

Report No: CCIS15080064504

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 17.3" Android non-touch LCD Media Player

Model No.: DT173-AS4-720, 502-1739ATM

FCC ID: 2AB6Z-DT173-AS4

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 13 Aug., 2015

Date of Test: 13 Aug., to 15 Sep., 2015

Date of report issued: 15 Sep., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	15 Sep., 2015	Android player Main board with wireless
		module (FCC ID: 2AB6Z-1859ATMB) and
		same antenna were used by the device,
		only conducted emission and Radiated
		emission were re-tested.

Viki zhul Test Engineer Tested by: Date: 15 Sep., 2015

Reviewed by: Date: 15 Sep., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	RSION	2
3	CON	NTENTS	3
4	TES	ST SUMMARY	4
5		NERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	9
6		T RESULTS AND MEASUREMENT DATA	
6	6.1	Antenna requirement	9
6		ANTENNA REQUIREMENTCONDUCTED EMISSION	9 10
6	6.1 6.2	ANTENNA REQUIREMENTCONDUCTED EMISSION	9 10
6	6.1 6.2 6.3	ANTENNA REQUIREMENTCONDUCTED EMISSIONCONDUCTED OUTPUT POWERCOUPY BANDWIDTH	9 10 13
6	6.1 6.2 6.3 6.4	Antenna requirement Conducted Emission Conducted Output Power Occupy Bandwidth Power Spectral Density	9 10 13 14
6	6.1 6.2 6.3 6.4 6.5	ANTENNA REQUIREMENTCONDUCTED EMISSIONCONDUCTED OUTPUT POWERCOUPY BANDWIDTH	9 13 14 15
6	6.1 6.2 6.3 6.4 6.5 6.6	ANTENNA REQUIREMENT CONDUCTED EMISSION CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE SPURIOUS EMISSION	913141516
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7	ANTENNA REQUIREMENT	91315162121
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7	ANTENNA REQUIREMENT CONDUCTED EMISSION CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE SPURIOUS EMISSION 1 Restricted Band	91315162121
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.7.2 6.8	ANTENNA REQUIREMENT	910141516212127

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass*
26dB Occupied Bandwidth	15.407 (a)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4-2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

.z General Description	3. 2.3
Product Name:	17.3" Android non-touch LCD Media Player
Model No.:	DT173-AS4-720, 502-1739ATM
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Operation mode:	Indoor used
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2 Band 4: 802.11a/802.11n20: 5, 802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
AC Adapter:	MODEL: PS24A120K2000UD Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 2000mA
Remark:	Model No.: DT173-AS4-720; 502-1739ATM are electrically identical, only model no is different for customer and for HUNG WAI.

Operation Frequency each of channel

Band 1				
802.11a/802.11n20		802.11n40		
Channel	Frequency	Channel	Frequency	
36	5180MHz	39	5190MHz	
40	5200MHz	45	5230MHz	
44	5220MHz			
48	5240MHz			
	Bai	nd 4		
802.11a/	802.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
149	5745MHz	151	5755MHz	
153	5765MHz	159	5795MHz	
157	5785MHz			
161	5805MHz			
165	5825MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1				
802.11a/802	2.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
The lowest channel	5180MHz	The lowest channel	5190MHz	
The middle channel	5200MHz	The highest channel	5230MHz	
The highest channel	t channel 5240MHz			
	Bar	nd 4		
802.11a/802	2.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
The lowest channel	5745MHz	The lowest channel	5755MHz	
The middle channel	ne middle channel 5785MHz		5795MHz	
The highest channel	5825MHz			

Report No: CCIS15080064504

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n20	6.5 Mbps
802.11n40	13 Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Francisco de CALLEX	Limit (c	lBuV)			
	Frequency range (MHz)	Quasi-peak Average				
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulators					
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test setup:	Referen	nce Plane				
	AUX Equipment Test table/Insulation plan Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization. Test table height=0.8m	EMI Receiver	r —— AC power			
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details.					
Test results:	Passed					

Measurement Data

Trace: 3

Site Condition

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 17.3" Android non-touch LCD Media Player : DT173- AS4-720 EUT

