## Simple Linear Regression: Estimation

EC 320: Introduction to Econometrics

Amna Javed Winter 2020

# Prologue

We considered a simple linear regression of  $Y_i$  on  $X_i$ :

$$Y_i = \beta_1 + \beta_2 X_i + u_i.$$

- $\cdot$   $eta_1$  and  $eta_2$  are **population parameters** that describe the "true" relationship between  $X_i$  and  $Y_i$  .
- **Problem:** We don't know the population parameters. The best we can do is to estimate them.

We derived the OLS estimator by picking estimates that minimize  $\sum_{i=1}^n \hat{u}_i^2$  .

· Intercept:

$$\hat{eta}_1 = ar{Y} - \hat{eta}_2 ar{X}.$$

· Slope:

$${\hat eta}_2 = rac{\sum_{i=1}^n (Y_i - ar{Y})(X_i - ar{X})}{\sum_{i=1}^n (X_i - ar{X})^2}.$$

We used these formulas to obtain estimates of the parameters  $eta_1$  and  $eta_2$  in a regression of  $Y_i$  on  $X_i$  .

With the OLS estimates of the population parameters, we constructed a regression line:

$$\hat{Y}_i = \hat{eta}_1 + \hat{eta}_2 X_i.$$

- $\cdot$   $\hat{Y}_i$  are predicted or **fitted** values of  $Y_i$  .
- $\cdot$  You can think of  $\hat{Y}_i$  as an estimate of the average value of  $Y_i$  given a particular of  $X_i$  .

OLS still produces prediction errors:  $\hat{u}_i = Y_i - \hat{Y}_i$  .

 $\cdot$  Put differently, there is a part of  $Y_i$  we can explain and a part we cannot:  $Y_i = \hat{Y}_i + \hat{u}_i$  .

## Review

What is the equation for the regression model estimated below?



## Review

The estimated **intercept** is -8.02. What does this tell us?



## Review

The estimated **slope** is 2.13. How do we interpret it?



## Today

#### Agenda

- 1. Highlight important properties of OLS.
- 2. Discuss goodness of fit: how well does one variable explain another?
- 3. Units of measurement.

# **OLS Properties**

## **OLS Properties**

The way we selected OLS estimates  $\hat{\beta}_1$  and  $\hat{\beta}_2$  gives us three important properties:

- 1. Residuals sum to zero:  $\sum_{i=1}^n \hat{u}_i = 0$  .
- 2. The sample covariance between the independent variable and the residuals is zero:  $\sum_{i=1}^n X_i \hat{u}_i = 0$  .
- 3. The point  $(\bar{X}, \bar{Y})$  is always on the regression line.

## **OLS** Residuals

Residuals sum to zero:  $\sum_{i=1}^n \hat{u}_i = 0$  .

- By extension, the sample mean of the residuals are zero.
- You will prove this in Problem Set 3.

## OLS Residuals

The sample covariance between the independent variable and the residuals is zero:  $\sum_{i=1}^n X_i \hat{u}_i = 0$  .

• You will prove a version of this in Problem Set 3.

## **OLS Regression Line**

The point  $(\bar{X}, \bar{Y})$  is always on the regression line.

- $\cdot$  Start with the regression line:  $\hat{Y}_i = \hat{eta}_1 + \hat{eta}_2 X_i$  .
- $\cdot \hat{Y}_i = ar{Y} \hat{eta}_2 ar{X} + \hat{eta}_2 X_i$  .
- $\cdot$  Plug  $ar{X}$  into  $X_i$  :

$$egin{aligned} \hat{Y}_i &= ar{Y} - \hat{eta}_2 ar{X} + \hat{eta}_2 ar{X} \ &= ar{Y}. \end{aligned}$$

#### **Regression 1** vs. **Regression 2**

- · Same slope.
- · Same intercept.

**Q:** Which fitted regression line "explains" the data better?



<sup>\*</sup> Explains = fits.

#### **Regression 1** vs. **Regression 2**

The **coefficient of determination**  $\mathbb{R}^2$  is the fraction of the variation in  $Y_i$  "explained" by  $X_i$  in a linear regression.

- $\cdot R^2 = 1 \implies X_i$  explains all of the variation in  $Y_i$  .
- $\cdot R^2 = 0 \implies X_i$  explains *none* of the variation in  $Y_i$  .

$$R^2 = 0.72$$

$$R^2 = 0.06$$











## Explained and Unexplained Variation

Residuals remind us that there are parts of  $Y_i$  we can't explain.

$$Y_i = \hat{Y}_i + \hat{u}_i$$

 $\cdot$  Sum the above, divide by n , and use the fact that OLS residuals sum to zero to get  $\hat{u}=0 \implies ar{Y}=\hat{Y}$  .

**Total Sum of Squares (TSS)** measures variation in  $Y_i$ :

$$ext{TSS} \equiv \sum_{i=1}^n (Y_i - ar{Y})^2.$$

· We will decompose this variation into explained and unexplained parts.

