7. Let An = { x ∈ [0,1] : f(x) > \frac{1}{n} \frac{1}{ An is finite. Reason: No. of elts in An is = Mn. Suppose not. Say 3 $\chi_1, \ldots, \chi_m \in A_n, m > Mn$ and all x; are distinct. $x_i \in A_n \Rightarrow f(x_i) > \frac{1}{n} \quad (\forall i)$ Given $f(x_1) + \cdots + f(x_m) \leq M$. $\Rightarrow \frac{m}{n} < \sum_{i=1}^{n} f(x_i) \leq M$ => m < Mn (But this is a contradiction because m>Mn by hypothesis). :. An has atmost M.n elements. Let $S = \{ x \in \Sigma_0, iJ : f(x) \neq 0 \}.$ It is given that $f(x) \geq 0 \forall x$. $\therefore S = \left\{ x \in [0,1] : f(x) > 0 \right\}.$ $S = \bigcup_{n \in \mathbb{N}} A_n$. Proof: $S \subseteq \bigcup_{n \in \mathbb{N}} A_n : \text{ Let } x \in S_- :: f(x) > 0 \Rightarrow f(x) > \frac{1}{k} for$ Some KEN ⇒xEA_K ⇒ x € UAn. NEN An ES: X & UAn => X & Ak for some K & IN $\Rightarrow f(x) > k > 0 \Rightarrow x \in S.$

Countable union of countable sets (An, which are finite) is always countable. .: S is countable.

This is a controliction.

Let $n = \operatorname{ord}(a)$.

Let d[n]. Consider $q_1 = \langle q^d \rangle$. $\operatorname{ord}(q_1) = \frac{n}{d}$.

Acc to what is given, q_1 is exactly one of q_1 .

Go, H or q_2 . This, respectively, means q_3 is q_4 . This respectively implies, q_4 is q_4 .

In has exactly one proper the divisor.

If q_4 is q_4 then q_4 of the divisors of q_4 is q_4 .

If q_4 is q_4 then q_4 of the divisors of q_4 is q_4 .

If q_4 is q_4 is q_4 then q_4 of q_4 divisors of q_4 is q_4 .

In is q_4 if q_4 is q_4 is q_4 . q_4 is q_4 if q_4 is q_4 if q_4 if q_4 is q_4 is q_4 if q_4 is q_4 if q_4 is q_4 if q_4 if q_4 is q_4 if q_4 is q_4 if q_4

Exercise: If the prime factorization of n is $p_1^{n_1} \cdots p_k^{n_k}$ when $\alpha_i > 0$, p_i are distinct primes, then no of 7 ve divisors of n is exactly $(\alpha_{1}+1) \cdots (\alpha_{k}+1)$.

Hints: Let zlm:= no. of the divisors of m. Show that (i) $7(p^k) = k+1$ if p is prime, (ii) $\tau(ab) = \tau(a) \tau(b)$ if a,b are coprime. 3 Show that C is closed & bounded. Let $x \in C' \setminus C$. \exists a seq in C((x_n) s.t. $x_n \rightarrow x$. $x - x_i \neq 0 \forall i$. (3B70 s.t. |x| < B $4 x \in C$ Define $f:C\rightarrow \mathbb{R}$ by $f(z)=\frac{1}{2-x}$. Then f is cont & unbold. This frick will be used to > prove that a cont R-feme on a compact set will attain $M_n = \begin{bmatrix} r & s \\ s & r \end{bmatrix}_{n \times n}$ det $M_n = ?$ bet 1 john. LøJ i bejogs: ei-ei+, is an eigenvector of Mn sith eigenvalue n-s $(\forall i=1,...,n-1)$. Note: Mn) = ((n-1) str) / ; . .. e, +...ten is an e. vector of Mu with e. value r+(n-1)s. $\therefore (n-r-(n-1)s) \mid P(n) = 7 \text{ alg mut of } r-s \text{ is } \leq n-1$ But already seen goo must of r-s > n-1. $n-1 \leq ground \leq alg mult \leq n-1$ \Rightarrow alg mut = n-1 = geo mut. $p(x) = (x - (x-s))^{n-1} (x - (x + (n-1)s))$.. Q(x) =1 : deg P = n. $\det(M_n) = (\gamma - s)^{n-1} (\gamma + (n-1)s).$

If we let $V_A = \{ \overrightarrow{v} \in \mathbb{R}^n : M_n \cdot \overrightarrow{v} = A \cdot \overrightarrow{v} \}$, then V_A is a subspace of $\mathbb{R}^n : \forall A \in \mathbb{R}$. (Prove!) We say that A has geometric multiplicity = dim V_A . Look at the characteristic poly P(x) of M_n . Let $K \geq 0$ be highest s.t. $(x-A)^k | P(x)$. This k is said to be the algebraic multiplicity of P(x). Fact: Geo mult $\leq Alg$ mult.

Note: Whenever someone says "ring" assume it is a commutative ring with 1.

6. Randomly choose $j \in \{1,...,n\}$ Ad is the event that d[j].

 $\begin{cases}
A_{k_1} \cap A_{k_2} \\
How many fav events?
\end{cases} \left[\frac{n}{k_1 k_2} \right] = \frac{n}{k_1 k_2} \qquad P(A) \cdot P(B)$ $j \in A_{k_1} \cap A_{k_2} \iff k_1 j \not A_{k_2} | j \iff k_1 k_2 | j$

A, B indep

A_k: How many far events? $\left[\frac{n}{k_i}\right] = \frac{n}{k_i}$ P $\left(A_{k_1} \cap A_{k_2}\right) = \frac{n}{k_1 k_2} \times \frac{1}{n} = \frac{1}{k_1 k_2}$ P $\left(A_{k_1}\right) \cdot P\left(A_{k_2}\right) = \left(\frac{n}{k_1} \times \frac{1}{n}\right) \left(\frac{n}{k_2} \times \frac{1}{n}\right) = \frac{1}{k_1 k_2}$ Equal Similarly for other pairs.