alldown columns = dt talldown columns str strin()
falldown.columns = df_falldown.columns.str.strip() normal.columns = df_falldown.columns.str.strip() dd result value per dataset falldown["output"] = [int(1)]*df_falldown.shape[0] normal["output"] = [int(0)]*df_normal.shape[0] tl outputs in one data frame nes = [df_falldown, df_normal] = pd.concat(frames, ignore_index=True) accel_x accel_y accel_z gyros_x gyros_y gyros_z output
0.416 0.113 0.509 -44.312 26.489 -7.385 1 -0.326 -0.052 0.252 117.310 212.158 -7.385 1 0.012 0.224 -1.321 88.196 210.083 7.446 1 0.214 0.227 -3.074 112.183 21.912 14.404 1 0.225 0.258 -1.739 -15.442 -226.929 -23.865 1 0.900 -0.196 -0.083 -18.555 9.216 13.550 0 0.947 -0.133 -0.101 -21.179 6.042 16.357 0 0.952 -0.125 -0.108 -24.414 9.888 15.198 0
0.984 -0.047 -0.148 -12.268
Accel_x accel_y accel_z gyros_x gyros_z output v 904.00000 904.00000 904.00000 904.00000 904.00000 904.00000 904.00000 v 0.250320 0.055468 -0.265848 5.590790 -2.317041 7.439473 0.467920 v 1.115182 0.769094 1.041375 105.123193 192.22299 139.276433 0.499246 v -4.00000 -4.000000 -4.000000 -47.0915000 -1299.500000 -1087.952000 0.000000 v -0.222000 -0.128250 -0.497750 -26.260250 -21.072250 -10.315000 0.000000 v -0.00000 -0.00000 -0.00000 -0.00000 -0.000000
6 0.955000 0.229250 0.074000 24.444500 19.698750 13.275500 1.000000 x 2.877000 4.000000 4.000000 1038.330000 1755.066000 1360.168000 1.000000 DOWN OUTPUT accel_x accel_y accel_z gyros_x gyros_y gyros_z output at 423.000000 423.000000 423.000000 423.000000 423.000000 423.000000 423.00 n -0.461038 0.026215 -0.380279 13.819324 -6.708232 16.739773 1.0 d 1.283616 1.100360 1.489061 148.305347 280.595576 203.017993 0.0 n -4.000000 -4.000000 -4.000000 -474.915000 -1299.500000 -1087.952000 1.0 6 -0.772000 -0.391000 -1.369000 -58.563000 -117.950500 -37.415000 1.0
6 -0.249000
n -0.525000 -0.379000 -1.046000 -138.367000 -60.120000 -53.162000 0.0 6
ort matplotlib.pyplot as plt ort numpy as np ort pandas as pd ort tensorflow as tf in IPython.display import display ort random in sklearn.model_selection import train_test_split in sklearn.preprocessing import StandardScaler int(f"TensorFlow version = {tfversion}\n") sorFlow version = 2.9.1
alyze data ntinuación se tendrán tres Dataframes: df_falldown> Rreferido cuando se dectea una caida. df_normal> Cuando hay una sitiación normal en la persona que lleva el dispositivo. df> Los dos Dataframes mezclados a correlación es una medida estadística que expresa la relación lineal que existe entre dos variables nt(100*"-") nt("Descripción Dataframe DF") play(df.descripe().round(4))
ht(100*"-") ht("Descripción Dataframe falldown") blay(df_falldown.describe().round(4)) ht(100*"-") ht("Descripción Dataframe normal") hlay(df_normal.describe().round(4)) ht(100*"-") cripción Dataframe DF
d 1.1152 0.7691 1.0414 105.1232 192.2230 139.2764 0.4992 n -4.0000 -4.0000 -4.0000 -474.9150 -1299.5000 -1087.9520 0.0000 6 -0.2220 -0.1282 -0.4978 -26.2602 -21.0722 -10.3150 0.0000 6 0.7865 0.0520 -0.1500 -0.3050 0.7625 -0.3050 0.0000 6 0.9550 0.2292 0.0740 24.4445 19.6987 13.2755 1.0000 cx 2.8770 4.0000 4.0000 1038.3300 1755.0660 1360.1680 1.0000
accel_x accel_z accel_z gyros_x gyros_z output at 423.0000
cripción Dataframe normal accel_x accel_y accel_z gyros_x gyros_z output 1 481.000 481.000 481.000 481.000 481.000 481.000 481.000 481.000 481.000 1 0.8759 0.0812 -0.1652 -1.6455 1.5447 -0.7394 0.0 1 0.2300 0.2165 0.2628 36.6132 16.1073 10.6342 0.0 1 -0.5250 -0.3790 -1.0460 -138.3670 -60.1200 -53.1620 0.0 1 0.8710 -0.0590 -0.2310 -14.7710 -4.4560 -5.6760 0.0 1 0.9430 0.0630 -0.1290 -0.9160 1.0990 -0.5490 0.0
