WAKISSHA JOINT MOCK EXAMINATIONS MARKING GUIDE

Uganda Advanced Certificate of Education

UACE August 2019

MATHEMATICS P425/1

(Z - 4) (Z - 3)

Either
$$x^2 + 2x = 4$$
 or $x^2 + 2x = 3$
 $x^2 + 2x - 4 = 0$ or $x^2 + 2x - 3 = 0$

$$x = -\frac{-2 \pm \sqrt{4 - 4 \cdot 1 \cdot - 4}}{2 \times 1}$$
 $(x + 3) (x - 1) = 0$

$$x = \frac{-2 \pm \sqrt{20}}{2}$$
 Either $x + 3 = 0$ or $x - 1 = 0$

$$\chi = \frac{-2 \pm 2\sqrt{5}}{2} \qquad \qquad \chi = -3 \text{ or } \chi = 1$$

$$x = -1 \pm \sqrt{5}$$

$$\therefore x = -3, 1,$$

$$(x+2x)^{2} - +(x^{2}+2x) + 12 = 0$$

$$-4-3 \qquad B_{1}$$

$$(x^{2}+2x)^{2} - +(x^{2}+2x) - 3(x^{2}+2x) + 12 = 0.$$

$$(x^{2}+2x)[x^{2}+2x) - 4] - 3[x^{2}+2x) + 4] = 0$$

$$(x^{2}+2x-3)(x^{2}+2x-4) = 0.$$

$$x^{2}+2x-3 = 0$$

$$x^{2}+2x-3 = 0$$

$$x^{2}+2x-3 = 0$$

$$x^{2}-3 \qquad x = 1$$

Either
$$x + 3 = 0$$
 or $x - 1 = 0$ $x = -1 \pm \sqrt{5}$

$$=$$
 -3 or $x = 1$

2. Let
$$x = \tan u$$

$$\frac{dx}{du} = \sec^2 u$$

$$dx = \sec^2 u \, du$$

$$ax = \sec^{2} u \, du$$

$$= \int \frac{\sec^{2} u}{(\tan^{2} u + 1)^{2}} \, du$$

$$= \int \frac{1}{\sec^{2} u} \, du$$

$$= \int \cos^{2} u \, du$$

but
$$\cos^2 u = \frac{1}{2} [1 + \cos 2 u]$$

$$= \frac{1}{2} \int (1 + \cos 2u) du$$
$$= \frac{1}{2} u + \frac{1}{4} \sin 2u + C$$

$$= \left[\frac{1}{2} \tan^{-1} x + \frac{1}{4} \sin 2(\tan^{-1} x)\right]_{0}^{1}$$

$$= \left(\frac{1}{2} \tan_1^{-1} + \frac{1}{4} \sin 2 \left(\tan_1^{-1} \right) - \left(\frac{1}{2} \tan^{-1} 0 + \frac{1}{4} \sin 2 \left(\tan^{-1} 0 \right) \right)$$

 B_1

3. Displacement of
$$2x - 3y - z + 1 = 0$$
 from the unique is $d_1 = \frac{ax_{1+b}y_{1} + cz_{1} + d}{\sqrt{a^2 + b^2 + c^2}}$

$$d_1 = \frac{2(0) - 3(0) + -1(0) + 1}{\sqrt{4 + 9 + 1}}$$

$$M_1$$

$$d_{1} = \frac{1}{\sqrt{14}} = \frac{\sqrt{14}}{14}$$

$$d_{1} = \sqrt{\frac{14}{14}} = \sqrt{\frac{14}{14}}$$

County + by + C Displacement of
$$6x$$
 -9y-3z = 5 from the origin is $d_2 = \frac{6(0)-9(0)-3(0)-5}{\sqrt{36+81+9}}$
The flares are at offerite side
$$d_2 = \frac{-5}{2\sqrt{34}}$$

$$d_2 = \frac{-5}{\sqrt{36+81+9}}$$

$$d_2 = \frac{-5}{3\sqrt{14}}$$

$$d_2 = \frac{5\sqrt{14}}{42}$$

 A_1

The planes are at the opposite sides of the origin because their displacements have opposite signs.

Number of ways = $\frac{10!}{4!}$ 4. a) = 151,200 ways.

 A_1

Number of arrangements with out I S' is 6! = 720 ways. b)

 M_1

The I's are to be placed in 7 spaces of which we need 4, Number of selections of the spaces for I S' is 7C₄ and now if I S' are separated, Number of arrangements is 7C₄ x 720 = 25,200 ways.

