Prep Course Mathematics

Lecture 6 – Vectors and systems of linear equations

Christian Seifert (Deutsch), Jens-Peter M. Zemke (English)

Content

- 1. Vectors
 - Vectors in geometry
 - ► Basic arithmetic
 - Linear combinations
- 2. Systems of linear equations
 - Method of substitution
 - Method of equalization
 - Solving by graphing
 - Method of elimination

Vectors in two dimensions (2D)

Plane: two coordinate axes (e.g. x- and y-axis) intersecting in the zero-point (origin)

Example: the vector

$$\mathbf{v} := \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

starts at an arbitrary point and goes 2 steps in the direction of the x-axis and 3 steps in the direction of the y-axis.

A vector in this plane is an arrow of which only the elongation in the direction of the x- and y-axes is known.

Vectors in two dimensions (2D)

Plane: two coordinate axes (e.g. x- and y-axis) intersecting in the zero-point (origin)

Example: the vector

$$\mathbf{v} := \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

starts at an arbitrary point and goes 2 steps in the direction of the x-axis and 3 steps in the direction of the y-axis.

A vector in this plane is an arrow of which only the elongation in the direction of the x- and y-axes is known.

Vectors in three dimensions (3D)

Space: three coordinate axes (e.g., x_1 -, x_2 - and x_3 -axis) intersecting in the zero-point (origin)

Example: the vector

$$\mathbf{v} := \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

goes 1 step in the direction of the x_1 -axis, 3 steps in the direction of the x_2 -axis and 2 steps in the direction of the x_3 -axis.

A vector in this space is an arrow of which only the elongation in the direction of the x_1 -, x_2 - and x_3 -axes is known.

Vectors in n dimensions (nD)

Vectors in n dimensions

Let $n \in \mathbb{N}$. Every object \mathbf{v} of the form

$$\mathbf{v} = egin{pmatrix} v_1 \ v_2 \ dots \ v_n \end{pmatrix} \quad ext{with} \quad v_1, v_2, \dots, v_n \in \mathbb{R}$$

is called a real vector.

Vectors in n dimensions (nD)

Vectors in n dimensions

Let $n \in \mathbb{N}$. Every object \mathbf{v} of the form

$$\mathbf{v} = egin{pmatrix} v_1 \ v_2 \ dots \ v_n \end{pmatrix} \quad ext{with} \quad v_1, v_2, \dots, v_n \in \mathbb{R}$$

is called a real vector. The set of all such vectors is denoted by \mathbb{R}^n . The entries v_1, v_2, \dots, v_n are called components.

Notes:

- ▶ Today we mainly consider the case $n \in \{2,3\}$. However, in Linear Algebra we will often work with larger $n \in \mathbb{N}$.
- ▶ In different lectures you may see different notation for vectors: \mathbf{v} , \vec{v} , \underline{v} etc.

Exercise

Exercise: Which of the given vectors are equal? Give their representations with coordinates.

Exercise

Exercise: Which of the given vectors are equal? Give their representations with coordinates.

$$\mathbf{c} = \mathbf{k} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \quad \mathbf{b} = \mathbf{i} = \mathbf{l} = \begin{pmatrix} 1 \\ -1.5 \end{pmatrix}.$$

Points and position vectors

A point P is given as a tuple (v_1, v_2, \ldots, v_n) , e.g., P = (1, 3, 2).

Definition (position vector)

Let O be the origin (of the coordinate system). If P is a point, then the vector going from O to P is called the position vector of P. We often identify points with their position vectors.

Length of a vector

Length of a vector

Consider any vector

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n.$$

The length of this v is given by

$$\|\mathbf{v}\| := \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
.

Length of a vector

Length of a vector

Consider any vector

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n.$$

The length of this v is given by

$$\|\mathbf{v}\| := \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
.

Example: the length of the vector

$$\mathbf{v} := \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

is

$$\|\mathbf{v}\| = \sqrt{4^2 + (-3)^2} = \sqrt{25} = 5.$$

See the following picture:

Addition/subtraction of vectors in \mathbb{R}^n

The addition/subtraction of two vectors in \mathbb{R}^n is done componentwise.

Given two vectors

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n, \quad \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} \in \mathbb{R}^n,$$

we define

$$\mathbf{v} + \mathbf{w} := \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix}, \quad \mathbf{v} - \mathbf{w} := \begin{pmatrix} v_1 - w_1 \\ v_2 - w_2 \\ \vdots \\ v_n - w_n \end{pmatrix}.$$

Examples:

$$(2) + (5) = (7), \qquad \begin{pmatrix} 2 \\ -3 \end{pmatrix} + \begin{pmatrix} -5 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \end{pmatrix}, \\ \begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \qquad \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \\ \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} -v_1 \\ \vdots \\ -v_n \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Examples:

$$(2) + (5) = (7), \qquad \begin{pmatrix} 2 \\ -3 \end{pmatrix} + \begin{pmatrix} -5 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \end{pmatrix}, \\ \begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \qquad \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \\ \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} -v_1 \\ \vdots \\ -v_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}.$$

Vectors between two points

Vectors between two points

Let A and B be two points. The vector \mathbf{v}_{AB} going from A to B can be obtained by subtracting the position vector of A from the position vector of B.

