Otto-von-Guericke-Universität Fakultät für Informatik Institut für Simulation und Graphik

Diplomarbeit

Entwurf gradientenabhängiger 2D-Transferfunktionen für die medizinische Volumenvisualisierung

Diana Stölzel

Angefertigt am Centrum für medizinische Diagnosesysteme und Visualisierung (MeVis gGmbH) an der Universität Bremen

Entwurf gradientenabhängiger 2D-Transferfunktionen für die medizinische Volumenvisualisierung

Diplomarbeit

an der Fakultät für Informatik der Otto-von-Guericke-Universität

von: Diana Stölzel Matr.-Nr.: 155439

1. Gutachter: Prof. Dr. Bernhard Preim (Otto-von-Guericke-Universität)

2. Gutachter: Dr. Volker Dicken (MeVis gGmbH)

Betreuer: Dr. Volker Dicken (MeVis gGmbH)

Prof. Dr. Bernhard Preim (Otto-von-Guericke-Universität)

Angefertigt am: Centrum für medizinische Diagnosesysteme und Visualisierung

(MeVis gGmbH) an der Universität Bremen

Zeit der Diplomarbeit: 01.04.2004-27.09.04

Selbstständigkeitserklärung

Hiermit versichere ich, Diana Stölzel, die vorliegende Arbeit allein und nur unter Verwendung der angegebenen Quellen angefertigt zu haben.

Diana Stölzel Magdeburg, 27.09.04

Danksagung

Ich möchte mich hiermit recht herzlich bei meinem Betreuer Dr. Volker Dicken bedanken, der mich während dieser Arbeit ideenreich und intensiv beraten und unterstützt hat. Besonders bedanken möchte ich mich auch bei Prof. Dr. Bernhard Preim, der mir den Kontakt zu MeVis vermittelt hat und mich hervorragend fachlich unterstützte.

Dr. Hoen-Oh Shin und Benjamin King von der Medizinischen Hochschule möchte ich ebenfalls meinen Dank aussprechen. Ihre Tipps und Anregungen zu Beginn dieser Arbeit lieferten wertvolle Ideen.

An dieser Stelle muss auch Stephan Dachwitz (MeVis) erwähnt werden, ohne den die tollen Bilder dieser Arbeit nicht zustande gekommen wären und der stets Verbesserungen am Volumenrenderer vornahm.

Auch die Diskussionen mit Andreas Tappenbeck brachten stets neue Ideen zum Vorschein. Überdies bedanke ich mich bei Wolf Spindler (MeVis) für seine programmiertechnische Unterstützung und MeVis dafür, dass verschiedene Module zur Bildbearbeitung und Visualisierung genutzt werden konnten.

Abschließend geht ein großer Dank an meine Eltern, die mir das Studium der Computervisualistik ermöglichten und mir immer mit Tat und Kraft zur Seite standen.

I Inhaltsverzeichnis

I Inhaltsverzeichnis

I	Inhalts	verzeichnis	I
II	Abbild	ungsverzeichnis	IV
II	I Tabelle	enverzeichnis	VI
IV	Abkürz	zungsverzeichnis	VII
1		ung	
2		nische Bildgebung und Visualisierung	
_			
	2.1 AKC	quirierung medizinischer Volumendaten	د 3
	2.1.2	MRT	
	2.1.3	Rekonstruktion und Partialvolumeneffekte	
	2.1.4	Zusammenfassung	
		ualisierung medizinischer Volumendaten	
	2.2.1	Schichtdatendarstellung	
	2.2.2	Indirektes Volumenrendering	
	2.2.3	Direktes Volumenrendering	
	2.3 Dir	ektes Volumenrendering	
	2.3.1	Bildbasiertes Volumenrendering	12
	2.3.2	Objektbasiertes Volumenrendering	13
	2.3.3	ShearWarp Algorithmus	13
	2.3.4	Texturbasiertes Volumenrendering	14
	2.3.5	Beleuchtung	15
	2.3.6	Von der TF zur Lookup-Tabelle	
	2.3.7	Klassifikation der TF	
	2.3.8	Der GigaVoxelRenderer	
	2.4 Zus	sammenfassung	19
3	Definit	ion von Transferfunktionen	21
	3.1 Ein	dimensionale Transferfunktionen	21
	3.1.1	Interaktiv/Trial-and-Error	21
	3.1.2	Bildbasiert	24
	3.1.3	Weitere eindimensionale Transferfunktionen	
	3.1.4	Zusammenfassung und Vergleich	
		hrdimensionale Transferfunktionen	
	3.2.1	Das Kontur-Spektrum	
	3.2.2	Datenbasierte Transferfunktionen	
	3.2.3	Zusammenfassung und Vergleich	32
4	Entwu	rf gradientenabhängiger 2D-TFs	34
	4.1 Ber	reitstellen von Gradienteninformationen	34
		nerierung eines Intensitäts-Gradienten-Histogramms	
		alyse von Intensitäts-Gradienten-Histogrammen	
	4.3.1	Strukturen in Histogrammen medizinischer Datensätze	
	4.3.2	Auswirkungen unterschiedlicher Rekonstruktionsfilter in CT-Daten	
	4.3.3	CT-Datensätze mit harten Rekonstruktionskerneln	
	4.3.4	Auswertung von MRT-Daten	43

