Mathematical analysis I

Conf.univ.,dr. Elena Cojuhari

elena.cojuhari@mate.utm.md
Technical University of Moldova

2021

- 1 Infinite Series
 - Sequences
 - Summing an Infinite Series
 - Convergence of Series with Positive Terms
 - Absolute and Conditional Convergence
 - The Ratio and Root Tests
 - Power Series
 - Taylor Series

Subsection 1

Sequences

Sequences

- A **sequence** is an ordered collection of numbers defined by a function f(n) on a set of integers;
- The values $a_n = f(n)$ are the **terms** of the sequence and n the **index**;
- We think of $\{a_n\}$ as a list $a_1, a_2, a_3, a_4, \ldots$
- The sequence may not start at n = 1; It may start at n = 0, n = 2 or any other integer;
- When a_n is given by a formula, then it is referred to as the **general** term of the sequence;
- Examples:

General Term	Domain	Sequence
$a_n = 1 - \frac{1}{n}$	$n \ge 1$	$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$
$a_n = (-1)^n n$	$n \ge 0$	$0, -1, 2, -3, 4, \dots$
$a_n = \frac{n^2}{n^2 - 4}$	$n \ge 3$	$\frac{9}{5}, \frac{16}{12}, \frac{25}{21}, \frac{36}{32}, \frac{49}{45}, \dots$

Recursively Defined Sequences

- A sequence is defined **recursively** if one or more of its first few terms are given and the n-th term a_n is computed in terms of one or more of the preceding terms a_{n-1}, a_{n-2}, \ldots ;
- Example: Compute a_2 , a_3 , a_4 for the sequence defined recursively by

$$a_{1} = 1, \quad a_{n} = \frac{1}{2} \left(a_{n-1} + \frac{2}{a_{n-1}} \right);$$

$$a_{2} = \frac{1}{2} \left(a_{1} + \frac{2}{a_{1}} \right) = \frac{1}{2} \left(1 + \frac{2}{1} \right) = \frac{3}{2};$$

$$a_{3} = \frac{1}{2} \left(a_{2} + \frac{2}{a_{2}} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{2}{3/2} \right) = \frac{1}{2} \cdot \frac{17}{6} = \frac{17}{12};$$

$$a_{4} = \frac{1}{2} \left(a_{3} + \frac{2}{a_{3}} \right) = \frac{1}{2} \left(\frac{17}{12} + \frac{2}{17/12} \right) = \frac{1}{2} \cdot \frac{577}{204} = \frac{577}{408};$$

Limit of a Sequence

- We say that the sequence $\{a_n\}$ converges to a limit L, written $\lim a_n = L$ or $a_n \to L$, if the values of a_n get arbitrarily close to the value L when n is taken sufficiently large;
- If a sequence does not converge, we day it **diverges**;
- If the terms increase without bound, $\{a_n\}$ diverges to infinity;

Sequence Defined by a Function

Theorem (Limit of a Sequence Defined by a Function)

If $\lim f(x)$ exists, then the sequence $a_n = f(n)$ converges to the same limit, i.e., $\lim_{n\to\infty} a_n = \lim_{x\to\infty} f(x)$;

• Example: Show that $\lim_{n\to\infty} a_n = 1$, where $a_n = \frac{n+4}{n+1}$; We consider the function $f(x) = \frac{x+4}{x+1}$; Clearly, $a_n = f(n)$; Therefore, by the Theorem, it suffices to show that $\lim_{x\to\infty} f(x) = 1$;

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x+4}{x+1} = \lim_{x \to \infty} \frac{1+\frac{4}{x}}{1+\frac{1}{x}} = \frac{1+0}{1+0} = 1;$$

• Find the limit of the sequence $\frac{2^2-2}{2^2}, \frac{3^2-2}{3^2}, \frac{4^2-2}{4^2}, \frac{5^2-2}{5^2}, \ldots;$

The general term of the given sequence is $a_n = \frac{n^2 - 2}{n^2}$; We consider the function $f(x) = \frac{x^2 - 2}{x^2} = 1 - \frac{2}{x^2}$; Clearly, $a_n = f(n)$; Therefore, it suffices to find the limit $\lim_{x \to \infty} f(x)$;

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (1 - \frac{2}{x^2}) = 1 - 0 = 1;$$

Thus, $\lim_{n\to\infty} a_n = 1$;

Example II

• Find the limit $\lim_{n\to\infty} \frac{n+\ln n}{n^2}$;

We consider the function $f(x) = \frac{x + \ln x}{x^2}$; Clearly, $a_n = f(n)$;

Therefore, it suffices to find the limit $\lim_{x\to\infty} f(x)$;

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x + \ln x}{x^2} = \left(\frac{\infty}{\infty}\right)^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2$$

Thus,
$$\lim_{n\to\infty} \frac{n+\ln n}{n^2} = 0$$
;

Geometric Sequences

• For $r \ge 0$ and c > 0,

$$\lim_{n \to \infty} cr^n = \begin{cases} 0, & \text{if } 0 \le r < 1 \\ c, & \text{if } r = 1 \\ \infty, & \text{if } r > 1 \end{cases}$$

To see this, one considers the corresponding function $f(x)=cr^x$; If r<1, then, $\lim_{x\to\infty}cr^x=0$, and, if r>1, then, $\lim_{x\to\infty}cr^x=\infty$;

Limits Laws for Sequences

Limit Laws for Sequences

Assume $\{a_n\}$ and $\{b_n\}$ are convergent sequences with

$$\lim_{n\to\infty}a_n=L,\qquad \lim_{n\to\infty}b_n=M;$$

Then, we have:

- $\lim_{n\to\infty}(a_n\pm b_n)=\lim_{n\to\infty}a_n\pm\lim_{n\to\infty}b_n=L\pm M;$
- $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}=\frac{L}{M}, \text{ if } M\neq 0;$
- $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n = cL, \ (c \text{ a constant;})$

Squeeze Theorem for Sequences

Squeeze Theorem for Sequences

Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be sequences, such that, for some number M,

$$b_n \le a_n \le c_n$$
, for all $n > M$

and

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}c_n=L;$$

Then $\lim_{n\to\infty} a_n = L$;

• Example: Show that if $\lim_{n\to\infty}|a_n|=0$, then $\lim_{n\to\infty}a_n=0$. Note that $-|a_n|\leq a_n\leq |a_n|$; By hypothesis $\lim_{n\to\infty}|a_n|=0$; This also implies $\lim_{n\to\infty}(-|a_n|)=-\lim_{n\to\infty}|a_n|=0$; Now, by the Squeeze Theorem for Sequences, $\lim_{n\to\infty}a_n=0$;

