Přenos dat, počítačové sítě a protokoly Sítě peer-to-peer (P2P)

Ing. Petr Matoušek, PhD., M.A.

Fakulta informačních technologií VUT v Brně

matousp@fit.vutbr.cz

Sociologický experiment Problém malého světa (The Small-World Problem)

- Studie amerického psychologa Stanleyho Milgrama z roku 1967 [1].
- Výzkumné otázky:
 - Jaké je pravděpodobnost, že dva náhodně vybraní lidé na světě se znají?
 - Pokud se neznají osobně, před kolik známých je lze propojit?

Jinak řečeno, jak dlouhý by byl řetězec X-a-b-c...-y-Z pro projení X a Z?

Hypotéza: Existuje vůbec nějaká matematické struktura ve společnosti?

- Důsledek zajímavý pro různé obory: historii, sociologii, komunikaci, biologii a další.
- Např. historikové Henri Pirenne a George Duby se domnívají, že po pádu Říše římské byla na období cca 400 let přerušena komunikace mezi tehdejšími městy západní Evropy, čímž došlo k růstu izolace místních komunit a odlišnému vývoji.
- ⇒ Pokud určitá (skrytá) matematická struktura ve společnosti existuje, může hrát významnou roli ve vývoji a komunikaci.

Jiná formulace problému malého světa

- Mějme universum, které obsahuje cca 200 miliónů bodů (obyvatel USA v r. 1960).
- Přes kolik mezilehlých uzlů můžeme vytvořit nejkratší cestu mezi dvěma libovolnými uzly?
- Cestu hledáme pouze na základě lokálních znalostí (není globální směrování).

Může to fungovat? (dva pohledy)

- Dva libovolní lidé X a Z kdekoliv na světě mohou být propojeni přes relativně malý počet známých.
- Existují nepřekonatelné propasti mezi různými skupinami ve světě. Nelze propojit dva lidi přes okruh známých, neboť jejich okruhy známých nemusí mít průnik.
- Teoretické studie na MIT (Pool, Kochen)
- Obvykle má člověk cca 500 známých. Pravděpodobnost, že se znají dva Američané je 1:200,000. ⇒ Jak to ale ověřit v praxi?

Pohled 1: Propojení přes prostředníky existuje

Pohled 2: Propojení neexistuje kvůli chybějícím vazbám

Milgramův experiment (výzkumný grand Harwardu, 680 USD)

- Úkolem je doručit dopis příteli v městě Sharon, Massachusetts.
- Odesilatelem je 160 náhodně vybraných lidí z města Omaha, Nebraska.
- Dopis lze předávat pouze osobně skrze známé, které znám křestním jménem.
- Odesilatelé mají dostatek znalostí o adresátovi
 - Jméno, kde bydlí, povolání, kde studoval, apod.
 - Dopis předávají pouze na základě svých vlastních znalostí, vazeb a priorit.
- Předávající budou posílat na Harvard potvrzující dopisy pro sledování cesty.

Výzkumné otázky

- Bude to vůbec fungovat? Dojde nějaký dopis k cíli?
- Kolik lidí bude potřeba pro nalezení adresáta?
- Jaká bude vzdálenost (v km) mezi jednotlivými předáními?

• Vzdálenost měst Sharon a Omaha je cca 2.322 km (asi jako Brno a Madrid)

Výsledek Milgramova experimentu

Průběh prvního experimentu (Nebraska Study)

- Celkem odesláno 160 dopisů
- K cíli došlo 44
- Některé skončily blízko cíle

Výsledky:

- Nejkratší řetězec: dva prostředníci
- Nejdelší řetězec: jedenáct prostředníků
- Medián cesty: pět prostředníků

In the Nebraska Study the chains varied from two to 10 intermediate acquaintances with the median at five.

- Malý svět → stačí pět prostředníků.
- John Guare: "Šest stupňů odloučení" (Six Degrees of Separation)

Výsledek Milgramova experimentu: další zajímavosti

Kansaský experiment (Kansas Study)

- Poměr předávání mezi muži a ženami
- Přátelé a příbuzní (123 : 22)
- 48% řetězců použili stejné poslední tři články.
- Vzdálenost se zkracuje směrem k cíli.

