

TEST REPORT

FCC ID: ZC8S321NETWORK

Applicant : Hemisphere GNSS Inc.

Address : 8515 E Anderson Dr, Scottsdale, AZ 85255, USA

Equipment under Test (EUT):

Name : GNSS Survey Receiver

Model : S321 Network, BRx6 Network

In Accordance with: FCC PART 2; FCC PART 22H; FCC PART 24E

Report No : T1851403 07

Date of Test: September 22- November 16, 2015

Date of Issue: November 16, 2015

Test Result : PASS

Test Result: PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

(Mark Zhu)

General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Alpha Product Testing Co., Ltd. Or test done by Shenzhen Alpha Product Testing Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Alpha Product Testing Co., Ltd. Approvals in writing.

Contents

1.	Gen	eral Information	5
	1.1.	Description of Device (EUT)	5
	1.2.	Test Lab information	5
2.	Sum	mary of test	6
	2.1.	Summary of test result	6
	2.2.	Assistant equipment used for test	7
	2.3.	Test mode	7
	2.4.	Test Environment Conditions	7
	2.5.	Measurement Uncertainty (95% confidence levels, k=2)	7
	2.6.	Test Equipment	8
3.	Con	ducted Output power	9
	3.1.	Block Diagram of Test Setup	9
	3.2.	Limit	9
	3.3.	Test Procedure	9
	3.4.	Test Result	9
4.	Rad	iated Output power	10
	4.1.	Block Diagram of Test Setup	10
	4.2.	Limit	10
	4.3.	Test Procedure	10
	4.4.	Test Result	11
5.	Pea	k-to-Average Ratio	12
	5.1.	Block Diagram of Test Setup	12
	5.2.	Limit	12
	5.3.	Test Procedure	12
	5.4.	Test Result	12
6.	Occi	upied Bandwidth	13
	6.1.	B lock Diagram of Test Setup	13
	6.2.	Limit	13
	6.3.	Test Procedure	13
	6.4.	Test Result	14
	6.5.	Orginal test data	14
7.	Freq	quency stability	18
	7.1.	Block Diagram of Test Setup	18
	7.2.	Limit	18
	7.3.	Test Procedure	18
	7.4.	Test Result	19
8.	Con	ducted spurious emissions	21
	8.1.	Block Diagram of Test Setup	21
	8.2.	Limit	21
	8.3.	Test Procedure	21
	8.4.	Test Result	21
9.	Rad	iated spurious emissions	28
		Block Diagram of Test Setup	

	9.2.	Limit	28
	9.3.	Test Procedure	28
	9.4.	Test Result	29
10.	Band	Edge Compliance	31
	10.1.	Block Diagram of Test Setup	31
	10.2.	Limit	31
	10.3.	Test Procedure	31
	10.4.	Test Result	32
11.	Powe	er line conducted emission	34
	11.1.	Block Diagram of Test Setup	34
	11.2.	Limit	34
	11.3.	Test Procedure	34
	11.4.	Test Result	35
12.	Test s	setup photo	36

TEST REPORT VERIFICATION

Applicant : Hemisphere GNSS Inc.

Manufacturer : Hemisphere GNSS Inc.

EUT Description : GNSS Survey Receiver

(A) Model No. : S321 Network, BRx6 Network

(B) Trademark : N/A

(C) Ratings Supply : DC 10.8V from internal battery or external battery

(D)Test Voltage : DC 10.8V from internal battery

Measurement Standard Used:

FCC Rules and Regulations Part 22H & Part 24E, ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the Part 22H & Part 24E limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....:

Approved by (name + signature).....:

Simple Guan
Project Manager

Date of issue......:

November 16, 2015

1. General Information

1.1. Description of Device (EUT)

EUT : GNSS Survey Receiver

Trade Name : N/A

Model No. : S321 Network , BRx6 Network
DIFF. : Only differ in model number.

Power supply : DC 10.8V from internal battery or external battery

Manufacturer: NIL

Adapter : Model No.: PSAA30R-150

Radio Technology : GSM/GPRS 850

GSM/GPRS 1900

Operation frequency : GSM/GPRS 850: 824.2MHz—848.8MHz

GSM/GPRS 1900: 1850.2MHz—1909.8MHz

Modulation : GSM/GPRS: GMSK

Antenna Type : PCB Antenna, max gain 2 dBi

Applicant : Hemisphere GNSS Inc.

Address : 8515 E Anderson Dr, Scottsdale, AZ 85255, USA

Manufacturer : Hemisphere GNSS Inc.