Geometric Sequences with r < 0

• For $c \neq 0$,

$$\lim_{n \to \infty} c r^n = \left\{ \begin{array}{ll} 0, & \text{if } -1 < r < 0 \\ \text{diverges}, & \text{if } r \leq -1 \end{array} \right.$$

- If -1 < r < 0, then 0 < |r| < 1 and, therefore $\lim_{n \to \infty} |cr^n| = \lim_{n \to \infty} |c| \cdot |r|^n = 0$; Thus, since $-|cr^n| \le cr^n \le |cr^n|$, by the Squeeze Theorem, we get $\lim_{n \to \infty} cr^n = 0$;
- If r=-1, then $\lim_{n\to\infty} (-1)^n c$ diverges, since $|(-1)^n c|=|c|$ and its sign keeps alternating;
- If r<-1, then |r|>1, whence $|cr^n|=|c|\cdot|r|^n\to\infty$, whence $\lim_{n\to\infty}cr^n$ diverges in this case also;

Exploiting Continuity

Theorem

If f(x) is a continuous function and $\lim_{n\to\infty} a_n = L$, then

$$\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(L);$$

This says, informally speaking, that if f is continuous, we can "push the limit in";

- Example: Since $f(x) = e^x$ and $g(x) = x^2$ are both continuous, we may use this theorem to compute:

 - $\lim_{n \to \infty} e^{\frac{3n}{n+1}} = \lim_{n \to \infty} f(\frac{3n}{n+1}) = f(\lim_{n \to \infty} \frac{3n}{n+1}) = f(3) = e^3;$ $\lim_{n \to \infty} (\frac{3n}{n+1})^2 = \lim_{n \to \infty} g(\frac{3n}{n+1}) = g(\lim_{n \to \infty} \frac{3n}{n+1}) = g(3) = 9;$

Bounded Sequences

- A sequence $\{a_n\}$ is
 - bounded from above if there is a number M, such that $a_n \leq M$, for all n; In this case M is called an **upper bound**;
 - bounded from below if there is a number m, such that $a_n \geq m$, for all n; In this case m is called a **lower bound**;
- $\{a_n\}$ is **bounded** if it is bounded from above and from below; A sequence is **unbounded** if it is not bounded;

$\mathsf{Theorem}$

If $\{a_n\}$ converges, then $\{a_n\}$ is bounded;

Is Every Bounded Sequence Convergent?

Bounded Monotonic Sequences

- A sequence $\{a_n\}$ is
 - increasing if $a_n < a_{n+1}$, for all n;
 - decreasing if $a_n > a_{n+1}$, for all n;
 - monotonic if it is either increasing or decreasing;

Theorem (Bounded Monotonic Sequences Converge)

- If $\{a_n\}$ is increasing and $a_n \leq M$, then a_n converges and $\lim_{n \to \infty} a_n \leq M$;
- If $\{a_n\}$ is decreasing and $a_n \geq m$, then a_n converges and $\lim_{n \to \infty} a_n \geq m$;

Example I

• Show that $a_n = \sqrt{n+1} - \sqrt{n}$ is decreasing and bounded from below; Does $\lim_{n \to \infty} a_n$ exist?

We show that a_n is decreasing by two different methods; The first uses the sequence itself, the second uses the corresponding function;

Method 1: Rewrite $a_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} + \sqrt{n})(\sqrt{n+1} - \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}};$ Now we see $a_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} > \frac{1}{\sqrt{(n+1) + 1} + \sqrt{n+1}} = a_{n+1};$

So $\{a_n\}$ is decreasing;

Method 2: Consider $f(x) = \sqrt{x+1} - \sqrt{x}$ and compute $f'(x) = \frac{1}{2\sqrt{x+1}} - \frac{1}{2\sqrt{x}} < 0$, for x > 0; Thus, since f' < 0, we get that $f \searrow [0, \infty)$, showing that $\{a_n\}$ is a decreasing sequence;

Clearly $a_n = \sqrt{n+1} - \sqrt{n} > 0$, which shows that $\{a_n\}$ is bounded from below:

Example II

 Show that the following sequence is bounded and increasing; Then find its limit:

$$a_1 = \sqrt{2}, \quad a_2 = \sqrt{2\sqrt{2}}, \quad a_3 = \sqrt{2\sqrt{2\sqrt{2}}}, \quad \dots$$

The key here is to realize that $a_{n+1} = \sqrt{2}a_n$, for all n; We show $\{a_n\}$ is bounded: Clearly, $a_1 = \sqrt{2} < 2$; If $a_n < 2$, then $a_{n+1} = \sqrt{2}a_n < \sqrt{2 \cdot 2} = 2$; Therefore, $a_n < 2$, for every $n \ge 1$; Next, we show that $\{a_n\}$ is increasing:

$$a_n = \sqrt{a_n \cdot a_n} < \sqrt{2 \cdot a_n} = a_{n+1};$$

Since $\{a_n\}$ is increasing and bounded from above, the theorem asserts that it converges; Let $\lim_{n\to\infty} a_n = L$; Then

$$a_{n+1} = \sqrt{2a_n} \Rightarrow \lim_{n \to \infty} a_{n+1} = \sqrt{2 \lim_{n \to \infty} a_n} \Rightarrow L = \sqrt{2L} \Rightarrow L^2 = 2L \Rightarrow L^2 - 2L = 0 \Rightarrow L(L-2) = 0 \Rightarrow L = 0 \text{ or } L = 2; \text{ So } \lim_{n \to \infty} a_n = 2;$$

Subsection 2

Summing an Infinite Series

Introducing Infinite Series and Partial Sums

 If we look carefully at the figure on the right we realize that

$$1 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots;$$

Infinite sums of this type are called **infinite series**;

• The **partial sum** S_N of an infinite series is the sum of the terms up to and including the N-th term:

$$S_{1} = \frac{1}{2};$$

$$S_{2} = \frac{1}{2} + \frac{1}{4};$$

$$S_{3} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8};$$

$$S_{4} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16};$$

$$\vdots$$

• An infinite series is an expression of the form

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \cdots,$$

where $\{a_n\}$ is any *sequence*;

• Example:

Sequence	General Term	Infinite Series
$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$	$a_n=\frac{1}{3^n}$	$\sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$
$\frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$	$a_n = \frac{1}{n^2}$	$\sum_{n=1}^{n=1} \frac{1}{n^2} = \frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \cdots$

• The *N*-th partial sum S_N is defined as the finite sum of the terms up to and including a_N :

$$S_N = \sum_{n=1}^N a_n = a_1 + a_2 + \cdots + a_N;$$

Convergence of an Infinite Series

Convergence of an Infinite Series

An infinite series $\sum_{n=k}^{\infty} a_n$ converges to the sum S if its partial sums converge to S:

$$\lim_{N\to\infty} S_N = S;$$

In this case, we write $S = \sum_{n=k}^{\infty} a_n$;