Vectors between two points

Vectors between two points

Let A and B be two points. The vector \mathbf{v}_{AB} going from A to B can be obtained by subtracting the position vector of A from the position vector of B.

$$\mathbf{v}_{AB} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ \vdots \end{pmatrix} \qquad B = (b_1, b_2, \ldots)$$

$$A = (a_1, a_2, \ldots) \bullet$$

Example: The vector going from A := (2, 4, -6) to B := (3, -1, 9) is

$$\mathbf{v}_{AB} = \begin{pmatrix} 3 \\ -1 \\ 9 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ -6 \end{pmatrix} = \begin{pmatrix} 3-2 \\ -1-4 \\ 9+6 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \\ 15 \end{pmatrix}.$$

Addition of vectors:

The addition of vectors corresponds to a composition of movements that are described by the vectors.

Example:

Exercise

Of a parallelogramm in space with corner points A,B,C,D three are given as follows:

e given as follows:
$$A:=(2,3,4), \\ B:=(0,7,0), \\ D:=(-2,6,4).$$

- (i) Determine the vectors \mathbf{v}_{AB} and \mathbf{v}_{AD} which lead from A to B and from A to D.
- (ii) Which coordinates does the point C have?
- (iii) Determine the circumference U of the parallelogramm.
- (iv) Determine the length d_{AC} of the diagonal AC.

(i) Determine the vectors \mathbf{v}_{AB} and \mathbf{v}_{AD} .

$$A := (2, 3, 4),$$

$$B := (0, 7, 0),$$

$$D := (-2, 6, 4).$$

$$\mathbf{v}_{AB} = \begin{pmatrix} 0 \\ 7 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ -4 \end{pmatrix} = \mathbf{v}_{DC}, \quad \mathbf{v}_{AD} = \begin{pmatrix} -2 \\ 6 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \\ 0 \end{pmatrix} = \mathbf{v}_{BC}.$$

(ii) Which coordinates does the point ${\cal C}$ have?

$$A := (2, 3, 4),$$

$$B := (0, 7, 0),$$

$$D := (-2, 6, 4).$$

$$\mathbf{v}_{OC} = \mathbf{v}_{OD} + \mathbf{v}_{DC} = \begin{pmatrix} -2\\6\\4 \end{pmatrix} + \begin{pmatrix} -2\\4\\-4 \end{pmatrix} = \begin{pmatrix} -4\\10\\0 \end{pmatrix}, \quad C = (-4,10,0).$$

(iii) Determine the circumference U of the parallelogramm.

$$A := (2, 3, 4),$$

$$B := (0, 7, 0),$$

$$D := (-2, 6, 4).$$

$$\|\mathbf{v}_{AB}\| = \left\| \begin{pmatrix} -2\\4\\-4 \end{pmatrix} \right\| = 6, \quad \|\mathbf{v}_{AD}\| = \left\| \begin{pmatrix} -4\\3\\0 \end{pmatrix} \right\| = 5, \quad U = 2(\|\mathbf{v}_{AB}\| + \|\mathbf{v}_{AD}\|) = 22.$$

(iv) Determine the length d_{AC} of the diagonal AC.

$$A := (2, 3, 4),$$

$$B := (0, 7, 0),$$

$$D := (-2, 6, 4).$$

$$\mathbf{v}_{AC} = \mathbf{v}_{AB} + \mathbf{v}_{BC} = \begin{pmatrix} -2\\4\\-4 \end{pmatrix} + \begin{pmatrix} -4\\3\\0 \end{pmatrix} = \begin{pmatrix} -6\\7\\-4 \end{pmatrix}, \quad d_{AC} = \|\mathbf{v}_{AC}\| = \sqrt{36 + 49 + 16} = \sqrt{101}.$$

Scalar multiplication of vectors in \mathbb{R}^n

The scalar multiplication of vectors in \mathbb{R}^n is done componentwise. Given a real number (scalar) $\lambda \in \mathbb{R}$ and a vector

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n,$$

we define

$$\lambda \cdot \mathbf{v} := \begin{pmatrix} \lambda \cdot v_1 \\ \lambda \cdot v_2 \\ \vdots \\ \lambda \cdot v_n \end{pmatrix} \in \mathbb{R}^n.$$

