## **SBML Model Report**

# Model name: "Schliemann2011\_TNF\_ProAntiApoptosis"



May 6, 2016

## 1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah<sup>1</sup> and Monica Schliemann<sup>2</sup> at January 16<sup>th</sup> 2012 at 2:48 p.m. and last time modified at March eighth 2012 at 11:11 a.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 3        |
| species types     | 0        | species              | 47       |
| events            | 0        | constraints          | 0        |
| reactions         | 88       | function definitions | 0        |
| global parameters | 0        | unit definitions     | 6        |
| rules             | 0        | initial assignments  | 0        |

#### **Model Notes**

This model is from the article:

#### Heterogeneity Reduces Sensitivity of Cell Death for TNF-Stimuli

Schliemann M, Bullinger E, Borchers S, Allgower F, Findeisen R, Scheurich P. <u>BMC Syst Biol.</u> 2011 Dec 28;5(1):204. 22204418,

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, viji@ebi.ac.uk

 $<sup>^2</sup> Otto\text{-}von\text{-}Guericke\text{-}Universitt\ Mag deburg, \texttt{monica.schliemann@systems-biology.eu}$ 

#### **Abstract:**

BACKGROUND: Apoptosis is a form of programmed cell death essential for the maintenance of homeostasis and the removal of potentially damaged cells in multicellular organisms. By binding its cognate membrane receptor, TNF receptor type 1 (TNF-R1), the proinflammatory cytokine Tumor Necrosis Factor (TNF) activates pro-apoptotic signaling via caspase activation, but at the same time also stimulates nuclear factor kappaB (NF-kappaB)-mediated survival pathways. Differential dose-response relationships of these two major TNF signaling pathways have been described experimentally and using mathematical modeling. However, the quantitative analysis of the complex interplay between pro- and anti-apoptotic signaling pathways is an open question as it is challenging for several reasons: the overall signaling network is complex, various time scales are present, and cells respond quantitatively and qualitatively in a heterogeneous manner.RESULTS:This study analyzes the complex interplay of the crosstalk of TNF-R1 induced pro- and anti-apoptotic signaling pathways based on an experimentally validated mathematical model. The mathematical model describes the temporal responses on both the single cell level as well as the level of a heterogeneous cell population, as observed in the respective quantitative experiments using TNF-R1 stimuli of different strengths and durations. Global sensitivity of the heterogeneous population was quantified by measuring the average gradient of time of death versus each population parameter. This global sensitivity analysis uncovers the concentrations of Caspase-8 and Caspase-3, and their respective inhibitors BAR and XIAP, as key elements for deciding the cell's fate. A simulated knockout of the NF-kappaB-mediated anti-apoptotic signaling reveals the importance of this pathway for delaying the time of death, reducing the death rate in the case of pulse stimulation and significantly increasing cell-to-cell variability.CONCLUSIONS:Cell ensemble modeling of a heterogeneous cell population including a global sensitivity analysis presented here allowed us to illuminate the role of the different elements and parameters on apoptotic signaling. The receptors serve to transmit the external stimulus; procaspases and their inhibitors control the switching from life to death, while NFkappaB enhances the heterogeneity of the cell population. The global sensitivity analysis of the cell population model further revealed an unexpected impact of heterogeneity, i.e. the reduction of parametric sensitivity.

**Note:** SBML model generated from Matlab system description on 12-July-2011 21:08:15 by exportSBML Copyright Eric Bullinger 2007-2011

#### 2 Unit Definitions

This is an overview of eleven unit definitions of which five are predefined by SBML and not mentioned in the model.

#### 2.1 Unit a mole

**Definition** amol

## 2.2 Unit per\_second

**Definition**  $s^{-1}$ 

## **2.3 Unit** pl

**Definition** pl

## 2.4 Unit a\_mole\_per\_second

**Definition** amol  $\cdot$  s<sup>-1</sup>

## 2.5 Unit per\_a\_mole\_per\_second

**Definition**  $amol^{-1} \cdot s^{-1}$ 

## 2.6 Unit per\_a\_mole\_squared\_per\_second

**Definition**  $amol^{-2} \cdot s^{-1}$ 

#### 2.7 Unit substance

**Notes** Mole is the predefined SBML unit for substance.

**Definition** mol

#### 2.8 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

#### 2.9 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition**  $m^2$ 

#### 2.10 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

## 2.11 Unit time

**Notes** Second is the predefined SBML unit for time.

**Definition** s

## 3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

|                            |      | 1                  |                    | 1           |          |                |         |
|----------------------------|------|--------------------|--------------------|-------------|----------|----------------|---------|
| Id                         | Name | SBO                | Spatial Dimensions | Size        | Unit     | Constant       | Outside |
| cytoplasm<br>extracellular |      | 0000290<br>0000290 | 3                  | 3.2<br>1344 | pl<br>pl | Z              |         |
| nucleus                    |      | 0000290            | 3                  | 1.056       | pl<br>pl | $ \mathbf{Z} $ |         |

## 3.1 Compartment cytoplasm

This is a three dimensional compartment with a constant size of 3.2 pl.

SBO:0000290 physical compartment

## 3.2 Compartment extracellular

This is a three dimensional compartment with a constant size of 1344 pl.

SBO:0000290 physical compartment

## 3.3 Compartment nucleus

This is a three dimensional compartment with a constant size of 1.056 pl.

SBO:0000290 physical compartment

## 4 Species

This model contains 47 species. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id                        | Name                 | Compartment      | Derived Unit | Constant | Boundary<br>Condi-<br>tion |
|---------------------------|----------------------|------------------|--------------|----------|----------------------------|
| TNFR_E                    | TNFR_E               | extracellular    | amol         |          |                            |
| TNF_E                     | TNF_E                | extracellular    | amol         |          | $\Box$                     |
| TNF_TNFR_E                | TNF:TNFR_E           | extracellular    | amol         |          | $\Box$                     |
| TNFR                      | TNFR                 | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| RIP                       | RIP                  | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TRADD                     | TRADD                | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TRAF2                     | TRAF2                | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| FADD                      | FADD                 | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TNF_TNFR_TRADD            | TNF:TNFR:TRADD       | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TNFRC1                    | TNFRC1               | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TNFRCint1                 | TNFRCint1            | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TNFRCint2                 | TNFRCint2            | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TNFRCint3                 | TNFRCint3            | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TNFRC2                    | TNFRC2               | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| FLIP                      | FLIP                 | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TNFRC2_FLIP               | TNFRC2:FLIP          | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TNFRC2_pCasp8             | TNFRC2:pCasp8        | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| TNFRC2_FLIP_FLIP          | TNFRC2:FLIP:FLIP     | ${	t cytoplasm}$ | amol         |          |                            |
| TNFRC2_pCasp8-<br>_pCasp8 | TNFRC2:pCasp8:pCasp8 | cytoplasm        | amol         |          |                            |
| TNFRC2_FLIP-<br>_pCasp8   | TNFRC2:FLIP:pCasp8   | cytoplasm        | amol         |          |                            |

| Id                | Name                         | Compartment      | Derived Unit | Constant | Boundary<br>Condi-<br>tion |
|-------------------|------------------------------|------------------|--------------|----------|----------------------------|
| TNFRC2_FLIP-      | TNFRC2:FLIP:pCasp8:RIP:TRAF2 | cytoplasm        | amol         |          |                            |
| _pCasp8_RIP_TRAF2 |                              |                  |              |          |                            |
| IKK               | IKK                          | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| IKKa              | IKKa                         | ${	t cytoplasm}$ | amol         |          | $\Box$                     |
| A20               | A20                          | ${	t cytoplasm}$ | amol         |          |                            |
| NFkB              | NFkB                         | ${	t cytoplasm}$ | amol         |          |                            |
| IkBa              | IkBa                         | ${	t cytoplasm}$ | amol         |          |                            |
| IkBa_NFkB         | IkBa:NFkB                    | ${	t cytoplasm}$ | amol         |          |                            |
| PIkBa             | PIkBa                        | ${	t cytoplasm}$ | amol         |          |                            |
| $NFkB_N$          | NFkB_N                       | nucleus          | amol         |          |                            |
| IkBa_N            | IkBa_N                       | nucleus          | amol         |          |                            |
| IkBa_NFkB_N       | IkBa:NFkB_N                  | nucleus          | amol         |          |                            |
| A20_mRNA          | A20_mRNA                     | nucleus          | amol         |          |                            |
| IkBa_mRNA         | IkBa_mRNA                    | nucleus          | amol         |          |                            |
| XIAP_mRNA         | XIAP_mRNA                    | nucleus          | amol         |          |                            |
| FLIP_mRNA         | FLIP_mRNA                    | nucleus          | amol         |          |                            |
| BAR               | BAR                          | ${	t cytoplasm}$ | amol         |          |                            |
| XIAP              | XIAP                         | cytoplasm        | amol         |          | $\Box$                     |
| pCasp8            | pCasp8                       | cytoplasm        | amol         |          |                            |
| pCasp3            | pCasp3                       | cytoplasm        | amol         |          | $\Box$                     |
| pCasp6            | pCasp6                       | cytoplasm        | amol         |          | $\Box$                     |
| Casp8             | Casp8                        | cytoplasm        | amol         |          |                            |
| Casp3             | Casp3                        | cytoplasm        | amol         |          | $\Box$                     |
| Casp6             | Casp6                        | cytoplasm        | amol         |          | $\Box$                     |
| BAR_Casp8         | BAR:Casp8                    | cytoplasm        | amol         |          |                            |
| XIAP_Casp3        | XIAP:Casp3                   | cytoplasm        | amol         |          |                            |
| PARP              | PARP                         | cytoplasm        | amol         |          |                            |

| Id    | Name  | Compartment | Derived Unit | Constant | Boundary<br>Condi-<br>tion |
|-------|-------|-------------|--------------|----------|----------------------------|
| cPARP | cPARP | cytoplasm   | amol         |          |                            |

## **5 Reactions**

This model contains 88 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

| N⁰ | Id  | Name                                   | Reaction Equation                                            | SBO     |
|----|-----|----------------------------------------|--------------------------------------------------------------|---------|
| 1  | J1  | TNFR transport into membrane           | $TNFR \longrightarrow TNFR\_E$                               | 0000185 |
| 2  | J2  | TNFR production                        | $\emptyset \longrightarrow TNFR$                             | 0000393 |
| 3  | J3  | TNFR degradation                       | $TNFR\_E \longrightarrow \emptyset$                          | 0000179 |
| 4  | J4  | RIP turnover                           | $\emptyset \Longrightarrow RIP$                              | 0000357 |
| 5  | J5  | TRADD turnover                         | $\emptyset \Longrightarrow TRADD$                            | 0000357 |
| 6  | J6  | TRAF2 turnover                         | $\emptyset \Longrightarrow TRAF2$                            | 0000357 |
| 7  | J7  | FADD turnover                          | $\emptyset \Longrightarrow FADD$                             | 0000357 |
| 8  | J8  | TNFTNFR degradation                    | $TNF\_TNFR\_E \longrightarrow \emptyset$                     | 0000179 |
| 9  | J9  | TNF:TNFR:TRADD degradation             | $TNF\_TNFR\_TRADD \longrightarrow \emptyset$                 | 0000179 |
| 10 | J10 | TNFR Complex1 degradation              | TNFRC1 $\longrightarrow \emptyset$                           | 0000179 |
| 11 | J11 | TNFR Complex2 degradation              | $TNFRC2 \longrightarrow \emptyset$                           | 0000179 |
| 12 | J12 | TNFR Complex2FLIP degradation          | $TNFRC2\_FLIP \longrightarrow \emptyset$                     | 0000179 |
| 13 | J13 | TNFR Complex2FLIPFLIP degradation      | $TNFRC2\_FLIP\_FLIP \longrightarrow \emptyset$               | 0000179 |
| 14 | J14 | TNFR Complex2Procaspase-8 degradation  | $TNFRC2_pCasp8 \longrightarrow \emptyset$                    | 0000179 |
| 15 | J15 | TNFR Complex2Procaspase-8Procaspase-8  | $TNFRC2\_pCasp8\_pCasp8 \longrightarrow \emptyset$           | 0000179 |
|    |     | degradation                            |                                                              |         |
| 16 | J16 | TNFR Complex2FLIPProcaspase-8 degrada- | TNFRC2_FLIP_pCasp8 $\longrightarrow \emptyset$               | 0000179 |
|    |     | tion                                   |                                                              |         |
| 17 | J17 | TNFR Complex2FLIPProcaspase-8RIP-      | $TNFRC2\_FLIP\_pCasp8\_RIP\_TRAF2 \longrightarrow \emptyset$ | 0000179 |
|    |     | TRAF2 degradation                      |                                                              |         |
| 18 | J18 | TNFTNFR binding and release            | $TNFR_E + TNF_E \Longrightarrow TNF_TNFR_E$                  | 0000526 |
| 19 | J19 | TNFTNFRTRADD building                  | $TNF\_TNFR\_E + TRADD \longrightarrow TNF\_TNFR\_TRADD$      | 0000526 |
| 20 | J20 | TNFR Complex1 building                 | $RIP+TRAF2+TNF\_TNFR\_TRADD \longrightarrow TNFRC1$          | 0000526 |
|    |     |                                        |                                                              |         |

| Nº | Id  | Name                                      | Reaction Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SBO                             |
|----|-----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 21 | J21 | Receptor internalisation step1            | TNFRC1 → TNFRCint1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000395                         |
| 22 | J22 | Receptor internalisation step2            | $TNFRCint1 \longrightarrow RIP + TRAF2 + TNFRCint2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000395                         |
| 23 | J23 | Receptor internalisation step3            | 2 FADD + TNFRCint2 → TNFRCint3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000395                         |
| 24 | J24 | Receptor internalisation step4            | $TNFRCint3 \longrightarrow TNFRC2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000395                         |
| 25 | J25 | FLIP recruitment to TNFR Complex2         | $TNFRC2 + FLIP \longrightarrow TNFRC2\_FLIP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000526                         |
| 26 | J26 | FLIP recruitment to TNFR Complex2FLIP     | $FLIP + TNFRC2\_FLIP \longrightarrow TNFRC2\_FLIP\_FLIP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000526                         |
| 27 | J27 | Procaspase-8 recruitment to TNFR Complex2 | TNFRC2+pCasp8 → TNFRC2_pCasp8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000526                         |
| 28 | J28 | Procaspase-8 recruitment to TNFR          | TNFRC2_pCasp8 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000526                         |
|    |     | Complex2Procaspase-8                      | pCasp8 — TNFRC2_pCasp8_pCasp8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| 29 | J29 | Caspase-8 activation by TNFR Complex2     | TNFRC2_pCasp8_pCasp8 — TNFRC2 + Casp8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000180                         |
| 30 | J30 | FLIP recruitment to TNFR Complex2-        | FLIP+TNFRC2_pCasp8 TNFRC2_FLIP_pCasp8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000526                         |
|    |     | Procaspase-8                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 31 | J31 | Procaspase-8 recruitment to TNFR          | TNFRC2_FLIP+pCasp8 TNFRC2_FLIP_pCasp8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000526                         |
|    |     | Complex2FLIP                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 32 | J32 | Caspase-8 activation by TNFR Complex2-    | TNFRC2_FLIP_pCasp8 → TNFRC2 + Casp8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000180                         |
|    |     | FLIPProcaspase-8                          | rungi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| 33 | J33 | RIPTRAF2 recruitment at TNFR Complex2-    | RIP+TRAF2+TNFRC2_FLIP_pCasp8 TNFRC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0 <b>F000526C</b> asp8_RIP_TR |
|    |     | FLIPProcaspase-8                          | The following of the second of | Tamponion and the second        |
|    |     | •                                         | IKK TNFRC2_FLIP_pCasp8_RIP_TRAF2   IKKa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| 34 | J34 | IKK activation by TNFR Complex2FLIP-      | $IKK \longrightarrow IKKa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000170                         |
|    |     | Procaspase-8RIPTRAF2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 35 | J35 | IKK turnover                              | $\emptyset \Longrightarrow IKK$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000357                         |
| 36 | J36 | NF-kappaB turnover                        | $\emptyset \Longrightarrow NFkB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000357                         |
| 37 | J37 | FLIP turnover                             | $\emptyset \Longrightarrow FLIP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000357                         |
| 38 | J38 | XIAP turnover                             | $\emptyset \Longrightarrow XIAP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000357                         |
| 39 | J39 | A20 turnover                              | $\emptyset \Longrightarrow A20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000357                         |
| 40 | J40 | IKK* degradation                          | $IKKa \longrightarrow \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000179                         |
| 41 | J41 | IkappaBalphaÑF-kappaB complex degrada-    | $IkBa\_NFkB \longrightarrow \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0000179                         |
|    |     | tion                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |

| 10                    | N₀ | Id   | Name                                          | Reaction Equation                                       | SBO     |
|-----------------------|----|------|-----------------------------------------------|---------------------------------------------------------|---------|
|                       | 42 | J42  | nuclear NF-kappaB degradation                 | $NFkB\_N \longrightarrow \emptyset$                     | 0000179 |
|                       | 43 | J43  | IkappaBalpha-mRNA degradation                 | $IkBa\_mRNA \longrightarrow \emptyset$                  | 0000179 |
|                       | 44 | J44  | IkappaBalpha degradation                      | $IkBa \longrightarrow \emptyset$                        | 0000179 |
|                       | 45 | J45  | free nuclear IkappaBalpha degradation         | $IkBa\_N \longrightarrow \emptyset$                     | 0000179 |
|                       | 46 | J46  | nuclear IkappaBalphaÑF-kappaB complex         | $IkBa\_NFkB\_N \longrightarrow \emptyset$               | 0000179 |
|                       | 47 | 7.47 | degradation                                   | DII D. A                                                | 0000170 |
|                       | 47 | J47  | P-IkappaBa degradation                        | PIkBa → Ø                                               | 0000179 |
|                       | 48 | J48  | A20-mRNA degradation                          | $A20_{\text{m}}RNA \longrightarrow \emptyset$           | 0000179 |
|                       | 49 | J49  | XIAP-mRNA degradation                         | $XIAP\_mRNA \longrightarrow \emptyset$                  | 0000179 |
| Pi                    | 50 | J50  | FLIP-mRNA degradation                         | FLIP_mRNA $\longrightarrow \emptyset$                   | 0000179 |
| rod                   | 51 | J51  | IKK activation by TNFR Complex1               | IKK $\xrightarrow{\text{TNFRC1}}$ IKKa                  | 0000170 |
| исе                   | 52 | J52  | IKK* inactivation                             | $IKKa \longrightarrow IKK$                              | 0000169 |
| d by                  | 53 | J53  | TNFR Complex1 inactivation by A20             | $TNFRC1 \xrightarrow{A20} TRAF2 + TNF_TNFR_TRADD$       | 0000169 |
| R                     | 54 | J54  | IkappaBalpha NF-kappaB association            | $NFkB + IkBa \longrightarrow IkBa\_NFkB$                | 0000526 |
| Produced by SBML2PTEX | 55 | J55  | release and degradation of bound IkappaBalpha | $IkBa\_NFkB \xrightarrow{IKKa} NFkB + PIkBa$            | 0000179 |
| 巫,                    | 56 | J56  | NF-kappaB nuclear translocation               | $NFkB \longrightarrow NFkB\_N$                          | 0000185 |
|                       | 57 | J57  | IkappaBalpha-mRNA transcription               | $\emptyset \xrightarrow{NFkB\_N} IkBa\_mRNA$            | 0000183 |
|                       | 58 | J58  | IkappaBalpha translation                      | $\emptyset \xrightarrow{\text{IkBa\_mRNA}} \text{IkBa}$ | 0000184 |
|                       | 59 | J59  | IkappaBalpha nuclear translocation            | IkBa <del>←</del> IkBa_N                                | 0000526 |
|                       | 60 | J60  | IkappaBalpha binding NF-kappaB in nucleus     | $NFkB_N + IkBa_N \longrightarrow IkBa_NFkB_N$           | 0000526 |
|                       | 61 | J61  | IkappaBalpha_NF-kappaB N-C export             | $IkBa\_NFkB\_N \longrightarrow IkBa\_NFkB$              | 0000185 |
|                       | 62 | J62  | A20-mRNA transcription                        | $\emptyset \xrightarrow{NFkB\_N} A20\_mRNA$             | 0000183 |
|                       | 63 | J63  | A20 translation                               | $\emptyset \xrightarrow{A20\_mRNA} A20$                 | 0000184 |
|                       | 64 | J64  | XIAP-mRNA transcription                       | $\emptyset \xrightarrow{NFkB\_N} XIAP\_mRNA$            | 0000183 |
|                       | 65 | J65  | XIAP translation                              | $\emptyset \xrightarrow{XIAP\_mRNA} XIAP$               | 0000184 |

| N⁰ | Id  | Name                                              | Reaction Equation                                       | SBO     |
|----|-----|---------------------------------------------------|---------------------------------------------------------|---------|
| 66 | J66 | FLIP-mRNA transcription                           | $\emptyset \xrightarrow{NFkB\_N} FLIP\_mRNA$            | 0000183 |
| 67 | J67 | FLIP translation                                  | $\emptyset \xrightarrow{\text{FLIP}\_mRNA} \text{FLIP}$ | 0000184 |
| 68 | J68 | Procaspase-8 turnover                             | $\emptyset \Longrightarrow pCasp8$                      | 0000357 |
| 69 | J69 | Procaspase-3 turnover                             | Ø <del>←</del> pCasp3                                   | 0000357 |
| 70 | J70 | Procaspase-6 turnover                             | Ø ⇒ pCasp6                                              | 0000357 |
| 71 | J71 | Caspase-8 degradation                             | $Casp8 \longrightarrow \hat{\emptyset}$                 | 0000179 |
| 72 | J72 | Caspase-3 degradation                             | $Casp3 \longrightarrow \emptyset$                       | 0000179 |
| 73 | J73 | Caspase-6 degradation                             | $Casp6 \longrightarrow \emptyset$                       | 0000179 |
| 74 | J74 | XIAPCaspase-3 complex degradation                 | $XIAP\_Casp3 \longrightarrow \emptyset$                 | 0000179 |
| 75 | J75 | BAR turnover                                      | $\emptyset \Longrightarrow BAR$                         | 0000357 |
| 76 | J76 | BARCaspase-8 complex degradation                  | $BAR\_Casp8 \longrightarrow \emptyset$                  | 0000179 |
| 77 | J77 | PARP turnover                                     | $PARP \Longrightarrow \emptyset$                        | 0000357 |
| 78 | J78 | CPARP degradation                                 | $cPARP \longrightarrow \emptyset$                       | 0000179 |
| 79 | J79 | Caspase-3 activation                              | pCasp3 $\xrightarrow{\text{Casp8}}$ Casp3               | 0000170 |
| 80 | J80 | Caspase-6 activation                              | pCasp6 $\xrightarrow{\text{Casp3}}$ Casp6               | 0000170 |
| 81 | J81 | Caspase-8 activation                              | $pCasp8 \xrightarrow{Casp6} Casp8$                      | 0000170 |
| 82 | J82 | XIAPCaspase-3 complex formation                   | XIAP+Casp3 ⇒ XIAP_Casp3                                 | 0000526 |
| 83 | J83 | XIAP degradation due to Caspase-3                 | $XIAP \xrightarrow{Casp3} \emptyset$                    | 0000179 |
| 84 | J84 | XIAPCaspase-3 complex breakup                     | $XIAP\_Casp3 \longrightarrow XIAP$                      | 0000119 |
| 85 | J85 | negative feedback loop Caspase-3 on TNFR Complex1 | $RIP \xrightarrow{Casp3} \emptyset$                     | 0000169 |
| 86 | J86 | FLIP degradation by Caspase-3                     | $FLIP \xrightarrow{Casp3} \emptyset$                    | 0000179 |
| 87 | J87 | PARP cleavage as Casp3 substrate                  | $PARP \xrightarrow{Casp3} cPARP$                        | 0000178 |
| 88 | J88 | BARČaspase-8 complex formation                    | $BAR + Casp8 \Longrightarrow BAR\_Casp8$                | 0000526 |

#### **5.1 Reaction** J1

This is an irreversible reaction of one reactant forming one product.

Name TNFR transport into membrane

SBO:0000185 transport reaction

## **Reaction equation**

$$TNFR \longrightarrow TNFR\_E$$
 (1)

#### Reactant

Table 5: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| TNFR | TNFR |     |

#### **Product**

Table 6: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFR_E | TNFR_E | _   |

## **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_1 = ka_1 \cdot TNFR \tag{2}$$

Table 7: Properties of each parameter.

| Id   | Name     | SBO                     | Value | Unit     | Constant |
|------|----------|-------------------------|-------|----------|----------|
| ka_1 | TNFR tra | nsport 0000009<br>ne ka | 0.001 | $s^{-1}$ | Ø        |

## **5.2 Reaction** J2

This is an irreversible reaction of no reactant forming one product.

Name TNFR production

## SBO:0000393 production

## **Reaction equation**

$$\emptyset \longrightarrow TNFR$$
 (3)

#### **Product**

Table 8: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| TNFR | TNFR |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_2 = ka_2 \tag{4}$$

Table 9: Properties of each parameter.

| Id   | Name               | SBO     | Value               | Unit                | Constant                  |
|------|--------------------|---------|---------------------|---------------------|---------------------------|
| ka_2 | TNFR production ka | 0000009 | $2.8 \cdot 10^{-7}$ | $amol \cdot s^{-1}$ | $ \overline{\checkmark} $ |

## **5.3 Reaction** J3

This is an irreversible reaction of one reactant forming no product.

Name TNFR degradation

SBO:0000179 degradation

## **Reaction equation**

$$TNFR\_E \longrightarrow \emptyset$$
 (5)

Table 10: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFR_E | TNFR_E |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_3 = ka\_3 \cdot TNFR\_E \tag{6}$$

Table 11: Properties of each parameter.

| Id   | Name                | SBO     | Value               | Unit     | Constant |
|------|---------------------|---------|---------------------|----------|----------|
| ka_3 | TNFR degradation ka | 0000356 | $5.6 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

#### **5.4 Reaction** J4

This is a reversible reaction of no reactant forming one product.

Name RIP turnover

**SBO:0000357** biological effect of a perturbation

## **Reaction equation**

$$\emptyset \rightleftharpoons RIP$$
 (7)

#### **Product**

Table 12: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| RIP | RIP  |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_4 = ka_4 - kd_4 \cdot RIP \tag{8}$$

Table 13: Properties of each parameter.

| Id     | Name            | SBO     | Value                  | Unit                | Constant |
|--------|-----------------|---------|------------------------|---------------------|----------|
| ka_4   | RIP turnover ka | 0000009 | $2.0256 \cdot 10^{-5}$ | $amol \cdot s^{-1}$ |          |
| $kd_4$ | RIP turnover kd | 0000009 | $10^{-4}$              | $s^{-1}$            |          |

#### 5.5 Reaction J5

This is a reversible reaction of no reactant forming one product.

Name TRADD turnover

SBO:0000357 biological effect of a perturbation

## **Reaction equation**

$$\emptyset \rightleftharpoons TRADD$$
 (9)

#### **Product**

Table 14: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| TRADD | TRADD |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_5 = \text{ka}\_5 - \text{kd}\_5 \cdot \text{TRADD} \tag{10}$$

Table 15: Properties of each parameter.

| Id   | Name              | SBO     | Value                  | Unit                | Constant  |
|------|-------------------|---------|------------------------|---------------------|-----------|
| ka_5 | TRADD turnover    | 0000009 | $2.9344 \cdot 10^{-5}$ | $amol \cdot s^{-1}$ |           |
| kd_5 | TRADD turnover kd | 0000009 | $10^{-4}$              | $s^{-1}$            | $\square$ |

#### **5.6 Reaction** J6

This is a reversible reaction of no reactant forming one product.

Name TRAF2 turnover

SBO:0000357 biological effect of a perturbation

## **Reaction equation**

$$\emptyset \rightleftharpoons TRAF2$$
 (11)

#### **Product**

Table 16: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| TRAF2 | TRAF2 |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_6 = \text{ka\_6} - \text{kd\_6} \cdot \text{TRAF2} \tag{12}$$

Table 17: Properties of each parameter.

| Id   | Name              | SBO     | Value     | Unit     | Constant  |
|------|-------------------|---------|-----------|----------|-----------|
| ka_6 | TRAF2 turnover ka | 0000009 |           |          |           |
| kd_6 | TRAF2 turnover kd | 0000009 | $10^{-4}$ | $s^{-1}$ | $\square$ |

## **5.7 Reaction** J7

This is a reversible reaction of no reactant forming one product.

Name FADD turnover

SBO:0000357 biological effect of a perturbation

## **Reaction equation**

$$\emptyset \Longrightarrow FADD$$
 (13)

#### **Product**

Table 18: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| FADD | FADD |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_7 = \text{ka}_{-}7 - \text{kd}_{-}7 \cdot \text{FADD} \tag{14}$$

Table 19: Properties of each parameter.

| Id        | Name             | SBO     | Value                  | Unit                | Constant                     |
|-----------|------------------|---------|------------------------|---------------------|------------------------------|
| ka_7      | FADD turnover ka | 0000009 | $3.0944 \cdot 10^{-5}$ | $amol \cdot s^{-1}$ | lacksquare                   |
| $kd_{-}7$ | FADD turnover kd | 0000009 | $10^{-4}$              | $s^{-1}$            | $   \overline{\mathscr{L}} $ |

#### 5.8 Reaction J8

This is an irreversible reaction of one reactant forming no product.

Name TNFTNFR degradation

SBO:0000179 degradation

## **Reaction equation**

$$TNF\_TNFR\_E \longrightarrow \emptyset$$
 (15)

#### Reactant

Table 20: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| TNF_TNFR_E | TNF:TNFR_E |     |

#### **Kinetic Law**

$$v_8 = \text{ka\_8} \cdot \text{TNF\_TNFR\_E} \tag{16}$$

Table 21: Properties of each parameter.

| Id   | Name                   | SBO     | Value               | Unit     | Constant |
|------|------------------------|---------|---------------------|----------|----------|
| ka_8 | TNFTNFR degradation ka | 0000356 | $5.6 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

#### **5.9 Reaction** J9

This is an irreversible reaction of one reactant forming no product.

