МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет Кафедра общей физики

А.А.Дорошкин, О.А. Брагин

Лабораторная работа 1.2 Измерение энергии образования ион-электронной пары α-частицами в воздухе

> Новосибирск 2016

А.А.Дорошкин, Брагин О.А.

Лабораторная работа 1.2. Измерение энергии образования ион-электронной пары α-частицами в воздухе. Методические указания по выполнению лабораторной работы/ Новосиб. гос. ун-т. Новосибирск, 2016 – 9с.

Целью лабораторной работы является определение средней энергии, затраченной на образование одной ион-электронной пары в воздухе.

По окончанию выполнения лабораторной работы, студент должен уметь оценивать технические возможности установки, уметь оценивать погрешность эксперимента и знать теоретические основы исследуемого процесса.

В методическом указании изложены лишь физические основы процессов ионизации, детальное описание имеется в рекомендованной литературе.

Условия проведения лабораторных работ максимально приближены к обстановке современных физических лабораторий.

Методическое указание к лабораторной работе предназначено для студентов 1-го курса физического факультета НГУ.

Методические указания по выполнению лабораторной работы подготовлены в рамках реализации Программы развития НИУ на 2009 – 2018 гг.

© Новосибирский государственный университет, 2016

ОГЛАВЛЕНИЕ

1. Общие сведения. Теоретические основы	4
2. Задание и порядок выполнения работы	6
3. Физические процессы в ионизационной камере	
4. Контрольные вопросы	
Список литературы	

Цель работы: определение средней энергии образования ион-электронной пары при торможении α - частиц в воздухе.

Оборудование:

- Ионизационная камера.
- Источник α-частиц.
- Источник питания (0-400 B).
- Вольтметр.
- Измеритель малых токов

1. Общие сведения. Теоретические основы

Альфа-частицы, образующиеся в результате радиоактивного распада ядер 239 Pu, имеют кинетическую энергию около 5 MэB. Альфа-частицы тормозятся в воздухе и теряют свою энергию. Эта энергия тратится, в основном, на возбуждение, диссоциацию и ионизацию молекул воздуха. При ионизации образуется электронионная пара — свободный электрон и положительно заряженный ион. Энергия, необходимая для отрыва электрона, называется энергией ионизации и обычно измеряется в электрон-вольтах (эB). Ниже приведены значения энергии ионизации для основных компонент воздуха.

Молекула	N ₂	O_2	CO ₂	H ₂	Не
Энергия однократной ионизации газов (на молекулу), э B	15,5	12,1	13,8	15,4	24,5
Средняя энергия (эВ), расходуемая на образование одной пары ионов альфа-частицами с энергией 5МэВ	36,3	32,1	34,1	36,6	44,4

Поскольку воздух примерно на 78% состоит из молекул азота N_2 и на 21% из молекул кислорода O_2 ; то, согласно приведенным выше данным, средняя энергия ионизации молекул воздуха $W \approx 14$ эB. Таким образом, альфа-частица энергией $E_{\alpha} \approx 5$ MэB при своем полном торможении в воздухе могла бы образовать порядка

$$n_0 \approx E_\alpha / W \approx 5 \cdot 10^6 / 14 \approx 3 \cdot 10^5$$
 ион-электронных пар.

В действительности число образующихся пар меньше, так как часть энергий идет на возбуждение и диссоциацию молекул.

Ионизационная камера. В данной работе для регистрации образуемых ионэлектронных пар используется ионизационная камера, состоящая из двух плоских электродов к которым прикладывается напряжение и от источника питания (рис. 1.)

Камера установлена в экранирующем кожухе, предохраняющем чувствительные цепи измерительной схемы от электрических наводок. Источник α-частиц, который вы использовали в работе 1.1, размещается в центре нижнего электрода камеры излучающей поверхностью вверх.

Рис. 1. Схема эксперимента

При торможении α-частицы в воздушном зазоре между электродами происходит ионизация молекул воздуха, которого измеряется измерителем малых токов (прибором В7-30). Зависимость тока от напряжения имеет характерный вид, показанный на рис. 2. При малых напряжениях между электродами ток увеличивается примерно пропорционально напряжению, так как возрастает скорость движения ионов и уменьшается их рекомбинация. Рекомбинация — обратный процесс, когда при столкновении заряженных частиц снова образуются нейтральные молекулы.

Рис. 2. Счетная характеристика детектора

При $U>U_{nac}$ существует широкая область напряжений, где величина тока практически не зависит от напряжения. Большая часть заряженных частиц, которые образуются вдоль траектории α -частицы, собирается на электродах камеры. При $U>U_{np}$ начинаются пробойные явления и ток возрастает.

Величина тока насыщения равна $I_{hac.} = e \cdot n$, где e — заряд электрона, а n — число ион электронных пар, образуемых в зазоре камеры за 1 $ce\kappa$. Расстояние между электродами камеры (5 см) больше длины полного поглощения α -частиц в воздухе, которая примерно равна 3,5 см. Поэтому α -частицы теряют всю свою энергию в воздушном промежутке камеры. Это обстоятельство позволяет вычислить предельный ток насыщения.

