Filter Summary Report: TIA,simple,Z5,ZL

Generated by MacAnalog-Symbolix

December 7, 2024

Contents

1 Examined H(z) for TIA simple Z5 ZL: $\frac{Z_L(Z_5g_m-1)}{Z_5g_m+2Z_Lg_m+1}$

$$H(z) = \frac{Z_L (Z_5 g_m - 1)}{Z_5 g_m + 2 Z_L g_m + 1}$$

- 2 HP
- 3 BP
- 3.1 BP-1 $Z(s) = \left(\infty, \infty, \infty, \infty, R_5, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$H(s) = \frac{L_{L}s\left(Z_{5}g_{m}-1\right)}{C_{L}L_{L}Z_{5}g_{m}s^{2} + C_{L}L_{L}s^{2} + 2L_{L}g_{m}s + Z_{5}g_{m} + 1}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2 g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{2 g_m}{C_L (Z_5 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{Z_5 g_m - 1}{2 g_m} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.2 BP-2 $Z(s) = \left(\infty, \infty, \infty, \infty, R_5, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

$H(s) = \frac{L_L R_L s \left(Z_5 g_m - 1 \right)}{C_L L_L R_L Z_5 g_m s^2 + C_L L_L R_L s^2 + 2 L_L R_L g_m s + L_L Z_5 g_m s + L_L s + R_L Z_5 g_m + R_L}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_L R_L \sqrt{\frac{1}{C_L L_L}}}{2 R_L g_m + Z_5 g_m + 1} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{2 R_L g_m + Z_5 g_m + 1}{C_L R_L (Z_5 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_L (Z_5 g_m - 1)}{2 R_L g_m + Z_5 g_m + 1} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.3 BP-3 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$H(s) = \frac{L_L s (Z_5 g_m - 1)}{C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + Z_5 g_m + 1}$

$$\begin{array}{l} \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{2g_m}{C_L (Z_5 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{Z_5 g_m - 1}{2g_m} \end{array}$$

3.4 BP-4
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$H(s) = \frac{L_{L}R_{L}s\left(Z_{5}g_{m}-1\right)}{C_{L}L_{L}R_{L}Z_{5}g_{m}s^{2} + C_{L}L_{L}R_{L}s^{2} + 2L_{L}R_{L}g_{m}s + L_{L}Z_{5}g_{m}s + L_{L}s + R_{L}Z_{5}g_{m} + R_{L}}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_L R_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2 R_L g_m + Z_5 g_m + 1} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{2 R_L g_m + Z_5 g_m + 1}{C_L R_L (Z_5 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_L (Z_5 g_m - 1)}{2 R_L g_m + Z_5 g_m + 1} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.5 BP-5 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{2g_m}{C_L (Z_5 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{Z_5 g_m - 1}{2g_m} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.6 BP-6
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$H(s) = \frac{L_L R_L s \left(Z_5 g_m - 1 \right)}{C_L L_L R_L Z_5 g_m s^2 + C_L L_L R_L s^2 + 2 L_L R_L g_m s + L_L Z_5 g_m s + L_L s + R_L Z_5 g_m + R_L}$

 $H(s) = \frac{L_L s (Z_5 g_m - 1)}{C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + Z_5 g_m + 1}$

$$\begin{array}{l} \text{Q:} \ \frac{C_L R_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2 R_L g_m + Z_5 g_m + 1} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{2 R_L g_m + Z_5 g_m + 1}{C_L R_L (Z_5 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_L (Z_5 g_m - 1)}{2 R_L g_m + Z_5 g_m + 1} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.7 BP-7
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_{L}s \left(Z_{5}g_{m} - 1\right)}{C_{L}L_{L}Z_{5}g_{m}s^{2} + C_{L}L_{L}s^{2} + 2L_{L}g_{m}s + Z_{5}g_{m} + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_L\sqrt{\frac{1}{C_LL_L}}(Z_5g_m+1)}{2g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ \text{bandwidth:} \ \frac{2g_m}{C_L(Z_5g_m+1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{Z_5g_m-1}{2g_m} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.8 BP-8
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_L R_L s \left(Z_5 g_m - 1\right)}{C_L L_L R_L Z_5 g_m s^2 + C_L L_L R_L s^2 + 2 L_L R_L g_m s + L_L Z_5 g_m s + L_L s + R_L Z_5 g_m + R_L}$$

