CPU Model with Dual Issue Instruction Pipeline

Design and Evaluation

Asher A. Hensley

03-May-2017

Table of Contents

<u>1.</u>	INTRODUCTION	4
<u>2.</u>	DESIGN	4
2.1	Instruction Cache	5
2.2	Instruction Fetch	5
2.3	Instruction Decode	6
2.4	ISSUE	6
2.5	REGISTER FILE	7
2.6	EVEN PIPE	7
2.7	ODD PIPE	8
<u>3.</u>	INSTRUCTIONS	9
<u>4.</u>	TESTING	20
4.1	PRELOADED REGISTER DATA	20
4.2	TEST CASE 1: NO HAZARDS	21
4.3	TEST CASE 2: STRUCTURAL HAZARDS	26
4.4	TEST CASE 3A: DATA HAZARDS - NO STALLS	29
4.5	TEST CASE 3B: DATA HAZARDS - WITH STALLS	34
4.6	TEST CASE 4: CONTROL HAZARDS	37
4.7	TEST CASE 5: MATRIX MULTIPLY	41

1. Introduction

This report presents the design, instruction set, and test results for the SPU-lite pipeline model. Additionally all SystemC source code and supporting MATLAB code are included in the appendices.

2. Design

The design procedure for the SPU-Lite model was to incrementally construct/add each block after verifying the previous design was operating correctly. This began with constructing the even/odd pipes as described in the project milestone report. Subsequently the Register-File, Write-Back, Issue, Instruction-Decode, Instruction-Fetch, and Instruction-Cache were added incrementally. The SPU-Lite model was written in SystemC and is run externally using text based test programs in conjunction with special compiler written in MATLAB. A high level overview of the model execution process is shown below in Figure 1. A high level block diagram of the SPU-Lite SystemC model is shown in Figure 2. The remainder of this section describes the modules within SPU-Lite program in more detail. This mainly includes their I/O as well as any pertinent design decisions made along the way.

Figure 1: Model Execution Diagram

Figure 2: SPU-Lite SystemC Model High Level Block Diagram

2.1 Instruction Cache

The instruction cache is a 256B direct mapped cache with 128B blocks (i.e. 32 instructions each). The hit time is 1 clock, the miss penalty is 13 clocks, and the misses per instruction is approximately 0.03125 making the average instruction access time roughly 1.4 clocks. The cache is indexed by partitioning the program counter as follows:

Tag <7> Index <1> Offset <5> Bit Mask <2> = 00
--

The behavioral SystemC module has the following basic structure structure:

```
SC_MODULE(ILB) {
    //Inputs
    sc_in<bool> clock;
    sc_in<sc_uint<32> > Miss_Intructions[1][33]; //Extra entry for cache indexing information
    //Outputs
    sc_out <bool> cache_valid[2];
    sc_out <sc_uint<32> > cache_tags[2];
    sc_out <sc_uint<32> > cache_inst[2][32];
    //Methods
    void update();
    //Constructor
    SC_CTOR(ILB){
        SC_METHOD(update);
        sensitive << clock.pos();
    }
};</pre>
```

2.2 Instruction Fetch

Instructions are fetched two at a time from the instruction cache. The behavioral SystemC module has the following basic structure:

```
SC_MODULE(IF) {
```

```
//Inputs
      sc_in<bool> clock, stall;
      sc_in<sc_int<32> > new_pc;
                                       //New PC used for branches/flush
      sc_in <bool> cache_valid[2];
      sc in <sc uint<32> > cache tags[2];
      sc_in <sc_uint<32> > cache_inst[2][32];
      //Outputs
      sc out<sc uint<32> > I1, I2, PC1, PC2;
      //Methods
      void fetch();
      //Constructor
      SC_CTOR(IF){
       SC METHOD (fetch);
       sensitive << clock.pos();</pre>
};
```

2.3 Instruction Decode

The behavioral SystemC module for the instruction decoder has the following basic structure:

```
SC_MODULE(ID) {
      //Inputs
      sc_in<bool> clock, stall;
      sc_in<sc_uint<32> > PCin, I;
      sc_in<sc_int<32> > new_pc;
                                     //new_pc used for flush signal
      //Outputs
      sc_out<sc_uint<32> > info[4]; //info = [PC,opcode,rt,value];
      sc out<int> rabc[3];
                                    //rabc = [ra,rb,rc]; register indices
      //Methods
      void decode();
      //Constructor
      SC_CTOR(ID){
       SC METHOD (decode);
       sensitive << clock.pos();</pre>
};
```

The SPU-Lite model uses 2 instantiations of the above decode module to accommodate each pipeline channel.

2.4 Issue

The "Issue" stage monitors all potential hazards and controls the flow of instructions to the pipeline. Branches are assumed not taken and all instructions are issued for in order. The behavioral SystemC module has the following basic structure:

```
sc_in<sc_uint<8> > Result_Destination1[8], Result_Destination2[8]; //Even=1, 0dd=2
     sc_in<bool> Reg_Write1[8], Reg_Write2[8];
     sc_in<sc_uint<8> > Stage_When_Ready1[8], Stage_When_Ready2[8];
     //Output
     sc_out<bool> stall;
     sc_out<sc_uint<32> > info1_out[4],info2_out[4]; //info = [PC,opcode,rt,value];
     sc_out<int> rabc1_out[3], rabc2_out[3];
                                               //rabc = [ra,rb,rc]; register indices
     //Methods
     void route(){
    //Constructor
     SC_CTOR(Issue){
      SC_METHOD(route);
      sensitive << clock.pos();</pre>
};
```

2.5 Register File

The behavioral SystemC module has the following basic structure:

```
SC_MODULE(RF) {
      //Inputs
      sc_in<bool> clock;
      sc_in<sc_uint<32> > info1_in[4],info2_in[4]; //info = [PC,opcode,rt,value];
      sc_in<int> rabc1[3], rabc2[3];
                                                          //rabc = [ra,rb,rc];
      sc_in<sc_int<32> > new_pc;
      sc_in<sc_biguint<128> > Result1[8], Result2[8];
      sc_in<sc_uint<8> > Result_Destination1[8], Result_Destination2[8];
      sc_in<bool> Reg_Write1[8], Reg_Write2[8];
      //Outputs
      sc_out<sc_biguint<128> > A1, B1, C1, T1;
sc_out<sc_biguint<128> > A2, B2, C2, T2;
      sc_out<sc_uint<32> > info1_out[4],info2_out[4];
      //Methods
      void read();
      void write();
      //Constructor
      SC CTOR(RF){
        SC_METHOD(read);
        sensitive << clock.pos();</pre>
        SC_METHOD(write);
        sensitive << clock.pos();</pre>
};
```

2.6 Even Pipe

The behavioral SystemC module has the following basic structure:

```
SC_MODULE(EvenPipe) {
    //Inputs
    sc_in<bool> clock;
    sc_in<sc_uint<32> > info[4]; //info = [PC,opcode,rt,value];
    sc_in<sc_biguint<128> > A, B, C, T;
    sc_in<sc_uint<3> > flush;
```

```
//Outputs
sc_out<sc_biguint<128> > Result[8];
sc_out<sc_uint<8> > Result_Destination[8];
sc_out<sc_uint<8> > Stage_When_Ready[8];
sc_out<bool> Reg_Write[8];
sc_out<sc_uint<8> > Unit_Id[8];

//Methods
void update();

//Constructor
SC_CTOR(EvenPipe){
    SC_METHOD(update);
    sensitive << clock.pos();
};

};</pre>
```

2.7 Odd Pipe

The behavioral SystemC module has the following basic structure:

```
SC_MODULE(OddPipe) {
      //Inputs
      sc_in<bool> clock;
      sc_in<sc_uint<32> > info[4]; //info = [PC,opcode,rt,value];
      sc_in<sc_biguint<128> > A, B, C, T;
      sc_out<sc_biguint<128> > Result[8];
      sc_out<sc_uint<8> > Result_Destination[8];
      sc_out<sc_uint<8> > Stage_When_Ready[8];
      sc_out<bool> Reg_Write[8];
      sc_out<sc_uint<8> > Unit_Id[8];
      sc_out<sc_uint<32> > Miss_Instructions[8][33];
      sc_out<sc_int<32> > pc_plus_offset[8];
      sc_out<sc_uint<3> > flush;
      //Methods
      void update();
      //Constructor
      SC CTOR(OddPipe){
       SC_METHOD(update);
       sensitive << clock.pos();</pre>
};
```

3. Instructions

Inst	Opcode	Syntax	Unit	UnitId	Pipe	Latency
Add Word	00011000000	a rt,ra,rb	Simple Fixed 1	1	even	2
	RT ^{0:3}	← RA ^{0:3} + RB ^{0:3}	\$			
	RT ^{4:7}	← RA ^{4:7} + RB ^{4:7}	,			
	RT ^{8:11}	← RA ^{8:11} + RB ^{8:}	:11			
	RT ^{12:15}	← RA ^{12:15} + RB	12:15			
Add Word Immediate	00011100	ai rt,ra,value	Simple Fixed 1	1	even	2
	t	← RepLeftBit(I	10,32)			
	RT ^{0:3}	← RA ^{0:3} + t				
	RT ^{4:7}	← RA ^{4:7} + t				
	RT ^{8:11}	← RA ^{8:11} + t				
	RT ^{12:15}	← RA ^{12:15} + t				
Subtract from Word	00001000000	sf rt,ra,rb	Simple Fixed 1	1	even	2
	RT ^{0:3}	← RB ^{0;3} + (¬R/	A ^{0:3}) + 1			
	RT ^{4:7}	← RB ^{4:7} + (¬R/	A ^{4:7}) + 1			
	RT ^{8:11}	← RB ^{8:11} + (¬F	RA ^{8:11}) + 1			
	RT ^{12:15}	← RB ^{12:15} + (¬	RA ^{12:15}) + 1			
Subtract from Word Immediate	00001101	sfi rt,ra,value	Simple Fixed 1	1	even	2
	t	← RepLeftBit(I	10,32)			
	RT ^{0:3}	← t + (¬RA ^{0:3})	+ 1			
	RT ^{4:7}	← t + (¬RA ^{4:7})	+ 1			
	RT ^{8:11}	← t + (¬RA ^{8:11}) + 1			
	RT ^{12:15}	← t + (¬RA ^{12:1}				
Count Leading Zeros	01010100101	clz rt,ra	Simple Fixed 1	1	even	2

```
for j = 0 to 15 by 4
                             u ← RA<sup>j::4</sup>
                             For m = 0 to 31
                                       If u<sub>m</sub> = 1 then leave
                                       t \leftarrow t + 1
                             end
                             RT<sup>j:4</sup> ← t
                   end
                                                                      Simple
                00011000001
And
                                         and rt,ra,rb
                                                                      Fixed 1
                                                                                                    even
                      RT<sup>0:3</sup>
                                                  ← RA0:3 & RB0:3
                                                  ← RA4:7 & RB4:7
                      RT4:7
                     RT8:11
                                                  ← RA8:11 & RB8:11
                                                  ← RA<sup>12:15</sup> & RB<sup>12:15</sup>
                     RT12:15
And Word
                                                                      Simple
                00010100
Immediate
                                         andi rt,ra,value
                                                                      Fixed 1
                                                                                                    even
                                                 ← RepLeftBit(I10,32)
                     RT<sup>0:3</sup>
                                                 ← RA<sup>0:3</sup> & t
                     RT4:7
                                                 ← RA4:7 & t
                    RT8:11
                                                 ← RA8:11 & t
                    RT12:15
                                                  ← RA12:15 & t
                                                                      Simple
Or
                00001000001
                                                                      Fixed 1
                                                                                                    even
                                         or rt,ra,rb
                     RT0:3
                                                 ← RA0:3 | RB0:3
                     RT4:7
                                                 ← RA4:7 | RB4:7
                    RT<sup>8:11</sup>
                                                 ← RA8:11 | RB8:11
                    RT12:15
                                                 ← RA12:15 | RB12:15
Or Word
                                                                      Simple
                00000100
Immediate
                                         ori rt,ra,value
                                                                      Fixed 1
                                                                                                    even
                                                 ← RepLeftBit(I10,32)
                     RT<sup>0:3</sup>
                                                 ← RA<sup>0:3</sup> | t
                     RT4:7
                                                 ← RA4:7 | t
                    RT<sup>8:11</sup>
                                                 ← RA8:11 | t
                   RT<sup>12:15</sup>
                                                 ← RA<sup>12:15</sup> | t
                                                                      Simple
Exclusive Or 01001000001
                                                                      Fixed 1
                                                                                                    even
                                         xor rt,ra,rb
```

	 					
	RT ^{0:3}	← RA ^{0:3} ⊕ RB ^{0:}	3			
	RT ^{4:7}	← RA ^{4:7} ⊕ RB ^{4:}	7			
	RT ^{8:11}	← RA ^{8:11} ⊕ RB ⁶	3:11			
	RT ^{12:15}	← RA ^{12:15} ⊕ RB	12:15			
Exclusive Or Word Immediate	01000100	xori rt,ra,value	Simple Fixed 1	1	even	2
	t	← RepLeftBit(I1		1		
	RT ^{0:3}	← RA ^{0:3} ⊕ t	0,02)			
	RT ^{4:7}	← RA ^{4:7} ⊕ t				
	RT ^{8:11}	← RA ^{8:11} ⊕ t				
	RT ^{12:15}	← RA ^{12:15} ⊕ t				
		I			<u> </u>	
Nand	00011001001	nand rt,ra,rb	Simple Fixed 1	1	even	2
	RT ^{0:3}	← ¬(RA ^{0:3} & RB	0:3)			
	RT ^{4:7}	←¬(RA ^{4:7} & RB	^{4:7})			
	RT ^{8:11}	← ¬(RA ^{8:11} & R	B ^{8:11})			
	RT ^{12:15}	← ¬(RA ^{12:15} & F	RB ^{12:15})			
Nor	00001001001	nor rt,ra,rb	Simple Fixed 1	1	even	2
	RT ^{0:3}	← ¬(RA ^{0:3} RB	0:3)			
	RT ^{4:7}	← ¬(RA ^{4:7} RB	^{4:7})			
	RT ^{8:11}	← ¬(RA ^{8:11} RE	3 ^{8:11})			
	RT ^{12:15}	← ¬(RA ^{12:15} R	B ^{12:15})			
Compare Equal Word	01111000000	ceq rt,ra,rb	Simple Fixed 1	1	even	2
	for i = 0 to 15 by 4 If RA ^{i:4} = else end	:RB ^{i:4} then RT ^{i:4} ← ()xFFFFFFF)x00000000			
Compare Equal Word Immediate	01111100	ceqi rt,ra,value	Simple Fixed 1	1	even	2
	for i = 0 to 15 by 4 If RA ^{i:4} = else end	RepLeftBit(I10,32) then	RT ^{i:4} ← 0xFf RT ^{i:4} ← 0x00			

