

RE01 1500KB Group

R_CORE Detailed Specification

R01AN4769EJ0130 Rev.1.30 Dec. 04, 2020

Introduction

This document describes the detailed specifications of the startup routine R_CORE provided in the RE01 1500KB CMSIS Driver Package.

Target Device

RE01 1500KB Group

Contents

1. Overview	3
Internal Structure of Software Components	4
2.1 File Structure	4
Internal Operation of Software Components	7
3.1 Normal Startup Mode	7
3.2 EHC Startup Mode	8
4. Detailed Information of Software Unit	9
4.1 Configurations	
4.1.1 Main Clock Oscillator Stop (SYSTEM_CFG_MOSC_ENABLE)	11
4.1.2 Main Clock Operating Frequency Setting (SYSTEM_CFG_MOSC_FREQUENCY_HZ)	11
4.1.3 Main Clock Oscillator Drive Capability Switching (SYSTEM_CFG_MOSC_DRIVE)	11
4.1.4 Main Clock Oscillator Switching (SYSTEM_CFG_MOSC_CLOCK_SOURCE)	11
4.1.5 Main Clock Oscillator Low Consumption Oscillation Function Enable (SYSTEM_CFG_MOSC_LOW_POWER_ENABLE)	11
4.1.6 Main Clock Oscillator Stabilization Wait Time Setting (SYSTEM_CFG_MOSC_WAIT_T	
4.1.7 HOCO Stop (SYSTEM_CFG_HOCO_ENABLE)	
4.1.8 HOCO Operating Frequency Setting (SYSTEM_CFG_HOCO_FREQUENCY)	
4.1.9 MOCO Stop (SYSTEM_CFG_MOCO_ENABLE)	
4.1.10 LOCO Stop (SYSTEM_CFG_LOCO_ENABLE)	
4.1.11 Sub-clock Oscillator Stop (SYSTEM_CFG_SOSC_ENABLE)	
4.1.12 Sub-clock Oscillator Drive Capability Switching (SYSTEM_CFG_SOSC_DRIVE)	
4.1.13 Sub-clock Oscillator Noise Filter Stop (SYSTEM_CFG_SOSC_NF_STOP)	
4.1.14 PLL Stop (SYSTEM_CFG_PLL_ENABLE)	
4.1.15 PLL Input Frequency Division Ratio Select (SYSTEM_CFG_PLL_DIV)	
4.1.16 PLL Frequency Multiplication Factor Select (SYSTEM_CFG_PLL_MUL)	
4.1.17 PLL Frequency Range Select (SYSTEM_CFG_PLL_RANGE)	
4.1.18 Clock Source Select (SYSTEM_CFG_CLOCK_SOURCE)	17
4.1.19 System Clock (ICLK)/Peripheral Module Clock (PCLKA) Select (SYSTEM_CFG_ICK_PCKA_DIV)	18
4.1.20 Peripheral Module Clock B (PCLKB) Select (SYSTEM_CFG_PCKB_DIV)	
4.1.21 Power Control Mode Select (SYSTEM_CFG_POWER_CONTROL_MODE)	
4.1.22 EHC Startup Mode Setting (SYSTEM_CFG_EHC_MODE)	

4.1	1.23	Voltage Detection 1 Level Setting (SYSTEM_CFG_EHC_LVD1LVL)	19
4.1	1.24	Voltage Detection BAT Level Setting (SYSTEM_CFG_EHC_LVDBATLVL)	20
4.1	1.25	Option-Setting Memory 0 (SYSTEM_CFG_OFS0)	20
4.1	1.26	Option-Setting Memory 1 (SYSTEM_CFG_OFS1)	20
4.1	.27	Option-Setting Memory 2 (SYSTEM_CFG_SECMPU_xxx)	21
4.1	1.28	Option-Setting Memory 3 (SYSTEM_CFG_ID_CODE_PROTECTION_n) (n = 1 to 4)	22
4.1	1.29	Option-Setting Memory 4 (SYSTEM_CFG_AWS)	22
4.1	1.30	Preprocessor Error Check	23
4.2	Co	nstants and Macros	24
4.2	2.1	Option-Setting Memory (OptionSettingMemory)	24
4.2	2.2	Serial Programmer ID Setting (OptionSettingID)	24
4.2	2.3	Access Window Setting (OptionSettingAWS)	24
4.2	2.4	System Clock Source Definition Macro (SYSTEM_CLOCK_SEL)	25
4.2	2.5	System Clock Definition Macro (SYSTEM_CLOCK)	25
4.2	2.6	System Clock Wait Cycle Definitions	26
4.3	Fur	nction Specifications	27
4.3	3.1	system_clock_init Function	27
4.3	3.2	system_mosc_start Function	32
4.3	3.3	system_mosc_stop Function	33
4.3	3.4	system_pll_start Function	34
4.3	3.5	system_pll_stop Function	35
4.3	3.6	system_hoco_start Function	36
4.3	3.7	system_hoco_stop Function	37
4.3	3.8	system_moco_stop Function	38
4.3	3.9	system_loco_start Function	39
4.3	3.10	system_loco_stop Function	40
		system_sosc_start Function	
4.3	3.12	system_sosc_stop Function	43
4.3	3.13	system_normal_to_boost Function	44
4.3	3.14	system_highspeed_to_lowspeed Function	45
4.3	3.15	system_highspeed_to_suboscspeed Function	46
4.3	3.16	system_normal_to_vbb Function	47
		Reset_Handler Function	
4.3	3.18	SystemInit Function	49
4.4	App	pendix	50
4.4	1.1	List of Preprocessor Errors	50
5. E	HC	Startup Mode	56
5.1		Structure	
5.1 5.2		nsition to EHC Startup Mode	
5.2 5.3		nstiton to End Startup Mode	
5.4		nction Specifications	
5.4 5.4		r_ehc_Startup Function	
5.4 5.4		ehc_Startup_ramfunc Functionehc_Startup_ramfunc Function	
5.4 5.4		NMI Handler EHC Function	
		IEL1 IROHandler EHC Function	70 71
	. 4	TO LECTION ACCOUNTED FOR FUNCTION	, ,

1. Overview

The following shows a list of abbreviations used in this document and a list of related documents.

Table 1-1 Abbreviation List

Name	Abbreviation
RE01 Group User's Manual: Hardware	UMH
RENESAS CMSIS-Core	R_CORE

Table 1-2 Related Document List

Document Name	Document Number
RE01 Group (with 1.5-Mbyte Flash Memory) User's	r01uh0796
Manual: Hardware	
RE01 1500KB,256KB Group Getting Started Guide to	r01an4660
Development Using CMSIS Package	

2. Internal Structure of Software Components

2.1 File Structure

R_CORE is the system initialization module (CMSIS-Core) of the CMSIS Driver Package and consists of four files: startup_RE01_1500KB.c, system_RE01_1500KB.h, and r_core_cfg.h in the vendor-specific file storage directory.

The roles of the files are shown in Table 2-1. Figure 2-1 shows the file structure of R_CORE in the RE01 1500KB Group CMSIS Driver Package. The internal structure of R_CORE is shown in Figure 2-2.

Table 2-1 Roles of R_CORE Files

File Name	Description
startup_RE01_1500KB.c	R_CORE startup source file.
	It declares vector tables and calls the system initialization function.
	To initialize the system, it is necessary to build this file.
system_RE01_1500KB.c	R_CORE system initialization source file.
	It provides the entity of the system initialization function.
	To initialize the system, it is necessary to build this file.
system_RE01_1500KB.h	R_CORE system initialization header file.
	It provides macro, type, and prototype declarations that can be referenced by
	the user.
	To initialize the system, it is necessary to include this file.
r_core_cfg.h	R_CORE configuration definition file.
	It provides configuration definitions that can be modified by the user.

Figure 2-1 File Structure of R_CORE in CMSIS Driver Package

Figure 2-2 Relationship between R_CORE Functions and R_CORE Configuration Settings

3. Internal Operation of Software Components

R_CORE executes the initial operation to initialize the system by calling the Reset_Handler and SystemInit functions in startup_RE01_1500KB.c. For detailed specifications, refer to section 4.3.17, Reset_Handler Function, and section 4.3.18, SystemInit Function.

3.1 Normal Startup Mode

The following shows the procedure for transition to the normal startup mode.

When the configuration definition of energy harvesting (EHC) startup mode (SYSTEM_CFG_EHC_MODE) is set to "disabled", EHC startup processing is skipped and normal startup processing is performed.

In the normal startup mode, the system and RAM are initialized after a reset, and then execution jumps to the main function.

The system initialization processing makes board-dependent initial settings of pins and specifies the operating frequencies and power-control mode in accordance with the settings in the configuration definition file.

The EHC startup mode is disabled by the default settings in the configuration definition file.

3.2 EHC Startup Mode

The following shows the procedure for transition to the EHC startup mode.

When the configuration definition of energy harvesting (EHC) startup mode (SYSTEM_CFG_EHC_MODE) is set to "enabled", EHC startup processing is performed.

In the EHC startup mode, the EHC capability is used to charge a secondary battery after a reset.

After charging is completed, the same processing as normal startup is performed — that is, the system and RAM are initialized and then execution jumps to the main function.

Note: EHC startup processing is an optional capability of R_CORE.

Figure 3-1 Transition to a Startup Mode by SystemInit Function

4. Detailed Information of Software Unit

4.1 Configurations

For R_CORE, configuration definitions that can be modified by the user are provided in the r_core_cfg.h file.

Table 4-1 shows a list of initial settings. For each configuration definition, refer to the corresponding section shown in the table.

