Group Testing:

Something old, Something new, Something borrowed

Nikhil Karamchandani IIT Bombay

CNI Seminar Series, IISc

Feb. 18, 2025

 First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.

"BY THE WAY, WHAT ARE WE IN LINE FOR?"

- First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.
- Can do individual testing, inefficient since most tests will be negative.

"BY THE WAY, WHAT ARE WE IN LINE FOR?"

- First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.
- Can do individual testing, inefficient since most tests will be negative.
- Key idea: 'pool' samples from many soldiers and test it

"BY THE WAY, WHAT ARE WE IN LINE FOR?"

- First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.
- Can do individual testing, inefficient since most tests will be negative.
- Key idea: 'pool' samples from many soldiers and test it
 - Negative test: all in the pool are uninfected
 - Positive test: at least one soldier is infected

"BY THE WAY, WHAT ARE WE IN LINE FOR?"

- First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.
- Can do individual testing, inefficient since most tests will be negative.
- Key idea: 'pool' samples from many soldiers and test it
 - Negative test: all in the pool are uninfected
 - Positive test: at least one soldier is infected
- Goal: design pooling strategies to minimize number of tests.

"BY THE WAY, WHAT ARE WE IN LINE FOR?"

Group testing: applications

Group testing: applications

Model

- n items V, unknown subset K of defectives with size at most k.
 - $ightharpoonup k \ll n$

Model

- n items V, unknown subset K of defectives with size at most k.
 - ▶ k ≪ n
- Each test t can be represented by $\mathbf{x} \in \{0,1\}^n$.
 - $\mathbf{x}_{i}^{t} = 1$ if item *i* included in test.

Model

- n items V, unknown subset K of defectives with size at most k.
 - \triangleright $k \ll n$
- Each test t can be represented by $\mathbf{x} \in \{0,1\}^n$.
 - $\mathbf{x}_{i}^{t} = 1$ if item *i* included in test.
- Outcome $y_t = \bigvee_{i \in \mathcal{K}} \mathbf{x}_i^t$.

$\hat{\Box}$		å		å	Ô	$\hat{\Box}$		
W	W	T	W	T	W	W	W	Outcome
1	1	1	1	0	0	0	0	Positive
0	0	0	0	1	1	1	1	Positive
1	1	0	0	0	0	0	0	Negative
0	0	1	0	0	0	0	0	Positive
0	0	1	0	1	1	0	0	Positive
0	0	0	0	1	0	0	0	Positive

• Test design
$$\mathbf{X} \in \{0, 1\}^{T \times n}$$
, output $\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{X}_i$.

?	?	?	?	?	?	?	?	y
1	1	1 0 0 1 1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

- Testing design $\mathbf{X} \in \{0, 1\}^{T \times n}$, output $\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{X}_i$.
- **X** is *feasible* if we can recover any $\mathcal K$ from $\mathbf y, |\mathcal K| \le k$.

?	?	?	?	?	?	?	?	y
1	1	1	1	0	0 1 0 0 1	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

- Testing design $\mathbf{X} \in \{0,1\}^{T \times n}$, output $\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{X}_i$.
- **X** is *feasible* if we can recover any \mathcal{K} from **y**, $|\mathcal{K}| \leq k$.
- Goal: Given n, k, find feasible testing designs of minimum size.

?	?	?	?	?	?	?	?	y
1	1	1 0 0 1 1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

- Testing design $\mathbf{X} \in \{0, 1\}^{T \times n}$, output $\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{X}_i$.
- **X** is *feasible* if we can recover any \mathcal{K} from **y**, $|\mathcal{K}| \leq k$.
- *Goal*: Given *n*, *k*, find feasible testing designs of minimum size.
 - Explicit constructions, efficient decoding rules

Lower bound

?	?	?	?	?	?	?	?	y
1	1 0 1 0	1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

 Feasible testing design ⇒ ∃ injective function from set of possible defective sets to the set of possible outputs

Lower bound

?	?	?	?	?	?	?	?	y
1	1	1	1	0	0 1 0 0 1	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

• Feasible testing design $\Longrightarrow \exists$ injective function from set of possible defective sets to the set of possible outputs

$$2^T \ge \sum_{i=0}^k \binom{n}{i}$$

Lower bound

?	?	?	?	?	?	?	?	y
1	1	1 0 0 1 1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

 Feasible testing design ⇒ ∃ injective function from set of possible defective sets to the set of possible outputs

$$2^T \ge \sum_{i=0}^k \binom{n}{i} \Longrightarrow T \ge \Omega\left(k \log \frac{n}{k}\right)$$

Sequential design of tests

- Sequential design of tests
- k = 1

- Sequential design of tests
- k = 1
 - Conduct binary search.

- Sequential design of tests
- k = 1
 - ► Conduct binary search. Needs at most $\lceil \log n \rceil$ tests.

- Sequential design of tests
- k = 1
 - ► Conduct binary search. Needs at most $\lceil \log n \rceil$ tests.
- k > 1
 - Repeat above process, removing one defective in each round.

- Sequential design of tests
- k = 1
 - ▶ Conduct binary search. Needs at most [log n] tests.
- k > 1
 - Repeat above process, removing one defective in each round.
 - Needs at most O(k log n) tests.

