(19)日本国特許庁 (JP)

(12) 特 許 公 報(B2)

(11)特許番号

第2688564号

(45)発行日 平成9年(1997)12月10日

(24)登録日 平成9年(1997)8月22日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ		技術表示箇所
B01D	71/16			B01D	71/16	
	69/08				69/08	
D01F	2/28			D01F	2/28	Α

請求項の数3(全 6 頁)

最終頁に続く

(21)出願番号	特願平6-98054	(73) 特許権者	000002901 ダイセル化学工業株式会社
(22)出願日	平成6年(1994)4月12日		大阪府堺市鉄砲町1番地
		(72)発明者	中手 一郎
(65)公開番号	特開平6-343842		兵庫県姫路市網干区新在家1239 ダイセ
(43)公開日	平成6年(1994)12月20日		ル化学工業株式会社総合研究所内
(31)優先権主張番号	特願平5 -109996	(72)発明者	中塚 修志
(32)優先日	平 5 (1993) 4 月12日		兵庫県姫路市網干区新在家1239 ダイセ
(33)優先権主張国	日本 (JP)	•	ル化学工業株式会社総合研究所内
		(74)代理人	弁理士 古谷 磐 (外3名)
		審査官	関 美祝
	•		·

(54) 【発明の名称】 酢酸セルロース中空糸分離膜

(57) 【特許請求の範囲】

【請求項1】 中空糸膜の断面が、実質的に $0.05\sim1~\mu$ m の平均孔径を有する三次元網目状多孔質部分と $10\sim2$ 00 μ m の大きさの<u>膜内部に存在する</u>ボイド部分からなり、該膜の全断面積に対するボイド部分の占める面積が $5\sim40$ %の範囲にあり、かつ中空糸内外表面の少なくとも一方に $0.001\sim0.05~\mu$ m の表面平均孔径をもつ緻密な膜表面を有し、膜厚が $100\sim400~\mu$ m の範囲にあり、引張破断点強度が30kg/cm²以上あり、かつ引張破断点仲度が20%以上あることを特徴とする酢酸セルロース中空糸分離膜。

【請求項2】 膜の断面の三次元網目状多孔質部分が、 内外表面側の少なくとも一方の側に向かって漸次的に孔 径が小さくなる傾斜構造を有することを特徴とする請求 項1記載の酢酸セルロース中空糸分離膜。 【請求項3】 膜間差圧1 kg/cm²、温度25℃における純水の透過速度が150リットル/(m²・hr)以上あることを特徴とする請求項1又は2記載の酢酸セルロース中空糸分離膜。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、浄水化処理や排水処理 等の水処理に利用可能な酢酸セルロース中空糸分離膜に 関するものである。

[0002]

【従来の技術】近年、分離操作において分離膜を用いた 技術の進展はめざましく、各種の用途で実用化されてい る。

【0003】かかる分離膜の素材としては、例えば、ポリスルホン系、ポリアクリロニトリル系、ポリピニルア

ルコール系、ポリイミド系樹脂等が使用されているが、 特にポリスルホン系樹脂は、耐熱性、耐酸性、耐アルカ リ性等の物理的および化学的性質に優れ、また製膜も容 易な点から、盛んに使用されている。

【0004】しかし、ポリスルホン系樹脂のような疎水性素材からなる分離膜を水処理用途に用いた場合は、膜を一旦乾燥させると水透過性が著しく減少するため、再使用に際して湿潤化処理をしなければならないという欠点を有する。また、このような疎水性分離膜を用いて濾過を行うと、被処理水中の高分子物質、コロイドおよび微粒子等が、膜面や膜孔内部に吸着しやすく膜の汚染や目詰まり(膜ファウリング)を起こして濾過速度が経時的に著しく低下する等の問題があり、親水性を改善する方法として、特開昭59-196321号公報及び特開昭57-174104号公報などが提案されている。

