ខាតិភា

ទ េ	្សិននី មាតិកា	ĩ	
656	្សិននី ១ ឌ្រីស្តីស៊ីសេនិចនៃឧស្ម័ន	្តី <mark>ខេនិចនៃឧស្ទ័ន</mark>	
9	ទ្រឹស្តិ៍ស៊ីនេទិចនៃខ្វស្ទ័ន	9	
ŋ	សម្ពាធក្នុងទ្រឹស្តីស៊ីនេទិចនៃខ្វស្ម័ន:	9	
៣	ចាមពលស៊ី្បនេទិច និងស័តុណ្ហតាព	ſſ	
	ក សមិការតាពនៃខ្នស់ន៍បុរីសុទ្ទ:	ſ	
	ខ សមិការបម្រែបម្រូលតាពនៃខ្មុស្ម័នបរិសុទ្ធ:	ſſ	
	គ ថាមពលស៊ីនេទឹច និងសិតុណ្ណូតាព:	ſŗ	
	ឃ ល្បឿនឬសការេនៃការេល្បឿនមធ្យម:	n	
یا	ចំហាត់	d	
656	្រុំខន្ទ ២ ទាំងខ្លួនិតខ្លេនិទ្ធនយន្ទន	ព	

មេរៀសនី ១ ន្រឹស្តីស៊ីសេនិចសៃឧស្ទ័ស

១ ន្រឹស្តីស៊ីខេនិចនៃឧស្ទ័ន

និយមន័យ

្រឹស្តីស៊ីនេទិចនៃឧស្ម័នៈ ជាការសិក្សាអំពីចលនារបស់ម៉ូលេគុលឧស្ម័ន N ម៉ូលេគុលដែលស្ថិតក្នុងធុងរាងគូបមួយ។

- ម៉ូលេគុលឧស្ម័នទាំងអស់ធ្វើចលនាឥតឈប់ឈរ និងគ្មានសណ្ដាប់ធ្នាប់។
- គ្រប់ការទង្គិចរបស់ម៉ូលេគុលជាទង្គិចខ្ទាត។
- គេសន្មតថាម៉ូលេគុលនីមួយៗមានល្បឿនថេរជានិច្ច និងអាចអនុវត្តច្បាប់ញ៉ូតុនបានគ្រប់ពេល។
- គេចាត់ទុកម៉ូលេគុលឧស្ម័នជាចំណុចរូបធាតុ ព្រោះវិមាត្ររបស់ម៉ូលេគុលនីមួយៗតូចធៀបនឹងលំហអន្តរម៉ូលេគុល។
- ថាមពលស្តីនេទិចមធ្យមនៃម៉ូលេគូលសមាមាត្រនឹងសីត្តណ្ហភាព។

ត្រា សស៊ីនដំខែវិស្តីស្តីខេង្ខត្ននេះ

យើងសិក្សាចលនាម៉ូលេគុលក្នុងធុងមួយ។ យើងបានសម្ពាធដែលសង្គត់លើផ្ទៃធុងគឺជាកម្លាំងទង្គិចរបស់ចលនាម៉ូលេគុល

ឃើងបាន :
$$P = \frac{F}{A}$$
 ដោយ: $F = m \frac{\Delta v_x}{\Delta t} = \frac{m \times 2v_x}{\frac{2L}{v_x}} = \frac{mv_x^2}{L}$

យើងបាន :
$$P = \frac{mv_x^2}{AL} = \frac{mv_x^2}{V}$$

តែ :
$$(v^2)_{av} = (v_x^2)_{av} + (v_y^2)_{av} + (v_z^2)_{av} = 3(v_x^2)_{av}$$

ដែល
$$(v = v_x = v_y = v_z = \mathfrak{til})$$

នាំឲ្យ :
$$(v_x^2)_{av} = \frac{1}{3} (v^2)_{av}$$

យើងបានសម្ពាធលើផ្ទៃខាងនីមួយៗ កំណត់ដោយៈ $P=rac{1}{3} imesrac{m}{V}\left(v^{2}
ight)_{av}$ ឬ $P=rac{1}{3}
ho\left(v^{2}
ight)_{av}$