Address : 8515 E Anderson Dr, Scottsdale, AZ 85255, USA

1.2. Test Lab information

Shenzhen Alpha Product Testing Co., Ltd

Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road,

Bao'an, Shenzhen, China

August 11, 2014 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results
	FCC PART 2: 2.1046	
Conducted Output power	FCC PART 22H: 22.913 (a)	PASS
	FCC PART 24E: 24.232 (c)	
	FCC PART 22H:22.913 (a)	DAGG
Radiated Output power(erp/eirp)	FCC PART 24E:24.232(c)	PASS
	FCC PART 2: 2.1049	
Occupied bandwidth	FCC PART 22H: 22.917 (b)	PASS
	FCC PART 24E: 24.238 (b)	
	FCC PART 2: 2.1055	
Frequency stability	FCC PART 22H: 22.355	PASS
	FCC PART 24E: 24.235	
Conducted apprious amission	FCC PART 2: 2.1051	
Conducted spurious emission	FCC PART 22H: 22.917	PASS
(Antenna terminal)	FCC PART 24E: 24.238	
	FCC PART 2: 2.1053	
Radiated spurious emissions	FCC PART 22H: 22.917	PASS
	FCC PART 24E: 24.238	
	FCC PART 22H: 22.917 (b)	DAGG
Band edge compliance	FCC PART 24E: 24.238 (b)	PASS
Power Line Conducted Emission Test	FCC Part 15: 15.207	PASS

2.2. Assistant equipment used for test

Description		Adapter	
Manufacturer		NIL	
Model No.		PSAA30R-150	
Input		AC 100-240V, 50-60Hz, 0.8A	
Output		DC 15V, 2A	

2.3. Test mode

During all testing, EUT is in link mode with base station emulator at maximum power level in each test mode and channel as below:

Mode	Channel	Frequency(MHz)
	128	824.2
GSM 850	190	836.6
	251	848.8
	512	1850.2
PCS 1900	661	1880.0
	810	1909.8

2.4. Test Environment Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.5. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2°C	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2.6. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN		SEL0017	2015.01.19	1Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2015.01.19	1Year
Receiver	R&S	ESCI	1166.5950K0 3-1011	2015.01.19	1Year
Receiver	R&S	ESCI	101202	2015.01.19	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-4 38	2015.01.21	1Year
Horn Antenna	EMCO	3115	640201028-06	2015.01.21	1Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2015.01.21	1Year
Cable	Resenberger	N/A	No.1	2015.01.19	1Year
Cable	SCHWARZBEC K	N/A	No.2	2015.01.19	1Year
Cable	SCHWARZBEC K	N/A	No.3	2015.01.19	1Year
Pre-amplifier	Schwarzbeck	BBV9743	9743-019	2015.01.19	1Year
Pre-amplifier	R&S	AFS33-180026 50-30-8P-44	SEL0080	2015.01.19	1Year
Base station	Agilent	E5515C	GB44300243	2015.01.19	1 Year
Temperature controller	Terchy	MHQ	120	2015.01.19	1Year
Power divider	Anritsu	K240C	020346	2015.01.19	1 Year
Signal Generator	НР	83732B	VS3449051	2015.01.19	1 Year
Power Meter	Anritsu	ML2487A	6K00001491	2015.01.19	1Year
Power sensor	Anritsu	ML2491A	32516	2015.01.19	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2016.01.1	1Year
L.I.S.N.#2	ROHDE&SCHW ARZ	ENV216	101043	2016.01.1	1 Year

3. Conducted Output power

3.1. Block Diagram of Test Setup

3.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

3.3. Test Procedure

- (1) The EUT's RF output port was connected to base station.
- (2) A call is set up by the SS according to the generic call set up procedure
- (3) Set EUT at maximum power level through base station by power level command
- (4) Measure the maximum output power of EUT at each frequency band and mode by base station.

3.4. Test Result

EUT: GNSS Survey Receiver M/N:S321 Network									
Power: DC 10.8V from battery									
Ambient Temperature:23°C Relative Humidity: 60%									
Test date:	2015-10-23		Test	site: RF site	Tested by	: Simple Gua	n		
Conclusio	n: PASS	,							
Mode	Channel			PK (Output Power	(dBm)		Limit	
		GSM850		GPRS	GPRS	GPRS	GPRS	(dBm)	
				-1 Slot up	-2 Slot up	-3 Slot up	-4 Slot up		
GSM	128	33.	19	32.37	31.43	29.36	28.67	38.5	
850	190	33.0	05	32.25	31.28	29.48	28.56	38.5	
830	251	33.2	24	32.14	31.54	29.71	28.59	38.5	
PCS	512	29.3	37	29.02	28.05	26.24	25.12	33	
1900	661	29.9	92	29.11	28.24	26.36	25.24	33	
1900	810	29.8	86	29.08	28.43	26.53	25.35	33	

4. Radiated Output power

4.1. Block Diagram of Test Setup

4.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

4.3. Test Procedure

- The EUT was placed on a non-conductive rotating platform with 0.8 meter height in an
 anechoic chamber. The radiated emission at the fundamental frequency was measured at
 3 m with a test antenna and a spectrum analyzer with RBW= 3MHz, VBW= 3MHz and
 peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. The highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations
- 3. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1GHz) or Horn antenna (for frequency above 1GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from

S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain –Substitution antenna Loss (only for Dipole antenna) - Analyzer reading. Then the EUT's EIRP was calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP – 2.15

4.4. Test Result

EUT: GNSS Survey	Receiver N	M/N:S321 Net	work				
Power: DC 10.8V fro	om battery						
Ambient Temperatur	e:23℃		Relative Humidity: 60%				
Test date: 2015-10-2	3		Test site: RF site	Tested by: Sin	mple Guan		
Conclusion: PASS							
Mode	Channel	LVL	Correction	ERP	EIRP		
		(dBm)	factor(dB)	(dBm)	(dBm)		
	128	4.3	26.61	28.76	/		
GSM 850	190	4.4	26.86	29.11	/		
	251	4.3	26.49	28.64	/		
	512	4.2	22.27	/	26.47		
PCS 1900	661	4.2	22.66	/	26.86		
	810	4.1	22.37	/	26.47		
ERP=LVL + Correction factor -2.15							

EIRP=LVL+ Correction factor

5. Peak-to-Average Ratio

5.1. Block Diagram of Test Setup

5.2. Limit

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

5.3. Test Procedure

The EUT' RF output port was connected to Measurement Instrument(s) and Base Station Via power divider, and then measure the test data.

5.4. Test Result

Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	0.35	13	PASS
	GSM	MCH	0.22	13	PASS
GSM1900		НСН	0.19	13	PASS
		LCH	3.19	13	PASS
	GPRS	MCH	3.22	13	PASS
		НСН	3.14	13	PASS

6. Occupied Bandwidth

6.1. B lock Diagram of Test Setup

6.2. Limit

N/A

6.3. Test Procedure

- 1. The EUT' RF output port was connected to Spectrum Analyzer and Base Station via power divider.
- 2. Spectrum analyzer's occupied bandwidth measure function was used to measure 99% bandwidth and -26dBc bandwidth

•

6.4. Test Result

EUT: GNSS Survey Receiver M/N:S321 Network						
Power: DC 10.8V from battery						
Ambient Temperature:23	3℃	Relative Humidity: 60%				
Test date: 2015-10-23		Test site: RF site	Tested by: Simple Guan			
Mode	Channel	99% bandwidth	-26dBc bandwidth			
		(KHz)	(KHz)			
	128	243.95	314.86			
GSM 850	190	239.57	315.63			
	251	247.96	324.42			
	512	243.68	316.13			
PCS 1900	661	245.72	315.04			
	810	243.19	319.24			

6.5. Orginal test data

GSM 850 CH128

GSM 850 CH190

GSM 850 CH251

PCS 1900 CH512

PCS 1900 CH661

PCS 1900 CH810

7. Frequency stability

7.1. Block Diagram of Test Setup

7.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz	
+ 2.5 ppm	Must stay within the authorized	
± 2.5 ppm	frequency block	

7.3. Test Procedure

Test Procedures for Temperature Variation:

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from DC 10.8 V to 9 V $\,$
- 3. The variation in frequency was measured for the worst case.

7.4. Test Result

EUT: GNSS Survey Receiver M/N: S321 Network						
Power: DC 10.8V from battery						
Ambient Temperature:23C Relative Humidity: 60%						
Test date: 2015-10-23		Test site: RF site	Tested by: Simple Guan			
Conclusion: PASS						
Mode	Voltage	Frequency error	frequency error			
	(V)	(Hz)	(ppm)			
	10.8V	17.57	0.02			
GSM 850	10.0V	-18.35	-0.02			
CH 190	9.5V	15.43	0.02			
	9.0V	-16.56	-0.02			
	10.8V	-26.32	-0.02			
PCS 1900	10.0V	36.43	0.02			
CH661	9.5V	-31.05	-0.02			
	9.0V	31.62	0.02			

