

practica1guiaCentOSleccion2.pdf

postdata9

Ingeniería de Servidores

3º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Fórmate con nuestros cursos de Inglés para las titulaciones A1, A2, B1 y B2 100€ subvencionados para desemapleados

Pincha aquí e inscríbete ya

958 047 283 621 21 76 50

Fórmate con nuestros cursos de Inglés para las titulaciones

958 047 283 621 21 76 50

Aprende Inglés

SERVICIO PÚBLICO DE EMPLEO ESTATAL SEPE

Con nuestros cursos **GRATUITOS** para desempleados

Junta de Andalucía Consejería de Empleo, Formación y Trabajo Autónomo

Guía para instalar CentOS de la lección 2:

1. Nueva

• Nombre: 1_CentOS

∘ Tipo: **Linux**

Versión: Red Hat

• Tamaño: **1G** está bien

• Crear disco virtual ahora: VDI

• Reservado dinámicamente

• Tamaño disco duro: 8 GB.

Crear

2. Configuración → Almacenamiento

• Controlador: IDE

Pulsamos en Vacío

 $^{\circ}$ Unidad Óptica: IDE secundario maestro ightarrow seleccionamos el disco de la derecha

■ Seleccione archivo de disco óptico virtual

Seleccionamos la imagen

Controlador: SATA

Debemos crear dos discos duros virtuales:

■ Pulsamos en Controlador: SATA

Abajo pinchamos en Agregar una nueva conexión de almacenamiento:

Agregar disco duro → Crear nuevo disco

VDI

Reservado dinámicamente

• Tamaño: el de por defecto

3. Instalación CentOS

• Iniciamos la máquina

• Install CentOS Linux7

• Idioma: Español

• Sistema → Destino de la instalación:

○ ATA VBOX HARDDISK /sda

o Particionado: Configurar el particionado automáticamente

- Empezar la instalación
- Ajustes de usuario:
 - Creación de usuario:
 - Nombre completo y nombre de usuario: iniciales_nombre
 - Contraseña: practicas,ISE
 - o Contraseña root: practicas,ISE
- Esperamos que instale
- Reiniciar
- 4. Configuración CentOS (lo haremos con la terminal):
 - localhost login: iniciales_nombre
 - Password: practicas, ISE
 - Entramos como usuario root:
 - 0 & SU
 - ∘ contraseña: practicas,ISE
 - · Creamos un volumen físico en sdb y comprobamos:
 - & pvcreate /dev/sdb
 - & pvdisplay
 - Añadir el volumen físico al grupo de volúmenes:
 - & vgextend cl /dev/sdb
 - Podemos ver si se ha añadido con pvdisplay, sdb debe tener como VG Name cl, y vgdisplay.

```
Physical volume
PV Name
                       /dev/sdb
UG Name
                      c1
                      8,00 GiB / not usable 4,00 MiB
PV Size
Allocatable
PE Size
                       4,00 MiB
Total PE
                      2047
                       2047
Free PE
Allocated PE
                      bdcsfJ-Rc7s-51aN-vArO-041b-nRh3-yoI9cU
PV UUID
```

- Creamos un nuevo volumen lógico:
 - o Especificamos el tamaño, el nombre y el grupo de volúmenes al que pertenece.
 - & lvcreate -L 1G -n newvar cl
 - Podemos comprobar con lvdisplay

- Copiar los datos de /var al nuevo volumen
 - Creamos el sistema de ficheros con extensión ext4 en el volumen creado antes

```
& mkfs -t ext4 /dev/cl/newvar
```

- Montamos el volumen
 - & mkdir /mnt/newvar
 - & mount /dev/mapper/cl-newvar /mnt/newvar
 - Comprobamos con lsblk.

```
| Iroot@localhost pso]# mkdir /mmt/newvar | Iroot@localhost pso]# mount /dev/mapper/cl-newvar /mmt/newvar | Iroot@localhost pso]# slolk | Isolk |
| Iroot@localhost pso]# slolk | Isolk |
| Iroot@localhost pso]# slolk | Isolk |
| Iroot@localhost pso]# mkdir /dev/mapper/cl-newvar /mmt/newvar |
| Iroot@localhost pso]# mkdir /mmt/newvar |
| Iroot@localhost pso]# munt/newvar |
| Iroot@localhost pso]# munt
```

Aislar el sistema

& systemctl isolate runlevel1.target

```
Welcome to emergency mode! After logging in, type "journalctl -xb" to view system logs, "systemctl reboot" to reboot, "systemctl default" or ^D to boot into default mode.
Give root password for maintenance
(or type Control-D to continue):
[root@localhost ~]#
```