Name TNF:TNFR:TRADD degradation

SBO:0000179 degradation

#### **Reaction equation**

$$TNF\_TNFR\_TRADD \longrightarrow \emptyset$$
 (17)

#### Reactant

Table 22: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| TNF_TNFR_TRADD | TNF:TNFR:TRADD |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_9 = ka_9 \cdot TNF_TNFR_TRADD \tag{18}$$

Table 23: Properties of each parameter.

| Id   | Name                          | SBO     | Value | Unit     | Constant |
|------|-------------------------------|---------|-------|----------|----------|
| ka_9 | TNF:TNFR:TRADD degradation ka | 0000356 | 0.024 | $s^{-1}$ | Ø        |

#### 5.10 Reaction J10

This is an irreversible reaction of one reactant forming no product.

Name TNFR Complex1 degradation

## SBO:0000179 degradation

## **Reaction equation**

$$TNFRC1 \longrightarrow \emptyset \tag{19}$$

#### Reactant

Table 24: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC1 | TNFRC1 |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{10} = \text{ka}_{-}10 \cdot \text{TNFRC1} \tag{20}$$

Table 25: Properties of each parameter.

| Id    | Name                          | SBO     | Value               | Unit     | Constant |
|-------|-------------------------------|---------|---------------------|----------|----------|
| ka_10 | TNFR Complex 1 degradation ka | 0000356 | $5.6 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

## 5.11 Reaction J11

This is an irreversible reaction of one reactant forming no product.

Name TNFR Complex2 degradation

SBO:0000179 degradation

## **Reaction equation**

$$TNFRC2 \longrightarrow \emptyset \tag{21}$$

Table 26: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC2 | TNFRC2 |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{11} = \text{ka\_11} \cdot \text{TNFRC2} \tag{22}$$

Table 27: Properties of each parameter.

| Id    | Name                         | SBO     | Value               | Unit     | Constant |
|-------|------------------------------|---------|---------------------|----------|----------|
| ka_11 | TNFR Complex2 degradation ka | 0000356 | $5.6 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

#### 5.12 Reaction J12

This is an irreversible reaction of one reactant forming no product.

Name TNFR Complex2FLIP degradation

SBO:0000179 degradation

## **Reaction equation**

$$TNFRC2\_FLIP \longrightarrow \emptyset$$
 (23)

#### Reactant

Table 28: Properties of each reactant.

| Tuble 20. I Toperties of each reactant. |             |     |  |  |  |
|-----------------------------------------|-------------|-----|--|--|--|
| Id                                      | Name        | SBO |  |  |  |
| TNFRC2_FLIP                             | TNFRC2:FLIP |     |  |  |  |

#### **Kinetic Law**

$$v_{12} = ka_1 \cdot TNFRC2.FLIP \tag{24}$$

Table 29: Properties of each parameter.

| Id    | Name                                     | SBO     | Value               | Unit     | Constant |
|-------|------------------------------------------|---------|---------------------|----------|----------|
| ka_12 | TNFR Complex2-<br>FLIP degradation<br>ka | 0000356 | $5.6 \cdot 10^{-5}$ | $s^{-1}$ |          |

#### 5.13 Reaction J13

This is an irreversible reaction of one reactant forming no product.

Name TNFR Complex2FLIPFLIP degradation

SBO:0000179 degradation

## **Reaction equation**

$$TNFRC2\_FLIP\_FLIP \longrightarrow \emptyset$$
 (25)

#### Reactant

Table 30: Properties of each reactant.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| TNFRC2_FLIP_FLIP | TNFRC2:FLIP:FLIP |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{13} = \text{ka}_{13} \cdot \text{TNFRC2\_FLIP\_FLIP} \tag{26}$$

Table 31: Properties of each parameter.

| Id    | Name                                           | SBO     | Value               | Unit     | Constant |
|-------|------------------------------------------------|---------|---------------------|----------|----------|
| ka_13 | TNFR Complex2-<br>FLIPFLIP degrada-<br>tion ka | 0000356 | $5.6 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

## 5.14 Reaction J14

This is an irreversible reaction of one reactant forming no product.

Name TNFR Complex2Procaspase-8 degradation

SBO:0000179 degradation

## **Reaction equation**

$$TNFRC2\_pCasp8 \longrightarrow \emptyset$$
 (27)

#### Reactant

Table 32: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| TNFRC2_pCasp8 | TNFRC2:pCasp8 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{14} = ka_1 14 \cdot TNFRC2\_pCasp8 \tag{28}$$

Table 33: Properties of each parameter.

| Id    | Name                                             | SBO     | Value               | Unit     | Constant |
|-------|--------------------------------------------------|---------|---------------------|----------|----------|
| ka_14 | TNFR Complex2-<br>Procaspase-8<br>degradation ka | 0000356 | $5.6 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

## **5.15 Reaction** J15

This is an irreversible reaction of one reactant forming no product.

Name TNFR Complex2Procaspase-8Procaspase-8 degradation

SBO:0000179 degradation

## **Reaction equation**

$$TNFRC2\_pCasp8\_pCasp8 \longrightarrow \emptyset$$
 (29)

Table 34: Properties of each reactant.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| TNFRC2_pCasp8_pCasp8 | TNFRC2:pCasp8:pCasp8 |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{15} = \text{ka}_{15} \cdot \text{TNFRC2}_{p}\text{Casp8}_{p}\text{Casp8}$$
(30)

Table 35: Properties of each parameter.

| Id    | Name                                                              | SBO     | Value               | Unit            | Constant |
|-------|-------------------------------------------------------------------|---------|---------------------|-----------------|----------|
| ka_15 | TNFR Complex2-<br>Procaspase-8-<br>Procaspase-8<br>degradation ka | 0000356 | $5.6 \cdot 10^{-5}$ | s <sup>-1</sup> |          |

#### 5.16 Reaction J16

This is an irreversible reaction of one reactant forming no product.

Name TNFR Complex2FLIPProcaspase-8 degradation

SBO:0000179 degradation

## **Reaction equation**

$$TNFRC2\_FLIP\_pCasp8 \longrightarrow \emptyset$$
 (31)

#### Reactant

Table 36: Properties of each reactant.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| TNFRC2_FLIP_pCasp8 | TNFRC2:FLIP:pCasp8 |     |

#### **Kinetic Law**

$$v_{16} = \text{ka\_16} \cdot \text{TNFRC2\_FLIP\_pCasp8} \tag{32}$$

Table 37: Properties of each parameter.

| Id    | Name                                                 | SBO     | Value               | Unit     | Constant |
|-------|------------------------------------------------------|---------|---------------------|----------|----------|
| ka_16 | TNFR Complex2-<br>FLIPProcaspase-8<br>degradation ka | 0000356 | $5.6 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

#### 5.17 Reaction J17

This is an irreversible reaction of one reactant forming no product.

Name TNFR Complex2FLIPProcaspase-8RIPTRAF2 degradation

SBO:0000179 degradation

## **Reaction equation**

$$TNFRC2\_FLIP\_pCasp8\_RIP\_TRAF2 \longrightarrow \emptyset$$
 (33)

#### Reactant

Table 38: Properties of each reactant.

| Id                           | Name                         | SBO |
|------------------------------|------------------------------|-----|
| TNFRC2_FLIP_pCasp8_RIP_TRAF2 | TNFRC2:FLIP:pCasp8:RIP:TRAF2 |     |

#### **Kinetic Law**

$$v_{17} = \text{ka}_{17} \cdot \text{TNFRC2}_{\text{FLIP}_{p}} \text{Casp8}_{\text{RIP}_{17}} \text{TRAF2}$$
 (34)

Table 39: Properties of each parameter.

| Id    | Name                                                             | SBO     | Value               | Unit            | Constant |
|-------|------------------------------------------------------------------|---------|---------------------|-----------------|----------|
| ka_17 | TNFR Complex2-<br>FLIPProcaspase-<br>8RIPTRAF2<br>degradation ka | 0000356 | $5.6 \cdot 10^{-5}$ | s <sup>-1</sup> | <b>✓</b> |

## 5.18 Reaction J18

This is a reversible reaction of two reactants forming one product.

Name TNFTNFR binding and release

SBO:0000526 protein complex formation

## **Reaction equation**

$$TNFR_E + TNF_E \Longrightarrow TNF_TNFR_E$$
 (35)

#### **Reactants**

Table 40: Properties of each reactant.

| Id       | Name   | SBO |
|----------|--------|-----|
| TNFR_E   | TNFR_E |     |
| $TNF\_E$ | TNF_E  |     |

#### **Product**

Table 41: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| TNF_TNFR_E | TNF:TNFR_E |     |

#### **Kinetic Law**

$$v_{18} = ka_1 \cdot TNFR \cdot E \cdot TNF \cdot E - kd_1 \cdot TNF \cdot TNFR \cdot E$$
 (36)

Table 42: Properties of each parameter.

| Id    | Name                           | SBO     | Value                   | Unit                     | Constant |
|-------|--------------------------------|---------|-------------------------|--------------------------|----------|
| ka_18 | TNFTNFR binding and release ka | 0000337 | 0.010                   | $amol^{-1} \cdot s^{-1}$ | Ø        |
| kd_18 | TNFTNFR binding and release kd | 0000337 | $6.60377 \cdot 10^{-5}$ | $s^{-1}$                 | Ø        |

#### 5.19 Reaction J19

This is an irreversible reaction of two reactants forming one product.

Name TNFTNFRTRADD building

SBO:0000526 protein complex formation

## **Reaction equation**

$$TNF\_TNFR\_E + TRADD \longrightarrow TNF\_TNFR\_TRADD$$
 (37)

#### **Reactants**

Table 43: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| TNF_TNFR_E | TNF:TNFR_E |     |
| TRADD      | TRADD      |     |

#### **Product**

Table 44: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| TNF_TNFR_TRADD | TNF:TNFR:TRADD |     |

#### **Kinetic Law**

$$v_{19} = ka_1 \cdot TNF_TNFR_E \cdot TRADD$$
 (38)

Table 45: Properties of each parameter.

| Id    | Name                             | SBO     | Value | Unit                     | Constant |
|-------|----------------------------------|---------|-------|--------------------------|----------|
| ka_19 | TNFTNFR-<br>TRADD building<br>ka | 0000337 | 0.004 | $amol^{-1} \cdot s^{-1}$ | Ø        |

#### 5.20 Reaction J20

This is an irreversible reaction of three reactants forming one product.

Name TNFR Complex1 building

SBO:0000526 protein complex formation

## **Reaction equation**

$$RIP + TRAF2 + TNF\_TNFR\_TRADD \longrightarrow TNFRC1$$
 (39)

#### **Reactants**

Table 46: Properties of each reactant.

| Id                       | Name           | SBO |
|--------------------------|----------------|-----|
| RIP                      | RIP            |     |
| TRAF2                    | TRAF2          |     |
| ${\tt TNF\_TNFR\_TRADD}$ | TNF:TNFR:TRADD |     |

#### **Product**

Table 47: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC1 | TNFRC1 |     |

#### **Kinetic Law**

$$v_{20} = \text{ka}_2 \cdot \text{RIP} \cdot \text{TRAF2} \cdot \text{TNF}_1 \cdot \text{TRADD}$$
 (40)

Table 48: Properties of each parameter.

| Id    | Name                      | SBO     | Value | Unit                     | Constant |
|-------|---------------------------|---------|-------|--------------------------|----------|
| ka_20 | TNFR Complex1 building ka | 0000337 | 0.098 | $amol^{-2} \cdot s^{-1}$ | Ø        |

#### **5.21 Reaction** J21

This is an irreversible reaction of one reactant forming one product.

Name Receptor internalisation step1

SBO:0000395 encapsulating process

## **Reaction equation**

$$TNFRC1 \longrightarrow TNFRCint1 \tag{41}$$

#### Reactant

Table 49: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC1 | TNFRC1 |     |

#### **Product**

Table 50: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| TNFRCint1 | TNFRCint1 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{21} = \text{ka}_2 \cdot \text{TNFRC1} \tag{42}$$

Table 51: Properties of each parameter.

| Id    | Name                                   | SBO     | Value | Unit     | Constant |
|-------|----------------------------------------|---------|-------|----------|----------|
| ka_21 | Receptor internali-<br>sation step1 ka | 0000009 | 0.001 | $s^{-1}$ | Ø        |

## 5.22 Reaction J22

This is an irreversible reaction of one reactant forming three products.

Name Receptor internalisation step2

## SBO:0000395 encapsulating process

## **Reaction equation**

$$TNFRCint1 \longrightarrow RIP + TRAF2 + TNFRCint2$$
 (43)

#### Reactant

Table 52: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| TNFRCint1 | TNFRCint1 |     |

#### **Products**

Table 53: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| RIP       | RIP       |     |
| TRAF2     | TRAF2     |     |
| TNFRCint2 | TNFRCint2 |     |

## **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{22} = \text{ka.}22 \cdot \text{TNFRCint1} \tag{44}$$

Table 54: Properties of each parameter.

| Id    | Name                              | SBO     | Value | Unit     | Constant |
|-------|-----------------------------------|---------|-------|----------|----------|
| ka_22 | Receptor internalisation step2 ka | 0000009 | 0.001 | $s^{-1}$ | Ø        |

#### 5.23 Reaction J23

This is an irreversible reaction of two reactants forming one product.

Name Receptor internalisation step3

SBO:0000395 encapsulating process

## **Reaction equation**

$$2FADD + TNFRCint2 \longrightarrow TNFRCint3$$
 (45)

#### Reactants

Table 55: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| FADD      | FADD      |     |
| TNFRCint2 | TNFRCint2 |     |

#### **Product**

Table 56: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| TNFRCint3 | TNFRCint3 |     |

## **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{23} = \text{ka}_2 \cdot \text{FADD}^2 \cdot \text{TNFRCint2}$$
 (46)

Table 57: Properties of each parameter.

| Id    | Name                              | SBO     | Value | Unit                     | Constant |
|-------|-----------------------------------|---------|-------|--------------------------|----------|
| ka_23 | Receptor internalisation step3 ka | 0000009 | 0.012 | $amol^{-2} \cdot s^{-1}$ | Ø        |

## **5.24 Reaction** J24

This is an irreversible reaction of one reactant forming one product.

Name Receptor internalisation step4

SBO:0000395 encapsulating process

## **Reaction equation**

$$TNFRCint3 \longrightarrow TNFRC2 \tag{47}$$

#### Reactant

Table 58: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| TNFRCint3 | TNFRCint3 |     |

#### **Product**

Table 59: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC2 | TNFRC2 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{24} = \text{ka.24} \cdot \text{TNFRCint3} \tag{48}$$

Table 60: Properties of each parameter.

| Id    | Name                              | SBO     | Value | Unit     | Constant |
|-------|-----------------------------------|---------|-------|----------|----------|
| ka_24 | Receptor internalisation step4 ka | 0000009 | 0.114 | $s^{-1}$ | Ø        |

#### 5.25 Reaction J25

This is an irreversible reaction of two reactants forming one product.

