

Grundzüge der Informatik 1

Vorlesung 9

Überblick

Überblick

- Wiederholung
 - Matrix Multiplikation (verbesserter Algorithmus)
 - Auflösen von Laufzeitrekursionen
- Dynamische Programmierung
 - Laufzeit rekursive Berechnung der Fibonacci-Zahlen
 - Verbesserung durch Speichern der Lösungen
 - Iterative Lösung
 - Prinzip der dynamischen Programmierung
 - Ein erstes einfaches Beispiel

- Matrixmultiplikation

Matrixmultiplikation

Trick wie bei Integer Multiplikation

•
$$P_1 = A \cdot (F-H)$$
 $P_5 = (A+D) \cdot (E+H)$

$$P_5 = (A+D) \cdot (E+H)$$

•
$$P_2 = (A+B) \cdot H$$

•
$$P_2 = (A+B) \cdot H$$
 $P_6 = (B-D) \cdot (G+H)$

•
$$P_3 = (C+D) \cdot E$$

$$P_7 = (A-C) \cdot (E+F)$$

•
$$P_4 = D \cdot (G-E)$$

AE + BG =
$$P_4 + P_5 + P_6 - P_2$$

AF + BH = $P_1 + P_2$
CE + DG = $P_3 + P_4$
AF + BH = $P_1 + P_5 - P_3 - P_7$

Nur 7 Multiplikationen!!!!!

- Matrixmultiplikation

- Auflösen von $T(n) \le 7 T(n/2) + cn^2$ (Intuition)
- T(1) = c

- Matrixmultiplikation

Satz 8.1 (Algorithmus von Strassen)

 Zwei n×n Matrizen können mit Hilfe des Teile & Herrsche Verfahrens in O(n^{2.81}) Zeit multipliziert werden.

Beweis

Laufzeit und Korrektheit können leicht per Induktion gezeigt werden.

- Auflösen von Rekursionsgleichungen

Rekursionsgleichung:

Sei T(n) = a T(n/b) + f(n) und T(1) = 1

- Auflösen von Rekursionen

Satz 8.2

■ Seien a ≥ 1 und b ≥ 2 ganzzahlige Konstanten und f: $\mathbb{N}_0 \to \mathbb{N}_0$.

• Sei
$$T(n) \le \begin{cases} aT\left(\frac{n}{b}\right) + f(n) & \text{, für } n > 1 \\ f(1) & \text{, für } n = 1 \end{cases}$$

- Dann gilt:
 - (1) wenn f(n) = a f(n/b), dann ist $T(n) = O(f(n) \log n)$
 - (2) wenn $f(n) \ge \gamma$ a f(n/b) für eine Konstante $\gamma > 1$, dann gilt T(n) = O(f(n))
 - (3) wenn $f(n) \le \gamma$ a f(n/b) für eine Konstante $0 < \gamma < 1$, dann gilt $T(n) = O(a^{\log_b n})$

Fib2(n)

- 1. if n=1 then return 1
- 2. if n=2 then return 1
- 3. **return** Fib2(n-1) + Fib2(n-2)

Fibonacci Zahlen

- Fib(1)=1
- Fib(2)=1
- Fib(n) = Fib(n-1) + Fib(n-2)

Fib2(n)

- 1. if n=1 then return 1
- 2. **if** n=2 then return 1
- 3. **return** Fib2(n-1) + Fib2(n-2)

Lemma 9.1

Fib2(n) hat eine Laufzeit von Ω(1.6ⁿ).

Beweis

- Sei T(n) die Laufzeit von Fib2(n)
- Wir zeigen per Induktion, dass T(n) ≥ 1.6ⁿ
- Induktionsanfang:
- T(1) = $2 > 1.6 = 1.6^1$
- $T(2) = 3 > 2.56 = 1.6^2$

Fib2(n)

- if n=1 then return 1
- 2. if n=2 then return 1
- 3. **return** Fib2(n-1) + Fib2(n-2)

Lemma 9.1

Fib2(n) hat eine Laufzeit von Ω(1.6ⁿ).

Beweis

- Induktionsannahme:
- Die Laufzeit von Fib2(m) ist mindestens 1.6^m für alle m<n.
- Induktionsschluss:

Sei n>2. Es gilt
$$T(n) \ge T(n-1) + T(n-2) \ge 1.6^{n-1} + 1.6^{n-2}$$

= $(1.6 + 1) \cdot 1.6^{n-2} = 2.6 \cdot 1.6^{n-2}$
 $\ge 1.6^2 \cdot 1.6^{n-2} = 1.6^n$

Warum ist die Laufzeit so schlecht?

Betrachte Rekursionsbaum von Fib2(6)

Warum ist die Laufzeit so schlecht?

Betrachte Rekursionsbaum von Fib2(6)

Bei der Berechnung von Fib2(6) wird Fib2(3) dreimal aufgerufen!

Warum ist die Laufzeit so schlecht?

