

Sesión 2 - Secuenciación Masiva Aplicaciones

Isabel Cuesta

Unidad de Bioinformática (BU-ISCIII)
Unidades Comunes Científico Técnicas – SGAFI-ISCIII

17-21 Junio 2019, 7ª Edición Programa Formación Continua, ISCIII

What has NGS changed?

- **✓** Functional genomics. Genome-Seq. Epigenetics
- **✓** Molecular diagnostics. Complex diseases
- **✓ Microbial Ecology. Metagenomics**
- **✓** Molecular Ecology. Population Genetics
- **✓ Evolutionary Genomics**
- **✓ DNA-Protein Interactions. ChIPSeq**
- **✓** Pharmacogenomics
- ✓ Transcriptomics. RNAseq
- **√** Systems Biology

Aplicaciones de la secuenciación

Whole-genome sequencing

- Genome re-sequencing
- de novo genome sequencing
- Metagenomics applications

Targeted re-sequencing

- PCR-amplified regions
- Capture-enriched DNA

Sequencing of genomic DNA

Sequencing DNA library

Epigenetic profiling

- Methylation sequencing
- Nucleosome footprinting

Genomic footprinting

- ChIP sequencing
- DNase I libraries

Transcriptome mining

- novel RNA classes
- novel splice variants

Sequencing of cDNA libraies

RNA footprinting

- ribosome footprinting
- RNA-IP sequencing

Transcriptome expression profiling

- mRNA
- small RNA (miRNA etc.)

Aplicaciones basadas en la prepa

RNA Structure	30
Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension Sequencing (SHAPE-Seq)	31
Parallel Analysis of RNA Structure (PARS-Seq)	32
Fragmentation Sequencing (FRAG-Seq)	33
CXXC Affinity Purification Sequencing (CAP-Seq)	34
Alkaline Phosphatase, Calf Intestine-Tobacco Acid Pyrophosphatase Sequencing (CIP-TAP)	36
Inosine Chemical Erasing Sequencing (ICE)	38
m6A-Specific Methylated RNA Immunoprecipitation Sequencing (MeRIP-Seq)	39
.ow-Level RNA Detection	40
Digital RNA Sequencing	42
Whole-Transcript Amplification for Single Cells (Quartz-Seq)	43
Designed Primer-Based RNA Sequencing (DP-Seq)	44
Switch Mechanism at the 5' End of RNA Templates (Smart-Seq)	45
Switch Mechanism at the 5' End of RNA Templates Version 2 (Smart-Seq2)	47
Unique Molecular Identifiers (UMI)	49
Cell Expression by Linear Amplification Sequencing (CEL-Seq)	51
Single-Cell Tagged Reverse Transcription Sequencing (STRT-Seg)	50

Sequencing Methods Review

A review of publications featuring Illumina® Technology

Aplicaciones basadas en la prepa

RNA Transcription	5
Chromatin Isolation by RNA Purification (ChIRP-Seq)	7
Global Run-on Sequencing (GRO-Seq)	9
Ribosome Profiling Sequencing (Ribo-Seq)/ARTseq [™]	12
RNA Immunoprecipitation Sequencing (RIP-Seq)	15
High-Throughput Sequencing of CLIP cDNA library (HITS-CLIP) or	17
Crosslinking and Immunoprecipitation Sequencing (CLIP-Seq)	17
Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP)	19
Individual Nucleotide Resolution CLIP (iCLIP)	22
Native Elongating Transcript Sequencing (NET-Seq)	24
Targeted Purification of Polysomal mRNA (TRAP-Seq)	25
Crosslinking, Ligation, and Sequencing of Hybrids (CLASH-Seq)	26
Parallel Analysis of RNA Ends Sequencing (PARE-Seq) or	27
Genome-Wide Mapping of Uncapped Transcripts (GMUCT)	27
Transcript Isoform Sequencing (TIF-Seq) or	29
Paired-End Analysis of TSSs (PEAT)	29

