1 Alfabeto, Stringhe, Linguaggi

1.1 Alfabeto

Un Alfabeto è un **insieme finito** di elementi detti **simboli** o **caratteri**. La **cardinalità** è il numero di simboli dell'alfabet.

1.2 Stringhe

La **stringa vuota** è indicata con ϵ .

1.2.1 Operazioni sulle stringhe

Concatenazione Il simbolo è il punto (.) tra stringhe: "nano.tecnologie" diventa "nanotecnologie".

Riflessione Consiste nello scrivere una stringa al contrario, ovvero invertire l'ordine dei suoi simboli (caratteri).

 x^R denota la riflessione della stringa x.

La riflessione della concatenazione di due stringhe è la concatenazione inversa delle loro riflessioni:

$$(xy)^R = y^R x^R$$

Potenza m-esima La potenza della stringa x è al concatenazione di se stessa m volte.

La **potenza** ha la **precedenza** sul concatenamento: $abbc^3 = abbccc$

1.3 Linguaggi

1.3.1 Operazioni sui linguaggi

Unione

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

Concatenazione Il concatenamento di due linguaggi L_1 ed L_2 (notazione L_1L_2) è l'insieme ottenuto concatenando in **tutti i modi possibili**

le stringhe di L_1 con le stringhe di L_2 .

$$L_1L_2 = \{x \mid x = yz \& y \in L_1 \& z \in L_2\}$$

 $\{ab,abc\}\{ab,aa,cb\}=\{abab,abaa,abcb,abcab,abcaa,abccb\}$

Star

$$A* = \{x_1x_2x_3 \dots x_k \mid k \ge 0 \text{ and ogni } x_i \in A\}$$

2 Automi finiti ed Espressioni regolari

2.1 Automi finiti

2.1.1 DFA - Automa Finito Deterministico

È una quintupla:

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

Q è un insieme finito di **stati**.

 Σ è un alfabeto finito (simboli in input).

 $\delta \;$ è una funzione di transizione $Q \times \Sigma \implies Q$

 $q_0 \in Q$ è lo stato iniziale.

F è l'insieme degli **stati finali**.

La funzione di transizione δ si può estendere alle stringhe:

$$\hat{\delta}: Q \times \Sigma^* \implies Q$$

Definizione:

$$\hat{\delta}(q, \epsilon) = q$$

$$\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$$

Il linguaggio riconosciuto (o accettato) da A è:

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$$

I linguaggi riconosciuiti (o accettati) da AUTOMI A STATI FINITI sono chiamati *linguaggi regolari*.

Esempio:

$$\begin{split} \hat{\delta}(q_0, aabbc) &= \delta(\hat{\delta})q_0, aabb), c) \\ &= \delta(\delta(\hat{\delta})q_0, aab), b), c) \\ &= \delta(\delta(\delta(\hat{\delta})q_0, aa), b), b), c) \\ &= \delta(\delta(\delta(\delta(\hat{\delta})q_0, a), a), b), b), c) \\ &= \delta(\delta(\delta(\delta(\delta(\hat{\delta})q_0, \epsilon), a), a), b), b), c) \\ &= \delta(\delta(\delta(\delta(\delta(q_0, a), a), b), b), c) \\ &= \delta(\delta(\delta(\delta(q_0, a), b), b), c) \\ &= \delta(\delta(q_1, b), c) \\ &= \delta(q_1, c) = q_3 \end{split}$$

2.1.2 NFA - Automa Finito Non-Deterministico

È una quintupla:

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

Q è un insieme finito di **stati**.

 Σ è un alfabeto finito (simboli in input).

 δ è una funzione di transizione $Q \times \Sigma \implies 2^Q$

 $q_0 \in Q$ è lo stato iniziale.

F è l'insieme degli **stati finali**.

Per semplicità possiamo estendere la definizione della funzione di transizione agli insiemi di stati:

$$\delta(\{r_1, r_2, \dots, r_k\}, a) = \bigcup \{\delta(r_i, a) \mid i = 1, 2, \dots, k\}$$

La funzione di transizione δ si può estendere alle stringhe:

$$\hat{\delta}:Q\times\Sigma^*\implies 2^Q$$

Definizione:

$$\hat{\delta}(q, xa) = \bigcup_{r \in \hat{\delta}(q, x)} \delta(r, a) = \delta(\hat{\delta}(q, x), a)$$

2.2 Conversione da NFA a DFA

2.2.1 Esempio 1

NFA:

DFA:

C è lo stato morto, siccome il DFA non accetta \emptyset .

