

Nuclear Propulsion Technical Interchange Meeting NASA-Lewis Research Center Oriober 20-23, 1992

Talk Outline

Background

GPS Methodology Overview

Graphical User Interface

Current models

Application to Space Nuclear Power/Propulsion

Interfacing requirements

T. F. Eulog. Argonno National Enhancing Engineering Physics Div. Argonno, N. 80430

Nuclear Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

1134

History

- SALT (system analysis language translator) Early 80's
 - PL/I code for IBM mainframes
 - Moved to multiple platforms and languages (C, C++)
 - Batch oriented translate, compile, run
 - Used model and property libraries
 - Optimizations and system analysis

Applied to

- Open-cycle and liquid-metal MHD systems
- Fuel cells
- Ocean thermal energy conversion
- Municipal solid waste processing
- Fusion
- Breeder reactors
- Geothermal and solar energy systems

1. F. Euling Argonna Hatlanal Laboratory Engineering Physics Div. Argumna, N. 86439

Nuclear Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

Next Generation Implementation - GPS

- · Designed for modern workstation environments
- Developed in C++, moved to C for greater portability
- Steady-state & dynamic model libraries concept of SALT, but accessed as class objects
- Complete, extensible, object-oriented control language with numerous procedures for optimizations, equations solving, system constraints, parametric analysis
- Language interpreted, but uses compiled, fully optimized models and math procedures ==>
 - Fast prototyping cycles
 - On-the-fly creation of/interaction with simulations
 - Simulation systems can be interupted, queried and changed, then resumed

F. Eviling - Arganica National Laboratory Engineering Physics Div. Arganica, R. 64431

Nuclear Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

Simulation/Modeling Approach

Nuclear Propulsion Technical Interchange Meeting NASA-Lewis Research Cemer October 20-23, 1992

GPS Operators

- 86 built-in operators
- I/O functions (fopen, printf, sscanf, sprintf)
- Math functions (atan2, pow, exp, max, ln, log10)
- Numerical procedures (vary, cons, icons, mini, diff)
- · Looping and flow control

cond {...} if

cond (...) (...) ifelse

start inc bound \...\ for

count [...] repeat

{...} loop

(cond) {...} while

F. Fulng Argains National Loberstory Engineering Physics Div. Argania, IL 80439

Nucleus Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

Miscellaneous Operators

- Allocate new model class instance cdef /pump1 { pump: /param1 12.0 /param2 0.495 } cdef
- Set a debug level (0 thru 5) debug
- Run gps simulation from a input file run "input.fil" run
- Interrupt simulation to permit queries/interactions sintrp (followed by resume to continue)

Nucleur Propulsion Technical Interchange Meeting NASA-Lewis Research Center (October 20-23, 1992)

GPS Steady-State Power System Models

Basic component models

gas flow initiator gas flow splitter gas flow mixer gas flow heater/cooler

gas flow heat exchanger compressor

gas turbine pump diffuser

power - calculate system powers

Basic thermionic models

reac - reactor model thermionic converter thermal radiator rad -

power flow splitter sp ·

electrical resistor res boost converter

electrical bus bus mass - mass calculations

More sophisticated models

therm - thermal flow initiator horad - heat pipe radiator

tds - thermionic diode subsystem simple, multinode heat exchanger

shx nhx - multinode, general purpose HT model

T. F. Euling Argenne Historial Laboratory Engineering Physics Div. Argenne, H. 80438

Nuclear Peopulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

1137

Nuclear Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

Nuclear Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

Nuclear Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

Advantages as Integrating Environment

- Consistent user interface to models
- · Diverse models can be combined for use in arbitrarily complex systems
- · Suite of gps system analysis capabilities (sweeps, optimizations) and numerical methods/properties available to models
- Interface definitions external to models ==>
 - can adapt models developed independent of gps
 - can use proprietary models available only as object code

Nucleur Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

Interfacing Considerations

- · Component models can be Fortran, C, or other Sun languages which generate linkable object code
- Standalone codes must be structured as subroutines with argument list of variables/parameters that must be known to GPS system
- Use of Fortran common blocks prevents (presently) having multiple instances of that model in a system
- Because models may be cycled through numerous convergence iterations with perturbed input flows

Models must be true functions of their inputs

Models must be reasonably robust

I/O routines should be moved outside computation routines

Nuclear Propulsion Technical Interclunge Meeting NASA-Lewis Research Center October 20-23, 1992

Converting a standalone code

- Two step process:
 - Convert code to one or more subroutines

Create a interface definition file (IDEF)

- GPS uses IDEF to generate small C code to handle interfaces
- Model can still be run independently of gps (standalone) by writing a main program to call subroutine

T. F. Ewing Argonno National Laboratory Engineering Physics Div. Argonna, IL 60435

Nuclear Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992

Interface Specification File Format

Interface specifications external to models

- User-prepared ASCII file used by GPS preprocessor to generate C stub code to handle gps interfacing
 - Model name
 - Variable types and initial values (arguments + gps I/O)
 - Entry procedures (name, arguments if Fortran routine, in and out flow variables)
 - Print variables (used as default gps output)

Example Conversion

Fortran Standalone code - TDS

- 8400 lines of Fortran code (includes TECMDL)
- Required 32 line interface definition file
- Conversion completed in < 2 hrs.
- Same model now runs standalone (called from main) or in gps environment
- Both open (once through) and closed systems have been run in gps
- Have successfully run problems with 250,000 nonlinear constraints in nested loops

F Eming Arganne National Laboratory Engineering Physics Div. Arganne, it 80436

Nucleur Propulsion Technical Interchange Meeting NASA-Lewis Research Center October 20-23, 1992