Report

Home Assignment, DST15 $_035$

Dennis Bennhage & Hampus Lidin

May 14th, 2015

1 System Overview

The system we have constructed is intended to perform the first step in *Gauss elimination* on any square matrix, while it has been specifically optimized for any 24x24 square matrix. It is optimized to yield the most efficient execution, whilst keeping the price as low as possible. Therefore the performance has often been compromised in favour of cheaper components.

The software will reduce the matrix to an *upper triangle form*, which is characterized as a matrix with it's diagonal containing only ones, and all elements below the diagonal containing only zeros. The second step in the elimination process, *back substitution*, is not handled by this system.

2 Optimization

Both software and hardware have been in consideration when optimizing the system. The hardware is heavily dependent on how the program is executed, therefore the program have been rewritten in such way that it would be beneficial for an optimal hardware configuration.

2.1 Software

The algorithm iterates the matrix in several different loops. The outermost loop iterates along the diagonal (the pivot elements) of the matrix. In each loop, we do the two following operations; we minimize the current row by dividing each element with the pivot element, and then we subtract each underlying row with the previously minimized row multiplied with the respective pivot elements. By the end of the first outmost loop, we end up with a matrix with the first pivot element as a one, and all the elements below it as zeros, with the first row in its final form. Then successively after each row being computed, we will end up with our result matrix.

The first approach for writing the program was to directly translate the given C-code to Assembler, and not bothering about any optimizations. After confirming that we had a working program, we started find places in the code where we could do something to speed up the performance. One optimization we did in the beginning, was to convert the use of arrays into pointers instead. With arrays, you have to calculate each new address for every iteration of the loop. This will increase the number of instructions executed in each loop, especially in the most deep-nested loops. In the algorithm we use, we have a loop nested inside two other loops. By using pointers instead, we can omit the use of indices of the arrays, and instead only increment the address by one byte.

	Gothenburg						Stockholm						
Year	Jan	Feb	Mar	Apr	May	Jun	Jan	Feb	Mar	Apr	May	Jun	
2002	153	95	48	27	71	116	65	42	28	8	34	94	
2003	71	34	21	96	77	64	19	21	2	44	58	44	
2004	65	38	61	36	27	83	37	29	25	13	47	108	
2005	126	43	41	25	39	73	44	38	14	11	56	72	
2006	66	41	52	94	71	42	10	29	28	28	46	32	
2007	159	28	81	40	57	130	73	26	19	17	25	67	
2008	166	89	108	33	11	67	69	23	41	28	17	56	
2009	57	31	48	11	80	58	21	24	36	5	25	80	
2010	30	48	46	32	31	53	26	29	22	23	31	33	
2011	72	65	40	34	67	58	33	38	11	10	34	57	
2012	88	55	9	75	74	95	42	45	18	62	20	160	
2013	44	17	3	46	73	139	29	30	3	27	17	46	
2014	66	107	32	47	81	52	39	35	43	25	35	28	
Average	89	53	45	46	58	79	39	31	22	23	34	67	
Normal value	61	40	49	41	49	59	39	27	26	30	30	45	
(1961-1990)													
	•					'							
Year	Jul	l Aug	Sep	Oct	Nov	\mathbf{Dec}	Jul	Aug	Sep	Oct	Nov	\mathbf{Dec}	
2002	101	25	17	0.0	99	1.0	114	- 1	1.9	45	20	0	

Year	Jul	\mathbf{Aug}	\mathbf{Sep}	\mathbf{Oct}	Nov	\mathbf{Dec}	Jul	\mathbf{Aug}	\mathbf{Sep}	\mathbf{Oct}	Nov	\mathbf{Dec}
2002	101	35	17	86	82	16	114	4	13	45	32	9
2003	143	32	25	101	76	119	75	53	20	32	43	78
2004	98	128	100	115	82	76	55	49	39	45	47	40
2005	107	83	60	75	93	53	122	65	11	28	44	54
2006	78	190	55	202	179	193	33	146	23	98	43	34
2007	129	56	121	47	82	108	51	17	74	39	48	45
2008	57	167	81	142	100	37	42	154	27	64	63	50
2009	170	79	56	84	128	53	89	54	32	68	52	45
2010	159	118	74	130	80	48	74	105	73	34	58	45
2011	121	156	129	107	39	146	13	90	60	44	14	75
2012	97	88	146	146	92	78	61	121	58	72	56	66
2013	51	49	56	106	72	154	43	55	39	58	61	51
2014	39	142	36				44	115	83			
Average	104	102	74	103	85	83	63	79	42	48	43	46
Normal value (1961-1990)	68	75	80	83	82	72	72	66	55	50	53	46

Table 1: Precipitation, mm/month

3 Results

References

- [1] Monthly observations of precipitation 2002-2014, SMHI. http://data.smhi.se/met/climate/time_series/month/vov_pdf/, visited 2014-10-12.
- [2] Climate Data and Data Related Products, WMO. http://www.wmo.int/pages/themes/climate/climate_data_and_products.php, visited 2014-10-11.
- [3] Student t-Value Calculator, Dr. Daniel Soper, 2014. http://www.danielsoper.com/statcalc3/calc.aspx?id=10, visited 2014-10-12.