Jónsson Covering below a Woodin

DAN SAATTRUP NIELSEN

ABSTRACT. We modify the proof in Welch (2000) of the weak covering lemma at Jónsson cardinals below a Woodin cardinal to the measurable-free context from Jensen and Steel (2013).

This note is dedicated to proving the following theorem.

THEOREM 0.1. Assume that there is no inner model with a Woodin cardinal. Let K be the Jensen-Steel core model and κ a Jónsson cardinal. Then $\kappa^+ = \kappa^{+K}$.

And immediate consequence of the theorem is then the following.

Corollary 0.2. Assume that there is no inner model with a Woodin cardinal and let κ be a Jónsson cardinal. Then \square_{κ} holds.

1 Setting the scene

We start by setting up the scene and giving an overview of what is to come. By the weak covering lemma in K, we can assume that κ is regular. Set $\lambda := \kappa^{+K}$ and assume towards a contradiction that $\lambda < \kappa^+$, so that the weak covering lemma in K implies that $\cot \lambda = |\lambda| = \kappa$. Fix some monotone cofinal map $D : \kappa \to \lambda$.

For some suitably large $\Omega > \kappa$ we can ensure that $K(\kappa^+,\Omega)$ contains κ^+ , so fix a "very soundness" witness $\mathcal W$ for $K(\kappa^+,\Omega)|\kappa^+$, i.e. a weasel such that $S(\mathcal W)$ is $\mathcal W$ -thick and $\kappa^+ \subseteq \mathcal W$ — note that $\kappa^{+K} = \kappa^{+\mathcal W}$. Say $\vec E$ is $\mathcal W$'s extender sequence and let $X < \langle V_\eta, \in, \vec E, D \rangle$ for some sufficiently large η and with $|X| = \kappa$ and $X \cap \kappa \neq \kappa$; X exists by the Jónsson property.

Let $\pi:\langle\mathcal{H},\in,\bar{\vec{E}},\bar{D}\rangle\cong\langle X,\in,\vec{E},D\rangle$ be the uncollapse. Set $\bar{x}:=\pi^{-1}(x)$ for every $x\in X$. Then by virtue of D we get that $\mathrm{cof}\,\bar{\lambda}=\kappa>\mathrm{crit}\,\pi$, so that π is continuous at $\bar{\lambda}$. Note that $\bar{\vec{E}}$ is the extender sequence of $\bar{\mathcal{W}}$ and define $j:=\pi\upharpoonright\bar{\mathcal{W}}:\bar{\mathcal{W}}\to\mathcal{W}$. We now want to compare $\bar{\mathcal{W}}$ with \mathcal{W} . Our proof strategy will be the following.

- (i) Compare $\overline{\mathcal{W}}$ with \mathcal{W} via a non-standard coiteration, yielding trees \mathcal{T}, \mathcal{U} with last models \mathcal{P}, \mathcal{Q} , such that \mathcal{P} agrees with \mathcal{Q} below κ ;
- (ii) Pick the least $\mathcal{N} \triangleleft \mathcal{Q}$ such that $\bar{\lambda}$ is definably collapsed over \mathcal{N} ;
- (iii) Use that $\mathcal N$ agrees with $\mathcal P$ below κ to lift $j:\bar{\mathcal W}\to\mathcal W$ to some $j^+:\mathcal N\to\mathcal M$;
- (iv) Show that $\Psi_{\mathcal{M}} := \Phi(j\mathcal{T}) \hat{\mathcal{M}}, \kappa$ is a stable iterable phalanx, which allows us to compare \mathcal{M} with \mathcal{W} ;
- (v) λ is definably collapsed over \mathcal{M} , so by an elementarity argument this is also true over \mathcal{W} , but $\lambda = \kappa^{+\mathcal{W}}$, ξ .

The hardest part will be constructing the tree \mathcal{U} in part (i). This is very reminiscent of the proof of the weak covering lemma for K, but to construct \mathcal{U} in that scenario they use that κ is singular and a strong limit. In our case we could tweak the argument so that the Jónsson property achieves the result that would normally use the singularity of κ , but the argument using that κ is a strong limit does not prima facie admit such a tweak. Instead we will follow Mitchell's idea of "special drops", also described in Welch (2000). Here is an illustration of the proof to come.

