Technical Report: Final Project Sales Forecasting

Ayman Mushtaq Ahmad, Amisha Tiwari, Ronhit Neema Khoury College of Computer Science ahmad.ay@northeastern.edu

November 24, 2024

Contents

1	Introduction	3
2	Methodology2.1 Data Loading and Exploration2.2 Feature Engineering2.3 Model Implementation2.4 Evaluation	3 3 3 3
3	Results	3
4	Discussion	4
5	Conclusion	4
6	References	4
A	Appendix A: Code	4
В	Appendix B: Additional Figures	4

1 Introduction

The Sales Forecasting Project aims to accurately predict sales using machine learning techniques. This report documents the steps taken, including data preprocessing, feature engineering, model implementation, and evaluation.

2 Methodology

2.1 Data Loading and Exploration

The dataset was loaded using Pandas and explored to understand its structure:

- Null and duplicate values were identified and handled.
- Summary statistics of numerical features were generated.
- Categorical features were identified for encoding.

2.2 Feature Engineering

- Categorical variables were encoded using LabelEncoder.
- Features were standardized using StandardScaler for models requiring normalization.

2.3 Model Implementation

The following machine learning models were implemented:

- Linear Regression: A simple baseline model for comparison.
- Lasso and Ridge Regression: Regularized linear models to handle multi-collinearity.
- Decision Tree Regressor: Captures non-linear relationships.
- Random Forest Regressor: An ensemble method for improved accuracy.
- Extra Trees Regressor: Another ensemble model focusing on feature importance.

2.4 Evaluation

Models were evaluated using the R² score, which measures the proportion of variance explained by the model.

3 Results

• Linear Regression: $R^2 = 0.72$

• Lasso Regression: $R^2 = 0.68$

• Ridge Regression: $R^2 = 0.71$

• Decision Tree: $R^2 = 0.85$

• Random Forest: $R^2 = 0.89$

• Extra Trees: $R^2 = 0.88$

Random Forest achieved the highest accuracy, demonstrating its effectiveness in handling complex data relationships.

4 Discussion

The results highlight the benefits of ensemble methods for sales forecasting. While linear models provide a baseline, tree-based models excel in capturing non-linear patterns. Feature standardization and encoding were crucial for model performance.

5 Conclusion

This project successfully implemented multiple models for sales forecasting. We are working on working with the best model and proceed with the remaining aspects of our Project Scope.

6 References

A Appendix A: Code

B Appendix B: Additional Figures