1 Grundbegriffe, Motivation

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ Wahrscheinlichkeitsraum, $(\mathfrak{X}, \mathcal{B})$ messbarer Raum¹ (sogenannter Stichprobenraum).

 $X:\ \Omega \to \mathfrak{X}$ Zufallsvariable

$$P(B) := P^X(B) := \mathbb{P}(X^{-1}(B)), \ B \in \mathcal{B}$$

Verteilung von X (\hookrightarrow Wahrscheinlichkeitsraum ($\mathfrak{X}, \mathcal{B}, P$))

Statistischer Entscheidung liegt Datenmaterial (Beobachtung) $x \in \mathfrak{X}$ zugrunde.

Grundannahme:

- 1) $x = X(\omega)$ für ein $\omega \in \Omega$, d.h. x ist Realisierung von X
- 2) P ist (teilweise) unbekannt

Ziel: Aufgrund von x Aussagen über P machen!

Sei $\mathcal{M}^1(\mathfrak{X}, \mathcal{B}) := \{P : P \text{ ist Wahrscheinlichkeitsmaß auf } \mathcal{B}\}.$

1.1 Definition

Eine Verteilungsannahme ist eine Teilmenge $\wp \subset \mathcal{M}^1(\mathfrak{X}, \mathcal{B})$. Das Tripel $(\mathfrak{X}, \mathcal{B}, \wp)$ heißt statistischer Raum (statistisches Modell).

1.2 Beispiel

$$(\mathfrak{X},\mathcal{B})=(\mathbb{R}^n,\mathcal{B}^n)$$

$$\wp:=\{P:\ \exists\ \text{Wahrscheinlichkeitsmaß}\ Q\ \text{auf}\ \mathcal{B}^1\ \text{mit}\ P=\underbrace{Q\otimes\ldots\otimes Q}_{n\ \text{Faktoren}}\}$$

Mit anderen Worten $X = (X_1, \dots, X_n), X_1, \dots, X_n$ stochastisch unabhängig mit gleicher Verteilung Q, $X_1, \dots, X_n \stackrel{\text{uiv}}{\sim} Q$.

 $^{^{1}}$ β steht hier für eine beliebige σ -Algebra, die Borelsche σ -Algebra wird mit \mathcal{B}^{d} bezeichnet, wobei d die Dimension angibt

1.3 Beispiel

$$(\mathfrak{X}, \mathcal{B}) = (\mathbb{R}^n, \mathcal{B}^n)$$

$$\wp := \{ P : \exists (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_{>0} \text{ mit } P = \mathcal{N}(\mu, \sigma^2) \otimes \ldots \otimes \mathcal{N}(\mu, \sigma^2) \}$$

Also $X_1, \ldots, X_n \stackrel{\text{uiv}}{\sim} \mathcal{N}(\mu, \sigma^2)$.

Ein-Stichproben-Normalverteilungs-Annahme

1.4 Beispiel

$$(\mathfrak{X},\mathcal{B})=(\mathbb{R}^{m+n},\mathcal{B}^{m+n})$$

$$\wp:=\{P:\ \exists\ \mathrm{W'maße}\ Q_1,Q_2:\ P=\underbrace{Q_1\otimes\ldots\otimes Q_1}_{m\ \mathrm{Faktoren}}\otimes\underbrace{Q_2\otimes\ldots\otimes Q_2}_{n\ \mathrm{Faktoren}}\}$$

Also
$$X=(X_1,\ldots,X_m,Y_1,\ldots,Y_n),\ X_1,\ldots,X_m,Y_1,\ldots,Y_n$$
 unabhängig,
$$X_1,\ldots,X_m\overset{\text{uiv}}{\sim}Q_1,Y_1,\ldots,Y_n\overset{\text{uiv}}{\sim}Q_2.$$

1.5 Beispiel

 $(\mathfrak{X}, \mathcal{B})$ wie in 1.4

$$\wp := \{P : \exists (\mu, \nu, \sigma^2) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}_{>0} : P = \mathcal{N}(\mu, \sigma^2) \otimes \ldots \otimes \mathcal{N}(\mu, \sigma^2) \otimes \mathcal{N}(\nu, \sigma^2) \otimes \ldots \otimes \mathcal{N}(\nu, \sigma^2) \}$$

 $X_1, \dots, X_m, Y_1, \dots, Y_n$ unabhängig

$$X_i \stackrel{\text{uiv}}{\sim} \mathcal{N}(\mu, \sigma^2), Y_j \stackrel{\text{uiv}}{\sim} \mathcal{N}(\nu, \sigma^2)$$

2 unabhängige normalverteilte Stichproben mit gleicher Varianz

1.6 Definition

Eine **Parametrisierung** von $\wp \subset \mathcal{M}^1(\mathfrak{X}, \mathcal{B})$ ist eine bijektive Abbildung $\Theta \ni \vartheta \to P_{\vartheta} \in \wp$.

Ist X eine Zufallsvariable mit Verteilung $P_{\vartheta},$ so schreibt man auch

$$\begin{array}{l} E_{\vartheta}(X) \\ \operatorname{Var}_{\vartheta}(X) \\ (*) \ F_{\vartheta}(t) := P_{\vartheta}(X \leq t) = P_{\vartheta}((-\infty, t]) \end{array} \right\} \text{falls X reellwertig}$$

1.7 Definition 3

$$(**)$$
 $P_{\vartheta}(B) = P_{\vartheta}(X \in B), B \in \mathcal{B}$

Schreibweisen (*), (**) unterstellen

$$(\Omega, \mathcal{A}, \mathbb{P}) = (\mathfrak{X}, \mathcal{B}, P), \ X = id_{\Omega}$$

[eigentlich: $P_{\vartheta}(B) := \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X \in B)$]

1.7 Definition

Eine Verteilungsklasse $\wp = \{P_{\vartheta}: \vartheta \in \Theta\}$ heißt ϑ -parametrisch, wenn sie sich "zwanglos" durch einen Parameterraum $\Theta \subset \mathbb{R}^k$ parametrisieren lässt. Ist $\vartheta = (\vartheta_1, \vartheta_2)$ und interessiert nur ϑ_1 , so heißt ϑ_1 Hauptparameter und ϑ_2 Nebenparameter oder Störparameter.

1.8 Beispiele

- a) In Beispiel 1.3: 2-parametrige Verteilungsannahme, wobei $\vartheta=(\mu,\sigma^2),\ \Theta=\mathbb{R}\times\mathbb{R}_{>0}.$
- b) In Beispiel 1.5: 3-parametrig, $\vartheta = (\mu, \nu, \sigma^2)$, $\Theta = \mathbb{R} \times \mathbb{R} \times \mathbb{R}_{>0}$ Hier meistens: (μ, ν) Hauptparameter

Häufig interssiert von \wp der Wert eines reellwertigen Funktionals $\gamma: \wp \to \mathbb{R}$ anstelle von P, z.B. (falls P Wahrscheinlichkeitsmaß auf \mathcal{B}^1)

$$\gamma(P) := \int_{\mathbb{R}} x dP(x)$$

(Erwartungswert von X)

Falls $\wp = \{P_{\vartheta} : \vartheta \in \Theta\}$, so schreibt man auch $\gamma(\vartheta) := \gamma(P_{\vartheta})$, fasst also γ als Abbildung $\gamma : \Theta \to \mathbb{R}$ auf.

Problem:

"Enge" Verteilungsannahme täuscht oft nicht vorhandene Genauigkeit vor. \wp sollte das <u>wahre</u> P enthalten. (realistisch?)

Bei diskreten Zufallsvariablen ergibt sich \wp manchmal zwangsläufig; bei stetigen Zufallsvariablen ist \wp häufig nicht vorgezeichnet.

4

1.9 Typische Fragestellungen der Statistik

- a) Punktschätzung Schätze aufgrund von $x \in \mathfrak{X}$ den Wert $\gamma(\vartheta) \in \mathbb{R}$ möglichst "gut".
- b) <u>Konfidenzbereiche</u> Konstruiere "möglichst kleinen", von x abhängigen Bereich, der $\gamma(\vartheta)$ mit "großer Wahrscheinlichkeit" enthält.
- c) Testprobleme Es sei $\Theta = \Theta_0 + \Theta_1$ eine Zerlegung von Θ . Teste die Hypothese $H_0: \vartheta \in \Theta_0$ gegen die Alternative $H_1: \vartheta \in \Theta_1$.

1.10 Asymptotische Betrachtungen

Häufig liegt Folge $(X_j)_{j\in\mathbb{N}}$ unabhängiger Zufallsvariablen zugrunde (alle auf nicht interessierenden Wahrscheinlichkeitsräume $(\Omega, \mathcal{A}, \mathbb{P})$ definiert) mit Werten in einem Messraum $(\mathfrak{X}_0, \mathcal{B}_0)$.

Häufig: $P^{X_j} = P \ \forall j$ (identische Verteilung)

Unter der Verteilungsannahme $P \in \wp_0 \subset \mathcal{M}^1(\mathfrak{X}_0, \mathcal{B}_0)$ nimmt dann die Folge $(X_j)_{j \in \mathbb{N}}$ Werte im statistischen Raum

$$(\mathfrak{X},\mathcal{B},\wp):=(imes_{j=1}^{\infty}\mathfrak{X}_{0},\bigotimes_{j=1}^{\infty}\mathcal{B}_{0},\{\bigotimes_{j=1}^{\infty}P:\ P\in\wp_{0}\})$$

an. Also: X_1, X_2, \ldots unabhängig, \mathfrak{X}_0 -wertig mit gleicher Verteilung $P \in \wp_0$

1.11 Statistiken

Es seien $(\mathfrak{X}, \mathcal{B})$ Stichprobenraum und $(\mathcal{T}, \mathcal{D})$ Messraum. Eine messbare Abbildung $T: \mathfrak{X} \to \mathcal{T}$ heißt Statistik (Stichprobenfunktion). Häufig: $(\mathcal{T}, \mathcal{D}) = (\mathbb{R}, \mathcal{B}^1)$.

Wichtigstes Beispiel:

$$\overline{\mathfrak{X}} = \mathbb{R}^n, \mathcal{T} = \mathbb{R}$$

$$T(x_1,\ldots,x_n) = \frac{1}{n} \sum_{i=1}^n x_i$$

Stichproben-Funktionen bewirken eine **Datenkompression**. Statistische Entscheidungen wie Ablehnung von Hypothesen hängen von $x \in \mathfrak{X}$ im Allgemeinen durch den Wert T(x) einer geeigneten Statistik ab. Bei Tests: Statistik $\hat{=}$ Testgröße $\hat{=}$ Prüfgröße

1.11 Statistiken 5

Sind $X_1, \ldots, X_n \stackrel{uiv}{\sim} P$, so nennt man X_1, \ldots, X_n eine Stichprobe vom Umfang n aus der Verteilung P.

Ist $T(X_1, \ldots, X_n)$ eine mit X_1, \ldots, X_n operierende Statistik, so schreib man auch $T_n := T_n(X_1, \ldots, X_n) := T(X_1, \ldots, X_n)$.

Insbesondere bei bei asymptotischen Betrachtungen ist $(T_n)_{n\geq 1}$ dann eine Folge von Statistiken.