

PALAVRAS CHAVES

Otimização

Otimização é o processo de encontrar a melhor solução para um problema, de forma a maximizar os lucros ou minimizar os custos, por exemplo

CPLEX

O CPLEX é um software de otimização matemática desenvolvido pela IBM, utilizado para resolver uma variedade de problemas de otimização

Inventário

Inventário refere-se ao conjunto de produtos e materiais que uma empresa possui

Branch-and-Cut

O Branch-and-Cut é uma ferramenta poderosa para resolver problemas de otimização

Modelagem

A modelagem é o processo de representar fenômenos do mundo real por meio de equações

Lot-Sizing Problem

O LSP consiste em determinar o quanto produzir e o quanto comprar ao longo do tempo

Introdução ⇔

O Setor do Ramo Alimentício

A Dificuldade do Controle de Estoque

Noções de Demanda e sua Importância

Modelagem do Estoque

Lot-Sizing Problem

- ◆ LSP é a relação do quanto produzir/comprar com demanda/custo/capacidade
- aspectos do LSP: compras, vendas e produção
- ◆ JiT ou Just in Time

O JiT foi usado como modelo base para esse trabalho

Lot-Sizing Problem - JiT

O que é o JiT?

É um modelo que demanda um inventário constante, sempre solicita a mesma quantidade de um certo material (x) e o novo pedido só chega quando o outro se esgota

Desenvolvimento de Estoque em Caso de Consumo Constante

Lot-Sizing Problem

Uncapacitated Single Item Lot-Sizing Problem

Nesse modelo a gente já começa a considerar o tempo de entrega, um estoque de segurança, entre outros fatores. Porém ainda para um único item

Capacitated Lot-Sizing Problem (CLSP)

Para esse modelo a grande diferença comparado com UNCAPACITATED é que capacidade de produção agora é levado em consideração

Loz-Sizing Problem - CLSP

Single Item Capacitated Lot-Sizing Problem

O SI-CLSP é uma variação do problema mais amplo do CLSP, mas aqui estamos considerando apenas um produto ou item específico

Multiple Item Capacitated Lot-Sizing Problem

O MI-CLSP é um problema complexo além de também ser uma extensão do CLSP que leva em consideração vários produtos ou itens simultaneamente.

Bills of Materials

Normalmente, os itens a serem planejados em uma empresa estão inseridos em uma estrutura de produção, os itens finais dependem dos itens iniciais. Esta relação entre itens é descrita em uma BoM

LSP - Single Item Capacitated Lot-Sizing Problem

$$\min \sum_{t=1}^{T} c_t x_t + h_t i_t + u_t y_t$$

$$i_{t-1} + x_t = d_t + i_t, t \in \{1, ..., T\}$$

$$ax_t + by_t \le w_t, t \in \{1, ..., T\}$$

$$ax_t \leq w_t y_t, t \in \{1, ..., T\}$$

$$x_t, i_t \in \mathbb{N}, y_t \in \{0, 1\}, t \in \{1, ..., T\}$$

- T: período de planejamento
- c_t: custo de produção por unidade
- \bullet h_t : custo da unidade (por intervalo de tempo) no inventário
- u_t: custo de preparo da produção
- x_t: quantidade produzida no período
- y_t : 1 se a produção ocorre em t, 0 caso contrário
- i_t: nível de inventário
- d_t : demanda
- a: capacidade de produção de cada unidade
- b: capacidade do preparo de produção
- w_t: capacidade total disponível no período

LSP - Multiple Item Capacitated Lot Sizing Problem

$$\begin{split} \min \sum_{p=1}^{P} \sum_{t=1}^{T} c_{pt} x_{pt} + h_{pt} i_{pt} + u_{pt} y_{pt} \\ i_{p(t-1)} + x_{pt} &= d_{pt} + i_{pt}, t \in \{1, ..., T\}, p \in \{1, ..., P\} \\ \sum_{p=1}^{P} a_{p} x_{pt} + b_{p} y_{pt} &\leq w_{t}, t \in \{1, ..., T\} \end{split}$$

$$a_p x_{pt} \le w_t y_{pt}, t \in \{1, ..., T\}, p \in \{1, ..., P\}$$

$$x_{pt}, i_{pt} \in \mathbb{N}, y_t \in \{0, 1\}, t \in \{1, ..., T\}, p \in \{1, ..., P\}$$

- T: período de planejamento
- P: produtos planejados no período
- $\bullet \ c_{pt}$: custo de produção por unidade
- h_{pt}: custo da unidade (por intervalo de tempo) no inventário
- u_{pt}: custo de preparo da produção
- x_{pt}: quantidade produzida no período
- y_{pt} : 1 se a produção ocorre em t, 0 caso contrário
- ipt: nível de inventário
- dpt: demanda
- a_p: capacidade de produção de cada unidade
- \bullet b_p : capacidade do preparo de produção
- w_{pt}: capacidade total disponível no período

LSP - Bills of Materials

Modelagem do Problema - Considerações

- $\circ \longrightarrow \circ$
- Analisar os dias preferenciais de compra de cada produto
- Considerar o tempo máximo de cada produto no estoque
- Horizonte de eventos de um mês
- Médias de consumo por dia de cada produto
- Definir os melhores dias para abastecer o estoque com cada item

Modelagem do Problema - Parâmetros

- C_{ij} (R\$): custo do insumo i no dia da semana j
- U_j (R\$): custo associado à decisão de comprar no dia j
- D_{ij} (Kg): demanda do insumo i no dia da semana j
- CCON (Kg): capacidade de armazenamento dos insumos "congelados"
- CCOZ (Kg): capacidade de armazenamento dos insumos "cozinha"
- CCAR (Kg): capacidade de armazenamento do transporte
- W_i (Kg): volume do insumo i no armazenamento
- V_i (dias): validade do insumo i

