Introduction to stata

Moses Ngari

mngari@kemri-wellcome.org

Outline

Introduction to stata

- Stata window
- Log and do-files
- Reading, importing and exporting data
- Saving data

Data management

- Creating & renaming variables
- Labelling variables and values
- Merging & appending datasets

Outline2

Exploring data

- Tabulate and table function
- Summarize function
- "if" and bysort function
- Graphing

Descriptive statistics

- Means, variance and SD
- Median, IQR, min, max
- Tabulate
- Proportions and 95% CI
- Means and 95% Cl

Outline3

Inferential statistics

- Test of means (z-test/t-test)
- ANOVA
- Chi-square test/Fisher's exact
- Proportions comparision

Regression modelling

- Linear regression
- Logistic regression

https://stats.idre.ucla.edu/stata/modules/

STATA LEARNING MODULES

- Fundamentals of Using Stata (part I)
 - A Sample Stata Session (via Stata web site)
 - Descriptive information and statistics
 - Getting Help
- Fundamentals of Using Stata (part II)
 - Using "if" for subsetting with Stata Commands
 - Overview of statistical tests in Stata
 - Overview of Stata syntax
 - Missing Values in Stata
- Graphics
 - Introduction to graphics
 - Overview of graph twoway plots
 - <u>Twoway scatterplots</u>
 - Combining Twoway Scatterplots
 - Common Graph Options

Broad suite of statistical features

Maximum size limits	Stata/IC	Stata/SE	Stata/MP
# of observations (1)	2,147,483,619	2,147,483,619	1,099,511,627,775
# of variables	2,048	32,767	120,000
# of right hand side variables	798	10,998	65,532
# characters in a command	264,408	4,227,159	4,227,159
# of interacted continuous variables # of interacted factor variables	64 8	64 8	64 8
length of string in string expression (bytes)	2,000,000,000	2,000,000,000	2,000,000,000
# of characters in a macro (2)	264,392	4,227,143	15,480,200

New purchases

Educational single-user for developing economies

Staying on the current version of Stata is now easier than ever. Multiple year subscriptions are available at a discounted rate. See the Multiyear tab for details. Perpetual licenses are also available. Contact us for pricing.

To see your working directory, type pwd

To change the working directory to avoid typing the whole path when calling or saving files,

type: cd

Use quotes if the new directory has blank spaces, for example cd "h:\stata and data" h:\stata and data. cd "h:\stata and da

To see your working directory, type

pwd

. pwd
C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training\New folder

To change the working directory to avoid typing the whole path when calling or saving files,

type: cd

Use quotes if the new directory has blank spaces

. cd "D:\Ngari_drive D\Martha\WAST\Data"
D:\Ngari drive D\Martha\WAST\Data

Type this

. pwd

D:\Ngari_drive D\Martha\WAST\Data

Create a *log file*, sort of Stata's built-in tape recorder and where you can:

1) retrieve the output of your work and 2) keep a record of your work.

In the command line type:

```
log using mylog.log
```

This will create the file 'mylog.log' in your working directory. You can read it using any word processor (notepad, word, etc.).

To close a log file type:

```
log close
```

To add more output to an existing log file add the option append, type:

```
log using mylog.log, append
```

To replace a log file add the option replace, type:

```
log using mylog.log, replace
```

Note that the option replace will delete the contents of the previous version of the log.

Create do-file

- Do-files are ASCII files that contain of Stata commands to run specific procedures. It is highly recommended
 to use do-files to store your commands so do you not have to type them again should you need to re-do
 your work.
- You can use any word processor and save the file in ASCII format, or you can use Stata's 'do-file editor' with the advantage that you can run the commands from there. Either, in the command window type:


```
File Edit View Project Tools
  Example 1 X
 do-file
    //My analysis script, created by Moses Ngari on xxxxx
    log using analysis0.log, replace
 4
    //Change my directory
    cd "C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training"
    dir
    //Import data from .csv
10
    import delimited using birth weight.csv,varnames(1) clear
11
12
    //describe the variables in the dataset
13
    des
14
15
16
17
18
19
20
    //close the log file
21
    log close
22
```

23

Save the do-file


```
<unnamed>
     name:
      log: C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training\analysis0.log
 log type:
            text
 opened on: 26 Mar 2021, 22:01:00
. //Change my directory
. cd "C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training"
C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training
. dir
 <dir>
         3/26/21 22:01 .
 <dir> 3/26/21 22:01 ...
  0.0k
         3/26/21 22:01 analysis0.log
 22.3k
         3/16/21 15:51 birth_weight.csv
 <dir> 1/07/21 15:54 data
 <dir>
         1/07/21 15:54 EACCR
         3/26/21 21:59 Example1.do
  0.4k
1529.6k 3/26/21 22:00 Introduction to stata.pptx
 <dir>
         1/06/21 15:13 mon_frid_materials
         3/04/21 8:46 New folder
 <dir>
2993.5k 2/22/21 18:04 StataTutorial.pdf
 50.2k 10/27/11 16:26 Statistics as a Career.pptx
116.5k 7/12/11 15:17 Timetable09.doc
164.5k 7/20/11 12:15 Timetable2011.doc
651.4k 3/24/21 19:26 tutorial.pdf
```

```
. //Import data from .csv
. import delimited using birth_weight.csv,varnames(1) clear
(8 vars, 641 obs)
. //describe the variables in the dataset
. des
Contains data
 obs:
                 641
 vars:
 size:
              14,743
                       display
                                  value
              storage
                        format
                                   label
                                              variable label
variable name type
id
                int
                        %8.0g
matage
                byte
                       %8.0g
ht
                       %8.0g
                byte
gestwks
                byte
                        %8.0g
sex
                str6
                        %9s
bweight
                int
                       %8.0g
ethnic
                byte
                       %8.0g
                       %9s
agegrp
                str9
Sorted by:
    Note: Dataset has changed since last saved.
. //close the log file
. log close
            <unnamed>
      log: C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training\analysis0.log
  log type: text
             0.5 14 0.004 0.0 0.4 0.0
```