Sequencing Methods Review

A review of publications featuring Illumina® Technology

Aplicaciones basadas en la prepa

ONA Methylation	63
Bisulfite Sequencing (BS-Seq)	65
Post-Bisulfite Adapter Tagging (PBAT)	70
Tagmentation-Based Whole Genome Bisulfite Sequencing (T-WGBS)	72
Oxidative Bisulfite Sequencing (oxBS-Seq)	73
Tet-Assisted Bisulfite Sequencing (TAB-Seq)	74
Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq)	76
Methylation-Capture (MethylCap) Sequencing or	79
Methyl-Binding-Domain-Capture (MBDCap) Sequencing	79
Reduced-Representation Bisulfite Sequencing (RRBS-Seq)	81
DNA-Protein Interactions	83
DNase I Hypersensitive Sites Sequencing (DNase-Seq)	85
MNase-Assisted Isolation of Nucleosomes Sequencing (MAINE-Seq)	88
Chromatin Immunoprecipitation Sequencing (ChIP-Seq)	91
Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-Seq)	94
Assay for Transposase-Accessible Chromatin Sequencing (ATAC-Seq)	96
Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET)	97
Chromatin Conformation Capture (Hi-C/3C-Seq)	99
Circular Chromatin Conformation Capture (4-C or 4C-Seq)	101
Chromatin Conformation Capture Carbon Copy (5-C)	104

Sequencing Methods Review

CROSSLINKING, LIGATION, AND SEQUENCING OF HYBRIDS (CLASH-SEQ)

Crosslinking, ligation, and sequencing of hybrids (CLASH-Seq) maps RNA-RNA interactions¹⁸. In this method RNA-protein complexes are UV crosslinked and affinity-purified. RNA-RNA hybrids are then ligated, isolated, and reverse-transcribed to cDNA. Deep sequencing of the cDNA provides high-resolution chimeric reads of RNA-RNA interactions.

Pros
 Maps RNA-RNA interactions
 Performed in vivo
 Cons
 Hybrid ligation may be difficult between short RNA fragments

CHROMATIN ISOLATION BY RNA PURIFICATION (CHIRP-SEQ)

Chromatin isolation by RNA purification (ChIRP-Seq) is a protocol to detect the locations on the genome where non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), and their proteins are bound⁷. In this method, samples are first crosslinked and sonicated. Biotinylated tiling oligos are hybridized to the RNAs of interest, and the complexes are captured with streptavidin magnetic beads. After treatment with RNase H the DNA is extracted and sequenced. With deep sequencing the lncRNA/protein interaction site can be determined at single-base resolution.

Pros Binding sites can be found anywhere on the genome New binding sites can be discovered Specific RNAs of interest can be selected Nonspecific oligo interactions can lead to misinterpretation of binding sites Chromatin can be disrupted during the preparation stage The sequence of the RNA of interest must be known

INDIVIDUAL NUCLEOTIDE RESOLUTION CLIP (ICLIP)

Individual nucleotide resolution CLIP (iCLIP) maps protein-RNA interactions similar to HITS-CLIP and PAR-CLIP¹⁵. This approach includes additional steps to digest the proteins after crosslinking and to map the crosslink sites with reverse transcriptase. In this method specific crosslinked RNA-protein complexes are immunoprecipitated. The complexes are then treated with proteinase K, as the protein crosslinked at the binding site remains undigested. Upon reverse transcription, cDNA truncates at the binding site and is circularized. These circularized fragments are then linearized and PCR-amplified. Deep sequencing of these amplified fragments provides nucleotide resolution of protein-binding site.

Pros Cons					
 Nucleotide resolution of protein-binding site Avoids the use of nucleases Amplification allows the detection of rare events 	 Antibodies not specific to target will precipitate nonspecific complexes Non-linear PCR amplification can lead to biases affecting reproducibility Artifacts may be introduced in the circularization step 				

BISULFITE SEQUENCING (BS-SEQ)

EpiGnome Methyl-Seq

Pros Cons

BS-Seq or WGBS

- CpG and non-CpG methylation throughout the genome is covered at single-base resolution
- · 5mC in dense, less dense, and repeat regions are covered
- Bisulfite converts unmethylated cytosines to thymidines, reducing sequence complexity, which can make it difficult to create alignments
- NPs where a cytosine is converted to thymidine will be missed upon bisulfite conversion
- Bisulfite conversion does not distinguish between 5mC and 5hmC

