

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

Qu	Scheme	Marks
1 (a)	eg 60 people = 1.5 large squares/6 medium squares/150 small squares or	
	eg 1 person = 0.025 large squares/0.6 medium squares/2.5 small squares or	
	eg [1 small square =] 0.4 people/[1 medium square =] 10 people/[1 large square =] 40 people	B1
	eg a correct f.d. eg $60/(20-10)$ [= 6]	
	eg a correct frequency, 100, 70, 20, 24 associated with the appropriate bar	
	eg $\frac{8}{10} \times 20$ or $\frac{15}{30} \times 24$ or 8×2 or 0.8×15 or $\frac{40}{2.5}$ or $\frac{30}{2.5}$ or $8 \times 5 \times 0.4$	M1
	$2 \times 15 \times 0.4$ or 16 or 12 or 70×0.4	
	28 people	A1 (2)
(b)	5 5	(3)
(0)	Median = $[5] + \frac{5}{70} \times 37$ or $[10] - \frac{5}{70} \times 33$	M1
	= 7.642 awrt 7.64	A1
		(2)
(c)	$\sum \text{midpoint} \times \text{freq} = 2.5 \times 100 + 7.5 \times 70 + 15 \times 60 + 25 \times 20 + 45 \times 24 [= 3255]$	M1
	Mean = $\frac{"3255"}{274}$	dM1
	= 11.879 awrt 11.9	A1
		(3)
(a)	Notes	Total 8
	B1: for finding a ratio between people and area. Allow just the numbers for 1 person or for 1 square ie 0.025, 0.6, 2.5, 0.4, 1.66 or 40 or calculating f.d. for any bar correctly, fd = 20, 14, 6, 2 or 0.8 Information may be seen on diagram. Must be clear it is a fd either by correct use, seen on axes associated with correct bar or stated as an fd. May be implied by M1 M1: for a correct method to find the number of people between 22 and 30 km or 30 and 45 km or between 22 and 45 km	
	A1: 28 NB An answer of 28 gains 3/3 unless from obvious incorrect working	
(b)	M1: Allow equivalent for $n + \frac{5}{70} \times 37$ or $\frac{Q_2 - n}{5} = \frac{137 - 100}{170 - 100}$ or $n - \frac{33}{70} \times 5$ or $\frac{n - Q_2}{5} = \frac{170 - 137}{170 - 100}$ oe Allow alternative methods eg $\frac{Q_2 - 5}{10 - Q_2} = \frac{137 - 170}{170 - 137}$ Allow 37.5 for 37, 137.5 for 137, 32.5 for 33	
	A1: awrt 7.64 or $\frac{107}{14}$ or allow awrt 7.68 or $\frac{215}{28}$ if using $n + 1$ Allow awrt 7640 m or 7680 m b have units.	out must
(c)	M1: Attempt at correct expression for \sum midpoint \times freq - at least 3 products with correct midpoint \times	idpoints
	added with at least 1 of these products fully correct. Allow for 3255	r
	M1: dep on M1 being awarded for dividing "their sum" by 274	
	A1: awrt 11.9 or $\frac{3255}{274}$	
	Allow awrt 11900 m but must have units	

Qu	Scheme	Marks
2(a)	$S_{tw} = 2304.53 - \frac{297.8 \times 114.8}{15}$ or $S_{ww} = 6089.12 - \frac{297.8^2}{15}$	M1
	$S_{nv} = 25.367$ awrt 25.4	A1
	$S_{ww} = 176.797$ awrt 177	A1
	Sww 176177	(3)
(b)	$r = \frac{"25.367"}{\sqrt{5.3173 \times "176.797"}}$	M1
	= 0.82735 awrt 0.827 or 0.828	A1
		(2)
(c)	$b = \frac{"25.367"}{5.3173} [= 4.77065]$	M1
	$a = \frac{297.8}{15} - \frac{"25.367"}{5.3173} \times \frac{114.8}{15} [= -16.658]$	M1
	b = 4.771 or better or $a = -16.66$ or better seen and $w = -16.7 + 4.77t$ *	A1*cso
		(3)
(d)	[On average,] for each cm/1 cm of tail length/t the weight/w increases by 4.77 g/grams	B1 (1)
(e)	$w = -16.7 + 4.77 \times 2[=-7.16]$ or $4.77 \times 2[=9.54]$ or $[t =]\frac{16.7}{4.77}[=3.5]$ or sd = awrt 0.6	M1
	[w =] - 7.16 or $9.54 < 16.7$ or $2 < 3.5$ which is negative/weight cannot be negative	A1