2 Constructing \mathcal{U}

We now provide the definition of \mathcal{U} . Simultaneously we will define trees \mathcal{T} on $\overline{\mathcal{W}}$ and $\overline{\mathcal{U}}$ on \mathcal{W} , and $\deg^{\mathcal{U}}(\alpha)$ -embeddings $\pi_{\alpha}: \mathcal{M}_{\alpha}^{\mathcal{U}} \to \mathcal{M}_{\alpha}^{\overline{\mathcal{U}}}$. The tree $\overline{\mathcal{U}}$ and the π_{α} 's are only there to make sure that the models in \mathcal{U} are wellfounded.

Let us now say that λ is a limit and $\mathcal{T} \upharpoonright \lambda$, $\mathcal{U} \upharpoonright \lambda$ and $\bar{\mathcal{U}} \upharpoonright \lambda$ have been constructed. Then $\bar{\mathcal{U}} \upharpoonright \lambda$ is an ω -iteration tree and \mathcal{W} 's iteration strategy picks the unique cofinal wellfounded branch \bar{b} of $\bar{\mathcal{U}}$. Fix some $\gamma \in \bar{b}$ such that $\bar{b} - \gamma$ has no drops, and set $\mathcal{M}^{\bar{\mathcal{U}}}_{\lambda}$ to be the direct limit of the models along \bar{b} . Then set $\mathcal{M}^{\mathcal{U}}_{\lambda}$ to be the direct limit of all the $\mathcal{M}^{\mathcal{U}}_{\alpha}$ such that $\alpha \in \bar{b}$.

If $\alpha = \beta + 1$ and $\mathcal{T} \upharpoonright \alpha$, $\bar{\mathcal{U}} \upharpoonright \alpha$ and $\mathcal{U} \upharpoonright \alpha$ are defined then we have models $\mathcal{M}_{\alpha}^{\mathcal{T}}$, $\mathcal{M}_{\beta}^{\bar{\mathcal{U}}}$ and $\mathcal{M}_{\beta}^{\mathcal{U}}$. Let $j_{\alpha} : \mathcal{M}_{\alpha}^{\mathcal{T}} \to \mathcal{M}_{\alpha}^{j\mathcal{T}}$ be the copy maps and define the set

$$\Sigma := \{ \delta \leqslant \kappa \mid \delta \text{ is a regular } V \text{-cardinal } \wedge j_{\delta} \text{"} \delta \subseteq \delta \wedge \delta \geqslant \sup_{\gamma < \delta} \nu_{\gamma}^{\mathcal{U}} \}.$$

Note that Σ is stationary below κ since κ is Mahlo by Shelah (1994). Furthermore define for $\alpha < \theta$ the phalanxes

$$\Psi_{\alpha} := \Phi(j \mathcal{T} \upharpoonright \alpha) \widehat{\ } \langle \mathrm{Ult}(\mathcal{M}_{\alpha}^{\mathcal{U}}, E_{j_{\alpha}} \upharpoonright \alpha), \alpha \rangle.$$

Case 1: $\beta \notin \Sigma$.

If $\mathcal{M}^{\mathcal{T}}_{\beta}$ agrees with $\mathcal{M}^{\mathcal{U}}_{\beta}$ below κ then pad one more step, meaning that we set $\mathcal{M}^{\mathcal{T}}_{\alpha}:=\mathcal{M}^{\mathcal{T}}_{\beta},\,\mathcal{M}^{\bar{\mathcal{U}}}_{\alpha}:=\mathcal{M}^{\bar{\mathcal{U}}}_{\beta},\,\mathcal{M}^{\mathcal{U}}_{\alpha}:=\mathcal{M}^{\mathcal{U}}_{\beta}$ and $\pi_{\alpha}:=\pi_{\beta}$. Otherwise let η be the least disagreement between $\mathcal{M}^{\mathcal{T}}_{\beta}$ and $\mathcal{M}^{\mathcal{U}}_{\beta}$. If $E^{\mathcal{U}}_{\beta}\neq\varnothing$ then set $E^{\bar{\mathcal{U}}}_{\beta}:=\dot{E}^{\mathcal{M}^{\bar{\mathcal{U}}}_{\beta}}_{\pi_{\beta}(\eta)}$ and note that $(\mathcal{M}^{\mathcal{U}}_{\alpha})^* \leq \mathcal{M}^{\mathcal{U}}_{\mathrm{pred}^{\mathcal{U}}(\alpha)}$ implies that $(\mathcal{M}^{\bar{\mathcal{U}}}_{\alpha})^* \leq \mathcal{M}^{\bar{\mathcal{U}}}_{\mathrm{pred}^{\bar{\mathcal{U}}}(\alpha)}$. Set $\pi_{\alpha}[a,f]:=[\pi_{\beta}(a),\pi_{\mathrm{pred}^{\mathcal{U}}(\alpha)}(f)]$. Then π_{α} is a $\deg^{\mathcal{U}}(\alpha)$ -embedding. If $E^{\mathcal{U}}_{\beta}=\varnothing$ then set $\pi_{\alpha}:=\pi_{\beta}$ and follow the rules of the iteration game.

