LAPORAN PRAKTIKUM ANALISIS ALGORITMA

Disusun Oleh:

Firmansyah Yanuar 140810170051

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN

2018/2019

1. A.

```
for j=1 to n-1
         k = j
                                          // n-1 kali
         for i=j+1 to n
                                          // 1+2+3+...+(n-1) kali
             if a[i] < a[k] then
                                          // 1+2+3+...+(n-1) kali
             endif
         endfor
         tm = a[j]
                                          // n-1 kali
         a[j] = a[k]
                                          // n-1 kali
10
         a[k] = tm
                                          // n-1 kali
11
     endfor
```

$$\begin{aligned} 1+2+3+...+(n-1) &= \frac{n}{2}(n-1) \\ T(n) &= (n-1)+\frac{n}{2}(n-1)+\frac{n}{2}(n-1)+(n-1)+(n-1)+(n-1) \\ T(n) &= (4n-4)+n^2-n \\ T(n) &= n^2+3n-4 \end{aligned}$$

$$T(n) \leq c.f(n)$$

$$n^2+3n-4 \leq c.n^2$$

$$1+\frac{3}{n}-\frac{4}{n^2} \leq c \quad , \ misal \ n_0=1$$

$$1+\frac{3}{1}-\frac{4}{1} \leq c$$

$$c \geq 0$$

Maka kompleksitas O dari algoritma tersebut adalah $O(n^2)$ dengan $n_0 = 1$ dan $c \ge 0$

B.

$$T(n) = n^2 + n^3 + n^3$$

 $T(n) = 2n^3 + n^2$

$$T(n) \le c.f(n)$$

$$2n^3 + n^2 \le c.n^3$$

$$2 + \frac{1}{n} \le c, \quad misal \ n_0 = 1$$

Maka kompleksitas O dari algoritma tersebut adalah $O(n^3)$ dengan $n_0 = 1$ dan $c \ge 3$

2. A. Algortima A

Maka kompleksitas O dari algoritma tersebut adalah O(n) dengan $n_0 = 1$ dan $c \ge 7$

A. Algortima B

 $n + 6 \le c.n$

 $c \ge 7$

 $1 + \frac{6}{n} \le c$, misal $n_0 = 1$

$$T(n) = 1 + 1 + 1 + 1 + \log n + \log n + 1 + \log n + \log n - 1$$

 $T(n) = 4 \log n + 4$

$$T(n) \le c.f(n)$$

$$4 \log n + 4 \le c \cdot \log n$$

 $4 + \frac{4}{\log n} \le c, \text{ misal } n_0 = 10$
 $4 + \frac{4}{\log 10} \le c$
 $4 + 4 \le c$
 $c \ge 8$

Maka kompleksitas O dari algoritma tersebut adalah $O(\log n)$ dengan $n_0 = 10 \, \mathrm{dan} \ c \geq 8$

B. Jumlah Instruksi Algoritma A = $O(10^8)$

Jumlah Instruksi Algoritma B = $O(log \ 10^8) = O(8)$

Running time A = $\frac{10^8}{10^9}$ = 0.1 *detik*

Running time B = $\frac{8}{10^7}$ = 8 × 10⁻⁷ detik

Maka algoritma B lebih baik daripada algoritma A karena running time B lebih cepat.