Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

IND/STA

Ag84M

United States Department of Agriculture

Soil Conservation Service

Miscellaneous Publication Number 1492

State Soil Geographic Data Base (STATSGO)

Data Users Guide

All programs and services of the U.S. Department of Agriculture, Soil Conservation Service, are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status or handicap.

Mention of brand names does not constitute endorsement or imply preference by the U.S. Department of Agriculture.

Issued August 1991. Slightly revised May 1993.

Contents

		Page
Intro	oduction	1
	Soil Geographic Data Bases	1
	Using Soil Maps	3
Use c	of STATSGO Data	4
	STATSGO Interpretive Maps	4
	Using STATSGO Data With Other Data	4
	Analysis of STATSGO Data	5
Data	Collection	9
	Specifications Used for Compiling STATSGO	9
	Procedures Used for Digitizing STATSGO	10
Data	Structure	13
	Spatial Data	13
	Attribute Data	15
Data	Voids	18
Map H	Hard Copy Production	18
User	Support	18
Distr	ribution	21
Refer	rences	22
	ndix	
npper		
	Data Dictionary Part I Definition of Soil Data Elements	23
	Data Dictionary Part II Definition of Soil Data Codes	40

Introduction

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) has the Federal leadership for the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining, and distributing soil survey information for privately owned lands in the United States.

Soil Geographic Data Bases

SCS has established three soil geographic data bases representing kinds of soil maps. Each data base has a common link to an attribute data file for each map unit component. The soil interpretations record data base provides the attribute data for each geographic data base.

The three soil geographic data bases include the Soil Survey Geographic Data Base (SSURGO), the State Soil Geographic Data Base (STATSGO), and the National Soil Geographic Data Base (NATSGO). Components of map units in each data base are generally phases of soil series that enable the most precise interpretation. Interpretations are displayed differently for each geographic data base to be consistent with differing levels of detail. The soil interpretations record data base contains physical and chemical soil properties for approximately 18,000 soil series recognized in the United States.

The most detailed level of information is SSURGO, which was designed primarily for farm and ranch, landowner/user, township, county, or parish natural resource planning and management. Using the soil attributes, this data base serves as an excellent source for determining erodible areas and developing erosion control practices, reviewing site development proposals and land use potential, making land use assessments, and identifying potential wetlands and sand and gravel aguifer areas.

Using NCSS mapping standards, soil maps in the SSURGO data base are made using field methods. Surveyors observe soils along delineation boundaries and determine map unit composition by field traverses and transects. Aerial photographs are interpreted and used as the field map base. Maps are made at scales ranging from 1:12,000 to 1:62,500. Typically scales are 1:15,840, 1:20,000, or 1:24,000. The maps, along with comprehensive descriptions, produce an attribute and spatial data base for NCSS soil survey publications.

Line segments (vectors) are digitized in accordance with SCS-established specifications and standards for duplicating the original soil survey map. The mapping bases are normally orthophotoquads, and digitizing is performed by SCS or by cooperating Federal, State, and local governments.

Data for SSURGO are collected and archived in 7.5-minute topographic quadrangle units and distributed as complete coverage for a soil survey area usually consisting of 10 or more quadrangle units. The adjoining 7.5-minute units are matched within the survey areas.

The STATSGO was designed to be used primarily for regional, multistate, river basin, State, and multicounty resource planning, management, and monitoring. STATSGO data are not detailed enough to make interpretations at a county level.

Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. Where more detailed soil survey maps are not available, data on geology, topography, vegetation, and climate are assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas are studied, and the probable classification and extent of the soils is determined.

Map unit composition for STATSGO is determined by transecting or sampling areas on the more detailed maps and expanding the data statistically to characterize the whole map unit.

Using U.S. Geological Survey's (USGS) 1:250,000-scale, 1- by 2-degree quadrangle series as a map base, the soil data are digitized by line segment (vector) to comply with national guidelines and standards.

Data for STATSGO are collected and archived in 1- by 2-degree topographic quadrangle units and distributed as complete coverage for a State, and the adjoining 1- by 2-degree units are matched both within and between States.

The NATSGO is used primarily for national and regional resource appraisal, planning, and monitoring. The boundaries of the major land resource areas (MLRA) and regions were used to form the NATSGO data base [7].* The MLRA boundaries were developed primarily from State general soil maps.

Map unit composition for NATSGO was determined by sampling done as part of the 1982 National Resources Inventory [8]. Sample data were expanded for the MLRA's, with sample design being statistically significant to State parts of the MLRA's.

The NATSGO map was compiled on an SCS-adapted version of the 1970 Bureau of Census automated State and county map data base and it was digitized from the USGS 1:5,000,000-scale U.S. base map.

This document describes the STATSGO data, which provide national coverage at a scale of 1:250,000, except for Alaska, which is at a scale of 1:2,000,000.

^{*}Bracketed numbers correspond to numbered reference list.

Using Soil Maps

A soil map in a soil survey is a representation of soil patterns in a landscape. The scale of the map and the complexity of the soil patterns determine what can be shown on the soil map. In designing soil surveys, the projected uses of the survey and the complexity of the soil patterns largely determine the scale of the soil map [5].

When using soil maps, remember that scale, accuracy, and detail are not synonymous. Scale is the relationship between corresponding distance on a map and the actual distance on the ground. Accuracy is the degree or precision with which map information is obtained, measured, and recorded, and detail is the amount of information shown.

Map scale, accuracy, and detail are interrelated. A large-scale map is not necessarily more accurate or more detailed than a small-scale map; however, it generally shows more detail than a small-scale map. Soil maps are made by using field investigation methods. The accuracy of the maps is determined by many factors, including the complexity of the soils, design of the soil map units, intensity of field observations and data collection, and skills of the mapper.

A soil map at 1:250,000 scale should not be used to locate soils for intensive land uses, such as determining suitability for house lots. It is useful for understanding the soil resources and for planning broad use in a State or region. A soil map at 1:20,000 scale is useful in understanding and planning the soil resources of fields, farms, and communities, but it is not useful for planning small (less than 1 acre) research plots. In many places the pattern of soils is very complex, and in some places soils grade imperceptibly to others. Because of this, soil delineations, even on large-scale maps, are not homogeneous or pure; thus, onsite investigations are needed to determine, for example, the suitability of a plot for a septic tank installation when using a soil map at scale of 1:20,000.

The common practice of enlarging soil maps does not result in more detailed or accurate maps. Soil survey maps enlarged to 1:12,000 scale from 1:20,000 scale are no more accurate or detailed than the original 1:20,000 map.

Many times the information on soil maps is transferred to other base maps at different scales, which diminishes the new map's accuracy, especially if the base map is not planimetrically correct.

Soil interpretive maps for specific uses are commonly made from the soil maps. These kinds of maps are single purpose and have the same credibility and limitations as the soil maps from which they are made.

It is important to recognize the different kinds of soil maps, know their merits and limitations, and understand the relationship of map scale, accuracy, and detail.

Use of STATSGO Data

STATSGO Interpretive Maps

In a detailed (SSURGO) soil map, each map unit is usually represented by a single soil component, typically a soil series phase. Some SSURGO map units may have up to three named components. An interpretive map is normally made by classifying each unit according to the set of soil properties for a single component. On a STATSGO map, in contrast, each map unit contains up to 21 components for which there are attribute data, but there is no visible distinction as to the location of these components within the delineation. Thus, to present information on an attribute, a series of maps must be used to portray the more complex set of available information.

The legend for STATSGO interpretive maps commonly shows the percentage of the map unit that meets a criterion or criteria. (See page 8.) Care must be used in evaluating the statistics presented in such a legend. Percentage ranges given represent all delineations in that class and do not represent an individual STATSGO delineation. Percentages do not statistically represent a subset of the delineation, for instance, a county portion. They also do not represent the areas of the soil components that satisfy the criterion. However, the area of each map unit component is recorded in the data base and can be used to produce a table, even though the components cannot be displayed directly on the map.

Using STATSGO Data With Other Data

When STATSGO data are overlayed with other data such as land use data, statistics on the co-occurrence of the land use data with the soil data must be interpreted carefully. The composition of the STATSGO map unit can be characterized independently for the land use and for the soil component, but there are no data on their joint occurrence at a more detailed level. Analysis of the overlayed data should be on a map polygon basis. It would be incorrect to assign land use attributes to the soil components by multiplying the proportions of soil components by the proportions of land uses.

Additional political, watershed, or other boundaries may be intersected with the soil data. Although the composition of each political and watershed unit may be described in terms of the STATSGO map units, information is not available to assign the components to the boundary units with full accuracy. As with the land use categories, the analysis should be restricted to the classified components.

Visual orientation can be provided by using additional data files. For STATSGO interpretative maps and many natural resource purposes, a shaded relief background can provide visual reference of the topography that is easily understood. An example is the shaded relief background image from USGS Digital Elevation Model data, which is

formatted in 1:250,000-scale, 1- by 2-degree quadrangles [2]. Other data types, such as USGS Digital Line Graph for transportation or hydrography, can be used to help orient a reader to a map [4]. If transportation or hydrography data need to be incorporated into an analysis, it may be desirable to create a buffer zone around the linear feature and then use an overlay operation to intersect the resulting corridor area with the interpreted soil map.

Complex models can be constructed using the soil attribute data in conjunction with other data sources. The model output can be displayed in map form using a geographic information system. Examples include soil erosion, soil leaching potential, and land use suitability models. Calculations are typically made on the basis of each component soil phase. For example, in an erosion model, the slope and erodibility (k-factor) are extracted for each soil phase. The results of the calculation for each component can then be displayed in map form using the percentage composition techniques discussed earlier [1].

Analysis of STATSGO Data

In STATSGO, each map unit can have multiple components and each component can have multiple layers (fig. 1). Therefore, the analysis must begin at the lowest level in the schema and work back to the highest level. The order from the bottom to the top is layer, comp (component), and map unit tables. The layer table is related to the comp table by muid (map unit identifier) and seqnum (sequum number), which is the component number. The comp table is related to the map unit table by muid and the map unit table is related to the map data by muid. Other tables such as compyld (component yield), interp (interpretation), plantcom (plant community), rsprod (range site productivity), taxclass (taxonomic class), windbrk (windbreak), whabit (wildlife habitat), and woodmgt (woodland management) are on the same level with comp and relate to the comp table with muid and sequum.

Since there are several layers in the layer table for each component in the comp table, a decision must be made as to how the data should be handled. One method is to select the surface layer for organic matter which has a low and a high value that can be averaged (oml + omh/2). Another method is to aggregate the data in the layers. Available water capacity is an example. Once again, there is a low and high value that can be averaged, multiplied by the layer thickness, and then summed, reducing a many-to-one relationship to a one-to-one relationship. An example of layer aggregation follows. Layer@ holds the results from the weighted average and the sum is shown in layer@ at the bottom of each component.

Figure 1.—STATSGO MAP UNIT

1/ STATSGO map units consist of 1 to 21 components. 2/ For each component, there are 60 soil properties and interpretations in 84 different data elements (component tables); for example, flooding.

A symbol created by concatenation of the two-character State FIPS code and 3/ There are 1-6 soil layers for each component.
4/ There are 28 soil properties for each layer; for example, percent clay.
5/ A symbol created by concatenation of the two-character State FIPS code a three-digit Arabic number. It uniquely identifies a map unit within a State.

LAYER TABLE (selected attributes and four components in muid KS001)

muid KS001 KS001 KS001	seqnum 1 1 1	layernum 1 2 3	laydepl 0 10 40	laydeph 10 40 60	awcl 0.22 0.18 0.20	awch 0.24 0.20 0.22	layer@ 2.3 5.7 <u>4.2</u> 12.2
KS001 KS001 KS001	2 2 2	1 2 3	0 15 25	15 25 68	0.10 0.08 0.08	0.12 0.10 0.10	1.7 0.9 3.9 6.5
KS001 KS001	3 3	1 2	0 10	10 20		0.10	0.9 1.2 2.1
KS001 KS001	4 4	1 2	0 15	15 25	0.20	0.24	3.3 2.3 5.6

The layer table is related to the comp table by muid and seqnum and the sum of the weighted average is calculated into comp@ in the comp table from layer@ in the layer table. The sum of the weighted average is the total inches of water available in the soil profile. Next, a category code that is based on the sum of the weighted averages is assigned. Available water capacity categories commonly used by SCS [3] are as follows:

1		0		2	1
Τ	very low	U	LO	3	inches
2	low	3	to	6	inches
3	moderate	6	to	9	inches
4	high	9	to	12	inches
5	very high		>	>12	inches

A category code is assigned beginning with 1 for "very low" and ending with 5 for "very high." Comp@1 in the following comp table shows the results. For example, in muid KS001, which consists of four components, 40 percent of the map unit would be in category 5, 30 percent in category 3, 20 percent in category 2, and 10 percent in category 1. None of the components falls into category 4.

COMP TABLE (selected attributes)

muid	seqnum	comp@	comp@1	comppct
KS001	1	12.2	5	40
KS001	2	6.5	3	30
KS001	3	2.1	1	10
KS001	4	5.6	2	20

The next step is to aggregate the sum of the comppcts (component percents) for each category by muid into the map unit table. Once again, there is a many-to-one relationship. With STATSGO data, it is impossible to display all of the results of the analyses on one map, so a series of maps is generated, one for each category. Since five categories have been defined for available water capacity, up to five maps may be generated. The comp table is related to the map unit table by muid, and the sum of the comppcts will be moved into pct1, pct2, pct3, pct4, and pct5 in the map unit table. Pct1 corresponds to category 1 and pct5 corresponds to category 5.

MAP UNIT TABLE (selected attributes)

muid pct1 pct2 pct3 pct4 pct5 KS001 10 0 50 0 40

The legend for STATSGO maps is commonly in terms of percent of the map unit that meets a criterion or criteria. In this example, four classes are defined as follows:

0 to 25 percent 51 to 75 percent 26 to 50 percent 76 to 100 percent

A class code is assigned to each of the four classes defined above, beginning with 1 for "0 to 25 percent" and ending with 4 for "76 to 100 percent." If water areas are included in the map data, then water could be assigned a class code of 5. The results of applying the classes to the data in pct1 through pct5 are shown in map1 through map5 as follows.

MAP UNIT TABLE (selected attributes)

muid pct1 pct2 pct3 pct4 pct5 map1 map2 map3 map4 map5 KS001 10 0 50 0 40 1 1 2 1 2

The map unit table is related to the map data by muid and the codes in map1 through map5 are moved to the map data. The results are shown in the following table. The codes can then be linked to a color lookup table for the polygon shading on the map.

MAP DATA TABLE (selected attributes)

muid map1 map2 map3 map4 map5 KS001 1 1 2 1 2

This is a brief description of how one attribute at the layer table level is handled. Even though the logic is the same, the process becomes more complicated when several attributes from different tables are being evaluated. An example would be pesticide leaching potential that would involve organic matter and surface layer thickness from the layer table and hydrologic groups from the comp table.

Data Collection

Specifications Used for Compiling STATSGO

Compilation Procedures

Draft soil map unit lines using available references such as soil survey maps, published and unpublished; county general soil maps; State general soil maps; State major land resource area (MLRA) maps; and LANDSAT images.

Draft soil map unit lines and symbols in red pencil on the Mylar overlay, which is punch-registered to fit the USGS base map Mylar. Do not transfer the USGS border neatline to the overlay as it will be added during the digitizing process. The pencil intensity should be consistent to facilitate scanner digitizing.

Map Units

Map unit delineations.—Approximate minimum area to be delineated is 625 hectares (1,544 acres), which is represented on a map of 1:250,000 scale by an area appropriately 1 cm by 1 cm (0.4 inch by 0.4 inch). Linear delineations should not be less than 0.5 cm (0.2 inch) in width. The number of delineations per 1:250,000 quadrangle should range from 100 to 200, but a range of up to 400 is allowed.

Map unit delineations must join at State boundaries and composition of map units must be coordinated across State boundaries, not only in the identity, but also in the relative extent of each component.

Components. Map units should be a combination of associated phases of soil series. The information about map units is to include reliable estimates of the components and the percentage and method by which the composition is determined. Composition can be determined by transecting representative segments of map units in published or unpublished soil surveys and documenting component composition or by using acreage data in the map unit use file. Transects may be observed in the field; however, it is more likely that they will be located and examined on soil survey field sheets or in published soil surveys. A suggested procedure consists of four steps.