EpiGnome

- · Pre-library bisulfite conversion
- Low input gDNA (50 ng)
- · Uniform CpG, CHG, and CHH coverage
- · No fragmentation and no methylated adapters
- · Retention of sample diversity

- Bisulfite converts unmethylated cytosines to thymidines, reducing sequence complexity, which can make it difficult to create alignments
- SNPs where a cytosine is converted to thymidine will be missed upon bisulfite conversion
- Bisulfite conversion does not distinguish between 5mC and 5hmC
- · Higher duplicate percentage

RIBOSOME PROFILING SEQUENCING (RIBO-SEQ)/ARTSEQ™

Active mRNA Translation Sequencing (ARTseq), also called ribosome profiling (Ribo-Seq), isolates RNA that is being processed by the ribosome in order to monitor the translation process¹⁰. In this method ribosome-bound RNA first undergoes digestion. The RNA is then extracted and the rRNA is depleted. Extracted RNA is reverse-transcribed to cDNA. Deep sequencing of the cDNA provides the sequences of RNAs bound by ribosomes during translation. This method has been refined to improve the quality and quantitative nature of the results. Careful attention should be paid to: (1) generation of cell extracts in which ribosomes have been faithfully halted along the mRNA they are translating in vivo; (2) nuclease digestion of RNAs that are not protected by the ribosome followed by recovery of the ribosome-protected mRNA fragments; (3) quantitative conversion of the protected RNA fragments into a DNA library that can be analyzed by deep sequencing¹¹. The addition of harringtonine (an alkaloid that inhibits protein biosynthesis) causes ribosomes to accumulate precisely at initiation codons and assists in their detection.

Pros

- Reveals a snapshot with the precise location of ribosomes on the RNA
- Ribosome profiling more closely reflects the rate of protein synthesis than mRNA levels
- · No prior knowledge of the RNA or ORFs is required
- The whole genome is surveyed 18/06/2019
- · Can be used to identify protein-coding regions

- Initiation from multiple sites within a single transcript makes it challenging to define all ORFs
- Does not provide the kinetics of translational elongation

BU-ISCIII 11

RNA IMMUNOPRECIPITATION SEQUENCING (RIP-SEQ)

RNA immunoprecipitation sequencing (RIP-Seq) maps the sites where proteins are bound to the RNA within RNA-protein complexes¹². In this method, RNA-protein complexes are immunoprecipitated with antibodies targeted to the protein of interest. After RNase digestion, RNA covered by protein is extracted and reverse-transcribed to cDNA. The locations can then be mapped back to the genome. Deep sequencing of cDNA provides single-base resolution of bound RNA.

Pros Cons

- Maps specific protein-RNA complexes, such as polycombassociated RNAs
- Low background and higher resolution of binding site due to RNase digestion
- No prior knowledge of the RNA is required
- Genome-wide RNA screen

- Requires antibodies to the targeted proteins
- Nonspecific antibodies will precipitate nonspecific complexes
- Lack of crosslinking or stabilization of the complexes may lead to false negatives
- RNase digestion must be carefully controlled

12

WHOLE-TRANSCRIPT AMPLIFICATION FOR SINGLE CELLS (QUARTZ-SEQ)

The Quartz-Seq method optimizes whole-transcript amplification (WTA) of single cells³⁵. In this method, a reverse-transcription (RT) primer with a T7 promoter and PCR target is first added to extracted mRNA. Reverse transcription synthesizes first-strand cDNA, after which the RT primer is digested by exonuclease I. A poly(A) tail is then added to the 3' ends of first-strand cDNA, along with a dT primer containing a PCR target. After second-strand generation, a blocking primer is added to ensure PCR enrichment in sufficient quantity for sequencing. Deep sequencing allows for accurate, high-resolution representation of the whole transcriptome of a single cell.