 A_1 05

Let
$$tan^{-1}\left(\frac{1-x}{1+x}\right) = A$$
.

$$tan A = \frac{1-x}{1+x}$$
$$A = \frac{1}{2}B$$

$$tan^{-1}(x) = B$$

$$2A = B$$

$$tan 2A = tan B$$

$$\frac{2\tan A}{1-\tan^2 A} = \tan B$$

$$\frac{2\left(\frac{1-x}{1+x}\right)}{2\left(\frac{1-x}{1+x}\right)} = \frac{x}{2}$$

$$2\left(\frac{1-x}{1+x}\right) = x\left(1-\left(\frac{1-x}{1+x}\right)^{2}\right)$$

$$2(1-x)(1+x) = x(1+x)^{2} - (1-x)^{2}$$

$$2(1-x^{2}) = x(1+2x+x^{2}-1+2x-x^{2})$$

$$2(1-x^{2}) = x(4x)$$

$$2-2x^{2} = 4x^{2}$$

$$x^{2} = \frac{1}{3}$$

$$x = \frac{1}{\sqrt{3}} = -\frac{1}{\sqrt{3}}$$
Testing
$$\tan^{-1}\left(\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}\right) = \frac{1}{2}\tan^{-1}\left(\frac{-1}{\sqrt{3}}\right)$$

$$75 = \frac{1}{2}(-30)$$

$$x = +\frac{1}{\sqrt{3}}$$
The equation to any circle which passes through the origin is
$$x^{2} + y^{2} + 2gx + 2fy = 0$$
This circle cuts the first of the given circles orthogonally if
$$2g(-3) + 2f(0) = 8 \text{ is } 1t - 6g = 8 \text{ or } g = \frac{1}{4}\frac{4}{3}$$
If cuts the second of the given circle orthogonally if
$$2g(-1) + 2f(-1) = -7$$
This gives
$$f = \frac{7}{2} - g = \frac{7}{2} + \frac{4}{3} = \frac{29}{6} \text{ and the required equation to the circle is } x^{2} + y^{2} + 2gx + 2fy + 2gx + 2fy$$

$$\frac{r}{h} = \frac{R}{H}$$

$$r = \frac{R}{H}h$$

$$= \frac{2}{10}h$$

$$V = \frac{1}{3}\pi \left(\frac{1}{5}h\right)^2 h$$

$$= \frac{1}{75}\pi h^3$$

$$\frac{dv}{dh} = \frac{\pi}{25}h^2$$

Given $\frac{dv}{dt} = \frac{-\pi}{100} cm^3 s^{-1}$; negative indicates decrease in volume of sand.

$$\frac{dh}{dt} = \frac{dv}{dt} \div \frac{dv}{dh} = \frac{-\pi}{100} \times \frac{25}{\pi h^2} = \frac{-1}{4h^2}$$

When h=5cm;

$$\frac{dh}{dt} = \frac{-1}{4\left(5\right)^2}$$

= $-0.01cms^{-1}$ is decreasing at rate of

0.01cms⁻¹

$$M_1$$
 for $\frac{dv}{dh}$

$$M_1$$
 for get $\frac{dh}{dt}$

M₁ for substituting for h

 A_1 (05)

SECTION B (60 MARKS)

$$\sin\left(3\theta - \frac{\pi}{2}\right) + \sin 4\theta = 0$$

$$\Rightarrow 2\sin\left(\frac{4\theta + 3\theta - \frac{\pi}{2}}{2}\right)\cos\left(\frac{4\theta - 3\theta + \frac{\pi}{2}}{2}\right) = 0$$

M₁ for using factor formula

Either $\sin\left(\frac{7\theta}{2} - \frac{\pi}{4}\right) = 0$ or $\cos\left(\frac{\theta}{2} + \frac{\pi}{4}\right) = 0$

