HEU-MET-FAST-067

ZPR-9 ASSEMBLIES 5 AND 6: HEU (93% ²³⁵U) CYLINDRICAL CORES WITH TUNGSTEN, GRAPHITE, AND ALUMINUM DILUENTS WITH A DENSE ALUMINUM REFLECTOR

Evaluators

Karl N. Grimm, Richard M. Lell, Micheal A. Smith, and Richard D. McKnight Argonne National Laboratory

Internal Reviewers Richard M. Lell, Robert W. Schaefer, Richard D. McKnight, and Micheal A. Smith

Independent Reviewers

Anatoli Tsiboulia and Yevgeniy Rozhikhin Institute of Physics and Power Engineering

HEU-MET-FAST-067

ZPR-9 ASSEMBLIES 5 AND 6: HEU (93% ²³⁵U) CYLINDRICAL CORES WITH TUNGSTEN, GRAPHITE, AND ALUMINUM DILUENTS WITH A DENSE ALUMINUM REFLECTOR

IDENTIFICATION NUMBER: HEU-MET-FAST-067 SPECTRA

KEY WORDS: acceptable, aluminum, aluminum-reflected, assembly, critical experiment, cylinder,

fast, graphite, heterogeneous, highly enriched, metal, plates, tungsten, uranium,

ZPR

1.0 DETAILED DESCRIPTION

1.1 Overview of Experiments

Assemblies 5 and 6 were two members of a series of cores built at the Argonne National Laboratory (ANL) ZPR-9 critical facility^a to study the neutronics of high temperature fast reactors proposed in the Argonne nuclear rocket program of the 1960s. That program recommended a refractory-metal-based fast reactor that would have the potential for operation at very high temperatures. Tungsten (W) was selected for study as the refractory metal, perhaps alloyed with rhenium where added strength or temperature performance was required. A series of tungsten bearing assemblies utilizing differing light weight reflector materials (Al, Al₂O₃, and BeO-Al) were built for development of a fast reactor with tungsten for nuclear propulsion.

The entire series of nine assemblies will be evaluated for potential use as criticality safety benchmarks. Assembly 1 (ZPR-9/1) was selected as a well characterized reference assembly. It contained no tungsten and had an enrichment (235U/U) of ~11%. It differed from ZPR-3 Assemblies 11 and 22 and Assembly 1 of ZPR-6 only in that in ZPR-9/1 the matrix and drawers were aluminum instead of stainless steel, and the reflector plate material was aluminum instead of depleted uranium. This reference assembly is identified in this Handbook as benchmark IEU-MET-FAST-013. In Assemblies 2, 3 and 4 (ZPR-9/2, 3, and 4), one-fourth, one-half, and finally all of the depleted uranium diluent in the core unit cell of Assembly 1 were replaced by tungsten. Assemblies 2 and 3 had ²³⁵U/U enrichments of ~16% and ~21%, respectively. Assembly 4, identified in this handbook as benchmark HEU-MET-FAST-060, had a core consisting essentially of just tungsten and 93% enriched uranium. These first four assemblies in this series test the exchange of ²³⁸U and tungsten. Some carbon was added to the core cell in Assembly 5 to produce a somewhat softer spectrum. In Assembly 6 some of the tungsten was replaced with perforated aluminum plates. These two assemblies (ZPR-9/5 and 6) are identified in this Handbook as benchmark HEU-MET-FAST-067. In the final three assemblies of this series, the dense aluminum reflector was replaced with Al₂O₃ and BeO-Al, which were more effective reflectors due

^a ZPR is an acronym for <u>Zero Power Reactor</u>, referring to the four very similar fast-reactor critical experiment facilities at Argonne, two of which were the ZPR-6 and ZPR-9 facilities. A brief and simple description of these facilities is included in the American Nuclear Society monograph by W. G. Davey and W. C. Redman, *Techniques in Fast Reactor Critical Experiments*, Gordon and Breach, Science Publishers, Inc., New York (1970).

HEU-MET-FAST-067

to the presence of the oxygen. ZPR-9/7, 8, and 9 are identified in this Handbook as benchmark HEU-MET-FAST-070.

Each of the assemblies in this series was constructed as a clean, cylindrical core with full radial and axial reflectors. Assemblies 5 and 6 had cylindrical cores constructed of highly-enriched-uranium metal and tungsten. In addition, Assembly 5 had graphite plates in the core region and Assembly 6 had perforated aluminum plates in the core region. They had radial and axial reflectors constructed of standard aluminum plates.

Experiments were performed on ZPR-9/5 in October of 1964 and on ZPR-9/6 in January of 1965. The particular configurations selected as being most suitable to form criticality-safety benchmarks are Loading 8 of ZPR-9/5 and Loading 13 of ZPR-9/6. Their loaded fissile masses were 361 and 460 kg ²³⁵U, respectively.

The term "benchmark" in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, ZPR-9 Assemblies 5 and 6 each had a very uniform core assembled entirely from a single core unit cell loaded into aluminum drawers that were then loaded into the aluminum matrix of ZPR-9. Each assembly's core unit cell had a simple loading whose neutronic characteristics were dominated by ²³⁵U, tungsten and either graphite (Assembly 5) or aluminum (Assembly 6).

These assemblies provide useful benchmarks for testing criticality calculations. As just noted, ²³⁵U dominates the neutronics behavior in the core region. Approximately 75% of all absorptions were in ²³⁵U, with nearly all the remainder occurring in W (25% for Assembly 5 and 22% for Assembly 6) and Al (1% for Assembly 5 and 2% for Assembly 6). For each assembly, the bulk of the core neutron spectrum was in the 50-keV to 2-MeV energy range. In Assembly 5, 39% of the fissions occurred at energies between 0.625 eV and 100 keV and 61% above 100 keV. In Assembly 6, 25% of the fissions occurred at energies between 0.625 eV and 100 keV and 75% above 100 keV. Thus, the spectra were in the fast range. The neutron balances for these assemblies are included in Appendix C.

A very accurate transformation to a simplified model is needed to make any of the ZPR assemblies a practical criticality-safety benchmark. There is simply too much geometric detail in an exact model of a ZPR assembly – even a clean benchmark such as these assemblies. The transformation must reduce the detail to a practical level without masking any of the important features of the critical experiment. And it must do this without increasing the total uncertainty far beyond that of the original experiment. Such a transformation is described in Section 3. It was made using a pair of continuous-energy Monte Carlo calculations. First, the loading was modeled in full detail – every plate, drawer, matrix tube, and air gap was modeled explicitly. Then the regionwise compositions and volumes from this model were used to construct a homogeneous, two-dimensional (RZ) model. This simple model is the criticality-safety benchmark model. The difference in $k_{\rm eff}$ values from the two models was used to adjust the measured excess reactivity, yielding a result for the benchmark model. The net difference in $k_{\rm eff}$ and each of the effects that contribute to it are small (<1%). Uncertainties associated with this simplification, which go beyond Monte Carlo statistical uncertainties, have been estimated and determined to be acceptably small (\sim 0.2%).

Revision: 0

^a The ZPR-9 matrix was changed from aluminum tubes to stainless steel tubes in 1966 prior to construction of Assembly 11.

HEU-MET-FAST-067

1.2 <u>Description of Experimental Configuration</u>

The result for the excess reactivity measurement for ZPR-9/5 Loading 8, which was recorded in the experiment logbook on 14 October 1964,^a was 80 inhours (Ih), which is quite small^b (see Section 2.1). It was measured at a temperature of 21°C. The result for the excess reactivity measurement for ZPR-9/6 Loading 13, which was recorded in the experiment logbook on 4 January 1965,^c was 108 Ih at a temperature of 14°C. No measurement of an isothermal temperature coefficient was reported for either assembly.

A lot of details must be presented to describe precisely the as-built assembly. Also, it is useful to define some jargon (to be shown in italics) to facilitate the presentation. For those unfamiliar with ZPR assemblies, the task of absorbing this may be tedious if not a bit overwhelming. In fact, the task of modeling the exact plate-by-plate loading would be unreasonable to do by hand. In practice, the information contained in this section was accumulated in an electronic database and processed into models using computer programs. Readers interested only in using the benchmark model need not be concerned with any of these details, since Section 3 contains a complete specification of the criticality-safety benchmark model.

1.2.1 The ZPR-9 Facility - The ZPR-9 fast critical facility was a horizontal split-table type machine consisting of a large, cast-iron bed supporting two cast-iron tables, one stationary and the other movable.^d A pictorial view of the ZPR-9 facility is shown in Figure 1. Each table was 12 feet (3.7 m)^e wide and 8 feet (2.4 m) long. During loading operations, the tables were separated by 5 feet (1.5 m). In operation, the movable table was driven against the stationary table with a nut and lead screw mechanism. Aluminum square tubes, 0.040 inches (1 mm) thick, 2.175 inches (55 mm) on a side (outside dimension) and 4 feet (1.2 m) long, were welded in 5-tube by 5-tube bundles and stacked horizontally on both tables to form a 45-row and 45-column square "honeycomb" matrix.^f A matrix position is specified by three parameters: matrix half (S or M), row number (starting from the top) and column number (starting from the left looking from the movable half towards the stationary half). For example, the central position in the movable half is M-23/23. The matrix tubes were supported on the sides by massive cast-iron structures known as the knees. One of the knees can be seen in Figure 1 behind the ladder. A mild-steel back plate, about 28.7 inches (72.8 cm) behind the matrix tubes on each table, supported the control rod drives. The drives were mounted on the outboard side of the plate and were connected to control rods by steel shafts. Between the matrix tubes and back plate on each table was a plenum region, which provided a flow path for cooling air into and out of the matrix. The matrix machine was near the center of a large cell (room), approximately 40 feet by 30 feet and 30 feet tall (12x9x9 m).

Revision: 0

^a Applied Physics Division Experiment Logbook 1620F, Argonne National Laboratory, 1964.

^b J. R. Lamarsh, *Introduction to Nuclear Reactor Theory*, p. 439, Addison-Wesley, Reading, MA (1966).

^c Applied Physics Division Experiment Logbook 1621F, Argonne National Laboratory, 1964.

^d W. Y. Kato et al., "Final Safety Analysis Report on the Use of Plutonium in ZPR-6 and -9," Argonne National Laboratory Report, ANL-7442 (February 1970).

^e Almost all of the references give dimensions in English units and some also give metric equivalents. We display the metric equivalent in parentheses when practical, as a courtesy to international readers.

f Misalignment of the matrix bundles produces a gap at the interface when the tables are driven to the "closed" position.

HEU-MET-FAST-067

Figure 1. View of the ZPR-9 Facility.

The table, bed, knees, and back plate have a small but non-negligible impact on the k_{eff} of these assemblies, due to poor reflection by aluminum. The evaluations for this nine-assembly, uranium/tungsten series constitute the first time where ex-matrix structures are of significance. The tables and bed reflected neutrons below the matrix. A table was a box-type construction, 18 inches tall (45.72 cm), with a 3.5 inch-thick (8.89 cm) top plate supported by a massive, complicated, internal rib structure. Even accounting for the voids between ribs, the combined table and bed thickness was more than the 30 cm required for infinite reflection. The knees reflected neutrons from the sides. A knee was comprised of a 46.5x99 inch (118x251 cm), 1.5 inch-thick (3.81 cm) plate reinforced by 1.25 inches-wide ribs (3.175 cm) in a 19-inch by 18-inch (48x45 cm) rectangular pattern. Although the knees were not effectively infinite, the next structures, the cell walls, were too far away to contribute significant neutron reflection. There was nothing to cause significant reflection above the matrix tubes; the tie rods and detectors were too small, and the room ceiling was meters away. The back plate and control drive shafts reflected neutrons behind the matrix. The drive shafts were 0.75-inches in diameter (1.905 cm). The back plate was 1.125 inch-thick (2.858 cm). Including an approximation of its supporting beams, it was a 50x50 inch (127 cm) square centered about the central matrix position. Again, the cell walls were too far away to contribute significant neutron reflection.

Revision: 0

HEU-MET-FAST-067

The desired average composition was achieved by loading the matrix with drawers containing rectangular plates (or, in some assemblies, with cylindrical rods) of different materials such as depleted, enriched, or natural uranium; stainless steel; sodium, etc. A specific plate-loading pattern in a drawer is called a *drawer master*. The plates were bare material or had a cladding or, in the case of uranium, had a protective coating. Figure 2 is an illustration of the plates inside the drawers and matrix forming a unit cell for a particular region in a particular loading (not ZPR-9 Assemblies 5 or 6). The specification of which drawer master was in each matrix position is known as a *matrix loading map*.

Figure 2. Typical ZPR Drawer.

It was usually the case that a given matrix position had two drawers, a *front drawer* and a *back drawer*. Correspondingly, there would be two matrix loading maps for each half, a front map and a back map. Back drawers were used in ZPR-9 Assemblies 5 and 6 in the entire core region to load the axial reflector. The entire core was loaded into 15.251-inch-long (387.3-mm) aluminum drawers. The core loading was in the first portion of these drawers - first 11 inches (279 mm) for Assembly 5 and first 12 inches (305 mm) for Assembly 6. The axial reflector region, which was comprised of a 12-inch-long (305 mm) loading of aluminum plates, filled the remaining portion of these front drawers and the front portion of 23.314-inch-long (592.2-mm) aluminum back drawers.

Revision: 0

HEU-MET-FAST-067

The radial reflector regions were built with 24.376-inch-long (619.2-mm) aluminum drawers without a need for back drawers. There are a number of similar drawer masters because drawers for the stationary and movable halves had different (opposite, mirror image) drawer masters.

The ZPR drawers themselves typically were made of 0.03-inch-thick (0.8-mm) aluminum or stainless steel, and their front, back, and side walls were 2 inches (51 mm) tall. Control drawers were generally made of stainless steel; however, they could be of a slightly different construction (e.g., thicker walls, reduced width, etc.).

Typically, two types of control rods were used in a ZPR assembly. One type was the *dual-purpose* (DP) control rod, so-called because it was a drawer that contained a core unit cell but could be driven in and out along a matrix tube to adjust reactivity. There were ten control rods of this type in each of these two assemblies. The other type of control rod was the *poison safety rod* (PSR), which contained a blade of boron powder or B₄C clad with stainless steel, 3/8 inch (9.5 mm) wide by 1.94 inches (49 mm) tall, which traveled in a thin-walled stainless steel guide tube. The rest of the matrix tube containing a PSR was filled by a stationary, narrow drawer with a plate loading as similar as possible to the unit cell of the region. The blade could be attached either to a scram-type drive or to a drive used for fine reactivity control. No PSR control rods were used in either ZPR-9/5 or ZPR-9/6.

Temperature monitoring of the core was done using *thermocouple drawers*. In this type of drawer master, small thermocouples were attached to fuel plates in several places along a fuel column. The adjacent plate column had to be less than full height to allow room for the thermocouples and wires. No information is available regarding the construction, number, or locations of the thermocouple drawers used in ZPR-9/5 or ZPR-9/6.

A neutron source had to be present in each matrix half during the startup of any ZPR assembly not containing an inherent source in the core (e.g., ²⁴⁰Pu). ZPR-9 Assemblies 5 and 6 had source tubes that ran horizontally within a row of reflector drawers (one tube in each half). Sources were driven close to the core through these two tubes at startup and withdrawn once criticality was achieved.

The full details of a ZPR loading are not usually contained in published reports because of their complexity. Instead, it was usual to give details of a representative drawer master for each region, the matrix loading map in terms of the representative drawer masters, and the average composition for each material region. However, the detailed description was archived in loading records, both electronic and paper.

1.2.2 The Matrix and Drawer Loading Data – A general matrix loading diagram for ZPR-9/5 Loading 8 is shown in Figure 3. The corresponding diagram for ZPR-9/6 Loading 13 is shown in Figure 4. These figures provide the general region boundaries, as well as the locations of the dual-purpose rods.

Revision: 0

Date: September 30, 2003 Page 6 of 125

HEU-MET-FAST-067

Figure 3. ZPR-9 Assembly 5 (Loading No. 8) Reference Configuration Matrix Loading.

Revision: 0

HEU-MET-FAST-067

Figure 4. ZPR-9 Assembly 6 (Loading No. 13) Reference Configuration Matrix Loading.

An idea of what the loadings were like at the plate level is given in Figures 5 and 6. Each of these figures is a slice through a matrix position in the core region, showing the matrix tube, drawer and plates, forming a unit cell. The small gap between the top of the plates and the bottom of the upper wall of the matrix tube served as a flow path for cooling air. The standard plate loading in the core region consisted of 4 columns (1/16-inch-thick plates) of highly-enriched uranium metal (F) distributed almost uniformly in the drawer between columns (1/8-inch-thick plates) of tungsten (W) and either graphite (G) or perforated aluminum (A). The column sequence was WGFWGWGFWGWFGWGWFG for Assembly 5 and WAFWAWAFWAWFA for Assembly 6. The replacement of graphite with perforated aluminum in going from Assembly 5 to Assembly 6 is apparent here.

Revision: 0

HEU-MET-FAST-067

Figure 5. Cross Section of Core Unit-Cell Showing Matrix and Plate-loaded Drawer of ZPR-9 Assembly 5.

Revision: 0

HEU-MET-FAST-067

Figure 6. Cross Section of Core Unit-Cell Showing Matrix and Plate-loaded Drawer of ZPR-9 Assembly 6.

Details of the specific drawer loaded into each matrix location of both the movable and stationary halves of the assembly are given in Tables 1 through 4 for ZPR-9/5 and in Tables 5 through 8 for ZPR-9/6. For a given assembly, a unique one-character symbol is used there to represent each drawer master. A broad look at these tables reveals large portions dominated by a single symbol, i.e., by one drawer master. An empty matrix position is identified by the symbol "z". Several tables are used to define completely the drawer masters represented by each of the other symbols in Tables 1 through 8. Table 9 gives the identification symbol (used in Tables 1 through 4), the ZPR drawer-master number, the length and type of drawer, and the number of occurrences of this drawer master in ZPR-9/5 Loading 8. Table 10 is the corresponding table for ZPR-9/6 Loading 13. Tables 11 and 12 provide the remainder of the geometric detail about each drawer master. Table 11 covers the entire group of drawer masters loaded in the core region of Assembly 5; Table 12 is the corresponding table for the core region of Assembly 6. In each table the drawer masters are identified both in terms of the one-character symbol and by the drawer master number. The interpretation of the information will be illustrated by explaining the first drawer master in Table 11 with the aid of the corresponding drawer master diagram.

Revision: 0

HEU-MET-FAST-067

Table 1. Moveable-Half Front-Drawer Matrix Map for ZPR-9 Assembly 5.

Revision: 0

HEU-MET-FAST-067

Table 2. Moveable-Half Back-Drawer Matrix Map for ZPR-9 Assembly 5.

HEU-MET-FAST-067

Table 3. Stationary-Half Front-Drawer Matrix Map for ZPR-9 Assembly 5.

Revision: 0

HEU-MET-FAST-067

Table 4. Stationary-Half Back-Drawer Matrix Map for ZPR-9 Assembly 5.

HEU-MET-FAST-067

Table 5. Moveable-Half Front-Drawer Matrix Map for ZPR-9 Assembly 6.

Revision: 0

HEU-MET-FAST-067

Table 6. Moveable-Half Back-Drawer Matrix Map for ZPR-9 Assembly 6.

HEU-MET-FAST-067

Table 7. Stationary-Half Front-Drawer Matrix Map for ZPR-9 Assembly 6.

Revision: 0

HEU-MET-FAST-067

Table 8. Stationary-Half Back-Drawer Matrix Map for ZPR-9 Assembly 6.

HEU-MET-FAST-067

Table 9. Drawer Identification and Type Data for ZPR-9 Assembly 5.

Identification Symbol	Drawer Master Number	Role of Drawer	Length (inches)	Type of Drawer	Number in Loading No. 8
		Core Drawer Master	rs		
A	500-Core-FS	Normal Core	15.251	Al	112
В	501-Core-FM	Normal Core	15.251	Al	112
C	502-CR-FS	Control Rod Core	40.750	SST	5
D	503-CR-FM	Control Rod Core	40.750	SST	5
Е	504-Core-FS	Partial Core Drawer	15.251	Al	2
F	505-Core-FS	Partial Core Drawer	15.251	Al	2
G	506-Core-FM	Partial Core Drawer	15.251	Al	2
Н	507-Core-FM	Partial Core Drawer	15.251	Al	2
	Sourc	e and Fission Counter Dra	wer Mastei	*S	
n	190-CR-BS/M	DP Drive Shaft	24.376	Al	10
		Reflector Drawer Mass	ters		
q	105-Refl-FS/M	Radial Reflector	24.376	Al	86
r	106-Refl-FS/M	Radial Reflector	24.376	Al	686
R	107-Refl-FS/M	Axial Reflector	23.314	Al	224
S	190-SRC-FS/M	Reflector with Src Hole	24.376	Al	10
t	192-SRC-FS/M	Reflector with Src Hole	24.376	Al	2

Table 10. Drawer Identification and Type Data for ZPR-9 Assembly 6.

Identification Symbol	Drawer Master Number	Role of Drawer	Length (inches)	Type of Drawer	Number in Loading No. 13
		Core Drawer Master		•	9
A	600-Core-FS	Normal Core	15.251	Al	124
В	601-Core-FM	Normal Core	15.251	Al	124
С	602-CR-FS	Control Rod Core	40.750	SST	5
D	603-CR-FM	Control Rod Core	40.750	SST	5
Е	604-Core-FS	Partial Core Drawer	15.251	Al	5
F	605-Core-FS	Partial Core Drawer	15.251	Al	5
G	606-Core-FM	Partial Core Drawer	15.251	Al	5
Н	607-Core-FM	Partial Core Drawer	15.251	Al	5
I	608-Core-FS	Partial Core Drawer	15.251	Al	5
J	609-Core-FS	Partial Core Drawer	15.251	Al	5
K	610-Core-FM	Partial Core Drawer	15.251	Al	5
L	611-Core-FM	Partial Core Drawer	15.251	Al	5
	Sourc	e and Fission Counter Dra	wer Mastei	rs	
n	191-CR-BS/M	DP Drive Shaft	19.000	Al	10
		Reflector Drawer Mas	ters		
q	105-Refl-FS/M	Radial Reflector	24.376	Al	188
r	106-Refl-FS/M	Radial Reflector	24.376	Al	680
R	107-Refl-BS/M	Axial Reflector	23.314	Al	288
S	190-SRC-BS/M	Reflector with Src Hole	24.376	Al	8
t	192-SRC-BS/M	Reflector with Src Hole	24.376	Al	4

Revision: 0

HEU-MET-FAST-067

Table 11. Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 5.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location			
Identifica	tion Symbol A,	Drawer Master 5	500-Core-FS			
Tungsten (1/8x2x3)	0	0	0	1	1	3
Tungsten (1/8x2x2)	0	0	9	1	1	1
Aluminum (2x2x4)	0	0	11	1	1	1
Graphite NC (1/8x2x3)	0.125	0	0	1	1	3
Graphite NC (1/8x2x2)	0.125	0	9	1	1	1
93% Enriched U (1/16x2x3)	0.25	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.25	0	9	1	1	1
Tungsten (1/8x2x3)	0.3125	0	0	1	1	3
Tungsten (1/8x2x2)	0.3125	0	9	1	1	1
Graphite NC (1/8x2x3)	0.4375	0	0	1	1	3
Graphite NC (1/8x2x2)	0.4375	0	9	1	1	1
Tungsten (1/8x2x3)	0.5625	0	0	1	1	3
Tungsten (1/8x2x2)	0.5625	0	9	1	1	1
Graphite NC (1/8x2x3)	0.6875	0	0	1	1	3
Graphite NC (1/8x2x2)	0.6875	0	9	1	1	1
93% Enriched U (1/16x2x3)	0.8125	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.8125	0	9	1	1	1
Tungsten (1/8x2x3)	0.875	0	0	1	1	3
Tungsten (1/8x2x2)	0.875	0	9	1	1	1
Graphite NC (1/8x2x3)	1	0	0	1	1	3
Graphite NC (1/8x2x2)	1	0	9	1	1	1
Tungsten (1/8x2x3)	1.125	0	0	1	1	3
Tungsten (1/8x2x2)	1.125	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.25	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.25	0	9	1	1	1
Graphite NC (1/8x2x3)	1.3125	0	0	1	1	3
Graphite NC (1/8x2x2)	1.3125	0	9	1	1	1
Tungsten (1/8x2x3)	1.4375	0	0	1	1	3
Tungsten (1/8x2x2)	1.4375	0	9	1	1	1
Graphite NC (1/8x2x3)	1.5625	0	0	1	1	3
Graphite NC (1/8x2x2)	1.5625	0	9	1	1	1
Tungsten (1/8x2x3)	1.6875	0	0	1	1	3
Tungsten (1/8x2x2)	1.6875	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.8125	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.8125	0	9	1	1	1
Graphite NC (1/8x2x3)	1.875	0	0	1	1	3
Graphite NC (1/8x2x2)	1.875	0	9	1	1	1
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1

HEU-MET-FAST-067

Table 11 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 5.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location			
Identifica	tion Symbol B,	Drawer Master 5	501-Core-FM			
Graphite NC (1/8x2x3)	0	0	0	1	1	3
Graphite NC (1/8x2x2)	0	0	9	1	1	1
Aluminum (2x2x4)	0	0	11	1	1	1
93% Enriched U (1/16x2x3)	0.125	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.125	0	9	1	1	1
Tungsten (1/8x2x3)	0.1875	0	0	1	1	3
Tungsten (1/8x2x2)	0.1875	0	9	1	1	1
Graphite NC (1/8x2x3)	0.3125	0	0	1	1	3
Graphite NC (1/8x2x2)	0.3125	0	9	1	1	1
Tungsten (1/8x2x3)	0.4375	0	0	1	1	3
Tungsten (1/8x2x2)	0.4375	0	9	1	1	1
Graphite NC (1/8x2x3)	0.5625	0	0	1	1	3
Graphite NC (1/8x2x2)	0.5625	0	9	1	1	1
93% Enriched U (1/16x2x3)	0.6875	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.6875	0	9	1	1	1
Tungsten (1/8x2x3)	0.75	0	0	1	1	3
Tungsten (1/8x2x2)	0.75	0	9	1	1	1
Graphite NC (1/8x2x3)	0.875	0	0	1	1	3
Graphite NC (1/8x2x2)	0.875	0	9	1	1	1
Tungsten (1/8x2x3)	1	0	0	1	1	3
Tungsten (1/8x2x2)	1	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.125	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.125	0	9	1	1	1
Graphite NC (1/8x2x3)	1.1875	0	0	1	1	3
Graphite NC (1/8x2x2)	1.1875	0	9	1	1	1
Tungsten (1/8x2x3)	1.3125	0	0	1	1	3
Tungsten (1/8x2x2)	1.3125	0	9	1	1	1
Graphite NC (1/8x2x3)	1.4375	0	0	1	1	3
Graphite NC (1/8x2x2)	1.4375	0	9	1	1	1
Tungsten (1/8x2x3)	1.5625	0	0	1	1	3
Tungsten (1/8x2x2)	1.5625	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.6875	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.6875	0	9	1	1	1
Graphite NC (1/8x2x3)	1.75	0	0	1	1	3
Graphite NC (1/8x2x2)	1.75	0	9	1	1	1
Tungsten (1/8x2x3)	1.875	0	0	1	1	3
Tungsten (1/8x2x2)	1.875	0	9	1	1	1
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1

HEU-MET-FAST-067

Table 11 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 5.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location			
Identificat	ion Symbol C, I	Drawer Master 50	02-CR-FS			
Tungsten (1/16x2x3)	0	0	0	1	1	3
Tungsten (1/16x2x2)	0	0	9	1	1	1
Aluminum DP cut (1.9375x2x1)	0	0	11	1	1	9
Fe DP T-bar (1.9375x2x1/4)	0	0	20	1	1	1
Fe DP T-bar (1.9375x2x1/4)	0	0	40.25	1	1	1
Graphite NC (1/8x2x3)	0.0625	0	0	1	1	3
Graphite NC (1/8x2x2)	0.0625	0	9	1	1	1
93% Enriched U (1/16x2x3)	0.1875	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.1875	0	9	1	1	1
Tungsten (1/8x2x3)	0.25	0	0	1	1	3
Tungsten (1/8x2x2)	0.25	0	9	1	1	1
Graphite NC (1/8x2x3)	0.375	0	0	1	1	3
Graphite NC (1/8x2x2)	0.375	0	9	1	1	1
Tungsten (1/8x2x3)	0.5	0	0	1	1	3
Tungsten (1/8x2x2)	0.5	0	9	1	1	1
Graphite NC (1/8x2x3)	0.625	0	0	1	1	3
Graphite NC (1/8x2x2)	0.625	0	9	1	1	1
93% Enriched U (1/16x2x3)	0.75	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.75	0	9	1	1	1
Tungsten (1/8x2x3)	0.8125	0	0	1	1	3
Tungsten (1/8x2x2)	0.8125	0	9	1	1	1
Fe DP T-bar (1/8x2x2)	0.875	0	20.25	2	1	10
Graphite NC (1/8x2x3)	0.9375	0	0	1	1	3
Graphite NC (1/8x2x2)	0.9375	0	9	1	1	1
Tungsten (1/8x2x3)	1.0625	0	0	1	1	3
Tungsten (1/8x2x2)	1.0625	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.1875	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.1875	0	9	1	1	1
Graphite NC (1/8x2x3)	1.25	0	0	1	1	3
Graphite NC (1/8x2x2)	1.25	0	9	1	1	1
Tungsten (1/8x2x3)	1.375	0	0	1	1	3
Tungsten (1/8x2x2)	1.375	0	9	1	1	1
Graphite NC (1/8x2x3)	1.5	0	0	1	1	3
Graphite NC (1/8x2x2)	1.5	0	9	1	1	1
Tungsten (1/8x2x3)	1.625	0	0	1	1	3
Tungsten (1/8x2x2)	1.625	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.75	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.75	0	9	1	1	1
Graphite NC (1/8x2x3)	1.8125	0	0	1	1	3
Graphite NC (1/8x2x2)	1.8125	0	9	1	1	1

Revision: 0

HEU-MET-FAST-067

Table 11 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 5.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location			
Identificati	ion Symbol D, D	rawer Master 50	3-CR-FM			
Graphite NC (1/8x2x3)	0	0	0	1	1	3
Graphite NC (1/8x2x2)	0	0	9	1	1	1
Aluminum DP cut (1.9375x2x1)	0	0	11	1	1	9
Fe DP T-bar (1.9375x2x1/4)	0	0	20	1	1	1
Fe DP T-bar (1.9375x2x1/4)	0	0	40.25	1	1	1
93% Enriched U (1/16x2x3)	0.125	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.125	0	9	1	1	1
Tungsten (1/8x2x3)	0.1875	0	0	1	1	3
Tungsten (1/8x2x2)	0.1875	0	9	1	1	1
Graphite NC (1/8x2x3)	0.3125	0	0	1	1	3
Graphite NC (1/8x2x2)	0.3125	0	9	1	1	1
Tungsten (1/8x2x3)	0.4375	0	0	1	1	3
Tungsten (1/8x2x2)	0.4375	0	9	1	1	1
Graphite NC (1/8x2x3)	0.5625	0	0	1	1	3
Graphite NC (1/8x2x2)	0.5625	0	9	1	1	1
93% Enriched U (1/16x2x3)	0.6875	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.6875	0	9	1	1	1
Tungsten (1/8x2x3)	0.75	0	0	1	1	3
Tungsten (1/8x2x2)	0.75	0	9	1	1	1
Graphite NC (1/8x2x3)	0.875	0	0	1	1	3
Graphite NC (1/8x2x2)	0.875	0	9	1	1	1
Fe DP T-bar (1/8x2x2)	0.875	0	20.25	2	1	10
Tungsten (1/8x2x3)	1	0	0	1	1	3
Tungsten (1/8x2x2)	1	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.125	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.125	0	9	1	1	1
Graphite NC (1/8x2x3)	1.1875	0	0	1	1	3
Graphite NC (1/8x2x2)	1.1875	0	9	1	1	1
Tungsten (1/8x2x3)	1.3125	0	0	1	1	3
Tungsten (1/8x2x2)	1.3125	0	9	1	1	1
Graphite NC (1/8x2x3)	1.4375	0	0	1	1	3
Graphite NC (1/8x2x2)	1.4375	0	9	1	1	1
Tungsten (1/8x2x3)	1.5625	0	0	1	1	3
Tungsten (1/8x2x2)	1.5625	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.6875	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.6875	0	9	1	1	1
Graphite NC (1/8x2x3)	1.75	0	0	1	1	3
Graphite NC (1/8x2x2)	1.75	0	9	1	1	1
Tungsten (1/16x2x3)	1.875	0	0	1	1	3
Tungsten (1/16x2x2)	1.875	0	9	1	1	1

Revision: 0

HEU-MET-FAST-067

Table 11 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 5.

Plate ID (size in inches)	Starting X Location	Starting Y Location	Starting Z Location	X #	Y#	Z #
		Drawer Master :				
Tungsten (1/8x2x3)	0	0	0	1	1	3
Tungsten (1/8x2x2)	0	0	9	1	1	1
Aluminum (2x2x4)	0	0	11	1	1	1
Graphite NC (1/8x2x3)	0.125	0	0	1	1	3
Graphite NC (1/8x2x2)	0.125	0	9	1	1	1
93% Enriched U (1/16x2x3)	0.25	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.25	0	9	1	1	1
Tungsten (1/8x2x3)	0.3125	0	0	1	1	3
Tungsten (1/8x2x2)	0.3125	0	9	1	1	1
Graphite NC (1/8x2x3)	0.4375	0	0	1	1	3
Graphite NC (1/8x2x2)	0.4375	0	9	1	1	1
Tungsten (1/8x2x3)	0.5625	0	0	1	1	3
Tungsten (1/8x2x2)	0.5625	0	9	1	1	1
Graphite NC (1/8x2x3)	0.6875	0	0	1	1	3
Graphite NC (1/8x2x2)	0.6875	0	9	1	1	1
93% Enriched U (1/16x2x3)	0.8125	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.8125	0	9	1	1	1
Tungsten (1/8x2x3)	0.875	0	0	1	1	3
Tungsten (1/8x2x2)	0.875	0	9	1	1	1
Aluminum (1x1x3)	1	0	0	1	1	3
Aluminum (1x1x3)	1	1	0	1	1	3
Aluminum (1x1x2)	1	0	9	1	2	1
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1
Identifica	ation Symbol F,	Drawer Master :	505-Core-FS			
Aluminum (1x1x3)	0	0	0	1	1	3
Aluminum (1x1x3)	0	1	0	1	1	3
Aluminum (1x1x2)	0	0	9	1	2	1
Aluminum (2x2x4)	0	0	11	1	1	1
Graphite NC (1/8x2x3)	1	0	0	1	1	3
Graphite NC (1/8x2x2)	1	0	9	1	1	1
Tungsten (1/8x2x3)	1.125	0	0	1	1	3
Tungsten (1/8x2x2)	1.125	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.25	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.25	0	9	1	1	1
Graphite NC (1/8x2x3)	1.3125	0	0	1	1	3
Graphite NC (1/8x2x2)	1.3125	0	9	1	1	1
Tungsten (1/8x2x3)	1.4375	0	0	1	1	3
Tungsten (1/8x2x2)	1.4375	0	9	1	1	1
Graphite NC (1/8x2x3)	1.5625	0	0	1	1	3

HEU-MET-FAST-067

Table 11 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 5.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location			
Identification	Symbol F, Draw	er Master 505-0	Core-FS (cont'd))		
Graphite NC (1/8x2x2)	1.5625	0	9	1	1	1
Tungsten (1/8x2x3)	1.6875	0	0	1	1	3
Tungsten (1/8x2x2)	1.6875	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.8125	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.8125	0	9	1	1	1
Graphite NC (1/8x2x3)	1.875	0	0	1	1	3
Graphite NC (1/8x2x2)	1.875	0	9	1	1	1
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1
Identificat	tion Symbol G, I	Drawer Master 5	06-Core-FM			
Graphite NC (1/8x2x3)	0	0	0	1	1	3
Graphite NC (1/8x2x2)	0	0	9	1	1	1
Aluminum (2x2x4)	0	0	11	1	1	1
93% Enriched U (1/16x2x3)	0.125	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.125	0	9	1	1	1
Tungsten (1/8x2x3)	0.1875	0	0	1	1	3
Tungsten (1/8x2x2)	0.1875	0	9	1	1	1
Graphite NC (1/8x2x3)	0.3125	0	0	1	1	3
Graphite NC (1/8x2x2)	0.3125	0	9	1	1	1
Tungsten (1/8x2x3)	0.4375	0	0	1	1	3
Tungsten (1/8x2x2)	0.4375	0	9	1	1	1
Graphite NC (1/8x2x3)	0.5625	0	0	1	1	3
Graphite NC (1/8x2x2)	0.5625	0	9	1	1	1
93% Enriched U (1/16x2x3)	0.6875	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.6875	0	9	1	1	1
Tungsten (1/8x2x3)	0.75	0	0	1	1	3
Tungsten (1/8x2x2)	0.75	0	9	1	1	1
Graphite NC (1/8x2x3)	0.875	0	0	1	1	3
Graphite NC (1/8x2x2)	0.875	0	9	1	1	1
Aluminum (1x1x3)	1	0	0	1	1	3
Aluminum (1x1x3)	1	1	0	1	1	3
Aluminum (1x1x2)	1	0	9	1	2	1
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1
	tion Symbol H, I	Drawer Master 5	•	ı		ı
Aluminum (1x1x3)	0	0	0	1	1	3
Aluminum (1x1x3)	0	1	0	1	1	3
Aluminum (1x1x2)	0	0	9	1	2	1
Aluminum (2x2x4)	0	0	11	1	1	1
Tungsten (1/8x2x3)	1	0	0	1	1	3
Tungsten (1/8x2x2)	1	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.125	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.125	0	9	1	1	1

HEU-MET-FAST-067

Table 11 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 5.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location			
Identification	Symbol H, Draw	ver Master 507-C	Core-FM (cont'd)		
Graphite NC (1/8x2x3)	1.1875	0	0	1	1	3
Graphite NC (1/8x2x2)	1.1875	0	9	1	1	1
Tungsten (1/8x2x3)	1.3125	0	0	1	1	3
Tungsten (1/8x2x2)	1.3125	0	9	1	1	1
Graphite NC (1/8x2x3)	1.4375	0	0	1	1	3
Graphite NC (1/8x2x2)	1.4375	0	9	1	1	1
Tungsten (1/8x2x3)	1.5625	0	0	1	1	3
Tungsten (1/8x2x2)	1.5625	0	9	1	1	1
93% Enriched U (1/16x2x3)	1.6875	0	0	1	1	3
93% Enriched U (1/16x2x2)	1.6875	0	9	1	1	1
Graphite NC (1/8x2x3)	1.75	0	0	1	1	3
Graphite NC (1/8x2x2)	1.75	0	9	1	1	1
Tungsten (1/8x2x3)	1.875	0	0	1	1	3
Tungsten (1/8x2x2)	1.875	0	9	1	1	1
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1
Identifica	tion Symbol f, D	rawer Master 10	08-FC-FS/M			
Aluminum (2x2x5)	0	0	10	1	1	2
Aluminum (2x2x4)	0	0	20	1	1	1
Retainer Spring (2x2x1/16)	0	0	24.376	1	1	1
Identific	ation Symbol n,	Drawer Master	Drive Shaft			
Stainless Steel (1/4x2x1)	0.9225	0	0	1	1	19
Identificat	ion Symbol q, D	rawer Master 10	6-Refl-FS/M			
Aluminum (2x2x4)	0	0	0	1	1	6
Retainer Spring (2x2x1/16)	0	0	24.376	1	1	1
Identificat	ion Symbol r, Dı	awer Master 10	6-Refl-FS/M			
Aluminum (2x2x4)	0	0	0	1	1	6
Retainer Spring (2x2x1/16)	0	0	24.376	1	1	1
Identificati	ion Symbol R, D	rawer Master 10	7-Refl-FS/M			
Aluminum (1/4x2x2)	0	0	0	8	1	2
Aluminum (2x2x4)	0	0	4	1	1	1

HEU-MET-FAST-067

Table 11 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 5.

Plate ID (size in inches)	Starting X Location	Starting Y Location	Starting Z Location	X #	Y#	Z #
Identification	n Symbol s, Drav	ver Master 190-S	SRC-FS/M			
Aluminum (2x2x4)	0	0	0	1	1	1
Al with Src Tube Hole						
(2x0.773x1)	0	0	4	1	1	1
Aluminum (2x2x3)	0	0	5	1	1	1
Aluminum (2x2x4)	0	0	8	1	1	4
Retainer Spring (2x2x1/16)	0	0	24.376	1	1	1
Identification	n Symbol t, Drav	ver Master 192-S	SRC-FS/M			
Aluminum (2x2x4)	0	0	0	1	1	1
Al with Src Tube Hole						
(2x0.773x1)	0	0	4	1	1	1
Aluminum (2x2x3)	0	0	5	1	1	1
Aluminum (2x2x4)	0	0	8	1	1	4
Retainer Spring (2x2x1/16)	0	0	24.376	1	1	1

HEU-MET-FAST-067

Table 12. Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 6.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location			
Identification	n Symbol A, Dra	awer Master 600	-Core-FS			
Tungsten (1/8x2x3)	0	0	0	1	1	2
Tungsten (1/8x2x2)	0	0	6	1	1	3
Aluminum (2x2x3)	0	0	12	1	1	1
Aluminum-45 Void-55 (1/8x2x3)	0.125	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	0.125	0	6	1	1	3
93% Enriched U (1/16x2x3)	0.25	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.25	0	9	1	1	1
93% Enriched U (1/16x2x1)	0.25	0	11	1	1	1
Tungsten (1/8x2x3)	0.3125	0	0	1	1	2
Tungsten (1/8x2x2)	0.3125	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	0.4375	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	0.4375	0	6	1	1	3
Tungsten (1/8x2x3)	0.5625	0	0	1	1	2
Tungsten (1/8x2x2)	0.5625	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	0.6875	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	0.6875	0	6	1	1	3
93% Enriched U (1/16x2x3)	0.8125	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.8125	0	9	1	1	1
93% Enriched U (1/16x2x1)	0.8125	0	11	1	1	1
Tungsten (1/8x2x3)	0.875	0	0	1	1	2
Tungsten (1/8x2x2)	0.875	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	1	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	1	0	6	1	1	3
Tungsten (1/8x2x3)	1.125	0	0	1	1	2
Tungsten (1/8x2x2)	1.125	0	6	1	1	3
93% Enriched U (1/16x2x3)	1.25	0	0	1	1	2
93% Enriched U (1/16x2x2)	1.25	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	1.3125	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	1.3125	0	6	1	1	3
Tungsten (1/8x2x3)	1.4375	0	0	1	1	2
Tungsten (1/8x2x2)	1.4375	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	1.5625	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	1.5625	0	6	1	1	3
Tungsten (1/8x2x3)	1.6875	0	0	1	1	2
Tungsten (1/8x2x2)	1.6875	0	6	1	1	3
93% Enriched U (1/16x2x3)	1.8125	0	0	1	1	2
93% Enriched U (1/16x2x2)	1.8125	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	1.875	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	1.875	0	6	1	1	3
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1

HEU-MET-FAST-067

Table 12 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 6.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location			
Identification	n Symbol B, Dra	wer Master 601-	Core-FM	•	•	
Aluminum-45 Void-55 (1/8x2x3)	0	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	0	0	6	1	1	3
Aluminum (2x2x3)	0	0	12	1	1	1
93% Enriched U (1/16x2x3)	0.125	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.125	0	9	1	1	1
93% Enriched U (1/16x2x1)	0.125	0	11	1	1	1
Tungsten (1/8x2x3)	0.1875	0	0	1	1	2
Tungsten (1/8x2x2)	0.1875	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	0.3125	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	0.3125	0	6	1	1	3
Tungsten (1/8x2x3)	0.4375	0	0	1	1	2
Tungsten (1/8x2x2)	0.4375	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	0.5625	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	0.5625	0	6	1	1	3
93% Enriched U (1/16x2x3)	0.6875	0	0	1	1	3
93% Enriched U (1/16x2x2)	0.6875	0	9	1	1	1
93% Enriched U (1/16x2x1)	0.6875	0	11	1	1	1
Tungsten (1/8x2x3)	0.75	0	0	1	1	2
Tungsten (1/8x2x2)	0.75	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	0.875	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	0.875	0	6	1	1	3
Tungsten (1/8x2x3)	1	0	0	1	1	2
Tungsten (1/8x2x2)	1	0	6	1	1	3
93% Enriched U (1/16x2x3)	1.125	0	0	1	1	2
93% Enriched U (1/16x2x2)	1.125	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	1.1875	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	1.1875	0	6	1	1	3
Tungsten (1/8x2x3)	1.3125	0	0	1	1	2
Tungsten (1/8x2x2)	1.3125	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	1.4375	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	1.4375	0	6	1	1	3
Tungsten (1/8x2x3)	1.5625	0	0	1	1	2
Tungsten (1/8x2x2)	1.5625	0	6	1	1	3
93% Enriched U (1/16x2x3)	1.6875	0	0	1	1	2
93% Enriched U (1/16x2x2)	1.6875	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	1.75	0	0	1	1	2
Aluminum-45 Void-55 (1/8x2x2)	1.75	0	6	1	1	3
Tungsten (1/8x2x3)	1.875	0	0	1	1	2
Tungsten (1/8x2x2)	1.875	0	6	1	1	3
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1

HEU-MET-FAST-067

Table 12 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 6.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #			
(size in inches)	Location	Location	Location			ļ			
Identification Symbol C, Drawer Master 602-CR-FS									
Tungsten (1/16x2x3)	0	0	0	1	1	2			
Tungsten (1/16x2x2)	0	0	6	1	1	3			
Aluminum DP cut (1.9375x2x1)	0	0	12	1	1	8			
Fe DP T-bar (1.9375x2x1/4)	0	0	20	1	1	1			
Fe DP T-bar (1.9375x2x1/4)	0	0	40.25	1	1	1			
Aluminum-45 Void-55 (1/8x2x3)	0.0625	0	0	1	1	4			
93% Enriched U (1/16x2x3)	0.1875	0	0	1	1	4			
Tungsten (1/8x2x3)	0.25	0	0	1	1	2			
Tungsten (1/8x2x2)	0.25	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.375	0	0	1	1	4			
Tungsten (1/8x2x3)	0.5	0	0	1	1	2			
Tungsten (1/8x2x2)	0.5	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.625	0	0	1	1	4			
93% Enriched U (1/16x2x3)	0.75	0	0	1	1	4			
Tungsten (1/8x2x3)	0.8125	0	0	1	1	2			
Tungsten (1/8x2x2)	0.8125	0	6	1	1	3			
Fe DP T-bar (1/8x2x2)	0.875	0	20.25	2	1	10			
Aluminum-45 Void-55 (1/8x2x3)	0.9375	0	0	1	1	4			
Tungsten (1/8x2x3)	1.0625	0	0	1	1	2			
Tungsten (1/8x2x2)	1.0625	0	6	1	1	3			
93% Enriched U (1/16x2x3)	1.1875	0	0	1	1	4			
Aluminum-45 Void-55 (1/8x2x3)	1.25	0	0	1	1	4			
Tungsten (1/8x2x3)	1.375	0	0	1	1	2			
Tungsten (1/8x2x2)	1.375	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	1.5	0	0	1	1	4			
Tungsten (1/8x2x3)	1.625	0	0	1	1	2			
Tungsten (1/8x2x2)	1.625	0	6	1	1	3			
93% Enriched U (1/16x2x3)	1.75	0	0	1	1	4			
Aluminum-45 Void-55 (1/8x2x3)	1.8125	0	0	1	1	4			
Identification	on Symbol D, Dr	awer Master 603	3-CR-FM						
Aluminum-45 Void-55 (1/8x2x3)	0	0	0	1	1	4			
Aluminum DP cut (1.9375x2x1)	0	0	12	1	1	8			
Fe DP T-bar (1.9375x2x1/4)	0	0	20	1	1	1			
Fe DP T-bar (1.9375x2x1/4)	0	0	40.25	1	1	1			
93% Enriched U (1/16x2x3)	0.125	0	0	1	1	4			
Tungsten (1/8x2x3)	0.1875	0	0	1	1	2			
Tungsten (1/8x2x2)	0.1875	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.3125	0	0	1	1	4			
Tungsten (1/8x2x3)	0.4375	0	0	1	1	2			

HEU-MET-FAST-067

Table 12 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 6.

