

Errors

What are possible sources for errors in computed solutions?

- Rounding error (finite digit limitation in computer arithmetic)
- Accumulation error (rounding errors accumulated when additional calculations are done)
- Truncation error (termination of an infinite process) $\lim_{n\to\infty} x_n = x$. Approximate x with x_N . TE = $|x-x_N|$
- Discretization error (discrete approximation to continuous systems)

Floating Point Number & Error

Computers use a finite subset of the rational numbers to approximate any real number

Let *x* be any real number.

Infinite decimal expansion : $x = \pm .x_1x_2 \cdots x_d \cdots 10^e$

Truncated floating point number: $x \approx fl(x) = \pm .x_1 x_2 \cdots x_d 10^e$

where $x_1 \neq 0, 0 \leq x_i \leq 9$,

d: an integer, precision of the floating point system

e: an bounded integer

Floating point or **roundoff error** : fl(x)-x

Error Propagation

When additional calculations are done, there is an accumulation of these floating point errors.

Example: Let x = -0.6667 and $fl(x) = -0.667 \cdot 10^0$ where d = 3.

Floating point error: fl(x) - x = ?

Error propagation: $fl(x)^2 - x^2 = ?$

Error Propagation

When additional calculations are done, there is an accumulation of these floating point errors.

Example: Let x = -0.6667 and $fl(x) = -0.667 \cdot 10^0$ where d = 3.

Floating point error: fl(x) - x = -0.0003

Error propagation : $fl(x)^2 - x^2 = 0.00040011$

Accumulation Error

Let
$$U_0 = fl(u_0)$$
, $A = fl(a)$, and $B = fl(b)$ so that
$$U_k = AU_{k-1} + B + \overline{R}_k = aU_{k-1} + b + R_k$$

where \overline{R}_k is the roundoff error at k - th step

and R_k includes \overline{R}_k and round errors assoicated with a and b.

Accumulation Error: $U_k - u_k$

Accumulation Error

- Can we guarantee that the accumulation error can keep reasonably small as the number of time steps increases?
- Can we provide a rough estimate on the accumulation error?

Accumulation Error

Accumulation Error Theorem

Consider the first order finite difference algorithm.

If r = |a| < 1 and the roundoff errors are uniformly bounded, *i.e.*,

$$\left|\overline{R}_{k}\right| \leq R < \infty,$$

then the accumulated error is uniformly bounded, i.e.,

$$|U_k - u_k| \le r^k |U_0 - u_0| + R \frac{1 - r^k}{1 - r} \le \left(1 + \frac{1}{1 - r}\right) R.$$

Summary on Cooling of Coffee

Model

Based on the discrete Newton cooling Law,

$$u_{k+1} = au_k + b$$

Steady State Theorem:

if
$$|a| < 1$$
, then

$$u_{k+1} \rightarrow u$$
, where $u = au + b$ (i.e., $u = u_{sur}$)

Accumulation Error Theorem:

if
$$|a| < 1 & |\overline{R}_{k+1}| \le R < \infty$$
, then

$$|U_{k+1} - u_{k+1}| \le M < \infty$$
, where M independent of k

Finally, What-if thinking

For example, what if the coffee is not well-stirred?

Finally, What-if thinking

What if $\Delta t \rightarrow 0$?

$$\frac{u_{k+1} - u_k}{\Delta t} = c\Delta t (u_{sur} - u_k)$$

$$\frac{u_{k+1} - u_k}{\Delta t} = c(u_{sur} - u_k)$$

Finally, What-if thinking

Discrete Model:

$$u_{k+1} - u_k = c\Delta t (u_{sur} - u_k)$$

$$\frac{u_{k+1} - u_k}{\Delta t} = c(u_{sur} - u_k)$$

$$\Rightarrow$$

As
$$\Delta t \to 0$$
, $\frac{u_{k+1} - u_k}{\Delta t} \to \frac{du}{dt}$

Continuous Model:

$$\therefore \frac{du}{dt} = c\left(u_{sur} - u\right)$$

Case 1 More on Cooling Coffee

Discrete Time-Space Models: Convergence Analysis

Initial Value Problem

Continuous Model

$$\begin{cases} \frac{du}{dt} &= c \left(u_{sur} - u(t) \right) \\ u(0) &= u_0 \end{cases}$$

Actually, we can solve it exactly

$$u(t) = u_{sur} + (u(0) - u_{sur})e^{-ct}$$

Forward Euler's Method

Let u = u(t). The general form of an initial value problem is $\begin{cases} u_t = f(t, u) \\ u(0) = u_0 \text{ is given} \end{cases}$

In general, we may not be able to solve it exactly.