- If the limit $\lim_{N\to\infty} S_N$ does not exist, then we say the infinite series diverges;
- If $\lim_{N\to\infty} S_N = \infty$, then we say that the infinite series **diverges to infinity**;

• Compute the sum *S* of the infinite series

$$S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \frac{1}{4(5)} + \cdots;$$

Note that $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$; Therefore, we have

$$\frac{1}{1 \cdot 2} = 1 - \frac{1}{2}, \quad \frac{1}{2 \cdot 3} = \frac{1}{2} - \frac{1}{3}, \quad \frac{1}{3 \cdot 4} = \frac{1}{3} - \frac{1}{4}, \quad \dots$$

Now, we compute the *N*-th partial sum:

$$S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{N} - \frac{1}{N+1}) = 1 - \frac{1}{N+1};$$

Therefore, $S = \lim_{N \to \infty} S_N = \lim_{N \to \infty} (1 - \frac{1}{N+1}) = 1 - 0 = 1;$

Sequence $\{a_n\}$ versus Series $\sum a_n$

• The previous example provides an opportunity to discuss the difference between the sequence $\{a_n\}$ and the infinite series

$$S = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots;$$

• The sequence
$$a_n = \frac{1}{n(n+1)}$$
 is the list of numbers $\frac{1}{1 \cdot 2}, \quad \frac{1}{2 \cdot 3}, \quad \frac{1}{3 \cdot 4}, \quad \dots$ Clearly $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n(n+1)} = 0;$

• On the other hand, for the sum of the infinite series $S = \sum a_n$, we

look **not** at $\lim_{n\to\infty} a_n$, but rather at $\lim_{N\to\infty} S_N$, where

$$S_N = \sum_{n=1}^N a_n = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \cdots + \frac{1}{N(N+1)};$$

We saw that this limit is 1, not 0!

Linearity of Infinite Series

Linearity of Infinite Series

If the infinite series $\sum a_n$ and $\sum b_n$ converge, then the series $\sum (a_n \pm b_n)$ and $\sum ca_n$ also converge and we have

$$\bullet \sum a_n + \sum b_n = \sum (a_n + b_n);$$

$$\bullet \sum a_n - \sum b_n = \sum (a_n - b_n);$$

•
$$\sum ca_n = c \sum a_n$$
;

 In the sequel, we will be interested in establishing techniques for determining whether an infinite series converges or diverges;

Geometric Series

- A geometric series with ratio $r \neq 0$ is a series defined by the geometric sequence cr^n , where $c \neq 0$;
- The series looks like

$$S = \sum_{n=0}^{\infty} cr^n = c + cr + cr^2 + cr^3 + cr^4 + \cdots;$$

• The following work determines the N-th partial sum S_N of the geometric series:

$$S_N = c + cr + cr^2 + cr^3 + \dots + cr^N$$

 $rS_N = cr + cr^2 + cr^3 + \dots + cr^N + cr^{N+1}$
 $S_N - rS_N = c - cr^{N+1}$
 $S_N(1-r) = c(1-r^{N+1})$
 $S_N = \frac{c(1-r^{N+1})}{1-r}$;

- If |r| < 1, the the Geometric Series converges and $S = \frac{c}{1-c}$;
- If $|r| \ge 1$, it diverges:

Examples I

• Evaluate $\sum 5^{-n}$;

$$\sum_{n=0}^{\infty} 5^{-n} = \sum_{n=0}^{\infty} (\frac{1}{5})^{n} \stackrel{c=1, r=\frac{1}{5} < 1}{=} \frac{1}{1 - \frac{1}{5}} = \frac{5}{4};$$

• Evaluate $\sum_{n=0}^{\infty} 7\left(-\frac{3}{4}\right)^n$;

$$\sum_{n=3}^{\infty} 7(-\frac{3}{4})^n = 7(-\frac{3}{4})^3 + 7(-\frac{3}{4})^4 + 7(-\frac{3}{4})^5 + \cdots$$

$$= 7(-\frac{3}{4})^3 [1 + (-\frac{3}{4}) + (-\frac{3}{4})^2 + \cdots]$$

$$\stackrel{c=1, r=-\frac{3}{4}}{=} 7(-\frac{3}{4})^3 \frac{1}{1 - (-\frac{3}{4})}$$

$$= -\frac{189}{64} \cdot \frac{4}{7} = -\frac{27}{16};$$

Examples II

• Evaluate
$$S = \sum_{n=0}^{\infty} \frac{2+3^n}{5^n}$$
;

$$S = \sum_{n=0}^{\infty} \frac{2+3^n}{5^n}$$

$$= \sum_{n=0}^{\infty} \frac{2}{5^n} + \sum_{n=0}^{\infty} \frac{3^n}{5^n}$$

$$= 2\sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^n + \sum_{n=0}^{\infty} \left(\frac{3}{5}\right)^n$$

$$= 2 \cdot \frac{1}{1 - \frac{1}{5}} + \frac{1}{1 - \frac{3}{5}}$$

$$= 2 \cdot \frac{5}{4} + \frac{5}{2}$$

$$= 5 \cdot \frac{3}{4} + \frac{5}{2}$$

Divergence Test

Divergence Test

If the *n*-th term a_n does not converge to 0, i.e., if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum a_n$ diverges;

• Example: Prove the divergence of $S = \sum_{n=1}^{\infty} \frac{n}{4n+1}$; Clearly, $\lim_{n\to\infty} \frac{n}{4n+1} = \frac{1}{4} \neq 0$; Thus, by the Divergence Test, S diverges;

• Example: Determine the convergence or divergence of

$$S = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n+1} = \frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + \cdots;$$

The *n*-th term $a_n = (-1)^{n-1} \frac{n}{n+1}$ does not approach a limit; To see this, note that:

• for even indices,

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} (-1)^{2n-1} \frac{2n}{2n+1} = \lim_{n \to \infty} \frac{-2n}{2n+1} = -1;$$

• for odd indices,

$$\lim_{n\to\infty} a_{2n+1} = \lim_{n\to\infty} (-1)^{2n+1-1} \frac{2n+1}{2n+1+1} = \lim_{n\to\infty} \frac{2n+1}{2n+2} = 1;$$

Since $\lim_{n\to\infty} a_n \neq 0$, by the Divergence Test, S diverges;

If $\lim_{n\to\infty} a_n = 0$, Cannot Apply Divergence Test

• Prove the divergence of $S = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots$;

Note that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$; Therefore, the Divergence Test cannot be applied; We must find another way to prove that the series diverges; We will use comparison instead!

