18.102 Assignment 7

Octavio Vega

May 23, 2023

Problem 1

(a)

Proof. Let E = [a, b] and let $f : E \to \mathbb{C}$. Suppose $f \in L^p([a, b])$. Then

$$\Rightarrow \int_{E} |f|^{p} < \infty \tag{1}$$

$$\Rightarrow \left(\int_{E} |f|^{p}\right)^{\frac{1}{p}} < \infty \tag{2}$$

$$\iff ||f||_{L^p(E)} < \infty. \tag{3}$$

Now let $1 \leq q \leq p$. Then by Hölder's inequality, since $1: E \to \mathbb{C}$ is measurable, then

$$||f||_{L^{q}(E)}^{q} = \int_{E} |f|^{q} \tag{4}$$

$$= |||f|^q||_{L^1(E)} \tag{5}$$

$$= ||1 \cdot |f|^q||_{L^1(E)} \tag{6}$$

$$\leq ||1||_{L^{\frac{p}{p-q}}(E)}|||f|^q||_{L^{\frac{p}{q}}(E)} \tag{7}$$

$$= \left(\int_{E} 1\right)^{\frac{p-q}{p}} \left(\int_{E} \left||f|^{q}\right|^{\frac{p}{q}}\right)^{\frac{q}{p}} \tag{8}$$

$$= (b-a)^{\frac{p-q}{p}} \left(\int_E |f|^p \right)^{\frac{q}{p}} \tag{9}$$

$$= (b-a)^{\frac{p-q}{p}} ||f||_{L^{p}(E)}^{q} \tag{10}$$

$$<\infty.$$
 (11)

Hence, $f \in L^p([a,b]) \Rightarrow f \in L^q([a,b])$.

Therefore $L^p([a,b]) \subset L^q([a,b])$.

(b)

Proof. Let $f \in L^p([a,b])$ and $\epsilon > 0$. Choose N such that

$$||f - f\chi_{[-f^{-1}(N), f^{-1}(N)]}||_p < \frac{\epsilon}{2}.$$
 (12)

Let $f_n = f\chi_{[-f^{-1}(n), f^{-1}(n)]}$. From PS6.2, Littlewood's third principle tells us that "every measurable function is nearly continuous." This gives us a closed set F such that

$$m([a,b]\backslash F) < \left(\frac{\epsilon}{4N}\right)^p,$$
 (13)

and the restriction $f_n|_F$ is continuous with $f_N(a) = f_N(b) = 0$. So, we have

$$||f_n - f||^p = \int_{[a,b] \setminus F} |f_n - f|_p^p \tag{14}$$

$$\leq (2N)^p m([a,b] \backslash F) \tag{15}$$

$$<(2N)^p \frac{\epsilon^p}{(4N)^p} \tag{16}$$

$$= \left(\frac{\epsilon}{2}\right)^p,\tag{17}$$

i.e. $||f_n - f||_p < \epsilon$.

Since χ is a step function, the theorem given in the assignment tells us that we can find a $g \in C([a,b])$ with g(a) = g(b) = 0. Let $g = \lim_{n \to \infty} f_n$. Then $|f - g| < \epsilon$. Thus, C([a,b]) is dense in $L^p([a,b])$.

Therefore
$$L^p([a,b])$$
 is separable.

(c)

Proof. For each $n \in \mathbb{N}$, define $f_n := f\chi_{[-n,n]}$. Since $f \in L^p(\mathbb{R})$, then $f \in L^p([-n,n])$, so by the given theorem, f_n is a step function and $\exists g_n \in C([-n,n])$ with g(-n) = g(n) = 0 such that

$$||f - f_n||_p + ||f - g_n||_p < \epsilon.$$
 (18)

We compute

$$||f - f_n||_p^p = \int_{\mathbb{R}} |f - f_n|^p$$
 (19)

$$= \int_{\mathbb{D}} |f|^p |1 - \chi_{[-n,n]}|^p \tag{20}$$

$$= \int_{\mathbb{R}\setminus[-n,n]} |f|^p |1 - \chi_{[-n,n]}|^p + \int_{[-n,n]} |f|^p |\chi_{[-n,n]}|^p \qquad (21)$$

$$= \int_{\mathbb{R}\backslash[-n,n]} |f|^p. \tag{22}$$

Sending $n \to \infty$, we get

$$||f - f_n||_p^p = \int_{\varnothing} |f|^p = 0.$$
 (23)

Thus, $||f_n - f||_p \to 0$ as $n \to \infty$. Choosing R sufficiently large, we are left with $||f - g_n||_p < \epsilon$ as $n \to \infty$. Take $g = \lim_{n \to \infty} g_n$, and we are done.

Therefore
$$||f - g||_p < \epsilon$$
.

(d)

Proof. From part (c), we know that for every $f \in L^p(\mathbb{R})$ and $\epsilon > 0$, we can find a $g \in C(\mathbb{R})$ such that $\forall |x| > R$, g(x) = 0 and $||f - g||_p < \epsilon$. So, $C(\mathbb{R})$ is dense in $L^p(\mathbb{R})$.

Let $\{g_n\}_n \subset C(\mathbb{R})$. Then we are done, since this sequence is countable.

Therefore $L^p(\mathbb{R})$ is separable.