VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Engineering and Computer Science Te Kura Mātai Pūkaha, Pūrorohiko

PO Box 600 Wellington New Zealand

Tel: +64 4 463 5341 Fax: +64 4 463 5045 Internet: office@ecs.vuw.ac.nz

PitchHub - A Collaboration Platform for Innovators

Michael Winton

Supervisor: Dr. Kris Bubendorfer

Submitted in partial fulfilment of the requirements for ENGR489 - Bachelor of Engineering.

Abstract

The ability to connect innovative ideas to people and resources is an essential component of the innovation process. This project is concerned with empowering the innovation community with an online collaboration system that is simultaneously useful to all actors in the innovation ecosystem while ensuring that all sensitive IP shared is stored in a secure manner. The goal of this report is to detail the steps taken in designing and implementing a distributed web application that facilitates collaboration and enforces data security with threshold cryptography.

Contents

1	Introduction			
	1.1	Motivation	1	
	1.2	Project Objective and Scope	1	
	1.3	Contributions	1	
	1.4	Outline	1	
2	Bac	kground into Collaborative Platforms for Innovation	3	
	2.1	Common Roles in Innovation	3	
	2.2	An Investigation of Innovation-Orientated Collaborative Platforms	3	
	2.3	Practical Limitations of Online Collaboration for Innovation	3	
3	Bac	kground into the Web Application	5	
	3.1	Architecture	5	
	3.2	Behaviour Driven Development	5	
4	Imp	lementation of the Web Application	7	
	4.1	Technology Choice	7	
	4.2	Deployment	7	
5	Bac	kground into the Threshold Security Scheme	9	
	5.1	Security Considerations	9	
	5.2	Shamir's Secret Sharing Scheme	9	
	5.3	Limitations of Threshold Security Schemes	9	
6	Imp	lementation of the Threshold Security Scheme	11	
	6.1	Implementation of Shamir's Secret Sharing Scheme	11	
	6.2	Implementation of Secret Keeper Redundancy	11	
7	_	erimental Methodology	13	
	7.1	O .	13	
		7.1.1 Testing Environment	13	
		7.1.2 Test Data	13	
		7.1.3 Automated Testing	13	
		7.1.4 Performance Considerations	13	
	7.2	Security Testing Method	13	
		7.2.1 Security Testing Scope	13	
		7.2.2 Threat Taxonomy	13	

8	Evaluation				
	8.1	Functionality	15		
		8.1.1 Comparison of Prototypes	15		
	8.2 Security				
		8.2.1 Threat Taxonomy	15		
9	nmary and Conclusions	17			
	9.1	2.1 A Summary of The Developed Prototypes			
	9.2	9.2 A Discussion of Online Innovation Collaboration and The Prototypes			
	9.3	9.3 Future Work			
		9.3.1 Recommendation Engine	17		
		9.3.2 Usability Evaluation/Improvement	17		
	9.4	Final Comments	17		

Figures

Introduction

- 1.1 Motivation
- 1.2 Project Objective and Scope

roles and rights (scope of disclosure)

- 1.3 Contributions
- 1.4 Outline

Background into Collaborative Platforms for Innovation

- 2.1 Common Roles in Innovation
- 2.2 An Investigation of Innovation-Orientated Collaborative Platforms
- 2.3 Practical Limitations of Online Collaboration for Innovation

Background into the Web Application

- 3.1 Architecture
- 3.2 Behaviour Driven Development

Implementation of the Web Application

- 4.1 Technology Choice
- 4.2 Deployment

Background into the Threshold Security Scheme

- 5.1 Security Considerations
- 5.2 Shamir's Secret Sharing Scheme
- **5.3** Limitations of Threshold Security Schemes

Implementation of the Threshold Security Scheme

- 6.1 Implementation of Shamir's Secret Sharing Scheme
- 6.2 Implementation of Secret Keeper Redundancy

Experimental Methodology

7.1 Functional Testing Method

7.1.1 Testing Environment

talk about reproducible environment

7.1.2 Test Data

frequency analysis of data cleaned and given by CI's user trial seeded given frequency analysis results

7.1.3 Automated Testing

talk about selenium and user stories

7.1.4 Performance Considerations

talk about NN threshold

7.2 Security Testing Method

7.2.1 Security Testing Scope

Our threat model consists of resisting at least one shoulder surfing attack from an observer co-located at any position around the tabletop. Camera-based attacks are feasible with most knowledge-based authentication systems; but to defeat camera attacks was not our design goal. The pervasive na- ture of mobile devices instrumented with cameras is of par- ticular concern, but as with other manifestations of this same problem (e.g. at the ATM) we rely upon social conventions to deter active attempts to video record logins.

7.2.2 Threat Taxonomy

Evaluation

- 8.1 Functionality
- 8.1.1 Comparison of Prototypes
- 8.2 Security
- 8.2.1 Threat Taxonomy

Summary and Conclusions

- 9.1 A Summary of The Developed Prototypes
- 9.2 A Discussion of Online Innovation Collaboration and The Prototypes
- 9.3 Future Work
- 9.3.1 Recommendation Engine
- 9.3.2 Usability Evaluation/Improvement
- 9.4 Final Comments

Bibliography