RandLib documentation

Aleksandr Samarin

November 18, 2017

Contents

I General information							
1 Calculation of sample moments							
II	Continuous univariate distributions	5					
2	Beta distribution2.1 Arcsine distribution2.2 Balding-Nichols distribution2.3 Uniform distribution	5 7 8					
3	Beta-prime distribution	10					
4	Exponentially-modified Gaussian distribution	12					
5	F-distribution	13					
6	Gamma distribution6.1 Chi-squared distribution6.2 Erlang distribution6.3 Exponential distribution	14 15 15 16					
7	Geometric Stable distribution 7.1 Asymmetric Laplace distribution	17 17 17					
8	Kolmogorov-Smirnov distribution	18					
9	Logistic distribution	19					

10	Log-normal distribution	2 0
11	Marchenko-Pastur distribution	21
12	Nakagami distribution 12.1 Chi distribution	22 22 23 23
13	Noncentral Chi-Squared distribution	24
14	Planck distribution	2 5
15	Stable distribution15.1 Cauchy distribution	26 26 27 28 28
16	Pareto distribution	2 9
17	Weibull	32
II	I Discrete univariate distributions	34
18	Beta-binomial distribution	34
19	Binomial distribution 19.1 Bernoulli	35
20	Hypergeometric distribution	36
21	Negative-Binomial (Polya) distribution 21.1 Geometric distribution	37 37 37
22	Poisson distribution	38
2 3	Skellam distribution	39
24	Yule distribution	40
25	Zeta distribution	41
26	Zipf distribution	42

IV Bivariate distributions	43
27 Bivariate Normal distribution	43
28 Normal-Inverse-Gamma distribution	43
29 Trinomial distribution	43
V Circular distributions	44
30 von Mises distribution	44
31 Wrapped Exponential distribution	44
VI Singular distributions	45
32 Cantor distribution	45

Part I

General information

1 Calculation of sample moments

We use extension of Welford's method from Knuth. For every n-th element x we have

$$\delta = x - m_1,$$

$$m'_1 = m_1 + \frac{\delta}{n},$$

$$m'_2 = m_2 + \delta^2 \frac{n-1}{n},$$

$$m'_3 = m_3 + \delta^3 \frac{(n-1)(n-2)}{n^2} - 3\delta \frac{m_2}{n},$$

$$m'_4 = m_4 + \delta^4 \frac{(n-1)(n^2 - 3n + 3)}{n^3} + 6\delta^2 \frac{m_2}{n^2} - 4\delta \frac{m_3}{n}.$$

Then m_1' , $\frac{m_2}{n}$, Skew $(X) = \frac{\sqrt{n}m_3'}{m_2'^{3/2}}$ and $\operatorname{Kurt}(X) = \frac{nm_4'}{m_2'^2}$ (we return excess kurtosis).

Part II

Continuous univariate distributions

2 Beta distribution

Search of the median. In general, the value of median is unkwnown and calculated numerically with initial value:

$$m \approx a + (b-a) \frac{\alpha - \frac{1}{3}}{\alpha + \beta - \frac{2}{3}}$$

for $\alpha, \beta \geq 1$. However, there are analytical solutions for some particular values:

- $m = \frac{a+b}{2}$, for $\alpha = \beta$,
- $m = a + (b a)(1 2^{-\frac{1}{\beta}})$, for $\alpha = 1$,
- $m = a + (b a)2^{-\frac{1}{\alpha}}$, for $\beta = 1$.

Calculation of characteristic function. For $\alpha, \beta \geq 1$ we use numerical integration by definition

$$\phi(t) = \int_{a}^{b} \cos(tx) f(x) dx + i \int_{a}^{b} \sin(tx) f(x) dx.$$

For shape parameters < 1, f(x) has singularity points at 0 or 1 or both of them, and numerical integration is impossible. Then we use the following technique: firstly, we can show that

$$\phi(t|a,b) = \mathbb{E}[e^{it(a+(b-a)X)}] = e^{ita}\phi(z|0,1)$$

with z = (b - a)t. Hence, w.l.o.g. we can consider standard case a = 0, b = 1. Then

$$\Re(\phi(z)) = \frac{1}{B(\alpha, \beta)} \int_0^1 \cos(zx) x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

$$= \frac{1}{B(\alpha, \beta)} \int_0^1 (\cos(zx) - 1) x^{\alpha - 1} (1 - x)^{\beta - 1} dx + 1$$

$$= \frac{1}{B(\alpha, \beta)} \int_0^1 \frac{(\cos(zx) - 1) x^{\alpha - 1} - (\cos(z) - 1)}{(1 - x)^{1 - \beta}} dx + 1 + \frac{\cos(z) - 1}{bB(\alpha, \beta)}.$$