	or for sd extrapolation since a 2 cm tail is (approx 9 sd)/(more than 3 sd) from the mean	AI
		(2)
(f)	0.827	B1ft (1)
(g)	2y+10=-16.7+4.77(x+6) oe	(1) B1ft
		(1)
(0)	Notes	Total 13
(a)	M1 for a correct expression for S_{tw} or S_{ww}	
	A1 awrt 25.4 A1 awrt 177	
(b)	M1 for a valid attempt at r with their S_{tw} not equal to 2304.53 and S_{ww} not equal to 6089.12	
	A1 (M2 on epen) awrt 0.827 or awrt 0.828	
(c)	1st M1 for a correct method to find the value of b	
	2 nd M1 ft their b. For a correct method to find a. Minimum shown	
	$a = \text{awrt } 19.9 - \text{"their } b \times \text{awrt } 7.65 \ [= -16.658]$	
	A1* Both method marks must be awarded, equation stated (no fractions) and sight of (4.771 of 16.66 and 16.46)	or better)
(d)	or (-16.66 or better) B1 For a suitable contextual comment that implies that as length increases by 1 cm weight increases.	reases by
(4)	4.77g. Allow multiples eg each 10 cm increase in tail length weight increases by 47.7g Allow in terms of t and w	
(e)	M1 for a correct method to calculate the value of w (condone if written as a fraction) or	
	4.77×2 [= 9.54] or correct method to find tail length when $w = 0$ or sd = awrt 0.6	
	A1 Method mark must be awarded. For -7.16 or $9.54 < 16.7$ or $2 < 3.5$ with a relevant explan	ation
	stating that weight is negative. If sd = awrt 0.6 is given allow extrapolation since a 2 cm tail is	s (approx
		(P.P
(f)	9 sd)/(more than 3 sd) from the mean.	(
(f)	9 sd)/(more than 3 sd) from the mean. B1ft follow through their answer to (b)	
(f) (g)	9 sd)/(more than 3 sd) from the mean.	

Qu		Scheme	Marks
3(a)	$[\bar{x} =] \frac{3711}{81} [= 45.814]$	$\left[\sum l = \right] 3711 + 81 \times 600 \left[= 52311 \right]$	M1
	$[\bar{l} =]$ "45.814"+600	$\left[\overline{l}\right] = \frac{"52311"}{81}$	M1
	$\left[\overline{l}\right]$ = $\left]$ 645.81	awrt 646	A1
			(3)
(b)	$\left[\sigma_{x}^{2} = \frac{475181}{81} - \left(\frac{3711}{81}\right)^{2} = 3767\right]$ $= 3767.43 \Rightarrow \sigma_{l}^{2} = 3767.43$	$\left[\text{Var}(L) = \right] \frac{34088381}{81} - \left(\frac{"52311"}{81} \right)^2$	M1
	$=3767.43 \Rightarrow \sigma_l^2 = 3767.43$	= 3767.43 awrt 3770	A1
()	10		(2)
(c)	40		B1cao (1)
(d)	IQR = 5400 – 3800 [= 1600]		M1
(**/	5400+1.5×"1600" [= 7800] or 3800-	-1.5×"1600" [= 1400]	M1
	7800 > 7700 and 1400 < 1600 therefore t		A1
			(3)
		Notes	Total 9
(a)	M1 for a correct method to find \bar{x} or \sum	l Allow 45.8 or better. Ignore labels	
	M1 for a correct method to find \bar{l} ft their \bar{x} if it is clearly labelled or it comes from $\frac{3711}{81}$ or ft their $\sum l$ if it is clearly labelled or comes from $3711+81\times600$		
	A1 awrt 646 or $\frac{17437}{27}$ or $\frac{52311}{81}$ oe		
(b)	M1 correct method to find Var (X) implies	ed by awrt 3770 or a correct method to find Var	(L) ft their
	$\sum l$ or Allow calculation of $\operatorname{sd}[\sigma_x] = \operatorname{av}$	vrt 61.4 Ignore labels	
	A1 awrt 3770 labelled clearly as $Var(L)$	or $Var(L) = Var(X)$ or $\sigma_l = \sigma_x$ stated or variance	is not
		gained the answer from $\frac{34088381}{81} - \left(\frac{"52311"}{81}\right)^2$	
(c)	B1 cao		
(d)	M1 correct method to find IQR. May be NB $1.5 \times (5400 - 3800) = 2400$	implied by a correct limit.	
