IT496: Introduction to Data Mining

Lecture 19

Non-linear Support Vector Machines

(Slides are created from the book Hands-on ML by Aurelien Geron)

Arpit Rana 3rd October 2023

SVM with Polynomial Features

Many datasets are not even close to being linearly separable.

- One approach to handling nonlinear datasets is to add more features, such as polynomial features (as we did in polynomial regression);
- In some cases this can result in a linearly separable dataset.

Not linearly separable with one feature

After adding second feature $x_2 = x_1^2$

SVM with Polynomial Features

Adding polynomial features is simple to implement and can work great with all sorts of Machine Learning algorithms (not just SVMs).

For example,

SVM with Polynomial Features

However,

- at a low polynomial degree it cannot deal with very complex datasets, and
- with a *high polynomial degree* it creates a huge number of features, making the model too slow.
 - PolynomialFeatures (degree=d) transforms a dataset that had n features into one that has (n+d)!/n!d! features.

Non-linear SVM

When using SVMs you can apply a mathematical technique called the **kernel trick** (it is explained in further slides).

- It makes it possible to get the same result as if you added many polynomial features, even with very high-degree polynomials, without actually having to add them.
- This trick is implemented by the SVC class.

Non-linear SVM

The hyperparameter coef0 controls

Understanding the Kernel Trick

Suppose you want to apply a 2nd-degree polynomial transformation to a two-dimensional training set, then train a linear SVM classifier on the transformed training set.

The 2^{nd} -degree polynomial mapping function ϕ that you want to apply.

$$\phi(\mathbf{x}) = \phi \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1^2 \\ \sqrt{2} x_1 x_2 \\ x_2^2 \end{pmatrix}$$
 Notice that the transformed vector is three-dimensional instead of two-dimensional.

if we apply this 2nd-degree polynomial mapping and then compute the dot product of the transformed vectors:

$$\phi(\mathbf{a})^T \phi(\mathbf{b}) = \begin{pmatrix} a_1^2 \\ \sqrt{2} a_1 a_2 \\ a_2^2 \end{pmatrix}^T \begin{pmatrix} b_1^2 \\ \sqrt{2} b_1 b_2 \\ b_2^2 \end{pmatrix} = a_1^2 b_1^2 + 2a_1 b_1 a_2 b_2 + a_2^2 b_2^2$$
The dot product of the transformed vectors is equal to the square of the dot product of the original vectors:
$$= (a_1 b_1 + a_2 b_2)^2 = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}^T \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}^2 = (\mathbf{a}^T \mathbf{b})^2$$

$$\phi(\mathbf{a})^T \phi(\mathbf{b}) = (\mathbf{a}^T \mathbf{b})^2$$

Understanding the Kernel Trick

So, you don't actually need to transform the training instances at all: just replace the dot product by its square.

$$\langle \phi(a),\phi(b)
angle = \phi(a)^T\phi(b) = \left(a^Tb
ight)^2$$

- The result will be strictly the same as if you went through the trouble of actually transforming the training set, and then fitting a linear SVM algorithm.
- This trick makes the whole process much more computationally efficient. This is the essence of the *kernel trick*.

Kernel Function

A **kernel** is a function capable of computing the dot product $\langle \phi(a), \phi(b) \rangle$ based only on the original vectors **a** and **b**, without having to compute (or even to know about) the transformation ϕ .

$$K(a,b) = \langle \phi(a), \phi(b) \rangle = f(a,b)$$

where f(.) is a function that follows certain conditions as stated by the <u>Mercer's Theorem</u>.

Some commonly used kernel functions are as follows.

Linear:
$$K(\mathbf{a}, \mathbf{b}) = \mathbf{a}^T \mathbf{b}$$

Polynomial:
$$K(\mathbf{a}, \mathbf{b}) = (\gamma \mathbf{a}^T \mathbf{b} + r)^d$$

Gaussian RBF:
$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma || \mathbf{a} - \mathbf{b} ||^2)$$

Sigmoid: $K(\mathbf{a}, \mathbf{b}) = \tanh(\gamma \mathbf{a}^T \mathbf{b} + r)$

Kernel Function

When to use What

- As a rule of thumb, you should always try the linear kernel first (remember that **LinearSVC** is much faster than **SVC** (**kernel="linear"**), especially if the training set is very large or if it has plenty of features.
- If the training set is not too large, you should try the Gaussian RBF kernel as well; it works well in most cases.
- Then, if you have spare time and computing power, you can also experiment with a few other kernels using *cross-validation* and *grid search*.