## Explained and Unexplained Variation

**Explained Sum of Squares (ESS)** measures the variation in  $\hat{Y}_i$  :

$$ext{ESS} \equiv \sum_{i=1}^n (\hat{Y}_i - ar{Y})^2.$$

**Residual Sum of Squares (RSS)** measures the variation in  $\hat{u}_i$  :

$$ext{RSS} \equiv \sum_{i=1}^n \hat{u}_i^2.$$

**Goal:** Show that TSS = ESS + RSS.

**Step 1:** Plug  $Y_i = \hat{Y}_i + \hat{u}_i$  into TSS.

TSS

$$egin{aligned} &= \sum_{i=1}^n (Y_i - ar{Y})^2 \ &= \sum_{i=1}^n ([\hat{Y}_i + \hat{u}_i] - [ar{\hat{Y}} + ar{\hat{u}}])^2 \end{aligned}$$

**Step 2:** Recall that  $ar{\hat{u}}=0$  and  $ar{Y}=ar{\hat{Y}}$  .

TSS

$$egin{aligned} &= \sum_{i=1}^n \left( [\hat{Y}_i - ar{Y}] + \hat{u}_i 
ight)^2 \ &= \sum_{i=1}^n \left( [\hat{Y}_i - ar{Y}] + \hat{u}_i 
ight) \left( [\hat{Y}_i - ar{Y}] + \hat{u}_i 
ight) \ &= \sum_{i=1}^n (\hat{Y}_i - ar{Y})^2 + \sum_{i=1}^n \hat{u}_i^2 + 2 \sum_{i=1}^n \left( (\hat{Y}_i - ar{Y}) \hat{u}_i 
ight) \end{aligned}$$

#### **Step 3:** Notice **ESS** and **RSS**.

TSS

$$= \sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2} + \sum_{i=1}^{n} \hat{u}_{i}^{2} + 2 \sum_{i=1}^{n} \left( (\hat{Y}_{i} - \bar{Y}) \hat{u}_{i} \right)$$

$$= \text{ESS} + \text{RSS} + 2 \sum_{i=1}^{n} \left( (\hat{Y}_{i} - \bar{Y}) \hat{u}_{i} \right)$$

#### Step 4: Simplify.

TSS

$$egin{aligned} &= \operatorname{ESS} + \operatorname{RSS} + 2 \sum_{i=1}^n \left( (\hat{Y}_i - ar{Y}) \hat{u}_i 
ight) \ &= \operatorname{ESS} + \operatorname{RSS} + 2 \sum_{i=1}^n \hat{Y}_i \hat{u}_i - 2 ar{Y} \sum_{i=1}^n \hat{u}_i \end{aligned}$$

**Step 5:** Shut down the last two terms. Notice that

$$egin{aligned} \sum_{i=1}^n \hat{Y}_i \hat{u}_i \ &= \sum_{i=1}^n (\hat{eta}_1 + \hat{eta}_2 X_i) \hat{u}_i \ &= \hat{eta}_1 \sum_{i=1}^n \hat{u}_i + \hat{eta}_2 \sum_{i=1}^n X_i \hat{u}_i \ &= 0 \end{aligned}$$

### Calculating $\mathbb{R}^2$

- $R^2=rac{ ext{ESS}}{ ext{TSS}}$  .
- $\cdot R^2 = 1 rac{ ext{RSS}}{ ext{TSS}}$  .

 $R^2$  is related to the correlation between the actual values of Y and the fitted values of Y

 $\cdot$  Can show that  $R^2=(r_{Y,\hat{Y}})^2$  .

#### So what?

In the social sciences, low  $\mathbb{R}^2$  values are common.

Low  $R^2$  doesn't mean that an estimated regression is useless.

• In a randomized control trial,  $R^2$  is usually less than 0.1.

High  $\mathbb{R}^2$  doesn't necessarily mean you have a "good" regression.

• Worries about selection bias and omitted variables still apply.

## Units of Measurement

We ran a regression of crimes per 1000 students on police per 1000 students. We found that  $\hat{\beta}_1$  = 18.41 and  $\hat{\beta}_2$  = 1.76.



What if we had run a regression of crimes per student on police per 1000 students? What would happen to the slope?



$$\hat{\beta}_2 = 0.001756.$$

## Demeaning

#### Practice problem

Suppose that, before running a regression of  $Y_i$  on  $X_i$ , you decided to demean each variable by subtracting off the mean from each observation. This gave you  $\tilde{Y}_i=Y_i-\bar{Y}$  and  $\tilde{X}_i=X_i-\bar{X}$ .

Then you decide to estimate

$${ ilde Y}_i = eta_1 + eta_2 { ilde X}_i + u_i.$$

What will you get for your intercept estimate  $\hat{\beta}_1$ ?