

Contain Yourself: Building Mobile Secure Containers

Ron Gutierrez
Gotham Digital Science (GDS)

Outline

What are Security Containers?

How are Secure Containers Created?

Authentication Design Patterns and Data Encryption

Assessing the Strength of a Secure Container

Limitations of Secure Containers

Outline

What are Security Containers?

How are Secure Containers Created?

Authentication Design Patterns and Data Encryption

Assessing the Strength of a Secure Container

Limitations of Secure Containers

Bring Your Own Device (BYOD)

- Enterprises are embracing "Bring Your Own Device" (BYOD)
- Employees use personal devices to access company resources
- Unlike managed devices, device policies cannot be enforced

Why BYOD?

What are Secure Containers?

- ✓ Data storage protection performed at the application level
- ✓ Does not rely on OS security features being activated
- ✓ Allows security policies to be enforced at the application level

Commercial Solutions

and many more.....

Why Secure Containers?

- Orgs want employees to have convenient access to sensitive resources (email, documents, apps with sensitive data, etc)
- Allows them to have control of their data on unmanaged devices

Why Secure Containers?

Unmanaged Devices

- Organizations cannot enforce
 - Device is passcode protected (Data Protection)
 - Device Passcode Policies
 - Remote Wipes
 - Device is not Jailbroken

Data Protection (DP)

- Developers can opt-in to use DP APIs
- Must crack device passcode to access data

Outline

What are Security Containers?

How are Secure Containers Created?

Authentication Design Patterns and Data Encryption

Assessing the Strength of a Secure Container

Limitations of Secure Containers

How Are Secure Containers Made?

- Application Wrapping
- Functionality injected into existing applications
- Enforces security at the application level
 - Data encryption at rest
 - Authentication
 - Policy enforcement
- No code changes required by developer

Application Wrapping

Citrix Cloud Gateway MDX Application Wrapping Analysis

- Tool accepts IPA files
- Application is re-signed using Distribution Certificate
- Outputs a new wrapped IPA file

Let's analyze the output

Diffing a pre-wrapped and post-wrapped iOS binary with HexFiend

01A94	466F756E	64617469	6F6E0000	<mark>00</mark> 000000	<mark>50</mark> 000000	<mark>18</mark> 000000	00000000	6804	466F756E	64617469	6F6E0000	<mark>26</mark> 000000	<mark>10</mark> 000000	A4470000	30000000
01AB0	01 000000	<mark>01</mark> 000000	40657865	63757461	626C655F	70617468	2F436974	6832	29000000	10000000	D4470000	08000000	1D0000000	10 000000	A0500000
01ACC	72697844	79606962	2E62756E	646C652F	43697472	69784479	6C69622E	6860	50270000	00000000	00000000	00000000	00000000	00000000	00000000
01AE8	64796069	62 <mark>0000000</mark>	26000000	10000000	A4470000	30000000	29000000	6888	00000000	00000000	00000000	00000000	00000000	00000000	00000000
01B04	10000000	D4470000	08 000000	1D000000	10000000	A0500000	50270000	6916	00000000	00000000	00000000	00000000	00000000	00000000	00000000

View address offset with MachOView tool to see what was changed

LC_LOAD_DYLIB (CoreFoundation)	Address	Data	Description	Value
LC_LOAD_DYLIB (CitrixDylib.dylib)	00001AA0	0000000C	Command	LC_LOAD_DYLIB
LC_FUNCTION_STARTS	00001AA4	00000050	Command Size	80
LC_DATA_IN_CODE	00001AA8	00000018	Str Offset	24
LC_CODE_SIGNATURE	00001AAC	00000000	Time Stamp	Wed Dec 31 19:00:00 1969
▶ Section (TEXT,text)	00001AB0	00000001	Current Version	0.0.1
▶ Section (TEXT,stub_helper)	00001AB4	00000001	Compatibility Version	0.0.1
▶ Section (TEXT,objc_methname)	00001AB8	4065786563757461626C655	Name	@executable_path/CitrixDylib.bundle/Cit