- Sequential design of tests
- k = 1
 - ► Conduct binary search. Needs at most [log *n*] tests.
- k > 1
 - Repeat above process, removing one defective in each round.
 - ▶ Needs at most $O(k \log n)$ tests.
 - ▶ More sophisticated algorithms achieve $O(k \log \frac{n}{k})$ tests.
- Order-optimal w.r.t lower bound.

Group testing: bounds

	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k}\right)$	$k \log \left(\frac{n}{k}\right)$

Testing design matrix has to be specified beforehand.

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

```
(1 0 1 0)

(0 1 0 1)

1 1 0 0

(0 0 1 1)

1 0 0 1

(0 1 1 0)

↑ ↑
```

```
(1 0 1 0)

(0 1 0 1)

1 1 0 0

(0 0 1 1)

1 0 0 1

(0 1 1 0)

↑ ↑ ↑
```



```
\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}
```



```
(1 0 1 0)

(0 1 0 1)

1 1 0 0

(0 0 1 1)

1 0 0 1

(0 1 1 0)

1 1 0 0

2-disjunct

Not 3-disjunct
```

Not 3-disjunct

- *t-disjunct matrix*: Union of any *t* columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \iff k\text{-disjunct} \end{cases}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \longleftarrow k\text{-disjunct} \end{cases}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \quad \text{Say } k = 2, \ \mathbf{X} \text{ is } k\text{-disjunct}$$

2-disjunct

- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \longleftarrow k\text{-disjunct} \end{cases}$$

- Union of any t columns does not c
- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \longleftarrow k\text{-disjunct} \end{cases}$$

- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \longleftarrow k\text{-disjunct} \end{cases}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \quad \begin{aligned} & \operatorname{Say} \ k = 2, \ \mathbf{X} \ \text{is} \ k\text{-disjunct} \\ & \mathcal{K} = \{1, 2\}, \ \operatorname{O/p} \ \text{is} \ \bigvee_{i \in [1:2]} \mathbf{X}_i \\ & \mathbf{X}_3 \not\preceq \bigvee_{i \in [1:2]} \mathbf{X}_i \\ & \Rightarrow \exists \ \text{witness test for item 3} \end{aligned}$$

- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \longleftarrow k\text{-disjunct} \end{cases}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad \begin{aligned} &\operatorname{Say} \ k = 2, \ \mathbf{X} \ \text{is} \ k\text{-disjunct} \\ &\mathcal{K} = \{1, 2\}, \ \text{O/p is} \ \bigvee_{i \in [1:2]} \mathbf{X}_i \\ &\mathbf{X}_4 \not\preceq \bigvee_{i \in [1:2]} \mathbf{X}_i \\ &\Longrightarrow \exists \ \text{witness test for item} \ 4 \end{aligned}$$

- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \longleftarrow k\text{-disjunct} \end{cases}$$

- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \longleftarrow k\text{-disjunct} \end{cases}$$

 Simple decoding algorithm: if all tests involving an item o/p positive, mark defective.

Non-adaptive testing: bounds

• Lower bound: $\Omega(k^2 \log_k n)$ tests; connection to k-cover families [D'yachkov & Rykov'82, Furedi'96]

Non-adaptive testing: bounds

- Lower bound: $\Omega(k^2 \log_k n)$ tests; connection to k-cover families [D'yachkov & Rykov'82, Furedi'96]
- Random construction: $O\left(k^2 \log \frac{n}{k}\right)$ tests; choose each entry i.i.d. $\sim Ber(1/(k+1))$.

Non-adaptive testing: bounds

- Lower bound: $\Omega(k^2 \log_k n)$ tests; connection to k-cover families [D'yachkov & Rykov'82, Furedi'96]
- Random construction: $O\left(k^2 \log \frac{n}{k}\right)$ tests; choose each entry i.i.d. $\sim Ber(1/(k+1))$.
- Explicit construction: O (k² min{log_k² n, log n}) tests; based on a concatenated code construction [Kautz & Singleton'64, Porat & Rotschild'08]

Group testing: bounds

	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k}\right)$	$k \log \left(\frac{n}{k}\right)$
Non-adaptive	$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$

Cascaded Group Testing

with Waqar Mirza and Niranjan Balachandran

Information Theory Workshop (ITW), Nov. 2024

https://arxiv.org/abs/2405.17917

Network tomography

Network tomography

• Recommendation systems [Img. source: "On Recommendation Systems in ε Sequential Context", Frederic Guillou]

Network tomography

• Recommendation systems [Img. source: "On Recommendation Systems in a Sequential Context", Frederic Guillou]

Cascading bandits / OLTR

- n items V, unknown subset K of defectives with size at most k.
 - ▶ k ≪ n

- n items V, unknown subset K of defectives with size at most k.
 - $ightharpoonup k \ll n$
- Each test t is associated with an ordered subset of items $(i_1, i_2, \dots, i_{ltl})$.

- n items V, unknown subset K of defectives with size at most k.
 - ▶ k ≪ n
- Each test t is associated with an ordered subset of items $(i_1, i_2, \dots, i_{ltl})$.
- Test *t* returns first defective item in the sequence.

