Ayudantía 4 MAT033

Eduardo Rubio Marín

Correo: eduardo.rubiom@sansano.usm.cl

Mayo, 2021

Pregunta 1

En una farmaceutica se estudia el precio en dolares de 3 componentes, en los ultimos 5 años.

Año	Α	В	С
1	3	4	1
2	4	6	1.5
3	5	6.5	2
4	4.5	7	2.5
5	7	4	3

- Calcule un indice simple para estudiar la evolución de los precios del componente A tomando como referencia el primer año.
- Usando un indice complejo sin ponderar calcule la evolución de los precios en conjunto de los componentes.

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{4}{3} \cdot 100 =$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{4}{3} \cdot 100 = 133.33$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{4}{3} \cdot 100 = 133.33$$

$$\mathbf{I}_0^2$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{4}{3} \cdot 100 = 133.33$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{5}{3} \cdot 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{4}{3} \cdot 100 = 133.33$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{5}{3} \cdot 100 = 166.67$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{4}{3} \cdot 100 = 133.33$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{5}{3} \cdot 100 = 166.67$$

$$\mathbf{I}_0^3$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{4}{3} \cdot 100 = 133.33$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{5}{3} \cdot 100 = 166.67$$

$$\mathbf{I}_0^3 = \frac{X_3}{X_0} \cdot 100 = \frac{4.5}{3} \cdot 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{4}{3} \cdot 100 = 133.33$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{5}{3} \cdot 100 = 166.67$$

$$\mathbf{I}_0^3 = \frac{X_3}{X_0} \cdot 100 = \frac{4.5}{3} \cdot 100 = 150$$

 \mathbf{I}_0^4

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{3}{3} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{4}{3} \cdot 100 = 133.33$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{5}{3} \cdot 100 = 166.67$$

$$\mathbf{I}_0^3 = \frac{X_3}{X_0} \cdot 100 = \frac{4.5}{3} \cdot 100 = 150$$

$$\mathbf{I}_0^4 = \frac{X_4}{X_0} \cdot 100 = \frac{7}{3} \cdot 100 = 233.33$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{4}{4} \cdot 100 = 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{4}{4} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{6}{4} \cdot 100 = 150$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{4}{4} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{6}{4} \cdot 100 = 150$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{6.5}{4} \cdot 100 = 162.5$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{4}{4} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{6}{4} \cdot 100 = 150$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{6.5}{4} \cdot 100 = 162.5$$

$$\mathbf{I}_0^3 = \frac{X_3}{X_0} \cdot 100 = \frac{7}{4} \cdot 100 = 175$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{4}{4} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{6}{4} \cdot 100 = 150$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{6.5}{4} \cdot 100 = 162.5$$

$$\mathbf{I}_0^3 = \frac{X_3}{X_0} \cdot 100 = \frac{7}{4} \cdot 100 = 175$$

$$\mathbf{I}_0^4 = \frac{X_4}{X_0} \cdot 100 = \frac{4}{4} \cdot 100 = 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{1}{1} \cdot 100 = 100$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{1}{1} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{1.5}{1} \cdot 100 = 150$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{1}{1} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{1.5}{1} \cdot 100 = 150$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{2}{1} \cdot 100 = 200$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{1}{1} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{1.5}{1} \cdot 100 = 150$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{2}{1} \cdot 100 = 200$$

$$\mathbf{I}_0^3 = \frac{X_3}{X_0} \cdot 100 = \frac{2.5}{1} \cdot 100 = 250$$

$$\mathbf{I}_0^t = \frac{X_t}{X_0} \cdot 100$$

$$\mathbf{I}_0^0 = \frac{X_0}{X_0} \cdot 100 = \frac{1}{1} \cdot 100 = 100$$

$$\mathbf{I}_0^1 = \frac{X_1}{X_0} \cdot 100 = \frac{1.5}{1} \cdot 100 = 150$$

$$\mathbf{I}_0^2 = \frac{X_2}{X_0} \cdot 100 = \frac{2}{1} \cdot 100 = 200$$

$$\mathbf{I}_0^3 = \frac{X_3}{X_0} \cdot 100 = \frac{2.5}{1} \cdot 100 = 250$$

$$\mathbf{I}_0^4 = \frac{X_4}{X_0} \cdot 100 = \frac{3}{1} \cdot 100 = 300$$

$$\mathbf{I}_t = \frac{1}{k} \sum_{i=1}^k \mathbf{I}_{i0}^t$$

$$\mathbf{I}_t = \frac{1}{k} \sum_{i=1}^k \mathbf{I_{i0}}^t = \frac{1}{3} (\mathbf{I_{A0}}^t + \mathbf{I_{b0}}^t + \mathbf{I_{c0}}^t)$$

$$\mathbf{I}_{t} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{I}_{i0}^{t} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}^{t}} + \mathbf{I}_{\mathbf{b}_{0}^{t}} + \mathbf{I}_{\mathbf{c}_{0}^{t}})$$

 \mathbf{I}_0

$$\mathbf{I}_t = \frac{1}{k} \sum_{i=1}^k \mathbf{I_{i0}}^t = \frac{1}{3} (\mathbf{I_{A0}}^t + \mathbf{I_{b0}}^t + \mathbf{I_{c0}}^t)$$

$$\mathbf{I}_0 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^0 + \mathbf{I}_{\mathbf{b}_0}^0 + \mathbf{I}_{\mathbf{c}_0}^0)$$

$$\mathbf{I}_t = \frac{1}{k} \sum_{i=1}^k \mathbf{I}_{i0}^t = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0^t} + \mathbf{I}_{\mathbf{b}_0^t} + \mathbf{I}_{\mathbf{c}_0^t})$$

$$\mathbf{I}_0 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^0 + \mathbf{I}_{\mathbf{b}_0}^0 + \mathbf{I}_{\mathbf{c}_0}^0) = \frac{1}{3} (100 + 100 + 100)$$

$$\mathbf{I}_t = \frac{1}{k} \sum_{i=1}^k \mathbf{I}_{i0}^t = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0^t} + \mathbf{I}_{\mathbf{b}_0^t} + \mathbf{I}_{\mathbf{c}_0^t})$$

$$\mathbf{I}_0 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^0 + \mathbf{I}_{\mathbf{b}_0}^0 + \mathbf{I}_{\mathbf{c}_0}^0) = \frac{1}{3} (100 + 100 + 100) = 100$$

$$\mathbf{I}_t = \frac{1}{k} \sum_{i=1}^k \mathbf{I_{i0}}^t = \frac{1}{3} (\mathbf{I_{A0}}^t + \mathbf{I_{b0}}^t + \mathbf{I_{c0}}^t)$$

$$\mathbf{I}_0 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^0 + \mathbf{I}_{\mathbf{b}_0}^0 + \mathbf{I}_{\mathbf{c}_0}^0) = \frac{1}{3} (100 + 100 + 100) = 100$$

 \mathbf{I}_1

$$\mathbf{I}_t = \frac{1}{k} \sum_{i=1}^k \mathbf{I}_{i0}^t = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0^t} + \mathbf{I}_{\mathbf{b}_0^t} + \mathbf{I}_{\mathbf{c}_0^t})$$

$$\mathbf{I}_0 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^0 + \mathbf{I}_{\mathbf{b}_0}^0 + \mathbf{I}_{\mathbf{c}_0}^0) = \frac{1}{3} (100 + 100 + 100) = 100$$

$$\mathbf{I}_1 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^1 + \mathbf{I}_{\mathbf{b}_0}^1 + \mathbf{I}_{\mathbf{c}_0}^1)$$

$$\mathbf{I}_t = \frac{1}{k} \sum_{i=1}^k \mathbf{I}_{i0}^t = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0^t} + \mathbf{I}_{\mathbf{b}_0^t} + \mathbf{I}_{\mathbf{c}_0^t})$$

