Lovely Professional University, Punjab

Course Code	Course Title	Lectures	Tutorials	Practicals	Credits
MTH401	401 DISCRETE MATHEMATICS		0	0	3
Course Weightage	ATT: 5 CA: 25 MTT: 20 ETT: 50				
Course Focus	EMPLOYABILITY				

Course Outcomes: Through this course students should be able to

CO1:: understand several methods for proving or disproving particular logical propositions.

CO2:: describe the recursive processes that can be used for solving counting problems.

CO3:: apply the equivalence and partial order relation properties on graph.

CO4:: interpret various graph theoretic concepts and familiarize with their applications.

CO5:: learn about the chromatic number of a graph and the properties of tree graphs.

CO6:: compute the solution of linear congruences using the Euclidean algorithm.

	TextBooks (T)							
Sr No	Title	Author	Publisher Name					
T-1	DISCRETE MATHEMATICS AND ITS APPLICATIONS	KENNETH H ROSEN	MCGRAW HILL EDUCATION					
	Reference Books (R)							
Sr No	Title	Author	Publisher Name					
R-1	HIGHER ENGINEERING MATHEMATICS	B. V. RAMANA	MC GRAW HILL					

Other Read	Other Reading (OR)						
Sr No	Journals articles as Compulsary reading (specific articles, complete reference)						
OR-1	https://home.iitk.ac.in/~arlal/book/mth202.pdf ,						
OR-2	https://users.encs.concordia.ca/~doedel/courses/comp-232/slides.pdf						

Relevant W	Relevant Websites (RW)							
Sr No	(Web address) (only if relevant to the course)	Salient Features						
RW-1	https://www.khanacademy.org/computing/computerscience/cryptography/modarithmetic/a/equivalence-relations	It explain the concept of number theory						

RW-2	http://www.cse.ust.hk/~dekai/271/notes/L10/L10.pdf	Explain Dijkstra's algorithm.
RW-3	https://nptel.ac.in/courses/106106094/	The course comprises some counting and proof techniques for computer science students.
RW-4	https://nptel.ac.in/courses/106106183/	The course is an introduction to discrete mathematics, which comprises some essentials for computer science students.
Audio Visus	al Aids (AV)	
Sr No	(AV aids) (only if relevant to the course)	Salient Features
AV-1	https://www.mathsisfun.com/games/towerofhanoi.html	Explain the visuals of tower of Hanoi game.

LTP week distribution: (LTP Weeks)				
Weeks before MTE	7			
Weeks After MTE	7			
Spill Over (Lecture)	7			

Detailed Plan For Lectures

Week Number	Lecture Number	Broad Topic(Sub Topic)	Chapters/Sections of Text/reference books	Other Readings, Relevant Websites, Audio Visual Aids, software and Virtual Labs	Lecture Description	Learning Outcomes	Pedagogical Tool Demonstration/ Case Study / Images / animation / ppt etc. Planned	Live Examples
Week 1	Lecture 1	Logic and Proofs (Propositional logic)	T-1	RW-3	Zero lecture and propositional logic (conjunction, disjunction and negation of propositions, conditional and biconditional statements)	Students will be familiar with the course content through the zero lecture PPT and get an understanding of logical statements	Discussion	The truth table of a conditional statement: if Riya learns Discrete Mathematics then she will find a good job.
	Lecture 2	Logic and Proofs (propositional equivalences)	T-1	RW-3	Propositional equivalences (tautology, contradiction, contingency and logical equivalences), their truth tables, De-Morgan's law	Student will be able to express the truth table of propositional equivalences	Brainstorming problems using white board	

Week 1	Lecture 3	Logic and Proofs (quantifiers)	T-1		Quantifiers: universal and existential quantifiers with restricted domain, precedence of quantifiers, negating quantified expressions	Students will be able to understand the different types of quantifiers	Discussion	
Week 2	Lecture 4	Logic and Proofs (Introduction to proof, direct proof,proof by contraposition)	T-1		Introduction to proof, direct proof, proof by contraposition	Students will be able to learn different types of proof techniques	Brainstorming problems using white board	
	Lecture 5	Logic and Proofs(vacuous and trivial proof, proof strategy, proof by contradiction)	T-1		Vacuous and trivial proof, proof strategy, proof by contradiction	Students will be able to learn different types of proof techniques	Brainstorming problems using white board	
	Lecture 6	Logic and Proofs(proof of equivalence and counterexamples, mistakes in proof)	T-1		Proof of equivalence and counterexamples, mistakes in proofs	Students will be able to learn different types of proof techniques and identify the mistakes in the proofs	Brainstorming problems using white board	
Week 3	Lecture 7	Recurrence relations (recurrence relation)	T-1 R-1	AV-1	Introduction to recurrence relation, modelling with recurrence relations	Students will be able to understand the concept of recurrence relation and formation	Brainstorming problems using white board	Solution of Tower of Hanoi game can be obtained by first order linear recurrence relation [A(k +1) - 2A(k)=1, under A(0)=0]. For more details please visit https://www.mat hsisfun.com/ga mes/towerofhan oi.html

