

Ungoliant Systems IncEngineering Department

Barghest UAS

Date: 2/3/2025

Subject: A Rapidly Deployed Multi-role Group 4 UAS

Executive Summary

The Barghest (Group 4) fighter is a high-agility, multi-role unmanned combat aircraft designed to counter the rapidly proliferating Group 1–4 UAS threats—especially one-way attack and reconnaissance drones. As a multi-role platform, it can also be utilized for close air support (CAS), electronic warfare (EW), decoy functions, and kinetic strike capabilities. Featuring a tailless deltawing, twin PBS TJ200 turbojets, and a modular sensor/weapon suite, it delivers fighter-like performance at an estimated \$400k per unit, making it a scalable, low-cost asset for modern, contested environments.

Barghest is not a Collaborative Combat Aircraft (CCA) but is designed to fill the void left by existing assets. With the rapid proliferation of Group 1–4 UAS, **agile unmanned fighters are inevitable in modern conflict**—whether developed by us or by our adversaries. Barghest offers a small, fast, and cost-effective fighter capable of autonomous or semi-autonomous networked operations, delivering multi-domain support to forward forces and fulfilling roles no other asset can.

MAX SPED: 0.AM MANGE (YAW BAO) BANAR

T3000FT RCS: 0.5m²

UNIT COST TARGET: \$400,000

Concept of Operations

Mission Roles:

- **Counter-UAS (cUAS):** Intercept and neutralize one-way attack drones, ISR assets, and loitering munitions before they can designate or engage friendly forces.
- Close Air Support (CAS) & ISR: Deliver rapid-response for precision kinetic strike delivery and real-time battlefield intelligence, enhancing situational awareness for ground forces.
- **Decoy & Electronic Warfare (EW)**: Function as a high-speed decoy to provoke enemy SAM engagement, while executing active and passive electronic warfare operations to degrade adversary sensor networks.
- **Loitering Strike / Kamikaze Optionality:** Capable of high-speed, one-way strike missions against high-value enemy assets, increasing the lethality of coordinated UAS engagements.

Operational Integration:

- **Swarm Autonomy & Al Coordination:** Equipped with advanced autonomy for Al-driven cooperative engagement, allowing swarm formations to dynamically identify, classify, and neutralize threats with human-in-the-loop oversight.
- Deployment Flexibility:
 - Austere and Forward-Deployed Operations: Capable of catapult launch, runway operation, and arrestor cable recovery, enabling distributed airpower concepts in low-infrastructure environments.
 - Maritime Adaptability: Potential for carrier-capable and expeditionary variants supporting naval and littoral operations.

Key Technical Capabilities

Airframe & Stealth:

- **Design:** Tailless delta-wing configuration constructed from carbon fiber composites for low weight, modularity, and reduced radar signature.
- Size: Group 4 class (MTOW ~680–900 kg); compact dimensions (~6–7 m length, ~4 m wingspan).

Propulsion & Performance:

- Engines: Twin PBS TJ200 turbojets providing > Mach 0.8 speed and 8–9G maneuverability.
- **Endurance/Range:** ~2-hour endurance with an 800 km one-way operational radius for rapid repositioning.

Sensor & Avionics Package:

- Primary Sensor: An EO/IR sensor operating as an IRST for all-aspect thermal detection of low-signature enemy UAS.
- Optional Sensor: X-band radar to augment targeting.
- **Communications:** Secure, mesh-enabled datalink with LPI/LPD and frequency hopping to ensure anti-jam connectivity.

Weapons & Payload Capacity:

- Armament Options:
 - Soft-Kill: High-power microwave (HPM) pod (e.g., similar to the Epirus Leonidas Pod) for disabling drone swarms.
 - o *Kinetic Weapons:* Up to 8 small, guided missiles (e.g., NAVAIR Spike) for precise engagement.
 - Additional Systems: Optional internal gun and micro precision guided bombs for close-range or CAS missions.
- Payload Modularity: Adaptable internal/external hardpoints to tailor weapons loads per mission.

Autonomy & AI Integration:

- **Operational Autonomy:** Advanced AI/ML supports autonomous threat detection, target classification, and mission execution with human-on-the-loop oversight.
- **Decision-Making:** Reinforcement learning-based mission execution enables rapid, autonomous responses in dynamic environments.
- **Secure Data Sharing:** Communications utilize encryption and secure protocols for seamless integration into the broader tactical network.

Command & Control (C2) Interface:

- Control Modes: Supports both direct human control and Al-assisted autonomy.
- Integration: Compatible with 5th/6th generation fighters, ground stations, satellite relays, and tactical networks (e.g., AWACS, CCAs).

