Elements of Probability Theory

Discrete Random Variables

Random Variables

- they are **not random**
- they are not variables
- they are in fact **functions**

A random variable is in fact a function.

- Donated by X.
- Maps a **sample space** into a subset $\Omega \subset \mathbb{R}$.

A probability density function is accompanied to X to introduce random part

- Donated by f_X .
- Associate a certain **"probability density"** to each element in the range of **X**.

Discrete Random Variables

discrete random variable

- S is a sample space and $\Omega \subset \mathbb{Z}$.
- discrete random variable: $X: S \to \Omega$.
- probability density function / distribution function: $f_X:\Omega o R$.
- $f_X(x) \geq 0, \forall x \in \Omega$.
- $\sum_{x\in\Omega} f_X(x) = 1$.

Remark.

- A random variable is best thought as being a pair (X, f_X) .
- Density f_X is interpreted as the probability that X assumes a given value x, denoted as:

$$f_X(x) = P[\{X=x\}] = P[p]$$
 where $X(p) = x$ for $p \in S$.

Cumulative Distribution

cumulative distributive function

•
$$F(x) = P[X \le x] = \sum_{y \le x} P[X = y] = \sum_{y \le x} f_X(y)$$

Expectation

expectation for discrete random variable

- discrete random variable (X, f_X)
- Expected value of X is $E[X] = \sum_{x \in \Omega} x \cdot f_X(x)$.

St. Petersburg Paradox

- The expectation is $E[W] = \sum_{i \in \mathbb{N}^*} rac{1}{2^n} \cdot 2^n = \infty.$
- Actually do not make sense according previous definition.
- So we need new definition and ideas for expectation.

Expected Value of $H \circ X$

- discrete random variable (X, f_X)
- ullet $H:\Omega o\mathbb{R}$
- The composition $H \circ X$ will again be a random variable, albeit with **different probability density** function.

$$(H \circ X : S \to \Omega \to \mathbb{R}$$
, so range changed.)

- $H \circ X$ will be discrete if X is discrete.
- Expected value of $H \circ X$ is $E[H \circ X] = \sum_{x \in \Omega} H(x) \cdot f_X(x)$.

Some Properties of the Expectation

• Given random variable $S \to \mathbb{R}$ given by $p \mapsto c$.

$$\forall p \in S$$
 and a fixed number $x \in \mathbb{R}$.

Then
$$E[c] = c$$
.

• Let X be a random variable and $c \in \mathbb{R}$.

The composition of function $H: R \to R, y \mapsto c \cdot y$ with X is a random variable.

So
$$H \circ X = c \cdot X$$
.

Then
$$E[c \cdot X] = c \cdot E[X]$$
.

• Let **X** and **Y** be random variable.

Then
$$E[X + Y] = E[X] + E[Y]$$
.

Variance

Variance is a method to get the expected deviation from the mean.

• The variance of a random variable X with expectation E[X] is defined as

$$Var X = E[(X - E[X])^2]$$

• Notation:

$$E[X] = \mu_X = \mu$$
 , $Var\, X$ = σ_X^2 = σ^2

• Transform:

$$egin{aligned} Var\,X &= E[(X-E[X])^2] = rac{1}{n} \sum_i (x_i-E[X])^2 \ &= rac{1}{n} (\sum_i x_i^2 + nE[X]^2 - 2E[X]x_i) \ &= E[X^2] + E[X]^2 - 2E[X]^2 \ &= E[X^2] - E[X]^2 \end{aligned}$$

Standard Deviation

- Let X be a random variable variance σ_X^2 .
- The standard deviation of X is $\sigma_X = \sqrt{Var\ X} = \sqrt{\sigma_X^2}$.

Some Properties of the Variance

• Given random variable $S \to \mathbb{R}$ given by $p \mapsto c$.

 $\forall p \in S$ and a fixed number $x \in \mathbb{R}$.

Then Var c = 0.

• Let X be a random variable and $c \in \mathbb{R}$.

The composition of function $H: R \to R, y \mapsto c \cdot y$ with X is a random variable.