A₁ for both

For
$$\cos\left(\frac{\theta}{2} + \frac{\pi}{4}\right) = 0$$

	$\frac{\theta}{2} + \frac{\pi}{4} = \frac{\pi}{2}$	M ₁ for reading angle
	$\theta = \frac{\pi}{2}$ (Az-Reading to degrees)	
	$\theta = \frac{1}{2}$	π π
		A1 for $\theta = \frac{\pi}{2}$
	For $\sin\left(\frac{7\theta}{2} - \frac{\pi}{4}\right) = 0$	-
	$\left(\frac{7\theta}{2} - \frac{\pi}{4}\right) = 0, \pi, 2\pi, 3\pi, -\pi, -2\pi$	M ₁ for reading
	$\begin{pmatrix} 2 & 4 \end{pmatrix}$	angles
	$\frac{7\theta}{2} = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}, \frac{-3\pi}{4}, \frac{-7\pi}{4},$ (**To-Realizable Personal Representation of the presentation of the pr	=o)
	$\theta = \frac{\pi}{14}, \ \frac{5\pi}{14}, \ \frac{-3\pi}{14}, \ \frac{-\pi}{2}$	A ₁ for all the 4 angles
	D= 7/2, -3 TT 1 7/2, 1/4, 5 TT	06
(b)	$\sec^2\theta = \frac{1}{\cos^2\theta}$ Show + Left to Pight	
	But $\cos^2 \theta = \frac{1}{2} (\cos 2\theta + 1)$	
	1	M_1
	$\sec^2\theta = \frac{1}{\frac{1}{2}(\cos 2\theta + 1)}$	
	2	<i>j</i> %
	$=\frac{1}{\cos 2\theta + 1}$	M_1
	$= \frac{\frac{2}{\cos 2\theta}}{-}$	141
	$= \frac{\frac{\cos 2\theta}{\cos 2\theta}}{\frac{\cos 2\theta}{\cos 2\theta}} + \frac{1}{\cos 2\theta}$	
	$\sec^2 \theta = \frac{2\sec 2\theta}{1 + \sec 2\theta}$	B_1
	$\sec^2 \theta = \frac{2 \sec \theta}{1 + \sec 2\theta}$	
	$\sec^2 \theta = \frac{2 - 2 + 2\sec 2\theta}{1 + \sec 2\theta}$	M_1
	$\sec^2 \theta = \frac{2 + 2\sec 2\theta - 2}{1 + \sec 2\theta}$	
	$1 + \sec 2\theta$	

	2/1 22	
	$= \frac{2(1+\sec 2\theta)}{1+\sec 2\theta} - \frac{2}{1+\sec 2\theta}$	M ₁
	$\sec^2 \theta = 2 - \frac{2}{1 + \sec 2\theta}$	(06)
1	$\left(\frac{1+3x}{2-x}\right)^{\frac{1}{2}} = \frac{1}{\sqrt{2}} \left(1+3x\right)^{\frac{1}{2}} \left(1-\frac{x}{2}\right)^{\frac{-1}{2}}$	
	$(1+3x)^{\frac{1}{2}} = 1 + \frac{1}{2}(3x) + \frac{1}{2}\left(\frac{-1}{2}\right)^{\frac{3x}{2!}} + \dots$	M_1
	$=1+\frac{3}{2}x-\frac{9}{8}x^{2}+\frac{1}{2}$	2.21
	$\left(1 - \frac{x}{2}\right)^{\frac{-1}{2}} = 1 - \frac{1}{2}\left(\frac{-x}{2}\right) + \frac{-1}{2}\left(\frac{-3}{2}\right)^{\frac{-x}{2}} + \dots$	
	$=1+\frac{x}{4}+\frac{3}{32}x^2+\cdots-$	
	$\left(1+3x\right)^{\frac{1}{2}}\left(2-x\right)^{\frac{-1}{2}} = \frac{1}{\sqrt{2}}\left(1+\frac{3}{2}x-\frac{9}{8}x^2\right)\left(1+\frac{x}{4}+\frac{3}{32}x^2\right)$	M_1
	$= \frac{1}{\sqrt{2}} + \frac{7}{4\sqrt{2}}x - \frac{21x^2}{32\sqrt{2}}$	* My (# Herpfing of
	$\left[\left(\frac{1 + \frac{3}{5}}{2 - \frac{1}{5}} \right)^{\frac{1}{2}} = \frac{1}{\sqrt{2}} + \frac{7}{4\sqrt{2}} \left(\frac{1}{5} \right) - \frac{21}{32\sqrt{2}} \left(\frac{1}{5} \right)^2 \right]$	M ₁ (Correct expre
	$\frac{\sqrt{8}}{3} = 0.707106781 + 0.247487373 - 0.065361553$	A1 (substitution
	$\sqrt{8} = 3(0.936032601)$	
1-1-1-		Ma
	= 2.8080978	A ₁
	$\approx 2.8 (2 sig. figs)$	B_1
		(07)