I Inhaltsverzeichnis II

	4.4 Approximation der Bogenverläufe durch Funktionen	
	4.4.1 Parametrische Kurven	
	4.4.2 Untersuchung einfacherer Funktionen	48
	4.5 Entwurf einer Repräsentationsform kantendetektierender TFs	50
	4.5.1 Repräsentation	
	4.5.2 Steuerung der Opazitätszuordnung	51
	4.5.3 Steuerung der Grauwert-/Farbzuordnung	53
	4.5.4 Behandlung sich überschneidener Bögen	55
	4.5.5 Zusammenfassung	56
	4.6 Interaktionskonzepte	56
	4.6.1 Parametrierung der Repräsentation	56
	4.6.2 Transparenzen und Farbwerte	58
	4.6.3 Unterstützung der TF-Definition	58
	4.7 Automatische Suche/Parametrierung der Bögen	63
	4.7.1 Analyse vorhandener Suchalgorithmen für Ellipsen	63
	4.7.2 Abtragen der Intensitäts- und Gradientenwerte auf Polarkoordinaten	64
	4.7.3 Ein auf Apriori-Wissen basierender Algorithmus	65
	4.7.4 Definition von Presets	69
	4.8 Zusammenfassung	71
5	Realisierung	73
J		
	5.1 Programmierwerkzeuge	
	5.1.1 OpenInventor	
	5.1.2 Die Softwareplattform MeVisLab	
	5.1.3 <i>SoView2D</i> -Klasse	
	5.2 Generierung gradientenabhängiger 2D-TFs	
	5.2.1 Entwurf einer <i>SoView2D</i> -Klasse für Halbellipsen	
	5.2.2 Entwurf einer Listenklasse zur Speicherung der Halbellipsen	
	5.2.3 Berechnung der 2D-LUT	
	5.3 Werkzeuge zur vereinfachten Erkennung von Bögen	
	5.3.1 JointHistMask	
	5.3.2 Kantendetektion	
	5.3.3 Kantendetektion mithilfe einer Segmentierungsmaske	
	5.4 Entwurf eines Editors	
	5.5 Zusammenfassung	82
6	Ergebnisse	83
	6.1 Für den 2D-TFs-Entwurf gut geeignete Datensätze	02
	6.1.1 Zahndatensatz	
	6.1.2 Visible-Human-Kopf	
	6.1.3 Plexiglas-Phantomdatensatz	
	6.1.4 Ein Schweinedatensatz mit kontrastierter Leber	
	6.2 Visualisierung einer nicht-segmentierten kontrastierten Leber	
	6.2.1 Visualisierung der Gefäße und der Leberoberfläche	
	6.2.2 VR der Lebergefäße mit TFs und mit Segmentierungsmasken	
	6.3 Visualisierung der Lungenbronchien und -gefäße	
	6.4 Visualisierung der Knochen	
	6.5 Abdomendatensatz	
	6.6 MRT-Daten	
7	Zusammenfassung und Ausblick	97