Plate ID (size in inches)	Starting X Location	Starting Y Location	Starting Z Location	X #	Y#	Z #			
Identification Symbol D, Drawer Master 603-CR-FM (cont'd)									
Tungsten (1/8x2x2)	0.4375	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.5625	0	0	1	1	4			
93% Enriched U (1/16x2x3)	0.6875	0	0	1	1	4			
Tungsten (1/8x2x3)	0.75	0	0	1	1	2			
Tungsten (1/8x2x2)	0.75	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.875	0	0	1	1	4			
Fe DP T-bar (1/8x2x2)	0.875	0	20.25	2	1	10			
Tungsten (1/8x2x3)	1	0	0	1	1	2			
Tungsten (1/8x2x2)	1	0	6	1	1	3			
93% Enriched U (1/16x2x3)	1.125	0	0	1	1	4			
Aluminum-45 Void-55 (1/8x2x3)	1.1875	0	0	1	1	4			
Tungsten (1/8x2x3)	1.3125	0	0	1	1	2			
Tungsten (1/8x2x2)	1.3125	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	1.4375	0	0	1	1	4			
Tungsten (1/8x2x3)	1.5625	0	0	1	1	2			
Tungsten (1/8x2x2)	1.5625	0	6	1	1	3			
93% Enriched U (1/16x2x3)	1.6875	0	0	1	1	4			
Aluminum-45 Void-55 (1/8x2x3)	1.75	0	0	1	1	4			
Tungsten (1/16x2x3)	1.875	0	0	1	1	2			
Tungsten (1/16x2x2)	1.875	0	6	1	1	3			
Identificatio	n Symbol E, Dra	wer Master 604	-Core-FS						
Tungsten (1/8x2x3)	0	0	0	1	1	2			
Tungsten (1/8x2x2)	0	0	6	1	1	3			
Aluminum (2x2x3)	0	0	12	1	1	1			
Aluminum-45 Void-55 (1/8x2x3)	0.125	0	0	1	1	4			
93% Enriched U (1/16x2x3)	0.25	0	0	1	1	4			
Tungsten (1/8x2x3)	0.3125	0	0	1	1	2			
Tungsten (1/8x2x2)	0.3125	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.4375	0	0	1	1	4			
Tungsten (1/8x2x3)	0.5625	0	0	1	1	2			
Tungsten (1/8x2x2)	0.5625	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.6875	0	0	1	1	4			
93% Enriched U (1/16x2x3)	0.8125	0	0	1	1	4			
Tungsten (1/8x2x3)	0.875	0	0	1	1	2			
Tungsten (1/8x2x2)	0.875	0	6	1	1	3			
Aluminum (1x1x3)	1	0	0	1	1	4			
Aluminum (1x1x3)	1	1	0	1	1	4			
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1			

HEU-MET-FAST-067

Table 12 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 6.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #			
(size in inches)	Location	Location	Location						
Identification Symbol F, Drawer Master 605-Core-FS									
Aluminum (1x1x3)	0	0	0	1	1	4			
Aluminum (1x1x3)	0	1	0	1	1	4			
Aluminum (2x2x3)	0	0	12	1	1	1			
Aluminum-45 Void-55 (1/8x2x3)	1	0	0	1	1	4			
Tungsten (1/8x2x3)	1.125	0	0	1	1	2			
Tungsten (1/8x2x2)	1.125	0	6	1	1	3			
93% Enriched U (1/16x2x3)	1.25	0	0	1	1	4			
Aluminum-45 Void-55 (1/8x2x3)	1.3125	0	0	1	1	4			
Tungsten (1/8x2x3)	1.4375	0	0	1	1	2			
Tungsten (1/8x2x2)	1.4375	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	1.5625	0	0	1	1	4			
Tungsten (1/8x2x3)	1.6875	0	0	1	1	2			
Tungsten (1/8x2x2)	1.6875	0	6	1	1	3			
93% Enriched U (1/16x2x3)	1.8125	0	0	1	1	4			
Aluminum-45 Void-55 (1/8x2x3)	1.875	0	0	1	1	4			
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1			
	n Symbol G, Dra	awer Master 606	-Core-FM						
Aluminum-45 Void-55 (1/8x2x3)	0	0	0	1	1	4			
Aluminum (2x2x3)	0	0	12	1	1	1			
93% Enriched U (1/16x2x3)	0.125	0	0	1	1	4			
Tungsten (1/8x2x3)	0.1875	0	0	1	1	2			
Tungsten (1/8x2x2)	0.1875	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.3125	0	0	1	1	4			
Tungsten (1/8x2x3)	0.4375	0	0	1	1	2			
Tungsten (1/8x2x2)	0.4375	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.5625	0	0	1	1	4			
93% Enriched U (1/16x2x3)	0.6875	0	0	1	1	4			
Tungsten (1/8x2x3)	0.75	0	0	1	1	2			
Tungsten (1/8x2x2)	0.75	0	6	1	1	3			
Aluminum-45 Void-55 (1/8x2x3)	0.875	0	0	1	1	4			
Aluminum (1x1x3)	1	0	0	1	1	4			
Aluminum (1x1x3)	1	1	0	1	1	4			
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1			
Identificatio	n Symbol H, Dra	awer Master 607	-Core-FM						
Aluminum (1x1x3)	0	0	0	1	1	4			
Aluminum (1x1x3)	0	1	0	1	1	4			
Aluminum (2x2x3)	0	0	12	1	1	1			
Tungsten (1/8x2x3)	1	0	0	1	1	2			
Tungsten (1/8x2x2)	1	0	6	1	1	3			

HEU-MET-FAST-067

Table 12 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 6.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location			
Identification Sys	mbol H, Drawer	Master 607-Cor	e-FM (cont'd)			
93% Enriched U (1/16x2x3)	1.125	0	0	1	1	4
Aluminum-45 Void-55 (1/8x2x3)	1.1875	0	0	1	1	4
Tungsten (1/8x2x3)	1.3125	0	0	1	1	2
Tungsten (1/8x2x2)	1.3125	0	6	1	1	3
Aluminum-45 Void-55 (1/8x2x3)	1.4375	0	0	1	1	4
Tungsten (1/8x2x3)	1.5625	0	0	1	1	2
Tungsten (1/8x2x2)	1.5625	0	6	1	1	3
93% Enriched U (1/16x2x3)	1.6875	0	0	1	1	4
Aluminum-45 Void-55 (1/8x2x3)	1.75	0	0	1	1	4
Tungsten (1/8x2x3)	1.875	0	0	1	1	2
Tungsten (1/8x2x2)	1.875	0	6	1	1	3
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1
Identification	on Symbol I, Dra	wer Master 608-	·Core-FS			
Aluminum (1x1x3)	0	0	0	1	1	4
Tungsten (2x1/8x3)	0	1	0	1	1	2
Tungsten (2x1/8x2)	0	1	6	1	1	3
93% Enriched U (2x1/16x3)	0	1.125	0	1	1	4
Aluminum-45 Void-55 (2x1/8x3)	0	1.1875	0	1	1	4
Tungsten (2x1/8x3)	0	1.3125	0	1	1	2
Tungsten (2x1/8x2)	0	1.3125	6	1	1	3
Aluminum-45 Void-55 (2x1/8x3)	0	1.4375	0	1	1	4
Tungsten (2x1/8x3)	0	1.5625	0	1	1	2
Tungsten (2x1/8x2)	0	1.5625	6	1	1	3
93% Enriched U (2x1/16x3)	0	1.6875	0	1	1	4
Aluminum-45 Void-55 (2x1/8x3)	0	1.75	0	1	1	4
Tungsten (2x1/8x3)	0	1.875	0	1	1	2
Tungsten (2x1/8x2)	0	1.875	6	1	1	3
Aluminum (2x2x3)	0	0	12	1	1	1
Aluminum (1x1x3)	1	0	0	1	1	4
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1
Identification	on Symbol J, Dra	wer Master 609-	Core-FS			
Aluminum-45 Void-55 (2x1/8x3)	0	0	0	1	1	4
93% Enriched U (2x1/16x3)	0	0.125	0	1	1	4
Tungsten (2x1/8x3)	0	0.1875	0	1	1	2
Tungsten (2x1/8x2)	0	0.1875	6	1	1	3
Aluminum-45 Void-55 (2x1/8x3)	0	0.3125	0	1	1	4
Tungsten (2x1/8x3)	0	0.4375	0	1	1	2
Tungsten (2x1/8x2)	0	0.4375	6	1	1	3
Aluminum-45 Void-55 (2x1/8x3)	0	0.5625	0	1	1	4
93% Enriched U (2x1/16x3)	0	0.6875	0	1	1	4

HEU-MET-FAST-067

Table 12 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 6.

Plate ID	Starting X	Starting Y	Starting Z	X #	Y#	Z #
(size in inches)	Location	Location	Location	12		
Identification Sy				Į		
Tungsten (2x1/8x3)	0	0.75	0	1	1	2
Tungsten (2x1/8x2)	0	0.75	6	1	1	3
Aluminum-45 Void-55 (2x1/8x3)	0	0.875	0	1	1	4
Aluminum (1x1x3)	0	1	0	1	1	4
Aluminum (2x2x3)	0	0	12	1	1	1
Aluminum (1x1x3)	1	1	0	1	1	4
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1
Identification	Symbol K, Drav	wer Master 610-	Core-FM			
Aluminum (1x1x3)	0	0	0	1	1	4
Aluminum-45 Void-55 (2x1/8x3)	0	1	0	1	1	4
Tungsten (2x1/8x3)	0	1.125	0	1	1	2
Tungsten (2x1/8x2)	0	1.125	6	1	1	3
93% Enriched U (2x1/16x3)	0	1.25	0	1	1	4
Aluminum-45 Void-55 (2x1/8x3)	0	1.3125	0	1	1	4
Tungsten (2x1/8x3)	0	1.4375	0	1	1	2
Tungsten (2x1/8x2)	0	1.4375	6	1	1	3
Aluminum-45 Void-55 (2x1/8x3)	0	1.5625	0	1	1	4
Tungsten (2x1/8x3)	0	1.6875	0	1	1	2
Tungsten (2x1/8x2)	0	1.6875	6	1	1	3
93% Enriched U (2x1/16x3)	0	1.8125	0	1	1	4
Aluminum-45 Void-55 (2x1/8x3)	0	1.875	0	1	1	4
Aluminum (2x2x3)	0	0	12	1	1	1
Aluminum (1x1x3)	1	0	0	1	1	4
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1
Identification	Symbol L, Drav	wer Master 611-	Core-FM			
Tungsten (2x1/8x3)	0	0	0	1	1	2
Tungsten (2x1/8x2)	0	0	6	1	1	3
93% Enriched U (2x1/16x3)	0	0.125	0	1	1	4
Aluminum-45 Void-55 (2x1/8x3)	0	0.1875	0	1	1	4
Tungsten (2x1/8x3)	0	0.3125	0	1	1	2
Tungsten (2x1/8x2)	0	0.3125	6	1	1	3
Aluminum-45 Void-55 (2x1/8x3)	0	0.4375	0	1	1	4
Tungsten (2x1/8x3)	0	0.5625	0	1	1	2
Tungsten (2x1/8x2)	0	0.5625	6	1	1	3
93% Enriched U (2x1/16x3)	0	0.6875	0	1	1	4
Aluminum-45 Void-55 (2x1/8x3)	0	0.75	0	1	1	4
Tungsten (2x1/8x3)	0	0.875	0	1	1	2
Tungsten (2x1/8x2)	0	0.875	6	1	1	3
Aluminum (1x1x3)	0	1	0	1	1	4
Aluminum (2x2x3)	0	0	12	1	1	1
Aluminum (1x1x3)	1	1	0	1	1	4
Retainer Spring (2x2x1/16)	0	0	15.251	1	1	1

Revision: 0

HEU-MET-FAST-067

Table 12 (cont'd). Core Drawer Plate Loading Descriptions for ZPR-9 Assembly 6.

Plate ID (size in inches)	Starting X Location	Starting Y Location	Starting Z Location	X #	Y#	Z #		
Identification Symbol n, Drawer Master 191-CR-BS/M								
Stainless Steel (1/4x2x1)	0.9225	0	0	1	1	19		
Identification Symbol q, Drawer Master 106-Refl-FS/M								
Aluminum (2x2x4)	0	0	0	1	1	6		
Retainer Spring (2x2x1/16)	0	0	24.376	1	1	1		
Identification Symbol r, Drawer Master 106-Refl-FS/M								
Aluminum (2x2x4)	0	0	0	1	1	6		
Retainer Spring (2x2x1/16)	0	0	24.376	1	1	1		
Identification Symbol R, Drawer Master 107-Refl-BS/M								
Aluminum (1/4x2x2)	0	0	0	8	1	2		
Aluminum (2x2x5)	0	0	4	1	1	1		
Identification	Symbol s, Draw	ver Master 190-S	SRC-BS/M					
Aluminum (2x2x4)	0	0	0	1	1	1		
Al with Src Tube Hole								
(2x0.773x1)	0	0	4	1	1	1		
Aluminum (2x2x3)	0	0	5	1	1	1		
Aluminum (2x2x4)	0	0	8	1	1	4		
Retainer Spring (2x2x1/16)	0	0	24.376	1	1	1		
Identification Symbol t, Drawer Master 192-SRC-BS/M								
Aluminum (2x2x4)	0	0	0	1	1	1		
Al with Src Tube Hole								
(2x0.773x1)	0	0	4	1	1	1		
Aluminum (2x2x3)	0	0	5	1	1	1		
Aluminum (2x2x4)	0	0	8	1	1	4		
Retainer Spring (2x2x1/16)	0	0	24.376	1	1	1		

A two-dimensional diagram of Assembly 5 drawer master 500-Core-FS (identified in the matrix loading maps by the symbol "A") is shown in Figure 7. Figure 8 is the corresponding diagram for Assembly 6, showing drawer master 600-Core-FS. These are XZ views, i.e., looking down at the top of the drawer, and show the columns of plates. (The drawer itself is not shown.) The origin of the drawer master coordinate system is at the front lower left corner of the space inside the drawer, which is near the upper left corner of the figure. The X axis is along the drawer width and is divided in eighth-inch units from zero to two inches (16 eighths). The Z axis is along the drawer length and goes from zero to 15 inches in inch units. The Y axis is transverse to the page, pointing towards the viewer, and the range encompassing the plate loading is from zero to two inches. The plates being viewed are 2 inches tall, unless there is a note indicating otherwise.

Revision: 0

^a Note that the coordinate convention for ZPR assemblies is unusual in that the Z direction is horizontal, not vertical.

HEU-MET-FAST-067

Figure 7. Diagram for Normal Core Drawer Master 500-Core-FS of ZPR-9/5.

Revision: 0

HEU-MET-FAST-067

Figure 8. Diagram for Normal Core Drawer Master 600-Core-FS of ZPR-9/6.

We begin the illustration by observing from Figure 7 that the first axial section (Z direction) of the plate loading consists of 18 plate columns which are each 11 inches long. The first column in this section is comprised of 4 tungsten (W) plates, three 3 inches and one 2 inches in length. Turning to Table 11, the first plate in master 500-Core-FS indeed is shown to be 1/8 x 2 x 3-inch tungsten; the first column of the table gives two pieces of information, a plate ID, which corresponds to the material description given in Section 1.3, and the X, Y, and Z dimensions of the plate. The beginning of the plate ID should give an approximate indication of the plate material (e.g., W is tungsten, G is graphite, U93 is high-enriched [93% ²³⁵U/U] metal fuel, Al-45 is perforated aluminum [45% aluminum, 55%void], and Al is aluminum). The remaining columns of each table give the positions of the plates within the drawer. The second through fourth columns give the X, Y, and Z coordinates of the front lower left corner of a block of contiguous plates of this type. In this case, that position is seen to be the origin of the drawer coordinates, again consistent with Figure 7. The last three columns describe whether there is a single plate or a contiguous block of plates of this type. In this case, the block is 1 wide in X, 1 tall in Y, and 3 long in Z, i.e., there are three plates. The next row in Table 11 describes the 1/8 x 2 x 2-inch tungsten plate, which continues this first column of tungsten, i.e., it begins axially at 9 inches. In this manner, the first two rows describe the four plates that comprise the first W plate column.

Revision: 0

HEU-MET-FAST-067

The axial reflector begins at 11 inches. The drawer was long enough to hold only the first 4 inches of this reflector. (The remainder is described in the back-drawer master 107-Refl-BS/M.) The next line in Table 11 for master 500-Core-FS describes a single 2x2x4 aluminum plate that spans the drawer width and spans the space from 11 inches to 15 inches axially.

This procedure is repeated in Table 11 for master 500-Core-FS for all the tungsten (W), graphite (G), and enriched uranium (U 93) columns shown in Figure 7. The only geometrical difference between the columns in Figure 7 is that the tungsten (W), and graphite (G) columns are 1/8-inch thick, whereas the enriched uranium (U 93) columns are 1/16-inch thick.

Finally, there is a spring at the back of the drawer that keeps all the plates in the drawer from moving axially. The spring is the last entry in Table 11 for master 500-Core-FS. Hopefully, the line-by-line interpretation of Tables 11 and 12 is reasonably clear now.

Another potential point of confusion should be addressed, namely a difference between the convention for identifying matrix positions in the two halves and the convention for viewing drawer masters in the two halves. It was noted in Section 1.2.1 that, for both halves, the matrix column number (essentially the X coordinate) is counted from the left when looking from the movable half towards the stationary half. In contrast, the origin of the drawer master coordinates is at the left edge of the plates when looking from the matrix interface towards the matrix half that contains the drawer. To see how this works, compare the description of stationary-half drawer master 500-Core-FS in Table 11 with the description of movable-half drawer master 501-Core-FM in Table 11. The initial single tungsten column is at the left edge in the stationary-half master and at the right edge in the movable-half master, yet these two (and the remaining) columns aligned when the halves were brought together and these masters were in corresponding matrix positions, say S-26/24 and M-26/24.

The section that follows offers a broader interpretation of the loading data. It is an attempt to describe the characteristics of each region of the assembly.

1.2.3 Characteristics of the Assembly Regions - We begin by observing some more characteristics of the drawer masters described in Tables 9-12. The half-height of the core is (nominally) 11 inches in Assembly 5 and 12 inches in Assembly 6. Note that the discussion given in this section of the axial regions of the assembly refers to the nominal dimensions of the plates. The physical location of these plates in the assembly is also determined by the drawer front and/or back thicknesses. For example, fuel plates loaded in the core are displaced from the axial midplane by the thickness of the drawer front (0.032 inches).

The core matrix locations with non-standard drawer masters were the ten DP rods (5 per half near the core periphery) in each assembly and the partial-core drawers in Assemblies 5 and 6. The loadings of these drawer types differed only slightly from the standard core drawers. In the case of the DP rods, the drawers themselves were different. The DP drawers were made of stainless steel and were slightly narrower (nominally 1-15/16 inches wide), with thicker walls. The drawer loading of each control drawer was identical to that of the normal core drawer loading except that one of the tungsten columns was 1/16 inch wide, rather than 1/8 inch wide. In the partial-core drawers, the plate loadings represent a simple fraction of the complete core unit cell; the remaining fraction is loaded with aluminum plates, consistent with the adjacent radial reflector region. Thus, overall, the

Revision: 0

Date: September 30, 2003 Pag

HEU-MET-FAST-067

core loading was quite uniform. In summary, there were only minor perturbations in the core loading; these small loading variations are known and they were modeled.

The 12-inch-long axial reflector region was built by filling the remainder of the 15-inch-long front drawers with aluminum blocks (see Figures 7 and 8), followed by the balance of the aluminum plates (8 inches in Assembly 5 and 9 inches in Assembly 6) in the front portion of 23.314-inch-long (592.2-mm) aluminum back drawers.

The radial reflector region was built by filling the 24-inch aluminum drawers completely with aluminum blocks. The core was surrounded by these aluminum-filled drawers to form an aluminum reflector region that was about seven drawers thick (or ~14-15 inches). The radial reflector portion of the partial-core drawers in Assemblies 5 and 6 made a small contribution to the radial reflector thickness. There was only one further perturbation in the loading of the radial reflector. In one radial position per half, the aluminum reflector loading included a hole that allowed the insertion of a neutron source. Overall, the aluminum radial reflector was quite uniform.

In summary, ZPR-9 Assemblies 5 and 6 had very clean and uniform cores built with simple HEU/G/W (Assembly 5) or HEU/Al-45/W (Assembly 6) core unit cells. These core regions were reasonably well isolated by solid radial and axial aluminum reflectors. The simplicity and uniformity of these assemblies was intended to make them clean benchmark assemblies.

1.3 Description of Material Data

The composition data here were taken from working documents that are referred to informally as "hot constants memos". The original documentation on most of the inventory used in these assemblies has been lost, but the hot constants memos are available. These memos give average composition by batch or lot, but not uncertainties. The issue of estimating composition uncertainties is addressed in Section 2. The compositions of the uranium plates were taken from the Illinois hot constants memo, a which is the most reliable source of information on these materials. The ZPPR (Zero Power Physics Reactor) hot constants memo was used for all other components that it describes because this memo has the most complete and accurate description of trace elements. The few non-uranium components not described in the ZPPR memo were taken from the Illinois memo.

As noted earlier, the uranium plates had a paint-like protective coating. The weight percents for the coating material, called Kel-F, are given in the Illinois hot constants memo^a and shown in Table 13. It can be seen there that Kel-F is nearly hydrogen free. Table 13 is needed in conjunction with the tables giving the compositions of the uranium plates.

^b T. S. Huntsman, ZPPR Materials Compositions, July 1983.

Revision: 0 Date: September 30, 2003

^a W. R. Robinson, Applied Physics Division Reactor Materials Inventory Manual-Chapter 3, A0033-1000-SE-01, July 1978.

HEU-MET-FAST-067

Table 13. Kel-F Composition.

Element	Weight Percent
Hydrogen	0.5
Carbon	20.6
Chlorine	30.5
Fluorine	48.4

Table 14 gives the data on the enriched-uranium plates. All the sizes except 1/16x2x1 were used in the core region of Assembly 5 and all were used in the core region of Assembly 6. A significant density variation is evident there. The enrichment is quite uniform, however.

Table 14. U93 Plate Compositions.

Nominal	Numbe	er used	U Mass	U	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	Kel-F
Size	#5	#6	(g)	Density ^(a)	(wt.%)	(wt.%)	(wt.%)	(wt.%)	(g)
(inches)				(g/cc)					
1/16 x 2 x 1	0	496	36.83	17.98	0.92	93.16	0.44	5.48	0.028
1/16 x 2 x 2	952	1984	73.57	17.96	0.92	93.18	0.44	5.46	0.054
1/16 x 2 x 3	2856	2960	111.04	18.07	0.92	93.17	0.45	5.46	0.080

(a) Derived from mass and nominal dimensions.

The mass and composition of the tungsten plates, which were used in the core regions of both assemblies, are given in Table 15.

Table 15. Tungsten Plate Compositions.

21	Nominal Size	Tungsten	W
Plate ID	(inches)	Mass (g)	(wt.%)
Tungsten (1/8x2x3)	0.125x2.00x3.00	219.2	100.0
Tungsten (1/8x2x2)	0.125x2.00x2.00	146.1	100.0

Revision: 0

HEU-MET-FAST-067

The mass and composition of the graphite plates, which were used in the core regions of Assembly 5, are given in Table 16.

Table 16. Graphite Plate Compositions.

	Nominal Size	Graphite	С
Plate ID	(inches)	Mass (g)	(wt.%)
Graphite (1/8x2x2)	0.125x2.00x2.00	12.97	100.0
Graphite (1/8x2x3)	0.125x2.00x3.00	20.04	100.0

The mass and composition of the perforated aluminum plates (45% aluminum, 55% void), which were used in the core regions of Assembly 6, are given in Table 17. The density reduction was achieved by perforating standard aluminum plates.

Table 17. Perforated Aluminum (Al-45) Plate Compositions.

	Nominal Size	Aluminum	Al
Plate ID	(inches)	Mass (g)	(wt.%)
Aluminum (1/8x2x2)	0.125x2.00x2.00	9.13	100.0
Aluminum (1/8x2x3)	0.125x2.00x3.00	14.01	100.0

The mass and composition of the aluminum plates used in the reflector for these assemblies are given in Table 18.

Table 18. Aluminum Plate Compositions.

	Nominal Size	Aluminum	Al
Plate ID	(inches)	Mass (g)	(wt.%)
Aluminum (1/4x2x2)	0.25x2.00x2.00	43.43	100.0
Aluminum (1x1x2)	1.00x1.00x2.00	87.16	100.0
Aluminum (1x1x3)	1.00x1.00x3.00	130.97	100.0
Aluminum (2x2x3)	2.00x2.00x3.00	528.0	100.0
Aluminum (2x2x4)	2.00x2.00x4.00	705.1	100.0
Aluminum (2x2x5)	2.00x2.00x5.00	882.4	100.0
Aluminum (1-15/16x2x1)	1-15/16x2.00x1.00	170.5	100.0
Aluminum (2x0.773x1)	2.00x0.773x2.00	68.10	100.0

Revision: 0

HEU-MET-FAST-067

The compositions of the T-bar and the T-bar plates are given in Table 19.

Table 19. T-Bar Materials.

Description	Size	С	Si	Mn	Fe	Ni	Cu
		(g)	(g)	(g)	(g)	(g)	(g)
T-Bar Plate	1.935 x 2 x 0.25	0.182	0.023	0.479	118.762	0.012	0.012
T-Bar	0.125 x 2 x 2	0.094	0.012	0.247	61.295	0.006	0.006

The composition of the wire spring is given in Table 20. The wire spring was used to compress the plates toward the front of the drawer.

Table 20. Wire Spring Mass and Composition.

Component	С	Fe
	(g)	(g)
Wire Spring	0.097	9.862

The tables giving the compositions of the remaining components present the information in a different form from that in earlier tables. The mass of each element is shown, rather than the total mass, total density and weight percent by isotope. The drawer is broken down into various walls or wall combinations. The second column gives the nominal dimensions in the order $X \times Y \times Z$ (following the convention described in Section 1.2.2). Note that the masses given for the sides plus bottom are per inch of drawer length, not for the total drawer length.

Table 21 has the stainless steel drawer descriptions in this format. These drawers were made of Type 304 stainless steel. Some components were perforated to varying degrees while others had no holes. An example of perforations in a drawer front is shown in Figure 2. The control drawers not only had thicker walls, but also had a very thin (~ few mils) steel cover. (The mass of this thin cover is included in the side walls and bottom in the modeling of this drawer for the VIM continuous-energy Monte Carlo code.^a)

^a R. N. Blomquist, R. M. Lell and E. M. Gelbard, "VIM – A Continuous Energy Monte Carlo Code at ANL," A Review of the Theory and Application of Monte Carlo Methods, Proceedings of a Seminar-Workshop, Oak Ridge, TN, April 21-23, 1980, ORNL/RSIC-44, p. 31, August 1980.
Revision: 0

HEU-MET-FAST-067

Table 21. Stainless Steel Drawer Compositions.

Description	Nominal Size	С	Si	P	S	Cr	Mn	Fe	Ni	Cu	Mo
	(inches)	(g)	(g)	(g)	(g)						
40.75-inch Cont	rol Drawer /										
Side Walls ^(a) +	2x(.060x2x1)	0.023	0.076	0.010	0.006	6.980	0.591	26.864	3.242	0.076	0.095
Cover ^(a) + Bottom ^(a)	+ 2x.060x1										
Front	2 x 2 x 0.060	0.016	0.053	0.007	0.004	4.873	0.412	18.756	2.264	0.053	0.665
Back	2 x 2 x 0.375	0.11	0.78	0.04	0.02	32.80	2.42	123.89	16.50	0.21	0.23

(a) Mass per inch of length.

Table 22 has the aluminum drawer descriptions in this same format.

Table 22. Aluminum Drawer Compositions.

Description	Nominal Size	Mg	Al	Si	Ti	Cr	Mn	Fe	Cu	Zn	
Description	(inches)	(g)									
15.251-inch (15.251-inch Core Drawer										
Side Walls ^(a) + Bottom ^(a)	2x(.032x2x1) + 2 x.032x1	0.2750	6.5075	0.0138	0.0055	0.0103	0.0309	0.0172	0.0069	0.0089	
Front	2 x 2 x .032	0.1914	4.5285	0.0096	0.0038	0.0072	0.0215	0.0120	0.0048	0.0062	
Back	2 x 2 x .032	0.1914	4.5285	0.0096	0.0038	0.0072	0.0215	0.0120	0.0048	0.0062	
24.376-inch (24.376-inch Core Drawer										
Side Walls ^(a) + Bottom ^(a)	2x(.032x2x1) + 2 x.032x1	0.3284	7.7690	0.0164	0.0066	0.0123	0.0369	0.0205	0.0082	0.0107	
Front	2 x 2 x .032	0.2285	5.4058	0.0114	0.0046	0.0086	0.0257	0.0143	0.0057	0.0074	
Back	2 x 2 x .032	0.2285	5.4058	0.0114	0.0046	0.0086	0.0257	0.0143	0.0057	0.0074	
23.314-inch (Core Drawer										
Side Walls ^(a) + Bottom ^(a)	2x(.032x2x1) + 2 x.032x1	0.3490	8.2564	0.0175	0.0070	0.0131	0.0393	0.0218	0.0087	0.0113	
Front	2 x 2 x .032	0.2428	5.7456	0.0121	0.0049	0.0091	0.0273	0.0152	0.0061	0.0079	
Back	2 x 2 x .032	0.2428	5.7456	0.0121	0.0049	0.0091	0.0273	0.0152	0.0061	0.0079	

(a) Mass per inch of length.

Revision: 0

HEU-MET-FAST-067

The compositions of the aluminum matrix tubes are given in Table 23.

Table 23. Aluminum Matrix Tube.

Component	Mg	Al	Si	Cr	Mn	Fe	Cu	Zn
	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
Matrix Tube ^(a)	0.0913	8.8807	0.0548	0.0183	0.0073	0.0320	0.0256	0.0119
Matrix Tube ^(b)	0.1482	14.4159	0.0889	0.0296	0.0119	0.0519	0.0415	0.0193

- (a) Mass of first inch.
- (b) Mass per inch of length.

The compositions of the structural materials external to the assembly matrix is are given in Table 24.

Table 24. Compositions of Ex-Matrix Structures (wt.%).

Component	С	Si	P	S	Mn	Fe
Table, Bed, Knees	3.15	1.70	0.15	0.105	0.95	93.945
Back Plate	0.20	0.30	-	-	0.55	98.95

1.4 Supplemental Experimental Measurements

A list of experiments performed in ZPR-9 Assemblies 5 and 6 is given below. Although none of the listed measurements, other than criticality, was made in the selected loadings, the loadings were so similar that the results are directly applicable. References 1-6 are open-literature documents that contain information about some of the experiments.

Experiments performed in ZPR-9/5 and ZPR-9/6:

- Criticality.
- Kinetics parameters.
- Control rod calibrations (Comparison of Inverse Kinetics and Positive-Period Methods).
- Central reaction rates.
- Reaction-rate axial and radial distributions.
- Central material reactivity worths.
- Radial material reactivity worths.
- Gap worth (ZPR-9/6 only).

Revision: 0

Date: September 30, 2003 Page 44 of 125

HEU-MET-FAST-067

2.0 EVALUATION OF EXPERIMENTAL DATA

As noted in Section 1.1, there were several critical loadings for ZPR-9 Assemblies 5 and 6. Any of them would provide about the same basic criticality-safety benchmark information, so the basis for selecting a particular loading for use here was the precision and accuracy with which the critical assembly could be described. The selected loadings are Assembly 5 Loading 8 and Assembly 6 Loading 13.

Most of the experimental information used here was taken from the logbook and other original, internal documents. Some of these data were cross-checked with the open-literature publications, References 1-6. Reference 5 is expected usually to have the most accurate data on ZPR-9 Assemblies 5 and 6, since it has the latest publication date.

The reactivity effects of many of the uncertainties discussed below were quantified using a TWODANT model of the RZ benchmark (described in Section 3 and in Appendix B). The calculations used cross sections derived from ENDF/B-V data that were processed with Argonne cross section codes (see Appendix B). In some cases the Δk for the exact perturbation of interest was computed explicitly with a pair of TWODANT calculations. In cases where the change in k_{eff} might be too small to obtain accurately with the 10^{-7} k_{eff} convergence criterion, the atom density changes were scaled up to give about a 10^{-4} change in k_{eff} and the resulting Δk was then scaled down to the actual perturbation. A 10^{-4} k_{eff} change is small enough to be a first-order perturbation, which justifies the scaling. The uncertainties are put in units of $\%\Delta k$ (100 times the change in k_{eff}). For consistency in accounting, they are always displayed to four decimal places, even though that level of precision is not always justified on physical grounds.

The uncertainties affecting criticality have been divided into three broad categories. They are the uncertainties associated with 1) measurement technique, 2) geometry, and 3) compositions. Each category is considered in turn and then the combined experimental uncertainty is presented. Each uncertainty estimate is one standard deviation.

2.1 Measurement Technique Uncertainties

The excess reactivity was determined from the worth of a partially withdrawn DP control rod. The rod worth was determined by period measurements and by what was then a new technique, inverse kinetics. The excess reactivities reported by the experimenters in Reference 5 are 79.8 Ih and 108.4 Ih for Assemblies 5 and 6, respectively. The experimenters claimed an 1σ uncertainty in these values of ± 0.10 Ih (Reference 5).

To convert from the natural measurement units of Ih to units of k_{eff} requires knowledge of the delayed-neutron kinetics parameters, particularly β_{eff} . The conversions reported in Reference 5 are 425 Ih/% Δk and 431 Ih/% Δk for Assemblies 5 and 6, respectively. These values are assumed to be uncertain by 5%. Using these conversion factors, the measured excess reactivities are 0.1878 and 0.2515 % Δk in Assemblies 5 and 6, respectively, with a measurement uncertainty of ± 0.0002 % Δk in each case. The uncertainty in the conversion factor applied to the excess reactivity leads to additional uncertainties of ± 0.0094 % Δk and ± 0.0126 % Δk for Assemblies 5 and 6, respectively.

Revision: 0

HEU-MET-FAST-067

The reported temperatures of these assemblies during the criticality measurements, $20.7^{\circ}C$ and $14.0^{\circ}C$ for Assemblies 5 and 6, respectively, are uncertain. It is estimated that the uncertainty in the thermocouple calibration is $0.5^{\circ}C$ and the uncertainty in the core-average temperature obtained from the average of several thermocouples is $1.0^{\circ}C$. No measured temperature coefficient results were found. However, a set of coefficients from three other enriched-uranium-fueled ZPR assemblies has a mean of -1.57 Ih/°C and a range of -1.27 to -1.8 Ih/°C. Using the mean value, the temperature uncertainty translates to a ± 0.0037 % Δk and ± 0.0036 % Δk contribution for Assemblies 5 and 6, respectively, to the k_{eff} uncertainty.

2.2 Geometry Uncertainties

Because the matrix halves were not perfectly aligned, there was a small gap of variable width between the two halves of the assembly, even when the halves made contact at a point. Gap worth measurements made on two closely related assemblies have been reported: a ZPR-9 Assembly 4 measurement in Reference 6 and a ZPR-9 Assembly 6 measurement in Reference 5. Both measurements indicated that the slope of the reactivity-vs-gap width curve is much less steep near full closure than it is at larger gap widths. This trend has been observed in gap measurements in other assemblies, e.g., ZPR-6/10 (PU-MET-INTER-002). This slope variation is being emphasized because gap corrections reported in Reference 5 for Assemblies 3, 4, 5 and 6 are based erroneously on the large-gap slope. Consequently it is not appropriate simply to scale those reported corrections. The small-gap slope from the Assembly 4 measurement results shown in Figure 7 of Reference 6 was used here because it is more precise than is the small-gap slope from the Assembly 6 measurement. The estimated small-gap slope is $0.145 \% \Delta k/cm$, which is assumed to apply to Assemblies 5 and 6. The experimenters estimated the average gap to be 30 mils (0.076 cm), as reported in Reference 5. Based on these values, increasing the experimental k_{eff} by 0.011 % Δk would account for omission of the gap from the models. As in previous evaluations of ZPR assemblies, the $\pm 2\sigma$ uncertainty in the gap width is estimated to be 50 mils (0.127 cm). Using the same slope yields a 1σ gap uncertainty effect of ± 0.0046 % Δk .

Besides the table gap, there are three issues regarding the exact location of materials. One such possibility is that the drawer fronts might not have been flush with the front edge of the matrix tubes. This component was minimized by ensuring the tabs on the drawer sides mated with notches in the matrix tubes. During drawer loading and unloading, care would have been taken to make the drawers flush with the matrix surface. The second issue is the possibility that the plate columns might not have been all the way forward against the drawer front. This problem was minimized by following the drawer loading procedure and by using springs to hold the plates in a fixed position. Both of these two issues are assumed covered by the table gap uncertainty.

The third issue involves deviations from nominal dimensions for plates, drawers, and matrix tubes. Deviations in the dimensions that affect the precise X and Y positions of materials in the unit cell are too small to impact k_{eff} significantly. The dimensions that determine the volumes over which the material masses are distributed can have an effect. The plate lengths and drawer front thickness affect the axial positions of materials, similar to the interface gap effect. It is estimated that the collective uncertainty in these dimensions is ± 10 mils (0.25 mm). Using the gap coefficient as a

Revision: 0

HEU-MET-FAST-067

measure of the reactivity effect yields a k_{eff} uncertainty contribution of ± 0.0037 % Δk . A deviation from the nominal average spacing between matrix tubes, discussed next, also would affect region volumes.

Dimensional measurements, including deflection under load, were made on the ZPR-9 aluminum matrix. Under appropriate load conditions, the average pitch was 2.179 inches in the horizontal direction and 2.186 inches in the vertical direction.^a The measured pitch is assumed to be uncertain by 1 mil. The effect of increasing the pitch by 1 mil in each direction was computed by increasing all radii and reducing atom densities correspondingly to preserve masses. The results were -0.0533 and -0.0584 % Δ k per mil (.00254 cm) increase in square pitch for Assemblies 5 and 6, respectively. The magnitudes of these results are taken to be the pitch contribution to the k_{eff} uncertainty.

An evaluation of the room return effect was made for the closely related assembly, ZPR-9 Assembly 4 (HEU-MET-FAST-060). It showed that the aluminum reflectors are so ineffective that it is important to model the complete matrix, the bed and table below, the knees on each side and the back plate behind the matrix. All of these structures are included in the as-built models of Assemblies 5 and 6, as they were in the as-built model of Assembly 4. The total uncertainty in modeling return from the structures beyond the matrix was estimated to be ± 0.0427 % Δ k for Assembly 4 and this value is assumed to apply to Assemblies 5 and 6.

2.3 Composition Uncertainties

A bit of history about the materials inventory records is needed to appreciate the extent and limitations of the information available on the compositions used in these assemblies. The material inventory for Argonne's ZPR facilities was accumulated over a period of more than three decades, starting in the mid-1950s. The procurement acceptance process required thorough documentation on dimensions, masses, composition, etc. Information needed for day-to-day operations was extracted and compiled in working documents known informally as "hot constants memos." These memos give batch or lot average values of dimensions, masses, and weight percents of constituents but no uncertainties. The original documentation on some of the inventory used in these assemblies is no longer available but the hot constants documents are available. Consequently, indirect evidence and estimates were used to quantify many of the composition uncertainties.

The composition uncertainty for a component is treated in two parts: the uncertainty in total mass and the uncertainty in the weight percents of the constituents. Since these two sources of uncertainty are independent, they are added in quadrature. The reactivity effect of the composition uncertainty was determined by computing the change in the k_{eff} using the TWODANT model of the benchmark.

The details of the mass measurements are unknown for all the materials in these assemblies. For the plates and most of the drawers it is assumed that measurements of masses were within 0.01 g of actual value for plates of up to tens of grams and within 1 g for larger plates weighing kilograms, i.e., the uncertainty in weighing was 0.1%. The working standard used to calibrate the scale is taken to have an uncertainty of 0.05%, which is a systematic uncertainty. The uncertainty in weighing could be statistical, but since no details of the process are available, we take the most pessimistic

Revision: 0

^a R. C. Doerner et al, "ZPR-9 Assemblies No. 6-9 Critical Experiments," ANL-7208, Argonne National Laboratory (March 1967).

HEU-MET-FAST-067

assumption and consider this to be a systematic uncertainty, making a total uncertainty in mass of 0.15%. The mass uncertainty assumptions made for other items are specified as needed.

The materials that could contribute in a significant way to the composition uncertainties are: the enriched-uranium fuel plates (which had Kel-F coating), the graphite plates (Assembly 5), the perforated aluminum plates (Assembly 6), and tungsten plates in the core, the aluminum plates in the reflectors, the aluminum drawers, the stainless steel control drawers and the aluminum matrix tubes. Masses and compositions for all of these materials are known reasonably well. The effect of uncertainties in the compositions of the structures beyond the matrix is covered in the room return modeling uncertainty (see Section 2.2).

The evidence currently available regarding the uncertainties in the isotopic weight percents for the enriched uranium is discussed in the ZPR-9/4 benchmark document, HEU-MET-FAST-060. A ± 0.05 wt.% uncertainty estimate for the 235 U and 238 U content was derived from this evidence. The reactivity effect was calculated directly using a TWODANT model of the benchmark. The 235 U mass was increased by 0.05 wt.% of the enriched uranium mass and the 238 U mass was reduced correspondingly. The component uncertainties for 235 U are 0.0265 % Δ k and 0.0269 % Δ k for Assemblies 5 and 6, respectively. The 238 U mass was increased by 0.05 wt.% of the enriched uranium mass and the 235 U mass was reduced correspondingly. The component uncertainties for 238 U are 0.0013 % Δ k and 0.0016 % Δ k for Assemblies 5 and 6, respectively. Although these 0.05 wt.% uncertainty estimates are themselves uncertain, their computed reactivity effect was so small that a reasonable revision of the wt.% estimate clearly would also yield an unimportant reactivity effect. The component uncertainties of 234 U and 236 U were negligible (<0.001% Δ k). When added in quadrature, the total enrichment uncertainties are ± 0.0266 % Δ k and ± 0.0269 % Δ k for Assemblies 5 and 6, respectively.

The impurities in the enriched uranium are also discussed in HEU-MET-FAST-060. The estimated total impurity level is 885 weight ppm, with the following distribution: C 340, Ni 174, Fe 125, Cu 65, Na 63, Ca 40, Si 35, Al 30, and Mn 13. It is estimated that a one-sigma uncertainty of 50% applies to this impurity model. The effect of the estimated enriched uranium impurities was calculated directly with TWODANT. Since the presence of the impurities was neglected in the reference model, the perturbation consisted of adding the nine impurities and reducing the enriched uranium to preserve mass. The computed effects are -0.0412 % Δ k and -0.0439 % Δ k for Assemblies 5 and 6, respectively, implying that increasing the experimental $k_{\rm eff}$ values by these amounts would compensate for the omission of the impurities in the models. (It should be noted that, for both assemblies, the computed effect of the initial impurities comes primarily from the reduction in uranium mass. For example, in Assembly 5 the reduction in enriched uranium concentration has a -0.0489 % Δ k effect. This is only slightly offset by the increase in moderation from the addition of the nine impurities, a +0.0077 % Δ k effect.) The 50% uncertainty in the impurity level corresponds to \pm 0.0206 % Δ k and \pm 0.0220 % Δ k for Assemblies 5 and 6, respectively, which must be added in quadrature with the other $k_{\rm eff}$ uncertainty components.

The effect of increasing the mass of the enriched uranium by the assumed 0.15% uncertainty was calculated directly with TWODANT. The results are ± 0.0778 % Δk and ± 0.0817 % Δk for Assemblies 5 and 6, respectively.

Revision: 0

HEU-MET-FAST-067

Adding in quadrature the enrichment, impurity and mass uncertainty effects yields k_{eff} uncertainty contributions associated with the enriched uranium of ± 0.0848 % Δk and ± 0.0888 % Δk for Assemblies 5 and 6, respectively. The adjustment to the experimental k_{eff} values for impurities are +0.0412 % Δk and +0.0439 % Δk for Assemblies 5 and 6, respectively.

The uncertainty for the Kel-F coating on the uranium plates is dominated by the possibility that some flaked off in handling the plates. It is assumed, pessimistically, that 10% of the coating could have been lost. The effect of removing all the Kel-F from the TWODANT model was computed to be $0.0097~\%\Delta k$ and $0.0077~\%\Delta k$, so the Kel-F uncertainty is $\pm 0.0010~\%\Delta k$ and $\pm 0.0008~\%\Delta k$ for Assemblies 5 and 6, respectively. For convenience this is not treated as a one-sided uncertainty.

There are uncertainties in mass and impurities associated with the tungsten plates. The assumed 0.15% uncertainty in the mass of the tungsten plates was calculated to have an effect of $\pm 0.0132~\%\Delta k$ and $\pm 0.0086~\%\Delta k$ for Assemblies 5 and 6, respectively. There is a tungsten mass bias because there must have been some special tungsten plates less than 2 inches tall to accommodate thermocouples. Record keeping of the 1960s was not precise enough to include a thermocouple drawer master but there definitely was temperature monitoring. It is estimated that there would have been three thermocouple drawers per half, and one 1/8-inch tungsten plate column in each of these drawers would be 1 $^3\!\!$ 4 inches tall, rather than 2 inches tall. Assuming these values, the tungsten mass in the as-built model is too large by 0.045% and 0.038% for Assemblies 5 and 6, respectively. Decreasing the experimental $k_{\rm eff}$ by 0.0040 % Δk in Assembly 5 and 0.0022 % Δk in Assembly 6 would account for this discrepancy and, assuming a 50% uncertainty, there is an uncertainty contribution of $\pm 0.0020~\%\Delta k$ and $\pm 0.0011~\%\Delta k$ for Assemblies 5 and 6, respectively.

The tungsten plates are listed in the hot constants memos as being 100% W. This value was used in the as-built model but there must be some impurities. Although 99.99 wt.% pure W is commercially available, the high cost makes it likely that the more common purity level of 99.9 wt.% was used to manufacture these plates. Since Fe and Mo appear to be the common impurities, the uncertainty perturbation was assumed to have 0.05 wt.% of each of these and 99.9 wt.% W. The effects of this perturbation are +0.0107 % Δ k and +0.0112 % Δ k for Assemblies 5 and 6, respectively. Decreasing the experimental k_{eff} by this amount would compensate for the omission of the impurities in the model. This impurity estimate is assumed to be uncertain by 100%, implying uncertainty contributions of ± 0.0107 % Δ k and ± 0.0112 % Δ k for Assemblies 5 and 6, respectively.

Combining these tungsten results yields adjustments of -0.0147 % Δ k and -0.0134 % Δ k to the experimental k_{eff} values and uncertainty contributions of ± 0.0171 % Δ k and ± 0.0142 % Δ k for Assemblies 5 and 6, respectively.

The assumed 0.15% uncertainty in the mass of the graphite plates, which are only in the core region of Assembly 5, was calculated to be ± 0.0081 % Δk . These plates are listed in the hot constants memo as being 100% graphite. A conservative upper bound on the effect of any impurities that might be present was calculated by adding 5 parts per million 10 B, which is approximately the contamination observed in the TREAT reactor graphite. This calculated bound is ± 0.0016 % Δk for Assembly 5. The quadrature sum of the mass and impurity uncertainty is ± 0.0083 % Δk .

Revision: 0

^a H. P. Iskenderian, "Post Criticality Studies on the TREAT Reactor," ANL-6115, Argonne National Laboratory, February 1960.

HEU-MET-FAST-067

Aluminum plates appear only in the reflector regions in Assembly 5, but in both core and reflector regions in Assembly 6. The plates in the Assembly 6 core region are perforated aluminum to simulate void, whereas, the reflector region aluminum plates in both assemblies are not perforated. These two different aluminum plate types will be discussed separately.