【0005】これに対して、従来より知られた親水性高分子素材であるセルロース系樹脂を用いた分離膜は、水系での濾過速度の経時低下が小さいという特徴を有する。例えば再生セルロース膜は、膜透過速度の低下が小さく、血漿、蛋白質等の吸着が少ないことから、血液透析膜として利用されている。また同様に、酢酸セルロース製の非対称逆浸透膜は、海水淡水化用途として古くから用いられている。

【0006】しかし、このようなセルロース系樹脂を膜素材とする血液透析膜の場合、血漿分離速度を高めるために膜厚を薄くしており、一般にその破裂圧力は小さなものとなっている。また、イオン類、粒子径の比較的小さい物質及び低分子化合物を分離できる逆浸透膜は、膜の分離活性層が非常に緻密で、膜孔径が極めて小さいため、膜の透水抵抗が大きく、従って透水速度が小さい。高性能逆浸透膜として特公昭58-24164号公報等に開示のものがあるが、一般にかかる緻密構造を有する膜を用い、透水速度を増大させるには、操作圧力を10kg/cm²以上の高圧にしなければならず、エネルギーコストが増加するのみならず、濾過運転中に膜が圧密化されて透水速度の低下をもたらしたり、機械的な膜破損を引き起こしたりする等の問題が生じる。

[0007]

【発明が解決しようとする課題】本発明は上述した従来技術の種々の欠点を克服するため、操作圧力が2kg/cm²以下の低圧下でも高い透水速度を長期にわたり維持でき、かつ機械的強度に優れたバランスの良い酢酸セルロース中空糸分離膜を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明者らは、前記目的 を達成するため鋭意検討を重ねた結果、本発明に到達し た。

【0009】即ち本発明は、中空糸膜の断面が、実質的に0.05~1μmの平均孔径を有する三次元網目状多孔質

部分と $10\sim200~\mu m$ の大きさのボイド部分からなり、該膜の全断面積に対するボイド部分の占める面積が $5\sim40$ %の範囲にあり、かつ中空糸内外表面の少なくとも一方に $0.001\sim0.05\,\mu m$ の表面平均孔径をもつ緻密な膜表面を有し、膜厚が $50\sim500~\mu m$ の範囲にあることを特徴とする酢酸セルロース中空糸分離膜に関するものである。

【0010】また、本発明の中空糸膜は、膜の断面の三次元網目状多孔質部分が、内外表面側の少なくとも一方の側に向かって漸次的に孔径が小さくなる傾斜構造を有していてもよい。

【0011】本発明に用いる酢酸セルロースは、通常の有機溶剤に溶解するものであれば酢化度に制限はないが、通常酢化度が $40\sim62\%$ の範囲にあるもの、好ましくは $55\sim62\%$ の範囲のものが適する。また、平均重合度は $100\sim360$ 、好ましくは $140\sim280$ のものが用いられる。

【0012】本発明において、中空糸分離膜を製造する ための製膜溶液として、酢酸セルロースの重量を製膜溶 液の総重量に対して10~30重量%になるように極性有機 溶剤に溶解させることが、目的とする膜を得るために好 ましい。より好ましくは、15~23重量%である。極性有 機溶剤としては、例えば、1,4 -ジオキサン、ジメチル スルホキシド、 N, N-ジメチルホルムアミド、 N-メチ ルー2-ピロリドン、2-ピロリドン等を例示すること ができるが、特にこれらに限定されるものではない。ま た、上記溶剤以外に、エチレングリコール、ポリエチレ ングリコール等の非溶剤を添加することができるが、中 でも、目的とする膜構造を得るために、添加剤としてエ チレングリコールを用いることが好ましい。これらの添 加剤は、その添加量の増加とともに製膜溶液の粘度も増 加するため、紡糸性の点から、好ましい添加量は製膜溶 液の総重量に対して1~30重量%である。また、リン酸 トリエチル、ジエチレングリコールジメチルエーテル等 の可塑剤の添加は、緻密層が厚くなったり、ボイドの生 成が妨げられる等の不具合を生じ、必要とする透水速度 が得られない場合があり好ましくない。

