Aula 8

Estados quânticos ligados

Métodos de Numerov

Método de Numerov progressivo

Método de Numerov regressivo

Equação Linear de Schrödinger

Poço de potencial infinito

Equação radial

Poço de potencial finito

Método de Numerov

Equações do tipo

$$\frac{d^2 y(x)}{d x^2} + g(x) y(x) = S(x)$$

são frequentes em muitos problemas físicos. Como estas equações são lineares e não têm nenhum termo em $y^{(1)}$, é possível desenvolver métodos simples e eficientes para resolver numericamente problemas de valor inicial em que elas aparecem. No Trabalho 8, usar-se-á o método de Numerov. Para o introduzir, parte-se das expansões em série de Taylor

$$y(x+h) = y(x) + y^{(1)}(x) * h + \frac{1}{2!}y^{(2)}(x) * h^2 + \frac{1}{3!}y^{(3)}(x) * h^3 + \frac{1}{4!}y^{(4)}(x) * h^4 + \frac{1}{5!}y^{(5)}(x) * h^5 + \mathcal{O}(h^6)$$

$$y(x-h) = y(x) - y^{(1)}(x) * h + \frac{1}{2!}y^{(2)}(x) * h^2 - \frac{1}{3!}y^{(3)}(x) * h^3 + \frac{1}{4!}y^{(4)}(x) * h^4 - \frac{1}{5!}y^{(5)}(x) * h^5 + \mathcal{O}(h^6)$$

Somando as duas equações, obtém-se,

$$\frac{y(x-h) - 2y(x) + y(x+h)}{h^2} = y^{(2)}(x) + \frac{h^2}{12}y^{(4)}(x) + \mathcal{O}(h^4)$$

A partir desta equação poder-se-ia obter uma aproximação de quarta ordem para $y^{(2)}(x)$, se não fosse o termo em $y^{(4)}(x)$.

O passo seguinte é usar uma aproximação de diferenças finitas centradas, aplicada ao caso concreto do tipo de equações diferenciais que se pretende estudar, para substituir $y^{(4)}(x)$.

$$y^{(4)}(x) = \frac{d^2}{dx^2} \left[\frac{d^2 y(x)}{dx^2} \right]$$

$$= \frac{d^2}{dx^2} \left[-g(x) y(x) + S(x) \right]$$

$$= -\frac{g(x-h)y(x-h) - 2g(x)y(x) + g(x+h)y(x+h)}{h^2} + \frac{S(x-h) - 2S(x) + S(x+h)}{h^2} + \mathcal{O}(h^2)$$

Fazendo esta substituição, substituindo também $y^{(2)}(x)$ por -g(x)y(x) + S(x), e rearranjando os termos da equação, obtém-se,

$$\left[1 + \frac{h^2}{12}g(x-h)\right]y(x-h) - 2\left[1 - \frac{5h^2}{12}g(x)\right]y(x) + \left[1 + \frac{h^2}{12}g(x+h)\right]y(x+h) = \frac{h^2}{12}[S(x-h) + 10S(x) + S(x-h)] + \mathcal{O}(h^6)$$

O método é explícito e pode ser aplicado <u>progressivamente</u>, calculando y^{k+1} a partir de y^{k-1} e de y^k :

$$\mathbf{y}_{k+1} = \left(1 + \frac{h^2}{12}g_{k+1}\right)^{-1} \left[-\left(1 + \frac{h^2}{12}g_{k-1}\right)\mathbf{y}_{k-1} + 2\left(1 - \frac{5h^2}{12}g_k\right)\mathbf{y}_k + \frac{h^2}{12}(S_{k-1} + 10S_k + S_{k+1}) \right]$$

O método também pode ser aplicado <u>regressivamente</u>, calculando y^{k-1} a partir de y^{k+1} e de y^k :

$$\boldsymbol{y_{k-1}} = \left(1 + \frac{h^2}{12}g_{k-1}\right)^{-1} \left[2\left(1 - \frac{5h^2}{12}g_k\right)\boldsymbol{y_k} - \left(1 + \frac{h^2}{12}g_{k+1}\right)\boldsymbol{y_{k+1}} + \frac{h^2}{12}(S_{k-1} + 10S_k + S_{k+1})\right]$$

Este método é muito eficiente porque o erro local é de ordem $\mathcal{O}(h^6)$ e exige menos cálculos por passo que um método de Runge–Kutta.