- S_i (dias): disponibilidade do insumo i
- E_i^{min} (Kg): estoque mínimo do item i
- Q^{min}_i (unidade): quantidade mínima de compra do item i
- ρ: peso da decisão de descartar insumos
- CON: conjunto dos insumos "congelados"
- COZ: conjunto dos insumos "cozinha"
- Q: quantidade de dias de compras
- P: conjunto de todos os insumos i
- T: horizonte de planejamento j

Modelagem do Problema - Variáveis

- x_{ij} (unidade): quantidade de insumo i comprado no dia da semana j
- e_{ij} (Kg): quantidade de insumo i no estoque final no dia da semana j
- y_j (binário): decisão de compra no dia j (0 se não compra, 1 se compra)
- z_{ij} (Kg): quantidade do insumo i descartada no dia j

Modelagem do Problema - Modelo

s.a.
$$\begin{aligned} \min \sum_{i=1}^{P} \sum_{j=1}^{T} C_{ij} x_{ij} + \rho \sum_{i=1}^{P} \sum_{j=1}^{T} C_{ij} z_{ij} + \sum_{j=1}^{T} U_{j} y_{j} \\ \sum_{i \in CON} W_{i} x_{ij} + \sum_{i \in CON} e_{i(j-1)} \leq C_{CON}; \forall j \in T \\ \sum_{i \in COZ} W_{i} x_{ij} + \sum_{i \in COZ} e_{i(j-1)} \leq C_{COZ}; \forall j \in T \\ \sum_{i=1}^{P} W_{i} x_{ij} \leq C_{CAR} y_{j}; \forall j \in T \\ e_{ij} - z_{i(\max(1,j-V_{i})} \geq D_{ij}; \forall i \in Pej \in \{2,3,...,T\} \\ x_{ij} \geq Q_{i}^{\min} y_{j}; \forall i \in Pej \in T \\ e_{ij} \geq E_{i}^{\min}, \forall i \in Pej \in T \\ e_{i(j+1)} = e_{ij} + (W_{i} x_{i(j+1-s_{i})}) - D_{ij} - z_{i(j+1)}; \forall i \in Pej \in T \\ \sum_{j=1}^{T} y_{j} \leq Q \\ z_{i(j+1)} \geq \sum_{k=j-V_{i+1}}^{J} W_{i} x_{ik} - \sum_{k=j-V_{i+1}}^{J} D_{ik}; \forall i \in Pej \in \{V_{i}, V_{i+1}, ..., T-1\} \\ x_{ij} \in \mathbb{N}, y_{j} \in \{0, 1\}, e_{ij} \geq 0, z_{ij} \geq 0 \end{aligned}$$

Modelagem do Problema - Resolução Computacional

CPLEX e Branch-and-Cut

O CPLEX utiliza técnicas de Branch-and-Cut para resolver problemas de programação inteira, tornando-se uma ferramenta poderosa para encontrar soluções ótimas. O Branch-and-Cut divide o problema em sub-problemas menores e utiliza cortes para auxiliar a busca da solução ótima.

Funcionamento

- Inicialização
- Branching (Ramificar)
- Resolução dos Sub-problemas
- Cut (Podas)
- Atualização
- Convergência

Exemplo Numérico - Parâmetros - Custo do Insumo (C)

	Sexta	Sábado	Domingo
Pão	R\$1	R\$3	R\$1
Carne	R\$5	R\$5	R\$5
Queijo	R\$3	R\$1	R\$1

Exemplo Numérico - Parâmetros - Demanda (D)

	Sexta	Sábado	Domingo
Pão	10kg	17kg	21kg
Carne	30kg	5kg	6kg
Queijo	2kg	5kg	8kg

Exemplo Numérico - Parâmetros - Custo de Compra (U)

	Sexta	Sábado	Domingo
Custo (U)	R\$2	R\$5	R\$2

Exemplo Numérico - Parâmetros - Capacidades de Armazenamento

30kg	CCON
40kg	CCOZ
70kg	CCAR

Exemplo Numérico - Parâmetros - Volume (W), Validade (V), Disponibilidade (S), Estoque Min. (Emin) e Quantidade Min. (Qmin)

	Pão	Carne	Queijo
Volume (W)	0,6kg	1kg	0,15kg
Validade (V)	1	2	2
Disponibilidade (S)	0	0	0
Estoque Mínimo (Emin)	2kg	4kg	1kg

Exemplo Numérico - Outros Parâmetros

Quantidade Mínima (Qmin)	3
Custo de Descarte (p)	2
Quantidade de Dias de Compra (Q)	1
Conjunto dos Insumos (P)	3
Horizonte de Planejamento (T)	3

Exemplo Numérico - Resultados - Quantidade Comprada (x)

	Sexta	Sábado	Domingo
Pão	17	29	36
Carne	4	4	6
Queijo	14	33	54

Exemplo Numérico - Resultados - Estoque Final (e)

	Sexta	Sábado	Domingo
Pão	10,2kg	17,4kg	21,6kg
Carne	4kg	5kg	6kg
Queijo	7,05kg	5,05kg	8,1kg

Exemplo Numérico - Resultados - Descarte (z)

_	\wedge	
0-	$\overline{}$	_0

	Sexta	Sábado	Domingo
Pão	0kg	0,2kg	0,4kg
Carne	0kg	0kg	0kg
Queijo	0kg	0kg	0.05kg

Exemplo Numérico - Resultados - Compra/Não Compra (y)

	Secta	Sábado	Domingo
Decisão (y)	Sim (1)	Sim (1)	Sim (1)

R\$43.505,89

Custo Total da Empresa

R\$38.271,38

Valor Ótimo Obtido

12,34%

Melhora Significativa!