Contents

1 Cell type annotation

1.1	Scatter	plots				
/m	nanuscript_	_notebooks/	figures/la	abel.png		

Figure 1: Scatter: Time points (days) and sorted assays (CD) annotation

Figure 2: Scatter: Leiden identity simple annotation

Figure 3: Scatter: Leiden identity annotation

Figure 4: Proportions: Leiden identity simple annotation

Figure 5: Proportions: Leiden identity simple annotation

Figure 6: Proportions: Leiden identity annotation

1.3 Correlation plots

Figure 7: Correlation between cell type averages (obtained using top PCs)

2 Data integration

2.1 Linear optimal transport

2.1.1 Scatter plots

Figure 8: Assays in RNA days PCA subspace

Figure 9: Assays in RNA days PCA subspace, after alignment with linear optimal transport $\,$

Figure 10: Assays in RNA days PCA subspace obtained using the intersection of expressed genes, after alignment with linear optimal transport.

Figure 11: Assays in RNA days PCA subspace obtained using the union of variable genes, after alignment with linear optimal transport.

Figure 12: Assays in RNA days PCA subspace obtained using the intersection of variable genes, after alignment with linear optimal transport.

Figure 13: Correlation between assays' cell type averages (obtained using top PCs of assays, each in their own PCA subspace)

Figure 14: Correlation between assays' cell type averages (obtained using top PCs of assays in RNA days PCA subspace)

Figure 15: Correlation between assays' cell type averages (obtained using top PCs of assays in RNA days PCA subspace, after alignment with linear optimal transport)

2.2 Supervised optimal transport

Grouping of categories to go from full to simple annotation

- 'Early-ERP', 'Erythroblast', 'CD34+ ERP' = 'Erythroid'
- 'Platelet', 'CD34+ MKP' = 'MKP'
- 'Pre-Dendritic', 'Dendritic Cell' = 'Dendritic'
- 'CD34+ CLP', 'CD34+ pre-B', 'Pro-B', 'Plasma Cell', 'NK cells', 'Naive T-cell', 'CD8 T-cell' = 'Lymphoid'
- 'CD34+ Mixed-Lineage', 'CD34+ HSC', 'CD34+ CMP', 'CD34+ Gran', 'Eosinophil', 'Stromal Cells' = 'Mixed-Lineage'
- change unlikely 'Erythroid' annotation (outlier, mixed cluster) for late ATAC days (day 7 and 12) to 'Mixed-Lineage'

Figure 16: Supplementary: supervision of OT cost matrix

3 Trajectory inference

Figure 17: Supplementary: hematopoeitic stem cell score

Figure 18: Top markers of the Erythroid branch based on log fold change