Therefore, we approximate $u_t \approx \frac{u_{k+1} - u_k}{\Delta t}$ and then solve u discretely where $u_k \approx u(k\Delta t)$:

Forward Euler's Method:
$$\frac{u_{k+1} - u_k}{\Delta t} = f(k\Delta t, u_k)$$

Euler approximations with size of Δt

Applying Forward Euler (or Euler) Method to the cooling of coffee problem as an example:

$$\frac{u_{k+1} - u_k}{\Delta t} = c \left(u_{sur} - u_k \right)$$

$$\therefore u_{k+1} = a u_k + b$$

where $a = 1 - c\Delta t$ and $b = c \Delta t u_{sur}$

Consider to estimate u(t) at t = 60 minutes.

Fix all the parameters except Δt . We change the time step size $\Delta t = 60$, 30, 15,1.

Euler Approximation with Δt =60 minutes

Euler Approximation with Δt =30 minutes

Euler Approximation with $\Delta t=15$ minutes

Euler Approximation with $\Delta t=1$ minutes

Euler approximations with size of Δt

Consider Euler approximation error at a time t = 60 minutes. We change the time step size $\Delta t = 60$, 30, 15,1 minutes, respectively

Δt	Exact (c)	Forward Euler (c)	Abs Error (c)
60	40.14	-20.00	60.14
30	40.14	28	12.14
15	40.14	34.72	5.42
1	40.14	39.82	0.33

Euler approximations with size of Δt

• What can we conclude as Δt becomes smaller?

As
$$\Delta t \downarrow$$
, the error \downarrow

• How is the numerical error exactly related to the size of Δt ?

Assessment: Numerical error

Two major types of numerical errors existing for numerical solutions of an initial value problem:

- a) Accumulation error $\equiv E_r^k = R_k = U_k u_k$
- b) Discretization error $\equiv E_d^k = u_k u(k \Delta t)$

where $u(k\Delta t)$: exact continous solution

 u_k : from Euler's algorithm with no roundoff error

 U_k : from Euler's algorithm with roundoff error

 \therefore Overallerror $\equiv E_r^k + E_d^k = U_k - u(k\Delta t)$

Assessment: Numerical error

Let u: exact continous solution

U: an approximation to u

Absolute error $\equiv |U - u|$

Relative error |U-u|/u, if $u \neq 0$

Assessment: Computational error

Accumulation Error Revisit

Accumulation Error Theorem (Cooling of Coffee)

If r = |a| < 1 and the roundoff errors are uniformly bounded,

then
$$|U_k - u_k| \le R \left(1 + \frac{1}{1 - r}\right)$$
.

Numerical Stability Condition for Euler Algorithm:

$$|a| < 1$$
 and $c > 0 \Rightarrow 0 < \Delta t < \frac{2}{c}$ and $c > 0$

An important restriction on Δt so that the accumulation error won't be out of control!

Assessment: Discretization Error

What is the error when
$$u_t(k\Delta t) \approx \frac{u((k+1)\Delta t) - u(k\Delta t)}{\Delta t}$$
?

Reminder:

Taylor Expansion of a function u(t) about a point t = a:

$$f(t) = f(a) + f_t(a)(t-a) + \frac{f_{tt}(\hat{t})}{2}(t-a)^2$$

where \hat{t} is between a and t.

Rewritten the Taylor expansion:

$$\frac{f(t)-f(a)}{(t-a)} = f_t(a) + \frac{f_{tt}(\hat{t})}{2}(t-a)$$

Assessment: Euler Error Theorem

Theorem 1.6.3

Consider the continuous and discrete Newton cooling models. Assume that the solution have the 1st, 2nd derivatives on [0, T]. If $|u''(t)| \le M$ and $E_d^0 = 0$ and $a = 1-c\Delta t > 0$ and $c, \Delta t > 0$, then $|E_d^{k+1}| \le \frac{M}{2c} \Delta t$.

Backward Euler's Method

Backward Euler's Method: $\frac{u_{k+1} - u_k}{\Delta t} = f((k+1)\Delta t, u_{k+1})$

where the evaluation of function f depends on the unknown value u_{k+1} . Sometime, we call it "implicite method".

