Applied Programming

Representation of Numbers for Computing

Floating Point Systems

and the IEEE 754 Standard

Round-off Errors

Impacts our calculations

Round-off in Computing

- For reliable numerical computations we need to keep round-off errors small.
- The *main source of round-off* errors comes from the fact that:
 - Computers *cannot represent* all (real) *numbers exactly*.
- Why we care about round-off:
 - Arithmetic with approximate numbers propagates round-off errors...

... and we need to make sure they remain small

Computers, Numbers and C

- For computing we can distinguish between two types numbers: *integers* and *reals*
 - Integers in C are provided by int
 - With additional qualifiers like short, long
 - Reals in C are provided by float and double

Most practical *engineering problems* involve *computation with real numbers*

Integers and Reals Main differences/similarities

Mathematics (ideal)

- There is an infinite number of integers and reals
- The range of integers and reals is infinite $(-\infty, \infty)$
- Integers are discrete
- Reals are continuous

Computers (practical)

- Can only represent a finite number of integers and reals
- The range of integers and reals is finite
 (-??,??)
- Integers are discrete
- Reals are discrete

Integers in C

- limits.h defines macros related to the representation of *integers* such as:
 - Range and storage space
- Example: the_integers.c

Engineering Significance

- Integers can be represented exactly but ...
- We can only represent a *finite range* of integers.

Consequence: Arithmetic with integers may cause overflow (reduce risk by scaling numbers properly)

Range of Integers

```
* The Integers in C
* Author: Juan C. Cockburn
* Reference: http://www.tutorialspoint.com/c standard library/limits h.htm
#include <stdio.h>
#include <limits.h>
int main() {
  printf("Integer numbers in Standard \n");
  printf("----\n\n");
  printf("The number of bits in a byte %d\n\n", CHAR BIT);
  printf("The minimum value of SIGNED CHAR = %d\n", SCHAR MIN);
  printf("The maximum value of SIGNED CHAR = %d\n", SCHAR MAX);
  printf("The maximum value of UNSIGNED CHAR = %d\n\n", UCHAR MAX);
  printf("The minimum value of CHAR = %d\n", CHAR MIN);
  printf("The maximum value of CHAR = %d\n", CHAR MAX);
  printf("The maximum value of UNSIGNED CHAR INT = %d\n\n", UCHAR MAX);
  printf("The minimum value of SHORT INT = %d\n", SHRT MIN);
  printf("The maximum value of SHORT INT = %d\n", SHRT MAX);
  printf("The maximum value of UNSIGNED SHORT INT = %d\n\n", USHRT MAX);
  printf("The minimum value of INT = %d\n", INT MIN);
  printf("The maximum value of INT = %d\n", INT MAX);
  printf("The maximum value of UNSIGNED INT = %d\n\n", UINT MAX);
  printf("The minimum value of LONG = %ld\n", LONG MIN);
  printf("The maximum value of LONG = %ld\n", LONG_MAX);
  printf("The maximum value of UNSIGNED LONG = %lu\n\n", ULONG MAX);
  return(0);
```

Range of Integers

```
Range of integer types
The minimum value of CHAR = -128
The minimum value of SIGNED CHAR = -128
The maximum value of CHAR = 127
The maximum value of SIGNED CHAR = +127
The maximum value of UNSIGNED CHAR = 255
The minimum value of SHORT INT = -32768
The maximum value of SHORT INT = +32767
The maximum value of UNSIGNED SHORT INT = 65535
The minimum value of INT = -2147483648
The maximum value of INT = +2147483647
The maximum value of UNSIGNED INT = 4294967295
The minimum value of LONG INT = -9223372036854775808
The maximum value of LONG INT = +9223372036854775807
The maximum value of UNSIGNED LONG = 1844674407370955161
```

Reals in C

- float.h defines macros related to the representation of real number such as:
 - range, storage space, and machine epsilon
- Example: the_reals.c

Engineering Significance

- Only *some reals* can be represented *exactly* and *most* can only be represented *approximately*
- Can only represent a *finite range* of reals.
- In addition to <u>overflow</u> reals can also <u>underflow.</u>
 - there is a gap between 0 and the smallest possible number