$$S_{N} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{N}}$$

$$\geq \frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N}} + \dots + \frac{1}{\sqrt{N}}$$

$$= N \frac{1}{\sqrt{N}} = \sqrt{N};$$

Now note that $\lim_{N\to\infty}\sqrt{N}=\infty$; Therefore, since $S_N\geq \sqrt{N}$, we also have $\lim_{N\to\infty}S_N=\infty$, showing that S diverges to infinity;

Subsection 3

Convergence of Series with Positive Terms

Positive Series

- A **positive series** $\sum a_n$ is one with $a_n > 0$, for all n;
- The terms can be thought of as areas of rectangles with width 1 and height a_n;
 The partial sum

$$S_N = a_1 + \cdots + a_N$$

is equal to the area of the first *N* rectangles;

• Clearly, the partial sums form an increasing sequence $S_N < S_{N+1}$;

Dichotomy and Integral Test

Dichotomy for Positive Series

If $S = \sum_{n=1}^{\infty} a_n$ is a positive series, then either

- lacktriangledown The partial sums S_N are bounded above, in which case S converges, or
- \circ The partial sums S_N are not bounded above, in which case S diverges.

The Integral Test

Let $a_n = f(n)$, where the function f(x) is positive, decreasing and continuous for $x \ge 1$;

- If $\int_{1}^{\infty} f(x)dx$ converges, then $\sum_{n=1}^{\infty} a_n$ converges;
- If $\int_{1}^{\infty} f(x)dx$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges;

Applying the Integral Test on the Harmonic Series

• The Harmonic Series Diverges: Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges;

Consider the function $f(x) = \frac{1}{x}$; For $x \ge 1$, it is positive, decreasing and continuous, and, moreover, $f(n) = \frac{1}{n} = a_n$; So we check

$$\int_{1}^{\infty} \frac{dx}{x} = \lim_{R \to \infty} \int_{1}^{R} \frac{dx}{x} = \lim_{R \to \infty} \ln R = \infty;$$

Therefore, by the Integral Test, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges;

Another Application of the Integral Test

• Does
$$\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^2} = \frac{1}{2^2} + \frac{2}{5^2} + \frac{3}{10^2} + \cdots$$
 converge?

Consider the function $f(x) = \frac{x}{(x^2 + 1)^2}$; It is positive and continuous for $x \ge 1$; Is it also decreasing for $x \ge 1$? Let us compute its first derivative

$$f'(x) = \frac{(x)'(x^2+1)^2 - x[(x^2+1)^2]'}{[(x^2+1)^2]^2} = \frac{(x^2+1)^2 - x \cdot 2(x^2+1) \cdot 2x}{(x^2+1)^4} = \frac{(x^2+1) - 4x^2}{(x^2+1)^3} = \frac{1 - 3x^2}{(x^2+1)^3} < 0;$$

Thus, the Integral Test is applicable and we get

$$\int_{1}^{\infty} \frac{x}{(x^{2}+1)^{2}} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{x}{(x^{2}+1)^{2}} dx \stackrel{u=x^{2}+1}{=} \lim_{R \to \infty} \int_{2}^{R} \frac{1}{2u^{2}} du = \lim_{R \to \infty} \left(\frac{1}{2u}\right) = \lim_{R \to \infty} \left(\frac{1}{2u}\right) = \frac{1}{4}; \text{ So, } \sum_{n=1}^{\infty} \frac{n}{(n^{2}+1)^{2}} \text{ converges;}$$

The *p*-Series

Convergence of the *p*-Series

The infinite series $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges, if p > 1, and diverges, otherwise.

- If $p \le 0$, $\lim_{n \to \infty} \frac{1}{n^p} \ne 0$; By Divergence Test, p-series diverges; If p > 0, $f(x) = \frac{1}{x^p}$ is positive, decreasing and continuous on $[1, \infty)$; Thus, the Integral Test applies and

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{p-1}, & \text{if } p > 1\\ \infty, & \text{if } p \le 1 \end{cases}$$

• Example: $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ diverges, and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges;

Comparison Test

Comparison Test

Assume that for some M > 0, $0 \le a_n \le b_n$, for all $n \ge M$;

- If $\sum b_n$ converges, then $\sum a_n$ also converges;
- ② If $\sum a_n$ diverges, then $\sum b_n$ also diverges;
 - Example: Does $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}3^n}$ converge?

Clearly, for all
$$n \ge 1$$
, we have $0 \le \frac{1}{\sqrt{n}3^n} \le \frac{1}{3^n}$; Moreover, $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$

converges since it is a geometric series with ration $\frac{1}{3} < 1$; Therefore,

by Comparison $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}3^n}$ also converges;

• Does $\sum_{n=2}^{\infty} \frac{1}{(n^2+3)^{1/3}}$ converge?

Consider the function
$$f(x) = x^3 - x^2 - 3$$
; We show that for $x \ge 2$, $f(x) > 0$; Note $f(2) = 2^3 - 2^2 - 3 = 1 > 0$; Moreover, for $x \ge 2$ $f'(x) = 3x^2 - 2x = x(3x - 2) > 0$, so f is increasing; Thus $f > 0$, all $x \ge 2$; We have shown, for $n \ge 2$, $f(n) = n^3 - n^2 - 3 > 0 \Rightarrow n^3 > n^2 + 3 \Rightarrow n^3 > n^3$

 $n > (n^2 + 3)^{1/3} \Rightarrow \frac{1}{n} < \frac{1}{(n^2 + 3)^{1/3}}$; But $\sum_{n=2}^{\infty} \frac{1}{n}$ is the harmonic series

that diverges; therefore, by Comparison $\sum_{n=2}^{\infty} \frac{1}{(n^2+3)^{1/3}}$ also diverges;

Limit Comparison Test

Limit Comparison Test

Let $\{a_n\}$ and $\{b_n\}$ be positive sequences and assume that $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists;

- If L > 0, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges;
- If $L = \infty$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} b_n$ also converges;
- If L=0 and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ also converges;

Example I

• Show that $\sum_{n=2}^{\infty} \frac{n^2}{n^4 - n - 1}$ converges; Pick $a_n = \frac{n^2}{n^4 - n - 1}$ and $b_n = \frac{1}{n^2}$; Then $L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{n^4 - n - 1} \cdot \frac{n^2}{1} = \lim_{n \to \infty} \frac{1}{1 - \frac{1}{13} - \frac{1}{14}} = 1;$

Since $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges, $\sum_{n=2}^{\infty} \frac{n^2}{n^4 - n - 1}$ also converges by the Limit Comparison Test;

• Show that $\sum_{n=3}^{\infty} \frac{1}{\sqrt{n^2 + 4}}$ diverges; Pick $a_n = \frac{1}{\sqrt{n^2 + 4}}$ and $b_n = \frac{1}{n}$; Then

Pick
$$a_n = \frac{1}{\sqrt{n^2 + 4}}$$
 and $b_n = \frac{1}{n}$; Then

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 4}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{4}{n^2}}} = 1;$$

Since $\sum_{n=3}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=3}^{\infty} \frac{1}{\sqrt{n^2+4}}$ also diverges by the Limit Comparison Test;

Subsection 4

Absolute and Conditional Convergence

Absolute Convergence

Absolute Convergence

The series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

• Example: Verify that $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$ converges absolutely; We check

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

which converges as a p-series with p > 1;

Absolute Convergence Implies Convergence

Theorem (Absolute Convergence Implies Convergence)

If $\sum |a_n|$ converges, then $\sum a_n$ also converges.