Examples: Consider the vector $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. We determine and draw the following three vectors:

(i)
$$-1 \cdot \mathbf{v}$$

(ii)
$$2 \cdot \mathbf{v}$$

(iii)
$$\frac{1}{2} \cdot \mathbf{v}$$

Examples: Consider the vector $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. We determine and draw the following three vectors:

(i)
$$-1 \cdot \mathbf{v} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

(ii)
$$2 \cdot \mathbf{v} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

(iii)
$$\frac{1}{2} \cdot \mathbf{v} = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}$$

scalar multiplication of vectors: the scalar multiplication of a vector with a constant α corresponds to a stretching by the factor $|\alpha|$, while the direction is switched if α is negative.

Examples

$$3 \cdot \begin{pmatrix} 13 \\ -12 \end{pmatrix} - 2 \cdot \begin{pmatrix} 5 \\ -4 \end{pmatrix} = \begin{pmatrix} 39 \\ -36 \end{pmatrix} - \begin{pmatrix} 10 \\ -8 \end{pmatrix} = \begin{pmatrix} 29 \\ -28 \end{pmatrix},$$

$$2 \cdot \begin{bmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 5 \\ -5 \end{pmatrix} - \begin{pmatrix} 6 \\ -2 \\ 2 \end{pmatrix} = 2 \cdot \begin{pmatrix} 3 \\ 7 \\ -6 \end{pmatrix} - \begin{pmatrix} 6 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 14 \\ -12 \end{pmatrix} - \begin{pmatrix} 6 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 16 \\ -14 \end{pmatrix},$$

$$-1 \cdot \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} + 2 \cdot \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} - 1 \cdot \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix} = \begin{pmatrix} -1 \\ -4 \\ -7 \end{pmatrix} + \begin{pmatrix} 4 \\ 10 \\ 16 \end{pmatrix} + \begin{pmatrix} -3 \\ -6 \\ -9 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Rules of calculation of vector addition and scalar multiplication

Rules of calculation in \mathbb{R}^n

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ be vectors and $\alpha, \beta \in \mathbb{R}$ be scalars. Then the following hold:

(i) Commutativity: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$

(ii) Associativity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

(iii) Distributivity I: $\alpha \cdot (\mathbf{u} + \mathbf{v}) = \alpha \cdot \mathbf{u} + \alpha \cdot \mathbf{v}$

(iv) Distributivity II: $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}$

Exercises

(a) Calculate one solution of

(i)
$$4 \cdot \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix} - 5 \cdot \begin{pmatrix} -3 \\ 8 \\ -2 \end{pmatrix}$$
, (ii) $\begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix} - \begin{bmatrix} 2 \\ 1 \\ -3 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} \end{bmatrix}$.

(b) Find a vector \mathbf{x} which satisfies one of the given equations:

(i)
$$2\mathbf{x} - 3 \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 4\mathbf{x} + \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$$
, (ii) $2 \cdot \begin{bmatrix} 3 \\ 1 \\ 1 \end{pmatrix} - \mathbf{x} = \mathbf{x} + \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.

(c) Find scalars $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ such that the following equation is true:

$$\alpha_1 \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + \alpha_3 \cdot \begin{pmatrix} 4 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ -7 \\ -1 \end{pmatrix}.$$

(a) Calculate

(i)
$$4 \cdot \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix} - 5 \cdot \begin{pmatrix} -3 \\ 8 \\ -2 \end{pmatrix}$$
, (ii) $\begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix} - \begin{bmatrix} 2 \\ 1 \\ -3 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} \end{bmatrix}$.

$$4 \cdot \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix} - 5 \cdot \begin{pmatrix} -3 \\ 8 \\ -2 \end{pmatrix}$$

$$= \begin{pmatrix} 12 \\ 0 \\ -8 \end{pmatrix} + \begin{pmatrix} 15 \\ -40 \\ 10 \end{pmatrix} = \begin{pmatrix} 27 \\ -40 \\ 2 \end{pmatrix}.$$

$$\begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ -4 \end{pmatrix}.$$

(b) Find a vector \mathbf{x} which satisfies the given equation:

(i)
$$2\mathbf{x} - 3 \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 4\mathbf{x} + \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$$
, (ii) $2 \cdot \begin{bmatrix} \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} - \mathbf{x} \end{bmatrix} = \mathbf{x} + \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.

$$2\mathbf{x} + \begin{pmatrix} -3\\3\\0 \end{pmatrix} = 4\mathbf{x} + \begin{pmatrix} 1\\7\\2 \end{pmatrix}$$

$$\begin{pmatrix} 6\\2\\2 \end{pmatrix} - 2\mathbf{x} = \mathbf{x} + \begin{pmatrix} 0\\3\\1 \end{pmatrix}$$

$$\begin{pmatrix} -3\\3\\0 \end{pmatrix} - \begin{pmatrix} 1\\7\\2 \end{pmatrix} = \begin{pmatrix} -4\\-4\\-2 \end{pmatrix} = 2\mathbf{x}$$

$$\begin{pmatrix} 6\\2\\2 \end{pmatrix} - \begin{pmatrix} 0\\3\\1 \end{pmatrix} = \begin{pmatrix} 6\\-1\\1 \end{pmatrix} = 3\mathbf{x}$$

$$\begin{pmatrix} -2\\-2\\-1 \end{pmatrix} = \mathbf{x}.$$

$$\begin{pmatrix} 2\\-1/3\\1/3 \end{pmatrix} = \mathbf{x}.$$

(c) Find scalars $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ such that the following equation is true:

$$\alpha_1 \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + \alpha_3 \cdot \begin{pmatrix} 4 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ -7 \\ -1 \end{pmatrix}.$$

I:
$$\begin{pmatrix} 2\alpha_1 + 1\alpha_2 + 4\alpha_3 \\ 3\alpha_2 - 2\alpha_3 \\ -2\alpha_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -7 \\ -1 \end{pmatrix}$$

III:
$$-2\alpha_3 = -1 \Rightarrow \boxed{\alpha_3 = 1/2}$$
II: $3\alpha_2 = -7 + 2\alpha_3 = -7 + 1 = -6 \Rightarrow \boxed{\alpha_2 = -2}$
II: $2\alpha_1 = 3 - 4\alpha_3 - 1\alpha_2 = 3 - 2 + 2 = 3 \Rightarrow \boxed{\alpha_1 = 3/2}$

Linear combination

Linear combination

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$ be given. Then we call the vector

$$\mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_k \mathbf{v}_k$$

a linear combination of v_1, v_2, \dots, v_k . We also say that v can be generated by v_1, v_2, \dots, v_k .

Linear combination

Linear combination

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$ be given. Then we call the vector

$$\mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_k \mathbf{v}_k$$

a linear combination of v_1, v_2, \dots, v_k . We also say that v can be generated by v_1, v_2, \dots, v_k .

Examples:

- $\mathbf{a} + \mathbf{b} = 1 \cdot \mathbf{a} + 1 \cdot \mathbf{b}$ is a linear combination of \mathbf{a} and \mathbf{b} .
- $ightharpoonup a = 1 \cdot a + 0 \cdot b$ is a linear combination of a and b.
- **b** $\mathbf{b} = 0 \cdot \mathbf{a} + 1 \cdot \mathbf{b}$ is a linear combination of \mathbf{a} and \mathbf{b} .
- ▶ The zero vector in \mathbb{R}^n is a linear combination of every tuple of vectors in \mathbb{R}^n .

Linear combination

Example:

Every point (position vector) $\mathbf{x} \in \mathbb{R}^3$ lying in the (x_1,x_2) -plane can be generated by the vectors

$$\mathbf{e}_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Example

Every point (position vector) $\mathbf{x} \in \mathbb{R}^2$ can be generated by the vectors

$$\mathbf{v}_1 := \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 := \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Span

Span

Consider vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$. The set of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ is called span (or linear hull) of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$. Shortly:

$$\mathsf{Span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k) := \left\{ \lambda_1\mathbf{v}_1 + \lambda_2\mathbf{v}_2 + \cdots + \lambda_k\mathbf{v}_k : \ \lambda_1,\ldots,\lambda_k \in \mathbb{R} \right\}.$$

Span

Span

Consider vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$. The set of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ is called span (or linear hull) of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$. Shortly:

$$\mathsf{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k) := \{\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_k \mathbf{v}_k : \lambda_1, \dots, \lambda_k \in \mathbb{R}\}.$$

Span

Span

Consider vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$. The set of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ is called span (or linear hull) of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$. Shortly:

$$\mathsf{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k) := \{\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_k \mathbf{v}_k : \lambda_1, \dots, \lambda_k \in \mathbb{R}\}.$$

Exercise

Sketch the following spans:

Exercise

Sketch the following spans:

Exercise

Sketch the following spans:

Linear combination \rightarrow system of linear equations

The following question appears frequently in Linear Algebra: "Given a fixed vector \mathbf{v} , can it be written as linear combination of some other given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots$?"

$$\begin{pmatrix} 8 \\ 17 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{bmatrix} -3 \\ -5 \\ 5 \end{pmatrix} + \begin{bmatrix} 5 \\ 9 \\ -4 \end{pmatrix}$$

Linear combination \rightarrow system of linear equations

The following question appears frequently in Linear Algebra: "Given a fixed vector \mathbf{v} , can it be written as linear combination of some other given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots$?"

