

-1-

SEQUENCE LISTING

<110> AstraZeneca AB

5 <120> Chemical Compounds

<130> adeokun
ambrose
cresswell
dudley

10 cresswell
dudley

<140>

15 <160> 12

<170> PatentIn Ver. 2.1

20 <210> 1
 <211> 2452

<212> DNA
<213> Homo sapiens

25	<400> 1	gtggacttgt	tgcagttgct	gtaggattct	aaatccaggt	gattgttca	aactgagcat	60
	caacaacaaa	aacatttga	tgatatctat	atttcaatca	tggaccaaaa	tcaacatttgc		120
	aataaaaacag	cagaggcaca	accttcagag	aataagaaaa	caagatactg	caatggatttgc		180
	aagatgttct	tggcagctct	gtcaactcagc	tttatttgcata	agacactagg	tgcaatttatttgc		240
30	atggaaaagtgc	ccatcattca	tataaacccgg	agatttgaga	tatccttctc	tcttgggttgc		300
	tttatttgcgc	gaaagtttgc	aatttggaaat	ttgtcttgcata	ttgtattttgt	gagttactttgc		360
	ggatccaaac	tacatagacc	aaagtttatttgc	ggaatcggtt	gtttcattat	ggaaatttggat		420
	gggtttttgt	ctgcttgc	atatttcttgc	atgggatatttgc	acaggatttgc	taaagaaaacttgc		480
	aatatcaatttgc	catcagaaaa	ttcaacatcg	accttatcca	cttgcatttgc	taatcaatttgc		540
35	ttatcactca	atagagcatc	acctggagata	gtggggaaaag	gtgttttatttgc	ggaatcttgggc		600
	tcatacatgt	ggatatatgt	gttcatgggt	aatatgcctc	gtggaaatagg	ggagactccgc		660
	atagtaccac	tggggctttc	ttacatttgcata	gatttcgctc	aagaaggaca	tttttttttgc		720
	tatttaggttgc	tattgaatgc	aatagcaatgc	atgggtccaa	tcatttgcctt	taccctgggc		780
40	tctctgttttgc	ctaaaatgttgc	cgtggatatttgc	ggatatgttag	atctaagcac	tatcaggata		840
	actcttactgc	atttctcgat	ggtttggagat	ttgttgccttgc	atttcttgcgt	gtctggacttgc		900
	ttctccattttgc	tttcttccat	accattttttgc	ttcttgccttgc	aaactccaaa	taaaccacaa		960
	aaagaaaagaa	aaagtttcaat	gtcttgcatttgc	gtgttgcggaa	caaatttgcata	aaaggatcaat		1020
	acagctaatttgc	tgaccaatca	aggaaaaaaat	atattttttttgc	atgttgcatttgc	ttttttccat		1080
	tcttttttttgc	gcatccatttgc	taatccccctgc	tatgtttatgt	tttgcatttttgc	gacgttgcata		1140
45	caagtaagca	gcttatatttgc	tgcttttacttgc	tatgttcttca	aatacgtatgc	gcaacatgttgc		1200
	ggtcagcccttgc	catcttcaaggc	taacatcttgc	ttggggagttgc	taaccatacc	tattttttgcata		1260
	agtggaaatgt	tttttaggagg	atatatcatttgc	aaaaaaatttca	aacttgcacat	cgttggaaatttgc		1320
	gccaaatttcttgc	catgttttac	tgctgttgcata	tcatttgccttgc	tttacatttgc	atatttttttgc		1380
50	atactctgttgc	aaaacaaaatc	agtttgcggat	ctaaccatgcata	cctatgtatgg	aaataatccat		1440
	gtgacatctc	atagagatgt	accatttttgc	tatttgcatttgc	cagactgcaat	ttgttgcatttgc		1500
	agtcaatgggc	aaccatgttgc	tggaaacaaat	ggaatacttgc	acatcttgcacc	ctgtcttagca		1560
	ggtttgcatttgc	cttcaatgttgc	caataaaaaaaat	cctatgttgcata	tttacatttgc	cagtttgcatttgc		1620
	gaagtaacttgc	gtctccaggat	cagaaatttgcata	tcagccatttgc	ttgggttgcata	cccaagatgttgc		1680
	gatgttttgc	caaggaaatttgc	ttacttttttgc	gttgcatttgcata	aagtcttgcata	tttatttttttgc		1740
55	tctgcacttgc	gaggcacccat	acatgttgcata	ctgatttgcata	aaatttgcata	acttgcatttgc		1800
	aaatcacttgc	cacttgggttgc	ccactcaatgc	gttatacggat	cacttggagg	aatttgcatttgc		1860
	ccaaatattttgc	tttggggcttgc	gatttgcatttgc	acgttgcata	agtttgcacat	caacaactgttgc		1920
	ggcacacgttgc	ggtcatgttgc	gacatataat	tccacatcat	tttcaagggttgc	ctacttgggc		1980
	tttgttcttgc	tgtttaagat	cttcatcatttgc	ttttttatata	ttatattttat	ttatgttgcatttgc		2040
60	aaaaaaaaat	atcaagagat	agatattcaat	gtatcagaaaa	atggaaatgttgc	catggatgttgc		2100
	gcaaaacttgc	aatcatttttgc	aaaaaaaatttgc	catttttgcata	cttctgttgc	ggcagatgttgc		2160
	gaaacacatttgc	gtttaaggggat	gaaaaaaaaat	catttgcatttgc	tttgcatttgc	caaacatgttgc		2220
	tgcatttgcatttgc	cagtaagatgc	tttatttttgcata	ggagtttgcata	gtccttgcac	taagaattttgc		2280
	cacatcttttgc	atgggtggat	tataaataat	cctatgtatgcata	tataataaaaa	caaaactgttgc		2340
	gtagaaaaaaaat	tgagagatgttgc	catttgcatttgc	tatgttgcata	tatttgcatttgc	taaggttgcata		2400
65	ctatatgttgc	cataaaaaatttgc	aaagtggat	acatgggttgc	tgtgtatata	aa		2452

