大学生创新创业训练(实践)计划项目申请表

项目名称	基于可解释深度学习的视线跟踪鲁棒特征发现方法					
项目负责人 姓名	叶坚白	所在院(系)	信息科学技	术学院	学号	PB17121732
校内导师姓 名	谭立湘	职称	讲师		所在院(系)	电子科学与技术系
校外导师姓 名		职务/职称			单位	
日	本项目针对头戴式视线跟踪技术存在的基础性瓶颈问题,从"数据驱动的眼动关键特征发现与筛选"入手,基于新兴的可解释机器学习和符号回归理论与方法,研究提高头戴式视线跟踪精度、效率和鲁棒性的方法					
计划 方案 及进 度	本项目计划方案拟按照"特征发现>关键特征筛选>黑盒模型解析>眼动模型改进>关键技术改进"这一研究路径开展研究。 计划进度如下: 1. 基于头戴式视线跟踪技术, 收集充分且分布均匀的数据,并进行相关处理 2. 确定深度学习方法细节,如网络结构等 3. 训练模型并调整超参数,使得模型达到一定精度。训练方法得当,该模型中将蕴含丰富的眼动特征和其他视线跟踪相关的领域知识。 4. 根据模型的参数,解释模型并提取特征,确定关键特征 5. 精炼模型 6. 根据相关知识,进行项目的完善和拓展					
ッ 特 死 期 ル 果	本项目提出采用可解释机器学习的理论与方法,从头戴式视线跟踪实测数据中,发现和筛选关键特征及其高效计算模型。基于深度学习模型,从样本数据中拟合出满足精度和鲁棒性要求的视线跟踪映射模型。但是,这些学习得到的特征可能是琐碎的、不直观的、以及存在较大的冗余。同时,目前能达到满意精度和鲁棒性的深度学习模型都是黑盒模型(神经网络),学习到的知识不直观,也无法被用于指导视线跟踪系统的软硬件设计。为此,本项目拟采用模型无关的知识解释方法,预期从学习到的特征中,筛选出关键特征,同时对模型进行精炼,降低相关特征的计算复杂度。					
型 费 预 算	开支明细	预算金	会额(元)	开支明细		预算金额(元)
	计算设备(计算服务器)	15000	15000			2000
	数据存储器(移动硬盘等) 2000				
	图书资料费(书,打印纸 硒鼓,文具等)	, 1000	1000			
	合计	20000	20000			
导师意见			院系	系意见		
学校意见						