Numerical study of the airflow over a high-altitude pseudo-satellite wing

PhD update

Carlo Brunelli

October 25, 2023

PhD presentation after 1.5 years

1 Numerical Methods

- ► Numerical Methods
- ► Performances
- ► Synthetic Eddy Method
- ► Laminar Separation Bubble
- Uncertainty Quantification
- ▶ Other activities
- ▶ Element of novelty
- ► Next steps

Numerical Method implemented

1 Numerical Methods

The numerical method currently implemented are:

- Variational Multiscale Method (VMS)
- Streamline upwind Petrov-Galerkin (SUPG)

Different solution method are available for all of them

- Non-linear (NLIN)
- Linearized-Coupled (LC-VMS)
- Linearized-Segregated (LS-VMS)

Variational Multiscale Method

1 Numerical Methods

- Evolution of the SUPG
- Implict LES
- It does not need calibration
- Residual-based stabilization

Galkerkin formulation

1 Numerical Methods

Conservation of mass:

$$\nabla \cdot \vec{u} = 0 \tag{1}$$

Conservation of momentum:

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} + \nabla p - \nu \Delta \vec{u} - f = 0$$
 (2)

Variational Formulation

$$B^{G} = \int_{\Omega} \frac{\partial \vec{u}}{\partial t} \cdot \vec{v} \, d\Omega + \int_{\Omega} (\vec{u} \cdot \nabla) \vec{u} \cdot \vec{v} \, d\Omega + \int_{\Omega} \nabla(p) \cdot \vec{v} \, d\Omega + \int_{\Omega} \nu \nabla \vec{u} \cdot \nabla \vec{v} \, d\Omega - \int_{\Omega} f \cdot \vec{v} \, d\Omega + \int_{\Omega} q(\nabla \cdot \vec{u}) \, d\Omega = 0$$
(3)

Stabilization equations

1 Numerical Methods

$$B^{SUPG}(t,(\vec{u},p),(\vec{v},q)) = \int_{\Omega} (\tau_m(\vec{u}\cdot\nabla\vec{v}+\nabla q)\cdot\vec{R_m}\ d\Omega + \int_{\Omega} \tau_c(\nabla\cdot\vec{v})R_c\ d\Omega$$
 (4)

$$B^{VMS1}(t,(\vec{u},p),(\vec{v},q)) = \int_{\Omega} (\vec{u} \cdot \nabla \vec{v}') \odot (\tau_m \vec{R_m}) d\Omega$$
 (5)

$$B^{VMS2}(t,(\vec{u},p),(\vec{v},q)) = -\int_{\Omega} (\nabla \vec{v} \odot (\tau_m \vec{R_m} \otimes \tau_m \vec{R_m}) d\Omega$$
 (6)

Stabilization parameters

1 Numerical Methods

$$\tau_m = \left(\frac{4}{\Delta t^2} + \vec{u} \cdot G\vec{u} + C_I \nu^2 G : G\right)^{-1/2} \tag{7}$$

$$\tau_c = (\tau_c \vec{g} \cdot \vec{g})^{-1} \tag{8}$$

Where G is the inverse of the gradient of the map cell. For a cubed shaped element, with h the edge length, $G_{ij}=\frac{1}{h^2}\delta_{ij}$, where δ_{ij} is the Kronecker delta.

Linearization

1 Numerical Methods

$$\tilde{\vec{u}} = 2.1875u^n - 2.1875u^{n-1} + 1.3125u^{n-2} - 0.3125u^{n-3}$$
 (9)

$$(\vec{u} \cdot \nabla)\vec{u} \Rightarrow (\tilde{\vec{u}} \cdot \nabla)\vec{u}$$
 (10)

Boundary Layer Initialization

1 Numerical Methods

- Avoid Instabilities (close to the leading edge)
- · Avoid velocity ramping
- Higher time-step

Using the function exploited by RANS solvers for the wall distance for computing turbulent parameters but now used to detect the airfoil's contour

$$\begin{cases} \nabla \cdot (|\nabla u_p|^{p-2} \nabla u_p) = -1 & x \in \Omega \\ u_p = 0 & x \in \Omega_D \end{cases} \tag{11}$$

The true-wall distance is provided by solving the equation for $p \to \infty$ Solved using a method that resembles Picard's

