### CSCE 448/748 - Computational Photography

Imag + Morphing

Nima Kalantari

#### Amuse-bouche

#### Women In Art



watch in high quality

http://youtube.com/watch?v=nUDIoN-\_Hxs

### Morphing = Object Averaging







#### The aim is to find "an average" between two objects

- Not an average of two <u>images of objects</u>...
- ...but an image of the <u>average object!</u>
- How can we make a smooth transition in time?
  - Do a "weighted average" over time t

#### How do we know what the average object looks like?

- We don't have a clue!
- But we can often fake something reasonable
  - Usually required user/artist input

### **Averaging Points**

What's the average of P and Q?



#### P and Q can be anything:

- points on a plane (2D) or in space (3D)
- Colors in RGB or HSV (3D)
- Whole images (m-by-n D)... etc.

#### Idea #1: Cross-Dissolve







Interpolate whole images:

Image<sub>halfway</sub> = (1-t)\*Image<sub>1</sub> + t\*image<sub>2</sub> This is called **cross-dissolve** in film industry

But what is the images are not aligned?

#### Align, then cross-disolve



#### Align first, then cross-dissolve

Alignment using global warp – picture still valid

### Global warp not always enough!



#### What to do?

- Cross-dissolve doesn't work
- Global alignment doesn't work
  - Cannot be done with a global transformation (e.g. affine)

#### Feature matching!

- Nose to nose, tail to tail, etc.
- This is a local (non-parametric) warp

### Local (non-parametric) Image Warping





#### Need to specify a more detailed warp function

- Global warps were functions of a few (2,4,8) parameters
- Non-parametric warps u(x,y) and v(x,y) can be defined independently for every single location x,y!
- Once we know vector field u,v we can easily warp each pixel (use backward warping with interpolation)

#### Local warp, then cross-dissolve



Morphing procedure:

for every t,

- 1. Find the average shape (the "mean dog" ⊚)
  - local warping
- 2. Find the average color
  - Cross-dissolve the warped images

Slide credit: Alyosha Efros

#### Warp specification - sparse

How can we specify a sparse warp?



How do we go from feature points to pixels?



- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points
  - Same mesh in both images!
  - Now we have triangle-to-triangle correspondences
- Warp each triangle separately from source to destination
  - How do we warp a triangle?



- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points
  - Same mesh in both images!
  - Now we have triangle-to-triangle correspondences
- 3. Warp each triangle separately from source to destination
  - How do we warp a triangle?



- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points
  - Same mesh in both images!
  - Now we have triangle-to-triangle correspondences
- 3. Warp each triangle separately from source to destination
  - How do we warp a triangle?

### Triangulations

A *triangulation* of set of points in the plane is a *partition* of the convex hull to triangles whose vertices are the points, and do not cross edges.

There are an exponential number of triangulations of a point set.







# An $O(n^3)$ Triangulation Algorithm

#### Repeat until impossible:

- Select two sites.
- If the edge connecting them does not intersect previous edges, keep it.



### "Quality" Triangulations

Let  $\alpha(T) = (\alpha_1, \alpha_2, ..., \alpha_{3t})$  be the vector of angles in the triangulation T in increasing order.

A triangulation  $T_1$  will be "better" than  $T_2$  if  $\alpha(T_1) > \alpha(T_2)$  lexicographically.

The Delaunay triangulation is the "best"

Maximizes smallest angles





### Improving a Triangulation

In any convex quadrangle, an *edge flip* is possible. If this flip *improves* the triangulation locally, it also improves the global triangulation.



If an edge flip improves the triangulation, the first edge is called *illegal*.

#### Naïve Delaunay Algorithm

Start with an arbitrary triangulation. Flip any illegal edge until no more exist.

Could take a long time to terminate.



### 1. Create Average Shape

How do we create an intermediate warp at time t?

- Assume t = [0,1]
- Simple linear interpolation of each feature pair
- (1-t)\*p+t\*p' for corresponding features p and p'







- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points
  - Same mesh in both images!
  - Now we have triangle-to-triangle correspondences
- 3. Warp each triangle separately from source to destination
  - How do we warp a triangle?

### Warping triangles



Given two triangles: ABC and A'B'C' in 2D (12 numbers)

Need to find transform T to transfer all pixels from one to the other.

What kind of transformation is T?

How can we compute the transformation matrix:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

### Image Morphing Review

#### Creating a half-way intermediate morph (t=0.5):

- 1. Create an intermediate shape (by interpolation)
- 2. Warp both images towards it
- 3. Cross-dissolve the colors in the newly warped images







(c) Ian Albuquerque Raymundo da Silva

#### Morphing & matting

# Extract foreground first to avoid artifacts in the background



Slide by Durand and Freeman  $^{(f)}$   $\alpha$  = 0.6

## Examples





© Rachel Albert, CS194-26, Fall 2015