	M1 for a correct method to find the upper or the lower outlier boundary.		
		and 1600 (as the minimum not IQR) seen and e	explicitly
	stating no outliers		

Qu	Scheme	Marks	
4 (a)	Bag Colour		
	0.02 Red		
	. A		
	0.3 0.98 Not Red		
	0.04 Red	B1B1	
	0.45 B	DIDI	
	Not Red 0.96		
	0.25		
	C 0.06 Red		
	Not Ped		
	0.94 Not Red		
		(2)	
(b)	0.3×"0.98"	M1	
	= 0.294	A1 (2)	
(c)	(0.2 0.02) . (#0.45# #0.04#) . (#0.25# #0.06#)	(2)	
(C)	$(0.3 \times 0.02) + ("0.45" \times "0.04") + ("0.25" \times "0.06")$	M1	
	= 0.039	A1 (2)	
(4)	"0.25" "0.06"	(2)	
(d)	$P(C Red) = \frac{"0.25" \times "0.06"}{"0.039"} \left[= \frac{0.015}{"0.039"} \right]$	M1,M1	
	"0.039" ["0.039"]	,	
	$= 0.3846 \text{ or } \frac{5}{13}$	A1	
	13 A1		
	N	(3)	
(a)	Notes	Total 9	
(a)	B1 for 0.45, 0.25 and 0.98 Allow fractions		
(b)	B1 0.04, 0.96 and 0.06, 0.94 Allow fractions M1 may ft their tree diagram if method shown 0.3 × " their 0.98"		
(0)	A1 0.294 oe		
(c)	M1 may ft their tree diagram if method shown		
(0)	A1 0.039 oe		
(d)		<i>,</i> , , ,	
,	M1 allow $\frac{p}{\text{"their part (c)"}}$ or $\frac{p}{0.039}$ where $0 and p < denominator and their$	(c) is a	
	probability or		
	allow $\frac{"0.25" \times "0.06"}{q}$ or $\frac{0.015}{q}$ where $0 < q < 1$ and $q >$ numerator		
	"0.25"×"0.06"		
	M1 for $\frac{"0.25" \times "0.06"}{"0.039"}$ ft their tree diagram and their part(c) if all 3 figures shown	n in	
	working. We will condone num > denom		
	A1 awrt 0.385		
	NB if correct ft on numerator and denominator leads to "num" > "denom" then ma	ax score	
	is M0M1A0		

Qu	Scheme	Marks
5(a)	$P(Y = y) \qquad 2k \qquad k \qquad k \qquad 8k \qquad 17k \qquad k$	M1
	$2k + k + k + 8k + 17k + k = 1$ or $30k = 1$ $\Rightarrow k = \frac{1}{30}$ *	A1*
		(2)
(b)	k + k + 8k or $1 - (2k + 17k + k)$	M1
	$=\frac{1}{3}$ oe awrt 0.333	A1
		(2)
(c)	$(1 \times 2k) + (2 \times k) + (3 \times k) + (4 \times 8k) + (5 \times 17k) + (6 \times k) =$	M1
	$\frac{13}{3}$ oe awrt 4.33	A1
		(2)
(d)	$P(Y \ge 15 - 2Y)$ or $[X =] 13 \ 11 \ 9 \ 7 \ 5 \ 3$ only or $[Y =] 5$ or 6 only	M1
	$[P(Y \ge 5) = P(Y = 5) + P(Y = 6)] = \frac{"17"}{30} + \frac{"1"}{30}$	M1
	$= \frac{3}{5}$ oe	A1ft
	3	(3)
(e)	Var(X) = 4Var(Y)	M1
	$[E(Y^2) =](1 \times 2k) + (2^2 \times k) + (3^2 \times k) + (4^2 \times 8k) + (5^2 \times 17k) + (6^2 \times k) \Big[= \frac{302}{15} \text{ or awrt } 20.1 \Big]$	M1
	$[\text{Var}(Y) =] \frac{302}{15} - \left(\frac{13}{3}\right)^2 = \frac{61}{45} \text{ or awrt } 1.36$	M1d
	$[Var(X) =] \frac{244}{45}$ oe awrt 5.42	A1
	ALT for 1st 3 marks	(4)
	$[E(X) =] (13 \times 2k) + (11 \times k) + (9 \times k) + (7 \times 8k) + (5 \times 17k) + (3 \times k) = \frac{19}{3} \text{ or awrt } 6.33$	M1
	$[E(X^{2}) =](13^{2} \times 2k) + (11^{2} \times k) + (9^{2} \times k) + (7^{2} \times 8k) + (5^{2} \times 17k) + (3^{2} \times k) \left[= \frac{683}{15} \text{ or awrt } 45.5 \right]$	M1
	$[\text{Var}(X) =] \frac{683}{15} - (\frac{190}{30})^2$	M1d
(a)	Notes Notes	Total 13
(a) M1 for finding the probabilities in terms of k. The individual probabilities must be se or in the calculation (but do not need to be simplified)		iii a tabie