• Example: Verify that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ converges;

It was shown in the previous slide that $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right|$ converges;

Therefore, by the Theorem, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ also converges;

Another Example

• Does $S = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \cdots$ converge absolutely? We have

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{\sqrt{n}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2}},$$

which is a p-series, with $p=\frac{1}{2}\leq 1$, and so diverges; Therefore $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ is not absolutely convergent;

Conditional Convergence

• We saw than absolute convergence implies convergence:

If
$$\sum |a_n|$$
 converges, then $\sum a_n$ also converges;

• The converse is not true in general! I.e., the convergence of a series does not necessarily imply its absolute convergence;

Conditional Convergence

An infinite series $\sum a_n$ converges conditionally if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Alternating Series

An alternating series is an infinite series of the form

$$S = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots,$$

where $a_n > 0$ and decrease to 0;

Leibniz Test for Alternating Series

Suppose $\{a_n\}$ is a positive sequence that is decreasing and converges to 0:

$$a_1 > a_2 > a_3 > \cdots > 0$$
, $\lim_{n \to \infty} a_n = 0$;

Then the alternating series $S=\sum_{n=1}^{\infty}(-1)^{n-1}a_n=a_1-a_2+a_3-a_4+\cdots$

converges; Moreover, we have

$$0 < S < a_1$$
 and $S_{2N} < S < S_{2N+1}, N \ge 1$;

Example

- Show that $S = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} = \frac{1}{\sqrt{1}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \cdots$ converges conditionally and that 0 < S < 1;
 - We already saw that $\sum_{n=0}^{\infty} \left| \frac{(-1)^{n-1}}{\sqrt{n}} \right| = \sum_{n=0}^{\infty} \frac{1}{n^{1/2}}$ is a divergent *p*-series;
 - On the other hand, S converges by the Leibniz Test, since $a_n = \frac{1}{\sqrt{n}}$ is a positive decreasing sequence converging to 0;
 - Therefore, S is conditionally convergent;
 - By the last part of the Leibniz Test, $0 < S < a_1 = 1$;

Error of Approximation of Alternating Series

$\mathsf{Theorem}$

Let $S = \sum (-1)^{n-1} a_n$, where a_n is a positive decreasing sequence that

converges to 0; Then

$$|S - S_N| < a_{N+1};$$

I.e., the error committed when we approximate S by S_N is less than the size of the first omitted term a_{N+1} ;

Alternating Harmonic Series

- Show that $S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges conditionally;
 - Since $a_n = \frac{1}{n}$ is positive, decreasing and has limit 0, we get by the Leibniz Test that S converges;
 - Moreover $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ which diverges (harmonic series);

Thus, *S* is conditionally convergent;

- Show that $|S S_6| < \frac{1}{7}$; By the approximation error theorem, we get that $|S - S_6| < a_{6+1} = a_7 = \frac{1}{7}$;
- Find an N, such that S_N approximates S with an error less than 10^{-3} ; We know that $|S S_N| < a_{N+1}$; To make the error $|S S_N| < 10^{-3}$ it suffices to arrange N so that

$$a_{N+1} \le 10^{-3} \Rightarrow \frac{1}{N+1} \le 10^{-3} \Rightarrow N+1 \ge 1000 \Rightarrow N \ge 999;$$

Subsection 5

The Ratio and Root Tests

The Ratio Test

Theorem (Ratio Test)

Assume that
$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 exists;

- If $\rho < 1$, then $\sum a_n$ converges absolutely;
- 2 If $\rho > 1$, then $\sum a_n$ diverges;
- 3 If $\rho = 1$, then test is inconclusive.

Applying the Ratio Test I

• Prove that $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges;

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} \right| = \lim_{n \to \infty} \frac{2}{n+1} = 0;$$

Since $\rho < 1$, the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges by the Ratio Test;

• Does the series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converge?

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} \right| = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{2n^2} = \frac{1}{2};$$

Since $\rho < 1$, the series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges by the Ratio Test;

Applying the Ratio Test II

• Does the series $\sum_{n=0}^{\infty} (-1)^n \frac{n!}{1000^n} \text{ converge?}$ $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1}(n+1)!}{1000^{n+1}} \cdot \frac{1000^n}{(-1)^n n!} \right| = \lim_{n \to \infty} \frac{n+1}{1000} = +\infty;$

Since $\rho > 1$, the series $\sum_{n=0}^{\infty} (-1)^n \frac{n!}{1000^n}$ diverges by the Ratio Test;

If Ratio Test is Inconclusive Anything Can Happen

• Consider $\sum n^2$;

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2} = 1;$$

So Ratio Test is inconclusive; However, $\lim_{n\to\infty} a_n \neq 0$, so the series

$$\sum_{i=1}^{\infty} n^2 \text{ diverges by Divergence Test;}$$

• Consider $\sum_{n=1}^{\infty} \frac{1}{n^2}$;

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = \lim_{n \to \infty} \frac{n^2}{n^2 + 2n + 1} = 1;$$

So Ratio Test is again inconclusive; However, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a p-series with p = 2 > 1 and, hence, it converges!

Theorem (Root Test)

Assume that $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ exists;

- If L < 1, then $\sum a_n$ converges absolutely;
- 2 If L > 1, then $\sum a_n$ diverges;
- If L = 1, the test is inconclusive.
- Example: Does $\sum_{n=1}^{\infty} \left(\frac{n}{2n+3}\right)^n$ converge?

