Symbolic cognitive robotics Design notes

Author: Jean-François Cloutier

Research project: Symbolic Cognitive Robotics, Active Inference Institute

Last updated: April 10 2024

Design notes on the next iteration of a cognitive architecture for Lego robots.

Formative concepts

- · Active Inference (an agent actively minimizes surprise to survive)
- · Enactivism (an embodied agent's perceptions and actions are constructively co-dependent)
- Apperception (predictive sense-making comes from the discovery of unified causal theories)
- · Biosemiotics (sense-making and sign-acting are intrinsically grounded in the agent's drive to survive)
- Society of Mind (an agent is animated by a collective of cognition actors interacting with each other and the world)
- Constraint Closure (the cognition actors constrain how the Society of Mind as a whole can change, and viceversa)
- Kantian Whole (the parts -cognition actors- exist for and by means of the whole -the Society of Mind-)

Society of Mind (SOM)

- An agent grows and evolves a Society of Mind from its engagement and experiences
- A SOM is a "connectome" of Cognition Agents (CAs)
- Each CA has an umwelt consisting of other CAs or some sensed aspects of the agent's environment
- A SOM starts with a priori constituents
 - The a priori objects are self, world and ground
 - The a priori relations is in
 - objects ground and self are in world
 - o The a priori value domains are
 - boolean [true, false]
 - integer ranges, including percentage
 - colors [unknown, black, blue, green, yellow, red, white, brown]
 - o Detectors and effectors are exposed as a priori CAs
 - Each defines an a priori vocabulary of
 - beliefs (e.g. color, distance, touched)
 - with value domains (e.g. colors, 0..100, etc.)
 - actions (e.g. spin, reverse spin)

 Metacongnition actors have a priori capabilities and each CA has a priori, shared introspective belief voacabulary (see below)

Exteroception vs interoception vs introspection

- Exteroception => Cognition of (more or less abstracted) sensations from the external world
 - o e.g. the distance to an obstacle
- Interoception => Cognition of (more or less abstracted) bodily sensations
 - o e.g. a motor is stalled
- Introspection => Cognition of sensations about computations by Cognition Actors (CAs)
 - o perceived by Metacognition actors
 - o e.g. a CA has low predictive capability
- A CA can non-exclusively coopt other CAs into its umwelt as sources of interoceptive or exteroceptive sensations, and as effectors of actions

The umwelt of a Cognition Actor (CA)

- The (immediate) umwelt of a CA is a (small) fixed set (fixed at instantiation) of other CAs
 - The CAs in an umwelt also have CAs in their own umwelts
 - All the way down to a priori CAs
 - The transitive umwelt of a CA is the CAs in its immediate umwelt plus the CAs in their transitive umwelts
 - The level of abstraction of a CA is the maximal depth of its transitive umwelt
 - A CA builds its umwelt from CAs of lower and uniform levels of abstraction
- CA Interfaces
 - o A CA's interface is what it exposes to other CAs, namely
 - The vocabulary of its beliefs (what others can make predictions about), composed of
 - extant (observed), latent (imagined) and synthetic (derived) objects,
 - extant, latent and synthetic relations/properties
 - a latent or synthetic property is always boolean-valued
 - The actions it affords
 - either a priri actions (e.g. spin and reverse spin of motors) or synthetic actions
 - o All CAs have a common vocabulary of meta-cognition beliefs
 - exposed to meta-cognition actors
- · CA events
 - A CA emits events listened to by the CAs tp which unwelts it belongs, and by the meta-cognition actor overseeing it
 - when prompted by predictions about its beliefs, a CA emits
 - prediction errors given its currently held beliefs
 - with varying precision
 - from perceiving other CAs
 - or from cognitive self-assessments/beliefs (from introspection)

A CA's perceptions

- · A CA processes perceptions one discrete time slice after another
 - o the time slice duration is constant for the CA and proportional to the CA's abstraction level
 - i.e. the depth of its transitive umwelt
- · Perceiving is making predictions about about the beliefs of CAs in its umwelt
 - o possibly corrected by prediction errors emitted by CAs in its umwelt
- · Perceptions are
 - Uncontradicted predictions
 - o Prediction errors can be emitted in response to predictions, with attached precision
 - If multiple CAs respond to a prediction with prediction errors
 - The prediction error with the highest precision has sway
 - Tie-breaking is random
- The precision of a prediction error (0% to 100%) is a function of:
 - The confidence of the emitting CA in the contradicting belief, which is a function of:
 - The accuracy of the supporting causal model behind the belief (see below)
 - The duration of the perceptual trend supporting the belief, modulated by (see below)
 - the average precision and variance of the perceptions aggregated by the trend (see below)