Model : 5G-WIFI mode Test Mode

Power Rating: AC120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∇	<u>dB</u>	<u>ap</u>	dBu∀	dBu∇	<u>dB</u>	
0.150	48.44	0.27	10.78	59.49	66.00	-6.51	QP
0.150	32.65	0.27	10.78	43.70	56.00	-12.30	Average
0.200	43.29	0.28	10.76	54.33	63.62	-9.29	QP
0.200	31.27	0.28	10.76	42.31	53.62	-11.31	Average
0.255	35.11	0.27	10.75	46.13	61.60	-15.47	QP
0.255	22.53	0.27	10.75	33.55	51.60	-18.05	Average
0.350	31.72	0.27	10.73	42.72	58.96	-16.24	QP
0.369	21.21	0.27	10.73	32.21	48.52	-16.31	Average
0.481	34.64	0.29	10.75	45.68	56.32	-10.64	QP
0.481	26.98	0.29	10.75	38.02	46.32	-8.30	Average
3.840	19.56	0.28	10.89	30.73			
18.721	30.18	0.34	10.91	41.43	60.00	-18.57	QP
	MHz 0.150 0.150 0.200 0.200 0.255 0.255 0.350 0.369 0.481 0.481 3.840	MHz dBuV 0.150 48.44 0.150 32.65 0.200 43.29 0.200 31.27 0.255 35.11 0.255 22.53 0.350 31.72 0.369 21.21 0.481 34.64 0.481 26.98 3.840 19.56	MHz dBuV dB 0.150 48.44 0.27 0.150 32.65 0.27 0.200 43.29 0.28 0.200 31.27 0.28 0.255 35.11 0.27 0.255 22.53 0.27 0.369 21.21 0.27 0.481 34.64 0.29 0.481 26.98 0.29 3.840 19.56 0.28	Freq Level Factor Loss MHz dBuV dB dB	MHz dBuV dB dB dBuV 0.150 48.44 0.27 10.78 59.49 0.150 32.65 0.27 10.78 43.70 0.200 43.29 0.28 10.76 54.33 0.200 31.27 0.28 10.76 42.31 0.255 35.11 0.27 10.75 46.13 0.255 22.53 0.27 10.75 33.55 0.350 31.72 0.27 10.73 42.72 0.369 21.21 0.27 10.73 32.21 0.481 34.64 0.29 10.75 45.68 0.481 26.98 0.29 10.75 38.02 3.840 19.56 0.28 10.89 30.73	MHz dBuV dB dB dBuV dBuV 0.150 48.44 0.27 10.78 59.49 66.00 0.150 32.65 0.27 10.78 43.70 56.00 0.200 43.29 0.28 10.76 54.33 63.62 0.200 31.27 0.28 10.76 42.31 53.62 0.255 35.11 0.27 10.75 46.13 61.60 0.255 22.53 0.27 10.75 42.72 58.96 0.360 31.72 0.27 10.73 42.72 58.96 0.369 21.21 0.27 10.73 32.21 48.52 0.481 34.64 0.29 10.75 45.68 56.32 0.481 26.98 0.29 10.75 38.02 46.32 3.840 19.56 0.28 10.89 30.73 46.00	MHz dBuV dB dB dBuV dBuV dB 0.150 48.44 0.27 10.78 59.49 66.00 -6.51 0.150 32.65 0.27 10.78 43.70 56.00 -12.30 0.200 43.29 0.28 10.76 54.33 63.62 -9.29 0.200 31.27 0.28 10.76 42.31 53.62 -11.31 0.255 35.11 0.27 10.75 46.13 61.60 -15.47 0.255 22.53 0.27 10.75 33.55 51.60 -18.05 0.350 31.72 0.27 10.73 42.72 58.96 -16.24 0.369 21.21 0.27 10.73 32.21 48.52 -16.31 0.481 34.64 0.29 10.75 45.68 56.32 -10.64 0.481 26.98 0.29 10.75 38.02 46.32 -8.30 3.840 19.56 0.28

Neutral:

Trace: 1

Site : CCIS Shielding Room

Condition

: FCC PART15 B QP LISN NEUTRAL : 17.3" Android non-touch LCD Media Player : DT173- AS4-720 : 5G-WIFI mode EUT

Model Test Mode Power Rating : AC120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki Remark :

(emark								
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	−−dBuV	<u>dB</u>	
1	0.150	46.51	0.25	10.78	57.54	66.00	-8.46	QP
2	0.185	44.16	0.25	10.77	55.18	64.24	-9.06	QP
3	0.195	31.09	0.25	10.76	42.10	53.80	-11.70	Average
4	0.235	38.52	0.25	10.75	49.52	62.26	-12.74	QP
1 2 3 4 5 6 7	0.235	28.23	0.25	10.75	39.23	52.26	-13.03	Average
6	0.339	20.19	0.26	10.73	31.18	49.22	-18.04	Average
7	0.396	20.84	0.25	10.72	31.81	47.95	-16.14	Average
8 9	0.489	34.79	0.29	10.76	45.84	56.19	-10.35	QP
9	0.489	25.96	0.29	10.76	37.01	46.19	-9.18	Average
10	0.555	29.57	0.26	10.77	40.60	56.00	-15.40	QP
11	2.854	18.63	0.29	10.92	29.84	46.00	-16.16	Average
12	18.426	30.93	0.26	10.91	42.10	60.00	-17.90	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)				
Test Method:	ANSI C63.10: 2009, KDB 789033				
Limit:	Band 1: 1 W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.); Band 4: 1W.				
Test setup:					
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB				