C viene inserito nella colonna degli stati perché per ogni stato possibile il DFA richiede un input.

2.2.2 Esempio 2

NFA:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline A & \{A\} & \{A,B\} \\ B & \emptyset & \emptyset \end{array}$$

DFA:

$$\begin{array}{c|cc}
 & 0 & 1 \\
\hline
A & \{A\} & \{A,B\} \\
AB & A \cup \emptyset = \{A\} & \{AB\}
\end{array}$$

AB è uno stato singolo.

AB invece di mettere B perché B non può essere raggiunto da nessuno degli stati precedenti.

Nella riga di AB, colonna degli stati, faccio l'unione di A e B per ogni input.

2.2.3 Esempio 3

NFA:

$$\begin{array}{c|cccc}
 & a & b \\
 & \Rightarrow A & \{A,B\} & \{C\} \\
 & B & \{A\} & \{B\} \\
\hline
 & C & - & \{A,B\}
\end{array}$$

DFA:

BC e C sono stati finali perché sono quelli che contengono la C, che è lo stato finale dell'NFA.

2.3 Conversione da ϵ -NFA a NFA

Per convertire da ϵ -NFA a NFA bisogna usare la ϵ -chiusura.

 ϵ -chiusura La ϵ -chiusura indica tutti gli stati raggiungibili da un determinato stato solo con l'inserimento di ϵ (carattere vuoto).

Stati Finali Diventano stati finali tutti quelli che, tramite la lettura di ϵ , raggiungono lo stato finale dell' ϵ -NFA.

Il **numero degli stati** rimane **uguale**. **Incrementa** il numero degli stati **finali**.

2.4 Espressioni Regolari

Una espressione regolare è un modo dichiarativo per descrivere un linguaggio regolare (ne fornisce una descrizione algebrica).

Esempio: 01 + 10

Un **Linguaggio regolare** su un alfabeto Σ è un linguaggio che può essere espresso mediante:

- Chiusura (*)
- Concatenazione (.)
- Unione (+)

Esempi:

- ab + bca denota l'insieme $\{ab, bca\}$
- ab^* denota l'insieme $\{abn|n\geq 0\}$
- $(ab)^+ + bca$ denota l'insieme $\{bca\} \cup (ab)n|n>0$
- $(aa)^*$ denota l'insieme $\{a2n|n \ge 0\}$
- $(aa)^*a$ denota l'insieme $\{a2n+1|n\geq 0\}$
- $(a+b+(cc)^*)^*$ denota l'insieme ... (esercizio!)
- $1(0+1)^* + 0$ denota i numeri binari

2.4.1 Da espressione regolare ad automa

Unione

Concatenazione

Chiusura

2.4.2 Pumping Lemma

Sia L un linguaggio regolare.

Allora $\exists n$, che dipende solo dal linguaggio, tale che $\forall w \in L, |w| \geq n, w$ si può scrivere come la concatenazione di tre sottostringhe xyz tali che:

$$y \neq \epsilon$$
$$|xy| \le n$$
$$\forall k \ge 0, \ xy^k z \in L$$

3 Grammatiche

3.1 Derivazioni di una Grammatica

La Grammatica è una quadrupla (V, T, P, S):

- \bullet V: insieme delle **variabili** o **non terminali**
- T: insieme dei terminali
- P: insieme delle produzioni o regole di riscrittura
- S: il simbolo **iniziale** o **assioma**. Da questo si parte, e con le regole, si generano le stringhe che formeranno il linguaggio.

Seguendo queste regole si generano delle stringhe che formano un linguaggio.

Esempio Consideriamo le seguente grammatica G_1

$$G_1 = (\{S, A\}, \{a, b\}, S, \{S \implies aAb, aA \implies aaAb, A \implies \epsilon\})$$

$$S \implies \underline{aAb}$$

$$\implies \underline{aaAbb}$$

$$\implies \underline{aaa\underline{A}bbb}$$

$$\implies \underline{aaabbb}$$

3.2 Grammatiche Context-Free

La Grammatica Context-Free è una quadrupla (V, Σ, P, S) :

- V: insieme delle variabili o non terminali
- Σ : insieme dei **terminali**
- P: insieme delle **produzioni** o **regole di riscrittura**
- S: il simbolo **iniziale** o **assioma**. Da questo si parte, e con le regole, si generano le stringhe che formeranno il linguaggio.