Reals in C

```
#include <stdio.h>
#include <float.h>
int main() {
printf("The maximum value of float = %.10e\n", FLT_MAX);
printf("The minimum value of float = %.10e\n\n", FLT_MIN);
printf("The maximum value of DOUBLE = %.10e\n", DBL MAX);
printf("The minimum value of DOUBLE = %.10e\n\n", DBL MIN);
printf("The maximum value of LONG DOUBLE = %.10e\n", LDBL MAX);
printf("The minimum value of LONG DOUBLE = %.10e\n\n", LDBL MIN);
printf("The SINGLE PRECISION (float) machine epsilon is = %.10Le\n", FLT EPSILON);
printf("The DOUBLE PRECISION (double) machine epsilon is = %.10Le\n", DBL EPSILON);
printf("The EXTENDED PRECISION (long double) machine epsilon is = %.10Le\n\n", LDBL EPSILON);
printf("IEEE-734 SINGLE PRECISION representation\n\m");
printf("The number of binary digits (p) in a float is = % d\n", FLT MANT DIG);
printf("The maximum value of the exponent (U) in a float is = % d n", FLT MAX 10 EXP);
printf("The minimum value of the exponent (L) in a float is = % d\n", FLT MIN 10 EXP);
```

Reals in C

```
The maximum value of float = 3.4028234664e+38
The minimum value of float = 1.1754943508e-38
The maximum value of DOUBLE = 1.7976931349e+308
The minimum value of DOUBLE = 2.2250738585e-308
The maximum value of LONG DOUBLE = 1.1897314954e+4932
The minimum value of LONG DOUBLE = 3.3621031431e-4932
The SINGLE PRECISION (float) machine epsilon is = 1.1920928955e-07
The DOUBLE PRECISION (double)
                                    machine epsilon is = 2.2204460493e-16
The EXTENDED PRECISION (long double) machine epsilon is = 1.0842021725e-19
IEEE-734 SINGLE PRECISION representation
The number of binary digits (p) in a float is = 24
The maximum value of the exponent (U) in a float is = 38
```

The minimum value of the exponent (L) in a float is = -37

Reals as Floating Point Numbers

- There are *many ways* to represent real numbers.
- The most common way is given by the IEEE standard floating point number system
 - We need to understand the *essentials* of this representation to *avoid catastrophic errors* in numerical computations

Essentials: Real Numbers

- Any *real number* can be represented, to any degree of accuracy, by an *infinite sequence of digits*
- For example, a real number x can be represented as

$$egin{array}{lll} x & = & \pm d_0.d_1d_2\cdots imes eta^e \ & = & \pm \left(d_0eta^0 + d_1eta^{-1} + d_2eta^{-2} + \cdots
ight)eta^e \end{array}$$

where

- d_i are the digits $(0 \le d_i < \beta)$
- β is the *base* or radix
- \bullet e is the exponent
- $d_0.d_1d_2...$ is the *mantissa* or *significand*
- $.d_1d_2...$ is the *fraction*

Floating Point Representation

- In a computer real numbers are represented as floating point numbers, using only use a finite number of digits (e.g., bits in base 2)
- Example: a real number x is (approximately) represented as a floating point number fl(x) as

$$fl(x) = \pm \frac{d_0 \cdot d_1 d_2 \cdots d_{p-1} \times \beta^e}{1 + \left(\frac{d_0}{d_0}\beta^0 + d_1\beta^{-1} + d_2\beta^{-2} + \dots + d_p\beta^{-(p-1)}\right)\beta^e}$$

where

- β is the **base** or radix
 - p is the precision
 - $e \in [L, U]$ is the *exponent* with
 - [L, U] is the exponent range

Floating Point Representation

Engineering Significance:

Only some real numbers can be represented exactly

Example:
$$2.125 = 2^{1} + 2^{-3}$$

$$= (1 + \frac{0}{2} + \frac{0}{2^{2}} + \frac{1}{2^{3}})2^{1}$$

$$= 1.00100 \times 2^{1}$$

$$3.1 = 2^{1} + 2^{0} + 2^{-4} + 2^{-5} + \cdots$$

$$\approx (1 + 2^{-1} + 2^{-5} + 2^{-6})2^{1}$$

$$\approx 1.100011 \times 2^{1}$$

Q: We can now see where the *round-off error* comes from

IEEE Standard

- *Up to the mid 80s* it was up to the computer manufacturer to choose a floating point system
 - You never knew if your program will give the same answer in different computers!
- The *IEEE standard floating-point* arithmetic standard was introduced in **1987** (**IEEE 754**) and updated in 2008 (IEEE 754-2008)

