PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2005-075948

(43)Date of publication of application: 24.03.2005

(51)Int.Cl.

COSG 85/00 COSG 65/38 H05B 33/14 H05B 33/22

(21)Application number: 2003-308956 (22)Date of filing:

01.09.2003

(71)Applicant : MITSUBISHI CHEMICALS CORP

(72)Inventor: IIDA KOUICHIRO SOMA MINORU

(54) POLYMER COMPOUND, HOLE INJECTION, TRANSPORT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, AND ORGANIC ELECTROLUMINESCENT ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a compound with high solubility, high noncrystallinity and suitable charge mobility, and an organic electroluminescent element using it.

SOLUTION: This polymer compound has repeating units represented by general formula (I) and general formula (II) (wherein Ar1, Ar2, Ar6 and Ar7 are each independently an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, Ar3 and Ar8 are each independently a p-phenylene group, a m-phenylene group or a 4.4'-biphenylene group either of which may have a substituent) and has a weight average molecular

weight of 1,000-1,000.000. Applications using it are

LEGAL STATUS

provided.

[Date of request for examination]

24.03.2006

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

[Date of registration] [Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11) 特許出版公開番号 特開2005-75948 (P2005-75948A)

(P2005-75948A) (43) 公開日 平成17年3月24日(2005.3.24)

(51) Int. C1. 7	FI		テーマコード(参考)
COSG 85/00	CO8G 85/00		3KOO7
COSG 65/38	CO8G 65/38		4J005
HO5B 33/14	HO5B 33/14	A	4 J O 3 1
HO5B 33/22	HO5B 33/22	D	

審査請求 未請求 請求項の数 14 OL (全 41 頁)

(21) 出版番号	特願2003-308956 (P2003-308956)	(71) 出版人	000005968
(22) 出版日	平成15年9月1日 (2003.9.1)		三菱化学株式会社
			東京都港区芝五丁目33番8号
		(74)代理人	100103997
			弁理士 長谷川 晩司
		(72) 発明者	飯田 宏一朗
			神奈川県横浜市青葉区鴨志田町1000番
			地 株式会社三菱化学科学技術研究センタ
			一内
		(72) 発明者	相馬 実
		(12) 75-71 11	神奈川県横浜市青葉区鴨志田町1000番
			地 株式会社三菱化学科学技術研究センタ
			一内
		D 1 (40	*) 3K007 AB03 AB06 AB11 AB14 AB18
,		F 3 - A (9	DB03 FA01
			DDUS FAUL 喜然百行株?

(54) [発明の名称] 高分子化合物、正孔注入・輸送材料、有機電界発光素子材料および有機電界発光素子

(57) 【要約】

[課題] 溶解性が高く、非晶質性が高く、適度な電荷移動度を有する化合物と、これを用いた有機電界発光素子を提供する。

【解決手段】 下記一般式 (I) で表される繰り返し単位、および下記一般式 (II) で表されるくり返し単位を含有する、重量平均分子量が 1 , 000~1 , 000 , 000 ある高分子化合物、およびその用途。

20

【特許請求の範囲】

【請求項1】

下記一般式 (I) で表される繰り返し単位、および下記一般式 (II) で表されるくり返 し単位を含有する、重量平均分子量が1,000~1,000,000である高分子化合物。

[化1]

$$\begin{array}{c}
Ar^{1} \\
Ar^{3} \\
A\overline{5}
\end{array}$$

$$\begin{array}{c}
Ar^{2} \\
A\overline{5}
\end{array}$$

$$\begin{array}{c}
Ar^{3} \\
A\overline{5}
\end{array}$$

$$\begin{array}{c} A_{r}^{8} \\ N \longrightarrow A_{r}^{8} \longrightarrow \sqrt{A_{1}^{9}} \longrightarrow O \longrightarrow Y \end{array} \hspace{0.5cm} (II)$$

(式中、Ar¹、Ar²、Ar⁶およびAr⁷は各々独立に、置換基を有していてもよい芳香 | 旅遊化水素薬、または置換基を有していてもよい芳香族復素業基を表す。

 Ar^3 および Ar^8 は各々独立に、p-フェニレン基、<math>m-フェニレン基、または4, 4, 4, 4

環A4、 環A5、 環A9 および環A10 は各々独立して、 置換基を有していてもよいア ルキル基、 置換基を有していてもよいアルケニル基、 医換基を有していてもよいアルキ ル基、 医換基を有していてもよいアラルキル基、 置換基を有していてもよいアシル基、 機基を有していてもよい芳香族炭化水素基、および置換基を有していてもよい芳香族復業 環基よりなる鮮から選ばれる1種または2種以上の置換基で置換されていてもよいペンゼ ン類を示す。

XおよびYは各々独立して、2価の連結基を表す。)

【請求項2】

前記一般式 (I) で表される繰り返し単位が下記一般式 (I') で表され、前記一般式 (II) で表される繰り返し単位が下記一般式 (II') で表される、請求項 1 記載の高分子化合物。

[化2]

Ar³およびAr⁸は各々独立に、p-フェニレン基、m-フェニレン基、または4,4'ービフェニレン基を表し、これらはいずれも、債務基を有していてもよいアルキル基、 置務基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、 基を有していてもよいアラルキル基、置換基を有していてもよいアシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい方看族機工業基よりな る前から選ばれる1種または2種以上の置換基で置換されていてもよい。

【請求項3】

前配一般式 (I) および (II) において、XおよびYが各々独立に、下配構造式で表される部分構造からなる群より選ばれた 2 価の連結基である、請求項 1 または 2 記載の高分子化合物。

(式中、Ar¹¹ないしAr²⁰は、各々独立して、置換基を有していてもよい芳香族炭化水 素基または置換基を有していてもよい芳香族複素環基を示し、R²¹およびR²²は、各々独 立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいア ルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアラル キル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオ キシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい芳香族炭化水素 基、または置換基を有していてもよい芳香族複素環基を表す。)

【請求項4】

前記一般式 (I) で表される繰り返し単位と、前記一般式 (II) で表される繰り返し単 位の含有量比(モル比)が、(1)/ (11) = 0.2~5である、請求項1ないし3の いずれか一項に記載の高分子化合物。

【糖求項5】

請求項1ないし4のいずれか一項に記載の高分子化合物を含有する、正孔注入・輸送材料

【請求項6】

さらに、電子受容性化合物を含有する、請求項5記載の正孔注入・輸送材料。

【請求項7】

前記高分子化合物のイオン化ポテンシャルから、前記電子受容性化合物の電子親和力を引 いた値が 0.7 e V以下である、請求項 6 記載の正孔注入・輸送材料。

[請求項8]

前記電子受容性化合物の含有量が、前記高分子化合物に対して0.1~50重量%の範囲 である、請求項6または7に記載の正孔注入・輸送材料。

【請求項9】

請求項1ないし4のいずれか一項に記載の高分子化合物を含有する、有機電界発光素子材 料。

【請求項10】

さらに、電子受容性化合物を含有する、請求項9記載の有機電界発光素子材料。

【精求項11】

前記高分子化合物のイオン化ポテンシャルから、前記電子受容性化合物の電子親和力を引 いた値が 0.7 e V以下である、請求項 10 記載の有機電界発光素子材料。

【請求項12】

前記電子受容性化合物の含有量が、前記高分子化合物に対して0.1~50重量%の範囲 である、請求項10または11に記載の有機電界発光素子材料。

【贈求項13】

50

陽極、陰極、および該両極間に存在する発光層を有する有機電界発光素子であり、請求項 9 ないし12 のいずれか一項に記載の有機電界発光素子材料を用いて形成された層を有す ることを特徴とする、有機電界発光素子。

【請求項14】

該有機電界発光素子材料を用いて形成された層を、発光層と陽極との間に有する、請求項 13記載の有機電界発光素子。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は新規の高分子化合物、およびこれを用いた有機電界発光素子に関するものであ る。該有機電界発光素子は、有機化合物から成る発光層に電界をかけて光を放出する薄膜 型デバイスに関するものである。

【背景技術】

100021

従来、薄膜型の電界発光(EL)素子としては、無機材料のII-VI族化合物半導体 であるZnS、CaS、SrS等に、発光中心であるMnや希土類元素(Eu、Ce、T b、Sm等)をドープしたものが一般的であるが、上記の無機材料から作製したEL素子 it.