Name FLIP recruitment to TNFR Complex2

SBO:0000526 protein complex formation

## **Reaction equation**

$$TNFRC2 + FLIP \longrightarrow TNFRC2 - FLIP$$
 (49)

Table 61: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| TNFRC2<br>FLIP | TNFRC2<br>FLIP |     |

Table 62: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| TNFRC2_FLIP | TNFRC2:FLIP |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{25} = \text{ka.}25 \cdot \text{TNFRC2} \cdot \text{FLIP} \tag{50}$$

Table 63: Properties of each parameter.

| Id    | Name                                 | SBO | Value | Unit                                   | Constant |
|-------|--------------------------------------|-----|-------|----------------------------------------|----------|
| ka_25 | FLIP recruitment to TNFR Complex2 ka |     | 0.313 | $\text{amol}^{-1} \cdot \text{s}^{-1}$ | Ø        |

## 5.26 Reaction J26

This is an irreversible reaction of two reactants forming one product.

Name FLIP recruitment to TNFR Complex2FLIP

SBO:0000526 protein complex formation

## **Reaction equation**

$$FLIP + TNFRC2\_FLIP \longrightarrow TNFRC2\_FLIP\_FLIP$$
 (51)

Table 64: Properties of each reactant.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| FLIP<br>TNFRC2_FLIP | FLIP<br>TNFRC2:FLIP |     |

Table 65: Properties of each product.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| TNFRC2_FLIP_FLIP | TNFRC2:FLIP:FLIP |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{26} = \text{ka.26} \cdot \text{FLIP} \cdot \text{TNFRC2\_FLIP} \tag{52}$$

Table 66: Properties of each parameter.

|       |                                                  | 1   | 1     |                          |          |
|-------|--------------------------------------------------|-----|-------|--------------------------|----------|
| Id    | Name                                             | SBO | Value | Unit                     | Constant |
| ka_26 | FLIP recruit-<br>ment to TNFR<br>Complex2FLIP ka |     | 0.313 | $amol^{-1} \cdot s^{-1}$ | Ø        |

## **5.27 Reaction** J27

This is an irreversible reaction of two reactants forming one product.

Name Procaspase-8 recruitment to TNFR Complex2

SBO:0000526 protein complex formation

## **Reaction equation**

$$TNFRC2 + pCasp8 \longrightarrow TNFRC2\_pCasp8$$
 (53)

Table 67: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC2 | TNFRC2 |     |
| pCasp8 | pCasp8 |     |

Table 68: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| TNFRC2_pCasp8 | TNFRC2:pCasp8 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{27} = \text{ka}_2 - 27 \cdot \text{TNFRC2} \cdot \text{pCasp8} \tag{54}$$

Table 69: Properties of each parameter.

| Id    | Name                                                 | SBO     | Value | Unit                     | Constant |
|-------|------------------------------------------------------|---------|-------|--------------------------|----------|
| ka_27 | Procaspase-8 re-<br>cruitment to TNFR<br>Complex2 ka | 0000009 | 0.031 | $amol^{-1} \cdot s^{-1}$ | Ø        |

## 5.28 Reaction J28

This is an irreversible reaction of two reactants forming one product.

Name Procaspase-8 recruitment to TNFR Complex2Procaspase-8

SBO:0000526 protein complex formation

## **Reaction equation**

$$TNFRC2\_pCasp8 + pCasp8 \longrightarrow TNFRC2\_pCasp8\_pCasp8$$
 (55)

Table 70: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| TNFRC2_pCasp8 | TNFRC2:pCasp8 |     |
| pCasp8        | pCasp8        |     |

Table 71: Properties of each product.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| TNFRC2_pCasp8_pCasp8 | TNFRC2:pCasp8:pCasp8 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{28} = \text{ka}_2 \cdot \text{TNFRC2}_p \text{Casp8} \cdot \text{pCasp8}$$
 (56)

Table 72: Properties of each parameter.

| Id    | Name                                                       | SBO     | Value | Unit                     | Constant |
|-------|------------------------------------------------------------|---------|-------|--------------------------|----------|
| ka_28 | Procaspase-8 recruitment to TNFR Complex2- Procaspase-8 ka | 0000009 | 0.031 | $amol^{-1} \cdot s^{-1}$ | Ø        |

## **5.29 Reaction** J29

This is an irreversible reaction of one reactant forming two products.

Name Caspase-8 activation by TNFR Complex2

SBO:0000180 dissociation

## **Reaction equation**

$$TNFRC2\_pCasp8\_pCasp8 \longrightarrow TNFRC2 + Casp8$$
 (57)

Table 73: Properties of each reactant.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| TNFRC2_pCasp8_pCasp8 | TNFRC2:pCasp8:pCasp8 |     |

Table 74: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC2 | TNFRC2 |     |
| Casp8  | Casp8  |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{29} = \text{ka}_2 \cdot \text{TNFRC2}_p \text{Casp8}_p \text{Casp8}$$
 (58)

Table 75: Properties of each parameter.

| Id    | Name                                     | SBO     | Value | Unit     | Constant |
|-------|------------------------------------------|---------|-------|----------|----------|
| ka_29 | Caspase-8 activation by TNFR Complex2 ka | 0000363 | 0.45  | $s^{-1}$ |          |

#### 5.30 Reaction J30

This is an irreversible reaction of two reactants forming one product.

Name FLIP recruitment to TNFR Complex2Procaspase-8

SBO:0000526 protein complex formation

## **Reaction equation**

$$FLIP + TNFRC2\_pCasp8 \longrightarrow TNFRC2\_FLIP\_pCasp8$$
 (59)

Table 76: Properties of each reactant.

| Id                     | Name          | SBO |
|------------------------|---------------|-----|
| FLIP                   | FLIP          |     |
| ${\tt TNFRC2\_pCasp8}$ | TNFRC2:pCasp8 |     |

### **Product**

Table 77: Properties of each product.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| TNFRC2_FLIP_pCasp8 | TNFRC2:FLIP:pCasp8 |     |

### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{30} = \text{ka\_30} \cdot \text{FLIP} \cdot \text{TNFRC2\_pCasp8} \tag{60}$$

Table 78: Properties of each parameter.

| Id    | Name                                               | SBO     | Value | Unit                     | Constant |
|-------|----------------------------------------------------|---------|-------|--------------------------|----------|
| ka_30 | FLIP recruitment to TNFR Complex2- Procaspase-8 ka | 0000009 | 0.313 | $amol^{-1} \cdot s^{-1}$ | Z        |

## **5.31 Reaction** J31

This is an irreversible reaction of two reactants forming one product.

Name Procaspase-8 recruitment to TNFR Complex2FLIP

SBO:0000526 protein complex formation

## **Reaction equation**

$$TNFRC2\_FLIP + pCasp8 \longrightarrow TNFRC2\_FLIP\_pCasp8$$
 (61)

### **Reactants**

Table 79: Properties of each reactant.

| Id                 | Name                  | SBO |  |  |
|--------------------|-----------------------|-----|--|--|
| TNFRC2_FLIP pCasp8 | TNFRC2:FLIP<br>pCasp8 |     |  |  |

### **Product**

Table 80: Properties of each product.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| TNFRC2_FLIP_pCasp8 | TNFRC2:FLIP:pCasp8 |     |

### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{31} = \text{ka}_{31} \cdot \text{TNFRC2}_{\text{FLIP}} \cdot \text{pCasp8}$$
 (62)

Table 81: Properties of each parameter.

| Id    | Name                                             | SBO     | Value | Unit                     | Constant |
|-------|--------------------------------------------------|---------|-------|--------------------------|----------|
| ka_31 | Procaspase-8 recruitment to TNFR Complex2FLIP ka | 0000009 | 0.313 | $amol^{-1} \cdot s^{-1}$ | Ø        |

### **5.32 Reaction** J32

This is an irreversible reaction of one reactant forming two products.

Name Caspase-8 activation by TNFR Complex2FLIPProcaspase-8

SBO:0000180 dissociation

## **Reaction equation**

$$TNFRC2\_FLIP\_pCasp8 \longrightarrow TNFRC2 + Casp8$$
 (63)

#### Reactant

Table 82: Properties of each reactant.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| TNFRC2_FLIP_pCasp8 | TNFRC2:FLIP:pCasp8 |     |

### **Products**

Table 83: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC2 | TNFRC2 |     |
| Casp8  | Casp8  |     |

### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{32} = \text{ka\_32} \cdot \text{TNFRC2\_FLIP\_pCasp8} \tag{64}$$

Table 84: Properties of each parameter.

| Id    | Name                                                       | SBO     | Value | Unit            | Constant |
|-------|------------------------------------------------------------|---------|-------|-----------------|----------|
| ka_32 | Caspase-8 activation by TNFR Complex2FLIP- Procaspase-8 ka | 0000363 | 0.3   | s <sup>-1</sup> | ď        |

## **5.33 Reaction** J33

This is an irreversible reaction of three reactants forming one product.

Name RIPTRAF2 recruitment at TNFR Complex2FLIPProcaspase-8

SBO:0000526 protein complex formation

### **Reaction equation**

$$RIP + TRAF2 + TNFRC2\_FLIP\_pCasp8 \longrightarrow TNFRC2\_FLIP\_pCasp8\_RIP\_TRAF2 \qquad (65)$$

#### **Reactants**

Table 85: Properties of each reactant.

|                    | ruete est freperites of each reactain. |     |  |  |
|--------------------|----------------------------------------|-----|--|--|
| Id                 | Name                                   | SBO |  |  |
| RIP                | RIP                                    |     |  |  |
| TRAF2              | TRAF2                                  |     |  |  |
| TNFRC2_FLIP_pCasp8 | TNFRC2:FLIP:pCasp8                     |     |  |  |

### **Product**

Table 86: Properties of each product.

| Id                           | Name                         | SBO |
|------------------------------|------------------------------|-----|
| TNFRC2_FLIP_pCasp8_RIP_TRAF2 | TNFRC2:FLIP:pCasp8:RIP:TRAF2 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{33} = \text{ka}_{33} \cdot \text{RIP} \cdot \text{TRAF2} \cdot \text{TNFRC2}_{\text{p}} \text{Casp8}$$
 (66)

Table 87: Properties of each parameter.

| Id    | Name                                                       | SBO     | Value | Unit                     | Constant |
|-------|------------------------------------------------------------|---------|-------|--------------------------|----------|
| ka_33 | RIPTRAF2 recruitment at TNFR Complex2FLIP- Procaspase-8 ka | 0000009 | 0.010 | $amol^{-2} \cdot s^{-1}$ | Ø        |

## 5.34 Reaction J34

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name IKK activation by TNFR Complex2FLIPProcaspase-8RIPTRAF2

SBO:0000170 stimulation

## **Reaction equation**

$$IKK \xrightarrow{TNFRC2\_FLIP\_pCasp8\_RIP\_TRAF2} IKKa$$
 (67)

### Reactant

Table 88: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| IKK | IKK  |     |

### Modifier

Table 89: Properties of each modifier.

| Id                           | Name                         | SBO |
|------------------------------|------------------------------|-----|
| TNFRC2_FLIP_pCasp8_RIP_TRAF2 | TNFRC2:FLIP:pCasp8:RIP:TRAF2 |     |

### **Product**

Table 90: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| IKKa | IKKa |     |

## **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{34} = \text{ka}_3 \cdot \text{TNFRC2\_FLIP\_pCasp8\_RIP\_TRAF2} \cdot \text{IKK}$$
 (68)

Table 91: Properties of each parameter.

| Id    | Name                                                                    | SBO     | Value | Unit                     | Constant |
|-------|-------------------------------------------------------------------------|---------|-------|--------------------------|----------|
| ka_34 | IKK activation by<br>TNFR Complex2-<br>FLIPProcaspase-8-<br>RIPTRAF2 ka | 0000363 | 0.031 | $amol^{-1} \cdot s^{-1}$ | Ø        |

# 5.35 Reaction J35

This is a reversible reaction of no reactant forming one product.

Name IKK turnover

## SBO:0000357 biological effect of a perturbation

# **Reaction equation**

$$\emptyset \rightleftharpoons IKK$$
 (69)

### **Product**

Table 92: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| IKK | IKK  |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_{35} = \text{ka}_{-35} - \text{kd}_{-35} \cdot \text{IKK}$$
 (70)

Table 93: Properties of each parameter.

| Id             | Name                               | SBO                | Value                          | Unit | Constant |
|----------------|------------------------------------|--------------------|--------------------------------|------|----------|
| ka_35<br>kd_35 | IKK turnover ka<br>IKK turnover kd | 0000009<br>0000009 | $6.4 \cdot 10^{-5} \\ 10^{-4}$ |      | <b>Z</b> |

## 5.36 Reaction J36

This is a reversible reaction of no reactant forming one product.

Name NF-kappaB turnover

SBO:0000357 biological effect of a perturbation

# **Reaction equation**

$$\emptyset \rightleftharpoons NFkB$$
 (71)

## **Product**

Table 94: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| NFkB | NFkB |     |

### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_{36} = \text{ka}_{.36} - \text{kd}_{.36} \cdot \text{NFkB}$$
 (72)

Table 95: Properties of each parameter.

|       |                          | •       |                    |                     |          |
|-------|--------------------------|---------|--------------------|---------------------|----------|
| Id    | Name                     | SBO     | Value              | Unit                | Constant |
| ka_36 | NF-kappaB<br>turnover ka | 0000009 | $1.6\cdot 10^{-6}$ | $amol \cdot s^{-1}$ |          |
| kd_36 | NF-kappaB<br>turnover kd | 0000009 | $10^{-4}$          | $s^{-1}$            | Ø        |

## 5.37 Reaction J37

This is a reversible reaction of no reactant forming one product.

Name FLIP turnover

SBO:0000357 biological effect of a perturbation

## **Reaction equation**

$$\emptyset \rightleftharpoons FLIP \tag{73}$$

### **Product**

Table 96: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| FLIP | FLIP |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_{37} = \text{ka}_{37} - \text{kd}_{37} \cdot \text{FLIP}$$
 (74)

Table 97: Properties of each parameter.

| Id      | Name             | SBO     | Value                   | Unit                | Constant     |
|---------|------------------|---------|-------------------------|---------------------|--------------|
| ka_37   | FLIP turnover ka | 0000009 | $2.24902 \cdot 10^{-6}$ | $amol \cdot s^{-1}$ |              |
| $kd_37$ | FLIP turnover kd | 0000009 | $10^{-4}$               | $s^{-1}$            | $\checkmark$ |

#### 5.38 Reaction J38

This is a reversible reaction of no reactant forming one product.

Name XIAP turnover

SBO:0000357 biological effect of a perturbation

### **Reaction equation**

$$\emptyset \Longrightarrow XIAP$$
 (75)

#### **Product**

Table 98: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| XIAP | XIAP |     |

## **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_{38} = \text{ka}_{38} - \text{kd}_{38} \cdot \text{XIAP}$$
 (76)

Table 99: Properties of each parameter.

| Id             | Name                                 | SBO                | Value                              | Unit | Constant   |
|----------------|--------------------------------------|--------------------|------------------------------------|------|------------|
| ka_38<br>kd_38 | XIAP turnover ka<br>XIAP turnover kd | 0000009<br>0000009 | $7.72256 \cdot 10^{-4} \\ 10^{-4}$ |      | <b>1 1</b> |

### 5.39 Reaction J39

This is a reversible reaction of no reactant forming one product.

