Final Exam - Dec 2020 MA 3140: Statistical Inference

Total time: 3 hours

Total marks: 50

All questions are compulsory.

Q 1. [3+5 marks] Let $X_1, X_2, X_3 \stackrel{i.i.d.}{\sim} Bernoulli(p)$.

- (i) Is $T(\mathbf{X}) = (X_1 + X_2, X_3)$ a sufficient statistic for p?
- (ii) Is it also a minimal sufficient statistic for p?
- **Q 2.** [4+2+2 marks] Let X_1, \ldots, X_n be a random sample from $N(\theta, 1)$. Define $W(\boldsymbol{X}) = \frac{1}{2}(X_1 + X_2)$ and $T(\boldsymbol{X}) = X_1$.
 - (i) Is $\phi(T) = E(W|T)$ unbiased for θ ?
 - (ii) Given that W is an unbiased estimator for θ , compare the variances of $\phi(T)$ and W.
 - (ii) Is $\phi(T)$ an estimator? Give justification.
- **Q 3.** [4+4 marks] Let X is a uniform random sample from $\{1, \dots, \theta\}$.
 - (i) When $\theta \in \Omega = \mathbb{N}$, check whether T(X) = X is a complete statistic.
 - (ii) When $\theta \in \Omega = \mathbb{N} \{n\}$, check whether T(X) = X a complete statistic.
- ${\bf Q}$ 4. [5 marks] Consider the following family of distributions:

$$\mathcal{P} = \{ P_{\lambda}(X = x) : P_{\lambda}(X = x) = \frac{\lambda^{x} e^{-\lambda}}{x!}; x = 0, 1, 2, \dots, \infty; \lambda = 1 \text{ or } 2 \}.$$

This is a Poisson family with λ restricted to be 1 or 2. Show that the family \mathcal{P} is not complete.

Q 5. [5 marks] Let X_1, \ldots, X_n be a random sample from $U(0, \theta)$. Use Basu's Theorem to find

$$E\left[\frac{X_{(1)}}{X_{(n)}}\right].$$

- **Q 6.** [4+3+3 marks] Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} Bernoulli(\theta)$, where n=5. For testing $H_0: \theta \leq 0.5$ vs $H_1: \theta > 0.5$, two tests T_1 and T_2 are proposed, where
 - T_1 rejects H_0 if, and only if, all success are observed.
 - T_2 rejects H_0 if, and only if, 3 or more success are observed.

For T_1 and T_2 ,

- (i) find the power functions.
- (ii) compare the maximum probability of making Type I error.
- (iii) compare the probability of making Type II error if $\theta = 2/3$.
- **Q 7.** [6 marks] A random sample X_1, \ldots, X_n is drawn from a Pareto population with pdf

$$f(x; \theta, \nu) = \frac{\theta \nu^{\theta}}{x^{\theta+1}} I_{[\nu, \infty)}(x), \ \theta > 0, \nu > 0.$$

Show that the LRT of

$$H_0: \theta = 1$$
 vs. $H_a: \theta \neq 1$

has rejection region of the form $\{x: T(x) \le c_1 \text{ or } T(x) \ge c_2\}$ where $0 < c_1 < c_2$ and

$$T = \log \left[\frac{\prod_{i=1}^{n} X_i}{(X_{(1)})^n} \right].$$