So
$$H \circ X = c \cdot X$$
.

Then
$$Var\,cX=c^2Var\,X$$
.

• Let \boldsymbol{X} and \boldsymbol{Y} be random variable that are independent.

Then
$$Var[X + Y] = Var[X] + Var[Y]$$
.

Geometric Distribution

Properties

• The experiments consists of a series of **trials**.

Outcome of trials can be classed as:

- o success (s)
- o failure (f)

A trial with this property is a **Bernoulli trial**.

• The trials are **identical** and **independent** in the sense that the outcome of one trial has **no effect on** the outcome of any other.

The probability of success, p, remain the same for each trial.

ullet The random variable $oldsymbol{X}$ donates the number of trials needed to obtain the first success.

Definition

• Random variable (X, f_X) is given by

$$X: S \to \Omega = \mathbb{N} \setminus \{0\}.$$

• Distribution function $f_X: \mathbb{N} \backslash \{0\} o \mathbb{R}$ is given by

$$f_X(n) = (1-p)^{n-1} p$$
 with 0

is said to have a **geometric distribution with parameter** p.

Lemma of Cumulative Distribution for Geometrically Distributed Random Variable

- Given **geometrically distributive random valuable** (X, f_X) with parameter p.
- The cumulative distribution function is

$$F(x) = P[X \le x] = 1 - (1-p)^{\lfloor x \rfloor}.$$

(Mathematica) Properties and the Geometric Distribution

Mathematica Probability Density Function (f_X)

```
1  PDF[GeometricDistribution[p], 4]
2  (1 - p)^4 p
```

Probability Function

Used to find probability $P[a \le x \le b]$.

```
1  Probability[1 < x <= 4, x = GeometricDistribution[p]]
2  (-1 + p)^2 p (3 - 3p + p^2)</pre>
```

```
Probability[x == 4, x = GeometricDistribution[p]]
[-1 + p)^4 p
```

Moments of a Random Variable

A tools allows us to **employ all power of calculus** to finding the expectation value and variance for a geometric random variable.

- Random variable (X, f_X) .
- ullet For $k\in\mathbb{N}$, the k^{th} **ordinary moment** of X is defined as $E[X^k]$. (For k=0 we set $E[X^0]=E[1]=1$)

So the **key** to find the expectation and variance of \boldsymbol{X} lies in finding its **moments**.

(Check the structure for $Var\,X=E[X^2]-E[X]^2$)

Moment Generating Function

- Random variable (X, f_X) .
- $E[X^k]$ is the k^{th} ordinary moment of X.

Definition

So if power series $m_X(t):=\sum_{k=0}^\infty rac{E[X^k]}{k!} t^k$ has a radius of convergence arepsilon>0,

the function is **defined** with $m_X:(-\varepsilon,\varepsilon) o \mathbb{R}$

is a moment generating function.

☆ Theorem

- ullet The moment-generating function exists $iff.\ E[e^{tX}]$ exists, in which case $m_X(t)=E[e^{tX}]$
- Furthermore,

$$E[X^k] = rac{d^k m_X(t)}{dt^k} \Big|_{t=0}$$

 $\begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){10$

$$m_X(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} E[X^n] = \sum_{n=0}^{\infty} E[\frac{t^n}{n!} \cdot X^n] = E[e^{tX}].$$

By **Properties of the Expectation** and the exponential series converges for any $t \in (-\varepsilon, \varepsilon)$, proved.

$$rac{d^k m_X(t)}{dt^k} = \sum_{n=0}^{\infty} rac{d^k}{dt^k} rac{t^n \cdot E[X^n]}{n!} = \sum_{n=0}^{\infty} (rac{d^k}{dt^k} rac{t^n}{n!}) E[X^n] = \sum_{n=k}^{\infty} rac{t^{n-k}}{(n-k)!} E[X^n].$$

Thus
$$\left. rac{d^k m_X(t)}{dt^k}
ight|_{t=0} = E[X^k].$$

Applying M.G.F to the Geometric Distribution

The association "distribution \mapsto m.g.f" is essential.