	73	
(b)	$\left[\sqrt{(3-x)}-\sqrt{(7+x)}\right]^2=\left[\sqrt{(16+2x)}\right]^2$	M ₁ for squaring
	$3-x+7+x-2\sqrt{(3-x)(7+x)}=16+2x$	
	$-2\sqrt{(3-x)(7+x)} = 6x + 2x$	4 -
	$[-(3-x)(7+x)]^2 = [3+x]^2$	
	$(3-x)(7+x) = 9+x^2+6x$	
	$21 - 4x - x^2 = 9 + x^2 + 6x$	
	$2x^2 + 10x - 12 = 0$	
	$x^2 + 5x - 6 = 0$	M ₁ for method
	(x+6)(x-1)=0	solving
	x + 6 = 0 or $x - 1 = 0$	A ₁ for both values of x
	x = -6 or x = 1 Checking	P .
		M ₁ for checking
	$\sqrt{(3+6)} - \sqrt{(1)} = \sqrt{4}$ Ventication is fact. $\sqrt{9} - \sqrt{1} = \sqrt{4}$ Ventication is fact.	
	3-1=2	
	When $x = 1$	B_1
	$\sqrt{2} - \sqrt{8} \neq \sqrt{18}$	(05)
11. (a)	$\therefore x = -6$	<u> </u>
	Direction vector of the line is $\underline{d} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$	
	This is the normal to the plane since $\underline{r} \cdot \underline{n} = \underline{n} \cdot \underline{a}$	P(x,y,z) By-shotage
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} $ $ \frac{1}{2} \cdot \sqrt{2} \hat{h} = 0 $	
: -	17 (37	M ₁
-	2x - 2y - z = 0 - 4 - 5	
		M ₁
		A ₁
		(04)

		1
(b)	Let $\frac{x-3}{2} = \frac{2-y}{2} = 2-z = \lambda$ at the plane	
	$\Rightarrow x = 3 + 2\lambda, y = 2\lambda + 2, z = 2 - \lambda$ still parametric equation of line putting x, y, z in π	-8
	$2(3+2\lambda)+-2(-2\lambda+2)-(2-\lambda)+9=0$	1"
	$6 + 4\lambda + 4\lambda - 4 - 2 + \lambda + 9 = 0$ $9\lambda + 9 = 0$	Mi (substige the value of xi si 2)
	$\lambda = 1$	A1 (Value of 2)
	$\Rightarrow x = 1, y = 4 \text{ and } z = 3$ $x = 3 - 2 = 1$	M ₁ (or
	y = +2+2 = 4 $2 = 2+1 = 3$	substituting for λ in x, y and z
	c(1,4,3) 2 = 2 + 1 = 3	, puteoc
		(04)
(c)		
	$AC = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} - \begin{pmatrix} 6 \\ 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$	B1 (obtaining tc)
	BC = OC - OB	1
	$BC = \begin{pmatrix} 1\\4\\3 \end{pmatrix} - \begin{pmatrix} -1\\3\\1 \end{pmatrix} = \begin{pmatrix} 2\\1\\2 \end{pmatrix}$	B1 (offaig Bc)
	$AC.BC = \left AC \right \left BC \right \cos A\hat{C} B$	
	$\begin{bmatrix} \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$	MI (substitute)
	$A \hat{C} B = \cos^{-1} \left[\frac{\begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}}{\sqrt{39}} \times \sqrt{10} \right]$. 61
	$A\hat{C}B = \cos^{-1}0$	A1 (tous 90) (04)
	$A\hat{C}B = 90^{\circ}$	(04)