$$\mathbf{I}_0 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^0 + \mathbf{I}_{\mathbf{b}_0}^0 + \mathbf{I}_{\mathbf{c}_0}^0) = \frac{1}{3} (100 + 100 + 100) = 100$$

$$\mathbf{I}_1 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^1 + \mathbf{I}_{\mathbf{b}_0}^1 + \mathbf{I}_{\mathbf{c}_0}^1) = \frac{1}{3} (133.33 + 150 + 150)$$

$$\mathbf{I}_{t} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{I}_{i0}^{t} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}^{t}} + \mathbf{I}_{\mathbf{b}_{0}^{t}} + \mathbf{I}_{\mathbf{c}_{0}^{t}})$$

$$\mathbf{I}_0 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^0 + \mathbf{I}_{\mathbf{b}_0}^0 + \mathbf{I}_{\mathbf{c}_0}^0) = \frac{1}{3} (100 + 100 + 100) = 100$$

$$\mathbf{I}_1 = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_0}^1 + \mathbf{I}_{\mathbf{b}_0}^1 + \mathbf{I}_{\mathbf{c}_0}^1) = \frac{1}{3} (133.33 + 150 + 150) = 144.44$$

$$\mathbf{I}_t = \frac{1}{k} \sum_{i=1}^k \mathbf{I_{i_0}}^t = \frac{1}{3} (\mathbf{I_{A_0}}^t + \mathbf{I_{b_0}}^t + \mathbf{I_{c_0}}^t)$$

$$\mathbf{I}_{0} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{0} + \mathbf{I}_{\mathbf{b}_{0}}^{0} + \mathbf{I}_{\mathbf{c}_{0}}^{0}) = \frac{1}{3} (100 + 100 + 100) = 100$$

$$\mathbf{I}_{1} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{1} + \mathbf{I}_{\mathbf{b}_{0}}^{1} + \mathbf{I}_{\mathbf{c}_{0}}^{1}) = \frac{1}{3} (133.33 + 150 + 150) = 144.44$$

$$\mathbf{I}_{2} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{2} + \mathbf{I}_{\mathbf{b}_{0}}^{2} + \mathbf{I}_{\mathbf{c}_{0}}^{2}) =$$

$$\mathbf{I}_{t} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{I}_{i0}^{t} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}^{t}} + \mathbf{I}_{\mathbf{b}_{0}^{t}} + \mathbf{I}_{\mathbf{c}_{0}^{t}})$$

$$\mathbf{I}_{0} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{0} + \mathbf{I}_{\mathbf{b}_{0}}^{0} + \mathbf{I}_{\mathbf{c}_{0}}^{0}) = \frac{1}{3} (100 + 100 + 100) = 100$$

$$\mathbf{I}_{1} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{1} + \mathbf{I}_{\mathbf{b}_{0}}^{1} + \mathbf{I}_{\mathbf{c}_{0}}^{1}) = \frac{1}{3} (133.33 + 150 + 150) = 144.44$$

$$\mathbf{I}_{2} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{2} + \mathbf{I}_{\mathbf{b}_{0}}^{2} + \mathbf{I}_{\mathbf{c}_{0}}^{2}) = \frac{1}{3} (166.67 + 162.5 + 200) = 176.39$$

$$\mathbf{I}_{t} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{I}_{i0}^{t} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}^{t}} + \mathbf{I}_{\mathbf{b}_{0}^{t}} + \mathbf{I}_{\mathbf{c}_{0}^{t}})$$

$$\mathbf{I}_{0} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{0} + \mathbf{I}_{\mathbf{b}_{0}}^{0} + \mathbf{I}_{\mathbf{c}_{0}}^{0}) = \frac{1}{3} (100 + 100 + 100) = 100$$

