Tarefa II: Image Fusion With Guided Filtering

Israel de Oliveira¹, Phellippe Pinheiro², Raphael Ruschel¹

¹PPGEE (Programa de Pós-graduação em Engenharia Elétrica)

²PPGC (Programa de Pós-graduação em Ciências da Computação)

Universidade Federal do Rio Grande do Sul

Introdução ao Processamento de Imagens (CMP165) Prof. Jacob Scharcanski

3 de julho, 2017, Porto Alegre

S. Li, X. Kang and J. Hu, "Image Fusion With Guided Filtering,"in IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2864-2875, July 2013.

Contents

- Introdução
- Método proposto
 - A: 2-scale image decomposition
 - B: Weight map construction
 - Filtragem guiada
 - C: 2-scale image reconstruction
- Nossos resultados
 - Figura: torre Eiffel
 - Figura: memorial
 - Figura: garagem
 - Figura: jardim
 - Figura: brinquedos
 - Figura: leopardo
 - Figura: lata de Pepsi
 - Figura: disquete
 - Figura: laboratório
 - Figura: imagem médica
 - Métricas
- 4 Conclusões

Introdução I

- O artigo escolhido [Li, Kang e Hu 2013] apresenta uma proposta de fusão de imagens utilizando filtragem guiada (guided filtering).
- É proposto um esquema composto por um tratamento de sucessivos filtros utilizando duas ou mais imagens de uma mesma cena a fim de se produzir uma imagem a qual deverá ter maior qualidade visual (maior nitidez e apresentação de detalhes).
- A contribuição principal é realizar uma fusão rápida de duas escalas sem depender de um método de decomposição de imagens, sendo necessário apenas uma filtragem da média (avarage filter, box filter ou box blur).
- Nesse esquema, é proposto um método para obtenção de ponderações que combinam as saliências e o contexto espacial. Tais ponderações são usadas na fusão das imagens.
- Em termos gerais, pretende-se com o método proposto a preservação de bordas e detalhes das imagens na imagem resultante.

Esquema proposto

I_1 e I_2

A: 2-scale image decomposition

- Entrada I_n : com n=1,...,N imagens de mesmas dimensões de uma mesma determinada cena.
- Saídas B_n e D_n : camada de base e de detalhes (base e datail), respectivamente. As quais são obtidas com:

$$B_n = I_n * Z \tag{1}$$

$$D_n = I_n - B_n \tag{2}$$

sendo *Z' uma filtragem da média (box filter).

 B_1 e B_2

D_1 e D_2

B: Weight map construction

- Entrada I_n .
- Saídas W_n^B e W_n^D : matrizes de ponderação refinadas. Primeiramente, são obtidas os mapas de saliências:

$$S_n = |I_n * L| * g \tag{3}$$

sendo '*L' uma filtragem laplaciana seguida de uma filtragem passabaixas gaussiana '*g'.

Um mapa de ponderações (P_n) são obtidas a partir de uma comparação entre os mapas de saliências, dado um pixel k:

$$P_n^k = \begin{cases} 1 & \text{se } S_n^k = \max(S_1^k, S_2^k, ..., S_N^k) \\ 0 & \text{c.c.} \end{cases}$$
 (4)

 S_1 e S_2

P_1 e P_2

B: Weight map construction

As ponderação refinadas W_n^B e W_n^D são obtidas, então, usando filtragem guiada. Aplicasse uma filtragem no mapa P_n guiada pela imagem original I_n :

$$W_n = G_{r,\epsilon}(P_n, I_n) \tag{5}$$

sendo W_n^B com os parâmetros r_1 e ϵ_1 , e W_n^D com os parâmetros r_2 e ϵ_2 .

