DM N°11 (pour le 23/03/2012)

Le théorème suivant sera admis (théorème de décomposition des noyaux) :

Soit E un \mathbb{K} -espace vectoriel , $u \in \mathcal{L}(E)$. Si $P \in \mathbb{K}[X]$ est un polynôme annulateur de u, et si $P = P_1^{\alpha_1} P_2^{\alpha_2} \dots P_n^{\alpha_n}$ est sa décomposition en produit de facteurs irréductibles de $\mathbb{K}[X]$, on a

$$E = \bigoplus_{i=1}^n \operatorname{Ker}(P_i^{\alpha_i}(u)).$$

L'énoncé figure sur les pages suivantes.

NOTATIONS

- n désigne un entier naturel non nul.
- [n] désigne l'ensemble des n premiers entiers non nuls.
- N désigne l'ensemble des entiers naturels, R le corps des nombres réels. et C le corps des nombres complexes.
- \mathcal{M}_n désigne l'algèbre des matrices carrées de taille n à coefficients complexes. Son élément neutre pour la multiplication, la matrice identité, est notée $\mathbf{1}_n$.
- \mathcal{P}_n désigne l'ensemble des matrices carrées de taille n dont tous les coefficients sont des nombres réels positifs.
- $\mathcal{P}_n^{>0}$ désigne l'ensemble des matrices carrées de taille n dont tous les coefficients sont des nombres réels strictement positifs.
- S_n désigne l'ensemble des matrices carrées de taille n dont tous les coefficients sont des nombres réels positifs et dont les sommes des coefficients de chaque ligne sont égales à 1, c'est à dire le sousensemble de \mathcal{P}_n formé par les matrices $M = (a_{i,j})_{(i,j) \in [n] \times [n]}$ telles que : $\forall i \in [n], \sum_{j=1}^n a_{i,j} = 1$.
- ensemble de \mathcal{P}_n formé par les matrices $M=(a_{i,j})_{(i,j)\in[n]\times[n]}$ telles que : $\forall i\in[n], \sum_{j=1}^n a_{i,j}=1$.

 Soient x et y deux vecteurs de \mathbf{R}^n de coordonnées respectives (x_1,\ldots,x_n) et (y_1,\ldots,y_n) . On note $x\leqslant y$ si, pour tout i dans $[n], x_i\leqslant y_i$.
- Soient $A = (a_{i,j})_{(i,j) \in [n] \times [n]}$ et $B = (b_{i,j})_{(i,j) \in [n] \times [n]}$ dans \mathcal{P}_n . On note $A \leqslant B$ si, pour tous entiers i et j dans [n], on a $a_{i,j} \leqslant b_{i,j}$.

Dans les espaces vectoriels de dimension finie considérés dans ce problème, la notion de limite est relative à l'unique topologie associée à une norme arbitraire sur ces espaces.

PRÉLIMINAIRES -

Soient t_1, \ldots, t_n des nombres réels strictement positifs tels que $\sum_{i=1}^n t_i = 1$. Soient z_1, \ldots, z_n des nombres complexes tels que :

$$\begin{cases} \forall i \in [n], |z_i| \leq 1, \\ |\sum_{i=1}^n t_i z_i| = 1. \end{cases}$$

On se propose de démontrer qu'il existe un nombre complexe z de module 1 tel que, pour tout i dans [n], on ait $z_i = z$.

- 1. Dans le cas particulier où z_1, \ldots, z_n sont des nombres réels tels que $\sum_{i=1}^n t_i z_i = 1$, démontrer que, pour tout i dans [n], on a $z_i = 1$.
- 2. Démontrer le cas général (Indication : on pourra, en posant $Z = \sum_{i=1}^{n} t_i z_i$, considérer la partie réelle du nombre complexe $\sum_{i=1}^{n} t_i z_i/Z$.)

- PARTIE I -

Dans cette partie, on suppose n=2.

Soient x, y deux nombres réels; on pose

$$P_{x,y} = rac{1}{2} \left(egin{array}{ccc} 1-x & 1+x \ 1+y & 1-y \end{array}
ight) \; .$$

- 1. Déterminer les valeurs propres de $P_{x,y}$ et, pour chaque valeur propre, son sous-espace propre associé. Pour quelles valeurs de (x,y), la matrice $P_{x,y}$ est-elle diagonalisable?
- 2. On suppose désormais -1 < x < 1 et -1 < y < 1.

