

5.8 Frequenzgang linearer Vierpole (R-L-C-Netzwerke)

5.8.1 Vierpole und Frequenzgang

Bei der Verarbeitung von Signalen treten die einzelnen Übertragungsglieder meist als Block mit einem Ein- und Ausgang auf. Solche Blöcke werden als *Vierpole* bezeichnet.

Das Wechselstromverhalten des Vierpols wird beschrieben durch den *Frequenzgang* $\underline{H}(j\omega)$:

$$\underline{H}(j\omega) = \frac{\underline{U}_2}{\underline{U}_1}$$

27.09.2012 Meisel

5.8.2 Logarithmischer Betrag des Frequenzgangs

In der Signalverarbeitung wir der *Betrag des Frequenzgangs* oft in Dezibel (dB) angegeben.

$$A_{U} = 20 \cdot \log \left(\left| \frac{\underline{U}_{2}}{\underline{U}_{1}} \right| \right)$$

Beispiel: Spannungsteiler

$$\frac{U_2}{U_2} = \frac{R_2}{R_1 + R_2} = \frac{1}{10} = 0.1$$

$$A_{U} = 20 \cdot \log(0.1) = -20 \,\mathrm{dB}$$

27.09.2012 Meisel 2

ÜBUNG: Elementare Vierpole

- a) Geben Sie den Frequenzgang der folgenden (unbelasteten) Vierpole an. Gegen welche Werte strebt der Frequenzgang bei $f \to 0$ und $f \to \infty$?
- b) Bestimmen Sie Betrag und Phase der Vierpole.
- c) Bestimmen Sie die Frequenz f_g , bei der gilt $Re\{\underline{H}\} = Im\{\underline{H}\}$.
- d) Wie groß ist der Betrag des Frequenzgangs bei der Frequenz f_g?
- e) Wie ändert sich bei sehr hohen Frequenzen der Betrag des Frequenzganges bei einer Verzehnfachung der Frequenz?
- 1. RC-Tiefpass

2. LR-Tiefpass

Simulation mit SwCad III: Frequenzgang des RC-Tiefpasses

$$fg = \frac{1}{2\pi RC} = \frac{1}{2\pi \cdot 1000 \frac{V}{A} \cdot 10^{-6} \frac{As}{V}} = 159Hz$$

Betrags-Phasen-Darstellung des Frequenzgangs (*Bode-Diagramm*)

5.8.3 Grenzfrequenz elementarer Übertragungsglieder (1. Ordnung)

Die *Grenzfrequenz* f_g elementarer Übertragungsglieder ist die Frequenz, wo gilt: Re

 $\operatorname{Re}\left\{\underline{H}\right\} = \operatorname{Im}\left\{\underline{H}\right\}$

Bei der Grenzfrequenz gilt ebenso: $|\varphi(f_g)| = 45^{\circ}$

$$|H(f_g)| = \frac{1}{\sqrt{2}} \quad \Box \qquad \qquad g(\frac{1}{\sqrt{2}}) dB = -3dB$$

Die Betriebsart AC bei Oszilloskopen wird eingesetzt, wenn eine kleine Wechselspannung gemessen werden soll, der <u>ein hoher Gleichanteil überlagert</u> ist.

Beispiel: $u(t) = 10V + 0.02V \cdot \sin(\omega t)$

Mischspannung $u(t) = 1V + 1V \cdot \sin(\omega t)$, f=100 Hz

Eingangsspannung gemessene Spannung

→ Der Kondensator "blockt den Gleichanteil ab".

Mischspannung $u(t) = 1V + 1V \cdot \sin(\omega t)$, f=1 Hz

Eingangsspannung gemessene Spannung

In der Nähe und unterhalb der Grenzfrequenz wird eine zu kleine Spannung angezeigt!

10

ÜBUNG: Belastete Vierpole

Geben Sie das Verhältnis $\underline{U}_2(j\omega)/\underline{U}_1(j\omega)$ der beiden Schaltungen an.

Vergleichen Sie die Ergebnisse.

Welche Schlussfolgerung ist daraus zu ziehen?

1. unbelasteter RC-Tiefpass

2. belasteter RC-Tiefpass

5.8.4 Serienschaltung entkoppelter Vielpole

Für die Serienschaltung <u>entkoppelter</u> (unbelasteter) Vierpole gilt:

$$\underline{H}(j\omega) = \underline{H}_{A}(j\omega) \cdot \underline{H}_{B}(j\omega)$$

Beweis: Wegen der Eigenschaften des Impedanzwandlers gilt: $\underline{U}_{B1} = \underline{U}_{A2}$

und damit
$$\underline{H}(j\omega) = \underbrace{\frac{\underline{U}_{B2}}{\underline{U}_{B1}}} \cdot \underbrace{\frac{\underline{U}_{A2}}{\underline{U}_{A1}}} = \underbrace{\frac{\underline{U}_{B2}}{\underline{U}_{A1}}}$$

27.09.2012 Meisel 11

ÜBUNG: Vierpol 1 (Hochpass)

- a) Geben Sie die <u>Eingangsimpedanz</u> Z_l des unbelasteten Vierpols an. Wie groß ist die Eingangsimpedanz bei $f \to 0$, $f \to \infty$ und $f \to 1kHz$.
- b) Geben Sie den <u>Frequenzgang</u> des Vierpols an. Wie lautet der Frequenzgang bei $f\to 0$, $f\to \infty$ und $f\to 1kHz$?

Anm.: Eingangsimpedanz $\underline{Z}_1 = \frac{\underline{U}_1}{\underline{I}_1}$

Eingangsimpedanz \underline{Z}

Frequenzgang $\underline{H}(j\omega)$

ÜBUNG: Vierpol 2 (Reihenschwingkreis)

- a) Geben Sie die Eingangsimpedanz \underline{Z}_I des unbelasteten Vierpols an. Wie groß ist die Eingangsimpedanz bei $f \to 0$ und $f \to \infty$.
- b) Bei welcher Frequenz (Resonanzfrequenz f_0) ist die Impedanz rein reell und wie groß ist dann die Eingangsimpedanz Z_1 ?
- c) Geben Sie die Frequenzgang des Vierpols an. Wie lautet der Frequenzgang bei $f \to 0$, $f \to \infty$ und f_0 ?

Eingangsimpedanz \underline{Z}

Frequenzgang $\underline{H}(j\omega)$

ÜBUNG: Vierpol 3 (Reihenschwingkreis)

Geben Sie den Frequenzgang des Vierpols an.

Wie lautet der Frequenzgang bei $f \rightarrow 0$, $f \rightarrow \infty$ und f_0 ?

$$R = 1\Omega$$
$$C = 5\mu F$$

$$L = 20mH$$

Frequenzgang $\underline{H}(j\omega)$