If we know a given distribution g has a certain $\mathbf{m}.\mathbf{g}.\mathbf{f}$ and some \mathbf{random} variable (X, f_X) has same $\mathbf{m}.\mathbf{g}.\mathbf{f}$, then $f_X = g$.

Proposition

- (X, f_X) is a **geometrically distributed random variable** with parameter p.
- **M.G.F** for **X** is given by:

$$m_X: (-\infty, -ln(q)) o \mathbb{R}, m_X(t) = rac{pe^t}{1-qe^t}, q = 1-p$$

Proof for Proposition

- Let $f_X(x) = q^{x-1}p$ for $x \in \mathbb{N} \setminus \{0\}$.
- So we get $m_X(t)$ as:

$$m_X(t)=E[e^{tX}]=\sum_{x=1}^\infty e^{tx}\cdot q^{x-1}p=rac{p}{q}\sum_{x=1}^\infty (qe^t)^x.$$

- ullet So it only converge for $|qe^t|=qe^t<1$ (q>0), or t<-ln(q).
- So $m_X(t) = rac{p}{q} \sum_{x=1}^{\infty} (qe^t)^x = rac{p}{q} (\sum_{x=0}^{\infty} (qe^t)^x 1) = rac{p}{q} (rac{1}{1-qe^t} 1) = rac{pe^t}{1-qe^t}.$

Application

- (X, f_X) is a **geometrically distributed random variable** with parameter p.
- The **expectation value** and **variance** are

$$E[X]=rac{1}{p}$$
 and $Var\,X=rac{q}{p^2}\,(q=1-p)$

Proof for the application

$$E[X] = rac{d}{dt} \Big|_{t=0} m_X(t) = rac{d}{dt} \Big|_{t=0} rac{pe^t}{1-qe^t} = rac{pe^t(1-qe^t)+pe^tqe^t}{(1-qe^t)^2} \Big|_{t=0} = rac{p}{(1-q)^2} = rac{1}{p}.$$

$$Var X = E[X^2] - E[X]^2$$

$$E[X^2] = rac{d^2}{dt^2} \Big|_{t=0} rac{pe^t}{1-qe^t} = rac{d}{dt} \Big|_{t=0} rac{pe^t}{(1-qe^t)^2} = rac{pe^t(1+qe^t)}{(1-qe^t)^3} \Big|_{t=0} = rac{2-p}{p^2}.$$

Thus
$$Var X = \frac{q}{p^2}$$
.

Binomial Distribution

Properties

- The experiment consists of a **fixed number** *n* of **Bernoulli trials**.
- The trials are **identical** and **independent**.

The **probability of success**, *p*, remains the **same** for each trial.

• The random variable \boldsymbol{X} denotes the number of successes in the \boldsymbol{n} trials.

Definition

• Random variable (X, f_X) is given by

$$X: S \to \Omega = \{0, 1, 2, \dots, n\}.$$

• Distribution function: $f_X : \mathbb{N} \setminus \{0\} \to \mathbb{R}$ is given by

$$f_X(x) = inom{n}{x} p^x (1-p)^{n-x}$$
 with $0 and $n \in \mathbb{N} ackslash \{0\}$$

is said to have a **binomial distribution with parameters** n and p.

Expectation and Variance

Theorem

Given **binomial random** variable (X, f_X) with parameters n and p.

• The **M.G.F** of **X** is given by

$$m_X: \mathbb{R} \to \mathbb{R}, m_X(t) = (q + pe^t)^n, q = 1 - p.$$

• E[X] = np and Var X = npq.

Proof

•
$$m_X(t) = E[e^{tX}] = \sum_{x=0}^n e^{xt} \binom{n}{x} p^x q^{n-x} = \sum_{x=0}^n \binom{n}{x} (e^t p)^x q^{n-x} = (e^t p + q)^n$$
.

