Examination: P.G. Dip Green Energy Technology	
Section 1 - Section 1	
Question No.1	4.00
Choose the best synonym of the italicized word. The prisoners of war signed the document under coercion. c supervision c compulsion c confusion c security	Bookmark □
Question No.2	4.00
The following is true for the following partial differential equation used in nonlinear mechanics known as the Korteweg-de Vries equation c linear; 1st order c inear; 3rd order c nonlinear; 1st order c nonlinear; 3rd order	Bookmark □
Question No.3	4.00
The efficiency of a Carnot engine working between 0°C and 100°C © 0.5 © 1 © 100/373 © 100/273	Bookmark
Question No.4	4.00
If three 18µF capacitors are connected in series, the net capacitance is 18µF 54µF 0µF 6µF	Bookmark ☐
Question No.5	4.00
Beta particles are emitted © Due to reversion of the excited nucleus to the ground state. © Due to conversion of neutrons into protons in the nucleus © Due to conversion of protons into neutrons © When outermost orbital electron leave the atom	Bookmark □
Question No.6 Which is the most economical section for a beam I - Section Circular Square Rectangular	4.00 Bookmark <u></u>
Cuestion No.7 The frequency of damped oscillations as compared to frequency of undamped vibrations with viscous damping, is Same More Less Zero	4.00 Bookmark □
Question No.8 In allene, hybridization of the central and terminal carbons, respectively, are sp and sp ² sp ² and sp ³ sp and sp ³ sp and sp ² sp ² and sp ³	4.00 Bookmark □
Question No.9	4.00
A field line and an equipotential surface are C Inclined at 210° C Always parallel C Always at 90° C Inclined at 30°	Bookmark ┌┐
Question No.10	4.00
The angular momentum of the electron in the hydrogen atom can be	Bookmark [

° h/π

 $^{\circ}$ h/4 π °2h °3h

Question No.11

Bookmark □

Which one of the following gives the force required to accelerate a car of mass 2000 kg from rest to 30 m/s in 12 s, if the frictional force between the tyres and the ground is 0.2 N/kg?

- C 4600 N
- C 400 N
- O 5400 N

Question No.12

Bookmark [

The following are the example for mobile elements

- C Cu, Mg
- C Fe, Ca
- O Mn. Mo
- O Bo, S

Question No.13

Proteins specific to sugars are called

- C Lectin
- Myoglobin
- O Pectin
- C Chitin Question No.14

4.00 Bookmark ┌

- According to MO theory, for the atomic species 'C2' O bond order is two and it is diamagnetic
 - O bond order is two and it is paramagnetic
 - O bond order is zero and it is diamagnetic
 - O bond order is zero and it is paramagnetic

Question No.15

A semiconductor is known to have an electron concentration of 8x10¹⁹ m⁻³ and a hole concentration of 5x10¹⁸ m⁻³ (electron mobility = 2.0 and hole mobility = 0.01). The resistivity of the semiconductor is

- $0.256\Omega m$
- ° 256Ωm
- ° 2.56Ωm
- $^{\circ}$ 25.6 Ω m

Question No.16

Which is NOT required for "DNA replication?"

- Polymerase
- Kinase

Question No.17

 Primase ○ Helicase

Which of the following is NOT true about condensin protein complex?

Bookmark |

- binds two sister chromatids together
- O binds a single chromatid at multiple spots
- C twists the chromatin into coils and loops
- O it is an elongated complex of several proteins that binds and encircles DNA

Question No.18

4.00

Bookmark □

The differential equation $2\frac{dy}{dx} + x^2y = 2x + 3$, y(0) = 5 is

- C Linear with fixed constants
 - O Linear

© Nonlinear © Undeterminable to be linear or nonlinear	
Question No.19	4.00
Let A be a Hermitian matrix. Then, which of the following statements is false? Of If A ³ = I, then A = I. The diagonal entries of A are all real. There exists a unitary U such that U AU is a diagonal matrix. Of If A ² = I, then A = I.	Bookmark
Question No.20	4.00
In a molecule of chlorine trifluoride, CIF3 bond angle is C 109.5° C 107.5° C 78.5° C 87.5°	Bookmark
Question No.21	4.00 Bookmark ┌
Which of the following amino acid is likely to destabilise an alpha helix? C Histidine C Glycine C Proline C Leucine	
Question No.22	4.00 Bookmark □
If obtained solution has same number of constants as the order of the differential equation then the solution of the differential equation is Singular solution General solution Integrating factor Particular solution Guestion No.23 If A+B means A is daughter of B, A+B means A is husband of B A × B means A is brushed of B A × B means A is brushed of B. From the statement P - Q + R × S, how is Q related to S? Nices Sister Mother None of these Guestion No.24 Let y= a cos4x + b sin 4x is solution of a differential equation then its order must be. Two One Three	4.00 Bookmark □ 4.00 Bookmark □
C Any Positive Number Could Be Question No.25	4.00
In a transistor C E = C + B C B = C + E C E = C - B C C = E + B	4.00 Bookmark □
Question No.26	4.00 Bookmark
Two weights are suspended from a string thrown over a light frictionless pulley. The mass of one weight is 0,200 kg. If a heavy weight is attached to its other end, the tension is © 0.600 kgf © Zero © 0.400 kgf © 0.200 kgf	

Question No.27	4.00
If value of x for normal distribution is 35, mean of normal distribution is 65 and standard deviation is 25 then standardized random variable is	Bookmark
c -1.7	
C -1.5	
C −4 C −1.2	
- 1, <u>a</u>	
Question No.28	4.00
	Bookmark ☐
Which number replaces the question mark?	
4 0 7 9 0 4 5 0 6	
C 9	
0 10	
O 12	
0 11	
Question No.29	4.00
	Bookmark
The unit of capacitance is C Henry / Wb	
© Coulombs / Volt	
C Volts/ Coulomb	
C Ohms	
Question No.30	4.00
	Bookmark
The carbon-14 activity of an old wood sample is found to be 14.2 disintegrations min ⁻¹ g ⁻¹ . Calculate age of oldwood sample, if for a fresh wood sample carbon-14 activity is disintegrations min ⁻¹ g ⁻¹ (t _{1/2} carbon-14 is 5730 years), is:	15.3
C 877	
C 4000	
C 5000	
C 617	
Question No.31	4.00
	Bookmark
Choose the best antonym of the italicized word. Many snakes are actually <i>innocuous</i> .	
© poisonous	
C harmful	
C deadly C ferocious	
O refocious	
Question No.32	4.00
	Bookmark
If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? ○ 35	
C 28	
O 25	
C 32	
Question No.33	4.00
	Bookmark □
The ratio of reverse resistance and forward resistance of a germanium crystal diode is about © 100:1	
O 1:1	
C 40,000:1	
C 1000:1	
Question No.34	4.00
Set of (x,y) ordered pair that can satisfy equation is called	Bookmark
© solution set	
C order set	
© variable set © pair set	
a pan oo.	

Question No.35	4.00
If A is the amplitude of a wave from a point source at a distance R from the source,	Bookmark 🗀
$^{\circ}$ A α 1/R ²	
° A α 1/R	
C A is independent of R	
° A α 1/√R	
Question No.36	4.00
If in a certain language, GRASP is coded as BMVNK, which word would be coded as CRANE?	Bookmark 🗖
C BQZMD	
C XMVIZ C HWFSJ	
C FUDQH	
Question No.37	4.00 Bookmark □
The geometries of Ni(CO) ₄ and [NiCl ₄] ² , respectively, are	BOOKITIATK
C Square planar and tetrahedral C Tetrahedral and tetrahedral	
© Tetrahedral and square planar	
C Square planar and square planar	
Question No.38	4.00 Bookmark
Which among the following is NOT an omega-3 fatty acid? © Alpha-linolenic acid	
C Docosahexaenoic acid	
C Eicosapentaenoic acid C Linoleic acid	
Question No.39	4.00 Bookmark
A dielectric material must be © Resistor	Bookmark [
© Semi conductor	
C Insulator C Good Conductor	
Question No.40	4.00
Choose the correct meaning of the italicized idiom.	Bookmark 🗂
Those who work by fits and start seldom show good results.	
C Regularly C Rarely	
C Disinterestedly C Irregularly	
Question No.41	4.00 Bookmark
These boys need some new books,? C is it?	
C isn'tit? C do they?	
C don't they?	
Question No.42	4.00
A two digit number is three times the sum of its digits. If 45 is added to it, the digits are reversed. The number is	Bookmark 🖂
C 32 C 35	
C 27	
C 31	
Question No.43	4.00 Bookmark
As per the kinetic theory of ideal gases, which of the following statements is NOT correct? © Particles are in a Brownian motion between collisions	
C Particles exert same force per unit area on all sides of the container	
C Gas molecules have mass but no volume C During the collision, the system does not lose energy	
Question No.44	4.00
"Silent spring" written by Rachel Carson deals with	Bookmark [
C Excessive use of pesticides	

O Deforestation

4.00

 Water pollution Question No.45 Bookmark | Which of the following equations are solutions to the partial differential equation? $\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial y^2}$ ○ sin (3x - 3y) ○ cos (3x - y) $0x^2 + y^2$ $e^{-3\pi x}\sin(\pi y)$ Question No.46 Bookmark ┌ Study the following information carefully and answer the question below it: Aasha, Bhuvnesh, Charan, Danesh, Ekta, Farhan, Ganesh and Himesh are sitting around a circle, facing the centre. Aasha sits fourth to the right of Himesh while second to the left of Farhan. Charan is not the neighbour of Farhan and Bhuvnesh. Danesh sits third to the right of Charan. Himesh never sits next to Ganesh. Who among the following sits between Ganesh and Danesh? ○ Bhuvnesh ○ Ekta Aasha C Charan Question No.47 In a silicon transistor α_{dc} = 100, V_{CC} = 30V, R_C = 1.5 k Ω . The saturation collector current of the transistor is C 20mA ○ 10mA C 100mA Question No.48 of the motor car, road accidents have increased dramatically. Since the inception ○ advent inauguration o initiation