Pros Cons Single-tube reaction suitable for automation Digestion of RT primers by exonuclease I eliminates amplification of byproducts Amplification errors caused by polymerases will be represented and sequenced incorrectly Targets smaller than 500 bp are preferentially amplified by polymerases during PCR

EXOME Genomic DNA Introns Exons Fragmentation (100-300 bp), denaturation Binding to exon-specific, matrix-bound oligos Elution, sequencing, Construct shotgun library Hybridization bioinformatics Genomic DNA Fragments Pulldown 30-50 Mb **Human Exome** GACCTACATCAGTACATAG GCATGACAAAGCTAG Mapping, alignment,

Nature Reviews | Genetics 18/06/2019 BU-ISCIII

Captured DNA

DNA sequencing

variant calling

\$1000

Genoma, Exoma, Panel? desde

PANEL

- Barato y rápido
- Util en enfermedades monogénicas
- Datos mas manejables, análisis y almacenamiento

EXOMA

- Mas complejo y lento
- Necesario en enfermedades complejas
- Análisis mas complejo
- Mayor volumen de datos

GENOMA

- Maxima complejidad en secuenciación y coste
- Información de regiones no codificantes
- Análisis de variaciones estructurales
- Elevado volumen de datos

RNA seq

16

RNA seq

Conesa et al., Genome Biology (2016) 17:13

17

RNA seq: transcript identification strategies

Conesa et al., Genome Biology (2016) 17:13

RNA seq, ventajas

- A diferencia de microarrays no requiere conocimiento de la secuencia del genoma
- Bajo nivel de ruido (las lecturas se mapan correctamente)
- Cuantificación de los transcritos
- Identificación de nuevos transcritos
- Identificación de variaciones (SNPs)
- Disminución progresiva del coste
- Pipelines de análisis disponibles para organismos eucariotas

Secuenciación genomas, estar

Ladner et al., mbio May / June 2014, 5:3, e01360-14

Metataxonomics vs Metagenomics (16S vs Shotgun)

	Metagenetics	Metagenomics				
Amplified sequence	Marker regions	Whole genome				
Computing time	Usually short	Usually long				
Taxonomic composition	Yes	Yes				
New pathogen detection	No	Yes				
Genome coverage information	No	Yes				

Metataxonomics

Metataxonomics

Problemas:

- Raros en el genoma (< 0.1%)
- Los trozos similares dificultan el ensamblado correcto de lecturas pequeñas
- No todos los rRNA se amplifican en la misma medida con los primers universales
- Especies con diversas copias de sus genes rRNA
- No se conoce un umbral fijo de similitud que separe especies
- Tendencia a producirse quimeras en la PCR

Metataxonomics

Etapas:

- Filtrado
- ② Eliminación de quimeras y otras anomalías
- Formación de OTU
- 4 Identificación de los OTU con organismos en bases de datos

Algunos paquetes permiten llevar a cabo todo el proceso:

- mothur: http://www.mothur.org
- QIIME: http://qiime.org

Targeted metage the land of the state of the

QIIME WORKFLOW

Integrated pipeline of third-party tools

Navas-Molina et al., Methods in enzymology 2013, 531: 371-439

Taxonomy summary (i.e. phylum level)

26/06/2018 BU-ISCIII 26

Metagenómica, pipeline de

Lysholm et al., Plos One 2012:7,2, e30875

Metagenomic analysis approaches

Metagenomic analysis approaches

Metataxonomics vs Metagenomics (16S vs Shotgun)

Software	Organism	Genetic portion used		Binniı	ng algorithm	Genome	Novel	
		Genetic markers	Whole Genome	Clustering	Mapping	Assembly	coverage	pathogen discovery
Mothur	Bacteria	Х		Х			No	No
QIIME	Bacteria	Х		Х		Х	No	No
MEGAN	Bacteria		Х			Х	No	No
Platypus	Bacteria		Х		Х		No	No
SURPI	Virus		Х			Х	No	Yes
Virus-TAP	Virus		Х			Х	No	Yes
VIP	Virus		Х		Х		No	Yes
Pathosphere	Virus, Bacteria, Eukarya		Х			Х	No	Yes

This report is for reference Use Only. It has not been approved, cleared, or licensed by any regulatory authority. The user acknowledges no intended medical purpose or objective such as clinical diagnosis, patient management, or human clinical trials.

