	r Th 28	r Pr O	o Tr	p Gl	у Т		he . 85	Asp	₽h€	Asn
25	Ar	9 Pho 290	e Hi:	з - Су	s Hi	s Ph	e Se. 29	r Pro	Ar	g As	P Tr	p G]	Ln A	rg 1	Leu	Ile	ne <i>A</i> :
	Asr 305	Asr 5	ı Tr	Gl:	y Phe	310	g Pro	D Ly:	s Se	r Le	u As 31	n Ph 5	e L	ys I	ceu	Phe	Asn 320
30	Ile	Gln	Val	Lys	325	ı Val	l Thi	Glr	As:	n Gli 330	1 Gl;	y Th	r Ly	r ey	hr	Ile 335	Ala
<i>35</i>	Asn	Asn	Leu	340	Ser	Thr	: Ile	Gln	. Va. 34:	l Phe	Thi	e.A.s;	p S∈	er G	1u 50	туг	Gln
	Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Glr	(G1)	Cy:	3 Le	u P	ro	Pro	Phe .
40	Pro	Ala 370	qsA	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Ty:	r Le	u T	hr :	Leu	Asn
45	Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Туг	: Су	s Le	eu (Slu	Tyr 400
	Phe	Pro	Ser	Gln	Met 405	Leu	Arg	Thr	Gly	Asn 410	Asn	Phe	Gl:	u Pi		Ser 115	Tyr
50	Gln	Phe	Glu	Asp 420	Val	Pro	Phe	His	Ser 425	Ser	Tyr	Ala	His	3 Se 43		ln :	Ser
55	Leu	Asp	Arg 435	Leu	Met	Asn	Pro	Leu 440	Ile	Asp	Gln	Tyr	Leu 445	ту	'E T	,ĀĽ	Leu

		. Se:	450	g Th. O	r Gl	n Se	r Th	r Gl 45		y Th	r Al	a Gl	y Th 46		n Gl	n Le	u Lei
5		Phe 465	e Sei	c Gl	n Al	a Gl	y Pr 47	о Аз 0	n As	n Me	t Se	r Al 47	a Gl 5	n Al	a Ly	s As:	n Tr 480
10		Let	Pro	Gl _y	y Pro	0 Cy 48	3 Ty. 5	r' Ar	g Gl:	n Gl	л Аг 49		l Se	r Th	r Th	r Le: 49!	
		Glr	Asr	n Asr	Ası 500	n Se:	≿ Ası	n Ph	e Ala	9 Tr	p Thi	c Gly	y Ala	a Thi	Ly: 510		: His
15		Leu	. Asn	Gly 515	Arg	l Yai	Sei	. Lei	val 520	L Ası	n Pro	Gl;	/ Val	L Ala 525		: Ala	Thr
20		His	Lys 530	Asp	Asp	Glu	ı Glu	Arg 535	y Phe	e Phe	Pro	ser	540		Va]	Leu	Met
22		Phe 545	Gly	Lys	Gln	Gly	7- Ala 550	Gly	' Lys	Asp	azA o	Val 555	Asp	Tyr	Ser	Ser	Val 560
25		Met	Leu	Thr	Ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	Thr
30		Glu	Gln	Tyr	Gly 580	Val	Val	Ala	Asp	Asn 585	Leu	Gln	Gln	Gln	Asn 090	Ala	Ala
		Pro	Ile	Val 595	Gly	Ala	Val	Asn	Ser 600	Gln	Gly	Ala	Leu	Pro 605	eĵà	Met	Val
35		Trp	Gln 610	Asn	Arg	Asp	Val	Tyr 615	Leu	Gln	Gly	Pro	Ile 620	Trp	Ala	Lys	Ile
40		Pro 625	His	Thr	Asp	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	Gly	Phe 640
		Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Ile	Lys	neA	Thr	Pro 655	Val
45		Pro	Ala.	Asp	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln	Ala	Lys	Leu	Ala 670	Ser	Phe
50		Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
	÷	Leu	Gln : 690	Lys	Glu	Asn	Ser	Lys 695	Arg	Trp	Asn		Glu 700	Ile	Gln	Tyr	Thr
55																	

		Ser 705	neA	Tyr	Tyr	Lys	Ser 710	Thr	neA	Val	Asp	Phe 715	Ala	Val	neA	Thr	Asp 720
5 ·		Gly	Thr	туя	Ser	Glu 725	Pro	Arg	Pro	Ile	Gly 730	Thr	Arg	Tyr	Leu	Thr 735	Arg
10		Asn	Leu										,		,		
15	<210> 84 <211> 738 <212> PRT <213> caps <400> 84		tein of	AAV	seroty	rpe, cl	one 42	2.15									
20																	
20																	
25															•		
30																	
	•																
35																	
			.*														
40																	
45																	
50																	
55			-														

5	Me 1	t Al	a Al	a Ası	5 G1	у Ту	r Le	u Pro	eA c	Tr; 10) Let	ı Glu	ı As	eA q	n Le 15	u Ser
3	G1:	u Gl	y Il	e Arg 20	g Glu	ı Tr	p Tr	Asp	Lev 25	Ly:	Pro	Gly	/ Ala	30	b Ly	s Pro
10	Lys	Ala	Asr 35	ı Gln	Glr	Lys	G Glm	Asp 40	Азр	`Gly	' Arg	Gly	Let 45	l Val	L Le	u Pro
	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA	Gly	Leu	Asp 60	Lys	Gly	' Glu	Pro
15	Val 65	neA .	Ala	Ala	Asp	Ala 70	. Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Тух	45p
20	Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
25	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
	Pro 145	Val	Glu	Pro	Ser	Pro 150	Gln	Arg	Ser	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
35	Gly	Lys	Thr	ely	Gln 165	Gln	Pro .	Ala :	Lys :	Lys . 170	Arg :	Leu ;	Asn		Gly 175	Gln
40	Thr	Gly .	Asp	Ser (180	Glu	Ser '	Val :	Pro ;	Asp I	Pro (5ln 1	Pro :		Gly 190	Gl u	Pro

	Pr	o Ala	19	y Pro	Se:	z Gly	y Let	200		r Gl	y Thi	r Met	20:		Gl;	y Gly '
5	Gl	y Ala 210	a Pro	o Met	Ala	a Asp	215		n Gli	u Gl	y Ala	220		y Val	l Gl	y Ser
10	Se:	c Sez	Gly	/ Asr	Tr	230		, Yat	Se:	Thi	7 Trp 235		er)	/ Asp	Arg	7 Val 240
	Ile	Thr	Thr	Ser	Thr 245	Arg	Thr	Trp	Ala	250		Thr	Tyr	: Asn	Asr 255	His
15	Lev	Tyr	Lys	Gln 260	Ile	: Ser	neA	Gly	Thr 265		Gly	Gly	Ser	Thr 270		qeA
. 20	Asn	Thr	Tyr 275	Phe	Gly	Tyr	Ser	Thr 280		Trp	Gly	Tyr	Phe 285		Phe	Asn
	Arg	Phe 290	His	Cys	His	Phe	Ser 295	Pro	Arg	qeA	Trp	Gln 300	Arg	Leu	Ile	neA
25	Asn 305	Asn	Trp	Gly	Phe	Arg 310	Pro	Lys	Arg	Leu	Asn 315	Phe	Lys	Leu	Phe	Asn 320
30	Ile	Gln	Val	Lуз	Glu 325	Val	Thr	Gln	Asn	Glu 330	Gly	Thr	Lys	Thr	Ile 335	Ala
	neA	Asn	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345	Phe	Thr	Asp	Ser	Glu 350	Tyr	Gln
	Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	еĵу	Суз	Pro 365	Pro	Pro	Phe
40	Pro	Ala 370	ĄSĄ	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Tyr 380	Leu	Thr	Leu	Asn
	Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Tyr .	Суз	Leu	Glu	Tyr 400
45	Phe	Pro	Ser	Gln	Met 405	Arg	Arg	Thr	Gly	Asn 410	Asn	Phe	Glu		Ser 415	Tyr
50	Gln	Phe	Glu	Asp 420	Val	Pro	Phe :		Ser 425	Ser	Tyr	Ala		Ser 430	Gln	Ser
ı	Leu		Arg 435	Leu :	Met	Asn		Leu 440	Ile	qeA	Gln '		Leu 445	Tyr	Tyr	Leu

		Sei	450	Thi	r Gli	n Se	r Th.	45	y G1: 5	y Th	r Ale	a Gl	y Th 46		n Gl	n Lei	ı Let
5		Phe 465	e Ser	Gl:	a Ala	a G1;	y Pr 470	0 A31	n Ası	n Me	t Se	47	a Gl	n Al	a Ly	s Ası	480
10		Leu	Pro	Gly	Pro	485	3 Ty 1	r Arç	g Gli	ı Gli	490		l Se	r Thi	r Th:	195	
		Gln	neA i	Asn	. Asn 500	Ser	: Asr	Phe	Ala	Tr ₁ 505		G13	/ Ala	a Thi	510	Tyr	His
15	* .	Leu	Asn	Gly 515	Arg	Aap	Ser	Leu	Val 520		Pro	СŢ	Va]	Ala 525		: Ala	Thr
20		His	Lys 530	Ąsp	qeA	Glu	Glu	Arg 535		Phe	Pro	Ser	Ser 540		Val	Leu	Met
	`	Phe 545	вjА	Lys	Gļn	Gly	Ala 550		Lys	Ąsp	Asn	Val 555		Tyr	Ser	Ser	Val 560
25		Met	Leu '	Thr	Ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	Thr
30		Glu	Gln	Tyr	Gly 580	Val	Val	Ala	Asp	Asn 585		Gln	Gln	Gln	Asn 590	Ala	Ala
		Pro	Ile	Val 595	Gly	Ala	Val	Asn	Ser 600	Gln	Gly	Ala	Leu	Pro 605	Gly	Met	Val
35		Trp	Gln 610	neA	Arg	Asp	Val	Tyr 615	Leu	Gln	Gly	Pro	Ile 620	Trp	Ala	Lys	Ile
40		Pro 625	His	Thr	Ąsp	eĵy	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	Gly	Phe 640
		Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Ile	Lys	Asn	Thr	Pro 655	Val
45		Pro	Ala	Asp	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln	Ala	Lys	Leu	Ala 670	Ser	Phe
50		Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
		Leu	Gln : 690	Lys	Glu .	Asn	Ser	Lys 695	Arg	Trp	Asn	Pro	Glu 700	Ile	Gln	Tyr	Thr
55																	

		70	5	,	,	,	71		T V2	on va	I AS	71		a va	1 AS	n Tn	720
5		Gl	y Th	r Ty:	r Se	r G1 72	u Pr 5	o Ar	g Pr	o Il	e Gl 73	у Тh. О	r Ar	g Ty	r Le	፲ ፔኬ 73	r Arg 5
10		λs:	n Le	u	.												
15	<210> 85 <211> 73 <212> PF <213> ca <400> 85	8 RT psid p	rotein	of AA	V sero	otype,	clone	42.8									
20		Met 1	: Ala	a Ala	. Asp	613 5	, Туг	. Le	ı Pro	As ₁	Tr 10) Let	ı Glı	ı Asp	A.s.	Let 15	ser
25		Glu	Gly	lle	Arg 20	Glu	Trp	Trp	Asp	Lev 25	ı Lya	Pro	Gly	Ala	Pro 30	Lys	Pro
		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	6ly	'Arg	Gly	Leu 45	Val	Leu	Pro
30		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA:	Gly	Leu	Asp 60	Lys	ely	Glu	Pro
35		Val 65	Asn	Ala	Ala	qeA	Ala 70	Ala	Ala	Leu	Glu	His 75	Азр	Lys	Ala	Tyr	Asp 80
		Gln	Gln	Leu	Lys	Ala 85	Gly	qeA	Asn	Pro	Туг 90	Leu	Arg	Tyr	Asn	His 95	Ala
40		qeA	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
45		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
50		Pro 145	Val	Glu	Pro	Ser	Pro 150	Gln	Arg	Ser	Pro	Asp 155	Ser	Ser	Thr		Ile 160
55		Gly	Lys	Thr	Gly	Gln 165	Gln	Pro	Ala	Lys	Lys 170	Arg	Leu	Asn		Gly 175	Gln

-		Th	r Gl	y As _l	9 Se 18		u Se	r Va	l Pr	e A s 18		o Gl	n Pr	o Il	e G1		u Pro
5		Pr	o Ala	a Gly	y Pro	o Se	r Gl	y Le	u Gl; 20		r Gl	y Th	r Me	t Ala 20		a Gl	y Gly
10		Gl	y Ala 210	a Pro	Met	: Ala	e As	215	n Ası 5	n Gl	u Gl	y Al	a As 22		y Vai	, GI	y Ser
15		Se: 225	r Ser	: Gly	Asr	ı Trp	230	Cys	a Asp	Sei	Th:	Tr 235		n ej	qeA v	Arg	y Val 240
15		Ile	Thr	Thr	Ser	Thr 245	Arg	Thr	Trp	Ala	250	Pro	Th	r Tyr	: Asn	Asn 255	His
20		Leu	Tyr	Lys	Gln 260	Ile	Ser	neA	Gly	Thr 265	Ser	Gly	, eJ?	7 Ser	Thr 270		qeA .
25		Asn	Thr	Tyr 275	Phe	Сĵ	Tyr	Ser	Thr 280	Pro	Trp	Gly	Туг	Phe 285		Phe	asA :
		Arg	Phe 290	His	Суз	His	Phe	Ser 295	Pro	Arg	Asp	Trp	Gln 300	Arg	Leu	Ile	neA
30		Asn 305	Asn	Trp	Gly	Phe	Arg 310	Pro	Lys	Arg	Leu	Asn 315	Phe	Lys	Leu	Phe	Asn 320
35		Ile	Gln	Val	Lys	Glu 325	Val	Thr	Gln	Asn	Glu 330	Gly	Thr	Lys	Thr	Ile 335	Ala
55		neA	Asn	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345	Phe	Thr	Asp	Ser	Glu 350	туг	Gln
40		Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	Gly	Суз	Leu 365	Pro	Pro	Phe
45		Pro	Ala 370	qeA	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Tyr 380	Leu	Thr	Leu	Asn
***		Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Tyr	Суз	Leu	Glu	Tyr 400
50		Phe	Pro	Ser	Gln :	Met 405	Leu	Arg	Thr	Gly	Asn 410	neA	Phe	Glu	Phe	Ser 415	Tyr
55	1	Gln	Phe	Glu /	Asp 1	Val	Pro	Phe		Ser 425	Ser	Tyr	Ala	His	Ser 430	Gln	Ser

			Leu	Asp	Arg 435		Met	neA	Pro	140		qeA	Gln	Tyr	Leu 445	_	TYI	Leu
5			Ser	Arg 450		Gln	Ser	Thr	Gly 455	-	Thr	Ala	Gly	Thr 460	Gln	Gln	Leu	Leu
10	`		Phe 465		Gln	Ala	Gly	Pro 470		neA	Met	Ser	Ala 475	Gln	Ala	Lys	Asn	Trp 480
15			Leu	Pro	Gly	Pro	Cys 485	Туг	Arg	Gln	Gln	Arg 490	Val	Ser	Thr	Thr	Leu 495	Ser
			Gln	Asn	neA	Asn 500	Ser	Asn	Phe	Ala	Trp 505	Thr	Gly	Ala	Thr	Lys 510	Tyr	His
20			Leu	Asn	Gly 515	Arg	Asp	Ser	Leu	Val 520	neA	Pro	Gly	Val	Ala 525	Met	Ala	Thr
25			His	Lys 530	Ąap	Asp	Glu	Glu	Arg 535	Phe	Phe	Pro	Ser	Ser 540	Gly	Val	Leu	Met
			Phe 545	Gly	Lys	Gln	Gly	Ala 550	Gly	Lys	qeA	Asn	Val 555		Tyr	Ser	Ser	Val 560
30		•	Met	Leu	Thr	Ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	Thr
35			Glu	Gln	Tyr	Gly 580	Val	Val	Ala	Asp	Asn 585	Leu	Gln	Gln	Gln	Asn 590	Ala	Ala
			Pro	Ile	Val 595	Gly	Ala	Val	Asn	Ser 600	Gln	Gly	Ala	Leu	Pro 605	Gly	Met	Val
40			Trp	Gln 610	Asn	Arg	Asp	Val	Tyr 615	Leu	Gln	Gly	Pro	Ile 620	Trp.	Ala	Lys	Ile
45			Pro 625	His	Thr	Asp	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	GΊΥ	Phe 640
			Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Ile	Lys	Asn	Thr	Pro 655	Val
50			Pro	Ala	Asp	Pro 660	Pro	Thr	Thr	Phe '	Ser 665	Gln	Ala	Lys	Leu	Ala 670	Ser	Phe
		3	Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
55																		

_		Leu	Gln 690	Lys	Glu	Asn	Ser	Lys 695	Arg	Trp	Asn	Pro	Glu 700	Ile	Gln	Tyr	Thr
5		Ser 705	Asn	Tyr	Tyr	Lys	Ser 710	Thr	Asn	Val	Asp	Phe 715	Ala	Val	Asn	Thr	Glu 720
10		Gly	Thr	Tyr	Ser	Glu 725	Pro	Arg	Pro	Ile	Gly 730	Thr	Arg	, Tyr	Leu	Thr 735	Arg
	·	Asn	Leu														
15					,												
20	<210> 86 <211> 733 <212> PR	Т	:	A Y - .			40										
20	<213> am	ino ac	10 DI A	WV S	erotyp	e, clor	ne 42.	13									
	<400> 86																
25																	
30																	
35		0.00															
														•			

	Met 1	Ala	Ala	Asp	Gly 5	Туг	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	neA	Leu 15	Ser
5	Glп	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
10	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Азр 40		Gly	Arg	БĴУ	Leu 45	Val	Leu	Pro
	ejà	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	Asn	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
20	Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr .	neA	His 95	Ala
	Азр	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	qeA	Thr	Ser	Phe 110	Glγ	Gly
25	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
	Pro 145	Ile	€∫ <i>π</i>	Ser	Pro	Asp 150	Ser	Ser	Thr	Gly	Ile 155	Gly	Lys	Lys	Gly	Gln 160
35	Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	neA		Gly 170	Gln	Thr	Gly	Asp	Ser 175	Glu
					,											

	Se	r Va	l Pr	0 As 18	p Pro	o Gl	n Pr	o Il	e Gl 18		u Pro	o Pr	o Al	a Gl;		o Ser
5	Gl	y Le	u Gl; 19	y Se: 5	c GJ7	/ Thi	r Mei	t Al:		a Gl	y Gl	/ Gl	y Ala 20		o Me	t Ala
10	As	p As: 21	n Ass 0	n Glu	ı Gly	, Ala	a Asp 215	61 <u>1</u>	y Va	1 61	y Sez	220		r Gly	/ As:	n Trp
	Hi: 22	s Cy:	zeA e	Ser	Thr	Trp 230) Lev	ı Gly	y As _i	Arq	7 Val 235		th:	Thr	: Se:	Thr 240
15	Arg	Thi	Trp	Ala	Leu 245	Pro	Thr	Туг	: Ası	Ası 250		Leu	Туг	: Lya	Glr 255	ı Ile
20	Sez	: Ast	Gly	Thr 260	Ser	Gly	, ela	Ser	Thr 265		Asp	Asn	Thr	Tyr 270		e Gly
	Tyr	Ser	Thr 275	Pro	Trp	Gly	Туг	Phe 280	Asp	Phe	neA	Arg	Phe 285		Cys	His
25	Phe	Ser 290	Pro	Arg	qeA	Trp	Gln 295	Arg	Leu	Ile	Asn	Asn 300	neA	Trp	Gly	Phe
3Ò	Arg 305	Pro	Lys	Arg	Leu	Asn 310	Phe	Lys	Leu	Phe	Asn 315	Ile	Gln	Val	Lys	Glu 320
	Val	Thr	Gln	Asn	Glu 325	Gly	Thr	Lys	Thr	Ile 330	Ala	Asn	Asn		Thr 335	Ser
35	Thr	Ile	Gln	Val 340	Phe	Thr	Asp	Ser	Glu 345	Tyr	Gln	Leu	Pro	Tyr 350	Val	Leu
40	Gly	Ser	Ala 355	His	Gln	Gly	Cys	Leu 360	Pro	Pro	Phe	Pro	Ala 365	Азр	Val	Phe
	Met	Ile 370	Pro	Gln	Tyr	Gly	Tyr 375	Leu	Thr	Leu		Asn 380	Gly	Ser	Gln ,	
45	Val 385	Gly	Arg	Ser	Ser :	Phe 390	Tyr	Cys	Leu	Glu	Tyr 395	Phe	Pro	Ser	Gln	Met 400
50	Leu	Arg	Thr	Gly .	Asn 2 405	Asn	Phe	Glu	Phe	Ser 410	Tyr (Gln	Phe		Asp 415	Val
	Pro	Phe	His .	Ser 420	Ser :	fyr .	Ala :		Ser 425	Gln	Ser 1	Leu .		Arg :	Leu :	Met

		Asn	Pro	Leu 435		Asp	Gln	Туг	Leu 440		Tyr	Leu	, Ser	445		Gln	Ser
5		Thr	Gly 450		Thr	Ala	Gly	Thr 455		Glr	Leu	Leu	2 Phe 4 6 0		Gln	Ala	Gly
10		Pro 465	Asn	Αsņ	Met	Ser	Ala 470	Gln	Ala	Lys	neA :	Trp 475		Pro	Gly	Pro	Cys 480
15		Tyr	Arg	Gln	Gln	Arg 485		Ser	Thr	Thr	Val 490	Ser	Gln	neA	Asn	Asn 495	Ser
15		Asn	Phe	Ala	Trp 500	Thr	Gly	Ala	Thr	Lys 505	_	His	Leu	Asn	Gly 510	Arg	Asp
20		Ser	Leu	Val 515	Asn	Pro	Gly	Val	Ala 520	Met	Ala	Thr	His	Lys 525	Gly	qzA	Glu
25		Glu	Arg 530	Phe	Phe	Pro	Ser	Ser 535	Gly	Val	Leu	Met	Phe 540	Gly	Lys	Gln	Gly
23		Ala 545	Gly	Lys	qeA	Asn	Val 550	qeA	Tyr	Ser	Ser	Val 555	Met	Leu	Thr	Ser	Glu 560
30		Glu	Glu	lle	Lys	Thr 565	Thr	Asn	Pro	Val	Ala 570	Thr	Glu	Gln	Tyr	Gly 575	Val
35		Val	Ala	qsA	Asn 580	Leu	Gln	Gln	Gln	Asn 585	Ala	Ala	Pro	Ile	Val 590	Gly	Ala
35		Val	Asn	Ser 595	Gln	Gly	Ala	Leu	Pro 600	Gly	Met	Val	Trp	Gln 605	Asn	Arg	Asp
40		Val	Tyr 610	Leu	Gln	Gly	Pro	Ile 615	Trp	Ala	Lys	Ile	Pro 620	His	Thr	qeA	Gly
45		Asn 625	Phe	His	Pro	Ser	Pro 630	Leu	Met	Gly	Gly	Phe 635	Gly	Leu	Lys	His	Pro 640
45		Pro	Pro	Gln	Ile	Leu 645	Ile	Lys	aeA	Thr	Pro 650	Val	Pro	Ala	Asp	Pro 655	Pro
50		Thr	Thr	Phe	Ser 660	Gln	Ala	Lys	Leu	Ala 665	Ser	Phe	Ile	Thr	Gln 670	Tyr	Ser
	• ,	Thr	Gly	Gln 675	Val	Ser	Val	Glu	Ile 680	Glu	Trp	Glu	Leu	Gln 685	Lys	Glu	Asn

Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys 690 695 700

-																	
		Ser 705	Thr	aeA	Val	Asp	Phe 710	Ala	Val	Asn	Thr	Glu 715	Gly	Thr	Tyr	Ser	Glu 720
10		Pro	Arg	Pro	Ile	Gly 725	Thr	Arg	Tyr	Leu	Thr 730	Arg	Ser	Leu			
15	<210> 87 <211> 73 <212> PF <213> ca	3 ?T	rotein	of AA	V sero	otype,	clone	42.3A									
20	<400> 87				**												
25				٠.													
30																	
35																	
40 ·																	
45																	
50																	
55												•					

		Met 1	: Ale	a Ala	a Asp	61 ₃ 5	/ Hi:	Let	Pro	Asp	Trp 10	Lev	Glu	l Ast	neA o	. Leu 15	Ser
5		Glu	Gly	/ Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	el7	' Ala	Pro 30	Lys	Pro
10	,	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	ely	Arg	ely	Leu 45	Val	Leu	Pro
		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15		Val 65	Asn	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
20		Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
25		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30		Leu	Gly 130	Leu	Val	Glu	Glu	Gl y 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
		Pro 145	Ile _、	Glu	Ser	Pro	Asp 150	Ser	Ser	Thr		Iľe 155	Gly	Lys	Lys		Gln 160
35		Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	Asn	Phe	Gly 170	Gln	Thr	Gly	Asp .	Ser 175	Glu
		Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Ile	Gly 185	Glu	Pro	Pro		Gly 190	Pro	Ber
40																	

5	G1;	y Le	195	/ Se	c Gly	y Thi	Me1	200		a Gl	y Gl	y Gl	y Al. 20		o Me	L Ala
	Ası	210	n Asn	Gl:	1 Gly	y Ala	Asp 215		y Val	l Gl	y Sea	22		r Gl	y Ası	n Trp
10	His 225	s Cys	a Asp	Ser	Thi	Trp 230		Gly	zeA v	o Arg	y Val 235		e Thi	Th	Sei	Thr 240
15	Arg	y Thr	: Trp	Ala	Leu 245		Thr	Tyr	: Ası	250		·Lei	ц Туг	Lys	Gln 255	Ile
	Ser	: Asn	Gly	Thr 260	Ser	Gly	Gly	Ser	Thr 265		qeA	e Ası	a Thr	Tyr 270		Gly
20	Tyr	Ser	Thr 275	Pro	Trp	Gly	Tyr	Phe 280		Phe	Asn	Arç	285		Суз	His
25	Phe	Ser 290	Pro	Arg	Asp	Trp	Gln 295		Leu	Ile	Asn	Asn 300		Trp	Gly	Phe
	Arg 305	Pro	Lys	Arg	Leu	Asn 310	Phe	Lys	Leu	Phe	Asn 315	Ile	Gln	Val	Lys	Glu 320
30	Val	Thr	Gln	aeA	Glu 325	G1y	Thr	Lys	Thr	Ile 330	Ala	Asn	Asn	Leu	Thr 335	Ser
35	Thr	Ile	Gln	Val 340	Phe	Thr	Asp	Ser	Glu 345	Tyr	Gln	Leu	Pro	Tyr 350	Val	Len
	Gly	Ser	Ala 355	His	Gln	ely	Суз	Leu 360	Pro	Pro	Phe	Pro	Ala 365	Asp	Val	Phe
40	Met	Ile 370	Pro	Gln	Tyr	Gly	Tyr 375	Leu	Thr	Leu	Asn	Asn 380	Gly	Ser	Gln	Ala
45	Val 385	GЉ	Arg	Ser	Ser	Phe 390	Tyr	Суз			Tyr 395		Pro	Ser		Met 400
	Leu	Arg	Thr	Gly	Asn 405	Asn	Phe	Glu		Ser 410	Tyr	Gln	Phe	Glu	Asp 415	Val
50	Pro	Phe	His .	Ser 420	Ser	Tyr :	Ala		Ser 425	Gln	Ser	Leu	Asp	Arg 430	Leu	Met
	Asn	Pro	Leu : 435	Ile .	Asp	Gln '		Leu 440	Tyr	Tyr	Leu	Ser	Arg 445	Thr	Gln	Ser
<i>55</i>																

5	Thr	Gly 450	Gly	Thr	Ala	GŢĀ	Thr 455	Gln	Gln	Leu	Leu	Phe 460	Ser	Gln	Ala	GŢĀ
	Pro 465	Asn	Asn	Met	Ser	Ala 470	Gln	Ala	Lys	Asn	Trp 475	Leu	Pro	Gly	Pro	Cys 480
10	Tyr	Arg	Gln	Gln	Arg 485	Val	Ser	Thr	Thr	Leu 490	Ser	Gln	Asn	Asn	Asn 495	
15	neA	Phe	Ala	Trp 500	Thr	Gly	Ala	Thr	Lys 505	Tyr	His	Leu		Gly .510	Arg	Ąsp
13	Ser	Leu	Val 515	Asn	Pro	Gly	Val	Ala 520	Met	Ala	Thr	His	Lys 525	Asp	Asp	Glu
20	Glu	Arg 530	Phe	Phe	Pro	Ser	ser 535	eĵà	Val	Leu	Met	Phe 540	Gly	Lys	Glņ	Gly
	Ala 545	Gly	Lys	Ąsp	Asn	Val 550	qeA	Tyr	Ser	Ser	Val 5 55	Met	Leu	Thr	Ser	Glu 560
25	Glu	Glu	Ile	Lys	Thr 565	Thr	Asn	Pro	Val	Ala 570	Thr	Glu	Gln	Tyr	Gly 575	Val
30	Val	Ala	Aśb	Asn 580	Leu	Gln	Glņ	Gln	Asn 585	Ala	Ala	Pro	Ile	Val 590	eĵà	Ala
	Val	пеA	Ser 595	Gln	Gly	Ala	Leu	Pro 600	Gly	Met	Val	Trp	Gln 605	Asn	Arg	Asp
35	Val	Tyr 610	Leu	Gln	Gly	Pro	Ile 615	Trp	Ala	Lys		Pro 620	His	Thr	Asp	Gly
40	Asn 625	Phe	His	Pro	Ser	Pro 630	Leu	Met	Gly	Gly	Phe 635	Gly	Leu	Lys	His	Pro 640
	Pro	Pro	Gln		Leu 645		Lys		Thr			Pro	Ala	Asp	Pro 655	Pro
45	Thr	Thr	Phe	Ser 660	Gln	Ala	Lys	Leu	Ala 665	Ser	Phe	Ile	Thr	Gln 670	Tyr	Ser
50	Thr	Gly	Gln 675	Val	Ser	Val	Glu	Ile 680	Glu	Trp	Glu	Leu	Gln 685	Lys	Glu	Asn
	Ser	Lys 690	Arg	Trp	Asn	Pro	Glu 695	Ile	Gln	Tyr	Thr	Ser 700	Asn	Tyr	Tyr	Lys

_	9 7	er Th 05	r Ası	n Val	. Asp	710	Ala)	Val	reA l	r Thi	.715		y Thi	ту	Se:	720
5	P	IO Ar	g Pro	o Ile	Gly 725	Thr	: Arg	Tyr	Lev	730		, Ası	Lev	1		
10	<210> 88 <211> 731 <212> PRT <213> caps	d prote	in of A	AV sei	rotype	, clon	e 42.4		`							
15	<400> 88															
	M: 1	et Ala	a Ala	qeA .	Gly 5	Tyr	Leu	PIO	qeA	Trp 10		Glu	qeA	Asn	Leu 15	Ser
20	G.	lu Gly	/ Ile	Arg 20	СJл	Trp	Trp	Asp	Leu 25	Lys	Pro	e1 A	Ala	Pro 30	Lys	Pro
25	Ly	/s Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
٠	G)	у Туг 50	: Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
30	. Va	l Asn	Glu	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	qeA 08
35	Ly	s Gln	Leu	Glu	Gln 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Lys	Tyr	Asn	His 95	Ala
	ЕA	p Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	qeA	Thr	Ser	Phe 110	GÌY	Gly
40	As	n Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
45	Le	u Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
	Pr 14	o Ile	Glu	Ser	Pro	Asp 150	Ser	Ser	Thr		Ile 155	Gly	Lys	Lys	Gly	Gln 160
50	GD:	n Pro	Ala	Lys	Lys 165	Lys	Leu .	Asn		Gly 170	Gln	Thr	Gly		Ser 175	Glu
55	Se	val	Pro	Asp 180	Pro	Gln	Pro		Gly (185	Glu i	Pro	Pro		Gly 190	Pro	Ser

