Introdução ao aprendizado de máquina

Aula 4 - Problemas de classificação e regressão logística

- Aplicações
- Função logística
- Entropia cruzada
- Acurácia, precisão e recall
- Classes desequilibradas
- Múltiplas classes

Alguns exemplos

Alguns exemplos de problemas de classificação:

- 1. Filtros de spam.
- 2. Reconhecimento de dígitos.
- 3. O tumor é maligno?
- 4. Em que candidato uma pessoa votará.
- 5. A compra é fraudulenta?
- 6. A receita da empresa será maior que a receita prevista?

Tamanho do tumor: problemas com a regressão linear

Exemplo: o tumor é maligno?

- O que acontece com uma regressão linear nesse exemplo?
- O que ocorre se observarmos um tumor muito maior?

previsão
$$= egin{cases} 1 ext{ se } \hat{y} \geq 0.5 \ 0 ext{ se } \hat{y} < 0.5 \end{cases}$$

Exemplo com várias variáveis

Função Logística

Função logística ou sigmoid

$$h_{ heta}= heta_0+ heta_1x_1+ heta_2x_2$$

$$h_{ heta} = \Omega \left(heta_0 + heta_1 x_1 + heta_2 x_2
ight)$$

Interpretação: previsão é a probabilidade de y = 1

Intuição da fronteira de decisão

$$\hat{y} = \Omega\left(-5 + 2* \mathsf{tamanho_tumor} + 1* \mathsf{idade}\right)$$

Maligno

Benigno

Fronteira de decisão não linear

$$\hat{y}=\Omegaig(heta_0+ heta_1 amanho+ heta_2 ext{idade}+egin{array}{c} heta_2 ext{idade}+ heta_2 ext{idade}^2ig) heta_3 axt{tamanho}^2+ heta_4 ext{idade}^2ig) heta_2 heta_3 heta_3$$

Maligno

Benigno

Vizualizando a regressão logística em 3D

Função custo

Função entropia cruzada

$$\hat{y}=rac{1}{1+e^{-(heta_0+ heta_1*x)}}$$

$$Custo(y_i, \hat{y_i}) = egin{cases} -\log(\hat{y_i}) ext{ se } y_i = 1 \ -\log(1-\hat{y_i}) ext{ se } y_i = 0 \end{cases}$$

Intuição da entropia cruzada

$$J(heta) = -\sum_{i=1}^n y_i \log(\hat{y_i}) + (1-y_i) \log(1-\hat{y_i})$$

Essa função custo gera um problema de otimização convexa

Métrica de performance

Acurácia

Previsão maligno?

		Não	Sim
Era maligno?	o,	40	10
	Não	VN	FP
	Sim	20 FN	30 VP

Problemas com acurácia

Precisão, Revocação (recall) e F-Score

ROC e curva de precisão-recall

Classes desequilibradas

Classes desequilibradas

Lidar com classes desequilibradas é um desafio de vários algoritmos de ML

Temos 3 abordagens diferentes para lidar com esse problema;

- 1. Usar uma métrica que leve em consideração precisão e recall
- 2. Modificar a função custo para punir mais erros na classe menos comum
- Bootstrap uma nova amostragem baseada na base dados original de tal forma que as classes fiquem equilibradas e depois ajustar as probabilidades previstas para obter previsões realistas.

Múltiplas classes

Classificação com múltiplas classes

- 3 partidos políticos: Trabalhista, Liberal e Conservador. Queremos prever em quem um indivíduo votará.
- Podemos treinar 3 modelos diferentes e depois modificar a probabilidade de votar em cada partido.

$$P_{ ext{modificada}} ext{(Trabalhista)} = rac{P(ext{Trabalhista})}{\sum_i P(ext{partido i})} = rac{P(ext{Trabalhista})}{P(ext{Trabalhista}) + P(ext{Liberal}) + P(ext{Conservador})}$$

Classificação com múltiplas classes

