SINGLE CORRECT ANSWER

LEVEL - 1

Basic Concepts

1	The complex numbers sir	ny licos 2v a	nd coex isin 2v	are conjugate of ea	ch other for	$(n \in I) x =$
1.	The complex numbers SII	IX + ICOS ZX a		are conjugate or ca	cii onici ioi	$\{11 \in I\}, X =$

- (A) nπ
- (B) 0
- (C) $(2n+1)\frac{\pi}{2}$
- (D) no value of x

The Conjugate of a Complex Number

2. The conjugate of
$$\frac{2-i}{(1-2i)^2}$$
 is

(A)
$$\frac{2}{25} + \frac{11}{25}i$$

(B)
$$\frac{2}{25} - \frac{11}{25}i$$

(C)
$$-\frac{2}{25} + \frac{11}{25}i$$

(A)
$$\frac{2}{25} + \frac{11}{25}i$$
 (B) $\frac{2}{25} - \frac{11}{25}i$ (C) $-\frac{2}{25} + \frac{11}{25}i$ (D) $-\frac{2}{25} - \frac{11}{25}i$

3. If
$$\frac{1-i\alpha}{1+i\alpha} = A + iB$$
, then $A^2 + B^2$ equals to

- (A) 1
- (B) α^2
- (C) -1
- (D) $-\alpha^2$

4. If
$$\omega = \frac{z}{\overline{z}}$$
, then $|\omega| =$

- (A) 0
- (B) 1
- (C) |z|
- (D) $\frac{1}{|z|}$

The Modulus of a Complex Number

- The modulus of the complex number $\frac{(1+7i)}{(2-i)^2}$ is 5.
 - (A) $\frac{7}{4}$
- (B) $\sqrt{2}$
- (C) $\frac{4}{7}$
- (D) $\frac{1}{\sqrt{2}}$

6. The modulus of the complex number
$$\frac{(1+2i)}{(1-3i)}$$
 is

- (A) $\frac{2}{3}$
- (B) $\sqrt{2}$
- (C) $\frac{3}{2}$
- (D) $\frac{1}{\sqrt{2}}$

7. The modulus of
$$\sqrt{2}i - \sqrt{-2}i$$
 is

- (A) 2
- (B) $\sqrt{2}$
- (C) 0
- (D) $2\sqrt{2}$

8. If z is a complex number satisfying
$$z^4 + z^3 + 2z^2 + z + 1 = 0$$
, then the set of possible values of |z| is

- (A) $\{1, 2\}$
- (B) {1}
- (C) $\{1, 2, 3\}$
- (D) $\{1, 2, 3, 4\}$

Geometrical Representation of Complex Number

Let A, B and C represent the complex numbers z_1 , z_2 and z_3 on the Argand plane. If circumcentre of the triangle ABC is at the origin, then the complex number corresponding to orthocentre

(A)
$$\frac{1}{4}(Z_1 + Z_2 + Z_3)$$

(B)
$$\frac{1}{3}(z_1 + z_2 + z_3)$$

(C)
$$\frac{1}{2}(z_1 + z_2 + z_3)$$

(D)
$$Z_1 + Z_2 + Z_3$$

Argument of a Complex Number

10.
$$\arg\left(-\frac{2}{5}\right)$$
 equals

(B)
$$\frac{\pi}{2}$$

(C)
$$\frac{-\pi}{2}$$

Polar form of a Complex Number

If $z_k = \cos \frac{\pi}{2^k} + i \sin \frac{\pi}{2^k}$, k = 1, 2, 3... then the value of $z_1 z_2 ...$ ∞ 11. (C) -1(D) 2

De-Moivre's Theorem

If $\theta = \frac{\pi}{6}$, then the 10th term of the series $1 + (\cos \theta + i \sin \theta) + (\cos \theta + i \sin \theta)^2 + \dots$ is 12.

$$(C) \frac{1+i\sqrt{3}}{2}$$

(C)
$$\frac{1+i\sqrt{3}}{2}$$
 (D) $\frac{1-i\sqrt{3}}{2}$

 $\left(\frac{1+i\tan\theta}{1-i\tan\theta}\right)^n - \frac{1+i\tan n\theta}{1-i\tan n\theta} =$ 13.

$$(C) -1$$

(D) i

If α, β are the roots of $x^2 - 2x + 4 = 0$, then $\alpha^n + \beta^n$ is equal to 14.