A LC_LOAD_DYLIB is added to the App's Mach-O Load Commands

Diffing a pre-wrapped and post-wrapped iOS binary with HexFiend

A LC_LOAD_DYLIB is added to the App's Mach-O Load Commands

Diffing a pre-wrapped and post-wrapped iOS binary with HexFiend

LC_LOAD_DYLIB (CoreFoundation)	Address	Data	Description	Value
LC_LOAD_DYLIB (CitrixDylib.dylib)	00001AA0	0000000C	Command	LC_LOAD_DYLIB
LC_FUNCTION_STARTS	00001AA4	00000050	Command Size	80
LC_DATA_IN_CODE	00001AA8	00000018	Str Offset	24
LC_CODE_SIGNATURE	00001AAC	00000000	Time Stamp	Wed Dec 31 19:00:00 1969
▶ Section (TEXT,text)	00001AB0	00000001	Current Version	0.0.1
► Section (TEXT,stub_helper)	00001AB4	00000001	Compatibility Version	0.0.1
► Section (TEXT,objc_methname)	00001AB8	4065786563757461626C655	Name	@executable_path/CitrixDylib.bundle/Cit

A LC_LOAD_DYLIB is added to the App's Mach-O Load Commands

_															
0747C	5A302306	092A8648	86F70D01	09043116	0414 <mark>21C1</mark>	9B37912D	12B01767	0747C	5A302306	092A8648	86F70D01	09043116	0414 <mark>B10E</mark>	3FC57B5C	74079A3D
07498	D82725A8	0E1C9BE2	AC98300D	06092A86	4886F70D	01010105	00048201	07498	CB61FF37	6304F139	06BF300D	06092A86	4886F70D	01010105	00048201
074B4	00189F0F	ACDD1F53	AB0E113F	21887610	AB91B7E2	4B4D8294	CBE05F26	074B4	0063488C	6892F23F	1040149B	16ED2B22	0403F068	1904FBA4	A2305B8C
074D0	7DD841A9	6C88512E	9B1A1EBC	7856FE7B	70BA5156	00303F44	9AA3A60A	074D0	0C9C51B2	9A5E8C40	78677EC5	74D6DA31	0D6B550A	2BA0461C	8CBØDFE6
074EC	ECF40FC3	3D2574D7	7982EFA6	509CCAAA	CØDB8CA4	5B2ABDDB	99860499	074EC	D89D26B7	AFE16C25	BFAAA579	83D118B2	49A35A2D	26434FF3	A8847179
07508	AECF7F71	796E1599	6B29D3D4	8B9323F3	F3A26210	F3174A5D	EB618174	07508	4131CE51	8326CF6F	A1356FD9	381C55B7	9FCCD5A6	EEED7673	46A2CFB2
07524	DCA6CBF1	5857AA97	CE585CC9	0CCD1F46	7E7CAD04	64AA255C	0539C42F	07524	890176F7	CEA2512A	0456510A	012E0DE5	D99D3A91	324A1FE5	08F0929F
07540	45F099EC	27001E95	7C21276D	CAA62A18	1C8607AA	F221BD65	65DC1BD6	07540	ABC468EA	783AE438	C112B634	DADBE9A2	540B415F	CCFE7639	AA21C590
0755C	39647992	94B70C9C	3798D2B6	B8FF18B6	9DB5E3E0	D8FF733A	A830261D	0755C	2EFBBFA5	9757EBC8	198F1D85	83B23F59	59255802	F62B92F4	B6F1C401
07578	313A0103	554099CB	C95970BF	5490B5EE	F710D8E9	BD677435	8E0B67CA	07578	F7F6CBA4	001E63AB	DC432C35	C5112CD8	36A3F2B7	5F604048	D6EF183D
07594	608224B3	553F5D11	787C4F22	25E355A0	43FEED23	51065954	E40DF2F0	07594	9ED241EB	5A3EEF3B	19B574F8	6396403F	4553EFD6	15843581	485C5A4E
075B0	D21299E4	E7000000	00000000	00000000	00000000	00000000	00000000	075B0	80DC58A5	4F000000	00000000	00000000	00000000	00000000	00000000

