4) f(x)=1-e-x cm [0,1]. a) f'(x) = e-x. Thus, (condf)(x) = xe-x = x = x = x = 1 = ex-1 on 6,1), ex >1 and exce As $\neq \neg c$ \times $\rightarrow 1 \leq 1$ and $as \times \neg 1$, $e^{\times} - 1$ $\Rightarrow e^{\times} - 1 \leq 1$ It seems that, as (condf)(x) has no local minima armaxina, it goes monotonically from 1 to 1/e-1 on this interval. 6) The condition of A is: (Cord A)(Z)- (XA-X) find first what fa(x) yields. Then find $X_A = f^{-1}\left(-f_A(x)\right)$ fA(x): first, x -> -x(1+ Ex) then, e-x(1+Ex) (1+E) = e-x(1-+2x+E) and, 1.0 = ex(1-x2+2) = fA(x) Assure the 1.0 has no error. So onyerror onlycomes from the extenses for ease of finaling Xx.

e-x(1+2-x2x) = e^x e^{E-x2x} = e^x +2-x2x => XA = X + E + X Ex

=> (Cond A)(x) = (x+x2,+8-x1 = | Ex + E/x | E-1 Assure Hot E=Ex. Hen (and A)(x) = | 1+/x | > 1 on ota 1. In fact as x->c, (and A)(x) diverges. (C) See Plat attached.

The root of the problem is that the error from exponentiation, E, gets

comparable to the magnitude of x as

x gets small. d) Spose we have a p bir montigga.
Any pur her on [0,1] can be written as $X = \sum_{n=1}^{\infty} b_n 2^n$ (rounded) The last bisof significance is 6,2%.
This is true even when y is small. Let's at leapt wite x= 2 (2 6,2")

	It's net clear to me if it's meant
	fish't to sensitive to errors, so I'll assure it's in
7.3	fish to sensitive to encies CT11
	It &= 2-P-1 Hen 25 15 losing one drie
	Otsignificance, and 79 = (coing a line)
	Of significance, and Z'E is losing n 6129 of Significance.
	111 a A a a a a a a a a a a a a a a a a
	when does $1 + 1/x = 2^n$?
	$\left(2^{n}-1\right)^{-1}=\times_{\min}$
	We require x> xmin to lose at most
	n bits et significance. When n=1,
	X > Xmin = 1. We always lose one 6it of
	What if n= z, 3, 4?
,	N Xmin
	2 V ₃ 3 V ₇
	4 1/15
	e) we know the relative error is bounded by
	e) we know the relative error is bounded by condition (E+ E (cond A)x) = err(x)
	50: X/200(x)/2
	1 1.746
	1/3 1,766
	1/7 1.993
	1/15/1.999
The second second	
	338. 34
-	

f) When x is small, we could use an alternative method. Namely, $f(x) = 1 - e^{-x} \cdot \frac{1 + e^{-x}}{1 + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-x}}$ When x is small, this is well behaved. we see that $f(x) \rightarrow \frac{1+2x}{1-x}$ for small x. This is fine.