MTH101A: 2021 - 2022

Mid-Semester Exam: Question 2 Time: 10:30 am - 11:00 am

Q1. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \cos(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}.$$

Using ϵ - δ definition of continuity, show that the function f(x) is not continuous at 0. Find a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence. [8 marks]

(b) Let $f:(a,b) \to \mathbb{R}$ be an infinitely differentiable function, and let $x_0 \in (a,b)$. Suppose there exist $k \geq 1$ such that $f''(x_0) = f^{(3)}(x_0) = \cdots = f^{(2k)} = 0$. If $f^{(2k+1)}(x_0) \neq 0$ then show that x_0 is a point of inflection for f. [7 marks]