Code Signature *Executable (ARM_V7S) Mach Header Load Commands Section (_TEXT,__text) Section (_TEXT,__stub_helper) Section (_TEXT,__objc_methname) Section (_TEXT,__cstring) C String Literals Section (_TEXT,__objc_classname) Section (_TEXT,__objc_methtype) Section (_TEXT,__symbolstub1) Section (_DATA,__lazy_symbol)

	_	_	_		_	_	_		_	_	_	_	_	_		_	
00007470	31	32	31	31	30	38	32	31	33	31	32	38	5A	30	23	06	121108213128Z0#.
00007480	09	2A	86	48	86	F7	ØD	01	09	04	31	16	04	14	21	C1	.*.H1!.
00007490	9B	37	91	2D	12	BØ	17	67	D8	27	25	A8	ØE	10	9B	E2	.7g.'%
000074A0	AC	98	30	ØD	06	09	2A	86	48	86	F7	ØD	01	01	01	05	0*.H
000074B0	00	04	82	01	00	18	9F	0F	AC	DD	1F	53	AB	ØE	11	3F	S?
000074C0	21	88	76	10	AB	91	В7	E2	4B	4D	82	94	СВ	EØ	5F	26	!.vKM&
000074D0	7D	D8	41	Α9	6C	88	51	2E	9B	1 A	1E	BC	78	56	FE	7B	}.A.l.QxV.{
000074E0	70	BA	51	56	00	30	3F	44	9A	АЗ	Α6	ØA	EC	F4	0F	C3	p.QV.0?D
000074F0	3D	25	74	D7	79	82	EF	A6	50	9C	CA	AA	CØ	DB	80	A4	=%t.yP
00007500	5B	2A	BD	DB	99	86	04	99	ΑE	CF	7F	71	79	6E	15	99	[*qyn
00007510	6B	29	D3	D4	8B	93	23	F3	F3	A2	62	10	F3	17	4A	5D	k)#bJ]
00007520	EB	61	81	74	DC	Α6	СВ	F1	58	57	AA	97	CE	58	5C	C9	.a.tXWX\.
00007530	0C	CD	1F	46	7E	7C	AD	04	64	AA	25	5C	05	39	C4	2F	F~ d.%\.9./

Updates to the Code Signature of the Binary

iOS Method Swizzling

- Can modify implementations of iOS Objective-C methods
 - http://cocoadev.com/wiki/MethodSwizzling
- Seen in Cydia applications
 - MobileSubstrate Tweaks
 - Cycript

iOS App Life Cycle 101

iOS App Life Cycle 101

Swizzle Early

- Static/Dynamic libraries can overwrite implementations upon startup
- Implement swizzling within load method on Obj-C objects

+(void) load

Invoked whenever a class or category is added to the Objective-C runtime; implement this method to perform class-specific behavior upon loading.

The load message is sent to classes and categories that are both dynamically loaded and statically linked, but only if the newly loaded class or category implements a method that can respond.

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/nsobject_Class/Reference/Reference.html#//apple_ref/occ/clm/NSObject/load

Objective-C Swizzling 101

```
Method original, swizzled;
original = class_getInstanceMethod(class,
@selector(application:didFinishLaunchingWithOptions:));
swizzled = class_getInstanceMethod(self,
@selector(swizzled_application:didFinishLaunchingWithOptions:));
method_exchangeImplementations(original, swizzled);
```

Objective-C Swizzling 101

```
Method original, swizzled;
original = class_getInstanceMethod(class,
@selector(application:didFinishLaunchingWithOptions:));
swizzled = class_getInstanceMethod(self,
@selector(swizzled_application:didFinishLaunchingWithOptions:));
method_exchangeImplementations(original, swizzled);
```

Specify class and method to be replaced

Objective-C Swizzling 101

```
Method original, swizzled;
original = class_getInstanceMethod(class,
@selector(application:didFinishLaunchingWithOptions:));
swizzled = class_getInstanceMethod(self,
@selector(swizzled_application:didFinishLaunchingWithOptions:));
method_exchangeImplementations(original, swizzled);
```

Specify class and method containing your new implementation

So I heard we are gonna get swizzled up in this piece?.. Nah mean?

Contain Yourself: Building Mobile Secure Containers

DEMO: METHOD SWIZZLING

I Can Swizzle.. Now What?

