$[{\rm Zec72, FK96}]$ Welcome to SIGma

SIGma

Section 1

Officers in No Particular Order

Anakin

- Math Major
- Did Computational Group Theory at an REU
- Graph Theory / Optimization Research during the year
- SIGPwny Crypto¹ Gang + Admin team
- Coffee Club
- CA for CS 173 + CS 374

Aditya

- ECE/Math double major.
- Interned at a satellite internet startup over the summer.
- CA for ECE 411, ECE 391 + SIGARCH co-lead.
- Other interests: FP, EE, Crypto(graphy).

Sam

- CS PhD
- Doing Computational Geometry with Sariel Har-Peled
- SIGPwny

Hassam

- Intern at IMC Trading over the summer
- CS Major (takes math classes for fun ???)
- ullet SIGPwny Crypto Gang + Admin team + Infra lead
- CA for CS 341, CS 173
- Compiler research

We Need Officers!

- This list is smaller than last year
- Reach out to me if you are interested in improving SIGma and making meetings!

Section 2

Fibonacci Codes

But Why?

- Almost everything you do online involves sending and receiving messages
- How can we make these messages "robust" to errors?

Starting From The End

- Suppose we want to uniquely assign the natural numbers a *codeword*
- We want this *code* to have a couple properties
 - Quick to compute
 - ► Variable length
 - ► Robust to errors
- It turns out *Fibonacci Numbers* do all this for us

Our Favorite Sequence

$$F_n = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ F_{n-1} + F_{n-2} & n \ge 2 \end{cases}$$

F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}
0	1	1	2	3	5	8	13	21	34	55	89	144	233

Zeckendorf's Theorem

Theorem ([Zec72])

Every natural number $n \ge 1$ can be represented as a unique sum of non-consecutive Fibonacci numbers F_i where $i \ge 2$. If we allow F_0 and F_1 we lose uniqueness

- We call this sum a Zeckendorf sum.
 - $4 = F_4 + F_2 = 3 + 1$
 - $64 = F_{10} + F_6 + F_2 = 55 + 8 + 1$

Recursion is Induction is Recursion is Induction is ...

We prove existence by *induction* on our natural number n. Suppose that for all natural numbers strictly smaller than n, such a Zeckendorf sum exists. There are two cases.

If $n \leq 4$:

$$1 = F_2$$
 $2 = F_3$ $3 = F_4$ $4 = F_4 + F_2$

If n > 4 itself is a Fibonacci number, we are done.

Recursion is Induction is Recursion is Induction is ...

If n > 4 is not a Fibonacci number:

- Since n > 4, it is strictly between two consecutive Fibonacci numbers $F_i < n < F_{i+1}$ for some $i \ge 3$
- $n F_i < n$ so, by *induction*, $n F_i$ has some Zeckendorf sum
- Note that

$$n - F_i + F_i = n < F_{i+1} = F_{i-1} + F_i$$

 $\implies n - F_i < F_{i-1}$

and thus the Zeckendorf sum of $n - F_i$ does not contain F_{i-1}

• Combine the Zeckendorf sum of $n - F_i$ with F_i to obtain a Zeckendorf sum for n

The statement and proof of the theorem helps design a *greedy* algorithm

- The inductive proof implies we should find the largest $F_i \leq n$
- The statement implies that if we picked F_i , we should skip F_{i-1}
- Our goal is to encode text, so we can precompute an array of Fibonacci numbers ahead of time up to some maximum

```
1: maximum \leftarrow 1114111 \langle \langle largest Unicode value U+10FFFF \rangle \rangle
```