		G1	y Le	u Gl 19	y Se S	r Gl	y Th	ır Me	t Al 20		La G	ry Gl	y G1	.γ Α] 20		o Me	et Ala
5	·	As	p As 21	n As 0	n Gl	u Gl	y Al	a As 21	p G1 5	y Va	1 61	y As	n Al 22		r Gl	y As	n Trp
10		Ні 22	в Су: 5	s As	p S _i e	r Th	r Tr 23	p Le	u Gl	у Аз	p Ar	g Va 23		e Th	x Th	ı Se	r Thr 240
		Ar	g Thi	r Tr	Ala	a Le: 24.	u Pr	o Thi	г Ту	r As	n As 25	n Hi: O	s Le	u Ty	r Ly	s Gl 25	n Ile 5
15		Sei	r Sei	: Glr	260	Gly	y Ale	a Thi	c Ası	26	e Asi	n His	s Pho	e Ph	e G1;		r Ser
20		Thi	Pro	275	e13	Ty:	Phe	a Asp	280	e Ası	a Arq	J Ph∈	Hi:	285	s Hi:	s Phe	a Ser
		Ser	290	qeA	Trp	Gln	Arg	7 Leu 295	Ile	: Asr	Asr	l Asn	Trp 300	o Gly	/ Phe	e Arg	Pro
25		Lys 305	Arg	Leu	Asn	Phe	1 Lys	Leu	Phe	: Asn	Ile	Gln 315	Val	. Lys	Glv	l Val	Thr 320
30		Gln	. Asn	Glu	Gly	Thr 325	ГÀЗ	Thr	Ile	Ala	Asn 330	Asn	Leu	Thr	Ser	Thr 335	Ile
		Gln	Val	Phe	Thr 340	qeA	Ser	Glu	Tyr	Arg 345	Leu	Pro	туr	Val	Leu 350		Ser
35	•	Ala	His	Gln 355	Gly	Cys	Leu	Pro	Pro 360	Phe	Pro	Ala	Asp	Val 365	Pņe	Met	Ile
40		Pro	Gln 370	Tyr	Gly	Tyr	Leu	Thr 375	Leu	Asn	Asn	Gly	Ser 380	Gln	Ala	Val	Gly
		Arg 385	Ser	Ser	Phe	Tyr	Cys 390	Leu	Glu	Tyr	Phe	Pro 395	Ser	Gln	Met	Leu	Arg 400
45		Thr	Gly	neA	Asn	Phe 405	Glu	Phe	Ser	Tyr	Gln 410	Phe	Glu	Ąsp	Val	Pro 415	Phe
50		His	Ser	Sér	Tyr 420	Ala	His	Ser	Gln	Ser 425	Leu	Asp	Arg	Leu	Met 430	Asn	Pro
	٠	Leu	Ile .	Asp 435	Gln	Tyr	Leu	Tyr	Tyr 440	Leu	Ser	Arg	Thr	Gln 445	Ser	Thr	Gly
55																	

5	Gly	450	r Ala	. G17	Th:	r Glr	455		. Let	Phe	e Ser	Glr 460		Gl;	y Pr	o Asn
	Asr 465	Met	; șe:	: Ala	Glz	1 Ala 470		Asn	Trp	Lev	475		Pro	Cys	з Ту	480
10	Glr	Glr	Arg	Val	. Sei 485		Thr	Leu	Ser	Gln 490		Asn	. Asr	Sez	Asi 495	n Phe
15	Ala	Trp	Thr	G1y 500		Thr	Lys	Tyr	His 505		Asn	Gly	Arg	Asp 510		Leu
	Val	. Asn	Pro 515	Gly	Val	Ala	Met	Ala 520	Thr	His	Lys	Ąsp	Asp 525		Glu	Arg
20	Phe	Phe 530	Pro	Ser	Ser	Gly	Val 535	Leu	Met	Phe	Gly	Lys 540		Gly	Ala	Gly
25	Lys 545	Asp	Asn	Val	qeA	Tyr 550	Ser	Ser	Val	Met	Leu 555	Thr	Ser	Glu	Glu	Glu 560
	Ile	Lys	Thr	Thr	Asn 565	Pro	Val	Ala	Thr	Glu 570	Gln	Tyr	Gly	Val	Val 575	Ala
30	Asp	Asn	Leu	Gln 580	Gln	Gln	aeA	Ala	Ala 585	Pro	Ile	Val	GJY	Ala 590	Val	Asn
35	Ser	Gln	Gly 595	Ala	Leu	Pro	Gly	Met 600	Val	Trp	Gln	aeA	Arg 605	Asp	Val	Tyr
	Leu	Gln 610	eīā	Pro	Ile	Trp	Ala 615	Lys	Ile	Pro	His	Thr 620	qeA	eĵy	Asn	Phe
40	His 625	Pro	Ser	Pro	Leu	Met 630	Gly	Gly	Phe	Gly	Leu 635	Lys	His	Pro	Pro	Pro 640
45	Gln	Ile	Leu	Ile	Lys 645	Asn	Thr	Pro	Val	Pro 650	Ala	Asp	Pro	Pro	Thr 655	Thr
	Phe	Ser	Gln	Ala 660	Lys	Pro	Ala		Phe 665	Ile	Thr	Gln	Tyr	Ser 670	Thr	ely
50	Gln	Val	Ser 675	Val	Glu	Ile		Trp 680	Glu	Leu	Gln	Lys	Glu 685	neA	Ser	L ys
55	Arg	Trp 690	Asn	Pro	Glu	Ile	Gln 695	Tyr	Thr	Ser		Tyr 700	Tyr	Lys	Ser	Thr

5		Asn 705	Val	Asp	Phe	Ala	Val 710	Asn	Thr	Glu	Gly	Thr 715	Tyr	Ser	Glu	Pro	Arg 720
5		Pro	Ile	Gly	Thr	Arg 725	Tyr	Leu	Thr	Arg	Asn 730	Leu					
10	<210> <211> <212> <213>	731 PRT		, ein of	AAV s	seroty	pe, clo	one 42	.5A								
15	<400>	89															
20													•				
25																	
30																	

	Met 1	: Ala	Ala	Asp	Gly 5	туг	Len	Pro	Asp	Trp 10	Leu	Glu	ı Asp	Asn	Leu 15	Sez
5	Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	qeA	Leu 25	Lys	Pro	Gly	' Ala	Pro 30	Lys	Pro
10	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	qeA	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	Asn	Glu	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
20	Lys	Gln	Leu	Glu	Gln 85	Gly	Asp	aeA	Pro	Tyr 90	Leu	Lys	Tyr	neA	His 95	Ala
	qeA	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Ąsp	Thr	Ser	Phe 110	Gly	Gly
. 25	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Arg 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	GJY	Lys	Lys	Arg
	Pro 145	Ile	Glu	Ser	Pro	Asp 150	Ser	Ser	Thr	Gly	Ile 155	elà	Lys	Lys	Gly	Gln 160
35	Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	Asn	Phe	Gly 170	Gln	Thr	Gly	Asp	Ser 175	Glu
40	Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Leu	Gly 185	Glu	Pro	Pro	Ala	Ala 190	Pro	Ser
	Gly	Leu	Gly 195	Ser	Gly	Thr	Met	Ala 200	Ala	GЈУ	Gly	Gly	Ala 205	Pro	Met	Ala

5		Asp	210		Glu	Gly	, WJa	Asp 215		Val	. Gly	' Asn	Ala 220		Gly	' Asr	Trp
10		His 225		Ąsp	Ser	Thr	Trp 230		GJY	qeA	Arg	Val 235		The	Thr	Ser	Thr 240
10		Arg	Thr	Trp	Ala	Leu 245		Ťhr	Tyr	neA	Asn 250		Leu	Tyr	Lys	Gln 255	Ile
15		ser	Ser	Gln	3er 260	ету	Ala	Thr	Asn	Asp 265		His	Phe	Phe	Gly 270	_	Ser
		Thr	Pro	Trp 275	Gly	Tyr	Phe	Asp	Phe 280		Arg	Phe	His	Cys 285		Phe	Ser
20	•	Pro	Arg 290	Asp	Trp	Gln	Arg	Leu 295	Ile	Asn	Asn	Asn	Arg 300	Gly	Phe	Azg	Pro
25		Arg 305		Leu	Arg	Phe	Lys 310	Leu	Phe	Asn	Ile	Gln 315	Val	Lys	Glu	Val	Thr 320
20	٠	Thr	Asn	Asp	e1À	Val 325	Thr	Thr	Ile	Ala	Asn 330	Asn	Leu	Thr	Ser	Thr 335	Ile
30		Gln	Val	Phe	Ser 340	Asp	Ser	Glu	Tyr	Gln 345	Leu	Pro	Tyr	Val	Leu 350	СŢУ	Ser
35		Ala	His	Gln 355	Gly	Cys	Leu	Pro	Pro 360	Phe	Pro	Ala	Asp	Val 365	Phe	Met	Ile
		Pro	Gln 370	Tyr	Gly	Tyr	Leu	Thr 375	Leu	Asn	Asn	Gly	Ser 380	Gln	Ser	Val	Gly
40		Arg 385	Ser	Ser	Phe	Tyr	Cys 390	Leu	Glu	Tyr	Phe	Pro 395	Ser	Gla	Met	Leu	Arg 400
45		Thr	Gly	Asn	Asn	Phe 405	Glu	Phe	Ser	Tyr	Gln 410	Phe	Glu	qeA	Val	Pro 415	Phe
		His	Ser	Ser	Tyr 420	Ala	His	Ser		Ser 425	Leu	Asp	Arg	Leu	Met 430	neA	Pro
50		Leu	Ile	Asp 435	Gln	Tyr	Leu		Tyr 440	Leu	Ser	Arg	Thr	Gln 445	Ser	Thr	Gly
55		Gly	Thr 450	Ala	Gly	Thr	Gln	Gln 455	Leu	Leu	Phe		Gln 460	Ala	Gly	Pro	Asn

_		465		•••	7120	02	470	-,-		•		475	2		•	- , -	480
5		Gln	Gln	Arg	Val	Ser 485		Thr	Leu	Ser	Gln 490		Asn	Asn	Ser	Asn 495	
10	,	Ala	Trp	Thr	Gly 500		Thr	Lys	Tyr	His 505		Asn	Gly	Arg	Asp 510	Ser	Leu
15		Val	Asn	Pro 515	_	Val	Ala	Met	Ala 520		His	Lys	Asp	Asp 525	Glu	Glu	Arg
.5			Phe 530		Ser	Ser	Gly	Val 535	Leu	Met	Phe	Gly	Lys 540		Gly	Ala	Gly
20		Lys 545	'Asp	Asn	Val	qeK	Tyr 550	Ser	ser	Val	Met	Leu 555	Thr	Ser	Glu	Glu	Glu 560
25		Ile	Lys	Thr	Thr	Asn 565	Pro	Val	Ala	Thr	Glu 570	Gln	Tyr	Gly	Val	Val 575	Ala
		Asp	Asn	Leu	Gln 580	Gln	Gln	Asn	Ala	Ala 585	Pro	Ile	Val	Gly	Ala 590	Val	Asn
30		Ser	Gln	Gly 595	Ala	Leu	Pro	GЉ	Met 600	Ala	Trp	Gln	Asn	Arg 605	qeA	Val	Tyr
35		Leu	Gln 610	Gly	Pro	Ile	Trp	Ala 615	Lys	Ile	Pro	His	Thr 620	Asp	GJA	neA	Phe
		His 625	Pro	Ser	Pro	Leu	Met 630	Gly	Gly	Phe	Gly	Leu 635	Lys	His	.Pro	Pro	Pro 640
40		Gln	Ile	Leu		Lys 645	Asn 	Thr	Pro	Val	Pro 650	Ala	Asp	Pro	Pro	Thr 655	Thr
45		Phe	Ser	Gln	Ala 660	Lys	Leu	Ala	Ser					Tyr		Thr	Gly
		Gln	Val	Ser 675	Val	Glu	Ile	Glu	Trp 680	Glu	Leu	Gln	Lys	Glu 685	Asn	Ser	Lys
50 .		Arg	Trp 690	Asn	Pro	Glu	Ile	Gln 695	Tyr	Thr	Ser	Asn	туr 700	Tyr	Lys	Ser	Thr
55		Asn 705	Val	Asp	Phe	Ala	Val 710	Asn	Thr	Glu	Gly	Thr 715	Tyr	Ser	Glu	Pro	Arg 720

Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

10	<210> 90 <211> 73 <212> PF <213> ca	33 RT Ipsid p	orotein	of AA	.V ser∈	otype,	cione	42.18	3								
15		Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	qeA	Asn	Leu 15	Ser
		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Ąsp	Leu 25	Arg	Pro	Gly	Ala	Pro 30	Lys	Pro
20 -		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	qeA	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
25		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	ГÀЗ	Gly	Glu	Pro
		Val 65	Asn	Glu	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	туг	Asp 80
30		Lys	Gln	Leu	Glu	Gln 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Lys	Tyr	neA	His 95	Ala
35		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
		Asn	Leu	Gly 115	Arg	Ala	Val	Ьµ́е	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
40		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	BLA	Pro 140	Gly	Lys	Lys	Arg
45		Pro 145	Ile	Glu	Ser	Pro	Asp 150	Ser	Ser	Thr	GŢĀ	Ile 155	Gly	Lys	Lys	Gly	Gln 160
45		Gln	Pro	Ala	Lуз	Lys 165	Arg	Leu	Asn	Phe	Gly 170	Gln	Thr	Gly	Asp	Ser 175	Glu
50		Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Ile	Gly 185	Glu	Pro	Pro	Ala	Gly 190	Pro	Ser
55		Gly	Leu	Gly 195	Ser	Gly	Thr	Met	Ala 200	Ala	Gly	Gly	Gly	Ala 205	Pro	Met	Ala
55		Asp	Asn 210	Asn	Glu	Gly	Ala	Asp 215	Gly	Val	Gly	Ser	Ser 220	Ser	Gly	Asn	Trp

		Hi: 225	s Cys	geA s	Ser	Thi	230		ı Gly	/ Ası	Arg	Val 235		Thi	Thi	: Sei	7hr 240
5		Arg	Th:	Trp	Ala	Leu 245	Pro	Thi	туг	: Asr	250		Lev	Ty:	Lys	Glr 255	lle
10		Ser	r kan	g Gly	7 Thr 260	Ser	: Gly	Gly	, Ser	Thr 265		qeA	Asn	Thr	Tyr 270		e Gly
		Туг	: Ser	Thr 275		Trp	Gly	Туг	Phe 280		Phe	neA	Arg	Phe 285		Cys	His
15		Phe	Ser 290		Arg	Asp	Trp	Gln 295		Leu	Ile	Asn	Asn 300	Asn	Trp	ely	Phe
20		Arg 305	Pro	Lys	Arg	Leu	Asn 310	Phe	Lys	Leu	Phe	Asn 315	Ile	Gln	Val	Lys	Glu 320
4 . .	••	Val	Thr	Gln	Asn	Glu 325	Gly	Thr	Lys	Thr	Ile 330	Ala	Asn	Asn	Leu	Thr 335	
25		Thr	Ile	Gln	Val 340	Phe	Thr	Asp	Ser	Glu 345	Tyr	Gln	Leu	Pro	Tyr 350	Val	Leu
30		GŢĀ	Ser	Ala 355	His	Gln	Gly	Cys	Leu 360	Pro	Pro	Phe	Pro	Ala 365	Asp	Val	Phe
	·	Met	Ile 370	Pro	Gln	Tyr	Gly	Tyr 375	Leu	Thr	Leu	Asn	Asn 380	Gly	Ser	Gln	Ala
		Val 385	Gly	Arg	Ser	Ser	Phe 390	Tyr	Суз	Leu	Glu	Tyr 395	Phe	Pro	Ser	Gln	Met 400
40		Leu	Arg	Thr	Gly	Asn 405	Asn	Phe	Glu	Phe	Ser 410	Tyr	Gln	Phe	Glu	Asp 415	Val
		Pro	Phe	His	Ser 420	Ser	Tyr	Ala	His	Ser 425	Gln	Ser	Leu	qeA	Arg 430	Leu	Met
45		Asn	Pro	Leu 435	Ile	Asp	Gln	Tyr	Leu 440	Tyr	Tyr	Leu	Ser	Arg 445	Thr	Gln	Ser
50		Thr	Gly 450	Gly	Thr	Ala	СŢУ	Thr 455	Gln	Gln	Leu	Leu	Phe 460	Ser	Gln	Ala	Gly
		Pro 465	Asn	Asn	Met	Ser	Ala 470	Gln	Ala	Lys		Trp 475	Leu	Pro	Gly	Pro	Cys 480
55																	

			Tyr	Arg	Gln	Gln	Arg 485		. Ser	Thr	Thr	Val 490		Gln	ı Asn	Asn	Asn 495	Ser
5			Asn	Phe	Ala	Trp 500		Gly	Ala	Thr	Lys 505		His	Leu	Asn	Gly 510		qеA
10		•	Ser	Leu	Val 515		Pro	Gly	Val	Ala 520		Ala	Thr	His	Lys 525		Asp	Glu
45			Glu	Arg 530		Phe	Pro	ser	Ser 535		Val	Leu	Met	Phe 540	СŢУ	Lys	Gln	GJ Ā
15			Ala 545		Lys	Asp	Asn	Val 550	Asp	Tyr	Ser	Ser	Val 555	Met	Leu	Thr	Ser	Gl <u>u</u> 5 60
20	~		Glu	Glu	Ile	Lys	Thr 565	Thr	Asn	Pro	Val	Ala 570	Thr	Glu	Gln	Tyr	Gly 575	Val
25			Val	Ala	Asp	Asn 580	Leu	Gln	Gln	Gln	Asn 585	Ala	Ala	Pro	Ile	Val 590	Gly	Ala
25			Val	Asn	ser 595	Gln	Gly	Ala	Leu	Pro 600	Gly	Met	Val	Trp	Gln 605	Asn	Arg	Asp
30			Val	Tyr 610	Leu	Gln	Gly	Pro	Ile 615	Trp	Ala	Lys	Ile	Pro 620	His	Thr	Asp	eĵÀ
35			Asn 625	Phe	His	Pro	Ser	Pro 630	Leu	Met	Gly	Gly	Phe 635	Gly	Leu	Lys	His	Pro 640
33			Pro	Pro	Gln	Ile	Leu 645	Ile	Lys	Asn	Thr	Pro 650	Val	Pro	Ala	Asp	Pro 655	Pro
40			Thr	Thr	Phe	Ser 660	Gln	Ala	Lys	Leu	Ala 665	Ser	Phe	Ile	Thr	Gln 670	Tyr	Ser
45			Thr	Gly	Gln 675	Val	Ser	Val	Glu	Ile 680	Glu	Trp	Glu	Leu	Gln 685	Lys	Glu	A S N
45			Ser	Lys 690	Arg	Trp	Asn	Pro	Glu 695	Ile	Gln	Tyr	Thr	Ser 700	Asn	Tyr	Tyr	Lys
50			Ser 705	Thr	Asn	Val		Phe 710	Ala	Val	Asn	Thr	Glu 715	Gly	Thr	Tyr		Glu 720
		٠.	Pro	Arg	Pro	Ile	Gly 725	Thr	Arg	Tyr		Thr 730	Arg	Asn	Leu			

<210> 91

<211> 738 <212> PRT

<213> capsid protein of AAV serotype, clone 42.5B

5	<400> 9	11															
		Me ⁻	t Al	a Ala	eA e	Gly 5	у Ту:	r Lei	u Pr	o As	p Tr	p Le	u Gl	ı Ası	p Ası	n Le	u Ser
10		Gli	u Gly	y Ile	Arg 20	g Gli	Tr	o Trp	eA c	p Le 25	u Ly:	s Pro	o Gly	/ Ala	9 Pro	Ly.	s Pro
		Lys	. Ala	35	Gln	Gln	Lys	Glr.	Asp 40	e As	p Gly	/ Arq	g Gly	/ Let 45	ı Val	Let	ı Pro
15		GJ7	7 Tyr 50	Lys	Tyr	Leu	Gly	7 Pro	Phe	e Ası	r ell	Let	Asp 60	Lys	Gly	Gl:	Pro
		Val 65	. Asr	Glu	Ala	qeA	Ala 70	Ala	Ala	Lei	ı Glu	His 75	Asp	Lys	Ala	Туг	q z A :
20		Lys	Gln	Leu	Glu	Gln 85	Сĵ	Asp	Asn	Pro	90	Leu	Lys	Tyr	Asn	His 95	Ala
25		Asp	Ala	Glu	Phe 100	èju	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
		neA	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
35		Pro 145	Val	Glu	Pro	ser	Pro 150	Gln	Arg	Ser	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
40		ely	Lys	Thr	Gly	Gln 165	Gln	Pro	Ala	Lys	Lys 170	Arg	Leu	Asn	Phe	Gly 175	Gln
40		Thr	Gly	Asp	ser 180	Glu	Ser	Val	Pro	Asp 185	Pro	Gln	Pro	Ile	Gly 190	Glu	Pro
45		Pro	Ala	Gly 195	Pro	Ser	Gly	Leu	Gly 200	Ser	Gly	Thr		Ala 205	Ala	ета	Gly
		Gly	Ala 210	Pro :	Met .	Ala .	Asp	Asn 215	Asn	Glu	Сĵу		Asp 220	Gly	Val	Gly	Ser
50		Ser 225	Ser	Gly .	Asn '	Trp	His 230	Cys .	qeA	Ser	Thr	Trp 235	Leu	Gly	qeA		Val 240
55		Ile	Thr	Thr :	Ser '	Thr 1 245	Arg	Thr '	Trp		Leu 250	Pro	Thr '	Tyr		Asn 255	His

	Le	u Ty	r Ly	260	n Il O	e Se	e.A. z	n Gl	y Th: 26:		r Gly	y Gl	y Se.	270		qeA n
5	еA	n Th	275	r Phe	e Gl	y Ty :	r Sei	Th: 280		Tr	el?	ү Ту.	r Phe 28		Phe	aeA e
10	Ar	g Pho 290	e His	в Суз	Hi:	s Phe	295		Ar	g Asp	Trp	300		, Leu	ı Ile	neA :
	As:	n Asr 5	Trp	Gly	/ Phe	310		Lys	Arg	, Leu	Asn 315		e Lys	Lev	Phe	Asn 320
15	IĻ	e Glr	Val	Lya	G1v 325	ı Val	Thr	Gln	. Asn	330	ely	Thi	Lys	Thr	11e 335	
20	Ası	Asn	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345		Thr	Asp ,) Ser	Glu 350		Gln
	Lev	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	Gly	Суз	Leu 365		Pro	Phe
25	Pro	370		Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Tyr 380		Thr	Leu	Asn
30	Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Tyr	Cys	Leu	Glu	Tyr 400
	Phe	Pro	Ser	Gln	Met 405	Leu	Arg	Thr	Gly	Asn 410	Asn	Phe	Glu	Phe	Ser 415	Tyr
35	Gln	Phe	Glu	Asp 420	Val	Pro	Phe	His	Ser 425	ser	Tyr	Ala	His	Ser 430	Gln	Ser
40	Leu	Asp	Arg 435	Leu	Met	Asn	Pro	Leu 440	Ile	qeA	Gln	Tyr	Leu 445	Tyr	Tyr	Leu
	Ser	Arg 450	Thr	Gln	Ser	Thr	Gly 455	Gly	Thr	Ala	Gly	Thr 460	Gln	Gln	Leu	Leu
45	Phe 465	Ser	Gln	Ala	Gly	Pro 470	neA	Asn	Met	Ser	Ala 475	Gln	Ala	Lys	Asn	Trp 480
50	Leu	Pro	Gly	Pro	Cys 485	Tyr	Arg	Gln	Gln	Arg 490	Val	Ser	Thr	Thr	Leu 495	Ser
	 Gln	Asn	Asn	Asn 500	Ser	Asn	Phe		Trp 505	Thr	Gly .	Ala	Thr	Lys 510	Tyr	His

		Le	u Ası	n Gly 515	/ Arg	g Asp	Se.	r Lei	1 Va: 520		n Pro	o Gly	y Va:	1 Al. 52		t Al	a Thr
5		Hi	5 Lys	a Asp	Asp	Glu	Gl:	1 Arg 535		Phe	e Pro	Se:	540		y Val	l Lei	ı Met
10		Phe 545	e Gly	, Lys	Glm	Gly	Ala 550	a Gly	' Lys	Asp	Asn	Val 555		ту:	: Se	: Se	Val 560
		Met	Leu	Thr	Ser	Glu 565	Gli	Glu	Ile	Lys	Thr 570		Asn	Pro	Val	Ala 575	Thr
15		Glu	Gln	Tyr	Gly 580	Val	Val	Ala	Asp	Asn 585		Gln	Gln	Glm	Asn 590		Ala
20		PIO	Ile	Val 595	Gly	Ala	Val	Asn	Ser 600	Gln	Gly	- Ala	Leu	Pro 605		Met	Val
		Тгр	Gln 610	Asn	Arg	Asp	Val	Туг 615	Leu	Gln	Gly	Pro	Ile 620	Trp	Ala	Lys	Ile
25		Pro 625	His	Thr	Asp	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	Gly	Phe 640
30		Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Ile	Lys	Asn	Thr	Pro 655	Val
		Pro	Ala	Asp	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln	Ala	Lys	Leu	Ala 670	Ser	Phe
35		Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
40		Leu	Gln 690	Lys	Glu	Asn	Ser	Lys 695	Arg	Trp	Asn	Pro	Glu 700	Ile	Gln	Tyr	Thr
		ser 705	Asn	Tyr	Tyr	Lys	Ser 710	Thr	Asn	Val		Phe 715	Ala	Val	Asn	Thr	Glu 720
45		Gly	Thr	Tyr	Ser	Glu 725	Pro	Arg	Pro	Ile	Gly '	Thr .	Arg	Tyr	Leu	Thr 735	Arg
5 <i>0</i>		Asn	Leu														
	<210> 92 <211> 73 <212> PF	18 RT															
55	<213> ca		rotein	of AA\	V serc	type,	cione	43.1									

Solu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 45 Ass Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 55 Asn Ala Ala Ash Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 Asn Ala Ala Asp Ala Ala Ash Pro Tyr Leu Arg Tyr Asn His Ala 85 Asp Ala Glu Pro 65 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 Asp Ala Glu Pro 115 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 Asn Leu Gly Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 Ash Ala Glu Pro 150 Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 Ash Arg Lys Arg Leu Asn Phe Gly Gln 165 Ash Arg Lys Arg Leu Asn Phe Gly Gln 165 Ash Arg Lys Arg Leu Asn Phe Gly Gln 165 Ash Asp Ash Ash Gly Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Pro 165 Ash Asp Ash Ash Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 Ash Ash Ash Ash Ash Ash Ash Ash Ash Glu Gly Ala Asp Gly Val Gly Ser Gly Ala Pro Met Ala Asp Ash Ash Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Ash Trp His Cys Asp Ser Thr Trp Leu Gly Ash Arg Val 225 Ash Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Ash Ash His 245			Met 1	: Ala	. Ala	Азр	61y	Tyz	Leu	Pro	qeA o	Trp 10	Leu	Glu	qeA	Asn	Lev 15	Ser
10 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 S5 Phe Asn Gly Leu Asp Lys Gly Glu Pro 65 Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 Asn Ala Ala Asp Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 85 85 85 85 85 85 8	5		Glu	Gly	Ile		Glu	Trp	Trp	qeA ·		Lys	Pro	Gly	Ala		Lys	Pro
50 55 60 15 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Ass Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 20 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 Asp Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 Gly Lys Lys Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 185 Fro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 225 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His	10		Lys	Ala		Gln	Gln	Lys	Gln		Asp	Gly	Arg	Gly		Val	Leu	Pro
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 asp Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 asp Thr Ser Thr Gly Ile 150 asp Thr Ala Pro Gly Lys Lys Arg 130 asp Thr Ala Pro Gly Lys Lys Arg 130 asp Thr Ala Pro Gly Lys Lys Arg 130 asp Thr Ala Pro Gly Lys Lys Arg 130 asp Thr Ala Pro Gly Lys Lys Arg 130 asp Thr Ala Arg Lys Arg 140 asp Ser Ser Thr Gly Ile 150 asp Tro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 asp Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 asp 180 asp Tro Ala Arg Lys Arg Leu Asn Phe Gly Glu Pro 180 asp 180 asp Tro Ala Arg Lys Arg Leu Asp Gly Gly Gly 195 asp Ser Gly Ala Asp Gly Gly Val Gly Ser Gly Ala Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 200 asp Ser Ser Thr Trp Leu Gly Asp Arg Val 225 asp Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 195 asp Ser Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His			Gly	50	Lys	Tyr	Leu	Gly		Phe	Asn	Gly	Leu		Lys	eĵà	Glu	Pro
20 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100	15			Asn	Ala	Ala	- Asp		Ala	Ala	Leu	Glu		Ąsp	Lys	Ala	Tyr	
25 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 Pro Val Glu Pro 125 Ser Pro Asp Ser Pro Asp Ser Ser Thr Gly Ile 145 Gly Lys Lys Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Pro 165 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 185 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 185 Gly Asp Ser Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His	. 20		Gln	Gln	Leu	Lys		Gly	Asp	Asn	Pro		Leu	Arg	Tyr	Asn		Ala
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 Gly Lys Lys Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His			Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu		Glu	Asp	Thr	Ser		Gly	Gly
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 Gly Lys Lys Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 185 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His	25		neA	Leu		Arg	Ala	Val	Phe		Ala	Lys	Lys	Arg		Leu	Glu	Pro
Gly Lys Lys Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 Tle Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His	30		Leu		Leu	Val	Glu	Glu		Ala	ГÀЗ	Thr	Ala		Gly	Lys	Lys	Arg
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 Fro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 215 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His				Val	Glu	Pro	Ser		Gln	Arg	Ser	Pro		9er	Ser	Thr	Gly	
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 215 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 220 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His	35		Gly	Lys	Lys	Gly		Gln	Pro	Ala	Arg		Arg	Leu	Asn	Phe		Gln
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 195 195 200 205 205 207 208 208 209 209 207 208 208 209 209 209 209 200 200	40		Thr	Gly	Asp		Glu	Ser	Val	Pro		Pro	Gln	Pro	Ile		Glu	Pro
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His			Pro	Ala		Pro	Ser	Gly	Leu		Ser	Gly	Thr	Met		Ala	Gly	Сĵ
225 230 235 240 50 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His	45		Gly		Pro	Met	Ala	qeA		Asn	Glu	Gly	Ala		Gly	Val	ely	Ser
	50 .			Ser	Gly	Asn			Cys	Asp .	Ser	Thr		Leu	ely	qeA	Arg	
		•	Ile	Thr	Thr	Ser		Arg	Thr	Trp	Ala		Pro	Thr	Tyr	Asn		His

5		Le	u Ty	r Ly	s Gl 26	n Il O	e Se	r As	n Gl	y Th 26		r Gl	y Gl	y Se	r Th 27		qeA n
		Ası	n Th	r Ty 27	r Ph	e Gl	у Ту:	r Se	r Th: 28	r Pr O	o Tr	p Gl	у Ту	r Ph 28		p Ph	e Asn
10		Ar	290	e Hi	s Cy:	s Hi	s Pho	e Se: 29:	r Pro	o Ar	g As	p Tr	30		g Le	u Il	e Asn
		Asr 305	Ası	Tr	p Gly	y Pho	310	g Pro	Lys	Ar	g Lei	1 Asr 315		≥ Ly:	s Le	ı Phe	320
15		Ile	: Glr	Val	L Lys	325	ı Val	Thi	Glr	a Ası	330		Thi	Ly:	3 Thi	: Ile 335	Ala
20		neA	Asn	Leu	340	Ser	Thr	: Ile	Gln	Va] 345	Phe	: The	'Asr	Sez	350		Gln
		Leu	Pro	Tyr 355	Val	Pro	Gly	'Ser	Ala 360	His	Gln	Gly	Суз	Leu 365		Pro	Phe
25		Pro	Ala 370	Asp	Val	Phe	Met	I1e 375	Pro	Gln	Tyr	Gly	туг 380		Thr	Leu	Asn
30		Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Tyr	eyo	Leu	Glu	Tyr 400
		Phe	Pro	Ser	Gln	Met 405	Leu	Arg	Thr	Gly	Asn 410	Asn	Phe	Glu	Phe	Ser 415	Tyr
35		Thr	Phe	Glu	Asp 420	Val	Pro	Phe	His	Ser 425	Ser	Tyr	Ala	His	Ser 430	Gln	Ser
40		Leu	Asp	Arg 435	Leu	Met	Asn	Pro	Leu 440	Ile	qeA	Gln	Tyr	Leu 445	Tyr	Tyr	Leu
		Ser	Arg 450	Thr	Gln	Ser	Thr	Gly 455	Gly			Gly			Gln	Leu	Leu
45		Phe 465	ser	Gln	Ala	Gly	Pro 470	Ala	Asn	Met	Ser	Ala 475	Gln	Ala	Lys	Asn	Trp 480
50						485					490					Leu 495	
	ì	Gln .	Asn	neA	Asn 500	Ser	Asn	Phe		Trp 505	Thr	Gly	Ala	Thr	Lys 510	Tyr	His
55		Leu	ne.A	Gly 515	Arg .	Asp	Ser :	Leu	Val 2 520	neA	Pro	Gly	Val	Ala 525	Met	Ala	Thr

