

On the Boiling Points of Organic Compounds. I. The Formula of BoggiaLera A. H. W. Aten Jr.

Citation: The Journal of Chemical Physics 5, 260 (1937); doi: 10.1063/1.1750016

View online: http://dx.doi.org/10.1063/1.1750016

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/5/4?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Boiling Point

Phys. Teach. 41, 72 (2003); 10.1119/1.1542038

The boiling point of water

Phys. Teach. 35, 98 (1997); 10.1119/1.2344605

On the Discontinuity of Sound Velocity in Elements and Compounds near the Boiling and Fusion Points

J. Acoust. Soc. Am. 28, 798 (1956); 10.1121/1.1918367

Boiling Point and Critical Temperature of nParaffins

J. Chem. Phys. 24, 164 (1956); 10.1063/1.1700826

Formula for the Melting Points of Inorganic Compounds of Type MXOn

J. Chem. Phys. 20, 1338 (1952); 10.1063/1.1700752

On the Boiling Points of Organic Compounds. I. The Formula of Boggia-Lera

A. H. W. ATEN, JR. Hilversum, Netherlands (Received, January 6, 1937)

LTHOUGH the boiling point of the more complicated compounds, such as those we usually find among organic substances, depends on a number of different properties of the molecule, the exceptional practical importance of this quantity makes it worthwhile to establish empirical methods for calculating its value. Our starting point will be the fact, which was discovered by Young,1 that the increase of the boiling point per CH₂ group in different homologous series is determined by the boiling point of the substance to which the methylene group is added alone, independently of its structure and composition. This rule, which holds with surprising accuracy except in the case of associated liquids like acids or alcohols, was expressed by Young in the following formula, in which Δ_T indicates the increase in boiling point on the introduction of one CH_2 group and T_B the boiling point in degrees absolute.

$$\Delta_T = \frac{144.86}{T_B^{0.0148 \vee T_B}}.\tag{1}$$

Young remarks that this formula does not apply to the first members of a series; it can only be used for compounds which contain the configuration -C-C-C-. As we shall make use of the fact, that Δ_T is determined by T_B , we shall have to restrict ourselves to substances which contain three carbon atoms. It is clear that the Young formula cannot be used to express the boiling points of an entire series in one mathematical expression, which makes its application very cumbersome.

For this reason we shall go back to a formula proposed by Boggia-Lera² for the monoderivates of the paraffin series. It says that the square of the boiling points of a homologous series expressed in degrees Kelvin form a linear function of the molecular weight, or, which is the same,

$$T = (n \cdot D + B)^{\frac{1}{2}}, \tag{2}$$

n being the number of CH₂ groups in the molecule, D and B are constant in a given series. From the fact that the increase of T with n is dependent on T only, one easily concludes that D must have the same value for every homologous series. This is not exactly what Boggia-Lera found, but the variation in his values of D is small, and besides it is seen from the consideration of a series in which a great number of boiling points are known, like the paraffins, that D is not quite constant, and that therefore the value computed depends more or less on the number of substances considered. Table I3 shows that the value D=20.500 fits most of the paraffins and their monoderivates quite accurately. Only the highest members of the paraffin series show considerable deviations. The calculated values for the boiling points of molecules which do not contain the configuration -C-C-C- are shown between brackets; in most of these cases the agreement is very poor, the paraffins and alkylhalides being exceptions. It must be specially pointed out, that the reasons for the validity of our empirical formula (2) are various and of a complicated nature. We hope to deal with these theoretical considerations in a later paper but in this connection we want to stress the fact that we have no reason to assume that our formula will hold with any accuracy outside the range for which we have ascertained its validity.

After proving the applicability of formula (2) with the value 20,500 for D in the case of monoderivates of paraffins we must investigate whether it can also be used for other compounds. Adequate data are available for paraffin derivates bearing a group at each end and for those having a substituent in the middle. In both cases our

of the number of CH₂ groups. We shall write this formula:

Young, Phil. Mag. 9, 1 (1905).
 E. Boggia-Lera, Gazz. chim. Ital. 29, 1, 441 (1899).

⁸ The data are taken from Beilstein and from Wakeman, Rec. 53, 832 (1934).

formula applies, within the limitations mentioned before, as shown in Tables II and III.

Now the only matter left for consideration is the value of the constant B in different series. As all series considered in Table I and II are different only in the end groups, it is logical to ascribe to these end groups the differences in B.

