

CH32V20x_30x 数据手册

适用于 CH32V203/303/305/307/208xx V2.3

概述

CH32Vx 系列是基于青稞 32 位 RISC-V 设计的工业级通用微控制器。全系产品加入硬件堆栈区、快速中断入口等设计,相比标准大大提高了中断响应速度。V303/305/307x 搭载 V4F 内核,支持单精度浮点指令集,具有更高的运算性能; V208x 搭载 V4C 内核,增加内存保护功能,减少硬件除法周期; V203x 搭载 V4B 内核,工作和睡眠功耗同比大幅下降。在产品功能上支持 144MHz 主频零等待运行,并根据不同应用方向提供了具有特色的资源结构,例如 8 组 USART/UART 串口, 4 组电机定时器,内置 PHY 收发器的 USB2. 0 高速接口(480Mbps),千兆以太网 MAC,蓝牙 BLE5. 3 无线等。

产品特性

● 内核 Core:

- 青稞 32 位 RISC-V 内核, 多种指令集组合
- 快速可编程中断控制器+硬件中断堆栈
- 分支预测、冲突处理机制
- 单周期乘法、硬件除法、硬件浮点
- 系统主频 144MHz

● 存储器:

- 可配最大 128KB 易失数据存储区 SRAM
- 可配 480KB 程序存储区 CodeFlash (零等待应用区+非零等待数据区)
- 28KB 系统引导程序存储区 BootLoader
- 128B 系统非易失配置信息存储区
- 128B 用户自定义信息存储区

● 电源管理和低功耗:

- 系统供电 V₂ 额定: 3.3V
- GPIO 单元独立供电 V₁。额定: 3.3V
- 低功耗模式: 睡眠、停止、待机
- V_{BAT} 电源独立为 RTC 和后备寄存器供电

● 系统时钟、复位

- 内嵌出厂调校的 8MHz 的 RC 振荡器
- 内嵌 40kHz 的 RC 振荡器
- 内嵌 PLL. 可选 CPU 时钟达 144MHz
- 外部支持 3~25MHz 高速振荡器
- 外部支持 32. 768kHz 低速振荡器
- 上/下电复位、可编程电压监测器
- 实时时钟 RTC: 32 位独立定时器
- 2组18路通用DMA控制器
- 18 个通道, 支持环形缓冲区管理
- 支持 TIMx/ADC/DAC/USART/12C/SPI/12S/SDI0
- 4组运放、比较器: 连接 ADC 和 TIMx
- 2组12位数模转换 DAC
- 2组12位模数转换 ADC
- 模拟输入范围: V_{SSA}~V_{DDA}

- 16 路外部信号+2 路内部信号通道
- 片上温度传感器
- 双 ADC 转换模式
- 16 路 TouchKey 通道检测

● 多组定时器

- 4个16位高级定时器,增加死区控制和紧急 刹车,提供用于电机控制的PWM互补输出
- -3个16位通用定时器,提供输入捕获/输出比较/PWM/脉冲计数及增量编码器输入
- 1 个 32 位或 16 位通用定时器
- 2 个基本定时器
- 2 个看门狗定时器(独立和窗口型)
- 系统时基定时器: 64 位计数器

● 多种通讯接口:

- 8 个 USART 接口(包含 5 个 UART)
- 2个 I2C 接口(支持 SMBus/PMBus)
- 3个SPI接口(SPI2, SPI3用于 I2S2, I2S3)
- USB2.0 全速设备接口(全速和低速)
- USB2.0 全速主机/设备接口
- USB2.0 全速 OTG 接口
- USB2.0 高速主机/设备接口(内置 PHY)
- 2组 CAN 接口(2.0B 主动)
- SDIO 主机接口(MMC、SD/SDIO 卡及 CE-ATA)
- FSMC 存储器接口
- 数字图像接口 DVP
- 千兆以太网控制器 MAC, 10M PHY 收发器
- 低功耗蓝牙 BLE5.3

● 快速 GPIO 端口

- 80 个 I/0 口,映像 16 个外部中断
- 安全特性: CRC 计算单元, 96 位芯片唯一 ID
- 调试模式:串行2线调试接口
- **封装形式:** LQFP 和 QFN

第1章 系列产品说明

CH32Vx 系列产品是基于 32 位 RISC-V 指令集及架构设计的工业级通用增强型 MCU。其产品按照功能资源划分为通用、连接、无线等类别。它们之间以封装类别、外设资源及数量、引脚数目、器件特性高低上的差异相互延伸,但在软件和功能、硬件引脚配置上保持相互兼容,为用户在产品开发中进行产品迭代及快速应用提供了自由和方便。

有关此系列产品的器件特性及请参考数据手册《CH32V20x_30xDS0》。

有关产品各外设功能描述、使用方法及寄存器配置等详细信息请参考《CH32FV2x_V3xRM》。

数据手册和参考手册均可在沁恒官网下载: www. wch. cn

有关 RISC-V 指令集及架构的相关信息,可在"http://riscv.org"网站下载。

本手册为 CH32V20x 和 CH32V30x 系列产品数据手册。

表 1-1 系列产品概览

	ם של זואון או	1		1	T	T
中小容量通	间型(V203)	大容量通	用型(V303)	连接型(V305)	互联型(V307)	无线型(V208)
青穆	₹ V4B		青和	果 V4F		青稞 V4C
32K 闪存	64K 闪存	128K 闪存	256K 闪存	128K 闪存	256K 闪存	128K 闪存
10K SRAM	20K SRAM	32K SRAM	64K SRAM	32K SRAM	64K SRAM	64K SRAM
2*ADC (TKey) ADTM 2*GPTM 2*USART SPI 12C USBD USBHD CAN RTC 2*WDG 2*OPA	2*ADC (TKey) ADTM 3*GPTM 4*USART 2*SPI 2*12C USBD USBHD CAN RTC 2*WDG 2*OPA	2*ADC (TKey) 2*DAC ADTM 3*GPTM 3*USART 2*SPI 2*I2C USBHD CAN RTC 2*WDG 4*OPA	2*ADC (TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*USART/UART 3*SPI (2*I2S) 2*I2C USBHD CAN RTC 2*WDG 4*OPA RNG SDIO FSMC	2*ADC (TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 5*USART/UART 3*SPI (2*12S) 2*12C USB-OTG USBHS (+PHY) 2*CAN RTC 2*WDG 4*OPA RNG SDIO	2*ADC (TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*USART/UART 3*SPI (2*12S) 2*12C USB-OTG USBHS (+PHY) 2*CAN RTC 2*WDG 4*OPA RNG SDIO FSMC DVP ETH-1000MAC 10M-PHY	ADC (TKey) ADTM 3*GPTM GPTM (32) 4*USART/UART 2*SPI 2*I2C USBD USBHD CAN RTC 2*WDG 2*OPA ETH-10M (+PHY) BLE5. 3

注: 同一类产品的某些外设数量或功能可能受封装限制,选择时请确认产品封装。

缩写

ADTM: 高级定时器 TKey: 触摸按键 USBHD: 全速主机/设备控制器 GPTM: 通用定时器 OPA: 运放、比较器 USBHS: 高速主机/设备控制器

 GPTM(32): 32 位通用定时器
 RNG: 随机数发生器

 BCTM: 基本定时器
 USBD: 全速设备控制器

表 1-2 内核对比概览

特点 内核	指令集	硬件 堆栈 级数	中断 嵌套 级数	快速 中断 通道数	整数 除法 周期	向量表 模式	扩展 指令	内存 保护
V4B	IMAC	2	2	4	9	地址或指令	支持	无
V4C	IMAC	2	2	4	5	地址或指令	支持	标准
V4F	IMAFC	3	8	4	5	地址或指令	支持	标准

第2章 规格信息

CH32Vx 系列基于 RISC-V 指令架构设计的 32 位 RISC 内核 MCU, 工作频率 144MHz, 内置高速存储器, 系统结构中多条总线同步工作,提供了丰富的外设功能和增强型 I/0 端口。本系列产品内置 2 个 12 位 ADC 模块、2 个 12 位 DAC 模块、多组定时器、多通道触摸按键电容检测(TKey)等功能,还包含了标准和专用通讯接口: I2C、I2S、SPI、USART、SDIO、CAN 控制器、USB2.0 全速主机/设备控制器、USB2.0 高速主机/设备控制器(内置 PHY 收发器)、数字图像接口、千兆以太网控制器、低功耗蓝牙等。

产品工作额定电压为 3. 3V,工作温度范围为-40°C~85°C工业级。支持多种省电工作模式来满足产品低功耗应用要求。系列产品中各型号在资源分配、外设数量、外设功能等方面有所差异,按需选择。

2.1 型号对比

表 2-1 CH32V 中小容量通用型产品资源分配

		产品型号				C	H32V203	X						
资源	差异		F6	F8	G6	G8	K6	K8	C6	C8	RB			
	芯片引胨	『数	20	20	28	28	32	32	48	48	64			
	闪存(字节	ち) ⁽¹⁾	32K	64K	32K	64K	32K	64K	32K	64K	128K ⁽²⁾			
	SRAM (字	节)	10K	20K	10K	20K	10K	20K	10K	20K	64K			
	GP10 端口]数	16	17	24	24	26	26	37	37	51			
	高级(16位)	1 (3)	1 (3)	1 (3)	1 (3)	1	1	1	1	1			
定	通用(16位)	2 (3)	3 (3)	2 ⁽³⁾	3 ⁽³⁾	2	3	2	3	3			
时	通用(32 位)				_	_				1			
器	看ì	门狗				2 (W	WDG + I	WDG)						
	系统时基	(64位)					支持							
	RTC			支持										
ADC/	「Key(通道	道数@单元)	9@2	9@2	10@2	10@2	10@2	10@2	10@2	10@2	16@1			
	运放、比	较器	1	2	2	2	2	2	2	2	2			
	USART	/UART	1	2	2	2	2	2	2	4	4			
通	SI	PI	1	1	1	1	1	1	1	2	2			
信	1:	2C	0	1	1	1	1	1	1	2	2			
接	C	AN	1	_	1	1	1	1	1	1	1			
	USB	USBD	1	_	1	1	1	1	1	1	1			
"	(FS)	USBHD	ı	1	_	1	1	ı	1	1	1			
	Ethe	rnet				-	-				10M			
	CPU 主	顷				Ма	x: 144M	Hz						
	额定电	玉		3. 3V										
	工作温	度	工业级: -40°C~85°C											
	封装形:	式	TSS	0P20	QFN28	QSOP28	LQF	P32	LQFP48	LQFP QFN48	LQFP64M			

- 注:1. 闪存字节表示的是零等待运行区域 Romait,非零等待区域对于 V203 型号是 224K- Romait
- 2. 128K FLASH+64K SRAM 的产品支持用户选择字配置为(128K FLASH+64K SRAM)、(144K FLASH+48K SRAM)、(160K FLASH+32K SRAM)几种组合中的一种。
- 3. 定时器中的 PWM、捕捉等涉及引脚信号的功能需要结合实际芯片封装的引脚,有些封装芯片没有引出则此类功能不能使用。

表 2-2 CH32V 大容量通用型/连接/互联产品资源分配

	2 011024)	产品型号			/303x		CH32	V305	CH32V307					
资源	差异		СВ	RB	RC	VC	FB	RB	RC	WC	VC			
	芯片引脚	J数	48	64	64	100	20	64	64	68	100			
j	闪存(字节	ī) ⁽¹⁾	128K	128K	256K ⁽²⁾	256K ⁽²⁾	128K	128K	256K ⁽²⁾	256K ⁽²⁾	256K ⁽²⁾			
	SRAM(字	节)	32K	32K	64K ⁽²⁾	64K ⁽²⁾	32K	32K	64K ⁽²⁾	64K ⁽²⁾	64K ⁽²⁾			
	GP10 端口]数	37	51	51	80	17	51	51	54	80			
	GP10 供日	电	共用	独	立供电い	/ 10	共用		独立供	共电 V ₀				
	高级(1	16位)	1	1	4	4	4 ⁽³⁾	4	4	4	4			
定	通用(1	16位)	3	3	4	4	4 ⁽³⁾	4	4	4	4			
时	基本(1	16位)	ı	-	2	2	2	2	2	2	2			
器	看i	〕狗				2 (W	/WDG + I\	WDG)						
	系统时基	(24位)					支持							
	RTC						支持							
	ADC/TKe (通道数@	-	10@2	16@2	16@2	16@2	1@2	16@2	16@2	16@2	16@2			
	DAC(单元	Ē)	2	2	2	2	1	2	2	2	2			
	运放、比较	交器	4	4	4	4	1	4	4	4	4			
	随机数发生	主器	_	_	1	1	1	1	1	1	1			
	USART,	/UART	3	3	8	8	2	5	8	8	8			
	SP	71	2	2	3	3	1	3	3	3	3			
	12	?S	-	_	2	2	1	2	2	2	2			
	12	2C	2	2	2	2	2	2	2	2	2			
通	CA	۸N	1	1	1	1	1	2	2	2	2			
信	SD	10	_	_	1	1	_	1	1	1	1			
接	USB (FS)	USBD					_							
П	005 (1 0)	USBHD	1	1	1	1	_	1	1	1	1			
	USB (HS	S+PHY)		-	-		1	1	1	1	1			
	Ethe	rnet			-	_			1 G	MAC+10M	PHY			
	DV	P									1			
	FSI	MC		_		1		-	_		1			
	CPU 主步	页		Max: 144MHz										
	额定电压	<u></u>	3. 3V											
	工作温度					工业级	: -40°C	~85°C			T			
	封装形式	犬	LQFP48	LQFI	P64M	LQFP100	TSS0P20	LQFP64M	LQFP64M	QFN68	LQFP100			

- 注: 1. 闪存字节表示的是零等待运行区域 Romair, 非零等待区域于 V303、V305、V307 型号是 480K- Romair
- 2. 256K FLASH+64K SRAM 的产品支持用户选择字配置为(192K FLASH+128K SRAM)、(224K FLASH+96K SRAM)、(256K FLASH+64K SRAM)、(288K FLASH+32K SRAM)几种组合中的一种。
- 3. 定时器中的 PWM、捕捉等涉及引脚信号的功能需要结合实际芯片封装的引脚,有些封装芯片没有引出则此类功能不能使用。

表 2-3 CH32V 无线型产品资源分配

	2 3 011321	产品型号		CH32	V208									
资源	原差异		GB	СВ	RB	WB								
	芯片引刷	却数	28	48	64	68								
	闪存(字=	节) ^⑴	128K ⁽²⁾	128K (2)	128K ⁽²⁾	128K ⁽²⁾								
	SRAM(字	:节)	64K ⁽²⁾	64K (2)	64K ⁽²⁾	64K ⁽²⁾								
	GP10 端[口数	21	37	49	53								
	GP10 供	电		独立 V₀										
	高级(16位)	1	1	1	1								
定	通用(16位)	3	3	3	3								
时	通用(32 位)	1	1	1	1								
器	看i]狗	2	2	2	2								
	系统时基	(24位)												
	RTC		支持											
	ADC/TK (通道数/	-	8@1	16@1	16@1	16@1								
	<u> </u>		1	2	2	2								
		/UART	2	4	4	4								
	SI	P	1	2	2	2								
通	12	2C	1	2	2	2								
信	C/	AN	1	1	1	1								
接	110D (EQ)	USBD	1	1	1	1								
	USB (FS)	USBHD	1	1	1	1								
	Ethe	rnet	10M	_	10	DM								
	BLE	5. 3		支	 持									
	CPU 主	频	Max: 144MHz											
	额定电	,压		3.	3V									
	工作温	度		工业级: -4	40°C∼85°C									
	封装形	式	QFN28	QFN48	LQFP64M	QFN68								

注: 1. 闪存字节表示的是零等待运行区域 Romarr, 非零等待区域于 V208 型号是 480K- Romarr

^{2. 128}K FLASH+64K SRAM 的 208 产品支持用户选择字配置为(128K FLASH+64K SRAM)、(144K FLASH+48K SRAM)、(160K FLASH+32K SRAM)几种组合中的一种。

2.2 系统架构

微控制器基于 RISC-V 指令集设计,其架构中将内核、仲裁单元、DMA 模块、SRAM 存储等部分通过 多组总线实现交互。设计中集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,应用多级时钟管理 机制降低了外设的运行功耗,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。 下图是系列产品内部总体架构框图。

图 2-1 系统框图

2.3 存储器映射表

图 2-2 存储器地址映射

2.4 时钟树

系统中引入 4 组时钟源:内部高频 RC 振荡器 (HSI)、内部低频 RC 振荡器 (LSI)、外接高频振荡器 (HSE)、外接低频振荡器 (LSE)。其中,低频时钟源为 RTC 和独立看门狗提供了时钟基准。高频时钟源直接或者间接通过 PLL 倍频后输出为系统总线时钟(SYSCLK),系统时钟再由各预分频器提供了 AHB域、APB1 域、APB2 域外设控制时钟及采样或接口输出时钟,部分模块工作需要由 PLL 时钟直接提供。

图 2-3 CH32V305/307 时钟树框图 40kHz to independent watchdog LSI RC OSC32 IN 32.768kHz RTCCLK ➤ to RTC OSC32 OUT LSE OSC 60MHz ► ETH-PHY - /128 PLL3MUL ➤ to I2S2 interface PLL3CLK *2.5,*4,•• ➤ to I2S3 interface *16,*20 PLL3VCO ➤ to TRNG PREDIV2 PLL2MUL PREDIVISRO *2.5,*4,••• /1,/2,... PREDIV1 *16,*20 /15,/16 PLLSRC XTI to MCO /1,/2,... PLL2VCO PLLMUL /15,/16 OSC_IN 3-25MHz *3.*4.*** HSE OSC OSC_OUT /2 *16,*18 8MHz HSI RC SYSCIK HSI USB prescaler 48MHz USBCLK PLLCLK -/1,/2,/3 HSE USB /1,/2,... ► OTGFSCLK CLKFLS48MHz CSS /7,/8 **HSPLI** USBHSPREDIV OTGFSSRC USB2.0 PHY MCO[3:0] /1,/2 to Flash prog IF HSE to AHB bus/core/memory/DMA HSI AHB prescaler /1,/2···/512 FCLK core free running clock PLLCLK/2 MCO ➤ to Core System timer /8 PLL2CLK PLL3CLK/2 PLL3CLK APB1 prescaler HCLK ► to APB1 peripherals /1,/2…/16 XTI 144MHz max perpheral clock enable MII/RMII interface if(APB1 prescaler=1)*1 TIMxCLK to TIM2,3,4,5,6,7 MII_TXC → MACTXCLK else *2 perpheral clock enable MII RMII SEL in AFIO MAPR MII_RXC **→** MACRXCLK APB2 prescaler to Ethernet MAC PCLK2 ► to APB2 peripherals /1,/2…/16 GTXC perpheral clock enable RGMII_EN ADC prescaler ► GRXC ADCCLK to ADC1,2 GRXC /2,/4,/6,/8 ETH1G EN perpheral clock enable EXT 125M ETH1G 125M PLL2VCO if(APB2 prescaler=1)*1 TIMxCLK to TIM1,8,9,10 else *2 PLL3VCO FTH1G SRC RGMII interface perpheral clock enable

图 2-4 CH32V303 时钟树框图

注: 1. 当使用 USB 功能时,CPU 的频率必须是 48MHz 或 96MHz 或 144MHz。当系统从停机或待机状态唤醒时,系统会自动切换为 HSI 做主频。

1. CH32V203RB 产品外接晶体或时钟(HSE)为 32M,使用外置晶体时无需负载电容已内置。

图 2-6 CH32V208 时钟树框图

- 注: 1. 当使用 USB 功能时,CPU 的频率必须是 48MHz 或 96MHz 或 144MHz。当系统从停机或待机状态唤醒时,系统会自动切换为 HSI 做主频。如果同时使用 USB 和 ETH 功能,需选择 USBPRE=5DIV, 将 PLLCKR=SYSCLK 配置为 240M,AHBPRE=2DIV, CPU 频率 120M。
 - 2. CH32V208 产品外接晶体或时钟(HSE)为 32M,使用外置晶体时无需负载电容已内置。

2.5 功能概述

2.5.1 RISC-V4B/4C/4F 处理器

产品基于 RISC-V 组织的规范设计出内核 V4B、V4C、V4F, 其中 V4B 和 V4C 支持 RISC-V 指令集 IMAC 子集, V4F 支持 RISC-V 指令集 IMAFC 子集,增加了单精度浮点运算。处理器内部以模块化管理,包含快速可编程中断控制器(FPIC)、内存保护、分支预测模式、扩展指令支持等单元。对外多组总线与外部单元模块相连,实现外部功能模块和内核的交互。RV32IMAFC 指令集,小端数据模式

处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景微控制器 设计,例如小面积低功耗嵌入式场景、高性能应用操作系统场景等。

- 支持机器和用户特权模式
- 快速可编程中断控制器 (FPIC)
- 多级硬件中断堆栈
- 串行2线调试接口
- 标准内存保护设计
- 静态或动态分支预测、高效跳转、冲突检测机制
- 自定义扩展指令

2.5.2 片上存储器及自举模式

内置最大 128K 字节 SRAM 区, 用于存放数据, 掉电后数据丢失。具体容量要对应芯片型号。

内置最大 480K 字节程序闪存存储区(Code FLASH),用于用户的应用程序和常量数据存储。其中包括零等待程序运行区域和非零等待区域。区域具体大小对应芯片型号。

内置 28K 字节系统存储区(System FLASH),用于系统引导程序存储(厂家固化自举加载程序)。 128 字节用于系统非易失配置信息存储区,128 字节用于用户选择字存储区。

在启动时,通过自举引脚(B00T0 和 B00T1)可以选择三种自举模式中的一种:

- 从程序闪存存储器自举
- 从系统存储器自举
- 从内部 SRAM 自举

自举加载程序存放于系统存储区,可以通过USART1和USB接口对程序闪存存储区的内容重新编程。

2.5.3 供电方案

- V_D = 2.4~3.6V: 为部分 I/0 引脚和内部调压器供电。
- $V_{10} = 2.4 \sim 3.6 V$: 为大部分 1/0 引脚供电以及以太网模块,决定了引脚输出高压幅值。正常工作时, V_{10} 电压不能高于 V_{00} 电压。
- V_{DDA} = 2.4~3.6V: 为高频 RC 振荡器、ADC、温度传感器、DAC 及 PLL 的模拟部分供电。V_{DDA} 电压必须和 V₁₀电压相同(如果 V_{DD} 掉电,V₁₀带电,则 V_{DDA} 必须带电并且和 V₁₀一致)。使用 ADC 时,V_{DDA} 不得小于 2.4V。
- V_{BAT} = 1.8~3.6V: 当关闭 V_{DD}时,(通过内部电源切换器)单独为 RTC、外部低频振荡器和后备寄存器供电。(注意 V_{BAT}供电)

2.5.4 供电监控器

本产品内部集成了上电复位 (POR) /掉电复位 (PDR) 电路,该电路始终处于工作状态,保证系统在供电超过 2.4V 时工作;当 V₁₀ 低于设定的阀值 (V_{POR/POR}) 时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较 V_{10} 供电与设定的阀值 V_{PVD} 的电压大小。打开 PVD 相应边沿中断,可在 V_{10} 下降到 PVD 阈值或上升到 PVD 阈值时,收到中断通知。关于 $V_{POR/PDR}$ 和 V_{PVD} 的值参考第 4 章。