Thanks to William Kahan (Turing Award winner 1989)

http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

Floating Point Systems

• A floating-point system is defined by the parameters β , p, L, U, in the floating point representation

$$fl(x) = \pm \frac{d_0 \cdot d_1 d_2 \cdots d_{p-1} \times \beta^e}{1 + \left(\frac{d_0}{d_0}\beta^0 + d_1\beta^{-1} + d_2\beta^{-2} + \dots + d_p\beta^{-(p-1)}\right)\beta^e}$$

- where θ is the *base* or radix
 - p is the precision
 - $e \in [L, U]$ is the *exponent* with
 - \bullet [L, U] is the exponent range
- A floating point system is *described by four numbers* β , p, L, U, and is denoted $F(\beta, p, L, U)$

Example: IEEE single precision: F(2, 24, -126, 127)

IEEE standard "float"

Single Precision (float): 32 bits word

- s is the sign bit.
- The *exponent*, e, is represented by 8 bits but only 7 bits are used to represent it value.
- The *fraction*, *f*, (or *significand*) is represented by 23 bits

Comments:

- A single precision IEEE standard floating point number requires 32 bits
- The IEEE standard defines how to perform arithmetic, rounding, etc.

A Sample of Floating-Point Systems

Parameters for typical floating-point systems						
system	β	p	L	U		
IEEE Single Prec.	2	24	-126	127		
IEEE Double Prec.	2	53	-1022	1023		
Cray 2	2	48	-16383	16384		
HP calculator	10	12	-499	499		
IBM "mainframe"	16	6	-64	63		

• Today most computers use $\beta=2$ (binary)

Note: The IEEE floating-point system (Standard IEEE 754) is the most widely used today.

Normalization

- The illustrations shown at the right are *all* equivalent representations for 32 using our simplified model.
- Not only do these synonymous representations waste space, but they can also cause confusion.
- Does value #1 equal #2?
 0 00110 10000000 =? 0 00111 01000000

ALWAYS NORMALIZE!!!

Zero is a special case = exp=0

Normalization

- There are many possible representations of a number: 100 = 10.0e1 = 1.00e2 = 0.100e3 = 0.01e4 =
- A floating-point system is *normalized* if the *leading digit* $d_0 \neq 0$
 - the only exception is the number zero!
- Normalization is used make the representation of each floating point number:
 - Unique
 - *Efficient* (No digits wasted on leading zeros)

Normalized FP Numbers in Base 2

• In binary systems the leading bit d_0 (of normalized floating point numbers) does not have to be stored since it is always 1,

$$d_0 \neq 0 \Leftrightarrow d_0 = 1$$

This is why d_0 is often called the *phantom bit*

Consequence: Any binary normalized floating point number has a representation of the form

$$fl(x) = \pm 1.d_1d_2 \cdots d_{p-1} \times 2^e$$

• Caveat:

> 0 cannot be represented as a normalized number! (the IEEE has provisions for this ...)

IEEE Implied 1 Format

Encoding

- The real number is normalize to 1.yyyy x 2^{exp} format
- The "1." is stripped off and NOT STORED!

Decoding

- A "1." is preppended
- The resulting number is then decoded

Note: IEEE has TWO zero's (+0.0 and -0.0)

– Never compare floating point numbers to zero!

Demo: http://www.h-schmidt.net/FloatConverter/IEEE754.html

Negative Exponents

- The Sign field is the sign of the significant NOT the exponent
 - We have no way to express $0.5 (=2^{-1})!$
- "Bias" addresses this issue

Bias

- A bias is a number that is approximately midway in the range of possible exponent values
 - Add constant to create a bias
 - Subtract a constant to determine the true value.
- In the IEEE Single precision case
 - We have a 8-bit exponent, we will use $2^{**7} = 127$ for our bias
- IEEE Double precision uses 1023

Bias

- Exponent values less than 127 are negative
 - Representing fractional numbers
- Exponent values greater than 127 are positive
 - Representing larger numbers

```
BiasValue = realExponent + bias
realExponent = BiasValue – bias
```

Example: IEEE single precision

• IEEE single precision system

$$F(eta,p,L,U)=F(2,24,-126,128)$$

• Example: $-0.453125 = (-0.453123 \times 4)2^{-2} = -1.8125 \times 2^{-2}$

```
bias phantom bit

\downarrow \qquad \downarrow

-1 × 2<sup>125 - 127</sup> × 1.8125 = -0.453125
```

