Titanic Disaster

In this work we want to build a **predictive** model that will help to understand who is more likely to survive to a titanical Shipwreck ,using passenger data (ie name, age, gender, socio-economic class, etc).

We are going to use **Deep Learning Models**, as baseline we will test a simple **Logistic Regression** to compare with a **Vanilla Neural Network**, a **Deep Neural Network** and a second **Optimized Deep Neural Network**.

You can find Data Source at https://www.kaggle.com/c/titanic/data

The data has been split into two groups:

- training set (train.csv)
- test set (test.csv)

Data Overview

Both the dataset with the following features:

PassengerId: Unique ID of the passenger

Pclass: Ticket class

Name: Full name of the passenger with salutation

Sex: Gender

Age: Age in years

SibSp: Number of siblings / spouses aboard the Titanic

Parch: Number of parents / children aboard the Titanic

Ticket: Ticketnumber

Fare: Passenger fare

Cabin: Cabinnumber

Embarked: Port of Embarkationtrain.csv has the target variable named Survived

Test dataset has one less column because there's no target variable.

```
labelled_df.shape, unlabelled_df.shape
((891, 12), (418, 11))
```

Then we merge the 2 dataset and provide a sample

0	df.sar	if.sample(5)											
		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	820	821	1.0	1	Hays, Mrs. Charles Melville (Clara Jennings Gr	female	52.0	1	1	12749	93.5000	B69	S
	205	206	0.0	3	Strom, Miss. Telma Matilda	female	2.0	0	1	347054	10.4625	G6	S
	1274	1275	NaN	3	McNamee, Mrs. Neal (Eileen O'Leary)	female	19.0	1	0	376566	16.1000	NaN	S
	123	124	1.0	2	Webber, Miss. Susan	female	32.5	0	0	27267	13.0000	E101	S
	687	688	0.0	3	Dakic, Mr. Branko	male	19.0	0	0	349228	10.1708	NaN	S

Exploratory Data Analysis

df.info()								
<pre><class 'pandas.core.frame.dataframe'=""></class></pre>								
_	RangeIndex: 1309 entries, 0 to 1308							
Data	Data columns (total 12 columns):							
#	‡ Column Non-Null Count Dtype							
0	PassengerId	1309 non-null	int64					
1	Survived	891 non-null	float64					
2	Pclass	1309 non-null	int64					
3	Name	1309 non-null	object					
4	Sex	1309 non-null	object					
5	Age	1046 non-null	float64					
6	SibSp	1309 non-null	int64					
7	Parch	1309 non-null	int64					
8	Ticket	1309 non-null	object					
9	Fare	1308 non-null	float64					
10	Cabin	295 non-null	object					
11	Embarked	1307 non-null	object					
dtypes: float64(3), int64(4), object(5)								
memory usage: 122.8+ KB								

We have missing values for Age, Cabin, Fare and Embarked features, since the observations available are few, we want to fill this missing values. We have the following insights...

- 1) PassengerID: removed, no value added to model
- 2) Pclass: no missing values. First class passengers are more likely to survive followed by 2nd and 3rd

3) Name: no correlations with Survived

4) **Sex:** females are much more likely to survive than males in all classes.

5) **Age**: We have 263 missing values for Age. We will fill the blank with Average values accordingly Ticket Class

6) SibSp: Passengers with few Sibs are more likely to survive as alone passengers do as well.

7) Parch: Passengers travelling with up to 3 children have slightly higher possibility to survive

8) Embarked: Passengers from Cherbourg have highest probability of surviving.

9) **Tickets**: Passengers holding PC tickets have highest probability of survival.

10) Fare: Only 1 Missing value replaced by mean value.

11) Cabin: It seems there's no correlation with Survived Feature.

Feature Engineering

First, we will drop 'Passengerld' and 'Name' features. Then, we will encode Binary and Categorical features.

```
from sklearn.preprocessing import LabelBinarizer, MinMaxScaler

lb = LabelBinarizer()
for col in binary_cols:
    df[col] = lb.fit_transform(df[col])

df = pd.get_dummies(data = df, columns=cat_cols, drop_first=True)
```

Now, we can create Train and Test Split after re-dividing our DataSet (remember we merged Label and Unlabeled csv)

```
# Create train-test splits
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ran
dom_state=0)
```

Then a preprocess phase to properly scale our numerical columns

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

X_train_scaled = sc.fit_transform(X_train)
X_test_scaled = sc.transform(X_test)
```

Deep Learning Models

As we said, we will train multiple neural network models and compare performances using accuracy.

Let's start with a baseline model to compare with the others.

Logistic Regression

We got a score of 0.832. Not bad, simple and clean dataset. It was an expected result.

Let's see if we can improve it.

Basic Neural Network v1.00 (No Hidden Layer so far)

So, just a Sequential Model with 1 Dense Layer, ReLu as activation function, with a Loss Function = Binary CrossEntropy and An Accuracy Score. Run for 20 Epochs and batch size = 32

```
from keras.models import Sequential
from keras.layers import Dense
nn1 = Sequential()
nn1.add(Dense(units=25, input_shape = (24,), activation='relu'))
nn1.add(Dense(units=1, activation='sigmoid'))
nn1.summary()
Model: "sequential"
Layer (type)
                              Output Shape
                                                        Param #
dense (Dense)
                                                        625
                              (None, 25)
dense 1 (Dense)
                              (None, 1)
                                                        26
Total params: 651
Trainable params: 651
Non-trainable params: 0
```

We get:

A slightly increase in accuracy.

Let's move further with a

Deep Neural Network v1.01(Basic + 1 Hidden Layer)

Same hyperparameters:

```
nn2 = Sequential()
nn2.add(Dense(units=25, input_shape = (24,), activation='relu'))
nn2.add(Dense(units=50, activation='relu'))
nn2.add(Dense(units=1, activation='sigmoid'))
nn2.summarv()
Model: "sequential_1"
Layer (type)
                             Output Shape
                                                        Param #
dense_2 (Dense)
                                                        625
                             (None, 25)
dense 3 (Dense)
                             (None, 50)
                                                        1300
                             (None, 1)
dense_4 (Dense)
                                                        51
Total params: 1,976
Trainable params: 1,976
Non-trainable params: 0
```

We get after 20 Epochs:

Another slight improvement.

Let's add more layers (1 more layer), same Hyperparameters:

We keep improving accuracy!

Now we want exaggerate end implement another Deep Neural Net with Adam Optimizer and different Hyperparameters :

y: 0.8624 - val_loss: 0.3712 - val_accuracy: 0.8659

Deep Neural Network v1.2

```
nn3 = Sequential()
nn3.add(Dense(units=25, input_shape = (24,), activation='relu'))
nn3.add(Dense(units=50, activation='relu'))
nn3.add(Dense(units=50, activation='relu'))
nn3.add(Dense(units=1, activation='sigmoid'))
nn3.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = 'accuracy')
nn3_steps = nn3.fit(X_train_scaled, y_train, batch_size = 1, epochs = 50, validation_data = (X_test_scaled, y_test), shuffle=True)
```

Batch size =1 and run for 50 Epochs, we got :

A very good accuracy! Maybe too good...indeed, plotting Training Accuracy Vs Test Accuracy we get:

We have Overfitted!!

CONCLUSION

Best Fit Model: We can't use **DNN v1.2** because it overfits, so only our best guess is the **DNN v1.01** with an accuracy of 0.8624 (vs Logistic Regression of 0.832) and Confusion Matrix:

<pre>from sklearn.metrics import confusion_matrix, classification_report print(classification_report(y_test, y_pred))</pre>							
	precision	recall	f1-score	support			
0.0	0.88	0.90	0.89	110			
1.0	0.84	0.81	0.82	69			
accuracy			0.87	179			
macro avg weighted avg	0.86 0.87	0.86 0.87	0.86 0.87	179 179			

Model DNN v1.01 performed well also with the Unlabeled Dataset with an accuracy of 0.759 .

Next steps: In this work we didn't check for correlation between features and multicollinearity and probably we should have tuned hyperparameters in a better way, we hope that removing correlation and multilinearity we would be able to improve the model and get a better. We also remark the fact that the Data Set is very small, compared to the typical use of DNN.