DAY 9 - Switch Interfaces

Purinat33

Switch Interface

Viewing Interfaces:

From SW1:

• Viewing SW1's interface (Same command as router): show ip interface brief

SW1#show ip interface	brief		
Interface	IP-Address	OK? Method Status	Protocol
FastEthernet0/1	unassigned	YES manual down	down
FastEthernet0/2	unassigned	YES manual up	up
FastEthernet0/3	unassigned	YES manual up	up
FastEthernet0/4	unassigned	YES manual up	up
FastEthernet0/5	unassigned	YES manual down	down
FastEthernet0/6	unassigned	YES manual down	down
FastEthernet0/7	unassigned	YES manual down	down
FastEthernet0/8	unassigned	YES manual down	down
FastEthernet0/9	unassigned	YES manual down	down
FastEthernet0/10	unassigned	YES manual down	down

• None of the interfaces have no IP Assignment because a Switch is a

Layer 2 Device while IP Address is a Layer 3 Addressing.

- There are reasons to assign IP Addresses to Switch's interfaces, but that comes later.
- Router vs. Switch Interfaces:
 - Router interfaces have the shutdown command applied by default (administratively down/down State)
 - Switch interfaces DO NOT have the shutdown command applied by default.
 - * Will be in the *up/up* state if connected to another device.
 - * Will be in the **down/down** state if **NOT** connected to another device.
- View Speed and Duplex of each interface via show interfaces status

SW1#show	interfaces	status					
Port	Name		Status	Vlan	Duplex	Speed	Туре
Fa0/1			notconnect	1	auto	auto	10/100BaseTX
Fa0/2			connected	1	auto	auto	10/100BaseTX
Fa0/3			connected	1	auto	auto	10/100BaseTX
Fa0/4			connected	1	auto	auto	10/100BaseTX
Fa0/5			notconnect	1	auto	auto	10/100BaseTX
Fa0/6			notconnect	1	auto	auto	10/100BaseTX
Fa0/7			notconnect	1	auto	auto	10/100BaseTX
Fa0/8			notconnect	1	auto	auto	10/100BaseTX
Fa0/9			notconnect	1	auto	auto	10/100BaseTX
Fa0/10			notconnect	1	auto	auto	10/100BaseTX
Fa0/11			notconnect	1	auto	auto	10/100BaseTX
Fa0/12			notconnect	1	auto	auto	10/100BaseTX
Fa0/13			notconnect	1	auto	auto	10/100BaseTX

- Name: Description of an interface.
- Status: Connected or Not Connected
- **VLAN**: Will be covered later.
- **Duplex**: Direction of sending/receiving data.
- Speed: Depend on the Speed of the slower of the two (The interface vs. The device connecting to that interface).
 - * eg: 10 Mbps device connecting to the 100 Mbps port will make the communication speed of this connection = 10 Mbps.
- Type: 10 (Ethernet, Slower than Fa) and 100 (Fast Ethernet or Fa)
 - * No 1000 or 10G since these are Fa (Fast Ethernet) interfaces an not G (Gigabit Ethernet)

Duplex:

```
Switch(config) #interface f0/1
Switch(config-if) #duplex ?
auto Enable AUTO duplex configuration
full Force full duplex operation
half Force half-duplex operation
```

• Full Duplex:

- The device can send and receive data AT THE SAME TIME, it does

not have to wait. (Most Modern Devices have this capabilities.)

• Half Duplex:

- The device cannot send and receive data at the same time.
- If it is receiving a frame, it must wait before sending a frame.
- eg: Hub

Hub:

- Is considered to be a **Layer 1 Device** instead of Layer 2 because it performs similar function to *switches* (**Frame Routing**) but **without** the use of any **MAC Addressing** or **MAC Table**.
- More similar to a networking repeater.
- Will **Always Flood** the frames regardless of the frame's type.
- Devices connected to a Hub must always operate in Half-Duplex mode.
- Have a mechanism to deal with collisions called CSMA/CD.

1 Collision Domain

CSMA/CD in

- Carrier Sense Multiple Access with Collision Detection
- Used in Half-Duplex situation (like **Hub** network) to deal with collisions.
- Before sending frames, devices *LISTEN* to the Collision Domain until they detect that other devices are not sending.
- If a **Collision** does occur, the device sends a jamming signal to inform the other devices that a collision happened.
- Each device will wait a random period of time before sending frames again.

Switch

Collision Domain in Switches

3 Collision Domain

- As established, Switches are considered a Layer 2 Device due to usage of MAC Addressing, Frame Forwarding etc.
- Collisions *rarely* occur (More of a configuration fault rather than normal usual occurrences like in Hub)
- Devices connected to a Switch can operate in **Full-Duplex** mode.

Speed:

```
Switch(config-if)#speed ?

10 Force 10 Mbps operation

100 Force 100 Mbps operation

auto Enable AUTO speed configuration
```

Auto-negotiation

- Interfaces that can run at different speeds (10/100 or 10/100/1000 have default settings of speed auto] and duplex auto
- Interfaces advertise their capabilities to the neighboring device, and they negotiate the best speed and duplex settings they are capable of.

What if auto-negotiation is disabled on the device connected to the Switch?

- **Speed**: The switch will try to sense the speed that the device is operating at.
 - If it fails to sense the speed, it will use the **slowest supported speed**

- eg. 10 Mbps on a 10/100/1000 Interface

• Duplex:

If the speed is 10 or 100 Mbps, the switch will use **Half-Duplex**. If the speed is 1000 Mbps or greater, the switch will use Full-Duplex.

Interfaces Error

- show interfaces {interface-name} (Like routers).
- Interesting statistics: