7/30/2021 1.png

Boolean Algebra

Boolean algebra is used to analyse and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra.

BOOLEAN POSTULATES AND LAWS

T1: Commutative Law

 $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$

AB = BA

T2: Associate Law

(A + B) + C = A + (B + C)(A B) C = A (B C)

T3: Distributive Law

A (B + C) = A B + A C A + (B C) = (A + B) (A + C)(b)

T4: Absorption Law

(a) A(A+B)=A (b) A+(AB)=A

Multiplication	Addition
----------------	----------

$$0 * 0 = 0$$
 $0 + 0 = 0$

$$0*1 = 0$$
 $0+1 = 1$

$$\mathbf{A} * \mathbf{0} = \mathbf{0}$$

$$\mathbf{A} + \mathbf{0} = \mathbf{A}$$

$$\mathbf{A}^*\mathbf{1} = \mathbf{A} \qquad \qquad \mathbf{A}^*\mathbf{1} = \mathbf{1}$$

$$\mathbf{A}^{+}\mathbf{A}'=\mathbf{0}$$

$$\mathbf{A}^{+}\mathbf{A}'=\mathbf{1}$$

A+A=AA*A=A

DeMorgan's Theorems

NAND to Negative-OR

NOR to Negative-AND

$$\overline{\mathbf{A} * \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

$$\overline{A+B} = \overline{A} * \overline{B}$$

1	2	3	4	5	6	7	8	9	10
A	В	A'	В'	A+B	A.B	(A+B)'	A'.B'	(A.B)'	A'+B'
0	0	1	1	0	0	1	1	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	1	0	0	0	0

Principle of Duality

$$A*B \longrightarrow A+1$$

Example:-

$$(A+B) * (C+0) + D'$$

$$= (A*B) + (C*1) * D'$$

= AB + CD'