

In the name of Allah, the Most Merciful, the Most Kind

Date: 19-11-2021

BCS 103 Digital Logic & Computer Architecture

Lecture 35 and 36

LAST LECTURE

In the Last Lecture

- Sequential Logic Circuits
- SR Flip-Flop
- RS Flip-Flop
- Clocked SR/ RS Flip-Flop

TODAY'S LECTURE

Today we will discuss about:

- JK Flip-Flop
- T Flip-Flop
- D Flip-Flop

JK Flip Flop

JK Flip-Flop

- The <u>JK Flip-Flop</u> has three inputs
 - Clock (Ck) --- denoted by the small arrowhead
 - J and K
- Similar to the SR Flip-Flop
 - J corresponds to S: $J = 1 \rightarrow Q^+ = 1$
 - K corresponds to R: $K = 1 \rightarrow Q^+ = 0$
- Different from the SR Flip-Flop in that the input combination J = 1, K = 1 is allowed.
 - J = K = 1 causes the Q output to toggle after an active clock edge.

JK Flip-Flop

JKQ	Q^+
000	0
001	$\begin{cases} 1 \\ 1 \end{cases} Q^+ = Q \\ \text{store} $
010	$0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
0 1 1	0 reset
100	$\begin{cases} 1 \\ 2 \end{cases} Q^+ = 1$
101	1 J v = 1 set
110	$\begin{cases} 1 \\ 2 \end{cases} Q^+ = Q'$
111	0 Stoggle

Characteristic Equation:

$$Q^+ = J.Q' + K'.Q$$

JK Flip Flop

J	K	CLK	Q
0	0	1	Q ₀ (no change)
1	0	†	1
0	1	1	0
1	1	†	Q ₀ (toggles)

J	K	CLK	Q
0	0	+	Q ₀ (no change)
1	0	1	1
0	1	1	0
1	1	1	Q ₀ (toggles)

Mode of Operation: Reset

Reset: Q = 0.

J	K	Q	Q'	Orig. Q	Orig. Q'
О	1	О	1	1	О

Mode of Operation: Toggle

Toggle: Q = Q'.

J	K	Q	Q'	Orig. Q	Orig. Q'
1	1	1	0	0	1

Mode of Operation: Toggle again

Toggle: Q = Q'.

J	K	Q	Q'	Orig. Q	Orig. Q'
1	1	О	1	1	О

Characteristic Equation

$$Q(t+1) = J.Q' + K'.Q$$

Q is the primary output.

J	K	Q	Q'	Mode
О	О	Q	Q'	Hold
1	0	1	0	Sets
0	1	О	1	Resets
1	1	Q'	Q	Toggle

	TP a	TP b	TP C	TP d	TP e	TP f	TP g	TP h	TP /
J	1	1	1	0	0	1	1	0	0
κ	0	1	1	1	1	0	0	0	1
CLK	0	1	0	1	0	1	0	1	0
Solution Q	0	0	1	1	0	0	1	1	1
Mode of Operation		Toggle		Reset		Set		Hold	1 1 1 1 1 1 1

T Flip Flop

T Flip-Flop

- The Toggle (T) Flip-Flop has two inputs
 - Clock (Ck) --- denoted by the small arrowhead
 - Toggle (T)
- The T input controls the state change
 - when T = 0, the state does not change $(Q^+ = Q)$
 - when T = 1, the state changes following an active clock edge (Q⁺ = Q')
- T Flip-Flops are often used in the design of counters.

Building a T Flip-Flop

(a) Conversion of J-K to T

(b) Conversion of D to T

T Flip Flop

T Flip Flop

Figure 4.5.1: Symbol for T

Figure 4.5.2 : Truth Table for T Flip Flop

Т	clock	Q	ā	status
0	1	Q	Q	HOLD
1	1	Q	Q	TOGOL

T Flip-Flop: Timing Diagram

D Flip Flop

D Flip-Flop

- Adding an inverter to the S-R Latch, gives the D Latch:
- Note that there are no "indeterminate" states!

The graphic symbol for a

D Latch is:

Q	D	Q(t+1)	Comment
0	0	0	No change
0	1	1	Set Q
1	0	0	Clear Q
1	1	1	No Change

Master-Slave Edge-Triggered Flip-Flop

Thanks