(A)
$$2^n \cos \frac{n\pi}{3}$$

(B)
$$2^n \cos \frac{(n+1)\pi}{3}$$

(C)
$$2^{n+1} cos \frac{n\pi}{3}$$

(D)
$$2^{n+1} \cos \frac{(n+1)\pi}{3}$$

Concept of Rotation

The complex number 3 - 4i is rotated by 90° in the anticlockwise direction about origin. The complex 15. number in new position is

$$(A) -3 + 4i$$

(B)
$$4 + 3i$$

$$(C) -4 + 3i$$

(D) -4 - 3i

16. A necessary and sufficient condition for the points z_1 , z_2 and z_3 to be collinear is that the complex number

$$\frac{\mathsf{Z}_3 - \mathsf{Z}_1}{\mathsf{Z}_2 - \mathsf{Z}_1} \text{ is}$$
(A) real

(B) imaginary

(C) purely imaginary

(D) of the form $\lambda(1+i)$, $\lambda \in \mathbb{R} - \{0\}$

ection Formula

The points z_1 , z_2 , z_3 and z_4 in the Argand plane are the vertices of a parallelogram if and only if 17.

(A)
$$z_1 + z_4 = z_2 + z_3$$

(B)
$$z_1 + z_2 = z_2 + z_3$$

(A)
$$z_1 + z_4 = z_2 + z_3$$

(C) $z_1 + z_2 = z_3 + z_4$

(B)
$$z_1 + z_3 = z_2 + z_4$$

(D) $z_1 + z_2 + z_3 + z_4 = 0$

The nth roots of unity (Specially cube roots of unity)

- Let $\alpha_o, \alpha_1, \alpha_2, \ldots, \alpha_{n-1}$ be n, n^{th} roots of unity. Value of $(1-\alpha_1)....(1-\alpha_{n-1})$ is 18.
- (B) n 1
- (C) $(-n)^n$ (D) 0

- $\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} =$ 19.
 - (A) 1
- (B) $\frac{1}{2}$
- (C) –1
- (D) $-\frac{1}{2}$
- Let $\alpha_o, \alpha_1, \alpha_2, \ldots, \alpha_{n-1}$ be n, n^{th} roots of unity. Value of $(1+\alpha_0)(1+\alpha_1)....(1+\alpha_{n-1})$ [n is even] is 20.
- (C) 0
- If x = a + b, $y = a\gamma + b\beta$ and $z = a\beta + b\gamma$, where γ and β are the imaginary cube roots of unity, then 21.
 - (A) $(a^2 + b^2)(a + b)$ (B) $a^3 + b^3$
- (C) $(a + b)^2 (a b)$ (D) $(a + b)^3$
- The equation, whose roots are i, $\frac{1+i}{\sqrt{2}}$, $\frac{i-1}{\sqrt{2}}$, their conjugates, -1 and 1 is 22.
 - (A) $x^8 = 1$
- (B) $x^8 = -1$
- (C) $x^8 + x^4 2 = 0$ (D) $x^8 = x^4$
- If α is the angle which each side of a regular polygon of n sides subtends at its centre, then 23. $1 + \cos \alpha + \cos 2\alpha + \cos 3\alpha + \dots + \cos(n-1)\alpha$ is equal to
 - (A) n

- (B) 0
- (C) 1

(D) -1

Equation of Circle in Complex Form

- If z = x + iy then the equation $\left| \frac{2z i}{z + 1} \right| = m$ does not represent a circle when 24.
 - (A) $m = \frac{1}{2}$ (B) m = 1 (C) m = 2
- (D) m = 3

Equation of Circle

- If |z| = 1, then $\frac{z}{7}$ lies on a 25.
 - (A) circle
- (B) parabola
- (C) straight line
- (D) hyperbola

LEVEL - 2

Basic Concepts

If one root of $z^2 + (a + i)z + b + ic = 0$ is real, where $a, b, c \in \mathbb{R}$, then $c^2 + b - ac = 0$ 26

(A)0

(B) 1

(C) -1

(D) a + b + c

27. If (1 + 2i) is a root of the equation $x^2 + bx + c = 0$, where b and c are real then (b, c) is given by

(A)(2,-5)

(B)(-3,1)

(C)(-2,5)

(D)(3,1)

if x = 2 + 5i, then the value of $x^3 - 5x^2 + 33x - 19$ is 28.