$$\begin{pmatrix} 8 \\ 17 \\ 0 \end{pmatrix} = \boxed{x_1} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \boxed{x_2} \begin{pmatrix} -3 \\ -5 \\ 5 \end{pmatrix} + \boxed{x_3} \begin{pmatrix} 5 \\ 9 \\ -4 \end{pmatrix}$$

Linear combination \rightarrow system of linear equations

The following question appears frequently in Linear Algebra: "Given a fixed vector \mathbf{v} , can it be written as linear combination of some other given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots$?"

$$\begin{pmatrix} 8 \\ 17 \\ 0 \end{pmatrix} = \boxed{x_1} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \boxed{x_2} \begin{pmatrix} -3 \\ -5 \\ 5 \end{pmatrix} + \boxed{x_3} \begin{pmatrix} 5 \\ 9 \\ -4 \end{pmatrix}$$

This corresponds to asking whether a certain system of linear equations has a solution:

System of linear equations

Let $m, n \in \mathbb{N}$. A system of linear equations (LES) in the variables x_1, x_2, \dots, x_n is of the form

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n = b_1,$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n = b_2,$$

$$\vdots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n = b_m.$$

with $a_{i,j}$ and b_i being (usually real) numbers.

System of linear equations

Let $m, n \in \mathbb{N}$. A system of linear equations (LES) in the variables x_1, x_2, \dots, x_n is of the form

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n = b_1,$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n = b_2,$$

$$\vdots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n = b_m.$$

with $a_{i,j}$ and b_i being (usually real) numbers. An assignment of values for x_1, \ldots, x_n such that all equations are satisfied is called a solution of this system of equations. Such a solution is written as a vector.

Example: the system

is a system of linear equations with 3 equations and 3 variables.

Example: the system

is a system of linear equations with 3 equations and 3 variables.

A solution is given by

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \\ 2 \end{pmatrix}.$$

Example: the system

is a system of linear equations with 3 equations and 3 variables.

A solution is given by

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \\ 2 \end{pmatrix}.$$

Check:

$$7 \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + 3 \cdot \begin{pmatrix} -3 \\ -5 \\ 5 \end{pmatrix} + 2 \cdot \begin{pmatrix} 5 \\ 9 \\ -4 \end{pmatrix} = \begin{pmatrix} 7 \\ 14 \\ -7 \end{pmatrix} + \begin{pmatrix} -9 \\ -15 \\ 15 \end{pmatrix} + \begin{pmatrix} 10 \\ 18 \\ -8 \end{pmatrix} = \begin{pmatrix} 8 \\ 17 \\ 0 \end{pmatrix}.$$

Method of equalization

Method of equalization

In the method of equalization we isolate the same variable in 2 equations and use the obtained expressions as left- and right-hand side. This way we obtain an equation which does not use one of the given variables.

Method of equalization

Method of equalization

In the method of equalization we isolate the same variable in 2 equations and use the obtained expressions as left- and right-hand side. This way we obtain an equation which does not use one of the given variables.

Example: We solve the following system with the method of equalization:

$$\begin{array}{rcrrr} 2x_1 & - & 4x_2 & = & 15 \\ -4x_1 & + & 2x_2 & = & -9 \end{array}$$

Method of equalization

Method of equalization

In the method of equalization we isolate the same variable in 2 equations and use the obtained expressions as left- and right-hand side. This way we obtain an equation which does not use one of the given variables.

Example: We solve the following system with the method of equalization:

$$\begin{array}{rcrrr} 2x_1 & - & 4x_2 & = & 15 \\ -4x_1 & + & 2x_2 & = & -9 \end{array}$$

Computation:

thus,

$$\left(2 - \frac{1}{2}\right)x_2 = \frac{3}{2}x_2 = \frac{9}{4} - \frac{15}{2} = -\frac{21}{4}, \quad x_2 = -\frac{7}{2}, \quad x_1 = \frac{15}{2} + 2x_2 = \frac{15}{2} - \frac{14}{2} = \frac{1}{2}.$$

Method of substitution

Method of substitution

In the method of substitution we isolate a variable in an equation and replace it in the other equations. By this we obtain equations which do not use this variable.

Method of substitution

Method of substitution

In the method of substitution we isolate a variable in an equation and replace it in the other equations. By this we obtain equations which do not use this variable.

Example: we solve the following system with the method of substitution:

$$\begin{array}{rcl}
2x_1 & - & 4x_2 & = & 15 \\
-4x_1 & + & 2x_2 & = & -9
\end{array}$$

Method of substitution

Method of substitution

In the method of substitution we isolate a variable in an equation and replace it in the other equations. By this we obtain equations which do not use this variable.