Female Female 56

Male Male 58

Female 18

Male Female 18

Závěr pro nás

- Jedinci, kteří používají pouze lokální informace, jsou velmi efektivní ve vytvoření nejkratší cesty mezi dvěma body v sociální síti.
- ightarrow Je možné najít efektivní směrování založené pouze na lokálních informacích.
- 2 Propojení mezi dvěma jedinci lze najít pomocí malé posloupnosti známých.

Aplikační otázky

- Existuje vždy takový řetězec spojující dva libovolné body?
- Existuje decentralizovaný algoritmus, který ho vždy najde?
- Jaká je časová náročnost výpočtu?
- Jon Kleinberg dokázal, že takový algoritmus existuje a stanovil podmínky pro jeho nalezení i hranice výpočtu, viz [2].

Obsah přednášky

- Sítě P2P
 - Základní popis
 - Definice
 - Vlastnosti
- Architektura sítí P2P
 - Referenční model
 - Směrování
 - Nestrukturované sítě
 - Strukturované sítě
- 3 Otázky a úkoly
- 4 Literatura

Sítě peer-to-peer (P2P)

Čím se liší P2P sítě od klasických sítí typu klient-server

- Jiná koncepce architektury ⇒ odlišná role uzlů
- Jiný způsob adresování ⇒ adresování obsahem
- Jiný způsob směrování ⇒ lokální rozhodování, specifická struktura sítí
- Další vlastnosti ⇒ decentralizovanost, samo-organizovatelnost

Co mají P2P sítě podobné s klasickými aplikačními službami?

- Vyžadují funkční IP infrastrukturu.
- Musí řešit adresování, směrování, zabezpečení a další.

Příklady sítí P2P

- Komunikace elektronických zařízení: Universal Plug-and-Play (UPnP), Bluetooth
- Sdílení objektů: Napster, Gnutella, KaZaA, eDonkey, BitTorrent
- Komunikace mezi uživateli: Skype, IM
- Sdílení výpočetního prostředí: seti@home, PlanetLab

Sítě peer-to-peer (P2P)

Základem každé sítě P2P je tzv. logická síť (overlay)

- Logická síť je postavená nad existující síťovou strukturou.
- Logická síť definuje způsob propojení uzlů, směrování, vyhledávání informací, apod.

Sítě peer-to-peer (P2P)

Definice sítě P2P

- Dynamický soubor nezávislých uzlů (peers), které jsou propojeny a jejichž zdroje (objekty) jsou k dispozici ostatním uzlům v této síti. [3, 4]
- Zdroje: výpočetní výkon, přenosové pásmo, disková kapacita, zařízení (tiskárny)
- Sdílené zdroje jsou přímo přístupné všem uzlům, ty je nabízejí a zároveň využívají.
- Síť obsahuje prostředky pro připojení uzlu k síti, hledávání a využití zdrojů, apod.

Typy sítí P2P

- Pravé sítě (Pure): odebrání libovolného uzlu ze sítě nemá vliv na ztrátu schopnosti sítě poskytovat služby.
- Hybridní sítě: pro svou činnost využívají centrální uzel pro poskytování části nabízených síťových služeb.
 - Centrální bod slouží k autentizaci, indexování, inicializaci uzlu, apod.

Vlastnosti sítí peer-to-peer

Samo-organizovatelnost

- Decentralizovaná topologie, kde uzly spolupracují na vytvoření a udržování.
- Každý uzel zodpovědný za svůj lokální stav a část informací (zdrojů).
- Uzly mají částečný pohled na topologii sítě: směrování na nejbližší sousedy.
- Podobně se chovají sítě MANET (Mobile Ad hoc Networks).

Autonomní chování (samořiditelnost)

- Uzly se chovají dle svého nejlepšího rozhodování (sdílení zdrojů vs. free-riders).
- Rozhodování je lokální a nepredikovatelné ⇒ má vliv na topologii sítě, směrování, rozmístění objektů.
- Uzly se mohou chovat zlomyslně.
- Problém s ověřování identity uzlů a důvěryhodností (decentralizované řízení).
- Možnost kolektivní zneužití zdrojů za špatným cílem.

Vlastnosti sítí peer-to-peer

Spolehlivost

- Spolehlivost sítě roste s redundancí uzlů a informací.
- Kopie objektů jsou umístěny ve více uzlech.

Životnost uzlu (churn rate)

- Doba života uzlu je krátká a neodhadnutelná → problém s garancí služby.
- Závisí na subjektivním lokální rozhodnutí.
- Má vliv na směrování a vyhledávání: rychlost odlivu zákazníků (churn rate) [5].

Vlastnosti sítí peer-to-peer

Srovnání s architekturou klient-server

	Klient – server	Peer-to-Peer	Výhody/nevýhody P2P
Směr provozu	Asymetrický	Symetrický	vs. xDSL, kabelový modem
Topologie sítě	Stabilní	Dynamická	Problém spolehlivosti
Robustnost	Centrální bod	Distribuce zdrojů	Kritický počet účastníků
Rozšiřitelnost	Náročné	Součást návrhu	Neomezený růst sítě
Bezpečnost	Velký důraz	Problematické	Chybí odpovědná autorita
Správa a řízení	Centralizovaný model	Každý uživatel spravuje vlastní uzel	Samo-organizovaná síť
Poskytované zdroje	Omezené možnosti	Dynamicky rostoucí počet zdrojů	Sdílení výpočetní prostoru, paměti, apod.
Kvalita služeb	Garantovaná	Nelze zajistit	Dynamicky se měnící

Architektura sítí P2P

Referenční model sítě P2P [6]:

- **1** Jmenný prostor \mathcal{I} (identifiers)
- 2 Množina uzlů P (peers)
- 3 Množina zdrojů R (resources)

- 4 Mapování zdrojů na identifikátory $F_R: R \mapsto \mathcal{I}$
- **6** Mapování uzlů na identifikátory $F_P: P \mapsto \mathcal{I}$
- Struktura logické sítě

Množina uzlů P zpřístupňuje zdroje R v rámci jmenného prostoru $\mathcal I$ pomocí mapování F_R a F_P . Mapovací funkce vytváří vazbu mezi zdroji a uzly pomocí metriky blízkosti.

Referenční model sítě P2P

Jmenný prostor ${\mathcal I}$

- ullet Prostor obsahuje metriku blízkosti (closeness) $d: \mathcal{I} imes \mathcal{I} \mapsto \mathcal{R}$
- Vlastnosti metriky:

$$\forall x, y \in \mathcal{I} : d(x, y) \ge 0$$
 (1)

$$\forall x \in \mathcal{I} : d(x,x) = 0$$
 (2)

$$\forall x, y \in \mathcal{I} : d(x, y) = 0 \Rightarrow x = y$$
 (3)

$$\forall x, y \in \mathcal{I} : d(x, y) = d(y, x)$$
 (4)

$$\forall x, y, z \in \mathcal{I}$$
 : $d(x, z) \leq d(x, y) + d(y, z)$ (5)

- Prostor (\mathcal{I}, d) se nazývá *metrický* při splnění podmínek (1) (5)
- Při splnění podmínek (1) (3) jde o pseudo-metrický prostor.
- ullet Jmenný prostor má vliv na adresování: každý uzel i zdroj obdrží identifikátor z \mathcal{I} .
- Metrika slouží pro lokalizaci a směrování požadavků.
- Metrika vede ke sdružování zdrojů a uzlů do klastrů podle blízkosti.

Referenční model sítě P2P

Mapování uzlů $F_P: P \Rightarrow \mathcal{I}$

- F_P přidělí uzlům jednoznačný identifikátor z \mathcal{I} .
- Každý uzel je zodpovědný za část jmenného prostoru (decentralizované řízení).
- Pro sousední uzly I_1 , I_2 , I_3 platí: $I_1 < I_2 < I_3$.
- Identifikátor může být odvozený z IP adresy či náhodný heš (např. SHA-1).

Mapování zdrojů $F_R: R \Rightarrow \mathcal{I}$

- Funkce F_R přidělí zdrojům identifikátor ze stejného jmenného prostoru \mathcal{I} .
- Způsob mapování je kritický pro úspěšné vyhledání zdrojů:
 - Sémantická blízkost zdrojů: podobné zdroje mají blízké identifikátory.
 - Rozložení identifikátorů má vliv na vytížení zdrojů.
- F_R se obvykle implementuje jako hešovací funkce \rightarrow generuje uniformní rozložení.

Referenční model sítě P2P

Decentralizovaná správa jmenného prostoru (identifikátorů) funkcí $\mathcal M$ (Management)

- ullet Funkce ${\mathcal M}$ definuje odpovědnost uzlů z P za konkrétní identifikátory, ${\mathcal M}: {\mathcal I} \mapsto 2^P$.
- Identifikátoru zdroje $i = F_R(r) \in \mathcal{I}$ je přidělena množina uzlů spravujících zdroj r:
 - Každý uzel p je zodpovědný za identifikátory $\mathcal{M}^{-1}(p)$.
 - Lokalizace zdroje r = vyhledání uzlu, který jej spravuje, tj. $\mathcal{M}(F_R(r))$.
 - ullet Vyhledání zdroje implementuje ${\cal M}$ na základě výběru cesty (tj. směrování).

