Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe, Christian Szegedy Google

Reviewed by Zhao Song

December 17, 2015

1

Stochastic gradient descent (SGD)

Minimize the expected loss over the training set:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{E}_{x \sim D}[\ell(x, \theta)]$$

Parameters update according to the gradient of mini-batches

$$\theta \leftarrow \theta - \frac{\alpha}{m} \sum_{i=1}^{m} \frac{\partial \ell(x_i, \theta)}{\partial \theta}$$

Careful tuning of learning rates and initial parameters.

Internal covariate shift

• Covariate shift: Changes of input distribution to a learning system

$$\ell = F(x, \theta)$$

Internal covariate shift: Extension to the deep network

$$\ell = F_2(F_1(u, \theta_1), \theta_2)$$
$$= F_2(x, \theta_2)$$

Reducing internal covariate shift

Whitening the inputs to each layer:

$$x \leftarrow \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x]}}$$

However, gradient descent does not take into account the normalization [loffe and Szegedy 2015].

Mean and variance of an activation depend on model parameters

$$\frac{\partial \operatorname{E}[x]}{\partial \theta}$$
 and $\frac{\partial \operatorname{Var}[x]}{\partial \theta}$

Batch normalizing transform

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;
Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

Backpropagation with batch normalization

Training a batch-normalized network

Input: Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^{K}$

Output: Batch-normalized network for inference, Nan

- 1: $N_{\rm BN}^{\rm tr} \leftarrow N$ // Training BN network
- 2: for $k = 1 \dots K$ do
- 3: Add transformation $y^{(k)} = \text{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N_{\text{BN}}^{\text{tr}}$ (Alg. 1)
- Modify each layer in N^{tr}_{BN} with input x^(k) to take y^(k) instead
- 5: end for
- 6: Train $N_{\text{th}}^{\text{tr}}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^K$
- 7: $N_{\rm BN}^{\rm inf} \leftarrow N_{\rm BN}^{\rm tr}$ // Inference BN network with frozen // parameters
- 8: **for** k = 1 ... K **do**
- 9: // For clarity, $x \equiv x^{(k)}$, $\gamma \equiv \gamma^{(k)}$, $\mu_B \equiv \mu_B^{(k)}$, etc.
- 10: Process multiple training mini-batches B, each of size m, and average over them:

$$E[x] \leftarrow E_B[\mu_B]$$

 $Var[x] \leftarrow \frac{m}{m-1}E_B[\sigma_B^2]$

- 11: In $N_{\rm BN}^{\rm inf}$, replace the transform $y = {\rm BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{{\rm Var}[x] + \epsilon}} \cdot x + \left(\beta \frac{\gamma \, {\rm E}[x]}{\sqrt{{\rm Var}[x] + \epsilon}}\right)$
- 12: end for

Algorithm 2: Training a Batch-Normalized Network

Experiments

MNIST

- 3 fully-connect hidden layers with 100 nodes in each layer.
- Sigmoid activation function.
- Mini-batch size to be 60.

ImageNet

- The Inception network [Szegedy et al. 2014].
- SGD with momentum [Sutskever et al. 2013].
- Mini-batch size to be 32.

Learning curve on MNIST [loffe 2015]

Learning curve on ImageNet with single networks

Classification results on ImageNet

Model	Resolution	Crops	Models	Top-1 error	Top-5 error
GoogLeNet ensemble	224	144	7	-	6.67%
Deep Image low-res	256	-	1	-	7.96%
Deep Image high-res	512	-	1	24.88	7.42%
Deep Image ensemble	up to 512	-	-	-	5.98%
MSRA multicrop	up to 480	-	-	-	5.71%
MSRA ensemble	up to 480	-	-	-	4.94%*
BN-Inception single crop	224	1	1	25.2%	7.82%
BN-Inception multicrop	224	144	1	21.99%	5.82%
BN-Inception ensemble	224	144	6	20.1%	4.82%*

References I

- Sergey loffe. Batch Normalization Presentation. 2015.
- Sergey loffe and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." : ICML. 2015.
- Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. "On the importance of initialization and momentum in deep learning.": ICML. 2013.
- Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." arXiv preprint arXiv:1409.4842 (2014).