The assumed 0.15% uncertainty in the mass of the Assembly 6 core aluminum plates was calculated to have a $\pm 0.0026~\%\Delta k$ effect. These plates are listed in the Hot Constants memo as being 100% aluminum but there must be impurities. "Super-purity" aluminum, 99.99% pure, is commercially available but is relatively expensive. As a measure of the composition uncertainty, the 100% pure aluminum plates in the TWODANT model were replaced with 99.8% pure aluminum, which is a reasonably common variety. It was assumed that the two dominant impurities in "primary" aluminum, Fe and Si, each are present at 0.1 wt.%. The calculated effect is $\pm 0.0011~\%\Delta k$.

The aluminum plates dominate the compositions of the reflectors. In addition to the assumed 0.15% mass uncertainty in the Hot Constants plate masses, there is a mass uncertainty due to the fact that the plate sizes used to construct the reflectors usually are not specified in the drawer masters. Separate assessments of radial and axial reflectors were made for ZPR-9/4, which had nearly the same reflectors as Assemblies 5 and 6. Because the uncertainty contribution observed there for the axial reflector is relatively small, a simpler approach is used here. The 0.20% total mass uncertainty assigned to the radial reflector is assigned to both the radial and axial reflectors and there treated simultaneously. The calculated effects of this mass uncertainty are ± 0.0124 % Δk and ± 0.0161 % Δk for Assemblies 5 and 6, respectively.

There is uncertainty in the weight percents for the aluminum plates. The reflector composition uncertainty was treated like the core composition uncertainty discussed above. The calculated effects are ± 0.0055 % Δk and ± 0.0060 % Δk for Assemblies 5 and 6, respectively.

The aluminum matrix and aluminum drawers are relatively unimportant. They contribute approximately 7% and 4%, respectively, to the total aluminum in the reflectors. They account for all the aluminum in the core in Assembly 5, but aluminum is not an important core constituent. The uncertainty contributions computed for ZPR9/4, which had the same matrix and nearly the same drawers, are adopted here. That contribution is ± 0.0023 % Δk for each assembly.

The combined aluminum uncertainty is the quadrature sum of plate, matrix tube and drawer contributions. The combined uncertainty effects are ± 0.0138 % Δk and ± 0.0176 % Δk for Assemblies 5 and 6, respectively.

The stainless steel DP control drawers make a small contribution to the core and axial reflector compositions. The effect of a 0.15% mass uncertainty was calculated for ZPR-9/4 and was found to be only ± 0.0001 % Δk . This result is assumed to apply to Assemblies 5 and 6. With such a small mass result, the stainless steel composition uncertainty must have a totally negligible effect.

A very small bias and uncertainty due to the presence of humidity in the air was derived for an earlier ZPR assembly. This was done by comparing calculations with the assembly gaps filled by dry air and by saturated air. The calculated effect, $0.0001\% \Delta k$, is assumed to apply to these assemblies and will be included simply as an uncertainty.

Revision: 0

HEU-MET-FAST-067

2.4 Combined Uncertainties and Final Excess Reactivity

All of the uncertainties discussed in the previous sections are summarized in Table 25. None of the uncertainties in the measurement technique category are important and their quadrature sums are only $0.0101\%\Delta k$ and $0.0131\%\Delta k$ for Assemblies 5 and 6, respectively. Two of the four geometry uncertainties are significant and the quadrature sums of the four are $0.0685\%\Delta k$ and $0.0726\%\Delta k$ for Assemblies 5 and 6, respectively. The enriched uranium fuel composition uncertainty is by far the most important single contributor. The total uncertainties, $0.1120\%\Delta k$ and $0.1176\%\Delta k$ for Assemblies 5 and 6, respectively, are believed to be conservative but reasonable. Treating each of these uncertainties as if it were 1σ of normal distributions should be acceptable for the purposes of the benchmark models. As discussed throughout Section 2, this uncertainty covers the effects of simplifying adjustments to the experiment, such as removal of the matrix interface gap and omission of impurities.

Table 25. Summary of the Uncertainties in the Experimental k_{eff} for ZPR-9 Assemblies 5 and 6.

Source of Uncertainty	Uncertainty in Exces	s Reactivity (% Δk)
	ZPR-9/5	ZPR-9/6
Measurement Technique		
Data Fitting	0.0002	0.0002
Ih to Δk	0.0094	0.0126
Temperature	0.0037	0.0036
Geometry		
Matrix Interface Gap	0.0046	0.0046
Nominal Plate Dimensions	0.0037	0.0037
Matrix Tube Pitch	0.0533	0.0584
Room Return	0.0427	0.0427
Composition		
Enriched Uranium	0.0848	0.0888
Kel-F	0.0010	0.0008
Tungsten	0.0171	0.0142
Graphite (Carbon)	0.0083	
Aluminum	0.0138	0.0176
DP Rod Steel	0.0001	0.0001
Humidity	0.0001	0.0001
Total	0.1120	0.1176

ZPR-9 Assemblies 5 and 6 have been determined to comprise acceptable criticality-safety benchmark experiments.

Revision: 0

HEU-MET-FAST-067

3.0 BENCHMARK SPECIFICATIONS

3.1 <u>Description of Model</u>

Even the most casual perusal of Section 1 makes it clear that these assemblies are too complicated to be practical criticality-safety benchmark models without a great deal of simplification. Fortunately, it is possible to eliminate virtually all of the complexity and obtain simple benchmark models without losing any of the essential physics. Furthermore, this can be done without compromising the high accuracy of the experiments.

This was accomplished by computing the transformation from the detailed as-built experiment model to a simple RZ benchmark model using the VIM continuous-energy Monte Carlo code.^a Note that the term "transformation" will be used repeatedly through Section 3.0 and will, in all cases, refer to both the simplification of the model from the as-built platewise heterogeneous experiment model to the homogeneous cylindrical benchmark model, and the corresponding correction of k_{eff} to account for these simplifications. VIM eigenvalue calculations were made for the as-built model and for the benchmark model. The k_{eff} correction is simply the difference in k_{eff} between the two models.

The modeling of all the experimental detail was made tractable by the development of the BLDVIM computer code^b which generates the VIM input file for the as-built model. BLDVIM reads an electronic database containing a description of the ZPPR plate and drawer inventory, the assembly drawer masters, and the matrix loading maps. The code and database were recently rewritten for UNIX-based workstations, at which time the values of Avogadro's number and the atomic masses were made to conform to the values recommended by the ICSBEP. The VIM input for the as-built models are provided in Appendix D.

VIM input requires that an edit region number be assigned to each geometric region. Each geometric region associated with the ZPR-9/5 core (each plate, air gap, drawer segment, etc) was assigned edit region number 1. Similarly, each geometric region of the first segment of the axial reflector was assigned edit region number 2, and so on. Of course, the composition (atom densities) associated with each geometric region of the as-built model must also be assigned. These assignments were made with the aid of the BLDVIM code, reducing the actual hand-generated input from thousands of numbers to just a few. When the resulting as-built model was processed by the VIM code, the total volume and the volume-averaged atom densities for each edit region were edited. The same process was followed for ZPR-9/6.

The key features retained in the benchmark model are the region-averaged compositions, region volumes, and global RZ geometry. The Assembly 5 benchmark geometry is depicted in Figure 9. Some drawers at the core-radial reflector interface had core-region plates in part of the drawer and radial reflector-region plates (aluminum) in the remainder of the drawer (partial-core drawers).

Revision: 0

^a R. N. Blomquist, R. M. Lell and E. M. Gelbard, "VIM – A Continuous Energy Monte Carlo Code at ANL," A Review of the Theory and Application of Monte Carlo Methods, Proceedings of a Seminar-Workshop, Oak Ridge, TN, April 21-23, 1980, ORNL/RSIC-44, p. 31, August 1980.

^b R. W. Schaefer, R. D. McKnight and P. J. Collins, "Lessons Learned from Applying VIM to Fast Reactor Critical Experiments," *Proceedings of the Nuclear Criticality Technology Safety Workshop*, San Diego, CA, pp. 129-136, LA-13439-C (1995).

HEU-MET-FAST-067

These partial-core drawers had the standard axial-reflector loading behind the core/radial-reflector plate loading. This resulted in the radius of the core being smaller than the radius of the axial reflector. The DP control drawers had a thicker drawer wall than the standard core drawers, making the core plate loading extend 0.044 cm further back in the control drawers. The total length of the model was to the end of the radial reflector drawer. The Assembly 6 benchmark geometry is depicted in Figure 10. Again, the radial reflector drawer length was used in the benchmark model. Volumes and masses are preserved exactly for all regions in both models.

Figure 9. Benchmark-Model Geometry for ZPR-9/5.

Revision: 0

HEU-MET-FAST-067

Figure 10. Benchmark-Model Geometry for ZPR-9/6.

Obvious simplifications made were the smoothing of jagged boundaries in the XY plane into circular boundaries, and the elimination of the empty matrix tubes and support structures beyond them. The simplification that yielded by far the greatest elimination of detail was the smearing of plates, drawers, and matrix tubes into cylindrical regions. The plate heterogeneity effects, which would require much effort to capture accurately in effective homogenized cross sections in a deterministic modeling approach, are included in the Monte Carlo-calculated transformation Δk .

Several minor simplifications of the experiments were made in developing the as-built model and these implicitly apply to the benchmark models as well. The small gap between the matrix halves was neglected. Impurities in the enriched uranium and in the tungsten were ignored. Finally, humid air was replaced by void in all the air gaps. All of these biases and their associated uncertainties were quantified in Section 2 and their impact on $k_{\rm eff}$ is summarized in Section 3.5.

Revision: 0

HEU-MET-FAST-067

3.2 <u>Dimensions</u>

The ZPR-9/5 benchmark model consists of six regions, as shown in Figure 9. The central region, CORE, is a cylindrical core with a radius of 34.11820 cm and a half-height of 28.02315 cm. Radially beyond the core is the first part of the aluminum radial reflector, RR1, which has an outer radius of 34.4037 cm. The RR1 region represents the contribution to the radial reflector from the partial core drawers. Radially beyond the RR1 region is the remainder of the aluminum radial reflector, RR2, which has an outer radius of 70.83879 cm. The back of the radial reflector goes to the end of the radial reflector drawer, at 61.91504 cm. The axial reflector is partitioned axially where the aluminum plate loading ended in the DP control drawers, at 50.92573 cm and at the end of the axial reflector plate loading, 59.13882 cm. Finally, an empty-drawer region, AR3, is included behind region AR2 to the same height as the end of the region RR2.

The ZPR-9/6 benchmark model consists of six regions, as shown in Figure 10. The central region, CORE, is a cylindrical core with a radius of 36.87395 cm and a half-height of 30.56288 cm. Radially beyond the core is the first part of the aluminum radial reflector, RR1, which has an outer radius of 38.17733 cm. The RR1 region represents the contribution to the radial reflector from the partial core drawers. Radially beyond the RR1 region is the remainder of the aluminum radial reflector, RR2, which has an outer radius of 75.90495 cm. The back of the radial reflector goes to the end of the radial reflector drawer, at 61.91504 cm. The axial reflector is partitioned axially where the aluminum plate loading ended in the DP control drawers, at 50.92573 cm and at the end of the axial reflector plate loading, 61.67882 cm. Finally, an empty-drawer region, AR3, is included behind region AR2 to the same height as the end of the region RR2.

3.3 Material Data

Table 26 shows the region-dependent composition data for the ZPR-9/5 benchmark model. Only aluminum plates, aluminum drawers, and aluminum matrix tubes contributed to the compositions for regions RR1 and RR2. The trace-level concentrations of elements other than aluminum in this region are from impurities in the drawers and matrix tubes. For instance, the core and axial reflector regions have steel from the DP control drawers. However, nowhere in the model is there much iron.

Table 27 shows the region-dependent composition data for the ZPR-9/6 benchmark model. This model is partitioned in approximately the same manner as the ZPR-9 Assembly 5 configuration discussed above. The major compositional difference between the two models is the substitution of perforated aluminum plates in ZPR-9/6 for the graphite plates in ZPR-9/5.

Revision: 0

HEU-MET-FAST-067

Table 26. Compositions by Region for ZPR-9/5 Benchmark Model (atoms/barn-cm).

Nuclide	CORE	AR1	AR2	AR3	RR1	RR2
²³⁵ U	4.50947E-03	0.0	0.0	0.0	0.0	0.0
²³⁸ U	2.61044E-04	0.0	0.0	0.0	0.0	0.0
²³⁴ U	4.46629E-05	0.0	0.0	0.0	0.0	0.0
²³⁶ U	2.14119E-05	0.0	0.0	0.0	0.0	0.0
Cr	5.19317E-05	4.90320E-05	4.90529E-05	4.90529E-05	5.85966E-06	6.25067E-06
Ni	1.89819E-05	1.75735E-05	1.76564E-05	1.76388E-05	0.0	0.0
Fe	1.74665E-04	3.08069E-04	6.95925E-04	5.13312E-04	9.43218E-06	6.59296E-05
Al	5.86832E-03	5.51390E-02	5.47063E-02	6.38535E-03	5.57230E-02	5.60063E-02
С	2.98022E-02	7.22959E-06	4.40231E-06	3.10124E-06	0.0	2.55604E-06
Mo	3.41200E-07	3.15881E-07	3.16470E-07	3.16470E-07	0.0	0.0
Mn	9.70810E-06	1.05374E-05	1.25539E-05	1.18051E-05	6.20712E-06	7.10273E-06
Cu	6.11835E-06	6.46318E-06	6.47664E-06	6.46035E-06	5.74351E-06	6.00084E-06
Н	4.05183E-06	0.0	0.0	0.0	0.0	0.0
Ti	2.73840E-06	3.01802E-06	2.98271E-06	2.98271E-06	2.77784E-06	2.98857E-06
Si	2.83306E-05	3.00221E-05	3.00817E-05	3.00115E-05	2.75664E-05	2.87875E-05
Mg	1.34057E-04	1.56686E-04	1.53221E-04	1.53221E-04	1.37951E-04	1.56196E-04
Cl	7.07473E-06	0.0	0.0	0.0	0.0	0.0
F	2.09509E-05	0.0	0.0	0.0	0.0	0.0
W	2.13337E-02	0.0	0.0	0.0	0.0	0.0

Table 27. Compositions by Region for ZPR-9/6 Benchmark Model (atoms/barn-cm).

Nuclide	CORE	AR1	AR2	AR3	RR1	RR2
		AKI	AKZ	AKS	KK1	KK2
²³⁵ U	4.50657E-03	0.0	0.0	0.0	0.0	0.0
^{238}U	2.60887E-04	0.0	0.0	0.0	0.0	0.0
²³⁴ U	4.46358E-05	0.0	0.0	0.0	0.0	0.0
²³⁶ U	2.13983E-05	0.0	0.0	0.0	0.0	0.0
Cr	4.51216E-05	4.10691E-05	4.10258E-05	4.10258E-05	5.86474E-06	6.25067E-06
Ni	1.61740E-05	1.42675E-05	1.43351E-05	1.43241E-05	0.0	0.0
Fe	1.50232E-04	2.98772E-04	5.32030E-04	4.18763E-04	9.44106E-06	6.59296E-05
Al	1.51117E-02	5.49957E-02	5.51727E-02	6.40368E-03	5.57536E-02	5.60085E-02
С	1.47100E-05	8.00231E-06	3.32546E-06	2.51846E-06	0.0	2.55604E-06
Mo	2.90728E-07	2.56457E-07	2.56999E-07	2.56999E-07	0.0	0.0
Mn	9.17333E-06	1.01005E-05	1.13990E-05	1.09346E-05	6.19021E-06	7.10273E-06
Cu	6.07329E-06	6.43103E-06	6.40119E-06	6.39109E-06	5.75389E-06	6.00085E-06
Н	4.04868E-06	0.0	0.0	0.0	0.0	0.0
Ti	2.74534E-06	3.06014E-06	2.99143E-06	2.99142E-06	2.77894E-06	2.98857E-06
Si	2.82693E-05	3.00395E-05	2.99042E-05	2.98606E-05	2.76181E-05	2.87875E-05
Mg	1.34332E-04	1.60836E-04	1.54081E-04	1.54081E-04	1.37651E-04	1.56196E-04
Cl	7.09986E-06	0.0	0.0	0.0	0.0	0.0
F	2.10256E-05	0.0	0.0	0.0	0.0	0.0
W	2.13477E-02	0.0	0.0	0.0	0.0	0.0

Revision: 0

HEU-MET-FAST-067

Tungsten is presented in Tables 26 and 27 in element form. Some neutron cross section data files contain tungsten data by isotope and not for the composite element. For ZPR-9/5 (Table 26), the decomposition of the tungsten element atom density into isotopic atom densities is 2.56004E-05, 5.65300E-03, 3.05371E-03, 6.53707E-03, and 6.06432E-03 for isotopes 180, 182, 183, 184 and 186, respectively.^a The corresponding decomposition for ZPR-9/6 (Table 27) is 2.56172E-05, 5.65671E-03, 3.05571E-03, 6.54136E-03, and 6.06830E-03. However, there are no data for ¹⁸⁰W in the ENDF/B files. The ¹⁸²W cross sections should be a good substitute (see Section 3.5).

3.4 Temperature Data

The experimenters reported the excess reactivity corresponding to temperatures of 20.7° C and 14.0° C for Assemblies 5 and 6, respectively, both of which are approximately room temperature. These are the temperatures used for the benchmark models. For any reasonable definition of room temperature, the temperature adjustment to k_{eff} is negligible.

3.5 Experimental and Benchmark-Model keff

The transformation Δk (bias) from the as-built configuration to the benchmark model was calculated using the VIM continuous-energy Monte Carlo code with ENDF/B-V data. The results are shown in Table 28. The uncertainties shown are just the statistical standard deviations from VIM using the combined track-length and analog estimators.

Table 28. Eigenvalues for Transformation From As-Built Model to RZ Benchmark Model.

Assembly	As-built Model k _{eff}	RZ Benchmark Model keff	Transformation Δk (Bias)
ZPR-9/5	1.0150 ± 0.0006	1.0086 ± 0.0004	-0.0064 ± 0.0007
ZPR-9/6	1.0196 ± 0.0005	1.0105 ± 0.0004	-0.0091 ± 0.0006

The transformation Δk comes primarily from two negative components. The largest component is due to plate cell heterogeneity. This, along with most other components, was estimated by the experimenters (Reference 5), since it was not practical to model these components using the calculational tools of that era. They estimated the plate heterogeneity effect to be 0.40 %Δk for both Assemblies 5 and 6. The second largest component is due to room return. This effect could not be estimated well by calculation or measurement in the 1960s. The room return effect for ZPR-9 Assemblies 2, 3 and 4 has been calculated to be approximately 0.2 %Δk. Since Assemblies 5 and 6 are similar cores, they should have approximately the same room return effect. Each of the remaining components, such as edge smoothing, is smaller.

An estimate of the *total* uncertainty in the transformation Δk from the as-built, platewise heterogeneous critical-assembly model to the homogeneous cylindrical model is needed. Since there are no significant geometric approximations in the as-built model and there are no cross section

Revision: 0

^a "Nuclides and Isotopes, Chart of the Nuclides", Fifteenth Edition, General Electric Co. and KAPL, Inc. (1996).

HEU-MET-FAST-067

processing approximations associated with either model, the only sources of uncertainty added to the original experimental uncertainty come from the Monte Carlo statistical precision and the sensitivity of the calculated Δk values to uncertainties in the basic cross section data. The major cross section uncertainties in the assembly arise from fission production and absorption in ^{235}U and absorption in tungsten. Uncertainties in the k_{eff} of fast reactor critical assemblies due to calculations with ENDF/B-V data have been quantified.^a In a set of about a dozen assemblies, the k_{eff} uncertainty ranges from 1.1% to 2.0%. The assumption is made that the high end of this range, 2.0% applies to the k_{eff} of these assemblies.

Because there is a strong correlation between the two calculations, the transformation Δk has a much smaller uncertainty than the uncertainty in either k_{eff} . The two calculations for the transformation Δk are based on the same code and on the same cross sections, with similar sensitivities of k_{eff} to the cross sections, and are thus highly correlated. The ensuing uncertainty in the transformation Δk is therefore assumed smaller by an order of magnitude, or ± 0.20 % Δk . Adding in quadrature the uncertainties due to use of ENDF/B-V cross sections and the uncertainty from statistics on the difference of the two VIM calculations yields a total uncertainty in the transformation Δk of 0.21 % Δk .

This uncertainty estimate is believed to be conservative, but still sufficiently small for criticality-safety benchmark purposes. The actual correlations are likely higher than the values assumed in deriving the estimated uncertainty.

Several small adjustments to the measured k_{eff} are needed to account for differences between the actual experiment conditions and the as-built model. The matrix-interface gap, estimated by the experimenters to be 0.076 cm, was not included in the as-built model. As described in Section 2.2, removal of this gap increases k_{eff} by 0.011 % \Delta k for both Assemblies 5 and 6, based on the gap worth measurement data. No matrix pitch adjustment is needed because the best-estimate horizontal and vertical pitch values (2.179x2.186 inches) were used in the as-built model (unlike the use of 2.175inch square pitch in previous ZPR benchmark models). Also, no room return adjustment is needed because the as-built model includes structural components beyond the matrix tubes. The next three adjustments are discussed in Section 2.3. Adjustments of +0.0412 %Δk and +0.0439 %Δk compensate for omission of enriched-uranium impurities from the Assembly 5 and Assembly 6 models, respectively. Adjustments of -0.0147 %Δk and -0.0134 %Δk compensate for omission of tungsten impurities and the thermocouple hardware adjustment from the Assembly 5 and Assembly 6 models, respectively. Finally, as noted in Section 2.3, the effect of omitting humid air from the models (replaced by void) is so small, 0.0001 %Δk, that effect was treated as an uncertainty rather than an adjustment. The uncertainty contributions from all of these adjustments were included in the uncertainty evaluations in Section 2.

There is one more adjustment issue. Natural tungsten includes a small amount of 180 W, 0.12 wt.%, but there are no ENDF/B cross section data for this isotope in the VIM code's cross section library. In the as-built models (and in some benchmark-model calculations) the 180 W atom density was added to the 182 W atom density and 182 W cross sections were used for this combination. No adjustment to k_{eff} is thought to be needed because the similarity of the nuclear properties of these

Date: September 30, 2003 Page 58 of 125

^a Table IV in: D. N. Olsen, P. J. Collins and S. G. Carpenter, "Experiments of IFR Fuel Criticality in ZPPR-21," *ICNC '91 International Conference on Criticality Safety*, Oxford, UK, September 9-13, 1991.

HEU-MET-FAST-067

two isotopes strongly suggests that their cross sections should be very similar. However, an uncertainty estimate was made to account for this substitution. This was done by using 186 W cross sections, instead of 182 W cross sections, with the 180 W atom density in the TWODANT benchmark model. The resulting effect, 0.0098 % Δ k for Assembly 5 and 0.0079 % Δ k for Assembly 6, is believed to be a conservative uncertainty estimate because the nuclear properties of 186 W do not closely match those of 180 W and 182 W.

The data for the experimental and benchmark-model k_{eff} values are summarized in Table 29. The data in the table are in units of k_{eff} . The measured k_{eff} reflects the excess reactivity from Section 2.1. The three adjustments leading to the adjusted experimental k_{eff} were just discussed. The uncertainty in the adjusted value is the total uncertainty from Table 25, in Section 2.4. The uncertainty is the same, to the precision shown, whether or not the uncertainty from replacing 180 W is added in quadrature. Applying the Monte Carlo transformation to the adjusted experimental k_{eff} yields the benchmark model k_{eff} shown on the last line.

Table 29. Experimental and Benchmark-Model Eigenvalues. (a)

k_{eff} or Δk_{eff}	ZPR-9/5	ZPR-9/6
Measured k _{eff}	1.00188	1.00252
Remove Matrix-Interface Gap	+0.00011	+0.00011
Enriched-Uranium Impurity Adjustment	+0.00041	+0.00044
Tungsten Mass Impurity Adjustment	-0.00015	-0.00013
Adjusted Experimental k _{eff}	1.0023 ± 0.0011	1.0029 ± 0.0012
Monte Carlo Transformation of the Model	-0.0064 ± 0.0021	-0.0091 ± 0.0021
Benchmark-Model k _{eff}	0.9959 ± 0.0024	0.9938 ± 0.0024

(a) Each uncertainty estimate is one standard deviation.

Revision: 0 Date: September 30, 2003

^a Private Communication, A. B. Smith, Argonne National Laboratory, July 2002.

HEU-MET-FAST-067

4.0 RESULTS OF SAMPLE CALCULATIONS

Results of sample calculations of the benchmark models of ZPR-9 Assemblies 5 and 6 are given in Table 30. More details of the calculations, including input listings, are given in Appendix A. Additional results are given in Appendix B. Appendix C displays the calculated neutron spectrum and presents a detailed neutron balance.

 Code (Cross Section Set) → Case ↓
 KENO VI (SCALE 4.3 (SCALE 4.3 27-group ENDF/B-IV)
 KENO VI (SCALE 4.3 238-group ENDF/B-V)

 ZPR-9/5
 1.0213 ±0.0005 1.0216 ±0.0005

 ZPR-9/6
 1.0248 ±0.0004 1.0269 ±0.0006

Table 30.a. Sample Calculation Results (United States).

Code (Cross	MCNP 4C	MCNP 4C	VIM	VIM
Section Set) \rightarrow	(Cont. Energy	(Cont. Energy	(Cont. Energy	(Cont. Energy
Case↓	ENDF/B-V)	ENDF/B-VI)	ENDF/B-V)	ENDF/B-VI)
ZPR-9/5	1.0057 ±0.0004	1.0015 ±0.0004	1.0086 ± 0.0004	1.0128 ±0.0004
ZPR-9/6	1.0138 ± 0.0004	1.0070 ± 0.0004	1.0105 ±0.0004	1.0091 ±0.0005

Table 30.b. Sample Calculation Results (United Kingdom). (a)

Code (Cross	MONK 8B	MONK 8B	MONK 8B	MONK 8B
Section Set) \rightarrow	(8220-Group	(13193-Group	(13193-Group	(13193-Group
Case ↓	UKNDL)	JEF-2.2)	ENDF/B-VI.3)	JENDL-3)
ZPR-9/5	0.9899 ±0.0004	1.0134 ±0.0004	1.0020 ±0.0004	1.0259 ±0.0004
ZPR-9/6	1.0378 ± 0.0004	1.0248 ± 0.0004	1.0068 ± 0.0004	1.0093 ± 0.0004

⁽a) Results supplied by R. D. McKnight (ANL).

Many of the calculated $k_{\rm eff}$ values are quite high. The most discrepant values are based on older (e.g., ENDF/B-IV and -V) data and/or multigroup methods. Furthermore, when comparing the benchmark results for the ZPR-9 Assemblies 2-6, there is a general trend of increasing calculated eigenvalue with increasing tungsten content in the assembly. This trend supports the hypothesis that there are significant deficiencies in the cross section data for tungsten. It is also noted that the eigenvalues for the tungsten-carbide-reflected oralloy spheres of HEU-MET-FAST-003 are overpredicted using ENDF/B-IV and -V data.

Revision: 0

HEU-MET-FAST-067

5.0 REFERENCES

- 1. R. C. Doerner et al., "Physics Measurements in Tungsten-Based, Aluminum-Reflected Fast Reactors," *Trans. Am. Nucl. Soc.*, **7**, 236 (November 1964).
- 2. R. C. Doerner et al., "Physics Measurements in Tungsten-Based, Aluminum-Reflected Fast Reactors," *Reactor Physics Divisional Annual Report, July 1, 1963 to June 30, 1964*, pp. 116-123, ANL-7101, Argonne National Laboratory (January 1965).
- 3. R. C. Doerner et al., "Experimental Physics Studies in Tungsten-Based Fast Reactors," *Reactor Physics Divisional Annual Report, July 1, 1964 to June 30, 1965*, pp. 215-221, ANL-7101, Argonne National Laboratory (December 1965).
- 4. D. K. Butler, R. C. Doerner, and W. G. Knapp, "Measurements and Analysis of Al-, Al₂O₃-, and BeO- reflected Fast Critical Experiments," *Proceedings of the International Conference on Fast Critical Experiments and Their Analysis, October 10-13, 1966*, pp. 186-194, ANL-7320, Argonne National Laboratory (1966).
- 5. W G. Knapp and R. C. Doerner, "Physics Measurements with Modified Diluent Compositions in Tungsten-Based, Aluminum-Reflected Fast Reactors," ANL-7207, Argonne National Laboratory (February 1967).
- 6. R. C. Doerner et al., "Physics Measurements in Tungsten-Based, Aluminum-Reflected Fast Reactors," ANL-7007, Argonne National Laboratory (March 1967).

Revision: 0

HEU-MET-FAST-067

APPENDIX A: TYPICAL INPUT LISTINGS

A.1 KENO Input Listings

Sample inputs for the SCALE/KENO VI 238-group calculations with ENDF/B-V data are shown below for the cylindrical benchmark models of ZPR-9 Assemblies 5 and 6. The KENO calculations were run with 240 generations and 10000 histories per generation, skipping the first 40 generations, for a total of 2 million active histories.

KENO Input Listing for Assembly 5 of Table 30.a. parm=size=900000 =csas26 kzr9508v5-keno vi-zpr9-5/08-rz model-v5 xs 238groupndf5 infhommedium 1 0.0 4.50947E-03 294 end u-235 1 0.0 2.61044E-04 1 0.0 4.46629E-05 u-238 294 end u-234 294 end u-236 1 0.0 2.14119E-05 294 end 1 0.0 1 0.0 cr 5.19317E-05 294 end 1.89819E-05 ni 294 end 1 0.0 1.74665E-04 294 1 0.0 5.86832E-03 294 al end 2.98022E-02 294 end 3.41200E-07 1 0.0 end mo 294 1 0.0 9.70810E-06 mn 294 1 0.0 6.11835E-06 cu end 1 0.0 1 0.0 4.05183E-06 294 end 2.73840E-06 ti 294 end 1 0.0 2.83306E-05 1 0.0 1.34057E-04 294 end ma 7.07473E-06 294 cl end 1 0.0 1 0.0 2.09509E-05 294 end w-182 5.67861E-03 294 end w-183 1 0.0 3.05370E-03 294 end 1 0.0 1 0.0 2 0.0 6.53706E-03 w - 184294 end w-186 6.06431E-03 294 end 4.90320E-05 294 2 0.0 2 0.0 1.75735E-05 294 ni end 3.08069E-04 294 fe end 2 0.0 5.51390E-02 al 294 end 2 0.0 7.22959E-06 294 2 0.0 3.15881E-07 mo end 2 0.0 1.05374E-05 6.46318E-06 mn 294 end cu 294 end 3.01802E-06 2 0.0 2 0.0 3.00221E-05 294 si end 2 0.0 1.56686E-04 mq 294 end 3 0.0 4.90529E-05 1.76564E-05 294 end ni 294 end 3 0.0 6.95925E-04 fe end 3 0.0 5.47063E-02 294 end al 3 0.0 4.40231E-06 294 end 3 0.0 3.16470E-07 294 3 0.0 1.25539E-05 294 end mn 3 0.0 6.47664E-06 294 CH end 3 0.0 2.98271E-06 end ti 294 3 0.0 3.00817E-05 294 si 3 0.0 1.53221E-04 end ma 4 0.0 4.90529E-05 294 cr end 1.76388E-05 пi 294 end 4 0.0 5.13312E-04 294 4 0.0 6.38535E-03 294 end al 4 0.0 3.10124E-06 294 C end 4 0.0 4 0.0 3.16470E-07 294 1.18051E-05 294 294 end

Revision: 0

HEU-MET-FAST-067

```
KENO Input Listing for Assembly 5 of Table 30.a (cont'd).
             4 0.0
                     6.46035E-06 294
cu
            4 0.0
                     2.98271E-06 294
t.i
                                       end
            4 0.0
                     3.00115E-05
                                  294
si
                                       end
mg
             4 0.0
                     1.53221E-04
                                  294
                                       end
            5 0.0
                     5.85966E-06 294
                                       end
cr
            5 0.0
fe
                     9.43218E-06
                                  294
                                       end
            5 0.0
                     5.57230E-02
al
                                  294
                                       end
            5 0.0
                     6.20712E-06
                                  294
                                       end
mn
            5 0.0
5 0.0
                     5.74351E-06
                                  294
                                       end
cu
                     2.77784E-06
                                  294
                                       end
ti
            5 0.0 5 0.0
                     2.75664E-05
                                  294
si
                                       end
mg
                     1.37951E-04
                                  294
                                       end
            6 0.0
                     6.25067E-06 294
cr
                                       end
            6 0.0
                                  294
                     6.59296E-05
                                       end
fe
            6 0.0
al
                     5.60063E-02
                                  294
                                       end
                     2.55604E-06 294
            6 0.0
                                       end
            6 0.0
                     7.10273E-06
                                  294
                                       end
mn
            6 0.0
                     6.00084E-06
                                  294
                                       end
CU
                                       end
            6 0.0
                      2.98857E-06
                                  294
ti
si
            6 0.0
                      2.87875E-05
                                  294
                                       end
            6 0.0
                     1.56196E-04 294
                                       end
mg
end comp
read para tme=599.0 gen=240 npg=10000 nsk=40 run=yes tba=3.0
end para
read geom
global unit 1
com='zpr9-5/08 rz model'
cylinder 1
               34.11820
                           28.02315
                                      -28.02315
cylinder
               34.40370
                          28.02315
                                      -28.02315
cylinder 3 cylinder 4
                                      -50.92573
               34.40370
                           50.92573
               34.40370
                                      -59.13882
                           59.13882
cylinder
          5
               34.40370
                           61.91504
                                      -61.91504
                           61.91504
               70.83879
cylinder
          6
                                      -61.91504
media
          1
             1
                  1
media
          5
              1
                  2 -1
media
           2
              1
                  3
                    -2
media
           3
                    -3
media
           4
              1
                  5
                     -4
                     -5
media
           6
              1
                  6
boundary
end geom
read star
nst=0
xsm = -34.10
xsp=34.10
ysm=-34.10
ysp=34.10
zsm = -28.02
zsp=28.02
end star
end data
end
```

Revision: 0 Date: September 30, 2003

Page 63 of 125

HEU-MET-FAST-067

KENO Input Listing for Assembly 6 of Table 30.a.

KENO Input	LISU	Ing Id	or Assembly 6	or rabi	e 30
=csas26	narm	=size=	900000		
			9-6/13-rz mod	el-v5 x	S
238groupnd			,		_
infhommedi					
u-235	1	0.0	4.50657E-03	287 e	nd
u-238	1	0.0	2.60887E-04		nd
u-234	1	0.0	4.46358E-05		nd
u-236	1	0.0	2.13983E-05		nd
cr	1	0.0	4.51216E-05		nd
ni	1	0.0	1.61740E-05		nd
fe	1	0.0	1.50232E-04		nd
al	1	0.0	1.51117E-02		nd
C	1	0.0	1.47100E-05		nd
mo	1	0.0	2.90728E-07		nd
mn	1	0.0	9.17333E-06		nd
cu	1	0.0	6.07329E-06		nd
h	1	0.0	4.04868E-06		nd
ti	1	0.0	2.74534E-06		nd
si	1	0.0	2.74554E-00 2.82693E-05		nd
mg	1	0.0	1.34332E-04		nd
cl	1	0.0	7.09986E-06		nd
f	1	0.0			
			2.10256E-05		nd nd
w-182	1	0.0	5.68234E-03		nd
w-183	1	0.0	3.05572E-03		nd
w-184	1	0.0	6.54137E-03		nd
w-186	1	0.0	6.06831E-03		nd
cr	2	0.0	4.10691E-05		nd
ni	2	0.0	1.42675E-05		nd
fe	2	0.0	2.98772E-04		nd
al	2	0.0	5.49957E-02		nd
С	2	0.0	8.00231E-06		nd
mo	2	0.0	2.56457E-07		nd
mn	2	0.0	1.01005E-05		nd
cu	2	0.0	6.43103E-06		nd
ti	2	0.0	3.06014E-06		nd
si	2	0.0	3.00395E-05		nd
mg	2	0.0	1.60836E-04		nd
cr	3	0.0	4.10258E-05		nd
ni	3	0.0	1.43351E-05		nd
fe	3	0.0	5.32030E-04		nd
al	3	0.0	5.51727E-02		nd
C	3	0.0	3.32546E-06		nd
mo	3	0.0	2.56999E-07		nd
mn	3	0.0	1.13990E-05		nd
cu	3	0.0	6.40119E-06		nd
ti	3	0.0	2.99143E-06		nd
si	3	0.0	2.99042E-05		nd
mg	3	0.0	1.54081E-04		nd
cr	4	0.0	4.10258E-05		nd
ni	4	0.0	1.43241E-05		nd
fe	4	0.0	4.18763E-04		nd
al	4	0.0	6.40368E-03		nd
C	4	0.0	2.51846E-06		nd
mo	4	0.0	2.56999E-07		nd
mn	4	0.0	1.09346E-05		nd
cu	4	0.0	6.39109E-06		nd
t <u>i</u>	4	0.0	2.99142E-06		nd
si	4	0.0	2.98606E-05		nd
mg	4	0.0	1.54081E-04		nd
cr	5	0.0	5.86474E-06		nd
fe	5	0.0	9.44106E-06		nd
al	5	0.0	5.57536E-02		nd
mn	5	0.0	6.19021E-06		nd
cu	5	0.0	5.75389E-06		nd
ti	5	0.0	2.77894E-06		nd
si	5	0.0	2.76181E-05		nd
mg	5	0.0	1.37651E-04		nd
cr	6	0.0	6.25067E-06		nd
fe	6	0.0	6.59296E-05		nd
al	6	0.0	5.60085E-02		nd
С	6	0.0	2.55604E-06		nd
mn	6	0.0	7.10273E-06		nd
cu	6	0.0	6.00085E-06	287 e	nd

Revision: 0 Date: September 30, 2003

HEU-MET-FAST-067

Page 65 of 125

```
KENO Input Listing for Assembly 6 of Table 30.a (cont'd).
             6 0.0
                     2.98857E-06 287 end
            6 0.0 2.87875E-05 287 end
si
            6 0.0 1.56196E-04 287 end
mg
end comp
read para tme=599.0 gen=240 npg=10000 nsk=40 run=yes tba=3.0
end para
read geom
global unit 1
com='zpr9-6/13 rz model'
              36.87395
                          30.56288
                                      -30.56288
cylinder 1
cylinder 2
cylinder 3
               38.17733
                         30.56288
50.92573
                                      -30.56288
               38.17733
                                      -50.92573
cylinder 4 38.17733
                          61.67882
                                      -61.67882
cylinder 5
cylinder 6
               38.17733
                           61.91504
                                      -61.91504
             38.1,,21
75.90495
                           61.91504
                                      -61.91504
          1 1 1
media
          5 1
2 1
                 2 -1
3 -2
media
media
                  4 -3
5 -4
             1
1
media
          3
media
           4
media
                     -5
boundary
          6
end geom
read star
nst=0
xsm = -36.87
xsp=36.87
ysm = -36.87
ysp=36.87
zsm=-30.56
zsp=30.56
end star
end data
end
```

Revision: 0

HEU-MET-FAST-067

A.2 MCNP Input Listings

Sample MCNP4C inputs are listed below for the cylindrical benchmark models of ZPR-9 Assemblies 5 and 6. They invoke continuous energy ENDF/B-V cross sections for all nuclides by using the suffix 50c with the nuclide ID. The input for the calculations with continuous energy ENDF/B-VI cross sections is the same except that the nuclide ID suffix is 60c and some elements are replaced by their naturally occurring isotopes. The calculations used 10000 neutron histories per generation and 200 active generations, after skipping 40.

```
MCNP Input Listing for Assmebly 5 of Table 30.a.
mcr9508v5 - zpr9-5, loading 08 - rz model - vers 5 xs
      zpr9-5, loading 08 - rz model from zpr9508v5
С
     version 5 xs - mcnp4c
     1 6.229972e-2 -1 4 -5 imp:n=1 $ core
     5 5.591854e-2 1 -2 4 -5 imp:n=1 $ partials-rad ref
                     (-2 -4 6): (-2 5 -7) imp:n=1 $ ax ref 1
      2 5.572795e-2
     3 5.567897e-2 (-2 -6 8):(-2 7 -9) imp:n=1 $ ax ref 2
     4 7.173252e-3 (-2 -8 10):(-2 9 -11) imp:n=1 $ ax ref 3 6 5.628211e-2 2 -3 10 -11 imp:n=1 $ radial refl
     6 5.628211e-2
                     (3:-10:11) imp:n=0 $ external void
1
           34.11820
     CZ
     CZ
            34.40370
3
            70.83879
     CZ
           -28.02315
     pz
     pz
            28.02315
6
     pz
           -50.92573
7
           50.92573
     pz
           -59.13882
     pz
     pz
           59.13882
10
     pz
           -61.91504
11
            61.91504
mode n
kcode 10000 1.0 40 240 20000 0 8000 1
      erg=d1 rad=d2 ext=d3 pos 0 0 0.0 axs 0 0 1
sdef
sp1
      0.0
si2
           34.00
      -28.0 28.0
si3
      92235.50c
                  4.50947E-03 92238.50c
                                            2.61044E-04 $ core
      92234.50c
                  4.46629E-05 92236.50c 2.14119E-05
      24000.50c
                  5.19317E-05
                               28000.50c
                                            1.89819E-05
                  1.74665E-04 13027.50c
      26000.50c
                                            5.86832E-03
      6000.50c
                  2.98022E-02 42000.50c
                                           3.41200E-07
      25055.50c
                  9.70810E-06
                               29000.50c
                                           6.11835E-06
                  4.05183E-06 22000.50c
                                           2.73840E-06
      1001.50c
                  2.83306E-05 12000.50c
      14000.50c
                                            1.34057E-04
      17000.50c
                  7.07473E-06
                                9019.50c
                                            2.09509E-05
      74182.50c
                  5.67861E-03 74183.50c
                                           3.05370E-03
                  6.53706E-03
      74184.50c
                               74186.50c
                                           6.06431E-03
m 2.
      24000.50c
                  4.90320E-05 28000.50c
                                           1.75735E-05 $ ax ref 1
      26000.50c
                  3.08069E-04 13027.50c
                                          5.51390E-02
                  7.22959E-06
      6000.50c
                               42000.50c
                                            3.15881E-07
                  1.05374E-05
                                            6.46318E-06
      25055.50c
                               29000.50c
                  3.01802E-06 14000.50c 3.00221E-05
      22000.50c
      12000.50c
                  1.56686E-04
                               28000.50c 1.76564E-05 $ ax ref 2
      24000.50c
                  4.90529E-05
                  6.95925E-04
                               13027.50c
                                            5.47063E-02
      26000.50c
      6000.50c
                  4.40231E-06
                               42000.50c
                                            3.16470E-07
      25055.50c
                  1.25539E-05
                               29000.50c 6.47664E-06
      22000.50c
                  2.98271E-06
                               14000.50c
                                           3.00817E-05
     12000.50c
                  1.53221E-04
                               28000.50c
m4
      24000.50c
                  4.90529E-05
                                            1.76388E-05 $ ax ref 3
      26000.50c
                  5.13312E-04
                               13027.50c
                                            6.38535E-03
      6000.50c
                  3.10124E-06 42000.50c
                                            3.16470E-07
```

HEU-MET-FAST-067

MCNP	Input Listing	for Assmebly	5 of Table	30.a (cont'd).	
	22000.50c	1.18051E-05 2.98271E-06	29000.50c 14000.50c	6.46035E-06 3.00115E-05	
m5	12000.50c 24000.50c 13027.50c		26000.50c	9.43218E-06 \$ part rad ref	:
	29000.50c	5.74351E-06 2.75664E-05	22000.50c 12000.50c	2.77784E-06	
m6	13027.50c	6.25067E-06 5.60063E-02		2.55604E-06	
		7.10273E-06 2.98857E-06			
		1.50190E-04			

Page 67 of 125 Revision: 0
Date: September

Revision: 0 Date: September 30, 2003

HEU-MET-FAST-067

```
MCNP Input Listing for Assmebly 6 of Table 30.a.
mcr9613v5 - zpr9-6, loading 13 - rz model - vers 5 xs
      zpr9-6, loading 13 - rz model from zpr9613v5
      version 5 xs - mcnp4c
      1 4.173222e-2 -1 4 -5 imp:n=1 $ core 5 5.594890e-2 1 -2 4 -5 imp:n=1 $ partials-rad ref
      2 5.556854e-2 (-2 -4 6):(-2 5 -7) imp:n=1 $ ax ref 1 
3 5.596845e-2 (-2 -6 8):(-2 7 -9) imp:n=1 $ ax ref 2
      4 7.084827e-3 (-2 -8 10):(-2 9 -11) imp:n=1 $ ax ref 3
                       2 -3 10 -11 imp:n=1 $ radial refl
(3:-10:11) imp:n=0 $ external void
6
      6 5.628431e-2
1
             36.87395
      CZ
2
      CZ
             38.17733
3
      CZ
             75.90495
4
            -30.56288
      рz
             30.56288
5
      pz
6
      pz
            -50.92573
7
      pz
            50.92573
            -61.67882
      pz
9
            61.67882
      pz
10
      pz
            -61.91504
            61.91504
      pz
mode n
kcode 10000 1.0 40 240 20000 0 8000 1
sdef
       erg=d1 rad=d2 ext=d3 pos 0 0 0.0 axs 0 0 1
sp1
       0.0 36.80
si2
      -30.5 30.5
si3
      92235.50c
                                            2.60887E-04 $ core
m1
                   4.50657E-03 92238.50c
                   4.46358E-05 92236.50c
4.51216E-05 28000.50c
      92234.50c
                                               2.13983E-05
                                             1.61740E-05
      24000.50c
                   1.50232E-04 13027.50c
      26000.50c
                                              1.51117E-02
       6000.50c
                   1.47100E-05 42000.50c
                                               2.90728E-07
                   9.17333E-06 29000.50c
      25055.50c
                                             6.07329E-06
                   4.04868E-06 22000.50c
2.82693E-05 12000.50c
       1001.50c
                                               2.74534E-06
      14000.50c
                                               1.34332E-04
      17000.50c
                   7.09986E-06
                                 9019.50c
                                              2.10256E-05
      74182.50c
                   5.68234E-03 74183.50c
                                               3.05572E-03
                   6.54137E-03
      74184.50c
                                 74186.50c
                                               6.06831E-03
m 2
      24000.50c
                   4.10691E-05
                                 28000.50c
                                               1.42675E-05 $ ax ref 1
      26000.50c
                   2.98772E-04
                                 13027.50c
                                               5.49957E-02
       6000.50c
                   8.00231E-06
                                 42000.50c
                                              2.56457E-07
                   1.01005E-05
                                 29000.50c
      25055.50c
                                               6.43103E-06
      22000.50c
                   3.06014E-06
                                 14000.50c
                                               3.00395E-05
      12000.50c
                   1.60836E-04
m3
      24000.50c
                   4.10258E-05
                                 28000.50c
                                               1.43351E-05 $ ax ref 2
      26000.50c
                   5.32030E-04 13027.50c
                                               5.51727E-02
       6000.50c
                   3.32546E-06
                                 42000.50c
                                              2.56999E-07
      25055.50c
                   1.13990E-05 29000.50c
                                               6.40119E-06
      22000.50c
                   2.99143E-06 14000.50c
                                             2.99042E-05
                   1.54081E-04
      12000.50c
                                              1.43241E-05 $ ax ref 3
m4
      24000.50c
                   4.10258E-05 28000.50c
      26000.50c
                   4.18763E-04 13027.50c
                                             6.40368E-03
       6000.50c
                   2.51846E-06
                                 42000.50c
                                              2.56999E-07
      25055.50c
                   1.09346E-05 29000.50c
                                               6.39109E-06
      22000.50c
                   2.99142E-06 14000.50c
                                              2.98606E-05
      12000.50c
                   1.54081E-04
m5
      24000.50c
                   5.86474E-06 26000.50c
                                             9.44106E-06 $ part rad ref
      13027.50c
                   5.57536E-02
                                 25055.50c
                                              6.19021E-06
      29000.50c
                   5.75389E-06
                                 22000.50c
                                               2.77894E-06
      14000.50c
                   2.76181E-05 12000.50c
                                             1.37651E-04
mб
      24000.50c
                   6.25067E-06
                                 26000.50c
                                               6.59296E-05 $ rad ref
                   5.60085E-02
                                              2.55604E-06
      13027.50c
                                  6000.50c
      25055.50c
                   7.10273E-06
                                 29000.50c
                                              6.00085E-06
      22000.50c
                    2.98857E-06
                                 14000.50c
                                               2.87875E-05
      12000.50c
                   1.56196E-04
t.ot.nu
phys:n 20.0 0.0
prdmp
         J 40
print
```

Revision: 0

HEU-MET-FAST-067

A.3 TWODANT Input Listings

A sample TWODANT input listings is not provided here because none of the TWODANT calculations utilized a standard multigroup cross section set. However, most of the sensitivity results presented in Section 2 were computed using TWODANT with a 20 group cross section set that was generated from ENDF/B-V data using the MC²-2 code. Some TWODANT results and sample TWODANT input listings are presented in Appendix B.