6 0.9690 0.1590 -0.080 10.0100 8.3620 5.2490 0.0 x 1.2530 0.6540 0.2910 177.5510 62.3170 36.4380 0.0 a correlación es una medida estadística que expresa la relación lineal que existe entre dos variables nt(100*"-") nt("Correlación Dataframe DF") olay(df.corr().round(4)) nt(100*"-") nt("Correlación Dataframe falldown") olay(df_falldown.corr().round(4)) nt(100*"-") nt("Correlación Dataframe normal")
Day(df_normal.corr().round(4)) relación Dataframe DF accel_x accel_y accel_z gyros_x gyros_z output el_x 1.000 -0.0180 0.0997 -0.1098 0.0082 -0.1851 -0.5985 el_x 0.0997 -0.2172 1.000 -0.0250 -0.0033 -0.0611 -0.0357 el_x 0.0997 -0.2172 1.000 -0.0024 0.0733 0.0468 -0.1031 es_x 0.1098 -0.0250 -0.0024 1.000 -0.0369 -0.0099 0.0734 es_y 0.082 -0.0393 0.0733 -0.0369 1.000 0.2320 -0.0214
s_z -0.1851 -0.0611 0.0468 -0.0099 0.2320 1.0000 0.0627 put -0.5985 -0.0357 -0.1031 0.0734 -0.0214 0.0627 1.0000 relaction Dataframe falldown accel_x accel_y accel_z gyros_x gyros_y gyros_z output el_x 1.0000 -0.0525 0.0240 -0.0857 -0.0060 -0.1879 NaN el_z 0.02525 1.0000 -0.2419 -0.0293 -0.0416 -0.0596 NaN el_x 0.0240 -0.2419 1.0000 0.0080 0.0726 0.0552 NaN el_x 0.0287 -0.0293 0.0080 1.0000 -0.0391 -0.0126 NaN
s_y -0.066 -0.0416 0.0726 -0.0391 1.000 0.2346 NaN s_z -0.1879 -0.0596 0.0552 -0.0126 0.2346 1.0000 NaN sput NaN NaN NaN NaN NaN NaN NaN NaN NaN Na
s_x -0.0216
<pre>[<axessubplot:title={'center':'accel_z'}>,</axessubplot:title={'center':'accel_z'}></pre>
100 75 50 4 -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 4 -3 -2 -1 0 1 1 2 3 3 4 -3 -2 -1 0
50 -400 -200 0 200 400 600 800 1000 gyros_z gyros_z 300 250 400 600 800 1000 250 400 600 800 1000 1500 1500 1500 1500 1500 150
100
25
gyros_y gyros_z gyros_z dependent and independent variables
df.output df[df.columns[:-1]] plit dataset in train and test t_portion = 0.3 d = random.randint(2,100) rain, X_test, y_train, y_test = train_test_split(X, y, test_size=test_portion, random_state=seed) predict data et a fixed random seed value, for reproducibility, this will allow us to get the same random numbers each time the notebook is run
<pre>D = 1000 random.seed(SEED) random.set_seed(SEED) ne list of gestures that data is available for TES = ["normal", "falldown", PLES_PER_STATE = df.shape[0] puts = [] puts = [] sor = []</pre>
<pre>index in range(SAMPLES_PER_STATE): # normalize the input data, between 0 to 1: # - acceleration is between: -4 to +4 # - gyroscope is between: -2000 to +2000 tensor = [(df['accel_x'][index] + 4) / 8, (df['accel_y'][index] + 4) / 8, (df['accel_z'][index] + 4) / 8, (df['gyros_x'][index] + 2000) / 4000, (df['gyros_z'][index] + 2000) / 4000, (df['gyros_z'][index] + 2000) / 4000] output = df["output"][index]</pre>
inputs.append(tensor) outputs.append(output) privert the list to numpy array puts = np.array(inputs) puts = np.array(outputs) Ulit train, validate and test dataset domly split input and output pairs into sets of data: 60% for training, 20% for validation, and 20% for testing. the training set is used to train the model
the validation set is used to measure how well the model is performing during training the testing set is used to test the model after training andomize the order of the inputs, so they can be evenly distributed for training, testing, and validation inputs = len(inputs) domize = np.arange(num_inputs) random.shuffle(randomize) wap the consecutive indexes (0, 1, 2, etc) with the randomized indexes uts = inputs[randomize] outs = outputs[randomize]