Table 4-1 List of Initial Settings of R_CORE Configurations

Section	Configuration	Description	Initial Value	
4.1.1	SYSTEM_CFG_MOSC_ENABLE	Specifies whether to operate or stop the main clock (MOSC).		
4.1.2	SYSTEM_CFG_MOSC_FREQUENCY_HZ	Specifies the operating frequency of the main clock (MOSC).	32000000	
4.1.3	SYSTEM_CFG_MOSC_DRIVE	Specifies the drive capability of the main clock oscillator.	7	
4.1.4	SYSTEM_CFG_MOSC_CLOCK_SOURCE	Specifies the oscillation source of the main clock oscillator.	0	
4.1.5	SYSTEM_CFG_MOSC_LOW_POWER_ENABLE	Specifies the low consumption oscillation function of the main clock oscillator.	0	
4.1.6	SYSTEM_CFG_MOSC_WAIT_TIME	Specifies the stabilization wait time for the main clock oscillator.	5	
4.1.7	SYSTEM_CFG_HOCO_ENABLE	Specifies whether to operate or stop the high-speed on- chip oscillator (HOCO).	0	
4.1.8	SYSTEM_CFG_HOCO_FREQUENCY	Specifies the oscillation frequency of the high-speed on- chip oscillator (HOCO).	0	
4.1.9	SYSTEM_CFG_MOCO_ENABLE	Specifies whether to operate or stop the middle-speed on- chip oscillator (MOCO).	1	
4.1.10	SYSTEM_CFG_LOCO_ENABLE	Specifies whether to operate or stop the low-speed on- chip oscillator (LOCO).	1	
4.1.11	SYSTEM_CFG_SOSC_ENABLE Specifies whether to operate or stop the sub-clock oscillator (SOSC).		0	
4.1.12	SYSTEM_CFG_SOSC_DRIVE	Specifies the drive capability of the sub-clock oscillator.	0	
4.1.13	SYSTEM_CFG_SOSC_NF_STOP	Specifies whether to operate or stop the noise filter for the sub-clock oscillator.	0	
4.1.14	SYSTEM_CFG_PLL_ENABLE	Specifies whether to operate or stop the PLL circuit.	0	
4.1.15	SYSTEM_CFG_PLL_DIV	Specifies the frequency division ratio of PLL clock source.	1	
4.1.16	SYSTEM_CFG_PLL_MUL	Specifies the frequency multiplication factor of the PLL.	1	
4.1.18	SYSTEM_CFG_CLCOK_SOURCE	Specifies the source of the system clock.	1	
4.1.19	SYSTEM_CFG_ICK_PCKA_DIV	Specifies the frequency division of the system clock (ICLK) and peripheral module clock A (PCLKA).	0	
4.1.20	SYSTEM_CFG_PCKB_DIV	Specifies the frequency division of peripheral module clock B (PCLKB).	0	
4.1.21	SYSTEM_CFG_POWER_CONTROL_MODE	Specifies the power control mode.	1	
4.1.22	SYSTEM_CFG_EHC_MODE	Enables or disables EHC startup processing.	0	
4.1.23	SYSTEM_CFG_EHC_LVD1LVL	Specifies the Voltage Detection 1 Level in EHC startup.	7	
4.1.24	SYSTEM_CFG_EHC_LVDBATLVL	Specifies the Voltage Detection BAT Level in EHC startup.	0	
4.1.25	SYSTEM_CFG_OFS0	Specifies the value of option function select register 0 (OFS0).	0xFFFFFFF	
4.1.26	SYSTEM_CFG_OFS1	Specifies the value of option function select register 1 (OFS1).	0xFFFFFFF	
4.1.27	SYSTEM_CFG_SECMPU_PC0_START	PC0_START Specifies security fetch region 0 (start address) in the code flash memory or SRAM.		
4.1.27	SYSTEM_CFG_SECMPU_PC0_END	Specifies security fetch region 0 (end address) in the code flash memory or SRAM.	0xFFFFFFF	

4.1.27	SYSTEM_CFG_SECMPU_PC1_START	Specifies security fetch region 1 (start address) in the code flash memory or SRAM.	0xFFFFFFF
4.1.27	SYSTEM_CFG_SECMPU_PC1_END	Specifies security fetch region 1 (end address) in the code flash memory or SRAM.	0xFFFFFFF
4.1.27	SYSTEM_CFG_SECMPU_REGION0_START	Specifies the start address of the security program and data in the code flash memory.	0xFFFFFFF
4.1.27	SYSTEM_CFG_SECMPU_REGION0_END	Specifies the end address of the security program and data in the code flash memory.	0xFFFFFFF
4.1.27	SYSTEM_CFG_SECMPU_REGION1_START	Specifies the start address of the security program and data in the SRAM.	0xFFFFFFF
4.1.27	SYSTEM_CFG_SECMPU_REGION1_END	Specifies the end address of the security program and data in the SRAM.	0xFFFFFFF
4.1.27	SYSTEM_CFG_SECMPU_REGION2_START	Specifies the start address of the security program and data in the security IP module.	0xFFFFFFF
4.1.27	SYSTEM_CFG_SECMPU_REGION2_END	Specifies the end address of the security program and data in the security IP module.	0xFFFFFFF
4.1.27	SYSTEM_CFG_SECMPU_CONTROL_SETTING	Enables or disables the security for each region.	0xFFFF
4.1.28	SYSTEM_CFG_ID_CODE_PROTECTION_1	Specifies an OCD or serial programmer ID (bits 0 to 31).	0xFFFFFFF
4.1.28	SYSTEM_CFG_ID_CODE_PROTECTION_2	Specifies an OCD or serial programmer ID (bits 32 to 63).	0xFFFFFFF
4.1.28	SYSTEM_CFG_ID_CODE_PROTECTION_3	Specifies an OCD or serial programmer ID (bits 64 to 95).	0xFFFFFFF
4.1.28	SYSTEM_CFG_ID_CODE_PROTECTION_4	Specifies an OCD or serial programmer ID (bits 96 to 127).	0xFFFFFFF
4.1.29	SYSTEM_CFG_AWS	Specifies the start and end block addresses of the access window, selects the startup area, and specifies protection of the selected function.	0xFFFFFFF

When the configuration definitions are set to the initial values, the operating clock and mode settings at startup are determined as shown in Table 4-2. For the power control modes that can be specified with configuration file settings, refer to Figure 4-1.

Table 4-2 Operating Clocks and Modes at Startup

System	System Clock	Peripheral	Power	Power	Main	Sub-	НОСО	LOCO
Clock	Frequency	Clock	Supply	Control	Clock	clock		
Source	Division	Frequency	Mode	Mode				
	(ICLK, PCLKA)	Division						
		(PCLKB)						
MOCO	Divided by 1	Divided by 1	ALLPWON	Normal	Stopped	Stopped	Stopped	Operates
(2 MHz)	(2 MHz)	(2 MHz)		high-speed				
,	, ,							

Figure 4-1 Power Control Modes that Can Be Specified with Configuration File (r_core_cfg.h) Settings

4.1.1 Main Clock Oscillator Stop (SYSTEM_CFG_MOSC_ENABLE)

This specifies whether to operate or stop the main clock (MOSC) in R_CORE.

Name: SYSTEM_CFG_MOSC_ENABLE

Table 4-3 Settings of SYSTEM_CFG_MOSC_ENABLE

Setting	Description
0 (initial value)	Stops (disables) the main clock (MOSC) when it is not selected as the clock source.
1	Operates (enables) the main clock (MOSC) when it is not selected as the clock source.

4.1.2 Main Clock Operating Frequency Setting (SYSTEM_CFG_MOSC_FREQUENCY_HZ)

This specifies the frequency of the main clock (MOSC) in R_CORE.

Name: SYSTEM_CFG_MOSC_FREQUENCY_HZ

Table 4-4 Settings of SYSTEM_CFG_MOSC_FREQUENCY_HZ

Setting	Description
32000000	Specifies the frequency of the main clock (MOSC) when it operates (is enabled).
(initial value)	

4.1.3 Main Clock Oscillator Drive Capability Switching (SYSTEM_CFG_MOSC_DRIVE)

This specifies the optimum drive capability of the main clock (MOSC) in R_CORE in accordance with the resonator used.

The value of this configuration definition is specified in the MOMCR.MODRV bits.

Name: SYSTEM_CFG_MOSC_DRIVE

Table 4-5 Settings of SYSTEM_CFG_MOSC_DRIVE

Setting	Description (MOMCR.MODRV Bit Setting)
0	Setting prohibited.
1	Oscillation current is small.
:	:
7 (initial value)	Oscillation current is large.

4.1.4 Main Clock Oscillator Switching (SYSTEM_CFG_MOSC_CLOCK_SOURCE)

This specifies the oscillation source of the main clock oscillator in R_CORE.

The value of this configuration definition is specified in the MOMCR.MOSEL bit.

Name: SYSTEM CFG MOSC CLOCK SOURCE

Table 4-6 Settings of SYSTEM_CFG_MOSC_CLOCK_SOURCE

Setting	Description (MOMCR.MOSEL Bit Setting)
0 (initial value)	Resonator
1	External clock input

4.1.5 Main Clock Oscillator Low Consumption Oscillation Function Enable (SYSTEM CFG MOSC LOW POWER ENABLE)

RENESAS

This enables or disables the low consumption oscillation function of the main clock oscillator in R_CORE.

The value of this configuration definition is specified in the MOMCR.OSCLPEN bit.

Name: SYSTEM_CFG_MOSC_LOW_POWER_ENABLE

Table 4-7 Settings of SYSTEM_CFG_MOSC_LOW_POWER_ENABLE

Setting	Description (MOMCR.OSCLPEN Bit Setting)
0 (initial value)	Disabled
1	Enabled

4.1.6 Main Clock Oscillator Stabilization Wait Time Setting (SYSTEM_CFG_MOSC_WAIT_TIME)

This specifies the oscillation stabilization wait time of the main clock oscillator in R_CORE.

The value of this configuration definition is specified in the MOSCWTCR.MSTS bits.