Betrachte Rekursionsbaum von Fib2(6)

Es wird also dieselbe Rechnung dreimal ausgeführt!

Warum ist die Laufzeit so schlecht?

Betrachte Rekursionsbaum von Fib2(6)

Bei großem n passiert dies sehr häufig!

Zwischenspeichern von Rechenergebnisse

Idee: Wir speichern die Ergebnisse, die wir bereits kennen

Dynamische Programmierung - Zwischenspeicherung

```
Fib3-Init(n)

1. F = new array [1...n]

2. for i=1 to n do

3. F[i]=0

4. F[1] = 1

5. F[2] = 1

6. return Fib3(F,n)
```

```
Fib3(F,n)

1. if F[n] > 0 then return F[n]

2. else

3. F[n] = Fib3(F,n-1) + Fib3(F,n-2)

4. return F[n]
```


- Zwischenspeicherung

```
Fib3-Init(n)

1. F = new array [1...n] (\( \cdot\)

2. for i=1 to n do

3. F[i]=0

4. F[1] = 1

5. F[2] = 1

6. return Fib3(F,n) (\( \cdot\)
```

Fib3(F,n)

- 1. if F[n] > 0 then return F[n]
- 2. else
- 3. F[n] = Fib3(F,n-1) + Fib3(F,n-2)
- 4. return F[n]

T(n): Lanketvan til 3(t,n)

Beispiel

						6	
F[i]	1	1	0	0	0	0	

Beispiel

i							
F[i]	1	1	0	0	0	0	

Beispiel

i							
F[i]	1	1	0	0	0	0	

Beispiel

i	1	2	3	4	5	6	
F[i]	1	1	0	0	0	0	

i	1	2	3	4	5	6	
F[i]	1	1	0	0	0	0	

i	1	2	3	4	5	6
F[i]	1	1	0	0	0	0

i	1	2	3	4	5	6	
F[i]	1	1	0	0	0	0	

i	1	2	3	4	5	6	
F[i]	1	1	0	0	0	0	

Beispiel

i	1	2	3	4	5	6	
F[i]	1	1	2	0	0	0	

Beispiel

i	1	2	3	4	5	6	
F[i]	1	1	2	0	0	0	

i							
F[i]	1	1	2	0	0	0	

i	1	2	3	4	5	6	
F[i]	1	1	2	3	0	0	

Beispiel

						6
F[i]	1	1	2	3	0	0

Beispiel

i	1	2	3	4	5	6	
F[i]	1	1	2	3	0	0	

Beispiel

i	1	2	3	4	5	6	
F[i]	1	1	2	3	5	0	

Beispiel

i	1	2	3	4	5	6	
F[i]	1	1	2	3	5	0	

Beispiel

i	1	2	3	4	5	6	
F[i]	1	1	2	3	5	0	

i							
F[i]	1	1	2	3	5	8	


```
Fib3(F,n)
```

- 1. **if** F[n] > 0 **then return** F[n]
- 2. **else** F[n] = Fib3(F,n-1) + Fib3(F,n-2)

Behauptung 9.2

Für jedes m>0 gilt: Fib3(F,m) wird maximal zweimal aufgerufen.

Beweis

- Fib3(F,m) wird entweder von Fib3(F,m+1) oder Fib3(F,m+2) aufgerufen
- Die rekursiven Aufrufe in Fib3(F,m+1) und Fib3(F,m+2) werden nur einmal ausgeführt, da bei einem weiteren Aufruf F[m+1] (bzw. F[m+2]) ungleich 0 ist und somit in Zeile 1 zurückgesprungen wird
- Damit folgt die Behauptung

Fib3(F,n)

- 1. **if** F[n] > 0 **then return** F[n]
- 2. **else** F[n] = Fib3(F,n-1) + Fib3(F,n-2)

Lemma 9.3

Die Laufzeit von Fib3(F,n) (inklusive Initialisierung) ist O(n).

Beweis

- Wir haben bereits gesehen, dass die Initialisierung in O(n) Zeit geht
- Fib3(F,m) wird nur für Werte m aus dem Bereich {1,...,n} aufgerufen
- Ein Aufruf von Fib3(F,m) ohne die rekursiven Aufrufe benötigt O(1) Zeit
- Aufgrund der Behauptung 9.2 ist damit die Gesamtlaufzeit O(n)

Beobachtung

Die Tabelle wird bottom-up ausgefüllt

Vereinfachter Code

Fib1(n)

- 1. F = new array[1...n]
- 2. F[1] = 1
- 3. F[2] = 1
- 4. **for** i=3 to n **do**
- 5. F[i] = F[i-1] + F[i-2]
- 6. **return** F[n]

Beobachtung

Die Tabelle wird bottom-up ausgefüllt

Vereinfachter Code

Dynamische Programmierung

- Beschreibe optimale Lösung einer gegebenen Instanz durch optimale Lösungen "kleinerer" Instanzen (hier kleinere Fibonacci-Zahlen)
- Beschreibe Rekursionsabbruch
- Löse die Rekursion "bottom-up" durch schrittweises Ausfüllen einer Tabelle der benötigten Teillösungen

Wann verbessert der Ansatz die Laufzeit?

