TOTES LES RESPOSTES HAN DE SER RAONADES.

1. (2 punts) Considereu la integral següent:

$$I = \int_1^2 \frac{dx}{\sqrt{1+x^4}}$$

- a) Sabent que la funció $f(x) = \frac{1}{\sqrt{1+x^4}}$ satisfà $|f^{(4)}(x)| < 16$, $\forall x \in [1,2]$, calculeu el nombre de subintervals necessaris per obtenir el valor de la integral I fent ús del mètode de Simpson amb error absolut $< 0.5 \cdot 10^{-3}$.
- b) Fent ús del mètode de Simpson i explicitant tots els càlculs, doneu el valor aproximat de la integral I amb el grau d'exactitud demanat a l'apartat a).
- 2. (4 punts) Considereu la funció $f: \mathbb{R}^2 \to \mathbb{R}$ definida per $f(x,y) = \sqrt{9-x^2-y^2}$.
 - a) Calculeu i representeu gràficament el seu domini.
 - b) Considereu el conjunt $A = \text{Dom}(f) \cap \{(x,y) \in \mathbb{R}^2 : y > 1\}$, calculeu la frontera, l'interior i l'adherència del conjunt A. Dieu raonadament si A és obert, tancat o compacte.
 - c) Trobeu i dibuixeu les corbes de nivell de la superfície z = f(x, y) corresponents als nivells $z = 0, \sqrt{5}, 5$.
 - d) Quina és la direcció en la qual f creix més ràpidament en el punt (1,1)? Trobeu el valor de la derivada direccional de f en el punt (1,1) en aquesta direcció.
- 3. (4 punts) Sigui $f: \mathbb{R}^2 \to \mathbb{R}$ la funció definida per f(x,y) = xy i sigui K el conjunt $K = \{(x,y) \in \mathbb{R}^2: x^2 + y^2 \le 1\}.$
 - a) Trobeu i classifiqueu els punts crítics de la funció f en el seu domini.
 - b) Justifiqueu l'existència d'extrems absoluts de f en el conjunt K.
 - c) Determineu tots els candidats a punts on f pot assolir el màxim i el mínim absoluts en el conjunt K.
 - d) Determineu el màxim absolut i el mínim absolut de la funció f en el conjunt K i els punts on s'assoleixen.

Durada de l'examen: 2h.

Cal lliurar els exercicis per separat.

S'ha de respondre amb tinta blava o negra.

No es poden utilitzar ni llibres, ni apunts, ni mòbils, ni dispositius electrònics que puguin emetre o rebre informació.

TODAS LES RESPUESTAS DEBEN SER RAZONADAS.

1. (2 punts) Considera la integral siguiente:

$$I = \int_1^2 \frac{dx}{\sqrt{1+x^4}}$$

- a) Sabiendo que la función $f(x) = \frac{1}{\sqrt{1+x^4}}$ satisface $|f^{(4)}(x)| < 16$, $\forall x \in [1,2]$, calcula el número de subintervalos necesarios para obtener el valor de la integral I utilizando el método de Simpson con error absoluto $< 0.5 \cdot 10^{-3}$.
- b) Utilizando el método de Simpson y explicitando todos los cálculos, da el valor aproximado de la integral I con el grado de exactitud pedido en el apartado a).
- 2. (4 punts) Considera la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = \sqrt{9 x^2 y^2}$.
 - a) Calcula y representa gráficamente su dominio.
 - b) Considera el conjunto $A = \text{Dom}(f) \cap \{(x,y) \in \mathbb{R}^2 : y > 1\}$, calcula la frontera, el interior y la adherencia del conjunto A. Di razonadamente si A es abierto, cerrado o compacto.
 - c) Halla y dibuja las curvas de nivel de la superficie z = f(x, y) correspondientes a los niveles $z = 0, \sqrt{5}, 5$.
 - d) ¿Cuál es la dirección en la que f crece más rápidamente en el punto (1,1)? Halla el valor de la derivada direccional de f en el punto (1,1) en esta dirección.
- 3. (4 punts) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función definida por f(x,y) = xy y sea K el conjunto $K = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$
 - a) Halla y clasifica los puntos críticos de la función f en su dominio.
 - b) Justifica la existencia de extremos absolutos de f en el conjunto K.
 - c) Determina todos los candidatos a puntos donde f puede alcanzar el máximo y el mínimo absolutos en el conjunto K.
 - d) Determina el máximo absoluto y el mínimo absoluto de la función f en el conjunto K y los puntos donde se alcanzan.

Duración del examen: 2h.

Es necesario entregar los ejercicios por separado.

Se debe responder con tinta azul o negra.

No pueden utilizarse ni libros, ni apuntes, ni móviles, ni dispositivos electrónicos que puedan emitir o recibir información.