La quadrupla contiene queste regole che, seguite, generano delle stringhe. L'insieme di queste stringhe formano il linguaggio L generato dalla grammatica G:

3.3 Alberi Sintattici

Un albero è un **albero sintattico** se:

- \bullet Ogni nodo interno è etichettato con una variabile V.
- Ogni foglia è etichettata con un simbolo in $V \cup T \cup \{\epsilon\}$.

Il **prodotto** di un albero sintattico è la stringa di foglie da **sinistra a destra**. Le derivazioni possono essere:

- Leftmost si espandono per prima le variabili più a sinistra.
- Rightmost si espandono per prima le variabili più a destra.

Una Grammatica si dice **ambigua** se esiste **almeno una** stringa che abbia **due o più alberi** sintattici.

3.4 Automi a Pila - Pushdown Automata (PDA)

Un **PDA** è un modo per implementare una Context-Free Grammar in un modo simile in cui implementiamo un **Linguaggio Regolare** usando gli **Automi a Stati Finiti**.

Essi hanno più memoria grazie allo stack.

Un PDA ha 3 componenti:

- Input stringa di input
- Finite Control Unit in base all'input fa la PUSH o POP dallo stack
- Stack (con memoria infinita)

PDA è una tupla di 7 elementi:

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

dove

- ullet Q è un insieme finito di stati
- Σ è un alfabeto finito di input
- \bullet Γ è un alfabeto finito di pila
- δ è la funzione di transizione
- q_0 è lo stato iniziale
- $Z_0 \in \Gamma$ è il simbolo iniziale per la pila
- $F \subseteq Q$ è l'insieme di stati di accettazione

3.4.1 Diagrammi di transizione

Un PDA può essere rappresentato da un diagramma di transizione in cui le etichette sono della forma

$$a, X/\gamma$$

in cui

- a è il simbolo di **input**
- \bullet X è la cima della pila
- γ è la stringa che sostituisce X sulla pila

3.4.2 Descrizioni istantanee

Un PDA passa da una configurazione ad un'altra configurazione consumando un simbolo di input usando le **descrizioni istantanee** (ID) del PDA. Una ID e' una tripla (q, w, γ) dove

- \bullet q è lo stato in cui si trova l'automa
- w è l'input rimanente (es. 0010). Lettura da sinistra a destra.
- γ è il contenuto della pila (es. ZZZ_0)

3.4.3 Da CFG a PDA

Sia G = (V, T, Q, S) una CFG. Definiamo P_G come

$$(\{q\}, T, V \cup T, \delta, q, S)$$

dove

$$\delta(q, \epsilon A) = \{ (q, \beta) : A \to \beta \in Q \}$$

per $A \in V$, e

$$\delta(q, a, a) = \{(q, \epsilon)\}\$$

per $a \in T$.

Example

$$S \rightarrow aSbS \mid bSaS \mid \epsilon$$

è definito da

$$\begin{split} &\delta(q,\epsilon,S) = \{(q,aSbS),(q,bSaS),(q,\epsilon)\} \\ &\delta(q,a,a) = \{(q,\epsilon)\} \\ &\delta(q,b,b) = \{(q,\epsilon)\} \end{split}$$

per esempio:

$$(q, ab, S) \vdash (q, ab, aSbS) \vdash (q, b, SbS) \vdash (q, b, bS) \vdash (q, \epsilon, S) \vdash (q, \epsilon, \epsilon)$$

3.5 *FIRST*

Data una grammatica e una **stringa** α .

 $FIRST(\alpha)$ è l'insieme dei **terminali** con cui *iniziano* le stringhe derivabili dalla stringa data (α) .