I Inhaltsverzeichnis	III

8	Literaturverzeichnis	99
A	Anhang	104
	GradLutEditorMacro	104

II Abbildungsverzeichnis

Abbildung 1-1: Vom 3D-Feld zur Volumenvisualisierung	
Abbildung 2-1: Prinzip der Bildentstehung einer CT-Schicht	4
Abbildung 2-2: 3-Tesla-MRT von Philips	6
Abbildung 2-3: Unterschiedlich gewichtete MRT-Kopfaufnahmen	7
Abbildung 2-4: Rekonstruktionsfilter für eindimensionale Signale	8
Abbildung 2-5: Partialvolumeneffekte	
Abbildung 2-6: Visualisierungspipeline	
Abbildung 2-7: Schichtdarstellung eines MRT-Kopf-Datensatzes	
Abbildung 2-8: Oberflächendarstellung einer Leber mit Gefäßen	
Abbildung 2-9: Unterteilung des Volumens in Polygonschichten	
Abbildung 2-10: Ausrichtung der Polygone	
Abbildung 2-11: Intensitätsbild und zugehöriges Gradientenstärkebild	
Abbildung 2-12: Isooberflächendarstellung unterschiedlich beleuchtet	
Abbildung 2-13: Klassifikation der TF	
Abbildung 3-1: Prinzip der Fensterung	
Abbildung 3-2: Fensterung für den Knochenbereich	
Abbildung 3-3: Histogramm hinterlegt als Kontextinformation	
Abbildung 3-4: Design-Galerie	
Abbildung 3-4. Design-Galerie	
Abbildung 3-6: Stetig lineare TF und der dazugehörige Datensatz mit Hervorhebung des Rückenmarks	
Abbildung 3-7: Parameter einer Isokontur dargestellt als 2D-Funktionsgraph	
Abbildung 3-8: Modell einer Kante	
Abbildung 3-9: Intensitätsverlauf f(x) und die zugehörige Ableitungen f'(x) und f''(x)	
Abbildung 3-10: Histogrammvolumen	30
Abbildung 3-11: Kugelförmiges Objekt und dessen Funktionen g(v), h(v), p(v)	30
Abbildung 3-12: Objekt mit verschiedenen Gewichtsfunktionen	
Abbildung 3-13: Applikator und die korrespondierenden Punkte im Histogramm weiß dargestellt	31
Abbildung 3-14: Auf einem Histogramm basierender TF-Editor	
Abbildung 4-1: Visualisierungspipeline für 2D-TFs	34
Abbildung 4-2: Kernelmasken des dreidimensionalen Sobelfilters	
Abbildung 4-3: 2D-Histogrammgenerierung	
Abbildung 4-4: 2D-Histogramm	
Abbildung 4-5: Bedeutung der Strukturen	
Abbildung 4-6: Zusammenhang zwischen Intensitäten und Gradientenstärken an einer Kante	37
Abbildung 4-7: Bögen in einem nicht-kontrastiertem Abdomenhistogramm	39
Abbildung 4-8: Scharfe Kante und das entsprechende Histogramm	
Abbildung 4-9: Histogramm eines CT-Abdomendatensatzes	40
Abbildung 4-10: Histogramm eines CT-Abdomendatensatzes	40
Abbildung 4-11: Auswirkungen von Filterungen eines CT-Datensatzes auf das Histogramm	42
Abbildung 4-12: Histogramm basierend auf einem realen T1-MRT-Kopfdatensatz	
Abbildung 4-13: Histogramm basierend auf einem realen T2-MRT-Kopfdatensatz:	
Abbildung 4-14: Histogramm basierend auf einem realen geglätteten T1-MRT-Kopfdatensatz:	
Abbildung 4-15: Histogramm basierend auf einem Phantom MRT-Kopf-Datensatz:	
Abbildung 4-16:Phantomdatensatz mit Inhomogenität	
Abbildung 4-17: einfache 2D-Repräsentation	
Abbildung 4-18: komplexe Repräsentation	
Abbildung 4-19: Segmentierung des Luft-Lungengefäße-repräsentierenden Bogens	
Abbildung 4-20: Segmentierung des Fett-Knochen-repräsentierenden Bogens	
Abbildung 4-21: Segmentierung des die untere äußere Zahnwurzel repräsentierenden Bogens	
Abbildung 4-22: Ein Datensatz und die Approximation durch einfache Funktionen	
Abbildung 4-23: Halbelliptische Bogenflächen	
Abbildung 4-24: Verteilung der Transparenzen	
Abbildung 4-25: Auswirkungen verschiedener Anwendungsbereiche am Beispiel eines Zahns	
Abbildung 4-25: Auswirkungen verschiedener Anwendungsbeteiene am Beispiel eines Zahns	
Abbildung 4-20. Farbverteilungen am Beispiel des VRs der Wirbelsäule	
Abbildung 4-27: Parovertenungen am Beispiel des VRs der Wilbeisaufe Abbildung 4-28: Beleuchtung von medizinischen Daten	
Abbildung 4-28: Mögliche Varianten bei Repräsentationsüberschneidungen	
Abolitating 7-27. Mognetic variation our reprasentationstructsennicidungen	