W_1^B e W_2^B

$W_1^D \; \mathsf{e} \; W_2^D$

Filtragem guiada

- Entradas I, P, r e ϵ : imagem de orientação, imagem de entrada e constantes reais positivas, respectivamente.
- Saída $G_{r,\epsilon}(P,I) = O$, obtida pela expressão:

$$O_i = a_k I_i + b_k \ \forall \ i \in \omega_k \tag{6}$$

para cada pixel i dentro da janela k ($\omega_k \in \mathbb{R}^{R \times R} | R = 2r + 1$) e constantes reais a_k e b_k para imagens em escala de cinza ou vetores no \mathbb{R}^3 para imagens RGB. As constante a_k e b_k podem ser obtidas minimizando uma função custo composta pela diferença quadrática entre a imagem de saída (O) e a de entrada (I), e de um termo de regularização (ϵ) :

$$\{a_k^*, b_k^*\} = \arg\min_{a_k, b_k} \sum_{i \in \omega_k} \left((a_k I_i + b_k - P_i)^2 + \epsilon a_k^2 \right) \tag{7}$$

Filtragem guiada l

ullet Os valores ótimos para as constantes a_k e b_k podem ser obtidos com:

$$a_k = \frac{\frac{1}{R^2} \sum_{i \in \omega_k} I_i P_i - \mu_k \bar{P}_k}{\delta_k + \epsilon}$$
(8)

$$b_k = \bar{P}_k - a_k \mu_k \tag{9}$$

sendo μ_k e δ_k a média e a variância dos pixeis na janela k de I, \bar{P}_k a média dos pixeis nessa mesma janela para a imagem P.

Filtragem guiada II

ullet Para os i pixeis presentes em mais de uma janela, a saída será obtida usando

$$O_i = \bar{a}_i I_i + \bar{b}_i \tag{10}$$

com suas constantes lineares obtidas com:

$$\bar{a}_i = \frac{1}{R^2} \sum_{j \in \omega_i} a_j \tag{11}$$

$$\bar{b}_i = \frac{1}{R^2} \sum_{j \in \omega_i} b_j \tag{12}$$

sendo ω_i a janela tendo o pixel i como centro.

Relembrando o esquema proposto

C: 2-scale image reconstruction

- Entradas B_n , D_n , W_n^B e W_n^D .
- Saída F: resultado final.

$$F = \bar{B} + \bar{D} = \sum_{n=1}^{N} \left(W_n^B \circ B_n + W_n^D \circ D_n \right)$$
 (13)

sendo 'o' a operação de produto elemento por elemento:

$$c = a \circ b : c_{ij} = a_{ij}b_{ij} \tag{14}$$

$\overline{|W_1^B \circ B_1}$ e $\overline{W_2^B} \circ B_2$

$W_1^D \circ D_1$ e $W_2^D \circ D_2$

$ar{B}$ e $ar{D}$

Figura: torre Eiffel

Figura: memorial

Figura: garagem

4 □ → 4 ₱ → 4 ≣ → 4 ≣ → 1 ■ ◆ 2 ← 33/73

 4□ → 4□ → 4 □ → 4

Figura: jardim

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ₩ 9 Q (39 / 73

√) < (~)
49 / 73
</p>

√) Q (~)

50 / 73

Q_{MI} : métrica baseada em teoria da informação.

Métricas de qualidade objetiva para imagens fundidas

• Métrica baseada em teoria da informação [22], entre a imagem de origem (referência) A, as imagens de entrada B e a imagem fundida F:

$$Q_{MI} = 2\left(\frac{\operatorname{MI}(A,F)}{\operatorname{H}(A) + \operatorname{H}(F)} + \frac{\operatorname{MI}(B,F)}{\operatorname{H}(B) + \operatorname{H}(F)}\right) \tag{15}$$

$$MI(A,F) = H(A) + H(F) - H(A,F)$$
 (16)

 $\mathrm{H}(\,\cdot\,)$ e $\mathrm{H}(A,F)$: entropia do argumento e entropia marginal entre A e F, respectivamente.

Q_Y : métrica baseada em similaridade estrutural.

