Ordinary Differential Equations

Problem Set 3

Second-Order ODEs, Part II

Xin, Wenkang May 10, 2023

Minimal Set

3.1 Inhomogeneous ODEs

Given y'' - 3y' + 2y = f(x). The complementary solution has the form:

$$y_c = \alpha e^{2x} + \beta e^x \tag{1}$$

(i) Let $y_p = Ax^2 + Bx + C$, so that:

$$y_p'' - 3y_p' + 2y_p = 2A - 3(2Ax + B) + 2(Ax^2 + Bx + C) = x^2$$
(2)

This gives us A = 1 and B = C = 0. Thus, $y_p = x^2$.

(ii) Let $y_p = Ae^{4x}$, so that:

$$y_p'' - 3y_p' + 2y_p = 16Ae^{4x} - 3(4Ae^{4x}) + 2Ae^{4x} = e^{4x}$$
(3)

This gives us A = 1/6. Thus, $y_p = e^{4x}/6$.

(iii) Let $y_p = Axe^x$, so that:

$$y_p'' - 3y_p' + 2y_p = Ae^x(x+2) - 3Ae^x(x+1) + 2Axe^x = e^x$$
(4)

This gives us A = 1. Thus, $y_p = xe^x$.

(iv) Let $y_p = Ae^x + Be^{-x}$, so that:

$$y_p'' - 3y_p' + 2y_p = Ae^x + Be^{-x} - 3(Ae^x - Be^{-x}) + 2(Ae^x + Be^{-x}) = \frac{e^x - e^{-x}}{2}$$
 (5)

This gives us B=-1/12 and A can be incorporated into the complementary solution. Thus, $y_p=-e^{-x}/12$.

Let $y_p = Axe^x + Be^{-x}$, so that:

$$y_p'' - 3y_p' + 2y_p = Ae^x(x+2) + Be^{-x} - 3[Ae^x(x+1) - Be^{-x}] + 2(Axe^x + Be^{-x}) = \frac{e^x - e^{-x}}{2}$$
 (6)

This gives us B = -1/12 and A is free. Thus, $y_p = Axe^x - e^{-x}/12$.

(v) Let $y_p = A \sin x + B \cos x$, so that:

$$y_p'' - 3y_p' + 2y_p = -A\sin x - B\cos x - 3(A\cos x - B\sin x) + 2(A\sin x + B\cos x) = \sin x$$
 (7)

This gives us A = 1/10 and B = 3/10. Thus, $y_p = \sin x/10 + 3\cos x/10$.

(vi) Let $y_p = Ax \sin x + Bx \cos x + C \sin x + D \cos x$, so that:

$$y_p'' - 3y_p' + 2y_p$$

$$= -(Ax + 2B)\sin x + (2A - Bx)\cos x - 3[(A - Bx)\sin x + (Ax + B)\cos x] + 2(Ax\sin x + Bx\cos x)$$

$$= x\sin x$$
(8)

(vii) Let $y_p = Axe^{2x} + B\cos^2 x + C\sin^2 x$, so that:

$$y_p'' - 3y_p' + 2y_p = Ae^{2x} + 2B\cos^2 x + 2C\sin^2 x - 2(B - C)(\cos^2 x - \sin^2 x) + 6(B - C)\sin x \cos x$$
 (9)

3.2 Inhomogeneous ODEs

(i) The complementary solution is:

$$y_c = e^{-x/5} \left[\alpha \cos \left(\frac{2x}{5} \right) + \beta \sin \left(\frac{2x}{5} \right) \right]$$
 (10)

where $\alpha = -1$ and $\beta = -2$

Let $y_p = Ax + B$, so that:

$$5y_p'' + 2y_p' + y_p = 5A + 2A + Ax + B = x \tag{11}$$

This gives us A = 2 and B = -1. Thus:

$$y(x) = -e^{-x/5} \left[\cos \left(\frac{2x}{5} \right) + 2\sin \left(\frac{2x}{5} \right) \right] + 2x - 1 \tag{12}$$

(ii) The complementary solution is:

$$y_c = \alpha e^{2x} + \beta e^{-x} \tag{13}$$

Let $y_p = Axe^{2x}$, so that:

$$y_p'' - y_p' - 2y_p = Ae^{2x}(4x + 4 - 2x - 2x - 1) = e^{2x}$$
(14)

This gives us A = 1/3. Thus:

$$y(x) = \alpha e^{2x} + \beta e^{-x} + \frac{1}{3} x e^{2x}$$
 (15)

(iii) The complementary solution is:

$$y_c = e^{x/2}(\alpha x + \beta) \tag{16}$$

where $\alpha = 1$ and $\beta = 0$.

