Algebră liniară, geometrie analitică și diferențială cursul 5

2021-2022

Spații euclidiene. Procedeul de ortonormare Gram-Schmidt

În mecanică, vectorii joacă un rol foarte important utilizându-se foarte mult noțiuni precum mărimea unei forțe și unghiul dintre forțe. Considerăm noțiunile de lungime a unui vector și normă pentru diverse spații vectoriale. Pentru aceasta, vom defini noțiunea de produs scalar pe un spațiu vectorial și, cu ajutorul ei, definim noțiunea de ortogonalitate a vectorilor.

Definiție

Un produs scalar pe spațiul vectorial V peste corpul comutativ $\mathbb R$ este o funcție $\langle \cdot, \cdot \rangle : V \times V \to \mathbb R$ care asociază fiecărei perechi de vectori $(\mathbf x, \mathbf y) \in V$ un scalar $\langle \mathbf x, \mathbf y \rangle \in \mathbb R$ astfel încât pentru oricare trei vectori $\mathbf x, \mathbf y, \mathbf z \in V$ și orice scalar $\alpha \in \mathbb R$ sunt îndeplinite condițiile:

- (i) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ și $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ dacă și numai dacă $\mathbf{x} = \mathbf{0}$;
- (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$;
- (iii) $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;
- (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$.

Un spațiu vectorial V pe care a fost definit un produs scalar se numește **spațiu vectorial euclidian real**.

Exemplu

Fie spațiul vectorial \mathbb{R}^n și $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{y} = (y_1, \dots, y_n)$. Atunci

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$$

este un produs scalar pe \mathbb{R}^n numit **produsul scalar euclidian**.

Solutie.

Verificăm cele patru condiții din definiție:

(i) Deoarece $a^2 \geq 0$ pentru orice $a \in \mathbb{R}$, avem că

$$\langle \mathbf{x}, \mathbf{x} \rangle = x_1^2 + \dots + x_n^2 \ge 0$$

și
$$\langle \mathbf{x}, \mathbf{x} \rangle = x_1^2 + \dots + x_n^2 = 0$$
 dacă și numai dacă $x_1 = \dots = x_n = 0$.

(ii) Din comutativitatea înmulțirii numerelor reale avem că

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \cdots + x_n y_n = y_1 x_1 + \cdots + y_n x_n = \langle \mathbf{y}, \mathbf{x} \rangle.$$

(iii) Fie $\alpha \in \mathbb{R}$. Atunci

$$\alpha\langle \mathbf{x},\mathbf{y}\rangle = \alpha(x_1y_1 + \cdots + x_ny_n) = (\alpha x_1)y_1 + \cdots + (\alpha x_n)y_n = \langle \alpha \mathbf{x},\mathbf{y}\rangle.$$

(iv) Fie $\mathbf{x},\mathbf{y},\mathbf{z}\in\mathbb{R}^n$, $\mathbf{z}=(z_1,\ldots,z_n)$. Atunci

$$\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = (x_1 + y_1)z_1 + \dots + (x_n + y_n)z_n =$$

$$= x_1z_1 + y_1z_1 + \dots + x_nz_n + y_nz_n =$$

$$= (x_1z_1 + \dots + x_nz_n) + (y_1z_1 + \dots + y_nz_n) =$$

$$= \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle.$$

Exemplu

Fie spațiul vectorial
$$\mathbb{R}^n$$
, $a_1, \ldots, a_n \in \mathbb{R}_{>0}$ și $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{x} = (x_1, \ldots, x_n)$, $\mathbf{y} = (y_1, \ldots, y_n)$. Atunci $\langle \mathbf{x}, \mathbf{y} \rangle = a_1 x_1 y_1 + a_2 x_2 y_2 + \cdots + a_n x_n y_n$

este un produs scalar pe \mathbb{R}^n numit **produsul scalar ponderat**.

În cazul în care cel puțin una dintre constantele a_1, \ldots, a_n este negativă sau zero, atunci funcția definită în ultimul exemplu nu mai este un produs scalar, așa cum se vede din exemplul următor:

Exemplu

Fie spaţiul vectorial \mathbb{R}^4 şi $\mathbf{x}, \mathbf{y} \in \mathbb{R}^4$, $\mathbf{x} = (x_1, \dots, x_4)$, $\mathbf{y} = (y_1, \dots, y_4)$. Atunci

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 - x_2 y_2 + 2x_4 y_4$$

nu este un produs scalar pe \mathbb{R}^4 .

Soluție.

Se observă că prima condiție nu se verifică. Într-adevăr, pentru vectorul $\mathbf{x}=(1,2,1,1)\in\mathbb{R}^4$ obținem

$$\langle \mathbf{x}, \mathbf{x} \rangle = 1 \cdot 1 - 2 \cdot 2 + 2 \cdot 1 \cdot 1 = -1 < 0.$$

Exemplu

Fie $a, b \in \mathbb{R}$ cu a < b și f, g funcții reale continue în spațiul vectorial C[a, b]. Atunci

$$\langle f, g \rangle = \int_a^b f(x)g(x)dx$$

este un produs scalar pe C[a, b]. Acest produs se numeşte **produsul scalar canonic** pe C[a, b].

Soluție.

