Design-Connectivity-Maher-2019

Maher Yann Alain April 2019

1 Introduction

A faire par Maher

Definitions

Let $n \in \mathbb{N}, n \geq 2$.

Let Σ be an alphabet, $|\Sigma| \geq 2$. (We are especially interested in the case $\Sigma = \{A, U, G, C\}$).

Let \mathcal{F} be the set of forbidden motifs.

Let $\mathcal{L}_{\mathcal{F},n}$ be the set of words in Σ^n that do not contain any motif in \mathcal{F} .

Let $\mathcal{L}_{\mathcal{F}}$ be the set of words in Σ^* that do not contain any motif in \mathcal{F} .

Let H(w, w') be the Hamming distance between two words w, w' in Σ^n .

Let $m(\mathcal{F}) \stackrel{\text{def}}{=} max_{fin\mathcal{F}}|f|$.

We assume that $n \geq m(\mathcal{F})$. (Otherwise some forbidden motifs would never be problematic).

Hence any forbidden motif f in \mathcal{F} of length $l < m(\mathcal{F})$ is equivalent to the set: $\bigcup_{i=0}^{n-l} \Sigma^i f \Sigma^{n-l-i}$ of forbidden motifs, all of legnth m(F).

Thus we define $\widetilde{\mathcal{F}}$ the set of forbidden motifs - all of length $m(\mathcal{F})$ - equivalent to \mathcal{F} .

General problem

Input: $n \geq 2$, \mathcal{F} a set of forbidden motifs, $\delta : \mathcal{L}_{\mathcal{F},n} \to \mathcal{L}_{\mathcal{F},n}$ a neighborhood function on $\mathcal{L}_{\mathcal{F},n}$ Question: The graph $G = (\mathcal{L}_{\mathcal{F},n}, \delta)$ is strongly connected.

2 Results

2.1 With the k-Hamming neighborhood

Definition 1. Given $k \in \mathbb{N}^*$, we define δ_k the k-Hamming neighborhood as follows:

$$\forall w \in \mathcal{L}_{\mathcal{F},n}, \delta_k(w) = \{ w' \in \mathcal{L}_{\mathcal{F}} \mid H(w, w') \le k \}.$$

With k = n, any $w \in \mathcal{L}_{\mathcal{F},n}$ can be changed into any other $w' \in \mathcal{L}_{\mathcal{F},n}$ in one step. Hence $G = (\mathcal{L}_{\mathcal{F},n}, \delta_n)$ is always strongly connected. Thus with the k-Hamming neighborhood a variant of the general problem can be considered:

General problem with the k-Hamming neighborhood

Input: $n \geq 2$, \mathcal{F} a set of forbidden motifs

Question: the minimal $k \in \mathbb{N}^*$ such that the graph $G = (\mathcal{L}_{\mathcal{F},n}, \delta_k)$ is strongly connected.

2.1.1 One motif

Consider the case where \mathcal{F} contains a single motif: $\mathcal{F} = \{f\}$. Then k = 1 is sufficient to guarantee strong connectivity.

Result 2. $\forall f \in \Sigma^+, G = (\mathcal{L}_{\{f\}}, \delta_1)$ is strongly connected.

Proof. Let w and w' be two words in $\mathcal{L}_{\{f\}}$ (of length n).

As $f \neq \epsilon$, f can be written letter by letter as follows: $f = f_1...f_{|f|}$.

Since $|\Sigma| \geq 2$, let $a \in \Sigma$ such that $a \neq f_1$.

We show that there is a path from w to a^n .

To do so, from left to right we replace each letter in w by a (or keep it the same if already an a).

Formally, from $w = w_1...w_n$ we define the sequence $(u_i)_{0 \le i \le n}$ of intermediate words:

$$\forall 0 \le i \le n, u_i = a^i w_{i+1} \dots w_n.$$

Then:

- $\forall 0 \le i \le n-1, H(u_i, u_{i+1}) \le 1$,
- for every i in [1..n] we must prove that u_i is in $\mathcal{L}_{\{f\}}$. By contradiction, suppose that f appears in a u_i . Let j be the position in u_i of the leftmost letter of this occurrence of f.
 - if $j \leq i$: then the leftmost letter of f would be a, which is not by definition of a.
 - if j > i: then this occurrence of f would be a factor of w, which it cannot be since $w \in \mathcal{L}_{\{f\}}$.

