

Optimización biomecánica del ciclismo asistida por inteligencia artificial

Autor:

Ing. Rodrigo Iván Goñi

Director:

MSc. Fernado Corteggiano (FNRC)

Índice

1. Descripción técnica-conceptual del proyecto a realizar	5
2. Identificación y análisis de los interesados	6
3. Propósito del proyecto	6
4. Alcance del proyecto	7
5. Supuestos del proyecto	8
6. Product Backlog	9
7. Criterios de aceptación de historias de usuario	10
8. Fases de CRISP-DM	12
9. Desglose del trabajo en tareas	14
10. Diagrama de Gantt	16
11. Planificación de Sprints	17
12. Normativa y cumplimiento de datos (gobernanza)	18
13. Gestión de riesgos	18
14. Sprint Review	20
15. Sprint Retrospective	20

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	24 de junio de 2025
1	Se completa hasta el punto 5 inclusive	07 de julio de 2025
2	Se completa hasta el punto 9 inclusive	15 de julio de 2025

Acta de constitución del proyecto

Buenos Aires, 24 de junio de 2025

Por medio de la presente se acuerda con el Ing. Rodrigo Iván Goñi que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "Optimización biomecánica del ciclismo asistida por inteligencia artificial" y consistirá en el desarrollo de un prototipo de un sistema inteligente que, mediante la integración de la detección de pose por redes neuronales y el análisis de datos de sensores, optimice los parámetros biomecánicos de la bicicleta para maximizar la potencia, eficiencia y minimizar el riesgo de lesiones del ciclista. El trabajo tendrá un presupuesto preliminar estimado de 600 horas y un costo estimado de \$15000, con fecha de inicio el 24 de junio de 2025 y fecha de presentación pública el 15 de mayo de 2026.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Nombre del cliente Empresa del cliente

MSc. Fernado Corteggiano Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

La biomecánica en el ciclismo es un factor fundamental para mejorar el rendimiento y prevenir lesiones, se basa en el principio de adaptar la bicicleta a las características físicas del ciclista. Un ajuste incorrecto no solo puede causar lesiones, sino también disminuir la potencia de salida hasta en un 20 %. Sin embargo, el acceso a un análisis biomecánico profesional presenta barreras significativas: las soluciones actuales suelen ser costosas, de baja disponibilidad y requieren visitas a laboratorios especializados.

El desafío principal de este proyecto es encontrar el balance óptimo entre la posición que maximiza la velocidad y aquella que minimiza el esfuerzo y el riesgo de lesiones. Frecuentemente, la postura más aerodinámica no es la más sostenible a largo plazo. Para abordar este problema, se propone el desarrollo de un sistema que ajuste automáticamente los parámetros de la bicicleta. Mediante el uso de inteligencia artificial, el sistema analizará la postura del ciclista para optimizar la potencia de salida y reducir la tensión muscular, lo que exige un enfoque de optimización multiobjetivo con diversas restricciones.

Las soluciones convencionales se basan en un análisis estático y puntual, realizado en un único día y dependiente en gran medida de la experiencia del biomecánico. La recomendación de repetir el ajuste anualmente, sumada a su alto costo y escasa disponibilidad, provoca que la mayoría de los ciclistas no mantengan una configuración óptima en sus bicicletas.

El valor fundamental de este sistema radica en ofrecer al ciclista la capacidad de realizar autoajustes frecuentes, de forma autónoma y a un costo significativamente menor que las alternativas tradicionales. Esto democratiza el acceso a una biomecánica de precisión, lo que permite una mejora continua del rendimiento y la prevención de lesiones.

Para lograr estos objetivos, el sistema propuesto se estructura en una serie de módulos interconectados, como se ilustra en el diagrama de bloques de la figura 1 a continuación:

Figura 1. Diagrama en bloques del sistema.

- Entrada de datos: este módulo es el encargado de recolectar datos de las distintas fuentes de información. Se compone de una fuente de video, sensores de rendimiento y los datos antropomórficos del ciclista.
- Procesamiento y análisis: este módulo toma los datos de entrada y los procesa. Con la ayuda de una red neuronal de detección de pose, añade los datos de posición del ciclista al sistema. Luego, en un módulo de preprocesamiento, los datos se filtran, sincronizan, limpian y completan.
- Modelado y simulación: con ayuda de un modelo físico y aerodinámico, se predice cómo impactarán los cambios de los parámetros de la bicicleta en el rendimiento.
- Optimización multi-objetivo: con un algoritmo genético, se buscará maximizar la performance del objetivo en un rango adecuado de posición, tratando de minimizar la resistencia aerodinámica y teniendo en cuenta la morfología y el nivel del ciclista.
- Salida y retroalimentación: con los datos de la optimización, se generará un reporte de recomendaciones y posibles configuraciones de la bicicleta. Una vez finalizado el reporte, se recomienda ajustar los parámetros para volver a iniciar el análisis.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante	-	-	-
Cliente	-	-	-
Impulsor	-	-	-
Responsable	Ing. Rodrigo Iván Go-	FIUBA	Alumno
	ñi		
Colaboradores	-	-	-
Orientador	MSc. Fernado Corteg-	FNRC	Director del Trabajo Final
	giano		
Equipo	-	-	-
Opositores	-	-	-
Usuario final	Ciclistas de distintos	-	-
	tipos		