Verificăm cele patru condiții din definiție:

(i) Deoarece $[f(x)]^2 \ge 0$ pentru orice x, avem că

$$\langle f, f \rangle = \int_a^b [f(x)]^2 dx \ge 0$$

și $\langle f, f \rangle = \int_a^b [f(x)]^2 dx = 0$ dacă și numai dacă f(x) = 0 pentru orice $x \in [a, b]$ (din ipoteză știm că a < b).

(ii)
$$\langle f, g \rangle = \int_a^b f(x)g(x)dx = \int_a^b g(x)f(x)dx = \langle g, f \rangle.$$

(iii) Fie $\alpha \in \mathbb{R}$. Atunci

$$\alpha \langle f, g \rangle = \alpha \int_{a}^{b} f(x)g(x)dx =$$
$$= \int_{a}^{b} \alpha f(x)g(x)dx = \langle \alpha f, g \rangle.$$

(iv) Fie $f, g, h \in C[a, b]$. Atunci

$$\langle f + g, h \rangle = \int_{a}^{b} [f(x) + g(x)]h(x)dx =$$

$$= \int_{a}^{b} [f(x)h(x) + g(x)h(x)]dx =$$

$$= \int_{a}^{b} f(x)h(x)dx + \int_{a}^{b} g(x)h(x)dx = \langle f, h \rangle + \langle g, h \rangle.$$

Exemplu

Considerăm
$$\mathcal{M}_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}$$
 şi $A, B \in \mathcal{M}_2(\mathbb{R})$. Atunci

$$\langle A, B \rangle = \operatorname{Tr}(A \cdot B^T)$$

este un produs scalar pe $\mathcal{M}_2(\mathbb{R})$. Acest produs se numeşte **produsul scalar canonic** pe $\mathcal{M}_2(\mathbb{R})$.

Soluție.

Fie
$$A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$$
 și $B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$. Folosind faptul că $\operatorname{Tr}(A) = a_1 + a_4$, verificăm cele patru condiții din definiție:

(i) Deoarece

$$A \cdot A^T = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \cdot \begin{pmatrix} a_1 & a_3 \\ a_2 & a_4 \end{pmatrix} = \begin{pmatrix} a_1^2 + a_2^2 & a_1a_3 + a_2a_4 \\ a_1a_3 + a_2a_4 & a_3^2 + a_4^2 \end{pmatrix},$$

obţinem că $\langle A, A \rangle = a_1^2 + a_2^2 + a_3^2 + a_4^2 \ge 0$. Atunci

$$\langle A, A \rangle = a_1^2 + a_2^2 + a_3^2 + a_4^2 = 0$$

dacă și numai dacă $a_1=\cdots=a_4=0$ ceea ce este echivalent cu faptul că $A=\mathbf{O}_2=\begin{pmatrix}0&0\\0&0\end{pmatrix}$.

(ii)
$$\langle A, B \rangle = a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4 =$$

= $b_1a_1 + b_2a_2 + b_3a_3 + b_4a_4 = \langle B, A \rangle$.

(iii) Fie $\alpha \in \mathbb{R}$. Atunci

$$\begin{split} \alpha\langle A,B\rangle &= \alpha \big(a_1b_1+a_2b_2+a_3b_3+a_4b_4\big) = \\ &= (\alpha a_1)b_1+(\alpha a_2)b_2+(\alpha a_3)b_3+(\alpha a_4)b_4 = \langle \alpha A,B\rangle. \end{split}$$
 (iv) Fie $A,B,C\in\mathcal{M}_2(\mathbb{R})$, unde $C=\begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix}$. Atunci

$$\langle A+B,C\rangle = (a_1+b_1)c_1 + (a_2+b_2)c_2 + (a_3+b_3)c_3 + (a_4+b_4)c_4 =$$

$$= (a_1c_1 + a_2c_2 + a_3c_3 + a_4c_4) + (b_1c_1 + b_2c_2 + b_3c_3 + b_4c_4) =$$

$$= \langle A,C\rangle + \langle B,C\rangle.$$

Exemplu

Fie $n \in \mathbb{N}^*$ și $\mathbb{R}_n[x] = \{\mathbf{p} \in \mathbb{R}[x] : \deg(\mathbf{p}) \leq n\}$. Fie $\mathbf{p}, \mathbf{q} \in \mathbb{R}_n[x]$ două polinoame de grad cel mult n cu coeficienți numere reale,

$$\mathbf{p} = p_0 + p_1 x + p_2 x^2 + \dots + p_n x^n$$
 și

$$\mathbf{q}=q_0+q_1x+q_2x^2+\cdots+q_nx^n.$$

Atunci

$$\langle \mathbf{p}, \mathbf{q} \rangle = p_0 q_0 + p_1 q_1 + \cdots + p_n q_n$$

este un produs scalar pe $\mathbb{R}_n[x]$. Acest produs se numește **produsul** scalar canonic pe $\mathbb{R}_n[x]$.

Soluție.

Verificăm cele patru condiții din definiție:

(i) Deoarece $a^2 \geq 0$ pentru orice $a \in \mathbb{R}$, avem că

$$\langle \mathbf{p}, \mathbf{p} \rangle = p_0^2 + \dots + p_n^2 \ge 0$$

și $\langle \mathbf{p}, \mathbf{p} \rangle = p_0^2 + \dots + p_n^2 = 0$ dacă și numai dacă $p_0 = \dots = p_n = 0$ echivalent cu $\mathbf{p} = 0$.

