DS 540 Data Mining

Instructor: Prashant Shekhar, PhD

Tentative Schedule for Spring 2023

Week Number: Days	$Chapter \\ Number$	Topic	Homework	$\begin{array}{ c c c } Learning \\ Outcome \\ \end{array}$
Data Mining Basics				
1: 12^{th} Jan (Th)	1	Course Introduction		1,2,13
$2: 17^{th} \text{ Jan} / 19^{th} \text{ Jan (Tu,Th)}$	2	Types of data Data quality		1,3 1,3
$3: 24^{th} \text{ Jan} / 26^{th} \text{ Jan (Tu,Th)}$	2	Similarity and Distance Data Preprocessing	HW 1 released	1,4 1,4
		Classification Basics		,
4: $31^{st} \text{ Jan} / 2^{nd} \text{ Feb 2 (Tu, Th)}$	3	Decision Trees: I Decision Trees: II		5,6 $5,6$
5: 7 th Feb/ 9 th Feb (Tu,Th)	4	Rule Based Naive Bayes	HW 1 due	5,6 5,6
6: 14 th Feb/ 16 th Feb (Tu,Th)	3	Classifier Evaluation Validation and Overfitting	HW 2 released	5,6,7 5,6,7
Classification Algorithms				
7: 21^{st} Feb/ 23^{rd} Feb (Tu,Th)	4	K-Nearest Neighbor/ Exam review Exam 1		5,6 $2,13$
8: 28^{th} Feb/ 2^{nd} Mar (Tu,Th)	4	Support Vector Machines: I Support Vector Machines: II		5,6 5,6
9: 7 th Mar/ 9 th Mar (Tu,Th)	4	Ensemble Methods: I Ensemble Methods: II	HW 2 due HW 3 released	5,6,8 5,6,8
		Spring Break	I	
11: 21^{st} Mar/ 23^{rd} Mar (Tu,Th)	4	Imbalanced Classes: I Imbalanced Classes: II		5,6,9 5,6,9
		Association Analysis		
12: $28^{th} \text{ Mar} / 30^{th} \text{ Mar (Tu,Th)}$	5	Apriori Algorithm /Exam review Exam 2	HW 3 due HW 4 released	10
Clustering Analysis				
13: 4 th Apr/ 6 th Apr (Tu,Th)	7	KMeans Algorithm Cluster Evaluation		11 11
Anomaly Detection				
14: $11^{th} \text{ Apr} / 13^{th} \text{ Apr (Tu,Th)}$	9	Proximity-based Clustering-based		12 12
		Project		
15: 18^{th} Apr/ 20^{th} Apr (Tu,Th)		Course conclusion Project Presentation I	HW 4 due	12 2,13
16: $25^{th} \text{ Apr} / 27^{th} \text{ Apr (Tu,Th)}$		Project Presentation II Project Presentation III	Project due	2,13 2,13

Learning outcome: After successful completion of this course, you will acquire knowledge to:

- 1. Understand the basics of data mining and its relation to machine learning.
- 2. Use python as an efficient tool for data mining
- 3. Understand the types of data and evaluate its quality, distribution etc.
- 4. Implement foundational data preprocessing techniques for effective data mining.
- 5. Understand the basics of supervised learning
- 6. Implement and analyze prominent classification algorithms for data mining.
- 7. Evaluate and compare various classification algorithms
- 8. Combining multiple classification models to create better models.
- 9. Handle unbalanced classes in classification problems.
- 10. Understand and implement association analysis.
- 11. Understand and implement clustering analysis.
- 12. Understand and implement anomaly detection.
- 13. Apply the concepts learnt in class to problems of practical importance.