<210> 2
 <211> 691
 <212> PRT
 <213> Homo sapiens
 5
 <400> 2
 Met Asp Gln Asn Gln His Leu Asn Lys Thr Ala Glu Ala Gln Pro Ser
 1 5 10 15
 10 Glu Asn Lys Lys Thr Arg Tyr Cys Asn Gly Leu Lys Met Phe Leu Ala
 20 25 30
 Ala Leu Ser Leu Ser Phe Ile Ala Lys Thr Leu Gly Ala Ile Ile Met
 35 40 45
 15 Lys Ser Ser Ile Ile His Ile Glu Arg Arg Phe Glu Ile Ser Ser Ser
 50 55 60
 20 Leu Val Gly Phe Ile Asp Gly Ser Phe Glu Ile Gly Asn Leu Leu Val
 65 70 75 80
 Ile Val Phe Val Ser Tyr Phe Gly Ser Lys Leu His Arg Pro Lys Leu
 85 90 95
 25 Ile Gly Ile Gly Cys Phe Ile Met Gly Ile Gly Gly Val Leu Thr Ala
 100 105 110
 Leu Pro His Phe Phe Met Gly Tyr Tyr Arg Tyr Ser Lys Glu Thr Asn
 115 120 125
 30 Ile Asn Ser Ser Glu Asn Ser Thr Ser Thr Leu Ser Thr Cys Leu Ile
 130 135 140
 35 Asn Gln Ile Leu Ser Leu Asn Arg Ala Ser Pro Glu Ile Val Gly Lys
 145 150 155 160
 Gly Cys Leu Lys Glu Ser Gly Ser Tyr Met Trp Ile Tyr Val Phe Met
 165 170 175
 40 Gly Asn Met Leu Arg Gly Ile Gly Glu Thr Pro Ile Val Pro Leu Gly
 180 185 190
 Leu Ser Tyr Ile Asp Asp Phe Ala Lys Glu Gly His Ser Ser Leu Tyr
 195 200 205
 45 Leu Gly Ile Leu Asn Ala Ile Ala Met Ile Gly Pro Ile Ile Gly Phe
 210 215 220
 Thr Leu Gly Ser Leu Phe Ser Lys Met Tyr Val Asp Ile Gly Tyr Val
 50 225 230 235 240
 Asp Leu Ser Thr Ile Arg Ile Thr Pro Thr Asp Ser Arg Trp Val Gly
 245 250 255
 55 Ala Trp Trp Leu Asn Phe Leu Val Ser Gly Leu Phe Ser Ile Ile Ser
 260 265 270
 Ser Ile Pro Phe Phe Leu Pro Gln Thr Pro Asn Lys Pro Gln Lys
 275 280 285
 60 Glu Arg Lys Ala Ser Leu Ser Leu His Val Leu Glu Thr Asn Asp Glu
 290 295 300
 65 Lys Asp Gln Thr Ala Asn Leu Thr Asn Gln Gly Lys Asn Ile Thr Lys
 305 310 315 320
 Asn Val Thr Gly Phe Phe Gln Ser Phe Lys Ser Ile Leu Thr Asn Pro
 325 330 335