Boundary Layer Initialization

1 Numerical Methods

The velocity in the x direction in the region identified can be with a simple cubic function (12) where $dn=d/\delta_{99}$, d is the minimum distance to the airfoil, u_{∞} is the free-stream flow speed.

$$f(dn) = egin{cases} u_{\infty} & dn > 1 \ (-dn^2 + 2 \cdot dn) \cdot u_{\infty} & dn < 1 \end{cases}$$
 (12)

The boundary layer function has been obtained by fixing the following boundary conditions:

- Continuity with the external flow, f(1) = 1
- Smooth transition between boundary layer and external flow, f'(1) = 0
- Non-slip condition at the wall, f(0) = 0

Boundary Layer Initialization

1 Numerical Methods

It results in a low-speed zone close to the airfoil, avoiding high speed in really small cells useful for capturing the boundary layer.

Figure: Boundary Layer Initialization

2 Performances

- ▶ Numerical Method:
- **▶** Performances
- ► Synthetic Eddy Method
- ► Laminar Separation Bubble
- Uncertainty Quantification
- ▶ Other activities
- ▶ Element of novelty
- ► Next steps

Weak Scaling

2 Performances

Weak scalability: the solution time almost does not change with constant problem size per processor

Figure: Taylor Green weak scalability

Strong Scaling

2 Performances

Strong scalability: doubling the number of processors halves the solution time

Figure: Taylor Green Strong scalability

3 Synthetic Eddy Method

- Numerical Method:
- ▶ Performances
- ➤ Synthetic Eddy Method
- ► Laminar Separation Bubble
- Uncertainty Quantification
- Other activities
- Element of novelty
- ▶ Next step:

SyntheticEddyMethod.jl

3 Synthetic Eddy Method

- publication
- presented at JuliaCon2023 at MIT

Features:

- Create fluctuations that respect the divergence-free condition (DFSEM)
- Create velocity fluctuations for inlet boundary conditions
- Create coherent eddies in 3D domain
- Define custom Reynolds Stress Tensor
- Import from file custom Reynolds Stress Tensor

Synthetic Eddy Method

3 Synthetic Eddy Method

Reynolds decomposition:

$$\vec{u}(\vec{x},t) = \vec{U}(\vec{x},t) + \vec{u'}(\vec{x},t)$$
 (13)

Compute velocity fluctuations, using a suitable shape function:

$$u_i(\mathbf{x}) = U_i(\mathbf{x}) + \frac{1}{\sqrt{N}} \sum_{k=1}^{N} a_{ij} \epsilon_j^k f_{\sigma(\mathbf{x})} \left(\mathbf{x} - \mathbf{x}^k \right)$$
 (14)

- Numerical Method:
- ▶ Performances
- ➤ Synthetic Eddy Method
- ► Laminar Separation Bubble
- Uncertainty Quantification
- Other activities
- Element of novelty
- ▶ Next step:

Simulations

- VMS linearized coupled sd7003s Re $60\,000$ AoA 4°
- ullet VMS linearized segregated DU89 Re 250 000 500 000 AoA $1^\circ-5^\circ$

Models

4 Laminar Separation Bubble

sd7003s - Re $60\,000$ - AoA 4°

Figure: Different model provides different results. RANs use $\gamma - Re_{\theta}$ model.

VMS linearized coupled sd7003s

4 Laminar Separation Bubble

Copuled: velocity and pressure are solved at the same time. Re $60\,000$ - AoA 4° . Initialization with velocity-ramping

Figure: Comparison with VMS literature results

VMS linearized coupled sd7003s

Figure: Bubble position function of freestream turbulence intensity

4 Laminar Separation Bubble

Segregated: each time step pressure and velocity system are solved one after the other multiple times. It is possible to re-use the matrices and preconditioner. It is an iterative method.