Parameters:

Q:
$$\frac{C_L R_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2 R_L g_m + Z_5 g_m + 1}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{2 R_L g_m + Z_5 g_m + 1}{C_L R_L (Z_5 g_m + 1)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_L (Z_5 g_m - 1)}{2 R_L g_m + Z_5 g_m + 1}$$
 Qz: 0 Wz: None

3.9 BP-9
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (Z_5 g_m - 1)}{C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + Z_5 g_m + 1}$$

Parameters:

Q:
$$\frac{C_L \sqrt{\frac{1}{C_L L_L}}(Z_5 g_m + 1)}{2g_m}$$
 wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{2g_m}{C_L(Z_5 g_m + 1)}$ K-LP: 0 K-HP: 0 K-BP: $\frac{Z_5 g_m - 1}{2g_m}$ Qz: 0 Wz: None

3.10 BP-10
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_{L}R_{L}s\left(Z_{5}g_{m}-1\right)}{C_{L}L_{L}R_{L}Z_{5}g_{m}s^{2} + C_{L}L_{L}R_{L}s^{2} + 2L_{L}R_{L}g_{m}s + L_{L}Z_{5}g_{m}s + L_{L}s + R_{L}Z_{5}g_{m} + R_{L}}$$

Q:
$$\frac{C_L R_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2R_L g_m + Z_5 g_m + 1}$$

wo:
$$\sqrt{\frac{1}{C_L L_L}}$$

bandwidth: $\frac{2R_Lg_m + Z_5g_m + 1}{C_LR_L(Z_5g_m + 1)}$

K-LP: 0

K-HP: 0 K-BP: $\frac{R_L(Z_5g_m-1)}{2R_Lg_m+Z_5g_m+1}$ Qz: 0

Wz: None

3.11 BP-11 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s (Z_5 g_m - 1)}{C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + Z_5 g_m + 1}$$

Parameters:

Q:
$$\frac{C_L\sqrt{\frac{1}{C_LL_L}}(Z_5g_m+1)}{2g_m}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$

bandwidth: $\frac{2g_m}{C_L(Z_5g_m+1)}$

K-LP: 0 K-HP: 0 K-BP: $\frac{Z_5g_m-1}{2g_m}$ Qz: 0 Wz: None

3.12 BP-12 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_{5s}}{C_5 L_5 s^2 + 1}, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

 $H(s) = \frac{L_L R_L s \left(Z_5 g_m - 1 \right)}{C_L L_L R_L Z_5 g_m s^2 + C_L L_L R_L s^2 + 2 L_L R_L g_m s + L_L Z_5 g_m s + L_L s + R_L Z_5 g_m + R_L}$

Parameters:

Q:
$$\frac{C_L R_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2R_L g_m + Z_5 g_m + 1}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{2R_L g_m + Z_5 g_m + 1}{C_L R_L (Z_5 g_m + 1)}$$

K-LP: 0

K-HP: 0 K-BP: $\frac{R_L(Z_5g_m-1)}{2R_Lg_m+Z_5g_m+1}$ Qz: 0

Wz: None

3.13 BP-13 $Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

 $H(s) = \frac{L_L s (Z_5 g_m - 1)}{C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + Z_5 g_m + 1}$

Parameters:

Q:
$$\frac{C_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{\frac{2g_m}{C_L L_L}}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{2g_m}{C_L (Z_5 g_m + 1)}$$

K-LP: 0

K-HP: 0

K-BP: $\frac{Z_5g_m-1}{2g_m}$

Qz: 0

Wz: None

3.14 BP-14
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_L R_L s \left(Z_5 g_m - 1 \right)}{C_L L_L R_L Z_5 g_m s^2 + C_L L_L R_L s^2 + 2 L_L R_L g_m s + L_L Z_5 g_m s + L_L s + R_L Z_5 g_m + R_L}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_L R_L \sqrt{\frac{1}{C_L L_L}}}{2 R_L g_m + Z_5 g_m + 1} \\ &\text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth:} \ \frac{2 R_L g_m + Z_5 g_m + 1}{C_L R_L (Z_5 g_m + 1)} \\ &\text{K-LP:} \ 0 \\ &\text{K-HP:} \ 0 \\ &\text{K-BP:} \ \frac{R_L (Z_5 g_m - 1)}{2 R_L g_m + Z_5 g_m + 1} \\ &\text{Qz:} \ 0 \\ &\text{Wz:} \ \text{None} \end{aligned}$$