Mode	Temperature	Frequency error	frequency error
	(℃)	(Hz)	(ppm)
	-30	23.35	0.02
	-20	22.58	0.02
	-10	23.37	0.02
GSM 850	0	23.68	0.02
CH190	10	-15.43	-0.02
CH190	20	18.38	0.02
	30	-12.63	-0.02
	40	-13.42	-0.02
	50	-21.71	-0.01
	-30	37.58	0.02
	-20	37.56	0.02
	-10	37.21	0.02
PCS 1900	0	37.43	0.02
CH661	10	-24.35	-0.02
	20	31.28	0.02
	30	-24.63	-0.02
	40	21.71	0.02
	50	-11.46	-0.01

8. Conducted spurious emissions

8.1. Block Diagram of Test Setup

8.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

8.3. Test Procedure

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The low, middle and high channels of each band and mode's spurious emissions for 30MHz to 10th Harmonic were measured by Spectrum analyzer.

8.4. Test Result

PASS

Test Mode: GSM 850 CH 128

Test Mode: GSM 850 CH 190

Test Mode: GSM 850 CH 251

Test Mode: GSM 1900 CH 512

Test Mode: GSM 1900 CH 661

Test Mode: GSM 1900 CH 810

9. Radiated spurious emissions

9.1. Block Diagram of Test Setup

9.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

9.3. Test Procedure

- 1. The EUT was placed on a non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3m with a test antenna and a spectrum analyzer with RBW= 1MHz, VBW= 1MHz, peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions (record as LVL) at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Final spurious emissions levels were measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1GHz) or Horn antenna (for frequency above 1GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from S.G. was

applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain -Substitution antenna Loss(only for Dipole antenna) - Analyzer reading. Then final

spurious emissions were calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP $-\,2.15$

9.4. Test Result

EUT:GNSS Survey Receiver M/N:S321 Network						
Power: DC 10.	Power: DC 10.8V from battery					
Test Date: 2015-10-23		Test site: RF Chamber		Tested by: Sin	Tested by: Simple Guan	
Ambient Temperature: 24°C Relative Humidity: 60%						
Conclusion: PA	ASS					
			Test result			
Test Mode: G	SM 850 CH1	28				
Frequency	Antenna	LVL	Correction	Result	Limit	Margin
(MHz)	polarization	(dBm)	factor(dB)	(ERP)(dBm)	(dBm)	(dB)
537.31	Н	-56.57	-6.53	-63.1	-13	50.1
537.31	V	-59.42	-6.53	-65.95	-13	52.95
1648.4	Н	-54.79	11.5	-43.29	-13	30.29
1648.4	V	-44.79	10.56	-34.23	-13	21.23
Test Mode: GSM 850 CH190						
1673.2	Н	-53.29	10.94	-42.35	-13	29.35
1673.2	V	-50.61	10.9	-39.71	-13	26.71
Test mode: GSM 850 CH251						
1697.6	Н	-46.82	11.67	-35.15	-13	22.15
1697.6	V	-42.57	11.13	-31.44	-13	18.44

Frequency	Antenna	LVL	Correction	Result	Limit	Margin
(MHz)	polarization	(dBm)	factor(dB)	(EIRP)(dBm)	(dBm)	(dB)
537.31	Н	-56.75	-6.53	-63.28	-13	50.28
537.31	V	-55.81	-6.53	-62.34	-13	49.34
3700.4	Н	-52.68	8.57	-44.11	-13	31.11
3700.4	V	-51.91	8.37	-43.54	-13	30.54
Test Mode: GSM 1900 CH661						
3760	Н	-54.76	8.75	-46.01	-13	33.01
3760	V	-52.58	8.55	-44.03	-13	31.03
Test mode: GSM 1900 CH810						
3819.6	Н	-54.27	8.94	-45.33	-13	32.33
3819.6	V	-52.42	8.72	-43.7	-13	30.7

10.Band Edge Compliance

10.1.Block Diagram of Test Setup

10.2.Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

10.3.Test Procedure

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.

10.4. Test Result

PASS

Test Mode: GSM 850

Test Mode: GSM 1900

11. Power line conducted emission

11.1.Block Diagram of Test Setup

11.2.Limit

	Maximum RF Line Voltage			
Frequency	Quasi-Peak Level	Average Level		
	$dB(\mu V)$	$dB(\mu V)$		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

11.3.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C64.10:2013 on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10 kHz.
- (5) The frequency range from 150 kHz to 30 MHz is checked.

11.4.Test Result

Not apply to battery operated product.

12. Test setup photo

Photographs-Radiated Emission Test Setup in Chamber

-----END OF THE REPORT-----