(ii)
$$\langle \mathbf{p}, \mathbf{q} \rangle = p_0 q_0 + \cdots + p_n q_n = q_0 p_0 + \ldots + q_n p_n = \langle \mathbf{q}, \mathbf{p} \rangle$$
.

(iii) Fie $\alpha \in \mathbb{R}$. Atunci

$$lpha\langle\mathbf{p},\mathbf{q}\rangle=lpha(p_0q_0+p_1q_1+\cdots+p_nq_n)=$$

$$=(\alpha p_0)q_0+(\alpha p_1)q_1+\cdots+(\alpha p_n)q_n=\langle\alpha\mathbf{p},\mathbf{q}\rangle.$$

(iv) Fie $\mathbf{p}, \mathbf{q}, \mathbf{r} \in \mathbb{R}_n[x]$. Atunci

$$\langle \mathbf{p} + \mathbf{q}, \mathbf{r} \rangle = (p_0 + q_0)r_0 + (p_1 + q_1)r_1 + \dots + (p_n + q_n)r_n =$$

$$= (p_0r_0 + p_1r_1 + \dots + p_nr_n) + (q_0r_0 + q_1r_1 + \dots + q_nr_n) =$$

$$= \langle \mathbf{p}, \mathbf{r} \rangle + \langle \mathbf{q}, \mathbf{r} \rangle.$$

Propoziție

Fie $\mathbf{x}, \mathbf{y}, \mathbf{z}$ vectori în spațiul vectorial euclidian V și $\alpha \in \mathbb{R}$ un scalar. Atunci:

(i)
$$\langle \mathbf{x}, \mathbf{0} \rangle = \langle \mathbf{0}, \mathbf{x} \rangle = 0$$
.

(ii)
$$\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$$
.

(iii)
$$\alpha \langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \alpha \mathbf{y} \rangle$$
.

Demonstrație.

(i) Conform condiției (ii) din definiție știm că $\langle \mathbf{x}, \mathbf{0} \rangle = \langle \mathbf{0}, \mathbf{x} \rangle$. Prin urmare, mai trebuie să demonstrăm că $\langle \mathbf{0}, \mathbf{x} \rangle = 0$.

$$\langle \boldsymbol{0}, \boldsymbol{x} \rangle = \langle 0 \boldsymbol{x}, \boldsymbol{x} \rangle = 0 \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0.$$

(ii)
$$\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{y} + \mathbf{z}, \mathbf{x} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{z}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle.$$

(iii) $\alpha \langle \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle = \langle \alpha \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, \alpha \mathbf{y} \rangle.$

Definiție

Un produs scalar pe spațiul vectorial V peste corpul comutativ $\mathbb C$ este o funcție $\langle\cdot,\cdot\rangle:V\times V\to\mathbb C$ care asociază fiecărei perechi de vectori $(\mathbf x,\mathbf y)\in V$ un scalar $\langle\mathbf x,\mathbf y\rangle\in\mathbb C$ astfel încât pentru oricare trei vectori $\mathbf x,\mathbf y,\mathbf z\in V$ și orice scalar $\alpha\in\mathbb C$ sunt îndeplinite condițiile:

- (i) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ și $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ dacă și numai dacă $\mathbf{x} = \mathbf{0}$;
- (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$;
- (iii) $\alpha \langle \mathbf{x}, \mathbf{y} \rangle = \langle \alpha \mathbf{x}, \mathbf{y} \rangle$;
- (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$.

Un spațiu vectorial complex V pe care a fost definit un produs scalar se numește **spațiu vectorial euclidian complex**.

Exemplu

Fie spațiul vectorial \mathbb{C}^n și $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$, $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{y} = (y_1, \dots, y_n)$. Atunci

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 \overline{y}_1 + x_2 \overline{y}_2 + \dots + x_n \overline{y}_n$$

este un produs scalar pe \mathbb{C}^n numit **produsul scalar euclidian**.

Exemplu

Fie $a, b \in \mathbb{R}$ cu a < b și f, g funcții complexe continue în spațiul vectorial C[a, b]. Atunci

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx$$

este un produs scalar pe C[a, b]. Acest produs se numeşte **produsul scalar canonic** pe C[a, b].

Exemplu

Fie $n \in \mathbb{N}^*$ și $\mathbb{C}_n[x] = \{\mathbf{p} \in \mathbb{C}[x] : \deg(\mathbf{p}) \leq n\}$. Fie $\mathbf{p}, \mathbf{q} \in \mathbb{C}_n[x]$ două polinoame de grad cel mult n cu coeficienți numere reale,

$$\mathbf{p} = p_0 + p_1 x + p_2 x^2 + \dots + p_n x^n$$
 și

$$\mathbf{q} = q_0 + q_1 x + q_2 x^2 + \dots + q_n x^n$$
. Atunci

$$\langle \mathbf{p}, \mathbf{q} \rangle = p_0 \bar{q}_0 + p_1 \bar{q}_1 + \cdots + p_n \bar{q}_n$$

este un produs scalar pe $\mathbb{C}_n[x]$. Acest produs se numește **produsul** scalar canonic pe $\mathbb{C}_n[x]$.