• Storage in Memory (a **float** in C)

IEEE-754 Special Values

Value	Sign	Exponent	Fraction	Comments
+0	0	0000000	0000000	Positive 0 (zero) all exponent bits set to 0 all fraction bits set to 0
-0	1	00000000	0000000	Negative 0 - is this a problem?
+ Inf	0	11111111	0000000	Positive infinity all exponent bits set to 1 all fraction bits set to 0
- Inf	1	11111111	0000000	Negative infinity
NaN	0/1	11111111	1000000 01000000 Etc	not a number all exponent bits set to 1 not all fraction bits are set to 0 sign bit is not used in NaN

Notice how an all "1" exponent is a special case, so it can't be use in normal calculations.

http://www.ajdesigner.com/fl_ieee_754_word/ieee_32_bit_word.php

IEEE single precision (float)

• Single Precision: 32 bits word

- There are 8 bits $(2^8-1=255)$ for the exponent but only 7 bits are used to represent normalized numbers (where not all exponent bits can be 0)
- The actual *exponent* value is *biased by -127* (this explains why L = -126 and U = 127)
- The Numerical Value of a single precision floating point number represented as above is

$$fl(x) = (-1)^s \times 2^{e-127} \times 1.f$$

IEEE double precision (double)

Double Precision: 64 bits word

- There are 11 bits for the exponent but only 10 bits are used to represent normalized numbers (where not all exponent bits can be 0)
- The actual *exponent* value is *biased by -1023* (this explains why L=1022 and U=1023)
- The Numerical Value of a single precision floating point number represented as above is

$$fl(x) = (-1)^s \times 2^{e-1023} \times 1.f$$

Floating-Point Representation

• IEEE-754 single precision floating point standard uses an 8-bit exponent, a 23-bit significand and a bias of 127.

• The IEEE-754 double precision standard uses an 11-bit exponent, a 52-bit significand and a bias of 1023

Fraction Conversion Reminder

• Convert 0.8125 to fractional binary

```
0.8125
                                     1) Multiply fraction by 2
1.6250
        extract the integer 1
0.6250
                                     2) Record the integer value
                                     3) Subtract the integer value
        extract the integer 1
1.2500
                                     4) Continue
0.2500
0.5000
        extract the integer 0
                                     The integer values are the
                                     fractional coefficients
        extract the integer 1
1.0000
```

• Result 0.1101₂

Class Exercise

- Express 18.8125 in IEEE Single precision floating point.
 - Convert 18 = 10010
 - Convert .8125 = .1101
- $18.8125 = 10010.1101_2 \times 2^0$ = 1.00101101×2^4
 - Exponent = $4+127 = 131 = 10000011_2$
 - Sign = 0 (positive)
- 18.8125 = 0 10000011 00101101000000000000000

Floating-Point Numbers

• A floating point system $F(\beta, p, L, U)$ can only represent a total of

$$\# \mathbf{F} = 2(\beta - 1)\beta^{p-1}(U - L + 1) + 1$$
 different numbers

(for binary base $\#F = 2^{p}(U - (L-1)) + 1$)

Example: The FP system F(2, 3, -1, 1) can only represent $\#F = 2^3(1 - (-1) + 1) + 1 = 25$ numbers

(we have used $\beta = 2$, p = 3, L = -1, and U = 1)

Note: Only some *real numbers* can be *represented exactly* as floating point numbers. These are called *machine numbers*; all other numbers can be only approximated.

Comparing Floating Point Numbers

- The main source of round-off error arises from numbers that are not representable
 - most real numbers are not representable!, e.g. 1/10

Consequence:

• Results may appear (to the uninitiated) non intuitive

```
if (0.1 + 0.2 == 0.3) /* false */
if (0.1 + 0.3 == 0.4) /* true */
```

• Never compare two floating point numbers with logical operators (what is **ZERO** ?)

