

基于部分知识编译的近似模型计数方法:初步结果

报告人:赖永

单 位: 吉林大学

1946

报告大纲

- 模型计数(#SAT)
- 知识编译
- Decision-DNNF
- 知识编译现存问题
- Partial Decision-DNNF
- 部分编译方法
- 初步实验结果

模型计数问题

- 定义: 计算CNF公式的可满足的赋值数
- #SAT问题是#P-complete的,与贝叶斯推理中 计算后验概率问题可在多项式时间内转化
- 2CNF公式也是#P-complete

知识编译

- 离线阶段将知识库编译成易处理的形式,高效 地支持在线阶段的推理任务
- 知识编译领域两大研究主题:
 - ◆目标语言及其评估标准
 - ◆编译方法

Decision-DNNF

- 目前绝大多数高效的编译器生成的都是 Decision-DNNF或其子集
- 定义:有根的有向无环图,两类非终止节点,称为决策节点和分解节点,两类终止节点表示false和true。
- 决策节点有两个子节点,表示一个变量赋值为 false和true后对应的子公式。
- 分解节点对应的子图不含公共变量。

Decision-DNNF例子

$$(x_1 \leftrightarrow x_3 \leftrightarrow x_5) \land (x_2 \leftrightarrow x_4 \leftrightarrow x_6)$$

Decision-DNNF模型计数

- 终止节点: 0或2ⁿ
- 如果u是分解节点且u的子节点 $v_1, ..., v_m$,

$$\#models(u) = \frac{\prod_{i=1}^{m} \#models(v_i)}{2^{n(m-1)}}$$

• 如果u是决策节点且u的子节点v, w,

$$\#models(u) = \frac{\#models(v) + \#models(w)}{2}$$

完全知识编译的问题

- 完全编译算法对于低树宽的问题相对有效,对 于高树宽的问题,通常无法完成编译,从而无 法进行模型计数。
- 对于太复杂的问题,目前的一种做法是通过抽样获得近似的模型数,抽样的一个缺点是每次抽样之间独立,不能共用信息提高效率。

Partial Decision-DNNF

• 增加两类节点:已知节点(#)和未知节点(?)

Partial Decision-DNNF模型计数

- 给定一个非未知节点u,已知子节点模型数的 无偏估计,可以得到该节点模型数的无偏估计
 - ◈如果u是分解节点且u的子节点 $v_1, ..., v_m$

$$\#models(u) = \frac{\prod_{i=1}^{m} \#models(v_i)}{2^{n(m-1)}}$$

◈如果u是分解节点且u的子节点v, w,

$$#models(u) = \frac{#models(v) + #models(w)}{2}$$

部分知识编译方法

- 给定一个CNF公式对应的Partial Decision-DNNF G,每个节点对应一个部分赋值下的子 公式
- 使用一个称为MicroCompile函数通过结合随机 赋值和分解逐步编译CNF公式。
- 将MicroCompile得到的结果合成到G中
- 循环地调用MicroCompile逐步增大G

MicroCompile: 三种情况

如果φ足够简单,直接调用已有的精确模型计数算法得到一个已知节点。

MicroCompile: 三种情况

- 如果 φ 未出现在G中,选取一个变量随机赋值,得到 φ 的子公式 ξ
- 计算ξ的Backbone,利用Backbone简化ξ,然 后对简化后公式动态分解成若干个子公式,后 递归地调用MicroCompile

MicroCompile: 三种情况

- 如果 φ 已出现在G中,直接选取对应节点V,对节点标记的变量随机赋值。
- 如果ν存在与赋值对应的非未知节点,直接获取Backbone和利用Backbone简化后的公式的动态分解情况。否则,计算ξ的Backbone,利用Backbone简化ξ,然后对简化后公式动态分解成若干个子公式。
- 对上一步得到的子公式递归地调用 MicroCompile。

MicroCompile三个细节

- 通过判断CNF公式中变量数来判断公式模型计数的难易程度。
- 通过多次调用SAT求解器计算Backbone。
- 随机赋值时选择false和true的概率相同

初步实验结果

• 测试方法,利用马尔可夫不等式求下界

$$P(\frac{X}{\alpha} > M) < \frac{1}{\alpha}$$

inctonoo	PartialKC		SampleSearch	
instance	#micro	result	#sample	result
ls13-norm	2	2.27E+44	6723	1.15E+55
lang16	51212	1.04E+08	14971	6.51E+08
9symml_gr_rcs_w6	31053	1.55E+83	6241	2.80E+82
apex7_gr_2pin_w5	1104	4.13E+94	48331	2.33E+94
c880_gr_rcs_w7	605	3.25E+261	831	7.16E+255
example2_gr_rcs_w6	3700	2.80E+260	6211	6.85E+250
vda_gr_rcs_w9	42	2.55E+305	221	5.08E+300

		SINE POLY
#micro	time	avg-time
2	7618	/
10000	1099	
20000	1544	0.054
30000	1885	0.034
10000	1652	
20000	2415	0.076
30000	3022	0.061
300	1872	
600	3653	5.94
900	5736	6.94
600	6830	
1200	12187	8.93
1800	16807	7.7
1000	2843	
2000	3991	1.148
3000	5801	1.9
	2 10000 20000 30000 10000 20000 3000 300	2 7618 10000 1099 20000 1544 30000 1885 10000 1652 20000 2415 30000 3022 300 1872 600 3653 900 5736 600 6830 1200 12187 1800 16807 1000 2843 2000 3991

instance	PartialKC抽样次数	单独抽样次数
ls13-norm	2	2
lang16	51212	8230
9symml_gr_rcs_w6	31053	18531
apex7_gr_2pin_w5	1104	1067
c880_gr_rcs_w7	605	546
example2_gr_rcs_w6	3700	2541
vda_gr_rcs_w9	41	41

1948 1948 4 L

进一步改进的方向

- MicroCompile求Backbone调用多次SAT求解器,对于一些问题,求SAT时间过长,导致MicroCompile调用次数过少。
- 当子公式比较简单时,直接调用精确#SAT算法,怎么判断公式的难易程度是个难题。目前通过检测子公式中变量数目确定问题难易程度,为了程序的鲁棒性,精确#SAT算法只求解不多于256个变量的公式。
- 给定变量不同赋值后,得到不同子公式若模型 数偏差过大,且模型数大的子公式出现概率很小,PartialKC收敛很慢。

翎鄉大家