3.15 BP-15
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (Z_5 g_m - 1)}{C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + Z_5 g_m + 1}$$

Parameters:

$$\begin{aligned} &\text{Q:} \ \frac{\frac{C_L\sqrt{\frac{1}{C_LL_L}}(Z_5g_m+1)}{2g_m}}{\text{wo:} \ \sqrt{\frac{1}{C_LL_L}}} \\ &\text{bandwidth:} \ \frac{2g_m}{C_L(Z_5g_m+1)} \\ &\text{K-LP:} \ 0 \\ &\text{K-HP:} \ 0 \\ &\text{K-BP:} \ \frac{Z_5g_m-1}{2g_m} \\ &\text{Qz:} \ 0 \\ &\text{Wz:} \ \text{None} \end{aligned}$$

3.16 BP-16
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_L R_L s \left(Z_5 g_m - 1 \right)}{C_L L_L R_L Z_5 g_m s^2 + C_L L_L R_L s^2 + 2 L_L R_L g_m s + L_L Z_5 g_m s + L_L s + R_L Z_5 g_m + R_L}$$

Parameters:

Q:
$$\frac{C_L R_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2R_L g_m + Z_5 g_m + 1}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{2R_L g_m + Z_5 g_m + 1}{C_L R_L (Z_5 g_m + 1)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$
 Qz: 0 Wz: None

3.17 BP-17
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (Z_5 g_m - 1)}{C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + Z_5 g_m + 1}$$

Q:
$$\frac{C_L\sqrt{\frac{1}{C_LL_L}}(Z_5g_m+1)}{2g_m}$$

wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth: $\frac{2g_m}{C_L(Z_5 g_m + 1)}$ K-LP: 0 K-HP: 0 K-BP: $\frac{Z_5 g_m - 1}{2g_m}$ Qz: 0 Wz: None

3.18 BP-18
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_{L}R_{L}s\left(Z_{5}g_{m}-1\right)}{C_{L}L_{L}R_{L}Z_{5}g_{m}s^{2} + C_{L}L_{L}R_{L}s^{2} + 2L_{L}R_{L}g_{m}s + L_{L}Z_{5}g_{m}s + L_{L}s + R_{L}Z_{5}g_{m} + R_{L}}$$

Q:
$$\frac{C_L R_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2R_L g_m + Z_5 g_m + 1}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{2R_L g_m + Z_5 g_m + 1}{C_L R_L (Z_5 g_m + 1)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$
 Qz: 0 Wz: None

3.19 BP-19
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L s (Z_5 g_m - 1)}{C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + Z_5 g_m + 1}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{2g_m}{C_L (Z_5 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{Z_5 g_m - 1}{2g_m} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.20 BP-20
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, \frac{L_LR_Ls}{C_LL_LR_Ls^2+L_Ls+R_L}\right)$$

$$H(s) = \frac{L_L R_L s \left(Z_5 g_m - 1 \right)}{C_L L_L R_L Z_5 g_m s^2 + C_L L_L R_L s^2 + 2L_L R_L g_m s + L_L Z_5 g_m s + L_L s + R_L Z_5 g_m + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_L R_L \sqrt{\frac{1}{C_L L_L}} (Z_5 g_m + 1)}{2 R_L g_m + Z_5 g_m + 1} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{2 R_L g_m + Z_5 g_m + 1}{C_L R_L (Z_5 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_L (Z_5 g_m - 1)}{2 R_L g_m + Z_5 g_m + 1} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

- 4 LP
- 5 BS
- **5.1** BS-1 $Z(s) = \left(\infty, \infty, \infty, \infty, R_5, L_L s + \frac{1}{C_L s}\right)$

$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{Z_{5}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \\ \text{bandwidth:} \ \frac{Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ \text{K-LP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-HP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

5.2 BS-2
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$H(s) = \frac{R_L \left(Z_5 g_m - 1 \right) \left(C_L L_L s^2 + 1 \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$

Parameters:

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}(2R_Lg_m + Z_5g_m + 1)}{R_L(Z_5g_m + 1)}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_L(Z_5g_m + 1)}{L_L(2R_Lg_m + Z_5g_m + 1)}$$
 K-LP:
$$\frac{R_L(Z_5g_m - 1)}{2R_Lg_m + Z_5g_m + 1}$$
 K-HP:
$$\frac{R_L(Z_5g_m - 1)}{2R_Lg_m + Z_5g_m + 1}$$
 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.3 BS-3
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, L_L s + \frac{1}{C_L s}\right)$$

$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$

$$Q: \frac{2L_L g_m \sqrt{\frac{1}{C_L L_L}}}{Z_5 g_m + 1}$$

$$wo: \sqrt{\frac{1}{C_L L_L}}$$
bandwidth: $\frac{Z_5 g_m + 1}{2L_L g_m}$

$$K-LP: \frac{Z_5 g_m - 1}{2g_m}$$

$$K-HP: \frac{Z_5 g_m - 1}{2g_m}$$

$$K-BP: 0$$

$$Qz: None$$

$$Wz: \sqrt{\frac{1}{C_L L_L}}$$

5.4 BS-4
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(Z_5 g_m - 1 \right) \left(C_L L_L s^2 + 1 \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L\sqrt{\frac{1}{C_LL_L}}(2R_Lg_m + Z_5g_m + 1)}{R_L(Z_5g_m + 1)} \\ &\text{wo: } \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth: } \frac{R_L(Z_5g_m + 1)}{L_L(2R_Lg_m + Z_5g_m + 1)} \\ &\text{K-LP: } \frac{R_L(Z_5g_m - 1)}{2R_Lg_m + Z_5g_m + 1} \\ &\text{K-HP: } \frac{R_L(Z_5g_m - 1)}{2R_Lg_m + Z_5g_m + 1} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

5.5 BS-5
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, L_L s + \frac{1}{C_L s}\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{Z_{5}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \\ \text{bandwidth:} \ \frac{Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ \text{K-LP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-HP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

5.6 BS-6
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$H(s) = \frac{R_L \left(Z_5 g_m - 1 \right) \left(C_L L_L s^2 + 1 \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$

 $H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{R_L (Z_5 g_m + 1)} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L (Z_5 g_m + 1)}{L_L (2R_L g_m + Z_5 g_m + 1)} \\ &\text{K-LP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-HP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.7 BS-7
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$$

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{Z_{5}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ &\text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

5.8 BS-8
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(Z_5 g_m - 1 \right) \left(C_L L_L s^2 + 1 \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$$

Parameters:

$$\begin{aligned} &\text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{R_L (Z_5 g_m + 1)} \\ &\text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth:} \ \frac{R_L (Z_5 g_m + 1)}{L_L (2R_L g_m + Z_5 g_m + 1)} \\ &\text{K-LP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-HP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-BP:} \ 0 \\ &\text{Qz:} \ \text{None} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.9 BS-9
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$$

$$\begin{array}{l} \text{Q:} \ \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{Z_{5}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \\ \text{bandwidth:} \ \frac{Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ \text{K-LP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-HP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

5.10 BS-10
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(Z_5 g_m - 1 \right) \left(C_L L_L s^2 + 1 \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$$

$$\begin{aligned} &\text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{R_L (Z_5 g_m + 1)} \\ &\text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth:} \ \frac{R_L (Z_5 g_m + 1)}{L_L (2R_L g_m + Z_5 g_m + 1)} \\ &\text{K-LP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-HP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-BP:} \ 0 \\ &\text{Qz:} \ \text{None} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.11 BS-11
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_{5}s}{C_{5}L_{5}s^{2}+1}, L_{L}s + \frac{1}{C_{L}s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{Z_{5}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \\ \text{bandwidth:} \ \frac{Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ \text{K-LP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-HP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

5.12 BS-12
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_{5s}}{C_5 L_5 s^2 + 1}, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L S^2 + C_L R_L Z_5 g_m s + C_L R_L S + 2R_L g_m + Z_5 g_m + 1}$$

$$\begin{aligned} & \text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{R_L (Z_5 g_m + 1)} \\ & \text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth: } \frac{R_L (Z_5 g_m + 1)}{L_L (2R_L g_m + Z_5 g_m + 1)} \\ & \text{K-LP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-HP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-BP: } 0 \\ & \text{Qz: None} \\ & \text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.13 BS-13
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$$

