ECE 6350

Brief Review of Numerical Methods

D. R. Wilton

University of Houston

http://www.egr.uh.edu/courses/ece/ece6350/

Some Numerical Considerations

- Interpolation
- Numerical Integration
- Singular Integrals
- "Large" and "small" numbers
- Loss of accuracy resulting from small differences of large numbers

Interpolation

• A function f(x) on any inverval $x \in (a,b)$ can always be mapped

to the unit interval $\xi \in (0,1)$ via the interval-normalizing

transformation
$$\xi = \frac{x-a}{b-a}$$
:

$$f(x) = f(x(\xi)) = f[a + (b-a)\xi] \equiv \tilde{f}(\xi)$$

Linear Interpolation

$$\tilde{f}(\xi) \approx \tilde{f}(0)(1-\xi) + \tilde{f}(1)\xi = f(a)(1-\xi) + f(b)\xi$$

Function samples Interpolation functions

$$= f\left(a\right)\frac{b-x}{b-a} + f\left(b\right)\frac{x-a}{b-a}$$

Quadratic Interpolation

• Each interpolation function is *unity* at its associated interpolation point and *vanishes* at all others

Numerical Integration

• Integrals $\int_a^b f(x) dx$ over any interval (a,b) can always be mapped to the unit interval (0,1) via the transformation $\xi = \frac{x-a}{b-a}$:

$$\int_{a}^{b} f(x)dx = (b-a)\int_{0}^{1} \underbrace{f(a+\xi(b-a))}_{\tilde{f}(\xi)} d\xi$$

$$= (b-a)\int_{0}^{1} \tilde{f}(\xi)d\xi \approx (b-a)\sum_{k=1}^{K} w_{k} \tilde{f}(\xi^{(k)})$$

Numerical Integration, cont'd

$$\int_{0}^{1} \tilde{f}(\xi) d\xi \approx \sum_{k=1}^{K} \underbrace{w_{k}}_{\text{weights}} \tilde{f}(\xi^{(k)})$$
sample points

- weights and sample points:

$$w_k = \frac{1}{K-1} \times \left\{ \frac{1}{3}, \frac{4}{3}, \frac{2}{3}, \frac{4}{3}, \frac{2}{3}, \cdots, \frac{4}{3}, \frac{1}{3} \right\}, \quad \left\{ \text{Note: } \sum_{k=1}^K w_k = 1 \right\}$$

$$\xi^{(k)} = \left\{ 0, \frac{1}{K-1}, \frac{2}{K-1}, \cdots, \frac{K-2}{K-1}, 1 \right\}, \quad K \text{ odd}$$

- error:
$$\frac{K-1}{180} f^{(4)}(x^*) \left(\frac{b-a}{K-1}\right)^5, x^* \in (a,b)$$

Numerical Integration, cont'd

$$\int_{0}^{1} \tilde{f}(\xi) d\xi \approx \sum_{k=1}^{K} w_{k} \tilde{f}(\xi^{(k)})$$

Gauss-Legendre quadrature:

Find $w_k, \xi^{(k)}, k = 1, 2, \dots, K$ such that

$$\int_{0}^{1} \xi^{m} d\xi = \frac{1}{m+1} = \sum_{k=1}^{K} w_{k} \left(\xi^{(k)} \right)^{m}, \quad m = 0, 1, \dots, 2K - 1$$

- sample points are unequally spaced
- weights and sample points are usually irrational
- convergence w.r.t. K is very good for smooth functions
- error:

Note there are K points, 2K parameters (wghts and sample pts), and 2K power series terms in ξ!

Numerical Integration, cont'd

Table 3 Sample points and weighting coefficients for K-point Gauss-Legendre quadrature.