2.5.5 电压调节器

复位后,调节器自动开启,根据应用方式有三个操作模式

- 开启模式:正常的运行操作,提供稳定的内核电源
- 低功耗模式: 当 CPU 进入停止模式后, 可选择调节器低功耗运行
- 关断模式: 当 CPU 进入待机模式后自动切换调节器到此模式,调压器输出为高阻状态,内核电路的供电切断,调压器处于零消耗状态。

该调压器在复位后始终处于开启模式,在待机模式下被关闭处于关断模式,此时是高阻输出。

2.5.6 低功耗模式

系统支持三种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳 的平衡。

● 睡眠模式

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 停止模式

此模式 FLASH 进入低功耗模式, PLL、HSI 的 RC 振荡器和 HSE 晶体振荡器被关闭。在保持 SRAM 和 寄存器内容不丢失的情况下, 停止模式可以达到最低的电能消耗。

退出条件:任意外部中断/事件(EXTI信号)、NRST上的外部复位信号、IWDG复位,其中EXTI信号包括 16 个外部 I/O 口之一、PVD 的输出、RTC 闹钟、以太网唤醒信号或 USB 的唤醒信号。

● 待机模式

此模式下,系统主 LDO 关闭,由低功耗 LDO 给唤醒电路供电,其他数字电路全部断电,且 FLASH 处于断电状态。从待机模式唤醒系统会产生复位,同时 SBF (PWR_CSR)会置位。唤醒后,查询 SBF 状态可知唤醒前的低功耗模式,SBF 由 CSBF (PWR_CR)位清除。在待机模式下,32KB 的 SRAM 的内容可以保持(取决于睡前的规划配置),后备寄存器内容保留。

退出条件:任意外部中断/事件(EXTI信号)、NRST上的外部复位信号、IWDG复位、WKUP引脚上的一个上升边沿,其中EXTI信号包括 16 个外部 I/O 口之一、RTC 闹钟、以太网唤醒信号或 USB 的唤醒信号。

2.5.7 CRC(循环冗余校验)计算单元

CRC (循环冗余校验) 计算单元使用一个固定的多项式发生器,从一个 32 位的数据字产生一个 CRC 码。在众多的应用中,基于 CRC 的技术被用于验证数据传输或存储的一致性。在 EN/IEC 60335-1 标准的范围内,提供了一种检测闪存存储器错误的手段, CRC 计算单元可以用于实时地计算软件的签名,并与在链接和生成该软件时产生的签名对比。

2.5.8 快速可编程中断控制器 (FPIC)

产品内置快速可编程中断控制器 (FPIC),最多支持 255 个中断向量,以最小的中断延迟提供了灵活的中断管理功能。当前产品管理了 8 个内核私有中断和 88 个外设中断管理,其他中断源保留。FPIC的寄存器均可以在用户和机器特权模式下访问。

- 88+3 个可单独屏蔽中断
- 提供一个不可屏蔽中断 NMI
- 支持硬件中断堆栈(HPE), 无需指令开销
- 提供 4 路免表中断 (VTF)
- 支持地址或指令模块的向量表模式
- 中断嵌套深度可配置最高8级
- 支持中断尾部链接功能

2.5.9 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 19 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。EXTI 可以检测到脉冲宽度小于内部 APB2 的时钟周期。多达 80 个通用 I/0 口都可选择连接到16 个外部中断线。

2.5.10 通用 DMA 控制器

系统内置了 2 组通用 DMA 控制器,总共管理 18 个通道,灵活处理存储器到存储器、外设到存储器和存储器到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括: 通用/高级/基本定时器 TIMx、ADC、DAC、I2S、USART、I2C、SPI、SDIO。 注: DMA1、DMA2 和 CPU 经过仲裁器仲裁之后对系统 SRAM 进行访问。

2.5.11 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 8MHz 的 RC 振荡器作为默认的 CPU 时钟,随后可以另外选择外部 3~25MHz 时钟或 PLL 时钟。当打开时钟安全模式后,如果 HSE 用作系统时钟(直接或间接),此时检测到外部时钟失效,系统时钟将自动切换到内部 RC 振荡器,同时 HSE 和 PLL 自动关闭;对于关闭时钟的低功耗模式,唤醒后系统也将自动地切换到内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

多个预分频器用于配置 AHB 的频率、高速 APB (APB2) 和低速 APB (APB1) 区域提供各外设时钟,最高频率 144MHz,参考图 2-3 的时钟树框图。I2S 单元的时钟来源另一个专用的 PLL (PLL3),这样,I2S 主时钟可产生 8kHz~192kHz 之间的所有标准的采样频率。

2.5.12 RTC(实时时钟)和后备寄存器

RTC 和后备寄存器在系统内部处于后备供电区域,在 V_{10} 有效时由 V_{10} 供电,在 V_{10} 无效时内部自动 切换到由 V_{BAT} 引脚供电。

RTC 实时时钟是一组 32 位可编程计数器,时基支持 20 位预分频,用于较长时间段的测量。时钟基准来源高速的外部时钟 128 分频(HSE/128)、外部晶体低频振荡器(LSE)或内部低功耗 RC 振荡器(LSI)。其中 LSE 也存在后备供电区域,所以,当选择 LSE 做 RTC 时基下,系统复位或从待机模式唤醒后,RTC 的设置和时间能够保持不变。

后备寄存器最多包含 42 个 16 位寄存器,可以用来存储 84 字节的用户应用数据。此数据在待机唤醒后,或系统复位或电源复位时,都能继续保持。在侵入检测功能开启下,一旦侵入检测信号有效,将被清除后备寄存器中所有内容。

2.5.13 ADC (模拟/数字转换器) 和触摸按键电容检测 (TKey)

产品内嵌 2 个 12 位的模拟/数字转换器 (ADC), 共用多达 16 个外部通道和 2 个内部通道采样,可编程的通道采样时间,可以实现单次、连续、扫描或间断转换,且支持双 ADC 转换模式。提供模拟看门狗功能允许非常精准地监视一路或多路选中的通道,用于监视通道信号电压。支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚。支持使用 DMA 操作。

ADC 内部通道采样包括一路内置温度传感器采样和一路内部参考电源采样。温度传感器产生一个随温度线性变化的电压。温度传感器在内部被连接到 IN16 输入通道上,用于将传感器的输出转换到数字数值。

触摸按键电容检测单元,提供了多达 16 个检测通道,复用 ADC 模块的外部通道。检测结果通过 ADC 模块转换输出结果,通过用户软件识别触摸按键状态。

2.5.14 DAC (数字/模拟转换器)

产品内嵌 2 个 12 位电压输出数字/模拟转换器 (DAC),转换 2 路数字信号为 2 路模拟电压信号并输出,支持双 DAC 通道独立或同步转换,支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚 (EXTI 线 9)。可实现三角波、噪声生成。支持使用 DMA 操作。

2.5.15 定时器及看门狗

系统中的定时器包括高级定时器、通用定时器、基本定时器、看门狗定时器以及系统时基定时器。 系列中不同的产品包含的定时器数量有差异,具体参考表 2-2。

表 2-2 定时器比较

定印	寸器	分辨率	计数类型	时基	DMA	功能作用
	TIM1		向上			PWM 互补输出,单脉冲输出
高级	TIM8	16 位	向下	APB2 时域	支持	输入捕获
定时器	TIM9	10 J <u>V</u>	向上/下	16 位分频器	又行	输出比较
	TIM10		1-1-1-/ 1°			定时计数
	TIM2		向上			 输入捕获
通用	TIM3	16 位	向下	APB1 时域	支持	輸出比较
定时器	TIM4		向上/下	16 位分频器	又切	定时计数
	TIM5 (1)	16/32 位	1 ¹ 11/1 ¹			(CH) II 数
基本	TIM6	16 位	向上	APB1 时域	支持	 定时计数
定时器	TIM7	10 12	끄ㅗ	16 位分频器	又切	是門 II
容口表	雪门狗	7 位	向下	APB1 时域	不支持	定时
図 口 1	∃I 1 0€0	, 177	יו נייו	4 种分频	小文功	复位系统 (正常工作)
独立看门狗		12 位	向下	APB1 时域	不支持	定时
75.27.1	∃I 1 0€0	12 11	יו נייו	7 种分频	小文功	复位系统(正常+低功耗工作)
玄 统时	基定时器	64 位	向上或下	SYSCLK 或	不支持	定时
カベラルドリ	金化門面	04 17	コエスト	SYSCLK/8	一八人河	Æ 7

注 1: TIM5 在 CH32V208 (无线型) 产品中为 32 位通用定时器。

● 高级控制定时器

高级控制定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完整的通用定时器功能外, 可以被看成是分配到 6 个通道的三相 PWM 发生器, 具有带死区插入的互补 PWM 输出功能, 允许在指定数目的计数器周期之后更新定时器进行重复计数周期, 刹车功能等。高级控制定时器的很多功能都与通用定时器相同, 内部结构也相同, 因此高级控制定时器可以通过定时器链接功能与其他 TIM 定时器协同操作, 提供同步或事件链接功能。

● 通用定时器

通用定时器是一个 16 位或 32 位的自动装载递加/递减计数器,具有一个可编程的 16 位预分频器 以及 4 个独立的通道,每个通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出。还能通过 定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以 被冻结,同时 PWM 输出被禁止,从而切断由这些输出所控制的开关。任意通用定时器都能用于产生 PWM 输出。每个定时器都有独立的 DMA 请求机制。这些定时器还能够处理增量编码器的信号,也能处理 1至 3 个霍尔传感器的数字输出。

● 基本定时器

基本定时器是一个 16 位自动装载计数器,支持 16 位可编程预分频器。可以位数模转换(DAC)提供时钟,触发 DAC 的同步电路。基本定时器之间是互相独立的,互不共享任何资源。

● 独立看门狗

独立看门狗是一个自由运行的 12 位递减计数器,支持 7 种分频系数。由一个内部独立的 40kHz 的 RC 振荡器(LSI)提供时钟;因为 LSI 独立于主时钟,所以可运行于停止和待机模式。IWDG 在主程序之外,可以完全独立工作,因此,用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

● 窗口看门狗

窗口看门狗是一个7位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器

这是内核控制器自带的一个 64 位可选递增或递减的计数器,用于产生 SYSTICK 异常(异常号:15),可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的 64 位计数器。具有自动重加载功能及可编程的时钟源。

2.5.16 通讯接口

2.5.16.1 通用同步/异步收发器(USART)

产品提供了3组通用同步/异步收发器(USART1、USART2、USART3),以及5组通用异步收发器(UART4、UART5、UART6、UART7、UART8)。支持全双工异步通信、同步单向通信以及半双工单线通信,也支持LIN(局部互连网),兼容 ISO7816 的智能卡协议和 IrDA SIR ENDEC 传输编解码规范,以及调制解调器(CTS/RTS 硬件流控)操作。还允许多处理器通信。其采用分数波特率发生器系统,并支持 DMA 操作连续通讯。

2.5.16.2 串行外设接口(SPI)

最高 3 组串行外设 SPI 接口,提供主或从操作,动态切换。支持多主模式,全双工或半双工同步传输,支持基本的 SD 卡和 MMC 模式。可编程的时钟极性和相位,数据位宽提供 8 或 16 位选择,可靠通信的硬件 CRC 产生/校验,支持 DMA 操作连续通讯。

2.5.16.3 I2S(音频)接口

最高 2 组标准的 I^2S 接口(与 SPI2 和 SPI3 复用)工作于主或从模式。软件可配置为 16/32 位数据包传输帧,支持音频采样频率从 8kHz 到 562.2kHz,支持 4 种音频标准。在主模式下,其主时钟可以以固定的 256 倍音频采样频率输出到外部的 DAC 或 CODEC(解码器),支持 DMA。

2.5.16.4 I2C 总线

多达 2 个 I2C 总线接口, 能够工作于多主机模式或从模式, 完成所有 I2C 总线特定的时序、协议、仲裁等。支持标准和快速两种通讯速度, 同时与 SMBus 2. 0 兼容。

I2C 接口提供 7 位或 10 位寻址, 并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器 /校验器。可以使用 DMA 操作并支持 SMBus 总线 2.0 版/PMBus 总线。

2.5.16.5 控制器区域网络(CAN)

CAN 接口兼容规范 2.0A 和 2.0B(主动),波特率高达 1Mbits/s,支持时间触发通信功能。可以接

收和发送 11 位标识符的标准帧,也可以接收和发送 29 位标识符的扩展帧。具有 3 个发送邮箱和 2 个 3 级深度接收 FIF0。

具有 2 组 CAN 控制器的产品, 共享 28 个可设置的过滤器和 512 字节的 SRAM 存储器资源。

具有1组 CAN 控制器产品只有14个可设置的过滤器,并和USBD 模块共用一个专用的512字节 SRAM 存储器用于数据的发送和接收,当 USBD 和 CAN 同时使用时,为了防止访问 SRAM 冲突, USBD 只能使用低384字节空间。

2.5.16.6 通用串行总线(USBD)

产品内嵌 1 个 USB2. 0 全速控制器,遵循 USB2. 0 Full speed 标准。USBD 提供 16 个可配置的 USB 设备端点,支持低速设备和全速设备,支持控制/批量/同步/中断传输,双缓冲区机制,USB 挂起/恢复操作,具有待机/唤醒功能。USB 专用的 48MHz 时钟由内部主 PLL 分频直接产生。

2.5.16.7 通用串行总线 USB2.0 全速主机/设备控制器(USBHD)

USB2. 0 全速主机控制器和设备控制器(USBHD),遵循 USB2. 0 Fullspeed 标准。提供 16 个可配置的 USB 设备端点及一组主机端点。支持控制/批量/同步/中断传输,双缓冲区机制,USB 总线挂起/恢复操作,并提供待机/唤醒功能。USBHD 模块专用的 48MHz 时钟由内部主 PLL 分频直接产生(PLL 必须为144MHz 或 96MHz 或 48MHz)。

2.5.16.8 通用串行总线 USB2.0 全速 OTG (OTG-FS)

OTG_FS 是双重角色 USB 控制器,支持主机端和设备端的功能,兼容 On-The-Go Supplement to the USB2. 0 规范。同时,该控制器也可配置为仅支持主机端或仅支持设备端功能的控制器,兼容 USB2. 0 全速规范。控制器使用来自 PLL 分频得到的 48MHz 时钟,主要特性包括:

- 支持在(OTG_FS 控制器的物理层)USB On-The-Go Supplement, Revision1.3 规范中定义为可选项目 OTG 协议
- 通过软件可配置 USB 全速主机、USB 全速/低速设备、USB 双重角色设备
- 提供省电功能
- 支持控制传输、批量传输、中断传输、实时/同步传输
- 提供总线复位、挂起、唤醒和恢复功能

2.5.16.9 通用串行总线 USB2.0 高速主机/设备控制器(USBHS)

USB2. 0 高速控制器具有主机控制器和设备控制器双重角色,并且内嵌 USB-PHY 收发器单元。当作为主机控制器时,它可支持低速、全速和高速的 USB 设备。当作为设备控制器时,可以灵活设置为低速、全速或高速模式以适应各种应用。主要特性包括:

- 支持 USB 2.0、USB 1.1、USB 1.0 协议规范
- 支持控制传输、批量传输、中断传输、实时/同步传输
- 提供总线复位、挂起、唤醒和恢复功能
- 支持高速 HUB
- 设备模式下提供 16 组上下传输通道,支持配置 16 个端点号
- 除设备端点 0 外,其他端点均支持最大 1024 字节的数据包,可使用双缓冲功能

2.5.16.10 数字图像接口(DVP)

数字图像接口 DVP(Digital Video Port)用来连接摄像头模块获取图像数据流。提供了 8/10/12bit 并行接口方式通讯。支持按原始的行、帧格式组织的图像数据,如 YUV、RGB 等,也支持如 JPEG 格式的压缩图像数据流。接收时,主要依靠 VSYNC 和 HSYNC 信号同步。支持图像裁剪功能。

2.5.16.11 SDIO 主机控制器

SDIO 主机接口提供了多媒体卡(MMC)、SD 存储卡、SDIO 卡以及 CE-ATA 设备的操作接口。支持 3 种不同的数据总线模式: 1 位(默认)、4 位和 8 位。在 8 位模式下,该接口可以使数据传输速率达到 48MHz。目前该接口全兼容多媒体卡系统规范 4. 2 (向前兼容)、SD I/O 卡规范 2. 0、SD 存储卡规范 2. 0、CE-ATA 数字协议规范 1. 1。

2.5.16.12 可配置的静态存储器控制器(FSMC)

FSMC 接口主要提供了同步或异步存储器接口,支持 SRAM、PSRAM、NOR 及 NAND 等器件。内部 AHB 传输信号被转换成合适的外部通讯协议,允许 8/16/32 位数据的连续访问。并灵活可配置采样延迟时间以满足不同器件时序。

此外, FSMC 也可用于多数图形 LCD 控制器接口, 它支持 Intel 8080 和 Motorola 6800 的模式, 很方便地构建简易的图形应用环境,或用于专用加速控制器的高性能方案。

2.5.16.13 千兆以太网控制器(MAC, +10M PHY)

产品提供了符合 IEEE 802.3-2002 标准的千兆以太网控制器(MAC),充当数据链路层的角色,其 Link 速率最高支持 1Gbps,提供 MII/RMII/RGMII 接口连接外置的 PHY (千兆/百兆/速度自适应,内置 10M PHY 收发器),应用时,结合 TCP/IP 协议栈接口实现网络产品的开发。主要特性包括:

- 符合 IEEE. 802. 3 协议规范及设计
- 提供 RGMII、RMII、MII 接口,连接外置的以太网 PHY 收发器
- 支持全双工操作,支持 10/100/1000Mbps 的数据传输速率
- 硬件自动完成 IPv4 和 IPv6 包完整性校验, IP/ICMP/UDP/TCP 包校验和计算机帧长度填充
- 多种 MAC 地址过滤模式
- SMI 即可对外置 PHY 进行配置和管理

2.5.17 通用输入输出接口(GPIO)

系统提供了 5 组 GP10 端口,共 80 个 GP10 引脚。每个引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。 多数 GP10 引脚都与数字或模拟的复用外设共用。除了具有模拟输入功能的端口,所有的 GP10 引脚都有大电流通过能力。提供锁定机制冻结 10 配置,以避免意外的写入 1/0 寄存器。

系统中大部分 10 引脚电源由 V_0 提供,通过改变 V_0 供电将改变 10 引脚输出电平高值来适配外部通讯接口电平。具体引脚请参考引脚描述。

2.5.18 随机数发生器(RNG)

产品内嵌一个随机数发生器,它通过内部的模拟电路提供一个32位的随机数。

2.5.19 运放比较器(OPA)

产品内置 4 组运放/比较器,内部选择关联到 ADC 和 TIMx 外设,其输入和输出均可通过更改配置对多个通道进行选择。支持将外部模拟小信号被放大送入 ADC 以实现小信号 ADC 转换,也可以完成信号比较器功能,比较结果由 GP10 输出或者直接接入 TIMx 的输入通道。

2.5.20 串行 2 线调试接口(SDI Serial Debug Interface)

内核自带一个串行 2 线调试的接口,包括 SWD10 和 SWCLK 引脚。系统上电或复位后默认调试接口引脚功能开启。

第3章 引脚信息

3.1 引脚排列

3.1.1 互联型 V307

CH32V307RCT6

3.1.2 连接型 V305

CH32V305RBT6

CH32V305FBP6

3.1.3 大容量通用型 V303

CH32V303VCT6

CH32V303RxT6 CH32V303CBT6

3.1.4 中小容量通用型 V203

CH32V203RBT6

CH32V203CxT6

CH32V203CxU6

CH32V203KxT6

CH32V203G8P6

CH32V203G6U6

CH32V203F8P6

CH32V203F6P6

3.1.5 无线型 V208

3.2 引脚描述

表 3-1 CH32V303_305_307xx 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

	<u>,宣省所谓九根据</u> 引脚编号			* 37,47		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
TSS0P20	LQFP48	脚 LQFP64M	이FN68 시	LQFP100	引脚 名称	引脚 类型 ⑴	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
_	-	-	-	1	PE2	1/0	FT	PE2	FSMC_A23	TIM10_BKIN_2
_	-	ı	ı	2	PE3	1/0	FT	PE3	FSMC_A19	TIM10_CH1N_2
_	-	ı	ı	3	PE4	1/0	FT	PE4	FSMC_A20	TIM10_CH2N_2
_	1	ı	ı	4	PE5	1/0	FT	PE5	FSMC_A21	T1M10_CH3N_2
_	1	-	-	5	PE6	1/0	FT	PE5	FSMC_A22	
_	1	1	1	6	V_{BAT}	Р	-	V_{BAT}		
_	2	2	2	7	PC13- TAMPER-RTC ⁽²⁾	1/0	-	PC13 ⁽³⁾	TAMPER-RTC	TIM8_CH4_1
_	3	3	3	8	PC14- OSC32_IN ⁽²⁾	I/0/A	-	PC14 ⁽³⁾	0SC32_IN	T1M9_CH4_1
_	4	4	4	9	PC15- OSC32_OUT (2)	1/0/A	-	PC15 ⁽³⁾	0SC32_0UT	TIM10_CH4_1
18	-	-	-	10	V _{SS_5}	Р	-	$V_{\text{SS_5}}$		
14	-	-	-	11	$V_{ exttt{DD}_5}$	Р	-	V_{DD_5}		
19	5	5	5	12	OSC_IN	I/A	ı	OSC_IN		PDO ⁽⁴⁾
20	6	6	6	13	OSC_OUT	0/A	ı	OSC_OUT		PD1 (4)
1	7	7	7	14	NRST	_	-	NRST		
_	-	8	8	15	PG0	I/0/A	-	PC0	ADC_IN10 TIM9_CH1N UART6_TX ETH_RGMII_RXC	
-	1	9	9	16	PC1	I/0/A	ı	PC1	ADC_IN11 TIM9_CH2N UART6_RX ETH_MII_MDC ETH_RMII_MDC ETH_RMII_RXCTL	
_	-	10	10	17	PC2	I/0/A	-	PC2	ADC_IN12 TIM9_CH3N UART7_TX OPA3_CH1N ETH_MII_TXD2 ETH_RGMII_RXD0	
	Т	11	11	18	PC3	1/0/A	-	PC3	ADC_IN13 TIM10_CH3	

	引	脚编	号							
TSS0P20	LQFP48	LQFP64M	0FN68	LQFP100	引脚 名称	学型	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
									UART7_RX OPA4_CH1N ETH_MII_TX_CLK ETH_RGMII_RXD1	
_	8	12	12	19	V _{SSA}	Р	_	V _{SSA}		
_	-	_	_	20	V_{REF-}	Р	-	V_{REF^-}		
-	-	_	_	21	V_{REF} +	Р	_	V_{REF^+}		
_	9	13	13	22	V_{DDA}	Р	_	V_{DDA}		
_	10	14	14	23	PAO-WKUP	1/0/A	_	PAO	WKUP USART2_CTS ADC_INO TIM2_CH1_ETR TIM5_CH1 TIM8_ETR OPA4_OUTO ETH_MII_CRS_WKUP ETH_RGMII_RXD2	TIM2_CH1_ETR_2 TIM8_ETR_1
2	11	15	15	24	PA1	1/0/A	_	PA1	USART2_RTS ADC_IN1 TIM5_CH2 TIM2_CH2 OPA3_OUTO ETH_MII_RX_CLK ETH_RMII_REF_CLK ETH_RGMII_RXD3	TIM2_CH2_2 TIM9_BKIN_1
_	12	16	16	25	PA2	1/0/A	_	PA2	USART2_TX TIM5_CH3 ADC_IN2 TIM2_CH3 TIM9_CH1 TIM9_ETR OPA2_OUTO ETH_MII_MDIO ETH_RGMII_GTXC	TIM2_CH3_1 TIM9_CH1_ETR_1
_	-	-	17	-	V _{10_4}	Р	_	V _{10_4}		
_	13	17	19	26	PA3	I/0/A	-	PA3	USART2_RX TIM5_CH4 ADC_IN3 TIM2_CH4	TIM2_CH4_1 TIM9_CH2_1