Revision: 0

HEU-MET-FAST-067

A.4 MONK8B Input Listings

Sample MONK inputs are shown below for the cylindrical benchmark models of ZPR-9 Assemblies 5 and 6. MONK8B results were obtained using the UKNDL library (with 8220 groups), the JEF2.2 library (with 13193 groups), the ENDF/B-VI library (with 13193 groups) and the JENDL-3 library (with 13193 groups). Each calculation used 1000 superhistories per stage and was run to achieve a precision of 0.0005 and the results of 2 independent calculations were combined.

```
MONK Input Listing for Assmebly 5 of Table 30.b.
      ZPR 9, Assembly 5, Loading 08 - October 14, 1964
      T = 20.7 degrees C
      April 9, 2003
      endf6
******************
begin material specification
nmaterials 6
* material 1 - core
* material 2 - axial reflector 1
* material 3 - axial reflector 2
* material 4 - axial reflector 3
* material 5 - radial reflector partials
* material 6 - radial reflector
atoms
material 1 density 0.0
u235 prop 4.50947E-03
                  2.61044E-04
4.46629E-05
11238
           prop
u234
            prop
u236
           prop
                  2.14119E-05
           prop
cr
                   5.19317E-05
                  1.89819E-05
ni
            prop
                  1.74665E-04
fe
           prop
                   5.86832E-03
al
            prop
            prop
                  2.98022E-02
C
                  3.41200E-07
9.70810E-06
mo
           prop
mn
            prop
                  6.11835E-06
h
            prop
                   4.05183E-06
                  2.73840E-06
ti
            prop
                  2.83306E-05
si
           prop
mg
            prop
                   1.34057E-04
           prop
                  7.07473E-06
cl
f19
           prop
                   2.09509E-05
w182
            prop
                   5.67861E-03
w183
                  3.05370E-03
           prop
w184
            prop
                  6.53706E-03
                  6.06431E-03
w186
            prop
material 2 density 0.0
        prop 4.90320E-05
prop 1.75735E-05
ni
            prop
                  3.08069E-04
fe
al
            prop
                   5.51390E-02
                  7.22959E-06
C
            prop
                  3.15881E-07
1.05374E-05
mo
           prop
mn
            prop 6.46318E-06
```

HEU-MET-FAST-067

```
MONK Input Listing for Assmebly 5 of Table 30.b (cont'd).
                     3.01802E-06
             prop
                    3.00221E-05
si
             prop
                    1.56686E-04
mg
             prop
atoms
material 3 density 0.0
             prop 4.90529E-05
cr
                    1.76564E-05
             prop
fe
             prop
                    6.95925E-04
                    5.47063E-02
             prop
al
                    4.40231E-06
C
             prop
mo
             prop
                     3.16470E-07
mn
             prop
                    1.25539E-05
                    6.47664E-06
cu
             prop
ti
             prop
                    2.98271E-06
             prop
                    3.00817E-05
             prop
                    1.53221E-04
mg
atoms
material 4 density 0.0
            prop 4.90529E-05
cr
                    1.76388E-05
             prop
ni
                    5.13312E-04
fe
             prop
                    6.38535E-03
al
             prop
             prop
                    3.10124E-06
C
                    3.16470E-07
mo
             prop
                    1.18051E-05
mn
             prop
cu
             prop
                     6.46035E-06
                    2.98271E-06
ti
             prop
                    3.00115E-05
1.53221E-04
si
             prop
mg
             prop
atoms
material 5 density 0.0
            prop 5.85966E-06
prop 9.43218E-06
cr
fe
             prop
                    5.57230E-02
al
             prop
                     6.20712E-06
mn
             prop
cu
             prop
                     5.74351E-06
                    2.77784E-06
ti
             prop
si
             prop
                    2.75664E-05
                    1.37951E-04
mg
             prop
atoms
material 6 density 0.0
          prop 6.25067E-06
prop 6.59296E-05
cr
fe
             prop
al
             prop
                    5.60063E-02
             prop
                    2.55604E-06
C
                    7.10273E-06
mn
             prop
cu
             prop
                    6.00084E-06
ti
             prop
                     2.98857E-06
                    2.87875E-05
si
             prop
                    1.56196E-04
mq
             prop
use e6hh2o for h1 in all materials
end
*******************
begin material geometry
part 1
                   ! cylindrical boundaries
             0.0 0.0 -28.02315 34.11820 56.04630
0.0 0.0 -28.02315 34.40370 56.04630
 zrod 1
 zrod 2
             0.0 0.0 -50.92573 34.40370 101.85146
0.0 0.0 -59.13882 34.40370 118.27764
0.0 0.0 -61.91504 34.40370 123.83008
 zrod 3
 zrod 4
 zrod 5
             0.0 0.0 -61.91504 70.83879 123.83008
zrod 6
zones
/core/ m1
             +1
             +2 -1
/rrfp/ m5
```

Revision: 0 Date: September 30, 2003

HEU-MET-FAST-067

Revision: 0

Date: September 30, 2003 Page 72 of 125

HEU-MET-FAST-067

```
MONK Input Listing for Assmebly 6 of Table 30.b.
*****************
      ZPR 9, Assembly 6, Loading 13 - January 4, 1965
      T = 14.0 degrees C
      April 9, 2003
      endf6
*******************
begin material specification
nmaterials 6
* material 1 - core
* material 2 - axial reflector 1
* material 3 - axial reflector 2
* material 4 - axial reflector 3
* material 5 - radial reflector partials
* material 6 - radial reflector
atoms
material 1 density 0.0
          prop 4.50657E-03
prop 2.60887E-04
u235
u238
                  4.46358E-05
            prop
u234
           prop
u236
                  2.13983E-05
cr
            prop
                  4.51216E-05
           prop
                  1.61740E-05
ni
                  1.50232E-04
1.51117E-02
fe
           prop
al
            prop
                  1.47100E-05
C
           prop
                   2.90728E-07
            prop
           prop
                  9.17333E-06
mn
                  6.07329E-06
cu
           prop
h
            prop
                  4.04868E-06
                  2.74534E-06
           prop
           prop
                  2.82693E-05
1.34332E-04
si
mq
            prop
                  7.09986E-06
cl
           prop
           prop
f19
                   2.10256E-05
w182
                  5.68234E-03
                  3.05572E-03
           prop
w183
w184
            prop
                  6.54137E-03
w186
            prop
                  6.06831E-03
atoms
material 2 density 0.0
                  4.10691E-05
1.42675E-05
           prop
            prop
ni
                  2.98772E-04
5.49957E-02
           prop
fe
al
            prop
                  8.00231E-06
           prop
                  2.56457E-07
1.01005E-05
mo
            prop
mn
            prop
cu
            prop
                  6.43103E-06
ti
            prop
                   3.06014E-06
                  3.00395E-05
si
            prop
                  1.60836E-04
            prop
mg
atoms
material 3 density 0.0
           prop 4.10258E-05
cr
                  1.43351E-05
5.32030E-04
ni
            prop
fe
            prop
                  5.51727E-02
al
            prop
                  3.32546E-06
            prop
C
                   2.56999E-07
mo
            prop
                  1.13990E-05
            prop
cu
            prop
                  6.40119E-06
```

HEU-MET-FAST-067

```
MONK Input Listing for Assmebly 6 of Table 30.b (cont'd).
                   2.99143E-06
            prop
                  2.99042E-05
si
            prop
                  1.54081E-04
mg
            prop
atoms
material 4 density 0.0
        prop 4.10258E-05
cr
                  1.43241E-05
            prop
fe
            prop
                  4.18763E-04
                  6.40368E-03
al
            prop
C
           prop
                  2.51846E-06
mo
            prop
                   2.56999E-07
            prop
mn
                  1.09346E-05
            prop
                  6.39109E-06
cu
ti
            prop
                  2.99142E-06
            prop
                  2.98606E-05
                  1.54081E-04
            prop
mg
atoms
material 5 density 0.0
           prop 5.86474E-06
cr
                  9.44106E-06
            prop
fe
al
            prop
                  5.57536E-02
                  6.19021E-06
mn
            prop
            prop
                  5.75389E-06
cu
                  2.77894E-06
ti
            prop
                  2.76181E-05
1.37651E-04
si
            prop
            prop
mg
atoms
material 6 density 0.0
           prop 6.25067E-06
            prop
                  6.59296E-05
fe
                  5.60085E-02
al
            prop
                  2.55604E-06
C
            prop
mn
            prop
                   7.10273E-06
                  6.00085E-06
cu
            prop
                   2.98857E-06
t.i
            prop
            prop
si
                   2.87875E-05
                  1.56196E-04
mg
            prop
use e6hh2o for h1 in all materials
end
*****************
begin material geometry
                   ! cylindrical bundaries
part 1
           0.0 0.0 -30.56288 36.87395 61.12576
0.0 0.0 -30.56288 38.17733 61.12576
0.0 0.0 -50.92573 38.17733 101.85146
zrod 1
zrod 2
zrod 3
           0.0 0.0 -61.67882 38.17733 123.35764
0.0 0.0 -61.91504 38.17733 123.83008
zrod 4
zrod 5
            0.0 0.0 -61.91504 75.90495 123.83008
zrod 6
zones
/core/ ml
             +1
/rrfp/ m5
/arf1/ m2
             +2 -1
             +3 -2
/arf2/ m3
             +4 -3
/arf3/ m4
             +5
                 -4
/rref/ m6
                 -5
             +6
*****************
begin control data
stages -4 400 1000 stdv 0.0005
end
*****************
```

Revision: 0

Date: September 30, 2003 Page 74 of 125

HEU-MET-FAST-067

Page 75 of 125

MONK Input Listing for Assmebly 6 of Table 30.b (cont'd).

begin source geometry
zonemat
 all / material 1
end

Revision: 0

HEU-MET-FAST-067

A.5 VIM Input Listings

One sample VIM input is shown below for each of the two benchmark models. These inputs were used with continuous energy ENDF/B-V cross sections for all nuclides. The input for the calculations with continuous energy ENDF/B-VI cross sections is the same except that some elements are replaced by their naturally occurring isotopes. All the cross sections correspond to 300 K. All the calculations were run with VIM Version 4.0. In the examples shown here, there are 10,000 neutron histories per generation and 200 active generations.

```
VIM Input Listing for Assembly 5 of Table 30.a.
   397207447 rzr9508v5 - zpr9-5 -loading 08 - rz model - v5 xs
                         0
         3 0 40
000 4 0
  200
                                  0
10000 10000
                                  Ω
             0
6
    1 1
                     0
                           50
                                  0
    22
                    43
                           7 10000
          6
 999999999.0 1.00000E-05 2.75000E+02 1.00000E+00 1.00000E-05 1.41910E+07
9.50000E-01 0.00000E+00 1.00000E+00 0.00000E+00
          Ω
                1
                     Ο
                           3
                                Ω
                                        Ω
 30300\ 40300\ 60300\ 80300210300220300230300240300270300280300290300340300
350300370300380300450300540300570300600300610300620300630300
  CYL
          0.00000
                      0.00000 -28.02315 56.04630
            0.00000
                      0.00000 -28.02315 56.04630
                                                   34.40370
  CYL
        2
                      0.00000 -50.92573 101.85146
  CYL
            0.00000
                                                   34.40370
  CYL
           0.00000
                      0.00000 -59.13882 118.27764
                                                   34.40370
  CYL
        5
            0.00000
                      0.00000 -61.91504 123.83008
                                                   34.40370
           0.00000
                     0.00000 -61.91504 123.83008
                                                   70.83879
  CYL
  CYL
            0.00000
                     0.00000
                                -200.0
                                            400.0 150.00000
  END
  COR
        6
  CPR
        6
              +2
                     -1
 AR1
        6
              +3
                     - 2
                     -3
  AR2
        6
  AR3
        6
              +5
 RR1
                     -5
        6
              +6
  LEK
  END
    1 2.04960E+05
                    2 3.44455E+03
                                       3 1.70324E+05
                                                          4 6.10797E+04
    5 2.06464E+04
                     6 1.49172E+06
                                                        300
    1
       101 1
                           2 200
        400
             3
                                500
30300 40300 60300 80300210300220300230300240300270300280300290300340300
350300370300380300450300540300570300600300610300620300630300
210300220300230300240300270300280300290300340300370300380300450300\\
210300220300230300240300270300280300290300340300370300380300450300
210300220300230300240300270300280300290300340300370300380300450300\\
210300230300240300290300340300370300380300450300
210300230300240300270300290300340300370300380300450300\\
4.50947E-03 2.61044E-04 4.46629E-05 2.14119E-05 5.19317E-05 1.89819E-05
1.74665E-04 5.86832E-03 2.98022E-02 3.41200E-07 9.70810E-06 6.11835E-06
4.05183E-06 2.73840E-06 2.83306E-05 1.34057E-04 7.07473E-06 2.09509E-05
5.67861E-03 3.05370E-03 6.53706E-03 6.06431E-03
4.90320E-05 1.75735E-05 3.08069E-04 5.51390E-02 7.22959E-06 3.15881E-07
1.05374E-05 6.46318E-06 3.01802E-06 3.00221E-05 1.56686E-04
 4.90529E-05 1.76564E-05 6.95925E-04 5.47063E-02 4.40231E-06 3.16470E-07
1.25539E-05 6.47664E-06 2.98271E-06 3.00817E-05 1.53221E-04
4.90529E-05 1.76388E-05 5.13312E-04 6.38535E-03 3.10124E-06 3.16470E-07
1.18051E-05 6.46035E-06 2.98271E-06 3.00115E-05 1.53221E-04
5.85966E-06 9.43218E-06 5.57230E-02 6.20712E-06 5.74351E-06 2.77784E-06
 2.75664E-05 1.37951E-04
6.25067E-06 6.59296E-05 5.60063E-02 2.55604E-06 7.10273E-06 6.00084E-06
```

HEU-MET-FAST-067

Page 77 of 125

VIM Input Listing for Assembly 5 of Table 30.a (cont'd).

2.98857E-06	2.87875E-05	1.56196E-04				
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.20519	0.29481	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.75000	0.75000	0.75000	5.18812	51
11.04292						51

HEU-MET-FAST-067

0.8

VIM Input Listing for Assembly 6 of Table 30.a.

```
397207447 rzr9613v5 - zpr9-6 -loading 13 - rz model - v5 xs
             0 40 0 0
   200
         3
10000 10000
                      Ω
                            Ω
                                   Ω
                 4
          1 0 0 50 0
6 6 43 7 10000
    1 1
    22
999999999.0 1.00000E-05 2.75000E+02 1.00000E+00 1.00000E-05 1.41910E+07 9.50000E-01 0.00000E+00 1.00000E+00 0.00000E+00
          0
                     0
                            3
                                 0
                                         0
                                              0
                                                     0
 30300 40300 60300 80300210300220300230300240300270300280300290300340300
350300370300380300450300540300570300600300610300620300630300
                                                                            08
  CYL
            0.00000
                      0.00000 -30.56288 61.12576 36.87395
        1
                      0.00000 -30.56288 61.12576
  CYL
            0.00000
                                                    38.17733
  CYL
            0.00000
                      0.00000 -50.92573 101.85146 38.17733
  CYL
            0.00000
                      0.00000 -61.67882 123.35764
                                                    38.17733
                      0.00000 -61.91504 123.83008
 CYL
            0.00000
                                                    38.17733
         5
            0.00000
                      0.00000 -61.91504 123.83008 75.90495
  CYL
        6
  CYL
        7
            0.00000
                      0.00000 -200.0
                                             400.0 150.00000
 END
  COR
        6
               +1
  CPR
        6
              +2
                      -1
  AR1
               +3
                      -2
         6
  AR2
         6
               +4
                      -3
  AR3
               +5
                      -4
         6
  RR1
        6
              +6
                      -5
 LEK
        6
               +7
                      -6
  END
    1 2.61104E+05
                      2 1.87847E+04
                                         3 1.86479E+05
                                                         4 9.84746E+04
     5 2.16326E+03
                      6 1.67438E+06
                                                        300
    1 101 1
                           2 200
                                      5
     4
        400
              3
                             5
                                 500
                                       4
                                                     6
                                                         600
                                                                6
              -1
30300\ 40300\ 60300\ 80300210300220300230300240300270300280300290300340300
350300370300380300450300540300570300600300610300620300630300\\
210300220300230300240300270300280300290300340300370300380300450300\\
210300220300230300240300270300280300290300340300370300380300450300
210300220300230300240300270300280300290300340300370300380300450300
210300230300240300290300340300370300380300450300
210300230300240300270300290300340300370300380300450300
4.50657E-03 2.60887E-04 4.46358E-05 2.13983E-05 4.51216E-05 1.61740E-05
1.50232E-04 1.51117E-02 1.47100E-05 2.90728E-07 9.17333E-06 6.07329E-06
4.04868E-06 2.74534E-06 2.82693E-05 1.34332E-04 7.09986E-06 2.10256E-05
5.68234E-03 3.05572E-03 6.54137E-03 6.06831E-03
4.10691E-05 1.42675E-05 2.98772E-04 5.49957E-02 8.00231E-06 2.56457E-07
1.01005E-05 6.43103E-06 3.06014E-06 3.00395E-05 1.60836E-04
 4.10258E-05 1.43351E-05 5.32030E-04 5.51727E-02 3.32546E-06 2.56999E-07
1.13990E-05 6.40119E-06 2.99143E-06 2.99042E-05 1.54081E-04
4.10258E-05 1.43241E-05 4.18763E-04 6.40368E-03 2.51846E-06 2.56999E-07
1.09346E-05 6.39109E-06 2.99142E-06 2.98606E-05 1.54081E-04
 5.86474E-06 9.44106E-06 5.57536E-02 6.19021E-06 5.75389E-06 2.77894E-06
2.76181E-05 1.37651E-04
 6.25067 \pm -06 \ 6.59296 \pm -05 \ 5.60085 \pm -02 \ 2.55604 \pm -06 \ 7.10273 \pm -06 \ 6.00085 \pm -06
 2.98857E-06 2.87875E-05 1.56196E-04
                0.25000
     0.25000
                          0.25000
                                         0.25000
                                                     0.25000
     0.25000
                 0.25000
                             0.25000
                                         0.25000
                                                     0.25000
                                                                  0.25000
                                                                            51
     0.25000
                 0.25000
                             0.25000
                                         0.25000
                                                     0.25000
                                                                  0.25000
                                                                            51
                                                                            51
     0.25000
                0.20519
                             0.29481
                                         0.25000
                                                     0.25000
                                                                  0.25000
     0.25000
                0.25000
                             0.25000
                                         0.25000
                                                     0.25000
                                                                  0.25000
                                                                            51
    0.25000
                0.25000
                             0.25000
                                         0.25000
                                                     0.25000
                                                                  0.25000
                                                                            51
     0.25000
                0.25000
                             0.75000
                                         0.75000
                                                     0.75000
                                                                5.18812
                                                                            51
   11.04292
                                                                            51
```

Revision: 0

HEU-MET-FAST-067

APPENDIX B: ADDITIONAL MODELS OF ZPR-9 ASSEMBLIES 5 AND 6

Although none of the TWODANT calculations utilized a standard cross section set, the following two sample input listings are provided because most of the sensitivity results in Section 2 are based on TWODANT calculations. These calculations used ENDF/B-V-based 20 group cross sections generated with the cross-section processing code MC²-2. This code, developed at Argonne National Laboratory, is available from the RSICC code center. Nuclide identifiers ending with a "C" are appropriate in the core region, identifiers ending with either "A1", "A2", or "A3" are used in the three axial reflector regions, identifiers ending with "R1" are used in the radial reflector regions and identifiers ending with "M" are used beyond the reflectors. Cross sections for each of these regions were made separately for Assembly 5 and Assembly 6. Cross sections for non-fueled regions used the leakage source from an adjacent region as the MC²-2 source. These inputs correspond to the RZ benchmark models specified in Section 3. They were used as reference models that were modified in a variety of ways to obtain the sensitivity results presented in Section 2. All the calculations used the standard S₁₀ quadrature set, P₁ scattering order, a mesh spacing of about 1.0 cm, and convergence criteria of 10⁻⁷.

The TWODANT calculations using these inputs yielded k_{eff} values of 1.0227 and 1.0316 for Assemblies 5 and 6, respectively.

```
zpr9-5_L08 benchmark P1 calculation
 igeom=7, ngroup=20, isn=10,
 niso=106, mt=07,
                           nzone=07.
          it= 142,
 im=4,
 jm=5,
            jt= 120,
 maxlcm=15000000, maxscm=10000000
 xmesh=0.0 34.11820 34.40370 70.83879 140.7420,
 ymesh=0.0 28.02315 50.92573 59.13882 61.91504 121.92,
 xints=34 2 36 70,
 yints=28 22 8 2 60
 zones=1 2 3 4;
         5 5 3 4;
         6 6 3 4;
         7 7 3 4;
         4 4 4 4
  t
 lib=isotxs
  t.
 matls=
core U235C 4.50947E-03, U238C 2.61044E-04, U234C 4.46629E-05,
      U236C 2.14119E-05, CR_C 5.19317E-05, NI_C 1.89819E-05,
      FE_C 1.74665E-04, AL_C 5.86832E-03, C12_C 2.98022E-02, MO_C 3.41200E-07, MN_C 9.70810E-06, CU_C 6.11835E-06,
      H_C 4.05183E-06, TI_C 2.73840E-06, SI_C 2.83306E-05, MG_C 1.34057E-04, CL_C 7.07473E-06, F__C 2.09509E-05,
      W182C 5.67861E-03, W183C 3.05370E-03, W184C 6.53706E-03,
W186C 6.06431E-03;
axrl CR_A1 4.90320E-05, NI_A1 1.75735E-05, FE_A1 3.08069E-04,
      AL_A1 5.51390E-02, C12A1 7.22959E-06, MO_A1 3.15881E-07,
MN_A1 1.05374E-05, CU_A1 6.46318E-06, TI_A1 3.01802E-06, SI_A1 3.00221E-05, MG_A1 1.56686E-04; axr2 CR_A2 4.90529E-05, NI_A2 1.76564E-05, FE_A2 6.95925E-04, AL_A2 5.47063E-02, C12A2 4.40231E-06, MO_A2 3.16470E-07,
      MN_A2 1.25539E-05, CU_A2 6.47664E-06, TI_A2 2.98271E-06,
SI_A2 3.00817E-05, MG_A2 1.53221E-04,
axr3 CR_A3 4.90529E-05, NI_A3 1.76388E-05, FE_A3 5.13312E-04,
      AL_A3 6.38535E-03, C12A3 3.10124E-06, MO_A3 3.16470E-07,
      MN_A3 1.18051E-05, CU_A3 6.46035E-06, TI_A3 2.98271E-06, SI_A3 3.00115E-05, MG_A3 1.53221E-04;
```

Revision: 0

^a H. Henryson II, B. J. Toppel, and C. G. Stenberg, "MC²-2: A Code to Calculate Fast Neutron Spectra and Multigroup Cross Sections," Argonne National Laboratory Report ANL-8144 (1976).

HEU-MET-FAST-067

```
part CR__C 5.85966E-06, FE__C 9.43218E-06, AL__C 5.57230E-02,
MN_C 6.20712E-06, CU_C 5.74351E-06, TI_C 2.77784E-06, SI_C 2.75664E-05, MG_C 1.37951E-04; radl CR_R1 6.25067E-06, FE_R1 6.59296E-05, AL_R1 5.60063E-02,
C12R1 2.55604E-06, MN_R1 7.10273E-06, CU_R1 6.00084E-06, TI_R1 2.98857E-06, SI_R1 2.87875E-05, MG_R1 1.56196E-04; matx CR_M 5.11404E-06, NI_M 2.93443E-07, FE_M 9.68464E-06,
      AL_M 4.13967E-03, C12_M 7.91442E-09, MO_M 8.58718E-09, MN_M 1.81378E-06, CU_M 5.02598E-06, TI_M 1.91571E-06,
      SI__M 2.43641E-05, MG__M 4.88673E-05
assign=CORE core 1.0;
        PARTL part 1.0;
        RREFL rad1 1.0;
        MATRX matx 1.0;
        AXRF1 axr1 1.0;
        AXRF2 axr2 1.0;
        AXRF3 axr3 1.0
  t
 ievt= 1,
 ith=0,
 epsi=1.0E-07, epso=1.0E-07, iitl=1, iitm=100, oitm=100,
 ibl= 1, ibr=0, ibb=1, ibt=0,
 isct= 1,
 fluxp=0, xsectp=1, fissrp=0, sourcp=0, angp=0, balp=1,
 raflux=0, rmflux=0,
 geomp=1, influx=0, norm=0.0
 pted=1, zned=0, power=0.000001, ajed=0,
  t
         zpr9-6_L13 benchmark P1 calculation
 igeom=7, ngroup=20, isn=10,
 niso=106, mt=07,
                           nzone=07.
         it= 141,
jt= 124,
 im=4,
 im=5,
 maxlcm=15000000, maxscm=10000000
 xmesh=0.0 36.87395 38.17733 75.90495 140.7420,
 ymesh=0.0 30.56288 50.92573 61.67882 61.91504 121.92,
 xints=36 2 38 65,
 yints=30 21 11 2 60,
 zones=1 2 3 4;
        5 5 3 4;
        6 6 3 4;
        7 7 3 4;
        4 4 4 4
 lib=isotxs
  t
 matls=
core U235C 4.50657E-03, U238C 2.60887E-04, U234C 4.46358E-05,
      U236C 2.13983E-05, CR_C 4.51216E-05, NI_C
FE_C 1.50232E-04, AL_C 1.51117E-02, C12_C
                                                               1.61740E-05.
                                                               1.47100E-05,
      MO__C 2.90728E-07, MN__C 9.17333E-06, CU__C 6.07329E-06,
      H__C 4.04868E-06, TI__C 2.74534E-06, SI__C MG__C 1.34332E-04, CL__C 7.09986E-06, F___C
                                                               2.82693E-05,
                                                                2.10256E-05,
      W182C 5.68234E-03, W183C 3.05572E-03, W184C 6.54137E-03,
      W186C 6.06831E-03;
axr1 CR_A1 4.10691E-05, NI_A1 1.42675E-05, FE_A1 2.98772E-04,
      AL_A1 5.49957E-02, C12A1 8.00231E-06, MO_A1 2.56457E-07, MN_A1 1.01005E-05, CU_A1 6.43103E-06, TI_A1 3.06014E-06,
      SI_A1 3.00395E-05, MG_A1 1.60836E-04;
              4.10258E-05, NI_A2 1.43351E-05, FE_A2 5.32030E-04, 5.51727E-02, C12A2 3.32546E-06, MO_A2 2.56999E-07,
axr2 CR_A2
      AL A2
      MN_A2 1.13990E-05, CU_A2 6.40119E-06, TI_A2 2.99143E-06, SI_A2 2.99042E-05, MG_A2 1.54081E-04;
axr3 CR_A3 4.10258E-05, NI_A3 1.43241E-05, FE_A3 4.18763E-04,
               6.40368E-03, C12A3 2.51846E-06, MO_A3
                                                                2.56999E-07,
      AL_A3
              1.09346E-05, CU_A3 6.39109E-06, TI_A3 2.99142E-06,
      MN_A3
      SI_A3 2.98606E-05, MG_A3 1.54081E-04;
      CR_C 5.86474E-06, FE_C 9.44106E-06, AL_C 5.57536E-02, MN_C 6.19021E-06, CU_C 5.75389E-06, TI_C 2.77894E-06,
part CR__C
                                       9.44106E-06, AL__C 5.57536E-02,
      SI__C 2.76181E-05, MG__C 1.37651E-04;
rad1 CR_R1 6.25067E-06, FE_R1 6.59296E-05, AL_R1 5.60085E-02,
Revision: 0
```

HEU-MET-FAST-067

```
C12R1 2.55604E-06, MN_R1 7.10273E-06, CU_R1 6.00085E-06, TI_R1 2.98857E-06, SI_R1 2.87875E-05, MG_R1 1.56196E-04; matx CR_M 5.14029E-06, NI_M 2.99735E-07, FE_M 9.75559E-06, AL_M 4.15280E-03, C12_M 8.08410E-09, MO_M 8.77129E-09, MN_M 1.84410E-06, CU_M 5.03261E-06, TI_M 1.92195E-06, SI_M 2.43942E-05, MG_M 4.94557E-05 assign=CORE core 1.0;
           PARTL part 1.0;
RREFL rad1 1.0;
            MATRX matx 1.0;
            AXRF1 axr1 1.0;
            AXRF2 axr2 1.0;
            AXRF3 axr3 1.0
   t
  ievt= 1,
  ith=0,
  epsi=1.0E-07, epso=1.0E-07, iitl=1, iitm=100, oitm=100,
  ibl= 1, ibr=0, ibb=1, ibt=0,
  isct= 1,
  fluxp=0, xsectp=1, fissrp=0, sourcp=0, angp=0, balp=1,
  raflux=0, rmflux=0,
  geomp=1, influx=0, norm=0.0
  pted=1, zned=0, power=0.000001, ajed=0,
   t
```

Revision: 0

HEU-MET-FAST-067

APPENDIX C: SPECTRUM AND NEUTRON BALANCE FROM VIM

Figure C.1 shows the core-average spectra in ZPR-9 Assemblies 5 and 6 compared to that in Godiva (HEU-MET-FAST-001). All of these spectra were computed with the VIM code and continuous-energy ENDF/B-V data. Each energy bin width for the flux edits corresponds to a lethargy change of 0.25 ($E_{g-1}/E_g = 1.284$) from ~14 MeV to ~1 keV, except for one adjustment to get a boundary exactly at 100 keV. Below ~1 keV the bins are broader. The spectra are normalized so that the integral of the flux over all energies is unity. The Assembly 5 and 6 spectra are softer than that of Godiva because Godiva has no diluent materials. There is essentially no flux in the tungsten resolved resonance range, below 4 keV, but a substantial flux in the unresolved resonance range, up to 100 keV. The peaks near 25 keV and 70 keV in the ZPR-9/6 spectrum are the result of aluminum cross section resonances. The spectra plotted in Figure C.1 for ZPR-9 Assemblies 5 and 6 are based on the RZ (homogeneous) models. However, the spectra for these assemblies based on the as-built (heterogeneous) models are only very slightly different (e.g., see PU-MET-INTER-002, Appendix C).

Figure C.1. Core-Average Neutron Spectra in ZPR-9 Assemblies 5 and 6, and Godiva.

The track-length-estimator neutron balance edits indicates that ZPR-9 Assemblies 5 and 6 fall into the fast-energy spectrum category (FAST) of ICSBEP benchmarks. The flux above 100 keV produced 61% and 75% of the fissions, essentially none was produced by the flux below 0.625 eV, and 39% and 25% was produced by the flux between these energies in Assemblies 5 and 6, respectively.

Revision: 0

Date: September 30, 2003 Page

HEU-MET-FAST-067

The following global neutron balance for ZPR-9/5 was obtained from the calculation with the VIM code using a preliminary version of the benchmark model. The track-length estimator provided the total production and losses for the entire model as follows:

Fission Production	1.0063 ± 0.0007
(n,2n) Production	$0.0018 \pm 0.995\%$
Absorption	0.6880 ± 0.0005
Leakage	0.3123 ± 0.0005
$k_{\rm eff}$	1.0079 ± 0.0004

Two partial sums are unity: absorption plus leakage, and fission production/ k_{eff} plus (n,2n) production. The ratio of leakage to fission production for this assembly is very high, ~31%. The corresponding neutron balance data for ZPR-9-6, which are similar, are as follows:

Fission Production	1.0080 ± 0.0007
(n,2n) Production	$0.0021 \pm 1.07\%$
Absorption	0.6497 ± 0.0005
Leakage	0.3500 ± 0.0005
k_{eff}	1.0104 ± 0.0004

The detailed, track-length-estimator neutron balances for ZPR-9/5 and ZPR-9/6 are summarized in Tables C.1 and C.2, respectively. They show, for each nuclide and region, the neutron production by fission and (n,2n) reactions, and the losses by neutron absorption and leakage. The model regions AR1 and AR2 have been combined and labeled Axial Reflector. The remaining model regions have been combined and labeled Radial Reflector. The reaction rates are integrated over the total volume of the region and the leakage is the net leakage over the surface of the region (i.e., the combination of the positive leakage out of the region and negative leakage of neutrons returning to the region). Note that the total leakage quoted above is the leakage for the full model. As shown in Table C.1, the fission rate is dominated by ²³⁵U. The ²³⁵U accounts for approximately 75% of the absorptions in these assemblies; 73% in ZPR-9/5 and 75% in ZPR-9/6. Virtually all of the remaining absorptions occur in W and Al: 25% and 1%, respectively, in ZPR-9/5, and 22% and 2%, respectively, in ZPR-9/6. The leakage from the core region is only slightly larger than the leakage from the entire model, which is consistent with small absorption values in the reflectors. This illustrates why there was concern about room return and it was decided to include the empty matrix and support structures beyond in the as-built model. Room return is accounted for in the transformation Δk .

Revision: 0

HEU-MET-FAST-067

Table C.1. Neutron Balance by Nuclide and Region for ZPR-9/5. (a)

Nuclide	Fission Production	Fission	Capture	Absorption	(n,2n) Production			
		Core	e					
U-235	1.0003E+00	4.0258E-01	9.9672E-02	5.0225E-01	3.3715E-04			
U-238	2.6135E-03	9.4174E-04	3.3133E-03	4.2551E-03	3.7889E-05			
U-234	2.9192E-03	1.1390E-03	1.0385E-03	2.1775E-03	6.3060E-07			
U-236	4.7594E-04	1.8177E-04	4.8030E-04	6.6207E-04	1.6111E-06			
Cr			4.4835E-05	4.4835E-05	8.7092E-08			
Ni			3.4278E-05	3.4278E-05	3.6474E-09			
Fe			9.0610E-05	9.0610E-05	5.3834E-08			
Al			9.0507E-04	9.0507E-04	2.0492E-08			
С			3.2943E-04	3.2943E-04	0.0000E+00			
Mo			1.7719E-06	1.7719E-06	8.9550E-09			
Mn			9.0808E-06	9.0808E-06	1.3633E-08			
Cu			1.2913E-05	1.2913E-05	6.3161E-09			
Н			2.8908E-08	2.8908E-08	0.0000E+00			
Ti			1.7872E-06	1.7872E-06	1.3307E-09			
Si			6.5261E-06	6.5261E-06	6.7083E-09			
Mg			1.1110E-05	1.1110E-05	3.7577E-08			
Cl			4.4599E-06	4.4599E-06	4.4469E-11			
F			5.8050E-06	5.8050E-06	9.8834E-10			
W-182			5.1212E-02	5.1212E-02	1.8079E-04			
W-183			4.6809E-02	4.6809E-02	4.3288E-04			
W-184			3.9087E-02	3.9087E-02	3.7233E-04			
W-186			3.2290E-02	3.2290E-02	4.3309E-04			
Region Sum	1.0063E+00	4.0484E-01	2.7536E-01	6.8020E-01	1.7966E-03			
Leakage	3.2004E-01							
	Radial Reflector							
Cr			5.9308E-06	5.9308E-06	1.7605E-09			
Fe			3.5328E-05	3.5328E-05	2.1984E-09			
Al			5.8241E-03	5.8241E-03	5.5934E-09			
С			5.1461E-09	5.1461E-09	0.0000E+00			
Mn			1.1901E-05	1.1901E-05	1.5061E-09			
Cu			1.5788E-05	1.5788E-05	9.1520E-10			
Ti			2.3015E-06	2.3015E-06	2.0113E-10			
Si			4.1866E-06	4.1866E-06	1.1001E-09			
Mg			6.1473E-06	6.1473E-06	7.5260E-09			
Region Sum	0.0000E+00	0.0000E+00	5.9057E-03	5.9057E-03	2.0801E-08			
Leakage	-5.9057E-03		, — 🕶					

HEU-MET-FAST-067

Table C.1 (cont'd). Neutron Balance by Nuclide and Region for ZPR-9/5.

	Axial Reflector									
Cr			1.3647E-05	1.3647E-05	6.9142E-09					
Ni			7.6647E-06	7.6647E-06	2.5323E-10					
Fe			5.6326E-05	5.6326E-05	7.1483E-09					
Al			1.7621E-03	1.7621E-03	7.4837E-09					
С			6.8935E-09	6.8935E-09	0.0000E+00					
Mo			5.7787E-07	5.7787E-07	7.0000E-10					
Mn			4.7549E-06	4.7549E-06	1.0826E-09					
Cu			4.9173E-06	4.9173E-06	4.8300E-10					
Ti			6.6826E-07	6.6826E-07	1.1082E-10					
Si			1.4889E-06	1.4889E-06	5.6308E-10					
Mg			2.1751E-06	2.1751E-06	3.7009E-09					
Region Sum	0.0000E+00	0.0000E+00	1.8543E-03	1.8543E-03	2.8440E-08					
Leakage	-1.8543E-03									
	Total Over All Nuclides and Regions									
Assembly Sum	1.0063E+00	4.0484E-01	2.8312E-01	6.8796E-01	1.7967E-03					
Leakage	3.1228E-01									
keff	1.0079									

⁽a) The normalization is such that (Absorption + Leakage) = (Fission Production) / k_{eff} + (n,2n) = 1.0.

Revision: 0

HEU-MET-FAST-067

Table C.2. Neutron Balance by Nuclide and Region for ZPR-9/6. (a)

Nuclide	Fission Production	Fission	Capture	Absorption	(n,2n) Production
		Core	e		
U-235	1.0012E+00	4.0171E-01	8.6044E-02	4.8775E-01	3.7648E-04
U-238	2.8245E-03	1.0165E-03	2.7606E-03	3.7771E-03	4.3062E-05
U-234	3.4542E-03	1.3530E-03	9.2814E-04	2.2812E-03	7.3342E-07
U-236	5.2475E-04	2.0047E-04	4.3729E-04	6.3776E-04	1.8687E-06
Cr			3.3122E-05	3.3122E-05	8.8303E-08
Ni			2.7455E-05	2.7455E-05	3.6563E-09
Fe			7.8773E-05	7.8773E-05	5.5921E-08
Al			1.9352E-03	1.9352E-03	7.6398E-08
С			1.9310E-07	1.9310E-07	0.0000E+00
Mo			1.1987E-06	1.1987E-06	8.8133E-09
Mn			5.6720E-06	5.6720E-06	1.5095E-08
Cu			9.6308E-06	9.6308E-06	7.3793E-09
Н			2.1655E-08	2.1655E-08	0.0000E+00
Ti			1.3576E-06	1.3576E-06	1.5692E-09
Si			7.2809E-06	7.2809E-06	7.7421E-09
Mg			1.2090E-05	1.2090E-05	4.3918E-08
Cl			4.3825E-06	4.3825E-06	6.1943E-11
F			6.1857E-06	6.1857E-06	1.1822E-09
W-182			4.5474E-02	4.5474E-02	2.0935E-04
W-183			3.4360E-02	3.4360E-02	4.9476E-04
W-184			3.4338E-02	3.4338E-02	4.3528E-04
W-186			3.0317E-02	3.0317E-02	5.0869E-04
Region Sum	1.0080E+00	4.0428E-01	2.3678E-01	6.4106E-01	2.0705E-03
Leakage	3.5860E-01				
		Radial Re	flector		
Cr			6.1485E-06	6.1485E-06	2.1285E-09
Fe			3.8400E-05	3.8400E-05	4.2265E-09
Al			6.4727E-03	6.4727E-03	8.7728E-08
С			5.5117E-09	5.5117E-09	0.0000E+00
Mn			8.8517E-06	8.8517E-06	2.0717E-09
Cu			1.4798E-05	1.4798E-05	1.3145E-09
Ti			2.5265E-06	2.5265E-06	3.0375E-10
Si			5.1166E-06	5.1166E-06	1.3563E-09
Mg			7.3204E-06	7.3204E-06	8.8930E-09
Region Sum			6.5559E-03	6.5559E-03	1.0802E-07
Leakage	-6.5558E-03				

HEU-MET-FAST-067

Table C.2 (cont'd). Neutron Balance by Nuclide and Region for ZPR-9/6.

		Axial Ref	flector					
Cr			1.1567E-05	1.1567E-05	6.9321E-09			
Ni			6.7344E-06	6.7344E-06	2.6797E-10			
Fe			6.1185E-05	6.1185E-05	1.0825E-08			
Al			1.9410E-03	1.9410E-03	4.4376E-08			
C			9.0069E-09	9.0069E-09	0.0000E+00			
Mo			4.5377E-07	4.5377E-07	6.5011E-10			
Mn			3.3663E-06	3.3663E-06	1.2709E-09			
Cu			4.4056E-06	4.4056E-06	6.0361E-10			
Ti			6.9440E-07	6.9440E-07	1.4549E-10			
Si			1.8119E-06	1.8119E-06	6.5091E-10			
Mg			2.6698E-06	2.6698E-06	4.4792E-09			
Region Sum			2.0339E-03	2.0339E-03	7.0201E-08			
Leakage	-2.0339E-03							
	Total Over All Nuclides and Regions							
Assembly Sum	1.0080E+00	4.0428E-01	2.4537E-01	6.4965E-01	2.0707E-03			
Leakage	3.5001E-01							
keff	1.0104	_						

⁽a) The normalization is such that (Absorption + Leakage) = (Fission Production) / k_{eff} + (n,2n) = 1.0.

Revision: 0

HEU-MET-FAST-067

APPENDIX D: VIM MODEL OF AS-BUILT ZPR-9 ASSEMBLIES 5 AND 6

The VIM code inputs for the as-built models of ZPR-9 Assemblies 2 and 3 are shown below. These inputs were used with continuous energy ENDF/B-V cross sections for all nuclides. All the cross sections correspond to 300 K. The calculations were run with VIM Version 4.0. There were 10,000 neutron histories per generation and 200 active generations.

