

HII

SEQUENCE LISTING

<110> M14 Foundation
Goldin, Ehud
Slaugenhouette, Susan A.
Sun, Mei
Acierno, James S.

<120> A Gene Encoding A New TRP Channel is Mutated in Mucolipidosis IV

<130> 3394/1H557US1

<140> 09/851,494

<141> 2001-05-08

<160> 11

<170> PatentIn version 3.1

<210> 1

<211> 13270

<212> DNA

<213> Homo sapiens

<400> 1		
tctcaattac cccttgcctc tcaaagccca tacagtaggt atacaagtgg	60	acaaaaaaaaag
ttgctcattt atgcaatcaa caaacatctc tggattgctg gggctcagc	120	aggaaacaag
ataaaatatgg cctcgacctg catggagctc atagatacta aattcagaat	180	acttaaaaaaa
taattacggg gtatagtaca ttctaggaga agcataacaa gacttctgat	240	ataaatggca
ggcagcttcc tcaatgaagg attttgtaat cccaataatc actaatttaa	300	taatcagttac
tgtttgccca gccttatgct atagtttttg cattctctca tttaatcctc	360	tcaacagccc
cagtaggtat atgactttga atatccccat tttgcaaattg agaaaattga	420	ggcacatttt
tttttttttt tttagacagt ctgtctgt tgccaggct ggagtgcagt	480	ggtgtgatca
tagctcactg cagcctcgac ctccctggct caagcgatcc tcccacctta	540	gcctcccgag
tagctggat tgccggtgca tgccaccgccc cactgcgcgc agcttggagt	600	tgaaggact
ctggaagatg tagaagtggc attgtcagtg cctagattta aatcccaatt	660	gcctccagg
gtccaaattc ttaaccatta cgctccaggg caaaagtatg caaaggctct	720	ggggctatacg
aaagatgagc tttggatgga ggttaggagcc agatcagagg gccctgatag	780	acgagagtg
ggactctgcc tgtcattaca gagcaatggg aagccgaggg caggttctcg	840	caggaaggat
aggaattatt ctttgaagat gtttgggtt gctggjtaga gagtggagtg gagggaggct	900	gagggaggct
gagatcgggg aggagggtgc tgcaaaagatc caggccagga atgttggaaag	960	actctggct

ggggccatg ggggtgggat aagtggttct atttgataca taatttagaa atcgtgttg 1020
ctgaagatgc gcaggagaag ggtaaaagga gtttctggga gaaagaggaa gacagcgttg 1080
agatagtagg cagggtcata accaggcacc aaggaggata aggggtcaag ctctggacat 1140
ggaagtcaaca agcctggcac cggattcggg gcatggcgg gagccaggc agagctcg 1200
gttgc当地 acatggccac gggccggccgg cagaggcact catgcgcgt gtccggcag 1260
agcgactgcc ttccgaccag agggcgccgg cagaggcact catgcgcgt gtccggcag 1320
gggttgcgt ggccggggg gcccggccgg aggccgtcac gtgaggggct ctgggttacc 1380
gggtcacgtg acccgaggcac agatcagctg atgcggagg gtttgaagcc gcccggcag 1440
ggagcgaggt cgcgtgaca gcccggccgg atccggacca gctgtccccg ccgtacccgc 1500
ctcggtccccg cgctccggcc ccagcatgac agcccccggc ggtccggcgc gtcaggtga 1560
ggccggccggc ggcaccgtgg gcccccaac tcaggccggc gggctgtgtc tcccacctgg 1620
ggccggccggag ctccctagtc ctttttttt aagctccagc gtcactttt cacggtggag 1680
aaaaggccag acggctccta gaacttgggc ggccgggtggg caccagcc tccaaattttt 1740
cctccctgaac ccaggtctg ctgggttccc aaactcagcc agggatcg 1800
agcttctccc tctggggcgg cgaggttctt gggattccca ctgggacgt aggttccgt 1860
tgctcaactt cgtctggaaac tcagacagcg ggcaccagct tctccaaacc gcacgtgaga 1920
ctcccaaggct tccctccctg attccagggg acaaattgtc agttccctta agctcaagcc 1980
tggagagctg gagggattgc cccaggcga ttaactcagt tttagctttt caaaccgtg 2040
gaagccgcagc cttcttaaat tcgggtttt agccaattttt gatgccaccc ctccctgggg 2100
aggctggagg aagaccctt gtgttagctt ccccttctgg agcttagctgg ggaccctac 2160
ctgatagatg tcccggtgtc ccagctagta gggcttgggg tgggttagct gtaatctcag 2220
ctctgtaaac gggccctgac ctctggctt gtcgtaaaca gccacagcg catctcattt 2280
caaaggagg ggcgggaac ttgtccctt ctgcaaggaa gtttctgaca gtgcacacat 2340
ttatccctgac tgcttgcata ggcaggaggc caggccctag aaagcagcac gggccaggc 2400
cctagaaagc acatccccat ggggtgtga cagggacagt ttgggttac tgtgacttgt 2460
tttgacttca gcagttgtgaa aagctttaga tctaaccatt aggctggaaa aaaataaaca 2520
gtgattagaa cagtttgtgt ttgtgtaa ggtcttttac tgctgtgtt cactgtttt 2580
tcagaggcgc ttccaggatct caacatcaag gtcaggagc aggggtggact tttttttttt 2640
ttaataaaact tttttttgtt gcccaggctg tagtgcgtg gcataatcc agtcattgt 2700