Vlastnosti funkce \mathcal{M}

- ullet Funkce ${\mathcal M}$ může být úplná či parciální.
 - Parciální: identifikátory nemusí být vždy spojeny s nějakým uzlem.
 - Úplná (obvykle): každý identifikátor je zodpovědný za nějaký uzel.
- Stupeň replikace (kardinalita): M typicky obsahuje více než jeden prvek, tj. více uzlů je zodpovědných za jeden identifikátor.
- Identifikátory spojeny s nejbližšími uzly: $p \in \mathcal{M}(i) \Rightarrow d(F_p(p), i) = min_{q \in P} d(F_p(q), i)$.
- Dynamické chování: \mathcal{M} se dynamicky mění tak, jak se mění uzly.

Geometrie sítě a směrování

Struktura (geometrie) logické sítě P2P je popsána orientovaným grafem G = (P, E).

- Dynamické chování reprezentováno jako posloupnost grafů: $G_i(P_i, E_i), G_{i+1}(P_{i+1}, E_{i+1}), G_{i+2}(P_{i+2}, E_{i+2}), \ldots$
- Připojení uzlu p' (operace join):
 - Přidání uzlu, tj. $P_{i+1} = P_i \cup \{p'\}$
 - ullet Přidání hran, tj. $E_{i+1}=E_i\cup\{(p',m)\}\cup\{(n,p')\}$
- Odpojení uzlu p' (operace leave):
 - $P_{i+1} = P_i \{p'\}$
 - $E_{i+1} = \forall m, n : E_i \{(p', m)\} \{(n, p')\}$

Směrovací tabulka

Každý uzel obsahuje lokální směrovací tabulku $R_p(V_p, E_P) \subseteq G$, která je součástí globální konfigurace sítě. Tabulka obsahuje množinu sousedních uzlů a hran k nim.

- Pro množinu sousedních uzlů platí:
 - $V_p \subseteq V, \forall (p,q) \in E \implies q \in V_P \land \not\exists q \in V_p : (p,q) \in E.$
- Pro množinu hran platí: $E_p \subseteq E, \forall (p,q) \in E \implies (p,q) \in E_p$.

Směrování v sítích P2P

Různé typy topologií (geometrií) sítí P2P [7]

Topologie	Stupeň uzlu	Poloměr
de Bruijin	k	$log_k N$
Trie	k+1	2log _k N
Chord	log ₂ N	log ₂ N
CAN	2d	$\frac{1}{2}d.N.\frac{1}{d}$
Pastry	$(b-1)log_bN$	$\log_b N$
Classic butterfly	k	$2\log_k N(1-o(1))$

N: počet uzlů sítě, k: počet sousedů uzlu

Průměr topologií pro 10⁶ uzlů [7]

Stupeň k	de Bruijn	Trie	Chord	CAN	Pastry	Classic butterfly
2	20	-	-	huge	-	31
3	13	40	-	-	-	20
4	10	26	-	1,000	-	16
10	6	13	-	40	-	10
20	5	10	20	20	20	8
50	4	8	-	-	7	7
100	3	6	-	-	5	5

k: počet sousedů uzlu

Směrování v sítích P2P

Relace sousedství \mathcal{N} (neighborhood), tj. $\mathcal{N}: P \mapsto 2^P$

- Relace $\mathcal N$ popisuje strukturu sítě P2P, $\mathcal N(p)$ je množina sousedů.
- Důležitý je poloměr grafu (sítě uzlů):
 - Určujeme maximální vzdálenost mezi dvěma libovolným uzly grafu.

Směrování = předávání zprávy route(p,m,i) v síti P2P

- Hledáme cestu pro zprávu m směrovanou do uzlu p, který spravuje objekt i.
- Distribuovaný proces nalezení cesty v síti P2P na základě lokálních znalostí.
- Směrovací funkce $R: P \times I \mapsto 2^P$
 - Funkce vybere v každém uzlu p z množiny sousedů $\mathcal{N}(p)$ takový uzel q, který je nejblíže uzlu obsahujícímu objekt i, tj. $R(p,i) \in \mathcal{N}(p)$
 - Pro uzel q platí: $d(i, F_p(q)) < d(i, F_p(p))$ pro $q \in R(p, i)$

Chybí globální synchronizace směrování

Mohou vzniknout nekonzistence v lokální směrovací tabulce.

