### Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación



# IIC2115 - Programación como Herramienta para la Ingeniería

Modelos predictivos con Machine Learning

**Profesora:** Francesca Lucchini **Prof. Coordinador**: Hans Löbel

### ¿Qué es el análisis de datos (en Python)?

- Desde un punto de vista práctico, consiste principalmente en utilizar herramientas para:
  - Limpiar y transformar los datos
  - Explorar distintas dimensiones de los datos
  - Calcular estadísticas de los datos
  - Visualizar los datos
  - Construir modelos predictivos
- Para todo esto (y más), está Pandas y scikit-learn





En esta segunda parte nos centraremos en scikit-learn

- Implementa gran cantidad de algoritmos predictivos y de procesamiento de datos.
- Permite una fácil integración con Pandas y numpy.



Antes de revisar *scikit-learn*, necesitamos una breve introducción al Aprendizaje de Máquina (Machine Learning)

## ¿Cómo puedo saber si en una foto hay un perro o un gato?

(usando un computador, lógicamente)



### ¿Qué es Machine Learning (ML)?

- En simple, se trata de algoritmos que procesan datos para realizar una tarea (predicción, clasificación, clustering, etc.)
- Más específicamente, se centra en el estudio de algoritmos que mejoran su rendimiento en una tarea, a través de la experiencia (aprendizaje desde los datos).
- Buscan resolver la tarea con la mayor precisión posible, más que entender el fenómeno subyacente.







### (casi) Todas las técnicas de ML usan el mismo esquema de procesamiento







## Tipos de Algoritmos de ML



Tipos de Algoritmos de ML que conoceremos...



### ¿Cómo se manejan los datos?

#### Técnicas de ML trabajan sobre datos multidimensionales

- Cada dato está caracterizado por una serie de características = mediciones = atributos = variables.
- La cantidad de características define la dimensionalidad del dato.
- El espacio donde viven los datos se conoce como espacio de características (feature space).

| Die C d Will Leis D LOS E |                       |                    | E 1 C1           | 0.                      |             |
|---------------------------|-----------------------|--------------------|------------------|-------------------------|-------------|
|                           | Distance from the eye | Wind speed at site | Pressure deficit | Forward speed of the    | Storm surge |
|                           | of the storm (km)     | (m/s)              | at site (hPa)    | eye of the storm (km/h) | (cm)        |
| _                         | 96.0                  | 20.7               | 20.6             | 27.6                    | 47.4        |
|                           | 108.5                 | 15.4               | 11.0             | 58.9                    | 24.5        |
|                           | 181.2                 | 8.1                | 1.7              | 40.1                    | 7.9         |
|                           | 245.3                 | 5.7                | 6.4              | 29.6                    | 5.5         |
|                           | 117.5                 | 23.3               | 22.0             | 46.6                    | 61.7        |
|                           | 231.4                 | 13.3               | 11.5             | 38.1                    | 20.8        |
|                           | 293.6                 | 4.0                | 7.2              | 35.4                    | 5.6         |
|                           | 0.6                   | 8.5                | 7.0              | 32.2                    | 8.7         |
|                           | 227.6                 | 10.0               | 10.4             | 19.3                    | 16.0        |
|                           | 257.3                 | 11.5               | 15.0             | 44.1                    | 10.8        |
|                           |                       |                    |                  |                         |             |

## Cada columna puede verse como un eje en el espacio de características



| Distance from the eye | Wind speed at site | Pressure deficit | Forward speed of the    | Storm surge |
|-----------------------|--------------------|------------------|-------------------------|-------------|
| of the storm (km)     | (m/s)              | at site (hPa)    | eye of the storm (km/h) | (cm)        |
| 96.0                  | 20.7               | 20.6             | 27.6                    | 47.4        |
| 108.5                 | 15.4               | 11.0             | 58.9                    | 24.5        |
| 181.2                 | 8.1                | 1.7              | 40.1                    | 7.9         |
| 245.3                 | 5.7                | 6.4              | 29.6                    | 5.5         |
| 117.5                 | 23.3               | 22.0             | 46.6                    | 61.7        |
| 231.4                 | 13.3               | 11.5             | 38.1                    | 20.8        |
| 293.6                 | 4.0                | 7.2              | 35.4                    | 5.6         |
| 0.6                   | 8.5                | 7.0              | 32.2                    | 8.7         |
| 227.6                 | 10.0               | 10.4             | 19.3                    | 16.0        |
| 257.3                 | 11.5               | 15.0             | 44.1                    | 10.8        |