First, transects should be plotted on the general soil map so that they afford complete and representative coverage of the respective map unit. Plot transects on published soil survey atlas sheets or unpublished soil survey field sheets so that they cut across the more detailed delineations that make up the corresponding map unit on the general soil map. Based on the judgment of the soil scientist, they should be located to intersect delineations of soils most representative of the map unit when subsequently plotted on the published atlas sheets or field sheets for measuring. Generally, transects are located at right angles to drainage patterns, include the complete range in elevation, and represent the typical landscape. Transects also include and represent uniform space across the delineated map

unit. All map units should be sampled by transects. The number of transects being used are proportional to the relative size, number, and complexity of the delineations. SCS State staffs should submit their verification procedures to their National Technical Center (NTC) with the compiled maps for review.

Then, on the atlas or field sheets, measure and record the length of the segments of each map unit along the transect crossing the detailed soil map.

Next, combine data on segment lengths for all delineations of each map unit. Using routine correlation procedures, determine which map components from the atlas or field sheets can be combined and make combinations so that not more than 21 phases of soil series or comparable detailed units are identified as components of the map unit on the general soil map.

Finally, determine the percentage of the general soil map unit occupied by each component by the percentage of the total length of the transects crossing the area of the general soil map unit.

Procedures Used for Digitizing STATSGO

The following map features are digitized and named line features: soil boundaries, map neatline, water boundaries (shoreline), and State boundary. Point features include soil map symbols (the 2-alpha character State code followed by a 3-digit-Arabic number bode beginning with 001), e.g., KS001.

Soil boundaries. Digitize all soil boundaries within a .010-inch line width following the center line of the original soil boundary. Represent each soil boundary with no greater number of coordinate pairs than is necessary within the .010-inch accuracy limit.

All beginning and ending points of each digitized line will either:

- (1) Connect as a common point of intersection with another soil boundary, water boundary, limit of soil survey boundary, or the map neatline; or
- (2) In the case of an "island," which does not connect or intersect with another soil boundary, digitize as two lines, starting and ending at two independent coordinate points.

Limit of soil survey and water boundaries. Limit of soil survey and water boundaries must meet the same .010-inch accuracy standard as soil boundaries.

Map neatline. The map neatline is considered a soil boundary and forms the maximum extent of the digital data set. Construct the map neatline as four separate straight line boundary segments. The beginning and ending point of each neatline will be identical to the four corner coordinate values of the 1- by 2-degree quadrangle.

These values must be explicitly entered and not digitized. The 7.5-minute tic marks are also entered.

Soil boundaries intersecting the map neatline must have a common point of intersection and must not extend beyond or fall short of the map neatline.

Soil map symbols. The soil map symbols will be identical to those shown on the original soil map (e.g., PA001). Position the soil map symbol so that it begins within the soil area. Use the lower left corner of the first character of the symbol as the test origin.

Soil areas missing a soil map symbol should be labeled "XXX" until the symbol is determined. Areas outside the limit of the soil survey boundary but within the neatline are to be named "NODATA." Water areas are to be named "W" and to be preceded by the State code (e.g., PAW).

Edge matching. The soil boundaries ending at all four edges of each quadrangle should be computer-joined to any adjoining map sheets to achieve an exact match. However, if this is not possible due to system limitations, match the soil boundaries on the adjoining quadrangles within .010 inch, center line to center line. Check the adjoining map sheets before digitizing and revise, if necessary, to ensure that lines and boundaries match.

Acreage calculations. Develop acreage calculations and a total polygon count for each soil map data set on each 1:250,000 quadrangle.

Print a computer-generated hard copy of the accurate calculations from each soil map data set. Sort the records by soil map symbol, water, and blank or NODATA. Show the acreages to the nearest acre, as shown below:

PA001	27,081
PA002	2,371
PA003	289,688
NODATA	3,067
PAW	532
Total Acres	
Total Polygor	ns

Calculate the total acreage within the map neatline, including the areas outside the limit of the soil survey that are labeled Blank or NODATA, and summarize the acreages.

Editing. A complete and detailed edit of the digitizing work is required. The State soil scientist is responsible for ensuring that the digital soil data match the original soil survey. The digitized soil data must be carefully checked against the original soil maps to ensure that all data are correctly and completely digitized.

- (1) Generate the check plot with either ball pen (standard point) or wet ink, using a .010-inch line width on Mylar material. Plot all data within .005 inch of its coordinate location in the data base.
- (2) Plot soil map symbols as a line of single-stroke characters, height and width of 0.10 inch. The soil map symbols should duplicate the sequence of the original soil maps. The digital origin points for the soil map symbols shall not appear on the check plots.
- (3) Plot soil boundaries, neatlines, limit of soil survey boundaries, and soil map symbols in black; water boundaries and water area names in blue; and special soil features and labels in green. Soil symbols that are unidentifiable and labeled as XXX are to be plotted in red.
- (4) Label the check plot with the appropriate data set name and plotting scale at some point beyond the data set limits.
- (5) Check plots are to be free of dirt, smudges, scratches, and other defects.

Quality Control

Check plot requirements. Plot a computer check plot for each digitized soil map data set at the same scale and map projection as the original soil map sheet. The check plots are to accurately represent the data on the magnetic tape data sets.

A complete preliminary edit should be completed of the first two adjoining maps, digitized and forwarded to the SCS National Cartographic Center (NCC) for its review. Materials needed are:

- The check plots
- The digital data sets on magnetic tape
- One summary acreage calculation with a total polygon count for each map sheet
- All of the original source materials

Data Structure

Spatial Data

Identification codes and labels. The following identification codes and special soil feature labels are used for the line, point, and feature data files:

TYPE FILE	DESCRIPTION	FEATURE LABELS
Line	Soil boundary	
Line	Water boundary	
Line	Map neatline	
Line	Edge of Coverage	
Point	Soil map symbol	PA001
	Water	PAW
	Area beyond	NODATA
	coverage	or
		BLANK

"---" means not applicable.

A soil map data set corresponds to one 1:250,000 quadrangle area and consists of up to three separate files produced in consecutive order as follows:

- (1) Header file
- (2) Line file
- (3) Point file

A file contains multiple records and is considered at end when an end-of-file mark is found.

Header file. Describes the contents of the data set for reference purposes. Each digital data set is identified within the header file, using the name of the quadrangle map. The header file does not require the extraction of data from other files.

Line file. Contains soil and water boundaries, limit of soil survey boundaries, and map neatlines.

Point file. Contains locations for soil map symbols and special soil point feature labels.

Data file format (USGS Digital Line Graph Optional [DLG-3 optional]). Stores and exchanges digital soil map data.

ASCII Symbol Conversion file. Follows each map data set if the DLG-3 optional file does not contain major/minor pairs. One record is required for each area in the following format:

- 1. PA005
- 2. PAW
- 3. PA039

If the DLG-3 optional file contains major/minor pairs, an ASCII symbol conversion file will follow the last map data set on the tape or will reside on a separate tape. Similar map units in the map sets will have the same minor code, so the symbol conversion file will be a universal conversion legend with the following format:

- 1. PA001
- 2. PA002
- 3. PA003

Attribute Data

Relational Data Base Schema

COMPONENT TABLES

Table: interp

_		
1	muid	char
	seqnum	int
-	grpcode	char
	rating	char
	restct1	char
	restct2	char
-	restct3	char

Table: forest

Ι	muid	char	١
İ	seqnum	int	ĺ
	plantsym	char	1
	plantcov	int	1

Table: woodland

	muid	char	
	seqnum	int	
	suitcode	char	
	plantsym	char	
	sitind	int	
1	woodprod	int	

Table: woodmgt

- 1	muid	char
1	seqnum	int
	ordsym	char
1	wderosn	char
1	wdequip	char
	wdseed	char
	wdwind	char
-	wdplant	char

Table: comp

able. Comp	
 muid	char
	int
seqnum	•
comppct	int
slopel	int
slopeh	int
surftex	char
otherph	char
compkind	char
clascode	char
anflood	char
anflodur	char
anflobeg	char
anfloend	char
gsflood	char
gsflodur	char
gsflobeg	char
gsfloend	char
_	
wtdepl	float
wtdeph	float
wtkind	char
wtbeg	char
wtend	char
pnddepl	float
pnddeph	float
pnddur	char
pndbeg	char
pndend	char
rockdepl	int
rockdeph	int
rockhard	char
pandepl	int
pandeph	int
panhard	char
subinitl	int
subinith	int
subtotl	int
subtoth	int
hydgrp	char
frostact	char
drainage	char
_	
hydric	char
corcon	char
corsteel	char
clnirr	char
clirr	char
sclnirr	char
sclirr	char
primfml	char

Table: rsprod	! 	MAP UNIT TABLES
muid seqnum rsid rsname prodfav prodnorm produnfv	char int char char int int	Table: map unit muid char mukind char mlra char muacres int
Table: planto	om	
muid seqnum plantsym plantpct	char int char int	LOOKUP TABLES Table: taxclass
Table: windbr	k	clascode char
muid seqnum plantsym wndbrkht	char int char int	class char order char suborder char grtgroup char subgroup char
Table: wlhabi	t	partsize char minalogy char
muid seqnum wlgrain wlgrass	seqnum int wlgrain char wlgrass char wlherb char wlhard char wlconif char wlshrub char wlwetplt char	reaction char soiltemp char otherfam char
wlhard wlconif		cropname char yldunits char
wlwetplt		Table: plantnm
wlshlwat char wlopen char wlwood char wlwet char wlrange char	plantsym char sciname char comname char	
Table: compyl	d	
muid seqnum cropname nirryld irryld	char int char float float	

Table: layer

| muid char | seqnum int | layernum int | layerid int | | layerid int | laydepl int | laydeph int | laydeph int | texture char | kfact float | kffact float | tfact int | weg char | inch10l int | inch31 int | inch3h int | no4l int | no10l int | no10h int | no40h int | no40h int | no200l int | no200h int | int | int | int | no200h | clayl | clayh | int | lll | int | lint | lin | clayh caco31 caco3h gypsuml gypsumh int | int |

Data Voids

Attribute data for some data elements may be incomplete or missing for certain portions of the United States. For example, data were not available for forest and range productivity for some STATSGO map units on U.S. Department of Agriculture Forest Service lands in some Western States. In instances where data are unavailable, a mask should be used to exclude the area from analysis.

Map Hard Copy Production

Maps that use SCS STATSGO data must show the source and date. The maps should also contain the following notation:

"The soil information used for this map was Soil Conservation Service 199 STATSGO data. STATSGO was compiled at 1:250,000 and designed to be used primarily for regional, multistate, State, and river basin resource planning, management and monitoring."

User Support

The user should be knowledgeable of soils data. If you need assistance, contact an SCS soil scientist for help. The following is a listing of SCS State soil scientist addresses and telephone numbers:

665 Opelika Rd. P.O. Box 311 Auburn, AL 36830 (205) 887-4540

655 Parfet Street, Rm. E200C Lakewood, CO 80215-5517 (303) 236-2910

949 East 36th Avenue Anchorage, AK 99508-4302 (907) 271-2424

16 Professional Park Rd. 302 Storrs, CT 06268-1299 (203) 487-404.7

Suite 200 201 E. Indianola Ave. Phoenix, AZ 85012 (602) 640-5124

1203 College Park Drive Dover, DE 19901-7377 (302) 678-4179

Federal Office Bldg. Federal Bldg., Room 248 700 West Capitol Ave. Gainesville, FL 32601 Little Rock, AR 72201 (904) 377-1092 Rm. 5404 (501) 324-5410

401 S.E. 1st Ave.

2121-C Second Street Davis, CA 95616 (916) 757-8270

Federal Bldg., Box 13 355 East Hancock Ave. Athens, GA 30601 (404) 546-2278

Pacific Basin Office Busch's Frontage Road Suite 602, CGIC Bldg. Annapolis, MD 21401 414 W. Soledad Ave. (410) 757-2872 Agana, Guam 96910

300 Ala Moana Blvd. Room 4316 P. O. Box 50004 Honolulu, HI 96850 (808) 541-2605

3244 Elder Street Room 124 Boise, ID 83705 (208) 334-1348

1902 Fox Drive Champaign, IL 61820 (217) 398-5286

6013 Lakeside Blvd. Indianapolis, IN 46278 (317) 290-3203

693 Federal Bldg. 210 Walnut Street Des Moines, IA 50309 (515) 284-4353

760 South Broadway Salina, KS 67401 (913) 823-4558

771 Corporate Drive Lexington, KY 40503 (606) 224-7358

3737 Government Street Alexandria, LA 71302 (318) 473-7787

5 Godfrey Drive Orono, ME 04473 (207) 866-7245

451 West Street Amherst, MA 01002 (413) 253-4370

Room 101 1405 S. Harrison Road East Lansing, MI 48823-5202 (517) 337-6701. Ext 1205 (517) 337-6701, Ext. 1205

375 Jackson Street, Room 600 St. Paul, MN 55101-1854 (612) 290-3679

Federal Bldg, Suite 1321 100 West Capitol Street Jackson, MS 39269 (601) 965-5193

601 Business Loop 80 West Columbia, MO 65203 (314) 876-0907

Federal Bldg., Room 443 10 East Babcock Street Bozeman, MT 59715-4704 (406) 587-6818

Federal Building, Room 152 100 Centennial Mall North Lincoln, NE 68508-3866 (402) 437-5322

5301 Longley Lane Reno, NV 89511 (702) 784-5875

Federal Building Durham, NH 03824 (603) 868-7581

517 Gold Avenue, SW (505) 766-3277

James M. Hanley Fed. Bldg. Room 171 100 S. Clinton Street Syracuse, NY 13260-7248 (315) 423-5510

4405 Bland Rd. Suite 205 Raleigh, NC 27609 (919) 790-2905

200 E. Rosser Avenue Bismarck, ND 58502-1458 (701) 250-4435

200 North High Street Columbus, OH 43215 (614) 469-6914

USDA Agricultural Center Bldg. Stillwater, OK 74074

(503) 326-2794

One Credit Union Place Suite 340 Harrisburg, PA 17710-2993 Richmond, VA 23240-9999 (717) 782-3889 (804) 771-2463

1370 Hamilton Street 150 Carlos A. Chardon Avenue Somerset, NJ 08873 Hato Rey, PR 00918-7013 (908) 246-4110, Ext. 170 (809) 766-5206

517 Gold Avenue, SW 60 Quaker Lane Room 3301 West Warwick, RI 02886 Albuquerque, NM 87102 (401) 828-1300

1835 Assembly Street Room 950 Strom Thurmond Federal Bldg. Columbia, SC 29201 (803) 253-3896

Federal Building Federal Bulluly 200 4th Street S.W. 57350-24 Huron, SD 57350-2475 (603) 353-1810

675 Estes Kefauver, FB-USCH 801 Broadway Nashville, TN 37203 (615) 736-5476

W. R. Poage Federal Bldg. 101 S. Main Street Temple, TX 76501-7682 (817) 774-1261

Wallace F. Bennett Federal Bldg., Room 4402 125 So. State Street (405) 624-4448

Salt Lake City, UT 84138
(801) 524-5064

Federal Bldg, Room 1640
69 Union Street
1220 S.W. Third Avenue Winooski, VT 05404

Portland, OR 97204
(802) 951-6795

Federal Building, Rm. 9201 400 North 8th Street

Rock Pointe Tower II, Suite 450 W. 316 Boone Avenue Spokane, WA 99201-2348 (509) 353-2339

75 High Street, Room 301 Morgantown, WV 26505 (304) 291-4484

6515 Watts Road, Suite 200 Madison, WI 53719-2726 (608) 264-5589

Federal Office Bldg. 100 East B Street, Rm. 3124 Casper, WY 82601 (307) 261-5208

Distribution

Source

National Cartographic Center U.S. Department of Agriculture Soil Conservation Service P.O. Box 6567 Fort Worth, TX 76115 (817) 334-5559

Format

The STATSGO spatial data are available in USGS Digital Line Graph (DLG-3) optional format. Map unit symbols (e.g., PA001) are not normally carried within the DLG-3 Optional formatted data; however, these map symbols are made available as a separate and unique ASCII file.

