

Beyond Shared Hierarchies: Deep Multitask Learning through Soft Layer Ordering

Elliot Meyerson, Risto Miikkulainen

Multitask Learning

- Shares information between related tasks.
- Learn from seemingly unrelated tasks
- How does it work:
 - Implicit data augmentation
 - Attention focusing
 - Eavesdropping
 - Regularization

The Problem

- Past Multitask Learning (MTL) approaches have been constrained to training few or closely related tasks
- Two assumptions
 - Learned information can be shared across tasks
 - This sharing takes place only at aligned layers parallel ordering assumption

The Parallel Ordering Examples

A common assumption is that layers within a deep network extract progressively higher level features at further depths.

a. Classical Approach b. Column Based approach c. Supervision at custom depths d. Universal representations

Breaking Down the Parallel Ordering Assumption

The Assumption:

$$y_i = (\mathcal{D}_i \circ \phi_D \circ W_D^i \circ \phi_{D-1} \circ W_{D-1}^i \circ \ldots \circ \phi_1 \circ W_1^i \circ \mathcal{E}_i)(x_i), \text{ with } W_k^i \approx W_k^j \ \forall \ (i,j,k).$$

Where:

$$W_D^i$$
 - Weight tensor at depth D
 ϕ_D - Nonlinearity/Activation at depth D
 \mathcal{E}_i - Encoder for task i
 \mathcal{D}_i - Decoder for task i

Permuting Shared Layers

Standard Multitask Network:

$$y_i = (\mathcal{D}_i \circ \phi_D \circ W_D \circ \phi_{D-1} \circ W_{D-1} \circ \dots \circ \phi_1 \circ W_1 \circ \mathcal{E}_i)(x_i)$$

Permuted Multitask Network:

$$y_i = (\mathcal{D}_i \circ \phi_D \circ W_{\rho_i(D)} \circ \phi_{D-1} \circ W_{\rho_i(D-1)} \circ \ldots \circ \phi_1 \circ W_{\rho_i(1)} \circ \mathcal{E}_i)(x_i)$$

This results in a set of layers that are assembled in different ways for different tasks.

Expressivity of Permuted Ordering

Tasks fitted to randomly generated patterns

Permuted Multitask Network:

$$y_1 = (O \circ \phi \circ \underline{W_2} \circ \phi \circ \underline{W_1})(x_1)$$
 and $y_2 = (O \circ \phi \circ \underline{W_1} \circ \phi \circ \underline{W_2})(x_2)$

Results:

Soft Ordering of Shared Layers

Allows jointly trained models to learn *how* layers are applied while simultaneously learning the layers themselves

Soft Ordering Evaluation - Related and Unrelated Tasks

MNIST - digit vs digit classification

10 UCI dataset tasks

Soft Ordering Evaluation - Omniglot

- A "hierarchy" of layers is discovered with soft ordering

Soft Order Evaluation - Facial Attribute Recognition

Deep MTL method	Test Error %
Single Task (He et al., 2017)	10.37
MTL Baseline (He et al., 2017)	9.58
Parallel Order	10.21
Parallel Order + Landmarks	10.29
Soft Order	8.79
Soft Order + Landmarks	8.75
Soft Order + Identity	8.64
Soft Order + Landmarks + Identity	8.68

Visualizing the Behavior of Soft Ordered Layers

The success of soft layer ordering suggests that layers learn *functional primitives* that can be applied in different contexts.

Conclusion

- Future Work
 - Connections to recurrent architectures
 - Generalizing the structure of shared layers
 - Training generalizable building blocks
- Aligning closer to our understanding of real-world processes

References and Further Reading

- Ruder, Sebastian. "An Overview of Multi-Task Learning in Deep Neural Networks" arXiv preprint arXiv:1706.05098 2017.
- 2. Liang, Jason, et al. "*Evolutionary Architecture Search For Deep Multitask Networks.*" arXiv preprint arXiv:1803.03745, 2018.