200 10000 0	428347 3 10000 1	zpr9508v 0 4 0	40 0 0 0 0 50	5 loading 0 0 0	08 - as bu	ilt – v5 x	s	01 02 03 04
				0E+02 1.00 0E+00 0.00		00000E-05	1.41910E+07 1 0	06AN 06BN 0
30300	40300	60300 803	3002103002		0240300270	3002803002	90300340300	08 08 09
31 0	59 0		2 127)68	60				14
5	.53466	5.552	244 197.! 2	58000 0	2	0.00000	1.00000	16
RPP	1	0.00000	5.53466	0.00000	0.10160	0.00000	2.54000	17
RPP	2	0.00000	5.53466	5.45084	5.55244	0.00000	2.54000	17
RPP	3	0.00000	0.10160	0.10160	5.45084	0.00000	2.54000	17
RPP	4	5.43306	5.53466	0.10160	5.45084	0.00000	2.54000	17
RPP	5	0.00000	5.53466	0.00000	0.10160	2.54000	28.02128	17
RPP	6 7	0.00000	5.53466	5.45084	5.55244	2.54000	28.02128	17
RPP RPP	8	0.00000 5.43306	0.10160 5.53466	0.10160 0.10160	5.45084 5.45084	2.54000 2.54000	28.02128 28.02128	17 17
RPP	9	0.14351	5.39115	0.10160	5.34924	0.00000	0.08128	17
RPP	10	0.14351	0.22479	0.18288	5.34924	0.08128	28.02128	17
RPP	11	5.30987	5.39115	0.18288	5.34924	0.08128	28.02128	17
RPP	12	0.14351	5.39115	0.10160	0.18288	0.08128	28.02128	17
RPP	13	0.22479	0.54229	0.18288	5.26288	0.08128	22.94128	17
RPP	14	0.22479	0.54229	0.18288	5.26288	22.94128	28.02128	17
RPP	15	0.54229	0.85979	0.18288	5.26288	0.08128	22.94128	17
RPP RPP	16 17	0.54229 0.85979	0.85979 1.01854	0.18288 0.18288	5.26288 5.26288	22.94128 0.08128	28.02128 22.94128	17 17
RPP	18	0.85979	1.01854	0.18288	5.26288	22.94128	28.02128	17
RPP	19	1.01854	1.33604	0.18288	5.26288	0.08128	22.94128	17
RPP	20	1.01854	1.33604	0.18288	5.26288	22.94128	28.02128	17
RPP	21	1.33604	1.65354	0.18288	5.26288	0.08128	22.94128	17
RPP	22	1.33604	1.65354	0.18288	5.26288	22.94128	28.02128	17
RPP	23	1.65354	1.97104	0.18288	5.26288	0.08128	22.94128	17
RPP	24 25	1.65354	1.97104	0.18288	5.26288	22.94128	28.02128	17
RPP RPP	25 26	1.97104 1.97104	2.28854 2.28854	0.18288 0.18288	5.26288 5.26288	0.08128 22.94128	22.94128 28.02128	17 17
RPP	27	2.28854	2.44729	0.18288	5.26288	0.08128	22.94128	17
RPP	28	2.28854	2.44729	0.18288	5.26288	22.94128	28.02128	17
RPP	29	2.44729	2.76479	0.18288	5.26288	0.08128	22.94128	17
RPP	30	2.44729	2.76479	0.18288	5.26288	22.94128	28.02128	17
RPP	31	2.76479	3.08229	0.18288	5.26288	0.08128	22.94128	17
RPP	32	2.76479	3.08229	0.18288	5.26288	22.94128	28.02128	17
RPP RPP	33 34	3.08229 3.08229	3.39979 3.39979	0.18288 0.18288	5.26288 5.26288	0.08128 22.94128	22.94128 28.02128	17 17
RPP	35	3.39979	3.55854	0.18288	5.26288	0.08128	22.94128	17
RPP	36	3.39979	3.55854	0.18288	5.26288	22.94128	28.02128	17
RPP	37	3.55854	3.87604	0.18288	5.26288	0.08128	22.94128	17
RPP	38	3.55854	3.87604	0.18288	5.26288	22.94128	28.02128	17
RPP	39	3.87604	4.19354	0.18288	5.26288	0.08128	22.94128	17
RPP	40	3.87604	4.19354	0.18288	5.26288	22.94128	28.02128	17
RPP	41	4.19354	4.51104	0.18288	5.26288	0.08128	22.94128	17
RPP RPP	42 43	4.19354 4.51104	4.51104 4.82854	0.18288 0.18288	5.26288 5.26288	22.94128 0.08128	28.02128 22.94128	17 17
RPP	43	4.51104	4.82854	0.18288	5.26288	22.94128	28.02128	17 17
RPP	45	4.82854	4.98729	0.18288	5.26288	0.08128	22.94128	17
RPP	46	4.82854	4.98729	0.18288	5.26288	22.94128	28.02128	17
RPP	47	4.98729	5.30479	0.18288	5.26288	0.08128	22.94128	17
RPP	48	4.98729	5.30479	0.18288	5.26288	22.94128	28.02128	17
RPP	49	0.10160	0.14351	0.10160	5.34924	2.54000	28.02128	17

Revision: 0

HEU-MET-FAST-067

RPP	50	5.39115	5.43306	0.10160	5.34924	2.54000	28.02128	17
RPP	51	0.10160	5.43306	5.34924	5.45084	0.00000	28.02128	17
RPP	52	0.22479	5.30987	5.26288	5.34924	0.08128	28.02128	17
RPP	53	5.30479	5.30987	0.18288	5.26288	0.08128	28.02128	17
RPP	54	5.39115	5.43306	0.10160	5.34924	0.00000	2.54000	17
RPP	55	0.10160	0.14351	0.10160	5.34924	0.00000	2.54000	17
RPP	56	0.00000	5.53466	0.00000	0.10160	28.02128	38.73754	17
RPP	57	0.00000	5.53466	5.45084	5.55244	28.02128	38.73754	17
	58							
RPP		0.00000	0.10160	0.10160	5.45084	28.02128	38.73754	17
RPP	59	5.43306	5.53466	0.10160	5.45084	28.02128	38.73754	17
RPP	60	0.14351	5.39115	0.10160	5.34924	38.65626	38.73754	17
RPP	61	0.14351	0.22479	0.18288	5.34924	28.02128	38.65626	17
RPP	62	5.30987	5.39115	0.18288	5.34924	28.02128	38.65626	17
RPP	63	0.14351	5.39115	0.10160	0.18288	28.02128	38.65626	17
RPP	64	0.22479	5.30479	0.18288	5.26288	28.02128	38.18128	17
			5.30733					
RPP	65	0.22733		0.18288	5.26288	38.18128	38.34003	17
RPP	66	0.10160	0.14351	0.10160	5.34924	28.02128	38.73754	17
RPP	67	5.39115	5.43306	0.10160	5.34924	28.02128	38.73754	17
RPP	68	0.10160	5.43306	5.34924	5.45084	28.02128	38.73754	17
RPP	69	0.22479	5.30987	5.26288	5.34924	28.02128	38.34003	17
RPP	70	5.30479	5.30987	0.18288	5.26288	28.02128	38.18128	17
RPP	71	0.22479	5.30987	0.18288	5.34924	38.34003	38.65626	17
	72		0.22733					
RPP		0.22479		0.18288	5.26288	38.18128	38.34003	17
RPP	73	5.30733	5.30987	0.18288	5.26288	38.18128	38.34003	17
RPP	74	0.00000	5.53466	0.00000	0.10160	38.73754	50.92573	17
RPP	75	0.00000	5.53466	5.45084	5.55244	38.73754	50.92573	17
RPP	76	0.00000	0.10160	0.10160	5.45084	38.73754	50.92573	17
RPP	77	5.43306	5.53466	0.10160	5.45084	38.73754	50.92573	17
RPP	78	0.14351	5.39115	0.10160	5.34924	38.73754	38.81882	17
RPP	79	0.14351	0.22479	0.18288	5.34924	38.81882	50.92573	17
RPP	80	5.30987	5.39115	0.18288	5.34924	38.81882	50.92573	17
RPP	81	0.14351	5.39115	0.10160	0.18288	38.81882	50.92573	17
RPP	82	0.22479	5.30479	0.18288	5.26288	38.81882	48.97882	17
RPP	83	0.22479	5.30479	0.18288	5.26288	48.97882	50.92573	17
RPP	84	0.10160	0.14351	0.10160	5.34924	38.73754	50.92573	17
RPP	85	5.39115	5.43306	0.10160	5.34924	38.73754	50.92573	17
RPP	86	0.10160	5.43306	5.34924	5.45084	38.73754	50.92573	17
RPP	87	0.22479	5.30987	5.26288	5.34924	38.81882	50.92573	17
RPP	88	5.30479	5.30987	0.18288	5.26288	38.81882	50.92573	17
RPP	89	0.00000	5.53466	0.00000	0.10160	50.92573	59.13882	17
RPP	90	0.00000	5.53466	5.45084	5.55244	50.92573	59.13882	17
RPP	91	0.00000	0.10160	0.10160	5.45084	50.92573	59.13882	17
RPP	92	5.43306	5.53466	0.10160	5.45084	50.92573	59.13882	17
RPP	93	0.14351	0.22479	0.18288	5.34924	50.92573	59.13882	17
RPP	94	5.30987	5.39115	0.18288	5.34924	50.92573	59.13882	17
RPP	95	0.14351	5.39115	0.10160	0.18288	50.92573	59.13882	17
RPP	96	0.22479	5.30479	0.18288	5.26288	50.92573	59.13882	17
RPP	97	0.10160	0.14351	0.10160	5.34924	50.92573	59.13882	17
RPP	98	5.39115	5.43306	0.10160	5.34924	50.92573	59.13882	17
RPP	99	0.10160	5.43306	5.34924	5.45084	50.92573	59.13882	17
RPP	100	0.22479	5.30987	5.26288	5.34924	50.92573	59.13882	17
RPP	101	5.30479	5.30987	0.18288	5.26288	50.92573	59.13882	17
RPP	102	0.00000	5.53466	0.00000	0.10160	59.13882	61.91504	17
		0.00000			5.10100			
RPP	103	0.00000	5.53466	5.45084	5.55244	59.13882	61.91504	17
RPP	104	0.00000	0.10160	0.10160	5.45084	59.13882	61.91504	17
RPP	105	5.43306	5.53466	0.10160	5.45084	59.13882	61.91504	17
RPP	106	0.14351	0.22479	0.18288	5.34924	59.13882	61.91504	17
RPP	107	5.30987	5.39115	0.18288	5.34924	59.13882	61.91504	17
RPP	108	0.14351	5.39115	0.10160	0.18288	59.13882	61.91504	17
RPP	109	0.10160	0.14351	0.10160	5.34924	59.13882	61.91504	17
RPP	110	5.39115	5.43306	0.10160	5.34924	59.13882	61.91504	17
RPP	111	0.10160	5.43306	5.34924	5.45084	59.13882	61.91504	17
RPP	112	0.22479	5.30987	0.18288	5.34924	59.13882	61.91504	17
RPP	113	0.00000	5.53466	0.00000	0.10160	61.91504	121.92000	17
RPP	114	0.00000	5.53466	5.45084	5.55244		121.92000	17
RPP	115	0.00000	0.10160	0.10160	5.45084		121.92000	17
RPP	116	5.43306	5.53466	0.10160	5.45084	61.91504	121.92000	17
RPP	117	0.14351	5.39115	0.10160	5.34924	97.87382	97.95510	17
RPP	118	0.14351	0.22479	0.18288	5.34924	61.91504	97.87382	17
RPP	119	5.30987	5.39115	0.18288	5.34924	61.91504	97.87382	17
RPP	120	0.14351	5.39115	0.10160	0.18288	61.91504	97.87382	17
RPP	121	0.10160	0.14351	0.10160	5.34924	61.91504	97.95510	17
RPP	122	5.39115	5.43306	0.10160	5.34924	61.91504	97.95510	17
RPP	123	0.10160	5.43306	5.34924	5.45084	61.91504	97.95510	17
RPP	124	0.22479	5.30987	0.18288	5.34924	61.91504	97.87382	17
RPP	125	0.10160	5.43306	0.10160	5.45084	97.95510	121.92000	17
RPP	126	0.00000	2.76479	0.00000	0.10160	0.00000	2.54000	17
RPP	127	2.76479	5.53466	0.00000	0.10160	0.00000	2.54000	17
MEP	14/	4.10113	J.JJ700	0.00000	0.10100	0.00000	2.54000	⊥ /

HEU-MET-FAST-067

מממ	128	0 00000	2.76479	5.45084	5.55244	0 00000	2 54000	17
RPP		0.00000				0.00000	2.54000	
RPP	129	2.76479	5.53466	5.45084	5.55244	0.00000	2.54000	17
RPP	130	0.00000	2.76479	0.00000	0.10160	2.54000	28.02128	17
RPP	131	2.76479	5.53466	0.00000	0.10160	2.54000	28.02128	17
RPP	132	0.00000	2.76479	5.45084	5.55244	2.54000	28.02128	17
RPP	133	2.76479	5.53466	5.45084	5.55244	2.54000	28.02128	17
RPP	134	0.14351	2.76479	0.10160	5.34924	0.00000	0.08128	17
RPP	135	2.76479	5.39115	0.10160	5.34924	0.00000	0.08128	17
RPP	136	0.14351	2.76479	0.10160	0.18288	0.08128	28.02128	17
RPP	137	2.76479	5.39115	0.10160	0.18288	0.08128	28.02128	17
RPP	138	2.76479	5.30479	0.18288	5.26288	22.94128	28.02128	
								17
RPP	139	2.76479	5.30479	0.18288	2.72288	0.08128	22.94128	17
RPP	140	2.76479	5.30479	2.72288	5.26288	0.08128	22.94128	17
RPP	141	0.10160	2.76479	5.34924	5.45084	0.00000	28.02128	17
RPP	142	2.76479	5.43306	5.34924	5.45084	0.00000	28.02128	17
RPP	143	0.22479	2.76479	5.26288	5.34924	0.08128	28.02128	17
RPP	144	2.76479	5.30987	5.26288	5.34924	0.08128	28.02128	17
RPP	145	5.30479	5.30987	0.18288	5.26288	2.54000	28.02128	17
RPP	146	5.30479	5.30987	0.18288	5.26288	0.08128	2.54000	17
RPP	147	0.22479	2.76479	0.18288	5.26288	22.94128	28.02128	17
RPP	148	0.22479	2.76479	0.18288	2.72288	0.08128	22.94128	17
RPP	149	0.22479	2.76479	2.72288	5.26288	0.08128	22.94128	17
RPP	150	4.99237	5.30987	0.18288	5.26288	0.08128	22.94128	17
RPP	151	4.99237	5.30987	0.18288	5.26288	22.94128	28.02128	17
RPP	152	4.83362	4.99237	0.18288	5.26288	0.08128	22.94128	17
RPP	153	4.83362	4.99237	0.18288	5.26288	22.94128	28.02128	17
RPP	154	4.51612	4.83362	0.18288	5.26288	0.08128	22.94128	17
RPP	155	4.51612	4.83362	0.18288	5.26288	22.94128	28.02128	17
RPP	156	4.19862	4.51612	0.18288	5.26288	0.08128	22.94128	17
RPP	157	4.19862	4.51612	0.18288	5.26288	22.94128	28.02128	17
RPP	158	3.88112	4.19862	0.18288	5.26288	0.08128	22.94128	17
RPP	159	3.88112	4.19862	0.18288	5.26288	22.94128	28.02128	17
RPP	160	3.56362	3.88112	0.18288	5.26288	0.08128	22.94128	17
RPP	161	3.56362	3.88112	0.18288	5.26288	22.94128	28.02128	17
RPP	162	3.40487	3.56362	0.18288	5.26288	0.08128	22.94128	17
RPP	163	3.40487	3.56362	0.18288	5.26288	22.94128	28.02128	17
RPP	164	3.08737	3.40487	0.18288	5.26288	0.08128	22.94128	17
RPP	165	3.08737	3.40487	0.18288	5.26288	22.94128	28.02128	17
RPP	166	2.76987	3.08737	0.18288	5.26288	0.08128	22.94128	17
RPP	167	2.76987	3.08737	0.18288	5.26288	22.94128	28.02128	17
RPP	168	2.45237	2.76987	0.18288	5.26288	0.08128	22.94128	17
RPP	169	2.45237	2.76987	0.18288	5.26288	22.94128	28.02128	17
RPP	170	2.29362	2.45237	0.18288	5.26288	0.08128	22.94128	17
RPP	171	2.29362	2.45237	0.18288	5.26288	22.94128	28.02128	17
RPP	172	1.97612	2.29362	0.18288	5.26288	0.08128	22.94128	17
RPP	173	1.97612	2.29362	0.18288	5.26288	22.94128	28.02128	17
RPP	174	1.65862	1.97612	0.18288	5.26288	0.08128	22.94128	17
RPP	175	1.65862	1.97612	0.18288	5.26288	22.94128	28.02128	17
RPP	176	1.34112	1.65862	0.18288	5.26288	0.08128	22.94128	17
RPP	177	1.34112	1.65862	0.18288	5.26288	22.94128	28.02128	17
RPP	178	1.02362	1.34112	0.18288	5.26288	0.08128	22.94128	17
RPP	179	1.02362	1.34112	0.18288	5.26288	22.94128	28.02128	17
RPP	180	0.86487	1.02362	0.18288	5.26288	0.08128	22.94128	17
RPP	181	0.86487	1.02362	0.18288	5.26288	22.94128	28.02128	17
							22.94128	
RPP	182	0.54737	0.86487	0.18288	5.26288	0.08128		17
RPP	183	0.54737	0.86487	0.18288	5.26288	22.94128	28.02128	17
RPP	184	0.22987	0.54737	0.18288	5.26288	0.08128	22.94128	17
RPP	185	0.22987	0.54737	0.18288	5.26288	22.94128	28.02128	17
	186	0.22479	0.22987	0.18288	5.26288	0.08128	28.02128	17
RPP								
RPP	187	0.22987	5.30987	0.18288	5.26288	28.02128	38.18128	17
RPP	188	0.22479	0.22987	0.18288	5.26288	28.02128	38.18128	17
RPP	189	0.22987	5.30987	0.18288	5.26288	38.81882	48.97882	17
RPP	190	0.22987	5.30987	0.18288	5.26288	48.97882	50.92573	17
RPP	191	0.22479	0.22987	0.18288	5.26288	38.81882	50.92573	17
RPP	192	0.22987	5.30987	0.18288	5.26288	50.92573	59.13882	17
RPP	193	0.22479	0.22987	0.18288	5.26288	50.92573	59.13882	17
RPP	194	0.00000	2.76987	0.00000	0.10160	0.00000	2.54000	17
RPP	195	2.76987	5.53466	0.00000	0.10160	0.00000	2.54000	17
RPP	196	0.00000	2.76987	5.45084	5.55244	0.00000	2.54000	17
RPP	197	2.76987	5.53466	5.45084	5.55244	0.00000	2.54000	17
RPP	198	0.00000	2.76987	0.00000	0.10160	2.54000	28.02128	17
RPP	199	2.76987	5.53466	0.00000	0.10160	2.54000	28.02128	17
RPP	200	0.00000	2.76987	5.45084	5.55244	2.54000	28.02128	17
RPP	201	2.76987	5.53466	5.45084	5.55244	2.54000	28.02128	17
RPP	202	0.14351	2.76987	0.10160	5.34924	0.00000	0.08128	17
RPP		2.76987	5.39115	0.10160	5.34924	0.00000	0.08128	17
	202							
	203							
RPP	204	0.14351	2.76987	0.10160	0.18288	0.08128	28.02128	17

HEU-MET-FAST-067

RPP	206	0.22987	2.76987	0.18288	5.26288	22.94128	28.02128	17
RPP	207	0.22987	2.76987	0.18288	2.72288	0.08128	22.94128	17
RPP	208	0.22987	2.76987	2.72288	5.26288	0.08128	22.94128	17
RPP	209	0.10160	2.76987	5.34924	5.45084	0.00000	28.02128	17
RPP	210	2.76987	5.43306	5.34924	5.45084	0.00000	28.02128	17
RPP	211	0.22479	2.76987	5.26288	5.34924	0.08128	28.02128	17
RPP	212	2.76987	5.30987	5.26288	5.34924	0.08128	28.02128	17
RPP	213	0.22479	0.22987	0.18288	5.26288	2.54000	28.02128	17
RPP	214	0.22479	0.22987	0.18288	5.26288	0.08128	2.54000	17
RPP	215	2.76987	5.30987	0.18288	5.26288	22.94128	28.02128	17
RPP	216	2.76987	5.30987	0.18288	2.72288	0.08128	22.94128	17
RPP	217	2.76987	5.30987	2.72288	5.26288	0.08128	22.94128	17
RPP	218	0.00000	5.53466	0.00000	0.10160	2.54000	28.06573	17
RPP	219	0.00000	5.53466	5.45084	5.55244	2.54000	28.06573	17
RPP	220	0.00000	0.10160	0.10160	5.45084	2.54000	28.06573	17
			5.53466					
RPP	221	5.43306		0.10160	5.45084	2.54000	28.06573	17
RPP	222	0.14605	5.38861	0.10160	5.32130	0.00000	0.12573	17
RPP	223	0.14605	0.27178	0.22733	5.32130	0.12573	28.06573	17
RPP	224	5.26288	5.38861	0.22733	5.32130	0.12573	28.06573	17
RPP	225	0.14605	5.38861	0.10160	0.22733	0.12573	28.06573	17
RPP	226	0.27178	0.43053	0.22733	5.30733	0.12573	22.98573	17
RPP	227	0.27178	0.43053	0.22733	5.30733	22.98573	28.06573	17
RPP	228	0.43053	0.74803	0.22733	5.30733	0.12573	22.98573	17
RPP	229	0.43053	0.74803	0.22733	5.30733	22.98573	28.06573	17
RPP	230	0.74803	0.90678	0.22733	5.30733	0.12573	22.98573	17
RPP	231	0.74803	0.90678	0.22733	5.30733	22.98573	28.06573	17
RPP	232	0.90678	1.22428	0.22733	5.30733	0.12573	22.98573	17
RPP	233	0.90678	1.22428	0.22733	5.30733	22.98573	28.06573	17
RPP	234	1.22428	1.54178	0.22733	5.30733	0.12573	22.98573	17
	235	1.22428	1.54178	0.22733	5.30733	22.98573	28.06573	17
RPP								
RPP	236	1.54178	1.85928	0.22733	5.30733	0.12573	22.98573	17
RPP	237	1.54178	1.85928	0.22733	5.30733	22.98573	28.06573	17
			2.17678					
RPP	238	1.85928		0.22733	5.30733	0.12573	22.98573	17
RPP	239	1.85928	2.17678	0.22733	5.30733	22.98573	28.06573	17
RPP	240	2.17678	2.33553	0.22733	5.30733	0.12573	22.98573	17
RPP	241	2.17678	2.33553	0.22733	5.30733	22.98573	28.06573	17
RPP	242	2.33553	2.65303	0.22733	5.30733	0.12573	22.98573	17
RPP	243	2.33553	2.65303	0.22733	5.30733	22.98573	28.06573	17
RPP	244	2.65303	2.97053	0.22733	5.30733	0.12573	22.98573	17
RPP	245	2.65303	2.97053	0.22733	5.30733	22.98573	28.06573	17
RPP	246	2.97053	3.28803	0.22733	5.30733	0.12573	22.98573	17
RPP	247	2.97053	3.28803	0.22733	5.30733	22.98573	28.06573	17
RPP	248	3.28803	3.44678	0.22733	5.30733	0.12573	22.98573	17
		3.28803	3.44678	0.22733				
RPP	249				5.30733	22.98573	28.06573	17
RPP	250	3.44678	3.76428	0.22733	5.30733	0.12573	22.98573	17
RPP	251	3.44678	3.76428	0.22733	5.30733	22.98573	28.06573	17
RPP	252	3.76428	4.08178	0.22733	5.30733	0.12573	22.98573	17
RPP	253	3.76428	4.08178	0.22733	5.30733	22.98573	28.06573	17
RPP	254	4.08178	4.39928	0.22733	5.30733	0.12573	22.98573	17
				0.22733				
RPP	255	4.08178	4.39928		5.30733	22.98573	28.06573	17
RPP	256	4.39928	4.71678	0.22733	5.30733	0.12573	22.98573	17
RPP	257	4.39928	4.71678	0.22733	5.30733	22.98573	28.06573	17
RPP	258	4.71678		0 22722	5.30733	0.12573	22.98573	17
			4.87553	0.22733				
RPP	259	4.71678	4.87553	0.22733	5.30733	22.98573	28.06573	17
RPP	260	4.87553	5.19303	0.22733	5.30733	0.12573	22.98573	17
RPP	261	4.87553	5.19303	0.22733	5.30733	22.98573	28.06573	17
RPP	262	0.10160	0.14605	0.10160	5.32130	2.54000	28.06573	17
RPP	263	5.38861	5.43306	0.10160	5.32130	2.54000	28.06573	17
RPP	264	0.10160	5.43306	5.32130	5.45084	0.00000	28.06573	17
RPP	265	0.27178	5.26288	5.30733	5.32130	0.12573	28.06573	17
RPP	266	5.19303	5.26288	0.22733	5.30733	0.12573	28.06573	17
RPP	267	5.38861	5.43306	0.10160	5.32130	0.00000	2.54000	17
RPP	268	0.10160	0.14605	0.10160	5.32130	0.00000	2.54000	17
RPP	269	0.00000	5.53466	0.00000	0.10160	28.06573	50.92573	17
RPP	270	0.00000	5.53466	5.45084	5.55244	28.06573	50.92573	17
RPP	271	0.00000	0.10160	0.10160	5.45084	28.06573	50.92573	17
RPP	272	5.43306	5.53466	0.10160	5.45084	28.06573	50.92573	17
RPP	273	0.14605	0.27178	0.22733	5.32130	28.06573	50.92573	17
RPP	274	5.26288	5.38861	0.22733	5.32130	28.06573	50.92573	17
RPP	275	0.14605	5.38861	0.10160	0.22733	28.06573	50.92573	17
RPP	276	0.27178	5.19303	0.22733	5.30733	28.06573	50.92573	17
RPP	277	0.10160	0.14605	0.10160	5.32130	28.06573	50.92573	17
RPP	278	5.38861	5.43306	0.10160	5.32130	28.06573	50.92573	17
RPP	279	0.10160	5.43306	5.32130	5.45084	28.06573	50.92573	17
RPP	280	0.27178	5.26288	5.30733	5.32130	28.06573	50.92573	17
RPP	281	5.19303	5.26288	0.22733	5.30733	28.06573	50.92573	17
RPP	282	0.14605	0.27178	0.22733	5.32130	50.92573	59.13882	17
RPP	283	5.26288	5.38861	0.22733	5.32130	50.92573	59.13882	17

HEU-MET-FAST-067

RPP	284	0.14605	5.38861	0.10160	0.22733	50.92573	59.13882	17
RPP	285	2.49428	3.12928	0.22733	5.30733	51.56073	59.13882	17
RPP	286	0.27178	5.19303	0.22733	5.30733	50.92573	51.56073	17
RPP	287	0.10160	0.14605	0.10160	5.32130	50.92573	59.13882	17
RPP	288	5.38861	5.43306	0.10160	5.32130	50.92573	59.13882	17
RPP	289	0.10160	5.43306	5.32130	5.45084	50.92573	59.13882	17
RPP	290	0.27178	5.26288	5.30733	5.32130	50.92573	59.13882	17
RPP	291	5.19303	5.26288	0.22733	5.30733	50.92573	51.56073	17
RPP	292	0.27178	2.49428	0.22733	5.30733	51.56073	59.13882	17
RPP	293	3.12928	5.26288	0.22733	5.30733	51.56073	59.13882	17
RPP	294	0.14605	0.27178	0.22733	5.32130	59.13882	61.91504	17
RPP	295	5.26288	5.38861	0.22733	5.32130	59.13882	61.91504	17
RPP	296	0.14605	5.38861	0.10160	0.22733	59.13882	61.91504	17
	297	2.49428	3.12928	0.22733	5.30733		61.91504	17
RPP						59.13882		
RPP	298	0.10160	0.14605	0.10160	5.32130	59.13882	61.91504	17
RPP	299	5.38861	5.43306	0.10160	5.32130	59.13882	61.91504	17
	300	0.10160	5.43306	5.32130	5.45084			17
RPP						59.13882	61.91504	
RPP	301	0.27178	5.26288	5.30733	5.32130	59.13882	61.91504	17
RPP	302	0.27178	2.49428	0.22733	5.30733	59.13882	61.91504	17
RPP	303	3.12928	5.26288	0.22733	5.30733	59.13882	61.91504	17
RPP	304	0.00000	5.53466	0.00000	0.10160	61.91504	103.50500	17
RPP	305	0.00000	5.53466	5.45084	5.55244	61.91504	103.50500	17
RPP	306	0.00000	0.10160	0.10160	5.45084	61 91504	103.50500	17
RPP	307	5.43306	5.53466	0.10160	5.45084		103.50500	17
RPP	308	0.14605	0.27178	0.22733	5.32130	61.91504	103.50500	17
RPP	309	5.26288	5.38861	0.22733	5.32130	61.91504	103.50500	17
RPP	310	0.14605	5.38861	0.10160	0.22733		103.50500	17
RPP	311	2.49428	3.12928	0.22733	5.30733	61.91504	102.36073	17
RPP	312	0.27178	5.19303	0.22733	5.30733	102.36073	102.99573	17
	313	0.10160	0.14605	0.10160	5.32130		103.50500	17
RPP								
RPP	314	5.38861	5.43306	0.10160	5.32130	61.91504	103.50500	17
RPP	315	0.10160	5.43306	5.32130	5.45084	61.91504	103.50500	17
RPP	316	0.27178	5.26288	5.30733	5.32130		102.99573	17
RPP	317	0.27178	5.26288	0.22733	5.32130	102.99573	103.50500	17
RPP	318	5.19303	5.26288	0.22733	5.30733	102.36073	102.99573	17
RPP	319	0.27178	2.49428	0.22733	5.30733		102.36073	17
RPP	320	3.12928	5.26288	0.22733	5.30733		102.36073	17
RPP	321	0.00000	5.53466	0.00000	0.10160	103.50500	121.92000	17
RPP	322	0.00000	5.53466	5.45084	5 55244	103.50500	121 92000	17
RPP	323	0.00000	0.10160	0.10160		103.50500		17
RPP	324	5.43306	5.53466	0.10160	5.45084	103.50500	121.92000	17
RPP	325	2.44475	3.07975	0.10160	5.18160	103.50500	121.92000	17
	326							
RPP		0.10160	5.43306	5.18160		103.50500		17
RPP	327	0.10160	2.44475	0.10160	5.18160	103.50500	121.92000	17
RPP	328	3.07975	5.43306	0.10160	5.18160	103.50500	121.92000	17
RPP	329	0.34163	0.50038	0.22733	5.30733	0.12573	22.98573	17
RPP	330	0.34163	0.50038	0.22733	5.30733	22.98573	28.06573	17
RPP	331	4.94538	5.26288	0.22733	5.30733	0.12573	22.98573	17
RPP	332	4.94538	5.26288	0.22733	5.30733	22.98573	28.06573	17
RPP	333	4.78663		0.22733	5.30733			17
			4.94538			0.12573	22.98573	
RPP	334	4.78663	4.94538	0.22733	5.30733	22.98573	28.06573	17
RPP	335	4.46913	4.78663	0.22733	5.30733	0.12573	22.98573	17
RPP	336	4.46913	4.78663	0.22733	5.30733	22.98573	28.06573	17
RPP	337	4.15163	4.46913	0.22733	5.30733	0.12573	22.98573	17
RPP	338	4.15163	4.46913	0.22733	5.30733	22.98573	28.06573	17
RPP	339	3.83413	4.15163	0.22733	5.30733	0.12573	22.98573	17
RPP	340	3.83413	4.15163	0.22733	5.30733	22.98573	28.06573	17
RPP	341	3.51663	3.83413	0.22733	5.30733	0.12573	22.98573	17
RPP	342	3.51663	3.83413	0.22733	5.30733	22.98573	28.06573	17
RPP	343	3.35788	3.51663	0.22733	5.30733	0.12573	22.98573	17
RPP	344	3.35788	3.51663	0.22733	5.30733	22.98573	28.06573	17
RPP	345	3.04038	3.35788	0.22733	5.30733	0.12573	22.98573	17
RPP	346	3.04038	3.35788	0.22733	5.30733	22.98573	28.06573	17
			3.04038				22.98573	
RPP	347	2.72288		0.22733	5.30733	0.12573		17
RPP	348	2.72288	3.04038	0.22733	5.30733	22.98573	28.06573	17
RPP	349	2.40538	2.72288	0.22733	5.30733	0.12573	22.98573	17
RPP	350	2.40538	2.72288	0.22733	5.30733	22.98573	28.06573	17
RPP	351	2.24663	2.40538	0.22733	5.30733	0.12573	22.98573	17
RPP	352	2.24663	2.40538	0.22733	5.30733	22.98573	28.06573	17
RPP	353	1.92913	2.24663	0.22733	5.30733	0.12573	22.98573	17
RPP	354	1.92913	2.24663	0.22733	5.30733	22.98573	28.06573	17
RPP	355	1.61163	1.92913	0.22733	5.30733	0.12573	22.98573	17
RPP	356	1.61163	1.92913	0.22733	5.30733	22.98573	28.06573	17
				0.22733	5.30733	0.12573	22.98573	17
ממק		1 20/12				U.143/3	44.202/3	1 /
RPP	357	1.29413	1.61163					
RPP	357 358	1.29413	1.61163	0.22733	5.30733	22.98573	28.06573	17
	357							
RPP RPP	357 358 359	1.29413 0.97663	1.61163 1.29413	0.22733 0.22733	5.30733 5.30733	22.98573 0.12573	28.06573 22.98573	17 17
RPP	357 358	1.29413	1.61163	0.22733	5.30733	22.98573	28.06573	17

HEU-MET-FAST-067

מממ	262	0 01700	0.97663	0 22722	5.30733	22 00572	20 06572	17
RPP	362	0.81788		0.22733		22.98573	28.06573	
RPP	363	0.50038	0.81788	0.22733	5.30733	0.12573	22.98573	17
		0 50030			E 20722	22.98573		17
RPP	364	0.50038	0.81788	0.22733	5.30733		28.06573	
RPP	365	0.27178	0.34163	0.22733	5.30733	0.12573	28.06573	17
	366							17
RPP		0.34163	5.26288	0.22733	5.30733	28.06573	50.92573	
RPP	367	0.27178	0.34163	0.22733	5.30733	28.06573	50.92573	17
						51.56073		
RPP	368	2.40538	3.04038	0.22733	5.30733		59.13882	17
RPP	369	0.34163	5.26288	0.22733	5.30733	50.92573	51.56073	17
RPP	370	0.27178	0.34163	0.22733	5.30733	50.92573	51.56073	17
RPP	371	0.27178	2.40538	0.22733	5.30733	51.56073	59.13882	17
RPP	372	3.04038	5.26288	0.22733	5.30733	51.56073	59.13882	17
RPP	373	2.40538	3.04038	0.22733	5.30733	59.13882	61.91504	17
RPP	374	0.27178	2.40538	0.22733	5.30733	59.13882	61.91504	17
RPP	375	3.04038	5.26288	0.22733	5.30733	59.13882	61.91504	17
RPP	376	2.40538	3.04038	0.22733	5.30733	61.91504	102.36073	17
RPP	377	0.34163	5.26288	0.22733	E 20722	102.36073	102 00572	17
RPP	378	0.27178	0.34163	0.22733	5.30733	102.36073	102.99573	17
RPP	379	0.27178	2.40538	0.22733	5.30733		102.36073	17
RPP	380	3.04038	5.26288	0.22733	5.30733	61.91504	102.36073	17
RPP	381	2.45491	3.08991	0.10160	E 10160	103.50500	121 02000	17
RPP	382	0.10160	2.45491	0.10160	5.18160	103.50500	121.92000	17
RPP	383	3.08991	5.43306	0.10160	E 10160	103.50500	121 02000	17
RPP	384	0.00000	5.53466	0.00000	0.10160	2.54000	61.91504	17
	385	0.00000	5.53466	5.45084	5.55244	2.54000	61.91504	17
RPP								
RPP	386	0.00000	0.10160	0.10160	5.45084	2.54000	61.91504	17
		5.43306						17
RPP	387		5.53466	0.10160	5.45084	2.54000	61.91504	
RPP	388	0.14351	5.39115	0.10160	5.34924	61.83376	61.91504	17
				0.18288	5.34924	0.08128	61.83376	17
RPP	389	0.14351	0.22479					
RPP	390	5.30987	5.39115	0.18288	5.34924	0.08128	61.83376	17
		0.14351						17
RPP	391		5.39115	0.10160	0.18288	0.08128	61.83376	17
RPP	392	0.22479	5.30479	0.18288	5.26288	0.08128	61.04128	17
RPP	393	0.22733	5.30733	0.18288	5.26288	61.04128	61.20003	17
RPP	394	0.10160	0.14351	0.10160	5.34924	2.54000	61.91504	17
RPP	395	5.39115	5.43306	0.10160	5.34924	2.54000	61.91504	17
RPP	396	0.10160	5.43306	5.34924	5.45084	0.00000	61.91504	17
RPP	397	0.22479	5.30987	0.18288	5.34924	61.20003	61.83376	17
RPP	398	0.22479	5.30987	5.26288	5.34924	0.08128	61.20003	17
RPP	399	0.22479	0.22733	0.18288	5.26288	61.04128	61.20003	17
RPP	400	5.30733	5.30987	0.18288	5.26288	61.04128	61.20003	17
RPP	401	5.30479	5.30987	0.18288	5.26288	0.08128	61.04128	17
RPP	402	0.10160	5.43306	0.10160	5.45084	61.91504	121.92000	17
RPP	403	0.22479	5.30479	0.18288	2.14630	10.24128	12.78128	17
RPP	404	0.22479	5.30479	0.18288	5.26288	12.78128	20.40128	17
RPP	405	0.22479	5.30479	0.18288	5.26288	0.08128	10.24128	17
RPP	406	0.22479	5.30479	0.18288	5.26288	20.40128	61.04128	17
	407					0.08128	10.24128	17
RPP		0.22479	5.30987	5.26288	5.34924			
RPP	408	5.30479	5.30987	0.18288	5.26288	0.08128	10.24128	17
	409	0.22479		5.26288	5.34924	12.78128	61 20002	17
RPP			5.30987				61.20003	
RPP	410	5.30479	5.30987	0.18288	5.26288	12.78128	61.04128	17
RPP	411	0.22479	5.30987	2.14630	5.34924	10.24128	12.78128	17
RPP	412	5.30479	5.30987	0.18288	2.14630	10.24128	12.78128	17
RPP	413	0.22987	5.30987	0.18288	5.26288	0.08128	61.04128	17
RPP	414	0.22479	0.22987	0.18288	5.26288	0.08128	61.04128	17
RPP	415	0.22987	5.30987	0.18288	2.14630	10.24128	12.78128	17
RPP	416	0.22987	5.30987	0.18288	5.26288	12.78128	20.40128	17
RPP	417	0.22987	5.30987	0.18288	5.26288	0.08128	10.24128	17
RPP	418	0.22987	5.30987	0.18288	5.26288	20.40128	61.04128	17
RPP	419	0.22479	0.22987	0.18288	5.26288	0.08128	10.24128	17
		0 22470						
RPP	420	0.22479	0.22987	0.18288	5.26288			17
RPP	421	0.22479	0.22987	0.18288	2.14630	10.24128	12.78128	17
		0.00000		0.00000			121.92000	
RPP	422		5.53466		0.10160			17
RPP	423	0.00000	5.53466	5.45084	5.55244	2.54000	121.92000	17
RPP	424	0.00000	0.10160	0.10160	5.45084		121.92000	17
RPP	425	5.43306	5.53466	0.10160	5.45084	2.54000	121.92000	17
	426	0.10160		0.10160	5.45084		121.92000	17
RPP			5.43306					
RPP	427	0.00000	5.53466	0.00000	5.55244	121.92	194.72	MX2BkP
	428	0.00000	5.53466	0.00000	5.55244		197.58	
RPP								BkPlate
RPP	429	0.00000	1.688	0.0	1.688	121.92	194.72	CRShaft
RPP	430	0.00000	1.688	1.688	5.55244		194.72	MX2BkP
RPP	431	1.688	5.53466	0.00000	5.55244	121.92	194.72	MX2BkP
	432	0.00000	5.53466	0.00000	5.55244		197.58	MX2End
RPP								
RPP	433	0.00000	5.53466	0.00000	5.55244	0.00	197.58	CL2EndF
RPP	434	0.00000	5.53466	0.00000	2.159	0.00	197.58	CL2EndL
	エンエ							
RPP		0.00000	5.53466	2.159	5.55244	0.00	197.58	CL2EndU
	435	0.00000						
ממק	435		5 52466	0.00000	5 55244	0 000	1 005	CI.2Kna
RPP	435 436	0.00000	5.53466	0.00000	5.55244		1.905	CL2Kne
RPP RPP	435		5.53466 5.53466	0.00000		0.000 120.015	1.905 197.58	CL2Kne Kne2End
RPP	435 436 437	0.00000	5.53466	0.00000	5.55244	120.015	197.58	Kne2End
RPP RPP	435 436 437 438	0.00000 0.00000 0.00000	5.53466 5.53466	0.00000 0.0	5.55244 5.55244	120.015 1.905	197.58 13.335	Kne2End vVd1
RPP	435 436 437	0.00000	5.53466	0.00000	5.55244	120.015 1.905	197.58	Kne2End

HEU-MET-FAST-067

RPP	440	0.00000	5.53466	0.0	5.55244	17.145	59.055	vVd2
RPP	441	0.00000	5.53466	0.0	5.55244	59.055	62.865	vFe2
RPP	442	0.00000	5.53466	0.0	5.55244	62.865	104.775	vVd3
RPP	443	0.00000	5.53466	0.0	5.55244	104.775	108.585	vFe3
RPP	444	0.00000	5.53466	0.0	5.55244	108.585	120.015	vVd4
RPP	445	0.00000	5.53466	0.0	2.3495	1.905	13.335	vhVd1
RPP	446	0.00000	5.53466	2.3495	5.55244	1.905	13.335	vhFe1
RPP	447	0.00000	5.53466	0.0	2.3495	17.145	59.055	vhVd2
RPP	448	0.00000	5.53466	2.3495	5.55244	17.145	59.055	vhFe2
RPP	449	0.00000	5.53466	0.0	2.3495	62.865	104.775	vhVd3
RPP	450	0.00000	5.53466	2.3495	5.55244	62.865	104.775	vhFe3
RPP	451	0.00000	5.53466	0.0	2.3495	108.585	120.015	vhVd4
RPP	452	0.00000	5.53466	2.3495		108.585	120.015	vhFe4
RPP	453	0.00000	1.7145	0.0	5.55244	1.905	13.335	vRVd1
RPP	454	1.7145	5.53466	0.0	5.55244	1.905	13.335	vRFe1
RPP	455	0.00000	1.7145	0.0	5.55244	17.145	59.055	vRVd2
RPP	456	1.7145	5.53466	0.0	5.55244	17.145	59.055	vRFe2
RPP	457	0.00000	1.7145	0.0	5.55244	62.865	104.775	vRVd3
RPP	458	1.7145	5.53466	0.0	5.55244	62.865	104.775	vRFe3
RPP	459	0.00000	1.7145	0.0		108.585	120.015	vRVd4
RPP	460	1.7145	5.53466	0.0		108.585	120.015	vRFe4
RPP	461	0.00000	1.7145	0.0	2.3495	1.905	13.335	vhRVd1
RPP	462	1.7145	5.53466	0.0	2.3495	1.905	13.335	vhRFe1
RPP	463	0.00000	1.7145	0.0	2.3495	17.145	59.055	vhRVd2
RPP	464	1.7145	5.53466	0.0	2.3495	17.145	59.055	vhRFe2
RPP	465	0.00000	1.7145	0.0	2.3495	62.865	104.775	vhRVd3
RPP	466	1.7145	5.53466	0.0	2.3495	62.865	104.775	vhRFe3
RPP	467	0.00000	1.7145	0.0	2.3495	108.585	120.015	vhRVd4
RPP	468	1.7145	5.53466	0.0	2.3495	108.585	120.015	vhRFe4
RPP	469	3.81	5.53466	0.0	5.55244	1.905	13.335	vLVd1
RPP	470	0.0	3.81	0.0	5.55244	1.905	13.335	vLFe1
RPP	471	3.81	5.53466	0.0	5.55244	17.145	59.055	vLVd2
RPP	472	0.0	3.81	0.0	5.55244	17.145	59.055	vLFe2
RPP	473	3.81	5.53466	0.0	5.55244	62.865	104.775	vLVd3
RPP	474	0.0	3.81	0.0	5.55244	62.865	104.775	vLFe3
RPP	475	3.81	5.53466	0.0		108.585	120.015	vLVd4
RPP	476	0.0	3.81	0.0		108.585	120.015	vLFe4
RPP	477	3.81	5.53466	0.0	2.3495	1.905	13.335	vhLVd1
RPP	478	0.0	3.81	0.0	2.3495	1.905	13.335	vhLFe1
RPP	479	3.81	5.53466	0.0	2.3495	17.145	59.055	vhLVd2
RPP	480	0.0	3.81	0.0	2.3495	17.145	59.055	vhLFe2
RPP	481	3.81	5.53466	0.0	2.3495	62.865	104.775	vhLVd3
RPP	482	0.0	3.81	0.0	2.3495	62.865	104.775	vhLFe3
RPP	483	3.81	5.53466	0.0	2.3495	108.585	120.015	vhLVd4
RPP	484	0.0	3.81	0.0	2.3495	108.585	120.015	vhLFe4
END								
	202020:	2323222231	3131312323	2323232323	23212121	2121212626	5252525252525	
							252525252525	
							252525252525	
	050505	05050606						

Revision: 0

HEU-MET-FAST-067

Revision: 0

HEU-MET-FAST-067

Revision: 0

Date: September 30, 2003 Page 96 of 125

HEU-MET-FAST-067

Revision: 0

Date: September 30, 2003

HEU-MET-FAST-067

163	100	7	29002	164	100	8	30002	165	600	21	139002
166	600	21	140002	167	100	0	49002	165 168	600	0	50002
169	100	0	141002	170	600	0	142002	171	100	0	143002
172	600	0	144002	173	600	0	145002	174	600	0	146002
175	600	0	54002	176	100	0	55002	177	200	3	56002
178 181	200 200	3 13	57002 60002	179 182	200 200	4 6	58002 61002	180 183	200 200	4 6	59002 62002
184	200	6	63002	185	200	14	64002	186	200	15	65002
187	200	0	66002	188	200	0	67002	189	200	0	68002
190	200	0	69002	191	200	0	70002	192	200	0	71002
193 196	200 200	0 3	72002 75002	194 197	200 200	0 4	73002 76002	195 198	200 200	3 4	74002 77002
199	200	16	78002	200	200	17	79002	201	200	17	80002
202	200	17	81002	203	200	18	82002	204	200	14	83002
205	200	0	84002	206	200	0	85002	207	200	0	86002
208 211	200 300	0 3	87002 90002	209 212	200 300	0 4	88002 91002	210 213	300 300	3 4	89002 92002
214	300	17	93002	215	300	17	94002	216	300	17	95002
217	300	14	96002	218	300	0	97002	219	300	0	98002
220	300	0	99002	221	300	0	100002	222	300	0	101002
223 226	400 400	3 4	102002 105002	224 227	400 400	3 17	103002 106002	225 228	400 400	4 17	104002 107002
229	400	17	108002	230	400	0	109002	231	400	0	110002
232	400	0	111002	233	400	0	112002	234	500	3	113002
235	500	3	114002	236	500	4	115002	237	500	4	116002
238 241	500 500	19 17	117002 120002	239 242	500 500	17 0	118002 121002	240 243	500 500	17 0	119002 122002
244	500	0	123002	245	500	0	124002	246	500	Ö	125002
247	900	0	427002	248	900	35	428002	249	600	1	126003
250	100	1	127003	251	600	1	128003	252	100	1	129003
253 256	600 100	2	3003 131003	254 257	100 600	2 3	4003 132003	255 258	600 100	3 3	130003 133003
259	600	4	7003	260	100	4	8003	261	600	5	134003
262	100	5	135003	263	600	6	10003	264	100	6	11003
265	600	6	136003	266	100	6	137003	267	600	20	147003
268 271	600 100	21 10	148003 32003	269 272	600 100	21 7	149003 33003	270 273	100 100	9 8	31003 34003
274	101	11	35003	275	101	12	36003	276	100	9	37003
277	100	10	38003	278	100	7	39003	279	100	8	40003
280 283	100 100	9 8	41003 44003	281 284	100 101	10 11	42003 45003	282 285	100 101	7 12	43003 46003
286	100	9	47003	287	100	10	48003	288	600	0	49003
289	100	0	50003	290	600	0	141003	291	100	0	142003
292	600	0	143003	293	100	0	144003	294	100	0	145003
295 298	100 200	0 3	146003 56003	296 299	100 200	0 3	54003 57003	297 300	600 200	0 4	55003 58003
301	200	4	59003	302	200	13	60003	303	200	6	61003
304	200	6	62003	305	200	6	63003	306	200	14	64003
307 310	200	15 0	65003	308 311	200 200	0	66003 69003	309	200	0	67003
313	200 200	0	68003 71003	311	200	0	72003	312 315	200 200	0	70003 73003
316	200	3	74003	317	200	3	75003	318	200	4	76003
319	200	4	77003	320	200	16	78003	321	200	17	79003
322 325	200 200	17 14	80003 83003	323 326	200 200	17 0	81003 84003	324 327	200 200	18 0	82003 85003
328	200	0	86003	329	200	0	87003	330	200	0	88003
331	300	3	89003	332	300	3	90003	333	300	4	91003
334	300	4	92003	335	300	17	93003	336	300	17	94003
337 340	300 300	17 0	95003 98003	338 341	300 300	14 0	96003 99003	339 342	300 300	0	97003 100003
343	300	0	101003	344	400	3	102003	345	400	3	103003
346	400	4	104003	347	400	4	105003	348	400	17	106003
349 352	400 400	17 0	107003 110003	350 353	400 400	17 0	108003 111003	351 354	400 400	0	109003 112003
355	500	3	113003	356	500	3	114003	354	500	4	115003
358	500	4	116003	359	500	19	117003	360	500	17	118003
361	500	17	119003	362	500	17	120003	363	500	0	121003
364 367	500 500	0	122003 125003	365 368	500 900	0	123003 427003	366 369	500 900	0 35	124003 428003
370	100	1	1004	371	100	1	2004	372	100	2	3004
373	100	2	4004	374	100	3	5004	375	100	3	6004
376 379	100	4	7004	377	100 100	4	8004	378	100 100	5	9004
379	100 100	6 9	11004 150004	380 383	100	6 10	10004 151004	381 384	100	6 11	12004 152004
385	101	12	153004	386	100	7	154004	387	100	8	155004
388	100	9	156004	389	100	10	157004	390	100	7	158004
391 394	100 101	8 11	159004 162004	392 395	100 101	9 12	160004 163004	393 396	100 100	10 7	161004 164004
JノI	- O -		T02001	575	T O T		T0004	550	±00	,	101001