aacatcgAAC tcctgggctc aagtgtatcc cccaaACTcAG CCTCCGGGT agatggggTC 2760
ccagCTactA actacgggca tgaGCCgtca cacCTgactA tttaaaaaaa atgtttttt 2820
ttttagaca gggaggtctc getgtattac cttaggtgga tcctcccacc ttggcctccc 2880
aaaggcgttg ggataaacagg catgagccac tjaGccccAGC caaggggTCG ccttttAA 2940
attccactc ttcaGATgag gagatggagg ctcaGGGagg tacctggagt caacCTactG 3000
taaagtggca ggtctggat ttGatgtcaG ggctgcAtGA tttctaggAG ctggTgcTT 3060
tcagggagat aaaatgagtc tttagcGAat gtgttccatt attattactt atgttGtcaa 3120
ttacctcttc tccaggctc tggcttctGA gagtgtcAGC tGatgggcca ggttataatG 3180
aacccagagg tcatctttG ggtatttGtc cagacaAAacc tagaatacAG gctgagttct 3240
atgctcatgt ctggaaGctG gAgttggat aagccAGca ggcttGAACG cccAGtGAAA 3300
agccAGtGgg agcAGttcat tctctccccA ctgatcaata acggGAacat tGatGAAatG 3360
ttctgacatt caccatggac cagccccTGT gatcaatGt tcataAGcat ccAGtccTTA 3420
gcgttcccAt gagacatatt attgccccat ttGcgAGAtG aggAAactGA ggctcAGaga 3480
gctggTgAGC aggaggggca ggaAtcAGcc caGGccCTGT acctccAAa cccAAactCA 3540
taacctctGA gcaggacGGG tGcatAGata cctacaAtgt cacAGGTTT ctggTTTct 3600
ttagacctct cAGAGcttt ccttggcagg AGcatGGGA catGAAGATA gggcgtgtGc 3660
tgccttcctG gttggagaaa gggAAAAGG ggAGttGccc aggCCTcAcc ccAGtGccCT 3720
ctcctattcc cacAGAGACC gagcggcttc tgacccccAA ccccGGGTat gggacccagg 3780
cggggccttc accggccccCT cCGACACCCC cagaAGAGGA agaccttcGc cgtcgtctca 3840
aatactttt catgAGtccc tGcgACAAGt ttGAGGccAA gggccGcaAG ccctGcaAGc 3900
tGatGtGca aGtGGtcaAG atcctggTgg tcaCAGGtGca ggtGAGGccA gccaAGcAGG 3960
ggccccAGt gaaggccacc tGtggctgt gtGcttcTTG aAGAGAGtct taaAGcAGca 4020
ctttGGAAGG cCGAGGccGG tGAGtGctt GAGGtGGGA gttcaAGACC aGtctGGccA 4080
GcatGGtGAA accccatctc tactaaaaAT acaaaaaAT tagccGtGcG tGGtGGcGGG 4140
tgcctgtAAT cccAGtAct tGcAGGctG AGGcAGGAGA AtGcTTGAA ttGGGAGGcG 4200
GAGGttGccG tGAGtGAAA tcatGccACT GcACTccAGc ctGGGcaACA gagcaAGACT 4260
gtctcaaaaa aaaaaAGAAG cCGACTctGA ggccAGAGA ggttAGGAGA cttGccccAA 4320
gtcacacAGc AATAGAACAT tGGGAGtGg gatTTGAAAC cAGGcAGtct gacaccatgt 4380

tgacccaatg gctgcacaga tagttctccc tccccatgc cagaccctgt gctggctct 4440
ggaaacccca agatgaatca gacccageca ctgccttaag tgcttacttc atgtttggg 4500
ctgacttttag catgtcacca tgcctctaattttccctctg aaaaggacc caattgtcca 4560
ggcatggtagtgg ctcatgcctg taatgccagg actttggag gctgagttgg gtggatcatt 4620
tgaggccagg agtttgagac cagccctggc aacattgcaa aaccccgctt ctactaaaaa 4680
tacaaaaattt agctgggttt ggtggcaggt acctgttaact cagctactca ggaggctgag 4740
acaggagaat tgcttgaacc cagggggtagg aggtttagt gagctgagat cataccatgg 4800
cactccaact tgggcaacag agtgagactc tgtctaaaaa aagaaaagaa aaggaccca 4860
gtcatggtagtac ttaccctgaa agtttgggtt taacacagaa tcggacatcc agtaaacatt 4920
taatgaacgt tagtccctgc agtgagatag atgagtcccc accctgtgtt gtacggggaa 4980
ggacacagtg gtgggcgtgg catggagctt atgccaggag gtgggtgaa attaatcaa 5040
gcaaaagaaat gcacaagtga aatccgttt tggcccaa gttacgcagg ccctgeccca 5100
ccccagtgga catctgcagg gccctccctg tcctttcca gggcctgtgc cctgagggag 5160
atacacccttcc acccccatcc tagccatgcc aacctctact accctctccc cagctcatcc 5220
tgtttggct cagtaatcag ctggctgtga cattccggaa agagaacacc atgccttcc 5280
gacaccttcc cctgctggc tactcgacg gagcggatga cacctcgca gcctacacgc 5340
gggagcagct gtaccaggcc atcttccatg ctgtggacca ggtgctggg ggcgggcagg 5400
tgctgggtggg caggcaggtg caggtggcg ggcaggatgc gttggcgaa caggtgtgg 5460
tggcgggca ggtgcaggtg ggtggctgc agagagcgaa ccggactcac aggcctccc 5520
cttctctgcc cacagtagctt ggcgttgcct gacgtgtcac tggccggta tgcgtatgtc 5580
cgtgggtggg gtgacccttg gaccaatggc tcaggcttg ctctctgcca gcggtactac 5640
caccgaggcc acgtggaccc ggccaaacgac acattgaca ttgatccgtt ggtggttact 5700
ggtgagtgaa caggacgagg cttcaactgtt gggagcctga gctgctgggaa ttaaaatcaa 5760
cagctgtggc tgggcacggc ggctcacgac tataataccca gcactttggg aggctgagga 5820
ggaaggattt cttgaggcca gaagttttag accagccctgg gccacgtagg aagaccttgt 5880
ctctacgcac aaacaaatataa gctggcgttg gtggcgtgcc cctgtggtcc cagctactca 5940
ggaggctgag gcaggaggat cgtttagtc cgggaggttg aggctgcagt aagctatgac 6000
cacgctgttg cactccaccc tgggtgacag agtgagaccc tggctaaaaa aaaaaaaaaaa 6060
aaaaaaaaaa caagtatgtt tagtggtagt gtgacttttg ccacgtagaa agcaccagat 6120

