UL-VIO: Ultra-lightweight Visual-Inertial Odometry with Noise Robust Test-time Adaptation

Jinho Park¹, Se Young Chun², Mingoo Seok¹

¹Columbia University, ²Seoul National University

Adaptation gating signal

Project page

Motivation for Lightweight & Robust Network

- Need for lightweight neural network to be hosted entirely by on-chip memory, which is of few MB in modern processors
- Robust to environmental factors and noises inducing distribution shifts

Model Compression

- Channel scaling model parameter quadratically proportional to channel size in E_{in} E_{in} D_{f}
- Addition of AveragePool prior to FullyConnected (FC) to reduce feature size in E_v
- Replace LSTM w/ FC layer to reduce the model size in D_f

- We achieve 36x model size reduction w/ a minute (1%) increase in absolute pose estimation error
- Latest Apple A16 and Qualcomm Snapdragon CPUs possess only a few MB of on-chip memory

- Visual encoder deduces visual features from pairwise images
- · Inertial encoder does so from the inertial input
- **Decoder** predicts pose transformation from fused features

Dictionary-based Visual Encoder Adaptation

- Forward-path generate **visual feature** x^{ν} , which will be used for decoder in the deeper layers
- First layer conv output o₁ is used to generate domain distinctive feature d_t
- Domain k is found using I_2 distance with the proxies $\{\mathbf{d}^k\}$
- BatchNorm parameter corresponding to the domain k is updated

Motivation for Multi-modal Consistency

- While using visual feature along with inertial is preferred, inertial-only result become reliable under noise
- Inertial-only pose output (pseudo label) is highly correlated with the ground-truth target pose

Against Fine-tuned Baselines

Model		Clean	Multi.	Aver Blur	age pose- Rain	wise t_{rm} . Snow		Bright.	Cont.
Source		0.059	0.154	0.261	0.176	0.191	0.203	0.226	0.250
Fine- tuned with adver. noise (FT)	Multi. Blur Rain Snow Shadow Bright. Cont.	0.099 0.115 0.289 0.091 0.085 0.091 0.093	$\begin{array}{c} 0.129 \\ 0.176 \\ 0.325 \\ 0.148 \\ \textbf{0.112} \\ 0.151 \\ 0.150 \\ \end{array}$	0.394 0.263 0.372 0.319 0.322 0.312 0.330	0.227 0.193 0.095 0.263 0.179 0.177 0.197		0.192 0.184 0.311 0.208 0.121 0.185 0.184	$\begin{array}{c c} 0.299 \\ 0.242 \\ 0.525 \\ 0.369 \\ \underline{0.221} \\ 0.233 \\ 0.237 \end{array}$	0.331 0.261 0.531 0.450 0.252 0.278 0.273
TTA (ours)		-	0.156	0.230	0.143	0.172	0.155	0.193	0.212

Except for one case, e.g., multiplicative noise, our TTA method has the best or 2nd best accuracy

Continual TTA

- Translation RMSE quickly increases when the visual corruption is applied
- TTA mitigates the increase in the error to some extent

Continual TTA w/ Dynamic Noise Shifts

Time	t —											\longrightarrow	
$\mathbf{Seq.}$	Seq. 05				Seq. 07				Seq. 10				
\mathbf{Noise}	Blur	Rain	Snow	Con.	Blur	Rain	Snow	Con.	Blur	Rain	Snow	Con.	Avg.
Baseline	0.118	0.121	0.103	0.166	0.127	0.153	0.110	0.191	0.137	0.134	0.120	0.167	0.137
TTA	0.112	0.107	0.110	0.107	0.101	0.108	0.106	0.104	0.123	0.124	0.121	0.127	0.113
ddf acc.	97.9	100	100	100	98.2	100	100	100	98.8	100	100	100	99.6

• We inject different types of noise {blur, rain, snow, contrast} in a continuous manner for KITTI