Learning Non-linear SVM

Using a suitable function, $\phi(.)$, we can transform any data instance \mathbf{x} to $\phi(\mathbf{x})$.

- The linear hyperplane in the transformed space can be expressed as $\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + \mathbf{b} = 0$.
- To learn the optimal separating hyperplane, we can substitute $\phi(\mathbf{x})$ for \mathbf{x} in the formulation of SVM to obtain the following hard margin optimization (primal) problem:

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to $t^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1$ for $i = 1, 2, \dots, m$
 $\phi(\mathbf{x}^{(i)})$

Primal to Dual Problem

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to $t^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1$ for $i = 1, 2, \dots, m$

$$L = rac{1}{2} w^T w - \sum_i lpha^{(i)} \Bigl[t^{(i)} \Bigl(w^T x^{(i)} + b \Bigr) - 1 \Bigr]$$

$$rac{\partial L}{\partial w} = w - \sum_i lpha^{(i)} t^{(i)} x^{(i)} = 0 \implies w = \sum_i lpha^{(i)} t^{(i)} x^{(i)}$$

w is the linear sum of the samples x.

$$rac{\partial L}{\partial b} = -\sum_i lpha^{(i)} t^{(i)} = 0 \implies \sum_i lpha^{(i)} t^{(i)} = 0$$

Replacing
$$w$$
 in the above expression of L $L=rac{1}{2}\sum_i\sum_ilpha^{(i)}lpha^{(j)}t^{(i)}t^{(j)}x^{(i)}\cdot x^{(j)}-\sum_ilpha^{(i)}$

Learning Non-linear SVM

It is possible to express a different but closely related problem, called its *dual problem*.

$$\phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x}^{(j)})$$
minimize
$$\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(i)} \alpha^{(j)} t^{(i)} t^{(j)} \mathbf{x}^{(i)} \mathbf{x}^{(j)} - \sum_{i=1}^{m} \alpha^{(i)}$$
subject to
$$\alpha^{(i)} \ge 0 \quad \text{for } i = 1, 2, \dots, m$$

- The solution to the dual problem typically gives a lower bound to the solution of the primal problem,
- however, under some conditions it can even have the same solutions as the primal problem.
 - In the primal, the objective function is convex, and the inequality constraints are continuously differentiable and convex functions, thus, meet those conditions.

Learning Non-linear SVM

$$\phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x}^{(j)})$$
minimize $\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(i)} \alpha^{(j)} t^{(i)} t^{(j)} \mathbf{x}^{(i)T} \mathbf{x}^{(j)} - \sum_{i=1}^{m} \alpha^{(i)}$
subject to $\alpha^{(i)} \ge 0$ for $i = 1, 2, \dots, m$

• Once you find the vector $\hat{\alpha}$ that minimizes this equation (using a QP solver), you can compute \hat{w} and \hat{b} that minimize the primal problem by using the following.

$$\widehat{\mathbf{w}} = \sum_{i=1}^{m} \widehat{\alpha}^{(i)} t^{(i)} \mathbf{x}^{(i)}$$

$$\widehat{b} = \frac{1}{n_s} \sum_{\substack{i=1 \ \widehat{\alpha}^{(i)} > 0}}^{m} \left(t^{(i)} - \widehat{\mathbf{w}}^T \mathbf{x}^{(i)} \right)$$

• The dual problem is faster to solve than the primal when the number of training instances is smaller than the number of features.

Non-linear SVM

Finally, the decision rule will look like the following.

$$\hat{y} = egin{cases} +1 & w^Tx + b \geq 0, \ -1 & w^Tx + b < 0 \end{cases}$$

$$\phi(\mathbf{x}^{(i)})^{\mathrm{T}}\phi(\mathbf{x}^{(j)}) = \mathrm{K}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

$$\sum_{i} \alpha^{(i)} t^{(i)} x^{(i)} \cdot x^{(j)} + b \geq 0$$

• Dual makes the *kernel trick* possible, while the primal does not.

Next lecture	Decision Trees
	DECISION FIEES

Decision Trees

5th October 2023