			Те	st			CGT outcome
t_1		3	1	5	7		5
$\overline{t_2}$	1	2	3	4	5	6	 2

- n items V, unknown subset K of defectives with size at most k.
 - $ightharpoonup k \ll n$
- Each test t is associated with an ordered subset of items $(i_1, i_2, \dots, i_{ltl})$.
- Test *t* returns first defective item in the sequence.

Test	CGT outcome
t_1 3 1 5 7	5
t ₂ 1 2 3 4 5 6	2
t ₃ 1 3 4 6 7	T 0

- n items V, unknown subset K of defectives with size at most k.
 - $ightharpoonup k \ll n$
- Each test t is associated with an ordered subset of items $(i_1, i_2, \dots, i_{ltl})$.
- Test t returns first defective item in the sequence.
 - 0 if no defective in test.

Test	CGT outcome
t_1 3 1 5 7	5
t_2 1 2 3 4 5 6	2
t ₃ 1 3 4 6 7	0
t_4 6 3 4 7	0
t_5 7 5 4 6	5

• Testing design $\mathbf{X} = \{t_1, t_2, ..., t_T\}$, output $\mathbf{y} = (y_1, y_2, ..., y_T)$

Test	CGT outcome
t_1 3 1 5 7	5
t_2 1 2 3 4 5 6	2
t ₃ 1 3 4 6 7	0
t_4 6 3 4 7	0
t_5 7 5 4 6	5

- Testing design $\mathbf{X} = \{t_1, t_2, ..., t_T\}$, output $\mathbf{y} = (y_1, y_2, ..., y_T)$
- **X** is *feasible* if we can recover any \mathcal{K} from **y**, $|\mathcal{K}| \leq k$.

Test	CGT outcome
t_1 3 1 5 7	5
t_2 1 2 3 4 5 6	2
t_3 1 3 4 6 7	0
t_4 6 3 4 7	0
t_5 7 5 4 6	5

- Testing design $\mathbf{X} = \{t_1, t_2, ..., t_T\}$, output $\mathbf{y} = (y_1, y_2, ..., y_T)$
- **X** is *feasible* if we can recover any \mathcal{K} from **y**, $|\mathcal{K}| \leq k$.
- *Goal*: Given *n*, *k*, find feasible testing designs of minimum size.

	Test	CGT outcome
t_1 3	1 5 7	5
t_2 1 2	3 4 5 6	2
t_3 1	3 4 6 7	0
t_4 6	3 4 7	0
t_5 7	5 4 6	5

- Testing design $\mathbf{X} = \{t_1, t_2, ..., t_T\}$, output $\mathbf{y} = (y_1, y_2, ..., y_T)$
- **X** is *feasible* if we can recover any \mathcal{K} from **y**, $|\mathcal{K}| \leq k$.
- *Goal*: Given *n*, *k*, find feasible testing designs of minimum size.
 - Explicit constructions, efficient decoding rules

Test	CGT outcome
t_1 3 1 5 7	5
t_2 1 2 3 4 5 6	2
t_3 1 3 4 6 7	0
t_4 6 3 4 7	0
t_5 7 5 4 6	5

Test	CGT outcome	BGT outcome
t_1 3 1 5 7	5	Yes
t_2 1 2 3 4 5 6	2	Yes
t_3 1 3 4 6 7	0	No
t_4 6 3 4 7	0	No
t ₅ 7 5 4 6	5	Yes

Test	CGT outcome	BGT outcome
t_1 3 1 5 7	5	Yes
t_2 1 2 3 4 5 6	2	Yes
t_3 1 3 4 6 7	0	No
t_4 6 3 4 7	0	No
t_5 7 5 4 6	5	Yes

CGT test provides at least as much information as BGT test.

Test	CGT outcome	BGT outcome
t_1 3 1 5 7	5	Yes
t_2 1 2 3 4 5 6	2	Yes
t_3 1 3 4 6 7	0	No
t_4 6 3 4 7	0	No
t_5 7 5 4 6	5	Yes

- CGT test provides at least as much information as BGT test.
- ullet Feasible design under BGT \Longrightarrow Feasible design under CGT

Test	CGT outcome	BGT outcome
t_1 3 1 5 7	5	Yes
t_2 1 2 3 4 5 6	2	Yes
t_3 1 3 4 6 7	0	No
t_4 6 3 4 7	0	No
t ₅ 7 5 4 6	5	Yes

- CGT test provides at least as much information as BGT test.
- ullet Feasible design under BGT \Longrightarrow Feasible design under CGT
 - Upper bounds for BGT are also upper bounds for CGT

Test	CGT outcome	BGT outcome
t_1 3 1 5 7	5	Yes
t_2 1 2 3 4 5 6	2	Yes
t_3 1 3 4 6 7	0	No
t ₄ 6 3 4 7	0	No
t_5 7 5 4 6	5	Yes

- CGT test provides at least as much information as BGT test.
- ullet Feasible design under BGT \Longrightarrow Feasible design under CGT
 - Upper bounds for BGT are also upper bounds for CGT
- How much can the additional information help?

