襄阳四中 NOIP 2019 模拟赛

第二试

考试时间: 2019 年 7 月 31 日 8:30~12:00

wjyyy

一. 题目概况

中文题目名称	斗地主	随机	仙人掌	
英文题目与子目录名	landlords	random	tree	
可执行文件名	landlords	random	tree	
输入文件名	landlords.in	random.in	tree.in	
输出文件名	landlords.out	random.out	tree.out	
每个测试点时限	1 s	3 s	1 s	
测试点数目	10	25	20	
每个测试点分值	10	4	5	
附加样例文件	是	是	是	
结果比较方式	全文比较(过滤行末空格及文末回车)			
题目类型	传统	传统	传统	
运行内存上限	128 M	512 M	512 M	

二. 提交源程序文件名

对于 C++ 语言

三. 编译命令(不包含任何优化开关)

对于 C++ 语言	g++	g++	-0	random	g++	-0	tree
	-o landlords	random.cpp -lm		tree.cpp -lm		-lm	
	landlords.cpp						
	-lm						

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、评测时采用的机器配置为: Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz, 内存 8GB。上述时限以此配置为准。
 - 4、只提供 Linux 格式附加样例文件。
 - 5、特别提醒:评测在当前最新公布的 NOI Linux 下进行,编译器版本以其为准。

1. 斗地主

(landlords.cpp)

【题目背景】

玩具鸭和玩具羊想玩斗地主,于是它们找到了一副扑克牌。但是这副扑克牌的正反两面都有字, 所以不能用来斗地主。

【题目描述】

这副牌一共有n张,每张有正反两面,每面上面有一个整数。第i张牌正面的数为 t_i ,反面的数为 b_i 。

它们发现了一个新游戏,每轮选两张牌 i,j,然后扔掉其中一张,得分为 $t_i \oplus b_j$ 和 $b_i \oplus t_j$ 中的较小值,其中 \oplus 是异或符号。直到只剩最后一张牌。

他们想知道一轮游戏的最大得分是多少。

【输入格式】

输入第一行一个正整数 n,表示牌的张数。

接下来 n 行,每行两个整数 t_i, b_i ,分别表示第 i 张牌的正面和反面上的数。

【输出格式】

输出一行一个整数,表示一轮游戏的最大得分。

【输入输出样例 1】

landlords.in	landlords.out
5	14
2 6	
1 4	
5 2	
3 3	
7 1	

见选手目录下的 landlords/landlords1.in 和 landlords/landlords1.ans。

【输入输出样例 1 说明】

- 首先取出第 3,5 张牌, 扔掉第 3 张, 得分为 min(4,5) = 4。
- 接着取出第 4,5 张牌, 扔掉第 5 张, 得分为 min(2,4) = 2。
- 然后取出第 2,4 张牌, 扔掉第 4 张, 得分为 min(2,7) = 2。
- 最后取出第 1,2 张牌, 扔掉第 1 张, 得分为 min(6,7) = 6。

可以证明,没有总得分比14更高的方法。

【输入输出样例 2】

见选手目录下的 landlords/landlords2.in 和 landlords/landlords2.ans。

【数据范围与约定】

对于 10% 的数据, $n \le 5$, $0 \le t_i, b_i \le 10$;

对于 20% 的数据, $n \le 10$, $0 \le t_i, b_i \le 1000$;

对于 40% 的数据, $n \le 20$;

对于 60% 的数据, $n \leq 300$;

对于另外 20% 的数据,对任意 $1 \le i \le n$ 都有 $t_i = b_i$ 。

对于 100% 的数据,满足 $2 \le n \le 5000$, $0 \le t_i, b_i \le 10^9$ 。

2. 随机

(random.cpp)

【题目背景】

外接圆获得了一个随机数生成器和一个 01 串。

【题目描述】

这个 01 串长为 n,外接圆要进行 m 次操作。在第 i 次操作中,外接圆会在 [1, n-i+1] 中等概率随机生成一个整数 x。然后外接圆可以删掉当前剩下的数中从左到右数第 i 个位置上的数或从右往左数第 i 个位置上的数。

如果外接圆采用最优策略,他期望删掉0的个数最多是多少?答案对998244353取模。

【输入格式】

输入共两行。

第一行两个整数 n, m,表示串的长度和操作次数。

第二行一个长为 n 的字符串,字符串只包含 0,1 两个字符。

【输出格式】

输出一行一个整数,表示答案对 998244353 取模的结果。

设答案化为最简分式后的形式为 $\frac{a}{b}$,其中 a 和 b 互质。输出整数 x 使得 $bx \equiv a \pmod{998244353}$ 且 $0 \le x < 998244353$ 。可以证明这样的整数 x 是唯一的。

