Lecture 22: Objectivity and Material constraints

Logistics: HW8 due

HW9 will be posted Projects due Dec 6 th

Last time: · Constitutive laws

$$\underline{G}(\underline{A}) = (\underline{C}\underline{A}) = \lambda \operatorname{tr}(\underline{A}) + 2 \mu \operatorname{sym}(\underline{A})$$

$$A \to \nabla_{\underline{Y}} \text{ or } \nabla_{\underline{U}}$$

· What is a fourth-order tensor?

4-th order dyadic product

(9868089)] = (c· [d) 986

4-th order tousor

C = Cijkl eisejseksel

Cjul = = : · C (eksel) ej

· U - CI = Cijkl Tkl

· Major & minor symmetres

Today: Objectivity, Representation Thum, Constraints

Change of observer

Lecture 6 we discurred change in basi's

wher Q is a rotation (change in basis tensor)

Change in basis is passine change in france.

Change in observes (active change in frame)

Material frame is common but spatial frame is

(Note: assume same clock)

different.

Change in observer cannot induce a deformation => q and q' must be related by a superposed rigid motion.

$$\underline{x}' = \underline{Q}(t) \underline{x} + \underline{C}(t)$$

$$\underline{x} = \underline{Q}(X,t)$$
Eulerian transformation.
$$\underline{Q} = \text{rotation}$$

$$\underline{c} = \text{translation}.$$

Objective description of sorces and desormations connect depend on the observer.

Effect of superposed rigid motion of kinematic

⇒ ⊆ is not affected by change in observet → objective material tensor CIJ naturally objective

What about spatial knoors?

Axiom of frame in difference

Field à, we and \leq are called france indifferent or objective if for all superposed rigid motions z' = Qz + c we have

$$\phi'(\underline{z}',t) = \phi(\underline{z},t)$$

$$\omega'(\underline{z}',t) = \underline{G} \omega(\underline{z},t)$$

$$\underline{S}'(\underline{z}',t) = \underline{G} \underline{S}(\underline{z},t) \underline{G}^{T}$$

scalar field vector field tensor field

see lectur 6

Is spatial velocity gradient objective?

Lecture 16: $\underline{L} = \nabla_{\underline{x}} \underline{v} = \underline{\dot{\mathbf{F}}} \underline{\dot{\mathbf{F}}}^{-1}$ $\underline{\mathbf{G}}' = \nabla_{\underline{x}} \underline{v}' = \underline{\dot{\mathbf{F}}}' \underline{\dot{\mathbf{F}}}'$

L'= Q L QT + Q QT not objective → that's why Vz v is not used in constitutive

The non-objective term $\underline{Q} = \underline{\mathring{Q}} \underline{Q}^T$ it represents the rigid body anguat velocity change between the observers.

Hug $\Rightarrow \underline{\Omega} = -\underline{\Omega}^T$ is show symmetric \Rightarrow robation

⇒ bore our couphilutive lows on symmetric port of $\underline{d} = sym(\underline{L}) = \frac{1}{2} (R_{\underline{L}} + \nabla_{\underline{U}}^{T})$

Material frame indifferent functions

Field: $\phi(x,t)$ scalar $\omega(x,t)$ S(x,t)

fields because they depend directly on z

Constitution functions are not fields

but they depend on fields as reput.

internal energy: $u(x_i,t) = \hat{u}(p(x_i,t), \theta(x_i,t)) = \hat{u}(p_i,\theta)$ $u \rightarrow field$ $\hat{u} \rightarrow \hat{x} = constitutive function$ heat flow: $q(x_i,t) = \hat{q}(\theta(x_i,t)) = \hat{q}(\theta)$

Cauchy show: $\underline{\underline{G}}(\underline{x},t) = \underline{\underline{G}}(\underline{p}(\underline{x},t),\underline{\underline{G}}(\underline{x},t))$ $=\underline{\underline{G}}(\underline{p},\underline{\underline{G}})$

Coustilutive functions: $\hat{u}(p,\theta)$, $\hat{q}(\theta)$, $\hat{g}(p,\theta,\underline{d})$ $\hat{u} = p c_p \theta \qquad u(\underline{x}(t) = u'(\underline{x}(t))$

As such constitution functions are not directly dependent on frame but their in put fields are

Cousider two frames $\{E_i\}$ and $\{E_i^{\dagger}\}$ $\underline{\hat{g}}(\underline{x}_i^{\dagger}t) = \underline{\hat{g}}(\hat{p}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger})^{\dagger} = \underline{\hat{g}}(\hat{p}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger})^{\dagger}$ $\underline{\hat{g}}(\underline{x}_i^{\dagger}t) = \underline{\hat{g}}(\hat{p}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger})^{\dagger} = \underline{\hat{g}}(\hat{p}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger})^{\dagger}$ $\underline{\hat{g}}(\underline{x}_i^{\dagger}t) = \underline{\hat{g}}(\hat{p}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger})^{\dagger} = \underline{\hat{g}}(\hat{p}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger})^{\dagger}$ $\underline{\hat{g}}(\underline{x}_i^{\dagger}t) = \underline{\hat{g}}(\hat{p}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger})^{\dagger} = \underline{\hat{g}}(\hat{p}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger}, \underline{\hat{g}}_i^{\dagger})^{\dagger}$

condition for à lo be invariant/objection

Isotropic functions Functions that are frame invariant are called isotropic.

fancheus: $\hat{\phi}$ $\hat{\omega}$ $\hat{\omega}$ $\hat{\omega}$ in puls: $\hat{\phi}$ \hat{v}