Leu Tyr Val Met Phe Val Leu Leu Thr Leu Leu Gln Val Ser Ser Tyr
 340 345 350
 5 Ile Gly Ala Phe Thr Tyr Val Phe Lys Tyr Val Glu Gln Gln Tyr Gly
 355 360 365
 Gln Pro Ser Ser Lys Ala Asn Ile Leu Leu Gly Val Ile Thr Ile Pro
 370 375 380
 10 Ile Phe Ala Ser Gly Met Phe Leu Gly Gly Tyr Ile Ile Lys Lys Phe
 385 390 395 400
 Lys Leu Asn Thr Val Gly Ile Ala Lys Phe Ser Cys Phe Thr Ala Val
 15 405 410 415
 Met Ser Leu Ser Phe Tyr Leu Leu Tyr Phe Phe Ile Leu Cys Glu Asn
 420 425 430
 20 Lys Ser Val Ala Gly Leu Thr Met Thr Tyr Asp Gly Asn Asn Pro Val
 435 440 445
 Thr Ser His Arg Asp Val Pro Leu Ser Tyr Cys Asn Ser Asp Cys Asn
 450 455 460
 25 Cys Asp Glu Ser Gln Trp Glu Pro Val Cys Gly Asn Asn Gly Ile Thr
 465 470 475 480
 Tyr Ile Ser Pro Cys Leu Ala Gly Cys Lys Ser Ser Ser Gly Asn Lys
 30 485 490 495
 Lys Pro Ile Val Phe Tyr Asn Cys Ser Cys Leu Glu Val Thr Gly Leu
 500 505 510
 35 Gln Asn Arg Asn Tyr Ser Ala His Leu Gly Glu Cys Pro Arg Asp Asp
 515 520 525
 Ala Cys Thr Arg Lys Phe Tyr Phe Val Ala Ile Gln Val Leu Asn
 530 535 540
 40 Leu Phe Phe Ser Ala Leu Gly Gly Thr Ser His Val Met Leu Ile Val
 545 550 555 560
 Lys Ile Val Gln Pro Glu Leu Lys Ser Leu Ala Leu Gly Phe His Ser
 45 565 570 575
 Met Val Ile Arg Ala Leu Gly Gly Ile Leu Ala Pro Ile Tyr Phe Gly
 580 585 590
 50 Ala Leu Ile Asp Thr Thr Cys Ile Lys Trp Ser Thr Asn Asn Cys Gly
 595 600 605
 Thr Arg Gly Ser Cys Arg Thr Tyr Asn Ser Thr Ser Phe Ser Arg Val
 610 615 620
 55 Tyr Leu Gly Leu Ser Ser Met Leu Arg Val Ser Ser Leu Val Leu Tyr
 625 630 635 640
 Ile Ile Leu Ile Tyr Ala Met Lys Lys Lys Tyr Gln Glu Lys Asp Ile
 60 645 650 655
 Asn Ala Ser Glu Asn Gly Ser Val Met Asp Glu Ala Asn Leu Glu Ser
 660 665 670
 65 Leu Asn Lys Asn Lys His Phe Val Pro Ser Ala Gly Ala Asp Ser Glu
 675 680 685
 Thr His Cys

690

```
<210> 4
<211> 200
40 <212> DNA
<213> Homo sapiens

<400> 4
45 gataactgcaa tggattgaag gttagaataag ttttatgttt tttagctaaa ataagtaaat 60
      agggaaacctt aatgtataga aaagcaagg tttaaaaaga acattatgtt tcaaattata 120
      attttcaattt gaagcatata ttgaaatattt aacataatga ttcatacctt gatttaaacc 180
      agtcttttaa tctgattaag 200
```

50 <210> 5
<211> 300
<212> DNA
<213> *Homo sapiens*

55 <400> 5
tgacggaaagc tttgaaaattt gtaacattt ttttctattt taataaccaa acttgc当地 60
ttaaaaaata tatatgcctt acaccactgg ttatcaactg gggtaaaattt atctctcaca 120
ggcaatttgg caataactaa aaacatttgc gggtgtcata actgc当地agg gggtggggc 180
aatggaaagtgc ctactggtat ctaaaaggtag aggtc当地gggg tactgctaaa tattctataaa 240
60 tgccacaaga atgatgtAAC tgaaaatgtt gatagtggagg atgttcagaa accctgattc 300