$$\mathbf{I}_{1} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{1} + \mathbf{I}_{\mathbf{b}_{0}}^{1} + \mathbf{I}_{\mathbf{c}_{0}}^{1}) = \frac{1}{3} (133.33 + 150 + 150) = 144.44$$

$$\mathbf{I}_{2} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{2} + \mathbf{I}_{\mathbf{b}_{0}}^{2} + \mathbf{I}_{\mathbf{c}_{0}}^{2}) = \frac{1}{3} (166.67 + 162.5 + 200) = 176.39$$

$$\mathbf{I}_{3} = \frac{1}{2} (\mathbf{I}_{\mathbf{A}_{0}}^{3} + \mathbf{I}_{\mathbf{b}_{0}}^{3} + \mathbf{I}_{\mathbf{c}_{0}}^{3})$$

$$\mathbf{I}_{t} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{I}_{i0}^{t} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}^{t}} + \mathbf{I}_{\mathbf{b}_{0}^{t}} + \mathbf{I}_{\mathbf{c}_{0}^{t}})$$

$$\mathbf{I}_{0} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{0} + \mathbf{I}_{\mathbf{b}_{0}}^{0} + \mathbf{I}_{\mathbf{c}_{0}}^{0}) = \frac{1}{3} (100 + 100 + 100) = 100$$

$$\mathbf{I}_{1} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{1} + \mathbf{I}_{\mathbf{b}_{0}}^{1} + \mathbf{I}_{\mathbf{c}_{0}}^{1}) = \frac{1}{3} (133.33 + 150 + 150) = 144.44$$

$$\mathbf{I}_{2} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{2} + \mathbf{I}_{\mathbf{b}_{0}}^{2} + \mathbf{I}_{\mathbf{c}_{0}}^{2}) = \frac{1}{3} (166.67 + 162.5 + 200) = 176.39$$

$$\mathbf{I}_{3} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{3} + \mathbf{I}_{\mathbf{b}_{0}}^{3} + \mathbf{I}_{\mathbf{c}_{0}}^{3}) = \frac{1}{3} (150 + 175 + 250) = 191.67$$

$$\mathbf{I}_{t} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{I}_{i0}^{t} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}^{t}} + \mathbf{I}_{\mathbf{b}_{0}^{t}} + \mathbf{I}_{\mathbf{c}_{0}^{t}})$$

$$\mathbf{I}_{0} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{0} + \mathbf{I}_{\mathbf{b}_{0}}^{0} + \mathbf{I}_{\mathbf{c}_{0}}^{0}) = \frac{1}{3} (100 + 100 + 100) = 100$$

$$\mathbf{I}_{1} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{1} + \mathbf{I}_{\mathbf{b}_{0}}^{1} + \mathbf{I}_{\mathbf{c}_{0}}^{1}) = \frac{1}{3} (133.33 + 150 + 150) = 144.44$$

$$\mathbf{I}_{2} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{2} + \mathbf{I}_{\mathbf{b}_{0}}^{2} + \mathbf{I}_{\mathbf{c}_{0}}^{2}) = \frac{1}{3} (166.67 + 162.5 + 200) = 176.39$$

$$\mathbf{I}_{3} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{3} + \mathbf{I}_{\mathbf{b}_{0}}^{3} + \mathbf{I}_{\mathbf{c}_{0}}^{3}) = \frac{1}{3} (150 + 175 + 250) = 191.67$$

$$\mathbf{I}_{4} = \frac{1}{3} (\mathbf{I}_{\mathbf{A}_{0}}^{4} + \mathbf{I}_{\mathbf{b}_{0}}^{4} + \mathbf{I}_{\mathbf{c}_{0}}^{4}) = \frac{1}{3} (233.33 + 100 + 300) = 211.11$$

Pregunta 2

El consumo de bencina en una empresa en miles de litros y sus indices de precios de este en 6 años vienen dados en la siguiente tabla:

Consumo	Indice	
60	91	
70	93	
75	95	
78	100	
80	114	
85	120	
	60 70 75 78 80	

Sabiendo que el precio de la bencina fue de 1.5 dolares por litro en el 2011, calcule el precio de esta para la empresa en cada año.

