Expected Returns and Large Language Models

Yifei Chen, Bryan Kelly, Dacheng Xiu

解读:王梦涵

2025年4月18日

Motivation

- Finance literature has begun to extract info from economic text but limited
 - Only a limited portion of market-relevant textual data was used
 - Focus on a single specialized data source at a time
 - Text info is often represented in rudimentary ways
- There are valid reasons why text data has been underexploited
 - Language is an extremely nuanced info encoding scheme
 - → Highly complex models are necessary, yet prohibitive for many researchers Technological barriers: High computational cost
- Construct refined news text representations derived from LLMs and then use these to improve models of expected stock returns

Why LLMs?

- Financial text mining is comprised of two general steps
 - Step1: Get numerical representation of the text data
 - **Step2**: Construct econometric model from numerical representation
- LLMs delegate Step 1 to a handful of individuals globally who are best equipped to perform it
 - Trained on large-scale text datasets
 - Contain billions of parameters and support nonlinearity
 - Remarkable capacity for transfer learning
 - Accessible to non-specialist researchers

Question

- Q1: How do LLMs & word_based models representations model stock returns?
 - They can draw useful info from text data
 - LLMs outperform word_based models
- Q2: What causes different performance between LLMs and word_based models?
 - LLMs can understand the context of article better
- Q3: How does the complexity of LLMs affect their performance?
 - Larger models perform better, but with diminishing returns
- Q4:Do above results hold on Globally?
 - Yes

Contribution

- Literature on financial text-data analysis and return prediction
 - Systematically leveraging various LLMs to analyze text data
 - Showcase the advantages of LLM representations for modeling stock returns
 - Extend the financial text-data analysis to international text
- Literature on efficient market hypothesis
 - Provide novel insights and empirical evidence on deviations from the EMH

Data

- News Text: From Refinitiv, 1996.1-2019.6
 - Types: Articles-a headline and a body of text; Alerts-only a headline
 - Filters
 - Retained news associated with a single stock for which three-day close-to close returns are available(t-1,t,t+1)
 - Removed excessively short/detailed news($N_{characters} < 100 \& > 100000$)
 - Remove redundant articles
- Equity data:
 - US:CRSP
 - International: EIKON

Text Mining Methods:LLMs

- LLMs: BERT (developed by Google), RoBERTa (by Meta), LLaMA(LLaMA2)
 (by Meta), ChatGPT
- Model training steps:
 - Tokenization:word ->token: characters,words or subwords eg:surreptitious -> 'sur', '##re', '##pt', '##iti', '##ous'
 - Transformer:token->contextualized embedding
- The LLMs used in this paper are all pre-trained
 - Minimizes computational efforts
 - Easier to replicate
- Article $\to X_{N_{max-tokens},N_{vector-dimensions}} \to \text{Article-level representations } x_{i,t}$

Text Mining Methods:word_based methods

- Word Embeddings:Word2Vec
 - Train: Parse→ Exclued nums、stopwords,...→Learn word from fixed-size window→ word embeddings(300d)
 - Use pre-trained model from fastText
- Bags of words
 - SESTM: Only for sentiment analysis, need to be trained
 - Identify a list of terms most closely correlated with sentiment
 - Assign weights to these words by estimating a topic model
 - · Aggregate these terms into an article-level sentiment score
- LLMD: Only for sentiment analysis

Design: Econometric models

• Sentiment Analysis: Classification Problem

$$E(y_{i,t}|x_{i,t}) = \sigma(x'_{i,t}\beta)$$

- $x_{i,t}$:text_based features; $y_{i,t}$:binary var,pos or neg; $\sigma(\,\cdot\,) = \frac{e^x}{1+e^x}$
- · Sentiment label: the sign of three-day stock's return
- Return Prediction: Regression Problem

$$E(r_{i,t+1}|\mathbf{x}_{i,t}) = \mathbf{x}'_{i,t}\theta$$

- $x_{i,t}$:text_based features; $r_{i,t+1}$:stock return
- Use simple panel regression to emphasize the significance of text-based

