Representing sentences:

X: Hello I am Asier (...) = DInput sequence $X^{(1)}$ $X^{(2)}$ $X^{(3)}$ $X^{(4)}$ (...) $X^{(7)}$

·Tx => length of input sequence

· x(i)<+> => the input at the position t of the ith training example.

• Tx (i) => length of input sequence of the ith training example

Representing words in a sentence:

One-hot representation. The goal is, given the mapping, to learn a sequence model to the target output Y.

x: Harry Potter and Hermione Granger ir

For a word not present in the vocabulary, we define a token KUNK>.

RNNs:

a^{<i>=} Dactivation entering layer i. a^{<0>} usually o⁷ Wax =D W is multiplied by x^{<i>>} Wis used to compute a^{<i>+}

Deep RNNs:

a [1] <+>: activation of layer l, at time t.