Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).

A. Given the following PROLOG predicate definition **f(integer, integer)**, with the flow model (i, o):

```
f(0, 0):-!.

f(I,Y):-J is I-1, \underline{f(J,V)}, V>1, !, K is I-2, Y is K.

f(I,Y):-J is I-1, \underline{f(J,V)}, Y is V+1.
```

Rewrite the definition in order to avoid the recursive call $\underline{\mathbf{f(J,V)}}$ in both clauses. Do NOT redefine the predicate. Justify your answer.

B. Write a PROLOG program that generates the list of all subsets with N elements, using the elements of a list, such that the sum of elements from a subset is an even number. Write the mathematical models and flow models for the predicates used. For example, for the list L=[1, 3, 4, 2] and N=2 \Rightarrow [[1,3], [2,4]].

C. An n-ary tree is represented in Lisp as (node subtree1 subtree2 ...). Write a function to replace all nodes on odd levels with a given value **e**. The root level is assumed zero. **A MAP function shall be used.**

Example for the tree (a (b (g)) (c (d (e)) (f))) and e=h => (a (h (g)) (h (d (h)) (h)))