In Simpson's (1/3) rd rule the number of intervals is

Odd

○ Even

C multiple of 6

○ multiple of 3

Question No.50

C 2	
c3 c4	
Question No.51	4.00
	Bookmark 🗆
01 02	
C 0 C 3	
Question No.52	4.00
	Bookmark
© Paddy © Sugarcane	
C Red gram	
Question No.53	4.00
	Bookmark 🗖
C Distillation- Enzyme hydrolysis- Fermentation bioethanol C Enzyme hydrolysis- Fermentation-distillation- bioethanol	
© Enzyme hydrolysis- distillation- Fermentation- bioethanol © Fermentation- Enzyme hydrolysis- distillation- bioethanol	
T emerication Enzyme nydrotysis- distillation bloeticator	
Question No.54	4.00 Bookmark □
Which of the following is an "even" function of t?	
င t³+ 6 င t²	
○ t ² -4t ○ Sin (2t) + 3t	
Question No.55	4.00
Question No.55 A solution to a boundary value problem which satisfies boundary condition is a solution to the	4.00 Bookmark ┌─
A solution to a boundary value problem which satisfies boundary condition is a solution to the Integral equation	
A solution to a boundary value problem which satisfies boundary condition is a solution to the Integral equation Differential equation logical equation	
A solution to a boundary value problem which satisfies boundary condition is a solution to the Integral equation Differential equation	
A solution to a boundary value problem which satisfies boundary condition is a solution to the Integral equation Differential equation Digical equation Maxwell's equation Question No.56	
A solution to a boundary value problem which satisfies boundary condition is a solution to the Integral equation Differential equation Maxwell's equation Maxwell's equation Cuestion No.56 Iodinevalue of lipids is a measure of Degree of polysaturation of lipids	Bookmark 4.00
A solution to a boundary value problem which satisfies boundary condition is a solution to the Integral equation Differential equation Maxwell's equation Maxwell's equation Cuestion No.56	Bookmark 4.00
A solution to a boundary value problem which satisfies boundary condition is a solution to the Integral equation Differential equation Maxwell's equation Maxwell's equation Cuestion No.56 Iodinevalue of lipids is a measure of Degree of polysaturation of lipids Degree of unsaturation of lipids	Bookmark 4.00
A solution to a boundary value problem which satisfies boundary condition is a solution to the Integral equation Differential equation Maxwell's equation Maxwell's equation Odinevalue of lipids is a measure of Degree of polysaturation of lipids Degree of saturation of lipids Degree of saturation of lipids Degree of monosaturation of lipids Degree of monosaturation of lipids Degree of monosaturation of lipids	Bookmark 4.00
A solution to a boundary value problem which satisfies boundary condition is a solution to the Integral equation Differential equation Maxwell's equation Maxwell's equation Odinevalue of lipids is a measure of Degree of polysaturation of lipids Degree of saturation of lipids Degree of saturation of lipids Degree of monosaturation of lipids Degree of monosaturation of lipids Degree of monosaturation of lipids	4.00 Bookmark 4.00 Bookmark Bookmark
A solution to a boundary value problem which satisfies boundary condition is a solution to the c Integral equation C Differential equation Maxwell's equation Maxwell's equation Cuestion No.56 Indicated the sequence of the sequence of the problem which satisfies boundary condition is a solution to the policy of the sequence of t	4.00 Bookmark 4.00 Bookmark Bookmark
A solution to a boundary value problem which satisfies boundary condition is a solution to the $^{\circ}$ Integral equation $^{\circ}$ Differential equation $^{\circ}$ Maxwell's equation Question No.56 bodinevalue of lipids is a measure of $^{\circ}$ Degree of polysaturation of lipids $^{\circ}$ Degree of polysaturation of lipids $^{\circ}$ Degree of unsaturation of lipids $^{\circ}$ Degree of monosaturation of lipids The internal resistance of the battery is $^{\circ}$ 0.5 Ω	4.00 Bookmark 4.00 Bookmark Bookmark
A solution to a boundary value problem which satisfies boundary condition is a solution to the $ \begin{array}{c} \text{C Integral equation} \\ \text{C Differential equation} \\ \text{C logical equation} \\ \text{C Maxwell's equation} \\ \hline $	4.00 Bookmark 4.00 Bookmark Bookmark
A solution to a boundary value problem which satisfies boundary condition is a solution to the $^{\circ}$ Integral equation $^{\circ}$ Differential equation $^{\circ}$ logical equation $^{\circ}$ Maxwell's equation $^{\circ}$ Maxwell's equation $^{\circ}$ Degree of polysaturation of lipids $^{\circ}$ Degree of polysaturation of lipids $^{\circ}$ Degree of unsaturation of lipids $^{\circ}$ Degree of monosaturation of lipids $^{\circ}$ Degree of	4.00 Bookmark 4.00 Bookmark Bookmark
A solution to a boundary value problem which satisfies boundary condition is a solution to the $ \begin{array}{c} \text{C Integral equation} \\ \text{C Differential equation} \\ \text{C logical equation} \\ \text{C Maxwell's equation} \\ \hline $	4.00 Bookmark 4.00 Bookmark Bookmark
A solution to a boundary value problem which satisfies boundary condition is a solution to the $^{\circ}$ Integral equation $^{\circ}$ Differential equation $^{\circ}$ logical equation $^{\circ}$ Maxwell's equation $^{\circ}$ Maxwell's equation $^{\circ}$ Degree of polysaturation of lipids $^{\circ}$ Degree of unsaturation of lipids $^{\circ}$ Degree of saturation of lipids $^{\circ}$ Degree of saturation of lipids $^{\circ}$ Degree of monosaturation of lipids $^{\circ}$ Degree of monosat	4.00 Bookmark 4.00 Bookmark 7 to it.
A solution to a boundary value problem which satisfies boundary condition is a solution to the $^\circ$ Integral equation $^\circ$ Differential equation $^\circ$ logical equation $^\circ$ logical equation $^\circ$ Maxwell's equation $^\circ$ Maxwell's equation $^\circ$ Degree of polysaturation of lipids $^\circ$ Degree of polysaturation of lipids $^\circ$ Degree of or unsaturation of lipids $^\circ$ Degree of monosaturation of lipids $^\circ$ Degree of monosaturation of lipids $^\circ$ Degree of monosaturation of lipids $^\circ$ Degree of homosaturation of lipids $^\circ$ Degree of homosaturation of lipids $^\circ$ Degree of ophysaturation of lipids $^\circ$ De	4.00 Bookmark □ 4.00 Bookmark □ 7 to it.
A solution to a boundary value problem which satisfies boundary condition is a solution to the confidence of integral equation condition in the confidence of the policy of integral equation conditions and the confidence of the	4.00 Bookmark 4.00 Bookmark 7 to it.
A solution to a boundary value problem which satisfies boundary condition is a solution to the charged equation Differential equation logical equation logical equation Maxwell's equation Degree of polysaturation of lipids Ω Degree of polysaturation of lipids Ω Degree of polysaturation of lipids Ω Degree of monosaturation	4.00 Bookmark 4.00 Bookmark 7 to it.

Bookmark □

Question No.59	4.00
In mitochondria, oxidation of one molecule of NADH results in formation of	Bookmark 🗂
© Four Molecules of ATP © Two molecules of ATP	
© One molecule of ATP © Three molecules of ATP	
Question No.60	4.00
The latent heat of vaporisation of water is 2,240 J. If the work done in the process of vaporisation of 1g is 168 J, then the increase in internal energy is	Bookmark
C 2072 J C 1904 J	
C 2408 J	
C 2240 J	
Question No.61	4.00 Bookmark □
The excess of pressure inside a bubble in a liquid is C 2T/r	
○ T/r	
C 4T/r C 3T/r	
Question No.62	4.00
The rate constant of unimolecular reaction was 2.66 ×10 ⁻³ s ⁻¹ and 2.2 ×10 ⁻¹ s ⁻¹ at T= 120 K and 360 K respectively. The rate constant (in s ⁻¹) at 240 K would be:	Bookmark
C 1.8 ×10 ⁻³	
○ 4.8 ×10 ⁻² ○ 2.4 ×10 ⁻²	
C 2.4 ×10 ⁻¹	
Question No.63	4.00
"A total electric flux through any closed surface surrounding charges is equal to the amount of charge enclosed" The above statement is associated with	Bookmark □
C Maxwell's second law C Maxwell's first law	
○ Gauss's law	
C Coulomb's square law	
Question No.64	4.00
A V /9	Bookmark
The vapour of a pure substance, when cooled under a pressure less than its triple-point pressure © Remains unchanged	
© Remains unchanged © Liquefies first and then solidifies	
C Remains unchanged C Liquefies first and then solidifies C Solidifies directly	
C Remains unchanged C Liquefies first and then solidifies C Solidifies directly	
C Remains unchanged C Liquefies first and then solidifies C Solidifies directly	
C Remains unchanged C Liquefies first and then solidifies C Solidifies directly	
C Remains unchanged C Liquefies first and then solidifies C Solidifies directly C Liquefies	Bookmark □
C Remains unchanged C Liquefies first and then solidifies C Solidifies directly C Liquefies Question No.65 All the Eigen value of an orthogonal matrix are of unit modulus.	Bookmark □
C Remains unchanged C Liquefies first and then solidifies C Solidifies directly C Liquefies Question No.65	Bookmark □
C Remains unchanged C Liquefies first and then solidifies C Solidifies directly C Liquefies Question No.65 All the Eigen value of an orthogonal matrix are of unit modulus. C true G false All are false.	Bookmark □
Cuestion No.65 Question No.65 All the Eigen value of an orthogonal matrix are of unit modulus. C true C false C All are false. The Eigen values of an orthogonal matrix may be any real matrix.	Bookmark ☐ 4.00 Bookmark ☐
Cuestion No.65 All the Eigen value of an orthogonal matrix are of unit modulus. Citrue false All are false. The Eigen values of an orthogonal matrix. Cuestion No.66	Bookmark □
Cuestion No.65 All the Eigen value of an orthogonal matrix are of unit modulus. true false All are false All are false The Eigen values of an orthogonal matrix.	Bookmark 4.00 Bookmark 4.00
Remains unchanged Cucyclifes first and then solidifies Solidifies directly Liquefies Liquefies Cuestion No.65 All the Eigen value of an orthogonal matrix are of unit modulus. true false All are false. All are false. The Eigen values of an orthogonal matrix may be any real matrix. Cuestion No.66 The Cassical experiments of variation in plants by Gregor Mendel was performed in Arabidopsis Rice Maize	Bookmark 4.00 Bookmark 4.00
Cuestion No.65 All the Eigen value of an orthogonal matrix are of unit modulus. true false All are false All are false The Eigen values of an orthogonal matrix. Cuestion No.66 The classical experiments of variation in plants by Gregor Mendel was performed in Arabidopsis Rice	Bookmark 4.00 Bookmark 4.00
Remains unchanged Cucyclifes first and then solidifies Solidifies directly Liquefies Liquefies Cuestion No.65 All the Eigen value of an orthogonal matrix are of unit modulus. true false All are false. All are false. The Eigen values of an orthogonal matrix may be any real matrix. Cuestion No.66 The Cassical experiments of variation in plants by Gregor Mendel was performed in Arabidopsis Rice Maize	Bookmark 4.00 Bookmark Bookmark 4.00 Bookmark 4.00
Remains unchanged Cliquefies first and then solidifies C Solidifies directly Liquefies Liquefies All the Eigen value of an orthogonal matrix are of unit modulus. C true C false All are false. The Eigen values of an orthogonal matrix may be any real matrix. Cuestion No.66 The classical experiments of variation in plants by Gregor Mendel was performed in A rabidopsis Rice Maize Pea	Bookmark □ 4.00 Bookmark □ 4.00 Bookmark □
Cuestion No.65 All the Eigen value of an orthogonal matrix are of unit modulus. C true C faise C All are false. C The Eigen values of an orthogonal matrix. C true C faise C Mi are false. C The Eigen values of an orthogonal matrix. C true C faise C Mi are false. C Mi are false. C The Eigen values of an orthogonal matrix may be any real matrix. Cuestion No.66 The classical experiments of variation in plants by Gregor Mendel was performed in C Arabidopsis C Rice C Maize C Pirst increases and then decreases C Pirst increases and then decreases C Remains Same	Bookmark 4.00 Bookmark Bookmark 4.00 Bookmark 4.00
Cuestion No.65 All the Eigen value of an orthogonal matrix are of unit modulus. I true I false I false I are false. The Eigen values of an orthogonal matrix may be any real matrix. Centre of the Eigen value of an orthogonal matrix are of unit modulus. Centre of false I fals	Bookmark

Bookm
When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes down and the process goes on. What is the process taking place?