- 1) 交流駆動が必要 (50~1000Hz)、
- 2) 駆動電圧が高い (~200 V)、
- 3) フルカラー化が困難、
- 4) 周辺駆動回路のコストが高い、

という問題点を有している。

100031

しかし、近年、上記問題点の改良のため、有機薄膜を用いたEL素子の開発が行われる ようになった。特に、発光効率を高めるため、電極からのキャリアー注入の効率向上を目 的として電極の種類の最適化を行い、芳香族ジアミンから成る正孔輸送層と8-ヒドロキ シキノリンのアルミニウム錯体から成る発光層とを設けた有機電界発光素子の開発 (Ap 30 Lett., 51巻, 913頁,1987年)により、従来の Phys. アントラセン等の単結晶を用いたEL素子と比較して発光効率の大幅な改善がなされ、実 用化されつつある。

[0004]

上記の様な低分子材料を用いた電界発光素子の他にも、発光層の材料として、ポリ(p -フェニレンビニレン)、ポリ [2-メトキシ-5-(2-エチルヘキシルオキシ)-1 ,4-フェニレンピニレン]、ポリ(3-アルキルチオフェン)、ポリフルオレン等の高 分子材料を用いた電界発光素子の開発や、ポリビニルカルバゾール等の高分子に低分子の 発光材料と電子移動材料を混合分散した素子の開発も行われている。

[0005]

ところで、有機電界発光素子の最大の課題は、駆動寿命である。素子の駆動を不安定に する具体的な現象としては、発光輝度の低下、定電流駆動時の電圧上昇、非発光部分(ダ ークスポット)の発生等が挙げられる。これらの現象の原因はいくつか存在するが、主な 原因の一つとして有機層の薄膜形状の劣化が挙げられる。この薄膜形状の劣化は、素子駆 動時の発熱による有機非晶質膜の結晶化(または凝集)等に起因すると考えられている。 特に、駆動電圧の上昇抑制については腸極と正孔輸送層のコンタクトが重要である。

100061

そこで、腸極と正孔輸送層のコンタクトを向上させるため両層の間に正孔注入層を設け 、駆動電圧を低下させることが検討されている。正孔注入層に用いられる材料に要求され る条件としては、腸極とのコンタクトがよく均一な薄膜が形成でき、熱的に安定、すなわ

10

20

ち、融点及びガラス転移温度(Tg)が高いこと、具体的には300℃以上の融点と12 0℃以上のガラス転移温度を有すること好ましい。さらに、イオン化ポテンシャルが低く 陽極からの正孔注入が容易なこと、正孔移動度が大きいこと等も重要である。

[0007]

正孔注入層の材料としても種々のものが検討されており、例えばポルフィリン誘導体や フタロシアニン化合物、スターパースト型芳香族トリアミン、スパッタ・カーボン膜や、 パナジウム酸化物、ルテニウム酸化物、モリブデン酸化物等の金属酸化物などが報告され ている。

しかしながら、陽極と正礼輸送層の間に正孔注入層を挿入する方法において、ポルフィ リン誘導体やフタロシアニン化合物を正礼注入層として用いた場合、これらの実自体によ る光吸収のためにスペクトルが変化する、外観上着色して適明でなくなるという問題があ る。

[0008]

また、スターパースト型芳香族トリアミンでは、イオン化ポテンシャルが低く透明性が また、スターパースト型芳香族トリアミンでは、イオン化ポテンシャルが低く透明性が よいという利点はあるものの、ガラス転移点や融点が低いために耐熱性に難点がある。

一方、共役・非共役の各種高分子化合物を含む正孔注入層も多数提案されている。通常、有機電界亮光素子の陽極として用いられるインジウム・スズ酸化物(ITO)は、10 n 四程度の表面粗さ(Ra)を有するのに加えて、周所的に突起を有することが多く、素子作製時に短絡欠陥を生じるという問題があったが、該陽極上に、高分子化合物を含む溶液を塗布して正乳注入層を設けることにより、該欠陥の低減ももたらされるため好ましい

[00009]

しかし、単一の繰り返し単位しか有さないポリマー(ホモポリマー)では、同一の繰り返し単位が主領に沿って配列されており、立体科学的な不規則性もないため、ポリマー級が折りたたまれて高分子結晶の元となる核が形成されやすく、十分な溶解性が得られない場合があり、また、短絡欠陥を低減させる効果について更なる改善が求められている。

また、例えばポリチエニレンピニレン、ポリチオフェン、ポリアニリン等の共役系ポリマーの使用が提案されている。しかしこれらは、溶剤への溶解性に問題があり、製造プロセス面での問題がある。

[0010]

夏に、非共役系の直鎖型正孔輸送性ポリマーに電子受容性化合物を混合し、正孔往入層として使用することにより、素子の低電圧駆動が可能なことが開示されているが(特許文献1参照)、ここで開示されるポリマーはガラス転移進度Tgが低く、耐熱性に難点があ

なお、特許文献2には、例えば実施例10に2種のシロキサン系連結基を含む2種の繰り返し単位を有するポリマーが配載されている。しかし、該ポリマーの連結基の一方は一 SiMeMeOーが4つ繰り返されるテトラシロキサン構造であるため、正孔注入・輸送 におけるトラップになりやすく、さらに、結晶化の起点になりやすいと考えられる。

[0011]

ところで、有機電界発光素子においてポリマーを含む層を形成する場合、生産性の面では印刷法を使用することが好ましい。具体的には、オフセット印刷、スクリーン印刷、フレキソ印刷、インクジェット印刷などが挙げられる。これらの印刷法にて効率良く層形成する場合、塗布液となるポリマー含有組成物には、ある程度の固形分濃度が必要とされる

。このため、ポリマーには溶剤への高い可溶性が要求される。 【特許文献1】特開平11-283750号公報

[特許文献2]特開平5-249720号公報

【発明の開示】

【発明が解決しようとする課題】

[0012]

このように有機電界発光素子の駆動時における電圧が高く、耐熱性を含めた安定性が低

20

30

40

いことは、ファクシミリ、複写機、被晶ディスプレイのバックライト等の光源としては大 きな問題であり、特にフルカラーフラットパネル・ディスプレイ等の表示素子としても望 ましくない。

本発明は、上記従来の問題点を解決し、低電圧、高発光効率で駆動させることができ、かつ良好な耐熱性を有し、長期間にわたって安定な発光特性を維持することができ、前述の脇極の表面粗さに超因する薬子作製時の短絡欠陥を防止した有機電界発光薬子を提供するものである。また、印刷法を用いた有機電界発光素子の製造プロセスに適した正孔注入もも送材料と、この有機電界発光素子の正孔注入・輸送材料に好適な新規高分子化合物を提供することを目的とする。

【課題を解決するための手段】

[0013]

本発明者らは、上記課題を解決すべく鋭意検討した結果、p-フェニレン構造を介して 主鎖に連なるアリールアミン構造と、m-フェニレン構造を介して連なるアリールアミン 構造との共重合体が、充分な正孔注入性・輸送性と、溶剤への溶解性や非晶質性を両立で きることを見出し、本発明に至った。

すなわち本発明は、下配一般式 (I) で表される繰り返し単位、および下配一般式 (II) で表されるくり返し単位を含有する、重量平均分子量が1,000~1,000,000である高分子化合物、酸高分子化合物を含有する正孔注入・輸送材料、該高分子化合物を含有する有機電界発光票子に存する。

[0014]

[化1]

$$\begin{array}{c}
Ar^{1} \\
Ar^{3} \\
A5
\end{array}$$
(1)

$$\begin{array}{c} Ar^{8} \\ N \longrightarrow Ar^{8} \longrightarrow N \end{array}$$

$$\begin{array}{c} Ar^{7} \\ A10 \longrightarrow O \longrightarrow Y \longrightarrow N \end{array}$$

$$(II)$$

[0015]

(式中、Ar¹、Ar²、Ar゚およびAr゚は各々独立に、置換基を有していてもよい芳香 族族化水素基、または置換基を有していてもよい芳香族複素環基を表す。

Ar[®]およびAr[®]は各々独立に、pーフェニレン基、mーフェニレン基、または 4, 4 'ーピフェニレン基を表し、これらはいずれも、置換基を有していてもよい。

[0016]

環A4、環A5、環A9および環A10は各々独立して、置換基を有していてもよいア ルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニ ル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアシル基、置

[0017]

XおよびYは各々独立して、2価の連結基を表す。)

上記一般式(I) および一般式(II) で表される繰り返し単位を含み、通常100℃ 以上のTgを有する高分子化合物を用いることで、これを用いた有機電界発光素子の発光 特性と耐熱性を同時に改善することを可能とした。

また、本現明の正孔注入・輸送材料の場合、上記高分子由来の利点に加え、電子供与性である本発明の高分子化合物に電子受容性化合物を併用することにより、系内で電荷移動が起こり、結果としてフリーキャリアである正式が生成し、該材料を用いて形成された層の電気電等度が高くなる。このような層を、例えば有機電界発光素子の発光層と攝極との電気的技合が改善され、駆動電圧が低下すると同時に設備がある。 発光層と勝極との電気的技合が改善され、駆動電圧が低下すると同時に減緩駆動態の安定性も見まった。

[0018]

しかも有機電界発光素子において、本発明の高分子化合物を主成分とする層を、塗布プロセスにて譲極上に形成することにより、前途の陽極の表面粗さが緩和され、良好な表面平溶化効果が得られ、素子作製時の短絡欠陥が防止されるという効果も奏される。

本発明の高分子化合物は、上記一般式 (I) および一般式 (II) で表される二種類の 繰り返し単位をもち、幾何構造の異なる繰り返し単位がランダムに分布しているため、高 分子結晶の元となる核が形成され難いと考えられ、また高分子級の規則性がくずれるため 、中の繰り返し単位のみで表される高分子化合物に比べ、非晶質性が高く、種々の有機 溶剤に対して高い溶解性を示す。