Proof

```
int main() /* compares.c */
                         The value 0.10+0.20 gives 0.30 0x3fd3333333333334,
                                        does it equal 0.30 0x3fd3333333333333?
  /* Create a union to "see'
                         The value 0.10+0.30 gives 0.40 0x3fd9999999999999,
  union {
    double f:
                                        does it equal 0.40 0x3fd99999999999999?
    long i;
                         Not equal 0.300000 == 0.300000
    } a,b,c,d,e,q;
  /* Initialize */
  a.f = 0.11; b.f = 0.21; c.f = 0.31; d.f = 0.41;
  e.f = a.f+b.f:
  printf("The value %0.21f+%0.21f gives %0.21f 0x%161x, does it equal %0.21f 0x%161x?\n",
               a.f. b.f. e.f. e.i.
                                        c.f, c.i);
  q.f = a.f+c.f;
  printf("The value %0.21f+%0.21f gives %0.21f 0x%161x, does it equal %0.21f 0x%161x?\n",
               a.f, c.f, g.f, g.i,
                                             d.f, d.i);
if ( e.f == c.f) {printf("Equal %|f == %|f\n", e.f,c.f);}
               {printf("Not equal %If == %If\n", e.f, c.f);}
  else
  return(0); }
                              Notice: printf() lies, so do debuggers!
```

Catastrophic Cancellation

Occurs when we *subtract* two numbers that are **very close to each other**

• Example: Plot f(x) for $x \in [-7E-8,7E+8]$

$$f(x) = \frac{1 - \cos(x)}{x^2}$$

Using calculus

$$\lim_{x \to 0} f(x) = \frac{\sin(x)}{2x} \Big|_{x=0}$$

$$= \frac{\cos(x)}{2} \Big|_{x=0}$$

$$= \frac{1}{2}$$

"Floating point numbers are like piles of sand; every time you move them around, you lose a little sand and pick up a little dirt. "

- Brian Kernighan and P. J. Plauger

The Machine Precision

- Practical Definition: The machine epsilon is the smallest (positive normalized) number ϵ_m such that $1.0 + \epsilon \neq 1.0$
- The following C code illustrates how to *estimate the single precision machine epsilon* (within a factor of two)

```
/* Estimate, within a factor of two, of the single *
 * precision machine epsilon
                                   machine eps.c */
#include <stdio.h>
int main( int argc, char **argv ) {
 float eps;
                                                           current Epsilon, 1 + current Epsilon
 eps = 1.0f; /* start binary search from eps=1.
                                                                        2.000000000000000000000
 do {
                                                                        1.500000000000000000000
   printf("%10.8g\t%.20f\n",eps,(1.0f + eps));
                                                                0.25
                                                                        1.250000000000000000000
   eps /= 2.0f; /* divide eps by 2 */
                                                          9.5367432E-07
                                                                        1.00000095367431640625
 \} while ( (float)(1.0f + (eps/2.0f)) != 1.0f );
                                                          4.7683716E-07
                                                                        1.00000047683715820312
/* stop when 1 + eps != 1 */
                                                          2.3841858E-07 1.00000023841857910156
printf("\n");
                                                          Calculated Machine
printf("Calculated Machine Epsilon: %2.6g\n", eps );
 return 0;
                                                          epsilon: 1.19209E-07
 /* exact value given by FLT_EPSILON in float.h */
```

Significance of Machine Epsilon

- Let $f(x) = 1.d_1 \dots d_{p-1} \times \beta^e$ be the IEEE floating point representation of a real number x with precision p
- The *machine epsilon* quantifies the magnitude of the *largest relative error* incurred in computing with floating point numbers
- The *maximum relative error* in representing a real number *x* using floating point fl(*x*) is *bounded by*

$$\frac{|\mathrm{fl}(x) - x|}{|x|} \le \epsilon_m$$

• The *maximum absolute error* in representing a real number *x* using floating point fl(*x*) is *bounded by*

$$|\mathrm{fl}(x) - x| \le \epsilon_m \beta^e$$

Almost Random Nature of Round-off

Epilogue: The Machine Epsilon

- The machine epsilon $\epsilon_{\mathbf{m}}$ (eps) is used to characterize the accuracy of floating-point arithmetic. It is also called the rounding unit or machine accuracy (denoted by η in the textbook)
- For a floating point system of base β and p digits of precision the machine epsilon can be computed exactly as

$$\epsilon_m = \beta^{-p} = 1/\beta^p$$

(when using the standard rounding to nearest)

Engineering Significance:

The accuracy of floating point computations increases with the number of digits of precision

Summary: Floating Point Numbers

- The *IEEE-754 floating-point* system is the most commonly used in numerical computing.
- It has the following characteristics:
 - Single precision (C float) [32 bits]
 - machine epsilon (eps): $2^{-23}=1.192E-7 \approx 10^{-7}$
 - decimal digits of precision: 7
 - Double precision (C double) [64 bits]
 - machine epsilon (eps): $2^{-53}=1.110E-16 \approx 10^{-16}$
 - decimal digits of precision: 16
- To avoid large round-off errors it is important to understand the floating point system used in your computing environment and how this error propagates.