C. Purification

	sion Agia
© Convection	
© Radiation	
© Conduction	
Question No.69	4.00
	Bookmark
Analysis of boundary value problem involves functions of a differential operator. These functions are © Eigen function	
© algebraic function	
© symmetric function	
© logical function	
Question No.70	4.00
Question No.70	Bookmark
In a transformer the energy is conveyed from primary to secondary	
○ Both air and cooling coil ○ Through air	
© By the flux	
© Through cooling coil	
Question No.71	4.00 Bookmark
	BOOKIIIAIK J
A square matrix [A] is lower triangular if	
$a_{ij} \neq 0, i > j$	
$ca_{ij} \neq 0, j > i$	
$a_{ij} = 0, j > i$	
$^{\circ}$ $a_{ij}=0,i>j$	
0.00.11.70	4.00
Question No.72	4.00 Bookmark □
For a face centered cubic lattice, the Miller indices for the first Bragg's peak (smallest Bragg angle) are	200111111111111111111111111111111111111
0110	
C 0 0 2 C 0 0 1	
0111	
Question No.73	4.00
Choose the correct meaning of the italicized idiom.	Bookmark
You cannot throw dust into my eyes.	
C Abuse me	
© Cheat me © Hurt me	
© Terrify me	
Question No.74	4.00
How many atoms are there in an element packed in a FCC structure	Bookmark 🗀
C 83	
C 2	
01	
0.4	
Question No.75	4.00
	Bookmark
A differential equation is considered to be ordinary if it has	
© One independent variable	
© More than one independent variable	
○ One dependent variable	
C More than one dependent variable	
Question No.76	4.00
The dimensions of capacitance are	Bookmark 🗖
° M⁻¹L⁻¹T²Q²	
⊂ M²L-²T²Q²	

О м-1⊢-2т2∩1

Question No.77	4.00
the species ¹⁹ Ne and ¹⁴ C emit a positron and β- particle respectively. The resulting species formed are respectively- ^C ¹⁹ Na and ¹⁴ N	Bookmark ☐
$^{\rm C}$ $^{\rm 19}{\rm Na}$ and $^{\rm 14}{\rm B}$ $^{\rm C}$ $^{\rm 19}{\rm F}$ and $^{\rm 14}{\rm N}$ $^{\rm C}$ $^{\rm 19}{\rm F}$ and $^{\rm 14}{\rm B}$	
Question No.78	4.0
cantilever of length l is carrying a uniformly distributed load of w per unit run over the whole span. The deflection at the free end is given as $\frac{wl^2}{4EI}$ Wl^4	Bookmark ┌┐
$ \begin{array}{c} \hline 16EI \\ ^{\circ} \underline{wl^4} \\ 8EI \end{array} $	
$\frac{wl^3}{4EI}$	
Question No.79	4.0
he reverse current in a diode is of the order of C Amps C μ A C kA C mA	Bookmark <u>⊓</u>
Question No.80	4.00
Choose the missing term : AZ, GT, MN, ?, YB C SX C KE C SH C TS	Bookmark [
Question No.81	4.0
lased on the information given answer the following question. In a family of six persons, there are people from three generations. Each has separate professions and they like different colours. There are two couples. Shyam is an Engineer and his wife is not a doctor and she does not like Red colour. Chartered Accountant likes green colour and his wife is a teacher. Manisha is the mother-in-law of Sunita and she likes orange colour. Vimal is the grand father of Tarun and tarun is the Principal and likes black colour. Nyna is the grand daughter of Manisha and she likes blue colour. Nyna's Mother likes white colour. Which of the following is the correct pair of two couples? Shyam-Manisha, Vimal-Sunita Cannot be determined Shyam-Sunita, Vimal-Manisha Tarun-Nyna, Shyam-Sunita	Bookmark <u></u>
Question No.82	4.00
the path of a magnetic flux in a transformer should have C Low resistance C High reluctance C Low reluctance C High resistance C High resistance	Bookmark ┌
Question No.83	4.0
Statements: All tools are books, Some books are pens. Conclusion: Some tools are pen Some pens are books If either I or II follows If only conclusion II follows If only conclusion I follows If only conclusion I follows If neither I nor II follows	Bookmark <u>Γ</u>
Question No.84	4.0
Question No.04	Bookmark

(ii) One of them is manual scavenger, one is sweeper, one is watchman, one is human scarecrow and one is grave-digger (iii) Three of them – A, C and grave-digger prefer tea to coffee and two of them – B and the watchman prefer coffee to tea (iv) The human scarecrow and D and A are friends to one another but two of these prefer coffee to tea. (v) The manual scavenger is C's brother	
(v) The manual scavenger is 0 s brother Who is a manual scavenger?	
C D	
СВ	
C C C A	
Question No.85	4.00 Bookmark □
A small loudspeaker radiates 5W of power and the intensity is 1 Wm ⁻² at a distance of 2m from the speaker. If the power of the sp 4m from the speaker is	eakers is doubled, the intensity in Wm ⁻² at a distance of
C 2 C 0.5	
o 1	
C 4	
Question No.86	4.00 Bookmark □
Which among the following amino acid residue is most likely getting phosphorylated in prokaryotes? © Threonine	
C Histidine	
© Tyrosine	
Question No.87	4.00
Moment of inertia of an object does not depend upon	Bookmark 🗀
C Angular velocity C Mass of distribution	
C Mass of object	
C Axis of rotation	
Question No.88	4.00 Bookmark ☐
Question No.88 Chelate effect is C independent of ring size	
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change	
Chelate effect is C independent of ring size	
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change C predominantly due to entropy change	Bookmark ☐
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change C predominantly due to entropy change C predominantly due to enthalpy change	Bookmark □
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Question No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0	Bookmark ☐
Chelate effect is C independent of ring size O due to equal contribution of entropy and enthalpy change Predominantly due to entropy change Predominantly due to enthalpy change Question No.89 The decreasing order of dipole moment of molecules is	Bookmark ☐
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is C NH ₃ > NF ₃ > H ₂ 0 C H ₂ 0> NF ₃ > NH ₃	Bookmark ☐
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NH ₃ > NF ₃ > C H ₂ 0 > NH ₃ > NF ₃ >	Bookmark 4.00 Bookmark 4.00
Chelate effect is C independent of ring size G due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Question No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NF ₃ > NH ₃ H ₂ 0 > NH ₃ > NF ₃ > NF ₃ > NH ₃ > H ₂ 0 Question No.90 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes.	Bookmark ☐ 4.00 Bookmark ☐ 4.00 Bookmark ☐
Chelate effect is C independent of ring size G due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Question No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NF ₃ > NH ₃ H ₂ 0 > NH ₃ > NF ₃ > NF ₃ > NH ₃ > H ₂ 0 Question No.90 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm.	Bookmark ☐ 4.00 Bookmark ☐ 4.00 Bookmark ☐
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NF ₃ > NH ₃ H ₂ 0 > NH ₃ > NF ₃ > NF ₃ > NH ₃ > H ₂ 0 C NF ₃ > NH ₃ > H ₂ 0 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm.	Bookmark 4.00 Bookmark 4.00 Bookmark
Chelate effect is C independent of ring size G due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Question No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NF ₃ > NH ₃ H ₂ 0 > NH ₃ > NF ₃ > NF ₃ > NH ₃ > H ₂ 0 Question No.90 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm.	Bookmark ☐ 4.00 Bookmark ☐ 4.00 Bookmark ☐
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NF ₃ > NH ₃ H ₂ 0 > NH ₃ > NF ₃ > NF ₃ > NH ₃ > H ₂ 0 C NF ₃ > NH ₃ > H ₂ 0 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm.	Bookmark ☐ 4.00 Bookmark ☐ 4.00 Bookmark ☐
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NF ₃ > NH ₃ H ₂ 0 > NH ₃ > NF ₃ > NF ₃ > NH ₃ > H ₂ 0 C NF ₃ > NH ₃ > H ₂ 0 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm.	Bookmark ☐ 4.00 Bookmark ☐ 4.00 Bookmark ☐
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NF ₃ > NH ₃ H ₂ 0 > NH ₃ > NF ₃ > NF ₃ > NH ₃ > H ₂ 0 C NF ₃ > NH ₃ > H ₂ 0 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm.	Bookmark ☐ 4.00 Bookmark ☐ 4.00 Bookmark ☐
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NF ₃ > NH ₃ H ₂ 0 > NH ₃ > NF ₃ > NF ₃ > NH ₃ > H ₂ 0 C NF ₃ > NH ₃ > H ₂ 0 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm.	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 4.00
Chelate effect is c independent of ring size due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Question No.89 The decreasing order of dipole moment of molecules is NH32 NF32 H20 H20 N NF32 NH3 NF32 NH3 NF32 NH3 NF32 NF32	4.00 Bookmark 4.00 Bookmark tal is
Chelate effect is C independent of ring size due to equal contribution of entropy and enthalpy change predominantly due to entropy change predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is NH ₃ > NF ₃ > H ₂ 0 H ₂ 0 > NF ₃ > NH ₃ > H ₂ 0 Cuestion No.90 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the molecules is 25 24 23 26 Cuestion No.91 Transplastomics Provides exceptionally low yields of protein products Produces genes that are released in pollen	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 4.00
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change C predominantly due to entropy change C predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is C NH ₃ > NF ₃ > H ₂ 0 C H ₂ 0 > NH ₃ > NF ₃ > C NF ₃ > NH ₃ C H ₂ 0 > NH ₃ > NF ₃ > C NF ₃ > NH ₃ > H ₂ 0 Question No.90 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystal is 1.33 g/cc.	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 4.00
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change C predominantly due to entropy change C predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is C NH ₂ > NF ₃ > NH ₃ C H ₂ O > NF ₃ > NH ₃ C H ₂ O > NF ₃ > NH ₃ C H ₂ O > NF ₃ > NH ₃ C NF ₂ O > NH ₃ > NF ₃ > C NF ₃ > NH ₃ > H ₂ O Question No.90 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the molecules of 24 C 23 C 24 C 23 C 26 Question No.91 Transplastomics C Provides exceptionally low yields of protein products C Provides genes that are released in pollen C Targets genes in the chloroplast C Targets genes in the mitochondria	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 Bookmark A.00 Bookmark 4.00
Chelate effect is C independent of ring size C due to equal contribution of entropy and enthalpy change C predominantly due to entropy change C predominantly due to enthalpy change Cuestion No.89 The decreasing order of dipole moment of molecules is C NH ₂ > NF ₃ > H ₂ 0 C H ₂ 0 > NF ₃ > NH ₃ C H ₂ 0 > NH ₃ > NF ₃ > C NF ₃ > NH ₃ > H ₂ 0 Question No.90 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystallizes	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 4.00

O Mass
O Weight

	ssion Ag.
© Netradulve findex © Volume	
Question No.93	4.00 Bookmark
Which of the following biological macromolecules are structurally diverse in living world? C Nucleic acids	
O Proteins	
C Lipids	
C Carbohydrates	
Question No.94	4.00 Bookmark ☐
Statement: "A Car is required on rent"-An Advertisement	Booking II
Assumptions: I. All types of Vehicles are available on Rent	
II. People will respond to the advertisements © If only assumption I is implicit	
○ If neither I nor II is implicit	
© If only assumption II is implicit	
○ If both I and II are implicit	
Question No.95	4.00 Bookmark <u></u> ☐
In recent times, the number of cases of death by poisoning sharply.	Doormark
C increased C have increased	
C had increased	
C has increased	
Question No.96	4.00
	Bookmark <u></u> □
A partial differential equation requires	
C Exactly one independent variable	
C More than one dependent variable C Two or more independent variables	
© Equal number of dependent and independent variables	
Question No.97	4.00 Bookmark □
Water use efficiency is minimum in	Doominant _
C C3 plants C C4 plants	
C All higher plants	
C CAM plants	
Question No.98	4.00
	Bookmark [
During tensile test, what does percentage elongation indicate © Fatigue Strength	
© Ductility	
○ Malleability ○ Creep	
Question No.99	4.00
	Bookmark
The knee voltage of a crystal diode is approximately equal to © Barrier Potential	
C Applied Voltage	
○ Forward Voltage○ Breakdown Voltage	
<u> </u>	4.00
Question No.100	4.00 Bookmark
Choose the best antonym of the italicized word. There are four chapters that are extraneous to the structure of the book.	
C needful C relevant	
© important	
○ integral	