4 Laminar Separation Bubble

PhD research aims to simulate a new airfoil. Re $250\,000$ - AoA 1°

Re $250\,000$ - AoA 5°

Re $500\,000$ - AoA 1°

Re $500\,000$ - AoA 5°

Mesh Sensitivity

4 Laminar Separation Bubble

Mesh settings	\mathcal{C}	\mathcal{M}	${\mathcal F}$	\mathcal{SF}
Airfoil divisions	150	200	200	300
Z divisions	12	16	22	16
First cell height [m]	4.8e-6	2.8e-6	1.6e-6	1.6e-6
Number of Cells	4.1e5	6.6e5	8.5e6	8.9e6
Number of Cells CL	4.1e5 0.3539	6.6e5 0.3514	8.5e6 0.3504	8.9e6 0.3519
	1, , ,			,
CL	0.3539	0.3514	0.3504	0.3519

Table: Mesh sensitivity analysis DU89, Reynolds 500 000, Aoa 1°

Time Sensitivity

4 Laminar Separation Bubble

Mesh	\mathcal{C}	\mathcal{C}	\mathcal{M}	\mathcal{M}
Time average[s]	10	20	10	20
CL	0.3538	0.3539	0.3516	0.3514
CD	0.00910	0.00915	0.00939	0.00950
Separation (x/c)	0.60	0.60	0.60	0.60

Table: Time average sensitivity analysis DU89, Reynolds 500 000, Aoa 1°

dt[s]	$2 \ 10^{-3}$	$1 \ 10^{-3}$	$5 \ 10^{-4}$
CL	diverged	0.3514	0.3511
CD	diverged	0.00950	0.00911
Separation (x/c)	diverged	0.60	0.60

Table: Time sensitivity analysis DU89, Reynolds 500 000, Aoa 1°

5 Uncertainty Quantification

- Numerical Method:
- ▶ Performances
- ► Synthetic Eddy Method
- ▶ Laminar Separation Bubble
- ► Uncertainty Quantification
- ▶ Other activities
- Element of novelty
- ▶ Next step:

Model Variables

5 Uncertainty Quantification

RANS Re $60\,000$ - AoA 4° sd7003.

- $TI \ (\mu = 5.0 \cdot 10^{-4}; \sigma = 2 \cdot 10^{-4})$ turbulence intensity
- ullet $\mu_r \in [1,10]$ turbulent viscosity ratio

 $k-\omega$ parameters:

- $\sigma \omega 1 \ (\mu = 0.5; \sigma = 0.0667)$
- $\alpha 1 \ (\mu = 0.31; \sigma = 0.03)$
- $\beta * (\mu = 0.09; \sigma = 0.0041)$

 $\gamma \textit{Re}_{\theta}$ parameters

- $s1 \in [2, 11]$
- $C1 \in [2,4]$

Sobol Indexes

5 Uncertainty Quantification

Figure: Sobol' indices for 3D RANS variables

6 Other activities

- Numerical Method:
- ▶ Performances
- ► Synthetic Eddy Method
- ► Laminar Separation Bubble
- Uncertainty Quantification
- **▶** Other activities
- ▶ Element of novelty
- ► Next steps

Other activities

6 Other activities

- Synthetic Eddy Method publication
- JuliaCon 2023 conference
- Co-author AIAA 2023 conference paper
- Testing standard passive flow controls (no improvement in aerodynamic efficiency)

7 Element of novelty

- ▶ Numerical Methods
- ▶ Performances
- Synthetic Eddy Method
- ▶ Laminar Separation Bubble
- Uncertainty Quantification
- ▶ Other activities
- ► Element of novelty
- ► Next step:

Elements of novelty

7 Element of novelty

- Systematic usage of Julia in fluid-dynamics
- Usage of VMS for high Reynolds airfoil
- First LES code in Julia fully parallelized working with 3D airfoils up to Re 500 000
- Synthetic Eddy Method coded in Julia and coupled with the VMS

It has been challenging, but it seems we are on the right path!

8 Next steps

- ▶ Numerical Method:
- ▶ Performances
- Synthetic Eddy Method
- ► Laminar Separation Bubble
- Uncertainty Quantification
- ▶ Other activities
- ► Element of novelty
- ► Next steps

Next steps

8 Next steps

Expected papers:

- VMS paper (prof. Janssens reading)
- Experimental validation of the LS-VMS publish paper
- LC-VMS (publish paper?)

Expected conferences:

- AIAA2024 conferences (LS-VMS, LC-VMS)
- DLES14 (VMS usage, validation test cases)
- ICAS2024 (Passive Flow Controls)

Expected research:

- Uncertainty Quantification using Polynomials Chaos Transformation on $\gamma-\textit{Re}_{\theta}$ and VMS
- Start coding the adjoint optimization
- Test a passive flow control with the VMS