【0013】上記製胶溶液から中空糸分離膜を製造するにあたっては、従来から用いられている分離膜の製造法を採用することができる。すなわち、製膜溶液を二重管型ノズルの外管から押し出し、内管から内部凝固液を流出させ、乾湿式紡糸または湿式紡糸により、凝固浴中で凝固させて中空糸膜を得ることができる。内部凝固液温度または凝固浴温度は30~80℃が好ましく、30℃未満では膜表面に緻密層が厚く生成し、目的とする透過速度が得られず、80℃を超えると正常な中空糸が得られない。乾湿式紡糸の場合のノズル吐出面と凝固浴表面との乾部距離は 0.1~50cmがよく、 0.5~30cmが好適であり、 0.2秒以上空気中を通過させた後、凝固浴中に導入すればよい。

【0014】製膜に用いられる内部凝固液または凝固浴

としては、酢酸セルロースの非溶剤である、水、エチレングリコール、ポリエチレングリコール等およびこれらの2種以上の混合溶液、または上述の極性有機溶剤とこれらの非溶剤との混合液が用いられるが、中でも、製膜性が良く、目的とする平均孔径が得られる点で、水又は水とポリエチレングリコールとの組み合わせが好ましい。水とポリエチレングリコールとの組み合わせの場合、水/ポリエチレングリコールの重量比が70/30~99/1であれば、製膜性と膜性能のバランスがとれ好ましい。更に、ポリエチレングリコールとしては平均分子量200程度のものが好ましい。

【0015】本発明における三次元網目状多孔質構造とは、中空糸膜表面に形成される緻密層の微孔孔径よりも大きく、実質的には0.05~1 μm のサイズを有する空隙が膜内部に立体的な網目状として形成された構造を指すものであり、中空糸分離膜に大きな物理的強度と仲度とを与えることができる。

【0016】また、本発明におけるボイドとは、上記の三次元網目状の空隙よりもさらに大きく、実質的には $10\sim200~\mu$ m の空孔を意味する。ボイドは、膜内部に適度に存在することによって透水速度を増加させることができるが、膜の機械的強度を下げない程度に存在すればよく、ボイドの占める面積は、中空糸断面積に対して $5\sim40\%$ 、好ましくは $15\sim30\%$ の範囲にあるものが、透水速度と膜の機械的強度とのバランスから、より好ましい。

【0018】また、本発明の中空糸分離膜の膜厚は、より大きな膜強度とより大きな透水速度を得るために、 $50\sim500~\mu$ m の範囲に調整される。膜厚が $50~\mu$ m 未満では、実用強度に劣り、逆に $500~\mu$ m を越えると膜強度は増すが、透水速度が小さくなり、実用性に欠けることとから、好ましくは $100\sim400~\mu$ m の範囲にあるものがよい。

【0019】本発明により得られた中空糸分離膜が、長期間にわたり耐久性を維持するためには、引張破断点強度が $30 \log / \mathrm{cm}^2$ 以上であり、かつ引張破断点仲度が20%以上であることが望ましく、また従来の浄水化処理や廃水処理等の水処理施設と同程度のエネルギーコスト、透水性能を得るためには、膜間差圧 $1 \log / \mathrm{cm}^2$ 、温度25%における純水の透過速度が 150リットル/ ($m^2 \cdot hr$)以上であることが望ましい。

【0020】なお、三次元網目状多孔質構造、ボイドの

空孔径の大きさ及び腕断面積あたりのボイドの占有面積 %は、電子顕微鏡写真により評価される。また、緻密層 の表面平均孔径は、電子顕微鏡写真、分画分子量により 評価される。

[0021]