		His	Lys 530		Asp	Glu	Glu	Arg 535	Phe	Phe	Pro	Ser	Ser 540		Val	Lev	Met
5		Phe 545	ely	Lys	Gln	Gly	Ala 550	Gly	Lys	Ąsp	neA	Val 555		Tyr	Ser	Ser	Val 560
10		Met	Ļeu	Thr	Ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	,Thr
		Glu	Gln	Tyr	Gly 580	Val	Val	Ala	Asp	Asn 585		Gln	Gln	Thr	Asn 590	Gly	Ala
15		Pro	Ile	Val 595	Gly	Thr	Val	Asn	Ser 600	Gln	Gly	Ala		Pro -605	Gly	Met	Val
20		Trp	Gln 610	Asn	Arg	Asp	Val	Tyr 615	Leu	Gln	Gly	Pro	Ile 620	Trp	Ala	Lys	Ile
25		Pro 625	His	Thr	Asp	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	СĴУ	Phe 640
25		Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Val	Lys	Asn	Thr	Pro 655	Val
30		Pro	Ala	qeA	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln	Ala	Lys	Leu	Ala 670	Ser	Phe
35		Ile		Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
		Leu	Gln 690	Lys	Glu	neA	Ser	Lys 695	Arg	Trp	Asn	Pro'	Glu 700	Ile	Gln	Tyr	Thr
40		Ser 705	Asn	Tyr	Tyr		Ser 710	Thr	Asn	Val	qeA	Phe 715	Ala	Val	Asn	Thr	Glu 720
45		Gly	Thr	Tyr	Ser	Glu 725	Pro	Arg	Pro	Ile	Gly 730	Thr	Arg	Tyr	Leu	Thr 735	Arg
		Asn	Leu														
50	<210> 9 <211> 1 <212> 8 <213> 6	738	rotein	of AA	V sero	type.	clone	43.12	:			•		•			
55	<400> 9			- •		, F =1.	,										

		Me 1	t Al	a Al	a Ası	p Gl 5	у Ту	r Le	u Pr	c As	p Tr 10	p Le	u Gl	u As	p As	n Le	u Se
5		Gl	u Gl	y Il	e Arg 20	g Gl	u Tr	p Tr	lsy d	25	u Ly	s Pr	o G1	y Al	a Pr 30	o Ly	9 Pro
10		Ly	s Ala	8 Ası 35	n Glm	Gl:	n Ly:	s Gl	n Asy 40	As ₁	p Gl	, Y Ar	g Gl	y Let 45	ı Va	l Le	ı Pro
		G1;	у Ту: 50	t Lys	3 Tyr	Leu	ı Gly	7 Pro	Phe	e Ası	n Gly	y Lei	1 As ₁ 60	p Lys	G G1	y Gli	Pro
15		Va: 65	l Asr	a Ala	Ala	ze.	70	Ala	a Ala	Let	ı Glü	His 75	3 Ası	D Lys	Ala	а Туг	qeA : 08
20		Glr	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	90	Lev	Arg	J Tyr	Ası	His 95	Ala
		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	. Asp	Thr	Ser		e Gly	Gly
25		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140		Lys	Lys	Arg
		Pro 145	Val	Glu	Pro	Ser	Pro 150	Gln	Arg	Ser	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
35		Gly	Lys	Lys	Gly	His 165	Gln	Pro	Ala	Arg	Lys 170	Arg	Leu	Asn	Phe	Gly 175	Gln
40		Thr	Gly	Азр	Ser 180	Glu	Ser	Val	Pro	Asp 185	Pro	Gln	Pro	Ile	Gly 190	Glu	Pro
		Pro	Ala	Gly 195	Pro	Ser	Gly	Leu	Gly 200	Ser	Gly	Thr	Met	Ala 205	Ala	Gly	Gly
45	·	Gly	Ala 210	Pro	Met i	Ala	qeA	Asn 215	Asn	Glu	ely		Asp 220	Gly	Val	Gly	Ser
50		Ser 225	Ser	Gly.	Asn :	Trp	His 230	Cys .	Asp .	Ser	Thr	Trp 235	Leu	Gly .	Asp	Arg '	Val 240
	ı	Ile	Thr	Thr	Ser 1	Thr . 245	Arg '	Thr	Trp 2		Leu 250	Pro	Thr	Tyr :		Asn : 255	His

		Leu	Tyr	Lys	Gln 260		. Ser	. Asn	Gly	265		: Gly	Gly	sez	270		qeA ı
5		Asn	Thr	Tyr 275		Gly	Tyr	: Ser	Thr 280		Trp	Gly	Туг	Phe 285	_	Phe	: Asn
10		Arg	Phe 290		eyo	His	Phe	Ser 295		Arg	Asp	Trp	Gln 300	_	Leu	Ile	Asn
		Asn 305		Trp	Gly	Phe	Arg 310		Lys	Arg	Leu	Asn 315	Phe	Lys	Leu	Phe	Asn 320
15		Île	Gln	Val	Lys	Glu 325	Val	Thr	Gln	Asn	330 GJ <i>n</i>	Gly	Thr	Lys	Thr	Ile 335	Ala
20		Asn	neA	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345		Thr	Asp	Ser	Glu 350	Tyr	Gln
		Leu	Pro	Tyr 355	Val	Leu	GJĀ	Ser	Ala 360	His	Gln	Gly	Суз	Leu 365	Pro	Pro	Phe
25		Pro	Ala 370	Asp	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Tyr 380	Leu	Thr	Leu	Asn
30	٠	Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Tyr	Cys 、	Leu	Glu	Tyr 400
		Phe	Pro	Ser	Gln	Met 405	Leu	Arg	Thr	Gly	Asn 410	Asn	Phe	Glu	Phe	Ser 415	Tyr
35		Thr	Phe	Glu	Asp 420	Val	Pro	Phe	His	Ser 425	Ser	Tyr	Ala	His	Ser 430	Gln	Ser
40		Leu	Asp	Arg 435	Leu	Met	Asn	Pro	Leu 440	Ile	Asp	Gln	Tyr	Leu [.] 445	Tyr	Tyr	Leu
		Ser	Arg 450	Thr	Gln	Ser	Thr	Gly 455	Gly	Thr	Gln	Gly	Thr 460	Gln	Gln	Leu	Leu
45		Phe 465	Ser	Gln	Ala	Gly	Pro 470	Ala	Asn	Met	Ser	Ala 475	Gln	Ala	Lys	Asn	Trp 480
50		Leu	Pro	Gly	Pro	Cys 485	Tyr	Arg	Gln	Gln	Arg 490	Val	Ser	Thr	Thr	Leu 495	Ser
	·	Gln	Asn	Asn	Asn 500	Ser	neA	Phe	Ala	Trp 505	Thr	Gly	Ala	Thr	Lys 510	Tyr	His
55																	

		Lev	ı Asr	515		g Asp	Sei	: Leu	520		Pro	, el	Val	525		: Ala	Thr
5		His	530		qeA o	Glu	Gli	Arg 535		Phe	Pro	Ser	Ser 540		Val	Leu	1 Met
10		Phe 545		. Lys	Gln	Gly	Ala 550		Lys	Asp	Asn	Val 555		Tyr	Ser	: Ser	Val 560
		Met	Leu	Thr	Ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	Thr
15		Glu	Gln	Tyr	Gly 580	Val	Val	Ala	Asp	Asn 585	Leu	Gln	Gln	Thr	Asn 590		Ala
20		Pro	Ile	Val 595	Gly	Thr	Val	Asn	Şer 600	Gln	Gly	Ala	Leu	Pro 605	Gly	Met	Val
		Trp	Gln 610	neA	Arg	Asp	Val	Tyr 615	Lau	Gln	Gly	Pro	Ile 620	Trp	Ala	Lys	Ile
25		Pro 625	His	Thr	qeA	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	Gly	Phe 640
30		Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Val	Lys	Asn	Thr	Pro 655	Val
o.c		Pro	Ala	Asp	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln	Ala	Lys	Leu	Ala 670	Ser	Phe
35		Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
40		Leu	Gln 690	Lys	Glu	Asn	Ser	Lys 695	Arg	Trp	Asn		Glu 700	Ile	Gln	Tyr	Thr
		Ser 705	Asn	Tyr	Tyr	Lys	Ser 710	Thr	Asn	Val	Asp	Phe 715	Ala	Val	Asn	Thr	Glu 720
45	·	Gly	Thr	Tyr	Ser	Glu 725	Pro	Arg	Pro		Gly 730	Thr	Arg	Tyr		Thr 735	Arg
50		Asn	Leu														
55	<210> 94 <211> 73 <212> PR <213> cap	RT.	ntein (nf ΔΔ\	/ sero	tyne (one.	435									
	<400> 94	osiu pi	oteni (ai run V	3610	ıyp e , (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-0.0									

	Me: 1	E Ala	Ala	a Asp	5 5	Ty	r Leu	Pro	Asp	Trp 10	Lev	Gl:	ı Asp	Asr	Lei 15	ı Ser
5	Gli	. G]}	/ Ile	Arg 20	Glu	Tr	Trp	geA o	25	Lys	Pro	Gl)	/ Ala	Pro 30	Lys	Pro
10	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	/ Leu 45	Val	. Leu	Pro
	Gly	Tyr 50	: Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	. Asn	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Ļys	Ala	Tyr	qeA 08
20	Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	qeA	Thr	Ser	Phe 110	ely	Gly
25 .	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lуз	Lys	Arg
	Pro 145	Val	Glu	Pro	Ser	Pro 150	Gln	Arg	Ser	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
	Gly	'Lys	Lys	GJA	His 165	Gln	Pro	Ala	Arg	Lys 170	Arg	Leu	Asn	Phe	Gly 175	Gln
40	Thr	Gly	qeA	Ser 180	Glu	Ser	Val	Pro	Asp 185	Pro	Gln	Pro	Ile	Gly 190	Glu	Pro
	Pro	Ala	Gly 195	Pro	Ser	<u>e</u> ly	Leu	Gly 200	Ser	Gly	Thr	Met	Ala 205	Ala _.	Gly	Gly
		210					215					220			Gly	
50	Ser 225	Ser	Gly	Asn		His 230	Суз	Ąsp	Ser		Trp : 235	Leu	Gly	Asp	Arg	Val 240
	Ile	Thr	Thr	Ser	Thr 245	Arg	Thr	Trp		Leu 250	Pro '	Thr	Tyr		Asn 255	His

			Leu	Tyr	Lys	Gln 260		. Ser	Asn	Gly	Thr 265		Gly	Gly	Ser	Thr 270		qeA
5			Asn	Thr	Tyr 275		Gly	Tyr	Ser	Thr 280		Trp	Gly	Tyr	Phe 285		Phe	Asn
10			Arg	Phe 290		Суз	His	Phe	Ser 295		Arg	qeA	Trp	Gln 300	Arg	Leu	Ile,	neA ,
			Asn 305		Trp	Gly	Phe	Arg 310		Lys	Arg	Leu	Asn 315		Lys	Leu	Phe	Asn 320
15			Ile	Gln	Val	Lys	Glu 325		Thr	Gln	Asn	330 GJ <i>n</i>	Gly	Thr	Lys	Thr	Ile 335	Ala
20			· Asn	· Asn	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345		Thr	Asp	Ser	Glu 350	Tyr	Gln
25			Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	Gly	Cys	Leu 365	Pro	Pro	Phe
25	-	•	Pro	Ala 370	qeA	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Tyr 380	Leu	Thr	Leu	Asn
30			Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Tyr	Суз	Leu	Glu	Tyr 400
35			Phe	Pro	Ser	Gln	Met 405	Leu	Arg	Thr	Gly	Asn 410	Asn	Phe	Glu	Phe	Ser 415	Tyr
			Thr	Phe	Glu	Asp 420	Val	Pro	Phe	His	Ser 425	Ser	Tyr	Ala	His	Ser 430	Gln	Ser
40			Leu	Asp	Arg 435	Leu	Met	Asn	Pro	Leu 440	Ile	Ąsp	Gln	Tyr	Leu 445	Tyr	Tyr	Leu
45			Ser	Arg 450	Thr	Gln	Ser	Thr	Gly 455	Gly	Thr	Gln	Gly	Thr 460	Gln	Gln	Leu	Leu
			Phe 465	Ser	Gln	Ala	Gly	Pro 470	Ala	neA	Met	Ser	Ala 475	Gln	Ala	Lys	neA	Trp 480
50	,		Leu	Pro	Gly	Pro	Cys 485	Tyr	Arg	Gln	Gln	Arg 490	Val	Ser	Thr	Thr	Leu 495	Ser
55			Gln	aeA	neA	neA 000	Ser	Asn	Phe	Ala	Trp 505	Thr	Gly	Ala	Thr	Lys 510	Tyr	His

	Lev	ı Asn	515	-	Asp	Ser	Leu	520		Pro	GIÀ	Val	525		AIB	Thr
5	His	Lys 530	•	Asp	Glu	Glu ·	Arg 535	Phe	Phe	Pro	Ser	Ser 540	_	Val	Leu	Met
10	Phe 545		Lys	Ģln	Gly	Ala 550	Gly	Lys	Asp	Asn	Val 555		Tyr	Ser	Ser	Val 560
15	Met	Leu	Thr	Ser	565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	Thr
13	Glu	Gln	Tyr	Gly 580	Val	Val	Ala	Asp	Asn 585	Leu	Gln	Gln	Thr	neA 590	Gly	Ala
20	Pro	Ile	Val 595	Gly	Thr	Val	Asn	Ser 600	Gln	GŢĀ	Ala	Leu	Pro 605	ely	Met	Val
25	Trp	Gln 610	Asn	Arg	Asp	Val	Tyr 615	Leu	Gln	Gly	Pro	Ile 620	Trp	Ala	Lys	Ile
	Pro 625			qeA	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	GŢÀ	Gly	Phe 640
30	Gly	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Val	Lys	Asn	Thr	Pro	Val
35	Pro	Ala	Asp	Pro 660	Pro	Thr	Thr	Phe	Ser 665	Gln.	Ala	Lys	Leu	Ala 670	Ser	Phe
	Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
40	Leu	Gln 690	Lys	Glu	aeA	Ser	Lys 695	Arg	Trp	Asn	Pro	Glu 700	Ile	Gln	Tyr	Thr
45	Ser 705	neA	Tyr	Tyr	Lys	ser 710	Thr	Asn	Val	qeA	Phe 715	Ala	Val	Asn	Thr	Glu 720
	Gly	Thr	Tyr	Ser	Glu 725	Pro	Arg	Pro	Ile	Gly 730	Thr	Arg	Tyr	Leu	Thr 735	Arg
50	Asn	Leu														
	<210> 95															
,	<211> 738															
<i>55</i>	<212> PRT															

<213> capsid protein of AAV serotype, clone AAV8

<400> 95

	Met 1	: Ale	a Ala	a Asp	61 ₃ 5	/ Tyi	. Leu	ı Pro	As ₁	Trp 10	Le	ı Glı	l Asp	Asn	Leu 15	Ser
5	Glu	Gly	, Ile	Arg 20	Glu	Tx;	Tr	Ala	Let 25	ı Lys	Pro	el?	Ala	Pro 30	Lys	Pro
10	Lys	Ala	35	Gln	Gln	Lys	Gln	40	Asp	GJY	/ Arg	. ej?	45	Val	Leu	Pro
	. ely	Tyr 50	Lys	Tyr	Leu	. Gly	Pro 55	Phe	ne.A	ejy	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	Asn	Ala	Ala	'Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
20				Gln	85					90					95	
25				Phe 100					105					110		_
25			115	Arg				120					125			
30		130		Val			135					140				
35	145			Pro		150					155					160
					165					170					175	
40				Ser 180					185					190		
45			132	Pro				200					205			
		210					215					220				
50	Ser 225	ser	GTŸ.	Asn !	rrp :	His 230	Суз .	Asp	Ser '		Trp 235	Leu	Gly .	Asp :		Val 240

_		Ile	Thr	Thr	Ser	Thr 245		Thr	Trp	Ala	250		Thz	Туг	: Asr	2 55	
5		Leu	Tyr	Lys	Gln 260		Ser	Asn	Gly	Thr 265		Gly	Gly	Ala	Thr 270	: Asn	. Asp
10		Asn	Thr	Tyr 275		Gly	Tyr	Ser	Thr 280		Trp	Gly	Tyr	Phe 285	_	Phe	Asn
15		Arg	Phe 290		Суз	His	Phe	Ser 295		Arg	qeA	Trp	Gln 300	_	Leu	Ile	Asn
		Asn 305		Trp	ely	Phe	Arg 310		Lys	Arg	Leu	Ser 315		Lys	Leu	Phe	Asn 320
20		Ile	Gln	Val	Lys	Glu 325		Thr	Gln	Asn	Glu 330		Thr	Lys	Thr	Ile 335	Ala
25		Asn	. Asn	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345	Phe	Thr	Asp	Ser	Glu 350	Tyr	Gln
		Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	Gly	Суз	Leu 365	Pro	Pro	Phe
30		Pro	Ala 370	Asp	Val	Phe	Met	Ile 375	Pro	Gln	Tyr	Gly	Tyr 380	Leu	Thr	Leu	aeA
35		Asn 385	Gly	Ser	Gln	Ala	Val 390	Gly	Arg	Ser	Ser	Phe 395	Tyr	Cys	Leu	Glu	Tyr 400
		Phe	Pro	Ser	Gln	Met 405	Leu	Arg	Thr	Gly	Asn 410	Asn	Phe	Gln	Phe	Thr 415	Tyr
40		Thr	Phe	Glu	Asp 420	Val	Pro	Phe	His	Ser 425	Ser	Tyr	Ala	His	Ser 430	Gln	Ser
45		Leu	Asp	Arg 435	Leu	Met	Asn	Pro	Leu 440	Ile	qzA	Gln	Tyr	Leu 445	Tyr	Tyr	Leu
		Ser	Arg 450	Thr	Gln	Thr	Thr	Gly 455	Gly	Thr	Ala	Asn	Thr 460	Gln	Thr	Leu	Gly
50	,	Phe 465	Ser	Gln	Gly	Gly	Pro 470	neA	Thr	Met	Ala	Asn 475	Gln	Ala	Lys	Asn	Trp 480
<i>55</i>		Leu	Pro	Gly	Pro	Cys 485	Tyr	Arg	Gln	Gln	Arg 490	Val	Ser	Thr	Thr	Thr 495	Gly

	Gln	Asn	Asn	Asn 500	Ser	neA	Phe	Ala	Trp 505		Ala	Gly	Thr	Lys 510		His
5	Leu	Asn	Gly 515		Asn	Ser	Leu	Ala 520	Asn	Pro	Gly	Ile	Ala 525		Ala	Thr
10	His	Lys 530		Asp	Glu	Glu	Arg 535		· Phe	Pro	Ser	Asn 540		Ile	Leu	Ile
	Phe 545	Gly	Lys	Gln	Asn	Ala 550		Arg	qeA	Asn	Ala 555	qeA	Týr	Ser	Asp	Val 560
15	Met	Leu	Thr	Ser	Glu 565	Glu	Glu	Ile	Lys	Thr 570	Thr	Asn	Pro	Val	Ala 575	
20	Glu 	Glu	Tyr	Gly 580	Ile	Val	Ala	qeA	Asn 585	Leu	Gln	Gln	Gln	Asn 590	Thr	Ala
25	Pro	Gln	Ile 595	СŢĀ	Thr	Val	Asn	Ser 600	Gln	Gly	Ala	Leu	Pro 605	Gly	Met	Val
	Trp	Gln 610		Arg	Asp	Val	Tyr 615	Leu	Gln	Gly	Pro	Ile 620	Trp	Ala	Lys	Ile
30	Pro 625	His	Thr	Asp	Gly	Asn 630	Phe	His	Pro	Ser	Pro 635	Leu	Met	Gly	Gly	Phe 640
35	GŢĀ	Leu	Lys	His	Pro 645	Pro	Pro	Gln	Ile	Leu 650	Ile	Lys	Asn	Thr	Pro 655	Val
33	Pro.	Ala	Asp	Pro 660	Pro	Thr	Thr	Phe	Asn 665	Gln	Ser	Lys	Leu	Asn 670	Ser	Phe
40	Ile	Thr	Gln 675	Tyr	Ser	Thr	Gly	Gln 680	Val	Ser	Val	Glu	Ile 685	Glu	Trp	Glu
45	Leu	Gln 690	Lys	Glu	neA	Ser	Lys 695	Arg	Trp	Asn	Pro	Glu 700	Ile	Gln	Tyr	The
	Ser 705	Asn	Tyr	Tyr	Lys	Ser 710	Thr	Ser	Val	Asp	Phe 715	Ala	Val	Asn	Thr	Glu 720
50	elà	Val	Tyr		Glu 725	Pro	Arg	Pro		Gly 730	Thr	Arg	Tyr	Leu	Thr 735	Arg
:	neA	Leu														
5 <i>5</i>																

<210> 96 <211> 736

<212> PRT	
<213> capsid protein of AAV serotype, c	lone 43.21

<400> 96

	Met 1	Ala Ala	qeA a	Gly 5	Туг	: Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	neA	Leu 15	Ser
10	Glu (sly Ile	e Arg 20	Glu	Trp	Trp	qeA	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
15	Lys A	la Asr 35	Gln	Gln	Lys	Gln	Asp 40	qeA	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
	Gly T	yr Lys io	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys 	Gly	Glu	Pro
20	Val A 65	sn Ala	Ala	Asp	Ala 70.	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
25		ln Leu		85					90					95	
. 30		la Glu	100					105					110		
30		eu Gly 115					120					125			
35	13	ly Leu 30				135					140				
40	145	al Glu			150					155					160
		nr Gly		165					170					175	
45		sp Ser	180					185					190		
50	Ala Al	195					200				:	205			
,	Ala Pr 21	.0	710	vah ,	W211	215	G I U	сту.	MIB .		220 220	val	era :	ASD.	ser

		Ser 225	-	aeA	Trp	His	Суя 230	_	Ser	Thr	Trp	Leu 235	-	Asp	Arg	Val	Ile 240
5		Thr	Thr	Ser	Thr	Arg 245		Trp	Ala	Leu	Pro 250		Tyr	Asn	neA	His 255	Leu
10		Tyr	Lys	Gln	Ile 260		Asn	Gly	Thr	Ser 265		Gly	Ser	Thr	Asn 270		Asn
		Thr	Tyr	Phe 275	Gly	Туг	Ser	Thr	Pro 280	_	Gly	Tyr	Phe	Asp 285		Asn	Arg
15		Phe	His 290	Cys	His	Phe	Ser	Pro 295	Arg	Asp	Trp	Gln	Arg 300	Leu	Ile	Asn	Asn
20		Asn 305	Trp	еју	Phe	Arg	Pro 310	Lys	Arg	Leu	Asn	Phe 315	Lys	Leu	Phe	Asn	Ile 320
		Gln	Val	Lys	Glu	Val 325	Thr	Thr	Asn	Glu	330 ela	Thr	ŗÀa	Thr	Ile	Ala 335	Asn
25		Asn	Leu	Thr	Ser 340	Thr	Val	Arg	Val	Phe 345	Thr	Asp	Ser	Glu	туг 350	Gln	Leu
30		Pro	Tyr	Val 355		Gly	Ser	Ala	His 360	Gln	Gly	Суз	Leu	Pro 365	Pro	Phe	Pro
05		Ala	Asp 370	Val	Phe	Met	Val	Pro 375	Gln	Tyr	Gly	Tyr	Leu 380	Thr	Leu	Asn	Asn
35		Gly 385	Ser	Gln	Ala	Leu	390	Arg	ser	Ser	Phe	Tyr 395	Суз	Leu	Glu	Tyr	Phe 400
40		Pro	Ser	Gln	Met	Leu 405	Arg	Thr	Gly	Asn	Asn 410	Phe	Gln	Phe	Ser	Tyr 415	Thr
		Phe	Glu	qzA	Val 420	Pro	Phe	His	Ser	Ser 425	Tyr	Ala	His	Ser	Gln 430	Ser	Leu
45		qeA	Arg	Leu 435	Met	Asn	Pro	Leu	Ile 440	Asp	Gln	Tyr	Leu	Tyr 445	Tyr	Leu	Val
50	:	Arg	Thr 450	Gln	Thr	Thr	Gly	Thr 455	Gly	Gly	Thr	Gln	Thr 460	Leu	Ala	Phe	Ser
		Gln 465	Ala	Gly	Pro	Ser	Ser 470	Met	Ala	Asn	Gln	Ala 475	Arg	Asn	Trp	Val	Pro 480
55																	

		Gl	y Pr	o Cy	з Ту	r Ar 48		n Gl	n Ar	g Va	1 Se 49		r Th	r Th	ar As	3n Gl 49	
5		As	n As:	n Se	r As 50	n Ph O	e Al	a Tr	p Th	r G1 50		a Al	a Ly	's Ph	e Ly 51	s Le .0	u As:
10		Gly	y Ar	3 As 51	p Se 5	r Le	u Me	t As	n Pro 520	o G1	y Va	1 Al	a Me	t Al 52		r Hi	s Ly:
		Asp	Asr 530	As ₁	As ₁	p Ar	g Pho	e Ph 53	e Pro	Se	r Se	r Gl	y Va 54		u 'Il	e Ph	e Gly
15		Lys 545	Glr	. Gly	/ Ala	a Gly	y Ası 550	n As _l	p Gly	/ Va.	l As	p Ty:		r Gl:	n Va	l Le	1 Ile 560
20		Thr	Asp	Glu	ı Glı	1 Glv 565	ı Ile	E Lys	a Ala	Thi	570	n Pro	Va.	l Ala	a Th	r Glv 575	
		Tyr	Gly	Ala	Val 580	. Ala	Ile	: Asr	Asn	Gl: 585		a Ala	Asz	Thi	590	n Ale	Gln
25		Thr	Gly	Leu 595	. Val	. His	Asn	Gln	Gly 600	Val	. Ile	Pro	Gly	/ Met 605		Trp	Gln
30	:	neA	Arg 610	Asp	Val	Tyr	Leu	Gln 615	Gly	Pro	Ile	Trp	Ala 620		Ile	Pro	His
		Thr 625	qeA	Gly	Asn	Phe	His 630	Pro	Ser	Pro	Leu	Met 635	Gly	Gly	Phe	Gly	Leu 640
35	ī	Lys	His	Pro	Pro	Pro 645	Gln	Ile	Leu	Ile	Lys 650		Thr	Pro	Val	Pro 655	Ala
40	3	qes	Pro	Pro	Leu 660	Thr	Phe	neA	Gln	Ala 665	Lys	Leu	Asn	Ser	Phe 670	Ile	Thr
	G	ln	Tyr	Ser 675	Thr	Gly	Gln	Val	Ser 680	Val	Glu	Ile	Glu	Trp 685	Glu	Leu	Gln
	L	ys	Glu 690	Asn	Ser	Lys	Arg	Trp 695	Asn	Pro	Glu	Ile	Gln 700	Tyr	Thr	Ser	Asn
50	T 7	yr 05	Tyr	Lys	Ser	Thr	Asn 710	Val	Asp	Phe	Ala	Val 715	Asn	Thr	Glu	Gly	Val 720
	, T	yr .	Ser	Glu	Pro	Arg 725	Pro	Ile	Gly	Thr	Arg 730	Tyr	Leu	Thr	Arg	Asn 735	Leu
<i>55</i>																	

<210> 97 <211> 736

<212> PRT <213> capsid protein of AAV serotype, clone 43.25

<400> 97

5

	Me 1	et Al	a Al	a Asp	5 Gly	/ Ту	r Le	u Pr	°0 As	p Tr 10	p Le	u Gl	u As	p As	n Le	eu Ser
10	G]	.u .G1	y Il	e Arg 20	Glu	Tr	P Tr	p As	p Le 25	u Ly	s Pr	o G1	y Al	a Pr 30		's Pro
15	Ly	s Al	a Ası 35	n Gln	Gln	Lys	Gl:	n Ası 40	eA q	p Gl	y Ar	g Gl	y Le	u Va	l Le	u Pro
	Gl	у Ту. 50	r Lys	туг	Leu	Gly	7 Pro	Phe	a Asr	, eJ	/ Let	Asp 60	Lys	G Gl	y Gl	u Pro
20	Va. 65	l Ası	n Ale	Ala	Asp	Ala 70	Ala	Ala	Lev	Glu	His 75	Asp	Lys	Ala	а ту:	r Asp 80
25					63					90					95	3 Ala
	•			Phe 100					105					110	1	
30	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
35	Leu 	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
	Pro 145	Val	Glu	Gln :	Ser	Pro 150	Gln	Glu	Pro	Asp	Ser 155	Ser	Ser	Gly	Ile	Gly 160
40	Lys	Thr	Gly	Gln (3ln : 165	Pro	Ala	Lys	Lys	Arg 170	Leu	Asn	Phe	Gly	Gln 175	Thr
45	Gly	Asp	Ser	Glu S 180	er '	Val	Pro	Asp	Pro 185	Gln	Pro	Leu	Gly	Glu 190	Pro	Pro
	Ala	Ala	Pro 195	Ser G	ly I		Gly	Pro . 200	Asn '	Thr	Met .	Ala	Ser 205	Gly	Gly	Gly
50	Ala	Pro 210	Met i	Ala A	A qe.	usn i	Asn (Glu (Gly :	Ala :	qe <i>A</i>	51y ' 220	Val	ej y	Asn	Ser
ŧ	Ser 225	Gly	Asn 1	frp H	is C	ys) 30	Asp :	Ser 7	Thr :	rp i	Leu (235	Sly X	Asp 2	Arg		Ile 240

		Thr	Thr	: Ser	Thr	Arg 245		Trp	Ala	Lev	250		Туг	ne.A	Asn	His 255	Leu		••	
5		Tyr	Lys	Gln	1le 260		Asn	Gly	Thr	ser 265		, e1?	, Ser	Thr	Asn 270		Asn			
10	٠.	Thr	Tyr	Phe 275		Tyr	Ser	Thr	Pro 280	_	Gly	· Tyr	Phe	Asp 285		Asn	Arg			
15		Phe	His 290		His	Phe	Ser	Pro 295	-	Asp	Trp	Gln	Arg 300		Ile	Asn	Asn			
		Asn 305		Gly	Phe	Arg	Pro 310	Lys	Arg	Leu	Asn	Phe 315	_	Leu	Phe	Asn	Ile 320	~		
20		Gln	Val	Lys	Glu	Val 325	Thr	Thr	Asn	Glu	Gly 330		Lys	Thr	Ile	Ala 335	Asn			٠.
25		neA	Leu	Thr	Ser 340	Thr	Val	Gln	Val	Phe 345	Thr	Азр	Ser	Glu	Tyr 350	Gln	Leu			
		Pro	Tyr	Val 355		Gly	Ser	Ala	His 360	Gln	ely	Суз	Leu	Pro 365	Pro	Phe	Pro			
30		Ala	Asp 370	Val	Phe	Met	Val	Pro 375	Gln	Tyr	еĵу	Tyr	Leu 380	Thr	Leu	Asn	Asn			
35		Gly 385		Gln	Ala	Leu	Gly 390	Arg	Ser	Ser	Phe	Tyr 395	Суз	Leu	Glu	Tyr	Phe 400			
•		Pro	Ser	Gln	Met	Leu 405	Arg	Thr	Gly	Asn	Asn 410	Phe	Gln	Phe	Ser	Tyr 415	Thr			
40		Phe	Glu	Asp	Val 420	Pro	Phe	His	Ser	Ser 425	Tyr	Ala	His	Ser	Gln 430		Leu-	-		
45				435		Asn			440					445	•				:	
		Arg	Thr 450	Gln	Thr	Thr	Gly	Thr 455	Gly	Gly	Thr	Gln	Thr 460	Leu	Ala	Phe	Ser			
50		465					470					475					480			
E E		Gly	Pro	Cys	Tyr	Arg 485	Gln	Gln	Arg	Val	Ser 490	Thr	Thr	Thr	Asn	Gln 495	Asn			