Name: SYSTEM_CFG_MOSC_WAIT_TIME

Table 4-8 Settings of SYSTEM_CFG_MOSC_WAIT_TIME

Setting	Description (MOSCWTCR.MSTS Bit Setting)
0	Setting prohibited
1	2 cycles
2	5 cycles
3	13 cycles
4	29 cycles
5 (initial value)	61 cycles
6	125 cycles
7	253 cycles
8	509 cycles
9	1021 cycles

4.1.7 HOCO Stop (SYSTEM_CFG_HOCO_ENABLE)

This specifies whether to operate or stop the high-speed on-chip oscillator (HOCO) in R_CORE.

Name: SYSTEM_CFG_HOCO_ENABLE

Table 4-9 Settings of SYSTEM_CFG_HOCO_ENABLE

Setting	Description
0 (initial value)	Stops (disables) HOCO when it is not selected as the clock source.
1	Operates (enables) HOCO when it is not selected as the clock source.

4.1.8 HOCO Operating Frequency Setting (SYSTEM_CFG_HOCO_FREQUENCY)

This specifies the frequency of the high-speed on-chip oscillator (HOCO) in R_CORE.

The value of this configuration definition is specified in the HOCOMCR.HCFRQ bits.

Name: SYSTEM_CFG_HOCO_FREQUENCY

Table 4-10 Settings of SYSTEM_CFG_HOCO_FREQUENCY

Setting	Description (HOCOMCR.HCFRQ Bit Setting)
0	Sets the frequency of HOCO to 24 MHz.
1 (initial value)	Sets the frequency of HOCO to 32 MHz.
2	Sets the frequency of HOCO to 48 MHz.
3	Sets the frequency of HOCO to 64 MHz.

4.1.9 MOCO Stop (SYSTEM_CFG_MOCO_ENABLE)

This specifies whether to operate or stop the middle-speed on-chip oscillator (MOCO) in R_CORE .

Name: SYSTEM_CFG_MOCO_ENABLE

Table 4-11 Settings of SYSTEM_CFG_MOCO_ENABLE

Setting	Description
0	Stops (disables) MOCO when it is not selected as the clock source.
1 (initial value)	Does not stop (enables) MOCO when it is not selected as the clock source.

4.1.10 LOCO Stop (SYSTEM_CFG_LOCO_ENABLE)

This specifies whether to operate or stop the low-speed on-chip oscillator (LOCO) in R_CORE.

Name: SYSTEM_CFG_LOCO_ENABLE

Table 4-12 Settings of SYSTEM_CFG_LOCO_ENABLE

Setting	Description
0	Stops (disables) LOCO when it is not selected as the clock source.
1 (initial value)	Operates (enables) LOCO when it is not selected as the clock source.

4.1.11 Sub-clock Oscillator Stop (SYSTEM_CFG_SOSC_ENABLE)

This specifies whether to operate or stop the sub-clock (SOSC) in R_CORE.

Name: SYSTEM_CFG_SOSC_ENABLE

Table 4-13 Settings of SYSTEM_CFG_SOSC_ENABLE

Setting	Description
0 (initial value)	Stops (disables) the sub-clock (SOSC) when it is not selected as the clock source.
1	Operates (enables) the sub-clock (SOSC) when it is not selected as the clock source.

4.1.12 Sub-clock Oscillator Drive Capability Switching (SYSTEM_CFG_SOSC_DRIVE)

This specifies the optimum drive capability of the sub-clock (SOSC) in R_CORE in accordance with the resonator used.

The value of this configuration definition is specified in the SOMCR.SODRV bits.

Name: SYSTEM_CFG_SOSC_DRIVE

Table 4-14 Settings of SYSTEM_CFG_SOSC_DRIVE

Setting	Description (SOMCR.SODRV Bit Setting)
0 (initial value)	Drives the sub-clock (SOSC) with the standard CL.
1	Drives the sub-clock (SOSC) with the low CL6.
2	Drives the sub-clock (SOSC) with the low CL4.
3	Drives the sub-clock (SOSC) with the low CL7.

4.1.13 Sub-clock Oscillator Noise Filter Stop (SYSTEM_CFG_SOSC_NF_STOP)

This specifies whether to operate or stop the noise filter for the sub-clock (SOSC) oscillator in R_CORE.

The value of this configuration definition is specified in the SOMCR.SONFSTP bit.

Name: SYSTEM_CFG_SOSC_NF_STOP

Table 4-15 Settings of SYSTEM_CFG_SOSC_NF_STOP

Setting	Description (SOMCR.SONFSTP Bit Setting)
0 (initial value)	Operates the noise filter for the sub-clock (SOSC).
1	Stops the noise filter for the sub-clock (SOSC).

4.1.14 PLL Stop (SYSTEM_CFG_PLL_ENABLE)

This specifies whether to operate or stop the PLL circuit in R_CORE.

Name: SYSTEM_CFG_PLL_ENABLE

Table 4-16 Settings of SYSTEM_CFG_PLL_ENABLE

Setting	Description
0 (initial value)	Stops (disables) the PLL when it is not selected as the clock source.
1	Operates (enables) the PLL when it is not selected as the clock source.

4.1.15 PLL Input Frequency Division Ratio Select (SYSTEM_CFG_PLL_DIV)

This specifies the frequency division ratio of the PLL clock source.

The value of this configuration definition is specified in the PLLCCR.PLIDIV bits.

Name: SYSTEM_CFG_PLL_DIV

Table 4-17 Settings of SYSTEM_CFG_PLL_DIV

Setting	Description (PLLCCR.PLIDIV Bit Setting)
0	Divides the main clock oscillation frequency by 1 and uses it as the PLL circuit input
	frequency.
	PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY)
	= main clock oscillation frequency (SYSTEM_CFG_MOSC_FREQUENCY_HZ) / 1
1 (initial	Divides the main clock oscillation frequency by 2 and uses it as the PLL circuit input
value)	frequency.
	PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY)
	= main clock oscillation frequency (SYSTEM_CFG_MOSC_FREQUENCY_HZ) / 2
2	Divides the main clock oscillation frequency by 3 and uses it as the PLL circuit input
	frequency.
	PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY)
	= main clock oscillation frequency (SYSTEM_CFG_MOSC_FREQUENCY_HZ) / 3
3	Divides the main clock oscillation frequency by 4 and uses it as the PLL circuit input
	frequency.
	PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY)
	= main clock oscillation frequency (SYSTEM_CFG_MOSC_FREQUENCY_HZ) / 4

4.1.16 PLL Frequency Multiplication Factor Select (SYSTEM_CFG_PLL_MUL)

This specifies the frequency multiplication factor of the PLL.

The value of this configuration definition is specified in the PLLCCR.PLLMUL bits.

Name: SYSTEM_CFG_PLL_MUL

Table 4-18 Settings of SYSTEM_CFG_PLL_MUL

Setting	Description (PLLCCR.PLLMUL Bit Setting)
0	Setting prohibited.
1 (initial	Multiplies the PLL circuit input frequency by 2 and uses it as the PLL circuit output
value)	frequency.
	PLL circuit output frequency (SYSTEM_CFG_PLL_FREQUENCY)
	= PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY) × 2
2	Multiplies the PLL circuit input frequency by 3 and uses it as the PLL circuit output
	frequency.
	PLL circuit output frequency (SYSTEM_CFG_PLL_FREQUENCY)
	= PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY) × 3
3	Multiplies the PLL circuit input frequency by 4 and uses it as the PLL circuit output
	frequency.
	PLL circuit output frequency (SYSTEM_CFG_PLL_FREQUENCY)
	= PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY) × 4
4	Multiplies the PLL circuit input frequency by 5 and uses it as the PLL circuit output
	frequency.
	PLL circuit output frequency (SYSTEM_CFG_PLL_FREQUENCY)
	= PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY) × 5
5	Multiplies the PLL circuit input frequency by 6 and uses it as the PLL circuit output
	frequency.
	PLL circuit output frequency (SYSTEM_CFG_PLL_FREQUENCY)
6	= PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY) × 6
О	Multiplies the PLL circuit input frequency by 7 and uses it as the PLL circuit output frequency.
	PLL circuit output frequency (SYSTEM_CFG_PLL_FREQUENCY)
	= PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY) × 7
7	Multiplies the PLL circuit input frequency by 8 and uses it as the PLL circuit output
′	frequency.
	PLL circuit output frequency (SYSTEM_CFG_PLL_FREQUENCY)
	= PLL circuit input frequency (SYSTEM_CFG_PLL_DIV_FREQUENCY) × 8
	- 1 LL Glocal impact requestey (GTOTEW_GT G_1 LL_DIV_1 NEQGENOT) × 0

4.1.17 PLL Frequency Range Select (SYSTEM_CFG_PLL_RANGE)

This specifies the range of clock frequencies to be output from the PLL circuit.

The value of this configuration definition is specified in the PLLCCR.FSEL0 bit.

Name: SYSTEM_CFG_PLL_RANGE

Table 4-19 Settings of SYSTEM_CFG_PLL_RANGE

Setting	Description (PLLCCR.FSEL0 Bit Setting)		
0	Frequency range: 32 MHz to 48 MHz		
	This value is automatically selected when the calculated PLL circuit output frequency satisfies the following:		
	32000000 ≤ PLL circuit output frequency ≤ 48000000		
1	Frequency range: 32 MHz to 64 MHz		
	This value is automatically selected when the calculated PLL circuit output frequency satisfies the following:		
	48000000 < PLL circuit output frequency ≤ 64000000		

4.1.18 Clock Source Select (SYSTEM_CFG_CLOCK_SOURCE)

This specifies the source of the system clock.

The value of this configuration definition is specified in the SCKSCR.CKSEL bits.

