

NBS PUBLICATIONS

NBSIR 80-2141

Estimated Accuracy of Calibration of Some Membrane-Type LNG **Transport Tanks**

W. C. Haight, R. J. Hocken, B. R. Borchardt, C. L. Carroll, R. G. Hartsock, C. P. Reeve, F. E. Scire and R. C. Veale

Automated Production Technology Division National Engineering Laboratory U.S. Department of Commerce National Bureau of Standards Washington, DC 20234

February 1980

Issued January 1981

QC-

100

. U56

80-2141

198

DEPARTMENT OF COMMERCE

NAL BUREAU OF STANDARDS

NBSIR 80-2141

ESTIMATED ACCURACY OF CALIBRATION OF SOME MEMBRANE-TYPE LNG TRANSPORT TANKS

National Bureau of Standards . Library. E-01 Admin. Bldg.

APR 1 1981

Put ull - Lin

. USF

115 80 3141

1980 C. 2

W. C. Haight, R. J. Hocken, B. R. Borchardt, C. L. Carroll, R. G. Hartsock, C. P. Reeve, F. E. Scire and R. C. Veale

Automated Production Technology Division National Engineering Laboratory U.S. Department of Commerce National Bureau of Standards Washington, DC 20234

November 1980

Issued January 1981

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary
Jordan J. Baruch, Assistant Secretary for Productivity, Technology, and Innovation
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Estimated Accuracy of Calibration of Some Membrane-Type LNG Transport Tanks

W. C. Haight, R. J. Hocken, B. R. Borchardt, C. L. Carroll, R. G. Hartsock, C. P. Reeve, F. E. Scire and R. C. Veale

Automated Production Technology Division National Engineering Laboratory National Bureau of Standards Washington, DC 20234

February 1980

These reports prepared for:

The LNG Custody Transfer Measurements Committee

and

The Maritime Administration of the Department of Commerce

Table of Contents

Section	<u>Title</u>	Page
I.	Introduction	Ī
II.	The Tanks	1
III.	Tank Calibration Methods	1
IV.	Results	2
	References	3
	Appendices: Tank Calibration Reports	
	A. Calibration Reports for the Six Tanks of the El Paso Southern	A-1
	B. Calibration Reports for the Six Tanks of the El Paso Arzew	B-1
	C. Calibration Reports for the Six Tanks of the El Paso Howard Boyd	C-1

Estimated Accuracy of Calibration of Some Membrane-Type LNG Transport Tanks

W. C. Haight, R. J. Hocken, B. R. Borchardt, C. L. Carroll, R. G. Hartsock, C. P. Reeve, F. E. Scire and R. C. Veale

I. Introduction

The National Bureau of Standards supported by the Department of Commerce Maritime Administration did some preliminary studies to establish an upper limit for the tank volume uncertainty of a spherical transport tank calibrated by photogrammetry [1]. Additional support from the Maritime Administration and the LNG Ship Custody Transfer Committee [2], has made possible a considerably expanded study of the calibration uncertainties of LNG transport tanks. The tank calibrations examined in this work are those of the three LNG Transports built by Newport News Shipbuilding and Drydock Company for El Paso Marine Company.

II. The Tanks

The cargo tanks on these 125000 m³ (approximate) capacity ships are membrane types of the Technigaz design described in reference [3]. The tanks are ten-sided prismatic solids and rectangular in horizontal cross section. The walls are all plane surfaces. The end walls are vertical as are the side walls. The side walls are connected to the horizontal floor and ceiling by sloping chine planes. All eight of the longitudinal planes are parallel to the longitudinal axis of the ship. The supporting walls of the tanks are the inner hull of the ship. Layers of insulation are attached to these walls and the internal surfaces of the insulation are covered with a liquid-tight 1.2 mm stainless steel membrane. This membrane has corrugations stamped into it forming a waffle pattern.

III. Tank Calibration Methods

The measurements used to calculate the tank volume were generally made after the membrane installation was complete but before the removal of the construction scaffolding since it is needed to provide access to the tank surface. Briefly, the calibration method used by the calibration contractor consisted of measuring horizontal cross sectional areas of the tank at intervals from the bottom to the top of the tank. The products of these areas and the separation from the area immediately below summed to the level gives the volume to that level. This method is discussed in reference [4]. The cross sectional areas of these tanks were determined by measuring short distances to the wall from the sides of a horizontal rectangle of known dimensions defined by laser beams.

A calibration method developed at NBS and reported in reference [5] was used by NBS to assess the accuracy of the method used by the calibration contractor. The method used by NBS consists, in brief, of inscribing with laser planes a slightly smaller closed volume with the same shape as the tank. The dimensions of this laser-plane-defined volume are accurately measured. Perpendicular distances from the laser planes to the tank walls are measured at several hundred specified points distributed around the tank. The integration method used to determine volume as a function of height is also outlined in reference [5].

IV. Results

The calibration reports for each of the six tanks of the three ships, the El Paso Southern, the El Paso Arzew and the El Paso Howard Boyd, appear in Appendix I, II, and III respectively. Each individual tank report supplies the following information:

- a. A calibration report or a report of test describing the measurement technique, measurement conditions, and error estimate.
- b. A summary main gaging table showing tank volume as a function of gage height.
- c. Summary list and trim correction tables to supplement the main table under expected conditions of ship list and trim.
- d. A plot comparing the NBS main gaging tables at selected intervals to the gage books for each tank provided by the calibration contractor.

The staging was removed in four of the tanks before the NBS measurements were made; hence the calibration check was done only to the height accessible from the bottom of the tank.

The calibration accuracy required by the ship owner is $\pm 0.2\%$ of total tank volume. The NBS results range in accuracy from $\pm 0.05\%$ to $\pm 0.1\%$ as indicated in the Reports of Calibration. In every case, the calibration contractor's results are well within $\pm 0.2\%$ of the NBS results. It therefore appears that the accuracy requirement has been achieved for the tanks at ambient temperature. The tank volume tables at ambient temperature are used by the transporter to determine LNG volume at operating temperature because the tank dimensions have been assumed independent of cargo temperature. This assumption is based on the fact that the shape of the tank is determined by the external tank wall which is the inner hull of the ship. The membrane wall is supported by this wall via the insulation. The corregated design of the membrane allows the membrane to shrink on cooling without altering the internal volume.

In actual operation, the external tank wall might be as cold as 0°C depending on weather conditions. The temperature of the interior of the tanks was as high as 30°C during calibration of the tanks. Provided the external tank wall reached temperatures that high, the difference between the calibration and operating temperature could be as large as 30°C .

