

Guide d'utilisation :

Application de transformation entre systèmes de coordonnées.

Guide d'utilisation:

() Installation de python.

Installation de l'application

Installation des modules et des bibliothèques de python requises par l'application.

Prise en main.

Conclusion .

Installation de python:

https://www.python.org/downloads/

Veuillez consulter le site officiel de python Et le télécharger. Faites attention à télécharger une version 3. X . Une version Antérieure 2.X Peut-être incompatible avec Le code source de L'application (On a pas eu l'occasion le tester avec des versions 2.X)

Installation de l'application:

Code ---- Download 7IP ---- extraire le dossier dans le Bureau par exemple.

Faites attention à ne pas modifier les emplacements des fichiers

-main

Assurez vous que vous avez ces fichiers

Installation des bibliothèques nécessaires :

Folium

Bibliothèques nécessaires:

folium pillow

1/ Cherchez l'emplacement où vous avez installé Python sur votre machine

Taper cmd à la barre de recherche Et lancez l'invite de commandes

Changez le répertoire par défaut :

Veuillez entrer la commande suivante : cd Ctrl+v puis cliquer sur **Entre**

Ctrl +v : c'est le chemin que vous avez copié

nstallation des modules et des bibliothèques requises par l'application.

Après avoir changé le répertoire en utilisant la commande **cd (change directory),** Veuillez Installer les bibliothèques folium et pillow avec la commande pip. (assurez-vous que vous êtes connecté à internet)

pip install folium

C:\Users\user\AppData\Local\Programs\Python\Python39\Scripts>pip install folium_

pip install pillow

C:\Users\user\AppData\Local\Programs\Python\Python39\Scripts>pip install pillow

Lancer l'application:

Open Edit with IDLE 1/ Clique droit sur Main_prog.py Edit with IDLE (ArcGIS Pro) Edit with IDLE Edit with IDLE 3.9 (64-bit) Run with ArcGIS Pro Main_Prog.py Share with Skype 21 lancez votre IDLE Move to OneDrive 7-Zip CRC SHA Shred File Main_Prog.py - C:\Users\user\Desktop\Geodesy_Project\Main_Prog.py (3.9.0) X File Edit Format Run Options Window Help F5 Run Module Run... Customized Shift+F5 Check Module Alt+X 31 Cliquer sur F5 Python Shell

Prise en main de l'application

La Géodésie Géométrique

3 X

Transformation entre système de coordonnées : Veuillez choisir la nature de la transformation : :

Géodésiques vers Géocentriques:

Géocentriques vers Géodésiques:

Géocentriques vers Astronomiques locales:

Astronomiques locales vers Géocentriques:

Géodesique locale vers Géocentrique:

Géocentrique vers Géodesique locale:

Géodesique locale vers Astronomiques locales:

Géodésie Géométrique:

Transformation entre système de coordonnées

Géodésique vers géocentrique:

```
def transformation_cor_Geodisiques_Geocentriques(Lambda,Phi,h,a,b):
    Lambda=degree2radians(Lambda)
    Phi=degree2radians(Phi)
    e=sqrt(1-(b/a)**2)
    N=a/(sqrt(1-(e*sin(Phi))**2))
    x=(N+h)*cos(Phi)*cos(Lambda)
    y=(N+h)*cos(Phi)*sin(Lambda)
    z=(N*(1-(e)**2)+h)*sin(Phi)
    return x,y,z
```

• La virgule (,) est un point (.) en python.

Géocentrique vers géodésique :

```
def Transformation_coor_Geocentriques_Geodesiques(x,y,z,a,b,eps):
    e = sqrt(1 - (b/a)**2)
    if x==0 and y==0 :#_cas_exceptionnel.
            Laambda='
            h=abs(z)-b
           if z<0:
               phi1=-pi
               phi1=phi1*180/pi
           else:
               phil=pi
               phi1=phi1*180/pi
   else :
           if x>0:
                Laambda=atan(y/x)
           elif x<0 and y>=0:
               Laambda=atan(y/x) + pi
           elif v<0 and x<0:
               Laambda=atan(y/x) - pi
            elif y>0 and x==0:
               Laambda=pi/2
           elif y<0 and x==0:
               Laambda=-pi/2
            Laambda=Laambda*180/pi #en degree.
            phi=atan(z/((1-e**2)*sqrt(x**2+y**2)))
            N=a/sqrt(1-(e*sin(phi))**2)
            phi1=atan((z+ N*e**2*sin(phi))/sqrt(x**2+y**2))
            N=a/sqrt(1-(e*sin(phi1))**2)
            while abs(phi1-phi)>eps :
               phi1=atan((z+ N*e**2*sin(phi))/sqrt(x**2+y**2))
               N=a/sqrt(1-(e*sin(phi1))**2)
           if phi1 == pi/2 or phi == -pi/2:
               h=z-N*(1-e**2)
               h=sqrt(x**2+y**2)/cos(phi1)-N
           phi1=phi1*180/pi #en degree.
    return Laambda, phil, h
```

