- Learning, Forecasting and Retrospection: Examples
 - Time-varying autoregressions and decompositions

A TVAR(p) process is given by

$$y_t = \phi_{1,t}y_{t-1} + \ldots + \phi_{p,t}y_{t-p} + \epsilon_t, \quad \epsilon_t \sim N(0, v_t).$$

Evolution of AR coefficients.

$$\phi_t = \phi_{t-1} + \mathbf{w}_t, \ \mathbf{w}_t \sim N(\mathbf{0}, \mathbf{W}_t),$$

with
$$\phi_t = (\phi_{1,t}, ..., \phi_{p,t})'$$
.

▶ *DLM representation:* { \mathbf{F}_t , \mathbf{I}_p , v_t , \mathbf{W}_t } with $\mathbf{F}_t' = (y_{t-1}, \dots, y_{t-p})$.

Time-varying autoregressions and decompositions

$$y_t = x_t + \nu_t, \quad x_t = \mathbf{F}' \boldsymbol{\theta}_t, \quad \boldsymbol{\theta}_t = \mathbf{G}_t \boldsymbol{\theta}_{t-1} + \mathbf{w}_t,$$

- Let G_t be a $p \times p$ matrix with p <u>different</u> eigenvalues $\alpha_{t,1}, \ldots, \alpha_{t,p}$. Assume C pairs of complex eigenvalues $r_{t,j} \exp(\pm i\omega_{t,j}), j = 1 : C$, and R = p 2C real eigenvalues $r_{t,j}, j = (C+1) : (C+R)$.
- Then,

$$\mathbf{G}_t = \mathbf{B}_t \mathbf{A}_t \mathbf{B}_t^{-1}$$

where \mathbf{A}_t is the diagonal matrix of eigenvalues (in arbitrary but fixed order) and \mathbf{B}_t is a corresponding matrix of eigenvectors.

Time-varying autoregressions and decompositions

Define $\mathbf{H}_t = \operatorname{diag}(\mathbf{B}_t'\mathbf{F})\mathbf{B}_t^{-1}$. Transform θ_t and \mathbf{w}_t via $\gamma_t = \mathbf{H}_t\theta_t$ and $\delta_t = \mathbf{H}_t\mathbf{w}_t$. Then,

$$y_t = x_t + \nu_t, \quad x_t = \mathbf{1}' \boldsymbol{\gamma}_t, \quad \boldsymbol{\gamma}_t = \mathbf{A}_t \mathbf{K}_t \boldsymbol{\gamma}_{t-1} + \boldsymbol{\delta}_t,$$

where $\mathbf{1}' = (1, ..., 1)$ and $\mathbf{K}_t = \mathbf{H}_t \mathbf{H}_{t-1}^{-1}$. General decomposition: $y_t = x_t + \nu_t$, with

$$x_t = \sum_{j=1}^{C} x_{t,j}^{(1)} + \sum_{j=1}^{R} x_{t,j}^{(2)}.$$

- $ightharpoonup x_{t,j}^{(1)}$ real process related to $r_{t,j} \exp(\pm i\omega_{t,j}), j=1:C.$
- $x_{t,j}^{(2)}$ real process related to $r_{t,C+j}$, j=1:R.

AR Decompositions

AR(p) decomposition

Using the DLM representation $\{\mathbf{E}_{p}, \mathbf{G}(\phi), 0, \mathbf{W}\}$ we have:

- The eigenvalues of $\mathbf{G}(\phi)$ are the reciprocal roots of the characteristic polynomial, $\alpha_1, \ldots, \alpha_p$, with C pairs of complex reciprocal roots $\alpha_{2j-1} = r_j \exp(-i\omega_j)$, $\alpha_{2j} = r_j \exp(i\omega_j)$, for j = 1 : C, and $\alpha_j = r_j$ for j = (2C + 1) : p.
- ightharpoonup $\mathbf{A}_t = \mathbf{A} = \operatorname{diag}(\alpha_1, \dots, \alpha_p), \, \mathbf{B}_t = \mathbf{B}, \, \operatorname{and} \, \mathbf{K}_t = \mathbf{I}.$
- ▶ Decomposition: $y_t = \sum_{j=1}^{C} x_{t,j}^{(1)} + \sum_{j=1}^{R} x_{t,j}^{(2)}$, with
 - $\mathbf{x}_{t,j}^{(1)} \sim \mathsf{ARMA}(2,1)$ with constant modulus r_j and frequency $\omega_j, j = 1:C;$
 - $x_{t,j}^{(2)} \sim AR(1)$ with constant modulus r_{C+j} , j = 1 : R.

Learning, Forecasting and Retrospection: Examples

TVAR(p) decomposition

Using the DLM representation $\{\mathbf{E}_{p},\mathbf{G}_{t}(\phi),0,\mathbf{W}\}$ with

$$\mathbf{G}_t(\phi) = \left(egin{array}{cccccc} \phi_{1,t} & \phi_{2,t} & \phi_{3,t} & \dots & \phi_{p-1,t} & \phi_{p,t} \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ dots & & & & dots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{array}
ight).$$

we have $\mathbf{A}_t = \operatorname{diag}(\alpha_{1,t}, \dots, \alpha_{p,t})'$, \mathbf{B}_t the corresponding matrix of eigenvectors, and $\mathbf{K}_t = \mathbf{H}_t \mathbf{H}_{t-1}^{-1}$.

If ϕ_t does not vary a lot over time $\mathbf{K}_t \approx \mathbf{I}_p$. Assuming that C and R are constant over time we have the following decomposition...

