ELEC S347F Multimedia Technologies

Lossless Compression Algorithms

Introduction

- Lossless compression algorithms mainly used for text and data which have zero tolerance of error
 - The Shannon-Fano Algorithm
 - Huffman Coding
 - Tunstall Coding
 - Tunstall/Huffman Coding
 - Arithmetic Coding
 - Lempel-Ziv-Welch (LZW) Coding
- Also applied in various image formats
 - RLE used in the PCX format
 - Arithmetic Coding, Huffman Coding used in the JPEG format
 - LZW (and variants) Coding used in GIF, PNG, PDF formats

The Shannon-Fano Algorithm

- Precondition: The probability model for the source is known
- The Shannon-Fano Algorithm
 - lacksquare 1) Construct a list $\mathcal S$ of all the symbols and sort them in a descending probability order (all symbols initially have empty codewords)
 - \blacksquare 2) Split the list \mathcal{S} into two sublists \mathcal{S}_0 and \mathcal{S}_1 such that the difference of probability between the sublists are minimized
 - 3) Assign a 0 and a 1 to the suffix of codewords in the sublists respectively
 - \blacksquare 4) Recursively split the sublists \mathcal{S}_0 and \mathcal{S}_1 (step 2 to 4) until all sublists contain one symbol only

The Shannon-Fano Algorithm: Example

Consider the following probability model

Symbol	Α	В	С	D	E
Probability	0.19	0.12	0.38	0.16	0.15

The Shannon-Fano Algorithm

Symbol	С	Α	D	E	В
Probability	0.38	0.19	0.16	0.15	0.12

	0.5	7 Difference	ce = 0.14	0.43	
Symbol	С	А	D	Е	В
Probability	0.38	0.19	0.16	0.15	0.12

			0.16 Di	ff = 0.11 0.1	27
Symbol	С	А	D	Е	В
Probability	0.38	0.19	0.16	0.15	0.12

The Shannon-Fano Algorithm: Example

Tree Implementation

Symbol	Α	В	С	D	Е
Prob	0.19	0.12	0.38	0.16	0.15
Codeword	01	111	00	10	110

The Shannon-Fano Algorithm: Example

- How to decode the encoded bit sequence?
 - Follow the bit pattern and traverse the branches (where 0 corresponds to a left branch, 1 corresponds to a right branch) from the root of the tree until meeting a leaf node, then restart from the root again
- Try to decode the string 01101011100 for the previous example

Is it uniquely decodable? Is it instantaneous?

How Good Shannon-Fano Coding is?

- Code Rate (r)
 - Defined as the average length per symbol
 - \blacksquare = average codeword length / average symbol length
 - The smaller the value, the more efficient the code
- For the previous example,
 - r = (0.19x2+0.12x3+0.38x2+0.16x2+0.15x3)/1
 - \blacksquare = 2.27 bits/symbol
- How good Shannon-Fano Coding is?
 - Need to compare with entropy

Code Efficiency

- Code Efficiency (E)
 - Defined as the ratio between the entropy and the rate
 - $\blacksquare E = H / r$
 - The closer the value to 1, the more efficient the code
- For the previous example,
 - $H = -(0.19)\log_2(0.19) (0.12)\log_2(0.12) (0.38)\log_2(0.38) (0.16)\log_2(0.16) (0.15)\log_2(0.15)$ = 2.186 bits/symbol
 - Code Efficiency E = H / r = 2.186 / 2.27 = 0.963

Code Redundancy

- Code Redundancy (R)
 - Another measure of the efficiency of a code
 - Defined as the difference between the code rate and the entropy (R = r H)
 - ■The smaller the value, the more efficient the code
- For the previous example,
 - Code Redundancy R = r H = 2.27 2.186 = 0.084 bits/symbol
 - $\square 0.084 > 0$ (means there are room for improvement)