	A1* Method mark must be awarded. For a correct equation which would lead to $k = 1/30$ *	
	NB Verification - $2\left(\frac{1}{30}\right) + \left(\frac{1}{30}\right) + \left(\frac{1}{30}\right) + 8\left(\frac{1}{30}\right) + 17\left(\frac{1}{30}\right) + \left(\frac{1}{30}\right) = 1$ gains M1 A0	
(b)	M1 for using $P(Y = 2) + P(Y = 3) + P(Y = 4)$ or $1 - P(Y = 1) + P(Y = 5) + P(Y = 6)$ Allow in term	s of k or
	with $k = 1/30$ subst or with their probabilities. Do not allow in terms of y	
(c)	A1 awrt 0.333 M1 for using $\sum xP(x)$ At least 3 terms given Allow with $k = 1/30$ subst or ft their probabilitie	0
	A1 awrt 4.33	3.
(d)	M1 forming correct inequality in <i>Y</i> or 13,11,9,7,5,3 seen anywhere or for 5 and 6 only. Implied	l by 2 nd M1
	M1 finding their $P(Y = 5)$ + their $P(Y = 6)$ or $P(X = 5) + P(X = 3)$ eg $17k + k$	
(c)	A1ft ft their probabilities M1 written or yeard 4Ver(V) (may some at the and of the calculation) or written or yeard E(V) or	10111 01114
(e)	M1 written or used $4Var(Y)$ (may come at the end of the calculation) or written or used $E(X)$ at 6.33 NB condone $-2^2Var(Y)$ if used $4Var(Y)$	now awrt
	M1 Correct method, at least 3 products correct, to find $E(Y^2)$ or $E(X^2)$ condone incorrect label	ole .
	M1d dep on the 2^{nd} M mark being awarded. For correct use of $E(Y^2) - [E(Y)]^2$ or $E(X^2) - [E(Y)]^2$	
	the ALT In addition to the 2^{nd} M1 the 1^{st} M1 must be awarded. Condone incorrect labelling A1 awrt 5.42	

Qu	Scheme	Marks	
6(a)	0.6	B1	
		(1)	
(b)	$[P(A \cap B) =]0.1 \times 0.3 \text{ or } 0.3 = \frac{P(A \cap B)}{0.1}$	M1	
	0.1 $0.25 = 0.1 + P(B) - 0.03$ or $0.25 = 0.1 + P(B) - P(A \cap B)$	M1	
	$0.25 = 0.1 + P(B) - 0.03 \text{ or } 0.3 = \frac{P(B) - 0.15}{0.1}$: $P(B) = 0.18*$	A1*	
		(3)	
(c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 M1 B1ft B1ft A1	
		(5)	
	Notes	Total 9	
(a)	B1cao		
(b)	M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 seen M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(B) (allow any letter for P(B)) A1* P(B) = 0.18 depends on both previous M marks for a fully correct equation in terms of P(B) (allow any letter for P(B)) followed by P(B) = 0.18 NB 0.03 used/stated with no working could get M0M1A0 Using P(A \cap B) = 0.1 \times P(B) then they get M0M0A0 Verification could get M1M1A0 M1 for 0.1 \times 0.3 M1 for 0.25 - 0.18 - 0.1 = -0.03 or 0.3 = \frac{0.18 - 0.15}{0.1} or 0.25 = 0.1 + 0.18 - P(A \cap B)$		
(c)	M1 for 3 circles as per either diagram. If using Diagram 2 we must see exactly 2 zeros in one of the intersections (as shaded). (Do Not accept blank or dash instead of 0) Condone missing rectangle. Ignore labels M1 for 0.09 and 0.41 marked correctly in diagram − condone incorrect/no label but must be in the left or right hand circles in 1 st diagram or must have zeros (condone blank or dash) in the 2 other regions of the circle if in 2 nd diagram B1ft their "0.03" in correct place on diagram. Correct label required B1ft for 0.34 or ft 0.75 − "their 0.41" where their 0.41 ≠ 0.5 No other ft accepted. Do not allow 0.75 A1 fully correct Venn diagram including the rectangle and all 3 labels.		