6.4 Occupy Bandwidth

FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)					
ANSI C63.10:2009 and KDB 789033					
Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)					
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Refer to section 5.6 for details					
Refer to section 5.3 for details					
Refer to FCC ID: 2AB6Z-1859ATMB					

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)					
Test Method:	ANSI C63.10:2009, KDB 789033					
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.6 Band Edge

6.6 Band Edge							
Test Requirement:	FCC Part15 E Section 15.407 (b)						
Test Method:	ANSI C63.10:20	09 , KDB 7	89033				
Receiver setup:	Detector RBW VBW Remark Quasi-peak 120kHz 300kHz Quasi-peak Value RMS 1MHz 3MHz Average Value						
Limit:	Band			BuV/m @3m) 68.20 54.00 78.20 54.00	Ave P	Remark eak Value erage Value eak Value erage Value	
	Remark: 1. Band 1 limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]= -27dBi 2. Band 4 limit: E[dBμV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m, for EIPR[dBm]= -17dBi						
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters about the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ante tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak vas of the EUT would be reported. Otherwise the emissions that did in have 10dB margin would be re-tested one by one using peak, queries. 					360 degrees receiving eight antenna ters above strength. a are set to b its worst meter to 4 360 degrees on and B lower than e peak values that did not	
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier						
Test Instruments:	Refer to section	5.6 for deta	nils				
Test mode:	Refer to section	5.3 for deta	nils				
Test results:	Passed						

Band 1:

	802.11a									
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	38.44	32.07	9.13	40.06	39.58	68.20	-28.62	Horizontal		
5150.00	37.65	32.07	9.13	40.06	38.79	68.20	-29.41	Vertical		
				802.11a						
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	28.15	32.07	9.13	40.06	29.29	54.00	-24.71	Horizontal		
5150.00	28.36	32.07	9.13	40.06	29.50	54.00	-24.50	Vertical		
				802.11a						
Test cl	hannel	Highest			Level		Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.25	31.78	9.15	40.18	37.00	68.20	-31.20	Horizontal		
5350.00	36.98	31.78	9.15	40.18	37.73	68.20	-30.47	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	28.15	31.78	9.15	40.18	28.90	54.00	-25.10	Horizontal		
5350.00	28.36	31.78	9.15	40.18	29.11	54.00	-24.89	Vertical		

802.11n-HT20										
Test c	hannel		Lowest		Level		F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	35.48	32.07	9.13	40.06	36.62	68.20	-31.58	Horizontal		
5150.00	35.96	32.07	9.13	40.06	37.10	68.20	-31.10	Vertical		
			8	302.11n-HT20						
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	26.15	32.07	9.13	40.06	27.29	54.00	-26.71	Horizontal		
5150.00	25.36	32.07	9.13	40.06	26.50	54.00	-27.50	Vertical		
			8	302.11n-HT20						
Test c	hannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	38.94	31.78	9.15	40.18	39.69	68.20	-28.51	Horizontal		
5350.00	38.26	31.78	9.15	40.18	39.01	68.20	-29.19	Vertical		
			8	302.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	29.15	31.78	9.15	40.18	29.90	54.00	-24.10	Horizontal		
5350.00	29.03	31.78	9.15	40.18	29.78	54.00	-24.22	Vertical		