	引	脚编	묵							
TSS0P20	L0FP48	LQFP64M	0FN68	LQFP100	引脚 名称	学型	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
									TIM9_CH2 OPA1_OUTO ETH_MII_COL	
									ETH_RGMII_TXEN	
	-	18	-	27	V _{SS_4}	P	_	V _{SS_4}		
_	_	19	ı	28	V_{DD_4}	Р	_	V_{DD_4}		
_	14	20	20	29	PA4	1/0/A	_	PA4	SPI1_NSS USART2_CK ADC_IN4 DAC_OUT1 TIM9_CH3 DVP_HSYNC	SPI3_NSS I2S3_WS TIM9_CH3_1
2	15	21	21	30	PA5	I/0/A		PA5	SPI1_SCK ADC_IN5 DAC_OUT2 OPA2_CH1N DVP_VSYNC	TIM10_CH1N_1 USART1_CTS_2 USART1_CK_3
-	16	22	22	31	PA6	I/0/A	_	PA6	SPI1_MISO TIM8_BKIN ADC_IN6 TIM3_CH1 OPA1_CH1N DVP_PCLK	TIM1_BKIN_1 USART1_TX_3 UART7_TX_1 TIM10_CH2N_1
-	17	23	23	32	PA7	1/0/A	-	PA7	SPI1_MOSI TIM8_CH1N ADC_IN7 TIM3_CH2 OPA2_CH1P ETH_MII_RX_DV ETH_RMII_CRS_DV ETH_RGMII_TXDO	TIM1_CH1N_1 USART1_RX_3 UART7_RX_1 TIM10_CH3N_1
-		24	24	33	PC4	1/0/A	_	PC4	ADC_IN14 TIM9_CH4 UART8_TX OPA4_CH1P ETH_MII_RXD0 ETH_RMII_RXD0 ETH_RGMII_TXD1	USART1_CTS_3
_	_	25	25	34	PC5	1/0/A	_	PC5	ADC_IN15 TIM9_BKIN	USART1_RTS_3

	引	脚编	号							
TSS0P20	LQFP48	LQFP64M	0FN68	LQFP100	引脚 名称	引脚 类型	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
									UART8_RX	
									OPA3_CH1P	
									ETH_MII_RXD1	
									ETH_RMII_RXD1	
									ETH_RGMII_TXD2	
									ADC_IN8	TIMA OUGN 4
									TIM3_CH3	TIM1_CH2N_1
_	18	26	26	35	PB0	1/0/A	_	PB0	TIM8_CH2N OPA1_CH1P	TIM3_CH3_2 TIM9_CH1N_1
									ETH_MII_RXD2	UART4_TX_1
									ETH_RGMII_TXD3	UANT4_TX_T
									ADC_IN9	
									TIM3_CH4	TIM1_CH3N_1
									TIM8_CH3N	TIM3_CH4_2
_	19	27	27	36	PB1	1/0/A	_	PB1	OPA4_CHON	TIM9_CH2N_1
									ETH_MII_RXD3	UART4_RX_1
									ETH_RGMII_125IN	
_	20	28	28	37	PB2 ⁽⁵⁾	1/0	FT	PB2 B00T1 ⁽⁵⁾	OPA3_CHON	TIM9_CH3N_1
_	-	-	-	38	PE7	1/0/A	FT	PE7	FSMC_D4 OPA3_OUT1	TIM1_ETR_3
									FSMC_D5	TIM1_CH1N_3
_	-	-	_	39	PE8	1/0/A	FT	PE8	OPA4_0UT1	UART5_TX_2
										TIM1_CH1_3
_	-	_	-	40	PE9	1/0	FT	PE9	FSMC_D6	UART5_RX_2
				44	DE 10	1.70		DE 1.0	50W0 B7	TIM1_CH2N_3
_	_	_	_	41	PE10	1/0	FT	PE10	FSMC_D7	UART6_TX_2
				40	DE 4.4	1./0	Гт	DE4.4	ECMO DO	TIM1_CH2_3
-	_	_	_	42	PE11	1/0	FT	PE11	FSMC_D8	UART6_RX_2
				42	DE12	1 /0	Ет	DE12	ECMO DO	TIM1_CH3N_3
_				43	PE12	1/0	FT	PE12	FSMC_D9	UART7_TX_2
_				44	PE13	1/0	FT	PE13	FSMC_D10	TIM1_CH3_3
	_	_		44	reio	1/0	I	reis	I SINIO_DIO	UART7_RX_2
_	_]	_		45	PE14	1/0/A	FT	PE14	FSMC_D11	TIM1_CH4_3
				7	1614	1/0/1	<u> </u>	1614	0PA2_0UT1	UART8_TX_2
_	_	_	_	46	PE15	1/0/A	FT	PE15	FSMC_D12	TIM1_BKIN_3
				+0	1 L 1 O	1/0/1	' '	1 1 1 3	OPA1_OUT1	UART8_RX_2
									1202_SCL	T1M2_CH3_2
3	21	29	29	47	PB10	1/0/A	FT	PB10	USART3_TX	T1M2_CH3_3
									OPA2_CHON	TIM10_BKIN_1

	引	脚编	묵							
TSS0P20	LQFP48	LQFP64M	0FN68	LQFP100	引脚 名称	学型 (1)	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
									ETH_MII_RX_ER	
4	22	30	30	48	PB11	1/0/A	FT	PB11	I2C2_SDA USART3_RX OPA1_CHON ETH_MII_TX_EN ETH_RMII_TX_EN	TIM2_CH4_2 TIM2_CH4_3 TIM10_ETR_1
_	23	31	18	49	V _{SS_1}	Р		V _{SS_1}		
_	-	32	31	50	V _{10_1}	Р		V _{10_1}		
_	24	-	-	_	$V_{DD_10_1}$	Р		$V_{\text{DD_IO_1}}$		
-	_	-	32	_	V_{DD_1}	Р		V_{DD_1}		
5	25	33	35	51	PB12	I/0/A	FT	PB12	SPI2_NSS I2S2_WS I2C2_SMBA USART3_CK TIM1_BKIN OPA4_CHOP CAN2_RX ETH_MII_TXDO ETH_RMII_TXDO	
6	26	34	36	52	PB13	I/0/A	FT	PB13	SPI2_SCK I2S2_CK USART3_CTS TIM1_CH1N OPA3_CHOP CAN2_TX ETH_MII_TXD1 ETH_RMII_TXD1	USART3_CTS_1
7	27	35	37	53	PB14	1/0/A	FT	PB14	SPI2_MISO TIM1_CH2N USART3_RTS OPA2_CHOP	USART3_RTS_1
8	28	36	38	54	PB15	1/0/A	FT	PB15	SPI2_MOSI I2S2_SD TIM1_CH3N OPA1_CHOP	USART1_TX_2
_	-	-	33	55	PD8	1/0	FT	PD8	FSMC_D13	USART3_TX_3 TIM9_CH1N_2 ETH_MII_RX_DV ETH_RMII_CRS_DV
_	_	-	34	56	PD9	1/0	FT	PD9	FSMC_D14	USART3_RX_3

	引	脚编	号							
TSS0P20	LQFP48	LQFP64M	QFN68	LQFP100	引脚 名称	引脚 类型	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
										TIM9_CH1_ETR_2
										ETH_MII_RXDO
										ETH_RMII_RXD0
										USART3_CK_3
_	_	-	_	57	PD10	1/0	FT	PD10	FSMC_D15	T1M9_CH2N_2
				•		., •				ETH_MII_RXD1
										ETH_RMII_RXD1
										USART3_CTS_3
_	-	-	-	58	PD11	1/0	FT	PD11	FSMC_A16	T1M9_CH2_2
										ETH_MII_RXD2
										TIM4_CH1_1
_	_	_	_	59	PD12	1/0	FT	PD12	FSMC_A17	T1M9_CH3N_2
				0,	1512	1, 0		1012	7 5 110 _ 7 1 7	USART3_RTS_3
										ETH_MII_RXD3
_	_	-	_	60	PD13	1/0	FT	PD13	FSMC_A18	TIM4_CH2_1
				00	1010	17 0		1010	1 01110_7110	T1M9_CH3_2
_	_	-	_	61	PD14	1/0	FT	PD14	FSMC_DO	TIM4_CH3_1
				01	1014	17 0		1017	1 01110_20	TIM9_BKIN_2
_	_	_	_	62	PD15	1/0	FT	PD15	FSMC_D1	TIM4_CH4_1
						., •				T1M9_CH4_2
									12S2_MCK	
9	_	37	39	63	PC6	1/0	FT	PC6	TIM8_CH1	TIM3_CH1_3
		•				., •			SD10_D6	
									ETH_RXP	
									12S3_MCK	
10	_	38	40	64	PC7	1/0	FT	PC7	TIM8_CH2	T1M3_CH2_3
						., -			SD10_D7	
									ETH_RXN	
									TIM8_CH3	
11	_	39	41	65	PC8	1/0	FT	PC8	SD10_D0	T1M3_CH3_3
						., -			ETH_TXP	
									DVP_D2	
									TIM8_CH4	
	_	40	42	66	PC9	1/0	FT	PC9	SDIO_D1	T1M3_CH4_3
		. •							ETH_TXN	· · · · · · · · · · · · · · · · · · ·
12									DVP_D3	
									USART1_CK	USART1_CK_1
	29	41	43	67	PA8	1/0	FT	PA8	TIM1_CH1	USART1_RX_2
									MCO	TIM1_CH1_1
13	30	42	44	68	PA9	1/0	FT	PA9	USART1_TX	USART1_RTS_2

引脚编号										
TSS0P20	LQFP48	LQFP64M	0FN68	LQFP100	引脚 名称	学型 (1)	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
									TIM1_CH2 OTG_FS_VBUS DVP_DO	TIM1_CH2_1
_	31	43	45	69	PA10	1/0	FT	PA10	USART1_RX TIM1_CH3 OTG_FS_ID DVP_D1	USART1_CK_2 TIM1_CH3_1
_	32	44	46	70	PA11	1/0/A	FT	PA11	USART1_CTS USBDM CAN1_RX TIM1_CH4 OTG_FS_DM	USART1_CTS_1 TIM1_CH4_1
_	33	45	47	71	PA12	I/0/A	FT	PA12	USART1_RTS USBDP CAN1_TX TIM1_ETR TIM10_CH1N OTG_FS_DP	USART1_RTS_1 TIM1_ETR_1
13	34	46	48	72	PA13	1/0	FT	SWDIO	TIM10_CH2N	PA13 TIM8_CH1N_1
-	ı	ı	_	73		•		j	· 卡使用	
_	35	47	49	74	$V_{\rm SS_2}$	Р	ı	V_{SS_2}		
_	36	48	50	75	V_{DD_2}	Р	-	V_{DD_2}		
_	-	ı	51	_	V _{10_2}	Р	-	V _{10_2}		
15	37	49	52	76	PA14	1/0	FT	SWCLK	TIM10_CH3N	TIM8_CH2N_1 UART8_TX_1 PA14
_	38	50	53	77	PA15	1/0	FT	PA15	SP13_NSS 12S3_WS	TIM2_CH1_ETR_1 TIM2_CH1_ETR_3 SPI1_NSS TIM8_CH3N_1 UART8_RX_1
_	-	51	54	78	PC10	1/0	FT	PC10	UART4_TX SDI0_D2 TIM10_ETR DVP_D8	USART3_TX_1 SPI3_SCK I2S3_CK
_	_	52	55	79	PC11	1/0	FT	PC11	UART4_RX SDIO_D3 TIM10_CH4 DVP_D4	USART3_RX_1 SPI3_MISO

 引脚编号										
TSS0P20	LQFP48	LQFP64M	0FN68	LQFP100	引脚 名称	学型 (1)	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
_	_	53	56	80	PC12	1/0	FT	PC12	UART5_TX SDIO_CK TIM10_BKIN DVP_D9	USART3_CK_1 SPI3_MOSI I2S3_SD
_	_	-	-	81	PD0	1/0/A	FT	PD0	FSMC_D2	CAN1_RX TIM10_ETR_2
_	_	-	-	82	PD1	1/0/A	FT	PD1	FSMC_D3	CAN1_TX TIM10_CH1_2
_	-	54	57	83	PD2	1/0	FT	PD2	TIM3_ETR UART5_RX SDIO_CMD DVP_D11	TIM3_ETR_2 TIM3_ETR_3
_	-	_	-	84	PD3	1/0	FT	PD3	FSMC_CLK	USART2_CTS_1 TIM10_CH2_2
_	-	ı	-	85	PD4	1/0	FT	PD4	FSMC_NOE	USART2_RTS_1
1	ı	1	_	86	PD5	1/0	FT	PD5	FSMC_NWE	USART2_TX_1 TIM10_CH3_2
_	-	-	-	87	PD6	1/0	FT	PD6	FSMC_NWAIT DVP_D10	USART2_RX_1
_	-	-	_	88	PD7	1/0	FT	PD7	FSMC_NE1 FSMC_NCE2	USART2_CK_1 TIM10_CH4_2
_	39	55	58	89	PB3	1/0	FT	PB3	SP13_SCK 12S3_CK	TIM2_CH2_1 TIM2_CH2_3 SPI1_SCK TIM10_CH1_1
_	40	56	59	90	PB4	1/0	FT	PB4	SP13_MISO	TIM3_CH1_2 SPI1_MISO UART5_TX_1 TIM10_CH2_1
-	41	57	60	91	PB5	1/0	FT	PB5	I2C1_SMBA SPI3_MOSI I2S3_SD ETH_MII_PPS_OUT ETH_RMII_PPS_OUT	TIM3_CH2_2 SPI1_MOSI CAN2_RX TIM10_CH3_1 UART5_RX_1
16	42	58 59	61	92	PB6	1/0	FT FT	PB6	I2C1_SCL TIM4_CH1 USBHD_DM DVP_D5 USBHS_DM I2C1_SDA	USART1_TX_1 CAN2_TX TIM8_CH1_1 USART1_RX_1

	引	脚编	号			⊐ l n+n		<u>→</u> +L △K		
TSS0P20	LQFP48	LQFP64M	QFN68	LQFP100	引脚 名称	引脚 类型 ⁽¹⁾	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
									FSMC_NADV TIM4_CH2 USBHD_DP	T1M8_CH2_1
									USBHS_DP	
_	44	60	63	94	B00T0 ⁽⁵⁾	ı	-	B00T0 ⁽⁵⁾		
_	45	61	64	95	PB8	1/0/A	FT	PB8	TIM4_CH3 SDIO_D4 TIM10_CH1 DVP_D6 ETH_MII_TXD3	I 2C1_SCL CAN1_RX UART6_TX_1 TIM8_CH3_1
-	46	62	65	96	PB9	1/0/A	FT	PB9	TIM4_CH4 SDIO_D5 TIM10_CH2 DVP_D7	I2C1_SDA CAN1_TX UART6_RX_1 TIM8_BKIN_1
_	-	-	66	97	PE0	1/0	FT	PE0	TIM4_ETR FSMC_NBL0	TIM4_ETR_1 UART4_TX_2
-	-	-	-	98	PE1	1/0	FT	PE1	FSMC_NBL1	UART4_RX_2
_	47	63	-	99	V _{SS_3}	Р	-	V _{SS_3}		
_	-	64	67	100	V _{10_3}	Р	-	V _{10_3}		
_	_	_	68	_	V_{DD_3}	Р	_	V_{DD_3}		
_	48	_		_	V _{DD_10_3}	Р		V _{DD_10_3}		

表 3-2 CH32V203xx 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

表 3-2-1 LQFP64M 引脚定义

次 0.2 T Leaf TOTHIN J J J J A C 人									
引脚编号 LQFP64M	引脚 名称	引脚 类型 ^⑴	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能			
1	V_{BAT}	Р	ı	V_{BAT}					
2	PC13- TAMPER-RTC ⁽²⁾	1/0	1	PC13 ⁽³⁾	TAMPER-RTC				
3	PC14- OSC32_IN ⁽²⁾	1/0/A	ı	PC14 ⁽³⁾	0SC32_IN				
4	PC15- OSC32_OUT (2)	1/0/A	-	PC15 ⁽³⁾	0SC32_0UT				
5	OSC_IN	I/A	_	OSC_IN					
6	OSC_OUT	0/A	ı	OSC_OUT					
7	NRST	Ī	_	NRST					

引脚编号	引脚	引脚	1/0 电平	主功能	默认复用功能	重映射功能
LQFP64M	名称	类型"	平	后)	MY W W I TO THE	主机剂初能
8	PC0	1/0/A	-	PC0	ADC_IN10	
9	PC1	I/0/A	_	PC1	ADC_IN11	
10	PC2	I/0/A	_	PC2	ADC_IN12	
11	PC3	1/0/A	-	PC3	ADC_IN13	
12	$V_{\sf SSA}$	Р	-	V_{SSA}		
13	V_{DDA}	Р	_	V_{DDA}		
					WKUP	
					USART2_CTS	
14	PAO-WKUP	1/0/A	_	PA0	ADC_INO	TIM2_CH1_ETR_2
14	r Ao milor	17 07 K		1 70	TIM2_CH1	11M2_0111_E11_2
					TIM2_ETR	
					TIM5_CH1	
					USART2_RTS	
15	DA1	1 /0 /4		DA 1	ADC_IN1	TIMO OUO O
15	PA1	1/0/A	_	PA1	TIM2_CH2	T1M2_CH2_2
					TIM5_CH2	
					USART2_TX	
	PA2			PA2	ADC_IN2	
16		I/0/A	_		TIM2_CH3	T1M2_CH3_1
					OPA2_OUTO	
					TIM5_CH3	
					USART2_RX	
	PA3		-	PA3	ADC_IN3	
17		1/0/A			TIM2_CH4	TIM2_CH4_1
					OPA1_OUTO	
					TIM5_CH4	
18	V_{SS_4}	Р	_	V _{SS_4}		
19	$V_{\mathtt{DD_10_4}}$	Р	_	$V_{DD_10_4}$		
					SPI1_NSS	
20	PA4	1/0/A	_	PA4	USART2_CK	
		., 6, ,.			ADC_IN4	
					OPA2_OUT1	
					SPI1_SCK	USART1_CTS_2
21	PA5	I/0/A	_	PA5	ADC_IN5	USART1_CK_3
					OPA2_CH1N	
					SPI1_MISO	
22	PA6	1/0/A	_	PA6	ADC_IN6	TIM1_BKIN_1
	. 7.0	., 3, 11			TIM3_CH1	USART1_TX_3
					OPA1_CH1N	

引脚编号	引脚	引脚	1/0 电平	主功能(复位	默认复用功能	重映射功能	
LQFP64M	名称	类型 ^⑴	甲平	后)	秋	至权别利托	
					SPI1_MOSI		
23	PA7	I/0/A	_	PA7	ADC_IN7	TIM1_CH1N_1	
25	TA	17071		1 A7	TIM3_CH2	USART1_RX_3	
					OPA2_CH1P		
24	PC4	1/0/A		PC4	ADC_IN14	USART1_CTS_3	
25	PC5	1/0/A		PC5	ADC_IN15	USART1_RTS_3	
					ADC_IN8	TIM1_CH2N_1	
26	PB0	1/0/A	_	PB0	TIM3_CH3	T1M3_CH3_2	
					OPA1_CH1P	UART4_TX_1	
					ADC_I N9	TIM1_CH3N_1	
27	PB1	1/0/A	_	PB1	TIM3_CH4	T1M3_CH4_2	
					OPA1_OUT1	UART4_RX_1	
28	PB2 ⁽⁵⁾	1/0	FT	PB2			
				B00T1 (5)			
	DD40	1 /0 /4		DD4.0	1202_SCL	T1M2_CH3_2	
29	PB10	1/0/A	FT	PB10	USART3_TX	T1M2_CH3_3	
					OPA2_CHON		
	DD44	1 /0 /4		DD4.4	12C2_SDA	T1M2_CH4_2	
30	PB11	1/0/A	FT	PB11	USART3_RX	T1M2_CH4_3	
0.4	V				OPA1_CHON		
31	V _{SS_1}	P		V _{SS_1}			
32	V _{DD_10_1}	Р		V _{DD_10_1}	0010 1100		
					SPI2_NSS		
33	PB12	1/0/A	FT	PB12	12C2_SMBA		
					USART3_CK TIM1_BKIN		
					SP12_SCK		
34	PB13	I/0/A	FT	PB13	USART3_CTS	USART3_CTS_1	
	1510	1, 0, 1	' '	FDIS	TIM1_CH1N	00/1110_010_1	
					SPI2_MISO		
					TIM1_CH2N		
35	PB14	1/0/A	FT	PB14	USART3_RTS	USART3_RTS_1	
					OPA2_CHOP		
					SPI2_MOSI		
36	PB15	1/0/A	FT	PB15	TIM1_CH3N	USART1_TX_2	
					OPA1_CHOP		
37	PC6	1/0/A	FT	PC6	ETH_RXP	T1M3_CH1_3	
38	PC7	1/0/A	FT	PC7	ETH_RXN	TIM3_CH2_3	
39	PC8	I/0/A	FT	PC8	ETH_TXP	TIM3_CH3_3	
40	PC9	1/0/A	FT	PC9	ETH_TXN	T1M3_CH4_3	

引脚编号	引脚	引脚	H 0/1	主功能(复位	默认复用功能	重映射功能
LQFP64M	名称	类型")	电平	后)		_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					USART1_CK	USART1_CK_1
41	PA8	1/0	FT	PA8	TIM1_CH1	USART1_RX_2
					MCO	TIM1_CH1_1
42	PA9	1/0	FT	PA9	USART1_TX	USART1_RTS_2
42	177	170	' '	177	TIM1_CH2	TIM1_CH2_1
43	PA10	1/0	FT	PA10	USART1_RX	USART1_CK_2
40	17/10	17 0		17/10	TIM1_CH3	TIM1_CH3_1
					USART1_CTS	
44	PA11	1/0/A	FT	PA11	USBDM	USART1_CTS_1
	17(1)	17 07 71	l ''	17(1)	CAN1_RX	TIM1_CH4_1
					TIM1_CH4	
					USART1_RTS	
45	PA12	I/0/A	FT	PA12	USBDP	USART1_RTS_1
45	TAIZ	17071	' '	PAIZ	CAN1_TX	TIM1_ETR_1
					TIM1_ETR	
46	PA13	1/0	FT	SWDIO		PA13
_	V _{SS_2}	Р	_	V _{SS_2}		
_	$V_{ exttt{DD}_2}$	Р	-	V_{DD_2}		
47	NC			NC		
48	NC			NC		
49	PA14	1/0	FT	SWCLK		PA14
						TIM2_CH1_ETR_1
50	PA15	1/0	FT	PA15		TIM2_CH1_ETR_3
						SPI1_NSS
51	PC10	1/0	FT	PC10	UART4_TX	USART3_TX_1
52	PC11	1/0	FT	PC11	UART4_RX	USART3_RX_1
53	PC12	1/0	FT	PC12		USART3_CK_1
54	PD2	1/0	FT	PD2	TIM2 ETD	TIM3_ETR_2
54	PDZ	1/0	F1	PUZ	TIM3_ETR	TIM3_ETR_3
						T1M2_CH2_1
55	PB3	1/0	FT	PB3		T1M2_CH2_3
						SPI1_SCK
EL	DD 4	1 /0	ЕТ	DD 4		T1M3_CH1_2
56	PB4	1/0	FT	PB4		SPI1_MISO
57	DD <i>E</i>	1./0	ЕТ	DD <i>E</i>	1201 CMDA	T1M3_CH2_2
57	PB5	1/0	FT	PB5	I2C1_SMBA	SPI1_MOSI
					I 2C1_SCL	
58	PB6	1/0	FT	PB6	TIM4_CH1	USART1_TX_1
					USBHD_DM	
59	PB7	1/0	FT	PB7	I 2C1_SDA	USART1_RX_1