Case 2: $\mathcal{M}^{\mathcal{U}}_{\beta}$ is a stable weasel and Ψ_{β} is not iterable.

Here we call $\beta + 1$ a special drop. Let \mathcal{V} be a bad tree on Ψ_{β} and let

$$\pi_+: \mathrm{cHull}^{V_{\Omega+1}}(\alpha \cup \{j_\beta, \mathcal{V}, \mathcal{T} \upharpoonright \alpha, \mathcal{U} \upharpoonright \alpha, \mathcal{M}(\mathcal{V}), \mathcal{Q}(\mathcal{V})\}) \to V_{\Omega+1}$$

be the uncollapse. Then set $\mathcal{M}^{\mathcal{U}}_{\alpha} := \pi_{+}^{-1}(\mathcal{M}^{\mathcal{U}}_{\beta}), \ D^{\mathcal{U}^{\uparrow}\alpha+1} := D^{\mathcal{U}^{\uparrow}\alpha} \cup \{\alpha\}, \nu^{\mathcal{U}}_{\beta} := 0, \ \deg^{\mathcal{U}}(\alpha) = \omega, \ \beta <_{\mathcal{U}} \alpha, \ \pi_{\alpha} := \pi_{\beta} \circ \pi_{+} \ \text{and pad} \ \mathcal{T} \ \text{and} \ \bar{\mathcal{U}}.$ Note that we still have that $\mathcal{M}^{\mathcal{U}}_{\alpha}$ agrees with $\mathcal{M}^{\mathcal{T}}_{\alpha}$ below $\sup\{\max(\nu^{\mathcal{U}}_{\gamma}, \nu^{\mathcal{U}}_{\gamma}) \mid \gamma < \beta\}$ since this supremum is $\leq \beta$ (and thus $< \alpha$) by case hypothesis.

Case 3: otherwise.

If the $\mathcal{M}^{\mathcal{T}}_{\beta}$ agrees with $\mathcal{M}^{\mathcal{U}}_{\beta}$ below κ then halt. Otherwise pick the least disagreement and proceed as in case 1.

Lemma 2.1. If $\theta \geqslant \kappa$ and Ψ_{κ} is not iterable then there is some $\delta \in [0, \kappa)_{\mathcal{U}} \cap \Sigma$ such that Ψ_{δ} is not iterable.

PROOF. Let \mathcal{V} be a bad tree on Ψ_{κ} . As there is no inner model with a Woodin, we can without loss of generality assume that Ψ_{κ} is properly 1-small. Use that Σ is stationary in κ to pick some $\delta \in [0, \kappa)_{\mathcal{U}} \cap \Sigma$, which is possible as $[0, \kappa)_{\mathcal{U}}$ is club in κ . Now let

$$\mathcal{H} := \mathrm{cHull}^{\mathcal{V}_{\Omega+1}}(\{j_{\kappa}, \mathcal{V}, \mathcal{T} \upharpoonright \kappa + 1, \mathcal{U} \upharpoonright \kappa + 1, \delta, \mathcal{M}(\mathcal{V}), \mathcal{Q}_{\mathcal{V}}\})$$

with $\mathcal{Q}_{\mathcal{V}}$ the \mathcal{Q} -structure looking for branches in \mathcal{V} . Then by the absoluteness argument in (Nielsen, 2016, Theorem 6.21), using that \mathcal{H} is countable and also again that no inner model with a Woodin exists if $\bar{\mathcal{V}}$ had a cofinal wellfounded branch (in V) then so would \mathcal{V} – therefore $\bar{\mathcal{V}}$ is truly a bad tree on $\bar{\Psi}_{\kappa}$. Now define