Following regul rements of for iso lopic functions

$$\widehat{\phi}(\Theta) = \widehat{\phi}(\Theta)$$

$$\widehat{\phi}(\underline{G}\underline{v}) = \widehat{\phi}(\underline{v})$$

$$\widehat{\phi}(\underline{G}\underline{S}\underline{G}) = \widehat{\phi}(\underline{S})$$

$$\widehat{\mathcal{Q}}(\theta) = \widehat{\mathcal{Q}}\widehat{\mathcal{Q}}(\theta) \qquad \widehat{\mathcal{Q}}(\underline{\mathcal{Q}}) = \widehat{\mathcal{Q}}\widehat{\mathcal{Q}}(\underline{\mathcal{V}}) \qquad \widehat{\mathcal{Q}}(\underline{\mathcal{Q}},\underline{\mathcal{Q}}) - \widehat{\mathcal{Q}}\widehat{\mathcal{Q}}(\underline{\mathcal{Q}})$$

$$\widehat{\mathbf{g}}(\mathbf{e}) = \widehat{\mathbf{g}}(\mathbf{e})\widehat{\mathbf{g}}_{\perp} \quad \widehat{\mathbf{g}}(\widehat{\mathbf{g}}^{\top}) - \widehat{\mathbf{g}}(\widehat{\mathbf{g}}^{\top}) - \widehat{\mathbf{g}}(\widehat{\mathbf{g}}^{\top}) - \widehat{\mathbf{g}}(\widehat{\mathbf{g}}^{\top}) = \widehat{\mathbf{g}}(\widehat{\mathbf{g}}^{\top}) - \widehat{\mathbf{g}}(\widehat{\mathbf{g}}^{\top}) = \widehat{\mathbf{g}}(\widehat{\mathbf{g}}^{\top}) - \widehat{\mathbf{g}(\widehat{\mathbf{g}}^{\top}) - \widehat{\mathbf{g}(\widehat{\mathbf{g}}^{\top}) - \widehat{\mathbf{g}}(\widehat{\mathbf{g}}^{\top}) - \widehat{\mathbf{g}}(\widehat{\mathbf{g}^{\top}) - \widehat{\mathbf$$

Examples!

1)
$$\hat{\phi}(\underline{s}) = def(\underline{s})$$

$$\widehat{\phi}(\underline{G}\underline{S}\underline{G}^T) = \text{det}(\underline{G}\underline{S}\underline{G}^T) = \text{det}(\underline{G}) = \text{det}(\underline{G})$$

$$= \text{det}(\underline{S}) = \widehat{\phi}(\underline{S})$$

$$\widehat{\phi}(\underline{\underline{Q}}\underline{\underline{S}}\underline{Q}^{\mathsf{T}}) = \widehat{\phi}(\underline{\underline{S}})$$

$$\begin{array}{ll}
2) & \widehat{\mathcal{U}}(\underline{V},\underline{A}) = \underline{A}\underline{V} \\
\widehat{\mathcal{U}}(\underline{G}\underline{V},\underline{G}\underline{A}\underline{G}^{\mathsf{T}}) = & \underline{G}\underline{A}\underline{G}^{\mathsf{T}})(\underline{G}\underline{V}) = & \underline{G}\underline{A}\underline{G}^{\mathsf{T}}\underline{G}\underline{V} = & \underline{G}\underline{A}\underline{V} = & \underline{G}\widehat{\mathcal{U}}(\underline{U},\underline{A})
\end{array}$$

Representation of isotropic tensorfunctions

An isotropic function $G(A): V^2 \rightarrow V^2$ that

maps sym. tensors into sym. tensors must

ham the following form.

$$G(\underline{A}) = \alpha_{\bullet}(\underline{T}_{A}) \underline{I} + \alpha_{I}(\underline{T}_{A}) \underline{A} + \alpha_{2}(\underline{T}_{A}) \underline{A}^{2}$$
where α_{\bullet} , α_{I} , α_{2} are functions of

Piulin-Erickseu Repro-Tha

Here set of principal invariants of $\underline{\underline{A}}$ $T_{A} = \{ I_{1}(\underline{A}), I_{2}(\underline{A}), T_{3}(\underline{A}) \}$

- · G is sym. if A is sym.

= Q(x₆ I + a, A + a, A) QT = Q G(A)QT v isolrepe/objehire This is the most general form of a earthibite egn.

Isotropic 4th order tensor

If G(A) is linear function

G(A) = CA

while C is 4th order leason

If we also require:

1) CA is sym. for every sym. A.

2) CW = Q for every shew-sym. W

Then there are two scalers &, pr such that

This follows from representation them. G(A) = ~ (IA) I + d, (IA) A + ~ (IA) A · whe In = { tr(A), { [tr(A)2-tr(A2)], detA} Lecture 6 I, TI only tr (A) is a linear function for G(A) to be livear i'vet: $k_2 = 0$ $k_1 = coust, = c_2$ a = c tr(A) + c, a = cz where co, c, cz ere coust. $G(g) = g \Rightarrow c = 0$ set co= > cz = ZH => G(A)= (A=> hr.(A) I+ 2 h A if $\underline{G}(\underline{W}) = 0$ ($tr(\underline{W}) = 0$) $\Rightarrow \boxed{G(A) = GA = \lambda \text{ fr}(A)I + 2\mu \text{ sgm}(A)}$

most general linear constitutive law?

Example linear clashioty: $A = \nabla u + r(\nabla u) = \nabla \cdot u$ $\underline{e} = \lambda (\nabla \cdot \underline{u}) \underline{I} \sim \mu (\nabla \underline{u} + \nabla \underline{u}^{T}) \qquad V$