Reading data to stata

- Read data already in stata format
- To open files already in Stata with extension *.dta, run Stata and you can either:
- Type: use data_name,clear


```
. cd "C:\Users\mnqari\OneDrive - Kemri Wellcome Trust\Statistical training"
C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training
. doedit
. dir
  <dir> 3/28/21 17:37 .
                                                             Type: use lab_results0.dta,clear
  <dir> 3/28/21 17:37 ...
  2.7k 3/26/21 22:26 analysis0.log
  22.3k 3/16/21 15:51 birth weight.csv
  <dir> 1/07/21 15:54 data
  <dir> 1/07/21 15:54 EACCR
  0.4k 3/26/21 21:59
                       Example1.do
1642.2k 3/28/21 17:36 Introduction to stata.pptx
  23.9k 2/23/21 19:46 lab results0.dta
 <dir> 1/06/21 15:13 mon frid materials
  <dir> 3/04/21 8:46 New folder
2993.5k 2/22/21 18:04 StataTutorial.pdf
  50.2k 10/27/11 16:26 Statistics as a Career.pptx
116.5k 7/12/11 15:17 Timetable09.doc
164.5k 7/20/11 12:15 Timetable2011.doc
 651.4k 3/24/21 19:26 tutorial.pdf
```

Command

use lab_results0.dta,clear

Read data from .csv


```
3/26/21 22:26 analysis0.log
  2.7k
  22.3k 3/16/21 15:51 birth weight.csv
  <dir> 1/07/21 15:54 data
  <dir>
         1/07/21 15:54 EACCR
  0.4k
         3/26/21 21:59 Example1.do
                                                            Type this
1642.2k 3/28/21 17:36 Introduction to stata.pptx
  23.9k
         2/23/21 19:46 lab results0.dta
  <dir> 1/06/21 15:13 mon frid materials
  <dir> 3/04/21 8:46 New folder
2993.5k 2/22/21 18:04 StataTutorial.pdf
  50.2k 10/27/11 16:26 Statistics as a Career.pptx
116.5k 7/12/11 15:17 Timetable09.doc
164.5k 7/20/11 12:15 Timetable2011.doc
 651.4k 3/24/21 19:26 tutorial.pdf
. use lab results0.dta,clear
. import delimited "C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training\birth weight
> r
(8 vars, 641 obs)
. import delimited using birth weight.csv, varnames(1) clear
(8 vars, 641 obs)
```

Command

ngar...

).dta...

d "C...

d us...

import delimited using birth weight.csv, varnames(1) clear

Import other type of data to stata

help import

Description

This entry provides a quick reference for determining which method to use for reading non-Stata data into memory. data for more details.

Links to PDF documentation

Remarks and examples

The above sections are not included in this help file.

Summary of the different methods

import excel (see [D] import excel)

- 1. import excel reads worksheets from Microsoft Excel (.xls and .xlsx) files.
- 2. Entire worksheets can be read, or custom cell ranges can be read.

import delimited (see [D] import delimited)

1. import delimited reads text-delimited files.

- 2. An observation can be on more than one line.
- 3. ASCII or EBCDIC data can be read.
- 4. infile (fixed format) has the most capabilities for reading data.

import sasxport (see [D] import sasxport)

- 1. import sasxport reads SAS XPORT Transport format files.
- 2. import sasxport will also read value label information from a formats.xpf XPORT file, if available.

import fred (see [D] import fred)

- 1. import fred reads Federal Reserve Economic Data.
- 2. To use import fred, you must have a valid API key obtained from the St. Louis Federal Reserve.

import haver (Windows only) (see [D] import haver)

1. import haver reads Haver Analytics (http://www.haver.com/) database files.

import dbase (see [D] import dbase)

1. import dbase reads a version III or version IV dBase (.dbf) file.