Formalmente:

$$FIRST(\alpha) = \{ a \mid \alpha \to^* a\beta \} \cup \{ \epsilon \mid se \ \alpha \to^* \epsilon \}$$

- 1. se X è un simbolo **terminale** (lettera minuscola) allora FIRST(X) = X.
- 2. se $X \implies \epsilon$ è una **produzione** allora **aggiungi** $FIRST(X) = \{\epsilon\}.$
- 3. se X è un non-terminale e $X \Longrightarrow Y_1, Y_2 \dots Y_K$ è una produzione allora aggiungi $FIRST(Y_1)$ al FIRST(X) se $Y_1 \Longrightarrow \epsilon$ (deriva ϵ) allora aggiungi $FIRST(Y_2)$ al FIRST(X).

3.6 *FOLLOW*

Data una grammatica e una variabile A.

FOLLOW(A) (insieme dei **seguiti**) è l'insieme dei terminali con cui *iniziano* le stringhe che seguono A nelle derivazioni.

Formalmente:

$$FOLLOW(A) = \{a \mid S \to^* \alpha A a \beta\} \cup \{\$ \mid se \ S \to^* \alpha A \}$$

- 1. se X è il **simbolo di start** allora FOLLOW(X) = \$.
- 2. se $A \implies \alpha B\beta$ è una **produzione** allora $FOLLOW(B) = FIRST(\beta)$ eccetto ϵ , se B contiene ϵ .
- 3. se $A \implies \alpha B\beta$ o $A \implies \alpha B\beta$ e $FIRST(\beta)$ contiene ϵ allora **aggiungi** FOLLOW(A) al FOLLOW(B).

3.7 Insieme Guida

L'Insieme Guida di una produzione (es. $A \to \alpha$) indica l'insieme dei TERMINALI con cui iniziano le stringhe generabili partendo dalla produzione stessa (\$ se ci si trova alla fine della parola).

Sostanzialmente serve a capire quali sono le **iniziali** (terminali, ad es. a, b, c, ...) delle stringhe che si possono generare da una specifica produzione.

- $\bullet \ GUI(A \to \alpha) \implies FIRST(\alpha) \ \text{oppure}$
- $\bullet \ GUI(A \to \alpha) \implies FIRST(\alpha) \cup FOLLOW(A)$ se ϵ appartiene al $FIRST(\alpha)$

3.8 Parser LL(1)

3.9 Proprietà principali delle Grammatiche LL(1)

- Non ambigua (esiste solo una derivazione left-most)
- Assenza di Ricorsioni Sinistre

3.9.1 Ricorsioni Sinistre

Si ha una Ricorsione Sinistra quando una variabile *chiama* se stessa

$$S \implies S\alpha$$

questo non è gestibile da un Parser Top-Down. Una produzione del seguente tipo

$$A \implies A\alpha_1 \mid \dots \mid A\alpha_n \mid \beta_1 \mid \dots \mid \beta_m$$

(le stringhe β_i non iniziano con A)

si può sostituire con una fattorizzazione destra in questo modo

$$A \implies \beta_1 A' \mid \dots \mid \beta_m A'$$

$$A' \implies \epsilon \mid \alpha_1 A' \mid \dots \mid \alpha_n A'$$

3.9.2 Fattorizzazione Sinistra

Si ha una **Fattorizzazione Sinistra** quando una variabile ha multiple produzioni con lo stesso prefisso

$$A \implies \mathbf{ab}c \mid \mathbf{ab} \mid \mathbf{ab}b$$

e si risolve così

$$A \implies \mathbf{ab}A'$$
$$A' \implies c \mid \epsilon \mid b$$

3.10 Analizzatore a Discesa Ricorsiva

Ad ogni variabile A con produzioni

$$A \to \alpha_1$$

$$A \to \alpha_2$$

$$\cdots$$

$$A \to \alpha_k$$

si associa una procedura:

function A()

if
$$(cc \in GUI(A \to \alpha_1))$$

body (α_1)

else if $(cc \in GUI(A \to \alpha_a))$

body (α_a)

...

else if $(cc \in GUI(A \to \alpha_k))$

body (α_k)

else ERRORE $(...)$

4 Traduzione Diretta della Sintassi

4.1 Attributi Ereditati o Sintetizzati

Sintetizzati Un attributo sintetizzato per una variabile A in un nodo n dell'albero di parsificazione è definito da una regola semantica associata alla produzione in n, e il suo valore è calcolato solo in termini dei valori degli attributi nei nodi figli di n ed in n stesso. (A è il simbolo a sinistra nella produzione).