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{Z_{5}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ &\text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

5.14 BS-14
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(Z_5 g_m - 1 \right) \left(C_L L_L s^2 + 1 \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{R_L (Z_5 g_m + 1)} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L (Z_5 g_m + 1)}{L_L (2R_L g_m + Z_5 g_m + 1)} \\ &\text{K-LP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-HP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.15 BS-15
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$$

$$\begin{array}{l} \text{Q:} \ \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{Z_{5}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \\ \text{bandwidth:} \ \frac{Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ \text{K-LP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-HP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

5.16 BS-16
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(Z_5 g_m - 1 \right) \left(C_L L_L s^2 + 1 \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{R_L (Z_5 g_m + 1)} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L (Z_5 g_m + 1)}{L_L (2R_L g_m + Z_5 g_m + 1)} \\ &\text{K-LP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-HP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.17 BS-17
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{Z_{5}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \\ \text{bandwidth:} \ \frac{Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ \text{K-LP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-HP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

5.18 BS-18
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(Z_5 g_m - 1 \right) \left(C_L L_L s^2 + 1 \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$$

$$\begin{aligned} & \text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{R_L (Z_5 g_m + 1)} \\ & \text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth: } \frac{R_L (Z_5 g_m + 1)}{L_L (2R_L g_m + Z_5 g_m + 1)} \\ & \text{K-LP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-HP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-BP: } 0 \\ & \text{Qz: None} \\ & \text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.19 BS-19
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L Z_5 g_m s + C_L s + 2g_m}$$

$$\begin{array}{l} \text{Q:} \ \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{Z_{5}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \\ \text{bandwidth:} \ \frac{Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ \text{K-LP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-HP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

5.20 BS-20
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, \frac{R_L(C_LL_Ls^2+1)}{C_LL_Ls^2+C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L \left(Z_5 g_m - 1 \right) \left(C_L L_L s^2 + 1 \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{R_L (Z_5 g_m + 1)} \\ & \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth:} \ \frac{R_L (Z_5 g_m + 1)}{L_L (2R_L g_m + Z_5 g_m + 1)} \\ & \text{K-LP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-HP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-BP:} \ 0 \\ & \text{Qz:} \ \text{None} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6 **GE**

6.1 GE-1
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5, L_L s + R_L + \frac{1}{C_L s}\right)$$

$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + C_L R_L s + 1)}{2C_L L_L g_m s^2 + 2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{2R_{L}g_{m}+Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ &\text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } \frac{R_{L}(Z_{5}g_{m}-1)}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{Qz: } \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

6.2 GE-2
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$\begin{aligned} & \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{2g_m} \\ & \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth:} \ \frac{2g_m}{C_L (2R_L g_m + Z_5 g_m + 1)} \\ & \text{K-LP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-HP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-BP:} \ \frac{Z_5 g_m - 1}{2g_m} \\ & \text{Qz:} \ C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.3 GE-3
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, L_L s + R_L + \frac{1}{C_L s}\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{2R_{L}g_{m}+Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ &\text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } \frac{R_{L}(Z_{5}g_{m}-1)}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{Qz: } \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

6.4 GE-4
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$\begin{aligned} & \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}}}{2g_m} (2R_L g_m + Z_5 g_m + 1) \\ & \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth:} \ \frac{2g_m}{C_L (2R_L g_m + Z_5 g_m + 1)} \\ & \text{K-LP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-HP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-BP:} \ \frac{Z_5 g_m - 1}{2g_m} \\ & \text{Qz:} \ C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2 L_L g_m s + 2 R_L g_m + Z_5 g_m + 1}$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{2C_L L_L g_m s^2 + 2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$

$$H(s) = \frac{\left(Z_{5}g_{m}-1\right)\left(C_{L}L_{L}R_{L}s^{2}+L_{L}s+R_{L}\right)}{2C_{L}L_{L}R_{L}g_{m}s^{2}+C_{L}L_{L}Z_{5}g_{m}s^{2}+C_{L}L_{L}s^{2}+2L_{L}g_{m}s+2R_{L}g_{m}+Z_{5}g_{m}+1}$$

6.5 GE-5
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{2R_{L}g_{m}+Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ &\text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } \frac{R_{L}(Z_{5}g_{m}-1)}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{Qz: } \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