Propoziție

Fie $\mathbf{x}, \mathbf{y}, \mathbf{z}$ vectori în spațiul vectorial euclidian complex V și $\alpha \in \mathbb{C}$ un scalar. Atunci:

- (i) $\langle \mathbf{x}, \mathbf{0} \rangle = \langle \mathbf{0}, \mathbf{x} \rangle = 0$.
- (ii) $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$.
- (iii) $\overline{\alpha}\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \alpha \mathbf{y} \rangle$.

Demonstrație.

(iii)
$$\overline{\alpha}\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\alpha\langle \mathbf{y}, \mathbf{x} \rangle} = \overline{\langle \alpha \mathbf{y}, \mathbf{x} \rangle} = \langle \mathbf{x}, \alpha \mathbf{y} \rangle.$$

Definiție

Fie un spațiu vectorial euclidian V (real sau complex) și $\alpha \in \mathbb{R}$ (sau \mathbb{C}). Funcția $\|\cdot\|:V\to\mathbb{R}$ se numește **normă** pe V dacă:

- (i) $\|\mathbf{x}\| \ge 0$ și $\|\mathbf{x}\| = 0$ dacă și numai dacă $\mathbf{x} = \mathbf{0}$;
- (ii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$.
- (iii) $\|x + y\| \le \|x\| + \|y\|$.

Un spațiu vectorial pe care s-a definit o normă se numește **spațiu normat**.

Exemplu

- ▶ Pe \mathbb{R} funcția $\|\cdot\|:\mathbb{R}\to\mathbb{R}$, definită prin $\|x\|=|x|$, pentru orice $x\in\mathbb{R}$, este o normă.
- ▶ Pe \mathbb{R}^n funcția $\|\cdot\|_{\infty}: \mathbb{R}^n \to \mathbb{R}$, definită prin $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$, pentru orice $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, este o normă.
- ▶ Pe \mathbb{R}^n funcția $\|\cdot\|_1 : \mathbb{R}^n \to \mathbb{R}$, definită prin $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$, pentru orice $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, este o normă.

Exemplu

- ▶ Pe \mathbb{R}^n funcția $\|\cdot\|_2 : \mathbb{R}^n \to \mathbb{R}$, definită prin $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|}$, pentru orice $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, este o normă.
- ▶ Dacă V este un spațiu euclidian, atunci funcția $\|\cdot\|:V\to\mathbb{R}$, definită prin $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x},\mathbf{x}\rangle}$, pentru orice $\mathbf{x}\in V$, este o normă și se numește **norma indusă de produsul scalar**.

Observație

Norma indusă de produsul scalar pe \mathbb{R}^n este

$$\|\mathbf{x}\| = \sqrt{x_1^2 + \dots + x_n^2}, \ \forall \mathbf{x} = (x_1, \dots, x_n).$$

Teoremă

Fie x și y vectori într-un spațiu vectorial euclidian V. Atunci:

- 1. $\langle \mathbf{x}, \mathbf{y} \rangle \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|$ (Inegalitatea Cauchy–Schwarz).
- 2. $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$.

Demonstrație.

(1) Dacă $\mathbf{x}=\mathbf{0}$ sau $\mathbf{y}=\mathbf{0}$, inegalitatea este evident adevărată. Presupunem că $\mathbf{x},\mathbf{y}\neq\mathbf{0}$. Fie $t\in\mathbb{R}$ un scalar și considerăm vectorul $\mathbf{z}=t\mathbf{x}+\mathbf{y}$. Deoarece $\langle\mathbf{z},\mathbf{z}\rangle\geq0$, obținem că

$$\langle t\mathbf{x} + \mathbf{y}, t\mathbf{x} + \mathbf{y} \rangle \ge 0$$

echivalent cu

$$t^2\langle \mathbf{x}, \mathbf{x} \rangle + 2t\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle > 0.$$

Notând $a=\langle {f x},{f x} \rangle$, $b=2\langle {f x},{f y} \rangle$ și $c=\langle {f y},{f y} \rangle$, inegalitatea devine $at^2+bt+c\geq 0.$

Această inegalitate trebuie să fie adevărată pentru orice $t \in \mathbb{R}$. Prin urmare, ținând cont că $a = \langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, trebuie să avem

$$b^2 - 4ac \le 0$$

echivalent cu

$$4\langle \mathbf{x}, \mathbf{y} \rangle^2 - 4\langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle \leq 0$$

sau

$$\langle \mathbf{x}, \mathbf{y} \rangle \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}.$$

(2) Avem

$$\|\mathbf{x}+\mathbf{y}\|^2 = \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

şi

$$\|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

Adunăm cele două relații și obținem

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$$

Observație

Dacă $\|\mathbf{x}\|=1$, atunci vectorul \mathbf{x} se numește **vector unitate** sau **versor**. Dacă \mathbf{x} este un vector din spațiul vectorial euclidian V atunci vectorul $\mathbf{u}=\frac{1}{\|\mathbf{x}\|}\mathbf{x}$ este un vector de lungime 1 și se numește **versor** (sau **vector unitate**) în direcția **vectorului** \mathbf{x} .