65 <210> 6
<211> 300
<212> DNA
<213> Homo sapiens

<400> 6

ccacatttct tcatgggata gtaagtgtta aaaaaaaaaaa aaacctctgt gccactatca 60
 gtaccttgta aattaggagt agaattttat tattatccct ttaaatagc agttacccctt 120
 tgagaagata cccactaagt gtgtacagaa atgaaatagt gtctatttgt ctacataatc 180
 attttattta tcgtagctt catacattt gaaataacaa aaagactaaa ctgttagagtt 240
 5 tcaaatgaaa taaataggct ttttatgaat ttttagtata acgtatatac tgtacgtctt 300

<210> 7
 <211> 300
 10 <212> DNA
 <213> Homo sapiens

<400> 7
 acctgagata gtggggaaag gtaagaatta atattgacag taaaaagtct tctaaaatgt 60
 15 atacatttaa ttacatctct aaaaattgtt gtgatattca ttagcaaaat ttaattaaga 120
 atgaatagga aaaacatttg actcttacag acataattat agtgttaata tacacagttc 180
 gcccattaac aacacaggtt taaactacgc gttttcactt ctatgcaaatt tttgtccatc 240
 tgaactggat gataaacctg ccggtaagaa tatctgacat tttctatatt tggattgaac 300

20 <210> 8
 <211> 200
 <212> DNA
 <213> Homo sapiens

25 <400> 8
 tagcagcata agaatggact aatacaccat attgtcaaag tttgcaaagt gaatataaat 60
 tacttgtact tgtaaattaa aaaaaataaa gtagaataat taagagttt caagtagttt 120
 aatttgtaat agaaaatgcta aaattaatgt taaaatgaa acactctctt atctacatag 180
 30 gttgttaaa ggaatctggg 200

<210> 9
 <211> 200
 35 <212> DNA
 <213> Homo sapiens

<400> 9
 tattggatat gtagatctaa gtaagtacaa ccagaacaag gtaccatgat aacgtcttc 60
 40 taagcacaca tgcggaaaac atttttcaa ataactgaat tcactcttc aatagtcctt 120
 tgcttaatat aatttagaaag ttacaagtag gaaataatg tattactaat cagaataaat 180
 ataaaatcca gtccttattt 200

45 <210> 10
 <211> 203
 <212> DNA
 <213> Homo sapiens

50 <400> 10
 tttttttttt ctttgcatt tcgtcatcat caaagcaaatt ttcttcataat aaagaaaaat 60
 tctttatcta ctttttctt tcccttttc tctgcttca ctttacttct tccttcctt 120
 ccccttctt gtcttttctt tctctctctc tcttttgcatt atatgtctat catatatttc 180
 cagaaataat ccagtgacat ctc 203

55 <210> 11
 <211> 201
 <212> DNA
 60 <213> Homo sapiens

<400> 11
 catgtcatgc tgattgttaa gtaagtatga cttttaaaaa cattttcata tgcatgagac 60
 tataaaacaca cctaatacgata tgcataatatt tacataatat actggaaattt caaatttcata 120
 65 tttcatcaaa tttaatattt ctgagaattt attttattaa aatttactat gaactctcaa 180
 ggctgttaattt aataattttt c 201

100135

-6-

<210> 12
<211> 200
<212> DNA
<213> Homo sapiens

5 <400> 12
tgatgggt cttttagatt tctaataatc ttttattttt ggttagatgca gaacaaaata 60
ataaaacgaat cctccaaatt ttgttaactt tatttaatca aaatataatca atgtggaata 120
tcatgcagtt acataaaaa tatgttcctt aaactgacat cttctttt cctattacag 180
10 gaggaattct agctccaata. 200

