

CAMBIO CLIMATICO

ITBA - 2DO CUATRIMESTRE 2023

Propuesta de valor

Evaluación de Riesgos y Vulnerabilidades Planificación de Continuidad del Negocio Diversificación de Suministros

Seguro Climático Innovación Tecnológica

1. Selección y limpieza del dataset

Selección del dataset

DATASET CAMBIO CLIMÁTICO

Datos desde 1743

Los datos comprenden desde el SXVIII hasta el año 2013. Para la mejor comprensión del análisis realizado se recortaron los datos, tomando solo desde el 2000.

50 países

El dataset incluye 50 países de distintos continentes, incluyendo la ciudad y puntos cardinales.

Objetivo

Predecir el clima promedio en un país específico la cantidad de meses a futuro indicada

Limpieza de datos

DATASET CAMBIO CLIMÁTICO

Unificación formato de fechas

Había fechas en español y en inglés 01/03/2013 vs 2013-11-02

Limpieza de coordenadas

formato geometry

Imputación de missings

De temperatura e incertidumbre usando la media mensual del país

Acotación de la base

A los últimos 13 años para poder hacer elanálisis viendo las tendencias y ciclos.

2. Análisis exploratorio de datos

3. GIS

Países incluidos

¿Como cambia el clima a través del tiempo?

Librerías y otros

Plotly

Es una biblioteca de visualización de datos interactiva que permite crear gráficos interactivos y dashboards.

Dash

Es un marco de desarrollo para crear aplicaciones web interactivas con Python.

Geopy

Es una biblioteca
de Python que
proporciona
herramientas para
realizar
geocodificación y
geolocalización.

Geopandas

Es una biblioteca que combina las capacidades de manejo de datos geoespaciales de pandas con las capacidades de visualización de matplotlib.

¿Como cambia el clima a lo largo de un año?

Año 2000

Año 2013

¿Hay diferencia de temperaturas a traves de los años?

SE UTILIZARÁ ENERO COMO MES DE PRUEBA

Temperatura en enero

DESDE 1750 HASTA 2000

4. Modelos predictivos

Experimentamos con brazil

Ciclos

Tendencia

Estacionalidad

Componente aleatoria

Modelos implementados

Random walk

Asume que el próximo valor en una secuencia es igual al valor actual más un cambio aleatorio, sin patrón discernible

Modelo cuadrático

Presentations are tools that can be used as lectures, speeches, reports, and more. It is mostly presented before an audience.

Modelo logarítmico + Estacionalidad

Arima: Autoregressive Integrated Moving Average

Se compone de tres componentes principales:

Autoregresivo (AR): relación lineal entre las observaciones y sus valores pasados

Media móvil (MA): tiene en cuenta el error residual de las observaciones pasadas

Integrado (I): la diferenciación de la serie temporal para hacerla estacionaria.

Random Walk

Model RMSE

Random Walk 1.177686

Quadratic trend

AIC	ŗ	RMSE	Model
NaN	N	1.177686	Random Walk
047	427.2770	1.173284	QuadraticTrend

Transformación logarítmica + estacionalidad mensual

Model	RMSE	AIC
Random Walk	1.177686	NaN
QuadraticTrend	1.173284	427.277047
back_LogEstTrend	0.512166	-628.636797

ARIMA

¡Es estacionaria!

```
from statsmodels.tsa.stattools import adfuller

result = adfuller(dfmundoSERIES);
print('ADF Statistic: %f' % result[0]); print('p-value: %f' % result[1])
for key, value in result[4].items():
    print('Valor crítico %s: %.2f' % (key,value))

ADF Statistic: -4.024748
p-value: 0.001286
Valor crítico 1%: -3.47
Valor crítico 5%: -2.88
Valor crítico 10%: -2.58
```


Optimizacion de Variables p y q con auto_arima

Se trata de optimizar el AIC, es decir la capacidad predictiva con la complejidad del modelo

ARIMA

Best model: ARIMA(3,0,2)

AIC	RMSE	Model
NaN	1.177686	Random Walk
427.277047	1.173284	QuadraticTrend
-628.636797	0.512166	back_LogEstTrend
334.646865	.646712	Arima 0

Test AverageTemperature back_LogEstTrend 25 · 24 -23 -22 -Jul Jul Jul Jan 2013 Jan 2011 Jan 2012 anio_mes

Comparación

5. Deploy de modelos

App de predicción de temperatura

Elegí un país:

Syria

V

Mes

<-- Deslizá a los costados -->

- 8

0

Resultado

Predicciones de temperatura los próximos 8 meses en Syria:

	Fecha	Prediccion_Temperatura
0	2013-10-01 00:00:00	20.0253
1	2013-11-01 00:00:00	13.8229
2	2013-12-01 00:00:00	8.3959
3	2014-01-01 00:00:00	6.1879
4	2014-02-01 00:00:00	6.9177
5	2014-03-01 00:00:00	11.1155
6	2014-04-01 00:00:00	16.8278
7	2014 05 01 00:00:00	22 2104

2do cuatrimestre - 2022

TRABAJO PRÁCTICO I I ANÁLISIS PREDICTIVO AVANZADO

Integrantes

- Magdalena Eppens
- Sofía Gonzalez del Solar
- Nicole Reiman