【输入输出样例 1】

random.in	random.out
4 1	1
0011	

见选手目录下的 random/random1.in 和 random/random1.ans。

【输入输出样例 1 说明】

只有一次操作。

- 当获得的随机数为1时,可以删掉第1个或第4个,删掉第1个最优。此时删掉1个0。
- 当获得的随机数为2时,可以删掉第2个或第3个,删掉第2个最优。此时删掉1个0。
- 当获得的随机数为 3 时,可以删掉第 3 个或第 2 个,删掉第 2 个最优。此时删掉 1 个 0。
- 当获得的随机数为4时,可以删掉第4个或第1个,删掉第1个最优。此时删掉1个0。
 因此期望删掉1个0。

【输入输出样例 2】

random.in	random.out
4 1	499122177
0111	

见选手目录下的 random/random2.in 和 random/random2.ans。

【输入输出样例 2 说明】

期望删掉 $\frac{1}{2}$ 个 0, 求解 $2x \equiv 1 \pmod{998244353}$, x = 499122177。

【输入输出样例 3】

见选手目录下的 random/random3.in 和 random/random3.ans。

【数据范围与约定】

测试点编号	$n \leq$	k	
1	1		
$2 \sim 3$	4	$\leq n$	
$4 \sim 7$	7		
8		=0	
9	15	= 1	
10	10	= n - 1	
$11 \sim 15$		$\leq n$	
16		=0	
17	17 25		
18	20	= n - 1	
$19 \sim 24$		$\leq n$	
25	30	$\leq n$	

对于全部的数据,满足 $1 \le n \le 30$, $0 \le k \le n$,字符串只包含 0 和 1。

3. 仙人掌

(tree.cpp)

【题目描述】

玩具鹰喜欢仙人掌,所以它把它喜欢的所有东西叫仙人掌。

在一个有n个节点,m条边的图上,如果删掉某个节点和它的所有边后,剩下的图构成了一棵树,那么玩具鹰把这个点叫做仙人掌点。

树的定义是无简单环的无向连通图。

你需要告诉玩具鹰它的图上有哪些仙人掌点。

【输入格式】

输入一行两个整数 n, m,分别表示图的节点个数和边的条数。 接下来 m 行,第 i 行有两个正整数 u_i, v_i ,表示有一条边连接着 u_i 和 v_i 。

【输出格式】

输出共两行,第一行一个整数 t,表示仙人掌点的个数。

第二行输出 t 个正整数,表示仙人掌节点的编号分别是多少,节点编号按升序输出。

【输入输出样例 1】

tree.in	tree.out
5 5	5
1 2	1 2 3 4 5
2 3	
3 4	
4 5	
1 5	

见选手目录下的 tree/tree1.in 和 tree/tree1.ans。

【输入输出样例 1 说明】

删掉其中任意一个点都会使图变成一棵树。

【输入输出样例 2】

tree.in	tree.out
6 6	3
1 2	4 5 6
1 3	
2 4	
2 5	
4 6	
5 6	

见选手目录下的 tree/tree2.in 和 tree/tree2.ans。

【输入输出样例 3】

见选手目录下的 tree/tree3.in 和 tree/tree3.ans。 该样例规模与测试点 5 一致。

【输入输出样例 4】

见选手目录下的 tree/tree4.in 和 tree/tree4.ans。 该样例规模与测试点 11 一致。

【数据范围与约定】

测试点编号	$n \leq$	m	特殊性质	
1	200	$\leq \frac{n(n-1)}{2}$	无	
2		= n - 1	$u_i + 1 = v_i$	
3		-n-1		
4	2000	= n	无	
5		$\leq 2 \times 10^5$) <u>u</u>	
6		2 2 × 10		
7			$u_i + 1 = v_i$	
8		= n-1	 	
9			<i>7</i> u	
10			所有点的度数均为2	
11		= n	= n	
12				
13	2×10^5			
14	2 × 10			
15			 	
16		$\leq 2 \times 10^5$	70	
17				
18				
19				
20				

对于全部的数据,满足 $2 \le n \le 2 \times 10^5$, $n-1 \le m \le 2 \times 10^5$,保证没有重边和自环。