Směrování v sítích P2P

- Vzdálenost v P2P nemusí odpovídat vzdálenost fyzické.
- Efektivnější síť P2P využívá informace o fyzické blízkosti [8].

Fig. 1. (a) Illustration for locality-aware overlay and (b) randomly connected overlay.

Využívají poznatků ze sociálních sítí a malého světa

- Vyhledávání zdrojů probíhá tak, že kontaktujeme svou socální síť, která ví, kde informace je, nebo zná někoho, kdo tuto odpověď pozná.
- Watz a Strogatz zkoumali Milgramovu myšlenku "malého světa" na modelu náhodného grafu s malým průměrem [9]:
 - Využití sociálních vztahů při sdílení informací: bližší přátelé, zájmové skupiny
 - Každý uzel má své sousedy: využití tranzitivity

Vlastnosti

- Neexistuje struktura uložení informace: objekt je uložen v náhodně vybraném uzlu.
- Uzel si vyměňuje zprávy se svými sousedy:
 - Dotaz na vyhledání konkrétního objektu (zdroje)
 - Dotaz obsahuje například klíčové slovo, název souboru, apod.
- Nebezpečí zacyklení
 - Uzel obsahuje seznam identifikátorů zpráv, které zpracoval.
 - Využívá se hodnota TTL u zpráv.

1) Záplava (flooding)

- Uzel pošle dotaz všem svým sousedům
 - Pokud soused obsahuje objekt, pošle zpět odpověď
 - Pokud nemá objekt, pošle zprávu svým sousedům (tranzitivita)
- Záplavu je možné omezit pomocí TTL ve zprávě
- Využívá např. Gnutella

2) Rozšiřující se kruh (expanding ring)

- Podobné jako záplava. Pošlu dotaz na objekt s malým TTL.
 - Pokud objekt najdu, hledání končí.
 - Pokud objekt nenajdu, zvýším TTL a pošlu dotaz znovu.
- Redukuje počet zpráv v síti

3) Náhodný průchod (random walk)

- Zpráva poslána náhodně vybraným sousedům
 - Možné poslat více sousedům současně
 - Potřeba kontrolovat vybraného souseda: neposílat dotaz zpět

4) Hledání lokálního minima (Local Minimum Search, LMS) [10]

Definujme tento algoritmický problém:

- Máme množinu uzlů identifikovaných hodnotou x.
- Máme množinu objektů s identifikátorem w
 - Např. hash veřejného klíče, hash jména objektu
- Úkolem je umístit objekty do sítě uzlů tak, abychom je mohli najít rychle a spolehlivě, tj. jméno uzlu x by mělo být co nejblíže jménu ukládaného objektu w.

Princip hledání lokálního minima

- V nestrukturovaných sítích neexistuje mechanismus pro nalezení uzlu, který je nejbližší hledanému objektu.
- Místo globálního minima hledáme lokální minimum.
 - Uzly znají pouze své bezprostřední sousedy do vzdálenosti h kroků.
 - Neexistuje povědomí o globální topologii sítě.

Při hledání používáme metriku vzdálenosti uzlu x od objektu w: d(x,w)

Příklad

- Uzel u je lokálním minimem pro objekt, pokud je jeho ID nejbližší k ID objektu mezi jeho sousedy do vzdálenosti h kroků.
- Uzly jsou označeny vzdáleností d(x, w).

(a) 1-hop Neighborhoods

(b) 2-hop Neighborhoods

Algoritmus uložení objektu x

- 1 Uzel u vytvoří zprávu probe(u,w,walk-length,path) a pošle ji do sítě.
- 2 Síť procházíme náhodným průchodem, dokud walk-length > 0
- 3 Aktuální uzel v vypočítá d(x, v') pro všechny své sousedy v'.
- 4 Předá zprávu uzlu s nejmenší metrikou, dokud nenajde lokální minimum.

Algoritmus vyhledání objektu x

- Probíhá jako uložení objektu: posíláme zpráva search().
- Lokální minimum buď vrátí objekt nebo zprávu o chybě.
- Pokud není nalezen objekt, vysílající uzel pošle novou zprávu search(), která začíná náhodným průchodem.

