Nume și Prenume:				
Grupa:				
	C :	_	400	

Simulare Examen ASC

~ Tutori: Bianca-Maria ~

- 1. Fie x=10.25 și y=27.5.
 - a. Convertiți x și y în baza 2.
 - b. Convertiți mai departe în baza 16, fără să treceți în baza 10.
 - c. Calculați y-x lucrând direct în baza 16.
 - d. Convertiți rezultatul scăderii în baza 10.
 - e. Determinați reprezentarea internă ca single a lui y, binară și hexa.
 - f. Calculați x+y folosind algoritmul de adunare în virgulă mobilă pentru formatul single (se va lucra cu reprezentările binare, în notație științifică, și, la final, se va converti rezultatul în baza 10).
 - g. Interpretați ca nr în baza 10 reprezentarea internă hexa, în virgulă mobilă, 0x8C, considerând formatul dat de n=8 (dimensiunea locației) și k=2 (dimensiunea câmpului caracteristică).
- 2. Fie f: $B_2^3 \rightarrow B_2^2$, f(x, y, z)=(f1(x, y, z), f2(x, y, z)); unde f1,f2: $B_2^3 \rightarrow B_2$, f1(x, y, z)=x* \bar{y} , f2(x, y, z)=1 dacă și numai dacă cel puțin 2 dintre variabilele x, y, z au valoarea 0.
 - a. Construiți tabelul de valori al lui f și scrieți f1, f2 în FND și FNC.
 - b. Implementați f folosind un PROM.
 - c. Implementați f folosind multiplexori elementari, apoi reduceți la maxim nr multiplexorilor elementari și desenați modelul simplificat.
 - d. Implementați f folosind un codificator.
- 3. Considerăm implementarea procesorului MIPS cu un singur ciclu. Fie programul:

n: .word 5	lw \$t0, n	et:	li \$v0, 10
m: .word 6	la \$t2, n	sw \$t3, 8(\$t2)	syscall
q: .word 1	li \$t3, 5	add \$t3, \$t3, \$t0	
.text:	lw \$t4, q	sub \$t3, \$t3, \$t4	
main:	li \$t5, 21	bne \$t3, \$t5, et	

- a. Pentru instrucțiunile add, sw și bne scrieți câmpurile din reprezentarea lor internă (ex: rs, rt, opcode etc.) și scrieți-le atât în binar, cât și în hexa.
- b. Completați tabelul.

	1	3	5	7	8	ALU zero	d	Branch	MR	MW	ALU Src	ALU op (2b)	ALU Ctrl (3b)	PC	Mem[q]
Inițial	-	-	-	-	-	-	-	-	-	-	-	-	-	a	1
SW	a														
bne															

Dacă s-ar mai executa a doua oară instrucțiunea de sw, cât va fi Mem[q]=?

c. Adăugați provesorului implementare instrucțiunii **addp rt, rs** (rt=rt+rs).

RegDst	ALU Src	Mem to Reg	Reg Write	MR	ALU op (2b)	ALU Ctrl (3b)