This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2000-178443

(P2000-178443A) (43)公開日 平成12年6月27日(2000.6.27)

(51) Int. Cl. 7	識別記号	FI	· (参考)				
CO8L 77/12		CO8L 77/12					
C08K 3/00		C08K 3/00 5E087 7/02					
7/02							
CO8L 67/03		CO8L 67/03					
H01R 13/46	301	H01R 13/46 301	В				
	審査請求	未請求 請求項の数8 OL	(全7頁) 最終頁に続く				
(21)出願番号	特願平10-360695	(71)出願人 390006323					
		ポリプラスチッ	クス株式会社				
(22)出顧日	平成10年12月18日(1998.12.18)	大阪府大阪市中央区安土町2丁目3番13号					
		(72)発明者 村上 治史					
		静岡県富士市宮	「島973番地 ボリプラスチ				
		ックス株式会社	:内				
		(72)発明者 大竹 峰生					
		静岡県富士市宮	島973番地 ポリプラスチ				
		ックス株式会社	:内				
		(74)代理人 100063897					
	·	弁理士 古谷	馨 (外3名)				
		·	最終頁に続く				

(54) 【発明の名称】コネクター用液晶性ポリマー組成物およびコネクター

(57)【要約】

【課題】 製品長さ(L)と製品平均肉厚(t)の比率(L/t)が100以上であり、かつ製品長さ(L)と製品高さ(h)の比率(L/h)が10以上であるようなコネクターに適した、曲げ特性のような機械的性質の大きな低下を伴うことなく、寸法精度が良く更にそり変形量の小さい材料を提供する。

【解決手段】 液晶性ポリマー(A) 100重量部に、平均繊維径 $0.5\sim20\mu$ mかつ平均アスペクト比10以下の繊維状充填材(B)を $5\sim100$ 重量部、および平均粒径 $0.1\sim50\mu$ mの粒状充填材(C)を $5\sim100$ 重量部配合してなる、充填材の総添加量が150重量部以下である、製品長さ(L)と製品平均肉厚(t)の比率(L/t)が100以上であり、かつ製品長さ(L)と製品高さ(h)の比率(L/h)が10以上であるコネクター用液晶性ポリマー組成物。

【特許請求の範囲】

【請求項1】 液晶性ポリマー(A)100重量部に、平均繊維径0.5~20 μ mかつ平均アスペクト比10以下の繊維状充填材(B)を5~100重量部、および平均粒径0.1~50 μ mの粒状充填材(C)を5~100重量部配合してなる、充填材の総添加量が150重量部以下である、製品長さ(L)と製品平均肉厚(t)の比率(L/t)が100以上であり、かつ製品長さ(L)と製品高さ(h)の比率(L/h)が10以上であるコネクター用液晶性ポリマー組成物。

1

【請求項2】 更に平均繊維径 $5\sim20\mu$ mかつ平均アスペクト比15以上の繊維状充填材(D)を液晶性ポリマー(A)100重量部に対し $5\sim100$ 重量部配合してなることを特徴とする請求項1記載の液晶性ポリマー組成物。

【請求項3】 粒状充填材(C)の平均粒径が $0.1\sim25\mu$ mであることを特徴とする請求項1又は2記載の液晶性ポリマー組成物。

【請求項4】 繊維状充填材(B)がミルドファイバー、ウォラストナイトから選ばれる1種又は2種以上で 20 あることを特徴とする請求項1~3の何れか1項記載の液晶性ポリマー組成物。

【請求項5】 粒状充填材(C)がタルク、酸化チタンから選ばれる1種又は2種以上であることを特徴とする請求項1~4の何れか1項記載の液晶性ボリマー組成物。

【請求項6】 粒状充填材(C)がガラスピーズであることを特徴とする請求項1~4の何れか1項記載の液晶性ポリマー組成物。

【請求項7】 液晶性ポリマー(A)がポリエステルアミドであることを特徴とする請求項1~6の何れか1項に記載の液晶性ポリマー組成物。

【請求項8】 請求項 $1\sim7$ の何れか1項記載の液晶性ポリマー組成物から製造された製品長さ(L)と製品平均肉厚(t)の比率(L/t)が100以上であり、かつ製品長さ(L)と製品高さ(h)の比率(L/h)が10以上であるコネクター。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、繊維状充填材およ 40 び粒状充填材を配合した液晶性ポリマーに関するものであり、更に詳しくはこのような液晶性ポリマー組成物から成形したそり変形に優れたコネクターに関する。

[0002]