11. (a)	Direction vector of the line i.e $d = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$	B ₁
	This is the normal to the plane since $r.n = n.n$	
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 2 \\ 5 \end{bmatrix}$	M ₁
	$\begin{vmatrix} 2x - 2y - z = 0 - 4 - 5 \\ 2x - 2y - z + 9 = 0 \end{vmatrix}$	M ₁
	2x - 2y - z + 9 = 0	A_1
		04 Marks
b)		
	Let $\frac{x-3}{2} = \frac{2-y=2-z}{2} = \lambda$ at the plane	
	$x \neq 3 + 2 \lambda$, $y = 2\lambda$ $y = 2\lambda + 2$, $Z = 2 - \lambda$	
	putting x,y,z in II	
	$2(3+2\lambda) + -2(-2\lambda+2) - (2-\lambda) + 9 = 0$	
	$6 + 4\lambda + 4\lambda - 4 - 2 + \lambda + 9 = 0$	
	$9 \lambda + 9 = 0$	
	$\lambda = -1$	
	x = 1, y = 4 and $Z = 3$	
	\therefore c(1, 4, 3)	
c)		
	AC = OC - QA	
	$AC = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} - \begin{pmatrix} 6 \\ 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$	
	(3/ \5/ \-2/	
	BC = OC - OB	
	(1) (-1) (0)	
	$\mathbf{BC} = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$	- 1

O WAVICON.

Let
$$y = \frac{x^2 + 2}{x^2 - 4}$$

$$yx^2 - 4y = x^2 + 2$$

$$(y-1)x^2 - 4y - 2 = 0$$

For real roots

$$b^2 - 4ac \ge 0$$

$$0-4(y-1)(-4y-2) \ge 0$$

$$(y-1)(4y+2) \ge 0$$

The critical values are y = 1 and $y = \frac{-1}{2}$

	y< -1	$\frac{-1}{2} < y < 1$	y> 1
(y-1) (4y+2)	+	*	+
	The second secon	1 xyx	I from the table
$\sqrt{\frac{-1}{2}}$ or $y > 1$ fro	m the table 🙊	1 -1 < 4 <	I from the fall
for $(y-1)(4y+2)$			

for
$$(y-1)(4y+2) \ge 0$$
,

$$y \le \frac{-1}{2}$$
 or $y \ge 1$

for
$$y = 1$$

$$\frac{x^2+2}{x^2-4}=1$$

$$x^2 + 2 = x^2 - 4$$

2 = '4 which is impossible. (Discarded)

∴Either
$$y \le \frac{-1}{2}$$
 or $y > 1$

:Either
$$y \le \frac{-1}{2}$$
 or $y > 1$

$$\frac{-1}{2} \ge \frac{x^2 + 2}{x^2 - 4} > 1$$
is the region

at y = 1,the turning point doesnot exist

for $y = \frac{-1}{2}$ the curve is maximum

$$\frac{-1}{2} = \frac{x^2 + 2}{x^2 - 4}$$

100

$$-x^2 + 4 = 2x^2 + 4$$

$$-3x^2 = 0$$

$$x^2 = 0$$

$$x = 0$$

 $\left(0,\frac{-1}{2}\right)$ is a maximum point

13 c)

As
$$f(x) I \propto x^2 - 4 = 0$$

 $x = \pm 2$ are the vertical asymptotoes. Ω

$$f(x) = \frac{x^2 + 2}{x^2 - 4}$$

$$f(x) = \frac{1 + \frac{2}{x^2}}{1 - \frac{4}{x^2}}$$

As
$$x \pm \infty, \frac{2}{x^2}, \frac{4}{x_2} \rightarrow 0$$

$$f(x) = 1$$

2

y = 1 is the horizontal a symptote

For intercepts, if x = 0, $y = \frac{-1}{2}$

If y = 0, real x does not exist so the curve has no x intercepts.

Critical values are $x = \pm 2$

-	x<-2	-2 <x<2< th=""><th>x >2</th></x<2<>	x >2
x^2+2	+	+	+
$x^{2}-4$	+		+
$\frac{x^2+2}{x^2-4}$	+	-	+

Putting
$$y = t^2x + c\left(\frac{1}{t} - t^3\right) = c^2$$

$${}^{x}\left(t^{2}x+c\left(\frac{1}{t}-t^{3}\right)\right)=c^{2}$$

$$t^2 x^2 + c \left(\frac{1}{t} - t^3\right) x = c^2$$

$$x^2 + c\left(\frac{1}{t^3} - t\right)x = \frac{c^2}{t^2}$$

By completion of squares

$$\left[x + \frac{c}{2}\left(\frac{1}{t^3} - t\right)\right]^2 = \frac{c^2}{t^2} + \frac{c^2}{4}\left(\frac{1}{t^3} - t\right)^2$$

$$\left[x + \frac{c}{2}\left(\frac{1}{t^3} - t\right)\right]^2 = \frac{c^2}{t^2} + \frac{c^2}{4t^6} - \frac{c^2}{2t^2} + \frac{c^2t^2}{4}$$

$$\left[x + \frac{c}{2}\left(\frac{1}{t^3} - t\right)\right]^2 = c^2\left(\frac{1}{2t^3} + \frac{t}{2}\right)^2$$

$$x + \frac{c}{2} \left(\frac{1}{t^3} - t \right) = \pm c \left(\frac{1}{2t^3} + \frac{t}{2} \right)$$

$$x = \frac{-c}{2} \left(\frac{1}{t^3} - t \right) \pm c \left(\frac{1}{2t^3} + \frac{t}{2} \right)$$