(A)4

(B) 6

(C) 8

(D) 10

The smallest positive integer n, for which $\left(\frac{1+i}{1-i}\right)^n = 1$ is 29.

(A) 4

(B) 8

(C) 12

(D) 16

The Conjugate of a Complex Number

If z = x + iy lies in IIIrd quadrant then $\frac{\overline{z}}{z}$ also lies in the III quadrant if 30.

(A) x > y > 0

(B) x < y < 0

(C) y < x < 0

(D) y > x > 0

The Modulus of a Complex Number

If $\left| \frac{z_1 - iz_2}{z_1 + iz_2} \right| = 1$, then $\frac{z_1}{z_2}$ is 31.

(A) purely imaginary (B) real

(C) imaginary

(D) of unit modulus

If |z| = 4, then the minimum value of |z + 3 + 4i| is 32.

(A) 1

(B) 3/2

(C) 2

(D) 0

If $\left| \frac{1 - iz}{z - i} \right| = 1$, then z lies on 33.

(A) imaginary axis

(B) real axis

(C) a unit circle

(D) a line not passing through origin

For $x_1, x_2, y_1, y_2 \in R$, if $0 < x_1 < x_2, y_1 = y_2$ and $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$ and $z_3 = \frac{1}{2}(z_1 + z_2)$, then 34. z_1 , z_2 and z_3 satisfy:

(A) $|z_1| = |z_2| = |z_3|$

(B) $|z_1| < |z_2| < |z_3|$

(C) $|z_1| > |z_2| > |z_3|$

(D) $|z_1| < |z_2| < |z_2|$

35.	For any complex number z, the minimum value of $ z + z - 2i $ is					
	(A) 1	(B) 2	(C) 3	(D) does not exist		
	If z_1 and z_2 are two complex numbers such that $ z_1 = z_2 + z_1 - z_2 $, $ z_1 > z_2 $, then					
	(A) $\operatorname{Im} \left(\mathbf{Z}_{1} \right)$	- 0	$(\mathbf{p}) \mathbf{p} \left(\mathbf{z}_1 \right)$	- 0		

(A)
$$\operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0$$
 (B) $\operatorname{Re}\left(\frac{z_1}{z_2}\right) = 0$

(C)
$$\operatorname{Re}\left(\frac{z_1}{z_2}\right) = \operatorname{Im}\left(\frac{z_1}{z_2}\right)$$
 (D) $\operatorname{Im}\left(\frac{z_1}{z_2}\right) = 1$

Argument of a Complex Number

37. If
$$\left| \frac{z_1}{z_2} \right| = 1$$
 and $\arg(z_1 z_2) = 0$, then

(A) $z_1 = z_2$ (B) $|z_2|^2 = z_1 z_2$ (C) $z_1 z_2 = 1$ (D) $z_1 + z_2 = 0$

- 38. If $|z_1 + z_2| = |z_1 z_2|$, then the difference of the arguments of z_1 and z_2 is $(z_1, z_2 \neq 0)$
- 39. If z_1 and z_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then $Argz_1 Argz_2$ is equal to

(A)
$$-\pi$$
 (B) $-\frac{\pi}{2}$ (C) 0 (D) π

Polar form of a Complex Number

40. The polar form of the complex number $\frac{-16}{1+i\sqrt{3}}$ is

(A)
$$\frac{8}{\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}}$$
 (B)
$$8\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

(C)
$$\frac{8}{\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}}$$
 (D)
$$8\left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right)$$

41. If |z|=2 and $arg(z)=-\frac{\pi}{6}$, then z=

(A)
$$\sqrt{3} - i$$
 (B) $\frac{\sqrt{3}}{2} - \frac{i}{2}$ (C) 2

De-Moivre's Theorem

42. If
$$z = \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{15}$$
, then

(A) Re(z) = 1

(B) Re(z) = -1

(C) Im(z) = 1

(D) Im(z) = -1

If $x + \frac{1}{x} = 1$, then $x^{2009} + \frac{1}{x^{2009}}$ is equal to 43.