$$\mathcal{H}^{+} := \mathrm{cHull}^{V_{\Omega+1}}(\delta \cup \{j_{\kappa}, \mathcal{V}, \mathcal{T} \upharpoonright \kappa + 1, \mathcal{U} \upharpoonright \kappa + 1, \mathcal{M}(\mathcal{V}), \mathcal{Q}_{\mathcal{V}}\})$$

and let $\psi: \mathcal{H} \to \mathcal{H}^+$ be the canonical embedding. Then $\psi \bar{\mathcal{V}}$ is a bad tree on the phalanx

$$\psi(\bar{\Psi}_{\kappa}) = \psi(\overline{\Phi(j\,\mathcal{T}\upharpoonright\kappa)}) \langle \psi(\overline{\mathrm{Ult}(M_{\kappa}^{\mathcal{U}}, E_{j_{\kappa}}\upharpoonright\kappa)}), \psi(\bar{\kappa}) \rangle
= \pi_{+}^{-1}(\Phi(j\,\mathcal{T}\upharpoonright\kappa)) \langle \mathrm{Ult}(\pi_{+}^{-1}(\mathcal{M}_{\kappa}^{\mathcal{U}}), E_{j_{\pi_{+}^{-1}(\kappa)}}\upharpoonright\pi_{+}^{-1}(\kappa)), \pi_{+}^{-1}(\kappa) \rangle,
= \Phi(j\,\mathcal{T}\upharpoonright\delta) \langle \mathrm{Ult}(\pi_{+}^{-1}(\mathcal{M}_{\kappa}^{\mathcal{U}}), E_{j_{\delta}}\upharpoonright\delta), \delta \rangle,$$

where $\pi_+:\mathcal{H}^+\to V_{\Omega+1}$ is the uncollapse. But now define $\tau:\pi_+^{-1}(\mathcal{M}_\kappa^\mathcal{U})\to\mathcal{M}_\delta^\mathcal{U}$ as $\tau:=(i_{\delta\kappa}^\mathcal{U})^{-1}\circ\pi_+$. To show that this is well-defined we have to show that $\pi_+, \pi_+^{-1}(\mathcal{M}_\kappa^\mathcal{U})\subseteq \operatorname{ran} i_{\delta\kappa}^\mathcal{U}$, so let $x=\pi_+(\bar x)$ for $\bar x\in\pi_+^{-1}(\mathcal{M}_\kappa^\mathcal{U})$. By elementarity we get that $\bar x\in\mathcal{M}_\delta^\mathcal{U}\cap\mathcal{H}^+$, so since $\delta\in[0,\kappa)_\mathcal{U}$ there is some $\eta<_\mathcal{U}\delta$ and $z\in\mathcal{M}_\eta^\mathcal{U}$ such that $\bar x=i_{\eta\delta}^\mathcal{U}(z)$. But then

$$x = \pi_{+}(\bar{x}) = \pi_{+}(i^{\mathcal{U}}_{n\delta}(z)) = i^{\mathcal{U}}_{n\kappa}(z) = i^{\mathcal{U}}_{\delta\kappa}(i^{\mathcal{U}}_{n\delta}(z)) \in \operatorname{ran} i^{\mathcal{U}}_{\delta\kappa}$$

and τ is well-defined. Lift τ to $\tilde{\tau}: \mathrm{Ult}(\pi_+^{-1}(\mathcal{M}_\kappa^{\mathcal{U}}), E_{j_\delta} \upharpoonright \delta) \to \mathrm{Ult}(\mathcal{M}_\delta^{\mathcal{U}}, E_{j_\delta} \upharpoonright \delta)$, so that $\tilde{\tau}\psi\bar{\mathcal{V}}$ is then a bad tree on $\Phi(j\,\mathcal{T}\upharpoonright\delta)^{\widehat{\mathcal{V}}}\mathrm{Ult}(\mathcal{M}_\delta^{\mathcal{U}}, E_{j_\delta}\upharpoonright\delta), \delta\rangle = \Psi_\delta$.

Proposition 2.2. The above procedure halts at some $\theta \leqslant \kappa$.

