Lagrangian density	$-\frac{1}{3}t_{1} \omega_{i}^{\alpha \prime} \omega_{\kappa \alpha}^{\ \ \kappa} + \frac{2}{3}t_{3} \omega_{i}^{\alpha \prime} \omega_{\kappa \alpha}^{\ \ \kappa} - t_{1} \omega_{i}^{\ \kappa \lambda} \omega_{\kappa \lambda}^{\ \prime} + r_{1} \partial_{i} \omega^{\kappa \lambda}_{\ \kappa} \partial^{\prime} \omega_{\lambda}^{\alpha} -$	$\frac{2}{3} r_1 \partial^\beta \omega^{\theta \alpha}_{ \alpha} \partial_\theta \omega_{\alpha\beta}^{ \kappa} - \frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} +$	$r_1\partial_{lpha}\omega_{\lambda}^{\ \ lpha}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ - $r_1\partial_{ heta}\omega_{\lambda}^{\ \ lpha}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ + $r_1\partial_{lpha}\omega_{\lambda}^{\ \ lpha}\partial_{\kappa}\omega^{\kappa\lambda heta}$ -	$2 r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - \frac{1}{2} t_1 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\alpha}^{\ \theta} -$	$\frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\ \ \kappa} \partial^{\kappa} f_{\alpha \lambda} + \frac{1}{3} t_1 \omega_{\kappa \alpha}^{\ \ \alpha} \partial^{\kappa} f'_{\ \ \prime} - \frac{2}{3} t_3 \omega_{\kappa \alpha}^{\ \ \alpha} \partial^{\kappa} f'_{\ \ \prime} + \frac{1}{3} t_1 \omega_{\kappa \lambda}^{\ \ \lambda} \partial^{\kappa} f'_{\ \prime} -$	$\frac{2}{3}t_3\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{2}{3}t_1\;\partial^{\alpha}f_{\;\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{4}{3}t_3\;\partial^{\alpha}f_{\;\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{1}{3}t_1\;\partial_{\kappa}f^{\lambda}_{\;\;\lambda}\partial^{\kappa}f'_{\;\;\prime}+$	$\frac{2}{3} t_3 \partial_{\kappa} f^{\lambda}_{\ \ \lambda} \partial^{\kappa} f'_{\ \ \ } + 2 t_1 \omega_{{}_{{}_{{}_{\!$	$\frac{1}{3}t_1\;\omega_{_{I}\lambda}^{\lambda}\;\partial^{\kappa}f_{\kappa}^{\kappa}+\frac{2}{3}t_3\;\omega_{_{I}\lambda}^{\lambda}\;\partial^{\kappa}f_{\kappa}^{\kappa}+\frac{1}{2}t_1\;\partial^{\alpha}f_{\kappa}^{\lambda}\;\partial^{\kappa}f_{\lambda\alpha}^{\alpha}+\frac{1}{2}t_1\;\partial_{\kappa}f_{\lambda}^{\beta}\;\partial^{\kappa}f_{\lambda}^{\beta}+$	$\frac{1}{2}t_1\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta} - \frac{1}{3}t_1\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} + \frac{2}{3}t_3\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} +$	$rac{2}{3} r_1 \partial_{\kappa} \omega^{lphaeta heta} \partial^{\kappa} \omega_{lphaeta heta}^{-rac{2}{3}} r_1 \partial_{\kappa} \omega^{ hetalphaeta} \partial^{\kappa} \omega_{lphaeta heta}^{+rac{2}{3}} r_1 \partial^{eta} \omega_{lphaeta}^{\ lpha\lambda} \partial_{\lambda} \omega_{lphaeta}^{\ \prime}^{-}$	$rac{8}{3} r_1 \partial^{eta} \omega_{,}{}^{\lambda lpha} \partial_{\lambda} \omega_{lpha eta}{}^{\prime} - r_1 \partial_{lpha} \omega_{\lambda}{}^{lpha} \partial^{\lambda} \omega^{ heta \kappa}{}^{+} + r_1 \partial_{ heta} \omega_{\lambda}{}^{lpha} \partial^{\lambda} \omega^{ heta \kappa}{}^{\kappa}$	Added source term: $\left f^{lphaeta} \ au_{lphaeta} + \omega^{lphaeta\chi} \ \sigma_{lphaeta\chi} ight $
											710	

$\sigma_{1}^{\#1}\alpha\beta$	$\sigma_{1+lphaeta}^{\#2}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^-\alpha}^{\#1}$	$\sigma_{1^{-}\alpha}^{\#2}$	${\mathfrak l}_{1^-}^{\#1}{}_{lpha}$	$ au_1^{\#2}$
0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
0	0	0	0	0	0	0
0	0	0	$\frac{2ik(t_1-2t_3)}{3t_1t_3+6k^2t_1t_3}$	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$

i √2 k $-\frac{1}{(1+2k^2)^2t_3}$

 $\frac{2k^2}{(1+2k^2)^2t_3}$

0

0

0

0

$\tau_{0}^{\#2}$ $\sigma_{0}^{\#1}$					#	1	1	Ж	m	m	2	16	
- 3	0	0		nts			(0 == χ		0 == _θ .	$\alpha \beta == 0$		
	0	0		Source constraints	bs		$\tau_0^{\#1} - 2 i k \sigma_0^{\#1} == 0$	$\tau_1^{\#2^\alpha} + 2ik\sigma_1^{\#2^\alpha}$		$\tau_{1}^{\#1}\alpha\beta + \bar{\imath}k\sigma_{1}^{\#2}\alpha\beta == 0$	$-2ik\sigma_2^{\#1}\alpha\beta$		
	0	0		e co	irre	0	ikσ	+ 2 <i>i</i>	0 ==	+ 1 /		:#	
	0	$-\frac{1}{t_1}$		Sourc	SO(3) irreps	$\tau_{0}^{\#2} == 0$	$\tau_{0}^{\#1}$ - 2	${\mathfrak r}_1^{\#2\alpha}$	$\tau_{1}^{\#_1\alpha}$	$\tau_1^{\#1} \alpha \beta$	$\tau_2^{\#1}\alpha\beta$	Total #:	

 $\omega_{2^{-}}^{\#1} \alpha eta \chi$

 $f_{2}^{\#1}\alpha\beta$

0

<u>t1</u>

0

0

0

	•	•	
) 	F	$r_1 < 0 & t_1$	Unitarity conditions
0		> 0	onditions

	Massive particl	е
?	Pole residue:	$-\frac{1}{r_1} > 0$
	Polarisations:	5
	Square mass:	$-\frac{t_1}{2r_1} > 0$
	Spin:	2
	Parity:	Odd

(No massless particles)