Redes Mesh e Power Line Communication

Caio Bonani Carvalho Luiz Fernando de Cristo Moloni

Agenda

- Projeto
- Objetivos
- Resumo PLC
- Resumo Mesh
- PLC Last Mile
- Mesh IoT
- Proposta
- Considerações Finais

Projeto

Agricultura Inteligente: Viabilização por meio de Power Line Communication e Redes Mesh

Caio Bonani Carvalho¹ Luiz Fernando de Cristo Moloni¹

¹Bacharelado em Ciência e Tecnologia Departamento de Ciência e Tecnologia Instituto de Ciência e Tecnologia Universidade Federal de São Paulo (UNIFESP) Campus São José dos Campos

Objetivos

- Demonstrar o uso e funcionamento das duas tecnologias;
- Analisar e garantir o funcionamento delas nos casos propostos, separadamente;
- Garantir o funcionamento das duas em conjunto;
- Atestar a compatibilidade e interoperabilidade com outras tecnologias.

Power Line Communication

 Utiliza a mesma rede elétrica para transmitir dados.

do PLC

- Modulação;
- Multiplexação.

Fig 2 Last Mile

Redes Mesh

- Caracteriza-se por nós Wireless que se comunicam diretamente com um ou mais nós, que operam como um "roteador", sem a necessidade de um ponto de acesso central.
- Realizam uma varredura das diversas possibilidades de rotas de fluxo de dados.

Power Line Communication - BPL

Broadband Power Line (BPL) - Banda Larga através do PLC.

Frequency Band	Technology Name	Frequency Range	Transmission Distance	Physical Layer Speed	International Standard
Broadband	HomePlug	2.0 - 86 MHz	Short	< 1.3 Gbps ^[4]	IEEE 1901
	G.hn	2.0 - 200 MHz		< 4.0 Gbps ^[5]	ITU-T G.9960
					ITU-T G.9961
					ITU-T G.9962
					ITU-T G.9963
					ITU-T G.9964
	Nessum WIRE	0.06 - 125 MHz ^(*)	Long to Short	7.8125 Mbps to 1.0 Gbps ^[6]	IEEE 1901
					ITU-T G.9905

Fig 4 Tabela Banda Larga PLC

Redes de {Alta, Média, Baixa} Tensão = {+36kV, 1-36kV, 127v-220v}

Power Line Communication - Arquitetura BPL

Fig 5 Arquitetura BPL

Redes Mesh e IoT

Fig 6 Componentes integrantes de um sensor IoT

Redes Mesh - Casos de Uso

- Monitorização de indicadores como a temperatura e a humidade ao longo do processo de armazenagem e transporte de fruta, usando o dispositivo ESP8226.
- Sensores agrícolas, sistemas de posicionamento para detecção de localização de sensores, atuadores como sprinklers, nebulizadores, sistema de irrigação controlado por válvula, etc

Fig 9 Distribuição dos dispositivos em um camião

Projeto - Justificativa - I

A falta de infraestrutura de internet nas áreas rurais é um problema que dificulta o acesso à tecnologia IoT, que pode ser usada para melhorar a produtividade agrícola.

Uma solução para esse problema é usar tecnologias como PLC/BPL, que aproveitam infraestruturas existentes para levar internet a áreas remotas.

Projeto - Justificativa - II

Na agricultura, a loT pode ser usada para coletar dados sobre as condições ambientais, como temperatura, umidade e luminosidade. Esses dados podem ser usados para tomar decisões mais inteligentes sobre a irrigação, a fertilização e outros aspectos do cultivo.

A automação de processos agrícolas também é possível com a IoT. Por exemplo, sensores podem ser usados para controlar o funcionamento de estufas, garantindo que as condições ideais sejam mantidas para o crescimento das plantas.

Projeto - Proposta

Projeto - Conclusões

- PLC/BPL e Mesh separadamente são viavéis;
- Existem aplicações de BPL com Wi-Fi, ou seja, utilizar Mesh não seria um problema.
- Mesh possui compatibilidade com outras tecnologias como ZigBee e LoRA.

Dessa forma, o projeto é totalmente viável do quesito tecnológico.

Obrigado!!

Caio Bonani Carvalho Luiz Fernando de Cristo Moloni

https://github.com/CaioBonani/Projeto-FInal_REDES

{caio.bonani, luiz.moloni}@unifesp.br