

 t_k, k

 t_k, k

$$(\alpha_i \stackrel{\$}{\leftarrow} \{0, \frac{\pi}{4} \dots \frac{7\pi}{4}\})_{i=1}^{n-1}$$

 t_k, k

$$(\alpha_i \xleftarrow{\$} \{0, \frac{\pi}{4} \dots \frac{7\pi}{4}\})_{i=1}^{n-1}$$

 $k, (\alpha_i)$

$(|0\rangle^{\otimes n}|0\rangle^{\otimes m}$

$\int |0\rangle^{\otimes n} |0\rangle^{\otimes m} \Rightarrow \sum_{x} |x\rangle |0\rangle^{\otimes m}$

$\begin{array}{c} |0\rangle^{\otimes n}|0\rangle^{\otimes m} \Rightarrow \sum_{x} |x\rangle|0\rangle^{\otimes m} \Rightarrow \sum_{x} |x\rangle|f_{k}(x)\rangle \\ \\ |0\rangle - |H\rangle \\$

Compute circuit

m

 $|0\rangle$

 $\Rightarrow y$

 $k, (\alpha_i)$

 $|0\rangle$

