Code documentation for the simulation study: Comparison of confidence intervals summarizing the uncertainty of the combined estimate of a meta-analysis

Felix Hofmann

Contents

1	Overview	2
2	utils.R	2
3	$\operatorname{study_simulation.R}$	3
4	studies 2cis.R	3
5	cis2measures.R	4
6	measures2summary.R	4
7	simulation.R	4

1 Overview

This document gives an overview over the code that implements the simulation study Comparison of confidence intervals summarizing the uncertainty of the combined estimate of a meta-analysis. The code is split into six different files:

- utils.R
- study_simulation.R
- studies2cis.R
- cis2measures.R
- measures2summary.R
- simulation.R

The following sections will describe the contents of each of these scripts.

2 utils.R

The script *utils*. R contains short utility functions that are used multiple times throughout the simulation.

- rep2
- error_function
- hMeanChiSqMu_f
- hMeanChiSqMu_chisq

Currently, we use only the functions rep2() and error_function().

rep2() is an extension of the rep() function in the *base* package. It works exactly as rep() but it can take an input vector for the each argument. It's use should become clear in the example below:

```
rep2(x = c("a", "b", "c"), each = 1:3)
## [1] "a" "b" "b" "c" "c" "c"
```

error_function() on the other hand is mainly used for logging. Thus, it is only used in tryCatch-blocks. The intended use is that in case of errors, the function stores the last object together with the current parameters to a file on disk (files error.rds and pars.rds). It also writes the error message as well as the iteration number to a text file (error.txt).

3 study_simulation.R

The script $study_simulation.R$ contains all functions that are related to the simulation of the individual studies. The file contains the following functions.

- simRE
- pAccept
- simREbias
- sim_effects

These functions implement the simulation of the individual studies of a meta-analysis. In the simulation, we only use $sim_effects()$, the main function, which calls the other functions internally. This function has two arguments, pars and i which corresponds to the current iteration.

The mechanism, how this

describe arguments

4 studies2cis.R

- get_classic_obj_hc()
- get_classic_obj_reml()
- get_classic_obj_hk()
- tau_prior_bm()
- get_classic_obj_bm()
- get_classic_obj()
- get_classic_ci_reml()
- get_classic_ci_hk()
- get_classic_ci_hc()
- get_classic_ci_bm()
- get_classic_pi_reml()
- get_classic_pi_hk()
- get_classic_interval()
- get_classic_intervals()
- get_p_value_functions()
- get_p_value_args()
- get_new_ci_gamma()

- get_new_intervals()
- get_tau2()
- get_ints_reml()
- sim2CIs()
- calc_ci()

The main function here is calc_ci(), which calls all the other functions internally.

- $_{
 m 5}$ cis2measures.R
- 6 measures2summary.R
- 7 simulation.R

Describe arguments, explain structure