gttatatttt aatatggctc attcagtaaa acatccgcag gcccagagag tgccaggcct 6180
gttagaatga cccaaacctg gggaaagcaca gggaaagaagg ccactgggg ctctggggag 6240
accagectgg cctccccggc ccacctgaggc ccttcacctga ctccctgtcc ttagactgca 6300
tccaggtgga tccccccgag ggccccctc cgccccccag cgacgatctc accctttgg 6360
aaagcagctc cagttacaag aacctcacgc tcaaattcca caagtactgc ctgctcactc 6420
gaggggggcc cagggtgggg gaggcagcac actaggcact ctccaccccag caactactc 6480
cctaagggtgg ggacagggcc ccccccggc cgctggtgcc tgcgtgggtga gcacttcccc 6540
tgccagctgc agagtcagca cgtggcaggg gacgctggca cttggggccg gaagggaccc 6600
gaagacgccc ctgaccctca cccgagcctc ctgccttaggc tggtaatgt caccatccac 6660
ttccggctga agaccattaa cctccagago ctcatcaata atgagatccc ggactgctat 6720
acttcagcg tcctggtgag gccccccggg aacccacagg gctcttgagt tccagggcag 6780
ggacctggc agggagtgac ttgggagcac tggccaaggg caagcgtgcg ggtgatgagg 6840
gagggagccc ggggtctgtc aggccacctg tcatgtggac cttggggctt ggggctgcca 6900
agtttactc tgcccccaac tggcccccac agatcacgtt tgacaacaaa gcacacagtg 6960
ggcgatccc catcagcctg gagacccagg cccacatcca ggagtgtaaag cacccagtg 7020
tctccagca cggtgagccc ctgagccca gaccagcact gaccaggggc cctggctgt 7080
cctggattc cccaaagcccc agatcagcgc tgcctggggg ccgtgacctc cccaggaatc 7140
cgctgagcct cagatcagca cagaccaggg accccgtctt gtgctgagat cccccaagcc 7200
ccagaccagc actgaccggg gttcttgact caccctaaac aagccctgag cccactgacc 7260
aaccaaaaacc agccgtgcag ccccttaggt ctccagcctg gcctggcacc aatgctagcc 7320
tcccaaggct ccatgccatc cttggcccta cccgctctgc cttccccggca ggagacaaca 7380
gttccggct cctgtttgac gtggtggtca tcctcacctg ctccctgtcc ttccctctct 7440
gcggccggc actccttcga ggcttcctgc tgcagaacgt gaggcttctg cgtcatgtgt 7500
gctgggtgtcc tccccggctg gcacctggggc gataaaagcc agggctttga gggcctgtg 7560
cctggtcagg ccctcaccccc gcctgccttc tgcaggagtt tgtggggttc atgtggcggc 7620
agcggggacg ggtcatcagc ctgtgggagc ggctggaatt tgtcaatggc tggtacatcc 7680
tgctcgtcac cagcgatgtg ctaccatct cggggaccat catgaagatc ggcacatcgagg 7740
ccaaagggtgcg tcctgcacaaac accctgggcg ccaggccca tcctgtgt cagtgcctat 7800

ccggggccat atcctcccc agcccccca aaggaaggc tggccagat aggttacgc 7860
agctcccaec cgcaagaactt ggcgagctac gacgtctgca gcatctctt gggcacctcg 7920
acgtgtctgg tgtgggtggg cgtgatcgc tacctgadct tcttccacaa ctacaatgtg 7980
agtttgcac atgcagctgg gccttcaca tggtaactcc acaccctcca aataaatccc 8040
tacacacgca gcctcacca gcggggca atggccctt gcaagectcc tcctctacc 8100
tgcccacacc agatataatct gtcaactgcac ctgcgcggg cccgggagc ctgtctttt 8160
gtgcccaccc agctgagtc agccgtgcgt tgccctcgga cccctcaga cgtggccacg 8220
ccccctctag gcacccactg gtcctcatga ccacacggc tgtgcctcg gcaaggcccc 8280
gcacctccca accccatctg ggtgcacaca gctgacctga gttgtggcca cacccctcaac 8340
gaggctccct ctgccccaac ccagatcctc atgcacacac tgggggtggc cctgcccagc 8400
gtcatgcgtc tctgtgtcg cgtggctgtc atctacctgg gctactgttt ctgtggctgg 8460
atcggtgtgg ggccctatca tgtgaaggta catctaaccctt ctgtatgtccc tgacattgac 8520
cctgtgacct tgtcattgac actgtgaccc ccagatgacc cttgggtgac tgctggaggt 8580
ctgtccactg tccccctgtgg tccttggta ccctgacact gaccctgtgc cattattgtt 8640
gtcacagttt ttgatgaccc tatttcgacc tgaattactc ccctctgtt ctatctaccc 8700
agaccctagg tcggccctgt ggccctgtca ttgaccctgt gtcggggcca ttcacatggg 8760
acccctggc gggacctggc cattcacata gtgacccctg cttgggaccc ggccattcac 8820
gtgggacccc agcctgggtc cggccatcc acgtgggacc ccagcctggg accccggcat 8880
tcacaggggc cctagctgg aacccgacca ttcacatggt gaccgcagcc cgggacccgg 8940
ccattcatgt gggcccccag ccaccagtc ctgcattt gcatgggacc ccagctgac 9000
ccctggccccc gttcctggc catgccttg gtcctctga cccggccggc cctctggcag 9060
ttccgctcac tctccatggt gtctgagtc ctgttctgc tcatcaatgg ggacgacatg 9120
tttgtgacgt tcggcccat gcaggcgcag cagggccga gcaagctggt gtggctttc 9180
tccctggctt accttactc ctgcattcgc ctcttcatct acatggtgc cagcctttc 9240
atcgctca tcaccggcgc ctacgcaccc atcaaggta gcccgcacca cccagccctg 9300
agctcggtt ctgggtggcc tggagtcgtc catgaggggg tcttggggac accgcagggt 9360
gaacagagaa gacccaggag agaatatggg agactctatg aaaccaaaaa gagggtggtt 9420
cagaactggg gggcgccagg ggtatgtcaag gtgggtttgg gccaggaggg ggctgagtc 9480
agtctttggc aacaggcga gcaatgttgc gatgtttttt atttattttt ttatttgaga 9540

cgaggcttg ctctgtcacc cagggtggag tgcagtggtg cgatcttgc tcactgcaac 9600
ctccaccctc cgggttcaag caattctgtc tcagcctctt gagtagctgg gactacaggc 9660
acacgccacc acgtccagct aatttttgta ttttttagtag agatggcatt tcaccgcatt 9720
ggtcaggctg gtctcaaact cctggctca ggagatctac tgccttggcc tcccaaagtg 9780
ttgggattac aggctgtgagc caccacgccc ggcctatttt attttattat taaagtattg 9840
ttctttattt tattagagac aagggtctca ctgtgttacc caggctggtt tcaaactct 9900
gaggtaagt gatcctccca ctttggctc ccaaagtgtc gggattacag gcgttaagcca 9960
ccacacccag cctattatta ttatTTTT tttgaaatgg aatcttaccc tgtggccag 10020
gctggagtgc aatggcatga tctcggctca ctgcaacctc caccttctga gttgaagcga 10080
tccttgcctc tcagcctctt gagtagctgg gattacttgc acgtgccacc acacctggct 10140
aattttgtta tttttactag agatggggtt tcaccacgtt ggccaggctg gtctcgaact 10200
cctgacctca ggtgatccac ctgccttggc ctcccaaggt gctggattt caggcatgag 10260
ccactgaacc cagctaagtc atacagtttca aatgaccttg tcattgaccc tgggacgttg 10320
ccattaacat ggtgatcctc agctggcccc attcctatgg cggacctcta aaaacccaac 10380
cctgacccca gcccccagcc atgccccca ctccctctga ccctgccccaa gtttagctc 10440
tttattttt tattttttt gagacggagt ctgcgtgtgt cacccaggct ggagtgcagt 10500
ggtgcaatct cggctcactg caacctctgc ctccgggtt caagcgattc tcctgcctca 10560
gcctcctgag tagctggat tataggcaca cgccaccatg cctggctaat ttttgtattt 10620
ttagtagaga tggggtttca ccatgttgac caggctggc tcaaactctt gaccttgta 10680
tccgcccacc tcaggctccc aaagtgtgg gattacgggc gtgagccact gtgccccggcc 10740
caggttagct tctgagcagt aaaactggc tcaacccagg gctgtctgat tccagaagcc 10800
gtgctcctaa cccctctgtc ctcaagtttag tagggtggct gggAACAGTG gtttccctgc 10860
aaagctgcaag ggtcaggggc cagagcagga tgcggaaagtg gcaggttagat aggattttt 10920
cagcagatat atctaagggc caagatctgt gctgggttct gggcatggag gaaaatcagg 10980
tgtgcatgat ccgtccaagg cctgtggca aggatggcac aggaacagac atcccatgac 11040
caatgaccta cttgttaacag gtatgaagga agagtggaaag gttgcagagg gaccctgtct 11100
ttagatttgtt atgacaggag atccaggaga gcttctatcc ttttctatcc atcaactagtc 11160
tctagcccta tgcagctatt taaattttga ttttaattcc ggttggccac ggtgactcac 11220

gcctgtatacccggcccttttgggaggccga ggggggggtgg ggggtggatca cctgaggtta 11280
ggagttcgag accagcctgg ccaacatggc aaaaccccat ctctactaaa aataaaaaaa 11340
atttagcggac gtggtggcag gcacctgtaa tcccaagctac tccggaggct gaggcagtag 11400
aattgtttga acctgggacg tagagggttc agtgagccga gatcaagcca ctgcactcca 11460
acgtggcga gagaccgaga ctctgttca aagacaacaaac aacaattttt taaaaatttt 11520
aattcaaattt aagtacaattt gcaaatttag cctctgactt gcaccatctt gtatccagtg 11580
ctcaaaagcc agtgtggctg gtggctgcca tattggacag catagatattt gaatacttcc 11640
atcgccctcta gactgaagag atgggagccc agggcagtg caccgagggg aaggaatagc 11700
taaagcaaag gtcttagtagc ctgaaaaaac ttggagaaaaa gatggccctt ccatgaggcc 11760
gagtgagagg aaggaagcct tggctggac cctgccacat ccaatgtcac cggcagatgg 11820
gtacacccccc ttttccccat gcatggattt agctgtccca cagacacattt gactcaggcc 11880
cttggaaacta cttectgtct tgccttagca cgtagacatc acacacatgc atccactcag 11940
gtggcagtc tcagggccctg ctccccactgc tgtgctcago gtgcattccag ctcaactaat 12000
agatggtttc tgagcatcga ggtcatgtca gccctggctc taggtctgtt ggtgctggac 12060
ctacagcaga aggcaaaagac acagactggc aaagacacag cttgttatcca gtttcagggg 12120
tcagggagg tccctctgtt caagcaaact gtggaaacaac ggggtggagca ggcccgcaaa 12180
gtgcaaaggc ccggagggtgg gaagcgatgc agatatggct ggagggggagg gcccggacttca 12240
aggcccttgg aggttggag ccactttcaag gctgagcctc ccggcttctc tccccagcat 12300
cccgccggcq caggcgcaga ggagagcgag ctgcaggcc acatgcaca gtgccaggac 12360
agccccaccc ccggcaagtt ccgcgcggg agcggctcgg cctgcagccct tctctgtgc 12420
tgccgaaaggc tcgagttcccg ggtctggcac attcagattt gaggttacgg aatggggaaa 12480
ggggagcgag ccagagaaaaa ctgacgcccc tcttccttc ttccttcctc cagggacccc 12540
tcggaggagc attcgctgct ggtgaatttga ttgcaccccttgc ctgcgttgg accgttaggccc 12600
ctggactgca gagacccccc ccccccaccc cgcttattttt tttgttagggt ttgttttaa 12660
ggatcggttc cctgtcgccgc ccggaggaggc cctggacccctt tcgtgtcgga cccttgggg 12720
cggggagact ggggtggggag ggtgttgaat aaaaggaaaa ataaatgtgt cgttttcatt 12780
tttagcgggaa ggagcagtcc ttgcgttaag cggtgtgagg ccctttaagg cgcggccaca 12840
ctcagcatgg cggcctcagt cggccttcca agcatggcgc ggggaggaggq ggtggggagg 12900
tcgggaggga ctgcgggtcg actaggagtg aataattttaa agggggcccgcg cctgcggagc 12960

cggcggaac gctagcggtg ttggcgcgga gtggaccccg gctgcggccc ctgggtgagt 13020
ctgggttcc gttagcctcg caggggtgtc cttcgaggg tcgttagcga gcctccgctt 13080
tcacacgatc tgcctccga ttcttgttaa ctctagactt tctgtatgttc ccataacccc 13140
cacgtctcg caggtgttcc cacacccgta gccagctgtg ccctgaggtg gaagaggacc 13200
ggccacccag gaattttcca agtaacgact cggagtcctc gggatttcctt tctccggcc 13260
cccgaaatttc 13270

<210> 2
<211> 2051
<212> DNA
<213> Homo sapiens

<400> 2
agatcagctg atgccggagg gttgaagcc gcgcgcgag ggagcgaggt cgcaatgaca 60
gcggcgccggcg atoggaccca ggctgcggcg ccgtacccgc ctgcgtcccc cgctcccgcc 120
ccagcatgac agccccggcg ggtccgcgcg gctcagagac cgagcggctt ctgaccccca 180
accccggtta tgggacccag gcggggcctt caccggcccc tccgacacccc ccagaagagg 240
aagaccttcg ccgtcgcttc aaatacttt tcatgagtcc ctgcgacaag ttgcgagcca 300
aggcccgcaa gcctgcaag ctgatgctgc aagtggtcaa gatcctggtg gtcacgggtgc 360
agctcatctt gtttggctc agtaatcagc tggctgtgac attccggaa gagaacacca 420
tcgccttcgg acacctcttc ctgctgggt actcggacgg agcggatgac accttcgcag 480
cctacacgcg ggagcagctg taccaggcca tcttcatgc tgtggaccag tacctggcgt 540
tgctctgacgt gtcactggc cggtatgctg atgtccgtgg tgggggtgac cttggacca 600
atggctcagg gcttgccttc tgccagcggt actaccacgg aggccacgtg gacccggcca 660
acgacacatt tgacattgtat ccgtatgggg ttactgactg catccaggtg gatccccccg 720
agcggccccc tccgcccccc agcgacgatc tcaccctttt ggaaagcagc tccagttaca 780
agaacctcac gctcaaattc cacaagctgg tcaatgtcac catccacttc cggctgaaga 840
ccattaacctt ccagagcctc atcaataatg agatccggta ctgctataacc ttcaagcggtcc 900
tgatcacgtt tgacaacaaa gcacacagtg ggcggatccc catcagcctg gagacccagg 960
cccacatcca ggagtgtaaag caccggatgtg tcttcagca cggagacaac agcttccggc 1020
tcctgtttga cgtgggtggtc atccctcacct gtcggatgtc ctcccttc tggccggct 1080
cactccttcg aqgttcctq ctgcagaacg agtttgtggg ttcatgtgg cggcaqcggg 1140