- 2: $F \leftarrow [0, 1]$
- $3: i \leftarrow 2$
- 4: while $F[i-1] \leq maximum$:
- 5: F.append(F[i-2] + F[i-1])
- 6: i += 1


```
ZECKENDORF(x):
       i \leftarrow \max i \text{ such that } F[i] \leq x
      rep \leftarrow ""
2:
3:
    rem \leftarrow x
4:
   while i \geq 2:
            if F[i] \leq rem:
5:
                 rem -= F[i]
6:
7:
                 rep += 1
                 if rem > 0:
8:
9:
                       rep += 1
                      i = 1
10:
11:
            else:
12:
               rep += 0
13:
            i = 1
14:
       return rep
```



```
ZECKENDORF(x):
1: i \leftarrow \max i \text{ such that } F[i] \leq i
   rep \leftarrow ""
3: rem \leftarrow x
4: while i > 2:
5: if F[i] \leq rem:
6: rem = F[i]
   rep += 1
8:
9:
    rep += 1
    i = 1
10:
11:
12: rep += 0
13: i = 1
14: return rep
```

of i such that
$$F_i \le x$$

= $\left| \log_{\phi} \left(x \sqrt{5} \right) \right| = O(\log x)$

- The while loop does $i = O(\log x)$ iterations
- The work inside the while loop takes O(1) time
- So **Zeckendorf** takes $O(\log x)$ time
- Each iteration we add at most 2 characters \Longrightarrow $|\mathbf{ZeckenDorf}(x)| = O(\log x)$


```
ZECKENDORF(x):
1: i \leftarrow \max i \text{ such that } F[i] \leq i
   rep \leftarrow ""
3: rem \leftarrow x
4: while i \geq 2:
5: if F[i] \leq rem:
          rem -= F[i]
   rep += 1
     if rem > 0:
8:
9:
              rep += 1
             i = 1
10:
11:
    else:
12: rep += 0
13: i = 1
14: return rep
```

of i such that
$$F_i \le x$$

= $\left| \log_{\phi} \left(x \sqrt{5} \right) \right| = O(\log x)$

- The while loop does $i = O(\log x)$ iterations
- The work inside the while loop takes O(1) time
- So **Zeckendorf** takes $O(\log x)$ time
- Each iteration we add at most 2 characters \Longrightarrow $|\mathbf{ZeckenDorf}(x)| = O(\log x)$


```
ZECKENDORF(x):
1: i \leftarrow \max i \text{ such that } F[i] \leq i
   rep \leftarrow ""
3: rem \leftarrow x
4: while i > 2:
5: if F[i] \leq rem:
          rem -= F[i]
   rep += 1
     if rem > 0:
8:
9:
              rep += 1
             i = 1
10:
11:
     else:
12: rep += 0
13: i = 1
14: return rep
```

of i such that
$$F_i \le x$$

= $\left| \log_{\phi} \left(x \sqrt{5} \right) \right| = O(\log x)$

- The while loop does $i = O(\log x)$ iterations
- The work inside the while loop takes O(1) time
- So **Zeckendorf** takes $O(\log x)$ time
- Each iteration we add at most 2 characters \Longrightarrow $|\mathbf{Zeckendorf}(x)| = O(\log x)$


```
ZECKENDORF(x):
1: i \leftarrow \max i \text{ such that } F[i] \leq i
   rep \leftarrow ""
3: rem \leftarrow x
4: while i > 2:
5: if F[i] \leq rem:
6: rem -= F[i]
   rep += 1
   if rem > 0:
8:
9:
    rep += 1
    i = 1
10:
11:
    else:
12: rep += 0
13: i -= 1
14: return rep
```

of i such that
$$F_i \le x$$

= $\left| \log_{\phi} \left(x \sqrt{5} \right) \right| = O(\log x)$

- The while loop does $i = O(\log x)$ iterations
- The work inside the while loop takes O(1) time
- So **Zeckendorf** takes $O(\log x)$ time
- Each iteration we add at most 2 characters \Longrightarrow

 $|\mathbf{Zeckendorf}(x)| = O(\log x)$

Undo

Runtime analysis:

- Work is constant for each iteration of the for loop $\implies O(n)$
- If $rep[0..n] = \mathbf{Zeckendorf}(x)$ then $O(n) = O(\log x)$