The integrand now doesn't have any singularities, neither for $\alpha < 1$, nor for $\beta < 1$. Analogously we transform the imaginary part:

$$\begin{split} \Im(\phi(z)) &= \frac{1}{B(\alpha,\beta)} \int_0^1 \sin(zx) x^{\alpha-1} (1-x)^{\beta-1} dx \\ &= \frac{1}{B(\alpha,\beta)} \int_0^1 \frac{\sin(zx) x^{\alpha-1} - \sin(z)}{(1-x)^{1-\beta}} dx + \frac{\sin(z)}{bB(\alpha,\beta)}. \end{split}$$

Estimation of shapes with known support. Assume that a = 0, b = 1 and we have a sample $X = (X_1, \ldots, X_n)$. Then a log-likelihood function is

$$\ln \mathcal{L}(\alpha, \beta | X) = \sum_{i=1}^{n} \ln f(X_i; \alpha, \beta)$$

$$= (\alpha - 1) \sum_{i=1}^{n} \ln X_i + (\beta - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(\alpha, \beta).$$
(1)

Differentiating with respect to the shapes, we obtain

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha} = \sum_{i=1}^{n} \ln X_i + n(\psi(\alpha + \beta) - \psi(\alpha)),$$

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \beta} = \sum_{i=1}^{n} \ln(1 - X_i) + n(\psi(\alpha + \beta) - \psi(\beta)).$$

Differentiating again we get the Hessian matrix:

$$H(\ln \mathcal{L}(\alpha, \beta | X)) = n \cdot \begin{pmatrix} \psi_1(\alpha + \beta) - \psi_1(\alpha) & \psi_1(\alpha + \beta) \\ \psi_1(\alpha + \beta) & \psi_1(\alpha + \beta) - \psi_1(\beta) \end{pmatrix}.$$

Then we can find the estimators numerically, using Newton's procedure. The initial values of estimators are found via method of moments:

$$\hat{\alpha}_0 = \overline{X}_n \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right),$$

$$\hat{\beta}_0 = (1 - \overline{X}_n) \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right).$$

These values are applicable only if $\hat{s}_n^2 < \overline{X}_n(1 - \overline{X}_n)$. If this condition is not satisfied, we set $\hat{\alpha}_0 = \hat{\beta}_0 = 0.001$.

In the general case, when $a \neq 0$ or $b \neq 1$, we use the following transformation:

$$Y_i = \frac{X_i - a}{b - a}$$

and estimate parameters, using sample Y.

2.1 Arcsine distribution

Notation:

$$X \sim \operatorname{Arcsine}(\alpha)$$
.

Relation to Beta distribution:

$$X \sim B(1 - \alpha, \alpha, a, b).$$

Estimation of shape. For Arcsine distribution log-likelihood function (1) turns into

$$\ln \mathcal{L}(\alpha|X) = -\alpha \sum_{i=1}^{n} \ln X_i + (\alpha - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(1 - \alpha, \alpha).$$

Taking the derivative with respect to α we get

$$\frac{\partial \ln \mathcal{L}(\alpha|X)}{\partial \alpha} = \sum_{i=1}^{n} \ln \frac{1 - X_i}{X_i} + n\pi \cot(\pi \alpha).$$

Therefore, maximum-likelihood function is

$$\hat{\alpha} = -\frac{1}{\pi} \operatorname{atan} \left(\frac{n\pi}{\sum_{i=1}^{n} \ln \frac{1-X_i}{X_i}} \right).$$

If $\hat{\alpha}$ is negative, we add 1, because $\frac{\text{atan}}{\pi} \in (-0.5, 0.5)$, while $\alpha \in (0, 1)$.