	802.11n-HT40									
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	38.96	32.07	9.13	40.06	40.10	68.20	-28.10	Horizontal		
5150.00	38.31	32.07	9.13	40.06	39.45	68.20	-28.75	Vertical		
			8	02.11n-HT40						
Test cl	hannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	27.48	32.07	9.13	40.06	28.62	54.00	-25.38	Horizontal		
5150.00	27.26	32.07	9.13	40.06	28.40	54.00	-25.60	Vertical		
			8	02.11n-HT40						
Test cl	hannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.84	31.78	9.15	40.18	38.59	68.20	-29.61	Horizontal		
5350.00	37.15	31.78	9.15	40.18	37.90	68.20	-30.30	Vertical		
			8	02.11n-HT40						
Test cl	hannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	27.89	31.78	9.15	40.18	28.64	54.00	-25.36	Horizontal		
5350.00	27.36	31.78	9.15	40.18	28.11	54.00	-25.89	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a									
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.87	32.27	9.30	40.54	42.90	78.20	-35.30	Horizontal		
5725.00	41.03	32.27	9.30	40.54	42.06	78.20	-36.14	Vertical		
				802.11a						
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	32.65	32.27	9.30	40.54	33.68	54.00	-20.32	Horizontal		
5725.00	32.98	32.27	9.30	40.54	34.01	54.00	-19.99	Vertical		
				802.11a						
Test cl	hannel	Highest			Level		Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.26	32.71	9.37	40.69	42.65	78.20	-35.55	Horizontal		
5850.00	41.32	32.71	9.37	40.69	42.71	78.20	-35.49	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	31.25	32.71	9.37	40.69	32.64	54.00	-21.36	Horizontal		
5850.00	31.02	32.71	9.37	40.69	32.41	54.00	-21.59	Vertical		

000 44 11700										
802.11n-HT20										
Test c	hannel	Lowest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	42.56	32.27	9.30	40.54	43.59	78.20	-34.61	Horizontal		
5725.00	41.98	32.27	9.30	40.54	43.01	78.20	-35.19	Vertical		
	802.11n-HT20									
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	31.25	32.27	9.30	40.54	32.28	54.00	-21.72	Horizontal		
5725.00	31.96	32.27	9.30	40.54	32.99	54.00	-21.01	Vertical		
			8	302.11n-HT20						
Test c	hannel		Highest			vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	42.15	32.71	9.37	40.69	43.54	78.20	-34.66	Horizontal		
5850.00	42.36	32.71	9.37	40.69	43.75	78.20	-34.45	Vertical		
			8	302.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	32.15	32.71	9.37	40.69	33.54	54.00	-20.46	Horizontal		
5850.00	32.06	32.71	9.37	40.69	33.45	54.00	-20.55	Vertical		

802.11n-HT40									
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	41.12	32.27	9.30	40.54	42.15	78.20	-36.05	Horizontal	
5725.00	41.05	32.27	9.30	40.54	42.08	78.20	-36.12	Vertical	
802.11n-HT40									
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	31.02	32.27	9.30	40.54	32.05	54.00	-21.95	Horizontal	
5725.00	31.82	32.27	9.30	40.54	32.85	54.00	-21.15	Vertical	
			8	302.11n-HT40					
Test c	hannel		Highest			vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.36	32.71	9.37	40.69	42.75	78.20	-35.45	Horizontal	
5850.00	41.28	32.71	9.37	40.69	42.67	78.20	-35.53	Vertical	
			8	302.11n-HT40					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	31.25	32.71	9.37	40.69	32.64	54.00	-21.36	Horizontal	
5850.00	31.36	32.71	9.37	40.69	32.75	54.00	-21.25	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band											
	Test Requirement:	FCC Part15 E Section 15.407(b)										
	Test Method:	ANSI C63.10: 2	2009									
	Test Frequency Range:	Band 1: 4.5 GH Band 4: 5.35 G			lz to 5.46Gl	-lz						
	Test site:	Measurement [Distance: 3m									
	Receiver setup:				T							
		Frequency	Peak 1MHz 3MHz Peak Value									
		Above 1GHz RMS 1MHz 3MHz Average Value										
	Limit:		NIVIO TIVILIZ SIVILIZ Average value									
		Freque	ency	Limit (dBuV		Remark						
		Above 1	GHz	74.0		Peak Value						
				54.0	00	Average Value						
	Test setup:	the ground to determine to determine antenna, we tower. 9. The antennathe ground Both horize make the reaches case and to find the specified If the emist the limit specified EUT have 10dE	I at a 3 meter ne the position was set 3 meter which was more an height is value to determine ontal and vert measurement suspected emishen the antend the rota table maximum reasceiver system and width with sion level of the position of the would be repaired.	camber. The n of the highers away from unted on the aried from on the maximur ical polarizations was turned awas turned iding. In was set to Fin Maximum Fine EUT in percenting could ported. Otherwid be re-tested.	table was rest radiation. In the interfectop of a variation of a variation of the analysis of	rence-receiving rable-height antenna our meters above ne field strength. Intenna are set to anged to its worst from 1 meter to 4 rees to 360 degrees						
	Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier										
	Test Instruments:	Refer to section	5.6 for detail	s								
	Test mode:	Refer to section	5.3 for detail	s								
	Test results:	Passed										