Name: SYSTEM_CFG_CLOCK_SOURCE

Table 4-20 Settings of SYSTEM_CFG_CLOCK_SOURCE

Setting	Description (SCKSCR.CKSEL Bit Setting)		
0	HOCO		
1 (initial value)	MOCO		
2	LOCO		
3	Main clock oscillator		
4	Sub-clock oscillator		
5	PLL		

4.1.19 System Clock (ICLK)/Peripheral Module Clock (PCLKA) Select (SYSTEM_CFG_ICK_PCKA_DIV)

This specifies the frequency division of the system clock used by the CPU, DMAC, and DTC, and peripheral module clock A (PCLKA).

The value of this configuration definition is specified in the SCKDIVCR.ICK bits.

Name: SYSTEM_CFG_ICK_PCKA_DIV

Table 4-21 Settings of SYSTEM_CFG_ICK_PCKA_DIV

Setting	Description (SCKDIVCR.ICK Bit Setting)	
0 (initial value)	Divides the clock source frequency by 1.	
1	Divides the clock source frequency by 2.	
2	Divides the clock source frequency by 4.	
3	Divides the clock source frequency by 8.	
4	Divides the clock source frequency by 16.	
5	Divides the clock source frequency by 32.	
6	Divides the clock source frequency by 64.	

4.1.20 Peripheral Module Clock B (PCLKB) Select (SYSTEM_CFG_PCKB_DIV)

This specifies the frequency division of peripheral module clock B (PCLKB).

The value of this configuration definition is specified in the SCKDIVCR.PCKB bits.

Name: SYSTEM_CFG_PCKB_DIV

Table 4-22 Settings of SYSTEM_CFG_PCKB_DIV

Setting	Description (SCKDIVCR.PCKB Bit Setting)	
0 (initial value)	Divides the clock source frequency by 1.	
1	Divides the clock source frequency by 2.	
2	Divides the clock source frequency by 4.	
3	Divides the clock source frequency by 8.	
4	Divides the clock source frequency by 16.	
5	Divides the clock source frequency by 32.	
6	Divides the clock source frequency by 64.	

4.1.21 Power Control Mode Select (SYSTEM_CFG_POWER_CONTROL_MODE)

This selects the boost mode (BOOST), normal mode (NORMAL), or low leakage current mode (VBB) as the power control mode. For the normal mode (NORMAL), this definition also selects high-speed, low-speed, or subosc-speed mode.

Name: SYSTEM_CFG_POWER_CONTROL_MODE

Table 4-23 Settings of SYSTEM_CFG_POWER_CONTROL_MODE

Setting	Description		
0	Boost mode (BOOST)		
1 (initial value)	Normal mode (Normal) and high-speed mode		
2	Normal mode (Normal) and low-speed mode		
3	Normal mode (Normal) and subosc-speed mode		
4	Low leakage current mode (VBB)		

4.1.22 EHC Startup Mode Setting (SYSTEM_CFG_EHC_MODE)

This enables or disables EHC startup processing.

Note: The EHC startup processing is an optional capability of R_CORE.

Name: SYSTEM_CFG_EHC_MODE

Table 4-24 Settings of SYSTEM_CFG_EHC_MODE

Setting	Description		
0	Disables EHC startup processing.		
1	Enables EHC startup processing.		

4.1.23 Voltage Detection 1 Level Setting (SYSTEM CFG EHC LVD1LVL)

This specifies the Voltage Detection 1 Level. For details of the Vdet1_X, refer to UMH.

Note: The EHC startup processing is an optional capability of R_CORE.

Name: SYSTEM_CFG_EHC_LVD1LVL

Table 4-25 Settings of SYSTEM_CFG_EHC_LVD1LVL

Setting	Description		
0	Vdet1_0		
1	Vdet1_1		
2	Vdet1_3		
3	Vdet1_5		
4	Vdet1_7		
5	Vdet1_9		
6	Vdet1_B		
7 (initial value)	Vdet1_D		

4.1.24 Voltage Detection BAT Level Setting (SYSTEM_CFG_EHC_LVDBATLVL)

This specifies the Voltage Detection BAT Level. For details of the VdetBAT_X, refer to UMH.

Note: The EHC startup processing is an optional capability of R_CORE.

Name: SYSTEM_CFG_EHC_LVDBATLVL

Table 4-26 Settings of SYSTEM_CFG_EHC_LVDBATLVL

Setting	Description		
0 (initial value)	VdetBAT_5		
1	VdetBAT_7		
2	VdetBAT_8		
3	VdetBAT_B		
4	VdetBAT_D		

4.1.25 Option-Setting Memory 0 (SYSTEM_CFG_OFS0)

This specifies the value of option function select register 0 (OFS0). For details of the register, refer to UMH.

Name: SYSTEM_CFG_OFS0

Table 4-27 Settings of SYSTEM_CFG_OFS0

Setting	Description			
0xFFFFFFF	Value to be set in option function select register 0 (OFS0).			
(initial value)				

4.1.26 Option-Setting Memory 1 (SYSTEM_CFG_OFS1)

This specifies the value of option function select register 1 (OFS1). For details of the register, refer to UMH.

Name: SYSTEM_CFG_OFS1

Table 4-28 Settings of SYSTEM_CFG_OFS1

Setting	Description			
0xFFFFFFF	Value to be set in option function select register 1 (OFS1).			
(initial value)				

4.1.27 Option-Setting Memory 2 (SYSTEM_CFG_SECMPU_xxx)

This specifies the value of each register associated with the security MPU function. For details of the registers, refer to UMH.

Name: SYSTEM_CFG_SECMPU_xxx

Table 4-29 Settings of SYSTEM_CFG_SECMPU_xxx

Configuration	Setting	Description
SYSTEM_CFG_SECMPU_PC0_START	0xFFFFFFF	Value to be set in security MPU program
	(initial value)	counter start address register 0
		(SECMPUPCS0).
SYSTEM_CFG_SECMPU_PC0_END	0xFFFFFFF	Value to be set in security MPU program
	(initial value)	counter end address register 0
		(SECMPUPCE0).
SYSTEM_CFG_SECMPU_PC1_START	0xFFFFFFF	Value to be set in security MPU program
	(initial value)	counter start address register 1
		(SECMPUPCS1).
SYSTEM_CFG_SECMPU_PC1_END	0xFFFFFFF	Value to be set in security MPU program
	(initial value)	counter end address register 1
		(SECMPUPCE1).
SYSTEM_CFG_SECMPU_REGION0_START	0xFFFFFFF	Value to be set in the security MPU region 0
	(initial value)	start address register (SECMPUS0).
SYSTEM_CFG_SECMPU_REGION0_END	0xFFFFFFF	Value to be set in the security MPU region 0
	(initial value)	end address register (SECMPUE0).
SYSTEM_CFG_SECMPU_REGION1_START	0xFFFFFFF	Value to be set in the security MPU region 1
	(initial value)	start address register (SECMPUS1).
SYSTEM_CFG_SECMPU_REGION1_END	0xFFFFFFF	Value to be set in the security MPU region 1
	(initial value)	end address register (SECMPUE1).
SYSTEM_CFG_SECMPU_REGION2_START	0xFFFFFFF	Value to be set in the security MPU region 2
	(initial value)	start address register (SECMPUS2).
SYSTEM_CFG_SECMPU_REGION2_END	0xFFFFFFF	Value to be set in the security MPU region 2
	(initial value)	end address register (SECMPUE2).
SYSTEM_CFG_SECMPU_CONTROL_SETTING	0xFFFF	Value to be set in the security MPU access
	(initial value)	control register (SECMPUAC).

4.1.28 Option-Setting Memory 3 (SYSTEM_CFG_ID_CODE_PROTECTION_n) (n = 1 to 4)

This specifies the value of the OCD/serial programmer ID setting register (OSIS). For details of the register, refer to UMH.

Name: SYSTEM_CFG_ID_CODE_PROTECTION_n

Table 4-30 Settings of SYSTEM_CFG_ID_CODE_PROTECTION_n

Configuration	Setting	Description
SYSTEM_CFG_ID_CODE_PROTECTION_1	0xFFFFFFF	Value to be set in the OSIS register
	(initial value)	(bits 0 to 31).
SYSTEM_CFG_ID_CODE_PROTECTION_2	0xFFFFFFF	Value to be set in the OSIS register
	(initial value)	(bits 32 to 63).
SYSTEM_CFG_ID_CODE_PROTECTION_3	0xFFFFFFF	Value to be set in the OSIS register
	(initial value)	(bits 64 to 95).
SYSTEM_CFG_ID_CODE_PROTECTION_4	0xFFFFFFF	Value to be set in the OSIS register
	(initial value)	(bits 96 to 127).

4.1.29 Option-Setting Memory 4 (SYSTEM_CFG_AWS)

This specifies the value of the access window setting register (AWS). For details of the register, refer to UMH.

Table 4-31 Settings of SYSTEM_CFG_AWS

Setting	Description
0xFFFFFFF	Value to be set in the access window setting register (AWS).
(initial value)	

4.1.30 Preprocessor Error Check

The correctness of the value specified for each definition shown in section 4.1, Configurations, is checked during compilation. Table 4-32 and Table 4-33 show typical error conditions. For details of the check and actions against errors, refer to section 4.4.1, List of Preprocessor Errors.