- Die Anzahl unterschiedlicher Funktionsaufrufe (Größe der Tabelle) ist klein
- Bei einer "normalen Ausführung" des rekursiven Algorithmus ist mit vielen Mehrfachausführungen zu rechnen

Aufgabe

- Entwickeln Sie einen Algorithmus für die Maximumssuche, der auf dynamischer Programmierung basiert. Der Algorithmus soll das maximale Element (nicht den Index) zurückgeben.
- Formulieren Sie dazu zunächst das Problem rekursiv
- Sie können für das Problem keine Laufzeitverbesserung erwarten!

Ein einfaches Beispiel

- Maximum von n Zahlen
- Eingabe: Array A der Größe n
- Ausgabe: Wert des Maximums der Zahlen in A

Ziel

- Dynamische Programmierung anhand dieses Beispiels durchspielen
- Natürlich keine Laufzeitverbesserung zu erwarten

Entwicklung der Rekursionsgleichung

- Eingabe besteht aus n Elementen
- Idee: Ordne die Elemente von 1 bis n (das Eingabefeld A gibt z.B. eine solche Ordnung)
- Drücke optimale Lösung für die ersten i Elemente als Funktion der optimalen Lösung ersten i-1 Elemente aus

Entwicklung der Rekursionsgleichung

- Eingabe besteht aus n Elementen
- Idee: Ordne die Elemente von 1 bis n (das Eingabefeld A gibt z.B. eine solche Ordnung)
- Drücke optimale Lösung für die ersten i Elemente als Funktion der optimalen Lösung ersten i-1 Elemente aus

Beispiel

- Sei Max(i) = $\max_{1 \le j \le i} \{A[j]\}$
- Dann gilt Max(1) = A[1] (Rekursionsabbruch)

$$Max(i) = max \{Max(i-1), A[i])\}$$

MaxSucheDP(A,n)

- 1. Max = **new array** [1...n]
- 2. Max[1] = A[1]
- 3. for i=2 to n do
- 4. $Max[i] = max\{Max[i-1], A[i]\}$
- 5. return Max[n]

Satz 9.4

 Algorithmus MaxSucheDP(A,n) berechnet ein maximales Element in einem Feld A[1..n].

Beweis

- Schleifeninvariante: Max[i-1] ist ein maximales Element aus A[1..i-1]
- Induktionsanfang (i=2): Vor dem ersten Schleifeneintritt ist Max[1] = A[1] und enthält das maximale Element aus A[1..1]
- Induktionsannahme: Max[i-1] ist ein maximales Element aus A[1..i-1] und i ≤ n
- Induktionsschluss: In der Schleife wird Max[i] auf max{Max[i-1], A[i]} gesetzt
- Laut Induktionsannahme ist Max[i-1] ein maximales Element aus A[1..i-1]
- Damit ist Max[i] ein maximales Element aus A[1..i]
- Der Algorithmus gibt Max[n] zurück, was aufgrund der Schleifeninvariante korrekt ist

MaxSucheDP(A,n)

- 1. Max = **new array** [1...n]
- 2. Max[1] = A[1]
- 3. **for** i=2 **to** n **do**
- 4. $Max[i] = max\{Max[i-1], A[i]\}$
- 5. return Max[n]

Wie kann man aus Max[1..n] den Index eines größten Elements von A herausfinden?

 Immer wenn sich der Wert von Max ändert, dann ändert sich auch der Index

MaxIndexSucheDP(A,n)

- Max = new array [1...n]
- Index = new array [1...n]
- 3. Max[1] = A[1]
- 4. Index[1] = 1
- 5. **for** i=2 **to** n **do**
- 6. $Max[i] = max\{Max[i-1], A[i]\}$
- 7. if Max[i] = Max[i-1] then
- 8. Index[i] = Index[i-1]
- 9. else
- 10. Index[i] = i
- 11. return Index[n]

Was Iernen wir aus der Maximumsberechnung?

- Wenn wir es mit Mengen zu tun haben, können wir eine Ordnung der Elemente einführen und die Rekursion durch Zurückführen der optimalen Lösung für i Elemente auf die Lösung für i-1 Elemente erhalten
- Benötigt wird dabei der Wert der optimalen Lösung für i-1 Elemente
- Die Lösung selbst (der Index des Maximums) kann nachher aus der Tabelle rekonstruiert werden

Zusammenfassung

- Laufzeit rekursive Berechnung der Fibonacci-Zahlen
- Verbesserung durch Speichern der Lösungen
- Iterative Lösung
- Prinzip der dynamischen Programmierung
- Ein erstes einfaches Beispiel

Referenzen

T. Cormen, C. Leisserson, R. Rivest, C. Stein. Introduction to Algorithms.
 The MIT press. Second edition, 2001.