Cascaded GT vs Binary GT: bounds

BGT	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k}\right)$	$k \log \left(\frac{n}{k}\right)$
Non-adaptive	$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$

Cascaded GT vs Binary GT: bounds

BGT	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k}\right)$	$k \log \left(\frac{n}{k}\right)$
Non-adaptive	$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$
CGT	Lower bound	Upper bound
Adaptive		$k \log \left(\frac{n}{k}\right)$
Non-adaptive		$k^2 \min\{\log_k^2 n, \log n\}$

Adaptive testing

Sequential design of tests

Adaptive testing

- Sequential design of tests
- Initialise $V = \{1, 2, ..., n\}$, $\hat{K} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - **1** Run a test with items in $V \setminus \hat{K}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - 3 If the test returns v, then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - **4** Update $i \leftarrow i + 1$. If i > k, terminate and return $\hat{\mathcal{K}}$.

Adaptive testing

- Sequential design of tests
- Initialise $V = \{1, 2, ..., n\}$, $\hat{K} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - 1 Run a test with items in $V \setminus \hat{K}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - **3** If the test returns v, then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If i > k, terminate and return $\hat{\mathcal{K}}$.

- Sequential design of tests
- Initialise $V = \{1, 2, ..., n\}$, $\hat{K} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - **1** Run a test with items in $V \setminus \hat{K}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - **3** If the test returns v, then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If i > k, terminate and return $\hat{\mathcal{K}}$.

			7	Γest				CGT outcome
$\overline{t_1}$	1	2	3	4	5	6	7	2
t_2	1	3	4	5	6	7		5

- Sequential design of tests
- Initialise $V = \{1, 2, ..., n\}$, $\hat{\mathcal{K}} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - **1** Run a test with items in $V \setminus \hat{K}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - **3** If the test returns v, then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If i > k, terminate and return $\hat{\mathcal{K}}$.

			7	Γest				CGT outcome
$\overline{t_1}$	1	2	3	4	5	6	7	2
t_2	1	3	4	5	6	7		5

- Sequential design of tests
- Initialise $V = \{1, 2, ..., n\}$, $\hat{K} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - **1** Run a test with items in $V \setminus \hat{\mathcal{K}}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - 3 If the test returns v, then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If i > k, terminate and return $\hat{\mathcal{K}}$.
- Needs at most k tests,

$$V = \{1, 2, ..., 7\}, \mathcal{K} = \{2, 5\}$$

			7	Γest				CGT outcome
$\overline{t_1}$	1	2	3	4	5	6	7	2
t_2	1	3	4	5	6	7		5

- Sequential design of tests
- Initialise $V = \{1, 2, ..., n\}$, $\hat{K} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - **1** Run a test with items in $V \setminus \hat{K}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - **3** If the test returns v, then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - **4** Update $i \leftarrow i + 1$. If i > k, terminate and return $\hat{\mathcal{K}}$.
- Needs at most k tests, optimal in the worst-case.

Cascaded group testing: bounds

BGT	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k}\right)$	$k \log \left(\frac{n}{k}\right)$
Non-adaptive	$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$
CGT	Lower bound	Upper bound
Adaptive	k	k
Non-adaptive		$k^2 \min\{\log_k^2 n, \log n\}$

Testing design matrix has to be specified beforehand.

- Testing design matrix has to be specified beforehand.
- *k* = 1:

- Testing design matrix has to be specified beforehand.
- k = 1: one test suffices, $t_1 = (1, 2, ..., n)$

- Testing design matrix has to be specified beforehand.
- k = 1: one test suffices, $t_1 = (1, 2, ..., n)$
- *k* = 2:

- Testing design matrix has to be specified beforehand.
- k = 1: one test suffices, $t_1 = (1, 2, ..., n)$
- k = 2: two tests suffice,

$$t_1 = (1, 2, ..., n), t_2 = (n, n-1, ..., 1)$$

- Testing design matrix has to be specified beforehand.
- k = 1: one test suffices, $t_1 = (1, 2, ..., n)$
- k = 2: two tests suffice,

$$t_1 = (1, 2, ..., n), t_2 = (n, n-1, ..., 1)$$

• Optimal for k = 1, 2.

- Testing design matrix has to be specified beforehand.
- k = 1: one test suffices, $t_1 = (1, 2, ..., n)$
- k = 2: two tests suffice,

$$t_1 = (1, 2, ..., n), t_2 = (n, n-1, ..., 1)$$

• Optimal for k = 1, 2. BGT would need $\Omega(\log n)$ tests.

- Testing design matrix has to be specified beforehand.
- k = 1: one test suffices, $t_1 = (1, 2, ..., n)$
- k = 2: two tests suffice,

$$t_1 = (1, 2, ..., n), t_2 = (n, n-1, ..., 1)$$

- Optimal for k = 1, 2. BGT would need $\Omega(\log n)$ tests.
- What about larger k?

 $\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$

	Test
$\overline{t_1}$	3 1 5 7
t_2	1 2 3 4 5 6
t_3	1 3 4 6 7
t_4	6 3 4 7
t_5	7 5 4 6

	Test
$\overline{t_1}$	3 1 5 7
t_2	1 2 3 4 5 6
t_3	1 3 4 6 7
t_4	6 3 4 7
t_5	7 5 4 6

• Testing design ${\bf X}$ is *feasible* if we can recover ${\cal K}$ from ${\bf y}$.

