Convex Optimization HW 1

Brandyn Tucknott

Due 17 Oct. 2025

1. Assume that C is an affine set. By definition, we know that for any $x_1, x_2 \in C$, we have

$$\theta x_1 + (1 - \theta)x_2 \in C$$
, for all $\theta \in \mathbb{R}$.

Building upon the definition, show that if $x_i \in C$ for i = 1, ..., n, then we have

$$\theta_1 x_1 + \ldots + \theta_n x_n$$

where $\sum_{i=i}^{n} \theta_i = 1$.

Proof. Given an affine set C, let $x_0 \in C$ be arbitrary, and recall that $V = C - x_0$ is a subspace. Then for all $x_i \in C$ and given $\sum_{i=1}^n \theta_i = 1$ for $i = 1, \ldots, n$. Observe that

$$\sum_{i=1}^{n} \theta_i(x_i - x_0) \in V$$

$$\sum_{i=1}^{n} \theta_i(x_i - x_0) + x_0 \in C$$

$$\sum_{i=1}^{n} \theta_i x_i - \sum_{i=1}^{n} \theta_i x_0 + x_0 \in C$$

$$\sum_{i=1}^{n} \theta_i x_i - x_0 \sum_{i=1}^{n} \theta_i + x_0 \in C$$

$$\sum_{i=1}^{n} \theta_i x_i - x_0 \cdot 1 + x_0 \in C$$

$$\sum_{i=1}^{n} \theta_i x_i \in C.$$

- 2. Answer the following questions:
 - (a) What is the distance between two parallel hyperplanes. i.e., $\{x|a^Tx=b\}$ and $\{x|a^Tx=c\}$? Proof. Observe that

$$\left\{x|a^Tx=b\right\}, \left\{x|a^Tx=c\right\} \text{ is equivalent to } \left\{x|a^Tx=|b-c|\right\} \left\{a^Tx=0\right\},$$

which geometrically gives us one hyperplane passing through the origin, and the other parallel to it. Since the shortest path from the origin to the hyperplane is a vector x_0 going directly to it (same direction as normal vector a), we can conclude that

$$a^{T}x_{0} = |b - c|$$

$$\frac{a^{T}}{\|a\|}x_{0} = \frac{|b - c|}{\|a\|}.$$
(1)

Recall that

$$(a^{T}/\|a\|) x_{0} = \left\| \frac{a^{T}}{\|a\|} \right\| \|x_{0}\| \cos \theta = 1 \cdot \|x_{0}\| \cdot 1$$
(2)

since $(a^T/\|a\|)x_0$ is a dot product. By (1) and (2) we conclude that

$$||x_0|| = \frac{|b-c|}{||a||}.$$

(b) Let a, b be distinct points in \mathbb{R}^n . Show that the set of all points that are closer to a than b, i.e., $\{x|\|x-a\|_2 \leq \|x-b\|_2\}$, is a halfspace. Describe it explicitly as an inequality of the form $c^Tx \leq d$. Draw a picture.

Proof. To show the given set is a halfspace, we only need to be able to express it in form $c^T x \leq d$, and then we will be done. We can algebraically manipulate the given equation:

$$\begin{aligned} \|x-a\|_2 &\leq \|x-b\|_2 \\ \|x-a\|_2^2 &\leq \|x-b\|_2^2 \\ x^Tx - 2x^Ta - a^Ta &\leq^T x - 2x^Tb + b^Tb \\ -2x^Ta + \|a\|_2^2 &\leq -2x^Tb + \|b\|_2^2 \\ 2(x^Tb - x^Ta) &\leq \|b\|_2^2 - \|a_2^2\| \\ x^T(b-a) &\leq \frac{\|b\|_2^2 - \|a\|_2^2}{2} \\ (b-a)^Tx &\leq \frac{\|b\|_2^2 - \|a\|_2^2}{2}. \end{aligned}$$

Since we have shown the given constraint is equivalent to the definition of a halfspace, we are done. \Box

- 3. Which of the following sets are convex?
 - (a) A slab $\{x \in \mathbb{R}^n | \alpha \le a^T x \le \beta\}$.

Proof. Since $S = \{x \in \mathbb{R}^n | \alpha \le a^T x \le \beta\}$ is the intersection of two halfspaces (which are convex), we know that S is convex.

(b) A rectangle $\{x \in \mathbb{R}^n | \alpha_i \le x_i \le \beta_i, i = 1, \dots, n\}.$

Proof. For $S = \{x \in \mathbb{R}^n | \alpha_i \le x_i \le \beta_i, i = 1, \dots, n\}$, let $y, z \in S$. Observe that

$$\alpha_i \leq y_i \leq \beta_i$$
,

$$\alpha_i < z_i < \beta_i$$
.

Then

$$\theta \alpha_i \le \theta y_i \le \theta \beta_i,$$

$$(1 - \theta)\alpha_i \le (1 - \theta)z_i \le (1 - \theta)\beta_i,$$

which we add to see that

$$\theta \alpha_i + (1 - \theta)\alpha_i \le \theta y_i + (1 - \theta)z_i \le \theta z_i + (1 - \theta)z_i$$

$$\alpha_i \le \theta y_i + (1 - \theta)z_i \le \beta_i.$$

Since the convex combination is in S, we conclude S is convex.

(c) The set of points closer to a given point than a given set:

$$\{x | \|x - x_0\|_2 \le \|x - y\|_2 \text{ for all } y \in S\}$$

where $S \subset \mathbb{R}^n$.

Proof. We can manipulate the given constraint into:

$$||x - x_0||_2 \le ||x - y||_2$$

$$||x - x_0||_2^2 \le ||x - y||_2^2$$

$$x^T x - 2x^T x_0 + x_0^T x_0 \le x^T x - 2x^T y + y^T y$$

$$2x^T (y - x_0) \le ||y||_2^2 - ||x_0||_2^2$$

$$(y - x_0)^T x \le \frac{||y||_2^2 - ||x_0||_2^2}{2}.$$

Since any individual y yields a halfspace, to consider all y we look at the intersection of the halfspaces, which we know to be convex.

(d) The set of points whose distance to a does not exceed a fixed fraction θ of the distance to b, i.e. the set $\{x| \|x-a\|_2 \le \theta \|x-b\|_2\}$. You can assume $a \ne b$ and $\theta \le 1$.

Proof.

- 4. Show the following statements.
 - (a) A polyhedron, i.e. $P = \{x | Ax \succeq b, Cx = d\}$ where $A \in \mathbb{R}^{mxn}$ and $C \in \mathbb{R}^{pxn}$ is a convex set.
 - (b) Consider an ellipsoid $\epsilon = \{x | (x x_c)^T P^{-1} (x x_c) \leq 1\}$. Assume that the eigenvalues of $P \in \mathbb{R}^{nxn}$ is $\lambda_1^2, \ldots, \lambda_n^2$ in descending order. Show that the largest and smallest distances from any point on the boundary of the ellipsoid to x_c are λ_1 and λ_n respectively.
- 5. Show the following statements.
 - (a) In machine learning, we are often given training samples in the form of (x_i, y_i) for i = 1, ..., n where $x_i \in \mathbb{R}^d$ is the feature vector and $y_i \in \mathbb{R}$ is the label of this example. The empirical risk of Euclidean distance based linear regression can be expressed as follows:

$$f(a) = \frac{1}{n} \sum_{i=1}^{n} (y_i - a^T x_i)^2$$
.

Show the function f(a) is convex in a.

(b) Suppose p < 1, $p \neq 0$. Show that the function

$$f(x) = \left(\sum_{i=1}^{n} x_i^p\right)^{1/p}$$

with dom $(f) = \mathbb{R}_{++}^n$ is concave.

- (c) Show that $f(X) = \operatorname{tr}(X^{-1})$ is convex on dom $(f) = \mathbb{S}_{++}^n$.
- 6. Show the conjugate of $f(X) = \operatorname{tr}(X^{-1})$ with $\operatorname{dom}(f) = \mathbb{S}_{++}^n$ is given by

$$f^*(Y) = -2\operatorname{tr}(-Y)^{1/2}, \operatorname{dom}(f) = -\mathbb{S}_{++}^n.$$

(Hint: for unconstrained and differentiable convex problems, \min / \max can be found by looking for where the function has zero gradient.)

7. Show that the following function is convex.

$$f(x) = x^T (A(x))^{-1} x, \text{dom}(f) = \{x | A(x) > 0\},\$$

where $A(x) = A_0 + A_1 x_1 + \ldots + A_n x_n \in \mathbb{S}^n$ and $A_i \in \mathbb{S}^n$, $i = 1, \ldots, n$. Hint: you are allowed to use a special form of Schur complement, described as follows: Suppose $A \succ 0$. then

$$\begin{pmatrix} A & b \\ b^T & c \end{pmatrix} \succ 0 \leftrightarrow c - b^T A^{-1} b \ge 0.$$

You will need to study "epigraph" from chapter 3 of the textbook to answer this question.