The STATSGO attribute data are stored in a relational data base format which is a nonfixed-length, tab-delimited ASCII file.

The SCS National Cartographic Center (NCC) operates a Geographic Resource Analysis Support System (GRASS) Geographic Information System (GIS) and an ARC/INFO GIS. SCS-GRASS and other formats may be made available by mutual agreement.

The STATSGO spatial and attribute data are distributed as one data set and are stored by USGS 1:250,000 1- by 2-degree quadrangle and distributed for a full State.

Medium

The distribution medium for spatial and attribute data will normally be 9-track magnetic tape at 1600 bits per inch, but may be cartridge tape by mutual agreement.

Ordering

Before ordering STATSGO data, the user needs to identify the State(s) of interest and may wish to consult a USGS index to the 1:250,000 base map series to ensure coverage. Additional information and costs may be obtained from NCC.

The STATSGO data are periodically updated, data files are dated, and users are responsible for obtaining the latest version.

References

- [1] Bliss, N.B., and W.U. Reybold. 1989. Small-scale digital soil maps for interpreting natural resources. J. Soil and Water Cons. Jan.-Feb., pp. 30-34.
- [2] Elissal, A.A., and V.M. Caruso. 1983. Digital elevation models. Circ. 895-B. U.S. Geol. Surv., Reston, Va.
- [3] Soil Conservation Service, 1983. National Soils Handbook.
- [4] U.S. Geological Survey. 1987. Digital line graphs from 1:2,000,000-scale maps. Data Users Guide 3. Reston, Va.
- [5] U.S. Department of Agriculture. (In prep.). Soil Survey Manual. U.S. Dep. Agric. Handb. 18.
- [6] U.S. Department of Agriculture. 1975. Soil Taxonomy:
 A basic system of soil classification for making and
 interpreting soil surveys. Soil Conserv. Serv., U.S.
 Dep. Agric. Handb. 436, 754 pp. illus. Robert E. Kieger
 Publishing Co., Inc., Order Dept., P.O. Box 9542, Melbourne,
 FL 32902-9542.
- [7] U.S. Department of Agriculture. 1981. Land resource regions and major land resource areas of the United States. U.S. Dep. Agric. Handb. 296, 156 pp. illus.
- [8] U.S. Department of Agriculture and Iowa State University Statistical Laboratory. 1987. Basic Statistics 1982 National Resources Inventory. Statistical Bulletin No. 756, 153 pp.

Appendix

Data Dictionary Part I Definition of Soil Data Elements

ELEMENT	TABLES	LONG NAME	DESCRIPTION
aashind	layer	AASHTO Group Index	AASHTO (American Assoc. of State Highway and Transportation Officials) group index. A modification to AASHTO group classification of a soil.
aashto	layer	AASHTO Group Classification	AASHTO (American Assoc. of State Highway and Transportation Officials) group classification. A code for AASHTO group classification for a soil.
anflobeg	comp	Annual Flooding Month Begin	Month in which annual flooding (flooding likely to occur during the year) begins in a normal year.
anflodur	comp	Flood Duration Class	The duration of annual flooding in a normal year.
anfloend	comp	Annual Flooding Month End	Month in which annual flooding (flooding likely to occur during the year) ends in a normal year.
anflood	comp	Annual Flooding Frequency	Descriptive term used to describe the frequency of annual flooding (flooding likely to occur during the year) that is likely to occur Frequent (FREQ) - > 50% chance of flooding; Occasional (OCCAS) - 5-50% chance of flooding; Rare (RARE) - 0-5% chance of flooding.
awch	layer	Available Water Capacity	Maximum value for the range of available water capacity for the soil layer or horizon expressed as inches/inch.

awcl	layer	Available Water Capacity	Minimum value for the range of available water capacity for the soil layer or horizon, expressed as inches/inch.
bdh	layer	Bulk Density	Maximum value for the range in moist bulk density of the layer or horizon, expressed as grams per cubic centimeter.
bdl	layer	Bulk Density	Minimum value for the range in moist bulk density of the soil layer or horizon, expressed as grams per cubic centimeter.
caco3h	layer	Carbonate as CaCO3	Maximum value for the range of calcium carbonate (CaCO3) in the soil layer or horizon, expressed as a percent.
caco31	layer	Carbonate as CaCO3	Minimum value for the range of calcium carbonate (CaCO3) in the soil layer or horizon, expressed as a percent.
cech	layer	Cation Exchange Capacity	Maximum value for the range in cation exchange capacity for the soil layer or horizon.
cecl	layer	Cation Exchange Capacity	Minimum value for the range in cation exchange capacity for the soil layer or horizon.
clascode	comp taxclass	Taxonomic Classification Code	Code for the taxonomic classification for the soil. Definitions of codes are in the taxclass table.
class	taxclass	Taxonomic Classification	The taxonomic classification (name) of the soil.
clayh	layer	Clay	Maximum value for the range or horizon, expressed as a percentage of the material less than 2 mm in size.
clayl	layer	Clay	Minimum value for the range in clay content of the soil layer or horizon, expressed as a percentage of the material less than 2 mm in size.

clirr	comp	Irrigated Capability Class	Irrigated Capability Class. A rating of the soil for irrigated agricultural use. The number indicates progressively greater limitations and narrower choices for use.
clnirr	comp	Nonirrigated Capability Class	Nonirrigated Capability Class. A rating of the soil for nonirrigated agricultural use. The number indicates progressively greater limitations and narrower choices for use.
comname	plantnm	Plant Common Name	The common name for the plant most widely used by the State.
compkind	comp	Kind of Component	Code identifying the kind of component of the map unit. Example: Series (S); Family (F); Variant (V); Taxadjunct (T); Taxon above family (G); Miscellaneous area (M).
comppct	comp	Component Percent	The percentage of the component of the map unit.
corcon	comp	Corrosion - Concrete	An interpretation rating of the susceptibility of concrete to corrosion when in contact with the soil.
corsteel	comp	Corrosion - Uncoated Steel	An interpretation rating of the susceptibility of uncoated steel to corrosion when in contact with the soil.
cropname	compyld yldunits	Crop Name	The common name for the crop for which a yield is given.

drainage	comp	Soil Drainage Class	Code identifying the natural drainage condition of the soil and referring to the frequency and duration of periods when the soil is free of saturation. Example: Well Drained (W); Excessive (E); Moderately Well (MW); Poorly (P); Somewhat Excessively (SE); Somewhat Poorly (SP).
frostact	comp	Potential Frost Action	An interpretation rating of the susceptibility of the soil to frost heaving.
grpcode	interp	Interpretative Group Code	Code identifying the interpretive group or category for the interpretation specified. Examples of interpretive groups are septic tank absorption fields and shallow excavations.
grtgroup	taxclass	Great Group	Code for the taxonomic GREAT GROUP category.
gsflobeg	comp	Growing Season Flooding Begins	Month in which growing season (season for common field crops in the area) flooding begins in a normal year.
gsflodur	comp	Growing Season Flood Duration	The duration of flooding during the growing season (season for common field crops in the area).
gsfloend	comp	Growing Season Flooding Ends	Month in which growing season (season for common field crops in the area) flooding ends in a normal year.
gsflood	comp	Growing Season Flooding Frequency	Term describing the frequency of flooding during the growing season (season for the common field crops in the area). Frequent (FREQ); Occasional (OCCAS); Rare (RARE).

gypsumh	layer	Gypsum	Maximum value for the range in sulfates reported as gypsum (CaSO4) in the soil layer or horizon, expressed as a percent.
gypsuml	layer	Gypsum	Minimum value for the range in sulfates reported as gypsum (CaSO4) in the soil layer or horizon, expressed as a percent.
hydgrp	comp	Hydrologic Group	The hydrologic group for the soil. Example: A, A/D.
hydric	comp	Hydric Soil Rating	The symbol (Y/N) identifying hydric soils.
inch10h	layer	Weight Percent Greater than 10 in.	The maximum value for the range in percent by weight of the rock fragments greater than 10 inches in size in the soil layer or horizon.
inch101	layer	Weight Percent Greater than 10 inches.	The minimum value for the range in percent by weight of the rock fragments greater than 10 inches in size in the soil layer or horizon.
inch3h	layer	Weight Percent 3 to 10 inches	The maximum value for the range in percent by weight of the rock fragments 3 to 10 inches in size in the soil layer or horizon.
inch31	layer	Weight Percent Material 3 to 10 inches	The minimum value for the range in percent by weight of the rock fragments 3 to 10 inches in size in the soil layer or horizon.
irryld	compyld	Irrigated Crop Yield	The expected yield of the specific crop with irrigation in an average year under a high level of management.

kfact	layer	Soil Erodibility Factor	An erodibility factor which quantifies the susceptibility of soil particles to detachment and movement by water. This factor is used in the Universal Soil Loss Equation to calculate soil loss by water.
kffact	layer	Soil Erodibility Factor, rock fragments free	An erodibility factor which quantifies the susceptibility of soil particles to detachment and movement by water. This factor is used in the Universal Soil Loss Equation to calculate soil loss by water.
laydeph	layer	Layer Depth	The depth to the lower boundary of the soil layer or horizon, expressed in inches.
laydepl	layer	Layer Depth	Depth to the upper boundary of the soil layer or horizon, expressed in inches.
layerid	layer	Layer Identification Number	A convention to identify the original layers on the SOI-5 record. Example: layerid 11 for the first surface of a multisurface record, 12 for the second surface layer, 2 thru 9 for subsurface layers.
layernum	layer	Layer Number	The sequence number identifying layers in the soil profile. A layer number of 1 would indicate the layer is the surface layer.
llh	layer	Liquid Limit	The maximum value for the range in liquid limit of the soil layer of horizon, expressed as percent moisture by weight.
111	layer	Liquid Limit	The minimum value for the range in liquid limit of the soil layer of horizon, expressed as percent moisture by weight.

minalogy	taxclass	Mineralogy	Code for the MINERALOGY class of the Family category of taxonomic classification.
mlra	map unit	Major Land Resource Area	The code used to identify the dominant Major Land Resource Area (MLRA) within which the soil map unit is mapped.
muacres	map unit	Map unit Acres	The acreage of the soil map unit in the State.
muid	comp compyld forest interp layer map unit plantcom rsprod windbrk wlhabit woodland woodmgt	Map unit Identification Symbol	A symbol created by concatenation of the two-character State FIPS code and a three-digit Arabic number. It uniquely identifies a map unit within a State. For example, the first map unit identified in Delaware is DE001. The muid is used as a key for linking information in the MUIR tables.
mukind	map unit	Map unit Kind	Code identifying the kind of map unit: Consociation (C); Association (A); Undifferentiated Group (U); Complex (X).
nirryld	compyld	Nonirrigated Crop Yield	The expected yield of the specific crop without supplemental irrigation. Defined as the yield expected in an average year under a high level of management.
no10h	layer	Percent Passing Sieve No. 10	The maximum value for the range in percent by weight of the soil material in a layer or horizon which is less than 3 inches in size and passes a No. 10 sieve.
no101	layer	Percent Passing Sieve No. 10	The minimum value for the range in percent by weight of the soil material in a layer or horizon which is less than 3 inches in size and passes a No. 10 sieve.

no200h	layer	Percent Passing Sieve No. 200	The maximum value for the range in percent by weight of the soil material in a layer or horizon which is less than 3 inches in size and passes a No. 200 sieve.
no2001	layer	Percent Passing Sieve No. 200	The minimum value for the range in percent by weight of the soil material in a layer or horizon which is less than 3 inches in size and passes a No. 200 sieve.
no40h	layer	Percent Passing Sieve No. 40	The maximum value for the range in percent by weight of the soil material in a layer or horizon which is less than 3 inches in size and passes a No. 40 sieve.
no401	layer	Percent Passing Sieve No. 40	The minimum value for the range in percent by weight of the soil material in a layer or horizon which is less than 3 inches in size and passes a No. 40 sieve.
no4h	layer	Percent Passing Sieve No. 4	The maximum value for the range in percent by weight of the soil material in a layer or horizon which is less than 3 inches in size and passes a No. 4 sieve.
no4l	layer	Percent Passing Sieve No. 4	The minimum value for the range in percent by weight of the soil material in a layer or horizon which is less than 3 inches in size and passes a No. 4 sieve.
omh	layer	Organic Matter	The maximum value for the range in organic matter content of the soil layer or horizon, expressed in percent by weight.
oml	layer	Organic Matter	The minimum value for the range in organic matter content of the soil layer or horizon, expressed in percent by weight.

order	taxclass	Order	Code for the taxonomic ORDER category of the record.
ordsym	woodmgt	Ordination Symbol	The ordination symbol is the class and subclass part of the woodland suitability group. The first element in ordination symbol is the productivity class. This is a number that denotes potential productivity in cubic meters of wood per hectare per year for an indicator tree (1m3/ha is equal to 14.3 ft.3/ac.). The second part of the ordination is the subclass, a capital letter symbol which indicates certain soil or physiographic characteristics that contribute to important hazards or limitations in management. Example: Excessive wetness (W); Clayey soils (C), etc.
otherfam	taxclass	Other Family	This field consists of OTHER FAMILY codes for soil depth class, slope class, consistence class, classes of coatings and classes of cracks of the Family category of taxonomic classification.
otherph	comp	Class-Determining Phase Criteria	Class-determining phase criteria, other than slope and texture, recorded on the SOI-6 and used to select appropriate interpretation and rating from the SOI-5 record.
pandeph	comp	Depth to Cemented Pan	Maximum value for the range in depth to the upper boundary of a cemented pan, expressed in inches.
pandepl	comp	Depth to Cemented Pan	Minimum value for the range in depth to the upper boundary of a cemented pan, expressed in inches.

panhard	comp	Cemented Pan Thickness	The degree of induration and thickness of the cemented pan. A pan is rated as "THICK" if it is more than 3 inches thick and continually indurated or more than 18 inches thick and discontinuous or fractured. Pans not meeting these criteria are rated THIN.
partsize	taxclass	Particle Size	Code for the PARTICLE-SIZE class of the Family category of taxonomic classification.
permh	layer	Permeability Rate	The maximum value for the range in permeability rate for the soil layer or horizon, expressed as inches/hour.
perml	layer	Permeability Rate	The minimum value for the range in permeability rate for the soil layer or horizon, expressed as inches/hour.
phh	layer	Soil Reaction (pH)	The maximum value for the range in soil reaction (pH) for the soil layer or horizon.
phl	layer	Soil Reaction (pH)	The minimum value for the range in soil reaction (pH) for the soil layer or horizon.
pih	layer	Plasticity Index	The maximum value for the range in plasticity index for the soil layer or horizon, expressed as percent of moisture by weight.
pil	layer	Plasticity Index	The minimum value for the range in plasticity index for the soil layer or horizon, expressed as percent of moisture by weight.
plantcov	forest	Plant Ground Cover	The percentage of the ground covered by the plant (forest understory).
plantpct	plantcom	Plant Production Percentage	The percentage of total site production attributed to the specified plant, expressed as percent of air-dry plant material weight.

plantsym	forest plantcom plantnm windbrk woodland	Plant Symbol	Symbol used to identify a specific plant.
pndbeg	comp	Ponding Begin	Month in which soil surface ponding begins in a normal year.
pnddeph	comp	Ponding Depth	The maximum value for the range in depth of surface water ponding on the soil.
pnddepl	comp	Ponding Depth	The minimum value for the range in depth of surface water ponding on the soil.
pnddur	comp	Ponding Duration	The duration of surface water ponding.
pndend	comp	Ponding End	Month in which surface water ponding ends in a normal year.
primfml	comp	Prime Farmland Classification	The prime farmland classification of a component.
prodfav	rsprod	Range Production Favorable	The estimated annual potential production of range forage for the soil in a year with favorable or above average growing conditions.
prodnorm	rsprod	Range Production Normal	The estimated annual potential production of range forage for the soil in a year with normal or average growing conditions.
produnfv	rsprod	Range Production Unfavorable	The estimated annual potential production of range forage for the soil in a year with unfavorable or below average growing conditions.
rating	interp	Soil Interpretative Rating	Rating of soil for specified use. Suitability ratings are good, fair, and poor. Limitation ratings are slight, moderate, and severe.