Huffman Coding

Huffman Coding

- Precondition: The probability model for the source is known
- Huffman Coding Algorithm
 - lacksquare 1) Construct a list $\mathcal S$ of all the symbols and sort them in a descending probability order (all symbols initially have empty codewords)
 - \blacksquare 2) Combine the two symbols with the lowest probability from $\mathcal S$
 - 3) Assign a 0 and a 1 to the suffix of the codewords of the two symbols respectively
 - \blacksquare 4) Reorder the list $\mathcal S$ with the aggregated probability
 - \blacksquare 5) Repeat step 2 until there is only one symbol left in ${\cal S}$

Huffman Coding: Example

Consider the following probability model

Symbol	А	В	С	D	E
Probability	0.19	0.12	0.38	0.16	0.15

Huffman Coding Algorithm

Symbol	С	А	D	E	В
Probability	0.38	0.19	0.16	0.15	0.12
Symbol	С	{E, B}	А	D	
Probability	0.38	0.27	0.19	0.16	
Symbol	С	{A, D}	{E, B}		
Probability	0.38	0.35	0.27		
Symbol	{{A,D}, {E,B}}	С			
Probability	0.62	0.38			
Symbol	{{{A,D},{E,B}},C}				
Probability	1				

Huffman Coding: Example

Tree Implementation

Symbol	Α	В	С	D	E
Prob	0.19	0.12	0.38	0.16	0.15
Codeword	000	011	1	001	010

Huffman Coding: Example

- How to decode the encoded bit sequence?
 - Same procedure as the Shannon-Fano algorithm
- Try decoding the string 01101011001 for the previous example

Is it uniquely decodable? Is it instantaneous?

How Good Huffman Coding is?

- For the previous example,
 - r = 0.19x3 + 0.12x3 + 0.38x1 + 0.16x3 + 0.15x3
 - \blacksquare = 2.24 bits/symbol
- How good Huffman Coding is?
 - Code Efficiency E = H / r = 2.186 / 2.24 = 0.976
 - Code Redundancy R = r H = 2.24 2.186 = 0.054 bits/symbol
 - Huffman code performs better than the Shannon-Fano algorithm in this example

Huffman Coding Algorithm

- For another example
 - If the probability model is of symbols $\{A, B, C, D\} = \{0.4, 0.2, 0.2, 0.2\}$
 - 3 symbols are of the same smallest probability
 - The first iteration may combine symbol {B, C}, {C, D}, {B, D} (and 3 more in reverse order)
 - The generated codes will be different (the only difference)
 - However, they are still prefix codes and uniquely decodable
 - The redundancies and efficiencies are the same

Huffman vs. Shannon-Fano

Similarities

- Both are prefix codes
 - Both are uniquely decodable and instantaneous
- Both are variable-length codes
 - Symbols that occur more frequently have shorter codewords than symbols that occur less frequently
- Both require knowledge of the probability model of the source data
 - The bit assignments are based on the probability of the symbols
- Both require the coding table for decoding
 - An overhead that need to send before the data
 - Negligible only if the source data is big enough

Huffman vs. Shannon-Fano

Differences

- The Shannon-Fano algorithm uses top-down approach while Huffman Coding uses bottom-up approach
- The Shannon-Fano algorithm does not guarantee to generate the optimal tree
 - In contrast, the Huffman algorithm always
 - So Huffman coding is able to achieve higher code efficiency

Knowledge of Source Data

- Knowledge of the probability model of the source data
 - The first pass (modeling): collect the statistics (the occurrence probabilities of the symbols)
 - The second pass (coding): encode the source based on the collected statistics
- For some applications (e.g. compressing an article)
 - Modeling may use global statistics (e.g. occurrence of letters based on English text)
 - Or use local statistics (e.g. occurrence of letters based on the processing article)
 - What are the pros and cons?

No Knowledge of Source Data

- What if the collection of statistics is not possible?
 - e.g. live application
- Two possible directions
 - Using global statistics (provided that is available)
 - ■In general, the code efficiency is not high
 - Building the code table dynamically and adaptively
 - Representatives: dynamic Huffman coding, adaptive arithmetic coding, Lempel-Ziv-Welch (LZW) coding

Limitation of Huffman Coding

Consider the following probability model

Symbol	А	В
Probability	0.999	0.001

Huffman Coding Algorithm

- Entropy H = 0.0114 bits/symbol
- Code Rate $r = 0.999 \times 1 + 0.001 \times 1 = 1 \text{ bit/sym}$
- ■r >> H

Why Does Huffman Coding Fail?