5		λ.	Sn A	sn S	er A. 50	sn Pi 00	ne A.	la T	cp T	hr G	ly A 05	la A	la L	ys P		ys L 10	eu Asn	
J		G.	ly Ai	rg As 51	sp Se	er Le	eu Me	et As	3n P. 5:	ro G 20	ly V	al A	la Me	et A 5	la S 25	er H:	is Lys	
10		As	p As 53	sp As 10	p As	p Ar	g Ph	ie Ph 53	e P:	ro S	er S	er G	Ly Va 54	l L	eu I	le Ph	e Gly	
15		Ly 54	's Gl 5	n Gl	y Al	a Gl ;	у Аз 55	eA n 0	E)	y V	al As	3p T) 55	r Se 55	r G	ln Va	al Le	u Ile 560	
		Th	r As	p Gl	u Gl	u Gli 565	u Il	e Ly	s Al	a Tì	ar As 57	n Pr	o Va	l al	la Th	ir Gl 57	u Glu 5	
20		Ty :	r Gl	y Al	580	l Ala	ı Ile	8 A31	eA n	n Gl 58	n Al 5	a Al	a Ası	n Th	r Gl 59		e Gln	
25		Thi	c Gl	y Let 595	ı Val	l His	Asr	Glr	60	y Va	1 11	e Pr	o Gly	у Ме 60	t Va 5	l Tr	Gln	
				٠				613	•				620)			His	
30							050					633	•			e Gly	640	
<i>35</i>						015					650)				655		
										665	•				670			
40	·· .								680					685		Leu		
15								025					700			Ser		
							710					715				Gly	720	
50		Tyr	Ser	Glu	Pro	Arg :	Pro	Ile	еĵå	Thr	Arg 730	Tyr	Leu	Thr	Arg	Asn 735	Leu	
	<210> 98	3																

55

<211> 736 <212> PRT

<213> capsid protein of AAV serotype, clone 43.23

<400> 98

5		Me ¹	t Ala	a Ala	a Asp	5 Gl	у Ту:	r Let	ı Pro	geA o	10	p Lev	ı Gl	u Asj	As:	n Le	u Sei
		Glı	ı Gly	y Ile	e Arg 20	Gl:	ı Tr	p Trp	geA o	Let 25	ı Ly:	s Pro	G1;	y Ala	a Pro	b Ly:	Pro
10		Ĺys	Ala	Asn 35	. Gln	Glr	l Lys	s Glr	Asp 40	qeA c	Gl)	y Arg	Gl ₃	y Let 45	ı Vai	l Lei	Pro
15		Gly	Tyr 50	Lys	Tyr	Leu	. Gly	Pro	Phe	Asn	Gly	Leu	Asp 60	Lys	Gl)	/ Glu	Pro
		Val 65	Asn	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
20		Gln	Gln	Leu	Lys	Ala 85	Gly	' Asp	Asn	Pro	Туг 90	Leu	Arg	Tyr	Asn	His 95	Ala
25		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	ely	Gly
		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
3 <i>5</i>		Pro 145	Val	Glu	Gln	Ser	Pro 150	Gln	Glu	Pro	qeA	Ser 155	Ser	Ser	Gly	Ile	Gly 160
		Lys	Thr	Gly	Gln	Gln 165	Pro	Ala	Lys	Lys	Arg 170	Leu	Asn	Phe	Gly	Gln 175	Thr
40		Gly	Asp	Ser	Glu 180	Ser	Val	Pro	qeA	Pro 185	Gln	Pro	Leu	Gly	Glu 190	Pro	Pro
45		Ala	Ala	Pro 195	Ser	Gly	Leu	Gly	Pro 200	Asn	Thr	Met	Ala	Ser 205	Gly	Gly	Gly
		Ala	Pro 210	Met .	Ala .	Asp	Asn	Asn 215	Glu	Gly.	Ala		Gly 220	Val	Gly	Asn	Ser
50	- ,	ser 225	Gly	Asn	Trp :	His	Cys 230	Asp	Ser	Thr		Leu (235	Gly	Asp	Arg		Ile 240

5 .	T	r Th	r Se	r Thi	24!	g Th	r Tr	p Al	a Le	u Pro 25		r Ty	c Ası	n Ası	n Hi 25	s Leu 5
	Τ)	r Ly:	s Gli	n Ile 260	e Sei	C As	n Gl	y Th	r Se. 26	r Gly 5	y Gl	y Sei	Thi	27(neA q
10	Th	r Ty	275	e Gly	Туг	: Se	r Th	280	o Tri	e Gly	ту	Phe	285	Phe	As:	n Arg
15	Ph	e His 290	Cys	His	Phe	s Se	295	Arg	J Asp	Tr	Glr	300	Leu	Ile	: Ası	n Asn
	A.S. 30.	n Trp 5	Gly	Phe	Arg	9rc 310	Lys	Arg	Leu	Asn	Phe 315		Leu	Phe	Asr	320
20	Gl	n Val	Lys	Glu	Val 325	Thr	Thr	ne.A	Glu	330	Thr	Lys	Thr	Ile	Ala 335	Asn
25	Ası	Leu	Thr	Ser 340	Thr	Val	Gln	Val	Phe 345	Thr	Ąsp	Leu	Glu	Tyr 350	e1v	Leu
	Pro	Tyr	Val 355	Leu	Gly	Ser	Ala	His 360	Gln	Gly	Суз	Leu	Pro 365	Pro	Phe	Pro
30	Ala	Asp 370	Val	Phe	Met	Val	Pro 375	Gln	Tyr	Gly	Tyr	Leu 380	Thr	Leu	Asn	Asn
35	Gly 385	Ser	Gln	Ala	Leu	Gly 390	Arg	Ser	Ser	Phe	Tyr 395	Cys	Leu	Glu	Tyr	Phe 400
	Pro	Ser	Gln	Met	Pro 405	Arg	Thr	Gly	Asn	Asn 410	Phe	Gln	Phe	Ser	Tyr 415	Thr
	Phe	Glu	Asp	Val : 420	Pro	Phe	His	Ser	Ser 425	Tyr	Ala	His		Gln 430	Ser	Leu
45	qeA	Arg	Leu : 435	Met)	Asn	Pro	Leu	Ile 440	qeA	Gln	Tyr		445	Tyr		Val
	Arg	Thr 450	Gln '	Thr 1	Thr (3ly	Thr 455	Gly	Gly	Thr		Thr :				Ser
50	465	Ala	Gly :	Pro S	Ser S	Ser 470	Met .	Ala :	Asn (Gln i	Ala 2 475	Arg 1	Asn 1	rp '		Pro 480
55	Gly	Pro (Cys 1	Tyr A 4	rg (-ln	Gln :	Arg '		Ser :	Chr :	Thr 7	Chr 7		3ln /	Asn

_		Asr	ne <i>A</i> r	ı Sei	500	Ph∈	e Ala	a Trp	Thi	50	y Ale 5	A Ala	a Lys	Phe	E Ly: 51		neA u
5		GJ À	/ Arg	7 Asp 515	Ser	Leu	ı Met	Asn	9rc 520		y Val	L Ala	a Met	325 525		Hi:	a Lys
10		Asp	Asp 530	Asp	n Asp	Arg	Ph€	Phe 535	Pro	Se	s Ser	: Gl	/ Val 540		ı Ile	e Phe	e Gly
15		Lys · 545	Gln	Gly	Ala	Gly	Asr 550		Gly	Va]	. Asp	7yr 555		Gln	(Va)	Le	1 Ile 560
13		Thr	Asp	Glu	Glu	Glu 565	Ile	Lys	Ala	Thr	370		Val	Ala	Thr	61u 575	Glu
20		Tyr	Gly	Ala	Val 580	Ala	Ile	Asn	Asn	Gln 585		Ala	Asn	Thr	Gln 590		Gln
<i>2</i> 5		Thr	Gly	Leu 595	Val	His	Asn	Gln	Gly GOO	Val	Ile	Pro	Gly	Met 605	Val	Trp	Gln
		Asn	Arg 610	Asp	Val	Tyr	Leu	Gln 615	Gly	Pro	Ile	Trp	Ala 620	Lys	Ile	Pro	His
30		Thr 625	Asp	Gly	Asn	Phe	His 630	Pro	Ser	Pro	Leu	Met 635	Gly	Gly	Phe	Gly	Leu 640
<i>35</i>		Lys	His	Pro	Pro	Pro 645	Gln	Ile	Leu	Ile	Lys 650	Asn	Thr	Pro	Val	Pro 655	Ala
		Asp	Pro	Pro	Leu 660	Thr	Phe	Asn	Gln	Ala 665	Lys	Leu	Asn	Ser	Phe 670	Ile	Thr
40		Gln	Tyr	Ser 675	Thr	Gly	G1n	Val	Ser 680	Val	Glu	Ile	Glu	Trp 685	Glu	Leu	Gln
45		Lys	Glu 690	Asn	Ser	Lys	Arg	Trp 695	Asn	Pro	Glu	Ile	Gln 700	Tyr	Thr	Ser	neA
		Tyr 705	Tyr	Lys	Ser	Thr	Asn 710	Val	qeA	Phe	Ala	Val 715	Asn	Thr	Glu	Gly	Val 720
50	:	Tyr	Ser	Glu	Pro	Arg 725	Pro	Ile	Gly	Thr	Arg 730	Tyr	Leu	Thr	Arg	Asn 735	Leu
	<210> 99)															
55	<211> 73	36															

<212> PRT

<213> capsid protein of AAV serotype, clone 43.20

<400>99

5	Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Asn	Leu 15	Ser
,	Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	qeA	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
10	ГЛЗ	Ala	Asn 35	Gln	Gln	ГÀЗ	Gln	Asp 40	qeA	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
. 15	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	neA	Сlу	Leu	Asp 60	Lys	Gly	Glu	Pro
	Val 65	Asn	Ala	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80
20	Gln	Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
25	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	qeA	Thr	Ser	Phe 110	СŢА	GЈУ
•	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
<i>35</i>	Leu 145	Val	Glu	Gln	Ser	Pro 150	Gln	Glu	Pro	Asp	Ser 155	Ser	Ser	Gly	Ile	Gly 160
	Lys	Thr	Gly	Gln	Gln 165	Pro	Ala	Lys	Lys	Arg 170	Leu	Asn	Phe	Gly	Gln 175	Thr
40	Gly	Asp	Ser	Glu 180	Ser	Val	Pro	Asp	Pro 185	Gln	Pro	Leu	Gly	Glu 190	Pro	Pro
45	Ala	Ala	Pro 195	Ser	Gly	Leu	Gly	Pro 200	neA	Thr	Met	Ala	Ser 205	Gly	Gly	GJĀ
		Pro 210	Met	Ala	Asp	Asn	Asn 215	Glu	Gly	Ala	_	Gly 220	Val	Gly	Asn	Ser
50	Ser 225	ely	neA	Trp	His	Cys 230	Asp	Ser	Thr	Trp	Leu 235	Gly	Asp	Arg	Val	Ile 240

5		Thi	r Thu	r Se	r Thi	245	Thi	Tr) Ala	a Lei	250		r Ty	I Ası	n Ası	n Hi 25.	
		Tyr	Lys	G Glr	1 Ile 260	e Ser	, Asr	Gly	/ Thi	2 65	c Gly	, el	y Se:	r Thi	270	n Ası	ne.A
10	٠	Thr	туг	275	e Gly	' Tyr	: Sez	Thr	280		ely	Ty:	Pho	285		e Ası	Arg
		Phe	His 290	Cys	His	Phe	ser	Pro 295	Arg	Asp	Trp	Glr	300		ılle	: Asr	Asn
15		Asn 305	Trp	Gly	Phe	Arg	Pro 310	Lys	Arg	Leu	neA ı	Phe 315		Leu	Phe	: Asr	11e 320
20		Gln	Val	Lys	Glu	Val 325	Thr	Thr	Asn	Glu	Gly 330	Thr	Lys	Thr	Ile	Ala 335	
		Asn	Leu	Thr	Ser 340	Thr	Val	Gln	Val	Phe 345		qeA	Ser	Glu	Tyr 350	Gln	Leu
25		Pro	Tyr	Val 355	Leu	Gly	Ser	Ala	His 360	Gln	Gly	Cys	Leu	Pro 365	Pro	Phe	Pro
30		Ala	Asp 370	Val	Phe	Thr	Val	Pro 375	Gln	Tyr	Gly	Tyr	Leu 380	Thr	Leu	Asn	Asn
		Gly 385	Ser	Gln	Ala	Leu	390 Gly	Arg	Ser	Ser	Phe	Tyr 395	Суз	Leu	Glu	Tyr	Phe 400
35		Pro	Ser	Gln	Met	Leu 405	Arg	Thr	ΘΊΥ	Asn	Asn 410	Phe	Gln	Phe	Ser	Tyr 415	Thr
40		Phe	Glu	Asp	Val 420	Pro	Phe	His	Ser	Ser 425	Tyr	Ala	His	Ser	Gln 430	Ser	Leu
		Asp	Arg	Leu 435	Met	Asn	Pro	Leu	Ile 440.		Gln	Tyr	Leu	Tyr 445	Tyr	Leu	Val
45		Arg	Thr 450	Gln	Thr	Thr	ela	Thr 455	Gly	GЉ	Thr	Gln	Thr 460	Leu	Ala	Phe	Ser
50		Gln 465	Ala	еĵà	Pro	Ser	Ser :	Met	Ala .	Asn		Ala 475	Arg	aeA	Trp	Val	Pro 480
	:	Gly	Pro	Cys		Arg 485	Gln	Gln .	Arg		Ser 490	Thr	Thr	Thr	Asn	Gln 495	Asn
55																	

		Asn	neA i	Ser	500		: Ala	Tr	Thr	61 ₃ 505		Ala	Lys	Phe	Lys 510		Asn
5		Gly	Arg	Asp 515		Leu	Met	: Asn	9rc 520		/ Val	. Ala	Met	Ala 525		His	Lys
10		AŚp	Asp 530	Asp	qsA o	Arg	Phe	Phe 535	Pro	Ser	Ser	Gly	Val 540		Ile	Pbe	e Gly
15		Lys 545	Gln	Gly	Ala	Gly	Asn 550		Gly	Val	Asp	Tyr 555		Gln	Val	Leu	Tle 560
		Thr	Asp	Glu	Glu	Glu 565		Lys	Ala	Thr	Asn 570		Val	Ala	Thr	Glu 575	Glu
20		Туг	Gly	Ala	Val 580	Ala	'Ile	Asn	Asn	Gln 585		Ala	Asn	Thr	Gln 590		Gln
25		Thr	Gly	Leu 595		His	Asn	Gln	600	Val	Ile	Pro	Gly	Мес 605	Val	Trp	Gln
23		Asn	Arg 610	Asp	Val	Tyr	Leu	Gln 615	Gly	Pro	Ile	Trp	Ala 620	Lys	Ile	Pro	His
30		Thr 625	Asp	Gly	Asn	Phe	His 630	Pro	Ser	Pro	Leu	Met 635	Gly	G Jy	Phe	Gly	Leu 640
35		Lys	His	Pro	Pro	Pro 645	Gln	Ile	Leu	Ile	Lys 650	Asn	Thr	Pro	Val	Pro 65S	Ala
		Asp	Pro	Pro	Leu 660	Thr	Phe	Asn	Gln	Ala 665	Lys	Leu	Asn	Ser	Phe 670	Ile	
40		Gln	Tyr	Ser 675	Thr	Gly	Gln	Val	ser 680	Val	Glu	Ile	Glu	Trp 685	Glu	Leu	Gln
45		Lys	Glu 690	Asn	Ser	Lys	Arg	Trp 695	Asn	Pro	Glu	Ile	Gln 700	Tyr	Thr	Ser	Asn
		Tyr 705	Tyr	Lys	Ser	Thr	Asn 710	Val	Asp	Phe	Ala	Val 715	aeA	Thr	Glu	Gly	Val 720
50		Tyr	Ser	Glu	Pro	Arg 725	Pro	Ile	Gly		Arg 730	Tyr	Leu	Thr	Arg	Asn 735	Leu
55	<210> 10 <211> 73 <212> PF <213> ca	6 RT	otein c	of AA\	/ sero	type, (clone .	AAV9									
	400> 100																

	Me i	t Ali	a Ala	eA a	61y 5	Ty:	r Lei	Pro	Asp	Trp 10) Lev	1 Gl	u Ası	ne.A. c	15	u Ser
5	G)/	ı Gly	y Ile	20	g Glu	Tr	Trp	reA o	Lev 25	Lys	Pro	61;	y Ala	a Pro	LY:	B Pro
10	Lys	ala	A Asr 35	Glr	Gln	Lys	Gln	40.	Asp	Gly	' Arg	eŢ	/ Let 45	ı Val	Lev	Pro
	G) y	7 Ty:	: Lys	Туг	Leu	Gly	Pro 55	Phe	neA:	Gly	Leu	A31 60	Lys	s Gly	Glu	Pro
15	Val 65	. Asn	Ala	Ala	· Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	qeA 08
20	Gln	. Gln	Leu	Lys	Ala 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Arg	Tyr	neA '	His 95	Ala
	qeA	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
25	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Äla	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
30	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Ľys	Thr	Ala	Pro 140	Gly	Lys	ГЛЗ	Arg
	Pro 145	Val	Glu	Gln	Ser	Pro 150	Gln	Glu	Pro	Asp	Ser 155	Ser	Ser	Gly	Ile	TeO GJÀ
35	Lys	Ser	Gly	Gln	Gln 165	Pro	Ala	Lys	Lys	Arg 170	Leu	Asn	Phe	Gly	Gln 175	Thr
40	Gly	qeA	Ser	Glu 180	Ser	Val	Pro	Asp	Pro 185	Gln	Pro	Гел	GŢĀ	Glu 190	Pro	Pro
	Glu	Ala	Pro 195	Ser	Gly	Leu	Gly	Pro 200	Asn	Thr	Met	BLA	Ser 205	Gly	Gly	Gly
45	Ala	Pro 210	Met	Ala	Asp	neA	Asn 215	G) n	Gly	Ala	Asp	Gly 220	Val	Gly	Asn	Ser
50	Ser 225	Gly	Asn	Trp	His	Cys 230	Asp	Ser	Thr		Leu 235	Gly	qeA	Arg	Val	Ile 240
	·Thr	Thr	Ser	Thr	Arg 245	Thr	Trp .	Ala		Pro 250	Thr	Tyr	Asn		His 255	Leu

5	Ty	r Ly:	s Gl:	260		c As	n Gly	y Th.	26		y Gl	y Se	Thi	270		neA q
	Thi	ту	275	e Gly	Y Tyz	Se	r Thi	280		p Gly	Ty:	r Phe	285		EA:	n Arg
10	Phe	His 290	cys	His	Phe	s Sei	295		l Yal	o Tr	Glr	Arg 300		lle	. Ası	asA ı
15	Asn 305	Trp	GJ7	Phe	Arg	9rc 310		Arg	Lei	neA ı	9he 315		Leu	Phe	Ası	1le 320
	Gln	Val	Lys	eln	Val 325	Thr	Thr	Asn	Glu	Gly 330	Thr	Lys	Thr	Ile	Ala 335	Asn
20	Asn	Leu	Thr	Ser 340	Thr	Val	Gln	Val	Phe 345		qeA	Ser	Glü	Туг 350	Gln	Leu
25	Pro	Tyr	Val 355	Leu	Gly	Ser	Ala	His 360	Gln	Gly	Суз	Leu	Pro 365	Pro	Phe	Pro
	Ala	Asp 370	Val	Phe	Met	Val	Pro 375	Gln	Tyr	Gly	Tyr	Leu 380	Thr	Leu	Asn	Asn
30	Gly 385	Ser	Gln	Ala	Leu	390 Gly	Arg	Ser	Ser	Phe	Tyr 395	Суз	Leu	Glu	Tyr	Phe 400
35	Pro	Ser	Gln	Met	Leu 405	Arg	Thr	Gly	neA	Asn 410	Phe	Gln	Phe	Ser	Tyr 415	Thr
	Phe	Glu	Asp	Val 420	Pro	Phe	His	Ser	Ser 425	Tyr	Ala	His	Ser	Gln 430	Ser	Leu
40	Ąsp	Arg	Leu 435	Met	Asn	Pro	Leu	Ile 440	Asp	Gln	Tyr	Leu	Tyr 445	Tyr	Leu	Val
45	Arg	Thr 450	Gln	Thr	Thr	Gly	Thr 455	Gly	Gly	Thr	Gln	Thr 460	Leu	Ala	Phe	Ser
	Gln 465	Ala	Gly	Pro	Ser	Ser 470	Met .	Ala	Asn	Gln	Ala 475	Arg .	Asn	Trp	Val	Pro 480
50	Gly	Pro	Cys	Tyr	Arg 485	Gln	Gln .	Arg		Ser 490	Thr	Thr '	Thr .		Gln 495	Asn
55	Asn .	Asn	Ser .	Asn 500	Phe .	Ala	Trp		Gly 505	Ala .	Ala	Lys		Lys : 510	Leu .	Asn

5		G1;	y Ar	7 Asr 515	s Se	r Lei	ı Me	t Ası	520		y Val	l Al	a Met	52:		r Hi	s Lys
		Ası	nes q Sec	o Glu	ı Ası	Arg	J Ph	e Phe 535	e Pro	Se	r Sei	Gl:	y Val 540	. Lei	ı Il	e Ph	e Gly
10		Lys 545	Gln	Gly	Ala	a Gly	Asr 550	n Asp)	Gly	/ Val	qeA l	Ty:	Ser	Glr	ı Val	L Le	u Ile 560
15	·	Thr	: Asp	Glu	Glu	Glu 565	Ile	Lys	Ala	Thi	570		Val	Ale	Th:	: Gl: 575	ı Glu 5
		Tyr	Gly	Ala	Val 580	Ala	Ile	neA :	ne A	Glr 585		Ala	Asn	Thr	Glr 590		Gln
20		Thr	Gly	Leu 595	Val	His	Asn	Gln	Gly Gly		Ile	Pro	Gly	Met 605		Trp	Gln
25		asA	Arg 610	Asp	Val	Tyr	Leu	615	Gly	Pro	Ile	Trp	Ala 620	Ľуз	Ile	Pro	His
		Thr 625	Asp	Gly	Asn	Phe	His 630	Pro	Ser	Pro	Leu ,	Met 635	ely	ely	Phe	Gly	Leu 640
30		Lys	His	Pro	Pro	Pro 645	Gln	Ile	Leu	Ile	Lys 650	Asn	Thr	Pro	Val	Pro 655	
35		qeA	Pro	Pro	Leu 660	Thr	Phe	aeA	Gln	Ala 665	Lys	Leu	aeA	Ser	Phe 670	Ile	Thr
		Gln	Tyr	Ser 675	Thr	GJA	Gln	Val	Ser 680	Val	Glu	Ile	Glu	Trp 685	Glu	Leu	Gln
40		Lys	Glu 690	Asn	ser	Lys	Arg	Trp 695	Asn	Pro	Glu	Ile	Gln 700	Tyr	The	Ser	Asn
45		Tyr 705	Tyr	Lys	Ser	Thr	Asn 710	Val	Дзр	Phe		Val 715	Asn	Thr	Glu	Gly	Val 720
		Tyr	Ser	Glu	Pro	Arg 725	Pro	Ile	Gly '	Thr	Arg 730	Tyr	Leu	Thr	Arg	Asn 735	Leu
50 55	<210> 10 <211> 72 <212> PF <213> ca	.8 RT	rotein (of AA\	/ sero	otype,	clone	24.1									
	<400> 10	1															

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 5 10 15

5		Glu	. Gly	, Ile	Arg 20	Glu	Trp	Trp	qeA	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro	,
		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	А з р 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro	1
10	,	Gly	Ty= 50	Lys	Tyr	Leu	Arg	Pro 55	Phe	Asn	Gly	Leu	qέA 00	Lys	Gly	Glu	Pro	
15		Val 65	Asn	Glu	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	qeA 08	
		Lys	Gln	Leu	Glu	Gln 85	Gly	qeA	Asn	Pro	Tyr 90	Leu	Lys	Tyr	Asn	His 95	Ala	
20		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly	
. 25	• • •	Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro	
20		Leu	Gly 130	Leu	Val	Glu	Glu · ·	Val 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg	
30		Pro 145	Ile	Glu	Ser	Pro	Asp 150	Ser	Ser	Thr	eĵy	Ile 155	Gly	Lys	Lys	Gly	Gln 160	
35		Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	Asn	Phe	Gly 170	Gln	Thr	GЉ	Asp	Ser 175	Glu	
		Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Leu	Gly 185	Glu	Pro	Pro	Ala	Ala 190	Pro	Ser	
40		Gly	Leu	<i>G</i> ly 195	Ser	Gly	Thr		Ala 200	Ala	Gly	Gly	Gly	Ala 205	Pro	Met	Ala	
45		Asp	Asn 210	Asn	Glu	Gly	Ala	Asp 215	Gly	Val	Gly		Ala 220	Ser	Gly	Asn	Trp	
70		His 225	Cys	Asp	Ser		Trp 230	Leu	Gly .	Asp	Arg	Val 235	Ile	Thr	Thr	Ser	Thr 240	•
50		Arg	Thr	Trp .		Leu 245	Pro	Thr	Tyr :		Asn 250	His	Leu	Tyr		Gln 255	Ile	
. 55	:	Ser	Ser		ser 260	Gly	Ala '	Thr :		Азр. 265	Asn	His	Phe		Ser 270	Tyr	Ser	

		Thr	Pro	275		Tyr	Phe	Asp	280		Arg	Phe	His	285		Phe	Ser
5		Pro	Arg 290		Trp	Gln	Arg	Leu 295		Asr	Asn	neA	Trp 300	Gly	Phe	Arg	Pro
10		Arg 305		Leu	Arg	Phe	Lys 310		` Phe	Asn	Ile	Gln 315		Lys	['] Glu	Val	Thr 320
15		Thr	Asn	Asp	Gly	Val 325		Thr	Ile	Ala	Asn 330		Leu	Thr	Ser	Thr 335	Ile
		Gln	Val	Phe	Ser 340		Ser	Glu	Tyr	Gln 345		Pro	Tyr	Val	Leu 350	Gly	Ser
20		Ala	His	Gln 355	Gly	Суэ	Leu	Pro	Pro 360	Phe	Pro	Ala	Asp	Val 365	Phe	Met	Ile
25	•	Pro	Gln 370	Tyr	Gly	Tyr	Leu	Thr 375	Leu	Asn	Asn	Gly	Ser 380	Gln	Ser	Val	Gly
		Arg 385	Ser	Ser	Phe	Tyr	Cys 390	Leu	Glu	Tyr	Phe	Pro 395	Ser	Gln	Met	Leu	Arg 400
30		Thr	Gly	Asn	Asn	Phe 405	Glu	Phe	Ser	Tyr	Thr 410	Phe	Glu	Glu	Val	Pro 415	Phe
35		His	Ser	Ser	Tyr 420	Val	His	ser	Gln	Ser 425	Leu	Asp	Arg	Leu	Met 430	neA	Pro
				435					440					Gln 445			
40			450					455					460	Pro			
45		465					470					475		Tyr			480
	•					485					490			Asn		495	
50	ŧ				500					505				Ser	510		
55		Pro	Gly	Val 515	Ala	Met	Ala	Thr	Asn 520	Lys	Asp	qek	Glu	Asp 525	Gln	Phe	Phe

i 5		Met . ļ	Ala	Ala	qeA	Gly 5	Tyr	Leu	Pro	qzA	Trp 10	Leu	Glu	qeA	neA	Leu 15	Ser
-	<400> 10	2															
50	<213> ca	psid pr	rotein	of AA'	∨ serc	type,	clone	42.2F	REAL								
	<212> PF						•										
	<211> 72																
	<210> 10	2			:												
1 5																	
		Thr	Arg	Tyr	Leu	Thr 725	Arg	Asn	Leu								
40		Phe 705	Ala	Val	Asn	Asn	Glu 710	Gly	Val	Tyr	Thr	Glu 715	Pro	Arg	Pro	Ile	Gly 720
35		Pro	Glu 690	Ile	Gln	Tyr	Thr	Ser 695	Àsn	Tyr	Ala	Lys	Ser 700	Asn	Asn	Val	Glu
		Val	Glu	Ile 675	Glu	Trp	Glu	Leu	Gln 680	Гуз	Glu	Asn	Ser	Lys 685	Arg	Trp	Asn
30		Ala	Lys	Phe	Ala 660	Ser	Phe	Ile	Thr	Gln 665	Туг	Ser	Thr	Gly	Gln 670	Val	Ser
25		Ile	Lys	Asn	Thr	Pro 645	Val	Pro	Ala	Asn	Pro 650	Pro	Glu	Val	Phe	Thr 655	Pro
		Pro 625	Leu	Met	Gly	Gly	Phe 630	Gly	Leu	Lys	His	Pro 635	Pro	Pro	Gln	Ile	Leu 640
20		Pro	Ile 610	Trp	Ala	Lys	Ile	Pro 615	His	Thr	Asp	Gly	Asn 620	Phe	His	Pro	Ser
15		Ala	Leu	Pro 595		Met	Val	Trp	Gln 600	neA	Arg	Asp	Val	Cys 605	Leu	Gln	ejà
		Gln	Ser	Ser	Thr 580		Gly	Pro	Gln	Thr 585		Thr	Val	Asn	Ser 590		Gly
10		Thr	Asn	Pro	Val	Ala 565		Glu	Glu	Туг	Gly 570		Val	ser	Ser	Asn 575	Lèu
5		Thr 545	Thr	Leu	Glu	Asn	Val 550	Leu	Met	Thr	Ser	Glu 555		Glu	Ile	: Lys	Thr 560
		Pro	530	Asn	Gly	Val	Lev	Val 535		Gl)	Lys	Thr	61y 540		Ala	ne <i>A</i>	Lys

		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
5		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
10		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly,	Leu	Asp 60	Lys	Gly	Glu	Pro
15		Val 65	neA	Glu	Ala	qeA	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 08
		Lys	Gln	Leu	Glu	Gln 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Lys	Tyr	Asn	His 95	Ala
20		Asp	Ala	Glu	Phe 100	Gln :	Glu	Arg	Leu	Gln 105	Glu	Asp	Thr	Ser	Phe 110	Gly	Gly
25		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120	Ala	Lys	Lys	Arg	Val 125	Leu	Glu	Pro
		Leu	Gly 130	Leu	Val	€]π	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
30		Pro 145	Ile	Glu	Ser	Pro	Asp 150	Ser	Ser	Thr	Gly	Ile 155	Gly	Lys	Lys	Gly	Gln 160
35					_	165					170					Ser 175	
					180					185					190	Pro	
40				195					200					205		Met	
45			210					215					220			Asn	-
		225					230					235				Ser	240
50	ŧ	-		·		245					250			_	_	Gln 255	
55		Ser	Ser	Gln	Ser 260	GIÀ	ALA	Thr	Asn	Asp [*] 265	Asn	His	Phe	Phe	G1y 270	Tyr	Ser

5		Thi	r Pro	275		/ Ty:	: Phe	e Asp	280		n Ar	g Phe	∍ Hi:	28:		s Pho	e Ser
		Pro	290		Tr	Glr	a Ar	295		e Ası	n Ası	n Asi	300	_	y Pbe	Ar	g Pro
10		Arg 305		. Leu	Arg	Phe	310		Phe	e Asr	ı Ile	Glr 315		Lys	s Glu	val	Thr 320
15		Thr	Asn	Asp	Gly :	Val 325		Thr	Ile	Ala	Asn 330		Let	Thr	: Ser	Thr 335	: Ile
		Gln	Val	Phe	Ser 340		Ser	Glu	Tyr	Gln 345		Pro	Туг	Val	Leu 350		Ser
20		Ala	His	Gln 355		Суз	Leu	Pro	Pro 360		Pro	Ala	Asp	Val 365		Met	Ile
25		Pro	Gln 370	Tyr	Gly	Tyr	Leu	Thr 375	Leu	Asn	Asn	Gly	Ser 380		Ser	Val	Gly
		Arg 385		Ser	Phe	Tyr	Cys 390	Leu	Glu	Tyr	Phe	Pro 395	Ser	Gln	Met	Leu	Arg 400
30		Thr	eĵà	Asn	Asn	Phe 405	Glu	Phe	Ser	Tyr	Thr 410	Phe	Glu	Glu	Val	Pro 415	
3 5		His	Ser	Ser	Tyr 420	Ala	His	Ser	Gln	Ser 425	Leu	qeA	Arg	Leu	Met 430	Asn	Pro
•		Leu	Ile	Asp 435	Gln	Tyr	Leu	Tyr	Tyr 440	Leu	Ala	Arg	Thr	Gln 445	Ser	Thr	Thr
40		Gly	Ser 450	Thr	Arg	Glu	Leu	Gln 455	Бре	His	Gln	Ala	Gly 460	Pro	Asn	Thr	Met
45		Ala 465	Glu	Gln	Ser	Lys	Asn 470	Trp	Leu	Pro	Gly	Pro 475	Суэ	Tyr	Arg	Gln	Gln 480
		Arg	Leu	Ser	Lys	Asn 485	Ile	qeA	Ser	Asn	Asn 490	Asn	Ser	Asn	Phe	Ala 495	Trp
50	ŧ	Thr	Gly		Thr 500	Lys	Tyr	His	Leu	Asn 505	Gly	Arg	Asn	Ser	Leu 510	Thr	neA
55		Pro	СĵĀ	Val 515	Ala	Met	Ala	Thr	Asn 520	Lys	Asp	qeA	Glu	Asp 525	Gln	Phe	Phe