- Responsable: cl Ing. Rodrigo Iván Goñies el líder del proyecto de optimización biomecánica asistida por IA. Es ingeniero en mecatrónica.
- Orientador: cl MSc. Fernado Corteggiano, ingeniero electricista y magister en ciencias de la ingeniería de la UNRC, es director y profesor adjunto. Ya ha dirigido diversas tesis, aportará su experiencia en electrónica, telecomunicaciones y software, para definir el alcance y requerimientos del sistema.
- Usuario final: ciclistas de distintos tipos que buscan optimizar la comodidad o el rendimiento de su bicicleta a través de ajustes personalizados.

3. Propósito del proyecto

El propósito de este proyecto es desarrollar un sistema inteligente y personalizado que, mediante la integración de la detección de pose por redes neuronales y el análisis exhaustivo de datos

provenientes de sensores de ciclismo, optimice los parámetros biomecánicos de la bicicleta. Esto incluye la altura y posición del sillín, la longitud de las bielas, la altura y ancho del manillar. El objetivo principal es maximizar la potencia y eficiencia del pedaleo, minimizar el riesgo de lesiones y equilibrar estos factores con la aerodinámica. Este sistema permitirá a los ciclistas realizar autoajustes frecuentes, de forma autónoma y a un costo significativamente menor que las alternativas tradicionales, lo que democratiza el acceso a una biomecánica de precisión y lo que permite una mejora continua del rendimiento y la prevención de lesiones.

4. Alcance del proyecto

El proyecto incluye:

- Desarrollo de un sistema de optimización personalizado: proporcionará recomendaciones para el ajuste biomecánico de la bicicleta, que busquen maximizar el rendimiento (medido por la potencia y velocidad), la eficiencia y prevenir lesiones.
- Ciclo continuo de análisis y retroalimentación: el sistema funcionará a través de las siguientes etapas:
 - Captura de datos:
 - o Calibración de la cámara.
 - o Grabación de videos del ciclista pedaleando.
 - Recopilación simultánea de datos de rendimiento mediante sensores de potencia, cadencia y velocidad.
 - Análisis y modelado:
 - Análisis de movimiento: uso de red neuronal de estimación de pose para extraer coordenadas 2D de puntos clave del cuerpo del ciclista desde los videos.
 - Análisis cinemático: estudio de ángulos de articulaciones, fluidez del pedaleo y variabilidad del movimiento.
 - Modelo biomecánico: creación de un modelo digital del sistema ciclista y bicicleta para simular el impacto de los ajustes en la potencia y el riesgo de lesión.
 - Optimización integral: un algoritmo de optimización analizará combinaciones para lograr el equilibrio perfecto entre:
 - o Ajuste biomecánico: determinación de la configuración óptima de componentes.
 - o Aerodinámica: evaluación de la postura del ciclista para la resistencia del aire, que buscará la posición más aerodinámica y sostenible.
 - Prevención de lesiones: penalización de configuraciones que aumenten el estrés en articulaciones.
 - Recomendación y re-evaluación: generación de un reporte con recomendaciones claras para ajustar la bicicleta, lo que permita nuevas sesiones de captura de datos para refinar el ajuste.
- Adquisición y uso de datos:
 - Videos de ciclismo grabados desde el lateral y el frontal.
 - Datos de sensores sincronizados: potencia, cadencia y velocidad.
 - Datos antropométricos del ciclista y configuración actual de la bicicleta.

• Utilización de recursos propios y entorno controlado para pruebas sistemáticas y sincronización precisa.