Metagenomic Analysis

Results report

		SUMMARY		PER SAMPLE	QUALITY ANALYSIS	WHAT	IS THIS?				
SRR2010685		SRR2010686 virus result	Reference Id	Reference name	Contig Id	% of identical	langth	Number of mismatches	Number of gap	alignment	
SRR2010686						matches	5		openings	s in query	in query
*	BACTERIA	Human adenovirus 2	AC_000007.1	Human adenovirus 2, complete genome	NODE_206_length_317_cov_8.08779	99.12	227	1	1	66	291
	VIRUS	Human adenovirus 5	AC_000008.1	Human adenovirus 5, complete genome	NODE_206_length_317_cov_8.08779	99.12	226	0	1	66	291
*	FUNGI	Simian adenovirus 21	AC_000010.1	Simian adenovirus 21, complete genome	NODE_245_length_28g_cov_3.17949	91.02	256	23	0	1	256
F	PROTOZOA	Simian adenovirus 21	AC_000010.1	Simian adenovirus 21, complete genome	NODE_345_length_215_cov_2.625	93.85	179	7	2	40	214
	INVERTEBRATE	Human adenovirus type 1	AC_000017.1	Human adenovirus type 1, complete genome	NODE_206_length_317_cov_8.08779	99.12	227	1	1	66	291
SRR2040553 SRR2040557		Human adenovirus type 7	AC_000018.1	Human adenovirus type 7, complete genome	NODE_228_length_302_cov_2.2996	100	302	0	0	1	302
JIII.254537		Human adenovirus type 7	AC_000018.1	Human adenovirus type 7, complete genome	NODE_245_length_28g_cov_3.17949	99.65	289	1	0	1	289
		Human adenovirus type 7	AC_000018.1	Human adenovirus type 7. complete genome	NODE_250_length_285_cov_1.8260g	96.68	241	8	0	45	285
		Human adenovirus type 7	AC_000018.1	Human adenovirus type 7, complete genome	NODE_130_length_317_cov_317473	98.42	317	5	0	1	317
		Human adenovirus type 7	AC_000018.1	Human adenovirus type 7. complete genome	NODE_308_length_241_cov_12.1237	98.46	130	2	0	112	241
		Human adenovirus type 7	AC_000018.1	Human adenovirus type 7, complete genome	NODE_345_length_215_cov_2.625	92.61	230	2	2	1	215
		Human adenovirus type 7	AC_000018.1	Human adenovirus type 7.	NODE_346_length_215_cov_2.1875	99.07	215	2	0	1	215

This report is for reference Use Only. It has not been approved, cleared, or licensed by any regulatory authority. The user acknowledges no intended medical purpose or objective such as clinical diagnosis, patient management, or human clinical trials.

Wiki page and Project code

https://github.com/BU-ISCIII

IMPACT OF MASSIVE SEQUENCING

Next Generation Sequencing (NGS) Market Size & Forecast By Application (Oncology, Reproductive Health), By Technology (Targeted, WGS, WES), By Workflow (Data Analysis), By end-use (Academic & Clinical Research), And Trend Analysis, 2014 - 2025

UK NGS market revenue, by technology, 2013 - 2024 (USD Million)

■ Targeted Sequencing & Resequencing ■ Whole Exon Sequencing ■ Whole Genome Sequencing

Global next generation sequencing market by applications, 2015 & 2025 (USD Million)

Precision Medicine workflow: from data to patient care

Gómez-López et al., Brief Bioinf 2017, 1-15

Clinical bioinformatics laboratory profile

EHR DATAMINING Programming Natural Language Processing Data mining techniques Statistics Databases Clinical fundamentals

BIG DATA SCIENTIST

Molecular Biology Multi-omics knowledge Scripting language Analysis algorithms Statistics Machine learning Clinical fundamentals

SOFT SKILLS

- · Collaborative with physicians
- · Passionate about patient's health care
- Problem solver
- Proactive
- Open-minded
- Communicative
- Teaching skills