Band 1:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	38.52	30.72	8.54	40.67	37.11	74.00	-36.89	Horizontal
4500.00	37.92	30.72	8.54	40.67	36.51	74.00	-37.49	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	28.15	30.72	8.54	40.67	26.74	54.00	-27.26	Horizontal
4500.00	28.95	30.72	8.54	40.67	27.54	54.00	-26.46	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	39.63	31.99	9.16	40.23	40.55	74.00	-33.45	Horizontal
5460.00	39.15	31.99	9.16	40.23	40.07	74.00	-33.93	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	29.15	31.99	9.16	40.23	30.07	54.00	-23.93	Horizontal
5460.00	28.49	31.99	9.16	40.23	29.41	54.00	-24.59	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	38.96	30.72	8.54	40.67	37.55	74.00	-36.45	Horizontal
4500.00	38.56	30.72	8.54	40.67	37.15	74.00	-36.85	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	28.45	30.72	8.54	40.67	27.04	54.00	-26.96	Horizontal
4500.00	28.06	30.72	8.54	40.67	26.65	54.00	-27.35	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	39.45	31.99	9.16	40.23	40.37	74.00	-33.63	Horizontal
5460.00	39.82	31.99	9.16	40.23	40.74	74.00	-33.26	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	29.15	31.99	9.16	40.23	30.07	54.00	-23.93	Horizontal
5460.00	29.03	31.99	9.16	40.23	29.95	54.00	-24.05	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	39.46	30.72	8.54	40.67	38.05	74.00	-35.95	Horizontal
4500.00	39.28	30.72	8.54	40.67	37.87	74.00	-36.13	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	29.36	30.72	8.54	40.67	27.95	54.00	-26.05	Horizontal
4500.00	29.14	30.72	8.54	40.67	27.73	54.00	-26.27	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
								Polarization Horizontal
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
(MHz) 5460.00 5460.00	(dBuV/m) 38.15	Factor (dB) 31.99	Loss (dB) 9.16	Factor (dB) 40.23	(dBuV/m) 39.07	(dBuV/m) 74.00 74.00	Limit (dB) -34.93 -34.59	Horizontal
(MHz) 5460.00 5460.00	(dBuV/m) 38.15 38.49	Factor (dB) 31.99	9.16 9.16	Factor (dB) 40.23	(dBuV/m) 39.07 39.41	(dBuV/m) 74.00 74.00	Limit (dB) -34.93 -34.59	Horizontal Vertical
(MHz) 5460.00 5460.00 Test cl	(dBuV/m) 38.15 38.49 hannel Read Level	31.99 31.99 Antenna	Loss (dB) 9.16 9.16 Highest Cable	Factor (dB) 40.23 40.23 Preamp	(dBuV/m) 39.07 39.41 Level	(dBuV/m) 74.00 74.00 vel Limit Line	Limit (dB) -34.93 -34.59 Av Over	Horizontal Vertical erage

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	45.36	31.78	9.15	40.18	46.11	74.00	-27.89	Horizontal
5460.00	45.25	31.99	9.16	40.23	46.17	74.00	-27.83	Horizontal
5350.00	45.12	31.78	9.15	40.18	45.87	74.00	-28.13	Vertical
5460.00	45.96	31.99	9.16	40.23	46.88	74.00	-27.12	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	34.15	31.78	9.15	40.18	34.90	54.00	-19.10	Horizontal
5460.00	34.06	31.99	9.16	40.23	34.98	54.00	-19.02	Horizontal
5350.00	33.92	31.78	9.15	40.18	34.67	54.00	-19.33	Vertical
5460.00	34.25	31.99	9.16	40.23	35.17	54.00	-18.83	Vertical

