Puntúa como 20

Marcar pregunta

Considere la función
$$f(x,y) = \begin{cases} \frac{xy^2 - y^2}{y^4 + (x-1)^2} & \text{si } (x,y) \neq (1,0) \\ 0 & \text{si } (x,y) = (1,0) \end{cases}$$

Seleccione una o más de una:

- a. f es continua en (1,0).
- c. Sea g(x,y) = h(x)f(x,y), para cierta h(x). Si f no es continua en un punto, tampoco puede serlo g.
- od. En todo $(x,y)\neq (1,0)$ la función f(x,y) es continua.

ightharpoonup e. El límite de f cuando (x,y) o (1,0) a lo largo de cualquier recta existe y es 0.

 $\nabla f(x,y) = (1+2xy)i + (x^2+2y+2)j$. Tildar la(s) alternativa(s) correcta(s).

Seleccione una o más de una:

Sea z=f(x,y) una función continua en todo punto de \mathbb{R}^2 tal que para cualquier $(x,y)\in\mathbb{R}^2$ se cumple que

Pregunta 2

Sin responder aun

Puntúa como 20

P Marca

pregunta

Pregunta 3

Sin responder aun

Puntúa como 20

P Marcar pregunta Se desean hallar los valores extremos de la función $f(x,y,z)=x^2+y^2+z^2$ sujeta a la restricción $g(x,y,z)\colon 2x-ay-z=5$, donde a>0. Suponga que se emplea el método de los multiplicadores de Lagrange y se obtiene una cierta lista de puntos $P_1,\ P_2,...$ candidatos a ser extremos locales.

Seleccione una o más de una:

- lacksquare a. Existen dos puntos sobre la Estricción dada en los cuales abla f y abla g resultan paralelos.
- b. Para el valor a=2, los vectores ∇f y ∇g son, en los puntos candidatos obtenidos, paralelos y del mismo sentido.
- $lue{f C}$ c. Al menos una de las ecuaciones que resultan de aplicar el método de los multiplicadores de Lagrange es no lineal, dada la naturaleza de la función objetivo f .
- d. El valor de f en uno de los puntos candidatos a ser extremos relativo por el método de los multiplicadores de Lagrange es $\frac{25}{5+a^2}$.
- e. Para el valor a=1, existe uno de los puntos candidatos a ser extremo en el que los vectores ∇f y ∇g resultan perpendiculares entre si.

Pregunta 4

Sin responder aun

Puntúa como 20

Marcar

pregunta

Sea R la región interior a la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a,b>1) y exterior al círculo $x^2 + y^2 = 1$. Evaluar la integral de linea $\int_C 2xy \ dx + (x^2 + 2x) dy$, donde $C = C_1 \cup C_2$ es la frontera de R como se muestra en la figura.

Tildar la(s) alternativa(s) correcta(s).

Tildar la(s) alternativa(s) correcta(s).

0

Seleccione una o más de una:

- a. El valor de la integral es $2\pi(1-ab)$.
- b. El valor de la integral es cero.
- c. Se satisfacen las hipótesis para aplicar una generalización del Teorema de Green.
- d. El valor de la integral es independiente de la parametrización.
- e. El valor de la integral es $2\pi(ab-1)$.
- f. Si solo uno de los valores α o b es igual a 1 la integral es cero.

Pregunta 5

Sin responder aûn

Puntúa como 20

Marcar pregunta Tildar la(s) alternativa(s) correcta(s).

Seleccione una o más de una:

- a. La integral de superficie en la consigna UNA INTEGRAL DE SUPERFICIE puede resolverse parametrizando la porción de superficie dada.
- b.

PROBLEMA DE FLUJO.

El flujo del campo vectorial $\mathbf{A}(x,y,x) = xyi-x^2j+(x+z)k$ a través de la superficie orientada hacia arriba S que es la porción del primer octante del plano 2x+2y+z=6 es una de las coordenadas del centro de la cónica dada por la ecuación de segundo grado $16x^2-216x+16y^2-32y+345=0$.

- c. La superficie de la parte de paraboloide hiperbólico z=xy que está dentro del cilindro $x^2+y^2=a^2$ es $\frac{2}{3}\pi\left[(a^2+\frac{1}{3})\sqrt{(a^2+1)^2(\sqrt{a^2+1})^2(\sqrt{a^2+1})^2}\right]$
- _ d.

UNA INTEGRAL DE SUPERFICIE.

Sea f(x,y,z)=3x+y+z y S el plano 3x-2y+z=0 restringido al dominio $D=\{(x,y)\in\mathbb{R}^2\colon 0\le x\le 1\ ; 0\le y\le 2\}$. El valor de la integral de superficie $\int_D^{} f\ dS$ coincide con la excentricidad de la cónica dada por la ecuación $13x^2+14y^2=52$.