引脚编号	引脚	引脚	1/0	主功能	默认复用功能	手咖심거산
LQFP64M	名称	类型")	电平	后)		重映射功能
					TIM4_CH2	
					USBHD_DP	
60	В00Т0	I	_	B00T0		
61	PB8	1/0/A	FT	PB8	TIM4 CH3	I2C1_SCL
01	PDO	1/0/A	ГІ	PDO	11M4_Un3	CAN1_RX
68	PB9	I/0/A	FT	PB9	TIM4_CH4	12C1_SDA
08	FD7	1/0/A	ГІ	FD9	1 TM4_004	CAN1_TX
63	V _{SS_3}	Р	_	V_{SS_3}		
64	V _{DD_10_3}	Р	_	V _{DD_10_3}		

表 3-2-2 LQFP32/LQFP48/QFN48 引脚定义

引脚	引脚编号			_	主功能		
LQFP32	LQFP48 QFN48	引脚 名称	引脚 类型 ^⑴	1/0 电平	(复位后)	默认复用功能	重映射功能
_	0	$V_{ extsf{ss}}$	Р	_	V_{ss}		
_	1	V_{BAT}	Р	_	V_{BAT}		
_	2	PC13- TAMPER-RTC ⁽²⁾	1/0	_	PC13 ⁽³⁾	TAMPER-RTC	
_	3	PC14- OSC32_IN ⁽²⁾	1/0/A	ı	PC14 ⁽³⁾	0SC32_IN	
-	4	PC15- OSC32_OUT (2)	1/0/A	-	PC15 ⁽³⁾	0SC32_0UT	
2	5	OSC_IN	I/A	_	OSC_IN		PDO ⁽⁴⁾
3	6	OSC_OUT	0/A	_	OSC_OUT		PD1 (4)
4	7	NRST	I	_	NRST		
_	-	PC0	1/0/A	_	PC0	ADC_IN10	
_	-	PC1	1/0/A	_	PC1	ADC_IN11	
_	-	PC2	1/0/A	_	PC2	ADC_IN12	
_	-	PC3	1/0/A	_	PC3	ADC_IN13	
_	8	V_{SSA}	Р	_	V_{SSA}		
5	9	$V_{ exttt{DDA}}$	Р	_	V_{DDA}		
6	10	PAO-WKUP	I/0/A	_	PAO	WKUP USART2_CTS ADC_INO TIM2_CH1 TIM2_ETR	TIM2_CH1_ETR_2
7	11	PA1 I/O/A - PA1 ADC_IN1 TIM2_CH2		TIM2_CH2_2			

引脚 CEdFP32	Ingred House	引脚 名称	引脚 类型 ^⑴	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
8	12	PA2	1/0/A	ı	PA2	USART2_TX ADC_IN2 TIM2_CH3 OPA2_OUTO	T1M2_CH3_1
9	13	PA3	1/0/A	ı	PA3	USART2_RX ADC_IN3 TIM2_CH4 OPA1_OUTO	T1M2_CH4_1
_	_	V_{SS_4}	Р	-	$V_{\text{SS_4}}$		
_	_	$V_{\mathtt{DD_IO_4}}$	Р	_	$V_{\text{DD_IO_4}}$		
10	14	PA4	I/0/A	-	PA4	SPI1_NSS USART2_CK ADC_IN4 OPA2_OUT1	
11	15	PA5	1/0/A	_	PA5	SPI1_SCK ADC_IN5 OPA2_CH1N	USART4_TX_1
12	16	PA6	I/O/A	-	PA6	SPI1_MISO ADC_IN6 TIM3_CH1 OPA1_CH1N	TIM1_BKIN_1 USART4_CK_1
13	17	PA7	I/0/A	-	PA7	SPI1_MOSI ADC_IN7 TIM3_CH2 OPA2_CH1P	TIM1_CH1N_1 USART4_CTS_1
14	18	PB0	I/0/A	-	PB0	ADC_IN8 TIM3_CH3 OPA1_CH1P USART4_TX	TIM1_CH2N_1 TIM3_CH3_2
15	19	PB1	I/0/A	-	PB1	ADC_IN9 TIM3_CH4 OPA1_OUT1 USART4_RX	TIM1_CH3N_1 TIM3_CH4_2
-	20	PB2 ⁽⁵⁾	1/0	FT	PB2 B00T1 ⁽⁵⁾	USART4_CK	
_	21	PB10	1/0/A	FT	PB10	I2C2_SCL USART3_TX OPA2_CHON	TIM2_CH3_2 TIM2_CH3_3
_	22	PB11	1/0/A	FT	PB11	12C2_SDA USART3_RX	TIM2_CH4_2 TIM2_CH4_3

引脚	编号				مام ا		
LQFP32	LQFP48 3	引脚 名称	引脚 类型 ^⑴	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
						OPA1_CHON	
16	23	V_{SS_1}	Р		V _{SS_1}		
17	24	$V_{\mathtt{DD_IO_1}}$	Р		$V_{DD_IO_1}$		
-	25	PB12	I/O/A	FT	PB12	SPI2_NSS I2C2_SMBA USART3_CK TIM1_BKIN	
_	26	PB13	1/0/A	FT	PB13	SPI2_SCK USART3_CTS TIM1_CH1N	
-	27	PB14	1/0/A	FT	PB14	SPI2_MISO TIM1_CH2N USART3_RTS OPA2_CHOP	
-	28	PB15	1/0/A	FT	PB15	SPI2_MOSI TIM1_CH3N OPA1_CH0P	
_	_	PC6	1/0/A	FT	PC6	ETH_RXP	T1M3_CH1_3
_	_	PC7	1/0/A	FT	PC7	ETH_RXN	T1M3_CH2_3
_	_	PC8	1/0/A	FT	PC8	ETH_TXP	T1M3_CH3_3
-	-	PC9	1/0/A	FT	PC9	ETH_TXN	T1M3_CH4_3
18	29	PA8	1/0	FT	PA8	USART1_CK TIM1_CH1 MCO	USART1_CK_1 TIM1_CH1_1
19	30	PA9	1/0	FT	PA9	USART1_TX TIM1_CH2	TIM1_CH2_1
20	31	PA10	1/0	FT	PA10	USART1_RX TIM1_CH3	TIM1_CH3_1
21	32	PA11	1/0/A	FT	PA11	USART1_CTS USBDM CAN1_RX TIM1_CH4	USART1_CTS_1 TIM1_CH4_1
22	33	PA12	1/0/A	FT	PA12	USART1_RTS USBDP CAN1_TX TIM1_ETR	USART1_RTS_1 TIM1_ETR_1
23	34	PA13	1/0	FT	SWDIO		PA13
_	35	V _{SS_2}	Р	_	V _{SS_2}		
_	36	$V_{ exttt{DD}_2}$	Р	_	V_{DD_2}		

引脚	l编号			_	主功能		
LQFP32	LQFP48 QFN48	引脚 名称	引脚 类型 ^⑪	1/0 电平	(复位后)	默认复用功能	重映射功能
24	37	PA14	14 I/O FT SWCLK			PA14	
25	38	PA15	PA15 I/O FT PA15		TIM2_CH1_ETR_1 TIM2_CH1_ETR_3 SPI1_NSS USART4_RTS_1		
26	39	PB3	1/0	FT	PB3	USART4_CTS	TIM2_CH2_1 TIM2_CH2_3 SPI1_SCK
27	40	PB4	1/0	FT	PB4	USART4_RTS	TIM3_CH1_2 SPI1_MISO
28	41	PB5	1/0	FT	PB5	I 2C1_SMBA	TIM3_CH2_2 SPI1_MOSI USART4_RX_1
29	42	PB6	1/0	FT	PB6	I2C1_SCL TIM4_CH1 USBHD_DM	USART1_TX_1
30	43	PB7	1/0	FT	PB7	I2C1_SDA TIM4_CH2 USBHD_DP	USART1_RX_1
	44	В00Т0	I	-	B00T0		
31	45	PB8	1/0/A	FT	PB8	TIM4_CH3	12C1_SCL CAN1_RX
_	46	PB9	1/0/A	FT	PB9	TIM4_CH4	I2C1_SDA CAN1_TX
32	47	V _{SS_3}	Р	_	V _{SS_3}		
1	48	V _{DD_10_3}	Р	_	V _{DD_10_3}		

表 3-2-3 TSSOP20(F8)/QSOP28(G8)引脚定义

引脚 (F8)	编号 (G8)	引脚	引脚	1/0	主功能			
TSS0P20	QS0P28	名称	类型	电平	(复位 后)	默认复用功能	重映射功能	
5	8	NRST	I	-	NRST			
						WKUP		
						USART2_CTS		
6	9	PAO-WKUP	1/0/A	-	PA0	ADC_INO	TIM2_CH1_ETR_2	
						TIM2_CH1		
						TIM2_ETR		

	编号						
TSS0P20 (8)	080P28	引脚 名称	引脚 类型 ^⑴	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能
7	10	PA1	I/0/A	-	PA1	USART2_RTS ADC_IN1 TIM2_CH2	TIM2_CH2_2
8	11	PA2	1/0/A	_	PA2	USART2_TX ADC_IN2 TIM2_CH3 OPA2_OUTO	TIM2_CH3_1
9	12	PA3	I/O/A	_	PA3	USART2_RX ADC_IN3 TIM2_CH4 OPA1_OUTO	TIM2_CH4_1
11	15	PA4	I/0/A	-	PA4	SPI1_NSS USART2_CK ADC_IN4 OPA2_OUT1	
12	16	PA5	I/0/A	-	PA5	SPI1_SCK ADC_IN5 OPA2_CH1N	
10	13	PA6	I/0/A	-	PA6	SPI1_MISO ADC_IN6 TIM3_CH1 OPA1_CH1N	TIM1_BKIN_1
13	17	PA7	I/0/A	-	PA7	SPI1_MOSI ADC_IN7 TIM3_CH2 OPA2_CH1P	TIM1_CH1N_1
14	14	PB0	1/0/A	_	PB0	ADC_IN8 TIM3_CH3 OPA1_CH1P	TIM1_CH2N_1 TIM3_CH3_2
-	20	PB1	I/0/A	-	PB1	ADC_IN9 TIM3_CH4 OPA1_OUT1	TIM1_CH3N_1 TIM3_CH4_2
-	18	PB10	1/0/A	FT	PB10	OPA2_CHON	TIM2_CH3_2 TIM2_CH3_3
-	19	PB11	1/0/A	FT	PB11	OPA1_CHON	TIM2_CH4_2 TIM2_CH4_3
_	20	PB12	1/0/A	FT	PB12	TIM1_BKIN	
15	21	PB13	1/0/A	FT	PB13	TIM1_CH1N	
16	22	PB14	1/0/A	FT	PB14	TIM1_CH2N	

⊐ I 0+n	1/亡 口						
	编号 (00)			_	主功能		
(F8)	(G8)	引脚	引脚	0.	(复位 (复位	 默认复用功能	重映射功能
)P2(qS0P28	名称	类型 ^⑴	1/0 电平	后)		里吹别切能
TSS0P20	OS0			'	Дγ		
						OPA2_CHOP	
47	00	DD4.5	1.70.71		DD4.5	TIM1_CH3N	
17	23	PB15	1/0/A	FT	PB15	OPA1_CHOP	
						USART1_CK	USART1_CK_1
18	24	PA8	1/0	FT	PA8	TIM1_CH1	TIM1_CH1_1
						MCO	111111_0111_1
19	25	PA9	1/0	FT	PA9	USART1_TX	TIM1_CH2_1
17	20	170	17 0		17.7	TIM1_CH2	
20	26	PA10	1/0	FT	PA10	USART1_RX	T I M1_CH3_1
			., •			TIM1_CH3	
						USART1_CTS	
_	27	PA11	1/0/A	FT	PA11	USBDM	USART1_CTS_1
			,, 5, 11			CAN1_RX	TIM1_CH4_1
						TIM1_CH4	
						USART1_RTS	
_	28	PA12	1/0/A	FT	PA12	USBDP	USART1_RTS_1
			,, 5, 11			CAN1_TX	TIM1_ETR_1
						TIM1_ETR	
1	28	PA13	1/0	FT	SWDIO		PA13
3	7	V _{ss}	Р	_	V _{ss}		
4	6	$V_{ extsf{DD}}$	Р	_	V _{DD}		
2	1	PA14	1/0	FT	SWCLK		PA14
						I2C1_SCL	
1	2	PB6	1/0	FT	PB6	TIM4_CH1	USART1_TX_1
						USBHD_DM	
						12C1_SDA	
2	3	PB7	1/0	FT	PB7	TIM4_CH2	USART1_RX_1
						USBHD_DP	
_	4	В00Т0	l	_	B00T0		
_	5	PB8	1/0/A	FT	PB8	TIM4_CH3	12C1_SCL
						_	CAN1_RX

表 3-2-4 TSSOP20(F6)/QFN28(G6)引脚定义

引脚:	编号						
(F6)	(G6)	71.040	71.040		主功能		
TSS0P20	QFN28	引脚 名称	引脚 类型 ^⑴	0 电平	(复位 后)	默认复用功能	重映射功能

_	0	V _{SS}	Р	Ι_	V _{ss}		
2	2	OSC_IN	I/A	-	OSC_IN		PD0 ⁽⁴⁾
3	3	OSC_OUT	0/A	-	OSC_OUT		PD1 ⁽⁴⁾
4	4	NRST	1	-	NRST		101
5	5	V _{DDA}	P	 	V _{DDA}		
		▼ DDA	•		₹ bbA	WKUP	
						USART2_CTS	
6	6	PAO-WKUP	I/0/A	_	PA0	ADC_INO	TIM2_CH1_ETR_2
		The inter	1, 5, 11		1710	TIM2_CH1	711112_0111_2111_2
						TIM2_ETR	
						USART2_RTS	
7	7	PA1	1/0/A	_	PA1	ADC_IN1	T1M2_CH2_2
			., ., .,			TIM2_CH2	
						USART2_TX	
						ADC_IN2	
8	8	PA2	1/0/A	_	PA2	T1M2_CH3	T I M2_CH3_1
						OPA2_OUTO	
						USART2_RX	
						ADC_IN3	
9	9	PA3	1/0/A	-	PA3	TIM2_CH4	T1M2_CH4_1
						_ 0PA1_0UT0	
						SPI1_NSS	
						USART2_CK	
10	10	PA4	1/0/A	_	PA4	ADC_IN4	
						 0PA2_0UT1	
						SPI1_SCK	
11	11	PA5	1/0/A	_	PA5	ADC_IN5	
						OPA2_CH1N	
						SPI1_MISO	
40	40	D4./	1 /0 /4		DA.	ADC_IN6	TIMA DIVINI 4
12	12	PA6	I/0/A	_	PA6	TIM3_CH1	TIM1_BKIN_1
						OPA1_CH1N	
						SPI1_MOSI	
13	13	DA7	1/0/4		PA7	ADC_IN7	TIM4 OHAN 4
13	13	PA7	I/0/A	_	PA/	TIM3_CH2	T I M1_CH1 N_1
						OPA2_CH1P	
						ADC_IN8	TIM1 CUON 1
_	14	PB0	1/0/A	_	PB0	TIM3_CH3	TIM1_CH2N_1 TIM3_CH3_2
						OPA1_CH1P	I IMO_UTO_Z
						ADC_IN9	TIM1_CH3N_1
14	15	PB1	1/0/A	-	PB1	TIM3_CH4	T1M1_CH3N_1 T1M3_CH4_2
						OPA1_OUT1	1 1M3_UH4_Z
15	16	V_{SS}	Р		V _{ss}		
16	17	$V_{ extsf{DD}}$	Р	<u></u>	$V_{ extsf{DD}}$		

-	18	PA9	1/0	FT	PA9	USART1_TX TIM1_CH2	TIM1_CH2_1
-	19	PA10	1/0	FT	PA10	USART1_RX TIM1_CH3	TIM1_CH3_1
17	19	PA11	I/0/A	FT	PA11	USART1_CTS USBDM CAN1_RX TIM1_CH4	USART1_CTS_1 TIM1_CH4_1
18	20	PA12	I/0/A	FT	PA12	USART1_RTS USBDP CAN1_TX TIM1_ETR	USART1_RTS_1 TIM1_ETR_1
19	21	PA13	1/0	FT	SWDIO		PA13
20	22	PA14	1/0	FT	SWCLK		PA14
-	23	PA15	1/0	FT	PA15		TIM2_CH1_ETR_1 TIM2_CH1_ETR_3 SPI1_NSS
-	24	PB3	1/0	FT	PB3		TIM2_CH2_1 TIM2_CH2_3 SPI1_SCK
_	25	PB4	1/0	FT	PB4		TIM3_CH1_2 SPI1_MISO
_	26	PB5	1/0	FT	PB5	I2C1_SMBA	TIM3_CH2_2 SPI1_MOSI
_	27	PB6	1/0	FT	PB6	I 2C1_SCL	USART1_TX_1
-	28	PB7	1/0	FT	PB7	I 2C1_SDA	USART1_RX_1
		В00Т0	I	_	B00T0		
1 (6)	1 (6)	PB8	1/0/A	FT	PB8		I 2C1_SCL CAN1_RX

表 3-3 CH32V208xx 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

	引脚	编号			71.040				
QFN28	QFN48	LQFP64M	0FN68	引脚 名称	引脚 类型	1/0 电斗	主功能(复位后)	默认复用功能	重映射功能
0	0	-	0	V _{ss}	Р	-	V_{ss}		
-	48	1	1	V_{BAT}	Р	-	V_{BAT}		
-	1	2	2	PC13- TAMPER-RTC ⁽²⁾	1/0	1	PC13 ⁽³⁾	TAMPER-RTC	
_	2	3	3	PC14- 0SC32_IN ⁽²⁾	1/0/A	1	PC14 ⁽³⁾	0SC32_IN	

_	3	4	4	PC15- OSC32_OUT (2)	I/0/A	-	PC15 ⁽³⁾	0SC32_0UT	
_	4	5	5	V _{SSA}	Р	-	V _{SSA}		
1	5	6	6	OSC_IN	I/A	-	OSC_IN		
2	6	7	7	OSC_OUT	0/A	ı	OSC_OUT		
3	7	8	8	NRST	I	-	NRST		
_	_	9	9	PC0	1/0/A	-	PC0	ADC_IN10	
_	1	10	10	PC1	1/0/A	1	PC1	ADC_IN11	
_	1	11	11	PC2	1/0/A	-	PC2	ADC_IN12	
_	ı	12	12	PC3	1/0/A	-	PC3	ADC_IN13	
4	8	13	13	V_{DDA}	Р	-	V_{DDA}		
5	9	14	14	PAO-WKUP	I/0/A	1	PAO	WKUP/USART2_CTS ADC_INO/TIM2_CH1 TIM2_ETR/TIM5_CH1	TIM2_CH1_ETR_2
6	10	15	15	PA1	1/0/A	ı	PA1	USART2_RTS/ADC_IN1 TIM5_CH2/TIM2_CH2	T1M2_CH2_2
7	11	16	16	PA2	1/0/A	-	PA2	USART2_TX/TIM5_CH3 ADC_IN2/TIM2_CH3 OPA2_OUTO	T1M2_CH3_1
_	_	_	17	V _{10_4}	Р	-	V _{10_4}		
_	ı	ı	18	PD4	1/0	FT	PD4		
8	12	17	19	PA3	I/0/A	-	PA3	USART2_RX/TIM5_CH4 ADC_IN3/TIM2_CH4 OPA1_OUTO	T1M2_CH4_1
-	1	18		V _{SS_4}	Р	-	V _{SS_4}		
_	ı	19	ı	$V_{DD_10_4}$	Р	ı	$V_{DD_10_4}$		
9	13	20	20	PA4	1/0/A	-	PA4	SPI1_NSS/USART2_CK ADC_IN4/OPA2_OUT1	
10	14	21	21	PA5	1/0/A	-	PA5	SPI1_SCK/ADC_IN5 OPA2_CH1N	USART1_CTS_2 USART1_CK_3
11	15	22	22	PA6	1/0/A	-	PA6	SPI1_MISO/ADC_IN6 TIM3_CH1/OPA1_CH1N	TIM1_BKIN_1 USART1_TX_3
12	16	23	23	PA7	1/0/A	-	PA7	SPI1_MOSI/ADC_IN7 TIM3_CH2/OPA2_CH1P	TIM1_CH1N_1 USART1_RX_3
_	-	24	24	PC4	1/0/A	-	PC4	ADC_IN14	USART1_CTS_3
_	-	25	25	PC5	1/0/A	ı	PC5	ADC_IN15	USART1_RTS_3
-	17	26	26	PB0	1/0/A	ı	PB0	ADC_IN8/TIM3_CH3 OPA1_CH1P	TIM1_CH2N_1 TIM3_CH3_2 UART4_TX_1
_	18	27	27	PB1	1/0/A	-	PB1	ADC_IN9 TIM3_CH4 OPA1_OUT1	TIM1_CH3N_1 TIM3_CH4_2 UART4_RX_1
_	19	28	28	PB2	1/0	FT	PB2/B00T1		
	20	29	29	PB10	1/0/A	FT	PB10	12C2_SCL/USART3_TX	T1M2_CH3_2