Sr No.	PG DIP Green Energy Technology
1	Find the missing term in the following series:
	3,15,?,63,99,143?
Alt1	27
Alt2	
Alt3	
Alt4	56
2	
	Choose word from the given options which bears the same relationship to the third word, as the first two bears: Horse: Jockey:: Car:?
	Horse . Joekey ear . :
Alt1	Mechanic
Alt2	Chauffeur
Alt3	Steering
Alt4	Brake
	Food is to Fad as Religion is to?
	Crucification
	Notion
	Superstition
Alt4	Mythology
4	Coloret the lettered pain that has the come veletionality at the printing weight of words.
4	Select the lettered pair that has the same relationship as the original pair of words: Fond: Doting
Δlt1	Solicitous: Concern
	Verbose: Wordiness
	Flurry: Blizzard
	Magnificent: Grandiose
5	Which of the following is the same as Emancipate, Free, Release?
Alt1	Liberate
Alt2	Quit
	Pardon
Alt4	Ignore
	Spot the defective segment from the following:
	I met one of the mountaineers that have returned
	to their base camp
	the last week
AIL4	and took
7	Choose the meaning of the idiom/phrase from among the options given:
	To call names
Alt1	to abuse
Alt2	to recall something
Alt3	to count the prisoners
Alt4	to take attendance

	Our tour programme fell because of inclement weather.	
Alt1	through	
Alt2	off	
Alt3	out	
Alt4	down	
9	Choose the option closest in meaning to the given word:	
	POIGNANT	
Alt1	unbearable	
Alt2	maximal	
Alt3	pathetic	
Alt4	sharp	
10	Choose the antonymous option you consider the best:	
10	WANTON	
Alt1	rational	
	abstemious	
	dearth	
	deliberate	
Alt	deliberate	
11	Six people K, L, M, N, O and P are sitting around a table as per the following conditions. i. N	
	and O are opposite each other	
	ii. K is to the right of M	
	iii. L and K are opposite each other	
	iv. N is to the left of P	
	Who is to the left of L?	
Alt1		
Alt2		
Alt3		
Alt4	Alt4 O	
	Study the following table carefully to answer the questions that follow (15 to 17): Total number of employees	
	in different departments in an organisation and (of these) percentage of females and males	
	Department Total number of employees Percentage of female employees Percentage of male employees	
	IT 840 45 55	
	Accounts 220 35 65	
	Production 900 23 77	
	HR 360 65 35	
	Marketing 450 44 56	
	Customer Service 540 40 60	
	What is the total number of male employees in the IT and Customer Service departments put together?	
Alt1	115	
Alt2		
, 1112		

Alt3	768
Alt4	85
13	Study the following table carefully to answer the questions that follow (15 to 17): Total number of employees in different departments in an organisation and (of these) percentage of females and males Department Total number of employees Percentage of female employees Percentage of male employees IT 840 45 55 Accounts 220 35 65 Production 900 23 77 HR 360 65 35 Marketing 450 44 56 Customer Service 540 40 60 What is the total number of employees in all departments put together?
Alt1	3260
Alt2	3310
Alt3	3140
Alt4	3020
14	Select the alternative that logically follows from the two given statements, but not from one statement alone: All Cats are dogs No dogs are rats
Alt1	All cats are rats
Alt2	Some cats are rats
Alt3	No cat is rat
Alt4	None of the above
15	In a certain code language, "When did you come" is written as 'ti na ki ja'. "Will you come again" is written as 'na pa sa ja' and "She will go" is written as 'pa da ra'. How is "again" written in that code language?
Alt1	Na
Alt2	sa
Alt3	ja
Alt4	da
16	In each of the following questions some statements are followed by two conclusions (i) and (ii). Read the statements carefully and then decide which of the conclsions follow beyond a reasonable doubt. Mark your answer as Statement: The aspirants should apply through a proper channel for permission Conclusions: (i) Those who apply through proper channel will get permission (ii) Those who do not apply through proper channel will not get permission
۸ I+1	If only conclusion (i) follows

Alt2	If only conclusion (ii) follows
Alt3	If neither conclusion (i) nor (ii) follows
Alt4	If both the conclusions follow
17	The average height of 3 children is 115 cms. If the heights of 2 children are 117 cms. And 112 cms.
	Respectively, the height of the third child is
Alt1	112 cms.
	113 cms.
	115 cms.
	116 cms.
Ait	110 (1113.
10	What is the 20% of 40% of 2/Eth of E0002
Alt1	What is the 30% of 40% of 2/5th of 5000?
Alt2	
	240
Alt4	720
19	There are n persons in a room. Each one is shaking hand with the other. Ultimately there are 66 hand-shakes.
	Then n=
Alt1	11
Alt2	12
Alt3	16
Alt4	33
20	A problem is given to students
20	A problem is given to students 10 students choose option A;
20	10 students choose option A ;
20	10 students choose option A ; 6 students choose option B ;
20	10 students choose option A; 6 students choose option B; 2 students choose option C;
20	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D;
20	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer.
	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer.
Alt1	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B
Alt1 Alt2	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A
Alt1 Alt2 Alt3	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C
Alt1 Alt2	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C
Alt1 Alt2 Alt3 Alt4	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D
Alt1 Alt2 Alt3 Alt4	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages?
Alt1 Alt2 Alt3 Alt4 21 Alt1	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages? Bacteria
Alt1 Alt2 Alt3 Alt4 21 Alt1	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages?
Alt1 Alt2 Alt3 Alt4 21 Alt1 Alt2	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages? Bacteria
Alt1 Alt2 Alt3 Alt4 21 Alt1 Alt2 Alt3	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages? Bacteria Yeast
Alt1 Alt2 Alt3 Alt4 21 Alt1 Alt2 Alt3	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages? Bacteria Yeast Microalgae
Alt1 Alt2 Alt3 Alt4 21 Alt1 Alt2 Alt3 Alt4	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages? Bacteria Yeast Microalgae
Alt1 Alt2 Alt3 Alt4 21 Alt1 Alt2 Alt3 Alt4	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages? Bacteria Yeast Microalgae Vitamins
Alt1 Alt2 Alt3 Alt4 21 Alt1 Alt2 Alt3 Alt4	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages? Bacteria Yeast Microalgae Vitamins Number of hydrogen and phosphodiester bonds found in this hypothetical DNA 5' AGCTCGTAGCTACGTGAC 3'
Alt1 Alt2 Alt3 Alt4 21 Alt1 Alt2 Alt3 Alt4 222	10 students choose option A; 6 students choose option B; 2 students choose option C; Gopal choose option D; 5 students did not answer. which option is correct if the teacher tells that One-Twelth of the class gave the correct answer. B A C D Which one is used in industrial fermentation to produce beverages? Bacteria Yeast Microalgae Vitamins Number of hydrogen and phosphodiester bonds found in this hypothetical DNA 5' AGCTCGTAGCTACGTGAC 3'

Alta 23 and 17 Alta 48 and 36 23 Allergens are? Alta Interferons Alta Lectin compounds Alta Non-parasitic antigens Alta Fungal antigens 24 Cellobiose is Alta Monosaccharide Alta Disaccharide
23 Allergens are? Alt1 Interferons Alt2 Lectin compounds Alt3 Non-parasitic antigens Alt4 Fungal antigens 24 Cellobiose is Alt1 Monosaccharide
Alt1 Interferons Alt2 Lectin compounds Alt3 Non-parasitic antigens Alt4 Fungal antigens 24 Cellobiose is Alt1 Monosaccharide
Alt1 Interferons Alt2 Lectin compounds Alt3 Non-parasitic antigens Alt4 Fungal antigens 24 Cellobiose is Alt1 Monosaccharide
Alt1 Interferons Alt2 Lectin compounds Alt3 Non-parasitic antigens Alt4 Fungal antigens 24 Cellobiose is Alt1 Monosaccharide
Alt2 Lectin compounds Alt3 Non-parasitic antigens Alt4 Fungal antigens 24 Cellobiose is Alt1 Monosaccharide
Alt3 Non-parasitic antigens Alt4 Fungal antigens 24 Cellobiose is Alt1 Monosaccharide
Alt4 Fungal antigens 24 Cellobiose is Alt1 Monosaccharide
24 Cellobiose is Alt1 Monosaccharide
Alt1 Monosaccharide
Alt1 Monosaccharide
Alt2 Disaccharide
7412 Biodechariae
Alt3 Polysaccharide
Alt4 Polymer of glucose and mannose
25 Glycolis is the process
Alt1 Fermentive
Alt2 Aerobic
Alt3 Anaerobic
Alt4 Both A and B
26 Chlorophyll molecule contains ion in its structure
Alt1 Mg3+
Alt2 Mg2+
Alt3 Ca2+
Alt4 Fe2+
Aut 102
27 Water use efficiency is minimum in
Alt1 CAM plants
Alt2 C3 plants
Alt3 C4 plants
Alt4 All higher plants
28 All amino acid except are specified by more than one codon
Alt1 Arginine and Tryptophan
Alt2 Tryptophan and Methionine
Alt3 Methionone and Arginine
Alt4 Methionine and Threonine
ANCE INCUITORING AND THEORING
20 The independent process of plant principle interaction in Asymptosis is a visit of the time.
The independent process of plant microbe interaction in Agrobacterium infection is
Alt1 Induction of Vir genes
Alt2 T-DNA integration
Alt2 T-DNA integration
Alt2 T-DNA integration Alt3 Produc on of phenolics
Alt2 T-DNA integration Alt3 Produc on of phenolics

Alt2	HF
Alt3	
Alt4	
31	Dimerisation of cyclopentadiene is an example of
	Friedel–Crafts reaction
	Chain reaction
	Condensation Polymerisation
	Diels Alder reaction
32	Density of water is
	1 g/cm3
	10 g/cm3
	100 /cm3
	1000 g/cm3
7110-1	1000 g/ cm3
33	Zeta potential is related to
	Galvanic corrosion
	Surface charge
	Electrophoretic effect
	Bio molecular reaction
AIL4	Bio indieculai reaction
2.4	Indicator used in redox titration is
	Eriochrome black T
	Methyl orange
	Phenolphthalein
AIT4	Methylene blue
25	Market and a state of the state
	Water is a good solvent of ionic salts because
	It has a high specific heat
	It has no colour
	It has a high dipole moment
Alt4	It has a high boiling point
	The heat energy produced when the human body metabolises 1 gram of fat is
	30 KJ
Alt2	
	39 KJ
Alt4	29 KJ
	What are the number of moles of CO2 which contains 16 g of oxygen?
	0.5 mole
	0.2 mole
	0.4 mole
Alt4	0.25 mole
38	The iron ore magnetite consists of

Alt1 Fe2O3	
Alt2 Fe3OH4	
Alt3 FeCO3	
Alt4 3Fe2O3 & 3H2O	
<u> </u>	
39 Steel is more elastic than Rubber because	
Alt1 Its density is high	
Alt2 It is a metal	
Alt3 Ratio of stress to strain is more	
Alt4 Ratio of stress to strain is less	
•	
40 Plants that grow in saline water are called	
Alt1 Halophytes	
Alt2 Hydrophytes	
Alt3 Mesophytes	-
Alt4 Thallophytes	
41 The inherited traits of an organism are controlled by	
Alt1 RNA molecules	
Alt2 Nucleotides	
Alt3 DNA molecules	
Alt4 Enzymes	
, <u></u>	
42 If $x + y = k$, $x > 0$, $y > 0$, then xy is maximum when	
Alt1 x = ky	
Alt2 kx = y	
Alt3 x = y	
Alt4 None of these	
The first of these	
43 The angle between any two diagonals of a cube is	
Alt1 $\cos \theta = \sqrt{3/2}$	
Alt2 $\cos \theta = 1/\sqrt{2}$	
Alt3 $\cos \theta = 1/3$	
Alt4 $\cos \theta = 1/\sqrt{6}$	
7 He 1 1000 0	
44 Find the equation of the circle with centre (2, 0) and radius 10 units	
Alt1 x2+y2-4x-96=0	
Alt2 x2+y2-x-96=0	
Alt3 x2+y2+4x-96=0	
Alt4 x2+y2+4x+96=0	
45 Radiocarbon dating technique is used to estimate the age of	
Alt1 Rocks	
Alt2 Monuments	
Alt3 Soil	
Alt4 Fossils	
רוונדן סטטוט	

