

02 Algorithm Analysis

College of Computer Science, CQU

Outline

- Introduction
- Best, Worst and Average Cases
- Asymptotic Analysis
- Space Bounds

Introduction

- How do you compare two algorithms for solving some problem in terms of efficiency?
- Solution 1:implement both algorithms as computer programs and then run them on a suitable range of inputs.
- Result: unsatisfactory

Asymptotic analysis

- Solution 2:using asymptotic analysis(渐进分析)
- Asymptotic analysis measures the efficiency of an algorithm as the input size becomes large.
- It is actually an estimating technique.
- However, asymptotic analysis has been proved useful.

Critical resource

- The critical resource for a program is most often its
 - running time.
 - space required to run the program.
- We have no way to calculate the running time reliably other than to run an implementation of the algorithm on some computer.
- The only alternative is to use some other measure as a surrogate for running time.

Estimating an algorithm's performance

- One primary consideration when estimating an algorithm's performance is the number of basic operations required by the algorithm to process an input of a certain size.
- Size is often the number of inputs processed.
- A basic operation must have the property that its time to complete does not depend on the particular values of its operands.

Example

```
// Return position of largest value in "A" of size "n"
int largest(int A[], int n) {
  int currlarge = 0; // Holds largest element position
  for (int i=1; i<n; i++) // For each array element
   if (A[currlarge] < A[i]) // if A[i] is larger
      currlarge = i; // remember its position
  return currlarge; // Return largest position
}</pre>
```

- basic operations: to compare an integer's value to that of the largest value seen so far
- size: A.length

- The most important factor affecting running time is normally size of the input.
- For a given input size n we often express the time T to run the algorithm as a function of n, written as T(n).
- Let us call c the amount of time required to compare two integers in function largest.

$$T(n) = cn$$

 This equation describes the growth rate for the running time of the largest-value sequential search algorithm

Example 3.3 Consider the following code:

```
sum = 0;
for (i=1; i<=n; i++)
   for (j=1; j<=n; j++)
    sum++;</pre>
```

- The basic operation in this example is the increment operation for variable *sum*. We can assume that incrementing takes constant time; call this time c_2 .
- The total number of increment operations is n^2 .
- Thus, we say that the running time is $T(n) = c_2 n^2$

The **growth rate** for an algorithm is the rate at which the cost of the algorithm grows as the size of its input grows.

UZ Algoritnm Analyasis

n	$\log \log n$	$\log n$	n	n log n	n ²	n ³	2 ⁿ
16	2	4	24	$2 \cdot 2^4 = 2^5$	2 ⁸	212	216
256	3	8	28	$8 \cdot 2^8 = 2^{11}$	2 ¹⁶	224	2 ²⁵⁶
1024	≈ 3.3	10	210	$10\cdot 2^{10}\approx 2^{13}$	2 ²⁰	230	21024
64K	4	16	2 ¹⁶	$16 \cdot 2^{16} = 2^{20}$	2^{32}	248	2 ^{64K}
1M	≈ 4.3	20	2 ²⁰	$20\cdot 2^{20}\approx 2^{24}$	240	260	2^{1M}
1G	≈ 4.9	30	230	$30\cdot 2^{30}\approx 2^{35}$	2^{60}	290	2^{1G}

Figure 3.2 Costs for growth rates representative of most computer algorithms.

Best, Worst, and Average Cases

For some algorithms, different inputs of a given size require different

amounts of time.

Best case : Find "35".Compare 1 value

Worst case : Find "46". Compare n values.

Average case : Compare n/2 values.

35

16

Best, Worst, and Average Cases

- When analyzing an algorithm, should we study the best, worst, or average case?
- Normally the best case is too optimistic.
- For realtime applications we are likely to prefer a worst case analysis of an algorithm.
- Otherwise, we often desire an average-case analysis.

Faster Computer or Algorithm

Assume that the new machine is ten times faster than the old.

f(n)	n	n'	Change	n'/n
10n	1000	10,000	n' = 10n	10
20n	500	5000	n' = 10n	10
5n log n	250	1842	$\sqrt{10}$ n < n' < 10n	7.37
$2n^2$	70	223	$n' = \sqrt{10}n$	3.16
2 ⁿ	13	16	n' = n + 3	

It would be much better off changing algorithms instead of buying a computer

Asymptotic Analysis

- □ Asymptotic algorithm analysis(渐进算法分析).
 - Focus on growth rate
 - Ignore the constants
 - Refer to the study of an algorithm as the input size "gets big" or reaches a limit
- Asymptotic analysis provides a simplified model of the running time or other resource needs of an algorithm.