Año	Consumo	Indice 2009	Indice 2011
2006	60	91	(91/120)100=75.83
2007	7 70	93	(93/120)100=77.7
2008	3 75	95	(95/120)100=79.17
2009	78	100	(100/120)100=83.33
2010	80	114	(114/120)100=95
2011	85	120	(120/120)100=100

Así entonces para calcular el precio en cada año usaremos los nuevos índices

1.5

 $1.5\cdot0.7583$

$$1.5 \cdot 0.7583 = 1.137$$

$$1.5 \cdot 0.7583 = 1.137$$

$$1.5 \cdot 0.775 = 1.162$$

$$1.5 \cdot 0.7583 = 1.137$$

$$1.5 \cdot 0.775 = 1.162$$

$$1.5 \cdot 0.7917 = 1.187$$

$$1.5 \cdot 0.7583 = 1.137$$

$$1.5 \cdot 0.775 = 1.162$$

$$1.5 \cdot 0.7917 = 1.187$$

$$1.5 \cdot 0.8333 = 1.249$$

$$1.5 \cdot 0.7583 = 1.137$$

$$1.5 \cdot 0.775 = 1.162$$

$$1.5 \cdot 0.7917 = 1.187$$

$$1.5 \cdot 0.8333 = 1.249$$

$$1.5 \cdot 0.95 = 1.425$$

$$1.5 \cdot 0.7583 = 1.137$$

$$1.5 \cdot 0.775 = 1.162$$

$$1.5 \cdot 0.7917 = 1.187$$

$$1.5 \cdot 0.8333 = 1.249$$

$$1.5 \cdot 0.95 = 1.425$$

$$1.5 \cdot 1 = 1.5$$

Pregunta 3

Una tienda de figuras coleccionables esta contabilizando los precios en miles de pesos y las cantidades en cientos de ventas de 3 productos de interés en la siguiente tabla:

t	P_a	P_b	P_c	Q_a	Q_b	Q_c
0	4	10	15	2	2	3
1	6	11	20	5	1	3
2	5	12	25	4	1	2

- Obtenga el indice de Paasche de los precios con referencia al periodo 0.
- Obtenga el indice de Laspeyres de las cantidades con referencia al periodo 0.
- Obtenga el indice de Fisher de ambos con referencia al periodo
 0.

Para el indice de Paasche en precios se tiene:

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

$$P_{p_0}^{\ 1}$$

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

$$P_{p_0}^{\ 1} = \frac{6 \cdot 5 + 11 \cdot 1 + 20 \cdot 3}{4 \cdot 5 + 10 \cdot 1 + 15 \cdot 3} \cdot 100$$

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

$$P_{p_0}^{\ 1} = \frac{6 \cdot 5 + 11 \cdot 1 + 20 \cdot 3}{4 \cdot 5 + 10 \cdot 1 + 15 \cdot 3} \cdot 100 = \frac{101}{75} \cdot 100$$

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

$$P_{p_0}^{\ 1} = \frac{6 \cdot 5 + 11 \cdot 1 + 20 \cdot 3}{4 \cdot 5 + 10 \cdot 1 + 15 \cdot 3} \cdot 100 = \frac{101}{75} \cdot 100 = 134.67$$

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

$$P_{p_0}^{\ 1} = \frac{6 \cdot 5 + 11 \cdot 1 + 20 \cdot 3}{4 \cdot 5 + 10 \cdot 1 + 15 \cdot 3} \cdot 100 = \frac{101}{75} \cdot 100 = 134.67$$

$$P_{p_0}^2$$

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

$$P_{p_0}^{\ 1} = \frac{6 \cdot 5 + 11 \cdot 1 + 20 \cdot 3}{4 \cdot 5 + 10 \cdot 1 + 15 \cdot 3} \cdot 100 = \frac{101}{75} \cdot 100 = 134.67$$

$$P_{p_0}^2 = \frac{5 \cdot 4 + 12 \cdot 1 + 25 \cdot 2}{4 \cdot 4 + 10 \cdot 1 + 15 \cdot 2} \cdot 100$$