Realizar la copia

```
& cp -a /var/. /mnt/newvar == $ cp -dR --preserve=all /var/. /mnt/newvar
```

- & ls /mnt/newvar
- & ls -lahZ /mnt/newvar
- & systemctl status

```
froot@localhost ~ I# cp ~a /var/. /mnt/newar
iroot@localhost ~ I# is /mnt/newar
adm crash empty gopher lib lock lost*found nis preserve spool yp
cache db games kerberos local log mail opt run
imp
froot@localhost ~ I# is ~ lahZ /mnt/newar
drwxr-xr-x. root root system_u:object_r:var_t:s0
empty
drwxr-xr-x. root root system_u:object_r:var_t:s0
gopher
drwxr-xr-x. root root system_u:object_r:var_t:s0
gopher
drwxr-xr-x. root root system_u:object_r:var_t:s0
lib
drwxr-xr-x. root root system_u:object_r:var_t:s0
local
lrwxrwxr-x. root root system_u:object_r:var_lock_t:s0
lock -> .../run/lock
drwxr-xr-x. root root system_u:object_r:var_lock_t:s0
lock -> .../run/lock
drwxr-xr-x. root root system_u:object_r:ualleeled_t:s0
lock -> .../run/lock
drwxr-xr-x. root root system_u:object_r:var_log
lrwxr-xr-x. root root system_u:object_r:var_t:s0
nis
drwxr-xr-x. root root system_u:object_r:var_t:s0
preserve
lrwxrwxr-x. root root system_u:object_r:var_t:s0
lrwxr-xr-x. root root system_u:object_r:var_t:s0
lrwx-xr-x. root root system_u:object_r:var_t:s0
lrwx-xr-x. r
```


Aprende Inglés

Con nuestros cursos GRATUITOS para desempleados

Junta de Andalucía Consejería de Empleo, Formación y Trabajo Autónomo

- & vi /etc/fstab
- Añadimos al final la línea:

```
/dev/mapper/cl-newvar /var /ext4 defaults 0 0

# /etc/fstab
# Created by anaconda on Thu Oct 24 18:48:39 2019
# Accessible filesystems, by reference, are maintained under '/dev/disk'
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
# /dev/mapper/cl-root / xfs defaults 0 0
UIID=dce20ec5-c931-461e-a4c8-cd02dfd8d716 /boot xfs defaults
dev/mapper/cl-swap swap swap defaults 0 0
```

- Desmontamos lo anterior
 - & umount /mnt/newvar
 - & mount -a
- Borrar los datos antiguos de /var
 - & umount /dev/mapper/cl-newvar
 - & mv /var /var_old
 - & ls -lahZ /var → debe estar var_old
 - & mkdir /var
 - & ls -lahZ
 → vemos que los contextos no son los correctos
 - & restorecon /var
 - & ls -lahZ → ya tiene los contextos correctos
 - & mount -a
 - & systemctl default \rightarrow salimos del modo mantenimiento
 - & lsblk → vemos que newvar está montado en /var

[pso@localhost ~]\$ lsblk						
NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPO INT
sda			8G			
⊢sda1	8:1	0	1 G	0	part	∕boot
\sqcup_{sda2}	8:2	0	7G	0	part	
-cl-root						
∟c1-swap	253:1	0	820M	0	l∨m	[SWAP]
sdb			8G			
∟cl-new∨ar	253:2	0	1 G	0	l∨m	∕∪ar
sr0	11:0	1	1024M	0	rom	

- Apagar la máquina
- Configuración → Red → Adaptador <u>2</u>:
 - o Habilitar adaptador de red
 - o Conectado a: Adaptador sólo-anfitrión (ó Red interna, si no funciona)
 - Aceptar

- Iniciamos la máquina
 - Entramos como usuario root (& su)
 - Creamos una toma de red, para ello escribimos la configuración en /etc/sysconfig/network-scripts/ifcfg-enp0s8
 - & vi /etc/sysconfig/network-scripts/ifcfg-enp0s8

TYPE=Ethernet
BOOTPROTO=none
NAME=enp0s8
DEVICE=enp0s8
ONBOOT=yes
IPADDR=192.168.56.110
NETMASK=255.255.255.0

TYPE=Ethernet BOOTPROTO=none NAME=enpØs8 DEVICE=enpØs8 ONBOOT=yes IPADDR=192.168.56.110 NETMASK=255.255.255.0

- & ifup enp0s8
- & ifup enp0s3
- & ip addr → para comprobar
- & reboot
- & ping

Ya tendríamos la máquina en funcionamiento y conectada a Internet.