Test	CGT outcome
t_1 3 1 5 7	
t_2 1 2 3 4 5 6	
t_3 1 3 4 6 7	
t_4 6 3 4 7	
t ₅ 7 5 4 6	

- Testing design **X** is *feasible* if we can recover \mathcal{K} from **y**.
- Distinct outputs for each $K_1 \neq K_2$, s.t. $|K_1|, |K_2| \leq k$.

Test	CGT outcome	$\mathcal{K}_1 = \{1, 2, 3\}$
t_1 3 1 5 7	3	
t_2 1 2 3 4 5 6	1	
t_3 1 3 4 6 7	1	
t_4 6 3 4 7	3	
t_5 7 5 4 6	0	

- Testing design \mathbf{X} is *feasible* if we can recover \mathcal{K} from \mathbf{y} .
- Distinct outputs for each $K_1 \neq K_2$, s.t. $|K_1|, |K_2| \leq k$.

Test	CGT outcome	$\mathcal{K}_1 = \{1, 2, 3\}$ $\mathcal{K}_2 = \{1, 3\}$
t_1 3 1 5 7	3	
t_2 1 2 3 4 5 6	1	
t_3 1 3 4 6 7	1	
t_4 6 3 4 7	3	
t _z 7 5 4 6	0	

- Testing design \mathbf{X} is *feasible* if we can recover \mathcal{K} from \mathbf{y} .
- Distinct outputs for each $K_1 \neq K_2$, s.t. $|K_1|, |K_2| \leq k$.

Test	CGT outcome	$\mathcal{K}_1 = \{1, 2, 3\}$ $\mathcal{K}_2 = \{1, 3\}$
t_1 3 1 5 7	3	
t_2 1 2 3 4 5 6	1	
t_3 1 3 4 6 7	1	
t_4 6 3 4 7	3	
t= 7 5 4 6	0	

- Testing design X is *feasible* if we can recover K from y.
- Distinct outputs for each $K_1 \neq K_2$, s.t. $|K_1|, |K_2| \leq k$.
- Analogue of disjunctness property under BGT.

 $\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$

	Test
$\overline{t_1}$	3 1 5 7
t_2	1 2 3 4 5 6
t_3	1 3 4 6 7
t_4	6 3 4 7
t_5	7 5 4 6

	Test
$\overline{t_1}$	3 1 5 7
t_2	1 2 3 4 5 6
t_3	1 3 4 6 7
t_4	6 3 4 7
t_5	7 5 4 6

	Test
$\overline{t_1}$	3 1 5 7
t_2	1 2 3 4 5 6
t_3	1 3 4 6 7
t_4	6 3 4 7
t_5	7 5 4 6

$$\kappa$$
, and for every $v\in\mathcal{K}$,

 $\mathcal{K} = \{1, 2, 3\}$ v = 1 v = 2 v = 3

		Те	est		
$\overline{t_1}$	1	5	6	7	
t_2	2	6	5	7	 _
t_3	3	7	5	6	 _
t_4	4	7	6	5	 _

		Те	est		
$\overline{t_1}$	1	5	6	7	
t_2	2	6	5	7	 _
t_3	3	7	5	6	 _
t_4	4	7	6	5	 _

	Test	CGT outcome	
$\overline{t_1}$	1 5 6 7	6	10 (0.4.0)
t_2	2 6 5 7	6	$\mathcal{K} = \{3, 4, 6\}$
t_3	3 7 5 6	3	
t_4	4 7 6 5	4	

- Feasibility condition: $\forall \ \mathcal{K} \subset V$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .
- Reconstruction: $\hat{\mathcal{K}} = \{y_i : i \in [T], y_i \neq 0\}$

	Test	CGT outcome	
t_1	1 5 6 7	6	10 (0.4.0)
t_2	2 6 5 7	6	$\mathcal{K} = \{3, 4, 6\}$
$\overline{t_3}$	3 7 5 6	3	
$\overline{t_4}$	4 7 6 5	4	

- Feasibility condition: $\forall \ \mathcal{K} \subset V$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .
- Reconstruction: $\hat{\mathcal{K}} = \{y_i : i \in [T], y_i \neq 0\}$
- Lower bound: Any feasible design has at least $\lfloor \frac{k+1}{2} \rfloor \lceil \frac{k+1}{2} \rceil$ tests.

	Test	CGT outcome	
$\overline{t_1}$	1 5 6 7	6	10 (0.4.0)
t_2	2 6 5 7	6	$\mathcal{K} = \{3, 4, 6\}$
$\overline{t_3}$	3 7 5 6	3	
$\overline{t_4}$	4 7 6 5	4	

- Feasibility condition: $\forall \ \mathcal{K} \subset V$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .
- Reconstruction: $\hat{\mathcal{K}} = \{y_i : i \in [T], y_i \neq 0\}$
- Lower bound: Any feasible design has at least $\lfloor \frac{k+1}{2} \rfloor \lceil \frac{k+1}{2} \rceil$ tests. $Erd \tilde{o}s$ -Szekeres theorem gives $\lfloor \log_2 \log_2 (n-1) \rfloor$ lower bound.

