Experiment 4: Implement programs to check stationarity of a time series data

Aim:

The goal of this experiment is to write a python program to check the stationarity of the time series dataset.

1. Importing Required Libraries

import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.stattools import adfuller

Explanation:

We import numpy (np) is used for numerical operations, pandas (pd) for data manipulation, matplotlib.pyplot (plt) for plotting, and seaborn (sns) for statistical data visualization.

2. Loading the Dataset

data = pd.read_csv('/content/gold (1).csv', parse_dates=True, index_col=0)
data.head()

Explanation:

We use pd.read_csv() to load a CSV file containing Gold data.

3. Displaying the First Few Rows

df.head()

Explanation:

df.head() shows the first five rows of the dataset, giving us an overview of the available columns and their values.

4. calculating rolling mean and rolling standard deviation

rolling_mean = data['USD (AM)'].rolling(window=30).mean()
rolling_std = data['USD (AM)'].rolling(window=30).std()
plt.plot(data['USD (AM)'], label='Original Data', color='blue')
plt.plot(rolling_mean, label='Rolling Mean (30-period)', color='red')
plt.plot(rolling_std, label='Rolling Std Dev (30-period)', color='green')

```
plt.title('Rolling Mean & Rolling Std Dev for Gold Prices in USD (AM)')
plt.xlabel('Date')
plt.ylabel('Gold Price (USD)')
plt.legend(loc='best')
```

5. Visualization

plt.show()

6. ADF test:

```
adf_result = adfuller(data['USD (AM)'].dropna())
print("ADF Statistic:", adf_result[0])
print("p-value:", adf_result[1])
if adf_result[1] < 0.05:
    print("The time series is likely stationary (Reject null hypothesis).")
else:
    print("The time series is likely non-stationary (Fail to reject null hypothesis).")</pre>
```

7. Output:

ADF Statistic: -1.0653629752531542

p-value: 0.7286853153924067

The time series is likely non-stationary (Fail to reject null hypothesis)

8.Result:

Thus the program to check the stationarity of the time series data has been completed successfully.