Learning, Forecasting and Retrospection: Examples

TVAR Decompositions

- Learning, Forecasting and Retrospection: Examples
- TVAR Decompositions

TVAR(p) decomposition

$$y_t = \sum_{j=1}^C x_{t,j}^{(1)} + \sum_{j=1}^R x_{t,j}^{(2)},$$

- $\mathbf{x}_{t,j}^{(1)} \approx \mathsf{TVARMA}(2,1)$ with time-varying modulus $r_{t,j}$ and frequency $\omega_{t,j}, j=1:C$;
- ► $x_{t,j}^{(2)} \approx \text{TVAR}(1)$ with time-varying modulus $r_{t,C+j}$, j = 1 : R.
- 1. The structure of the underlying processes is *approximate*, but calculation of component processes is *exact*. The approximation depends on how close \mathbf{K}_t is to \mathbf{I}_p .
- 2. R and C do not need to be constant over time.

TVAR Decompositions

Interpreting latent TVAR structure

How close are the latent processes in the decomposition to TVAR(1) and TVARMA(2, 1) obtained when $\mathbf{K}_t = \mathbf{I}_D$?

$$\mathcal{M}_1: \quad \mathbf{y}_t = \mathbf{x}_t + \mathbf{\nu}_t \qquad \qquad \mathcal{M}_2: \quad \mathbf{y}_t = \mathbf{x}_t + \mathbf{\nu}_t \\ \mathbf{x}_t = \mathbf{1}' \mathbf{\gamma}_t \qquad \qquad \mathbf{x}_t = \mathbf{1}' \mathbf{\gamma}_t \\ \mathbf{\gamma}_t = \mathbf{A}_t \mathbf{K}_t \mathbf{\gamma}_{t-1} + \mathbf{\delta}_t \qquad \qquad \mathbf{\gamma}_t = \mathbf{A}_t \mathbf{\gamma}_{t-1} + \mathbf{\delta}_t.$$

$$f_{t}^{(1)}(h) = E(x_{t+h} \mid \gamma_{t}, \mathcal{M}_{1}) = \mathbf{1}' \mathbf{A}_{t+h} \mathbf{K}_{t+h} \dots \mathbf{A}_{t+1} \mathbf{K}_{t+1} \gamma_{t},$$

$$f_{t}^{(2)}(h) = E(x_{t+h} \mid \gamma_{t}, \mathcal{M}_{2}) = \mathbf{1}' \mathbf{A}_{t+h} \mathbf{A}_{t+h-1} \dots \mathbf{A}_{t+1} \gamma_{t}.$$

$$\frac{|f_{t}^{(1)}(h) - f_{t}^{(2)}(h)|}{\|\gamma_{t}\|_{\infty}} \leq (\lambda^{*})^{h} \times [(1 + \epsilon^{*})^{h} - 1],$$

with
$$\lambda^* = \max_{0 \le j \le h-1} (\max_{1 \le i \le p} |\lambda_{((t+h-j),i)}|);$$

TVAR Decompositions

TVAR(p) such that, for all j > t, $\|\mathcal{E}_{t+j}\|_{\infty} \le 10^{-4}$ and that all the characteristic reciprocal roots have moduli less than 0.97.

$$\frac{|f_t^{(1)}(h) - f_t^{(2)}(h)|}{\|\gamma_t\|_{\infty}} \le 0.97^h \times [(1.0001)^h - 1].$$

Example: Inferring latent structure in EEGs

▶ **Data:** 3,600 EEG observations recorded on a patient who received electroconvulsive therapy (ECT). Subsampled central portion of channel *Cz.* 18 additional channels.

Learning, Forecasting and Retrospection: Examples

TVAR Decompositions

TVAR Decompositions

Example: Inferring latent structure in EEGs

Model:

$$\begin{aligned} y_t &=& \sum_{j=1}^{p} \phi_{j,t} y_{t-j} + \nu_t, \ \ \, \nu_t \sim \textit{N}(0, \textit{v}_t), \\ \phi_t &=& \phi_{t-1} + \xi_t, \quad \xi_t \sim \textit{N}(\xi_t \mid \textbf{0}, \textbf{U}_t(\delta_\phi)), \\ v_t &=& \delta_{\textit{V}} \textit{v}_{t-1} / \eta_t, \quad \eta_t \sim \textit{Be}(\eta_t \mid \textit{a}_t, \textit{b}_t), \end{aligned}$$

with δ_ϕ and δ_V discount factors in (0, 1]. Optimal values of δ_ϕ , δ_V , and p obtained by maximizing

$$I(\delta_{\phi}, \delta_{v}, p) \equiv \log[y_{(p^*+1):T} \mid \mathcal{D}_{p^*})] = \sum_{t=p^*+1}^{T} \log[p(y_t \mid \mathcal{D}_{t-1})],$$

over [0.9, 1]
$$\times$$
 [0.9, 1] \times [4, 20], with $p^*=$ 20. $\hat{\delta}_\phi=$ 0.994, $\hat{\delta}_V=$ 0.95, and $\hat{p}=$ 12.

Bayesian Models and Computations for Large-Dimensional Time Series

Learning, Forecasting and Retrospection: Examples

TVAR Decompositions

EEG decomposition

Frequency

Modulus

TVAR Decompositions

Ordering of the latent components

LTVAR Decompositions

frequency

EEG data: Estimated time-varying spectra

frequency

frequency

$r_{t,j}, \omega_{t,j}$

TVAR models for multiple time series

TVAR models for multiple time series

Case study: ECT data

- ► Fit TVAR(12) models to each of the 19 EEG signals.
- Extract dominant frequencies and moduli.

TVAR models for multiple time series

EEG data: Trajectories of dominant frequencies

TVAR models for multiple time series

EEG data: Moduli of dominant frequencies

