Homework 1 Solutions

Introductory to Model Theory Autumn 2021

0. If $[a]_{\sim} = [b]_{\sim}$, then $a \in [b]_{\sim}$ and $a \sim b$. If $a \sim b$, then for every $a \sim b$.	$: \in [a]_{\sim}$,
$c\sim a\sim b$, so $c\in [b]_\sim$ and $[a]_\sim\subseteq [b]_\sim$. The proof of $[b]_\sim\subseteq [a]_\sim$ is sin	ıilar and
then $[a]_{\sim} = [b]$.	
If $a \not\sim b$, then for any $c \in [a]_{\sim}$ and $d \in [b]_{\sim}$, we have $c \not\sim b$ and d	$\nsim a$, so
$[a] \sim \cap [b]_{\sim} = \emptyset.$	
1 D 1 1 . 0 C C (E E) W 1 1	7

1. By hypothesis, $\emptyset \subseteq S_3(E, E')$. We check every property of equivalence relation.

Reflexivity: For any $a' \in E'$, we have $a \in E$ s.t. $\{(a', a)\}$ is a 2-isomorphism. Since $a' \approx a' \iff a \sim a$, we have $a' \sim a'$.

Symmetry: For any $a', b' \in E'$, we have $a, b \in E$ s.t. $\{(a', a), (b', b)\}$ is a 1-isomorphism. So $a' \approx b' \iff a \sim b \iff b \sim a \iff b' \approx a'$.

Transitivity: For any $a',b',c'\in E'$, we have $a,b,c\in E$ s.t. $\{(a',a),(b',b)\}$ is a 0-isomorphism. If $a'\approx b'$ and $b'\approx c'$, we have $a\sim b$ and $b\sim c$, thus $a\sim c$, and $a'\approx c'$.

- **3.** Let $E = \{(a,b) \in \mathbb{N}^2 | k(k+1)/2 \le a, b < (k+1)(k+2)/2 \text{ for some } k \in \mathbb{N} \}$, then $E \in \mathcal{K}$.
- **4.** By problem 1, we have (E', \approx) is an equivalence relation. Now we are going to check there is exactly one equivalence class of size of every $n \in \mathbb{N}$.

For any $n \in \mathbb{N}$, let m = 2n + 1 and choose C as the equivalence class of size n in (E, \sim) , we have $C' \in E'$ and $C \to C'$ be a (m - n)-isomorphism. For any

 $x \in E \setminus C, y \in C, x \not\sim y$, so for any $x' \in E' \setminus C', y' \in C'$, $x' \not\sim y'$, which means C' is an equivalence class of size n.

Assume there are two equivalence class of size n, namely C_1' and C_2' . We have C_1 and C_2 and $C_1 \cup C_2 \to C_1' \cup C_2'$ be a (m-2n)-isomorphism. Since there is only one equivalence class of size n in (E, \sim) , we may assume C_1 is a proper subset of a bigger equivalence class. Let $x \in E$ s.t. $x \sim y$ and $x \neq y$ for any $y \in C_1$, then we have $y' \in E'$ s.t. $x' \sim y'$ and $x' \neq y'$ for any $y' \in C_1'$, which contradicts that C_1' is a equivalence class of size n.

5. We prove it by induction on p. The case of p=0 is trivial as s is a local isomorphism. Suppose the case of p is correct, and for every $a \in dom(s)$, $i \le p+q+1$, $P_i(a) \iff P_i(s(a))$, we need to check forth and back condition.

For any $x \in E \setminus dom(s)$, there are several cases.

 $\circ \ x \sim y \ for \ some \ y \in dom(s).$

Let
$$y' = s(y)$$
, then for every $i \le p + q + 1$, $P_i(y) \iff P_i(y')$, so $|[y]_{\sim}| \le p + q + 1 \iff |[y']_{\approx}| \le p + q + 1$.

Let $k = |[y]_{\sim} \cap dom(s)|$, because $x \sim y$ and $k \leq |dom(s)| = q , <math>P_i(y) \iff P_i(y')$ for any $i \leq k$. Since $|[y]_{\sim}| \geq k + 1$, $P_i(y)$ is false for any $i \leq k$, so $|[y']_{\approx}| \geq k + 1 > k = |[y']_{\approx} \cap dom(s)|$ and we have $x' \notin im(s)$ s.t. $x' \approx y'$ and for every $i \leq p + q + 1$, $P_i(x) \iff P_i(y)$ $\iff P_i(y') \iff P_i(x')$.

 $\circ \ x \not\sim y \text{ for any } y \in dom(s).$

There are two cases here.

• $|[x]_{\sim}| = n \le p + q + 1.$

There is only one equivalence class of size n in E and E'. No $y \in dom(s)$ is in $[x]_{\sim}$, so $P_n(y)$ is false for every $y \in dom(s)$, $P_n(s(y))$ is false for every $y \in dom(s)$, and No $y' \in im(s)$ is in a equivalence class of size n. We can choose $x' \in E'$ in a equivalence class of size n, then for every $i \leq p + q + 1$, $P_i(x) \iff P_i(x')$.

• $|[x]_{\sim}| > p + q + 1.$

Now $P_i(x)$ is false for every $i \leq p+q+1$. As $dom(s) < \infty$, we can choose some $x' \in E'$ in a equivalence class of size bigger than p+q+1 and $x' \not\sim y'$ for any $y' \in im(s)$. Then for every $i \leq p+q+1$, $P_i(x) \iff P_i(x')$ because $P_i(x)$ and $P_i(x')$ both are false for $i \leq p+q+1$.

Let $s' = s \cup \{(x, x')\}$, then for every $a \in dom(s)$, $i \le p + q + 1$, $P_i(a) \iff P_i(s'(a))$. Note |dom(s')| = q + 1, and by induction hypothesis, we have s' is a p-isomorphism, which shows the forth condition works and the back condition is similar. So s is a (p + 1)-isomorphism.

- **6.** Let $s = \emptyset$ and apply the previous problem, we have s is a p-isomorphism for every $p \in \mathbb{N}$, so $s \in S_{\omega}(E, E')$.
- 7. Let $E=\{(a,b)\in\mathbb{N}^2|\ k(k+1)/2\leq a,b<(k+1)(k+2)/2\ \text{for some }k\in\mathbb{N}\}$ and $E'=E\cup\{(a,b)\in\mathbb{Z}^2|a,b<0\}\subseteq\mathbb{Z}^2.$ Then E and E' are both countable and in K. Then $E\sim_\omega E'$ by the previous problem but they are not isomorphic as there is a infinite class in E' but not in E. So $E\not\sim_\infty E'$.