

Computer Course Linear Programming Introduction to Python

Stefan Kober 10-11 October, 2019

Technical University of Munich

ТШП

Organizational Things

What to expect

What this course offers:

- praxis-oriented introduction to python and gurobipy
- ▶ lots of examples
- ▶ preparation for further lectures, case studies and theses

What this course does not offer:

- detailed installation instructions
- ▶ the time needed to become an expert in python and gurobipy

Schedule

► Thursday:

Introduction to Python Introduction to Gurobi

► Friday:

Features Python (advanced input and output methods)

Features Gurobi (advanced modelling and variable types)

Schedule

11:00 first slot

12:30 lunch break

13:30 second slot

ca. 15:30 coffee break

ca. 15:45 third slot

Work in teams!

Outlook

Structure of Gurobi

Basics

Linear Programming

Modelling

Advanced Input Methods

Advanced Gurobi Datatypes

Structure of Gurobi

Credits

The materials used in this course have been developed and improved by

- ► Melanie Herzog
- ► Anja Kirschbaum
- ► Fabian Klemm
- ► Michael Ritter
- ► Matthias Silbernagel
- ► Paul Stursberg
- ► Stefan Kober

Basics

Python

- ▶ open source
- ▶ most popular programming language
- ▶ object-oriented, procedural, functional
- interactive
- ► easy to learn

Demo 1

Datatypes and Basic Output

Summary

Datatypes

- ► integer, float, string
- ► list, tuple, dict, set

Output

- ► print
- ► formatted print

Imports

Linear Programming

ПЛ

$$\min c^{\top} x \quad \text{s.t.}$$
$$Ax \le b$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 1 \\ -2 & -2 & 0 \\ -2 & 0 & -3 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ 7 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \quad c = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

ТШП

$$\min c^{\top} x \quad \text{s.t.}$$
$$Ax \le b$$

- ► set of variables *x*
- ▶ set of linear constraints $Ax \ge b$
- $\blacktriangleright \ \ \text{linear objective function } \min c^\top x$

$$\min c^{\top} x \quad \text{s.t.}$$

$$Ax \le b$$

$$\min c^{\top} x \quad \text{s.t.}$$

$$Ax \le b$$

- Find a feasible
- Travel along improve
- Terminate at optimal solution

- ► Find a feasible solution
 - Travel alon
- Terminate at optimal soluti

- ► Find a feasible solution
- ► Travel along improving edges
- ► Tarminate at antimal co

- ► Find a feasible solution
- ► Travel along improving edges
- ► Tarminate at antimal co

- ► Find a feasible solution
- ► Travel along improving edges
- ► Terminate at optimal solution

The Simplex Algorithm

- ► Find a feasible solution
- ► Travel along improving edges
- ► Terminate at optimal solution

Good News: Gurobi does that for us

Modelling

10l crude oil

demand: 31 heavy oil, 51 med. heavy oil, 41 light oil

demand: 31 heavy oil, 51 med. heavy oil, 41 light oil

objective: minimize cost

LP Model Problem 1

min $3x_1 + 5x_2$

s.t.

 $2x_1 + 1x_2 \ge 3$

 $2x_1 + 2x_2 \ge 3$

 $1x_1 + 4x_2 \ge 4$

 $x_1, x_2 \geq 0$

LP Model Problem 1

$$\min 3x_1 + 5x_2$$

s.t.

 $2x_1 + 1x_2 \ge 3$

 $2x_1 + 2x_2 \ge 5$

 $1x_1 + 4x_2 \ge 4$

 $x_1, x_2 \geq C$

ТШП

LP Model Problem 1

$$\min 3x_1 + 5x_2$$

s.t.

$$2x_1+1x_2\geq 3$$

 $2x_1 + 2x_2 > 5$

 $1x_1 + 4x_2 > 4$

 $x_1, x_2 \geq 0$

LP Model Problem 1

$$\min 3x_1 + 5x_2$$

s.t.

$$2x_1+1x_2\geq 3$$

$$2x_1+2x_2\geq 5$$

 $1x_1 + 4x_2 > 4$

$$x_1, x_2 \geq 0$$

LP Model Problem 1

$$\min 3x_1 + 5x_2$$

s.t.

$$2x_1+1x_2\geq 3$$

$$2x_1+2x_2\geq 5$$

$$1x_1+4x_2\geq 4$$

ТШП

LP Model Problem 1

$$\min 3x_1 + 5x_2$$

s.t.

$$2x_1+1x_2\geq 3$$

$$2x_1+2x_2\geq 5$$

$$1x_1+4x_2\geq 4$$

$$x_1, x_2 \ge 0$$

Initialize gurobipy and create set of variables x

```
from gurobipy import *

# Create a new model
m = Model()

# Create variables
x = m.addVar(vtype=GRB.CONTINUOUS)
y = m.addVar(vtype=GRB.CONTINUOUS)
```


Initialize gurobipy and create set of variables x

```
from gurobipy import *

# Create a new model
m = Model()

# Create variables
x = m. addVar(vtype=GRB.CONTINUOUS)
y = m. addVar(vtype=GRB.CONTINUOUS)
```


- ► GRB.CONTINUOUS
- ► GRB.BINARY
- ► GRB.INTEGER
- ► GRB.SEMICONT
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY
- ► GRB.INTEGER
- ► GRB.SEMICONT
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0,1}
- ► GRB.INTEGER
- ► GRB.SEMICONT
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0,1}
- ► GRB.INTEGER {0, 1, 2, ...}
- ► GRB.SEMICONT
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0,1}
- ► GRB.INTEGER {0, 1, 2, ...}
- ▶ GRB.SEMICONT $\{0\} \cup (a, b)$
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0,1}
- ► GRB.INTEGER {0, 1, 2, ...}
- ▶ GRB.SEMICONT $\{0\} \cup (a, b)$
- ▶ GRB.SEMIINT $\{0\} \cup (a, b) \cap \mathbb{Z}$

Initialize gurobipy and create set of variables x

```
from gurobipy import *

# Create a new model
m = Model()

# Create variables
x = m.addVar(vtype=GRB.CONTINUOUS)
y = m.addVar(vtype=GRB.CONTINUOUS)
```


Add Variables

```
addVar(lb=0,ub=GRB.INFINITY,obj=0.0,vtype=GRB.CONTINUOUS,name="""
```

- ► *Ib*, *ub*: variable lower and upper bound
- ▶ *obj*: coefficient of the linear objective function
- ► *vtype*: variable type
- ▶ name: name for further referencing

Add Variables

```
addVars(indices, lb = 0, ub = GRB. INFINITY, obj = 0.0, vtype = GRB. CONTINUOUS, name = "")
```

- ► *Ib*, *ub*: variable lower and upper bound
- ▶ *obj*: coefficient of the linear objective function
- ► *vtype*: variable type
- ► name: name for further referencing
- ▶ indices: integer, range, list or dictionary used to generate set of variables

Create set of linear constraints $Ax \ge b$

```
# Add constraints
c1 = m.addConstr(2*x+y>=3)
c2 = m.addConstr(2*x+2*y>=5)
c3 = m.addConstr(x+4*y>=4)
c4 = m.addConstr(x>=0)
c5 = m.addConstr(y>=0)
```


Create set of linear constraints $Ax \ge b$

```
# Add constraints
c1 = m.addConstr(2*x+y>=3)
c2 = m.addConstr(2*x+2*y>=5)
c3 = m.addConstr(x+4*y>=4)
c4 = m.addConstr(x>=0)
c5 = m.addConstr(y>=0)
```


Add Constraints

Basic form:

m.addConstr(LinExpr>=a)

Add Constraints

Basic form:

m.addConstr(LinExpr>=a)

Linear expressions can be created by:

- ightharpoonup 1e = 2 * x + 3 * y
- ▶ le = x.prod([2, 3])
- ightharpoonup le = x.sum()
- $\blacktriangleright le = quicksum([2*x, 3*y])$

Set linear objective function $\min c^\top x$ and optimize the model

```
# Set objective function
m. setObjective (3*x+5*y, GRB. MINIMIZE)

# Optimize model
m. optimize()
```


Demo 2

Gurobipy basics