Cascaded group testing: bounds

Non-adaptive

BGT		Lower bound		Upper bound	
Adaptive		$k \log \left(\frac{n}{k}\right)$		$k \log \left(\frac{n}{k}\right)$	
Non-adaptive		$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$		
CGT	CGT Lower bound			Upper bound	
Adaptive	Adaptive k			k	

 $\max\{k^2, \log\log n\} \mid k^2 \min\{\log_k^2 n, \log n\}$

a = 3

1 2 3 4 5 6 7 8 9

Use feasible design X₁ for a items to create feasible design X₂ for a² items.

- Use feasible design X₁ for a items to create feasible design X₂ for a² items.
- Partition a^2 items into disjoint sets A_1, A_2, \dots, A_a of size a each.

$$a = 3, s_1 = (2, 3, 1), s_2 = (1, 3, 2)$$

1 2 3 4 5 6 7 8 9

• Given permutations s_1, s_2 on a items, permutation $s_3 = s_1 \circ s_2$ on a^2 items is given by:

$$a = 3, s_1 = (2, 3, 1), s_2 = (1, 3, 2)$$

- Given permutations s_1, s_2 on a items, permutation $s_3 = s_1 \circ s_2$ on a^2 items is given by:
 - For each i, arrange items of A_i according to s_2 . Call result h_i .

$$a = 3, s_1 = (2, 3, 1), s_2 = (1, 3, 2)$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$A_1 \quad 1 \quad 2 \quad 3 \quad s_2 \quad 1 \quad 3 \quad 2$$

$$A_2 \quad 4 \quad 5 \quad 5 \quad 4 \quad 6 \quad 5 \quad 7 \quad 9 \quad 8 \quad 1 \quad 3 \quad 2$$

$$A_3 \quad 7 \quad 8 \quad 9 \quad 5 \quad 7 \quad 9 \quad 8 \quad 1 \quad 3 \quad 2$$

- Given permutations s_1, s_2 on a items, permutation $s_3 = s_1 \circ s_2$ on a^2 items is given by:
 - For each i, arrange items of A_i according to s_2 . Call result h_i .
 - Arrange $h_1, h_2, ..., h_a$ according to s_1 to obtain s_3

$$a = 3, s_{1} = (2, 3, 1), s_{2} = (1, 3, 2)$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$A_{1} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$A_{2} \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$A_{3} \quad 7 \quad 8 \quad 9 \quad 1 \quad 3 \quad 2$$

$$A_{4} \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$A_{5} \quad 6 \quad 7 \quad 8 \quad 9$$

$$A_{5} \quad 6 \quad 7 \quad 8 \quad 9$$

$$A_{6} \quad 7 \quad 8 \quad 9$$

$$A_{7} \quad 7 \quad 8 \quad 9 \quad 1 \quad 3 \quad 2$$

$$A_{8} \quad 7 \quad 8 \quad 9 \quad 1 \quad 3 \quad 2$$

$$A_{8} \quad 7 \quad 8 \quad 9 \quad 1 \quad 3 \quad 2$$

$$A_{9} \quad 7 \quad 9 \quad 8 \quad 1 \quad 3 \quad 2$$

$$A_{9} \quad 7 \quad 9 \quad 8 \quad 1 \quad 3 \quad 2$$

- Given permutations s_1, s_2 on a items, permutation $s_3 = s_1 \circ s_2$ on a^2 items is given by:
 - For each i, arrange items of A_i according to s_2 . Call result h_i .
 - Arrange $h_1, h_2, ..., h_a$ according to s_1 to obtain s_3

• Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.

- Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.
- Consider $\mathcal{F} := \{t_i \circ t_i : i \in [|\mathbf{X}_1|]\}.$

- Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.
- Consider $\mathcal{F} := \{t_i \circ t_i : i \in [|\mathbf{X}_1|]\}.$
- Take $g_1 = (1, 2, ..., a)$ and $g_2 = (a, a 1, ..., 1)$.

- Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.
- Consider $\mathcal{F} := \{t_i \circ t_i : i \in [|\mathbf{X}_1|]\}.$
- Take $g_1 = (1, 2, ..., a)$ and $g_2 = (a, a 1, ..., 1)$. Consider $\mathcal{H} := \{g_i \circ g_j : i, j \in [2]\}$.

- Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.
- Consider $\mathcal{F} := \{t_i \circ t_i : i \in [|\mathbf{X}_1|]\}.$
- Take $g_1 = (1, 2, ..., a)$ and $g_2 = (a, a 1, ..., 1)$. Consider $\mathcal{H} := \{g_i \circ g_j : i, j \in [2]\}$.
- Finally, design for a^2 items given by $\mathbf{X}_2 := \mathcal{F} \cup \mathcal{H}$

X₂ is a feasible design;

• X_2 is a feasible design; $|X_2| \le |X_1| + 4$

- X_2 is a feasible design; $|X_2| \le |X_1| + 4$
- Recursive design for n items,

- X_2 is a feasible design; $|X_2| \le |X_1| + 4$
- Recursive design for n items, with at most $O(\log \log n)$ tests.