The thermal expansion coefficient of iron as well as iron containing small quantities of nickel [6] is approximately 11.6 x 10^{-6} m/m°C. This contraction only affects the length and width of the tank with regard to calibration since the liquid height is determined by the level gage rather than the tank height. Thus the tank volume change between the calibration and operating temperature could be as much as

$$\Delta V/V = -(2 \times 30 \times 11.6)/100$$

=-0.07%

The shrinkage of the balsa wood insulation upon cooling (since the balsa is not a rigid body) as well as any bulging of the tank sides counteract the reduction in volume due to cooling the walls. The balsa shrinkage contributes a negligible change in tank volume. If this is also true with respect to tank wall bulging due to hydrostatic head, then the maximum systematic error introduced into the tank calibrations due to cooling is estimated to be no more than -0.07%.

References

- [1] Jackson, R.H.F. et al. 1979. Custody Transfer Systems for LNG Ships: Tank Survey Techniques and Sounding Tables. NBSIR 79-1751.
- [2] The members of the committee are: Ivan W. Schmitt, Chairman, El Paso Marine Company; Bland Osborn, Columbia LNG Corporation; Howard S. Joiner, Consolidated Systems LNG Company; and Ed Crenshaw, Southern Energy Company.
- [3] Jackson, R. G. and Kotcharian M., 1968, Testing and Technology of Models of Integrated Tanks for LNG carriers, Paper No. 35, Session 6, First International Conference on LNG, Chicago, April.
- [4] Jelffs, P.A., 1972. "Calibration of Containers and Gages" J. Inst. Pet. Vol. 58, p. 117.
- [5] Hocken, R. J. and Haight, W. C., 1978. "Multiple Redundancy in the Measurement of Large Structures" Annals of the International Institution of Production Engineering Research (CIRP), Volume 27, p. 1.
- [6] LNG Materials and Fluids User's Manual, 1977. D. B. Mann, Editor, National Bureau of Standards, Boulder, CO.

Appendix A

Calibration Reports for the Six Tanks of the El Paso Southern

REPORT OF CALIBRATION

For: Tank #1 on the LNG Tanker

El Paso Southern

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 1 of the liquefied natural gas tanker El Paso Southern while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 9.0°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was $12566.0~\text{m}^3$ with an uncertainty of $1.3~\text{m}^3$ (0.01% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is $\pm~0.05\%$ of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief Mechanical Processes Division

Center for Mechanical Engineering

and Process Technology

EL PASO SOUTHERN

MAIN VOLUME VS. HEIGHT TABLE

TANK NO. 1

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0.000	3.3
• 050	18.6
- 100	34.4
• 200	66.5
• 30 0	99.0
• 40 G	132.0
•500 1•000	165•5 339•9
2.000	724.3
3.060	1156.1
4.000	1635.1
5.100	2144.7
6.000	2654.7
7.000	3164.7
8.000	3674.7
9.000	4184.7
18.000	4694.6
11.000	5204.5
12.000	5714.4
13.000	6224.3
14-300	6734.1
15.000	7243.9
16.000	7753.6
17.000	8263.3
18.000	8773.C
19.000	9282.7
20.000	9792.3
21.000	10301.9 10811.4
22.500	11066.2
23.000	11321.0
23.500	11575.7
24.000	11825.6
24.506	12063.7
25.000	12283.8
25.500	12504.1

EL PASO SOUTHERN TANK NO. 1
GAGE CORRECTION IN MILLIMETERS

(S)	+ 3 • 5		
RN (METER	· · ·	1000 1117 1117 1124 1124 1124 1124	1 321 1 321 1 321 1 4 4 4 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
BY STER	+2 • 5	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1 W W W W W W W W W W W W W W W W W W W
TRIM		+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30
	+2.0	N	111111111111111111111111111111111111111
	+1.5	1	
	+1.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0 • 0	REES) 333	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ETERS)	- 0 - 5	20.5 20.5 20.5 20.3 20.3 20.3 20.4 20.4 20.4	22 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
BOW (M	- 1 • 0	411.0 411.0 411.0 411.0 411.0 411.0 411.0 411.0 411.0 411.0	1
TRIM BY	-1.5	1000 1000 1000 1000 1000 1000 1000 100	200 200 200 200 000 000 000 000 000
	ப்ப≖வி	2000 2000 11	110 110 20 23 25

 δ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

REPORT OF CALIBRATION

For: Tank #2 on the LNG Tanker

El Paso Southern

Requested by: El Paso Marine Company

2919 Allen Parkway P. 0. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 2 of the liquefied natural gas tanker El Paso Southern while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 15.4°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was 24858.8 m^3 with an uncertainty of 2.5 m^3 (0.01% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is $\frac{1}{2}$ 0.05% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Aussell & afound

Mechanical Processes Division Center for Mechanical Engineering

and Process Technology

EL PASO SOUTHERN

MAIN VOLUME VS. HEIGHT TABLE

TANK NO. 2

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0.000	4.5
•050	43.1
.100	84.0
	166.1
	248.9 332.3
	416.3
1.000 .	846.0
2.000	1752.4
	2721.8
	3754•1 4827•4
	5901.4
7.000	6975.5
8.000	8049.5
	9123.5
	10197.5 11271.5
	12345.5
	13419.4
14.000	14493.4
	15567.3
	16641.3
	17715.2 18778.7
	19784.5
20.000	20725.8
21.000	21605.4
	22423.4
	22804•1 23171•9
	23523.8
24.000	23859.8
24.500	24179.9
	24484.1
25.500	24772.4
	METERS) 0.000 .050 .100 .200 .300 .400 .500 1.000 2.000 3.000 4.000 5.000 6.000 7.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.500 23.500 23.500 24.000

EL PASO SOUTHERN TANK NO. 2
GAGE CORRECTION IN MILLIMETERS

(8)	ν +	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N (METERS	+3•0	REES) 1168.6
BY STERN	+2 • 5	ARD (DE G 7.9.7 4.0.5 4.0.5 4.0.5 4.0.7
TRIM	·	+ + + + +
	+2 • 0	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	+1.5	
	+1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0 • 0	REE S
ME TERS)	-0 - 5	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Y BOW (1	-1.0	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRIM B	٠ کا	844.6 844.6 844.6 844.7 847.7 84
	GAGE HEIGHT (METERS)	0000 0000 0000 0000 0000 0000 0000 0000 0000

 δ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

(%) 8

DEVIATION,

25.000

REPORT OF CALIBRATION

For: Tank #3 on the LNG Tanker

El Paso Southern

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 3 of the liquefied natural gas tanker El Paso Southern while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper. "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 16.4°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was $27655.0~\text{m}^3$ with an uncertainty of $5.5~\text{m}^3$ (0.01% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is \pm 0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell C. Afoung Russell D. Young, Chief

