Trabajo Práctico 7 - Descomposición cíclica y forma de Jordan

Santiago

- 1. Considerar las transformaciones lineales $R_{\frac{\pi}{2}}, S_Y, H_2$ y P_X del ejercicio 11 de la práctica 2. Sea $\mathcal{E} = \{e_1, e_2\}$ la base canónica de \mathbb{R}^2 .
 - (a) Probar que $Z(e_1, R_{\frac{\pi}{2}}) = \mathbb{R}^2 = Z(e_2, R_{\frac{\pi}{2}})$
 - (b) Hallar $Z(e_1, S_Y)$ y $Z(e_2, S_Y)$.
 - (c) Probar que H_2 no tiene vectores cíclicos.
 - (d) Hallar $Z(e_1,P_X)$ y $Z(e_2,P_X)$. ¿Puede dar algún vector cíclico de P_X ?
- 2. Sean $A \in \mathbb{K}^{n \times n}$ (fija) y $T \in L(\mathbb{K}^{n \times n})$ dado por

$$T(B) = AB - BA$$

- (a) Probar que si A y B se diagonalizan simultáneamente, T(B)=0.
- (b) Probar que si A y B son nilpotentes y T(B) = 0 entonces AB es nilpotente. Hallar un ejemplo en que A y B sean nilpotentes, pero AB no lo sea.
- (c) Probar que si A es una matriz nilpotente de orden 2, entonces T es un operador nilpotente de orden 3.
- (d) Sea

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Hallar $Z(E_{12}, T)$ y el polinomio T-anulador de E_{12} . Verificar que el T-anulador de E_{12} divide al polinomio minimal de T. ¿Puede hallar algún vector T-cíclico?

3. Sea $T \in L(\mathbb{R}^5)$ cuya representación matricial en la base canónica de \mathbb{R}^5 es

$$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

- (a) Probar que T no tiene ningún vector cíclico.
- (b) Hallar el subespacio cíclico generado por (1, 1, -1, -1, -1).

4. Sea $T \in L(\mathbb{C}^3)$ tal que

$$A = \begin{pmatrix} 3 & 1 & -2 \\ -1 & 0 & 5 \\ -1 & -1 & 4 \end{pmatrix}$$

es una representación matricial de T (pensado a \mathbb{C}^3 como \mathbb{C} -EV). Hallar la forma de Jordan de T y una base B de \mathbb{C}^3 tal que $[T]_B$ es una matriz de Jordan.

5. Sea $T \in L(\mathbb{R}^5)$ tal que

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

la representación matricial de T en la base canónica de \mathbb{R}^5 .

- (a) ¿Es T diagonalizable?
- (b) Hallar, en caso de que exista, una matriz de Jordan semejante a A y la matriz de cambio de base correspondiente.
- (c) Probar que existe un operador diagonalizable $D \in L(\mathbb{R}^5)$ y un operador nilpotente $N \in L(\mathbb{R}^5)$, tales que T = D + N y DN = ND. Escribir las representaciones matriciales de D y N en la base canónica de \mathbb{C}^5 .
- 6. Hallar dos endomorfismos de \mathbb{R}^3 diferentes, que tengan como forma de Jordan a la matriz

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

7. Encontrar la forma de Jordan de los operadores representados por las siguientes matrices

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 2 & -1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

8. Sean

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Decir si ambas matrices tienen la misma forma de Jordan, sin calcularla. **Sugerencia:** Recordar las propiedades de la semejanza entre matrices.

9. Sea $T \in L(\mathbb{R}^3)$ y sea B una base en la cual

$$[T]_B = \begin{pmatrix} -2 & 0 & 0\\ 1 & -2 & 0\\ 0 & 1 & -2 \end{pmatrix}$$

2

Determinar, observando la matriz, el polinomio minimal y el característico de T.

- 10. ¿Cuáles son las posibles formas de Jordan de un operador lineal $T \in L(\mathbb{C}^5)$ si $p_T(x) = (x+4)^2(x-\pi)^2(x-i)$? (pensando a \mathbb{C}^5 como \mathbb{C} -EV)
- 11. Sea

$$A = \begin{pmatrix} \pi & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \pi & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & \pi & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \pi & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \pi & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 3 \end{pmatrix}$$

- (a) Hallar la forma de Jordan asociada a A.
- (b) Hallar el polinomio característico, el minimal, los autovalores y la dimensión de los autoespacios asociados. **Sugerencia:** Observar que la matriz es diagonal por bloques.
- 12. Hallar las posibles formas de Jordan de un operador $T \in L(\mathbb{C}^9)$ tal que

$$p_T(x) = (x+7)^4(x-3)^3(x+i)^2$$
 y $m_T(x) = (x+7)^2(x-3)^2(x+i)$

Mencionar en cada caso la dimensión de los autoespacios asociados.