HOUR EXAM #2 Units 7-9

D. Addison

NAME

The exam is worth a total of 160 points. The points for each section & question are noted in parentheses.

The Exam is due at 8:30pm Today. You must email it by that time to danieladdison43@gmail.com.

<u>Symbols:</u> You may use the symbols in the right-hand column, which are available to your fingerprints, as equivalents for the (proper) symbols in the left-hand column.

Proper Symbol	You May Use	
~	~	
⊃	>	[Right-arrow Key]
•	&	[Command+7]
V	v	[lower-case "V for Victor")
≡	=	[equals sign]

Answer all questions on the Exam. There are 13 Questions.

A. DEFINITIONS AND QUESTIONS. (60 points total; 6 points each)

1. State the new definition of "justified step". (6)

2. Co	mplete the following with "always,	""sometimes," or "never": (6)
	(a) Proving a theorem	requires use of C.P. or I.P.
	(b) The proof of a theorem	begins with certain given premises

(c) A theorem is _____ a contingency.

3. What premise would be needed to get this conclusion by DeMorgan? (6)

Conclusion:
$$((A \cdot B) \lor \sim (A \cdot C))$$

4. State the following rules symbolically: (6)

(a) Exportation (Exp)

(b) Modus Tollens (MT)

EXAM 2

5. What rule has applied? (6)

Premises: $(B \lor C) \supset (A \bullet D), (\sim R \supset G) \supset (B \lor C)$

Conclusion: $(\sim R \supset G) \supset (A \cdot D)$

6. What conclusion could be derived using <u>all three</u> of the following premises, and by what rule? (6 points)

Premises: $(A \cdot C) \lor \sim B$, $\sim B \supset (C \lor \sim D)$, $(A \cdot C) \supset R$

- 7. If we gave (IP) as a reason for $\sim\sim$ (A $\vee\sim$ B), we would have to have assumed ? (6)
- 8. Which (if any) of the following are correct applications of the cited rule? For those which are not, state briefly what is wrong. (6)
 - (a) 1. \sim (A $\vee \sim$ B) \supset (C A)

Pr.

2. \sim (C • A) \supset (A \vee \sim B)

Contrap. 1

(b) 1. $(A \cdot C) \supset (C \lor D)$

Pr.

2. ~C

Pr.

3. D

- D.S. 1,2
- 9. Construct a "mini-proof" from the premise to the conclusion: (6)

 $\sim (p \supset q) / :: \sim q$

10. Prove the following theorem: (6)

 $\sim \sim p \supset (p \lor q)$

B. Construct proofs for the following three arguments. You *must* use CP in *at least one* of these problems. (It is *not* necessary to use CP is *all* three problems. You *may* use CP and IP in any problem, as many times as you wish.) (100 points)

11.
$$\sim$$
(S \vee T), (P \bullet Q) \supset S, P / \therefore \sim Q (30)

12.
$$\sim$$
 (T \vee S) \vee G, $G \equiv (P \vee P)$ / \therefore (S \vee T) \supset (G \bullet P) (40)

EXAM 2 3

Units 7-9

13. Construct a proof of the following theorem: (30)

 $\sim ((p \bullet (p \supset q)) \bullet \sim q)$

END OF EXAM

EXAM 2