								0010 011011	T.110 0110 0
-								OPA2_CHON	T1M2_CH3_3
_	21	30	30	PB11	1/0/A	FT	PB11	12C2_SDA/USART3_RX	T1M2_CH4_2
								OPA1_CHON	T1M2_CH4_3
_	_	31	_	V _{SS_1}	Р		V_{SS_1}		
13	22	32	_	$V_{\text{DD_IO_1}}$	Р		$V_{\mathtt{DD_I}\mathtt{0_1}}$		
_	_	ı	31	V_{10_1}	Р		$V_{10_{-1}}$		
_	-	_	32	V_{DD_1}	Р		V_{DD_1}		
_	-	-	33	PD5	1/0	FT	PD5		
_	-	-	34	PD6	1/0	FT	PD6		
	00	00	0.5	DD40	1 (0 (1		DD40	SP12_NSS/12C2_SMBA	
_	23	33	35	PB12	1/0/A	FT	PB12	USART3_CK/TIM1_BKIN	
	0.4	2.4	0.1	DD 4.0	. /0 /4		DD 4 0	SPI2_SCK/TIM1_CH1N	1104070 070 4
_	24	34	36	PB13	1/0/A	FT	PB13	USART3_CTS	USART3_CTS_1
								SPI2_MISO/TIM1_CH2N	
_	25	35	37	PB14	1/0/A	FT	PB14	USART3_RTS/OPA2_CHOP	USART3_RTS_1
								SPI2_MOSI/TIM1_CH3N	
_	26	36	38	PB15	1/0/A	FT	PB15	OPA1_CHOP	USART1_TX_2
14	-	37	39	PC6	1/0	FT	PC6	ETH_RXP	TIM3_CH1_3
15	_	38	40	PC7	1/0	FT	PC7	ETH_RXN	T1M3_CH2_3
16	_	39	41	PC8	1/0	FT	PC8	ETH_TXP	T1M3_CH3_3
17	_	40	42	PC9	1/0	FT	PC9	ETH_TXN	T1M3_CH4_3
									USART1_CK_1
_	27	41	43	PA8	1/0	FT	PA8	USART1_CK	USART1_RX_2
								TIM1_CH1/MCO	 TIM1_CH1_1
								USART1_TX	USART1_RTS_2
_	28	42	44	PA9	1/0	FT	PA9	TIM1_CH2	TIM1_CH2_1
		4.0		5110			2110	USART1_RX	USART1_CK_2
_	29	43	45	PA10	1/0	FT	PA10	TIM1_CH3	TIM1_CH3_1
4.0								USART1_CTS/USBDM	USART1_CTS_1
18	30	44	46	PA11	1/0/A	FT	PA11	CAN1_RX/TIM1_CH4	TIM1_CH4_1
4.0		4-		5116			2110	USART1_RTS/USBDP	USART1_RTS_1
19	31	45	47	PA12	1/0/A	FT	PA12	CAN1_TX/TIM1_ETR	TIM1_ETR_1
20	32	46	48	PA13	1/0	FT	SWDIO		PA13
_	35	-	49	V _{SS_2}	Р	-	V _{SS_2}		
21	33	47	50	V _{INTA}	Р	_	VINTA		
22	34	48	51	ANT	Α	_	ANT		
23	36	49	52	PA14	1/0	FT	SWCLK		PA14
									TIM2_CH1_ETR_1
24	37	50	53	PA15	1/0	FT	PA15		TIM2_CH1_ETR_3
				-			-		SPI1_NSS
_	-	51	54	PC10	1/0	FT	PC10	UART4_TX	USART3_TX_1
_	_	52	55	PC11	1/0	FT	PC11	UART4_RX	USART3_RX_1
_	-	53	56	PC12	1/0	FT	PC12		USART3_CK_1
	_	54	57	PD2	1/0	FT	PD2	TIM3_ETR	TIM3_ETR_2
		J4	57	Γυζ	1/0	1.1	ΓUZ	I I MIO_LIK	IIMO_LIK_Z

									TIM3_ETR_3
									T1M2_CH2_1
_	38	55	58	PB3	1/0	FT	PB3		T1M2_CH2_3
									SPI1_SCK
_	39	56	59	PB4	1/0	FT	PB4		T1M3_CH1_2
	37	50	39	PD4	1/0	г	FD4		SPI1_MISO
_	40	57	60	PB5	1/0	FT	PB5	I2C1_SMBA	T1M3_CH2_2
	40	57	00	PBS	1/0	г	PBO	1201_SWIDA	SPI1_MOSI
25	41	58	61	PB6	1/0	FT	PB6	1201_SCL	USART1_TX_1
25	41	56	01	PBO	1/0	Г	PDO	TIM4_CH1/USBHD_DM	USAKTI_TX_T
26	42	59	62	PB7	1/0	FT	PB7	12C1_SDA	USART1_RX_1
20	42	37	02	FB/	1/0		FD/	TIM4_CH2/USBHD_DP	USAKTI_KX_T
27 ⁽⁶⁾	43	60	63	B00T0	1	ı	B00T0		
21	44	61	64	PB8	1/0/A	FT	PB8	TIM4_CH3	I2C1_SCL/CAN1_RX
_	45	62	65	PB9	1/0/A	FT	PB9	TIM4_CH4	I2C1_SDA/CAN1_TX
_	-	_	66	PD3	1/0	FT	PD3		
_	46	63	_	V _{SS_3}	Р	-	V _{SS_3}		
28	47	64	-	V _{DD_10_3}	Р	-	V _{DD_10_3}		
-	1	-	67	V _{10_3}	Р	1	V _{10_3}		
-	-	-	68	V_{DD_3}	Р	-	V_{DD_3}		

注1: 表格缩写解释

I = TTL/CMOS 电平斯密特输入;

0 = CMOS 电平三态输出;

A = 模拟信号输入或输出;

 $P = \theta i i j$

FT = 耐受5V;

ANT = 射频信号输入输出(天线);

注2: PC13, PC14和PC15引脚通过电源开关进行供电,而这个电源开关只能够吸收有限的电流(3mA)。因此这三个引脚作为输出引脚时有以下限制:在同一时间只有一个引脚能作为输出,作为输出脚时只能工作在2MHz模式下,最大驱动负载为30pF,并且不能作为电流源(如驱动LED)。

注3: 这些引脚在备份区域第一次上电时处于主功能状态下,之后即使复位,这些引脚的状态由备份区域寄存器控制(这些寄存器不会被主复位系统所复位)。关于如何控制这些10口的具体信息,请参考CH32FV2x_V3xRM手册的电池备份区域和BKP寄存器的相关章节。

注4: LQFP64M封装的引脚5和引脚6在芯片复位后默认配置为0SC_IN和0SC_OUT功能脚。软件可以重新设置这两个引脚为PD0和PD1功能。但对于LQFP100封装,由于PD0和PD1为固有的功能引脚,因此没有必要再由软件进行重映像设置。CH32V203RBT6只有0SC_IN和0SC_OUT功能脚,不能复用为PD0和PD1功能。更多详细信息请参考CH32FV2x_V3xRM手册的复用功能I/O章节和调试设置章节。

注5: B00T0引脚未引出的芯片,在内部将下拉到GND。B00T0引脚引出,但B00T1/PB2引脚未引出的芯片, 内部B00T1/PB2引脚将下拉到GND。此时如果进入低功耗模式配置10口状态时,建议B00T1/PB2引脚使用 输入下拉模式防止产生额外电流。

注6: B00T0和PB8引脚合封芯片,建议外接500K下拉电阻,保证芯片上电稳定进入程序闪存存储器自举模式。另外,此PB8引脚及其复用功能只保留了输出驱动功能,所有输入功能已被禁止。

注7: 20和28引脚封装芯片有许多合封引脚(至少2个10功能引脚物理合为一个引脚),此时驱动不要同时配置输出功能,否则可能损坏引脚。有功耗要求的注意引脚状态。

3.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差异,查看前请先根据产品型号资源表确认是否有此功能。 表 3-4 CH32V303_305_307xx 引脚复用功能

复用 引脚	ADC DAC	TIM1 8/9/10	TIM2 3/4/5	UART USART	USB	SYS	120	SPI 12S	ETH	FSMC SD10	DVP	OPA	CAN
PA0	ADC_INO	TIM8_ETR TIM8_ETR_1	TIM2_CH1_ETR TIM2_CH1_ETR_2 TIM5_CH1	USART2_CTS		WKUP			ETH_MII_CRS_WKUP ETH_RGMII_RXD2			OPA4_OUTO	
PA1	ADC_1N1		TIM2_CH2 TIM2_CH2_2 TIM5_CH2 TIM9_BKIN_1	USART2_RTS					ETH_MII_RX_CLK ETH_RMII_REF_CLK ETH_RGMII_RXD3			0PA3_0UT0	
PA2	ADC_IN2	TIM9_CH1 TIM9_ETR TIM9_CH1_ETR_1	TIM2_CH3 TIM2_CH3_1 TIM5_CH3	USART2_TX					ETH_MII_MDIO ETH_RMII_MDIO ETH_RGMII_GTXC			OPA2_OUTO	
PA3	ADC_IN3	TIM9_CH2 TIM9_CH2_1	TIM2_CH4 TIM2_CH4_1 TIM5_CH4	USART2_RX					ETH_MII_COL ETH_RGMII_TXEN			OPA1_OUTO	
PA4	ADC_IN4 DAC_OUT1	TIM9_CH3 TIM9_CH3_1		USART2_CK				SPI1_NSS SPI3_NSS I2S3_WS			DVP_HSYNC		
PA5	ADC_IN5 DAC_OUT2	T I M10_CH1N_1		USART1_CTS_2 USART1_CK_3				SPI1_SCK			DVP_VSYNC	OPA2_CH1N	
PA6	ADC_IN6	TIM1_BKIN_1 TIM8_BKIN TIM10_CH2N_1	TIM3_CH1	USART1_TX_3 UART7_TX_1				SPI1_MISO			DVP_PCLK	OPA1_CH1N	
PA7	ADC_IN7	TIM1_CH1N_1 TIM8_CH1N TIM10_CH3N_1	TIM3_CH2	USART1_RX_3 UART7_RX_1				SPI1_MOSI	ETH_MII_RX_DV ETH_RMII_CRS_DV ETH_RGMII_TXDO			OPA2_CH1P	
PA8		TIM1_CH1 TIM1_CH1_1		USART1_CK USART1_CK_1 USART1_RX_2		MCO							
PA9		TIM1_CH2 TIM1_CH2_1		USART1_TX USART1_RTS_2	OTG_FS_VBUS						DVP_D0		
PA10		TIM1_CH3 TIM1_CH3_1		USART1_RX USART1_CK_2	OTG_FS_ID						DVP_D1		
PA11		TIM1_CH4 TIM1_CH4_1		USART1_CTS USART1_CTS_1	OTG_FS_DM USBDM								CAN1_RX
PA12		TIM1_ETR TIM1_ETR_1 TIM10_CH1N		USART1_RTS USART1_RTS_1	OTG_FS_DP USBDP								CAN1_TX
PA13		TIM8_CHIN_1 TIM10 CH2N				SWDIO							
PA14		TIM8_CH2N_1 TIM10 CH3N		UART8_TX_1		SWCLK							
PA15		TIM8_CH3N_1	TIM2_CH1_ETR_1 TIM2_CH1_ETR_3	UART8_RX_1				SPI1_NSS SPI3_NSS I2S3 WS					
PB0	ADC_ IN8	TIM1_CH2N_1 TIM8_CH2N TIM9_CH1N_1	TIM3_CH3 TIM3_CH3_2	UART4_TX_1				_	ETH_ MII_RXD2 ETH_ RGMII_TXD3			OPA1_CH1P	
PB1	ADC_I N9	TIM1_CH3N_1 TIM8_CH3N TIM9_CH2N_1	TIM3_CH4 TIM3_CH4_2	UART4_RX_1					ETH_MII_RXD3 ETH_RGMII_125IN			OPA4_CHON	
PB2		TIM9_CH3N_1				B00T1						OPA3_CHON	
PB3		TIM10_CH1_1	TIM2_CH2_1 TIM2_CH2_3					SPI1_SCK SPI3_SCK I2S3_CK					
PB4		TIM10_CH2_1	T1M3_CH1_2	UART5_TX_1				SPI1_MISO SPI3_MISO					
PB5		TIM10_CH3_1	T1M3_CH2_2	UART5_RX_1			I 2C1_SMBA	SPI1_MOSI SPI3_MOSI I2S3_SD	ETH_MII_PPS_OUT ETH_RMII_PPS_OUT				CAN2_RX

复用 引脚	ADC DAC	TIM1 8/9/10	TIM2 3/4/5	UART USART	USB	SYS	120	SPI 12S	ЕТН	FSMC SD10	DVP	OPA	CAN
PB6		TIM8_CHI_1	TIM4_CH1	USART1_TX_1	USBHD_DM USBHS_DM		1201_SCL				DVP_D5		CAN2_TX
PB7		T1M8_CH2_1	TIM4_CH2	USART1_RX_1	USBHD_DP USBHS_DP		12C1_SDA			FSMC_NADV			
PB8		TIM8_CH3_1 TIM10_CH1	TIM4_CH3	UART6_TX_1			12C1_SCL		ETH_ MII_TXD3	SD10_D4	DVP_D6		CAN1_RX
PB9		TIM8_BKIN_1 TIM10_CH2	TIM4_CH4	UART6_RX_1			12C1_SDA			SD10_D5	DVP_D7		CAN1_TX
PB10		TIM10_BKIN_1	TIM2_CH3_2 TIM2_CH3_3	USART3_TX			1202_SCL		ETH_ MII_RX_ER			OPA2_CHON	
PB11		TIM10_ETR_1	TIM2_CH4_2 TIM2_CH4_3	USART3_RX			12C2_SDA		ETH_MII_TX_EN ETH_RMII_TX_EN			OPA1_CHON	
PB12		TIM1_BKIN		USART3_CK			12C2_SMBA	SP12_NSS 12S2_WS	ETH_MII_TXDO ETH_RMII_TXDO			OPA4_CHOP	CAN2_RX
PB13		TIM1_CH1N		USART3_CTS USART3_CTS_1				SP12_SCK 12S2_CK	ETH_MII_TXD1 ETH_RMII_TXD1			OPA3_CHOP	CAN2_TX
PB14		TIM1_CH2N		USART3_RTS USART3_RTS_1				SPI2_MISO				OPA2_CHOP	
PB15		TIM1_CH3N		USART1_TX_2				SP12_MOS1 12S2_SD				OPA1_CHOP	
PC0	ADC_IN10	TIM9_CH1N		UART6_TX				_	ETH_RGMII_RXC				
PC1	ADC_IN11	TIM9_CH2N		UART6_RX					ETH_MII_MDC ETH_RMII_MDC ETH_RGMII_RXCTL				
PC2	ADC_IN12	TIM9_CH3N		UART7_TX					ETH_MII_TXD2 ETH_RGMII_RXD0			OPA3_CH1N	
PC3	ADC_IN13	TIM10_CH3		UART7_RX					ETH_MII_TX_CLK ETH_RGMII_RXD1			OPA4_CH1N	
PC4	ADC_IN14	TIM9_CH4		USART1_CTS_3 UART8_TX					ETH_MII_RXDO ETH_RMII_RXDO ETH_RGMII_TXD1			OPA4_CH1P	
PC5	ADC_IN15	TIM9_BKIN		USART1_RTS_3 UART8_RX					ETH_MII_RXD1 ETH_RMII_RXD1 ETH_RGMII_TXD2			OPA3_CH1P	
PC6		TIM8_CH1	T1M3_CH1_3					12S2_MCK	ETH_RXP	SD10_D6			
PC7		TIM8_CH2	T1M3_CH2_3					1283_MCK	ETH_RXN	SD10_D7			
PC8		TIM8_CH3	T1M3_CH3_3						ETH_TXP	SD10_D0	DVP_D2		
PC9		TIM8_CH4	T1M3_CH4_3						ETH_TXN	SDIO_D1	DVP_D3		
PC10		TIM10_ETR		USART3_TX_1 UART4_TX				SP13_SCK 12S3_CK		SD10_D2	DVP_D8		
PC11		TIM10_CH4		USART3_RX_1 UART4_RX				SP13_M1S0		SD10_D3	DVP_D4		
PC12		TIM10_BKIN		USART3_CK_1 UART5_TX				SP13_MOS1 12S3_SD		SD10_CK	DVP_D9		
PC13		TIM8_CH4_1				TAMPER-RTC							
PC14		T1M9_CH4_1				0SC32_IN							
PC15		TIM10_CH4_1				0SC32_0UT							
PD0		TIM10_ETR_2				OSC_IN				FSMC_D2			CAN1_RX
PD1		TIM10_CH1_2	TIMO ETO			OSC_OUT				FSMC_D3			CAN1_TX
PD2			TIM3_ETR TIM3_ETR_2 TIM3_ETR_3	UART5_RX						SD10_CMD	DVP_D11		
PD3		TIM10_CH2_2		USART2_CTS_1						FSMC_CLK			
PD4				USART2_RTS_1						FSMC_NOE			
PD5		TIM10_CH3_2		USART2_TX_1						FSMC_NWE			

复用 引脚	ADC DAC	TIM1 8/9/10	TIM2 3/4/5	UART USART	USB	SYS	120	SPI 12S	ЕТН	FSMC SD10	DVP	OPA	CAN
PD6				USART2_RX_1						FSMC_NWAIT	DVP_D10		
PD7		TIM10_CH4_2		USART2_CK_1						FSMC_NE1 FSMC_NCE2			
PD8		TIM9_CH1N_2		USART3_TX_3					ETH_MII_RX_DV ETH_RMII_CRS_DV	FSMC_D13			
PD9		TIM9_CH1_ETR_2		USART3_RX_3					ETH_MII_RXDO ETH_RMII_RXDO	FSMC_D14			
PD10		TIM9_CH2N_2		USART3_CK_3					ETH_MII_RXD1 ETH_RMII_RXD1	FSMC_D15			
PD11		T1M9_CH2_2		USART3_CTS_3					ETH_MII_RXD2	FSMC_A16			
PD12		TIM9_CH3N_2	TIM4_CH1_1	USART3_RTS_3					ETH_MII_RXD3	FSMC_A17			
PD13		T1M9_CH3_2	T I M4_CH2_1							FSMC_A18			
PD14		TIM9_BKIN_2	TIM4_CH3_1							FSMC_D0			
PD15		T1M9_CH4_2	T I M4_CH4_1							FSMC_D1			
PE0			TIM4_ETR TIM4_ETR_1	UART4_TX_2						FSMC_NBL0			
PE1				UART4_RX_2						FSMC_NBL1			
PE2		TIM10_BKIN_2								FSMC_A23			
PE3		TIM10_CH1N_2								FSMC_A19			
PE4		TIM10_CH2N_2								FSMC_A20			
PE5		T I M10_CH3N_2								FSMC_A21			
PE6										FSMC_A22			
PE7		TIM1_ETR_3								FSMC_D4		OPA3_OUT1	
PE8		TIM1_CH1N_3		UART5_TX_2						FSMC_D5		0PA4_0UT1	
PE9		TIM1_CH1_3		UART5_RX_2						FSMC_D6			
PE10		TIM1_CH2N_3		UART6_TX_2						FSMC_D7			
PE11		TIM1_CH2_3		UART6_RX_2						FSMC_D8			
PE12		TIM1_CH3N_3		UART7_TX_2						FSMC_D9			
PE13		TIM1_CH3_3		UART7_RX_2						FSMC_D10			
PE14		TIM1_CH4_3		UART8_TX_2						FSMC_D11		0PA2_0UT1	
PE15		TIM1_BKIN_3		UART8_RX_2						FSMC_D12		OPA1_OUT1	1

表 3-5 CH32V203xx 引脚复用功能

复用 引脚	ADC	TIM1	TIM 2/3/4/5	UART USART	USB	sys	120	SPI	ETH	OPA	CAN
PAO	ADC_INO		TIM2_CH1 TIM2_CH1_ETR_2 TIM2_ETR TIM5_CH1	USART2_CTS		WKUP					
PA1	ADC_IN1		TIM2_CH2 TIM2_CH2_2 TIM5_CH2	USART2_RTS							

		1	TIM2 CU2					ı		
PA2	ADC_IN2		TIM2_CH3 TIM2_CH3_1 TIM5_CH3	USART2_TX					OPA2_OUTO	
PA3	ADC_IN3		TIM2_CH4 TIM2_CH4_1 TIM5_CH4	USART2_RX					OPA1_OUTO	
PA4	ADC_IN4		_	USART2_CK				SPI1_NSS	OPA2_OUT1	
PA5	ADC_IN5			USART1_CTS_2 USART1_CK_3 USART4_TX_1				SPI1_SCK	OPA2_CH1N	
PA6	ADC_IN6	TIM1_BKIN_1	TIM3_CH1	USART1_TX_3 USART4_CK_1				SPI1_MISO	OPA1_CH1N	
PA7	ADC_IN7	TIM1_CH1N_1	TIM3_CH2	USART1_RX_3 USART4_CTS_1				SPI1_MOSI	OPA2_CH1P	
PA8		TIM1_CH1 TIM1_CH1_1		USART1_CK USART1_CK_1 USART1_RX_2		MCO				
PA9		TIM1_CH2 TIM1_CH2_1		USART1_TX USART1_RTS_2						
PA10		TIM1_CH3 TIM1_CH3_1		USART1_RX USART1_CK_2						
PA11		TIM1_CH4 TIM1_CH4_1		USART1_CTS USART1_CTS_1	USBDM					CAN1_RX
PA12		TIM1_ETR TIM1_ETR_1		USART1_RTS USART1_RTS_1	USBDP					CAN1_TX
PA13						SWDIO				
PA14						SWCLK				
PA15			TIM2_CH1_ETR_1 TIM2_CH1_ETR_3	USART4_RTS_1				SPI1_NSS		
PB0	ADC_IN8	TIM1_CH2N_1	TIM3_CH3 TIM3_CH3_2	UART4_TX_1 USART4_TX					OPA1_CH1P	
PB1	ADC_IN9	TIM1_CH3N_1	TIM3_CH4 TIM3_CH4_2	UART4_RX_1 USART4_RX					OPA1_OUT1	
PB2				USART4_CK		B00T1				
PB3			TIM2_CH2_1 TIM2_CH2_3	USART4_CTS				SPI1_SCK		
PB4			TIM3_CH1_2	USART4_RTS				SPI1_MISO		
PB5			T1M3_CH2_2	USART4_RX_1			I2C1_SMBA	SPI1_MOSI		
PB6			TIM4_CH1	USART1_TX_1	USBHD_DM		I2C1_SCL			
PB7			TIM4_CH2	USART1_RX_1	USBHD_DP		I2C1_SDA			
PB8			TIM4_CH3				I2C1_SCL			CAN1_RX
PB9			TIM4_CH4				I2C1_SDA			CAN1_TX
PB10			T1M2_CH3_2 T1M2_CH3_3	USART3_TX			1202_SCL		OPA2_CHON	
PB11			TIM2_CH4_2 TIM2_CH4_3	USART3_RX			12C2_SDA		OPA1_CHON	
PB12			TIM1_BKIN	USART3_CK			12C2_SMBA	SP12_NSS		
PB13			TIM1_CHIN	USART3_CTS USART3_CTS_1				SP12_SCK		
PB14			TIM1_CH2N	USART3_RTS USART3_RTS_1				SP12_MISO	OPA2_CHOP	
PB15			TIM1_CH3N	USART1_TX_2				SPI2_MOSI	OPA1_CHOP	
PC0	ADC_IN10									
PC1	ADC_IN11									
PC2	ADC_IN12									

PC3	ADC_IN13						
PC4	ADC_IN14		USART1_CTS_3				
PC5	ADC_IN15		USART1_RTS_3				
PC6		TIM3_CH1_3				ETH_RXP	
PC7		T1M3_CH2_3				ETH_RXN	
PC8		T1M3_CH3_3				ETH_TXP	
PC9		T1M3_CH4_3				ETH_TXN	
PC10			UART4_TX USART3_TX_1				
PC11			UART4_RX USART3_RX_1				
PC12			USART3_CK_1				
PC13				TAMPER-RTC			
PC14				0SC32_IN			
PC15				0SC32_0UT			
PD0				OSC_IN			
PD1				OSC_OUT			
PD2		TIM3_ETR TIM3_ETR_2 TIM3_ETR_3					