SEQUENCE LISTING

<110> ADEOKUN, ANTHONI MONISOLA
AMBROSE, HELEN JEAN
CRESSWELL, CARL JOHN
DUDLEY, ADAM JESTON

<120> CHEMICAL COMPOUNDS

<130> DJB/009901/0282795

<140> 09/925,731

<141> 2001-08-10

<150> 60/226,909

<151> 2000-08-23

<160> 12

<170> PatentIn Ver. 2.1

<210> 1

<211> 2452

<212> DNA

<213> Homo sapiens

<400> 1

gtggacttgt tgcagttgct gtaggattct aaatccaggt gattgttca aactgagcat 60
caacaacaaa aacatttgtt tgatatctat atttcaatca tggacaaaaa tcaacatttg 120
aataaaacag cagaggcaca accttcagag aataagaaaaa caagatactg caatggattg 180
aagatgttct tggcagctct gtcactcagc tttattgcta agacactagg tgcaattatt 240
atgaaaagtt ccatcattca tatagaacgg agatttgaga tattcttctc tcttgttgg 300
tttattgacg gaagcttta aattgaaaat ttgcttgtga ttgtattttt gatgtacttt 360
ggatccaaac tacatagacc aaagtttaatt ggaatcggtt gtttcattat ggaaatttgg 420
gggttttga ctgctttgcc acatttcttca atggatattt acaggtattt taaagaaaact 480
aatatcaatt catcagaaaaa ttcaacatcg accttatcca cttgttaat taatcaaatt 540
ttatcactca atagagcattt acctgagata gtggaaaaag gttgtttaaa ggaatctggg 600
tcatacatgtt ggtatatatgtt gttcatgggtt aatatgcttc gtggatagg ggagactccc 660
atagtaccac tggggctttt ttacattgtt gatttcgctt aagaaggaca ttcttcattt 720
tatttaggtt tattgaatgc aatagcaatg attggtccaa tcattggctt taccctgg 780
tctctgtttt ctaaaatgtt cgtggatattt ggtatatgtt atctaaggcac tatcaggata 840
actcctactg attctcgatgtt ggttggagct tgggtggctt atttcattttt gtctggacta 900
ttctccatta ttcttccat accattttt ttcttgcctt aaactccaaa taaaccacaa 960
aaagaaaagaa aagcttcact gtcttgcattt gtgtggaaa caaatgttca aaaggatcaa 1020
acagctaattt tgaccaatca agggaaaaat attaccaaaa atgtgactgg tttttccag 1080
tcttttaaaa gcatccttac taatccccgtt tatgttatgtt ttgtgtttt gacgttggta 1140
caagtaagca gctatattgg tgctttact tatgtcttca aatacgtaga gcaacagtat 1200
ggtcagcctt catctaaggc taacatcttta ttggggagtc taaccatacc tatttttgc 1260
agtggaatgtt ttttaggagg atatacattt aaaaaattca aactgaacac cggtggaaattt 1320
gccaatttctt catgttttac tgctgtgatgtt tcattgttctt ttacattt atattttttc 1380
atactctgtt aaaaacaaatc agttggccgga ctaaccatga cctatgtatgg aaataatcca 1440
gtgacatctc atagagatgtt accacattttt tattgtcaact cagactgcaat ttgtgtatgaa 1500
agtcaatggg aaccagtctg tggaaacaat ggaataactt acatctcacc ctgtctagca 1560
ggttgcaaattt cttcaagtggt caataaaaaag cctatagtgtt ttacaactg cagttgtttg 1620
gaagtaactg gtctccagaa cagaattac tcagcccatt tgggtgaatg cccaaagagat 1680
gtatgttca caaggaaattt ttactttttt gttgtcaatc aagtcttggaa ttatattttc 1740
tctgcacttgc gaggcacctc acatgtcatgtt ctgattgtta aaattgttca acctgaattt 1800
aaatcacttgc cactgggtt ccactcaatg gttatacggg cactaggagg aattcttagt 1860

ccaatatatt ttggggctct gattgataca acgtgtataa agtggtccac caacaactgt 1920
 ggcacacgtg ggtcatgtag gacatataat tccacatcat tttcaagggt ctacttggc 1980
 ttgtctcaa tgtaagagt ctcactcactt gttttatata ttatattaat ttatgcacatg 2040
 aagaaaaaat atcaagagaa agatataat gcatacagaaa atgaaagtgt catggatgaa 2100
 gcaaacttag aatccttaaa taaaaataaa cattttgtcc ctctctgtgg ggcagatagt 2160
 gaaacacatt gttaagggga gaaaaaaaaagc cacttctgtct tctgtgttcc caaacagcat 2220
 tgcattgatt cagtaagatg ttatTTTGA ggagttcctg gtcctttcac taagaatttc 2280
 cacatTTTT atggtggaaag tataaataag cctatgaact tataataaaa caaactgttag 2340
 gtagaaaaaa tgagagtaact cattgtacat tatagctaca tatttgtggt taaggtaga 2400
 ctatatgatc catacaaatt aaagttagag acatggttac tgttaataa aa 2452

