

Bungeejumping

Aufgabennummer: A_088

Technologieeinsatz: möglich ⊠ erforderlich □

Beim Bungeejumping befindet man sich so lange im freien Fall, bis sich das Seil zu dehnen beginnt. Der während des freien Falles zurückgelegte Weg wird annähernd durch die Weg-Zeit-Funktion *s* beschrieben:

$$s(t) = \frac{g}{2} \cdot t^2$$

t ... Zeit in Sekunden (s)

s(t) ... zurückgelegter Weg in Metern (m) zum Zeitpunkt t

 $g \dots$ Erdbeschleunigung ($\approx 10 \text{ m/s}^2$)

- a) Für einen Bungeejump von der Jauntalbrücke in Kärnten wird ein 23 m langes Seil verwendet.
 - Berechnen Sie, wie lang der freie Fall dauert.
- b) Beim Sprung vom Wiener Donauturm wird ein längeres Seil verwendet. Der freie Fall dauert 2,8 Sekunden.
 - Erstellen Sie eine Formel zur Berechnung der Momentangeschwindigkeit.
 - Berechnen Sie die Momentangeschwindigkeit nach 2,8 Sekunden.
- c) Das nachstehende Weg-Zeit-Diagramm zeigt den freien Fall eines Bungeejumpers.

Bungeejumping 2

– K	reuzen	Sie die	zutreffende	Aussage	an. [1	aus 5]

Für 30 m im freien Fall braucht der Bungeejumper etwa 2 Sekunden.				
Die Geschwindigkeit erhöht sich, je länger der freie Fall dauert.				
Nach 1,5 Sekunden im freien Fall hat der Bungeejumper ca. 16 m zurückgelegt.				
In der 2. und der 3. Sekunde legt der Bungeejumper die gleiche Strecke zurück.				
Die Geschwindigkeit während der ersten 2 Sekunden ist konstant.				

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Möglicher Lösungsweg

a)
$$s(t) = \frac{g}{2} \cdot t^{2}$$

$$t = \sqrt{\frac{2 \cdot s}{g}} = \sqrt{\frac{2 \cdot 23}{10}}$$

$$t = 2,144...$$

$$t \approx 2,1 \text{ s}$$

b) Die Momentangeschwindigkeit wird mit der 1. Ableitung des Weges nach der Zeit *t* berechnet:

$$v(t) = s'(t) = g \cdot t$$

 $v(2,8) = 10 \cdot 2,8$
 $v \approx 28 \text{ m/s}$

C)

Die Geschwindigkeit erhöht sich, je länger der freie Fall dauert.	×

Bungeejumping

Klassifikation

☐ Teil B Wesentlicher Bereich der Inhaltsdimension: a) 2 Algebra und Geometrie b) 4 Analysis c) 3 Funktionale Zusammenhänge Nebeninhaltsdimension: a) 3 Funktionale Zusammenhänge b) c) — Wesentlicher Bereich der Handlungsdimension: a) B Operieren und Technologieeinsatz b) A Modellieren und Transferieren c) C Interpretieren und Dokumentieren Nebenhandlungsdimension: a) b) B Operieren und Technologieeinsatz Schwierigkeitsgrad: Punkteanzahl: a) leicht a) 1 b) 2 b) mittel c) mittel c) 1 Thema: Physik Quellen: -