TEMA 1

Inducción y recurrencia.

Ejercicio 1.1. Demuestra las siguientes propiedades:

1.
$$m + 0 = 0 + m = m$$
.

2.
$$m+1=1+m=\sigma(m)$$
.

3.
$$(m+n) + p = m + (n+p)$$
.

4.
$$m + n = n + m$$
.

5. Si
$$m + p = n + p$$
, entonces $m = n$.

6. Si
$$m + n = 0$$
, entonces $m = n = 0$.

7.
$$0 \cdot m = m \cdot 0 = 0$$

8.
$$1 \cdot m = m \cdot 1 = m$$

9.
$$(m+n) \cdot p = m \cdot p + n \cdot p$$

10.
$$m \cdot n = n \cdot m$$

11.
$$(m \cdot n) \cdot p = m \cdot (n \cdot p)$$

12.
$$m \le m$$
.

13. Si
$$m \le n$$
 y $n \le m$, entonces $m = n$.

14. Si
$$m \le n$$
 y $n \le p$, entonces $m \le p$.

15. Si
$$m \le n$$
, entonces $\exists_1 p \in \mathbb{N}$ $m + p = n$ y lo llamamos n menos m $(n - m)$.

16. Si
$$m \le n$$
, entonces $m + p \le n + p$.

17. Si
$$m \leq n$$
, entonces $m \cdot p \leq n \cdot p$.

18. Si
$$m \cdot p \le n \cdot p$$
, entonces $p = 0$ o $m \le n$.

Ejercicio 1.2. Demuestra por el método de inducción las siguientes propiedades:

1

1.
$$\forall n \ge 1, \ \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

2.
$$\forall n \ge 1, \ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$\forall n \ge 1, \ \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

4.
$$\forall n \ge 1, \sum_{k=1}^{n} k^5 + \sum_{k=1}^{n} k^7 = 2\left(\frac{n(n+1)}{2}\right)^4$$
.

5.
$$\forall n \geq 0, \ \sum_{k=0}^n a^k = \frac{a^{n+1}-1}{a-1},$$
 siendo $a \neq 1$

6.
$$\forall n \geq 1, \ \sum_{k=1}^{n} (k \cdot k!) = (n+1)! - 1$$

7.
$$\forall n \ge 2, \ \sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}$$

8.
$$\forall n \ge 4, \ 2^n \ge n^2$$

9.
$$\forall n \ge 4, \ n! > 2^n$$

Ejercicio 1.3. Demuestra que para todo $n \in \mathbb{N}$:

a)
$$3^{2n} - 2^n$$
 es divisible por 7,

b)
$$3^{2n+1} + 2^{n+2}$$
 es divisible por 7,

c)
$$3^{2n+2} + 2^{6n+1}$$
 es divisible por 11.

c)
$$3^{2n+2} + 2^{6n+1}$$
 es divisible por 11, d) $3 \cdot 5^{2n+1} + 2^{3n+1}$ es divisible por 17,

e)
$$n(n^2+2)$$
 es múltiplo de 3,

f)
$$5^{n+1} + 2 \cdot 3^n + 1$$
 es múltiplo de 8,

g)
$$7^{2n} + 16n - 1$$
 es múltiplo de 64

g)
$$7^{2n}+16n-1$$
 es múltiplo de 64, h) $(n+1)(n+2)\cdots(n+n)$ es múltiplo de 2^n

i)
$$4^{2n} - 2^n$$
 es divisible por 7,

j)
$$2^{3n} - 14^n$$
 es divisible por 6.

Ejercicio 1.4. Demuestra que la suma de los n primeros números naturales impares es igual a

Ejercicio 1.5. Demuestra por inducción que para todo número par k, el resto de dividir 2^k entre 3 es 1.

Ejercicio 1.6. Demuestra por inducción que para todo número impar k, el resto de dividir 2^k entre 3 es 2.

Ejercicio 1.7. Sea $x_0 = 1$, $x_1 = 2$ y $x_n = 4 + x_{n-2}$ para todo $n \ge 2$. Demuestra que $x_n = 1$ $\frac{1}{2}(4n+1+(-1)^n)$ para todo $n \ge 0$.

Ejercicio 1.8. La sucesión de los números de Fibonacci se define de la siguiente forma:

$$F_0 = 0$$
, $F_1 = 1$ y $F_n = F_{n-1} + F_{n-2}$ para $n \ge 2$.

