Vještačka inteligencija

Predavanje 12: Inteligentni agenti

"Vjerujte onima koji traže istinu, sumnjajte u one koji je pronalaze ..." - André Gide

Odgovorna nastavnica: Vanr. prof. dr Amila Akagić
Univerzitet u Sarajevu

Uvodne informacije

- This work is licensed under a Creative Commons `Attribution-NonCommercial-ShareAlike 4.0 International' license. EN: https://creativecommons.org/licenses/by-nc-sa/4.0/

- Ovaj rad je licenciran pod međunarodnom licencom `Imenovanje-Nekomercijalno-Dijeli pod istim uvjetima 4.0' od strane Creative Commons. HR: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.hr

Najave

- Kviz 9 održat će se 03.06.2021. u 14:02 preko c2.
- Sa predavanjima nastavljamo od 14:10+.
- Ovo je XIV sedmica nastave.
- □ U XV sedmici je II provjera znanja (10.06.2021. u 14:00).

□ Kviz 10 održat će se 14.06.2021. (ponedjeljak) od 8:50.

Agent

- Agent: bilo šta za što možemo reći da može percipirati svoju okolinu putem senzora i djelovati na tu okolinu putem aktuatora.
- Objekat zapažanja (percept): objekat koji agent zapaža u svojoj okolini i uzima u obzir kao ulazni podatak.
- Sekvenca objekata zapažanja: historija svega što agent vidi.
 - Na primjer: sve što ste vidjeli u jednom danu.

Aktuatori

Naprava/uređaj kojim se na pobudu upravljačkog (kontrolnog) signala pokretni dijelovi sistema dovode u željeni položaj, ostvaruje se njihovo gibanje ili razvija sila ili moment sile (zakretni moment) kojim ti dijelovi djeluju na okolinu.

Agent

- Inteligentni agenti trebaju donositi odluke na osnovu onoga što dobijaju iz svoje okoline (objekata zapažanja).
- Definisanjem svih mogućih odluka, izbora i akcija definiše kako jedan agent **funkcioniše**.
- Definisanjem funkcije agenta moguće je mapirati/preslikati percepciju u akcije.

☐ Program agenta: interna implementacija funkcije agenta.

Agent

Program agenta: implementacij a funkcije agenta

Primjer: svijet robot-usisavača

Action
Right
Suck
Left
Suck
Right
Suck
:
Right
Suck
:

Koncept racionalnosti

- Racionalni agent: agent koji radi "ispravne (dobre) stvari".
 - Tabela preslikavanja sadrži sekvencu ispravnih akcija.
 - Šta znači "ispravno" ili "pogrešno"? Koje su konsekvense?
- Postoji sekvenca događa koje treba pratiti:
 - Agent percipira (opaža) svoju okolinu.
 - Percepcija okoline će dovesti do nekih akcija.
 - Akcije dovode do promjene okoline.
- Ako je sekvenca promjena agenta koje mijenjaju okolinu poželjna, onda je agent uradio ispravne stvari. Npr. očistio svoju okolinu.
- Performanse agenta se mogu mjeriti sa nekom metrikom: mjera performansi
 - Svaki put kada agent uradi nešto dobro dobija nagradu: +1
 - Akumulacija bodova.
 - Koje akcije nagrađivati (primjer robot-usisavač)?
 - Pod je čist? Ekifasno očiščen pod? Količina koju očisti?

Racionalnost

- Racionalnost zavisi od:
 - Mjere performansi
 - Agentovog prethodnog znanja
 - Akcija koje agent može da poduzme
 - Agentove trenutne percepcije (ili liste objekata zapažanja)
- Definicija racionalnog agenta:

Za svaku moguću sekvencu opažanja, racionalni agent trebao bi odabrati onu akciju (radnju) za koju se očekuje da bi mogla maksimizirati mjeru performansi, s obzirom na dokaze pružene sekvencom opažanja i bez obzira na ugrađeno (prethodno) znanje koje agent ima.

Primjer

- Robot usisivač:
 - 1 bod za čišćenje prostora (do max 1000 akcija/radnji)
 - Okolina je poznata, očišćeni prostor ostaje čist, usisavanje čisti prostor.
 - Akcije/radnje: lijevo, desno, usisaj.
 - Agent može da percipira čistoću i lokaciju.
- Šta ako se uvede mjera kazne? Može li robot postati iracionalan?
- Šta se dešava kada agent očisti sve površine?
 - Potrebno napraviti mogućnost detekcije ovog stanja i ugasiti usisivač ili ga staviti u stanje mirovanja.
- Agenti ne mogu znati sve, ne mogu znati ishod svake akcije.
- Racionalne akcije nisu uvijek savršene ili korektne i ne moraju da imaju pozitivan ishod, iako na prvu ruku mogu da izgledaju korektne.