- Huffman codes use an integer number of bits for each symbol
 - If there are 999 symbol 'A's and 1 symbol 'B'
 - Using Huffman coding requires 1000 bits for the whole sequence
- The ideal case of the previous example should use less than 1 bit to represent symbol 'A'
 - \blacksquare i(A): $-\log_2(0.999) = 0.00144$
 - \blacksquare i(B): $-\log_2(0.001) = 9.966$
 - Total length = 0.00144x999 + 9.966x1 = 11.4 bits
 - < < 1000 bits

Solution

- Use real number of bits for each symbol
 - Not possible?
 - What if assigning integer number of bits for a group of symbols?
 - e.g. y bits for a group of x symbols
 - Each symbol uses y/x bits (which approximate to the value of self-information)
 - Representatives: Tunstall Codes, Arithmetic Codes

Tunstall Coding

Tunstall Codes

- Variable-length codes means that the length of the codewords are vary in number of bits
 - Usually fewer bits are assigned for symbols that occur more frequently
 - But each codeword corresponds to a symbol
- Tunstall codes are fixed-length code
 - However, each codeword represents a different number of symbols
 - Called variable-length to fixed-length code
 - Maximize the (average) number of symbols represented by each codeword (so as to minimize the overall length of encoded string)

Tunstall Coding Algorithm

- \blacksquare Algorithm for generating k-bit Tunstall Codes
 - \blacksquare 1) Construct a list \mathcal{S} of all the symbols
 - lacksquare 2) Remove the symbol φ that has the highest probability from $\mathcal S$
 - \blacksquare 3) Concatenate φ with every source symbols (including φ itself) and add them to the list $\mathcal S$
 - $\blacksquare 4$) Repeat step 2 if the number of symbols in $\mathcal S$ is less than or equal to 2^k
 - Then assign the bits to the symbols

Tunstall Coding Algorithm: Example

Design a 3-bit Tunstall code for the below 3 symbols Symbol Probability

Symbol	Probability
А	0.6
В	0.3
С	0.1

- lacksquare For generating k-bit Tunstall codes for N symbols
 - Require M iterations, where $N + M(N-1) \le 2^k$

Symbol	Probability
A	0.6
В	0.3
С	0.1
AA	0.36
AB	0.18
AC	0.06

Symbol	Probability
A	0.6
В	0.3
С	0.1
AA	0.36
AB	0.18
AC	0.06
AAA	0.216
AAB	0.108
AAC	0.036

Symbol	Codeword	
В	000	
С	001	
AB	010	
AC	011	
AAA	100	
AAB	101	
AAC	110	

Code Efficiency and Redundancy

- For the previous example,
 - $H = -(0.6)\log_2(0.6) (0.3)\log_2(0.3) (0.1)\log_2(0.1)$ = 1.30 bits/symbol
 - \blacksquare r = avg. codeword length / avg. symbol length
 - $= 3/(1 \times 0.3 + 1 \times 0.1 + 2 \times 0.18 + 2 \times 0.06 + 3 \times 0.216 + 3 \times 0.108 + 3 \times 0.036)$
 - = 3/1.96
 - = 1.53 bits/symbol
 - Code Efficiency = H/r = 0.85
 - Code Redundancy = r H = 0.23 bits/symbol

Tunstall Coding Remarks

- Tunstall codes are uniquely decodable
- However, it is not uniquely encodable
- For the previous example, input symbols "A" and "AA" have no corresponding codewords
 - To ensure the unique encodability, no input code should be a prefix of codeword in Tunstall codes
 - How about if such prefixes really exist?
 - Assign the unused codes (e.g. "111" in the previous example) for the prefixes

Tunstall/Huffman Coding

- Construct the probability model of symbols using Tunstall Coding
- Then encode the symbols using Huffman Coding
- Variable-length to variable-length code
- For the previous example:

Symbol	Probability	
A	0.6	
В	0.3	
С	0.1	
AA	0.36	
AB	0.18	
AC	0.06	

Symbol	Probability	
A	0.6	
В	0.3	
С	0.1	
AA	0.36	
AB	0.18	
AC	0.06	
AAA	0.216	
AAB	0.108	
AAC	0.036	

Symbol	Codeword	
В	00	
С	110	
AB	010	
AC	1110	
AAA	10	
AAB	011	
AAC	1111	

Code Efficiency and Redundancy

- For the previous example,
 - \blacksquare r = avg. codeword length / avg. symbol length
 - = (2x0.3 + 3x0.1 + 3x0.18 + 4x0.06 + 2x0.216 + 3x0.108 + 4x0.036) / (1x0.3 + 1x0.1 + 2x0.18 + 2x0.06 + 3x0.216 + 3x0.108 + 3x0.036)
 - = 2.58/1.96
 - \blacksquare = 1.32 bits/symbol
 - Code Efficiency = H/r = 0.98
 - Code Redundancy = r H = 0.02 bits/symbol
 - More efficient than using Tunstall coding alone!

Compare with Huffman Coding

What if using Huffman coding only,

Symbol	Probability	Codeword
А	0.6	0
В	0.3	10
С	0.1	11

- \blacksquare r = avg. codeword length / avg. symbol length
 - \blacksquare = $(1 \times 0.6 + 2 \times 0.3 + 2 \times 0.1) / 1$
 - \blacksquare = 1.4 bits/symbol
- Code Efficiency = H/r = 0.93
- \blacksquare Code Redundancy = r H = 0.1 bits/symbol
- Tunstall/Huffman coding is better than using Tunstall and Huffman coding alone!

Tunstall/Huffman Coding: Conclusion

- Having a good model for the data can be useful in estimating the entropy of the source
- The better the modeling, the higher efficiency of the compression algorithm
- Tunstall coding provides a better modeling of the source data, so as to allow better encoding rate for Huffman coding
 - Maximize the number of symbols per codeword and minimize the number of bits per codeword
- Any trade off?

Arithmetic Coding

Arithmetic Coding

- Idea: encode the entire message into a single real number in range [0, 1)
- Encode algorithm
 - Initialize the range as [0, 1)
 - For each input symbol K, narrow down the range based on its probability model
 - Finally output a real number that falls in the range
- Decode algorithm
 - Initialize the range as [0, 1)
 - Based on the encoded real number, find the range of number within which the code number lies, and update the range based on the decoded symbol
 - Repeat until all symbols have been decoded

Arithmetic Encoding: Example

- If the input sequence = $\{B, A, B, C, B\}$
 - Probability model = $\{A: 0.2, B: 0.6, C: 0.2\}$
- Encoding
 - Assign each symbol to the probability range
 - A: [0.0, 0.2), B: [0.2, 0.8), C: [0.8, 1.0)

Since the first symbol is B, the final codeword will be in the range of 0.2 to 0.79999...

Arithmetic Encoding: Example

Input sequence = $\{B, A, B, C, B\}$

rinally encoded as a real number in this range e.g. 0.289063 (why?)

Since the last symbol is B, the final codeword will be in the range of 0.28448 to 0.2931199..

Efficiency of Arithmetic Coding

- For the previous example, the sequence could be encoded as $0.289063_{10} = 0.0100101_2$
 - $=2^{-2}+2^{-5}+2^{-7}=0.25+0.03125+0.007813$
 - Require 7 bits for the sequence only
 - r = 7/5 = 1.4 bits/sym
- Comparison
 - $H = -(0.2)\log_2(0.2) (0.6)\log_2(0.6) (0.2)\log_2(0.2) = 1.37 \text{ bits/sym}$
 - Total length = $1.37 \times 5 = 6.85$ bits
 - $\blacksquare E = H/r = 0.979$
 - R = r H = 0.0214 bits/symbol