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

$$P_{p_0}^{\ 1} = \frac{6 \cdot 5 + 11 \cdot 1 + 20 \cdot 3}{4 \cdot 5 + 10 \cdot 1 + 15 \cdot 3} \cdot 100 = \frac{101}{75} \cdot 100 = 134.67$$

$$P_{p_0}^2 = \frac{5 \cdot 4 + 12 \cdot 1 + 25 \cdot 2}{4 \cdot 4 + 10 \cdot 1 + 15 \cdot 2} \cdot 100 = \frac{82}{56} \cdot 100$$

Para el indice de Paasche en precios se tiene:

$$P_{p} = \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{it}} \cdot 100$$

$$P_{p_0}^{\ 1} = \frac{6 \cdot 5 + 11 \cdot 1 + 20 \cdot 3}{4 \cdot 5 + 10 \cdot 1 + 15 \cdot 3} \cdot 100 = \frac{101}{75} \cdot 100 = 134.67$$

$$P_{p_0}^2 = \frac{5 \cdot 4 + 12 \cdot 1 + 25 \cdot 2}{4 \cdot 4 + 10 \cdot 1 + 15 \cdot 2} \cdot 100 = \frac{82}{56} \cdot 100 = 146.43$$

$$L_q = \frac{\sum_{i=1}^{n} q_{it} \cdot p_{i0}}{\sum_{i=1}^{n} q_{i0} \cdot p_{i0}} \cdot 100$$

$$L_q = \frac{\sum_{i=1}^{n} q_{it} \cdot p_{i0}}{\sum_{i=1}^{n} q_{i0} \cdot p_{i0}} \cdot 100$$

$$L_q = \frac{\sum_{i=1}^{n} q_{it} \cdot p_{i0}}{\sum_{i=1}^{n} q_{i0} \cdot p_{i0}} \cdot 100$$

$$L_{q_0}^{-1}$$

$$L_q = \frac{\sum_{i=1}^{n} q_{it} \cdot p_{i0}}{\sum_{i=1}^{n} q_{i0} \cdot p_{i0}} \cdot 100$$

$$L_{q_0}^{-1} = \frac{5 \cdot 4 + 1 \cdot 10 + 3 \cdot 15}{2 \cdot 4 + 2 \cdot 10 + 3 \cdot 15} \cdot 100$$

$$L_q = \frac{\sum_{i=1}^{n} q_{it} \cdot p_{i0}}{\sum_{i=1}^{n} q_{i0} \cdot p_{i0}} \cdot 100$$

$$L_{q0}^{1} = \frac{5 \cdot 4 + 1 \cdot 10 + 3 \cdot 15}{2 \cdot 4 + 2 \cdot 10 + 3 \cdot 15} \cdot 100 = \frac{75}{73} \cdot 100$$

$$L_q = \frac{\sum_{i=1}^{n} q_{it} \cdot p_{i0}}{\sum_{i=1}^{n} q_{i0} \cdot p_{i0}} \cdot 100$$

$$L_{q_0}^{-1} = \frac{5 \cdot 4 + 1 \cdot 10 + 3 \cdot 15}{2 \cdot 4 + 2 \cdot 10 + 3 \cdot 15} \cdot 100 = \frac{75}{73} \cdot 100 = 102.74$$

$$L_q = \frac{\sum_{i=1}^{n} q_{it} \cdot p_{i0}}{\sum_{i=1}^{n} q_{i0} \cdot p_{i0}} \cdot 100$$

$$L_{q_0}^{-1} = \frac{5 \cdot 4 + 1 \cdot 10 + 3 \cdot 15}{2 \cdot 4 + 2 \cdot 10 + 3 \cdot 15} \cdot 100 = \frac{75}{73} \cdot 100 = 102.74$$