		т.		1		
Compare Greater Than Word	01001000000	cgt rt,ra,rb	Simple Fixed 1	1	even	2
	for i = 0 to 15 by 4 If RA ^{i:4} > else end	RB ^{i:4} then RT ^{i:4} ← 0	xFFFFFFF x00000000			
Compare Greater Than Word Immediate	01001100	cqti rt,ra,value	Simple Fixed 1	1	even	2
	for i = 0 to 15 by	, ,		FFFFFF		<u>-</u>
Double Floating Compare Equal	point value from reg	dfceq rt,ra,rb n floating-point value from registe ister RB. If the values are equal, of zero (false) is produced in regi	a result of all ones			
Double Floating Compare Greater Than	point value in registe	dfcgt rt,ra,rb n floating-point value in register er RB. If the value in RA is great RT. Otherwise, a result of zero	er than the value i	n RB, a result	of all ones	
Floating Compare Equal	values are equal, a r	fceq rt,ra,rb ots: lue from register RA is compared v esult of all ones (true) is produced RT. Two zeros always compare e	in register RT. Othe	rwise, a result o	f zero (false	
Floating Compare Greater Than	in RA is greater than the	e in register RA is compared with the ne value in RB, a result of all ones (tr produced in register RT. Two zeros	ue) is produced in re	gister RT. Other	wise, a	2
And Byte Immediate	00010110	andbi rt,ra,value	Simple Fixed 1	1	even	2

						1
	b	← I10 & 0x00FF				
	bbbb	← b b b b				
	RT ^{0:3}	← RA ^{0:3} & bbbb				
	RT ^{4:7}	← RA4:7 & bbbb				
	RT ^{8:11}	← RA ^{8:11} & bbbl	b			
	RT ^{12:15}	← RA ^{12:15} & bbb	db			
Or Byte Immediate	00000110	orbi rt,ra,value	Simple Fixed 1	1	even	2
	b	← I10 & 0x00FF	=			
	bbbb	← b b b b				
	RT ^{0:3}	← RA ^{0;3} l bbbb				
	RT ^{4:7}	← RA ^{4:7} l bbbb				
	RT ^{8:11}	← RA ^{8:11} I bbbb				
	RT ^{12:15}	← RA ^{12:15} I bbb	b			
Exclusive Or Byte Immediate	01000110	xorbi rt,ra,value	Simple Fixed 1	1	even	2
	b	← I10 & 0x00F	F			
	bbbb	← b b b b				
	RT ^{0:3}	← RA ^{0:3} ⊕ bbb	b			
	RT ^{4:7}	← RA ^{4:7} ⊕ bbb	b			
	RT ^{8:11}	← RA ^{8:11} ⊕ bb	bb			
	RT ^{12:15}	← RA ^{12:15} ⊕ b	bbb			
Compare Equal Byte	01111010000	ceqb rt,ra,rb	Simple Fixed 1	1	even	2
	for i = 0 to 15 If RA ⁱ = else end	RB ⁱ then RT ⁱ ← 0xFF RT ⁱ ← 0x00				
Compare Equal Byte Immediate	01111110	ceqbi rt,ra,value	Simple Fixed 1	1	even	2
	for i = 0 to 15 If RA ⁱ = else end	I10 _{2:9} then RT ⁱ ← 0: RT ⁱ ← 0:				

			1 1			
Compare Greater Than Byte	01001010000	cgtb rt,ra,rb	Simple Fixed 1	1	even	2
	for i = 0 to 15 If RA ⁱ > else end	RB ⁱ then RT ⁱ ← 0xFF RT ⁱ ← 0x00				
Compare Greater Than Byte Immediate	01001110	cgtbi rt,ra,value	Simple Fixed 1	1	even	2
	for i = 0 to 15 If RA ⁱ > else end	I10 _{2:9} then RT ¹ ← 6				
Shift Left Word	00001011011	shl rt,ra,rb	Simple Fixed 2	2	even	4
	t ← RA ^j ::4 ← end	to 31 if b + s < 32 then else	r _b ← t _{b+s} r _b ← 0			
Rotate Word	00001011000	rot rt,ra,rb	Simple Fixed 2	2	even	4
	for j = 0 to 15 by	4 34 & 0x0000001F 34 4 to 31 if b + s < 32 then else		_		·
Multiply	01111000100	mpy rt,ra,rb	Single Prec	3	even	7

	RT ^{0:3}	← RA ^{2:3} * RB ^{2:3}							
	RT ^{4:7}	← RA ^{6:7} * RB ^{6:7}							
	RT ^{8:11}	← RA ^{10:11} * RB ¹⁰	0:11						
	RT ^{12:15}	← RA ^{14:15} * RB ¹⁴	1:15						
Maraleta I			Circ ala	D	1				
Multiply Immediate	01110100	mpyi rt,ra,value	Single 1	Prec	3	even	7		
	t	← RepLeftBit(I10),16)						
	RT ^{0:3}	← RA ^{2:3} * t							
	RT ^{4:7}	← RA ^{6:7} * t							
	BT ^{8:11}	← RA ^{10:11} * t							
	RT ^{12:15}	← RA ^{14:15} * t							
Intogor									
Integer Multiply and Add	1100	mpya rt,ra,rb,rc	Single 1	Prec	3	even	7		
	t0	← RA ^{2:3} • RB ^{2:3}							
	t1	← RA ^{6:7} • RB ^{6:7}							
	t2	← RA ^{10:11} * RB							
	t3	← RA ^{14:15} * RB ¹	14:15						
	RT ^{0:3}	← t0 + RC ^{0:3}							
	RT ^{4:7}	← t1 + RC ^{4:7}							
	RT ^{8:11}	← t2 + RC ^{8:11}							
	RT ^{12:15}	← t3 + RC ^{12:15}							
Floating Add	01011000100	fa rt,ra,rb	Single 2	Prec	4	even	6		
. loading Add	For each of the four					CVCII	<u> </u>		
	The operand from register RA is added to the operand from register RB.								
		ced in register RT.	ie operal	na mon	riegistei ND				
Double Floating Add	01011001100	dfa rt,ra,rb	Single 2	Prec	4	AVOD	6		
rioating Auu	For each of two do	, ,			1 +	even	U		
			a 4b =		from model	* DC			
		rom register RA is added to	tne op	erand	rrom registe	r HB.			
	The result is p	laced in register RT.							
Floating Subtract	01011000101	fs rt,ra,rb	Single 2	Prec	4	even	6		
Japanace	For each of the four v				<u>'</u>	CVCII			
		n register RB is subtracted from	m the ope	erand fr	om register F	RA.			
	The result is place.	-							

	1	T	1	ı	1				
Double			Circula Dura						
Floating Subtract	01011001101	dfs rt,ra,rb	Single Prec 2	4	even	6			
	For each of two doubleword slots:								
	The operand from register RB is subtracted from the operand from register RA.								
	The result is placed in register RT.								
Florition		T	Circula Dura						
Floating Multiply	01011000110	fm rt,ra,rb	Single Prec 2	4	even	6			
. ,	For each of the for								
	 The operand f 	rom register RA is multiplied	by the operan	d from regis	ter RB.				
	The result is p	laced in register RT.							
Double									
Floating			Single Prec						
Multiply	01011001110	dfm rt,ra,rb	2	4	even	6			
	For each of two	doubleword slots:							
	The operand	d from register RA is mult	tiplied by the o	perand fro	m registe	r RB.			
	 The result is 	placed in register RT.							
Floating									
Multiply and	1110		Single Prec 2	4		C			
Add	1110 fma rt,ra,rb,rc 2 4 even 6 For each of the four word slots:								
	The operand from	register RA is multiplied by the	operand from re	gister RB and	d added to	the operand			
	from register RC. The multiplication is exact and not subject to limits on its range.								
	The result is place	d in register RT.	T	1	1				
Double									
Floating Multiply and			Single Prec						
Add	01101011100	dfma rt,ra,rb	2	4	even	6			
	For each of two doubleword slots: • The operand from register RA is multiplied by the operand from register RB and added to the operand								
		The multiplication is exact and no			ded to the o	perariu			
	The result is place.	ed in register RT.							
Floating									
Multiply and	1111	for a set up up up	Single Prec	4		C			
Subtract	1111 fms rt,ra,rb,rc 2 4 even 6 For each of the four word slots:								
	 The operand from register RA is multiplied by the operand from register RB. The result of the multiplica- 								
	product.	subject to limits on its range. The	operand from registi	er HC is subtra	cted from the)			
	The result is placed	in register RT.							
Double									
Floating Multiply and			Single Prec						
Subtract	01101011101	dfms rt,ra,rb	2	4	even	6			
	For each of two doublew		and from south to the	. The control of	atlanta i				
		gister RA is multiplied by the opera nits on its range. The operand from							
	The result is placed	in register RT.							
Count Ones	040404.5.55			_		_			
in Bytes	01010110100	cntb rt,ra	Byte	5	even	4			

```
for j = 0 to 15
                                  c = 0
                                  b ← RA<sup>j</sup>
                                  For m = 0 to 7
                                               If b_m = 1 then c \leftarrow c + 1
                                  end
                                  RT<sup>j</sup> ← c
                       end
Average
                   00011010011
                                                                                  Byte
Bytes
                                                avgb rt,ra,rb
                                                                                                                     even
                        for j = 0 to 15
                                   RT^{j} \leftarrow ((0x00 \parallel RA^{j}) + (0x00 \parallel RB^{j}) + 1)_{7:14}
                        end
Absoute
Differences
of Bytes
                   00001010011
                                                absdb rt,ra,rb
                                                                                  Byte
                                                                                                          5
                                                                                                                     even
                                                                                                                                      4
                         for j = 0 to 15
                                    if (RB<sup>j</sup> > u RA<sup>j</sup>) then
                                                                     RT<sup>j</sup> ← RB<sup>j</sup> - RA<sup>j</sup>
                                                                     RT<sup>j</sup> ← RA<sup>j</sup> - RB<sup>j</sup>
                                    else
                        end
Sum Bytes
into
Halfwords
                   01001010011
                                                sumb rt,ra,rb
                                                                                  Byte
                                                                                                                     even
                                                                                                                                     4
                                  RT<sup>0:1</sup>
                                                                    ← RB<sup>0</sup> + RB<sup>1</sup> + RB<sup>2</sup> + RB<sup>3</sup>

← RA<sup>0</sup> + RA<sup>1</sup> + RA<sup>2</sup> + RA<sup>3</sup>

                                   RT^{2:3}
                                   RT4:5
                                                                    ← RB4 + RB5+ RB6 + RB7
                                   RT6:7
                                                                    ← RA<sup>4</sup> + RA<sup>5</sup>+ RA<sup>6</sup> + RA<sup>7</sup>
                                  RT8:9
                                                                    ← RB8 + RB9+ RB10 + RB11
                                 RT10:11
                                                                    ← RA8 + RA9+ RA10 + RA11
                                                                    ← RB12 + RB13+ RB14 + RB15
                                 RT12:13
                                                                    ← RA12 + RA13 + RA14 + RA15
                                 RT14:15
Shift Left
Quadword
by Bytes
                   00111011111
                                                shlqby rt,ra,rb
                                                                                  Perm
                                                                                                                     odd
                       s \leftarrow RB_{27:31}
                        for b = 0 to 15
                                   if b + s < 16 then r^b \leftarrow RA^{b+s}
                                                         rb ← 0
                                   else
                        end
                       RT \leftarrow r
```

Rotate Quadword	00111011100		Perm	6	- 44	
by Bytes		rotqby rt,ra,rb (a) & 0x1F (b) then $r^b \leftarrow t^{b-s}$ $r^b \leftarrow 0x00$	Perm	0	odd	4
Load Quadword (x-form)	00111000100	lqx rt,ra,rb	Local Store	7	odd	6
	LSA	← (RA ^{0:3} + RB ^{0:3})	& LSLR & 0xf	FFFFFF0		
	RT	← LocStor(LSA,1				
Load Quadword (a-form)	001100001	lqa rt,symbol	Local Store	7	odd	6
	LSA	← RepLeftBit(I16	0600,32) & L	SLR & 0xFI	FFFFF0	
	RT	← LocStor(LSA,16	i)			
Store Quadword (x-form)	00101000100	stqx rt,ra,rb	Local Store	7	odd	6
	LSA	← (RA ^{0:3} +	- RB ^{0:3}) & LSL	R & 0xFFFI	FFFF0	
	LocStor(LSA,16	s) ← RT				
Store Quadword (a-form)	001000101	stqa rt,symbol	Local Store	7	odd	6
	LSA	← RepLefti	Bit(I16 0b00,	32) & LSLR	& 0xFFF	FFFF0
	LocStor(LSA,16)	← RT				
Miss	1000000000	miss	Local Store	7	odd	6
	Load instructions fro	om local store into instruct	ion cache			
Branch Relative	001100100	br symbol	Branch	8	odd	3
	PC	← (PC + RepLeft	Bit(I16 0b00,	32)) & LSL	R	
Branch Absolute	001100000	bra symbol	Branch	8	odd	3
	PC	← RepLeftBit(I16	II 0b00,32) & L	.SLR		
Branch If Not Zero Word	001000010	brnz rt,symbol	Branch	8	odd	3