ដែល :
$$\rho = \frac{m}{V} \left($$
ម៉ាសមាឧ $\right)$

ម្យ៉ាងទៀត :
$$m=m_0N$$

យើងបាន :
$$P = \frac{1}{3} \times \frac{Nm_0}{V} (v^2)_{av} = \frac{2N}{3V} \times \frac{1}{2} m_0 (v^2)_{av}$$

ដូចនេះ :
$$P = \frac{2}{3} \times \frac{N}{V} K_{av}$$

៣ ខានលេស្ខខែនួន ទូទស្ពង់ឃឹង១ប

ក សនីភារភាពខែឧស្ម័នមរិសុន្ទ:

តាមពិសោធន៍បង្ហាញថា:

ullet សម្ពាធសមាមាត្រនឹងសីតុណ្ហភាព : $P \sim T$

ullet សម្ពាធសមាមាត្រនឹងចំនួនម៉ូលេគុល : $P \sim N$

ullet សម្ពាធច្រាសសមាមាត្រនឹងមាឌ $P\simrac{1}{V}$

យើងបាន : $P \sim \frac{NT}{V}$ ឬ $P = k_B \frac{NT}{V}$ នោះ $PV = Nk_BT$

ដែល : $k_B = 1.38 \times 10^{-23} J/K \left($ ថេរបុលស្មាន់ $\right)$

តែ : $N = nN_A$ នោះ $PV = nk_BN_AT$

តាង : $R=k_BN_A$ ដែល $N_A=6.02 imes 10^{23}$ ម៉ូលេគុល $/mol\left($ ចំនួនអាវ៉ូកាជ្រូight)

ដូចនេះ : $PV = k_B NT = nRT$

ខ សនីភារមម្រែមម្រួលភាពខែឧស្ម័នមរិសុន្ទ:

បើឧស្ម័នប្រែប្រួលភាព ពីភាពដើម 1 ទៅភាពស្រេច 2 យើងបានៈ

• នៅភាពដើម $1: P_1V_1 = nRT_1$ ឬ $\frac{P_1V_1}{T_1} = nR$ • នៅភាពស្រេច $2: P_2V_2 = nRT_2$ ឬ $\frac{P_2V_2}{T_2} = nR$

យើងបាន : $\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}=nR=$ បេរ

ច្បាប់ប៊យ-ម៉ារ្យ៉ូត : $P_1V_1=P_2V_2$ (សីតុណ្ហភាពថេរ $T_1=T_2$)

ច្បាប់សាល : $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ (មាឌថេរ $V_1 = V_2$)

ច្បាប់កេលុយសាក់ : $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

គ ថាមពលស៊ីលេនិច និចសីតុណ្ណភាព:

9. តន្លៃថាមពលស៊ីលេនិចមធ្យមនៃម៉ូលេគុលឧស្ម័ន:

តាមសម្រាយបញ្ជាក់ខាងលើ : $P = \frac{2}{3} \times \frac{N}{V} K_{av}$

យើងបាន: $PV = \frac{2}{3}NK_{av}$

នាំឲ្យ : $K_{av} = \frac{3}{2} \times \frac{PV}{N} = \frac{3}{2} k_B T$

$$\mathfrak{im}$$
: $\frac{PV}{N} = k_B T$

ដូចនេះ តម្លៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលឧស្ម័នគឺ: : $K_{av} = \frac{3}{2}k_BT = \frac{3}{2}\left(\frac{PV}{N}\right)$

២. អម្លៃថាមពលស៊ីនេនិចសម្រនៃម៉ូលេឝុលឧស្ម័ន:

យើងមាន :
$$K_{av} = \frac{3}{2}k_BT$$

នាំឲ្យ :
$$K = N \times K_{av} = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$$

ដូចនេះ តម្លៃថាមពលស៊ីនេទិចសរុបនៃម៉ូលេគុលឧស្ម័នគឺ: : $K = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$

ឃ ល្បឿនថ្មសភាអេីនភាអេល្បឿនមធ្យម:

យើងមាន :
$$K_{av} = \frac{3}{2}k_BT = \frac{1}{2}m_0\left(v^2\right)_{av}$$

នាំឲ្យ :
$$\sqrt{(v^2)_{av}} = \sqrt{\frac{3k_BT}{m_0}}$$

តាង :
$$v_{rms} = \sqrt{(v^2)_{av}} = \sqrt{\frac{3k_BT}{m_0}} = \sqrt{\frac{3RT}{M}}$$

ដូចនេះ ល្បឿនឫសការេនៃការេល្បឿនមធ្យមគឺ: : $v_{rms} = \sqrt{\frac{3k_BT}{m_0}} = \sqrt{\frac{3RT}{M}}$

សម្គាល់

- **១**. ល្បឿនមធ្យម: $v_{av} = \frac{v_1 + v_2 + v_3 + \dots + v_N}{N}$ ដែល v_{av} គិតជា m/s $(v_{av})^2 = (\overline{v})^2 = \left(\frac{v_1 + v_2 + v_3 + \dots + v_N}{N}\right)^2 \text{ ល្បឿនមធ្យមលើកជាការ គិតជា } m/s$ $(v^2)_{av} = v_{rms}^2 = \frac{v_1^2 + v_2^2 + v_3^2 + \dots + v_N^2}{N} \text{ តម្លៃមធ្យមនៃការេល្បឿន គិតជា } m/s$
- **២**. ល្បឿនឫសការេនៃការេល្បឿនមធ្យម: $v_{rms} = \sqrt{(v^2)_{av}} = \sqrt{\frac{v_1^2 + v_2^2 + v_3^2 + \dots + v_N^2}{N}}$ ដែល v_{rms} គិតជា m/s និង $v_{rms}^2 = (v^2)_{av}$
- **៣**. ម៉ាសមាឌ ឬដង់ស៊ីតេមាឌនៃឧស្ម័នៈ $\rho = \frac{m}{V} = \frac{m_0 N}{V}$ ដែល ρ គិតជា (kg/m^3) m ជាម៉ាសឧស្ម័ន គិតជា (kg) m_0 ម៉ាសមូលេគុល គិតជា (kg) V មាឌឧស្ម័ន គិតជា (m^3)
- $oldsymbol{c}$. ចំនួនម៉ូលៈ $n=rac{m}{M}=rac{N}{N_A}=rac{V}{V_{mol}}$ ដែល M ម៉ាសម៉ូលគិតជា (kg) N ចំនួនម៉ូលេគុលសរុប V_{mol} ជាមាឧឧស្ម័នក្នុងមួយម៉ូល (m^3/mol) V មាឧឧស្ម័ន (m^3)
- $rac{\mathbf{\mathcal{E}}}{m}$. ចំនួនម៉ូលេគុលសរុបនៃឧស្ម័នៈ $N=rac{m}{m_0}=nN_A=rac{m}{M}\times N_A$ ដែល n ចំនួនម៉ូល គិតជា (mol)

- **៦**. មាឌម៉ូលនៃឧស្ម័នក្នុងលក្ខខ័ណ្ឌគំរូដែលមានសម្ពាធ $P_0=1atm$ និងសីតុណ្ហភាព T=273K គឺ: $V_{mol}=22.4\times 10^{-3}m^3/mol$
- **៧**. ល្បឿននៃចលនាត្រង់ស្មើៈ(បម្លាស់ទី=ល្បឿនimes រយៈពេល) $x=v imes \Delta t$