Abbildung 4-30: Prinzip des Rubberbandings für HE	57
Abbildung 4-31: HE definiert durch zwei Punkte "□" und zwei Abstände	
Abbildung 4-32: Interaktion mittels Rampen am Beispiel des Zahndatensatzes	
Abbildung 4-33: LUT angewendet auf die Schichtdatendarstellung	
Abbildung 4-34: Selektion eines Voxels und Anzeige des korrespondierenden Bins im Histogramm	
Abbildung 4-35: Unterstützung der Kantensuche	
Abbildung 4-36: Mögliche Bereiche zur Untersuchung von Kanten in der Leber	
Abbildung 4-37: Histogramm eines Leberdatensatzes und gefundener Gefäßbogen	
Abbildung 4-38: Repräsentationsform entlang des ermittelten Bogens	
Abbildung 4-39: Gefäßvisualisierung im VR mit einer gradientenabhängigen TF	
Abbildung 4-40: TFs-Definitionsprozess anhand einer Kantenmaske	
Abbildung 4-40: 11s-bernhuonsprozess annand ener Kantenniaske	
Abbildung 4-41: Empschaetektion hach Killi	
Abbildung 4-42: Ein stark verrausentes fristogramm Abbildung 4-43: Gradientenstärke und Grauwerte als Polarkoordinaten abgetragen	
Abbildung 4-43. Gradientenstarke und Grauwerte als Folarkoordmaten abgetragen Abbildung 4-44: Gefundene Repräsentation und erzeugte LUT	
Abbildung 4-45: Automatisch generierte TFs für einen Zahn	
Abbildung 4-46: Histogramme mit unterschiedlicher Binsize	
Abbildung 4-47: Automatisch gefundener Bogen in medizinischem Datensatz	
Abbildung 4-48: Histogramme eines Datensatzes	
Abbildung 5-1: Die Softwareplattform MeVisLab mit einem Beispielnetzwerk	
Abbildung 5-2: Panel des ImgLoad-Moduls	
Abbildung 5-3: Bildverarbeitungsnetzwerk mit unterschiedlichen Ein- und Ausgängen von Modulen	
Abbildung 5-4: 3D-Koordinatentransformationen	
Abbildung 5-5: Eine halbelliptische Bogenfläche	
Abbildung 5-6: Aufbau des Makromoduls zur Kantendetektion	
Abbildung 5-7: Makromodul für die Kantendetektion	
Abbildung 5-8: Aufbau des Makros zur Kantendetektion einer Segmentierungsmaske	
Abbildung 5-9: Beispielnetzwerk für die Erstellung einer LUT	
Abbildung 6-1: Zahn im Vergleich	83
Abbildung 6-2: VR des Visible-Human-Kopfes mit zweidimensionaler TF	
Abbildung 6-3: Fotographie der Plexiglasscheibe	
Abbildung 6-4: Die Plexiglasscheibe mit intensitätsbasierter und gradientenbasierter 2D-TF	
Abbildung 6-5: Lebergefäßvisualisierung eines Schweinedatensatzes	
Abbildung 6-6: VR einer kontrastierten Leber mit Darstellung der Lebergefäße	
Abbildung 6-7: Histogramm des Leberdatensatzes	
Abbildung 6-8: VR von Lebergefäßen	88
Abbildung 6-9: Lebergefäße mit Kontextinformation.	89
Abbildung 6-10: Histogramm mit TF	90
Abbildung 6-11: Schichtdarstellung des Datensatzes mit Färbung der von der TF dargestellten Voxel	90
Abbildung 6-12: VR der Bronchien mit intensitätsbasierter TF	
Abbildung 6-13: VR der Bronchien mit der in Abbildung 6-10 definierten gradientenabhängigen TF	90
Abbildung 6-14: Definition einer TF für das VR großer und kleiner Bronchien	
Abbildung 6-15: Histogramm des weich-rekonstruierten Lungendatensatzes	
Abbildung 6-16: Lungenvisualisierungen	
Abbildung 6-17: Knochenvisualisierung mittels gradientenabhängiger TFs	
Abbildung 6-18: VR eines Abdomendatensatzes mittels gradientenbasierter TFs	
Abbildung 6-19: VR eines realen medizinischen Kopf-Datensatzes	
Abbildung 6-20: VR eines Phantom-MRT-Kopfdatensatzes	
Abbildung 7-1: Vom skalaren 3D-Feld zum VR	0.7

III Tabellenverzeichnis VI

III Tabellenverzeichnis

Tabelle 2-1: HU-Werte für verschiedene Gewebetypen	4
Tabelle 3-1: Verbreitete Konzepte für die Definition elementarer linearer Funktionen	
Tabelle 4-1: Nachbarschaftliche Beziehungen zwischen einzelnen Geweben	
Tabelle 4-2: Mathematische Beschreibung einfacher Funktionen	

IV Abkürzungsverzeichnis

1D eindimensional 2D zweidimensional 3D dreidimensional

CT Computertomographie/Computertomogramm

HU Hounsfield-Unit LUT Lookup-Tabelle

MeVis Centrum für Medizinische Diagnosesysteme und Visualisierung an

der Universität Bremen

MRT Magnetresonanztomographie

TF Transferfunktion

GVR Gigavoxelrenderer, Volumenrenderer

VR Volumenrendering

HE Halbellipse/Halbellipsen

1 Einleitung

1 Einleitung

Tomographische Verfahren der medizinischen Bildgebung wie die Computertomographie (CT) und die Magnetresonanztomographie (MRT) liefern Bilddatensätze des Menschen, die als 3D-Feld von skalaren Werten aufgefasst werden. Von besonderem Interesse für Mediziner ist das Erkennen und Darstellen anatomischer Strukturen aus diesen Daten. In der klinischen Praxis erfolgt die Auswertung der Daten normalerweise auf 2D-Schichtbildern, wobei Radiologen für die Diagnose eine 3D-Rekonstruktion der Daten mental ableiten.

Aufgrund der Weiterentwicklung der Medizintechnik ist es möglich, genauere und detailliertere Daten zu gewinnen, jedoch ist dies auch mit einem Wachsen der Datenmengen, mit denen Ärzte konfrontiert werden, verbunden. Eine Diagnose erfordert das Betrachten von bis zu mehreren hundert Einzelbildern auf Film. Diese Methode ist nicht nur unwirtschaftlich (hoher Verbrauch an Filmmaterial und großer Zeitaufwand), sondern auch ermüdend und fehlerbehaftet. Daher verlagert sich die Diagnostik auf den Computer. Spezifische Programme ermöglichen verschiedene Visualisierungen wie beispielsweise die Schichtdarstellung oder das Volumenrendering. Das Volumenrendering ist gut geeignet, um anatomische Strukturen im Überblick darzustellen. Dabei ist es möglich, den kompletten 3D-Datensatz zu visualisieren, was eine gute räumliche Orientierung erlaubt. Beim direkten Volumenrendering werden mithilfe einer geeigneten Transferfunktion (TF) unbedeutende Bereiche transparent und die anatomisch wichtigen Strukturen opak (sichtbar) dargestellt. Bisher existieren viele Verfahren zum Entwurf von 1D-TFs, aber nur wenige zur Entwicklung mehrdimensionaler TFs. Die Bedienung mehrdimensionaler ist oft schwer und der Benutzer benötigt fachspezifisches Vorwissen.