•
$$E[X] = \frac{d}{dt}\Big|_{t=0} (e^t p + q)^n = n(e^t p + q)^{n-1} p e^t\Big|_{t=0} = np.$$

$$\begin{array}{l} \bullet \quad E[X^2] = \frac{d}{dt} \Big|_{t=0} n(e^t p + q)^{n-1} p e^t = n(e^t p + q)^{n-1} p e^t + n(n-1)(e^t p + q)^{n-2} (p e^t)^2 \Big|_{t=0} \\ = n p + n(n-1) p^2 \end{array}$$

So
$$Var X = E[X^2] - E[X]^2 = np + n^2p^2 - np^2 - n^2p^2 = np(1-p) = npq$$
.

Cumulative Distribution Function

There is no simple way of evaluating the sums involved, so the values have been tabulated.

$$F(t) = p[X \le t] = \sum_{x=0}^{\lfloor t \rfloor} \binom{n}{x} p^x (1-p)^{n-x}$$
.

Mathematica command for \boldsymbol{F} is $\boldsymbol{\mathsf{CDF}}$:

CDF[BinomialDistribution[n, p], x]

$$\left\{ \begin{array}{ll} BetaRegularized[1-p,\,n-Floor[x],\,1+Floor[x]] & 0 \leq x \leq n \\ 1 & x > n \\ 0 & True \end{array} \right.$$

Pascal Distribution

Properties

- The experiment consists of a series of **Bernoulli trials**.
- The trials are **identical** and **independent**.

The **probability of success**, p, remains the **same** for each trial.

- The trials are observed until **exactly** *r* **success are obtained**. (*r* is fixed beforehand)
- The random variable X is the number of trials needed to obtain the r successes.

Definition

- $r \in \mathbb{N} \setminus \{0\}$.
- Random variable (X, f_X) is given by

$$X:S o \Omega=\mathbb{N}ackslash\{0,1,2,\ldots,r\}=\{r,r+1,r+2,\ldots\}.$$

distribution function:

$$f_X:\Omega o \mathbb{R}, f_X(x)=inom{x-1}{r-1}p^r(1-p)^{x-r}$$
 , $0< p<1$.

o Proof:

So we know \boldsymbol{x} trials for \boldsymbol{r} successes exactly, is equals to the fact:

 $P[ext{obtain } r^{th} ext{ success in } x^{th} ext{ trial}] = P[ext{exactly } r-1 ext{ success in } x-1 ext{ trials}] imes p$

Since $P[ext{exactly } r-1 ext{ success in } x-1 ext{ trials}] = inom{x-1}{r-1} p^{r-1} (1-p)^{x-r}$

So we know $P[\text{obtain } r^{th} \text{ success in } x^{th} \text{ trial}] = \binom{x-1}{x-1} p^r (1-p)^{x-r}$.

Theorem of M.G.F on Pascal Distribution

- **M.G.F** of X is given by $m_X:\mathbb{R} o\mathbb{R}, m_X(t)=rac{(pe^t)^r}{(1-qe^t)^r}$, q=1-p .
- $E[X] = \frac{r}{p}$.
- $Var X = \frac{rq}{p^2}$.

Theorem Proof

$$egin{aligned} m_X(t) &= E[e^{tX}] = \sum_{x=r}^\infty inom{x-1}{r-1} p^r (1-p)^{x-r} e^{tx} \ &= \sum_{x=0}^\infty inom{x+r-1}{r-1} p^r (1-p)^x e^{t(x+r)} \ &= p^r e^{tr} \sum_{x=0}^\infty inom{r-1+x}{x} [e^t (1-p)]^x \end{aligned}$$

Then we can transform
$$\binom{r-1+x}{x} = \frac{(r+x-1)!}{x!(r-1)!} = \frac{(r+x-1)..r}{x!} = (-1)^x \frac{(-r)..(-r-x+1)}{x!} = (-1)^x \binom{-r}{x}$$
.

