5 We Claim:

10

- 1. A method for inferring a gene network, comprising
- (a) providing an inferential model of possible gene networks of an organism including defining a search space;
 - (b) selecting a biologically relevant subspace of said search space; and
- (c) calculating an optimal solution in said selected subspace by repeatedly applying an algorithm that computes small gene networks optimally.
- 2. The method of claim 1, wherein said inferential model is a Bayesian network estimation model.
 - 3. The method of claim 1, wherein said biologically relevant subspace includes genes relating to a metabolic pathway of said organism.
- 20 4. The method of claim 1, wherein said algorithm comprises the steps:
 - (a) compute $F(g, \phi) = s(g, \phi)$ for all $g \in G$;
 - (b) for all $A\subseteq G$, $A\neq \phi$ and all $g\in G$ compute F(g,A) as $\min\{s(g,A),\min_{\tilde{a}\in A}F(g,A-\{a\})\};$
 - (c) set $M(\phi) = \phi$,
- 25 (d) for all $A \subseteq G$, $A \neq \phi$, do the following steps:
 - (i) compute $g^* = \arg\min_{g \in A} (F(g, A \{g\}) + Q^{A \{g\}})(M(A \{g\}))$; and
 - (ii) for all $1 \le i < |A|$, set $M(A)(i) = M(A \{g^*\})(i)$, and M(A)(|A|) = g

*; and

- (e) return $Q^G(M(G))$.
- The method of claim 4, wherein said algorithm is modified according to the steps of:
 - (a) in the computation of F in Step 1 and Step 2, compute only F(g,A) for all $g \in S_i$ and all $A \subseteq C_g$; and

WO 2005/059707 PCT/US2004/042027

-53-

5 (b). replace the term $F(g, A - \{g\})$ in Step 4a by $F(g, (C_g = S_i) \cup (C_g \cap A))$.

6. The method of claim 1, wherein an optimal network N has a definition: $score(N) = \sum_{g \in G} s(g, P^N(g))$.

- 10 7. The method of claim 1, wherein said algorithm comprises the steps:
 - (a) cluster genes in G such that no cluster is larger than c genes;
 - (b) sort the clusters by decreasing size: C_1, \ldots, C_n ;
 - (c) for each $i \in \{1, ..., n\}$ and for each $g \in C_b$ select up to m candidate parents from $C_1 \bigcup ... \bigcup C_n$; and
- 15 (d) compute an optimal gene network model using Theorem 1.2.
 - 8. The method of claim 1, wherein said algorithm comprises the steps:
 - (a) group genes in G in groups C_i with $|C_i| \le c$ and sort them according to biological knowledge: C_1, \ldots, C_n ;
- 20 (b) for each $i \in \{1, ..., n\}$ and for each gene $g \in C_i$, select up to m candidate parents from $C_1 \cup ... \cup C_i$; and
 - (c) compute an optimal gene network model using Theorem 2.
 - 9. The method of claim 1, wherein said algorithm comprises the steps:
- 25 (a) compute $F(g, \phi) = s(g, \phi)$ for all $g \in G$;
 - (b) for all $A \subseteq G$, $A \ne \phi$ and all $g \in G$ compute F(g, A) as $\min\{s(g,A), \min_{\tilde{a} \in A} F(g,A-\{a\})\}$;
 - (cc) set $M(\phi) = \phi$,
 - (d) for all $A \subseteq G$, $A \neq \phi$, do the following two steps:
 - (i) compute $g^* = \arg\min_{g \in A} (F(g, A \{g\}) + Q^{A \{g\}})(M(A \{g\})))$; and
 - (ii) For all $1 \le i < |A|$, set $M(A)(i) = M(A \{g^*\})(i)$, and M(A)(|A|) = g

*; and

30

- (e) return $Q^G(M(G))$.
- 10. The method of claim 1, wherein said algorithm comprises the steps:

WO 2005/059707 PCT/US2004/042027

-54-

5 (a) set $F^{m}(g, \phi, 1) = \phi$, $S^{m}(g, \phi, 1) = s(g, \phi)$ for all $g \in G$;

- (b) for all $g \in G$, all $A \subseteq G$, $A \ne N$ and all $n \le m$ do the following two steps:
- (i) select $B^* \subseteq A$ from $\{B \subseteq A \mid B = A \lor B = F^m(g, A \{h\}, p), h \in A, p \le m\} \{F^m(g, A, p) \mid p \le n\}$ such that $s(g, B^*)$ is minimized; and
 - (ii) set $F^{m}(g,A,n)=B^{*}$, $S^{m}(g,A,n)=s(g,B^{*})$;
- (c) set $M^m(\phi,1) = \phi$ and $D^m(\phi,1) = \phi$,

10

20

25

30

 N_i ;

- (d) for all $A \subseteq G$, ϕ , and all $n \le m$ do the following three steps:
- (i) choose a triple $(g,p,q) \in A$ x $IN_{\leq m}$ x $IN_{\leq m}$ such that $score(Q^{A-\{g\}}(M^m(A-\{g\},p),D^m(A-\{g\},p)))+S^m(g,A-\{g\},q)$ is minimized and (g,p,q) induces a network different from $Q^A(M^m(A,r),D^m(A,r))$ for r < n;
- 15 (ii) $\operatorname{set} M^{m}(A,n)(i)=M^{m}(A-\{g\},p)(i) \text{ for } i<|A|, \text{ and } M^{m}(A,n)(|A|)=g;$ and
 - (iii) let v denote $D^m(A-\{g\},p)$. Set $w \in IN^{|A|}$ as $w_i=v_i$ for all I < |A| and |A| = q and set $D^m(A,n) = w$; and
 - (e) return $Q^G(M^m(G,i),D^m(G,i))$ for all $i \le m$.

11. The method of any of claims 1-10, wherein reliability of an enumerated gene network, comprising the steps:

- (a) enumerate the most likely gene network models N_i , $1 \le i \le n$;
- (b) for every $g, h \in 0G$, count the occurrences of the edge (g,h) in the networks
- (c) select all edges (g,h) with at least c occurrences;
- (d) for all subsets M of the set of selected edges with |M| = k, count the networks including all edges in MI; and
 - (e) return all motives M with at least c occurrences.

12. The method of any of claims 1-11, further comprising calculating a scoring function selected from the group consisting of BRNC score, BDe score and MDL score.

- 35 13. A method for determining a gene network as substantially described herein.
 - 14. A storage medium containing results obtained using the method of any of claims 1-11.

WO 2005/059707 PCT/US2004/042027

-55-

- 5 15. A storage medium containing results obtained using a method as substantially described herein.
 - 16. A system for determining gene network relationships, comprising:
 an input device for providing quantitative expression data for genes of an organism;
 a storage device adapted to receive quantitative expression data for genes of said organism;

10

15

a processor adapted to carryout a Bayesian network analysis of network relationships between said genes, thereby producing a data set reflecting said network relationships; and an output device for displaying said data set of said network relationships.

17. A system for determining gene network relationships as substantially described herein.