<210> 2
<211> 691
<212> PRT
<213> Homo sapiens

<400> 2
Met Asp Gln Asn Gln His Leu Asn Lys Thr Ala Glu Ala Gln Pro Ser
1 5 10 15
Glu Asn Lys Lys Thr Arg Tyr Cys Asn Gly Leu Lys Met Phe Leu Ala
20 25 30
Ala Leu Ser Leu Ser Phe Ile Ala Lys Thr Leu Gly Ala Ile Ile Met
35 40 45
Lys Ser Ser Ile Ile His Ile Glu Arg Arg Phe Glu Ile Ser Ser Ser
50 55 60
Leu Val Gly Phe Ile Asp Gly Ser Phe Glu Ile Gly Asn Leu Leu Val
65 70 75 80
Ile Val Phe Val Ser Tyr Phe Gly Ser Lys Leu His Arg Pro Lys Leu
85 90 95
Ile Gly Ile Gly Cys Phe Ile Met Gly Ile Gly Gly Val Leu Thr Ala
100 105 110
Leu Pro His Phe Phe Met Gly Tyr Tyr Arg Tyr Ser Lys Glu Thr Asn
115 120 125
Ile Asn Ser Ser Glu Asn Ser Thr Ser Thr Leu Ser Thr Cys Leu Ile
130 135 140
Asn Gln Ile Leu Ser Leu Asn Arg Ala Ser Pro Glu Ile Val Gly Lys
145 150 155 160
Gly Cys Leu Lys Glu Ser Gly Ser Tyr Met Trp Ile Tyr Val Phe Met
165 170 175
Gly Asn Met Leu Arg Gly Ile Gly Glu Thr Pro Ile Val Pro Leu Gly
180 185 190
Leu Ser Tyr Ile Asp Asp Phe Ala Lys Glu Gly His Ser Ser Leu Tyr
195 200 205

