Students' union of Southeast University

2012 级高等数学(A、B)(上)期中试卷

1. 设斜率为
$$-\frac{1}{2}$$
的直线 L 是曲线 $y = \frac{2}{x}(x > 0)$ 的切线,则 L 的方程为

3. 设
$$f(x) = x(x+1)(x+2)\cdots(x+2012)$$
, 则 $f'(-1) =$ ______;

4. 设
$$y = f(\ln(x + \sqrt{a^2 + x^2}))$$
, 其中 $f(u)$ 为可微函数, 则微分dy = ______;

5. 函数
$$f(x) = e^{\sin x}$$
 带Peano余项的 2 阶Maclaurin公式是

(1) 极限
$$\lim_{n\to\infty} |a_n|$$
 存在, 但极限 $\lim_{n\to\infty} a_n$ 不存在的数列 $a_n =$ _____;

(2) 极限
$$\lim_{x\to 0} f(x)$$
 与 $\lim_{x\to 0} f(x)g(x)$ 都存在,但极限 $\lim_{x\to 0} g(x)$ 不存在的函数

$$f(x) = \underline{\hspace{1cm}}, g(x) = \underline{\hspace{1cm}}$$

(3) 在
$$x = 0$$
 处导数不存在,但 $x = 0$ 是极值点的连续函数有______

二、 单项选择题(本题共3小题, 每小题4分, 满分12分)

1. 设
$$f(x) = \begin{cases} (1-x)^{\frac{1}{x}}, & x > 0 \\ b, & x = 0 \text{ 在 } x = 0 \text{ 处连续, 则} \\ x \sin \frac{1}{x} - a, x < 0 \end{cases}$$

2. 设
$$f(x) = (x + |\sin x|) \cos x$$
, 则

(A)
$$f'(0) = 2$$
 (B) $f'_0(0) = 0e^{-1}(C)$ $f'_0(0) = 1-b$ (D) $f(x) = 0$ (E) $f(x) = 0$

$$(A)$$
任何两个无穷小量之比的极限必存在(极限值为有限实数或 ∞);

(B)若数列
$$\{a_{2k-1}\}$$
 和 $\{a_{2k}\}$ 都收敛,则数列 $\{a_n\}$ 也收敛;

(C)若数列
$$\{a_n\}$$
 收敛,数列 $\{b_n\}$ 发散,则数列 $\{a_nb_n\}$ 必发散;

(D)若数列
$$\{a_n\}$$
单调增加,数列 $\{b_n\}$ 单调减少,且 $\lim_{n\to\infty}(a_n-b_n)=0$,则 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.

Students' union of Southeast University

三、 计算下列各题(本题共5小题,每小题7分,满分35分)

1. 求极限
$$\lim_{x\to 0} \frac{\sqrt{1+x^4}-\sqrt[3]{1-2x^4}}{(1-\cos x)\sin^2 x}$$
.

2. 求极限
$$\lim_{n\to\infty} \sqrt[n]{n^4+4^n}$$
.

3. 设
$$y = y(x)$$
 是由方程 $x + y = \arctan(x - y)$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.

四、 (本题满分8分) 证明: 当x > 0 时、 $x^2 + 1 > \ln x$.

五、(本题满分8分) 设函数f(x)在闭区间[0,3a] (a>0)上连续,在开区间(0,3a)内可导,且f(3a)=f(a)< f(0)< f(2a). 证明: 至少存在一点 $\xi\in(0,2a)$, 使得 $f'(\xi)=f'(\xi+a)$.

六、(本题满分8分) (1) 证明本第或: 利用单调布界原理证明数别 $\{x_n\}$ 收敛.

(2)
$$\mbox{if } x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$