$$E \rightarrow E_1 + T \{E.val = E_1.val + T.val\}$$

Ereditati Un attributo ereditato per una variabile A in un nodo n dell'albero di parsificazione è definito da una regola semantica associata alla produzione nel nodo padre di n e il suo valore è calcolato solo in termini dei valori degli attributi del padre di n, di n stesso e dei suoi fratelli. (A è un simbolo nel corpo della produzione, cioè al membro destro).

$$A \rightarrow BCD\{C.in = A.in,\ C.type = B.type\}$$

$$A \to X_1, X_2, \dots, X_n$$

Sintetizzati L'attributo di A è di tipo sintetizzato se il suo valore dipende dal valore degli attributi dei simboli X_1, X_2, \ldots, X_n della parte destra della produzione (S-Attributi)

Ereditati L'attributo di X_i è di tipo ereditato se il suo valore dipende dal valore degli attributi degli altri simboli della parte destra della produzione e dal valore dell'attributo di A.

4.2 Definizioni S-attribuite ed L-attribuite

S-attribuite Una SDD è S-attribuita se tutti gli attributi sono sintetizzati.

L-attribuite Una SDD è L-attribuita se gli attribuiti sono:

- sintetizzati oppure
- ereditati e soddisfano il seguente vincolo: per ogni produzione $A \to X_1, X_2, \dots, X_n$ ogni attributo ereditato di X_i dipende solo da:
 - attributi ereditati o sintetizzati dei simboli X_1, X_2, \dots, X_{j-1} a sinistra di X_j nella produzione
 - attributi ereditati di A
 - attributi ereditati o sintetizzati di X_j purché non vi siano cicli nel grafo delle dipendenze formati dagli attributi di questa occorrenza di X_j .

Cioè nel grafo delle dipendenze gli archi tra gli attributi associati a una produzione possono andare da sinistra a destra, ma non da destra a sinistra.

Esempio:

$$P_1: S \to MN \{S.val = M.val + N.val\}$$

 $P_2: M \to PQ \{M.val = P.val * Q.val \ and \ P.val = Q.val\}$

 P_1 è L-attribuita, invece P_2 non lo è.

In P_1 , S è un attributo **sintetizzato** e nelle definizioni L-attribuite è permesso.

Invece P_2 non rispetta la definizione L-attribuita siccome P dipende da Q che è alla sua \mathbf{destra} .

5 DOMANDE

5.1 Quando una grammatica è LL(1)?

Se per ogni coppia di produzioni a partire da uno stesso simbolo non terminale A:

$$A \Longrightarrow \alpha \in A \Longrightarrow \beta$$
, si ha
 $GUI(A \Longrightarrow \alpha) \cap GUI(A \Longrightarrow \beta) = \Phi$.

Ovvero, gli **insiemi guida** GUI() di un simbolo con due produzioni distinte non coincidono (non hanno elementi in comune).

5.2 Cosa è un linguaggio regolare? Come si verifica?

5.3 Differenza tra linguaggi Context-Free e non? Come lo stabilisco?

Regular grammar is either right or left linear, whereas context free grammar is basically any combination of terminals and non-terminals. Hence you can see that regular grammar is a subset of context-free grammar.

5.4 Quando una grammatica è ambigua?

Una grammatica è ambigua se almeno una frase del linguaggio generato è ambigua.

Una frase è ambigua se ha almeno due alberi sintattici distinti.

5.5 Completare la definizione della funzione di transizione σ_D dell'automa a stati finiti deterministico

5.6 Quando due stati p e q sono indistinguibili? E i-indistinguibili?

Sono i-indistinguibili se e solo se nessuna stringa di lunghezza $\leq i$ distingue p da q.

Sono indistinguibili se e solo se nessuna stringa (di qualunque lunghezza) distingue p da q.

5.7 Due stati i-indistinguibili quando sono i+1-distinguibili?

Questo si verifica quando con la stessa stringa di input i due stati raggiunti appartengono a due sottoinsiemi diversi dalla Partizione i (Π_i)

5.8 Quando un automa è minimo?

Un automa è minimo quando la partizione degli stati contiene i gruppi degli stati indistinguibili.