PROOF. It suffices to show that $\kappa+1$ does not satisfy cases 1 and 2. But $\kappa\in\Sigma$ since κ is regular and $j(\kappa)=\kappa$, and $\sup_{\gamma<\kappa}\nu_{\gamma}^{\mathcal{U}}\leqslant\kappa$ by definition of \mathcal{U} . Assume thus towards a contradiction that $\kappa+1$ is a special drop. In particular $\mathcal{M}_{\kappa}^{\mathcal{U}}$ is a weasel (since κ is a regular V-cardinal), and note that for this to happen we cannot have had any drops on the \mathcal{W} -to- $\mathcal{M}_{\kappa}^{\mathcal{U}}$ branch, special or not. This is purely for cardinality reasons, as otherwise we would have dropped to a structure of cardinality $\leqslant \kappa < \Omega$. But Lemma 2.1 implies that there is some $\delta \in [0,\kappa)_{\mathcal{U}} \cap \Sigma$ such that Ψ_{δ} is not iterable, and as there are no drops on the branch, $\mathcal{M}_{\delta}^{\mathcal{U}}$ is a weasel (since δ is a regular V-cardinal), making $\delta+1<_{\mathcal{U}}\kappa$ a special drop, $\frac{\ell}{\epsilon}$.

This finishes the construction of \mathcal{T} , \mathcal{U} and $\bar{\mathcal{U}}$. Let $\theta \leqslant \kappa$ be the length of this comparison process and set $\mathcal{P} := \mathcal{M}_{\theta}^{\mathcal{T}}$, $\mathcal{Q} := \mathcal{M}_{\theta}^{\mathcal{U}}$ and $j^+ := j_{\theta}$.

3 Iterability

Lemma 3.1. If Q is a stable weasel then $\Psi := \Phi(j \mathcal{T}) \widehat{\ } \langle \text{Ult}(Q, E_{j^+} \upharpoonright \kappa), \kappa \rangle$ is a stable iterable phalanx.

PROOF. Note first that Q being a weasel implies that there are no drops on the W-to-Q branch, special or not, just as before. Assume that the lemma fails, which then forces $\theta = \kappa$, as there are cofinally many disagreements below κ due to crit $j < \kappa$.

This means that $\kappa + 1$ is a special drop, but then Lemma 2.1 implies that there is a special drop $\delta + 1 \in [0, \kappa)_{\mathcal{U}}, \, \xi$.

Lemma 3.2. If Q is a set premouse then for any proper initial segment $\mathcal{N} \triangleleft Q$ such that $n := \min\{k < \omega \mid \rho_{k+1}(\mathcal{N}) \leqslant \theta\}$ exists it holds that

$$\Psi := \Phi(j \mathcal{T}) \widehat{\langle} (\mathrm{Ult}_n(\mathcal{N}, E_{j^+} \upharpoonright \theta), n), \theta \rangle$$

is a stable and iterable phalanx.

PROOF. Since Q is a set premouse there is a drop on the W-to-Q branch, so that $\mathcal{P} \subseteq Q$. As there are no drops on the \overline{W} -to- \mathcal{P} branch, $|\mathcal{P}| = \kappa$. If $\theta < \kappa$ then regularity of κ would entail that $|Q| < \kappa, \ \ \ \ \ \$, so $\kappa = \theta$.

Suppose the claim fails, so that we have a bad tree \mathcal{V} on Ψ . Let b be the \mathcal{W} -to- \mathcal{Q} branch, $\gamma \in b$ least above all drops and $\delta \in b \cap \Sigma$ least above γ , which is possible as b is club in κ . Then just as in the proof of Lemma 2.1 we get that

$$\Phi(j\,\mathcal{T})^{\hat{}}\langle (\mathrm{Ult}_n(\pi_+^{-1}(\mathcal{N}), E_{i\delta} \upharpoonright \delta), n), \delta \rangle$$

is not iterable. Since $\delta \in b - \gamma$, $\mathcal{M}^{\mathcal{U}}_{\delta}$ is the direct limit of previous models, so that elementarity of π_+ implies that $\pi_+^{-1}(\mathcal{M}^{\mathcal{U}}_{\kappa}) = \mathcal{M}^{\mathcal{U}}_{\delta}$. Thus $\mathcal{N}_0 := \pi_+^{-1}(\mathcal{N}) \triangleleft \mathcal{M}^{\mathcal{U}}_{\delta}$.