៤ លំទាា់់

- ១. ចូរពោលទ្រឹស្តីស៊ីនេទិចនៃឧស្ម័ន។
- 😊. ចូរសរសេរសមីការភាពនៃឧស្ម័នបរិសុទ្ធ។
- **៣**. ចូរសរសេររូបមន្តថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលឧស្ម័ននីមួយៗ។
- ៤. ចូរសរសេររូបមន្តថាមពលស៊ីនេទិចសរុបនៃម៉ូលេគុលឧស្ម័ន។
- ៥. ចូរសរសេររូបមន្តល្បឿនឫសការេនៃការេល្បឿនមធ្យមម៉ូលេគុលឧស្ម័ន។
- **៦**. ប្រសិនបើអ្នកអាចប្រើពោះ និងសាច់ដុំទ្រូងដើម្បីបន្ថយមាឌរបស់ខ្លួនអ្នកបាន 20%។ តើសម្ពាធដែលអ្នកត្រូវធ្វើនេះស្មើប៉ុន្មាន?
- **៧**. ផង់នីមួយៗមានម៉ាស m_0 និងផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overline{ox} ។ គេដឹងថាក្នុងផ្ទៃ $1mm^2$ និងក្នុង 1s មានផង់ចំនួន 10^{15} ទៅទង្គិចនឹងផ្ទៃនោះ។ ចូររកសម្ពាធរបស់ផង់លើផ្ទៃប៉ះ។ គេឲ្យ $m_0=9.1\times 10^{-31}kg$ និង $v=8\times 10^7m/s$ ។ គេសន្មត ទង្គិចរវាងផង់ និងផ្ទៃប៉ះជាទង្គិចស្ងក់។
- **៤**. គេបាញ់ផង់ឲ្យផ្លាស់ទីតាមបណ្ដោយអ័ក្ស \overline{ox} ដែលកែងនឹងផ្ទៃរបស់អេក្រង់មួយ។ គេដឹងថា ផង់នីមួយៗមានម៉ាស m_0 និងល្បឿន v_0 ។ គេដឹងថាក្នុង $1.25mm^2$ ផ្ទៃរបស់អេក្រង់មានផង់ចំនួន 4×10^{14} ទៅទង្គិចរៀងរាល់វិនាទី។ គេសន្មតថា ទង្គិចនោះជាទង្គិចស្ទក់។ គណនាល្បឿនរបស់ផង់ដែលផ្លាស់ទីតាមអ័ក្ស \overline{ox} ។ បើគេដឹងថា សម្ពាធដែលកើតឡើងដោយសារការទង្គិចរបស់ផង់លើផ្ទៃអេក្រង់គឺ $P=3.64\times 10^{-3}N/m^2$ $m_0=9.1\times 10^{-31}k_S$ ។
- ៩. ផង់នីមួយមានម៉ាស m_0 នឹងផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ។ គេដឹងថាក្នុងផ្ទៃ $2mm^2$ និងក្នុងមួយ វិនាទីមានផង់ចំនួន 2×10^{15} ទៅទង្គិចនឹងផ្ទៃនោះ។ គេឲ្យ: $m_0=9.1\times 10^{-31}kg$ និង $v=5\times 10^7m/s$ ។ គេសន្មត ថា ទង្គិចរវាងផង់ និងផ្ទៃប៉ះជាទង្គិចស្ងក់។
 - 🦐. គណនាកម្លាំងសរុបដែលផង់មានអំពើលើផ្ទៃប៉ះ។ 👤 🥺 គណនាសម្ពាធសរុបរបស់ផង់លើផ្ទៃប៉ះ។
- **១០**. ប្រូតុងមួយមានម៉ាស $m_p=1.67\times 10^{-27}kg$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ក្នុងមាឌមួយមានរាងជា គូបដែលទ្រនុងនីមួយៗមានរង្វាស់ 3mm ប្រូតុងផ្លាស់ពីផ្ទៃម្ខាងទៀតក្នុង 2ns ។ គេសន្មត់ថា ទង្គិចរវាងប្រូតុង និងផ្ទៃ ខាងនៃគូបជាទង្គិចស្ងក់។
 - 🤧 រកល្បឿនដើមប្រូតុង នៅខណៈវាចាប់ផ្តើមចេញពីផ្ទៃខាងនៃគូប។
 - <mark>ខ</mark>. រកសម្ពាធរបស់ប្រូតុងលើផ្ទៃខាងនៃគូប។
 - ≍. គេដឹងថាក្នុងរយៈពេល 2ns មានចំនួនប្រូតុង 2×10^6 ទៅទង្គិចនឹងផ្ទៃខាងនៃគូប។ រកសម្ពាធសរុបរបស់ប្រូតុង លើផ្ទៃខាងនៃគូប។
- **១១**. អេឡិចត្រុងមួយមានម៉ាស $m_e = 9.1 \times 10^{-31} k_{\mathcal{S}}$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ក្នុងមាឌមួយមាន រាងជាគូបដែលទ្រនុងនីមួយៗមានរង្វាស់ 5mm ប្រុតុងផ្លាស់ពីផ្ទៃម្ខាងទៀតក្នុង 25ns។ គេសន្មត់ថា ទង្គិចរវាងប្រុតុង