A Fibonacci Code

We now show how to assign natural numbers a code word using the Zeckendorf Decomposition [FK96]

- The length of the Zeckendorf Representation for numbers can vary
 - ightharpoonup Zeckendorf(2) = 01, Zeckendorf(7) = 0101
- We want to be able to send this bit strings and tell when a character begins and ends
 - \triangleright Does 0101 correspond to [2, 2] or [7]?
- Solution: Add a "comma" using an extra 1
 - ightharpoonup **ENC**([2, 2]) = 011011, **ENC**([7]) = 01011

Heavy Lifting Has Already Been Done

```
1: \frac{\mathbf{ENC}(x):}{\mathrm{return}} \frac{\mathbf{ENC}(x):}{\mathbf{ZECKENDORF}(x) + 1} \quad \langle \langle \text{ add comma } \rangle \rangle
\mathbf{DEC}(rep[0..n]):
```

1: return **Frodnekcez**(rep[0..n-1]) $\langle\langle remove\ comma\ \rangle\rangle$

Runtime analysis:

• Same as Zeckendorf and Frodnekcez

Heavy Lifting Has Already Been Done

```
1: \frac{\mathbf{ENCODE}(m[0..n]):}{code \leftarrow \text{```'}}
2: for \ i \leftarrow 0..n:
3: val \leftarrow ORD(m[i])
4: code += \mathbf{ENC}(val)
5: return \ code
```

Runtime analysis:

- To simplify our life, since ORD(m[i]) is some Unicode value which has a set maximum, **ENC** runs in constant time
 - ▶ More precise analysis would require knowledge of the distribution of characters in whatever language being used. Ask your nearest linguist.
- Thus, encode(m[0..n]) runs in O(n) time

Heavy Lifting Has Already Been Done

```
DECODE(code[0..n]):
m \leftarrow ""
i \leftarrow 0
while i \leq n:
   i \leftarrow \text{smallest } i > i \text{ such that}
   code[j] = code[j+1] = 1
   rep = code[i..j + 1]
   n \leftarrow \mathbf{DEC}(rep)
   m += CHR(n)
   i \leftarrow i + 1
return m
```

Runtime analysis:

• By similar logic, $\mathbf{DECODE}(code[0..n])$ runs in O(n) time

An Example

S	I	G	m	a
83	73	71	109	97
0101001011	0001010011	0010010011	01010100011	00001000011

Containment of Errors

Claim: When a single error occurs, at most 3 codewords are lost

- We know that $\mathbf{ENC}(x)$ ends with 011 for all x>1
- For such x, if an error occurs outside of these last 3 bits, only one codeword is lost:
 - ▶ If a 01 gets turned into a 11, if a 0 is deleted, or if a 1 is inserted in some specific spot, then one codeword may turn into two
 - ► Consider 0101011 → 0111011 / 011011 / 01101011
 - ▶ Otherwise, we just misconvert that single codeword

Questions?

Abstract is a word people use when they haven't gotten used to something

— EUGENE LERMAN (8/28/2023)

Question: Containment of Errors

Claim: When a single error occurs, at most 3 codewords are lost

- We know that $\mathbf{ENC}(x)$ ends with 011 for all x > 1
- For such x, if an error occurs outside of these last 3 bits, only one codeword is lost:
 - ▶ If a 01 gets turned into a 11, if a 0 is deleted, or if a 1 is inserted in some specific spot, then one codeword may turn into two
 - ► Consider 0101011 → 0111011 / 011011 / 01101011
 - ▶ Otherwise, we just misconvert that single codeword

Exercise: Consider what may happen in the cases of insertion, deletion, and bitflipping for each of the last three bits of $\mathbf{ENC}(x)$ for x>1

Bibliography

Aviezri S. Fraenkel and Shmuel T. Kleinb.

Robust universal complete codes for transmission and compression.

Discrete Applied Mathematics, 64(1):31–55, January 1996.

E. Zeckendorf.

Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.

Bull. Soc. R. Sci. Liège, 41:179–182, 1972.

