$$f(x) : e^{\sqrt{\frac{2\pi i}{x-1}}} \cdot \frac{1}{2\sqrt{\frac{2\pi i}{x-1}}} \cdot \left(\frac{1(x-1) - (1)(x+1)}{(x-1)^2}\right)$$

2. faxlin(Tx)

$$f'(x) : \left(\frac{1}{1+\sqrt{x+1}}, \frac{1}{2\sqrt{x+1}}, 1\right) - \frac{1}{2\sqrt{x+1}}, 1$$

4.
$$2e^{x} cos x$$
 $\frac{2d}{dx} \left(e^{x} cos x \right)$
 $\frac{2}{dx} \left(e^{x} (cos x) + \left(e^{x} (-sen x) \right) \right)$
 $\frac{2}{dx} \left(e^{x} cos x - e^{x} sen x \right)$
 $\frac{2}{dx} \left(e^{x} cos x - 2e^{x} sen x \right)$

5.
$$(x^2 + 5x + 3) \ln x$$

 $(2x+5)(\ln x) + (x^2 + 5x + 3)$
 $(2x+5)(\ln x) + x^{2/2} + 5x + \frac{3}{x}$

$$(2x+5)(1nx) + x+5+\frac{3}{x}$$

00

6

6

-

-

0

C

Committee

C

6

6

C

0

13
$$y = e^{x}$$
 $y' = e^{x}(x+e^{x}) - (1+e^{x})(e^{x})$

$$(x+e^{x})^{e}$$

$$= \frac{x e^{x} + e^{x} - e^{x} - e^{x}}{(x + e^{x})^{2}} = \frac{e^{x} (x - 1)}{(x + e^{x})^{2}}$$

14.
$$e^{x}-1$$
 $y'=(e^{x})(e^{x}+9)-[(e^{x})(e^{x}-1)]$ $=$ $e^{x}+9e^{x}-e^{x}+e^{x}$ $=$ $(e^{x}+9)^{2}$ $=$ $(e^{x}+9)^{2}$

$$= \frac{9e^{x}}{(e^{x}+8)^{z}}$$

-

-3

4

3

-

-

--

10

15.
$$y = \frac{e^{2x}}{\sqrt{x}} = \frac{(e^{x})^{2}}{\sqrt{x}} \quad y' = \frac{(2e^{x} \cdot e^{x})(\sqrt{x}) - (\frac{1}{2}x \cdot e^{2x})}{\sqrt{x}}$$

17.
$$y=cos(\frac{x+1}{x+1})$$

 $y'=cos(\frac{x+1}{x+1})$. $\left(\frac{-2}{(x-1)^2}\right)=\frac{2!}{(x-1)^2}$ sen $\left(\frac{x+1}{x-1}\right)$

KENTO LOUSE LEAT TO DEAT TOP

18
$$y = sen(\sqrt{3x^2+1})$$

 $y' = cos(\sqrt{3x^2+1}) \left(\frac{1}{2\sqrt{3x^2+1}}\right) (6x)$

$$= \frac{3x}{\sqrt{3x^2-1}} \cos\left(\sqrt{3x^2+1}\right)$$

$$f'(x) = 4x^3 + 10x^2$$

 $f''(x) = 12x^2 - 20x^{-3}$

$$f''(x) = 24x + 60x^4$$

 $f''(x) = 24 - 240x^{-5}$

21 Obtener
$$f''(x)$$
 de $\frac{1-e^x}{2+e^x}$

$$f'(x) = \frac{(-e^{x})(2+e^{x}) - (e^{x})(1-e^{x})}{(2+e^{x})^{2}}$$

$$= \frac{-2e^{x} - e^{2x} - e^{x} + e^{2x}}{(2+e^{x})^{2}} = \frac{-3e^{x}}{(2+e^{x})^{2}}$$

$$f''(x) = \frac{(-3e^{x})\cdot(2+e^{x})^{2}-(2(e^{x}))(-3e^{x})}{(2+e^{x})^{4}}$$

23.
$$f(x) = (x^2 + 1)^{-2}$$

 $f'(x) = -2(x^2 + 1)^{-3} \cdot 2x$
 $\frac{-4x}{(x^2 + 1)^3}$

24.
$$y = (2x^2 + 4x + 3)^{50}$$

 $y = (2x^2 + 4x + 3)^{50}$
 $y = (2x^2 + 4x + 3)^{49} \cdot (4x + 4)$
 $y = (2x^2 + 4x + 3)^{49} \cdot (4x + 4)$
 $y = (2x^2 + 4x + 3)^{50}$

25.
$$y = \sqrt{\frac{2x}{x+1}}$$

be be be be be be be ded as de de

-3

$$3^{\frac{1}{2}} = \frac{1}{2\sqrt{\frac{2x}{x^{1}}}} \left(\frac{2/x+2-2/x}{(x+1)^{2}}\right) =$$

$$f'(x) = \frac{1}{\cos(4x^3+x)} \left(-\sin(4x^3+x)\right) \left(\frac{12x^2+1}{\cos(4x^3+x)}\right)$$

$$= \frac{-\sin(4x^3+x)}{\cos(4x^3+x)} \left(\frac{12x^2+1}{\cos(4x^3+x)}\right)$$

27.
$$f(x) = \ln \left(\frac{x^4}{x^3-3} \right)$$

$$f'(x) = \frac{1}{(x^3)(x^3-3)-[(3x^2)(x^4)]}$$

24. In (In (3x3))

$$f(x)$$
: 1 1 9x² 9x 3 3x³ $3x^3$ $3x^3$ $3x^3$ $3x^3$ $3x^3$ $3x^3$ $3x^3$ $3x^3$ $3x^3$