Design: Construct Portfolio

- Exclude articles published between 9:00am and 9:30am
- For news occur on day 0, build positions on day 1

News Used for Trading

Articles Used for Trading Next Day

Q1: Model stock returns–Sentiment Analysis

			Cha	tGPT						LL	aMA2		
		EW			VW				EW			VW	
	Long	Short	L-S	Long	Short	L-S		Long	Short	L-S	Long	Short	L-S
Ret	0.34	-0.14	0.48	0.19	0.04	0.15		0.35	-0.10	0.45	0.18	0.07	0.11
Std	0.20	0.22	0.10	0.19	0.22	0.11		0.20	0.23	0.11	0.19	0.22	0.11
$_{ m SR}$	1.71	-0.62	4.62	1.03	0.18	1.41		1.75	-0.43	4.16	0.97	0.33	0.98
			LL	aMA						Rol	BERTa		
		EW			VW				$_{\mathrm{EW}}$			VW	
	Long	Short	L-S	Long	Short	L-S		Long	Short	L-S	Long	Short	L-S
Ret	0.34	-0.07	0.41	0.19	0.08	0.11		0.33	-0.06	0.39	0.20	0.09	0.11
Std	0.20	0.23	0.11	0.19	0.22	0.11		0.20	0.22	0.10	0.19	0.22	0.11
$_{ m SR}$	1.67	-0.33	3.89	1.02	0.36	1.04		1.62	-0.29	3.75	1.08	0.43	0.94
			BI	ERT						Wo	rd2vec		
		EW			VW				$_{\mathrm{EW}}$			VW	
	Long	Short	L-S	Long	Short	L-S		Long	Short	L-S	Long	Short	L-S
Ret	0.32	-0.04	0.36	0.16	0.07	0.10		0.29	-0.01	0.30	0.18	0.08	0.09
Std	0.20	0.22	0.10	0.18	0.21	0.10		0.21	0.22	0.10	0.19	0.21	0.10
$_{ m SR}$	1.59	-0.19	3.60	0.89	0.31	0.92		1.41	-0.05	3.06	0.93	0.40	0.92
			SE	STM						L	MMD		
		EW			VW				EW			VW	
	Long	Short	L-S	Long	Short	L-S	-	Long	Short	L-S	Long	Short	L-S
Ret	0.31	-0.03	0.34	0.18	0.09	0.09		0.24	0.01	0.22	0.14	0.10	0.04
Std	0.20	0.22	0.10	0.19	0.21	0.11		0.20	0.23	0.10	0.18	0.21	0.10
SR	1.53	-0.14	3.43	0.97	0.42	0.86		1.18	0.06	2.29	0.77	0.47	0.39

LLMs outperforms word_based models; EW>VW; Long > Short

Q1: Model stock returns-Return Prediction

			Chat	GPT					LLal	MA2		
		EW			VW			EW			VW	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S
Ret	0.39	-0.04	0.43	0.22	0.11	0.10	0.46	-0.11	0.57	0.23	0.09	0.14
Std	0.21	0.22	0.10	0.20	0.20	0.11	0.21	0.22	0.11	0.20	0.20	0.11
$_{ m SR}$	1.87	-0.21	4.23	1.07	0.58	0.91	2.22	-0.50	5.31	. 1.14	0.44	1.32
			LLa			1.41			RoBI			0.98
		EW			VW			EW			VW	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S
Ret	0.45	-0.11	0.56	0.23	0.08	0.15	0.37	-0.05	0.42	0.21	0.08	0.13
Std	0.21	0.22	0.11	0.20	0.20	0.11	0.20	0.21	0.10	0.20	0.20	0.11
$_{\rm SR}$	2.17	-0.51	5.17	1.12	0.41	1.35	1.81	-0.23	4.36	1.06	0.42	1.17
			3.89 E	RT		1.04			3.75 Word	2vec		0.94
		EW			VW			EW			VW	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S
Ret	0.33	-0.03	0.37	0.16	0.09	0.07	0.33	-0.00	0.33	0.20	0.13	0.08
Std	0.21	0.22	0.09	0.19	0.20	0.10	0.21	0.22	0.10	0.19	0.20	0.10
$_{ m SR}$	1.62	-0.15	3.94	0.85	0.45	0.68	1.61	-0.00	3.20	1.06	0.63	0.74
			3.60			0.92			3.06			0.92

LLaMA2, LLaMA and RoBERTa outperform their sentiment portfolio.

