MATH 3400 - Group and Ring Theory Assignment 8

Cody Barnson ID: 001172313

9 Nov 2018

1 Let $G = \mathbb{Z}_4 \times \mathbb{Z}_4$, and $H = \{(0,0), (2,0), (0,2), (2,2)\}$. Is G/H isomorphic to \mathbb{Z}_4 or to $\mathbb{Z}_2 \times \mathbb{Z}_2$?

We know that $|G/H| = |G|/|H| = \frac{4*4}{4} = 4$. G/H has 4 elements consisting of H, as follows,

$$(0,0) + H = H = \{(0,0), (2,0), (0,2), (2,2)\}$$
$$(0,1) + H = \{(0,1), (2,1), (0,3), (2,3)\}$$
$$(1,0) + H = \{(1,0), (3,0), (1,2), (3,2)\}$$
$$(1,1) + H = \{(1,1), (3,1), (1,3), (3,3)\}$$

Each of these have order 2, so G/H is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

2 Let H be a normal subgroup of G and let a belong to G. If the element aH has order 4 in the group G/H and |H| = 12, what are the possibilities for the order of a in G?

Let |aH| = n and |a| = m. Then, we have $(aH)^m = a^m H = eH = H$, and so n divides m. Also, there exists some integer t, such that m = |a| = nt = |aH|t, and so $|a^t| = \frac{m}{\gcd(m,t)} = \frac{m}{t} = n$. Since we are given that n = 4, then m = nt = 4t = |a|. So we know that the possibilities for |a| are orders that are multiples of 4 and divisors of |H| = 12. That is, |a| = 4.

3 Prove that there is no homomorphism from $\mathbb{Z}_8 \times \mathbb{Z}_2$ onto $\mathbb{Z}_4 \times \mathbb{Z}_4$.

Let $G = \mathbb{Z}_8 \times \mathbb{Z}_2$, and $H = \mathbb{Z}_4 \times \mathbb{Z}_4$. We know that \mathbb{Z}_8 is a cyclic group of order 8, and that 1 generates the group. Also, \mathbb{Z}_2 is a cyclic group of order 2, and that 1 generates the group. So we have an element $(1,1) \in G$ with order |(1,1)| = lcm(8,2) = 8. For H, note that there is no element in H that has order more than 4. But we have just shown that there is an element in G with order 8. Then the mapping cannot be onto, thus G is not be isomorphic to H, and there is no homomorphism from G onto H.

4 How many homomorphisms are there from \mathbb{Z}_{30} onto \mathbb{Z}_{12} ? How many are there to \mathbb{Z}_{12} ?

4.1 How many homomorphisms are there from \mathbb{Z}_{30} onto \mathbb{Z}_{12} ?

There are none, because 12 does not divide 30. (Long answer) Suppose (towards a contradiction) there exists homomorphism ϕ from \mathbb{Z}_{30} onto \mathbb{Z}_{12} , then since ϕ is onto, there must exist some element $g \in \mathbb{Z}_{30}$ such that $\phi(g) = 1 \in \mathbb{Z}_{12}$ and $|\phi(g)| = |1|$ divides |g|. \mathbb{Z}_{12} is cyclic, and 1 is a generator. For $\mathbb{Z}_{12} = \langle 1 \rangle$, we get |1| = 12. This implies that 12 divides |g|, but that also means that |g| divides $|\mathbb{Z}_{30}| = 30$ (that is, 12 divides 30; which is false), which is a contradiction. Therefore, ϕ must not be onto, and there are no homomorphisms from \mathbb{Z}_{30} onto \mathbb{Z}_{12} .

4.2 How many are there to \mathbb{Z}_{12} ?

Let $\phi: \mathbb{Z}_{30} \longrightarrow \mathbb{Z}_{12}$ be a homomorphism; it is completely defined by $\phi(1)$ since \mathbb{Z}_{30} is cyclic. Then $|\phi(1)|$ divides both 30 and 12. Now, we need to find all possible orders for $\phi(1)$ in \mathbb{Z}_{30} . |1| = 30 in \mathbb{Z}_{30} , so $|\phi(1)|$ divides 30. Since elements of \mathbb{Z}_{12} have order 1, 2, 3, 4, 6, or 12, $|\phi(1)|$ must be in $\{1, 2, 3, 6\}$.

Now, we find all elements in \mathbb{Z}_{12} with orders in $\{1,2,3,6\}$. They are:

|0| = 1|2| = 6

|4| = 3

|6| = 2

|8| = 3

|10| = 6

So, the possibles images for 1 in \mathbb{Z}_{30} are in $\{0, 2, 4, 6, 8, 10\}$; there are 6 of them, (that is, 6 choices for $\phi(1)$; what we map 1 to). Therefore, there are 6 homomorphisms from \mathbb{Z}_{30} to \mathbb{Z}_{12} .