Ziel dieser Arbeit ist es, kantendetektierende 2D-TFs zu entwickeln, die dem Benutzer eine einfache Bedienung ermöglichen. Mit wenigen Handgriffen soll eine TF generiert werden und der Benutzer erste Ergebnisse sehen können.

Um diese TFs entwickeln und testen zu können, werden die Bibliotheken von MeVisLab verwendet. MeVisLab ist eine Bildverarbeitungsbibliothek, die speziell für die medizinische Bildverarbeitung entwickelt wurde. Für das direkte Volumenrendering steht in MeVisLab das Volumenrendering-Modul GVR (Gigavoxelrenderer) zur Verfügung, welches die Verwendung 2D-TFs unterstützt.

Abbildung 1-1: Vom 3D-Feld zur Volumenvisualisierung

1 Einleitung 2

Zusammenfassend ist folgendes Ziel zu nennen:

Entwicklung gradientenabhängiger zweidimensionaler TFs für das Volumenrendering medizinischer Bilddaten

Die vorliegende Arbeit gliedert sich wie folgt:

Kapitel 2 In diesem Kapitel werden Verfahren zur medizinischen Bildgewinnung, die Computertomographie (CT) und die Magnetresonanztomographie (MRT) beschrieben. Im Anschluss werden Volumenvisualisierungsmethoden vorgestellt. Insbesondere wird auf das direkte Volumenrendering eingegangen, das die Grundlage der in dieser Arbeit zu entwickelnden TFs bildet.

Kapitel 3 Hier wird ein Überblick über verschiedene TFs für das Volumenrendering gegeben, beginnend bei einfachen eindimensionalen bis hin zu komplexen mehrdimensionalen TFs.

Kapitel 4 Dieses Kapitel befasst sich mit dem Entwurf 2D-gradientenabhängiger TFs. Unter anderem wird beschrieben, welche Parameter zu einer "guten" Visualisierung führen. Außerdem werden Möglichkeiten zur Automatisierung dieser TFs vorgestellt.

Kapitel 5 Die Realisierung und Implementierung der vorgestellten TFs wird in diesem Kapitel beschrieben. Dabei wird erläutert, welche Bibliotheken zur Implementierung genutzt wurden.

Kapitel 6 Schließlich werden Ergebnisse vorgestellt, wobei Anwendungsmöglichkeiten vorgestellt und Schwierigkeiten diskutiert werden.

Kapitel 7 Abschließend erfolgt eine Zusammenfassung über das in dieser Arbeit vorgestellte Konzept zum Entwurf 2D-TFs und eine Diskussion über mögliche Erweiterungen.

7 Zusammenfassung und Ausblick

Das VR medizinischer Bilddaten mittels der Definition von TFs ist eine große Herausforderung. Wenn es möglich ist, einfach und schnell geeignete TFs zu definieren, bietet diese Visualisierungsmethode eine gute Möglichkeit der Unterstützung von Radiologen in Diagnostik und Therapie, beispielsweise zur Planung von Operationen. Ziel dieser Arbeit war es, kantendetektierende 2D-TFs zu entwickeln und deren Eignung für das medizinische VR zu untersuchen.

Die Untersuchung bisheriger Verfahren zeigte, dass der Ansatz von Gordon Kindlmann, der mittels 3D-TFs ein VR erzeugt, eine geeignete Grundlage für den Entwurf kantendetektierender TFs darstellt. Sein Ansatz basiert dabei auf der Auswertung eines 3D-Histogramms. In dem in dieser Arbeit vorgestellten Entwurf gradientenabhängiger TFs wurden anhand der Auswertung eines 2D-Histogramms, welches die Verteilungen der Intensitäts- und Gradientenwerte charakterisiert, TFs definiert. Dazu wurden erkennbare Strukturen des Histogramms untersucht und anhand dessen eine Repräsentation für TFs entwickelt.

In Abbildung 7-1 ist der Prozess der TFs-Definition in einer Pipeline zusammengefasst. Zuerst wird auf dem tomographischen Datensatz ein Gradientenstärkebild erzeugt und anschließend ein 2D-Histogramm berechnet. Anhand von erkennbaren Strukturen werden TFs definiert, woraufhin eine LUT berechnet werden kann. Die LUT wird dem Renderer übergegeben, der anschließend das Ergebnisbild erzeugt.

Abbildung 7-1: Vom skalaren 3D-Feld zum VR

Anhand von Beispiel-Datensätzen konnte gezeigt werden, dass HE-förmige Bogenflächen für die Repräsentation der 2D-TFs gut geeignet sind. In medizinischen Datensätzen variiert die Schärfe der Bögen in Abhängigkeit der verwendeten Rekonstruktionskernel und der Voxelgröße. Die Anwendung der TFs auf verschiedene Datensätze zeigte, dass weichrekonstruierte Datensätze am besten für die Definition gradientenabhängiger TFs geeignet sind und bei hart-rekonstruierten Datensätzen die Möglichkeiten stark eingeschränkt sind.

