Introduction to the Theory of Computation

Part II: Computability Theory

3. The Church-Turing Thesis

- 3.1 Turing Machines
- 3.2 Variants of Turing Machines
 - Multitape Turing Machines
 - Nondeterministic Turing Machines
 - Enumerators
 - Equivalence with other models
- 3.3 The Definition of Algorithm

Turing Machines

- New capabilities:
 - infinite tape
 - can read OR write to tape
 - read/write head can move left and right

Turing Machines

- Informal description:
 - input written on left-most squares of tape
 - rest of squares are blank
 - at each point, take a step determined by
 - current symbol being read
 - current state of finite control
 - a step consists of
 - writing new symbol
 - moving read/write head left or right
 - changing state

Turing Machine Diagrams

transition label: (tape symbol read → tape symbol written, direction moved)

- ❖a → R means "read a, move right"
- ❖a → L means "read a, move left"
- $\diamond a \rightarrow b$, R means "read a, write b, move right

"_" means blank tape square

Example Turing Machine

language $L = \{w#w : w \in \{0,1\}^*\}$

Example TM Diagram

TM Formal Definition

A TM is a 7-tuple

$$(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$
 where:

- Q is a finite set called the states
- $ightharpoonup \Sigma$ is a finite set called the input alphabet
- $ightharpoonup \Gamma$ is a finite set called the tape alphabet, $\Gamma \supseteq \Sigma \cup \{'_'\}$
- ⋄δ: Q x Γ → Q x Γ x {L, R} is a function called the transition function
- q₀ is an element of Q called the start state
- q_{accept}, q_{reject} are the accept and reject states

Example TM Operation

program for "binary successor"

q	σ	δ(q,σ)
start	0	(start, 0, R)
start	1	(start, 1, R)
start	_	(t, _, L)
start	#	(start, #, R)
t	0	(accept, 1, -)
t	1	(t, 0, L)
t	#	(accept, #, R)

TM Configurations

- At every step in a computation, a TM is in a configuration determined by:
 - the current tape contents
 - the current state
 - the current head location
- next step completely determined by current configuration
- shorthand: string uqv with $u,v \in \Gamma^*$, $q \in Q$

TM Configurations

- configuration C_1 yields configuration C_2 if TM can legally move from C_1 to C_2 in 1 step
 - \cdot notation: $C_1 \Rightarrow C_2$
 - ♦ also: "yields in 1 step" notation: $C_1 \Rightarrow^1 C_2$
 - ⋄"yields in k steps" notation: $C_1 ⇒^k C_2$
 - if there exists configurations D_1 , D_2 , ..., D_{k-1} for which $C_1 \Rightarrow D_1 \Rightarrow D_2 \Rightarrow ... \Rightarrow D_{k-1} \Rightarrow C_2$
 - *also: "yields in some # of steps" $(C_1 \Rightarrow^* C_2)$

TM Configurations

Formal definition of "yields":

```
\begin{aligned} uaq_ibv &\Rightarrow uq_jacv\\ if \, \delta(q_i,\,b) = (q_j,\,c,\,L),\, and\\ uaq_ibv &\Rightarrow uacq_jv\\ if \, \delta(q_i,\,b) = (q_i,\,c,\,R) \end{aligned}
```

$$\label{eq:continuity} \begin{split} \textbf{u}, \textbf{v} &\in \Gamma^{*}\\ \textbf{a}, \textbf{b}, \textbf{c} &\in \Gamma\\ \textbf{q}_{\textbf{i}}, \, \textbf{q}_{\textbf{j}} &\in \textbf{Q} \end{split}$$

- two special cases:
 - ♦ left end: q_i bv $\Rightarrow q_j$ cv if $\delta(q_i, b) = (q_j, c, L)$
 - ❖right end: uaq_i same as uaq_i_

TM Acceptance

- start configuration: q₀w (w is input)
- accepting config.: any config. with state q_{accept}
- rejecting config.: any config. with state q_{reject}
- accepting config. and rejecting config. are halting config.

TM M accepts input w if there exist configurations

$$C_1, C_2, ..., C_k$$

- $C_i \Rightarrow C_{i+1}$ for i = 1, 2, 3, ..., k-1
- C_k is an accepting configuration

Deciding and Recognizing

TM M:

- L(M) is the language it recognizes
- \diamond if M rejects every $x \notin L(M)$ it decides L
- set of languages recognized by some TM is called Turing-recognizable or recursively enumerable (RE)
- set of languages decided by some TM is called Turing-decidable or decidable or recursive

Classes of Languages

- We know: regular ⊂ CFL (proper containment)
- CFL ⊂ decidable?
- decidable \subset RE \subset all languages?

A useful variant: k-tape TM

- Informal description of k-tape TM:
 - input written on left-most squares of tape #1
 - rest of squares are blank on all tapes
 - at each point, take a step determined by
 - current k symbols being read on k tapes
 - current state of finite control
 - a step consists of
 - writing k new symbols on k tapes
 - moving each of k read/write heads left or right
 - changing state

Multitape TM formal definition

A TM is a 7-tuple

$$(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$
 where:

everything is the same as a TM except the transition function:

δ:
$$Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$$

$$\delta(q_i, a_1, a_2, ..., a_k) = (q_i, b_1, b_2, ..., b_k, L, R, ..., L) =$$

"in state q_i , reading $a_1, a_2, ..., a_k$ on k tapes, move to state q_j , write $b_1, b_2, ..., b_k$ on k tapes, move L, R on k tapes as specified."

