UNIVERSIDADE FEDERAL DA BAHIA

PROJETO FINAL

RECONHECIMENTO DE SINAIS COM A MÃO UTILIZANDO REDE NEURAL CONVOLUCIONAL

ELDER PEREIRA

SOBRE OS DADOS

INFORMAÇÕES

- 2 Classes encontradas
 - Teste e Treino
- 1080 Imagens de Treino
- **120** de Teste
- Formato **64x64x3**

NORMALIZAÇÃO

- Imagens são descritas pela intensidade dos pixels
- Otimização da categorização para melhor aprendizado

RECURSOS UTILIZADOS

- Tensorflow
 - One-hot enconding

Numpy

- Tensor flow
- H5PI

MODELO

SUMÁRIO DO MODELO

684 parâmetros treináveis

Layer (type)	Output Shape	Param #
conv2d_18 (Conv2D)	(None, 62, 62, 32)	896
max_pooling2d_18 (MaxPooling2D)	(None, 31, 31, 32)	0
conv2d_19 (Conv2D)	(None, 29, 29, 64)	18,496
max_pooling2d_19 (MaxPooling2D)	(None, 14, 14, 64)	0
conv2d_20 (Conv2D)	(None, 12, 12, 128)	73,856
max_pooling2d_20 (MaxPooling2D)	(None, 6, 6, 128)	0
flatten_6 (Flatten)	(None, 4608)	0
dense_12 (Dense)	(None, 128)	589,952
dense_13 (Dense)	(None, 6)	774

Metodologia

- 1. Camadas Convolucionais e Pooling
 - a. Remoção dos valores negativos
 - b. Forma dos dados
- 2. Redução da dimensão
- 3.128 Neurônios
- 4. Ajuste de Perdas
- 5. Classificação Multiclasse
 - a. Camada densa
 - i. Características abstratas
- 6.6 Saídas Número de classes
- 7. Métrica: Acurácia

Acurácia do Modelo - Avaliação

RESULTADOS

 Aumento da acurácia durante treino e validação -Aprendizado

Época 10

Treino: 97.64%Validação: 96.67%

Perdas

• Treino: **0.893**

• Validação: **0.1621**

Ausência de overfitting

VALIDAÇÃO

1/1 ——— θs 91ms/step

=-=--Resultados Obtidos =-=-=

Classe Predita: 1

Confiança: 0.9831057190895081

Imagem Predita - Classe 1

VALIDAÇÃO

1/1 — 0s 28ms/step

=-=--Resultados Obtidos =-=-=

Classe Predita: 3

Confiança: 0.8686680793762207

Imagem Testada Classe Predita: 3

Imagem do Dataset - Classe 3

MELHORIAS

Acurácia do Modelo - Avaliação

DATA AUGMENTATION

- 1. Rotação
- 2. Deslocamento horizontal
- 3. Deslocamento vertical
- 4. Cisalhamento
- 5.Zoom
- 6. Espelhamento

Não é válido pro dataset

REFERÊNCIAS

1. Documentação Oficial

TENSORFLOW. Convolutional Neural Networks (CNNs) with TensorFlow. 2024. Disponível em: https://www.tensorflow.org/tutorials/images/cnn. Acesso em: 30 jan. 2025.

2. Livro (Curso Online)

CHOLLET, François. Deep Learning with Python. 2. ed. Shelter Island: Manning Publications, 2021.Livro (Curso Online)

3. Dados

MANEESH99. Signs Detection Dataset. Kaggle, 2023. Disponível em: https://www.kaggle.com/datasets/maneesh99/signs-detection-dataset. Acesso em: 30 jan. 2025.