(a) Démontrer qu'il existe un nombre réel u tel que -1 < u < 1 et une matrice inversible U tels que

$$P_{x,y} = U^{-1} \left(\begin{array}{cc} 1 & 0 \\ 0 & u \end{array} \right) U .$$

- (b) En déduire que la suite $(P_{x,y}^k)_{k\in\mathbb{N}}$ admet une limite quand k tend vers $+\infty$. Cette limite est notée L. Quel est le rang de L?
- (c) Démontrer que

$$L = \frac{1}{2+y+x} \left(\begin{array}{cc} 1+y & 1+x \\ 1+y & 1+x \end{array} \right) \; .$$

Soit A une matrice dans $\mathcal{P}_2^{>0}$. On note $A=\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$.

- 4. Exprimer le discriminant Δ_A du polynôme caractéristique de la matrice A en fonction de a,b,c,d.
- 5. Démontrer l'inégalité $\Delta_A > 0$.
- 6. En déduire que A possède deux valeurs propres réelles distinctes. En notant λ_1 , λ_2 ces deux valeurs propres numérotées de façon à avoir $\lambda_1 > \lambda_2$, démontrer l'inégalité $\lambda_1 > |\lambda_2|$.
- 7. Donner une condition nécessaire et suffisante pour que la suite $(A^k)_{k\in\mathbb{N}}$ admette une limite lorsque k tend vers $+\infty$. Dans le cas où cette limite existe et n'est pas nulle, que peut-on dire de son rang? Proposer une méthode pour calculer cette limite.
- 8. Soient λ_1 et λ_2 deux nombres réels tels que $\lambda_1 > |\lambda_2|$. Exhiber une matrice A dans $\mathcal{P}_2^{>0}$ dont les valeurs propres sont λ_1 et λ_2 (Indication: on pourra commencer par traiter le cas $\lambda_1 = 1$).

– PARTIE II –

Les matrices de \mathcal{M}_n sont considérées comme des endomorphismes de \mathbf{C}^n . Soit A une matrice de \mathcal{M}_n ; on note $\rho(A)$ le rayon spectral de A, c'est-à-dire le maximum des modules des valeurs propres de A. Si x est un vecteur de \mathbf{C}^n , on notera Ax l'image du vecteur x par l'endomorphisme défini par la matrice A.

II A : On se propose de démontrer l'équivalence :

$$\rho(A) < 1 \iff \lim_{k \to \infty} A^k = 0.$$

- 1. Soit β un nombre complexe tel que $|\beta| < 1$. Soit B une matrice nilpotente dans \mathcal{M}_n , c'est-à-dire qu'il existe un entier naturel $\ell \geqslant 1$ tel que $B^{\ell} = 0$; soit C la matrice $\beta \mathbf{1}_n + B$.
 - (a) Pour tout entier $k \geqslant \ell$, exprimer C^k en fonction de $\mathbf{1}_n, B, \dots, B^{\ell-1}$.
 - (b) En déduire que la suite $(C^k)_{k\in\mathbb{N}}$ tend vers 0.
- **2.** Soit A dans \mathcal{M}_n .
 - (a) Soit α une valeur propre de A. On pose $F_{\alpha} = \bigcup_{k \in \mathbb{N}} \operatorname{Ker} (A \alpha \mathbf{1}_n)^k$.
 - i. Justifier que F_{α} est un sous-espace vectoriel de ${\bf C}^n$ et que $A(F_{\alpha})\subset F_{\alpha}$.
 - ii. Soit A_{α} l'endomorphisme de F_{α} défini par $A_{\alpha}(x) = Ax$, pour $x \in F_{\alpha}$. Dans le cas où $|\alpha| < 1$, démontrer que la suite $(A_{\alpha}^{k})_{k \in \mathbb{N}}$ tend vers 0.
 - (b) On suppose $\rho(A) < 1$. Démontrer que la suite $(A^k)_{k \in \mathbb{N}}$ tend vers 0.
 - (c) Réciproquement, si la suite $(A^k)_{k\in\mathbb{N}}$ tend vers 0, montrer que le module de toute valeur propre de A est strictement inférieur à 1.

