Applied Statistics for Computer Science BSc, Exam

Probability Theory and Mathematical Statistics for Computer Science Engineering BSc, Term grade

István Fazekas University of Debrecen

2020/21 fall

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

Main topics

- 1. Probability theory
- 2 Statistics

Mathematical tools: combinatorics, calculus

Computer tool: Matlab

Book:

Yates, Goodman:

Probability and Stochastic Processes: A Friendly Introduction for

Electrical and Computer Engineers

Lecture 7

Expectation and variance

Definition of the expectation

The expectation of a random variable is its mean value or its average.

In the discrete case it was

$$\mathbb{E}X = \sum_{i} x_i P(X = x_i) \tag{1}$$

We can not apply it for absolutely continuous distributions because in that case

$$P(X = x_i) = 0, \forall x_i \in \mathbb{R}.$$

However, if we divide the real line into short intervals, then we obtain a similar formula

$$\mathbb{E}X \approx \sum_{i} x_{i} P(x_{i} \leq X < x_{i+1}) = \sum_{i} x_{i} [F_{X}(x_{i+1}) - F_{X}(x_{i})],$$
 (2)

where F_X is the CDF. If X has PDF f_X , then (2) gives

$$\mathbb{E}X \approx \sum_{i} x_{i} \int_{x_{i}}^{x_{i+1}} f_{X}(x) dx \approx \int_{-\infty}^{+\infty} x f_{X}(x) dx.$$

Definition of the expectation...

Let the random variable X have PDF f.

If $\int_{-\infty}^{+\infty} |x| f(x) dx$ is finite, then we say that X has a finite expectation.

In this case the quantity

$$\left| \mathbb{E} X = \int_{-\infty}^{+\infty} x f(x) dx \right| \tag{3}$$

exists, it is finite, and it is unique. Then the number $\mathbb{E} X$ is called the expectation of X.

Definition of the expectation...

Remark. Both the discrete and the absolute continuous cases the expectations are particular cases of the following general notion of the expectation.

The general notion of the expectation is

$$\mathbb{E}X = \int_{\Omega} X(\omega) dP(\omega) = \int_{-\infty}^{+\infty} x \, dF_X(x). \tag{4}$$

where the first integral is a Lebesgue integral and the second one is a Lebesgue–Stieltjes integral. We do not go into the details.

Expectation of the uniform distribution

Let X be uniformly distributed on the interval [a, b]. Then

$$\mathbb{E}X = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^2}{2} \right]_a^b = \frac{a+b}{2}.$$

So the expectation is the middle of the interval [a, b].

The Cauchy distribution has no expectation

Let X have Cauchy distribution. Then

$$\int_0^\infty x f_X(x) dx = \int_0^\infty \frac{x}{1+x^2} dx = \left[\frac{1}{2} \ln(1+x^2)\right]_0^\infty = \infty.$$

Similarly,

$$\int_{-\infty}^{0} x f_X(x) dx = -\infty$$

So

$$\int_{-\infty}^{+\infty} x f_X(x) dx$$

is not defined.

The expectation is linear

Theorem.

Assume that the expectation of X is finite. Let $c \in \mathbb{R}$.

Then the expectation of cX is finite and

$$\mathbb{E}(cX)=c\mathbb{E}X$$
.

If the expectations of X and Y are finite, then the expectation of X+Y is also finite and

$$\Big| \mathbb{E}(X+Y) = \mathbb{E}X + \mathbb{E}Y \Big|.$$

The properties of the expectation

Theorem.

- a) If $X \geq 0$, then $\mathbb{E}X \geq 0$.
- b) If $X \geq Y$, then $\mathbb{E}X \geq \mathbb{E}Y$.
- c) If $X \ge 0$ and $\mathbb{E}X = 0$, then P(X = 0) = 1.

Calculation of the expectation

Theorem.

Let f be the PDF of the r.v. X. Let g be a Borel measurable function. If $\int |g(x)|f(x)dx < \infty$, then

$$\left| \mathbb{E}g(X) = \int_{-\infty}^{\infty} g(x)f(x)dx \right|.$$

Moments

Let $k \geq 0$. The kth moment of X is

$$\mathbb{E}X^k$$
.

It can be calculated as

$$\mathbb{E}X^k = \int_{-\infty}^{\infty} x^k f(x) dx,$$

where f is the PDF X.

Moments...

Exercise. Calculate of the moments of the exponential distribution. **Solution.**

$$\mathbb{E}X^{k} = \int_{-\infty}^{\infty} x^{k} f(x) dx = \int_{0}^{\infty} x^{k} \lambda e^{-\lambda x} dx = \left[-x^{k} e^{-\lambda x} \right]_{0}^{\infty} -$$

$$- \int_{0}^{\infty} (-k x^{k-1} e^{-\lambda x}) dx = \frac{k}{\lambda} \int_{0}^{\infty} x^{k-1} \lambda e^{-\lambda x} dx = \frac{k}{\lambda} \mathbb{E}X^{k-1}.$$
As $\mathbb{E}X^{0} = \int_{0}^{\infty} f(x) dx = 1$,

 $-\infty$ so using the above recursion

$$\mathbb{E}X^k = k!/\lambda^k.$$

In particular

$$\mathbb{E}X = 1/\lambda$$
.