Survivability & Countermeasures:

- **Defensive Systems:** Incorporates EW/SIGINT capabilities, RCS reduction techniques, and redundant systems.
- Attritable Design: Designed as a low-cost, expendable asset that accepts losses as part of modern attrition warfare.

Manufacturing & Scalability

Production Feasibility:

- **Modular Design:** Composite airframe and emphasis on COTS components enable rapid, scalable manufacturing.
- **Cost Efficiency:** Target unit cost of ~\$400k, with simplified avionics and standardized parts reducing O&M costs.
- **Supply Chain:** Leverages commercial suppliers for engines (PBS TJ200), sensors, and communications gear; minimizes reliance on bespoke systems.
- Integration: Designed to be incorporated into existing military logistics and command structures, with ease of storage, transport, and rapid turnaround.

Comparative Analysis

Platform	Speed & Agility	Range/Endurance	Payload (Sensors/Weapons)	Unit Cost	Roles & Limitations
MQ-9 Reaper	~230 mph cruise; low agility	~1,850 km range; ~27 hr endurance	3,000+ lb payload; advanced sensor turret, Hellfire missiles	~\$32 M per unit	ISR/strike; too slow for rapid cUAS, vulnerable in contested airspace
XQ-58A Valkyrie	~Mach 0.72 cruise, >Mach 0.85 dash; moderate agility	~4,800 km ferry range; limited endurance	~600 lb internal bay; modular payload options	~\$5.5 M current (target <\$3 M future)	Attritable loyal wingman; high cost and limited for decentralized, close- in cUAS
BQM-167A Target Drone	230–600 knots; up to 9G turns	~1 hr endurance; limited operational radius	No lethal payload; augmentation devices available	~\$570k each	High-performance target; not an operational combat system
Barghest (Proposed)	>Mach 0.8 dash; 8–9G agility	~800 km one-way; ~2 hr endurance	~100–150 kg modular payload (IRST, HPM pod, Spike missiles, optional gun, micro bombs)	~\$0.4 M (target)	Multi-role fighter: rapid cUAS interceptor, quick- reaction CAS, decoy/EW, with kamikaze option; limited endurance compared to ISR-only drones

Unique Value Proposition: Barghest offers a dramatically lower unit cost with fighter-like agility and multi-role capability, filling a critical niche in modern aerial combat. It provides rapid cUAS response, fast CAS delivery, and flexible decoy/EW operations, all integrated within a scalable, networked system.

Path to Deployment & Next Steps

Development Roadmap:

- Develop a small, cUAS focused low-cost, fixed-wing interceptor to test flight controls and terminal guidance/acquisition of targets
- TRL Progression: Advance from concept design through prototyping (TRL 4-6), followed by flight tests and iterative refinements.
- Timeline: Initial prototypes and preliminary flight tests within 6–9 months; transition to limited low-rate production in 1–2 years.

Funding & Partnerships:

- Initial raise via SAFE with angel backers
- Potential Funding: Seek R&D investment from defense agencies (e.g., DARPA, AFRL) and partner with established aerospace contractors.
- Collaborations: Explore co-development opportunities with industry leaders (e.g., Anduril, L3Harris) to integrate proven COTS systems.

Testbeds & Demonstrations:

- Flight Test Programs: Leverage existing test platforms (e.g., X-plane programs) to validate design and operational concepts.
- Joint Exercises: Integrate with USAF/USN pilot training exercises and JADC2 networks to ensure seamless multi-domain integration.

Requirements from Defense Contractors:

- R&D Funding: Support for prototyping, flight testing, and integration of advanced Al and secure communications.
- Co-Development: Partnerships for sensor integration, autopilot systems, and armament testing.
- Production Support: Assistance in scaling manufacturing processes and supply chain logistics for rapid deployment.

Conclusion

Given the proliferation of UAS threats across Groups 1–4, aircraft like the Barghest are inevitable. Modern conflicts will feature agile, unmanned fighters that provide airborne, on-call active defense—filling a critical gap that no existing asset can match. The Barghest (Group 4) fighter is a transformative unmanned combat solution designed to directly address deficiencies in counter-UAS and close air support missions. Combining fighter-level speed and agility with modular sensor and weapon systems, it offers rapid, ground controlled or autonomous responses against emerging threats. The Barghest provides a versatile, re-taskable system capable of intercepting hostile drones, delivering precision close air support, and performing decoy/EW roles at an extremely low cost. This decisive edge not only enhances protection for forward troops but also complicates enemy strategies. In a future destined to include more Group 1-4 threats, not less, we believe Barghest will pave the way for a new era of agile, networked unmanned combat air power that will be indispensable in future conflicts.