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{2n+3}\right)^n} = \lim_{n \to \infty} \frac{n}{2n+3} = \frac{1}{2};$$

Since L < 1, the series $\sum_{n=1}^{\infty} \left(\frac{n}{2n+3} \right)^n$ converges by the Root Test;

Power Series

Subsection 6

Power Series

Power Series Centered at c

• A power series with center c is an infinite series

$$F(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$$

= $a_0 + a_1 (x-c) + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots$;

• Example: The following is a power series centered at c = 2:

$$F(x) = 1 + (x - 2) + 2(x - 2)^2 + 3(x - 2)^3 + \cdots;$$

- A power series may converge for some values of x and diverge for some other values of x;
- Take a look again at

$$F(x) = 1 + (x - 2) + 2(x - 2)^2 + 3(x - 2)^3 + \cdots;$$

- $F(\frac{5}{2}) = 1 + \frac{1}{2} + 2(\frac{1}{2})^2 + 3(\frac{1}{2})^3 + \dots = \sum_{n=0}^{\infty} \frac{n}{2^n}$; This series converges by the Ratio Test!
- $F(3) = 1 + 1 + 2 + 3 + 4 + \cdots$; This series diverges by the Divergence Test!

Radius and Interval of Convergence

Theorem (Radius of Convergence)

Every power series $F(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ has a radius of convergence R,

which is either a nonnegative number ($R \ge 0$) or infinity ($R = \infty$).

- If R is finite, F(x) converges absolutely when |x c| < R (i.e., in (c R, c + R)) and diverges when |x c| > R;
- If $R = \infty$, then F(x) converges absolutely for all x.
- According to the Theorem, F(x) converges in an **interval of** convergence consisting of the open (c R, c + R) and possibly one or both of the endpoints c R and c + R;

Using the Ratio Test I

• Find the interval of convergence of $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$;

Let $a_n = \frac{x^n}{2^n}$ and compute the ratio ρ of the Ratio Test:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{2^{n+1}} \cdot \frac{2^n}{x^n} \right| = \lim_{n \to \infty} \frac{|x|}{2} = \frac{|x|}{2};$$

Therefore, we get $\rho < 1 \Rightarrow \frac{|x|}{2} < 1 \Rightarrow |x| < 2$; This shows that, if |x| < 2 the series converges absolutely; If |x| > 2 the series diverges;

- If x = -2, then $\sum_{n=0}^{\infty} \frac{x^n}{2^n} = \sum_{n=0}^{\infty} \frac{(-2)^n}{2^n} = \sum_{n=0}^{\infty} (-1)^n$, which diverges!
- If x = 2, then $\sum_{n=0}^{\infty} \frac{x^n}{2^n} = \sum_{n=0}^{\infty} \frac{2^n}{2^n} = \sum_{n=0}^{\infty} 1$, which also diverges!

Thus, the interval of convergence is (-2, 2);

Using the Ratio Test II

• Find the interval of convergence of $F(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{4^n n} (x-5)^n$; Let $a_n = \frac{(-1)^n}{4^n n} (x-5)^n$ and compute the ratio ρ of the Ratio Test:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} (x-5)^{n+1}}{4^{n+1} (n+1)} \cdot \frac{4^n n}{(-1)^n (x-5)^n} \right| = |x-5| \lim_{n \to \infty} \left| \frac{n}{4(n+1)} \right| = \frac{1}{4} |x-5|;$$

Therefore, we get $\rho < 1 \Rightarrow \frac{|x-5|}{4} < 1 \Rightarrow |x-5| < 4$; This shows that, if |x-5| < 4 the series converges absolutely; If |x-5| > 4 the series diverges:

ries diverges; If x - 5 = -4, then $F(1) = \sum_{n=1}^{\infty} \frac{(-1)^n}{4^n n} (-4)^n = \sum_{n=0}^{\infty} \frac{1}{n}$, which diverges!

• If x - 5 = 4, then $F(9) = \sum_{n=1}^{\infty} \frac{(-1)^n}{4^n n} (4)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n}$, which converges! Thus, interval of convergence is (1,9];

An Even Power Series

• Where does $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$ converge?

Let $a_n = \frac{x^{2n}}{(2n)!}$ and compute the ratio ρ of the Ratio Test:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{2(n+1)}}{(2(n+1))!} \cdot \frac{(2n)!}{x^{2n}} \right| = \lim_{n \to \infty} \left| \frac{x^{2n+2}}{(2n+2)!} \cdot \frac{(2n)!}{x^{2n}} \right| = x^2 \lim_{n \to \infty} \frac{1}{(2n+1)(2n+2)} = 0;$$

Therefore, we get $\rho < 1$, for all x; This shows that the series is absolutely convergent everywhere;

Geometric Power Series

- Recall that the geometric infinite series $S = a + ar + ar^2 + \cdots$ converges when |r| < 1 and has sum $S = \frac{a}{1-r}$;
- As a special case, when a=1 and r=x, we get the geometric series with center 0: $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$; We have

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, for $|x| < 1$;

• Example: Show that $\frac{1}{1-2x} = \sum_{n=0}^{\infty} 2^n x^n$, for $|x| < \frac{1}{2}$;

If $|x| < \frac{1}{2}$, then 2|x| < 1 and, therefore |2x| < 1; Thus, the geometric series with ratio 2x converges; We have

$$\frac{1}{1-2x} \stackrel{\text{Geometric Sum}}{=} \sum_{n=0}^{\infty} (2x)^n = \sum_{n=0}^{\infty} 2^n x^n;$$

Another Example of a Geometric Power Series

• Find a power series expansion with center c = 0 for $f(x) = \frac{1}{5 + 4x^2}$ and find the interval of convergence;

$$\frac{1}{5+4x^2} = \frac{1}{5} \cdot \frac{1}{1+\frac{4}{5}x^2} = \frac{1}{5} \cdot \frac{1}{1-(-\frac{4}{5}x^2)};$$

Therefore, if $\left|-\frac{4}{5}x^2\right| = \frac{4}{5}x^2 < 1 \Rightarrow x^2 < \frac{5}{4} \Rightarrow |x| < \frac{\sqrt{5}}{2}$, we have

$$\frac{1}{5+4x^2} = \frac{1}{5} \cdot \frac{1}{1-(-\frac{4}{5}x^2)} \stackrel{\text{Geometric}}{=} \frac{1}{5} \sum_{n=0}^{\infty} (-\frac{4}{5}x^2)^n =$$

$$\frac{1}{5}\sum_{n=0}^{\infty}(-1)^n\frac{4^n}{5^n}x^{2n}=\sum_{n=0}^{\infty}(-1)^n\frac{4^n}{5^{n+1}}x^{2n};$$

Term-by-Term Differentiation and Integration

Term-by-Term Differentiation and Integration

Assume that $F(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ has radius of convergence R > 0;

Then F(x) is differentiable on (c - R, c + R) (or for all x, if $R = \infty$); Moreover, we can integrate and differentiate term-by-term, i.e.,

•
$$F'(x) = \sum_{n=1}^{\infty} na_n(x-c)^{n-1};$$

Both series for F'(x) and $\int F(x)dx$ have the same radius of convergence R as F(x);

Example of Differentiation of Power Series

Prove that for -1 < x < 1, $\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \cdots;$ We know that, for |x| < 1, we have

