

Fixed-Field Gantries and Adiabatic Transitions

Julian Gascoyne with Dr. Suzie Sheehy julian.mv.gascoyne@gmail.com

Methodology

Methodology

- Motivation
- b. Parameters to Consider
- c. Execution

2. Unit Cells

- a. Parameters
- b. Stability

3. Transition

- a. Accelerator to Gantry
- b. Final 90 degree Arc

- a. Conclusions
- b. Future Work

Motivation

- High Energy Acceptance
 - Decrease size / treatment time
- Permanent Magnets
 - Reduce overall weight
- Uniform Spot Size
 - Easier operation
 - Reproducible spots for scanning

Section 1 Section 2

Some Parameters to Consider

- Magnets
 - Varied with optical constraints
- High Energy Acceptance
 - -0.5≤∂p/p≤0.35
 - o P₀=551.345 MeV/c
 - > E = 150 MeV
- Uniform Spot Size
 - $\circ \quad \epsilon_{x} \beta_{x} = \epsilon_{y} \beta_{y}$
 - \circ D_x=0.0 m

Execution

- Identify the constraints
- Create a Unit Cell
 - Ensure stability
 - Find the periodic conditions
- Vary the constraints
 - Based on the transition from CBETA
- Match the transition
 - (Try to) EnsureStability

Unit Cells

1. Methodology

- a. Motivation
- b. Parameters to Consider
- c. Execution

2. Unit Cells

- a. Parameters
- b. Stability

3. Transition

- a. Accelerator to Gantry
- b. Final 90 degree Arc

- a. Conclusions
- b. Future Work

Parameters

- Unit doublet (split in qf)
 - Test Case: Dr. DejanTrbojevic's triplet*
- Quadrupole (at P₀)
 - \circ K₁ = 29.1753 m²-2
 - \circ Bp = 1.839 Tm
 - \circ $\partial B_{V}/\partial x = 53.6534 T/m$
- Combined-function
 Dipole
 - o Angle = 2.8125°
 - \circ K₁ = -21.6854 m²-2
 - Defocusing
 - \circ Bp = 1.839 Tm
 - \circ $\partial B_{V}/\partial x = 39.8795 \text{ T/m}$

* D. Trbojevic, Patent: US 2012/0313003 A1, 2012

Stability

- Tunes decrease with energy
 - Stable over range

Stability

- Tunes decrease with energy
 - Stable over range
- β_x and β_y increase with energy
 - Close together

Stability

- Tunes decrease with energy
 - Stable over range
- β_x and β_y increase with energy
 - Close together
- Small Dispersion also gets larger with energy

Transition

Accelerator to Gantry

1. Methodology

- a. Motivation
- b. Parameters to Consider
- c. Execution

2. Unit Cells

- a. Parameters
- b. Stability

3. Transition

- a. Accelerator to Gantry
- b. Final 90 degree Arc

- a. Conclusions
- b. Future Work

Accelerator to Gantry Constraints

- Initially
 - Rotationally symmetric

$$\epsilon_{x}\beta_{x}=\epsilon_{y}\beta_{y}$$

$$D_{x} = 0.0 \text{ m}$$

$$D_{x}' = 0.0$$

Match accelerator's β functions

$$\beta_x = \beta_v = \sim 1.2 \text{m}$$

- By the end
 - Must match periodic conditions of cells

Beginning of Gantry

Transition

Final 90 Degree Arc

1. Methodology

- a. Motivation
- b. Parameters to Consider
- c. Execution

2. Unit Cells

- a. Parameters
- b. Stability

3. Transition

- a. Accelerator to Gantry
- b. Final 90 degree Arc

- a. Conclusions
- b. Future Work

Final 90 Degree Arc Constraints

- Uniform Bend Angle
- Constraints of magnets based upon D_x
- Merger of orbits

Conclusions

and Future Work

1. Methodology

- a. Motivation
- b. Parameters to Consider
- c. Execution

2. Unit Cells

- a. Parameters
- b. Stability

3. Transition

- a. Accelerator to Gantry
- b. Final 90 degree Arc

- a. Conclusions
- b. Future Work

Future Work

- Decrease the size
 - Use of stronger magnets
- Transition over the inflection point
- Use a more suitable code
 - Optimised for Fixed-Field Accelerators

- Developed a unit cell to cover all energies
- Applied method of adiabatic variance to constraints
- Used unit cell to make a transition
 - Matched to constraints
 - Over entire energy range

Thank You!

julian.mv.gascoyne@gmail.com

Appendix: A1

Appendix: A2