(A) 0

(B) 1

(C) -1

(D) 2

Concept of Rotation

44 If A and B are the points on the Argand plane corresponding to -3+5i and -5-3i, then $\angle AOB$ is (O is the

(A) $\frac{5\pi}{2}$

(B) $\frac{3\pi}{5}$

(C) $\frac{\pi}{2}$

(D) $\frac{\pi}{4}$

If z, -z and 1-z are the vertices of an equilateral triangle, then Re(z) =45.

(A) 1

(B) $\frac{1}{2}$ (C) $\frac{1}{2}$

(D) $\frac{1}{4}$

46. If z is rotated about origin by a an angle of 90° in the anticlockwise direction, then the new complex number is

(A) -z

(B) ₹

 $(C)_{-i7}$

(D) iz

47. If a, b, c and u, v, w are complex numbers representing the vertices of two triangles such that $c = (1 - 1)^{-1}$ r) a + rb and w = (1 - r)u + rv, where r is a complex number, then the two triangles

(A) have the same area

(B) are similar

(C) are congruent

(D)have the same parameter

48. Let z_1 and z_2 be the complex roots of the equation $3z^2 + 3z + b = 0$. If the origin, together with the points represented by z_1 and z_2 form an equilateral triangle, then the value of b

(A) is -1

(B) is 0

(C) is 1

(D) can not be decided

49. A necessary and sufficient condition for the points z_1 , z_2 and z_3 to be collinear is that the complex number

$$\frac{z_3 - z_1}{z_2 - z_1}$$
 is

(A) real

(B) imaginary

(C) purely imaginary

(D) of the form $\lambda(1+i)$, $\lambda \in \mathbb{R} - \{0\}$

The nth roots of unity

50. If the cube roots of unity are 1, w, w^2 , then the roots of the equation $(x - 1)^3 + 8 = 0$ are

 $(A) -1, 1 + 2w, 1 + 2w^2$

(B) -1, 1 - 2w, $1 - 2w^2$ (C) -1, -1, -1

SINGLE CORRECT ANSWER

LEVEL -1

	LLVLL-1				
1. (D)	2. (C)	3. (A)	4. (B)		
5. (B)	6. (D)	7. (A)	8. (B)		
9. (D)	10. (D)	11. (C)	12. (A)		
13. (A)	14. (C)	15. (B)	16. (A)		
17. (B)	18. (A)	19. (D)	20. (C)		
21. (B)	22. (A)	23. (B)	24. (C)		
25. (A)					
	LEVEL-2				
26. (A)	27. (C)	28. (D)	29. (A)		
30. (C)	31. (B)	32. (A)	33. (B)		
34. (D)	35. (B)	36. (A)	37. (B)		
38. (B)	39. (C)	40. (B)	41. (A)		
42. (D)	43. (B)	44. (C)	45. (D)		
46. (D)	47. (B)	48. (C)	49. (A)		
50. (B)					

SINGLE CORRECT ANSWER

LEVEL 1

- 1. $\sin x + i\cos 2x = \cos x i\sin 2x \Rightarrow \sin x = \cos x$ and $\cos 2x = -\sin 2x$ which is not true for any value of x.
- 2. The given number is $\frac{2-i}{-3-4i} = \frac{(2+i)(-3-4i)}{25} = -\frac{2}{25} + i\frac{11}{25}$.
- 3. $A + iB = \frac{1 i\alpha}{1 + i\alpha} \implies A iB = \frac{1 + i\alpha}{1 i\alpha}$

$$\Rightarrow (A+iB) (A-iB) = \frac{(1-i\alpha)(1+i\alpha)}{(1+i\alpha)(1-i\alpha)} = 1 \Rightarrow A^2 + B^2 = 1$$

Hence (A) is the correct alternative.