【従来の技術及び発明が解決しようとする課題】異方性 溶融相を形成し得る液晶性ポリマーは、熱可塑性樹脂の中でも寸法精度の良い材料として知られている。ところが、近年の電気および電子部品分野では、高精度化、省力化、低コスト化のため、その要求はますます厳しくなり、更に軽量・小型化のため樹脂部品での耐熱性と成形 50

品の髙温時における寸法安定性が求められている。特 に、液晶性ポリマーの場合、耐熱性、流動性等の特性か ら、製品長さ(L)と製品平均肉厚(t)の比率(L/ t)が100以上であり、かつ製品長さ(L)と製品高 さ(h)の比率(L/h)が10以上であるような端子 の多いコネクターに使用されている。つまり、L/tが 70未満の通常のコネクターでは、単なるガラス繊維充 填の液晶性ポリマーでも、あまりそり変形の問題は生じ ないが、L/tが70以上の形状では、ゲート付近と流 10 動末端での成形収縮差および液晶性ポリマーの性質から 生じる流動方向と流動直角方向の配向差による成形後或 いはIRリフロー後のそり変形が急激に増加する傾向に ある。また、L/tが100以上でも、L/hが10以 下の製品では、リブ効果により、そり変形は、あまり発 生しないが、L/hが10以上となる形状では、そり変 形が顕著に現れてくる。つまり、成形後或いはIRリフ ロー後のコネクターがそり変形し、実装に供せない場合 がある。これまで機械的性質や表面性の改良を目的とし た試みとして、従来各種の充填材を配合することが行わ れてきた。しかし、そり変形を目的とした充填材の検討 はあまり行われていない。例えば、各種充填材の使用が 特開昭63-146958号公報に開示されている。こ の特許では、充填材の添加量および種類を規定している が、液晶性ボリエステル樹脂組成物の表面特性改良を目 的としており、そり変形に対する配慮と考察がなされて いない。また、充填材の量と種類を変化させているが、 その何れもが十分に低そり変形を達成しているとは考え 難い。したがって、製品長さ(L)と製品平均肉厚

(t)の比率(L/t)が100以上であり、かつ製品長さ(L)と製品高さ(h)の比率(L/h)が10以上であるようなコネクターに適した、曲げ特性のような機械的性質の大きな低下を伴うことなく、寸法精度が良く更にそり変形量の小さい材料が求められている。

[0003]

【課題を解決するための手段】本発明者等は上記問題点 に鑑み、そり変形に関し優れた特性を有する素材を鋭意 探索、検討を行ったところ、液晶ポリマー(A)と1種 以上の充填材を、特定の配合量でプレンドすることによ り、機械的性質を大きく低下させることなくそり変形を 低減させ得ることを見出し、本発明を完成するに至っ た。即ち本発明は、液晶性ポリマー(A)100重量部 に、平均繊維径 0. 5~20μmかつ平均アスペクト比 10以下の繊維状充填材(B)を5~100重量部、お よび平均粒径0.1~50μmの粒状充填材(C)を5 ~100重量部配合してなる、充填材の総添加量が15 0 重量部以下である、製品長さ(L)と製品平均肉厚 (t) の比率 (L/t) が100以上であり、かつ製品 長さ(L)と製品高さ(h)の比率(L/h)が10以 上であるコネクター用液晶性ポリマー組成物を提供する ものである。

[0004]

【発明の実施の形態】以下、本発明を詳細に説明する。 本発明で使用する液晶性ポリマー(A)とは、光学異方 性溶融相を形成し得る性質を有する溶融加工性ポリマー を指す。異方性溶融相の性質は、直交偏光子を利用した 慣用の偏光検査法により確認することが出来る。より具 体的には、異方性溶融相の確認は、Leitz偏光顕微 鏡を使用し、Leitzホットステージに載せた溶融試 料を窒素雰囲気下で40倍の倍率で観察することにより 実施できる。本発明に適用できる液晶性ポリマーは直交 10 偏光子の間で検査したときに、たとえ溶融静止状態であ っても偏光は通常透過し、光学的に異方性を示す。前記 のような液晶性ポリマー(A)としては特に限定されな いが、芳香族ポリエステル又は芳香族ポリエステルアミ ドであることが好ましく、芳香族ポリエステル又は芳香 族ボリエステルアミドを同一分子鎖中に部分的に含むボ リエステルもその範囲にある。これらは60℃でペンタ フルオロフェノールに濃度0.1重量%で溶解したとき に、好ましくは少なくとも約2.0dl/g、さらに好 ましくは2.0~10.0d1/gの対数粘度(I. V.)を有するものが使用される。本発明に適用できる 液晶性ポリマー(A)としての芳香族ポリエステル又は 芳香族ポリエステルアミドとして特に好ましくは、芳香 族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳 香族ジアミンの群から選ばれた少なくとも1種以上の化 合物を構成成分として有する芳香族ポリエステル、芳香 族ポリエステルアミドである。より具体的には、