HEU-MET-FAST-067

207	100	0	165004	200	1.00	0	166004	200	100	1.0	167004
397 400	100 100	8 7	165004 168004	398 401	100 100	9 8	166004 169004	399 402	100 101	10 11	167004 170004
403	101	12	171004	404	100	9	172004	405	100	10	173004
406	100	7	174004	407	100	8	175004	408	100	9	176004
409	100	10	177004	410	100	7	178004	411	100	8	179004
412	101	11	180004	413	101	12	181004	414	100	9	182004
415	100	10	183004	416	100	7	184004	417	100	8	185004
418	100	0	49004	419	100	0	50004	420	100	0	51004
421	100	0	52004	422	100	0 3	186004	423	100 200	0	54004
424 427	100 200	4	55004 58004	425 428	200 200	4	56004 59004	426 429	200	3 13	57004 60004
430	200	6	62004	431	200	6	61004	432	200	6	63004
433	200	14	187004	434	200	15	65004	435	200	0	66004
436	200	0	67004	437	200	0	68004	438	200	0	69004
439	200	0	188004	440	200	0	71004	441	200	0	72004
442	200	0	73004	443	200	3	74004	444	200	3	75004
445 448	200 200	4 17	76004 80004	446 449	200 200	4 17	77004 79004	447 450	200 200	16 17	78004 81004
451	200	18	189004	452	200	14	190004	453	200	0	84004
454	200	0	85004	455	200	0	86004	456	200	0	87004
457	200	0	191004	458	300	3	89004	459	300	3	90004
460	300	4	91004	461	300	4	92004	462	300	17	94004
463	300	17	93004	464	300	17	95004	465	300	14	192004
466 469	300 300	0	97004 100004	467 470	300 300	0	98004 193004	468 471	300 400	0 3	99004 102004
472	400	3	103004	473	400	4	104004	474	400	4	102004
475	400	17	107004	476	400	17	106004	477	400	17	108004
478	400	0	109004	479	400	0	110004	480	400	0	111004
481	400	0	112004	482	500	3	113004	483	500	3	114004
484	500	4	115004	485	500	4	116004	486	500	19	117004
487 490	500 500	17 0	119004 121004	488 491	500 500	17 0	118004 122004	489 492	500 500	17 0	120004 123004
493	500	0	124004	494	500	0	125004	495	900	0	427004
496	900	35	428004	497	600	1	194005	498	100	1	195005
499	600	1	196005	500	100	1	197005	501	600	2	3005
502	100	2	4005	503	600	3	198005	504	100	3	199005
505 508	600 100	3 4	200005 8005	506 509	100 600	3 5	201005 202005	507 510	600 100	4 5	7005 203005
511	100	6	11005	512	600	6	10005	513	600	6	204005
514	100	6	205005	515	600	20	206005	516	100	9	150005
517	100	10	151005	518	101	11	152005	519	101	12	153005
520 523	100 100	7 10	154005	521 524	100 100	8 7	155005	522 525	100 100	9	156005
526	100	9	157005 160005	524	100	10	158005 161005	528	101	8 11	159005 162005
529	101	12	163005	530	100	7	164005	531	100	8	165005
532	100	9	166005	533	100	10	167005	534	600	21	207005
535	600	21	208005	536	600	0	49005	537	100	0	50005
538 541	600 100	0	209005 212005	539 542	100 600	0	210005 213005	540 543	600 600	0	211005 214005
544	100	0	54005	542	600	0	55005	546	200	3	56005
547	200	3	57005	548	200	4	58005	549	200	4	59005
550	200	13	60005	551	200	6	62005	552	200	6	61005
553	200	6	63005	554	200	14	187005	555	200	15	65005
556 559	200 200	0	66005 69005	557 560	200 200	0	67005 188005	558 561	200 200	0	68005 71005
562	200	0	72005	563	200	0	73005	564	200	3	74005
565	200	3	75005	566	200	4	76005	567	200	4	77005
568	200	16	78005	569	200	17	80005	570	200	17	79005
571	200	17	81005	572	200	18	189005	573	200	14	190005
574 577	200 200	0	84005 87005	575 578	200 200	0	85005 191005	576 579	200 300	0 3	86005 89005
580	300	3	90005	581	300	4	91005	582	300	4	92005
583	300	17	94005	584	300	17	93005	585	300	17	95005
586	300	14	192005	587	300	0	97005	588	300	0	98005
589	300	0	99005	590	300	0	100005	591	300	0	193005
592 595	400	3 4	102005	593	400	3 17	103005	594	400	4 17	104005
595 598	400 400	17	105005 108005	596 599	400 400	17 0	107005 109005	597 600	400 400	17 0	106005 110005
601	400	0	111005	602	400	0	112005	603	500	3	113005
604	500	3	114005	605	500	4	115005	606	500	4	116005
607	500	19	117005	608	500	17	119005	609	500	17	118005
610 613	500 500	17 0	120005 123005	611 614	500 500	0	121005 124005	612 615	500 500	0	122005 125005
616	900	0	427005	617	900	35	428005	618	100	1	194006
619	600	1	195006	620	100	1	196006	621	600	1	197006
622	100	2	3006	623	600	2	4006	624	100	3	198006
625	600	3	199006	626	100	3	200006	627	600	3	201006
628	100	4	7006	629	600	4	8006	630	100	5	202006

HEU-MET-FAST-067

C21	600	_	202006	620	600	_	11006	622	100	_	10006
631 634	600 100	5 6	203006 204006	632 635	600 600	6 6	11006 205006	633 636	100 600	6 20	10006 215006
637	600	21	216006	638	600	21	217006	639	100	7	168006
640	100	8	169006	641	101	11	170006	642	101	12	171006
643	100	9	172006	644	100	10	173006	645	100	7	174006
646	100	8	175006	647	100	9	176006	648	100	10	177006
649	100	7	178006	650	100	8	179006	651	101	11	180006
652	101	12	181006	653	100	9	182006	654	100	10	183006
655	100	7	184006	656	100	8	185006	657	100	0	49006
658 661	600 100	0	50006 211006	659 662	100 600	0	209006 212006	660 663	600 100	0	210006 213006
664	100	0	214006	665	600	0	54006	666	100	0	55006
667	200	3	56006	668	200	3	57006	669	200	4	58006
670	200	4	59006	671	200	13	60006	672	200	6	62006
673	200	6	61006	674	200	6	63006	675	200	14	187006
676	200	15	65006	677	200	0	66006	678	200	0	67006
679	200	0	68006	680	200	0	69006	681	200	0	188006
682 685	200 200	0 3	71006 74006	683 686	200 200	0 3	72006 75006	684 687	200 200	0 4	73006 76006
688	200	4	77006	689	200	16	78006	690	200	17	80006
691	200	17	79006	692	200	17	81006	693	200	18	189006
694	200	14	190006	695	200	0	84006	696	200	0	85006
697	200	0	86006	698	200	0	87006	699	200	0	191006
700	300	3	89006	701	300	3	90006	702	300	4	91006
703	300	4	92006	704	300	17	94006	705	300	17	93006
706 709	300 300	17 0	95006 98006	707 710	300 300	14 0	192006 99006	708	300 300	0	97006 100006
709	300	0	193006	713	400	3	102006	711 714	400	3	103006
715	400	4	104006	716	400	4	105006	717	400	17	107006
718	400	17	106006	719	400	17	108006	720	400	0	109006
721	400	0	110006	722	400	0	111006	723	400	0	112006
724	500	3	113006	725	500	3	114006	726	500	4	115006
727	500	4	116006	728	500	19	117006	729	500	17	119006
730	500	17	118006	731	500	17	120006	732	500	0	121006
733 736	500 500	0	122006 125006	734 737	500 900	0	123006 427006	735 738	500 900	0 35	124006 428006
739	100	1	1007	740	100	1	2007	741	100	2	3007
742	100	2	4007	743	100	3	218007	744	100	3	219007
745	100	4	220007	746	100	4	221007	747	100	22	222007
748	100	23	223007	749	100	23	224007	750	100	23	225007
751	100	24	226007	752	100	25	227007	753	100	9	228007
754 757	100 100	10 7	229007 232007	755 758	101 100	11 8	230007 233007	756 759	101 100	12 9	231007 234007
760	100	10	235007	761	100	7	236007	762	100	8	237007
763	100	9	238007	764	100	10	239007	765	101	11	240007
766	101	12	241007	767	100	7	242007	768	100	8	243007
769	100	9	244007	770	100	10	245007	771	100	7	246007
772	100	8	247007	773	101	11	248007	774	101	12	249007
775 778	100 100	9 8	250007 253007	776 779	100 100	10 9	251007 254007	777 780	100 100	7 10	252007 255007
781	100	7	256007	782	100	8	257007	783	101	11	258007
784	101	12	259007	785	100	9	260007	786	100	10	261007
787	100	0	262007	788	100	0	263007	789	100	0	264007
790	100	0	265007	791	100	0	266007	792	100	0	267007
793	100	0	268007	794	200	3	269007	795	200	3	270007
796 799	200 200	4 23	271007 274007	797 800	200 200	4 23	272007 275007	798 801	200 200	23 26	273007 276007
802	200	0	277007	803	200	0	278007	801	200	0	279007
805	200	0	280007	806	200	0	281007	807	300	3	89007
808	300	3	90007	809	300	4	91007	810	300	4	92007
811	300	23	282007	812	300	23	283007	813	300	23	284007
814	300	27	285007	815	300	28	286007	816	300	0	287007
817 820	300	0	288007	818 821	300	0	289007	819 822	300 300	0	290007
823	300 400	0 3	291007 102007	821	300 400	0 3	292007 103007	822 825	400	4	293007 104007
826	400	4	105007	827	400	23	294007	828	400	23	295007
829	400	23	296007	830	400	27	297007	831	400	0	298007
832	400	0	299007	833	400	0	300007	834	400	0	301007
835	400	0	302007	836	400	0	303007	837	800	3	304007
838	800	3	305007	839	800	4	306007	840	800	4	307007
841 844	800 800	23 27	308007 311007	842 845	800 800	23 28	309007 312007	843 846	800 800	23 0	310007 313007
844	800	0	311007	848	800	28 0	312007	849	800	0	313007
850	800	0	317007	851	800	0	318007	852	800	0	319007
853	800	0	320007	854	500	3	321007	855	500	3	322007
856	500	4	323007	857	500	4	324007	858	500	29	325007
859	500	0	326007	860	500	0	327007	861	500	0	328007
862	900	35	429007	863	900	0	430007	864	900	0	431007

HEU-MET-FAST-067

865	900	35	428007	866	100	1	1008	867	100	1	2008
868	100	2	3008	869	100	2	4008	870	100	3	218008
871	100	3	219008	872	100	4	220008	873	100	4	221008
874	100	22	222008	875	100	23	224008	876	100	23	223008
877	100	23	225008	878	100	24	329008	879	100	25	330008
880	100	9	331008	881	100	10	332008	882	101	11	333008
883	101	12	334008	884	100	7	335008	885	100	8	336008
886		9	337008	887	100	10			100	7	
	100						338008	888			339008
889	100	8	340008	890	100	9	341008	891	100	10	342008
892	101	11	343008	893	101	12	344008	894	100	7	345008
895	100	8	346008	896	100	9	347008	897	100	10	348008
898	100	7	349008	899	100	8	350008	900	101	11	351008
901	101	12	352008	902	100	9	353008	903	100	10	354008
904	100	7	355008	905	100	8	356008	906	100	9	357008
907	100	10	358008	908	100	7	359008	909	100	8	360008
910	101	11	361008	911	101	12	362008	912	100	9	363008
913	100	10	364008	914	100	0	262008	915	100	0	263008
916	100	0	264008	917	100	0	265008	918	100	0	365008
919	100	0	267008	920	100	0	268008	921	200	3	269008
922	200	3	270008	923	200	4	271008	924	200	4	272008
925	200	23	274008	926	200	23	273008	927	200	23	275008
928	200	26	366008	929	200	0	277008	930	200	0	278008
931	200	0	279008	932	200	0	280008	933	200	0	367008
934	300	3	89008	935	300	3	90008	936	300	4	91008
937	300	4	92008	938	300	23	283008	939	300	23	282008
940	300	23	284008	941	300	27	368008	942	300	28	369008
943	300	0	287008	944	300	0	288008	945	300	0	289008
946	300	0	290008	947	300	0	370008	948	300	0	371008
949	300	0	372008	950	400	3	102008	951	400	3	103008
			104008		400						
952	400	4		953		4	105008	954	400	23	295008
955	400	23	294008	956	400	23	296008	957	400	27	373008
958	400	0	298008	959	400	0	299008	960	400	0	300008
961	400	0	301008	962	400	0	374008	963	400	0	375008
964	800	3	304008	965	800	3	305008	966	800	4	306008
967	800	4	307008	968	800	23	309008	969	800	23	308008
970	800	23	310008	971	800	27	376008	972	800	28	377008
973	800	0	313008	974	800	0	314008	975	800	0	315008
976	800	0	316008	977	800	0	317008	978	800	0	378008
979	800	0	379008	980	800	0	380008	981	500	3	321008
982	500	3	322008	983	500	4	323008	984	500	4	324008
985	500	29	381008	986	500	0	326008	987	500	0	382008
988	500	0	383008	989	900	35	429008	990	900	0	430008
991	900	0	431008	992	900	35	428008	993	700	1	1009
994	700	1	2009	995	700	2	3009	996	700	2	4009
997	700	3	384009	998	700	3	385009	999	700	4	386009
1000	700	4	387009	1001	700	30	9009	1002	700	31	388009
					700						391009
1003	700	32	389009	1004		32	390009	1005	700	32	
1006	700	14	392009	1007	700	15	393009	1008	700	0	394009
1009	700	0	395009	1010	700	0	396009	1011	700	0	397009
1012	700	0	398009	1013	700	0	399009	1014	700	0	400009
1015	700	0	54009	1016	700	0	401009	1017	700	0	55009
1018	500	3	113009	1019	500	3	114009	1020	500	4	115009
1021	500	4	116009	1022	500	0	402009	1023	900	0	432009
1024	700	1	1010	1025	700	1	2010	1026	700	2	3010
1027	700	2	4010	1028	700	3	384010	1029	700	3	385010
1030	700	4	386010	1031	700	4	387010	1032	700	30	9010
1033	700	31	388010	1034	700	32	389010	1035	700	32	390010
1036	700	32	391010	1037	700	14	392010	1038	700	15	393010
1039	700	0	394010	1040	700	0	395010	1041	700	0	396010
1042	700	0	397010	1043	700	0	398010	1044	700	0	399010
1045	700	0	400010	1046	700	0	54010	1047	700	0	401010
1048	700	0	55010	1049	500	3	113010	1050	500	3	114010
1051	500	4	115010	1052	500	4	116010	1053	500	0	402010
1054	900	0	427010	1055	900	35	428010	1056	700	1	1011
1057									700		
	700	1	2011	1058	700	2	3011	1059		2	4011
1060	700	3	384011	1061	700	3	385011	1062	700	4	386011
1063	700	4	387011	1064	700	30	9011	1065	700	31	388011
1066	700	32	389011	1067	700	32	390011	1068	700	32	391011
1069	700	33	403011	1070	700	34	404011	1071	700	14	405011
1072	700	14	406011	1073	700	15	393011	1071	700	0	394011
1075	700	0	395011	1076	700	0	396011	1077	700	0	407011
1078	700	0	408011	1079	700	0	397011	1080	700	0	409011
1081	700	0	399011	1082	700	0	400011	1083	700	0	54011
1084	700	0	410011	1085	700	0	55011	1086	700	0	411011
1087	700	0	412011	1088	500	3	113011	1089	500	3	114011
1090	500	4	115011	1091	500	4	116011	1092	500	0	402011
1093	900	0	427011	1094	900	35	428011	1095	700	1	1012
1096	700	1	2012	1097	700	2	3012	1098	700	2	4012

HEU-MET-FAST-067

1105	1099	700	3	384012	1100	700	3	385012	1101	700	4	386012
1108 700 32 389012 1106 700 32 390012 1107 700 32 391012 1111 700 14 405012 1111 700 14 405012 1115 700 03 393012 1113 700 03 394012 1115 700 04 395012 1115 700 04 395012 1115 700 04 395012 1115 700 04 395012 1115 700 04 405012 1117 700 04 405012 1117 700 04 405012 1118 700 03 397012 1119 700 04 405012 1123 700 04 405012 1124 700 05 55012 1125 700 04 40												
1111												
1114												
1117 700												
1120												
1123 700												
1126												
1135 700		700	0			500	3			500	3	
1138 700 2 3013 1136 700 2 4013 1137 700 3 384013 1141 700 30 9013 1142 700 31 388013 1149 700 32 390013 1145 700 32 390013 1147 700 32 390013 1147 700 32 390013 1148 700 0 394013 1149 700 0 395013 1154 700 0 394013 1152 700 0 395013 1153 700 0 394013 1155 700 0 395013 1155 700 0 395013 1155 700 0 395013 1155 700 0 395013 1155 700 0 395013 1155 700 0 395013 1155 700 0 400013 1155 700 0 54013 1155 700 0 400013 1155 700 0 55013 1158 500 3 113013 1159 500 0 400013 1155 700 0 55013 1159 500 0 400013 1155 700 0 54013 1156 500 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400013 1157 700 0 400014 1150 1150 1150 700 0 400014 1150 115												
1138 700 3 385013 1139 700 4 386013 1149 700 4 387013 1144 700 30 9013 1145 700 32 391013 1145 700 32 391013 1145 700 32 391013 1145 700 32 391013 1145 700 0 395013 1150 700 0 395013 1151 700 0 397013 1155 700 0 395013 1156 700 0 397013 1155 700 0 395013 1156 700 0 400013 1155 700 0 54013 1156 700 0 414013 1157 700 0 55013 1158 500 3 113013 1156 700 0 414013 1160 500 4 115013 1161 500 4 116013 1160 700 2 3014 1166 700 2 3014 1167 700 3 34014 1169 700 3 385014 1170 700 4 386014 1171 700 3 384014 1169 700 3 385014 1170 700 4 386014 1171 700 32 39014 1175 700 30 39114 1170 700 32 391014 1177 700 30 395014 1170 700 32 391014 1177 700 30 395014 1187 700 30 395014 1188 700 0 386014 1187 700 3956014 1188 700 0 386014 1188 700 0 386014 1188 700 0 386014 1188 700 0 386014 1188 700 0 386014 1188 700 0 386014 1189 700 0 396014 1185 700 0 400014 1188 700 0 386014 1189 700 0 400014 1189 500 3 13014 1190 500 3 140014 1195 500 4 116014 1193 500 4 116014 1193 500 4 116014 1193 500 4 116014 1193 500 4 116014 1193 500 4 116014 1193 500 4 116014 1193 500 4 116014 1193 500 4 116014 1193 500 4 116014 1193 500 4 4 4 4 4 4 4 4 4												
11141 700 30 99013 1142 700 31 388013 1143 700 32 399013 1145 700 32 399013 1147 700 0 395013 1151 700 0 395013 1151 700 0 395013 1151 700 0 395013 1151 700 0 395013 1151 700 0 395013 1151 700 0 395013 1151 700 0 395013 1155 700 0 395013 1151 700 0 395013 1155 700 0 395013 1155 700 0 400013 1155 700 0 55013 1158 500 3 11301 1156 500 4 116013 1155 500 0 400013 1157 700 0 55013 1158 500 3 11301 1160 500 4 115013 1161 500 4 116013 1165 500 0 400013 1157 700 0 30014 1167 700 1 2014 1166 700 2 3014 1167 700 2 4014 1168 700 3 385014 1170 700 4 386014 1177 700 30 305014 1175 700 32 389014 1175 700 32 389014 1176 700 32 395014 1180 700 395014 1180 700 395014 1185 700 0 395014 1180 700 395014 1185 700 0 395014 1186 700 0 395014 1186 700 0 395014 1186 700 0 395014 1186 700 0 395014 1186 700 0 395014 1186 700 0 395014 1187 700 0 395014 1186 700 0 395014 1186 700 0 395014 1187 700 0 395014 1187 700 0 395014 1187 700 0 395014 1187 700 0 395014 1187 700 0 395014 1187 700 0 395014 1187 700 0 395014 1187 700 0 395014 1188 700 0 395014 1180												
1144 700 32 389013 1145 700 32 391013 1146 700 14 413013 1150 700 0 395013 1151 700 0 395013 1155 700 0 395013 1156 700 0 395013 1155 700 0 395013 1156 700 0 395013 1155 700 0 395013 1156 700 0 414013 1157 700 0 55013 1158 500 3 113013 1156 700 0 414013 1160 500 4 115013 1161 500 4 116013 1160 700 0 432013 1164 700 1 1014 1165 700 1 2014 1166 700 2 3014 1167 700 2 4014 1168 700 3 384014 1169 700 3 385014 1170 700 4 386014 1171 700 3 385014 1170 700 4 386014 1171 700 3 385014 1170 700 4 386014 1177 700 3 385014 1170 700 3 385014 1177 700 3 385014 1170 700 3 385014 1170 700 3 385014 1170 700 3 385014 1170 700 3 385014 1170 700 3 385014 1170 700 3 385014 1170 700 3 385014 1170 700 3 385014 1170 700 3 385014 1170 700 3 385014 1180 700 0 395014 1181 700 0 395014 1182 700 0 395014 1181 700 0 395014 1182 700 0 395014 1181 700 0 395014 1182 700 0 395014 1185 700 0 400014 1185 40004 400014 40004 40004 40004 40004 40004 40004 40												
1150 700 0 396013 1151 700 0 397013 1152 700 0 398013 1156 700 0 414013 1156 700 0 40013 1155 700 0 416013 1156 700 0 414013 1160 500 4 115013 1161 500 4 116013 1162 500 0 42013 1163 500 0 42013 1163 500 0 42013 1164 500 4 116013 1165 700 1 2014 1166 700 2 3014 1167 700 2 4014 1168 700 3 384014 1169 700 3 385014 1170 700 4 387014 1175 700 30 9014 1176 700 32 399014 1177 700 31 388014 1177 700 14 413014 1178 700 15 393014 1176 700 32 399014 1177 700 0 395014 1181 700 0 396014 1182 700 0 396014 1181 700 0 396014 1182 700 0 396014 1181 700 0 396014 1188 700 0 396014 1187 700 0 396014 1189 700 0 396014 1187 700 0 396014 1188 700 0 396014 1187 700 0 396014 1188 700 0 396014 1187 700 0 396014 1188 700 0 396014 1189 500 3 113014 1190 500 3 114014 1191 500 4 115014 1195 500 3 116014 1193 500 0 402014 1194 900 0 427014 1195 900 3 385015 1202 700 4 386015 1203 700 3 386015 1203 700 4 387015 1204 700 3 385015 1205 700 3 386015 1203 700 4 387015 1204 700 3 386015 1208 700 3 38601												
1153 700												
1156												
1169 500												
1162 500												
1168	1162	500	0	402013	1163	900	0	432013	1164	700	1	1014
1171 700												
1174 700 32 390014 1175 700 32 389014 1176 700 32 391014 1180 700 0 395014 1181 700 0 396014 1185 700 0 397014 1183 700 0 398014 1184 700 0 396014 1185 700 0 400014 1186 700 0 398014 1184 700 0 399014 1185 700 0 400014 1188 700 0 55014 1189 700 0 54014 1187 700 0 414014 1188 700 0 55014 1189 500 4 116014 1193 500 0 402014 1194 900 0 427014 1195 900 35 428014 1196 700 1 1015 1197 700 1 2015 1198 700 2 3015 1199 700 2 4015 1200 700 3 384015 1201 700 3 385015 1202 700 4 386015 1206 700 32 390015 1204 700 30 9015 1208 700 31 388015 1206 700 32 390015 1207 700 32 398015 1208 700 32 391015 1209 700 33 4416015 1211 700 14 417015 1212 700 14 418015 1213 700 5 396015 1214 700 0 394015 1215 700 0 396015 1215 700 0 396015 1227 700 0 400015 1223 700 0												
1177												
1180												
1186		700	0				0	396014		700	0	397014
1189												
1192 500												
1195 900 35 428014 1196 700 1 1015 1197 700 1 2015 1198 700 2 3015 1199 700 2 4015 1203 700 3 384015 1201 700 3 385015 1202 700 4 386015 1203 700 4 387015 1204 700 30 9015 1205 700 31 388015 1206 700 32 39015 1207 700 34 416015 1211 700 14 417015 1212 700 14 418015 1213 700 15 393015 1214 700 0 394015 1218 700 0 395015 1217 700 0 394015 1218 700 0 435015 1214 700 0 407015 1218 700 0 435015 1212 700 0 407015 1218 700 0 419015 1222 700 0 400015 1223 700 0 407015 1218 700 0 399015 1222 700 0 400015 1223 700 0 54015 1224 700 0 420015 1225 700 0 55015 1226 700 0 410015 1227 700 0 420015 1228 700 0 55015 1226 700 0 410015 1227 700 0 421015 1228 500 3 113015 1229 500 3 114015 1230 500 4 115015 1234 900 35 428015 1235 700 1 1016 1236 700 1 2016 1237 700 2 3016 1238 700 2 4016 1239 700 3 384016 1244 700 3 385016 1244 700 3 385016 1244 700 3 385016 1244 700 3 385016 1244 700 3 385016 1244 700 3 385016 1244 700 3 385016 1244 700 3 385016 1244 700 3 385016 1244 700 3 395016 1244 700 3 395016 1259 700 0 40016 1259 700 0 400016 1265 700 0 400016 1265 700 0 400016 1266 700 0 399016 1244 700 3 395016 1259 700 0 400016 1266 700 0 399016 1244 700 0 395016 1259 700 0 400016 1266 700 0 399016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267 700 0 400016 1267												
1201												
1204	1198	700			1199	700	2		1200	700	3	384015
1207 700 32 389015 1208 700 32 391015 1209 700 33 415015 1210 700 14 417015 1212 700 14 418015 1216 700 0 396015 1214 700 0 394015 1215 700 0 395015 1216 700 0 396015 1217 700 0 407015 1218 700 0 395015 1219 700 0 397015 1220 700 0 407015 1221 700 0 409015 1222 700 0 400015 1223 700 0 54015 1224 700 0 420015 1225 700 0 55015 1226 700 0 411015 1227 700 0 420015 1228 500 3 113015 1229 500 3 114015 1230 500 4 115015 1231 500 4 116015 1232 500 0 402015 1233 900 0 427015 1234 900 35 428015 1235 700 1 1016 1236 700 1 2016 1234 700 3 385016 1241 700 4 386016 1242 700 3 384016 1244 700 31 386016 1244 700 32 389016 1244 700 31 386016 1245 700 32 39016 1244 700 32 391016 1245 700 32 39016 1253 700 0 407016 1255 700 0 418016 1255 700 0 409015 1254 700 0 399016 1255 700 0 409016 1254 700 0 399016 1255 700 0 409016 1254 700 0 399016 1255 700 0 409016 1254 700 0 399016 1255 700 0 409016 1255 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1257 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700 0 409016 1256 700												
1210												
1213												
1219												
1222 700												
1225 700												
1228 500 3 113015 1229 500 3 114015 1230 500 4 115015 1231 500 4 116015 1232 500 0 402015 1233 6700 1 2016 1237 700 2 3016 1238 700 2 4016 1239 700 3 384016 1240 700 3 385016 1241 700 4 386016 1242 700 4 387016 1244 700 31 388016 1245 700 32 389016 1244 700 31 388016 1245 700 32 389016 1247 700 32 389016 1247 700 32 399016 1248 700 33 345016 1255 700 34 416016 1250 700 14 417016 1251 700 14 418016 1252 700 0 396016 1255 700 0 396016 1255 700 0 396016 1255 700 0 396016 1256 700 0 407016 1257 700 0 419016 1258 700 0 397016 1256 700 0 409016 1260 700 0 399016 1261 700 0 400016 1262 700 0 54016 1263 700 0 420016 1267 500 3 113016 1268 500 3 114016 1266 700 0 421016 1270 500 4 116016 1271 500 0 402016 1272 900 0 432016 1273 500 1 1017 1274 500 1 2017 1278 500 2 3017 1276 500 2 4017 1277 500 3 422017 1278 500 3 423017 1279 500 4 424017 1280 500 4 425017 1281 500 0 426017 1288 500 3 423018 1285 500 2 3018 1286 500 3 422017 1278 500 3 422018 1285 500 2 3018 1286 500 3 422017 1278 500 3 422018 1294 500 1 1019 1295 500 1 1019 1296 500 2 3019 1303 500 4 424019 1301 500 4 425019 1302 500 4 425018 1297 500 3 422018 1300 500 4 424019 1301 500 4 424020 1311 500 4 425020 1315 500 0 436025 1328 900 0 436025 1328 900 0 434024 1320 900 36 435024 1318 900 0 436025 1328 900 0 434025 1328 900 0 434025 1328 900 0 434025 1328 900 0 434025 1329 900 0 437025 1328 900 0 434025 1329 900 0 437025 1327 900 36 433025 13												
1231 500												
1237 700 2 3016 1238 700 2 4016 1239 700 3 384016 1240 700 3 385016 1241 700 4 386016 1242 700 4 387016 1243 700 30 9016 1244 700 31 388016 1245 700 32 399016 1246 700 32 389016 1247 700 32 391016 1248 700 33 415016 1249 700 34 416016 1250 700 14 417016 1251 700 14 418016 1252 700 15 393016 1256 700 0 394016 1257 700 0 395016 1258 700 0 396016 1256 700 0 407016 1257 700 0 419016 1258 700 0 397016 1259 700 0 409016 1260 700 0 399016 1261 700 0 400016 1262 700 0 54016 1263 700 0 420016 1264 700 0 55016 1265 700 0 411016 1266 700 0 420016 1267 700 0 420016 1267 700 0 420016 1267 700 0 420016 1267 700 0 420016 1267 700 0 420016 1267 700 0 420016 1267 700 0 420016 1267 700 0 420016 1268 500 3 114016 1269 500 4 115016 1270 500 4 116016 1271 500 0 402016 1272 900 0 432016 1273 500 1 1017 1274 500 1 2017 1275 500 2 3017 1276 500 2 4017 1278 500 3 423017 1278 500 3 423017 1278 500 3 423017 1282 900 0 432017 1283 500 1 1018 1284 500 1 2018 1285 500 3 423018 1289 500 4 424018 1299 500 3 423018 1291 500 0 426018 1292 900 0 427018 1293 900 35 428018 1294 500 1 1019 1295 500 1 2019 1296 500 2 3019 1297 500 3 423019 1300 500 4 424019 1301 500 4 425019 1302 500 0 426019 1303 900 0 432020 1304 500 1 1020 1305 500 1 2020 1306 500 2 3020 1307 500 2 4020 1308 500 3 422020 1315 900 36 433021 1316 900 37 434022 1317 900 0 435022 1318 900 0 436025 1322 900 0 434025 1329 900 0 437025 1327 900 36 433025 1323 900												
1240 700 3 385016 1241 700 4 386016 1242 700 4 387016 1243 700 30 9016 1244 700 31 388016 1245 700 32 390016 1246 700 34 416016 1250 700 14 417016 1251 700 14 418016 1249 700 34 416016 1253 700 0 394016 1251 700 14 418016 1255 700 0 396016 1253 700 0 407016 1257 700 0 419016 1255 700 0 397016 1259 700 0 407016 1257 700 0 419016 1258 700 0 409016 1260 700 0 409016 1260 700 0 41016 1264 700 0 55016												
1243 700 30 9016 1244 700 31 388016 1245 700 32 390016 1246 700 32 389016 1247 700 32 391016 1248 700 33 415016 1249 700 34 416016 1250 700 14 417016 1251 700 0 394016 1254 700 0 394016 1257 700 0 394016 1257 700 0 419016 1255 700 0 397016 1259 700 0 409016 1260 700 0 399016 1258 700 0 397016 1259 700 0 409016 1260 700 0 41016 1260 700 0 41016 1260 700 0 41016 1260 700 0 41016 1260 700 0 41016 1260 700 0												
1246 700 32 389016 1247 700 32 391016 1248 700 33 415016 1249 700 34 416016 1250 700 14 417016 1251 700 14 418016 1255 700 15 393016 1253 700 0 394016 1254 700 0 419016 1255 700 0 397016 1259 700 0 407016 1260 700 0 419016 1258 700 0 40016 1262 700 0 4016 1260 700 0 42016 1261 700 0 40016 1263 700 0 41016 1260 700 0 42016 1261 700 0 4016 1263 700 0 421016 1263 700 0 421016 1261 700 0 401016												
1252 700 15 393016 1253 700 0 394016 1254 700 0 395016 1255 700 0 396016 1256 700 0 407016 1257 700 0 419016 1258 700 0 397016 1259 700 0 409016 1260 700 0 399016 1261 700 0 400016 1262 700 0 54016 1263 700 0 420016 1264 700 0 55016 1265 700 0 411016 1266 700 0 421016 1267 500 3 113016 1268 500 3 114016 1269 500 4 115016 1270 500 4 116016 1271 500 0 402016 1272 900 0 432016 1273 500 1 1017 1												
1255 700 0 396016 1256 700 0 407016 1257 700 0 419016 1258 700 0 397016 1259 700 0 409016 1260 700 0 399016 1261 700 0 409016 1263 700 0 420016 1264 700 0 55016 1265 700 0 411016 1266 700 0 42016 1267 500 3 113016 1268 500 3 114016 1269 500 4 115016 1270 500 4 116016 1271 500 0 402016 1272 900 0 432016 1273 500 1 1017 1274 500 1 2017 1275 500 2 3017 1276 500 2 4017 1277 500 3 422017 1278 500 3 423017 1282 900 0 432017 1												
1258 700 0 397016 1259 700 0 409016 1260 700 0 399016 1261 700 0 400016 1262 700 0 54016 1263 700 0 420016 1264 700 0 55016 1265 700 0 411016 1266 700 0 421016 1267 500 3 113016 1268 500 3 114016 1269 500 4 115016 1270 500 4 116016 1271 500 0 402016 1272 900 0 432016 1273 500 1 1017 1274 500 1 2017 1275 500 2 3017 1276 500 2 4017 1277 500 3 422017 1278 500 3 423017 1282 900 0 432017 1283 500 1 1018 1284 500 0 426017 128												
1261 700 0 400016 1262 700 0 54016 1263 700 0 420016 1264 700 0 55016 1265 700 0 411016 1266 700 0 421016 1267 500 3 113016 1268 500 3 114016 1269 500 4 115016 1270 500 4 116016 1271 500 0 402016 1272 900 0 432016 1273 500 1 1017 1274 500 1 2017 1275 500 2 3017 1276 500 2 4017 1277 500 3 422017 1278 500 3 423017 1282 900 0 432017 1283 500 1 1018 1284 500 1 2018 1285 500 2 3018 1286 500 2 4018 1287 500 3 422018 1285												
1267 500 3 113016 1268 500 3 114016 1269 500 4 115016 1270 500 4 116016 1271 500 0 402016 1272 900 0 432016 1273 500 1 1017 1274 500 1 2017 1275 500 2 3017 1276 500 2 4017 1277 500 3 422017 1278 500 3 423017 1279 500 4 424017 1280 500 4 425017 1281 500 3 423017 1282 900 0 432017 1283 500 1 1018 1284 500 1 2018 1285 500 2 3018 1286 500 2 4018 1287 500 3 422018 1288 500 3 423018 1289												
1270 500 4 116016 1271 500 0 402016 1272 900 0 432016 1273 500 1 1017 1274 500 1 2017 1275 500 2 3017 1276 500 2 4017 1277 500 3 422017 1278 500 3 423017 1279 500 4 424017 1280 500 4 425017 1281 500 0 426017 1282 900 0 432017 1283 500 1 1018 1284 500 1 2018 1285 500 2 3018 1286 500 2 4018 1287 500 3 422018 1288 500 3 423018 1289 500 4 424018 1290 500 4 425018 1291 500 0 426018 1292		700	0	55016	1265	700	0	411016	1266		0	421016
1273 500 1 1017 1274 500 1 2017 1275 500 2 3017 1276 500 2 4017 1277 500 3 422017 1278 500 3 423017 1279 500 4 424017 1280 500 4 425017 1281 500 0 426017 1282 900 0 432017 1283 500 1 1018 1284 500 1 2018 1285 500 2 3018 1286 500 2 4018 1287 500 3 422018 1288 500 3 423018 1289 500 4 424018 1290 500 4 425018 1291 500 0 426018 1292 900 0 427018 1293 900 35 428018 1291 500 0 1019 1295												
1276 500 2 4017 1277 500 3 422017 1278 500 3 423017 1279 500 4 424017 1280 500 4 425017 1281 500 0 426017 1282 900 0 432017 1283 500 1 1018 1284 500 1 2018 1285 500 2 3018 1286 500 2 4018 1287 500 3 422018 1288 500 3 423018 1289 500 4 424018 1290 500 4 425018 1291 500 0 426018 1292 900 0 427018 1293 900 35 428018 1294 500 1 1019 1295 500 1 2019 1296 500 2 3019 1297 500 2 4019 1298												
1279 500 4 424017 1280 500 4 425017 1281 500 0 426017 1282 900 0 432017 1283 500 1 1018 1284 500 1 2018 1285 500 2 3018 1286 500 2 4018 1287 500 3 422018 1288 500 3 423018 1289 500 4 424018 1290 500 4 425018 1291 500 0 426018 1292 900 0 427018 1293 900 35 428018 1294 500 1 1019 1295 500 1 2019 1296 500 2 3019 1297 500 2 4019 1298 500 3 422019 1299 500 3 423019 1303 900 0 432019 1304												
1285 500 2 3018 1286 500 2 4018 1287 500 3 422018 1288 500 3 423018 1289 500 4 424018 1290 500 4 425018 1291 500 0 426018 1292 900 0 427018 1293 900 35 428018 1294 500 1 1019 1295 500 1 2019 1296 500 2 3019 1297 500 2 4019 1298 500 3 422019 1299 500 3 423019 1300 500 4 424019 1301 500 4 425019 1302 500 0 426019 1303 900 0 432019 1304 500 1 1020 1305 500 1 2020 1306 500 2 3020 1307												
1288 500 3 423018 1289 500 4 424018 1290 500 4 425018 1291 500 0 426018 1292 900 0 427018 1293 900 35 428018 1294 500 1 1019 1295 500 1 2019 1296 500 2 3019 1297 500 2 4019 1298 500 3 422019 1299 500 3 423019 1300 500 4 424019 1301 500 4 425019 1302 500 0 426019 1303 900 0 432019 1304 500 1 1020 1305 500 1 2020 1306 500 2 3020 1307 500 2 4020 1308 500 3 422020 1309 500 3 423020 1310 500 4 424020 1311 500 4 425020 1312 </td <td></td>												
1291 500 0 426018 1292 900 0 427018 1293 900 35 428018 1294 500 1 1019 1295 500 1 2019 1296 500 2 3019 1297 500 2 4019 1298 500 3 422019 1299 500 3 423019 1300 500 4 424019 1301 500 4 425019 1302 500 0 426019 1303 900 0 432019 1304 500 1 1020 1305 500 1 2020 1306 500 2 3020 1307 500 2 4020 1308 500 3 422020 1309 500 3 423020 1310 500 4 424020 1311 500 4 425020 1312 500 0 426020 1313 900 0 427020 1314 900 35 428020 1315<												
1294 500 1 1019 1295 500 1 2019 1296 500 2 3019 1297 500 2 4019 1298 500 3 422019 1299 500 3 423019 1300 500 4 424019 1301 500 4 425019 1302 500 0 426019 1303 900 0 432019 1304 500 1 1020 1305 500 1 2020 1306 500 2 3020 1307 500 2 4020 1308 500 3 422020 1309 500 3 423020 1310 500 4 424020 1311 500 3 422020 1312 500 0 426020 1313 900 0 427020 1314 900 35 428020 1315 900 36 433021 1316 900 37 434022 1317 900 0 435022 1318												
1297 500 2 4019 1298 500 3 422019 1299 500 3 423019 1300 500 4 424019 1301 500 4 425019 1302 500 0 426019 1303 900 0 432019 1304 500 1 1020 1305 500 1 2020 1306 500 2 3020 1307 500 2 4020 1308 500 3 422020 1309 500 3 423020 1310 500 4 424020 1311 500 3 422020 1312 500 0 426020 1313 900 0 427020 1314 900 35 428020 1315 900 36 433021 1316 900 37 434022 1317 900 0 435022 1318 900 0 434022 1320 900 36 435024 1321 900 0 438025 <												
1303 900 0 432019 1304 500 1 1020 1305 500 1 2020 1306 500 2 3020 1307 500 2 4020 1308 500 3 422020 1309 500 3 423020 1310 500 4 424020 1311 500 4 425020 1312 500 0 426020 1313 900 0 427020 1314 900 35 428020 1315 900 36 433021 1316 900 37 434022 1317 900 0 435022 1318 900 0 436025 1322 900 0 434024 1320 900 36 435024 1321 900 0 436025 1322 900 0 438025 1323 900 36 439025 1324 900 0 44025 1326 900 0 444025 1329 900 0 437025 1327 900 36 443025 1328 900 0 444025 1329 900 0 437025	1297	500	2	4019	1298	500	3	422019	1299	500	3	423019
1306 500 2 3020 1307 500 2 4020 1308 500 3 422020 1309 500 3 423020 1310 500 4 424020 1311 500 4 425020 1312 500 0 426020 1313 900 0 427020 1314 900 35 428020 1315 900 36 433021 1316 900 37 434022 1317 900 0 435022 1318 900 0 433023 1319 900 0 434024 1320 900 36 435024 1321 900 0 436025 1322 900 0 438025 1323 900 36 439025 1324 900 0 440025 1325 900 36 441025 1326 900 0 437025 1327 900 36 443025 1328 900 0 444025 1329 900 0 437025												
1309 500 3 423020 1310 500 4 424020 1311 500 4 425020 1312 500 0 426020 1313 900 0 427020 1314 900 35 428020 1315 900 36 433021 1316 900 37 434022 1317 900 0 435022 1318 900 0 433023 1319 900 0 434024 1320 900 36 435024 1321 900 0 436025 1322 900 0 438025 1323 900 36 439025 1324 900 0 440025 1325 900 36 441025 1326 900 0 437025 1327 900 36 443025 1328 900 0 444025 1329 900 0 437025												
1312 500 0 426020 1313 900 0 427020 1314 900 35 428020 1315 900 36 433021 1316 900 37 434022 1317 900 0 435022 1318 900 0 433023 1319 900 0 434024 1320 900 36 435024 1321 900 0 436025 1322 900 0 438025 1323 900 36 439025 1324 900 0 440025 1325 900 36 441025 1326 900 0 437025 1327 900 36 443025 1328 900 0 444025 1329 900 0 437025												
1318 900 0 433023 1319 900 0 434024 1320 900 36 435024 1321 900 0 436025 1322 900 0 438025 1323 900 36 439025 1324 900 0 440025 1325 900 36 441025 1326 900 0 442025 1327 900 36 443025 1328 900 0 444025 1329 900 0 437025												
1321 900 0 436025 1322 900 0 438025 1323 900 36 439025 1324 900 0 440025 1325 900 36 441025 1326 900 0 442025 1327 900 36 443025 1328 900 0 444025 1329 900 0 437025												
1324 900 0 440025 1325 900 36 441025 1326 900 0 442025 1327 900 36 443025 1328 900 0 444025 1329 900 0 437025												
1327 900 36 443025 1328 900 0 444025 1329 900 0 437025												
	1330	900	0	436026	1331	900	0	445026	1332	900	36	446026

HEU-MET-FAST-067

Page 103 of 125

							TILO-WIL	I-I'AS	1-007		
1333 1336 1339	900 900 900	36 36 36	439026 441026 443026	1334 1337 1340	900 900 900	0 0 0	447026 449026 451026	1335 1338 1341	900 900 900	36 36 36	448026 450026 452026
1342 1345	900 900	0 36	437026 454027	1343 1346	900 900	0 36	436027 439027	1344 1347	900 900	0	453027 455027
1348 1351	900 900	36 36	456027 458027	1349 1352	900 900	36 36	441027 443027	1350 1353	900 900	0	457027 459027
1354	900	36	460027	1355	900	0	437027	1356	900	0	436028
1357 1360	900 900	0 36	461028 439028	1358 1361	900 900	36 0	462028 463028	1359 1362	900 900	36 36	446028 464028
1363 1366	900 900	36 36	448028 466028	1364 1367	900 900	36 36	441028 450028	1365 1368	900 900	0 36	465028 443028
1369	900	0	467028	1370	900	36	468028	1371	900	36	452028
1372 1375	900 900	0 36	437028 470029	1373 1376	900 900	0 36	436029 439029	1374 1377	900 900	0	469029 471029
1378 1381	900 900	36 36	472029 474029	1379 1382	900 900	36 36	441029 443029	1380 1383	900 900	0	473029 475029
1384	900	36	476029	1385	900	0	437029	1386	900	0	436030
1387 1390	900 900	0 36	477030 439030	1388 1391	900 900	36 0	478030 479030	1389 1392	900 900	36 36	446030 480030
1393 1396	900 900	36 36	448030 482030	1394 1397	900 900	36 36	441030 450030	1395 1398	900 900	0 36	481030 443030
1399	900	0	483030	1400	900	36	484030	1401	900	36	452030
1402 21030023	900 03002	0 4030(437030 02903003	1403 403003	900 703003	37 8030	433031 0450300				
21030023	03002	40300	02903003	403003	703003	8030	0450300				
21030023	03002	40300	02903003	403003	703003	8030	0450300				
21030023	03002	40300	02903003	403003	703003	8030	0450300				
21030023	03002	40300	02903003	403003	703003	8030	0450300				
21030023	03002	40300	02903003	403003	703003	8030	0450300				
60030061	03006	20300	0630300								
60030061	03006	20300	0630300								
270300											
270300											
30300 4	0300	60300	803002	703003!	503005	4030	0570300				
30300 4	0300	60300	803002	703003	503005	4030	0570300				
21030023	03002	40300	02903003	403003	703003	8030	0450300				
240300											
23030027	0300										
21030023	03002	40300	02903003	403003	703003	8030	0450300				
21030023	03002	40300	02903003	403003	703003	8030	0450300				
240300											
21030023	03002	40300	02903003	403003	703003	8030	0450300				
240300											

240300

210300220300230300270300280300290300340300380300

210300220300230300270300280300290300340300380300

600300610300620300630300

600300610300620300630300

240300

220300230300270300290300340300380300

Revision: 0

HEU-MET-FAST-067

220300230300270300290300340300380300 210300220300230300270300280300290300340300380300 210300230300240300290300340300370300380300450300 210300230300240300290300340300370300380300450300 210300230300240300290300340300370300380300450300 240300 240300 230300270300290300380300 MildStee 230300270300290300380300 CastIron 230300270300290300380300 CastIron 2.16506E-05 3.53326E-05 2.03684E-02 8.21183E-06 2.48813E-05 9.41841E-06 583 1 1.20547E-04 2.32281E-04 583 1 5.40311E-05 8.81125E-05 5.07177E-02 2.04074E-05 6.19222E-05 2.34059E-05 583 2 2 3.00396E-04 5.78666E-04 583 $6.11407 \pm -05 \hspace{0.1cm} 9.97315 \pm -05 \hspace{0.1cm} 5.73728 \pm -02 \hspace{0.1cm} 2.31773 \pm -05 \hspace{0.1cm} 7.00656 \pm -05 \hspace{0.1cm} 2.65828 \pm -05 \hspace{0.1cm} 1.008 \pm 1.$ 584 3 3.39872E-04 6.54516E-04 584 3 6.09948E-05 9.93609E-05 5.71780E-02 2.30278E-05 6.98169E-05 2.64114E-05 584 4 584 3.38761E-04 6.52435E-04 4 $3.71528{\pm}-05 \ 5.76194{\pm}-05 \ 4.51572{\pm}-02 \ 1.05441{\pm}-04 \ 2.02808{\pm}-05 \ 2.15130{\pm}-05$ 566 5 9.16767E-05 2.11877E-03 5 566 3.70285E-05 5.76272E-05 4.51547E-02 1.05342E-04 2.02581E-05 2.14530E-05567 6 9.14689E-05 2.11861E-03 567 6 7 1.55503E-02 8.36225E-03 1.79011E-02 1.66065E-02 395 1.55467E-02 8.36034E-03 1.78970E-02 1.66027E-02 396 8 8.17530E-02 542 9 7.93665E-02 577 10 4.31359E-02 2.49725E-03 4.27261E-04 2.04842E-04 1.34460E-04 3.88918E-05 576 11 6.74453E-05 1.99725E-04 576 11 4.28711E-02 2.48081E-03 4.24456E-04 2.03451E-04 1.36092E-04 3.79195E-05 575 12 6.82884E-05 2.02253E-04 575 12 3.71528E-05 5.76194E-05 4.51572E-02 1.05441E-04 2.02808E-05 2.15130E-05 568 13 9.16767E-05 2.11877E-03 568 13 6.00220E-02 564 14 2.59580E-02 1.18713E-03 108 15 $4.71396 \pm -05 \quad 7.31323 \pm -05 \quad 5.72934 \pm -02 \quad 1.33797 \pm -04 \quad 2.57003 \pm -05 \quad 2.72984 \pm -05 \quad 57284 \pm -05 \quad 57$ 16 1.16296E-04 2.68820E-03 572 16 4.71272E-05 7.30955E-05 5.72903E-02 1.33708E-04 2.56780E-05 2.72288E-05 573 17 1.16196E-04 2.68799E-03 573 17 5.91520E-02 556 18 4.71396E-05 7.31323E-05 5.72934E-02 1.33797E-04 2.57003E-05 2.72984E-05 574 19 1.16296E-04 2.68820E-03 574 19 560 5.93563E-02 2.0 5.94607E-02 561 2.1 1.64049E-02 6.74895E-03 5.87854E-02 2.32581E-04 1.21323E-04 1.31366E-03 589 2.2 1.46536E-04 3.31545E-04 589 1.64050E-02 6.74897E-03 5.87856E-02 2.32387E-04 1.21312E-04 1.31362E-03 590 23 1.46511E-04 3.31488E-04 590 23 1.52523E-02 8.20202E-03 1.75581E-02 1.62883E-02 426 24 1.59809E-02 8.59381E-03 1.83968E-02 1.70663E-02 427 2.5 5.99284E-02 592 26 $7.51131{\tt E}-06 \ 8.06681{\tt E}-02 \ 5.75208{\tt E}-04 \ 3.30433{\tt E}-04 \ 6.93968{\tt E}-06 \ 3.13766{\tt E}-05 \ 134$ 2.7 7.75361E-06 8.06701E-02 5.74813E-04 3.30748E-04 7.16354E-06 3.10651E-05 591 28 1.65059E-02 6.80650E-03 5.82463E-02 1.83577E-04 1.99182E-04 1.27630E-03 110 29 1.50360E-04 4.44872E-04 29 110 $4.42936E-05 \ 6.87964E-05 \ 5.39056E-02 \ 1.25863E-04 \ 2.41760E-05 \ 2.56695E-05$ 569 30 1.09399E-04 2.52924E-03 569 30 4.42936E-05 6.87964E-05 5.39056E-02 1.25863E-04 2.41760E-05 2.56695E-05 571 31 1.09399E-04 2.52924E-03 571 31 $4.43039E-05 \ 6.87482E-05 \ 5.39084E-02 \ 1.25794E-04 \ 2.40787E-05 \ 2.55786E-05 \ 570$ 32 1.09361E-04 2.52933E-03 570 32 5.99953E-02 593 33 5.99284E-02 563 34 .00051 .08387 .00079 .00047 MildStee .07395 .01153 .00076 .00266 CastIron .00740 .00115 .00008 .00027 CastIron 0.25000 0.25000 0.25000 0.25000 0.25000 0.25000 51 0.25000 0.25000 0.25000 0.25000 0.25000 0.25000 51 0.25000 0.25000 0.25000 0.25000 0.25000 0.25000 51