Mechanical Processes Division

Center for Mechanical Engineering and Process Technology

EL PASO SOUTHERN
MAIN VOLUME VS. HEIGHT TABLE

TANK NO. 3

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)

0.000	1.4
• 05 0	43.1
.100	90.0
. 200	184.4
.300	279.5
• 400	375.2
•500	471.6
1.000	963.7
2.000	1998.1
3.000	3099.5
4.000	4267.9
5.000	5489.7
6.000	6694•4
7.000	7908.2
8.000	9121.8
9.000	10335.4
10.000	11548.9
11.000	12762•4
12.000	13975.8
13.000	15189.2
14.000	16402.5
15.000	17615.7
16.000	18828.9
17.000	20036.7
18.000	21170.7
19.000	22242.9
20.000	23247.4
21.000	24184.2
22.000	25053.2
22.500	25462.4
23.000 23.500	25854•5 26229•8
24.000	26538.1
24.503	26929.4
25.000	27253.9
25.500	27561.4
€7.000	7130T • 4

EL PASO SOUTHERN TANK NO. 3
GAGE CORRECTION IN MILLIMETERS

(8)	* M+	
N (METER		REES) 1222-3 160-62 180-62 180-64 180-65 180-64 180-65 180-65 180-65 180-65 180-65 180-65 190-7-66 190-7-66 190-68
BY STERN	2.	A B B B B B B B B B B B B B B B B B B B
TRIM		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	+5.0	+ 0 = 1
	+1.5	
	+1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 • 0	REE
METERS)	ີ່ ທີ່ -	RT
Y BOW (1	•	599.0 599.0 599.0 599.0 599.0 5
TRIM B	• •	A C C C C C C C C C C C C C C C C C C C
	штал	22 23 20 20 20 20 20 20 20 20 20 20 20 20 20

 δ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

REPORT OF TEST

For: Tank #4 on the LNG Tanker

El Paso Southern

Requested by: El Paso Marine Company

2919 Allen Parkway
P. O. Box 1592
Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 4 of the liquefied natural gas tanker El Paso Southern while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull.

The tank was measured empty while at an average temperature of 10.0° C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

These tables are not based on a complete survey of the tank, since scaffolding necessary for complete interior access was not present at the time of measurement. As a consequence, geometrically redundant cross checks reported of tanks 1, 2 and 3 were not made on this tank to assess random measurement errors. The estimated uncertainty of the tables is instead based on the comparison of measurements on tanks 1, 2 and 3 against their respective nominal construction dimensions. These comparisons showed measured dimensions were in general within 0.2% of the nominals so an estimated uncertainty of +0.2% of total volume is assigned to the tables.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division

Center for Mechanical Engineering

and Process Technology

EL PASO SOUTHERN
MAIN VOLUME VS. HEIGHT TABLE

1	ΓΑ	N	K	N	n	4

GAGE HEIGHT (METERS)	VOLUME (CUBIC METERS)
0.000 .050 .100 .200 .300 .400	0.0 11.2 23.4 48.0 72.5 97.0

EL PASO SOUTHERN TANK NO. 4
GAGE CORRECTION IN MILLIMETERS

	TRIM BY BOW		(METERS)					TRIM	BY STER	TRIM BY STERN (METERS)	(S)
GAGE HEIGHT (METERS)	-1.5	-1-0	-0.5	0.0	+1.0	+1.5	+5.0		+2.5	0 ° £ +	+ +
.050	29.0	19.1	9.6	.2	7.4-	-13.0			0.0	-21.5	-22.5
. 100	28.6	19.2	9.5	_•	-19.0	-28.7			1.7	-48.1	-52.3
.200	28.7	18.9	9.6	• 5	-19.1	-28.5			-47.6	-57.4	-66.7
.500	28.7	18.9	9•6	0 • 0	-19.0	-28.5	-38.2		9.74-	-57.4	-66.7
	LIS	LIST TO POR	ORT (DEGREES)	REES)		ا ند	IST TO	LIST TO STARBOARD (DEGREES)	RD (DEG	REES)	
GA HEI (ME	GAGE HEIGHT (METERS)	-2.0	-1.5	-1.0	-0.5	0 • 0	+0 • 5	+1.0	+1.5	+5.0	
i	.050	77.5	55.1	33.2	13.2	0.0	18.3	42.1	66.3	90.5	
	.100	55.8	34.6	15.2	1.7	0.0	4.3	23.2	45.1	68.6	
	.200	22.1	6.8	-1.2	-1.2	0.0	1.4	4.1	16.1	34.5	
·	.500	-5.6	-4.3	-2.9	-1.5	2	1.3	2.8	4.2	5.7	

 δ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

REPORT OF TEST

For: Tank #5 on the LNG Tanker

El Paso Southern

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 5 of the liquefied natural gas tanker El Paso Southern while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull.

The tank was measured empty while at an average temperature of 6.4°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

These tables are not based on a complete survey of the tank, since scaffolding necessary for complete interior access was not present at the time of measurement. As a consequence, geometrically redundant cross checks reported of tanks 1, 2 and 3 were not made on this tank to assess random measurement errors. The estimated uncertainty of the tables is instead based on the comparison of measurements on tanks 1, 2 and 3 against their respective nominal construction dimensions. These comparisons showed measured dimensions were in general within 0.2% of the nominals so an estimated uncertainty of +0.2% of total volume is assigned to the tables.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division Center for Mechanical Engineering

Russell De Young

and Process Technology

EL PASO SOUTHERN

MAIN VOLUME VS. HEIGHT TABLE

TANK NO. 5

GAGE HEIGHT (METERS)	VOLUME (CUBIC METERS)
0.000	8•5
.058	37.8
-100	83.9
• 200	178.6
• 300	274.0
- 400	370.1
•500	466.9
1.000	960.6
2.000	1998.2
3.000	3102.5
4.000	4273.5