Name A20 turnover

## SBO:0000357 biological effect of a perturbation

# **Reaction equation**

$$\emptyset \Longrightarrow A20 \tag{77}$$

### **Product**

Table 100: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| A20 | A20  |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_{39} = \text{ka}_{39} - \text{kd}_{39} \cdot \text{A20} \tag{78}$$

Table 101: Properties of each parameter.

| Id    | Name            | SBO     | Value               | Unit                | Constant |
|-------|-----------------|---------|---------------------|---------------------|----------|
| ka_39 | A20 turnover ka | 0000009 | $9.6 \cdot 10^{-6}$ | $amol \cdot s^{-1}$ |          |
| kd_39 | A20 turnover kd | 0000009 | $10^{-4}$           | $s^{-1}$            |          |

## 5.40 Reaction J40

This is an irreversible reaction of one reactant forming no product.

Name IKK\* degradation

SBO:0000179 degradation

# **Reaction equation**

$$IKKa \longrightarrow \emptyset \tag{79}$$

### Reactant

Table 102: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| IKKa | IKKa |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{40} = ka_40 \cdot IKKa \tag{80}$$

Table 103: Properties of each parameter.

| Id    | Name                | SBO     | Value     | Unit     | Constant |
|-------|---------------------|---------|-----------|----------|----------|
| ka_40 | IKK* degradation ka | 0000356 | $10^{-4}$ | $s^{-1}$ | Ø        |

### **5.41 Reaction** J41

This is an irreversible reaction of one reactant forming no product.

Name IkappaBalphaÑF-kappaB complex degradation

SBO:0000179 degradation

## **Reaction equation**

$$IkBa\_NFkB \longrightarrow \emptyset$$
 (81)

#### Reactant

Table 104: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| IkBa_NFkB | IkBa:NFkB |     |

### **Kinetic Law**

$$v_{41} = ka_4 \cdot IkBa_NFkB \tag{82}$$

Table 105: Properties of each parameter.

| Id    | Name                                                | SBO     | Value     | Unit     | Constant |
|-------|-----------------------------------------------------|---------|-----------|----------|----------|
| ka_41 | IkappaBalphaÑF-<br>kappaB complex<br>degradation ka | 0000356 | $10^{-4}$ | $s^{-1}$ | Ø        |

## 5.42 Reaction J42

This is an irreversible reaction of one reactant forming no product.

Name nuclear NF-kappaB degradation

SBO:0000179 degradation

# **Reaction equation**

$$NFkB_N \longrightarrow \emptyset$$
 (83)

#### Reactant

Table 106: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| NFkB_N | NFkB_N |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{42} = ka_4 \cdot NFkB_N \tag{84}$$

Table 107: Properties of each parameter.

|       |                              |                 | _       |           |          |          |
|-------|------------------------------|-----------------|---------|-----------|----------|----------|
| Id    | Name                         |                 | SBO     | Value     | Unit     | Constant |
| ka_42 | nuclear<br>kappaB<br>tion ka | NF-<br>degrada- | 0000356 | $10^{-4}$ | $s^{-1}$ | Ø        |

### 5.43 Reaction J43

This is an irreversible reaction of one reactant forming no product.

Name IkappaBalpha-mRNA degradation

SBO:0000179 degradation

# **Reaction equation**

$$IkBa\_mRNA \longrightarrow \emptyset$$
 (85)

#### Reactant

Table 108: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| IkBa_mRNA | IkBa_mRNA |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{43} = \text{ka}_{43} \cdot \text{IkBa}_{m} \text{RNA} \tag{86}$$

Table 109: Properties of each parameter.

| Id    | Name                                    | SBO     | Value                   | Unit     | Constant |
|-------|-----------------------------------------|---------|-------------------------|----------|----------|
| ka_43 | IkappaBalpha-<br>mRNA degradation<br>ka | 0000356 | $3.94201 \cdot 10^{-4}$ | $s^{-1}$ | Ø        |

### 5.44 Reaction J44

This is an irreversible reaction of one reactant forming no product.

Name IkappaBalpha degradation

SBO:0000179 degradation

# **Reaction equation**

$$IkBa \longrightarrow \emptyset \tag{87}$$

### Reactant

Table 110: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| IkBa | IkBa |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{44} = ka_4 \cdot IkBa \tag{88}$$

Table 111: Properties of each parameter.

| Id    | Name                           | SBO     | Value | Unit     | Constant |
|-------|--------------------------------|---------|-------|----------|----------|
| ka_44 | IkappaBalpha<br>degradation ka | 0000356 | 0.002 | $s^{-1}$ | Ø        |

### 5.45 Reaction J45

This is an irreversible reaction of one reactant forming no product.

Name free nuclear IkappaBalpha degradation

SBO:0000179 degradation

## **Reaction equation**

$$IkBa\_N \longrightarrow \emptyset$$
 (89)

#### Reactant

Table 112: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| IkBa_N | IkBa_N |     |

### **Kinetic Law**

$$v_{45} = ka_{-}45 \cdot IkBa_{-}N \tag{90}$$

Table 113: Properties of each parameter.

| Id    | Name                                               | SBO     | Value     | Unit     | Constant |
|-------|----------------------------------------------------|---------|-----------|----------|----------|
| ka_45 | free nuclear Ikap-<br>paBalpha degrada-<br>tion ka | 0000356 | $10^{-4}$ | $s^{-1}$ | Ø        |

## 5.46 Reaction J46

This is an irreversible reaction of one reactant forming no product.

Name nuclear IkappaBalphaÑF-kappaB complex degradation

SBO:0000179 degradation

# **Reaction equation**

$$IkBa\_NFkB\_N \longrightarrow \emptyset$$
 (91)

### Reactant

Table 114: Properties of each reactant.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| IkBa_NFkB_N | IkBa:NFkB_N |     |

### **Kinetic Law**

$$v_{46} = \text{ka}_{46} \cdot \text{IkBa}_{N} + \text{FkB}_{N}$$
(92)

Table 115: Properties of each parameter.

| Id    | Name                                                           | SBO     | Value            | Unit     | Constant |
|-------|----------------------------------------------------------------|---------|------------------|----------|----------|
| ka_46 | nuclear<br>IkappaBalphaÑF-<br>kappaB complex<br>degradation ka | 0000356 | 10 <sup>-4</sup> | $s^{-1}$ | Ø        |

### **5.47 Reaction** J47

This is an irreversible reaction of one reactant forming no product.

Name P-IkappaBa degradation

SBO:0000179 degradation

# **Reaction equation**

$$PIkBa \longrightarrow \emptyset \tag{93}$$

### Reactant

Table 116: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| PIkBa | PIkBa |     |

### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{47} = ka_{-}47 \cdot PIkBa \tag{94}$$

Table 117: Properties of each parameter.

| Id    | Name                           | SBO     | Value | Unit     | Constant |
|-------|--------------------------------|---------|-------|----------|----------|
| ka_47 | P-IkappaBa degra-<br>dation ka | 0000356 | 0.012 | $s^{-1}$ | Ø        |

### 5.48 Reaction J48

This is an irreversible reaction of one reactant forming no product.

Name A20-mRNA degradation

SBO:0000179 degradation

## **Reaction equation**

$$A20\_mRNA \longrightarrow \emptyset \tag{95}$$

## Reactant

Table 118: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| A20_mRNA | A20_mRNA |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{48} = \text{ka}_{-}48 \cdot \text{A20}_{-}\text{mRNA} \tag{96}$$

Table 119: Properties of each parameter.

| Id    | Name                    | SBO     | Value                   | Unit     | Constant |
|-------|-------------------------|---------|-------------------------|----------|----------|
| ka_48 | A20-mRNA degradation ka | 0000356 | $4.70498 \cdot 10^{-4}$ | $s^{-1}$ | Z        |

### 5.49 Reaction J49

This is an irreversible reaction of one reactant forming no product.

Name XIAP-mRNA degradation

SBO:0000179 degradation

## **Reaction equation**

$$XIAP_mRNA \longrightarrow \emptyset$$
 (97)

#### Reactant

Table 120: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| XIAP_mRNA | XIAP_mRNA |     |

### **Kinetic Law**

$$v_{49} = \text{ka}_49 \cdot \text{XIAP}_m\text{RNA} \tag{98}$$

Table 121: Properties of each parameter.

| Id    | Name                        | SBO     | Value                   | Unit     | Constant |
|-------|-----------------------------|---------|-------------------------|----------|----------|
| ka_49 | XIAP-mRNA<br>degradation ka | 0000356 | $1.04931 \cdot 10^{-4}$ | $s^{-1}$ | Ø        |

#### 5.50 Reaction J50

This is an irreversible reaction of one reactant forming no product.

Name FLIP-mRNA degradation

SBO:0000179 degradation

### **Reaction equation**

$$FLIP\_mRNA \longrightarrow \emptyset$$
 (99)

#### Reactant

Table 122: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| FLIP_mRNA | FLIP_mRNA |     |

### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{50} = \text{ka\_50} \cdot \text{FLIP\_mRNA} \tag{100}$$

Table 123: Properties of each parameter.

| Id    | Name                        | SBO     | Value                   | Unit     | Constant |
|-------|-----------------------------|---------|-------------------------|----------|----------|
| ka_50 | FLIP-mRNA<br>degradation ka | 0000356 | $1.65744 \cdot 10^{-4}$ | $s^{-1}$ | Ø        |

### **5.51 Reaction** J51

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name IKK activation by TNFR Complex1

## SBO:0000170 stimulation

# **Reaction equation**

$$IKK \xrightarrow{TNFRC1} IKKa$$
 (101)

### Reactant

Table 124: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| IKK | IKK  |     |

## **Modifier**

Table 125: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC1 | TNFRC1 |     |

## **Product**

Table 126: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| IKKa | IKKa |     |

### **Kinetic Law**

$$v_{51} = \text{ka\_51} \cdot \text{TNFRC1} \cdot \text{IKK} \tag{102}$$

Table 127: Properties of each parameter.

| Id    | Name                                     | SBO     | Value | Unit                     | Constant |
|-------|------------------------------------------|---------|-------|--------------------------|----------|
| ka_51 | IKK activation by<br>TNFR Complex1<br>ka | 0000363 | 93.75 | $amol^{-1} \cdot s^{-1}$ | Ø        |

## **5.52 Reaction** J52

This is an irreversible reaction of one reactant forming one product.

Name IKK\* inactivation

SBO:0000169 inhibition

## **Reaction equation**

$$IKKa \longrightarrow IKK \tag{103}$$

### Reactant

Table 128: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| IKKa | IKKa |     |

### **Product**

Table 129: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| IKK | IKK  |     |

### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{52} = \text{ka.52} \cdot \text{IKKa} \tag{104}$$

Table 130: Properties of each parameter.

| Id    | Name                 | SBO     | Value | Unit     | Constant |
|-------|----------------------|---------|-------|----------|----------|
| ka_52 | IKK* inactivation ka | 0000349 | 0.1   | $s^{-1}$ | Ø        |

## 5.53 Reaction J53

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name TNFR Complex1 inactivation by A20

## SBO:0000169 inhibition

# **Reaction equation**

$$TNFRC1 \xrightarrow{A20} TRAF2 + TNF\_TNFR\_TRADD$$
 (105)

### Reactant

Table 131: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| TNFRC1 | TNFRC1 |     |

### **Modifier**

Table 132: Properties of each modifier.

| Id  | Name | SBO |
|-----|------|-----|
| A20 | A20  |     |

## **Products**

Table 133: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| TRAF2          | TRAF2          |     |
| TNF_TNFR_TRADD | TNF:TNFR:TRADD |     |

### **Kinetic Law**

$$v_{53} = \text{ka\_53} \cdot \text{TNFRC1} \cdot \text{A20} \tag{106}$$

Table 134: Properties of each parameter.

| Id    | Name                                 | SBO     | Value | Unit                                     | Constant |
|-------|--------------------------------------|---------|-------|------------------------------------------|----------|
| ka_53 | TNFR Complex1 inactivation by A20 ka | 0000349 | 0.006 | $\mathrm{amol}^{-1}\cdot\mathrm{s}^{-1}$ | Z        |

## **5.54 Reaction** J54

This is an irreversible reaction of two reactants forming one product.

Name IkappaBalpha NF-kappaB association

SBO:0000526 protein complex formation

## **Reaction equation**

$$NFkB + IkBa \longrightarrow IkBa\_NFkB$$
 (107)

### **Reactants**

Table 135: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| NFkB | NFkB |     |
| IkBa | IkBa |     |

### **Product**

Table 136: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| IkBa_NFkB | IkBa:NFkB |     |

#### **Kinetic Law**

$$v_{54} = ka\_54 \cdot NFkB \cdot IkBa \tag{108}$$

Table 137: Properties of each parameter.

| Id    | Name                                         | SBO     | Value | Unit                     | Constant |
|-------|----------------------------------------------|---------|-------|--------------------------|----------|
| ka_54 | IkappaBalpha NF-<br>kappaB association<br>ka | 0000337 | 1.25  | $amol^{-1} \cdot s^{-1}$ | Ø        |

### 5.55 Reaction J55

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name release and degradation of bound IkappaBalpha

SBO:0000179 degradation

# **Reaction equation**

$$IkBa\_NFkB \xrightarrow{IKKa} NFkB + PIkBa$$
 (109)

#### Reactant

Table 138: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| IkBa_NFkB | IkBa:NFkB |     |

#### **Modifier**

Table 139: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| IKKa | IKKa |     |

#### **Products**

Table 140: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| NFkB  | NFkB  |     |
| PIkBa | PIkBa |     |

### **Kinetic Law**

$$v_{55} = \text{ka\_55} \cdot \text{IKKa} \cdot \text{IkBa\_NFkB} \tag{110}$$

Table 141: Properties of each parameter.

| Id    | Name                                                     | SBO     | Value | Unit                     | Constant |
|-------|----------------------------------------------------------|---------|-------|--------------------------|----------|
| ka_55 | release and degra-<br>dation of bound<br>IkappaBalpha ka | 0000356 | 0.104 | $amol^{-1} \cdot s^{-1}$ | Ø        |

## 5.56 Reaction J56

This is an irreversible reaction of one reactant forming one product.

