

ANSWER KEY	S	7%. mathongo	77. Internenge	74. Mourongo	w. mathorigo		79. Internetigo 7
. (3)	2. (4)	3. (3)	4. (1)	5. (4)	6. (15)	7. (2)	8. (3125)
. (190) thongo	10. (4) athongo	/11. (4) thongo	//12. (3) thongo	// 13. (1) hongo	// 14. (4) 10000	15. (360)	16. (432)
7. (1)	18. (4)	19. (2)	20. (3)	21. (3)	22. (26)	23. (3)	24. (3)
5. (1) mathongo	26. (10)	27. (4)	28. (4)	29. (2039)	30. (4)		
(3)							
$f(x) = \sin^{-1} \left(\right.$	$\left(\frac{3x^2+x-1}{(x-1)^2}\right) + \cos^{-1}\left(\frac{3x^2+x-1}{(x-1)^2}\right)$	$\frac{x-1}{x+1}$					
$-1 \le \frac{1}{x+1} \le 1$	1						
$\Rightarrow -1 \le 1 - $ $\Rightarrow -2 \le \frac{-2}{x+1}$ $\Rightarrow 0 \le \frac{1}{x+1} \le $	≤0 mathongo						
,	\dots (i) athongo						
(2 1)	$\overline{(x-1)^2}$) $0.5 \leq 1$ mathongo $0.5 \leq 3x^2+x-1 \leq (x^2+x^2)$						
Now, $-(x-1)$ $\Rightarrow 4x^2 - x \ge 1$	$\left(1 ight) ^{2}\leq 3x^{2}+x-1,\ x^{2}$ $0\ ,\ x eq 1$						
$\Rightarrow x(4x-1)$ $\Rightarrow x \in \left(-\infty\right)$ And $3x^2 + x$		}(ii) _{thongo}					
	-						
Domain of the	e function $\sin^{-1}\left(\frac{3x^2}{(x^2-x^2)^2}\right)$	$\frac{+x-1}{-1)^2}$ from the equ	ations (ii) & (iii) is	///. mathongo			
Now the dom	$\left \cup \left[rac{1}{4}, \; rac{1}{2} ight] \ldots (iv) ight.$ ain of the given functon is $x \in \left[rac{1}{4}, \; rac{1}{2} ight] \cup \left\{ 0 ight. ight]$	tion will be the inter	section of the equation	ion (i) & (iv)			
(4) $f(x) = \ln(4x + \cos^{-1}(\frac{10}{x}))$		-1(4x+3) hongo					
(i) $4x^2 + 11x$ $4x^2 + 8x + 3$ (4x + 3)(x + 1)	x + 6 > 0 x + 6 > 0						
	(0)						
$(ext{ii}) \ 4x + 3 \in x \in [-1, -1/4]$ $(ext{iii}) \ rac{10x + 6}{3}$							
$x \in \left[-rac{9}{10}, -rac{9}{10}, -rac{3}{4}, -ootage -$	$\left[-\frac{3}{10}\right]$ mathons $\frac{1}{2}$ $\alpha = -\frac{3}{4}, \beta =$	$-\frac{1}{2}$ mathongo					
`	/// mathongo						