2.2 Balding-Nichols distribution

Notation:

$$X \sim \text{Balding-Nichols}(p, F)$$

with $p, F \in (0, 1)$. Relation to Beta distribution:

$$X \sim B(pF', (1-p)F')$$

with
$$F' = (1 - F)/F$$
.

2.3 Uniform distribution

Relation to Beta distribution:

$$X \sim B(1, 1, a, b).$$

Estimation of support.

Frequentist inference. Likelihood function is

$$\mathcal{L}(a,b|X) = \frac{1}{(b-a)^n} \mathbf{1}_{\{X_i \in [a,b] \ \forall i=1,...,n\}}.$$

Therefore, $\mathcal{L}(a,b|X)$ is the largest for $\hat{b}=X_{(n)}$ and $\hat{a}=X_{(1)}$. However, using the fact that $X_{(k)}\sim B(k,n+1-k,a,b)$, these are biased estimators:

$$\mathbb{E}[X_{(1)}] = \frac{an+b}{n+1} \quad \text{and} \quad \mathbb{E}[X_{(n)}] = \frac{a+bn}{n+1}.$$

To get unbiased estimators we make the transformations:

$$\tilde{a} = \frac{nX_{(1)} - X_{(n)}}{n-1}$$
 and $\tilde{b} = \frac{nX_{(n)} - X_{(1)}}{n-1}$.

Then we get

$$\mathbb{E}[\tilde{a}] = \frac{n\mathbb{E}[X_{(1)}] - \mathbb{E}[X_{(n)}]}{n-1} = \frac{n(an+b) - (a+bn)}{n^2 - 1} = a.$$

Analogously, $\mathbb{E}[\tilde{b}] = b$.

Bayesian inference. Let us say, we try to estimate $\theta = b - a$ with known a. We set the prior distribution $\theta \sim \text{Pareto}(\alpha, \sigma)$:

$$h(\theta|\alpha,\sigma) = \frac{\alpha\sigma^{\alpha}}{\theta^{\alpha+1}} \mathbf{1}_{\{\theta \ge \sigma\}}.$$

The density of posterior distribution is

$$f(\theta|X) \propto \frac{\alpha \sigma^{\alpha}}{\theta^{\alpha+n+1}} \mathbf{1}_{\{\theta \geq \max(\sigma, X_{(n)} - a)\}} \sim \operatorname{Pareto}(\alpha + n, \max(\sigma, X_{(n)} - a)).$$

Hence, Bayesian estimator is

$$\mathbb{E}[\theta|X] = \frac{\alpha + n}{\alpha + n - 1} \max(\sigma, X_{(n)} - a)$$

and MAP estimator is

$$\theta_{MAP} = \max(\sigma, X_{(n)} - a).$$

3 Beta-prime distribution

Relation to other distributions:

$$\frac{X}{1+X} \sim B(\alpha, \beta),$$

$$\frac{\beta}{\alpha}X \sim F(2\alpha, 2\beta).$$

Search of the median. For $\alpha = \beta$ we have m = 1. Otherwise, we use the relation $m = \frac{m'}{1-m'}$, where m' is the median of beta-distribution $B(\alpha, \beta)$.

Calculation of characteristic function. For $\alpha \geq 1$ one can use numerical integration from section For $\alpha < 1$ we have $\lim_{x\to 0} f(x) \to \infty$ and $\int_0^\infty \cos(tx) f(x) dx$ is impossible to compute directly. Then we split the integral:

$$\int_0^\infty \cos(tx)f(x)dx = \int_0^\infty (\cos(tx) - 1)f(x)dx + 1.$$

The limit of the integrand for $x \to 0$ is 0 now, regardless of the value of the shape α .

Estimation of shapes. Using relationship with Beta distribution we transform the sample:

$$Y_i = \frac{X_i}{1 + X_i}, \quad 1 \le i \le N,$$

and run estimation for beta-distributed Y.

