CS 183: Fundamentals of Machine Learning

Lectures by Yaron Singer Notes by Maggie Wang

Harvard University, Spring 2020

Course textbook:

Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz and Shai Ben-David.

Contents

Lecture 1: Prelude - $1/30$	2
The Statistical Learning Framework	2
Empirical Risk Minimization	2
Overfitting	2
Learning with Inductive Bias	2
Finite hypothesis classes	4
Lecture 2: PAC Learnability - 2/6	2
PAC learnability	2
Agnostic PAC learnability	2
Prove learnability via uniform convergence	2

Lecture 1: Prelude - 1/30

The Statistical Learning Framework

Learner's input:

- **Domain set**: Arbitrary set \mathcal{X} that we wish to label. Represented by a vector of features. Domain points: instances, \mathcal{X} : instance space.
- Label set
- · Training data
- The learner's output
- A simple data-generation model
- Measure of success: error of a prediction rule, $h: \mathcal{X} \to \mathcal{Y}$ is the probability of randomly choosing an ex. x for which $h(x) \neq f(x)$:

$$L_{\mathcal{D},f}(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)] = \mathcal{D}(\{x : h(x) \neq f(x)\})$$

Empirical Risk Minimization

Training error:

$$L_S(h) = \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$$

Empirical Risk Minimization (ERM): coming up with a predictor h that minimizes $L_S(h)$

Overfitting

Overfitting: h fits training data "too well"

$$h_S(x) = \begin{cases} y_i & \text{if } \exists i \in [m] \text{ s.t. } x_i = x \\ 0 & \text{otherwise.} \end{cases}$$

Learning with Inductive Bias

Finite hypothesis classes

Definition 1 The Realizability Assumption

There exists $h^* \in \mathcal{H}$ s.t. $L_{(\mathcal{D},f)}(h^*) = 0$

Lemma 1 Union Bound

For any two sets A, B and a distribution \mathcal{D} we have

$$\mathcal{D}(A \cup B) \le \mathcal{D}(A) + \mathcal{D}(B)$$

Corollary 1 Let \mathcal{H} be a finite hypothesis class. Let $\delta \in (0,1)$ and $\epsilon > 0$ and let m be an integer that satisfies $m \geq \frac{\log(|\mathcal{H}|\delta)}{\epsilon}$.

Then, for any labeling function, f, and for any distribution, \mathcal{D} , for which the realizability assumption holds (that is, for some $h \in \mathcal{H}, L_{(\mathcal{D},f)}(h) = 0$) with probability of at least $1 - \delta$ over the choice of an i.i.d. sample S of size m, we have that for every ERM hypothesis, h_S , it holds that

$$L_{(\mathcal{D},f)}(h_S) \leq \epsilon$$

For a sufficiently large m, the ERM_{\mathcal{H}} rule over a finite hypothesis will be probably (with confidence $1-\delta$) approximately (up to an error of ϵ) correct.

Lecture 2: PAC Learnability - 2/6

PAC learnability

Agnostic PAC learnability

Prove learnability via uniform convergence