Berry Phase Effects on Electronic Properties

Qian Niu

University of Texas at Austin

Collaborators:

- D. Xiao, W. Yao, C.P. Chuu,
- D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C. Chang,
- T. Jungwirth, A.H.MacDonald, J. Sinova, C.G.Zeng, H. Weitering

Supported by : DOE, NSF, Welch Foundation

- Berry phase and its applications
- Anomalous velocity
- Anomalous density of states
- Graphene without inversion symmetry
- Nonabelian extension
- Polarization and Chern-Simons forms
- Conclusion

Berry Phase

In the adiabatic limit: $\Psi(t) = \psi_n(\lambda(t)) e^{-i\int_0^t dt \, \varepsilon_n/\hbar} e^{-i\gamma_n(t)}$

$$\Psi(t) = \Psi_n(\lambda(t)) e^{-i\int_0^t dt \, \varepsilon_n/\hbar} e^{-i\gamma_n(t)}$$

Geometric phase:

$$\gamma_n = \int_{\lambda_0}^{\lambda_t} d\lambda \left\langle \psi_n \left| i \frac{\partial}{\partial \lambda} \left| \psi_n \right\rangle \right\rangle$$

Well defined for a closed path

$$\gamma_n = \int_C d\lambda \left\langle \psi_n \left| i \frac{\partial}{\partial \lambda} \right| \psi_n \right\rangle$$

Stokes theorem

$$\gamma_n = \iint d\lambda_1 d\lambda_2 \ \Omega$$

Berry Curvature

$$\Omega = i \frac{\partial}{\partial \lambda_1} \langle \psi \mid \frac{\partial}{\partial \lambda_2} | \psi \rangle - i \frac{\partial}{\partial \lambda_2} \langle \psi \mid \frac{\partial}{\partial \lambda_1} | \psi \rangle$$

Analogies

Berry curvature

$$\Omega(\vec{\lambda})$$

Berry connection

$$\langle \psi \mid i \frac{\partial}{\partial \lambda} | \psi \rangle$$
Geometric phase

$$\iint d^2 \lambda \ \Omega(\vec{\lambda}) = \text{integer}$$

Magnetic field

$$B(\vec{r})$$

Vector potential

$$A(\vec{r})$$

Aharonov-Bohm phase

$$\oint dr \ A(\vec{r}) = \iint d^2r \ B(\vec{r})$$

Dirac monopole

$$\iint d^2r \ B(\vec{r}) = \text{integer } h/e$$

Applications

Berry phase

interference, energy levels, polarization in crystals

• Berry curvature

spin dynamics, electron dynamics in Bloch bands

Chern number

quantum Hall effect, quantum charge pump

- Berry phase and its applications
- Anomalous velocity
- Anomalous density of states
- Graphene without inversion symmetry
- Nonabelian extension
- Polarization and Chern-Simons forms
- Conclusion

Semiclassical Equations of Motion

Wave-packet Dynamics (r, k)

G. Sundaram and Q. Niu, PRB 59, 14915 (1999)

Nonzero if either time-reversal or inversion symmetry is broken

$$\dot{r} = \frac{\partial \varepsilon_n(k)}{\hbar \partial k} - \dot{k} \times \Omega_n(k)$$
 Berry Curvature
$$\hbar \dot{k} = -eE(r) - e\dot{r} \times B(r)$$
 $\Omega_n(k) = \mathrm{i} \langle \nabla_{\mathbf{k}} u_n(k) \rangle$

$$\Omega_n(k) = i \langle \nabla_k u_n(k) | \times | \nabla_k u_n(k) \rangle$$

Anomalous Hall effect

velocity

$$\dot{\mathbf{x}} = \frac{\partial \mathcal{E}}{\partial \mathbf{k}} + e \mathbf{E} \times \mathbf{\Omega},$$

distribution

$$g(\mathbf{k}) = f(\mathbf{k}) + \delta f(\mathbf{k})$$

• current $-e^2 \mathbf{E} \times \int d^3 \mathbf{k} \ \mathbf{f}(\mathbf{k}) \ \mathbf{\Omega} - e \int d^3 \mathbf{k} \ \delta \mathbf{f}(\mathbf{k}) \ \frac{\partial \mathcal{E}}{\partial \mathbf{k}}$