Table 4-32 Typical Error Conditions (when Selected as Clock Source)

Error Check Condition for		Boost Mode	Normal Mode	Normal Mode	Normal Mode	Low Leakage
Clock and Frequency		(BOOST)	(High-speed)	(Low-speed)	(Subosc-	Current Mode
Division Settings		≤ 64 MHz	≤ 32 MHz	≤ 2 MHz	speed)	(VBB)
(Sele	ected as Clock Source)				= 32.768 kHz	= 32.768 kHz
0	HOCO	N/A	• HOCO	• HOCO	When HOCO	When HOCO
	(24, 32, 48, or 64		setting	setting	is selected	is selected
	MHz)		≥ 48 MHz	≥ 48 MHz		
				• ICLK > 2		
				MHz		
1	MOCO (2 MHz)	N/A	N/A	N/A	When MOCO	When MOCO
					is selected	is selected
2	LOCO (32.768 kHz)	N/A	N/A	N/A	N/A	N/A
3	MOSC (8 to 32 MHz)	N/A	N/A	• ICLK > 2	When MOSC	When MOSC
				MHz	is selected	is selected
4	SOSC (32.768 kHz)	N/A	N/A	N/A	N/A	N/A
5	PLL (32 to 64 MHz)	MOSC is not	When PLL is	When PLL is	When PLL is	When PLL is
	*PLL circuit input	operating	selected	selected	selected	selected
	(8 to 16 MHz)	PLL circuit				
		input frequency				
		is outside the				
		allowable range.				
	ICLK frequency	N/A	N/A	N/A	ICLK ≠	ICLK ≠
Cy	division setting				frequency	frequency
uer					divided by 1	divided by 1
Frequency Division	PCLKB frequency	ICLK < PCLKB	ICLK <	ICLK < PCLKB	ICLK ≠ PCLKB	ICLK ≠ PCLKB
正口	division setting		PCLKB			

Error Check Condition for Normal Normal Mode Low Leakage **Boost Mode** Normal Mode Clock and Frequency (BOOST) **Current Mode** Mode (Low-speed) (Subosc-**Division Settings** \leq 64 MHz (High-speed) \leq 2 MHz (VBB) speed) (Clock Operation Enabled ≤ 32 MHz = 32.768 kHz= 32.768 kHzwhen Not Selected as Clock Source) 0 **HOCO** N/A HOCO HOCO When HOCO When HOCO setting setting is selected is selected (24, 32, 48, or 64 \geq 48 MHz \geq 48 MHz MHz) • When MOCO • When MOCO 1 MOCO (2 MHz) N/A N/A N/A is selected is selected N/A 2 LOCO (32.768 kHz) N/A N/A N/A N/A 3 MOSC (8 to 32 MHz) N/A N/A MOSC When MOSC • When MOSC setting is selected is selected > 32 MHz N/A N/A SOSC (32.768 kHz) N/A N/A N/A 5 • When PLL • When PLL When PLL is • When PLL is PLL (32 to 64 MHz) MOSC is not *PLL circuit input operating is selected is selected selected selected (8 to 16 MHz) PLL circuit input frequency is outside the allowable range.

Table 4-33 Typical Error Conditions (when Not Selected as Clock Source)

4.2 Constants and Macros

4.2.1 Option-Setting Memory (OptionSettingMemory)

The values specified for the option-setting memory configuration definitions in section 4.1.25, Option-Setting Memory 0 (SYSTEM_CFG_OFS0), to section 4.1.27, Option-Setting Memory 2 (SYSTEM_CFG_SECMPU_xxx), are defined as the constant OptionSettingMemory.

Name: static const uint32_t OptionSettingMemory[] __attribute__ ((section(".OptionSetting")))

Definition file: system_RE01_1500KB.c

4.2.2 Serial Programmer ID Setting (OptionSettingID)

The values specified for the serial programmer ID configuration definitions in section 4.1.28, Option-Setting Memory 3 (SYSTEM_CFG_ID_CODE_PROTECTION_n) (n = 1 to 4), are defined as the constant OptionSettingID.

Name: static const uint32_t OptionSettingID[] __attribute__ ((section(".OptionSettingID")))

Definition file: system_RE01_1500KB.c

4.2.3 Access Window Setting (OptionSettingAWS)

The value specified for the access window configuration definition in section 4.1.29, Option-Setting Memory 4 (SYSTEM_CFG_AWS), is defined as the constant OptionSettingAWS.

 $Name: static\ const\ uint 32_t\ Option Setting AWS[]\ _attribute__\ ((section (``.Option Setting AWS")))$

Definition file: system_RE01_1500KB.c

4.2.4 System Clock Source Definition Macro (SYSTEM_CLOCK_SEL)

The oscillation frequency of the system clock source specified in section 4.1, Configurations, is calculated and reflected in this macro definition.

Name: SYSTEM_CLOCK_SEL

Definition file: system_RE01_1500KB.c

Table 4-34 List of SYSTEM_CLOCK_SEL Settings

Clock Source	Selection by Configuration	SYSTEM_CLOCK_SEL Setting
HOCO (24	SYSTEM_CFG_CLOCK_SOURCE = 0	2400000U
MHz)	SYSTEM_CFG_HOCO_FREQUENCY =	
	0	
HOCO (32	SYSTEM_CFG_CLOCK_SOURCE = 0	3200000U
MHz)	SYSTEM_CFG_HOCO_FREQUENCY =	
	1	
HOCO (48	SYSTEM_CFG_CLOCK_SOURCE = 0	4800000U
MHz)	SYSTEM_CFG_HOCO_FREQUENCY =	
	2	
HOCO (64	SYSTEM_CFG_CLOCK_SOURCE = 0	6400000U
MHz)	SYSTEM_CFG_HOCO_FREQUENCY =	
	3	
MOCO	SYSTEM_CFG_CLOCK_SOURCE = 1	200000U
LOCO	SYSTEM_CFG_CLOCK_SOURCE = 2	32768U
MOSC	SYSTEM_CFG_CLOCK_SOURCE = 3	SYSTEM_CFG_MOSC_FREQUENCY_HZ
SOSC	SYSTEM_CFG_CLOCK_SOURCE = 4	32768U
PLL	SYSTEM_CFG_CLOCK_SOURCE = 5	SYSTEM_CFG_PLL_FREQUENCY

4.2.5 System Clock Definition Macro (SYSTEM_CLOCK)

The system clock setting calculated from the oscillation frequency of the system clock source in section 4.2.4, System Clock Source Definition Macro (SYSTEM_CLOCK_SEL), and the frequency division setting in section 4.1.19, System Clock (ICLK)/Peripheral Module Clock (PCLKA) Select (SYSTEM_CFG_ICK_PCKA_DIV), is reflected in this macro.

Name: SYSTEM_CLOCK

Definition file: system_RE01_1500KB.c

Table 4-35 List of SYSTEM_CLOCK Settings

Selection by Configuration	SYSTEM_CLOCK Setting
SYSTEM_CFG_ICK_PCKA_DIV = 0	SYSTEM_CLOCK_SEL / 1
SYSTEM_CFG_ICK_PCKA_DIV = 1	SYSTEM_CLOCK_SEL / 2
SYSTEM_CFG_ICK_PCKA_DIV = 2	SYSTEM_CLOCK_SEL / 4
SYSTEM_CFG_ICK_PCKA_DIV = 3	SYSTEM_CLOCK_SEL / 8
SYSTEM_CFG_ICK_PCKA_DIV = 4	SYSTEM_CLOCK_SEL / 16
SYSTEM_CFG_ICK_PCKA_DIV = 5	SYSTEM_CLOCK_SEL / 32
SYSTEM_CFG_ICK_PCKA_DIV = 6	SYSTEM_CLOCK_SEL / 64

4.2.6 System Clock Wait Cycle Definitions

Definition file: system_RE01_1500KB.c

Table 4-36 System Clock Wait Cycles

Macro Definition	Setting	Remarks
ICLK_1CYCLE	(1.0F / SYSTEM_CLOCK)	One ICLK-cycle time
ICLK_MOCO_1CYCLE	(0.0000005F)	One MOCO cycle time 0.5 us
MOCO_TMOCOWT_SEC	(0.000016F)	MOCO oscillation stabilization time 16 us
MOCO_RESTART_SEC	(0.0000025F)	MOCO restart time 2.5 us
LOCO_TLOCOWT_SEC	(0.000130F)	LOCO oscillation stabilization time 130 us
LOCO_RESTART_SEC	(0.0001525879F)	LOCO restart time 0.1525879 ms
SOSC_SUBOSCOWT_SEC	(3.0F)	Sub-clock oscillation stabilization time 3 s
SOSC_RESTART_SEC	(0.0001525879F)	Sub-clock restart time 0.1525879 ms
LOCO_TLOCOWT_TIME_START	(((LOCO_TLOCOWT_SEC / ICLK_MOCO_1CYCLE) / 4) + 1)	Number of software loops for LOCO oscillation stabilization
LOCO_RESTART_TIME_START	(((LOCO_RESTART_SEC / ICLK_MOCO_1CYCLE) / 4) + 1)	Number of software loops for restarting LOCO
SOSC_TSUBOSCOWT_TIME_START	(((SOSC_SUBOSCOWT_SEC / ICLK_MOCO_1CYCLE) / 4) + 1)	Number of software loops for SOSC oscillation stabilization
SOSC_RESTART_TIME_START	(((SOSC_RESTART_SEC / ICLK_MOCO_1CYCLE) / 4) + 1)	Number of software loops for restarting SOSC
MOCO_TMOCOWT_TIME_STOP	(((MOCO_TMOCOWT_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for MOCO oscillation stabilization
MOCO_RESTART_TIME_STOP	(((MOCO_RESTART_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for restarting MOCO
LOCO_TLOCOWT_TIME_STOP	(((LOCO_TLOCOWT_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for LOCO oscillation stabilization
LOCO_RESTART_TIME_STOP	(((LOCO_RESTART_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for restarting LOCO
SOSC_TSUBOSCOWT_TIME_STOP	(((SOSC_SUBOSCOWT_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for SOSC oscillation stabilization
SOSC_RESTART_TIME_STOP	(((SOSC_RESTART_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for restarting SOSC
LOCO_TLOCOWT_TIME_START_ALONE	(((LOCO_TLOCOWT_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for LOCO oscillation stabilization
LOCO_RESTART_TIME_START_ALONE	(((LOCO_RESTART_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for restarting LOCO
SOSC_TSUBOSCOWT_TIME_START_ALONE	(((SOSC_SUBOSCOWT_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for SOSC oscillation stabilization
SOSC_RESTART_TIME_START_ALONE	(((SOSC_RESTART_SEC / ICLK_1CYCLE) / 4) + 1)	Number of software loops for restarting SOSC

