

Lancemment projet Alice HELIOU and Vincent THOUVENC Laboratoire de Data Science de ThereSIS

Content

- 1. Bilan mi-projet
- 2. Déroulement du projet
- 3. Rappel sur le cas d'usage
- 4. Ce qui est fourni
- 5. Ce qui est attendu

Bilan mi-projet

Bilan mi-projet

Dans l'ensemble vous avez bien compris l'analyse demandée.

La partie biais a été plus hétérogène.

Nous accordons de l'importance à la réflexion et aux explications.

Bilan mi-projet

Dans l'ensemble vous avez bien compris l'analyse demandée.

La partie biais a été plus hétérogène.

Nous accordons de l'importance à la réflexion et aux explications.

Rappels

- L'analyse univariée peut révéler des déséquilibres, l'analyse bivariée peut révéler des biais.
- Les biais peuvent avoir une explication (voire le Paradoxe de Simpson), mais ils restent factuels.
- Un modèle de machine learning (tout comme nous) à tendance à amplifier les biais présents.

Déroulement du projet

Déroulement

- Sessions dédiées: semaines du 10/03, 17/03 et /03
- Rapport final à rendre pour la semaine du 31 mars (une semaine avant votre soutenance, retard non accepté, nous aurons besoin d'avoir vu les rapports avant la soutenance)
- Soutenance: semaine du 7 avril

Déroulement

- Sessions dédiées: semaines du 10/03, 17/03 et /03
- Rapport final à rendre pour la semaine du 31 mars (une semaine avant votre soutenance, retard non accepté, nous aurons besoin d'avoir vu les rapports avant la soutenance)
- Soutenance: semaine du 7 avril
- note finale = $\frac{\textit{mi-parcours} + \textit{notebookfinal} + 2\textit{xsoutenance}}{4}$

Rappel sur le cas d'usage

Cas d'usage

Chest X ray NIH 14 Dataset

https://www.kaggle.com/datasets/nih-chest-xrays/data Dataset d'image de rayons X. fourni avec de nombreuses informations sur les personnes (notamment age, genre, maladies). Pour votre projet les images ont toutes été compressées en 256x256.

Ce qui est fourni

Sur ecampus dans le dossier Projet

Les données

Un zip par personne dans le dossier données_par_eleve , chacun contient un dossier avec cette structure: NOM_PRENOM

- train:
 - malade : avec des images
 - sain: avec des images
- valid:
 - malade : avec des images
 - sain: avec des images
- metadata.csv (fichier similaire à celui que vous avez eu pour le mi-projet)

Apprentissage modèle de classification d'image

Vous trouverez un fichier train_classifieur.py et un fichier requirements.txt Le premier contient le code pour apprendre et utiliser un classifieur d'image, le second, les requirements pour installer votre environnement python.

Installation environement

```
python3.10 -m venv projet-env
source projet-env/bin/activate
python -m pip install --upgrade pip
python -m pip install -r requirements.txt
```

Le fichier train_classifieur.py peut etre utilisé à part ou intégrer dans votre code si vous l'importer.

Utilisation dans un notebook

```
from train classifier import train classifier, pred classifier
ckpt path, ckpt score = train classifier( # prend entre 20 et 60min
logdir="./expe log/",
datadir="NOM PRENOM/",
weights col="WEIGHTS",
csv="NOM PRENOM/metadata.csv")
pred_classifier( # prend entre 5 et 10min
datadir="NOM PRENOM/".
csv in="NOM PRENOM/metadata.csv"
csv_out="./expe_log/preds.csv".
ckpt path = ckpt path)
```

Utilisation en ligne de commande

```
python train_classifieur.py
--logdir expe log/
--datadir NOM PRENOM/
--csv NOM PRENOM/metadata.csv
--weights_col WEIGHTS
--csv_out expe_log/preds.csv
En aioutant les arguments
"--train False --ckpt /chemin_vers_votre_modele.ckpt"
vous pouvez ne faire que les prédictions.
```

Possibilité d'utiliser Mydocker

https:

//mydocker.universite-paris-saclay.fr/shell/join/rKSHnVUBveBfHzPjBntC

Possibilité d'utiliser Mydocker

- Il faudra cependant y copier vos données, l'environnement n'est pas personnalisé.
- Le dossier /root/fairness_project sera sauvegardé
 Vous avez accès à votre répertoire personnel là: /repertoire_personnel/
- d'après quelques tests mydocker est plus lent: il faudrait compter entre le double et le triple (1 à 3h pour un apprentissage, 15 à 30min pour les prédictions)
- Si le temps de calcul est une limitation, n'hésitez pas (en expliquant et justifiant vos choix) à ne considérer qu'une sous-partie de votre jeu de données.

Ce qui est attendu

Ce qui sera évalué

- Analyse rapide des données: En plus court que le mi-projet, étudier le dataset et montrer les déséquilibres et biais.
- Analyse de l'impact de la pondération sur les performances du modèles:
 Prendre en compte la performance en 'balanced accuracy' mais aussi sur les métriques de fairness. Essayer plusieurs méthodes de pondération
- Analyse de l'impact du post-processing: Idem prendre en compte plusieurs critères pour la comparaison et tester plusieurs approches. Regarder les combinaisons pre/post processing
- Soin: Comme toujours le rapport devra comporter une introduction, une conclusion et un soin devra être apporter pour aider la compréhension/lecture

Notation

- 1/4: Rapport final:
 - Introduction (/3)
 - Preparation et analyse des données (/3)
 - Application des méthodes de pre processing (/5)
 - Application des méthodes de post processing (/5)
 - Analyse, compréhension (/3)
 - Conclusion (/1)
- 1/2: Soutenance de 15 minutes, (10' présentation, 5' de questions)
 - Présentation avec illustration du travail effectué
 - Ainsi que de l'organisation choisie au sein du groupe