Možnost nečekaného přesměrování dotazu

- Uzel 5 vidí uzel 3 jako svého souseda (h=2) a směruje mu zprávu.
- Uzel 21 zná lepší cíl a přepošle zprávu uzlu 53.

Porovnání směrovacích algoritmů u nestrukturovaných sítí P2P

- Metoda záplavy a metoda rozšiřujícího se kruhu
 - Jednoduchá implementace
 - Minimální paměťové i výpočetní nároky
 - Neefektivní, špatně rozšiřitelná
- Metoda náhodného průchodu
 - Hledání bez znalosti umístění objektu
 - Nalezení objektu může dlouho trvat
- Metoda lokálního minima
 - Přidává znalost: metriku vzdálenosti k objektu
 - Směrování podle jména objektu
 - Vyžaduje režii při hledání lokálních minim

Zhodnocení nestrukturovaných sítí:

- Neefektivní směrování, špatná lokalizace řídce se vyskytujících objektů.
- Směrování podle identifikátoru objektu (klíče).
- Příklady sítí: Napster, Gnutella, FastTrack, FreeNet, Gia, Tribler, INGA

Strukturované sítě

- Kombinují geometrické struktury a směrování.
- Využívají distribuované směrovací algoritmy:
 - Metriky: shoda prefixu, euklidovská či lineární vzdálenost, XOR, atd.
 - Velikost směrovací tabulku ovlivněna stupněm uzlů.

Příklad strukturované sítě Kademlia [11]

- Decentralizovaná, rozšiřitelná, samo-organizující se síť:
 - Každý uzel obsahuje informaci o dalších uzlech a souborech.
 - Identifikátory uzlů i souborů tvořeny jako 160bitový heš SHA-1.
 - Metriku blízkosti tvoří bitový XOR: $d(a, b) = a \oplus b$
- Pro směrování používá distribuovanou hešovací tabulku (DHT).
- Složitost vyhledání je $\mathcal{O}(logN)$, kde N je počet uzlů sítě.
- Složitost připojení či odpojení uzlů je $\mathcal{O}(\log^2 N)$.
- Používá se pro sdílení souborů v síti BitTorrent.

Struktura systému Kademlia

Jmenný prostor uzlů ⇒ binární strom

- Binární strom obsahuje známé sousedy (peers) daného uzlu.
- Strom je rozdělen na podstromy, které reprezentují celý stavový prostor.
- 1 až k uzlů z každého podstromu je uloženo do seznamu k-bucket v daném uzlu.
- Každý uzel v síti má směrovací tabulku.

Subtrees of interest for a node 0011.....

Kademlia: příklad směrovací tabulky

- Jmenný prostor o velikosti N = 32, k=3, délka ID je 5 bitů.
- Uzly ve stejném podstromu mají stejný prefix i stejnou vzdálenost od daného uzlu.
- Např. $d(2,3) = 2 \oplus 3 = 1, d(10 \oplus 2) = 8, d(22 \oplus 2) = 20, d(30 \oplus 2) = 28$, apod.

Node ID=2			
i	Interval	Peers	
1	[1, 2)	3	
2	[2, 4)	1	
3	[4, 8)		
4	[8, 16)	10	
5	[16, 32)	18, 22, 30	

k=3 je stupeň replikace

ullet Řádek i obsahuje uzly podstromu ve dané vzdálenosti $[2^i,2^{i+1})$ od daného uzlu.

Kademlia: vytváření směrovací tabulky

- Směrovací tabulka se aktualizuje dynamicky při příchodu zprávu od jiného uzlu.
- Pokud daný řádek obsahuje méně než k položek, přidá se nový uzel.
- Pokud je řádek plný, otestuje se dostupnost nejpozději přidaného uzlu. Pokud je nedostupný, nahradí se novým. Pokud je dostupný, nový uzel se do tabulky nepřidá. ⇒ preferují se starší kontakty.

Node ID=2			
i	Interval	Peers	
1	[1, 2)	3	
2	[2, 4)	1	
3	[4, 8)		
4	[8, 16)	10	
5	[16, 32)	18, 22, 30	

Komunikace v síti Kademlia

- PING(nodeID): kontroluje, zda daný uzel je připojen.
- STORE(fileID, nodeID): uloží do daného uzlu fileID a nodeID, který ho nabízí.
- FIND_NODE(nodeID): daný uzel vrátí nejbližší uzly k uzlu nodeID.
- FIND_VALUE(fileID): vrátí adresu uzlu obsahující soubor nebo seznam nejbližších

Činnost uzlu ID=2 při hledání obsahu s fileID=26, $\alpha = 2$.