- 4. $|\omega| = \frac{|z|}{|\overline{z}|} = 1 \text{ as } |\overline{z}| = |z|$
- 5. $\left| \frac{1+7i}{(2-i)^2} \right| = \frac{|1+7i|}{|2-i|^2} = \frac{\sqrt{50}}{\left(\sqrt{5}\right)^2} = \sqrt{2}$
- 6. $\left| \frac{1+2i}{1-3i} \right| = \frac{|1+2i|}{|1-3i|} = \frac{\sqrt{5}}{\sqrt{10}} = \frac{1}{\sqrt{2}}$
- 7. The given number is $\sqrt{2}i + \sqrt{2}$, as $\sqrt{-2} = \sqrt{2}i$
- 8. The given equation is $(z^2 + z + 1)(z^2 + 1) = 0$
 - \Rightarrow $z = \pm i, \omega, \omega^2$, ω being an imaginary cube root of unity. Thus |z| = 1.
- 9. Centroid of $\triangle ABC$ is at $\frac{z_1 + z_2 + z_3}{3}$.

It is a known fact that orthocenter divides the join of centroid and circum centre in 2: 3 externally. So orthocentre is given by $z_1 + z_2 + z_3$.

10.
$$arg\left(-\frac{2}{5}\right) = \pi$$
, as $\frac{-2}{5}$ lies on negative real axis.

11.
$$z_1 z_2 z_3 \dots \infty = \cos\left(\frac{\pi}{2} + \frac{\pi}{4} + \frac{\pi}{8} + \dots\right) + i\sin\left(\frac{\pi}{2} + \frac{\pi}{4} + \frac{\pi}{8} + \dots\right) = -1$$

12.
$$10^{\text{th}} \text{ term} = (\cos \theta + i \sin \theta)^9 = \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = -i$$

13. The given expression is
$$\left(\frac{\cos\theta + i\sin\theta}{\cos\theta - i\sin\theta}\right)^n - \frac{\cos n\theta + i\sin n\theta}{\cos n\theta - i\sin n\theta} = 0$$
,

$$\text{as } \left(\cos\theta - i\sin\theta\right)^n = \left(\cos\left(-\theta\right) + i\sin\left(-\theta\right)\right)^n = \cos n\theta - i\sin n\theta$$

14.
$$\alpha = 1 + \sqrt{3} i = 2e^{i\pi/3}, \beta = 1 - \sqrt{3} i = 2e^{-i\pi/3}$$

15.
$$i(3-4i)=4+3i$$

16.
$$z_1, z_2$$
 and z_3 are collinear if and only if $arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right) = 0$ or π i.e. $\frac{z_3 - z_1}{z_2 - z_1}$ is real.

17. Points are the vertices of a parallelogram if and only if mid points of the join of z_1 and z_3 is the same as the mid point of the join of z_2 and z_3 i.e., $\frac{z_1 + z_3}{2} = \frac{z_2 + z_4}{2}$.

18.
$$x^{n} - 1 = (x - 1)(x - \alpha_{1})(x - \alpha_{2})....(x - \alpha_{n-1})$$

$$\Rightarrow (x - \alpha_{1})(x - \alpha_{2})....(x - \alpha_{n-1}) = 1 + x + x^{2} + + x^{n-1}.Put \ x = 1$$

19. Roots of
$$z^7 = 1$$
 are $e^{2k\pi i/7}$, where $k = 0, 1, 2, ..., 6$.
Sum of roots = $0 \implies$ Real part of sum of roots = 0 .

$$\Rightarrow 1 + \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} + \cos\frac{8\pi}{7} + \cos\frac{10\pi}{7} + \cos\frac{12\pi}{7} = 0$$

$$\Rightarrow \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} = -\frac{1}{2}$$

20.
$$x^n - 1 = (x - \alpha_n)(x - \alpha_1)...(x - \alpha_{n-1})$$
. Put $x = -1$.