Note: coding requires integer no. of bits for the whole sequence, in which at least 7 bits in this example. It is already the best that arithmetic coding can do

Arithmetic Decoding: Example

- Given the probability model of a symbol set
 - ■{A: 0.2, B: 0.6, C: 0.2}

[0.32, 0.68)

[0.68, 0.80)

- If the encoded number is 0.289063, what are the original source symbols?
- Decoding processing

Symbol	Range	
Α	[0.0, 0.2)	
В	[0.2, 0.8)	Since 0.289063 falls in between [0.2, 0.8), the first symbol is decoded
С	[0.8, 1.0)	as 'B'
Symbol	Range	
BA	[0.20, 0.32)	Since 0.289063 falls in between [0.20, 0.32), the second symbol is

BB

BC.

decoded as 'A'

Arithmetic Decoding: Example

Decoding processing

Symbol	Range	
BAA	[0.200, 0.224)	
BAB	[0.224, 0.296)	Since 0.289063 falls in between [0.224, 0.296), the third symbol is
ВАС	[0.296, 0.320)	decoded as 'B'
Symbol	Range	
BABA	[0.2240, 0.2384)	
BABB	[0.2384, 0.2816)	
BABC	[0.2816, 0.2960)	Since 0.289063 falls in between [0.2816, 0.2960), the fourth symbol is
		decoded as 'C'
Symbol	Range	
BABCA	[0.28160, 0.28448)	
ВАВСВ	[0.28448, 0.29312)	← Since 0.289063 falls in between [0.28448, 0.29312), the fifth symbol
ВАВСС	[0.29312, 0.29600)	is decoded as 'B'

■ The decoded sequence = $\{B, A, B, C, B\}$

Arithmetic vs. Huffman Coding

- Huffman coding uses integer no. of bits to represent symbols
 - In contrast, arithmetic coding uses real range to represent symbols
 - The no. of bits is determined by the size of the interval (-log₂p bits to represent interval of size p)
 - Asymptotically arithmetic coding approaches ideal entropy
 - i.e. able to achieve better compression rate than Huffman coding
- However, arithmetic coding is much more complex
 - Computation can be memory and FPU intensive
 - Need to renormalize the floating point numbers dynamically
 - Otherwise the resolution of number would be limited by FPU precision

Lempel-Ziv-Welch (LZW) Coding

Lempel-Ziv-Welch (LZW) Encoding

- initialize the dictionary (i.e. code table) with all basic symbols
- \blacksquare W = "" (null string)
- while (read an input symbol K)
 - if WK is in dictionary
 - $\square W = WK$
 - else
 - append WK to the dictionary
 - output the codeword for W
 - $\square W = K$
- output the codeword for W

- Consider a simple example with 3 possible basic symbols
 - Symbol Set: {a, b, c}
 - ■Input Sequence: {a, b, a, b, a, c, a, b, a}
- Encoding
 - Initialize the dictionary (code table) with all possible basic symbols

Symbol	Codeword
а	0
b	1
С	2

Input sequence: {a, b, a, b, a, c, a, b, a}

W	K	WK	Output
"" (null)	а	а	-

Accumulated output = ""