- X_2 is a feasible design; $|X_2| \le |X_1| + 4$
- Recursive design for n items, with at most $O(\log \log n)$ tests.
- Idea generalizes to any constant k,

- X_2 is a feasible design; $|X_2| \le |X_1| + 4$
- Recursive design for n items, with at most $O(\log \log n)$ tests.
- Idea generalizes to any constant k, with at most $O((\log \log n)^{c_k})$ tests, where $c_k = 2^{(k-2)} 1$.

- \mathbf{X}_2 is a feasible design; $|\mathbf{X}_2| \leq |\mathbf{X}_1| + 4$
- Recursive design for n items, with at most $O(\log \log n)$ tests.
- Idea generalizes to any constant k, with at most $O((\log \log n)^{c_k})$ tests, where $c_k = 2^{(k-2)} 1$.
- Can be much smaller than BGT which needs $\Omega(k^2 \log_k n)$ tests.

Cascaded group testing: bounds for k = O(1)

BGT	Lower bound	Upper bound
Adaptive	k log n	k log n
Non-adaptive	$k^2 \log n$	$k^2 \log n$

CGT	Lower bound	Upper bound
Adaptive	k	k
Non-adaptive	$\max\{k^2, \log\log n\}$	$\min\{(\log\log n)^{c_k}, k^2\log n\}$

New variant of group testing

- New variant of group testing
- Derived bounds under adaptive and non adaptive testing

- New variant of group testing
- Derived bounds under adaptive and non adaptive testing
- Further directions:

- New variant of group testing
- Derived bounds under adaptive and non adaptive testing
- Further directions:
 - General achievable strategies for any k
 - Close gap between upper and lower bounds
 - Noisy and constrained testing

Thanks

https://sites.google.com/site/nikhilkaram/

```
1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0
1 1 0
2-disjunct
```

Not 3-disjunct

- *t-disjunct matrix*: Union of any *t* columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \iff k\text{-disjunct} \end{cases}$$

- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \iff k\text{-disjunct} \end{cases}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 Say $k = 4$, \mathbf{X} not $(k - 1)$ -disjunct
$$\mathbf{X}_1 \preceq \bigvee_{i \in [2:4]} \mathbf{X}_i \Longrightarrow \bigvee_{i \in [2:4]} \mathbf{X}_i = \bigvee_{i \in [1:4]} \mathbf{X}_i$$
 2-disjunct

Not 3-disjunct

- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \iff k\text{-disjunct} \end{cases}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{Say } k = 4, \mathbf{X} \text{ not } (k-1)\text{-disjunct}$$

$$\mathbf{X}_1 \preceq \bigvee_{i \in [2:4]} \mathbf{X}_i \Longrightarrow \bigvee_{i \in [2:4]} \mathbf{X}_i = \bigvee_{i \in [1:4]} \mathbf{X}_i$$

$$O/p \text{ for } \mathcal{K} = \{2, 3, 4\} \text{ same as for } \mathcal{K} = \{1, 2, 3, 4\}$$

$$\Longrightarrow \mathbf{X} \text{ not feasible for } k = 4.$$

$$2\text{-disjunct}$$

- t-disjunct matrix: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix
$$\begin{cases} \implies (k-1)\text{-disjunct} \\ \iff k\text{-disjunct} \end{cases}$$

Non-adaptive testing: bounds

- Lower bound: $\Omega(k^2 \log_k n)$ tests; connection to k-cover families [D'yachkov & Rykov'82, Furedi'96]
- Random construction: $O\left(k^2 \log \frac{n}{k}\right)$ tests; choose each entry i.i.d. $\sim Ber(1/(k+1))$.
- Explicit construction: O (k² min{log_k² n, log n}) tests; based on a concatenated code construction [Kautz & Singleton'64, Porat & Rotschild'08]

Testing design matrix has to be specified beforehand.

- Testing design matrix has to be specified beforehand.
- k = 1

- Testing design matrix has to be specified beforehand.
- k = 1
 - For $m \ge 1$, parity check matrix **H** of a binary Hamming code has dimension $m \times 2^m 1$.

- Testing design matrix has to be specified beforehand.
- k = 1
 - For $m \ge 1$, parity check matrix **H** of a binary Hamming code has dimension $m \times 2^m 1$.
 - All columns are distinct non-zero binary vectors.

- Testing design matrix has to be specified beforehand.
- k = 1
 - For $m \ge 1$, parity check matrix **H** of a binary Hamming code has dimension $m \times 2^m 1$.
 - All columns are distinct non-zero binary vectors.
 - Item j defective \Rightarrow output $\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{H}_i = \mathbf{H}_j$

$$\mathbf{H}_{3,7}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

- Testing design matrix has to be specified beforehand.
- k = 1
 - ► For $m \ge 1$, parity check matrix **H** of a binary Hamming code has dimension $m \times 2^m 1$.
 - All columns are distinct non-zero binary vectors.
 - ltem j defective \Rightarrow output $\mathbf{y} = \mathbf{H}_j$

- Testing design matrix has to be specified beforehand.
- k = 1
 - ► For $m \ge 1$, parity check matrix **H** of a binary Hamming code has dimension $m \times 2^m 1$.
 - All columns are distinct non-zero binary vectors.
 - Item j defective ⇒ output y = H_j
 ⇒ H is a feasible testing design.

