GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI

Course Title: Underground Mining of Coal

(Course Code: 4362201)

Diploma programme in which this course is offered	Semester in which offered
Mining Engineering	6 th Semester

1. RATIONALE

Underground coal mining is very much different from surface mining methods. It is also a risky task for a mining engineer to work in a very restricted area below ground facing all the difficulties of ventilation, light, noxious gasses, heat, and humidity. Therefore, for making safe practice in underground mines this subject is very essential to train the students about all geo-technical and engineering parameters used for underground coal extraction process.

The subject is designed to highlight the various process techniques and methods used for extracting coal from belowground areas. The prevailing support system used in different conditions. The production of coal with its transportation up to the surface as well as backfilling the excavated zone by suitable stowing material.

The course is designed to help the student to adopt safe and sustainable working practices in underground coal mines with modern coal mining methods, their applicability conditions, merits and demerits.

2. COMPETENCY

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- Supervise underground coal mine working for safety.
- Adopt an economical stowing process.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

CO1: Classify the rank and mining methods of coal seams.

CO2: Calculate all designing parameters used for bord and pillar development.

CO3: Justify the selection of safe and economical depillaring method.

CO4: Select suitable longwall mining method depending upon geotechnical parameters.

CO5: Adopt suitable stowing practices for underground excavated areas.

4. TEACHING AND EXAMINATION SCHEME

Teachi	Teaching Scheme		Total Credits	Examination Scheme						
(In	Hours	s)	(L+T/2+P/2)	Theory Marks		Theory Marks		Practical Marks		Total Marks
L	Т	Р	С	CA* ESE		CA	ESE	i otal iviarks		
4	-	2	5	30	70	25	25	150		

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T — Tutorial/Teacher Guided Theory Practice; P - Practical; C — Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES:

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the PrOs marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Appox. Hrs. Required
1	Draw a general outline of Indian coal sectors with location, organization, production and major problem related details.	I	*04
2	Calculate percentage extraction of coal during development of coal seam for a given depth with comparison with CMR 2017 standards.	II	*06
3	Design a bord and pillar panel layout from given incubation period and seam thickness and assuming other necessary data and draw a plan of panel showing dimensions of pillar, gallery, barrier and panel.	II	*06
4	Calculate the quantity of sand and water required for stowing underground working areas in lab conditions.	V	*06
5	Find out the compaction ratio of various stowing materials by lab testing method.	V	*06
	Т	otal	28

Note

- i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Basic knowledge of selected procedure for performing practical.	10
2	Accuracy in observation of all details needed for completion of practical.	30
3	Correctness in answering the questions.	30
4	Submission of practical in time.	10
5	Effective participation in practical group	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to user in uniformity of practicals in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Metal Measurement Scale (1 Foot)	5
2	Plastic rectangular water tank with tap (20 L)	5
3	PVC Rectangular Tray (5kg Material Holding Capacity)	5
4	Water quantity measuring PVC Cup (2 L capacity)	5
5	G I Frame Sieves Set (Size 125mm, 106mm, 100mm, 90mm, 80mm, 75mm, 63mm, 53mm, 50mm, 45mm)	5
6	Steel Handle Rubber Grip Hammer (Medium size)	5
7	Laboratory Jaw Crusher (1 no)	5

