

Regresión

Equipo:

Arleth Alanis Aguirre	1801925
Armando Javier Delgado Cantú	1887833
Omar Alejandro Garza Espinosa	1931548
Sergio Velázguez Rivera	1805244

¿Qué es una Regresión?

Una Regresión es un modelo matemático para determinar el grado de dependencia entre una o más variables, es decir conocer si existe relación entre ellas.

Existen dos tipos de regresión:

- 1. Regresión Lineal: cuando una variable independiente ejerce influencia sobre otra variable dependiente.
- 2. Regresión Lineal Múltiple: cuando dos o más variables independientes influyen sobre una variable dependiente.

Regresión en Minería de Datos

En Minería de Datos la Regresión se encuentra dentro de la categoría **Predictivo**.

Esta categoría tiene como objetivo analizar los datos de un conjunto y en base a eso, predecir lo que puede ocurrir con ese conjunto de datos en un futuro.

Análisis de Regresión

Permite examinar la relación entre dos o más variables e identificar cuáles son las que tienen mayor impacto en un tema de interés.

- Variable(s) dependiente(s): Es el factor más importante, el cual se está tratando de entender o predecir.
- Variable(s) independiente(s): Es el factor que tú crees que puede impactar en tu variable dependiente.

El análisis de regresión nos permite explicar un fenómeno y predecir cosas acerca del futuro, por lo que nos será de ayuda para tomar decisiones y obtener los mejores resultados.

Regresión lineal en python 3

La idea consiste en obtener una ecuación de la forma: que se ajuste mejor a los datos que se tengan

y = mx + b

Sabemos que:
$$m = \frac{\sum x \sum y - n \sum (xy)}{\left(\sum x\right)^2 - n \sum x^2}$$

$$b = \overline{y} - m\overline{x}$$

Para determinar qué tan bueno es nuestro ajuste existen diferentes parámetros estadísticos pero en este caso utilizaremos el coeficiente de determinación

$$R = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

$$R = rac{oldsymbol{\sigma}_{xy}}{oldsymbol{\sigma}_{x}oldsymbol{\sigma}_{y}} egin{array}{c} ext{donde;} & \sigma_{x} = \sqrt{rac{\sum{(x^{2})}}{n} - ar{x}^{2}}, & \sigma_{y} = \sqrt{rac{\sum{(y^{2})}}{n} - ar{y}^{2}} \ & \sigma_{xy} = rac{\sum{(xy)}}{n} - ar{x} \cdot ar{y} \end{array}$$

Ejercicio Regresión Lineal

Se cree que la cantidad de libras de vapor usadas en la planta por mes está relacionada con la temperatura ambiente promedio. A continuación se presentan los consumos y las temperaturas del último año:

Temperatura	Uso/1000
Х	У
21	185.79
24	214.47
32	288.03
47	424.84
50	454.68
59	539.03
45	320.05

Indique la ecuación estimada para la regresion (Modelo Lineal), su ajuste R2 ajd, y su gráfica correspondiente.

DATOS

```
In [40]: x = [21,24,32,47,50,59,45]
y = [185.79,214.47,288.03,424.84,454.68,539.03,320.05]
```

In [2]: import numpy as np
import matplotlib.pyplot as plt

NUMERO DE ITEMS

In [48]: n = len(y)

Out[48]: 7

VARIABLES -> VECTORES

In [47]: x = np.array(x)
y = np.array(y)
y

Out[47]: array([185.79, 214.47, 288.03, 424.84, 454.68, 539.03, 320.05])

CALCULO DE DATOS

```
In [53]: sumx = sum(x)
    sumy = sum(y)
    sumy2 = sum(x**2)
    sumxy = sum(x*y)

    promx = sumx/n
    promy = sumy/n

sumx
Out[53]: 278
```

CALCULO ECUACION DEL MODELO LINEAL

```
In [45]: m = (sumx*sumy - n*sumxy)/(sumx**2 - n*sumx2)
b = promy - m*promx
m, b
Out[45]: (8.877631640808639, -5.870228020685886)
```

y = -5.87022x + 8.87763

CALCULO R2 AJD

```
R2
Out[38]: 0.9365033825664245
```

R2 = 93.6503%

plt.xlabel('x') plt.ylabel('y')

plt.grid() plt.legend() plt.show()

GRAFICO

In [54]: plt.plot(x, y, 'o', label = 'Datos')

plt.title('Regresion lineal')

plt.plot(x, m*x + b, label = 'Ajuste')

#https://www.youtube.com/watch?v=Sv5IJ1AjjSU

R2 = (sigmaxy/(sigmax*sigmay))**2

sigmaxy = sumxy/n - promx*promy

sigmay = np.sqrt(sumy2/n - promy**2)

In [38]: sigmax = np.sqrt(sumx2/n - promx**2)

Bibliografías

https://www.ecured.cu/Regresi%C3%B3n_lineal

https://economipedia.com/definiciones/modelo-de-regresion.html

https://www.questionpro.com/blog/es/analisis-de-regresion/