INTRO

US ACCIDENTS

המטרה

חיזוי השפעת התאונה על התנועה (חזקה/חלשה), עייי מציאת משתני מפתח ומודל

השימוש

פיתוח אסטרטגיות ניהול תנועה, בקרה, בטיחות, ניהול סיכונים וביטוח, תכנון ערים

DATASET

500k sampled

נתונים סביבתיים

חנות נוחות, תחנה, צומת, כיכר, עיקול

נתונים דרך

רמזורים, תמרורים, פס האטה, מעבר חצייה

נתונים נוספים

מזהה תאונה, חומרה

נתונים גאוגרפיים

קווי אורך ורוחב, מדינה, עיר

נתוני זמן

שעת התחלה וסיום, יום לילה

מדדים אקלימיים

טמפרטורה, רוח, לחות, ראות, משקעים, תיאור

INITIAL PREPARATION

שינוי טיפוסי משתנים

Bool to Int, Object to String

חילוץ נתונים ויצירת חדשים

חודש, יום, שעה, יצירת משך Duration

השמטה של נתונים

מיקוד, שעת ערביים, זמן התחלה וסיום, שדה תעופה מדווח ועוד נותרו 29 מתוך 46 שבמקור

מיקוד בשנה מסוימת

מבין 2013-2013 נבחרה שנת 2019, 61,852 תצפיות

TARGET VALUE

משתנה מטרה - Severity

חומרה מתאר עד כמה התאונה השפיע על התנועה הנתונים התקבלו לפי 4 דרגות

> נמוכה - 16 תצפיות בינונית - 44480 תצפיות חזקה - 15518 תצפיות חזקה מאוד - 1838 תצפיות

71.9%

שינוי משתנה המטרה לבינארי

0 - השפעה נמוכה 1 - השפעה חזקה Not Imbalanced

EDA FEATUREENGINEERING

הצגה ויזואלית EDA

גרפים ידניים ואוטומטיים. יצירת עונות (אגרגצית חודשים) ריבוי תאונות לקראת סוף שנה (סתיו: ספט'-אוק'-נוב'), בתחילת החודש ובתחילת היום ובעיקר במזג אוויר מעונן

Region יצירת משתנה

בעקבות הגילוי לגבי ההשפעה של האקלים, מצאתי לנכון ליצור משתנה "אזור" מתוך נתונים חיצוניים: צפון, מרכז, דרום (מדינות לפי מיקום קווי אורך רוחב). התמונה הנ"ל נוצרה ב-AI המחשת אקלים ממוצע בסתיו בארה"ב

OUTLIERS MISSING IMPUTATION ENCODING

חריגים

טיפול בנומריים ע"י IQR ובנורמליים ע"י משר"י משר" לא הוסר (משפיע על קורלציה וגם התפלגות)

השלמת נתונים חסרים

עיר ומזג אוויר = "אחר" יום/לילה = לפי השעה השלמה MICE

US ACCIDENTS
AMIR NAVON
BIU DS17

Label Encoding

7 משתנים מתוך 29

FEATURE
SELECTION
MODEL
SELECTION

US ACCIDENTS AMIR NAVON BIU DS17

Feature Selection

באמצעות טבלת Feature Importance ציון מעל 3)
Lasso, LinearSVC (SVM), GradientBoosting, RandomForestClassifier
מתוך 29 נותרו 17 משתנים

Train Dev Test

15% ,15% ,70%

Model Selection

בחינת מטריקות Enrice בחינת מטריקות Confusion Matrix בחינת Confusion Matrix בחינת LogisticRegression, DecisionTreeClassifier, הרצת המודלים: RandomForestClassifier, Support Vector Machine (SVC), GaussianNB, KNeighborsClassifier (KNN), XGBClassifier

RESULTS

XGBoost

המודל XGBoost הצליח לנבא טוב יותר מאחרים קרוב אליו היה RandomForrest

Accuracy	Precision	Recall	F1-Score	True Positives	True Negatives	False Positives	False Negatives
0.779694	0.766529	0.779694	0.766828	1197	6037	644	1400

END

תודה רבה!