Answer Keys and Solutions

Answer Keys and Solutions

Alls	ver keys and Solutions				JEE Main Crash Course
9.	(190) ongo /// mathongo /// mathongo //				
	Given, $f(n) = \begin{cases} 2n, & \text{if } n = 1, 2, 3, 4, 5 \\ 2n - 11 & \text{if } n = 6, 7, 8, 9, 10 \end{cases}$				
	So, $f(1)=2$, $f(2)=4$, $f(5)=10$ mathongo				
	And $f(6) = 1$, $f(7) = 3$, $f(8) = 5$ $f(10) = 9$				
	$f(g(n)) = \begin{cases} n+1 & ; n \in \text{ odd} \\ n-1 & ; n \in \text{ even} \end{cases}$				
	So, $f(g(10)) = 9 \Rightarrow g(10) = 10$				
	$f(g(1)) = 2 \Rightarrow g(1) = 1$				
	$f(g(2))=1\Rightarrow g(2)=6$ thongo /// mathongo ///				
	$f(g(3))=4\Rightarrow g(3)=2$				
	$f(g(4)) = 3 \Rightarrow g(4) = 7$				
	$f(g(5))=6\Rightarrow g(5)=3$ thongo /// mathongo //				
	So, $g(10) \cdot [g(1) + g(2) + g(3) + g(4) + g(5)]$				
	$=10 \cdot [1+6+2+7+3] = 190$				
10	(4) athongo ///. mathongo ///. mathongo //				
10.	(0)				
	$fog(x) = f(g(x)) = f\left(\frac{x^2}{x^2+1}\right)$				
	$= \frac{x^2}{x^2+1} - 1 = \frac{x^2-x^2-1}{x^2+1} = \frac{-1}{x^2+1}$				
	We know that, $0 \le x^2 < \infty, \ \forall x \in R$				
	$\Rightarrow 1 \leq x^2 + 1 < \infty, \ \forall x \in R \Rightarrow 1 \geq rac{1}{x^2 + 1} > 0, \ \forall x \in R$	$\Rightarrow -1 \leq rac{-1}{x^2+1} <$	$<0,\ orall x\in R$		
	So, range of $fog(x)$ is $[-1, 0] \subset R$.				
	Hence, the function $fog(x)$ is into function and $fog(-x)$	$)=f(g(-x))=rac{1}{2}$	$\frac{-1}{\left(\frac{-1}{x}\right)^2+1} = \frac{-1}{x^2+1} = f$	f(g(x))	
	: $foo(x)$ is an even function. So, it is a many one funct	ion	-2) +1		
	Hence, $fog(x)$ is neither one-one nor onto function.				
11	$\textbf{(4)} \ f:(0,\infty)\to(0,\infty)$				
11.					
	$f(1) = 0$ and $1 \in \text{domain but } 0 \notin \text{co-domain}$				
22	Hence, $f(x)$ is not a function.				
12.	(3) Ithongo /// mathongo /// mathongo //				
	Given,				
	$f(x) = rac{x^2 + 2x + 1}{x^2 + 1}$				
	$f'\left(x\right) = \frac{(x^2+1)(2x+2) - (x^2+2x+1)2x}{(x^2+1)^2}$				
	$(x^2+1)^2$				
	$\Rightarrow f'\left(x\right) = \frac{2\cancel{y}^{\cancel{y}} + 2\cancel{x}^2 + 2\cancel{y} + 2 - 2\cancel{y}^{\cancel{y}} - 4\cancel{x}^2 - 2\cancel{y}}{\left(x^2 + 1\right)^2}$ $\Rightarrow f'\left(x\right) = \frac{2(1 - x^2)}{2(1 - x^2)} = -\frac{2(x + 1)(x - 1)}{2(x + 1)^2}$				
	$\Rightarrow f'\left(x\right) = \frac{2(1-x^2)}{\left(x^2+1\right)^2} = -\frac{2(x+1)(x-1)}{\left(x^2+1\right)^2}$				
	r nath 1 g 				
	-1 1				
	Clearly $f(x)$ is one-one in $(-\infty, -1)$ and also in $(1, \infty)$				
13.	(1)athongo /// mathongo /// mathongo /				
	For one value of n we will get only one corresponding varieties	alue of $f(n)$, so f	(n) is one-one		
	Now, for $n = 2, 4, 6 \cdots$; $f(n) = 4, 8, 12 \dots$				
	for $n = 3, 7, 11 \cdots$; $f(n) = 2, 6, 10 \dots$				
	for $n = 1, 5, 9 \cdots$; $f(n) = 1, 3, 5, 7 \dots$				
	So range of $f(n)$ is N				
	Hence $f(n)$ is onto				
14.	(4)				
	$f(x) = \int x + 1$ if x is odd				
	$f(x) = \begin{cases} x+1 & \text{if } x \text{ is odd} \\ x & \text{if } x \text{ is even} \end{cases}$				
	$\because g:A o ext{A} ext{ such that } g(f(x))=f(x)$				
	\Rightarrow If x is even then $g(x) = x \dots (1)$				
	$\Rightarrow \text{ If } x \text{ is even then } g(x) = x \dots (1)$ If x is odd then $g(x+1) = x+1 \dots (2)$				
	from (1) and (2) we can say that $g(x)=x$ if x is even				
	\Rightarrow If x is odd then $g(x)$ can take any value in set A				
	so number of $g(x) = 10^5 \times 1$				