Export data out of stata


```
1/Ub/Z1 15:13 mon Iria materials
          3/04/21 8:46 New folder
  <dir>
                                                                                                                      id
2993.5k
          2/22/21 18:04 StataTutorial.pdf
                                                                                                                      matage
  50.2k 10/27/11 16:26 Statistics as a Career.pptx
                                                                                                                      ht
 116.5k 7/12/11 15:17
                         Timetable09.doc
164.5k 7/20/11 12:15
                         Timetable2011.doc
                                                                                                                      gestwks
          3/24/21 19:26 tutorial.pdf
 651.4k
                                                                                                                      sex
                                                                                                                      bweight
. use lab results0.dta,clear
                                                                                                                      ethnic
. import delimited "C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training\birth weight.csv", clea
                                                                                                                      agegrp
> r
(8 vars, 641 obs)
. import delimited using birth weight.csv, varnames(1) clear
                                                                                                                    Properties
(8 vars, 641 obs)
. help import
                    Export function
                                                                                                                     ■ Variables
                                                  Variables to export
                                                                                                                      Name
                                                                                                                                bweic
. help import
                                                                                                                      Label
. export delimited id gestwks bweight using mynew date replace
                                                                                                                      Type
                                                                                                                               int
(note: file mynew date csv not found)
                                                                                                                                %8.0c
                                                                                                                      Format
file mynew date.csv saved
                                                               New dataset name
                                                                                                                      Value label
                                                                                                                      Notes
                                                                                                                     ▲ Data
                                                                                                                      Filename
Command
                                                                                                                      Label
export delimited id gestwks bweight using mynew date, replace
                                                                                                                      Notes
```

Saving data in stata

Provide the file to save and the dataset name


```
. import delimited using birth_weight.csv,varnames(1) clear
(8 vars, 641 obs)

. help import

. help import

. export delimited id gestwks bweight using mynew_date, replace
(note: file mynew_date.csv not found)
file mynew_date.csv saved
.
```

Command

save birth_weight.dta,replace

Replace will replace dataset in the memory with that name

Your turn now

Exercise 1

- In the folder provided there is a dataset: babies.csv
- a) Open a stata window and change directory to the folder with the dataset
- b) Open a new do-file
- c) read the <u>babies.csv</u> into stata
- d) Save as bw.dta
- e) save the do-file as: dofile1

```
dofile1 X
             Example1
 smokban
     //Change directory
     cd "C:\Users\mngari\OneDrive - Kemri Wellcome Trust\Statistical training"
 3
     dir
 4
     //Import data from .csv
     import delimited using babies.csv, varnames(1) clear
     //Saving data
     save bw.dta, replace
 9
10
11
12
```

Data management

Import <u>birth weight.csv</u> dataset to stata

import delimited using birth_weight.csv,varnames(1) clear

You can use the command *lookfor* to find variables in a dataset

```
. lookfor sex

storage display value
variable name type format label variable label

sex str6 %9s
```

Data variables description

```
. des
Contains data
  obs:
                  641
 vars:
              14,743
 size:
                         display
                                    value
               storage
variable name
                         format
                                     label
                                                variable label
                 type
id
                 int
                         %8.0g
                         %8.0g
matage
                byte
ht
                byte
                         %8.0g
gestwks
                         %8.0g
                byte
                 str6
                         89s
sex
bweight
                         %8.0g
                 int
ethnic
                         %8.0g
                byte
                         %9s
                 str9
agegrp
Sorted by:
```

Note: Dataset has changed since last saved.

Click hear

View the variables as spreadsheet

Stata has a color-coded system for each type. Black is for numbers, red is for text or string and blue is for labeled variables.

	id	matage	ht	gestwks	sex	bweight	ethnic	agegrp
1	1	33	2	38	Female	2410	1	30-34 yrs
2	2	34	2	39	Female	2977	1	30-34 yrs
3	3	34	2	36	Female	2100	1	30-34 yrs
4	4	30	2	39	Male	3270	1	30-34 yrs
5	5	35	2	38	Female	2620	1	35-39 yrs
6	6	37	2	38	Male	3260	1	35-39 yrs
7	7	31	2	40	Male	3750	1	30-34 yrs
8	8	31	1	35	Female	1450	1	30-34 yrs
9	9	33	1	39	Male	3200	1	30-34 yrs
10	10	33	2	40	Female	3675	1	30-34 yrs
11	11	29	2	42	Female	3640	1	20-29 yrs
12	12	37	2	41	Male	3771	1	35-39 yrs
13	13	36	2	41	Female	3950	1	35-39 yrs
14	14	39	2	40	Male	3400	1	35-39 yrs
15	15	34	2	39	Male	3100	1	30-34 yrs
16	16	36	2	39	Male	3100	1	35-39 yrs
17	17	37	2	41	Male	4020	1	35-39 yrs
18	18	35	2	39	Female	2730	1	35-39 yrs
19	19	38	2	40	Female	3000	1	35-39 yrs
20	20	34	2	39	Male	3040	1	30-34 yrs
21	21	28	2	40	Female	3660	1	20-29 yrs
22	22	38	2	39	Male	3040	1	35-39 yrs

Remove a variable

This will remove the agegrp variable from your data permanently

Adding/changing variable labels, type:

Before

variable name	storage type	display format	value label	variable label
id	int	%8.0g		
matage	byte	%8.0g		
ht	byte	%8.0g		
gestwks	byte	%8.0g		
sex	str6	%9s		
bweight	int	%8.0g		
ethnic	byte	%8.0g		
agegrp	str9	%9s		

Use the function: <u>label variable varname varlabel</u>

```
//Label your variables
label variable id "ID number"
label variable matage "Mother age"
label variable ht "hypertension status"
label variable gestwks "gestational age in weeks"
label variable sex "Infant sex"
label variable bweight "Birth weight in grams"
```

Adding/changing variable labels, type:

