

Recurrent Neural Networks

Leonid Mill, Tobias Würfl, Katharina Breininger, Nishant Ravikumar, Sebastian Gündel, Mathis Hoffmann, Florian Thamm, Felix Denzinger
Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nürnberg

Activation Functions

Sigmoid Activation Function

Sigmoid (logistic function)

$$f(x) = \frac{1}{1 + exp(-x)}$$

 $f'(x) = f(x)(1 - f(x))$

→ Observe that the derivative can be solely expressed in terms of the activation!

Tanh Activation Function

Tanh

$$f(x) = tanh(x)$$

$$f'(x) = 1 - f(x)^{2}$$

→ The derivative is still a function of the activation!

Elman Recurrent Neural Network

General strategy

- We interpret the batch dimension as time dimension now
- This allows to reuse loss functions, optimizers, initializers, activation functions and the Neural Network class
- Side note: Samples are often highly correlated in this dimension

• Standard Elman Cell has sigmoid as "outer" activation function

- Standard Elman Cell has sigmoid as "outer" activation function
- To be more flexible: Outer activation function (sigmoid) will not be part of the unit itself (can be added as its own layer!)

Output formula (without sigmoid):

$$\mathbf{y}_t = \mathbf{W}_{hy}\mathbf{h}_t + \mathbf{b}_y$$

 \mathbf{W}_{hy} : Weight matrix of a fully connected layer - is multiplied with current hidden state \mathbf{h}_t

b_h: Output bias

Output formula (without sigmoid):

$$\mathbf{y}_t = \mathbf{W}_{hy}\mathbf{h}_t + \mathbf{b}_y$$

This is a fully connected layer!

Note: \mathbf{y}_t only depends on its "own" \mathbf{h}_t - if we have \mathbf{h}_t , we can compute \mathbf{y}_t independently

Output formula (without sigmoid):

$$\mathbf{y}_t = \mathbf{W}_{hy}\mathbf{h}_t + \mathbf{b}_y$$

This is a fully connected layer!

Note: \mathbf{y}_t only depends on its "own" \mathbf{h}_t - if we have \mathbf{h}_t , we can compute \mathbf{y}_t independent of other inputs

A word on software engineering

 In terms of encapsulation - how good was the idea to demand exposition of the weights as member?

A word on software engineering

- In terms of encapsulation how good was the idea to demand exposition of the weights as member?
- Suppose we implement the RNN cell as composite structure
- Getters and Setters provide us the flexibility to do so

A word on software engineering

- In terms of encapsulation how good was the idea to demand exposition of the weights as member?
- Suppose we implement the RNN cell as composite structure
- Getters and Setters provide us the flexibility to do so
- Takeaway? Not doing proper software engineering most of the time will demand a price at some point.

$$\mathbf{h}_t = \tanh \left(\mathbf{W}_{hh} \mathbf{h}_{t-1} + \mathbf{W}_{xh} \mathbf{x}_t + \mathbf{b}_h \right)$$

$$\mathbf{h}_t = \tanh \left(\mathbf{W}_{hh} \mathbf{h}_{t-1} + \mathbf{W}_{xh} \mathbf{x}_t + \mathbf{b}_h \right)$$

 \mathbf{W}_{hh} : Weight matrix for previous hidden state \mathbf{h}_{t-1}

 \mathbf{W}_{xh} : Weight matrix for current input \mathbf{x}_t

b_h: Update bias

$$\mathbf{h}_t = \tanh\left(\mathbf{W}_h \tilde{\mathbf{x}}_t\right)$$

 \mathbf{W}_h : Weight matrix of a fully connected layer

 $\tilde{\mathbf{x}}_t$: Concatenation of \mathbf{x}_t , \mathbf{h}_{t-1} and a 1

Note: \mathbf{h}_t cannot be computed independently (in contrast to \mathbf{y}_t)! We need

$$h_{t-1}!$$

Backward pass

- Since we use existing fully connected layers, we can let them handle most of the backward pass!
- BUT: because of multiple calls to their forward method, the "internal state" (e.g. the saved input tensor) may be wrong
- → We need to store and feed the necessary values for backpropagation externally and provide them to the embedded layers
- We also have to defer the weight updates until all outputs and gradients (for all current time steps) have been computed

Reminder: Backpropagation through time

- Implemented by passing the whole sequence as a batch
- Problem: Memory (we have to have all hidden states for the backward pass!)

Reminder: Truncated backpropagation through time

- Main idea: Keep processing sequence as a whole
- Adapt frequency and depth of update:
 - Every k₁ time steps, run BPTT for k₂ time steps
 - → Parameter update cheap if k₂ small
- Hidden states are still exposed to many time steps
- Typically $k_2 \le k_1$

Reminder: Truncated backpropagation through time

- Main idea: Keep processing sequence as a whole
- Adapt frequency and depth of update:
 - Every k_1 time steps, run BPTT for k_2 time steps
 - → Parameter update cheap if k₂ small
- Hidden states are still exposed to many time steps
- Typically $k_2 \le k_1$

Algorithm:

- 1: **for** *t* **from** 1 **to** *T* **do**:
- 2: Run RNN for one step, computing h_t and y_t
- 3: **if** $t \mod k_1 == 0$:
- 4: Run BPTT from t down to $t k_2$

- Implemented by passing parts of the sequence as **batch**: k_1 = batch size
- k_2 given as additional parameter (will always be $\leq k_1$)

- Implemented by passing parts of the sequence as **batch**: k_1 = batch size
- k_2 given as additional parameter (will always be $\leq k_1$)
- BUT: If we continue a sequence with the next batch, we need to know the previous hidden state! (e.g. h₃ for second batch)

- Implemented by passing parts of the sequence as **batch**: k_1 = batch size
- k_2 given as additional parameter (will always be $\leq k_1$)
- BUT: If we continue a sequence with the next batch, we need to know the previous hidden state! (e.g. h₃ for second batch)
- → We need to know whether a new batch is the start of a sequence or it continues from the previous batch

- Implemented by passing parts of the sequence as **batch**: k_1 = batch size
- k_2 given as additional parameter (will always be $\leq k_1$)
- BUT: If we continue a sequence with the next batch, we need to know the previous hidden state! (e.g. h₃ for second batch)
- → We need to know whether a new batch is the start of a sequence or it continues from the previous batch
- Simply store the last hidden state of a batch and implement a method switching whether this state is reused in subsequent forward passes

Additional details in lecture slides

Please also refer to the lecture slides (7-Recurrent Neural Networks)! Forward and Backward pass as well as BPTT for the Elman Unit are descriped on slides 7-9 and 15-23! (just keep in mind that we don't have the sigmoid function!)

Long Short-Term Memory

Note: Also refer to lecture slides 29-36!

Forward

- We can again reuse fully connected layers
- The concatenation of input and hidden state is also analogous to the RNN
- The σ-gates and the yellow tanh can be a single fully connected layer with an output size of 4 · dim(hidden state)
- Remember that we have to pass the vectors of the input tensor to the embedded layers sequentially

Backward

- Most gradients are again handled by the embedded layers
- Again store and feed the values for backprop externally to the embedded layers because of multiple calls to forward
- · We need gradients through summation, multiplication and copying

Backward

Sum

$$f(x_1, x_2) = x_1 + x_2$$
$$\frac{\partial \hat{y}}{\partial x_1} = 1$$

Gradient is **copying** $\frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}}$

Multiply

$$f(x_1, x_2) = x_1 \cdot x_2$$
$$\frac{\partial \hat{y}}{\partial x_1} = x_2$$

 $\frac{\partial y}{\partial x_1} = x_2$

Copy

Backward pass of sum So the gradient is a sum!

Gradient is · with switched inputs

Thanks for listening.

Any questions?