Answer Keys and Solutions

Answer Keys and Solutions JEE Main Crash Course 22. (26)thongo ///. mathongo ///.

Given that: kf(k) + 2 = 0 for k = 2, 3, 4, 5 which means (k-2), (k-3), (k-4), (k-5) are the factors of this expression.

$$2 = a(-2)(-3)(-4)(-5)$$

$$a = \frac{1}{60}$$

$$a = \frac{1}{60}$$

Put $a = \frac{1}{60}$ in (i), we get /// mathongo // mathong

$$kf(k) + 2 = \frac{1}{60}(k-2)(k-3)(k-4)(k-5)$$

Now put
$$k = 10$$

Now, put
$$k = 10$$
 mathons

$$10f\Big(10\Big)+2=rac{1}{60} imes 8 imes 7 imes 6 imes 5$$

$$10 \ f(10) = 26$$
 So, $52 - 10 \ f(10) = 26$ hongo /// mathongo // mat

23. (3)

Given,

Given,

$$f(x+y)=f(x)\cdot f(y)$$
 and $f(1)=3$

Now taking
$$x = 1 \& y = 1$$
 we get,

$$f(1+1) = f(1) \cdot f(1) \Rightarrow f(2) = 3^2$$

$$f(1+1) = f(1) \cdot f(1) \Rightarrow f(2) = 3^2$$

Similarly $f(2+1) = f(2) \cdot f(1) \Rightarrow f(3) = 3^2 \times 3 = 3^3$

And so on
$$f(n)=3^n$$

So,
$$\sum_{r=1}^{n} f(r) = 3279$$
 mathomat

$$\Rightarrow f(1)+f(2)+f(3)......f(n)=3279$$

$$\Rightarrow 3 + 3^2 + 3^3 \dots + 3^n = 3279$$

$$\Rightarrow 3 imes rac{3^n-1}{3-1} = 3279$$
 mathongo $\Rightarrow 3^n-1 = 1093$ mathon

$$\Rightarrow 3^n - 1 = 2186$$

$$\Rightarrow 3^n \cong 2187 \text{ /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// math$$

$$\Rightarrow 3^n = 2187$$
 Mathongo Mathongo $\Rightarrow 3^n = 3^7$

$$\Rightarrow n = 7$$
24. (3) /// mathongo /// matho

Now taking
$$x = 0$$
 & $y = 0$ in above equation we get,
 $f(0 + 0) = f(0) + f(0) = 1$

$$f(0+0) = f(0) + f(0) - 1 \Rightarrow f(0) = 1$$

$$f(0+0) = f(0) + f(0) - 1 \Rightarrow f(0) = 1$$

Now we know that,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - 1 - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h) - 1}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h) - 1}{h}$$
/// mathongo // mathongo /

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)^{-1}}{h}$$
Now let $\lim \frac{f(h)^{-1}}{h} = k$

So, the equation becomes
$$f'(x) = k$$

Now putting
$$x = 0$$
 in above equation we get,

from putting
$$x=0$$
 in above equation we get, $f'(0)=k\Rightarrow k=2$ {as given $f'(0)=2$ }

$$f'(0)=k\Rightarrow k=2$$
 {as given $f'(0)=2$ } mathongo ma

$$f(x)=2x+c$$
 /// mathongo

Now again taking
$$x=0$$
 we get, $f(0)=2\times 0+c\Rightarrow c=1$ {as $f(0)=1$ }

So,
$$f(x) = 2x + 1$$
 mathong /// mathong

And
$$f(-2) = 2 \times (-2) + 1 \Rightarrow f(-2) = -3$$

Hence,
$$|f(-2)|=3$$

Mathongo Mathongo M

Answer Keys and Solutions 25. (1)athongo ///. mathongo ///.