reaction	taxclass	Reaction	Code for the REACTION class of the Family category of taxonomic classification.
restct1	interp	First Restrictive Feature Code	The key phrase which indicates the feature causing the problem.
restct2	interp	Second Restrictive Feature Code	The key phrase which indicates the feature causing the problem.
restct3	interp	Third Restrictive Feature Code	The key phrase which indicates the feature causing the problem.
rockdeph	comp	Depth to Bedrock	The maximum value for the range in depth to bedrock, expressed in inches.
rockdepl	comp	Depth to Bedrock	The minimum value for the range in depth to bedrock, expressed in inches.
rockhard	comp	Bedrock Hardness	The degree of hardness of the underlying rock. Rated as: HARD - Excavation requires blasting or special equipment, or SOFT - Excavation can be made with trenching machines, backhoes, or small rippers.
rsid	rsprod	Range Site Identification	Code used to identify the SCS range site.
rsname	rsprod	Range Site Name	Name for the SCS range site.
salinh	layer	Salinity	The maximum value for the range in soil salinity of the soil layer or horizon measured as electrical conductivity of the soil in a saturated paste. Values are expressed in mmhos/cm.
salinl	layer	Salinity	The minimum value for the range in soil salinity of the soil layer or horizon measured as electrical conductivity of the soil in a saturated paste. Values are expressed in mmhos/cm.

sarh	layer	Sodium Absorption Ratio	The maximum value for the range in Sodium Absorption Ratio (SAR) for the soil layer or horizon.
sarl	layer	Sodium Absorption Ratio	The minimum value for the range in Sodium Absorption Ratio (SAR) for the soil layer or horizon.
sciname	plantnm	Scientific Plant Name	The scientific name of a plant.
sclirr	comp	Irrigated Capability Subclass	Irrigated Capability Subclass. Concatenation of capability class and subclass codes: Example: class 2 and subclass e are combined and entered as 2E
sclnirr	comp	Nonirrigated Capability Subclass	Nonirrigated Capability Subclass. Concatenation of capability class and subclass codes. Example: class 2 and subclass e are combined and entered as 2E.
seqnum	comp compyld forest interp layer plantcom rsprod windbrk wlhabit woodland woodmgt woodland woodmgt	Sequence Number	A number identifying the sequence of components in a map unit. The first component of a multitaxa map unit has a seqnum of 1, the second component 2, and so on. STATSGO map units can have up to 21 components.
shrinksw	layer	Shrink-Swell Potential	An interpretation rating of the soil layer or horizon's behavior of changing volume (shrinking and swelling) upon wetting and drying.

sitind	woodland	Site Index	The height in feet of the larger trees at some given age, normally 100 years in the Western United States, and 50 years in the East. The pinyon-juniper forest type is an exception, where the site index is determined by basal area.
slopeh	comp	Soil Slope	The maximum value for the range of slope of a soil component within a map unit.
slopel	comp	Slope of Soil	The minimum value for the range of slope of a soil component within a map unit.
soiltemp	taxclass	Soil Temperature	Code for the SOIL TEMPERATURE class of the Family category of taxonomic classification.
subgroup	taxclass	Subgroup	Code for the taxonomic SUBGROUP category of the record.
subinith	comp	Initial Subsidence	Maximum value for the range in initial subsidence that can be expected when drained, expressed in inches (organic soils only).
subinitl	comp	Initial Subsidence	Minimum value for the range in initial subsidence that can be expected when drained, expressed in inches (organic soils only).
suborder	taxclass	Suborder	Code for the taxonomic SUBORDER category of the record.
subtoth	comp	Total Subsidence	Maximum value for the range in total subsidence that can be expected when drained, expressed in inches (organic soils only).
subtotl	comp	Total Subsidence	Minimum value for the range in total subsidence that can be expected when drained, expressed in inches (organic soils only).

suitcode	woodland	Woodland Tree Suitability	Code indicating if the tree is common to the site, Existing (E); or a tree which could be planted as a tree crop Potential (P). Trees which are existing and have a potential for planting are given a dual code (EP).
surftex	comp	Surface Soil Texture	Code for the USDA texture or term used in lieu of texture for the surface layer. Example: sandy loam (SL).
texture	layer	Soil Texture Class	Code for the USDA texture for the specified layer or horizon of the soil. Example: Sandy Loam (SL); Loam (L).
tfact	layer	T Factor	Soil loss tolerance factor. The maximum rate of soil erosion that will permit a high level of crop production.
unified	layer	Unified Soil Classification	The unified soil classification. An engineering classification of soils.
wdequip	woodmgt	Woodland Equipment	Woodland limitation rating for the use of equipment, year round or seasonal.
wderosn	woodmgt	Woodland Erosion	Woodland limitation rating identifying the probability that damage may occur as a result of site preparation and following cutting operations where soil is exposed.
wdplant	woodmgt	Woodland Plant Competition	Woodland limitation rating for the likelihood of the invasion or growth of undesirable species when openings are made in the canopy.
wdseed	woodmgt	Woodland Seeding Mortality	Woodland limitation rating identifying the probability of death of naturally occurring or planted tree seedlings as influenced by kinds of soil or topographic conditions.

wdwind	woodmgt	Woodland Windthro Hazard	Woodland limitation rating identifying the windthrow hazard. Windthrow is the likelihood of trees being uprooted by wind as a result of insufficient depth of the soil to give adequate root anchorage.
weg	layer	Wind Erodibility Group	The wind erodibility group (weg) assigned to the soil layer or horizon.
wlconif	wlhabit	Wildlife Habitat Element (coniferous trees)	Suitability of the soil to produce the wildlife habitat element coniferous trees.
wlgrain	wlhabit	Wildlife Habitat Element (grain)	Suitability of the soil to produce the wildlife habitat element grain.
wlgrass	wlhabit	Wildlife Habitat Element (grass)	Suitability of the soil to produce the wildlife habitat element grass.
wlhard	wlhabit	Wildlife Habitat Element (hardwood trees)	Suitability of the soil to produce the wildlife habitat element hardwood trees.
wlherb	wlhabit	Wildlife Habitat Element (herbaceous plants)	Suitability of the soil to produce the wildlife habitat element herbaceous plants.
wlopen	wlhabit	Wildlife Habitat Potential (open land)	Suitability of the soil to produce the habitat requirements for open land wildlife.
wlrange	wlhabit	Wildlife Habitat Potential (rangeland)	Suitability of the soil to produce the habitat requirements for rangeland wildlife.
wlshlwat	wlhabit	Wildlife Habitat Element (shallow water)	Suitability of the soil to produce the habitat element shallow water.
wlshrub	wlhabit	Wildlife Habitat Element (shrub)	Suitability of the soil to produce the wildlife habitat element shrubs.

wlwet	wlhabit	Wildlife Habitat Potential (wetland)	Suitability of the soil to produce the habitat requirements for wetland wildlife.
wlwetplt	wlhabit	Wildlife Habitat Element (wetland plant)	Suitability of the soil to produce the wildlife habitat element wetland plants.
wlwood	wlhabit	Wildlife Habitat Potential (woodland)	Suitability of the soil to produce the habitat requirements for woodland wildlife.
wndbrkht	windbrk	Windbreak Tree Height	Windbreak tree height in feet at age 20.
woodprod	woodland	Production Class	Production class information for a specific tree measured in cubic meters per hectare per year $(1 \text{ m} \frac{3}{ha} = 14.3 \text{ ft.} \frac{3}{ac.})$.
wtbeg	comp	Water Table Begins	Month in which seasonal water table occurs at the depth specified in a normal year.
wtdeph	comp	Water Table Depth	Maximum value for the range in depth to the seasonally high water table during the months specified.
wtdepl	comp	Water Table Depth	Minimum value for the range in depth to the seasonally high water table during the months specified.
wtend	comp	Water Table Ends	Month in which seasonal water table subsides below the depth specified in a normal year.
wtkind	comp	Water Table Kind	The type of water table: Apparent (APPAR); Artesian (ARTES); Perched (PERCH).
yldunits	yldunits	Yield Units	The units used to record the yield for the specified crop.

	*	

Data Dictionary Part II Definition of Soil Data Codes

domid	code	codename	codedesc
aashto	A-1	Group Classification A-1	Granular materials (35% or less passing No. 200), Stone Fragments, Gravel and Sand.
aashto	A-2	Group Classification A-2	Granular materials (35% or less passing No. 200), Silty or Clayey Gravel and Sand.
aashto	A-3	Group Classification A-3	Granular materials (35% or less passing No. 200), Fine Sand.
aashto	A-4	Group Classification A-4	Silt-Clay Materials (more than 35% passing No. 200), Silty Soils.
aashto	A-5	Group Classification A-5	Silt-Clay Materials (more than 35% passing No. 200), Silty Soils.
aashto	A-6	Group Classification A-6	Silt-Clay Materials (more than 35% passing No. 200), Clayey Soils.
aashto	A-7	Group Classification A-7	Silt-Clay Materials (more than 35% passing No. 200), Clayey Soils.
cl	1	Capability Class -I	Soils in Class I have few limitations that restrict their use.
cl	2	Capability Class -	Soils in Class II have some limitations that reduce the choice of plants or require moderate conservation practices.

cl	3	Capability III	Class -	Soils in Class III have severe limitations that reduce the choice of plants or require special conservation practices, or both.
cl	4	Capability IV	Class -	Soils in Class IV have very severe limitations that restrict the choice of plants, require very careful management, or both.
cl	5	Capability V	Class -	Soils in Class V have little or no erosion hazard but have other limitations impractical to remove that limit their use.
cl	6	Capability VI	Class -	Soils in Class VI have severe limitations that make them generally unsuited to cultivation and limit their use largely to pasture, etc.
cl	7	Capability VII	Class -	Soils in Class VII have very severe limitations that make them unsuited to cultivation and that restrict their use to grazing, etc.
cl	8	Capability VIII	Class -	Soils (and landforms) in Class VIII have limitations that preclude their use for commercial plant production and restrict their use.

compkind compkind compkind compkind compkind compkind	F G M S T V	Family Taxon above family Miscellaneous area Series Taxadjunct Variant	
drainage	Е	Excessively	Water is removed very rapidly. Internal free water occurrence is commonly very deep; annual duration is not specified.
drainage	SE	Somewhat Excessively	Water is removed from the the soil rapidly. Internal free water occurrence is commonly very deep; annual duration is not specified.
drainage	W	Well	Water is removed from the soil readily, but not rapidly.
drainage	MW	Moderately Well	Water is removed from the soil somewhat slowly during some periods of the year.
drainage	SP	Somewhat Poorly	Water is removed slowly enough that the soil is wet at shallow depth for significant periods during the growing season.
drainage	P	Poorly	Water is removed so slowly that the soil is wet at shallow depths periodically during the growing season, or remains wet for long periods.

drainage	VP	Very Poorly
ffippssssssssssssssssssssssssssssssssss	AK AL AR CA CCTELAII ILINSYLA MDE MIN MO MTCDE NH NN NO NN NENT NN NO NN NN	02 01 05 04 06 08 09 10 12 13 15 19 16 17 18 20 21 22 25 24 23 26 27 63 29 28 30 37 38 31 61 33 34 35 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38
fips	SD	46

Water is removed from the soil so slowly that free water remains at or very near the ground surface during much

of the growing

season.

fips fips fips fips fips fips fips fips	SNTC TN TX UT VA VT WA WI WNTC WV	62 47 48 49 51 50 53 55 64 54	
flodur	BRIEF	Flood Duration Class - Brief	Average duration of inundation per flood is 2 to 7 days.
flodur	LONG	Flood Duration Class - Long	Average duration of inundation per flood is 7 days to 1 month.
flodur	VBREF	Flood Duration Class - Very Brief	Average duration of inundation per flood is less than 2 days.
flodur	VLONG	Flood Duration Class - Very Long	Average duration of inundation per flood is more than 1 month.
flood	FREQ	Frequency Class - Frequent	Flooding is likely to occur often, more than 50 percent chance of flooding in any year (at least 50 times in 100 years).
flood	NONE	Frequency Class - NONE	Flooding is not likely to occur.
flood	OCCAS	Frequency Class - Occasional	Flooding is expected infrequently, 5 to 50 percent chance of flooding in any year (5 to 50 times in 100 years).
flood	RARE	Frequency Class - Rare	Flooding unlikely but possible, 0 to 5 percent chance of flooding in any year (0 to 5 times in 100 years).

grpcode		
grpcode	1	Septic Tank Absorption Fields
grpcode	10	Local Streets and Roads
grpcode	11	Lawns, Landscaping, and Golf Fairways
grpcode	12	Roadfill
grpcode	13	Sand
grpcode	14	Gravel
grpcode	15	Topsoil
grpcode	16	Pond Reservoir Area
grpcode	17	Embankments, Dikes and Levees
grpcode	18	Excavated PondsAquifier Fed
grpcode	19	Drainage
grpcode	2	Sewage Lagoons
grpcode	20	Irrigation
grpcode	21	Terraces and Diversions
grpcode	22	Grassed Waterways
grpcode	23	Camp Areas
grpcode	24	Picnic Areas
grpcode	25	Playgrounds
grpcode	26	Paths and Trails
grpcode	3	Sanitary Landfill (Trench)
grpcode	4	Sanitary Landfill (Area)

grpcode	5	Daily Cover for Landfill
grpcode	6	Shallow Excavations
grpcode	7	Dwellings without Basements
grpcode	8	Dwellings with Basements
grpcode	9	Small Commercial Buildings

grtgroup	AAQAL	ALBAQUALFS
grtgroup	AAQDU	DURAQUALFS
grtgroup	AAQFR	FRAGIAQUALFS
grtgroup	AAQGL	GLOSSAQUALFS
grtgroup	AAQKA	KANDIAQUALFS
grtgroup	AAQNA	NATRAQUALFS
grtgroup	AAQOC	OCHRAQUALFS
grtgroup	AAQPN	PLINTHAQUALFS
grtgroup	AAQTR	TROPAQUALFS
grtgroup	AAQUM	UMBRAQUALFS
grtgroup	ABOCR	CRYOBORALFS
grtgroup	ABOEU	EUTROBORALFS
grtgroup	ABOFR	FRAGIBORALFS
grtgroup	ABOGL	GLOSSOBORALFS
grtgroup	ABONA	NATRIBORALFS
grtgroup	ABOPA	PALEBORALFS
grtgroup	AUDAG	AGRUDALFS
grtgroup	AUDFE	FERRUDALFS
grtgroup	AUDFR	FRAGIUDALFS
	AUDFS	FRAGLOSSUDALFS
grtgroup	AUDGL	GLOSSUDALFS
grtgroup	AUDHA	HAPLUDALFS
grtgroup		KANDIUDALFS
grtgroup	AUDKA	KANHAPLUDALFS
grtgroup	AUDKH	
grtgroup	AUDNA	NATRUDALFS
grtgroup	AUDPA	PALEUDALFS
grtgroup	AUDRH	RHODUDALFS
grtgroup	AUDTR	TROPUDALFS
grtgroup	AUSDU	DURUSTALFS
grtgroup	AUSHA	HAPLUSTALFS
grtgroup	AUSKA	KANDIUSTALFS
grtgroup	AUSKH	KANHAPLUSTALFS
grtgroup	AUSNA	NATRUSTALFS
grtgroup	AUSPA	PALEUSTALFS
grtgroup	AUSPN	PLINTHUSTALFS
grtgroup	AUSRH	RHODUSTALFS
grtgroup	AXEDU	DURIXERALFS
grtgroup	AXEFR	FRAGIXERALFS
grtgroup	AXEHA	HAPLOXERALFS
grtgroup	AXENA	NATRIXERALFS
grtgroup	AXEPA	PALEXERALFS
grtgroup	AXEPN	PLINTHOXERALFS
grtgroup	AXERH	RHODOXERALFS
grtgroup	CAQCR	CRYAQUANDS
grtgroup	CAQDU	DURAQUANDS
grtgroup	CAQHA	HAPLAQUANDS
grtgroup	CAQME	MELANAQUANDS
grtgroup	CAQPK	PLACAQUANDS
grtgroup	CAQVI	VITRAQUANDS
grtgroup	CCRFU	FULVICRYANDS
grtgroup	CCRGE	GELICRYANDS
grtgroup	CCRHA	HAPLOCRYANDS
grtgroup	CCRHY	HYDROCRYANDS
grtgroup	CCRME	MELANOCRYANDS
gregroup	COMPL	FILLIANOCKTANDS

