Sigma Notation

1.
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

2.
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

3.
$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2} \right]^2.$$

The Area Problem: Find the area enclosed between the curve y = f(x) and the x-axis from x = a to x = b.

The area is $\lim_{n\to\infty} \sum_{i=1}^n f(x_i) \Delta x_i$ which is denoted by $\int_a^b f(x) dx$ and is called the definite integral of f from a to b.

The *x* here is a dummy variable so we have

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(y) \, dy = \int_{a}^{b} f(z) \, dz = \int_{a}^{b} f(w) \, dw.$$

Example 1. Evaluate $\int_0^3 x^2 dx$ using the definition of definite integral.