4.3 Function Specifications

4.3.1 system_clock_init Function

Table 4-37 system_clock_init Function Specifications

Format	void system_clock_init(void)
Description	Initializes the operating frequency of the clock source and the power control mode in accordance with the settings in r_core_cfg.h.
Argument	None
Return value	None
Remarks	_

Figure 4-2 system_clock_init Function Processing Flow (1/5)

Figure 4-3 system_clock_init Function Processing Flow (2/5)

Figure 4-4 system_clock_init Function Processing Flow (3/5)

Figure 4-5 system_clock_init Function Processing Flow (4/5)

Figure 4-6 system_clock_init Function Processing Flow (5/5)

4.3.2 system_mosc_start Function

Table 4-38 system_mosc_start Function Specifications

Format	void system_mosc_start(void)
Description	Starts the operation of the main clock.
Argument	None
Return	None
value	
Remarks	_

Figure 4-7 system_mosc_start Function Processing Flow

4.3.3 system_mosc_stop Function

Table 4-39 system_mosc_stop Function Specifications

Format	void system_mosc_stop(void)
Description	Stops the operation of the main clock.
Argument	None
Return	None
value	
Remarks	_

Figure 4-8 system_mosc_stop Function Processing Flow

4.3.4 system_pll_start Function

Table 4-40 system_pll_start Function Specifications

Format	void system_pll_start(void)
Description	Starts the operation of the PLL circuit.
Argument	None
Return	None
value	
Remarks	_

Figure 4-9 system_pll_start Function Processing Flow

4.3.5 system_pll_stop Function

Table 4-41 system_pll_stop Function Specifications

Format	void system_pll_stop(void)
Description	Stops the operation of the PLL circuit.
Argument	None
Return	None
value	
Remarks	_

Figure 4-10 system_pll_stop Function Processing Flow

4.3.6 system_hoco_start Function

Table 4-42 system_hoco_start Function Specifications

Format	void system_hoco_start(void)
Description	Starts the operation of the high-speed on-chip oscillator.
Argument	None
Return	None
value	
Remarks	_

Figure 4-11 system_hoco_start Function Processing Flow

4.3.7 system_hoco_stop Function

Table 4-43 system_hoco_stop Function Specifications

Format	void system_hoco_stop(void)
Description	Stops the operation of the high-speed on-chip oscillator.
Argument	None
Return	None
value	
Remarks	_

Figure 4-12 system_hoco_stop Function Processing Flow

4.3.8 system_moco_stop Function

Table 4-44 system_moco_stop Function Specifications

Format	void system_moco_stop(void)
Description	Stops the operation of the middle-speed on-chip oscillator.
Argument	None
Return	None
value	
Remarks	_

Figure 4-13 system_moco_stop Function Processing Flow

4.3.9 system_loco_start Function

Table 4-45 system_loco_start Function Specifications

Format	void system_loco_start(void)
Description	Starts the operation of the low-speed on-chip oscillator.
Argument	None
Return	None
value	
Remarks	_

Figure 4-14 system_loco_start Function Processing Flow

4.3.10 system_loco_stop Function

Table 4-46 system_loco_stop Function Specifications

Format	void system_loco_stop(void)
Description	Stops the operation of the low-speed on-chip oscillator.
Argument	None
Return value	None
Remarks	_

Figure 4-15 system_loco_stop Function Processing Flow

4.3.11 system_sosc_start Function

Table 4-47 system_sosc_start Function Specifications

Format	void system_sosc_start(void)
Description	Starts the operation of the sub-clock.
Argument	None
Return	None
value	
Remarks	_

Figure 4-16 system_sosc_start Function Processing Flow (1/2)

Figure 4-17 system_sosc_start Function Processing Flow (2/2)

4.3.12 system_sosc_stop Function

Table 4-48 system_sosc_stop Function Specifications

Format	void system_sosc_stop(void)
Description	Stops the operation of the sub-clock.
Argument	None
Return	None
value	
Remarks	_

Figure 4-18 system_sosc_stop Function Processing Flow

4.3.13 system_normal_to_boost Function

Table 4-49 system_normal_to_boost Function Specifications

Format	void system_normal_to_boost(void)
Description	Switches the power control mode from normal mode (high-speed) to boost mode.
	mode.
Argument	None
Return	None
value	
Remarks	_

Figure 4-19 system_normal_to_boost Function Processing Flow

4.3.14 system_highspeed_to_lowspeed Function

Table 4-50 system_highspeed_to_lowspeed Function Specifications

Format	void system_highspeed_to_lowspeed(void)
Description	Switches the power control mode from normal mode (high-speed) to normal mode (low-speed).
Argument	None
Return value	None
Remarks	_

Figure 4-20 system_highspeed_to_lowspeed Function Processing Flow

4.3.15 system_highspeed_to_suboscspeed Function

Table 4-51 system_highspeed_to_suboscspeed Function Specifications

Format	void system_highspeed_to_suboscspeed(void)
Description	Switches the power control mode from normal mode (high-speed) to normal mode (subosc-speed).
Argument	None
Return value	None
Remarks	

Figure 4-21 system_highspeed_to_suboscspeed Function Processing Flow

4.3.16 system_normal_to_vbb Function

Table 4-52 system_normal_to_vbb Function Specifications

Format	void system_normal_to_vbb(void)
Description	Switches the power control mode from normal mode (high-speed) to low leakage current (VBB) mode.
Argument	None
Return value	None
Remarks	—

Figure 4-22 system_normal_to_vbb Function Processing Flow

4.3.17 Reset_Handler Function

Table 4-53 Reset_Handler Function Specifications

Format	void Reset_Handler(void)
Description	Performs the initial operation at startup.
Argument	None
Return	None
value	
Remarks	_

Figure 4-23 Reset_Handler Function Processing Flow

4.3.18 SystemInit Function

Table 4-54 SystemInit Function Specifications

Format	void SystemInit(void)
Description	Performs system initialization at startup.
Argument	None
Return	None
value	
Remarks	_

Figure 4-24 SystemInit Function Processing Flow

4.4 Appendix

4.4.1 List of Preprocessor Errors

Table 4-55 List of Preprocessor Errors

No.	Error	Configuration Check
1	"ERROR - HOCO frequency can not selected Normal mode (High-speed) (r_core_cfg.h)."	The current configuration is illegal in normal mode (high-speed) when HOCO is selected as the system clock.
		Check the following configuration settings. SYSTEM_CFG_POWER_CONTROL_MODE SYSTEM_CFG_CLOCK_SOURCE
		SYSTEM_CFG_HOCO_FREQUENCY
2		The current configuration is illegal when HOCO is not selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_HOCO_ENABLE SYSTEM_CFG_HOCO_FREQUENCY
		SYSTEM_CFG_POWER_CONTROL_MODE
3	"ERROR - HOCO frequency can not selected Normal mode (Low-speed) (r_core_cfg.h)."	The current configuration is illegal in normal mode (low-speed) when HOCO is selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_POWER_CONTROL_MODE
		SYSTEM_CFG_CLOCK_SOURCE
4		SYSTEM_CFG_HOCO_FREQUENCY • The current configuration is illegal when HOCO is
4		not selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_HOCO_ENABLE
		SYSTEM_CFG_HOCO_FREQUENCY SYSTEM_CFG_POWER_CONTROL_MODE
5	"ERROR - HOCO frequency division ratio	The current configuration is illegal in normal
	(r_core_cfg.h)."	mode (low-speed) when HOCO is selected as the
		system clock.
		Check the following configuration settings. SYSTEM_CFG_POWER_CONTROL_MODE
		SYSTEM CFG CLOCK SOURCE
		SYSTEM_CFG_HOCO_FREQUENCY
		SYSTEM_CFG_ICK_PCKA_DIV
6	"ERROR - HOCO frequency can not selected	The current configuration is illegal in normal
	Normal mode (Subosc-speed) (r_core_cfg.h)."	mode (subosc-speed) when HOCO is selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_POWER_CONTROL_MODE
		SYSTEM_CFG_CLOCK_SOURCE
7		The current configuration is illegal when HOCO is
		not selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_HOCO_ENABLE
8	"ERROR - HOCO frequency can not selected	SYSTEM_CFG_POWER_CONTROL_MODE • The current configuration is illegal in low leakage
	Low-Leakage-Current mode (VBB)	current mode (VBB) when HOCO is selected as
	(r_core_cfg.h)."	the system clock.
		Check the following configuration settings.