El presente proyecto no incluye:

- El desarrollo de hardware personalizado para la captura de datos, más allá de la integración con sensores comerciales existentes.
- El entrenamiento de la red neuronal de detección de pose desde cero, se espera utilizar o adaptar redes neuronales preexistentes.
- La integración con todos los posibles modelos de bicicletas y componentes del mercado.
- La simulación de factores externos complejos como condiciones climáticas extremas o interacciones con el tráfico.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Se dispondrá de un rodillo de entrenamiento inteligente y sus respectivos sensores (potenciómetro, cadencia, velocidad) para la captura de datos en un entorno controlado y la realización de pruebas sistemáticas.
- Se tendrá acceso a una cámara de video con capacidad para grabar en alta resolución.
- La red neuronal de detección de pose (como Keypoint R-CNN o MediaPipe) a utilizar será lo suficientemente robusta y precisa para extraer los puntos clave del cuerpo del ciclista necesarios para el análisis biomecánico, y que su rendimiento será adecuado para el procesamiento de video.
- Existirá suficiente disponibilidad de datos propios y de la comunidad.
- El entorno de desarrollo y las herramientas de software necesarias son adecuadas.
- Se contará con el tiempo y los recursos humanos necesarios para la investigación, desarrollo, implementación y realización de pruebas del sistema, incluida la mano de obra propia para la ejecución del proyecto.
- Se contará con la revisión y retroalimentación constante del director del proyecto, MSc. Fernado Corteggiano, para asegurar la correcta orientación técnica y académica.
- Las condiciones de iluminación durante la captura de video serán adecuadas para permitir una detección de pose precisa.
- El proyecto se centrará en optimizaciones biomecánicas para el ciclismo en carretera o interior en rodillo.
- Las variaciones individuales en la anatomía y flexibilidad de los ciclistas podrán ser adecuadamente modeladas y tenidas en cuenta por el algoritmo de optimización.

6. Product Backlog

- Épica 1: adquisición y preprocesamiento de datos biomecánicos
 - HU1: como ciclista, quiero que el sistema tome mi imagen de pedaleo para analizar mi postura.

Dificultad: 3Complejidad: 2Incertidumbre: 2

 \circ Suma: 7 \rightarrow Story points: 8

• HU2: como ingeniero, quiero consolidar un proceso de obtención de datos coordinado y automatizado para asegurar la eficiencia del análisis.

Dificultad: 4Complejidad: 4Incertidumbre: 3

 \circ Suma: 11 \rightarrow Story points: 13

• HU3: como ingeniero en inteligencia artificial, quiero aplicar técnicas de visión por computadora para obtener automáticamente los puntos clave de mi cuerpo en los videos de pedaleo, de manera que el análisis biomecánico sea preciso.

Dificultad: 5Complejidad: 5Incertidumbre: 4

 \circ Suma: 14 \rightarrow Story points: 21

HU4: como científico de datos, quiero realizar un análisis exploratorio de los datos
y filtrarlos correctamente para asegurar la calidad de la información utilizada en los
modelos.

Dificultad: 3Complejidad: 3Incertidumbre: 2

 \circ Suma: 8 \rightarrow Story points: 8

- Épica 2: modelado y optimización biomecánica
 - HU5: como ingeniero de software, quiero que el sistema simule las condiciones de pedaleo y el impacto de los ajustes mecánicos para predecir los resultados de la optimización.

Dificultad: 4Complejidad: 4Incertidumbre: 3

 \circ Suma: 11 \rightarrow Story points: 13

• HU6: como ingeniero, necesito modelar un algoritmo de optimización biomecánica multi-objetivo para encontrar la configuración de bicicleta más eficiente y cómoda.

Dificultad: 5Complejidad: 5Incertidumbre: 5

 \circ Suma: 15 \rightarrow Story points: 21

• HU7: como sistema de optimización, necesito considerar la morfología y el nivel del ciclista para ofrecer recomendaciones personalizadas y efectivas.

Dificultad: 4Complejidad: 3Incertidumbre: 3

 \circ Suma: $10 \rightarrow$ Story points: 13

- Épica 3: generación de recomendaciones y experiencia de usuario
 - HU8: como ciclista, quiero recibir un reporte claro y conciso con las recomendaciones de configuración de mi bicicleta para poder realizar los ajustes yo mismo.

Dificultad: 3Complejidad: 3Incertidumbre: 2

 \circ Suma: 8 \rightarrow Story points: 8

• HU9: como usuario, quiero que la interfaz me permita ingresar fácilmente los parámetros relevantes del ciclista y la bicicleta para obtener un análisis preciso.

Dificultad: 3Complejidad: 2Incertidumbre: 2

 \circ Suma: 7 \rightarrow Story points: 8

- Épica 4: validación y mejora continua del sistema
 - HU10: como ciclista, quiero poder re-evaluar mi postura y rendimiento después de aplicar los ajustes recomendados para refinar la optimización.

Dificultad: 3Complejidad: 2Incertidumbre: 2

 \circ Suma: $7 \to \text{Story points}$: 8

• HU11: como desarrollador, necesito un entorno controlado para realizar pruebas sistemáticas y asegurar la precisión del sistema.