Remarks:

The numerical computation is always stable.

So there is no restriction on $\Delta t!$

(Leave as an assignment :-)

Backward Euler Approximation with Δt =20 minutes and a = 1

Backward Euler approximation Error is $O(\Delta t)$

Consider Euler approximation error at a time t = 60 minutes.

We change the time step size $\Delta t = 60$, 30, 15,1 minutes, respectively

Δt	Forward Euler Error	Backward Euler Error
60	60.14	13.70
30	12.14	8.01
15	5.42	4.38
1	0.33	0.32

Improved Euler Method

It can be roughly considered as the average of forward and backward Euler method (Semi - Explicite):

$$\begin{cases} \frac{u_{temp} - u_k}{\Delta t} = f(k\Delta t, u_k) \\ \frac{u_{k+1} - u_k}{\Delta t} = \frac{f(k\Delta t, u_k) + f((k+1)\Delta t, u_{temp})}{2} \end{cases}$$

Assessment: Stable and Discretization Error $O(\Delta t^2)$

Theorem 1.6.3′

Consider the continuous and discrete Newton cooling models with improved Euler method.

Assume that the solution have the 1st, 2nd, and 3rd derivatives on [0, T].

If
$$|u^{(3)}(t)| \le M$$
 and $E_d^0 = 0$ and $a = 1-c\Delta t > 0$ and $c, \Delta t > 0$, then

$$\left|E_d^{k+1}\right| \leq \frac{M}{3c} (\Delta t)^2.$$

Improved Euler Approximation with Δt =60 minutes

Improved Euler Approximation with Δt =30 minutes

Improved Euler Approximation with Δt =15 minutes

Summary Initial Value Problem

An initial value problem:

$$\begin{cases} u_t = f(t, u) \\ u(0) = u_0 \text{ is given} \end{cases}$$

In general, the close form cannot be found.

Numerical approximation is needed

Assessment: Numerical error

Summary on Numerical errors

There are two types of numerical errors existing for numerical solutions of an initial value problem:

- a) Accumulation error $\equiv E_r^k = R_k = U_k u_k$
- b) Discretization error $\equiv E_d^k = u_k u(k \Delta t)$

where $u(k\Delta t)$: exact continous solution

 u_k : from Euler's algorithm with no roundoff error

 U_k : from Euler's algorithm with roundoff error

 \therefore Overallerror $\equiv E_r^k + E_d^k = U_k - u(k\Delta t)$

Summary on Euler methods

Forward Euler's Method: $\frac{u_{k+1} - u_k}{\Delta t} = f(k\Delta t, u_k)$

explicit, restriction on Δt , discretization error $O(\Delta t)$

<u>Backward Euler's Method</u>: $\frac{u_{k+1} - u_k}{\Delta t} = f((k+1)\Delta t, u_{k+1})$

implicit, always stable, discretization error $O(\Delta t)$

Improved Euler's Method (≈ Average of Forward and Backward Euler):

$$\begin{cases} \frac{u_{temp} - u_k}{\Delta t} = f(k\Delta t, u_k) \\ \frac{u_{k+1} - u_k}{\Delta t} = \frac{f(k\Delta t, u_k) + f((k+1)\Delta t, u_{temp})}{2} \end{cases}$$

explicit, restriction on Δt , discretization error $O((\Delta t)^2)$

Further Applications-Finance

- The heat equation arises in the modeling of a number of phenomena and is often used in financial mathematics in the modeling of options.
- The famous Black–Scholes option pricing model's differential equation can be transformed into the heat equation allowing relatively easy solutions from a familiar body of mathematics.
- Many of the extensions to the simple option models do not have closed form solutions and thus must be solved numerically to obtain a modeled option price.

Further Applications-Image Processing

- Diffusion problems dealing with Dirichlet, Neumann and Robin boundary conditions have closed form analytic solutions (Thambynayagam 2011)
- The heat equation is also widely used in image analysis (Perona & Malik 1990) and in machinelearning as the driving theory behind scale-space or graph Laplacian methods
- The heat equation can be efficiently solved numerically using the Crank–Nicolson method of (Crank & Nicolson 1947). This method can be extended to many of the models with no closed form solution, see for instance (Wilmott, Howison & Dewynne 1995)