Independent Set and Cover Problems

1 Independent Set

INDEPENDENT SET (IS): Given an undirected graph \mathcal{G} and an integer k, does \mathcal{G} contain an independent set of size $\geq k$.

Theorem 1. IS is NP-complete.

Proof. A two-part proof: (1) IS $\in \mathbf{NP}$, (2) IS is \mathbf{NP} -hard.

(1). IS $\in \mathbf{NP}$

Certificate: A proposed set S.

Certifier: A polytime algorithm which tests that S is independent and $|S| \leq k$.

(2). IS is **NP**-hard

We reduce from a known NP-hard problem (3SAT) to IS.

Theorem 2. $3SAT \leq p \ IS$.

Proof. The input to the reduction is a 3SAT formula F, and the output should be a graph \mathcal{G} and integer k. It must run in polytime, and satisfy:

- (1). If \mathcal{G} has an IS of size $\geq k$, then F is satisfiable.
- (2). If F is satisfiable, then \mathcal{G} has an IS of size $\geq k$.

A useful definition of 3SAT here is that for each clause C_j , we pick a true literal $l_{j,i}$ such that our selection never includes both x_i and \bar{x}_i . Our choice in 3SAT is which designated literals to pick, which will map to our choice in IS of which vertices to include. For each C_j and $l_{j,i}$, we have one node $v_{j,i}$ in \mathcal{G} . Then, we set k=m (number of vertices to number of clauses). We add edges between the $v_{j,i}$ in a fixed j across all i (which forces picking only one node in a clause). This reduction is obviously polytime, so now we prove correctness.

- (1). Assume \mathcal{G} has an IS S of size $\geq m$. For each $v_{j,i} \in S$, make $l_{j,i}$ true, and vice versa. Because of the variable edges, we never try to make x_i and \bar{x}_i true. This strategy must satisfy the clauses because $|S| \geq m$, and it has at most one node per C_j , so it must have at least one literal per clause. Thus, F is satisfied.
- (2). If F is satisfiable, then let $\hat{i}(j)$ be a true literal in C_j under a fixed satisfying assignment. Let $S = \{v_j, \hat{i}(j)\}$. Then |S| = m and S is independent because it does not violate the clause edges (we included only one node per clause) or variable edges (only one of x_i and $\bar{x_i}$ can be selected in the assignment).

Since we proved that IS is both in **NP** and **NP**-hard, IS must be **NP**-complete.

2 Vertex Cover

Let a vertex cover be a set $S \subseteq V$ such that for all edges e, at least one endpoint of e is in S. VERTEX COVER (VC): Given a graph \mathcal{G} and integer k, is there a vertex cover of size $\leq k$?

Theorem 3. VC is NP-complete.

Proof. A two-part proof: (1) $VC \in \mathbf{NP}$, (2) VC is \mathbf{NP} -hard.

(1). $VC \in \mathbf{NP}$

Certificate: A set S that supposedly covers all edges.

Certifier: A polytime algorithm which compares $|S| \leq k$ and ensures S covers all edges.

(2). VC is **NP**-hard

We reduce from a known NP-hard problem (IS) to VC.

Theorem 4. $IS \leq p \ VC$

Proof. The input to the reduction is a graph \mathcal{G} and integer k; the output is a graph \mathcal{G}' and integer k'. We notice that IS and VC are complements – that is, S is an independent set if and only if \bar{S} is a vertex cover. Thus, \mathcal{G} has an independent set of size $\geq k$ if and only if \mathcal{G} has a vertex cover of size $\leq n-k$. Then, we can just set $\mathcal{G}' = \mathcal{G}$ and k' = n - k, which obviously runs in polytime.

Since we proved that VC is both in **NP** and **NP**-hard, VC must be **NP**-complete.

3 Set Cover

SET COVER (SC): Given elements E, subsets $S_1, S_2, \ldots, S_m \subseteq E$, and an integer k, is there a set $T \subseteq \{1 \ldots m\}$ with $|T| \leq k$ and $\bigcup_{i \in T} S_i = E$? This problem is equivalent to figuring out the minimum number of routers one would need to cover every office in a building, etc.

Theorem 5. SC is NP-complete.

Proof. A two-part proof: (1) $SC \in NP$, (2) SC is NP-hard.

(1). $VC \in \mathbf{NP}$

Certificate: T.

Certifier: A polytime algorithm which compares $|T| \leq k$ and checks if $\bigcup_{i \in T} S_i = E$.

(2). VC is **NP**-hard

We reduce from a known **NP**-hard problem (VC) to SC.

Theorem 6. $VC \leq p \ SC$

Proof. The input to the reduction is a graph \mathcal{G} and integer k; the outputs are elements E, sets $S_1, \ldots S_m \subseteq E$, and an integer k'. We have one set S_v for each $v \in V$ containing all edges incident on (and thus covered by) $v \in \mathcal{G}$. Usually we would prove this more formally, but we were running out of time, so we determined that E is equivalent to the set of edges in \mathcal{G} , while k' = k. This algorithm is obviously polytime, and it is correct because $\bigcup_{v \in T}$ edges covered by $v = \bigcup_{v \in T} S_v$, so vertex covers in \mathcal{G} and set covers are essentially the same.

Since we proved that SC is both in NP and NP-hard, SC must be NP-complete.

An important realization is that we reduce from a specific problem to a more general one; 3SAT is actually an extremely specific problem, while SC is more general. While we usually move in that direction, all NP-complete problems are equally hard, so we can reduce from SC to 3SAT via using CERT to simulate them.

4 Some famous NP-complete problems

Logic: SAT, 3SAT, X3SAT, NAE3SAT, ...

Graphs: IS, VC, DOMINATING SET, GRAPH COLORING, \dots

Sets: SC, SET PACKING, \dots

Other: PARTITION, SUBSET SUM, KNAPSACK, STEINER TREE, HAMILTONIAN CYCLE, TRAV-

ELING SALESMANs