	If RT ^{0:3} ≠ 0 then PC ← (PC + RepLeftBit(I16 0b00)) & LSLR & 0xFFFFFFC else PC ← (PC+4) & LSLR									
Branch If Zero Word	001000111	001000111 brz rt,symbol Branch 8 odd 3								
	PC ← (If RT ^{0:3} = 0 then PC ← (PC + RepLeftBit(I16 0b00)) & LSLR & 0xFFFFFFFC								
Halt	01111011000	halt	NA	9	N/A	0				
No Operation (Execute)	01000000001	nop	NA	9	even	0				
No Operation (Load)	00000000001	Inop	NA	9	odd	0				

4. Testing

4.1 Preloaded Register Data

Prior to running the design verification tests, the following data was preloaded into the registers:

Reg.	Word 0	Word 1	Word 2	Word 3	
0	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
1	1 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
2	2 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
3	7 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
4	10 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
5	-1 <int32></int32>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
6	299792458 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
7	3.14 <float></float>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
8	-0.5 <float></float>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
9	2.71 <d< td=""><td>louble></td><td>0 <uint32></uint32></td><td>0 <uint32></uint32></td></d<>	louble>	0 <uint32></uint32>	0 <uint32></uint32>	
10	-0.25 < 0	double>	0 <uint32></uint32>	0 <uint32></uint32>	
11	1.41 <d< td=""><td>louble></td><td>0 <uint32></uint32></td><td>0 <uint32></uint32></td></d<>	louble>	0 <uint32></uint32>	0 <uint32></uint32>	
12	-1.22e-09 <float></float>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
13	1 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	
14	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	1 <uint32></uint32>	
15:127	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	0 <uint32></uint32>	

4.2 Test Case 1: No Hazards

Objectives

- Verify the model can process independent instructions simultaneously in both pipes.
- Verify instruction miss works for multiple instruction blocks.

Test Program

```
a 15,2,3
shlqby 16,13,1
ai 17,1,-400
rotqby 18,14,3
sf 19,3,2
shlqby 20,13,1
sfi 21,1,-100
rotqby 22,14,3
clz 23,1
shlqby 24,13,1
and 25,3,4
rotqby 26,14,3
andi 27,3,1023
shlqby 28,13,1
or 29,3,4
rotqby 30,14,3
ori 31,3,1022
shlqby 32,13,1
xor 33,3,4
rotqby 34,14,3
xori 35,2,11
shlqby 36,13,1
nand 37,3,3
rotqby 38,14,3
nor 39,3,4
shlqby 40,13,1
ceq 41,6,6
rotqby 42,14,3
ceqi 43,6,5
shlqby 44,13,1
cgt 45,6,1
rotqby 46,14,3
cgti 47,6,-8
shlqby 48,13,1
dfceq 49,9,9
rotqby 50,14,3
dfcgt 51,11,10
shlqby 52,13,1
fceq 53,8,8
rotqby 54,14,3
fcgt 55,7,8
shlqby 56,13,1
andbi 57,3,10
rotqby 58,14,3
orbi 59,3,10
shlqby 60,13,1
```

```
xorbi 61,3,10
rotqby 62,14,3
ceqb 63,3,3
shlqby 64,13,1
ceqbi 65,4,0
rotqby 66,14,3
cgtb 67,4,3
shlqby 68,13,1
cgtbi 69,4,9
rotqby 70,14,3
shl 71,1,6
shlqby 72,13,1
rot 73,6,4
rotqby 74,14,3
halt
```

Expected Calculation Results (Even Pipe)

```
Reg[15] = Reg[2] + Reg[3] = 9
                                                  //EVEN
Reg[17] = Reg[1]-400 = 1-400 = -399
                                                  //EVEN
Reg[19] = Reg[3] - Reg[2] = 5
                                                  //EVEN
Reg[21] = -100 - Reg[1] = -100 - 1 = -101
                                                  //EVEN
Reg[23] = countLeadingZeros(Reg[1]) = 31
                                                  //EVEN
                                                  //EVEN
Reg[25] = Reg[3] \& Reg[4] = 2
Reg[27] = Reg[3] \& signExt(1023) = 7
                                                  //EVEN
Reg[29] = Reg[3] | Reg[4] = 15
                                                  //EVEN
Reg[31] = Reg[3] \mid signExt(1022) = -1
                                                  //EVEN
Reg[33] = Reg[3]^Reg[4] = 13
                                                  //EVEN
Reg[35] = Reg[3]^signExt(11) = 9
                                                  //EVEN
Reg[37] = !(Reg[3] \& Reg[3]) = -8
                                                  //EVEN
Reg[39] = !(Reg[3] | Reg[4]) = -16
                                                  //EVEN
Reg[41] = chk(Reg[6] = Reg[6]) = -1
                                                  //EVEN
Reg[43] = chk(Reg[6] = repLeftBit(5)) = 0
                                                  //EVEN
Reg[45] = chk(Reg[6]>Reg[1]) = -1
                                                  //EVEN
Reg[47] = chk(Reg[6] > -8) = -1
                                                  //EVEN
Reg[49] = chk(Reg[9] = Reg[9]) = -1
                                                  //EVEN
Reg[51] = chk(Reg[11]>Reg[10]) = 0
                                                  //EVEN
Reg[53] = chk(Reg[8] = Reg[8]) = -1
                                                  //EVEN
Reg[55] = chk(Reg[7]>Reg[8]) = -1
                                                  //EVEN
Reg[57] = andBytes(Reg[3], 168430090) = 2
                                                  //EVEN
Reg[59] = orBytes(Reg[3],168430090) = 168430095 //EVEN
Reg[61] = xorBytes(Reg[3], 168430090) = 168430093//EVEN
Reg[63] = chkBytes(Reg[3] = Reg[3]) = -1
                                                  //EVEN
                                                  //EVEN
Reg[65] = chkBytes(Reg[4]==0) = -256
Reg[67] = chkBytes(Reg[4]>Reg[3]) = 255
                                                  //EVEN
                                                  //EVEN
Reg[69] = chkBytes(Reg[4]>9) = 255
Reg[71] = shiftLeftBits(Reg[1],10) = 1024
                                                  //EVEN
Reg[73] = rotBits(Reg[6],10) = 2044799047
                                                  //EVEN
```

Expected Calculation Results (Odd Pipe)

```
//ODD
Reg[28] = shiftLeftBytes(Reg[13],1) = 256
Reg[30] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
Reg[32] = shiftLeftBytes(Reg[13],1) = 256
                                                 //odd
                                                 //ODD
Reg[34] = rotLeftBytes(Reg[14],3) = 16777216
Reg[36] = shiftLeftBytes(Reg[13],1) = 256
                                                 //ODD
Reg[38] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
Reg[40] = shiftLeftBytes(Reg[13],1) = 256
                                                 //ODD
Reg[42] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
Reg[44] = shiftLeftBytes(Reg[13],1) = 256
                                                 //ODD
Reg[46] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
Reg[48] = shiftLeftBytes(Reg[13],1) = 256
                                                 //ODD
                                                 //ODD
Reg[50] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
Reg[52] = shiftLeftBytes(Reg[13],1) = 256
Reg[54] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //odd
                                                 //ODD
Reg[56] = shiftLeftBytes(Reg[13],1) = 256
Reg[58] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
Reg[60] = shiftLeftBytes(Reg[13],1) = 256
                                                 //ODD
Reg[62] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
Reg[64] = shiftLeftBytes(Reg[13],1) = 256
                                                 //ODD
Reg[66] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
Reg[68] = shiftLeftBytes(Reg[13],1) = 256
                                                 //ODD
Reg[70] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
Reg[72] = shiftLeftBytes(Reg[13],1) = 256
                                                 //ODD
Reg[74] = rotLeftBytes(Reg[14],3) = 16777216
                                                 //ODD
```

Expected Timing Results

```
[clock 01] Instruction Miss
[clock 14] First Instruction Pair Fetch (Instruction Block 0)
[clock 15] First Instruction Pair Decode (Instruction Block 0)
[clock 16] First Instruction Pair Issue (Instruction Block 0)
[clock 17] First Instruction Pair RF (Instruction Block 0)
[clock 18] First Instruction Pair Pipe Input (Instruction Block 0)
[clock 19] First Instruction Pair Appear at Pipe Stage 1 (Instruction Block 0)
[clock 30] Instruction Miss
[clock 43] First Instruction Pair Fetch (Instruction Block 1)
[clock 44] First Instruction Pair Decode (Instruction Block 1)
[clock 45] First Instruction Pair Issue (Instruction Block 1)
[clock 46] First Instruction Pair RF (Instruction Block 1)
[clock 47] First Instruction Pair Pipe Input (Instruction Block 1)
[clock 48] First Instruction Pair Appear at Pipe Stage 1 (Instruction Block 1)
```

Model Output (Even Pipe)

```
8
    0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
    0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
   10
                                                              0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
11
                                                              12
<INSTRUCTION BLOCK WRITTEN TO CACHE>
   0,0,0,0,0,0,0,
    [9,9,9,9,9,9,9], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0], [0,0,0,0,0], [0,0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0], [0,0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0]
                                                                                            0,0,0,0,0,0,0,0,
17
                                                                                            0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,
18
    19
                                                                                            9,0,0,0,0,0,0,0,
20
                                                                                            -399,9,0,0,0,0,0,
    1,1,1,9,9,9,9, 2,2,2,0,0,0,0, 0,1,1,0,0,0, 19,17,15, 0, 0, 0, 0, 0
1,1,1,1,9,9,9, 2,2,2,2,0,0,0, 0,1,1,1,0,0,0, 21,19,17,15, 0, 0, 0, 0
1,1,1,1,1,9,9,9, 2,2,2,2,2,0,0, 0,1,1,1,1,1,0,0, 23,21,19,17,15, 0, 0, 0
21
                                                                                            5,-399,9,0,0,0,0,
                                                                                             -101,5,-399,9,0,0,0,
22
23
                                                                                            31,-101,5,-399,9,0,0,
    2,31,-101,5,-399,9,0,
7,2,31,-101,5,-399,9,
24
25
   15,7,2,31,-101,5,-399,
26
                                                                                             -1,15,7,2,31,-101,5,
                                                                                            13,-1,15,7,2,31,-101,
<INSTRUCTION MISS>
   30
                                                                                             -8,9,13,-1,15,7,2,
31
                                                                                             -16, -8, 9, 13, -1, 15, 7,
    -1,-16,-8,9,13,-1,15,
32
    33
                                                                                            0,-1,-16,-8,9,13,-1,
                                                                                            -1,0,-1,-16,-8,9,13,
34
    35
                                                                                            0,-1,0,-1,-16,-8,9,
                                                                                            0,0,-1,0,-1,-16,-8,
36
                                                                                            0,0,0,-1,0,-1,-16,
37
   38
                                                                                            0.0.0.0.-1.0.-1.
                                                                                            0,0,0,0,0,-1,0,
39
40
                                                                                            0,0,0,0,0,0,-1,
                                                                                            0,0,0,0,0,0,0,0,
41
42
                                                                                           0,0,0,0,0,0,0,0
<INSTRUCTION BLOCK WRITTEN TO CACHE>
43
   0,0,0,0,0,0,0,0,
45
                                                                                            0,0,0,0,0,0,0,0,
46
    0,0,0,0,0,0,0,0,
    47
                                                                                            0,0,0,0,0,0,0,0,
                                                                                            -1,0,0,0,0,0,0,0,
48
                                                                                            -1,-1,0,0,0,0,0,0,
49
                                                                                            0,-1,-1,0,0,0,0,
50
                                                                                            -1,0,-1,-1,0,0,0,
51
52
                                                                                             -1,-1,0,-1,-1,0,0,
                                                                                            2,-1,-1,0,-1,-1,0,
                                                                                             168430095,2,-1,-1,0,-1,-1,
                                                                                             168430093, 168430095, 2, -1, -1, 0, -1,
55
56
                                                                                             -1,168430093,168430095,2,-1,-1,0,
                                                                                             -256,-1,168430093,168430095,2,-1,-1
57
58
                                                                                            255,-256,-1,168430093,168430095,2,-1

    1,1,1,1,1,1,1,1
    2,2,2,2,2,2,2,2
    0,1,1,1,1,1,1,1
    69,67,65,63,61,59,57,0

    2,1,1,1,1,1,1,1,4,2,2,2,2,2,2,0,1,1,1,1,1,1,1
    71,69,67,65,63,61,59,0

                                                                                            255,255,-256,-1,168430093,168430095,2,
1024,255,255,-256,-1,168430093,168430095,
59
60
     \begin{bmatrix} 2,2,1,1,1,1,1,1,4,4,2,2,2,2,2,2,&0,0,1,1,1,1,1,&73,71,69,67,65,63,61,&0\\9,2,2,1,1,1,1,&0,4,4,2,2,2,2,&0,0,0,1,1,1,1,&0,73,71,69,67,65,63,&0\\9,9,2,2,1,1,1,&0,0,4,4,2,2,2,&0,0,0,1,1,1,1,&0,0,73,71,69,67,65,&0 \end{bmatrix} 
                                                                                            2044799047,1024,255,255,-256,-1,168430093,
61
                                                                                            0,2044799047,1024,255,255,-256,-1,
0,0,2044799047,1024,255,255,-256,
62
63
    | 9,9,9,2,2,1,1,|0,0,0,4,4,2,2,|0,0,0,1,1,1,1,| 0, 0, 0,73,71,69,67,|0 | 9,9,9,9,2,2,1,|0,0,0,0,4,4,2,|0,0,0,0,1,1,1,| 0, 0, 0, 0,73,71,69,|0
                                                                                            0,0,0,2044799047,1024,255,255,
64
                                                                                            0,0,0,0,2044799047,1024,255,
65
    0,0,0,0,0,2044799047,1024,
66
                                                                                           0,0,0,0,0,0,2044799047,
```