We will show that $\varepsilon+1:=\mathrm{succ}_{\mathcal{U}}(\delta)$ is a drop, which will contradict that $\delta>\gamma$ and γ being above all drops in b. The extender $E_{\varepsilon}^{\mathcal{U}}$ is the first one used on $[\delta,\kappa)_{\mathcal{U}}$. We claim that $\mathrm{lh}\,E_{\varepsilon}^{\mathcal{U}}\leqslant o(\mathcal{N}_0)$. If this was not the case then $\mathcal{N}_0\unlhd\mathcal{M}_{\varepsilon}^{\mathcal{T}}$ and thus also $\mathcal{N}_0\unlhd\mathcal{P}$. But then $\mathrm{Ult}_n(\mathcal{N}_0,E_{j_\delta}\upharpoonright\delta)$ can be embedded into $\mathrm{Ult}_n(\mathcal{P},E_{j^+}\upharpoonright\kappa)$, so that $\Psi':=\Phi(j\,\mathcal{T})^{\widehat{}}\langle(\mathrm{Ult}_n(\mathcal{P},E_{j^+}\upharpoonright\kappa),n),\kappa\rangle$ is not iterable, but Ψ' is the derived phalanx of an iteration tree on the iterable \mathcal{W} , ξ . Thus $\mathrm{lh}\,E_{\varepsilon}^{\mathcal{U}}\leqslant o(\mathcal{N}_0)$.

Note also that since δ is a regular V-cardinal it holds that for every extender E used on \mathcal{U} , if $\operatorname{crit} E < \delta$ then $\operatorname{lh} E < \delta$. In particular this means that $\mu := \operatorname{crit} E^{\mathcal{U}}_{\varepsilon} \geqslant \delta$, so that $\mu^{+\mathcal{M}^{\mathcal{U}}_{\varepsilon+1}} > \delta$. Say furthermore that $\mu^{+\mathcal{M}^{\mathcal{U}}_{\varepsilon+1}} \geqslant o(\mathcal{N}_0)$. Then by the result in the above paragraph, $\mu^{+\mathcal{M}^{\mathcal{U}}_{\varepsilon+1}} \geqslant \operatorname{lh} E^{\mathcal{U}}_{\varepsilon} > \mu^{+\mathcal{M}^{\mathcal{U}}_{\varepsilon}}$, which is a contradiction since $\mu^{+\mathcal{M}^{\mathcal{U}}_{\varepsilon+1}} = \mu^{+(\mathcal{M}^{\mathcal{U}}_{\varepsilon+1})^*} \leqslant \mu^{+\mathcal{M}^{\mathcal{U}}_{\varepsilon}}$ by definition of $(\mathcal{M}^{\mathcal{U}}_{\varepsilon+1})^*$. Thus $\mu^{+\mathcal{M}^{\mathcal{U}}_{\varepsilon+1}} \in (\delta, o(\mathcal{N}_0))$.

But now by definition of \mathcal{N}_0 , $\rho(\mathcal{N}_0) = \rho(\mathcal{N}) \leqslant \delta$, so that since $\mathcal{N}_0 \lhd \mathcal{M}_{\delta}^{\mathcal{U}}$, \mathcal{N}_0 is sound and $\mu^{+\mathcal{M}_{\varepsilon+1}^{\mathcal{U}}}$ is collapsed in $\mathcal{M}_{\delta}^{\mathcal{U}}$. This means that $(\mathcal{M}_{\varepsilon+1}^{\mathcal{U}})^* \lhd \mathcal{M}_{\delta}^{\mathcal{U}}$, making $\varepsilon + 1$ a drop, ξ .

4 The action

Lemma 4.1. $i_{\mathcal{U}}$ " $\kappa \subseteq \kappa$.

PROOF. Suppose that $i_{\mathcal{U}}$ " $\kappa \subseteq \kappa$. We claim that there are no drops on the \mathcal{W} -to- \mathcal{Q} branch, special or not. If there were only standard drops on the branch then there would not be any drops on the $\bar{\mathcal{W}}$ -to- \mathcal{P} branch, so universality of \mathcal{W} implies that $|\mathcal{Q}| = \kappa$ which in turn requires that $\theta = \kappa$ by regularity of κ . But then we also get that $i_{\mathcal{U}}$ " $\kappa \subseteq \kappa$, $\not\subseteq$.