• Métrica baseada em similaridade estrutural (SSIM) [29], entre a imagem de origem (referência) A, as imagens de entrada B e a imagem fundida F:

$$Q_Y = \begin{cases} \Gamma_1, & \text{se } SSIM(A_\omega, B_\omega | \omega) \ge 0.75 \\ \Gamma_2, & \text{se } SSIM(A_\omega, B_\omega | \omega) < 0.75 \end{cases}$$
 (17)

$$\Gamma_1 = \lambda_{\omega} \operatorname{SSIM}(A_{\omega}, F_{\omega}) + (1 - \lambda_{\omega}) \operatorname{SSIM}(B_{\omega}, F_{\omega})$$
 (18)

$$\Gamma_2 = \max(\text{SSIM}(A_{\omega}, F_{\omega}), \text{SSIM}(B_{\omega}, F_{\omega}))$$
 (19)

$$\lambda_{\omega} = \frac{s(A_{\omega})}{s(A_{\omega}) + s(B_{\omega})} \tag{20}$$

 $\mathrm{SSIM}(A,B)$, ω e s(·): índice de similaridade estrutural entre A e B, janela 7×7 e variância do argumento, respectivamente.

Q_C : métrica de Cvejic *et al*.

• Métrica de Cvejic et al [24] quantiza o quão bem a informação importante das imagens de entrada B são mantidas na imagem de saída F (com A como a imagem de origem - referência):

$$Q_C = \mu \operatorname{UIQI}(A_{\omega}, F_{\omega}) + (1 - \mu) \operatorname{UIQI}(B_{\omega}, F_{\omega})$$

$$\mu = \begin{cases} 0, & \text{se } \Gamma_3 < 0 \\ \Gamma_3, & \text{se } \Gamma_3 \in [0, 1] \\ 0, & \text{se } \Gamma_3 > 1 \end{cases}$$

$$(21)$$

$$\Gamma_3 = \frac{\sigma_{AF}}{\sigma_{AF} + \sigma_{BF}} \tag{23}$$

UIQI(A,B) e σ_{AB} : índice de qualidade universal [30] e covariância, respectivamente, entre as matrizes A e B.

Q_G : métrica baseada no gradiente.

Métricas de qualidade objetiva para imagens fundidas

• Métrica baseada no gradiente [25], entre a imagem de origem (referência) A, as imagens de entrada B e a imagem fundida F, com $\{i,j\}$ o endereço do ij-ésimo pixel:

$$Q_G = \sum_{i=1}^{N} \sum_{j=1}^{M} \Gamma_{ij}^4 \div \sum_{i=1}^{N} \sum_{j=1}^{M} \Gamma_{ij}^5$$
 (24)

$$\Gamma_{ij}^{4} = \left(Q_{ij}^{AF} \tau_{ij}^{A} + Q_{ij}^{BF} \tau_{ij}^{B} \right) \tag{25}$$

$$\Gamma_{ij}^5 = \left(\tau_{ij}^A + \tau_{ij}^B\right) \tag{26}$$

$$Q^{AF} = Q_g^{AF} \circ Q_o^{AF} \tag{27}$$

 Q_g^{AB} , Q_o^{AB} , e τ^A : matriz de intensidade das bordas, matriz de preservação da orientação e matriz de ponderação relativa a matriz A.

Q_P : métrica baseada em congruência de fase.

Métricas de qualidade objetiva para imagens fundidas

• Métrica baseada em congruência de fase [26]:

$$Q_P = (P_P)^{\alpha} (P_M)^{\beta} (P_m)^{\gamma} \tag{28}$$

 α , β e γ : momentos aplicados a cada uma das fases.

$$P_{\Gamma} = \max(C_{AF}^{\Gamma}, C_{BF}^{\Gamma}, C_{SF}^{\Gamma}) \tag{29}$$

$$C_{XY}^K = \frac{\sigma_{XY}^K + d}{\sigma_X^K \sigma_Y^K + d} \tag{30}$$

d, S e σ : constante para evitar instabilidade numérica, mapa de (máximas) saliências e variância.

