Linear congruences

Recall that $a \equiv b \mod m$ if and only if a - b is divisible by m, which we abbreviate as $m \mid (a - b)$.

Definition. A linear congruence is an equation of the form

 $ax \equiv b \mod m$.

We wish to find all integers x which satisfy this equation.

First some basic results about congruence.

Lemma 1. If $b \equiv c \mod m$ and n|m, then $b \equiv c \mod n$.

Example 1. $27 \equiv 7 \mod 10$ implies $27 \equiv 7 \mod 5$ and $27 \equiv 7 \mod 2$.

Proof. $m \mid (b-c)$ and $n \mid m$ implies $n \mid (b-c)$. (basic property about division)

Lemma 2. If $b \equiv c \mod n$, then $ab \equiv ac \mod an$.

Example 2. $27 \equiv 7 \mod 10$ implies $108 \equiv 28 \mod 40$.

Proof. n|(b-c) and implies an|a(b-c), so that an|(ab-ac).

Facts:

(a) $a, m \in \mathbb{Z}^+$ and $g = \gcd(a, m)$ implies $\gcd\left(\frac{a}{g}, \frac{m}{g}\right) = 1$.

Example a. $\gcd(\frac{15}{3}, \frac{21}{3}) = 1.$

(b) a|bc and gcd(a,b) = 1 implies a|c.

Proposition 3. Suppose $a, m \in \mathbb{Z}^+$, $g = \gcd(a, m)$, and $b, c \in \mathbb{Z}$. Then $ab \equiv ac \mod m$ if and only if $b \equiv c \mod \frac{m}{a}$.

Example 3. $4x \equiv 12 \mod 14$ if and only if $x \equiv 3 \mod 7$. Thus the solutions to this equation are $\{\ldots, -11, -4, 3, 10, 17, \ldots\}$.

Proof. (\Leftarrow) $b \equiv c \mod \frac{m}{g}$ implies (Lemma 2) $ab \equiv ac \mod \frac{a}{g}m$. This implies (Lemma 1) $ab \equiv ac \mod m$.

(\Rightarrow) $ab \equiv ac \mod m$ implies m | (ab - ac), which implies m | a (b - c), which implies $\frac{m}{g} | \frac{a}{g} (b - c)$. Since $\gcd\left(\frac{a}{g}, \frac{m}{g}\right) = 1$ (Fact a), we conclude $\frac{m}{g} | (b - c)$ (by Fact b).

Special cases of this proposition:

Corollary 4. Suppose a|m. Then $ab \equiv ac \mod m$ if and only if $b \equiv c \mod \frac{m}{a}$.

Example 4. $3b \equiv 3c \mod 12$ if and only if $b \equiv c \mod 4$.

Corollary 5. Suppose $\gcd(a, m) = 1$. Then $ab \equiv ac \mod m$ if and only if $b \equiv c \mod m$.

Example 5. $3b \equiv 3c \mod 10$ if and only if $b \equiv c \mod 10$.

Lemma 6. Let $k \in \mathbb{Z}$. Then $ax \equiv b \mod m$ if and only if $ax \equiv b + km \mod m$. (proof is easy)

Example 6. $2x \equiv 5 \mod 7$ if and only if $2x \equiv 12 \mod 7$ (we saw this earlier).

Now we solve a linear congruence: Consider

 $6x \equiv 15 \mod 21$.

This is equivalent to

$$2x \equiv 5 \mod 7$$

$$\Leftrightarrow$$

$$2x \equiv 2 \cdot 6 \mod 7$$

$$\Leftrightarrow$$

$$x \equiv 6 \mod 7.$$

Consider the general method for solving a linear congruence

$$ax \equiv b \mod m$$
.

Let $g = \gcd(a, m)$.

CASE 1. g does not divide b.

Lemma 7. If g does not divide b, then there are no solutions. In other words, if there exists a solution, then g|b.

Example 7. The linear congruence $6x \equiv 4 \mod 21$ has no solutions since 3 does not divide 4.

Proof. Suppose there exists a solution x. Then m|(ax-b), which implies there exists $y\in\mathbb{Z}$ such that

$$my = ax - b$$
,

which implies there exists $y \in \mathbb{Z}$, b = ax - my, which implies g|b.

CASE 2. g divides b.

Then

$$\frac{a}{g}x \equiv \frac{b}{g} \mod \frac{m}{g}.$$

Note that $\gcd\left(\frac{a}{g}, \frac{m}{g}\right) = 1$.

Thus we are reduced to considering how to solve $ax \equiv b \mod m$ when gcd(a, m) = 1.

Lemma 8. If gcd(a, m) = 1, then there exists $c \in \mathbb{Z}$ such that

$$b \equiv ac \mod m$$
.

How to use the lemma: Consider $2x \equiv 5 \mod 7$. Since $\gcd(2,7) = 1$, there exists $c \in \mathbb{Z}$, $5 \equiv 2c \mod 7$. Indeed, take c = 6.

Proof. Since $\gcd(a,m)=1$, there exist $x,y\in\mathbb{Z}$ such that ax+my=1. Hence

$$axb + myb = b$$
.

This implies that

$$a \cdot xb \equiv b \mod m$$
.

Now take c = xb.