$$L_{q_0}^2$$

$$L_q = \frac{\sum_{i=1}^{n} q_{it} \cdot p_{i0}}{\sum_{i=1}^{n} q_{i0} \cdot p_{i0}} \cdot 100$$

$$L_{q_0}^{-1} = \frac{5 \cdot 4 + 1 \cdot 10 + 3 \cdot 15}{2 \cdot 4 + 2 \cdot 10 + 3 \cdot 15} \cdot 100 = \frac{75}{73} \cdot 100 = 102.74$$

$$L_{q_0}^2 = \frac{4 \cdot 4 + 1 \cdot 10 + 2 \cdot 15}{2 \cdot 4 + 2 \cdot 10 + 3 \cdot 15} \cdot 100$$

$$L_q = \frac{\sum_{i=1}^{n} q_{it} \cdot p_{i0}}{\sum_{i=1}^{n} q_{i0} \cdot p_{i0}} \cdot 100$$

$$L_{q_0}^{-1} = \frac{5 \cdot 4 + 1 \cdot 10 + 3 \cdot 15}{2 \cdot 4 + 2 \cdot 10 + 3 \cdot 15} \cdot 100 = \frac{75}{73} \cdot 100 = 102.74$$

$$L_{q_0}^{\ 2} = \frac{4 \cdot 4 + 1 \cdot 10 + 2 \cdot 15}{2 \cdot 4 + 2 \cdot 10 + 3 \cdot 15} \cdot 100 = \frac{56}{73} \cdot 100 = 76.71$$

$$P_{q_0}^{\ 1} =$$

$$P_{q_0}^{\ 1} = \frac{5 \cdot 6 + 1 \cdot 11 + 3 \cdot 20}{2 \cdot 6 + 2 \cdot 11 + 3 \cdot 20} \cdot 100$$

$$P_{q_0}^{\ 1} = \frac{5 \cdot 6 + 1 \cdot 11 + 3 \cdot 20}{2 \cdot 6 + 2 \cdot 11 + 3 \cdot 20} \cdot 100 = \frac{101}{94} \cdot 100$$

$$P_{q_0}^{\ 1} = \frac{5 \cdot 6 + 1 \cdot 11 + 3 \cdot 20}{2 \cdot 6 + 2 \cdot 11 + 3 \cdot 20} \cdot 100 = \frac{101}{94} \cdot 100 = 107.45$$

$$P_{q_0}^{\ 1} = \frac{5 \cdot 6 + 1 \cdot 11 + 3 \cdot 20}{2 \cdot 6 + 2 \cdot 11 + 3 \cdot 20} \cdot 100 = \frac{101}{94} \cdot 100 = 107.45$$

$$P_{q_0}^2 = \frac{4 \cdot 5 + 1 \cdot 12 + 2 \cdot 25}{2 \cdot 5 + 2 \cdot 12 + 3 \cdot 25} \cdot 100 = \frac{82}{109} \cdot 100 = 75.23$$

$$P_{q_0}^{\ 1} = \frac{5 \cdot 6 + 1 \cdot 11 + 3 \cdot 20}{2 \cdot 6 + 2 \cdot 11 + 3 \cdot 20} \cdot 100 = \frac{101}{94} \cdot 100 = 107.45$$

$$P_{q_0}^{\ 2} = \frac{4 \cdot 5 + 1 \cdot 12 + 2 \cdot 25}{2 \cdot 5 + 2 \cdot 12 + 3 \cdot 25} \cdot 100 = \frac{82}{109} \cdot 100 = 75.23$$

$$L_{p_0}^{-1} = \frac{6 \cdot 2 + 11 \cdot 2 + 20 \cdot 3}{4 \cdot 2 + 10 \cdot 2 + 15 \cdot 3} \cdot 100 = \frac{94}{73} \cdot 100 = 128.77$$