		SYSTEM_CFG_POWER_CONTROL_MODE SYSTEM_CFG_CLOCK_SOURCE
9		The current configuration is illegal when HOCO is not selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_HOCO_ENABLE
10	UEDDOD LICCO fraguency novements of	SYSTEM_CFG_POWER_CONTROL_MODE
10	"ERROR - HOCO frequency parameter of enable select is out of range (r_core_cfg.h)."	The current configuration is illegal for HOCO. Check the following configuration setting. SYSTEM OF ALCO FRANCE.
11	"ERROR - HOCO frequency (r_core_cfg.h)"	SYSTEM_CFG_HOCO_ENABLE
11	ERROR - HOCO frequency (I_core_cig.fr)	 The current configuration is illegal for HOCO. Check the following configuration setting.
		SYSTEM_CFG_HOCO_FREQUENCY
12	"ERROR - MOCO frequency can not selected	• The current configuration is illegal in normal
	Normal mode (Subosc-speed) (r_core_cfg.h)"	mode (subosc-speed) when MOCO is selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_POWER_CONTROL_MODE
		SYSTEM_CFG_CLOCK_SOURCE
13		The current configuration is illegal when MOCO is
		not selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_MOCO_ENABLE
		SYSTEM_CFG_POWER_CONTROL_MODE
14	"ERROR - MOCO frequency can not selected Low-Leakage-Current mode (VBB)	The current configuration is illegal in low leakage current mode (VBB) when MOCO is selected as
	(r_core_cfg.h)"	the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_POWER_CONTROL_MODE
4.5		SYSTEM_CFG_CLOCK_SOURCE
15		The current configuration is illegal when MOCO is not selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_MOCO_ENABLE
10	"EDDOD MOCO fraguesia a successiva a f	SYSTEM_CFG_POWER_CONTROL_MODE
16	"ERROR - MOCO frequency parameter of enable select is out of range (r_core_cfg.h)."	The current configuration is illegal for MOCO stop.
	enable select is out of range (i_core_cig.ii).	Check the following configuration setting.
		SYSTEM_CFG_MOCO_ENABLE
17	"ERROR - LOCO frequency division ratio	The current configuration is illegal in normal
	(r_core_cfg.h)"	mode (subosc-speed) when LOCO is selected as
		the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_POWER_CONTROL_MODE
		SYSTEM_CFG_CLOCK_SOURCE
10		SYSTEM_CFG_ICK_PCKA_DIV
18		The current configuration is illegal in low leakage current mode (VBB) when LOCO is selected as the
		system clock.
		Check the following configuration settings.
		SYSTEM_CFG_POWER_CONTROL_MODE
		SYSTEM_CFG_CLOCK_SOURCE
		SYSTEM_CFG_ICK_PCKA_DIV
		SYSTEM_CFG_PCKB_DIV

19	"ERROR - LOCO frequency parameter of enable select is out of range (r_core_cfg.h)."	The current configuration is illegal for LOCO stop. Check the following configuration setting. SYSTEM_CFG_LOCO_ENABLE
20	"ERROR - MOSC frequency out of range (r_core_cfg.h)"	The current configuration is illegal when the main clock (MOSC) is selected as the system clock. Check the following configuration settings. SYSTEM_CFG_MOSC_FREQUENCY_HZ SYSTEM_CFG_CLOCK_SOURCE
21	"ERROR - MOSC frequency division ratio (r_core_cfg.h)"	The current configuration is illegal in normal mode (low-speed) when the main clock (MOSC) is selected as the system clock. Check the following configuration settings. SYSTEM_CFG_MOSC_FREQUENCY_HZ SYSTEM_CFG_POWER_CONTROL_MODE SYSTEM_CFG_CLOCK_SOURCE SYSTEM_CFG_ICK_PCKA_DIV
22	"ERROR - MOSC frequency can not selected Normal mode (Subosc-speed) (r_core_cfg.h)"	The current configuration is illegal when the main clock (MOSC) is selected as the system clock. Check the following configuration settings. SYSTEM_CFG_POWER_CONTROL_MODE SYSTEM_CFG_CLOCK_SOURCE
23	"ERROR - MOSC frequency selected Low- Leakage-Current mode (VBB) (r_core_cfg.h)"	The current configuration is illegal when the main clock (MOSC) is selected as the system clock. Check the following configuration settings. SYSTEM_CFG_POWER_CONTROL_MODE SYSTEM_CFG_CLOCK_SOURCE
24	"ERROR - MOSC frequency can not selected Normal mode (Low-speed) (r_core_cfg.h)."	The current configuration is illegal when the main clock (MOSC) is not selected as the system clock. Check the following configuration settings. SYSTEM_CFG_MOSC_ENABLE SYSTEM_CFG_MOSC_FREQUENCY_HZ SYSTEM_CFG_POWER_CONTROL_MODE
25	"ERROR - MOSC frequency can not selected Normal mode (Subosc-speed) (r_core_cfg.h)."	The current configuration is illegal when the main clock (MOSC) is not selected as the system clock. Check the following configuration settings. SYSTEM_CFG_MOSC_ENABLE SYSTEM_CFG_POWER_CONTROL_MODE
26	"ERROR - MOSC frequency can not selected Low-Leakage-Current mode (VBB) (r_core_cfg.h)."	The current configuration is illegal when the main clock (MOSC) is not selected as the system clock. Check the following configuration settings. SYSTEM_CFG_MOSC_ENABLE SYSTEM_CFG_POWER_CONTROL_MODE
27	"ERROR - MOSC frequency parameter of enable select is out of range (r_core_cfg.h)."	The current configuration is illegal for the main clock (MOSC). Check the following configuration setting. SYSTEM_CFG_MOSC_ENABLE
28	"ERROR - MOSC frequency (r_core_cfg.h)"	The current configuration is illegal for the main clock (MOSC). Check the following configuration settings. SYSTEM_CFG_MOSC_FREQUENCY_HZ SYSTEM_CFG_MOSC_CLOCK_SOURCE
29	"ERROR - MOSC frequency parameter of drive capability select is out of range (r_core_cfg.h)"	The current configuration is illegal for the main clock (MOSC). Check the following configuration setting.

	<u> </u>	
		SYSTEM_CFG_MOSC_DRIVE
30	"ERROR - MOSC frequency parameter of clock source select is out of range (r_core_cfg.h)."	The current configuration is illegal for the main clock (MOSC).
	3. (3, ,	Check the following configuration setting. SYSTEM_CFG_MOSC_CLOCK_SOURCE
31	"ERROR - MOSC frequency parameter of low	The current configuration is illegal for the main
31	power enable select is out of range	clock (MOSC).
	(r_core_cfg.h)."	Check the following configuration setting. SYSTEM_CFG_MOSC_LOW_POWER_ENABLE
32	"ERROR - MOSC frequency parameter of stabilization time select is out of range	The current configuration is illegal for the main clock (MOSC).
	(r_core_cfg.h)"	Check the following configuration setting.
		SYSTEM_CFG_MOSC_WAIT_TIME
33	"ERROR - SOSC frequency division ratio	• The current configuration is illegal when the sub-
	(r_core_cfg.h)"	clock (SOSC) is selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_POWER_CONTROL_MODE SYSTEM CFG CLOCK SOURCE
		SYSTEM_CFG_CLOCK_SOURCE SYSTEM_CFG_ICK_PCKA_DIV
		SYSTEM_CFG_PCKB_DIV
34	"ERROR - SOSC frequency parameter of	The current configuration is illegal for the sub-
	enable select is out of range (r_core_cfg.h)."	clock (SOSC).
		Check the following configuration setting.
		SYSTEM_CFG_SOSC_ENABLE
35	"ERROR - SOSC frequency parameter of drive	The current configuration is illegal for the sub-
	capability select is out of range (r_core_cfg.h)."	clock (SOSC).
		Check the following configuration setting.
20	#EDDOD COCC fraguency parameter of pains	SYSTEM_CFG_SOSC_DRIVE
36	"ERROR - SOSC frequency parameter of noise filter select is out of range (r_core_cfg.h)."	The current configuration is illegal for the sub- clock (SOSC).
		Check the following configuration setting.
		SYSTEM_CFG_SOSC_NF_STOP
37	"ERROR - PLL frequency selected other than	The current configuration is illegal when the PLL
	BOOST mode (r_core_cfg.h)"	is selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_POWER_CONTROL_MODE
	WEDDOD DILL :	SYSTEM_CFG_CLOCK_SOURCE
38	"ERROR - PLL input frequency out of range (r_core_cfg.h)"	The current configuration is illegal when the PLL is selected as the system clock.
		Check the following configuration settings.
		SYSTEM_CFG_MOSC_FREQUENCY_HZ
		SYSTEM_CFG_CLOCK_SOURCE
		SYSTEM_CFG_PLL_ENABLE
		SYSTEM_CFG_PLL_DIV
39	"ERROR - PLL frequency parameter of enable	The current configuration is illegal for the PLL.
	select is out of range (r_core_cfg.h)."	Check the following configuration setting.
		SYSTEM_CFG_PLL_ENABLE
40	"ERROR - SYSTEM_CFG_PLL_DIV value	The current configuration is illegal for the PLL.
	(config)"	Check the following configuration setting.
		SYSTEM_CFG_PLL_DIV
41	"ERROR - SYSTEM_CFG_PLL_MUL value	• The current configuration is illegal for the PLL.
	(config)"	Check the following configuration setting.
40	FDDOD DILL fragues / coeffeet	SYSTEM_CFG_PLL_MUL
42	"ERROR - PLL frequency (config)"	The current configuration is illegal for the PLL.