Alt1	Lower than atmospheric pressure
Alt2	Higher than atmospheric pressure
Alt3	Equal to atmospheric pressure
Alt4	Could be anything
53	The number of d-electrons in Fe2+ (Z = 26) is not equal to that of
Alt1	p-electrons in Ne (Z = 10)
Alt2	s-electrons in Mg (Z = 12)
Alt3	d-electrons in Fe (Z = 26)
Alt4	p-electrons in CI (Z = 17)
	·
54	Nowadays many novel chemicals are being synthesized termed as xenobiotics. The unique feature of these is
	what they are
	I. Biodegradable
	II. Non-biodegradable
	III. Pose on environmental threat
	IV. They are environment friendly
Alt1	1, 111
Alt2	
-	I, III, IV
	II, III, IV
55	The main buffer system of the human blood is
	H2CO3 - HCO3
Alt2	H2CO3 - CO32-
Alt3	CH3COOH - CH3COO-
Alt4	NH2CONH2 - NH2CONH+
56	Serum has essentially the same composition as plasma EXCEPT that it lacks
Alt1	Albumin
Alt2	Stuart-Power factor
Alt3	Antihemophilic factor
Alt4	Hageman factor
57	Consider the operator $a = x + d/dx$ acting on smooth functions of x. The commutator $[a, \cos x]$ is
	- sin x
Alt2	- cos x
Alt3	COS X
Alt4	0
58	The dynamics of a particle governed by the Lagrangian L= ½ mx2 – ½ kx2 – kxxt describes
	an undamped simple harmonic oscillator
-	a damped harmonic oscillator with a time varying damping factor
	an undamped harmonic oscillator with a time dependent frequency
	a free particle
	· · · · · · · · · · · · · · · · · · ·

	minimum numbers of 2 x 2 matrices, which includes these four matrices, and form a group (under matrix
	multiplication) is
Alt1	20
Alt2	8
Alt3	12
Alt4	16
60	The first ionization potential of K is 4.34 eV, the electron affinity of Cl is 3.82 eV and the equilibrium separation
	of KCl is 0.3 nm. The energy required to dissociate a KCl molecule into a K and a Cl atom is
Alt1	8.62 eV
Alt2	8.16 eV
Alt3	4.28 eV
Alt4	4.14 eV
61	The period of 2 sin x cos x is
Alt1	4π 2
Alt2	2π
Alt3	4π
Alt4	π
62	Let A $(2, -3)$ and B $(-2, 1)$ be vertices of a triangle ABC. If the centroid of this triangle moves on the line $2x + 3$
-	1, then the locus of the vertex C is the line
Δlt1	2x + 3y = 9
	2x - 3y = 7
	3x + 2y = 5
	3x - 2y = 3
63	If x dy/dx = y (log y – log x + 1), then the solution of the equation is
	$y \log(x/y) = cx$
	$x \log(y/x) = cy$
	$\log(y/x) = cx$
	$\log(x/y) = cy$
Alt Z	11 610
Alt4	
	I cosx
64	∫ COSX tanx
64 Alt1	tanx
64 Alt1 Alt2	tanx secx
64 Alt1 Alt2 Alt3	tanx secx sinx
64 Alt1 Alt2 Alt3	tanx secx
64 Alt1 Alt2 Alt3 Alt4	tanx secx sinx —sinx
64 Alt1 Alt2 Alt3 Alt4	tanx secx sinx -sinx A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the cent
64 Alt1 Alt2 Alt3 Alt4	tanx secx sinx —sinx A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the cent of the circle is
64 Alt1 Alt2 Alt3 Alt4	tanx secx sinx —sinx A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the cent of the circle is an ellipse
64 Alt1 Alt2 Alt3 Alt4 65 Alt1 Alt2	tanx secx sinx —sinx A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the cent of the circle is

66 What is the value of factorial Zero (0!)	
Alt1 10	
Alt2 0	
Alt3 1	
Alt4 -1	
67 Young's Modulus of material of a wire is defined as	
Alt1 Ratio of linear strain to normal stress	
Alt2 Ratio of normal stress to linear strain	
Alt3 Product of linear strain to normal stress	
Alt4 Square root of the ratio between normal stress and linear strain	
68 When light wave suffers reflection at the interface between air and glass, the change of phase of the	reflected
wave is equal to	
Alt1 0	
Alt2 π/2	
Alt3 π	
Alt4 2π	
69 According to Charles Law	
Alt1 PV = Constant	
Alt2 P/V = (-) K	
Alt3 V/T = Constant	
Alt4 VT = K0	
AIL4 VI - RO	
70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become	me?
Alt1 2R	
Alt2 R/2	
Alt3 R/4	
Alt4 4R	
71 Optical fiber works on the	
Alt1 principle of refraction	
Alt2 total internal reflection	
Alt3 scattering	
Alt4 interference	
72 Heat transfer takes place according to	
Alt1 Zeroth law of thermodynamics	
Alt2 First law of thermodynamics	
Alt3 Second law of thermodynamics	
Alt4 Kirchoff's law	
<u> </u>	
73 The 'Greenhouse effect' in atmosphere is mainly due to increase in atomospheric	
Alt1 Ozone	

Alt2	Nitrogen
Alt3	Carbon dioxide
Alt4	Carbon monoxide
74	Algal bloom results in
Alt1	Global warming
Alt2	Salination
Alt3	Eutrophication
Alt4	Biomagnification
75	A high biological oxygen demand (BOD) indicates that
Alt1	water is pure
Alt2	absence of microbial action
Alt3	low level of microbial pollution
Alt4	high level of microbial pollution
76	What is the maximum number of phases that can be at equilibrium with each other in a three-component
	mixture?
Alt1	2
Alt2	3
Alt3	
Alt4	5
	Which of the following is always true of a spontaneous process?
	The process is exothermic
	The process does not involve any work
	The entropy of the system increases
Alt4	The total entropy of the system plus surroundings increases
78	Infrared (IR) spectroscopy is useful for determining the certain aspects of the structure of organic molecules
	because
	all molecular bonds absorb IR radiation
	IR peak intensities are related to molecular mass
	most organic functional groups absorb in a characteristic region of the IR spectrum
Alt4	each element absorbs at a characteristic wavelength
79	Assuming complete dissociation, of the following solutions which will have the highest ionic strength?
	0.050 M AICI3
	0.100 M NaCl
	0.050 M CaCl2
Alt4	0.100 M HCl
80	Cobalt – 60 is used in a radiation therapy of cancer and can be produced by bombardment of Cobalt – 59 with
	which of the following?
	Neutrons
Alt2	Alpha particles

Alt3	Beta particles
Alt4	X – rays
81	Which of the following observations were explained by Planck's quantum theory?
Alt1	Blackbody radiation
Alt2	Emission spectra of diatomic molecules
Alt3	Electron diffraction patterns
Alt4	Temperature dependence of reaction rates
82	Which of the following is an n-type semiconductor?
Alt1	Silicon
Alt2	Diamond
Alt3	Silicon carbide
Alt4	Arsenic-doped silicon
83	Of the following compounds, which is LEAST likely to behave as a Lewis acid?
	BeCl2
	MgCl2
	ZnCl2
	SCI2
84	The strongest base in liquid ammonia is
	NH3
-	NH2-
	NH4+
	N2H4
7.101	
85	Which of the following is required for both paramagnetism and ferromagnetism?
	Strong oxidizing conditions
	Low-spin electron configuration
	Metallic physical properties
	Unpaired electrons
7.101	
86	Of the following atoms, which has the lowest electron affinity?
Alt1	
Alt2	
Alt3	
Alt4	
7.116-7	1 ·- ·
87	Which of the following is a primary standard for use in standardizing bases?
	Ammonium hydroxide
	Potassium hydrogen phthalate
	Acetic acid
	Sulfuric acid
	partatio dold
22	Formation of ozone is
	oxidation reaction
AitI	Oxidation (Custom

Alt2	reduction reaction
Alt3	photochemical reaction
Alt4	electrochemical reaction
89	Nutrients are recycled in ecosystem by
	Biogeochemical cycle
	Energy flow
	Producers
	Consumers
90	Driving force in an ecosystem is
	Plants
	Producers
	Solar energy
Alt4	Biomass energy
91	Two coils in differential connection have self inductance of 2mH and 4mH and a mutual inductance of 0.15mH.
	The equivalent inductance of the combination is
Alt1	5.7 mH
	5.85 mH
	6 mH
	6.15 mH
7	
92	If an intrinsic semiconductor is doped with a very small amount of Boron, then the extrinsic semiconductor so
	formed, the number of electrons and holes will
	Decrease
Alt2	Increase and decrease respectively
	Increase
Alt4	Decrease and increase respectively
93	Photovoltaic emf of silicon solar cell is of the order of
Alt1	0.1 Volts
Alt2	0.5 Volts
	1.1 Volts
	1.72 Volts
0.4	The MOSEET switch in its On state may be considered equivalent to
	The MOSFET switch in its On-state may be considered equivalent to Resistor
	Inductor
	Capacitor
	Battery
Alt4	A memory system has total of 8 memory chips, each with 12 address lines and 4 data lines. The total size of the
Alt4 95	A memory system has total of 8 memory chips, each with 12 address lines and 4 data lines. The total size of the memory system is
Alt4 95 Alt1	A memory system has total of 8 memory chips, each with 12 address lines and 4 data lines. The total size of the

Λ I+ <i>1</i>	Alt4 64 kbytes	
All4	104 kbytes	
96	The rank of the following matrix is	
30	The falls of the following matrix is	
	[123	
	142	
	2 6 5]	
Alt1	0	
Alt2	1	
Alt3	2	
Alt4	3	
97	Process of generating electric power and useful heat in a single installation is known as	
Alt1	Regeneration	
Alt2	Cogeneration	
Alt3	Total generation	
Alt4	Integral production	
98	For a reversible adiabatic process, the change in entropy is	
Alt1	Zero	
Alt2	Minimum	
Alt3	Infinite	
Alt4	Unity	
99	In a Carnot engine, when the working fluid gives heat to sink,	
Alt1	The temperature of sink increase	
Alt2	The temperature of the source decrease	
Alt3	The temperature of both source and sink decrease	
Alt4	The temperature of sink remains same	
100	Regenerative cycle thermal efficiency of a Rankine cycle	
Alt1	Is same as that of simple Rankine cycle	
Alt2	Is always less than that of simple Rankine cycle	
Alt3	Is always greater than that of simple Rankine cycle	
Alt4	None	

