Feedback — III. Linear Algebra

You submitted this quiz on Fri 3 May 2013 12:08 PM PDT -0700. You got a score of 5.00 out of 5.00.

Question 1

Let two matrices be

$$A = egin{bmatrix} 4 & 3 \ 6 & 9 \end{bmatrix}$$
 ,

$$A = egin{bmatrix} 4 & 3 \ 6 & 9 \end{bmatrix}, \qquad B = egin{bmatrix} -2 & 9 \ -5 & 2 \end{bmatrix}$$

What is A - B?

Your Answer	Score	Explanation
$ \begin{bmatrix} 4 & 12 \\ 1 & 11 \end{bmatrix} $		
$\begin{bmatrix} 6 & -6 \\ 11 & 7 \end{bmatrix}$	✓ 1.00	To subtract B from A, carry out the subtraction element-wise.
$\begin{bmatrix} 6 & -12 \\ 11 & 11 \end{bmatrix}$		
$ \begin{bmatrix} 2 & -6 \\ 1 & 7 \end{bmatrix} $		
Total	1.00 / 1.00	

Question 2

Let
$$x = egin{bmatrix} 2 \ 7 \ 4 \ 1 \end{bmatrix}$$

What is 3 * x?

Your Answer	Score	Explanation
$ \begin{bmatrix} \frac{2}{3} \\ \frac{7}{3} \\ \frac{4}{3} \\ \frac{1}{3} \end{bmatrix} $		
$ \begin{array}{c} \bullet \\ \begin{bmatrix} 6\\21\\12\\3 \end{bmatrix} \end{array} $	1.00	To multiply the vector x by 3, take each element of x and multiply that element by 3.
<pre>[6 21 12 3]</pre>		
$\begin{bmatrix} \frac{2}{3} & \frac{7}{3} & \frac{4}{3} & \frac{1}{3} \end{bmatrix}$		
Total	1.00 / 1.00	

Question 3

Let u be a 3-dimensional vector, where specifically

$$u = egin{bmatrix} 5 \ 1 \ 9 \end{bmatrix}$$

What is u^{T} ?

Your Answer	Score	Explanation
$\begin{bmatrix} 5 \\ 1 \\ 9 \end{bmatrix}$		
	1.00	
○ [9 1 5]		
$ \begin{bmatrix} 9 \\ 1 \\ 5 \end{bmatrix} $		
Total	1.00 / 1.00	

Question 4

Let u and v be 3-dimensional vectors, where specifically

$$u=\left[egin{array}{c} 3 \ -5 \ 4 \end{array}
ight]$$
 and $v=\left[egin{array}{c} 1 \ 2 \ 5 \end{array}
ight]$

What is $u^T v$?

(Hint: u^T is a 1x3 dimensional matrix, and v can also be seen as a 3x1 matrix. The answer you want can be obtained by taking the matrix product of u^T and v.)

You entered:

13

our Answer		Score	Explanation
3	✓	1.00	
otal		1.00 / 1.00	

Question 5

Let A and B be 3x3 (square) matrices. Which of the following must necessarily hold true?

Your Answer		Score	Explanation
lacksquare A*B=B*A	~	0.25	We saw in the lecture that matrix multiplication is not commutative in general.
If v is a 3 dimensional vector, then $A*B*v$ is a 3 dimensional vector.	V	0.25	Since A and B are both 3x3 matrices, $A*B$ is 3x3 matrix. Thus, $(A*B)*v$ is a 3x3 matrix times a 3×1 matrix (since v is a 3 dimensional vector, and thus also a 3x1 matrix), and the result gives a 3x1 vector.
	V	0.25	Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m\times n$. matrix, and B a $n\times o$ matrix, then C would be $m\times o$. (In our example, $m=n=o=3$.)
	•	0.25	Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m\times n$. matrix, and B a $n\times o$ matrix, then C would be $m\times o$. (In our example, $m=n=o=3$.)
Total		1.00 / 1.00	