IIB:

- 1. Soit I_A l'ensemble formé par les nombres réels strictement positifs γ tels que la suite $((A/\gamma)^k)_{k\in\mathbb{N}}$ tende vers 0. Démontrer que I_A est l'intervalle $]\rho(A), +\infty[$.
- 2. On suppose que A admet la valeur propre 1 et qu'il existe deux vecteurs x et y non nuls tels que Ax = x et Ay = y + x. Démontrer que la suite $(A^ky)_{k \in \mathbb{N}}$ n'est contenue dans aucune partie compacte de \mathbb{C}^n .
- 3. On suppose que la suite $(A^k)_{k\in\mathbb{N}}$ a pour limite une matrice B non nulle.
 - (a) Démontrer que $\rho(A) = 1$.
 - (b) Soit α une valeur propre de module 1 de A. Démontrer que la suite $(\alpha^k)_{k\in\mathbb{N}}$ converge dans \mathbb{C} et en déduire que $\alpha=1$.
 - (c) Démontrer que le sous-espace vectoriel F_1 défini à la question IIA2(a) est égal à $\operatorname{Ker}(A \mathbf{1}_n)$.

- PARTIE III -

Dans la suite du problème, on fait les conventions suivantes :

Soit $A = (a_{i,j})_{(i,j)\in[n]\times[n]}$ dans \mathcal{M}_n . Si x est un vecteur de \mathbb{C}^n de coordonnées (x_1,\ldots,x_n) , les coordonnées du vecteur Ax sont notées $((Ax)_1,\ldots,(Ax)_n)$; autrement dit, pour tout entier i dans [n],

$$(Ax)_i = \sum_{j=1}^n a_{i,j} x_j .$$

On note w le vecteur de \mathbb{C}^n dont toutes les coordonnées sont égales à 1 .

- 1. Soit $A \in \mathcal{P}_n$. Démontrer que A appartient à \mathcal{S}_n si et seulement si Aw = w.
- 2. Soient A et B dans \mathcal{P}_n (respectivement \mathcal{S}_n). Démontrer que AB est dans \mathcal{P}_n (respectivement \mathcal{S}_n).
- 3. Soit $A \in \mathcal{S}_n$.
 - (a) Soit \mathcal{B} l'ensemble formé par les vecteurs v de coordonnées (v_1, \ldots, v_n) tels que, pour tout i dans $[n], |v_i| \leq 1$. Démontrer que \mathcal{B} est conservé par A.
 - (b) En déduire que $\rho(A) = 1$.
- **4.** Soit A dans $\mathcal{P}_n^{>0} \cap \mathcal{S}_n$
 - (a) Soit $v = (v_1, ..., v_n)$ un vecteur propre associé à une valeur propre α de module 1 de A. Démontrer que les coordonnées de v sont égales et déterminer α . (Indication : on pourra utiliser une égalité $1 = |\sum_{j=1}^{n} a_{i,j} \frac{v_j}{v_i}|$ pour v_i non nul convenablement choisi.)
 - (b) Soit v un vecteur de \mathcal{B} tel qu'il existe μ dans \mathbf{C} tel que $Av = v + \mu w$. En considérant la suite $(A^k v)_{k \in \mathbb{N}}$, démontrer que $\mu = 0$.
 - (c) Démontrer que 1 est une racine simple du polynôme caractéristique de A.
 - (d) Démontrer qu'il existe une matrice U inversible et une matrice $B \in \mathcal{M}_{n-1}$ telles que $\rho(B) < 1$ et

$$A = U^{-1} \left(\begin{array}{cc} 1 & 0 \\ 0 & B \end{array} \right) U \ .$$

- (e) En déduire que la suite $(A^k)_{k\in\mathbb{N}}$ admet une limite quand k tend vers $+\infty$. Cette limite est notée L. Quel est le rang de L?
- (f) Démontrer que la limite L de la suite $(A^k)_{k \in \mathbb{N}}$ s'écrit :

$$L = \left(egin{array}{cccc} u_1 & u_2 & \dots & u_n \\ u_1 & u_2 & \dots & u_n \\ dots & dots & & dots \\ u_1 & u_2 & \dots & u_n \end{array}
ight) \; .$$

où u_1, \ldots, u_n sont des nombres réels strictement positifs vérifiant $\sum_{i=1}^n u_i = 1$.

- (g) Démontrer que Ker $({}^t A \mathbf{1}_n)$ est la droite engendrée par le vecteur de coordonnées (u_1, \dots, u_n) .
- (h) Dans le cas particulier où A et tA sont toutes deux dans \mathcal{S}_n , expliciter L.
- **5.** Soit A dans S_n .
 - (a) Démontrer que A est la limite d'une suite de matrices de $\mathcal{P}_n^{>0} \cap \mathcal{S}_n$. (Indication : on pourra remarquer que si A et B sont dans \mathcal{S}_n et si t est un nombre réel dans [0,1], tA + (1-t)B est dans \mathcal{S}_n .)
 - (b) En déduire que ^tA admet un vecteur propre relatif à la valeur propre 1 dont toutes les coordonnées sont positives.
 - (c) Démontrer sur un exemple que 1 n'est pas en général une racine simple du polynôme caractéristique de A.
 - (d) Démontrer sur un exemple que A peut avoir des valeurs propres de module 1 différentes de 1.