grtgroup	CCRVI	VITRICRYANDS
grtgroup	CTOVI	VITRITORRANDS
grtgroup	CUDDU	DURUDANDS
grtgroup	CUDFU	FULVUDANDS
grtgroup	CUDHA	HAPLUDANDS
grtgroup	CUDHY	HYDRUDANDS
	CUDME	MELANUDANDS
grtgroup	CUDPK	PLACUDANDS
grtgroup	CUSDU	DURUSTANDS
grtgroup		
grtgroup	CUSHA	HAPLUSTANDS
grtgroup	CVIUD	UDIVITRANDS
grtgroup	CVIUS	USTIVITRANDS
grtgroup	CXEHA	HAPLOXERANDS
grtgroup	CXEME	MELANOXERANDS
grtgroup	CXEVI	VITRIXERANDS
grtgroup	DARDU	DURARGIDS
grtgroup	DARHA	HAPLARGIDS
grtgroup	DARND	NADURARGIDS
grtgroup	DARNT	NATRARGIDS
grtgroup	DARPA	PALEARGIDS
grtgroup	DORCL	CALCIORTHIDS
grtgroup	DORCM	CAMBORTHIDS
grtgroup	DORDU	DURORTHIDS
grtgroup	DORGY	GYPSIORTHIDS
grtgroup	DORPA	PALEORTHIDS
	DORSA	SALORTHIDS
grtgroup		
grtgroup	EAQCR	CRYAQUENTS
grtgroup	EAQFL	FLUVAQUENTS
grtgroup	EAQHA	HAPLAQUENTS
grtgroup	EAQHY	HYDRAQUENTS
grtgroup	EAQPS	PSAMMAQUENTS
grtgroup	EAQSU	SULFAQUENTS
grtgroup	EAQTR	TROPAQUENTS
grtgroup	EARTO	TORRIARENTS
grtgroup	EARUD	UDARENTS
grtgroup	EARUS	USTARENTS
grtgroup	EARXE	XERARENTS
grtgroup	EFLCR	CRYOFLUVENTS
grtgroup	EFLTO	TORRIFLUVENTS
grtgroup	EFLTR	TROPOFLUVENTS
grtgroup	EFLUD	UDIFLUVENTS
grtgroup	EFLUS	USTIFLUVENTS
grtgroup	EFLXE	XEROFLUVENTS
grtgroup	EORCR	CRYORTHENTS
grtgroup	EORTO	TORRIORTHENTS
grtgroup	EORTR	TROPORTHENTS
	EORUD	UDORTHENTS
grtgroup		
grtgroup	EORUS	USTORTHENTS
grtgroup	EORXE	XERORTHENTS
grtgroup	EPSCR	CRYOPSAMMENTS
grtgroup	EPSQU	QUARTZIPSAMMENTS
grtgroup	EPSTO	TORRIPSAMMENTS
grtgroup	EPSTR	TROPOPSAMMENTS
grtgroup	EPSUD	UDIPSAMMENTS

grtgroup	EPSUS	USTIPSAMMENTS
grtgroup	EPSXE	XEROPSAMMENTS
grtgroup	HFIBO	BOROFIBRISTS
grtgroup	HFICR	CRYOFIBRISTS
grtgroup	HFILU	LUVIFIBRISTS
grtgroup	HFIME	MEDIFIBRISTS
grtgroup	HFISP	SPHAGNOFIBRISTS
grtgroup	HFITR	TROPOFIBRISTS
grtgroup	HFOBO	BOROFOLISTS
grtgroup	HFOCR	CRYOFOLISTS
grtgroup	HFOTR	TROPOFOLISTS
grtgroup	HHEBO	BOROHEMISTS
grtgroup	HHECR	CRYOHEMISTS
grtgroup	HHELU	LUVIHEMISTS
grtgroup	HHEME	MEDIHEMISTS
grtgroup	HHESI	SULFIHEMISTS
grtgroup	HHESO	SULFOHEMISTS
grtgroup	HHETR	TROPOHEMISTS
grtgroup	HSABO	BOROSAPRISTS
grtgroup	HSACR	CRYOSAPRISTS
grtgroup	HSAME	MEDISAPRISTS
grtgroup	HSATR	TROPOSAPRISTS
grtgroup	IANCR	CRYANDEPTS
grtgroup	IANDU	DURANDEPTS
grtgroup	IANDY	DYSTRANDEPTS
grtgroup	IANEU	EUTRANDEPTS
grtgroup	IANHY	HYDRANDEPTS
grtgroup	IANPK	PLACANDEPTS
grtgroup	IANVI	VITRANDEPTS
grtgroup	IAQAN	ANDAQUEPTS
grtgroup	IAQCR	CRYAQUEPTS
grtgroup	IAQFR	FRAGIAQUEPTS
grtgroup	IAQHL	HALAQUEPTS
grtgroup	IAQHP	HAPLAQUEPTS
grtgroup	IAQHU	HUMAQUEPTS
grtgroup	IAQPK	PLACAQUEPTS
grtgroup	IAOPN	PLINTHAQUEPTS
grtgroup	IAQFN	SULFAQUEPTS
grtgroup	IAQTR	TROPAQUEPTS
grtgroup	IOCCR	CRYOCHREPTS
grtgroup	IOCCK	DUROCHREPTS
grtgroup	IOCDY	DYSTROCHREPTS
grtgroup	IOCEU IOCFR	EUTROCHREPTS
grtgroup		FRAGIOCHREPTS
grtgroup	IOCUS	USTOCHREPTS
grtgroup	IOCXE	XEROCHREPTS
grtgroup	IPLPL	PLAGGEPTS
grtgroup	ITRDY	DYSTROPEPTS
grtgroup	ITREU	EUTROPEPTS
grtgroup	ITRHU	HUMITROPEPTS
grtgroup	ITRSO	SOMBRITROPEPTS
grtgroup	ITRUS	USTROPEPTS
grtgroup	IUMCR	CRYUMBREPTS
grtgroup	IUMFR	FRAGIUMBREPTS

	T. I. T. (11. 7	HADI HUMDDEDEG
grtgroup	IUMHA	HAPLUMBREPTS
grtgroup	IUMXE	XERUMBREPTS
grtgroup	MALAR	ARGIALBOLLS
grtgroup	MALNA	NATRALBOLLS
grtgroup	MAQAR	ARGIAQUOLLS
grtgroup	MAQCA	CALCIAQUOLLS
grtgroup	MAQCR	CRYAQUOLLS
	MAQDU	DURAQUOLLS
grtgroup		
grtgroup	MAQHA	HAPLAQUOLLS
grtgroup	MAQNA	NATRAQUOLLS
grtgroup	MBOAR	ARGIBOROLLS
grtgroup	MBOCA	CALCIBOROLLS
grtgroup	MBOCR	CRYOBOROLLS
grtgroup	MBOHA	HAPLOBOROLLS
grtgroup	MBONA	NATRIBOROLLS
grtgroup	MBOPA	PALEBOROLLS
grtgroup	MBOVE	VERMIBOROLLS
	MRERE	RENDOLLS
grtgroup		
grtgroup	MUDAR	ARGIUDOLLS
grtgroup	MUDHA	HAPLUDOLLS
grtgroup	MUDPA	PALEUDOLLS
grtgroup	MUDVE	VERMUDOLLS
grtgroup	MUSAR	ARGIUSTOLLS
grtgroup	MUSCA	CALCIUSTOLLS
grtgroup	MUSDU	DURUSTOLLS
grtgroup	MUSHA	HAPLUSTOLLS
grtgroup	MUSNA	NATRUSTOLLS
grtgroup	MUSPA	PALEUSTOLLS
grtgroup	MUSVE	VERMUSTOLLS
grtgroup	MXEAR	ARGIXEROLLS
grtgroup	MXECA	CALCIXEROLLS
grtgroup	MXEDU	DURIXEROLLS
grtgroup	MXEHA	HAPLOXEROLLS
grtgroup		
grtgroup	MXENA	NATRIXEROLLS
grtgroup	MXEPA	PALEXEROLLS
grtgroup	OAQGI	GIBBSIAQUOX
grtgroup	OAQOC	OCHRAQUOX
grtgroup	OAQPN	PLINTHAQUOX
grtgroup	OAQUM	UMBRAQUOX
grtgroup	OHUAC	ACROHUMOX
grtgroup	OHUGI	GIBBSIHUMOX
grtgroup	OHUHA	HAPLOHUMOX
grtgroup	OHUSO	SOMBRIHUMOX
grtgroup	OORAC	ACRORTHOX
grtgroup	OOREU	EUTRORTHOX
	OORGI	GIBBSIORTHOX
grtgroup		HAPLORTHOX
grtgroup	OORHA	
grtgroup	OORSO	SOMBRIORTHOX
grtgroup	OORUM	UMBRIORTHOX
grtgroup	OPRHA	HAPLOPEROX
grtgroup	OPRKA	KANDIPEROX
grtgroup	OTOAC	ACROTORROX
grtgroup	OTOTO	TORROX
grtgroup	OUDHA	HAPLUDOX

grtgroup	OUDKA	KANDIUDOX
grtgroup	OUSAC	ACRUSTOX
grtgroup	OUSEU	EUTRUSTOX
grtgroup	OUSHA	HAPLUSTOX
grtgroup	OUSSO	SOMBRIUSTOX
grtgroup	SAQCR	CRYAQUODS
grtgroup	SAQDU	DURAQUODS
grtgroup	SAQFR	FRAGIAQUODS
grtgroup	SAQHA	HAPLAQUODS
grtgroup	SAQPK	PLACAQUODS
grtgroup	SAQSI	SIDERAQUODS
grtgroup	SAQTR	TROPAQUODS
grtgroup	SFEFE	FERRODS
grtgroup	SHUCR	CRYOHUMODS
grtgroup	SHUFR	FRAGIHUMODS
grtgroup	SHUHA	HAPLOHUMODS
grtgroup	SHUPK	PLACOHUMODS
grtgroup	SHUTR	TROPOHUMODS
grtgroup	SORCR	CRYORTHODS
grtgroup	SORFR	FRAGIORTHODS
grtgroup	SORHA	HAP LORTHODS
grtgroup	SORPK	PLACORTHODS
grtgroup	SORTR	TROPORTHODS
grtgroup	UAQAL	ALBAQUULTS
grtgroup	UAQFR	FRAGIAQUULTS
grtgroup	UAQKA	KANDIAQUULTS
grtgroup	UAQKH	KANHAPLAQUULTS
grtgroup	UAQOC	OCHRAQUULTS
grtgroup	UAQPA	PALEAQUULTS
grtgroup	UAQPN	PLINTHAQUULTS
grtgroup	UAQTR	TROPAQUULTS
grtgroup	UAQUM	UMBRAQUULTS
grtgroup	UHUHA	HAPLOHUMULTS
grtgroup	UHUKA	KANDIHUMULTS
grtgroup	UHUKH	KANHAPLOHUMULTS
grtgroup	UHUPA	PALEHUMULTS
grtgroup	UHUPN	PLINTHOHUMULTS
grtgroup	UHUSO	SOMBRIHUMULTS
grtgroup	UHUTR	TROPOHUMULTS
grtgroup	UUDFR	FRAGIUDULTS
grtgroup	UUDHA	HAPLUDULTS
grtgroup	UUDKA	KANDIUDULTS
grtgroup	UUDKH	KANHAPLUDULTS
grtgroup	UUDPA	PALEUDULTS
grtgroup	UUDPN	PLINTHUDULTS
grtgroup	UUDRH	RHODUDULTS
grtgroup	UUDTR	TROPUDULTS
grtgroup	UUSHA	HAPLUSTULTS
grtgroup	UUSKA	KANDIUSTULTS
grtgroup	UUSKH	KANHAPLUSTULTS
grtgroup	UUSPA	PALEUSTULTS
grtgroup	UUSPN	PLINTHUSTULTS
grtgroup	UUSRH	RHODUSTULTS
grtgroup	UXEHA	HAPLOXERULTS
gregroup	OVEUH	HAT TOVE KOP 19

grtgroup grtgroup grtgroup grtgroup grtgroup grtgroup grtgroup grtgroup	UXEPA VTOTO VUDCH VUDPE VUSCH VUSPE VXECH VXEPE	PALEXERULT TORRERTS CHROMUDERTS CHROMUSTER PELLUSTERT CHROMOXERE PELLOXERER	TS S RTS IS ERTS	
hydgrp	A	Hydrology	Class - A	High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels.
hydgrp	A/D	Hydrology A/D	Class -	Drained/undrained hydrology class of soils that can be drained and are classified.
hydgrp	В	Hydrology	Class - B	Moderate infiltration rates. Deep and moderately deep, moderately well and well-drained soils with moderately coarse textures.
hydgrp	B/D	Hydrology B/D	Class -	Drained/undrained hydrology class of soils that can be drained and are classified.
hydgrp	С	Hydrology	Class - C	Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.

hydgrp	C/D	Hydrology Class - C/D	Drained/undrained hydrology class of soils that can be drained and classified.
hydgrp	D	Hydrology Class - D	Very slow infiltration rates. Soils are clayey, have a high water table, or are shallow to an impervious layer.
hydric	N	NO	Soil does not meet the requirements for a hydric soil.
hydric	Y	YES	Soil meets the requirements for a hydric soil.
intensty	1	First Order Soil Survey	Scale - > 1:15840, Minimum Delineation - 1 ha or less, Consociations and some Complexes.
minalogy	01 02 04 05 07 08 09 10 12 14 18 20 22 24 26 27 28 30 32 34 35 37 38	UNCLASSIFIED NOT USED CALCAREOUS CARBONATIC CLASTIC COPROGENOUS CHLORITIC DIATOMACEOUS FERRIHUMIC FERRITIC GIBBSITIC GLAUCONITIC GYPSIC HALLOYSITIC ILLITIC ILLITIC ILLITIC ILLITIC ILLITIC MARLY MICACEOUS MIXED MIXED MIXED MONTMORILLONITIC (CALCAREOUS) OXIDIC	

minalogy minalogy minalogy minalogy	42 44 46 50	SEPIOLITIC SERPENTINITIC SILICEOUS VERMICULITIC	
mlra	1	NORTHERN PACIFIC COAST RANGE, etc.	Northern Pacific Coast Range, Foothills, and Valleys
mlra	10	UPPER SNAKE RIVER LAVA PLAINS AND HILLS	
mlra	100	ERIE FRUIT AND TRUCK AREA	
mlra	101	ONTARIO PLAIN AND FINGER LAKES AREA	
mlra	102A	ROLLING TILL PRAIRIE	
mlra	102B	LOESS UPLAND AND TILL PLAINS	
mlra	103	CENTRAL IOWA AND MINNESOTA TILL PRAIRIES	
mlra	104	EASTERN IOWA AND MINNESOTA TILL PRAIRIES	
mlra	105	NORTHERN MISSISSIPPI VALLEY LOESS HILLS	
mlra	106	NEBRASKA AND KANSAS LOESS-DRIFT HILLS	
mlra	107	IOWA AND MISSOURI DEEP LOESS HILLS	
mlra	108	ILLINOIS AND IOWA DEEP LOESS AND DRIFT	
mlra	109	IOWA AND MISSOURI HEAVY TILL PLAIN	
mlra	11	SNAKE RIVER PLAINS	
mlra	110	NORTHERN ILLINOIS AND INDIANA, etc.	