Intrinsic

Recent experiment

Mn5Ge3: Zeng, Yao, Niu & Weitering, PRL 2006

Intrinsic AHE in other ferromagnets

- Semiconductors, Mn_xGa_{1-x}As
 - Jungwirth, Niu, MacDonald, PRL (2002)
- Oxides, SrRuO₃
 - Fang et al, Science, (2003).
- Transition metals, Fe
 - Yao et al, PRL (2004)
 - Wang et al, PRB (2006)
- Spinel, CuCr₂Se_{4-x}Br_x
 - Lee et al, Science, (2004)

- Berry phase and its applications
- Anomalous velocity
- Anomalous density of states
- Graphene without inversion symmetry
- Nonabelian extension
- Polarization and Chern-Simons forms
- Conclusion

Phase Space Density of States

Evolution of a phase space volume

$$\frac{1}{\Delta V}\frac{\mathrm{d}\Delta V}{\mathrm{d}t} = \boldsymbol{\nabla_{\boldsymbol{r}}}\cdot\dot{\boldsymbol{r}} + \boldsymbol{\nabla_{\boldsymbol{k}}}\cdot\dot{\boldsymbol{k}}$$

$$\Delta V = \Delta V_0/(1+rac{e}{\hbar} m{B}\cdot \Omega_n)$$

Liouville's theorem breaks down

Density of States

$$D_n(m{r},m{k})=(2\pi)^{-d}(1+rac{e}{\hbar}m{B}\cdotm{\Omega}_n)$$

Thermal dynamic quantity

$$ar{Q} = \sum_n \int \mathrm{d}k \, D_n(k) f_n(k) Q_n(k)$$

(homogenous system)

Orbital magnetization

Xiao et al, PRL 2005, 2006

$$oldsymbol{M} = -\Big(rac{\partial F}{\partial oldsymbol{B}}\Big)_{\mu,T}$$

Free energy:
$$F = -\frac{1}{\beta} \sum_{\mathbf{k}} \log(1 + e^{-\beta(\tilde{\varepsilon} - \mu)})$$
$$= -\frac{1}{\beta} \int \frac{d\mathbf{k}}{(2\pi)^3} (1 + \frac{e}{\hbar} \mathbf{B} \cdot \mathbf{\Omega}) \log(1 + e^{-\beta(\tilde{\varepsilon} - \mu)})$$

Our Formula:

$$M(\mathbf{r}) = \int \frac{d\mathbf{k}}{(2\pi)^3} f(\mathbf{r}, \mathbf{k}) \mathbf{m}(\mathbf{k}) + \frac{1}{\beta} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{e}{\hbar} \mathbf{\Omega}(\mathbf{k}) \log(1 + e^{-\beta(\varepsilon - \mu)})$$

Anomalous Thermoelectric Transport

Berry phase correction to magnetization

$$M = \int d\mathbf{k} f(\mathbf{k}) m(\mathbf{k}) + k_B T \int d\mathbf{k} \frac{e}{\hbar} \Omega \log(1 + e^{-\beta(\varepsilon - \mu)})$$
$$= M_{\text{moment}} + M_{\text{free}}$$

• Thermoelectric transport

$$oldsymbol{j}^{ ext{tr}} = -e \int \mathrm{d} oldsymbol{k} \, g(oldsymbol{r}, oldsymbol{k}) \dot{oldsymbol{r}} - oldsymbol{
abla} imes oldsymbol{M}_{ ext{free}}$$

Anomalous Nernst Effect in CuCr₂Se_{4-x}Br_x

- Berry phase and its applications
- Anomalous velocity
- Anomalous density of states
- Graphene without inversion symmetry
- Nonabelian extension
- Polarization and Chern-Simons forms
- Conclusion

Graphene without inversion symmetry

- Graphene on SiC: Dirac gap 0.28 eV
- Energy bands

$$\varepsilon (q) = \pm \sqrt{\Delta^2 + 3t^2 q^2 / 4}$$

• Berry curvature

$$\Omega({\bf q}) = \pm \tau_z \frac{3a^2 \Delta t^2}{2(\Delta^2 + 3q^2a^2t^2)^{3/2}}$$

