This listing of the claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A method of manufacturing a semiconductor device, comprising the steps of:

providing a semiconductor substrate on which a given process is implemented in order to form a semiconductor device;

forming an ion implantation layer <u>in a well</u> by means of an ion implantation process; and

controlling the impurity concentration of the ion implantation layer by means of a cleaning process, wherein the cleaning process is implemented using a solution of fluoric acid series and a SC-1(NH₄OH/H₂O/H₂O) solution to remove a native oxide film on the surface of the semiconductor substrate.

- 2. (Currently Amended) The method as claimed in claim 1, wherein the ion implantation layer is formed by implanting an impurity of $1E11 \sim 1E13$ ion/cm² with an energy of $5 \sim 50$ keV.
 - 3. (Original) The method as claimed in claim 2, wherein the impurity is boron.
- 4. (Original) The method as claimed in claim 2, wherein the impurity is implanted at an angle of $3 \sim 13^{\circ}$.
 - 5. (Canceled)

SERIAL No.: 10/618,290

ATTORNEY DOCKET No.: 29936/39480

6. (Original) The method as claimed in claim 5 1, wherein the solution of a fluoric acid series employs diluted HF in which H_2O :HF is mixed in the ratio of 1:1 ~ 50:1 as an undiluted solution.

- 7. (Original) The method as claimed in claim 1, wherein the cleaning process controls the concentration of the remaining impurity by controlling the concentration of the solution or the progress time.
 - 8. (Canceled)
- 9. (Currently Amended) The method as claimed in claim 1, further comprising the steps of after the concentration of the impurity is controlled,

A method of manufacturing a semiconductor device, comprising:

providing a semiconductor substrate on which a given process is implemented in order to form a semiconductor device;

forming an ion implantation layer by means of an ion implantation process; and controlling the impurity concentration of the ion implantation layer by means of a cleaning process, wherein the cleaning process is implemented using a solution of fluoric acid series and a SC-1(NH₄OH/H₂O/H₂O) solution to remove a native oxide film on the surface of the semiconductor substrate;

sequentially forming a tunnel oxide film and a first polysilicon layer over a semiconductor substrate and then implementing patterning;

forming an isolation film in an isolation region of the semiconductor substrate; sequentially forming a dielectric film, a second polysilicon layer and a silicide layer on the entire structure of the semiconductor substrate;

sequentially patterning the silicide layer, the second polysilicon layer and the dielectric film by means of an etch process using a control gate mask;

SERIAL NO.: 10/618,290 ATTORNEY DOCKET NO.: 29936/39480

patterning the first polysilicon layer by means of a self-aligned etch process; and

forming source/drain in the semiconductor substrate around the first polysilicon layer.

10. (Original) The method as claimed in claim 9, wherein the source/drain has a DDD junction structure.