		Check the following configuration settings. SYSTEM_CFG_PLL_DIV SYSTEM_CFG_PLL_MUL
43	"ERROR - MOSC(PLL) frequency can not selected Boost mode (BOOST) (r_core_cfg.h)."	The current configuration is illegal when the PLL is not selected as the system clock. Check the following configuration settings. SYSTEM_CFG_MOSC_ENABLE SYSTEM_CFG_PLL_ENABLE SYSTEM_CFG_POWER_CONTROL_MODE
44	"ERROR - MOSC(PLL) frequency can not selected Normal mode (High-speed) (r_core_cfg.h)"	The current configuration is illegal when the PLL is not selected as the system clock. Check the following configuration settings. SYSTEM_CFG_PLL_ENABLE SYSTEM_CFG_POWER_CONTROL_MODE
45	"ERROR - MOSC(PLL) frequency can not selected Normal mode (Low-speed) (r_core_cfg.h)."	The current configuration is illegal when the PLL is not selected as the system clock. Check the following configuration settings. SYSTEM_CFG_PLL_ENABLE SYSTEM_CFG_POWER_CONTROL_MODE
46	"ERROR - MOSC(PLL) frequency can not selected Normal mode (Subosc-speed) (r_core_cfg.h)."	The current configuration is illegal when the PLL is not selected as the system clock. Check the following configuration settings. SYSTEM_CFG_PLL_ENABLE SYSTEM_CFG_POWER_CONTROL_MODE
47	"ERROR - MOSC(PLL) frequency can not selected Low-Leakage-Current mode (VBB) (r_core_cfg.h)."	The current configuration is illegal when the PLL is not selected as the system clock. Check the following configuration settings. SYSTEM_CFG_PLL_ENABLE SYSTEM_CFG_POWER_CONTROL_MODE
48	"ERROR - Clock source select is out of range (r_core_cfg.h)"	The current configuration is illegal for the clock source selection. Check the following configuration setting. SYSTEM_CFG_CLOCK_SOURCE
49	"ERROR - ICLK and PCLKA frequency division ratio select is out of range (r_core_cfg.h)"	The current configuration is illegal for the system clock (ICLK)/peripheral module clock (PCLKA) selection. Check the following configuration setting. SYSTEM_CFG_ICK_PCKA_DIV
50	"ERROR - PCLKB frequency division ratio select is out of range (r_core_cfg.h)"	The current configuration is illegal for the peripheral module clock B (PCLKB) selection. Check the following configuration setting. SYSTEM_CFG_PCKB_DIV
51	"ERROR - Power control mode select is out of range (r_core_cfg.h)"	The current configuration is illegal for the power state selection. Check the following configuration setting. SYSTEM_CFG_POWER_CONTROL_MODE
52	"ERROR - EHC operating mode select is out of range (r_core_cfg.h)."	The current configuration is illegal for the EHC startup mode setting. Check the following configuration setting. SYSTEM_CFG_EHC_MODE
53	"ERROR - PCKB frequency division ratio (r_core_cfg.h)."	The current configuration is illegal for peripheral module clock B (PCLKB). Check the following configuration settings. SYSTEM_CFG_ICK_PCKA_DIV

		SYSTEM CFG PCKB DIV
		SYSTEM_CFG_HOCO_FREQUENCY
		SYSTEM_CFG_CLOCK_SOURCE
		SYSTEM_CFG_MOSC_FREQUENCY_HZ
54	"WARNING - PLL frequency (config)"	The current configuration is illegal for the PLL.
		Check the following configuration settings.
		SYSTEM_CFG_PLL_DIV
		SYSTEM_CFG_PLL_MUL

5. EHC Startup Mode

The EHC startup mode can be used under the following conditions.

- The optional energy harvesting (EHC) startup source file (r_ehc.c) is loaded.
- The EHC startup mode is enabled in the configuration definition file (r_core_cfg.h).

5.1 File Structure

The EHC startup mode is an optional capability of the RE01 1500KB Group CMSIS Driver Package and consists of one file: r_ehc.c in the vendor-specific file storage directory. The role of this file is shown in Table 5-1. Figure 5-1 shows r_ehc in the file structure of the RE01 1500KB Group CMSIS Driver Package. The internal structure is shown in Figure 5-2.

Table 5-1 Role of Energy Harvesting (EHC) Startup Source File

File Name	Description
r_ehc.c	Energy harvesting (EHC) startup source file.
	It performs initialization required before checking the voltage charged in the secondary
	battery and starting the operation using the secondary battery, transition to a power
	control mode, and transition to a power supply mode in the EHC startup mode.
	To use the EHC startup mode, it is necessary to build this file.

R01AN4769EJ0130 Rev.1.30 Dec. 04, 2020

Figure 5-1 r_ehc in the File Structure of CMSIS Driver Package

Figure 5-2 Position of EHC in the R_CORE

5.2 Transition to EHC Startup Mode

The following shows the procedure for transition to the EHC startup mode.

When the configuration definition of energy harvesting (EHC) startup mode (SYSTEM_CFG_EHC_MODE) is set to "enabled", EHC startup processing begins with EHC initialization. When a reset is applied while the startup mode is enabled, EHC startup processing is performed again and the secondary battery is re-charged. The operation continues until an interrupt occurs due to a drop in the voltage of the secondary battery.

Figure 5-3 Transition to a Startup Mode by SystemInit Function

5.3 Configurations

For R_CORE, configuration definitions that can be modified by the user are provided in the r_core_cfg.h file.

Table 5-2 shows the initial setting. For the configuration definition, refer to the corresponding section shown in the table.

Table 5-2 List of Initial Settings of R_CORE Configurations

Section	Configuration	Description	Initial Value
4.1.22	SYSTEM_CFG_EHC_MODE	Enables or disables EHC startup processing.	1
4.1.23	SYSTEM_CFG_EHC_LVD1LVL	Specifies the Voltage Detection 1 Level.	7
4.1.24	SYSTEM_CFG_EHC_LVDBATLVL	Specifies the Voltage Detection BAT Level.	0

5.4 Function Specifications

In the EHC startup mode, a low power consumption mode is entered to reduce the power consumption in the device. Figure 5-4 shows state transitions in the EHC startup mode.

R01AN4769EJ0130 Rev.1.30 Dec. 04, 2020

Figure 5-4 State Transitions in EHC Startup Mode

5.4.1 r_ehc_Startup Function

Table 5-3 r_ehc_Startup Function Specifications

Format	void r_ehc_Startup(void)
Description	Executes EHC startup processing.
Argument	None
Return	None
value	
Remarks	_

Figure 5-5 r_ehc_Startup Function Processing Flow (1/3)

Figure 5-6 r_ehc_Startup Function Processing Flow (2/3)

Figure 5-7 r_ehc_Startup Function Processing Flow (3/3)

5.4.2 ehc_Startup_ramfunc Function

Table 5-4 ehc_Startup_ramfunc Function Specifications

Format	void ehc_Startup_ramfunc(void)
Description	Charges the secondary battery in the EHC startup processing.
Argument	None
Return	None
value	
Remarks	_

Figure 5-8 ehc_Startup_ramfunc Function Processing Flow (1/3)

Figure 5-9 ehc_Startup_ramfunc Function Processing Flow (2/3)

Figure 5-10 ehc_Startup_ramfunc Function Processing Flow (3/3)

5.4.3 NMI_Handler_EHC Function

Table 5-5 NMI_Handler_EHC Function Specifications

Format	void NMI_Handler_EHC(void)
Description	Execution branches to this function when a voltage monitor 1 interrupt occurs.
	This function initializes the EHC module.
Argument	None
Return	None
value	
Remarks	A voltage monitor 1 interrupt occurs when a drop in the voltage inside the
	MCU is detected.By initializing the EHC module, the power supply inside the
	MCU is stopped.
	The user must create an interrupt hander of the VCC voltage drops (function
	name : NMI_Handler).

Figure 5-11 NMI_Handler_EHC Function Processing Flow

5.4.4 IEL1_IRQHandler_EHC Function

Table 5-6 IEL1_IRQHandler_EHC Function Specifications

Format	void IEL1_IRQHandler_EHC(void)
Description	Execution branches to this function when a voltage monitor BAT interrupt
	occurs.
	This function clears the status flag.
Argument	None
Return value	None
Remarks	When the completion of charging the secondary battery is detected, a voltage monitor BAT interrupt occurs and the MCU is released from software standby mode.

Figure 5-12 IEL1_IRQHandler_EHC Function Processing Flow

Website and Support Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description	
Rev.	Date	Page	Summary
0.72	Jul. 1, 2019		First edition issued
1.00	Aug. 9, 2019	_	Update to support R_CORE version 1.00
			Renamed document title and file to correspond to the official
			series name.
			Change series and group names in the document.
		3	Added Startup Guide to Development Using CMSIS Package
			to list of related document.
		34	Modified the system_hoco_start Function Processing Flow
		37	Modified the system_loco_start Function Processing Flow
		39	Modified the system_sosc_start Function Processing Flow
1.01	Dec. 13, 2019	24	Modified the Setting value of MOCO_TMOCOWT_SEC.
			Modified the Setting value of LOCO_TLOCOWT_SEC.
			Modified the Remarks comments
1.10	Mar. 09, 2020	8	Added the following definitions to Table 4-1.
			SYSTEM CFG EHC LVD1LVL
			SYSTEM_CFG_EHC_LVDBATLVL
		18	Added the section 4.1.23.
		19	Added the section 4.1.24.
		43	Revised the title of Table 4-50.
		53	Added the new warning message to Table 4-55.
		58	Added the following definitions to Table 5-2.
			SYSTEM_CFG_EHC_LVD1LVL
			SYSTEM_CFG_EHC_LVDBATLVL
		65	Modified the r_ehc_Startup Function Processing Flow (1/3).
		68	Modified the Section 5.4.3.
	Aug. 17, 2020	13	Modified the Section 5.4.3. Modified the setting contents of Table 4-14.
1.20	Aug. 17, 2020	26	Modified the setting contents of Table 4-14. Modified the following definition of setting value of Table 4-36.
		20	LOCO_TLOCOWT_TIME_START
			LOCO_RESTART_TIME_START
			SOSC_TSUBOSCOWT_TIME_START
			SOSC_RESTART_TIME_START MOCO_TMOCOWT_TIME_STOP
			MOCO_RESTART_TIME_STOP
			LOCO_TLOCOWT_TIME_STOP
			LOCO_RESTART_TIME_STOP
			SOSC_TSUBOSCOWT_TIME_STOP
			SOSC_RESTART_TIME_STOP
			Added the following definitions to Table 4-36.
			LOCO_TLOCOWT_TIME_START_ALONE
			LOCO_RESTART_TIME_START_ALONE
			SOSC_TSUBOSCOWT_TIME_START_ALONE
			SOSC_RESTART_TIME_START_ALONE
		37	Modified system_moco_stop Function Processing Flow
		38	Modified system_loco_start Function Processing Flow
		39	Modified system_loco_stop Function Processing Flow
		40 - 41	Modified system_sosc_start Function Processing Flow
		42	Modified system_sosc_stop Function Processing Flow
		67	Modified ehc_Startup_ramfunc Function Processing Flow
1.30	Dec. 04, 2020	8, 49, 52	Modified SystemInit Function Processing Flow
		23	Modified the error conditions of Table 4-32.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.