	SC no labels could get M1M1B0B1A0 if using 3 intersecting circles must have blanks or 0 for the		
	2 nd M1	Jioi ille	

Qu	Scheme	Marks
7(a)(i)	$P(J > 510) = P(Z > \frac{510 - 500}{25}) \text{ or } P(Z > 0.4)$	M1
	$= 1 - 0.6554 \Rightarrow 0.3446 *$	A1*
		(2)
(ii)	$\frac{d-500}{25} = -1.4 \text{ (calc } -1.3997)$ $d = 465 \text{ (calc } 465.007)$	M1B1
	d = 465 (calc 465.007)	dA1
		(3)
(b)	$(1-0.3446)^5$	M1
	= 0.1209 awrt 0.121	A1
		(2)
(c)	$\frac{r-520}{k} = -1.0364$ $\frac{3r-800-520}{k} = 2.5758$	M1A1
	$\frac{3r - 800 - 520}{k} = 2.5758$	M1A1
	$-240 = (3 \times -1.0364k'') - 2.5758''k \text{ or } \frac{r-520}{-1.0364''} = \frac{3r-1320}{2.5758''} \text{ oe}$	ddM1
	k = 42.216 awrt 42	A1
	r = 476.246 awrt 476	dA1
	N.4	(7)
(a)(i)	Notes M1 for standardising using 500 and 25. Allow for 0.4	Total 14
(a)(1)	A1* M1 must be awarded. For $1 - 0.6554 = 0.3446$ or using calc $0.34457 = 0.3446$ or be	tter
(ii)	M1 correct standardisation using 500 and 25 equated to a z value where $1 < z < 2$	
	B1 correct expression with compatible signs eg $\frac{500-d}{25}$ = 1.4 (calc 1.3997) or allow incompatible signs with $500-("535"-500)$	
	SC $\frac{510-d}{25}$ = 1.4 (calc 1.3997) can get M0B1A0	
	dA1 dependent on M1 awarded for 465 or 465.007	
(b)	M1 for $(p)^5$ where 0	
	A1 awrt 0.121	
(c)	M1 $\frac{r-520}{k} = z$ value where $ z > 1$	
	$1^{\text{st}} \text{ A1 } \frac{r - 520}{k} = \text{awrt } -1.0364 \text{ (calc } 1.036433) \text{ (signs must be compatible)}$	
	$2^{\text{nd}} \text{ M1 } \frac{3r - 800 - 520}{k} = z \text{ value where } z > 2$	
	$2^{\text{nd}} \text{ A1 } \frac{3r - 800 - 520}{k} = \text{awrt } 2.5758 \text{ (calc } 2.5758293) \text{ (signs must be compatible)}$	
	3^{rd} M1 (dep on both Ms) for forming a correct equation in k or r only using their z values . ISW once correct equation seen eg $-5.685k = -240$ or $\frac{3(-1.0364k + 520) - 800 - 520}{k} = 2.5758$ Implied by r and k correct	
	3 rd A1 for awrt 42	
	4th A1 for awrt 476 Must come from equations with compatible signs	.6.1
	NB awrt 476 and awrt 42 does not mean full marks. They could get M1A0M1A0 M1A1A1	if they do
	not have accurate z values	