【実施例】以下に、実施例に基づいて本発明をより詳細, に説明する。

【0022】なお、本発明の中空糸分離膜の性能は、透水速度、分画分子量、破裂圧力および引張破断点強度・ 仲度を以下の方法により測定し、評価した。

【0023】(1) 透水速度

有効長50cmの中空糸膜に25℃の純水で1 kg/cm²の水圧を内側からかけ、透過した純水の量を測定した(内表面積基準)。

【0024】(2) 分画分子量

分子量の異なる各種蛋白質を標準溶質とし、膜に対するそれぞれの排除率を測定して分子量と排除率との関係をグラフにプロットし、得られた分子量排除率曲線より、排除率95%に相当する分子量を求めてそれを分画分子量とした。

【0025】(3) 破裂圧力

有効長30cmの中空糸膜の片端を封止し、他方から窒素ガスを流入し、破裂した圧力を最高置針付圧力計により測定した。

【0026】(4) 引張破断点強度・仲度

有効試料長5cmの中空糸膜試験片をクロスヘッドを10mm /分で引張試験を行った際の破断点強度を試料断面積1 cm² 当たりに換算し、かつその仲びを測定した。

【0027】 実施例1

酢酸セルロース (酢化度:56.1%、平均重合度180、ダ イセル化学工業社製) 20重量%、エチレングリコール20 重量%、 N-メチル-2-ピロリドン(NMP) 60重量%の 製膜溶液を二重管型口金の外管から吐出すると共に内管 から、水90重量%、ポリエチレングリコール (PEG-200: 三洋化成工業社製) 10重量%の混合溶液を内部凝固液と して吐出した。2秒間空気中を通過した後、50℃の凝固 浴中においてその両表面から凝固させ、次に水中に浸 演、脱溶剤して、内径 0.8mm、外径1.3mmで、全断面積 に対するボイド部分の占める面積が20%の中空糸分離膜 を得た。得られた膜の評価結果を表1及び表2に、河川 水による透過実験の透水速度の経時変化を図1に示す。 本濾過実験は、定期的に逆洗を行うクロスフロー濾過シ ステムであり、濾過圧力 0.5kg/cm²、逆洗圧力 1.0kg/c m²、逆洗は濾過時間30分間に1回の頻度で45秒間行っ た。測定開始 100日後においても透水速度が、初期性能 の70%以上保持していた。また、得られた膜断面の倍率 200倍の電子顕微鏡写真を図2に示す。

【0028】実施例2

実施例1において酢酸セルロース19重量%、エチレング リコール20重量%、NMP 61重量%の製膜溶液を用い、凝 固浴温度を70℃にした以外は実施例1と同様にして中空 糸膜を製造した。得られた膜の評価結果を表1及び表2 に示す。

【0029】 実施例3

実施例1において、内部凝固液として水80重量%、ポリエチレングリコール (PEG-200) 20重量%の混合溶液を用い、凝固浴温度を70℃にした以外は実施例1と同様にして中空糸膜を製造した。得られた膜の評価結果を表1及び表2に示す。

【0030】実施例4

酢酸セルロース(酢化度;61%、平均重合度280 、ダイセル化学工業社製) 18重量%、ジメチルスルホキシド82重量%の製膜溶液を用い、凝固浴を40℃とした以外は実施例2と同様にして中空糸膜を製造した。得られた膜の評価結果を表1及び表2に示す。

【0031】実施例5

酢酸セルロース(酢化度;61%、平均重合度280)20重量%、ジメチルスルホキシド80重量%の製膜溶液を用い、内部凝固液として水を用いた以外は実施例2と同様にして中空糸膜を製造した。得られた膜の評価結果を表1及び表2に示す。また、膜断面における内表面側を倍率10,000倍に拡大した電子顕微鏡写真を図3に示す。この写真から、内表面に向かうに従って孔径が漸次的に小さくなる傾斜構造を有していることがわかる。