mlra	111	INDIANA AND OHIO TILL PLAIN	
mlra	112	CHEROKEE PRAIRIES	
mlra	113	CENTRAL CLAYPAN AREAS	
mlra	114	SOUTHERN ILLINOIS AND INDIANA, etc.	
mlra	115	CENTRAL MISSISSIPPI VALLEY WOODED SLOPES	
mlra	116A	OZARK HIGHLAND	
mlra	116B	OZARK BORDER	
mlra	117	BOSTON MOUNTAINS	•
mlra	118	ARKANSAS VALLEY AND RIDGES	
mlra	119	OUACHITA MOUNTAINS	
mlra	12	LOST RIVER VALLEYS AND MOUNTAINS	
mlra	120	KENTUCKY AND INDIANA SANDSTONE, etc.	_
mlra	121	KENTUCKY BLUEGRASS	
mlra	122	HIGHLAND RIM AND PENNYROYAL	
mlra	123	NASHVILLE BASIN	
mlra	124	WESTERN ALLEGHENY PLATEAU	
mlra	125	CUMBERLAND PLATEAU AND MOUNTAINS	
mlra	126	CENTRAL ALLEGHENY PLATEAU	

mlra	127	EASTERN ALLEGHENY PLATEAU AND MOUNTAINS	
mlra	128	SOUTHERN APPALACHIAN RIDGES AND VALLEYS	
mlra	129	SAND MOUNTAIN	
mlra	13	EASTERN IDAHO PLATEAUS	
mlra	130	BLUE RIDGE	
mlra	131	SOUTHERN MISSISSIPPI VALLEY ALLUVIUM	
mlra	133A	SOUTHERN COASTAL PLAIN	
mlra	133B	WESTERN COASTAL PLAIN	
mlra	134	SOUTHERN MISSISSIPPI VALLEY SILTY UPLAND	
mlra	135	ALABAMA, MISSISSIPPI, AND ARKANSAS, etc.	Alabama, Mississippi, and Arkansas Blackland Prairies
mlra	136	SOUTHERN PIEDMONT	
mlra	137	CAROLINA AND GEORGIA SAND HILLS	
mlra	138	NORTH-CENTRAL FLORIDA RIDGE	
mlra	139	EASTERN OHIO TILL PLAIN	
mlra	14	CENTRAL CALIFORNIA COASTAL VALLEYS	
mlra	140	GLACIATED ALLEGHENY PLATEAU, etc.	Glaciated Allegheny Plateau and Catskill Mountains
mlra	141	TUGHILL PLATEAU	

mlra	142	ST. LAWRENCE-CHAMPLAIN PLAIN	
mlra	143	NORTHEASTERN MOUNTAINS	
mlra	144A	NEW ENGLAND AND EASTERN NEW YORK, etc.	New England and Eastern New York Upland, Southern Part
mlra	144B	NEW ENGLAND AND EASTERN NEW YORK, etc.	New England and Eastern New York Upland, Northern Part
mlra	145	CONNECTICUT VALLEY	
mlra	146	AROOSTOCK AREA	
mlra	147	NORTHERN APPALACHAIN RIDGES AND VALLEYS	
mlra	148	NORTHERN PIEDMONT	
mlra	149A	NORTHERN COASTAL PLAIN	
mlra	149B	LONG ISLAND-CAPE COD COASTAL LOWLAND	
mlra	15	CENTRAL CALIFORNIA COAST RANGE	
mlra	150A	GULF COAST PRAIRIES	
mlra	150B	GULF COAST SALINE PRAIRIES	
mlra	151	GULF COAST MARSH	
mlra	152A	EASTERN GULF COAST FLATWOODS	
mlra	152B	WESTERN GULF COAST FLATWOODS	
mlra	153A	ATLANTIC COAST FLATWOODS	
mlra	153B	TIDEWATER AREA	

mlra	153C	MID-ATLANTIC COASTAL PLAIN	
mlra	154	SOUTH-CENTRAL FLORIDA RIDGE	
mlra	155	SOUTHERN FLORIDA FLATWOODS	
mlra	156A	FLORIDA EVERGLADES AND ASSOCIATED AREAS	
mlra	156B	SOUTHERN FLORIDA LOWLANDS	
mlra	157	ARID AND SEMIARID LOW MOUNTAIN SLOPES	
mlra	158	SEMIARID AND SUBHUMID LOW MOUNTAIN, etc.	Semiarid and Subhumid Low Mountain Slopes
mlra	159	HUMID AND VERY HUMID LOW, etc.	Humid and Very Humid Low and Intermediate Mountain Slopes
mlra	16	CALIFORNIA DELTA	
mlra	160	SUBHUMID AND HUMID INTERMEDIATE, etc.	Subhumid and Humid Intermediate and High Mountain Slopes
mlra	161	LAVA FLOWS AND ROCK OUTCROPS	
mlra	162	VERY HUMID AREAS, etc.	Very Humid Areas on East and West Maui and Kohala Mountains, and Mount Waialeale
mlra	163	ALLUVIAL FANS AND COASTAL PLAINS	
mlra	164	ROUGH MOUNTAINOUS LAND	
mlra	165	SUBHUMID INTERMEDIATE MOUNTAIN SLOPES	
mlra	166	VERY STONY LAND AND ROCK LAND	

mlra	167	HUMID LOW AND INTERMEDIATE, etc.	
mlra	168	SOUTHEASTERN ALASKA	
mlra	169	SOUTH-CENTRAL ALASKA MOUNTAINS	
mlra	17	SACRAMENTO AND SAN JOAQUIN VALLEYS	
mlra	170	COOK INLET-SUSITNA LOWLAND	
mlra	171	ALASKA PENINSULA, etc.	Alaska Peninsula and Southwestern Islands
mlra	172	COOPER RIVER PLATEAU	
mlra	173	ALASKA RANGE	·
mlra	174	INTERIOR ALASKA LOWLANDS	
mlra	175	KUSKOKWIM HIGHLANDS	
mlra	176	INTERIOR ALASKA HIGHLANDS	
mlra	177	NORTON SOUND HIGHLANDS	
mlra	178	WESTERN ALASKA COASTAL PLAINS AND DELTAS	
mlra	179	BERING SEA ISLANDS	
mlra	18	SIERRA NEVADA FOOTHILLS	
mlra	180	BROOKS RANGE	
mlra	181	ARCTIC FOOTHILLS	
mlra	182	ARCTIC COSTAL PLAIN	
mlra	19	SOUTHERN CALIFORNIA COASTAL PLAIN	
mlra	190	PONAPE	Pacific Basin Area

mlra	191	KOSRAE	Pacific Basin Area
mlra	192	MARSHALL ISLANDS	Pacific Basin Area
mlra	193	TRUK	Pacific Basin Area
mlra	194	YAP	Pacific Basin Area
mlra	195	PALAU	Pacific Basin Area
mlra	196	TUTUILA, AUNU'U	Pacific Basin Area
mlra	197	TAU	Pacific Basin Area
mlra	198	OFU, OLOSEGA	Pacific Basin Area
mlra	199	NORTHERN GUAM	Pacific Basin Area
mlra	2	WILLAMETTE AND PUGET SOUND VALLEYS	
mlra	20	SOUTHERN CALIFORNIA MOUNTAINS	
mlra	200	SOUTHERN GUAM	Pacific Basin Area
mlra	201	SAIPAN	Pacific Basin Area
mlra	202	AGUIJAN, TINIAN	Pacific Basin Area
mlra	203	ROTA	Pacific Basin Area
mlra	21	KLAMATH AND SHASTA VALLEYS AND BASINS	
mlra	22	SIERRA NEVADA RANGE	
mlra	23	MALHEUR HIGH PLATEAU	
mlra	24	HUMBOLDT AREA	
mlra	25	OWYHEE HIGH PLATEAU	
mlra	26	CARSON BASIN AND MOUNTAINS	
mlra	27	FALLON-LOVELOCK AREA	
mlra	270	HUMID MOUNTAINS AND VALLEYS	
mlra	271	SEMIARID MOUNTAINS AND VALLEYS	

mlra	272	HUMID COASTAL PLAINS	
mlra	273	SEMIARID COASTAL PLAINS	
mlra	28A	GREAT SALT LAKE AREA	
mlra	28B	CENTRAL NEVADA BASIN AND RANGE	
mlra	29	SOUTHERN NEVADA BASIN AND RANGE	
mlra	3	OLYMPIC AND CASCADE MOUNTAINS	
mlra	30	SONORAN BASIN AND RANGE	
mlra	31	IMPERIAL VALLEY	
mlra	32	NORTHERN INTERMOUNTAIN DESERTIC BASINS	
mlra	33	SEMIARID ROCKY MOUNTAINS	
mlra	34	CENTRAL DESERTIC BASINS, etc.	Central Desertic Basins, Mountains, and Plateaus.
mlra	35	COLORADO AND GREEN RIVER PLATEAUS	
mlra	36	NEW MEXICO AND ARIZONA, etc.	New Mexico and Arizona Plateaus and Mesas.
mlra	37	SAN JUAN RIVER VALLEY MESAS AND PLATEAUS	
mlra	39	ARIZONA AND NEW MEXICO MOUNTAINS	
mlra	4	CALIFORNIA COASTAL REDWOOD BELT	
mlra	40	CENTRAL ARIZONA BASIN AND RANGE	
mlra	41	SOUTHEASTERN ARIZONA BASIN AND RANGE	

mlra	42	SOUTHERN DESERTIC BASINS, PLAINS, etc.	
mlra	43	NORTHERN ROCKY MOUNTAINS	
mlra	44	NORTHERN ROCKY MOUNTAIN VALLEYS	
mlra	46	NORTHERN ROCKY MOUNTAIN FOOTHILLS	
mlra	47	WASATCH AND UINTA MOUNTAINS	
mlra	48A	SOUTHERN ROCKY MOUNTAINS	
mlra	48B	SOUTHERN ROCKY MOUNTAIN PARKS	
mlra	49	SOUTHERN ROCKY MOUNTAIN FOOTHILLS	
mlra	5	SISKIYOU-TRINITY AREA	
mlra	51	HIGH INTERMOUNTAIN VALLEYS	
mlra	52	BROWN GLACIATED PLAIN	
mlra	53A	NORTHERN DARK BROWN GLACIATED PLAINS	
mlra	53B	CENTRAL DARK BROWN GLACIATED PLAINS	
mlra	53C	SOUTHERN DARK BROWN GLACIATED PLAINS	
mlra	54	ROLLING SOFT SHALE PLAIN	
mlra	55A	NORTHERN BLACK GLACIATED PLAINS	
mlra	55B	CENTRAL BLACK GLACIATED PLAINS	
mlra	55C	SOUTHERN BLACK GLACIATED PLAINS	

mlra	56	RED RIVER VALLEY OF THE NORTH	
mlra	57	NORTHERN MINNESOTA GRAY DRIFT	
mlra	58A	NORTHERN ROLLING HIGH PLAINS, etc.	Northern Rolling High Plains, Northern part
mlra	58B	NORTHERN ROLLING HIGH PLAINS, etc.	Northern Rolling High Plains, Southern part
mlra	58C	NORTHERN ROLLING HIGH PLAINS, etc.	Northern Rolling High Plains, Northeastern part
mlra	58D	NORTHERN ROLLING HIGH PLAINS, etc.	Northern Rolling High Plains, Eastern part
mlra	6	CASCADE MOUNTAINS, EASTERN SLOPE	
mlra	60A	PIERRE SHALE PLAINS AND BADLANDS	
mlra	60B	PIERRE SHALE PLAINS, NORTHERN PART	
mlra	61	BLACK HILLS FOOT SLOPES	
mlra	62	BLACK HILLS	
mlra	63A	NORTHERN ROLLING PIERRE SHALE PLAINS	
mlra	63B	SOUTHERN ROLLING PIERRE SHALE PLAINS	
mlra	64	MIXED SANDY AND SILTY TABLELAND	
mlra	65	NEBRASKA SAND HILLS	
mlra	66	DAKOTA-NEBRASKA ERODED TABLELAND	
mlra	67	CENTRAL HIGH PLAINS	

mlra	69	UPPER ARKANSAS VALLEY ROLLING PLAINS
mlra	7	COLUMBIA BASIN
mlra	70	PECOS-CANADIAN PLAINS AND VALLEYS
mlra	71	CENTRAL NEBRASKA LOESS HILLS
mlra	72	CENTRAL HIGH TABLELAND
mlra	73	ROLLING PLAINS AND BREAKS
mlra	74	CENTRAL KANSAS SANDSTONE HILLS
mlra	75	CENTRAL LOESS PLAINS
mlra	76	BLUESTEM HILLS
mlra	77	SOUTHERN HIGH PLAINS
mlra	78	CENTRAL ROLLING RED PLAINS
mlra	79	GREAT BEND SAND PLAINS
mlra	8	COLUMBIA PLATEAU
mlra	A08	CENTRAL ROLLING RED PRAIRIES
mlra	80B	TEXAS NORTH-CENTRAL PRAIRIES
mlra	81A	EDWARDS PLATEAU, WESTERN PART
mlra	81B	EDWARDS PLATEAU, CENTRAL PART
mlra	81C	EDWARDS PLATEAU, EASTERN PART
mlra	82	TEXAS CENTRAL BASIN
mlra	83A	NORTHERN RIO GRANDE PLAIN

mlra	83B	WESTERN RIO GRANDE PLAIN	
mlra	83C	CENTRAL RIO GRANDE PLAIN	
mlra	83D	LOWER RIO GRANDE PLAIN	
mlra	84A	CROSS TIMBERS	
mlra	84B	WEST CROSS TIMBERS	
mlra	84C	EAST CROSS TIMBERS	
mlra	85	GRAND PRAIRIE	
mlra	86A	TEXAS BLACKLAND PRAIRIE, NORTHERN PART	
mlra	86B	TEXAS BLACKLAND PRAIRIE, SOUTHERN PART	
mlra	87A	TEXAS CLAYPAN AREA, SOUTHERN PART	
mlra	87B	TEXAS CLAYPAN AREA, NORTHERN PART	
mlra	88	NORTHERN MINNESOTA GLACIAL LAKE BASINS	
mlra	9	PALOUSE AND NEZ PERCE PRAIRIES	
mlra	90	CENTRAL WISCONSIN AND MINNESOTA, etc.	Central Wisconsin and Minnesota Thin Loess and Till
mlra	91	WISCONSIN AND MINNESOTA SANDY OUTWASH	
mlra	92	SUPERIOR LAKE PLAIN	
mlra	93	SUPERIOR STONY AND ROCKY, etc.	Superior Stony and Rocky Loamy Plains and Hills

mlra	94A	NORTHERN MICHIGAN AND WISCONSIN, etc.	Northern Michigan and Wisconsin Sandy Drift
mlra	94B	MICHIGAN EASTERN UPPER PENINSULA, etc.	Michigan Eastern Upper Peninsula Sandy Drift
mlra	95A	NORTHEASTERN WISCONSIN DRIFT PLAIN	
mlra	95B	SOUTHERN WISCONSIN AND NORTHERN, etc.	Southern Wisconsin and Northern Illinois Drift Plain
mlra	96	WESTERN MICHIGAN AND NORTHEASTERN, etc.	Western Michigan and Northeastern Wisconsin Fruit Belt
mlra	97	SOUTHWESTERN MICHIGAN FRUIT, etc. TRUCK	Southwestern Michigan Fruit and Truck Belt
mlra	98	SOUTHERN MICHIGAN AND NORTHERN, etc.	Southern Michigan and Northern Indiana Drift Plain
mlra	99	ERIE-HURON LAKE PLAIN	
mukind	A	Association	Two or more soils with a repeating pattern.
mukind	С	Consociation	Seventy-five percent (75%) of map unit within range of taxon.
mukind	U	Undifferentiated Group	Two or more soils that are not continuously coterminous.
mukind	X	Complex	Two or more soils that cannot be mapped separately due to map scale limitations.
order order	A C	ALFISOLS ANDISOLS	

order ordsym ordsy	DEHIMOSUVACDFRSTWX012045671920	ARIDISOLS ENTISOLS HISTOSOLS INCEPTISOLS MOLLISOLS OXISOLS SPODOSOLS ULTISOLS VERTISOLS SLIGHT LIMITATION CLAYEY SOILS RESTRICTED ROOTING FRAGMENTAL OR SKELETA RELIEF OR SLOPE STEEP SANDY SOILS TOXIC SUBSTANCES EXCESSIVE WETNESS STONINESS OR ROCKINES UNCLASSIFIED NOT USED COATED CRACKED LEVEL MICRO ORTSTEIN SHALLOW SHALLOW & UNCOATED SLOPING SHALLOW & COATED ORTSTEIN & SHALLOW UNCOATED	NESS
panhard	THICK	Cemented Pan Class - Thick	Pan is more than 3 inches if continuously indurated and more than 18 inches if discontinuous or fractured.
panhard	THIN	Cemented Pan Class - Thin	Pan is less than 3 inches if continuously indurated and less than 18 inches if discontinuous or fractured.
partsize	001	UNCLASSIFIED	
partsize	002	NOT USED	
partsize	003	CINDERY	