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the abovementioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Act as a team member/individual in the decision-making process.
- b) Displays a professional commitment to ethical practice on a daily basis.
- c) Adopt economical and productive methods in mines.
- d) Verify the mitigation measures taken against surface destruction due to underground mining.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of Revised Bloom's taxonomy in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit – I	1a. Understand the geological	1.1 Origin of coal, Rank of Coal
	processes contributing to	1.2 Banded Constituents of Coal
Fundamentals	the origin of coal.	1.3 Coal Analysis
of Coal and Its	1b. Differentiate between	1.3.1 Ultimate Analysis
Mining	various coal ranks.	1.3.2 Proximate Analysis
	1c. Describe the banded	1.4 Consumptions of coal in various
	constituents within coal	Industries
	and impact on coal quality.	1.5 Coal reserves in India
	1d. Evaluate the consumption	1.6 Lignite reserves in Gujarat
	of coal in different	1.7 Classification of various underground
	industries.	coal mining methods.
	1e. Analyze the distribution of	1.8 Factors affecting selection of
	coal reserves in India and	underground coal mining methods.
	lignite reserves in Gujarat.	
Unit – II	2a. Identify the applicability	2.1 Applicability conditions of the bord and
Bord & Pillar	conditions for the bord	pillar method
Method –	and pillar method in	2.2 Advantages and disadvantages of bord
Development	underground coal mining.	and pillar
	2b. Evaluate the advantages	2.3 Basic elements of bord and pillar mining
	and disadvantages	method: pillar, gallery, junction, dip,
	associated with the bord	strike, face, panel, barrier, roof, floor
	and pillar mining	2.4 Classification of bord and pillar mining
	technique.	system
	2c. Define and describe the	2.5 Advantages of panel system of bord and
	basic elements of the bord	pillar mining
	and pillar mining.	2.6 Design of bord and pillar working
	2d. Assess the advantages of	2.6.1 size of panel
	the panel system within	2.6.2 size of barrier
	the bord and pillar mining	2.6.3 size of pillars
	framework.	2.6.4 width of galleries
	2e. Classify the bord and pillar	2.7 Development
	mining system based on	2.7.1 by blasting of solids
	method of approach to	2.7.2 by coal cutting machines
	seam.	2.7.3 by gathering arm loaders and
	2f. Calculate the appropriate	shuttle car
	sizes for panels, extraction	2.7.4 by continuous miner
	percentage and strength of	2.8 In bord and pillar working calculate
	pillars.	2.8.1 Percentage of extraction of coal
		2.8.2 Size of the panel
		2.8.3 Number of faces

Unit	Unit Outcomes (UOs)	Topics and Sub-topics			
Unit-III	3a. Understand the	3.1 Preparatory arrangement before			
Bord & Pillar	preparatory arrangements	Depillaring.			
Mining-	necessary before	3.2 Principles of pillar extraction techniques			
Depillaring	depillaring operations.	3.3 Factors influencing choice of pillar			
	3b. Evaluate the factors that	extraction method			
	influence the choice of	3.4 Depillaring in thin and thick seam			
	pillar extraction method.	3.5 Local fall, main fall, air blast, line of goaf.			
	3c. Differentiate depillaring	3.6 Precautions against fire and inundation			
	techniques suitable for	during depillaring			
	both thin and thick coal				
	seams.				
	3d. Implement precautions				
	and safety measures to				
	prevent fire and				
	inundation incidents				
	during the depillaring				
	process.				
Unit-IV	4a. Identify the applicability	4.1 Longwall mining: Applicability			
Longwall	conditions for the longwall	conditions, elementary terms used in			
Mining	mining method.	longwall mining			
	4b. Analyze the governing	4.2 Classification of Longwall methods			
	factors influencing the	4.3 Governing factors for selection of			
	selection of longwall face	longwall method			
	layout.	4.4 Advancing and Retreating longwall			
	4c. Classify longwall mining	faces: working method, merits and			
	systems based on the	demerits			
	direction of face	4.5 Single unit and double unit face:			
	advancement.	working method, merits and demerits			
	4d. Compare the working,	4.6 Longwall working with shearer			
	merits, and demerits of	4.6.1 Shearer installation at longwall face			
	advancing and retreating	4.6.2 Sumping operation of shearer			
	longwall faces.	by drilling and blasting			
	4e. Demonstrate an	by snaking method			
	understanding of longwall	4.6.3 Face advancing method by shearer			
	working with a shearer.	by full face cutting			
		by half face cutting (zigzag method)			

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit- V	5a. Identify the governing	5.1 Governing conditions for stowing
Stowing	conditions for stowing in	5.2 Advantages of stowing
Practice	underground coal mining.	5.3 Classification of stowing
	5b. Evaluate the advantages	5.4 Hydraulic stowing:
	associated with stowing	5.4.1 Applicability conditions
	methods.	5.4.2 Hydraulic Profile Line and H:L ratio
	5c. Classify stowing techniques	5.4.3 Underground stowing arrangements
	based on their	and operation
	characteristics and	5.4.4 Concentration of sand and water
	applications.	5.4.5 Rate of stowing
	5d. Assess the applicability	5.4.6 Problems during sand stowing
	conditions and working	5.5 Pneumatic stowing
	methods for both	5.5.1 Applicability conditions
	pneumatic and mechanical	5.5.2 Working methods
	stowing.	5.6 Mechanical stowing
		5.6.1 Applicability conditions
		5.6.2 Working methods

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
I	Fundamentals of Coal and Its Mining	06	4	4	0	08
II	Bord & Pillar Method – Development	18	4	8	10	22
III	Bord & Pillar Mining- Depillaring	10	3	6	3	12
IV	Longwall Mining	11	7	3	4	14
V	Stowing Practice	11	4	7	3	14
	Total	56	22	28	20	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