## Cada dato puede verse como un vector/punto en el espacio de características

| Distance from the eye | Wind speed at site                                                   | Pressure deficit                                                                                                             | Forward speed of the                                                                                                                                                                                                                                                                                             | Storm surge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of the storm (km)     | (m/s)                                                                | at site (hPa)                                                                                                                | eye of the storm (km/h)                                                                                                                                                                                                                                                                                          | (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 96.0                  | 20.7                                                                 | 20.6                                                                                                                         | 27.6                                                                                                                                                                                                                                                                                                             | 47.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 108.5                 | 15.4                                                                 | 11.0                                                                                                                         | 58.9                                                                                                                                                                                                                                                                                                             | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 181.2                 | 8.1                                                                  | 1.7                                                                                                                          | 40.1                                                                                                                                                                                                                                                                                                             | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 245.3                 | 5.7                                                                  | 6.4                                                                                                                          | 29.6                                                                                                                                                                                                                                                                                                             | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 117.5                 | 23.3                                                                 | 22.0                                                                                                                         | 46.6                                                                                                                                                                                                                                                                                                             | 61.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 231.4                 | 13.3                                                                 | 11.5                                                                                                                         | 38.1                                                                                                                                                                                                                                                                                                             | 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 293.6                 | 4.0                                                                  | 7.2                                                                                                                          | 35.4                                                                                                                                                                                                                                                                                                             | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.6                   | 8.5                                                                  | 7.0                                                                                                                          | 32.2                                                                                                                                                                                                                                                                                                             | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 227.6                 | 10.0                                                                 | 10.4                                                                                                                         | 19.3                                                                                                                                                                                                                                                                                                             | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 257.3                 | 11.5                                                                 | 15.0                                                                                                                         | 44.1                                                                                                                                                                                                                                                                                                             | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | of the storm (km) 96.0 108.5 181.2 245.3 117.5 231.4 293.6 0.6 227.6 | of the storm (km) (m/s)  96.0 20.7  108.5 15.4  181.2 8.1  245.3 5.7  117.5 23.3  231.4 13.3  293.6 4.0  0.6 8.5  227.6 10.0 | of the storm (km)     (m/s)     at site (hPa)       96.0     20.7     20.6       108.5     15.4     11.0       181.2     8.1     1.7       245.3     5.7     6.4       117.5     23.3     22.0       231.4     13.3     11.5       293.6     4.0     7.2       0.6     8.5     7.0       227.6     10.0     10.4 | of the storm (km)         (m/s)         at site (hPa)         eye of the storm (km/h)           96.0         20.7         20.6         27.6           108.5         15.4         11.0         58.9           181.2         8.1         1.7         40.1           245.3         5.7         6.4         29.6           117.5         23.3         22.0         46.6           231.4         13.3         11.5         38.1           293.6         4.0         7.2         35.4           0.6         8.5         7.0         32.2           227.6         10.0         10.4         19.3 |

Cada dato puede verse como un vector/punto en el espacio de características







Cada columna puede verse como un eje en el espacio de características

¿Cómo aprende un modelo de ML? Pasan por una etapa de entrenamiento y una de prueba

