ECE 469/ECE 568 - Machine Learning

October 1, 2024

Introduction to Classification in ML:

Input variab		-		
Tumor size	Texture	Perimeter	Outcome	Time
14.2	113	13.65	N	34
15.4	117	92.50	N	39
16.1	122	33.33	\mathbf{R}	40
15.0	111	8.99	N	65

N= Non re-occurrence and R= Re-occurrence

- The problem of predicting time is a numerical regression problem. We have already discussed regression in machine learning in detail.
- The problem of predicting re-occurrence/non re-occurrence is a (binary) classification problem.
- In this section, we are going to discuss classification for ML in detail.

Classification - Problem formulation

- We will be given a set of M training objects, $\mathbf{x}_1, \dots, \mathbf{x}_N$. Each \mathbf{x}_m for $m \in \{1, \dots, M\}$ is a vector with a dimension L.
- For each object, we have been given a label y_m that will describe which class object m belongs to. Typically, this label is integer-valued.
- For instance, if there are only two classes in the data-set, $y_m\{0,1\}$ or $y_m \in \{-1,+1\}$.
- More generally, if there are K classes, then $y_m = \{1, \dots, K\}$.
- Our task is to predict the class y_{new} for an unseen object x_{new} .

Classification

• A binary classification problem is depicted below.

A multi-class classification problem is depicted below.

Types of classifiers

- There are two types of classifiers. They are
 - Probabilistic classifiers
 - Non-probabilistic classifiers
- In general, probabilistic and non-probabilistic classifiers differ in the type of output that the learning technique produce.
- In the probabilistic classifiers, the output is the probability of a new object belonging to a particular class: $P(y_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{y})$. This output probability is useful as it provides a level of confidence in the predicted output.
- In non-probabilistic classifiers, output is an assignment of an object to a class $y_{\text{new}} = k$, where $k \in \{1, \dots, K\}$ denotes the available K classes.

Probabilistic classifiers

• In a probabilistic classifier, the output is the probability of a new object belonging to a particular class denoted by

$$P(y_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{y}),$$

where the training data is given in matrix/vector form (\mathbf{X}, \mathbf{y}) .

• Thus, the output pf a probabilistic classifier must satisfy

$$0 \le P(y_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{y}) \le 1$$
$$\sum_{k=1}^{K} P(y_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{y}) = 1$$

• The output probability is directly related to a level of confidence in the predicted output.

Probabilistic classifier: Disease diagnosis applications

For instance, we consider a disease diagnosis application with two classes, healthy (y=0) and diseased (y=1). Providing the probability $P(y_{\text{new}}=1|\mathbf{x}_{\text{new}},\mathbf{X},\mathbf{y})$ is much more informative than simply stating that $y_{\text{new}}=1$.

The Bayes classifier

- Given a set of training points from K classes, the task of the Bayes classifier is to be able to compute the predictive probabilities, $P(y_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{y})$ for each of K potential classes.
- Then these probabilities can be used for decision-making process, i.e., assigning \mathbf{x}_{new} to the class with the highest probability.
- From Bayes' rule, the required predictive probability can be written as

$$P(y_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{y}) = \frac{f(\mathbf{x}_{\text{new}} | y_{\text{new}} = k, \mathbf{X}, \mathbf{y}) P(y_{\text{new}} = k | \mathbf{X}, \mathbf{y})}{f(\mathbf{x}_{\text{new}} | \mathbf{X}, \mathbf{y})}$$

• Next, the marginal likelihood, $P(\mathbf{x}_{\text{new}}|\mathbf{X},\mathbf{y})$ can be expanded to a sum over the K possible classes via the law of total probability as

$$f(\mathbf{x}_{\text{new}}|\mathbf{X}, \mathbf{y}) = \sum_{k'=1}^{K} f(\mathbf{x}_{\text{new}}|y_{\text{new}} = k', \mathbf{X}, \mathbf{y}) P(y_{\text{new}} = k'|\mathbf{X}, \mathbf{y})$$

• The predictive probability can then be written as

$$f(y_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{y}) = \frac{f(\mathbf{x}_{\text{new}} | y_{\text{new}} = k, \mathbf{X}, \mathbf{y}) P(y_{\text{new}} = k | \mathbf{X}, \mathbf{y})}{\sum_{k'=1}^{K} f(\mathbf{x}_{\text{new}} | y_{\text{new}} = k', \mathbf{X}, \mathbf{y}) P(y_{\text{new}} = k' | \mathbf{X}, \mathbf{y})}$$

- In logistic regression, the output variable y can take a small number of discrete values.
- \bullet Thus, we now want to predict y just as we did in linear regression.
- First, we focus on a binary classification problem in which y can take on only two values, 0 and 1.
- For example, classification of emails as spam (y = 0) or legitimate (y = 1) is a binary classification problem.
- More examples: Tumor classification as malignant or benign and online transactions as fraudulent or legitimate.
- Typically, y = 0 is called the negative class, while y = 1 is called the positive class.
- If y takes more than two discrete values, then we have a multi-class classification problem. For example, $y \in \{1, 2, 3\}$ should have 3 classes.

- Our objective in classification is based upon an input vector \mathbf{x} , assign it to one of K discrete classes C_k for $k = 1, \dots, K$.
- When K = 2, this is a binary classification. Whereas when K > 2, we have a multi-class classification problem.
- Typically, classes are taken to be disjoint.
- The input space is usually divided into decision regions.
- The boundaries of a decision region are called decision boundaries/surfaces.

- Recall that for regression problems, the output variable **y** was the vector of real numbers whose values we wish to predict.
- For two-class classification problem, we can use a binary representation in which there is a single output variable $u \in \{0, 1\}$ such that y = 1 represents class C_1 , whereas y = 0 represents class C_2 .
- Notably, we interpret the value of y as the probability that the class is C_1 . The corresponding probability values takes only the extreme values of 0 and 1.
- For K > 2 multiple classes, it is convenient to use a 1-of-K coding scheme, where we denote y to be a vector of length K.
- For example, for K=5, a pattern from class 2 would be given the output vector:

$$\mathbf{y} = [0, 1, 0, 0, 0]^T$$

• Similarly, we interpret the value of y_k as the probability that the class is \mathcal{C}_k .

• Recall that we already motivated the logistic likelihood:

$$P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x}_{\text{new}})}$$

• The above definition enables us to use our familiar linear model $(\mathbf{w}^T\mathbf{x})$ yet needed to transform it so that the output was a probability such that

$$0 \le P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w}) \le 1.$$

- Formally, the above logistic likelihood can be derived via log-odds ratio: $\ln(P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w})/P(y_{\text{new}} = 0 | \mathbf{x}_{\text{new}}, \mathbf{w}))$.
- If $P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w}) \ll P(y_{\text{new}} = 0 | \mathbf{x}_{\text{new}}, \mathbf{w})$, then this log-odds ratio will be a large negative value.
- If $P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w}) \gg P(y_{\text{new}} = 0 | \mathbf{x}_{\text{new}}, \mathbf{w})$, then this log-odds ratio will be a large positive value.
- Thus, the log-odd ratio can be modeled via familiar linear model: $\mathbf{w}^T \mathbf{x}_{\text{new}}$.

• The log-odd ratio is modeled via the linear model as

$$\ln \left(\frac{P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w})}{P(y_{\text{new}} = 0 | \mathbf{x}_{\text{new}}, \mathbf{w})} \right) = \mathbf{w}^T \mathbf{x}_{\text{new}}$$

- Moreover, notice that $P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w}) = 1 P(y_{\text{new}} = 0 | \mathbf{x}_{\text{new}}, \mathbf{w}).$
- Then we have

$$\ln \left(\frac{P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w})}{1 - P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w})} \right) = \mathbf{w}^T \mathbf{x}_{\text{new}}$$

$$\frac{P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w})}{1 - P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w})} = \exp(\mathbf{w}^T \mathbf{x}_{\text{new}})$$

$$P(y_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x}_{\text{new}})}$$

• Through this logistic likelihood, we actually model the log-odds ratio with a linear model.

• To facilitate this, we define a class of hypotheses $g(\mathbf{w}, \mathbf{x})$ as follows:

$$g(\mathbf{w}, \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})},$$

where $\sigma(x) = 1/(1 + \exp(-x))$ is called the logistic function or the sigmoid function.

The sigmoid function is always bounded between 0 and 1.

• Thus our model is also bounded between 0 and 1.

$$0 \le g(\mathbf{w}, \mathbf{x}) \le 1$$

• Our model for logistic regressions is

$$g(\mathbf{w}, \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}.$$

• By using a training data set (x_i, y_i) for $i = 1, \dots, M$, we can minimize a cost function to find optimal weights \mathbf{w} for a given classification problem.

• Let us now consider properties of the logistic sigmoid function.

$$\sigma(x) = \frac{1}{1 + \exp(-x)} = \frac{\exp(x)}{\exp(x) + 1} = \frac{\exp(x)}{\exp(x) + \exp(0)}$$

• The derivative of the logistic sigmoid function is given by

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+\exp(-x)}\right) = \frac{\exp(-x)}{(1+\exp(-x))^2}$$
$$= \left(\frac{1}{1+\exp(-x)}\right)\left(1-\frac{1}{1+\exp(-x)}\right)$$
$$= \sigma(x)\left[1-\sigma(x)\right]$$

• The symmetry of logistic sigmoid function tells us that

$$1 - \sigma(x) = \sigma(-x)$$

• We continue the properties of logistic sigmoid function as follows: By taking the logarithm of both sides of the definition, we have

$$\ln(\sigma(x)) = \ln\left(\frac{1}{1 + \exp(-x)}\right) = -\ln(1 + \exp(-x))$$

• We define the softplus function as follows:

$$\zeta(x) = \ln(1 + \exp(x))$$

- Softplus function is used as a activation function in ANN, and it can be viewed as a smooth version of ReLU activation.
- Then, the logarithm of the logistic sigmoid function can be written in terms of softplus function as

• Since $\zeta(x) = \ln(1 + \exp(x))$, the derivative of softplus function is

$$\frac{d}{dx}\zeta(x) = \frac{\exp(x)}{1 + \exp(x)} = \sigma(x)$$

- Thus, the derivative of softplus function is logistic sigmoid function.
- Consequently, the integration of the logistic sigmoid function should be the softplus function:

$$\zeta(x) = \int_{-\infty}^{x} \sigma(y) dy$$

• The inverse of the logistic sigmoid function is given by

$$\sigma^{-1}(x) = \ln\left(\frac{x}{1-x}\right)$$

- The inverse of the logistic sigmoid function is also known as the logit function.
- The inverse of the softplus function is given by

$$\zeta^{-1}(x) = \ln(\exp(x) - 1)$$