Orbital moment

$$m(q) = \frac{e}{\hbar} \epsilon(q) \Omega(q)$$

Valley Hall Effect And edge magnetization

Valley polarization induced on side edges Edge magnetization:

- Berry phase and its applications
- Anomalous velocity
- Anomalous density of states
- Graphene without inversion symmetry
- Nonabelian extension
- Quantization of semiclassical dynamics
- Conclusion

Degenerate bands

- Internal degree of freedom:
- Non-abelian Berry curvature:
- Useful for spin transport studies

$$\begin{split} \hbar \dot{\mathbf{k}}_c &= -e(\mathbf{E} + \dot{\mathbf{r}}_c \times \mathbf{B}), \\ \hbar \dot{\mathbf{r}}_c &= \eta^\dagger \Bigg[\frac{D}{D\mathbf{k}}, \mathcal{H} \Bigg] \eta - \hbar \dot{\mathbf{k}}_c \times \eta^\dagger \mathcal{F} \eta, \\ i\hbar \frac{D\eta}{Dt} &= \mathcal{H} \eta. \end{split}$$

Cucler, Yao & Niu, PRB, 2005 Shindou & Imura, Nucl. Phys. B, 2005 Chuu, Chang & Niu, 2006

- Berry phase and its applications
- Anomalous velocity
- Anomalous density of states
- Graphene without inversion symmetry
- Nonabelian extension: spin transport
- Polarization and Chern-Simons forms
- Conclusion

Electrical Polarization

- A basic materials property of dielectrics
 - To keep track of bound charges
 - Order parameter of ferroelectricity
 - Characterization of piezoelectric effects, etc.
- A multiferroic problem: electric polarization induced by inhomogeneous magnetic ordering

G. Lawes et al, PRL (2005)

Polarization as a Berry phase

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$

$$\nabla \cdot \mathbf{P} = -\rho$$

$$\mathbf{P} = \int_0^T dt \, \mathbf{j}(\lambda, \dot{\lambda})$$

Thouless (1983): found adiabatic current in a crystal in terms of a Berry curvature in (k,t) space.

King-Smith and Vanderhilt (1993)
$$P^{\mathrm{KS-V}} = -e \sum_{n} \int_{\mathrm{BZ}} \frac{d\boldsymbol{k}}{(2\pi)^{d}} \left\langle u_{n\boldsymbol{k}} | i \boldsymbol{\nabla}_{\boldsymbol{k}} | u_{n\boldsymbol{k}} \right\rangle$$

Led to great success in first principles calculations

Inhomogeneous order parameter

Make a local approximation and calculate Bloch states

$$|u\rangle = |u(m,k)\rangle$$
, m = order parameter

A perturbative correction to the KS-V formula

$$\delta \mathbf{P}^{\text{KS-V}} = 2e \sum_{n} \int_{\text{BZ}} \frac{d\mathbf{k}}{(2\pi)^d} \operatorname{Im} \langle \delta u_{n\mathbf{k}} | \nabla_{\mathbf{k}} u_{n\mathbf{k}} \rangle$$

Perturbation from the gradient

• A topological contribution (Chern-Simons)

$$P_{\alpha}^{(2)} = e \int_{BZ} \frac{dk}{(2\pi)^d} \left(\mathcal{A}_{\alpha}^k \nabla_{\beta}^r \mathcal{A}_{\beta}^k + \mathcal{A}_{\beta}^k \nabla_{\alpha}^k \mathcal{A}_{\beta}^r + \mathcal{A}_{\beta}^r \nabla_{\beta}^k \mathcal{A}_{\alpha}^k \right)$$

$$\mathcal{A}_{\alpha}^{k} = \langle u | i \nabla_{\alpha}^{k} | u \rangle , \quad \mathcal{A}_{\alpha}^{r} = \langle u | i \nabla_{\alpha}^{r} | u \rangle$$

Conclusion

Berry phase

A unifying concept with many applications

Anomalous velocity

Hall effect from a 'magnetic field' in k space.

Anomalous density of states

Berry phase correction to orbital magnetization anomalous thermoelectric transport

Graphene without inversion symmetry

valley dependent orbital moment valley Hall effect

Nonabelian extension for degenerate bands

Polarization and Chern-Simons forms