1002.
$$f(x) = x \left| \cos \frac{\pi}{x} \right| (x \neq 0), \ f(0) = 0.$$

1003.
$$f(x) = \sqrt{\sin x^2}$$
.

1004.
$$f(x) = \frac{x}{1+e^{1/x}} (x \neq 0), \ f(0) = 0.$$

1005.
$$f(x) = \sqrt{1 - e^{-x^2}}$$
.

1006,
$$f(x) = |\ln |x|| (x \neq 0)$$
.

1007.
$$f(x) = \arcsin \frac{2x}{1+x^2}$$
.

1008.
$$f(x) = (x-2) \arctan \frac{1}{x-2} (x \neq 2)$$
, $f(2) = 0$.

1009. Показать, что функция $f(x) = x \sin \frac{1}{x}$ при $x \neq 0$ и f(0) = 0 непрерывна при x = 0, но не имеет в этой точке ни левой, ни правой производной.

1009.1. Пусть x_0 — точка разрыва 1-го рода функции f(x). Выражения

$$f'_{-}(x_0) = \lim_{h \to -0} \frac{f(x_0 + h) - f(x_0 - 0)}{h}$$

И

$$f'_{+}(x_0) = \lim_{h \to +0} \frac{e(x_0 + h) - f(x_0 + 0)}{h}$$

называются обобщенными односторонними (соответственно левой и правой) производными функции f(x) в точке x_0 .

Найти $f_{-}(x_0)$ и $f_{+}(x_0)$ в точках разрыва x_0 функции f(x), если:

a)
$$f(x) = \sqrt{\frac{x^2 + x^3}{x}}$$
; 6) $f(x) = \arctan \frac{1+x}{1-x}$;

B)
$$f(x) = \frac{1}{1 + e^{1/x}}$$
.

1010. Пусть

$$f(x) = \begin{cases} x^3, & \text{если } x \leqslant x_0; \\ ax + b, & \text{если } x > x_0. \end{cases}$$