Given functional equation is

$$f(m+n) = f(m) + f(n); m,n \in N \ldots (1)$$

$$f(m+n)=f(m)+f(n); m, n \in \mathbb{N} \dots (1)$$

Put $m=n=3$ mathongo /// mathongo // mathong

Put
$$m=n=3$$

$$f(3+3)=f(3)+f(3)$$

$$\Rightarrow f(3) = 9[\because f(6) = 18]$$

Put
$$m = 2, n = 1$$
 in equation (1)

$$f(3) = f(2+1) = f(2) + f(1)$$

$$= f(1+1) + f(1)$$

$$f(1) + f(1) + f(1)$$

 $f(1) + f(1)$

$$\Rightarrow f(1)=3$$

$$\therefore f(2) = f(1+1) = f(1) + f(1) = 6$$

Now,
$$f(2) \cdot f(3) = (6)(9) = 54$$

$$f(2) \cdot f(3) = (6)(9) = 54$$
 ongo /// mathongo // mathon

 $f(x+y) = f(x) + f(y) + xy^2 + x^2y$ Differentiate w.r.t. x keeping y constant $f'(x+y)=f'(x)+0+y^2+2xy$

$$f(2) \cdot f(3) = (6)(9) = 54$$
26. (10)

(10)
$$\because \lim_{x \to 0} \frac{f(x)}{x} = 1 \implies f'(0) = 1$$

$$1=f'(x){-}x^2 \ f'(x){=}1+x^2$$

put y = -x

$$f'(x) = 1 + x^2$$

$$f'(3) = 10.$$

 $f'(0) = f'(x) + x^2 - 2x^2$

Given,
$$f(n) + \frac{1}{n}f(n+1) = 1, \forall n \in \{1,2,3\}$$

$$\Rightarrow nf(n) + f(n+1) = n$$

$$\Rightarrow nf(\mathbf{n}) + f(\mathbf{n}+1) = n$$
At $n = 1$,

$$f(1) + f(2) = 1$$
(1)

$$f(1)+f(2)=1$$
(1)

$$2f(2) + f(3) = 2$$
(2)

At
$$n=3$$
, and the mathengo with mathen with mathengo with mathen with mathe

$$3f(3) + f(4) = 3$$
(3)
Put the value of $f(2)$ from equation (1) in equation (2),

Fut the value of
$$f(2)$$
 from equation (1) in equation (2),

$$2(1 - f(1)) + f(3) = 2$$

 $\Rightarrow f(3) = 2f(1)$ (4)

$$\Rightarrow f(3) = 2f(1) \qquad \dots (4)$$
Put the value of $f(3)$ from equation (4) in equation (3),

$$3(2f(1)) + f(4) = 3$$
 mathons when mathons

$$\Rightarrow f(4) = 3 - 6f(1)$$

$$f:\{1,2,3,4\}
ightarrow \{\mathrm{a} \in \mathbb{Z}: |\mathrm{a}| \leq 8\}$$

$$7 + (3) = 3 + (4) = 8$$
 mathongo $7 + (4) = 8$ mathongo $8 + (4) =$

$$\Rightarrow -8 \le 3 - 6f(1) \le 8$$

$$\Rightarrow -8 \le 3 - 6f(1) \le 8$$

$$\Rightarrow -11 \le -6f(1) \le 5$$

$$\Rightarrow -11 \le -0f(1) \le 5$$

 $\Rightarrow \frac{-5}{6} \le f(1) \le \frac{11}{6}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

$$\Rightarrow \frac{-6}{6} \le f\left(1\right) \le \frac{11}{6}$$

 $\Rightarrow f(1) = 0, 1$

Case I:
$$f(1) = 0$$
 mathong $f(2) = 1$, $f(3) = 0$, $f(4) = 3$ mathong $f(3) = 0$ mathong