Daraus ergeben sich Einschränkungen für die Visualisierung. So können bei weichrekonstruierten Datensätzen Einzelheiten in den Strukturen wie beispielsweise kleine Verästelungen der kleinen Bronchien oder der Lebergefäße durch den Partialvolumeneffekt verloren gehen. Dies macht sich im VR in der Art bemerkbar, dass diese kleinen Strukturen nur schlecht dargestellt werden können und ihre Kanten nicht deutlich hervortreten. Das VR stellt diese Strukturen nur schlecht dar.

Um den Entwurf zweidimensionaler TFs zu unterstützen, wurde eine Kantendetektionskomponente entwickelt, die dazu beiträgt auf intuitive Weise die Bögen in den Histogrammen zu finden. Die Definition von gradientenabhängigen TFs wird dadurch stark vereinfacht. Auf diese Weise können Bögen im Histogramm gefunden werden, die im Histogramm schlecht oder gar nicht erkennbar sind. Mithilfe dieses Tools konnten u.a. die korrespondierenden Bins der Lebergefäße gefunden und eine TF erstellt werden.

Es konnte gezeigt werden, dass der gradientenbasierte Entwurf 2D-TFs gut geeignet ist, um Knochen, die Gefäße der Lunge und Luft-Haut-Übergänge darzustellen. Die Visualisierung der Organe und aller anderen Weichteile dagegen ist nur schwer (mit Kontrastmittel) bzw. gar nicht realisierbar. In diese Richtung muss weiter geforscht und nach neuen Ansätzen gesucht werden.

In dieser Arbeit wurde außerdem versucht, einen automatischen Ansatz zur Suche der Bögen zu entwickeln. Bei synthetischen Daten funktioniert dies ganz gut, jedoch konnte gezeigt werden, dass die Bögen in medizinischen Datensätzen nur schlecht gefunden werden können, weil sie nur undeutlich in den Histogrammen hervortreten. Der Algorithmus kann noch weiter ausgebaut werden. Bisher müssen viele Parameter von Hand eingestellt werden. Der Algorithmus kann dahingehend ausgebaut werden, diese Parameter automatisch anzupassen.

Auch die Definition von Presets ist bei gradientenabhängigen TFs nicht leicht realisierbar. Es konnte gezeigt werden, dass es durchaus sinnvoll sein kann, für einige Visualisierungsziele Presets zu definieren, jedoch müssen diese aufgrund der unterschiedlich rekonstruierten Datensätze angepasst werden. Die Höhen aller im Preset definierten Bögen müssen skaliert werden. Dies ist vielleicht in der Art möglich, dass die Bögen automatisch skaliert werden, in dem der Skalierungsfaktor aufgrund einer Histogrammanalyse berechnet wird.

[AN95]	A. S. Aguado und M. S. Nixon: "A new Hough-Transfomation for Ellipse Detection", In <i>Research Journal Image</i> , <i>Speech and Intelligent Systems</i> , University of SouthHampton, 1995
[BPS97]	Chandrajit L. Bajaj und Valerio Pascucci und Daniel R. Schikore: "The Contour Spectrum", In <i>Proceedings IEEE Visualization</i> , S. 167-173, 1997
[CKLG98]	Silvia Castro und Andreas König und Helwig Löffelmann und Eduard Gröller: "Transfer Function Specification for the Visualization of Medical Data", Insitute of Computer Graphics, Vienne University of Technology, März 1998
[CZK98]	D.L. Collins und A.P. Zijdenbos und V. Kollokian et al.: "Design and construction of a realistic digital brain phantom", In <i>IEEE Trans Med Imaging</i> , Vol. 17, S. 479-489, 1998 http://www.bic.mni.mcgill.ca/brainweb
[DGMP04]	Deutsche Gesellschaft für medizinische Physik: "Leitfaden zur Bewertung und Optimierung der Strahlenexposition bei CT-Untersuchungen", Juli 2004 http://www.dgmp.de/Page_Service/Leitfaden_CT_022004.pdf
[DKHLFSP04]	Drexl J. und Knappe V. und Hahn HK und Lehmann K. und Frericks BB. und Shin H. und Peitgen H.: "Accuracy analysis of vessel segmentation for a LITT dosimetry planning system", In <i>Medical Robotics</i> , <i>Navigation and Visualization</i> (MRNV 2004), March 11-12. 2004, Remagen
[Far90]	Gerald Farin: Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, 1990
[FBT98]	Shiaofen Fang und Tom Biddlecome und Mihran Tuceryan: "Image-Based Transfer Function Design for Data Exploration in Volume Visualisation", In <i>IEEE Visualization</i> , S. 319-326, 1998
[Fol90]	J. D. Foley and A. vanDam, S. K. Feiner, and J. F. Hughes: <i>Computer Graphics: Principles and Practices (2nd Edition)</i> , AddisonWesley, 1990
[Gal00]	Michael Galanski, <i>Interaktive Volumendarstellungsverfahren für die Schnittbildgebung</i> , Abteilung Diagnostische Radiologie I, Medizinische Hochschule Hannover, Forschungsbericht 2000
[HHKP96]	Taosong He und Lichan Hong und Arie Kaufman und Hanspeter Pfister: "Generation of transfer functions with stochastic search techniques", In <i>Proceedings of IEEE Visualization</i> , S. 227-234, 1996.

