A pair of nodes, (a, b), is a *similar pair* if the following conditions are true:

- 1. node \boldsymbol{a} is the ancestor of node \boldsymbol{b}
- 2. $abs(a-b) \leq k$

Given a tree where each node is labeled from 1 to n, find the number of similar pairs in the tree.

For example, given the following tree:

We have the following pairs of ancestors and dependents:

Pair	abs(a-b)	Pair	abs(a-b)
1,2	1	3,4	1
1,3	2	3,5	2
1,4	3	3,6	3
1,5	4		
1,6	5		

If k=3 for example, we have 6 pairs that are *similar*, where $abs(a-b) \leq k$.

Function Description

Complete the similarPair function in the editor below. It should return an integer that represents the number of pairs meeting the criteria.

similarPair has the following parameter(s):

- *n*: an integer that represents the number of nodes
- k: an integer
- edges: a two dimensional array where each element consists of two integers that represent connected node numbers

Input Format

The first line contains two space-separated integers n and k, the number of nodes and the similarity

Each of the next n-1 lines contains two space-separated integers defining an edge connecting nodes p[i] and c[i], where node p[i] is the parent to node c[i].

Constraints

- $\begin{array}{l} \bullet \ 1 \leq n \leq 10^5 \\ \bullet \ 0 \leq k \leq n \\ \bullet \ 1 \leq p[i], c[i] \leq n \end{array}$

Output Format

Print a single integer denoting the number of similar pairs in the tree.

Sample Input

Sample Output

4

Explanation

The similar pairs are (3,2), (3,1), (3,4), and (3,5), so we print 4 as our answer. Observe that (1,4) and (1,5) are *not* similar pairs because they do not satisfy $abs(a-b) \leq k$ for k=2.