Case II:
$$f(1) = 1$$

 $\Rightarrow f(2) = 0, \ f(3) = 2, \ f(4) = -3$

$$\Rightarrow$$
 $f(2) = 0$, $f(3) = 2$, $f(4) = -3$
Therefore, two such functions are possible.

www.mathongo.com

Functions Answer Keys and Solutions JEE Main Crash Course 28. (4) Greatest integer function 190 /// mathongo // mathon matho; $y-2 \le x < \pm 1$ hongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo Given series $S = \left[-\frac{1}{3}\right] + \left[-\frac{1}{3} - \frac{1}{100}\right] + \left[-\frac{1}{3} - \frac{2}{100}\right] + \left[-\frac{1}{3} - \frac{3}{100}\right] + \dots + \left[-\frac{1}{3} - \frac{99}{100}\right]$ $\text{General term } T_r = \left[-\frac{1}{3} - \frac{r}{100} \right] = \begin{cases} -1 & 0 \leq r \leq 66 \\ -2 & r > 66 \end{cases}$ $\Rightarrow S = \sum_{r=0}^{66} (-1) + \sum_{r=67}^{99} (-2) = (-67) + (-2) \times 33$ = 133 29. (2039) Given: f(x) = ax - 3 /// mathongo // mathongo /// mathongo // mathongo // mathongo // mathongo // mathongo // mat g(x)= $x^b + c, x \in \mathbb{R} \left(fog\right)^{-1}(x)$ = $\left(\frac{x-7}{2}\right)^{\frac{1}{3}}$ ngo /// mathongo Now, let $h(x)=(f\circ g)(x)$ $\Rightarrow h^{-1}(x) = \left(\frac{x-7}{2}\right)^{\frac{1}{3}}$ mathongo /// mathongo // mathongo /// mathongo // mathon Let $y = \left(\frac{x-7}{2}\right)^{\frac{3}{3}}$ $\Rightarrow y^3 = \left(\frac{x-7}{2}\right)$ $\Rightarrow x = 2y^3 + 7$ So, inverse of $h^{-1}(x)$ is $2x_0^3 + 7$ i.e., mathons we mathons we mathons we mathons we mathons we mathons with mathons and mathons we mathons we mathons with mathons and mathons we mathons are mathons and mathons we mathons and mathons we mathon the mathons are mathons and mathons and mathons are mathons and mathons and mathons are mathons and mathons and mathons are mathons and mathons and mathons are mathons are mathons and mathons are mathons are mathons are mathons and mathons are mathons are mathons are mathons are mathons are mathons and mathons are mathons and mathons are mathons are mathons and mathons are mathons and mathons are mathons are mathons are mathons are mathons are mathons and mathons are mathons are mathons and mathons are mathons at mathons are ma $h(x) = fog(x) = 2x^3 + 7$ Also, $fog(x) = a(x^b + c) - 3$ thongo /// mathongo // mathongo /// mathongo // m $\Rightarrow ax^b + ac - 3 = 2x^3 + 7$ On comparing, we get a=2, b=3, c=5 mathongo /// mathongo // mathongo /// mathongo // ma So, f(x) = 2x - 3 $g(x) = x^3 + 5$ /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo fog(ac) = fog(10) = f(1005) = 2007(gof)(b) = gof(3) = g(3) = 32Therefore. fog(ac)+(gof)(b)=2007+32=203930. (4) Given: $x^2 - 4x + [x] + 3 = x[x]$ $\Rightarrow x^2 - 4x + 3 = x[x] - [x]$ $\Rightarrow (x-1)(x-3) = [x](x-1)$ If x - 3 = [x] $\Rightarrow x – [x] = 3$ $\Rightarrow \{x\} = 3$

which is not Possible, since $\{x\} \in [0, 1)$.

Hence, x = 1 is the only one solution in $(-\infty, \infty)$.