Gaussian quadrature:

$$\int_{0}^{1} \tilde{f}(\xi) d\xi \approx \sum_{k=1}^{K} w_{k} \tilde{f}(\xi^{(k)})$$

Note:
$$\sum_{k=1}^{K} w_k = 1$$

Sample Points, $\xi_1^{(k)}$	Weights, w_k
K=1:	
0.500000000000000	1.00000000000000000
K=2:	
0.211324865405187	0.5000000000000000
0.788675134594813	0.5000000000000000
K=4:	
0.069431844202974	0.173927422568727
0.330009478207572	0.326072577431273
0.669990521792428	0.326072577431273
0.930568155797027	0.173927422568727

Singular Integrals

• Logarithmic singularities are examples of *integrable* singularities:

$$\int_0^1 \ln|x| \, dx = \left(x \ln|x| - x\right)\Big|_{x=0}^1 = -1 \quad \text{since } \lim_{x \to 0} x \ln|x| = 0$$

Singular Integrals, cont'd

- 1/x singularities are examples of singularities integrable only in the *principal value* (PV) sense.
- Principal value integrals must not start or end at the singularity, but must pass through to permit cancellation of infinities

$$\int_0^1 \frac{1}{x} \, dx = \ln|x| \Big|_{x=0}^1 = \infty \quad \text{since } \lim_{x \to 0} \ln|x| = -\infty,$$

but
$$PV \int_{-1}^{2} \frac{1}{x} dx = \lim_{\varepsilon \to 0} \left(\int_{-1}^{-\varepsilon} + \int_{\varepsilon}^{2} \right) \frac{1}{x} dx = \lim_{\varepsilon \to 0} \left[\ln |x| \Big|_{x=-1}^{-\varepsilon} + \ln |x| \Big|_{x=\varepsilon}^{2} \right]$$
$$= \lim_{\varepsilon \to 0} \left[\ln \varepsilon + \ln 2 - \ln \varepsilon \right] = \ln 2$$

Infinite contributions cancel!

Singular Integrals, cont'd

• Singularities like 1/x² are non-integrable:

$$\int_0^1 \frac{1}{x^2} dx = \frac{-1}{x} \Big|_{x=0}^1 = \infty \quad \text{since } \lim_{x \to 0} \frac{1}{x} = \infty$$

and infinite contributions from intervals on

both sides of x = 0 will add, not cancel!

But note that
$$\frac{\operatorname{sgn}(x)}{x^2} = \begin{cases} \frac{1}{x^2}, & x > 0 \\ -\frac{1}{x^2}, & x < 0 \end{cases}$$
 does have a PV integral

Singular Integrals, cont'd

Summary:

- In |x| is integrable at x=0
- $1/x^{\alpha}$ is integrable at x=0 for α <1
- $1/x^{\alpha}$ is non-integrable at x=0 for α =1, or α >1
- $f(x) \operatorname{sgn}(x)/|x|^{\alpha}$ has a PV integral if f(x) is continuous at x=0, for $\alpha < 2$
- Above results translate to singularities at a point x=a via the transformation x → x-a

How Big is "Big"? How Small is "Small"?

if line segment endpoints are sufficiently close, consider them connected

- Suppose, e.g., we want to set $\mathbf{r}_2^1 = \mathbf{r}_1^2$, etc. if the distance between line segments is "small." I.e., if it seems the segments should really be "connected."
- Naïve approach: Set $\mathbf{r}_2^1 = \mathbf{r}_1^2$ if $\left|\mathbf{r}_2^1 \mathbf{r}_1^2\right| < \varepsilon$
- $\varepsilon = 10^{-5} ? 10^{-3} ? 10^{-1} ? 10^{2} ? 10^{6} ?$
- Better approach: Set $\mathbf{r}_{2}^{1} = \mathbf{r}_{1}^{2}$ if $\frac{\left|\mathbf{r}_{2}^{1} \mathbf{r}_{1}^{2}\right|}{\min\left|\mathbf{r}_{2}^{n} \mathbf{r}_{1}^{n}\right|} << 1$ $\Rightarrow \left|\mathbf{r}_{2}^{1} \mathbf{r}_{1}^{2}\right| < \varepsilon \min\left|\mathbf{r}_{2}^{n} \mathbf{r}_{1}^{n}\right|$