So
$$m_X(t) = p^r e^{tr} \sum_{x=0}^{\infty} {r-1+x \choose x} [e^t (1-p)]$$
 $= p^r e^{tr} \sum_{x=0}^{\infty} {-r \choose x} [-e^t (1-p)]^x$
 $= p^r e^{tr} (1-e^t (1-p))^{-r} = \frac{(pe^t)^r}{(1-qe^t)^r}$

And the rest can be achieved easily.

Pascal Distribution Question

The president of a large corporation makes decisions by throwing darts at a board. The center section is marked "yes" and represents a success. The probability of his hitting a "yes" is 0.6., and this probability remains constant from throw to throw. The president continues to throw until he has three "hits."

The president's decision rule is simple: If he gets three hits on or before the fifth throw he decides in favor of the question. What is the probability that he will decide in favor?

So we get
$$\sum_{x=3}^{5} {x-1 \choose 2} (0.6)^3 (0.4)^{x-3} = 0.6826$$
.

Hypergeometric Distribution

The hypergeometric distribution concerns trials that are **not** independent.

So each **trial** might influence the rest **trials**.

Properties

- Experiment consists of drawing **a random sample** of size n without **replacement** and without regard to order from a collection of $N \ge n$ objects.
- Of the N objects, r have a trait that interests us, while other N-r do not.
- The random variable **X** is **the number of objects in the sample with the trait**.

Definition

- $N, n, r \in \mathbb{N} \setminus \{0\}, r, n \leq \mathbb{N}$.
- Random variable (X, f_X) :

$$\circ \ \ X:S
ightarrow \Omega = \{x \in \Omega: max(0,n-(N-r)) \leq x \leq min(n,r)\}$$

- if n is larger than N-r, then it will certainly get one of r, so size is n-(N-r).
- if *n* is smaller than *r*, then it can only be as large as *n*.

$$\circ \ \ f_X:\Omega o \mathbb{R}, f_X(x)=rac{inom{r}{x}inom{r-r}{x}inom{r}{x}}{inom{N-r}{n}}$$

- $\binom{r}{x}$ is ways to choose x from r objects. (x interested in the taken n objects)
- (N-r) is ways to choose n-x from N-r objects. (n-x) uninterested from taken n objects)

is said to have a **hypergeometric distribution** with parameters N, n and r.

$$\begin{array}{l} \circ \ \, \binom{a+b}{r} = \sum_{k=0}^r \binom{a}{k} \binom{b}{r-k} \\ \sum_{r=0}^{a+b} \binom{a+b}{r} x^r = (1+r)^{a+b} = (1+r)^a (1+r)^b = (\sum_{i=0}^a \binom{a}{i} x^i) (\sum_{j=0}^b \binom{b}{j} x^j) \\ = \sum_{r=0}^{a+b} \sum_{i+i=r} \binom{a}{i} \binom{b}{i} x^r \end{array}$$

Mean / Expectation and Variance

- (X, f_X) be a **hypergeometric distribution** with parameter N, n and r.
- $E[X] = n \frac{r}{N}$ $Var X = n \frac{r}{N} \frac{N-r}{N} \frac{N-n}{N-1}$

Proof

$$E[X] = \sum_{x=0}^n x^{\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}} = \sum_{x=0}^n r^{\frac{\binom{r-1}{x-1}\binom{(N-1)-(r-1)}{(n-1)-(x-1)}}{\frac{N}{n}\binom{N-1}{n-1}}} = \frac{nr}{N} \sum_{x=1}^n \frac{\binom{r-1}{x-1}\binom{(N-1)-(r-1)}{(n-1)-(x-1)}}{\binom{N-1}{n-1}} = \frac{nr}{N}.$$

$$E[X^2] = E[X(X-1)] + E[X]$$
, so consider $E[X(X-1)]$:

$$E[X(X-1)] = \sum_{x=0}^n x(x-1) rac{inom{r}{x}inom{N-r}{n-x}}{inom{N}{n}} = \sum_{x=0}^n r(r-1) rac{inom{r-2}{x-2}inom{N-2}{(n-2)-(r-2)}}{rac{N}{n}rac{N-1}{n-1}inom{N-2}{n-2}} = rac{n(n-1)r(r-1)}{N(N-1)}.$$

Thus we get the result.