និងផ្ទៃខាងនៃគូបជាទង្គិចស្ងក់។

- 🤧 រកល្បឿនដើមអេឡិចត្រុង នៅខណៈវាចាប់ផ្ដើមចេញពីផ្ទៃខាងនៃគូប។
- <mark>ខ</mark>. រកសម្ពាធរបស់អេឡិចត្រុងលើផ្ទៃខាងនៃគូប។
- 🚒. គេដឹងថាក្នុងរយៈពេល 25ns មានចំនួនអេឡិចត្រុង 2×10^{10} ទៅទង្គិចនឹងផ្ទៃខាងនៃគូប។ រកសម្ពាធសរុបរបស់អេឡិចត្រុងមានលើផ្ទៃខាងនៃគូប។
- **១២**. អេឡិចត្រុងមួយមានម៉ាស $m_e=9.1\times 10^{-31}kg$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ក្នុងមាឌមួយមាន រាងជាគូបដែលទ្រនុងនីមួយៗមានរង្វាស់ 2mm ប្រូតុងផ្លាស់ពីផ្ទៃម្ខាងទៀតក្នុង 25ns ។ គេសន្មត់ថា ទង្គិចរវាងប្រូតុង និងផ្ទៃខាងនៃគូបជាទង្គិចខ្ទាត។
 - 🥰 រកល្បឿនដើមអេឡិចត្រុង នៅខណៈវាចាប់ផ្ដើមចេញពីផ្ទៃខាងនៃគូប។
 - 🤒 រកសម្ពាធរបស់អេឡិចត្រុងលើផ្ទៃខាងនៃគូប។
 - គេដឹងថាក្នុងរយៈពេល 25ns មានចំនួនអេឡិចត្រុង 25 × 10⁶ ទៅទង្គិចនឹងផ្ទៃខាងនៃគូប។
 រកសម្ពាធសរុបរបស់អេឡិចត្រុងមានលើផ្ទៃខាងនៃគូប។
- **១៣**. អាតូមអ៊ីដ្រូសែនមួយមានម៉ាស m ផ្លាស់ទីដោយល្បឿន v=1500km/s តាមបណ្ដោយអ័ក្ស ox ក្នុងមាឌមួយមាន រាងគូបដែលទ្រនុងនីមួយមានរង្វាស់ 3mm។ អ៊ីដ្រូសែន ផ្លាស់ទីពីផ្ទៃម្ខាងទៅម្ខាងទៀត។ គេសន្មតថាសន្មត់ថា ទង្គិច រវាងអ៊ីដ្រូសែន និងផ្ទៃខាងនៃគូបជាទង្គិចខ្នាត។
 - 🤧 រករយៈពេលដែលអាតូមអ៊ីដ្រូសែនទៅប៉ះនឹងផ្ទៃម្ខាងទៀតនៃគូប។
 - $m{2}$. គេដឹងថាក្នុងរយៈពេល 2ns មានចំនួនអាតូមអ៊ីដ្រូសែន 2×10^6 ទៅទង្គិចនឹងផ្ទៃខាងនៃគូបហើយផ្ទៃខាងរងនៅ សម្ពាធសរុប $27.83 \times 10^{-2} N/m^2$ ។ រកម៉ាសអាតូមអ៊ីដ្រូសែនមួយ។