It is found that the values for this constant are roughly additive as a function of the two end groups. If we take the value for H as one-half of the B in the paraffin series, we can calculate all B's for the substances in Table I. In Table IV the values found in this way, marked I are compared to the values found by halving the con-

TABLE I. $T = (n \cdot 20,500 + B)^{\frac{1}{2}}$.

						E 1. 1 – (n·						
}	PARAM H(CH B = -	[2) _n H	H(CH ₂) _n	efines CH =-CH =31000	ALKY H(C	YL-ACETYLENES $H_2)_n - C = CH$ $B = 40000$	PARAF	-METHYL FINS H (CH CH (CH ₃) ₂ 3 = 49500	$\begin{pmatrix} 1 & AC1 \\ H(C) & -C \end{pmatrix}$	HYL-ALKYL- ETYLENES CH_2) _n $\equiv C - CH_3$ = 67000	ALM MONOCH H ~(C B=4	LORIDES H ₂) _n Cl
n	$T_{ m calc}$	T	$T_{ m calc}$	T	Tcalo		T_{cal}	с Т	$T_{\rm calc}$		$T_{ m calc}$	T
1 2 3 4 5	(116) (184) 233 274 309	112 185 228 274 309	227 268 304 336 365	225 268 303 337 367	246 285 319 349 377	291 313	264 301 333 363 390	304 334 363	329 358 386	328 359 386	(248) (286) 320 351 379	249 285 320 351 379
6 7 8 9 10	341 370 397 421 445	342 371 398 424 447	392 418 442 464	394–393 419 441 461–463	428				436	434	405 453	407 458
11 12 13 14 15	467 489 509 530 548	470 489 507 525 543							Z III.			
16 17 18 19	567 584 602 618	560 576 590 603										
	ALK MONOBR H(CH B=5	OMIDES (2) Br	MONOI H(C	CYL- ODIDES H ₂) _n I S0500	H(CH	LETHERS 12), OCH3 =35500	HCOO(FORMATES (CH ₂) _n H 52000	H(CH ₂)	L ESTERS nCOOCH3=79000	MERCA H(CH: B=5	PTANS 2) _n SH 5 00 0
n	$T_{ m calc}$	T	$T_{ m calc}$	T	$T_{ m calc}$	Т	$T_{ m calc}$	T	$T_{ m calc}$	T	$T_{ m calc}$	T
1 2 3 4 5	(279) (314) 345 374 400	278 311 344 364? 403	(318) (349) 377 403 428	316 345 375 400 429	(237) (277) 312 343 372	248 284 312 344 372–373	(287) (321) 351 379 406	305 327 354 380 403	(315) 347 375 401 426	330 353 375 400 423	(275) (310) 341 370 397	279 310 340 370 399
6 7 8 9 10	425	429	451 494	453 498	423 447	423 446	430 453 475	427 450 471	449 472 493 513	446 466 486–487 496–497	422 447	420 447
11 12 13 14 15									579	568		
16 17									646	715-716?		

TABLE	H.	T =	$(n \cdot 20)$	500-	+B	12

	DIMETHYL PARA (CH ₃) ₂ CH(CH ₂) CH(CH ₃) ₂ B = 105000		ALKYL DICHLORIDES $Cl(CH_2)_nCl$ $B = 100000$		ALKYLDIBROMIDES $Br(CH_2)_{n_2}Br$ $B = 137000$		DIMETHYL ETHERS $CH_3O(CH_2)_nOCH_3$ $B=81000$		DIMETHYL DICARBOXYLESTERS $CH_3OOC(CH_2)_n$ $COOCH_3$ $B = 17700$	
n	$T_{ m calc}$	T	$T_{ m calc}$	T	$T_{ m calc}$	T	$T_{ m calc}$	T	$T_{ m calc}$	Т
1 2 3 4 5	354 382 408 432	358-359 382 406 433	(347) (375) 402 427 450	313 357 398 434–436? 453	(397) (422) 446 468 489	371 404 441 470–471 493–495	319 349 404 428	318 ~355 405–406 429–432	444 467 488	454 465 487
6 7 8 9			472 514 533	476–478 513–515 531–535	510 530	512-514 536	453 473 495	453 474 494	547	541

stants used in Table II (which are marked II), and the average values are shown between brackets. Insofar as this additivity holds we can state the following rule:

"The square of the boiling points of an organic compound consisting of a chain of at least 3 carbon atoms with two end groups is an approximately additive quantity, which can be calculated by adding a certain characteristic value for each methylene and end group." In Table V the boiling points for a number of compounds are calculated from this rule.

Formula (2), although it is not quite exact, can help us to information about the so-called "replacement values" of boiling points; the change which occurs in the boiling points of a substance on substitution of one group for another. Smiles⁴ remarks on the fact that such a

TABLE III. $T = (n \cdot 20,500 + B)^{\frac{1}{2}}$.

$T_{ m calc}$			
care	T	$T_{ m calc}$	T
265	263	(221)	249
333	337	(300)	308
390	391	362	364
439	438	415	414
		543	535 565
	333 390	333 390 331	333 390 439 391 438 362 415

⁴ Smiles, Chemical Constitution and Physical Properties, p. 225.

"replacement value" decreases with increasing term number and expresses the opinion that it may ultimately become constant. From our formula we are indeed led to expect a constant difference between the squares of the absolute boiling points, which means that the difference between the boiling points of two compounds

TABLE IV.

TABLE IV.		
End Group	B VALUE	
Н	-3500	
$-CH = CH_2 I$	34500	
$-C \equiv CH_2 I$	43500	
-CH(CH ₃) ₂ I	53000	
, , , II	52000	
	(52500)	
$-C \equiv C - CH_3 I$	70500	
-Cl I	44500	
II	50000	
	(47000)	
– Br I	61000	
II	68500	
	(64500)	
-I I	84000	
−OCH₃ I	39000	
11	40500	
	(39500)	
-OOCH	65500	
-COOCH3 I	82500	
ĪI	88500	
	(85500)	
-SH	55000	

with the same term number is inversely proportional to the sum of the two boiling points. Thus the replacement value does decrease with increasing term number, but can never reach a

TABLE V.

Molecule	$T_{ m calc}$	T
Cl(CH ₂) ₃ Br	417	415
Cl(CH ₂) ₃ OCH ₃	385	384
Br(CH ₂) ₃ OCH ₃	407	405
I(CH ₂) ₃ OCH ₃	430	431
CH ₃ O(CH ₂) ₃ COOCH ₃	432	436
Cl(CH ₂) ₃ COOCH ₃	441	436-439
Br(CH ₂) ₃ COOCH ₃	460	459-460
I(CH ₂) ₃ COOCH ₃	481	471-473
(CH ₃) ₂ CH(CH ₂) ₂ Cl	375	373
(CH ₃) ₂ CH(CH ₂) ₂ Br	397	392
(CH ₃) ₂ CH(CH ₂) ₂ I	421	420
(CH ₃) ₂ CH(CH ₂) ₃ Cl	401	398-399
(CH ₃) ₂ CH(CH ₂) ₃ Br	422	316-320
$(CH_3)_2CH(CH_2)_2CH = CH_2$	358	358
$(CH_3)_2CH(CH_2)_3CH=CH_2$	385	384-388
$CH_2 = CH(CH_2)_2CH = CH_2$	332	332
$(CH_3)_2CH(CH_2)_2C \equiv CH$	370	365-366
$CH_2 = CH(CH_2)_2C \equiv CH$	345	343
$CH \equiv C(CH_2)_2 C \equiv CH$	358	359
$CH_2 = CH(CH_2)_2OCH_3$	339	341-342
(CH ₃) ₂ CH(CH ₂) ₂ OCH ₃	365	364
(CH ₃) ₂ CH(CH ₂) ₂ OOCH	399	396
(CH ₃) ₂ CH(CH ₂) ₃ COOCH ₃	447	440
$(CH_3)_2CH(CH_2)_2SH$	385	389-393

Table VI. Cycloparaffins $(CH_2)_n$. $T = (n \cdot 24,300 - 18,000)^{\frac{1}{2}}$.

n	$T_{ m calc}$	T
3	234	238
4	286	284-285
5	322	323
6	358	353
7	390	392
8	420	422
9	448	444
10	474	474

limiting value, so long as formula (2) holds.

Finally, we must point out that the cycloparaffins cannot be expected to show the same dependence of Δ_T on T_B as the paraffins and their derivates do, because the position of the hydrogen atoms towards each other is quite different in both classes of compounds. In the very large rings where all atoms can move freely the ring compounds may follow the same formula as the straight chains do, but to the cases for which we now know the boiling points the value B 20,500 does not apply. We obtain satisfactory results however if we use B = 24,300, as is demonstrated in Table VI.