[0019]

つまり本発明の高分子化合物は、非晶質性が高いために、素子作製時の短絡欠陥を防止 する効果が大きく、また、高い溶解性を示すため、容易に蟄布液の固形分養度を高めるこ とが可能であり、印刷法にて効率良く層形成することが可能である。

なお、本発明の高分子化合物を含む正孔性入・輸送材料または有機電界発光業子材料を 用いて形成された層は、通常、正孔輸送性を示す層である。後述するように、例えば有機 電界患光業子を構成する層として用いられる場合、該層は陽極と発光層との間であればど こに在っても良く、後掲の図1~3に示す如く、陽極上に直接設けるものに何ら限定され ないが、勝極(無機材料)との電気的接合が良く、耐熱性が高いというこの層の長所を十 分に生かすためには、路極と接する位置に正孔注入層として形成するのが最も有利である

[0020]

本発明の高分子化合物を電子受容性化合物と併用する場合には、該高分子化合物のイオン化ポテンシャルから電子受容性化合物の電子規和力を引いた値は0.7 e V 以下であることが好ましく、また、これらを含有する層中の電子受容性化合物の含有量は、芳香族アミン含有高分子化合物に対して0.1~50重量%の範囲であることが好ましい。

【発明の効果】

[0021]

10021 本発明の高分子化合物は、塗布プロセスに有利な、特定の高分子共重合体と電子受容性 化合物を含有する正孔注入層を有するために、低電圧で駆動可能かつ耐熱性の向上した有 機電界発光素子を得ることができる。

本発明による有機電界発光素子はフラットパネル・ディスプレイ (例えばOAコンピュ ータ用や壁掛けテレビ) や面発光体としての神微を生かした光源 (例えば、複写線の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、特に、高耐熱性が要求される車載用表示素子としては、その技術的価値は大きいものである。

【発明を実施するための最良の形態】

40

[0022]

以下に本発明の実施の形態を詳細に説明する。

まず、本発明の高分子化合物について説明する。

本発明の高分子化合物は前配一般式 (I) および前配一般式 (II) で表されるくり返し単位を有するものである。

一般式(I) における Ar^1 および Ar^2 、並びに一般式(II) における Ar^6 および Ar^7 は、各々独立に、置換基を有していてもよい芳香族炭化水素基、または置換基を有していてもよい芳香族複素環基を表す。

[0023]

験芳香族炭化水素基および芳香族複素環基として、好ましくは5または6員環の単環または2~4縮合環が挙げられる。具体的には、

フェニル基、ナフチル基、フェナントリル基、アントリル基、ナフタセニル基、ピレニ ル基、フルオレニル基、ベンソフルオレニル基

などの芳香族炭化水素環、および

チェニル基、ベンゾチェニル基、ジベンゾチェニル基、フリル基、ベンゾフリル基、ピロリル基、インドリル基、ベンゾインドリル基、イソインドリル基、ベンソインインドリル基、カルパゾリル基、ベンソカルパゾリル基、ピリジル基、キノリル基、ナフトピリジル基、キノキサリニル基、フェナントリジル基、フェナントロリニル基、フェノキサジニル基、フェノチアジニル基

などの芳香族複素環が挙げられる。

[0024]

・中でも、溶解性および耐熱性に優れ、かつ、合成が容易であるという理由から、一般式 (I) および (II) における重素原子に結合する部分がペンゼン環である場合、すなわち、一般式 (I) で表される繰り返し単位は、後述する一般式 (II) で表される繰り返し単位は、後述する一般式 (II) で表される繰り返し単位は、後述する一般式 (II) で表される繰り返し単位は、後述する一般 近 (II) で表される繰り返し単位が一般式 (II) で表される繰り返し単位が一般式 (II) で表される繰り返し単位が一般式 (II) で表される繰り返し単位が一般式 (II) で表される構造である場合がより好ましい。

[0025]

【0026】 一般式 (I) におけるAr³、および一般式 (II) におけるAr³は、各々独立に、p −フェニレン基、mーフェニレン基、または4, 4'ーピフェニレン基を表し、これらは いずれも重換基を有していてもよい。

鉄置接基は、本発明化合物の性能を損なわない限り、任意の基であってよい、丹ましくは、例えばメチル基、エチル基等の炭素数 1~6のアルキル基;ビニル基等の炭素数 2~6のアルキルム・ベンジル基、フェルー 基等の炭素数 7~20のアラルキル基;アセチル基、ベンゾイル基等の炭素数 2~7のアシル基、フェニル基、ナフチル基等の炭素数 6~20の炭素数 6~20 成果素数 6~2~4 額合量からなる芳香族 ピリジル基、カルバゾリル基等の 5 または 6 異素の 単環または 2~4 箱合量からなる芳香族複楽顕基、またはこれらが更に置機されてなる基などが挙げられる。

[0027]

上記「更なる震換基」としては、後述する置換基群 Z から選ばれた 1 種または 2 種以上 が挙げられる。

一般式 (I) におけるA r³、および一般式 (II) におけるA r°としては、各種溶剤への溶解性に優れる点、及び該高分子化合物を有機電界発光素子に適用した場合に駆動券

20

命がより優れると予想される点からは、ローフェニレン基またはm-フェニレン基である ことが好ましい。

[0028]

一般式 (I) における環A4及び環A5、並びに一般式 (II) における環A9及び環 A10は、各々独立に、置換基を有していてもよいアルキル基、置換基を有していてもよ いアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいア ラルキル基、置換基を有していてもよいアシル基、置換基を有していてもよい芳香族炭化 水素基、および置換基を有していてもよい芳香族複素環基よりなる群から選ばれる1種ま たは2種以上で置換されていてもよいベンゼン環を表す。

[0029]

より具体的には、メチル基、エチル基等の炭素数1~6のアルキル基;ビニル基、アリ ル基等の炭素数2~6のアルケニル基;エチニル基等の炭素数2~6のアルキニル基;ベ ンジル基、フェネチル基等の炭素数 7~20のアラルキル基;アセチル基、ベンソイル基 等の炭素数2~7のアシル基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化 水素基;チエニル基、ピリジル基、キノリル基、カルバゾリル基等の5または6員環の単 環または2~4縮合環から成る芳香族複素環基、あるいはこれらが更に置換されてなる基 、を有していても良いベンゼン環である。

[0030]

これら「更なる置換基」としては、例えば後述の置換基群2の1種または2種以上が挙 げられる.

環A4、環A5、環A9および環A10としては、無置換のベンゼン環であるか、或い はメチル基、エチル基等の炭素数1~6のアルキル基:ピニル基、アリル基等の炭素数2 ~6のアルケニル基;エチニル基等の炭素数2~6のアルキニル基:ベンジル基、フェネ チル基等の炭素数 7 ~ 2 0 のアラルキル基;アセチル基、ベンゾイル基等の炭素数 2 ~ 7 のアシル基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素基;チエニル 基、ピリジル基、キノリル基、カルパゾリル基等の5または6員環の単環または2~4箱 合義から成る芳香族複素環基がより好ましく、無置換のベンゼン環が特に好ましい。

100311

一般式 (I) における X、および一般式 (II) における Yは、各々独立に、任意の 2 価の連結基を表す。XおよびYは、本発明化合物の性能を損なわない限り、特に制限はな いが、好ましくは、例えば下記部分構造から選ばれた2価の連結基が挙げられる。

100321 [(1/2]

100331

上記式中、Ar¹¹ないしAr²⁰は各々独立して、置換基を有していてもよい芳香族環、

好ましくは置換基を有していてもよい、5または6員環の単独または2~3縮合環の芳香族環基(芳香族炭化水素環および芳香族複葉環)であり、具体的にはペンゼン環、ナフタレン環、フェナントレン環、アントラセン環、ピリジン環、キノリン環、チオフェン環、ベンソチオフェン環、ピロール環、インドール環、ベンソフラン環、カルバソール環等が挙げられる。

[0034]

このような芳香族環が有しうる置換基としては、以下にR²¹およびR²²の例として挙げるものと問**録の基が挙げられる**。

100351

これらの「更なる置換基」としては、後述する置換基群 Z から選ばれた 1 種または 2 種以上が挙げられる。

 Δx^{-11} ないし Δx^{-20} の置換基、 R^{21} 、および R^{22} として特に好ましいものは、水素原子 (即ち、無置換)、メチル基、エチル基、プロビル基、ブチル基、ヘキシル基、メトキシ 基、フェニル基、トリル基である。

[0036]

XおよびYとして、好ましくは

[0037]

[化3]

$$-Ar^{11} - Ar^{12} - Ar^{12} - Ar^{14} - Ar^{14} - Ar^{15} - Ar^{17} - S - Ar^{18} - Ar^{19} -$$

[0038]

であり、特に、

[0039]

20

【0040】 であることが好ましい。 なお、 $R^{31}\sim R^{37}$ は、 $Ar^{11}\sim Ar^{18}$ が有しうる電換基として前述したものであり、 好ましい基についても同様であり、 R^{38} は R^{21} 、 R^{22} の置換基として前述したものである。

[0041]

本発明の高分子化合物において、一般式 (I) で表される繰り返し単位は、下配一般式 (I') で表される構造である場合が好ましく、また一般式 (II) で表される繰り返し単位は下記一般式 (II') で表される構造である場合が好ましい。また、一般式 (I)で表される繰り返し単位が、下記一般式 (I') で表される構造であり、かつ、一般式 (I') で表される繰り返し単位が下記一般式 (II') で表される構造である場合が特に好ましい。

[0042]

20

10

[(k, 5]

[0043]

上記式中、課A1、課A2、環A6および環A7は各々独立して、ペンゼン環、或いは 任意の環が縮合したベンゼン環であり、このペンゼン環および縮合環は、置換基を有して いてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよ いアルキニル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい アシル基、置換基を有していてもよいアラルキル基、計算を がある。 および置換基を有していてもよいアラルキルを 、および置換基を有していてもよい方番族複楽環基よりなる群から選ばれる1種また は2種以上の基で置換されていてもよい。

[0044]

Ar³およびAr³は各々独立に、p-フェニレン蓋、m-フェニレン蓋、または4,4 '-ピフェニレン基を表し、これらはいずれも、置換基を有していてもよいアルキル蓋、 置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル蒸、置換 基を有していてもよいアラルキル基、置換基を有していてもよいアシル基、置換基を有し にいてもよい方香販炭化水素基、および置換基を有していてもよい方香販複業業基よりな る群から選ばれる1種または2種以上の置換基で置換されていてもよい。

[0045]

乗 A 4 、 乗 A 5 、 乗 A 9 、 乗 A 1 0 、 X および Y は各々、 前 記 一 般式 (I) および (I I) におけると同義である。

一般式(I')における環A1および環A2、並びに一般式(II)における環A6および環A7は各々独立して、ペンゼン環(フェニル基)、或いは任意の環が縮合したペンゼン環を表す。該ペンゼン選に縮合する環は、芳香族設化水業環または芳香族複業環が好ましく、これらのうち、5または6員環の単環または2~3縮合環がより好ましい。中でも、耐熱性および化学的安定性の制点から芳香族設化水業環が好ましい。

[0046]

この環A1、環A2、環A6および環A7が有しうる置換基は、置換基を有していても よいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいア ルキニル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアシル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノ基、置換基を有していてもよい方音族使化水素基、および置換基を有していてもよい方音族複楽課基よりなる群から選ばれる1種または2種以上であり、より具体的にはメチル基、エチル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;エチニル基等の炭素数2~6のアルキニニス・ルス・ベンジル基、フェネチル基等の炭素数7~20のアラルキル基;アセチル基、ベンジル基、フェネチル基等の炭素数6の炭素数2~8のアシル本:ジフェニルアミノ基、ジメチルアミノ基等の火素数1~6のアルキル基または方香族炭化水素基を有するアミノ基、ジスチルブリル基、ナンチル基等の炭素数6~20の芳香族炭化水素基。チエニル基、キノリル基、カルバゾリル基等の5または6員環の単葉または2~4縮合環からなる芳香族複葉環基、あるいはこれら が更に置換されてなる基である。

[0047]

これら「更なる置換基」としては、例えば、下記の置換基群 Z から選ばれた 1 種または 2 種以 ト が挙げられる。

[置換基群2]

環A1、環A2、環A6および環A7の優換基としては、メチル基、エチル基等の炭素数1~6のアルウニル基、ドニル基、アリル基等の炭素数2~6のアルウニル基、エチニル基、デルキル基、ドニル基、ステニオールを表して、カーカールを表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、大きな表して、カーカールを表して、カーカーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールを表して、カーカールのでは、カーカールを表して、カーカーのでのでのでのでする。まりのでもののでのでもののでする。

[0048]

一般式(I')のA r³、および一般式(II')のA r³に、p ーフェニレン基、 m ーフェニレン基、4,4'ーピフェニレン基から選ばれる2種の芳普族基であり、これらはいずれも、置換基を有していてもよいアルケル基、置換基を有していてもよいアルケル基、置換基を有していてもよいアルウル基、置換基を有していてもよいアルウル基、置換基を有していてもよいアルウルーと 選接基を有していてもよいアルシル基、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、 置換基を有していてもよいアラルキル基、 の置換基で置換されていてもよい。上配各基の具体例としては、一般式(I)におけるA r³、および(II)におけるA r³、および(II)におけるA r³、および(II)におけるA r³、および(II)におけるA r³、および(II)におけるA r³、および(II)におけるA r³、および(II)におけるA r³、および(II)におけるA r³、および(II)におけるA r3、アランエーレン基であることが好ましい。

[0049]

電子分布が偏りなく非局在化するため電荷移動度に優れることと、合成が容易であるとの理由から、本発明の高分子化合物において、同一分子中の $Ar^i \& Ar^s$ 、および $Ar^z \& Ar^i$ は、各々、同一の構造であることが好ましい。また $Ar^i \& Ar^s$ が同一の構造であり、かつ $Ar^i \& Ar^s$ が同一である場合がより好ましく、 Ar^i 、 Ar^z 、 $Ar^s \& Ar^s$ が同いずれも同一の構造である場合が更に好ましい。

同様に、同一分子中に前記一般式(I')で表される繰り返し単位と、前記一般式(II')で表される繰り返し単位を含む場合、同一分子中の環A1と環A6、および環A2と環A7は、各々、同一の構造であることが好ましい。また環A1と環A6が同一の構造であり、かつ環A2と環A7が同一のである場合がより好ましく、環A1、環A2、環A6 および雲A7がいずれも同一の構造である場合が更に好ましい。

さらに、同一分子中の環A4と環A5、および環A9と環A10は、各々、同一の構造であることが好ましい。また環A4と環A5が同一の構造であり、かつ環A9と環A10がいずれも同か同一である場合がより好ましく、環A4、環A5、環A9および環A10がいずれも同一の構造である場合が更に好ましい。これは、同一分子中に前配一般式(I')で表される繰り返し単位を含む場合も同様である繰り返し単位を含む場合も同様であ

ン。 以下に本発明の高分子化合物の繰り返し単位の好ましい具体例を示すが、本発明はこれ により限定されるものではない。

[0050]

【表 1 】

1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	
2	3000		-D;O-	. 10
3			- 0 0-	
4	3000	_3~o~o~	9	
5	300	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 0 10-	20
6	3000	-3-6-	-03-0-	
7	30-6	~\$~\$ *	Ç#.	30
В	30-05		-0;0-	
9	200	-3-50-	0	

[0051]

【表 2】

10		-3	
<i>i</i> 11			-O+O-
12	9000 19000 19000		-O O-
13	8000	0 0 0 0 0 0 0 0 0 0	0
. 14	306	308.	0
15	\$ 0 E	300	\$.

[0052]

本発明の高分子化合物において、一般式 (I) で表される繰り返し単位と、一般式 (II) で表される繰り返し単位の含有量比 (モル比) は、 (I) / (II) = 0.2 ~ 5程 度であることが好ましい。

[0053]

更に、本発明の高分子化合物の性能を損なわない範囲で、他の種々のモノマー由来の繰り返し単位を含有していてもよい。他のモノマー由来の繰り返し単位としては、例えば前記一般式 (I) における - O - X - O - 構造部分、および/または (II) における - O - Y - O - 構造部分

[0054]

10

20

30

[0055]

とした繰り返し単位が挙げられるが、有機電界発光素子の製造に有用な化合物としては、 前記一般式 (I) または (II) で表される繰り返し単位の含有量合計が、1分子あたり 20 モル%以上のものが好ましく、より好ましくは50モル%以上、さらに好ましくは8 0モル%以上のものである。

[0056]

本発明の高分子化合物の中、重量平均分子量が1,000~1,000,000のもの が有機電界発光菓子の製造に有用である。また、この高分子化合物を含む層を、競布法に より形成する場合には、溶解性および耐熱性の点から重量平均分子量が10,000以上 である場合が好ましく、また200,000以下のものが好ましい。

本発明の高分子化合物は、例えば、先ず4-位にヒドロキシ基を有する芳香族ジアミン 化合物と3-位にヒドロキシ基を有する芳香族ジアミン化合物を合成し、それらと、4, 4'-ジフルオロペンソフェノン、ピス(4-フルオロフェニル)スルホン等の芳香族二 ハロゲン化物、または、メチルフェニルジクロロシラン等の二ハロゲン化ケイ素化合物と 反応させることにより得られる。

[0057]

本発明の高分子化合物は、適度な正孔輸送性を有するため、正孔注入・輸送材料として 電道で享載感光体、有機電界発光架子、光電変換素子、有機太陽電池、有機整泥素子等に好 値に使用できる。

また、各種溶媒への溶解性が高く、結晶化し難く、ガラス転移温度が高くて薄膜形成性 に優れるため、耐熱性に優れ、長期間安定に駆動 (発光) する有機電界発光素子を提供す ることが可能であり、有機電界発光素子材料として好道である。

[0058]

本発明の高分子化合物をこれらの用途に供する場合、電子受容性化合物を併用することにより、電荷注入・輸送のパランスを適切に調整できるため好ましい。

なお、本発明の高分子化合物を電子受容性化合物と併用する場合には、該高分子化合物のイオン化ポテンシャルから電子受容性化合物の電子製和力を削いた値は0.7 e V 以下 方あることが好ましく、また、これらを含有する層中の電子製料性化合物の含有量はであることが好ました。 香族アミン合有高分子化合物に対して0.1~50重量%の範囲であることが好ましい。 該電子受容性化合物の種類おび併用割合については、本発明の高分子化合物を有機電界 発光素子を構成する層に適用した場合を例に、後に詳述する。

[0059]

次に、本発明の化合物を用いた有機電界発光素子について説明する。

10

40

50

本発明の有機電界発光素子は、陽極、陰極、およびこれら両極関に設けられた発光層を 有し、該発光層として、または該発光層と騒極又は陰極との間に有する層として、本発明 の高分子化合物を含む有機電界発光素子材料を用いて形成された層を有することを特徴と する。

[0060]

本発明の有機電界発光素子において、同一の層内に2種以上の本発明の高分子化合物が含有されていても良い。また、2以上の層に本発明の高分子化合物が含有されている場合、これらの層に含有される鉄化合物は関一のものであっても異なるものであってもよい。本発明の高分子化合物は正孔注入・輸送性に優れるため、発光層と勝極との間に設けられた層中に含まれる場合分が好ましく、特に陽極(無検材料)との電気的接合がよく、耐熱低が高いというこの層の所を十分に生かすためには、後親の図1~3にすかれて、耐酸と接する正孔注入層として形成するのが最も有利であるが、これに限定されるものではな

[0061]

以下に、添付図面を参照して、本発明の高分子化合物(を含む有機電界発光素子材料) を、勝板上に設けられた正孔注入層に含有する場合を例に、本発明の有機電界発光素子の 実施の形態を詳細に認明する。

図1~3は本発明の有機電界発光素子の実施の形態を示す模式的な断面図であり、1は基板、2は勝極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送 服、7は陰極を各々表わす。

[0062]

基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、全属板や金属筒、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成横崩の板がましい。合成横崩を後用する場合にはガスパリア性に留意する必要がある。基板のガスパリア性が低すぎると、基板を通過する外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成横脂基板のどちらか片側もしくは両側に軟密なシリコン酸化膜等を設けてガスパリア性を確保してもよい。

[0063]

基板1上には陽極2が設けられるが、陽極2は正孔注入層3への正孔注入の役割を果たすものである。この陽極2は、通常、パッミニウム&無、ニッケル、パラジウム、白金等の金属、インジウムはよび/またはスズの般化物などの金属酸化物、ヨウ化類などのハロゲン化金属、カーボンブラック等により構成される。陽極2の形成は通常数スメパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微化がよう。中間 樹脂溶液に分散し、基板1上に塗布することが多い。また、銀などの金属微化が能力・チェック、導電性の金属酸化物酸粒子等を追さなパイン樹棚に分散し、基板1上に塗布することなり隔極2を形成することもごもできる。陽極2の厚みは、必要とされる透り性により異なる。透明性が必要とされる場合は、最極2の厚みは、必要とされる透明性が必要とされる場合は、最極2の厚みは、近常、60%以上、好ましくは500m以下であり、下吸は10ma程度、好ましくは20ma程度である。不透明、好ましくは500m以下であり、下吸り10ma程度、好ましくは20ma程度である。不透明でよい場合には陽極2位度2位に降極2位に以降なる場面である。不透明なよい場合には陽極2位度2位である。不透明なよい場合には陽極2位度2位である。不透明なよい場合には陽極2位度2位である。

[0064]

本発明では、図1の素子構造においては、陽極2の上に正孔往入層3が設けられる。この正孔往入層3に用いられる材料に要求される条件としては、陽極2からの正孔注入別のまで制度、かつ、注入された正孔を効率よく輸送することができる材料であることが挙げられる。そのためには、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時や使用光生しにくいことが要求される。上配の一般的要求以外に、車載表示用の応用を考えた場合、素子にはさらに100℃以上の耐熱性を有することが好ましい。

30

50

[0065]

本発明の有機電界発光祭子は、正孔注入層が前配一般式 (I) および (II) で表わされる繰り返し単位を有する高分子化合物を含むことを特徴とする。該高分子化合物のみからなる層であってもよいが、更に、電子受容性化合物をも含有する場合が、より好ましい

本発明においては、通常、100℃以上のTgを有する高分子化合物と電子受容性化合物を混合して用いることで、業子の発光特性と耐熱性を同時に改善することを可能とした。電子供与性の高分子化合物に電子受容性化合物を混合することにより、債荷移動が起こり、結果としてフリーキャリアである正礼が生成し、正孔往入層の電気電導度が高くなる。発光層と陽極との電気的接合が、本発明による正孔注入層を設けることで改善され、駆動電圧が低下すると同時に連続駆動時の安定性も向上する。また、100℃以上のTgを有する高分子化合物を正孔注入層の母体とすることにより、業子の耐熱性も大きく改善される。

100661

本発明の高分子化合物と組み合わせて用いる電子受容性化合物としては、該高分子化合物との間で電荷移動を起こすものであればよいが、本発明者が鋭意検討した結果、本発明 の高分子化合物のイオン化ポテンシャル、IP(ポリマー)、と輩子受容性化合物(アクセプタ)の電子親和力、EA(アクセプタ)の2つの物性値が、

IP (ポリマー) - EA (アクセプタ) ≦ 0.7 e V、

の関係式で表される時に本発明の目的に特に有効であることを見出した。このことを図はコネルギー準位図を用いて説明する。一般に、イオン化ポテンシャル及で電子類和力は真空準位として決定される。イオン化ポテンシャルは物質のHOO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、電子観和力は真空準位にある電子が物質のLUMO(最低空分子軌道)レベルで義されて安定化するエネルギーで企業される。図4に示す高分子化合物のHOMOレベルのイオン化ポテンシャルと、電子受容性化合物のLUMOレベルの電子類和力の差がのイオンペポテンシャルとが発ましい。イオと化ポテンシャルは光電子分光法で直接刺炎で、マェッスで、電気化学的に別定した酸化電位を基準電極に対して精正しても求められる。後者の方法の場合は、例えば、繊和甘口介電極(SCE)を基準電極として用いたとき、カ方法の場合は、例えば、繊和甘口介電極(SCE)を基準電極として用いたとき、

イオン化ポテンシャル=酸化電位(vs. SCE) + 4.3 eV、で表される ("Molecular Semiconductors", Springer-Verlag, 1985年、98頁)。電子観和力は、上途のイオン化ポテンシャルから光学的パンドギャップを差し引いて求められるか、電気化学的な遷元電位から上記の式で同様に求められる。

[0067]

前記イオン化ポテンシャルと電子親和力の関係式は、酸化電位と還元電位を用いて、

高分子化合物の酸化電位−アクセプタの還元電位≦ 0.7℃、

と表現することもできる。

電子受容性化合物の含有量は、本発明の高分子化合物に対して 0.1~50重量%の範囲にあることが好ましい。さらに好ましくは、0.5~30重量%の濃度範囲が実用特性上額ましい。

100681

このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン 化金属、ルイス酸、有機酸、アリールアミンとハロゲン化金属との塩、アリールアミンと ルイス酸との塩よりなる群から遷ばれる1種又は2種以上の化合物等が挙げられる。これ らの電子受容性化合物は、正孔輸送材料と混合して用いられ、正孔輸送材料を酸化するこ とにより正孔注入層の第電率を向上させることができる。

[0069]

電子受容性化合物として、トリアリールホウ素化合物としては、下配一般式(III)に示したホウ素化合物が挙げられる。一般式(III)で表されるホウ素化合物は、ルイス酸

であることが好ましい。また、ホウ素化合物の電子親和力は、通常、4 e V以上、好ましく、5 e V以上である。

[0070]

[化7]

[0071]

一般式 (III) において、A r 41 へA r 43 は、各々独立に、置換基を有していてもよいフェニル基、ナフチル基、アントリル基、ピフェニル基等の5または6 異環の単環、またにためが2~3 飼館合及び/または直接結合してなる芳香族役化木業環基;或いは置換基を有していてもよいチエニル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基等の5または6 員環の単環、またはこれらが2~3 飼贈合及び/または直接結合してなう芳香族複素機基を表す。

[0072]

このような置換基としては、例えば、フッ素原子等のハロゲン原子:メチル基、エチル基等の炭素数1~6の直鎖または分岐のアルキル基:ビニル基等のアルケニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数1~6の直鎖または分岐のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1~6の直鎖または分岐のアルコキシカ・フェノキシ基、ベンジルオキシ基等のアリールオキシ基;ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基、アモチル基等のアシル基、トリフルオロメチル基等のハロアルキル基、シアノ基等が挙げられる。

[0073]

このような置換基として、Ar 41 ないしAr 43 の少なくとも1つが、ハメット定数(σ a および/または σ 。)が正の値を示す置換基を有する化合物であることが好ましく、Ar 41 ないしAr 43 が、いずれもハメット定数(σ m および/または σ 。か正の値を完積機基を有する化合物であることが特に好ましい。このような、電子吸引性の置換基を有することにより、これらの化合物の電子受容性が向上する。また、Ar 41 ないしAr 43 がいずれも、ハロゲン原子で置換された芳香族炭化水素基または芳香族複楽環基を表す化合物であることがさらに好ましい。

[0074]

一般式 (III) で表されるホウ素化合物の好ましい具体例を以下に示すが、これらに限定するものではない。

[0075]

(14)

(15)

[0076

$$\begin{bmatrix} I & \{E \in P\} \end{bmatrix}$$

$$\begin{bmatrix} F_3 & F_4 & F_5 \\ (16) & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_3 & F_4 & F_5 \\ (17) & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_3 & F_5 & F_5 \\ (18) & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_4 & F_5 & F_5 \\ (19) & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ (18) & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ (19) & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ (19) & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ (19) & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \\ F_5 & F_5 & F_5 \end{bmatrix}$$

$$\begin{bmatrix} F_5 & F_5 & F_5 \\ F_5 & F_$$

(27)

@0013 [0077]

[0078]

これらの中、以下に示す化合物が特に好ましい。

[0079]

【化11】

@0013

【0080】 また、電子受容性化合物として、ハロゲン化金属、ルイス酸、有機酸、アリールアミン とハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種 又は2種以上の化合物の具体例として、以下に示す化合物が挙げられる 【0081】

10

[0082]

本発明の高分子化合物と電子受容性化合物から成る正孔注入層3 は、通常、公知の圏式 成膜技により前記機2 上に形成される。前記一般式 (I) および (II) で表される線 り返し単位を有する高分子化合物と整子受容性化合物の所定量を、必要により正孔のトラップにならないパインダー樹脂や造布性改良剤などの抵加剤とを添加し、溶解して造布溶 液を調製し、スプレー法、スピンコート法、ディップコート法などの塗布法やインクジェット法など印刷法等の各種選式成膜法により陽極2 上に塗布し、乾燥して正孔注入層3 を 形成する。

[0083]

正孔注入層3の膜厚の上限は、通常1000nm程度、好ましくは500nm程度であり、また下限は通常5nm程度、好ましくは10nm程度である。

50

20

正孔注入層3の上には発光層5が設けられる。 現光層5は、電界を与えられた電極間に おいて接極7からの注入された電子と正孔注入層3から輸送された正孔を効率よく再結合 し、かつ、再結合により効率よく発光する材料から形成される。

100841

[0085]

素子の発光効率を向上させるとともに発光色を変える目的で、例えば、8 ーヒドロキシキノリンのアルミュウム酵体をホスト材料として、クマリン等のレーザ用蛍光色素をドープこと (J. Appl. Phys., 65巻, 3610頁, 1989年) 等が行われている。

東子の駆動寿命を改善する目的においても、前配発光層材料をホスト材料として、蛍光色素をドープすることは有効である。例えば、8-ヒドロキシキノリンのアルミニウム側 体などの金属婦体をホスト材料として、ルブレンに代表されるナフタセン誘導体(特別平5-70773号公報)、キナクリドン誘導体(特別平5-70773号公報)、ペペリン等の縮合多環芳香族炭化オテることにより、オテク吸光特性、特に駆動安定性を火力して0.1~10度重%できる。発光層のホスト材料に上配ナフタセン誘導体、キナクリドン誘力した。そのことができる。発光層のホスト材料に上配ナフタセン誘導体、キナクリドン誘導体、ペリレン等の蛍光をドープする方法としては、共蒸着による方法と蒸着駅を予め所定の濃度で混合したおく方法がある。

[0086]

高分子系の発光層材料としては、先に挙げたボリ(p-フェニレンビニレン)、ボリ [2-メトキシー5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ボリ (3-アルキルチオフェン)等の高分子材料や、ボリビニルカルパゾール等の高分子に発光材料と電子移動材料を混合した系等が挙げられる。これらの材料は正孔注入層3と同様にスピンコートやディップコート等の方法により正孔注入層3上に塗布して薄膜化される。

[0087]

発光層 5 の膜厚の上限は、通常 200 nm、好ましくは 100 nm であり、下限は通常 10 nm、好ましくは 30 nm である。

素子の発光特性を向上させるために、図2に示す様に、正孔輸送層4を正孔注入層3と 発光層5との間に設けたり、さらには、図3に示す様に電子輸送層6を発光層5と陰極7 の間に設けるなどして機能分離型の有機電解発光素子とすることが行われる。

[0088]

図 2 および図 3 の機能分離型素子において、正孔輪送層 4 の材料としては、正孔注入層 3 からの正孔注入効率が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが必要である。そのためには、イオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが要求される。また、発光層 5 と直接接する層であるために、発光を消光する物質が含まれていないことが望ましい。

[0089]

このような正孔輸送材料としては、例えば、4,4'ーピス $[N-(9-+75\mu)-N-7]$ コニュールアミノ] ピフェニルで代表される 2 個以上の 3 級アミンを含み 2 個以上の 6 芳香族 火水 業環が 窒素原子に 置換した 芳香族 ジア・2 、 (特 関下 5 - 2 3 4 6 8 1 号公 数)、4,4',4"。 [N-1] カーリス [N-1] カーリス [N-1] カーリス [N-1] カーリス [N-1] カーリス [N-1] カーバースト 構造を 有する 芳香族 アミン化 物 [N-1] [N

)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem. Commun., 2176頁、1996年)、2,2',7,7'ーテトラキスー(ジフェニルアミノ)ー9,9'ースピロピフルオレン等のスピロ化合物(Synth. Metals, 91巻、209頁、1997年)等が挙げられる。これらの化合物は、単独で用いてもよいし、必要に応じて2種以上を混合して用いてもよい。

[0000]

上記の化合物以外に、正孔輸送層 4 の材料として、ポリビニルカルパゾール、ポリビニルトリフェニルアミン (物開平7 - 53 9 5 3 号公報)、テトラフェニルペンジジンを含 含するポリアリーレンエーチルサルホン (Polym, Adv. Tech.,

7券、33頁、1996年) 等の高分子材料が挙げられる。

正孔輸送層4は、上記の正孔輸送材料を塗布法あるいは真空蒸着法により前記正孔注入 層3上に積層することにより形成される。

[0091]

塗布法の場合は、正孔輸送材料の1 種または2種以上と、必要により正孔のトラップにならないバイングー樹脂や整布性改良利などの添加剤とを添加し、適当な溶薬に溶解して設備 治療液を調製し、スピンコート法などの方法により陽極2 上に整布し、乾燥して正式送層4を形成する。この場合、パインダー樹脂としては、ポリカーボネート、ポリアリレート、ポリエステル等を用いることができる。パインダー樹脂は添加量が多いと正孔移動を低下させるので、少ない方が望ましく、通常、正孔輸送層4中の割合で50重量%以下が好ましい。

100921

英空蒸着法の場合には、正孔輸送材料を真空容器内に設置されたルツボに入れ、真空容器内を適当な真空ポンプで10 ⁴Pa程度にまで排気した後、ルツボを加熱して、正孔輸送用を蒸落させ、ルツボと向き合って置かれた、正孔能入層 3 が形成された基板 1 上に正孔輸送層 4 を形成させる。

正孔輪送層4の態厚の上限は、通常300 nm、好ましくは100 nmであり、下限は通常10nm 求ましくは30nmである。このように薄い膜を一様に形成するためには、一般に真空蒸着 技がよく用いられる。

[0093]

有機電界発光票子の発光効率をさらに向上させる方法として、図3に示すように発光層4の上にさらに電子輸送層を積層することもできる。この電子輸送層を10円いられる化合物には、陰極7からの電子性入が容易で、電子の輸送能力がさらに大きいことが要求される。この様な電子輸送材料としては、既に発光層材料として挙げた8ーヒドロキシキノリンのアルス輸体、オキサジアソール誘導体(Appl. Phys. Lett., 55巻、1489頁、1989年)やそれらをボリメタクリル酸メチル (PMMA)等の樹脂に分散した系、フェナントロリン誘導体 (特開平5-331459号公報)、2-t-ブチルー9,10-N,N'-ジシアノアントラキノンジイミン、n型本業化非晶質換化シリコン、n型薬化亜鉛、n型セレン化亜鉛等が挙げられる。

[0094]

電子輸送層 6 の膜厚の上限は、通常200 nm、好ましくは100 nmであり、下限は通常5 nm、好ましくは10 nmである。

陰極 7 は、発光層 5 に電子を注入する役割を果たす。陰極 7 の形成材料としては、前記 協復 2 に使用される材料を用いることが可能であるが、効率よく電子注入を行なうには、 生事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミ ニウム、銀等の適当な金属またはそれらの合金が用いられる。具体例としては、マグネシ ウムー銀合金、マグネシウムーインジウム合金、アルミニウムーリチウム合金の低仕事 数合金電板が挙げられる。さらに、陰極 7 と発光層 5 または電子輸送層 6 の界面にLI F、Mg F₂、Li₂〇等の極寒絶縁度(0.1~5mm)を挿入することも、素子の効率を向上 させる 有効な方法である(Appl. Phys. Lett., 70巻, 152頁、1997年;特開平10 − 7 4 5 8 6 号公報;IEEE Trans. Electron. Devices, 44巻, 1245頁,1997年)。

10

Z

...