gacgggtcat cagcctgtgg gagcggctgg aatttgtcaa tggctggtaatccctgctcg 1200
tcaccagcga tgtgttcacc atctcggca ccatcatgaa gatcggcata gaggccaaga 1260
acttggcgag ctacgacgtc tqcagcatacc tcctggcac ctgcacgctg ctgggtgtggg 1320
tggcggtat ccgctacatcg acsttcttcc acaactacaa tatcctcatc gccacactgc 1380
gggtggccct gcccagcgtc atgcgtttct gctgctgcgt ggctgtcatc tacctgggct 1440
actgtttctg tggctggatc gtgtggggc cctatcatgt gaagttccgc tcactctcca 1500
tggtgtctga gtgcctgttc tgcgtcatca atggggacga catgtttgtg acgttcgccc 1560
ccatgcaggc gcagcaggcgc cgtagcagcc tgggtgtggct ttctcccaag ctctaccttt 1620
actccttcat cagccttttc atctacatgg tgctcagcct ttcatcgcg ctcatcacccg 1680
gcgcctacga caccatcaag catccccggcg gcgcaggcgc agaggagac gagctgcagg 1740
cctacatcgc acagtgcacag gacagccccaa cttccggcaa gttccgcgcggcttccggcg 1800
cgccctgcag cttctctgc tgctgcggaa gggacccctc ggaggagcat tcgctgtgg 1860
tgaattgatt cgacctgact ggcgttgac cgtaggccct ggactgcaga gaccccccgc 1920
cccgaccccg ctatattttt tgttagggttt gcttttaagg atcggctccc tgtcgcgc 1980
gaggaggcgttcc gttccggacc cttggggcg gggagactgg gtggggaggg 2040
tgttqaataa a 2051