- ① Uzel 2 vyhledá *k-bucket*: $d(2,26) = 2 \oplus 26 = 24$.
- Pošle dotaz na dva nejbližší uzly z {18,22,30}.
- Každý oslovený uzel prohledá svou tabulku.
- Uzel 30 vrátí odkaz na nejbližší uzel s nodelD=26.
- Uzel 2 vyhledá soubor s fileID=26.

Vlastnosti sítě BitTorrent

- P2P síť pro sdílení souborů.
- Síť využívá 160bitové identifikátory pro identifikaci uzlů (peer ID) i pro identifikaci sdílených souborů (info_hash).
- Více implementací: Mainline DHT (MLDHT), KAD, VUZE a další.
- Pro distribuci obsahu se využívá komunikace pomocí trackeru nebo distribuovaná hešovací tabulka DHT.

Komunikace pomocí trackerů.

- Swarm [roj] = množina uzlů zapojených do sdílení souboru.
- Tracker [stopař] = uzel, který udržuje seznam uzlů zapojených do distribuce daného souboru.
- Torrent [příval] = soubor s informacemi o sdílených souborech (či adresářích) a s odkazem na tracker.
- Protokol BitTorrent = aplikační protokol pro distribuci souborů (nad TCP).

Příklad souboru torrent pro OS Debian

d8:announce41:http://bttracker.debian.org:6969/announce7:comment35:"Debian CD from cdimage.debian.org"13:creationdatei1520682854e9:httpseedsl142: https://cdimage.debian.org/cdimage/release/9.4.0//srv/cdbuilder.debian.org /dst/deb-cd/weekly-builds/amd64/iso-dvd/debian-9.4.0-amd64-DVD-1.iso142: https://cdimage.debian.org/cdimage/archive/9.4.0//srv/cdbuilder.debian.org /dst/deb-cd/weekly-builds/amd64/iso-dvd/debian-9.4.0-amd64-DVD-1.isoe4: infod6:lengthi3977379840e4:name28:debian-9.4.0-amd64-DVD-1.iso12: piecelengthi1048576e6:pieces75880

Příklad komunikace BitTorrent [12]

Komunikace pomocí DHT [BEP 5]

- Decentralizovaný systém komunikace postavený na principu Kadmelia.
- Využívá aplikační protokol DHT nad UDP.
- Každý uzel obsahuje směrovací tabulku jmenného prostoru (0..2¹⁶⁰).
 - Tabulka rozdělena na řádky (k-buckets), kde k = 8.
 - Dostupnost uzlů se testuje každých 15 minut.
- Síť DHT tvoří uzly (nodes), které obsahují adresu peerů.
- Příkazy DHT: ping, find_node, get_peers, announce_peer

Příklad komunikace

```
get_peers Query = {"t":"aa", "y":"q", "q":"get_peers", "a":
{"id":"abcdefghij0123456789", "info_hash":"mnopqrstuvwxyz123456"}}
bencoded=d1:ad2:id20:abcdefghij01234567899:info_hash20:mnopqrstuvwxyz
123456e1:q9:get_peers1:t2:aa1:y1:qe
announce_peers Query = {"t":"aa", "y":"q","q":"announce_peer","a":{"id":"abcde34
56789", "implied_port": 1, "info_hash":"mnopqrstuvwxyz123456", "port": 6881}}
bencoded = d1:ad2:id20:abcdefghij012345678912:implied_porti1e9:info_hash20:mnop
uvwxyz1234564:porti6881e5:token8:aoeusnthe1:q13:announce_peer1:t2:aa1:y1:qe
```


Komunikace pomocí modifikované DHT

- PING: testování dostupnosti uzlu. Nedostupný uzel je vyřazen ze směrovací tabulky.
- FIND_NODE: hledání nejbližších k-uzlů na základě metriky blízkosti.
- GET_PEERS: Pro zadaný info_hash hledá množinu nejbližších uzlů.
- ANNOUNCE_PEER: uzel oznamuje, že patří do množiny swarm pro distribuci souboru.