Example: we solve the following system with the method of substitution:

$$\begin{array}{rcrrr}
2x_1 & - & 4x_2 & = & 15 \\
-4x_1 & + & 2x_2 & = & -9
\end{array}$$

Computation like before:

$$2x_1 = 15 + 4x_2 \quad \Rightarrow \quad x_1 = \frac{15}{2} + 2x_2.$$

Substitution of first variable in second equation:

$$-4\left(\frac{15}{2} + 2x_2\right) + 2x_2 = -30 - 8x_2 + 2x_2 = -9 \quad \Rightarrow \quad -6x_2 = 21 \quad \Rightarrow \quad x_2 = -\frac{7}{2}.$$

First variable like before: $x_1 = 1/2$.

Solving by graphing (2 variables)

Consider a system of linear equations with 2 variables. Then each equation can be represented by a line in a 2-dimensional coordinate system. The set of solutions then is represented by the intersection of all lines.

Solving by graphing (2 variables)

Consider a system of linear equations with 2 variables. Then each equation can be represented by a line in a 2-dimensional coordinate system. The set of solutions then is represented by the intersection of all lines.

Example: we solve the following system by graphing:

$$\begin{array}{rcrrr} 4x_1 & - & 2x_2 & = & 6 \\ 2x_1 & + & x_2 & = & 5 \end{array}$$

Solving by graphing (2 variables)

Consider a system of linear equations with 2 variables. Then each equation can be represented by a line in a 2-dimensional coordinate system. The set of solutions then is represented by the intersection of all lines.

Example: we solve the following system by graphing:

$$4x_1 - 2x_2 = 6$$

 $2x_1 + x_2 = 5$

Solve for x_2 :

$$2x_2 = -6 + 4x_1,$$
$$x_2 = 5 - 2x_1.$$

Solving by graphing (2 variables)

Consider a system of linear equations with 2 variables. Then each equation can be represented by a line in a 2-dimensional coordinate system. The set of solutions then is represented by the intersection of all lines.

Example: we solve the following system by graphing:

$$4x_1 - 2x_2 = 6$$

 $2x_1 + x_2 = 5$

Solve for x_2 :

$$x_2 = -3 + 2x_1,$$

$$x_2 = 5 - 2x_1.$$

Solving by graphing (2 variables)

Consider a system of linear equations with 2 variables. Then each equation can be represented by a line in a 2-dimensional coordinate system. The set of solutions then is represented by the intersection of all lines.

Example: we solve the following system by graphing:

$$\begin{array}{rcrrr} 4x_1 & - & 2x_2 & = & 6 \\ 2x_1 & + & x_2 & = & 5 \end{array}$$

Solve for x_2 . Sketch lines & intersection:

$$x_2 = -3 + 2x_1,$$

$$x_2 = 5 - 2x_1.$$

Solving by graphing (2 variables)

Consider a system of linear equations with 2 variables. Then each equation can be represented by a line in a 2-dimensional coordinate system. The set of solutions then is represented by the intersection of all lines.

Example: we solve the following system by graphing:

$$\begin{array}{rcrrr} 4x_1 & - & 2x_2 & = & 6 \\ 2x_1 & + & x_2 & = & 5 \end{array}$$

Solve for x_2 . Sketch lines & intersection:

$$x_2 = -3 + 2x_1, \quad \begin{pmatrix} x_1 \\ x_2 = 5 - 2x_1, \quad \begin{pmatrix} x_2 \\ \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Solvability: number of solutions

For any lines there exist three kinds of intersections:

Solvability: number of solutions

For any lines there exist three kinds of intersections:

In general the following is true:

Solvability of systems of linear equations

Every system of linear equations has either (i) exactly one solution or (ii) no solution or (iii) infinitely many solutions.

Method of elimination

In the method of elimination two equations (or multiples of them) are added/subtracted such that at least one variable is eliminated.

Method of elimination

In the method of elimination two equations (or multiples of them) are added/subtracted such that at least one variable is eliminated.

Example 1: we solve the following system with the method of elimination:

$$\begin{array}{rcrrr}
2x_1 & - & 4x_2 & = & 15 \\
-4x_1 & + & 2x_2 & = & -9
\end{array}$$

Method of elimination

In the method of elimination two equations (or multiples of them) are added/subtracted such that at least one variable is eliminated.

Example 1: we solve the following system with the method of elimination:

Solution:

- We subtract the first equation $-2 = \frac{-4}{2}$ times from the second, changing the second equation.
- ▶ We solve the new second equation:

$$x_2 = -\frac{21}{6} = -\frac{7}{2}.$$

▶ We utilize the first equation:

$$2x_1 = 15 + 4x_2 = 15 - 14 = 1 \quad \Rightarrow \quad x_1 = \frac{1}{2}, \quad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -7/2 \end{pmatrix}.$$

Method of elimination

In the method of elimination two equations (or multiples of them) are added/subtracted such that at least one variable is eliminated.