### Para entrenar = ajustar = calibrar un modelo, se utiliza un set de entrenamiento

| Distance from the eye of the storm (km) (m/s) at site (hPa) eye of the storm (km/h) (cm)  96.0 20.7 20.6 27.6 47.4  108.5 15.4 11.0 58.9 24.5  181.2 8.1 1.7 40.1 7.9  245.3 5.7 6.4 29.6 5.5  117.5 23.3 22.0 46.6 61.7  231.4 13.3 11.5 38.1 20.8  293.6 4.0 7.2 35.4 5.6  0.6 8.5 7.0 32.2 8.7  227.6 10.0 10.4 19.3 16.0  2257.3 11.5 15.0 44.1 10.8   290.6 9.5 13.6 46.9  2257.3 10.6 14.2 77.6  227.0 4.4 7.9 20.8  279.1 4.4 7.8 29.5  266.3 8.7 8.8 32.9  165.6 19.2 16.4 45.6 |          |                       |                    |                  | Response vector         |             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|--------------------|------------------|-------------------------|-------------|--|
| 96.0 20.7 20.6 27.6 47.4  108.5 15.4 11.0 58.9 24.5  181.2 8.1 1.7 40.1 7.9  245.3 5.7 6.4 29.6 5.5  117.5 23.3 22.0 46.6 61.7  231.4 13.3 11.5 38.1 20.8  293.6 4.0 7.2 35.4 5.6  0.6 8.5 7.0 32.2 8.7  227.6 10.0 10.4 19.3 16.0  257.3 11.5 15.0 44.1 10.8                                                                                                                                                                                                                           |          | Distance from the eye | Wind speed at site | Pressure deficit | Forward speed of the    | Storm surge |  |
| 108.5 15.4 11.0 58.9 24.5 181.2 8.1 1.7 40.1 7.9 245.3 5.7 6.4 29.6 5.5 117.5 23.3 22.0 46.6 61.7 231.4 13.3 11.5 38.1 20.8 293.6 4.0 7.2 35.4 5.6 0.6 8.5 7.0 32.2 8.7 227.6 10.0 10.4 19.3 16.0 257.3 11.5 15.0 44.1 10.8                                                                                                                                                                                                                                                             |          | of the storm (km)     | (m/s)              | at site (hPa)    | eye of the storm (km/h) | (cm)        |  |
| 181.2 8.1 1.7 40.1 7.9 245.3 5.7 6.4 29.6 5.5 117.5 23.3 22.0 46.6 61.7 231.4 13.3 11.5 38.1 20.8 293.6 4.0 7.2 35.4 5.6 0.6 8.5 7.0 32.2 8.7 227.6 10.0 10.4 19.3 16.0 257.3 11.5 15.0 44.1 10.8  290.6 9.5 13.6 46.9 245.3 10.6 14.2 77.6 227.0 4.4 7.9 20.8 279.1 4.4 7.8 29.5 266.3 8.7 8.8 32.9                                                                                                                                                                                    | _        | 96.0                  | 20.7               | 20.6             | 27.6                    | 47.4        |  |
| 257.3 11.5 15.0 44.1 10.8  290.6 9.5 13.6 46.9 245.3 10.6 14.2 77.6 227.0 4.4 7.9 20.8 279.1 4.4 7.8 29.5 266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                            | П        | 108.5                 | 15.4               | 11.0             | 58.9                    | 24.5        |  |
| 257.3 11.5 15.0 44.1 10.8  290.6 9.5 13.6 46.9 245.3 10.6 14.2 77.6 227.0 4.4 7.9 20.8 279.1 4.4 7.8 29.5 266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                            |          | 181.2                 | 8.1                | 1.7              | 40.1                    | 7.9         |  |
| 257.3 11.5 15.0 44.1 10.8  290.6 9.5 13.6 46.9 245.3 10.6 14.2 77.6 227.0 4.4 7.9 20.8 279.1 4.4 7.8 29.5 266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                            |          | 245.3                 | 5.7                | 6.4              | 29.6                    | 5.5         |  |
| 290.6 9.5 13.6 46.9 245.3 10.6 14.2 77.6 227.0 4.4 7.9 20.8 279.1 4.4 7.8 29.5 266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                                       | O ID     | 117.5                 | 23.3               | 22.0             | 46.6                    | 61.7        |  |
| 290.6 9.5 13.6 46.9 245.3 10.6 14.2 77.6 227.0 4.4 7.9 20.8 279.1 4.4 7.8 29.5 266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                                       | <u>a</u> | 231.4                 | 13.3               | 11.5             | 38.1                    | 20.8        |  |
| 290.6 9.5 13.6 46.9 245.3 10.6 14.2 77.6 227.0 4.4 7.9 20.8 279.1 4.4 7.8 29.5 266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                                       | ≝.       | 293.6                 | 4.0                | 7.2              | 35.4                    | 5.6         |  |
| 290.6 9.5 13.6 46.9 245.3 10.6 14.2 77.6 227.0 4.4 7.9 20.8 279.1 4.4 7.8 29.5 266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                                       | e        | 0.6                   | 8.5                | 7.0              | 32.2                    | 8.7         |  |
| 290.6 9.5 13.6 46.9<br>245.3 10.6 14.2 77.6<br>227.0 4.4 7.9 20.8<br>279.1 4.4 7.8 29.5<br>266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                           | 7        | 227.6                 | 10.0               | 10.4             | 19.3                    | 16.0        |  |
| 245.3 10.6 14.2 77.6<br>227.0 4.4 7.9 20.8<br>279.1 4.4 7.8 29.5<br>266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                                                  |          | 257.3                 | 11.5               | 15.0             | 44.1                    | 10.8        |  |
| 245.3 10.6 14.2 77.6<br>227.0 4.4 7.9 20.8<br>279.1 4.4 7.8 29.5<br>266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                                                  |          |                       |                    |                  |                         |             |  |
| 227.0 4.4 7.9 20.8<br>279.1 4.4 7.8 29.5<br>266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 290.6                 | 9.5                | 13.6             | 46.9                    |             |  |
| 279.1 4.4 7.8 29.5<br>266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 245.3                 | 10.6               | 14.2             | 77.6                    |             |  |
| 266.3 8.7 8.8 32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 227.0                 | 4.4                | 7.9              | 20.8                    |             |  |
| 266.3 8.7 8.8 32.9<br>165.6 19.2 16.4 45.6                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 279.1                 | 4.4                | 7.8              | 29.5                    |             |  |
| 165.6 19.2 16.4 45.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S        | 266.3                 | 8.7                | 8.8              | 32.9                    |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 165.6                 | 19.2               | 16.4             | 45.6                    |             |  |
| 136.5 10.7 12.2 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 136.5                 | 10.7               | 12.2             | 4.6                     |             |  |
| 207.9 4.4 8.0 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 207.9                 | 4.4                | 8.0              | 14.1                    |             |  |

Set de test es útil para evaluar la capacidad de generalización del modelo

Una forma clara de ver esto es con conjuntos de datos disjuntos





#### En este curso usaremos scikit-learn

- scikit-learn es el módulo para ML más conocido y utilizado en Python.
- Su principal atractivo es una interfaz limpia, uniforme y simple, que facilita la exploración y permite la integración con otros paquetes, como Pandas.
- Posee además de una completa documentación en línea (<a href="https://scikit-learn.org/">https://scikit-learn.org/</a>).



#### Esquema de datos es similar a Pandas

- Los datos son representados por una matriz de features y un vector objetivo (etiquetas de los datos)
- Las características de los ejemplos se almacenan en una matriz de *features* (X), de tamaño [n\_samples, n\_features] (esta matriz puede ser un DataFrame).
- El vector objetivo (y) contiene el valor a predecir para cada ejemplo y tiene tamaño [n\_samples, 1] (este vector puede ser una Series).
- Y eso es todo...

## Esquema de datos es similar a Pandas



### Interfaz para usar modelos/algoritmos

- La interfaz de scikit-learn se basa en los siguientes conceptos principales:
  - Consistente: todos los modelos comparten una interfaz con unas pocas funciones.
  - Sucinta: solo usa clases propias para los algoritmos. Para todo el resto utiliza formatos estándares (datos en DataFrame por ejemplo).
  - Útil: los parámetros por defecto son útiles para estimar adecuadamente los modelos.
- En resumen, requiere muy poco esfuerzo utilizarla y obtener resultados rápidamente.

### Interfaz para usar modelos

- En general, un caso de uso típico en Scikit-learn es como el siguiente:
  - 1. Elegir el modelo adecuado, importando la clase correspondiente desde *sklearn*.
  - 2. Obtener o generar matriz X y vector y.
  - 3. Entrenar el modelo llamando al fit(X, y).
  - 4. Aplicar el modelo al set de test, usando el método predict().
- Al igual que para los datos, se requiere muy poco esfuerzo para obtener resultados rápidamente.

### Podrán utilizar múltiples modelos/algoritmos en este capítulo

- k-NN
- Regresiones (lineal, logística, polinomial)
- SVM
- Árboles de decisión
- Ensambles
- Redes neuronales
- y más...









## Ejemplo: Regresión lineal y logística

- Se encuentran en el módulo sklearn.linear\_model
- Para instanciarlas, utilizamos los siguientes comandos:

```
model = linear_model.LinearRegression()
```

model = linear\_model.LogisticRegression()





## Ejemplo: Árboles de decisión y regresión

- Se construye un árbol que en base a análisis de cada característica, genera reglas de decisión
- Se encuentran en el módulo sklearn.tree
- Para instanciarlo, utilizamos el siguiente comando:

model = tree.DecisionTreeClassifier()





### ¿Cómo elegimos el mejor modelo para cada tarea?

- El primer paso consiste en analizar y explorar los datos.
- En base a esto, se eligen algunos modelos candidatos y se evalúa su rendimiento.
- scikit-Learn entrega una gran cantidad de métricas de rendimiento para distintos tipos de problema.
- Se encuentran en el módulo sklearn.metrics
- En la práctica, las más usadas son *accuracy*, *precision*, *recall*, error cuadrático medio y matriz de confusión.

### A pesar de ser clave, el set de entrenamiento no lo es todo

- En general, los algoritmos de aprendizaje viven y mueren por el set de entrenamiento.
- Lamentablemente, tener un buen set de entrenamiento, no asegura tener buena generalización.
- La complejidad del modelo (cuánto puede aprender) pasa a ser un tema central.
- Si no tenemos cuidado, podemos toparnos con los siguientes problemas...

# Subentrenamiento (o subajuste, o underfitting)



## Sobreentrenamiento (o sobrebajuste, u overfitting)



# Complejidad correcta del modelo



### Cómo podemos controlar esto

- Un mecanismo típico es utilizar un set de validación para evaluar el rendimiento.
- El set de validación es una pequeña parte del set de entrenamiento, que no se usa para entrenar inicialmente.
- Se entrenan distintos modelos en el nuevo set de entrenamiento y se evalúan en el de validación.

Una forma clara de ver esto es con conjuntos de datos disjuntos





Cerremos con un caso de estudio más avanzado (e interesante)..

# Reconstrucción de Imágenes con IA



Cerremos con un caso de estudio más avanzado (e interesante)..

# Reconstrucción de Imágenes con IA



# Cerremos con un caso de estudio más avanzado (e interesante).. Reconstrucción de Imágenes con IA



Recordemos que (casi) todas las técnicas de ML usan el mismo esquema de procesamiento



# ¿Qué es lo primero que necesitamos?







## Veamos cómo funciona el sistema en la práctica



#### En resumen...

- ML se centra en algoritmos/modelos que aprenden de los datos para resolver una tarea
- scikit-learn permite hacer ML en Python de manera práctica y rápida
- (casi) Todas las técnicas de ML funcionan de la misma manera
- Qué técnica usar dependerá de la tarea y los datos disponibles, pero es posible elegir en base a métricas de rendimiento
- Todo esto y mucho más en el curso ICT3115 Sistemas Urbanos Inteligentes

#### Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación



# IIC2115 - Programación como Herramienta para la Ingeniería

Modelos predictivos con Machine Learning

**Profesora:** Francesca Lucchini **Prof. Coordinador**: Hans Löbel



## K-NN es la simpleza hecha algoritmo

- k-NN es el algoritmo más intuitivo y simple en ML.
- La inferencia sobre un nuevo ejemplo se basa directamente en la información de ejemplos similares conocidos.
- Se encuentra en el módulo sklearn.neighbors
- Para instanciarlo, utilizamos el siguiente comando:

model = neighbors.KNeighborsClassifier()



## Regresión lineal y logística

- Permiten estimar una función (reg. lineal) o clasificar (reg. logística) en base a una combinación lineal de las características.
- Ampliamente usadas en la práctica debido a su sencillez e interpretabilidad.
- Se encuentran en el módulo sklearn.linear\_model
- Para instanciarlas, utilizamos los siguientes comandos:

```
model = linear_model.LinearRegression()
```

model = linear\_model.LogisticRegression()





## Support Vector Machine (SVM)

- Permite construir clasificadores que maximizan la distancia entre las clases.
- Excelente rendimiento y muy rápido de entrenar.
- Se encuentra en el módulo sklearn.svm
- Para instanciarlo, utilizamos el siguiente comando:

model = svm.SVC()



#### Árboles de Decisión

- Técnica simple que funciona con cualquier tipo de dato.
- Construye una estructura de árbol en base a tests sobre las características.
- Rendimiento regular, pero altamente interpretable.
- Se encuentra en el módulo sklearn.tree
- Para instanciarlo, utilizamos el siguiente comando:

model = tree.DecisionTreeClassifier()



#### Ensambles

- Técnicas que combinan múltiples clasificadores (generalmente árboles) para generar una predicción.
- Menor interpretabilidad que un árbol, pero obtienen rendimiento muy altos.
- Se encuentran en el módulo sklearn.ensemble
- Para instanciarlos, utilizamos los siguientes comandos:

```
model = ensemble.RandomForestClassifier()
model = ensemble.GradientBoostingClassifier()
```



#### Red Neuronal

- Técnica altamente general y compleja para estimar funciones de todo tipo.
- Procesan los datos a través de varias capas, lo que les permite aprender cualquier cosa.
- En la actualidad, si se tienen muchos datos, son las que mejor funcionan.
- Se encuentran en el módulo sklearn.neural\_network
- Para instanciarla, utilizamos el siguiente comando:

```
model = neural_network.MLPClassifier()
```