- That was a simple POC on how to implement a secure container solution using a static library
- What now?
 - Org-wide static library can solve the various common iOS security issues
- Apparently there is a market for these things as well

Outline

What are Security Containers?

How are Secure Containers Created?

Authentication Design Patterns and Data Encryption

Assessing the Strength of a Secure Container

Limitations of Secure Containers

Principles To Live By

All data stored by app must be encrypted seamlessly

Strength of crypto cannot rely on any device policies

Crypto keys must be retrieved upon successful authentication

Authentication Designs

- Broken By Design
 - Storing crypto key on the device
 - Crypto key derivation material stored on device
 - Data storage not protected by app authentication passcode

Might as well start encrypting with ROT13+1

@YOLOCrypto approved algorithm

Essentially Security By Obscurity

Real World Example

- Mint Financial Management Application
- Supports passcode protection
- Passcode is not used to protect any application data
- Susceptible to client-side bypass via Runtime Manipulation

Let's bypass it

Bypassing Mint Pin Screen

- Decrypt AppStore Binary using Clutch
- Run class-dump on the decrypted binary
 - Prints out class information from Mach-O files
- Identify some methods which might control the lock screen

"Mach-O Man" Randy Savage

```
@interface GalaAppDelegate : NSObject
<UIApplicationDelegate, WebServiceDelegate,
UIAlertViewDelegate, BWQuincyManagerDelegate>
    [..snip..]
+ (id)sharedController;
[..snip..]
- (void)logInWithUsername:(id)arg1 password:(id)arg2;
(void)logInUsingStoredMintToken;
- (void)popAwayLogin;
(void)popUpFirstRunView;
(void)popUpWelcomeView;
- (void)updateStatusString:(id)arg1;
- (void)setStatusCode:(int)arg1;
(void)popAwayPasscode;
- (void)popUpPasscode;
[..snip..]
```

Mint.app class-dump results snippet

32

```
@interface GalaAppDelegate : NSObject
<UIApplicationDelegate, WebServiceDelegate,</pre>
UIAlertViewDelegate, BWQuincyManagerDelegate>
    [..snip..]
+ (id)sharedController;
[..snip..]
- (void)logInWithUsername:(id)arg1 password:(id)arg2;
(void)logInUsingStoredMintToken;
- (void)popAwayLogin;
(void)popUpFirstRunView;
(void)popUpWelcomeView;
- (void)updateStatusString:(id)arg1;
- (void)setStatusCode:(int)arg1;
(void)popAwayPasscode;
(void)popUpPasscode;
[..snip..]
```

Mint.app class-dump results snippet

Analyze Function via Mobile Substrate

- Allows you to hook Obj-C methods on any app
 - Uses similar approach as described earlier
- Requires jailbroken device
- I like to use Theos for quick and dirty hooking

Goal is to identify when passcode related methods are called

http://iphonedevwiki.net/index.php/Theos

Simple Theos Tweak to Identify When Calls Are Made

```
%hook GalaAppDelegate
- (void)popAwayLogin {
    %log;
    %orig;
- (void)popAwayPasscode {
    %log;
    %orig;
- (void)popUpPasscode {
   %log;
    %orig;
%end
%ctor {
   NSLog(@"Application is now hooked by RG");
   %init;
```

Simple Theos Tweak to Identify When Calls Are Made

```
- (void)popAwayLogin {
                     %log;
                     %orig;
                  (void)popAwayPasscode {
                     %log;
                                     Logs method call to console
                   (void)popUpPasscode {
Calls original method
                     %log;
                     %orig;
                 %end
                 %ctor {
                    NSLog(@"Application is now hooked by RG");
                    %init;
```

%hook GalaAppDelegate

Contain Yourself: Building Mobile Secure Containers

DEMO: USING CYCRIPTTO BYPASS PINCODE

Authentication Designs

- Things get trickier due to online and offline access
- Online only apps could store keys server-side
 - Key returned only after successfully authenticating
 - Must handle server-side key storage.. this may be a pain
- What about offline access?
 - App might need access to data with even with no network access

Offline Authentication

Common Issues

- Stored data not encrypted using passphrase derived key
 - Causes offline authentication to be susceptible to bypass
- Weak Key Derivation Function Used
 - PBKDF2 (minimum 4096 iterations) recommended
- Insufficient passphrase complexity enforcement

Weak Real World Example

Password & Data Vault

- Password vault authentication uses bcrypt
- Bcrypt is fairly resistant to offline brute force attacks

BUT... HOW IS THE SYMMETRIC KEY GENERATED?

