CO 456 course note Chenxuan Wei

Sep 2022

Contents

1 NIM 3

1 NIM

1. Terms

A game have multiple **positions**In particular, it has a **starting position**A player perform a **move** out of a set of allowed moves
Executing a move generates an **option** of the current position

2. Impartial game

- The game must determined
- Normal play: The first who have no move loses
- Misere: the first who can't move winss

3. Positions

- winning position optimal play by the player guarantees a win
- Losing position optimal play by their opponent guarantees a loss

4. Lemma

for NIM, (n,m) is winning $\iff m \neq n$

5. Simpler

A game H that is reachable from G by some moves is defined to be simpler than G

6. Lemma

For any game G, either player 1 or 2 have a winning strategy

7 Sum

Assume G have options $G_i, i \leq q$, H have options $H_i, i \leq l$ $G + H = \{G_i + H : 1 \leq i \leq q\} \cup \{G + H_j : 1 \leq j \leq l\}$

8. Lemma, copycat principle

FOr any game, G+G is losing

9. Equivalent \equiv

if \forall game J: G+J is losing $\iff H+J$ is losing, then $G\equiv H$

10. Theorem of =

- $G \equiv G$
- $G \equiv H \iff H \equiv G$
- $G \equiv H$ and $H \equiv K => G \equiv K$

11. Main Lemma

G is a losing position \iff G $\equiv *0$

- 12. Generalization of copycat principle $G \equiv H \iff G + H \equiv *0$
- 13. Lemma
 - For each option G' of G, there is an option of $H \equiv \text{to } G'$
 - For each option H' of H, there is an option of $G \equiv \text{to } H'$

Then $G \equiv H$

14. Lemma

 $*n \equiv *m \iff n = m$

15. Theorem

Assume n_i are distinc power of 2 Then $*(\sum n_i) \equiv \sum (*n_i)$

16. Lemma bitwise xor

if $p, q \leq 2^a$, then $p \bigoplus q \leq 2^a$

- 17. Balanced and unbalanced
 - balanced if $a_1 \bigoplus a_2 \cdots = 0$
 - unbalanced if $a_1 \bigoplus a_2 \ldots \neq 0$
- 18. Theorem

A NIM is losing \iff it is balanced

19. MEX

give a subset $S \subseteq N$, mex(S) = smallest element of N - S

20. MEX rule

if G is an impartial game which options equivalanet to $\{*s: s \in S\}$ then $G \equiv *(mex(S))$

21. Corollary

For every impartial game G, there exists a natural number $n \in N$ such that $G \equiv *n$