Lineaire Algebra en differentiaalvergelijkingen

College 3: Eigenwaarden en eigenvectoren, diagonaliseren

J. Vermeer Les 1

Faculteit EWI

§4.2 Karakteristiek polynoom

Herinner:

 λ is eigenwaarde van de $n \times n$ matrix $A \Leftrightarrow$ er is een vector $\mathbf{v} \in \mathbb{R}^n$ met $\mathbf{v} \neq \mathbf{0}$ en $A\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow$ er is vector $\mathbf{v} \neq \mathbf{0}$ met $(A - \lambda I)\mathbf{v} = \mathbf{0} \Leftrightarrow$ de matrix $A - \lambda I$ is niet inverteerbaar \Leftrightarrow $\det(A - \lambda I) = 0$.

 $\det(A-\lambda I)$ blijkt een polynoom van de graad n te zijn, het zogeheten karakteristiek polynoom van A.

Notatie: $p_A(\lambda) = \det(A - \lambda I)$

Conclusie: De (reële) nulpunten van het karakteristiek polynoom van A zijn precies de eigenwaarden van A.

Les 1 2

Algebraïsche multipliciteit van eigenwaarde

Voorbeeld Bepaal karakteristiek polynoom en daarmee de

eigenwaarden van de matrices:
$$A=\left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right]$$
, $B=\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right]$

$$\operatorname{en} C = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right] \operatorname{en} D = \left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{array} \right].$$

Definitie: Als λ_0 een nulpunt van $p_A(\lambda)$ van de graad k, dan zeggen we: λ_0 is eigenwaarde A met algebraïsche multipliciteit k.

Notatie: a.m.
$$(\lambda = \lambda_0) = k$$
.

Les 1

Faculteit EWI TUDelf

Meetkundige multipliciteit van een eigenwaarde

Laat λ een eigenwaarde zijn van de $n \times n$ matrix A. Herinner: De eigenruimte E_{λ} is de verzameling alle $\mathbf{v} \in \mathbb{R}^n$ met $A\mathbf{v} = \lambda \mathbf{v}$ is gelijk aan de verzameling alle $\mathbf{v} \in \mathbb{R}^n$ met $(A - \lambda I)\mathbf{v} = \mathbf{0}$ is gelijk aan

$$Nul(A - \lambda I)$$

Uit de identiteit $E_{\lambda} = \text{Nul}(A - \lambda I)$ volgt:

- 1. E_{λ} is een lineaire deelruimte van A.
- 2. Oplossen van stelsel $A \lambda I | \mathbf{0}$ levert een basis E_{λ}

Definitie: de dimensie van de deelruimte E_{λ} heet de meetkundige dimensie van de eigenwaarde λ .

Notatie: m.m. $(\lambda = \lambda_0) = \ell$.

Les 1 4

Relatie tussen multipliciteiten

Stelling Laat λ_0 een eigenwaarde zijn van A. Dan geldt:

$$1 \le m.m.(\lambda = \lambda_0) \le a.m.(\lambda = \lambda_0)$$

Nog een stel eigenschappen eigenwaarden.

Stelling

- 1. A niet inverteerbaar $\Leftrightarrow \lambda = 0$ is eigenwaarde A
- 2. Als ${\bf x}$ eigenvector A bij λ dan ${\bf x}$ eigenvector A^n bij λ^n , $n=1,2,\ldots$
- 3. Als $\mathbf x$ eigenvector A bij λ en A inverteerbaar dan $\mathbf x$ eigenvector A^{-1} bij $\frac{1}{\lambda}$.

Les 1

Faculteit EWI

Discrete dynamische systemen

Toepassing: Stel A is een $m \times m$ matrix en de (start)vector \mathbf{x}_0 . Beschouw de rij $\{\mathbf{x}_n : n \geq 0\}$:

$$\mathbf{x}_0, \ \mathbf{x}_1 = A\mathbf{x}_0, \ \mathbf{x}_2 = A\mathbf{x}_1 (= A^2\mathbf{x}_0), \dots, \mathbf{x}_n = A\mathbf{x}_{n-1} (= A^n\mathbf{x}_0)$$

Probleem: Bepaal een formule voor \mathbf{x}_n .

Oplossing:

- 1. Schrijf x_0 als lineaire combinatie van eigenvectoren van A.
- 2. Zeg: $\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k$. (Met $A \mathbf{v}_i = \lambda_i \mathbf{v}_i$.)
- 3. Dan geldt:

$$\mathbf{x}_n = c_1 \lambda_1^n \mathbf{v}_1 + c_2 \lambda_2^n \mathbf{v}_2 + \dots + c_k \lambda_k^n \mathbf{v}_k$$

Voorbeeld

Les 1

6

Eigenschap

De volgende stelling staat bewezen in boek, wij bewijzen deze niet.