- (1) 主として芳香族ヒドロキシカルボン酸およびその 誘導体の1種又は2種以上からなるポリエステル;
- (2) 主として(a) 芳香族ヒドロキシカルボン酸およ 30 びその誘導体の1種又は2種以上と、(b) 芳香族ジカ ルボン酸、脂環族ジカルボン酸およびその誘導体の1種 又は2種以上と、(c) 芳香族ジオール、脂環族ジオー ル、脂肪族ジオールおよびその誘導体の少なくとも1種 又は2種以上、とからなるポリエステル:
- (3) 主として(a) 芳香族ヒドロキシカルボン酸およ びその誘導体の1種又は2種以上と、(b) 芳香族ヒド ロキシアミン、芳香族ジアミンおよびその誘導体の1種 又は2種以上と、(c) 芳香族ジカルボン酸、脂環族ジ カルボン酸およびその誘導体の1種又は2種以上、とか 40 らなるポリエステルアミド;
- (4) 主として(a) 芳香族ヒドロキシカルボン酸およ びその誘導体の1種又は2種以上と、(b) 芳香族ヒド ロキシアミン、芳香族ジアミンおよびその誘導体の1種 又は2種以上と、(c) 芳香族ジカルボン酸、脂環族ジ カルボン酸およびその誘導体の1種又は2種以上と、
- (d) 芳香族ジオール、脂環族ジオール、脂肪族ジオー ルおよびその誘導体の少なくととと1種又は2種以上、 とからなるポリエステルアミドなどが挙げられる。さら

もよい。

【0005】本発明に適用できる前記液晶性ポリマー (A)を構成する具体的化合物の好ましい例としては、 p-ヒドロキシ安息香酸、6-ヒドロキシー2-ナフト 工酸等の芳香族ヒドロキシカルボン酸、2,6-ジヒド ロキシナフタレン、1,4-ジヒドロキシナフタレン、 4, 4'ージヒドロキシピフェニル、ハイドロキノン、 レゾルシン、下記一般式(I)および下記一般式(II) で表される化合物等の芳香族ジオール;テレフタル酸、 イソフタル酸、4,4'-ジフェニルジカルボン酸、 2, 6-ナフタレンジカルボン酸および下記一般式 (II I)で表される化合物等の芳香族ジカルボン酸; p-アミ ノフェノール、p-フェニレンジアミン等の芳香族アミ ン類が挙げられる。

[0006]

【化1】

20

$$HO - O - N - OO - OH$$
 (II)

【0007】本発明が適用される特に好ましい液晶性ボ リマー(A)としては、p-ヒドロキシ安息香酸、6-ヒドロキシー2ーナフトエ酸、テレフタル酸およびp-アミノフェノールを主構成単位成分とする芳香族ポリエ ステルアミドである。

【0008】本発明の目的である低そり変形を達成する ためには、液晶性ポリマー(A)100重量部に、平均 繊維径0.5~20μmかつ平均アスペクト比10以下 の繊維状充填材(B)を5~100重量部、および平均 粒径 0. 1~50 μmの粒状充填材 (C) を5~100 重量部配合する必要がある。本発明において平均繊維径 0. 5~20μmかつ平均アスペクト比10以下の繊維 状充填材としては、ガラスミルドファイバー、炭素ミル ドファイパー、ウォラストナイト、ウィスカー、金属繊 維、無機系繊維および鉱石系繊維等の各種有機繊維が使 用可能である。炭素ミルドファイバーとしては、ポリア クリロニトリルを原料とするPAN系、ピッチを原料と するピッチ系繊維が用いられる。ウィスカーとしては、 窒化珪素ウィスカー、三窒化珪素ウィスカー、塩基性硫 酸マグネシウムウィスカー、チタン酸バリウムウィスカ 一、炭化珪素ウィスカー、ボロンウィスカー等が用いら れ、金属繊維としては、軟鋼、ステンレス、鋼およびそ の合金、黄銅、アルミおよびその合金、鉛等の繊維が用 いられる。無機系繊維としては、ロックウール、ジルコ ニア、アルミナシリカ、チタン酸カリウム、チタン酸バ に上記の構成成分に必要に応じ分子量調整剤を併用して 50 リウム、炭化珪素、アルミナ、シリカ、高炉スラグ等の