Q1: Model stock returns-News Momentum

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L-S
SR	0.00
Day +3 Portfolios	0.11
Ret 0.16 0.09 0.07 0.06 0.08 0.01 0.12 0.10 0.02 0.09 0.21 Std 0.20 0.22 0.09 0.19 0.32 0.11 0.20 0.22 0.09 0.20 0.21 SR 0.80 0.39 0.81 0.34 0.36 0.12 0.62 0.84 0.21 0.46 0.40 Day +5 Portfolios VW EW EW VW VW VW VW VW	0.02
Long Short L-S Long Short Long Long	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L-S
SR 0.80 0.39 0.81 0.34 0.36 -0.12 0.62 0.48 0.21 0.46 0.40 Day +5 Portfolios VW Day +6 Portfolios EW VW VW	0.01
Day +5 Portfolios Day +6 Portfolios EW VW EW VW	0.11
EW VW EW VW	0.06
Long Short L-S Long Short L-S Long Short L-S Long Short	L-S
Ret 0.15 0.16 -0.01 0.11 0.05 0.06 0.11 0.13 -0.02 0.08 0.05	0.02
Std 0.20 0.22 0.09 0.19 0.21 0.10 0.20 0.22 0.09 0.19 0.20	0.10
SR 0.75 0.72 -0.12 0.56 0.25 0.54 0.54 0.58 -0.22 0.39 0.25	0.24

A significant momentum effect—> market inefficiency

Q1: Model stock returns-Text-info VS Past-Returns

			Stocks W	ith news					Cna	GFI			
		EW			VW			EW				VW	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	L	ong	Short	L-S
Ret	0.35	0.06	0.29	0.29	0.08	0.20	0.38	-0.16	0.54	0	.22	0.04	0.18
Std	0.27	0.23	0.18	0.30	0.23	0.24	0.21	0.22	0.11	0	.19	0.22	0.11
$_{\rm SR}$	1.29	0.25	1.58	0.95	0.37	0.83	1.86	-0.71	5.03	1	.13	0.20	1.58
			LLal	MA2					LLa	$_{\rm aMA}$			
		EW			VW			EW				VW	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	L	ong	Short	L-S
Ret	0.40	-0.12	0.52	0.21	0.07	0.14	0.37	-0.08	0.45	0	.21	0.09	0.12
Std	0.21	0.23	0.12	0.20	0.21	0.12	0.21	0.22	0.11	0	.20	0.22	0.12
SR	1.88	-0.53	4.43	1.06	0.34	1.19	1.79	-0.34	4.00	1	.06	0.42	1.00
			RoBI	ERTa					BE	ERT			
		EW			VW			EW				VW	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	L	ong	Short	L-S
Ret	0.39	-0.11	0.49	0.24	0.08	0.16	0.38	-0.07	0.44	0	.20	0.06	0.14
Std	0.21	0.22	0.11	0.20	0.22	0.12	0.21	0.22	0.11	0	.19	0.21	0.11
$_{\rm SR}$	1.84	-0.48	4.46	1.22	0.36	1.38	1.80	-0.31	4.13	1	.01	0.28	1.22
			SES	TM					LN	IMD			
		EW			VW			EW				VW	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	L	ong	Short	L-S
Ret	0.42	-0.03	0.45	0.30	0.05	0.26	0.26	-0.01	0.28	0	.17	0.09	0.07
Std	0.26	0.22	0.17	0.27	0.23	0.21	0.20	0.22	0.10	0	.18	0.21	0.10
SR	1.63	-0.12	2.61	1.10	0.21	1.21	1.30	-0.06	2.79	0	.90	0.44	0.71