4 Exponentially-modified Gaussian distribution

5 F-distribution

Notation	$X \sim \mathrm{F}(d_1, d_2)$
Parameters	$d_1, d_2 > 0$
Support	$x \in \mathbb{R}^+$
f(x)	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{xB\left(\frac{d_1}{2},\frac{d_2}{2}\right)}$
F(x)	$I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2},\frac{d_2}{2}\right)$
$\mathbb{E}[X]$	$\frac{d_2}{d_2 - 2} \text{ for } d_2 > 2$
Var(X)	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)} \text{ for } d_2 > 4$
Median	Searched numerically
Mode	$\max\left(\frac{d_2(d_1-2)}{d_1(d_1+2)}, 0\right)$
$\phi(t)$	Calculated numerically

Relation to other distributions:

$$\frac{d_1X}{d_2+d_1X} \sim B\left(\frac{d_1}{2}, \frac{d_2}{2}\right),$$
$$\frac{d_1}{d_2}X \sim B'\left(\frac{d_1}{2}, \frac{d_2}{2}\right).$$

6 Gamma distribution

Estimation of parameters.

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\alpha, \beta | X) = n\alpha \ln \beta - n \ln \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^{n} \ln X_i - \beta \sum_{i=1}^{n} X_i.$$

Derivatives:

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha} = n \ln \beta - n \psi(\alpha) + \sum_{i=1}^{n} \ln X_i,$$
$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \beta} = \frac{n \alpha}{\beta} - \sum_{i=1}^{n} X_i.$$

While the solution for the second equation is analytic:

$$\hat{\beta} = \frac{\alpha}{\overline{X}_n},$$

the first equation is solved numerically, using second derivative:

$$\frac{\partial^2 \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha^2} = -n\psi_1(\alpha),$$

or if β is unknown:

$$\frac{\partial^2 \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha^2} = -n\psi_1(\alpha) + \frac{n}{\alpha},$$

Moreover, the maximum-likelihood estimation of rate β is biased. Unbiased estimator would be

 $\tilde{\beta} = \frac{\alpha}{\overline{X}_n} \left(1 - \frac{1}{n} \right).$

Bayesian inference. We suppose that prior distribution of rate β is $\Gamma(\kappa, \gamma)$:

$$h(\beta) = \frac{\gamma^{\kappa}}{\Gamma(\kappa)} \beta^{\kappa - 1} e^{-\gamma \beta}.$$

Then

$$f(\beta|X) \propto \beta^{\alpha n} e^{-\beta \sum_{i=1}^{n} X_i} \cdot \beta^{\kappa-1} e^{-\gamma \beta} \sim \Gamma\left(\alpha n + \kappa, \gamma + \sum_{i=1}^{n} X_i\right).$$

Therefore, Bayesian estimator is

$$\mathbb{E}[\beta|X] = \frac{\alpha n + \kappa}{\gamma + \sum_{i=1}^{n} X_i},$$

and MAP estimator is

$$\beta_{MAP} = \frac{\alpha n + \kappa - 1}{\gamma + \sum_{i=1}^{n} X_i}.$$

6.1 Chi-squared distribution

Notation:

$$X \sim \chi_k^2$$
.

Relation to Gamma distribution:

$$X \sim \Gamma\bigg(\frac{k}{2}, \frac{1}{2}\bigg).$$

6.2 Erlang distribution

Notation:

$$X \sim \text{Erlang}(k, \beta)$$
.

The only difference between Gamma and Erlang distributions is that a second one takes an integer shape parameter k.

6.3 Exponential distribution

Relation to Gamma distribution:

$$X \sim \Gamma(1, \lambda)$$
.

Hence, estimation of parameter λ is the particular case of estimation of rate β for Gamma distribution.

7 Geometric Stable distribution

7.1 Asymmetric Laplace distribution

7.2 Laplace distribution

8 Kolmogorov-Smirnov distribution

9 Logistic distribution

10 Log-normal distribution

11 Marchenko-Pastur distribution

12 Nakagami distribution

Calculation of characteristic function. For $\mu < 1 \lim_{x\to 0} f(x) \to \infty$. Then we use the following transformation for real part of characteristic function:

$$\Re(\phi(t)) = \int_0^\infty \cos(tx) f(x) dx$$
$$= \int_0^\infty (\cos(tx) - 1) f(x) + 1 dx$$

Relation to other distributions: if $Y \sim \Gamma(\mu, \mu/\omega)$, then

$$X \sim \text{Nakagami}(\mu, \omega)$$
.