$$P_{q_0}^{\ 1} = \frac{5 \cdot 6 + 1 \cdot 11 + 3 \cdot 20}{2 \cdot 6 + 2 \cdot 11 + 3 \cdot 20} \cdot 100 = \frac{101}{94} \cdot 100 = 107.45$$

$$P_{q_0}^{\ 2} = \frac{4 \cdot 5 + 1 \cdot 12 + 2 \cdot 25}{2 \cdot 5 + 2 \cdot 12 + 3 \cdot 25} \cdot 100 = \frac{82}{109} \cdot 100 = 75.23$$

$$L_{p_0}^{-1} = \frac{6 \cdot 2 + 11 \cdot 2 + 20 \cdot 3}{4 \cdot 2 + 10 \cdot 2 + 15 \cdot 3} \cdot 100 = \frac{94}{73} \cdot 100 = 128.77$$

$$L_{p_0}^2 = \frac{5 \cdot 2 + 12 \cdot 2 + 25 \cdot 3}{4 \cdot 2 + 10 \cdot 2 + 15 \cdot 3} \cdot 100 = \frac{109}{73} \cdot 100 = 149.32$$

$$F_p = \sqrt{L_p \cdot P_p} \ \mathbf{y} \ F_q = \sqrt{L_q \cdot P_q}$$

$$F_p = \sqrt{L_p \cdot P_p} \ {\bf y} \ F_q = \sqrt{L_q \cdot P_q}$$
 Asi entonces:

$$F_{p_0}^{\ 1} = \sqrt{L_{p_0}^{\ 1} \cdot P_{p_0}^{\ 1}} = \sqrt{128.77 \cdot 134.67} = 131.69$$

$$F_p = \sqrt{L_p \cdot P_p} \ {\bf y} \ F_q = \sqrt{L_q \cdot P_q}$$
 Asi entonces:

$$F_{p_0}^{\ 1} = \sqrt{L_{p_0}^{\ 1} \cdot P_{p_0}^{\ 1}} = \sqrt{128.77 \cdot 134.67} = 131.69$$

$$F_{p_0}^2 = \sqrt{L_{p_0}^2 \cdot P_{p_0}^2} = \sqrt{149.32 \cdot 146.43} = 147.87$$

$$F_p = \sqrt{L_p \cdot P_p}$$
 y $F_q = \sqrt{L_q \cdot P_q}$ Asi entonces:

$$F_{p_0}^{\ 1} = \sqrt{L_{p_0}^{\ 1} \cdot P_{p_0}^{\ 1}} = \sqrt{128.77 \cdot 134.67} = 131.69$$

$$F_{p_0}^2 = \sqrt{L_{p_0}^2 \cdot P_{p_0}^2} = \sqrt{149.32 \cdot 146.43} = 147.87$$

$$F_{q_0}^{\ 1} = \sqrt{L_{q_0}^{\ 1} \cdot P_{q_0}^{\ 1}} = \sqrt{102.74 \cdot 107.45} = 105.07$$

$$F_p = \sqrt{L_p \cdot P_p}$$
 y $F_q = \sqrt{L_q \cdot P_q}$ Asi entonces:

$$F_{p_0}^{\ 1} = \sqrt{L_{p_0}^{\ 1} \cdot P_{p_0}^{\ 1}} = \sqrt{128.77 \cdot 134.67} = 131.69$$

$$F_{p_0}^2 = \sqrt{L_{p_0}^2 \cdot P_{p_0}^2} = \sqrt{149.32 \cdot 146.43} = 147.87$$

$$F_{q_0}^{\ 1} = \sqrt{L_{q_0}^{\ 1} \cdot P_{q_0}^{\ 1}} = \sqrt{102.74 \cdot 107.45} = 105.07$$

$$F_{q_0}^{\ 2} = \sqrt{L_{q_0}^{\ 2} \cdot P_{q_0}^{\ 2}} = \sqrt{76.71 \cdot 75.23} = 75.97$$