After

```
//Label your variables
label variable id "ID number"
label variable matage "Mother age"
label variable ht "hypertension status"
label variable gestwks "gestational age in weeks"
label variable sex "Infant sex"
label variable bweight "Birth weight in grams"
```

variable name	storage type	display format	value label	variable label
id	int	%8.0g		ID number
matage	byte	%8.0g		Mother age
ht	byte	%8.0g		hypertension status
gestwks	byte	%8.0g		gestational age in weeks
sex	str6	%9s		Infant sex
bweight	int	%8.0g		Birth weight in grams
ethnic	byte	%8.0g		
agegrp	str9	%9s		

Renaming variables, type:

agegrp

Before

To rename: rename varname

new_varname

//Raname variables
rename id subjid
rename ht hyper

variable name	type	format	label	variable label
id	int	%8.0g		
matage	byte	%8.0g		
ht	byte	%8.0g		
gestwks	byte	%8.0g		
sex	str6	%9s		
bweight	int	%8.0g		
ethnic	byte	%8.0g		
agegrp	str9	%9s		

772] 116

dignlay

gtorage

str9

%9s

display value storage variable name format label variable label type subjid int %8.0q ID number matage byte %8.0q Mother age %8.0q hypertension status hyper byte gestational age in weeks gestwks byte %8.0q Infant sex str6 %9s sex bweight int %8.0q Birth weight in grams ethnic byte %8.0q

After

Assigning value labels

Adding labels to each category in a variable is a two step process in Stata.

Step 1: You need to create the labels using label define, type:

label define label1 1 "Agree" 2 "Disagree" 3 "Do not know"

Setp 2: Assign that label to a variable with those categories using label values:

label values var1 label1

If another variable has the same corresponding categories you can use the same label, type

label values var2 label1

Assigning value labels

```
//label variables

label define lhyper 1"Hypertension" 2"No hypertension"

label value hyper lhyper

label define lethnic 1"White" 2"Blacks" 3"Asian" 4"Latino"

label value ethnic lethnic
```

variable name	storage type	display format	value label	variable label
subjid matage hyper gestwks sex	int byte byte byte str6	%8.0g %8.0g %15.0g %8.0g %9s	lhyper	ID number Mother age hypertension status gestational age in weeks Infant sex
bweight ethnic agegrp	int byte str9	88.0g 88.0g 89s	lethnic	Birth weight in grams

subjid	matage	hyper	gestwks	sex	bweight	ethnic	agegrp	
246	38	No hypertension	33	Female	1400	White	35-39 yrs	
247	32	No hypertension	39	Female	2540	White	30-34 yrs	
248	37	No hypertension	41	Male	3550	White	35-39 yrs	
249	34	No hypertension	36	Female	2900	White	30-34 yrs	
250	39	No hypertension	38	Female	2253	White	35-39 yrs	
251	38	Hypertension	38	Male	2840	White	35-39 yrs	
252	32	No hypertension	40	Female	2680	White	30-34 yrs	
253	32	No hypertension	40	Female	3520	White	30-34 yrs	
254	42	No hypertension	39	Female	3180	White	40+yrs	
255	39	No hypertension	40	Male	3040	White	35-39 yrs	
256	38	No hypertension	40	Female	3180	White	35-39 yrs	
257	37	No hypertension	39	Male	3560	White	35-39 yrs	
258	35	No hypertension	40	Male	3300	White	35-39 yrs	
259	36	No hypertension	37	Male	2700	White	35-39 yrs	
260	30	No hypertension	41	Male	4120	White	30-34 yrs	
261	27	No hypertension	34	Female	1890	Blacks	20-29 yrs	
262	39	No hypertension	40	Male	3810	Blacks	35-39 yrs	
263	35	No hypertension	39	Male	3008	Blacks	35-39 yrs	
264	35	No hypertension	41	Male	3870	Blacks	35-39 yrs	
265	33	No hypertension	39	Female	3630	Blacks	30-34 yrs	
266	39	No hypertension	39	Female	3450	Blacks	35-39 yrs	
267	40	No hypertension	40	Male	4330	Blacks	40+yrs	

Operators and Expressions

```
Relational
Arithmetic
                         Logical
                         ! not (also ~)
+ add
                                        == equal
- subtract
                                        != not equal (also \sim=)
                          or
                                        < less than
* multiply
                         & and
  divide
                                        <= less than or equal
  raise to power
                                        > greater than
+ string concatenation
                                        >= greater than or equal
```

Creating new variables

To generate a new variable use the command generate (gen for short), type

```
generate [newvar] = [expression]
```

The variable <code>gestwks</code> is the gestation age in weeks ranging from 25 to 42 weeks. We need to create a need variable called <code>prem</code> for born premature (0=37weeks and above; 1=less than 37 weeks).