Definiție

Fie V un spațiu euclidian real și \mathbf{x} , \mathbf{y} doi vectori din V. Unghiul θ dintre vectorii nenuli \mathbf{x} și \mathbf{y} este dat de formula

$$\cos \theta = rac{\langle \mathbf{x}, \mathbf{y}
angle}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}, \ 0 \leq \theta \leq \pi.$$

Propoziție

Doi vectori nenuli \mathbf{x} și \mathbf{y} din spațiul vectorial euclidian V cu produsul scalar $\langle \cdot, \cdot \rangle$ sunt **ortogonali** (și scriem $\mathbf{x} \perp \mathbf{y}$) dacă și numai dacă $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Demonstrație.

Fie ${\bf x}$ și ${\bf y}$ doi vectori nenuli. Vectorii ${\bf x}$ și ${\bf y}$ sunt ortogonali dacă și numai dacă unghiul dintre ei este $\frac{\pi}{2}$ ceea ce este echivalent cu $\langle {\bf x}, {\bf y} \rangle = 0$.

Propoziție

Dacă V este un spațiu normat, atunci vectorii \mathbf{x} și \mathbf{y} sunt ortogonali dacă și numai dacă $\|\mathbf{x}+\mathbf{y}\|^2=\|\mathbf{x}\|^2+\|\mathbf{y}\|^2$. (Teorema lui Pitagora)

Demonstrație:

Fie ${\bf x}$ și ${\bf y}$ doi vectori ortogonali, ceea ce inseamnă că $\langle {\bf x}, {\bf y} \rangle = 0.$ Atunci

$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle =$$
$$= \langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + 0 + \|\mathbf{y}\|^2$$

Presupunând acum că are loc egalitatea $\|\mathbf{x}+\mathbf{y}\|^2=\|\mathbf{x}\|^2+\|\mathbf{y}\|^2$, obținem că

$$\begin{split} 0 &= \|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x}\|^2 - \|\mathbf{y}\|^2 = \\ &= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle = 2 \langle \mathbf{x}, \mathbf{y} \rangle. \end{split}$$

Prin urmare, $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ ceea ce implică $\mathbf{x} \perp \mathbf{y}$.

Definiție

Fie V o mulțime nevidă. Funcția $d(\cdot,\cdot):V\times V\to\mathbb{R}$ se numește **distanță sau metrică** pe V dacă:

- (i) $d(\mathbf{x}, \mathbf{y}) \ge 0$ și $d(\mathbf{x}, \mathbf{y}) = 0$ dacă și numai dacă $\mathbf{x} = \mathbf{y}$;
- (ii) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x});$
- (iii) $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$

O mulțime pe care s-a definit o metrică se numește spațiu metric.

Exemplu

Orice mulțime V poate fi spațiu metric cu funcția

$$d: V imes V o \mathbb{R}, d(\mathbf{x}, \mathbf{y}) = egin{cases} 0 &, \mathbf{x} = \mathbf{y} \ 1 &, \mathbf{x}
eq \mathbf{y} \end{cases}$$

Observație

Fie V un spațiu vectorial euclidian. Funcția $d(\cdot,\cdot):V\times V\to\mathbb{R}$, definită prin $d(\mathbf{x},\mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$, pentru orice $\mathbf{x},\mathbf{y}\in V$ este o distanță.

Definiție

Fie \mathbf{x} și \mathbf{y} vectori într-un spațiu vectorial euclidian V, astfel încât $\mathbf{y} \neq \mathbf{0}$. Proiecția ortogonală a vectorului \mathbf{x} pe vectorul \mathbf{y} este dată de

$$\mathrm{pr}_{\mathbf{y}}\mathbf{x} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{y}, \mathbf{y} \rangle} \mathbf{y}$$

Spații euclidiene

Exemplu

Fie $\mathbf{p} = 1 - 3x^2$, $\mathbf{q} = 6 - 5x + 2x^2$ şi $\mathbf{r} = 1 - 2x$ polinoame în spațiul vectorial euclidian $\mathbb{R}_2[x]$ înzestrat cu produsul scalar canonic. Să se calculeze: $\langle \mathbf{p}, \mathbf{q} \rangle$, $\langle \mathbf{q}, \mathbf{r} \rangle$, $\|\mathbf{q}\|$, $d(\mathbf{p}, \mathbf{q})$ şi $\mathrm{pr}_{\mathbf{q}}\mathbf{r} = \frac{\langle \mathbf{r}, \mathbf{q} \rangle}{\langle \mathbf{q}, \mathbf{q} \rangle} \mathbf{q}$.

Soluție.

Folosind definiția produsului scalar avem:

$$\langle \mathbf{p}, \mathbf{q} \rangle = 1 \cdot 6 + 0 \cdot (-5) + (-3) \cdot 2 = 0$$

şi

$$\langle \mathbf{q}, \mathbf{r} \rangle = 6 \cdot 1 + (-5) \cdot (-2) + 2 \cdot 0 = 16.$$

Pentru a calcula $\|\mathbf{q}\|$, avem

$$\|\mathbf{q}\| = \sqrt{\langle q,q \rangle} = \sqrt{6^2 + (-5)^2 + 2^2} = \sqrt{65}$$
. Algebră liniară, geometrie analitică și diferentială

