Question

Question ID: 895

25. What is the area of the polygon formed by all points (x, y) in the plane satisfying the inequality $||x| - 2| + ||y| - 2| \le 4$?

B 32

C 64 D 96 E 112

0895

©UKMT

Answer

To work out the area of $||x|-2|+||y|-2| \le 4$, we first consider the region $|x|+|y| \le 4$ which is shown in (a). This region is then translated to give $|x-2|+|y-2| \le 4$ as 25.

> By properties of the modulus, if the point (x, y) lies in the polygon, then so do (x, -y), (-x, y) and (-x, -y). Thus $||x|-2|+||y|-2| \le 4$ can be obtained from (b) by reflecting in the axes and the origin, as shown in (c).

Hence the required area is 4 times the area in the first quadrant. From (b), the required area in the first quadrant is the area of a square of side $4\sqrt{2}$ minus two triangles (cut off by the axes) which, combined, make up a square of side $2\sqrt{2}$. So the area in the first quadrant is $(4\sqrt{2})^2 - (2\sqrt{2})^2 = 32 - 8 = 24$. Hence the area of the polygon is $4 \times 24 = 96$ square units.