<210> 3
<211> 580
<212> PRT
<213> Homo sapiens

<400> 3

Met Thr Ala Pro Ala Gly Pro Arg Gly Ser Glu Thr Glu Arg Leu Leu
1 5 10 15

Thr Pro Asn Pro Gly Tyr Gly Thr Gln Ala Gly Pro Ser Pro Ala Pro
20 25 30

Pro Thr Pro Pro Glu Glu Glu Asp Leu Arg Arg Arg Leu Lys Tyr Phe
 35 40 45

Phe Met Ser Pro Cys Asp Lys Phe Arg Ala Lys Gly Arg Lys Pro Cys
 50 55 60

Lys Leu Met Leu Gln Val Val Lys Ile Leu Val Val Thr Val Gln Leu
65 70 75 80

Ile Leu Phe Gly Leu Ser Asn Gln Leu Ala Val Thr Phe Arg Glu Glu
85 90 95

Asn Thr Ile Ala Phe Arg His Leu Phe Leu Leu Gly Tyr Ser Asp Gly
100 105 110

Ala Asp Asp Thr Phe Ala Ala Tyr Thr Arg Glu Gln Leu Tyr Gln Ala
115 120 125

Ile Phe His Ala Val Asp Gln Tyr Leu Ala Leu Pro Asp Val Ser Leu
130 135 140

Gly Arg Tyr Ala Tyr Val Arg Gly Gly Asp Pro Trp Thr Asn Gly
145 150 155 160

Ser Gly Leu Ala Leu Cys Gln Arg Tyr Tyr His Arg Gly His Val Asp
165 170 175

Pro Ala Asn Asp Thr Phe Asp Ile Asp Pro Met Val Val Thr Asp Cys
180 185 190

Ile Gln Val Asp Pro Pro Glu Arg Pro Pro Pro Pro Ser Asp Asp
195 200 205

Leu Thr Leu Leu Glu Ser Ser Ser Tyr Lys Asn Leu Thr Leu Lys
210 215 220

Phe His Lys Leu Val Asn Val Thr Ile His Phe Arg Leu Lys Thr Ile
225 230 235 240

Asn Leu Gln Ser Leu Ile Asn Asn Glu Ile Pro Asp Cys Tyr Thr Phe
245 250 255

Ser Val Leu Ile Thr Phe Asp Asn Lys Ala His Ser Gly Arg Ile Pro
260 265 270

Ile Ser Leu Glu Thr Gln Ala His Ile Gin Glu Cys Lys His Pro Ser
275 280 285

Val Phe Gln His Gly Asp Asn Ser Phe Arg Leu Leu Phe Asp Val Val

290

295

300

Val Ile Leu Thr Cys Ser Leu Ser Phe Leu Leu Cys Ala Arg Ser Leu
305 310 315 320

Leu Arg Gly Phe Leu Leu Gln Asn Glu Phe Val Gly Phe Met Trp Arg
325 330 335

Gln Arg Gly Arg Val Ile Ser Leu Trp Glu Arg Leu Glu Phe Val Asn
340 345 350

Gly Trp Tyr Ile Leu Leu Val Thr Ser Asp Val Leu Thr Ile Ser Gly
355 360 365

Thr Ile Met Lys Ile Gly Ile Glu Ala Lys Asn Leu Ala Ser Tyr Asp
370 375 380

Val Cys Ser Ile Leu Leu Gly Thr Ser Thr Leu Leu Val Trp Val Gly
385 390 395 400

Val Ile Arg Tyr Leu Thr Phe Phe His Asn Tyr Asn Ile Leu Ile Ala
405 410 415

Thr Leu Arg Val Ala Leu Pro Ser Val Met Arg Phe Cys Cys Cys Val
420 425 430

Ala Val Ile Tyr Leu Gly Tyr Cys Phe Cys Gly Trp Ile Val Leu Gly
435 440 445

Pro Tyr His Val Lys Phe Arg Ser Leu Ser Met Val Ser Glu Cys Leu
450 455 460

Phe Ser Leu Ile Asn Gly Asp Asp Met Phe Val Thr Phe Ala Ala Met
465 470 475 480

Gln Ala Gln Gln Gly Arg Ser Ser Leu Val Trp Leu Phe Ser Gln Leu
485 490 495

Tyr Leu Tyr Ser Phe Ile Ser Leu Phe Ile Tyr Met Val Leu Ser Leu
500 505 510

Phe Ile Ala Leu Ile Thr Gly Ala Tyr Asp Thr Ile Lys His Pro Gly
515 520 525

Gly Ala Gly Ala Glu Glu Ser Glu Leu Gln Ala Tyr Ile Ala Gln Cys
530 535 540

Gln Asp Ser Pro Thr Ser Gly Lys Phe Arg Arg Gly Ser Gly Ser Ala
545 550 555 560

Cys Ser Leu Leu Cys Cys Gly Arg Asp Pro Ser Glu Glu His Ser
565 570 575

Leu Leu Val Asn
580

<210> 4
<211> 553
<212> PRT
<213> Homo sapiens

<400> 4

Met Ala Asp Pro Glu Val Val Val Cys Ser Cys Ser Ser His Glu Glu
1 5 10 15

Glu Asn Arg Cys Asn Phe Asn Gln Gln Thr Ser Pro Ser Glu Glu Leu
20 25 30

Leu Leu Glu Asp Gln Met Arg Arg Lys Leu Lys Phe Phe Phe Met Asn
35 40 45

Pro Cys Glu Lys Phe Trp Ala Arg Gly Arg Lys Pro Trp Lys Leu Ala
50 55 60

Ile Gln Ile Leu Lys Ile Ala Met Val Thr Ile Gln Leu Val Leu Phe
65 70 75 80

Gly Leu Ser Asn Gln Met Val Val Ala Phe Lys Glu Glu Asn Thr Ile
85 90 95

Ala Phe Lys His Leu Phe Leu Lys Gly Tyr Met Asp Arg Met Asp Asp
100 105 110

Thr Tyr Ala Val Tyr Thr Gln Ser Asp Val Tyr Asp Gln Leu Ile Phe
115 120 125

Ala Val Asn Gln Tyr Leu Gln Leu Tyr Asn Val Ser Val Gly Asn His
130 135 140

Ala Tyr Glu Asn Lys Gly Thr Lys Gln Ser Ala Met Ala Ile Cys Gln
145 150 155 160

His Phe Tyr Lys Arg Gly Asn Ile Tyr Pro Gly Asn Asp Thr Phe Asp
165 170 175

Ile Asp Pro Glu Ile Glu Thr Glu Cys Phe Phe Val Glu Pro Asp Glu
180 185 190

Pro Phe His Ile Gly Thr Pro Ala Glu Asn Lys Leu Asn Leu Thr Leu
195 200 205

Asp Phe His Arg Leu Leu Thr Val Glu Leu Gln Phe Lys Leu Lys Ala
210 215 220

Ile Asn Leu Gln Thr Val Arg His Gln Glu Leu Pro Asp Cys Tyr Asp
225 230 235 240

Phe Thr Leu Thr Ile Thr Phe Asp Asn Lys Ala His Ser Gly Arg Ile
245 250 255

Lys Ile Ser Leu Asp Asn Asp Ile Ser Ile Arg Glu Cys Lys Asp Trp
260 265 270

His Val Ser Gly Ser Ile Gln Lys Asn Thr His Tyr Met Met Ile Phe
275 280 285

Asp Ala Phe Val Ile Leu Thr Cys Leu Val Ser Leu Ile Leu Cys Ile
290 295 300

Arg Ser Val Ile Arg Gly Leu Gln Leu Gln Gln Glu Phe Val Asn Phe
305 310 315 320

Phe Leu Leu His Tyr Lys Lys Glu Val Ser Val Ser Asp Gln Met Glu
325 330 335

Phe Val Asn Gly Trp Tyr Ile Met Ile Ile Ser Asp Ile Leu Thr
340 345 350

Ile Ile Gly Ser Ile Leu Lys Met Glu Ile Gln Ala Lys Ser Leu Thr

355

360

365