802.11n-HT20

002.1111-11120											
Test cl	hannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	44.98	31.78	9.15	40.18	45.73	74.00	-28.27	Horizontal			
5460.00	44.18	31.99	9.16	40.23	45.10	74.00	-28.90	Horizontal			
5350.00	44.26	31.78	9.15	40.18	45.01	74.00	-28.99	Vertical			
5460.00	44.34	31.99	9.16	40.23	45.26	74.00	-28.74	Vertical			
Test cl	hannel		Lowest		Level		Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	34.62	31.78	9.15	40.18	35.37	54.00	-18.63	Horizontal			
5460.00	34.15	31.99	9.16	40.23	35.07	54.00	-18.93	Horizontal			
5350.00	34.02	31.78	9.15	40.18	34.77	54.00	-19.23	Vertical			
5460.00	34.74	31.99	9.16	40.23	35.66	54.00	-18.34	Vertical			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	44.89	31.78	9.15	40.18	45.64	74.00	-28.36	Horizontal
5460.00	44.18	31.99	9.16	40.23	45.10	74.00	-28.90	Horizontal
5350.00	44.26	31.78	9.15	40.18	45.01	74.00	-28.99	Vertical
5460.00	44.34	31.99	9.16	40.23	45.26	74.00	-28.74	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	36.15	31.78	9.15	40.18	36.90	54.00	-17.10	Horizontal
5460.00	35.81	31.99	9.16	40.23	36.73	54.00	-17.27	Horizontal
5350.00	36.24	31.78	9.15	40.18	36.99	54.00	-17.01	Vertical
5460.00	35.94	31.99	9.16	40.23	36.86	54.00	-17.14	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C S	Section 15.209 a	and 15.205								
Test Method:	FCC Part15 C Section 15.209 and 15.205 ANSI C63.10:2009										
Test Frequency Range:	30MHz to 40GH	30MHz to 40GHz Measurement Distance: 3m									
Test site:	Measurement D	istance: 3m									
Receiver setup:	FrequencyDetectorRBWVBWRemark30MHz-1GHzQuasi-peak100kHz300kHzQuasi-peak ValueAbove 1GHzPeak1MHz3MHzPeak ValueFrequencyLimit (dBuV/m @3m)Remark30MHz-88MHz40.0Quasi-peak Value										
	Frequency	Detector	RBW	VBW	Remark						
		Quasi-peak			•						
	Above 1GHz	Peak	1MHz	3MHz	Peak Value						
Limit:											
					Quasi-peak Value						
	216MHz-9		46.0		Quasi-peak Value						
	960MHz-	1GHz	54.0)	Quasi-peak Value						
	Freque	ncv	Limit (dBn	n/MHz)	Remark						
		_	68.2		Peak Value						
	Above 1	GHz	54.0		Average Value						
Test Procedure:	1. The EUT w	RP[dBm] + 95.2= as placed on th	ne top of a re	otating table	Bm]=-27dBm. e 0.8 meters above otated 360 degrees to						
	determine to antenna, we tower. 3. The antenna ground to compare the following to the following the following the first specified the following the first specified the following the first specified the fir	the position of to as set 3 meters which was mount a height is variable termine the mand vertical polars. Uspected emission a table was turneading. Ceiver system which and width with I sion level of the ed, then testing ould be reported.	he highest researched on the total ed from one maximum valuations of the EU tuned to he med from 0 covas set to P Maximum H EUT in pearly could be sid. Otherwise tested one be	adiation. the interfer op of a variation of the first the antennation of the first the antennation of the first the antennation of the eak Detect old Mode. The cold Mode of the emission one using the interference of the emission one using the enterference of the emission of the emissio	rence-receiving able-height antenna our meters above the eld strength. Both ha are set to make the aged to its worst case 1 meter to 4 meters 360 degrees to find the Function and s 10dB lower than the the peak values of ions that did not have g peak, quasi-peak or						

Below 1GHz

Horizontal:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 17.3" Android non-touch LCD Media Player : DT173-AS4-720 Condition

EUT

Model Test mode : 5G Wifi mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki

REMARK

3.5	D 1	A	C-11-	D		T	A	
-								ъ .
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
MHz	dBu₹	$-\overline{dB}/\overline{m}$	āB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
41.422	49.74	13.57	0.53	29.89	33.95	40.00	-6.05	QP
100.934	48.86	13.06	0.97	29.52	33.37	43.50	-10.13	QP
223.733	56.97	11.36	1.50	28.69	41.14	46.00	-4.86	QP
312.179	51.38	13.22	1.81	28.48	37.93	46.00	-8.07	QP
394.855	45.90	14.97	2.10	28.76	34.21	46.00	-11.79	QP
672.845	43.94	18.72	2.85	28.73	36.78	46.00	-9.22	QP
	MHz 41.422 100.934 223.733 312.179 394.855	Freq Level MHz dBuV 41.422 49.74 100.934 48.86 223.733 56.97 312.179 51.38 394.855 45.90	Freq Level Factor MHz dBuV dB/m 41.422 49.74 13.57 100.934 48.86 13.06 223.733 56.97 11.36 312.179 51.38 13.22 394.855 45.90 14.97	Freq Level Factor Loss MHz dBuV dB/m dB 41.422 49.74 13.57 0.53 100.934 48.86 13.06 0.97 223.733 56.97 11.36 1.50 312.179 51.38 13.22 1.81 394.855 45.90 14.97 2.10	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 41.422 49.74 13.57 0.53 29.89 100.934 48.86 13.06 0.97 29.52 223.733 56.97 11.36 1.50 28.69 312.179 51.38 13.22 1.81 28.48 394.855 45.90 14.97 2.10 28.76	MHz dBuV dB/m dB dB dBuV/m 41.422 49.74 13.57 0.53 29.89 33.95 100.934 48.86 13.06 0.97 29.52 33.37 223.733 56.97 11.36 1.50 28.69 41.14 312.179 51.38 13.22 1.81 28.48 37.93 394.855 45.90 14.97 2.10 28.76 34.21	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m 41.422 49.74 13.57 0.53 29.89 33.95 40.00 100.934 48.86 13.06 0.97 29.52 33.37 43.50 223.733 56.97 11.36 1.50 28.69 41.14 46.00 312.179 51.38 13.22 1.81 28.48 37.93 46.00 394.855 45.90 14.97 2.10 28.76 34.21 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 41.422 49.74 13.57 0.53 29.89 33.95 40.00 -6.05 100.934 48.86 13.06 0.97 29.52 33.37 43.50 -10.13 223.733 56.97 11.36 1.50 28.69 41.14 46.00 -4.86 312.179 51.38 13.22 1.81 28.48 37.93 46.00 -8.07 394.855 45.90 14.97 2.10 28.76 34.21 46.00 -11.79