Geocentriques_vers_Geodesiques Transformation entre coordonnees: Géocentriques vers Géodesiques x(m): 45235 y(m): 1456 z(m): 45234 Demi-grand axe a (m): 6377563.396 Demi-petit axe b (m): 6356256.909 Epsilon: 0.1 Transformer La longitude Lambda (°): 1.8435694335601291 La latitude Phi (°): 6.10470E+01 La hauteur ellipsoidale h (m): -6.30042E+06 Choisissez un datum Consulter Google earth

Géocentriques vers Astronomique locales:

```
def Transformation coor Geocentriques Astronomique(Phi3,Lambda3,DeltaX3,DeltaY3,DeltaZ3):
           Phi3=degree2radians(Phi3)
           Lambda3=degree2radians(Lambda3)
           a=-sin(Phi3)*cos(Lambda3)
           b=-sin(Lambda3)
           c=cos(Phi3)*sin(Lambda3)
           d=cos(Lambda3)
           e=cos(Lambda3)
           f=cos(Phi3)*sin(Lambda3)
           g=cos(Phi3)
           i=sin(Phi3)
           V1=a*DeltaX3+e*DeltaY3+h*DeltaZ3
           V2=b*DeltaX3+e*DeltaY3+h*DeltaZ3
           V3=c*DeltaX3+f*DeltaY3+i*DeltaZ3
           if V1==0 :
                Az3=pi/2
           else :
               Az3=atan(V2/V1)
           C3=sqrt(DeltaX3**2+DeltaY3**2+DeltaZ3**2)
           Av3=atan(V3/C3)
           Az3=radians2degree (Az3)
           Av3=radians2degree (Av3)
            return Az3, Av3, C3
```


Astronomiques locales vers

géocentrique:

```
def Transformation coor Astronomique Geocentriques(phi, Laambda, az, av, c) :
            phi=degree2radians(phi)
            Laambda=degree2radians(Laambda)
            az=degree2radians(az)
            av=degree2radians(av)
            1=[]
            v1=c*cos(av)*cos(az)
            v2=c*cos(av)*sin(az)
            v3=c*sin(av)
            a=-sin(phi)*cos(Laambda)
            b=-sin(Laambda)
            c=cos(phi)*cos(Laambda)
            d=-sin(phi)*sin(Laambda)
            e=cos(Laambda)
            f=cos(phi)*sin(Laambda)
            g=cos(phi)
            i=sin(phi)
            x=a*v1+b*v2+c*v3
            y=d*v1+e*v2+f*v3
            z=g*v1+h*v2+i*v3
            1.append(x)
            1.append(y)
            1.append(z)
            for i in range (3):
                if abs(l[i])<1e-15 :</pre>
                    1[i]=0
            return 1[0],1[1],1[2]
```


Géodésique locale vers Géocentrique:

```
def transformation_geodesique_locales_vers_geocentrique(lambdap,phip,alphapq,vpq,cpq):
    lambdap=(lambdap*pi)/180
    phip=(phip*pi)/180
    alphapq=(alphapq*pi)/180
    vpq=(vpq*pi)/180

a=cpq*cos(vpq)*cos(alphapq)
    b=cpq*cos(vpq)*sin(alphapq)
    c=cpq*sin(vpq)

DeltaXpq=-sin(phip)*cos(lambdap)*a-sin(lambdap)*b+c*cos(phip)*cos(lambdap)
    DeltaYpq=-sin(phip)*sin(lambdap)*a+cos(lambdap)*b+cos(phip)*sin(lambdap)*c
    DeltaZpq=cos(phip)*a+c*sin(phip)
return DeltaXpq,DeltaYpq,DeltaZpq
```


Géocentrique vers Géodésique locale:

```
1.5608157787634174
                                                                                                                                            Cpg Distance entre P et Q (m):
                                                                                                                                              404.3995548958975
def transformation_geocentriques_geodesiques_locales(lambdap,phip,DeltaXpq,DeltaYpq,DeltaXpq):
                                                                                                                             Vpg Angle Vertical vers Q selon le plan de la section normal directe (°):
    M = [0, 0, 0]
                                                                                                                                             0.5863392869439654
    lambdap=(lambdap*pi)/180
    phip=(phip*pi)/180
                                                                                                                                         Saisie manuelle (Longitude / Latitude)
    M[1]=sqrt(DeltaXpq**2+DeltaYpq**2+DeltaZpq**2) #cpq
    if M[1] == 0:
                                                                                                                                               Consulter Google earth
        M[0]='alphapq n existe pas'
        M[0]=atan((-DeltaYpq*sin(lambdap)+DeltaYpq*cos(lambdap)/(-DeltaXpq*sin(phip)*cos(lambdap)-DeltaYpq*sin(phip)*sin(lambdap)+DeltaZpq*cos(phip)))) #alpha
    if M[1] == 0:
        M[2]='cpq=0 et vpq n existe pas '
         \texttt{M[2]=(asin((1/M[1])*(DeltaXpq*cos(phip)*cos(lambdap)+DeltaYpq*cos(phip)*sin(lambdap)+DeltaZpq*sin(phip)))))} 
    return M[0], M[1], M[2] #(alphapq, cpq, vpq)
```

stransformation_geocentriques_geodesiques_locales

La longitude Lambdap (°):

La latitude Phip (°):

Transformation entre coordonnees: Géocentrique vers Géodesique locale

180-160-140-120-100-80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180

Deltaxpa (m):

Deltaypa (m):

Deltazpa (m):

Transforme

alphapa Azimut Géodésique de la section Normale directe (°):

-23

123

213

55

Géodésique locale vers Astronomiques locales:

```
Geodesique_locales_vers_astronomiques_locales
                  Transformation entre coordonnees:
            Géodesique locales vers Astronomiques locales
                  Ap longitude astronomique locale du point P (°):
                              11
                     Op latitude astronomique du point P (°):
                              12
                           La longitude Lambdap (°):
                              12
                              La latitude Phip (0)
                              13
                                     Rpg:
                              123
                                     Spa
                              321
                                     TPA
                              231
                                   Transformer
```

```
def transformation Geodesique locales vers astronomiques locales (Ap, Op, lambdap, phip, rpq, spq, tpq):
     Ap=Ap*pi*(1/180)
     Op=Op*pi*(1/180)
     lambdap=lambdap*pi*(1/180)
     phip=phip*pi*(1/180)
     a=rpq
     b=spq
     c=tpq
     upq=a-(Ap-lambdap) *sin(Op) *b-(Op-phip) *c
     vpq=b+a*(Ap-lambdap)*sin(Op)-(Ap-lambdap)*cos(Op)
     wpq=a*(Op-phip)+(Ap-lambdap)*cos(Op)+c
     return upq, vpq, wpq
                                                                                                                        Upg (0):
                                                                                                                      1.28197E+02
                                                                                                   Vpg Angle Vertical vers Q selon le plan de la section normal directe (°):
                                                                                                                      3.20571E+02
                                                                                                                        WPg (0):
                                                                                                                      2.28836E+02
                                                                                                                   Consulter Google earth
```

Choisissez un Datum:

Reference ellipsoid name	Equatorial radius (m)	Polar radius (m)	Inverse flattening	Where used
Maupertuis (1738)	6,397,300	6,363,806.283	191	France
Plessis (1817)	6,376,523.0	6,355,862.9333	308.64	France
Everest (1830)	6,377,299.365	6,356,098.359	300.80172554	India
Everest 1830 Modified (1967)	6,377,304.063	6,356,103.0390	300.8017	West Malaysia & Singapore
Everest 1830 (1967 Definition)	6,377,298.556	6,356,097.550	300.8017	Brunei & East Malaysia
Airy (1830)	6,377,563.396	6,356,256.909	299.3249646	Britain
Bessel (1841)	6,377,397.155	6,356,078.963	299.1528128	Europe, Japan
Clarke (1866)	6,378,206.4	6,356,583.8	294.9786982	North America
Clarke (1878)	6,378,190	6,356,456	293.4659980	North America
Clarke (1880)	6,378,249.145	6,356,514.870	293.465	France, Africa
Helmert (1906)	6,378,200	6,356,818.17	298.3	Egypt
Hayford (1910)	6,378,388	6,356,911.946	297	USA
International (1924)	6,378,388	6,356,911.946	297	Europe
Krassovsky (1940)	6,378,245	6,356,863.019	298.3	USSR, Russia, Romania
WGS66 (1966)	6,378,145	6,356,759.769	298.25	USA/DoD
Australian National (1966)	6,378,160	6,356,774.719	298.25	Australia
New International (1967)	6,378,157.5	6,356,772.2	298.24961539	
GRS-67 (1967)	6,378,160	6,356,774.516	298.247167427	
South American (1969)	6,378,160	6,356,774.719	298.25	South America
WGS-72 (1972)	6,378,135	6,356,750.52	298.26	USA/DoD
GRS-80 (1979)	6,378,137	6,356,752.3141	298.257222101	Global ITRS ^[3]
WGS-84 (1984)	6,378,137	6,356,752.3142	298.257223563	Global GPS
IERS (1989)	6,378,136	6,356,751.302	298.257	
IERS (2003) ^[4]	6,378,136.6	6,356,751.9	298.25642	[3]

- Si vous voulez Effectuer Des calculs avec précision.
- Assurez-vous De cliquiez Sur réactualisé À chaque fois Que vous changez La valeur des angles.
- La virgule (,) est un point (.) en python.

la valeur des espacements en degré dans le réseau des méridiens et des parallèles:

Merci ...