Approximation of Hypergeometric Distribution

If the **sampling fraction** $\frac{n}{N}$ is sufficiently small, like ≤ 0.05 or ≤ 0.1 , then it can be approximated by a **binomial distribution** with parameter n and $p=\frac{r}{N}$.

The smaller $\frac{n}{N}$, the better the approximation.

Poisson Distribution

Used for discrete occurrences, called arrivals, occurring randomly in a continuous time frame.

Some Assumes and pre-definitions

• random variable is X_t is **number of arrivals in time interval** [0,t] (t>0).

$$orall t, X_t:S o \mathbb{N}$$

- numbers of arrivals during a non-overlapping time interval $T_1, T_2, T_1 \cap T_2 = \emptyset$ are independent.
- some number $\lambda > 0$ for any **small time interval** Δt with **satisfied postulates**:
 - the probability that **exactly one arrival** will occur in **an interval of width** Δt is approximately $\lambda \cdot \Delta t$.
 - the probability that **exactly zero arrival** will occur in **the interval** is approximately $1 \lambda \cdot \Delta t$.
 - The probability that **two or more arrivals** occur in the interval is approximately zero.
- for the probability density function f_{X_t} , we write

$$f_{X_t}(x)=P[X_t=x]:=p_x(t)$$
 for $x=0,1,2,3,\ldots$

• So **probability of zero arrival** in $[0, t + \Delta t]$ is

$$p_0(t+\Delta t) = (1-\lambda\cdot\Delta t + o(\Delta t))p_0(t) = (1-\lambda\cdot\Delta t)p_0(t) + o(\Delta t).$$

So
$$-\lambda \cdot p_0(t) = rac{1}{\Delta t}(p_0(t+\Delta t)-p_0(t)) = p_0'(t).$$

• So **probability of** x **arrivals** (x>0) in $[0,t+\Delta t]$ is

$$p_x(t+\Delta t) = (\lambda \cdot \Delta t) \cdot p_{x-1}(t) + (1-\lambda \cdot \Delta t) \cdot p_x(t) + o(\Delta t).$$

so
$$\lambda \cdot p_{x-1}(t) - \lambda \cdot p_x(t) = rac{1}{\Delta t}(p_x(t+\Delta t) - p_x(t)) + rac{o(\Delta t)}{\Delta t} = p_x'(t).$$

- the solution is $f_{X_t}(x) = p_x(t) = \frac{(\lambda t)^x}{x!} e^{-\lambda t}$.
- donate $x = \lambda t$, we get **Poisson distribution with parameter** k.

Definition

- $k \in \mathbb{R}$
- Random variable (X, f_X) :

$$\circ X: S \to \mathbb{N}$$

$$\circ \ f_X: \mathbb{N} o \mathbb{R}$$
 given by $f_X(x) = rac{k^x e^{-k}}{x!}$

is said to have a **Poisson distribution** with parameter **k**.

MGF and Cumulative Distribution Functions

- Let (X,f_X) be a Poisson distributed random variable with parameter k.
- MGF of X is given by

$$m_X: \mathbb{R} o \mathbb{R}, m_X(t) = e^{k(e^t-1)}$$
 .

$$m_X(t) = \sum_{x=0}^{+\infty} f_X(x) \cdot e^{xt} = \sum_{x=0}^{+\infty} rac{k^x e^{-k}}{x!} e^{xt} = \sum_{x=0}^{+\infty} rac{(ke^t)^x e^{-k}}{x!} = e^{ke^t - k}$$

- So E[X] = k and Var X = k.
- ullet cumulative distribution function $F(x)=P[X\leq x]=\sum_{p=0}^{\lfloor x
 floor} rac{e^{-k}k^p}{p!}$

Approximating Binomial Distribution

If n is large and p is small, we can approximate the binomial distribution by Poisson distribution.

Set k = pn, requiring p < 0.1 for approximation.

The smaller \boldsymbol{p} and the larger \boldsymbol{n} are, the better approximation.