A CA's beliefs

- Abelief is what's imagined (latent) or synthesized by the CA
 - o from its perceptions
 - which are unrefuted predictions + prediction errors about the beliefs of CAs in its immediate umwelt
- Beliefs are available to other CA's as synthetic or latent and thus novel perceptions
- · Beliefs are abduced predicates
 - o needed to formulate a causal theory (latent)
 - or needed to label significant perceptual trends (synthetic)
- Beliefs have associated normativity (pleasant vs unpleasant vs indifferent beliefs) from ambient feelings
- "Thin now" vs. "thick now" beliefs
 - o Thin now beliefs are
 - unobserved but imagined/abduced properties/relations/objects to (causally) make sense of observations
 - Thick now beliefs are
 - synthetic beliefs, induced from, and thus supported by, perceptual trends

Perceptual trends support synthetic beliefs

- Perceptual trends (from the analysis of past perceptions) support synthetic beliefs
- A trend is about the relation or property of a given object
 - o A relation associates two objects
 - o A property associates an object and a value from a defined domain of values
- · A trend is itself given a value
 - o a trend is either stable, unstable, up, down
 - trend(<predicate name>(<object name>), <trend value>, <since>)
 - for relations, up/down describes a count of related objects,
 - for properties, up/down describes the rise/fall in values
 - property value domains are ordered from lesser to greater
- · Memorizing trends
 - A CA keeps a limited history of past perceptions
 - It is the CA's short-term memory (developing trends)
 - Individual, past perceptions are eventually forgotten
 - o A "compressed" trend (a trend about now forgotten perceptions) can be preserved as long-term memory
 - compressed(<trend>, <time interval>)
 - It is associated with remembered past beliefs (that the trends supported)
 - When past beliefs are forgotten so are their associated compressed trends
 - Compressed trends represent the CA's long-term memory

Inducing beliefs from trends

- Beliefs are induced from the analysis of trends, themsleves produced from analyzing a perceptual history.
 - A belief induced form the analysis of a trend is then supported by that trend.
 - Induction can result from
 - Associating
 - Synthetic properties/relations are supported by attention-worthy (strongly felt or surprising) trends
 - <synthetic property name>(<object name>, true | false)
 - <synthetic relation name>(<object name>, <object name>)
 - Partitioning
 - Parts-whole beliefs are induced by detecting boundaries in an observed object.
 - in(<new object name>, <object name>)
 - How are boundaries detected?
 - An object has differentiable, stable sub-trends that coincide in time
 - This might indicate that different parts of the object were being observed at different times
 - e.g. "patch of food" in the "ground" in the "world" ("self" is always in the "world")
 - A part is not of the same object type as the whole (assuming no fractal objects)
 - Categorizing
 - Beliefs about partition cause the abduction of new objects (the parts)
 - The "part" object is assigned a new (abduced) object type
 - is_a(<object_name>, <new object_type>)

- · A trend is significant and worthy of belief induction if
 - o it breaks surprisingly from a previous trend
 - o or if correlates with a change in feelings

Trends, feelings and the normativity of beliefs

- Normativity (something being good, bad or indifferent) is always about trends
 - It exists in the "thick now"
- Normative valuation comes from associating trends with feelings (see below)
- A trend takes its (normative) value from the intensity of concurrent, ambient feelings
 - trend_value(<trend>, good | bad | neutral)
- A belief supported by a trend takes the normative value of that trend
 - o A belief associated with a bad feeling is unpleasant, else it's pleasant (good) or indifferent (neutral)
 - o Since trends have lengths, the normative values of trends have duration
 - e.g. a long-lasting unpleasant belief are worse than a short-lasting one

CA actions

- Changes in properties/relations observed by a CA are either caused by latent processes or by actions.
 - o In a static environment, they are caused entirely by actions!
 - No perception without action and no action without perception
- To make sense of/apperceive the consequences of actions, they must be observed together with the property/relation changes they (may) cause
- · A CA exposes, by name, the actions it can execute
- · A CA must always be capable of acting
 - o i.e. it has at least one effector CA in its transitive umwelt
- · The action repertoire of a CA consists of
 - o the actions it synthesized
 - o plus the distinct actions exposed by CAs in its umwelt
- · The CA of an effector exposes atomic actions
 - For example, a wheel CA exposes the atomic actions "spin" and "reverse spin"
- · A CA syntesizes actions from the actions exposed by CAs in its umwelt, names them and exposes them in turn
- A synthetic action is a named list of actions
 - e.g. action_2 = [action(ca_2, action_1), action(ca_2, action_1), action(ca_3, action_2)]
 - an action can be repeated
 - o a synthetic action is, via closure, a sequence of atomic actions

Why does a CA defines a new action?

