

The Evolution of Ozone's Weekday-Weekend Effect Across Colorado's Front Range

¹Grace Servia, ²Andrey Marsavin, ²Dr. Amy Sullivan, ²Dr. Jeff Collett

¹Metropolitan State University of Denver ²Colorado State University Department of Atmospheric Science

Ozone Fundamentals

Ground-Level Ozone:

- Ground-level Ozone (O₃) is a secondary air pollutant with negative impacts on public health and the environment such as lung and cardiovascular conditions, decreased lifespan, material degradation, and reduced agricultural yields
- The United States Environmental Protection Agency (EPA) has set National Ambient Air Quality Standards (NAAQS) for O₃ at 70 ppbv

Figure 1: Reactions between precursor compounds and light transfer O atoms to form O_3 .

- NO_x concentrations and O₃ production do not follow a linear relationship
- Precursor compounds stem from human activities that follow daily and weekly patterns; this causes O₃ to display similar trends

Figure 2: Example response of O₃ production rate to changing NO_x concentrations

Ozone in Colorado's Front Range

History of Ozone in Colorado

- Colorado's Front Range has consistently exceeded the O₃ NAAQS and is designated as an O₃ nonattainment area
- Local and state regulations have been established to reduce the emission of O₃ precursors
- A decreasing trend in NO_x has been observed, but not O₃

Figure 3 (left): Front Range O₃ trends at selected sites from 2005 – 2023. A 95th quantile regression was utilized to assess the trend in exceedance days. There is no notable widespread change in O₃ concentrations over time, and exceedance days are still consistent.

Figure 4 (right): Denver NO₂ concentrations from 2005 – 2023. NO₂ is decreasing overall, and NO₂ concentrations are higher during the week than the weekend (Weekday-

Ozone Weekday-Weekend Effect Over Time

Methodology:

- Colorado Department of Public Heath and Environment (CDPHE) monitors O₃ at multiple sites in Colorado's Front
- O₃ data from a series of long-term sites with frequent and significant exceedance days were selected for analysis

Data Analysis:

- Daily data was restricted to the summertime (May – September) timeframe
- Considering the established weekday-weekend NO_x pattern, a weekday-weekend analysis for O₃ was conducted to investigate O₃'s sensitivity to changing NO_x

Figure 5: Colorado's nonattainment area and detector locations for this analysis; Instrumentation (Teledyne T265 O₃ Analyzer) at the Fort Collins West location.

Figure 6: Yearly average Wednesday and Sunday O₃ concentrations for each site from 2005-2023, with their differences (calculated as Wednesday averages – Sunday averages). No decreasing trend in O₃ is observed, and around 2017 the difference begins to trend positively.

Figure 7: Boxplots detailing O₃ concentration by day of week for each site for 2005-2016 and 2017-2023 periods. Over time, greater O₃ concentrations have begun to develop on weekdays compared to weekends.

Conclusions

Conclusions:

- O_3 formation is becoming more sensitive to NO_x as overall NO_x concentrations are decreasing
- This indicates a shift from a NO_x -saturated to a NO_x -limited environment
- This information can help inform new regulations and technology; continued NO_x emission reductions will result in less O₃ production

Figure 8: O₃ production rate has shifted from increasing with decreasing NO_x concentrations during 2005-2016, to decreasing with decreasing NO_x concentrations during 2017-2023.

Further Work

VOCs:

- The method utilized for this analysis assumes that \(\begin{aligned}
 & 6 \\
 & 6 \end{aligned} VOC concentrations do not follow a weekdayweekend pattern, however VOC's contribution to O₃ production must also be evaluated
- Initial findings indicate that VOC concentrations and their summed OH reactivities follow a similar weekday-weekend effect as NO_x
- A larger suite of tracer compounds and more locations should be analyzed

Additional Factors:

- Severe wildfire years (e.g. 2021) display particularly high O₃ values, which may be further explored
- The impact of transport patterns on Front Range O₃ should also be investigated

Denver Acetylene (Ethyne) by Day of Week

Figure 9: Initial VOC analysis for Denver. The urban tracer compound acetylene exhibits a weekday-weekend effect, and so does the summed OH reactivity of 50 compounds.

Acknowledgements

This work has been supported by the National Science Foundation Research Experiences for Undergraduates Site in Earth System Science at Colorado State University under the cooperative agreement No. AGS-1950172.

References

- Helmig, D. Air Quality Impacts from Oil and Natural Gas Development in Colorado. *Elementa: Science* of the Anthropocene 2020, 8, 4. https://doi.org/10.1525/elementa.398.
- Schroeder, J. R.; Crawford, J. H.; Fried, A.; Walega, J.; Weinheimer, A.; Wisthaler, A.; Müller, M.; Mikoviny, T.; Chen, G.; Shook, M.; Blake, D. R.; Tonnesen, G. S. New Insights into the Column CH ₂ O/NO ₂ Ratio as an Indicator of Near-surface Ozone Sensitivity. *JGR Atmospheres* **2017**, *122* (16), 8885-8907. https://doi.org/10.1002/2017JD026781.
- Simon, H.; Hogrefe, C.; Whitehill, A.; Foley, K. M.; Liljegren, J.; Possiel, N.; Wells, B.; Henderson, B. H.; Valin, L. C.; Tonnesen, G.; Appel, K. W.; Koplitz, S. Revisiting Day-of-Week Ozone Patterns in an Era of Evolving US Air Quality. *Atmos. Chem. Phys.* **2024**, *24* (3), 1855–1871. https://doi.org/10.5194/acp-24-1855-2024.
- Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds. *Chem. Rev.* **2003**, *103* (12), 4605–4638. https://doi.org/10.1021/cr0206420.
- Data for analysis accessed through CDPHE