Ser Tyr Asp Val Cys Ser Ile Leu Leu Gly Thr Ser Thr Met Leu Val
370 375 380

Trp Leu Gly Val Ile Arg Tyr Leu Gly Phe Phe Ala Lys Tyr Asn Leu
385 390 395 400

Leu Ile Leu Thr Leu Gln Ala Ala Leu Pro Asn Val Ile Arg Phe Cys
405 410 415

Cys Cys Ala Ala Met Ile Tyr Leu Gly Tyr Cys Phe Cys Gly Trp Ile
420 425 430

Val Leu Gly Pro Tyr His Asp Lys Phe Arg Ser Leu Asn Met Val Ser
435 440 445

Glu Cys Leu Phe Ser Leu Ile Asn Gly Asp Asp Met Phe Ala Thr Phe
450 455 460

Ala Lys Met Gln Gln Lys Ser Tyr Leu Val Trp Leu Phe Ser Arg Ile
465 470 475 480

Tyr Leu Tyr Ser Phe Ile Ser Leu Phe Ile Tyr Met Ile Leu Ser Leu
485 490 495

Phe Ile Ala Leu Ile Thr Asp Thr Tyr Glu Thr Ile Lys Gln Tyr Gln
500 505 510

Gln Asp Gly Phe Pro Glu Thr Glu Leu Arg Thr Phe Ile Ser Glu Cys
515 520 525

Lys Asp Leu Pro Asn Ser Gly Lys Tyr Arg Leu Glu Asp Asp Pro Pro
530 535 540

Val Ser Leu Phe Cys Cys Cys Lys Lys
545 550

<210> 5
<211> 652
<212> PRT
<213> Drosophila

<400> 5

Met Gln Ser Tyr Gly Pro Gly Ala Gln Thr Ala Pro Ala Val Lys Arg
1 5 10 15

Arg Thr Asp Ser Tyr Glu Ala Ala Gln Gln Gln Gln Ser Pro Glu
20 25 30

Ser Asp Glu Glu Tyr Val Asn Thr Arg Ile Leu Arg Arg Gln Val Gln
35 40 45

Leu Gln Ser Thr Pro Val Ala Pro Val Val Pro Met Pro Ile Ser Ala
50 55 60

Gly Ser Gly Thr Ala Pro Pro Ser Val Asp Gly Arg Glu Glu Gln Pro
65 70 75 80

Glu Phe Pro Gly Ser Ser Ala Ala Ser Tyr Gln Glu Glu Arg Met Arg
85 90 95

Arg Lys Leu Gln Phe Phe Met Asn Pro Ile Glu Lys Trp Gln Ala
100 105 110

Lys Arg Lys Phe Pro Tyr Lys Phe Val Val Gln Ile Val Lys Ile Phe
115 120 125

Leu Val Thr Met Gln Leu Cys Leu Phe Ala His Ser Arg Tyr Asn His
130 135 140

Ile Asn Tyr Thr Gly Asp Asn Arg Phe Ala Phe Ser His Leu Phe Leu
145 150 155 160

Arg Gly Trp Asp Ser Ser Arg Glu Val Glu Ser Tyr Pro Pro Ala Val
165 170 175

Gly Pro Phe Ala Leu Tyr Leu Lys Ser Glu Phe Phe Asp Thr Val Gln
180 185 190

Tyr Ala Val Asn Gly Tyr Ala Asn Val Ser Arg Ser Ile Gly Pro Tyr
195 200 205

Asp Tyr Pro Thr Pro Asn Asn Thr Met Pro Pro Leu Lys Leu Cys Leu
210 215 220

Gln Asn Tyr Arg Glu Gly Thr Ile Phe Gly Phe Asn Glu Ser Tyr Ile
225 230 235 240

Phe Asp Pro His Ile Asp Glu Val Cys Glu Arg Leu Pro Pro Asn Val
245 250 255

Thr Thr Ile Gly Val Glu Asn Tyr Leu Arg Gln Arg Asp Val Glu Val
260 265 270

Asn Phe Ala Ser Leu Val Ser Ala Gln Leu Thr Phe Lys Ile Lys Thr
275 280 285

Val Asn Phe Lys Ala Asn Gly Gly Pro Leu Ser Ala Pro Asp Cys Phe
290 295 300

Arg Phe Asp Ile Ser Ile Thr Phe Asn Asn Arg Asp His Asp Gly Gln
305 310 315 320

Met Leu Leu Ser Leu Asp Ala Glu Ala Thr Arg Leu Lys Cys His Gly
325 330 335

Ala Thr Asp Phe Ile Ser Asp Ala Asn Phe Asp Ser Met Leu Arg Ser
340 345 350

Val Leu Asn Ile Phe Val Leu Leu Thr Cys Ala Leu Ser Phe Ala Leu
355 360 365

Cys Thr Arg Ala Leu Trp Arg Ala Tyr Leu Leu Arg Cys Thr Thr Val
370 375 380

Asn Phe Phe Arg Ser Gln Phe Gly Lys Glu Leu Ser Phe Asp Gly Arg
385 390 395 400

Leu Glu Phe Val Asn Phe Trp Tyr Ile Met Ile Ile Phe Asn Asp Val
405 410 415

Leu Leu Ile Ile Gly Ser Ala Leu Lys Glu Gln Ile Glu Gly Arg Tyr
420 425 430

Leu Val Val Asp Gln Trp Asp Thr Cys Ser Leu Phe Leu Gly Ile Gly
435 440 445

Asn Leu Leu Val Trp Phe Gly Val Leu Arg Tyr Leu Gly Phe Phe Lys

450 455 460
Thr Tyr Asn Val Val Ile Leu Thr Leu Lys Lys Ala Ala Pro Lys Ile
465 470 475 480

Leu Arg Phe Leu Ile Ala Ala Leu Leu Ile Tyr Ala Gly Phe Val Phe
485 490 495

Cys Gly Trp Leu Ile Leu Gly Pro Tyr His Met Lys Phe Arg Ser Leu
500 505 510

Ala Thr Thr Ser Glu Cys Leu Phe Ala Leu Ile Asn Gly Asp Asp Met
515 520 525

Phe Ala Thr Phe Ala Thr Leu Ser Ser Lys Ala Thr Trp Leu Trp Trp
530 535 540

Phe Cys Gln Ile Tyr Leu Tyr Ser Phe Ile Ser Leu Tyr Ile Tyr Val
545 550 555 560

Val Leu Ser Leu Phe Ile Ala Val Ile Met Asp Ala Tyr Asp Thr Ile
565 570 575

Lys Ala Tyr Tyr Lys Asp Gly Phe Pro Thr Thr Asp Leu Lys Ala Phe
580 585 590

Val Gly Thr Arg Thr Ala Glu Asp Ile Ser Ser Gly Val Phe Met Thr
595 600 605

Asp Leu Asp Asp Phe Asp Gln Thr Ser Phe Leu Asp Val Val Lys Ser
610 615 620

Ile Cys Cys Cys Gly Arg Cys Gly Arg His Gln Glu Pro Ala Gln Pro
625 630 635 640

Asn Ser Gly Tyr Thr Ser Leu Ser Ser Ile Met Lys
645 650

<210> 6
<211> 26
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR primer

<400> 6.

cgagggagcg aggtcgcagt gacagc

26

<210> 7

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 7

aacaccctcc ccacccagtc tcccc

25

<210> 8

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 8

caacctctac taccctctcc c

21

<210> 9

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 9

aacagtgaag cctcgtcc

18

<210> 10

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 10

gatataaatg gcaggcagct ttc

23

<210> 11

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 11

ctcaccgtgc tgqaagacac

20