The variance

Definition. The variance of X is

$$\operatorname{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - \mathbb{E}^2X$$
.

Proposition.

$$\overline{\mathrm{Var}(aX+b)=a^2\mathrm{Var}(X)}\ .$$

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$

Exercise

Let

$$f(x) = \begin{cases} 3x^2, & \text{if} & x \in [0, c], \\ 0, & \text{if} & x \notin [0, c] \end{cases}$$

be the PDF of the r.v. X. Find the value of c. Find the corresponding CDF. Calculate the value of P(X>0.5) Find $\mathbb{E} X$ and $\mathrm{Var}(X)$

Exercise...

Solution.

$$1 = \int_{-\infty}^{\infty} f(x)dx = \int_{0}^{c} 3x^{2}dx = 3\left(\frac{c^{3}}{3} - \frac{0^{3}}{3}\right) = c^{3}$$

So
$$c=1$$
.
Using $F(x)=\int_{-\infty}^{x}f(t)dt$, we get that the CDF of X is

$$F(x) = \begin{cases} 0, & \text{if } x \le 0, \\ x^3, & \text{if } 0 < x \le 1, \\ 1, & \text{if } 1 < x. \end{cases}$$

Exercise...

$$P(X > 0.5) = 1 - F(0.5) = 1 - 0.5^{3} = 1 - 0.125 = 0.875$$

$$\mathbb{E}X = \int_{0}^{1} x \cdot 3x^{2} dx = \frac{3}{4}$$

$$\mathbb{E}X^{2} = \int_{0}^{1} x^{2} \cdot 3x^{2} dx = \frac{3}{5}$$

$$Var(X) = \mathbb{E}X^{2} - \mathbb{E}^{2}X = \frac{3}{5} - \frac{9}{16} = \frac{3}{80}$$

The uniform distribution

Choose a point randomly from the interval [a, b]. Denote by X the position of the point. We say that X has uniform distribution on the interval [a, b]. The CDF of X is

$$F(t) = \begin{cases} 0, & \text{if} & t \leq a, \\ \frac{t-a}{b-a}, & \text{if} & a < t \leq b, \\ 1, & \text{if} & b < t. \end{cases}$$

The CDF of the uniform distribution

Figure: The CDF of the uniform distribution

The PDF of the uniform distribution

$$f(t) = \begin{cases} \frac{1}{b-a}, & \text{if} \quad t \in [a, b], \\ 0, & \text{if} \quad t \notin [a, b]. \end{cases}$$

Figure: The PDF of the uniform distribution

The expectation and the variance of the uniform distribution

The expectation is

$$\mathbb{E}X = \frac{a+b}{2}.$$

Te second moment is

$$\mathbb{E}X^2 = \int_a^b x^2/(b-a)dx = (b^3-a^3)/(3(b-a)).$$

So the variance is

$$Var(X) = \mathbb{E}X^2 - \mathbb{E}^2X = (b^2 + ab + a^2)/3 - (a+b)^2/4 =$$
$$= (b-a)^2/12.$$

The CDF of the exponential distribution

$$F(x) = \begin{cases} 0, & x \le 0, \\ 1 - e^{-\lambda x}, & x > 0 \end{cases}$$

is the CDF, where λ is a positive parameter.

Figure: The CDF of the exponential distribution

The PDF of the exponential distribution

$$f(x) = \begin{cases} 0, & x \le 0, \\ \lambda e^{-\lambda x}, & x > 0 \end{cases}$$

is the PDF.

Figure: The PDF of the exponential distribution

Properties of the exponential distribution

The kth moment of the exponential distribution is

$$\mathbb{E}X^k = k!/\lambda^k$$

for $k = 0, 1, 2, \dots$ Its expectation is

$$\mathbb{E}X = 1/\lambda$$
.

Its variance is

$$\operatorname{Var}(X) = \mathbb{E}X^2 - \mathbb{E}^2X = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$

The exponential distribution is memoryless, that is

$$P(X < t + s | X \ge t) = P(X < s), \qquad t > 0, \ s > 0.$$

The Erlang distribution

If X_1, X_2, \ldots, X_n are independent and all of them have exponential distribution with parameter λ , then

$$Y_n = X_1 + X_2 + \cdots + X_n$$

has Γ distribution with rank n and parameter λ , that is its PDF is

$$f_n(t) = \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!}, \quad \text{if} \quad t > 0.$$

It is also called Erlang distribution.