CO-ORDINATE GEOMETRY

Cartesian & Polar Co-ordinates

(1) Basic Form:-

Cartesian co-ordinate $\rightarrow (x, y)$

Polar co-ordinate $\rightarrow (r, \theta)$

(2)
$$x = r \cos \theta$$
, $y = r \sin \theta$

&
$$r = \sqrt{x^2 + y^2}$$
, $\theta = \tan^{-1} \frac{y}{x}$

- (3) Distance between $P(x_1, y_1) \& Q(x_2, y_2)$ is $PQ = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- (4) The co ordinate of R which divides PQ internally (or, externally) in the ratio m: n is $\left(\frac{mx_2 \pm nx_1}{m+n}, \frac{my_2 \pm ny_1}{m+n}\right)$
- (5) The mid point of $P(x_1, y_1) \& Q(x_2, y_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
- (6) The centroid of $\triangle ABC$ with vertices $A(x_1, y_1), B(x_2, y_2) \& C(x_3, y_3)$ is $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$
- (7) The area of $\triangle ABC$ is

$$= \frac{1}{2}|y_1(x_2 - x_3) + y_2(x_3 - x_1) + y_3(x_1 - x_2)| unit^2$$

$$= \frac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| unit^2$$

(8) Three points $A(x_1, y_1)$, $B(x_2, y_2)$ & $C(x_3, y_3)$ will be collinear if

$$y_1(x_2-x_3) + y_2(x_3-x_1) + y_3(x_1-x_2) = 0$$

Straight Line

- (1) The gradient (or, slope) of a straight line in the direction of positive X-axis with angle θ is $m=\tan\theta$.
- (2) The slope of a straight line joining the points $A(x_1, y_1) \& B(x_2, y_2)$ is $m = \frac{y_1 y_2}{x_1 x_2}$
- (3) (i) $y = 0 \rightarrow equation \ of \ X axis$

(ii)
$$y = b \rightarrow || X - axis$$

(iii)
$$x = 0 \rightarrow equation \ of \ Y - axis$$

(iv)
$$x = a \rightarrow || Y - axis$$

(4) Forms of straight line

- (i) General form: ax + by + c = 0 [a & b must not be zero simultaneously]
- (ii) Slope intercept form: y = mx + c
- (iii) $Point slope form: y y_1 = m (x x_1)$