A aplicação do método ao problema de teste

$$\frac{d^2y}{dx^2} = -\lambda^2y$$

com λ real, revela que o método é estável para

$$0 \le \lambda^2 h^2 \le 6$$

Esta relação pode ser confirmada usando o código do Problema 8.1, em que se estuda o caso de uma partícula numa caixa a uma dimensão e se tem $\lambda^2 = 2E$. Também pode verificar que a condição de estabilidade é pouco restritiva.

06-05-2024

Unidades Reduzidas

Nos problemas que se vão discutir em seguida, serão usadas unidades atómicas reduzidas.

- Os comprimentos reduzidos são $x^* = x/a^0$, onde a^0 é o raio de Bohr.
- As cargas reduzidas são $q^* = q/e$, onde e é o valor absoluto da carga do eletrão.
- As massas reduzidas são $m^* = m/m_e$, onde m_e é a massa do eletrão.
- As energias reduzidas E^* são expressas em Hartree (símbolo Ha ou E_h). Um Hartree é igual a $2R_{\infty}hc$, onde R_{∞} é a constante de Rydberg.

Note que nos slides seguintes vai ser seguida a (má) tradição de omitir os símbolos * na escrita das unidades reduzidas.

Em unidades atómicas reduzidas, $\hbar^2 = 1$ e $1/(4\pi\epsilon_0) = 1$.

Poço de Potencial Infinito

No problema 8.1, será estudado o caso de uma partícula numa caixa a uma dimensão. O problema é descrito por,

$$-\frac{1}{2}\frac{d^2 \psi(x)}{d x^2} + V(x) \psi(x) = E \psi(x)$$

com

$$V(x) = \begin{cases} 0 & \text{para } |x| \le a, \\ +\infty & \text{para } |x| > a. \end{cases}$$

As condições fronteira são

$$\psi(x \le -a) = 0$$
, e $\psi(x \ge +a) = 0$

Este problema de valores e vetores próprios pode ser resolvido tacimiente discretario intervalo [-a, +a] e usando um método de shooting. Partindo de x = -a, obtém-se a solução $\frac{8}{8}$

O valor de E vai sendo ajustado até que a condição fronteira $\psi(a) = 0$ seja satisfeita dentro de uma dada tolerância.

O valor da derivada de ψ no ponto de partida x=-a não é importante, apenas determina um fator multiplicativo de $\psi(x)$.

Assim, arbitra-se um valor muito pequeno para $\psi(h)$ e, no fim do programa, a solução numérica para $\psi(x)$ tem que ser multiplicada por uma constante, de maneira a que a **condição de normalização**,

$$\int_{-a}^{+a} \psi(x)^2 dx = 1$$

seja satisfeita.

Os valores da energia obtidos podem ser comparados diretamente com os exatos.

Equação de Schrödinger radial

A equação de Schrödinger independente do tempo para o átomo de hidrogénio é

$$\left[-\frac{1}{2} \nabla^2 + V(r)\right] \psi(r) = E\psi(r)$$

O potencial V(r) = -1/r tem simetria esférica.

As funções próprias podem ser escritas, em coordenadas esféricas, como

$$\psi(r, \theta, \phi) = R(r)Y_{l,m}(\theta, \phi)$$

A inserção desta função na equação de Schrödinger, permite obter duas ODEs. Uma radial e outra angular.

A ODE separada para a função de onda radial R(r) é

$$-\frac{1}{2}\frac{d^2}{dr^2}[rR(r)] + \left[\frac{l(l+1)}{2r^2} - \frac{1}{r}\right]R(r) = ER(r)$$

Definindo

$$u(r) = rR(r),$$

chegamos à equação de Schrödinger radial,

$$-\frac{1}{2}\frac{d^2}{dr^2}[u(r)] + \left[\frac{l(l+1)}{2r^2} - \frac{1}{r}\right]u(r) = Eu(r)$$

Esta equação de valores próprios já está numa forma que nos permite, à partida, fazer um *shooting* usando o método de Numerov.

No entanto, enquanto uma das condições fronteira é simples, u(0) = 0, porque u(r) = rR(r), a outra condição fronteira, que resulta de estarmos à procura de estados ligados,

$$\lim_{r \to +\infty} u(r) = 0$$

não pode ser aplicada diretamente.

É necessário arbitrar um valor de r_{max} para o qual o valor absoluto da função de onda já seja muito pequeno e tomar alguma decisão sobre o valor de u(r) nesse ponto (e, eventualmente, como vamos ver, em $r_{\text{max}} - h$).

Na realidade, verifica-se que, começando em r_{max} e aplicando o método de Numerov no sentido regressivo, se obtêm melhores resultados e se evitam alguns problemas numéricos que poderiam surgir.

