Illustrated companion for Folland's "The Baire Category Theorem and its Consequences"

Riley Levy

December 23, 2019

These notes are a companion for Section 5.3: "The Baire Category Theorem and its Consequences", in Folland's Real Analysis: Modern Techniques and their Applications.

Definition 1 (nowhere dense) A nowhere dense set's closure has empty interior.

Definition 2 (meager) A meager set is countable union of nowhere dense sets. [1, pg. 161]

Theorem 3 (Baire category) If X is a completely metrizable space,

- 1. countable intersections of open dense subsets are dense,
- 2. X is not meager.

Proof.

1. Consider U_i , a sequence of dense open sets. It suffices to show a nonempty open set W meets $\bigcap U_i$. The proof proceeds by inductively nesting open balls inside successive $W \cap U_i$. By assumption of density, $W \cap U_i$ is nonempty. It is also open, so there is some $B_1 = B(x_1, r_1)$ with $\overline{B_1} \subseteq W \cap U_0$. Observe $B_1 \cap U_1$ is also open; therefore, find a $B_2 = B(x_2, r_2)$ where $\overline{B_2} \subseteq B_1 \cap U_1$ and proceed inductively: $B_{n+1} = B(x_n, r_n)$ where $\overline{B_{n+1}} \subseteq B_n \cap U_n$. These are nested and

$$x_n \in \underbrace{B_n}_{\subseteq U_n} \subseteq \underbrace{B_{n-1}}_{\subseteq U_{n-1}} \subseteq \cdots \subseteq \underbrace{B_2}_{\subseteq U_2} \subseteq \underbrace{B_1}_{\subseteq U_1} \subseteq W$$

¹In a general (nonseparable) metric space, this requires the axiom of dependent choice.

If r_n are selected such that $r_n \to 0$ —e.g., by requiring $r_n < 2^{-n}$ at each step of the induction—then x_n is Cauchy. By completeness, there is a limit; call it x. But because x_i is eventually in B_n , $x \in \overline{B(x_n, r_n)} \subseteq B(x_{n-1}, r_{n-1})$ for all n. Then

$$x \in \dots \underbrace{B_n}_{\subseteq U_n} \subseteq \underbrace{B_{n-1}}_{\subset U_{n-1}} \subseteq \dots \subseteq \underbrace{B_2}_{\subseteq U_2} \subseteq \underbrace{B_1}_{\subseteq U_1} \subseteq W;$$

therefore, x is in the intersection $\bigcap U_n \cap W$, proving it's nonempty.

2. By the previous result, it suffices to show the complement of any nowhere dense set contains an dense open set. Suppose N is nowhere dense. Then N^C is dense; hence, $(N^C)^{\circ}$ is open and dense.

The proofs of theorem 4 (open mapping) and theorem 7 (uniform boundedness principle) both share a technique: find a bound around an arbitrary point (given by a density argument) and then translate this to a bound around the origin (via the triangle inequality and linearity).

Theorem 4 (open mapping) Surjective Banach-morphisms are open.

Proof. Call the morphism $T: X \to Y$. Let $B_r = B(0,r) \in X$. Because linear maps commute with translations and dilations, it suffices to show that 0 is an interior point of $T(B_1)$.

By surjectivity, $Y = \bigcup_{n=1}^{\infty} TB_n$. The map $n \square : (Y, TB_1) \to (Y, TB_n)$ is a homeomorphism for n > 0. Therefore, B_1 cannot be nowhere dense: if it were, B_n would be too, making Y meager, contradicting theorem 3 (Baire category).

The closure $\overline{TB_1}$ contains an interior point y_0 . For some r, $B(y_0, 4r) \subseteq \overline{TB_1}$. Then there is some $y_1 = Tx_1 \in TB_1$ within 2r of y_0 . In particular, its neighborhood $B(y_1, 2r) \subseteq B(y_0, 4r) \subseteq \overline{TB_1}$.

