INF01 118

UFRGS

Técnicas Digitais para Computação

Portas Lógicas CMOS: Aspectos Temporais e Elétricos

Aula 7

Chaveamento

Níveis de Tensão

- Vil máx. maior tensão de entrada aceitável como sendo nível lógico '0'
- Vih min. menor tensão de entrada aceitável para nível lógico '1'
- Vol típico tensão normalmente gerada na saída da porta lógica para nível lógico '0'
- Voh típico tensão normalmente gerada na saída da porta lógica para nível lógico '1'
- Vol máx. maior tensão encontrada na saída da porta lógica para nível lógico '0'
- Voh min. menor tensão encontrada na saída da porta lógica para nível lógico '1'

Margem de Ruído

^{*} O menor valor dessas diferenças é que define a Margem de Ruído!!!

Características Temporais (timing)

Capacitância de 'Grade' ou "Porta"

Capacitância de 'Grade' ou "Porta"

Transistor

Estrutura real do transistor em Seção Transversal

Tempos de subida e descida

- t_r Tempo de subida (*rise time*)
- t_f Tempo de descida (fall time)

Tempo de Propagação de um Sinal

- t_{d-lh} Tempo de atraso de propagação do sinal de saída quando este passa do nível lógico '0' para o nível lógico '1' (*delay time _ low-high*)
- t_{d-hl} Tempo de atraso de propagação do sinal de saída quando este passa do nível lógico '1' para o nível lógico '0' (*delay time _ high-low*)
- t_d Tempo de atraso de propagação MÉDIO do sinal de saída (*delay time*)

$$t_{d} = (t_{d-lh} + t_{d-hl}) / 2$$

Atraso (par entrada, saída) em um somador

Figura 3.3 Delay de subida (Tplh) da saída S do terceiro somador em relação ao Carry-In

Consumo (Dissipação de Potência)

- Corrente de Carga: Iout
- Corrente de Curto-Circuito: Icc
- consumo estático ≈ 0 (nanoWatts)
- consumo dinâmico (transição) = Iout + Icc
- consumo total = estático + dinâmico

* A variação de W e L afeta o tempo de transição dos sinais e o consumo de corrente na porta lógica.

Corrente instantânea fornecida pela fonte

Exemplo: Somador de 04 bits. Carry-in muda a cada 10ns

Potência média: 114 micro-Watts com Vdd=3.3V

Corrente instantânea fornecida pela fonte

Exemplo: Somador de 04 bits. Carry-in muda a cada 10ns

Potência média: 114 micro-Watts (média 34,5 uA da fonte Vdd=3.3V

Fanin e Fanout

- Fanin (f_{in}) é o valor da capacitância de entrada normalizada em função de uma capacitância de referência.
- Fanout (f_{out}) é a soma das capacitâncias de entrada normalizadas que uma porta lógica tem conectada a sua saída.

O fanout de uma porta lógica afeta diretamente as características de tempo de propagação do sinal de saída (atraso) e consumo de corrente (potência) fornecida pela Fonte de Tensão .

Exemplo:

td	$f_{out} = 1$	f _{out} =2	$f_{out} = 3$	
INV	1ns	1.2ns	1.4ns	
AND2	2ns	2.5ns	3ns	
XOR3	1.5ns	1.7ns	1.9ns	

Estudo de caso

INVERSORES em Anel

O que é?

N inversores em anel.

- Variação contínua 0--> 1 --> 0--> em cada nó se N é ímpar.
- ■Conhecido como " oscilação" ou "corrida" se N é ímpar
- Latch bi-estável de N é par.

Resultado de Simulação Elétrica com Simulador SPICE para N=7.

Capacitâncias/Resistências em um Transistor

W (largura) do transistor (Exemplo 1 um)

L (comprimento) do transistor (Exemplo 0,3um)

AD=1.1P PD=3.2U AS=1.1P PS=3.2U

AD=1.1P PD=3.2U AS=1.1P PS=3.2U

Para AMS 0,35u

Área = W * Lado Perímetro = 1*W + 2*Lado