Tutorial 2---Questions

1. Consider a discrete system

$$y(k) = 1.3y(k-1) - 0.4y(k-2) + 2u(k)$$
.

- (a) Find its transfer function.
- (b) Check its stability.
- (c) What is the steady state of the output unit step response?
- 2. The discrete transfer function of a process is given by

$$\frac{Y(z)}{U(z)} = \frac{5(z+0.6)}{z^2 - z + 0.41}$$

- (a) Calculate the response y(k) to a unit step change in u(k).
- (b) What is the steady state value of y(k)?
- **3.** Calculate and sketch the unit step responses of the discrete transfer functions shown below for the first 6 sampling instants. What conclusions can you make about the effect of the pole-zero locations?

(a)
$$\frac{1}{1 + 0.7z^{-1}}$$

(b)
$$\frac{1}{1 - 0.7z^{-1}}$$

(c)
$$\frac{1 - 0.5z^{-1}}{\left(1 + 0.7z^{-1}\right)\left(1 - 0.3z^{-1}\right)}$$

4. The open loop transfer function of a discrete time system is given by

$$G(z) = \frac{1}{z^2 - \frac{3}{4}z + \frac{1}{8}}$$

Find the output time response when the input is the unit pulse.

5. Consider the difference equation given by

$$y(k+1)+0.5y(k) = x(k)$$

Obtain the response y(k) when the input x(k) is a unit step sequence.

6. Check the following for stability

(a)
$$u(k) = 0.5u(k-1) - 0.3u(k-2)$$

(b)
$$u(k) = 1.6u(k-1) - u(k-2)$$

(c)
$$u(k) = 0.8u(k-1) + 0.4u(k-2)$$

- 7. If the pole of a digital system is at z=-0.8, what is its equivalent pole in the s-domain, assuming a sampling frequency of 1 Hz?
- 8. An amplitude modulated signal

$$f(t) = \sin(4\omega_0 t)\cos(2\omega_0 t)$$

is sampled with $T = \frac{\pi}{3\omega_0}$ seconds. Sketch its two-sided spectrum of f(t). List all frequency components in the sampled signal.

9. Consider the spectra of a continuous signal below. Plot the spectrum of the sampled signal for the three sampling frequencies $f_s = 30,40$ and 60 Hz. Label all amplitudes and frequencies of interest. Which of the three sampling frequencies are acceptable?

10. A signal given by

$$f(t) = 2\sin 2\pi t \cos 4\pi t - \sin 6\pi t$$

is sampled at 2 Hz. What are the possible frequency components in the sampled signal?

- 11. A continuous time signal has a period of 2.5 sec. It is sampled at a period of 2 sec. What is the period of the sampled signal?
- 12. (a) A continuous signal given by

$$f(t) = 2\sin 2t - 3\sin 6t$$

is sampled at $\omega_s = 10$. Give 5 frequency components in the sampled signal.

- (b) If the poles of a continuous system are at $s = -2 \pm j1$, what are their equivalent poles in the z-domain, assuming a sampling frequency of 1 Hz?
- 13. (a) What is the zero-order hold and why is it the zero-order holder preferred in practice?
- (b) Find the zero-order hold discrete equivalent to

$$G(s) = \frac{s}{s^2 + a^2}.$$

Tutorial 2: Question & Solution

1. Consider a discrete system,

$$y(k) = 1.3y(k-1) - 0.4y(k-2) + 2u(k)$$
.

- (a) Find its transfer function.
- (b) Check its stability.
- (c) What is the steady state of the output unit step response?

Solution:

(a) Z-transform

$$Y(z) = 1.3z^{-1}Y(z) - 0.4z^{-2}Y(z) + 2U(z)$$

$$\frac{Y(z)}{U(z)} = \frac{2}{1 - 1.3z^{-1} + 0.4z^{-2}} = \frac{2z^2}{z^2 - 1.3z + 0.4}$$

(b) The poles are at

$$z_{1,2} = \frac{1}{2} \left[1.3 \pm \sqrt{1.3^2 - 4 \times 0.4} \right] = 0.5, 0.8$$

 $|z_{1,2}| < 1$, the system is stable.

(c) Use the final value theorem

$$y(\infty) = \lim_{z \to 1} (z - 1)Y(z) = \lim_{z \to 1} \frac{2}{z^2 - 1.3z + 0.4} = 20$$

2. The discrete transfer function of a process is given by

$$\frac{Y(z)}{U(z)} = \frac{5(z+0.6)}{z^2 - z + 0.41}$$

- (a) Calculate the response y(k) to a unit step change in u(k).
- (b) What is the steady state value of y(k)?