Applied Programming

Computing with Numbers of Finite Word length

Fixed-Point Representations (Q-format)

Embedded Systems

- Computers use a finite number of bits to represent infinitely many numbers.
- Floating Point Numbers is a way to represent real numbers
 - -the binary point is variable (e.g., "floating") as it depends on the value of the **exponent**.
- *High-end processors* perform floating-point arithmetic in dedicated hardware (**FPUs**)

Most embedded systems do not have FPUs!

Arithmetic in Embedded Systems

- In processors that do not have *FPUs* we have the following alternatives:
 - Software emulation of floating-point arithmetic
 - Large code size (memory footprint)
 - *Slooow* execution
 - Fixed-point arithmetic
 - Uses hardware integer arithmetic
 - Compact code size (memory footprint)
 - *Fast* execution

Efficiency

- Floating point computations are significantly slower than fixed point and use more memory
 - -More memory means more memory access
- *High performance* software is often implemented using *fixed point* arithmetic;
 - **Example:** video codecs.

Fixed-Point Representation

- A real number x can be represented by an N-bit integer with n implicit fractional bits, where
 - N is the word length (N=m+n+1)
 - m is the number of integer bits
 - *n* is the number of *fractional* bits
 - s is the sign bit

Qm.n representation called the Q-format

Some Q-Format Applications

- VisSim—simulation and system design software
 - http://www.vissim.com/
- GnuCash—open-source accounting software
 - http://www.gnucash.org/
- Tremor— Ogg Vorbis decoder
 - http://en.wikipedia.org/wiki/Tremor%28software%29
- Sony's original PlayStation 3-D graphics engine
 - http://us.playstation.com/ps3/
- Nintendo DS (2-D and 3-D) game system
 - http://www.nintendo.com/3ds

Source: "Fixed-point arithmetic," Wikipedia, http://en.wikipedia.org/wiki/Fixed-point_arithmetic, Oct. 5, 2006.

Q-format Range and Resolution

- Qm.n denotes a fixed point number such that:
 - *n* bits represent the *fractional part*
 - m bits represent the unsigned integer part, (excluding the MSB, e.g., "sign bit")

http://www.exploringbinary.com/twos-complement-converter

Characteristics of a $Q_{m,n}$ fixed point number:

- Requires N=m+n+1 bits (N usually **8,16,23,64,...**)
- Its *range* is $[-2^m, 2^m-1]$
- Its *resolution* (or *quantization step*) is $Q=1/2^n$ (distance between two consecutive numbers)

Example

Find the Qm.n-format for an application that uses numbers in the range 0 to 100 with resolution 0.01

- -Unsigned integer
- -Maximum number M = 100 (absolute value)
- Determine m (e.g. what power of 2) $M \le 2^m 1 \Rightarrow m = \lceil \log_2(M+1) \rceil = 7$
- Determine *n* (e.g. what power of 2)

$$r \le 2^{-n} \Rightarrow n = \lceil -\log_2(r) \rceil = 7$$

• Conclusion: Need Q7.7 (e.g., N=16 (~=7+7+1))

The Q-format

• In practice N (the word length) is chosen equal to the size of primitive integer types,

```
-e.g., 8, 16, 32, 64 bits.
```

- When the size of the word length is clear from the context the m in Qm.n is dropped we just use Qn
 - If N=8, Q3.4 becomes Q4
 - If N=16, Q7.8 becomes Q8
 - If N=32, Q15.16 becomes Q16

Ambiguous Specifications

- On format (N implicit)
 - -Assume data types: **integer** (char, short, long, etc.)
 - -Interpretation: divide by 2^n
 - Q6 Ambiguous without specification of word length N
 - -Choice of word length (*N-bits*)
 - Based on desired range and resolution (or granularity)
- Full Qm.n is always clear

Q-format: Example

• Write 12.25 as a Q4.3 number (N=4+3+1=8)

$$12 = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$
$$0.25 = 0 \times 2^{-1} + 1 \times 2^{-2}$$