Model Output (Odd Pipe)

TEST CASE 1: NO HAZARDS (ODD PIPE)

SystemC 2.2.0 --- Oct 10 2009 07:49:18 Copyright (c) 1996-2006 by all Contributors ALL RIGHTS RESERVED

Packaged for MacOS by Logic Poet: http://www.logicpoet.com

ODD PIPE PRINTOUT:

Clk	Unit Id	Stage Ready	Register Write	Result Destination	PC	Result

```
<TNSTRUCTION MISS>
   0, 0, 0, 0, 0, 0, 0,
                                                           0
                                                             0,0,0,0,0,0,0,0,
3
   0, 0, 0, 0, 0, 0, 0,
                                                           0
                                                             10.0.0.0.0.0.0.
   0, 0, 0, 0, 0, 0, 0,
                                                           0
                                                             0,0,0,0,0,0,0,0,
                                                          -1
   0, 0, 0, 0, 0, 0, 0,
                                                             0,0,0,0,0,0,0,0,
   0, 0, 0, 0, 0, 0, 0, |-1
                                                             0.0.0.0.0.0.0.0.
                                         0, 0, 0, 0, 0, 0, 0, -1
                                                             0.0.0.0.0.0.0.
8
   0, 0, 0, 0, 0, 0, 0, |-1
                                                             0,0,0,0,0,0,0,0,
   0, 0, 0, 0, 0, 0, 0, |-1
                                                             0,0,0,0,0,0,0,0,
10
   0, 0, 0, 0, 0, 0, 0, -1
                                                             0.0.0.0.0.0.0.
11
   0, 0, 0, 0, 0, 0, 0, -1
                                                             0,0,0,0,0,0,0,0,
12
   0, 0, 0, 0, 0, 0, 0, -1
                                                             0,0,0,0,0,0,0,0,
  13
                                        0,
<INSTRUCTION BLOCK WRITTEN TO CACHE>
14
  0, 0, 0, 0, 0, 0, 0, |-1
                                                             0,0,0,0,0,0,0,0,
15
  0, 0, 0, 0, 0, 0, 0, -1
                                                             0,0,0,0,0,0,0,0,
16
  0, 0, 0, 0, 0, 0, 0, -1
                                                             0,0,0,0,0,0,0,0,
17
   0, 0, 0, 0, 0, 0, 0, -1
                                                             0,0,0,0,0,0,0,0,
   18
                                        0, 0, 0, 0, 0, 0, 0, |-1
                                                             0.0.0.0.0.0.0.
   256.0.0.0.0.0.0.0.
19
   16777216,256,0,0,0,0,0,0,
20
21
                                                              256,16777216,256,0,0,0,0,
22
                                                              16777216,256,16777216,256,0,0,0,
   6,6,6,6,6,9,9, 4,4,4,4,4,0,0, 0,0,0,1,1,0,0, 24,22,20,18,16, 0, 0, -1
6,6,6,6,6,6,9, 4,4,4,4,4,0, 0,0,0,1,1,1,0, 26,24,22,20,18,16, 0, -1
                                                              256,16777216,256,16777216,256,0,0,
23
                                                              16777216,256,16777216,256,16777216,256,0,
24
  6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,28,26,24,22,20,18,16,
6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,30,28,26,24,22,20,18,
                                                              256,16777216,256,16777216,256,16777216,256,
25
26
                                                          -1
                                                             16777216,256,16777216,256,16777216,256,16777216,
27
   6,6,6,6,6,6,6,6, 4,4,4,4,4,4,4,4, 0,0,0,1,1,1,1,1, 32,30,28,26,24,22,20, -1
                                                              256,16777216,256,16777216,256,16777216,256,
28
  6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,1,1,34,32,30,28,26,24,22,
                                                          _1
                                                             16777216,256,16777216,256,16777216,256,16777216,
29
  6,6,6,6,6,6,6,|4,4,4,4,4,4,4,|0,0,0,1,1,1,1,|36,34,32,30,28,26,24,|-1
                                                             256.16777216.256.16777216.256.16777216.256.
<INSTRUCTION MISS>
  16777216, 256, 16777216, 256, 16777216, 256, 16777216,
30
  6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,40,38,36,34,32,30,28,
                                                             256,16777216,256,16777216,256,16777216,256,
31
                                                              16777216, 256, 16777216, 256, 16777216, 256, 16777216,
32
   6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,42,40,38,36,34,32,30, -1
   6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,0,0,0,1,1,1,1,44,42,40,38,36,34,32, -1
                                                              256,16777216,256,16777216,256,16777216,256,
33
34
   6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,46,44,42,40,38,36,34, -1
                                                              16777216, 256, 16777216, 256, 16777216, 256, 16777216,
   9,6,6,6,6,6,6,0,4,4,4,4,4,4,0,0,0,1,1,1,1,1,
                                                              0,16777216,256,16777216,256,16777216,256,
35
                                        0,46,44,42,40,38,36, -1
                                                              0,0,16777216,256,16777216,256,16777216,
36
   9,9,6,6,6,6,6,6,0,0,4,4,4,4,4,4,0,0,0,1,1,1,1,1,
                                         0, 0,46,44,42,40,38, -1
37
   9,9,9,6,6,6,6,6,0,0,0,4,4,4,4,4,0,0,0,1,1,1,1,1,
                                         0, 0, 0, 46, 44, 42, 40,
                                                              0,0,0,16777216,256,16777216,256,
38
   9,9,9,9,6,6,6, 0,0,0,0,4,4,4, 0,0,0,0,1,1,1,
                                         0, 0, 0, 0, 46, 44, 42,
                                                          -1
                                                              0,0,0,0,16777216,256,16777216,
   9,9,9,9,9,6,6,0,0,0,0,0,4,4,0,0,0,0,0,1,1,
                                         0, 0, 0, 0, 0,46,44,
                                                              0,0,0,0,0,16777216,256,
39
                                                          -1
40
  9,9,9,9,9,6,|0,0,0,0,0,4,|0,0,0,0,0,1,
                                         0, 0, 0, 0, 0, 0,46,
                                                          -1
                                                             0,0,0,0,0,0,16777216,
41
  0, 0, 0, 0, 0, 0, 0, |-1
                                                             0,0,0,0,0,0,0,0,
42
  0, 0, 0, 0, 0, 0, 0, -1
                                                             0,0,0,0,0,0,0,0,
<INSTRUCTION BLOCK WRITTEN TO CACHE>
  10.0.0.0.0.0.0.
43
                                         0, 0, 0, 0, 0, 0, 0, |-1
44
   0, 0, 0, 0, 0, 0, 0, -1
                                                             0.0.0.0.0.0.0.
  0, 0, 0, 0, 0, 0, 0, |-1
                                                             0,0,0,0,0,0,0,0,
45
46
   0, 0, 0, 0, 0, 0, 0, 1
                                                             0.0.0.0.0.0.0.
   47
                                        0, 0, 0, 0, 0, 0, 0, -1
                                                              0,0,0,0,0,0,0,
   48
                                                              256,0,0,0,0,0,0,0,
                                                             16777216,256,0,0,0,0,0,
49
   6,6,6,9,9,9,9, 4,4,4,0,0,0,0, 0,0,0,0,0,0,0, 52,50,48, 0, 0, 0, 0,
                                                              256,16777216,256,0,0,0,0,
50
                                                          -1
   6,6,6,6,9,9,9, 4,4,4,4,0,0,0, 0,0,0,1,0,0,0, 54,52,50,48, 0, 0, 0, -1
6,6,6,6,6,9,9, 4,4,4,4,4,0,0, 0,0,0,1,1,0,0, 56,54,52,50,48, 0, 0, -1
                                                              16777216,256,16777216,256,0,0,0,
51
52
                                                              256,16777216,256,16777216,256,0,0,
  6,6,6,6,6,6,9, 4,4,4,4,4,4,0, 0,0,0,1,1,1,0, 58,56,54,52,50,48, 0, -1
6,6,6,6,6,6,6,6, 4,4,4,4,4,4,4,0,0,0,1,1,1,1, 60,58,56,54,52,50,48, -1
53
                                                              16777216,256,16777216,256,16777216,256,0
54
                                                              256,16777216,256,16777216,256,16777216,256,
                                                              16777216,256,16777216,256,16777216,256,16777216,
55
   6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,62,60,58,56,54,52,50,
   6,6,6,6,6,6,6,6, 4,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,1,64,62,60,58,56,54,52, -1
6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,66,64,62,60,58,56,54, -1
56
                                                              256,16777216,256,16777216,256,16777216,256,
                                                              16777216,256,16777216,256,16777216,256,16777216,
57
                                                              256, 16777216, 256, 16777216, 256, 16777216, 256,
  58
59
                                                              16777216, 256, 16777216, 256, 16777216, 256, 16777216,
  6,6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,72,70,68,66,64,62,60, -1
6,6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,4,0,0,0,1,1,1,1,1,74,72,70,68,66,64,62, -1
                                                              256, 16777216, 256, 16777216, 256, 16777216, 256,
60
61
                                                              16777216, 256, 16777216, 256, 16777216, 256, 16777216,
62
   9,6,6,6,6,6,6,6,0,4,4,4,4,4,4,0,0,0,1,1,1,1,1,
                                        0,74,72,70,68,66,64, -1
                                                              0,16777216,256,16777216,256,16777216,256,
                                                              0,0,16777216,256,16777216,256,16777216,
63
   0, 0,74,72,70,68,66,
  9,9,9,6,6,6,6,0,0,0,4,4,4,4,0,0,0,1,1,1,1,1,
                                        0, 0, 0,74,72,70,68, -1
                                                             0,0,0,16777216,256,16777216,256,
64
  0, 0, 0, 0,74,72,70, -1
                                                             0,0,0,0,16777216,256,16777216,
65
                                        0, 0, 0, 0, 0,74,72, -1
                                                             0,0,0,0,0,16777216,256,
66
```

4.3 Test Case 2: Structural Hazards

Objectives

- Verify model can handle the following structural hazards:
 - 2 sequential even pipe instructions.
 - o 2 sequential odd pipe instructions.
 - Even/odd instruction pipe swap.
 - o 2 sequential instructions with the same register file destination.

Test Program

```
a 16,2,3
ai 17,1,-400
shlqby 18,13,1
rotqby 19,14,3
shlqby 20,13,1
sf 21,3,2
sfi 22,1,-100
rotqby 22,14,3
halt
```

Expected Calculation Results

```
Reg[16] = Reg[2] + Reg[3] = 2 + 7 = 9
                                                  //EVEN
Reg[17] = Reg[1]-400 = 1-400 = -399
                                                  //EVEN
Reg[18] = shiftLeftBytes(Reg[13],1) = 256
                                                  //ODD
                                                  //ODD
Reg[19] = rotLeftBytes(Reg[14],3) = 16777216
                                                  //ODD
Reg[20] = shiftLeftBytes(Reg[13],1) = 256
Reg[21] = Reg[3] - Reg[2] = 5
                                                  //EVEN
Reg[22] = -100 - Reg[1] = -100 - 1 = -101
                                                  //EVEN
Reg[22] = rotLeftBytes(Reg[14],3) = 16777216
                                                  //ODD
```

Expected Timing Results (Even Pipe)

```
[clock 01] Instruction Miss
[clock 14] First Instruction Pair Fetch
[clock 15] First Instruction Pair Decode
[clock 16] "A" Instruction Issue (Appears in EvenPipe on clock 19)
[clock 17] "AI" Instruction Issue (Appears in EvenPipe on clock 20)
[clock 21] "SF" Instruction Issue (Appears in EvenPipe on clock 24)
[clock 22] "SFI" Instruction Issue
[clock 23] "SFI" Instruction RF
[clock 24] "SFI" Instruction Pipe Input
[clock 25] "SFI" Instruction Appears in EvenPipe
```

Expected Timing Results (Odd Pipe)

```
[clock 01] Instruction Miss
[clock 14] First Instruction Pair Fetch
[clock 18] "SHLQBY" Instruction Issue (Appears in OddPipe on clock 21)
[clock 19] "ROTQBY" Instruction Issue (Appears in OddPipe on clock 22)
```

```
[clock 20] "SHLQBY" Instruction Issue (Appears in OddPipe on clock 23) [clock 26] "ROTQBY" Instruction Issue (Appears in OddPipe on clock 29)
```

Model Output (Even Pipe)

SystemC 2.2.0 --- Oct 10 2009 07:49:18 Copyright (c) 1996-2006 by all Contributors ALL RIGHTS RESERVED

