CML102

Minor-1

- Plot E vs k diagram and the DOS vs E diagram for a free electron in a 1D nanowire. Write the relevant equations. [10+10+10]
- 2. A researcher wanted to make green emitting ($\lambda_{em}=540~\mathrm{nm}$) CdSe nanocrystals. She used the Brus equation to evaluate the desired particle size. The nanocrystals grow at a monolayer per minute in the zinc blende structure under these synthesis conditions. The growth direction is [111] and the lattice parameter, α i.e. the cube edge length, is 0.6 nm.
 - a. What size did she calculate?
 - b. How long did she carry out the reaction?
 - c. Approximately, what is the color of emission that she obtained?
 - d. Why is this discrepancy observed between the calculation and experiment?
 - e. What needs to be done in order to achieve green emission?

$$E_g(d) - E_g(bulk) = \frac{h^2}{2m^*d^2} - 1.8 \frac{e^2}{2\pi\epsilon\epsilon_0 d}$$

The zinc blende structure is similar to the diamond structure. You can assume Se at 000 and Zn at ½ ½ ½ . A monolayer is made up of a complete Cd and Se layer. The bulk value for the energy gap is $E_g(bulk)=1.74$ eV. Use the following parameters: effective mass of electrons/holes $m_e^*=0$: $13m_0$, $m_h^*=0.4m_0$, mass of free electrons ($m_0=9.1095\times10^{-31}$ kg); dielectric constant $\epsilon_{cdSe}=5.8$, permittivity constant $\epsilon_0=8.854\times10^{-12}$ C² N⁻¹ m⁻², Planck's constant $h=6.63\times10^{-34}$ J s, $1~{\rm eV}=1.602\times10^{-19}$ J. [15+10+5+5+5]

- 3. The Scherrer equation provides an estimate of the diameter of the particle, $d=\frac{4}{3}\frac{0.9\lambda}{\beta\cos\theta}$. The XRD peak at $2\theta=28^{\circ}$ has an FWHM (β) equal to 5° . Estimate the particle diameter. [10]
- 4. Plot FC and ZFC curves for antiferromagnetic material with a brief explanation as to why the differences are seen in the two cases. [20]