Spații euclidiene

Pentru a determina $d(\mathbf{p}, \mathbf{q})$, trebuie să calculăm $\|\mathbf{p} - \mathbf{q}\|$. Avem

$$\mathbf{p} - \mathbf{q} = (1 - 3x^2) - (6 - 5x + 2x^2) = -5 + 5x - 5x^2,$$

prin urmare

$$d(\mathbf{p}, \mathbf{q}) = \|\mathbf{p} - \mathbf{q}\| = \sqrt{(-5)^2 + 5^2 + (-5)^2} = 5\sqrt{3}.$$

Pentru proiecția ortogonală a vectorului **p** pe vectorul **q** avem:

$$\operatorname{pr}_{\mathbf{q}}\mathbf{r} = \frac{\langle \mathbf{r}, \mathbf{q} \rangle}{\langle \mathbf{q}, \mathbf{q} \rangle} \mathbf{q} = \frac{16}{65} \mathbf{q} = \frac{16}{65} (6 - 5x + 2x^2).$$

Definiție

O mulțime S de vectori dintr-un spațiu vectorial euclidian V se numește **ortogonală** dacă fiecare pereche de vectori din S este ortogonală, i.e. $\mathbf{x} \perp \mathbf{y}$ pentru orice $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$. Dacă, în plus, fiecare vector din S este un vector unitate, atunci S se numește **mulțime ortonormată**.

Dacă S este o bază pentru spațiul vectorial V, atunci S este o bază ortogonală sau ortonormată, după caz.

Baza canonică din \mathbb{R}^n este o bază ortonormată, dar ea nu este unica cu această proprietate. De exemplu, dacă vom considera cazul particular $V=\mathbb{R}^3$, o altă bază ortonormată ar putea fi obținută rotind vectorii care formează baza în jurul axei Oz și obținem baza

$$B = \{(\cos \theta, \sin \theta, 0), (-\sin \theta, \cos \theta, 0), (0, 0, 1)\}$$

așa cum reiese din figura următoare:

Figure: Alta bază ortonormată în \mathbb{R}^3

Exemplu

În spațiul vectorial euclidian real $\mathbb{R}_4[x]$ înzestrat cu produsul scalar

$$\langle \mathbf{p}, \mathbf{q} \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3 + a_4 b_4,$$

unde $\mathbf{p} = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ şi $\mathbf{q} = b_0 + b_1x + b_2x^2 + b_3x^3 + b_4x^4$, baza canonică $\{1, x, x^2, x^3, x^4\}$ este o bază ortonormată. Într-adevăr, se poate verifica uşor că produsul scalar al oricăror doi vectori diferiți din bază este 0 şi că norma vectorilor din bază este 1.

Exemplu

Considerăm spațiul vectorial $C[0,2\pi]$ pe care considerăm definit produsul scalar $\langle f,g\rangle=\int_0^{2\pi}f(x)g(x)dx$. Mulțimea

$$S = \{1, \sin x, \cos x, \sin 2x, \cos 2x, \dots, \sin nx, \cos nx, \dots\}$$

este ortogonală în $C[0,2\pi]$ care nu este însă ortonormată. Într-adevăr, se poate verifica ușor că

$$\langle 1, \sin mx \rangle = \int_0^{2\pi} \sin mx dx = 0$$

şi

$$\langle 1, \cos mx \rangle = \int_0^{2\pi} \cos mx dx = 0$$

pentru $1 \le m \le n$.

Pentru $1 \le m < r \le n$ avem

$$\langle \sin mx, \sin rx \rangle = \int_0^{2\pi} \sin mx \sin rx dx =$$

$$= \frac{1}{2} \int_0^{2\pi} [\cos(m-r)x - \cos(m+r)x] dx = 0,$$

$$\langle \cos mx, \cos rx \rangle = \int_0^{2\pi} \cos mx \cos rx dx =$$

$$= \frac{1}{2} \int_0^{2\pi} [\cos(m+r)x + \cos(m-r)x] dx = 0,$$

şi

$$\langle \sin mx, \cos rx \rangle = \int_0^{2\pi} \sin mx \cos rx dx =$$

$$= \frac{1}{2} \int_0^{2\pi} [\sin(m+r)x + \sin(m-r)x] dx = 0.$$

De asemenea,

$$\langle \sin mx, \cos mx \rangle = \int_0^{2\pi} \sin mx \cos mx dx = \frac{1}{2} \int_0^{2\pi} \sin(2mx) dx = 0.$$

Multimea nu este ortonormată deoarece

$$||1||^2 = \langle 1, 1 \rangle = \int_0^{2\pi} dx = 2\pi.$$

De asemenea,

$$\|\sin mx\|^2 = \int_0^{2\pi} \sin^2 mx dx = \pi$$

şi

$$\|\cos mx\|^2 = \int_0^{2\pi} \cos^2 mx dx = \pi.$$

Normând fiecare vector din mulțime obținem

$$S' = \left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}} \sin x, \frac{1}{\sqrt{\pi}} \cos x, \dots, \frac{1}{\sqrt{\pi}} \sin nx, \frac{1}{\sqrt{\pi}} \cos nx, \dots \right\}$$

Teoremă

Fie V un \mathbb{R} -spațiu vectorial euclidian și $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ o mulțime ortogonală de vectori nenuli din V. Atunci S este mulțime liniar independentă.

Demonstrație.