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 17.3" Android non-touch LCD Media Player : DT173-AS4-720 Condition EUT

Model : 5G Wifi mode Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki REMARK :

EMARK	:	D1	h+	Cabla	D		Limit	0	
	Freq		Antenna Factor					Over Limit	Remark
_	MHz	—dBu∇	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	108.267	53.54	12.39	1.03	29.47	37.49	43.50	-6.01	QP
2	232.532	51.26	11.72	1.54	28.64	35.88	46.00	-10.12	QP
3	313.276	47.53	13.24	1.82	28.48	34.11	46.00	-11.89	QP
3 4	394.855	45.90	14.97	2.10	28.76	34.21	46.00	-11.79	QP
5	463.970	42.88	15.71	2.30	28.89	32.00	46.00	-14.00	QP
6	729.358	43.10	19.19	2.99	28.56	36.72	46.00	-9.28	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	47.65	39.23	13.84	41.34	59.38	68.20	-8.82	Vertical				
10360.00	46.15	39.23	13.84	41.34	57.88	68.20	-10.32	Horizontal				
		802.11	a mode Lowe	est channe	I (Average V	'alue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	34.58	39.23	13.84	41.34	46.31	54.00	-7.69	Vertical				
10360.00	35.26	39.23	13.84	41.34	46.99	54.00	-7.01	Horizontal				

	802.11a mode Middle channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	46.81	39.36	13.85	41.27	58.75	68.20	-9.45	Vertical				
10400.00	46.28	39.36	13.85	41.27	58.22	68.20	-9.98	Horizontal				
		802.11	a mode Mido	lle channel	(Average V	alue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	36.15	39.36	13.85	41.27	48.09	54.00	-5.91	Vertical				
10400.00	36.47	39.36	13.85	41.27	48.41	54.00	-5.59	Horizontal				

	802.11a mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	44.56	39.56	13.90	41.06	56.96	68.20	-11.24	Vertical		
10480.00	45.08	39.56	13.90	41.06	57.48	68.20	-10.72	Horizontal		
		802.11a	a mode High	est channe	l (Average \	/alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	35.63	39.56	13.90	41.06	48.03	54.00	-5.97	Vertical		
10480.00	35.92	39.56	13.90	41.06	48.32	54.00	-5.68	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	47.81	39.23	13.84	41.34	59.54	68.20	-8.66	Vertical			
10360.00	47.01	39.23	13.84	41.34	58.74	68.20	-9.46	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	37.98	39.23	13.84	41.34	49.71	54.00	-4.29	Vertical			
10360.00	37.57	39.23	13.84	41.34	49.30	54.00	-4.70	Horizontal			

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	47.15	39.36	13.85	41.27	59.09	68.20	-9.11	Vertical		
10400.00	47.18	39.36	13.85	41.27	59.12	68.20	-9.08	Horizontal		
		802.11n	20 mode Mic	dle chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	37.81	39.36	13.85	41.27	49.75	54.00	-4.25	Vertical		
10400.00	37.06	39.36	13.85	41.27	49.00	54.00	-5.00	Horizontal		

