Matrix theory

ai24btech11035 - V.Preethika

1

(1983 - 1 Mark)

	•		r is a complex number (1985 - 2 Mag	then,		
a) have the sameb) are similar	area		c) are congruent d) none of these			
9) If ω (≠ 1) is a cub (1995S)	pe root of unity an	$\operatorname{ad} (1 + \omega)^7 = A + B\omega \operatorname{t}$	hen A and B are respect	ively		
a) 0, 1	b) 2, 1	c) 1,0	d) -1, 1			
10) Let z and ω be two non zero complex numbers such that $ z = \omega $ and Arg $z + \text{Arg}\omega = \pi$, then z equals (1995S)						
a) ω	b) -ω	c) $\overline{\omega}$	d) $-\overline{\omega}$			
11) let z and ω be two complex numbers such that $ z \le 1$, $ \omega \le 1$ and $ z + i\omega = z - i\overline{\omega} = 2$ then z equals (1995S)						
a) 1 or i	b) i or -1	c) 1 or -1	d) i or -1			
12) For positive numbers n_1, n_2 the value of the expression $(1+i)^{n_1} + (1+i^3)^{n_1} + (1+i^5)^{n_2} + (1+i^7)^{n_2}$, where $i = \sqrt{-1}$ is a real number if and only if (1996 - 2 Marks)						
a) $n_1 = n_2 + 1$ b) $n_1 = n_2 - 1$		c) $n_1 = n_2$ d) $n_1 > 0, n_2 > 0$	> 0			
13) If $i = \sqrt{-1}$ then (1999 - 2 Marks)	$4 + 5\left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)^{33}$	$4 + 3\left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$ is	a real number if and or	nly if		

6) If z = x + iy and $\omega = \frac{1 - iz}{z - i}$, then $|\omega| = 1$ implies that, in the complex plane (1983 - 1)

7) The points z_1, z_2, z_3, z_4 in the complex plane are the vertices of a parallelogram taken

c) $z_1 + z_2 = z_3 + z_4$

d) None of these

Mark)

a) z lies on the imaginary axisb) z lies on the real axisc) z lies on unit circled) None of these

in order if and only if

a) $z_1 + z_4 = z_2 + z_3$

b) $z_1 + z_3 = z_2 + z_4$

(2000S)

		· <u>2</u>	· 2				
15) If z_1, z_2 and z_3 are complex numbers such that $ z_1 = z_2 = z_3 = \left \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right = 1$, then $ z_1 + z_2 + z_3 $ is (2000S)							
a) equal to 1b) less than 1		c) greater than d) equal to 3	c) greater than 3 d) equal to 3				
16) Let z_1 and z_2 be n^{th} roots of unity which substend a right angle at the origin. Then n must be of the form (2001S)							
a) $4k + 1$	b) $4k + 2$	c) $4k + 3$	d) 4k				
 17) The complex numbers z₁, z₂ and z₃ satisfying z₁-z₃ = 1-i√3/2 are the vertices of a triangle which is a) of area zero b) right angled triangle c) equilateral d) obtuse-angled triangle 							
18) For all complex numbers z_1, z_2 satisfying $ z_1 = 12$ and $ z_2 - 3 - i = 5$, the minimum value of $ z_1 - z_2 $ (2002S)							
a) 0	b) 2	c) 7	d) 17				
19) If $ z = 1$ and $\omega = \frac{z-1}{z+1}$ (where $z \neq 1$), then $Re(\omega)$ is (2003S)							
a) 0 b) $\frac{-1}{ z+1 ^2}$		c) $\left \frac{z}{z+1} \right \cdot \frac{1}{ z+1 ^2}$ d) $\frac{\sqrt{2}}{ z+1 ^2}$					
20) If $\omega \neq 1$ be a cube root of unity and $(1 + \omega^2)^n = (1 + \omega^4)^n$, then the least positive value of n is (2004S)							
a) 2	b) 3	c) 5	d) 6				

a) $1 - i\sqrt{3}$ b) $-1 + i\sqrt{3}$ c) $i\sqrt{3}$ d) $-i\sqrt{3}$

c) $\frac{-\pi}{2}$ d) $\frac{\pi}{2}$

14) If Arg z < 0, then Arg -z - Arg z =

a) π

b) $-\pi$