A condição a usar para o método de shooting é simples: u(0) = 0.

Poderíamos tentar usar alguma informação sobre o que se espera da função de onda próximo de r_{max} , mas, na prática, vamos verificar que é razoável usar $u(r_{\text{max}}) = 0$ e atribuir um valor muito pequeno a $u(r_{\text{max}} - h)$ (este valor é necessário para iniciar o método de Numerov).

Assim que o shooting tiver convergido, procede-se à normalização de u(r) através da condição

$$\int_{0}^{r_{max}} u(r)^2 dr = 1$$

A função de onda radial R(r) pode ser obtida a partir de R(r) = u(r)/r para todos os pontos, com exceção de R(0).

No entanto, uma vez conhecidos R(h), R(2h), R(3h), ..., é imediato obter R(0) por interpolação.

Os valores próprios da energia e os vetores próprios podem ser comparados com os valores exatos.

Table	7.1	Hydrogen Atom Radial Wave Functions
n	l	$R_{\pi\ell}(r)$
1	0	$\frac{2}{(a_0)^{3/2}}e^{-r/a_0}$
2	0	$\left(2 - \frac{r}{a_0}\right) \frac{e^{-r/2a_0}}{(2a_0)^{3/2}}$
2	1	$\frac{r}{a_0} \frac{e^{-t/2a_0}}{\sqrt{3}(2a_0)^{3/2}}$
3	0	$\frac{1}{(a_0)^{3/2}} \frac{2}{81\sqrt{3}} \left(27 - 18\frac{r}{a_0} + 2\frac{r^2}{a_0^2}\right) e^{-r/3a_0}$
3	1	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{6}} \left(6 - \frac{r}{a_0}\right) \frac{r}{a_0} e^{-r/3a_0}$
3	2	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{30}} \frac{r^2}{a_0^2} e^{-r/3a_0}$

© 2006 Brooks/Cale - Thereon

06-05-2024

Poço de Potencial Finito

No Problema 9.3, vai estudar o poço de potencial finito a uma dimensão. O problema é descrito por

$$-\frac{\hbar}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

com,

$$V(x) = \begin{cases} 0 & \text{para } |x| \le a, \\ V_0 & \text{para } |x| > a. \end{cases}$$

Onde V_0 é um real positivo.

Sabe que para estados ligados (tais que $E < V_0$), existe um probabilidade finita de encontrar a partícula na zona classicamente proibida. Para começar, isso significa que temos que encontrar a para que $\frac{1-\Gamma}{b}$ $\frac{b}{b}$ onde o número positivo b é suficientemente maior que a para que

Departamento de Física

Aula 8

 $|\psi(b)|$ seja muito pequeno.

O valor absoluto da função de onda decresce exponencialmente na região proibida. As condições fronteira são

$$\lim_{x \to -\infty} \psi(x) = 0, \qquad \lim_{x \to +\infty} \psi(x) = 0$$

O método de *shooting* pode iniciar-se em x = -b ou em x = +b. Sabe-se que, como a solução decresce exponencialmente nas zonas onde se encontram estes pontos, mas nenhum deles é apropriado para ser o ponto final do *shooting*.

Para se resolver esta dificuldade, escolhe-se um valor de x_{match} na zona central, usa-se o método de Numerov progressivamente a partir de x = -b e regressivamente a partir de x = +b, e varia-se E até que a função $\phi(x)$ e sua derivada $\phi'(x) = d\phi/dx$ sejam contínuas em x_{match} .

Neste caso, está a tentar encontrar-se o primeiro estado excitado e escolheu-se um valor inicial de *E* que já se sabe ser próximo do procurado.

Usou-se a = 1 e b = 4a.

Departamento de Física Aula 8 Universidade de Aveiro Física Computacional 2023/2024

por

 $\psi_{\text{prog}}(x_{\text{match}})/\psi_{\text{regr}}(x_{\text{match}}).$

O resultado está representado Na figura seguinte.

Departamento de Física Aula 8 Universidade de Aveiro Física Computacional 2023/2024 Pela figura é evidente que a derivada da função não é contínua em x_{match} .

A ideia é calcular um parâmetro que dê a diferença relativa entre as duas derivadas estimadas,

e

prosseguir o método de *shooting*, variando os valores da energia até que o valor absoluto desse parâmetro seja suficientemente pequeno ou

que o valor de E convirja.

Na figura da direita está representado o resultado final do método de *shooting*.

Note que a função de onda foi normalizada.

Departamento de Física Aula 8 Universidade de Aveiro Física Computacional 2023/2024