Solution:

(a) Unit step: $U(z) = \frac{z}{z-1}$. Therefore

$$Y(z) = \frac{5(z+0.6)}{z^2 - z + 0.41} \frac{z}{z-1}$$

Partial factorizing and taking inverse Z-transform,

$$Y(z) = \frac{5z - 19.5z^{2}}{z^{2} - z + 0.41} + \frac{19.5z}{z - 1}$$

$$= \frac{11.426e^{j2.594}z}{z - 0.64e^{j0.675}} + \frac{11.426e^{-j2.594}z}{z - 0.64e^{-j0.675}} + \frac{19.5z}{z - 1}$$

$$y(k) = 11.426e^{j2.594} \left(0.64e^{j0.675}\right)^{k} \cdot 1(k)$$

$$+ 11.426e^{-j2.594} \left(0.64e^{-j0.675}\right)^{k} \cdot 1(k) + 19.5 \cdot 1(k)$$

$$= 11.426(0.64)^{k} \left(e^{j2.594 + j0.675k} + e^{-j2.594 - j0.675k}\right) \cdot 1(k) + 19.5 \cdot 1(k)$$

$$= 22.85(0.64)^{k} \cos(0.675k + 2.594) \cdot 1(k) + 19.5 \cdot 1(k)$$

(b) Steady state value of y(k) is therefore 19.5. One may apply final value theorem to verify this result.

3. Calculate and sketch the unit step responses of the discrete transfer functions shown below for the first 6 sampling instants. What conclusions can you make about the effect of the pole-zero locations?

(a)
$$\frac{1}{1 + 0.7z^{-1}}$$

(b)
$$\frac{1}{1 - 0.7z^{-1}}$$

(c)
$$\frac{1 - 0.5z^{-1}}{\left(1 + 0.7z^{-1}\right)\left(1 - 0.3z^{-1}\right)}$$

Solution:

(a)

$$G(z) = \frac{1}{1 + 0.7z^{-1}} = \frac{z}{z + 0.7}$$

The system is stable with its pole at z = -0.7. The output is given by

$$Y(z) = \frac{z}{z+0.7} \frac{z}{z-1}$$

$$= \frac{10}{17} \frac{z}{z-1} + \frac{7}{17} \frac{z}{z+0.7}$$

$$y(k) = \frac{10}{17} \cdot 1(k) + \frac{7}{17} (-0.7)^k \cdot 1(k)$$

Calculating the first 6 samples:

$$\{y(k)\}=\{1,0.3,0.79,0.45,0.69,0.52,\cdots,10/17\}$$

Figure 1 shows the response is oscillatory. This is the characteristic of a system with some stable pole with a negative real part in the z-domain. The steady state value is 10/17.

Figure 1: Step response for pole at z=-0.7

(b)

$$G(z) = \frac{1}{1 - 0.7z^{-1}} = \frac{z}{z - 0.7}$$

$$Y(z) = \frac{z}{z - 0.7} \frac{z}{z - 1}$$

$$y(k) = \frac{10}{3} \cdot 1(k) - \frac{7}{3}(0.7)^{k} \cdot 1(k)$$

Calculating the first few samples:

$${y(k)} = {1,1.7,2.19,2.53,2.77,2.94\cdots,10/3}$$

Figure 2: Step response for pole at z=0.7

Figure 2 shows the response is exponentially growing but bounded. This is the characteristic of a system with its all poles with a positive real part in the z-domain. The steady state value is 10/3.

(c)

$$G(z) = \frac{1 - 0.5z^{-1}}{(1 + 0.7z^{-1})(1 - 0.3z^{-1})}$$

$$Y(z) = \frac{z(z - 0.5)}{(z + 0.7)(z - 0.3)} \frac{z}{z - 1}$$

$$= 0.42 \frac{z}{z - 1} + 0.09 \frac{z}{z - 0.3} + 0.49 \frac{z}{z + 0.7}$$

$$\{y(k)\} = \{1, 0.104, 0.6682, 0.254, 0.538, 0.338 \dots, 0.42\}$$

Figure shows that the response is oscillatory but bounded since the poles are at z = -0.7 and z = 0.3. The steady state value is 0.42.

Figure 3: Step response for pole at z=-0.7,0.3

4. The open loop transfer function of a discrete time system is given by

$$G(z) = \frac{1}{z^2 - \frac{3}{4}z + \frac{1}{8}}$$

Find the output time response when the input is the unit pulse.

Solution:

When the input is the unit pulse, the output of the system is simply the inverse z-transform of G(z). Thus,

$$g(k) = Z^{-1} \left\{ \frac{1}{z^2 - \frac{3}{4}z + \frac{1}{8}} \right\}$$

$$= Z^{-1} \left\{ \frac{1}{(z - \frac{1}{2})(z - \frac{1}{4})} \right\}$$

$$= Z^{-1} \left\{ \frac{4}{z - \frac{1}{2}} - \frac{4}{z - \frac{1}{4}} \right\}$$

$$= 4\left(\frac{1}{2}\right)^{k-1} 1(k-1) - 4\left(\frac{1}{4}\right)^{k-1} 1(k-1)$$

5. Consider the difference equation given by

$$y(k+1)+0.5y(k) = x(k)$$

Obtain the response y(k) when the input x(k) is a unit step sequence.

