DTC	P0327	KNOCK SENSOR 1 CIRCUIT LOW INPUT (BANK 1 OR SINGLE SENSOR)
DTC	P0328	KNOCK SENSOR 1 CIRCUIT HIGH INPUT (BANK 1 OR SINGLE SENSOR)

CIRCUIT DESCRIPTION

A flat type knock sensor (non-resonant type) can detect vibrations in a wide band of frequency (about 6 kHz to 15 kHz) and has the following features:

- Knock sensors are fitted on the cylinder block to detect the engine knocking.
- The sensor contains a piezoelectric element which generates a voltage when it becomes deformed, which occurs when the cylinder block vibrates. If engine knocking occurs, the ignition timing is retarded to suppress it.

DTC No.	DTC Detection Condition	Trouble Area
P0327	Output voltage of the knock sensor is 0.5 V or less	Short in knock sensor circuit Knock sensor ECM
P0328	Output voltage of the knock sensor is 4.5 V or more	Open in knock sensor circuit Knock sensor ECM

MONITOR DESCRIPTION

The knock sensor, located on the cylinder block, detects spark knock. When a spark knock occurs, the sensor picks up vibrations in a specific frequency range. When the ECM detects the voltage in this frequency range, it retards the ignition timing to suppress the spark knock.

The ECM also senses background engine noise with the knock sensor and uses this noise to check for faults in the sensor. If the knock sensor signal level is too low for more than 10 seconds, and if the knock sensor output voltage is out of normal range, the ECM interprets this as a fault in the knock sensor and sets a DTC.

MONITOR STRATEGY

Related DTCs	P0327: Knock Sensor Range Check (Low voltage) P0328: Knock Sensor Range Check (High voltage)
Required sensors/ components (Main)	Knock sensor
Required sensors / components (Related)	MAF meter, Crankshaft position sensor, ECT sensor
Frequency of operation	Continuous
Duration	1 second
MIL operation	Immediate
Sequence operation	None

TYPICAL ENABLING CONDITIONS

All:

The monitor will run whenever these DTCs are not present	See page 05–16
Knock Sensor Range Check:	
Battery voltage	10.5 V or more
Starter	OFF
Ignition switch	ON

TYPICAL MALFUNCTION THRESHOLDS

Knock Sensor Range Check (Low voltage):

Knock sensor voltage	Less than 0.5 V
----------------------	-----------------

Knock Sensor Range Check (High voltage):

Knock sensor voltage More than 4.5 V

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the hand—held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air–fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1 READ OUTPUT DTC

- (a) Clear the DTC (see page 05–41).
- (b) Warm up the engine.
- (c) Run the engine at 3,000 rpm for 10 seconds or more.
- (d) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (e) Turn the ignition switch ON and push the hand-held tester or the OBD II scan tool main switch ON.
- (f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (g) Read the DTC.

Result:

Display (DTC output)	Proceed to
Only P0325 is output again	A
P0325, P0327 and/or P0328 are output again	В
P0325, P0327 and/or P0328 are not output again	С

B Go to step 3

C CHECK FOR INTERMITTENT PROBLEMS

2 INSPECT KNOCK SENSOR

(a) Check the knock sensor installation.

OK: Torque is 20 N·m (204 kgf·cm, 15 ft·lbf)

NG TIGHTEN SENSOR

ОК

REPLACE KNOCK SENSOR

3 | CHECK WIRE HARNESS (ECM – KNOCK SENSOR)

- (a) Disconnect the E10 ECM connector.
- (b) Check the resistance of the wire harness side connector.
 Standard:

Tester Connection	Condition	Specified Condition
E10-29 (KNK1) - E10-30 (EKNK)	20°C (68°F)	120 to 280 kΩ

NG Go to step 5

OK

4 INSPECT ECM (KNK1 VOLTAGE)

- (a) Disconnect the E10 ECM connector.
- (b) Turn the ignition switch ON.
- (c) Check the voltage of ECM terminals.

Voltage:

Tester Connection	Specified Condition
E10-29 (KNK1) - E10-30 (EKNK)	4.5 to 5.5 V

NG REPLACE ECM (See page 10-9)

OK

CHECK FOR INTERMITTENT PROBLEMS

NOTICE:

Fault may be intermittent. Check the harness and connectors carefully.

5 INSPECT KNOCK SENSOR

- (a) Remove the knock sensor.
- (b) Check the resistance between the terminals. OK: Resistance is 120 to 280 k Ω at 20°C (68°F)

NG > REPLACE KNOCK SENSOR

ОК

REPAIR OR REPLACE HARNESS AND CONNECTOR