表 3-6 CH32V208xx 引脚复用功能

— —											
复用 引脚	ADC	TIM1	TIM2/3/4/5	UART/USART	USB	SYS	120	SPI	ETH	OPA	CAN
PA0	ADC_INO		TIM2_CH1 TIM2_ETR TIM2_CHI_ETR_2 TIM5_CH1	USART2_CTS		WKUP					
PA1	ADC_IN1		TIM2_CH2 TIM2_CH2_2 TIM5_CH2	USART2_RTS							
PA2	ADC_IN2		TIM2_CH3 TIM2_CH3_1 TIM5_CH3	USART2_TX						OPA2_OUTO	
PA3	ADC_IN3		TIM2_CH4 TIM2_CH4_1 TIM5_CH4	USART2_RX						OPA1_OUTO	
PA4	ADC_IN4			USART2_CK				SPI1_NSS		0PA2_0UT1	
PA5	ADC_IN5			USART1_CTS_2 USART1_CK_3				SPI1_SCK		OPA2_CH1N	
PA6	ADC_IN6	TIM1_BKIN_1	TIM3_CH1	USART1_TX_3				SPI1_MISO		OPA1_CH1N	
PA7	ADC_IN7	TIM1_CH1N_1	TIM3_CH2	USART1_RX_3				SPI1_MOSI		OPA2_CH1P	
PA8		TIM1_CH1 TIM1_CH1_1		USART1_CK USART1_CK_1 USART1_RX_2		MCO					
PA9		TIM1_CH2 TIM1_CH2_1		USART1_TX USART1_RTS_2							
PA10		TIM1_CH3 TIM1_CH3_1		USART1_RX USART1_CK_2							
PA11		TIM1_CH4 TIM1_CH4_1		USART1_CTS USART1_CTS_1	USBDM						CAN1_RX

复用 引脚	ADC	T I M1	TIM2/3/4/5	UART/USART	USB	SYS	120	SPI	ETH	OPA	CAN
PA12		TIM1_ETR TIM1_ETR_1		USART1_RTS USART1_RTS_1	USBDP						CAN1_TX
PA13						SWD10					
PA14						SWCLK					
PA15			TIM2_CH1_ETR_1 TIM2_CH1_ETR_3					SPI1_NSS			
PB0	ADC_IN8	TIM1_CH2N_1	TIM3_CH3 TIM3_CH3_2	UART4_TX_1						OPA1_CH1P	
PB1	ADC_IN9	TIM1_CH3N_1	TIM3_CH4 TIM3_CH4_2	UART4_RX_1						OPA1_OUT1	
PB2						B00T1					
PB3			TIM2_CH2_1 TIM2_CH2_3					SPI1_SCK			
PB4			TIM3_CH1_2					SPI1_MISO			
PB5			T1M3_CH2_2				I 2C1_SMBA	SPI1_MOSI			
PB6			TIM4_CH1	USART1_TX_1	USBHD_DM		12C1_SCL				
PB7			TIM4_CH2	USART1_RX_1	USBHD_DP		I 2C1_SDA				
PB8			TIM4_CH3				12C1_SCL				CAN1_RX
PB9			TIM4_CH4				I 2C1_SDA				CAN1_TX
PB10			TIM2_CH3_2 TIM2_CH3_3	USART3_TX			12C2_SCL			OPA2_CHON	
PB11			TIM2_CH4_2 TIM2_CH4_3	USART3_RX			12C2_SDA			OPA1_CHON	
PB12		TIM1_BKIN		USART3_CK			12C2_SMBA	SP12_NSS			
PB13		TIM1_CH1N		USART3_CTS USART3_CTS_1				SP12_SCK			
PB14		TIM1_CH2N		USART3_RTS USART3_RTS_1				SPI2_MISO		OPA2_CHOP	
PB15		TIM1_CH3N		USART1_TX_2				SPI2_MOSI		OPA1_CHOP	
PC0	ADC_IN10										
PC1	ADC_IN11										
PC2	ADC_IN12										
PC3	ADC_IN13										
PC4	ADC_IN14			USART1_CTS_3							
PC5	ADC_IN15			USART1_RTS_3							
PC6			TIM3_CH1_3						ETH_RXP		
PC7			T1M3_CH2_3						ETH_RXN		
PC8			T1M3_CH3_3						ETH_TXP		
PC9			T1M3_CH4_3						ETH_TXN		
PC10				UART4_TX USART3_TX_1							
PC11				UART4_RX USART3_RX_1							
PC12				USART3_CK_1							
PC13					_	TAMPER_RTC					

复用 引脚	ADC	TIM1	T1M2/3/4/5	UART/USART	USB	SYS	120	SPI	ETH	OPA	CAN
PC14						0SC32_IN					
PC15						0SC33_0UT					
PD2			TIM3_ETR TIM3_ETR_2 TIM3_ETR_3								

第4章 电气特性

4.1 测试条件

除非特殊说明和标注,所有电压都以Vss为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值是基于常温 25° C和 $V_{00} = 3.3V$ 环境下用于设计指导。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案:

图 4-1 常规供电典型电路

4.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 4-1 绝对最大值参数表

符号	描述	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
Ts	存储时的环境温度	-40	125	°C
V_{DD} – V_{SS}	外部主供电电压(包含 Vooa和 Voo)		4. 0	٧
V_{10} – V_{SS}	10 域端供电电压	-0.3	4. 0	٧
V _{IN}	FT(耐受 5V)引脚上的输入电压	V _{ss} -0. 3	5. 5	٧
VIN	其他引脚上的输入电压	V _{ss} -0. 3	V _{DD} +0. 3	
$ \triangle V_{DD_x} $	不同主供电引脚之间的电压差		50	mV
$ \triangle V_{10_x} $	不同 10 端供电引脚之间的电压差		50	mV
$ \triangle V_{ss_x} $	不同接地引脚之间的电压差		50	mV
V	ESD 静电放电电压(人体模型,非接触式)	4K		٧
V _{ESD (HBM)}	USB 引脚(PA11、PA12)	3K		٧
I _{VDD}	经过 V _{DD} /V _{DDA} /V _{ID} 电源线的总电流(供应电流)		150	
I _{Vss}	经过 Vss 地线的总电流(流出电流)		150	
	任意 1/0 和控制引脚上的灌电流		25	
I 10	任意 1/0 和控制引脚上的输出电流		-25	mA
1	NRST 引脚注入电流		+/-5	
I INJ (PIN)	HSE 的 OSC_IN 引脚和 LSE 的 OSC_IN 引脚注入电流		+/-5	

ĺ		其他引脚的注入电流	+/-5	
	Σ I INJ (PIN)	所有 I0 和控制引脚的总注入电流	+/-25	

4.3 电气参数

4.3.1 工作条件

表 4-2 通用工作条件

符号	参数	条件	最小值	最大值	单位
F _{HCLK}	内部 AHB 时钟频率			144	MHz
F _{PCLK1}	内部 APB1 时钟频率			144	MHz
F _{PCLK2}	内部 APB2 时钟频率			144	MHz
$V_{ exttt{DD}}$	标准工作电压		2. 4	3. 6	v
V DD	你准工作电压 	使用 USB 或 ETH	3. 0	3. 6	٧
V 10	大部分 10 引脚输出电压	V₀不能高于 V∞	2. 4	3. 6	٧
$V_{ exttt{DDA}}$	模拟部分工作电压(未使用 ADC)	V _{DDA} 必须与 V _{IO} 相同,V _{REF+}	2. 4	3. 6	v
V DDA	模拟部分工作电压(使用 ADC)	不能高于 V _{DDA} ,V _{REF} 等于 V _{SS}	2. 4	3. 0	V
$V_{\text{BAT}}^{(1)}$	备份单元工作电压	不能大于 Vո	1.8	3. 6	٧
T _A	环境温度		-40	85	°C
TJ	结温度范围		-40	85	°C

注: 1. 电池到 VBAT 连线要尽可能的短。

表 4-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
1	V∞上升速率		0	8	us/V
t _{VDD}	V∞下降速率		30	8	us/V

4.3.2 内嵌复位和电源控制模块特性

表 4-4 复位及电压监测(PDR 选择高阈值档位)

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[2:0] = 000(上升沿)		2. 39		٧
		PLS[2:0] = 000(下降沿)		2. 31		٧
			PLS[2:0] = 001(上升沿)		2. 56	
		PLS[2:0] = 001(下降沿)		2. 48		٧
		PLS[2:0] = 010(上升沿)		2. 65		٧
		PLS[2:0] = 010(下降沿)		2. 57		٧
	可绝积中区校测器的中	PLS[2:0] = 011(上升沿)		2. 78		٧
$\mathbf{V}_{\text{PVD}}^{(1)}$	可编程电压检测器的电 平选择	PLS[2:0] = 011(下降沿)		2. 69		٧
	一九	PLS[2:0] = 100(上升沿)		2. 89		٧
		PLS[2:0] = 100(下降沿)		2. 81		٧
		PLS[2:0] = 101(上升沿)		3. 05		٧
		PLS[2:0] = 101(下降沿)		2. 96		٧
		PLS[2:0] = 110(上升沿)		3. 17		٧
		PLS[2:0] = 110(下降沿)		3. 08		٧
		PLS[2:0] = 111(上升沿)		3. 31		٧

		PLS[2:0] = 111(下降沿)		3. 21		٧
$V_{ t PVDhyst}$	PVD 迟滞			0. 08		٧
.,	L由/指由复位评估	上升沿	1. 9	2. 2	2. 4	٧
V POR/PDR	V _{POR/PDR} 上电/掉电复位阈值 -	下降沿	1. 9	2. 2	2. 4	٧
$V_{\mathtt{PDRhyst}}$	PDR 迟滞			20		mV
_	上电复位		24	28	30	0
t _{RSTTEMPO}	其他复位		8	10	30	mS

注: 1. 常温测试值。

4.3.3 内置的参考电压

表 4-5 内置参考电压

符号	参数	条件	最小值		最大值	单位
V _{REFINT}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 17	1. 2	1. 23	V
$T_{S_vrefint}$	当读出内部参考电压 时,ADC 的采样时间				17. 1	us
	PJ,ADU BJ 木 件PJID					

4.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0 引脚的负载、产品的软件配置、工作频率、I/0 脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图 4-2 电流消耗测量

微控制器处于下列条件:

常温 V_{DD} = 3. 3V 情况下,测试时: 所有 IO 端口配置上拉输入,HSE 或 HSI 只开 1 个,HSE=8M(32M 应用于 V208,V203RBT6),HSI=8M(已校准), F_{PLCKI} = F_{HCLK} /2, F_{PLCKZ} = F_{HCLK} ,当 F_{HCLK} >8MHz 时,PLL 打开。使能或关闭所有外设时钟的功耗。

表 4-6-1 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行(应用 V30x 芯片)

		0 00001310; 200020	E1 4:: 3:: 711 3 AP-1 31	, , <u>~ , , , , , , , , , , , , , , , , ,</u>				
符号	参数	夕			型值	单位		
17 5	多奴	宋 什		使能所有外设	关闭所有外设 ^②	半世		
			F _{HCLK} = 144MHz	31. 2	19. 3			
	I咖 ^⑴ 运行模式下的 供应电流		$F_{HCLK} = 72MHz$	16. 5	10. 1			
				F _{HCLK} = 4	$F_{HCLK} = 48MHz$	12. 0	7. 2	
l _{DD} (1)			外部时钟	$F_{HCLK} = 36MHz$	10. 3	6. 1	mA	
			$F_{HCLK} = 24MHz$	7. 7	4. 4			
			$F_{HCLK} = 16MHz$	6. 3	3. 5			
			F _{HCLK} = 8MHz	4. 4	1.8			

运行于高速内部 RC 振荡器(HSI) 使用 AHB 预分频 以减低频率	$F_{HCLK} = 36MHz$ $F_{HCLK} = 24MHz$	3. 5 2. 8 31. 3 16. 5 11. 9 9. 8 7. 3 6. 0 4. 1 3. 3 2. 6	1. 3 0. 8 19. 7 10. 2 7. 2 5. 9 4. 4 3. 3 1. 8 1. 3 0. 8	
---	---------------------------------------	---	--	--

注: 1. 以上为实测参数

2. 测试时,关闭所有外设时钟时,串口 1, GPIOA 时钟未关闭。

表 4-6-2 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行(应用 V203 芯片)

		中加 归 代, 数据义均			型值	* 1*			
符号	参数	条件		使能所有外设	关闭所有外设②	单位			
			$F_{HCLK} = 144MHz$	12. 08	8. 24				
			$F_{HCLK} = 72MHz$	6. 43	4. 43				
			$F_{HCLK} = 48MHz$	4. 51	3. 18				
			$F_{HCLK} = 36MHz$	4. 12	2. 98				
		外部时钟	$F_{HCLK} = 24MHz$	2. 72	1. 95				
			$F_{HCLK} = 16MHz$	2. 18	1. 68				
	₍₁₎ 运行模式下的					$F_{HCLK} = 8MHz$	1. 21	0. 99	
			$F_{HCLK} = 4MHz$	0. 92	0. 80				
l _{DD} (1)		运行模式下的	$F_{HCLK} = 500kHz$	0. 65	0. 64	Л			
I DD	供应电流		$F_{HCLK} = 144MHz$	11. 72	7. 44	mA			
			$F_{HCLK} = 72MHz$	6. 02	3. 86				
			$F_{HCLK} = 48MHz$	4. 13	2. 69				
		运行于高速内部	$F_{HCLK} = 36MHz$	3. 31	2. 25				
		RC 振荡器(HSI), 使用 AHB 预分频	$F_{HCLK} = 24MHz$	2. 23	1. 53				
		以减低频率	$F_{HCLK} = 16MHz$	1. 68	1. 18				
		<i>以侧</i> 以以少	$F_{HCLK} = 8MHz$	0. 86	0. 63				
			$F_{HCLK} = 4MHz$	0. 56	0. 45				
			$F_{HCLK} = 500kHz$	0. 31	0. 29				

注: 1. 以上为实测参数

2. 测试时,关闭所有外设时钟时,串口1, GPIOA 时钟未关闭。

表 4-6-3 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行(应用 V208, V203RBT6 芯片)

İ	符号	参数	条件		典型	型值	单位
	17.75	多 数	余片		使能所有外设	关闭所有外设②	平江
ĺ	\= \= \ + + + + - + + + + + + + + + + + + + + + + + + +		$F_{HCLK} = 144MHz$	21. 37	16. 77		
	I _{DD} (1)	运行模式下的 供应电流	外部时钟	F _{HCLK} = 72MHz	10. 91	8. 73	mA
				F _{HCLK} = 48MHz	7. 58	6. 16	

	$F_{HCLK} = 36MHz$	6. 49	5. 29	
	$F_{HCLK} = 24MHz$	4. 59	3. 61	
	F _{HCLK} = 16MHz	3. 13	2. 59	
	$F_{HCLK} = 8MHz$	2. 0	1. 71	
	$F_{HCLK} = 4MHz$	1. 42	1. 28	
	F _{HCLK} = 500KHz	1. 0	0. 95	
	F _{HCLK} = 144MHz	20. 75	16. 27	
	F _{HCLK} = 72MHz	10. 74	8. 53	
	F _{HCLK} = 48MHz	7. 42	5. 98	
运行于高速内部	F _{HCLK} = 36MHz	5. 96	5. 05	
RC 振荡器(HSI),	F _{HCLK} = 24MHz	4. 62	3. 41	
使用 AHB 预分频 ·	F _{HCLK} = 16MHz	3. 03	2. 49	
以减低频率	F _{HCLK} = 8MHz	1. 66	1. 42	
	F _{HCLK} = 4MHz	1. 11	1. 0	
	F _{HCLK} = 500kHz	0. 63	0. 62	

注: 1. 以上为实测参数

2. 测试时, 关闭所有外设时钟时, 串口 1, GPIOA 时钟未关闭。

表 4-6-4 蓝牙 BLE 功耗(应用 V208x 芯片)

符号	i i	参数	条件	最小值	典型值	最大值	单位
	接收		15.2				
(1)	────────────────────────────────────	-18dBm	 常温 V∞ = 3.3V		6.28		mA
I DD (BLE)		0dBm	売/皿 Vm − 3.3V		12.8		IIIA
				35.1			

注: 1. 以上为实测参数

表 4-7-1 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行(应用 V30x 芯片)

<i>b</i> b =	⇔ ₩L	A7 //L		典型	型值	* <i>\</i>	
符号	参数	条件		使能所有外设	关闭所有外设②	单位	
		F _{HCLK} = 144MHz	15.1	4.1			
			$F_{HCLK} = 72MHz$	8.9	2.4		
			$F_{HCLK} = 48MHz$	6.9	1.9		
			$F_{HCLK} = 36MHz$	6.5	2.1		
	睡眠模式下 的供应电流	外部时钟	外部时钟	$F_{HCLK} = 24MHz$	5.1	1.4	
			$F_{HCLK} = 16MHz$	4.6	1.39		
l _{DD} ⁽¹⁾		时外设供	$F_{HCLK} = 8MHz$	3.5	0.94	Л	
I DD	(此时外设供 电和时钟保		$F_{HCLK} = 4MHz$	3.1	0.87	mA	
	持)		F _{HCLK} = 500kHz	2.8	0.82		
	147		F _{HCLK} = 144MHz	15.0	4.1		
		运行于高速内部 RC 振荡器 (HSI),	F _{HCLK} = 72MHz	8.7	2.4		
		使用 AHB 预分频	$F_{HCLK} = 48MHz$	6.7	1.85		
			$F_{HCLK} = 36MHz$	5.9	1.74		
		│ 以减低频率 │ ├──	$F_{HCLK} = 24MHz$	4.8	1.4		

	$F_{HCLK} = 16MHz$	4.2	1.3	
	$F_{HCLK} = 8MHz$	3.2	0.9	
	$F_{HCLK} = 4MHz$	2.8	0.84	
	$F_{HCLK} = 500kHz$	2.5	0.79	

注: 1. 以上为实测参数

2. 测试时, 串口 1, GPIOA 时钟, 电源模块时钟未关闭。

表 4-7-2 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行(应用 V203 芯片)

		尼加 // 代, 数加及与			진 值		
符号	参数	条件		使能所有外设	关闭所有外设②	单位	
	$F_{HCLK} = 144MHz$		F _{HCLK} = 144MHz	7.37	3.05		
			$F_{HCLK} = 72MHz$	4.0	1.88		
			$F_{HCLK} = 48MHz$	2.9	1.7		
			$F_{HCLK} = 36MHz$	2.9	1.48		
		外部时钟	$F_{HCLK} = 24MHz$	1.93	1.2		
		+	$F_{HCLK} = 16MHz$	1.64	1.0		
	睡眠模式下 的供应电流 (此时外设供 电和时钟保			$F_{HCLK} = 8MHz$	0.94	0.72	
				$F_{HCLK} = 4MHz$	0.78	0.66	
I _{DD} ⁽¹⁾				$F_{HCLK} = 500kHz$	0.63	0.62	Л
I DD			F _{HCLK} = 144MHz	7.1	2.72	mA	
	持)		$F_{HCLK} = 72MHz$	3.65	1.56		
	147	上午一方法也如	$F_{HCLK} = 48MHz$	2.56	1.15		
		运行于高速内部 RC振荡器(HSI),	$F_{HCLK} = 36MHz$	2.17	1.06		
		使用 AHB 预分频	$F_{HCLK} = 24MHz$	1.46	0.76		
		以减低频率	$F_{HCLK} = 16MHz$	1.2	0.68		
		以小 外 以少火 学 	F _{HCLK} = 8MHz	0.6	0.4		
			$F_{HCLK} = 4MHz$	0.44	0.34		
			$F_{HCLK} = 500kHz$	0.3	0.28		

注: 1. 以上为实测参数

2. 测试时, 串口 1, GPIOA 时钟, 电源模块时钟未关闭。

表 4-7-3 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行(应用 V208, V203RBT6 芯片)

<i>የተ</i> 🗆	参数	夕 //-		典型	型值	₩ /÷				
符号	多奴	条件		使能所有外设	关闭所有外设②	单位				
			$F_{HCLK} = 144MHz$	8.17	3.69					
			$F_{HCLK} = 72MHz$	4.75	2.16					
	睡眠模式下 的供应电流	睡眠模式下	睡眠模式下	睡眠模式下	睡眠模式下		$F_{HCLK} = 48MHz$	3.35	1.69	
			$F_{HCLK} = 36MHz$	3.29	1.89					
_{DD} (1)	(此时外设供	外部时钟	F _{HCLK} = 24MHz	2.18	1.26	mA				
	电和时钟保 持)		F _{HCLK} = 16MHz	1.63	1.11					
			$F_{HCLK} = 8MHz$	1.23	0.98					
			F _{HCLK} = 4MHz	1.06	0.94					
				0.97	0.91					

	F _{HCLK} = 144	MHz 7.65	3.44	
	$F_{HCLK} = 72I$	MHz 4.61	2.02	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		MHz 3.22	1.55	
	I Facility = 361	MHz 2.73	1.44	
	振荡器 (HSI), F _{HCLK} = 24	MHz 1.9	1.1	
	式低频率 F _{HCLK} = 16I	MHz 1.48	0.95	
	F _{HCLK} = 8MI	Hz 0.93	0.69	
	$F_{HCLK} = 4MI$	Hz 0.75	0.63	
	F _{HCLK} = 500	kHz 0.58	0.56	

注: 1. 以上为实测参数

2. 测试时,串口 1, GPIOA 时钟,电源模块时钟未关闭。

表 4-8-1 停止和待机模式下典型的电流消耗(应用 V30x 芯片)

符号	参数	条件	典型值	单位	
		调压器处于运行模式,低速和高速内部 RC 振荡器及外部振荡器都处于关闭状 态(没有独立看门狗)	117		
	停止模式下的供应电流	调压器处于低功耗模式,低速和高速内部 RC 振荡器及外部振荡器都处于关闭状态(没有独立看门狗, PVD 关闭), RAM 进入低功耗模式	35. 6		
l _{DD}	待机模式下的供应电流	低速内部 RC 振荡器和独立看门狗处于 开启状态,所有 RAM 不带电		1.9	
		低速内部 RC 振荡器处于开启状态,独立看门狗关闭状态,所有 RAM 不带电	1.9	uA	
		LSI/LSE/RTC/IWDG 关闭, 32K_RAM 带电并处于低功耗状态	2. 84		
		LSI/LSE/RTC/IWDG 关闭, 2K_RAM 带电并处于低功耗状态	1. 37		
		LSI/LSE/RTC/IWDG 关闭, 所有 RAM 不带电	1. 18		
I _{DD_VBAT}	备份区域的供应电流 (移除 V _{DD} 和 V _{DDA} ,只使 用 V _{BAT} 供电)	低速外部振荡器和 RTC 处于开启状态	1. 9		

注: 以上为实测参数

表 4-8-2 停止和待机模式下典型的电流消耗(应用 V203 芯片)

符号	参数	条件	典型值	单位
l _{op}		调压器处于运行模式,低速和高速内部 RC 振荡器及外部振荡器都处于关闭状 态(没有独立看门狗)	54	uA
UU T	停止模式下的供应电流	调压器处于低功耗模式,低速和高速内部 RC 振荡器及外部振荡器都处于关闭状态(没有独立看门狗, PVD 关闭),	9. 4	uA