Name NF-kappaB nuclear translocation

SBO:0000185 transport reaction

## **Reaction equation**

$$NFkB \longrightarrow NFkB\_N$$
 (111)

#### Reactant

Table 142: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| NFkB | NFkB |     |

### **Product**

Table 143: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| NFkB_N | NFkB_N |     |

### **Kinetic Law**

$$v_{56} = \text{ka\_56} \cdot \text{NFkB} \tag{112}$$

Table 144: Properties of each parameter.

|       |                                    | _       |       |          |          |
|-------|------------------------------------|---------|-------|----------|----------|
| Id    | Name                               | SBO     | Value | Unit     | Constant |
| ka_56 | NF-kappaB nuclear translocation ka | 0000009 | 0.013 | $s^{-1}$ | Ø        |

## 5.57 Reaction J57

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name IkappaBalpha-mRNA transcription

SBO:0000183 transcription

# **Reaction equation**

$$\emptyset \xrightarrow{NFkB\_N} IkBa\_mRNA$$
 (113)

### **Modifier**

Table 145: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| NFkB_N | NFkB_N |     |

### **Product**

Table 146: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| IkBa_mRNA | IkBa_mRNA |     |

## **Kinetic Law**

$$v_{57} = \text{ka}_57 \cdot \text{NFkB}_N \tag{114}$$

Table 147: Properties of each parameter.

| Id    | Name                                        | SBO     | Value                  | Unit     | Constant |
|-------|---------------------------------------------|---------|------------------------|----------|----------|
| ka_57 | IkappaBalpha-<br>mRNA transcrip-<br>tion ka | 0000009 | $3.0303 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

## 5.58 Reaction J58

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name IkappaBalpha translation

SBO:0000184 translation

## **Reaction equation**

$$\emptyset \xrightarrow{\text{IkBa}\_\text{mRNA}} \text{IkBa}$$
 (115)

### **Modifier**

Table 148: Properties of each modifier.

|           | 1         |     |
|-----------|-----------|-----|
| Id        | Name      | SBO |
| IkBa_mRNA | IkBa_mRNA |     |

### **Product**

Table 149: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| IkBa | IkBa |     |

## **Kinetic Law**

$$v_{58} = \text{ka\_58} \cdot \text{IkBa\_mRNA} \tag{116}$$

Table 150: Properties of each parameter.

| Id    | Name                           | SBO     | Value | Unit     | Constant |
|-------|--------------------------------|---------|-------|----------|----------|
| ka_58 | IkappaBalpha<br>translation ka | 0000009 | 0.061 | $s^{-1}$ | Ø        |

### 5.59 Reaction J59

This is a reversible reaction of one reactant forming one product.

Name IkappaBalpha nuclear translocation

SBO:0000526 protein complex formation

# **Reaction equation**

$$IkBa \rightleftharpoons IkBa\_N \tag{117}$$

#### Reactant

Table 151: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| IkBa | IkBa |     |

#### **Product**

Table 152: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| IkBa_N | IkBa_N |     |

#### **Kinetic Law**

$$v_{59} = \text{ka\_59} \cdot \text{IkBa} - \text{kd\_59} \cdot \text{IkBa\_N}$$
 (118)

Table 153: Properties of each parameter.

|       |                                               | _       |       |                 |          |
|-------|-----------------------------------------------|---------|-------|-----------------|----------|
| Id    | Name                                          | SBO     | Value | Unit            | Constant |
| ka_59 | IkappaBalpha nuclear translocation ka         | 0000009 | 0.005 | s <sup>-1</sup> | Ø        |
| kd_59 | IkappaBalpha nu-<br>clear translocation<br>kd | 0000009 | 0.003 | $s^{-1}$        | Ø        |

## 5.60 Reaction J60

This is an irreversible reaction of two reactants forming one product.

Name IkappaBalpha binding NF-kappaB in nucleus

SBO:0000526 protein complex formation

## **Reaction equation**

$$NFkB_N + IkBa_N \longrightarrow IkBa_NFkB_N$$
 (119)

### **Reactants**

Table 154: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| NFkB_N | NFkB_N |     |
| IkBa_N | IkBa_N |     |

#### **Product**

Table 155: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| IkBa_NFkB_N | IkBa:NFkB_N |     |

### **Kinetic Law**

$$v_{60} = ka_60 \cdot NFkB_N \cdot IkBa_N$$
 (120)

Table 156: Properties of each parameter.

| Id    | Name                                                   | SBO     | Value | Unit                     | Constant |
|-------|--------------------------------------------------------|---------|-------|--------------------------|----------|
| ka_60 | IkappaBalpha<br>binding NF-<br>kappaB in nucleus<br>ka | 0000337 | 1.435 | $amol^{-1} \cdot s^{-1}$ | Ø        |

## **5.61 Reaction** J61

This is an irreversible reaction of one reactant forming one product.

Name IkappaBalpha\_NF-kappaB N-C export

SBO:0000185 transport reaction

## **Reaction equation**

$$IkBa\_NFkB\_N \longrightarrow IkBa\_NFkB \tag{121}$$

#### Reactant

Table 157: Properties of each reactant.

| Tuest several repetition of tuest state tunion |             |     |  |
|------------------------------------------------|-------------|-----|--|
| Id                                             | Name        | SBO |  |
| IkBa_NFkB_N                                    | IkBa:NFkB_N |     |  |

### **Product**

Table 158: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| IkBa_NFkB | IkBa:NFkB |     |

### **Kinetic Law**

$$v_{61} = ka\_61 \cdot IkBa\_NFkB\_N \tag{122}$$

Table 159: Properties of each parameter.

| Id    | Name                                        | SBO     | Value | Unit     | Constant |
|-------|---------------------------------------------|---------|-------|----------|----------|
| ka_61 | IkappaBalpha_NF-<br>kappaB N-C export<br>ka | 0000009 | 0.015 | $s^{-1}$ | Ø        |

## **5.62 Reaction** J62

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name A20-mRNA transcription

SBO:0000183 transcription

## **Reaction equation**

$$\emptyset \xrightarrow{NFkB\_N} A20\_mRNA \tag{123}$$

### **Modifier**

Table 160: Properties of each modifier.

| Id       | Name   | SBO |
|----------|--------|-----|
| $NFkB_N$ | NFkB_N |     |

### **Product**

Table 161: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| A20_mRNA | A20_mRNA |     |

### **Kinetic Law**

$$v_{62} = ka_6 \cdot NFkB_N$$
 (124)

Table 162: Properties of each parameter.

| Id    | Name                      | SBO     | Value                   | Unit     | Constant |
|-------|---------------------------|---------|-------------------------|----------|----------|
| ka_62 | A20-mRNA transcription ka | 0000009 | $3.78788 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

### 5.63 Reaction J63

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name A20 translation

SBO:0000184 translation

# **Reaction equation**

$$\emptyset \xrightarrow{\text{A20}\_\text{mRNA}} \text{A20} \tag{125}$$

## **Modifier**

Table 163: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| A20_mRNA | A20_mRNA |     |

### **Product**

Table 164: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| A20 | A20  |     |

### **Kinetic Law**

$$v_{63} = \text{ka}_{-}63 \cdot \text{A}_{20} \text{ mRNA}$$
 (126)

Table 165: Properties of each parameter.

| Id    | Name               | SBO     | Value | Unit     | Constant |
|-------|--------------------|---------|-------|----------|----------|
| ka_63 | A20 translation ka | 0000009 | 0.015 | $s^{-1}$ |          |

# **5.64 Reaction** J64

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name XIAP-mRNA transcription

SBO:0000183 transcription

## **Reaction equation**

$$\emptyset \xrightarrow{NFkB\_N} XIAP\_mRNA \tag{127}$$

#### **Modifier**

Table 166: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| NFkB_N | NFkB_N |     |

### **Product**

Table 167: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| XIAP_mRNA | XIAP_mRNA |     |

### **Kinetic Law**

$$v_{64} = \text{ka}_64 \cdot \text{NFkB}_N \tag{128}$$

Table 168: Properties of each parameter.

| Id    | Name                            | SBO     | Value                   | Unit     | Constant |
|-------|---------------------------------|---------|-------------------------|----------|----------|
| ka_64 | XIAP-mRNA tran-<br>scription ka | 0000009 | $3.33333 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

### 5.65 Reaction J65

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name XIAP translation

SBO:0000184 translation

## **Reaction equation**

$$\emptyset \xrightarrow{\text{XIAP}\_m\text{RNA}} \text{XIAP} \tag{129}$$

## **Modifier**

Table 169: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| XIAP_mRNA | XIAP_mRNA |     |

### **Product**

Table 170: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| XIAP | XIAP |     |

## **Kinetic Law**

$$v_{65} = \text{ka}_{-}65 \cdot \text{XIAP}_{-}\text{mRNA} \tag{130}$$

Table 171: Properties of each parameter.

| Id    | Name       |             | SBO     | Value | Unit     | Constant |
|-------|------------|-------------|---------|-------|----------|----------|
| ka_65 | XIAP<br>ka | translation | 0000009 | 0.051 | $s^{-1}$ | Ø        |

### 5.66 Reaction J66

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name FLIP-mRNA transcription

SBO:0000183 transcription

### **Reaction equation**

$$\emptyset \xrightarrow{NFkB\_N} FLIP\_mRNA \tag{131}$$

### **Modifier**

Table 172: Properties of each modifier.

| Id       | Name   | SBO |
|----------|--------|-----|
| $NFkB_N$ | NFkB_N |     |

### **Product**

Table 173: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| FLIP_mRNA | FLIP_mRNA |     |

### **Kinetic Law**

$$v_{66} = \text{ka\_66} \cdot \text{NFkB\_N} \tag{132}$$

Table 174: Properties of each parameter.

| Id    | Name                            | SBO     | Value                   | Unit     | Constant |
|-------|---------------------------------|---------|-------------------------|----------|----------|
| ka_66 | FLIP-mRNA tran-<br>scription ka | 0000009 | $3.33333 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

## **5.67 Reaction** J67

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name FLIP translation

SBO:0000184 translation

## **Reaction equation**

$$\emptyset \xrightarrow{\text{FLIP}\_\text{mRNA}} \text{FLIP} \tag{133}$$

## **Modifier**

Table 175: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| FLIP_mRNA | FLIP_mRNA |     |

### **Product**

Table 176: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| FLIP | FLIP |     |

## **Kinetic Law**

$$v_{67} = ka_67 \cdot FLIP_mRNA \tag{134}$$

Table 177: Properties of each parameter.

| Id    | Name                | SBO     | Value | Unit     | Constant |
|-------|---------------------|---------|-------|----------|----------|
| ka_67 | FLIP translation ka | 0000009 | 0.007 | $s^{-1}$ |          |

### 5.68 Reaction J68

This is a reversible reaction of no reactant forming one product.

Name Procaspase-8 turnover

SBO:0000357 biological effect of a perturbation

## **Reaction equation**

$$\emptyset \rightleftharpoons pCasp8$$
 (135)

#### **Product**

Table 178: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| pCasp8 | pCasp8 |     |

#### **Kinetic Law**

**Derived unit** amol· $s^{-1}$ 

$$v_{68} = \text{ka}_{.68} - \text{kd}_{.68} \cdot \text{pCasp8}$$
 (136)

Table 179: Properties of each parameter.

| Id    | Name                        | SBO     | Value                   | Unit                | Constant |
|-------|-----------------------------|---------|-------------------------|---------------------|----------|
| ka_68 | Procaspase-8<br>turnover ka | 0000009 | $1.97531 \cdot 10^{-4}$ | $amol \cdot s^{-1}$ |          |
| kd_68 | Procaspase-8<br>turnover kd | 0000009 | $6.17284 \cdot 10^{-5}$ | $s^{-1}$            | Ø        |

### **5.69 Reaction** J69

This is a reversible reaction of no reactant forming one product.

Name Procaspase-3 turnover

SBO:0000357 biological effect of a perturbation

# **Reaction equation**

$$\emptyset \Longrightarrow pCasp3$$
 (137)

#### **Product**

Table 180: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| pCasp3 | pCasp3 |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_{69} = \text{ka}_{-}69 - \text{kd}_{-}69 \cdot \text{pCasp3}$$
 (138)

Table 181: Properties of each parameter.

| Id    | Name                        | SBO     | Value                   | Unit                                             | Constant  |
|-------|-----------------------------|---------|-------------------------|--------------------------------------------------|-----------|
| ka_69 | Procaspase-3<br>turnover ka | 0000009 | $4.93827 \cdot 10^{-5}$ | $\operatorname{amol}\cdot \operatorname{s}^{-1}$ | $\square$ |
| kd_69 | Procaspase-3<br>turnover kd | 0000009 | $6.17284 \cdot 10^{-5}$ | $s^{-1}$                                         | Ø         |

# **5.70 Reaction** J70

This is a reversible reaction of no reactant forming one product.

Name Procaspase-6 turnover

SBO:0000357 biological effect of a perturbation

# **Reaction equation**

$$\emptyset \rightleftharpoons pCasp6$$
 (139)

#### **Product**

Table 182: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| pCasp6 | pCasp6 |     |

#### **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_{70} = \text{ka}_{-}70 - \text{kd}_{-}70 \cdot \text{pCasp6}$$
 (140)

Table 183: Properties of each parameter.

| Id    | Name                        | SBO     | Value                   | Unit                | Constant |
|-------|-----------------------------|---------|-------------------------|---------------------|----------|
| ka_70 | Procaspase-6<br>turnover ka | 0000009 | $3.95062 \cdot 10^{-6}$ | $amol \cdot s^{-1}$ |          |
| kd_70 | Procaspase-6<br>turnover kd | 0000009 | $6.17284 \cdot 10^{-5}$ | $s^{-1}$            | Ø        |

#### **5.71 Reaction** J71

This is an irreversible reaction of one reactant forming no product.

Name Caspase-8 degradation

SBO:0000179 degradation

# **Reaction equation**

$$Casp8 \longrightarrow \emptyset \tag{141}$$

# Reactant

Table 184: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp8 | Casp8 |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{71} = \text{ka}_{-}71 \cdot \text{Casp8} \tag{142}$$

Table 185: Properties of each parameter.

| Id    | Name                     | SBO     | Value                   | Unit     | Constant |
|-------|--------------------------|---------|-------------------------|----------|----------|
| ka_71 | Caspase-8 degradation ka | 0000356 | $5.78704 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

#### **5.72 Reaction** J72

This is an irreversible reaction of one reactant forming no product.

Name Caspase-3 degradation

SBO:0000179 degradation

#### **Reaction equation**

$$Casp3 \longrightarrow \emptyset \tag{143}$$

#### Reactant

Table 186: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp3 | Casp3 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{72} = \text{ka}_{-}72 \cdot \text{Casp3} \tag{144}$$

Table 187: Properties of each parameter.

| Id    | Name                     | SBO     | Value                   | Unit     | Constant |
|-------|--------------------------|---------|-------------------------|----------|----------|
| ka_72 | Caspase-3 degradation ka | 0000356 | $5.78704 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

#### 5.73 Reaction J73

This is an irreversible reaction of one reactant forming no product.

Name Caspase-6 degradation

# SBO:0000179 degradation

# **Reaction equation**

$$Casp6 \longrightarrow \emptyset \tag{145}$$

#### Reactant

Table 188: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp6 | Casp6 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{73} = \text{ka}_{-}73 \cdot \text{Casp6} \tag{146}$$

Table 189: Properties of each parameter.

| Id    | Name                     | SBO     | Value                   | Unit     | Constant |
|-------|--------------------------|---------|-------------------------|----------|----------|
| ka_73 | Caspase-6 degradation ka | 0000356 | $5.78704 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

# **5.74 Reaction** J74

This is an irreversible reaction of one reactant forming no product.

Name XIAPCaspase-3 complex degradation

SBO:0000179 degradation

# **Reaction equation**

$$XIAP\_Casp3 \longrightarrow \emptyset$$
 (147)

### Reactant

Table 190: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| XIAP_Casp3 | XIAP:Casp3 |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{74} = \text{ka}_{74} \cdot \text{XIAP}_{\text{Casp3}} \tag{148}$$

Table 191: Properties of each parameter.

| Id    | Name                                         | SBO     | Value                   | Unit     | Constant |
|-------|----------------------------------------------|---------|-------------------------|----------|----------|
| ka_74 | XIAPĈaspase-3<br>complex degrada-<br>tion ka | 0000356 | $5.78704 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

#### 5.75 Reaction J75

This is a reversible reaction of no reactant forming one product.