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^5 + \cdots;$$

Therefore, by Term-by-Term Differentiation, we get, for |x| < 1:

$$\frac{1}{(1-x)^2} = \left(\frac{1}{1-x}\right)'$$

$$= (1+x+x^2+x^3+x^4+x^5+\cdots)'$$

$$= 1+2x+3x^2+4x^3+5x^4+\cdots;$$

Example of Integration of Power Series

• Prove that for |x| < 1, we have

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots;$$

Since for |x|<1, we have $\frac{1}{1-x}=1+x+x^2+x^3+x^4+\cdots$, we obtain, also for |x|<1,

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = 1-x^2+x^4-x^6+x^8-\cdots;$$

Therefore, by Term-by-Term Integration we get

$$\tan^{-1} x = \int \frac{1}{1+x^2} dx$$

$$= \int (1-x^2+x^4-x^6+x^8-\cdots) dx$$

$$= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots;$$

Power Series Solution of Differential Equations

• Consider y' = y and y(0) = 1;

Assume that the power series $F(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$

is a solution of the given initial value problem; Compute

$$F'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \cdots$$
; Since $F(x) = F'(x)$,

we must have $a_0=a_1, a_1=2a_2, a_2=3a_3, a_3=4a_4, \ldots$; Looking at these carefully, we obtain $a_n=\frac{a_{n-1}}{n}$, for all n; Thus,

$$a_{n} = \frac{1}{n} a_{n-1} = \frac{1}{n} \frac{1}{n-1} a_{n-2} = \frac{1}{n} \frac{1}{n-1} \frac{1}{n-2} a_{n-3} = \cdots = \frac{1}{n(n-1)(n-2)\cdots 1} a_{0} = \frac{1}{n!} a_{0};$$

Example I (Cont'd)

• We were solving y' = y and y(0) = 1;

We assumed
$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$
 is a solution; We found $a_n = \frac{1}{n!} a_0$; This yields $F(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots = a_0 + a_0 \frac{1}{1!} x + a_0 \frac{1}{2!} x^2 + a_0 \frac{1}{3!} x^3 + \dots = a_0 (1 + \frac{1}{1!} x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \dots) = a_0 \sum_{n=0}^{\infty} \frac{x^n}{n!}$; Since $F(0) = 1 = a_0$, we get $F(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$;

• Since e^x is also a solution, we get

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots;$$

Example II

• Find a series solution to $x^2y'' + xy' + (x^2 - 1)y = 0$, with y'(0) = 1; Let $F(x) = \sum a_n x^n$; Then $y' = F'(x) = \sum na_n x^{n-1}$ and $y'' = F''(x) = \sum n(n-1)a_nx^{n-2}$; Plug those in equation: $x^2y'' + xy' + (x^2 - 1)y =$ $x^{2}\sum n(n-1)a_{n}x^{n-2} + x\sum na_{n}x^{n-1} + (x^{2}-1)\sum a_{n}x^{n} = 0$ $\sum_{n=2}^{n=2} n(n-1)a_n x^n + \sum_{n=1}^{\infty} na_n x^n - \sum_{n=1}^{\infty} a_n x^n + \sum_{n=1}^{\infty} a_{n+2} x^n = 0$ $\sum (n^2 - 1)a_n x^n + \sum a_{n-2} x^n = 0;$ Thus, $\sum_{n=0}^{\infty} (n^2 - 1)a_n x^n = -\sum_{n=0}^{\infty} a_{n-2} x^n \implies a_n = -\frac{a_{n-2}}{n^2 - 1};$

• We were solving $x^2y'' + xy' + (x^2 - 1)y = 0$, with y'(0) = 1; We assumed $F(x) = \sum a_n x^n$ is a solution; We found $a_n = -\frac{a_{n-2}}{r^2-1}$; Now, note $a_0 = 0$; Thus, $a_2 = -\frac{a_0}{2^2-1} = 0$; Then $a_4 = -\frac{a_2}{4^2-1} = 0$; We see that $a_{2n} = 0$, for all n; Moreover, $a_1 = 1$; Thus, $a_3 = -\frac{a_1}{32} = -\frac{1}{24}$; Then $a_5 = -\frac{a_3}{5^2-1} = +\frac{1}{2\cdot 4\cdot 4\cdot 6}$; Also $a_7 = -\frac{a_5}{7^2-1} = -\frac{1}{2\cdot 4\cdot 4\cdot 6\cdot 6\cdot 8}$; In general $a_{2n+1} = \frac{(-1)^n}{2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot \dots \cdot (2n)(2n+2)} = \frac{(-1)^n}{2^n (1 \cdot 2 \cdot 3 \cdot \dots \cdot n) 2^n (2 \cdot 3 \cdot 4 \cdot \dots \cdot (n+1))} = \frac{(-1)^n}{4^n n! (n+1)!};$ So we get $F(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n n! (n+1)!} x^{2n+1}$;

Subsection 7

Taylor Series

Taylor Series

• Assume that a function f(x) is represented by a power series centered at x = c on (c - R, c + R) with R > 0, i.e.,

$$f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots;$$

• Then, for the derivatives of f on (c - R, c + R), we have

$$f(x) = a_0 + a_1(x - c) + a_2(x - c)^2 + a_3(x - c)^3 + \cdots;$$

$$f'(x) = a_1 + 2a_2(x - c) + 3a_3(x - c)^2 + 4a_4(x - c)^3 + \cdots;$$

$$f''(x) = 2a_2 + 2 \cdot 3a_3(x - c) + 3 \cdot 4a_4(x - c)^2 + 4 \cdot 5(x - c)^3 + \cdots;$$

$$f'''(x) = 2 \cdot 3a_3 + 2 \cdot 3 \cdot 4a_4(x - c) + 3 \cdot 4 \cdot 5(x - c)^2 + \cdots;$$

• Plug in x = c to get

$$f(c) = a_0, f'(c) = a_1, f''(c) = 2!a_2, f'''(c) = 3!a_3, f^{(4)}(c) = 4!a_4, \dots;$$

• In general, we get $a_n = \frac{f^{(n)}(c)}{n!}$;

Taylor and Maclaurin Series

Taylor Series Expansion

If f is represented as a power series centered at x=c in an interval |x-c| < R, R > 0, then the power series is the **Taylor series**:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n;$$

Maclaurin Series

The special case of the Taylor series for c=0 is the **Maclaurin series**:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots;$$