483 PU P G Diploma Green Energy Technology

1 of 100 109 PU_2016_483_E If $y = 5x^2 + 3$, then the tangent at x = 0, y = 3Passes through x equals 0, y equals 0 has a slope +1 is parallel to the x-axis has a slope -1 2 of 100 129 PU 2016 483 E Complex conjugate of i / (1 - i) is:- $-\frac{1}{2}(1+i)$ \circ Ö ½ (1-i) $-\frac{1}{2}(1-i)$ ½ (1+i) 3 of 100 204 PU 2016 483 E Crystalline structure of material exhibits :-Ordered arrangement of atoms 0 Bonded atoms diffused atoms Coordinated atoms 4 of 100 208 PU_2016_483_E The magnetic line of force travel from :-South Pole to North Pole 0 North Pole to South Pole 0 East pole to west pole West pole to east pole 5 of 100 165 PU_2016_483_E Which of the following is a hard acid? Au⁺ Cu^{\dagger} Ag⁺ Li⁺

-	$y = \sin(x) + c$ where c is an arbitrary constant
0	$y = \sin(x)$
162	PU_2016_483_E tylene has the point group:- C_{2v} D_{8h} D_{6h} C_{2h}
163	PU_2016_483_E cout the molecule which has zero dipole moment :- H ₂ O BCl ₃ NH ₃ SO ₂
186	PU_2016_483_E rotective oxide layer is formed on the surface of metals to :- Prevent electricity league Prevent corrosion Prevent fire Prevent breakage
149	PU_2016_483_E coordination number and oxidation state of Cr in $K_3(Cr(C_2O_4)_3]$ are 3 and + 3 4 and +2 3 and 0 6 and + 3
	of 100 PU_2016_483_E

If a transformation y=uv transforms the given differential equation			
f(x)y'' - 4f'(x)y' + g(x)y = 0 into the equation of the form $v'' + h(x)v = 0$ then			
mı	ust be		
0	xf $1/2f$ f^2 $1/f^2$		
205 Cor	of 100 5 PU_2016_483_E inductivity of metal arises due to the presence of :- Free atoms		
0	Free holes Impurities Free electrons		
201	of 100 PU_2016_483_E erter is a device that converts :- DC power to AC power optical to electrical power AC power to DC power DC power to DC power		
121 If ro	of 100 PU_2016_483_E bots of the equation x²-bx+c=0 be two consecutive integers, then b²-4ac equals 2 1 3 -2		
140	of 100 PU_2016_483_E bond that gives the most intense band in the infrared spectrum for its stretching vibration is:- O-H S-H C-H		

0	N-H		
202 An	of 100 PU_2016_483_E electrical transformer works under the principle of :-		
0	coil induction		
0	biased induction		
0	Self induction		
0	mutual induction		
188 Bar	of 100 PU_2016_483_E and gap of the semiconductor decreases with:-		
0	Increase with combination		
0	Increase in temperature		
0	Increase with doping		
0	Increase in pressure		
180	of 100 PU_2016_483_E ermal expansion of materials arise from :- asymmetry of potential energy curve weak bonds strong bonds thermal vibrations		
145 Due	of 100 PU_2016_483_E to Schottky defects, the density of the crystal		
0	Increases slightly		
0	Decreases slightly		
0	Remains same		
0	Increases appreciable		
24 of 100 128 PU_2016_483_E Real solutions to the logarithmic equation ln (x) + ln (2)			
0	e ³ /2		
0	e ³ / In (2)		
O	3 / In (2)		

	I x R
0	V x R
0	none of the above
0	IxV
183	of 100 PU_2016_483_E degree of freedom when ice, water and water vapour coexist in equilibrium is :1 Triple point 0 1
142	of 100 PU_2016_483_E bond order in CO is 0 3 4
127	of 100 PU_2016_483_E d two numbers whose sum is 26 and whose product is 165 9 and 17 10 and 16 11 and 15 12 and 14
144 The	of 100 PU_2016_483_E diborane is $[B_6H_{12}]$ $[B_2H_{12}]$ $[B_6H_6]^{2^-}$ $[B_2H_6]$
161	of 100 PU_2016_483_E electrical resistivity of a semiconductor :-

0	Increases with temperature
0	Does not change with temperature
0	Decreases with temperature
0	Increases at lower temperature and decreases at higher temperature
141	PU_2016_483_E region of electromagnetic spectrum employed in the electron spin resonance (ESR) spectroscopy is:- infrared visible radiowave microwave
148	of 100 PU_2016_483_E m the following, the most acidic compound is HF
0	CH₄
0	NH ₃
0	H_2O
100	of 100 PU_2016_483_E arabola has the origin as its focus and the line x = 2 as the directrix. Then the vertex of the parabola is (1,0) (2,0) (0,1) (0,2)
184	of 100 PU_2016_483_E error function of ∞ is :- 0 1 -1 ∞
	of 100 PU_2016_483_E

$\int \cos(x) dx$

tan(x)

Sin(x)

sec(x)

-sin(x)

40 of 100

104 PU_2016_483_E

The first order differential equation M(x,y) dx+N(x,y) dy = 0 is exact if:-

$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$

$$O \frac{\partial M}{\partial y} = \frac{\partial M}{\partial x}$$

$$\bigcirc \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\bigcirc \frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$$

41 of 100

146 PU_2016_483_E

The wave character of electron was verified by _____ experiment.

Mass spectrum

Thermal analysis

Diffraction

Photoelectric effect

42 of 100

105 PU_2016_483_E

If $y = \sum_{m=0}^{\infty} C_m x^{r+m}$ is assumed to be a solution of the differential equation

$$x^2y'' - xy' - 3(1+x^2)y = 0$$
 then the values of r are

-1 and 3

-1 and -3

1 and 3

0 1 and -3

43 of 100

120 PU_2016_483_E

If $A^2-A+I=0$, then the inverse of A is:-

```
I-A
    A+I
44 of 100
181 PU_2016_483_E
Hydrogen bonds are stronger than :-
    vander Waals bonds
0
    covalent bonds
    ionic bonds
    metallic bonds
45 of 100
168 PU_2016_483_E
In which one of the following reaction nitrogen is not reduced:-
         NO_3 \longrightarrow NO
\circ
        NO_2 \longrightarrow NO_2
Ö
        NO_3 \longrightarrow NH_4
         NH_4^+ \longrightarrow N_2
O
46 of 100
124 PU 2016 483 E
The set of real number is:-
    unbounded above
    countable set
    finite set
0
    Bounded above
47 of 100
101 PU_2016_483_E
If |z^2-1|=|z|^2+1, then z lies on:-
    circle
    ellipse
    imaginary axis
    Real axis
48 of 100
207 PU_2016_483_E
Dimensional representation of Force (F) is :-
```

```
[Mass]*[Length]
    [Mass]*[Length]*[Time<sup>-2</sup>]
    [Mass]*[Time<sup>-2</sup>]
    Kg/s
49 of 100
206 PU_2016_483_E
There are _____ number elements present in the periodic table:-
    122
    118
    175
    108
50 of 100
182 PU_2016_483_E
The bulkiest side group in the monomer is in:-
    PTFE
    PVC
    teflon
    Polystyrene
51 of 100
166 PU_2016_483_E
In Joule-Thomson expansion :-
0
    dG = 0
    ds = 0
    dH = 0
    dE = 0
52 of 100
164 PU_2016_483_E
The conjugate base of NH<sub>4</sub>+ is :-
0
    NH_3
    OH<sup>-</sup>
    кон
    NH₄OH
53 of 100
167 PU_2016_483_E
```

For the reaction A Products, the plot of [A] vs time is a straight line. The order of a reaction is		
Pseudo first Zero First Second		
54 of 100 160 PU_2016_483_E A 1S orbital refers to :- A one electron wave function A hermitian operator A circular track in an atom in which an electron travels An observable property of the system		
185 PU_2016_483_E The fastest diffusing species in Fe is :- Ni W C H		
56 of 100 147 PU_2016_483_E The pH of a 10 ⁻⁸ molar HCL solution at 25°C is nearly 7 1 14 10		
57 of 100 169 PU_2016_483_E Vitamin B ₁₂ is the coordination compound of :- Fe CO Zn Mg 58 of 100		

102 PU_2016_483_E

If
$$\begin{bmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{bmatrix} = x + iy \text{ then}$$

x = 0, y = 0

x = 0, y = 3

x = 3, y = 1

x = 1, y = 3

59 of 100

107 PU_2016_483_E

The straight lines L_1 : x = 0, L_2 :y = 0 and L_3 : x+y=1 are mapped by the transformation $w = z^2$ into the curves C_1 , C_2 and C_3 respectively. The angle of intersection between the curves at w = 0 is:-

Ο π/4

υ π/4

С π

° 0

60 of 100

143 PU_2016_483_E The structure of SF₄ is _____.

C Tetrahedral

Square planar

Trigonal pyramidal

Octahedral

61 of 100

226 PU_2016_483_M

Example of an aromatic side chain amino acid is :-

Glycine

Proline

Tryptophan

Lysine

62 of 100

249 PU_2016_483_M

In anerobic respiration, energy liberated by one molecule of glucose is:-

18 ATP

O	30 ATP
0	38 ATP
0	40 ATP
240	of 100 PU_2016_483_M n-branching helical structure consisting of glucose residues in alpha-1,4 linkage is :- Cellulose Amylopectin Amylose Lignin
228 Met	of 100 PU_2016_483_M hylation of cytosine in regulating gene expression is referred as :-
0	Mutation
0	Epigenetic transformation
0	Single Nucleotide Polymorphism
0	Genetic Engineering
221	of 100 PU_2016_483_M ptosynthesis occurs in :-
0	Cytoplasm
0	Nucleus
0	Golgi
	Thylakoid
227 RN/	of 100 PU_2016_483_M A Polymerase is an enzyme that:-
0	Does Translation of RNA
0	Carry out replication of RNA
0	Does Transcription of DNA
0	Carry out replication DNA
220 Whi	of 100 PU_2016_483_M ich of the following is not true for photosynthesis:-
0	Light reaction cannot take place in the absence of light

0	Dark reactions takes place in the absence of light
0	Dark reaction cannot take place in the presence of light
0	Light reaction takes place in the presence of light
223	PU_2016_483_M od corpuscles which help blood clotting at the site of injury are:- Platelets RBCs WBCs RBCs and WBCs
242	of 100 PU_2016_483_M hotosynthesis, CO ₂ fixation takes place in
0	Light reaction
0	Dark reaction
0	In the absence of light
0	In the presence of light
225 Psy	of 100 PU_2016_483_M chrophiles are bacteria that grow in the temperature range of
0	30 °C to 45 °C ;
0	Above 100 °C
0	-10 °C to 20 °C ;
0	45 °C to 75 °C ;
244	of 100 PU_2016_483_M olymerase chain reaction, denaturization temperature is set around :- 65 °C
0	95 °C
0	25 °C
0	37 °C
246	of 100 PU_2016_483_M ch is one of the most poisonous excretory substance? Uric Acid
	UTIC ACIU

0	Urea
0	Ammonia
0	Hippuric Acid
247	of 100 PU_2016_483_M trial resistance to antibiotics is a genetic train that is carried in the bacterial cell in:- Plasmid Chromosome Interon Centromere
245	PU_2016_483_M Plength of a DNA molecule about 3 x 10 ⁶ base pair is:- 1mm 1cm 1m 1µm
222	PU_2016_483_M . Which of the following best describes anaerobic respiration? Oxidation of food in the presence of oxygen Oxidation of food in the absence of oxygen Uptake of CO ₂ and release of O ₂ Release of CO ₂ with the uptake of O ₂
248	PU_2016_483_M nber of ATP utilized for the formation of glucose in Calvin Cycle is:- 12 ATP 24 ATP 18 ATP 6 ATP
241	of 100 PU_2016_483_M storage polysaccharides of animal cell is called:- Starch