Two ways:

```
//Create new variable
gen prem=0
replace prem=1 if gestwks<37

tabulate prem, missing

recode gestwks (20/36.99=1) (37/45= 0), gen(prem1)
tabulate prem1, missing

The recode function works as well
```

View the data now

br sort gestwks

	subjid	matage	hyper	gestwks	sex	bweight	ethnic	agegrp	prem	prem1	
58	152	33	No hypertension	36	Female	2320	White	30-34 yrs	1	1	
59	272	40	No hypertension	36	Female	3180	Blacks	40+yrs	1	1	
60	539	38	No hypertension	36	Male	2410	Latino	35-39 yrs	1	1	
61	475	34	No hypertension	36	Female	2420	Asian	30-34 yrs	1	1	
62	123	31	No hypertension	36	Male	2670	White	30-34 yrs	1	1	
63	149	38	No hypertension	36	Female	2495	White	35-39 yrs	1	1	
64	80	37	No hypertension	36	Male	2807	White	35-39 yrs	1	1	
65	438	24	Hypertension	36	Female	2720	Asian	20-29 yrs	1	1	
66	610	34	No hypertension	36	Male	3570	Latino	30-34 yrs	1	1	
67	414	32	Hypertension	36	Male	2620	Asian	30-34 yrs	1	1	
68	599	38	No hypertension	36	Male	2955	Latino	35-39 yrs	1	1	
69	562	39	No hypertension	36	Male	2910	Latino	35-39 yrs	1	1	
70	249	34	No hypertension	36	Female	2900	White	30-34 yrs	1	1	
71	270	40	No hypertension	36	Male	2500	Blacks	40+yrs	1	1	
72	3	34	No hypertension	36	Female	2100	White	30-34 yrs	1	1	
73	233	30	No hypertension	36	Female	2540	White	30-34 yrs	1	1	
74	295	35	No hypertension	37	Male	2550	Blacks	35-39 yrs	0	0	
75	606	29	No hypertension	37	Female	2820	Latino	20-29 yrs	0	0	
76	77	37	Hypertension	37	Female	2000	White	35-39 yrs	0	0	
77	130	33	No hypertension	37	Female	2800	White	30-34 yrs	0	0	
78	146	40	No hypertension	37	Female	3200	White	40+yrs	0	0	
79	345	40	No hypertension	37	Male	2620	Asian	40+yrs	0	0	
80	476	38	No hypertension	37	Female	2700	Asian	35-39 yrs	0	0	

//Label premature
lab def lprem 0"Mature" 1"Premature"
lab val prem prem1 lprem

	subjid	matage	hyper	gestwks	sex	bweight	ethnic	agegrp	prem	prem1	
58	152	33	No hypertension	36	Female	2320	White	30-34 yrs	Premature	Premature	
59	272	40	No hypertension	36	Female	3180	Blacks	40+yrs	Premature	Premature	
60	539	38	No hypertension	36	Male	2410	Latino	35-39 yrs	Premature	Premature	
61	475	34	No hypertension	36	Female	2420	Asian	30-34 yrs	Premature	Premature	
62	123	31	No hypertension	36	Male	2670	White	30-34 yrs	Premature	Premature	
63	149	38	No hypertension	36	Female	2495	White	35-39 yrs	Premature	Premature	
64	80	37	No hypertension	36	Male	2807	White	35-39 yrs	Premature	Premature	
65	438	24	Hypertension	36	Female	2720	Asian	20-29 yrs	Premature	Premature	
66	610	34	No hypertension	36	Male	3570	Latino	30-34 yrs	Premature	Premature	
67	414	32	Hypertension	36	Male	2620	Asian	30-34 yrs	Premature	Premature	
68	599	38	No hypertension	36	Male	2955	Latino	35-39 yrs	Premature	Premature	
69	562	39	No hypertension	36	Male	2910	Latino	35-39 yrs	Premature	Premature	
70	249	34	No hypertension	36	Female	2900	White	30-34 yrs	Premature	Premature	
71	270	40	No hypertension	36	Male	2500	Blacks	40+yrs	Premature	Premature	
72	3	34	No hypertension	36	Female	2100	White	30-34 yrs	Premature	Premature	
73	233	30	No hypertension	36	Female	2540	White	30-34 yrs	Premature	Premature	
74	295	35	No hypertension	37	Male	2550	Blacks	35-39 yrs	Mature	Mature	
75	606	29	No hypertension	37	Female	2820	Latino	20-29 yrs	Mature	Mature	
76	77	37	Hypertension	37	Female	2000	White	35-39 yrs	Mature	Mature	
77	130	33	No hypertension	37	Female	2800	White	30-34 yrs	Mature	Mature	
78	146	40	No hypertension	37	Female	3200	White	40+yrs	Mature	Mature	
79	345	40	No hypertension	37	Male	2620	Asian	40+yrs	Mature	Mature	
80	476	38	No hypertension	37	Female	2700	Asian	35-39 yrs	Mature	Mature	
					_						

Dates

 Dates in stata appear as numbers since 01jan1960. To create a data variable, you first define a "date" variable and provide the correct format

```
//Dealing with dates
//date of birth
gen birth_date=date(dob,"DMY")
format birth_date %d
```