Demuestra cada una de las siguientes propiedades:

1.
$$F_{n+2} > 2 \cdot F_n$$
 para todo $n \ge 2$

2.
$$\sum_{i=0}^{n} (F_i)^2 = F_n \cdot F_{n+1}$$
 para todo $n \ge 0$

3. 5 divide a F_{5n} para todo $n \ge 0$

4.
$$F_{n-1} \cdot F_{n+1} = (F_n)^2 + (-1)^n$$
 para todo $n \ge 1$

5.
$$mcd(F_n, F_{n+1}) = 1$$
 para todo $n \ge 0$

Ejercicio 1.9. Resuelve las ecuaciones en recurrencia siguientes:

•
$$x_0 = 1, x_1 = 1, x_n = 2x_{n-1} - x_{n-2}$$
 para $n \ge 2$.

•
$$x_0 = 1, x_1 = 2, x_n = 5x_{n-1} - 6x_{n-2}$$
 para $n \ge 2$.

•
$$x_0 = 1, x_1 = 1, x_n = 3x_{n-1} + 4x_{n-2} \text{ para } n \ge 2.$$

•
$$x_0 = 1, x_1 = 2, x_n = -x_{n-1} + 6x_{n-2}$$
 para $n \ge 2$.

•
$$x_0 = 0, x_1 = 1, x_n = 2x_{n-1} - 2x_{n-2}$$
 para $n \ge 2$.

•
$$x_0 = 5, x_1 = 12, x_n = 6x_{n-1} - 9x_{n-2} \text{ para } n \ge 2.$$

•
$$x_0 = 1, x_1 = 1, x_2 = 2, x_n = 5x_{n-1} - 8x_{n-2} + 4x_{n-3} \text{ para } n \ge 3.$$

•
$$x_0 = 1, x_1 = 1, x_2 = 2, x_n = x_{n-1} + x_{n-2} - x_{n-3}$$
 para $n \ge 3$.

•
$$x_0 = 0, x_1 = 1, x_2 = 2, x_n = x_{n-1} + 2x_{n-2} - x_{n-3} \text{ para } n \ge 3.$$

•
$$x_0 = 1, x_1 = 1, x_2 = 3, x_n = 4x_{n-1} - 5x_{n-2} + 2x_{n-3} \text{ para } n \ge 3.$$

•
$$x_0 = 1, x_1 = 3, x_2 = 7, x_n = 3x_{n-1} - 3x_{n-2} + x_{n-3} \text{ para } n \ge 3.$$

•
$$x_0 = 0, x_n = 2x_{n-1} + 1$$
 para $n \ge 1$ (Torres de Hanoi).

•
$$x_0 = 1$$
, $x_n = x_{n-1} + n$ para $n \ge 1$ (regiones plano).

•
$$x_0 = 1$$
, $x_n = 2x_{n-1} + n$ para $n \ge 1$.

•
$$x_0 = 0, x_n - 2x_{n-1} = 3^n \text{ para } n \ge 1.$$

$$x_0 = 0, x_n - 2x_{n-1} = (n+1)3^n \text{ para } n \ge 2.$$

•
$$x_0 = 1/2, x_1 = 3, x_n = 2x_{n-1} + x_{n-2} + 3 \text{ para } n \ge 2.$$

•
$$x_0 = 0, x_1 = 1, x_n = 3x_{n-1} - 2x_{n-2} + 2^n \text{ para } n \ge 2.$$

$$x_0 = 0, x_n - 2x_{n-1} = n + 2^n \text{ para } n \ge 2.$$

•
$$x_0 = 0, x_1 = 1, x_n = 3x_{n-1} - 2x_{n-2} + 2^n + 2n$$
 para $n \ge 2$.

Ejercicio 1.10. Obtén una recurrencia lineal homogénea para cada una de las sucesiones siguientes definidas para todo $n \ge 0$:

1.
$$x_n = 4n + 1$$
.

2.
$$y_n = 2^n + n$$
.

3.
$$z_n = 2^n + 3^n(n+1)$$
.

Ejercicio 1.11. Para cada $n \ge 1$, definimos $x_n = \sqrt{n + \sqrt{(n-1) + \sqrt{\dots + \sqrt{2 + \sqrt{1}}}}}$. Obtén una expresión recurrente para x_n y demuestra que $x_n < \sqrt{n} + 1$ para todo $n \ge 0$.

Ejercicio 1.12. Sea la sucesión $a_0 = 1$, $a_n = a_{n-1} + 4\sqrt{a_{n-1}} + 4$ para $n \ge 1$. Encuentra una expresión no recurrente para a_n y demuestra la validez de la misma.