$\int f(x)dx$	f(x)	f'(x)
kx + c	k	0
$\frac{kx + c}{\frac{x^{n+1}}{n+1} + c}$ $a \int f(x)dx + b \int g(x)dx$	x^n	nx^{n-1}
$a \int f(x) dx + b \int g(x) dx$	af(x) + bg(x)	af'(x) + bg'(x)
	f(x)g(x)	f(x)g'(x) + g(x)f'(x) $f'(x)g(x) - g'(x)f(x)$
	$\frac{f(x)g(x)}{\frac{f(x)}{g(x)}}$	$\frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}$
$ln\left(\left x\right \right) + c$	$\frac{g(w)}{\frac{1}{w}}$	$\frac{g(\omega)}{-\frac{1}{2}}$
$\frac{x x }{2} + c$	$\frac{x}{ x }$	$\frac{x}{ x }$
x + c	sgn(x)	0
$\frac{ x + c}{\frac{a^x}{ln(a)} + c}$	a^x	$a^x ln(a)$
$\int xf^{-1}(x) - \int f(u)du$ donde $u = f^{-1}(x)$	$f^{-1}(x)$	$\frac{1}{f'[f^{-1}(x)]}$
$\frac{xln(x)-x}{ln(a)}+c$	$log_a(x)$	1
	$\frac{f\left[g\left(x\right)\right]}{b^{ax}}$	$\frac{\frac{1}{xln(a)}}{f'\left[g\left(x\right)\right]g'\left(x\right)}$
$\frac{b^{ax}}{aln(b)} + c$	b^{ax}	$b^{ax}ln(b)a$
wii (v)	x^x	$x^x \left[1 + ln(x)\right]$
-cos(x) + c	sen(x)	cos(x)
sen(x) + c	cos(x)	-sen(x)
$-ln\left[\left \cos\left(x\right)\right \right]+c$	tan(x)	$sec^2(x)$
$ \begin{array}{c c} -ln \left[csc \left(x \right) + cot \left(x \right) \right] + c \\ ln \left[tan \left(x \right) + sec \left(x \right) \right] + c \\ ln \left(sen \left(x \right) \right) + c \\ xsen^{-1}(x) + \sqrt{1 - x^2} + c \end{array} $	csc(x)	-csc(x)cot(x)
ln[tan(x) + sec(x)] + c	sec(x)	sec(x)tan(x)
ln(sen(x)) + c	cot(x)	$-csc^2(x)$
	$sen^{-1}(x)$	$ \frac{1}{\sqrt{1-x^2}} \\ -\frac{1}{\sqrt{1-x^2}} $
$x\cos^{-1}(x) - \sqrt{1 - x^2} + c$	$cos^{-1}(x)$	$-\frac{1}{\sqrt{1-x^2}}$
$x tan^{-1}(x) - \frac{ln(x^2+1)}{2} + c$	$tan^{-1}(x)$	$\frac{1}{1+x^2}$
$xcsc^{-1}(x) + ln\left(\left \sqrt{x^2 - 1} + x\right \right) + c$	$csc^{-1}(x)$	$-\frac{1}{x\sqrt{x^2-1}}$
$xsec^{-1}(x) - ln\left(\left \sqrt{x^2 - 1} + x\right \right) + c$	$sec^{-1}(x)$	$\frac{1}{x\sqrt{x^2-1}}$
$x\cot^{-1}(x) + \frac{\ln(x^2+1)}{2} + c$	$\cot^{-1}(x)$	$-\frac{1}{1+x^2} \\ cosh(x)$
$\cosh(x) + c$	senh(x)	$\cosh(x)$
$\int f(x)dx$	f(x)	f'(x)

$\int f(x)dx$	f(x)	f'(x)
senh(x) + c	cosh(x)	senh(x)
$ln\left[\cosh\left(x\right)\right] + c$	tanh(x)	$senh^2(x)$
$\frac{-ln\left[\left csch(x)+cot(x)\right \right]+c}{tan^{-1}\left[senh\left(x\right)\right]+c}$	csch(x)	-csch(x)coth(x)
$tan^{-1}\left[senh\left(x\right) \right] +c$	sech(x)	-sech(x)tanh(x)
$ln\left[senh\left(x \right)\right] + c$	coth(x)	$-csch^2(x)$
$x sinh^{-1}(x) - \sqrt{x^2 + 1} + c$	$senh^{-1}(x)$	$\frac{1}{\sqrt{1+x^2}}$
$x cosh^{-1}(x) - \sqrt{x^2 - 1} + c$	$cosh^{-1}(x)$	$\frac{1}{\sqrt{x^2-1}}$
$x tanh^{-1}(x) + \frac{ln(x^2-1)}{2} + c$	$tanh^{-1}(x)$	$\frac{1}{1-x^2}$
$xcsch^{-1}(x) + ln\left(\left \sqrt{x^2 + 1} + x\right \right) + c$	$csch^{-1}(x)$	$-\frac{1}{ x \sqrt{1+x^2}}$
$xsech^{-1}(x) + sin^{-1}(x) + c$	$sech^{-1}(x)$	$-\frac{1}{x\sqrt{1-x^2}}$
$x \cot h^{-1}(x) + \frac{\ln(x^2 - 1)}{2} + c$	$coth^{-1}(x)$	$\frac{\frac{1}{1-x^2}}{f'\left[g\left(x\right)\right]\left[g'\left(x\right)\right]^2+g''\left(x\right)f\left[g\left(x\right)\right]}$
$\int f(u)du \text{ donde } u = g(x)$	$f\left[g\left(x\right)\right]g'\left(x\right)$	$f'[g(x)][g'(x)]^2 + g''(x) f[g(x)]$
$f(x)g(x) - \int f'(x)g(x)dx$ $\frac{1}{a}tan^{-1}(\frac{x}{a}) + c$	f(x)g'(x)	$f'(x)g'(x) + g''(x)f(x)$ $-\frac{2x}{2}$
	$\frac{1}{a^2+x^2}$	$-\frac{2x}{(x^2+a^2)^2}$
$\frac{1}{2a}ln\left(\left \frac{x+a}{x-a}\right \right) + c$	$\frac{1}{a^2 - x^2}$	$-\frac{2x}{(x^2+a^2)^2} - \frac{2x}{(a^2-x^2)^2}$
$\frac{1}{2a}ln\left(\left \frac{x-a}{x+a}\right \right) + c$	$\frac{1}{x^2-a^2}$	$-\frac{2x}{(x^2-a^2)^2}$
$\frac{\ln(mx+h)}{m} + c$	$ \frac{1}{a^2 - x^2} $ $ \frac{1}{x^2 - a^2} $ $ \frac{1}{mx + h} $	$-\frac{m}{(mx+h)^2}$
$\frac{2tan^{-1}\left(\frac{2ax+b}{\sqrt{-\Delta}}\right)}{\sqrt{-\Delta}} + C'$	$\frac{1}{ax^2+bx+c}$ donde $\Delta < 0$	$-\frac{2ax+b}{\left(ax^2+bx+c\right)^2}$
$\frac{tan^{-1}(x)}{2} + \frac{x}{2x^2+2} + c$	$\frac{1}{(x^2+1)^2}$	$-\frac{4x}{(x^2+1)^3}$
$\int \left(\frac{2u}{u^2+1}\right) \left(\frac{2}{u^2+1}du\right) \text{ donde } u = \tan\left(\frac{x}{2}\right)$	sen(x)	$\frac{(ax^2+bx+c)^2}{-\frac{4x}{(x^2+1)^3}}$ $\frac{2}{\tan^2(\frac{x}{2})+1} - 1$ $-\frac{2\tan(\frac{x}{2})}{-\frac{2\tan(\frac{x}{2})}{2}}$
$\int \left(\frac{1-u^2}{u^2+1}\right) \left(\frac{2}{u^2+1}du\right) \text{ donde } u = \tan\left(\frac{x}{2}\right)$	cos(x)	$-\frac{2tan\left(\frac{x}{2}\right)}{tan^2\left(\frac{x}{2}\right)+1}$
$\int f(x)dx$	f(x)	f'(x)