Let $y_p = Ax^2e^{x/2}$, so that:

$$4y_p'' - 4y_p' + y_p = Ae^{x/2}(x^2 + x^2 + 8x + 8 - 2x^2 - 8x) = 8e^{x/2}$$
(17)

This gives us A = 1. Thus:

$$y(x) = xe^{x/2} + x^2e^{x/2} (18)$$

(iv) The complementary solution is:

$$y_c = \alpha e^{-x} + \beta e^{-2x} \tag{19}$$

Let $y_p = Axe^{-x}$, so that:

$$y_p'' + 3y_p' + 2y_p = Ae^{-x}(x - 2 - 3x + 3 + 2x) = xe^{-x}$$
(20)

This gives us A = 1. Thus:

$$y(x) = \alpha e^{-x} + \beta e^{-2x} + x e^{-x}$$
 (21)

Let $y_p = Axe^{-x} + Bx^2e^{-x}$, so that:

$$y_p'' + 3y_p' + 2y_p = Ae^{-x} + Be^{-x}(2x+2) = xe^{-x}$$
(22)

This gives us A = -1 and B = 1/2. Thus:

$$y(x) = \alpha e^{-x} + \beta e^{-2x} - xe^{-x} + \frac{1}{2}x^2 e^{-x}$$
 (23)

(v) The complementary solution is:

$$y_c = \alpha e^x + \beta e^{3x} \tag{24}$$

Let $y_p = A\cos x + B\sin x$, so that:

$$y_p'' - 4y_p' + 3y_p = 2(A - 2B)\cos x + 2(2A + B)\sin x = 10\cos x$$
 (25)

This gives us A = 1 and B = -2. Thus:

$$y(x) = \alpha e^x + \beta e^{3x} + \cos x - 2\sin x \tag{26}$$

(vi) The complementary solution is:

$$y_c = \alpha \sin 2x + \beta \cos 2x \tag{27}$$

Let $y_p = Ax^2 + Bx + C + Dx \cos(2x + \phi)$, so that:

$$y_p'' + 4y_p = 2A + Ax^2 + Bx + C + 4Dx\cos(2x + \phi) - 4D[2\sin(2x + \phi) + x\cos(2x + \phi)]$$
 (28)

This gives us $A=0,\,B=1,\,C=0,\,D=-1/4,$ and $\phi=-\pi/2.$ Thus:

$$y(x) = \alpha \sin 2x + \beta \cos 2x + x - \frac{1}{4}x \sin 2x \tag{29}$$

The initial conditions yields $\beta = 0$. Therefore:

$$y(x) = \alpha \sin 2x + x - \frac{1}{8}x \sin 2x \tag{30}$$

(vii) The complementary solution is:

$$y_c = e^x(\alpha \cos x + \beta \sin x) \tag{31}$$

Let $y_p = Axe^x \cos(x + \phi) + Be^x$, so that:

$$y_p'' - 2y_p' + 2y_p = Be^x + 2Ae^x[-\sin(x+\phi)]$$
(32)

This gives us A = -1/2, B = 1, and $\phi = 0$. Thus, with the initial conditions:

$$y(x) = -e^{x}(\cos x + \sin x) - \frac{1}{2}xe^{x}\cos x + e^{x}$$
(33)

(viii) The complementary solution is:

$$y_c = e^{-x}(\alpha x + \beta) \tag{34}$$

Let $y_p = Ax^3 + Bx^2 + Cx + D + Ex^2e^{-x} + F\sin(x + \phi)$, so that:

$$y_p'' + 2y_p' + y_p = Ax^3 + (6A + B)x^2 + (6A + 4B + C)x + (2B + 2C + D) + 2Ee^{-x} + 2F\cos(x + \phi)$$
 (35)

This gives us $A=1, B=C=D=0, E=1, F=1, \text{ and } \phi=0.$ Thus:

$$y(x) = e^{-x}(\alpha x + \beta) + x^3 + x^2 e^{-x} + \sin x \tag{36}$$

(ix) The complementary solution is:

$$y_c = e^x(\alpha x + \beta) \tag{37}$$

Let $y_p = Ax^2e^x$, so that:

$$y_p'' - 2y_p' + y_p = 2Ae^x = 3e^x (38)$$

This gives us A = 3/2. Thus:

$$y(x) = e^x(\alpha x + \beta) + \frac{3}{2}x^2e^x$$
 (39)

The initial conditions yields $\alpha = -\beta = -3$. Therefore:

$$y(x) = e^x \left(\frac{3}{2}x^2 - 3x + 3\right) \tag{40}$$

(x) By inspection, $y_p(x) = x/2$ is a particular solution to the equation. For the homogeneous equation, the substitution $z = y'_c/y_c$ gives us a Riccati equation:

$$z' + z^2 + \frac{1}{x}z + \frac{1}{x^2} = 0 (41)$$

Consider the substitution g(x) = xz. The equation becomes:

$$\frac{g'}{x} + \frac{1}{x^2}g^2 + \frac{1}{x^2} = 0 (42)$$

which is a separable equation with the solution:

$$g = xz = -\tan\left[\ln\left(C\left|x\right|\right)\right] \tag{43}$$

This again is a separable equation for y_c :

$$\frac{\mathrm{d}y_c}{y_c} = -\frac{\tan\left[\ln\left(C\left|x\right|\right)\right]}{x}\mathrm{d}x\tag{44}$$

Making use of the substitution u = 1/x, the solution for y_c is:

$$y_c(x) = D \sec \left[\ln \left(C \left| x \right|\right)\right] \tag{45}$$

The full solution is therefore:

$$y(x) = D \operatorname{sec} \left[\ln \left(C |x| \right) \right] + \frac{x}{2} \tag{46}$$

3.3

Given that $\ddot{\theta} + \omega_0^2 \theta = \cos \omega t$, the complementary solutions has the form:

$$\theta_c(t) = A\cos\omega_0 t + B\sin\omega_0 t \tag{47}$$

Let the particular solution take the form $\theta_p(t) = C \cos \omega t + D \sin \omega t$. Substitution gives:

$$-\omega^2(C\cos\omega t + D\sin\omega t) + \omega_0^2(C\cos\omega t + D\sin\omega t) = \cos\omega t \tag{48}$$

so that $C = 1/(\omega_0^2 - \omega^2)$, D = 0 and $\theta_p(t) = \cos \omega t/(\omega_0^2 - \omega^2)$.

We have:

$$\theta(t) = A\cos\omega_0 t + B\sin\omega_0 t + \frac{1}{\omega_0^2 - \omega^2}\cos\omega t$$

$$\dot{\theta}(t) = -A\omega_0\sin\omega_0 t + B\omega_0\cos\omega_0 t - \frac{\omega}{\omega_0^2 - \omega^2}\sin\omega t$$
(49)

Substituting the initial conditions $\theta(0) = 0$ and $\dot{\theta}(0) = 0$ gives $A = -1/(\omega_0^2 - \omega^2)$ and B = 0. Thus:

$$\theta(t) = \frac{\cos \omega t - \cos \omega_0 t}{\omega_0^2 - \omega^2} \tag{50}$$

(a) The rms value of $\theta(t)$ is given by:

$$\langle \theta^2 \rangle^{1/2} = \sqrt{\frac{1}{T}} \int_0^T \left(\frac{\cos \omega t - \cos \omega_0 t}{\omega_0^2 - \omega^2} \right)^2 dt$$

$$= \frac{1}{\sqrt{T} |\omega_0^2 - \omega^2|} \sqrt{\int_0^T (\cos^2 \omega t + \cos^2 \omega_0 t - 2\cos \omega t \cos \omega_0 t) dt}$$

$$= \frac{1}{|\omega_0^2 - \omega^2|}$$
(51)

(b) As the driving frequency approaches the natural frequency, the amplitude of the oscillation increases. At perfect resonance, the amplitude is infinite.

3.4 Forced and Damped Oscillator

(i) The stationary solution is the long-term behaviour of the full solution. It is given by the driving force:

$$y(t) = A\cos(\omega t + \phi)$$

$$\dot{y}(t) = -A\omega\sin(\omega t + \phi)$$

$$\ddot{y}(t) = -A\omega^2\cos(\omega t + \phi)$$
(52)

To determine A and ϕ , substitute them back to the equation:

$$-A\omega^{2}\cos(\omega t + \phi) - \gamma A\omega\sin(\omega t + \phi) + \omega_{0}^{2}A\cos(\omega t + \phi) = \frac{F}{m}\cos\omega t$$
 (53)

Problem Set 3

Solving this equation gives us:

$$A = \frac{f}{\sqrt{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}}$$

$$\phi = \tan^{-1} \left(\frac{\omega \gamma}{\omega_0^2 - \omega^2}\right)$$
(54)

where $f \equiv F/m$.

- (iii) The resonant frequency is $\omega_{\rm res} = \omega_0$.
- (iv) At resonance, $A_{\text{max}} = f/(\omega_0 \gamma)$. For $A(\omega) = f/(2\omega_0 \gamma)$, we have the equation:

$$\frac{f}{\sqrt{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}} = \frac{f}{2\omega_0 \gamma} \tag{55}$$

Solving for ω^2 yields:

$$\omega^2 = \omega_0^2 + \frac{\gamma^2}{2} \left(\sqrt{1 + \frac{12}{\chi^2}} - 1 \right) \tag{56}$$

where $\chi \equiv \gamma/\omega_0$.

Take $\Delta\omega = 2\sqrt{\omega^2}$. Further approximation with binomial expansion leads to:

$$\frac{\Delta\omega}{\omega_0} \approx \sqrt{2} \left(1 + \frac{\sqrt{12}}{2} \chi \right) \tag{57}$$

(v) Consider the long-term behaviour of the solution. The energy stored is given by:

$$E = \frac{1}{2}m\dot{y} + \frac{1}{2}m\omega_0^2 y^2 = \frac{1}{2}mA^2[\omega^2\sin^2(\omega t + \phi) + \omega_0^2\cos^2(\omega t + \phi)] \approx \frac{1}{2}mA^2\omega_0^2$$
 (58)

The power supplied to the system is given by:

$$P = \dot{y}F\cos\omega t = -FA\omega\sin(\omega t + \phi)\cos\omega t \approx -FA\omega\cos^2\omega t \tag{59}$$

But at steady state, the energy lost is all supplied by the driving force and we may use the average of P instead. Thus:

$$Q \approx 2\pi \frac{\frac{1}{2}mA^2(\omega^2 + \omega_0^2)\cos^2(\omega t + \phi)}{\langle -P \rangle \frac{2\pi}{\omega}} = \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}} \approx \frac{\omega_0}{\gamma}$$
 (60)

We have that $Q = 1/\chi$, so that the a higher quality factor leads to a shaper resonance peak.

•

3.5

(a) Given $y_1 = 1/x$, suppose that the other solution has the form $y_2(x) = \phi(x)/x$, so that substitution yields:

$$(x+1)\phi'' - (x+2)\phi' = 0 \tag{61}$$

Solving this leads to the solution $\phi(x) = xe^x$, so that the other homogeneous solution is $y_2(x) = e^x$.

Consider the particular solution $y_p = Ax + B$, substitution yields:

$$-2Ax^{2} - 2Ax - Bx + 2A - 2B = x^{2} + 2x + 1$$
(62)

Solving this yields A = -1/2 and B = -1. Therefore, the general solution is:

$$y(x) = \frac{\alpha}{x} + \beta e^x - \frac{x}{2} - 1 \tag{63}$$

(b) If y_2 is known instead of y_1 , we still employ the same variation of constant method and find y_1 . The procedure and the outcome are the same.

•