Dificultad: 4Complejidad: 3Incertidumbre: 3

 \circ Suma: $10 \rightarrow$ Story points: 13

7. Criterios de aceptación de historias de usuario

- Épica 1: adquisición y preprocesamiento de datos biomecánicos
 - Criterios de aceptación HU1:
 - o El sistema debe activar y controlar la cámara de manera autónoma para la captura de video del ciclista mientras pedalea.
 - El ciclista debe recibir una confirmación visual o sonora clara de que la grabación ha comenzado y finalizado correctamente.

- Los videos capturados deben guardarse automáticamente en un formato específico.
- Criterios de aceptación HU2:
 - Tras la subida de un video, el sistema debe iniciar automáticamente la secuencia de preprocesamiento y extracción de datos.
 - El ingeniero debe poder visualizar el progreso de la obtención y procesamiento de los datos en una interfaz de estado.
 - El sistema debe registrar un log detallado de cada paso del proceso de obtención de datos, que incluya la hora de inicio y fin, y cualquier error.
- Criterios de aceptación HU3:
 - El algoritmo debe identificar correctamente los puntos clave del esqueleto del ciclista en cada fotograma del video.
 - o Los puntos clave detectados deben superponerse visualmente sobre el video original para una verificación rápida de la precisión por parte del ingeniero.
 - o La tasa de detección de puntos clave debe ser adecuada y en un tiempo razonable.
- Criterios de aceptación HU4:
 - El sistema debe permitir la aplicación de filtros predefinidos a los datos de los puntos clave.
 - Se deben generar gráficos de distribución y series temporales para cada punto clave y métrica, que permitan la identificación visual de anomalías.
 - \circ La aplicación de filtros debe reducir el ruido en los datos al menos en un 20 % sin perder información relevante, según métricas preestablecidas.
- Épica 2: modelado y optimización biomecánica
 - Criterios de aceptación HU5:
 - o El sistema debe ser capaz de simular las métricas biomecánicas clave para configuraciones de bicicleta diferentes.
 - Los resultados de la simulación deben presentarse en gráficos comparativos que muestren claramente el impacto de cada ajuste en las métricas.
 - o Cada simulación individual debe completarse en un tiempo adecuado.
 - Criterios de aceptación HU6:
 - El algoritmo debe generar un conjunto de soluciones de Pareto que maximicen la eficiencia, minimicen la incomodidad y respeten las restricciones biomecánicas.
 - Las soluciones del frente de Pareto deben visualizarse en un gráfico que permita al ingeniero entender el balance entre los diferentes objetivos.
 - El algoritmo debe demostrar convergencia hacia un conjunto de soluciones estables y diversas dentro de un número razonable de generaciones o iteraciones.
 - Criterios de aceptación HU7:
 - o El sistema debe ajustar los rangos de optimización y las ponderaciones de los objetivos con base en los datos de morfología y nivel del ciclista.
 - Las recomendaciones generadas deben mostrar una justificación clara de cómo la morfología y el nivel del ciclista influyeron en los ajustes sugeridos.
 - o Los modelos internos deben integrar los parámetros morfológicos y de nivel del ciclista como variables de entrada en el proceso de optimización.
- Épica 3: generación de recomendaciones y experiencia de usuario

• Criterios de aceptación HU8:

- El sistema debe generar un reporte descargable que incluya las configuraciones de la bicicleta recomendadas.
- El reporte debe contener diagramas o imágenes que ilustren visualmente cada ajuste y su ubicación en la bicicleta.
- El reporte debe ser compatible con lectores de PDF estándar y poder ser accedido desde dispositivos móviles y de escritorio.

• Criterios de aceptación HU9:

- La interfaz debe presentar campos de entrada de datos claros y con etiquetas descriptivas para todos los parámetros requeridos.
- La interfaz debe ofrecer validación en tiempo real de los datos ingresados e indicar errores de formato o rangos inválidos de forma intuitiva.
- La interfaz debe ser compatible con los navegadores web modernos.

• Épica 4: validación y mejora continua del sistema

• Criterios de aceptación HU10:

- El sistema debe permitir al ciclista iniciar un nuevo ciclo de captura de video y análisis de postura para una reevaluación.
- El sistema debe generar un informe comparativo que visualice los cambios en la postura y las métricas de rendimiento entre la evaluación inicial y la reevaluación.
- Los datos de cada reevaluación deben almacenarse, vincularse con el historial del ciclista y permitir el acceso a versiones anteriores.

• Criterios de aceptación HU11:

- El entorno debe permitir la ejecución de pruebas unitarias, de integración y de extremo a extremo para todas las funcionalidades principales del sistema.
- o Los resultados de las pruebas deben visualizarse en un dashboard o reporte que muestre el estado de las pruebas de forma clara.
- El entorno de pruebas debe ser reproducible y configurable para simular diferentes entornos y conjuntos de datos.