partsize	004	CINDERY OVER SANDY OR SANDY-SKELETAL
partsize	005	ASHY
partsize	006	CINDERY OVER LOAMY
partsize	007	ASHY OVER PUMICEOUS OR CINDERY
partsize	800	ASHY OVER LOAMY
partsize	009	ASHY-SKELETAL
partsize	010	MEDIAL
partsize	011	MEDIAL-SKELETAL
partsize	012	MEDIAL OVER PUMICEOUS OR CINDERY
partsize	013	ASHY OVER LOAMY-SKELETAL
partsize	014	MEDIAL OVER CLAYEY
partsize	015	CINDERY OVER MEDIAL-SKELETAL
partsize	016	MEDIAL OVER FRAGMENTAL
partsize	017	CINDERY OVER MEDIAL
partsize	018	MEDIAL OVER LOAMY
partsize	019	ASHY OVER MEDIAL
partsize	020	MEDIAL OVER LOAMY-SKELETAL
partsize	021	ASHY OVER SANDY OR SANDY-SKELETAL
partsize	022	MEDIAL OVER SANDY OR SANDY-SKELETAL
partsize	024	MEDIAL OVER THIXOTROPIC
partsize	026	THIXOTROPIC

partsize	027	THIXOTROPIC-SKELETAL
partsize	028	THIXOTROPIC OVER FRAGMENTAL
partsize	030	THIXOTROPIC OVER SANDY OR SANDY-SKELETAL
partsize	032	THIXOTROPIC OVER LOAMY-SKELETAL
partsize	034	THIXOTROPIC OVER LOAMY
partsize	036	FRAGMENTAL
partsize	044	SANDY-SKELETAL
partsize	046	SANDY-SKELETAL OVER LOAMY
partsize	047	SANDY-SKELETAL OVER CLAYEY
partsize	050	LOAMY-SKELETAL
partsize	051	LOAMY-SKELETAL OVER FRAGMENTAL
partsize	052	LOAMY-SKELETAL OVER SANDY
partsize	054	LOAMY-SKELETAL OVER CLAYEY
partsize	055	LOAMY-SKELETAL OR CLAYEY-SKELETAL
partsize	056	CLAYEY-SKELETAL
partsize	058	CLAYEY-SKELETAL OVER SANDY
partsize	062	SANDY
partsize	063	SANDY OR SANDY-SKELETAL
partsize	064	SANDY OVER LOAMY
partsize	066	SANDY OVER CLAYEY

partsize	068	LOAMY
partsize	072	LOAMY OVER SANDY OR SANDY-SKELETAL
partsize	080	COARSE-LOAMY
partsize	082	COARSE-LOAMY OVER FRAGMENTAL
partsize	084	COARSE-LOAMY OVER SANDY OR SANDY-SKELETAL
partsize	086	COARSE-LOAMY OVER CLAYEY
partsize	088	COARSE-SILTY
partsize	090	COARSE-SILTY OVER FRAGMENTAL
partsize	092	COARSE-SILTY OVER SANDY OR SANDY-SKELETAL
partsize	094	COARSE-SILTY OVER CLAYEY
partsize	096	FINE-LOAMY
partsize	097	FINE-LOAMY OVER PUMICEOUS OR CINDERY
partsize	098	FINE-LOAMY OVER FRAGMENTAL
partsize	100	FINE-LOAMY OVER SANDY OR SANDY-SKELETAL
partsize	102	FINE-LOAMY OVER CLAYEY
partsize	106	FINE-SILTY
partsize	108	FINE-SILTY OVER FRAGMENTAL
partsize	110	FINE-SILTY OVER SANDY OR SANDY-SKELETAL

partsize	112	FINE-SILTY OVER CLAYEY
partsize	114	CLAYEY
partsize	116	CLAYEY OVER FRAGMENTAL
partsize	118	CLAYEY OVER SANDY OR SANDY-SKELETAL
partsize	120	CLAYEY OVER LOAMY-SKELETAL
partsize	122	CLAYEY OVER FINE-SILTY
partsize	124	CLAYEY OVER LOAMY
partsize	126	FINE
partsize	134	VERY-FINE
partsize	136	HYDROUS
partsize	138	HYDROUS-PUMICEOUS
partsize	140	HYDROUS-SKELETAL
partsize	142	HYDROUS OVER CLAYEY
partsize	144	HYDROUS OVER CLAYEY-SKELETAL
partsize	146	HYDROUS OVER FRAGMENTAL
partsize	148	HYDROUS OVER LOAMY
partsize	150	HYDROUS OVER LOAMY-SKELETAL
partsize	152	HYDROUS OVER SANDY OR SANDY-SKELETAL
partsize	153	ASHY-PUMICEOUS
partsize	154	ASHY OVER MEDIAL-SKELETAL
partsize	155	MEDIAL-PUMICEOUS
partsize	158	MEDIAL OVER ASHY

partsize	160	MEDIAL OVER CLAYEY-SKELETAL	
partsize	162	MEDIAL OVER HYDROUS	
partsize	163	PUMICEOUS	
partsize	164	PUMICEOUS OR ASHY-PUMICEOUS OVER SANDY OR SANDY-SKELETAL	
partsize	165	PUMICEOUS OR ASHY-PUMICEOUS OVER LOAMY	
partsize	166	PUMICEOUS OR ASHY-PUMICEOUS OVER MEDIAL-SKELETAL	
partsize	167	PUMICEOUS OR ASHY-PUMICEOUS OVER MEDIAL	
nddur	BRIEF	Ponding Duration Class - Brief	Average duration of inundation per flood is 2 to 7 days.
pnddur	LONG	Ponding Duration Class - Long	Average duration of inundation per flood is 7 days to 1 month.
pnddur	VBREF	Ponding Duration Class - Very Brief	Average duration of inundation per flood is less than 2 days.
pnddur	VLONG	Ponding Duration Class - Very Long	Average duration of inundation per flood is more than 1 month.
primfml	0	Not Prime Farmland	Not Prime Farmland.
primfml	1	All areas are Prime Farmland	All areas are Prime Farmland.
primfml	2	Only drained areas are Prime Farmland	Only drained areas are Prime Farmland.

primfml	3	Prime Farmland if protected	Only areas protected from flooding or not frequently flooded during the growing season are prime farmland.
primfml	4	Only irrigated areas are Prime Farmland.	Only irrigated areas are Prime Farmland.
primfml	5	Prime farmland if drained/protected.	Only drained areas that are either protected from flooding or not frequently flooded during the growing season are prime farmland.
primfml	6	Drainage criteria exceeded	Only irrigated areas that have been drained are Prime Farmland.
primfml	7	Prime Farmland if irrigated and protected.	Only irrigated areas that are either protected from flooding or not frequently flooded during the growing season are prime farmland.
rating ration reaction reaction reaction reaction reaction reaction reaction reaction reaction	1 10 11 2 3 4 5 6 7 8 9 01 02 04 08 10 12 14	FAIR FAVORABLE LIMITATION GOOD MODERATE POOR SEVERE SLIGHT UNSUITED PROBABLE IMPROBABLE UNCLASSIFIED NOT USED ACID DYSIC EUIC NONACID NONCALCAREOUS	

restct		
restct	1	Area Reclaim
restct	10	Dusty
restct	11	Erodes Easily
restct	12	Excess Sodium
restct	13	Excess Humus
restct	14	Excess Lime
restct	15	Excess Salt
	16	Fast Intake
restct restct	17	
	18	Favorable
restct	19	Flooding
restct	2	Frost Action
restct	20	Cemented Pan
restct	21	Hard To Pack
restct		Large Stones
restct	22	Low Strength
restct	23	No Water
restct	24	Not Needed
restct	25	Seepage
restct	26	Percs Slowly
restct	27	Piping
restct	28	Poor Outlets
restct	3	Complex Slope
restct	30	Rooting Depth
restct	31	Shrink-swell
restct	32	Slope
restct	33	Slow Intake
restct	34	Slow Refill
restct	35	Small Stones
restct	36	Thin Layer
restct	37	Too Clayey
restct	38	Too Sandy
restct	39	Unstable Fill
restct	4	Compressible
restct	40	Wetness
restct	41	Excess Fines
restct	42	Soil Blowing
restct	43	Permafrost
restct	44	Pitting
restct	45	Salty Water
restct	46	Subsides
restct	47	Too Acid
restct	48	Ponding
restct	49	Excess Sulfur
restct	5	Corrosive
restct	50	Poor Filter
restct	51	Dense Layer
restct	52	Fragile
restct	53	Slippage
restct	54	Variable
restct	55	Excess Gypsum
restct	56	Too Arid
restct	6	Cutbanks Cave
restct	7	Deep To Water
		T

restct restct	8 9	Depth To Rock Droughty	
rockhard	HARD	Hardness Class - Hard	Excavation requires blasting or special equipment.
rockhard	SOFT	Hardness Class - Soft	Excavation can be made with trenching machines, backhoes, or small rippers.
scl	С	Capability Subclass - Climatic	Soils where the climate (moisture or temperature) is the only major hazard or limitation in their use.
scl	е	Capability Subclass - Erosion	Soils where the susceptibility to erosion is the dominant problem of hazard in their use.
scl	S	Capability Subclass - Soil Limitation	Soils have limitations such as shallowness of rooting zones, stones, low moisture-holding capacity, salinity and sodicity, etc.
scl	W	Capability Subclass - Excess Water	Soils where excess water is the dominant hazard or limitation in their use.
slopeshp	ALL	All Shapes	
slopeshp	COC	CONCAVE	Gradient decreasing down slope.
slopeshp	CVX	CONVEX	Gradient increasing down slope.
slopeshp	PLN	PLANE	Gradient linear along slope.
soiltemp soiltemp soiltemp	01 02 04	UNCLASSIFIED NOT USED FRIGID	

soiltemp soiltemp soiltemp soiltemp soiltemp soiltemp	06 08 10 12 14 16	HYPERTHERMIC ISOFRIGID ISOHYPERTHERMIC ISOMESIC ISOTHERMIC MESIC THERMIC
state state state state state state state state state	AK AL AR AZ CA CO CT CZ DC	Alaska Alabama Arkansas Arizona California Colorado Connecticut Canal Zone District of Columbia
state state state state state state state state state	DE FL GA HI IA ID IL	Delaware Florida Georgia Hawaii Iowa Idaho Illinois
state	IN KS KY LA MA MD ME	Indiana Kansas Kentucky Louisiana Massachusetts Maryland Maine
state state state state state state state	MI MN MO MS MT NC ND	Michigan Minnesota Missouri Mississippi Montana North Carolina North Dakota
state state state state state state	NE NH NJ NM NV NY OH	Nebraska New Hampshire New Jersey New Mexico Nevada New York
state	OK OR PA PR RI SC SD	Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota
state state	TN TX	Tennessee Texas

state	UT	Utah
state	VA	Virginia
state	VI	Virgin Islands
state	VT	Vermont
state	WA	Washington
state	WI	Wisconsin
state	WV	West Virginia
state	WY	Wyoming
subgroup	AA AB AB04 AB08 AB10 AB14 AB16 AC AC05 AE AE03 AE05 AE06 AE08 AE09 AE10 AE12 AL AL02 AL04 AL08 AL09 AL10 AL12 AL13 AL14 AL16 AL20 AL21 AL20 AL22 AL24 AL26 AN AN01	TYPIC ABRUPTIC ARIDIC ABRUPTIC CRYIC ABRUPTIC HAPLIC ABRUPTIC UDIC ABRUPTIC XEROLLIC ACRIC ACRIC PLINTHIC AERIC AERIC ARENIC AERIC GROSSARENIC AERIC HUMIC AERIC HUMIC AERIC TROPIC AERIC TROPIC AERIC XERIC ALBAQUIC ALBAQUIC ALBAQUIC ALBIC GLOSSIC ALBOLLIC ALFIC ARENIC ALFIC ARENIC ALFIC ARENIC ALFIC ALFIC LITHIC ALFIC LITHIC ALIC ALIC PACHIC ALIC THAPTIC ANDEPTIC ANDEPTIC
subgroup subgroup subgroup subgroup subgroup	AN03 AN06 AN08 AN11 AN12	ANDAQUIC ANDIC DYSTRIC ANDIC EPIAQUIC ANDEPTIC GLOSSOBORIC ANDIC UDIC

```
subgroup
          AN22
                   ANDIC USTIC
subgroup
          AN24
                   ANDAQUEPTIC
subgroup
          AN30
                   ANTHROPIC
                   AOUALFIC
subgroup
          AO
subgroup
          A001
                   AOUANDIC
          A002
                   AQUENTIC
subgroup
subgroup
          AQ04
                   AQUEPTIC
subgroup
          A006
                   AQUIC
                   AQUIC ARENIC
subgroup
          A008
                   AOUIC DURIC
          AQ14
subgroup
                   AQUIC DURORTHIDIC
          AQ16
subgroup
                   AQUIC DYSTRIC
subgroup
          AQ18
          AO24
                   AQUIC HAPLIC
subgroup
subgroup
          AQ26
                   AQUIC LITHIC
subgroup
          AQ31
                   AQUIC PSAMMENTIC
          AQ34
                   AQUOLLIC
subgroup
subgroup
          AQ36
                   AQUULTIC
subgroup
          AR
                   ARENIC
subgroup
          AR02
                   ARENIC ARIDIC
          AR03
                   ARENIC ORTHOXIC
subgroup
                   ARENIC PLINTHAOUIC
subgroup
          AR04
subgroup
          AR06
                   ARENIC PLINTHIC
subgroup
          AR08
                   ARENIC RHODIC
                   ARENIC ULTIC
subgroup
          AR10
subgroup
          AR14
                   ARENIC UMBRIC
                   ARENIC USTALFIC
          AR16
subgroup
subgroup
          AR18
                   ARENIC USTOLLIC
subgroup
          AR22
                   ARGIAQUIC
subgroup
          AR24
                   ARGIAQUIC XERIC
          AR26
                   ARGIC
subgroup
          AR27
                   ARGIXEROLLIC
subgroup
subgroup
          AR28
                   ARGIC LITHIC
subgroup
          AR30
                   ARGIC PACHIC
subgroup
          AR32
                   ARGIC VERTIC
          AR33
                   ARGIDIC
subgroup
          AR34
                   ARIDIC
subgroup
subgroup
          AR36
                   ARIDIC CALCIC
          AR42
                   ARIDIC DURIC
subgroup
                   ARIDIC PACHIC
subgroup
          AR50
          AR52
                   ARIDIC PETROCALCIC
subgroup
subgroup
          AX
                   ACRUDOXIC
subgroup
          AX02
                   ACRUDOXIC HYDRIC
          AX04
                   ACRUDOXIC THAPTIC
subgroup
subgroup
                   ACRUDOXIC ULTIC
          AX06
subgroup
          AX08
                   ACRUDOXIC VITRIC
subgroup
          AX10
                   ACRAQUOXIC
subgroup
          BO
                   BORALFIC
          B002
subgroup
                   BORALFIC LITHIC
          BO04
                   BORALFIC UDIC
subgroup
          BO06
                   BOROLLIC
subgroup
                   BOROLLIC GLOSSIC
subgroup
          B008
          B010
                   BOROLLIC LITHIC
subgroup
          BO12
                   BOROLLIC VERTIC
subgroup
          CA
                   CALCIC
subgroup
```

```
subgroup
          CA04
                   CALCIC PACHIC
                   CALCIORTHIDIC
subgroup
          CA06
          CA10
                   CALCIXEROLLIC
subgroup
          CA20
                   CAMBIC
subgroup
          СН
                   CHROMIC
subgroup
          CH06
                   CHROMUDIC
subgroup
          CR
                   CRYIC
subgroup
                   CRYIC LITHIC
          CR10
subgroup
          CR14
                   CRYIC PACHIC
subgroup
          CU
                   CUMULIC
subgroup
          CU02
                   CUMULIC UDIC
subgroup
          CU04
                   CUMULIC ULTIC
subgroup
subgroup
          DU
                   DURARGIDIC
          DU02
                   DURIC
subgroup
          DU04
                   DURIC HISTIC
subgroup
          DU08
                   DURIXEROLLIC
subgroup
          DU10
                   DURIXEROLLIC LITHIC
subgroup
                   DUROCHREPTIC
subgroup
          DU11
          DU12
                   DURORTHIDIC
subgroup
                   DURORTHIDIC XERIC
subgroup
          DU14
subgroup
          DY02
                   DYSTRIC
         DY03
                   DYSTRIC ENTIC
subgroup
         DY04
                   DYSTRIC FLUVENTIC
subgroup
subgroup
          DY06
                   DYSTRIC LITHIC
          DY08
                   DYSTROPEPTIC
subgroup
          DY09
                   DYSTRIC VITRIC
subgroup
         EN
                   ENTIC
subgroup
         EN02
                   ENTIC LITHIC
subgroup
          EN04
                   RUPTIC-ENTIC LITHIC
subgroup
          EN06
                   ENTIC ULTIC
subgroup
          ΕP
                   EPIAQUIC
subgroup
          EP10
                   EPIAOUIC ORTHOXIC
subgroup
         ΕU
                   EUTRIC
subgroup
          EU02
subgroup
                   EUTROCHREPTIC
          EU04
                   EUTROPEPTIC
subgroup
          EU06
                   EUTRIC HYDRIC
subgroup
subgroup
          EU08
                   EUTRIC PACHIC
subgroup
         EU10
                   EUTRIC THAPTIC
subgroup
          EU12
                   EUTRIC VITRIC
          FE
                   FERRUDALFIC
subgroup
          FI
subgroup
                   FIBRIC
          FI02
subgroup
                   FIBRIC TERRIC
         FL02
                   FLUVAQUENTIC
subgroup
         FL06
                   FLUVENTIC
subgroup
subgroup
          FL12
                   FLUVENTIC UMBRIC
          FR10
                   FRAGIAQUIC
subgroup
          FR18
subgroup
                   FRAGIC
          GL02
                   GLOSSAQUIC
subgroup
subgroup
         GL04
                   GLOSSIC
          GL10
                   GLOSSIC UDIC
subgroup
          GL12
subgroup
                   GLOSSIC USTOLLIC
          GL14
                   GLOSSOBORALFIC
subgroup
          GL16
subgroup
                   GLOSSOBORIC
subgroup
          GR
                   GROSSARENIC
```

```
subgroup
          GR01
                  GROSSARENIC ENTIC
                  GROSSARENIC PLINTHIC
subgroup
          GR04
subgroup
          GY
                  GYPSIC
subgroup
          HA
                  HAPLAQUODIC
subgroup
          HA01
                  HAPLAQUIC
          HA02
                  HAPLIC
subgroup
subgroup HA07
                  HAPLOXEROLLIC
subgroup HA09
                  HAPLUDIC
subgroup HA12
                  HAPLUDOLLIC
subgroup HA16
                  HAPLUSTOLLIC
subgroup
          HE
                  HEMIC
         HE02
                  HEMIC TERRIC
subgroup
subgroup
          HΙ
                  HISTIC
subgroup HI02
                  HISTIC LITHIC
         HI06
                  HISTIC PERGELIC
subgroup
subgroup
          HU
                  HUMIC
          HU02
                  HUMIC LITHIC
subgroup
                  HUMIC PERGELIC
subgroup
          HU05
subgroup HU06
                  HUMOXIC
subgroup HU10
                  HUMAQUEPTIC
subgroup HY
                  HYDRIC
subgroup HY02
                  HYDRIC LITHIC
subgroup HY04
                  HYDRIC PACHIC
subgroup HY06
                  HYDRIC THAPTIC
         HY10
subgroup
                  HYDRAQUENTIC
subgroup
          KA
                  KANDIC
          KH
                  KANHAPLIC
subgroup
          LE
subgroup
                  LEPTIC
subgroup LI
                  LIMNIC
subgroup LI02
                  LITHIC
subgroup LI04
                  LITHIC MOLLIC
subgroup LI05
                  LITHIC PETROCALCIC
subgroup LI06
                  LITHIC RUPTIC-ALFIC
subgroup LI07
                  LITHIC RUPTIC-ARGIC
subgroup
         LI08
                  LITHIC RUPTIC-ENTIC
                  XEROLLIC
          LI09
                  LITHIC RUPTIC-ENTIC
subgroup
subgroup
          LI10
                  LITHIC UDIC
subgroup
          LI11
                  LITHIC
                  RUPTIC-XERORTHENTIC
                  LITHIC ULTIC
          LI12
subgroup
subgroup
          LI13
                  LITHIC RUPTIC-ULTIC
          LI14
                  LITHIC UMBRIC
subgroup
          LI15
subgroup
                  LITHIC
                  RUPTIC-XEROCHREPTIC
                  LITHIC USTIC
subgroup
          LI16
subgroup
         LI18
                  LITHIC USTOLLIC
         LI20
                  LITHIC VERTIC
subgroup
         LI22
                  LITHIC XERIC
subgroup
         LI24
                  LITHIC XEROLLIC
subgroup
subgroup
          MO
                  MOLLIC
          NA06
                  NATRIC
subgroup
                  OCHREPTIC
          OC
subgroup
          OR
                  ORTHIDIC
subgroup
```