PARTIE IV --

Dans toute cette partie, on considère une matrice $A=(a_{i,j})_{(i,j)\in[n]\times[n]}$, et on suppose que $A\in\mathcal{P}_n^{>0}$.

IV A : On se propose de démontrer que $\rho(A)$ est une valeur propre de A et que le sous-espace propre associé est une droite engendrée par un vecteur dont les coordonnées sont des nombres réels strictement positifs.

- 1. Soit x un vecteur non nul de \mathbb{C}^n dont les coordonnées sont des nombres réels positifs. Démontrer que les coordonnées du vecteur Ax sont des nombres réels strictement positifs.
- 2. Soit α un nombre réel. Supposons que, pour tout i dans [n], on ait $\sum_{j=1}^{n} a_{i,j} = \alpha$. Démontrer que α est une valeur propre de A et que $\alpha = \rho(A)$.
- **3.** Soit B dans $\mathcal{P}_n^{>0}$ telle que $A \leq B$.
 - (a) Pour tout vecteur x de \mathbb{C}^n dont les coordonnées (x_1, \dots, x_n) sont des nombres réels positifs, démontrer que

$$Ax \leq Bx$$
.

- (b) Soit k un entier naturel $\geqslant 2$. Démontrer que $A^k \leqslant B^k$.
- (c) En déduire l'inégalité $\rho(A) \leq \rho(B)$.
- **4.** On pose $\alpha = \min_{i \in [n]} (\sum_{j=1}^n a_{i,j})$. Démontrer que $\alpha \leq \rho(A)$. On pourra considérer la matrice $B = (b_{i,j})_{(i,j) \in [n] \times [n]}$ telle que, pour tous entiers i et j dans [n],

$$b_{i,j} = \frac{\alpha a_{i,j}}{\sum_{k=1}^{n} a_{i,k}} \cdot$$

- 5. On pose $\beta = \max_{i \in [n]} (\sum_{j=1}^n a_{i,j})$. Démontrer l'inégalité $\rho(A) \leqslant \beta$.
- 6. Soit x un vecteur non nul de \mathbb{C}^n dont les coordonnées (x_1, \ldots, x_n) sont des nombres réels strictement positifs. Soient γ et δ deux nombres réels strictement positifs tels que

$$\gamma x \leqslant Ax \leqslant \delta x$$
.

(a) Soit S la matrice diagonale :

$$S=\left(egin{array}{cccc} x_1 & 0 & \cdots & 0 \ 0 & x_2 & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & x_n \end{array}
ight)\;.$$

Justifier que S est inversible et déterminer les coefficients de la matrice $S^{-1}AS$.

- (b) En déduire les inégalités $\gamma \leqslant \rho(A) \leqslant \delta$.
- (c) Démontrer qu'il existe un indice i dans [n] tel que $(Ax)_i \leq \rho(A)x_i$.
- 7. Soit x un vecteur non nul de \mathbb{C}^n dont les coordonnées (x_1, \ldots, x_n) sont des nombres réels strictement positifs. On suppose que $\rho(A)x \leq Ax$. Démontrer que $Ax = \rho(A)x$ (Indication : on pourra considérer le vecteur $A(Ax \rho(A)x)$).
- 8. Soit α une valeur propre de A dont le module est égal à $\rho(A)$. Soit v un vecteur propre associé, de coordonnées (v_1,\ldots,v_n) , et soit x le vecteur de coordonnées $(|v_1|,|v_2|,\ldots,|v_n|)$.
 - (a) Démontrer que x est un vecteur propre de A associé à la valeur propre $\rho(A)$.
 - (b) Démontrer que toutes les coordonnées de x sont strictement positives.

(c) En utilisant la matrice S définie dans la question IVA6a associée à ce vecteur x, démontrer qu'il existe une matrice U inversible et une matrice B telles que $\rho(B) < \rho(A)$ et

$$A = U^{-1} \left(\begin{array}{cc} \rho(A) & 0 \\ 0 & B \end{array} \right) U \; .$$

IV B : On étudie le comportement de la suite $(A^k)_{k\in {\bf N}}$.