Theorem: every k-tape TM has an equivalent single-tape TM.

Proof:

❖Idea: simulate k-tape TM on a 1-tape TM.

simulation of k-tape TM by single-tape TM:

- .. Repeat:
 - scan tape, remembering the symbols under each virtual head in the state (how many new states needed?)
 - make changes to reflect 1 step of M
 - if hit #, shift to right to make room

if M halts, erase all but 1st string

a <u>b</u> a b # <u>a</u> a # b b <u>c</u> d # ...

- An important variant: nondeterministic TM
- informally, several possible next configurations at each step
- formally, A NTM is a 7-tuple

$$(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$
 where:

everything is the same as a TM except the transition function:

$$δ$$
: Q x $Γ$ → $℘$ (Q x $Γ$ x {L, R})

NTM acceptance

- start configuration: q_0w (w is input)
- accepting config.: any config. with state q_{accept}
- rejecting config.: any config. with state q_{reject}
- TM M accepts input w if there exist configurations C_1 , C_2 , ..., C_k
 - C₁ is start configuration of M on input w
 - $C_i \Rightarrow C_{i+1}$ for i = 1, 2, 3, ..., k-1
 - C_k is an accepting configuration

Theorem: every NTM has an equivalent (deterministic) TM.

Proof:

Idea: simulate NTM with a deterministic TM

- computations of M are a tree
- nodes are configurations
- fanout is b = maximum number of choices in transition function
- leaves are accept/reject configurations.

- idea: breadth-first search of tree
- if M accepts: we will encounter accepting leaf and accept
- if M rejects: we will encounter all rejecting leaves, finish traversal of tree, and reject
- if M does not halt on some branch: we will not halt as that branch is infinite...

- use a 3 tape TM:
 - tape 1: input tape (read-only)
 - tape 2: simulation tape (copy of M's tape at point corresponding to some node in the tree)
 - tape 3: which node of the tree we are exploring (string in {1,2,...b}*)
- Initially, tape 1 has input, others blank

- STEP 1: copy tape 1 to tape 2
- STEP 2: use tape 2 to simulate M on one branch of its nondeterministic computation, consult the string on tape 3 to determine which choice to make at each step
 - if encounter blank, or a number larger than the number of choices available at this step, abort, go to STEP 3
 - if get to a rejecting configuration, go to STEP 3
 - if get to an accepting configuration, ACCEPT
- STEP 3: replace tape 3 with lexicographically next string and go to STEP 1

Recursive Enumerability

- Why is "Turing-recognizable" called RE?
- Definition: a language L ⊂ Σ* is recursively enumerable if there exists a TM (an "enumerator") that writes on its output tape

$$\#x_1\#x_2\#x_3\#...$$

and L = $\{x_1, x_2, x_3, ...\}.$

The output may be infinite

Recursive Enumerability

Theorem: A language is Turing-recognizable iff some enumerator enumerates it.

Proof:

- (⇐) Let E be the enumerator. On input w:
- Simulate E. Compare each string it outputs with w.
- If w matches a string output by E, accept.

Recursive Enumerability

Theorem: A language is Turing-recognizable iff some enumerator enumerates it.

Proof:

- (⇒) Let M recognize language L \subset Σ*.
- \diamond let s_1 , s_2 , s_3 , ... be enumeration of Σ^* in lexicographic order.
- rightharpoonup for i = 1,2,3,4,...
 - simulate M for i steps on s₁, s₂, s₃, ..., s_i
- ❖ if any simulation accepts, print out that s_j

- many other models of computation
 - we saw multitape TM, nondeterministic TM
 - others don't resemble TM at all
 - common features:
 - unrestricted access to unlimited memory
 - finite amount of work in a single step
 - every single one can be simulated by TM
 - many are equivalent to a TM
- The underlying class of algorithms that different computational models describe is unique!

- the intuitive notion of an algorithm, or an effective or mechanical method, M:
 - M is set out in terms of a finite number of instructions;
 - M will, if carried out without error, produce the desired result in a finite number of steps;
 - M can (in practice or in principle) be carried out by a human being unaided by any machinery save paper and pencil;
 - M demands no insight or ingenuity on the part of the human being carrying it out;

- Church-Turing thesis captures the intuitive notion of algorithms precisely
 - Turing's thesis: every effective computation can be carried out by a Turing machine.
 - Church: λ-calculus
 - They turned out to be equivalent

- There are well-defined mathematical problems that cannot be solved by effective methods
- E.g. Hilbert's tenth problem: determination of the solvability of a Diophantine equation.
 - Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Hilbertian Dream

■ 1900, Hilbert --mathematicians
should seek to
express mathematics
in the form of a
consistent, complete
and decidable formal
system.

Goedel and Turing

(1906-1978)

(1912-1954)

Goedel and Turing

- **1931**, Goedel --- there can be no consistent and complete formal system of arithmetic (incompleteness theorem).
- **1936**, Church and Turing --- *no*consistent formal system of arithmetic is decidable.

High-Level Description

Convince yourself that the following types of operations are easy to implement as part of TM "program"

(but perhaps tedious to write out...)

- copying
- moving
- incrementing/decrementing
- arithmetic operations +, -, *, /

Encoding of Input

- the input to a TM is always a string in Σ*
- we must encode our input as such a string
- examples:
 - tuples separated by #: #x#y#z
 - •• 0/1 matrix given by: #n#x# where $x \in \{0,1\}^{n^2}$
 - graph in adjacency list format
- any reasonable encoding is OK
- emphasize "encoding of X" by writing <X>