【0032】比較例1

酢酸セルロース18重量%、セロソルブアセテート14重量%、NMP 63重量%、水5重量%の製膜溶液を用い、内部凝固液として水を用いた以外は実施例1と同様にしてボイドの比率が44%の中空糸分離膜を製造した。得られた膜の評価結果を表1及び表2に示す。得られた膜を用いて実施例1と同じ河川水の透過実験を行ったところ3週間で機械的劣化によりリークが発生した。

【0033】比較例2

酢酸セルロース(酢化度;56.1%、平均重合度180)19重量%、ジメチルスルホキシド40.5重量%、リン酸トリエチル40.5重量%の製膜溶液を用い、凝固浴温度を70℃とした以外は実施例5と同様にして中空糸膜を製造した。得られた膜の評価結果を表1及び表2に示す。可塑剤(リン酸トリエチル)を添加した系では、ボイドが生成せず、透水速度の低い膜となることがわかる。この膜断面の倍率50倍の電子顕微鏡写真を図4に示す。

【0034】比較例3

ポリエーテルスルホン中空糸膜(ダイセル化学工業社製; FUS-0353、分画分子量3万、純水の透過速度900リットル/(m²・hr))を用いた河川水の透過実験を実施例1と同様にして行ったところ、30日間で透水速度が初期性能の10%以下まで低下した。透水速度の経時変化を図1に示す。また、膜の評価結果を表1及び表2に示す。

[0035]

【表1】

·		l							
孔径	三次元網目状構造 (μm)	0.3	0.3	0.3	0.2	0.6		0.3	0.5
平均子	外表面 (μm)	0.03	0.03			0.02	0.03		0.3
	内表面 (μm)	0.05	0.05	0.02	0.05	0.03	0.02	0.05	0.01
<u>ئ</u>	平均短径 (μm)	80	120	20	30	30	30		7.5
, т,	平均長径 (μm)	100	130	08	110	120	06		45
		実施例 1	実施例2	実施例3	実施例 4	実施例 5	比較例 [比較例 2	比較例3

[0036]

【表2】

	破断点強度	破断点	破裂压力	純水透過速度	分画	ボ(イ)	膜厚
	(kg/cm^2)	%	(kg/cm²)	(リットル/ (m²・hr))	分子鼠	3%	(m m)
実施例 1	35	33	13	009	30 万	20	250
実施例2	53	40	21	310	30 F	18	270
実施例3	51	37	15	450	20 万	18	260
実施例 4	54	78	15	350	20 万	37	250
実施例5	67	32	15	320	20 万	18	250
比較例1	. 25	91	13	210	30 万	75	280
比較例2	51	88	-	20	30 万	0	250
比較例3	49	0†	_	. 006	3万	44	150

[0037]

【発明の効果】本発明は、疎水性中空糸分離膜に比べ高い透水速度を長期にわたり維持できる。また機械的強度に優れており、水処埋操作が安定して行え、かつ耐久性にも優れたものである。

【図面の簡単な説明】

【図1】実施例1の酢酸セルロース膜と比較例3のポリエーテルスルホン膜を用いた河川水の透過実験による透水速度の経時変化を示したものである。

【図2】実施例1で得られた本発明の酢酸セルロース中空糸膜の断面の繊維の形状を示す電子顕微鏡写真(200倍)である。

【図3】実施例5で得られた本発明の酢酸セルロース中空糸膜の断面の繊維の形状を示す電子顕微鏡写真(10,000倍)である。

【図4】比較例2で得られた酢酸セルロース中空糸膜の 断面の繊維の形状を示す電子顕微鏡写真(50倍)であ る。

BEST AVAILABLE COPY

[図1]

【図3】

【図4】

フロントページの続き

(56) 参考文献 特開 昭56-43417 (J P. A) 特開 昭54-10282 (J P. A) 特開 昭54-42424 (J P. A) 特開 昭55-18244 (J P. A) 特開 昭56-58005 (J P. A) 特開 昭62-30502 (J P. A) 特開 昭50-296424 (J P. A)