6

各種ファイバーが用いられる。鉱石系繊維としては、ア スベスト、ウォラストナイト等が使用される。その中で も性能の面から、ミルドファイバーおよびウォラストナ イトが好ましい。ミルドファイバーとしては、通常のミ ルドファイバーの他にニッケル、銅等金属コートしたミ ルドファイパー、シランファイバー等が使用可能であ る。尚、この場合平均アスペクト比が10を越えると、 繊維配向の影響で異方性が大きくなりそり変形量が大き くなる。低そり変形を達成するには繊維状充填材の添加 量が多いほど良いが、添加量過多は押出性および成形 性、特に流動性を悪化させ、更には機械的強度を低下さ せる。また、添加量が少なすぎても低そり変形が発現さ れない。そのため繊維状充填材の添加量は、液晶性ポリ マー(A)100重量部に対して、5~100重量部、 好ましくは10~70重量部である。

【0009】本発明において粒状充填材(C)として は、繊維状、板状、短冊状の如き特定の方向への広がり を持たない粒状体を意味し、平均アスペクト比が1~2 であるようなものを指す。その平均粒径は、0.1~5 0μmである。粒状充填材としては、具体的には、カオ 20 リン、クレー、バーミキュライト、タルク、珪酸カルシ ウム、珪酸アルミニウム、長石粉、酸性白土、ロウ石ク レー、セリサイト、シリマナイト、ベントナイト、ガラ ス粉、ガラスピーズ、スレート粉、シラン等の珪酸塩、 炭酸カルシウム、胡粉、炭酸バリウム、炭酸マグネシウ ム、ドロマイト等の炭酸塩、バライト粉、ブランフィッ クス、沈降性硫酸カルシウム、焼石膏、硫酸パリウム等 の硫酸塩、水和アルミナ等の水酸化物、アルミナ、酸化 アンチモン、マグネシア、酸化チタン、亜鉛華、シリ カ、珪砂、石英、ホワイトカーボン、珪藻土等の酸化 物、二硫化モリブデン等の硫化物、金属粉粒体等の材質 からなるものである。その中でも価格と性能の面から、 ガラスビーズ、タルクおよび酸化チタンが好ましい。低 そり変形を達成するには粒状充填材の添加量が多いほど 良いが、添加量過多は押出性および成形性を悪化させ、 更には機械的強度を低下させる。また、添加量が少なす ぎても低そり変形が発現されない。そのため粒状充填材 の添加量は、液晶性ボリマー (A) 100重量部に対し て、5~100重量部、好ましくは10~70重量部で ある。

【0010】この場合、繊維状充填材(B)はそり変形 および機械的性質を向上させるのに役立つが、添加量が 多すぎると材料の異方性を大きくする。粒状充填材

(C) はそり変形および異方性を改善させるのに役立つ が、添加量が多すぎると押出性、成形性を悪化させ材料 を脆くする。従って、(B)、(C)成分の総添加量は 150重量部以下、好ましくは100重量部以下にする 必要がある。

【0011】また、機械特性を向上させるために、更に 平均繊維径5~20μmかつ平均アスペクト比15以上 50

の繊維状充填材(D)を5~100重量部配合すること もできる。繊維状充填材(D)は、平均アスペクト比が (B) 成分より多く、異方性を大きくするため、添加量 は10~50重量部が好ましい。100重量部を越える と、そり変形量が大きくなり、好ましくない。繊維状充 填材(D)としては、ガラス繊維、炭素繊維等が使用可 能である。炭素繊維としては、ポリアクリロニトリルを 原料とするPAN系、ピッチを原料とするピッチ系繊維 が用いられる。その中では、価格と性能の面からガラス 繊維が好ましい。更に(D)成分を添加する場合も、充 填材の総添加量は150重量部以下、好ましくは100 重量部以下にする必要がある。

【0012】本発明において使用する繊維状充填材、粒 状充填材はそのままでも使用できるが、一般的に用いら れる公知の表面処理剤、収束剤を併用することができ

【0013】なお、液晶性ポリマー組成物に対し、核 剤、カーボンブラック等の顔料、酸化防止剤、安定剤、 可塑剤、滑剤、離型剤および難燃剤等の添加剤を添加し て、所望の特性を付与した組成物も本発明で言う液晶性 ポリマー組成物の範囲に含まれる。

【0014】本発明の液晶性ポリマー組成物は、2種若 しくは3種以上の充填材を用いることにより各々の欠点 を補い合うことにより機械的性質を損なうことなく、低 そり変形の材料を得るものであり、更には成形体中の各 充填材が均一に分散し、繊維充填材の間に粒状充填材が 存在するような分散状態で、より高性能が発揮される。

