Sprawozdanie LAB5

Arkadiusz Ziółkowski 17.04.2015r

1 Cel ćwiczenia

Celem ćwiczenia jest zbadanie złożoności obliczeniowej operacji odczytu/zapisu do/z zaimplementowanej Tablicy Haszującej.

2 Wywód teoretyczny złożoności obliczeniowej

2.1 Zapis

- Zapis polega na haszowaniu klucza i umieszczeniu danej na końcu listy znajdującej się na odpowiednim indeksie tablicy (Array).
- Funkcja haszująca na podstawie wartości liczbowych kodu ASCII zawsze przemnaża wartości sześciu pierwszych liter klucza (pomnożonych przez odpowiedni współczynnik). Wobec czego wykonuje się w stałym czasie T(1).
- Zgodnie ze Sprawozdaniem LAB3 zapis n elementów do listy (ListArr2x) ma złożoność O(n), więc średni zapis pojedyńczego elementu ma założoność O(1) (czas wykonania T(1)).
- \bullet Jest oczywistym, że dostęp do k
 tego pola Arraya charakteryzuje się czasem $\mathrm{T}(1)$
- W związku z powyższymi czas operacji zapisu do Tablicy Haszującej wyraża się wzorem:

$$T_{haszowania} + T_{dotep_Array} + T_{zapis_lista} =$$

$$= T(1) + T(1) + T(1) =$$

$$= T(1) \Rightarrow O(1)$$

 \bullet Złożoność obliczeniowa algorytmu zapisu do Tablicy Haszującej wyraża się w O(1).

2.2 Odczyt

- 1. Przypadek pesymistyczny
 - Zakładamy, że wszystkie n elementów trafiaja na tą samą pozycję Array'a Listy Haszujacej.
 - Szukany element znajduje się na końcu listy podlinkowanej pod daną pozycję.
 - Zostanie przeszukana cała lista w celu znalezienia pasującego klucza
 n porównań co daje złożoność czasową T(n).
 - Zaniedbując pomijalnie małą złożoność funkcji haszującej, oraz dostępu do pola tablicy Array, powyższa złożoność czasowa T(n) implikuje złożoność obliczeniową wyrażoną w O(n).

2. Przypadek średni

- Zakładamy, że prawdopodobieństwo pojawienia się elementów na każdym z idensków tablicy haszującej jest takie samo.
- Przyjmujemy ilość elementów tablicy n mniejszą lub równą jej rozmiarowi.
- Przy jednakowych długościach klucza.
- Odczyt danej sprowadza się do wygenerowania przez funkcję haszującą indeksu tablicy, uzyskania dostępu do pola tablicy Array i porównania zgodności klucza.
- Wobec powyższego czas odczytu:

$$T_{haszowania} + T_{dotepArray} + T_{porownanieklucza} =$$

$$= T(1) + T(1) + T(1) =$$

$$= T(1) \Rightarrow O(1)$$

• Średnia złożoność obliczeniowa algorytmu odczytu do Tablicy Haszującej wyraża się w O(1).

3 Wyniki pomiarów

Pomiary zostały wykonane dla średniego i pesymistycznego przypadku odczytu danych oraz dla ogólnego przypadku ich zapisu do do Tabli Haszującej. Wynikami pomiarów są średnie czasy zapisu/odczytu pojedyńczego elementu z próby.

Ilość elementów	Średni czas obliczeń [us]		
	Zapis	Odczyt średni	Odczyt pesymistyczny
10^{2}	1,028	1,286	2,853
$4*10^2$	0,686	1,2322	8,299
10^{3}	0,649	0,844	19,625
$4*10^3$	0,583	0,808	77,507
10^{4}	0,550	0,826	196,346
$4*10^4$	0,593	0,833	831,965
10^{5}	0,564	0,886	-
$4*10^5$	0,641	1,010	-
10^{6}	0,548	1,224	-

Tabela 1. Wyniki pomiarów odczytu/zapisu

Rysunek 1. Wykres czasu od ilości danych

4 Wnioski

- \bullet Z Rysunku 1. bardzo łatwo można zauważyć, iż odczyt pesymistyczny uzyskany drogą ekperymentalną posiada złożoność O(n), odczyt średni O(1) oraz zapis O(1).
- Wyniki pomiarów przedstawione na Rysunku 1. i w Tabeli 1. są zgodne z wcześniejszymi wywodami teoretycznymi.
- Tablica Haszująca będąca szczególnym przypadkiem Tablicy Asocjacyjnej jest doskonałą implementacją kontenera przechowującego dane pod kluczem ze względu na szybki zapis oraz szybki średni odczyt charakteryzujące się złożonością obliczeniową O(1).
- Podczas implementacji należy szczególną uwagę poświęcić funkcji haszującej, która powinna zwracać wartości liczbowe (z zakresu rozmiaru tablicy) z rozkadem prawdopodopodobieństwa jak najbardziej zbliżonym do równomiernego.