10	matage	nt	gestwks	sex	bweight	ethnic	agegrp	dob	date_admn	birth_date	
1	33	2	38	Female	2410	1	30-34 yrs	15/11/2003	01/01/2009	15nov2003	
2	34	2	39	Female	2977	1	30-34 yrs	27/02/2003	01/01/2009	27feb2003	
3	34	2	36	Female	2100	1	30-34 yrs	07/10/2008	01/01/2009	07oct2008	
4	30	2	39	Male	3270	1	30-34 yrs	29/08/2008	01/01/2009	29aug2008	
5	35	2	38	Female	2620	1	35-39 yrs	13/12/2006	01/01/2009	13dec2006	
6	37	2	38	Male	3260	1	35-39 yrs	09/11/2006	01/01/2009	09nov2006	
7	31	2	40	Male	3750	1	30-34 yrs	29/12/2008	01/01/2009	29dec2008	
8	31	1	35	Female	1450	1	30-34 yrs	25/05/2006	01/01/2009	25may2006	
9	33	1	39	Male	3200	1	30-34 yrs	01/09/2003	01/01/2009	01sep2003	
10	33	2	40	Female	3675	1	30-34 yrs	01/01/2009	01/01/2009	01jan2009	
11	29	2	42	Female	3640	1	20-29 yrs	15/04/2001	02/01/2009	15apr2001	
12	37	2	41	Male	3771	1	35-39 yrs	06/07/2007	02/01/2009	06jul2007	
13	36	2	41	Female	3950	1	35-39 yrs	05/11/1999	02/01/2009	05nov1999	
14	39	2	40	Male	3400	1	35-39 yrs	06/07/2006	02/01/2009	06jul2006	

Exercise 2

- Read the birth weight.csv to stata
- Use the *bweight* variable to create a new variable
- Ibw for low birth weight code as
- 0 for birthweight >=2500
- 1 for birthweight <2500
- Label the new variable as "Low birth weight"
- Attach the variables: 0 "Normal birth weight" 1"Low birth weight"
- Create a date variable for date admn

Change variables type

```
//Destring
gen str nsex="1" if sex=="Male"
replace nsex="2" if sex=="Female"

destring nsex, replace

//label sex
lab def lsex 1"Male" 2"Female"
lab val nsex lsex
```

gestwks	sex	bweight	ethnic	agegrp	prem	prem1	lbw	nsex
26	Female	630	White	30-34 yrs	Premature	Premature	Low Birth weight	Female
30	Male	700	Blacks	30-34 yrs	Premature	Premature	Low Birth weight	Male
28	Female	710	Blacks	20-29 yrs	Premature	Premature	Low Birth weight	Female
31	Female	825	Asian	35-39 yrs	Premature	Premature	Low Birth weight	Female
25	Female	860	Asian	40+yrs	Premature	Premature	Low Birth weight	Female
30	Female	920	Asian	35-39 yrs	Premature	Premature	Low Birth weight	Female
28	Male	980	Blacks	20-29 yrs	Premature	Premature	Low Birth weight	Male
30	Male	1000	Asian	20-29 yrs	Premature	Premature	Low Birth weight	Male
28	Male	1020	White	30-34 yrs	Premature	Premature	Low Birth weight	Male
32	Male	1102	Blacks	35-39 yrs	Premature	Premature	Low Birth weight	Male
31	Male	1160	Latino	30-34 yrs	Premature	Premature	Low Birth weight	Male
33	Male	1200	White	35-39 yrs	Premature	Premature	Low Birth weight	Male
29	Male	1310	Latino	35-39 yrs	Premature	Premature	Low Birth weight	Male
31	Female	1320	Latino	20-29 yrs	Premature	Premature	Low Birth weight	Female
34	Female	1326	Asian	35-39 yrs	Premature	Premature	Low Birth weight	Female
33	Female	1400	White	35-39 yrs	Premature	Premature	Low Birth weight	Female

Merge datasets

Merge – adds variables to a dataset. Type help merge for details.
 Merging two datasets require that both have at least one variable in common (either string or numeric). If string make sure the categories have the same spelling (i.e. country names, etc.). The common variables must have the same name. Explore each dataset separately before merging. Make sure to use all possible common variables (for example, if merging two panel datasets you will need country and years).

One to one merging

Use the <u>lab resultsO.dta</u> data, Sort the <u>subjid</u> variable

1:1 means each data has one record Section5.dta the data to merge with

```
//merge
**Dataset one
use lab results0.dta,clear
sort subjid
save lab results0.dta,replace
**Dataset two
use section5.dta,clear
sort subjid
save section5.dta, replace
**Merge
use lab results0.dta,clear
merge 1:1 subjid using section5.dta
```

subjid	drugs	hep_b	vdrl	alcohol	urine	vload	hiv_status	hiv0
1							NEGATIVE	Neg
2	NEGATIVE	NEGATIVE	NEGATIVE	<0.010%	NGO	UD	POSITIVE	Pos
3	AMP+VE	NEGATIVE	NEGATIVE	<0.010%	NGO	750CP/ML	POSITIVE	Pos
4							NEGATIVE	Neg
5							NEGATIVE	Neg
6							NEGATIVE	Neg
7	NEGATIVE	NEGATIVE	NEGATIVE	<0.010%	NGO	59CP/ML	POSITIVE	Pos
8	NEGATIVE	NEGATIVE	NEGATIVE	<0.010%	NGO	UD	POSITIVE	Pos
9							NEGATIVE	Neg
10							NEGATIVE	Neg
11							NEGATIVE	Neg
12	NEGATIVE	NEGATIVE	NEGATIVE	<0.010%	NGO	450CP/ML	POSITIVE	Pos
13	NEGATIVE	NEGATIVE	NEGATIVE	<0.010%	NGO	99CP/ML	POSITIVE	Pos