12.1 Chi distribution

Notation:

$$X \sim \chi_k$$

Relation to Nakagami distribution:

$$X \sim \text{Nakagami}(k/2, k)$$
.

1	2	.2	Mayw	-11_∓	Bolzman	n dist	ributio	m
		. 4	IVIAX W		3012111411	11 (1151		,,,

Notation:

$$X \sim \mathrm{MB}(\sigma)$$

Relation to Nakagami distribution:

$$X \sim \text{Nakagami}\left(3/2, \sigma^2\right)$$
.

12.3 Rayleigh distribution

Notation:

$$X \sim \text{Rayleigh}(\sigma)$$

Relation to Nakagami distribution:

$$X \sim \text{Nakagami}(1, 2\sigma^2).$$

Estimation of scale. ...

13 Noncentral Chi-Squared distribution

Relation to other distributions:

• Let X_1, \ldots, X_k be independent with $X_i \sim \mathcal{N}(\mu_i, 1), i = 1, \ldots, k$. Then

$$\sum_{i=1}^{k} X_i^2 \sim \chi_k'^2 \Big(\sum_{i=1}^{k} \mu_i^2 \Big).$$

- If $\lambda = 0$, then $X \sim \chi_k^2$.
- If $J \sim \text{Po}(\lambda)$, then $\chi^2_{k+2J} \sim \chi'^2_k(\lambda)$.

14 Planck distribution

Calculation of cumulative distribution function. For $a \ge 1$ F(x) can be calculated by straightforward numerical integration:

$$F(x) = \frac{b^{a+1}}{\Gamma(a+1)\zeta(a+1)} \int_0^x \frac{t^a}{e^{bt} - 1} dt.$$

Note that for $\alpha < 1$ integrand has a singularity point at t = 0. In that case we define

$$h(t) = \frac{b^{a+2}t^{a+1}}{\Gamma(a+1)\zeta(a+1)} \cdot \left(\frac{1}{e^{bt}-1} - \frac{1}{bt}\right)$$

and then

$$F(x) = \int_0^x h(t)dt + \frac{(bx)^a}{a\Gamma(a+1)\zeta(a+1)}.$$

Calculation of characteristic function. The idea of calculations for a < 1 is near the same. We split the real part of $\phi(t)$ into 3 different integrals:

$$\Re(\phi(t)) = \int_0^1 \cos(tx)h(x)dx + \int_1^\infty \cos(tx)f(x)dx + \frac{b^a}{a\Gamma(a+1)\zeta(a+1)} \bigg(\cos(t) + t\int_0^1 \sin(tx)x^a dx\bigg).$$

All the indegrands now have no singularity points.

15 Stable distribution

Calculation of p.d.f.

Calculation of c.d.f.

15.1 Cauchy distribution

Relation to Stable distribution:

$$X \sim S_1(0, \gamma, \mu)$$

15.2 Levy distribution

Relation to Stable distribution:

$$X \sim S_{\frac{1}{2}}(1,\gamma,\mu)$$

15.3 Normal distribution

Relation to Stable distribution:

$$X \sim S_2(\cdot, \sigma^2/2, \mu)$$

Estimation of parameters

Frequentist inference. Maximum-likelihood estimators for Normal distribution are very well-known:

$$\hat{\mu} = \overline{X}_n$$
 and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$.

However, for unknown μ the value of $\hat{\sigma^2} \sim \frac{\sigma^2}{n} \chi_{n-1}^2$. Therefore, unbiased estimator in this case would be

$$\widetilde{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Moreover, if one is interested in estimating scale σ with known μ , then maximum likelihood estimator is

$$\hat{\sigma} = \sqrt{\hat{\sigma^2}} \sim \frac{\sigma}{\sqrt{n}} \chi_n$$

and

$$\mathbb{E}[\hat{\sigma}] = \frac{\sigma}{\sqrt{n}} \sqrt{2} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)}.$$

Then unbiased estimator is

$$\widetilde{\sigma} = \hat{\sigma} \sqrt{\frac{n}{2}} \frac{\Gamma(n/2)}{\Gamma((n+1)/2)}$$

Bayesian inference. ...