6.6 GE-6 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

Parameters:

Q:
$$\frac{C_L\sqrt{\frac{1}{C_LL_L}}}{2g_m}(2R_Lg_m+Z_5g_m+1)}{2g_m}$$
 wo: $\sqrt{\frac{1}{C_LL_L}}$ bandwidth: $\frac{2g_m}{C_L(2R_Lg_m+Z_5g_m+1)}$ K-LP: $\frac{R_L(Z_5g_m-1)}{2R_Lg_m+Z_5g_m+1}$ K-HP: $\frac{R_L(Z_5g_m-1)}{2R_Lg_m+Z_5g_m+1}$ K-BP: $\frac{Z_5g_m-1}{2g_m}$ Qz: $C_LR_L\sqrt{\frac{1}{C_LL_L}}$ Wz: $\sqrt{\frac{1}{C_LL_L}}$

6.7 GE-7 $Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, L_L s + R_L + \frac{1}{C_L s}\right)$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{2L_L g_m \sqrt{\frac{1}{C_L L_L}}}{2R_L g_m + Z_5 g_m + 1} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{2R_L g_m + Z_5 g_m + 1}{2L_L g_m} \\ &\text{K-LP: } \frac{Z_5 g_m - 1}{2g_m} \\ &\text{K-HP: } \frac{Z_5 g_m - 1}{2g_m} \\ &\text{K-BP: } \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

 $H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{2C_L L_L g_m s^2 + 2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2 L_L g_m s + 2 R_L g_m + Z_5 g_m + 1}$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{2C_L L_L g_m s^2 + 2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$

6.8 GE-8
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2 L_L g_m s + 2 R_L g_m + Z_5 g_m + 1}$$

Q:
$$\frac{C_L \sqrt{\frac{1}{C_L L_L}}}{2g_m} (2R_L g_m + Z_5 g_m + 1)}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{2g_m}{C_L (2R_L g_m + Z_5 g_m + 1)}$$
 K-LP:
$$\frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$
 K-HP:
$$\frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$
 K-BP:
$$\frac{Z_5 g_m - 1}{2g_m}$$
 Qz:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$
 Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

6.9 GE-9
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + C_L R_L s + 1)}{2C_L L_L g_m s^2 + 2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{2R_{L}g_{m}+Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ &\text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } \frac{R_{L}(Z_{5}g_{m}-1)}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{Qz: } \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

6.10 GE-10
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(Z_5g_m - 1)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{2C_LL_LR_Lg_ms^2 + C_LL_LZ_5g_ms^2 + C_LL_Ls^2 + 2L_Lg_ms + 2R_Lg_m + Z_5g_m + 1}$$

$$\begin{aligned} &\text{Q:} \ \frac{\frac{C_L\sqrt{\frac{1}{C_LL_L}}}{2g_m}(2R_Lg_m + Z_5g_m + 1)}{2g_m} \\ &\text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth:} \ \frac{2g_m}{C_L(2R_Lg_m + Z_5g_m + 1)} \\ &\text{K-LP:} \ \frac{R_L(Z_5g_m - 1)}{2R_Lg_m + Z_5g_m + 1} \\ &\text{K-HP:} \ \frac{R_L(Z_5g_m - 1)}{2R_Lg_m + Z_5g_m + 1} \\ &\text{K-BP:} \ \frac{Z_5g_m - 1}{2g_m} \\ &\text{Qz:} \ C_LR_L\sqrt{\frac{1}{C_LL_L}} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

6.11 GE-11
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{2 C_L L_L g_m s^2 + 2 C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2 g_m}$$

$$\begin{array}{l} \text{Q:} \ \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \\ \text{bandwidth:} \ \frac{2R_{L}g_{m}+Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ \text{K-LP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-HP:} \ \frac{Z_{5}g_{m}-1}{2g_{m}} \\ \text{K-BP:} \ \frac{R_{L}(Z_{5}g_{m}-1)}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ \text{Qz:} \ \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

6.12 GE-12
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_{5s}}{C_5 L_{5s}^2 + 1}, \frac{L_{Ls}}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2 L_L g_m s + 2 R_L g_m + Z_5 g_m + 1}$$

Parameters:

Q:
$$\frac{C_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{2g_m}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{2g_m}{C_L (2R_L g_m + Z_5 g_m + 1)}$$
 K-LP:
$$\frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$
 K-HP:
$$\frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$
 K-BP:
$$\frac{Z_5 g_m - 1}{2g_m}$$
 Qz:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$
 Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

6.13 GE-13
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{2C_L L_L g_m s^2 + 2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{2R_{L}g_{m}+Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ &\text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } \frac{R_{L}(Z_{5}g_{m}-1)}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{Qz: } \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

6.14 GE-14
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2 L_L g_m s + 2 R_L g_m + Z_5 g_m + 1}$$

$$\begin{aligned} & \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}}}{2g_L} (2R_L g_m + Z_5 g_m + 1)}{2g_m} \\ & \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth:} \ \frac{2g_m}{C_L (2R_L g_m + Z_5 g_m + 1)} \\ & \text{K-LP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-HP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ & \text{K-BP:} \ \frac{Z_5 g_m - 1}{2g_m} \\ & \text{Qz:} \ C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.15 GE-15
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L s^2 + C_L R_L s + 1)}{2C_L L_L g_m s^2 + 2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{2R_{L}g_{m}+Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ &\text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } \frac{R_{L}(Z_{5}g_{m}-1)}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{Qz: } \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

6.16 GE-16
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L L_L R_L s^2 + L_L s + R_L)}{2C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + 2R_L g_m + Z_5 g_m + 1}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}} (2R_L g_m + Z_5 g_m + 1)}{2g_m} \\ &\text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth:} \ \frac{2g_m}{C_L (2R_L g_m + Z_5 g_m + 1)} \\ &\text{K-LP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-HP:} \ \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1} \\ &\text{K-BP:} \ \frac{Z_5 g_m - 1}{2g_m} \\ &\text{Qz:} \ C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.17 GE-17
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{2 C_L L_L g_m s^2 + 2 C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2 g_m}$$

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{2R_{L}g_{m}+Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ &\text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } \frac{R_{L}(Z_{5}g_{m}-1)}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ &\text{Qz: } \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

6.18 GE-18
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{2C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + 2R_L g_m + Z_5 g_m + 1}$$

Parameters:

Q:
$$\frac{C_L \sqrt{\frac{1}{C_L L_L}}}{2g_m} (2R_L g_m + Z_5 g_m + 1)}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{2g_m}{C_L (2R_L g_m + Z_5 g_m + 1)}$$
K-LP:
$$\frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$
K-HP:
$$\frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$
K-BP:
$$\frac{Z_5 g_m - 1}{2g_m}$$
Qz:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$
Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

6.19 GE-19
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5\left(C_5L_5s^2+1\right)}{C_5L_5s^2+C_5R_5s+1}, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{2C_L L_L g_m s^2 + 2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$

$$\begin{aligned} & \text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ & \text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ & \text{bandwidth: } \frac{2R_{L}g_{m}+Z_{5}g_{m}+1}{2L_{L}g_{m}} \\ & \text{K-LP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ & \text{K-HP: } \frac{Z_{5}g_{m}-1}{2g_{m}} \\ & \text{K-BP: } \frac{R_{L}(Z_{5}g_{m}-1)}{2R_{L}g_{m}+Z_{5}g_{m}+1} \\ & \text{Qz: } \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ & \text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

6.20 GE-20
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{2 C_L L_L R_L g_m s^2 + C_L L_L Z_5 g_m s^2 + C_L L_L s^2 + 2 L_L g_m s + 2 R_L g_m + Z_5 g_m + 1}$$

$$\begin{aligned} & \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}}}{2 C_L L_L} (2 R_L g_m + Z_5 g_m + 1)} \\ & \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth:} \ \frac{2 g_m}{C_L (2 R_L g_m + Z_5 g_m + 1)} \\ & \text{K-LP:} \ \frac{R_L (Z_5 g_m - 1)}{2 R_L g_m + Z_5 g_m + 1} \\ & \text{K-HP:} \ \frac{R_L (Z_5 g_m - 1)}{2 R_L g_m + Z_5 g_m + 1} \\ & \text{K-BP:} \ \frac{Z_5 g_m - 1}{2 g_m} \\ & \text{Qz:} \ C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