Stelling Laat A een $n \times n$ matrix zijn. Laat $\mathbf{v}_1, \dots, \mathbf{v}_p$ eigenvectoren zijn van A bij de eigenwaarden $\lambda_1, \dots, \lambda_p$, waarbij $\lambda_i \neq \lambda_j$ als $i \neq j$.

Dan zijn de eigenvectoren $\mathbf{v}_1,\dots,\mathbf{v}_p$ lineair onafhankelijk.

Gevolg: Laat A een $n \times n$ matrix zijn. Dan heeft A tenhoogste n eigenwaarden.

Les 1

Faculteit EWI

§4.4 Gelijkvormige matrices

Laat A en B $n \times n$ matrices zijn.

Definitie De matrices A en B heten gelijkvormig, als er een matrix P bestaat met $A = PBP^{-1}$.

Stelling Laat A en B gelijkvormige matrices zijn. Dan geldt:

- 1. det(A) = det(B).
- 2. $p_A(\lambda) = p_B(\lambda)$.
- 3. A en B hebben dezelfde eigenwaarden met dezelfde multipliciteiten (meetkundig en algebra \ddot{i} sch).

Diagonaliseerbare matrices

Definitie: Laat A een $n \times n$ matrix zijn. De matrix A heet diagonaliseerbaar als A gelijkvormig is met een diagonaalmatrix. Equivalent: er bestaat een diagonaalmatrix D en een inverteerbare matrix P zodat $A = PDP^{-1}$. De schrijfwijze $A = PDP^{-1}$, met gegeven D en P, heet een diagonalisering van A.

Basisvragen:

- 1. Hoe na te gaan of een gegeven matrix A diagonaliseerbaar is?
- 2. Als A diagonaliseerbaar is, hoe een diagonalisering te bepalen?

Les 1

Faculteit EWI

Het diagonaliseren van een matrix I

Stelling: Laat A een $n \times n$ matrices zijn, D een diagonaal matrix en $P = [\mathbf{p}_1 \dots \mathbf{p}_n]$. Equivalent zijn:

- 1. AP = PD
- 2. $A\mathbf{p}_{i} = d_{i,i}\mathbf{p}_{i}$, voor i = 1, ..., n.

Conclusie: Laat $A=PDP^{-1}$ een diagonalisering zijn van A dan is \mathbf{p}_i een eigenvector van A bij de eigenwaarde $\lambda_i=d_{i,i}$. Voorbeelden Probeer de matrices A,B,C,D te diagonaliseren. Stelling: Laat A een $n\times n$ matrix zijn. Equivalent zijn:

- 1. De matrix A is diagonaliseerbaar.
- 2. Er bestaan n lineair onafhankelijke eigenvectoren.

s 1

Faculteit EWI

Het diagonaliseren van een matrix II

Stelling. Laat A een $n \times n$ matrix zijn met n verschillende eigenwaarden. Dan geldt: A is diagonaliseerbaar. Stelling: Laat A een $n \times n$ matrix zijn. Equivalent zijn:

- 1. De matrix A is diagonaliseerbaar.
- 2. Er geldt:
 - (a) Al de nulpunten van $p_A(\lambda)$ zijn reëel.
 - (b) Voor iedere eigenwaarde λ_0 geldt: $m.m.(\lambda = \lambda_0) = a.m.(\lambda = \lambda_0).$

3.
$$\sum_{\lambda} m.m.(\lambda) = n.$$

Definitie: Als $m.m.(\lambda = \lambda_0) < a.m.(\lambda = \lambda_0)$ dan heet A defect in de eigenwaarde λ_0 .

es 1

11

Faculteit EWI

T UDelft

Toepassen diagonaliseren

Stelling: Laat A een diagonaliseerbare matrix zijn. Als $A = PDP^{-1}$ dan geldt:

$$A^n = PD^nP^{-1}$$

Conclusie Omdat \mathbb{D}^n voor een diagonaalmatrix gemakkelijk te bepalen is, is \mathbb{A}^n ook te bepalen.

Voorbeelden Bepaal
$$C^{10}$$
. En A^{10} ?

Les 1 12

Aanbevolen opgaven

College 1	behandeld	aanbevolen opgaven
	§4.3	zie werkschema
	§4.4	zie werkschema

Les I

Faculteit EWI