Racionalnost

- Racionalnost maksimizira očekivane performanse.
- Perfektnost nije racionalnost. Perfektnost vrži maksimiziranje stvarnih perfomansi.
- Da li je moguće projektovati perfektnog agenta?
- S druge strane, moguće je minimizirati neefikasne akcije. (Spriječiti agenta da pravi neadekvatne akcije).
- Agent može prikupljati informacije koje će omogućiti zapaženje objekata za bolje odlučivanje u narednim koracima.

- Autonomija agenta: agent koji zavisi od znanja koje je ugradio njegov kreator nema autonomnost.
- Racionalni agenti trebaju imati autonomiju: u tom slučaju ne moraju se eksplicitno programirati za svaki novi slučaj.

Okruženje agenta

- Okruženje zadatka (task environment): okolina koja se definiše za rješavanje nekog problema.
- PEAS (Performance, Environment, Actuators, Sensors): četiri stvari koje je potrebno opisati agentu.
- Okolina zadatka sačinjena je od podataka o PEAS.

Agent Type	Performance Measure	Environment	Actuators	Sensors
Taxi driver Safe, fast, legal, comfortable trip, maximize profits		Roads, other traffic, pedestrians, customers	Steering, accelerator, brake, signal, horn, display	Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard

Okruženje agenta

- Okruženje može biti stvarno ili virtuelno.
- Koliko je okruženje kompleksno u odnosu na ponašanje agenta, sekvencu opažanja i mjeru performansi?
- Potrebno je što bolje razumijeti okruženje kako bi ponašanje agenta bilo što bolje.
- Softverski agenti (softbot): na primjer agent koji pretražuje Twitter za interesantnim novostima.
 - Okruženje je izuzetno dinamično.

Primjeri agenata

Agent Type	pe Performance Environment Actuators Measure		Sensors		
Medical diagnosis system	Healthy patient, reduced costs	Patient, hospital, staff	Display of questions, tests, diagnoses, treatments, referrals	Keyboard entry of symptoms, findings, patient's answers	
Satellite image analysis system	Correct image categorization	Downlink from orbiting satellite	Display of scene categorization	Color pixel arrays	
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts; bins	Jointed arm and hand	Camera, joint angle sensors	
Refinery	Purity, yield, safety	Refinery, operators	Valves, pumps, heaters, displays	Temperature, pressure, chemical sensors	
Interactive English tutor	Student's score on test	Set of students, testing agency	Display of exercises, suggestions, corrections	Keyboard entry	

Osobine okruženja

- Raspon zadataka je izuzetno veliki.
- Mogu se klasificirati na različite načine. Na primjer:
 - Potpuno definisana: ako agent može da dobije sve informacije iz okruženja za donošenje odluka preko svojih senzora kroz čitav period vremena.
 - Dijelimično definisana: važi suprotno.
 - Nedefinisana: agent koji nema senzore.
- Okruženja se mogu klasificirati u odnosu na:
 - Broj agenata
 - Vrste komunikacije (kompetitivnost, kooperativnost)
 - Dinamičnosti

- Vrste okruženja u odnosu na broj agenata:
 - Jedan agent: agent samostalno rješava neki problem. Primjer: rješavanje zagonetke
 - Više agenata: agenti komuniciraju međusobno u istom okruženju. Primjer: igranje šaha.
- Agenti mogu da rade jedan protiv drugog: kompetitivno okruženje.
- Agenti koji rade zajedno: kooperativno okruženje.
- Okruženje može biti:
 - Determinističko: bazirano samo na predefinisanim stanjima i akcijama agenta.
 - Stohastičko: suprotno od determinističkog, postoji određenja vjerovatnoća djelovanja.
 - Neizvjesno: ne može se potpuno opažati i nije determinističko.

