TDDE07 - Lab 1

Arvid Edenheim - arved490 Sophie Lindberg - sopli268 2019-04-12

1. Bernoulli ... again

1a)

The posterior converges towards the true values with rising number of draw, represented below with 10, 100, 1000 draws.

Figure 1: Convergence

1b)

The posterior was simulated with 10000 draws, resulting in $P(\theta < 0.4|y) = 0.0043$. Real value using pbeta = 0.003973.

1c)

Visualization of the log odds $\phi = log(\frac{\phi}{1-\phi})$ by simulation, using 10000 draws.

density.default(x = random)

Figure 2: Posterior distribution of the log-odds

2. Log-normal distribution and the Gini coefficient

2a)

Simulation of the posterior distribution of σ^2 with 10,000 draws (histogram) compared to the theoretical distribution (line).

Figure 3: Posterior of σ^2 by draws and the theoretical posterior

2b)

The posterior distribution of the Gini coefficient based on the draws in a).

0.2

0.3

Histogram of G

Figure 4: Gini Coefficient

0.4

posterior of Gini coefficient

0.5

0.6

2c)

Due to the long right tail, the Equal Tail Interval was slightly shifted to the right. The Highest Posterior Density interval produced a better representatition of the data.

Figure 5: 95% Credibility interval

3. Bayesian inference for the concentration parameter in the von Mises distribution

The distribution of κ was calculated as the product of the likelihood and the prior, where the likelihood was assumed to be the product of the individual probabilities due to independent observations.

Figure 6: Posterior distribution and mode

1 - Code

```
alpha <- 2
beta <- 2
s <- 14
n <- 20
nDraws <- c(10, 100, 1000)
# 1a
xGrid \leftarrow seq(0.001, 0.999, by=0.001)
posterior = dbeta(xGrid, alpha + s, beta + (n-s))
par(mfrow=c(1,3))
for (draws in nDraws) {
 random = rbeta(draws, alpha+s, beta+(n-s))
 hist(random, xlim = c(0,1), freq = FALSE, breaks=10)
 lines(xGrid, posterior, type='l', col ='red')
}
dev.off()
# 1b
nDraws <- 10000
random = rbeta(nDraws, alpha+s, beta+(n-s))
val <- random * (random < 0.4)</pre>
print(sum(val>0)/length(val))
# 1c
nDraws <- 10000
random = rbeta(nDraws, alpha+s, beta+(n-s))
phi <- log(random/(1 - random))</pre>
plot(density(random), lwd=3, type='l', col='red')
```

2 - Code

```
# -----A-----
income \leftarrow c(14,25,45,25,30,33,19,50,34,67)
\#income \leftarrow c(1,1,1,1,1,1,1,1,1,1)
m < -3.5
n <- length(income)</pre>
n draws = 10000
t <- 0
for (v in income) {
 t <- t + (log(v) - m)^2
tSquared <- t / n
# simulate postarior draws
X_draw <- rchisq(n_draws, n)</pre>
sigma_sq = n*tSquared / X_draw
#theoretical
theoretical <- function(theta, v, s) {</pre>
 return (((v/2)^{(v/2)})/gamma(v/2)*(s^v)*(theta^{(-(v/2+1))})*exp((-v*s^2)/(2*theta)))
}
range <- seq(0,10,by=0.01)
mx <- 0 * range
for (i in 1:length(range)) {
 mx[i] <- theoretical(range[i], length(income), sqrt(tSquared))</pre>
}
# plot
hist(sigma_sq, 100, freq=FALSE)
lines(range, mx, lwd=3, type='l', col='red', xlab = 'sigma')
# -----B-----
z <- sqrt(sigma_sq/2)</pre>
G \leftarrow 2*pnorm(z)-1
\# Plot where y = values and x = index of the value in the vector
hist(G, 100, freq = FALSE, xlab="posterior of Gini coefficient", ylab="")
# -----C-----
cred_int \leftarrow quantile(G, probs = c(0.025, 0.975))
G_dens = density(G)
y_ordered = G_dens$y[order(-G_dens$y)]
x_ordered = G_dens$x[order(-G_dens$y)]
dens_mass = sum(G_dens$y)
```

```
sum <- 0
current_mass <- 0</pre>
for (i in 1:length(y_ordered)) {
 current_mass <- y_ordered[i] + sum</pre>
  if ((current_mass/dens_mass) > 0.95) {
    break
 } else {
    sum <- current_mass</pre>
}
a <- min(x_ordered[1:i])</pre>
b <- max(x_ordered[1:i])</pre>
plot(density(G),
     col='blue',
     xlim=c(0.1,0.8),
     ylim=c(0,9),
     main='')
legend('topright',
       legend = c('Highest Posterior Density', 'Equal Tail Interval'),
       fill = c('green', 'red'))
abline(v=cred_int[1], col='red')
abline(v=cred_int[2], col='red')
abline(v=a, col='green')
abline(v=b, col='green')
```

3 - Code

```
\# A: Plot the posterior distribution of k
# posterior(k | y, mu) = likelihood * prior(k) = prod_prob * prior
y \leftarrow c(-2.44, 2.14, 2.54, 1.83, 2.01, 2.33, -2.79, 2.23, 2.07, 2.02)
kSeq \leftarrow seq(0,10, by=0.01)
mu <- 2.39
lambda <- 1
# kappa <- dexp(kSeq, lambda)</pre>
mises <- function(k, y, mu) {</pre>
 I <- besselI(k,0)</pre>
 return ((exp(k * cos(y - mu))) / (2 * pi * I))
kPos <- function(k, mu,y) {</pre>
  #prod since independent
 return ( prod( mises(k, y, mu) ) * dexp(k))
}
posterior = c()
for (k in kSeq){
  posterior = c(posterior, c(kPos(k, mu, y)))
plot(kSeq, posterior,type='l')
legend('topright', legend='Mode', fill='red')
\# B: Compute the posterior mode of k
kPosMode <- kSeq[which.max(posterior)]</pre>
abline(v=kPosMode, col='red', lwd=1)
```