5.9 Quando una grammatica è LL(1)?

Una grammatica è LL(1) se per ogni non terminale A e per ogni coppia di produzioni

$$A \to \alpha$$
$$A \to \beta$$

gli insiemi guida sono disgiunti:

$$GUI(A \to \alpha) \cap GUI(A \to \beta) = \Phi$$

Una grammatica **non può essere** LL(1) se è **ricorsiva sinistra**. Perché l'intersezione degli insiemi GUI delle produzioni sono uguali.

5.10 Differenza tra SDD S-attribuiti e l-attribuiti

- S-attribuiti tutti gli attribuiti sono sintetizzati
- L-attribuiti gli attribuiti possono essere sia sintetizzati che ereditati, ereditati con le seguenti regole:
 - pagina 29/36 di 4/22-traduzione1.pdf

5.11 MEMO

I Linguaggi Regolari sono sottoinsiemi dei CFG (Context Free Grammar).

Linguaggi context free (generati da CFG) riconosciuti da

- PDA
- NPDA

Linguaggi regolari riconosciuiti da

Minimizzazione Automi Per Minimizzare NFA occorre prima convertirli in DFA e poi minimizzare il DFA.

6 Domande PDF

6.1 Parte I

1. Cos'è un alfabeto?

Un insieme di simboli con cui comporre stringhe

2. Cos'è una stringa?

Un'insieme di simboli (tra quelli dell'alfabeto) che rispetta le regole di costruzione di una certe grammatica

3. Quando due stringhe sono uguali?

Se i loro caratteri, letti ordinatamente da sx a dx, coincidono.

4. Cos'è una sottostringa?

La stringa Y è una sottostringa della stringa X se esistono delle stringhe U e V tali che X = UYV

5. Cos'è un prefisso?

La stringa Y è un prefisso della stringa X se esiste una stringa V tale che X=YV

6. Cos'è un suffisso?

La stringa Y è un suffisso della stringa X se esiste una stringa U tale che X=UY

7. Cos'è la concatenazione? Quali proprietà ha?

La concatenazione di due stringhe è la stringa formata dai simboli della prima stringa seguiti da quelli della seconda.

- NON è commutativa
- E' associativa
- HA un ELEMENTO NEUTRO
- la lunghezza della stringa concatenazione è la somma delle lunghezze delle due stringhe.

8. Cos'è la riflessione? Quali proprietà ha?

La riflessione è la stringa ottenuta scrivendo i caratteri in ordine inverso.

Il riflesso del riflesso di una stringa è la stringa stessa

La riflessione della concatenazione di due stringhe è la concatenazione inversa delle loro riflessioni.

La riflessione della stringa vuota è la stringa vuota

La riflessione ha la precedenza sul concatenamento.

9. Cos'è la potenza?

La potenza n-esima della stringa X è il concatenamento di X con se stessa n volte.

10. Cos'è un linguaggio?

Un linguaggio è un insieme di stringhe su quell'alfabeto

11. Cos'è l'insieme dei prefissi?

12. Quando un linguaggio è privo di prefissi?

Se non contiene i prefissi delle sue stringhe. $L\cap$ Prefissi $(L)=\Phi$

13. Cosa sono la riflessione, la concatenazione e la potenza di un linguaggio?

- \bullet La riflessione di un linguaggio L è l'insieme delle stringhe riflesse di L
- La concatenazione di due linguaggi L1 e L2 è l'insieme ottenuto concatenando in tutti i modi possibili le stringhe di L1 con le stringhe di L2
- La potenza n-esima di un linguaggio L è il concatenamento di L con se stesso n volte.

14. Cos'è la chiusura di Kleene di un linguaggio L? Quali proprietà ha?

E' l'unione di tutte le potenze di L. Le proprietà:

- monotonia
- chiusura rispetto al concatenamento
- idempotenza
- commutatività della riflessione con la chiusura di Kleene e con la potenza.

15. Che cos'è la chiusura non riflessiva?

E' l'unione di tutte le potenze positive di ${\cal L}$

16. Che cos'è il linguaggio universale su un alfabeto Σ ?

E' la sua chiusura di Kleene.

17. Che cos'è il complemento di un linguaggio L su un alfabeto Σ rispetto ad un alfabeto Δ ?

E' la differenza tra Δ^* ed L

6.2 Parte II