Leu Gly Ile Leu Asn Ala Ile Ala Met Ile Gly Pro Ile Ile Gly Phe
 210 215 220

Thr Leu Gly Ser Leu Phe Ser Lys Met Tyr Val Asp Ile Gly Tyr Val
 225 230 235 240

Asp Leu Ser Thr Ile Arg Ile Thr Pro Thr Asp Ser Arg Trp Val Gly
 245 250 255

Ala Trp Trp Leu Asn Phe Leu Val Ser Gly Leu Phe Ser Ile Ile Ser
 260 265 270

Ser Ile Pro Phe Phe Leu Pro Gln Thr Pro Asn Lys Pro Gln Lys
 275 280 285

Glu Arg Lys Ala Ser Leu Ser Leu His Val Leu Glu Thr Asn Asp Glu
 290 295 300

Lys Asp Gln Thr Ala Asn Leu Thr Asn Gln Gly Lys Asn Ile Thr Lys
 305 310 315 320

Asn Val Thr Gly Phe Phe Gln Ser Phe Lys Ser Ile Leu Thr Asn Pro
 325 330 335

Leu Tyr Val Met Phe Val Leu Leu Thr Leu Leu Gln Val Ser Ser Tyr
 340 345 350

Ile Gly Ala Phe Thr Tyr Val Phe Lys Tyr Val Glu Gln Gln Tyr Gly
 355 360 365

Gln Pro Ser Ser Lys Ala Asn Ile Leu Leu Gly Val Ile Thr Ile Pro
 370 375 380

Ile Phe Ala Ser Gly Met Phe Leu Gly Gly Tyr Ile Ile Lys Lys Phe
 385 390 395 400

Lys Leu Asn Thr Val Gly Ile Ala Lys Phe Ser Cys Phe Thr Ala Val
 405 410 415

Met Ser Leu Ser Phe Tyr Leu Leu Tyr Phe Phe Ile Leu Cys Glu Asn
 420 425 430

Lys Ser Val Ala Gly Leu Thr Met Thr Tyr Asp Gly Asn Asn Pro Val
 435 440 445

Thr Ser His Arg Asp Val Pro Leu Ser Tyr Cys Asn Ser Asp Cys Asn
 450 455 460

Cys Asp Glu Ser Gln Trp Glu Pro Val Cys Gly Asn Asn Gly Ile Thr
 465 470 475 480

Tyr Ile Ser Pro Cys Leu Ala Gly Cys Lys Ser Ser Ser Gly Asn Lys
 485 490 495

Lys Pro Ile Val Phe Tyr Asn Cys Ser Cys Leu Glu Val Thr Gly Leu
 500 505 510

Gln Asn Arg Asn Tyr Ser Ala His Leu Gly Glu Cys Pro Arg Asp Asp
 515 520 525

Ala Cys Thr Arg Lys Phe Tyr Phe Phe Val Ala Ile Gln Val Leu Asn
 530 535 540

Leu Phe Phe Ser Ala Leu Gly Gly Thr Ser His Val Met Leu Ile Val
 545 550 555 560

Lys Ile Val Gln Pro Glu Leu Lys Ser Leu Ala Leu Gly Phe His Ser
 565 570 575

Met Val Ile Arg Ala Leu Gly Gly Ile Leu Ala Pro Ile Tyr Phe Gly
 580 585 590

Ala Leu Ile Asp Thr Thr Cys Ile Lys Trp Ser Thr Asn Asn Cys Gly
 595 600 605

Thr Arg Gly Ser Cys Arg Thr Tyr Asn Ser Thr Ser Phe Ser Arg Val
 610 615 620

Tyr Leu Gly Leu Ser Ser Met Leu Arg Val Ser Ser Leu Val Leu Tyr
 625 630 635 640

Ile Ile Leu Ile Tyr Ala Met Lys Lys Lys Tyr Gln Glu Lys Asp Ile
 645 650 655

Asn Ala Ser Glu Asn Gly Ser Val Met Asp Glu Ala Asn Leu Glu Ser
 660 665 670

Leu Asn Lys Asn Lys His Phe Val Pro Ser Ala Gly Ala Asp Ser Glu
 675 680 685

Thr His Cys
 690

<210> 3

<211> 1538

<212> DNA

<213> Homo sapiens

<400> 3

atgctctttg acctctgaaa atattggaga attttacaac tggcaccttt agtcaggat 60
 tataaagggtt gttagtttgt ttgtactgtt ttatcttcat tgtatataat atatatatta 120
 gtctccaaac atgttgatgt gtttcaatg aatggatgt ctgaggagaa aaccattagc 180
 ctgagaaaac ccaaactgtta ttcccattgt gaataaaaagg aagtccataa aaatgtatgga 240
 aaatgttctg cattcctgtt atgatatcaa aatctggcag tacatgaaaa ttttcaaag 300
 tgcttattta acaggcataa tctttggtct cctgagccag aatctgctgg gtatggact 360
 ggattgttat tttgacaact cgccagtaga ttcttactca gcagagtatt tggaaaggctt 420
 actctaataat ttggccttg ggtctacatt tctcagtttgcacagtcat tcttccctc 480
 tacactactc tttagtttgt ctcatgattc caatactctc aataattaac caagaataga 540
 actaatcaat cagataactg tggcacagac atcaaataca ttttgctgca accatatcaa 600
 caaatgtccc atgaatgata agggtaacc atattctcat atatgcattcc tcacattacc 660
 acatataatat atgtgcataat gtgtatacag gtaaaagtgt gtatataatgt atacatgtat 720
 gtttgtgtgt atatacatac atatatctc acactttct gaaatataa tatttatgtg 780
 agagaagggt ctgtacttta tttcagaaga gagcttaatg tccaaggat aattgagagt 840
 ctaaaatgtt ttagttattt aattaattaa acttcatctc tactcaagaa aacttttaac 900

tgagtttaagc tcttccttcc tccacaaggc aagtcaataa aaggaaaactg tgatattaat 960
 aattcttcc tgaaaaatgc taaagaatct atcgcataaa gcagtctaa ttttcatcat 1020
 tcagaaaaat ggtcttgcag ttaattggaa ctctcttatt ccaggtggta tctccagtct 1080
 ccatacatac cacgttagaa ccataacttat gtaccaagca aagagggtat attttaattt 1140
 ttaaatgcg atgttaacctg taggcattt ttttatttgc cttaaattat ttcctatgg 1200
 gaagttttaa atacctggaa taatttattt tactcatatt tttaaagaaa aaaatcttat 1260
 gccaccact taattgaata aacaagtaaa agccatccc aaaagtaagg ttacttggtt 1320
 aagattaaca aaaaataatgc tgagaattct gagaatata atctttaaat attggcaact 1380
 ggagtgaact cttaaacta acttaggttt atatgttga ctagagcaat gacataataa 1440
 ggtggtaat catcaactggaa cttgtttca aaaagccaac tacatttaaga ggaataaagg 1500
 tggttttttttgcgatgttgcgt gtaggattct aaatccag 1538