All Tests for "Smallness" or "Largeness" Should Be *Relative* Tests

 In the example, we assume we'll have a connection if segment endpoints are close ---relative to, say, the length of the smallest segment. Therefore we should test if

distance between two segment endpoints < s

or, equivalently,

distance between two segment endpoints

< $\varepsilon \times$ smallest segment length

some typical, lower bound measure of LHS quantities

never

distance between two segment endpoints < E

Small Differences of Large Numbers

Consider the following simple integral:

Now shift the integrand, limits, and evaluate:

Small Differences of Large Numbers, cont'd

$$\int_{a}^{a+\pi} (x-a) dx = \left(\frac{x^2}{2} - ax\right) \Big|_{x=a}^{a+\pi} = \frac{\pi^2}{2} = 4.93480220054467...$$

Results for varying values of a

a	upper limit	lower limit	difference
1.0	4.43480220054467/0	-0.50	4.934802200544670
10.0	-45.065197799455⁄300	-50.00	4.934802200544670
100.0	-4995.065197799460000	-5000.00	4.934802200544250
1000.0	-499995.06519779g000000	-500000.00	4.934802200528790
10000.0	-4999995.065197800000000	-50000000.00	4.934802196919910
100000.0	-499999995.065 <i>2</i> 0000000000	-500000000.00	4.934802055358880
1000000.0	-49999999995.06 5 000000000000	-500000000000.00	4.934814453125000
10000000.0	-499999999995,1000000000000000	-50000000000000.00	4.9375000000000000
100000000.0	-499999999999996.000000000000000	-50000000000000000000000000000000000000	9.0000000000000000
1000000000.0	-5000000000000000000000000000000000000	-50000000000000000000000000000000000000	0.0000000000000000000000000000000000000
10000000000.0	-500000000000000 00000.00000000000000000	-50000000000000000000000000000000000000	0.900000000000000
		·	

Lost significant digits

Ques: What happens if the limit π is replaced by an integer? If a is irrational?

With Numerical Integration, the Error Grows Only Half as Fast

$$\int_{a}^{a+\pi} (x-a) dx = \left(\frac{x^2}{2} - ax\right)^{a+\pi} = \frac{\pi^2}{2} = 4.93480220054467\dots$$

- Results for varying values of a, but integral is evaluated by Gauss quadrature
- Sensitivity is less since integrand is *linear*— i.e., we are not squaring any already large quantities
- Observation: Sometimes a numerically obtained result is more accurate than an "exact" one!

	Two Point		
а	Gauss Quadrature		
1.0	4.93480220054467		
10.0	4.93480220054467		
100.0	4.93480220054469		
1000.0	4.9348022005446		
10000.0	4.934802200545/72		
100000.0	4.93480220052/857		
1000000.0	4.9348022005/2857		
1000000.0	4.934802200/16284		
10000000.0	4.93480219431117		
100000000.0	4.934802/10068441		
10000000000.0	4.93480022814947		

With Some Rational Numbers, *No Error*Appears---until Catastrophic Failure Occurs

$$\int_{a}^{a+1} (x-a) dx = \left(\frac{x^2}{2} - ax\right) \Big|_{x=a}^{a+1} = \frac{1}{2} \ (= 0.100000000... \text{ in binary })$$

Results for varying values of a

a	upper limit	lower limit	difference
1.000	0.000	-0.500	0.500
10.000	-49.500	-50.000	0.500
100.000	-4999.500	-5000.000	0.500
1000.000	-499999.500	-500000.000	0.500
10000.000	-4999999.500	-5000000.000	0.500
100000.000	-499999999.500	-500000000.000	0.500
1000000.000	-49999999999.500	-50000000000.000	0.500
10000000.000	-4999999999999.500	-5000000000000.000	0.500
10000000.000	-50000000000000000000000000000000000000	-50000000000000000000000000000000000000	0.000
100000000.000	-50000000000000000000000000000000000000	-50000000000000000000000000000000000000	0.000
10000000000.000	-50000000000000000000000000000000000000	-50000000000000000000000000000000000000	0.000
100000000000.000	-50000000000000000000000000000000000000	-50000000000000000000000000000000000000	0.000