Contradiction. Hence every u_i is in $\mathcal{L}_{\{f\}}$.

This proves that there is a path from w to a^n with δ_1 as the neighborhood function.

The same can be done to obtain a path from w' to a^n .

Finally, since δ_1 is symmetric this gives a path from w to w' and vice-versa.

In addition to show that $G = (\mathcal{L}_{\{f\}}, \delta_1)$ is strongly connected, this proof gives us 2n as an upper bound to the diameter of G.

We could have tried to prove Result 1 by induction on H(w, w') instead. But it is unclear to what extent such an induction would be feasible (at least for now). Consider the following example with $\Sigma = \{A, U\}$:

$$\mathcal{F} = \{AUA\}, u = AAAA, v = AUUA.$$

There is no way to replace one non-extremal A of u with U without getting an occurrence of AUA. Hence there is no path from u to v in G with decreasing Hamming distance, even though u and v are connected according to Result 1. The same idea gives counter-examples of arbitrary Hamming distance:

$$\forall i \in \mathbb{N}^*, i \geq 2$$
, with: $\mathcal{F} = \{AUA\}, u_i = A^{i+2}, v_i = AU^iA$,
then: $H(u_i, v_i) = i$.

These examples heavily rely on the fact that $|\Sigma| = 2$. There might be a way to get around this issue when $|\Sigma| \geq 3$ and find paths with non-increasing Hamming distance, but this would have to be looked at.

Yann: Another possible direction is to choose another candidate for an intermediate word, *i.e.* instead of showing connectivity as

$$w \leftrightarrow A^n \leftrightarrow w'$$
.

find u(w, w'), depending on w and w' such that

$$w \leftrightarrow u(w, w') \leftrightarrow w'$$

2.1.2 Two or more motifs

The idea from the proof of Result 1 could be used again to treat the cases when there is an available letter to do the same trick.

Result 3. Let F be the set of forbidden motifs.

- If there exists $a \in \Sigma$ such that: $\forall f \in \mathcal{F}, f[1] \neq a$,, then $G = (\mathcal{L}_{\mathcal{F},n}, \delta_1)$ is strongly connected.
- Same result if there exists $a \in \Sigma$ such that: $\forall f \in \mathcal{F}, f[|f|] \neq a$.

This tells us that we need at least $|\Sigma|$ forbidden motifs to obtain a disconnected graph with δ_1 . Indeed if there are less than $|\Sigma|$ motifs, then we know that at least one letter is not the first letter of any forbidden motif.

Corollary 4. If $|\mathcal{F}| < |\Sigma|$, then $G = (\mathcal{L}_{\mathcal{F},n}, \delta_1)$ is strongly connected.

An example with $|\Sigma|$ words that gives a disconnected graph with δ_1 is the following:

with:
$$\Sigma = \{a_1, a_2, ..., a_k\}, let: \mathcal{F} = \{a_1a_2, a_2a_1, a_3, ..., a_k\}.$$

Then the only two allowed words are a_1^n and a_2^n , and there is no way to go from one word to the other.

Case
$$k = n - 1, |\Sigma| = 2$$

Result 5. If k = n - 1 and $|\Sigma| = 2$, if u and v are disconnected in $G = (\mathcal{L}_{\mathcal{F},n}, \delta_{n-1})$, then:

- u is the opposite word of v in Σ^n ,
- $\bullet \ \mathcal{L}_{\mathcal{F},n} = \{u,v\}.$

Proof.

- With $|\Sigma| = 2$ the only word in Σ^n at Hamming distance greater than n-1 from u is its opposite word
- By contradiction: if any other word w were in $\mathcal{L}_{\mathcal{F},n}$, then w would be a δ_{n-1} -neighbor of both u and v, and thus u and v would be connected.

2.2 Algorithmic aspects