Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа 6 Вариант 25

Выполнил: Горшелев Кирилл Валерьевич Группа РЗ132 Проверил:

2024 Санкт-Петербург Из подобия треугольников SQA и SPE имеем

$$\frac{AQ}{PE} = \frac{SA}{SE}$$

а из подобия треугольников SAC' и SEC

$$\frac{SA}{SE} = \frac{AC'}{EC}$$

Так как $AC' \perp SC$, то AC' < AC, поэтому из (9) следует

$$\frac{SA}{SE} < \frac{AC}{EC}$$

Из (8) и (10) получим

$$rac{AQ}{PE} < rac{AC}{EC}$$
 или $rac{AQ}{AC} < rac{PE}{EC}$

Треугольник АВС правильный, поэтому

$$\frac{AQ}{AC} = \sin 30^\circ = \frac{1}{2}.$$

Тогда из (11) следует

$$\sin \angle PCE = \frac{PE}{EC} > \frac{1}{2},$$

то есть $\angle FCE$ больше 60°. Отсюда следует, что точки A_1 и B_1 лежат на отрезке EF, — середина A_1B_1 и $A_1B_1 < EF$.

Теперь нетрудно сделать рисунок (рис. 3). Сторона основания AB пирамиды SABC

Рис. 3

пересекается с гранями призмы A_1A_2SC и B_1B_2SC в точках M и N

Обозначим x=MN, a=AB, $b=A_1B_1$, h— высота пирамиды. Найдем объемы пирамиды SABC и ее части, лежащей внутри призмы:

$$V_{SABC} = \frac{1}{6}ah \cdot QC,$$

$$V_{SMNC} = \frac{1}{6}hx \cdot QC,$$

откуда

$$\frac{V_{SABC}}{V_{SMNC}} = \frac{x}{a}$$

Из подобия треугольников MSN и B_1SA_1 , находим

$$\frac{x}{b} = \frac{SQ}{SP}$$

Рассмотрим треугольник SPC (рис. 4). Проведем прямую $QL \parallel PC$. Из подобия тре-

Рис. 4

угольников SQL и SPC имеем

$$\frac{SQ}{SP} = \frac{QL}{PC}$$

Далее, — высота основания призмы, $PC = b rac{\sqrt{3}}{2}$ и $QL = QC \cdot \sin a$.

Угол a — это угол между ребром SC и высотой QC основания правильной пирамиды. Если SF — высота пирамиды, то $FC=\frac{a\sqrt{3}}{2}$. По условию $SC=\frac{2}{\sqrt{3}}a$, откуда $\cos a=\frac{1}{2},\ a=60^\circ,\$ и, следовательно, $QL=\frac{a\sqrt{3}}{2}\cdot\sin 60^\circ=\frac{3a}{4}$

Из (13) и (14) находим

$$\frac{x}{b} = \frac{SQ}{SP} = \frac{QL}{PC} = \frac{\sqrt{3}a}{2b}$$

откуда $\frac{x}{a} = \frac{\sqrt{2}}{2}$, как следует из (12), дает искомое отношение объемов.

Ответ.
$$\frac{\sqrt{3}}{2}$$
Вариант 2

1. 63 2. $x = \arcsin \frac{1}{4} + 2\Pi k$, $x = -\arcsin \left(-\frac{1}{4}\right) + 2\Pi k$.

3. $\frac{S_1S_3(S_1+S_2)(S_2+S_3)}{S_2(S_2^2-S_1S_3)}$

Подставляя теперь значение $\delta E = F_T v \delta t,$ получим

$$\delta v = -\frac{1}{m} F_T \delta t$$

Отсюда, считая изменения δv и δt малыми, получим выражение для ускорения спутника.

$$W = -\frac{1}{m}F_T$$

IV. Торможение в атмосфере

Рассмотрим, что происходит при торможении спутника в земной атмосфере. В этом случае возмущающая (тормозящая) сила направлена против движения, то есть АЕ всегда имеет отрицательный знак. В соответствии с таблицей 1 большая полуось и период обращения будут постепенно убывать, следовательно, средняя

Таблица 1

	Обозна-	Если δE > 0	Если δE < 0
Величина	чение	(ускоряющая сила)	(тормозящая сила)
Радиус орбиты (большая полуось в случае			
движения по эллипсу)	a	увеличивается	уменьшается
Период обращения	T	увеличивается	уменьшается
Кинетическая энергия	K	уменьшается	увеличивается
Потенциальная энергия	U	увеличивается	уменьшается
Линейная скорость	u	уменьшается	увеличивается