▲ Try again once you are ready Grade received 70% Latest Submission Grade 60% To pass 80% or higher	Try again
 Suppose a MAC system (S, V) is used to protect files in a file system by appending a MAC tag to each file. The MAC signing algorithm S is applied to the file contents and nothing else. What tampering attacks are not prevented by this system? Changing the last modification time of a file. Replacing the contents of a file with the concatenation of two files 	0/1 point
on the file system. Changing the first byte of the file contents. Replacing the tag and contents of one file with the tag and contents of a file from another computer protected by the same MAC system, but a different key. Incorrect The MAC tag will fail to verify if any file data is changed.	
2. Let (S,V) be a secure MAC defined over (K,M,T) where $M=\{0,1\}^n$ and $T=\{0,1\}^{128}$. That is, the key space is K , message space is $\{0,1\}^n$, and tag space is $\{0,1\}^{128}$. Which of the following is a secure MAC: (as usual, we use $\ $ to denote string concatenation) $S'(k,m)=S(k,m\oplus 1^n)$ and $V'(k,m,t)=V(k,m\oplus 1^n,t)$. $Correct$ a forger for (S',V') gives a forger for (S,V) .	0/1 point
$V'(k,m,t) = \left[V(k,\ m,\ t) \text{ or } V(k,\ m\oplus 1^n,\ t)\right]$ (i.e., $V'(k,m,t)$ outputs ``1" if t is a valid tag for either m or $m\oplus 1^n$)	
Correct a forger for (S',V') gives a forger for (S,V) . $ \square S'(k,m) = \left[t \leftarrow S(k,m), \text{ output } (t,t)\right) \text{and} $ $ V'(k,m,(t_1,t_2)) = \begin{cases} V(k,m,t_1) & \text{if } t_1 = t_2 \\ "0" & \text{otherwise} \end{cases} $ (i.e., $V'(k,m,(t_1,t_2))$ only outputs "1" $ \text{if } t_1 \text{ and } t_2 \text{ are equal and valid} $ $ \square \qquad \left(S(k,1^n) & \text{if } m=0^n \right) $	
$S'(k,m) = \begin{cases} S(k,1^n) & \text{if } m=0^n \\ S(k,m) & \text{otherwise} \end{cases}$ and $V'(k,m) = \begin{cases} V(k,1^n,t) & \text{if } m=0^n \\ V(k,m,t) & \text{otherwise} \end{cases}$ You didn't select all the correct answers	0 / 1 point
the IV in the tag. In other words, $S(k,m):=(r, \ \mathrm{ECBC}_r(k,m))$ where $\mathrm{ECBC}_r(k,m)$ refers to the ECBC function using r as the IV. The verification algorithm V given key k , message m , and tag (r,t) outputs ``1" if $t=\mathrm{ECBC}_r(k,m)$ and outputs ``0" otherwise. The resulting MAC system is insecure. An attacker can query for the tag of the 1-block message m and obtain the tag (r,t) . He can then generate the following existential forgery: (we assume that the underlying block cipher	
operates on n -bit blocks) O The tag $(r \oplus 1^n, \ t)$ is a valid tag for the 1-block message $m \oplus 1^n$. O The tag $(r, t \oplus r)$ is a valid tag for the 1-block message 0^n . O The tag $(r \oplus t, \ m)$ is a valid tag for the 1-block message 0^n . O The tag $(m \oplus t, \ r)$ is a valid tag for the 1-block message 0^n . No Incorrect The right half of the tag, r , is not likely to be the result of the CBC MAC.	
4. Suppose Alice is broadcasting packets to 6 recipients B_1,\ldots,B_6 . Privacy is not important but integrity is. In other words, each of B_1,\ldots,B_6 should be assured that the packets he is receiving were sent by Alice. Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k . Alice computes a tag for every packet she	1/1 point
sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$	
of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1, k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user?	
✓ $S_1 = \{k_2, k_4\}, \ S_2 = \{k_2, k_3\}, \ S_3 = \{k_3, k_4\}, \ S_4 = \{k_1, k_3\}, \ S_5 = \{k_1, k_2\}, \ S_6 = \{k_1, k_4\}$ ✓ Correct Every user can only generate tags with the two keys he has. Since no set S_i is contained in another set S_j , no user i can fool a user j into accepting a message sent by i . $S_1 = \{k_1, k_2\}, \ S_2 = \{k_1, k_3\}, \ S_3 = \{k_1, k_4\}, \ \S_4 = \{k_2, k_3\}, \ S_5 = \{k_2, k_4\}, \ S_6 = \{k_4\}$ $S_1 = \{k_1, k_2\}, \ S_2 = \{k_2, k_3\}, \ S_3 = \{k_3, k_4\}, \ S_4 = \{k_1, k_3\}, \ S_5 = \{k_1, k_2\}, \ S_6 = \{k_1, k_4\}$	
 5. Consider the encrypted CBC MAC built from AES. Suppose we compute the tag for a long message m comprising of n AES blocks. Let m' be the n-block message obtained from m by flipping the last bit of m (i.e. if the last bit of m is b then the last bit of m is b then the last bit of m' is b ⊕ 1). How many calls to AES would it take to compute the tag for m' from the tag for m and the MAC key? (in this question please ignore message padding and simply assume that the message length is always a multiple of the AES block size) ● 4 ○ 5 ○ n ○ 6 	1/1 point
Correct You would decrypt the final CBC MAC encryption step done using k_2 , the decrypt the last CBC MAC encryption step done using k_1 , flip the last bit of the result, and re-apply the two encryptions.	
6. Let $H:M\to T$ be a collision resistant hash function. Which of the following is collision resistant: (as usual, we use \parallel to denote string concatenation) $\parallel H'(m) = H(0)$ $\parallel H'(m) = H(m)$ (i.e. hash the length of m) $\parallel H'(m) = H(m) \bigoplus H(m \oplus 1^{ m })$ (where $m \oplus 1^{ m }$ is the complement of m) $\blacksquare H'(m) = H(H(m))$ \circlearrowleft Correct a collision finder for H' gives a collision finder for H .	0 / 1 poin
	1/1 point
hash functions mapping inputs in a set M to $\{0,1\}^{256}$. Our goal is to show that the function $H_2(H_1(m))$ is also collision resistant. We prove the contra-positive: suppose $H_2(H_1(\cdot))$ is not collision resistant, that is, we are given $x \neq y$ such that $H_2(H_1(x)) = H_2(H_1(y))$. We build a collision for either H_1 or for H_2 . This will prove that if H_1 and H_2 are collision resistant then so is $H_2(H_1(\cdot))$. Which of the following must be true: Either x, y are a collision for H_1 or $H_1(x), H_1(y)$ are a collision for H_2. Either $H_1(x), H_1(y)$ are a collision for $H_1(x), H_1(y), H_1(y)$ are a collision for $H_1(x), H_1(y), H_1(y)$ are a collision for $H_1(x), H_1(y), H_1(y), H_1(y)$ are a collision for $H_1(x), H_1(y), H_1(y), H_1(y), H_1(y)$ are a collision for $H_1(x), H_1(y), H_1(y)$	
Either x,y are a collision for H_1 or x,y are a collision for H_2 . Correct If $H_2(H_1(x))=H_2(H_1(y))$ then either $H_1(x)=H_1(y)$ and $x\neq y$, thereby giving us a collision on H_1 . Or $H_1(x)\neq H_1(y)$ but $H_2(H_1(x))=H_2(H_1(y))$ giving us a collision on H_2 . Either way we obtain a collision on H_1 or H_2 as required.	
8. In this question you are asked to find a collision for the compression function: $f_1(x,y) = \operatorname{AES}(y,x) \oplus y,$ where $\operatorname{AES}(x,y)$ is the AES-128 encryption of y under key x . Your goal is to find two distinct pairs (x_1,y_1) and (x_2,y_2) such that $f_1(x_1,y_1) = f_1(x_2,y_2)$. Which of the following methods finds the required (x_1,y_1) and (x_2,y_2) ? ① Choose x_1,y_1,y_2 arbitrarily (with $y_1 \neq y_2$) and let $v := AES(y_1,x_1)$. Set $x_2 = AES^{-1}(y_2, v \oplus y_1 \oplus y_2)$ O Choose x_1,y_1,y_2 arbitrarily (with $y_1 \neq y_2$) and let $v := AES(y_1,x_1)$. Set $x_2 = AES^{-1}(y_2, v \oplus y_2)$ O Choose x_1,y_1,y_2 arbitrarily (with $y_1 \neq y_2$) and let $v := AES(y_1,x_1)$. Set $x_2 = AES^{-1}(y_2, v \oplus y_1)$ O Choose x_1,y_1,x_2 arbitrarily (with $x_1 \neq x_2$) and let $v := AES(y_1,x_1)$. Set $y_2 = AES^{-1}(x_2, v \oplus y_1)$ O Choose y_1,y_1,y_2 arbitrarily (with $y_1 \neq y_2$) and let $y_1 \in AES(y_1,x_1)$. Set $y_2 \in AES^{-1}(x_2, v \oplus y_1)$	1/1 point
9. Repeat the previous question, but now to find a collision for the compression function $f_2(x,y) = AES(x,x) \oplus y$. Which of the following methods finds the required (x_1,y_1) and (x_2,y_2) ? © Choose x_1,x_2,y_1 arbitrarily (with $x_1 \neq x_2$) and set $y_2 = y_1 \oplus AES(x_1,x_1) \oplus AES(x_2,x_2)$ Choose x_1,x_2,y_1 arbitrarily (with $x_1 \neq x_2$) and set $y_2 = y_1 \oplus AES(x_1,x_1)$ Choose x_1,x_2,y_1 arbitrarily (with $x_1 \neq x_2$) and set $y_2 = AES(x_1,x_1) \oplus AES(x_2,x_2)$ Choose x_1,x_2,y_1 arbitrarily (with $x_1 \neq x_2$) and set	1/1 point
$y_2=y_1\oplus x_1\oplus AES(x_2,x_2)$ \odot Correct Awesome! 10. Let $H:M\to T$ be a random hash function where $ M \gg T $ (i.e. the size of M is much larger than the size of T). In lecture we showed that finding a collision on H can be done with $O(T ^{1/2})$	1/1 point
random samples of H . How many random samples would it take until we obtain a three way collision, namely distinct strings x,y,z in M such that $H(x)=H(y)=H(z)$?	
An informal argument for this is as follows: suppose we collect n random samples. The number of triples among the n samples is n choose 3 which is $O(n^3)$. For a particular triple x,y,z to be a 3-way collision we need $H(x)=H(y)$ and $H(x)=H(z)$. Since each one of these two events happens with probability $1/ T $ (assuming H behaves like a random function) the probability that a particular triple is a 3-way collision is $O(1/ T ^2)$. Using the union bound, the probability that some triple is a 3-way collision is $O(n^3/ T ^2)$ and since we want this probability to be close to 1, the bound on n	
follows.	