Packaged for MacOS by Logic Poet: http://www.logicpoet.com

EVE	EVEN PIPE PRINTOUT:						
Clk	Unit Id	Stage Ready	Register Write	Result	Destination	n F1	Result
<tn:< td=""><td>STRUCTION MISS></td><td> </td><td></td><td></td><td></td><td></td><td>. </td></tn:<>	STRUCTION MISS>						.
1		0,0,0,0,0,0,0,	0.0.0.0.0.0.0.0.	0.0.	0, 0, 0, 0	. 0.10	0,0,0,0,0,0,0,
2		0,0,0,0,0,0,0,0,			0, 0, 0, 0		0,0,0,0,0,0,0,
3		0,0,0,0,0,0,0,			0, 0, 0, 0		0,0,0,0,0,0,0,
4		0,0,0,0,0,0,0,			0, 0, 0, 0		0,0,0,0,0,0,0,
5		0,0,0,0,0,0,0,			0, 0, 0, 0		0,0,0,0,0,0,0,
6		0,0,0,0,0,0,0,			0, 0, 0, 0		0,0,0,0,0,0,0,
7	9,9,9,9,9,9,0,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
8	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
9	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
10	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
11	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
12	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
13	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
<in:< td=""><td>STRUCTION BLOCK</td><td>WRITTEN TO CACH</td><td>HE></td><td></td><td></td><td></td><td></td></in:<>	STRUCTION BLOCK	WRITTEN TO CACH	HE>				
14	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0,0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
15	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
16		0,0,0,0,0,0,0,			0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
17	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,		0, 0, 0, 0		0,0,0,0,0,0,0,
18	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0,	0, 0, 0, 0	, 0, 0	0,0,0,0,0,0,0,
19	1,9,9,9,9,9,9,	2,0,0,0,0,0,0,	0,0,0,0,0,0,0,	16, 0,	0, 0, 0, 0	, 0, 0	9,0,0,0,0,0,0,
20	1,1,9,9,9,9,9,9,	2,2,0,0,0,0,0,	0,1,0,0,0,0,0,	17,16,	0, 0, 0, 0	, 0, 0	-399,9,0,0,0,0,0,
21	9,1,1,9,9,9,9,	0,2,2,0,0,0,0,	0,1,1,0,0,0,0,	0,17,	16, 0, 0, 0	, 0, 0	0,-399,9,0,0,0,0,
22	9,9,1,1,9,9,9,	0,0,2,2,0,0,0,	0,0,1,1,0,0,0,	0, 0,	17,16, 0, 0	, 0, 0	0,0,-399,9,0,0,0,
23	9,9,9,1,1,9,9,	0,0,0,2,2,0,0,	0,0,0,1,1,0,0,	0,0,	0,17,16, 0	, 0, 0	0,0,0,-399,9,0,0,
24	1,9,9,9,1,1,9,	2,0,0,0,2,2,0,	0,0,0,0,1,1,0,	21, 0,	0, 0,17,16	, 0, 0	5,0,0,0,-399,9,0,
25	1,1,9,9,9,1,1,	2,2,0,0,0,2,2,	0,1,0,0,0,1,1,				-101,5,0,0,0,-399,9,
26	9,1,1,9,9,9,1,	0,2,2,0,0,0,2,	0,1,1,0,0,0,1,		21, 0, 0, 0		0,-101,5,0,0,0,-399,
27	9,9,1,1,9,9,9,	0,0,2,2,0,0,0,	0,0,1,1,0,0,0,	0, 0,	22,21, 0, 0	, 0, 0	0,0,-101,5,0,0,0,
28	9,9,9,1,1,9,9,	0,0,0,2,2,0,0,	0,0,0,1,1,0,0,		0,22,21, 0		0,0,0,-101,5,0,0,
29	9,9,9,9,1,1,9,	0,0,0,0,2,2,0,	0,0,0,0,1,1,0,		0, 0,22,21		0,0,0,0,-101,5,0,
30		0,0,0,0,0,2,2,			0, 0, 0,22		0,0,0,0,0,-101,5,
31	9,9,9,9,9,9,1,	0,0,0,0,0,0,2,	0,0,0,0,0,0,1,	0, 0,	0, 0, 0, 0	,22, 0	0,0,0,0,0,0,-101,

Model Output (Odd Pipe)

SystemC 2.2.0 --- Oct 10 2009 07:49:18 Copyright (c) 1996-2006 by all Contributors ALL RIGHTS RESERVED

ODD PIPE PRINTOUT:							
Clk	Unit Id	Stage Ready	Register Write	Result Destination PC Result			
<in:< td=""><td>STRUCTION MISS></td><td></td><td>•</td><td></td><td></td></in:<>	STRUCTION MISS>		•				
1	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0, 0 0 0,0,0,0,0,0	0,		
2	9,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0,	0,		
3	9,9,0,0,0,0,0,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0,	0,		
4	9,9,9,0,0,0,0,	0,0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0,	0,		
5	9,9,9,9,0,0,0,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0, -1 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0,		
6	9,9,9,9,9,0,0,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0, -1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0,		
7	9,9,9,9,9,9,0,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0, -1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0,		
8	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,0	0,0,0,0,0,0,0,	$\begin{vmatrix} 0, 0, 0, 0, 0, 0, 0, 0, -1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \end{vmatrix}$	0,		
9	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0, -1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0,		
10	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0, -1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0,		

```
<INSTRUCTION BLOCK WRITTEN TO CACHE>
0,0,0,0,0,0,0,0,
16
                                   \begin{bmatrix} 0, & 0, & 0, & 0, & 0, & 0, & 0, & -1 \\ 0, & 0, & 0, & 0, & 0, & 0, & 0, & -1 \end{bmatrix}
17
                                                     0,0,0,0,0,0,0,0,
18
  0, 0, 0, 0, 0, 0, 0, -1
                                                     0,0,0,0,0,0,0,0,
  0, 0, 0, 0, 0, 0, 0, -1
                                                     0,0,0,0,0,0,0,0,
19
20
                                   0, 0, 0, 0, 0, 0, 0, -1
                                                     0,0,0,0,0,0,0,0,
  256,0,0,0,0,0,0,0,
21
22
                                                     16777216,256,0,0,0,0,0,
23
  |6,6,6,9,9,9,9,|4,4,4,0,0,0,0,|0,0,0,0,0,0,0,0,0,120,19,18, 0, 0, 0, 0, |-1
                                                     256,16777216,256,0,0,0,0,
  24
                                   0,20,19,18, 0, 0, 0, -1
                                                     0,256,16777216,256,0,0,0,
25
                                   0, 0,20,19,18, 0, 0, -1
                                                     0,0,256,16777216,256,0,0,
  26
                                   0, 0, 0,20,19,18, 0, -1
                                                     0,0,0,256,16777216,256,0,
                                                     0,0,0,0,256,16777216,256,
27
                                   0, 0, 0, 0,20,19,18, -1
                                                     0,0,0,0,0,256,16777216,
  9,9,9,9,6,6,0,0,0,0,0,4,4,0,0,0,0,0,1,1,
28
                                   0, 0, 0, 0, 0,20,19, -1
  | 6,9,9,9,9,9,6, | 4,0,0,0,0,0,4, | 0,0,0,0,0,1, | 22, 0, 0, 0, 0, 0, 0, 0, 0 | -1 | 9,6,9,9,9,9,9, 0,4,0,0,0,0,0, | 0,0,0,0,0,0, | 0,22, 0, 0, 0, 0, 0, | -1
                                                     16777216,0,0,0,0,0,256,
29
                                                     0,16777216,0,0,0,0,0,
30
  0, 0,22, 0, 0, 0, 0, | -1
0, 0, 0,22, 0, 0, 0, | -1
                                                     0,0,16777216,0,0,0,0,
31
                                                     0,0,0,16777216,0,0,0,
                                   0, 0, 0, 0,22, 0, 0, -1
                                                     0,0,0,0,16777216,0,0,
33
  9,9,9,9,6,9,9,0,0,0,0,4,0,0,0,0,0,0,1,0,0,
  0,0,0,0,0,16777216,0,
```

4.4 Test Case 3A: Data Hazards - No Stalls

Objectives

- Verify forwarding is functioning correctly without stalls.
- Verify blocks can be replaced in the instruction cache (test has 3 instruction blocks)

Test Program

```
cntb 15,3
lnop
nop
lnop
nop
lnop
nop
lnop
nop
lnop
nop
lnop
nop
stqa 15,99
avgb 16,3,4
lqa 17,99
nop
lnop
a 15,16,17
lnop
nop
lnop
nop
lnop
nop
lnop
mpy 15,15,5
lnop
nop
lnop
nop
lnop
nop
```

lnop

```
nop
lnop
nop
lnop
nop
lnop
nop
lnop
nop
lnop
nop
stqa 15,99
nop
lqa 18,99
nop
lnop
a 19,18,5
halt
```

Expected Calculation Results

```
Reg[15] = sum(bin(7)==1) = 3
                                                //EVEN
LS[99] = Reg[15] = 3
                                                //ODD
Reg[16] = avgBytes(7,10) = 9
                                                //EVEN
Reg[17] = LS[99] = 3
                                                //ODD
Reg[15] = Reg[16] + Reg[17] = 9 + 3 = 12
                                                //EVEN
Reg[15] = Reg[15]*Reg[5] = 12*(-1) = -12
                                                //EVEN
LS[99] = Reg[15] = -12
                                                //ODD
Reg[18] = LS[99] = twosComp(-12) = 4294967284 //ODD
Reg[19] = Reg[18] + Reg[5] = -13
                                                //EVEN
```

Expected Timing Results (Even Pipe)

```
[clock 01] Instruction Miss (Block 0)
[clock 16] "CNTB" Instruction Issue
[clock 17] "CNTB" Instruction RF
[clock 18] "CNTB" Instruction Pipe Input
[clock 19] "CNTB" Appears at EvenPipe Stage 1
[clock 23] "AVGB" Instruction Issue (Appears in EvenPipe on clock 26)
[clock 30] Instruction Miss (Block 1)
[clock 31] "A" Instruction Issue (Reg[16],Reg[17] results ready)
[clock 43] First Instruction Pair Fetch (Block 1)
[clock 48] "MPY" Instruction Issue (Appears in EvenPipe on clock 51)
[clock 59] Instruction Miss (Block 2)
[clock 72] First Instruction Pair Fetch (Block 2)
```

[clock 79] "A" Instruction Issue (Appears in EvenPipe on clock 82)

Expected Timing Results (Odd Pipe)

```
[clock 01] Instruction Miss (Block 0)
[clock 22] "STQA" Instruction Issue (Reg[15] results ready)
[clock 23] "LQA" Instruction Issue (Appears in OddPipe on clock 26)
[clock 30] Instruction Miss (Block 1)
[clock 57] "STQA" Instruction Issue
[clock 58] "LQA" Instruction Issue (Appears in OddPipe on clock 61)
```

Model Output (Even Pipe)

```
TEST CASE 3: DATA HAZARDS - NO STALLS (EVEN PIPE)
```

SystemC 2.2.0 --- Oct 10 2009 07:49:18 Copyright (c) 1996-2006 by all Contributors ALL RIGHTS RESERVED

Packaged for MacOS by Logic Poet: http://www.logicpoet.com

EVEN PIPE PRINTOUT: Clk Unit Id Register Write Result Destination Stage Ready |F1|Result <INSTRUCTION MISS> 0, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0, <INSTRUCTION BLOCK WRITTEN TO CACHE> 0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0, 16 0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0, 17 0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0, 18 19 0,15, 0, 0, 0, 0, 0, 0 0,3,0,0,0,0,0, 20 0, 0,15, 0, 0, 0, 0, 0 0,0,3,0,0,0,0, 9,9,9,5,9,9,9,0,0,0,4,0,0,0,0,0,0,1,0,0,0, 0, 0, 0, 15, 0, 0, 0, 0 0,0,0,3,0,0,0, 9,9,9,9,5,9,9, 0,0,0,0,4,0,0, 0,0,0,0,1,0,0, 0, 0, 0, 0, 15, 0, 0, 0 0,0,0,0,3,0,0, 9,9,9,9,5,9, 0,0,0,0,4,0, 0,0,0,0,0,1,0, 0, 0, 0, 0, 0,15, 0, 0 0,0,0,0,0,3,0, 0,0,0,0,0,0,3, 25 9,0,0,0,0,0,0,0, 27 0,16, 0, 0, 0, 0, 0, 0 | 0,9,0,0,0,0,0, <TNSTRUCTION MISS> 31 0, 0, 0, 0, 0, 0, 16, 0 | 0, 0, 0, 0, 0, 0, 9,0, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0 33 12,0,0,0,0,0,0,0, 0,12,0,0,0,0,0, 0, 0,15, 0, 0, 0, 0, 0 | 0,0,12,0,0,0,0, 9,9,1,9,9,9,9,0,0,2,0,0,0,0,0,0,1,0,0,0,0, | 9,9,9,1,9,9,9, | 0,0,0,2,0,0,0, | 0,0,0,1,0,0,0, | 9,9,9,9,1,9,9, | 0,0,0,0,2,0,0, | 0,0,0,0,1,0,0, | 37 0, 0, 0, 15, 0, 0, 0, 0 0,0,0,12,0,0,0, 0, 0, 0, 0, 15, 0, 0, 0 0,0,0,0,12,0,0, 38 0, 0, 0, 0, 0, 15, 0, 0 39 9,9,9,9,9,1,9, 0,0,0,0,0,2,0, 0,0,0,0,0,1,0, 0,0,0,0,0,12,0, 40 9,9,9,9,9,1,0,0,0,0,0,2,0,0,0,0,0,1, 0, 0, 0, 0, 0, 0,15, 0 0,0,0,0,0,0,12, 41 0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0, <INSTRUCTION BLOCK WRITTEN TO CACHE>

```
48
49
  0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
50
  0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
  51
                                               52
  0,0,-12,0,0,0,0,
                               0, 0,15, 0, 0, 0, 0, 0
53
                               0, 0, 0, 15, 0, 0, 0, 0
                                               0,0,0,-12,0,0,0,
54
55
  9,9,9,9,3,9,9, 0,0,0,0,7,0,0, 0,0,0,0,0,0,0,0,
                               0, 0, 0, 0, 15, 0, 0, 0
                                               0,0,0,0,-12,0,0,
  0, 0, 0, 0, 0, 15, 0, 0
                                               0,0,0,0,0,-12,0,
56
                               0, 0, 0, 0, 0, 0, 15, 0
                                               0,0,0,0,0,0,-12,
58 | 9,9,9,9,9,9,9, | 0,0,0,0,0,0,0, | 0,0,0,0,0,0,0,0
                               0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
<INSTRUCTION MISS>
59
 0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
  0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
60
61
                                0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
62
  0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
  63
                               0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
                                              0,0,0,0,0,0,0,0,
64
  0, 0, 0, 0, 0, 0, 0, 0
  65
                               0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
66
  0,0,0,0,0,0,0,0,
67
                               0, 0, 0, 0, 0, 0, 0, 0
                                0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
  0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
  0,0,0,0,0,0,0,0,
<INSTRUCTION BLOCK WRITTEN TO CACHE>
72 | 9,9,9,9,9,9,9, | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
                               0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
73
  0, 0, 0, 0, 0, 0, 0, 0
                                              0,0,0,0,0,0,0,0,
  74
                                0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
75
                               0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
                               76
  77
                                              0,0,0,0,0,0,0,0,
78
  0, 0, 0, 0, 0, 0, 0, 0
  79
                               0, 0, 0, 0, 0, 0, 0, 0
                                               0.0.0.0.0.0.0.0.
                               0, 0, 0, 0, 0, 0, 0, 0
                                               0,0,0,0,0,0,0,0,
  0,0,0,0,0,0,0,0,
                                               -13,0,0,0,0,0,0,0,
82
  9,1,9,9,9,9,9,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,
                                               0,-13,0,0,0,0,0,0,
83
                               0,19, 0, 0, 0, 0, 0, 0
84
  9,9,1,9,9,9,9,0,0,2,0,0,0,0,0,0,1,0,0,0,0,
                               0, 0,19, 0, 0, 0, 0, 0
                                               0,0,-13,0,0,0,0,
85
  9,9,9,1,9,9,9, 0,0,0,2,0,0,0, 0,0,0,1,0,0,0,
                               0, 0, 0, 19, 0, 0, 0, 0
                                               0,0,0,-13,0,0,0,
  9,9,9,9,1,9,9, 0,0,0,0,2,0,0, 0,0,0,0,1,0,0,
9,9,9,9,9,1,9, 0,0,0,0,0,2,0, 0,0,0,0,0,1,0,
                               0, 0, 0, 0, 19, 0, 0, 0
                                               0,0,0,0,-13,0,0,
87
                               0, 0, 0, 0, 0, 19, 0, 0
                                               0,0,0,0,0,-13,0,
 |9,9,9,9,9,1,|0,0,0,0,0,0,2,|0,0,0,0,0,1,|\ 0,\ 0,\ 0,\ 0,\ 0,\ 19,|0\ |0,0,0,0,0,0,-13,
```

Model Output (Odd Pipe)

SystemC 2.2.0 --- Oct 10 2009 07:49:18
Copyright (c) 1996-2006 by all Contributors
ALL RIGHTS RESERVED

ODD PIPE PRINTOUT:								
	PC Result							
<instruction miss=""></instruction>	ı							
1 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0 0,0,0,0,0,0,0,							
2 9,0,0,0,0,0,0, 0,0,0,0,0,0,0, 0,0,0,0,0	0 0,0,0,0,0,0,0,							
3 [9,9,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0], [0,0,0]	0 0,0,0,0,0,0,0,							
4 9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0 0,0,0,0,0,0,0,							
[9,9,9,9,0,0,0] $[0,0,0,0,0,0,0]$ $[0,0,0,0,0,0,0]$ $[0,0,0,0]$ $[0,0,0,0,0]$ $[0,0,0,0]$	1 0,0,0,0,0,0,0,0,							
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,								
7 9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0								
8 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,								
9 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,								
$10 \mid 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$								
11 9,9,9,9,9,9,9, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,								
12 9,9,9,9,9,9,9, 0,0,0,0,0,0,0,0,0,0,0,0,								
13 9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0								
<pre><instruction block="" cache="" to="" written=""></instruction></pre>	_ - - - - - - - - -							
14 9,9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0	1 0,0,0,0,0,0,0,0							
15 9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0								
16 9,9,9,9,9,9, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,								
17 9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0								
18 9,9,9,9,9,9, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,								
19 9,9,9,9,9,9, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,								

```
21
22
  0, 0, 0, 0, 0, 0, 0, -1
                                              0,0,0,0,0,0,0,0,
23
  0, 0, 0, 0, 0, 0, 0, |-1
                                              0,0,0,0,0,0,0,0,
24
  \begin{bmatrix} 0, & 0, & 0, & 0, & 0, & 0, & 0, & -1 \\ 0, & 0, & 0, & 0, & 0, & 0, & -1 \end{bmatrix}
                                              0,0,0,0,0,0,0,0,
25
  0,0,0,0,0,0,0,0,
  26
                                              3.0.0.0.0.0.0.0.
27
                                              0.3.0.0.0.0.0.
 28
                              0, 0,17, 0, 0, 0, 0, -1
                                             0,0,3,0,0,0,0,
  |9,9,9,7,7,9,9,|0,0,0,6,0,0,0,|0,0,0,0,0,0,0,|0,0,0,17,0,0,0,|-1|0,0,0,3,0,0,0,
29
<INSTRUCTION MISS>
 | 9,9,9,9,7,7,9, | 0,0,0,0,6,0,0, | 0,0,0,0,0,0,0,0, | 9,9,9,9,7,7, | 0,0,0,0,0,6,0, | 0,0,0,0,0,1,0, |
                              0, 0, 0, 0,17, 0, 0, -1
31
                              0, 0, 0, 0, 0, 17, 0, -1
                                              0,0,0,0,0,3,0,
  9,9,9,9,9,7,0,0,0,0,0,6,0,0,0,0,0,0,0,1,
                              0, 0, 0, 0, 0, 0, 17, -1
                                              0,0,0,0,0,0,3,
32
33
  0, 0, 0, 0, 0, 0, 0, -1
                                              0,0,0,0,0,0,0,0,
34
  0, 0, 0, 0, 0, 0, 0, -1
                                              0,0,0,0,0,0,0,
35
  0, 0, 0, 0, 0, 0, 0, |-1
                                              0,0,0,0,0,0,0,0,
  36
                              0, 0, 0, 0, 0, 0, 0, |-1
                                              0,0,0,0,0,0,0,0,
37
                              0, 0, 0, 0, 0, 0, 0, -1
  0,0,0,0,0,0,0,0,
  38
                              0, 0, 0, 0, 0, 0, 0, |-1
                                              0.0.0.0.0.0.0.0.
                              0, 0, 0, 0, 0, 0, 0, -1
39
                                              0.0.0.0.0.0.0.
  0, 0, 0, 0, 0, 0, 0, 0, -1
0, 0, 0, 0, 0, 0, 0, -1
40
                                              0,0,0,0,0,0,0,0,
41
                                              0,0,0,0,0,0,0,0,
 <INSTRUCTION BLOCK WRITTEN TO CACHE>
43
 0, 0, 0, 0, 0, 0, 0, |-1
                                             10,0,0,0,0,0,0,0,
44
  0, 0, 0, 0, 0, 0, 0, -1
                                              0,0,0,0,0,0,0,0,
45
  0, 0, 0, 0, 0, 0, 0, -1
                                              0,0,0,0,0,0,0,0,
46
  0, 0, 0, 0, 0, 0, 0, -1
                                              0,0,0,0,0,0,0,0,
47
  0, 0, 0, 0, 0, 0, 0, |-1
                                              0,0,0,0,0,0,0,0,
  48
                              0, 0, 0, 0, 0, 0, 0, |-1
                                              0,0,0,0,0,0,0,0,
  49
                              0, 0, 0, 0, 0, 0, 0, |-1
                                              0,0,0,0,0,0,0,0,
                              0, 0, 0, 0, 0, 0, 0, -1
                                              0,0,0,0,0,0,0,0,
50
51
                              0, 0, 0, 0, 0, 0, 0, |-1
                                              0.0.0.0.0.0.0.
  52
  0, 0, 0, 0, 0, 0, 0, |-1
                                              0.0.0.0.0.0.0.0.
53
  0, 0, 0, 0, 0, 0, 0, -1
                                              0,0,0,0,0,0,0,0,
54
  0, 0, 0, 0, 0, 0, 0, |-1
                                              0,0,0,0,0,0,0,0,
  0, 0, 0, 0, 0, 0, 0, -1
55
                                              0.0.0.0.0.0.0.
  56
                              0, 0, 0, 0, 0, 0, 0, -1
                                              0,0,0,0,0,0,0,0,
57
  0, 0, 0, 0, 0, 0, 0, -1
                                              0.0.0.0.0.0.0.
58
  0, 0, 0, 0, 0, 0, 0, -1
                                             0,0,0,0,0,0,0,
<INSTRUCTION MISS>
59
 0, 0, 0, 0, 0, 0, 0, |-1| |0,0,0,0,0,0,0,0
60
  0, 0, 0, 0, 0, 0, 0, |-1
                                             0,0,0,0,0,0,0,0
61
  |7,7,9,9,9,9,9| |6,0,0,0,0,0,0,0| |0,0,0,0,0,0,0| |18,0,0,0,0,0,0| |-1
                                              4294967284,0,0,0,0,0,0,
                                              0,4294967284,0,0,0,0,0,
  62
                              0,18, 0, 0, 0, 0, 0, |-1
  0.0.4294967284.0.0.0.0.
63
                              0, 0, 18, 0, 0, 0, 0, |-1
  9,9,9,7,7,9,9, 0,0,0,6,0,0,0, 0,0,0,0,0,0,0,0,
                              0, 0, 0, 18, 0, 0, 0, |-1
                                              0,0,0,4294967284,0,0,0,
64
                              0, 0, 0, 0, 18, 0, 0, -1
                                              0,0,0,0,4294967284,0,0,
65
  9,9,9,9,7,7,9,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0
66
```

4.5 Test Case 3B: Data Hazards – With Stalls

Objectives

• Verify forwarding is functioning correctly with stalls.

Test Program

```
cntb 15,3
stqa 15,99
avgb 16,3,4
lqa 17,99
a 15,16,17
mpy 15,15,5
stqa 15,99
lqa 18,99
a 19,18,5
halt
```

Expected Calculation Results

```
Reg[15] = sum(bin(7)==1) = 3
                                              //EVEN
LS[99] = Reg[15] = 3
                                              //ODD
Reg[16] = avgBytes(7,10) = 9
                                              //EVEN
Reg[17] = LS[99] = 3
                                              //ODD
Reg[15] = Reg[16] + Reg[17] = 9+3 = 12
                                              //EVEN
Reg[15] = Reg[15]*Reg[5] = 12*(-1) = -12
                                              //EVEN
LS[99] = Reg[15] = -12
                                              //ODD
Reg[18] = LS[99] = -12 = 4294967284 (2s cmp)//ODD
Reg[19] = Reg[18] + Reg[5] = -13
halt
```

Expected Timing Results (Even Pipe)

```
[clock 01] Instruction Miss (Block 0)
[clock 16] "CNTB" Instruction Issue (Appears in EvenPipe on clock 19)
[clock 23] "AVGB" Instruction Issue (Appear in EvenPipe on clock 26)
[clock 31] "A" Instruction Issue (Appears in EvenPipe on clock 34)
[clock 35] "MPY" Instruction Issue (Appears in EvenPipe on clock 38)
[clock 53] "A" Instruction Issue (Appears in EvenPipe on clock 56)
```

Expected Timing Results (Odd Pipe)

```
[clock 01] Instruction Miss (Block 0)
[clock 22] "STQA" Instruction Issue (Appears in OddPipe on clock 25)
[clock 23] "LQA" Instruction Issue (Appears in OddPipe on clock 26)
[clock 44] "STQA" Instruction Issue (Appears in OddPipe on clock 47)
[clock 45] "LQA" Instruction Issue (Appears in OddPipe on clock 48)
```

Model Output (Even Pipe)

TEST CASE 3: DATA HAZARDS - WITH STALLS (EVEN PIPE)

SystemC 2.2.0 --- Oct 10 2009 07:49:18 Copyright (c) 1996-2006 by all Contributors ALL RIGHTS RESERVED

EVE	EVEN PIPE PRINTOUT:							
Clk	Unit Id	 Stage Ready	 Register Write	 Result Destination	F1	!		
	STRUCTION MISS>							
1	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0	0,0,0,0,0,0,0,		
2		0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
3		0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
4		0,0,0,0,0,0,0,0,				0,0,0,0,0,0,0,		
5 6		0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0,	:	0,0,0,0,0,0,0,		
7	9,9,9,9,9,0,0,	0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	!	0,0,0,0,0,0,0, 0,0,0,0,0,0,0,		
8		0,0,0,0,0,0,0,0,0		0, 0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
9		0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
10		0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
11	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,	0	0,0,0,0,0,0,0,		
12	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,0	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,		0,0,0,0,0,0,0,		
13		0,0,0,0,0,0,0,0,		0,0,0,0,0,0,0,0,	0	0,0,0,0,0,0,0,		
		WRITTEN TO CAC						
14		0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
15 16	9,9,9,9,9,9,9,			0, 0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
17	9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,	0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	:	0,0,0,0,0,0,0, 0,0,0,0,0,0,0,		
18		0,0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,0,		
19		4,0,0,0,0,0,0,0,				3,0,0,0,0,0,0,		
20		0,4,0,0,0,0,0,0		0,15, 0, 0, 0, 0, 0,	:	0,3,0,0,0,0,0,		
21		0,0,4,0,0,0,0,		0, 0,15, 0, 0, 0, 0,		0,0,3,0,0,0,0,		
22		0,0,0,4,0,0,0,		0, 0, 0,15, 0, 0, 0,	:	0,0,0,3,0,0,0,		
23	9,9,9,9,5,9,9,	0,0,0,0,4,0,0,	0,0,0,0,1,0,0,	0, 0, 0, 0,15, 0, 0,		0,0,0,0,3,0,0,		
24		0,0,0,0,0,4,0,		0, 0, 0, 0, 0,15, 0,		0,0,0,0,0,3,0,		
25	9,9,9,9,9,5,			0, 0, 0, 0, 0, 0, 15,		0,0,0,0,0,0,3,		
26		4,0,0,0,0,0,0,0,		16, 0, 0, 0, 0, 0, 0,		9,0,0,0,0,0,0,		
27		0,4,0,0,0,0,0,0,		0,16, 0, 0, 0, 0, 0,		0,9,0,0,0,0,0,		
28 29		0,0,4,0,0,0,0,		0, 0,16, 0, 0, 0, 0, 0, 0, 0,16, 0, 0, 0,		0,0,9,0,0,0,0,		
30	9,9,9,9,5,9,9,	0,0,0,4,0,0,0, 0,0,0,0,4,0,0,		0, 0, 0, 10, 0, 0, 0, 0,		0,0,0,9,0,0,0, 0,0,0,0,9,0,0,		
31		0,0,0,0,0,4,0,		0, 0, 0, 0, 0,16, 0,		0,0,0,0,0,9,0,		
32	9,9,9,9,9,9,5,			0, 0, 0, 0, 0, 0, 16,		0,0,0,0,0,0,9,		
33	9,9,9,9,9,9,9,			0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
34	1,9,9,9,9,9,9,9,	2,0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	15, 0, 0, 0, 0, 0, 0,	0	12,0,0,0,0,0,0,		
35		0,2,0,0,0,0,0,		0,15, 0, 0, 0, 0, 0,	0	0,12,0,0,0,0,0,		
36		0,0,2,0,0,0,0,		0, 0,15, 0, 0, 0, 0,	:	0,0,12,0,0,0,0,		
37	9,9,9,1,9,9,9,			0, 0, 0, 15, 0, 0, 0,		0,0,0,12,0,0,0,		
38		7,0,0,0,2,0,0,		15, 0, 0, 0, 15, 0, 0,	:	-12,0,0,0,12,0,0,		
39 40		0,7,0,0,0,2,0,		0,15, 0, 0, 0,15, 0, 0, 0,15, 0, 0, 0,15,		0,-12,0,0,0,12,0,		
41	9,9,3,9,9,9,1,	0,0,7,0,0,0,2, 0,0,0,7,0,0,0,				0,0,-12,0,0,0,12, 0,0,0,-12,0,0,0,		
42	9,9,9,9,3,9,9,			0, 0, 0, 0,15, 0, 0,		0,0,0,0,-12,0,0,		
43	9,9,9,9,9,3,9,			0, 0, 0, 0, 0,15, 0,		0,0,0,0,0,-12,0,		
44	9,9,9,9,9,9,3,	i .		0, 0, 0, 0, 0, 0,15,		0,0,0,0,0,0,-12,		
45	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,	0	0,0,0,0,0,0,0,		
46	9,9,9,9,9,9,9,			0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
47	9,9,9,9,9,9,9,			0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
48		0,0,0,0,0,0,0,0,				0,0,0,0,0,0,0,		
49		0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0		0,0,0,0,0,0,0,		
50 51	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0, 0,0,0,0,0,0,0,		
52		0,0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,0,		
53		0,0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,0,		
54		0,0,0,0,0,0,0,0,		0, 0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
55		0,0,0,0,0,0,0,0,				0,0,0,0,0,0,0,		
56		2,0,0,0,0,0,0,		19, 0, 0, 0, 0, 0, 0,	0	-13,0,0,0,0,0,0,0,		
57	9,1,9,9,9,9,9,	0,2,0,0,0,0,0,		0,19, 0, 0, 0, 0, 0,	!	0,-13,0,0,0,0,0,		
58		0,0,2,0,0,0,0,		0, 0,19, 0, 0, 0, 0,		0,0,-13,0,0,0,0,		
59		0,0,0,2,0,0,0,		0, 0, 0, 19, 0, 0, 0,		0,0,0,-13,0,0,0,		
60		0,0,0,0,2,0,0,				0,0,0,0,-13,0,0,		
61 62		0,0,0,0,0,2,0,		0, 0, 0, 0, 0, 0,19, 0, 0, 0, 0, 0, 0, 0,19,		0,0,0,0,0,-13,0, 0,0,0,0,0,0,-13,		
02	121212121313111	0, 0, 0, 0, 0, 0, 2,	0, 0, 0, 0, 0, 0, 1,	0, 0, 0, 0, 0, 0,19,	10	0,0,0,0,0,0,-13,		

Model Output (Odd Pipe)

TEST CASE 3: DATA HAZARDS - WITH STALLS (ODD PIPE)

SystemC 2.2.0 --- Oct 10 2009 07:49:18
Copyright (c) 1996-2006 by all Contributors
ALL RIGHTS RESERVED

	ODD PIPE PRINTOUT:								
Clk	 Unit Id 	Stage Ready	Register			Destination			Result
	STRUCTION MISS>						-		
1		0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0	0,0,	0, 0, 0, 0,	0,	0	0,0,0,0,0,0,0,
2		0,0,0,0,0,0,0,				0, 0, 0, 0,		0	0,0,0,0,0,0,
3	9,9,0,0,0,0,0,	0,0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0,	0, 0,	0, 0, 0, 0,	0,	0	0,0,0,0,0,0,0,
4	9,9,9,0,0,0,0,	0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0,	0, 0,	0, 0, 0, 0,	0,	0	0,0,0,0,0,0,
5	9,9,9,9,0,0,0,	0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0,	0,0,	0, 0, 0, 0,	0, -	1	0,0,0,0,0,0,
6	9,9,9,9,9,0,0,	0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0,		0, 0, 0, 0,			0,0,0,0,0,0,0,
7		0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,
8		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
9		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
10		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
11 12		0,0,0,0,0,0,0,0,				0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			0,0,0,0,0,0,0,
13		0,0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0, 0,0,0,0,0,0,0,
		WRITTEN TO CAC		0,0,0,	0,0,	0, 0, 0, 0,	0, -	1	10,0,0,0,0,0,0,
14		0,0,0,0,0,0,0,		0,0,0	0,0,	0, 0, 0, 0,	0, -	1	0,0,0,0,0,0,0,
15		0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
16	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0,		0, 0, 0, 0,			0,0,0,0,0,0,0,
17	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0,	0,0,	0, 0, 0, 0,	0, -	1	0,0,0,0,0,0,
18	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0,	0,0,	0, 0, 0, 0,	0, -	1	0,0,0,0,0,0,0,
19		0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,
20		0,0,0,0,0,0,0,0				0, 0, 0, 0,			0,0,0,0,0,0,0,
21		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
22 23		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
24		0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,				0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			0,0,0,0,0,0,0, 0,0,0,0,0,0,0,
25	7,9,9,9,9,9,9,9,9,					0, 0, 0, 0,			0,0,0,0,0,0,0,
26		6,0,0,0,0,0,0,0,				0, 0, 0, 0,			3,0,0,0,0,0,0,
27		0,6,0,0,0,0,0,				0, 0, 0, 0,			0,3,0,0,0,0,0,
28		0,0,6,0,0,0,0,				17, 0, 0, 0,			0,0,3,0,0,0,0,
29	9,9,9,7,7,9,9,	0,0,0,6,0,0,0,	0,0,0,0,0	0,0,0,	0, 0,	0,17, 0, 0,	0, -	1	0,0,0,3,0,0,0,
30	9,9,9,9,7,7,9,	0,0,0,0,6,0,0,	0,0,0,0,0	0,0,0,		0, 0,17, 0,			0,0,0,0,3,0,0,
31		0,0,0,0,0,6,0,				0, 0, 0,17,			0,0,0,0,0,3,0,
32		0,0,0,0,0,0,6,				0, 0, 0, 0,1			0,0,0,0,0,0,3,
33		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
34		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
35 36		0,0,0,0,0,0,0,0,				0, 0, 0, 0, 0, 0, 0, 0, 0,			0,0,0,0,0,0,0,
37		0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0, 0,0,0,0,0,0,0,
38	9,9,9,9,9,9,9,9,					0, 0, 0, 0,			0,0,0,0,0,0,0,
39		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
40		0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
41	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0,	0, 0,	0, 0, 0, 0,	0, -	1	0,0,0,0,0,0,0,
42	9,9,9,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0	0,0,0,	0,0,	0, 0, 0, 0,	0, -	1	0,0,0,0,0,0,0,
43		0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,
44		0,0,0,0,0,0,0,0				0, 0, 0, 0,			0,0,0,0,0,0,
45		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
46 47		0,0,0,0,0,0,0,0,				0, 0, 0, 0,			0,0,0,0,0,0,0,
48		0,0,0,0,0,0,0,0, 6,0,0,0,0,0,0,0,				0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			0,0,0,0,0,0,0, 4294967284,0,0,0,0,0,0,0,
49		0,6,0,0,0,0,0,0				0, 0, 0, 0,			0,4294967284,0,0,0,0,0,0
50		0,0,6,0,0,0,0,				18, 0, 0, 0,			0,0,4294967284,0,0,0,0,0
51		0,0,0,6,0,0,0,				0,18, 0, 0,			0,0,0,4294967284,0,0,0,
52		0,0,0,0,6,0,0,				0, 0,18, 0,			0,0,0,0,4294967284,0,0,
53		0,0,0,0,0,6,0,				0, 0, 0,18,			0,0,0,0,0,4294967284,0,
54	9,9,9,9,9,9,7,	0,0,0,0,0,0,6,	0,0,0,0,0	0,0,1,	0,0,	0, 0, 0, 0,1	8, -	1	0,0,0,0,0,0,4294967284,

4.6 Test Case 4: Control Hazards

Objectives

- Verify branch taken/untaken cases
- Verify pipe flushing

Test Program

```
shlqby 15,13,1
shlqby 16,13,1
shlqby 17,13,1
shlqby 18,13,1
a 19,4,5
stqa 19,99
brnz 19,9
a 20,1,5
stqa 20,99
a 21,0,5
shlqby 22,13,2
a 23,0,5
shlqby 24,13,2
a 25,0,5
shlqby 26,13,2
lqa 27,99
brz 27,-1
shlqby 28,13,2
a 29,6,5
a 30,6,5
shlqby 31,13,2
halt
```

Expected Calculation Results

```
Reg[15] = shiftLeftBytes(Reg[13],1) = 256
                                              //ODD
                                              //ODD
Reg[16] = shiftLeftBytes(Reg[13],1) = 256
Reg[17] = shiftLeftBytes(Reg[13],1) = 256
                                              //ODD
Reg[18] = shiftLeftBytes(Reg[13],1) = 256
                                              //ODD
Reg[19] = Reg[4] + Reg[5] = 10 + (-1) = 9
                                              //EVEN
LS[99] = Reg[19] = 9
                                              //ODD
BranchIf(Reg[19]!=0) is true, PC=PC+36=60
                                              //ODD
Reg[27] = LS[99] = 9
                                              //ODD
BranchIf(Reg[27]==0) is false PC=PC+4=68
                                              //ODD
Reg[28] = shiftLeftBytes(Reg[13], 2) = 65536 //ODD
Reg[29] = Reg[6] + Reg[5] = 299792457
                                              //EVEN
Reg[30] = Reg[6] + Reg[5] = 299792457
                                              //EVEN
Reg[31] = shiftLeftBytes(Reg[13],2) = 65536 //ODD
```

Expected Timing Results (Even Pipe)

```
[clock 01] Instruction Miss (Block 0)
[clock 20] "A" Instruction Issue (Appears in EvenPipe on clock 23)
[clock 33] OddPipe broadcasts flush signal and new PC (a 20,1,5 flushed)
[clock 46] "A" Instruction Issue (Appears in EvenPipe on clock 49)
```

[clock 47] "A" Instruction Issue (Appears in EvenPipe on clock 50)

Expected Timing Results (Odd Pipe)

```
[clock 01] Instruction Miss (Block 0)
[clock 16] "SHLQBY" Instruction Issue (Appears in OddPipe on clock 19)
[clock 17] "SHLQBY" Instruction Issue (Appears in OddPipe on clock 20)
[clock 18] "SHLQBY" Instruction Issue (Appears in OddPipe on clock 21)
[clock 19] "SHLQBY" Instruction Issue (Appears in OddPipe on clock 22)
[clock 24] "STQA" Instruction Issue (Appears in OddPipe on clock 27)
[clock 27] "BRNZ" Instruction Issue (Condition True)
[clock 30] "BRNZ" Appears in OddPipe stage 1
[clock 33] OddPipe broadcasts flush signal and new PC
[clock 36] "LQA" Instruction Issue (Appears in OddPipe on clock 39)
[clock 44] "BRZ" Instruction Issue (Condition False)
[clock 45] "SHLQBY" Instruction Issue (Appears in OddPipe on clock 48)
[clock 47] "SHLQBY" Instruction Issue (Appears in OddPipe on clock 50)
```

Model Output (Even Pipe)