[MWW04]	Medicine Worldwide: http://www.m-ww.de, Juli 2004
[Nov94]	K. Novins. <i>Towards Accurate and Efficient Volume Rendering</i> . PhD thesis, Cornell University, 1994.
[PLB01]	H. Pfister und B. Lorensen und C. Bajaj und G. Kindlmann und W. Schroeder und L. Avila und K. Martin und R. Machiraju und J. Lee: "The Transfer Function Bake-off", In <i>IEEE Computer Graphics & Applications</i> , Vol. 21 No. 3, S. 16-22, 2001.
[PP02]	Peter Prinz und Ulla Kirch-Prinz. <i>C++ Lernen und professionell anwenden</i> , 2. vollständige Auflage, mitp-Verlag, Bonn, 2002
[PP04]	Bernhard Preim und Heinz-Otto Peitgen: Medizinische Visualisierung: Methoden und Anwendungen in der Ausbildung und Therapieplanung, 2004
[PWH01]	Vladimir Pekar und Rafael Wiemker und Daniel Hempel: "Fast Detection of Meaningful Isosurfaces for Volume Data Visualization" In <i>IEEE</i> , 2001
[Rad04]	Radiologieforum: http://www.radiologieforum.de, Juli 2004
[Rez01]	Christoph Rezk-Salama: <i>Volume Rendering Techniques for General Purpose Graphics Hardware</i> . Dissertation, Universität Erlangen-Nürnberg, Erlangen, Deutschland, 2001.
[RS01]	Christof Rezk-Salama und Michael Scheuering: "Multitexturbasierte Volumenvisualisierung in der Medizin", In <i>Handels, Horsch, Lehmann, Meinzer (Hrsg.): Bildverarbeitung für die Medizin 2001</i> , S. 137-141; Berlin, Springer, 2001
[SBKP01]	Will Schroeder und Chandrajit Bajaj und Gordon Kindlmann und Hanspeter Pfister: "The Transfer Function Bake-Off", In <i>IEEE Visualization</i> , S. 523-526, 2001
[Sgi04]	http://oss.sgi.com/projects/inventor, August 2004
[TLL03]	Fan-Yin Tzeng und Eric B. Lum und Kwan-Liu Ma: "A Novel Interface for Higher-Dimensional Classification of Volume Data", In <i>IEEE Visualization</i> , 2003
[TLM01]	Shivaraj Tenginakai und Jinho Lee und Raghu Machiraju: "Salient Iso-Surface Detection With Model-Independent Statistical Signatures" In <i>Proceedings IEEE Visualization</i> , S. 255–262, 2001
[TSH98]	U. Tiede und T. Schiemann und KH. Höhne: "High-Quality Rendering of Attributed Volume Data.", In <i>IEEE Visualization, Late Breaking Hot Topics</i> , 1998

[Wat02]	Alan Watt: 3D-Computergraphik, Addison-Wesley Verlag, 3. Auflage, 2002
[Web02]	Regina Helena Weber: <i>Einfluss der Scanparameter auf das Abbildungs-ergebnis bei der CT- Angiographie</i> , Dissertation, Ludwig-Maximilians-Universität München, 2002
[Wer94]	Josie Wernecke: <i>The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open Inventor</i> , Release 2. Addison-Wesley, 1. Aufl., März 1994a
[XJ02]	Yonghong Xie und Qiang Ji: "A new efficient ellipse detection method", In <i>IEEE</i> , 2002
[ZPBG01]	Matthias Zwicker und Hanspeter Pfister und Jeroen van Baar und Markus Gross: "EWA Volume Splatting", In <i>Proceedings of IEEE Visualization</i> , 2001

A Anhang

GradLutEditorMacro

Purpose

The **GradLutEditorMacro** helps to create gradient dependent two-dimensional transferfuntions on a histogram and to compute the corresponding 2D-LUT for the GVR.

Usage

Creation Transferfunctions (TFs):

This explains the usage of an example. To start it is needed to compute a 2D-Histogram with dimensions intensity and gradient strength. You have to spezify the size of dimension of them. With the button "Compute Histogram" the calculation is initiated. Now you can see the computed histogram in the left viewer. There you can define elliptic arcs. To create a TF, you have to know, that an elliptic arc represents an edge in the dataset. If you want to see the edge between air and blood then you have to draw one specific arc which represents this. You can look on the intensity; in CT the air is at -1024 HU and the blood lies at 0...200. The gradient is variable. If you find the searched arc, than you can draw an elliptic arc with the left mouse-button to get the representation of the TF. To draw the elliptic arc click at first on the extrempoint and than by holding the mousebutton pressed go to the footpoint. In the next step you have to define the transparency (Alpha) and the alpha distribution.

