ISTANBUL TECHNICAL UNIVERSITY COMPUTER ENGINEERING DEPARTMENT

BLG 335E

ANALYSIS OF ALGORITHMS I

PROJECT I REPORT

DATE: 08.12.2020

STUDENT NAME: ABDULKADİR PAZAR

STUDENT NO: 150180028

Project I Report

Asymptotic upper bounds of Quicksort:

Best Case: O(n*logn)

Proof:
$$T(N) = 2*T(N/2) + cN$$

Since $a = b^d$, 1^{st} part of the Master theorem applies

$$T(N) = n^1 * logn = n * logn$$

Worst Case: O(n²)

Proof:
$$T(N) = T(N-1) + cN N > 1$$

 $T(N-1) = T(N-2) + c(N-1)$
 $T(N-2) = T(N-3) + c(N-2)$
 $\vdots : \vdots : \vdots : \vdots$
 $T(2) = T(1) + c(2)$

$$T(N)$$
 = $T(1)$ + $c(2+3+4....+(N-1)+N)$

$$T(N)$$
 = $O(n^2)$ worst-case bound for quicksort.

Average Case: O(n*logn)

Proof:
$$T(N) = T(i) + T(N - i - 1) + cN$$
 where $i = |S_1|$

For average case, each size of S_1 is equally likely (P = 1/N)

Avg. value of T(i) and T(N - i - 1) = $\frac{2}{N} \sum_{k=0}^{N-1} T(k)$

$$T(N) = \frac{2}{N} \sum_{k=0}^{N-1} T(k) + cN$$

$$N*T(N) = 2 \sum_{k=0}^{N-1} T(k) + cN^2$$
 (1)

$$(N-1)*T(N-1) = 2 \sum_{k=0}^{N-2} T(k) + c(N-1)^2$$
 (2)

Subtract (2) from (1)

$$N*T(N) - (N-1)*T(N-1) = 2T(N-1) + 2cN - c$$

Drop insignificant constant and rearrange terms:

a)

$$N*T(N) = (N + 1)*T(N - 1) + 2cN$$

Divide by N*(N + 1) and telescope:

$$\begin{split} T(N)/(N+1) &= T(N-1)/N + 2c/(N+1) \\ T(N-1)/N &= T(N)/(N-1) + 2c/N \\ &: : : : : : \\ T(2)/3 &= T(1)/2 + 2c/3 \end{split}$$

Add all equations:

$$T(N)/(N+1) = T(1)/2 + 2c \sum_{k=3}^{N+1} 1/k$$

The sum evaluates to $ln(N + 1) + \gamma - 3/2$ where $\gamma = 0.577$

$$T(N)/(N+1) = O(\log N)$$

$$T(N) = O(N * log N)$$

b)

1. It will <u>not</u> give the desired output in all cases.

Example:

Sorting by profit is already done:

Country	Profit
Zambia	1000000
United Kingdom	750000
New Zealand	500000
France	250000
Albania	125000
Albania	62500
Zambia	31250

Last element is the pivot.

Result of sorting by country name:

Country	Profit
Albania	62500
Albania	125000
France	250000
New Zealand	500000
United Kingdom	750000
Zambia	31250
Zambia	1000000

Descending order of profits for Zambia is broken.

Input size – time (ms) chart

Chart of n * log₂n for corresponding values

Quicksort's average time complexity is O(n*logn). This is the best time complexity a comparison-based sorting algorithm can have. This relationship can also be observed by comparing two charts. And as we can see from the chart, it sorts large arrays within reasonable time (~5s for 1 million sized array).

Input size – time (ms) chart

Chart of n² for corresponding values

- 1. Computation times are significantly worse than (c) since Quicksort with pivot as rightmost element performs in O(n²). This is significantly worse than O(n*logn) and the computing times clearly reflect that fact. I had to increase the stack size for input size larger than 10000 as program would experience stack overflow because it made too many recursive function calls.
- 2. An almost sorted array, an array sorted in reverse, an array filled with same value elements perform in worst case when pivot is the rightmost element.
- 3. Choosing the pivot element with a random number generator will drastically reduce the probability of worst-case scenario occurring.