Příklad [13]: Uzel **A** obsahuje soubor x=59. Uzel **C** hledá tento soubor.

- A vyhledá pomocí GET_PEERS nejbližší uzel k x. Je to uzel B.
- A oznámí B pomocí ANOUNCE_PEER, že vlastní soubor x. B si to uloží.
- C hledá uzly nejbližší k x.
- 🕚 B pošle C seznam uzlů (swarm) pro x.
- C se připojí do swarm a stáhne soubor x z B pomocí protokolu BitTorrent.

Zhodnocení strukturovaných sítí P2P

- Klíčovým parametrem je geometrie (struktura) sítě.
- Potřeba implementovat operace pro připojení, odpojení, vyhledání.
- Směrovací algoritmus musí konvergovat k cíli.
- Nutné sledovat stav sousedů a pravidelně aktualizovat směrovací tabulku, případně tabulky sousedů.

Příklady strukturovaných sítí

- Kadmelia
- BitTorrent
- Skype

Otázky k opakování

- Vysvětlete experiment Stanleyho Milgrama a jeho vliv pro návrh sítí P2P?
- Definujte sítě P2P. Popište jejich vlastnosti, výhody a nevýhody při použití.
- Popište rozdíly architektur sítí P2P a klient-server.
- Popište referenční model sítí P2P.
- Čím se liší strukturované a nestrukturované sítě P2P.
- Jaké znáte směrovací algoritmy u nestrukturovaných sítí P2P?
- Popište metodu hledání lokálního minima.
- Popište směrování v síti Kadmelia.
- Popište chování sítě BitTorrent za pomoci trackerů a pomocí DHT.

Použitá literatura I

- [1] Stanley Milgram.
 - The Small World Problem.

Psychology Today, 67(1):61-67, 1967.

- [2] Jon Kleinberg.
 - The Small-world Phenomenon: An Algorithmic Perspective.

In Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC '00, pages 163–170, New York, NY, USA, 2000. ACM.

[3] John Buford, Heather Yu, and Eng Keong Lua.

P2P Networking and Applications.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

- [4] R. Schollmeier.
 - A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer Architectures and Applications.

In Proceedings of the First International Conference on Peer-to-Peer Computing, P2P '01, pages 101–, Washington, DC, USA, 2001. IEEE Computer Society.

- [5] Daniel Stutzbach and Reza Rejaie.
 - Understanding Churn in Peer-to-peer Networks.

In Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC '06, pages 189–202, New York, NY, USA. 2006. ACM.

- [6] Karl Aberer, Luc Onana Alima, Ali Ghodsi, Sarunas Girdzijauskas, Seif Haridi, and Manfred Hauswirth.
 - The essence of P2P: A reference architecture for overlay networks.

In Proc. of the Fifth IEEE International Conference on Peer-to-Peer Computing, 2005. Konstanz, Germany.

- [7] Dmitri Loguinov, Anuj Kumar, Vivek Rai, and Sai Ganesh.
 - Graph-theoretic analysis of structured peer-to-peer systems: routing distances and fault resilience.

In Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, pages 395–406. ACM, 2003.

Použitá literatura II

- [8] Xin Yan Zhang, Qian Zhang, Zhensheng Zhang, Gang Song, and Wenwu Zhu. A construction of locality-aware overlay network: mOverlay and its performance. IEEE Journal on Selected Areas in Communications. 22(1):18–28. Jan 2004.
- [9] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of "small-world" networks. Nature, 393(6684):440–442, June 1998.
- [10] Ruggero Morselli, Bobby Bhattacharjee, Aravind Srinivasan, and Michael A. Marsh. Efficient lookup on unstructured topologies.

In PODC '05: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing, pages 77–86, New York, NY, USA, 2005. ACM Press.

- [11] Petar Maymounkov and David Mazières.
 - Kademlia: A Peer-to-Peer Information System Based on the XOR Metric.

In Revised Papers from the First International Workshop on Peer-to-Peer Systems, IPTPS '01, pages 53–65, London, UK, UK, 2002. Springer-Verlag.

- [12] James F. Kurose and Keith W. Ross.
 - Computer Networking: A Top-Down Approach Featuring the Internet.

Addison-Wesley, 6th edition, 2012.

- [13] L. Wang and J. Kangasharju.
 - Measuring large-scale distributed systems: case of BitTorrent Mainline DHT.

In IEEE P2P 2013 Proceedings, pages 1-10, Sept 2013.