- **១៤**. ឧស្ម័នបរិសុទ្ធមួយមានមាឌ $V=100cm^3$ ស្ថិតក្រោមសម្ពាធ $2.00\times 10^5 Pa$ នៅសីតុណ្ហភាព $20^\circ C$ ។ តើឧស្ម័ននោះមានប៉ុន្មានម៉ូល ? $(R=8.31 J/mol\cdot K)$
- **១៥**. ឧស្ម័នបរិសុទ្ធមួយមាន $n=0.08\times 10^{-1}mol$ មានសម្ពាធ $P=5.00\times 10^{5}Pa$ នៅសីតុណ្ហភាព $60^{\circ}C$ ។ តើឧស្ម័ននោះមានមាឌប៉ុន្មាន?
- **១៦**. នៅសីតុណ្ហភាព 293K និងសម្ពាធ 5atm មេតាន 1kmol មានម៉ាស 16.0kg ។ គណនាម៉ាសមាឌនៃមេតានក្នុងលក្ខខណ្ឌខាងលើ។
- **១៧**. នៅក្នុងបំពង់បិទជិតដែលមានមាឌ 20mL នៅសីតុណ្ហភាពកំណត់មួយយ៉ាងទាបមានតំណក់នីត្រូសែនរាវមានម៉ាស $50m_S$ ។ គណនាសម្ពាធនីត្រូសែននៅក្នុងបំពង់នោះ កាលណាបំពង់នោះមានសីតុណ្ហភាព 300K ដោយសន្មតថានីត្រូ សែននេះជាឧស្ម័នបរិសុទ្ធ។ គេឲ្យៈ $R=8.31J/mol\cdot K$ ។
- **១៤**. ធុងមួយមានផ្ទុកអេល្យូម 2.00mol នៅសីតុណ្ហភាព $27^{\circ}C$ ។ គេសន្មតថាអេល្យូមជាឧស្ម័នបរិសុទ្ធ។
 - 🥰 គណនាតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលនីមួយៗ
 - **ខ**. គណនាថាមពលស៊ីនេទិចសរុបរបស់ម៉ូលេគុលទាំងអស់។ គេឲ្យ: $k_B = 1.38 \times 10^{-23} J/K$, $R = 8.31 J/mol \cdot K$ ។
- **១៩**. នៅក្នុងធុងមួយដែលមានមាឌ 2.00mL មានឧស្ម័នដែលមានម៉ាស 50mg និងសម្ពាធ 100kPa។ ម៉ាសរបស់មូលេគុលនៃឧស្ម័ននីមួយៗគឺ $8.0\times 10^{-26}kg$ ។
 - 🤧 រកចំនួនម៉ូលេគុលនៃឧស្ម័ននោះ។