EL PASO SOUTHERN TANK NO. 5 GAGE CORRECTION IN MILLIMETERS

		¥ вом	(METERS)					TRIM BY		STERN (METERS)	(S)
GAGE HEIGHT HETERS)	1.5	-1.0	-0.5	0.0	+1.0	+1.5	+5•0		+2.5	+3•0	+ 3 . 5
. 050	91.46 89.88	61.8 59.7	34.0 30.0	8 5	-24.5 -51.9	-37.0	-44.4 -74.1 -138.0	-50.1 -81.0		- 53.9 - 85.9	-56.8 -89.7 -142.5
.500	89.9	59.7	30.0	· ·	-59.7	89.8	-119.8			-179.7	-210.0
		LIST TO PORT	ORT (DEGREES)	REES)			ST T0	LIST TO STARBOARD	SO COEGI	(DEGREES)	
	GAGE HEIGHT (METERS)	-2.0	- 1 5	-1.0	.0.5	0 • 0	+0.5	+1.0	+1.5	+5•0	
	0000	124.5 102.2 64.6 6.5	93.4 71.6 37.1	63.0 42.3 13.4	33.7 15.6 - 6	8 .0 0 .0 0 .0	12.9 4.7 3.1 3.0	40.3 22.5 6.7 5.5	71.3 51.0 22.6 9.2	103 • 3 82 • 0 48 • 3 13 • 9	

 δ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

REPORT OF TEST

For: Tank #6 on the LNG Tanker

El Paso Southern

Requested by: El Paso Marine Company

2919 Allen Parkway
P. O. Box 1592
Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 6 of the liquefied natural gas tanker El Paso Southern while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull.

The tank was measured empty while at an average temperature of 3.8°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

These tables are not based on a complete survey of the tank, since scaffolding necessary for complete interior access was not present at the time of measurement. As a consequence, geometrically redundant cross checks reported of tanks 1, 2 and 3 were not made on this tank to assess random measurement errors. The estimated uncertainty of the tables is instead based on the comparison of measurements on tanks 1, 2 and 3 against their respective nominal construction dimensions. These comparisons showed measured dimensions were in general within 0.2% of the nominals so an estimated uncertainty of \pm 0.2% of total volume is assigned to the tables.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division Center for Mechanical Engineering

Russel D. Yveing

and Process Technology

EL PASO SOUTHERN
MAIN VOLUME VS. HEIGHT TABLE

TANK NO. 6

GAGE HEISHT	VOLUME
(METERS)	(CUBIC METERS)
0.000 .050 .100 .200 .300 .400	.6 34.3 81.1 175.1 269.9 365.3 461.4
1.000	951.9
2.000	1983.5
3.000	3082.5
4.000	4248.9

EL PASO SOUTHERN TANK NO. 6 GAGE CORRECTION IN MILLIMETERS

	TRIM	ву вом	(METERS)					TRIM B	BY STERN	N (METERS)	RS)
G A S E E E E E E E E E E E E E E E E E E		. i – i	-0.5	0 • 0	+1.0	+1.5	+2.0		+2.5	+3.0	+ 3 • 5
.05	7.06	60.6	31.2	8 3	7 • 7 -	9.4-) 	6.	9•4-	
.100	90.1	60.1	30.0	• 1	-39.8	-44.5	-47.			9.64-	•
. 200	•	•	30.1	0 • 0	-59.9	-86.9	-102.	80		-119.4	•
. 500	90.1	60.1	30.0	• 1	-59.9	8-68-	-119.	8 -149.7		-179.6	-209.4
1.000	•	60.0	30.1	0.0	-59.9	-89.9	-119.	80		-179.6	6
. 3 0	90.1	0.	30.0	0.0	-59.9	-89.9	-119.	&		-179.7	œ.
	1817	ro P	ORT	(DEGREES)		Ë	ST T0	STARBOARD	1	(DEGREES)	
HE SE	GAGE HEIGHT (METERS)	-2.0	-1.5	-1.0	- 0 - 5	0.0	+0 • 5	+1.0	+1.5	+2.0	
	.050	123.7	92.5	62.1	32.4	7.2	24.0	54.9	86.6	118.9	
	.100	100.4	69.8	40.5	12.3	• 1	9•9	33.7	64.7	96 • 5	
	.200	61.6	33.9	10.4	8	0.0	1.9	8.6	31.6	59.7	
	.500	•	1.1	4	T	• 1	1.9	4 • 8	8.8	12.9	
1.	0000	3.9	1.2	P. 3	7	0.0	1.9	6•4	9•1	14.2	
- 7	000	•	6.	2	5	0.0	1.9	6•4	8.6	12.9	

 δ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

Appendix B

Calibration Reports for the Six Tanks of the El Paso Arzew

REPORT OF CALIBRATION

For: Tank #1 on the LNG Tanker

El Paso Arzew

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 1 of the liquefied natural gas tanker El Paso Arzew while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 23.0°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was 12571.8 m 3 with an uncertainty of 6.3 m 3 (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is \pm 0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division Center for Mechanical Engineering

and Process Technology

EL PASO ARZEW

MAIN VOLUME VS. HEIGHT TABLE

TANK NO. 1

GAGE HEIGHT (METERS)	VOLUME (CUBIC METERS)
19.000 20.003 21.000 22.000	9282.0 9791.8 10301.6 10811.4
22.500 23.000 23.500 24.000 24.500 25.000	11066.3 11321.2 11576.1 11825.9 12064.1 12290.4
25.500	12564.9

GAGE CORRECTION IN MILLIMETERS TANK NO. 1 EL PASO ARZEM

2)	+ 3 + 5	11111111111111111111111111111111111111	
N (METER	0	115.0 116.0 1125.7 125.0	
BY STER	2.5	AD CO	
TRIM	·	STARBOA 100 110 110 110 110 110 110 11	
	+5.(100	
	+1.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	+1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	0 • 0	EES)	
ETERSI	-0.5	221.1 221.0 221.0 221.0 221.0 221.0 21.0	
BOH (M	1.0	4 4 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
TRIM BY	-1.5	63.3 63.2 63.2 63.1 63.1 63.1 63.1 63.1 63.1 63.0 63.1 63.0 63.1 63.0 000 000 000 000 000 000	
		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

0

0 . 0

-2.6

-5.0

-8-1

25.000

\$ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol.
Dashed lines are +0.2% and -0.2% error limits.

