FONCTIONS 2 – PROPRIÉTÉS

I) SIGNE D'UNE FONCTION

Soit f une fonction définie sur un intervalle I

- Si, pour tout x de $I, f(x) \ge 0$, alors on dit que f est positive sur I. **Interprétation graphique :** Cf est alors située au dessus de l'axe des abscisses.
- Si, pour tout x de $I, f(x) \le 0$, alors on dit que f est négative sur I. **Interprétation graphique :** Cf est alors située au dessous de l'axe des abscisses.

Ex: Étudier le signe de f définie sur $\mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ par $x \mapsto \frac{-4}{2x-1}$

Tableau de signe :

Tuoteda de signe.				
X	$-\infty$	1/2	$+\infty$	
-4	_		_	
2x-1	_	ф	+	
f(x)	+		_	

f est strictement positive sur] $-\infty$; 1/2 [f est strictement négative sur]1/2; $+\infty$ [

II) EXTREMUM D'UNE FONCTION

Soit f une fonction définie sur un intervalle I et a un nombre de I.

• Si, pour tout x de I, on a $f(x) \ge f(a)$ alors on dit que f admet un minimum de f(a) en a sur I.

Interprétation graphique : Le point le plus bas de Cf est le point de coordonnées (a; f(a))

• Si, pour tout x de I, on a $f(x) \le f(a)$ alors on dit que f admet un maximum de f(a) en a sur I.

Interprétation graphique : Le point le plus haut de Cf est le point de coordonnées (a; f(a))

Ex: La fonction f définie sur \mathbb{R} par $x \mapsto x^2 - 2x - 3$ a-t-elle un extremum?

Pour tout x de \mathbb{R} ,

déterminons le signe de f(x) - f(1):

$$f(x)-f(1) = x^{2}-2x-3-(1-2-3)$$

$$= x^{2}-2x-3-(-4)$$

$$= x^{2}-2x+1$$

$$= (x-1)^{2}$$

Or un carré est toujours positif

$$\operatorname{donc} f(x) - f(1) \ge 0$$

$$\operatorname{donc} f(x) \ge f(1) \operatorname{avec} f(1) = -4$$

donc f admet un minimum de -4 en 1 sur \mathbb{R} .

p289: 46, 47, 48

algo

p297: TP

III) VARIATIONS D'UNE FONCTION

Soit f une fonction définie sur un intervalle [a; b].

- Si, pour tous x_1, x_2 tels que $a \le x_1 < x_2 \le b$, on a $f(x_1) < f(x_2)$ alors on dit que f est strictement croissante sur [a; b].
 - **Interprétation graphique :** x_1 , x_2 et leurs images $f(x_1)$, $f(x_2)$ sont toujours dans le même ordre donc Cf « monte ».
- Si, pour tous x_1, x_2 tels que $a \le x_1 < x_2 \le b$, on a $f(x_1) > f(x_2)$ alors on dit que f est strictement décroissante sur [a; b].
 - **Interprétation graphique :** x_1 , x_2 et leurs images $f(x_1)$, $f(x_2)$ sont toujours dans l'ordre inverse donc Cf « descend ».

Ex: Étudier les variations de f définie sur \mathbb{R}^{*-} par $x \mapsto \frac{3}{x} + 1$

Pour tous x_1 , x_2 tels que $x_1 < x_2 < 0$ déterminons le signe de $f(x_1) - f(x_2)$:

$$x_1 < 0$$
 et $x_2 < 0$ donc $x_1 x_2 > 0$

$$x_2 > x_1 \text{ donc } x_2 - x_1 > 0$$

Bilan : $f(x_1) - f(x_2) > 0$

$$\operatorname{donc} f(x_1) > f(x_2)$$

donc f est strictement décroissante sur \mathbb{R}^{*-}

Tableau de variations:

\mathcal{X}	$-\infty$ ()
f(x)		

oral:

p288: 37

p290: 57, 58, 59, 62

p290: 60, 63, 64

p291: 68

p292: 76