

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Aeronáutica e Aeroespacial

MVO-41 - Mecânica Orbital Sistemas de coordenadas e elementos orbitais

Professor:

Flávio Ribeiro (flaviocr@ita.br)

Site: http://flavioluiz.github.io

Objetivos da aula

- Apresentar os diferentes sistemas de coordenadas utilizados classicamente em mecânica orbital;
- Apresentar os chamados "elementos orbitais", entender suas relações com os diferentes sistemas de coordenadas e tipos de órbitas.

Sistemas de coordenadas

Utilizados para descrever a posição e a órbita de um objeto no Espaço. Para definir, escolhe-se:

- um ponto central (Terra? Sol? planeta?)
- Um plano (eclíptica, equador, órbita, horizonte?)
- Uma direção relevante (ponto "fixo" do céu, Norte?)

Sistema de coordenadas (Heliocêntrico-)Eclíptico

- Origem: Sol
- Plano fundamental: plano da eclíptica
- Direção fundamental: ponto ↑ - Ponto de Aries (interseção do plano da eclíptica com o plano do Equador celeste)

Figure 2.2-1 Heliocentric-ecliptic coordinate system

Sistema de coordenadas (Heliocêntrico-)Eclíptico

- Obliquidade da eclíptica: $\epsilon=23$ graus, 27 minutos
- Efeitos da precessão (cerca de 26000 anos)
- Coordenadas de um objeto:
 - Longitude celeste/eclíptica:
 λ (0 a 360 graus)
 - Latitude celeste/eclíptica:β (- 90 a 90 graus)

Obs.: Esse sistema também pode ser centrado na Terra!

Fonte: Wikipedia

Sistema de coordenadas (Geocêntrico-)Equatorial

- Origem: centro da Terra;
- Plano fundamental: plano do Equador;
- Direção principal: ponto ↑.

Figure 2.2-2 Geocentric-equatorial coordinate system

Sistema de coordenadas (Geocêntrico-)Equatorial

ullet Ascensão reta: lpha

ullet Declinação: δ

Figure 2.2-3 Right ascension-declination coordinate system

Sistema de coordenadas perifocal

- Origem: centro da Terra (ou outro corpo);
- Plano fundamental: plano da órbita;
- Direção principal: direção do periapsis.

Sistema de coordenadas topocêntrico-horizontal

- Origem: observador na superfície da Terra;
- Plano fundamental: plano horizontal;
- Direção principal: Norte (ou Sul).
- Coordenadas:
 - Altitude ou elevação;
 - Azimute;

Fonte: Wikipedia

Resumo dos sistemas de coordenadas

Sistema de coordenadas	Ponto central	Plano funda- mental	Coordenadas		Direção principal
Horizontal	observador	Horizonte	altitude ou elevação	azimute	Norte (ou Sul)
Equatorial	centro da Terra ou do Sol	equador celeste	declinação	ascensão reta	Ponto ↑
Eclíptico	centro da Terra ou do Sol	eclíptica	latitude eclíptica	longitude eclíptica	Ponto ↑
Galáctico	centro do Sol	plano da Galáxia	latitude galáctica	longitude galáctica	Centro da galáxia

Elementos orbitais

Conjunto de **seis** parâmetros que descreve uma órbita e a posição de um corpo nessa órbita.

Dois elementos geométricos:

- semi-eixo maior a;
- excentricidade e

Dois elementos que descrevem o plano orbital:

- Inclinação (i)
- Longitude do nó ascendente (Ω)

Dois outros elementos: orientação da cônica e posição do objeto:

- Argumento do periapsis (ω)
- Anomalia verdadeira ν_O em um instante t_O (época)

Fonte: Wikipedia

Elementos orbitais

Fonte: Fundamentals of Astrodynamics, 1972

Elementos orbitais - outros

Note que os parâmetros anteriores não são únicos! Por exemplo, para definir a geometria da órbita, pode-se usar o semi-latus rectum p.

Outros:

- Argumento do periapsis ω : longitude do periapsis: $\Pi = \Omega + \omega$
- Anomalia verdadeira:
 - lacktriangle anomalia excêntrica E em um tempo t_O
 - 2 anomalia média $M = \frac{2\pi}{T}(t t_0)$
 - outra posição em um tempo específico (ex.: tempo no periapsis)
 - **1** argumento de latitude na época: ângulo entre linha dos nós e \vec{r}_O : $u_O = \omega + \nu_O$;
 - longitude verdadeira na época: ângulo entre o eixo x (Υ) e r_O passando pela linha dos nós: $l_O = \Omega + \omega + \nu_O = \Pi + \nu_0 = \Omega + u_O$ (obs.: ângulos não estão no mesmo plano!!).

Elementos orbitais

Fonte:

Elementos orbitais - órbitas circulares e equatoriais

Em órbita circular:

- Não existe periapsis, logo: argumento/longitude do periapsis não estão definidos (são desnecessários).
- Anomalia verdadeira não está definida, pode-se usar a anomalia média M, argumento de latitude u_O , ou longitude verdadeira I_O .

Em órbita equatorial:

- Não existe linha dos nós (ascendente, descendente), logo longitude do nó ascedente não está definida;
- ullet Pode-se usar: longitude do periapsis $\Pi=\Omega+\omega$

Em órbita circular e equatorial:

• Pode-se utilizar a longitude verdadeira na época: I_O ou a anomalia média M.