- The upper bound for the growth of algorithm's running time indicates the upper or highest growth rate that the algorithm can have.
- □ The upper bound is defined by "Big-Oh".

For $\mathbf{T}(n)$ a non-negatively valued function, $\mathbf{T}(n)$ is in set O(f(n)) if there exist two positive constants c and n_0 such that $\mathbf{T}(n) \leq cf(n)$ for all $n > n_0$.

$$\lim_{n\to\infty}\frac{T(n)}{f(n)}\leq c$$

- □ 意义:对于问题的所有输入,只要输入规模足够大(即n>n₀),该算法总能在 cf(n)步以内完成。
- □ 分别考虑最好、最坏、平均情况下的上限。
- □ 大O表示法给出了算法运行时间的上限,表明该算法可能有的最高增长率。-〉顶多坏到某种程度。

Example: 如果
$$T(n) = 3n^2$$
, $\lim_{n \to \infty} \frac{3n^2}{n^2} = 3$, 那么 $T(n)$ 在 $O(n^2)$ 中。

□ 希望找到最紧的上限。

当 $T(n) = 3n^2$, 我们可以说T(n)在 $O(n^3)$ 中, 但是更倾向于说T(n)在 $O(n^2)$ 中。

Example 3.4 Consider the sequential search algorithm for finding a specified value in an array of integers. If visiting and examining one value in the array requires c_s steps where c_s is a positive number, and if the value we search for has equal probability of appearing in any position in the array, then in the average case $\mathbf{T}(n) = c_s n/2$. For all values of n > 1, $c_s n/2 \le c_s n$. Therefore, by the definition, $\mathbf{T}(n)$ is in O(n) for $n_0 = 1$ and $c = c_s$.

Example 3.5 For a particular algorithm, $\mathbf{T}(n) = c_1 n^2 + c_2 n$ in the average case where c_1 and c_2 are positive numbers. Then, $c_1 n^2 + c_2 n \le c_1 n^2 + c_2 n^2 \le (c_1 + c_2) n^2$ for all n > 1. So, $\mathbf{T}(n) \le c n^2$ for $c = c_1 + c_2$, and $n_0 = 1$. Therefore, $\mathbf{T}(n)$ is in $O(n^2)$ by the second definition.

Example 3.6 Assigning the value from the first position of an array to a variable takes constant time regardless of the size of the array. Thus, $\mathbf{T}(n) = c$ (for the best, worst, and average cases). We could say in this case that $\mathbf{T}(n)$ is in $\mathrm{O}(c)$. However, it is traditional to say that an algorithm whose running time has a constant upper bound is in $\mathrm{O}(1)$.

- □ 上限与最坏情况的区别:
 - □ 上限是用来确定运行时间的增长率,体现随着输入规模变化算法的代价变化
 - □ 最差情况是指: 在一个给定的规模中,所有可能的输入中最糟糕的情况。

Lower Bounds

- The lower bound for the growth of algorithm's running time indicates the lower or lowest growth rate that the algorithm can have.
- □ The lower bound is defined by "Big-Omega".

For $\mathbf{T}(n)$ a non-negatively valued function, $\mathbf{T}(n)$ is in set $\Omega(g(n))$ if there exist two positive constants c and n_0 such that $\mathbf{T}(n) \geq cg(n)$ for all $n > n_0$.

$$\lim_{n\to\infty}\frac{T(n)}{g(n)}\geq c$$

Lower Bounds

- □ 意义:对于问题的所有输入,只要输入规模足够大(即n>n₀),该算法至少需要cg(n)步以上才能完成。
- □ 分别考虑最好、最坏、平均情况下的下限。
- 大Ω表示法给出了算法运行时间的下限,表明该算法可能有的最低增长率。

□ 希望找到最紧的下限。

Lower Bounds

Example 3.7 Assume $T(n) = c_1 n^2 + c_2 n$ for c_1 and $c_2 > 0$. Then,

$$c_1 n^2 + c_2 n \ge c_1 n^2$$

for all n > 1. So, $\mathbf{T}(n) \ge cn^2$ for $c = c_1$ and $n_0 = 1$. Therefore, $\mathbf{T}(n)$ is in $\Omega(n^2)$ by the definition.

It is also true that the equation of Example 3.7 is in $\Omega(n)$. However, as with big-Oh notation, we wish to get the "tightest" (for Ω notation, the largest) bound possible. Thus, we prefer to say that this running time is in $\Omega(n^2)$.

O Notation

- □ When the upper and lower bounds are the same within a constant factor, we indicate this by using Θ (big-Theta) notation.
- An algorithm is said to be $\Theta(h(n))$ if it is in O(h(n))and it is in $\Omega(h(n))$.
- For an algorithm, the upper and lower bounds always meet.

Example:
$$T(n) = c_1 n^2$$
.

- ☐ Big-Oh:
 - $c_1 n^2 \le c_1 n^2$ for all $n \ge 1$
 - Therefore, T(n) is $O(n^2)$
- ☐ Big-Omega:
 - $c_1 n^2 \ge c_1 n^2$ for all $n \ge 1$
 - Therefore, T(n) is $\Omega(n^2)$
- \square T(n) is $O(n^2)$ and $\Omega(n^2)$, so T(n) is $\Theta(n^2)$

Simplifying Rules

- 1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).

 上限的上限仍是上限
- **3.** If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $f_1(n) + f_2(n)$ is in $O(\max(g_1(n), g_2(n)))$.
 - →程序顺序给出的两部分,只考虑开销最大的那部分
- **4.** If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $f_1(n)f_2(n)$ is in $O(g_1(n)g_2(n))$.
 - → 循环: 总的代价为每次代价与循环次数的乘积

Calculating the Running Time for a Program

Example 3.9 We begin with an analysis of a simple assignment to an integer variable.

```
a = b;
```

Because the assignment statement takes constant time, it is $\Theta(1)$.

Example 3.10 Consider a simple for loop.

```
sum = 0;
for (i=1; i<=n; i++)
    sum += n;</pre>
```

The first line is $\Theta(1)$. The **for** loop is repeated n times. The third line takes constant time so, by simplifying rule (4) of Section 3.4.4, the total cost for executing the two lines making up the **for** loop is $\Theta(n)$. By rule (3), the cost of the entire code fragment is also $\Theta(n)$.

Calculating the Running Time for a Program

Example 3.11 We now analyze a code fragment with several **for** loops, some of which are nested.

Example 3.12 Compare the asymptotic analysis for the following two code fragments:

Calculating the Running Time for a Program

Example 3.13 Not all doubly nested **for** loops are $\Theta(n^2)$. The following pair of nested loops illustrates this fact.

Typical Growth Rate

There is a terminology for certain growth rate functions.

Function	Name		
c	Constant		
$\log n$	Logarithmic		
$\log^2 n$	Log-squared		
n	Linear		
$n \log n$	$n \log n$		
n^2	Quadratic		
n^3	Cubic		
2^n	Exponential		

Space Bounds

- Besides time, space is the other computing resource that is commonly of concern to programmers.
- The analysis techniques used to measure space requirements are similar to those used to measure time requirements.
- However, while time requirements are normally measured for an algorithm that manipulates a particular data structure, space requirements are normally determined for the data structure itself.
- ☐ The concepts of asymptotic analysis for growth rates on input size apply completely to measuring space requirements.

Space Bounds

Example 3.16 What are the space requirements for an array of n integers? If each integer requires c bytes, then the array requires cn bytes, which is $\Theta(n)$.

Example 3.17 Imagine that we want to keep track of friendships between n people. We can do this with an array of size $n \times n$. Each row of the array represents the friends of an individual, with the columns indicating who has that individual as a friend. For example, if person j is a friend of person i, then we place a mark in column j of row i in the array. Likewise, we should also place a mark in column i of row j if we assume that friendship works both ways. For n people, the total size of the array is $\Theta(n^2)$.

Space Bounds

- One important aspect of algorithm design is referred to as the *space/time tradeoff principle(空间/时间权衡原则)*, which says that one can often achieve a reduction in time if one is willing to sacrifice space or vice versa.
- Many programs can be modified to reduce storage requirements by "packing" or encoding information. The resulting program uses less space but runs slower.
- Conversely, many programs can be modified to pre-store results or reorganize information to allow faster running time at the expense of greater storage requirements.

Homework

- □ P87, 3.8
- □ P88,3.12

Knowledge Points

□ Chapter 3, pp.55-86

Preview

□ Chapter 4, pp. 95--103

End

Thank you for listening!