

TensorRT-LLM Optimizing LLM Inference

SoTA Performance for Large Language Models for Production Deployments

Challenges: LLM performance is crucial for real-time, cost-effective, production deployments. Rapid evolution in the LLM ecosystem, with new models & techniques released regularly, requires a performant, flexible solution to optimize models.

TensorRT-LLM is an open-source library to optimize inference performance on the latest Large Language Models for NVIDIA GPUs. It is built on FasterTransformer and TensorRT with a simple Python API for defining, optimizing, & executing LLMs for inference in production.

SoTA Performance

Leverage TensorRT compilation & kernels from FasterTransformers, CUTLASS, OAI Triton, ++

Ease Extension

Add new operators or models in Python to quickly support new LLMs with optimized performance

```
# define a new activation
def silu(input: Tensor) → Tensor:
    return input * sigmoid(input)

#implement models like in DL FWs
class LlamaModel(Module)
    def __init__(...)
    self.layers = ModuleList([...])

def forward (...)
    hidden = self.embedding(...)

for layer in self.layers:
    hidden_states = layer(hidden)

return hidden
```

LLM Batching with Triton

Maximize throughput and GPU utilization through new scheduling techniques for LLMs

TensorRT-LLM in the LLM Ecosystem

Start with NeMo Framework for optimized inference, TensorRT-LLM for detailed control

TensorRT-LLM in the DL Compiler Ecosystem

TensorRT-LLM builds on TensorRT Compilation

TensorRT-LLM

```
Built on-top of TensorRT

Leverages TensorRT for general graph optimizations & fast kernels

Adds LLM specific optimizations:

KV Caching & Custom MHA Kernels

Inflight batching, Paged KV Cache (Attention)

Multi-GPU, Multi-Node

& more

ONLY for LLMs
```

TensorRT

General purpose Deep Learning Inference Compiler
Graph rewriting, constant folding, kernel fusion
Optimized GEMMs & pointwise kernels
Kernel Auto-Tuning
Memory Optimizations
& more
All Al Workloads

TensorRT-LLM Usage

Create, Build, Execute

- Instantiate model and load the weights
 - Load pre-built models or define via TensorRT-LLM Python APIs
- Build & serialize the engines
 - Compile to optimized implementations via TensorRT
 - Saved as a serialized engine
- Load the engines and run optimized inference!
 - Execute in Python, C++, or Triton

O. Trained Model in FW

NeMo, HuggingFace, or from DL Frameworks

1. Model Initialization

Load example model, or create one via python APIs

2. Engine Building

Optimized model via TensorRT and custom kernels

TensorRT-LLM Engine

TRT Engine

Plugins

3. Execution

Load & execute engines in Python, C++, or Triton

TensorRT-LLM Usage

Running Llama in TensorRT-LLM

TensorRT-LLM Llama Getting Started Blog TensorRT-LLM Examples

- Install and Build TensorRT-LLM from Github
- Download the pre-trained model
- Compile the model in TensorRT-LLM
- Run Optimized Inference!

```
$ python3 examples/llama/build.py \
    --model_dir meta-llama/Llama-2-7b-chat-hf \
    --dtype float16 \
    --use_gpt_attention_plugin float16 \
    --use_gemm_plugin float16 \
    --output_dir examples/llama/out
```

Compile the Model

```
$ python3 examples/llama/run.py --engine_dir=examples/llama/L40 --
max_output_len 100 --tokenizer_dir meta-llama/Llama-2-7b-chat-hf --
input_text "How do I count to nine in French?"
```

Run the Model

TensorRT-LLM Usage

Technical details for Compilation steps

build.py

- Instantiates model & load weights from pretrained model
- Define builder configuration for optimization requirements
- Build and serialize the engines

run.py

- Load the prebuilt engines
- Initialize a runtime session
- Run optimized inference!

```
# build.py
def build([...]):
    # define TRT builder config
builder_config = builder.create_builder_config([...])

# instantiate the TensorRT-LLM Llama model & Load weights
trtllm_llama = trtllm.models.Llama([...])
load_from_hf_llama(tensorrt_llm_llama, hf_llama, [...])

# build the TRT engines
network = builder.create_network()
network.set_named_parameters(trtllm_llama.named_parameters())
engine = builder.build_engine(network, builder_config)

# serialize engine
serialize_engine(engine, path)
```

```
# run.py
def run(path, [...]):
    # open the serialized model
    with open(path, 'rb') as f:
        engine_buffer = f.read()
    llama = trtllm.runtime.GenerationSession(engine_buffer, [...])
    # ...

# run inference
output = llama.decode(input, input_lengths, sampling_config)
```

Instantiating, building, & executing inference in TensorRT-LLM

Inference Performance

TensorRT-LLM has Speed-of-Light Performance

- 8x faster Performance
 - Custom MHAs, Inflight-batching, paged & quantized KV cache, & more drive inference performance
- 5x reduction in TCO
 - FP8 & Inflight-batching performance allows for H100 to improve TCO significantly
- 5x reduction in Energy
 - Performance allows for reduce energy / inference allowing for more efficient use of datacenters

TensorRT-LLM Performance Improvement

Up to 9x faster than baseline LLM implementations in DL frameworks

TensorRT-LLM Performance Across Architectures

H100 up to 4.6x faster than A100 on TensorRT-LLM

TensorRT-LLM Performance

End-to-End Performance Using Inflight Batching & Triton

TensorRT-LLM Performance

Advance Techniques can further improve TensorRT-LLM performance & memory consumption

TensorRT-LLM Backend

Deployment using Triton Server

TensorRT-LLM Backend

 TensorRT-LLM backend uses the Triton Inference server to deploy and server the models.

Feature Rich

 Inflight-batching allows for increased performance and throughput in Model inference.

Multi-client support

• HTTP, gRPC and Python/C++ Client Library can be used to fetch results from the inference server.