Example 2: we solve the following system with the method of elimination:

$$\begin{array}{rcrrr} 4x_1 & - & 5x_2 & = & 2 \\ -8x_1 & + & 10x_2 & = & -4 \end{array}$$

Method of elimination

In the method of elimination two equations (or multiples of them) are added/subtracted such that at least one variable is eliminated.

Example 2: we solve the following system with the method of elimination:

Solution:

- We subtract the first equation $-2 = \frac{-8}{4}$ times from the second, changing the second equation.
- ▶ The new second equation is always satisfied:

$$0 \cdot x_2 = 0 \quad \Rightarrow \quad x_2 \in \mathbb{R}.$$

► The first equation yields as solution a line:

$$x_1 = \frac{1}{2} + \frac{5}{4}x_2 \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{5}{4}x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} + x_2 \cdot \begin{pmatrix} \frac{5}{4} \\ 1 \end{pmatrix}, \quad x_2 \in \mathbb{R}.$$

Solve the following systems with the method of elimination:

Solution of part (a):

Solve the following systems with the method of elimination:

Solution of part (a):

ightharpoonup Compute II -2I:

Solve second new equation:

$$6x_2 = 1 \quad \Rightarrow \quad x_2 = \frac{1}{6}.$$

Insert into first equation:

$$x_1 = 1 + 4x_2 = 1 + \frac{4}{6} = \frac{10}{6} = \frac{5}{3}$$
 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{5}{3} \\ \frac{1}{6} \end{pmatrix}$.

Solve the following systems with the method of elimination:

Solution of part (b):

Solve the following systems with the method of elimination:

Solution of part (b):

ightharpoonup Compute II + 3I:

Solve second new equation:

$$0x_2 = 28 \implies \text{not solvable.}$$

► The linear system is not solvable.

Solving bigger systems of linear equations

Observations

- ▶ The set of solutions does not change if the ordering of the equations is changed.
- ► The set of solutions does not change if one equation is subtracted (multiple times) from the other equations.

Solving bigger systems of linear equations

Observations

- ▶ The set of solutions does not change if the ordering of the equations is changed.
- ► The set of solutions does not change if one equation is subtracted (multiple times) from the other equations.

Recipe for calculations:

- ▶ Bring the system to a "triangle form" or "row echelon form".
- ▶ Afterwards determine the set of solutions.

We determine the unique solution of the following system of linear equations:

We determine the unique solution of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix} 1 & 3 & -3 & 3 \\ 2 & 7 & -5 & 4 \\ -1 & 1 & 9 & -13 \end{pmatrix} \begin{matrix} \mathsf{II} - 2 \cdot \mathsf{I} & \leadsto & \begin{pmatrix} 1 & 3 & -3 & 3 \\ 0 & 1 & 1 & -2 \\ 0 & 4 & 6 & -10 \end{pmatrix}$$

We determine the unique solution of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix} 1 & 3 & -3 & 3 \\ 0 & 1 & 1 & -2 \\ 0 & 4 & 6 & -10 \end{pmatrix} \prod -4 \cdot \prod \qquad \rightsquigarrow \qquad \begin{pmatrix} 1 & 3 & -3 & 3 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 2 & -2 \end{pmatrix}$$

We determine the unique solution of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -3 & | & 3 \\
0 & 1 & 1 & | & -2 \\
0 & 0 & 2 & | & -2
\end{pmatrix}$$

We determine the unique solution of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -3 & | & 3 \\
0 & 1 & 1 & | & -2 \\
0 & 0 & 2 & | & -2
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1$$

We determine the unique solution of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -3 & 3 \\
0 & 1 & 1 & -2 \\
0 & 0 & 2 & -2
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} & & & \\ & & & \\ & & & -1 \end{pmatrix}.$$

We determine the unique solution of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -3 & 3 \\
0 & 1 & 1 & -2 \\
0 & 0 & 2 & -2
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 + 1 = -1 \\ -1 \end{pmatrix}.$$

We determine the unique solution of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -3 & 3 \\
0 & 1 & 1 & -2 \\
0 & 0 & 2 & -2
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3+3-3=3 \\ -2+1=-1 \\ -1 \end{pmatrix}.$$

Determine the unique solution of the following system of linear equations:

Determine the unique solution of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix} 1 & 3 & -2 & | & 5 \\ 3 & 11 & -5 & | & 11 \\ 2 & 2 & -4 & | & 14 \end{pmatrix} \begin{matrix} \mathbf{II} - 3 \cdot \mathbf{I} & \leadsto & \begin{pmatrix} 1 & 3 & -2 & | & 5 \\ 0 & 2 & 1 & | & -4 \\ 0 & -4 & 0 & | & 4 \end{pmatrix}$$