【0015】このような液晶性ポリマー組成物を製造す るには、両者を前記組成割合で配合し、混練すればよ 30 い。通常、押出機で混練し、ペレット状に押し出し、射 出成形等に用いるが、この様な押出機による混練に限定

[0016]

40

されるものではない。

【実施例】以下、実施例により本発明を具体的に説明す るが、本発明はこれらに限定されるものではない。な お、評価方法などは以下の通りである。

(そり変形量) 端子間ピッチが 0.6㎜、製品の平均肉 厚(t)が0.3mmであり、製品外形寸法が幅4mm×高 さ4m×長さ60m(形状1) および幅4m×高さ4m ×長さ20mm(形状2)であるコネクター試験金型を使 用して射出成形により試験片を作成した。それぞれの形 状の製品長さ(L)と製品平均肉厚(t)の比率(L/ t)および製品長さ(L)と製品高さ(h)の比率(L /h) はそれぞれ、

形状1;L/t=200、L/h=15

形状2;L/t=66、L/h=5

である。得られた試験片を万能投影機にて拡大し、図1 に示すように、a線とb線を平行にして長手方向の底面 のそり量を測定した。

(曲げ弾性率) ASTM D790に従い、0.8mmの

厚さの曲げ試験片の曲げ弾性率(MPa)を測定した。 【0017】 実施例 $1\sim4$ および比較例 $1\sim5$ 液晶性ポリエステル(ポリプラスチックス(株)製、ベクトラE 950 i) 100 重量部に対し、各種充填材を表 $1\sim2$ に示す割合でドライブレンドした後、二軸押出機にて溶融混練し、ペレット化した。このペレットから

射出成形機により上記試験片を作製し、そり変形量および曲げ弾性率を評価したところ、表 $1\sim2$ に示す結果を得た。

[0018]

【表1】

		実施例1	実施例 2	実施例3	実施例4
	種類	MF	MF	ウォラストナイト	MF
繊維状	添加量 (重量部)	20	50	20	25
充填材	平均糚維径	10 µ m	10 μ m	8 µ m	10 μ m
(B)	平均 734分比	7	7	5	7
	種類	タルク	タルク	GB	酸化チタン
粒状充填材 (C)	添加量 (重量部)	50	20	25	20
	平均粒径	2.3μm	2.3μm	20 μ m	0.4μm
	種類			GF	GF
繊維状	添加量 (重量部)			25	25
充填材 (D)	平均繊維径			10 µ m	10 µ m
(D)	平均 72ペクト比			30	30
曲げ弾性率	MPa	12000	12600	12100	12400
試験片形状1 そ り 量	. mm	0. 020	0.045	0.058	0. 028
試験片形状2 そ り 量	mm	0.010	0.011	0.005	0.008

[0019]

【表2】

						
		比較例1	比較例2	比較例3	比較例4	比較例 5
繊維状 充填材 (B)	種類			MF	MF	ウォラストナイト
	添加量 (重量部)			120	20	20
	平均繊維径			10μm	10 μ m	8 μ m
	平均 アスヘクト比			7	7	5
粒状充填材 (C)	種類	タルク		タルク	タルク	GB
	添加量 (重量部)	20		50	170	25
	平均粒径	2.3μm		2.3 µ m	2.3 µ m	20μα
繊維状 充填材 (D)	種類	GF	GF			GF
	添加量 (重量部)	50	40			120
	平均繊維径	10 µ m	10 µ m			l0µm
	平均 アスヘクト比	30	30			30
曲げ弾性率	MPa	16500	. 18000			
試験片形状1 そ り 量	0 00	0. 395	0.469	押出不可	押出不可	押出不可
試験片形状2 そ り 量	ma	0.014	0.021	押出不可	押出不可	押出不可

【0020】MF:ミルドファイバー

GF:チョップドガラス繊維

GB:ガラスピーズ

【図面の簡単な説明】

【図1】 実施例におけるそり変形量の測定状況を示す

図である。

【図1】

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード (参表)

35/02

35/02

Z

Fターム(参考) 4J002 CF131 CF161 CF181 DA016 D A086 DA096 DC006 DE077 DE 127 DE146 DE147 DE186 DE2 37 DG027 DG046 DG057 DJ00 6 DJ007 DJ016 DJ037 DJ047 DK006 DL006 DL007 FA046 FA066 FA087 FD016 FD017 G Q00 5E087 KK04 KK06 RR01 RR47