21.
$$xyz = (a + b)(a\omega + b\omega^2)(a\omega^2 + b\omega) = (a + b)(a + b\omega)(a + b\omega^2) = a^3 + b^3$$

22. There are eight roots satisfying $x^8 = 1$. Also all of them are different.

23.
$$\sum_{r=0}^{n-1} \cos r\alpha = \operatorname{Re} \sum_{r=0}^{n-1} e^{\frac{i r \pi}{n}} = \operatorname{Re}(\operatorname{sum of the } n \operatorname{ roots of unity}) = 0$$

Hence (B) is the correct answer.

24. The given equation is
$$\left| \frac{z - \frac{1}{2}}{z + 1} \right| = \frac{m}{2}$$
, which does not represent a circle when $\frac{m}{2} = 1$.

25. Let
$$\omega = \frac{z}{\overline{z}}$$
, then $|\omega| = 1$

Hence $\frac{z}{\overline{z}}$ lies on a circle.

LEVEL 2

26. Let
$$\alpha \in \mathbb{R}$$
 be a root. Then $\alpha^2 + (a+i)\alpha + b + ic = 0$

$$\Rightarrow$$
 $\alpha^2 + a\alpha + b = 0$ and $\alpha + c = 0$

$$\Rightarrow$$
 $c^2 - ac + b = 0$

27.
$$1 + 2i$$
 is a root $\Rightarrow (1 + 2i)^2 + b(1 + 2i) + c = 0 \Rightarrow b = -2, c = 5$

28.
$$(x-2)^2 = -25 \implies x^2 - 4x + 29 = 0$$

Thus,
$$x^3-5x^2+33x-19=(x-1)(x^2-4x+29)+10=10$$
.

29.
$$\left(\frac{1+i}{1-i}\right)^n = i^n = 1$$
. The least value of n is 4.

30. Given
$$x < 0$$
 and $y < 0$.

$$\frac{\overline{z}}{z} = \frac{\overline{z}^2}{|z|^2} \cdot \text{Thus Re}\left(\frac{\overline{z}}{z}\right) = \frac{x^2 - y^2}{x^2 + y^2}, \text{Im}\left(\frac{\overline{z}}{z}\right) = \frac{-2xy}{x^2 + y^2}$$

$$\Rightarrow x^2 - y^2 < 0 \text{ and } -2xy < 0 \Rightarrow y < x < 0.$$

31.
$$\frac{\left| \frac{Z_1}{Z_2} - i \right|}{\left| \frac{Z_1}{Z_2} + i \right|} = 1 \Rightarrow \frac{Z_1}{Z_2}$$
 is equidistant from -i and i $\Rightarrow \frac{Z_1}{Z_2}$ is a real number.

32.
$$|z+3+4i|=|z-(-3-4i)|\ge ||z|-5|=1$$

33.
$$|1-iz|=|z-i| \Rightarrow |z+i|=|z-i|$$

\Rightarrow z is equidistant from i and -i.

 \Rightarrow z lies on the real axis.

- 34. Represent z_1 , z_2 and z_3 on the Argand plane.
- 35. The minimum value is obtained when z lies in between 0 and 2i.

$$_{36.} \quad |z_{_{1}}-z_{_{2}}|=|z_{_{1}}|-|z_{_{2}}|=\|z_{_{1}}|-|z_{_{2}}\| \ \Rightarrow arg\,z_{_{1}}=arg\,z_{_{2}} \Rightarrow arg\left(\frac{z_{_{1}}}{z_{_{2}}}\right)=0 \Rightarrow Im\left(\frac{z_{_{1}}}{z_{_{2}}}\right)=0.$$

37.
$$\left| \frac{z_1}{z_2} \right| = 1 \Rightarrow |z_1| = |z_2|$$

Now
$$\arg(z_1 \ z_2) = 0 \implies \arg(z_1) + \arg(z_2) = 0 \implies \arg(z_2) = -\theta_1$$
, where $\arg(z_1) = \theta_1$

Therefore,
$$z_2 = |z_1|(\cos(-\theta_1) + i\sin(-\theta_1) = \overline{z}_1$$

Hence (B) is the correct alternative.