<210> 4
 <211> 200
 <212> DNA
 <213> Homo sapiens

<400> 4
 gatactgcaa tggattgaag gtagaataag ttttatgttt ttgagctaaa ataagtaaat 60
 agggaaacctt aatgtataga aaagcaagtt gttaaaaga acattatgtt tcaaattata 120
 atttcaattt gaagcatata ttgaaatattt aacataatga ttcataccctt gatttaaacc 180
 agtcttttaa tctgattaaag 200

<210> 5
 <211> 300
 <212> DNA
 <213> Homo sapiens

<400> 5
 tgacggaaagc tttgaaatttgc gtaacattta ttttcttattt taataaccaa acttgcaaag 60
 tttaaaaata tatatgctt acaccactgg ttatcaactg gggtaattt atctctcaca 120
 gccaatttgg caataactaa aaacattttgtt ggttgtcata actgcacagg ggttggggc 180
 aatggaaatgtt ctactggat ctaaaggtagt aggtcagggg tactgctaaa tattctataa 240
 tgcacaaaaga atgatgtaac tgaaaatgtt gatagtggg atgttcagaa accctgattc 300

<210> 6
 <211> 300
 <212> DNA
 <213> Homo sapiens

<400> 6
 ccacatttct tcattggata gtaagtgtt aaaaaaaaaaa aaacctctgt gccactatca 60
 gtaccttgcata aatttaggat agaattttat tattatccct ttaaataggc agttacctt 120
 tgagaagata cccactaagt gtgtacagaa atgaaatagt gtctatttgc ctacataatc 180
 attttaatttgcataactttt gaaataacaa aaagactaaa ctgttagagtt 240
 tcaaatgaaa taaataggct ttttatgttata acgtatatac tgtacgtctt 300

<210> 7
 <211> 300
 <212> DNA
 <213> Homo sapiens

<400> 7
 acctgagata gtggggaaaag gtaagaatataattgacag taaaaagtc tctaaaatgt 60

atacatttaa ttacatctct aaaaattgtt gtgatattca ttagcaaaat ttaattaaga 120
 atgaatagga aaaacatttgc actcttacag acataattat agtgttaata tacacagttc 180
 gcccattaac aacacaggtt taaactacgc gttttcactt ctatgcaaatt tttgtccatc 240
 tgaactggat gataaacctg ccggtaaagaa tatctgacat ttcttatatt tggattgaac 300

<210> 8
<211> 200
<212> DNA
<213> Homo sapiens

<400> 8
tagcagcata agaatggact aatacaccat attgtcaaaag tttgcaaaagt gaatataaaat 60
tacttgtact tgtaaattaa aaaaaaataa gtagaataat taagagttt caagtagttt 120
aatttgtaat agaaatgcta aaattaatgt ttaaaatgaa acactctt atctacatag 180
gttggtaaaa ggaatctggg 200

<210> 9
<211> 200
<212> DNA
<213> Homo sapiens

<400> 9
tattggatat gtagatctaa gtaagtacaa ccagaacaag gtaccatgat aacgtcttc 60
taagcacaca tgcgaaaaac atttttcaa ataactgaat tcactcttc aatagtcctt 120
tgcttaatat aatttagaaaag ttacaagtag gaaataaaatg tattactaat cagaataaaat 180
ataaaatcca gtccttattt 200

<210> 10
<211> 203
<212> DNA
<213> Homo sapiens

<400> 10
ttaaaaaaaaa cttgccatt tgcgtcatcat caaagcaaatt ttcttcataaa aaaaaaaaaat 60
tctttatcta ctttttctt tcccttttc tctgcttca ctttacttct tccttcctt 120
cccccttttgc ttctctctc ttcttttgc atatgtctat catatatttc 180
cagaaataat ccagtgcacat ctc 203

<210> 11
<211> 201
<212> DNA
<213> Homo sapiens

<400> 11
catgtcatgc tgattgttaa gtaagtatga cttttaaaaa cattttcata tgcatgagac 60
tataaacaca cctaatttata tgcattttt tacataatat actggaaatt caaatttcata 120
tttcatcaaa tttaattttt ctgagaattt cttttattaa aatttactat gaactctcaa 180
ggctgttaattt aataattttt c 201

<210> 12
<211> 200
<212> DNA
<213> Homo sapiens

<400> 12
tgatTTgggt ctttgagatt tctaataatc tttattattg gtagatgca gaacaaaata 60
ataaacgaat cctccaaatt tttgaactt tatttaatca aaatatataatca atgtggaata 120
tcatgcagtt acatTTaaaa tatgttccct aaactgacat cttctttct cctattacag 180
gaggaattct agctccaata 200