CLINICAL BIOINFORMATICS TEAM

DATA INTERPRETATION

Molecular Biology Multi-omics knowledge Clinical Genetics Clinical fundamentals Clinical trials knowledge Genomic report

Programming
Data storage
Data security/Privacy
Scientific computing
Administration skills
Infrastructure maintenance

TOOLS & DATABASES Software development

GUIs & visualization design
Scripting language
Data integration
Parallel databases and parallel query processing
Statistical computing
Clinical fundamentals

Skills for Clinical Bioinformaticians

Box 1. Fundamental technical skills for clinical bioinformaticians

- 1. Informatics
- O Experience in UNIX command line.
- A basic programming language (i.e. Python). R as a useful language for handling statistics.
- O Knowledge of big data environments.
- 2. Life sciences
- O Understand the different types of biological data and databases.
- O Comprehend HTP data analysis methods.
- O Multi-omics data integration and interpretation.
- 3. Clinical scenario
- O Be familiar with EHRs, clinical terminology and medical procedures and protocols.
- $\ensuremath{\bigcirc}$ Get to know medical genomics: diagnosis, predictive and prognosis biomarkers.
- O Understand clinical trial design and monitoring.

Gómez-López et al., Brief Bioinf 2017, 1-15

Precision Medicine Workflow in Hospitals

Retos de la Bioinformática en NG

- Tecnología que evoluciona muy rápido nuevos formatos de ficheros nuevas aplicaciones nuevos análisis
- Coste de la secuenciación disminuye el embudo es el análisis de datos
- Adquisición de secuenciador debe ir ligado a la compra de computo y contratación de bioinformático

Coste actual de la secuenciación

Costes del almacenamiento vs se

Retos de la Bioinformática en NG

- Necesidades de computo ficheros de gran volumen (10Gb) elevado uso de CPU y/o memoria software no comercial en SO Unix
- Necesidades son dependientes de proyecto No es lo mismo secuenciar un genoma 500Gb que 50 genomas 25Tb
- Si el proyecto es la aplicación en clínica
 Las necesidades de almacenamiento aumentan por número de pacientes y por tiempo

18/06/2019 BU-ISCIII 46

Retos de la Bioinformática en NG

- Desarrollo de BD curadas (confianza = reference)
- Algoritmos que resuelvan el problema biológico planteado.
- Necesidades de Bioinformáticos Análisis de los datos

Softwares comerciales en Bioinfo

Table 1: Examples, features and comparisons of some commonly used commercial bioinformatics software suites

Software	Company	Cost (USD) ^a	Free trial (days)	Platform ^b	NGS analyses ^c	Evolutionary analyses ^d	Database searching ^e	Plug-ins	Workflows	Teaching suitability
Avadis NGS	Strand Scientific Intelligence	\$4500	20	M, W, L	√	×	×	×	✓	×
CLC Genomics Workbench	CIC bio, Qiagen	\$5500	30	M, W, L	✓	✓	✓	/	✓	1
CodonCode Aligner	CodonCode	\$720	30	M, W	✓	✓	×	×	×	1
Genamics Expression	Genamics	\$295	30	W	×	✓	✓	/	×	×
Geneious	Biomatters	\$795	14	M, W, L	/	✓	✓	1	✓	1
Full Lasergene Suite	DNASTAR	\$5950	30	M, W	✓	✓	✓	✓	✓	1
MacVector & Assembler	MacVector	\$300	21	M	✓	✓	✓	×	×	1
NextGENe	Softgenetics	\$4049	35	W	✓	×	×	×	×	×
Sequencher	Gene Codes	\$2500	30	M, W	✓	1	/	/	×	1
VectorNTI Advance	Life Technologies	\$600	30	W	×	✓	✓	×	/	1

Softwares en Bioinformática y N

- Tecnología que evoluciona muy rápido nuevos formatos de ficheros nuevas aplicaciones nuevos análisis nuevos algoritmos
- Software en continuo desarrollo (Unix)

Gracias por la atención Preguntas ???

Isabel Cuesta

Unidad de Bioinformática – Unidades Científico Técnicas - ISCIII

isabel.cuesta@isciii.es