Water and Solute Balances in Small Amazonian Forest and Pasture Watersheds

Chris Neill, Sonja Germer, Alex Krusche, Joaquín Chaves, Helmut Elsenbeer, Sergio Gouveia Neto, Adriana Castellanos Bonilla

Marine Biological Laboratory
University of São Paulo
University of Potsdam

Fazenda Rancho Grande, Rondônia

- ▲ Throughfall collector
- O Lysimiter nest

- x Overland flow collector
- Groundwater well
- **V** H flume
- ♣ Precipitation collector

Fazenda Rancho Grande, Rondônia

Infiltration and hydraulic conductivity

Annual water yield

Rain=2286 mm

176 rainfall events

70 generated flow in pasture

36 generated flow in forest

Quickflow and Baseflow

		No.	Quickflow	Baseflow	Total
		events		mm	
Forest	TDWS	11	2	0	2
	WS	25	23	0	23
	Total	26	25	0	25
Pasture	TDWS	12	48	0	48
	WS	58	360	9	369
	Total	70	408	9	417

Water balance

	Forest	Pasture	
	of precip.)		
Precipitation		2286	
Interceptiona	50 (2.2)	-	
Streamflow	25 (1.1)	417	(18)
Evapotranspiration	1387 (61)	1024	(45)
Groundwater recharge	824 (36)	846	(37)

Partitioning water sources with end member modeling

Chaves et al. 2007

Solute inputs in TF and rain are highly seasonal

Solute inputs in TF and rain are highly seasonal

	Total kg	Flux ha ⁻¹	Rati	o TDW / W
	Rain	TF	Rai	n TF
K	9	78	1.0	0.9
Ca	18	19	0.9	0.6
NO_3 -N	1	2	7	5
NH_4 -N	4	5	3	1.3

Solute concentrations vary within rain events

Solute concentrations vary within flowpaths

Chaves et al. submitted

Solute concentrations vary within flowpaths

17.4 kg N ha⁻¹

0.1 kg N ha⁻¹

Pathways of solute export

Germer et al. in prep

Relative solute balances in forest and pasture

Forest / Pasture	
2.2	
0.7	
0.3	
1.8	
	2.2 0.7 0.3

Conclusions

- 1) Large decreases to soil infitrability and permeability lead to 18 x increase in streamflow from pasture
- 2) Quickflow dominates surface water output in forest and pasture
- Large seasonal and within-rain event concentrations of most solutes likely related to fragmented regional landscape
- Large amount of NO₃⁻ removal between soils and groundwater apparently occurs at soil-groundwater interface

Conclusions

- 5) Biogeochemical "homogenization" of flowpath chemistry in pasture leads to low DIN export
- 6) Despite importance of surficial flowpaths to stream flow, most solute export is via groundwater
- Despite large shifts in runoff generation and differences in flowpath chemistry, differences in total export are surprisingly modest

Acknowledgments

Reynaldo Victoria

Linda Deegan

Vicky Ballester

Tobia Vetter

Lisa Werther

Shelby Hayhoe

Mathew Shamey

Xandra Montebelo

Gustavo Baldi

Sonia Remmington

Schmitz family

NASA-LBA

FAPESP

CNPq

NSF

DAAD

Biological Discovery in Woods Hole

Founded in 1888 as the Marine Biological Laboratory