REPORT OF CALIBRATION

For: Tank #2 on the LNG Tanker

El Paso Arzew

Requested by: El Paso Marine Company

2919 Allen Parkway
P. O. Box 1592
Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 2 of the liquefied natural gas tanker El Paso Arzew while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 23.5°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was 24885.3 m^3 with an uncertainty of 12.4 m^3 (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is \pm 0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division Center for Mechanical Engineering

Hussell Dafoum

and Process Technology

EL PASO ARZEW
MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0.003	6.3
• 050	45.3
•100	86.1
•200	168.1
• 300	250.8
•480	334.2
•500	418.1
1.000	847.5
2.000	1754.1
3.000	2724.3
4.000	3758.1
5.000	4832.5
6.000	5907.5
7.000	6982.6
3.000	8057.8
9.000	9132.9
10.000	10208.1
11.000	11283.3
12.000	12358.5
13.000	13433.8
14.000	14509.1
15.000	15584.4
16.000	16659.8
17.000	17735.1
18.000	18799.6
19.000	19805.9
20.000	20748.6
21.000	21627.9
22.000	22443.6
22.500	22827.6
23.000	23195.7
23.500	23548.0
24.000	23884.4
24.500	24204.9
25.000	24509.5
25.500	24798.2

EL PASO ARZEM TANK NO. 2 GAGE CORRECTION IN MILLIMETERS

ın

RSI	₩ +	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(METE	+3.0	REES) 1-25.3 1-25.3 1-25.3 1-21.0 1-25.3 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0 1-21.0	
BY STERN	2 • 5	44.9 22.5 22.5 22.7 23.0 33.0 41.5 41.5 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.3 75.2 75.3	The second
TRIM		11	
	+5•[+ N	The second second
	+1.5	00000000000000000000000000000000000000	-
	+1.0	11111111111111111111111111111111111111	
	0 • 0	REESS CO. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
METERS)	• 1	RT	
Y BOW Ch	• 1	57.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0 67.0	
TRIM BY	-1.5	666.1 66	
	GAGE HEISH METER	11000 1000000 1000000000	

400

1 100

7.6-

25.000

 δ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

REPORT OF CALIBRATION

For: Tank #3 on the LNG Tanker

El Paso Arzew

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 3 of the liquefied natural gas tanker El Paso Arzew while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 23.5°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was $27646.0~\text{m}^3$ with an uncertainty of $13.8~\text{m}^3$ (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is \pm 0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division

Center for Mechanical Engineering

Russell O Aforing

and Process Technology

EL PASO ARZEW
MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0.000	13.1
• 050	59.3
-100	106.1
-200	200.3
• 300	295.1
• 400	390.7
•500	486.9
1.000	978.1
2.000 3.000	2011.6 3113.1
4.005	4282.6
5.000	5494.8
6.000	6707.7
7.000	7928.7
8.000	9133.7
9.000	10346.8
10.000	11559.9
11.000	12773.1
12.000	13986.3
13.000	15199•6
14.000	16412.9
15.000	17626.3
16.000	18839.7
17.000	20048.3
18.000 19.000	21178.3 22248.7
20.000	23251.6
21.000	24186.8
22.000	25054.4
22.500	25462.9
23.000	25854.4
23.500	26229.1
24.000	26586.8
24.500	26927.7
25.000	27251.6
25.500	27553.7

EL PASO ARZEN TANK NO. 3
GAGE CORRECTION IN MILLIMETERS

RSJ			
ETE	+3.0	TH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
BY STER	•	ARD CDE G S S S S S S S S S S S S S S S S S S	
TRIM		247 + 175 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	+5.[11	
	+1.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	+1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	0 • 0	REENS REEN REEN	
METERS)	-0.5	RA 300.50	
Y BOW C	-1.0	611.0 600.9 600.9 600.9 600.9 600.9 600.8 600.9 611.0	
TRIM B	1 • 5	91.6 91.6 91.4 91.4 91.3 91.3 91.1 91.0 91.0 91.0 91.0 91.0 91.0 91.1	
	GAGE HEIGHT (METERS)	25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000	

0.0

10.01

25-000

\$ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol.
Dashed lines are +0.2% and -0.2% error limits.

REPORT OF TEST

For: Tank #4 on the LNG Tanker

El Paso Arzew

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 4 of the liquefied natural gas tanker El Paso Arzew while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull.

The tank was measured empty while at an average temperature of 27.3°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

These tables are not based on a complete survey of the tank, since scaffolding necessary for complete interior access was not present at the time of measurement. As a consequence, geometrically redundant cross checks reported of tanks 1, 2, 3, 5, and 6 were not made on this tank to assess random measurement errors. The estimated uncertainty of the tables is instead based on the comparison of measurements on tanks 1, 2, 3, 5, and 6 against their respective nominal construction dimensions. These comparisons showed measured dimensions were in general within 0.2% of the nominals so an estimated uncertainty of +0.2% of total volume is assigned to the tables.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division
Center for Mechanical Engineering

Gussell Olforny

and Process Technology

EL PASO ARZEW
MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT (METERS)	VOLUME (CUBIC METERS)
0.000 .050 .100 .200 .300 .400	•1 11•4 23•7 48•2 72•8 97•3 121•9

EL PASO ARZEM TANK NO. 4
GAGE CORRECTION IN MILLIMETERS

	TRIM BY BOW	_	METERS)					TRIM	BY STER	TRIM BY STERN (METERS)	(S)
GAGE HEIGH METER	-1.5	-1.0	-0.5	0.0	+1.0	+1.5	+5.0		+2.5	+3.0	. S + + + + + + + + + + + + + + + + + +
.050	29.4	19.7	10.0	.	-5.5	-11.9			-14.1	-14.7	-15.2
.100	29.0	19.4	9.6	1	-19.3	-29.0			2.5	-46.7	-49.5
• 200	29.1	19.3	7.6	1	-19.3	-29.0			8.5	-58.2	-67.9
• 500	29.1	19.4	9.6	0.0	-19.5	-29.0	-38.7		-48.5	-58.2	-67,9
	LIS	LIST TO PO	ORT (DEGREES)	(EES)		,	IST TO	LIST TO STARBOARD (DEGREES)	RD (DEG	(REES)	
9 # 5	GAGE HEIGHT (METERS)	-2.0	-1.5	-1.0	.0	0.0	+0-5	+1.0	+1.5	+2.0	
	.050	81.7	59.7	38.1	16.6	•	17.0	39.9	63.1	86.6	
	.100	59.4	38.3	18.2	1.7	1	3.9	20.9	45.4	65.0	
	.200	24.5	8.4	-1.9	-1.6	1.1	1.4	3.9	14.5	32.0	
	• 500	0.9-	-4.5	-3.0	-1.5	0.0	1.4	5.9	4 • 4	5.8	

 δ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

REPORT OF CALIBRATION

For: Tank #5 on the LNG Tanker

El Paso Arzew

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 5 of the liquefied natural gas tanker El Paso Arzew while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 27.1°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was 27622.9 m^3 with an uncertainty of 13.8 m^3 (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is \pm 0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division