- A CA synthesize a new action because a sequence of actions is empirically associated with a significant belief change
- · Belief changes that may lead to action synthesis are
 - o Abduced object, property or relation from a causal model (thin now belief)
 - Correlation with a belief-supporting trend starting/ending/enduring (long now belief)
 - The sequence of actions that runs before/through the trend is extracted
 - Babbling
 - A CA synthesizes an action to see what would happen if executed
 - As a variation on an action already in its repertoire
 - Amplify sub-sequences via action duplication
 - Tone down sub-sequences by reducing duplication
 - Splice and recombine a synthetic action

Action intents

- An intent names an action that a CA wants executed.
 - o A CA can intend any action in its repertoire
- What motivates action intents by a CA (from less to most motivated)
 - Babbling
 - to maybe cause a "chance" belief
 - Evidencing
 - to impact confidence in a belief (thus the precsion of reported prediction errors)
 - Eliminating
 - to terminate an unpleasant belief
- · A CA intends at most one action per time slice
 - o It intends the most motivated action in its repertoire
 - favoring, but not always, actions of the most successful policies (see below)
 - o If multiple actions are considered
 - A motivation tie is randomly broken

Action execution

- · Execution of an intended action is inhibited if another CA concurrently intends an action that
 - o covers it (is a super-sequence)
 - o or is identical and has higher normative motivation
- · All actions taken are observable by all CAs
 - o The atomic actions from the closure of synthetic actions are observed
 - During time slice T of the CA
 - If a sub-sequence of the observed atomic actions recreates a synthetic action in the repertoire of the CA
 - then the longest synthetic action is what is observed, plus the second longest etc.

CA action policies

• A policy is an action associated by a CA with a belief, a goal (verification, elimination) and a success rating from its executions

Feelings

- · Feelings are agent-wide signals about detected existential risks
- · Feeling types
 - Hunger
 - Depleted energy/resource stores
 - o Pain
 - Damage loss of structural integrity
 - Fear
 - Lack of foresight Inability to predict
- feeling(<feeling type>, good | bad | neutral)
- · Motivational ranking
 - Hunger > Pain > Fear
 - o The agent dies when energy/resources are depleted
 - o The agent is immobilized when pain is too high
- · Feelings are centrally computed from
 - o detector sensations
 - touch pain increases
 - color resources increase if color == food type
 - o effector sensations
 - work done energy decreases
 - CA cognitive sensations
 - mental effort energy decreases
 - prediction success rate fear increases/decreases
 - relevance (rate of received predictions, intended composited actions)
 - The passing of time
 - healing pain decreases
 - base metabolism resources/energy decreases
- · Any change in hunger/pain/fear intensity is signaled to all CAs
- For each CA, for each time slice, there's an average intensity of each feeling type

Constraints

- Umwelts (when closed) must be acyclic directed graphs but not necessarily trees
- . A CA must not include a CA in its immediate umwelt if the latter is already in its transitive umwelt.
- A CA must be either cognitive or meta-cognitive, never both
- Only one synthetic action in a conflicting set can be executing at any given point in time

- A synthetic action conflicts with another if their closed sequences have any simple action type *
 incommon.
- o Practically speaking, only one synthetic action is allowed to execute at any time
- · A CA must not remove an element from its interface if it is used by another CA
 - to formulate a causal theory
 - o to synthesize a belief or action
- A CA must archive a belief (without normativity) or action and its (compressed abstracted) support when the support is gone but the belief or action is still used by other CAs
- · A new belief must not be created if its support is subsumed by the compressed support of an archivedbelief
 - o The archive belief is ressucitated and given the current support
- An archived belief/action must be deleted if the belief/action is no longer used by another CA.

Initial state of the Society of Mind (SOM)

- Initial CAs
 - One primitive CA per effector (wheel_1, wheel_2)
 - o One primitive CA per detector (color_sensor, touch_sensor, obstacle_sensor, beam_sensor, etc.)
 - One meta-cognition CA with as umwelt all the primitive CAs *Initial steady state variables (sources of feelings)
 - o Integrity 100%
 - Energy 100%
 - Foresight 100%

Meta-cognition CAs (MCAs)

- . Every CA of level N belongs to the umwelt of one MCA associated to that level
 - The level of a CA is the number of edges from the CA to primitive CAs
 - For a Society of Mind (SOM) with N levels, there must be one MCA per level 1..N, plus one MCA for level
 N+1 with an empty umwelt
 - o Once a CA is added at level N + 1, an MCA is immediately created for the empty level N + 2 etc.
- · An MCA observes only cognitive sensations from its umwelt

Meta-cognitive actions

- An MCA is exploring the "connectome space" of CAs at one level of abstraction, looking for a beneficial organization
- · An MCA at level N can
 - Create a CA at level N
 - And add level N-1 CAs to its umwelt at creation
 - Remove a CA

Cognitive sensations

- The cognitive sensations are
 - o effort as
 - apperception engine usage
 - memory load
 - o foresight as
 - prediction success rate
 - stability as
 - rate of change in beliefs, actions, causal theories
 - relevance as
 - rate of received predictions,
 - percent of actions composited by other CAs