2N5109

JAN, JTX, JTXV AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol .	Value	Unit Vdc	
Collector-Emitter Voltage	VCEO	20		
Collector-Base Voltage	V _{CBO}	40	Vdc	
Emitter-Base Voltage	V _{EBO}	3.0	Vdc	
Base Current	ΙB	400	mAdc	
Collector Current — Continuous	lc	400	mAdc	
Total Device Dissipation @ T _C = 75°C(1) Derate above 25°C	PD	2.5 20	Watt mW/°C	
Storage Temperature	T _{stg}	-65 to +200	°C	

(1) Total Device Dissipation at T_A = 25°C is 1.0 Watt.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) ($I_C=5.0$ mAdc, $R_{BE}=10~\Omega$)	V(BR)CER	40	_	_	Vdc
Collector-Emitter Sustaining Voltage (I _C = 5.0 mAdc, I _B = 0)	V(BR)CEO	20	_	_	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, I _B = 0)	ICEO	_	_	20	μAdc
Collector Cutoff Current (VCE = 15 Vdc, VBE = -1.5 V, TC = 150 °C) (VCE = 35 Vdc, VBE = -1.5 V)	ICEX	_	_	5.0 5.0	mAdc mAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)	I _{EBO}	-	_	100	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 360 mAdc, V_{CE} = 5.0 Vdc) (I _C = 50 mAdc, V_{CE} = 15 Vdc)	hFE	5.0 40	_ (120	_
SMALL SIGNAL CHARACTERISTICS				·····	
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)	fτ	1200	_	_	MHz
Collector-Base Capacitance (V _{CB} = 15 Vdc, I _E = 0, f = 1.0 MHz)	C _{Cb}	_	1.8	3.5	pF
Noise Figure ($I_C = 10 \text{ mAdc}$, $V_{CE} = 15 \text{ Vdc}$, $f = 200 \text{ MHz}$)	NF	_	3.0	_	dB
FUNCTIONAL TEST,					
Common-Emitter Amplifier Voltage Gain (Figure 1) (I _C = 50 mAdc, V _{CC} = 15 Vdc, f = 50 to 216 MHz)	G _{ve}	11	_	_	dB
Power Input (Figure 2) (I _C = 50 mAdc, V_{CC} = 15 Vdc, R_S = 50 ohms, P_{out} = 1.26 mW, f = 200 MHz)	Pin	_	_	0.1	mW
2) Pulsed thru a 25 mH Inductor: 50% Duty Cycle.					

⁽²⁾ Pulsed thru a 25 mH Inductor; 50% Duty Cycle.

FIGURE 1 – RF AMPLIFIER FOR VOLTAGE
GAIN TEST CIRCUIT

FIGURE 2 - 200 MHz TEST CIRCUIT

2N5109

2N5109

FIGURE 11 - FORWARD TRANSFER ADMITTANCE versus FREQUENCY Yfg, FDRWARD TRANSFER ADMITTANCE (mmhos) VCE = 15 Vdc IC = 50 mAdc 300 200 -bfe 100 Ofe 100 200 300 500 700 1000 f, FREQUENCY (MHz)

FIGURE 16 – OUTPUT REFLECTION COEFFICIENT versus FREQUENCY

1200

1300

1400

FIGURE 17 — REVERSE TRANSMISSION COEFFICIENT versus FREQUENCY

180°

FIGURE 18 — FORWARD TRANSMISSION COEFFICIENT versus FREQUENCY

FIGURE 19 — INPUT REFLECTION COEFFICIENT AND OUTPUT REFLECTION COEFFICIENT versus FREQUENCY

2400

2300

2200