Russell D. Masun

Center for Mechanical Engineering

and Process Technology

EL PASO ARZEW
MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0.000	14.4
• 050	59.7
• 10 G	106.5
•200	200.8
• 300	295.7
.400	391.3
•500	487.5
1.000	979.0
2.000	2012-8
3.000	3114-2
4.000 5.000	4283•3 5495•1
6.000	6707.6
7.000	7920.2
8.000	9132.7
9.000	10345.2
10.000	11557.8
11.000	12770.3
12.000	13982.9
13.000	15195.5
14.000	16408-1
15.000	17623.7
16.000	18833.4
17.000	20033.0
18.000	21170.0
19.000	22239.2
20.000	23243.9
21.000	24174.9
22.000	25041.3
22.500	25449.1
23.000	25840 .0 26214 . 0
23.500 24.000	26571.1
24.500	26911.3
25.000	27234.5
25.500	27540.9

EL PASO ARZEM TANK NO. 5
GAGE CORRECTION IN MILLIMETERS

ERS)	₩ ₩	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MET	•	REESS - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
Y STER	•	A C C C C C C C C C C C C C C C C C C C
TRIM B	+	STAN 1 1 1 5 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	+2.0	ST 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	+1.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	+1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0.0	REEN
METERS)	-0.5	RT 300.00 0.00 0.00 0.00 0.00 0.00 0.00 0
Y BOW C	-1.0	611.0 611.0 601.9 600.9 600.9 600.9 600.8 600.8 600.8 600.8 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
TRIM BY	•	AGE LIST COOD COOD COOD COOD COOD COOD COOD COO
	GAGE HEIGHT (METERS)	25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000

2

\$ = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol.
Dashed lines are +0.2% and -0.2% error limits.

25-000

REPORT OF CALIBRATION

For: Tank #6 on the LNG Tanker

El Paso Arzew

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 6 of the liquefied natural gas tanker El Paso Arzew while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 29.0°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was 27639.1 m^3 with an uncertainty of 13.8 m^3 (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is \pm 0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division

