Parikh Image of Pushdown Automata

Elena Gutiérrez and Pierre Ganty

Context-free Languages (CFLs)

Pushdown Automata (PDAs)

Context-free Grammars (CFGs)

Context-free Languages (CFLs)

Pushdown Automata (PDAs)

Context-free Grammars (CFGs)

Context-free Languages (CFLs)

Pushdown Automata (PDAs)

Context-free Grammars (CFGs)

Pushdown Automata

■ Context-free Grammar

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow \ldots \Rightarrow abaaba$$

Pushdown Automata

finite control δ X Z \vdots input tape stack

■ Context-free Grammar

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow \ldots \Rightarrow abaaba$$

PDA2CFG

Pushdown Automata

finite control δ Z Z \vdots input tape stack

■ Context-free Grammar

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow \ldots \Rightarrow abaaba$$

PDA2CFG

Pushdown Automata

■ Context-free Grammar

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow \ldots \Rightarrow abaaba$$

■ PDA2CFG

Goldstine et. al.(1982): PDA2CFG is optimal

A PUSHDOWN AUTOMATON OR A CONTEXT-FREE GRAMMAR—WHICH IS MORE ECONOMICAL?****

Jonathan GOLDSTINE, John K. PRICE*** and Detlef WOTSCHKE

Computer Science Department, The Pennsylvania State University, University Park, PA 16802, U.S.A.

Communicated by R. Book Received January 1980 Revised September 1980

Abstract. For every pair of positive integers n and p, there is a language accepted by a real-time deterministic pushdown automaton with n states and p stack symbols and size O(np), for which every context-free grammar needs at least n^2p+1 nonterminals if n>1 (or p non-terminals if n=1). It follows that there are context-free languages which can be recognized by pushdown automata of size O(np), but which cannot be generated by context-free grammars of size smaller than $O(n^2p)$; and that the standard construction for converting a pushdown automaton to a context-free grammar is optimal in the sense that it infinitely often produces grammars with the fewest number of nonterminals possible.

A PUSHDOWN AUTOMATON OR A CONTEXT-FREE GRAMMAR—WHICH IS MORE ECONOMICAL?****

Jonathan GOLDSTINE, John K. PRICE*** and Detlef WOTSCHKE Computer Science Department, The Pennsylvania State University, University Park, PA 16802, U.S.A.

Communicated by R. Book Received January 1980 Revised September 1980

Abstract. For every pair of positive integers n and p, there is a language accepted by a real-time deterministic pushdown automaton with n states and p stack symbols and size O(np), for which

Abstract. For every pair of positive integers n and p, there is a language accepted by a real-time deterministic pushdown automaton with n states and p stack symbols and size O(np), for which every context-free grammar needs at least n^2p+1 nonterminals if n>1 (or p non-terminals if

A PUSHDOWN AUTOMATON OR A CONTEXT-FREE GRAMMAR—WHICH IS MORE ECONOMICAL?****

Jonathan GOLDSTINE, John K. PRICE*** and Detlef WOTSCHKE

Computer Science Department, The Pennsylvania State University, University Park, PA 16802, U.S.A.

Communicated by R. Book Received January 1980 Revised September 1980

Abstract. For every pair of positive integers n and p, there is a language accepted by a real-time deterministic pushdown automaton with n states and p stack symbols and size O(np), for which every context-free grammar needs at least n^2p+1 nonterminals if n>1 (or p non-terminals if n=1). It follows that there are context-free languages which can be recognized by pushdown automata of size O(np), but which cannot be generated by context-free grammars of size smaller

Notation. For positive integers n and p, let M_{np} be the PDA

$$M_{np} = (Q_n, \Sigma_{np}, \Gamma_p, \delta_{np}, q_1, Z_1, \emptyset),$$

where

$$Q_n = \{q_1, \ldots, q_n\}, \qquad \Gamma_p = \{Z_1, \ldots, Z_p\},$$

$$\Sigma_{np} = \{s_{ij}, r_{ij}, u, d \mid 1 \leq i \leq n, 1 \leq j \leq p\},$$

Lower bound

Thm: There is a **family of unary PDAs** with n states and p stack symbols for which every equivalent CFG has $\Omega(n^2(p-2n-4))$ variables.

Family P(n,k)

- n states
- p = 2n + k + 4 stack symbols
- $\Sigma = \{a\}$

Set of actions of P(n,k):

```
 \begin{array}{l} (q_0,a,S)\hookrightarrow (q_0,X_k\,r_0)\\ (q_i,a,X_j)\hookrightarrow (q_i,X_{j-1}\,r_m\,s_i\,X_{j-1}\,r_m)\ \ \forall\,i,m\in\{0,\ldots,n-1\}, \forall\,j\in\{1,\ldots,k\},\\ (q_j,a,s_i)\hookrightarrow (q_i,\varepsilon) & \forall i,j\in\{0,\ldots,n-1\},\\ (q_i,a,r_i)\hookrightarrow (q_i,\varepsilon) & \forall i\in\{0,\ldots,n-1\},\\ (q_i,a,X_0)\hookrightarrow (q_i,X_k\star) & \forall i\in\{0,\ldots,n-1\},\\ (q_i,a,X_0)\hookrightarrow (q_{i+1},X_k\$) & \forall i\in\{0,\ldots,n-2\},\\ (q_i,a,\star)\hookrightarrow (q_{i-1},\varepsilon) & \forall i\in\{1,\ldots,n-1\},\\ (q_0,a,\$)\hookrightarrow (q_{n-1},\varepsilon) & \forall i\in\{1,\ldots,n-1\},\\ (q_{n-1},a,X_0)\hookrightarrow (q_{n-1},\varepsilon) & \forall i\in\{1,\ldots,n-1\},\\ \end{array}
```

Properties of P(n,k):

- P has only one accepting run
- $L(P) = \{a^{\ell}\} \text{ with } \ell \geq 2^{n^2 k}$

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega(n^2(p-2n-4))$ variables.

