МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №3

.,	
отчет защищен с оценкой 95 (девять))
ПРЕПОДАВАТЕЛЬ должность, уч. степень, звание подпись, дата	Б. В. Лобанов инициалы, фамилия
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ	Nº 2
Kentuga Hon Torea	
наименование лабораторной работы	
по курсу: ОБЩАЯ ФИЗИКА	
СТУДЕНТ ГР. № 4/34/ подпись, даяга Санкт-Петербург	Костяков НА. инициалы, фамилия
2022	

ПРОТОКОЛ ИЗМЕРЕНИЙ Лабораторная работа №2

таоораторная работа № Кольца Ньютона

Студент группы №

4134 <u>К</u>

DOTGKOL HA

Преподаватель каф. №

3 № кафедры

Фамилия, инициалы

Параметры приборов

Прибор	Тип	Предел измерений	Цена деления	Класс точности	Систематиче ская погрешность	
Микрометрич еский винт	-	5	0,5	-	0,25	

Результаты измерений

Длина волны источника света λ =0,66 мкм (красный)

Номер кольца	Отсчет для кольца с левой стороны, мм	Отсчет для кольца с правой стороны, мм			
1	14.32	13.02			
2	14.44	12.94			
3	14.47	12.87			
4	14.52	12,795			
5	14.58	12.74			
6	14-645	12.68			
7	14.695	12.64			
8	14.73	12.585			
9					
10					

Дата «10 » <u>дегабря</u> 202<u>2</u> г.

Throng

Подпись преподавателя

Цель работы:

определить радиус кривизны линзы из наблюдения интерференционных колец Ньютона.

Описание лабораторной установки

Для измерения радиусов интерференционных колец используется измерительный микроскоп. Под тубусом микроскопа М (рис. 2) находится стеклянная пластинка П, на которой лежит выпуклой стороной вниз линза Л. Кольца Ньютона наблюдаются в отраженном свете.

Для этого имеется стеклянная пластинка С, укрепленная на микроскопе под углом 45° к его оси. Свет от источника S, пройдя через линзу Л1, светофильтр Ф и отразившись от пластинки C, падает параллельным пучком на линзу Л и пластинку П. Лучи, отраженные от выпуклой поверхности линзы и от пластинки, интерферируют. Интерференционная картина наблюдается в микроскоп. Фокусировка микроскопа производится путем вертикального перемещения тубуса. Измерение радиусов колец производится при горизонтальном перемещении микроскопа вдоль по диаметральной линии интерференционной кар тины. Перемещение микроскопа осуществляется с помощью микрометрического винта. Отсчет производится по шкале, фиксирующей положение микроскопа (цена деления 1 мм), и по шкале барабана микро метрического винта.

Puc. 2

3. Paéonne Popugsis	
Paccuet Paguycob Rosey nousbogueta no porsujue (1) bossucience Paguyca probeznos seex see que so zna renug : (2), (3)	100
(1) r; D, rge r; -pagaya Kensya, D; -quariers	
(2) $R = \frac{(r_K + r_m)(R_K - r_m)}{A(K - m)}$, $2ge r_K - pagenge K housega I - generica bourses (0.66 mm)$)
(3) R= in R - crequer znamen, raguega lunger Ki-i.or znam, raguega kubu	
и Розина и вышений	

		\cap	-		Porce	CELA. 18	recei	
31	W 4.	Pezylotat 61	Oforget conpalors	Amm)		rk.rm (Mul)	rx-im	(MIX)
	1	14,32	13,02	1,3	0,65	1,57	0,27	0,16
	2	14,44	12,94	1,5	0,75	1,733	0,233	0,152
	3	14,47	12.87	1,6	0,8	1,828	0,228	0,157
,	4	14,52	12,795	1,725	0,863	1,936	0,21	0,154
	5	14,58	12,74	1.34	0,92	1257	0,27	0,16
	G	14,645	12,68	1,965	0,983	1,733	0,233	0,152
	1	14,695	12,64	2,055	1,028	1,328	0,228	0,157
,	8	14,73	12,535	2,145	1,073	1,936	0,21	0,154

I Paulet 1201 Michier

7. Вывод: В ходе работы определен Раделя интерферационных колец набиюдения интерферационных колец

R1, R5 = (0, 160000 + 0,000297) mpt

R2, R6 = (0,152000 ± 0,000388) m

R3, R = (0,154000 ± 0,000 396) M

R4, R8 = (0,157000 ±0,000380) M