Assignment 5

S Goutham Sai - CS20BTECH11042

Download all python codes from

https://github.com/GouthamSai22/AI1103/blob/ main/Assignment5/Codes

and latex-tikz codes from

https://github.com/GouthamSai22/AI1103/blob/ main/Assignment5/main.tex

1 PROBLEM 103 FROM CSIR UGC NET - DEC 2012

Let $\{X_n : n > 0\}$ and X be random variables defined on a common probability space. Further assume that $\{X_n \ge 0 \ \forall n > 0\}$ and

$$\Pr(X = x) = \begin{cases} p, & x = 0\\ 1 - p, & x = 1\\ 0, & \text{otherwise} \end{cases}$$
 (1.0.1)

where, $0 \le p \le 1$. Which of the following statements are necessarily true?

- 1) If p = 0 and $X_n \xrightarrow{d} X$, $X_n \xrightarrow{p} X$
- 2) If p = 1 and $X_n \xrightarrow{d} X$, then $X_n \xrightarrow{p} X$
- 3) If $0 and <math>X_n \xrightarrow{d} X$, then $X_n \xrightarrow{p} X$ 4) If $X_n \xrightarrow{p} X$, then $X_n \xrightarrow{a.s} X$

2 Solution

For any given sequence of real-valued random variables $X_1, X_2, X_3, \dots, X_n$ and a random variable X, let us look at some definitions

Definition 1 (Convergence in Distribution or Weak convergence).

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \tag{2.0.1}$$

where F_{X_n} and F_X are the cumulative probability distribution functions of X_n and X respectively.

Definition 2 (Convergence in Probability).

$$\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0 \,\forall \epsilon > 0 \tag{2.0.2}$$

This is stronger than the convergence in distribution but weaker than Almost sure convergence.

Definition 3 (Almost sure Convergence).

$$\Pr\left(\lim_{n\to\infty} X_n = X\right) = 1\tag{2.0.3}$$

This type of convergence is stronger than both convergence in distribution and probability.

- In general, stronger statements imply weaker statements but not vice versa, i.e. Convergence in probability implies convergence in distribution and Almost sure convergence implies convergence in probability.
- We shall use the following statement from Portmanteau's Lemma in the following proof:

Lemma 1 (Portmanteau's Lemma). The sequence $X_1, X_2, X_3, \dots, X_n$ converges in distribution to X if and only if

$$\limsup \Pr(X_n \in F) \le \Pr(X \in F) \tag{2.0.4}$$

for every closed set F;

Lemma 2. Convergence in distribution implies convergence in probability if X is a constant.

Proof:

- Let $\epsilon > 0$. Let X = c and the sequence $X_1, X_2, X_3, \dots, X_n$ converges to X in distribution.
- Let

$$S = \{X : |X - c| > \epsilon\}$$
 (2.0.5)

$$\implies \Pr(|X_n - c| > \epsilon) = \Pr(X_n \in S) \quad (2.0.6)$$

• From 1,

$$\therefore \lim_{n \to \infty} X_n = c \tag{2.0.7}$$

$$\implies \limsup_{n \to \infty} \Pr(X_n \in S) \le \Pr(c \in S) \quad (2.0.8)$$

$$\therefore \Pr(c \in S) = 0 \text{ (By defn)} \qquad (2.0.9)$$

$$\implies \limsup_{n \to \infty} \Pr(X_n \in S) \le 0 \tag{2.0.10}$$

$$\implies \lim_{n \to \infty} \Pr(X_n \in S) \le 0 \tag{2.0.11}$$

$$\implies \lim_{n \to \infty} \Pr(X_n \in S) = 0 \text{ (Probability } \ge 0)$$
(2.0.12)

• Thus, by definition,

Pr
$$(|X_n - c| > \epsilon) = 0$$
 for any $\epsilon > 0$ given,

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \text{ and } X \text{ is constant}$$
(2.0.13)

Let us look at each option one after another.

1) Given,

$$p = 0 \implies X = 1$$

Since X is a constant, from Lemma 1, we can say that option 1 is true.

2) Given,

$$p = 1 \implies X = 0$$

Since X is a constant, from Lemma 1, we can say that option 2 is true.

3) Given,

$$0$$

Since X is not a constant, we can say that option 3 is false.

4) Since Convergence in probability is weaker than Almost sure convergence, we can say that option 4 is false as a weaker statement does not imply a stronger statement.

Therefore, the true statements from the options are options 1 and 2.