Eriq Augustine

Homework Basic Relational Algebra

Set Builder Notation

Expand the set builder expressions for the set X into long form sets. You can assume we are working with only non-negative integers. If the answer is an infinite set, show enough of the set to capture the pattern. Ex: $X = \{x | x\%3 = 0\}$

```
Solution: X = \{0, 3, 6, 9, ...\}
```

```
X=\{(x,x+1)\} X=\{ X=\{x|x>4 \text{ and } x\leq 8 \text{ and } x\neq 5\} X=\{ Given: A=\{a|0<a<5\} \text{ and } B=\{b|b\geq 3 \text{ and } b<6\} X=\{x|x\in A \text{ and } x\notin B\} X=\{
```

Relational Notation To SQL

Generate the CREATE TABLE statements for the following relations. For variatic types (like string types), guess a reasonable value for the size of the type.

Students(id:INT, email:STRING, firstName:STRING, lastName:STRING)

remember to include the names of the attributes.	
Basic Relation Operations Compute the given operation on the pair of relations and diagram the resulting relation.	Make sure to
Dogs(type, cuteness, hugability, weight, height, age, favoriteFood)	
Authors(authorId, authorLastName, authorFirstName, address, city, state, zip)	

Union (\cup)

$$\begin{array}{c|c}
R: & A: \\
\hline
A & C \\
\hline
1 & 3 & 4 \\
3 & 5 & 5
\end{array}
=$$

$$\begin{array}{c|c} R: & & A: \\ \hline A & B & \\ \hline 1 & a & \\ 2 & b & \\ 3 & c & & c \end{array} = \begin{array}{c|c} A: & \\ \hline C & \\ \hline a & \\ b \\ c & \\ \end{array}$$

Difference (-)

Cartesian Product (\times)

$$\begin{array}{c|c} R: & S: \\ \hline A & B \\ \hline 1 & a \\ 2 & b \\ 3 & c \end{array} \times \begin{array}{c|c} S: \\ \hline A \\ \hline Z \\ X \\ Y \end{array} =$$

Students

Consider the following table of students:

Students:

Diadelile.						
id	lastName	firstName	unitsCompleted	quartersCompleted	gpa	
1	Anderson	Alex	50	5	3.2	
2	Cooper	John	180	15	3.9	
3	Smith	Jane	140	10	2.2	
4	Doe	Aldrin	80	5	1.2	
5	Williams	Kim	20	1	2.9	

Write the relational algebra statement for each operation.

Rename (ρ)

- Rename the Students relation to "CSCStudents".
- Keep the relation called "Students", but rename the attributes so that they are all caps with underscores separating the words.

Projection (π)

• Project Students so that only the name (first, last) is left.

Selection (σ)

- Find all the students that have completed more than five quarters.
- Find all the students with even id numbers.
- Find all the students that have complete an average of at least 16 units a quarter.
- Find the last name of the student with the highest gpa. For this problem, I will allow you to use a function called MAX which finds the maximum of a set. However, it can be done without MAX.
- Find the first and last names of all the students who have either completed more than 100 units and have less than a 3.0 gpa, or have completed less than 100 units with less than a 2.0 gpa.