Center for Mechanical Engineering and Process Technology

EL PASO ARZEM
MAIN VOLUME VS. HEIGHT TABLE

T	Δ	N	K	N	n.	6

~~~~~~~~~~	
GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0.000	0 • 0
•050	12.6
.100	55.6
-200	149.4
• 300	243.9
• 408	339.1
•500	435.0
1.000	924.6
2.000	1954.4
3.000	3052.0
4.000	4217.4
5.000	5428.6
6.000	6641.1
7.000	7853.7
8.000	9066.3
9.000	10279.0
10.000	11491.8
11.000	12704.6
12.000	13917.5
13.000	15130.5
14.000	16343.5
15.000	17556.6
16.000	18769.7
17.000	19972.2
18.000	21113.4
19.000	22187.1
20.000	23193.2
21.000	24131.7
22.000	25002.6
22.500	25412.7
23.000	25805.9
23.500	26182.2
24.000	26541.6
24.500	26884.1
25.000	27209.6
25.500	27518.3

EL PASO ARZEM TANK NO. 6 GAGE CORRECTION IN MILLIMETERS

S	+3 +5	100 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
METER	+3 • 0	19.9 19.9 19.9 19.9 19.9 19.9 19.0 19.0
Y STERN	i -	110200 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRIM B	<b>2</b> +	152 - 154 - 151 - 152 - 152 - 152 - 152 - 152 - 153 -
	+5.0	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.
	+1.5	21.1 -755.8 -911.1 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911.2 -911
	+1.0	211-11-11-11-11-11-11-11-11-11-11-11-11-
	Ü • Ü	23.7 22.7 22.7 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
ME TERS)	-0-5	NA 300.05  300.05  300.05  300.05  300.05  300.05  410.3  411.5  411.5  411.5  411.5  411.5
Y BOH (	-1.0	60.08 60.09 60.09 60.09 60.09 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.09 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00
TRIM B	-1.5	91.9 91.3 91.3 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2
	шткі	



-5 · B

25.000

 $\delta$  = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.



## Appendix C

Calibration Reports for the Six Tanks of the El Paso Howard Boyd

## REPORT OF CALIBRATION

For: Tank #1 on the LNG Tanker

El Paso Howard Boyd

Requested by: El Paso Marine Company

2919 Allen Parkway
P. O. Box 1592
Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 1 of the liquefied natural gas tanker El Paso Howard Boyd while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 22.6°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was 12554.3 m 3  with an uncertainty of 6.3 m 3  (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is  $\pm$  0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Aussell Offsung Russell D. Young, Chief

Mechanical Processes Division Center for Mechanical Engineering

and Process Technology

EL PASO HOWARD BOYD

MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT (METERS)	VOLUME (CUBIC METERS)
0.000	• 5
• 050	15.6
-100	31.4
•200	63.4
• 30 0	95.9
.460	128.8
•500	152.3
1.000 2.000	336.5 728.3
3.000	1151.4
4.000	1629.7
5.000	2138.6
6.000	2648.1
7.800	3157.6
8.000	3667•1
9.000	4176.5
13.000	4686.0
11.000	5195.4
12.000	5704.8
13.000	6214.2
14.000	6723.6
15.000	7233.0
16.000 17.000	7742•4 8251•8
18.000	8761.1
19.000	9270.4
20.000	9779.7
21.000	10289.1
22.000	10798.3
22.500	11053.0
23.000	11307.6
23.500	11562.3
24.000	11811.9
24.500	12049.8
25.000	12275.8
25.500	12490.0

EL PASO HOWARD BOYD TANK NO. 1
GAGE CORRECTION IN MILLIMETERS

RS)	£+	77 77 77 77 77 77 77 77 77 77 77 77 77	-
( METER	3 • 0	EE S 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
STERN	5	1	
TRIM BY	+	AR 11050 1000 1000 1000 1000 1000 1000 100	
	+5.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	+1.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
	+1.0		
	0 • 0		
TERS)	-0.5	20.9 21.1 21.1 21.1 21.0 20.9 20.9 20.9 20.9 20.9 20.9 20.9 21.1 21.5 21.0 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20	
BOW (ME	-1.0	## ## ## ## ## ## ## ## ## ## ## ## ##	
TRIM 3Y	1.5	6 5 3 3 4 5 6 6 3 3 4 5 6 6 3 3 4 5 6 6 3 3 4 5 6 6 3 3 4 5 6 6 3 3 4 5 6 6 3 4 5 6 6 3 4 5 6 6 5 6 5 6 6 6 5 6 6 6 6 6 6 6 6 6	
	GAGE HEIGHT (METERS)	25.000 23.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000	

n | wornaaaaa



-2.6

000

-6.6

25.000

 $\delta$  = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

# REPORT OF CALIBRATION

For: Tank #2 on the LNG Tanker

El Paso Howard Boyd

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 2 of the liquefied natural gas tanker El Paso Howard Boyd while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 15.2°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was  $24844.4 \text{ m}^3$  with an uncertainty of  $12.4 \text{ m}^3$  (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is  $\frac{1}{2}$  0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division Center for Mechanical Engineering

and Process Technology

Date: September 14, 1979

~

EL PASO HOWARD BOYD

MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0.000	5.7
• 050	45.6
.100	86.4
• 200 • 300	168•3 250•9
• 400	334.1
•500	417.9
1.000	846.7
2.000 3.000	1751.9
4.000	2720•5 3752•7
5.000	4825.8
6.000	5899.7
7.000	6973.6
8.000 9.000	8047.4 9121.3
10.000	10195.1
11.000	11269.0
12.000	12342.9
13.000	13416.7
14.000 15.000	14490.6 15564.5
16.000	16638.3
17.000	17712.2
18.500	18774.9
19.000	19779.5
29.000 21.000	20720.5 21598.0
22.000	22412.1
22.500	22795.3
23.000	23162.6
23.500	23514.0
24.000 24.500	23849.6 24169.3
25.000	24473.1
25.500	24761.0

EL PASO HOWARD BOYD TANK NO. 2 GAGE CORRECTION IN MILLIMETERS

(S)	+ 3 + 3 + 5	1
METER	+3 • 0	REES) 101-3 101-3 101-3 101-3 101-3 101-3 101-3 101-3 101-3 101-3 101-3 10-4 101-3 10-4 101-3 10-4 10-4 10-4 10-4 10-4 10-4 10-1 10-4 10-4
Y STERN	ۍ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRIM B	+2	A R R R R R R R R R R R R R R R R R R R
1	+5.0	ST
	+1.5	
1	+1.0	1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 1577.0 15
	0 • 0	REES)  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
METERS)	-0.5	N
Y BOW (P	-1.0	57.1 57.1 57.1 57.1 57.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0
TRIM BY	-1.5	85.7 85.7 85.7 85.7 85.7 85.6 85.6 85.6 85.6 85.6 85.6 85.6 85.6
	GH GH	253 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



 $\delta$  = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

FORM NBS-443 (REV. 12-45)

### U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C. 20234

REPORT OF CALIBRATION

For: Tank #3 on the LNG Tanker

El Paso Howard Boyd

Requested by: El Paso Marine Company

2919 Allen Parkway
P. O. Box 1592
Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 3 of the liquefied natural gas tanker El Paso Howard Boyd while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 15.0°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was  $27615.6~\text{m}^3$  with an uncertainty of  $13.8~\text{m}^3$  (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is  $\frac{1}{1000}$  of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division

Center for Mechanical Engineering

and Process Technology

EL PASO HOWARD BOYD

MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0.000	•1
•050	40.2
.100	87.0
. 200	181.0
• 300	275.8
-483	371.2
•500 1•000	467 <b>.</b> 3 957 <b>.</b> 9
2.000	1989.7
3.000	3089.2
4.000	4256.2
5.000	5467.6
6.000	6680.1
7.000 8.000	7892.5 9104.9
9.000	10317.3
10.000	11529.7
11.000	12742.1
12.500	13954.5
13.000	15166.9
14.000 15.000	16379.3 17591.7
16.000	18804.1
17.000	20004.3
18.000	21142.3
19.000	22212.6
28.060	23215.3
21.000 22.000	24150.3 25017.7
22.500	25426.0
23.000	25817.4
23.500	26191.9
24.000	26549.5
24.500	26890.2
25.000 25.500	27213•9 27520•8
27.700	27720 0

EL PASO HOMARD BOYD TANK NO. 3

# GAGE CORRECTION IN MILLIMETERS

S	+3.5		
CMETER	+3.0	### ### ### ### #### #################	
<b>&gt;</b>		R	
TRIM		ST	
1	+5•	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	
	+1.5		
1	+1.0	20000000000000000000000000000000000000	
	0.0	REESS 34.4	
METERS)		RT 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300.4 300	
Y BOW (	-1.0	1115.3 1115.3 1115.3 1115.3 1115.3 1115.3 1115.3 1115.3 1115.3 1115.3 1115.3 1115.3 1115.3 1115.3 1115.3	
TRIM B	1.	91.8 91.3 91.3 91.3 91.3 91.3 91.1 91.1 91.1	
į	I WII OZ I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	



δ = 100*(NBS Vol. - Calib Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

# U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C. 20234

## REPORT OF CALIBRATION

For: Tank #4 on the LNG Tanker El Paso Howard Boyd