8. Fases de CRISP-DM

A continuación se detallan las fases del modelo CRISP-DM aplicadas al proyecto.

1. Comprensión del negocio:

- Objetivo: el proyecto busca desarrollar un prototipo de sistema inteligente que optimice los parámetros biomecánicos de una bicicleta. El propósito principal es maximizar la potencia y eficiencia del pedaleo, mientras se minimiza el riesgo de lesiones y se equilibra con la aerodinámica para alcanzar la máxima velocidad posible.
- Valor agregado de IA: la inteligencia artificial se utilizará para analizar la postura del ciclista a través de redes neuronales de detección de pose y para ejecutar un algoritmo de optimización multiobjetivo.
- Métricas de éxito: el éxito del proyecto se medirá por la capacidad del sistema para generar un reporte con recomendaciones claras y cuantificables. Además, la mejora en el rendimiento y la comodidad del ciclista se verificará a través de métricas objetivas y subjetivas post-ajuste, lo que permite un ciclo de reevaluación para validar el impacto positivo de las sugerencias.

2. Comprensión de los datos:

- Tipo y origen: los datos a utilizar son de diversas fuentes:
 - Videos del ciclista: grabaciones desde perspectivas lateral y frontal para el análisis de pose.
 - Datos de sensores: información de rendimiento como potencia (W), cadencia (RPM) ritmo cardíaco (BPM), y velocidad (km/h), recopilada de forma simultánea a los videos.
 - Datos antropométricos: medidas del ciclista y de la configuración inicial de su bicicleta.
- Cantidad y calidad: se utilizarán recursos propios, que incluyen un rodillo de entrenamiento inteligente que permite realizar pruebas en un entorno controlado. Esta configuración es clave para garantizar la sincronización precisa entre el video y los datos de los sensores. Para enriquecer el dataset, se podrán utilizar datos de plataformas comunitarias como Strava o Zwift.

3. Preparación de los datos:

- Características clave y transformaciones:
 - Se aplicarán técnicas de visión por computadora, mediante una red neuronal de estimación de pose, como Keypoint R-CNN o MediaPipe, para extraer las coordenadas 2D de puntos clave del cuerpo del ciclista a partir de los videos.
 - Los datos de sensores y los puntos clave extraídos serán filtrados, sincronizados, limpiados y completados en un módulo de preprocesamiento.
 - A partir de las coordenadas, se realizará un análisis cinemático para estudiar ángulos de articulaciones, fluidez del pedaleo y variabilidad del movimiento.

4. Modelado:

- Tipo de problema: el núcleo del proyecto es un problema de optimización multiobjetivo. Se busca encontrar el balance óptimo entre la aerodinámica y la potencia, ya que la postura más aerodinámica no siempre es la más potente o sostenible.
- Algoritmos posibles: se planea utilizar un algoritmo genético para explorar el espacio de soluciones y encontrar una configuración óptima de la bicicleta. Este algoritmo trabajará sobre un modelo físico que predice cómo los cambios en los parámetros impactan en el rendimiento. Además, se creará un modelo biomecánico digital para simular el efecto de los ajustes.

5. Evaluación del modelo:

- Métricas de rendimiento: la evaluación no se centrará en métricas de clasificación tradicionales. En su lugar, se evaluará la calidad de las soluciones generadas por el algoritmo de optimización. El algoritmo deberá producir un conjunto de soluciones en el frente de Pareto que representen los mejores compromisos posibles entre los objetivos.
- Métricas cuantificables y automatizables:
 - Reducción de la frecuencia cardíaca (FC) para una potencia dada: a una potencia de salida constante, un menor ritmo cardíaco post-ajuste indicaría una mayor eficiencia cardiovascular y un menor esfuerzo percibido. Esto es directamente medible con los sensores.

- Reducción de la variabilidad de ángulos críticos: una menor desviación estándar en ángulos articulares clave a lo largo del ciclo de pedaleo puede indicar mayor fluidez, estabilidad y menor riesgo de lesiones. Esto es automatizable a partir del análisis cinemático.
- Métricas subjetivas (para validación funcional):
 - Percepción del esfuerzo (RPE): el ciclista reporta su nivel de esfuerzo en una escala de 6 a 20 para una sesión de potencia y duración predefinida. Una disminución del RPE sería un indicador de confort y eficiencia.
 - Escalas de dolor/molestia: reportes del ciclista sobre la ausencia o reducción de molestias en articulaciones o músculos específicos.
- Proceso de evaluación: la validación final será funcional. El sistema generará un reporte con recomendaciones claras. El ciclista aplicará los ajustes y realizará una nueva sesión de captura de datos en el entorno controlado. En esta nueva sesión, se compararán las métricas objetivas y se recopilarán las métricas subjetivas con respecto a la configuración inicial. Esto permitirá cerrar un ciclo de mejora continua y validar empíricamente la efectividad de las recomendaciones.