Diff the recordings (group of samples) into three sets: training, testing and validation IN_SPLIT = int(0.6 * num_inputs) IT_SPLIT = int(0.2 * num_inputs + TRAIN_SPLIT) Uts_train, inputs_test, inputs_validate = np.split(inputs, [TRAIN_SPLIT, TEST_SPLIT]) Duts_train, outputs_test, outputs_validate = np.split(outputs, [TRAIN_SPLIT, TEST_SPLIT]) Int("Data set randomization and splitting complete.") In set randomization and splitting complete. In model
CH_SIZE = 1 wild the model and train it el = tf.keras.Sequential() sel.add(tf.keras.layers.Dense(16, activation='relu')) # relu is used for performance el.add(tf.keras.layers.Dropout(0.3, seed=SEED)) # Evitamos conexiones de neuronas, así no entramos en overfitting el.add(tf.keras.layers.Dense(8, activation='relu')) el.add(tf.keras.layers.Dropout(0.3, seed=SEED)) # Evitamos conexiones de neuronas, así no entramos en overfitting el.add(tf.keras.layers.Dense(1, activation='sigmoid')) # Sigmoid, because we expect one state per input
<pre>compile model el.compile(loss='binary_crossentropy',</pre>
<pre>if epoch % self.epoch_interval != 0 else self.default_verbose) super().on_epoch_begin(epoch, *args, **kwargs) cory = model.fit(inputs_train, outputs_train, epochs=EPOCHS, batch_size=BATCH_SIZE,</pre>
/542 [====================================
112
lidate binary classification model **Tocrease the size of the graphs. The default size is (6,4). **TocParams["figure.figsize"] = (20,10) **Toph the loss, the model above is configure to use "accuracy" as the loss function **S = history.history['loss'] **Loss = history.history['val_loss'] **Loss = range(1, len(loss) + 1) **Loplot(epochs, loss, 'g.', label='Training loss') **Loplot(epochs, val_loss, 'b', label='Validation loss')
title('Training and validation loss') xlabel('Epochs') ylabel('Loss') .legend() .show() Training and validation loss Training and validation loss Validation loss
3 White with the second of the
0 50 100 150 200 250 300 0, 10.0] Taph the loss again skipping a bit of the start = 100 plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss') plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss') title('Training and validation loss') xlabel('Epochs') ylabel('Loss') llegend() show()
Training and validation loss Training loss Validation loss
25 -
20 - 100 125 150 175 200 225 250 275 300 Taph of accuracy
38
100 125 150 175 200 225 250 275 300 See the model to predict the test inputs dictions = model.predict(inputs_test) rint the predictions and the expected ouputs rint("predictions =\n", np.round(predictions, decimals=3)) rint("actual =\n", outputs_test) Rot the predictions along with to the test data c.clf() rittile('Training data predicted vs actual values') riplot(inputs_test, outputs_test, 'b.', label='Actual')
plot(inputs_test, predictions, 'r.', label='Predicted') .show() [===================================
00 02 04 06 08 10 m sklearn.metrics import accuracy_score, precision_score, recall_score
acc = accuracy_score(outputs_test, predictions.round()) nt("Accuracy of the model {:.2f}%".format(my_acc*100)) prec = precision_score(outputs_test, predictions.round()) nt("Precision of the model {:.2f}%".format(my_prec*100)) precall = recall_score(outputs_test, predictions.round()) nt("Recall score of the model {:.2f}%".format(my_recall*100)) f1 = f1_score(outputs_test, predictions.round()) nt("F1 score of the model {:.2f}%".format(my_f1*100)) precall = f1_score(outputs_test, predictions.round()) nt("F1 score of the model {:.2f}%".format(my_f1*100)) precall = f1_score(outputs_test, predictions.round()) nt("F1 score of the model {:.2f}%".format(my_f1*100))
99 2 2 - 80
9 70 - 40 - 20