5		Pro	Ile 530	Asn	Gly	Val	Leu	Val 535		Gly	Glu	Thr	Gly 540	Ala	Ala	Asn	Lys
		Thr 545		Leu	Glu	Asn	Val 550	Leu	Met	Thr	Ser	Glu 555	Glu ,	Glu	Ile	Lys	Thr 560
10		Thr	Asn	Pro	Val	Ala 565	Thr	Glu	Glu	Tyr	Gly 570	Val	Val	Ser	Ser	Asn 575	Leu
15		Gln	Ser	Ser	Thr 580	Ala	GJ À	Pro	Gln	Thr 585	Gln	Thr	Val	Asn	Ser 590	Gln	GJÀ
				595				-	600					605		Gln	-
20		Pro	610	_				615					620				
25		625			_	_	630			•		635				Ile	640
						645					650					Thr 655	
30					660		•			665				_	670	Val	
35				675					680					685		Trp Val	
	1 1 €		690					695					700			Ile	
40		705					710			1 Y L	Inz	715	710	vrā	PIO	116	720
45		Int	Arg	TAT	pen	Thr 725	Arg	ASII	ren				•				
	<210> 1 <211> 7 <212> P	28 PRT															
50	<213> c <400> 1		oroteir	n of A	AV sei	rotype	, clone	∋ 7.2V	P1			•					

Met 1	Ala	Ala	qeA	G1y 5		Leu							neA		Ser
Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro

			ьy	s Ale	35	n Gli	n Gli	n Lys	s Gli	40	P As	b el?	/ Arg	g Gl	y Let 45	ı Va.	l Lei	l Pro
	5		Gly	7 Ty: 50	r Arç	ŢŢŢ	Let	. Gly	9 Pro	Phe	e A sı	n Gly	/ Leu	e Asp 03	Lys			Pro
	10		Va] 65	Asr	a Glu	Ala	Asp	Ala 70	Ala	Ala	Let	ı Glu	His 75	, Asp	Lys		Tyr	qeA :
	15		Lys	Glr	Lev	Glu	Gln 85	Gly	qeA '	Asn	Pro	90	Leu	Lys	Tyr	Asr	His 95	Ala
	15		Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Glr 105		Asp	Thr	Ser	Phe 110		Gly
	20		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120		Lys	Lys	Arg	Val 125		Glu	Pro
	25		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135		Lya	Thr	Ala	Pro 140		Lys	Lys	Arg
			Pro 145	Ile	Glu	Ser	· Pro	Asp 150	Ser	Ser	Thr	Gly	Ile 155	Gly	Lys	aeA	ely	Gln 160
	30		Pro	Pro	Ala	Lys	Lys 165	Lys	Leu	Asn	Phe	Gly 170	Gln	Thr	GЉ	Asp	Ser 175	Glu
	35		Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Leu	Gly 185		Pro	Pro	Ala	Ala 190	Pro	Ser
			Gly	Leu	Gly 195	Ser	Gly	Thr	Met	Ala 200	Ala	Gly	Gly	Gly	Ala 205	Pro	Met	Ala
	40		Asp	Asn 210	Asn	Glu	Gly	Ala	Asp 215	Gly	Val	Gly	Asn	Ala 220	Ser	Gly	Asn	Trp
	45		His 225	Cys	qeA	Ser	Thr	Trp 230	Leu	Gly	qeA	Arg	Val 235	Ile	Thr	Thr	Ser	Thr 240
•			Arg	Thr	Trp	Ala	Leu 245	Pro	Thr	Tyr	Asn	Asn 250	His	Leu	Tyr	Lys	Gln 255	Ile
	50		Ser	Ser	Gln	Ser 260	Gly	Ala	Thr	neA	Asp 265	Asn	His	Phe	Phe	Gly 270	Tyr	Ser
. :	55		Thr	Pro	Trp 275	Gly	Tyr	Phe	Asp	Phe 280	Asn	Arg	Phe	His	Cys 285	His	Phe	Ser

	Pr	0 Arg 290	reA p	Trp	Gli	Ar	g Let 295	ı Ile	e As	n Asr	a Asr	30		y Ph	e Ar	g Pro
5	Ar 30	g Lys S	Leu	l Arg	Phe	Ly: 310	s Lev	1 Phe	Ası	n Ile	Glr 315		l Ly:	s Gl	u Va	1 Thr 320
10	Th	r Asr	Asp	Gly	Val 325	Thi	Thr	: Ile	: Ala	330		Le	ı Thi	: Se	Th:	r Ile 5
15	Glr	n Val	Phe	ser 340	Asp	Ser	: Glu	Tyr	Glr 345	Leu S	Pro	Ту	· Val	. Let 35(/ Ser
	Ala	A His	Gl n 35 5	Gly	Сув	Leu	Pro	Pro 360	Phe	Pro	Ala	Asp	Val 365		, Met	: Ile
20	Pro	Gln 370	Tyr	Gly	Tyr	Leu	Thr 375	Leu	Asn	Asn	Gly	Ser 380		Ser	: Val	Gly
25	Arg 385	Ser	Ser	Phe	Tyr	Cys 390	Leu	Glu	Tyr	Phe	Pro 395	Ser	Gln	Met	Leu	Arg 400
	Thr	Gly	qeA	Asn	Phe 405	Glu	Phe	Ser	Tyr	Thr 410	Phe	Glu	Glu	Val	Pro 415	Phe
30	His	Ser	Ser	Tyr 420	Ala	His	Ser	Gln	Ser 425	Leu	Asp	Arg	Leu	Met 430	Asn	Pro
35	Leu	Ile	Asp 435	Gln	Tyr	Leu	Tyr	Tyr 440	Leu	Ala	Arg	Thr	Gln 445	Ser	Thr	Thr
	Gly	Ser 450	Thr	Arg	Glu	Leu	Gln 455	Phe	His	Gln	Ala	Gly 460	Pro	Asn	Thr	Met
40	Ala 465	Glu	Gln	Ser	Lys	Asn 470	Trp	Leu	Pro	Gly	Pro 475	Cys	Tyr	Arg	Gln	Gln 480
45	Arg	Leu	Ser :	Lys :	Asn 485	Ile	Asp	Ser	neA	Asn 490	Asn	Ser	Asn	Phe	Ala 495	Trp
	Thr	Gly .	Ala :	Thr 1 500	Lys	Tyr	His :	Leu .	Asn 505	Gly .	Arg 2	Asn	Ser	Leu 510	Thr	Asn
	Pro	ela .	Val 2 515	Ala 1	Met .	Ala		Asn 520	Lys	Asp :	Asp (Asp 525	Gln	Phe	Phe
55	Pro	Ile 2 530	Asn (5ly \	/al :	Leu '	Val 1 535	Phe (Gly :	Lys :		51y 540	Ala .	Ala	Asn	Lys

5		Th 54	r Th	r Le	u Glu	ı Ası	Va:	l Lei	ı Met	Thi	c Se	55:		u Gli	u Ile	e Ly	560
		Th	r Ası	n Pro	o Val	Ala 565	Thi	Glu	Glu	Tyr ,	Gly 570		l Val	l Sei	: Se	57:	Leu
10		Gl	n Sei	: Se	580	Ala	Gly	, Pro	Gln			Thr	: Val	. Asr	590		Gly
15		Ala	a Leu	9rc 595	Gly	Met	Val	Trp	Gl n 60 0	Asn	Arg	Asp	Val	Tyr 605		Glz	Gly
		Pro	File 610	Trp	Ala	Lys	Ile	Pro 615	His	Thr	Asp	Gly	Asn 620		His	Pro	Ser
20		Pro 625	Leu	Met	Gly	Gly	Phe 630	ely	Leu	Lys	His	Pro 635	Pro	Pro	Gln	Ile	Leu 640
25				•	Thr	645					650	٠				655	
					Ala 660					665					670		
30				6/3	Glu				680					685			
35 .			630		Gln			695					700				
	٠	703			Asn .		/10			Tyr	Thr	Glu 715	Pro	Arg	Pro	Ile	Gly 720
40		THE	Azg	Tyr	Leu	725	Arg	Asn :	Leu								
45	<210> <211> <212> <213>	728	rotein (of AA	V serot	type, c	clone :	27.3VI	P1								
50	<400>	104															
55	•	Met 1	Ala i	Ale /	Asp G	Sly 1	'yr 1	Leu 1	?ro #		rrp 1	čeu (Slu i	Asp i		Leu :	Ser ,
55		Glu	Gly :	Ile i	Arg G 20	lu 1	Erp :	(tp		leu I	Lys I	Pro (Gly 1		Pro 1	Lys :	Pro

		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	40) Asp	Gly	Arg	G13	45	Va]	l Lei	Pro
5		Gly	Tyr 50	: Lys	Tyr	Leu	Gly	Pro 55	Phe	: Asr	, Gly	Leu	Asp 60	. Lys	GJ?	/ Glu	Pro
10		Val 65	. Asn	. Glu	Ala	Ąsp	Ala 70	Ala	Ala	Lev	Glu	His 75	qeA	Lys	Ala	ту <u>г</u>	Asp 80
15		Lys	Gln	Leu	Glu	Gln 85	GJA	Asp	Asn	ğro	90	Leu	Lys	Tyr	Asn	His 95	Ala
.5		Asp	Ala	Glu	Phe 100		Glu	Arg	Leu	Gln 105		Asp	Thr	Ser	Phe 110		eJA
20		neA	Leu	Gly 115		Ala	Val	Phe	Gln 120		Lys	Lys	Arg	Val 125	Leu	Glu	Pro
2 5		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Ser 140	Gly	Lys	Lys	Arg
		Pro 145		Glu	Ser	Pro	Asp 150	Ser	Ser	Thr	Gly	Ile 155	Gly	Lys	Lys	Gly	Gln 160
30		Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	neA	Phe	Gly 170	Gln	Thr	Gly	Asp	Ser 175	Glu
35		Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Leu	Gly 185		Pro	Pro	Ala	Ala 190	Pro	Ser
30		Gly	Leu	Gly 195	ser	Gly	Thr	Met	Ala 200	Ala	Gly	Gly	Gly	Ala 205	Pro	Met	Ala
40		Asp	Asn 210	Asn	Glu	Gly	Ala	Asp 215	Gly	Val	Gly	Asn	Ala 220	Ser	Gly	Asn	Trp
45		His 225	Сув	qeA	ser	Thr	Trp 230	Leu	Glÿ	Asp	Arg	Val 235	Ile	Thr	Thr	ser	Thr 240
		Arg	Thr	Trp	Ala	Leu 245	Pro	Thr	Tyr	Asn	Asn 250	His	Leu	Tyr	Lys	Gln 255	Ile
50		Ser	Ser	Gln	Ser 260	Gly	Ala	Thr	Asn	Азр 265	Asn	His	Phe	Phe	Gly 270	Tyr	Ser
	·	Thr	Pro	Trp 275	GJY	Tyr	Phe		Phe 280	Asn	Arg	Phe	His	Cys 285	His	Phe	Ser
55																	

5		Pro	Arg 290		Tr	Glr	Arg	295	ı Ile	e Ası	n Asr	neA i	300		/ Ph∈	e Arç	, Pro
3		Arg 305		Leu	Arg		310		Phe	Ası	n Ile	Gln 315		. Lys	Glv	ı Val	Thr 320
10		Thr	neA	Asp				Thr	Ile	ala e	330		Leu	Thr	: Ser	Thr 335	Ile
15		Gln	Val	Phe	Ser 340	_	Ser	Glu	Туг	Glr 345		Pro	туг	Val	350	- 4	Ser
	•	Ala	His	Gln 355	Gly	Суз	Leu	Pro	Pro 360		: Pro	Äla	Asp	Val 365		Met	Ile
20		Pro	Gln 370	Tyr	Gly	Tyr	Leu	Thr 375	Leu	neA	neA	Gly	Ser 380	Gln	Ser	Val	Gly
<i>25</i>		Arg 385	Ser	Ser	Phe	Суз	390	Leu	Glu	Tyr	Phe	Pro 395	Ser	Gln	Met	Leu	Arg 400
		Thr	Gly	Asn	Asn	Phe 405	Glu	Phe	Ser	Tyr	Thr 410	Phe	Glu	Glu	Val	Pro 415	Pbe
30		His	Ser	Ser	Tyr 420	Ala	His	Ser	Gln	Ser 425	Leu	Asp	Arg	Leu	Met 430	Asn	Pro
35		Leu	Ile	Asp 435	Gln	Tyr	Leu	Tyr	Tyr 440	Leu	Ala	Arg	Thr	Gln 445	Ser	Thr	Thr
	•	Gly	Ser 450	Thr	Arg	Glu	Ļeu	Gln 455	Phe	His	Gln	Ala	Gly 460	Pro	Asn	Thr	Val
40		Ala 465	Glu	Gln	Ser	Lys	Asn 470	Trp	Leu	Pro	Gly	Pro 475	Суз	Tyr	Arg	Gln	Gln 480
45		Arg	Leu	Ser	Lys	Asn 485	Ile	Asp			Asn 490		Ser	Asn	Phe	Ala 495	Trp
		Thr	Gly .		Thr 500	Lys	Tyr	His	Leu	Asn 505	Gly	Arg	Asn	Ser	Leu 510	Thr	Asn
50		Pro		Val 515	Ala	Met	Ala	Thr	Asn 520	Lys	Asp	qeA	Glu	Asp 525	Gln	Phe	Leu
55	•		Ile . 530	Asn	Gly	Val		Val 535	Phe	Gly	Lys		Gly 540	Ala	Ala	Asn	Lys

		Thu 545	Th:	r Leu	ı Glu	ı Ası	n Val	L Lei	ı Met	Th	r Se	r Glv 555	ı Glı	u Gli	u Ile	≥ Lys	560
5		Tha	Ası	n Pro	Val	. Ala 565	a Thi	: Glı	ı Glu	туг	Gl ₃ 570	y Val	. Val	l Sez	: Sex	Asr 575	Leu i
10		Gln	Ser	Ser	Thr 580	Ala	Gly	Pro	Arg	Thr 585	Gln	1 Thr	Val	. Asn	Ser 590		Gly
		Ala	Leu	Pro 595	Gly	Met	. Val	Trp	Gln 600	Asn	Arg	qeA ı	Val	Tyr 605	Leu	Gln	Gly
15		Pro	Ile 610	Trp	Ala	Glu	Ile	Pro 615	His	Thr	qeA	Gly	Asn 620	Phe	His	Pro	Ser
20		Pro 625	Leu	Met	Gly	Gly	Phe 630	Gly	Leu	Lys	His	Pro 635		Pro	Gln	Ile	Leu 640
0.5		Ile	Lys	Asn	Thr	Pro 645	Val	Pro	Ala	Asn	Pro 650		Glu	Val	Phe	Thr 655	Pro
		Ala	Lys	Phe	Ala 660	Ser	Phe	Ile	Thr	Gln 665	Tyr	Ser	Thr	Gly	Gln 670	Val	Ser
30		Val	Glu	Ile 675	Glu	Trp	Ġlu	Leu	Gln 6 8 0	Lys	Glu	Asn	Ser	Lys 685	Arg	Trp	Asn
35		Pro	Glu 690	Ile	Gln	Tyr	Thr	Ser 695	Asn	Tyr	Ala	Lys	Ser 700	Asn	Asn	Val	Glu
33		Phe 705	Ala	Val	Asn .	Asn	Glu 710	<u>e</u> jà	Val	Tyr		Glu 715	Pro	Arg	Pro	Ile	Gly 720
40		Thr .	Arg	Tyr		Thr 725	Arg .	Asn :	Leu								•
45	<210> 105 <211> 728 <212> PRT										•						
	<213> caps	sid pro	tein of	AAV	seroty	pe, c	lone 1	6.3VP	1								
	<400> 105																

								EP 1	310 5)/1 B	7						
		Met 1	Ala	Ala	Asp	Gly 5	туг	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Asn	Leu 15	Sez
5		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	GJY	Ala	Pro 30	Lys	Pro
10	,	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Азр	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
				,												•	
15																	
20																	
25																	

5		Gl	7 Ty: 50	: Lys	Tyr	Leu	ı Gly	Pro 55	Phe	Asn	, G1;	y Leu	Asp 60	Lys	s Gly	, Glı	Pro
		Va: 65	l Asr	Glu	Ala	. Asp	70	a Ala	Ala	. Leu	Gli	His 75	Asp	Lys	Ala	Туг	qeA :
10		Lys	Glr.	Leu	Glu	61n 85	Gly	qeA v	ne.A	Pro	Туг 90	Leu	Lys	Tyr	ne.A	His 95	Ala
15	· · .	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105		A sp	Thr	Ser	Phe 110		Gly
		Asn	Leu	Gly 115	Arg	Ala	Val	Phe	Gln 120		Lys	Lys	Arg	Val 125		Glu	Pro
20 .		Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135	Ala	Lys	Thr	Ala	Pro 140	Gly	Lys	Lys	Arg
25		Pro 145	Ile	Glu	Ser	Pro	Asp 150	Ser	Ser	Thr	Gly	Ile 155	Gly	Lys	Lуз	Gly	Gln 160
		Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	Asn	Phe	Gly 170	G ln	Thr	Gly		Ser 175	Glu
30		Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Leu	Gly 185	Glu	Pro	Pro	Ala	Ala 190	Pro	Ser
35	·	Gly	Leu	Gly 195	Ser	Gly	Thr	Met	Ala 200	Ala	Gly	Gly	Gly	Ala 205	Pro	Met	Ala
33		Asp	Asn 210	Asn	Glu	Gly	Ala	Asp 215	Gly	Val	Glÿ	Asn	Ala 220	Ser	Gly.	Asn	Trp
40		His 225	Cys	Asp	Ser	Thr	Trp 230	Leu	Gly	Asp	Arg	Val 235	Ile	Thr	Thr	Ser	Thr 240
		Arg	Thr	Trp	Ala	Leu 245	Pro	Thr	Tyr		Asn 250	His	Leu	Tyr	Lys	Gln 255	Ile
45		Ser	Ser	Gln	Ser 260	Gly	Ala	Thr	Asn	Asp 265	Asn	His	Phe	Phe	Gly 270	Tyr	Ser
50		Thr	Pro	Trp 275	Gly	Tyr	Phe		Phe 280	Asn .	Arg	Phe		Cys 285	His	Phe	Ser
	,	Pro	Arg 290	Asp	Trp	Gln .	Arg	Leu 295	Ile .	Asn i	Asn	Asn	Trp	Gly	Phe	Arg	Pro .
r r																	

		30.		5 LE	u Al	g Em	31		u Pn	e As	n II	31		тру	3 G1	u va.	320
5		Th	r Ası	n As	p Gl	y Va:		r Thi	: Il	e Ala	a As:		n Le	u Th	r Se:	335	Tle
10		Gli	n Val	l Ph	340		Sez	- Glu	Ty:	r Gl: 345		ı Pro	ту:	r Val	1 Le: 350		/ Ser
15		Ala	a His	35:		y Cys	Lev	ı Pro) Pro		e Pro	> Ala	Asp	7 Va 365		Met	: Ile
		Pro	370	Ty:	Gly	/ Туг	Leu	Thr 375		ı Asr	a Asr	Gl}	380		ser	Met	Gly
20		Arg 385	Ser	Ser	Phe	Tyr	390		Glu	Туг	Phe	9ro 395		Glr	Met	Leu	Arg 400
25		Thr	Gly	neA '	Asn	2he 405	Glu	Phe	Ser	Tyr	Thr 410		Glu	Glu	Val	Pro 415	Phe
		His	Ser	Ser	Tyr 420	Ala	His	Ser	Gln	Ser 425		Asp	Arg	Leu	Met 430		Pro
30		Leu	Ile	Asp 435	Gln	Tyr	Leu	Tyr	Tyr 440	Leu	Ala	Arg	Thr	Gln 445	Ser	Thr	Thr
35		Gly	Ser 450	Thr	Arg	Glu	Leu	Gln 455	Phe	His	Gln	Ala	Gly 460	Pro	Asn	Thr	Met
		Ala 465	Glu	Gln	Ser	Lys	Asn 470	Trp	Leu	Pro	Gly	Pro 475	Суз	туг	Arg	Gln	Gln 480
40	•	Arg	Leu	Ser	Lys	Asn 485	Ile	Asp	Ser	Asn	Asn 490	Asn	Ser	Asn	Phe	Ala 495	Trp
45		Thr	ΘΊУ	Ala	Thr 500	Lys	Tyr	His		Asn 505	Gly	Arg	Asn	Ser	Leu 510	Thr	Asn
		Pro	Gly	Val 515	Ala	Met	Ala	Thr	Asn 520	Lys	Asp	Asp	Glu	Gly 525	Gln	Phe	Phe
50	,	Pro	Ile 530	Asn	Gly	Val	Leu	Val 535	Phe	Gly ·	Lys		Gly 540	Ala	Ala	Asp	Lys
		Thr 545	Thr	Leu	Glu	Asn	Val 550	Leu	Met	Thr	Ser.	Glu 555	Glu	Glu	Ile	Lys	Thr 560
55																	

		Thr	: Asr	Pro	Val	Ala 565		: Glu	Glu	Tyr	61y 570		Val	. Ser	Ser	Asn 575	
5	*	Gln	Ser	Ser	Thr 580	Ala	Gly	Pro	Gln	Thr 585		Thr	Val	. Asn	Ser 590		Gly
10		Ala	Leu	Pro 595	Gly	Met	Val	Trp	Gln 600		Arg	n Asp	Val	Tyr 605		Gln	Gly
		Pro	Ile 610		Ala	Lys	Ile	Pro 615	His	Thr	Asp	Gly	Asn 620		His	Pro	Ser
15		Pro 625		Met	Gly	Gly	Phe 630		Leu	Lys	His	Pro 635	Pro	Pro	Gln	Ile	Leu 640
20		Ile	Lys	Asn	Thr	Pro 645	Val	Pro	Ala	Asn	Pro 650		Сĵу	Val	Phe	Thr 655	Pro
0.5		Ala	Leu	Phe	Ala 660	Ser	Phe	Ile	Thr	Gln 665	Tyr	Ser	Thr	Gly	Gln 670	Val	Ser
25		Val	Glu	Ile 675	Glu	Trp	Glu	Leu	Gln 680	Lys	Glu	Asn	Ser	Lys 685	Arg	Trp	Asn
30		Pro	Glu 690	Ile	Gln	Tyr	Thr	Ser 695	Asn	Tyr	λla	Lys	Ser 700	Asn	neA	Val	Glu
35		Phe 705	Ala	Val	Asn	Asn	Glu 710	Gly	Val	Tyr	Thr	Glu 715	Pro	Arg	Pro	Ile	Gly 720
		Thr	Arg	Tyr	Leu	Thr 725	Arg	Asn	Leu					,			
40	<210> <211> <212> <213>	728	rotein	of AA	/ sara	tuno d	olono	42.10									
45			otein	01 774	v 56101	туре, (Sione 4	42.10									
	<400>	100															
50		Met 1	Ala	Ala	qeA	Gly 5	Tyr	Leu	Pro	Asp ,	Trp 10	Leu	Glu	Asp	Asn	Leu 15	Ser
		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
55		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro

5	G1;	у Ту: 50	r Ly:	s Ty:	r Le	u Gl	y Pro 55	Phe	e Ası	n Gly	y Let	60	b Ly:	s Gl	y Gl	ı Pro
,	Va: 65	l Ası	n Gli	Ala	a Ası	70	a Ala	Ala	a Lei	ı Glu	His 75	e Asi	Ly:	a Ala	ту	qeA : 08
10	Lys	Glr	ı Let	ı Glı	Glr 85	. Gly	, Asp	Asn	Pro	Туг 90	: Leu	Lys	Туз	reA :	His 95	Ala
	I eA	Ala	Glu	Phe 100	Glr	Glu	ı Arg	Leu	Glr 105		qeA ı	Thr	Ser	Phe 110	Gly	Gly
	Asn	Lev	Gly 115	Arg	Ala	Val	. Phe	Gln 120		Lys	Lys	Arg	Val 125		Glu	Pro
20	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135		Lys	Thr	Ala	Pro 140		Lys	Lys	Arg
	Pro 145	İle	Glu	Ser	Pro	Asp 150	Ser	Ser	Thr	Gly	Ile 155	Gly	Arg	Lys	Gly	Gln 160
25	Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	Asn	Phe	Gly 170	Gln	Thr	Gly	Asp	Ser 175	Glu
30	Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Ile	Gly 185	Glu	Pro	Pro	Ala	190	Pro	Ser
	Gly	Leu	Gly 195	Ser	Gly	Thr	Met	Ala 200	Ala	Gly	Gly	Gly	Ala 205	Pro	Met	Ala
35	Asp	Asn 210	Asn	Glu	Gly	Ala	Asp 215	Gly	Val	Gly		Ala 220	Ser	Gly	Asn	Trp
40	His 225	Cys	Asp	Ser	Thr	Trp 230	Leu	Gly	Asp	Arg	Val 235	Ile	Thr	Thr	Ser	Thr 240
	Arg	Thr	Trp	Ala	Leu 245	Pro	Thr	Tyr	neA	Asn 250	His	Leu	Tyr	Lys	Gln 255	Ile
45	Ser	Ser	Gln	Ser 260	Gly	Ala	Thr	Asn	Asp 265	Asn	His	Phe	Phe	Gly 270	Tyr	Ser
50	Thr	Pro	Trp 275	ely	Tyr	Phe		Phe 280	Asn	Arg	Phe :	His	Cys 285	His	Phe	Ser
·	Pro	Arg 290	Asp	Trp	Gln	Arg	Leu 295	Ile .	Asn .	neA.		Trp 300	Gly	Phe	Arg	Pro

5	Arg 305		Leu	Arg	Phe	110	Leu	Phe	Asn	Ile	Gln 315	Val	Lys	Glu	Val	Thr 320
š	Thr	Asn	Asp	Gly	Val 325	Thr	Thr	Ile	Ala	Asn 330	Asn	Leu	Thr	ser	Thr 335	Ile
10	Gln	Val	Phe	Ser 340	Дзр	Ser	Glu	Tyr	Gln 345	Leu	Pro	Tyr	Val	Leu 350	Gly	Ser
15	Ala	His	Gln 355	Gly	Cys	Leu	Pro	Pro 360	Phe	Pro	Ala	qeA	Val 365	Phe	Met	Ile
	Pro	Gln 370	Tyr	Gly	Tyr	Leu	Thr 375	Leu	Asn	Asn	Gly	Ser 380	Gln	ser	Val	GJA
20	Arg 385		Ser'	Phe		390	Leu	Glu	Tyr	Phe	Pro 395	Ser	Gln	Met	Leu	Arg 400
25	Thr	Gly	Ren	Asn	Phe 405	Glu	Phe	Ser	Tyr	Thr 410	Phe	Glu	Glu	Val	Pro 415	Phe
	His	Ser	Ser	Tyr 420	Ala	His	Ser	Gln	Ser 425	Leu	Asp	Arg	Leu	Met 430	Asn	Pro
30	Leu	Ile	Asp 435	Gln	Tyr	Leu	Tyr	Tyr 440	Leu	Ala	Arg	Thr	Gln 445	Ser	Thr	Thr
3 <i>5</i>	Gly	Ser 450	Thr	Arg	Glu	Leu	Gln 455	Phe	His	Gln	Ala	Gly 460	Pro	aeA	Thr	Met
	Alá 465	Glu	Gln	Ser	Lys	Asn 470	Trp	Leu	PIO	Gly	Pro 475	Суз	Tyr	Arg	Gln	Gln 480
40	Arg	Leu	Ser	Lys	Asn 485	Ile	Asp	Ser	Asn	Asn 490	Asn	Ser	Asn	Phe	Ala 495	Trp
45	Thr	Gly	Ala	Thr 500	Lys	Tyr	His	Leu	Asn 505	Сĵу	Aŗg	Asn	Ser	Leu 510	Thr	Asn
	Pro	GЪ	Val 515	Ala	Met	Ala	Thr	Asn 520	Lys	Asp	Asp	Glu	Asp 525	Gln	Phe	Phe
50	Pro	Ile 530	Asn	Gly	Val	Leu	Val 535	Phe	Gly	ГÀЗ	Thr	Gly 540	Ala	Ala	Asn	Lys
55	Thr 545	Thr	Leu	Glu	Asn	Val 550	Leu	Met	Thr	Ser	Glu 555	Glu	Glu	Ile	Lys	Thr 560

_		Thr	Asn	Pro	Val	Ala 565		Glu	Glu	Tyr	Gly 570		Val	Ser	Ser	Asn 575	Leu
5		Gln	Ser	Ser	Thr 580		Gly	Pro	Gln	Thr 585		Thr	Val	neA	Ser 590		eJà
10	`	Ala	Leu	Pro 595		Met	Val	Trp	Gln 600	Asn	Arg	qeA	Val	Tyr 605		Gln	Gly
15		Pro	Ile 610	Trp	Ala	Lys	Ile	Pro 615		Thr	Asp	Gly	Asn 620	Phe	His	Pro	Ser
73		Pro 625	Leu	Met	Gly	GJY	Phe 630	Gly	Leu	Lys	His	Pro 635	Pro	Pro	Gln	Ile	Leu 640
20		Ile	Lys	Asn	Thr	Pro 645	Val	Pro	Ala	Asn	Pro 650	Pro	Glu	Val	Phe	Thr 655	Pro
25		Ala	Lys	Phe	Ala 660	Ser	Phe	Ile	Thr	Gln 665	Tyr	Ser	Thr	Gly	Gln 670	Val	Ser
		Val	GĴЛ	Ile 675	Glu	Trp	Glu	Leu	Gln 680	Lys	Glu	Asn	Ser	Lys 685	Arg	Trp	Asn
30		Pro	Glu 690	Ile	Gln	Tyr	Thr	Ser 695	Asn	Tyr	Ala	Lys	Ser 700	Asn	Asn	Val	Glu
<i>35</i>		Phe 705	Ala	Val	aeA	Asn	Glu 710	Gly	Val	Tyr	Thr	Glu 715	Pio	Arg	Pro	Ile	Gly 720
35		Thr	Arg	Tyr	Leu	Thr 725	Arg	Asn	Leu	٠.							
40	<210> 1 <211> 7 <212> P <213> c	28 RT	protei	n of A	AV se	rotype	, clon	e 42.3	BB								,
45	<400> 1	07				•											

						•	EP	1 31	0 571	B1						
	Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Asn	Leu 15	Ser
5	Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	ely	Ala	Pro 30	Lys	Pro
10	Lys	Ala	Asn 35	Gln	Gln	ГÀЗ	Gln	Asp 40	qeA	Gly	Arg	Gly	Leu 45	Val _,	Leu	Pro
	Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15																
20																
					٠											
25																