9. Desglose del trabajo en tareas

Cuadro 1. Desglose de tareas del proyecto

Historia de usuario	Tarea técnica	Estimación	Prioridad				
Épica 1: adquisición y preprocesamiento de datos biomecánicos							
HU1	Investigar y seleccionar la librería de Python	4 h	Alta				
	para el control de la cámara.						
HU1	Desarrollar el script para iniciar/detener la	8 h	Alta				
	grabación y guardar el video.						
HU2	Configurar la recolección de datos de sensores	8 h	Alta				
	en sincronía con el video.						
HU2	Implementar una función para la carga de	6 h	Media				
	datos antropométricos y de la bicicleta.						
HU2	Desarrollar el script que automatice la	8 h	Alta				
	ejecución secuencial de la captura de video y						
	sensores.						
HU3	Investigar y comparar modelos pre-entrenados	8 h	Alta				
	para la detección de pose.						
HU3	Implementar el modelo seleccionado para	8 h	Alta				
	procesar los videos y extraer coordenadas 2D						
	de puntos clave.						
HU3	Desarrollar una función para visualizar los	6 h	Media				
	puntos clave superpuestos en los fotogramas						
	para verificación.						
HU4	Desarrollar scripts para la carga y visualización	8 h	Alta				
	inicial de datos.						
HU4	Implementar filtros para suavizar el ruido en	8 h	Media				
	los datos de sensores y coordenadas.						

Continúa en la página siguiente

Cuadro 1 – continuación de la página anterior

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU4	Escribir funciones para detectar y gestionar	6 h	Media
	valores atípicos o faltantes en las series de		
	datos.		
	optimización biomecánica		
HU5	Desarrollar el modelo físico-matemático que	8 h	Alta
	relacione los ángulos articulares con la potencia		
	y la eficiencia.		
HU5	Implementar una función que reciba los	8 h	Alta
	parámetros de la bicicleta y simule el impacto		
TITIE	en el modelo.	0.1	3.6.11
HU5	Crear visualizaciones para mostrar los	6 h	Media
IIIIc	resultados de la simulación.	O 1-	A 14 -
HU6	Investigar y seleccionar una librería de Python	8 h	Alta
HU6	para algoritmos genéticos. Definir la función de fitness multiobjetivo.	8 h	Alta
HU6	Implementar el algoritmo genético para que	8 h	Alta
1100	explore el espacio de soluciones y encuentre el	0 11	Alla
	frente de Pareto.		
HU7	Definir cómo los datos de entrada ajustarán los	8 h	Alta
1101	rangos y pesos del optimizador.	0 11	11100
HU7	Integrar las variables de personalización como	8 h	Media
	parámetros de entrada en el modelo de	-	
	simulación.		
HU7	Ajustar la función de fitness para que penalice	8 h	Media
	soluciones no viables según el perfil del ciclista.		
Épica 3: generación	de recomendaciones y experiencia de usuario		
HU8	Diseñar la estructura y contenido del reporte	6 h	Alta
	final en PDF.		
HU8	Desarrollar el script que genere el reporte en	8 h	Alta
	PDF con textos, datos y gráficos de forma		
	automática.		
HU9	Desarrollar una interfaz de usuario simple para	8 h	Media
11110	la entrada de datos.	0.1	ъ .
HU9	Implementar validaciones de entrada para	6 h	Baja
	asegurar que los datos del usuario sean		
Énico 4. volidoción	correctos y estén en rango.		
	y mejora continua del sistema	O la	Modio
HU10	Implementar la funcionalidad para guardar y cargar sesiones de análisis previas.	8 h	Media
HU10	Desarrollar un módulo que genere un reporte	8 h	Media
11010	comparativo entre dos sesiones de un mismo	0 11	ivicula
	ciclista.		
HU11	Estructurar el proyecto para permitir pruebas	8 h	Alta
11 0 1 1	unitarias de los módulos clave.	0 11	11100
HU11	Crear un conjunto de datos de prueba para	8 h	Media
	STILL SII SSIJAITS AS ARTON AS PIASSA PAITA	U	1.15010

Continúa en la página siguiente

α 1	1	, •	٠,	1	1	, .	
Cuadro	1 -	continua	cion	de	1a	pagina	anterior

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU11	Escribir pruebas de integración que verifiquen	8 h	Media
	la correcta comunicación entre los módulos del		
	sistema.		