Name BAR turnover

**SBO:0000357** biological effect of a perturbation

# **Reaction equation**

$$\emptyset \Longrightarrow BAR$$
 (149)

#### **Product**

Table 192: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| BAR | BAR  |     |

## **Kinetic Law**

Derived unit  $amol \cdot s^{-1}$ 

$$v_{75} = \text{ka}_{.75} - \text{kd}_{.75} \cdot \text{BAR}$$
 (150)

Table 193: Properties of each parameter.

| Id             | Name                               | SBO | Value                                            | Unit | Constant |
|----------------|------------------------------------|-----|--------------------------------------------------|------|----------|
| ka_75<br>kd_75 | BAR turnover ka<br>BAR turnover kd |     | $1.66603 \cdot 10^{-6} $ $5.78704 \cdot 10^{-6}$ |      | <b>✓</b> |

### 5.76 Reaction J76

This is an irreversible reaction of one reactant forming no product.

Name BARCaspase-8 complex degradation

SBO:0000179 degradation

### **Reaction equation**

$$BAR\_Casp8 \longrightarrow \emptyset$$
 (151)

#### Reactant

Table 194: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| BAR_Casp8 | BAR:Casp8 |     |

# **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{76} = \text{ka}_{-}76 \cdot \text{BAR}_{-}\text{Casp8} \tag{152}$$

Table 195: Properties of each parameter.

| Id    | Name                                        | SBO     | Value                   | Unit     | Constant |
|-------|---------------------------------------------|---------|-------------------------|----------|----------|
| ka_76 | BARĈaspase-8<br>complex degrada-<br>tion ka | 0000356 | $5.78704 \cdot 10^{-5}$ | $s^{-1}$ | Ø        |

# **5.77 Reaction** J77

This is a reversible reaction of one reactant forming no product.

Name PARP turnover

SBO:0000357 biological effect of a perturbation

# **Reaction equation**

$$PARP \rightleftharpoons \emptyset \tag{153}$$

#### Reactant

Table 196: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| PARP | PARP |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{77} = \text{ka}_{-}77 \cdot \text{PARP} - \text{kd}_{-}77$$
 (154)

Table 197: Properties of each parameter.

| Id    | Name             | SBO     | Value                   | Unit                | Constant |
|-------|------------------|---------|-------------------------|---------------------|----------|
| ka_77 | PARP turnover ka | 0000009 | $5.78704 \cdot 10^{-6}$ | $s^{-1}$            |          |
| kd_77 | PARP turnover kd | 0000009 | $9.64506 \cdot 10^{-6}$ | $amol \cdot s^{-1}$ |          |

# 5.78 Reaction J78

This is an irreversible reaction of one reactant forming no product.

Name CPARP degradation

SBO:0000179 degradation

# **Reaction equation**

$$cPARP \longrightarrow \emptyset \tag{155}$$

# Reactant

Table 198: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| cPARP | cPARP |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot amol$ 

$$v_{78} = \text{ka}_{-}78 \cdot \text{cPARP} \tag{156}$$

Table 199: Properties of each parameter.

| Id    | Name             |          | SBO     | Value                   | Unit     | Constant |
|-------|------------------|----------|---------|-------------------------|----------|----------|
| ka_78 | CPARP<br>tion ka | degrada- | 0000356 | $5.78704 \cdot 10^{-6}$ | $s^{-1}$ | Ø        |

#### 5.79 Reaction J79

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Caspase-3 activation

SBO:0000170 stimulation

# **Reaction equation**

$$pCasp3 \xrightarrow{Casp8} Casp3$$
 (157)

#### Reactant

Table 200: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| pCasp3 | pCasp3 |     |

#### **Modifier**

Table 201: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp8 | Casp8 |     |

#### **Product**

Table 202: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp3 | Casp3 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{79} = \text{ka}_{-}79 \cdot \text{pCasp3} \cdot \text{Casp8} \tag{158}$$

Table 203: Properties of each parameter.

| Id    | Name                    | SBO     | Value | Unit                     | Constant |
|-------|-------------------------|---------|-------|--------------------------|----------|
| ka_79 | Caspase-3 activation ka | 0000363 | 0.016 | $amol^{-1} \cdot s^{-1}$ | Ø        |

# 5.80 Reaction J80

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Caspase-6 activation

SBO:0000170 stimulation

# **Reaction equation**

$$pCasp6 \xrightarrow{Casp3} Casp6$$
 (159)

#### Reactant

Table 204: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| pCasp6 | pCasp6 |     |

#### **Modifier**

Table 205: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp3 | Casp3 |     |

#### **Product**

Table 206: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp6 | Casp6 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{80} = \text{ka\_80} \cdot \text{pCasp6} \cdot \text{Casp3} \tag{160}$$

Table 207: Properties of each parameter.

| Id    | Name                    | SBO     | Value | Unit                     | Constant |
|-------|-------------------------|---------|-------|--------------------------|----------|
| ka_80 | Caspase-6 activation ka | 0000363 | 0.009 | $amol^{-1} \cdot s^{-1}$ | Ø        |

#### 5.81 Reaction J81

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Caspase-8 activation

SBO:0000170 stimulation

# **Reaction equation**

$$pCasp8 \xrightarrow{Casp6} Casp8 \tag{161}$$

#### Reactant

Table 208: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| pCasp8 | pCasp8 |     |

#### **Modifier**

Table 209: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp6 | Casp6 |     |

#### **Product**

Table 210: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp8 | Casp8 |     |

## **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{81} = \text{ka\_81} \cdot \text{pCasp8} \cdot \text{Casp6} \tag{162}$$

Table 211: Properties of each parameter.

| Id    | Name                |         | SBO     | Value | Unit                     | Constant |
|-------|---------------------|---------|---------|-------|--------------------------|----------|
| ka_81 | Caspase-8 a tion ka | activa- | 0000363 | 0.002 | $amol^{-1} \cdot s^{-1}$ | Ø        |

#### 5.82 Reaction J82

This is a reversible reaction of two reactants forming one product.

Name XIAPCaspase-3 complex formation

SBO:0000526 protein complex formation

# **Reaction equation**

$$XIAP + Casp3 \Longrightarrow XIAP\_Casp3$$
 (163)

#### **Reactants**

Table 212: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| XIAP  | XIAP  |     |
| Casp3 | Casp3 |     |

#### **Product**

Table 213: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| XIAP_Casp3 | XIAP:Casp3 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{82} = ka_82 \cdot XIAP \cdot Casp3 - kd_82 \cdot XIAP\_Casp3$$
 (164)

Table 214: Properties of each parameter.

| Id    | Name                                     | SBO     | Value | Unit                     | Constant |
|-------|------------------------------------------|---------|-------|--------------------------|----------|
| ka_82 | XIAPĈaspase-3<br>complex formation<br>ka | 0000337 | 0.625 | $amol^{-1} \cdot s^{-1}$ | Ø        |
| kd_82 | XIAPCaspase-3<br>complex formation<br>kd | 0000337 | 0.001 | $s^{-1}$                 | <b>2</b> |

#### 5.83 Reaction J83

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name XIAP degradation due to Caspase-3

SBO:0000179 degradation

# **Reaction equation**

$$XIAP \xrightarrow{Casp3} \emptyset$$
 (165)

#### Reactant

Table 215: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| XIAP | XIAP |     |

#### Modifier

Table 216: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp3 | Casp3 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{83} = \text{ka}_{-}83 \cdot \text{XIAP} \cdot \text{Casp3} \tag{166}$$

Table 217: Properties of each parameter.

| Id    | Name                                       | SBO     | Value | Unit                     | Constant |
|-------|--------------------------------------------|---------|-------|--------------------------|----------|
| ka_83 | XIAP degradation<br>due to Caspase-3<br>ka | 0000356 | 1.875 | $amol^{-1} \cdot s^{-1}$ | Ø        |

#### 5.84 Reaction J84

This is an irreversible reaction of one reactant forming one product.

Name XIAPCaspase-3 complex breakup

SBO:0000180 dissociation

# **Reaction equation**

$$XIAP\_Casp3 \longrightarrow XIAP$$
 (167)

#### Reactant

Table 218: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| XIAP_Casp3 | XIAP:Casp3 |     |

#### **Product**

Table 219: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| XIAP | XIAP |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{84} = \text{ka\_84} \cdot \text{XIAP\_Casp3} \tag{168}$$

Table 220: Properties of each parameter.

| Id    | Name                                   | SBO     | Value            | Unit     | Constant |
|-------|----------------------------------------|---------|------------------|----------|----------|
| ka_84 | XIAPĈaspase-3<br>complex breakup<br>ka | 0000282 | $5\cdot 10^{-5}$ | $s^{-1}$ | Ø        |

### 5.85 Reaction J85

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name negative feedback loop Caspase-3 on TNFR Complex1

# SBO:0000169 inhibition

# **Reaction equation**

$$RIP \xrightarrow{Casp3} \emptyset \tag{169}$$

#### Reactant

Table 221: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| RIP | RIP  |     |

#### **Modifier**

Table 222: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp3 | Casp3 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{85} = \text{ka}_{-}85 \cdot \text{RIP} \cdot \text{Casp3} \tag{170}$$

Table 223: Properties of each parameter.

| Id    | Name                                                          | SBO     | Value | Unit                     | Constant |
|-------|---------------------------------------------------------------|---------|-------|--------------------------|----------|
| ka_85 | negative feedback<br>loop Caspase-3 on<br>TNFR Complex1<br>ka | 0000261 | 0.156 | $amol^{-1} \cdot s^{-1}$ | Ø        |

#### 5.86 Reaction J86

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name FLIP degradation by Caspase-3

# SBO:0000179 degradation

# **Reaction equation**

$$FLIP \xrightarrow{Casp3} \emptyset \tag{171}$$

#### Reactant

Table 224: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| FLIP | FLIP |     |

#### **Modifier**

Table 225: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp3 | Casp3 |     |

# **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{86} = \text{ka}_{-}86 \cdot \text{FLIP} \cdot \text{Casp3} \tag{172}$$

Table 226: Properties of each parameter.

| Id    | Name                                | SBO     | Value | Unit                     | Constant |
|-------|-------------------------------------|---------|-------|--------------------------|----------|
| ka_86 | FLIP degradation<br>by Caspase-3 ka | 0000356 | 0.156 | $amol^{-1} \cdot s^{-1}$ | Ø        |

# **5.87 Reaction** J87

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name PARP cleavage as Casp3 substrate

**SBO:0000178** cleavage

# **Reaction equation**

$$PARP \xrightarrow{Casp3} cPARP \tag{173}$$

## Reactant

Table 227: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| PARP | PARP |     |

#### **Modifier**

Table 228: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| Casp3 | Casp3 |     |

#### **Product**

Table 229: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| cPARP | cPARP |     |

# **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{87} = \text{ka\_87} \cdot \text{Casp3} \cdot \text{PARP} \tag{174}$$

Table 230: Properties of each parameter.

| Id    | Name                                   | SBO     | Value | Unit                     | Constant |
|-------|----------------------------------------|---------|-------|--------------------------|----------|
| ka_87 | PARP cleavage as<br>Casp3 substrate ka | 0000356 | 0.188 | $amol^{-1} \cdot s^{-1}$ | Ø        |

#### 5.88 Reaction J88

This is a reversible reaction of two reactants forming one product.

Name BARCaspase-8 complex formation

SBO:0000526 protein complex formation

# **Reaction equation**

$$BAR + Casp8 \Longrightarrow BAR\_Casp8 \tag{175}$$

### **Reactants**

Table 231: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| BAR   | BAR   |     |
| Casp8 | Casp8 |     |

#### **Product**

Table 232: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| BAR_Casp8 | BAR:Casp8 |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot amol$ 

$$v_{88} = \text{ka\_88} \cdot \text{BAR} \cdot \text{Casp8} - \text{kd\_88} \cdot \text{BAR\_Casp8}$$
 (176)

Table 233: Properties of each parameter.

|       |                                         | _       |       |                          |          |
|-------|-----------------------------------------|---------|-------|--------------------------|----------|
| Id    | Name                                    | SBO     | Value | Unit                     | Constant |
| ka_88 | BARĈaspase-8<br>complex formation<br>ka | 0000337 | 0.521 | $amol^{-1} \cdot s^{-1}$ | Ø        |
| kd_88 | BARČaspase-8<br>complex formation<br>kd | 0000337 | 0.001 | $s^{-1}$                 | Ø        |

# **6 Derived Rate Equations**

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

# 6.1 Species TNFR\_E

Name TNFR\_E

SBO:0000252 polypeptide chain

Initial amount  $0.0050 Unknownunita_mole$ 

This species takes part in three reactions (as a reactant in J3, J18 and as a product in J1).

$$\frac{d}{dt}TNFR\_E = v_1 - v_3 - v_{18}$$
 (177)

# 6.2 Species TNF\_E

Name TNF\_E

SBO:0000252 polypeptide chain

Initial amount  $0.2688 Unknownunita_m ole$ 

This species takes part in one reaction (as a reactant in J18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TNF}_{-}\mathrm{E} = -v_{18} \tag{178}$$

# 6.3 Species TNF\_TNFR\_E

Name TNF:TNFR\_E

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in three reactions (as a reactant in J8, J19 and as a product in J18).

$$\frac{d}{dt}TNF\_TNFR\_E = v_{18} - v_8 - v_{19}$$
 (179)

### **6.4 Species** TNFR

Name TNFR

SBO:0000252 polypeptide chain

Initial amount  $2.8 \cdot 10^{-4} Unknownunita_mole$ 

This species takes part in two reactions (as a reactant in J1 and as a product in J2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TNFR} = v_2 - v_1 \tag{180}$$

# 6.5 Species RIP

Name RIP

SBO:0000252 polypeptide chain

Initial amount  $0.20256 Unknownunita_m ole$ 

This species takes part in five reactions (as a reactant in J20, J33, J85 and as a product in J4, J22).

$$\frac{\mathrm{d}}{\mathrm{d}t}RIP = v_4 + v_{22} - v_{20} - v_{33} - v_{85} \tag{181}$$

#### 6.6 Species TRADD

Name TRADD

SBO:0000252 polypeptide chain

Initial amount  $0.29344 \ Unknownunit a_mole$ 

This species takes part in two reactions (as a reactant in J19 and as a product in J5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TRADD} = v_5 - v_{19} \tag{182}$$

#### **6.7 Species** TRAF2

Name TRAF2

SBO:0000252 polypeptide chain

Initial amount  $0.33056 Unknownunita_mole$ 

This species takes part in five reactions (as a reactant in J20, J33 and as a product in J6, J22, J53).

$$\frac{d}{dt}TRAF2 = v_6 + v_{22} + v_{53} - v_{20} - v_{33}$$
 (183)

# 6.8 Species FADD

Name FADD

SBO:0000252 polypeptide chain

Initial amount  $0.30944 \ Unknownunit a_mole$ 

This species takes part in two reactions (as a reactant in J23 and as a product in J7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FADD} = v_7 - 2v_{23} \tag{184}$$