30

[0095]

陰極7の膜厚は通常、陽極2と同様である。低仕事関数金属から成る陰極を保護する目的で、この上にさらに、仕事関数が高く大気に対して安定な金属層を積層することは業子の安定性を増す。この目的のために、アルミニウム、銀、鋼、ニッケル、クロム、金、白金飯の金属が使われる。

図1~3は、本発明で採用される素子構造の一例であって、本発明は何ら図示のものに 限定されるものではない。例えば、図1とは逆の構造、即ち、基地上に陰極7、発光層5、 、正孔注入層3、陽極2の順に積層することも可能であり、既述したように少なくとも一 方が透明性の高い2枚の基板の間に本発明の有機電界発光素子を設けることも可能である。 同様に、図2および図3に示した前配各層構成とは逆の構造に積層することも可能であ

る。また、図1~3 のいずれの層構成においても、本発明の趣旨を逸脱しない範囲で、助9字述以外の層を有 していても良く、また上記複数の層の機能を併有する層を採用することにより、層構成を 簡略化する等、適宜変更を加えることができる。

[0096]

- 咳いはまた、トップエミッション構造や、陰極・陽極共に透明電極を用いることにより 、透過型ディスプレイとすることも可能である。

このような本発明の有機電界発光素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにも適用することができる。

【実施例】

[0097]

次に、本発明を原料合成例、合成例、実施例および比較例によって更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例の記載に限定されるものではない

まず、一般式(I)および(II)で表される繰り返し単位を有する高分子を、以下の原料を用いて合成した。

[原料合成例]

(1-1) N, N' -ジフェニル-N, N' -ピス (4-メトキシフェニル) -1, 4-フェニレンジアミン (4-MPP) の合成

[0098]

[化13]

100991

N, N' - ジフェニルー1, 4ーフェニレンジアミン (77.0ミリモル) と4ーヨードアニソール (231ミリモル) とをテトラグライム150ミリリットルに溶かし、頻粉末(154ミリモル) および炭酸カリウム (112ミリモル) の存在下、窒素雰囲気中200℃で8時間反応を行った。その結果、式(M1)で示される4ーMPP(34.8g、収率96%)を得た。

(1-2) N, N' -ジフェニル-N, N' - (4-ヒドロキシフェニル) -1, 4-フェニレンジアミン (4-HPP) の合成

[0100]

20

20

30

[0101]

4-MPP (50.0ミリモル)を360ミリリットルの塩化メチレンに溶かし、窒素素 囲気下、ドライアイスーエタノールパスで系内を-65℃以下に冷やし、これに三臭化ほう素 (100ミリモル)の塩化メチレン溶液 (100ミリリットル)を滴下した。滴下終了後、冷鰈パスを外し2時間撹拌した後、酢酸エチルで抽出し、シリカゲルカラムクロマトフラフィーによって精製した。その結果、式(M2)で示される4-HPP(16.2g、収率73%)を得た。以下に4-HPPの1H-NMRを示す。

[0102]

6.75 (4H, dd, J=6.9, 2.1)

(2 - 1) N, N′ - ジフェニル - N, N′ - ピス(3 - メトキシフェニル) - 1, 4 -フェニレンジアミン (3 - M P P)の合成

[0103]

【化15】

[0104]

N, N' - ジフェニルー1, 4-フェニレンジアミン (38.5ミリモル) と3-ヨードアニソール (100ミリモル) とをテトラグライム50ミリリットルに溶かし、鋼粉末 (76.9ミリモル) および炭酸カリウム (57.7ミリモル) の存在下、 金素雰囲気中 200℃で8時間反応を行った。その結果、式 (M3) で示される4-MPP (12.0g 収率6.6%) を得た。

(2-2) N, N' -ジフェニル-N, N' - (3-ヒドロキシフェニル) -1, 4-フェニレンジアミン (3-HPP) の合成

[0105]

[0106]

3-MPP (13.4ミリモル)を360ミリリットルの塩化メチレンに容かし、蜜素雰囲気下、ドライアイス-エタノールバスで采内を-65℃以下に冷やし、これに三臭化ほう素(27ミリモル)の塩化メチレン溶液(27ミリリットル)を調下した。滴下終了後、冷鉄バスを外し2時間撹拌した後、酢酸エチルで抽出し、シリカゲルカラムクロマトフラフィーによって精製した。その結果、式(M4)できれる3-HPP(5.68g、収率95%)を得た。以下に3-HPPの1H-NMRを示す。

[0107] d (DMSO, 400MHz)

9.36 (1H, s)

7.19 (4H, dd, J=8.0, 7.9

6,94 (4H, dd, J=6.9, 2.1

6.88 (4H, s)

6.87-6.83 (6H,

6.75 (4H, dd, J=6.9, 2.1)

[合成例1]

[0108]

【0109】
4-HPP(6.4ミリモル)と3-HPP(1.6ミリモル)と4,4'ージフルオロベンソフェノン(8.0ミリモル)とを80ミリリットルのNMPに溶かし、炭酸カリウム(48ミリモル)の存在下、窒素雰囲気中140℃で20時間、縮合反応させた。放冷後、酢酸4ミリリットルを反応系に加え、メタノール中に放出し、得られたボリマーを水洗いし、無機塩を除いた。60℃で減圧乾燥させた後、ポリマーをクロロホルムに溶か

し、メタノールに放出し再沈殿させた。最後に、プセトンで懸洗することにより、低分子 量成分を除き、式(U1) および式(U2) で表される繰り返し単位を有するポリマー(P1) (4, 23g, 85%) を得た。

[0110]

このポリマー(P 1)の T_E は16.7℃、重量平均分子量(M w)は16.500、数平均分子量(M n)6.00であり、分子量はTHF中でGPC測定により、ポリスチレンを標準試料として求めた。

合成例 2

[0111]

【0112】
4 - HPP (3.0ミリモル) と3 - HPP (2.0ミリモル) を12ミリリットルのトルエンおよび1.2ミリリットルのピリジン中に溶解させ、窒素雰囲気下、内温65℃に加湿し、これに3.0ミリリットルのトルエンで希釈したメチルフェニルジクロロシテン(5.0ミリモル)を瀕下した。瀕らたで、減ちないよりで4時間操件し反応させた。得られたポリマーを、ポリマーをクロロホルムに溶かし、メタノールに放出し再拡張させた。減圧乾

嫌した後、もう一度、ポリマーをクロロホルムに溶かし、メタノールに放出し再沈殿させ、式(U3) および式(U4) で表される繰り返し単位を有するポリマー(P2) (1.03g,37%)を得た。

[0113]

このポリマー (P2) のTgは119℃、重量平均分子量 (Mw) は39,100、数平均分子量 (Mn) 5,900であり、分子量はTHF中でGPC測定により、ポリスチレンを標準試料として求めた。

[実施例1]

上記ポリマー (P1) のNMP (N-メチルピロリドン) およびテトラリン (1, 2, 3, 4-テトラヒドロナフタレン) に溶解させた。その結果を表3に示す。表3に示すようにポリマー (P1) は対応する単一の繰り返し単位を有するポリマー (P3) に比較して高い溶解性を示した。

[比較例1]

上記ポリマー (P1) の繰り返し単位の一つである式 (U1) のみが繰り返された下記 ポリマー (P3) のNMP (N-メチルピロリドン) およびテトラリン (1, 2, 3, 4 -テトラヒドロナフタレン) に溶解させた。その結果を表3に示す。

[0114

【化19】

(P3)

[0115]

(Mw = 17300, Mn = 5870)

[0116]

【表3】

表 3

溶媒 NM		ΔP	テト	ラリン
ポリマー	(P1)	(P3)	(P·I)	(P3)
5 wt. %	+	+ .	+	+
10 wt.%	+	_	+	. –
.15 wt.%		_	. –	_

+:完溶する、-:完溶しない

[0117]

「宴施例2]

上記ポリマー (P2) のNMP (N-メチルピロリドン) およびトルエンへに溶解させた。その結果を表4に示す。表4に示すようにポリマー (P2) は対応する単一の繰り返し単位を有するポリマー (P4) に比較して高い溶解性を示した。

〔比較例2〕

20

30

上記ポリマー (P2) の繰り返し単位の一つである式 (U3) のみが繰り返された下記ポリマー (P4) のNMP (N-メチルピロリドン) およびトルエンに溶解させた。その結果を表4に示す。

[0118]

[化20]

(P4)

[0119]

(Mw = 1 0 9 0 0, Mn = 4 3 0 0)

[0120]

【表 4】

表 4

溶媒	NMP		トルエン・	
ポリマー	(P2)	(P4)	(P2)	(P4)
5 wt. %	. +	+	+	#
10 wt.%	+	. +	+	+
15 wt.%	+	_	+	+
20 wt.%			+	I . =

+:完済する、-:完溶しない

[0121]

[実施例3]