Fie $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ scalari astfel încât

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}.$$

Trebuie să demonstrăm că $\alpha_1 = \cdots = \alpha_n = 0$. Fie $1 \le i \le n$. Considerăm produsul scalar

$$\langle \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle$$

echivalent cu
$$\alpha_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + \cdots + \alpha_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle + \cdots + \alpha_n \langle \mathbf{v}_n, \mathbf{v}_i \rangle = 0$$
.

Cum vectorii din S sunt ortogonali, avem că $\langle \mathbf{v}_j, \mathbf{v}_i \rangle = 0$ pentru orice $j \neq i, 1 \leq j \leq n$. Deci

$$\alpha_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0.$$

Dar vectorii din S sunt nenuli, ceea ce înseamnă că $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = \|\mathbf{v}_i\|^2 \neq 0$. Prin urmare $\alpha_i = 0$. Cum i a fost ales arbitrar, am obținut că

$$\alpha_1 = \cdots = \alpha_n = 0,$$

deci vectorii sunt liniar independenți.

Corolar

Fie V un \mathbb{R} -spațiu vectorial euclidian de dimensiune n. Atunci orice mulțime de n vectori ortogonali nenuli formează o bază pentru V.

Teoremă

Fie $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ o bază ortonormată în spațiul vectorial euclidian V și $\mathbf{w} \in V$ un vector. Atunci reprezentarea vectorului \mathbf{w} în baza B este

$$\mathbf{w} = \langle \mathbf{w}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \cdots + \langle \mathbf{w}, \mathbf{v}_n \rangle \mathbf{v}_n.$$

Demonstratie.

Deoarece B este o bază în V, există și sunt unici scalarii $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ astfel încât

$$\mathbf{w} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n.$$

Fie $1 \le i \le n$ ales arbitrar. Considerând produsul scalar cu \mathbf{v}_i , obţinem

$$\langle \mathbf{w}, \mathbf{v}_i \rangle = \langle \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n, \mathbf{v}_i \rangle.$$

Având în vedere că baza B este ortonomată și folosind liniaritatea produsului scalar, obținem că

$$\langle \mathbf{w}, \mathbf{v}_i \rangle = \alpha_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle.$$

Ținând cont că baza B este ortonormată, avem că $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = \|\mathbf{v}_i\|^2 = 1$, deci $\alpha_i = \langle \mathbf{w}, \mathbf{v}_i \rangle$.

Observație

Coeficienții vectorului **w** relativ la baza ortonormată *B* determinați în teorema anterioară se mai numesc și **coeficienții** Fourier ai lui **w** relativ la *B*.

Teoremă (Procedeul de ortonormare Gram-Schmidt)

- 1. Fie $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ o bază în spațiul vectorial euclidian V.
- 2. Fie $B' = \{\mathbf{w}_1, \dots, \mathbf{w}_n\}$, unde \mathbf{w}_i este obținut astfel:

$$\begin{aligned} \mathbf{w}_1 &= \mathbf{v}_1 \\ \mathbf{w}_2 &= \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 \\ \mathbf{w}_3 &= \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{v}_3, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2 \\ &\vdots \\ \mathbf{w}_n &= \mathbf{v}_n - \frac{\langle \mathbf{v}_n, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{v}_n, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2 - \dots - \frac{\langle \mathbf{v}_n, \mathbf{w}_{n-1} \rangle}{\langle \mathbf{w}_{n-1}, \mathbf{w}_{n-1} \rangle} \mathbf{w}_{n-1}. \end{aligned}$$

Atunci B' este o bază ortogonală în V.

3. Fie versorii $\mathbf{u}_i = \frac{\mathbf{w}_i}{\|\mathbf{w}_i\|}$, $1 \le i \le n$. Atunci mulțimea $B'' = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ este o bază ortonormată în V.

Corolar

Orice spațiu vectorial euclidian finit dimensional are o bază ortonormată

Exemplu

Fie vectorii $\mathbf{v}_1=(0,1,0)$ și $\mathbf{v}_2=(1,1,1)$ vectori în \mathbb{R}^3 care generează un plan. Determinați o bază ortonormată pentru acest subspațiu.

Soluție.

Fie
$$\mathbf{w}_1=\mathbf{v}_1=(0,1,0)$$
. Atunci $\mathbf{w}_2=\mathbf{v}_2-\frac{\langle \mathbf{v}_2,\mathbf{w}_1\rangle}{\langle \mathbf{w}_1,\mathbf{w}_1\rangle}\mathbf{w}_1$. Cum $\langle \mathbf{v}_2,\mathbf{w}_1\rangle=1$ și $\langle \mathbf{w}_1,\mathbf{w}_1\rangle=1$, obținem
$$\mathbf{w}_2=(1,1,1)-\frac{1}{1}(0,1,0)=(1,0,1).$$

Deci $S'=\{(0,1,0),(1,0,1)\}$. Normând vectorii \mathbf{w}_1 și \mathbf{w}_2 , obținem $\mathbf{u}_1=\frac{\mathbf{w}_1}{\|\mathbf{w}_1\|}=(0,1,0)$ și

$$\mathbf{u}_2 = \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} = \frac{1}{\sqrt{2}}(1,0,1) = \left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)$$
. Prin urmare,

 $S'' = \{\mathbf{u}_1, \mathbf{u}_2\}$ este o bază ortonormată pentru subspațiul considerat.

