2 Projections and proximal operators [25 points] (Adona)

Q1. [4+4]

a) For a symmetric matrix A we want to find positive semidefinite matrix B minimizing the sum of the absolute values of the eigenvalues of B - A. Clearly, if $A = U\Sigma U^{-1}$ is the singular value decomposition of A, this is achieved by

$$B = U\Sigma^+U^{-1}.$$

where Σ^+ is the diagonal matrix with entries $\Sigma_{ii}^+ = \max\{0, \Sigma_{ii}\}.$

b) Let $x^* \in \mathbb{R}^n$ such that $Ax^* + b$ is the projection of y onto $\{Ax + b : x \in \mathbb{R}^n\}$. Then, Ax^* is the projection of y - b onto the column space $\mathcal{C}(A)$, so $(y - b) - Ax^*$ is orthogonal to every vector in $\mathcal{C}(A)$ and is hence in the null space $\mathcal{N}(A^T)$. Then,

$$A^{T}((y-b) - Ax^{*}) = 0$$
, and so $A^{T}(y-b) = A^{T}Ax^{*}$.

Since A has full column rank, A^TA is an invertible (square) matrix, so

$$(A^T A)^{-1} A^T (y - b) = x^*,$$

and hence the projection p of y onto $\{Ax + b : x \in \mathbb{R}^n\}$ is

$$p = Ax^* + b = A(A^TA)^{-1}A^T(y-b) + b.$$

Q2. [5+7+5]

a) Let

$$x^* := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} ||x - z||_2^2 + \lambda \sum_{i=1}^n (x_i)_+.$$

Clearly, if $z_i \leq 0$, then $x_i^* = z_i$. If $z_i > 0$, then $x_i^* \geq 0$. If $x_i^* > 0$, we have

$$0 = \frac{\partial}{\partial x_i^*} \frac{1}{2} \sum_{z_i > 0} (x_i^* - z_i)^2 + \lambda x_i^* = x_i^* - z_i + \lambda,$$

so that $x_i^* = z_i - \lambda$ when this is positive. Thus, we have

$$x_i^* = \begin{cases} z_i & : \text{ if } z_i \le 0\\ 0 & : \text{ if } 0 < z_i \le \lambda\\ z_i - \lambda & : \text{ if } \lambda < z_i \end{cases}.$$

 $^{^{1}}sss1@andrew.cmu.edu$

b) Let

$$x^* := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} ||x - z||_2^2 + \lambda ||x||_2$$

Clearly, $x^* = cz$, for some $c \in [0, 1]$. Thus, c = 0 or

$$0 = \frac{d}{dc} \frac{1}{2} \|(c-1)z\|_2^2 + \lambda \|cz\|_2 = (c-1) \|z\|_2^2 + \lambda \|z\|_2,$$

so $c = 1 - \frac{\lambda}{\|z\|_2}$. Thus,

$$x^* = \begin{cases} \left(1 - \frac{\lambda}{\|z\|_2}\right) z & \text{if } \lambda \le \|z\|_2 \\ 0 & \text{else} \end{cases}.$$

c) Let

$$x^* := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} ||x - z||_2^2 + \lambda ||x||_{\infty}$$

and $\rho := ||x||_{\infty}$. Clearly, by definitions of the 2- and ∞ -norms, in each coordinate of x^* ,

$$x_i^* = \begin{cases} \rho & : \text{ if } \rho < z_i \\ z_i & : \text{ if } -\rho \le z_i \le \rho \\ -\rho & : \text{ if } z_i < -\rho \end{cases}.$$

Then, we have

$$0 = \frac{d}{d\rho} \frac{1}{2} \|x^* - z\|_2^2 + \lambda \|x\|_{\infty} = \sum_{|z_i| > \rho} \rho - |z_i| + \lambda = -\|x^* - z\|_1 + \lambda,$$

so
$$||x^* - z||_1 = \lambda$$
.