Mechanik

Physik

Be schleunigung-Weg

$$F = m \cdot a$$
$$[N = kg \cdot \frac{m}{c^2}]$$

Mechanik

Physik

Beschleunigung – Kraft

$$x = \frac{1}{2} \cdot a \cdot t^2$$
$$[m = \frac{m}{s^2} \cdot s^2]$$

Physik	# 3	Mechanik
	Haftreibung	or S

$$F_H = \mu_H \cdot F_N$$

$$F_H$$
: Haftreibung μ_H : Haftreibungskonstante F_N : Normalkraft

Physik	# 4	Mechanik	
	Gleitreibung	g	

$$F_{Gl} = \mu_{Gl} \cdot F_N$$

$$F_{Gl}$$
: Gleitreibung
 μ_{Gl} : Gleitreibungskonstante
 F_{N} : Normalkraft

5

Mechanik

Haftreibung – Schiefe Ebene

Physik

$$\mu_H = tan\alpha$$

Physik # 6 Mechanik

Leistung

6 Antwort
$$P = F \cdot v$$

$$\left[W = N \cdot \frac{m}{s} \right]$$

 $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$

1 Hysik	# 1	Medianik

7

Mochanik

Physik

Wirkungsgrad

$$\eta = \frac{P_{out}}{P_{in}}$$

Mechanik

Physik

 ${\bf Radial be schleunigung}$

8 Antwort
$$a = \frac{v^2}{r}$$

Physik	# 9	Mechanik
	Arbeit	

9 Antwort
$$W = F \cdot s$$

10

Mechanik

Physik

potentielle Energie

$$E_{pot} = m \cdot g \cdot h$$
$$J = kg \cdot \frac{m}{s^2} \cdot m$$

 $= kg \frac{m^2}{s^2} \bigg]$

Physik # 11

Mechanik

kinteische Energie

11 Antwort
$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$

 $\left[J = kg \cdot \frac{m^2}{s^2}\right]$

Physik # 12 Mechanik

12 Antwort =

Physik # 13 Mechanik

13 Antwort =

Physik # 14 Mechanik

14 Antwort =

Physik # 15 Mechanik

15 Antwort =

Physik # 16 Mechanik

16 Antwort

Physik # 17 Mechanik

17 Antwort =

Physik # 18 Mechanik

18 Antwort =

Physik # 19 Mechanik

19 Antwort =