- 1. Démontrer qu'il existe un unique vecteur y de ${\bf C}^n$ ayant pour coordonnées des nombres réels strictement positifs dont la somme est égale à 1 et tel que $Ay=\rho(A)y$. De même, démontrer qu'il existe un unique vecteur z de ${\bf C}^n$ ayant pour coordonnées des nombres réels strictement positifs dont la somme est égale à 1 et tel que ${}^t\!Az=\rho(A)z$.
- 2. On suppose $\rho(A) = 1$. Démontrer que la suite $(A^k)_{k \in \mathbb{N}}$ tend vers la matrice L,

$$L = (y_i z_j)_{(i,j) \in [n] \times [n]},$$

où (y_1, \ldots, y_n) et (z_1, \ldots, z_n) sont respectivement les coordonnées des vecteurs y et z de la question IVB1.

3. On suppose $\rho(A) > 1$. Pour tout entier naturel k, on note $A^k = (a_{i,j}^{(k)})_{(i,j) \in [n] \times [n]}$. Pour tout i et j dans [n], démontrer que la suite $(a_{i,j}^{(k)})_{k \in \mathbb{N}}$ tend vers $+\infty$.

PARTIE V --

Dans cette partie, on prend n = 3.

Pour toute matrice B dans \mathcal{M}_3 , Tr(B) désigne la trace de la matrice B, somme de ses coefficients diagonaux.

Soit $A=(a_{i,j})_{(i,j)\in[3]\times[3]}\in\mathcal{P}_3^{>0}$. On note $\alpha_1,\alpha_2,\alpha_3$ les trois valeurs propres complexes de A, distinctes ou confondues, numérotées de telle façon que $\alpha_1=\rho(A)$.

- 1. Démontrer les inégalités Tr(A)>0 et $\text{Tr}(A^2)>a_{1,1}^2+a_{2,2}^2+a_{3,3}^2$. En déduire l'inégalité $3\,\text{Tr}(A^2)>\text{Tr}(A)^2$.
- **2.** Exprimer Tr (A) et Tr (A^2) en fonction de $\alpha_1, \alpha_2, \alpha_3$.
- 3. On suppose que l'on a $\alpha_1 = 1$ et que α_2 et α_3 sont deux nombres complexes conjugués $\alpha_2 = re^{it}$ et $\alpha_3 = re^{-it}$ où t et r sont des nombres réels et $0 \le r < 1$.
 - (a) Démontrer l'égalité $3 \operatorname{Tr} (A^2) \operatorname{Tr} (A)^2 = 2(1 2r \cos(t + \frac{\pi}{3}))(1 2r \cos(t \frac{\pi}{3}))$.
 - (b) En déduire que α_2 est à l'intérieur d'un triangle inscrit sur le cercle unité; préciser la nature et les sommets de ce triangle.
- 4. Réciproquement, posons $\alpha_1 = 1$, $\alpha_2 = re^{it}$ et $\alpha_3 = re^{-it}$, où t et r sont des nombres réels et $0 \le r < 1$. On suppose que α_2 est à l'intérieur du triangle trouvé à la question V3. Démontrer que $\alpha_1, \alpha_2, \alpha_3$ sont les valeurs propres d'une matrice de $\mathcal{P}_3^{>0}$. Indication : On pourra considérer la matrice :

$$\frac{1}{3} \begin{pmatrix} 1 + 2r\cos(t) & 1 - 2r\cos(t + \frac{\pi}{3}) & 1 - 2r\cos(t - \frac{\pi}{3}) \\ 1 - 2r\cos(t - \frac{\pi}{3}) & 1 + 2r\cos(t) & 1 - 2r\cos(t + \frac{\pi}{3}) \\ 1 - 2r\cos(t + \frac{\pi}{3}) & 1 - 2r\cos(t - \frac{\pi}{3}) & 1 + 2r\cos(t) \end{pmatrix}.$$

5. On admet que, si α_1 , α_2 et α_3 sont trois nombres réels qui satisfont aux conditions

$$\alpha_1 = 1, \ |\alpha_2| < 1, \ |\alpha_3| < 1, \ \alpha_1 + \alpha_2 + \alpha_3 > 0,$$

il existe une matrice A dans $\mathcal{P}_3^{>0}$ dont les valeurs propres sont α_1 , α_2 et α_3 .

Compte tenu de cela et des questions précédentes, décrire l'ensemble $\mathcal S$ formé par les triplets $(\alpha_1,\alpha_2,\alpha_3)$ de $\mathbf C^3$ tels qu'il existe une matrice A dans $\mathcal P_3^{>0}$ dont les trois valeurs propres complexes distinctes ou confondues, sont $\alpha_1,\alpha_2,\alpha_3$, numérotées de telle façon que $\alpha_1=\rho(A)$.