Text data can provide more information than past returns

Q2: LLMs VS Word_based models

Analyze the corr of daily portfolio returns between different models

Correlation between LLMs and word-based models is notably lower

Q2: LLMs VS Word based models—An Example

SHAP: expected change in prediction based on specific features

Russels has warned British Airways owner IAG ICAGL that its favoured strategy to allow it to continue flying freely in and around Europe in the event of a nodeal Brexit will not work, the Financial Times reported on Tuesday After Brexit, European carriers will have to show they are more than 50 per cent EUowned and controlled to retain flying rights in the bloc, the FT said, IAG, which also owns the Spanish flag carrier Iberia, is registered in Spain but headquartered in the United Kingdom and has diverse global shareholders. The FT said part of IAG's strategy to retain both EU and UK operating rights is to stress that its important individual airlines are domestically owned through a series of trusts rather than being part of the bigger a high proportion of nonEU investors. The FT quoted an unnamed senior EU official as saving, "For IAG, I can't see how it can be a solution, "Concerns have been raised with IAG over its postBrexit ownership structure, the FT quoted a second Brussels official familiar with the conversations as saving, AG was not immediately available to the conversations as saving. BOW W2Vf(y) = 0.050.639 = flag0.312 = control0.383 = flying0.548 = official0.68 - cent0.735 = bigf(x) = 0.5060.38 = stress1 = raise 0.492 = raise1 = stress0.802 = retain 49 other features

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05

Analyze the context surrounding sentiment words is important

0.500 0.502 E[f(X)] = 0.5

398 other features

0.496

Q2: LLMs VS Word_based models—Impact of Negation Words

 $r_{h,i,t+1}(\mathbf{s}_{i,t}^{\mathit{LLM}} - \mathbf{s}_{i,t}^{\mathsf{word-based\ model}}) = \alpha + \beta \mathsf{Negation}_{i,t} + \mathsf{Fixed\ Effect} + \mathsf{Control\ Variables}_{i,t} + \epsilon_{i,t}$

		SES	STM			Wor	12Vec	
	LLaMA2	LLaMA	ROBERTa	BERT	LLaMA2	LLaMA	ROBERTa	BERT
neg words count	0.0137***	0.0134***	0.0077*	0.0076*	0.0189***	0.0186***	0.0129***	0.0128***
	(0.0046)	(0.0047)	(0.0046)	(0.0045)	(0.0045)	(0.0046)	(0.0042)	(0.0041)
size	-0.0890***	-0.0793***	-0.0667***	-0.0888***	-0.0620***	-0.0523***	-0.0397***	-0.0617***
	(0.0169)	(0.0171)	(0.0168)	(0.0166)	(0.0166)	(0.0168)	(0.0152)	(0.0150)
BM	0.0046 (0.0075)	0.0061 (0.0076)	-0.0030 (0.0075)	-0.0012 (0.0074)	0.0020 (0.0074)	0.0035 (0.0075)	-0.0055 (0.0068)	-0.0038 (0.0067)
liquidity	0.0420***	0.0423***	0.0355***	0.0272***	0.0630***	0.0633***	0.0565***	0.0482***
	(0.0105)	(0.0106)	(0.0104)	(0.0103)	(0.0104)	(0.0105)	(0.0095)	(0.0094)
IdioRisk	0.0173*** (0.0065)	0.0114* (0.0065)	0.0204*** (0.0064)	0.0086 (0.0064)	0.0381*** (0.0064)	0.0322*** (0.0065)	0.0412*** (0.0058)	0.0294*** (0.0058)
sic2D	-0.0393***	-0.0268*	-0.0328**	-0.0114	-0.0376**	-0.0250*	-0.0311**	-0.0097
	(0.0151)	(0.0152)	(0.0149)	(0.0147)	(0.0148)	(0.0150)	(0.0135)	(0.0133)
Constant	0.0259***	0.0207***	0.0191***	0.0221^{***}	0.0186***	0.0134**	0.0118**	0.0148***
	(0.0053)	(0.0054)	(0.0053)	(0.0052)	(0.0052)	(0.0053)	(0.0048)	(0.0047)
Stock FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Date FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Number of obs Adj R-squared	1,552,769 0.0029	1,552,769 0.0035	1,552,769 0.0046	1,552,769 0.0047	1,552,769 0.0048	1,552,769 0.0036	1,552,769 0.0032	1,552,769 0.0030