subgroup	OR01	ORTHIC
subgroup	OR02	ORTHOXIC
subgroup	OX	OXIC
subgroup	PA	PACHIC
subgroup	PA02	PACHIC UDIC
subgroup	PA04	PACHIC ULTIC
subgroup	PA06	PACHIC VITRIC
subgroup	PA08	PALEUSTOLLIC
subgroup	PA10	PALEXEROLLIC
subgroup	PA20	PARALITHIC VERTIC
subgroup	PE	PERGELIC VERTICE
	PE01	PERGELIC
subgroup	PEUI	RUPTIC-HISTIC
1	DECO	
subgroup	PE02	PERGELIC SIDERIC
subgroup	PE04	PETROCALCIC
subgroup	PE06	PETROCALCIC USTALFIC
subgroup	PE08	PETROCALCIC USTOLLIC
subgroup	PE14	PETROCALCIC XEROLLIC
subgroup	PE16	PETROFERRIC
subgroup	PE20	PETROGYPSIC
subgroup	PK	PLACIC
subgroup	PK10	PLAGGEPTIC
subgroup	PK12	PLAGGIC
subgroup	PL	PLINTHAQUIC
subgroup	PL04	PLINTHIC
subgroup	PL06	PLINTHUDIC
subgroup	PS	PSAMMAQUENTIC
subgroup	PS02	PSAMMENTIC
subgroup	QU	QUARTZIPSAMMENTIC
subgroup	RE	RENDOLLIC
subgroup	RH	RHODIC
subgroup	RU02	RUPTIC-ALFIC
		RUPTIC-LITHIC
subgroup	RU09	
subgroup	RU11	RUPTIC-LITHIC-ENTIC
subgroup	RU15	RUPTIC-LITHIC-XEROCH
,		REPTIC
subgroup	RU17	RUPTIC-ULTIC
subgroup	RU19	RUPTIC-VERTIC
subgroup	SA	SALORTHIDIC
subgroup	SA02	SAPRIC
subgroup	SA04	SAPRIC TERRIC
subgroup	SI	SIDERIC
subgroup	SO	SOMBRIC
subgroup	SO04	SOMBRIHUMIC
subgroup	SP	SPHAGNIC
subgroup	SP02	SPHAGNIC TERRIC
subgroup	SP04	SPODIC
subgroup	SU	SULFIC
subgroup	TE	TERRIC
subgroup	TH	THAPTIC
subgroup	THO4	THAPTO-HISTIC
subgroup	THO6	THAPTO-HISTIC TROPIC
subgroup	TO	TORRERTIC
subgroup	TO02	TORRIFLUVENTIC
Dangroup	1002	TOTALLIOVENITE

subgroup	TO04	TORRIORTHENTIC
subgroup	T006	TORRIPSAMMENTIC
subgroup	TO10	TORROXIC
	TR	TROPAQUODIC
subgroup		
subgroup	TR02	TROPEPTIC
subgroup	TR04	TROPIC
subgroup	UD	UDERTIC
subgroup	UD01	UDALFIC
subgroup	UD02	UDIC
subgroup	UD03	UDOLLIC
subgroup	UD05	UDORTHENTIC
subgroup	UD07	UDANDIC
subgroup	UD10	UDOXIC
suborder	AAQ	AQUALFS
suborder	ABO	BORALFS
suborder	AUD	UDALFS
suborder	AUS	USTALFS
suborder	AXE	XERALFS
suborder	CAQ	AQUANDS
suborder	CCR	CRYANDS
suborder	CTO	TORRANDS
suborder	CUD	UDANDS
suborder	CUS	USTANDS
suborder	CVI	VITRANDS
suborder	CXE	XERANDS
suborder	DAR	ARGIDS
suborder	DOR	ORTHIDS
suborder	EAQ	AQUENTS
suborder	EAR	ARENTS
suborder	EFL	FLUVENTS
suborder	EOR	ORTHENTS
suborder	EPS	PSAMMENTS
suborder	HFI	FIBRISTS
suborder	HFO	FOLISTS
suborder	HHE	HEMISTS
suborder	HSA	SAPRISTS
suborder	IAN	ANDEPTS
suborder	IAQ	AQUEPTS
suborder	IOC	OCHREPTS
suborder	ITR	TROPEPTS
suborder	IUM	
		UMBREPTS
suborder	MAL	ALBOLLS
suborder	MAQ	AQUOLLS
suborder	MBO	BOROLLS
suborder	MRE	RENDOLLS
suborder	MUD	UDOLLS
suborder	MUS	USTOLLS
suborder	MXE	XEROLLS
suborder	OAQ	AQUOX
suborder	OHU	HUMOX
suborder	OOR	ORTHOX
suborder	OPR	PEROX
suborder	OTO	TORROX
suborder	OUD	UDOX
	000	02011

```
suborder
          OUS
                   USTOX
          SAQ
                   AQUODS
suborder
suborder
          SFE
                   FERRODS
          SHU
                   HUMODS
suborder
suborder
          SOR
                   ORTHODS
suborder
          UAO
                   AOUOLTS
suborder
          UHU
                   HUMULTS
suborder
          UUD
                   UDULTS
          UUS
                   USTULTS
suborder
          UXE
                   XERULTS
suborder
          VTO
                   TORRERTS
suborder
suborder
          VUD
                   UDERTS
suborder
          VUS
                   USTERTS
          VXE
                   XERERTS
suborder
          ΒY
                   Bouldery
texture
          BYV
                   Very Bouldery
texture
texture
          BYX
                   Extremely Bouldery
          С
                   Clay
texture
          CB
                   Cobbly
texture
          CBA
                   Angular Cobbly
texture
          CBV
                   Very Cobbly
texture
          CBX
texture
                   Extremely Cobbly
texture
          CE
                   Coprogenous Earth
          CEM
texture
                   Cemented
          CIND
texture
                   Cinders
          CL
texture
                   Clay Loam
          CN
texture
                   Channery
texture
          CNV
                   Very Channery
texture
          CNX
                   Extremely Channery
          COS
texture
                   Coarse Sand
texture
          COSL
                   Coarse Sandy Loam
texture
          CR
                   Cherty
texture
          CRC
                   Coarse Cherty
          CRV
texture
                   Very Cherty
                   Extremely Cherty
texture
          CRX
texture
          DE
                   Diotomaceous Earth
          FB
                   Fibric Material
texture
                   Flaggy
texture
          FL
          FLV
texture
                   Very Flaggy
          FLX
                   Extremely Flaggy
texture
          FRAG
                   Fragmental Material
texture
          FS
texture
                   Fine Sand
texture
          FSL
                   Fine Sandy Loam
texture
          G
                   Gravel
texture
          GR
                   Gravelly
texture
          GRC
                   Coarse Gravelly
texture
          GRF
                   Fine Gravelly
texture
          GRV
                   Very Gravelly
texture
          GRX
                   Extremely Gravelly
texture
          GYP
                   Gypsiferous Material
texture
          MH
                   Hemic Material
          ICE
                   Ice or Frozen Soil
texture
texture
          TND
                   Indurated
texture
          L
                   Loam
```

texture	LS LVFS MARL MK MPT MUCK PEAT PT RB S SC SCL SG SH SHV SHX SI SIC SIL SL SP SR ST STV SY SYX UNK UWB VAR VFS VFSL WB	Loamy Sand Loamy Very Fine Sand Marl Mucky Mucky-Peat Muck Peat Peaty Rubbly Sand Sandy Clay Loam Sand and Gravel Shaly Very Shaly Extremely Shaly Silt Silty Clay Loam Sandy Loam Sandy Loam Santy Silt Silty Clay Loam Silt Loam Sandy Loam Santy Silt Silty Clay Loam Silt Loam Santy Silt Silty Clay Loam Silt Loam Sandy Loam Sapric Material Stratified Stony Very Stony Extremely Stony Slaty Very Slaty Extremely Slaty Unknown Unweathered Bedrock Variable Very Fine Sand Very Fine Sand Very Fine Sand Very Fine Sandy Loam Weathered Bedrock	
unified	СН	Group Symbol - CH	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.
unified	CL	Group Symbol - CL	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay.
unified	GC	Group Symbol - GC	COARSE-GRAINED SOILS, Gravels, Gravels with fines, Clayey Gravel.

unified	GM	Group Symbol - GM	COARSE-GRAINED SOILS, Gravels, Gravels with fines, Silty Gravel.
unified	GP	Group Symbol - GP	COARSE-GRAINED SOILS, Gravels, Clean gravels, Poorly Graded Gravel.
unified	GW	Group Symbol - GW	COARSE-GRAINED SOILS, Gravels, Clean Gravels; Well-graded gravel.
unified	МН	Group Symbol - MH	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Elastic silt.
unified	ML	Group Symbol - ML	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Silt.
unified	ОН	Group Symbol - OH	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Organic Clay or Organic Silt.
unified	OL	Group Symbol - OL	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Organic Clay or Organic Silt.
unified	PT	Group Symbol - PT	Highly organic soils, Peat.
unified	SC	Group Symbol - SC	COARSE-GRAINED SOILS, Sands with fines, Clayey sand.
unified	SM	Group Symbol - SM	COARSE-GRAINED SOILS, Sands with fines, Silty Sand.

unified	SP	Group Symbol - SP	COARSE-GRAINED SOILS, Sands, Clean Sands, Poorly graded sand.
unified	SW	Group Symbol - SW	COARSE-GRAINED SOILS, Sands, Clean Sands, Well-graded sand.
unitkind	FAMILY FAMPHS GRTGRP MISC SERIES SUBGRP SUBORD VAR	FAMILY FAMILY PHASE GREAT GROUP MISCELLANEOUS SERIES SUBGROUP SUBORDER VARIANT	
weg	1	Wind Erodibility Group 1	Surface texture - VFS,FS,S,COS. Percent aggregates - 1, Wind erodibility index - 310 t/a/y.
weg	2	Wind Erodibility Group 2	Surface texture - LVFS, LFS, LCOS, Sapric material. Percent aggregates - 10, Wind erodibility index - 134 t/a/y.
weg	3	Wind Erodibility Group 3	Surface texture - VFSL,FSL,SL,COSL. Percent aggregates - 25, Wind erodibility index - 86 t/a/y.
weg	4	Wind Erodibility Group 4	Surface Texture - C,SIC,noncalcareous CL,SICL(>35% CLAY). Percent aggregates - 25, Wind erodibility index - 86 t/a/y.
weg	4L	Wind Erodibility Group 4L	Surface texture - calcareous L/SIL/CL, SICL. Percent aggregates -25, Wind Erodibility index - 86 t/a/y.

weg	5	Wind Erodibility Group 5	Surface texture - noncalcareous L/SIL(<20% CLAY),SCL,SC. Percent aggregates 40, Wind erodibility index - 56 t/a/y.
weg	6	Wind Erodibility Group 6	Surface texture - noncalcareous L/SIL(>20% CLAY), CL(<35% CLAY). Percent aggregates - 45, Wind erodibility index - 48 t/a/y.
weg	7	Wind Erodibility Group 7	Surface texture - SI, noncalcareous SICL(<35% CLAY). Percent aggregates - 50, Wind erodibility index - 38 t/a/y.
weg	8	Wind Erodibility Group 8	Erosion not a problem.
wtkind	APPAR	Apparent water table	Water stands in a freshly dug hole.
wtkind	ARTES	Artesian water table	Water with a hydrostatic head below an impermeable layer.
wtkind	PERCH	Perched water table	Water standing above an unsaturated zone.