Either
$$x = \frac{-c}{2} \left(\frac{1}{t^3} - t \right) + c \left(\frac{1}{2t^3} + \frac{h}{2} \right)$$

x = ct

OR

my (marky water)

my (substring of y

My (solong the

	$x = \frac{-c}{2} \left(\frac{1}{t^3} - t \right) - \frac{c}{2} \left(\frac{1}{t^3} + t \right)$ $x = \frac{-c}{t^3}$ $x = -ct^{-3}$ $\sin c xy = c^2$ $y = \frac{c^2}{-ct^{-3}}$ $y = -ct^3$ $\therefore R \text{ is } (-ct^{-3}, -ct^{-3})$		
15a)	Let $t = \tan \frac{\theta}{2}$ $\frac{dt}{d\theta} = \frac{1}{2} \sec^2 \frac{\theta}{2}$		
	$\frac{d\theta}{d\theta} = \frac{1}{2}(1+t^2)$ $d\theta = \frac{2dt}{1+t^2}$ change of limits		
	$\begin{array}{ c c c c c }\hline \theta & o & \frac{\pi}{2} \\ \hline t & o & 1 \\ \hline \end{array}$	- 8 (cha	Je ling
	$\int_0^{\frac{\pi}{2}} \frac{5}{3\sin\theta + 4\cos\theta} d\theta = \int_0^1 \frac{5 \cdot \frac{2dt}{1+t^2}}{3\left(\frac{2t}{1+t^2}\right) + 4\left(\frac{1-t^2}{1+t^2}\right)}$		
=	$= \int_0^1 \frac{5dt}{3t + 2 - 2t^2}$ $= -\int_0^1 \frac{5dt}{2t^2 - 3t - 2}$ $= -\int_0^1 \frac{5dt}{2t^2 - 4t + t - 2}$		
	$= \int_0^1 \frac{5dt}{2t(t-2) + (t-2)}$ $= \int_0^1 \frac{5dt}{(t-2)(2t+1)}$		
=	$-\int_0^1 \frac{5dt}{(t-2)(2t+1)}$	f ,	

	Let $\frac{5}{(t-2)(2t+1)} = \frac{A}{(t-2)} + \frac{B}{2t+1}$
	5 = A(2t+1)+B(t-2)
	If $t=2$
	5 = 5A
	A = 1
	If $t = \frac{-1}{2}$
	$5 = \frac{-5B}{2}$
	B = -2 ✓
	$\int_{0}^{1} \frac{5dt}{(t-2)(2t+1)} = \int_{0}^{1} \left[\frac{1}{t-2} - \frac{2}{2t+1} \right] dt \Rightarrow \int_{0}^{1} \left(\frac{2}{2t+1} - \frac{1}{t-2} \right) dt .$
	$ = -In(t+2) \Big _{0}^{+} + In(2t+1) \Big _{0}^{+} $ $ = -In -1 +1n -2 +In3-In1 $
	= In 6
	₩ = 1.7918
	$\int_0^{\frac{\pi}{2}} \frac{5}{3\sin\theta + 4\cos\theta} d\theta - 1.7918 $
15 b	Let $u = \operatorname{In} x$ $\frac{du}{dx} = \frac{1}{x}$
	$\frac{dv}{dx} = x^2 \qquad v = \frac{x^3}{3}$
	$\int x^2 \ln x dx = \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \frac{1}{x} dx \qquad \text{my (subship)}$
	3
	$= \frac{x^{3}}{3} \ln x - \frac{1}{3} \int x^{2} dx$ $= \frac{x^{3}}{3} \ln x - \frac{1}{9} x^{3} + c$ $x^{3} \cos x = 0.5$
	$=\frac{x^3}{9}(3Inx-1)+c$
	25

8:42 Hrs 2;18 Am A

12