Solving weighted bipartite assignment problem (with contextualizations)

October 14, 2013

Min-cost bipartite assignment: given N jobs and M people and a NxM matrix of costs of perform these jobs. Each job has to be assigned to *one* of M people, while one person can perform maximum one job. Assume $M \le N$ (or matrix can be rotated). Another interpretation can be assigning each of N keywords a tag from M tags available (and we have a likelihood matrix). This well-known problem is efficiently solved by Munkres/Hungarian algorithm in $\Theta(N^2M)$.

Contextualization adds additional interdependencies between solution costs, e.g. the person A would agree to perform the job X cheaper, if person be is assigned job Y (e.g. as he wants to be nearby). In the context of keyword search: the tag_j of a keyword kw_i is more likely if it's nearby a related tag_y .

1 Comparison of existing approaches

Notation: N keywords; M is total number of possible tags; \bar{M} is average # of possible tags

Method	Advantages	Disadvantages
Exhaustive search	easy pruning and contextualization	slow, $O(\bar{M}^N)$
	optimal answers	
Munkres[3] (rectangular version)	quite fast	no contextualization
gets the best solution to assignment problem in		only one best result
$\Theta(N^2M)$.		
Keymantic[2]	quite fast	only approximate - not all of top-k
recursively evaluate all mappings ¹ pruning on the	some contextualization	answers
cost so far. do the contextualization inside Munkres	some of top-k answers	no guarantee all conceptualizations to be explored if not exploring ALL solution
itself		space (i.e. not real top-K)
		seems there's no 100% correctness &
		termination
Murty[6] + Munkres	top-k optimal solutions	no early pruning (an augmenting path
to get each additional result, call Munkres to solve	quite fast	may change much)
n-1 smaller assignments of sizes $2n-1$.		no contextualization (or at least hard to
Can be greatly optimized through heuristics[4]		get)
$\mathbf{HMM[1]} + \mathbf{List} \ \mathbf{Viterbi[7]} \ \mathrm{or} \ \mathrm{some} \ \mathrm{related}$	optimal top-k results	no pruning
conditional models such as CRF	allows some contextualization of $limited$ $length$	same tag may get selected multiple times
	quite fast	
Proposed by us (if few dependencies)	top-k optimal results	intractable/exponential for complex
1) enumerate over all contextualization possibilities	\mathbf{fast} if $\#$ contextualizations is small	contextualizations
2) use Murty to get top-k results over matrix with contextualizations applied		
3) reuse older sub-solutions by using the "Dynamic		
,		
Munkres"[5], so each modified row/column costs $\Theta(NM)$; each modification can be reused if		
· //		
exploring them in depth-first fashion.		

Table 1: comparison of different methods

References

- [1] S. Bergamaschi, F. Guerra, S. Rota, and Y. Velegrakis. A hidden markov model approach to keyword-based search over relational databases. Conceptual Modeling–ER 2011, pages 411–420, 2011.
- [2] Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Raquel Trillo Lado, and Yannis Velegrakis. Keyword search over relational databases: a metadata approach. In *Proceedings of the 2011 international conference on Management of data*, pages 565–576. ACM, 2011.
- [3] Francois Bourgeois and Jean-Claude Lassalle. An extension of the munkres algorithm for the assignment problem to rectangular matrices. Communications of the ACM, 14(12):802–804, 1971.
- [4] Matt L Miller, Harold S Stone, and Ingemar J Cox. Optimizing murty's ranked assignment method. Aerospace and Electronic Systems, IEEE Transactions on, 33(3):851–862, 1997.
- [5] G Ayorkor Mills-Tettey, Anthony Stentz, and M Bernardine Dias. The dynamic hungarian algorithm for the assignment problem with changing costs. 2007.
- [6] Katta G Murty. Letter to the editor—an algorithm for ranking all the assignments in order of increasing cost. *Operations Research*, 16(3):682–687, 1968.
- [7] N. Seshadri and C.E.W. Sundberg. List viterbi decoding algorithms with applications. Communications, IEEE Transactions on, 42(234):313–323, 1994.