Note: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages

for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Visit a nearby underground coal mine.
- b) Attend an expert lecture based on underground coal mining methods.
- c) Participate in a quiz competition related to underground coal mining techniques.
- d) View online videos showing longwall and bord and pillar mining methods.
- e) Make a group discussion on major issues of underground coal mining.
- f) Undertake a micro project.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20%** of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on impact of underground mining on environment and sustainability.
- g) Video lectures showing operational principles of various underground coal mining operations.
- h) Guide students on how to address issues on underground mine supports.
- i) Animated documentaries on various sand stowing practices.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass one or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Prepare a poster showing various coalfields of India.
- b) Prepare an illustration banner related to panel designing and extraction.
- c) Presentation on any case study related to longwall working.
- d) Prepare a poster showing underground coal mine support.
- e) Make slides showing pillar extraction techniques.

GTU - COGC-2021 Curriculum

- f) Design a layout of bord and pillar and longwall working.
- g) Prepare a chart showing stowing surface arrangements.
- h) Prepare a sheet showing the working cycle of the shearer in the longwall face.

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication with place, year and ISBN
1	Elements of Mining	D. J. Deshmukh	Denett & Co., Nagpur
	Technology Vol. I		Year: 2008
			ISBN-13: 978-8189904333
2	Principles and Practices	R. D. Singh	New Age International (P) Limited
	of Modern Coal Mining		Year: 2010
			ISBN 13: 9788122409741
3	Modern Coal Mining	Samir Kumar Das	Lovely Prakashan
	Technology		Year: 1994
4	Underground Winning of	T. N. Singh	Oxford & IBH Publishing Co Pvt.Ltd
	Coal		Year: 1992
			ISBN: 978-8120404908
5	Underground Coal Mining	Dr. J.G. Singh	Braj-Kalpa Publishers
	Methods		Year: 2000
			ISBN: 978-8175252042

14. SOFTWARE/LEARNING WEBSITES

- a) https://nptel.ac.in MOOC Course
- b) Coal mines in India major coal fields list for competitive exams. BYJUS. https://byjus.com/govt-exams/coal-mines-india/
- c) Kumar, A., Vivek, Y., Gopal, M. K., Pradeep, D., & Raju, G. (2021). A STUDY ON HYDRAULIC STOWING. Journal of Emerging Technologies and Innovative Research, 8(7). https://www.jetir.org/papers/JETIR2107660.pdf
- d) Longwall | Komatsu. (n.d.). https://www.komatsu.com/en/products/longwall/
- e) Longwall Mining Overview | Introduction | underground COAL. (n.d.). http://www.undergroundcoal.com.au/fundamentals/07_overview.aspx
- f) Ministry of Coal, Government of India. (n.d.-a). https://coal.gov.in/en/about-us/history-background
- g) Ministry of Coal, Government of India. (n.d.-b). https://coal.gov.in

15. PO-COMPETENCY-CO MAPPING

Semester VI	Underground Mining of Coal (Course Code:4362201)									
	POs and PSOs									
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledg e	PO 2 Problem Analysis	PO 3 Design/ develop ment of solutions	PO 4 Engineering Tools, Experiment ation &Testing	practices	Manage ment	PO 7 Life-long learning	PSO 1	PSO 2	
Competency	 Supervise underground coal mine working for safety. Adopt an economical stowing process. 									
Course Outcomes CO1: Classify the rank and mining methods of coal seams.	3	-	-	2	1	-	2	-	-	
CO2: Calculate all designing parameters used for bord and pillar development.	2	2	2	3	1	2	-	-	-	
CO3: Justify the selection of safe and economical depillaring method.	-	2	2	-	1	-	-	-	-	
CO4: Select suitable longwall mining method depending upon geotechnical parameters.	2	2	2	-	1	2	-	-	-	
CO5: Adopt suitable stowing practices for underground excavated areas.	2	2	1	3	2	-	-	-	-	

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

SR. No.	Name and Designation	Institute	Contact No.	Email
1	Mr. S. G. Srivastav I/c Head of Dept. Mining Engineering.	Government Polytechnic, Bhuj	9428546433	shivkumarsrivastav11@gmail. com
2	Mr. S. C. Dabhekar Lecturer In Mining Engineering.	Government Polytechnic, Bhuj	9428546433	shrijaldabhekar@gmail.com
3	Mr. S. N. Heruvala Lecturer In Mining Engineering.	Government Polytechnic, Bhuj	9428546433	snheruvala@gmail.com