Solution:

Taking z-transform on both sides,

$$zY(z) + 0.5Y(z) = U(z)$$

When the input u(k) is a unit step sequence,

$$U(z) = \frac{z}{z-1}$$

Thus

$$Y(z) = \frac{z}{(z-1)(z+0.5)}$$

$$= z \left\{ \frac{1}{(z-1)(z+0.5)} \right\}$$

$$= z \left[\frac{2}{3} \frac{1}{z-1} - \frac{2}{3} \frac{1}{z+0.5} \right]$$

This leads to

$$y(k) = \frac{2}{3}1(k) - \frac{2}{3}(-0.5)^k 1(k).$$

6. Check the following for stability

(a)
$$u(k) = 0.5u(k-1) - 0.3u(k-2)$$

(b)
$$u(k) = 1.6u(k-1) - u(k-2)$$

(c)
$$u(k) = 0.8u(k-1) + 0.4u(k-2)$$

Solution:

(a) The characteristic equation (CE) is

$$z^2 - 0.5z + 0.3 = 0$$

The roots of it are

$$z_1 = 0.25 + j0.4873$$

$$z_2 = 0.25 - j0.4873$$

They are inside the unit circle. The system is <u>stable</u>.

(b) The CE is

$$z^2 - 1.6z + 1 = 0$$

The roots are

$$z_1 = 0.8 + j0.6$$

$$z_2 = 0.8 - j0.6$$

one sees $|z_1| = 1$ is on the unit circle. The system is <u>unstable</u>.

(c) The CE is

$$z^2 - 0.8z - 0.4 = 0$$

The roots are:

$$z_1 = 1.1483$$

$$z_2 = -0.3483$$

 $|z_1| > 1$ is outside the unit circle. The system is <u>unstable</u>.

7. If the pole of a digital system is at z=-0.8, what is its equivalent pole in the s-domain, assuming a sampling frequency of 1 Hz?

Solution:

The z-domain poles map through the transformation $z = e^{sT}$ or $s = \frac{1}{T} \ln z$. Hence in this case, the equivalent s-poles are obtained from

$$s = \frac{1}{T} \ln z = \frac{1}{T} \ln |z| e^{j \angle z}$$

$$= \ln |z| + j \angle z \quad \text{since } T = 1$$

$$= \ln 0.8 \pm j\pi \quad \text{since } \angle z = \pm \pi$$

$$= -0.223 \pm j\pi$$

8. An amplitude modulated signal

$$f(t) = \sin(4\omega_0 t)\cos(2\omega_0 t)$$

is sampled with $T = \frac{\pi}{3\omega_0}$ seconds. Sketch its two-sided spectrum of f(t). List all frequency components in the sampled signal.

Solution:

The sampling frequency is

$$\omega_s = \frac{2\pi}{T} = 6\omega_0 \ rad / s$$
.

The original signal can be converted into the following form

$$f(t) = \sin(4\omega_0 t)\cos(2\omega_0 t)$$
$$= \frac{1}{2} \left[\sin(6\omega_0 t) + \sin(2\omega_0 t) \right]$$

There are 2 frequency components in f(t): $2\omega_0$ and $6\omega_0$. (Hence in order to avoid aliasing, sampling frequency must be at least $12\omega_0$. Since in this case, we are sampling at only $6\omega_0$, we expect to see some aliasing.) The two-sided spectrum of f(t) is as follows:

$$F^*(s) = \frac{1}{T} \sum_{n=-\infty}^{n=\infty} F(s - jn\omega_s)$$

Let ω_c be the frequency components in f(t) and ω_d the frequency components in $f^*(t)$. Then,

$$\omega_d = \omega_c \pm n\omega_s, \omega_c = \pm 2\omega_0, \pm 6\omega_0, \omega_s = 6\omega_0,$$

$$n = 0, \quad \omega_d = \omega_c = -6\omega_0, -2\omega_0, 2\omega_0, 6\omega_0$$

$$n = 1, \quad \omega_d = \omega_c + \omega_s = 0, 4\omega_0, 8\omega_0, 12\omega_0 \qquad \dots$$

$$n = 2, \quad \omega_d = \omega_c + 2\omega_s = 6\omega_0, 10\omega_0, 14\omega_0, 18\omega_0$$

9. Consider the spectra of a continuous signal below. Plot the spectrum of the sampled signal for the three sampling frequencies $f_s = 30,40$ and 60 Hz. Label all amplitudes and frequencies of interest. Which of the three sampling frequencies are acceptable?