Revision: 0

Date: September 30, 2003 Page 104 of 125

HEU-MET-FAST-067

0.25000 0.25000 0.25000 0.25000 11.04292	0.20519 0.25000 0.25000 0.25000	0.29481 0.25000 0.25000 0.75000	0.25000 0.25000 0.25000 0.75000	0.25000 0.25000 0.25000 0.75000	0.25000 0.25000 0.25000 5.18812	51 51 51 51 51
9.50000E-01 1 0 30300 40300	zpr9613v5 - z 0 40 4 0 0 0 9 43 1 1.00000E+00 2.0 0.00000E+00 1.1 1 0 60300 80300210 380300450300540	0 0 0 0 50 0 846 10000 75000E+02 1.0 00000E+00 0.0 3 0 3002203002303	0000E+00 1. 0000E+00 0 0	00000E-05 0 0 3002803002	1.41910E+07 1 0	01 02 03 04 06AN 06BN 0 08 08
35 59 0 0	53 2 0 1295	129 60				14
0 0 5.53466 RPP 1 RPP 2 RPP 3 RPP 4 RPP 5 RPP 6 RPP 10 RPP 11 RPP 12 RPP 13 RPP 16 RPP 16 RPP 17 RPP 18 RPP 16 RPP 20 RPP 21 RPP 22 RPP 22 RPP 22 RPP 25 RPP 26 RPP 27 RPP 28 RPP 27 RPP 33 RPP 30 RPP 31 RPP 32 RPP 35 RPP 36 RPP 37 RPP 38 RPP 39 RPP 30 RPP 31 RPP 35 RPP 36 RPP 37 RPP 38 RPP 39 RPP 30 RPP 31 RPP 32 RPP 31 RPP 32 RPP 30 RPP 31 RPP 32 RPP 34 RPP 35 RPP 36 RPP 37 RPP 38 RPP 39 RPP 40 RPP 40 RPP 41 RPP 42 RPP 44 RPP 45 RPP 40 RPP 41 RPP 42 RPP 45 RPP 40 RPP 41 RPP 42 RPP 45 RPP 45 RPP 46 RPP 47 RPP 48 RPP 49 RPP 50 RPP 50 RPP 51 RPP 52 RPP 53 RPP 52 RPP 55 RP		466 5.45084 160 0.10160 466 0.10160 466 0.0000 466 5.45084 160 0.10160 466 0.10160 466 0.10160 479 0.18288 115 0.10160 229 0.18288 229 0.18288 379 0.18288 364 0.18288 379 0.18288 364 0.18288 364 0.18288 364 0.18288 364 0.18288 364 0.18288 364 0.18288 364 0.18288 364 0.18288 3729 0.18288 3729 0.18288 3729 0.18288 3729 0.18288 3729 0.18288 3729 0.18288 379 0.18288 379 0.18288 360	5.26288 5.26288	0.00000 0.00000 0.00000 0.00000 0.00000 2.54000 2.54000 2.54000 0.00100 0.08128 0.08128 15.32128	1.00000 2.54000 2.54000 2.54000 2.54000 30.56128	14 16 17 17 17 17 17 17 17 17 17 17

Revision: 0 Date: September 30, 2003

Page 105 of 125

HEU-MET-FAST-067

	- 4	0 00450	E 2000E	F 06000	E 24004	0 00100	20 56100	1.0
RPP	54	0.22479	5.30987	5.26288	5.34924	0.08128	30.56128	17
RPP	55	5.30479	5.30987	0.18288	5.26288	0.08128	30.56128	17
RPP	56	5.39115	5.43306	0.10160	5.34924	0.00000	2.54000	17
RPP	57	0.10160	0.14351	0.10160	5.34924	0.00000	2.54000	17
RPP	58	0.00000	5.53466	0.00000	0.10160	30.56128	38.73754	17
RPP	59	0.00000	5.53466	5.45084	5.55244	30.56128	38.73754	17
RPP	60	0.00000	0.10160	0.10160	5.45084	30.56128	38.73754	17
RPP	61	5.43306	5.53466	0.10160	5.45084	30.56128	38.73754	17
RPP	62	0.14351	5.39115	0.10160	5.34924	38.65626	38.73754	17
RPP	63	0.14351	0.22479	0.18288	5.34924	30.56128	38.65626	17
RPP	64	5.30987	5.39115	0.18288	5.34924	30.56128	38.65626	17
RPP	65	0.14351	5.39115	0.10160	0.18288	30.56128	38.65626	17
RPP	66	0.22479	5.30479	0.18288	5.26288	30.56128	38.18128	17
				0 10000				
RPP	67	0.22733	5.30733	0.18288	5.26288	38.18128	38.34003	17
RPP	68	0.10160	0.14351	0.10160	5.34924	30.56128	38.73754	17
RPP	69	5.39115	5.43306	0.10160	5.34924	30.56128	38.73754	17
RPP	70	0.10160	5.43306	5.34924	5.45084	30.56128	38.73754	17
RPP	71	0.22479	5.30987	5.26288	5.34924	30.56128	38.34003	17
RPP	72	5.30479	5.30987	0.18288	5.26288	30.56128	38.18128	17
RPP	73	5.30733	5.30987	0.18288	5.26288	38.18128	38.34003	17
RPP	74	0.22479	5.30987	0.18288	5.34924	38.34003	38.65626	17
RPP	75	0.22479	0.22733	0.18288	5.26288	38.18128	38.34003	17
RPP	76	0.00000	5.53466	0.00000	0.10160	38.73754	50.92573	17
RPP	77	0.00000	5.53466	5.45084	5.55244	38.73754	50.92573	17
RPP	78	0.00000	0.10160	0.10160	5.45084	38.73754	50.92573	17
RPP	79	5.43306	5.53466	0.10160	5.45084	38.73754	50.92573	17
RPP	80	0.14351	5.39115	0.10160	5.34924	38.73754	38.81882	17
RPP	81	0.14351	0.22479	0.18288	5.34924	38.81882	50.92573	17
RPP	82	5.30987	5.39115	0.18288	5.34924	38.81882	50.92573	17
RPP	83	0.14351	5.39115	0.10160	0.18288	38.81882	50.92573	17
RPP	84	0.22479	5.30479	0.18288	5.26288	38.81882	48.97882	17
RPP	85	0.22479	5.30479	0.18288	5.26288	48.97882	50.92573	17
RPP	86	0.10160	0.14351	0.10160	5.34924	38.73754	50.92573	17
RPP	87	5.39115	5.43306	0.10160	5.34924	38.73754	50.92573	17
RPP	88	0.10160	5.43306	5.34924	5.45084	38.73754	50.92573	17
RPP	89	0.22479	5.30987	5.26288	5.34924	38.81882	50.92573	17
RPP	90	5.30479	5.30987	0.18288	5.26288	38.81882	50.92573	17
RPP	91	0.00000	5.53466	0.00000	0.10160	50.92573	61.67882	17
RPP	92	0.00000	5.53466	5.45084	5.55244	50.92573	61.67882	17
RPP	93	0.00000	0.10160	0.10160	5.45084	50.92573	61.67882	17
RPP	94	5.43306	5.53466	0.10160	5.45084	50.92573	61.67882	17
RPP								
RPP	95	0.14351	0.22479	0.18288	5.34924	50.92573	61.67882	17
	96							
RPP		5.30987	5.39115	0.18288	5.34924	50.92573	61.67882	17
RPP	97	0.14351	5.39115	0.10160	0.18288	50.92573	61.67882	17
RPP	98	0.22479	5.30479	0.18288	5.26288	50.92573	61.67882	17
RPP	99	0.10160	0.14351	0.10160	5.34924	50.92573	61.67882	17
	100		E 12206				61.67882	
RPP	100	5.39115	5.43306	0.10160	5.34924	50.92573		17
RPP	101	0.10160	5.43306	5.34924	5.45084	50.92573	61.67882	17
			5.30987					
RPP	102	0.22479		5.26288	5.34924	50.92573	61.67882	17
RPP	103	5.30479	5.30987	0.18288	5.26288	50.92573	61.67882	17
RPP	104	0.00000	5.53466	0.00000	0.10160	61.67882		17
							61.91504	
RPP	105	0.00000	5.53466	5.45084	5.55244	61.67882	61.91504	17
	106					61.67882	61.91504	17
RPP		0.00000	0.10160	0.10160	5.45084			
RPP	107	5.43306	5.53466	0.10160	5.45084	61.67882	61.91504	17
RPP	108	0.14351	0.22479	0.18288	5.34924	61.67882	61.91504	17
RPP	109	5.30987	5.39115	0.18288	5.34924	61.67882	61.91504	17
RPP	110	0.14351	5.39115	0.10160	0.18288	61.67882	61.91504	17
RPP	111	0.10160	0.14351	0.10160	5.34924	61.67882	61.91504	17
RPP	112	5.39115	5.43306	0.10160	5.34924	61.67882	61.91504	17
RPP	113	0.10160	5.43306	5.34924	5.45084	61.67882	61.91504	17
RPP	114	0.22479	5.30987	0.18288	5.34924	61.67882	61.91504	17
RPP	115	0.00000	5.53466	0.00000	0.10160	61.91504	121.92000	17
RPP	116	0.00000	5.53466	5.45084	5.55244		121.92000	17
RPP	117	0.00000	0.10160	0.10160	5.45084	61.91504	121.92000	17
RPP	118	5.43306	5.53466	0.10160	5.45084		121.92000	17
RPP	119	0.14351	5.39115	0.10160	5.34924	97.87382	97.95510	17
	120	0.14351	0.22479	0.18288	5.34924	61.91504	97.87382	17
RPP								
RPP	121	5.30987	5.39115	0.18288	5.34924	61.91504	97.87382	17
RPP	122	0.14351	5.39115	0.10160	0.18288	61.91504	97.87382	17
RPP	123	0.10160	0.14351	0.10160	5.34924	61.91504	97.95510	17
RPP	124	5.39115	5.43306	0.10160	5.34924	61.91504	97.95510	17
RPP	125	0.10160	5.43306	5.34924	5.45084	61.91504	97.95510	17
RPP	126	0.22479	5.30987	0.18288	5.34924	61.91504	97.87382	17
RPP	127	0.10160	5.43306	0.10160	5.45084	97.95510	121.92000	17
RPP	128	0.00000	2.76479	0.00000	0.10160	0.00000	2.54000	17
RPP	129	2.76479	5.53466	0.00000	0.10160	0.00000	2.54000	17
								<u> </u>
			0 00400	F 4F004	E EE044	0 00000	0 54000	
RPP	130	0.00000	2.76479	5.45084	5.55244	0.00000	2.54000	17
			2.76479 5.53466	5.45084 5.45084	5.55244 5.55244	0.00000	2.54000 2.54000	17 17

HEU-MET-FAST-067

RPP	132	0.00000	2.76479	0.00000	0.10160	2.54000	30.56128	17
		2.76479	5.53466				30.56128	17
RPP	133			0.00000	0.10160	2.54000		
RPP	134	0.00000	2.76479	5.45084	5.55244	2.54000	30.56128	17
RPP	135	2.76479	5.53466	5.45084	5.55244	2.54000	30.56128	17
RPP	136	0.14351	2.76479	0.10160	5.34924	0.00000	0.08128	17
RPP	137	2.76479	5.39115	0.10160	5.34924	0.00000	0.08128	17
RPP	138	0.14351	2.76479	0.10160	0.18288	0.08128	30.56128	17
RPP	139	2.76479	5.39115	0.10160	0.18288	0.08128	30.56128	17
RPP	140	0.54229	0.85979	0.18288	5.26288	0.08128	30.56128	17
RPP	141	0.85979	1.01854	0.18288	5.26288	0.08128	30.56128	17
RPP	142	1.33604	1.65354	0.18288	5.26288	0.08128	30.56128	17
RPP	143	1.97104	2.28854	0.18288	5.26288	0.08128	30.56128	17
RPP	144	2.28854	2.44729	0.18288	5.26288	0.08128	30.56128	17
RPP	145	2.76479	5.30479	0.18288	2.72288	0.08128	30.56128	17
RPP	146	2.76479	5.30479	2.72288	5.26288	0.08128	30.56128	17
	147				5.45084			
RPP		0.10160	2.76479	5.34924		0.00000	30.56128	17
RPP	148	2.76479	5.43306	5.34924	5.45084	0.00000	30.56128	17
RPP	149	0.22479	2.76479	5.26288	5.34924	0.08128	30.56128	17
RPP	150	2.76479	5.30987	5.26288	5.34924	0.08128	30.56128	17
RPP	151	5.30479	5.30987	0.18288	5.26288	15.32128	30.56128	17
RPP	152	5.30479	5.30987	0.18288	5.26288	0.08128	2.54000	17
RPP	153	5.30479	5.30987	0.18288	5.26288	2.54000	15.32128	17
RPP	154	0.22479	2.76479	0.18288	2.72288	0.08128	30.56128	17
RPP	155	0.22479	2.76479	2.72288	5.26288	0.08128	30.56128	17
RPP	156	2.76479	3.08229	0.18288	5.26288	0.08128	30.56128	17
RPP	157	3.39979	3.55854	0.18288	5.26288	0.08128	30.56128	17
RPP	158	3.55854	3.87604	0.18288	5.26288	0.08128	30.56128	17
RPP	159	4.19354	4.51104	0.18288	5.26288	0.08128	30.56128	17
RPP	160	4.82854	4.98729	0.18288	5.26288	0.08128	30.56128	17
RPP	161	4.98729	5.30479	0.18288	5.26288	0.08128	30.56128	17
RPP	162	5.30479	5.30987	2.72288	5.26288	0.08128	30.56128	17
RPP	163	5.30479	5.30987	0.18288	2.72288	0.08128	30.56128	17
RPP	164	0.00000	0.10160	0.10160	2.72288	0.00000	2.54000	17
RPP	165	0.00000	0.10160	2.72288	5.45084	0.00000	2.54000	17
RPP	166	5.43306	5.53466	0.10160	2.72288	0.00000	2.54000	17
RPP	167	5.43306	5.53466	2.72288	5.45084	0.00000	2.54000	17
RPP	168	0.00000	0.10160	0.10160	2.72288	2.54000	30.56128	17
RPP	169	0.00000	0.10160	2.72288	5.45084	2.54000	30.56128	17
RPP	170	5.43306	5.53466	0.10160	2.72288	2.54000	30.56128	17
RPP	171	5.43306	5.53466	2.72288	5.45084	2.54000	30.56128	17
RPP	172	0.14351	5.39115	0.10160	2.72288	0.00000	0.08128	17
RPP	173	0.14351	5.39115	2.72288	5.34924	0.00000	0.08128	17
RPP	174	0.14351	0.22479	0.18288	2.72288	0.08128	30.56128	17
RPP	175	0.14351	0.22479	2.72288	5.34924	0.08128	30.56128	17
RPP	176	5.30987	5.39115	0.18288	2.72288	0.08128	30.56128	17
		5.30987						
RPP	177		5.39115	2.72288	5.34924	0.08128	30.56128	17
RPP	178	0.22479	5.30479	2.72288	3.04038	0.08128	15.32128	17
RPP	179	0.22479	5.30479	2.72288	3.04038	15.32128	30.56128	17
RPP	180	0.22479	5.30479	3.04038	3.19913	0.08128	30.56128	17
			5.30479					
RPP	181	0.22479		3.19913	3.51663	0.08128	30.56128	17
RPP	182	0.22479	5.30479	3.51663	3.83413	0.08128	15.32128	17
RPP	183	0.22479	5.30479	3.51663	3.83413	15.32128	30.56128	17
RPP	184	0.22479	5.30479	3.83413	4.15163	0.08128	30.56128	17
RPP	185	0.22479	5.30479	4.15163	4.46913	0.08128	15.32128	17
							30.56128	
RPP	186	0.22479	5.30479	4.15163	4.46913	15.32128		17
RPP	187	0.22479	5.30479	4.46913	4.62788	0.08128	30.56128	17
RPP	188	0.22479	5.30479	4.62788	4.94538	0.08128	30.56128	17
RPP	189	0.22479	5.30479	4.94538	5.26288	0.08128	15.32128	17
RPP	190	0.22479	5.30479	4.94538	5.26288	15.32128	30.56128	17
RPP	191	0.10160	0.14351	0.10160	2.72288	2.54000	30.56128	17
RPP	192	0.10160	0.14351	2.72288	5.34924	2.54000	30.56128	17
RPP	193	5.39115	5.43306	0.10160	2.72288	2.54000	30.56128	17
RPP	194	5.39115	5.43306	2.72288	5.34924	2.54000	30.56128	17
RPP	195	5.30479	5.30987	2.72288	5.26288	15.32128	30.56128	17
RPP	196	5.30479	5.30987	2.72288	5.26288	0.08128	2.54000	17
RPP	197	5.39115	5.43306	0.10160	2.72288	0.00000	2.54000	17
RPP	198	5.39115	5.43306	2.72288	5.34924	0.00000	2.54000	17
RPP	199	0.10160	0.14351	0.10160	2.72288	0.00000	2.54000	17
RPP	200	0.10160	0.14351	2.72288	5.34924	0.00000	2.54000	17
RPP	201	5.30479	5.30987	2.72288	5.26288	2.54000	15.32128	17
RPP	202	0.22479	5.30479	0.18288	0.50038	0.08128	30.56128	17
RPP	203	0.22479	5.30479	0.50038	0.65913	0.08128	30.56128	17
RPP	204	0.22479	5.30479	0.65913	0.97663	0.08128	15.32128	17
RPP	205	0.22479	5.30479	0.65913	0.97663	15.32128	30.56128	17
RPP	206	0.22479	5.30479	0.97663	1.29413	0.08128	30.56128	17
RPP	207	0.22479	5.30479	1.29413	1.61163	0.08128	15.32128	17
	208	0.22479	5.30479		1.61163	15.32128	30.56128	17
RPP				1.29413				
RPP	209	0.22479	5.30479	1.61163	1.92913	0.08128	30.56128	17

HEU-MET-FAST-067

RPP	210	0.22479	5.30479	1.92913	2.08788	0.08128	30.56128	17
RPP	211	0.22479	5.30479	2.08788	2.40538	0.08128	15.32128	17
RPP	212	0.22479	5.30479	2.08788	2.40538	15.32128	30.56128	17
RPP	213	0.22479	5.30479	2.40538	2.72288	0.08128	30.56128	17
RPP	214	5.30479	5.30987	0.65913	2.72288	15.32128	30.56128	17
RPP	215	5.30479	5.30987	0.18288	2.72288	0.08128	2.54000	17
RPP	216	5.30479	5.30987	0.65913	2.72288	2.54000	15.32128	17
RPP	217	5.30479	5.30987	0.18288	0.65913	2.54000	30.56128	17
RPP	218	4.99237	5.30987	0.18288	5.26288	0.08128	15.32128	17
	219	4.99237	5.30987			15.32128	30.56128	
RPP				0.18288	5.26288			17
RPP	220	4.83362	4.99237	0.18288	5.26288	0.08128	22.94128	17
RPP	221	4.83362	4.99237	0.18288	5.26288	22.94128	28.02128	17
	222		4.99237	0.18288		28.02128		17
RPP		4.83362			5.26288		30.56128	
RPP	223	4.51612	4.83362	0.18288	5.26288	0.08128	15.32128	17
RPP	224	4.51612	4.83362	0.18288	5.26288	15.32128	30.56128	17
RPP	225	4.19862	4.51612	0.18288	5.26288	0.08128	15.32128	17
RPP	226	4.19862	4.51612	0.18288	5.26288	15.32128	30.56128	17
RPP	227	3.88112	4.19862	0.18288	5.26288	0.08128	15.32128	17
RPP	228	3.88112	4.19862	0.18288	5.26288	15.32128	30.56128	17
RPP	229	3.56362	3.88112	0.18288	5.26288	0.08128	15.32128	17
RPP	230	3.56362	3.88112	0.18288	5.26288	15.32128	30.56128	17
RPP	231	3.40487	3.56362	0.18288	5.26288	0.08128	22.94128	17
RPP	232	3.40487	3.56362	0.18288	5.26288	22.94128	28.02128	17
RPP	233	3.40487	3.56362	0.18288	5.26288	28.02128	30.56128	17
RPP	234	3.08737	3.40487	0.18288	5.26288	0.08128	15.32128	17
RPP	235	3.08737	3.40487	0.18288	5.26288	15.32128	30.56128	17
RPP	236	2.76987	3.08737	0.18288	5.26288	0.08128	15.32128	17
RPP	237	2.76987	3.08737	0.18288	5.26288	15.32128	30.56128	17
RPP	238	2.45237	2.76987	0.18288	5.26288	0.08128	15.32128	17
RPP	239	2.45237	2.76987	0.18288	5.26288	15.32128	30.56128	17
RPP	240	2.29362	2.45237	0.18288	5.26288	0.08128	15.32128	17
RPP	241	2.29362	2.45237	0.18288	5.26288	15.32128	30.56128	17
	242	1.97612	2.29362	0.18288	5.26288	0.08128	15.32128	17
RPP								
RPP	243	1.97612	2.29362	0.18288	5.26288	15.32128	30.56128	17
RPP	244	1.65862	1.97612	0.18288	5.26288	0.08128	15.32128	17
RPP	245	1.65862	1.97612	0.18288	5.26288	15.32128	30.56128	17
RPP	246	1.34112	1.65862	0.18288	5.26288	0.08128	15.32128	17
RPP	247	1.34112	1.65862	0.18288	5.26288	15.32128	30.56128	17
RPP	248	1.02362	1.34112	0.18288	5.26288	0.08128	15.32128	17
RPP	249	1.02362	1.34112	0.18288	5.26288	15.32128	30.56128	17
RPP	250	0.86487	1.02362	0.18288	5.26288	0.08128	15.32128	17
RPP	251	0.86487	1.02362	0.18288	5.26288	15.32128	30.56128	17
RPP	252	0.54737	0.86487	0.18288	5.26288	0.08128	15.32128	17
RPP	253	0.54737	0.86487	0.18288	5.26288	15.32128	30.56128	17
RPP	254	0.22987	0.54737	0.18288	5.26288	0.08128	15.32128	17
RPP	255	0.22987	0.54737	0.18288	5.26288	15.32128	30.56128	17
RPP	256	0.22479	0.22987	0.18288	5.26288	0.08128	30.56128	17
RPP	257	0.22987	5.30987	0.18288	5.26288	30.56128	38.18128	17
RPP	258	0.22479	0.22987	0.18288	5.26288	30.56128	38.18128	17
RPP	259	0.22987	5.30987	0.18288	5.26288	38.81882	48.97882	17
RPP	260	0.22987	5.30987	0.18288	5.26288	48.97882	50.92573	17
RPP	261	0.22479	0.22987	0.18288	5.26288	38.81882	50.92573	17
RPP	262	0.22987	5.30987	0.18288	5.26288	50.92573	61.67882	17
		0.22479						
RPP	263		0.22987	0.18288	5.26288	50.92573	61.67882	17
RPP	264	0.00000	2.76987	0.00000	0.10160	0.00000	2.54000	17
RPP	265	2.76987	5.53466	0.00000	0.10160	0.00000	2.54000	17
RPP	266	0.00000	2.76987	5.45084	5.55244	0.00000	2.54000	17
RPP	267	2.76987	5.53466	5.45084	5.55244	0.00000	2.54000	17
RPP	268	0.00000	2.76987	0.00000	0.10160	2.54000	30.56128	17
RPP	269	2.76987	5.53466	0.00000	0.10160	2.54000	30.56128	17
RPP	270	0.00000	2.76987	5.45084	5.55244	2.54000	30.56128	17
RPP	271	2.76987	5.53466	5.45084	5.55244	2.54000	30.56128	17
RPP	272	0.14351	2.76987	0.10160	5.34924	0.00000	0.08128	17
RPP	273	2.76987	5.39115	0.10160	5.34924	0.00000	0.08128	17
RPP	274	0.14351	2.76987	0.10160	0.18288	0.08128	30.56128	17
RPP	275	2.76987	5.39115	0.10160	0.18288	0.08128	30.56128	17
RPP	276	4.99237	5.30987	0.18288	5.26288	0.08128	30.56128	17
RPP	277	4.83362	4.99237	0.18288	5.26288	0.08128	30.56128	17
RPP	278	4.19862	4.51612	0.18288	5.26288	0.08128	30.56128	17
RPP	279	3.56362	3.88112	0.18288	5.26288	0.08128	30.56128	17
RPP	280	3.40487	3.56362	0.18288	5.26288	0.08128	30.56128	17
RPP	281	2.76987	3.08737	0.18288	5.26288	0.08128	30.56128	17
RPP	282	0.22987	2.76987	0.18288	2.72288	0.08128	30.56128	17
RPP	283	0.22987	2.76987	2.72288	5.26288	0.08128	30.56128	17
RPP	284	0.10160	2.76987	5.34924	5.45084	0.00000	30.56128	17
RPP			h // / / / / / / / / /	5.34924	L //L/10//	0.00000	711 FE 100	1.7
	285	2.76987	5.43306		5.45084		30.56128	17
RPP	285 286	2.76987 0.22479	2.76987	5.26288	5.34924	0.08128	30.56128	17

HEU-MET-FAST-067

					- 0.000			
RPP	288	0.22479	0.22987	0.18288	5.26288	15.32128	30.56128	17
RPP	289	0.22479	0.22987	0.18288	5.26288	0.08128	2.54000	17
RPP	290	0.22479	0.22987	0.18288	5.26288	2.54000	15.32128	17
RPP	291	2.76987	5.30987	0.18288	2.72288	0.08128	30.56128	17
RPP	292	2.76987	5.30987	2.72288	5.26288	0.08128	30.56128	17
RPP	293	2.29362	2.45237	0.18288	5.26288	0.08128	30.56128	17
RPP	294	1.97612	2.29362	0.18288	5.26288	0.08128	30.56128	17
RPP	295	1.34112	1.65862	0.18288	5.26288	0.08128	30.56128	17
RPP	296	0.86487	1.02362	0.18288	5.26288	0.08128	30.56128	17
	297	0.54737	0.86487	0.18288	5.26288	0.08128	30.56128	17
RPP								
RPP	298	0.22479	0.22987	2.72288	5.26288	0.08128	30.56128	17
RPP	299	0.22479	0.22987	0.18288	2.72288	0.08128	30.56128	17
RPP	300	0.22987	5.30987	2.72288	3.04038	0.08128	30.56128	17
RPP	301	0.22987	5.30987	3.04038	3.35788	0.08128	15.32128	17
RPP	302	0.22987	5.30987	3.04038	3.35788	15.32128	30.56128	17
RPP	303	0.22987	5.30987	3.35788	3.51663	0.08128	30.56128	17
RPP	304	0.22987	5.30987	3.51663	3.83413	0.08128	30.56128	17
RPP	305	0.22987	5.30987	3.83413	4.15163	0.08128	15.32128	17
RPP	306	0.22987	5.30987	3.83413	4.15163	15.32128	30.56128	17
RPP	307	0.22987	5.30987	4.15163	4.46913	0.08128	30.56128	17
RPP	308	0.22987	5.30987	4.46913	4.78663	0.08128	15.32128	17
RPP	309	0.22987	5.30987	4.46913	4.78663	15.32128	30.56128	17
RPP	310	0.22987	5.30987	4.78663	4.94538	0.08128	30.56128	17
RPP	311	0.22987	5.30987	4.94538	5.26288	0.08128	30.56128	17
RPP	312	0.22479	0.22987	3.04038	5.26288	15.32128	30.56128	17
RPP	313	0.22479	0.22987	0.18288	2.72288	0.08128	2.54000	17
RPP	314	0.22479	0.22987	2.72288	5.26288	0.08128	2.54000	17
RPP	315	0.22479	0.22987	3.04038	5.26288	2.54000	15.32128	17
RPP	316	0.22479	0.22987	0.18288	2.72288	2.54000	30.56128	17
RPP	317	0.22479	0.22987	2.72288	3.04038	2.54000	30.56128	17
RPP	318	0.22987	5.30987	0.18288	0.50038	0.08128	15.32128	17
	319	0.22987	5.30987	0.18288	0.50038	15.32128	30.56128	17
RPP								
RPP	320	0.22987	5.30987	0.50038	0.65913	0.08128	30.56128	17
RPP	321	0.22987	5.30987	0.65913	0.97663	0.08128	30.56128	17
RPP	322	0.22987	5.30987	0.97663	1.29413	0.08128	15.32128	17
RPP	323	0.22987	5.30987	0.97663	1.29413	15.32128	30.56128	17
RPP	324	0.22987	5.30987	1.29413	1.61163	0.08128	30.56128	17
		0.22987		1.61163	1.92913			17
RPP	325		5.30987			0.08128	15.32128	
RPP	326	0.22987	5.30987	1.61163	1.92913	15.32128	30.56128	17
RPP	327	0.22987	5.30987	1.92913	2.08788	0.08128	30.56128	17
RPP	328	0.22987	5.30987	2.08788	2.40538	0.08128	30.56128	17
RPP	329	0.22987	5.30987	2.40538	2.72288	0.08128	15.32128	17
RPP	330	0.22987	5.30987	2.40538	2.72288	15.32128	30.56128	17
RPP	331	0.22479	0.22987	0.18288	2.72288	15.32128	30.56128	17
RPP	332	0.22479	0.22987	2.72288	5.26288	15.32128	30.56128	17
				0.18288				
RPP	333	0.22479	0.22987		2.72288	2.54000	15.32128	17
RPP	334	0.22479	0.22987	2.72288	5.26288	2.54000	15.32128	17
RPP	335	0.00000	5.53466	0.00000	0.10160	2.54000	30.60573	17
RPP	336	0.00000	5.53466	5.45084	5.55244	2.54000	30.60573	17
RPP	337	0.00000	0.10160	0.10160	5.45084	2.54000	30.60573	17
RPP	338	5.43306	5.53466	0.10160	5.45084	2.54000	30.60573	17
RPP	339	0.14605	5.38861	0.10160	5.32130	0.00000	0.12573	17
RPP	340	0.14605	0.27178	0.22733	5.32130	0.12573	30.60573	17
RPP	341	5.26288	5.38861	0.22733	5.32130	0.12573	30.60573	17
RPP	342	0.14605	5.38861	0.10160	0.22733	0.12573	30.60573	17
RPP	343	0.27178	0.43053	0.22733	5.30733	0.12573	15.36573	17
RPP	344	0.27178	0.43053	0.22733	5.30733	15.36573	30.60573	17
RPP	345	0.43053	0.74803	0.22733	5.30733	0.12573	30.60573	17
RPP	346	0.74803	0.90678	0.22733	5.30733	0.12573	30.60573	17
RPP	347	0.90678	1.22428	0.22733	5.30733	0.12573	15.36573	17
RPP	348	0.90678	1.22428	0.22733	5.30733	15.36573	30.60573	17
RPP	349	1.22428	1.54178	0.22733	5.30733	0.12573	30.60573	17
RPP	350	1.54178	1.85928	0.22733	5.30733	0.12573	15.36573	17
RPP	351	1.54178	1.85928	0.22733	5.30733	15.36573	30.60573	17
RPP	352	1.85928	2.17678	0.22733	5.30733	0.12573	30.60573	17
RPP	353	2.17678	2.33553	0.22733	5.30733	0.12573	30.60573	17
RPP	354	2.33553	2.65303	0.22733	5.30733	0.12573	15.36573	17
RPP	355	2.33553	2.65303	0.22733	5.30733	15.36573	30.60573	17
RPP	356	2.65303	2.97053	0.22733	5.30733	0.12573	30.60573	17
RPP	357	2.97053	3.28803	0.22733	5.30733	0.12573	15.36573	17
RPP	358	2.97053	3.28803	0.22733	5.30733	15.36573	30.60573	17
RPP	359	3.28803	3.44678	0.22733	5.30733	0.12573	30.60573	17
RPP	360	3.44678	3.76428	0.22733	5.30733	0.12573	30.60573	17
RPP	361	3.76428	4.08178	0.22733	5.30733	0.12573	15.36573	
								17
RPP	362	3.76428	4.08178	0.22733	5.30733	15.36573	30.60573	17
RPP	363	4.08178	4.39928	0.22733	5.30733	0.12573	30.60573	17
RPP	364	4.39928	4.71678	0.22733	5.30733	0.12573	15.36573	17
RPP	365	4.39928	4.71678	0.22733	5.30733	15.36573	30.60573	17

HEU-MET-FAST-067

חחח	200	4 71670	4 07552	0 00722	F 20722	0 10070	20 60572	17
RPP	366	4.71678	4.87553	0.22733	5.30733	0.12573	30.60573	17
RPP	367	4.87553	5.19303	0.22733	5.30733	0.12573	30.60573	17
RPP	368	0.10160	0.14605	0.10160	5.32130	2.54000	30.60573	17
RPP	369	5.38861	5.43306	0.10160	5.32130	2.54000	30.60573	17
RPP	370	0.10160	5.43306	5.32130	5.45084	0.00000	30.60573	17
RPP	371	0.27178	5.26288	5.30733	5.32130	0.12573	30.60573	17
KPP								
RPP	372	5.19303	5.26288	0.22733	5.30733	0.12573	30.60573	17
RPP	373	5.38861	5.43306	0.10160	5.32130	0.00000	2.54000	17
RPP	374	0.10160	0.14605	0.10160	5.32130	0.00000	2.54000	17
RPP	375	0.00000	5.53466	0.00000	0.10160	30.60573	50.92573	17
	376							17
RPP		0.00000	5.53466	5.45084	5.55244	30.60573	50.92573	17
RPP	377	0.00000	0.10160	0.10160	5.45084	30.60573	50.92573	17
RPP	378	5.43306	5.53466	0.10160	5.45084	30.60573	50.92573	17
RPP	379	0.14605	0.27178	0.22733	5.32130	30.60573	50.92573	17
RPP	380	5.26288	5.38861	0.22733	5.32130	30.60573	50.92573	17
		0 14605						17
RPP	381	0.14605	5.38861	0.10160	0.22733	30.60573	50.92573	17
RPP	382	0.27178	5.19303	0.22733	5.30733	30.60573	50.92573	17
RPP	383	0.10160	0.14605	0.10160	5.32130	30.60573	50.92573	17
RPP	384	5.38861	5.43306	0.10160	5.32130	30.60573	50.92573	17
RPP	385	0.10160	5.43306	5.32130	5.45084	30.60573	50.92573	17
RPP	386	0.27178	5.26288	5.30733	5.32130	30.60573	50.92573	17
RPP	387	5.19303	5.26288	0.22733	5.30733	30.60573	50.92573	17
				0.22733				17
RPP	388	0.14605	0.27178	0.22/33	5.32130	50.92573	61.67882	17
RPP	389	5.26288	5.38861	0.22733	5.32130	50.92573	61.67882	17
RPP	390	0.14605	5.38861	0.10160	0.22733	50.92573	61.67882	17
RPP	391	2.49428	3.12928	0.22733	5.30733	51.56073	61.67882	17
RPP	392	0.27178	5.19303	0.22733	5.30733	50.92573	51.56073	17
RPP	393	0.10160	0.14605	0.10160	5.32130	50.92573	61.67882	17
RPP	394	5.38861	5.43306	0.10160	5.32130	50.92573	61.67882	17
RPP	395	0.10160	5.43306	5.32130	5.45084	50.92573	61.67882	17
RPP	396	0.27178	5.26288	5.30733	5.32130	50.92573	61.67882	17
KPP	330	0.2/1/6	3.20200					
RPP	397	5.19303	5.26288	0.22733	5.30733	50.92573	51.56073	17
RPP	398	0.27178	2.49428	0.22733	5.30733	51.56073	61.67882	17
RPP	399	3.12928	5.26288	0.22733	5.30733	51.56073	61.67882	17
RPP	400	0.14605	0.27178	0.22733	5.32130	61.67882	61.91504	17
	401							17
RPP	401	5.26288	5.38861	0.22733	5.32130	61.67882	61.91504	17
RPP	402	0.14605	5.38861	0.10160	0.22733	61.67882	61.91504	17
RPP	403	2.49428	3.12928	0.22733	5.30733	61.67882	61.91504	17
RPP	404	0.10160	0.14605	0.10160	5.32130	61.67882	61.91504	17
RPP	405	5.38861	5.43306	0.10160	5.32130	61.67882	61.91504	17
RPP	406	0.10160	5.43306	5.32130	5.45084	61.67882	61.91504	17
RPP	407	0.27178	5.26288	5.30733	5.32130	61.67882	61.91504	17
	400							
RPP	408	0.27178	2.49428	0.22733	5.30733	61.67882	61.91504	17
RPP	409	3.12928	5.26288	0.22733	5.30733	61.67882	61.91504	17
RPP	410	0.00000	5.53466	0.00000	0.10160	61.91504	103.50500	17
RPP	411	0.00000	5.53466	5.45084	5.55244	61 91504	103.50500	17
RPP	412	0.00000	0.10160	0.10160	5.45084	61.91504	103.50500	17
RPP	413	5.43306	5.53466	0.10160	5.45084	61 01504	103.50500	17
RPP	414	0.14605	0.27178	0.22733	5.32130	61.91504	103.50500	17
	415		5.38861	0.22733			103.50500	
RPP	415	5.26288	3.30001	0.22/33	5.32130	61.91504	103.50500	17
RPP	416	0.14605	5.38861	0.10160	0.22733	61.91504	103.50500	17
RPP	417	2.49428	3.12928	0.22733	5.30733	61.91504	102.36073	17
RPP	418	0.27178	5.19303	0.22733	5.30733	102.36073	102.99573	17
RPP	419	0.10160	0.14605	0.10160	5.32130	61.91504	103.50500	17
RPP	420	5.38861	5.43306	0.10160	5.32130	61 91504	103.50500	17
RPP	421	0.10160	5.43306	5.32130	5.45084	61.91504	103.50500	17
RPP	422	0.27178	5.26288	5.30733	5.32130		102.99573	17
RPP	423	0.27178	5.26288	0.22733	5.32130	102.99573	103.50500	17
RPP	424	5.19303	5.26288	0.22733		102.36073		17
RPP	425	0.27178	2.49428	0.22733	5.30733	61 91504	102.36073	17
RPP	426	3.12928	5.26288	0.22733	5.30733	61.91504	102.36073	17
RPP	427	0.00000	5.53466	0.00000		103.50500		17
RPP	428	0.00000	5.53466	5.45084	5.55244	103.50500	121.92000	17
RPP	429	0.00000	0.10160	0.10160		103.50500		17
RPP	430	5.43306	5.53466	0.10160	5.45084	103.50500	121 92000	17
RPP	431	2.44475	3.07975	0.10160	5.18160	103.50500	IZI.92000	17
RPP	432	0.10160	5.43306	5.18160	5 45004	103.50500	121 02000	17
RPP	433	0.10160	2.44475	0.10160	5.18160	103.50500	121.92000	17
RPP	434	3.07975	5.43306	0.10160		103.50500		17
RPP	435	0.34163	0.50038	0.22733	5.30733	0.12573	15.36573	17
RPP	436	0.34163	0.50038	0.22733	5.30733	15.36573	30.60573	17
RPP	437	4.94538	5.26288	0.22733	5.30733	0.12573	30.60573	17
	101							
RPP		4.78663	4.94538	0.22733	5.30733	0.12573	30.60573	17
	438	T. / 00003						
ממם				0 22722	E 20777		15 2657	1 7
RPP	438 439	4.46913	4.78663	0.22733	5.30733	0.12573	15.36573	17
	439	4.46913	4.78663					
RPP	439 440	4.46913 4.46913	4.78663 4.78663	0.22733	5.30733	15.36573	30.60573	17
	439	4.46913	4.78663					
RPP RPP	439 440 441	4.46913 4.46913 4.15163	4.78663 4.78663 4.46913	0.22733 0.22733	5.30733 5.30733	15.36573 0.12573	30.60573 30.60573	17 17
RPP RPP RPP	439 440 441 442	4.46913 4.46913 4.15163 3.83413	4.78663 4.78663 4.46913 4.15163	0.22733 0.22733 0.22733	5.30733 5.30733 5.30733	15.36573 0.12573 0.12573	30.60573 30.60573 15.36573	17 17 17
RPP RPP	439 440 441	4.46913 4.46913 4.15163	4.78663 4.78663 4.46913	0.22733 0.22733	5.30733 5.30733	15.36573 0.12573	30.60573 30.60573	17 17

HEU-MET-FAST-067

RPP	444	3.51663	3.83413	0.22733	5.30733	0.12573	30.60573	17
RPP	445	3.35788	3.51663	0.22733	5.30733	0.12573	30.60573	17
RPP	446	3.04038	3.35788	0.22733	5.30733	0.12573	15.36573	17
RPP	447	3.04038	3.35788	0.22733	5.30733	15.36573	30.60573	17
RPP	448	2.72288	3.04038	0.22733	5.30733	0.12573	30.60573	17
RPP	449	2.40538	2.72288	0.22733	5.30733	0.12573	15.36573	17
RPP	450	2.40538	2.72288	0.22733	5.30733	15.36573	30.60573	17
RPP	451	2.24663	2.40538	0.22733	5.30733	0.12573	30.60573	17
RPP	452	1.92913	2.24663	0.22733	5.30733	0.12573	30.60573	17
RPP	453	1.61163	1.92913	0.22733	5.30733	0.12573	15.36573	17
RPP	454	1.61163	1.92913	0.22733	5.30733	15.36573	30.60573	17
RPP	455	1.29413	1.61163	0.22733	5.30733	0.12573	30.60573	17
RPP	456	0.97663	1.29413	0.22733	5.30733	0.12573	15.36573	17
RPP	457	0.97663	1.29413	0.22733	5.30733	15.36573	30.60573	17
RPP	458	0.81788	0.97663	0.22733	5.30733	0.12573	30.60573	17
RPP	459	0.50038	0.81788	0.22733	5.30733	0.12573	30.60573	17
RPP	460	0.27178	0.34163	0.22733	5.30733	0.12573	30.60573	17
RPP	461	0.34163	5.26288	0.22733	5.30733	30.60573	50.92573	17
RPP	462	0.27178	0.34163	0.22733	5.30733	30.60573	50.92573	17
RPP	463	2.40538	3.04038	0.22733	5.30733	51.56073	61.67882	17
RPP	464	0.34163	5.26288	0.22733	5.30733	50.92573	51.56073	17
RPP	465	0.27178	0.34163	0.22733	5.30733	50.92573	51.56073	17
RPP	466	0.27178	2.40538	0.22733	5.30733	51.56073	61.67882	17
RPP	467	3.04038	5.26288	0.22733	5.30733	51.56073	61.67882	17
RPP	468	2.40538	3.04038	0.22733	5.30733	61.67882	61.91504	17
	469	0.27178	2.40538		5.30733	61.67882	61.91504	17
RPP				0.22733				
RPP	470	3.04038	5.26288	0.22733	5.30733	61.67882	61.91504	17
RPP	471	2.40538	3.04038	0.22733	5.30733	61.91504	102.36073	17
RPP	472	0.34163	5.26288	0.22733		102.36073		17
RPP	473	0.27178	0.34163	0.22733		102.36073		17
RPP	474	0.27178	2.40538	0.22733	5.30733	61.91504	102.36073	17
RPP	475	3.04038	5.26288	0.22733	5.30733	61.91504	102.36073	17
								17
RPP	476	2.45491	3.08991	0.10160		103.50500		
RPP	477	0.10160	2.45491	0.10160	5.18160	103.50500	121.92000	17
RPP	478	3.08991	5.43306	0.10160	5.18160	103.50500	121.92000	17
RPP	479	0.00000	5.53466	0.00000	0.10160	2.54000	61.91504	17
RPP	480	0.00000	5.53466	5.45084	5.55244	2.54000	61.91504	17
RPP	481	0.00000	0.10160	0.10160	5.45084	2.54000	61.91504	17
RPP	482	5.43306	5.53466	0.10160	5.45084	2.54000	61.91504	17
RPP	483	0.14351	5.39115	0.10160	5.34924	61.83376	61.91504	17
	484	0.14351	0.22479	0.18288	5.34924	0.08128	61.83376	17
RPP								
RPP	485	5.30987	5.39115	0.18288	5.34924	0.08128	61.83376	17
RPP	486	0.14351	5.39115	0.10160	0.18288	0.08128	61.83376	17
RPP	487	0.22479	5.30479	0.18288	5.26288	0.08128	61.04128	17
RPP	488	0.22733	5.30733	0.18288	5.26288	61.04128	61.20003	17
RPP	489	0.10160	0.14351	0.10160	5.34924	2.54000	61.91504	17
RPP	490	5.39115	5.43306	0.10160	5.34924	2.54000	61.91504	17
RPP	491	0.10160	5.43306	5.34924	5.45084	0.00000	61.91504	17
RPP	492	0.22479	5.30987	0.18288	5.34924	61.20003	61.83376	17
RPP	493	0.22479	5.30987	5.26288	5.34924	0.08128	61.20003	17
RPP	494	0.22479	0.22733	0.18288	5.26288	61.04128	61.20003	17
RPP	495	5.30733	5.30987	0.18288	5.26288	61.04128	61.20003	17
RPP	496	5.30479	5.30987	0.18288	5.26288	0.08128	61.04128	17
				0.10160			121.92000	
RPP	497	0.10160	5.43306		5.45084			17
RPP	498	0.22479	5.30479	0.18288	2.14630	10.24128	12.78128	17
RPP	499	0.22479	5.30479	0.18288	5.26288	12.78128	20.40128	17
RPP	500	0.22479	5.30479	0.18288	5.26288	0.08128	10.24128	17
RPP	501	0.22479	5.30479	0.18288	5.26288	20.40128	61.04128	17
RPP	502	0.22479	5.30987	5.26288	5.34924	0.08128	10.24128	17
RPP	503	5.30479	5.30987	0.18288	5.26288	0.08128	10.24128	17
RPP	504	0.22479	5.30987	5.26288	5.34924	12.78128	61.20003	17
RPP	505	5.30479	5.30987	0.18288	5.26288	12.78128	61.04128	17
RPP	506	0.22479	5.30987	2.14630	5.34924	10.24128	12.78128	17
RPP	507	5.30479	5.30987	0.18288	2.14630	10.24128	12.78128	17
RPP	508	0.22987	5.30987	0.18288	5.26288	0.08128	61.04128	17
	509	0.22479	0.22987	0.18288	5.26288	0.08128	61.04128	17
RPP								
RPP	510	0.22987	5.30987	0.18288	2.14630	10.24128	12.78128	17
RPP	511	0.22987	5.30987	0.18288	5.26288	12.78128	20.40128	17
RPP	512	0.22987	5.30987	0.18288	5.26288	0.08128	10.24128	17
RPP	513	0.22987	5.30987	0.18288	5.26288	20.40128	61.04128	17
RPP	514	0.22479	0.22987	0.18288	5.26288	0.08128	10.24128	17
RPP	515	0.22479	0.22987	0.18288	5.26288	12.78128	61.04128	17
RPP	516	0.22479	0.22987	0.18288	2.14630	10.24128	12.78128	17
RPP	517	0.00000	5.53466	0.00000	0.10160		121.92000	17
RPP	518	0.00000	5.53466	5.45084	5.55244		121.92000	17
			0 10160	0 10160	E 1E001	2 54000	121.92000	17
RPP	519	0.00000	0.10160	0.10160	5.45084			17
RPP RPP	519 520	0.00000 5.43306	5.53466	0.10160	5.45084		121.92000	17
						2.54000		