Энергия, выделяемая в камере за 1 сек за счет торможения α-частицы, равна

$$E = N \cdot E_{cp} ,$$

где N — интенсивность α -источника, а \mathbf{E}_{cp} — средняя энергия α -частиц. Если считать, что вся выделяемая энергия расходуется на образование ион-электронных пар, то средняя энергия, потраченная на образование ион-электронной пары Q может быть определена из:

$$Q = \frac{e \cdot N \cdot E_{cp}}{I_{Hac}},$$

где N — интенсивность α -источника, определенная в работе 1.1, e — заряд электрона, $I_{hac.}$ — ток насыщения, определенный для одного и того же α -источника.

В работе используется α -источник, имеющий три энергетических линии излучения α -частиц: 5,157 MэB (75,3%), 5,145 M3B (15,2%), 5,107 M3B (9,5%). В формулу следует подставлять средневзвешенное значение E_{cp} .

2. Задание и порядок выполнения работы

- 1. Включите прибор B7-30 и дайте ему прогреться минимум 10 минут. Установите α -источник на нижний выдвижной электрод камеры. Меняя напряжение источника питания с шагом 20 B, измерьте величину тока ионизационной камеры (прибором B7-30). Результаты измерения запишите в виде таблицы, и постройте по ним график I=I(U).
- 2. Уберите α -источник и повторите измерения для определения тока утечки ионизационной камеры.
- 3. Проанализируйте источники методических погрешностей и оцените их (см. приложение 1 "методы обработки результатов измерений").
- 4. Рассчитайте величину Q и оцените погрешность. Представьте результат в интервальной форме.
 - 5. Типовой отчет о работе должен содержать:
 - графики вольтамперной характеристики ионизационной камеры;
 - расчетное значение Q в интервальной форме;
 - \bullet сравнение полученного значения Q с потенциалом ионизации.

3. Физические процессы в ионизационной камере

Длина свободного пробега. Проходя через вещество, α – частицы теряют энергию, ионизуя и возбуждая встречные атомы. Зависимость dE/dx=f(x) (потери энергии от пути), пройденного частицей в веществе, называется кривой Брэгга. В расчётную формулу потери энергии от пути входят только скорость и заряд частицы, причём с уменьшением скорости потери энергии возрастают. Удельные потери энергии пропорциональны числу электронов вещества и квадрату заряда частицы, теряющей энергию на ионизацию. Удельные потери энергии не зависят от массы m проходящей через вещество частицы (при условии $m>>m_e$, m_e – масса электрона), но существенно зависят от скорости частицы.

Потери энергии пропорциональны произведению плотности электронов в веществе на длину пути (при данной скорости). В веществе плотность электронов пропорциональна плотности среды, потому энергия, теряемая α-частицей, определяется произведением плотности вещества на толщину пройденного слоя.

Тяжёлые заряженные частицы взаимодействуют в основном с электронами атомных оболочек и поэтому мало отклоняются от направления своего первоначального движения. Вследствие этого, пробег тяжёлой частицы R измеряют расстоянием по прямой от источника частиц до точки их остановки. Обычно пробег измеряется в единицах длины (M, CM, MKM), а также поверхностной плотности материала (или, что равнозначно, длины пробега, умноженной на плотность) (z/cM^2). Выражение пробега в единицах длины имеет смысл для фиксированной плотности среды (например, часто в качестве среды выбирается сухой воздух при нормальных условиях). Физический смысл пробега в терминах поверхностной плотности — масса единицы площади слоя, достаточного для остановки частицы.

Примеры пробега альфа-частиц в некоторых средах							
Энергия α-частиц, МэВ	4	6	8	10			
Воздух при нормальных условиях, см	2,5	4,6	7,4	10,6			
Биологическая ткань, мкм	31	56	96	130			
Алюминий, мкм	16	30	48	69			

Упругое столкновение. Если при столкновениях не меняется внутреннее состояние частиц, то такие столкновения называются упругими. При упругих столкновениях общая кинетическая энергия сталкивающихся частиц остается неизменной. При низких энергиях сталкивающихся атомов и молекул происходят в основном упругие столкновения.

Неупругие столкновения. При повышении энергии сталкивающихся частиц начинаются процессы диссоциации (распад молекул на составные части), возбуждения и ионизации. В таких столкновениях кинетическая энергия сталкивающихся частиц уменьшается. Эта энергия тратится на разрыв связей между атомами в молекулах

возбуждение самих атомов, отрыв электронов. При возбуждении атомов электроны переходят на более высокие энергетические уровни, поглощая кванты энергии. Возбужденные атомы снова переходят в основное (невозбужденное) состояние, излучая один или несколько квантов энергии. В отличие от атомов, у молекул могут возбуждаться вращательные и колебательные степени свободы. При повышении энергии сталкивающихся частиц преобладающим процессом становится ионизация (при энергии электронов - десятки эB, тяжелых частиц - десятки KэB). В таких столкновениях образуется пара заряженных частиц положительный ион и электрон.