Weak Real World Examples

```
public Encryption(String paramString){
  byte[] arrayOfByte = new byte[16];
  arrayOfByte[0] = 0;
  [..snip..]
                                       Single iteration
  arrayOfByte[15] = 0;
                                       SHA256 hash of
  [..snip..]
                                         passphrase
try {
    this.key = new SecretKeySpec(this.sha1HashBytes, "AES");
    this.ips = new IvParameterSpec(arrayOfByte);
[..snip..]
```

Decompiled Android Code From Application

Brute Force Time Comparisons

Time to brute force 1000 passwords

Algorithm	Time (s)
PBKDF2 (4096 iters)	317.647
SHA256	0.001
SHA256 + AES Decrypt	0.080

- Merkle-Damgard hash functions and AES are fast
- Susceptible to offline brute forcing

Outline

What are Security Containers?

How are Secure Containers Created?

Authentication Design Patterns and Data Encryption

Assessing the Strength of a Secure Container

Limitations of Secure Containers

Completeness of Implementation

- The solution must not only consider the obvious APIs
- How about the subtle OS "features" that cache data?
 - NSHTTPCookieStorage on Persistent Cookies
 - NSURLRequest Caches
 - Document Interactions API
 - iOS Snapshots
 - Keyboard Caching
- How about Keychain Data?
- Are filenames also encrypted?

Good For Enterprise (GFE)

- iOS Document Interaction API used for handling documents
 - Save document into the GFE Container
 - Email document through corporate email within GFE
- Allows GFE to be used to open specific file types in iOS

Good For Enterprise (GFE)

- Open-in must bypass iOS Sandbox
- iOS System writes the file to GFE App Container
 - Documents/Inbox folder
- File is not protected by the GFE data encryption
- File persists unencrypted for an extended period

Client's Custom Secure Container

- Missed wrapping calls to NSHTTPCookieStorage
- Apps store persistent cookies in plaintext
 - Library/Cookies/Cookies.binarycookies
- The cookie store also not removed on data wipes

Outline

What are Security Containers?

How are Secure Containers Created?

Authentication Design Patterns and Data Encryption

Assessing the Strength of a Secure Container

Limitations of Secure Containers

Remote Wipes

- The traditional iOS MDM remote wipes cannot be used
- Remote wipes must be triggered at app level
- iOS limitations allow apps to only enforce wipe while active

Isn't iOS 7 Supposed To Have Some New Background Features?

Remote Wipes in iOS 7

- iOS 7 added Background Modes Capability
- Background fetch to poll for remote resets periodically
 - Requires wrapping to modify Info.plist file
 - Sounds promising, more research needed
- Remote Notifications
 - Not practical for application wrapping solutions
 - Requires:
 - APNS Service Setup
 - Application specific APNS certificates

Client-side Policy Enforcement

- All client-side restrictions can be bypassed
- Pick your poison
 - Intercept & modify policies as they are sent to the device
 - Modify policies while cached on the device
 - Runtime hooking of policy handling methods
- Performed checks server-side where possible
- Move critical pieces of code to low level code
 - Obj-C is easy to reverse.. make it harder for the bad guys

Jailbreak Detection

- Most of the exploits pointed out require a Jailbreak
- Preventing secure containers from running on Jailbroken device goes a long way
- If you can't bypass Xcon Cydia app, epic fail
- Detection should be low-level and difficult to reverse

http://appminder.nesolabs.de/
Jailbreak Detection Generator in ASM + AntiDebugging

Thanks For Coming!

- Come visit the GDS & Send Safely Booth!
- Check out the GDS Blog for updates on this topic
- Slides and Code will be posted to GDS Github page
 - https://github.com/GDSSecurity

Contact Info:

email: rgutierrez@gdssecurity.com

twitter: @rgutie01

github: https://github.com/rongutierrez