SystemC 2.2.0 --- Oct 10 2009 07:49:18 Copyright (c) 1996-2006 by all Contributors ALL RIGHTS RESERVED

```
EVEN PIPE PRINTOUT:
Clk Unit Id
                Register Write Result Destination
         Stage Ready
                                  |Fl|Result
<INSTRUCTION MISS>
 0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
 0,0,0,0,0,0,0
                        0, 0, 0, 0, 0, 0, 0, 0
                                   0,0,0,0,0,0,0,0,
                        0, 0, 0, 0, 0, 0, 0, 0
 0,0,0,0,0,0,0,0,
                        0, 0, 0, 0, 0, 0, 0, 0
                                   0,0,0,0,0,0,0,0,
 10
                        0, 0, 0, 0, 0, 0, 0, 0
                                   0,0,0,0,0,0,0,0,
 0.0.0.0.0.0.0.0.
12
                        0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
<INSTRUCTION BLOCK WRITTEN TO CACHE>
15
                        0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
16
                       0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
17
 0, 0, 0, 0, 0, 0, 0 0 0,0,0,0,0,0,0,0
18
                        0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
 19
 0, 0, 0, 0, 0, 0, 0, 0
                                   0.0.0.0.0.0.0.
20
                                   0,0,0,0,0,0,0,
 0, 0, 0, 0, 0, 0, 0, 0
                                   0,0,0,0,0,0,0,0,
                       19, 0, 0, 0, 0, 0, 0, 0
                                   9,0,0,0,0,0,0,
24
 0,9,0,0,0,0,0,
                        0,19, 0, 0, 0, 0, 0, 0
 9,9,1,9,9,9,9,0,0,2,0,0,0,0,0,0,1,0,0,0,0,
                                   0,0,9,0,0,0,0,
                        0, 0,19, 0, 0, 0, 0, 0
26
 9,9,9,1,9,9,9,0,0,0,2,0,0,0,0,0,0,1,0,0,0,
                        0, 0, 0, 19, 0, 0, 0, 0
                                   0,0,0,9,0,0,0,
27
 9,9,9,9,1,9,9,0,0,0,0,2,0,0,0,0,0,0,1,0,0,
                        0, 0, 0, 0, 19, 0, 0, 0
                                   0,0,0,0,9,0,0,
28
 9,9,9,9,1,9,0,0,0,0,2,0,0,0,0,0,0,1,0,
                       0, 0, 0, 0, 0, 19, 0, 0
                                   0,0,0,0,0,9,0,
29
 |9,9,9,9,9,1,|0,0,0,0,0,2,|0,0,0,0,0,1,
                       0, 0, 0, 0, 0, 0,19,0
                                   0,0,0,0,0,0,9,
 3.0
                                   10.0.0.0.0.0.0.
31
                                   0,0,0,0,0,0,0,0,
 <BRANCH: PC=60>
```

```
40
 0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
41
 42
43
                  44
                           0,0,0,0,0,0,0,0,
46
                  0, 0, 0, 0, 0, 0, 0, 0 | 0,0,0,0,0,0,0,
                  0, 0, 0, 0, 0, 0, 0, 0
                           0,0,0,0,0,0,0,0,
48
                  0, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0
 299792457,0,0,0,0,0,0,0,
50
                           299792457,299792457,0,0,0,0,0,
51
 52
                  0, 0,30,29, 0, 0, 0, 0 | 0,0,299792457,299792457,0,0,0,
53
                  0, 0, 0,30,29, 0, 0, 0 | 0,0,0,299792457,299792457,0,0,
 54
55
```

Model Output (Odd Pipe)

TEST CASE 4: CONTROL HAZARDS (ODD PIPE)

SystemC 2.2.0 --- Oct 10 2009 07:49:18 Copyright (c) 1996-2006 by all Contributors ALL RIGHTS RESERVED

ODD PIPE PRINTOUT:						I		
Clk	Unit Id	Stage Ready	Register Write	Result Destination	PC	Result		
<in:< td=""><td colspan="8"><instruction miss=""></instruction></td></in:<>	<instruction miss=""></instruction>							
1			0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,	0	0,0,0,0,0,0,0,		
2			0,0,0,0,0,0,0,		0	0,0,0,0,0,0,0,		
3			0,0,0,0,0,0,0,		0	0,0,0,0,0,0,0,		
4			0,0,0,0,0,0,0,0,		0	0,0,0,0,0,0,0,		
5			0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
6			0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
7			0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
8			0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
9			0,0,0,0,0,0,0,0,			0,0,0,0,0,0,0,		
10			0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
11			0,0,0,0,0,0,0,0,			0,0,0,0,0,0,0,		
12			0,0,0,0,0,0,0,0,			0,0,0,0,0,0,0,		
13		WRITTEN TO CAC	0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,	-1	0,0,0,0,0,0,0,		
14			0,0,0,0,0,0,0,0,0	0, 0, 0, 0, 0, 0, 0,	1	0,0,0,0,0,0,0,		
15			0,0,0,0,0,0,0,0,0			0,0,0,0,0,0,0,		
16			0,0,0,0,0,0,0,0,0			0,0,0,0,0,0,0,		
17			0,0,0,0,0,0,0,0,			0,0,0,0,0,0,0,		
18			0,0,0,0,0,0,0,0,			0,0,0,0,0,0,0,		
19			0,0,0,0,0,0,0,0,			256,0,0,0,0,0,0,		
20			0,0,0,0,0,0,0,0,			256,256,0,0,0,0,0,		
21			0,0,0,0,0,0,0,			256,256,256,0,0,0,0,		
22				18,17,16,15, 0, 0, 0,		256,256,256,256,0,0,0,		
23			0,0,0,1,1,0,0,			0,256,256,256,256,0,0,		
24			0,0,0,1,1,1,0,			0,0,256,256,256,256,0,		
25			0,0,0,1,1,1,1,			0,0,0,256,256,256,256,		
26	9,9,9,9,6,6,6,	0,0,0,0,4,4,4,	0,0,0,0,1,1,1,	0, 0, 0, 0,18,17,16,	-1	0,0,0,0,256,256,256,		
27	7,9,9,9,9,6,6,	0,0,0,0,0,4,4,	0,0,0,0,0,1,1,	0, 0, 0, 0, 0,18,17,	-1	0,0,0,0,0,256,256,		
28	9,7,9,9,9,9,6,	0,0,0,0,0,0,4,	0,0,0,0,0,0,1,	0, 0, 0, 0, 0, 0,18,	-1	0,0,0,0,0,0,256,		
29	9,9,7,9,9,9,9,	0,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,	-1	0,0,0,0,0,0,0,		
30	8,9,9,7,9,9,9,	3,0,0,0,0,0,0,	0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,	-1	0,0,0,0,0,0,		
31			0,0,0,0,0,0,0,		-1	0,0,0,0,0,0,		
32	9,9,8,9,9,7,9,	0,0,3,0,0,0,0,	0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,	-1	0,0,0,0,0,0,		
	ANCH: PC=60>							
33			0,0,0,0,0,0,0,			0,0,0,0,0,0,		
34			0,0,0,0,0,0,0,			0,0,0,0,0,0,0,		
35			0,0,0,0,0,0,0,			0,0,0,0,0,0,0,		
36			0,0,0,0,0,0,0,			0,0,0,0,0,0,0,		
37			0,0,0,0,0,0,0,0			0,0,0,0,0,0,0,		
38			0,0,0,0,0,0,0,0,	0, 0, 0, 0, 0, 0, 0,		0,0,0,0,0,0,0,		
39			0,0,0,0,0,0,0,0,			9,0,0,0,0,0,0,		
40			0,0,0,0,0,0,0,			0,9,0,0,0,0,		
41			0,0,0,0,0,0,0,0,			0,0,9,0,0,0,0,		
4 2	9,9,9,/,9,9,9,	0,0,0,6,0,0,0,0,	0,0,0,0,0,0,0,0,	0, 0, 0,27, 0, 0, 0,	-1	0,0,0,9,0,0,0,		

```
44
45
 0, 0, 0, 0, 0, 0, 0, -1 0,0,0,0,0,0,0,0
46
 0,0,0,0,0,0,0,
65536,0,0,0,0,0,0,0,
0,65536,0,0,0,0,0,0,
47
48
49
                                          65536,0,65536,0,0,0,0,
50
                                         0,65536,0,65536,0,0,0,
51
52
                                          0,0,65536,0,65536,0,0,
53
                                          0,0,0,65536,0,65536,0,
 55
56 | 9,9,9,9,9,6, | 0,0,0,0,0,0,4, | 0,0,0,0,0,1, | 0, 0, 0, 0, 0, 0, 31, | -1 | 0,0,0,0,0,0,65536,
```

4.7 Test Case 5: Matrix Multiply

Objectives

• Compute a 2-by-2 matrix multiply

Calculation

```
Matrix Multiply (MATLAB):
A = [\exp(1), \operatorname{sqrt}(2); \operatorname{sqrt}(2), \exp(1)]
    2.7183
             1.4142
    1.4142 2.7183
B = [sqrt(2), -1/4; -1/4, sqrt(2)]
    1.4142
             -0.2500
   -0.2500
             1.4142
C = A*B
             1.3204
3.4907
    3.4907
    1.3204
Algorithm
```

```
Let Matrix A =
           a c
           b d
Let Matrix B =
           e g
            f h
Step 1: Compute intermediate products
p1 = [c,c] * [f,h] = [c*f,c*h]
p2 = [d,d] * [f,h] = [d*f,d*h]
Step 2: Compute Matrix Multiply
C(1,:) = [a,a] * [e,g] + p1 = [a*e + c*f, a*g + c*h]
C(2,:) = [b,b] * [e,g] + p2 = [b*e + d*f, b*g + d*h]
where C(i,:) is the ith row matrix C.
```

Test Program

```
a 15,1,3
shlqby 16,9,15
a 17,16,10
rotqby 18,17,15
shlqby 19,10,15
a 20,19,11
rotqby 21,20,15
shlqby 22,17,15
rotqby 23,22,15
a 24,22,23
dfm 25,24,21
shlqby 26,18,15
rotqby 27,26,15
a 28,26,27
dfm 29,28,21
rotqby 30,17,15
shlqby 31,30,15
rotqby 32,31,15
a 33,31,32
dfma 25,33,20
rotqby 34,18,15
shlqby 35,34,15
rotqby 36,35,15
a 37,35,36
dfma 29,37,20
halt
```

Expected Calculation Results

```
//Form Matrices
Reg[15] = Reg[1]+Reg[3] = 1+7 = 8
Reg[16] = shiftLeftQuadword(Reg[9] by Reg[15] bytes) = [2.71 <double>, 0 <uint32>]
Reg[17] = Reg[16]+Reg[10] = [2.71 <double>, 1.41 <double>]
Reg[18] = rotateQuadword(Reg[17] by Reg[15] bytes) = [1.41 <double>, 2.71 <double>]
Reg[19] = shiftLeftQuadword(Reg[10] by Reg[15] bytes) = [1.41 <double>, 0 <uint32>]
Reg[20] = Reg[19]+Reg[11] = [1.41 <double>, -0.25 <double>]
Reg[21] = rotateQuadword(Reg[20] by Reg[15] bytes) = [-0.25 <double>, 1.41 <double>]
//Reg[17] = A(1,:)
//Reg[17] = A(2,:)
//Reg[20] = B(1,:)
//Reg[21] = B(2,:)
//Compute Intermediate Products (Only Operating on Matrix Registers)
Reg[22] = shiftLeftQuadword(Reg[17] by Reg[15] bytes) = [1.41 <double>, 0 <uint32>]
Reg[23] = rotateQuadword(Reg[22] by Reg[15] bytes) = [0 <uint32>, 1.41 <double>]
```

```
Reg[24] = Reg[22] + Reg[23] = [1.41 < double>, 1.41 < double>]
Reg[25] = Reg[24]*Reg[21] = [-0.3536 < double>, 1.9940 < double>]
Reg[26] = shiftLeftQuadword(Reg[18] by Reg[15] bytes) = [2.71 <double>, 0 <uint32>]
Reg[27] = rotateQuadword(Reg[26] by Reg[15] bytes) = [0 <uint32>, 2.71 <double>]
Reg[28] = Reg[26] + Reg[27] = [2.71 < double>, 2.71 < double>]
Reg[29] = Reg[28]*Reg[21] = [-0.6796 < double>, 3.8328 < double>]
//Reg[25] = p1
//Reg[29] = p2
//Compute Matrix Product (Not Assuming Symmetric Matrices)
Reg[30] = rotateQuadword(Reg[17] by Reg[15] bytes) = [1.41 <double>, 2.71 <double>]
Reg[31] = shiftLeftQuadword(Reg[30] by Reg[15] bytes) = [2.71 <double>, 0 <uint32>]
Reg[32] = rotateQuadword(Reg[31] by Reg[15] bytes) = [0 <uint32>, 2.71 <double>]
Reg[33] = Reg[31] + Reg[32] = [2.71 < double>, 2.71 < double>]
Reg[25] = Reg[33]*Reg[20]+Reg[25] = [3.4907 <double>, 1.3204 <double>]
Reg[34] = rotateQuadword(Reg[18] by Reg[15] bytes) = [2.71 <double> ,1.41 <double>]
Reg[35] = shiftLeftQuadword(Reg[34] by Reg[15] bytes) = [1.41 <double>, 0 <uint32>]
Reg[36] = rotateQuadword(Reg[35] by Reg[15] bytes) = [0 <uint32>, 1.41 <double>]
Reg[37] = Reg[35] + Reg[36] = [1.41 < double>, 1.41 < double>]
Reg[29] = Reg[37]*Reg[20]+Reg[29] = [1.3204 < double>, 3.4907 < double>]
//C(1,:) = Reg[25] = [4615042726053923435,4608625505169953866] = [3.4907,1.3204]
//C(2,:) = Reg[29] = [4608625505169953869, 4615042726053923434] = [1.3204, 3.4907]
```

Model Output (Even Pipe)

TEST CASE 5: 2x2 MATRIX MULTIPLY (EVEN PIPE)

SystemC 2.2.0 --- Oct 10 2009 07:49:18 Copyright (c) 1996-2006 by all Contributors ALL RIGHTS RESERVED

```
EVEN PIPE PRINTOUT:
 Clk Unit Id Stage Ready Register Write Result Destination
                                                                                                                                                                                                                                F1 Result
 31
32
33
34
35
36
37
[0,0],[1]3827668282914920297,4615838857512989157],[0,0],[0,0],[1,0],[0,0],[1,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0
```

```
92 | 9,9,9,1,9,9,9 | 0,0,0,2,0,0,0 | 0,0,0,1,0,0,0 | 0,0,0,33,0,0 | 0 | [0,0],[0,0],[0,0],[4613303445314885482,4613303445314885482],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],
```

Model Output (Odd Pipe)

TEST CASE 5: 2x2 MATRIX MULTIPLY (ODD PIPE)

SystemC 2.2.0 --- Oct 10 2009 07:49:18 Copyright (c) 1996-2006 by all Contributors ALL RIGHTS RESERVED Packaged for MacOS by Logic Poet: http://www.logicpoet.com

ODD PIPE PRINTOUT: Clk Unit Id PC Result | Stage Ready | Register Write | Result Destination | PC | Result | <INSTRUCTION MISS> 10 23 24 25 26 27 28 30 [[0,0],[0,0] 31 32 33 [(0,0),(0,0) 51 54