Find the Taylor series for $f(x) = x^{-3}$ centered at c = 1; $f(x) = x^{-3}$, f(1) = 1; $f'(x) = (-3)x^{-4}$, f'(1) = -3; $f''(x) = (-3)(-4)x^{-5}$, $f''(1) = +3 \cdot 4$; $f'''(x) = (-3)(-4)(-5)x^{-6}$, $f'''(1) = -3 \cdot 4 \cdot 5$; \vdots $f^{(n)}(x) = (-3)(-4) \cdot \dots \cdot (-n-2)x^{-n-3}$, $f^{(n)}(1) = (-1)^n \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot (n+2) = \frac{(-1)^n}{2}(n+2)!$;

Now we get by the Taylor series formula

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (x-1)^n = \sum_{n=0}^{\infty} \frac{(-1)^n (n+2)!}{2 \cdot n!} (x-1)^n = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)(n+2)}{2} (x-1)^n;$$

Convergence Issues

• We know that if f(x) can be represented by a power series centered at x = c, then that power series will be the Taylor series

$$T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n;$$

- However, there is no guarantee that T(x) converges; Moreover, there is no guarantee that, even if it converges, it will converge to f(x)!
- Let

$$T_k(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(c-x)^2 + \dots + \frac{f^{(k)}(c)}{k!}(x-c)^k;$$
 Define the **remainder**

$$R_k(x) = f(x) - T_k(x);$$

The Taylor series converges to f(x) if and only if $\lim_{k\to\infty} R_k(x) = 0$;

Convergence Theorem

Theorem

Let I = (c - R, c + R), R > 0; If there exists a K > 0, such that all derivatives of f are bounded by K on I, i.e.,

$$|f^{(k)}(x)| \le K$$
, for all $k \ge 0, x \in I$,

then, for all $x \in I$,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} (x-c)^n.$$

Sine and Cosine

Show that

sin
$$x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 and $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
Let $f(x) = \sin x$;

f(x)	f'(x)	f''(x)	f'''(x)	$f^{(4)}(x)$	• • •
sin x	cos x	− sin <i>x</i>	$-\cos x$	sin x	• • •
0	1	0	- 1	0	

Note, also that for all x, $|f^{(k)}(x)| \leq 1$; Therefore, we have convergence of the Taylor series of f centered at x = 0 to $f(x) = \sin x$ everywhere and

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots;$$

One either works similarly from scratch for $g(x) = \cos x$ or notices that $\cos x = (\sin x)'$ and appeals to term-by-term differentiation of the series for $\sin x$;

Infinite Series for e^x

• The Maclaurin series for $f(x) = e^x$ is

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!};$$

• Example: Find a Maclaurin series for $f(x) = x^2 e^x$;

$$f(x) = x^{2}e^{x} = x^{2}\left[1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots\right]$$
$$= x^{2} + x^{3} + \frac{x^{4}}{2!} + \frac{x^{5}}{3!} + \frac{x^{6}}{4!} + \cdots = \sum_{n=2}^{\infty} \frac{x^{n}}{(n-2)!};$$

• Example: Find the Maclaurin series for $f(x) = e^{-x^2}$;

$$f(x) = e^{-x^2} = 1 + (-x^2) + \frac{(-x^2)^2}{2!} + \frac{(-x^2)^3}{3!} + \frac{(-x^2)^4}{4!} + \cdots$$
$$= 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!};$$

Using Integration

• Find the Maclaurin series for $f(x) = \ln(1+x)$;

$$\frac{1}{1-x} = 1+x+x^2+x^3+x^4+\cdots
\frac{1}{1+x} = \frac{1}{1-(-x)} = 1-x+x^2-x^3+x^4-\cdots;
\ln(1+x) = \int \frac{1}{1+x} dx
= \int (1-x+x^2-x^3+x^4-\cdots) dx
= x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\frac{x^5}{5}-\cdots
= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n};$$

Binomial Coefficients

• For any number a (integer or not) and any integer $n \ge 0$, we define the **binomial coefficient**

$$\binom{a}{n} = \frac{a(a-1)(a-2)\cdots(a-n+1)}{n!}, \quad \binom{a}{0} = 1;$$

• Example:

$$\begin{pmatrix} \binom{6}{3} & = & \frac{6 \cdot 5 \cdot 4}{3!} = 20; \\ \binom{\frac{4}{3}}{3} & = & \frac{\frac{4}{3} \cdot \frac{1}{3} \cdot (-\frac{2}{3})}{3!} = \frac{-\frac{8}{27}}{6} = -\frac{4}{81};$$

Binomial Series

The Binomial Series

For any exponent a and for |x| < 1,

$$(1+x)^{a} = 1 + \frac{a}{1!}x + \frac{a(a-1)}{2!}x^{2} + \frac{a(a-1)(a-2)}{3!}x^{3} + \dots + \binom{a}{n}x^{n} + \dots;$$

• Example: Find the terms through degree four of the Maclaurin expansion of $f(x) = (1+x)^{4/3}$;

$$T_{4}(x) = 1 + \frac{\frac{1}{a}x}{1!}x + \frac{\frac{1}{a(a-1)}x^{2} + \frac{a(a-1)(a-2)}{3!}x^{3} + \frac{a(a-1)(a-2)(a-3)}{2!}x^{4}$$

$$= 1 + \frac{\frac{4}{3}x}{1!}x + \frac{\frac{4}{3} \cdot \frac{1}{3}}{2!}x^{2} + \frac{\frac{4}{3} \cdot \frac{1}{3} \cdot (-\frac{2}{3})}{3!}x^{3} + \frac{\frac{4}{3} \cdot \frac{1}{3} \cdot (-\frac{2}{3}) \cdot (-\frac{5}{3})}{2!}x^{4}$$

$$= 1 + \frac{4}{3}x + \frac{2}{9}x^{2} - \frac{4}{81}x^{3} + \frac{\frac{5}{243}x^{4}}{2!}x^{4};$$

Applying the Binomial Series Expansion

• Find the Maclaurin series for $f(x) = \frac{1}{\sqrt{1-x^2}}$; Recall that $(1+x)^a = \sum_{n=0}^{\infty} {a \choose n} x^n$; Hence, for $a=-\frac{1}{2}$, we get

$$(1+x)^{-1/2} = \sum_{n=0}^{\infty} {\binom{-1/2}{n}} x^n;$$

Therefore, we obtain

$$f(x) = \frac{1}{\sqrt{1 - x^2}} = (1 - x^2)^{-1/2} = (1 + (-x^2))^{-1/2} = \sum_{n=0}^{\infty} {\binom{-1/2}{n}} (-x^2)^n$$

$$= 1 + \sum_{n=1}^{\infty} \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})\cdots(-\frac{1}{2}-n+1)}{n!} (-1)^n x^{2n}$$

$$= 1 + \sum_{n=1}^{\infty} \frac{(-1)^n 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{2^n n!} (-1)^n x^{2n}$$

$$= 1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{2^n n!} x^{2n};$$