Progress report Madis Ollikainen July 31, 2015

Figure 1: Comparison of Nash eq. simulations for uniformly distributed investment talent and investment cap (UU) and Gaussian distributed investment talent and cap (DD). Number of agents N=400, size of ensemble NE=5, simulation duration T=200, beta $\beta=0.05$.

Figure 2: Comparison of Nash eq. simulations for uniformly distributed investment talent and Gaussian distributed investment cap (UD) and Gaussian distributed investment talent and uniformly distributed investment cap (DU). Number of agents N=400, size of ensemble NE=5, simulation duration T=200, beta $\beta=0.05$.

Figure 3: Comparison of Simple Memory Learning (SML) schema cooperation for different distribution (code: Invest.Talent - Invest.Cap - Learning Talent): U - uniform, D - Gaussian. Number of agents N=400, size of ensemble NE=25, simulation duration T=200, beta $\beta=0.05$.

Figure 4: Comparison of Simple Memory Learning (SML) schema gini for different distribution (code: Invest.Talent - Invest.Cap - Learning Talent): U - uniform, D - Gaussian. Number of agents N=400, size of ensemble NE=25, simulation duration T=200, beta $\beta=0.05$.

Figure 5: Comparison of Simple Memory Learning (SML) schema wealth for different distribution (code: Invest.Talent - Invest.Cap - Learning Talent): U - uniform, D - Gaussian. Number of agents N=400, size of ensemble NE=25, simulation duration T=200, beta $\beta=0.05$.

Figure 6: Comparison of Simple Memory Learning (SML) schema efficiency for different distribution (code: Invest.Talent - Invest.Cap - Learning Talent): U - uniform, D - Gaussian. Number of agents N=400, size of ensemble NE=25, simulation duration T=200, beta $\beta=0.05$.