- Epizodno i sekvencijalno okruženje (prethodne akcije?):
 - Epizodno okruženje akcije su diskretne atomske. Ne uzimaju se obzir prethodne akcije, nego samo trenutna opažanja.
 - ☐ Primjer: mašina treba da utvrdi da li je neki dio u kvaru.
 - Sekvencijalno okruženje: uzimaju se u obzir prethodne akcije i na bazi toga se donosi nova odluka.
 - Primjer: igranje šaha.
- ☐ Statično i dinamičko okruženje:
 - Dinamičko okruženje: ukoliko se okruženje mijenja u vremenu donošenja (razmišljanja o) naredne odluke
 - ☐ Primjer: vožnja autonomnog vozila.
 - □ Statičko okruženje: suprotno od dinamičkog.
 - Primjer: Rješavanje puzzle.
 - Poludinamično okruženje: okruženje se ne mijenja, ali se mijenja bodovanje performansi. Primjer: igranje šaha sa aspektom vremena.

□ Diskretno ili kontinulano (vremensko) okruženje: odnosi se stanje okruženje

i na pojam vremena u okruženju, tj. način opažanja objekata i agentovih akcija.

- Diskretno okruženje:
 - Primjer: igra dame, konačan broj koraka pa tako i stanja.
- Kontinualno okruženje:
 - Agent prelazi iz jednog okruženja u drugo vrlo glatko (kontinuirano).
 - ☐ Primjer: brzina vozila se konstantno mijenja, kao i lokacija.

- Poznato i nepoznato okruženje: odnosi se na agentova poznavanje okruženja u kojem se nalazi, kao i na stvari fizičke prirode.
 - Poznato okruženje: Ishodi i vjerovatnoća ishoda akcija je poznata/data.
 - Primjer: imam 30% šanse da budem uspješan u nekom koraku.
 - Mogu biti dijelimično definisnao (posmatrana/uočljiva).
 - Nepoznato okruženje: suprotno od poznatog. 🧀

- Okruženje nije jednostavno definisati.
- Uspješnost projekta u velikom mjeri zavisi od uspješno definisanog okruženja.

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic		Static	Discrete
Chess with a clock	Fully	Multi	Deterministic		Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving Medical diagnosis	Partially Partially	Multi Single	Stochastic Stochastic			Continuous Continuous
Image analysis	Fully	Single	Deterministic	Episodic	Semi	Continuous
Part-picking robot	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential		Continuous
Interactive English tutor	Partially	Multi	Stochastic	Sequential		Discrete

Struktura agenata

- Zadatak Al programera je da napiše/dizajnira program agenta na način da izvršava agentsku funkciju (mapiranje percepcije u akcije/radnje).
- Program se izvršava na nekom hardverskom uređaju sa senzorima i aktuatorima, koje se naziva arhitektura.

agent = arhitektura + program

Program agenta

- Program treba da uzme (jedan) objekat opažanja i da akciju koju zatim izvode aktuatori.
 - Ako agent donosi odluke na osnovu sekvence prethodnih koraka, onda mora imati memoriju.

function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts, a sequence, initially empty
table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts $action \leftarrow LOOKUP(percepts, table)$ return action

Nažalost, upotreba agenata koji su bazirani na lookup tabelama je veoma ograničena.

Teško je predvidjeti svaku moguću sekvencu zapažanja.

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
	;

Program agenta

- Izazov: Kako napisati program agenta koji će pokazati racionalno ponašanje na način da korismo skup manjih programa umjesto jedne velike tabele?
- Postoje četiri pristupa:
 - Jednostavni refleksni agenti
 - Model-bazirani refleksni agenti
 - ☐ Ciljno-bazirani agenti
 - Korisno-bazirani agenti

Jednostavni refleksni agenti

function REFLEX-VACUUM-AGENT([location, status]) returns an action

if status = Dirty then return Suckelse if location = A then return Rightelse if location = B then return Left

- Ova implementacija može sagledati samo jedno opažanje i na osnovu toga djelovati (pokrenuti akciju). Ignorišu se i sva prethodna opažanja (nema memoriju).
- Beneficije: manji programski kod, nema tabele.
- Pravilo uslov-akcije: koristi if/then logiku, detektuj objekat i reaguj.
- Primjer: self-driving car

IF auto naprijed koči

Jednostavni refleksni agenti

function SIMPLE-REFLEX-AGENT(percept) returns an action **persistent**: rules, a set of condition–action rules $state \leftarrow Interpret - Input(percept)$ $rule \leftarrow RULE-MATCH(state, rules)$ $action \leftarrow rule.Action$ return action

- Mašina može da se programira za različite situacije.
- Jednostavna implementacija, ali postoje ograničenje u nivou inteligencije.
- Agent će raditi dobro jedino u okruženje koje se ne mijenja.
- Primjer: self-driving cars: agent mora donijeti odluku na osnovu jedno frame-a (slike).