10. Diagrama de Gantt

El diagrama de Gantt debe representar de forma visual y cronológica todas las tareas del proyecto, abarcando aproximadamente 600 horas totales, de las cuales entre 480 y 500 deben destinarse a tareas técnicas (desarrollo, pruebas, implementación) y entre 100 y 120 a tareas no técnicas (planificación, documentación, escritura de memoria y preparación de la defensa).

Consignas y recomendaciones:

- Incluir tanto tareas técnicas derivadas de las HU como tareas no técnicas generales del proyecto.
- El eje vertical debe listar las tareas y el eje horizontal representar el tiempo en semanas o fechas.
- Utilizar colores diferenciados para distinguir tareas técnicas y no técnicas.
- Las tareas deben estar ordenadas cronológicamente y reflejar todo el ciclo del proyecto.
- Iniciar con la planificación del proyecto (coincidente con el inicio de Gestión de Proyectos) y finalizar con la defensa, próxima a la fecha de cierre del trabajo.
- Configurar el software para mostrar los códigos del desglose de tareas y los nombres junto a cada barra.
- Asegurarse de que la fecha final coincida con la del Acta Constitutiva.
- Evitar tareas genéricas o ambiguas y asegurar una secuencia lógica y realista.
- Las fechas pueden ser aproximadas; ajustar el ancho del diagrama según el texto y el parámetro x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

Herramientas sugeridas:

- Planner, GanttProject, Trello + plugins
 https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately (colaborativa online) https://creately.com/diagram/example/ieb3p3ml/LaTeX
- LaTeX con pgfgantt: http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Incluir una imagen legible del diagrama de Gantt. Si es muy ancho, presentar primero la tabla y luego el gráfico de barras.

11. Planificación de Sprints

Organizar las tareas técnicas del proyecto en sprints de trabajo que permitan distribuir de forma equilibrada la carga horaria total, estimada en 600 horas.

Consigna:

- Completar una tabla que relacione sprints con HU y tareas técnicas correspondientes.
- Incluir estimación en horas para cada tarea.
- Indicar responsable y porcentaje de avance estimado o completado.
- Contemplar también tareas de planificación, documentación, redacción de memoria y preparación de defensa.

Conceptos clave:

- Una épica es una unidad funcional amplia; una historia de usuario es una funcionalidad concreta; un sprint es una unidad de tiempo donde se ejecutan tareas.
- Las tareas son el nivel más desagregado: permiten estimar tiempos, asignar responsables y monitorear progreso.

Duración sugerida:

- Para un proyecto de 600 h, se recomienda planificar entre 10 y 12 sprints de aproximadamente 2 semanas cada uno.
- Asignar entre 45 y 50 horas efectivas por sprint a tareas técnicas.
- Reservar 100 a 120 h para actividades no técnicas (planificación, escritura, reuniones, defensa).

Importante:

- En proyectos individuales, el responsable suele ser el propio autor.
- Aun así, desagregar tareas facilita el seguimiento y mejora continua.

Conversión opcional de Story Points a horas:

- 1 SP \approx 2 h como referencia flexible.
- Tener en cuenta aproximaciones tipo Fibonacci.

Recomendaciones:

- Verificar que la carga horaria por sprint sea equilibrada.
- Usar sprints de 1 a 3 semanas, acordes al cronograma general.
- Actualizar el % completado durante el seguimiento del proyecto.
- Considerar un sprint final exclusivo para pruebas, revisión y ajustes antes de la defensa.

Cuadro 2. Formato sugerido

Sprint	HU o fase	Tarea	Horas / SP	Responsable	% Completado
Sprint 0	Planificación	Definir alcance y	10 h	Alumno	100 %
		cronograma			
Sprint 0	Planificación	Reunión con tu-	5 h	Alumno	50%
		tor/cliente			
Sprint 0	Planificación	Ajuste de entrega-	6 h	Alumno	25%
		bles			
Sprint 1	HU1	Tarea 1 HU1	6 h / 3 SP	Alumno	0 %
Sprint 1	HU1	Tarea 2 HU1	10 h / 5 SP	Alumno	0 %
Sprint 2	HU2	Tarea 1 HU2	7 h / 5 SP	Alumno	0 %
	• • • •				
Sprint 5	Escritura	Redacción memo-	50 h / 34 SP	Alumno	0 %
		ria			
Sprint 6	Defensa	Preparación expo-	20 h / 13 SP	Alumno	0 %
		sición			

12. Normativa y cumplimiento de datos (gobernanza)

En esta sección se debe analizar si los datos utilizados en el proyecto están sujetos a normativas de protección de datos y privacidad, y en qué condiciones se pueden emplear.