Suppose now $\varepsilon + 1$ is a special drop on the \mathcal{W} -to- \mathcal{Q} branch, entailing that $|\mathcal{M}^{\mathcal{U}}_{\varepsilon+1}| < \kappa$ and $\Phi(j\mathcal{T})^{\sim}(\mathrm{Ult}_n(\mathcal{M}^{\mathcal{U}}_{\varepsilon}, n), E_{j_{\varepsilon}} \upharpoonright \varepsilon), \varepsilon\rangle$ is not iterable, by definition of special drop. As $|\mathcal{M}^{\mathcal{U}}_{\varepsilon+1}| < \kappa$ and $i_{\mathcal{U}}$ " $\kappa \subseteq \kappa$ we get that $\theta < \kappa$, so the coiteration procedure ends with $\mathcal{Q} \unlhd \mathcal{P}$. This means that $\mathrm{Ult}_n(\mathcal{M}^{\mathcal{U}}_{\varepsilon}, E_{j_{\varepsilon}} \upharpoonright \varepsilon)$ embeds into $\mathrm{Ult}_n(\mathcal{P}, E_{j+} \upharpoonright \kappa)$, and then $\Phi(j\mathcal{T})^{\sim}(\mathrm{Ult}_n(\mathcal{P}, E_{j+} \upharpoonright \kappa), n), \kappa\rangle$ is not iterable – but this phalanx is the derived phalanx of an iteration tree on the iterable \mathcal{W} , ξ .

Thus there are no drops on the \mathcal{W} -to- \mathcal{Q} branch and \mathcal{Q} is thus a weasel. Now by Lemma 3.1, setting $\Psi_{\mathcal{W}} := \Phi(j\mathcal{T})$, $\mathcal{M} := \mathrm{Ult}(\mathcal{Q}, E_{j^+} \upharpoonright \kappa)$ and $\Psi_{\mathcal{M}} := \Phi(j\mathcal{T}) \curvearrowright \langle \mathcal{M}, \kappa \rangle$, we can compare $\Psi_{\mathcal{W}}$ with $\Psi_{\mathcal{M}}$:

The thick trick (Nielsen, 2016, Lemma 8.6) implies that \mathcal{M} is below \mathcal{R} and letting $\iota:\mathcal{Q}\to\mathcal{M}$ be the ultrapower map we have that $\varphi:=i_{\mathcal{V}}\circ\iota\circ i_{\mathcal{U}}:\mathcal{W}\to\mathcal{R}\unlhd\mathcal{S}$, so Dodd-Jensen implies that $\mathcal{R}=\mathcal{S}$. Lastly, we can view \mathcal{V}' as an iteration tree \mathcal{V}'' on \mathcal{W} . All in all, we now have the coiteration

This implies that φ " $\operatorname{Def}^{\mathcal{W}} = \operatorname{Def}^{\mathcal{S}} = i_{\mathcal{V}''}$ " $\operatorname{Def}^{\mathcal{W}}$, and as $\kappa^+ \subseteq \operatorname{Def}^{\mathcal{W}}$ we also get $\varphi \upharpoonright \kappa = i_{\mathcal{V}''} \upharpoonright \kappa$, so that $\operatorname{crit} i_{\mathcal{V}''} = \operatorname{crit} \varphi \leqslant \operatorname{crit} \iota = \operatorname{crit} j < \kappa$. We will now finish the proof by showing that $i_{\mathcal{U}}(\operatorname{crit} i_{\mathcal{V}''}) \geqslant \kappa$, contradicting $i_{\mathcal{U}}$ " $\kappa \subseteq \kappa$.

As $\operatorname{crit} i_{\mathcal{V}} \geqslant \kappa$ (as \mathcal{M} is below \mathcal{R}) and $\iota^{"}\kappa \subseteq \kappa$, it suffices to show that $\varphi(\operatorname{crit} i_{\mathcal{V}''}) \geqslant \kappa$, or equivalently $i_{\mathcal{V}}(\operatorname{crit} i_{\mathcal{V}''}) \geqslant \kappa$. If $i_{\mathcal{V}}(\operatorname{crit} i_{\mathcal{V}''}) < \kappa$ and E is the first extender on the \mathcal{W} -to- \mathcal{S} branch then $\operatorname{lh} E < i_{\mathcal{V}}(\operatorname{crit} i_{\mathcal{V}''}) < \kappa$, but \mathcal{M} agrees with \mathcal{W} up to κ , ξ .