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 4 of the liquefied natural gas tanker El Paso Howard Boyd while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 25.8°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was  $6249.3 \text{ m}^3$  with an uncertainty of  $3.1 \text{ m}^3$  (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is  $\pm$  0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Gussell D. Aforing Russell D. Young, Chief

Mechanical Processes Division Center for Mechanical Engineering

and Process Technology

Date: September 14, 1979

EL PASO HOWARD BOYD
MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0 000	4
0.000 .050	•1 10•2
•100	22.5
• 200	47.0
.300	71.6
-408	96 • 2
• 500	123.7
1.000	243.5
2.000	489.2
3.000	734.8
4.000	989.4
5.000	1226.0
6.000 7.000	1471.6 1717.2
8.000	1962.7
9.000	2203.3
10.000	2453.9
11.000	2699.4
12.000	2945.0
13.000	3190.5
14.000	3436.1
15.000	3681.6
16.000	3927.2
17.000 18.000	4172.7 4413.2
19.000	4663.7
20.000	4909.2
21.000	5154.7
22.000	5400.2
22.500	5522.9

23.900

24.000 24.500

25.000

25.500

5645.7

5768.4

5888.8 6003.6

6112.7

6216.0

EL PASO HOWARD BOYD TANK NO. 4
GAGE CORRECTION IN MILLIMETERS

RSJ	+3.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N CMETE	+3•0	######################################
BY STER	-2.5	A R R R R R R R R R R R R R R R R R R R
TRIM	0	ST + 1
	+2+	N
	+1.5	127.1 129.0 129.0 129.0 129.0 129.0 129.0 129.0 129.0 129.0 110.0 10.0 10.0 10.0
	+1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0 • 0	E S S S S S S S S S S S S S S S S S S S
ETERS)	-0-5	11.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
BOW CM	-1.0	200 110 110 110 110 110 110 110 110 110
TRIM BY	-1.5	30.0 29.1 29.1 29.1 29.2 29.1 29.1 29.1 29.1



 $\delta$  = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

# U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C. 20234

# REPORT OF CALIBRATION

For: Tank #5 on the LNG Tanker

El Paso Howard Boyd

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 5 of the liquefied natural gas tanker El Paso Howard Boyd while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of 22.2°C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was  $27637.4~\text{m}^3$  with an uncertainty of  $13.8~\text{m}^3$  (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is  $\pm$  0.10% of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division

Bussell Offering

Center for Mechanical Engineering

and Process Technology

Date: September 14, 1979

EL PASO HOWARD BOYD

MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT	VOLUME
(METERS)	(CUBIC METERS)
0.000 .050 .100 .200 .300 .400 .500 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000	4.0 48.3 95.1 189.2 284.0 379.5 475.6 966.4 1998.8 3098.9 4266.8 5478.6 6691.3 7904.0 9116.7 10329.4 11542.1 12754.8 13967.5 15180.2 16392.9 17605.6 18818.3
17.000	20018 • 8
18.000	21157 • 1
19.000	22227 • 8
20.000	23230 • 8
21.000	24166 • 3
22.000	25034.2
22.500	25442.8
23.000	25834.4
23.500	26209.2
24.000	26567.1
24.500	26908.1
25.000	27 232 • 2
25.500	27 539 • 4

EL PASO HOWARD BOYD TANK NO. 5 GAGE CORRECTION IN MILLIMETERS

2)	+3+5	20000000000000000000000000000000000000	
METER	+ 3 • D	EES)  11	
BY STERN	2 • 5	20.5 11.0 12.0 13.0 14.0 15.0 16.0 17.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	
TRIM B	0	STAN STAN STAN STAN STAN STAN STAN STAN	
	+5.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	+1.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	+1.0	1	
	0 • 0	REES 3 1 1 1 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
METERS)	-0.5	A 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.55 300.	
3Y BOW (	-1.0	11.	
TRIM B	-1.5	911.4 911.4 911.4 911.2 911.2 911.2 911.2 911.2 911.2 911.2 911.2 911.2 911.2 911.2 911.2 911.2 911.2	
	I IU I X I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	



 $\delta$  = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.

### U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C. 20234

# REPORT OF CALIBRATION

For: Tank #6 on the LNG Tanker

El Paso Howard Boyd

Requested by: El Paso Marine Company

2919 Allen Parkway P. O. Box 1592 Houston, TX 77001

The following tables have been calculated from dimensional measurements on tank number 6 of the liquefied natural gas tanker El Paso Howard Boyd while berthed at Newport News Shipbuilding and Drydock Company, Newport News, VA. These tables represent the volume of a liquid enclosed in the tank as a function of the height of the liquid surface, measured along a straight line, fixed with respect to the tank. This line is defined as being located at the longitudinal center line of the tank's capacitance gage. Secondary tables are also presented which allow correction of the main tables for specific angles of ship orientation with respect to gravity, as referred to the six sets of draft marks on the ship's hull. Both the measurement method and the computational algorithms are outlined in the paper "Multiple Redundancy in the Measurement of Large Structures," Annals of the International Institution of Production Engineering Research (CIRP), Volume 27/1, 1978.

The tank was measured empty while at an average temperature of  $20.6^{\circ}$ C. The tabulated volumes and the error estimates apply to the tank under these conditions. The volumes have also been corrected for the volume occupied by the corregations (deadwood) which was measured in the laboratory using a hydrostatic displacement technique.

The measurement method used includes geometrically redundant cross checks which allow assessment of the random error in the measurement process. For this tank, the total volume, excluding the vapor domes, was  $27631.2 \text{ m}^3$  with an uncertainty of  $13.8 \text{ m}^3$  (0.05% of total volume) at the three standard deviation limit of random error. Including an analysis of probable systematics by adding the absolute magnitude of the error sources, we estimate that the total uncertainty, at the 99% confidence level, is  $\pm 0.10\%$  of the total volume. No estimates of the errors in the individual table entries are included, since without an estimate of the height error introduced by the liquid level gage such estimates would of necessity be incomplete.

For the Director,

Russell D. Young, Chief

Mechanical Processes Division Center for Mechanical Engineering

and Process Technology

Russell Daforeny

Date: September 14, 1979

EL PASO HOWARD BOYD

MAIN VOLUME VS. HEIGHT TABLE

GAGE HEIGHT (METERS)	VOLUME (CUBIC METERS)
0.000 .050	0 • <b>0</b> 25 • <b>6</b>
•100 •200	72.3 166.3
• 300 • 400	250•9 356•2
•500	452.2
1.000 2.000	942•3 1973•3
3.000 4.000	3071.9 4238.2
5.000 6.000	5449.5 6661.9
7.000 8.000	7874•4 9086•8
9.000	10299•3 11511•9
11.000	12724.4
12.000	13937.0 15149.6
14.000 15.000	16362•2 17574•9
16.000 17.000	18787•6 19988•8
18.000 19.000	21128.5 22200.5
20.000	23205.0 24142.0
22.000	25011 • 3 25420 • 7
23.000	25813.1
23.500 24.000	26188.6 26547.3
24.500 25.000	26889 <b>.0</b> 27213 <b>.</b> 9
25.500	27521.8

EL PASO HOWARD BOYD TANK NO. 6 GAGE CORRECTION IN MILLIMETERS

S	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N (METER	•	TH 11 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BY STER		441.8 11.8 11.8 11.8 12.1 13.2 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
TRIM	o	S
	+5•	1
	+1.5	13.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
	+1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-	0 • 0	REESS
ETERS)	-0.5	30000000000000000000000000000000000000
Y BOW (M	-1.0	600.8 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9 600.9
TRIM BY	-1.5	91.4 91.4 91.4 91.4 91.3 91.3 91.7 91.7 91.7 91.0 91.0 91.1 91.1 91.1 91.1 91.1 91.1
	GAGE HEIGHT (METERS)	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



 $\delta$  = 100*(NBS Vol. - Calib. Contractor Vol.)/Tank Vol. Dashed lines are +0.2% and -0.2% error limits.



17.	KEY WORDS (six to twelve entries; alphabetics	l order	; capitalize	only th	e first	letter of	the first key	word unless a	proper	name;
	separated by semicolons)									

Laser; LNG; tanks; ships; volume; dimensions.

18. AVAILABILITY	Wnlimited	19. SECURITY CLASS (THIS REPORT)	21. NO. OF PRINTED PAGES
For Official Distributio	n. Do Not Release to NTIS	UNCLASSIFIED	79
Order From Sup. of Doc 20402, SD Stock No. SN	., U.S. Government Printing Office, Washington, DC 003-003-	20. SECURITY CLASS (THIS PAGE)	22. Price \$\$9.50
Order From National Te VA. 22161	chnical Information Service (NTIS), Springfield,	UNCLASSIFIED	
			LISCOMM DC