2025 年 4 月 18 日

Q2: LLMs VS Word_based models—Impact of Context Complexity

Model performance based on the headline and body of the same article

			Chat	GPT					LLa	MA2		
		Headline	,		Body			Headline			Body	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S
Ret	0.33	-0.09	0.42	0.34	-0.14	0.48	0.32	-0.04	0.36	0.35	-0.10	0.45
Std	0.20	0.22	0.10	0.20	0.22	0.10	0.20	0.22	0.10	0.20	0.23	0.11
$_{ m SR}$	1.65	-0.41	4.12	1.71	-0.62	4.62	1.58	-0.19	3.51	1.75	-0.43	4.16
			LLa	MA					RoB	ERTa		
		Headline	9		Body			Headline			Body	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S
Ret	0.33	-0.02	0.35	0.34	-0.07	0.41	0.35	-0.00	0.35	0.33	-0.06	0.39
Std	0.20	0.22	0.10	0.20	0.23	0.11	0.21	0.22	0.10	0.20	0.22	0.10
$_{\rm SR}$	1.62	-0.11	3.51	1.67	-0.33	3.89	1.69	-0.02	3.47	1.62	-0.29	3.75
			BE	RT <					Wor	d2vec		
		Headline	9		Body			Headline			Body	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S
Ret	0.31	-0.02	0.33	0.32	-0.04	0.36	0.35	-0.01	0.37	0.29	-0.01	0.30
Std	0.20	0.21	0.10	0.20	0.22	0.10	0.21	0.23	0.11	0.21	0.22	0.10
$_{\rm SR}$	1.55	-0.09	3.48	1.59	-0.19	3.60	1.70	-0.06	3.32	1.41	-0.05	3.06
			SES							MD		
		Headline			Body			Headline	9		Body	
	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S	Long	Short	L-S
Ret	0.38	-0.02	0.40	0.31	-0.03	0.34	0.17	-0.09	0.25	0.24	0.01	0.22
Std	0.21	0.22	0.10	0.20	0.22	0.10	0.23	0.25	0.15	0.20	0.23	0.10
$_{ m SR}$	1.84	-0.07	4.05	1.53	-0.14	3.43	0.74	-0.35	1.66	1.18	0.06	2.29

王梦涵

Q3: The Virtue of Complexity

		H	EW				7	W		
	Article		Al	ert		Article		Al	ert	
		All	TS1	TS2	Rest		All	TS1	TS2	Rest
		Portfo	olios bas	sed on S	Sentimen	t Analysis				
LLAMA7B	3.93	5.40	5.27	3.45	2.68	1.12	2.39	2.46	0.52	0.79
LLAMA13B	3.89	5.48	5.32	3.58	2.93	1.04	2.39	2.42	0.60	0.94
LLAMA33B	3.54	5.51	4.77	3.60	3.02	1.03	2.29	2.39	0.64	0.56
LLAMA65B	2.73	4.63	4.03	2.80	2.07	0.43	1.99	1.95	0.87	0.31
LLAMA2_7B	4.07	5.29	5.42	3.60	3.16	1.06	2.41	2.87	0.48	0.61
LLAMA2_13B	4.16	5.77	5.60	3.92	3.20	0.98	2.54	2.74	0.55	0.91
$LLAMA2_70B$	4.24	5.95	5.63	3.78	3.60	1.14	2.37	2.75	0.57	0.73
		Portf	olios ba	sed on	Return F	Prediction				
LLAMA7B	4.90	4.13	4.08	2.51	1.96	1.00	1.47	1.37	0.93	0.95
LLAMA13B	5.17	4.52	4.53	3.33	2.23	1.35	1.87	1.95	1.38	1.05
LLAMA33B	4.37	3.78	3.14	2.50	2.22	0.86	1.37	1.01	0.66	0.83
LLAMA65B	3.05	2.18	1.96	1.34	1.17	0.82	0.92	0.59	0.59	0.43
LLAMA2_7B	5.15	4.03	4.18	3.06	2.36	1.05	1.72	1.61	1.19	1.16
LLAMA2_13B	5.31	3.99	3.75	2.63	2.63	1.32	1.17	1.38	1.02	1.04
LLAMA2_70B	4.61	3.91	3.75	3.00	2.54	1.07	0.96	1.10	0.66	0.67

• More complex models perform better, but with diminishing marginal returns.