Ans: 01100010 (as a signed 8-bit integer it is 98)

(Note that the fixed point is implicit by the representation)

• Write -12.25 as a Q4.3 number

-Find 2's complement of above

01100010

10011101(flip bits)

+1(add 1)

10011110

Ans: 10011110

(as a signed 8-bit integer it is -98)

Real to Fixed point

• From real number r to a Qm.n fixed-point F

 $F = \text{round}(\mathbf{r}^*2^n)$ (round to the nearest integer)

Example: Represent x=13.4 using Q4.3 format

$$F = round(13.4*2^3)$$

F = round(107.2) = 107 = 011010011

Key Observation: $X=107=01101011_2$ is an integer that when interpreted as a Q4.3 number becomes

$$01101.011_2 = 13.375$$

* Since the resolution is 2⁻³=0.125 we *cannot represent* exactly 13.4 (it is not representable)

Fixed Point to Real

• From *Qm.n fixed-point F to real* number *r*

$$R = F^* 2^-n$$
 or (float)x / (1<

Example: Convert the Q4.3 format number $X=107=01101011_2$ to real

$$x = 107 \cdot 2^{-3}$$
$$= 107/8 = 13.375$$

Key Observation: We have used "floating point" division (as opposed to integer)

> Should be: (float)107/(float) 8.0

Floating-Point to Fixed-Point code

- Convert:
 - -C code example, (ansi C89)

-C macro example

Fixed-Point to Floating-Point code

- Convert:
 - −C code example

```
#define n 3
typedef int fixn /* need to know word length of int*/
typedef float real
real x;
fixn X;
x = (real) X / (real) (1 << n));</pre>
```

-C macro example

```
#define FIX_TO_FLOAT(X,n) ((real) (X) / (real) (1 << n))
x = FIX_TO_FLOAT(X,n)</pre>
```

Q-numbers are Scaled Integers

- Fixed-point numbers are integers scaled by 2-n
 - -For the computer they are "just integers"
 - -We are the only ones that are aware of the Q format
- What it the impact on CPU calculations?
 - -Addition/subtraction
 - -Multiplication
 - -Division

Q-Format Addition/Subtraction

- Two fixed-point numbers *X,Y* in the **same** *Qm.n* **format** can be added or subtracted directly
 - -because for the computer X, Y are just integers

$$x,y \in \mathbb{R}, \quad X,Y \in Qm.n$$
 $z=x+y \Rightarrow Z=X\pm Y$

Warning

The result **Z** will have the *same number of fractional* bits but the *integer part* may require m+1 bits (e.g., may overflow)

$$Z \in Q(m+1).n$$

Fixed-Point Addition w/o Overflow N=16; n=6

Add 64.125 and -.75 using fixed point Q9.6 numbers

(don't forget to represent negative numbers using 2's complement)

Example Addition with Overflow

• Add two numbers in Q4.3 format (N=4+3+1=8)

$$x = 12.25 \stackrel{Q4.3}{\Longrightarrow} X = 98 = 1100010_2$$

 $y = 14.75 \stackrel{Q4.3}{\Longrightarrow} Y = 118 = 1110110_2$

+ 0 1 1 1 0 1 1 0

Example Addition with Overflow

• Their sum is *out of range (overflow)*

$$Z = X + Y = 216 = 11011000_2$$

• The *result* will be *interpreted as*

$$216 - 2^8 = -40 \Rightarrow z = -5.0$$

Q-Format Addition/Subtraction

- Add/Subtract two *Qm.n* numbers
 - -ignoring overflow

$$S = A \pm B$$

−C code example

```
typedef int fixn
fixn A, B, S;
S = ADD_FIX(A,B);
S = SUB_FIX(A,B);
```

-C macros example

```
#define ADD_FIX(X,Y) ( (X) + (Y) )
#define SUB_FIX(X,Y) ( (X) - (Y) )
```

Q-Format Multiplication/Division

• Product of $Qm_1.n_1$ and $Qm_2.n_2$ formats results in $Q(m_1+m_2).(n_1+n_2)$ format

```
Example: 1.11 (Q1.2 format)

x 1.11 (Q1.2 format)

111

111

111

11.0001 (Q2.4 format)
```

• There is a sign bit and an added MSB-sign extension bit.