Week 3	Lecture 7	Recurrence relations (modelling with recurrence relations)	T-1 R-1	AV-1	Introduction to recurrence relation, modelling with recurrence relations	Students will be able to understand the concept of recurrence relation and formation	Brainstorming problems with white board	Solution of Tower of Hanoi game can be obtained by first order linear recurrence relation [A(k +1) - 2A(k)=1, under A(0)=0]. For more details please visit https://www.mat hsisfun.com/ga mes/towerofhan oi.html
	Lecture 8				Test 1			
	Lecture 9	Recurrence relations (homogeneous linear recurrence relations with constant coefficients)	T-1 R-1		Homogeneous linear recurrence relations with constant coefficients	Students will be able to understand the different cases for solutions of homogeneous linear recurrence relations with constant coefficients	Lecture delivery using white board	
Week 4	Lecture 10	Recurrence relations (Method of inverse operator to solve the non- homogeneous recurrence relation with constant coefficient)	T-1 R-1		Method of inverse operator to solve the non-homogeneous recurrence relation with constant coefficients	Students will be able to find the solution of non-homogeneous recurrence relation with constant coefficients via inverse operator method	Brainstorming problems using white board	
	Lecture 11	Recurrence relations (generating functions, solution of recurrence relation using generating functions)	T-1		Lecture 11: Introduction to generating functions, Lecture 12: solution of recurrence relation using generating functions	the generating functions to solve the	problems using	
	Lecture 12	Recurrence relations (generating functions, solution of recurrence relation using generating functions)	T-1		Lecture 11: Introduction to generating functions, Lecture 12: solution of recurrence relation using generating functions	the generating functions to solve the	problems using	

Week 5	Lecture 13	Counting principles and relations(principle of Inclusion-Exclusion)	T-1		Principle of Inclusion- Exclusion, an alternative form of Inclusion - Exclusion, computation of the number of onto functions	Students will be able to learn the principle of Inclusion- Exclusion for more than two sets	Brainstorming problems using white board	
	Lecture 14	Counting principles and relations(Pigeonhole, generalized pigeonhole principle)	T-1		Pigeonhole principle and generalized pigeonhole principle	Students will be able to solve the problems based on pigeonhole principle and generalized pigeonhole principle		
	Lecture 15	Counting principles and relations(relations and their properties, combining relation)	T-1		Relations and their properties, combining relations	Students will be able to understand relations, their properties and types	Lecture delivery using white board	
Week 6	Lecture 16	Counting principles and relations(composition, representing relation using matrices and graph)	T-1		Composition of relations, representing relation using matrices and graphs	Students will be able to find the composition of relations and represent them in the form of matrices and graphs	Lecture delivery using white board	
	Lecture 17				Test 2			
	Lecture 18	Counting principles and relations(equivalence relations, partial and total ordering relations)	T-1		Equivalence relations, partial and total ordering relations	Students will be able to understand the relations, their properties and types	Discussion	The relation (height of a student is greater than another one) on a set of students of the class is not reflexive, symmetric, equivalence
Week 7	Lecture 19	Counting principles and relations(lattice, sub lattice, Hasse diagram and its components)	T-1		Hasse diagram and its components (maximal, minimal, greatest, least elements, upper, lower bounds, supremum and infimum), lattice	Student will be able to understand the graphical rendering of a partially ordered set displayed via the cover relation and also able to identify its different components	Brainstorming problems using white board	
				SPII	LL OVER			·
Week 7	Lecture 20				Spill Over			
	Lecture 21				Spill Over			

