OPERACIONES A NIVEL DE BIT

Recordemos que las computadoras almacenan los datos en sistema binario. Es decir almacenan usando 0 y 1.

Nosotros como programadores, podemos acceder a esta información a través de las operaciones a nivel de bit.

Ahora aprenderemos todas ellas y sus usos.

- 1. Operaciones a Nivel de Bit
- a) AND (&)

р	q	p & q
1	1	1
1	0	0
0	1	0
0	0	0

Es idéntico al Y (AND) lógico, pero este trabaja a nivel de bits.

Recordemos:

int tiene 32 bits

Fi											
, .	8	7	6	5	4	3	2	1	0		-
	1	0	1	1	1	0	1	0	0	372	
	1	1	0	1	0	0	1	0	1	421	_
·	1	0	0	1	0	0	1	0	0	372 & 421 =	292

b) OR (|)

	р	q	p q				
-	<u>. </u>						
	1	1	1				
	1	0	1				
	۵	1	1				
	U						
	<u>0</u>	0	0				

Es idéntico al O (OR) lógico, pero este trabaja a nivel de bits.

Ej:

	8	7	6	5	4	3	2	1	0		
_	1	0	1	1	1	0	1	0	0	372	_
	1	1	0	1	0	0	1	0	1	421	
_	1	1	1	1	1	0	1	0	1	372 421 =	501-

c) XOR (^)

р	q	p ^ q
<u> </u>	•	<u> </u>
1	1	0
1	0	1
0	1	1
0	_	<u> </u>
0	0	0

Es llamado el "o exclusivo"

F i.											
EJ:	8	7	6	5	4	3	2	1	0		
	1	0	1	1	1	0	1	0	0	372	
	1	1	0	1	0	0	1	0	1	421	
	0	1	1	0	1	0	0	0	1	372 ^ 421 =	209

d) NOT (~)
n n
P ~ P 1 0
0 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0
e) Desplazamiento hacia adelante (<<)
10 = 1 0 1 0
$10 \ll \boxed{3} = 1 \ 0 \ 1 \ 0 \ \boxed{0} \ \boxed{0} = 80 $ $10 \times 2^{\boxed{3}}$
10 ((3)=1010 000 = 00
f) Doenlazamiento hacia atras (>>)
f) Desplazamiento hacia atras (>>)
10 - 1 0 1 0
10 = 1 0 1 0
10 >> (3) = 1
2. USOS
a) Saber el estado de un bit
7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 & 1 0 0 0 0
<u> </u>
0 0 0 1 0 0 0 El bit 4 esta prendido
7 6 5 4 3 2 1 0
1 0 1 1 1 0 0
<u> </u>
0 0 0 0 0 0 El bit 6 esta apagado
n & (1 \ll pos) apagado n & (1 \ll pos) prendido
n & $(1 \ll pos)$
prendido

```
Aplicación: Imprimir todas las bits de una variable
        31 porque INT Frence 32 bils
  // Imprimamos todos los bits de una variable
  for(int i=31;i>=0;i--){
      if((x&(1<< i)) == 0){
         cout<<0;
      else{
      cout<<1;
b) Prender un bit
 1 0 0 1 1 6 or 1 9 9 9
                                  n (1<< pos)
c) Apagar un bit
       5 4 3 2 1 0
                       n & (~ (122 pos))
```