Multiplication w/o Overflow

• Multiplication of two *Q5.2* numbers (N=8,n=2)

Q-Format Multiplication

- If the there is enough precision
- Multiply two **Qm.n** numbers: C = A B

```
-C code typedef int fixn

fixn A, B, C;

C = (A * B) >> n;

-C macro #define MUL_FIX(A,B,n) ((A) * (B) >> n)
```

Q-Format Multiplication

If there is NOT enough precision

Problem: Qn word size (N) is largest machine word

- -Multiplication may result in *overflow*
- -Perform *half-n shift* of each factor first
 - Less accurate than first version (if useable)

Solution: C macro

```
#define Qn_MULTIPLY(A, B) ((A>>(n/2))*(B >>(n-(n/2))))
```

Q-Format Division

- Divide two **Qn** numbers: $C = A \div B$
 - -C code

```
typedef int fixn

typedef long int fix2n

fixn A, B, C;
C = (A << n) / B;</pre>
```

-C macro

```
#define DIV_FIX(A,B,n) (( (A) << n)/(B) )
```

Problem:

Dividend must be *shifted left n* bits *before division*Solution: Typecast *intermediate result to larger word*

C macro example (fix2n twice as large as fixn)

```
#define Qn_DIVIDE(A,B,n) ((fixn) ((fix2n)(A)<<n)/(B) ))
```

Fixed-Point Multiplication Example N=16; q=6

Multiply -. 75 by 64.125 using fixed-point Q9.6 numbers

```
Q6 (N16)
Binary
            -. 11 (-000000000110000) 111111111111010000
\times 1000000. 001 \rightarrow \times 0001000000001000 \rightarrow \times000100000001000
                                 11111111111111111111111010000
                Sign-extend to
                                 1111111111111010000
                       2N bits
                  Q19.12 (N32) <del>1111111111</del>1111001111111010<del>000000</del>
                                                                Drop n (6)
                                Drop N-n (10)
                                                                bits on right
                                bits on left
 Decimal
-48.09375 \leftarrow -(0000110000000110) \leftarrow (11110011111111010)
```

Fixed-Point Division Example N=8; Q=5.2

Divide 6.25 by 4.75 using fixed-point Q5.2 numbers

Qm.n Format Highlights

- Represents real numbers as *fixed-point numbers*
- Uses hardware integer arithmetic
- Resolution: 2^{-n}
 - In practice the desired resolution is "known" (part of the design specs.), it determines **n**
- Range: $[-2^m, 2^m -1], m=N-n-1$
 - In practice one needs to estimate the range carefully (signal scaling). This (and the machine) determines the word-length N

Resolution and Range fundamental to determine a suitable **Qm.n** format for a given application

Qm.n Summary

Addition/subtraction just works

Multiplication

- -Cast variables to the next larger size
- -Shift answer >> n
- -Recast to normal size

Division

- -Cast dividend to the next larger size
- −Shift by dividend << *n* before calculation

Exercise 1

- The following is an IEEE single precision number (8, 23, 127): 0x41968000
 - What is the decimal value?

Convert to binary, separate the fields:

0 10000011 00101101000000000000000

Sign = 0 (positive)

 $Exp = 10000011 \rightarrow 131-127 = 4$ (real exp)

Sig = 1.00101101 (put

(put the implied 1 back)

value = $1.00101101 \times 2^4 = 10010.1101 \times 2^0$

value = 18.8125

Exercise 2

Find the Qm.n-format for an application that uses numbers in the range 10,002 to -1,022 with a resolution 0.1

• Determine *m* (e.g. what power of 2)

$$10002 \le 2^{m} - 1 = 2**14 = 16,384 \text{ so } m = 14$$

• Determine *n* (e.g. what power of 2)

$$0.1 \le 2^{-n} = 0.0625 = 2**(-4) \text{ so } n = 4$$

• Need Q14.4 e.g., N=19 (use a 32 integer)

Exercise 3

Using Q3.4 numbers, divide 3.6 by 2.

•
$$2**4 = 16$$
, so $3.6*16 = 57.6 \Rightarrow 00111001$ (57 dec)
and $2 \Rightarrow 00100000$ (32 dec)

• Divide (preshift n) $001110010000/00100000 = 00011100_{(28 \text{ dec})} => 1.75$

Note:
$$00111001 >> 1$$
 (shift division) or $00111001/10$ (binary division) = $00011100 => 1.75$

Gave the right answer because we are really treating 2 as a Qn 2.0 number.