W	К	WK	Output
а	b	ab	0

Accumulated output = 0

W	K	WK	Output
b	а	ba	1

Accumulated output = 0, 1

Symbol	Codeword	
а	0	
b	1	
С	2	

Symbol	Codeword
а	0
b	1
С	2
ab	3

Symbol	Codeword
а	0
b	1
С	2
ab	3
ba	4

Input sequence: {a, b, a, b, a, c, a, b, a}

W	K	WK	Output
а	b	ab	-

Accumulated output = 0, 1

W	K	WK	Output
ab	а	aba	3

Accumulated output = 0, 1, 3

Symbol	Codeword
а	0
b	1
С	2
ab	3
ba	4

Symbol	Codeword
а	0
b	1
С	2
ab	3
ba	4
aba	5

Input sequence: {a, b, a, b, a, c, a, b, a}

W	K	WK	Output
а	С	ac	0

Accumulated output = 0, 1, 3, 0

W	K	WK	Output
С	а	ca	2

Accumulated output = 0, 1, 3, 0, 2

Symbol	Codeword
а	0
b	1
С	2
ab	3
ba	4
aba	5
ac	6

Symbol	Codeword
а	0
b	1
С	2
ab	3
ba	4
aba	5
ac	6
CO	7

Input sequence: {a, b, a, b, a, c, a, b, a}

W	K	WK	Output
а	b	ab	-

Accumulated output = 0, 1, 3, 0, 2

Symbol	Codeword
а	0
b	1
С	2
ab	3
ba	4
aba	5
ac	6
ca	7

W	K	WK	Output
ab	а	aba	-

Accumulated output = 0, 1, 3, 0, 2

W	K	WK	Output
aba	-	-	5

Accumulated output = 0, 1, 3, 0, 2, 5

Performance

- In the previous example
 - ■The final code table has 8 entries
 - ■3 bits per codeword
 - The encoded sequence

$$\blacksquare$$
 = {0, 1, 3, 0, 2, 5}

- Encoded bit sequence
 - **=** {000 001 010 000 010 101}

■ Total encoded le	$ength = 6 \times 3 =$	18 bits
--------------------	------------------------	---------

■ The input = $9 \times 2 = 18$ bits (No compression?)

Symbol	Codeword
а	0 (000)
b	1 (001)
С	2 (010)
ab	3 (011)
ba	4 (100)
aba	5 (101)
ac	6 (110)
ca	7 (111)

LZW Decoding

- initialize the dictionary (i.e. code table) with all basic symbols
- \blacksquare W = "" (null string)
- while (read a codeword K)
 - if K exists in the dictionary
 - output the symbol of K
 - else
 - output W + first symbol W
 - append "W + first symbol of K" to the dictionary if it does not exist
 - \blacksquare W = the symbol of K

- Given the initial dictionary with 3 entries
- And the encoded sequence

$$\blacksquare$$
 = {0, 1, 3, 0, 2, 5}

Symbol	Codeword
а	0 (000)
b	1 (001)
С	2 (010)

■ How to reconstruct the original source?

W	K	W+sym(K[0])	Output
-	0	а	а

Accumulated output = a

W	K	W+sym(K[0])	Output
а	1	ab	b

Accumulated output = ab

Symbol	Codeword
а	0 (000)
b	1 (001)
С	2 (010)

Symbol	Codeword
а	0 (000)
b	1 (001)
С	2 (010)
ab	3 (011)

Encoded sequence = $\{0, 1, 3, 0, 2, 5\}$

W	K	W+sym(K[0])	Output
b	3	ba	ab

Accumulated output = abab

W	K	W+sym(K[0])	Output
ab	0	aba	а

Accumulated output = ababa

Symbol	Codeword
а	0 (000)
b	1 (001)
С	2 (010)
ab	3 (011)
ba	4 (101)

Symbol	Codeword
а	0 (000)
b	1 (001)
С	2 (010)
ab	3 (011)
ba	4 (100)
aba	5 (101)

W	K	W+sym(K[0])	Output
а	2	ac	С

Accumulated output = ababac

W	К	W+sym(K[0])	Output
С	5	ca	aba

Accumulated output = ababacaba (decoded data)

The final decoded sequence and code table are the same as the source!

Symbol	Codeword
а	0 (000)
b	1 (001)
С	2 (010)
ab	3 (011)
ba	4 (100)
aba	5 (101)
ac	6 (110)

Symbol	Codeword
а	0 (000)
b	1 (001)
С	2 (010)
ab	3 (011)
ba	4 (100)
aba	5 (101)
ac	6 (110)
ca	7 (111)

LZW Coding Analysis

- Effective for source data with large symbol set and repeated pattern
- Require good use of data structures for maintaining the dictionary
 - Otherwise will waste time on matching the coded symbols
- Original LZW used bounded sized dictionary
 - 12-bit fixed-length codewords (so max. 4096 entries)
 - First 256 entries are ASCII codes
 - The remaining are built on-the-fly