Solution:

Sampling frequency of 30 Hz

Sampling frequency of 40 Hz

Sampling frequency of 60 Hz

The plots have peak amplitudes of $10 \times \frac{1}{T_s}$ where $T_s = \frac{1}{f_s}$ since the original spectrum has a peak amplitude of 10. The acceptable frequencies are $40H_Z$ and $60H_Z$ because aliasing do not occur with these sampling frequencies.

10. A signal given by

$$f(t) = 2\sin 2\pi t \cos 4\pi t - \sin 6\pi t$$

is sampled at 2 Hz. What are the possible frequency components in the sampled signal?

Solution:

Rewriting f(t) as

$$f(t) = \sin(6\pi t) - \sin(2\pi t) - \sin(6\pi t)$$
$$= -\sin(2\pi t)$$

Hence f(t) only contains a sinusoidal signal of 1 Hz. After sampling at 2 Hz, the frequency components should be 1 Hz, 3 Hz, 5 Hz. et al.

11. A continuous time signal has a period of 2.5 sec. It is sampled at a period of 2 sec. What is the period of the sampled signal?

Solution:

The continuous time signal has a frequency of $f_c = 1/T_c = 0.4$ Hz. The sampling frequency is $f_s = 1/T_s = 0.5$ Hz. Hence the sampled signal has aliasing frequencies:

$$f_d = f_c \pm nf_s = \pm 0.4 \pm n0.5 = 0.4, 0.9, \dots; (-0.4 + 0.5) = 0.1, 0.6, \dots$$

The smallest frequency is 0.1 Hz which has a period of 10 sec. 10 sec is the period of the sampled signal. Why?

Consider $\sin(2\pi t)$ and $\sin(\pi t) = \sin(\frac{2\pi t}{2})$, what is their common period?

- $\sin(2\pi t)$ has its period: T=1 and frequency: f=1 Hz, see the blue curve in Figure below
- $\sin(\pi t) = \sin(\frac{2\pi t}{2})$ has T=2 and f=0.5, see the red curve in Figure below

One notes that

- $\sin(2\pi t)$ is of a higher frequency or faster-changing than $\sin(\pi t)$
- since $\sin(2\pi(t+2)) = \sin(2\pi t + 4\pi) = \sin(2\pi t)$, T=2 is also a period of $\sin(2\pi t)$. So T=2 is the common period for both $\sin(2\pi t)$ and $\sin(\pi t)$, and the corresponding frequency is 0.5 Hz. So, $\sin(\pi t)$, the slower function, matters.

One concludes that

- if the period of one sinusoidal function is a multiple of another sinusoidal function, then the common period of two is the larger of two
- Equivalently, if the frequency of one sinusoidal function is a multiple of another sinusoidal function, then the common frequency of two is the smaller of two.
- This can be extended to three or more sinusoidal functions.

12. (a) A continuous signal given by

$$f(t) = 2\sin 2t - 3\sin 6t$$

is sampled at $\omega_s = 10$. Give 5 frequency components in the sampled signal.

(b) If the poles of a continuous system are at $s = -2 \pm j1$, what are their equivalent poles in the z-domain, assuming a sampling frequency of 1 Hz?

Solution:

(a) f(t) contains frequency components $\omega_c = 2.6 rad/s$. After sampling at $\omega_s = 10$, the frequency components should be

$$\omega_d = \omega_c + k\omega_s = 2,6,12,16,22,...$$

(b) The z-domain poles map through the transformation $z = e^{sT}$. Hence in this case, T=1 and the equivalent z-poles are obtained from

$$z = e^{sT} = e^{-2 \pm j1} = e^{-2} e^{\pm j1} = 0.0731 \pm j0.1139$$

- 13. (a) What is the zero-order hold and why is it the zero-order holder preferred in practice?
- (b) Find the zero-order hold discrete equivalent to

$$G(s) = \frac{s}{s^2 + a^2}$$
.

Solution:

(a) The samples taken from the continuous signal f(t) are represented by

$$f^*(t) = \sum_{k=-\infty}^{\infty} f(t) \delta(t - kT)$$

The zero-order holder is defined as the means to extrapolate impulses to piecewise constants:

$$f_h(t) = f(kT), \quad kT \le t \le kT + T$$

It is preferred as it is simple, realizable, has reasonable performance.

$$G(z) = (1 - z^{-1})Z\left\{\frac{G(s)}{s}\right\}$$

$$\frac{G(s)}{s} = \frac{1}{s^2 + a^2} = \frac{1}{a} \frac{a}{s^2 + a^2}$$

$$\frac{a}{s^2 + a^2} \longleftrightarrow \frac{z \sin aT}{z^2 - (2\cos aT)z + 1}$$

$$G(z) = \frac{1}{a} \frac{(\sin aT)(z - 1)}{z^2 - (2\cos aT)z + 1}$$