Table des matières

Ι	Eléments finis	2
1	Formulation variationnelle 1.1 Choix de l'espace	
2	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3 3
II	Petits rappels d'analyse fonctionnelle	4
1	Rappels sur les distributions	4
2	Espaces de Sobolev 2.1 Liens entre $\mathcal{D}(\omega), L^2(\Omega)$ et $H^1(\Omega)$	4 4
3	Théorèmes de trace	7
4	Généralisation de Sobolev	7
5	Quelques résultats essentiels en analyse hilbertienne	8
6	Théorème de Lax-Milgram et problème variationnel abstrait 6.1 Ecriture sous forme d'un problème de minimisation d'une fonctionnelle d'énergie	9 9
7	Résultat d'erreur	10
TT	I Interpolation de Lagrange	12

Première partie

Éléments finis

 $Problème \ modèle$: On va considérer une EDP elliptique (basée sur le laplacien Δ , somme des dérivées secondes)

$$(P) \left\{ \begin{array}{rcl} -u''(x) & = & f(x) \\ u(0) & = & u(1) = 0 \end{array} \right. \forall x \in \Omega =]0,1[$$

1 Formulation variationnelle

Cette formulation permet de "baisser" l'ordre de dérivation (via la formule de Stroke ou une IPP).

1.1 Choix de l'espace

On va définir l'espace V :

$$V = \{ u \in L^2(\Omega), \ u' \in L^2(\Omega), \ \underbrace{u(0) = u(1) = 0}_{\text{Conditions de Dirichlet}} \}$$

Remarque : On a intégré les conditions de Dirichlet homogènes dans la définition de V.

On notera $V=H^1_0(\Omega)$ un espace de Sobolev, qui est un espace de Hilbert. On définit :

$$\langle u, v \rangle = \int_{\Omega} uvdX + \int_{\Omega} u'v'dX$$
$$\|v\|^2 = \langle v, v \rangle = \|v\|_{L^2(\Omega)}^2 + \|v'\|_{L^2(\Omega)}^2$$

1.2 Recherche de solution

On cherche la solution u(x) dans V. $\forall v \in V$ (appelée fonction test) :

$$-u'' = f$$

$$-vu'' = vf$$

$$-\int_{\Omega} u''vdx = \int_{\Omega} fvdx$$

On a de plus :

$$-\underbrace{[u'v]_0^1}_{=0 \text{ car } v \in V} + \int_0^1 u'v'dx = \int_\Omega fvdx$$

On se ramène donc au problème suivant ; trouver $u \in V$; $\forall v \in V$:

$$(P.V.) \begin{cases} a(u,v) = L(v) \\ \text{avec} \qquad a(u,v) = \int_0^1 u'v'x \\ L(v) = \int_0^1 fv dx \end{cases}$$

La solution de PV est appelée solution faible La solution de P est appelée solution forte.

1.3 Existence-unicité d'une solution de (PV)

⇔ Théorème: de Lax-Milgram

 $a(\bullet, \bullet)$ est:

— une forme bilinéaire (symétrique?)

 $\begin{array}{ll} & - \text{ V-elliptique}: a(u,u) \geq \alpha \|u\|_v^2, \ \alpha \geq 0 \\ & - \text{ continue}: |a(u,v)| \leq C \|u\|_V \|v\|_V, \ C \geq 0 \\ L(\bullet) \text{ est linéaire continue}. \end{array}$

Sous ces conditions, (PV) admet une solution unique $u \in V$.

$\mathbf{2}$ Approximation numérique du problème variationnel

C'est dans cette partie que l'on va utiliser la méthode des élements finis en exprimant la solution discrétisée u_h dans une base d'un espace V_h de dimension finie.

2.1Choix de V_h

Choix le plus simple :

$$V_h = \{v_n \in V; v_h \in \mathcal{C}^0(\bar{\Omega}), \forall i = 0, ..., n-1; \ v_{h[\tau_i, \tau_{i+1}]} \in \mathbb{R}_1[X]\}$$

 V_h est un espace vectoriel de dimension n-1.

Remarque : Cela correspond à des β -splines.

$$\tau = (\tau_i)_{i=0..n}, \dim \mathbb{P}_{k,\tau,r} = (k+1)n - \sum_{i=1}^{n-1} r_i$$

 $\mathbb{P}_{k,\tau,r}$ est l'espace des fonctions polynomiales par morceaux de degré inférieur ou égal à k avec un raccord \mathcal{C}^{r_i-1} en

En particulier, dim $V_h = n - 1$.

2.2Fonctions de base

Ce sont les $(\phi_i)_{i=1,\dots,n-1}$, ils vérifient une condition la grangienne :

$$\begin{cases} \phi_i(z_i) = 1 \\ \phi_i(z_j) = 0 \quad \forall j \neq i \end{cases}$$

2.3 Problème discrétisé

Le problème discrétisé (PV_h) est maintenant la recherche de $u_h(x) = \sum_{j=1}^{n-1} \xi_i \phi_i(x) \in V_h$ tel que $\forall v_h \in V_h$ $V_h, a(u_n, v_n) = L(v_n).$

Détermination des inconnues $(\xi_j)_{j=1,\dots,n-1}$

On a:

$$u_h(\tau_i) = \sum_{j=1}^{n-1} \xi_j \phi_j(\tau_i) = \xi_i$$

Trouver $u_h(x) = \sum_{j=1}^{n-1} \xi_j \phi_j(x) \in V_h$ tel que $\forall i = 1, ..., n-1, \ a(u_h, \phi_i) = L(\phi_i)$. On a fonc :

$$\sum_{j=1}^{n-1} \xi_j \underbrace{a(\phi_j, \phi_i)}_{\text{Matrices de rigidit\'e}} = L(\phi_i), \ \forall i = 1, ..., n-1$$

On se ramène donc à un système linéaire :

$$R\xi = F$$

I Propriété:

R est définie positive.

Démonstration:

On l'obtient grâce à la V-ellipticité de $a(\bullet, \bullet)$. Soit $v \in \mathbb{R}^{n+1}$. On cherche à voir si $v^T R v > 0$.

$$(v^T R)_j = \sum_{i=1}^{n-1} v_i R_{ij} = \sum_{i=1}^{n-1} v_i a(\phi_j, \phi_i) = a(\phi_j, \sum_{i=1}^{n-1} v_i \phi_i)$$

$$(v^T R)v = \sum_{j=1}^n v_j (v^T R)_j = a \left(\sum_j v_j \phi_j, \sum_i v_i \phi_i \right)$$

Posons $w = \sum_{i} v_i \phi_i$, $a(w, w) \ge 0$ car $a(\bullet, \bullet)$ V elliptique.

Deuxième partie

Petits rappels d'analyse fonctionnelle

Rappels sur les distributions 1

Notation: $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^*$, on définit:

$$\partial^{\alpha} = \frac{\partial^{|\alpha|}}{\partial^{\alpha_1} x_1 ... \partial^{\alpha_n} x_n}$$

avec $|\alpha| = \sum_{i=1}^{n} \alpha_i$

- $\mathcal{D}(\Omega)$ est dense dans $L^2(\Omega)$ (toute fonction de $L^2(\Omega)$ est limite d'une suite de fonctions incluse dans $\mathcal{D}(\Omega)$).

 L'application identité de $L^2(\Omega)$ dans $\mathcal{D}'(\Omega)$ est appelée injection canonique. Elle est continue.

 $f_n \xrightarrow{L^2(\Omega)} f \Rightarrow T_{f_n} \xrightarrow{\mathcal{D}'(\Omega)} T_f$

Espaces de Sobolev $\mathbf{2}$

Ces espaces nous permettent de résoudre les problèmes variationnels. Les espaces de Sobolev se construisent à partir des espaces L^p (on va d'abord s'intéresser aux espaces $H^m(\Omega)$ construits sur $L^2(\Omega)$).

Liens entre $\mathcal{D}(\omega)$, $L^2(\Omega)$ et $H^1(\Omega)$ 2.1

On rappelle la notion de dérivation faible :

$$u \in L^2(\Omega), \ \frac{\partial u}{\partial x_i} \to \omega_i \in \mathcal{D}'(\Omega)$$

4

♣ Définition: Espaces des Sobolev

Les dérivées qui vont intervenir dans les espaces de Sobolev sont prises au sens des distributions.

$$H^1(\Omega) = \left\{ v \in L^2(\Omega), \ \frac{\partial v}{\partial x_i} \in L^2(\Omega), \ \forall i = 1, ..., n \right\}$$

On définit un produit scalaire :

$$((u,v))_{1,\Omega} = \int_{\Omega} \left(uv + \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} \right) dx$$
$$= \int_{\Omega} \left(uv + (\nabla u)^{t} \nabla v \right) dx$$

et on note $\| \bullet \|_{1,\Omega}$ sa norme associée.

- $H^1(\Omega)$ est un espace de Hilbert $H^1(\Omega)$ est séparable (il existe une partie dénombrable et dense dans $H^1(\Omega)$).

Démonstration:

On va montrer que $H^1(\Omega)$ est complet.

Soit $(v_p)_p$ une suite de Cauchy dans $H^1(\Omega)$. On a : $\forall p, v_p \in H^1(\Omega)$ et :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}; \forall n, p \ge N, ||v_n - v_p|| < \varepsilon$$

Par définition de $H^1(\Omega)$, $(v_p)_p$ est une suite de Cauchy dans $L^2(\Omega)$ et $\forall i=1,...,n, \left(\frac{\partial v_p}{\partial x_i}\right)_p$ est également une suite de Cauchy dans $L^2(\Omega)$.

$$\exists v \in L^2(\Omega); v_p \xrightarrow{L^2} v$$
$$\exists w_i \in L^2(\Omega); \frac{\partial v_p}{\partial x_i} \xrightarrow{L^2} w_i$$

car $L^2(\Omega)$ est complet.

On rappelle que la convergence dans $L^2(\Omega)$ implique la convergence dans $\mathcal{D}(\Omega)$ (car les fonctions de classe \mathcal{C}^{∞} à support compact sont L^2 et le produit scalaire de L^2 coincide avec le crochet de dualité au sens des distributions).

La convergence se fait donc au sens des distributions. Or, les opérations de dérivation sont continues dans $\mathcal{D}'(\Omega)$. Par conséquent :

$$\frac{\partial v_p}{\partial x_i} \to \frac{\partial v}{\partial x_i}$$

et de plus, il y a unicité de la limite dans $\mathcal{D}'(\Omega)$ et donc $\omega_i = \frac{\partial v}{\partial x_i}$

I Propriété: Rellich

Soit Ω un ouvert borné de \mathbb{R}^n à frontière "suffisament régulière", alors de toute suite bornée dans $H^1(\Omega)$, on peut extraire une sous-suite qui converge dans $L^2(\Omega)$. (L'injection canonique de H^1 dans L^2 est compacte)

On désigne par $H^1_0(\Omega)$ l'adhérence de $\mathcal{D}(\Omega)$ dans $(H^1(\Omega),\|\bullet\|_{1,\Omega})$

$$H_0^1(\Omega) = \left\{ f \in H^1(\Omega); \exists \phi_n \in \mathcal{D}(\Omega); \phi_n \to f \right\}$$
$$= \left\{ u \in L^2(\Omega); \frac{\partial u}{\partial x_i} \in L^2(\Omega); u(\Gamma) = \{0\} \right\}$$

i Formule: de Poincaré

Si Ω est borné au moins dans une direction, alors $\exists C(\Omega) > 0; \forall v \in H_0^1(\Omega);$

$$||v||_{L^{2}(\Omega)} = ||v||_{0,\Omega} \le C(\Omega) \sum_{i=1}^{n} \left\| \frac{\partial v}{\partial x_{i}} \right\|_{L^{2}(\Omega)}$$

Démonstration:

Soit $v \in H_0^1(\Omega)$.

On considère la base canonique de \mathbb{R}^n : $(e_i)_{i \in \{0,\dots,n\}}$. On suppos que Ω est borné dans une direction de l'espace (par

Dans la direction e_1 , les éléments de Ω sont compris entre a et b.

On considère un couple (t, \hat{x}) , avec $t \in \mathbb{R}$, $(\hat{x} \in \mathbb{R}^{n-1})$, on a :

$$v(x) - \underbrace{v(a)}_{=0(a \in \Gamma)} = \int_{a}^{x} v'(t, \hat{x})dt$$

On applique Cauchy-Schwarz:

$$|v(x)^{2}| \leq (x-a) \int_{a}^{x} |v'(t,\hat{x})|^{2} dt$$

$$\leq (x-a) \int_{\mathbb{R}} |v'(t,\hat{x})|^{2} dt$$

On intègre sur \mathbb{R}^{n-1} :

$$\int_{\mathbb{R}^{n-1}} v(x)^2 d\hat{x} \leq \int_{\mathbb{R}^{n-1}} (x-a) \int_{\mathbb{R}} v'(t,\hat{x})^2 dt d\hat{x}$$
$$\leq (x-a) \int_{\mathbb{R}^n} v'(t,\hat{x})^2 dt d\hat{x}$$

Or,

$$\int_{\mathbb{R}^n} v'(t, \hat{x})^2 dt d\hat{x} = \|v'\|_{0,\Omega}^2 \le \|\nabla v\|_{0,\Omega}^2$$

On intègre à nouveau entre a et b :

$$\int_{a}^{b} \int_{\mathbb{R}^{n-1}} v(x)^{2} d\hat{x} dt \leq \int_{a}^{b} (t-a) dt \|\nabla v\|_{0,\Omega}^{2}$$
$$\|v\|_{0,\Omega}^{2} \leq \frac{b-a}{2} \|\nabla v\|_{0,\Omega}^{2}$$

Ainsi, $C(\Omega) = \frac{|b-a|}{\sqrt{2}}$.

La densité de $\mathcal{D}(\Omega)$ dans $H_0^1(\Omega)$ nous permet d'obtenir la formule de Poincaré.

Il existe d'autres formules de ce type, comme la formule de Poincaré-Wirtinger.

 $\frac{\text{Remarque}:}{H^1_0(\Omega)\text{ est ferm\'e dans }H^1(\Omega)}\text{ de la norme induite par }H^1(\Omega).$

1 Propriété

Si Ω est borné, alors sur $H^1_0(\Omega)$, la semi-norme

$$\left(\int_{\Omega} (\nabla u)^2 du\right)^{\frac{1}{2}}$$

définit une norme équivalente à $\| \bullet \|_{H^1(\Omega)}$

Démonstration:

D'après l'inégalité de Poincaré : Ω borné, $v \in H^1_0(\Omega)$:

$$\int_{\Omega} (\nabla v)^2 dx \geq C(\Omega) \int_{\Omega} v^2 dx$$

$$2 \int_{\Omega} (\nabla v)^2 dx \geq C(\Omega) \int_{\Omega} v^2 dx + \int_{\Omega} (\nabla v)^2 dx$$

$$\|v\|_{1,\Omega}^2 = \int_{\Omega} (\nabla v)^2 dx \geq \frac{1}{2} \min(1, C(\Omega)) \|v\|_{1,\Omega}^2$$

3 Théorèmes de trace

On suppose Ω "régulier", alors $\mathcal{D}(\overline{\Omega})$ est denste dans $H^1(\Omega)$ et l'application

$$\begin{array}{ccc} \gamma_0 : \mathcal{D}(\overline{\Omega}) & \to & L^2(\Gamma) \\ v & \mapsto & \gamma_0 v = v_{|\Gamma} \end{array}$$

se prolonge par continuité en une application linéaire continue de $H^1(\Omega)$ dans $L^2(\Gamma)$.

 $L^2(\Gamma)$: classe de fonctions de carré sommable avec la mesure $d\sigma$ (qui est la mesure superficielle sur $\partial\Omega=\Gamma$, associé à la mesure classique de Lebesgue).

Remarque: γ_0 n'est pas surjective (preuve dans la littérature: Allaire, Brégis...)

4 Généralisation de Sobolev

 Ω : ouvert non vide e \mathbb{R}^n .

♦ Définition:

On note $W^{m,p}(\Omega)$ $(1 \le p \le \infty)$ l'espace des fonctions $v \in L^p(\Omega)$ telles que pour tout $\alpha \in \mathbb{N}^n$ tel que $|\alpha| \le m$, les dérivées partielles $\partial^{\alpha} v$ de longueur $|\alpha|$ soient $C^p(\Omega)$.

$$||v||_{m,p,\Omega}^2 = \sum_{|\alpha| \le m} \int_{\Omega} (\partial^{\alpha} v)^2 dx \text{ si } 1 \le p < \infty$$

On a aussi une semi norme :

$$|v|_{m,p,\Omega}^2 = \sum_{|\alpha|=m} \int_{\Omega} (\partial^{\alpha} v)^2 dx$$

Remarque : Lorsque p=2, on retombe sur $H^m(\Omega)$

♣ Définition: Fonction μ-holderiennes

On note $C^{m,\mu}(\overline{\Omega})$ l'espace des fonctions v de $C^m(\overline{\Omega})$ qui sont μ -holderiennes sur $\overline{\Omega}$, ainsi que toutes leurs dérivées partielles d'ordre $|\alpha| \leq m$, ie :

$$\exists C > 0; \ \forall x, y \in \overline{\Omega}, \forall |\alpha| \le m, |\partial^{\alpha} v(x) - \partial^{\alpha} v(y)| \le C \langle x - y \rangle_{\mathbb{R}^n}^{\mu}$$

avec $\langle \bullet \rangle$ la norme euclidienne sur \mathbb{R}^n .

Nous allons maintenant donner quelques résultats de compacité dans les espaces de Sobolev :

$$H^m(\Omega) \hookrightarrow \mathcal{C}^s(\Omega)$$
 si $m > s + \frac{n}{2}$

où $\Omega\subset\mathbb{R}^n$ à frontière lipschitzienne.

 \hookrightarrow : injection can onique.

5 Quelques résultats essentiels en analyse hilbertienne

Soit H un espace de Hilbert muni du produit scalaire $(\bullet, \bullet)_H$. On note H' le dual de H.

$$||l||_{H'} = \sup_{v \in H} \frac{|l(v)|}{||v||_H}$$

Soit K un espace convexe, fermé et non vide de H. Alors pour tout $f \in H$, il existe un unique élément de K, noté $P_K f$ tel que :

$$||f - p_k f||_H = \min_{v \in K} ||f - v||_H$$

Remarque : P_k est une contraction

→ Théorème: de représentation de Riesz-Fréchet

Soit $l \in H'$, il existe un unique élément $f \in H$ tel que

$$\forall v \in H, \ l(v) = (l, v)_{H', H} = (f, v)_{H'}$$

et on a $||f||_H = ||l||_{H'}$.

6 Théorème de Lax-Milgram et problème variationnel abstrait

On considère un espace de Hilbert V et V' son dual. Soit $a(\bullet, \bullet)$ une fonctionnelle :

- bilinéaire de $V \times V$ dans \mathbb{R}
- continue $(\exists M; \forall u, v \in V, |a(u, v)| \leq M||u||||v||)$
- V-elliptique $(\exists \alpha > 0; a(v, v) \ge \alpha ||v||^2)$

Soit $L \in V'$. Le problème variationnel est alors défini comme suit :

$$(PV) \left\{ \begin{array}{c} \text{Chercher } u \in V \text{ tel que } \forall v \in V \\ a(u,v) = L(v) \end{array} \right.$$

⇔ Lemme: de Lax-Milgram

Sous les hypothèses précédentes sur $a(\bullet, \bullet)$, et $L(\bullet)$, on a :

- 1. (PV) admet une unique solution
- 2. On étudie l'existence et l'unicité d'une solution du problème transformé

Démonstration:

Distribuée sur feuille.

\mathbf{i} Remarque:

Si $a(\bullet, \bullet)$ est de plus symétrique, alors combiné avec la V-ellpticité, on a $a(\bullet, \bullet)$ défini positif. Donc $a(\bullet, \bullet)$ définit un produit scalaire sur V.

On peut donc lui associer une norme $(a(v,v))^{\frac{1}{2}}$ qui est équivalente à $\|\bullet\|_V$ (grâce à l'ellpticité et à la continuité)

6.1 Ecriture sous forme d'un problème de minimisation d'une fonctionnelle d'énergie

On définit

$$J: \begin{array}{ccc} V & \rightarrow & \mathbb{R} \\ v & \mapsto & J(v) = \frac{1}{2}a(v,v) - L(v) \end{array}$$

On cherche v minimisant J

⇔ Théorème: de Stanpacchia

Il existe un unique élément v minimisant J, et cet élément est aussi l'unique solution de (PV)

Démonstration:

Soient $u, w \in V$

$$J(u+w) = \frac{1}{2}a(u+w, u+w) - L(u+w)$$

$$= J(u) + J(w) + a(u, w)$$

$$= J(u) + \frac{1}{2}a(w, w) \underbrace{-L(w) + a(u, w)}_{(*)}$$

Si v solution de (PV), alors (*) = 0. De plus, si $w \in V \setminus \{0\}$, $a(w, w) \ge \alpha ||w||_V^2 > 0$. Donc $J(u + w) \ge J(u)$. $\forall t \in V, \exists u, w \in V, u + w = t$

$$J(t) \ge J(u)$$

D'où

$$J(u) = \min_{u \in V} J(t)$$

(Manque la réciproque)

Résultat d'erreur

$$(PV)\left\{\begin{array}{l} \text{Chercher } u\in V, \forall v\in V\\ a(u,v)=L(v) \end{array}\right. \\ \text{On cherche à déterminer l'erreur commise en passant de }V\text{ à }V_h.\text{ On herche à quantifier }\|u-u_h\|.$$

Soit u la solution de (PV) et u_h la solution de (PV_h) . Alors :

$$||u - u_h|| \le \frac{M}{\alpha} \inf_{v_h \in V_h} ||u - v_h||$$

Démonstration:

Grâce à la V-ellipticité :

$$\alpha \|u - u_h\|_V^2 \le a \quad (u - u_h, u - u_h)$$

$$= a(u - u_h, u - v_h) + \underbrace{a(u - u_h, v_h - u_h)}_{=0}$$

car $\forall v_h \in V_h, v_h - u_h \in V_h$ et :

$$\forall v_h \in V_h, \begin{cases} a(u, v_h) &= L(v_h) \\ a(u_h, v_h) &= L(v_h) \end{cases} \Rightarrow a(u - u_h, v_h) = 0$$

Grâce à la continuité :

$$\alpha \|u - u_h\|_V^2 \le M \|u - u_h\| \|u - v_h\|_V$$

$$\|u - u_h\|_V \le \frac{M}{\alpha} \|u - v_h\|$$

Et ce pour tout $v_h \in V_h$, d'où le résultat.

On suppose qu'il existe un sous espace $\mathcal V$ inclu et dense dans V, et une application $r_h:\mathcal V\to V$. (Par exemple, l'interpolé de Lagrange Π_h vu en TD) tels que

$$\forall v \in \mathcal{V}, \ \lim_{h \to 0} \|v - v_h\| = 0$$

Alors la méthode d'approximation variationnelle converge :

$$\lim_{h \to 0} \|u - u_h\| = 0$$

(Dans la preuve, on utilise le lemme de Céa)

Troisième partie

Interpolation de Lagrange

Introduction

Qu'est-ce qu'un élément fini? On introduit les éléments suivants :

K: polyèdre connexe de \mathbb{R}^n d'intérieur non vide.

 Σ : ensemble de degré de liberté

 \mathbb{P} : espace vectoriel de fonctions $K \to \mathbb{R}$.

🔩 Définition: Unisolvance

On dit que Σ est \mathbb{P} -unisolvant si pour tout ensemble $(\alpha_j)_{j=1...N}$, il existe une unique fonction $p \in \mathbb{P}$ tel que, pour $a_i \in \Sigma$, $\forall i \in \{1,...,N\}$, $p(a_k) = \alpha_k$, $\forall k \in \{1,...,N\}$.

Pour démontrer l'unisolvance :

— Condition nécessaire : on vérifie que $\operatorname{card}\Sigma = \dim \mathbb{P}$

— Si $\forall p \in \mathbb{P}, \forall j \in \{1, ..., N\}, p(a_j) = 0, \text{ alors } p \equiv 0$

ou : On détermine les fonctions de base de \mathbb{P} .

Si Σ est \mathbb{P} -unisolvant, n dit que (K, Σ, \mathbb{P}) est un élément fini de Lagrange.

Remarque : Pour chaque degré de liberté a_i , on associe une fonction de base p_i . On a :

$$\begin{cases} p_i(a_i) &= 1 \\ p_i(a_j) &= 0 \quad \forall i \neq j \end{cases}$$