Aspectos a considerar:

- Evaluar si los datos están regulados por normativas como GDPR, Ley 25.326 de Protección de Datos Personales en Argentina, HIPAA u otras según jurisdicción y temática.
- Determinar si el uso de los datos requiere consentimiento explícito de los usuarios involucrados.
- Indicar si existen restricciones legales, técnicas o contractuales sobre el uso, compartición o publicación de los datos.
- Aclarar si los datos provienen de fuentes licenciadas, de acceso público o bajo algún tipo de autorización especial.
- Analizar la viabilidad del proyecto desde el punto de vista legal y ético, considerando la gobernanza de los datos.

Este análisis es clave para garantizar el cumplimiento normativo y evitar conflictos legales durante el desarrollo y publicación del proyecto.

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S): X. Justificación...
- Ocurrencia (O): Y. Justificación...

Riesgo 3:

- Severidad (S): X. Justificación...
- Ocurrencia (O): Y. Justificación...
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	0*	RPN*

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Sprint Review

La revisión de sprint (*Sprint Review*) es una práctica fundamental en metodologías ágiles. Consiste en revisar y evaluar lo que se ha completado al finalizar un sprint. En esta instancia, se presentan los avances y se verifica si las funcionalidades cumplen con los criterios de aceptación establecidos. También se identifican entregables parciales y se consideran ajustes si es necesario.

Aunque el proyecto aún se encuentre en etapa de planificación, esta sección permite proyectar cómo se evaluarán las funcionalidades más importantes del backlog. Esta mirada anticipada favorece la planificación enfocada en valor y permite reflexionar sobre posibles obstáculos.

Objetivo: anticipar cómo se evaluará el avance del proyecto a medida que se desarrollen las funcionalidades, utilizando como base al menos cuatro historias de usuario del *Product Backlog*.

Seleccionar al menos 4 HU del Product Backlog. Para cada una, completar la siguiente tabla de revisión proyectada:

Formato sugerido:

HU seleccionada	Tareas asociadas	Entregable esperado	¿Cómo sabrás que está cumplida?	Observaciones o riesgos
HU1	Tarea 1 Tarea 2	———— Módulo funcional		Falta validar con el tutor
HU3	Tarea 1 Tarea 2	Reporte generado	Exportación disponible y clara	Requiere datos reales
HU5	Tarea 1 Tarea 2	Panel de gestión	Roles diferenciados operativos	Riesgo en integración
HU7	Tarea 1 Tarea 2	Informe trimestral	PDF con gráficos y evolución	Puede faltar tiempo para ajustes

15. Sprint Retrospective

La retrospectiva de sprint es una práctica orientada a la mejora continua. Al finalizar un sprint, el equipo (o el alumno, si trabaja de forma individual) reflexiona sobre lo que funcionó bien, lo que puede mejorarse y qué acciones concretas pueden implementarse para trabajar mejor en el futuro.

Durante la cursada se propuso el uso de la **Estrella de la Retrospectiva**, que organiza la reflexión en torno a cinco ejes:

- ¿Qué hacer más?
- ¿Qué hacer menos?

- ¿Qué mantener?
- ¿Qué empezar a hacer?
- ¿Qué dejar de hacer?

Aun en una etapa temprana, esta herramienta permite que el alumno planifique su forma de trabajar, identifique anticipadamente posibles dificultades y diseñe estrategias de organización personal.

Objetivo: reflexionar sobre las condiciones iniciales del proyecto, identificando fortalezas, posibles dificultades y estrategias de mejora, incluso antes del inicio del desarrollo.

Completar la siguiente tabla tomando como referencia los cinco ejes de la Estrella de la Retrospectiva (*Starfish* o estrella de mar). Esta instancia te ayudará a definir buenas prácticas desde el inicio y prepararte para enfrentar el trabajo de forma organizada y flexible. Se deberá completar la tabla al menos para 3 sprints técnicos y 1 no técnico.

Formato sugerido:

Sprint tipo y N°	¿Qué hacer más?	¿Qué hacer menos?	¿Qué mantener?	¿Qué empezar a hacer?	¿Qué dejar de hacer?
Sprint técnico - 1	Validaciones continuas con el alumno	Cambios sin versión registrada	Pruebas con datos simulados	Documentar cambios propuestos	Ajustes sin análisis de impacto
Sprint técnico - 2	Verificar configuraciones en múltiples escenarios	Modificar parámetros sin guardar historial	Perfiles reutilizables	Usar logs para configuración	Repetir pruebas manuales innecesarias
Sprint técnico - 8	Comparar correlaciones con casos previos	Cambiar parámetros sin justificar	Revisión cruzada de métricas	Anotar configuraciones usadas	Trabajar sin respaldo de datos
Sprint no técnico - 12 (por ej.: "Defensa")	Ensayos orales con feedback	Cambiar contenidos en la memoria	Material visual claro	Dividir la presentación por bloques	Agregar gráficos difíciles de explicar