- Testing design matrix has to be specified beforehand.
- k = 1
 - ► For $m \ge 1$, parity check matrix **H** of a binary Hamming code has dimension $m \times 2^m 1$.
 - All columns are distinct non-zero binary vectors.
 - Item j defective ⇒ output y = H_j
 ⇒ H is a feasible testing design.
 - ▶ Works for m s.t. $2^m 1 \ge n \Longrightarrow$ needs $\lceil \log(n+1) \rceil$ tests.

- Testing design matrix has to be specified beforehand.
- k = 1
 - ► For $m \ge 1$, parity check matrix **H** of a binary Hamming code has dimension $m \times 2^m 1$.
 - All columns are distinct non-zero binary vectors.
 - Item j defective ⇒ output y = H_j
 ⇒ H is a feasible testing design.
 - ▶ Works for m s.t. $2^m 1 \ge n \Longrightarrow$ needs $\lceil \log(n+1) \rceil$ tests.
 - ▶ Near-optimal for k = 1.

Extensions and variants

Decoding criterion: small error probability, partial recovery

- Decoding criterion: small error probability, partial recovery
- Defectives prior: combinatorial, i.i.d., bursty

- Decoding criterion: small error probability, partial recovery
- Defectives prior: combinatorial, i.i.d., bursty
- Noise model: symmetric, Z channel, dilution, erasure

- Decoding criterion: small error probability, partial recovery
- Defectives prior: combinatorial, i.i.d., bursty
- Noise model: symmetric, Z channel, dilution, erasure
- Testing model: threshold, quantitative, concomitant, tropical, graph-constrained

• For $k \ge 3$, any feasible design has more than $\lfloor \log_2 \log_2 (n-1) \rfloor$ tests.

- For $k \ge 3$, any feasible design has more than $\lfloor \log_2 \log_2 (n-1) \rfloor$ tests.
- Erdős-Szekeres theorem: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length a + 1.

- For $k \ge 3$, any feasible design has more than $\lfloor \log_2 \log_2 (n-1) \rfloor$ tests.
- Erdős-Szekeres theorem: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length a + 1.
- Say k = 3, $n = 2^{2^r} + 1$; and we have a feasible design with $T \le r = \log_2 \log_2 (n 1)$ tests.

- For $k \ge 3$, any feasible design has more than $\lfloor \log_2 \log_2 (n-1) \rfloor$ tests.
- Erdős-Szekeres theorem: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length a + 1.
- Say k = 3, $n = 2^{2^r} + 1$; and we have a feasible design with $T \le r = \log_2 \log_2 (n 1)$ tests.
- \exists a subset of $n_1 = 2^{2^{(r-1)}} + 1$ items whose relative ordering in t_1 is monotone.

- For $k \ge 3$, any feasible design has more than $\lfloor \log_2 \log_2 (n-1) \rfloor$ tests.
- Erdős-Szekeres theorem: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length a + 1.
- Say k = 3, $n = 2^{2^r} + 1$; and we have a feasible design with $T \le r = \log_2 \log_2 (n 1)$ tests.
- \exists a subset of $n_1 = 2^{2^{(r-1)}} + 1$ items whose relative ordering in t_1 is monotone.
- Amongst these, \exists a monotone subsequence of size $n_2 = 2^{2^{(r-2)}} + 1$ in t_2 .

- For $k \ge 3$, any feasible design has more than $\lfloor \log_2 \log_2 (n-1) \rfloor$ tests.
- Erdős-Szekeres theorem: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length a + 1.
- Say k = 3, $n = 2^{2^r} + 1$; and we have a feasible design with $T \le r = \log_2 \log_2 (n 1)$ tests.
- \exists a subset of $n_1 = 2^{2^{(r-1)}} + 1$ items whose relative ordering in t_1 is monotone.
- Amongst these, \exists a monotone subsequence of size $n_2 = 2^{2^{(r-2)}} + 1$ in t_2 .
- Proceeding inductively, we get $n_T = 2^{2^{(r-T)}} + 1 \ge 3$ items, such that in each t_i they appear in increasing or decreasing order.

- For $k \ge 3$, any feasible design has more than $\lfloor \log_2 \log_2 (n-1) \rfloor$ tests.
- Erdős-Szekeres theorem: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length a + 1.
- Say k = 3, $n = 2^{2^r} + 1$; and we have a feasible design with $T \le r = \log_2 \log_2 (n 1)$ tests.
- \exists a subset of $n_1 = 2^{2^{(r-1)}} + 1$ items whose relative ordering in t_1 is monotone.
- Amongst these, \exists a monotone subsequence of size $n_2 = 2^{2^{(r-2)}} + 1$ in t_2 .
- Proceeding inductively, we get $n_T = 2^{2^{(r-T)}} + 1 \ge 3$ items, such that in each t_i they appear in increasing or decreasing order.
- Feasibility condition not satisfied $\implies T > r = \log_2 \log_2 (n-1)$.