スプロット・ ガラス基板をアセトンで超音波洗浄、純水で水洗、イソプロピルアルコールで超音波洗 浄、乾燥窒素で乾燥、UV/オソン洗浄を行った後、既述の方法により合成したポリマー

(P1) を下記の条件で、上記ガラス基板上にスピンコートした:

溶媒 安息香酸エチル

塗布液濃度 20.0 [mg/ml] スピナ回転数 1500 [rpm]

スピナ回転時間 30[秒]

乾燥条件 100℃-1h

上記のスピンコートにより30nmの膜厚の均一な薄膜が形成された。この薄膜試料の イオン化ポテンシャルを理研計器 (株) 製の紫外接電子分析装置 (AC-1) を用いて測 定した値を表5 に示す。表5 に示すようにポリマー (P1) は対応する単一の繰り返し単 位を有するポリマー (P3) とほぼ等しいイオン化ポテンシャルを与えた。

[比較例3]

50

40

10

ガラス基板をアセトンで超音被洗浄、純水で水洗、イソプロピルアルコールで超音波洗 浄、乾燥室素で乾燥、UV/オゾン洗浄を行った後、ポリマー (P3)を下記の条件で、 上記ガラス基板上にスピンコートした:

容媒 安息香酸エチル

涂布液沸度 20.0 [mg/ml]

スピナ回転数 1500 [rpm]

スピナ回転時間 30[秒]

乾燥条件 100℃-1h

上記のスピンコートにより30nmの腰厚の均一な薄膜が形成された。この薄膜試料の イオン化ポテンシャルを理研計器 (株)製の紫外線電子分析装置 (AC-1)を用いて測 10 定した値を表5に示す。

[実施例4]

ガラス基板をアセトンで超音波洗浄、純水で水洗、イソプロピルアルコールで超音波洗浄、乾燥窒素で乾燥、UV/オソン洗浄を行った後、既述の方法により合成したポリマー

(P2)を下記の条件で、上記ガラス基板上にスピンコートした:

溶媒 安息香酸エチル塗布液濃度 5、0 [mg/m1]

スピナ回転数 1500 [rpm]

スピナ回転時間 30 [秒] 乾燥条件 100℃-1h

乾燥条件 100%-1h上配のスピンコートにより30n mの襲厚の均一な薄膜が形成された。この薄膜試料の イン化ポテンシャルを理研計器(株)製の紫外線電子分析装置 (AC-1)を用いて測定した値を表 5に示す。表 5に示すようにポリマー(P2)は対応する単一の繰り返し単位を有するポリマー(P4)とほぼ等しいイオン化ポテンシャルを与えた。

[比較例4]

ガラス基板をアセトンで超音波洗浄、純水で水洗、イソプロピルアルコールで超音波洗 冷、乾燥窒素で乾燥、UV/オソン洗浄を行った後、既述の方法により合成したポリマー

(P4) を下記の条件で、上記ガラス基板上にスピンコートした:

溶媒 安息香酸エチル

逾布液濃度 20.0 [mg/m1]

スピナ回転数 1500 [rpm] スピナ回転時間 30 [秒]

スピテ回転時間 30 L砂」 乾燥条件 100℃-1h

上記のスピンコートにより30nmの護厚の均一な薄膜が形成された。この薄膜試料の イオン化ポテンシャルを理研計器 (株) 製の紫外線電子分析装置 (AC-1) を用いて測 定した値を表5に示す。

[0122]

【表 5 】

表 5

		ポリマー	イオン化ポテンシャル [e V]
	実施例3	(P1)	5.06
1	比較例3	(P3)	5.07
Ì	実施例 4	(P2)	4.95
	比較例4	(P4)	4. 93

【0123】 [寒施例5]

50

40

20

30

図3に示す構造を有する有機電界発光素子を以下の方法で作製した。

ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を 120nm堆積したもの(ジオマテック社製;電子ピーム成膜品;シート抵抗15Q/sq)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて 2mm幅のストライプにパターニングして 勝極を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による 水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素プローで乾燥させ 、最後に紫外線オソン洗浄を行った。

[0124]

この ITO ガラス基板上に、本発明の高分子化合物 (P2) とPPBの混合物を下配の条件で、上記 ITO ガラス基板上にスピンコートした:

溶媒 安息香酸エチル

(P2) 20.0 [mg/ml]

PPB 2.0 [mg/ml] スピナ同転数 1500 [rpm]

スピナ回転時間 30[秒]

乾燥条件 100℃−1h 出のスピンコートにより30nmの膜厚の均一な薄膜形状を有する正孔注入層3を形成した。

[0125]

[0126]

【化21】

[0127]

ウムの8-ヒドロキシキノリン錯体、Al(C₉H₆NO)₃、を正孔輸送層と同様にして 蒸着を行った。この時のアルミニウムの8-ヒドロキシキノリン錯体のるつぼ温度は 75~285℃の範囲で制御し、蒸着時の真空度は1.1×10⁻⁶Torr (約1.5× 10⁻⁴Pa)、蒸着速度は0.1-0.2nm/秒で、蒸着された電子輸送層の膜厚は3 0 nmであった。

[0128]

[化22]

[0129]

なお、上記の正孔輸送層4及び発光層5、電子輸送層6を真空蒸着する時の基板温度は 密想に保持した。

ここで、電子輸送層6までの蒸着を行った素子を一度前記真空蒸着装置内より大気中に 取り出して、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極 2のITOストライプとは直交するように素子に密着させて、別の真空蒸着装置内に設置 して有機層と同様にして装置内の真空度が2×10⁻⁶Torr (約2.7×10⁻⁴Pa) 以下になるまで排気した。陰極7として、先ず、フッ化リチウム(LiF)をモリブデン ボートを用いて、蒸着速度 0.02 nm/秒、真空度 7.0×10⁻⁶ Torr (約9.3 ×10⁻⁴Pa)で、0.5 nmの膜厚で発光層 5 あるいは電子輸送層 6 の上に成膜した 。次に、アルミニウムを同様にモリブデンボートにより加熱して、蒸着速度0.3nm/ 秒、真空度 1 × 1 0 ⁻⁶ T o r r (約 1. 3 × 1 0 ⁻³ P a) で膜厚 8 0 n m のアルミニウム 層を形成して陰極7を完成させた。以上の3層型陰極7の蒸着時の基板温度は室濃に保持 した。

[0130]

以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が 得られた。この素子の発光特性を表6にに示す。表6において、発光輝度は250mA/ cm²の電流密度での値、発光効率は100cd/m²での値、輝度/電流は輝度一電流密 度特性の傾きを、電圧は100cd/m²での値を各々示す。表6より、対応する単一の 繰り返し単位を有するポリマー(P3)と同等の特性をもつ、駆動電圧の低い、高輝度か つ高発光効率で発光する素子が得られたことが明らかである。

本発明のポリマー(P2)の代わりに、対応する単一の繰り返し単位のみを有するポリマ - (P4) を用い、正孔注入層3を形成する際の、ITOガラス基板上へのスピンコート の条件を:

安息香酸エチル 溶媒

20.0 [mg/m1] (P4) 2.0 [mg/m1] PPB 1500 [rpm] スピナ回転数 スピナ回転時間 30[秒]

50

10

100℃-1h

とした他は、実施例5と同様に素子を作成した。この素子の発光特性を表6に示す。

[0131]

[化23]

(P4)

[0132]

【表 6 】

20	発光輝度 [cd/m²] @250mA/cm²	発光効率 [im/W] @100cd/m ²	輝度/電流 [cd/A]	電圧 [V] @100cd/n²
実施例 5	18900	5. 87	8.51	4. 6
比較例 5	19300	5.86	8.38	4. 6.

【図面の簡単な説明】

[0133]

【図1】有機電界発光素子の一例を示した模式断面図。

【図2】有機電界発光素子の別の例を示した模式断面図。

【図3】有機電界発光素子の別の例を示した模式断面図。

【図4】イオン化ポテンシャルと電子親和力の関係を示したエネルギー準位。

【符号の説明】

[0134]

基板 1

2 陽極

正孔注入層 3

4 正孔輸送層

5 卷光層

電子輸送層 ß

7 陰極 10

20

30

フロントページの続き

Fターム(参考) 4J005 BA00

4J031 BD21 BD23 BD30 CA06 CA15

【要約の続き】

$$\begin{array}{c}
Ar^{3} \\
AA
\end{array}$$

$$\begin{array}{c}
Ar^{3} \\
A5
\end{array}$$

$$\begin{array}{c}
A5
\end{array}$$

$$\begin{array}{c}
A5
\end{array}$$

$$\begin{array}{c}
A5
\end{array}$$

$$\begin{array}{c}
A5
\end{array}$$

$$--0-\overline{A9} \qquad A19 -0-Y - (II)$$

(式中、 Ar^1 、 Ar^2 、 Ar^6 および Ar^7 は各々独立に、置換基を有していてもよい芳香族炭化水素基、または量集基を有していてもよい芳香族複素環基を表す。

 $A r^3 および A r^3 は各々独立に、<math>p-フェニレン基、m-フェニレン基、または 4, 4'-ピフェニレン基を表し、これらはいずれも、置換基を有していてもよい。) [選択図] なし$