THERMODYNAMIQUE DE LA TRANSFORMATION CHIMIQUE

Chapitre 4 : Optimisation d'un procédé chimique

Exercice 1: Vrai ou faux

- → La modification de la température d'un système initialement à l'équilibre, à pression et à composition constantes, entraîne une modification de la constante d'équilibre.
- → Une augmentation de température déplace un équilibre chimique dans le sens de la réaction exothermique.
- \rightarrow La dissociation du carbonate de magnésium $MgCO_{3(s)}=MgO_{(s)}+CO_{2(g)}$ est monovariante. On peut fixer le volume V et tout est déterminé à l'équilibre.
- \rightarrow La conversion du méthane $CH_{4(g)} + H_2O_{(g)} = CO_{(g)} + 3H_{2(g)}$ est favorisée par une forte pression.

Exercice 2 : Application directe du cours

Dans un tube en fer à $800^{\circ}C$, on fait passer un courant gazeux constitué d'un mélange de dihydrogène $H_2(g)$ et de chlorure d'hydrogène HCl(g) dans des proportions 25% / 75%, sous une pression totale P=1 bar.

On peut envisager la réaction de corrosion (oxydation) du fer suivant le bilan :

$$Fe(s) + 2 HCl(g) = FeCl_2(s) + H_2(g)$$
 $K^0(1073 K) = 0.326$

- 1) La corrosion a-t-elle lieu?
- 2) Pour le même mélange, pour quelles valeurs de pression la corrosion a-t-elle lieu?

Exercice 3: Dismutation de l'oxyde cuivreux

Soit l'équilibre hétérogène $4 \, CuO_{(s)} = 2 \, Cu_2O_{(s)} + \, O_{2(g)}$ pour lequel on suppose que l'enthalpie standard de réaction $\Delta_r H^0$ et l'entropie standard de réaction $\Delta_r S^0$ sont indépendantes de la température.

- 1) Combien de paramètres intensifs indépendants possède ce système?
- 2) Aux deux températures T_1 et T_2 ci-dessous, on mesure les pressions d'équilibre P_1 et P_2 suivantes :

$T_1 = 12$	23 K	$P_1 = 4660 Pa$
$T_{-} = 13$	23 K	$P_{-} = 29610 Pa$

En déduire les valeurs de $\Delta_r H^0$ et de $\Delta_r S^0$.

- 3) Dans un récipient de volume V=10~L maintenu à la température $T_3=1273~K$, on place 0.1~mol de $CuO_{(s)},\,0.01~mol$ de $Cu_2O_{(s)}$ et n~mol de dioxygène. Prévoir le sens d'évolution ainsi que la composition du système dans son état final pour :
 - **a)** $n = 0.01 \, mol$;
 - **b)** $n = 0.02 \, mol.$
- 4) A partir de l'équilibre obtenu à la question 4)a), on augmente la température de 1 K. Dans quel sens le système évolue-t-il ?
- 5) A partir de l'équilibre obtenu à la question 4)a), on ajoute $10^{-3}\ mol$ de $CuO_{(s)}$ dans le milieu, tous les autres paramètres étant maintenus constants. Dans quel sens le système évolue-t-il ? Quel est l'état final du système.

Exercice 4 : Chlorures de phosphore

On étudie en phase gazeuse l'équilibre de dissociation :

$$PCl_5(g) = PCl_3(g) + Cl_2(g)$$

A 250°C (523 K), sous une pression de $P_T=1.0\ bar$, la densité du mélange gazeux obtenu par chauffage du pentachlorure de phosphore pur est d=3.90.

- 1) Calculer la valeur de α , coefficient de dissociation de PCl_5 . En déduire la valeur de la constante d'équilibre K^0 .
- 2) Quelle est la composition du mélange obtenu à l'équilibre, dans les mêmes conditions, sous la pression $P_T=4.0\ bar$? Le résultat sera fourni en pourcentage molaire de chacune des espèces gazeuses.
- 3) Calculer l'enthalpie standard de la réaction $\Delta_r H^0$ pour la réaction considérée, ainsi que l'entropie standard de réaction $\Delta_r S^0$. Ces grandeurs sont supposées indépendantes de la température.
- **4)** Etablir l'expression $\ln K^0 = f(T)$ pour l'équilibre considéré.
- 5) A quelle température faut-il opérer, sous $P_T=1.0\ bar$, pour que le coefficient de dissociation du pentachlorure de phosphore à l'équilibre soit de 99 % ?

Données :

Thermochimie

Espèces chimiques	$PCl_5(g)$	$PCl_3(g)$	$Cl_2(g)$
$\Delta_f H^0$ en kJ/mol	-374,9	-287,0	0

Masses molaire (en $g. mol^{-1}$): 35,5 (Cl); 31,0 (P); 29,0 (air)