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega(n^2(p-2n-4))$ variables.

Proof:

■ Find G s.t.: $L(G) = L(P) = \{a^{\ell}\}$ with $\ell \geq 2^{n^2 k}$.

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega(n^2(p-2n-4))$ variables.

Proof:

- Find G s.t.: $L(G) = L(P) = \{a^{\ell}\}$ with $\ell \geq 2^{n^2 k}$.
- [Charikar et. al., 2005]: The smallest CFG that generates exactly one word of length ℓ has $\Omega(\log(\ell))$ variables.

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega(n^2(p-2n-4))$ variables.

Proof:

- Find G s.t.: $L(G) = L(P) = \{a^{\ell}\}$ with $\ell \geq 2^{n^2k}$.
- [Charikar et. al., 2005]: The smallest CFG that generates exactly one word of length ℓ has $\Omega(\log(\ell))$ variables.
- Then G has $\Omega(log(2^{n^2k})) = \Omega(n^2k)$ variables.

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega(n^2(p-2n-4))$ variables.

Proof:

- Find G s.t.: $L(G) = L(P) = \{a^{\ell}\}$ with $\ell \geq 2^{n^2 k}$.
- [Charikar et. al., 2005]: The smallest CFG that generates exactly one word of length ℓ has $\Omega(\log(\ell))$ variables.
- Then G has $\Omega(log(2^{n^2k})) = \Omega(n^2k)$ variables.
- As k = p 2n 4, G has $\Omega(n^2(p 2n 4))$ variables.

	Equivalent CFG	
P(n,k)	Lower bound	Upper bound
	$\Omega(n^2k)$	$\mathcal{O}(n^2(k+n))$

	Equivalent CFG		
P(n,k)	Lower bound	Upper bound	
	$\Omega(n^2k)$	$\mathcal{O}(n^2(k+n))$	

PDA2CFG is optimal

$$|\Sigma| > 1$$

$$|\Sigma| = 1$$

PDA2CFG is optimal

Parikh-equivalent words

abb

bab

Parikh-equivalent languages

 $\{abb, ab\}$

 $\{bab, ba\}$

Parikh-equivalent words

Parikh-equivalent languages

$$\{abb, ab\}$$

$$\{bab, ba\}$$

Parikh-equivalent words

$$abb \approx bab$$

Parikh-equivalent languages

$$\{abb, ab\}$$

$$\{bab, ba\}$$

Parikh-equivalent words

$$abb \approx bab$$

Parikh-equivalent languages

PDA2CFG for Parikh equivalence

Idea:

Find *F* such that:

For all $L \in F$: every CFG G with $L(G) \approx L$ needs $\Omega(n^2 p)$ variables

PDA2CFG for Parikh equivalence

Find *F* such that:

For all $L \in F$: every CFG G with $L(G) \approx L$ needs $\Omega(n^2 p)$ variables

```
\{abb, ab\}
```

$$L = L' \Rightarrow L \approx L'$$

$$\{abb, ab\}$$

 $\{abb, ab\}$

$$L = L' \Rightarrow L \approx L'$$

$$\{abb, ab\}$$

 $\{abb, ab\}$

$$L = L' \Rightarrow L \approx L'$$

• If $|\Sigma| = 1$:

 $\quad \blacksquare \quad \mathsf{If} \; |\Sigma| = 1 :$

• If
$$|\Sigma| = 1$$
:

$$\{aaa, aa\}$$
 $\{aaa, aa\}$
 $\{aaa, aa\}$

$$\blacksquare \quad \mathsf{If} \; |\Sigma| = 1 :$$

If
$$|\Sigma| = 1$$
:
$$L = L' \iff L \approx L'$$

Idea:

Find F (with $|\Sigma| = 1$) such that:

For all $L \in F$: every CFG G with $L(G) \approx L$ needs $\Omega(n^2 p)$ variables

Idea:

P(n, k) is unary

Find F (with $|\Sigma| = 1$) such that:

For all $L \in F$: every CFG G with $L(G) \approx L$ needs $\Omega(n^2 p)$ variables

PDA2CFG is optimal* for Parikh equivalence

PDA2CFG is optimal

Thm: Every CFL is Parikh-equivalent to some regular language

Thm: Every CFL is Parikh-equivalent to some regular language

Regular Languages

Upper bound

Upper bound

Upper bound

Upper bound

Thm: Given a PDA with n states and p s.s., there is a **Parikh-equivalent FSA** with $\mathcal{O}(4^{n^2p})$ states.

Lower bound

- Using the family P(n, k)
- $L(P) = \{a^{\ell}\}$ with $\ell \geq 2^{n^2 k}$

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent FSA needs at least $2^{n^2(p-2n-4)} + 1$ states.

	Parikh-equivalent FSA		
	Lower bound	Upper bound	
P(n,k)	$\Omega(2^{n^2k})$	$\mathcal{O}(4^{n^2(k+2n+4)})$	

Conclusions

- PDA2CFG is also **optimal** in the **unary case**
 - PDA2CFG is optimal for Parikh-equivalence
- PDA2CFG-based procedure for Parikh-equivalent FSA is close to optimal

Conclusions

- PDA2CFG is also **optimal** in the **unary case**
 - PDA2CFG is optimal for Parikh-equivalence
- PDA2CFG-based procedure for Parikh-equivalent FSA is close to optimal

Thank you!