lab_results0.dta

subjid	q76	q77	q78	q79	q80	q81	q
1	a	b	a	a	a	b	
2	a	a	a	b	a	b	
3	a	b	a	b	b	b	
4	a	a	a	b	a	a	
5	a	a	a	b	a	b	
6	a	b	a	b	a	b	
7	a	a	a	d	b	b	
8	b	b	a	a	a	b	
9	a	a	b	b	b	b	
10	a	a	a	a	b	b	
11	a	a	b	a	b	b	
12	a	a	С	b	a	a	
13	a	a	a	b	a	a	

section5.dta

merge 1:1 subjid using section5.dta

Result	# of obs.	
not matched	0	
matched	240	(_merge==3)

nd of do-file

tab _merge

Cum.	Percent	Freq.	_merge
100.00	100.00	240	matched (3)
	100.00	240	Total

mydata1

	country	year	У	y_bin	x1	x2	x3
1	A	2000	1343	1	.25	-1.11	.25
2	A	2001	-1900	0	. 32	-, 95	. 49
3	Α.	2002	-11	0	.36	79	.7
4	A	2003	2646	1	.25	59	09
5	8	2000	-5935	0	08	1.43	.02
6	8	2001	-712	0	.11	1.65	.26
7	5	2002	-1955	0	. 35	1.55	25
8	8	2003	3073	1	.73	1.69	. 26
9	С	2000	-1292	0	1.31	-1.29	. 2
10	C	2001	-3416	0	1.15	-1.54	.25
11	C	2002	-356	0	1.26	-1.26	. 37
12	c	2003	1225	1	1,42	-1.31	38

merge m:1 country using mydata4

Result	# of obs.	
not matched	0	
matched	12	(_merge==3)

mydata4

- Make sure one dataset is loaded into Stata (in this case mydata1), then use merge.
- Make sure to map where the using data is located (in this case mydata2, for example "c:\folders\data\mydata4.dta")*.

NOTE: For Stata 10 or older:

- Remove the m:1
- 2) Sort both datasets by all the ids and save before merging

	country	year	У	y_bin	x1	x2	хЗ	x7	_nerge
1	A	2000	1343	1	.28	-1.11	.28	100	matched (3)
2	A	2001	-1900	0	. 32	95	. 49	100	matched (3)
3	A	2002	-11	0	.36	79	.7	100	matched (3)
4	A	2003	2646	1	. 25	89	09	100	matched (3)
5	8	2000	-5935	0	08	1.43	.02	200	matched (3)
6	8	2001	-712	0	.11	1.65	. 26	200	matched (3)
7	В	2002	-1933	0	.35	1.59	-, 23	200	matched (3)
8	8	2003	3073	1	.73	1.69	. 26	200	matched (3)
9	C	2000	-1292	0	1.31	-1.29	.2	300	matched (3)
10	C	2001	-3416	0	1.18	-1.34	.28	300	matched (3)
11	C	2002	-356	0	1.26	-1.26	. 37	300	matched (3)

Syntax

```
One-to-one merge on specified key variables
    merge 1:1 varlist using filename [, options]
Many-to-one merge on specified key variables
    merge m:1 varlist using filename [, options]
One-to-many merge on specified key variables
    merge 1:m varlist using filename [, options]
Many-to-many merge on specified key variables
    merge m:m varlist using filename [, options]
```

APPEND

mydata7

	country	year	У	y_bin	x1	х2	x3
1	A	2000	1343	1	.28	-1.11	.28
2	A	2001	-1900	0	.32	95	. 49
3	В	2000	-5935	0	08	1.43	.02
4	В	2001	-712	0	.11	1.65	.26
5	c	2000	-1292	0	1.31	-1.29	.2
6	c	2001	-3416	0	1.18	-1.34	.28

- Make sure one dataset is loaded into Stata (in this case mydata7), then use append.
- Make sure to map where the using data is located (in this case mydata2, for example "c:\folders\data\mydata9.dta")*.
- · Notice the missing data.

	country	year	У	y_bin	X1	x2	×3
1	A	2000	1343	1	.28	-1.11	.28
2	A	2001	-1900	0	.32	-, 95	. 49
3	В	2000	-5 935	0	08	1.43	.02
4	В	2001	-712	0	.11	1.65	.26
5	C	2000	-1292	0	1.31	-1.29	.2
6	C	2001	-3416	0	1.18	-1.34	.28
7	A	2002	-11	0	. 36	79	
8	A	2003	2646	1	.25	89	
9	В	2002	-1933	0	. 35	1.59	
10	В	2003	3073	1	.73	1.69	
11	C	2002	-356	0	1.26	-1.26	
12	C	2003	1225	1	1.42	-1.31	

mydata9

	country	year	У	y_b1n	X1	x2
1	A	2002	-11	0	.36	79
2	A	2003	2646	1	. 25	89
3	В	2002	-1933	0	. 35	1.59
4	В	2003	3073	1	.73	1.69
5	C	2002	-356	0	1.26	-1.26
6	C	2003	1225	1	1.42	-1.31

DIT/Dec/OTD

.

Summary in stata

- Use tabulate to get summary of categorical variables
- . tab prem, missing

prem	Freq.	Percent
Mature Premature	568 73	88.61 11.39
Total	641	100.00

- Use summarize to get summary of continuous variables
- . summ bweight

bweight	641	3129.137	652.7827	630	4650
Variable	Obs	Mean	Std. Dev.	Min	Max

Exploring data

Frequency refers to the number of times a value is repeated. Frequencies are used to analyze categorical data. The tables below are *frequency* tables, values are in ascending order. In Stata use the command **tab varname**.

Read the birth_weight.csv
What proportion of children were females?

. tab sex, missing

sex	Freq.	Percent
Female Male	315 326	49.14 50.86
Total	641	100.00

Freq. provides the count
Percent provides relative frequency

Contingency tables

Contingency tables or crosstabs help you to analyze the relationship between two or more categorical variables.

prem		h weight Low Birth	Total
Mature	537	31	568
	94.54	5.46	100.00
Premature	24	49	73
	32.88	67.12	100.00
Total	561	80	641
	87.52	12.48	100.00

. tab prem lbw,col

col provides the % by the column variable

Key

frequency column percentage

	Low birth weight				
prem	Normal bi	Low Birth	Total		
Mature	537	31	568		
	95.72	38.75	88.61		
Premature	24	49	73		
	4.28	61.25	11.39		
Total	561	80	641		
	100.00	100.00	100.00		

Exploring data: frequencies and descriptive statistics

. table lbw, contents(freq mean gestwks)				
Low birth weight	Freq. mean(gestwks)			
Normal birth weight	561 39.2549			
Low Birth weight	80 34.7			
<u>'</u>				

Command table produces frequencies and descriptive statistics per category

. table lbw, contents(freq mean gestwks mean bweight mean matage)

Low birth weight	Freq.	mean(gestwks)	mean(bweight)	mean (matage)
Normal birth weight	561	39.25 4 9	3309.57	34.0374
Low Birth weight	80	3 4 .7	1863.86	33.5125

summarize

Type summarize to get some basic descriptive statistics.

. summ matage

Variable	Obs	Mean	Std. Dev.	Min	Max
matage	641	33.97192	3.87046	23	43

.

. summ matage gestwks bweight

Variable	Obs	Mean	Std. Dev.	Min	Max
matage qestwks	641 641	33.97192 38.68643	3.87046 2.356498	23 25	43 42
bweight	641	3129.137	652.7827	630	4650

bysort

<u>bysort</u> allows to run simple loop by a variable with many categories

. bysort ethnic:tab lbw,m						
. bysoic comite.cab ibw,m						
-> ethnic = 1						
Low birth weight	Freq.	Percent	Cum.			
Normal birth weight	230	88.46	88.46			
Low Birth weight	30	11.54	100.00			
Total	260	100.00				
-> ethnic = 2						
Low birth weight	Freq.	Percent	Cum.			
Normal birth weight	71	87.65	87.65			
Low Birth weight	10	12.35	100.00			
Total	81	100.00				
-> ethnic = 3						
Low birth weight	Freq.	Percent	Cum.			
Normal birth weight	134	84.28	84.28			
Low Birth weight	25	15.72	100.00			
Total	159	100.00				
-> ethnic = 4						
Low birth weight	Freq.	Percent	Cum.			
Normal birth weight	126	89.36	89.36			
Low Birth weight	15	10.64	100.00			
	•					

Conditional statement in stata

• The "if" Suffix

The "if" command suffix is used to restrict on which data a command is run.

Note: Stata uses == to mean "is equal to" and = to mean "set this to". In mathematical and functional expressions like "if variable is equal to 0", you will always want the double equal signs (==).

. tab lbw if ht==1,m

Low birth weight	Freq.	Percent	Cum.
Normal birth weight Low Birth weight	62 27	69.66 30.34	69.66 100.00
Total	89	100.00	

. tab lbw if ht==2,m

Low birth weight	Freq.	Percent	Cum.
Normal birth weight Low Birth weight	499 53	90.40 9.60	90.40 100.00
Total	552	100.00	

You can combine two conditions: if and &

Low	birth	weight	Freq.	Percent	Cum.
Normal Low		weight weight	23 11	67.65 32.35	67.65 100.00
		Total	34	100.00	

. tab lbw if ht==1 & ethnic==2

Low	birth	weight	Freq.	Percent	Cum.
		weight weight	6 5	54.55 45.45	54.55 100.00
		Total	11	100.00	

Exercise 3

Read the <u>birth_weight.csv</u> dataset.

- What proportion of children were low birthweight?
- What proportion of boys were LBW?
- What was the mean age of the mothers?
- What was the mean age of mothers in the four ethnic groups?

Graphs

Scatterplots are good to explore possible relationships or patterns between variables and to identify outliers.

. twoway scatter bweight gestwks

twoway scatter bweight gestwks,xline(37)

twoway scatter bweight gestwks, yline(2500)

Histograms are another good way to visually explore data, especially to check for a normal distribution. Type help histogram for details.

. histogram bweight, freq

Box plots

Plots medians

graph box bweight, over(sex) title (Birth weight Vs sex) ytitle(Birth weight)

Exercise 4

Read the <u>birth_weight.csv</u> dataset.

 Plot scatter plot of bweight Vs matage. Add a y-axis line for bweight=2500

Plot a box plot of gestwks Vs sex

• Plot histogram of gestwks, add a normal distribution curve