- 7 AP
- 8 INVALID-NUMER
- 9 INVALID-WZ
- 10 INVALID-ORDER
- 10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, \infty, \infty, R_5, R_L)$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, \infty, \infty, R_5, \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_5 g_m - 1}{C_L Z_5 g_m s + C_L s + 2g_m}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, \infty, \infty, R_5, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2 R_L g_m + Z_5 g_m + 1}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, \infty, \infty, R_5, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{\left(Z_{5}g_{m} - 1\right)\left(C_{L}R_{L}s + 1\right)}{2C_{L}R_{L}g_{m}s + C_{L}Z_{5}g_{m}s + C_{L}s + 2g_{m}}$$

10.5 INVALID-ORDER-5
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, R_L\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_5 g_m - 1}{C_L Z_5 g_m s + C_L s + 2g_m}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2R_L g_m + Z_5 g_m + 1}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L R_L s + 1)}{2C_L R_L q_m s + C_L Z_5 q_m s + C_L s + 2q_m}$$

10.9 INVALID-ORDER-9
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, R_L\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L q_m + Z_5 q_m + 1}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_5 g_m - 1}{C_L Z_5 q_m s + C_L s + 2 q_m}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2R_L g_m + Z_5 g_m + 1}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(Z_{5}g_{m} - 1\right)\left(C_{L}R_{L}s + 1\right)}{2C_{L}R_{L}g_{m}s + C_{L}Z_{5}g_{m}s + C_{L}s + 2g_{m}}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, R_L\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L q_m + Z_5 q_m + 1}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_5 g_m - 1}{C_L Z_5 g_m s + C_L s + 2g_m}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2R_L g_m + Z_5 g_m + 1}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(Z_{5}g_{m} - 1\right)\left(C_{L}R_{L}s + 1\right)}{2C_{L}R_{L}g_{m}s + C_{L}Z_{5}g_{m}s + C_{L}s + 2g_{m}}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, R_L\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_5 g_m - 1}{C_L Z_5 g_m s + C_L s + 2g_m}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2R_L g_m + Z_5 g_m + 1}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L R_L s + 1)}{2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, R_L\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5s}{C_5L_5s^2+1}, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_5 g_m - 1}{C_L Z_5 g_m s + C_L s + 2g_m}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2R_L g_m + Z_5 g_m + 1}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_{5s}}{C_5L_5s^2+1}, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(Z_5g_m - 1\right)\left(C_LR_Ls + 1\right)}{2C_LR_Lg_ms + C_LZ_5g_ms + C_Ls + 2g_m}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, R_L\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_5 g_m - 1}{C_L Z_5 g_m s + C_L s + 2g_m}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2R_L g_m + Z_5 g_m + 1}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L R_L s + 1)}{2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, R_L\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\infty, \ \infty, \ \infty, \ \infty, \ \frac{L_5R_5s}{C_5L_5R_5s^2 + L_5s + R_5}, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_5 g_m - 1}{C_1 Z_5 g_m s + C_1 s + 2 g_m}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2R_L g_m + Z_5 g_m + 1}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L R_L s + 1)}{2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, R_L\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_{5}s}{C_{5}L_{5}s^{2}+1} + R_{5}, \frac{1}{C_{L}s}\right)$$

$$H(s) = \frac{Z_5 g_m - 1}{C_L Z_5 g_m s + C_L s + 2g_m}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5s}{C_5L_5s^2+1} + R_5, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2R_L g_m + Z_5 g_m + 1}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_{5s}}{C_5L_5s^2+1} + R_5, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L R_L s + 1)}{2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, R_L\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{2R_L g_m + Z_5 g_m + 1}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5\left(C_5L_5s^2+1\right)}{C_5L_5s^2+C_5R_5s+1}, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_5 g_m - 1}{C_L Z_5 g_m s + C_L s + 2g_m}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5\left(C_5L_5s^2+1\right)}{C_5L_5s^2+C_5R_5s+1}, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L (Z_5 g_m - 1)}{C_L R_L Z_5 g_m s + C_L R_L s + 2R_L g_m + Z_5 g_m + 1}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5\left(C_5L_5s^2+1\right)}{C_5L_5s^2+C_5R_5s+1}, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(Z_5 g_m - 1) (C_L R_L s + 1)}{2C_L R_L g_m s + C_L Z_5 g_m s + C_L s + 2g_m}$$