If ||y|| < 2r, then $y_1 - y \in \overline{TB_1}$ so

$$y = y_1 - (y_1 - y) = Tx_1 - (y_1 - y) \in \overline{T(x + B_1)} \subseteq \overline{TB_2}.$$

Halving this shows $||y|| < r \implies y \in \overline{TB_1}$; repeatedly halving shows

$$||y|| < r2^{-n} \implies y \in \overline{TB_{2^{-n}}}.$$

Now, chase an arbitrary y in $\{y : ||y|| < r/2\}$ with a sequence of Tx_i . Equation (1) guarantees an $x_1 \in B_1$ such that $||y - Tx_1|| < r/4$, and, by induction, a sequence such that $||y - \sum_{i=1}^{n} Tx_i|| < r2^{n-1}$ with $x_i \in B_i$. The series $\sum x_i$ is hence absolutely convergent; by completeness, it has some limit x. But

$$||x|| \le \sum_{i} ||x_i|| = \sum_{i} 2^{-i} = 1$$

with $Tx = \lim T(\sum x_i) = y$ by construction. Therefore $y \in TB_1$ itself, not just its closure. Conclude

$$\underbrace{\{y: \|y\| < r/2\}}_{\text{open nhood of 0}} \subseteq TB_1.$$

Because the inverse of an open map is continuous,

Corollary 5 (bounded inverse) A bijective Banach-morphism is an isomorphism.

Theorem 6 (Closed graphs) A linear map between Banach spaces is continuous iff its graph is closed.

Proof. Let $T: X \to Y$. Denote its graph by $\Gamma := \{(x, Tx) : x \in X\}$. Let π_X , π_Y indicate the projection maps from Γ to X and Y respectively.

Suppose T is continuous. Suppose (x_n, Tx_n) is a convergent sequence in Γ . Then there is some $x = \lim x_n$. But by continuity, $Tx_n \to Tx$ hence $(x_n, Tx_n) \to (x, Tx) \in \Gamma$, so Γ is closed.

Suppose Γ is closed. Then, as $X \times Y$ is complete, being a closed subset, Γ is complete as well. Then π_X is a bijective Bananch-morphism so it is actually an isomorphism by corollary 5 (bounded inverse). Hence $T = \pi_Y \circ \pi_X^{-1} : X \to Y$ is a continuous. \square

Theorem 7 (uniform boundedness principle)

- 1. If $\sup_{T \in A} ||Tx|| < \infty$ for all x in a nonmeager subset of X, then $\sup_{T \in A} ||T|| < \infty$.
- 2. If X is a Banach space and $\sup_{T \in A} ||Tx|| < \infty$ for all $x \in X$, then $\sup_{T \in A} ||T|| < \infty$.

Proof. By theorem 3 (Baire category), a Banach space is nonmeager, hence (2) follows from (1). So it suffices to prove (1).

Let

$$E_n := \left\{ x \in X : \sup_{T \in A} ||Tx|| \le n \right\} = \bigcap_{T \in A} \left\{ x \in X : ||Tx|| \le n \right\}.$$

The E_n are closed. By hypothesis of (1), some E_n is nonmeager; therefore it contains a nontrivial closed ball $\overline{B(r,x_0)}$. Now, we use this fact to construct a ball around 0 contained in E_{2n} . If $||x|| \le r$ then $x_0 - x \in E_n$:

hence

$$||Tx|| \le ||T(x - x_0)|| + ||Tx_0|| = ||T(x_0 - x)|| + ||Tx_0|| \le 2n.$$

Therefore, $||Tx|| \leq 2n$ whenever $T \in A$ and $||x|| \leq r$. Therefore $\sup_{T \in A} ||T|| \leq 2n/r$. \square

References

[1] Gerald B. Folland. Real analysis: modern techniques and their applications. 2nd ed. Wiley-Interscience, 1999. ISBN: 0-471-31716-0.