Observație

Baza ortonormată obținută prin procedeul de ortonormare Gram-Schmidt depinde de ordinea vectorilor din bază. Într-adevăr, dacă în exemplul anterior considerăm $\mathbf{v}_1 = (1,1,1)$ și $\mathbf{v}_2 = (0,1,0)$ atunci $\mathbf{w}_1 = \mathbf{v}_1 = (1,1,1)$ și

$$\mathbf{w}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1.$$

Cum $\langle \mathbf{v}_2, \mathbf{w}_1 \rangle = 1$ și $\langle \mathbf{w}_1, \mathbf{w}_1 \rangle = 3$, obținem

$$\mathbf{w}_2 = (0,1,0) - \frac{1}{3}(1,1,1) = \left(-\frac{1}{3},\frac{2}{3},-\frac{1}{3}\right).$$

Având în vedere forma vectorului obținut, putem lua

$$\mathbf{w}_2' = 3\mathbf{w}_2 = (-1, 2, -1).$$

Deci $S'=\{(1,1,1),(-1,2,-1)\}$. Normând vectorii \mathbf{w}_1 și \mathbf{w}_2' , obținem

$$\textbf{u}_1 = \frac{\textbf{w}_1}{\|\textbf{w}_1\|} = \frac{1}{\sqrt{3}}(1,1,1) = \left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$$

şi

$$\mathbf{u}_2 = rac{\mathbf{w}_2'}{\|\mathbf{w}_2'\|} = rac{1}{\sqrt{6}}(-1,2,-1) = \left(-rac{\sqrt{6}}{6},rac{\sqrt{6}}{3},-rac{\sqrt{6}}{6}
ight).$$

Prin urmare, $S'' = \{\mathbf{u}_1, \mathbf{u}_2\}$ este o bază ortonormată pentru subspațiul considerat și este diferită de cea obținută în exemplul precedent.

Exemplu

Aplicați procedeul de ortonormalizare Gram-Schmidt bazei $B = \{1, x, x^2\}$ în $\mathbb{R}_2[x]$ folosind produsul scalar

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} \mathbf{p}(x) \mathbf{q}(x) dx.$$

Soluție.

Fie
$$B = \{1, x, x^2\} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
. Atunci

$$\textbf{w}_1=\textbf{v}_1=1,$$

$$\mathbf{w}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = x - \frac{0}{2} \cdot 1 = x$$

unde am ţinut cont că $\langle \mathbf{v}_2, \mathbf{w}_1 \rangle = \int_{-1}^1 x dx = 0$ şi

$$\langle \mathbf{w}_1, \mathbf{w}_1 \rangle = \int_{-1}^1 dx = 2.$$

$$\mathbf{w}_3 = \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{v}_3, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2 =$$

$$= x^2 - \frac{2/3}{2} \cdot 1 - \frac{0}{2/3} \cdot x = x^2 - \frac{1}{3}$$

unde am ţinut cont că

$$\begin{split} \langle \mathbf{v}_3, \mathbf{w}_1 \rangle &= \int_{-1}^1 x^2 dx = 0, \ \langle \mathbf{w}_1, \mathbf{w}_1 \rangle = \int_{-1}^1 dx = 2, \\ \langle \mathbf{v}_3, \mathbf{w}_2 \rangle &= \int_{-1}^1 x^3 dx = 0 \text{ si } \langle \mathbf{w}_2, \mathbf{w}_2 \rangle = \int_{-1}^1 x^2 dx = \frac{2}{3}. \end{split}$$

Am obținut baza ortogonală $B' = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Normăm această bază având în vedere că

$$\langle \mathbf{w}_1, \mathbf{w}_1 \rangle = \int_{-1}^1 dx = 2,$$

 $\langle \mathbf{w}_2, \mathbf{w}_2 \rangle = \int_{-1}^1 x^2 dx = \frac{2}{3}.$

şi

$$\langle \mathbf{w}_3, \mathbf{w}_3 \rangle = \int_{-1}^1 \left(x^4 - \frac{2}{3}x^2 + \frac{1}{9} \right) dx = \frac{8}{45}.$$

Obținem

$$\mathbf{u}_{1} = \frac{\mathbf{w}_{1}}{\|\mathbf{w}_{1}\|} = \frac{1}{\sqrt{2}},$$

$$\mathbf{u}_{2} = \frac{\mathbf{w}_{2}}{\|\mathbf{w}_{2}\|} = \frac{1}{\sqrt{2/3}}x = \frac{\sqrt{6}}{2}x$$

$$\mathbf{u}_3 = \frac{\mathbf{w}_3}{\|\mathbf{w}_3\|} = \frac{1}{\sqrt{8/45}} = \frac{3\sqrt{5}}{2\sqrt{2}} \left(x - \frac{1}{3} \right) = \frac{\sqrt{10}}{4} \left(3x - 1 \right).$$

Deci baza $B''=\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$ este o bază ortonormată pentru $\mathbb{R}_2[x]$ cu acest produs scalar.

Observație

Polinoamele \mathbf{u}_1 , \mathbf{u}_2 şi \mathbf{u}_3 din exemplul anterior se numesc primele trei **polinoame Legendre normalizate**.