		V 6	al As 5.	n Gl	u Al	eA s	P Al 70	a Al	A Al	a Le	eu Gl	u Hi 75	s As	p Ly	's Al	a Ty	r Asp 80
5	,	Ly	s Gl	n Le	u Gl	u G1 85	n Gl	y As	p As	n Pr	ю Ту 90	r Le	u Ly	's Ty	r As	n Hi 95	s Ala
10		As	p Al	a Gl	u Phe 100	e Gl	n Gl	u Ar	g Le	u Gl 10		u As	p Th	r Se	r Ph		y Gly
15		As	n Le	u Gly 115	y Arg	Ala	a Va	l Ph	e G1:		a Ly	s Ly:	s Ar	g Va 12		1 C 1:	u Pro
		Le	u Gl ₂	y Lei)	ı Val	. Glu	ı Glı	1 Gl;	y Ala	a Ly:	s Thi	T Ala	140		y Lys	Ly	s Arg
20		Pr:	o Ile 5	e Glu	Ser	Pro	Asp 150	ser	Se	Th:	c Gly	/ Ile 155		y Ly:	s Lys	Gly	/ Gln 160
25		Gli	n Pro	Ala	Lys	Lys 165	Lys	Leu	Asr	Phe	Gly 170	Gln	Thi	: GI)	/ Asp	Ser 175	Glu i
		Sei	Val	Pro	Asp 180	Pro	Gln	Pro	Ile	Gly 185		Pro	Pro	Ala	Gly 190		Ser
30		Gly	/ Leu	Gly 195	Ser	Gly	Thr	Met	Ala 200	Ala	Gly	Gly	Gly	Ala 205		Met	Āla
3 5		Asp	210	Asn	Glu	Gly	Ala	Asp 215	Gly	Val	Gly	Asn	Ala 220		eĵà	neA	Trp
		His 225	Суз	Asp	Ser	Thr	Trp 230	Leu	Gly	Asp	Arg	Val 235	Ile	Thr	Thr	ser	Thr 240
40		Arg	Thr	Trp	Ala	Leu 245	Pro	Thr	Tyr	neA	Asn 250	His	Leu	Tyr	Lys	Gln 255	Ile
45		Ser	Ser	Gln	Ser 260	Gly	Ala	Thr	Asn	Asp 265	Asn	His	Phe	Phe	Gly 270	Tyr	Ser
		Thr	Pro	Trp 275	Gly	Tyr	Phe	qeA	Phe 280	Asn	Arg	Phe	His	Суз 285	His	Phe	Ser
50		Pro	Arg 290	Asp	Trp	Gln	Arg	Leu 295	Ile	Asn	Asn	Asn	Trp 300	Gly	Phe	Arg	Pro
55	-	Arg 305	Lys	Leu .	Arg :	Phe	Lys 310	Leu	Phe	Asn	Ile	Gln 315	Val	Lys	Glu	Val	Thr 320

5	Tì	ir As	eA a	p Gl	y Va 32	1 Th	ur Th	ır Il	e Al	а · Аз 33	eA n 0	n Le	u Th	r Se	r Th 33	r Ile 5
J	G1	ın Va	l Ph	e Se. 34	r As O	p Se	r Gl	u Ty	r Gl 34	n Le 5	u Pr	о Ту	r Va	1 Le ⁻ 35		y Sei
10	Al	a Hi	s G1 35	n Gl	, у су	s Le	u Pr	o Pr 36	o Ph O	e Pr	o Al	a As	p Va: 365	l Pho	e Me	t Ile
15	Pr	o Gl: 37	n Ty:	r Gly	у Ту:	r Le	u Th:	r Let	ı Ası	n Ası	n Gl	y Se: 38(r Gln	Se:	va:	Gly
15	Ar 38	g Sei 5	c Sei	r.Phe	тул	29: 39:	s Lei	ı Glı	ту:	r Phe	395	Sez	r Gln	Met	Lei	Arg 400
20	Thu	r Gly	/ Asr	Asn	Phe 405	e Glu	ı Phe	Ser	туг	Thr 410	Phe	: Glu	. Glu	Val	Pro 415	Phe
25	His	s Ser	Ser	Tyr 420	Ala	His	Ser	Gln	Ser 425	Leu	qeA ı	Arg	Leu			Pro
25	Leu	lle	Asp 435	Gln	Tyr	Leu	Tyr	Tyr 440	Leu	Ala	Arg	Thr	Gln 445	Ser	Thr	Thr
30	Gly	Ser 450	Thr	Arg	Glu	Leu	Gln 455	Phe	His	Gln	Ala	Gly 460	Pro	Asn	Thr	Met
35	Ala 465	Glu	Gln	Ser	Lys	Asn 470	Trp	Leu	Pro	Gly	Pro 475	Cys	Tyr	Arg	Gln	Gln 480
	Arg	Leu	Ser	Lys	Asn 485	Ile	Asp	Ser	Asn	Asn 490	Thr	Ser	Asn	Phe	Ala 495	Trp
40	Thr	Gly	Ala	Thr 500	Lys	Tyr	His	Leu	Asn 505	Gly	Arg	Asn	Ser	Leu 510	Thr	, neA
45	Pro	Gly	Val 515	Ala	Met	Ala	Thr	Asn 520	Lys	qeA	Asp	Glu	Asp 525	Gln	Phe	Phe
	Pro	Ile 530	Asn	Gly	Val	Leu	Val 535	Phe	Gly	Lys	Thr	Gly 540	Ala :	Ala.	Asn	Lys
50	Thr 545	Thr	Leu	Glu .	Asn	Val 550	Leu	Met '	Thr		Glu 555	Glu	Glu :	Ile :		Thr 560
	Thr	Asn	Pro '	Val i	Ala 565	Thr	Glu	Gln '	Tyr	Gly 570	Val '	Val	Ser :		Asn : 575	Leu
JJ																

5		GI	n Se	r Se	r Thi 580	r Ala	a Gl	y Pr	• G1:	n Thi 589	r Glr	Thi	: Va]	l As	n Se. 59		n Gly
	i	Al	a Le	u Pro 59:	o Gly 5	y Met	t Va	l Tr	60t	n Ası O	Arg	, Asp	Va]	60:	r Le	n ej	n Gly
10		Pro	610	e Try	o Ala	Lys	3 Ile	e Pro 615	His	3 Thr	: Asp	Gly	Asn 620	Phe	Hi:	s Pr	o Ser
- 15		Pro 625	o Lev	ı Met	Gly	Gly	Ph:	e Gly	Leu	Lys	His	Pro 635	Pro	Pro	Glr	ı Il	e Leu 640
,,		Ile	. Lys	Asn	Thr	Pro 645	Val	. Pro	Ala	neA	Pro 650	Pro	Glu	Val	Phe	Th:	Pro
20		Ala	Lys	Phe	Ala 660	Ser	Phe	Ile	Thr	Gln 665	Tyr	Ser	Thr	Gly	Gln 670		. Ser
		Val	eln	Ile 675	Glu	Trp	Glu	Leu	Gln 680	Lys	Glu	Asn	Ser	Lys 685	Arg	Trp	Asn
25		Pro	Glu 690	Ile	Gln	Tyr	Thr	3er 695	Asn	Tyr	Ala	Lys	Ser 700	Asn	Asn	Val	Сjп
30		Phe 705	Ala	Val	Asn	asA	Glu 710	Gly	Val	Tyr	Thr	Glu 715	Pro	Arg	Pro	Ile	Gly 720
		Thr	Arg	Tyr	Leu	Thr 725	Arg	neA	Leu								
35	<210> 108																
40	<211> 728 <212> PR <213> cap	Т	otein c	of AAV	/ serot	vpe. c	one 4	42.11									
	<400> 108					,,,,,,											
45		Met	Ala	Ala	 Asp (Slv (Tvr	Leu	Pro :	Asp :	ז ברים	. ev. 6		.	3	·	
		1				5	- , -	204		nsp .	10	Jeu (21U /	чар .		15	ser
50		Glu	Gly	Ile :	Arg (20	Slu (Trp	Trp 2	Asp 1	Leu I 25	Lys E	ro G	ly /		Pro :	Lys	Pro
	•	Lys :	Ala .	Asn (35	Gln (Sln I	Lys (Gln /	Asp /	qe.A	ly A	rg G		eu 1 5	Val 1	Leu	Pro
55		Gly :	Tyr : 50	Lys :	Fyr I	en e	Sly i	Pro I 55	he A	Asn G	ly L	eu A 6		ys (Sly (Slu :	Pro

5	Va. 65	l Ası	n Ala	a Ala	Asp	70	a Ala	A Ala	a Leu	ı Glı	75	. Asj	p Ly	s Ala	а Ту	r Asp 80
,	Glı	n Glr	n Lei	ı Lys	Ale 85	Gl:	y Asg	seA o	n Pro	90	Lev	Arg	у Ту:	r Ası	95	s Ala
10	ĮeA	Ala	Glu	Phe 100		G1v	ı Arg	Leu	Gln 105		qeA ı	Thi	: Se	Phe 110		A eJA
	neA	ı Lev	115	Arg	Ala	. Val	Phe	Gln 120		Lys	Lys	Arg	Val 125		Gl:	Pro
	Leu	130	Leu	Val	Glu	Glu	135		Lys	Thr	Ala	Pro 140		/ Lys	Lys	Arg
20	Pro 145	Ile	Glu	Ser	Pro	Asp 150		Ser	Thr	Gly	Ile 155	Gly	Lys	Lys	Gly	61n 160
25	Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	Asn	Phe	Gly 170	Gln	Thr	Gly	Asp	Ser 175	Glu
	Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Ile	Gly 185	Glu	Pro	Pro	Ala	Gly 190	Pro	Ser
30	Gly	Leu	Gly 195	Ser	Gly	Thr	Met	Ala 200	Ala	Gly	Gly	Gly	Ala 205	Pro	Met	Ala
<i>35</i>	Asp	Asn 210	Asn	Glu	Gly	Ala	Asp 215	Gly	Val	Gly	Asn	Ala 220	Ser	Gly	Asn	Trp
	His 225	Cys	Азр	Ser	Thr	Trp 230	Leu	Gly	Asp	Arg	Val 235	Ile	Thr	Thr	Ser	Thr 240
40	Arg	Thr	Trp	Ala	Leu 245	Pro	Thr	Tyr	Asn	Asn 250	His	Leu	Tyr	Lys	Gln 255	Ile
	ser	Ser	Gln	Ser 260	Gly	Ala	Thr	Asn	Asp 265	Asn	His	Phe	Phe	Gly 270	Tyr	Ser
	Thr	Pro	Trp 275	Gly	Tyr	Phe	qeA	Phe 280	Asn .	Arg	Phe	His	Cys 285	His	Phe	Ser
<i>50</i>	Pro	Arg 290	qeA	Trp	Gln .	Arg	Leu 295	Ile	Asn .	Asn .		Trp 300	Gly	Phe	Arg	Pro
	Arg 305	Lys	Leu	Arg		Lys 310	Leu	Phe .	ae.A		Gln ' 315	Val	Lys	Glu	Val	Thr 320

_		Th	r As	n As	p Gl	y Va 32	1 Th. 5	r Th	r Il	e Al	12A B	n Ası O	n Le	u Th	r Se	Th:	
5		Gli		l Pho	e Se. 34	r As _i O	p Se	r Gl	u Ty:	7 Gl:		ı Pro	Ty:	r Va	1 Le:		/ Ser
10	•	Ala	A Hi:	3 Gl:	n Gl	у Су:	s Lei	ı Pr	o Pro 360		e Pro	Ala	l Asi	9 Val 365		e Met	: Ile
15		Pro	370	Tyr	: Gly	у Туз	r Leu	375	r Leu	eA u	n Asn	Gly	Sez 380		se;	: Val	Gly
,5		Arg 385	Ser	Ser	Phe	туг	Cys 390	Lei	ı Glu	Tyr	: Phe	Pro 395		Gln	Met	: Leu	Arg 400
20		Thr	Gly	ne.A	Asn	Phe 405	Glu	Phe	e Ser	Tyr	Thr 410		Glu	Glu	Val	Pro 415	
2 5		His	Ser	Ser	Tyr 420	Ala	His	Ser	Gln	Ser 425		qeA	Arg	Leu	Met 430		Pro
		Leu	Ile	Asp 435	Gln	Tyr	Leu	туг	Tyr 440	Leu	Ala	Arg	Thr	Gln 445	Ser	Thr	Thr
30		Gly	Ser 450	Thr	Arg	Glu	Leu	Gln 455	Phe	His	Gln	Ala	Gly 460	Pro	Asn	Thr	Met
35		Ala 465	Glu	Gln	Ser	Lys	Asn 470	Trp	Leu	Pro	Gly	Pro 475	Суз	Tyr	Arg	Arg	Gln 480
		Arg	Leu	Ser	Lys	Asp 485	Ile	Asp	Ser	Asn	Asn 490	Asn	Ser	Asn	Phe	Ala 495	Trp
40		Thr	Gly	Ala	Thr 500	Lys	Tyr	His	Leu	Asn 505	Gly	Arg	Asn	Ser	Leu 510	Thr	Asn
_45		Pro	Gly	Val 515	Ala	Met	Ala	Thr	Asn 520	Lys	Asp	Asp	Glu	Asp 525	Gln	Phe	Phe
	٠.	Pro	Ile 530	aeA	Сĵ	Val	Leu	Val 535	Phe	Gly	r y s	Thr	Gly 540	Ala	Ala	Asn	Lys
50	ŧ	Thr 545	Thr	Leu	Glu	neA	Val 550	Leu	Met	Thr		Glu 555	Glu	Glu	Ile		Thr 560
55		Thr	Asn	Pro	Val	Ala 565	Thr	Glu	Glu		Gly ' 570	Val '	Val	Ser	Ser	Asn 575	Leu

5		Gln	Ser	Ser	Thr 580		Gly	Pro	Gln	Thr 585		Thr	Val	Asn	Ser 590		Gly	
,	,	Ala	Leu	Pro 595		Met	Val	Trp	G1n 600		Arg	Asp	Val	Tyr 605		Gln	Gly	
10	no di	Pro	Ile 610		Ala	Lys	Ile	Pro 615	His	Thr	Asp	Gly	Asn 620	Phe	, His	Pro	Ser _.	
15		Pro 625		Met	Gly	Gly	Phe 630	Gly	Leu	Lys	His	Pro 635	Pro	Pro	Gln	Ile	Leu 640	
		Ile	Lys	Asn	Thr	Pro 645	Val	Pro	Ala	Asn	Pro 650	Pro	Glu	Val	Phe	Thr 655	Pro	
20		Ala	Lys	Phe	Ala 660	Ser	Phe	Ile	Thr	Gln 665	Tyr	Ser	Thr	Gly	Gln 670	Val	Ser	
25		Val	Glu	Ile 675	Glu	Trp	Glu	Leu	Gln 680	Lys	Glu	Asn	Ser	Lys 685	Arg	Trp	Asn	
		Pro	Glu 690	Ile	Gln	Tyr	Thr	Ser 695	Asn	Tyr	Ala	Lys	ser 700	Asn	Asn	Val	Glu	
30		Phe 705	Ala	Val	Asn	Asn	Glu 710	Gly	Val	Tyr	Thr	Glu 715	Pro	Arg	Pro	Ile	Gly 720	
<i>35</i>		Thr	Arg	Tyr	Leu	Thr 725	Arg	Asn	Leu									
	<210> 109 <211> 729 <212> PRT																	
40	<213> caps		tein o	f AAV	seroty	ype, c	ione F	1VP1										
	<400> 109												•					
15		Met 1	Ala	Ala	qeA	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Asn	Leu 15	ser	
		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro	
50	:	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro	
i5		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Qe <i>A</i>	Lys	Gly	Glu	Pro	
		Val	Asn	Ala	Ala	Азр	Ala	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	Asp 80	

_	G1	n Gl	n Le	u Ly	/S A) 85	ia G)	Ly As	sp As	an P	ro T;	yr Le D	tA us	g Ty	'I As	n H: 9:	is Ala
5	As	p Al	a Gl	u Ph 10	ie Gl	n Gl	lu Ar	g Le	u 6:	ln G) 05	lu As	3p Th	ır Se	r Ph		ry Gly
10	As	n Le	u Gl 11	y Ar 5	g Al	a Va	l Ph	e Gl 12	n Al	la Ly	's Ly	's Ar	g Va 12		u Gl	u Pro
15	Le	u Gl 13	y Le	u Va	1 G1	u Gl	u Gl; 13	y Al 5	a Ly	rs Th	r Al	a Pr 14		y Ly	s Ly	s Arg
,5	Pro 145	o Ile	e Ası	Se.	r Pr	0 Ası 150	p Sei	r Se	r Th	r Gl	y Il 15	e Gly 5	y Lys	Ly:	s G1	y Gln 160
20	Glr	Pro	Ala	a Ly:	165	s Lys	3 Let	ı Ası	n Ph	e Gl;	y Gl	n Thi	r Gly	/ Asp	9 Se.	r Glu 5
25	Ser	Val	Pro	Asp 180	Pro	Glr	n Pro	Leu	18:	y Gli S	ı Pro	Pro) Ala	Ala 190		Ser
	Ser	Val	Gly 195	Ser	: Gly	Thr	Met	200	Ala	a Gly	/ Gly	, Gla	Ala 205		Met	Ala
30	Asp	Asn 210	Asn	Glu	. Gly	Ala	Asp 215	Gly	Val	L Gly	Asn	Ala 220	Ser	Gly	ne.A	Trp
35	His 225	Суз	Asp	Ser	Thr	Trp 230	Leu	Gly	Asp	Arg	Val 235	Ile	Thr	Thr	Ser	Thr 240
	Arg	Thr	Trp	Ala	Leu 245	Pro	Thr	Tyr	Asp	Asn 250	His	Leu	Tyr	Lys	Gln 255	Ile
40	Ser	Ser	Ser	Ser 260	Ser	Gly	Ala	Thr	Asn 265	qeA	aeA	His	Tyr	Phe 270	Gly	Tyr
45	Ser	Thr	Pro 275	Trp	Gly	Tyr	Phe	Asp 280	Phe	Asn	Arg	Phe	His 285	Суз	His	Phe
	Ser	Pro 290	Arg	Asp	Trp	Gln	Arg 295	Leu	Ile	Asn	A.sn	neA 000	Trp	Gly	Phe	Arg
50	Pro 305	Lys	Lys	Leu	Arg	Phe 310	Lys	Leu	Phe	Asn	Ile 315	Gln	Val	Lys	Glu	Val 320
55	Thr	Thr	neA	qzA	Gly 325	Val	Thr	Thr	Ile	Ala 330	Asn	Asn	Leu		Ser 335	Thr

	V.	al G	ln V	al P) 34	ne Se 10	r As	p Se	er G	lu T 3	yr G: 45	ln Le	eu Pr	O T)	r Va 35		eu Gly
5	Se	er A	la H: 35	is Gl 55	n Gl	у Су	s Le	:u P: 36	ro P:	ro Pi	ne Pr	o Al	a As 36		l Pi	e Met
10	13	le P	ro G1 70	ln Ty	r Gl	у ту	r Le 37	u Tì 5	ır Le	eu' As	n As	n Gl 38	y Se O	r Gl	n Se	r Val
·	G1 38	.y Ai 5	rg Se	r Se	r Phe	39(c Cy	s Le	u Gl	u Ty ·	r Ph 39	e Pro	Se.	r Gli	Me	t Leu 400
15	Ar	g Th	r Gl	у Аз	n Asr 405	n Ph∈	Gl1	u Ph	e Se	r Ty 41	r Se: O	r Phe	e Gli	u Asp	Va.	l Pro 5
20	Ph	e Hi	s Se	r Sei 420	Tyr	Ala	His	s Se	r Gl:	n Se. 5	r Lei	ı Asp	Arg	J Leu 430		- Asn
	Pr	o Le	u Ile 43	e Asp 5	Gln	Tyr	Lev	1 Ty:	т Ту :	r Lei	ı Ala	Arg	Thr 445		Ser	: Thr
25	Th	r G1; 45	y Sez O	Thr	Arg	Glu	Leu 455	Glz	n Phe	e His	Glr.	Ala 460	Gly	Pro	Asn	Thr
30	Me t 465	Ala S	a Glu	Gln	Ser	Lys 470	Asn	Trp	Lev	Pro	Gly 475	Pro	Cys	Tyr	Arg	Gln 480
0.5	Gln	G13	/ Leu	Ser	Lys 485	Asn	Leu	Asp	Phe	490	Asn	Asn	Ser	neA	Phe 495	Ala
35	Trp	Thr	Ala	Ala 500	Thr	Lys	Tyr	His	Leu 505	neA	Gly	Arg	Asn	Ser 510	Leu	Thr
40	Asn	Pro	Gly 515	Ile	Pro	Met	Ala	Thr 520	Asn	Lys	qeA	Asp	Glu 525	Ąsp	Gln	Phe
45	Phe	Pro 530	Ile	Asn	Gly	Val	Leu 535	Val	Phe	Gly	Lys	Thr 540	e) y	Ala	Ala	Asn
	Lys 545	Thr	Thr	Leu	Glu .	Asn 550	Val	Leu	Met	Thr	Ser 555	Glu	Glu	Glu	Ile	Lys 560
50	Thr	Thr	Asn	Pro	Val 2 565	Ala :	Thr	Glu	Glu	Tyr 570	Gly	Val '	Val		Ser 575	Asn
55	Leu	Gln	Pro	Ser 580	Thr)	Ala (Sly :	Pro	Gln 585	Ser	Gln	Thr :		Asn : 590	Ser	Gln

5		eīà	Ala	Leu 595		ejà	Met	Val	Trp 600		neA	Arg	Asp	Val 605		Leu	Gln
		Gly	Pro 610	Ile	Trp	Ala	Lys	Ile 615		His	Thr	Asp	Gly 620	Asn	Phe	His	Pro
10		Ser 6 2 5	Pro	Leu	Met	Gly	Gly 630	Phe	Gly	Leu	Lys	His 635	Pro	Pro	Pro	Gln	Ile 640
15		Leu	Ile	Lys	neA	Thr 645	Pro	Val	Pro	Ala	Asn 650	Pro	Pro	Glu	Val	Phe 655	Thr
		Pro	Ala	Lys	Phe 660	Ala	Ser	Phe	Ile	Thr 665	Gln	туг	Ser	Thr	61y 670	Gln	Val
20		Ser	Val	Glu 675	Ile	Glu	Trp	Glu	Leu 680	Gln	Lys	Glu	Asn	Ser 685	Lys	Arg	Trp
25		Asn	Pro 690	Glu	Ile	Gln	Tyr	Thr 695	Ser	Asn	Tyr	Ala	Lys 700	Ser	Asn	Asn	Val
		Glu 705	Phe	Ala	Val	Asn	Pro 710	qeA	Gly	Val	Tyr	Thr 715	Glu	Pro	Arg	Pro	Ile 720
30		Gly	Thr	Arg	Tyr	Leu 725	Pro	Arg	Asn	Leu							
35	<210> : <211> : <212> ! <213> :	729	rotein	of AA	V serc	otype,	clone	F5VP	1@3	·							
40	<400> 1	110															

	Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Asn	Leu 15	ser
5	Glu	Gly	Ile	Arg 20	Ģlu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	ГЛа	Pro
10	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
	Gly	Туг 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	Asn	Ala	Ala	qeA	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	qeA 08
20	 Gln	Gln-	Leu _.	Lys	Ala 85	Gly	Asp	neA	Pro	Tyr 90	Leu	Arg	Tyr	Asn	His 95	Ala
<i>25</i>																
30																
25																
35																
40																
4 5		٠.		٠												

5	Ąsp) Ala	Glu	Phe 100	Gln	Glu	ı Arg	Leu	105		Asp	Thr	Ser	Phe 110		/ Gly
	Asn	Leu	Gly 115	Arg	Ala	. Val	. Phe	Gln 120		Lys	Lys	Arg	Val 125		Glu	Pro
10	Leu	Gly 130	Leu	Val	Glu	Glu	Gly 135		Lys	Thr	Ala	Pro 140		Lys	Lys	Arg
15	Pro 145	Ile	qeA	Ser	Pro	Asp 150		Ser	Thr	Gly	Ile 155	Gly	Lys	Lys	Gly	Gln 160
	Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	Asn	Phe	Gly 170	Gln	Thr	Gly	qeA	Ser 175	elu
20	Ser	Val	Pro	Asp 180	Pro	Gln	Pro	Leu	Gly 185	Glu	Pro	Pro	Ala	Ala 190	Pro	Ser
25	Ser	Val	Gly 195	Ser	ely	Thr	Met	Ala 200	Ala	Gly	Gly	Gly	Ala 205	Pro	Thr	Ala
	Asp	Asn 210		Glu	Gly	Ala	Asp 215	Gly	Val	Gly	Asn	Ala 220	Ser	Gly	neA	Trp
30	His 225	Суз	Asp	Ser	Thr	Trp- 230	Leu	ejà	Asp	Arg	Val 235	Ile	Thr	Thr	Ser	Thr 240
<i>35</i>	Arg	Thr	Trp	Ala	Leu 245	Pro	Thr	Tyr	Asn	Asn 250	His	Leu	Tyr	Lys	Gln 255	Ile
	Ser	Ser	Ser	Ser 260	Ser	Gly	Ala	Thr	Asn 265	Asp	Asn	His	Tyr	Phe 270	Gly	Tyr
40	Ser	Thr	Pro 275		Gly	Tyr	Phe	Asp 280	Phe	Asn	Arg	Phe	His 285	Cys	His	Phe
45	Ser	Pro 290	Arg	qeA	Trp	Gln	Arg 295	Leu	Ile	Asn	Asn	Asn 300	Trp	Gly	Phe	Arg
	Pro 305	Lys	Lys	Leu .		Phe 310	Lys	Leu	Phe	Asn	Ile 315	Gln	Val	Lys	Glu	Val 320
50		Thr	Asn		Gly 325	Val	Thr	Thr		Ala 330	Asn	neA	Leu	Thr	Ser 335	Thr
55	Val	Gln	Val	Phe 340	Ser .	qeA	Ser		Tyr 345	Gln	Leu	Pro	Tyr	Val 350	Leu	Gly

-	•	Se	r Al	a Hi.	s Gl: 5	n Gl	у Су	s Le	u Pr 36	o Pr O	o Ph	e Pr	o Al	a As; 36.		l Ph	e Met
5		II.	e Pr 37	o Gli O	n Ty:	r Gl	Y TY	r Lei 37	u Th	r Le	u As	n Ası	38		G 1:	n Se	
10		G1: 38:	y Ar	g Sei	r Sei	r Ph	e Ty. 39	r Cys	a Le	u Gl	u Ty:	r Phe 395		o Se	c Gl	n Met	, Lev 400
15		Arg	y Thi	c Gly	/ Asr	A91 405	n Phe	e Glu	Phe	e Se	r Ty: 410		Phe	e Glu	te A	Val 415	
		Phe	His	s Ser	Ser 420	туз	: Ale	A His	Ser	Gl: 425	n Sei 5	Leu	Asp	Arg	1 Let		Asn
20		Pro	Leu	1 Ile 435	Asp	Glr	Tyr	Leu	Tyr 440	туг	Leu	. Ala	Arg	Thr 445		Ser	Thr
25		Thr	Gly 450	Ser	Thr	Arg	Glu	Leu 455	Gln	Phe	His	Gln	Ala 460		Pro	Asn	Thr
		Met 465	Ala	Glu	Gln	Ser	Lys 470	Asn	Trp	Leu	Pro	Gly 475	Pro	Cys	Tyr	Arg	Gln 480
30		Gln	Arg	Leu	Ser	Lys 485	aeA	Leu	Asp	Phe	Asn 490	Asn	Asn	Ser	Asn	Phe 495	Ala
35		Trp	Thr	Ala	Ala 500	Thr	Lys	Tyr	His	Leu 505	Asn	Gly	Arg	Asn	Ser 510	Leu	Thr
•		Asn	Pro	Gly 515	Ile	Pro	Met	Ala	Thr 520	Asn	Lys	Asp	qeA	Glu 525	Asp	Gln	Phe
40		Phe	Pro 530	Ile	Asn	Gly	Val	Leu 535	Val	Phe	Gly	Lys	Thr 540	Gly	Ala	Ala	Asn
45		Lys 545	Thr	Thr	Leu	Glu	Asn 550	Val	Leu	Met	Thr	ser 555	Glu	Glu	Glu	Ile	Lys 560
	·	Thr	Thr	Asn	Pro	Val 565	Ala	Thr	Glu	Glu	Tyr 570	Gly	Val	Val	Ser	Ser 5 75	Asn
50		Leu	Gln	Ser	Ser 580	Thr	Ala	Gly		Gln 585	Ser	Gln	Thr		Asn 590	Ser	Gln
55		Gly	Ala	Leu 595	Pro	Gly	Met	Val '	Trp 600	Gln	Asn	Arg :		Val 605	Tyr	Leu	Gln

_		G.	ly P 6	ro I 10	le T	rp A	la Ly	61 61	le Pi LS	ro H:	is T	ır As	P G1 62		n Ph	e Hi	s Pro
5		S 6 2	er P. 25	ro L	eu Me	et G	Ly G1 63	Ly Ph	e Gl	y Le	en ej	u Hi 63.	5	o Pr	o Pr	o Gl	n Ile 640
10		Le	eu I	le L	/s As	n Th	r Pr 15	o Va	l Pr	o Al	а Аз 65	n Pro	Pro	o Gli	u Va	Ph 65	e Thr 5
15		Pr	O Al	a Ly	's Ph 66	e Al 0	a Se	r Ph	e Il	e Th 66	r Gl: 5	n Ty:	Sez	Thi	670		n Val
		Se	r Va	1 G1 67	u Il 5	e Gl	u Tr	p Gli	Le:	u Gl:	n Ly:	s Glu	ne.A	Ser 685		Arg	Trp
20		Ası	n Pr 69	o Gl 0	u Il	e Gl	n Ty	r Thr 695	Sei	reA 1	n Tyr	: Ala	Lys 700	Ser	Asn	Asn	Val
2 5		G1: 705	u Ph	e Al	a Va	L Ası	710	Asp	Gly	/ Val	l Tyr	Thr 715	Glu	Pro	Arg	Pro	Ile 720
		Gl	7 Thi	r Ar	Tyr	725		Arg	Asn	Leu	ı						
30	<210> <211> <212> <213>	729 PRT	prote	in of A	·AV se	rotype	e, clon	e F3Vf	⊃ 1								
35	<400>																
40		Met 1	Ala	Ala	qeA .	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Asn	Leu 15	Ser
		Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly .	Ala	Pro 30	Lys	Pro
45		Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	qeA	Gly	Arg	Gly :	Leu 45	Val :	Leu	Pro
50		Gly	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	Gly		Asp 1	Lys (Gly (5lu	Pro
	v	Val 65	Asn	Ala	Ala	qeA	Ala 70	Ala.	Ala	Leu	Glu :	His) 75	qe.	Lys)	Ala 1		Asp 30
55		Gln	Gln	Leu	Lys	Ala 85	Gly .	Asp i	Asn :	Pro	Tyr : 90	Leu A	urg 1	yr A		lis 1 95	Ala

	Asp	Ala	a Glu	100	Glr	ı Glı	u Arg	, Lev	1 Glr 105		ı Asp	Thi	s Se	Phe 110		/ Gly
5	Asn	Lev	Gly 115		r Ala	Val	l Phe	Glr 120		Ly:	. Lys	Arg	7 Val		Glu	Pro
10	Leu	Gly 130	Leu	Val	. Glu	Gli	1 Gly 135		. Lys	Thr	: Ala	Pro 140		' Lys	Lys	Arg
15	Pro 145	Ile	Gly	Ser	Pro	Asp 150	Ser	Ser	Thr	: Gly	11e 155		Lys	Lys	Gly	Gln 160
75	Gln	Pro	Ala	Lys	Lys 165	Lys	Leu	Asn	Phe	Gly 170		Thr	Gly	Asp	Ser 175	
20	Ser	Val	Pro	Asp 180		Gln	Pro	Leu	Gly 185		Pro	Pro	Ala	Ala 190	Pro	Ser
25	Ser	Val	Gly 195	Ser	Gly	Thr	Met	Ala 200	Ala	Gly	Gly	Gly	Ala 205		Met	Ala
	Asp.	Asn 210	Asn	Glu	Gly	Ala	Asp 215	Gly	Val	Gly	Asn	Ala 220	Ser	Gly	neA	Trp
30	His 225	Суз	qeA	Ser	Thr	Trp 230	Leu	Gly	Asp	Arg	Val 235	Ile	Thr	Thr	Ser	Thr 240
35	Arg	Thr	Trp	Ala	Leu 245	Pro	Thr	Tyr	Asn	Asn 250	His	Leu	Tyr	Lys	Gln 255	Ile
	Ser	Ser	Ser	Ser 260	Ser	Gly	Ala	Thr	Asn 265	Asp	Asn	His	Tyr	Phe 270	Gly	Tyr
40 .	Ser	Thr	Pro 275	Trp	Gly	Tyr	Phe	Asp 280	Phe	Asn	Arg	Phe	His 285	Суз	His	Phe
45	Ser	Pro 290	Arg	Asp	Trp	Gln	Arg 295	Leu	Ile	Asn	Asn	Asn 300	Trp	Gly	Phe	Arg
	Pro 305	Lys	Lys	Leu	Arg	Phe 310	Lys	Leu	Leu	aeA	Ile 315	Gln	Val	Lys	Glu	Val 320
<i>50</i>	Thr	Thr	Asn	Asp	Gly 325	Val	Thr	Thr	Ile	Ala 330	Asn	Asn	Leu	Thr	Ser 335	Thr
55	Val	Gln		Phe 340	Ser	Asp	Ser	Glu	Tyr 345	Gln	Leu	Pro	Tyr	Val 350	Leu	Gly

_	Se	r Ale	355	Glr	a Gly	, Cy	s Lei	360) Pro	o Ph	e Pro	o Ala	36		l Ph	e Met
5	Ile	370	o Gln	Туг	e Gly	Ty:	r Leu 375		c Lei	ı Ası	p Asr	380		r Gli	n Se	r Val
10	Gly 385	/ Arg	s Ser	Ser	: Phe	390		Leu	ı. Glu	ту:	295		Sei	Gl	Me1	Leu 400
15	Arg	Thr	: Gly	neA	405		e Glu	Phe	. Ser	Tyr 410		Phe	e Glu	ı Asp	Val 415	l Pro
	Phe	His	Ser	Ser 420	Tyr	Ala	His	Ser	Gln 425		: Leu	qeA	Arg	430		: Asn
20	Pro	Leu	Ile 435	Asp	Gln	Tyr	Leu	Tyr 440		Leu	Ala	Arg	Thr 445		Ser	Thr
25	Thr	Gly 450	Ser	Thr	Arg	Glu	Leu 455	Gln	Phe	His	Gln	Ala 460		Pro	Asn	Thr
	Met 465	Ala	Glu	Gln	Ser	Lys 470	Asn	Trp	Leu	Pro	Gly 475	Pro	Суз	Tyr	Arg	Gln 48 0
30	Gln	Arg	Leu	5er	Lys 485	asn	· Leu	Азр	Phe	Asn 490		Asn	Ser	Asn	Phe 495	Ala
35	Trp	Thr	Ala	Ala 500	Thr	Lys	Tyr	His	Leu 505	Asn	Gly	Arg	Asn	Ser 510	Leu	The
	Asn	, Lio	Gly 515	Ile	Pro	Met	Ala	Thr 520	aeA	Lys	Asp	Asp	Glu 525	Asp	Gln	Phe
40	Phe	Pro 530	Ile _.	Asn	Gly		Leu 535	Val	Phe	Gly	Lys	Thr 540	Gly	Ala	Ala	Asp
45	Lys 545	Thr	Thr	Leu	Glu	Asn 550	Val	Leu	Met	Thr	Ser 555	Glu	Glu	Glu	Ile	Lys 560
	Thr	Thr	Asn	Pro	Val 565	Ala	Thr	Glu	Glu	Tyr 570	Gly	Val	Val	Ser	Ser 57 5	Asn
50	Leu ,	Gln	Ser	Ser 580	Thr	Ala	Gly		Gln 585	Ser	Gln	Thr	Ile	Asn 590	Ser	Glņ
5.5	Gly	Ala	Leu 595	Pro	Gly	Met	Val	Trp 600	Gln	Asn	Arg	qeA	Val 605	Tyr	Leu	Gln

_	Gl	9 Pro 610		Trp	Ala	Lys	Ile 615		His	Thr	Asp	Gly 620	Asn	Phe	His	Pro
5 .	Se: 62:	Pro	Leu	Met	Gly	630		Gly	Leu	Lys	His 635		Pro	Pro	Gln	Ile 640
10	Let	l Ile	Lys	Asn	Thr 645	Pro	Val	Pro	Ala	Asn 650		Pro	Glu	Val	Phe 655	Thr
15	Pro	Ala	Lys	Phe 660	Ala	Ser	Phe	Ile	Thr 665	Gln	туr	Ser	Thr	Gly 670	Gln	Val
	Ser	Val	Glu 675	Ile	Glu	Trp	Glu	Leu 680	Gln	Lys	Glu	Asn	Ser 685	Lys	Arg	Trp
20	Asn	Pro 690	Glu	Ile	Gln	Tyr	Thr 695	Ser	Asn	Tyr	Ala	Lys 700	ser	Asn	Asn	Val
25	Glu 705	Phe	Ala	Val	neA	Pro 710	qeA	Gly	Val	Tyr	Thr 715	Glu	Pro	Arg	Pro	Ile 720
	ely	Thr	Arg	Tyr	Leu 725	Thr	Arg	Asn	Leu							
30	<210> 112 <211> 735 <212> PRT <213> capsid	protein	of AA	V sero	otype,	clone	42.6B									
<i>35</i>	<400> 112	•														
	•															

	Met 1	Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	qeA	neA	Leu 15	Ser
5	Glu	Gly	Ile	Arg 20	Glu	Trp	Trp	Asp	Leu 25	Lys	Pro	Gly	Ala	Pro 30	Lys	Pro
10	Lys	Ala	Asn 35	Gln	Gln	Lys	Gln	Asp 40	Asp	Gly	Arg	Gly	Leu 45	Val	Leu	Pro
	Gŀy	Tyr 50	Lys	Tyr	Leu	Gly	Pro 55	Phe	Asn	GЉ	Leu	Asp 60	Lys	Gly	Glu	Pro
15	Val 65	Asn	Glu	Ala	Asp	Ala 70	Ala	Ala	Leu	Glu	His 75	Asp	Lys	Ala	Tyr	A sp 80
20	Lys	Gln	Leu	Glu	Gln 85	Gly	Asp	Asn	Pro	Tyr 90	Leu	Lys	Tyr	Asn	His 95	Ala
	Asp	Ala	Glu	Phe 100	Gln	Glu	Arg	Leu	Gln 105	Glu	qeA	Thr	Ser	Phe 110	Gly	Gly
25									•							

.

				Ası	n Le	u Gl; 11	y Ar	g Al	a Va	l Ph	e Gl: 120	n Ala	a Ly	s Ly	s Ar	g Va 12		u Gli	u Pro
5				Let	1 Gl;	y Let 0	u Val	l Gl	u Gl	u Gl; 13	y Ala 5	a Ly:	s Th	r Al	a Pro		у Гу	s Ly:	a Arg
10				Pro 145	Va:	l Glu	ı Pro	Se;	150		n Arg	g Sei	r Pro	0 As ₁		r Se	r Th	, Gl	/ Ile 160
15				Gly	' Lys	3 Thr	: Gly	/ Glr 165	Glr	n Pro	Ala	. Lys	170		g Lei	ı Ası	n Phe	Gly 175	Gln
15				Thr	G13	/ Asp	Ser 180	Glu	. Sez	: Val	. Pro	Asp 185		Glr	Pro	lle	Gly 190		Pro
20	•			Pro	Ala	Gly 195	Pro	Ser	Gly	Leu	Gly 200		Gly	Thr	Met	: Ala 205		Gly	Gly
25				Gly	Ala 210	Pro	Met	Ala	qeA	Asn 215	Asn	Glu	Gly	Ala	Asp 220		Val	Gly	Ser
				Ser 225	Ser	Gly	Asn	Trp	His 230	Суз	Asp	Ser	Thr	Trp 235		Gly	Asp	Arg	Val 240
30				Ile	Thr	Thr	Ser	Thr 245	Arg	Thr	Trp	Ala	Leu 250		Thr	Tyr	Asn	Asn 255	His
35				Leu	Tyr	Lys	Gln 260	Ile	Ser	Asn	Gly	Thr 265	Ser	Gly	Gly	Ser	Thr 270	Asn	Asp
				Asn	Thr	Tyr 275	Phe	Gly	Tyr	Ser	Thr 280	Pro	Trp	ejA	Tyr	Phe 285	Asp	Phe	Asn
40			•	Arg	Phe 290	His	Суз	His	Phe	Ser 295	Pro	Arg	Asp ·	Trp	Gln 300	Arg	Leu	Ile	Asn
45	•		- 3	ne. 305	neA	Trp	Gly	Phe	Arg 310	Pro	Arg	Lys	Leu	Arg 315	Phe	Lys	Leu	Phe	Asn 320
			:	Ile	Gln	Val	Lys	Glu 325	Val	Thr	Thr	Asp	qeA 088	Gly	Val	Thr	Thr	Ile 335	Ala
50		ı	7	Asn	Asn	Leu	Thr 340	Ser	Thr	Ile	Gln	Val 345	Phe	Ser	Asp	Ser	Glu 350	Tyr	Gln
55			1	Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	Gly	Суз	Leu 365	Pro	Pro	Phe

	Pro	Ala 370	qeA	Va]	Ph	e Me	t Il 37	e Pr 5	o Gl	n Ty	r Gl	у Ту. 38		u Th.	r Le	neA u
	Asn 385	Gly	Ser	Glr	Se:	r Va 39	1 G1;	y Ar	g Se	r Se	r Phe 395	e Ty:	c Cy:	s Lei	n ej	u Tyr 400
10	Phe	Pro	Ser	Gln	Met 405	Let	ı Arç	g Th	r Gl	y Ası 410	n Asr	n Ph∈	e Glu	ı Phe	≥ Se. 41.	r Tyr 5
	Thr	Phe	Glu	Glu 420	Va)	. Pro	Phe	≥ His	3 Se:	s Ser	Tyr	Ala	His	3 Ser 430		n Ser
15	Leu	Asp	Arg 435	Leu	Met	: Asr	Pro	140	ı Ile	e Asp	Gln	Туг	Leu 445		Туз	Leu
20	Ala	Arg 450	Thr	Gln	Ser	Thr	Thr 455	Gly	Ser	Thr	Arg	Glu 460		Gln	Phe	His
25	Gln 465	Ala	Gly	Pro	neA	Thr 470	Met	Ala	Glu	Gln	Ser 475	Lys	Asn	Trp	Leu	Pro 480
20	Gly	Pro	Суз	Tyr	Arg 485	Gln	Gln	Arg	Leu	Ser 490	Lys	Asn	Ile	Asp	Ser 495	Asn
30	Asn .	Asn	Ser	Asn 500	Phe	Ala	Trp	Thr	Gly 505	Ala	Thr	Lys	Tyr	His 510	Leu	Asn
<i>35</i>	Gly 2	Arg :	Asn 515	Ser	Leu	Thr	Asn	Pro 520	Gly	Val	Ala	Met	Ala 525	Thr	Asn	Lys
•	Asp 2	Asp (530	Slu :	qeA	Gln	Phe	Phe 535	Pro	Ile	Asn	Gly	Val. 540	Leu	Val	Phe	Gly
40	Lys 2 545	Thr (∋ly 2	Ala .	Ala	Asn 550	Lys	Thr	Thr	Leu	Glu 555	Asn	Val	Leu	Met	Thr 560
45	Ser G	Flu G	lu (3lu	Ile 565	Lys	Thr	Thr	Asn	Pro 570	Val .	Ala	Thr	Glu	Glu 575	Tyr
	Gly V	/al V	'al S	Ber :	ser	Asn	Leu	Gln	Ser 585	Ser	Thr 2	Ala		Pro 590	Gln	Thr
50	Gln T	hr V 5	al A 95	en s	Ser	Gln	Gly .	Ala 600	Leu	Pro (Gly 1		Val 5	Trp	Gln	Asn
55	Arg A	.sp V 10	al T	'yr I	Leu (Gln	Gly 615	Pro	Ile	Trp :		Lys : 520	Ile :	Pro :	His	Thr

		As:	p Gly 5	eA y	n Phe	e His	630	Ser	Pro) Leu	Met	635		/ Phe	e Gl	y Le	Lys 640
5		Hi	s Pro	Pro	Pro	Glr 645	lle	Leu	Ile	: Lys	Asn 650		Pro	Val	l Pro	Ala 659	neA i
10	,	Pro	o Pro	o Glu	val 660	. Phe	Thr	Pro	Ala	Lys 665		Ala	Ser	Phe	E 116		Gjn
		Tyr	: Ser	Thr 675	Gly	Gln	Val	Ser	Val 680		Ile	Glu	Trp	Glu 685		Glr	Lys
15		Glu	Asn 690	Ser	Lys	Arg	Trp	Asn 695	Pro	Glu	Ile	Gln	Tyr 700	Thr	Ser	Asn	Tyr
20		Ala 705	Lys	Ser	Asn	Asn	Val 710	Glu	Phe	Ala	Val	Asn 715	neA	Glu	Gly	Val	Tyr 720
		Thr	Glu	Pro	Arg	Pro 725	Ile	Gly	Thr	Arg	Tyr 730	Leu	Thr	Arg	Asn	Leu 735	
25	<210> 1 <211> 6														. 2.		
30	<212> F <213> c		proteir	n of Az	AV ser	otype,	clone	42.12	!								
	<400> 1	13															
35	<400> 1		Ala	Ala	Asp	Gly 5	Tyr	Leu	Pro	Asp	Trp 10	Leu	Glu	Asp	Asn	Leu 15	Ser
35	<400> 1	Met 1			Asp Arg 20	5					10					15	
35	<400> 1	Met 1 Glu	Gly	Ile	Arg	5 Glu	Trp	Trp .	Asp	Leu 25	10 Lys	Pro	Gly	Ala	Pro 30	15 Lys	Pro
	<400> 1	Met 1 Glu Lys	Gly	Ile Asn 35	Arg 20	5 Glu Gln	Trp Lys Gly	Trp	Asp Asp 40	Leu 25 Asp	lys Gly	Pro Arg Leu	ely	Ala Leu 45	Pro 30 Val	Lys Leu	Pro Pro
40	<400> 1	Met 1 Glu Lys Gly	Gly Ala Tyr 50	Ile Asn 35 Lys	Arg 20 Gln	Glu Gln Leu Asp	Trp Lys Gly	Trp Gln .	Asp Asp 40	Leu 25 Asp	Lys Gly :	Pro Arg Leu	Gly Gly Asp	Ala Leu 45	Pro 30 Val Gly	Lys Leu Glu	Pro Pro
40	<400> 1	Met 1 Glu Lys Gly Val 65	Gly Ala Tyr 50 Asn	Ile Asn 35 Lys Glu	Arg 20 Gln Tyr Ala	5 Glu Gln Leu Asp	Trp Lys Gly Ala	Trp Gln Pro 55	Asp 40 Phe	Leu 25 Asp Asn Leu (Lys Gly : Gly :	Pro Arg Leu . His :	Gly Gly Asp 60	Ala Leu 45 Lys	Pro 30 Val Gly Ala	Lys Leu Glu Tyr	Pro Pro Asp

.

		Asn	Leu	Gly 115		Ala	Val	Phe	Gln 120		Lys	Lys	Arg	Val 125		€1n	Pro
5		Leu	Gly 130		Val	Glu	Glu	Gly 135		Lys	Thr	Ala	Pro 140		Lys	Lys	Arg
10		Pro 145		Glu	Pro	Ser	Pro 150		Arg	Ser	Pro	Asp 155	Ser	Ser	Thr	Gly	Ile 160
15		Gly	Lys	Thr	Gly	Gln 165		Pro	Ala	Lys	Lys 170		Leu	Asn	Phe	Gly 175	Gln
13		Thr	Gly	qeA	Ser 180	Glu	Ser	Val	Pro	Asp 185		Gln	Pro	Ile	Gly 190	Glu	Pro
20		Pro	Ala	Gly 195	Pro	Ser	GŢĀ	Leu	Gly 200		Gly	Thr	Met	Ala 205	Ala	Gly	Gly
25		Gly	Ala 210		Met	Ala	Asp	Asn 215	Asn	Glu	Gly	Ala	Asp 220	Gly	Val	Gly	Ser
		Ser 225	ser	Gly	Asn	Trp	His 230	Суз	Asp	Ser	Thr	Trp 235	Leu	Gly	Азр	Arg	Val 240
30		Ile	Thr	Thr	Ser	Thr 245	Arg	Thr	Trp	Ala	Leu 250	Pro	Thr	Tyr	Asn	Asn 255	His
35					260					265					270		qeA
				275					280				-	285			Asn
40		Arg	290					295					300				
45		305					310					315					Asn 320
					-	325	Val				330					335	
50	•				340		Thr			345					350		
55		Leu	Pro	Tyr 355	Val	Leu	Gly	Ser	Ala 360	His	Gln	Gly	Суз	165	Pro	Pro	Phe

5		Pro	370	a Asp	Val	. Phe	: Met	375		Gln	туг	c Gly	7 Ty: 380		ı Th:	Leu	aeA ı
J		Asn 385		Ser	Gln	Ala	. Val 390		Arg	Ser	Ser	Phe 395		: Cys	Let	ı Glu	Тут 400
10		Phe	Pro	Ser	Gln	Met 405		. Arg	Thr	Gly	Asn 410		Phe	Glu	Phe	Ser 415	_
15		Gln	Phe	Glu	Asp 420		Pro	Phe	His	Ser 425		Tyr	Ala	His	Ser 430	Gln	Ser
		Leu	Asp	Arg 435	Leu	Thr	Asn	Pro	Leu 440		Asp	Gln	Tyr	Leu 445		Tyr	Leu
20		Ala	Arg 450	Thr	Gln	Ser	Thr	Thr 455	Gly	Ser	Thr	Arg	Gly 460	Leu	Gln	Phe	His
25		Gln 465	Ala	Gly	Pro	Asn	Thr 470	Met	Ala	Glu	Gln	Ser 475	Lys	Asn	Trp	Leu	Pro 480
	•	Gly	Pro	Суз	Tyr	Arg 485	Gln	Gln	Arg	Leu	Ser 490	Lys	Asn	Ile	Asp	Ser 495	Asn
30		Asn	neA	Ser	Asn 500	Phe	Ala	Trp	Thr	Gly 505	Ala	Thr	Lys	Tyr	His 510	Leu	Asn
35		Gly	Arg	Asn 515	Ser	Leu	Thr	Asn	Pro 520	ejà	Val	Ala	Met	Ala 525	Thr	Asn	Lys
		Asp	Дзр 530	Glu	qeA	Gln	Phe	Phe 535	Pro	Ile	Asn	ely	Val 540	Leu	Val	Phe	Gly
40		Lys 545	Thr	Gly	Ala	Ala	Asn 550	Lys	Thr	Thr	Leu	Glu 555	Asn	Val	Leu	Met	Thr 560
45		ser	Glu	Glu	Glu	Ile 565	Lys	Thr	Thr	Asn	Pro 570	Val	Ala	Thr	Glu	Glu 575	Tyr
		Gly	Val	Val	ser 580	Ser	Asn	Leu	Gln	Ser 585	Ser	Thr	Ala	Gly	Pro 590	Glb	Thr
50		Gln	Thr	Val 595	Asn	Ser	Gln	Gly	Ala 600	Leu	Pro	Gly	Met	Val 605	Trp	Gln	asA
55		Arg	Asp 610	Val	Tyr	Leu	Gln	Gly 615	Pro	Ile	Trp	Ala	Lys 620	Ile	Pro	His	Thr

							_		10 31	101							
		Asp 625	Gly	Asn	Phe	His	Pro 630	Ser	Pro	Геп	Met	Gly 635	eīà	Phe	Gly	Leu	Lys 640
5		Wi o	D==	Des	2	C >-	- 1-	•			_						
		NTS	710	110	PLO	645	116	Leu	TIE	rĀS	650	Thr	ser	Asn	Tyr	Tyr 655	Lys
š	١	Ser	Thr	Asn	Val	Asp	Phe	Ala	Va1	Aan	ጥ ኮ ዮ	Glu	G) v	ምb∽	ጥህ፦	Ser	G) v
10					660	•				665			O.L.		670	261	GIU
		Pro	Arg	Pro	Ile	Gly	Thr	Arg	Tyr	Leu	Thr	Arg	Asn	Leu			
4.5				675					680					685			
15																	
	<210> 114 <211> 724																
	<211> 724 <212> PRT																
20	<213> caps		tein o	f AAV	seroty	ype, ci	one A	AV5C	AP								
	<400> 114																
25																	
30																	
-																	

	Met 1	Ser	Phe	Val	Asp 5	His	Pro	Pro	Asp	Trp 10	Leu	Gli	Glu	(Va)	1 Gly	/ G1
5	Gly	Leu	Arg	Glu 20	Phe	Leu	Gly	Leu	Glu 25	Ala	Gly	Pro	Pro	Lys 30	Pro	Ly
10	Pro	Asn	Gln ·35	Gln	His	Gln	Asp	Gln 40	Ala	Arg	Gly	Leu	Val 45	Leu	Pro	Gl
* .	Tyr	Asn 50	Tyr	Leu	Gly	Pro	Gly 55	Asn	Gly	Leu	Ąsp	Arg 60	Gly	Glu	Pro	Va]
15	Asn 65	Arg	Ala	Asp	Glu	Val 70	Ala	Arg	Glu	His	А зр 75	Ile	Ser	Tyr	aeA	G1v 80
20	Gln	Гел	G]π	Ala	Gly 85	Asp	Asn	Pro	Tyr	Leu 90	Lys	Tyr	Asn	His	Ala 95	Asp
	Ala	Glu	Phe	Gln 100	Glu	Lys	Leu	Ala	Asp 105	Asp	Thr	Ser	Phe	Gly 110	Gly	neA
25	Leu	Gly	Lys 115	Ala	Val	Phe	Gln	Ala 120	Lys	Lys	Arg	Val	Leu 125	Glu	Pro	Phe
30	Gly	Leu 130	Val	Glu	Glu	Gly	Ala 135	Lys	Thr	Ala	Pro	Thr 140	Gly	Lys	Arg	Ile
	Asp 145	Asp	His	Phe	Pro	Lys 150	Arg	Lys	Lys		Arg 155	Thr	Glu	G1u	Asp	Ser 160
35	Lys	Pro	Ser	Thr	Ser 165	Ser.	qeA	Ala _.	Glu	Ala 170	Gly	Pro	Ser	Gly	Ser 175	Gln

		Glr	ı Let	ı Glı	180	Pro	Ala	a Glr	n Pro	Ala 185	a Ser	c Se	r Lev	ı Gly	/ Ala 190		Th:	•
5		Met	: Ser	195	Gly	, Gl	, Gl	y Gly	Pro 200	Lev	ely	Lex V	neA c	205		a Gly	/ Ala	
10	•	Asp		val	. Gly	Asn	Ala	3er 215		Asp	Trp	His	220		9er	Thr	Trp	
15		Met 225	Gly	, Yab	Arg	Val	Val 230		Lys	Ser	Thr	235		Trp	Val	Leu	Pro 240	
,,		Ser	Tyr	Asn	. Asn	His 245	Gln	Tyr	Arg	Glu	Ile 250		Ser	Gly	Ser	Val 255	Asp	
20		Gly	Ser	Asn	Ala 260		Ala	Tyr	Phe	Gly 265		Ser	Thr	Pro	Trp 270	-	Tyr	
25		Phe	Asp	Phe 275		Arg	Phe	His	Ser 280	His	Trp	Ser	Pro	Arg 285	Asp	Trp	Gln	
	٠.	Arg	Leu 290	Ile (Albi	Asn	Asn	Tyr	Trp 295	Gly	Phe	Arg	Pro	Arg 300	Ser	Leu	Arg	Val	وأحيد أرابي مطيئ بعيزت
30		Lys 305	Ile	Phe	Asn	Ile	Gln 310	Val	Lys	Glu	Val	Thr 315		Gln	Asp	Ser	Thr 320	
35	. *	Thr	Thr	Ile	Ala	Asn 325	Asn	Leu	Thr	Ser	Thr 330	Val	Gln	Val	Phe	Thr 335	Asp	
		Asp	qeA	Tyr	Gln 340	Leu	Pro	Tyr	Vai	Val 345	Gly	Asn	Gly	Thr	Glu 350	Gly	Суз	
40		Leu	Pro	Ala 355	Phe	Pro	Pro	Gln	Val 360	Phe	Thr	Leu	Pro	Gln 365	Tyr	ely	Tyr	
45		Ala	Thr 370	Leu	Asn	Arg	Asp	Asn 375	Thr	Glu	Asn	Pro	Thr 380	Glu	Arg	Ser	Ser	;
•		Phe 385	Phe	Cys	Leu	Glu	Tyr 390	Phe	Pro	Ser	Lys	Met 395	Leu	Arg	Thr	Gly	Asn 400	
50		neA	Phe	Glu	Phe	Thr 405	Tyr	Asn	Phe		Glu 410	Val	Pro	Phe	His	Ser 415	Ser	
<i>==</i>		Phe	Ala	Pro	Ser 420	Gln	Asn	Leu		Lys 425	Leu	Ala	Asn	Pro	Leu 430	Val	Asp	

		Gln	Tyr	Leu 435		Arg	Phe	Val	Ser 440		: Asn	Asn	Thr	Gly 445		/ Val	. Gli
5		Phe	450		Asn	Leu	Ala	Gly 455		Ty:	Ala	Asn	Thr 460		Lys	A.sn	Tr
10		Phe 465		Gly	Pro	Met	Gly 470		Thr	Gln	Gly	Trp 475		Leu	Gly	' Ser	G1 ₃
15		Val	Asn	Arg	Ala	Ser 485	Val	Ser	Ala	Phe	Ala 490		Thr	Asn	Arg	Met 495	
,,		Leu	Glu	Gly	Ala 500	Ser	Tyr	Gln	Val	Pro 505		Gln	Pro	Asn	Gly 510	Met	Thr
20		Asn	Asn	Leu 515	Gln	Gly	Ser	Asn	Thr 520	-	Ala	Leu	Glu	Asn 525	Thr	Met	Ile
25		Phe	Asn 530	Ser	Gln	Prọ	Ala	Asn 535	Pro	Gly	Thr	Thr	Ala 540	Thr	Tyr	Leu	Glu
		Gly 545		Met	Leu	Ile	Thr 550	Ser	Glu	Ser	Glu	Thr 555	Gln	Pro	Val	Asn	Arg 560
30		Val	Ala	Tyr	Asn	Val 565	Gly	Gly	Gln	Met	Ala 570	Thr	Asn	aeA	Gln	Ser 575	Ser
35		Thr	Thr	Ala	Pro 580	Ala	Thr	Gly	Thr	Tyr 585	Asn	Leu	Gln	Glu	Ile 590	Val	Pro
		Gly	Ser	Val 595	Trp	Met	Glu	Arg	Asp 600	Val	Tyr	Leu	Gln	Gly 605	Pro	Ile	Trp
40		Ala	Lys 610	Ile	Pro	Glu	Thr	Gly 615	Ala	His	Phe	His	Pro 620	Ser	Pro	Ala	Met
45	·	Gly 625	Gly	Phe	Gly	Leu	Lys 630	His	Pro	Pro	Pro	Met 635	Met	Leu	Ile	Lys	Asn 640
		Thr	Pro	Val	Pro	Gly 645	Asn	Ile	Thr	Ser	Phe 650	Ser	Asp	Val	Pro	Val 655	Ser
50	•	Ser	Phe	Ile	Thr 660	Gln	Tyr	Ser	Thr	Gly 665	Gln	Val	Thr	Val	Glu 670	Met	Glu
55		Trp	Glu	Leu 675	Lys	Lys	Glu	Asn	Ser 680	Lys	Arg	Trp	Asn	Pro 685	Glu	Ile	Gln

	Tyr Thr Asn Asn Tyr Asn Asp Pro Gln Phe Val Asp Phe Ala Pro Asp 690 695 700	
5	Ser Thr Gly Glu Tyr Arg Thr Thr Arg Pro Ile Gly Thr Arg Tyr Leu 705 710 715 720	
10	Thr Arg Pro Leu	
15 ·	<210> 115 <211> 9 <212> DNA <213> DrallI restriction enzyme site	
	<400> 115	
20	caccacgtc	9
25	<210> 116 <211> 28 <212> DNA <213> AV2cas	
30	<400> 116	
	cgcagagacc aaagttcaac tgaaacga	28
3 <i>5</i>	2010) 117	
	<210> 117 <211> 255 <212> DNA	
4 0	<213> adeno-associated virus serotype 10	
	<400> 117 ·	
	ggtaatteet ceggaaattg geattgegat tecacatgge tgggegacag agteateace	60
15	accagcaccc gaacctgggt cctgcccacc tacaacaacc acatctacaa gcaaatctec	120
	agcgagacag gagccaccaa cgacaaccac tacttegget acagcaccce etgggggtat	180
50	tttgacttta acagattcca ctgccacttt tcaccacgtg actggcageg actcatcaac	240
50	aacaactggg gattc	255
35	<210> 118 <211> 258 <212> DNA <213> adeno-associated virus serotype 11	

<400> 118

	ggtaatteet ceggaaattg geattgegat tecacatgge tgggegacag agteateace	60
5	accagcaccc gaacctgggc cctgccaacc tacaacaacc acctctacaa acaaatctcc	120
	agogottcaa ogggggocag caacgacaac cactactttg gotacagcac cocctggggg	180
10		
10	tattttgact ttaacagatt ccactgccac ttctcaccac gtgactggca gcgactcatc	240
	aacaacaact ggggattc	258
15	<210> 119	
	<211> 255	
	<212> DNA	
	<213> adeno-associated virus serotype 12	
20	<400> 119	
	ggtaatteet ceggaaattg geattgegat tecacatgge tgggegaceg agteattace	60
25	accageacce ggaettggge ectgeceace tacaacaace acctetacaa gcaaatetee	120
	agccaatcgg gtgccaccaa cgacaaccac tacttcggct acagcacccc ttgggggtat.	180
	tttgatttca acagattcca ctgccatttc tcaccacgtg actggcagcg actcatcaac	240
30	aacaactggg gattc	255
	<210> 120	
	<211> 2205	
	<212> DNA	
35	<213> adeno-associated virus serotype, clone A3.1vp1 .	•
	<400> 120	

atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaatcaga	60
cagtggtgga	agctcaaacc	tggcccacca	ccgccgaaac	ctaaccaaca	acaccgggac	120
gacagtaggg	gtcttgtgct	tcctgggtac	aagtacctcg	gaccetteaa	cggactcgac	180
aaaggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	agcctacgac	240
caccagetca	agcaagggga	caacccgtac	ctcaaataca	accacgcgga	cgctgaattt	300
caggagcgtc	ttcaagaaga	tacgtctttc	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaaaaaga	gggtactcga	gcctcttggt	ctggttgagg	aagctgttaa	gacggctcct	420
ggaaaaaaga	gacctataga	gcagtctcct	gcagaaccgg	actetteete	gggcatcggc	480
aaatcaggcc	agcagcccgc	taagaaaaga	ctcaattttg	gtcagactgg	cgacacagag	540
tcagtcccag	accctcaacc	aatcggagaa	cccccgcag	cccctctgg	tgtgggatct	600
aatacaatgg	cttcaggcgg	tggggcacca	atggcagaca	ataacgaagg	cgccgacgga	660
gtgggtaatt	cctcgggaaa	ttggcattgc	gattccacat	ggatgggcga	cagagttatc	720
accaccagca	caagaacctg	ggccctcccc	acctacaata	atcacctcta	caagcaaatc	780
tccagcgaat	cgggagccac	caacgacaac	cactacttcg	gctacagcac	cccctggggg	840
tattttgact.	ttaacagatt	ccactgtcac	ttctcaccac	gtgactggca	gcgactcatc	900
aacaacaact	ggggatttag	acccaagaaa	ctcaatttca	agctcttcaa	catccaagtc	960
aaggaggtca	cgcagaatga	tggaaccacg	accategeca	ataaccttac	cagcacggtg	1020

	caggtette	a cagactctga	gtaccageto	g coctacgto	teggttegge	tcaccagggc	1080
5	tgccttccg	c cgttcccago	agacgtcttc	atgattcctc	agtacggcta	cttgactctg	1140
•	aacaatggc	a gccaagcggt	aggacgttct	tcattctact	gtctagagta	ttttccctct	1200
	cagatgctga	a ggacgggaaa	CRACTTCACC	ttcagctaca	cttttgaaga	egtgeetitte	1260
10	cacagcagct	: acgcgcacag	ccagagtctg	gatcggctga	tgaatcctct	cattgaccag	1320
	tacctgtatt	acctgagcaa	aactcagggt	acaagtggaa	caacgcagca	atcgagactg	1380
	cagttcagco	aagctgggcc	tagctccatg	gctcagcagg	ccassasctg	gctaccggga	1440
15	cccagctacc	gacagcagcg	aatgtctaag	acggctaatg	acaacaacaa	cagtgaattt	1500
	gcttggactg	cagccaccaa	atattacctg	aatggaagaa	attctctggt	caatcccggg	1560
	ccccaatgg	ccagtcacaa	ggacgatgag	gaaaagtatt	tccccatgca	cggaaatctc	1620
20	atctttggaa	aacaaggcac	aggaactacc	aatgtggaca	ttgaatcagt	gcttattaca	1680
	gacgaagaag	aaatcagaac	aactaatcct	gtggctacag	aacaatacgg	acaggttgcc	1740
	accaaccatc	agagtcagaa	caccacagct	tcctatggaa	gtgtggacag	ccagggaatc	1800
25	ttacctggaa	tggtgtggca	ggaccgcgat	gtctatcttc	aaggtcccat	ttgggccaaa	1860
	actecteaca	cggacggaca	ctttcatcct	tctccgctca	tgggaggctt	tggactgaaa	1920
	caccctcctc	cccagatect	gatcaaaaac	acacctgtgc	cagcgaatcc	cgcgaccact	1980
30	ttcactcctg	gaaagtttgc	ttegtteatt	accongtatt	ccaccggaca	ggtcagcgtg	2040
	gaaatagagt	gggagctgca	gaaagaaaac	agcaaacgct	ggaacccaga	aattcagtac	.2100
	acctccaact	acaacaagtc	ggtgaatgtg	gagtttaccg	tggacgcaaa	cggtgtttat	2160
35	tctgaacccc	gccctattgg	cactcgttac	cttacccgga	acttq		2205

40 Claims

45

50

- 1. A method of identifying unknown adeno-associated virus (AAV) sequences in a sample suspected of containing AAV from a latent infection, said method comprising the steps of:
 - (a) subjecting the sample containing DNA to amplification via polymerase chain reaction (PCR) using a first set of primers which specifically amplify a first AAV region comprising at least 250 bp of AAV capsid nucleic acid sequences, said first region having a variable sequence flanked by at least 18 base pairs of highly conserved sequence at its 5' end and at least 18 base pairs of highly conserved sequence at its 3' end, said base pairs being highly conserved relative to an alignment of at least AAV1, AAV2, AAV3, AAV4, AAV5 and AAV6;
 - (b) optionally subjecting the DNA to further amplification using a second set of primers which specifically amplify a second region which comprises the first region of AAV sequences and sequences which are 5' to the first region, such that AAV 5' extension sequences which anneal to the 5' end of the AAV sequences amplified by the primers for the first region are obtained;
 - (c) optionally subjecting the DNA to further amplification using a third set of primers which specifically amplify a third region which comprises the first region of AAV sequences and sequences which are 3' to the first region, such that AAV 3' extension sequences which anneal to the 3' end of the AAV sequences amplified by the primers for the first region are obtained,

each of said second and third regions being predetermined based upon the alignment of the nucleic acid sequences of at least AAV1, AAV2, AAV3. AAV4, AAV5 and AAV6, and each of said regions comprising nucleic acid sequences which are highly conserved over at least 18 base pairs at the 5' end, optionally variable sequences in the middle, and sequences which are highly conserved over at least 18 base pairs at the 3' end of the sequences of the region, relative to the sequences of at least AAV1, AAV2, AAV3, AAV4, AAV5 and AAV6; and each of the sets of primers consisting of a 5' primer and a 3' primer; the presence of amplified sequences indicating the presence of an AAV in the sample, and a comparison of differences between the amplified sequences and the sequences of AAV1, AAV2, AAV3, AAV4, AAV5 and AAV6 indicating the presence of an unknown AAV.