Agent What the world is like now Mašina uslov/akcija What action I Condition-action rules should do now Actuators

Sensors

Može se desiti da agent završi u petlji. U tom slučaju potrebno je dodati neku vrstu slučajnosti. Sta se dešava kada agent nema senzor lokacije?

Amila Akagić (UNSA)

Vještačka inteligencija

Ak. god. 2020/2021

Model-bazirani refleksni agenti

- Ukoliko je okruženje dijelimično definisano onda je najbolje sačuvati historiju prethodnih dešavanja (opažanja, akcija).
- Agent ima definisano interno stanje
 - ☐ Kako se okruženje mijenja bez agenta?
 - Kako agent može izmijeniti okruženje?
- Model: znanje kojim se opisuje kako svijet funkcioniše.
- Agenti koji se baziraju na ovom pristupu nazivaju se: model-bazirani agenti.
- Primjer: self-driving car
 - Auto ima trenutnu sliku okruženja u kojem se nalazi. Tu sliku može uporediti sa slikama koje je prethodno pohranio i na osnovu toga detektovati promjene u okolini.

Model-bazirani refleksni agenti

- Ažurirano okruženje: originalno stanje + kako se svijet može promijeniti (fizika) + kako moje akcije utiču na svijet
- Odluka se donosi na bazi pravila uslov-akcije i ažuriranog okruženja

Model-bazirani refleksni agenti

Ciljno-bazirani agenti

- ☐ Kod određenih problema nije dovoljno poznavati samo okruženje.
- Agenti ponekad moraju imati određeni cilj.
 - Na primjer: self-driving car mora zna ciljnu destinaciju, tj. cilj.
- ☐ Cilj se može kombinovati sa okolinom, kako bi se došlo do što bolje odluke.
- Pretraživanje za sekvencom akcija koje dovode do cilja je posebno polje istraživanje, kao i planiranje dolaska do cilja.
 - Primjer: stanja sistema se mogu predstaviti kao čvorovi drveta, pri čemu putanja predstavlja promjenu stanja.
- Agenti bazirani na dostizanju cilja su više fleksibilni, ali manje efikasni (potrebno više resursa).
- Mogu modifikovati odluke na bazi prethodnih dešavanja.
- Ponašanje agenta se može lako modifikovati, na primjer promjenom destinacije.

Korisno-bazirani agenti

- Ciljevi nisu dovoljni da bi se došlo do nekog kvalitetnog rješenja.
 - ☐ Mnogo puteva vodi do jednog cilja. Koji od njih je optimalan?
 - □ Da li je cilj stići brzo, sigurno, pouzdano ili jeftinije?
 - Uvodi se mjera korisnosti koja se koristi za poređenje različitih puteva.

□ Sekvena prelaza stanja ocjenjuje se kako bi se stvorila slika o tome koji je put

bolji.

Definiše se <mark>funkcija korisnosti</mark>. Agent se smatra racionalnim ukoliko napravi najbolju odluku u odnosu na zadati cilj ili postigne očekivanu korisnost.

Korisno-bazirani agenti

Agenti za učenje

- Kako nastaju agenti?
- Programiranje nije jednostavno.
- Turing je predložio kreiranje mašine koja može da uči (sama se programira). Mašinu je zatim moguće podučavati.

Agenti za učenje

Taxi pokušava da pređe preko prelaza (performance element)

- Critic posmatra negativne reakcije okoline/drugih vozača
- Learning element definiše novo pravilo koje omoguće sigurniji prolaz.

Primjer

Komponente agenta za opis okruženja

Atomske
Stanje je crna kutija
bez interne
reprezentacije
(Boolean vrijednosti,
stanje je nedjeljivo)

Primjeri: search and game-playing, Hidden Markov models, Markov decision processes.

Faktorske Stanje je vektor parametara (boolean, realne vrijednosti, skup simbola)

Primjeri: constraint satisfaction algorithms, propositional logic, planning, Bayesian networks, machine learning.

Strukturne

Stanje uključuje objekte; svaki objekat može da ima atribute kao i relacije između objekata.

Primjeri: relational databases, first-order logic, first-order probability models, knowledge-based learning, natural language understanding, ...

Primjer

Primjer