				N	IID-TERM			
Week 8	Lecture 22	Graphs theory I(graph terminologies)	T-1	OR-2 RW-4	Undirected graph (simple, multi and pseudo-graphs), directed graph, basic terminology (loop, adjacent, isolated and pendant vertex, incident edge, degree)	visualise	Discussion using white board	
	Lecture 23	Graphs theory I(special types of graphs(complete, cycle, regular, wheel, cube, bipartite and complete bipartite))	T-1	OR-2 RW-4	Special types of graphs (complete, cycle, regular, wheel, cube, bipartite and complete bipartite)	Students will analyze different types of graphs and also able to classify the number of vertices, edges, degree sequence for each type	Discussion using white board	
	Lecture 24	Graphs theory I(representing graphs, adjacency and incidence matrix)	T-1	OR-2 RW-4	Sub graph, union, intersection and complement of graph, adjacency and incidence matrices of graphs	Students will be able to explore the representation of graphs	Discussion using white board	
Week 9	Lecture 25	Graphs theory I(graph-isomorphism)	T-1	OR-1 OR-2 RW-4	Graph isomorphism	Student will be able to describe whether two graphs are isomorphic	Discussion using white board	
	Lecture 26	Graphs theory I(path and connectivity for undirected and digraphs)		OR-2 RW-4	Graph connectivity (Path, circuit, Euler path and circuit, connected graph and component, cut edge and vertices, strongly and weakly connectivity of directed graph, Path isomorphism)	Students will be able to visualise the transportation network through the graph connectivity	Discussion with white board	
	Lecture 27	Graphs theory I(Dijkstra's algorithm for shortest path problem)	T-1	RW-2	Shortest path by Dijkastra's algorithm	Students will be able to calculate the shortest path between two vertices of the graph	with white board	Least fare between two city

Week 10	Lecture 28	Graphs theory II(planner graphs)	T-1	RW-4	Planner graphs, Euler's formula for planner graph	Students will be able to draw the planner representation of a graph and also able know that whether the planner representation is possible	Lecture delivery	The architecture of petrol pump, fire cracker factory should be designed in such a way that there should not be any edge crossing
		Graphs theory II(Euler formula)	T-1	RW-4	Planner graphs, Euler's formula for planner graph	Students will be able to draw the planner representation of a graph and also able know that whether the planner representation is possible	Lecture delivery	The architecture of petrol pump, fire cracker factory should be designed in such a way that there should not be any edge crossing
	Lecture 29	Graphs theory II(colouring of a graph and chromatic number)	T-1	OR-2	Graph colouring, Chromatic number, Chromatic number of special graphs(complete, cycle, regular, wheel, cube, bipartite and complete bipartite) the four colour theorem	Students will be able to calculate the chromatic number of different types of graph	White board teaching with discussion	
	Lecture 30	Graphs theory II(tree graph and its properties)	T-1	OR-2	Tree graph and its properties	Student will be able to determine whether the give graph is a tree	White board teaching with discussion	
Week 11	Lecture 31	Graphs theory II(rooted tree)	T-1		Introduction of rooted tree and its properties, m-ary and full m-ary tree	Students will be able to get the idea of rooted tree and its results	White board teaching with discussion	
	Lecture 32	Graphs theory II(spanning and minimum spanning tree)	T-1		Spanning tree and its properties, minimum spanning tree- Prims and Kruskal algorithm	to find the minimum	Lecture delivery with white board	
	Lecture 33	Graphs theory II(decision tree, infix, prefix, and postfix notation)	T-1		Infix, prefix, and post- fix notation	Students will be able to calculate the value by the the pre, in and post fix expression	Lecture delivery with white board	
Week 12	Lecture 34				Test 3			

Week 12	Lecture 35	Number theory and its application in cryptography (divisibility and modular arithmetic)	T-1	OR-1 RW-1	Divisibility definition, properties, the division algorithm, Modular arithmetic	Students will learn the concept of division algorithm and modular arithmetic	Lecture delivery with white board	
	Lecture 36	Number theory and its application in cryptography (primes, greatest common divisors and least common multiples)	T-1	OR-1 RW-1	Primes, fundamental theorem of arithmetic, greatest common divisor, least common multiple and Euclidean algorithm	Student will be familiar with the primes, least common multiple and greatest common divisor and also able to find the the G.C.D. using Euclidean algorithm.	Lecture delivery with white board	
		Number theory and its application in cryptography (Euclidean algorithm)	T-1	OR-1 RW-1	Primes, fundamental theorem of arithmetic, greatest common divisor, least common multiple and Euclidean algorithm	Student will be familiar with the primes , least common multiple and greatest common divisor and also able to find the the G.C.D. using Euclidean algorithm .	Lecture delivery with white board	
Week 13	Lecture 37	Number theory and its application in cryptography (Bezout's lemma)	T-1	OR-1 RW-1	Bezout's theorem of G.C.D. (G.C.D. of positive integers as linear combination)	Students will be able to find the Bezout's coefficients of positive integers using Euclidean algorithm	Lecture delivery with white board	
	Lecture 38	Number theory and its application in cryptography (linear congruence, inverse of (a modulo m))	T-1	OR-1 RW-1	Inverse of (a modulo m), solutions of linear congruence's and properties	Students will be able to find the inverse using Bezout's theorem and use it to solve linear congruence's	Lecture delivery with white board	
	Lecture 39	Number theory and its application in cryptography (encryption and decryption by Ceasar cipher and affine transformation)	T-1	OR-1 RW-1	Encryption and decryption by Ceasar cipher and affine transformation	Students will be able encode and decode the messages by Ceasar cipher and affine transformation	Problem solving	Encrypt the messages by changing each letter to a different letter