Note that Lemma 4.1 implies that $\theta = \kappa$: indeed, it implies that either

$$\sup_{\alpha < \theta} \operatorname{crit} E_{\alpha}^{\mathcal{U}} \geqslant \kappa \tag{\dagger}$$

or there being an extender $E^{\mathcal{U}}_{\alpha}$ such that $\operatorname{crit} E^{\mathcal{U}}_{\alpha} < \kappa$ and $\operatorname{lh} E^{\mathcal{U}}_{\alpha} \geqslant \kappa$. But \mathcal{U} has only extenders of length $< \kappa$, so only (†) is possible. Regularity of κ then ensures that $\theta = \kappa$. Furthermore, a standard regressive set argument shows that there is a club $C \subseteq \kappa$ such that for $\alpha, \beta \in C$ with $\alpha < \beta$, it holds that $i^{\mathcal{U}}_{\alpha\beta}(\kappa_{\alpha}) = \kappa_{\beta} = \beta$, where $\kappa_{\xi} := \operatorname{crit} i^{\mathcal{U}}_{\xi\kappa}$.

Now for $\alpha \in C$ we have $i_{\alpha\kappa}(\kappa_{\alpha}) = \kappa$ and moreover $\sup(i_{\alpha\kappa}^{\mathcal{U}})$ " $\kappa_{\alpha}^{+} \mathcal{M}_{\alpha}^{\mathcal{U}} = \kappa^{+} \mathcal{Q}$. Then $\inf \kappa^{+} \mathcal{Q} < \kappa$ while $\inf \bar{\lambda} = \kappa$, so that $\kappa^{+} \mathcal{Q} \neq \bar{\lambda}$. Assume for a contradiction that $\kappa^{+} \mathcal{Q} < \bar{\lambda}$. Then as $\bar{\lambda} = \kappa^{+} \mathcal{R}$ and no extenders on \mathcal{T} overlap κ , there would be a drop on \mathcal{T} on the next step in the coiteration, contradicting the universality of \mathcal{W} . Thus $\kappa^{+} \mathcal{Q} > \bar{\lambda}$. This means that there is some least $\mathcal{N} \lhd \mathcal{Q}$ and some $n < \omega$ such that

$$\rho_{n+1}(\mathcal{N}) = \kappa < \bar{\lambda} \leqslant \rho_n(\mathcal{N}).$$

Setting $\mathcal{M} := \mathrm{Ult}_n(\mathcal{N}, E_{j^+} \upharpoonright \kappa)$, Lemma 3.2 entails that $\Psi_{\mathcal{M}} := \Phi(j\,\mathcal{T}) \curvearrowright \mathcal{M}, \kappa \rangle$ is stable and iterable, so that applying the thick trick (Nielsen, 2016, Lemma 8.6) to $\langle \Psi_{\mathcal{M}}, \Phi(j\,\mathcal{T}) \rangle$ and using that trees on $\Phi(j\,\mathcal{T})$ are really trees on \mathcal{W} gives us the coiteration

But now $\sup(j^+)$ " $\bar{\lambda}=j^+(\bar{\lambda})=\lambda$ is definably collapsed in \mathcal{M} and the (n+1)'st mastercode $A^{n+1}_{\mathcal{M}}$ is definable over \mathcal{R} so that $\lambda<\kappa^{+\mathcal{S}}$. As it furthermore holds that $\mathscr{P}^{\mathcal{S}}(\kappa)=\mathscr{P}^{\mathcal{W}}(\kappa)$ we get $\lambda<\kappa^{+\mathcal{W}}=\kappa^{+K}=\lambda,\ \mbox{\rlap/ξ}$. This finishes the proof of Theorem 0.1.

References

Jensen, R. and Steel, J. (2013). K without the measurable. *Journal of Symbolic Logic*, 78(3):708–734.

Nielsen, D. (2016). Inner model theory — an introduction. Master's thesis, University of Copenhagen. Revised edition. https://dsnielsen.com/papers-and-notes.

Shelah, S. (1994). Cardinal Arithmetic (Oxford Logic Guides). Oxford University Press.

Steel, J. (1996). The Core Model Iterability Problem. Springer Verlag.

Welch, P. D. (2000). Some remarks on the maximality of inner models. *Logical Colloquium* '98.