Determine the unique solution of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix} 1 & 3 & -2 & | & 5 \\ 0 & 2 & 1 & | & -4 \\ 0 & -4 & 0 & | & 4 \end{pmatrix} | | | | | | + 2 \cdot | | | \qquad \rightsquigarrow \qquad \begin{pmatrix} 1 & 3 & -2 & | & 5 \\ 0 & 2 & 1 & | & -4 \\ 0 & 0 & 2 & | & -4 \end{pmatrix}$$

Determine the unique solution of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -2 & 5 \\
0 & 2 & 1 & -4 \\
0 & 0 & 2 & -4
\end{pmatrix}$$

Determine the unique solution of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -2 & 5 \\
0 & 2 & 1 & -4 \\
0 & 0 & 2 & -4
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \\ -4 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1$$

Determine the unique solution of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -2 & 5 \\
0 & 2 & 1 & -4 \\
0 & 0 & 2 & -4
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \\ -4 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

Determine the unique solution of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -2 & 5 \\
0 & 2 & 1 & -4 \\
0 & 0 & 2 & -4
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \\ -4 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} (-4+2)/2 = -1 \\ -2 \end{pmatrix}.$$

Determine the unique solution of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix}
1 & 3 & -2 & 5 \\
0 & 2 & 1 & -4 \\
0 & 0 & 2 & -4
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \\ -4 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5+3-4=4 \\ (-4+2)/2=-1 \\ -2 \end{pmatrix}.$$

We determine the solutions of the following system of linear equations:

We determine the solutions of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix} 1 & -5 & 4 & | & -2 \\ 1 & -4 & 2 & | & 1 \\ -2 & 7 & -2 & | & -5 \end{pmatrix} \begin{matrix} || & -1 \cdot || & \leadsto & \begin{pmatrix} 1 & -5 & 4 & | & -2 \\ 0 & 1 & -2 & | & 3 \\ 0 & -3 & 6 & | & -9 \end{pmatrix}$$

We determine the solutions of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix} 1 & -5 & 4 & | & -2 \\ 0 & 1 & -2 & | & 3 \\ 0 & -3 & 6 & | & -9 \end{pmatrix} | | | | | + 3 \cdot | | | \qquad \rightsquigarrow \qquad \begin{pmatrix} 1 & -5 & 4 & | & -2 \\ 0 & 1 & -2 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

We determine the solutions of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix}
1 & -5 & 4 & | & -2 \\
0 & 1 & -2 & | & 3 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

We determine the solutions of the following system of linear equations:

Solution:

► Compute upper triangular form:

$$\begin{pmatrix}
1 & -5 & 4 & | & -2 \\
0 & 1 & -2 & | & 3 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix} 1 & -5 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

We determine the solutions of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix}
1 & -5 & 4 & | & -2 \\
0 & 1 & -2 & | & 3 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

▶ Solve from below: $(x_3 \in \mathbb{R})$

$$\begin{pmatrix} 1 & -5 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} & & \\ & & x_3 \end{pmatrix}$$

We determine the solutions of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix}
1 & -5 & 4 & | & -2 \\
0 & 1 & -2 & | & 3 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

▶ Solve from below: $(x_3 \in \mathbb{R})$

$$\begin{pmatrix} 1 & -5 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 + 2x_3 \\ x_3 \end{pmatrix}$$

We determine the solutions of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix}
1 & -5 & 4 & | & -2 \\
0 & 1 & -2 & | & 3 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

▶ Solve from below: $(x_3 \in \mathbb{R}, -2 + 5(3 + 2x_3) - 4x_3 = 13 + 6x_3)$

$$\begin{pmatrix} 1 & -5 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 13 + 6x_3 \\ 3 + 2x_3 \\ x_3 \end{pmatrix}$$

We determine the solutions of the following system of linear equations:

Solution:

Compute upper triangular form:

$$\begin{pmatrix}
1 & -5 & 4 & | & -2 \\
0 & 1 & -2 & | & 3 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

▶ Solve from below: $(x_3 \in \mathbb{R}, -2 + 5(3 + 2x_3) - 4x_3 = 13 + 6x_3)$

$$\begin{pmatrix} 1 & -5 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 13 + 6x_3 \\ 3 + 2x_3 \\ x_3 \end{pmatrix} = \begin{pmatrix} 13 \\ 3 \\ 0 \end{pmatrix} + x_3 \cdot \begin{pmatrix} 6 \\ 2 \\ 1 \end{pmatrix}.$$