10

5

2. A method according to claim 1, wherein the comparison comprises the step of comparing restriction enzyme patterns for the amplified sequences to restriction enzyme patterns of AAV1, AAV2, AAV3, AAV4, AAV5 and AAV6.

3. A method according to claim 1 or claim 2, wherein step (a) amplifies the full-length capsid gene.

15

4. A method according to any of claims 1 to 3, wherein the amplified sequences comprise the AAV capsid gene and the AAV rep gene.

20

5. A method according to any of claims 1 to 4, wherein the DNA has been extracted from cells, cell culture, tissue, tissue culture or biological fluids.

6. A method according to any of claims 1 to 5, wherein the first region is highly conserved over at least about 25 base pairs at the 5' end of the region, the 3' end of the region or both.

25

7. A method according to claim 6, wherein the first region is highly conserved over at least about 30 base pairs at the 5' end of the region, the 3' end of the region or both.

30

8. A method according to any of claims 1 to 7, wherein the highly conserved sequences of the first region have at least 80% identity among the aligned AAVs at the 5' end of the region, the 3' end of the region or both.

A method according to claim 8, wherein the highly conserved sequences of the first region have at least 90% identity
among the aligned AAVs at the 5' end of the region, the 3' end of the region or both.

35

10. A method according to any of claims 1 to 9, wherein the variable sequences in the middle of the first region have less than 70% identity among the aligned AAVs.

11. A method according to any of claims 1 to 10, wherein the first region spans about bp 2800 to about 3200 of AAV 1, SEQ ID NO:6, and corresponding base pairs in other AAVs.

40

12. A method according to claim 11, wherein the first region is 257 bp spanning bp 2886 to about 3143 of AAV 1, SEQ ID NO:6, and corresponding base pairs in other AAVs.

.

13. A method according to any of claims 1 to 5, wherein the primers axe AV1ns, having the sequence ofnncieotides 1398 to 1423 of SEQ ID NO:6. and AV2cas, having the sequence of SEQ ID NO:7.

. -

14. A method according to claim 1 or claim 2, wherein the first set of primers allows isolation of full-length adeno-associated virus capsid sequences from a sample, the first set of primers comprising a 5' primer directed to a region located in the middle of an AAV rep gene, based on a predetermined conserved region, and a 3' primer directed to a region downstream of an AAV cap gene, based on a predetermined conserved region of AAV.

50

15. A method according to any of claims 1 to 14, wherein the sample comprises AAV integrated into the chromosome.

16. A method according to any of claims 1 to 15, wherein the sample comprises human tissue.

- 17. A method according to any of claims 1 to 16, wherein the sample contains proviral AAV sequences.
- 18. A method according to any of claims 1 to 17, wherein the first region is a signature region.

- 19. A method according to any of claims 1 to 18, wherein the base pairs of the highly conserved sequences are highly conserved relative to an alignment of AAVs 1,2,3,4,5 and 6 and AAVs isolated from geese and ducks.
- 20. A method according to any of claims 1 to 19, wherein the variable sequence is a hypervariable sequence.

10

15

20

25

30

50

- 21. A method according to any of claims 1 to 20, wherein the first region comprises up to 10 kilobasepairs in length.
- 22. A method according to claim 21, wherein the first region comprises a 3-1 kilobase pair fragment comprising the full-length cap sequence.
- 23. A kit for detecting the presence of an unknown adeno-associated virus (AAV) in a sample from cellular DNA suspected of containing a latent AAV infection, said kit comprising:
 - (a) a first set of primers which specifically amplify a first region comprising 250 bp of AAV capsid nucleic acid sequences, said first region having at least 18 base pairs of highly conserved sequence at its 5' end, a variable sequence, and at least 18 base pairs of highly conserved sequence at its 3' end, said base pairs being highly conserved relative to an alignment of at least AAV1, AAV2, AAV3, AAV4, AAV5 and AAV6;
 - (b) optionally a second set of primers specific for a second region of the AAV nucleic acid sequences which comprises the first region of AAV sequences and sequences which are 5' to the first region, such that AAV 5' extension sequences which anneal to the 5' end of the AAV sequences amplified by the primers for the first region are obtained;
 - (c) optionally a third set of primers which specifically amplify a third region which comprises the first region of AAV sequences and sequences which are 3' to the first region, such that AAV 3' extension sequences which anneal to the 3' end of the AAV sequences amplified by the primers for the first region are obtained;

each of said second and third regions being predetermined based upon the alignment of the nucleic acid sequences of at least AAV1, AAV2, AAV3, AAV4, AAV5 and AAV6, and each of said regions comprising nucleic acid sequences which are highly conserved over at least 18 base pairs at the 5' end, optionally variable sequences in the middle, and sequences which are highly conserved over at least 18 base pairs at the 3' end of the sequences of the region, relative to the sequences of at least AAV1, AAV2, AAV3, AAV4, AAV5 and AAV6; each of the sets of primers consisting of a 5' primer and a 3' primer, each of said primers comprising at least 15 nucleotides complementary to its respective highly conserved sequence and having exact identity with its respective highly conserved sequence over at least 5 base pairs in its 3' end.

- 24. A kit according to claim 23, wherein the 5' primer and/or the 3' primer comprises at least 18 nucleotides.
 - 25. A kit according to claim 24, wherein the 5' primer and/or the 3' primer comprises 25 nucleotides.
- 26. A kit according to any of claims 23 to 25, wherein the 5' primer and/or the 3' primer comprises at least 9 base pairs of exact identity at its 3' end.
 - 27. A kit according to claim 26, wherein the 5' primer and/or the 3' primer comprises at least 18 base pairs of exact identity at its 3' end.
- 28. A kit according to any of claims 23 to 27, wherein the first set of primers allows isolation of full-length adeno-associated virus capsid sequences from a sample, the first set of primers comprising a 5' primer directed to a region located in the middle of an AAV rep gene, based on a predetermined conserved region of AAV, and a 3' primer directed to a region downstream of an AAV cap gene, based on a predetermined conserved region of AAV.
 - 29. A kit according to claim 23, wherein the 5' primer has a sequence comprising GCTGCGTCAACTGGACCAATGA-GAA'C, which corresponds to nt 1398 to 1423 of SEQ ID NO:6.
- 30. A kit according to claim 23, wherein the 3' primer has a sequence comprising CGCAGAGACCAAAGTTCAACT 55 GAAACGA, which corresponds to the nucleotides complementary to 4462-4435 of SEQ ID NO:7.
 - 31. A kit according to any of claims 23 to 30, wherein the sample comprises AAV integrated into the chromosome.

Patentansprüche

5

10

15

20

35

- Verfahren zur Identifizierung unbekannter Sequenzen von adeno-assoziiertem Virus (AAV) in einer Probe, von der man annimmt, daß sie von einer latenten Infektion herrührendes AAV enthält, wobei man in den folgenden Verfahrenschritten
 - (a) die DNA-haltige Probe einer Amplifikation über eine Polymerasekettenreaktion (PCR) unter Verwendung eines ersten Primersatzes, mit dem spezifisch ein mindestens 250 Bp AAV-Capsid-Nukleinsäuresequenzen umfassender erster AAV-Bereich amplifiziert wird, wobei dieser erste Bereich eine an ihrem 5'-Ende von mindestens 18 Basenpaaren hochkonservierter Sequenz und an ihrem 3'-Ende von mindestens 18 Basenpaaren hochkonservierter Sequenz aufweist, wobei die Basenpaare relativ zu einer vergleichenden Anordnung von mindestens AAV1, AAV2, AAV3, AAV4, AAV5 und AAV6 hochkonserviert sind, aussetzt,
 - (b) gegebenenfalls die DNA einer weiteren Amplifikation unter Verwendung eines zweiten Primersatzes, mit dem spezifisch ein zweiter Bereich, der den ersten Bereich von AAV-Sequenzen sowie 5' zum ersten Bereich liegende Sequenzen umfaßt, amplifiziert wird, aussetzt, so daß 5'-AAV-Verlängerungssequenzen, die in einer Annealing-Reaktion an das 5'-Ende der mit den Primern für den ersten Bereich amplifizierten AAV-Sequenzen binden, erhalten werden.
 - (c) gegebenenfalls die DNA einer weiteren Amplifikation unter Verwendung eines dritten Primersatzes, mit dem spezifisch ein dritter Bereich, der den ersten Bereich von AAV-Sequenzen sowie 3' zum ersten Bereich liegende Sequenzen umfaßt, amplifiziert wird, aussetzt, so daß 3'-AAV-Verlängerungssequenzen, die in einer Annealing-Reaktion an das 3'-Ende der mit den Primern für den ersten Bereich amplifizierten AAV-Sequenzen binden, erhalten werden,
- wobei der zweite und der dritte Bereich jeweils auf der Grundlage der vergleichenden Anordnung der Nukleinsäuresequenzen von mindestens AAV1, AAV2, AAV3, AAV4, AAV5 und AAV6 vorbestimmt sind und die Bereiche relativ zu den Sequenzen von mindestens AAV1, AAV2, AAV3, AAV4, AAV5 und AAV6 jeweils am 5'-Ende der Sequenzen des Bereichs über mindestens 18 Basenpaare hochkonservierte Nukleinsäuresequenzen, in der Mitte gegebenenfalls variable Sequenzen und am 3'-Ende über mindestens 18 Basenpaare hochkonservierte Sequenzen umfassen und
 - die Primersätze jeweils aus einem 5'-Primer und einem 3'-Primer bestehen, das Vorhandensein amplifizierter Sequenzen das Vorhandensein eines AAV in der Probe anzeigt, und ein Vergleich der Unterschiede zwischen den amplifizierten Sequenzen und den Sequenzen von AAV1, AAV2, AAV3, AAV4, AAV5 und AAV6 das Vorhandensein eines unbekannten AAV anzeigt.
 - Verfahren nach Anspruch 1, wobei der Vergleich den Schritt des Vergleichens von Restriktionsenzymmustern für die amplifizierten Sequenzen mit Restriktionsenzymmustern von AAV1, AAV2, AAV3, AAV4, AAV5 und AAV6 umfaßt.
- 40 3. Verfahren nach Anspruch 1 oder 2, wobei in Schritt (a) das Capsid-Gen in voller Länge amplifiziert wird.
 - 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die amplifizierten Sequenzen das AAV-Capsid-Gen und das AAV-rep-Gen umfassen.
- Verfahren nach einem der Ansprüche 1 bis 4, wobei die DNA aus Zellen, Zellkultur, Gewebe, Gewebekultur oder biologischen Flüssigkeiten extrahiert wurde.
 - Verfahren nach einem der Ansprüche 1 bis 5, wobei der erste Bereich über mindestens etwa 25 Basenpaare am 5'-Ende oder/und am 3'-Ende des Bereichs hochkonserviert ist.
 - 7. Verfahren nach Anspruch 6, wobei der erste Bereich über mindestens etwa 30 Basenpaare am 5'-Ende oder/und am 3'-Ende des Bereichs hochkonserviert ist.
- Verfahren nach einem der Ansprüche 1 bis 7, wobei die hochkonservierten Sequenzen des ersten Bereichs unter den vergleichend angeordneten AAVs eine Identität von mindestens 80% am 5'-Ende oder/und am 3'-Ende des Bereichs aufweisen.
 - 9. Verfahren nach Anspruch 8, wobei die hochkonservierten Sequenzen des ersten Bereichs unter den vergleichend

angeordneten AAVs eine Identität von mindestens 90% am 5'-Ende oder/und am 3'-Ende des Bereichs aufweisen.

- 10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die variablen Sequenzen in der Mitte des ersten Bereichs unter den vergleichend angeordneten AAVs eine Identität von weniger als 70% aufweisen.
- 11. Verfahren nach einem der Ansprüche 1 bis 10, wobei der erste Bereich von etwa Bp 2800 bis etwa 3200 von AAV1, SEQ ID NO:6, und den entsprechenden Basenpaaren in anderen AAV reicht.
- 12. Verfahren nach Anspruch 11, wobei es sich bei dem ersten Bereich um 257 Bp handelt, die von Bp 2886 bis etwa
 3143 von AAV1, SEQ ID NO:6, und den entsprechenden Basenpaaren in anderen AAV reichen.
 - 13. Verfahren nach einem der Ansprüche 1 bis 5, wobei es sich bei den Primern um AV1ns mit der Sequenz der Nukleotide 1398 bis 1423 der SEQ ID NO:6 sowie um AV2cas mit der Sequenz der SEQ ID NO:7 handelt.
- 15 14. Verfahren nach Anspruch 1 oder Anspruch 2, wobei der erste Primersatz die Isolierung von Capsidsequenzen in voller L\u00e4nge von adeno-assoziiertem Virus aus einer Probe gestattet, wobei der erste Primersatz einen auf einen in der Mitte eines AAV-rep-Gens liegenden Bereich auf der Grundlage eines vorbestimmten konservierten Bereichs gerichteten 5'-Primer sowie einen auf einen stromabw\u00e4rts von einem AAV-cap-Gen liegenden Bereich auf der Grundlage eines vorbestimmten konservierten Bereichs von AAV gerichteten 3'-Primer umfa\u00dfts.
 - 15. Verfahren nach einem der Ansprüche 1 bis 14, wobei die Probe in das Chromosom integriertes AAV umfaßt.
 - 16. Verfahren nach einem der Ansprüche 1 bis 15, wobei die Probe menschliches Gewebe umfaßt.
 - 17. Verfahren nach einem der Ansprüche 1 bis 16, wobei die Probe provirale AAV-Sequenzen enthält.
 - 18. Verfahren nach einem der Ansprüche 1 bis 17, wobei es sich bei dem ersten Bereich um einen Signaturbereich handelt.
 - 19. Verfahren nach einem der Ansprüche 1 bis 18, wobei die Basenpaare der hochkonservierten Sequenzen relativ zu einer vergleichenden Anordnung von AAV 1, 2, 3, 4, 5 und 6 und aus Gans und Ente isolierten AAV hochkonserviert sind.
- 20. Verfahren nach einem der Ansprüche 1 bis 19, wobei es sich bei der variablen Sequenz um eine hypervariable Sequenz handelt.
 - Verfahren nach einem der Ansprüche 1 bis 20, wobei der erste Bereich eine Länge von bis zu 10 Kilobasenpaaren umfaßt.
 - 22. Verfahren nach Anspruch 21, wobei der erste Bereich ein die cap-Sequenz in voller Länge umfassendes Fragment von 3,1 Kilobasenpaaren umfaßt.
- 23. Kit zum Nachweis des Vorhandenseins eines unbekannten adeno-assoziierten Virus (AAV) in einer Probe aus zellulärer DNA, von der man annimmt, daß sie eine latente AAV-Infektion enthält, wobei der Kit umfaßt:
 - (a) einen ersten Primersatz, mit dem spezifisch ein 250 Bp AAV-Capsid-Nukleinsäuresequenzen umfassender erster AAV-Bereich amplifiziert wird, wobei dieser erste Bereich an seinem. 5'-Ende mindestens 18 Basenpaare hochkonservierter Sequenz, eine variable Sequenz und an seinem 3'-Ende mindestens 18 Basenpaare hochkonservierter Sequenz aufweist, wobei die Basenpaare relativ zu einer vergleichenden Anordnung von mindestens AAV1, AAV2, AAV3, AAV4, AAV5 und AAV6 hochkonserviert sind,
 - (b) gegebenenfalls einen für einen zweiten Bereich der AAV-Nukleinsäuresequenzen, der den ersten Bereich von AAV-Sequenzen sowie 5' zum ersten Bereich liegende Sequenzen umfaßt, spezifischen zweiten Primersatz, so daß 5'-AAV-Verlängerungssequenzen, die in einer Annealing-Reaktion an das 5'-Ende der mit den Primern für den ersten Bereich amplifizierten AAV-Sequenzen binden, erhalten werden.
 - (c) gegebenenfalls einen dritten Primersatz, mit dem spezifisch ein dritter Bereich, der den ersten Bereich von AAV-Sequenzen sowie 3' zum ersten Bereich liegende Sequenzen umfaßt, amplifiziert wird, so daß 3'-AAV-Verlängerungssequenzen, die in einer Annealing-Reaktion an das 3'-Ende der mit den Primern für den ersten

355

5

25

30

50

Bereich amplifizierten AAV-Sequenzen binden, erhalten werden,

wobei der zweite und der dritte Bereich jeweils auf der Grundlage der vergleichenden Anordnung der Nukleinsäuresequenzen von mindestens AAV1, AAV2, AAV3, AAV4, AAV5 und AAV6 vorbestimmt sind und die Bereiche relativ zu den Sequenzen von mindestens AAV1, AAV2, AAV3, AAV4, AAV5 und AAV6 jeweils am 5'-Ende der Sequenzen des Bereichs über mindestens 18 Basenpaare hochkonservierte Nukleinsäuresequenzen, in der Mitte gegebenenfalls variable Sequenzen und am 3'-Ende über mindestens 18 Basenpaare hochkonservierte Sequenzen umfassen,

die Primersätze jeweils aus einem 5'-Primer und einem 3'-Primer bestehen, wobei jeder Primer mindestens 15 zur hochkonservierten Sequenz des jeweils anderen Primers komplementäre Nukleotide umfaßt und an seinem 3'-Ende über mindestens 5 Basenpaare eine genaue Identität mit der hochkonservierten Sequenz des jeweils anderen Primers aufweist.

- 24. Kit nach Anspruch 23, wobei der 5'-Primer und/oder der 3'-Primer mindestens 18 Nukleotide umfaßt.
- 25. Kit nach Anspruch 24, wobei der 5'-Primer und/oder der 3'-Primer mindestens 25 Nukleotide umfaßt.
- 26. Kit nach einem der Ansprüche 23 bis 25, wobei der 5'-Primer und/oder der 3'-Primer an seinem 3'-Ende mindestens 9 Basenpaare genauer Identität umfaßt.
- 27. Kit nach Anspruch 26, wobei der 5'-Primer und/oder der 3'-Primer an seinem 3'-Ende mindestens 18 Basenpaare genauer Identität umfaßt.
- 28. Kit nach einem der Ansprüche 23 bis 27, wobei der erste Primersatz die Isolierung von Capsidsequenzen in voller Länge von adeno-assoziiertem Virus aus einer Probe gestattet, wobei der erste Primersatz einen auf einen in der Mitte eines AAV-rep-Gens liegenden Bereich auf der Grundlage eines vorbestimmten konservierten Bereichs von AAV gerichteten 5'-Primer sowie einen auf einen stromabwärts von einem AAV-cap-Gen liegenden Bereich auf der Grundlage eines vorbestimmten konservierten Bereichs von AAV gerichteten 5'-Primer umfaßt.
 - 29. Kit nach Anspruch 23, wobei der 5'-Primer eine GCTGCGTCAACTGGACCAATGAGAAC umfassende Sequenz aufweist, die Nt 1398 bis 1423 der SEQ ID NO:6 entspricht.
 - 30. Kit nach Anspruch 23, wobei der 3'-Primer eine CGCAGAGACCAAAGTTCAACTGAAACGA umfassende Sequenz aufweist, die den zu 4462-4435 der SEQ ID NO:7 komplementären Nukleotiden entspricht.
 - 31. Kit nach einem der Ansprüche 23 bis 30, wobei die Probe in das Chromosom integriertes AAV umfaßt.

40 Revendications

5

10

15

20

30

35

45

50

- Procèdé pour identifier des séquences de virus associés à l'adénovirus (VAA) inconnus dans un échantillon dont on suspecte qu'il contient des VAA provenant d'une infection latente, ledit procèdé comprenant les étapes :
- (a) de soumission de l'échantillon contenant l'ADN à une amplification via une réaction de polymérase en chaîne (PCR) en utilisant une première série d'amorces qui amplifient spécifiquement une première région de VAA comprenant au moins 250 pb des séquences d'acides nucléiques de capside de VAA, ladite première région présentant une séquence variable adjacente à au moins 18 paires de bases d'une séquence hautement conservée en son extrémité 5' et à au moins 18 paires de bases d'une sèquence hautement conservée en son extrémité 3', lesdites paires de bases étant hautement conservées par rapport à un alignement d'au moins VAA1, VAA2, VAA3, VAA4, VAA5 et VAA6;
 - (b) éventuellement de soumission de l'ADN à une autre amplification en utilisant une deuxième série d'amorces qui amplifient spécifiquement une deuxième région qui comprend la première région de séquences des VAA et des séquences qui sont côté 5' par rapport à la première région, de telle manière qu'on obtient des séquences d'extension 5' de VAA qui hybrident sur l'extrémité 5' des séquences de VAA amplifiées par les amorces pour la première région ;
 - (c) éventuellement de soumission de l'ADN à une autre amplification utilisant une troisième série d'amorces qui amplifient spécifiquement une troisième région qui comprend la première région de séquences de VAA et

les séquences qui sont situées côté 3' par rapport à la première région, de telle manière qu'on obtient des séquences d'extension 3' de VAA qui hybrident sur l'extrémité 3' des séquences de VAA amplifiées par les amorces pour la première région,

chacune desdites deuxième et troisième régions étant prédéterminée sur base de l'alignement des séquences d'acides nucléiques d'au moins VAA1, VAA2, VAA3, VAA4, VAA5 et VAA6, et chacune desdites régions comprenant des séquences d'acides nucléiques qui sont hautement conservées sur au moins 18 paires de bases en l'extrémité 5', des séquences éventuellement variables au centre et des séquences qui sont hautement conservées sur au moins 18 paires de bases en l'extrémité 3' des séquences de la région, par rapport aux séquences d'au moins VAA1, VAA2, VAA3, VAA4, VAA5 et VAA6; et

chacune des séries d'amorces étant constituée par une amorce 5' et une amorce 3'; la présence de séquences amplifiées indiquant la présence d'un VAA dans l'échantillon et une comparaison des différences entre les séquences amplifiées et les séquences des VAA1, VAA2, VAA3, VAA4, VAA5 et VAA6 indiquant la présence d'un VAA inconnu.

15

- Procédé selon la revendication 1, dans lequel la comparaison comprend l'étape de comparaison de modèles d'enzymes de restriction pour les séquences amplifiées à des modèles d'enzymes de restriction des VAA1, VAA2, VAA3, VAA4, VAA5 et VAA6.
- 20 3. Procédé selon la revendication 1 ou 2, dans lequel l'étape (a) amplifie toute 1a longueur du gène cap.
 - 4. Procède selon l'une quelconque des revendications 1 à 3, dans lequel les séquences amplifiées comprennent le gène cap du VAA et le gène rep du VAA.
- Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'ADN a été extrait de cellules, d'une culture cellulaire, de tissu, d'une culture de tissu ou de fluides biologiques.
 - 6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la première région est hautement conservée sur au moins 25 paires de base en l'extrémité 5' de la région, en l'extrémité 3' de la région ou les deux.

30

- 7. Procédé selon la revendication 6, dans lequel la première région est hautement conservée sur au moins 30 paires de base en l'extrèmité 5' de la région, en l'extrémité 3' de la région ou les deux.
- 8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel les séquences hautement conservées de la première région présentent une identité d'au moins 80% avec les VAA alignés en l'extrémité 5' de la région, l'extrémité 3' de la région ou les deux.
 - 9. Procèdé selon la revendication 8, dans lequel les séquences hautement conservées de la première région présentent une identité d'au moins 90% avec les VAA alignés en l'extrémité 5' de la région, l'extrémité 3' de la région ou les deux.

40

10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel les séquences variables au centre de la première région présentent une identité inférieure à 70% avec les VAA alignés.

11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel la première région s'étend de la paire de bases 2800 à environ 3200 du VAA 1, SEQ ID NO:6, et les paires de bases correspondantes dans les autres VAA.

12. Procédé selon la revendication 11, dans lequel la première région représente 257 paires de bases, s'étendant de la paire de bases 2886 à environ 3143 du VAA1, SEQ ID NO:6, et les paires de bases correspondantes dans les autres VAA.

- 13. Procèdé selon l'une quelconque des revendications 1 à 5, dans lequel les amorces sont des AV1ns, présentant la séquence des nuclèotides 1398 à 1423 de la SEQ ID NO:6, et des AV2cas, présentant la séquence de la SEQ ID NO:7.
- 14. Procédé selon la revendication 1 ou 2, dans lequel la première série d'amorces permet l'isolement de toute la longueur de séquences de capside du virus associé à l'adénovirus d'un échantillon, la première série d'amorces comprenant une amorce 5' dirigée sur une région localisée au centre d'un gène rep du VAA, sur base d'une région prédéterminée conservée et une amorce 3', dirigée sur une région en avai d'un gène cap du VAA, basée sur une

règion prédéterminée conservée du VAA.

5

10

15

25

30

35

40

45.

50

55

- 15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel l'échantillon comprend un VAA intégré dans le chromosome.
- 16. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel l'échantillon comprend du tissu humain.
- 17. Procédé selon l'une quelconque des revendications 1 à 16, dans lequel l'échantillon contient des sèquences de VAA provirales.
- 18. Procédé selon l'une quelconque des revendications 1 à 17, dans lequel la première région est une région de signature.
- 19. Procédé selon l'une quelconque des revendications 1 à 18, dans lequel les paires de bases des séquences hautement conservées sont hautement conservées par rapport à un alignement des VAA 1,2,3,4,5 et 6 et des VAA isolés à partir d'oies et de canards.
- 20. Procédé selon l'une quelconque des revendications 1 à 19, dans lequel la séquence variable est une séquence hypervariable.
- 20 21. Procédé selon l'une quelconque des revendications 1 à 20, dans lequel la première région comprend jusqu'à 10 kilopaires de bases en longueur.
 - 22. Procédé selon la revendication 21, dans lequel la première région comprend un fragment de 3,1 kilopaires de bases comprenant toute la longueur de la séquence du capside.
 - 23. Kit pour détecter la présence d'un virus associé à l'adénovirus (VAA) inconnu dans un échantillon d'ADN cellulaire dont on suspecte qu'il contient une infection latente par un VAA, ledit kit comprenant:
 - (a) une première série d'amorces qui amplifient spécifiquement une première région comprenant 250 paires de bases de séquences d'acides nucléiques d'un capside de VAA, ladite première région présentant au moins 18 paires de bases d'une séquence hautement conservée en son extrémité 5', une séquence variable et au moins 18 paires de base d'une séquence hautement conservée en son extrémité 3', lesdites paires de bases étant hautement conservées par rapport à un alignement d'au moins VAA1, VAA2, VAA3, VAA4, VAA5 et VAA6; (b) éventuellement une deuxième série d'amorces spécifiques d'une deuxième région des séquences d'acides nucléiques de VAA qui comprend la première région des séquences de VAA et des séquences qui se situent côté 5' par rapport à la première région, de manière à obtenir des séquences d'extension 5' des VAA qui hybrident sur l'extrémité 5' des séquences de VAA amplifient spécifiquement une troisième région, qui comprend la première région de séquences de VAA et des séquences qui se situent côté 3' par rapport à la première région, de manière à obtenir des séquences de VAA et des séquences qui se situent côté 3' par rapport à la première région, de manière à obtenir des séquences d'extension 3' de VAA qui hybrident sur l'extrémité 3' des séquences
 - chacune desdites deuxième et troisième région étant prédéterminée sur base de l'alignement des séquences d'acides nucléiques d'au moins les VAA1, VAA2, VAA3, VAA4, VAA5 et VAA6, et chacune desdites régions comprenant des séquences d'acides nucléiques qui sont hautement conservées sur au moins 18 paires de bases en l'extrémité 5', éventuellement des séquences variables au centre et des séquences qui sont hautement conservées sur au moins 18 paires de bases en l'extrémité 3' des séquences de la région, par rapport aux séquences au moins des VAA1, VAA2, VAA3, VAA4, VAA5 et VAA6;
 - chacune des séries d'amorces étant constituée par une amorce 5' et une amorce 3', chacune desdites amorces comprenant au moins 15 nucléotides complémentaires à sa séquence respective hautement conservée et présentant une identité exacte avec sa séquence respective hautement conservée sur au moins 5 paires de bases en son extrémité 3'.
 - 24. Kit selon la revendication 23, dans lequel l'amorce 5' et/ou l'amorce 3' comprend au moins 18 nucléotides.
 - 25. Kit selon la revendication 24, dans lequel l'amorce 5' et/ou l'amorce 3' comprend 25 nucléotides.

de VAA amplifiées par les amorces de la première région;

26. Kit selon l'une quelconque des revendications 23 à 25, dans lequel l'amorce 5' et/ou l'amorce 3' comprend au moins

9 paires de bases d'identité exacte en son extrémité 3'.

5

10

20

25

30

35

40

45

50

55

- 27. Kit selon la revendication 26, dans lequel l'amorce 5' et/ou l'amorce 3' comprend au moins 18 paires de bases d'identité exacte en son extrémité 3'.
- 28. Kit selon l'une quelconque des revendications 23 à 27, dans lequel la première série d'amorces permet l'isolement de toute la longueur des séquences de capside d'un virus associé à l'adénovirus d'un échantillon, la première série d'amorces comprenant une amorce 5' dirigée sur une région localisée au centre d'un gène rep d'un VAA, basée sur une région prédéterminée conservée d'un VAA et une amorce 3' dirigée sur une région en aval d'un gène cap d'un VAA, basée sur une région prédéterminée conservée d'un VAA.
- 29. Kit selon 1a revendication 23, dans lequel l'amorce 5' présente une séquence comprenant GCTGCGTCAACTG-GACCAATGAGAAC, ce qui correspond aux nucléotides 1398 à 1423 de la SEQ ID NO:6.
- 30. Kit selon la revendication 23, dans lequel l'amorce 3' présente une séquence comprenant CGCAGAGACCAAAGTT-CAACTGAAACGA, qui correspond aux nucléotides complémentaires à 4462-4435 de la SEQ ID NO:7.
 - 31. Kit selon l'une quelconque des revendications 23 à 30, dans lequel l'échantillon comprend un VAA intégré dans le chromosome.