15.4 Holtsmark distribution

Relation to Stable distribution:

$$X \sim S_{\frac{3}{2}}(0,\gamma,\mu)$$

15.5 Landau distribution

Relation to Stable distribution:

$$X \sim S_1(1, \gamma, \mu)$$

16 Pareto distribution

Estimation of parameters.

Frequentist inference. Log-likelihood function is

$$\ln \mathcal{L}(\alpha, \sigma | X) = n \ln \alpha + n\alpha \ln \sigma - (\alpha + 1) \sum_{i=1}^{n} \ln X_i.$$

We assume that $\sigma \leq X_{(1)}$, otherwise sample X couldn't have been generated from such distribution. It is obvious, that $\ln \mathcal{L}(\alpha, \sigma | X)$ is an increasing function in terms of σ , therefore $\hat{\sigma} = X_{(1)}$ is an optimal estimator. Let's take derivative with respect to α :

$$\frac{\partial \ln \mathcal{L}(\alpha, \sigma | X)}{\partial \alpha} = \frac{n}{\alpha} + n \ln \sigma - \sum_{i=1}^{n} \ln X_i.$$

From this we conclude that the maximum-likelihood estimator of shape is

$$\hat{\alpha} = \frac{1}{\frac{1}{n} \left(\sum_{i=1}^{n} \ln X_i \right) - \ln \hat{\sigma}}.$$

It is known that $\hat{\sigma} \sim \operatorname{Pareto}(n\alpha, \sigma)$ and $\hat{\alpha} \sim \operatorname{Inv-}\Gamma(n-1, n\alpha)$ and they are independent. Then

$$\mathbb{E}[\hat{\sigma}] = \frac{\sigma}{1 - \frac{1}{n\alpha}}$$

and

$$\mathbb{E}[\hat{\alpha}] = \frac{n\alpha}{n-2}.$$

Therefore, in order to get unbiased estimators we need to make the following transformations:

 $\tilde{\alpha} = \frac{n-2}{n}\hat{\alpha}$ and $\tilde{\sigma} = \hat{\sigma}\left(1 - \frac{1}{(n-1)\hat{\alpha}}\right)$.

Note that if we estimate parameters separately, then $\hat{\alpha} \sim \text{Inv-}\Gamma(n, n\alpha)$ and transformations are different.

Bayesian inference. We now assume that σ is known and prior distribution of α is $\Gamma(\kappa, \beta)$:

$$h(\alpha) = \frac{\beta^{\kappa}}{\Gamma(\kappa)} \alpha^{\kappa - 1} e^{-\beta \alpha}.$$

The density of posterior distribution is

$$f(\alpha|X) \propto \prod_{i=1}^{n} \frac{\sigma^{\alpha}}{X_{i}^{\alpha-1}} \cdot \alpha^{\kappa+n-1} e^{-\beta\alpha} \propto \alpha^{\kappa+n-1} e^{-(\beta+\sum_{i=1}^{n} \ln(X_{i}/\sigma))\alpha}.$$

Therefore, $\alpha | X \sim \Gamma(\kappa + n, \beta + \sum_{i=1}^{n} \ln(X_i/\sigma))$ and Bayesian estimator is

$$\mathbb{E}[\alpha|X] = \frac{\kappa + n}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

MAP estimator is

$$\alpha_{MAP} = \frac{\kappa + n - 1}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

Note on fitting scale with Bayes: let it be vice versa, α is known while σ is not. Then we say that a priori $\sigma \sim \operatorname{Pareto}(\kappa, \theta)$:

$$h(\sigma) = \frac{\kappa \theta^{\kappa}}{\sigma^{\kappa+1}}.$$

Then posterior distribution is:

$$f(\sigma|X) \propto \prod_{i=1}^{n} \frac{1}{X_i^{\alpha-1}} \cdot \sigma^{\alpha n - \kappa - 1} \mathbf{1}_{\{\theta < \sigma < X_{(1)}\}} \sim \text{Bounded-Pareto}(\kappa - \alpha n, \theta, X_{(1)}).$$