Source Ima	ages	Index	SWT	CVT	LAP	NSCT	GRW	WSSM	HOSVD	GFF
		Q_Y	0.862(0)	0.813(0)	0.868(0)	0.864(0)	0.696(0)	0.809(0)	0.967(38)	0.934(12)
Petrović database	abase	Q_C	0.745(0)	0.724(0)	0.744(0)	0.751(2)	0.645(0)	0.708(1)	0.691(7)	0.804(40)
i cacone database		Q_G	0.632(1)	0.560(0)	0.644(0)	0.633(1)	0.446(0)	0.617(1)	0.648(24)	0.657(23)
		Q_P	0.525(2)	0.439(0)	0.516(1)	0.510(0)	0.355(0)	0.347(0)	0.628(30)	0.594(17)
		Q_{MI}	0.391(0)	0.380(0)	0.398(0)	0.390(0)	0.383(0)	0.710(5)	0.910(42)	0.570(3)
		Q_Y	0.915(0)	0.894(0)	0.922(0)	0.911(0)	0.761(0)	0.877(0)	0.955(4)	0.964(6)
Multifoci	us	Q_C	0.818(0)	0.798(0)	0.816(0)	0.829(1)	0.724(0)	0.779(0)	0.847(7)	0.835(2)
database	e	Q_G	0.681(0)	0.661(0)	0.698(1)	0.673(0)	0.519(0)	0.668(0)	0.685(1)	0.714(8)
		Q_P	0.734(0)	0.721(0)	0.772(1)	0.744(0)	0.559(0)	0.698(0)	0.740(0)	0.801(9)
		Q_{MI}	0.849(0)	0.814(0)	0.904(0)	0.840(0)	0.778(0)	0.865(1)	1.063(7)	0.953(2)
Multiexpos	sure	Q_Y	0.717(0)	0.738(0)	0.792(0)	0.798(0)	0.717(0)	0.827(1)	0.953(9)	0.914(0)
and		Q_C	0.648(0)	0.674(0)	0.695(0)	0.715(0)	0.674(0)	0.741(2)	0.764(3)	0.801(5)
multimodal		Q_G	0.605(0)	0.575(0)	0.693(1)	0.672(0)	0.474(0)	0.638(2)	0.620(1)	0.704(6)
database	e	Q_P	0.540(0)	0.501(0)	0.602(0)	0.588(0)	0.439(0)	0.362(0)	0.551(3)	0.661(7)
		Q_{MI}	0.509(0)	0.538(0)	0.542(1)	0.542(0)	0.552(0)	0.755(0)	1.015(9)	0.597(0)
SWT	CV	ľΤ	LAP	NSC	T G	RW	WSSM	I H	OSVD	GFF
1.61	2.	.6	0.02	12.1	6 (0.04	155.5		66.5	1.16
7.8	4.	.2	1.4	22		1.2	4		1.3	2.2
							4 □ >	4 🗗 ▶ •	■ト ・重ト	₹ 990

Comparativo I

Tabela: Multifocus

Métrica	GFF (autores)	GFF (alunos)	
Q_Y	0.964	0.868	0.900
Q_C	0.835	0.748	0.896
Q_G	0.714	0.597	0.836
Q_P	0.801	0.683	0.853
Q_{MI}	0.953	0.909	0.954

Tabela: Multiexposure

Métrica	GFF (autores)	GFF (alunos)	comp. rel.
$\overline{Q_Y}$	0.914	0.903	0.988
Q_C	0.801	0.765	0.955
Q_G	0.704	0.550	0.781
Q_P	0.661	0.775	1.173
Q_{MI}	0.597	0.706	1.183

Conclusões I

- O método proposto é relativamente simples, principalmente em comparação com o HOSVD. Estrutura do algoritmo de fácil implementação.
- Apresenta uma eficiência computacional maior que os demais métodos.
- Há preservação majoritária da informação (detalhes) nas imagens de entrada.
- Robusto no registro da imagem.
- Uma melhora possível seria uma busca ótima ou adaptativa dos parâmetros usados no algoritmo.

Obrigado pela vossa atenção.

References

LI, S.; KANG, X.; HU, J. Image fusion with guided filtering. *IEEE Transactions on Image Processing*, v. 22, n. 7, p. 2864–2875, July 2013. ISSN 1057-7149.