- **១**. រកតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលនីមួយៗ។ គេឲ្យ: $k=1.38\times 10^{-23}J/K$
- **២០**. ចូរគណនាប្ញសការេនៃការេល្បឿនមធ្យមរបស់អាតូមអេល្យូមនៅសីតុណ្ហភាព $20.0^{\circ}C$ ។ ម៉ាសម៉ូលអេល្យូមគឺ $4.00\times 10^{-3}kg/mol$ ។ គេឲ្យ: $R=8.31J/mol\cdot K$ ។
- **២១**. រកប្ញសការេនៃការេល្បឿនមធ្យមរបស់ម៉ូលេគុលអុកស៊ីសែននៅសីតុណ្ហភាព $200^{\circ}C$ ។ ម៉ាសម៉ូលអុកស៊ីសែន $32\times 10^{-3}kg/mol$ និង $R=8.31J/mol\cdot K$ ។
- ២២. គណនាម៉ាសម៉ូលេគុលនៃអ៊ីដ្រូសែន។ គេឲ្យម៉ាសម៉ូលគឺ $M=2.00\times 10^{-3} kg/mol$ និងចំនួនអាវ៉ូកាដ្រូ $N_A=6.02\times 10^{23}/mol$ ។
 - គណនាតម្លៃប្ញសការេនៃការេល្បឿនមធ្យមរបស់ឧស្ម័នអ៊ីដ្រូសែននៅសីតុណ្ហភាព 100°C។
 - គ. គណនាតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលនៃឧស្ម័នអ៊ីដ្រូសែននីមួយៗនៅសីតុណ្ហភាព $100^{\circ}C$ ។ គេឲ្យ: $k=1.38\times 10^{-23}$ ។
- **២៣**. ដោយប្រើតម្លៃលេខ 1,3,7 និង 8 ចូរបង្ហាញថា ឬសការេនៃការេល្បឿនមធ្យម v_{rms} ខុសគ្នាពីតម្លៃមធ្យម v_{av} របស់វា។
- $oxtless{oxtless}$ ៤. ចូរកំណត់រកល្បឿន v_{rms} របស់ម៉ូលេគុលឧស្ម័នអុកស៊ីសែន (O_2) និងអាសុត (N_2) ក្នុងបន្ទប់មួយដែលមានសីតុណ្ហភាព $20^{\circ}C$ ។
- ២៥. **ទា**. បង្ហាញថាល្បឿន v_{rsm} នៃឧស្ម័នបរិសុទ្ធ អាចសរសេរជាទម្រង់មួយទៀតគឺ $v_{rms} = \sqrt{\frac{3P}{\rho}}$ ដែល ρ ជាដង់ស៊ីតេ ឬហៅថាម៉ាសមាឌ ហើយ P ជាសម្ពាធ។
 - $oldsymbol{2}$. ល្បឿន v_{rms} របស់ម៉ូលេគុលឧស្ម័នមួយប្រភេទស្មើ 450m/s។ ប្រសិនបើវាស្ថិតនៅសម្ពាធបរិយាកាស តើដងស៊ីតេរបស់ឧស្ម័ននោះស្មើប៉ុន្មាន?
- **២៦**. កែវបាឡុងមួយចំណុះ 1L មានអុកស៊ីសែនជាឧស្ម័នបវិសុទ្ធដែលមានសីតុណ្ហភាព 27°C ក្រោមសម្ពាធ 2atm។ គណនាម៉ាសអុកស៊ីសែន។ គេឲ្យ: O=16
- **២៧**. គេមានខ្យល់មានមាឌ $1m^3$ នៅសីតុណ្ហភាព $18^{\circ}C$ ក្នុងសម្ពាធបរិយាកាស $P_1=1atm$ ទៅបណ្ណែននៅសីតុណ្ហភាព ដដែល តែក្នុងសម្ពាធបរិយាកាស $P_2=3.5atm$ ។ គណនាមាឌស្រេចនៃខ្យល់។
- **២៤**. ដបមួយផ្ទុកឧស្ម័នមានសម្ពាធ $P_0=1.0atm$ នៅសីតុណ្ហភាព $17^{\circ}C$ ។ តើគេត្រូវកម្ដៅឱ្យឧស្ម័ននេះដល់សីតុណ្ហភាពប៉ុន្មាន ដើម្បីសម្ពាធកើនឡើងដល់ 1.5atm ?
- **២៩**. គេយកបំពង់អុកស៊ីសែនមានចំណុះ 20L ក្រោមសម្ពាធ $P_1=200atm$ នៅសីតុណ្ហភាព $20^{\circ}C$ ទៅដាក់ក្នុងបាឡុង កៅស៊ូស្តើងមួយ។ គណនាមាឌបាឡុង បើឧស្ម័នក្នុងបាឡុងមានសម្ពាធ $P_2=1atm$ និងសីតុណ្ហភាព $9^{\circ}C$ ។
- ${f m0}$. ${f sa}$. ចូរគណនាល្បឿនប្រសិទ្ធ (v_{rms}) នៃម៉ូលេគុលឧស្ម័ននីត្រូសែននៅសីតុណ្ហភាព $20^{\circ}C$ ។
 - $oldsymbol{2}$. គណនាសីតុណ្ហភាព ប្រសិនបើល្បឿនប្រសិទ្ធ (v_{rms}) ថយចុះពាក់កណ្ដាល។
 - $m{lpha}$. គណនាសីតុណ្ហភាព ប្រសិនបើល្បឿនប្រសិទ្ធ (v_{rms}) កើនឡើងពីរដងវិញ ។

នេះរៀងម្ចុំ នាំ នេះខ្មែន នេះខ្មន នេះខ្មែន នេះខេះខ្មែន នេះខ្មែន នេះខ្មែន នេះខ្មែន នេះខ្មែន នេះខ្មែន នេះខ្មែន នេះ