Week 14	Lecture 40	Number theory and its application in cryptography (Chinese remainder theorem)	T-1	OR-1	System of linear congruences and solutions by Chinese remainder theorem, Fermat's little theorem	Students will be able to find the solutions of system of linear concordances using Chinese remainder theorem and also understand the Fermat's little theorem	Lecture delivery with white board			
		Number theory and its application in cryptography (Fermat's little theorem)	T-1	OR-1	System of linear congruences and solutions by Chinese remainder theorem, Fermat's little theorem	Students will be able to find the solutions of system of linear concordances using Chinese remainder theorem and also understand the Fermat's little theorem	Lecture delivery with white board			
		SPILL OVER								
Week 14	Lecture 41				Spill Over					
	Lecture 42				Spill Over					
Week 15	Lecture 43				Spill Over					
	Lecture 44				Spill Over					
	Lecture 45				Spill Over					

Scheme for CA:

CA Category of this Course Code is:A0203 (2 best out of 3)

Component	Weightage (%)	Mapped CO(s)
Test 1	50	CO1
Test 2	50	CO2
Test 3	50	CO1, CO2, CO4, CO5

Details of Academic Task(s)

Academic Task	Objective	Detail of Academic Task	Nature of Academic Task (group/individuals)	Academic Task Mode	Marks	Allottment / submission Week
Test 1	To test the understanding of logic, proofs and mistakes in proof.	Propositional logic, propositional equivalences, quantifiers, Introduction to proof, direct proof, proof by contraposition, vacuous and trivial proof, proof strategy, proof by contradiction, proof of equivalence and counterexamples, mistakes in proof.	Individual	Offline	30	2/3
Test 2	To test the understanding of recursive processes and solution of recurrence relation.	Recurrence relation, modelling with recurrence relations, homogeneous linear recurrence relations with constant coefficients, Method of inverse operator to solve the nonhomogeneous recurrence relation with constant coefficient, generating functions, solution of recurrence relation using generating functions.	Individual	Offline	30	5/6
Test 3	To check the understanding of concepts of graph theory and graph representation.	graph terminologies, special types of graphs (complete, cycle, regular, wheel, cube, bipartite and complete bipartite), representing graphs, adjacency and incidence matrix, graph-isomorphism, path and connectivity for undirected and digraphs, Dijkstra's algorithm for shortest path problem, planner graphs, Euler formula, colouring of a graph and chromatic number, tree graph and its properties, rooted tree, spanning and minimum spanning tree, decision tree, infix, prefix, and postfix notation.	Individual	Offline	30	11 / 12

MOOCs/ Certification etc. mapped with the Academic Task(s)

Academic Task	Name Of Certification/Online Course/Test/Competition mapped	Туре	Offered By Organisation
Test 1	DISCRETE MATHEMATICS	MOOCs	NPTEL
Test 2	DISCRETE MATHEMATICS	MOOCs	NPTEL
Test 3	DISCRETE MATHEMATICS	MOOCs	NPTEL

Where MOOCs/ Certification etc. are mapped with Academic Tasks:

- 1. Students have choice to appear for Academic Task or MOOCs etc.
- 2. The student may appear for both, In this case best obtained marks will be considered.

MOOCs/ Certification etc. not-mapped with the Academic Task(s) (Available for students for better learning/ will get students ready for)

Name Of Certification/Online Course/Test/Competition mapped	Туре	Offered By Organisation
GATE	Test/Examination	IIT KANPUR