38. z_1 is equidistant from z_2 and $-z_2$ $\Rightarrow \text{ origin is the mid point of a side (join of -z_2 and z_2) of a triangle having vertices}$ $z_1, z_2 \text{ and } -z_2.$

39. Let
$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$
 and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$

where
$$\mathbf{r}_{_1}=|\mathbf{z}_{_1}|,~\mathbf{r}_{_2}=|\mathbf{z}_{_2}|,~\theta_{_1}=\mathrm{Argz_{_1}},~\theta_{_2}=\mathrm{Argz_{_2}}$$

$$\therefore \quad \mathsf{Z}_1 + \mathsf{Z}_2 = \mathsf{r}_1 \Big(\cos \theta_1 + \mathsf{i} \sin \theta_1 \Big) + \mathsf{r}_2 \Big(\cos \theta_2 + \mathsf{i} \sin \theta_2 \Big)$$

$$= \left(\mathbf{r_1} \cos \theta_1 + \mathbf{r_2} \cos \theta_2 \right) + \mathbf{i} \left(\mathbf{r_1} \sin \theta_1 + \mathbf{r_2} \sin \theta_2 \right)$$

$$\Rightarrow |z_1 + z_2|^2 = r_1^2 + r_2^2 + 2r_1r_2\cos(\theta_1 - \theta_2)$$
 (1)

and
$$|z_1| + |z_2| = r_1 + r_2$$

$$\Rightarrow (|z_1| + |z_2|)^2 = r_1^2 + r_2^2 + 2r_1r_2$$
 (2)

Since
$$| z_1 + z_2 | = | z_1 | + | z_2 |$$

From (1) and (2) we get
$$\cos(\theta_1 - \theta_2) = 1$$
 or $\theta_1 - \theta_2 = 0$

40.
$$\frac{-16}{1+i\sqrt{3}} = -4 + i\left(4\sqrt{3}\right), \text{ whose modulus value is 8 and argument is } \frac{2\pi}{3}.$$

41.
$$z = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = \sqrt{3} - i$$

42.
$$\left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{15} = \left(\cos\left(\frac{-\pi}{6}\right) + i\sin\left(\frac{-\pi}{6}\right)\right)^{15} = \cos\frac{5\pi}{2} - i\sin\frac{5\pi}{2} = -i$$

43.
$$x + \frac{1}{x} = 1 \Rightarrow x^2 - x + 1 = 0 \Rightarrow x = -\omega \text{ or } -\omega^2$$

44.
$$-5-3i = i(-3+5i)$$
, so required angle is $\frac{\pi}{2}$, as $i = e^{i\pi/2}$.

45.
$$z^2 + z^2 + (1-z)^2 = -z^2 - z + z^2 + z - z^2$$

 $\Rightarrow 4z^2 - 2z + 1 = 0$

$$\Rightarrow$$
 $z = \frac{2 \pm \sqrt{4 - 16}}{8}$. Thus $Re(z) = \frac{1}{4}$

46. The new complex number is
$$e^{i\pi/2} = iz$$

$$47. \qquad r = \frac{c-a}{b-a} = \frac{w-u}{v-u} \implies arg\bigg(\frac{c-a}{b-a}\bigg) = arg\bigg(\frac{w-u}{v-u}\bigg) \quad and \quad \left|\frac{c-a}{b-a}\right| = \left|\frac{w-u}{v-u}\right| \,.$$

48.
$$z_1$$
, z_2 , 0 will be the vertices of an equilateral triangle if $z_1^2 + z_2^2 + 0^2 = z_1 z_2 + 0 z_2 + 0 z_1$

$$\Rightarrow 1 - \frac{2b}{3} = \frac{b}{3} \Rightarrow b = 1$$

49.
$$z_1, z_2$$
 and z_3 are collinear if and only if $arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right) = 0$ or π i.e. $\frac{z_3 - z_1}{z_2 - z_1}$ is real.

50.
$$x = 1 - 2(1)^{1/3}$$

 $\Rightarrow x = 1 - 2, 1 - 2\omega, 1 - 2\omega^2$