# 6.9 Species TNF\_TNFR\_TRADD

Name TNF:TNFR:TRADD

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in four reactions (as a reactant in J9, J20 and as a product in J19, J53).

$$\frac{d}{dt}TNF_{-}TNFR_{-}TRADD = v_{19} + v_{53} - v_9 - v_{20}$$
 (185)

#### **6.10 Species TNFRC1**

Name TNFRC1

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in five reactions (as a reactant in J10, J21, J53 and as a product in J20 and as a modifier in J51).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{TNFRC1} = v_{20} - v_{10} - v_{21} - v_{53} \tag{186}$$

#### 6.11 Species TNFRCint1

Name TNFRCint1

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in two reactions (as a reactant in J22 and as a product in J21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TNFRCint1} = v_{21} - v_{22} \tag{187}$$

# **6.12 Species** TNFRCint2

Name TNFRCint2

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in two reactions (as a reactant in J23 and as a product in J22).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TNFRCint2} = v_{22} - v_{23} \tag{188}$$

#### 6.13 Species TNFRCint3

Name TNFRCint3

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in two reactions (as a reactant in J24 and as a product in J23).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TNFRCint3} = v_{23} - v_{24} \tag{189}$$

#### 6.14 Species TNFRC2

Name TNFRC2

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in six reactions (as a reactant in J11, J25, J27 and as a product in J24, J29, J32).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{TNFRC2} = v_{24} + v_{29} + v_{32} - v_{11} - v_{25} - v_{27}$$
(190)

# 6.15 Species FLIP

Name FLIP

SBO:0000252 polypeptide chain

Initial amount  $0.0320472 Unknownunita_mole$ 

This species takes part in six reactions (as a reactant in J25, J26, J30, J86 and as a product in J37, J67).

$$\frac{d}{dt}FLIP = v_{37} + v_{67} - v_{25} - v_{26} - v_{30} - v_{86}$$
(191)

# 6.16 Species TNFRC2\_FLIP

Name TNFRC2:FLIP

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in four reactions (as a reactant in J12, J26, J31 and as a product in J25).

$$\frac{d}{dt}TNFRC2\_FLIP = v_{25} - v_{12} - v_{26} - v_{31}$$
 (192)

# 6.17 Species TNFRC2\_pCasp8

Name TNFRC2:pCasp8

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in four reactions (as a reactant in J14, J28, J30 and as a product in J27).

$$\frac{d}{dt}TNFRC2\_pCasp8 = v_{27} - v_{14} - v_{28} - v_{30}$$
 (193)

#### 6.18 Species TNFRC2\_FLIP\_FLIP

Name TNFRC2:FLIP:FLIP

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in two reactions (as a reactant in J13 and as a product in J26).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{TNFRC2\_FLIP\_FLIP} = v_{26} - v_{13} \tag{194}$$

# 6.19 Species TNFRC2\_pCasp8\_pCasp8

Name TNFRC2:pCasp8:pCasp8

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in three reactions (as a reactant in J15, J29 and as a product in J28).

$$\frac{d}{dt} TNFRC2\_pCasp8\_pCasp8 = v_{28} - v_{15} - v_{29}$$
 (195)

### 6.20 Species TNFRC2\_FLIP\_pCasp8

Name TNFRC2:FLIP:pCasp8

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in five reactions (as a reactant in J16, J32, J33 and as a product in J30, J31).

$$\frac{d}{dt} \text{TNFRC2\_FLIP\_pCasp8} = v_{30} + v_{31} - v_{16} - v_{32} - v_{33}$$
 (196)

# **6.21 Species** TNFRC2\_FLIP\_pCasp8\_RIP\_TRAF2

Name TNFRC2:FLIP:pCasp8:RIP:TRAF2

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in three reactions (as a reactant in J17 and as a product in J33 and as a modifier in J34).

$$\frac{d}{dt}TNFRC2\_FLIP\_pCasp8\_RIP\_TRAF2 = v_{33} - v_{17}$$
(197)

#### 6.22 Species IKK

Name IKK

SBO:0000252 polypeptide chain

**Initial amount** 0.64 *Unknownunita*<sub>m</sub>ole

This species takes part in four reactions (as a reactant in J34, J51 and as a product in J35, J52).

$$\frac{\mathrm{d}}{\mathrm{d}t}IKK = v_{35} + v_{52} - v_{34} - v_{51} \tag{198}$$

#### 6.23 Species IKKa

Name IKKa

SBO:0000252 polypeptide chain

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in five reactions (as a reactant in J40, J52 and as a product in J34, J51 and as a modifier in J55).

$$\frac{\mathrm{d}}{\mathrm{d}t}IKKa = v_{34} + v_{51} - v_{40} - v_{52} \tag{199}$$

#### **6.24 Species** A20

Name A20

SBO:0000252 polypeptide chain

Initial amount  $0.104434 \ Unknownunit \ a_mole$ 

This species takes part in three reactions (as a product in J39, J63 and as a modifier in J53).

$$\frac{d}{dt}A20 = v_{39} + v_{63} \tag{200}$$

# 6.25 Species NFkB

Name NFkB

SBO:0000252 polypeptide chain

Initial amount  $1.15365 \cdot 10^{-4} Unknownunita_mole$ 

This species takes part in four reactions (as a reactant in J54, J56 and as a product in J36, J55).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{NFkB} = v_{36} + v_{55} - v_{54} - v_{56} \tag{201}$$

#### 6.26 Species IkBa

Name IkBa

SBO:0000252 polypeptide chain

Initial amount  $0.00101518 Unknownunita_mole$ 

This species takes part in four reactions (as a reactant in J44, J54, J59 and as a product in J58).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{IkBa} = v_{58} - v_{44} - v_{54} - v_{59} \tag{202}$$

#### 6.27 Species IkBa\_NFkB

Name IkBa:NFkB

SBO:0000297 protein complex

Initial amount  $0.0151032 Unknownunita_mole$ 

This species takes part in four reactions (as a reactant in J41, J55 and as a product in J54, J61).

$$\frac{d}{dt}IkBa\_NFkB = v_{54} + v_{61} - v_{41} - v_{55}$$
 (203)

# 6.28 Species PIkBa

Name PIkBa

SBO:0000252 polypeptide chain

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in two reactions (as a reactant in J47 and as a product in J55).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PIkBa} = v_{55} - v_{47} \tag{204}$$

### 6.29 Species NFkB\_N

Name NFkB\_N

SBO:0000252 polypeptide chain

Initial amount  $6.91431 \cdot 10^{-4} Unknownunita_m ole$ 

This species takes part in seven reactions (as a reactant in J42, J60 and as a product in J56 and as a modifier in J57, J62, J64, J66).

$$\frac{d}{dt}NFkB_{N} = v_{56} - v_{42} - v_{60}$$
 (205)

### 6.30 Species IkBa\_N

Name IkBa\_N

SBO:0000252 polypeptide chain

Initial amount  $0.0013839 \ Unknownunit a_mole$ 

This species takes part in three reactions (as a reactant in J45, J60 and as a product in J59).

$$\frac{d}{dt}IkBa_N = v_{59} - v_{45} - v_{60}$$
 (206)

#### 6.31 Species IkBa\_NFkB\_N

Name IkBa:NFkB\_N

SBO:0000297 protein complex

Initial amount  $9.00189 \cdot 10^{-5} Unknownunita_mole$ 

This species takes part in three reactions (as a reactant in J46, J61 and as a product in J60).

$$\frac{d}{dt}IkBa_NFkB_N = v_{60} - v_{46} - v_{61}$$
 (207)

# 6.32 Species A20\_mRNA

Name A20\_mRNA

SBO:0000278 messenger RNA

Initial amount  $5.56657 \cdot 10^{-5} Unknownunita_mole$ 

This species takes part in three reactions (as a reactant in J48 and as a product in J62 and as a modifier in J63).

$$\frac{d}{dt}A20 \text{_mRNA} = v_{62} - v_{48} \tag{208}$$

# 6.33 Species IkBa\_mRNA

Name IkBa\_mRNA

SBO:0000278 messenger RNA

Initial amount  $5.31517 \cdot 10^{-5} Unknownunita_m ole$ 

This species takes part in three reactions (as a reactant in J43 and as a product in J57 and as a modifier in J58).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IkBa\_mRNA} = v_{57} - v_{43} \tag{209}$$

#### 6.34 Species XIAP\_mRNA

Name XIAP\_mRNA

SBO:0000278 messenger RNA

Initial amount  $2.19646 \cdot 10^{-4} Unknownunita_mole$ 

This species takes part in three reactions (as a reactant in J49 and as a product in J64 and as a modifier in J65).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{XIAP\_mRNA} = v_{64} - v_{49} \tag{210}$$

#### 6.35 Species FLIP\_mRNA

Name FLIP\_mRNA

SBO:0000278 messenger RNA

Initial amount  $1.39056 \cdot 10^{-4} Unknownunita_mole$ 

This species takes part in three reactions (as a reactant in J50 and as a product in J66 and as a modifier in J67).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FLIP\_mRNA} = v_{66} - v_{50} \tag{211}$$

#### **6.36 Species** BAR

Name BAR

SBO:0000252 polypeptide chain

Initial amount  $0.28789 \ Unknownunit a_mole$ 

This species takes part in two reactions (as a reactant in J88 and as a product in J75).

$$\frac{d}{dt}BAR = v_{75} - v_{88} \tag{212}$$

# 6.37 Species XIAP

Name XIAP

SBO:0000252 polypeptide chain

Initial amount 7.83371  $Unknownunita_mole$ 

This species takes part in five reactions (as a reactant in J82, J83 and as a product in J38, J65, J84).

$$\frac{d}{dt}XIAP = v_{38} + v_{65} + v_{84} - v_{82} - v_{83}$$
 (213)

#### 6.38 Species pCasp8

Name pCasp8

SBO:0000252 polypeptide chain

Initial amount  $3.2 Unknownunita_mole$ 

This species takes part in five reactions (as a reactant in J27, J28, J31, J81 and as a product in J68).

$$\frac{\mathrm{d}}{\mathrm{d}t}p\mathrm{Casp8} = v_{68} - v_{27} - v_{28} - v_{31} - v_{81} \tag{214}$$

#### 6.39 Species pCasp3

Name pCasp3

SBO:0000252 polypeptide chain

Initial amount  $0.8 Unknownunita_mole$ 

This species takes part in two reactions (as a reactant in J79 and as a product in J69).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{pCasp3} = v_{69} - v_{79} \tag{215}$$

# 6.40 Species pCasp6

Name pCasp6

SBO:0000252 polypeptide chain

Initial amount  $0.064 Unknownunita_mole$ 

This species takes part in two reactions (as a reactant in J80 and as a product in J70).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{pCasp6} = v_{70} - v_{80} \tag{216}$$

# 6.41 Species Casp8

Name Casp8

SBO:0000252 polypeptide chain

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in six reactions (as a reactant in J71, J88 and as a product in J29, J32, J81 and as a modifier in J79).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Casp8} = v_{29} + v_{32} + v_{81} - v_{71} - v_{88} \tag{217}$$

#### 6.42 Species Casp3

Name Casp3

SBO:0000252 polypeptide chain

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in eight reactions (as a reactant in J72, J82 and as a product in J79 and as a modifier in J80, J83, J85, J86, J87).

$$\frac{d}{dt}Casp3 = v_{79} - v_{72} - v_{82} \tag{218}$$

#### **6.43 Species** Casp6

Name Casp6

SBO:0000252 polypeptide chain

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in three reactions (as a reactant in J73 and as a product in J80 and as a modifier in J81).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Casp6} = v_{80} - v_{73} \tag{219}$$

# 6.44 Species BAR\_Casp8

Name BAR:Casp8

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in two reactions (as a reactant in J76 and as a product in J88).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{BAR}_{-}\mathrm{Casp8} = v_{88} - v_{76} \tag{220}$$

# **6.45 Species** XIAP\_Casp3

Name XIAP:Casp3

SBO:0000297 protein complex

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in three reactions (as a reactant in J74, J84 and as a product in J82).

$$\frac{d}{dt}XIAP\_Casp3 = v_{82} - v_{74} - v_{84}$$
 (221)

#### 6.46 Species PARP

Name PARP

SBO:0000252 polypeptide chain

Initial amount  $1.66667 Unknownunita_m ole$ 

This species takes part in two reactions (as a reactant in J77, J87).

$$\frac{d}{dt}PARP = -v_{77} - v_{87} \tag{222}$$

#### 6.47 Species cPARP

Name cPARP

SBO:0000252 polypeptide chain

Initial amount  $0 Unknownunita_m ole$ 

This species takes part in two reactions (as a reactant in J78 and as a product in J87).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cPARP} = v_{87} - v_{78} \tag{223}$$

# A Glossary of Systems Biology Ontology Terms

- **SBO:000009 kinetic constant:** Numerical parameter that quantifies the velocity of a chemical reaction
- SBO:0000169 inhibition: Negative modulation of the execution of a process
- **SBO:0000170 stimulation:** Positive modulation of the execution of a process
- **SBO:0000178 cleavage:** Rupture of a covalent bond resulting in the conversion of one physical entity into several physical entities
- SBO:0000179 degradation: Complete disappearance of a physical entity
- **SBO:0000180** dissociation: Transformation of a non-covalent complex that results in the formation of several independent biochemical entitie
- **SBO:0000183 transcription:** Process through which a DNA sequence is copied to produce a complementary RNA
- **SBO:0000184 translation:** Process in which a polypeptide chain is produced from a messenger RNA
- **SBO:0000185 transport reaction:** Movement of a physical entity without modification of the structure of the entity
- **SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000261 inhibitory constant:** Dissociation constant of a compound from a target of which it inhibits the function.
- **SBO:0000278** messenger RNA: A messenger RNA is a ribonucleic acid synthesized during the transcription of a gene, and that carries the information to encode one or several proteins
- **SBO:0000282 dissociation constant:** Equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions. The dissociation constant is usually denoted Kd and is the inverse of the affinity constant.
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000297 protein complex:** Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608

- **SBO:0000337 association constant:** Equilibrium constant that measures the propensity of two objects to assemble (associate) reversibly into a larger component. The association constant is usually denoted Ka and is the inverse of the dissociation constant.
- **SBO:0000349 inactivation rate constant:** Kinetic constant describing the rate of an irreversible enzyme inactivation by decay of the active enzyme into its inactive form
- **SBO:0000356 decay constant:** Kinetic constant characterising a mono-exponential decay. It is the inverse of the mean lifetime of the continuant being decayed. Its unit is "per tim".
- **SBO:0000357** biological effect of a perturbation: Biochemical networks can be affected by external influences. Those influences can be well-defined physical perturbations, such as a light pulse, or a change in temperature but also more complex of not well defined phenomena, for instance a biological process, an experimental setup, or a mutation
- **SBO:0000363** activation constant: Dissociation constant of a potentiator (activator) from a target (e.g. an enzyme) of which it activates the function
- **SBO:0000393** production: Generation of a material or conceptual entity.
- **SBO:0000395 encapsulating process:** An aggregation of interactions and entities into a single process
- **SBO:0000526 protein complex formation:** The process by which two or more proteins interact non-covalently to form a protein complex (SBO:0000297)

SBML2LATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany