UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version Syllabus			Paper	
		GCE AS/A LEVEL – May/June 2010	9702	21		
1	c mega			B1 B1	[4]	
2	(a) scalar scalar vector			B1	[3]	
		radient (of graph) is the speed/velocity (can be scored he itial gradient is zero	•		[2]	
	2 g	radient (of line/graph) becomes constant		B1	[1]	
		ed = (2.8 ± 0.1) m s ⁻¹		A2	[2]	
	cont	red line never below given line and starts from zero inuous curve with increasing gradientnever vertical or straight		B1	[3]	
3	or energy	energy (stored)/work done represented by area under grant energy = <u>average</u> force × extension = ½ × 180 × 4.0 × 10 ⁻² = 3.6 J		C1	[3]	
	. , . ,	er momentum before release is zero		A1	[2]	
	(ji) 1 A	$M_1V_1 = M_2V_2$		B1	[2]	
		$E = \frac{1}{2} M_1 V_1^2 + \frac{1}{2} M_2 V_2^2$			[1]	
	(iii) 1 <i>E</i>	$E_{\rm K} = \frac{1}{2}mv^2$ and $p = mv$ combined to give $E_{\rm K} = p^2 / 2m$		M1	[1]	
		p smaller, $E_{\rm K}$ is larger because p is the same/constant p o trolley B			[1]	

Pa		ge 3	Mark Scheme: Teachers' version Syllabus		Paper	
			GCE AS/A LEVEL – May/June 2010	9702	21	
4	(a)	_	wave (front) passes by/incident on an edge/slitnds/spreads (into the geometrical shadow)		M1 A1	[2]
	(b)	$d \sin \theta = d = 2.82$. C1	[4]
	(c)		ns in same positionrotate through 90°			[2]
	(d)		creen not parallel to grating rating not normal to (incident) light		. B1	[1]
5	(a)	region/a	rea where a charge experiences a force		B1	[1]
	(b)	.,	hand sphere (+), right-hand sphere (–)		. B1	[1]
			orrect region labelled C within 10 mm of central part therwise within 5 mm of plate		B1	[1]
		2 c	orrect region labelled D area of field not included for	(b)(ii)1	. B1	[1]
	(c)	.,	ws through P and N in correct directions			[1]
		(ii) torq	ue = force × perpendicular distance (between forces) = $1.6 \times 10^{-19} \times 5.0 \times 10^4 \times 2.8 \times 10^{-10} \times \sin 30$ = 1.1×10^{-24} N m			[2]
6	(a)	` '	VI		C1	
			5.(0) A			[2]
		eithe	er $V = IR$ or $P = I^2R$ or $P = V^2/R$ er $12 = 5 \times R$ or $60 = 5^2 \times R$ or $60 = 12^2/R$ 2.4Ω		C1 . M1 . A0	[2]
	(b)	$R = \rho L/A$ $A = \pi \times ($	$(0.4 \times 10^{-3})^2 (= 5.03 \times 10^{-7})$		C1 . C1	
		,	× 5.03 × 10 ⁻⁷)/(1.0 × 10 ⁻⁶) n		. A1	[3]
	(c)	either cu	ce is halvedrrent is doubled <i>or</i> power ∞ 1/ <i>R</i> doubled		. M1	[3]

	Page 4			Mark Scheme: Teachers' version	Syllabus	Pa	per
				GCE AS/A LEVEL – May/June 2010	9702	2	21
7	(a)			oms with same proton number/atomic number oms contain different numbers of neutrons/different ato			31 31 [2]
	(b)	(i)	92			<i>F</i>	A1 [1]
		(ii)	146			A	A1 [1]
	(c)	(i)	mas	s = 238 × 1.66 × 10 ⁻²⁷ = 3.95 × 10 ⁻²⁵ kg		C	C1 A1 [2]
		(ii)	volu	me = $\frac{4}{3}\pi \times (8.9 \times 10^{-15})^3$ (= 2.95 × 10 ⁻⁴²)		0	C1
			dens	sity = $(3.95 \times 10^{-25})/(2.95 \times 10^{-42})$ = 1.3×10^{17} kg m ⁻³		<i>F</i>	A1 [2]
	(d)			contains <u>most</u> of mass of atom		E	31
				n is mostly (empty) space		E	31 [2]