Q4: Global Evidence

	LLaMA2		LLaMA		RoBl	Roberta		BERT		Word2vec		SESTM		LMMD	
	$_{\mathrm{EW}}$	VW	$_{\mathrm{EW}}$	VW	$_{\mathrm{EW}}$	VW	$_{\mathrm{EW}}$	VW	$_{\mathrm{EW}}$	VW	$_{\mathrm{EW}}$	VW	$_{\mathrm{EW}}$	VW	
US	5.31	1.32	5.17	1.35	4.36	1.17	3.94	0.68	3.20	0.74	3.43	0.86	2.29	0.41	
UK	3.10	1.64	2.96	1.34	2.30	0.60	2.19	1.22	2.04	0.81	2.05	0.73	0.82	0.34	
Australia	0.30	0.25	-0.02	0.02	0.04	-0.01	0.21	0.07	0.01	-0.02	-0.16	-0.11	0.37	0.02	
Canada	2.01	1.27	2.07	0.76	1.64	0.60	1.92	0.89	1.49	0.79	0.62	0.33	0.76	0.37	
China (HK)	1.05	0.54	1.37	1.07	0.76	0.55	1.05	0.87	0.46	0.33	1.03	0.76			
Japan	1.52	0.56	1.29	0.65	0.87	0.39	1.09	0.54	0.68	0.45	-0.54	-0.29			
Germany	1.31	0.63	1.18	0.40	0.51	0.23	0.63	0.34	0.47	0.20	0.92	0.70			
Italy	0.39	0.08	0.38	0.14	0.55	0.13	0.63	0.06	0.39	-0.04	0.12	0.21			
France	1.49	0.63	1.09	0.67	0.79	0.40	1.35	0.72	0.74	0.19	1.06	0.14			
Sweden	1.27	0.76	1.18	0.67	0.95	0.58	0.89	0.21	0.57	0.59	0.01	0.53			
Denmark	0.16	0.02	0.04	-0.06	0.58	0.49	0.58	0.53	0.44	0.31	-0.01	-0.16			
Spain	-0.17	-0.15	-0.11	0.05	0.08	0.02	0.03	0.07	-0.02	0.14	-0.26	-0.43			
Finland	0.35	0.09	0.23	0.01	-0.06	-0.21	0.01	0.01	0.11	0.11	0.18	-0.06			
Portugal	-1.99	-2.00	-0.61	-0.62	0.33	0.34	-1.01	-1.04	0.29	0.29	3.88	3.86			
Greece	-0.39	-0.39	0.85	0.85	1.82	1.82	0.02	0.02	-2.14	-2.14	0.12	0.12			
Netherlands	-0.55	-0.55	-0.14	-0.14	1.60	1.60	0.53	0.53	-0.36	-0.36	1.14	1.14			
Mean	0.95	0.29	1.06	0.45	1.07	0.54	0.88	0.36	0.52	0.15	0.85	0.52	1.06	0.29	
Mean (Excluding US)	0.66	0.23	0.79	0.39	0.85	0.50	0.67	0.34	0.34	0.11	0.68	0.50	0.65	0.24	
Median (Excluding US)	0.39	0.25	0.85	0.40	0.76	0.40	0.63	0.34	0.44	0.20	0.18	0.21	0.76	0.34	

• LLMs outperform word_based models(except:Portugal, Greece,Netherlands)

New ideas

- Current focus is limited to news text; future work could integrate other text sources
 - Social Media...
- Use international news to model firm i's return
- Link text representations with investors' action