Example problem: Gauss's law - calculation of electric field everywhere in space for a given spherical charge distribution

Given: spherical, positions-dependent charge distribution:

- Calculate electric displacement field and electric field for the above given space charge distribution everywhere in space 0 < r < ∞
- distinguish between the different regions, when applying Gauss's law
- Use spherical coordinates for solving the problem

. spherical symmetry
$$\Rightarrow \vec{D}$$
, \vec{E} show no alependence on θ , ℓ (Symmetric)
$$\Rightarrow \vec{D}$$
, $\vec{E} \Rightarrow \vec{E}r$, $\vec{D}r$; they depend only on r

$$\Rightarrow \vec{E}(\vec{r}) = \vec{E}r \cdot \vec{e}r$$
, $\vec{D}(\vec{r}) = \vec{D}r \cdot \vec{e}r$
· Calculate \vec{D} : Apply Gauss's Law: $\int \vec{D}d\vec{a} = \int p(\vec{r}) d^3r = \int p(\vec{r}) dV$

=
$$Drr^2 \int_{0}^{2\pi} [1+1] dy = 2Dr.r^2 [9]_{0}^{2\pi}$$

= $4\pi Dr.r^2$

Ir is still variable; 0 4 r 400 V((47637A) V((27A)

 $\int_{V} P(\vec{r}) dV \rightarrow Two \text{ regions: } r \leq a \Rightarrow P(\vec{r})$ $V \qquad \qquad r > a \Rightarrow 0$ goal is to Calculate a (vcr))

$$\frac{\partial}{\partial (V(r_1))} < \frac{\partial}{\partial (V(r_2))} < \frac{\partial}{\partial (V(r_4))}
\frac{\partial}{\partial (V(r_3))} = \frac{\partial}{\partial (V(r_4))} = \frac{\partial}{\partial (V(r_4))}$$

Region |:
$$\int P(\vec{r}) dv = Q(V(\vec{r}))$$
 | $\int P(\vec{r}) dv = Q(V(\vec{r}))$ | $\int P(\vec{r}) dv = Q(V(\vec{r}))$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r}) dv = Q(\vec{r})$ | $\int P(\vec{r}) dv = Q(\vec{r}) dv$