000	Saccharin Lipid Glycogen
229	PU_2016_483_M e of function protein porin perform is:- Specific binding Transport Degradation of proteins Gene activations
224	of 100 PU_2016_483_M hycardia mean: Irregular heart beat Stiffening of arteries Increased heart beat Decreased heart beat
243 In b	PU_2016_483_M iochemical reaction when an inhibitor closely resembles the substrates in its molecular structure to bit the activity of enzyme, it is referred as:- Competitive inhibitor Co-substrate Co-inhibitor Competitive substrate
262 In a	PU_2016_483_D double strand DNA, number of hydrogen bonds formed in C-G and T-A base pairing are:- Two in both cases Three and Two Three in both cases Two and Three

282 PU_2016_483_D
In thermodynamics, Carnot cycle is also called as:-

0	Constant volume cycle
0	Constant pressure cycle
	Constant temperature cycle
0	Constant heat cycle
268	PU_2016_483_D de-emphasis filter in an FM receiver comes:- After FM demodulator and before baseband and filter Before RF amplifier After baseband filter Before FM demodulator
283	of 100 PU_2016_483_D ooling and humidifying process, the spray water:-
0	Lowers both the dry-bulb temperature and the dewpoint temperature
0	Lowers the dry-bulb, wet-bulb and dewpoint temperatures
0	Lowers the dry-bulb temperature and raises the dewpoint temperature
0	Raises both the dry-bulb temperature and the dewpoint temperature
266	of 100 PU_2016_483_D property characteristic of ferroelectric materials is:-
0	Spontaneous magnetization
0	Spontaneous polarization
Ö	Dielectric breakdown
	Dielectric relaxation
287 Ads	of 100 PU_2016_483_D orbents in absorption system separate from the refrigerant:-
0000	Only when sufficiently heated
	Only when cooled
	By reacting with water
	By means of a filter
281	of 100 PU_2016_483_D iesel cycle:-

000	Compression ratio is greater than the expansion ratio
	Compression ratio is less than the expansion ratio
	Compression ratio + expansion ratio equals 1
0	Compression ratio and expansion ratio are the same
260 At is	of 100 PU_2016_483_D soelectric pH, proteins exists in:-
0	More negatively charged than positive charge
0	As Zwitterions
0	Negatively charged form
0	Positively charged form
289	of 100 PU_2016_483_D vanes of a centrifugal pump are generally:-
0	Radial
0	Curved backward
0	Twisted
\sim	Curved forward
90 of 100 286 PU_2016_483_D Heat in the absorption-refrigeration cycle is applied at:-	
0	Evaporator
0	Generator
0	Cooler
0	Absorber
91 of 100 264 PU_2016_483_D Determine the quantity of heat required to vaporize 2 m³ of water at 0 °C if the latent heat of vapor of water at that temperature is 2257 kJ/Kg	
0	2257 kJ
	1128.5 kJ
0	4514 kJ
0	2000 kJ
	of 100 PU 2016 483 D

The unit in the refrigeration cycle in which heat is rejected is the:-		
0	Evaporator	
0	Compressor	
0	Coil	
0	Condenser	
288 Incr	PU_2016_483_D easing the pressure of a refrigerant :- Does not affect its temperature Increase its temperature Lowers its boiling point	
0	Decrease its temperature	
269	of 100 PU_2016_483_D a psychrometric chart, what does a vertical downward line represent? Humidification	
0	Dehumidification	
0		
0	Adiabatic saturation	
	Sensible cooling	
265 Whi	of 100 PU_2016_483_D ch one of the following materials is a latent heat storage material?	
0	Magnesium oxide	
0	Hitec	
0	Servotherm	
0	Lauric acid	
280 The	of 100 PU_2016_483_D Rockwell number refers to a material's :-	
0000	Malleability	
	Hardness	
	Plasticity	
	Toughness	
	of 100 PU_2016_483_D	

0000	ch of the following pump does not fall under the category of turbo machines? Rotary Mixed flow Centrifugal Axial flow	
263 F Cross	PU_2016_483_D s flow heat exchangers are popularly used for heat transfer:- liquid and liquid liquid and evaporating fluid condensing fluid and liquid gas and gas or liquid and gas	
99 of 100 267 PU_2016_483_D Which one of the following is correct?		
these	ronmental protection agencies advise against the use of chlorofluorocarbon refrigerants because e react with:- Plant and cause greenhouse effect Water vapour and cause acid rain Oxygen and cause its depletion Ozone layer and cause its depletion	
261 F Mole	of 100 PU_2016_483_D cules upon binding to an enzyme, regulate the activity of enzyme are termed as:- Metabolites Promotors/ suppressors Mediators Activators/ inhibitors	

PU PG Diploma in Green Energy Technology

177	f 100 PU_2015_483 at among following is used to produce artificial rain?
0	Silver iodide
9	Carbon monoxide
	Copper oxide
0	Silver nitrate
179 The	f 100 PU_2015_483 chemical used as a fixer in photography is:-
	Sodium thiosulphate
	Borax
	Ammonium sulphate
	Sodium sulphate
169	F 100 PU_2015_483 point group of CO_2 is:- D_{3h}
	$C_{\alpha v}$
	D_{2h}
	$D_{\alpha h}$
204 Pho	PU_2015_483 tosynthesis requires:- CH ₄ CO ₂ O ₂
122	$$N_{\rm 2}$$ $$100$$ PU_2015_483 and B are symmetric matrices, then AB is symmetric if:-
9	AB≠BA
9	AB = BA
	AB > BA

	AB < BA
110 If x2	f 100 PU_2015_483 $y = \sum_{m=0}^{\infty} C_m x^{r+m}$ is assumed to be a solution of the differential equation $y'' - xy' - 3(1+x^2)y = 0$, then the values of r are:-
0	-1 and -3 1 and 3 -1 and 3 1 and -3
170	f 100 PU_2015_483 e structure of O_3 and N_3 - are:- Both linear Both bent Linear and bent, respectively Bent and linear, respectively
198 Wh	f 100 PU_2015_483 ich of the following is a greenhouse gas? SO ₂ CO ₂ CO NO ₂
112 The curv	f 100 a PU_2015_483 be straight lines L1: $x = 0$, L2: $y = 0$ and L3: $x + y = 1$ are mapped by the transformation $w = z^2$ into the eves C1, C2 and C3 respectively. The angle of intersection between the curves at $w = 0$ is:- π $\pi/4$ 0 $\pi/4$
162	of 100 PU_2015_483 romagnetic metal among the following is:-

Cu Co Na Mg
of 100 PU_2015_483
ution of the differential equation $\frac{d^2x}{dy^2} + x = 0, x = 0 \text{ at } y = 0 \text{ and } x = 1 \text{ at } y = \pi/2$ $x = \cos(y)$ $\sin^{-1}(y)$ $x = \sin(y)$ $x = \sin(y) + \cos(y)$
of 100 PU_2015_483 Ptochrome pigment is present in:- Stems Flowers Leaves Fruits
of 100 PU_2015_483 a sheets in a protein are formed due to:- Ionic bond between the residues Due to sulphur bridge between two residues Covalent bonding between amino acids in a polypeptide Hydrogen bonding between polypeptide chain
of 100 PU_2015_483 e more stable carbon ion among the following is:- Cyclopentadienyl anion Alkyl anion Methyl anion Pentadienyl anion

	PU_2015_483 IA is:-
	Complementary of genomic DNA
	Complementary of plasmid DNA
	Complementary of mRNA
	Complementary of B-DNA
218	of 100 PU_2015_483 k reaction refers to the reduction of:- Oxygen CO ₂ Water Hydrogen
164 Osn	of 100 PU_2015_483 nimum tetroxide is a reagent used for:-
	Hydroxylation of olefins to give trans diols
	Hydroylation of acetylene
0	Hydroxylation of carbonyl compounds
	Hydroxylation of olefins to give cisdiols
154 Amo	of 100 PU_2015_483 ong the following, the power device is:-
	Battery
	Fuel cells
	Supercapacitors
	None
193 Nun	PU_2015_483 nber of hydrogen bonds between Thiamine and Adenosine is:- Four Three One
	Two

	S PU_2015_483 ich part of the embryo comes out first of all from the seed during germination?
	Radicle
	Hypocotyle
	Plumule
	Cotyledon
132	of 100 2 PU_2015_483 dx + xsin(y) dy = 0 is exact, then p can be:- -sin(y)
-	
B-2	$x^2 - \cos(y)$
200	cos(y)
	Sin(y) + cos(y)
165	of 100 5 PU_2015_483 e criteria for spontaneity of a reaction is:-
	$\Delta G = +ve$
	$\Delta G = 0$
	$\Delta G = - ve$
	None
142 An	of 100 2 PU_2015_483 element 'X' emits successively two α particles. The mass and atomic numbers of the element are creased by, respectively:-
	4 and 8
	4 and 4
	4 and 6
	2 and 4
215 Oka	of 100 5 PU_2015_483 azaki fragment relate to:-
	Partially synthesized mRNA
	DNA fragment that help synthesis of lagging strand
	SiRNA fragments
	DNA primers for leading strand synthesis

```
25 of 100
```

136 PU_2015_483

	$f(z) \begin{cases} \frac{\sin(z)}{z - \pi} & \text{if } z \neq \pi \\ -1 & \text{if } z = \pi \end{cases}$ coefficient of $(z - \pi)^2$ in the Taylor expansion of
The	coefficient of $(z - \pi)^2$ in the Taylor expansion of (-1) if $z = \pi$ around π is:-
0	1/6
	-1/6
	-1/2
	1/2
211 Stud	of 100 PU_2015_483 ly of Epigenetic gene regulation relates to:-
9	Cytosine deletion causing genetic disease
	Methylation of cytosine regulating gene expression
	Transformation of cytosine to Uracil
0	Base pair mismatch due to mutation
180	PU_2015_483 yme that are used to hydrolyse fats into diglycerides, monoglycerides, fatty acids and glycerol is:- Lipase Zymase Cellulase Protease
117	PU_2015_483 $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ is:- Orthogonal Hermitian Unitary Skew Hermitian
173	of 100 PU_2015_483
977	number of peaks in the EPR spectrum of $^{ ext{CH}_3}$ radical is:-

2

157 PU_2015_483

Which of the following is an ore of magnesium?

- Limonite
- Dolomite
- Hematite
- Goethite

31 of 100

163 PU 2015 483

An example for the species having quadruple bond is:-

- Cr₂O₇²-
- C Re₂Cl₈²-
- Hg2(CH3COO)2
- Mn₂(CO)₁₀

32 of 100

205 PU_2015_483

Component of the blood which help in clotting at the site of injury are:-

- WBCs
- Platelets
- RBCs
- Plasma serum

33 of 100

131 PU 2015 483

Which of the following is a linear differential equation?

$$\Box (1+y)\frac{dy}{dx} + \sin(x) = 0$$

$$\sum \frac{dy}{dx} + x^2 y = \sin(y)$$

34 of 100

147 PU_2015_483

	e most symmetrical crystal system is:-
	Trigonal
	Cubic
	Triclinic
	Rhombohedral
140	of 100 PU_2015_483 ich of the following molecules show EPR resonance? CO ₂ O ₂ H ₂ O H ₂ O ₂
207	of 100 PU_2015_483 e flight or flight response is developed by hormone of the:- Medulla oblongata Adrenal medulla Hypothalamus Adrenal cortex
194	of 100 PU_2015_483 Ptorespiration is:- Sequestration of O ₂ Sequestration of CO ₂ Consumption of CO ₂ and release of O ₂ Consumption of O ₂ and release of CO ₂
	of 100 PU_2015_483
The	e value of $\int_{-1}^{2} x^3 dx$ is:9 15 15/4

	PU_2015_483 edirectional movement or orientation of a plant part in response to light is termed as:-
	Thigmotaxis
	Chemotropism
	Photoperiodism
	Phototropism
152	of 100 PU_2015_483 example for a thermodynamic state function is:- Temperature Pressure Volume All
113 The	of 100 PU_2015_483 possible set of eigen values of a 4 x 4 skew-symmetric orthogonal real matrix is:- $\{\pm i\}$ $\{0, \pm i\}$ $\{\pm i, \pm 1\}$ $\{\pm 1\}$
	of 100 PU_2015_483
Let	$f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$ then:- $\lim_{x \to 0} f(x) = 1$
	$\lim_{x\to 0} f(x) = \pi^6/2$
	$\lim_{x\to 0} f(x)$ does not exist
	$\lim_{x\to 0} f(x) = 0$
210 RN	of 100 PU_2015_483 A Polymerase is an enzyme that:-
	Replicate RNA
	Translate RNA
	Replicate DNA

Transcribe DNA

109 The	
151	of 100 PU_2015_483 e absorption maximum of CdS is 470 nm. The approximate band gap in eV is:- 4.63 3.63 1.63 2.63
119	of 100 PU_2015_483 e triangle of maximum area inscribed in a circle of radius r is:- An equilateral triangle A right angled triangle with hypotenuse measuring 2r An isosceles triangle of height r None of the above
166	of 100 6 PU_2015_483 e electrolyte used in lead-acid battery is:- H ₂ SO ₄ HNO ₃ H ₂ O HCI
148	of 100 8 PU_2015_483 compound shows IR absorption at 1800 cm ⁻¹ . The compound can be:- Acid chloride Aryl ketone Ester Amide

155	of 100 PU_2015_483
	omplex compound in which the oxidation number of a metal is zero is:-
	Ni[CO] ₄
	K ₄ [Fe (CN) ₆]
	K ₃ [Fe (CN) ₆]
	[Pt (NH ₃) ₄]Cl ₂
118	of 100 PU_2015_483
The	$\frac{1}{\sqrt{2}}(\sin x - \cos x)$ maximum value of $\frac{1}{\sqrt{2}}(\sin x - \cos x)$ is:-
	$\frac{1}{\sqrt{2}}$
	0
153 An d'd' e	of 100 PU_2015_483 octahedral metal ion M^{2+} has magnetic moment of 4.0 BM. The correct combination of metal ion and electron configuration is:- $Fe^{2+}, t_2g^4 eg^2$ $Cr^{2+}, t_2g^4 eg^1$ $Mn^{2+}, t_2g^3 eg^1$ $Co^{2+}, t_2g^5 eg^2$
208	of 100 PU_2015_483 an ecosystem, which of the following is incorrect?
	Energy movement is unidirectional
	Energy movement is from higher to lower trophic level
	Energy is lost irretrievably
	Energy movement is non-cyclic
200 Phy	of 100 PU_2015_483 toplanktons are:-
	Primary consumers
	Secondary consumers

	Tertiary consumers	
0	Producers	
	of 100 PU_2015_483	
	XOR operator , which one is not correct?	
	$0 \oplus 1 = 1$	
	$1 \oplus 1 = 0$	
· <u></u> -	$1 \oplus 0 = 1$	
	$0 \oplus 0 = 1$	
	of 100 PU_2015_483	
Chlo	oroflorocarbon in the atmosphere causes depletion of:-	
	Oxygen	
	Carbondioxide	
	Ozone	
	Nitrogen	
56 of 100		
	PU_2015_483 he following metals, the softest is:-	
	AI	
	Na	
	Мо	
	Rb	
57	of 100	
	PU_2015_483 I product of glycolysis is:-	
	Ethanol	
	Pyruvic acid	
	Glycol	
	Glucose	
58 (of 100	
	PU_2015_483	
\int_a^b	$\int x^{-1+\varepsilon} dx$ where $\varepsilon \to 0$ is	
	0	

	$\frac{1}{arepsilon}$ In(b/a) $b^{arepsilon} - a^{arepsilon}$
186	of 100 PU_2015_483 chrophiles are bacteria that grow in the temperature range of:10° C to 20° C 15° C to 45° C 30° C to 75° C Above 100° C
214	of 100 PU_2015_483 ich of the following can terminate the continuation of phosphodiester bonding? DNA hybridization Nucleotides Dideoxynucleotides Deoxynucleotides
256 No 1	of 100 PU_2015_483 two electrons will have all the four quantum numbers equal. This statement is known as:- Pauli exclusion principle Aufbau's principle Uncertainty principle Hund's rule
62 (239) The	of 100 PU_2015_483 Frank of the matrix is $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ is:-
0	0 of 100

	PU_2015_483 one which is not compatible with crystal symmetry is:-	
0	One-fold symmetry	
9	Three-fold symmetry	
9	Six-fold symmetry	
0	Five-fold symmetry	
224	PU_2015_483 ctronic contribution to the specific heat of a metal at low temperature is:-	
	An exponential function of T	
0	Zero	
0	None of the above	
220	of 100 PU_2015_483 rdinary temperatures the molecules remain in their:-	
	Can remain in any vibrational level	
	Lowest vibrational level	
9	Highest vibrational level	
0	Does not show any type of vibration	
66 of 100 249 PU_2015_483 The probability that in a family of 4 children there will be at least one Boy is:-		
	16	
	15 16	
	1 16	
	3 16	
244	of 100 PU_2015_483 rs twinkle, whereas planets do not, because:-	
9	Planets merely reflect light, whereas stars emit light	
	Stars pulsate	

	Stars are more point like us
	None of the above
241	of 100 PU_2015_483 requency of a television transmitter is:-
	100 MHz
	1 MHz
	10 MHz
	100 kHz
228 The	of 100 PU_2015_483 temperature at which a conductor becomes a superconductor is called:-
	Superconducting temperature
	Transition temperature
	Onne's temperature
	Curie temperature
	of 100
	PU_2015_483 equation $x^5 + x^4 + x^3 + 1 = 0$
The	Has 5 roots
	Has no roots
	Has 4 roots
	Has 6 roots
245	of 100 PU_2015_483 erials that are good electrical conductors also tend to be good thermal conductors because:-
	Surface states are important in both processes
	Conduction electrons contribute to both processes
	They have energy gaps between the allowed electron energy bands
	They have highly elastic lattice structures
72 of 100 259 PU_2015_483 A second order phase transition is characterized by:-	
	A discontinuous change in its specific heat
	Irreversible behaviour during warming and cooling

	A latent heat	
	A change in volume	
255	of 100 PU_2015_483 blean algebra is based on:-	
	Symbols	
	Logic	
	Numbers	
	All of the above	
226 A se	of 100 PU_2015_483 emiconductor with equal concentration of acceptor and	d donor type of impurities is termed as:-
	Intrinsic	
	Amphoteric	
	Compensated	
	None of the above	
230	of 100 PU_2015_483 e energy of a phonon is:-	
	Infinite	
	ħν	
	ħω	
	$\hbar k$	
257	of 100 PU_2015_483 ter waves are:-	
	Always travel with speed of light	
	Electromagnetic	
	Show diffraction	
	Longitudinal	
	of 100 PU_2015_483	1
\//h	ich one of the following particles does not have a spin	± 2 ?
VVIII	Photon	:

	Neutron
	Proton
	Neutrino
247	PU_2015_483 sical origin of optical theorem is the conservation of:- Mass Energy Momentum Particles
	of 100
240	PU_2015_483
If L	= inductance and R = resistance, what unit does R have? Amperes Sec
	Sec ⁻¹
	None of the above
251 For	of 100 PU_2015_483 obtaining maximum power from a solar cell, it should be operated on:-
	Horizontal part of the curve
	Falling portion of V-I characteristics
	The knee of the V-I characteristics
	Any part of the V-I characteristics as power does not depend on it
268 Whi	of 100 PU_2015_483 ch of the following is an intensive property of a thermodynamic system?
	Temperature
	Energy
	Volume
	Mass
298	of 100 PU_2015_483 can be best heated by steam in a heat exchanger of:-

	Shell and tube type	
0	Double pipe type with fins on steam side	
0	Double pipe type with fins on air side	
	Plate type	
	of 100 PU_2015_483	
	rmal diffusivity of a substance is:-	
	Directly proportional to the square of thermal conductivity	
	Inversely proportional to thermal conductivity	
0	Inversely proportional to the square of thermal conductivity	
	Directly proportional to thermal conductivity	
275	of 100 PU_2015_483 apour compression cycle, the condition of refrigerant is superheated vapour:-	
	After passing through the expansion or throttle valve	
0	Before entering the expansion valve	
0	Before passing through the condenser	
	After passing through the condenser	
264 The	of 100 PU_2015_483 measurement of a thermodynamic property known as temperature is based on:-	
	First law of thermodynamics	
	Zeroth law of thermodynamics	
	Second law of thermodynamics	
	None of the above	
288	of 100 PU_2015_483 ycle consisting of and two isothermal processes is known as Stirling cycle.	
	Two constant pressure	
	Two constant volume	
	Two isentropic	
ы	One constant pressure, one constant volume	
276	of 100 PU_2015_483 als are good conductors of heat because:-	

	They contain free electrons
	Their atoms are relatively far apart
	They have high density
	Their atoms collide frequently
278	of 100 PPU_2015_483 TD in case of counter flow heat exchanger as compared to parallel flow heat exchanger is:- Depends on the area of heat exchanger Lower Same Higher
260	of 100 PU_2015_483 losed system is one in which:- Both energy and mass cross the boundaries of the system Neither mass nor energy cross the boundaries of the system Mass crosses the boundary but not the energy Mass does not cross boundaries of the system, though energy may do so
261 For tem	of 100 PU_2015_483 a perfect gas, according to Boyle's law (where p = Absolute pressure, v = Volume and T = Absolute pressure):- p v = constant, if T is kept constant p/T = constant, if v is kept constant T/p = constant, if v is kept constant v/T = constant, if p is kept constant
272 The	of 100 PU_2015_483 ermal conductivity of solid metals with rise in temperature normally:- Remains constant May increase or decrease depending on temperature Increases Decreases
92	of 100

289 PU_2015_483

Whe	ere does the lowest temperature occur in a vapour compression cycle?
	Evaporator
	Condenser
	Compressor
	Expansion valve
277	of 100 PU_2015_483 on™dimensional number generally associated with natural convection heat transfer is:-
0	Nusselt number
0	Prandtl number
	Grashoff number
	Weber number
286 In va	of 100 PU_2015_483 apour compression cycle, the condition of refrigerant is saturated liquid:-
	Before passing through the condenser
	After passing through the expansion throttle valve
	Before entering the expansion valve
	After passing through the condenser
293	of 100 PU_2015_483 value of solar constant is:-
	1763 W/m ²
	1000 W/m ²
	1637 W/m ²
	1367 W/m ²
290 Two	of 100 PU_2015_483 plates spaced 150 mm apart are maintained at 1000°C and 70°C. The heat transfer will take place only by:-
0	Convection
	Forced convection
	Free convection
	Radiation

	PU_2015_483 ecritical radius is the insulation radius at which the resistance to heat flow is:-
0	Zero
	Minimum
	Maximum
	None of the above
271 Acc	of 100 PU_2015_483 ording to First law of thermodynamics:-
	Internal energy, enthalpy and entropy during a process remains constant
	Total internal energy of a system during a process remains constant
	Work done by a system is equal to the heat transferred by the system
	Total energy of a system remains constant
279	PU_2015_483 rier's law of heat conduction is valid for:- One dimensional cases only Two dimensional cases only Regular surfaces having non-uniform temperature gradients Three dimensional cases only
281	Of 100 PU_2015_483 ree convection, heat transfer transition from laminar to turbulent flow is governed by the critical value ne:- Reynold's number, Grashoff's number Reynold's number Grashoff's number
	Prandtl number, Grashoff's number