Than the colordistribution has to be defined. The color of the ellipse is also the color for the TF. You can change the color on the right side of the histogramviewer.

The last step you can define is the "Using of TF". This is very important because it defines the strength of an egde. The ellipse is drawn until the footpoint of the arc. But the point of interest is the peak, because there lies the strongest edges. To generate a nice Volumerendering the ellipse has to be filled until a limit. The limit is defined by the "Using of TF". So you can e.g. say the ellipse has to be filled until 50%.

If you now select the panel GVR, you can see your own TF in Volumerendering.

Inputs

- Loaded Image
- Gradient Strength Image
- Segmentation Mask

Outputs

- Gradient Strength Image
- 2D-LUT to use in GVR

Mouseevents in the HistogramViewer

Draw a halfelliptic arc: press left mousebutton, holding the mousebutton pressed, if you leave the button, the halfellipse is ready (princip of rubberbanding)

Delete a halfellipse with the "*Delete*"-Key or with "*Backspace*", (note: the current selected arc is deleted or the last drawn ellipse)

With the right mouse-button you can select a halfellipse. This option is useful, if you don't want to change the position of ellipse, but rather the parameters of TF

The Panel

Parameters

2D-TFs

Current Parable: the index of the current selected ellipse

Current Color: color of the current selected ellipse

Ellipse Properties:

Width/Heigth: defines the width/height of the ellipse to get two-dimensional representation

StyleId/StyleIndex: the indeces of current selected ellipse to order colors of stylepalette

StyleType: you can define your own type for every ellipse

ColorMode: this field defines in which way the ellipses are coloured regarding the connected style palette. See also SoView2DMarkerEditor

Number: shows the number of created ellipses

Delete All: clears all ellipses

TF Properties:

Select All: if this field is on, the changes in this box are applied to all ellipses

Alpha: transparence (value between 0 and 1 (1=full opacity))

Alpha Distribution: controls the transparence distribution

- FullAlpha: in the whole arc is the same alpha-value
- EqualDistribution: the alpha-value goes down in y-direction from the extrempoint to the footpoint
- EqualToDist: the alpha-value goes also down in y-direction but only to a specific height, which is defined in UsingTF

Color Distribution: controls the color distribution

- box: the same color in the whole arc
- tent: on the side is black and in the middle it is the color
- ramp down: the color goes from the left of ellipse to black on the right
- ramp up: the color goes from black on the left to the color on the right

Min I/ Max I: controls the intensity area

Using: controls strength of edge

IntersectionHandling: handles the intersection of ellipses

Delete Intersection - deletes the colorValue in intersection area

First/Last: select the first/last drawn ellipse

Minimum Alpha/ Maximum Alpha: select the ellipse with lowest/highest transparency

Start

Before starting you have to do some settings:

LoadImage: you can browse an image or you can select the input image

Gradients: The gradients can be computed internal or you can put a gradient-strength dataset on the second input.

If you compute the gradients internal, you can scale the gradient strength with voxelsize. This is meaningful at the using of presets.

Histogram Properties: you can specify the histogram properties, see also the module JointHist, press the "compute Histogram"-Button to initialise computing.

Prefiltering: you can manipuly the incoming dataset, to get a less noised and smoothed dataset

SlabView

Lut Mask: shows the voxels in slabview in the color of the lut

Use Alpha: shows the voxels in slabview in the color and the alphavalue of the lut, sometimes it is meaningful to deactivate this, because the alphavalue is so small that nothing can be recognised

Input Mask: shows the computed input contour mask in slabview

Explore Data: this box can help you to understand the dataset:

If you press the "Draw"-Button and you click with your mouse in the SlabViewer, the correspond bin of the clicked voxel is signed in the histogram. The next selected voxels are also signed until you click the "Reset"-Button, than all signed bins are deleted. You can also adjust the color of the signed bin and the size and you can select, which annotation should has the correspond bin (e.g. worldpos, voxelpos)

ShowInputMask: If you have an input mask, than click the "compute histogram"-Button. The size of the mask-hist is like the size of intensity-gradient-histogram.

With **showInputMask** you can see the correspond bins of the mask in the SlabViewer

MaskStrength: you can adjust the strength of the edges in the mask

ShowImportantHU: shows important CT-intensities in the histogram, e.g. – 1024(air), -700(bronchia), 0 (water) etc.

Presets:

LoadPresets: load a preset

SavePresets: save a preset

Save Thumbnails: save a thumbnail of Volumerendering for a new preset

LUT

Lut Range: adjust the range of lut 256 = 8bit

Lut Size X: on older graphic cards = 256

Lut Size Y: the GVR assists only LUTs of power 2, so the Lut Size Y has to be the same as Lut Size X

Supersampling: approximate better arcs

Show Checker: see the alphavalue of LUT

GVR

GVR on: enable the rendering on and off

Properties: adjust the alphablending, the samplingrate and the quality of rendering: this options influence the TF

Light: properties of scenelight: for gradient depended TFs it is important to use specular light.

SubVolume: set Focus to a subvolume

Create Snapshot: get a thumbnail for a new preset