1) 1) Let the input space be the real line, and let H be the hypothesis class of intervals. That is, each hypothesis h is associated with a closed interval [a,b], for some constants $a \le b$, and h(x) is +1 if and only if x lies within this interval. What is the VC dimension of H? Prove that your answer is correct.

1) 2) Let the input space be the real line, and let H be the hypothesis class of unions of k intervals. That is, each hypothesis h is associated with k closed intervals and h(x) is +1 if and only if x lies in the union of these intervals. What is the VC dimension of H? Justify.

If k is allowed to equal infinity, the VC dimension of H will be infinity. This is because for any n points, there exists a point set S of size n that for all possible labelings of S there exists some h in H which achieves that labeling. It would be impossible to draw each example for every value of n. so my reasoning is as follows: For n points, choose a point set S where no points are overlapping (for example, the 3rd example of 3 points above (not the 1st or second example of 3 points)). Then, for all labels, simply draw bounds around the + points making a new interval and leave the - points outside of all intervals. K will need to be infinite, but it will always be possible to find enough intervals to label the points properly.

1) 3) Let the input space be R², and let H consist of all homogeneous linear separators (i.e., linear separators which pass through the origin). Show that H has a VC dimension of 2.

First prove H can shatter 2 points:

Then prove H cannot shather 3 points:

For any set of 3 points those exists a lebeling such that no + h in H can achieve that beeling.

Therefore, VC dimension = 2

- 3) A) Randomly Simulated Data
 - 1) LASSO
 - a) Values of λ vs non-zero coefficients of w:

 λ : 0.01 0.05 0.1 0.2 0.3 # non-zero: 13 2 0 0

b) Value of λ with minimum number of 0s:

0.1, 0.2, 0.3

c) Test error with respect to $\boldsymbol{\lambda}$

 λ : 0.01 0.05 0.1 0.2 0.3 test error: 1.1311 1.1198 1.1175 1.1175

d) Value of $\boldsymbol{\lambda}$ that yields lowest test error:

0.1, 0.2, 0.3 All λ have 0 non-zero coefficients for their w.

- e) Can you get all entries to be 0 for dataset A? Yes, when λ is 0.1or higher.
- 2) RIDGE
 - a) Values of λ vs non-zero coefficients of w:

λ: 1 50 100 200 1000 # non-zero: 20 20 20 20 20

b) Value of λ with minimum number of 0s:

1, 50, 100, 200, 1000

- c) Test error with respect to $\boldsymbol{\lambda}$
 - λ: 1 50 100 200 1000 test error: 1.1346 1.1332 1.1318 1.1297 1.1224

- d) Value of λ that yields lowest test error:
 - 1000. This λ has the same number of non-zero coefficients as other λ s.

0

- e) Can you get all entries to be 0 for dataset A?
- 3) B) Cloud Data
- 1) LASSO
 - a) Values of λ vs non-zero coefficients of w:
 - λ: 0.01 0.1 0.3 0.6 # non-zero: 4 3 2 2
 - b) Value of λ with minimum number of 0s:
 - 1
 - c) Test error with respect to λ

 λ : 0.01 0.1 0.3 0.6 1 test error: 4.9614 4.5735 4.3705 4.4469 4.4952

- d) Value of λ that yields lowest test error:
 - 0.3, not minimum number of non-zero coefficients
- e) Can you get all entries to be 0?

Yes, when λ is 1

- 2) RIDGE
 - a) Values of λ vs non-zero coefficients of w:

λ: 1 20 40 60 80 # non-zero: 9 9 9 9

b) Value of λ with minimum number of 0s:

1, 20, 40, 60, 80

c) Test error with respect to λ

 λ : 1 20 40 60 80 test error: 91.1534 29.4198 47.6048 63.7569 77.1634

- d) Value of λ that yields lowest test error:
 - 20. This λ has the same number of non-zero coefficients as other λ s.
- e) Can you get all entries to be 0 for dataset A?
- 3) Overall results & wd/wb table:

	LASSO				RIDGE			
	wb#	wbTestErr	wd#	wdTestErr	wb#	wbTestErr	wd#	wdTestErr
Data a	0	1.1175	0	1.1175	20	N/A	20	1.1224
DATA B	0	4.4952	2	4.3705	9	N/A	9	29.4198

Note: wbTestErr is N/A for Ridge, as every lambda yields the same number of non-zero coefficients.

It seems that ridge regression performs worse than lasso regression for both datasets. For Dataset A (randomly generated data) increasing lambda minimized test error in both lasso and ridge regression. For Dataset B (cloud data) increasing lambda did not necessarily minimize test error. For lasso regression, minimized test error happened when lambda was 0.3, and there were 2 non-zero

coefficients. For ridge regression, minimized test error happened when lambda was 20.

4) i) parameter turning (values filled in is test error -- not in %)

KERNEL	C = 0.01	C = 0.1	C = 1	C = 20	C = 50
Linear	0.2370	0.0420	0.0148	0.0099	0.0074
Polynomial	0.0395	0.0074	0.0025	0.0025	0.0025
Gaussian Radial Basis Function	0.2370	0.0420	0.0148	0.0099	0.0074

4) iii) 4-fold cross validation:

Average error for each learning algorithm using best C value from table above:

Linear w/ C = 50: 1.28% Polynomial w/ C = 50: 0.43%

RBF w/ C = 50: 0.48%