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	45.61	39.56	13.90	41.06	58.01	68.20	-10.19	Vertical			
10480.00	45.28	39.56	13.90	41.06	57.68	68.20	-10.52	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	34.59	39.56	13.90	41.06	46.99	54.00	-7.01	Vertical			
10480.00	34.28	39.56	13.90	41.06	46.68	54.00	-7.32	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n40 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	45.87	39.29	13.84	41.31	57.69	68.20	-10.51	Vertical			
10380.00	45.63	39.29	13.84	41.31	57.45	68.20	-10.75	Horizontal			
		802.11n	40 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	33.15	39.29	13.84	41.31	44.97	54.00	-9.03	Vertical			
10380.00	33.12	39.29	13.84	41.31	44.94	54.00	-9.06	Horizontal			

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	45.87	39.54	13.88	41.17	58.12	68.20	-10.08	Vertical			
10460.00	45.26	39.54	13.88	41.17	57.51	68.20	-10.69	Horizontal			
		802.11n ²	10 mode Hig	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	34.59	39.54	13.88	41.17	46.84	54.00	-7.16	Vertical			
10460.00	34.06	39.54	13.88	41.17	46.31	54.00	-7.69	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	45.36	40.25	13.82	40.75	58.68	68.20	-9.52	Vertical			
11490.00	45.25	40.25	13.82	40.75	58.57	68.20	-9.63	Horizontal			
		802.11	a mode Lowe	est channe	I (Average V	'alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	32.54	40.25	13.82	40.75	45.86	54.00	-8.14	Vertical			
11490.00	32.18	40.25	13.82	40.75	45.50	54.00	-8.50	Horizontal			

	802.11a mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	45.26	40.17	13.78	40.91	58.30	68.20	-9.90	Vertical		
11570.00	45.36	40.17	13.78	40.91	58.40	68.20	-9.80	Horizontal		
		802.11	a mode Mido	dle channe	l (Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	32.84	40.17	13.78	40.91	45.88	54.00	-8.12	Vertical		
11570.00	32.09	40.17	13.78	40.91	45.13	54.00	-8.87	Horizontal		

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	45.89	39.89	13.74	41.06	58.46	68.20	-9.74	Vertical			
11650.00	45.26	39.89	13.74	41.06	57.83	68.20	-10.37	Horizontal			
		802.11a	a mode High	est channe	l (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	35.62	39.89	13.74	41.06	48.19	54.00	-5.81	Vertical			
11650.00	35.48	39.89	13.74	41.06	48.05	54.00	-5.95	Horizontal			

Remark:

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	45.28	40.25	13.82	40.75	58.60	68.20	-9.60	Vertical		
11490.00	45.16	40.25	13.82	40.75	58.48	68.20	-9.72	Horizontal		
		802.11n2	20 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	32.12	40.25	13.82	40.75	45.44	54.00	-8.56	Vertical		
11490.00	31.26	40.25	13.82	40.75	44.58	54.00	-9.42	Horizontal		

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	44.85	40.17	13.78	40.91	57.89	68.20	-10.31	Vertical		
11570.00	44.39	40.17	13.78	40.91	57.43	68.20	-10.77	Horizontal		
		802.11n	20 mode Mid	ddle chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	32.15	40.17	13.78	40.91	45.19	54.00	-8.81	Vertical		
11570.00	32.16	40.17	13.78	40.91	45.20	54.00	-8.80	Horizontal		

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	44.16	39.89	13.74	41.06	56.73	68.20	-11.47	Vertical			
11650.00	44.08	39.89	13.74	41.06	56.65	68.20	-11.55	Horizontal			
		802.11n2	20 mode Hig	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	33.26	39.89	13.74	41.06	45.83	54.00	-8.17	Vertical			
11650.00	33.12	39.89	13.74	41.06	45.69	54.00	-8.31	Horizontal			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	44.26	40.26	13.83	40.77	57.58	68.20	-10.62	Vertical
11510.00	43.15	40.26	13.83	40.77	56.47	68.20	-11.73	Horizontal
	802.11n40 mode Lowest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	30.26	40.26	13.83	40.77	43.58	54.00	-10.42	Vertical
11510.00	30.15	40.26	13.83	40.77	43.47	54.00	-10.53	Horizontal

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	43.26	40.08	13.77	40.95	56.16	68.20	-12.04	Vertical
11590.00	43.15	40.08	13.77	40.95	56.05	68.20	-12.15	Horizontal
	802.11n40 mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	31.02	40.08	13.77	40.95	43.92	54.00	-10.08	Vertical
11590.00	30.57	40.08	13.77	40.95	43.47	54.00	-10.53	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)			
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.			
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector			
Test procedure:	 The EUT is installed in an environment test chamber with extern power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 115 percent of the nominal voltage. Change setting of chamb and external power source to complete all conditions. 			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.			
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB			