Jared Andreatta MATH 531 Homework 3 Spring 2025

About G-inverses

In linear models theory a G-Inverse is a matrix that is used to give an equation for the projection using X when X does not have full rank. From Christensen's book (4^{th} edition, page 428).

Definition B.36. A generalized inverse of any symmetric matrix A is any matrix G such that AGA = A. The notation A^- is used to indicate a generalized inverse of A.

One can always construct a G-inverse based on the singular value decomposition (see Theorem B.38.) although there are other choices. For our purposes we are interested in the generalized inverse of X^TX and has the property that $X(X^TX)^-X^T$ is a projection matrix onto the subspace spanned by the columns of X. Note that if X has full rank then the G-inverse is the usual inverse and we obtain the usual projection matrix formula. The G-inverse is useful to derive covariances formulas for estimable parameters but computation is done differently.

1. Suppose $\lambda^T \beta$ is an estimable function, i.e., λ^T is in the row space of X (or the column space of X^T). For convenience let $\mathcal{R}(A)$ denote the row vector space of A and $\mathcal{C}(A)$ denote the column space of A. Then show that

(a)
$$\mathcal{R}(X) = \mathcal{R}(X^{\mathrm{T}}X) = \mathcal{C}(X^{\mathrm{T}}X)$$
.

Proof. To show that $\mathcal{R}(X) = \mathcal{R}(X^TX)$, we first argue that $\mathcal{R}(X^TX) \subseteq \mathcal{R}(X)$. It is clear that the rows of X^TX can be written as linear combinations of X, since it is essentially a product of X with itself. This implies that vectors in the row space of X^TX is also in X. Therefore, $\mathcal{R}(X^TX) \subseteq \mathcal{R}(X)$.

Since we've shown that $\mathcal{R}(X^TX) \subseteq \mathcal{R}(X)$, we can say that $\dim \mathcal{R}(X^TX) \leq \dim \mathcal{R}(X)$. However, we know that by the rank preservation property, the matrix X has the same rank as its corresponding Gram matrix, that is, $\operatorname{rank}(X) = \operatorname{rank}(X^TX)$, which means $\dim \mathcal{R}(X^TX) = \dim \mathcal{R}(X)$. This implies that the space spanned by $\mathcal{R}(X^TX)$ must also span $\mathcal{R}(X)$. Therefore, we conclude that $\mathcal{R}(X) = \mathcal{R}(X^TX)$.

Next, we already know that the matrix X^TX is symmetric. Clearly, it would follow that the rows of X^TX would span the same space as the columns of X^TX . Therefore, we can say that $\mathcal{R}(X^TX) = \mathcal{C}(X^TX)$.

Hence, we have shown that $\mathcal{R}(X) = \mathcal{R}(X^TX) = \mathcal{C}(X^TX)$. \square

(b) $\lambda^{\mathrm{T}} \in \mathcal{R}(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})$ if and only if $\lambda^{\mathrm{T}}G\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} = \lambda^{\mathrm{T}}$, where G is any generalized inverse of $\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}$.

Proof. Assume $\lambda^T \in \mathcal{R}(X^TX)$. We know that λ^T can be expressed as a linear combination of the row vectors of the matrix X^TX , that is, there is some vector $r^T \in \mathcal{R}(X^TX)$ such that $\lambda^T = r^TX^TX$. We can right-multiply both sides of this equation by GX^TX to find

$$\lambda^T G X^T X = r^T X^T X G X^T X$$

G is a generalized inverse denoted as $(X^TX)^-$, so this simplifies to

$$\lambda^T G X^T X = r^T X^T X$$

We defined $\lambda^T = r^T X^T X$, so the expression simplifies to

$$\lambda^T G X^T X = \lambda^T$$

Hence, $\lambda^T \in \mathcal{R}(X^TX) \implies \lambda^T G X^T X = \lambda^T$ Now, assume that $\lambda^T G X^T X = \lambda^T$. If we examine the LHS of the equation, we notice that the term $\lambda^T G$ is a $1 \times n$ row vector. We call this term r^T . We can substitute back into the equation to find that $r^T X^T X = \lambda^T$. We know that $\mathcal{R}(G) = \mathcal{R}(X^T X)$ since G is just the generalized inverse of $X^T X$. Clearly, λ^T can be written as a linear combination of the row vector r^T and $X^T X$. Therefore, by definition, $\lambda^T G X^T X = \lambda^T \implies \lambda^T \in \mathcal{R}(X^T X)$. We have proved both directions of our claim. Thus, $\lambda^T \in \mathcal{R}(X^T X) \iff \lambda^T G X^T X = \lambda^T$. \square

Remark. To check whether $\lambda^{\mathrm{T}} \in \mathcal{R}(\boldsymbol{X})$ is often a tedious job in practice but from (a) and (b), we get an equivalent condition for estimability of a linear function, i.e., by checking whether $\lambda^{\mathrm{T}} G \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} = \lambda^{\mathrm{T}}$.

2. We have the Gram-Schmidt algorithm for a full rank matrix, $X = [\mathbf{x}_1, \dots, \mathbf{x}_k]$ leading the to the projection matrix ZZ^T as

```
GRAM- SCHMIDT ALGORITHM

X = [\mathbf{x}_1, \dots, \mathbf{x}_k]
\mathbf{z}_1 = \mathbf{x}_1/\|\mathbf{x}_1\|
For j from 2 to k
\{
\mathbf{w}_j = \mathbf{x}_j - \left[ (\mathbf{z}_1^T \mathbf{x}_j)\mathbf{z}_1 + \dots (\mathbf{z}_{(j-1)}^T \mathbf{x}_j)\mathbf{z}_{(j-1)} \right]
\mathbf{z}_j = \mathbf{w}_j/\|\mathbf{w}_j\|
\}
Z = [\mathbf{z}_1, \dots, \mathbf{z}_k]
```

Explain how to modify this algorithm when X is not of full rank. Is this case how many columns does Z have?

Assume X is not full rank, and the vector \mathbf{x}_i in the original set of vectors is a linearly dependent sequence. In this case, the corresponding vector $\mathbf{z}_i = 0$. To produce an orthonormal basis for X, we must modify the algorithm to check for 0-vectors in Z and remove them. Specifically, we check whether $\|\mathbf{w}_j\| = 0$. If this condition is true, normalization is impossible, so we skip this vector and proceed to \mathbf{w}_{j+1} . The number of columns in Z is equal to the number of columns in X minus the number of linearly dependent vectors in X. In other words, it equals the rank of X.

3. Consider the linear model

$$y = X\beta + \varepsilon$$
,

with $\mathbb{E}(\boldsymbol{\varepsilon}) = 0$ and $\operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 I$. X may not have full rank. Here you can use the fact that if $\lambda^T \beta$ is estimable then the OLS estimate is $\widehat{\lambda_1^T \beta} = \mathbf{p}^T M \mathbf{y}$ where \mathbf{p} is the vector associated with estimability and M is the projection matrix onto \mathcal{W}_X . Note that based on the introductory remark above you can use a G-inverse in an expression for M.

Suppose $\lambda_1^T \boldsymbol{\beta}$ and $\lambda_2^T \boldsymbol{\beta}$ are both estimable functions. Show that $Cov[\widehat{\lambda_1^T \boldsymbol{\beta}}, \widehat{\lambda_2^T \boldsymbol{\beta}}] = \sigma^2 \lambda_1^T \boldsymbol{G} \lambda_2$, where $\boldsymbol{G} = (X^T X)^-$ is any generalized inverse.

Proof. $\widehat{\lambda_1^T \beta}$ and $\widehat{\lambda_2^T \beta}$ are estimable functions, so they can be written as $c_1^T X \widehat{\beta}$ and $c_2^T X \widehat{\beta}$, respectively. We can substitute these into the covariance expression.

$$\operatorname{Cov}(\widehat{\lambda_1^T \beta}, \widehat{\lambda_2^T \beta}) = \operatorname{Cov}(c_1^T X \widehat{\beta}), c_2^T X \widehat{\beta})$$

We can extract the leading terms, c_1^T and c_2^T .

$$\operatorname{Cov}(c_1^T X \widehat{\beta}, c_2^T X \widehat{\beta}) = c_1^T \operatorname{Cov}(X \widehat{\beta}, X \widehat{\beta}) c_2 = c_1^T \operatorname{Var}(X \widehat{\beta}) c_2$$

We know $\widehat{\beta} = (X^T X)^- X^T y$. Additionally, we know that $M = X(X^T X) X^T$. Therefore, we can rewrite the expression above as

$$c_1^T \text{Var}(X\widehat{\beta})c_2 = c_1^T \text{Var}(My)c_2$$
$$= c_1^T M \text{Var}(y) M^T c_2$$
$$= \sigma^2 c_1^T M c_2$$

We expand M to find

$$\sigma^{2} c_{1}^{T} M c_{2} = \sigma^{2} (c_{1}^{T} X) (X^{T} X)^{-} (X^{T} c_{2})$$
$$= \sigma^{2} \lambda_{1}^{T} (X^{T} X)^{-} (\lambda_{2}^{T})^{T}$$
$$= \sigma^{2} \lambda_{1}^{T} G \lambda_{2}$$

Therefore, $Cov(\widehat{\lambda_1^T \beta}, \widehat{\lambda_2^T \beta}) = \sigma^2 \lambda_1^T G \lambda_2$. \square

4. If Rank(X) has full rank, p, then we know $\hat{\boldsymbol{\beta}} = (X^{T}X)^{-1}X^{T}y$ starting from the normal equations as described in the class and we also know $\mathbb{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ is an unbiased estimator. Show:

3

(a)
$$\operatorname{Cov}(\widehat{\boldsymbol{\beta}}) = \sigma^2(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}$$
.

Proof. We can expand $\text{Cov}(\hat{\beta})$ using the definition of $\hat{\beta}$ as defined above. Additionally, let $A = (X^T X)^{-1} X^T$. We have

$$Cov(\hat{\beta}) = Cov(Ay, Ay)$$
$$= ACov(y, y)A^{T}$$

We know that $Cov(y, y) = Var(y, y) = \sigma^2 I$, so the expression simply becomes

$$ACov(y, y)A^T = \sigma^2 A A^T$$

We can expand again using our definition of A.

$$\begin{split} \sigma^2 A A^T &= \sigma^2 (X^T X)^{-1} X^T [(X^T X)^{-1} X^T]^T \\ &= \sigma^2 (X^T X)^{-1} X^T X (X^T X)^{-1} \\ &= \sigma^2 (X^T X)^{-1} \end{split}$$

Hence, $Cov(\hat{\beta}) = \sigma^2(X^TX)^{-1}$. \square

(b) $\lambda^{\mathrm{T}} \boldsymbol{\beta}$ is estimable for any $\lambda^{\mathrm{T}} \in \mathbb{R}^p$.

Proof. By Corollary 2.1.10 in Christensen, we know that $\lambda^T \beta$ is estimable if and only if there exists some $c \in \mathbb{R}^p$ such that $\lambda^T \beta = \mathbb{E}[c^T Y]$ for any β . We can expand the RHS of the equation to find

$$\lambda^{T} \beta = \mathbb{E}[c^{T} Y]$$

$$= \mathbb{E}[c^{T} Y]$$

$$= c^{T} \mathbb{E}[Y]$$

$$= c^{T} X \beta \implies \lambda^{T} = c^{T} X$$

It follows that if $\lambda^T = c^T X$ for some $c^T \in \mathbb{R}^p$, then $\lambda^T \beta$ is estimable. Note that since X has full rank, then $\mathcal{R}(X) = \mathbb{R}^p$. Hence, any $\lambda^T \in \mathbb{R}^p$ can be uniquely expressed as a linear combination of the rows of X. In particular, there exists a unique c^T such that $\lambda^T \beta = c^T X$ which implies that $\lambda^T \in \mathcal{R}(X)$. $\lambda^T \beta$ is estimable for all $\lambda^T \in \mathbb{R}^p$. \square

(c) $\operatorname{Var}(\lambda^{\mathrm{T}}\widehat{\boldsymbol{\beta}}) = \sigma^2 \lambda^{\mathrm{T}} (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X})^{-1} \lambda$, for any $\lambda^{\mathrm{T}} \in \mathbb{R}^p$.

Proof. We can expand the term $Var(\lambda^T \widehat{\beta})$ using our definition of $\widehat{\beta}$.

$$\operatorname{Var}(\lambda^T \widehat{\beta}) = \operatorname{Var}(\lambda^T (X^T X)^{-1} X^T y)$$

Let $A = \lambda^T (X^T X)^{-1} X^T$. We have

$$\operatorname{Var}(\lambda^T(X^TX)^{-1}X^Ty) = \operatorname{Var}(Ay)$$

$$= A\operatorname{Var}(y)A^T$$

$$= \sigma^2 AA^T$$

$$= \sigma^2 \lambda^T (X^TX)^{-1} X^T (\lambda^T (X^TX)^{-1} X^T)^T$$

$$= \sigma^2 \lambda^T (X^TX)^{-1} (X^TX) (X^TX)^{-1} \lambda$$

$$= \sigma^2 \lambda^T (X^TX)^{-1} \lambda$$

Hence, $\operatorname{Var}(\lambda^T \widehat{\beta}) = \sigma^2 \lambda^T (X^T X)^{-1} \lambda$ for any $\lambda^T \in \mathbb{R}^p$. \square

(d)
$$\operatorname{Cov}(\boldsymbol{c}_{1}^{\operatorname{T}}\widehat{\boldsymbol{\beta}},\boldsymbol{c}_{2}^{\operatorname{T}}\widehat{\boldsymbol{\beta}}) = \sigma^{2}\boldsymbol{c}_{1}^{\operatorname{T}}(\boldsymbol{X}^{\operatorname{T}}\boldsymbol{X})^{-1}\boldsymbol{c}_{2}$$
, for any $\boldsymbol{c}_{1}^{\operatorname{T}},\boldsymbol{c}_{2}^{\operatorname{T}} \in \mathbb{R}^{p}$.

Proof. We can extract the leading terms, namely c_1^T and c_2^T , out of the covariance expression.

$$\operatorname{Cov}(c_1^T \widehat{\beta}, c_2^T \widehat{\beta}) = c_1^T \operatorname{Cov}(\widehat{\beta}, \widehat{\beta}) c_2 = c_1^T \operatorname{Var}(\widehat{\beta}) c_2$$

We again expand $\hat{\beta} = Ay$, where $A = (X^T X)^{-1} X^T$ for easier simplification.

$$c_1^T \operatorname{Var}(\widehat{\beta}) c_2 = c_1^T \operatorname{Var}(Ay) c_2$$

$$= c_1^T A \operatorname{Var}(y) A^T c_2$$

$$= \sigma^2 c_1^T A A^T c_2$$

$$= \sigma^2 c_1^T (X^T X)^{-1} (X^T X) (X^T X)^{-1} c_2$$

$$= \sigma^2 c_1^T (X^T X)^{-1} c_2$$

Hence, for any $c_1^T, c_2^T \in \mathbb{R}^p$, we have that $Cov(c_1^T \widehat{\beta}, c_2^T \widehat{\beta}) = \sigma^2 c_1^T (X^T X)^{-1} c_2$