Образование отрицательных ионов. Электроны, образовавшиеся в результате ионизации, в электроотрицательном газе (кислород, галогены, SF_6) быстро присоединяются к нейтральным молекулам, имеющим высокое сродство к электронам, образуя отрицательные ионы. Таким образом, носителями зарядов в зазоре камеры, заполненной воздухом, являются в основном, положительные и отрицательные ионы.

Электрический ток в ионизационной камере. Альфа частицы при торможении образуют вдоль своей траектории заряженные частицы. Под действием электрического поля в камере положительные и отрицательные ионы начинают двигаться (дрейфовать) в противоположных направлениях к электродам камеры. В процессе движения ионы испытывают многократные столкновения с молекулами воздуха. Поэтому, несмотря на действие постоянной электрической силы ионы дрейфуют с постоянной средней скоростью $v_{\partial p}$. Величина скорости дрейфа пропорциональна напряженности электрического поля E и коэффициенту подвижности ионов:

$$v_{\partial p} = \mu E$$
.

Для положительных ионов воздуха коэффициент подвижности μ^+ примерно равен 3×10^{-4} ${\it MB}^{-1}c^{-1}$. Подвижность отрицательных ионов μ^- меньше μ^+ приблизительно на 20 %. Полный ток в камере является суммой токов положительных и отрицательных ионов:

$$I = I^{+} + I^{-} = \int (e^{+}n^{+}v^{+} - e^{-}n^{-}v) \cdot dS = e \cdot (\mu^{+} + \mu^{-}) \cdot E \cdot \int dS$$

где $n^+ = n^- = n$ — средняя плотность заряженных пар, S — поперечное сечение области ионизации в зазоре камеры.

Таким образом, измерив величину тока, можно рассчитать количество ионэлектронных пар, образующихся в единицу времени:

$$I = \frac{dQ}{dt} = \frac{e \cdot dN}{dt} \,,$$

где e – заряд электрона, dN/dt – количество пар в единицу времени.

При малом электрическом поле число пар достигающих электродов много меньше их начального количества из-за рекомбинации положительных и отрицательных ионов. Однако с увеличением электрического поля E и скорости ионов вероятность рекомбинации быстро уменьшается. При определенном поле U_{hac} все заряженные пары ионов собираются на противоположных электродах камеры. При дальнейшем увеличении электрического поля ток в камере не возрастает и достигает

своего предельного значения тока насыщения. В этом случае вклад в полный ток каждой пары одинаков и не зависит от геометрического места их образования в зазоре камеры.

Токовые импульсы от проходящих через камеру альфа частиц имеют разную величину. Происходит это из-за того, что α-частицы вылетают не только с внешней стороны подложки в сторону зазора камеры. Часть α-частиц из глубинных слоёв затрачивают часть энергии до достижения поверхности. В результате этого в камере возникает целый спектр импульсов. Кроме того, интенсивность α-источника, как видно из работы 1.1, имеет собственное распределение. В результате влияния этих факторов измеритель регистрирует значительные колебания тока.

4. Контрольные вопросы

- 1. Как изменится величина тока насыщения, если увеличить (уменьшить) в 2 раза зазор ионизационной камеры.
 - 2. Приведите качественные аргументы, объясняющие наличие тока в камере.
- 3. Докажите, что вклад в ток ионной пары не зависит от геометрического места их образования в зазоре.
- 4. Качественно оцените, как отражаются на результатах измерении приближения, сделанные при выводе расчетной формулы, попробуйте сделать численную оценку.
- 5. Какие, на Ваш взгляд, следует внести изменения в установку, чтобы уменьшить методические погрешности.
- 6. Зная период полураспада 239 Pu (2.44 10^4 лет) и число испускаемых источником α -частиц, рассчитайте число имеющихся в источнике атомов плутония. Какую площадь займут эти атомы, если их расположить в виде монослоя?

Число распавшихся атомов за интервал $t_2 - t_1$ есть $n = K \cdot N \cdot (t_2 - t_1)$

где K – постоянная распада и равна $0.693/T_{0.5}$ ($T_{0.5}$ – период полураспада)

Внимание! Результаты измерений должны быть представлены в форме $A_{cp} \pm \Delta A$ с указанием размерности.

Список литературы

Лабораторные занятия по физике / под ред. Л. Гольдина М.: Наука 1983. С. 537-548

Дорошкин А.А., Фролов В.В., Измерение энергии образования ион электронной пары в воздухе. Лаб. работа. Новосибирск, (Препр.) Новосибирск: НГУ, 1993.

Ховатсон А.М. Введение в теорию газового разряда. М. Атомиздат, 1980, С. 17-32

Энгель А. Ионизированные газы. М., 1959.

Гапонов В.И. Электроника. М., 1960 Ч. 2.

© www.phys.nsu.ru

Интернет версия подготовлена на основе издания: Описание лабораторных работ по физике. Измерительный практикум. Часть 1. Новосибирск: Изд-во, НГУ, 1999

- © Физический факультет НГУ, 2000
- © Лаборатория методов измерений НГУ, 2000, http://www.phys.nsu.ru/measuring/