This imposes the following additional constraints on the prior hyperparameters: $\kappa > \alpha n$ and $\theta < X_{(1)}$. Bayesian estimator:

$$\mathbb{E}[\sigma|X] = \frac{\theta^{\alpha'}}{1 - \left(\frac{\theta}{X_{(1)}}\right)^{\alpha'}} \cdot \left(\frac{\alpha'}{\alpha' - 1}\right) \cdot \left(\frac{1}{\theta^{\alpha'}} - \frac{1}{X_{(1)}^{\alpha'}}\right)$$

with $\alpha' = \kappa - \alpha n$. MAP estimator is just

$$\sigma_{MAP} = \theta.$$

However, Bounded-Pareto distribution is not yet supported in RandLib.

17 Weibull

Estimation of scale

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\lambda, k|X) = n(\ln k - \ln \lambda) + (k-1)\sum_{i=1}^{n} (\ln X_i - \ln \lambda) - \frac{1}{\lambda^k}\sum_{i=1}^{n} X_i^k.$$

The derivative with respect to scale:

$$\frac{\partial \ln \mathcal{L}(\lambda, k|X)}{\partial \lambda} = -\frac{nk}{\lambda} + \frac{k}{\lambda^{k+1}} \sum_{i=1}^{n} X_i^k = 0.$$

Therefore, maximum-likelihood estimation for λ is

$$\hat{\lambda} = \left(\sum_{i=1}^{n} X_i^k\right)^{\frac{1}{k}}.$$

Bayesian inference. Assume k is known. Instead of estimating λ we give an estimation for λ^k . Let's say that prior distribution of λ^k is Inv- $\Gamma(\alpha, \beta)$:

$$h(\lambda^k) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{-k(\alpha+1)} e^{-\beta/\lambda^k}.$$

Posterior distribution then:

$$f(\lambda^k|X) \propto \lambda^{-k(\alpha+1+n)} e^{-\frac{1}{\lambda^k}(\beta + \sum_{i=1}^n X_i^k)} \sim \text{Inv-}\Gamma(\alpha + n, \beta + \sum_{i=1}^n X_i^k).$$

Bayesian estimator:

$$\mathbb{E}[\lambda^k|X] = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n - 1},$$

MAP estimator:

$$\lambda_{MAP}^k = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n + 1}.$$

Part III Discrete univariate distributions

18 Beta-binomial distribution

Relation to other distributions: if $p \sim B(\alpha, \beta)$, then $Bin(n, p) \sim BB(n, \alpha, \beta)$.

19 Binomial distribution

19.1 Bernoulli

Notation:

$$X \sim \text{Bernoulli}(p)$$
.

Relation to Binomial distribution:

$$X \sim \text{Bin}(1, p)$$
.

20 Hypergeometric distribution

21 Negative-Binomial (Polya) distribution

Relation to other distributions: if $\lambda \sim \text{Gamma}\left(r, \frac{p}{1-p}\right)$, then $\text{Po}(\lambda) \sim \text{NB}(r, p)$.

21.1 Geometric distribution

Notation:

$$X \sim \text{Geometric}(p)$$
.

Relation to Negative-Binomial distribution:

$$X \sim NB(1, p)$$
.

21.2 Pascal distribution

Notation:

$$X \sim \operatorname{Pascal}(r, p)$$
.

The only difference with Negative-Binomial distribution is that for Pascal distribution shape r is an integer.

22 Poisson distribution

23 Skellam distribution

Relation to other distributions: if $Y \sim \text{Po}(\mu_1)$ and $Z \sim \text{Po}(\mu_2)$, then $Y - Z \sim \text{Skellam}(\mu_1, \mu_2)$.

24 Yule distribution

25 Zeta distribution

26 Zipf distribution

Part IV Bivariate distributions

- 27 Bivariate Normal distribution
- 28 Normal-Inverse-Gamma distribution
- 29 Trinomial distribution

Part V Circular distributions

- 30 von Mises distribution
- 31 Wrapped Exponential distribution

Part VI Singular distributions

32 Cantor distribution