

Лекция 9

Матричная и операторная нормы

Содержание лекции:

В настоящей лекции мы как сможем залатаем 'дыру' в определении функции от оператора. Именно, посредством введения операторной нормы, мы определим сходимость в алгебре операторов и дадим объяснение того в каком смысле можно понимать сумму бесконечного степенного ряда операторов. Более подробную информацию по данной теме рекомендуется искать в курсах математического и функционального анализа.

Ключевые слова:

Норма элемента, норма матрицы, норма оператора, сходимость в нормированном пространстве, предел последовательности, вычисление функции от оператора.

A			
ABTO	n i i	T/ T/	nca
Δ DIU	DDI.	\mathbf{r}	vca.

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

МАТРИЧНАЯ И ОПЕРАТОРНАЯ НОРМЫ

Норма матрицы 9.1

Nota bene Пусть $X(\mathbb{k})$ - произвольное линейное пространство над полем \mathbb{k} .

Нормой в $X(\mathbb{k})$ называется отображение $N: X \to X$, удовлетворяющее следующему набору аксиом:

$$\begin{split} &\text{N1. } \forall x \in X(\Bbbk), \quad N(x) \geqslant 0, \quad N(x) = 0 \quad \Leftrightarrow \quad x = 0; \\ &\text{N2. } \forall x \in X(\Bbbk), \quad \forall \lambda \in \Bbbk \quad N(\lambda x) = |\lambda| \cdot N(x); \\ &\text{N3. } \forall x, y \in X(\Bbbk) \quad N(x+y) \leqslant N(x) + N(y). \end{split}$$

N2.
$$\forall x \in X(\mathbb{k}), \quad \forall \lambda \in \mathbb{k} \quad N(\lambda x) = |\lambda| \cdot N(x);$$

N3.
$$\forall x, y \in X(\mathbb{k})$$
 $N(x+y) \leq N(x) + N(y)$

Nota bene Часто норму элемента x вместо N(x) обозначают ||x||.

На пространстве $\mathrm{Mat}_{\mathbb{C}}(n)$ комплексных квадратных $n \times n$ матриц Пример 9.1. можно ввести евклидову норму:

$$||A||_2 = \sqrt{\langle A, A \rangle} = \sqrt{\operatorname{tr}(A^{\dagger}A)} = \sqrt{\sum_{i,j=1}^n |a_{ij}|^2},$$

Можно ввести и другие нормы, не связанные со скалярным произведением:

- 1-норма: $||A||_1 = \sum_{i,j=1}^n |a_{ij}|;$
- p-норма: $||A||_p = \sqrt[p]{\sum_{i,j=1}^n |a_{ij}|^p}$.

Nota bene Если пространство $X(\mathbb{k})$, кроме того, является еще и ассоциативной алгеброй, тогда к перечисленным выше требованиям добавляется еще одно:

N4.
$$\forall x, y \in X(\mathbb{k}) \quad N(x \cdot y) \leqslant N(x) \cdot N(y)$$
.

9.2Норма оператора

Nota bene Пусть теперь $X(\mathbb{C})$ - комплексное нормированное линейное пространство и $\varphi \in \operatorname{End}_{\mathbb{C}}(X)$ - линейный оператор на $X(\mathbb{C})$.

Нормой оператора φ называется число $N(\varphi)$

$$N(\varphi) = \sup_{x \in X} \frac{\|\varphi x\|}{\|x\|} = \sup_{\|x\|=1} \|\varphi x\|.$$

МАТРИЧНАЯ И ОПЕРАТОРНАЯ НОРМЫ

Лемма 9.1. Введенная операторная норма $N(\varphi)$ удовлетворяет аксиомам нормы.

Пряма проверка аксиом N1 - N4.

Nota bene Норму оператора также принято обозначать $\|\varphi\|$.

Пример 9.2. Пусть σ_A - множество собственных чисел квадратной $n \times n$ матрицы A и пусть $\lambda_{max} = \max(\sigma_A)$, тогда

$$||A||_{\infty} = |\lambda_{\max}|.$$

9.3 Сходимость в пространстве операторов

Nota bene Пусть $X_N(\mathbb{R})$ - вещественное нормированное линейное пространство и $End_{\mathbb{R}}(X_N)$ - операторная алгебра над X_N с с индуцированной из X_N операторной нормой.

Говорят, что последовательность элементов $\{x_m\}_{m=1}^{\infty}$ из $X_N(\mathbb{R})$ имеет предел $y \in X_N(\mathbb{R})$, если

$$\forall \varepsilon > 0 \quad \exists m_0 \in \mathbb{N} : \quad \forall m > m_0 \quad ||y - x_m|| < \varepsilon.$$

Nota bene Факт того, что последовательность $\{x_m\}_{m=1}^{\infty}$ имеет своим пределом y, обычно обозначают следующим образом:

$$y = \lim_{m \to \infty} x_m$$

Nota bene Аналогичное опеределение предела можно дать и для последовательности операторов в $\operatorname{End}_R(X_N)$, определяя для последовательности $\{\varphi_m\}_{m=1}^{\infty}$ предел ψ в смысле введенной выше операторной нормы:

$$\psi = \lim_{m \to \infty} \varphi_m.$$

Nota bene Теперь мы готовы уточнить, в каком смысле можно понимать определение функции от оператора, заданной в виде степенного ряда:

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \sum_{m=0}^{\infty} c_m x^m.$$

Определим для этого последовательность операторов $\{\varphi_{(s)}\}_{s=0}^{\infty}$, заданных следующим образом:

$$\varphi_{(s)} = \sum_{m=1}^{s} c_m \varphi^m.$$

Если у данной последовательности существует предел ψ в указанном выше смысле, то мы говорим, что значение функции f, вычисленное от оператора φ равно данному пределу ψ .