Advanced Machine Learning Project Final Presentation

Text detection from images using deep learning

Team NPM:

Neeraj Kumar, Parag Jain, Mohsen

Problem Statement

- Quebec predominantly French speaking and writing province
- Annual international student arrival for education
- Difficulty navigating without any external help

Motivation

Personal experience

Purchasing groceries, ordering food in restaurants - a major challenge

Solution to the Problem

Service to translate text from one language to another.

- Using image with text as input, 3 step solution :
 - 1. Text extraction from input image
 - 2. Text recognition from extracted text
 - 3. Conversion of text from one language to another

Scope of the project

Text extraction from image

Text extraction from images

Using DIP - manual feature engineering

Using deep learning - word-level annotated training set

Limitations

Arbitrary shaped Text

Curved Text

Solution diagram

Text detection using character-level annotations to overcome the limitations of other approaches

What do we need?

- Model with the ability to :
 - localize individual character regions
 - link the detected characters to a text instance
- A way to quantitatively measure model's ability :
 - o region score indicating model's localization ability
 - o affinity score indicating model's linking ability
- Loss function improve model's ability by means of providing feedback based on predicted scores

Lat's take a look at the dataset

Training Dataset Overview

- Synthetic dataset :
 - character-level annotated text images
 - ~140000 images

Word	Character Level Bounding Boxes	
Sender:	[121, 255], [145, 255], [121, 303], [145, 303]	
Ecole	[140, 308], [173, 308], [140, 327], [173, 327]	
Other words	[Top-left], [Top-right], [Bottom-right], [Bottom-left]	

Region-score and affinity score - to be derived

Deriving true labels using SynthText dataset

Model Architecture

VGG16 Network with Batch Normalization (Pre-trained)
+
U-net

Training loss for SynthText

$$L = \sum_{p} S_c(p) \cdot (||S_r(p) - S_r^*(p)||_2^2 + ||S_a(p) - S_a^*(p)||_2^2)$$

where, $S_r(p)$: Pixel value at any pixel p of the predicted region score $S_r(p)$: Pixel value at any pixel p of the region score GT

S_a(p): Pixel value at any pixel p of the predicted affinity score Sa*(p): Pixel value at any pixel p of the affinity score GT

$$S_{c}(p) = 1$$

Training Procedure

Fine-tuning Dataset

• ICDAR-2015/RR-2015

- Used to weakly supervise the network
- ~1000 images

More Details on Loss Function

$$S_c(p) = \begin{cases} s_{\text{conf}}(w) & p \in R(w) \\ 1 & \text{otherwise} \end{cases}$$

- R(w): bounding box region
- l(w): the word length of the sample w
- $l^c(w)$: length of characters

$$s_{conf}(w) = \frac{l(w) - \min(l(w), |l(w) - l^c(w)|)}{l(w)}$$

where p denotes the pixel in the region R(w). The objective L is defined as,

$$L = \sum_{p} S_c(p) \cdot \left(\|S_r(p) - S_r^*(p)\|_2^2 + \|S_a(p) - S_a^*(p)\|_2^2 \right)$$

where $S_r^*(p)$ and $S_a^*(p)$ denote the pseudo-ground truth region score and affinity map, respectively, and $S_r(p)$ and $S_a(p)$ denote the predicted region score and affinity score, respectively. When training with synthetic data, we can obtain the real ground truth, so $S_c(p)$ is set to 1.

Performance Metrics

Recall	Precision	H-mean
84.3	89.8	86.9

Recall	Precision	H-mean
79.39	85.5	81.14

CRAFT Paper

Our Reproduction

Test Results

Inference Results

Ex 1 : Picture shot from mobile camera outside MILA campus

Ex 2 : Cookies box with description in French

Conclusion:

Regularization and the other Techniques

- Adding a term $||w-w_k||^2$ to the loss function can be beneficial called proximal term.
 - Encourages the learned parameter w to change gradually from its previous value w_k .
 - Prevent large fluctuations in the learned parameter values and potentially improve convergence.
 - Adding only the term $||w||^2$ to the loss function can lead to large changes in the learned parameter.
 - Slow down convergence and lead to poor generalization performance.
- Weight Initialization Technique:
 - Swish initialization [Based on the Swish activation function f(x) = x * sigmoid(x)]
 - Generalized Xavier [scales the variance of the Gaussian distribution]
- Technique Apply to the Activations:
 - Adaptive instance normalization [AdaIN transfer the style information of one image onto the content of another image, while preserving the content information.]
 - AdaIN improve the generalization and robustness of the CNN.
 - Cross-Layer Equalization[CLE: ensuring that the activations of each layer have the same distribution]

To improve in future

 Investigate ways to reduce the computational complexity, such as using smaller network architectures or optimizing the inference process.

• Explore ways to improve the robustness of the method to variations in lighting, image quality, and other factors that can affect **text detection performance**.

• **Evaluate on larger and more diverse datasets** to better understand its strengths and weaknesses and identify opportunities for further improvement.

Future work

- Complete the other 2 steps of the 3 part solution :
 - **Text recognition** from extracted text
 - **Text translation** from one language to another

Make this solution available for developers to use as an API

Future Application : An Alternative Software To mathpix

The best image recognition for math and science

Mathpix is the only image to LaTeX converter with high-accuracy OCR features developed specifically for scientific documents like research papers

Team contribution:

- Overall, project completion was achieved through group effort.
- Highlighting some of the initiatives taken by every individual in the team :
 - Parag Jain
 - Identifying the problem and preparing the proposal
 - Shortlisting of paper and literature review
 - Implementing the network architecture
 - Neeraj Kumar
 - GT label generation, pre-processing and implementing the training phase
 - Setting up the cluster and training
 - Keeping the team progress on track
 - Mohsen Dehghani
 - Understanding and explaining the finer details of CRAFT
 - Testing and inference
 - Suggesting ways to improve model performance

Thank you!

Link to Project Code

Work related to the project can be found <u>here</u>.