		RAM 进入低功耗模式		
		低速内部 RC 振荡器和独立看门狗处于	1.3	
		开启状态,所有 RAM 不带电	1. 5	
		低速内部 RC 振荡器处于开启状态,独	1.3	
	 待机模式下的供应电流	立看门狗关闭状态,所有 RAM 不带电	1. 3	
	1寸机作人下的洪型电池	LSI/LSE/RTC/IWDG 关闭,	1. 16	
		2K_RAM 带电并处于低功耗状态	1. 10	
		LSI/LSE/RTC/IWDG 关闭,	0.5	
		所有 RAM 不带电	0. 5	
	备份区域的供应电流			
I DD_VBAT	(移除 V₀ 和 Vы, 只使	低速外部振荡器和 RTC 处于开启状态	1.3	
	用 V _{BAT} 供电)			

注: 以上为实测参数

表 4-8-3 停止和待机模式下典型的电流消耗(应用 V208, V203RBT6 芯片)

符号	参数	条件	典型值	单位
		调压器处于运行模式,低速和高速内部 RC 振荡器及外部振荡器都处于关闭状 态(没有独立看门狗)	253. 4	
	停止模式下的供应电流	调压器处于低功耗模式,低速和高速内部 RC 振荡器及外部振荡器都处于关闭状态(没有独立看门狗, PVD 关闭), RAM 进入低功耗模式	23. 8	
l _{DD}		低速内部 RC 振荡器和独立看门狗处于 开启状态,所有 RAM 不带电	1.3	
	待机模式下的供应电流	低速内部 RC 振荡器处于开启状态,独立看门狗关闭状态,所有 RAM 不带电	1.3	uA
		LSI/LSE/RTC/IWDG 关闭, 32K_RAM 带电并处于低功耗状态	2. 18	
		LSI/LSE/RTC/IWDG 关闭, 2K_RAM 带电并处于低功耗状态	0. 86	
		LSI/LSE/RTC/IWDG 关闭, 所有 RAM 不带电	0.7	
I _{DD_VBAT}	备份区域的供应电流 (移除 V _{DD} 和 V _{DDA} ,只使 用 V _{BAT} 供电)	低速外部振荡器和 RTC 处于开启状态	1. 23	

注: 以上为实测参数

4.3.5 外部时钟源特性

表 4-9 来自外部高速时钟

	符号	参数	条件	最小值	典型值	最大值	单位
Ī		 外部时钟频率		3	8	25	MU-
	►HSE_ext	外部的伊妙平	适用 V208, V203RBT6		32		MHz
ſ	$V_{HSEH}^{(1)}$	OSC_IN 输入引脚高电平电压		0. 8V ₁₀		V ₁₀	V

$V_{HSEL}^{(1)}$	OSC_IN 输入引脚低电平电压	0		0. 2V ₁₀	٧
$C_{in(HSE)}$	OSC_IN 输入电容		5		рF
DuCy _(HSE)	占空比		50		%
١L	OSC_IN 输入漏电流			±1	uA

注: 1. 不满足此条件可能会引起电平识别错误。

图 4-3 外部提供高频时钟源电路

表 4-10 来自外部低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
F _{LSE_ext}	用户外部时钟频率			32. 768	1000	kHz
V_{LSEH}	0SC32_IN 输入引脚高电平电压		0. 8V _{DD}		V_{DD}	V
V_{LSEL}	0SC32_IN 输入引脚低电平电压		0		$0.\ 2V_{\text{DD}}$	V
$C_{in(LSE)}$	0SC32_IN 输入电容			5		pF
DuCy _(LSE)	占空比			50		%
ΙL	0SC32_IN 输入漏电流				±1	uA

图 4-4 外部提供低频时钟源电路

表 4-11 使用一个晶体/陶瓷谐振器产生的高速外部时钟

符号	参数	条件	最小值	典型值	最大值	单位
Е	 谐振器频率		3	8	25	MHz
F _{osc_IN}	· 自派命妙 学	适用 V208, V203RBT6		32 ⁽²⁾		WITZ
$R_{\scriptscriptstyle F}$	反馈电阻			250		kΩ
С	建议的负载电容与对应晶体	$R_s=60 \Omega^{(1)}$		30		F
U	串行阻抗 Rs	K _S -00 \(\frac{1}{2} \)		30		pF
12	HSE 驱动电流	V _{DD} = 3.3V, 20p 负载		0. 53		mA
g _m	振荡器的跨导	启动		17. 5		mA/V
t _{SU (HSE)}	启动时间	V远稳定, 8M 晶体		2. 5		ms

注 1: 25M 晶体 ESR 建议不超过 60 欧,低于 25M 可适当放宽。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 CL1=CL2。

CH32V208xx 及 CH32V203RB 芯片外接 32M 晶体, 芯片内置了负载电容, 外部电路可省。

^{2:} 无需外部负载电容。

图 4-5 外接 8M 晶体典型电路

表 4-12 使用一个晶体/陶瓷谐振器产生的低速外部时钟(flse=32.768kHz)

符号	参数	条件	最小值	典型值	最大值	单位
R_{F}	反馈电阻			5		MΩ
С	建议的负载电容与对应晶体串 行阻抗 R _s	R _s <70k Ω			15	pF
i ₂	LSE 驱动电流	VDD = 3.3V		0. 35		uA
$\mathbf{g}_{\scriptscriptstylem}$	振荡器的跨导	启动		25. 3		uA/V
t _{SU(LSE)}	启动时间	VDD 是稳定的		800		mS

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 CLi=CL2,可选 12pF 左右。

图 4-6 外接 32.768K 晶体典型电路

注: 负载电容 C_L 由下式计算: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, 其中 C_{stray} 是引脚的电容和 PCB 板或 PCB 相关的电容,它的典型值是介于 2pF 至 7pF 之间。

4.3.6 内部时钟源特性

表 4-13 内部高速(HSI)RC振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{HS1}	频率(校准后)			8		MHz
DuCy _{HS1}	占空比		45	50	55	%
ACC _{HS1}	HSI 振荡器的精度(校准后)	$TA = 0^{\circ}C \sim 70^{\circ}C$	-1.0		1. 6	%
ACCHSI	ПЗ 加沙河省市以作月支(作文/庄/口)	$TA = -40^{\circ}C \sim 85^{\circ}C$	-2. 2		2. 2	%
t _{SU(HSI)}	HSI 振荡器启动稳定时间			10		us
DD (HSI)	HSI 振荡器功耗		120	180	270	uA

表 4-14 内部低速(LSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{LS1}	rest.		25	39	60	1.11-
	频率 	适用 V208, V203RBT6	25	32	45	kHz
DuCy _{LS1}	占空比		45	50	55	%
ACC _{LS1}	LSI 振荡器的精度 (校准后)	应用 V208 芯片,恒温± 1℃内,建议 10s 校准一次		±500		ppm
t _{SU(LSI)}	LSI 振荡器启动稳定时间			100		us

I _{DD (LSI)}	LSI 振荡器功耗		0. 6	uA

4.3.7 PLL 特性

表 4-15 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{PLL_IN}	PLL 输入时钟		3	8	25	MHz
		适用 V208, V203RBT6	4	8	25	
	PLL 输入时钟占空比		40		60	%
_	DLL 存版绘出时钟		18		144 ⁽¹⁾	MHz
F _{PLL_OUT}	PLL 倍频输出时钟	适用 V208, V203RBT6	40		240 ⁽¹⁾	
t _{LOCK}	PLL 锁定时间				200	us

注1: 须选择合适倍频,满足PLL输出频率范围。

表 4-16 PLL2 和 PLL3 特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{PLL_IN}	PLL 输入时钟		3		25	MHz
	PLL 输入时钟占空比		40		60	%
F _{PLL_OUT}	PLL 倍频输出时钟		30		75 ⁽¹⁾	MHz
F _{vco}	VCO 输出时钟		60		150	MHz
t _{LOCK1}	PLL 锁定时间				200	us

注1: 须选择合适倍频,满足PLL输出频率范围。

4.3.8 从低功耗模式唤醒的时间

表 4-17-1 低功耗模式唤醒的时间⁽¹⁾(应用 V30x 芯片)

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	2. 4	us
	从停止模式唤醒(调压器处于运行模式)	HSI RC 时钟唤醒	23. 1	us
t _{wustop}	从停止模式唤醒(调压器为低功耗模式)	调压器从低功耗模式唤醒时间 + HSI RC 时钟唤醒	76. 7	us
twustdby	从待机模式唤醒	LDO 稳定时间 + HSI RC 时钟唤醒 + 代码加载时间 ⁽²⁾ (举例 256K)	8. 9	ms

注: 1. 以上为实测参数。

2. 代码加载时间以当前芯片配置 0 等待运行区域容量和加载配置时钟大小计算可得。

表 4-17-2 低功耗模式唤醒的时间⁽¹⁾(应用 V208, V203RBT6 芯片)

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	2. 6	us
	从停止模式唤醒(调压器处于运行模式)	HSI RC 时钟唤醒	23. 1	us
$t_{ extsf{wustop}}$	从停止模式唤醒(调压器为低功耗模式)	调压器从低功耗模式唤醒时间 + HSI RC 时钟唤醒	299	us
twustdby	从待机模式唤醒	LDO 稳定时间 + HSI RC 时钟唤醒 + 代码加载时间 ^② (举例 128K)	5. 0	ms

注: 1. 以上为实测参数。

2. 代码加载时间以当前芯片配置 0 等待运行区域容量和加载配置时钟大小计算可得。

4.3.9 存储器特性

表 4-18 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{prog}	操作频率	$T_A = -40^{\circ}C \sim 85^{\circ}C$			72	MHz
t _{prog_page}	页(256 字节)编程时间	$T_A = -40^{\circ}C \sim 85^{\circ}C$		2		ms
t _{erase_page}	页(256 字节)擦除时间	$T_A = -40^{\circ}C \sim 85^{\circ}C$		16		ms
t _{erase_sec}	扇区(4K 字节)擦除时间	$T_A = -40^{\circ}C \sim 85^{\circ}C$		16		ms
V_{prog}	编程电压		2. 4		3. 6	٧

注: 1. flash 的操作频率包括读、编程、擦除, 时钟来自于 HCLK。

表 4-19 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N _{END}	擦写次数	$T_A = 25^{\circ}C$	10K	80K ⁽¹⁾		次
t _{RET}	数据保存期限		20			年

注: 实测操作擦写次数, 非担保。

4.3.10 I/0 端口特性

表 4-20 通用 1/0 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V	标准 I/0 脚,输入高电平电压		0. 41* (V _{DD} - 1. 8) +1. 3		V _{DD} +0. 3	٧
V _{IH}	FT 10 引脚,输入高电平电压		0. 42* (V _{DD} - 1. 8) +1		5. 5	٧
V	标准 I/0 脚,输入低电平电压		-0. 3		0. 28* (V _{DD} - 1. 8) +0. 6	٧
V _{IL}	FT IO 引脚,输入低电平电压		-0. 3		0. 32* (V _{DD} - 1. 8) +0. 55	٧
V _{hys}	标准 1/0 脚施密特触发器电压迟滞		150			mV
V hys	FT 10 引脚施密特触发器电压迟滞		90			IIIV
,	 輸入漏电流	标准 I0 端口			1	
l _{lkg}	荆八峒电流	FT 10 端口			3	uA
R _{PU}	弱上拉等效电阻		30	40	50	kΩ
R_{PD}	弱下拉等效电阻		30	40	50	kΩ
C 10	1/0 引脚电容			5		pF

输出驱动电流特性

GP10 (通用输入/输出端口) 可以吸收或输出多达 \pm 8mA 电流,并且吸收或输出 \pm 20mA 电流 (不严格达到 V_{oc}/V_{od})。在用户应用中,所有 10 引脚驱动总电流不能超过 4.2 节给出的绝对最大额定值:

表 4-21 输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{oL}	输出低电平,8个引脚吸收电流	TTL端口, I₁₀= +8mA		0. 4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -0. 4		V

V_{OL}	输出低电平,8个引脚吸收电流	CMOS端口, I₁₀= +8mA		0. 4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	2. 3		V
V _{oL}	输出低电平,8个引脚吸收电流	I ₁₀ = +20mA		1. 3	V
V _{oH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -1.3		V
V _{oL}	输出低电平,8个引脚吸收电流	I ₁₀ = +6mA		0. 4	V
V _{OH}	输出高电平,8个引脚输出电流	2. 4V< V _{DD} <2. 7V	V _{DD} -1.3		V

注:以上条件中如果多个 10 引脚同时驱动,电流总和不能超过表 4.2 节给出的绝对最大额定值。另外 8个 10 引脚同时驱动时,电源/地线点上的电流很大,会导致压降使内部 10 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 4-22 输入输出交流特性

MODEx[1:0] 配置	符号	参数	条件	最小值	最大值	单位
10	$F_{\text{max}(10)\text{out}}$	最大频率	CL=50pF, V _{DD} =2. 7-3. 6V		2	MHz
(2MHz)	$t_{f(10)\text{out}}$	输出高至低电平的下降时间	CL=50pF, V _{DD} =2. 7-3. 6V		125	ns
(ZMHZ)	$t_{r(10) \text{out}}$	输出低至高电平的上升时间	GL-SUPF, VDD-2. 7-3. 6V		125	ns
01	F _{max(10) out}	最大频率	CL=50pF, V _{DD} =2. 7-3. 6V		10	MHz
01 (10MHz)	t _{f(10)out}	输出高至低电平的下降时间	01 -50-5 V -2 7-2 6V		25	ns
	t _{r(10)out}	输出低至高电平的上升时间	CL=50pF, V _{DD} =2. 7-3. 6V		25	ns
	F _{max(10) out}	x(II)out 最大频率	CL=30pF, V _{DD} =2. 7-3. 6V		50	MHz
			CL=50pF, V _{DD} =2. 7-3. 6V		30	MHz
11	_	松山京石城市市地方吸引河	CL=30pF, V _{DD} =2. 7-3. 6V		20	ns
(50MHz)	t _{f(I0)out}	输出高至低电平的下降时间 	CL=50pF, V _{DD} =2. 7-3. 6V		5	ns
	_		CL=30pF, V _{DD} =2. 7-3. 6V		8	ns
	t _{r(10)out}	输出低至高电平的上升时间 	CL=50pF, V _{DD} =2. 7-3. 6V		12	ns
	t _{EXTIPW}	EXTI 控制器检测到外部信号 的脉冲宽度		10		ns

4. 3. 11 NRST 引脚特性

表 4-23 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL (NRST)}	NRST 输入低电平电压		-0. 3		0. 28* (V _{DD} -1. 8) +0. 6	٧
V _{IH (NRST)}	NRST 输入高电平电压		0.41*(V _{DD} -1.8)+1.3		V _{DD} +0. 3	٧
$V_{hys(NRST)}$	NRST 施密特触发器电压 迟滞		150			mV
R _{PU} ⁽¹⁾	弱上拉等效电阻		30	40	50	kΩ
$V_{F(NRST)}$	NRST 输入可被滤波脉宽				100	ns
V _{NF (NRST)}	NRST 输入无法滤波脉宽		300			ns

注: 1. 上拉电阻是一个真正的电阻串联一个可开关的 PMOS 实现。这个 PMOS/NMOS 开关的电阻很小(约占 10%)。

电路参考设计及要求:

图 4-7 外部复位引脚典型电路

4.3.12 TIM 定时器特性

表 4-24 TIMx 特性

符号	参数	条件	最小值	最大值	单位
_	t _{res(TIM)} 定时器基准时钟		1		t _{TIM×CLK}
t _{res(TIM)}		$f_{TIMxCLK} = 72MHz$	13. 9		ns
F _{EXT}	CH1 至 CH4 的定时器外部时钟频率		0	$f_{\text{TIMxCLK}}/2$	MHz
FEXT	661 主 664 的延时备外部时钟频率	f _{TIMxCLK} = 72MHz	0	36	MHz
R _{esTIM}	定时器分辨率			16	位
+	当选择了内部时钟时, 16 位计数		1	65536	t _{TIM×CLK}
t _{counter}	器时钟周期	$f_{TIM\times CLK} = 72MHz$	0. 0139	910	us
t _{MAX_COUNT}	最大可能的计数			65535	t _{TIM×CLK}
		$f_{TIM\times CLK} = 72MHz$		59. 6	S

4.3.13 I2C 接口特性

图 4-8 1²C 总线时序图

表 4-25 I2C 接口特性

符号	参数	标准	120	快速	单位	
1寸写	参 数	最小值	最大值	最小值	最大值	半江
$t_{w(SCKL)}$	SCL 时钟低电平时间	4. 7		1. 2		us
t _{w(SCKH)}	SCL 时钟高电平时间	4. 0		0.6		us
t _{SU(SDA)}	SDA 数据建立时间	250		100		ns
t _{h(SDA)}	SDA 数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA 和 SCL 下降时间		300			ns
t _{h(STA)}	开始条件保持时间	4. 0		0.6		us
t _{SU(STA)}	重复的开始条件建立时间	4. 7		0. 6		us

t _{SU (STO)}	停止条件建立时间	4. 0		0.6		us
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	рF

4.3.14 SPI 接口特性

图 4-9 SPI 主模式时序图

图 4-10 SPI 从模式时序图(CPHA=0)

图 4-11 SPI 从模式时序图 (CPHA=1)

表 4-26 SPI 接口特性

符号	参数	条件	最小值	最大值	单位
ъ /т	SPI 时钟频率	主模式		36	MHz
f _{sck} /t _{sck}	OPT 的 妍妙 华	从模式		36	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C = 30pF		20	ns
t _{su(NSS)}	NSS 建立时间	从模式	2t _{PCLK}		ns
t _{h (NSS)}	NSS 保持时间	从模式	2t _{PCLK}		ns
tw(sckH)/tw(sckL) SCK 高电平和低电平时间	主模式,f _{pcLK} = 36MHz,预分频	40	60	20	
	30% 同电干机低电干的间	系数=4	40	80	ns
t _{su(MI)}	 数据输入建立时间	主模式	5		ns
t _{su(si)}] 数据棚入建立时间	从模式	5		ns
t _{h(MI)}	数据输入保持时间	主模式	5		ns
t _{h(SI)}) 数据期入床待时间 	从模式	4		ns
t _{a(S0)}	数据输出访问时间	从模式,f _{PCLK} = 20MHz	0	1t _{PCLK}	ns
t _{dis(SO)}	数据输出禁止时间	从模式	0	10	ns
t _{V(S0)}	*************************************	从模式 (使能边沿之后)	-	25	ns
t _{V (MO)}	数据输出有效时间	主模式(使能边沿之后)		5	ns
t _{h(S0)}	数据检查招生时间	从模式 (使能边沿之后)	15		ns
t _{h (M0)}	数据输出保持时间	主模式(使能边沿之后)	0		ns

4.3.15 I2S 接口特性

图 4-12 I²S 总线主模式时序图(飞利浦协议)

图 4-13 I2S 总线从模式时序图(飞利浦协议)

表 4-27 I2S 接口特性

符号	参数	条件	最小值	最大值	单位
£ /±	I ² S 时钟频率	主模式		8	MHz
f _{cK} /t _{cK}		从模式		8	MHz
$t_{r(CK)}/t_{f(CK)}$	I ² S 时钟上升和下降时间	负载电容: C = 30pF		20	ns
t _{v(ws)}	WS 有效时间	主模式		5	ns
t _{su(Ws)}	WS 建立时间	从模式	10		ns
_	WS 保持时间	主模式	0		ns
t _{h (WS)}	WO、本子中川山	从模式	0		ns
tw(ckH)/tw(ckL)	SCK 高电平和低电平时间	主模式, f _{pcLK} = 36MHz,	40	60	%
Lw(CKH)/ Lw(CKL)	30% 同电干机低电干的间	预分频系数=4	40	80	70
t _{SU(SD_MR)}	 数据输入建立时间	主模式	8		ns
t _{SU(SD_SR)}	数循棚八建业时间	从模式	8		ns

t _{h (SD_MR)}	数据输入保持时间	主模式	5		ns
$t_{h(SD_SR)}$	双 括 期 八 体 行 时 1 日	从模式	4		ns
t _{h(SD_MT)}	***************************************	主模式(使能边沿之后)		5	ns
t _{h(SD_ST)}	- 数据输出保持时间 	从模式 (使能边沿之后)		5	ns
t _{V(SD_MT)}	*************************************	主模式(使能边沿之后)		5	ns
t _{v(SD_ST)}	- 数据输出有效时间 	从模式(使能边沿之后)		4	ns

4. 3. 16 USB 接口特性 表 4-28 USB 模块特性

符号	参数	条件	最小值	最大值	单位
$V_{ extsf{DD}}$	USB 操作电压		3. 0	3. 6	٧
V_{SE}	单端接收器阈值	$V_{DD} = 3.3V$	1. 2	1. 9	٧
V_{oL}	静态输出低电平			0. 3	٧
V _{OH}	静态输出高电平		2. 8	3. 6	٧
V_{HSSQ}	高速压制信息检测阈值		100	150	mV
V _{HSDSC}	高速断开连接检测阈值		500	625	mV
V _{HSOI}	高速空闲电平		-10	10	mV
V _{HSOH}	高速数据高电平		360	440	mV
V_{HSOL}	高速数据低电平		-10	10	mV

4.3.17 SD/MMC 接口特性

图 4-14 SD 高速模式时序图

图 4-15 SD 默认模式时序图

表 4-29 SD/MMC 接口特性

符号	参数	条件	最小值	最大值	单位	
f _{cK} /t _{cK}	数据传输模式下的时钟频率	CL≪30pF		48	MHz	
tw(ckL)	时钟低电平时间	CL≪30pF	6			
tw(ckH)	时钟高电平时间	CL≪30pF	6		no	
t _{r (CK)}	上升时间	CL≪30pF		4	ns	
t _{f(CK)}	下降时间	CL≪30pF		4		
CMD/DAT 输入	(参考 CK)					
t _{isu}	输入建立时间	CL≪30pF	7			
t _{ін}	输入保持时间	CL≪30pF	2		ns	
在 MMC 和 SD A	高速模式下,CMD/DAT 输出(参	考 CK)				
tov	输出有效时间	CL≪30pF		5		
t _{oH}	输出保持时间	CL≪30pF	20		ns	
在 SD 默认模式下,CMD/DAT 输出(参考 CK)						
t _{ovd}	输出有效默认时间	CL≪30pF		8		
t _{OHD}	输出保持默认时间	CL≤30pF	20		ns	

4.3.18 FSMC 特性

图 4-16 异步总线复用 PSRAM/NOR 读操作波形

表 4-30 异步总线复用的 PSRAM/NOR 读操作时序

符号	参数	最小值	最大值	单位
t _{W (NE)}	FSMC_NE 低电平时间	7t _{HCLK}		
t _{V (NOE_NE)}	FSMC_NE 低至 FSMC_NOE 低	0		
tw(NOE)	FSMC_NOE 低时间	7t _{HCLK}		
t _{h (NE_NOE)}	FSMC_NOE 高至 FSMC_NE 高保持时间	0		
t _{V(A_NE)}	FSMC_NE 低至 FSMC_A 有效	0	5	
t _{v (NADV_NE)}	FSMC_NE 低至 FSMC_NADV 低	0	5	
t _{W (NADV)}	FSMC_NADV 低时间	t _{HCLK}		
t _{h (AD_NADV)}	FSMC_NADV 高之后 FSMC_AD(地址)有效保持时间	2t _{HCLK}		ns
t _{h (A_NOE)}	FSMC_NOE 高之后的地址保持时间	0		
$t_{h(BL_NOE)}$	FSMC_NOE 高之后的 FSMC_BL 保持时间	0		
t _{v (BL_NE)}	FSMC_NE 低至 FSMC_BL 有效	0	5	
t _{su(data_ne)}	数据至 FSMC_NE 高的建立时间	3t _{HCLK}		
t _{SU(DATA_NOE)}	数据至 FSMC_NOE 高的建立时间	3t _{HCLK}		
t _{h(DATA_NE)}	FSMC_NE 高之后的数据保持时间	0		
t _{h (DATA_NOE)}	FSMC_NOE 高之后的数据保持时间	0		

图 4-17 异步总线复用 PARAM/NOR 写操作波形

表 4-31 异步总线复用 PARAM/NOR 写操作时序

符号	念线复用 PARAM/ NOR 与採作助序 参数	最小值	最大值	单位
t _{W (NE)}	FSMC_NE 低电平时间	5t _{HCLK}		
t _{v(NEW_NE)}	FSMC_NE 低至 FSMC_NWE 低	3t _{HCLK}		
tw(NWE)	FSMC_NWE 低时间	2t _{HCLK}		
t _{h (NE_NWE)}	FSMC_NWE 高至 FSMC_NE 高保持时间	t _{HCLK}		
t _{V(A_NE)}	FSMC_NE 低至 FSMC_A 有效	0	5	
t _{v (NADV_NE)}	FSMC_NE 低至 FSMC_NADV 低	0	5	
tw(NADV)	FSMC_NADV 低时间	t _{HCLK}		ns
t _{h (AD_NADV)}	FSMC_NADV 高之后 FSMC_AD(地址)有效保持时间	2t _{HCLK}		
t _{h (A_NWE)}	FSMC_NWE 高之后的地址保持时间	t _{HCLK}		
t _{v(BL_NE)}	FSMC_NE 低至 FSMC_BL 有效	0	5	
t _{h (BL_NWE)}	FSMC_NWE 高之后的 FSMC_BL 保持时间	t _{HCLK}		
t _{v(DATA_NADV)}	FSMC_NADV 高至数据保持时间	2t _{HCLK}		
t _{h (DATA_NWE)}	FSMC_NWE 高之后的数据保持时间	t _{HCLK}		

图 4-18 同步总线复用 NOR/PARAM 读波形

表 4-32 同步总线复用 NOR/PSRAM 读时序

	応线复用 NUR/ PORAM 陕町庁			
符号	参数	最小值	最大值	单位
t _{w(CLK)}	FSMC_CLK 周期	2t _{HCLK}		
t _{d (CLKL_NEL)}	FSMC_CLK低至FSMC_NE低	0	5	
t _{d (CLKH_NEH)}	FSMC_CLK高至FSMC_NE高	0.5t _{HCLK}	0.5t _{HCLK}	
t _{d (CLKL_NADVL)}	FSMC_CLK低至FSMC_NADV低	0	5	
t _{d (CLKL_NADVH)}	FSMC_CLK低至FSMC_NADV高	0	5	
t _{d (CLKL_AV)}	FSMC_CLK低至FSMC_Ax有效(x = 16…23)	0	5	
t _{d (CLKH_AIV)}	FSMC_CLK高至FSMC_Ax无效(x = 16…23)	0	5	
t _{d (CLKL_NOEL)}	FSMC_CLK低至FSMC_NOE低	2t _{HCLK}		ns
t _{d (CLKH_NOEH)}	FSMC_CLK高至FSMC_NOE高	t _{HCLK}		
t _{d (CLKL_ADV)}	FSMC_CLK低至FSMC_AD[15:0]有效	0	5	
t _{d (CLKL_ADIV)}	FSMC_CLK低至FSMC_AD[15:0]无效	0	5	
t _{SU (ADV_CLKH)}	FSMC_CLK高之前FSMC_AD[15:0]有效数据	8		
t _{h (CLKH_ADV)}	FSMC_CLK高之后FSMC_AD[15:0]有效数据	8		
t _{su (NWA I TV_CLKH)}	FSMC_CLK高之前FSMC_NWAIT有效	6		
t _{h (CLKH_NWAITV)}	FSMC_CLK高之后FSMC_NWAIT有效	2		

表 4-33 同步总线复用 PSRAM 写时序

符号	参数	最小值	最大值	单位
tw(clk)	FSMC_CLK 周期	2t _{HCLK}		
t _{d (CLKL_NEL)}	FSMC_CLK低至FSMC_NE低	0	5	
t _{d (CLKH_NEH)}	FSMC_CLK高至FSMC_NE高	0.5t _{HCLK}	0.5t _{HCLK}	
t _{d (CLKL_NADVL)}	FSMC_CLK低至FSMC_NADV低	0	5	
t _{d (CLKL_NADVH)}	FSMC_CLK低至FSMC_NADV高	0	5	
t _{d (CLKL_AV)}	FSMC_CLK低至FSMC_Ax有效(x = 16…23)	0	5	
t _{d (CLKH_AIV)}	FSMC_CLK高至FSMC_Ax无效(x = 16…23)	0	5	
t _{d (CLKL_NWEL)}	FSMC_CLK低至FSMC_NWE低	0		ns
t _{d (CLKH_NWEH)}	FSMC_CLK高至FSMC_NWE高	0		
t _{d (CLKL_ADV)}	FSMC_CLK低至FSMC_AD[15:0]有效	0	5	
t _{d(CLKL_ADIV)}	FSMC_CLK低至FSMC_AD[15:0] 无效	0	5	
t _{d (CLKL_DATA)}	FSMC_CLK低之后FSMC_AD[15:0]有效	2		
tsu(NWAITV_CLKH)	FSMC_CLK高之前FSMC_NWAIT有效	6		
th(CLKH_NWAITV)	FSMC_CLK高之后FSMC_NWAIT有效	2		
t _{d (CLKL_NBLH)}	FSMC_CLK低至FSMC_NBL高	2		

NAND 控制器波形和时序

测试条件: NAND 操作区域,选择 16 位数据宽度,使能 ECC 计算电路,512 字节页面大小,其他时序配置为设置寄存器 FSMC_PCR2=0x0002005E, FSMC_PMEM2=0x01020301, FSMC_PATT2=0x01020301。

图 4-20 NAND 控制器读操作波形

图 4-21 NAND 控制器写操作波形

图 4-22 NAND 控制器在通用存储空间的读操作波形

图 4-23 NAND 控制器在通用存储空间的写操作波形

表 4-34 NAND 闪存读写周期的时序特性

符号	参数	最小值	最大值	单位
t _{d (D-NWE)}	FSMC_NWE 高之前至 FSMC_D[15:0]数据有效	4t _{HCLK}		
t _{w (NOE)}	FSMC_NOE低时间	4t _{HCLK}		
t _{su(D-NOE)}	FSMC_NOE高之前至FSMC_D[15:0]数据有效	20		
t _{h (NOE-D)}	FSMC_NOE高之后至FSMC_D[15:0]数据有效	15		
t _{w (NWE)}	FSMC_NWE低时间	4t _{HCLK}		
t _{v (NWE-D)}	FSMC_NWE低至FSMC_D[15:0]数据有效	0		ns
t _{h (NWE-D)}	FSMC_NWE高至FSMC_D[15:0]数据无效	2t _{HCLK}		
t _{d (ALE-NWE)}	FSMC_NWE低之前至FSMC_ALE有效	2t _{HCLK}		
t _{h (NWE-ALE)}	FSMC_NWE高至FSMC_ALE无效	2t _{HCLK}		
t _{d (ALE-NOE)}	FSMC_NOE低之前至FSMC_ALE有效	2t _{HCLK}		
t _{h (NOE-ALE)}	FSMC_NOE高至FSMC_ALE无效	4t _{HCLK}		

4. 3. 19 DVP 接口特性

图 4-24 DVP 时序波形

表 4-35 DVP 接口特性

符号	参数及描述	最小值	最大值	单位
$f_{\text{PixCLK}}/t_{\text{PixCLK}}$	像素时钟输入频率		144	MHz

DuCy (PixCLK)	像素时钟的占空比	15	%
t _{su(DATA)}	数据建立时间	2	
t _{h (DATA)}	数据保持时间	1	
$t_{\text{su}(\text{HSYNC})}/t_{\text{su}(\text{VSYNC})}$	HSYNC/VSYNC信号输入建立时间	2	ns
t _{h (HSYNC)} /t _{h (VSYNC)}	HSYNC/VSYNC信号输入保持时间	1	

4.3.20 千兆以太网接口特性

图 4-25 ETH-SMI 时序波形

表 4-36 以太网 MAC 的 SMI 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
f _{MDC} /t _{MDC}	MDC 时钟频率			2. 5	MHz
t _{d (MDIO)}	MD10写数据的有效时间	0		300	
t _{su(MD10)}	读数据建立时间	10			ns
t _{h (MDIO)}	读数据保持时间	10			

图 4-26 ETH-RMII 信号时序波形

表 4-37 以太网 MAC 信号 RMII 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
t _{su(RXD)}	接收数据的建立时间	4			ns

t _{ih(RXD)}	接收数据的保持时间	2		
$t_{su(CRS_DV)}$	载波侦测信号建立时间	4		
t _{ih(CRS_DV)}	载波侦测信号保持时间	2		
t _{d (TXEN)}	传输使能有效延迟时间		16	
$t_{d(TXD)}$	数据传输有效延迟时间		16	

图 4-27 ETH-MII 信号时序波形

表 4-38 以太网 MAC 信号 MII 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
t _{su(RXD)}	接收数据的建立时间	10			
t _{ih(RXD)}	接收数据的保持时间	10			
t _{su(DV)}	数据有效信号建立时间	10			
t _{ih(DV)}	数据有效信号保持时间	10			
t _{su(ER)}	错误信号建立时间	10			ns
t _{ih(ER)}	错误信号保持时间	10			
t _{d (TXEN)}	传输使能有效延迟时间			16	
t _{d (TXD)}	数据传输有效延迟时间			16	

图 4-28 ETH-RGMII 信号时序波形

表 4-39 以太网 MAC 信号 RGMII 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
f_{TXC}/t_{TXC}	TXC/RXC 时钟频率	7. 2	8	8.8	
t _R	TXC/RXC上升时间			2. 0	
t _F	TXC/RXC下降时间			2. 0	
t _{su(TDATA)}	发送数据建立时间	1. 2	2. 0		ns
t _{h (TDATA)}	发送数据保持时间	1. 2	2. 0		
t _{su (RDATA)}	输入数据建立时间	1. 2	2. 0		
t _{h (RDATA)}	输入数据保持时间	1. 2	2. 0		

4. 3. 21 12 位 ADC 特性

表 4-40 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ extsf{DDA}}$	供电电压		2. 4		3. 6	٧
V _{REF+}	正参考电压	V _{REF+} 不能高于 V _{DDA}	2. 4		V_{DDA}	٧
l _{VREF}	参考电流			160	220	uA
I _{DDA}	供电电流			480	530	uA
f _{ADC}	ADC 时钟频率				14	MHz
fs	采样速率		0. 05		1	MHz
$f_{ exttt{TRIG}}$	外部触发频率				16	$1/f_{ADC}$
VAIN	转换电压范围		0		V_{REF^+}	٧
RAIN	外部输入阻抗				50	kΩ
R _{ADC}	采样开关电阻			0.6	1	kΩ
\mathbf{C}_{ADC}	内部采样和保持电容			8		рF
t _{CAL}	校准时间	应用于 V203 芯片		100		1/f _{ADC}
	(文/在印][6]	其他		40		I / I ADC
t_{lat}	注入触发转换时延				2	1/f _{ADC}

CH32V20x_30x 数据手册 82 http://wch.cn

t _{latr}	常规触发转换时延		2	1/f _{ADC}
ts	采样时间	1. 5	239. 5	1/f _{ADC}
t _{STAB}	上电时间		1	us
t _{conv}	总的转换时间(包括采样时间)	14	252	1/f _{ADC}

注: 以上均为设计参数保证。

公式:最大 RAIN

$$R_{AIN} < \frac{Ts}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

上述公式用于决定最大的外部阻抗,使得误差可以小于 1/4 LSB。其中 N=12(表示 12 位分辨率)。 表 4-41 $f_{ADC}=14MHz$ 时的最大 R_{AIN}

T _s (周期)	ts (us)	最大 Rain(kΩ)
1.5	0. 11	0. 4
7. 5	0. 54	5. 9
13. 5	0. 96	11. 4
28. 5	2. 04	25. 2
41. 5	2. 96	37. 2
55. 5	3. 96	50
71. 5	5. 11	无效
239. 5	17. 1	无效

表 4-42 ADC 误差

符号	参数	条件	最小值	典型值	最大值	单位
E0	偏移误差	$f_{PCLK2} = 56 \text{ MHz}, f_{ADC} =$		±2		
ED	微分非线性误差	14 MHz, R _{AIN} < 10		±0.5	±3	LSB
EL	积分非线性误差	$k \Omega$, $V_{DDA} = 3.3V$		±1	±4	

 C_p 表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_p 数值将降低转换精度,解决办法是降低 f_{ADC} 值。

图 4-29 ADC 典型连接图

图 4-30 模拟电源及退耦电路参考

4.3.22 温度传感器特性 表 4-43 温度传感器特性

符号	参数	条件	最小值	典型值	最大值	单位
R_{TS}	温度传感器测量范围		-40		85	°C
A _{TSC}	温度传感器的测量误差			±12		Ĵ
Avg_Slope	平均斜率(负温度系数)		3.8	4. 3	4. 8	mV/°C
V_{25}	在 25℃时的电压		1. 34	1. 40	1. 46	٧
T_{S_temp}	当读取温度时,ADC 采样时间	$f_{ADC} = 14MHz$			17. 1	us

4. 3. 23 DAC 特性 表 4-44 DAC 特性

表 4-44 DAC 特/ 符号	参数	条件	最小值	典型值	最大值	单位
$V_{ exttt{DDA}}$	供电电压		2. 4	3. 3	3. 6	٧
V_{REF^+}	正参考电压	VREF+不能高于 VDDA	2. 4	3. 3	3. 6	٧
R _L ⁽¹⁾	缓冲器打开时的负载电阻		5			kΩ
C _L ⁽¹⁾	缓冲器打开时负载电容				50	pF
V _{OUT_MIN} (1)	 缓冲器打开, 12 位 DAC 转换		3			mV
$V_{OUT_MAX}^{(1)}$	「垓冲命打开,12 ™ DAC 转换				V _{REF+} -0. 01	٧
V _{OUT_MIN} ⁽¹⁾	 缓冲器关闭,12 位 DAC 转换			0. 1		mV
V _{OUT_MAX} ⁽¹⁾	场/中部大例,12 位 DAO 积狭				V _{REF+} -1LSB	V
	无负载,输入值 0x800			58		
VREF+	无负载, V _{REF} =3. 6V 时, 输入值 0xF1C			194		uA
	无负载, V _{REF+} =3. 6V 时, 输入值 0x555 (最差)			331		
	缓冲器打开无负载,输入值 0x800			170		
l _{DDA}	缓冲器打开无负载, VREF+=3.6\	/,输入值 0xF1C		150		uA
I DDA	缓冲器打开无负载, V _{REF} =3. 6\ 差)	/,输入值 0x555(最		170		un
DNL	微分非线性误差			±2		LSB
INL	积分非线性误差	经过失调误差和增 益误差校正后		±4		LSB
井 3田	护 投尘				±8	mV
失调	偏移误差 	V _{REF+} =3. 6V			±10	LSB
增益误差		DAC配置为12位		±0.4		%
放大器增益(1)	开环时放大器的增益	5kΩ的负载(最大)	80	85		dB
+	设置时间(全范围: 输入代码	C _{LOAD} ≪50pF		3	4	
tsettling	从最小值转变为最大值,	R _{LOAD} ≥5k Ω		<u> </u>	4	us

	DAC_OUT 达到其终值的±1 LSB)				
更新速率	当输入代码为较小变化时(从数值i变到i+1LSB),得到正确DAC_OUT的最大频率	$C_{LOAD} \leqslant 50 pF$ $R_{LOAD} \geqslant 5 k \Omega$		1	MS/s
twakeup	从关闭状态唤醒的时间 (PDV18 从 1 变到 0)	C _{LOAD} ≤ 50pF, R _{LOAD} ≥ 5kΩ,输入代 码介于最小和最大 可能数值之间	6. 5	10	us
PSRR+ ⁽¹⁾	供电抑制比(相对于V _{DDA})(静 态直流测量)	没有R _{LOAD} , C _{LOAD} ≤50pF	-100	-75	dB

注: 1. 来源设计或仿真非实测。

4. 3. 24 OPA 特性 表 4-45 OPA 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle DDA}$	供电电压		2. 4	3. 3	3. 6	٧
C_{MIR}	共模输入电压		0		V _{DDA} -0. 9	V
VIOFFSET	输入失调电压			1.5	6	mV
I LOAD	驱动电流				600	uA
I DDOPAMP	消耗电流	无负载,静态模式		195		uA
C _{MRR} ⁽¹⁾	共模抑制比	@1kHz		96		dB
P _{SRR} ⁽¹⁾	电源抑制比	@1kHz		86		dB
$A_{v}^{(1)}$	开环增益	C _{LOAD} =5pF		136		dB
G _{BW} ⁽¹⁾	单位增益带宽	C _{LOAD} =5pF		19		MHz
$P_{M}^{(1)}$	相位裕度	C _{LOAD} =5pF		93		
$S_R^{(1)}$	压摆率	C _{LOAD} =5pF		8		V/us
twaku P	关闭到唤醒建立时间, 0.1%	输入V _{DDA} /2, C _{LOAD} =5pF, R _{LOAD} =4kΩ			368	ns
R_{LOAD}	电阻性负载		4			kΩ
\mathbf{C}_{LOAD}	电容性负载				50	рF
$V_{\text{OHSAT}}^{(2)}$	宣始和绘 山中区	R _{LOAD} =4kΩ,输入V _{DDA}	V _{DDA} -45			\/
V OHSAT	高饱和输出电压	R _{LOAD} =20kΩ,输入V _{DDA}	V _{DDA} -10			mV
V _{OLSAT} (2)	低饱和输出电压	R _{LOAD} =4k Ω , 输入 0			0. 5	m\/
V OLSAT	以地州制山电压	R _{LOAD} =20k Ω , 输入 0			0. 5	mV
		R_{LOAD} =4k Ω , @1kHz		83		ny
EN ⁽¹⁾	等效输入电压噪声	R _{LOAD} =4k Ω , @10kHz		42		$\frac{\text{nv}}{\sqrt{Hz}}$

注: 1. 来源仿真非实测

2. 负载电流会限制饱和输出电压。

第5章 封装及订货信息

芯片封装

订货型号	封装形式	塑体宽度	引脚间距	封装说明	出货料盘
CH32V203F6P6	TSS0P20	4. 4*6. 5mm	0. 65mm	薄小型的 20 脚贴片	塑管
CH32V203F8P6	TSS0P20	4. 4*6. 5mm	0. 65mm	薄小型的 20 脚贴片	塑管
CH32V203G6U6	QFN28X4	4*4mm	0. 4mm	方形无引线 28 脚	托盘
CH32V203G8P6	QSOP28	3. 9*9. 9mm	0. 635mm	28 引脚贴片	塑管
CH32V203K6T6	LQFP32	7*7mm	0. 8mm	LQFP32(7*7)贴片	托盘
CH32V203K8T6	LQFP32	7*7mm	0. 8mm	LQFP32(7*7)贴片	托盘
CH32V203C6T6	LQFP48	7*7mm	0. 5mm	LQFP48(7*7)贴片	托盘
CH32V203C8T6	LQFP48	7*7mm	0. 5mm	LQFP48(7*7)贴片	托盘
CH32V203C8U6	QFN48X7	7*7mm	0. 5mm	方形无引线 48 脚	托盘
CH32V203RBT6	LQFP64M	10*10mm	0. 5mm	LQFP64M(10*10)贴片	托盘
CH32V303CBT6	LQFP48	7*7mm	0. 5mm	LQFP48(7*7)贴片	托盘
CH32V303RBT6	LQFP64M	10*10mm	0. 5mm	LQFP64M(10*10)贴片	托盘
CH32V303RCT6	LQFP64M	10*10mm	0. 5mm	LQFP64M(10*10)贴片	托盘
CH32V303VCT6	LQFP100	14*14mm	0. 5mm	LQFP100(14*14)贴片	托盘
CH32V305FBP6	TSS0P20	4. 4*6. 5mm	0. 65mm	薄小型的 20 脚贴片	塑管
CH32V305RBT6	LQFP64M	10*10mm	0. 5mm	LQFP64M(10*10)贴片	托盘
CH32V307RCT6	LQFP64M	10*10mm	0. 5mm	LQFP64M(10*10)贴片	托盘
CH32V307WCU6	QFN68X8	8*8mm	0. 4mm	方形无引线 68 脚	托盘
CH32V307VCT6	LQFP100	14*14mm	0. 5mm	LQFP100(14*14)贴片	托盘
CH32V208GBU6	QFN28X4	4*4mm	0. 4mm	方形无引线 28 脚	托盘
CH32V208CBU6	QFN48X5	5*5mm	0. 35mm	方形无引线 48 脚	托盘
CH32V208RBT6	LQFP64M	10*10mm	0. 5mm	LQFP64M(10*10)贴片	托盘
CH32V208WBU6	QFN68X8	8*8mm	0. 4mm	方形无引线 68 脚	托盘

说明: 1. QFP/QFN 一般默认为托盘,具体型号可与封装厂确认。

^{2.} 托盘尺寸: 托盘大小一般为统一尺寸, 322. 6*135. 9*7. 62, 不同封装类型限位孔尺寸有区别, 塑管不同封装厂有区别, 具体与厂家确认。

说明:尺寸标注的单位是 mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm或者±10%两者中的较大值。

图 5-2 QFN28X4 封装

图 5-3 QFN48X5 封装

图 5-4 QFN48X7 封装

图 5-5 QFN68X8 封装

图 5-6 LQFP32 封装

图 5-7 LQFP48 封装

图 5-8 LQFP64M 封装

图 5-10 QSOP28 封装

系列产品命名规则

举例: 3 CH32 03 R Τ 8 产品系列 F = 基于 ARM 内核 V = 基于 RISC-V 内核 产品类型 0 = V2 内核 1 = M3/V3A 内核, 主频@72M 2 = M3/V4B_C 内核, 主频@144M 3 = V4F 浮点内核, 主频@144M 产品子系列 03 = 通用型 05 = 连接型(USB 高速、SDIO、双 CAN) 07 = 互联型(USB 高速、双 CAN、以太网、DVP、SDIO、FSMC) 08 = 无线型(蓝牙 BLE5.3、CAN、USB、以太网) 引脚数目 G = 28 脚 K = 32 脚 F = 20 脚 C = 48 脚 T = 36 脚 R = 64 脚 W = 68 脚 Z = 144 脚 V = 100 脚 闪存存储容量 6 = 32K 闪存存储器 8 = 64K 闪存存储器 B = 128K 闪存存储器 C = 256K 闪存存储器 封装 T = LQFPU = QFNP = TSSOP/QSOP温度范围

6 = -40°C~85°C (工业级)

7 = -40℃~105℃ (汽车2级)

3 = -40℃~125℃ (汽车1级)

D = -40°C~150°C (汽车0级)