HEU-MET-FAST-067

5.55244 121.92

194.72

MX2BkP

RPP	522	0.00000	5.53466	0.00000	5.55244		194.72	MX2BkP
RPP	523	0.00000	5.53466	0.00000	5.55244		197.58	BkPlate
RPP	524	0.00000	1.688	0.0	1.688	121.92	194.72	CRShaft
RPP	525	0.00000	1.688	1.688	5.55244		194.72	MX2BkP
RPP	526	1.688	5.53466	0.00000	5.55244		194.72	MX2BkP
RPP	527	0.00000	5.53466	0.00000	5.55244		197.58	MX2End
RPP	528	0.00000	5.53466	0.00000	5.55244	0.00	197.58	CL2EndF
RPP	529	0.00000	5.53466	0.00000	2.159	0.00	197.58	CL2EndL
RPP	530	0.00000	5.53466	2.159	5.55244	0.00	197.58	CL2EndU
RPP	531	0.00000	5.53466	0.00000	5.55244	0.000	1.905	CL2Kne
RPP	532	0.00000	5.53466	0.00000	5.55244	120.015	197.58	Kne2End
RPP	533	0.00000	5.53466	0.0	5.55244	1.905	13.335	vVd1
RPP	534	0.00000	5.53466	0.0	5.55244	13.335	17.145	vFe1
RPP	535	0.00000	5.53466	0.0	5.55244	17.145	59.055	vVd2
RPP	536	0.00000	5.53466	0.0	5.55244	59.055	62.865	vFe2
RPP	537	0.00000	5.53466	0.0	5.55244	62.865	104.775	vVd3
RPP	538	0.00000	5.53466	0.0		104.775	108.585	vFe3
RPP	539	0.00000	5.53466	0.0	5.55244	108.585	120.015	vVd4
RPP	540	0.00000	5.53466	0.0	2.3495	1.905	13.335	vhVd1
RPP	541	0.00000	5.53466	2.3495	5.55244	1.905	13.335	vhFe1
RPP	542	0.00000	5.53466	0.0	2.3495	17.145	59.055	vhVd2
RPP	543	0.00000	5.53466	2.3495	5.55244		59.055	vhFe2
RPP	544	0.00000	5.53466	0.0	2.3495	62.865	104.775	vhVd3
			5.53466					
RPP	545	0.00000		2.3495	5.55244		104.775	vhFe3
RPP	546	0.00000	5.53466	0.0	2.3495	108.585	120.015	vhVd4
RPP	547	0.00000	5.53466	2.3495		108.585	120.015	vhFe4
RPP	548	0.00000	1.7145	0.0	5.55244	1.905	13.335	vRVd1
RPP	549	1.7145	5.53466	0.0	5.55244	1.905	13.335	vRFe1
RPP	550	0.00000	1.7145	0.0	5.55244	17.145	59.055	vRVd2
RPP	551	1.7145	5.53466	0.0	5.55244	17.145	59.055	vRFe2
RPP	552	0.00000	1.7145	0.0	5.55244	62.865	104.775	vRVd3
RPP	553	1.7145	5.53466	0.0	5.55244		104.775	vRFe3
RPP	554	0.00000	1.7145	0.0	5.55244	108.585	120.015	vRVd4
RPP	555	1.7145	5.53466	0.0	5.55244	108.585	120.015	vRFe4
RPP	556	0.00000	1.7145	0.0	2.3495	1.905	13.335	vhRVd1
RPP	557	1.7145	5.53466	0.0	2.3495	1.905	13.335	vhRFe1
RPP	558	0.00000	1.7145	0.0	2.3495	17.145	59.055	vhRVd2
RPP	559	1.7145	5.53466	0.0	2.3495	17.145	59.055	vhRFe2
RPP	560	0.00000	1.7145	0.0	2.3495	62.865	104.775	vhRVd3
RPP	561	1.7145	5.53466	0.0	2.3495	62.865	104.775	vhRFe3
RPP	562	0.00000	1.7145	0.0	2.3495	108.585	120.015	vhRVd4
RPP	563	1.7145	5.53466	0.0	2.3495	108.585	120.015	vhRFe4
RPP	564	3.81	5.53466	0.0	5.55244		13.335	vLVd1
RPP	565	0.0	3.81	0.0	5.55244	1.905	13.335	vLFe1
	566	3.81	5.53466					
RPP				0.0	5.55244	17.145	59.055	vLVd2
RPP	567	0.0	3.81	0.0	5.55244	17.145	59.055	vLFe2
RPP	568	3.81	5.53466	0.0	5.55244	62.865	104.775	vLVd3
RPP	569	0.0	3.81	0.0	5.55244	62.865	104.775	vLFe3
RPP	570	3.81	5.53466	0.0		108.585	120.015	vLVd4
RPP	571	0.0	3.81	0.0	5.55244		120.015	vLFe4
RPP	572	3.81	5.53466	0.0	2.3495	1.905	13.335	vhLVd1
RPP	573	0.0	3.81	0.0	2.3495	1.905	13.335	vhLFel
RPP	574	3.81		0.0	2.3495	17.145	59.055	vhLVd2
RPP	575	0.0	3.81	0.0	2.3495	17.145	59.055	vhLFe2
RPP	576	3.81	5.53466	0.0	2.3495	62.865	104.775	vhLVd3
RPP	577	0.0	3.81	0.0	2.3495	62.865	104.775	vhLFe3
RPP	578	3.81	5.53466	0.0	2.3495	108.585	120.015	vhLVd4
RPP	579	0.0	3.81	0.0	2.3495	108.585	120.015	vhLFe4
END								
252524	242424	272726263	53535352727	272727272	7272525252	252525303	0292929292929	
							9292929292929	
							9292929292929	
		29293030						
			53535352727	272727272	7272525252	252525303	0292929292929	
							9292929292929	
							9292929292929	
		303029292: 29293030	J L J L J L J L J L J	<u> </u>	/ 2 9 3 0 3 0 2 9 2	<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	J L J L J L J L J L J L J	
			E2E2E2E2777	27272727	7272525252) E) E) E) C)	02020202020	
							0292929292929	
							9292929292929	
			5 <u>2</u> 5 <u>2</u> 5 <u>2</u> 5 <u>2</u> 5 <u>2</u> 5 <u>2</u> 5	∠¬∠¬∠¬∠¬∠¬	223030292	∠ <i>⋾</i> ∠⋾∠⋾∠⋾∠	92929292929	
		29293030	F2F2F2F2F	000000000	707050505	2525252	0010101010101	
							2313131313131	
							1313131313131	
			13131313131	313131313	1313232313	313131313	1313131313131	
		31313232						
							3212321232123	
							3212321232123	
212321	232123	212321232	12321232123	212321232	1232123212	232123212	3212321232123	

Revision: 0

RPP 522

0.00000

5.53466

0.00000

Date: September 30, 2003 Page 112 of 125

HEU-MET-FAST-067

21232123212321232123	
25	:3
212321232123212321232123212321232123212	
212321232123212321232123212321232123212	.3
21232123212321232123 2525252525252525252525252525252525252	, 2
212321232123212321232123212321232123212	
212321232123212321232123212321232123212	
2123212321232123	
25	
-212321232123212321232123212321232123212	
212321232123212321232123212321232123212	. 3
25	:3
212321232123212321232123212321232123212	
212321232123212321232123212321232123212	13
2123212321232123	_
252524242427272626353535352727272727272725252525252521232123212	
$\begin{array}{c} 212321232123212321232123212321232123212$	
21232123212321232123	J
252524242427272626353535352727272727272725252525252525212321232123212	13
212321232123212321232123212321232123212	:3
212321232123212321232123212321232123212	:3
2123212321232123	
2525242424247272626353535352727272727272725252525252525212321232123212	
$\begin{array}{c} 212321232123212321232123212321232123212$	
212321232123212321232123212321232123212	J
252524242427272626353535352727272727272725252525252525212321232123212	23
212321232123212321232123212321232123212	
212321232123212321232123212321232123212	:3
2123212321232123	
25252424242427272626353535352727272727272725252525252525212321232123212	
212321232123212321232123212321232123212	
16201317131713171317131721232123212321232123	.3
252524242424272726263535353527272727272727252525252525212321232123212	13
212321232123212321232123212321232123212	
16201317131713171317131713172123212321232123	
2123212321232123	
25252424242427272626353535352727272727272725252525252525212321232123212	
2123212321232123212321232123222422242224	
15191418141814181418141814181418222422242224	.3
21232123212321232123 2525242424272726263535353527272727272727252525252525212321232123212	, 2
21232123212321232123212321232224224224141814181418141814181418141814	
151914181418141814181418141814181418141822242224	
2123212321232123	
25	
21232123212321232123212321232224141814181418141814181418141814181418	
151914181418141814181418141814181418141814	.3
21232123212321232123 2525252525252525252525252525252525252	, 2
21232123212321232123212321232224141814181418141814181418141814181418	
151914181418141814181418141814181418141814	
2123212321232123	
25	13
2123212321232123212321232123141814181418141814181418141814181418141	
0307141814181418141814181418141814181418141	.3
21232123212321232123 2525242424272726263535353527272727272727252525252525212321232123212) 2
2123212321232123212321231317141814181418141814181418141814803070106010	
010601060106030714181418141814181418141814181418141813172123212321232123212	
2123212321232123	
25252424242427272626353535352727272727272725252525252525212321232123212	:3
21232123212321232123131713171418141814181418141814181418030701060106010	
0106010601060106030714181418141814181418141814181317131721232123212	.3
2123212321232123) 2
$\begin{array}{c} 252524242424272726263535353527272727272727252525252525212321232123212\\ 212321232123212321231317131714181418141814181418141814180409010601060106110 \end{array}$	
010601060106010601060510141814181418141814181418131713171212321232123212	
2123212321232123	_
25252424242427272626353535352727272727272725252525252525212321232123212	13
21232123212321232123131713171418141814181418141804090106010601060106010	
010601060106010601060510141814181418141814181317131721232123212	:3
21232123212321232123	
25252424242427272626353535352727272727272725252525252525212321232123212	.3

Revision: 0 Date: September 30, 2003

Page 113 of 125

HEU-MET-FAST-067

Revision: 0

Date: September 30, 2003 Page 114 of 125

HEU-MET-FAST-067

21232123			123 525252525	252525	525252	5252	52525252	5252525	521232	1222	1232123
			123212321								
21232123	321232	1232	123212321	232123	321232	1232	123212321	L232123	321232	1232	1232123
21232123											
			525252525								
			123212321 123212321								
21232123				.232123	021232	1232	123212321	LZ3ZIZ3	021232	1232	1232123
			525252525	252525	525252	5252	525252525	5252525	521232	1232	1232123
			123212321								
			123212321	232123	321232	1232	123212321	L232123	321232	1232	1232123
21232123											
			525252525 123212321								
			123212321								
21232123				.25212	21232	12,52	123212321	123212	21232	1252	1232123
			626353535	35272	727272	7272	727252525	5252525	521232	1232	1232123
			123212321								
			123212321	.232123	321232	1232	123212321	L232123	321232	1232	1232123
21232123			123 626353535	252725	727272	7272	72725252	5050505	2/2/2	2222	222222
			3333333333								
			333333333								
33333333	333333	3333	434								
			626353535								
			929292929								
			929292929	292929	929292	9292	929303029	9292929	929292	9292	9292929
29292929			626353535	35272	727272	7272	727252525	5252525	30302	9292	9292929
			929292929								
29292929	29293	0302	929292929	292929	929292	9292	929303029	9292929	29292	9292	9292929
29292929											
			626353535								
			929292929 929292929								
29292929				232323	049494	2626	929303023	7474743	22232	2222	3434343
1	100	1	1001	2	100	1	2001	3	100	2	3001
4	100	2	4001	5	100	3	5001	6	100	3	6001
7	100	4	7001	8	100	4	8001	9	100	5	9001
10	100	6	10001	11	100	6	11001	12	100	6	12001
13 16	100 100	7 10	13001 16001	14 17	100 101	8 11	14001 17001	15 18	100 101	9 12	15001 18001
19	101	13	19001	20	100	7	20001	21	100	8	21001
22	100	9	22001	23	100	10	23001	24	100	7	24001
25	100	8	25001	26	100	9	26001	27	100	10	27001
28	101	11	28001	29	101	12	29001	30	101	13	30001
31	100	7	31001	32	100	8	32001	33	100	9	33001
34 37	100 101	10 11	34001 37001	35 38	100 101	7 12	35001 38001	36 39	100 100	8 9	36001 39001
40	100	10	40001	41	100	7	41001	42	100	8	42001
43	100	9	43001	44	100	10	44001	45	100	7	45001
46	100	8	46001	47	101	11	47001	48	101	12	48001
49	100	9	49001	50	100	10	50001	51	100	0	51001
52 55	100 100	0	52001 55001	53 56	100 100	0	53001 56001	54 57	100 100	0	54001
58	200	0 3	58001	59	200	0 3	59001	57 60	200	0 4	57001 60001
61	200	4	61001	62	200	14	62001	63	200	6	63001
64	200	6	64001	65	200	6	65001	66	200	15	66001
67	200	16	67001	68	200	0	68001	69	200	0	69001
70	200	0	70001	71	200	0	71001	72	200	0	72001
73 76	200	0 3	73001 76001	74 77	200 200	0 3	74001	75 78	200	0 4	75001 78001
76 79	200 200	4	79001	80	200	3 17	77001 80001	81	200 200	18	81001
82	200	18	82001	83	200	18	83001	84	200	19	84001
85	200	20	85001	86	200	0	86001	87	200	0	87001
88	200	0	88001	89	200	0	89001	90	200	0	90001
91	300	3	91001	92	300	3	92001	93	300	4	93001
94	300	10	94001	95	300	18	95001	96	300	18	96001
97 100	300 300	18 0	97001 100001	98 101	300 300	20 0	98001 101001	99 102	300 300	0	99001 102001
100	300	0	103001	101	400	3	104001	102	400	3	102001
106	400	4	106001	107	400	4	107001	108	400	18	108001
109	400	18	109001	110	400	18	110001	111	400	0	111001
112	400	0	112001	113	400	0	113001	114	400	0	114001
115	500	3	115001	116	500	3	116001	117	500	4	117001
118 121	500 500	4 18	118001 121001	119 122	500 500	21 18	119001 122001	120 123	500 500	18 0	120001 123001
141	500	±0			500	± 0	U	123	500	J	U

HEU-MET-FAST-067

124	500	0	124001	125	500	0	125001	126	500	0	126001
127	500	0	127001	128	900	0	522001	129	900	36	523001
130	100	1	128002	131	600	1	129002	132	100	1	130002
133	600	1	131002	134	100	2	3002	135	600	2	4002
136	100	3	132002	137	600	3	133002	138	100	3	134002
139	600	3	135002	140	100	4	7002	141	600	4	8002
142	100	5	136002	143	600	5	137002	144	100	6	10002
145	600	6	11002	146	100	6	138002	147	600	6	139002
148	100	7	13002	149	100	8	14002	150	100	9	140002
151	101	11	141002	152	100	7	20002	153	100	8	21002
154	100	9	142002	155	100	7	24002	156	100	8	25002
157	100	9	143002	158	101	11	144002	159	100	7	31002
160	100	8	32002	161	600	22	145002	162	600	22	146002
163	100	0	51002	164	600	0	52002	165	100	0	147002
166	600	0	148002	167	100	0	149002	168	600	0	150002
169	600	0	151002	170	600	0	152002	171	600	0	56002
172	600	0	153002	173	100	0	57002	174	200	3	58002
175	200	3	59002	176	200	4	60002	177	200	4	61002
178	200	14	62002	179	200	6	63002	180	200	6	64002
181	200	6	65002	182	200	15	66002	183	200	16	67002
184	200	0	68002	185	200	0	69002	186	200	0	70002
187	200	0	71002	188	200	0	72002	189	200	0	74002
190	200	0	75002	191	200	0	73002	192	200	3	76002
		3	77002		200	4				4	
193	200			194			78002	195	200		79002
196	200	17	80002	197	200	18	81002	198	200	18	82002
199	200	18	83002	200	200	19	84002	201	200	20	85002
202	200	0	86002	203	200	0	87002	204	200	0	88002
205	200	0	89002	206	200	0	90002	207	300	3	91002
208	300	3	92002	209	300	4	93002	210	300	4	94002
211	300	18	95002	212	300	18	96002	213	300	18	97002
214	300	20	98002	215	300	0	99002	216	300	0	100002
217	300	0	101002	218	300	0	102002	219	300	0	103002
220	400	3	104002	221	400	3	105002	222	400	4	106002
223	400	4	107002	224	400	18	108002	225	400	18	109002
226	400	18	110002	227	400	0	111002	228	400	0	112002
229	400	0	113002	230	400	0	114002	231	500	3	115002
232	500	3	116002	233	500	4	117002	234	500	4	118002
235	500	21	119002	236	500	18	120002	237	500	18	121002
238	500	18	122002	239	500	0	123002	240	500	0	124002
241	500	0	125002	242	500	0	126002	243	500	0	127002
244	900	0	522002	245	900	36	523002	246	600	1	128003
247	100	1	129003	248	600	1	130003	249	100	1	131003
250	600	2	3003	251	100	2	4003	252	600	3	132003
253	100	3	133003	254	600	3	134003	255	100	3	135003
256	600	4	7003	257	100	4	8003	258	600	5	136003
		5								6	
259	100		137003	260	600	6	10003	261	100		11003
262	600	6	138003	263	100	6	139003	264	600	22	154003
265	600	22	155003	266	100	9	156003	267	100	7	35003
268	100	8	36003	269	101	11	157003	270	100	9	158003
271	100	7	41003	272	100	8	42003	273	100	9	159003
274	100	7	45003	275	100	8	46003	276	101	11	160003
277	100	9	161003	278	600	0	51003	279	100	0	52003
280	600	0	147003	281	100	0	148003	282	600	0	149003
283	100	0	150003	284	100	0	162003	285	100	0	56003
286	100	0	163003	287	600	0	57003	288	200	3	58003
289	200	3	59003	290	200	4	60003	291	200	4	61003
292	200	14	62003	293	200	6	63003	294	200	6	64003
295	200	6	65003	296	200	15	66003	297	200	16	67003
298	200	0	68003	299	200	0	69003	300	200	0	70003
301	200	0	71003	302	200	0	74003	303	200	0	75003
304	200	0	73003	305	200	0	72003	306	200	3	76003
307	200	3	77003	308	200	4	78003	309	200	4	79003
310	200	17	80003	311	200	18	81003	312	200	18	82003
313	200	18	83003	314	200	19	84003	315	200	20	85003
316	200	0	86003	317	200	0	87003	318	200	0	88003
319	200	0	89003	320	200	0	90003	321	300	3	91003
322	300	3	92003	323	300	4	93003	324	300	4	94003
325	300	18	95003	326	300	18	96003	327	300	18	97003
328	300	20	98003	329	300	0	99003	330	300	0	100003
331	300	0	101003	332	300	0	102003	333	300	0	103003
334	400	3	101003	335	400	3	105003	336	400	4	106003
334	400	4	107003	338	400	18	108003	339	400	18	109003
340	400	18	110003	341	400	0	111003	342	400	0	112003
343	400	0	113003	344	400	0	114003	345	500	3	115003
346	500	3	116003	347	500	4	117003	348	500	4	118003
349	500	21	119003	350	500	18	120003	351	500	18	121003
352	500	18	122003	353	500	0	123003	354	500	0	124003
355	500	0	125003	356	500	0	126003	357	500	0	127003

Revision: 0

Date: September 30, 2003

HEU-MET-FAST-067

358	900	0	522003	359	900	36	523003	360	600	1	1004
361	100	1	2004	362	600	2	164004	363	100	2	165004
364	600	2	166004	365	100	2	167004	366	600	3	5004
367	100	3	6004	368	600	4	168004	369	100	4	169004
370	600	4	170004	371	100	4	171004	372	600	5	172004
373	100	5	173004	374	600	6	174004	375	100	6	175004
376	600	6	176004	377	100	6	177004	378	600	6	12004
379	600	22	154004	380	600	22	145004	381	100	7	178004
382	100	8			101	11				9	181004
			179004	383			180004	384	100		
385	100	7	182004	386	100	8	183004	387	100	9	184004
388	100	7	185004	389	100	8	186004	390	101	11	187004
391	100	9	188004	392	100	7	189004	393	100	8	190004
394	600	0	191004	395	100	0	192004	396	600	0	193004
397	100	0	194004	398	100	0	53004	399	100	0	54004
400	100	0	195004	401	100	0	196004	402	600	0	197004
403	100	0	198004	404	600	0	199004	405	100	0	200004
406	600	0	163004	407	100	0	201004	408	200	3	58004
409	200	3	59004	410	200	4	60004	411	200	4	61004
412	200	14	62004	413	200	6	63004	414	200	6	64004
415	200	6	65004	416	200	15	66004	417	200	16	67004
418	200		68004	419	200			420	200	0	70004
		0				0	69004				
421	200	0	71004	422	200	0	72004	423	200	0	73004
424	200	0	75004	425	200	0	74004	426	200	3	76004
427	200	3	77004	428	200	4	78004	429	200	4	79004
430	200	17	80004	431	200	18	81004	432	200	18	82004
433	200	18	83004	434	200	19	84004	435	200	20	85004
436	200	0	86004	437	200	0	87004	438	200	0	88004
439	200	0	89004	440	200	0	90004	441	300	3	91004
442	300	3	92004	443	300	4	93004	444	300	4	94004
445	300	18	95004	446	300	18	96004	447	300	18	97004
448	300	20	98004	449	300	0	99004	450	300	0	100004
451	300	0	101004	452	300	0	102004	453	300	0	103004
454	400	3	104004	455	400	3	105004	456	400	4	106004
457	400	4	107004	458	400	18	108004	459	400	18	109004
460		18			400	0			400	0	
	400		110004	461			111004	462			112004
463	400	0	113004	464	400	0	114004	465	500	3	115004
466	500	3	116004	467	500	4	117004	468	500	4	118004
469	500	21	119004	470	500	18	120004	471	500	18	121004
472	500	18	122004	473	500	0	123004	474	500	0	124004
475	500	0	125004	476	500	0	126004	477	500	0	127004
478	900	0	522004	479	900	36	523004	480	100	1	1005
481	600	1	2005	482	100	2	164005	483	600	2	165005
484	100	2	166005	485	600	2	167005	486	100	3	5005
487	600	3	6005	488	100	4	168005	489	600	4	169005
490	100	4	170005	491	600	4	171005	492	100	5	172005
493	600	5	173005	494	100	6	174005	495	600	6	175005
496	100	6	176005	497	600	6	177005	498	100	6	12005
499	100	9	202005	500	101	11	203005	501	100	7	204005
502	100	8	205005	503	100	9	206005	504	100	7	207005
505	100	8	208005	506	100	9	209005	507	101	11	210005
508	100	7	211005	509	100	8	212005	510	100	9	213005
	600	22		512				513	100		
511			155005		600	22	146005 193005	516	600	0	191005
514	600	0	192005	515	100	0				0	194005
517	600	0	53005	518	600	0	54005	519	100	0	214005
520	600	0	195005	521	100	0	215005	522	600	0	196005
523	100	0	197005	524	600	0	198005	525	100	0	199005
526	600	0	200005	527	100	0	216005	528	600	0	201005
529	100	0	217005	530	200	3	58005	531	200	3	59005
532	200	4	60005	533	200	4	61005	534	200	14	62005
535	200	6	63005	536	200	6	64005	537	200	6	65005
538	200	15	66005	539	200	16	67005	540	200	0	68005
541	200	0	69005	542	200	0	70005	543	200	0	71005
544	200	0	72005	545	200	0	73005	546	200	0	75005
547	200	0	74005	548	200	3	76005	549	200	3	77005
550	200	4	78005	551	200	4	79005	552	200	17	80005
553	200	18	81005	554	200	18	82005	555	200	18	83005
556	200	19	84005	557	200	20	85005	558	200	0	86005
559	200	0	87005	560	200	0	88005	561	200	0	89005
562 565	200	0	90005	563	300	3	91005	564	300	3	92005
565	300	4	93005	566	300	4	94005	567	300	18	95005
568	300	18	96005	569	300	18	97005	570	300	20	98005
571	300	0	99005	572	300	0	100005	573	300	0	101005
574	300	0	102005	575	300	0	103005	576	400	3	104005
577	400	3	105005	578	400	4	106005	579	400	4	107005
580	400	18	108005	581	400	18	109005	582	400	18	110005
583	400	0	111005	584	400	0	112005	585	400	0	113005
586	400	0	114005	587	500	3	115005	588	500	3	116005
589	500	4	117005	590	500	4	118005	591	500	21	119005

HEU-MET-FAST-067

592	500	18	120005	593	500	18	121005	594	500	18	122005
595	500	0	123005	596	500	0	124005	597	500	0	125005
598	500	0	126005	599	500	0	127005	600	900	0	522005
601	900	36	523005	602	100	1	1006	603	100	1	2006
604	100	2	3006	605	100	2	4006	606	100	3	5006
607 610	100 100	3 5	6006 9006	608 611	100 100	4 6	7006 11006	609 612	100 100	4 6	8006 10006
613	100	6	12006	614	100	9	218006	615	100	10	219006
616	101	11	220006	617	101	12	221006	618	101	13	222006
619	100	7	223006	620	100	8	224006	621	100	9	225006
622 625	100	10 9	226006	623 626	100	7 10	227006	624 627	100	8 11	228006 231006
628	100 101	12	229006 232006	629	100 101	13	230006 233006	630	101 100	7	231006
631	100	8	235006	632	100	9	236006	633	100	10	237006
634	100	7	238006	635	100	8	239006	636	101	11	240006
637	101	12	241006	638	100	9	242006	639	100	10	243006
640 643	100 100	7 10	244006 247006	641 644	100 100	8 7	245006 248006	642 645	100 100	9 8	246006 249006
646	101	11	250006	647	101	12	251006	648	100	9	252006
649	100	10	253006	650	100	7	254006	651	100	8	255006
652	100	0	51006	653	100	0	52006	654	100	0	53006
655 658	100 100	0	54006 57006	656 659	100 200	0 3	256006 58006	657 660	100 200	0	56006 59006
661	200	4	60006	662	200	4	61006	663	200	14	62006
664	200	6	64006	665	200	6	63006	666	200	6	65006
667	200	15	257006	668	200	16	67006	669	200	0	68006
670 673	200 200	0	69006 258006	671 674	200 200	0	70006 73006	672 675	200 200	0	71006 74006
676	200	0	75006	677	200	3	76006	678	200	3	77006
679	200	4	78006	680	200	4	79006	681	200	17	80006
682	200	18	82006	683	200	18	81006	684	200	18	83006
685 688	200 200	19 0	259006 87006	686 689	200 200	20 0	260006 88006	687 690	200 200	0	86006 89006
691	200	0	261006	692	300	3	91006	693	300	3	92006
694	300	4	93006	695	300	4	94006	696	300	18	96006
697	300	18	95006	698	300	18	97006	699	300	20	262006
700 703	300 300	0	99006 102006	701 704	300 300	0	100006 263006	702 705	300 400	0 3	101006 104006
706	400	3	105006	707	400	4	106006	708	400	4	107006
709	400	18	109006	710	400	18	108006	711	400	18	110006
712 715	400	0	111006	713	400	0 3	112006	714	400	0 3	113006
718	400 500	0 4	114006 117006	716 719	500 500	4	115006 118006	717 720	500 500	21	116006 119006
721	500	18	121006	722	500	18	120006	723	500	18	122006
724	500	0	123006	725	500	0	124006	726	500	0	125006
727 730	500 900	0 36	126006 523006	728 731	500 600	0 1	127006 264007	729 732	900 100	0 1	522006 265007
733	600	1	266007	734	100	1	267007	735	600	2	3007
736	100	2	4007	737	600	3	268007	738	100	3	269007
739	600	3	270007	740	100	3	271007	741	600	4	7007
742 745	100 100	4 6	8007 11007	743 746	600 600	5 6	272007 10007	744 747	100 600	5 6	273007 274007
748	100	6	275007	749	100	9	276007	750	101	11	277007
751	100	7	223007	752	100	8	224007	753	100	9	278007
754	100	7	227007	755	100	8	228007	756 750	100	9	279007
757 760	101 100	11 9	280007 281007	758 761	100 600	7 22	234007 282007	759 762	100 600	8 22	235007 283007
763	600	0	51007	764	100	0	52007	765	600	0	284007
766	100	0	285007	767	600	0	286007	768	100	0	287007
769 772	600 100	0	288007 56007	770 773	600 600	0	289007 57007	771 774	600 200	0 3	290007 58007
775	200	3	59007	775 776	200	4	60007	777	200	4	61007
778	200	14	62007	779	200	6	64007	780	200	6	63007
781	200	6	65007	782	200	15	257007	783	200	16	67007
784 787	200 200	0 0	68007 71007	785 788	200 200	0	69007 258007	786 789	200 200	0	70007 74007
790	200	0	75007	791	200	0	73007	792	200	3	76007
793	200	3	77007	794	200	4	78007	795	200	4	79007
796 700	200	17	80007	797	200	18	82007	798	200	18	81007
799 802	200 200	18 0	83007 86007	800 803	200 200	19 0	259007 87007	801 804	200 200	20 0	260007 88007
805	200	0	89007	806	200	0	261007	807	300	3	91007
808	300	3	92007	809	300	4	93007	810	300	4	94007
811 814	300 300	18 20	96007 262007	812 815	300 300	18 0	95007 99007	813 816	300 300	18 0	97007 100007
817	300	0	101007	818	300	0	102007	819	300	0	263007
820	400	3	104007	821	400	3	105007	822	400	4	106007
823	400	4	107007	824	400	18	109007	825	400	18	108007

HEU-MET-FAST-067

826	400	18	110007	827	400	0	111007	828	400	0	112007
829	400	0	113007	830	400	0	114007	831	500	3	115007
										4	
832	500	3	116007	833	500	4	117007	834	500		118007
835	500	21	119007	836	500	18	121007	837	500	18	120007
838	500	18	122007	839	500	0	123007	840	500	0	124007
841	500	0	125007	842	500	0	126007	843	500	0	127007
844	900	0	522007	845	900	36	523007	846	100	1	264008
847	600	1	265008	848	100	1	266008		600	1	267008
								849			
850	100	2	3008	851	600	2	4008	852	100	3	268008
853	600	3	269008	854	100	3	270008	855	600	3	271008
856	100	4	7008	857	600	4	8008	858	100	5	272008
859	600	5	273008	860	600	6	11008	861	100	6	10008
862	100	6	274008	863	600	6	275008	864	600	22	291008
865	600	22	292008	866	100	7	238008	867	100	8	239008
868	101	11	293008	869	100	9	294008	870	100	7	244008
871	100	8	245008	872	100	9	295008	873	100	7	248008
874	100	8	249008	875	101	11	296008	876	100	9	297008
877	100	7	254008	878	100	8	255008	879	100	0	51008
880	600	0	52008	881	100	0	284008	882	600	0	285008
883	100	0	286008	884	600	0	287008	885	100	0	298008
886	600	0	56008	887	100	0	299008	888	100	0	57008
889	200	3	58008	890	200	3	59008	891	200	4	60008
892	200	4	61008	893	200	14	62008	894	200	6	64008
895	200	6	63008	896	200	6	65008	897	200	15	257008
898	200	16	67008	899	200	0	68008	900	200	0	69008
901	200	0	70008	902	200	0	71008	903	200	0	74008
904	200	0	75008	905	200	0	73008	906	200	0	258008
907	200	3	76008	908	200	3	77008	909	200	4	78008
910	200	4	79008	911	200	17	80008	912	200	18	82008
913	200	18	81008	914	200	18	83008	915	200	19	259008
916	200	20	260008	917	200	0	86008	918	200	0	87008
919	200	0	88008	920	200	0	89008	921	200	0	261008
922	300	3	91008	923	300	3	92008	924	300	4	93008
925	300	4	94008	926	300	18	96008	927	300	18	95008
928	300	18	97008	929	300	20	262008	930	300	0	99008
931	300	0	100008	932	300	0	101008	933	300	0	102008
934	300	0	263008	935	400	3	104008	936	400	3	105008
937	400	4	106008	938	400	4	107008	939	400	18	109008
940	400	18	108008	941	400	18	110008	942	400	0	111008
943	400	0	112008	944	400	0	113008	945	400	0	114008
946	500	3	115008	947	500	3	116008	948	500	4	117008
949	500	4	118008	950	500	21	119008	951	500	18	121008
952	500	18	120008	953	500	18	122008	954	500	0	123008
955	500	0	124008	956	500	0	125008	957	500	0	126008
958	500	0	127008	959	900	0	522008	960	900	36	523008
961	600	1	1009	962	100	1	2009	963	600	2	164009
964	100	2	165009	965	600	2	166009	966	100	2	167009
967	600	3	5009	968	100	3	6009	969	600	4	168009
970	100	4	169009	971	600	4	170009	972	100	4	171009
973	600	5	172009	974	100	5	173009	975	600	6	176009
976	100	6	177009	977	600	6	174009	978	100	6	175009
979	600	6	12009	980	600	22	291009	981	600	22	282009
982	100	9	300009	983	100	7	301009	984	100	8	302009
985	101	11	303009	986	100	9	304009	987	100	7	305009
988	100	8	306009	989	100	9	307009	990	100	7	308009
991	100	8	309009	992	101	11	310009	993	100	9	311009
994	600	0	191009	995	100	0	192009	996	600	0	193009
997	100	0	194009	998	100	0	53009	999	100	0	54009
1000	100	0	312009	1001	600	0	313009	1002	100	0	314009
1003	600	0	197009	1004	100	0	198009	1005	600	0	199009
1006	100	0	200009	1007	100	0	315009	1008	600	0	316009
1009	100	0	317009	1010	200	3	58009	1011	200	3	59009
1012	200	4	60009	1013	200	4	61009	1014	200	14	62009
1015	200	6	64009	1016	200	6	63009	1017	200	6	65009
1018	200	15	257009	1019	200	16	67009	1020	200	0	68009
1021	200	0	69009	1022	200	0	70009	1023	200	0	71009
1024	200	0	258009	1025	200	0	73009	1026	200	0	75009
1027	200	0	74009	1028	200	3	76009	1029	200	3	77009
1030	200	4	78009	1031	200	4	79009	1032	200	17	80009
1033	200	18	82009	1034	200	18	81009	1035	200	18	83009
1036	200	19	259009	1037	200	20	260009	1038	200	0	86009
1039	200	0	87009	1040	200	0	88009	1041	200	0	89009
1042	200	0	261009	1043	300	3	91009	1044	300	3	92009
1042	300	4	93009	1043	300	4	94009	1044	300		96009
										18	
1048	300	18	95009	1049	300	18	97009	1050	300	20	262009
1051	300	0	99009	1052	300	0	100009	1053	300	0	101009
1054	300	0	102009	1055	300	0	263009	1056	400	3	104009
1057	400	3	105009	1058	400	4	106009	1059	400	4	107009

HEU-MET-FAST-067

1060	400	18	109009	1061	400	18	108009	1062	400	18	110009
1063 1066	400 400	0	111009 114009	1064 1067	400 500	0	112009 115009	1065 1068	400 500	0 3	113009 116009
1069	500	4	117009	1070	500	4	118009	1071	500	21	119009
1072 1075	500 500	18 0	121009 123009	1073 1076	500 500	18 0	120009 124009	1074 1077	500 500	18 0	122009 125009
1078	500	0	126009	1079	500	0	127009	1080	900	0	522009
1081 1084	900 100	36 2	523009 164010	1082 1085	100 600	1 2	1010 165010	1083 1086	600 100	1 2	2010 166010
1087	600	2	167010	1088	100	3	5010	1089	600	3	6010
1090 1093	100 600	4 4	168010 171010	1091 1094	600 100	4 5	169010 172010	1092 1095	100 600	4 5	170010 173010
1096 1099	100 600	6 6	176010 175010	1097 1100	600 100	6 6	177010 12010	1098 1101	100 100	6 7	174010 318010
1102	100	8	319010	1103	101	11	320010	1104	100	9	321010
1105 1108	100 100	7 7	322010 325010	1106 1109	100 100	8 8	323010 326010	1107 1110	100 101	9 11	324010 327010
1111	100	9	328010	1112	100	7	329010	1113	100	8	330010
$\frac{1114}{1117}$	600 600	22 0	292010 192010	1115 1118	600 100	22 0	283010 193010	1116 1119	100 600	0	191010 194010
1120 1123	600 600	0	53010 332010	1121 1124	600 100	0	54010 313010	1122 1125	100 600	0	331010 314010
1126	100	0	197010	1127	600	0	198010	1128	100	0	199010
1129 1132	600 200	0 3	200010 58010	1130 1133	100 200	0 3	333010 59010	1131 1134	600 200	0 4	334010 60010
1135	200	4	61010	1136	200	14	62010	1137	200	6	64010
1138 1141	200 200	6 16	63010 67010	1139 1142	200 200	6 0	65010 68010	1140 1143	200 200	15 0	257010 69010
1144	200	0	70010	1145	200	0	71010	1146	200	0	258010
1147 1150	200 200	0 3	73010 76010	1148 1151	200 200	0 3	75010 77010	1149 1152	200 200	0 4	74010 78010
1153 1156	200 200	4 18	79010 81010	1154 1157	200 200	17 18	80010 83010	1155 1158	200 200	18 19	82010 259010
1159	200	20	260010	1160	200	0	86010	1161	200	0	87010
1162 1165	200 300	0 3	88010 91010	1163 1166	200 300	0 3	89010 92010	1164 1167	200 300	0 4	261010 93010
1168	300	4	94010	1169	300	18	96010	1170	300	18	95010
$\frac{1171}{1174}$	300 300	18 0	97010 100010	1172 1175	300 300	20 0	262010 101010	1173 1176	300 300	0	99010 102010
1177 1180	300 400	0 4	263010 106010	1178 1181	400 400	3 4	104010 107010	1179 1182	400 400	3 18	105010 109010
1183	400	18	108010	1184	400	18	110010	1185	400	0	111010
1186 1189	400 500	0 3	112010 115010	1187 1190	400 500	0 3	113010 116010	1188 1191	400 500	0 4	114010 117010
1192	500	4	118010	1193	500	21	119010	1194	500	18	121010
1195 1198	500 500	18 0	120010 124010	1196 1199	500 500	18 0	122010 125010	1197 1200	500 500	0	123010 126010
1201 1204	500 100	0 1	127010 1011	1202 1205	900 100	0 1	522010 2011	1203 1206	900 100	36 2	523010 3011
1207	100	2	4011	1208	100	3	335011	1209	100	3	336011
1210 1213	100 100	4 24	337011 340011	1211 1214	100 100	4 24	338011 341011	1212 1215	100 100	23 24	339011 342011
1216	100	25	343011	1217	100	26	344011	1218	100	9	345011
1219 1222	101 100	11 9	346011 349011	1220 1223	100 100	7 7	347011 350011	1221 1224	100 100	8 8	348011 351011
1225 1228	100	9	352011 355011	1226 1229	101	11	353011 356011	1227 1230	100 100	7 7	354011
1231	100 100	8 8	358011	1232	100 101	9 11	359011	1233	100	9	357011 360011
1234 1237	100 100	7 7	361011 364011	1235 1238	100 100	8 8	362011 365011	1236 1239	100 101	9 11	363011 366011
1240	100	9	367011	1241	100	0	368011	1242	100	0	369011
1243 1246	100 100	0	370011 373011	1244 1247	100 100	0	371011 374011	1245 1248	100 200	0 3	372011 375011
1249	200 200	3	376011 379011	1250 1253	200	4	377011	1251	200	4	378011 381011
1252 1255	200	24 27	382011	1256	200 200	24 0	380011 383011	1254 1257	200 200	24 0	384011
1258 1261	200 300	0 3	385011 91011	1259 1262	200 300	0	386011 92011	1260 1263	200 300	0 4	387011 93011
1264	300	4	94011	1265	300	24	388011	1266	300	24	389011
1267 1270	300 300	24 0	390011 393011	1268 1271	300 300	28 0	391011 394011	1269 1272	300 300	29 0	392011 395011
1273	300 300	0	396011	1274	300	0	397011	1275	300	0	398011
1276 1279	400	0 4	399011 106011	1277 1280	400 400	3 4	104011 107011	1278 1281	400 400	3 24	105011 400011
1282 1285	400 400	24 0	401011 404011	1283 1286	400 400	24 0	402011 405011	1284 1287	400 400	28 0	403011 406011
1288	400	0	407011	1289	400	0	408011	1290	400	0	409011
1291	800	3	410011	1292	800	3	411011	1293	800	4	412011

HEU-MET-FAST-067

1294	800	4	413011	1295	800	24	414011	1296	800	24	415011
1297	800	24	416011	1298	800	28	417011	1299	800	29	418011
1300	800	0	419011	1301	800	0	420011	1302	800	0	421011
1303	800	0	422011	1304	800	0	423011	1305	800	0	424011
1306	800	0	425011	1307	800	0	426011	1308	500	3	427011
1309	500	3	428011	1310	500	4	429011	1311	500	4	430011
											433011
1312	500	30	431011	1313	500	0	432011	1314	500	0	
1315	500	0	434011	1316	900	36	524011	1317	900	0	525011
1318	900	0	526011	1319	900	36	523011	1320	100	1	1012
1321	100	1	2012	1322	100	2	3012	1323	100	2	4012
1324	100	3	335012	1325	100	3	336012	1326	100	4	337012
1327	100	4	338012	1328	100	23	339012	1329	100	24	341012
1330	100	24	340012	1331	100	24	342012	1332	100	25	435012
1333	100	26	436012	1334	100	9	437012	1335	101	11	438012
1336	100	7	439012	1337	100	8	440012	1338	100	9	441012
1339	100	7	442012	1340	100	8	443012	1341	100	9	444012
1342	101	11	445012	1343	100	7	446012	1344	100	8	447012
1345	100	9	448012	1346	100	7	449012	1347	100	8	450012
1348	101	11	451012	1349	100	9	452012	1350	100	7	453012
1351	100	8	454012	1352	100	9	455012	1353	100	7	456012
1354	100	8	457012	1355	101	11	458012	1356	100	9	459012
1357	100	0	368012	1358	100	0	369012	1359	100	0	370012
1360	100	0	371012	1361	100	0	460012	1362	100	0	373012
1363	100	0	374012	1364	200	3	375012	1365	200	3	376012
1366	200	4	377012	1367	200	4	378012	1368	200	24	380012
1369	200	24	379012	1370	200	24	381012	1371	200	27	461012
1372	200	0	383012	1373	200	0	384012	1374	200	0	385012
1375	200	0	386012	1376	200	0	462012	1377	300	3	91012
1378	300	3	92012	1379	300	4	93012	1380	300	4	94012
1381	300	24	389012	1382	300	24	388012	1383	300	24	390012
1384	300	28	463012	1385	300	29	464012	1386	300	0	393012
	300	0	394012	1388	300	0	395012	1389	300	0	396012
1387											
1390	300	0	465012	1391	300	0	466012	1392	300	0	467012
1393	400	3	104012	1394	400	3	105012	1395	400	4	106012
1396	400	4	107012	1397	400	24	401012	1398	400	24	400012
1399	400	24	402012	1400	400	28	468012	1401	400	0	404012
1402	400	0	405012	1403	400	0	406012	1404	400	0	407012
1405	400	0	469012	1406	400	0	470012	1407	800	3	410012
1408	800	3	411012	1409	800	4	412012	1410	800	4	413012
1411	800	24	415012	1412	800	24	414012	1413	800	24	416012
1414	800	28	471012	1415	800	29	472012	1416	800	0	419012
1417	800	0	420012	1418	800	0	421012	1419	800	0	422012
	800			1421				1422	800		
1420		0	423012		800	0	473012			0	474012
1423	800	0	475012	1424	500	3	427012	1425	500	3	428012
1426	500	4	429012	1427	500	4	430012	1428	500	30	476012
1429	500	0	432012	1430	500	0	477012	1431	500	0	478012
1432	900	36	524012	1433	900	0	525012	1434	900	0	526012
1435	900	36	523012	1436	700	1	1013	1437	700	1	2013
1438	700	2	3013	1439	700	2	4013	1440	700	3	479013
1441	700	3	480013	1442	700	4	481013	1443	700	4	482013
1444	700	31	9013	1445	700	32	483013	1446	700	33	484013
1447	700	33	485013	1448	700	33	486013	1449	700	34	487013
1450	700	16	488013	1451	700	0	489013	1452	700	0	490013
1453	700	0	491013	1454	700	0	492013	1455	700	0	493013
1456	700	0	494013	1457	700	0	495013	1458	700	0	56013
1459	700	0	496013	1460	700	0	57013	1461	500	3	115013
1462	500	3	116013	1463	500	4	117013	1464	500	4	118013
1465	500	0	497013	1466	900	0	527013	1467	700	1	1014
1468	700	1	2014	1469	700	2	3014	1470	700	2	4014
1471	700	3	479014	1472	700	3	480014	1473	700	4	481014
1474	700	4	482014	1475	700	31	9014	1476	700	32	483014
1477	700	33	484014	1478	700	33	485014	1479	700	33	486014
1480	700	34	487014	1481	700	16	488014	1482	700	0	489014
1483	700	0	490014	1484	700	0	491014	1485	700	0	492014
1486	700	0	493014	1487	700	0	494014	1488	700	0	495014
1489						0	496014				
	700	0	56014	1490	700			1491	700	0	57014
1492	500	3	115014	1493	500	3	116014	1494	500	4	117014
1495	500	4	118014	1496	500	0	497014	1497	900	0	522014
1498	900	36	523014	1499	700	1	1015	1500	700	1	2015
1501	700	2	3015	1502	700	2	4015	1503	700	3	479015
1504	700	3	480015	1505	700	4	481015	1506	700	4	482015
1507	700	31	9015	1508	700	32	483015	1509	700	33	484015
1510	700	33	485015	1511	700	33	486015	1512	700	35	498015
1513	700	15	499015	1514	700	34	500015	1515	700	34	501015
1516	700	16	488015	1517	700	0	489015	1518	700	0	490015
1519	700	0	491015	1520	700	0	502015	1521	700	0	503015
1522	700	0	492015	1523	700	0	504015	1524	700	0	494015
1525	700	0	495015	1526	700	0	56015	1527	700	0	505015

HEU-MET-FAST-067

	=				=				=		
1528 1531	700 500	0 3	57015 115015	1529	700 500	0 3	506015 116015	1530 1533	700 500	0 4	507015 117015
1531	500	4	118015	1532 1535	500	0	497015	1533	900	0	522015
1537	900	36	523015	1538	700	1	1016	1539	700	1	2016
1540	700	2	3016	1541	700	2	4016	1542	700	3	479016
1543	700	3	480016	1544	700	4	481016	1545	700	4	482016
1546	700	31	9016	1547	700	32	483016	1548	700	33	484016
1549	700	33	485016	1550	700	33	486016	1551	700	35	498016
1552	700	15	499016	1553	700	34	500016	1554	700	34	501016
1555	700	16	488016	1556	700	0	489016	1557	700	0	490016
1558	700	0	491016	1559	700	0	502016	1560	700	0	503016
1561	700	0	492016	1562	700	0	504016	1563	700	0	494016
1564 1567	700 700	0	495016 57016	1565 1568	700 700	0	56016 506016	1566 1569	700 700	0	505016 507016
1570	500	3	115016	1571	500	3	116016	1572	500	4	117016
1573	500	4	118016	1574	500	0	497016	1575	900	0	527016
1576	700	1	1017	1577	700	1	2017	1578	700	2	3017
1579	700	2	4017	1580	700	3	479017	1581	700	3	480017
1582	700	4	481017	1583	700	4	482017	1584	700	31	9017
1585	700	32	483017	1586	700	33	485017	1587	700	33	484017
1588	700	33	486017	1589	700	34	508017	1590	700	16	488017
1591	700	0	489017	1592	700 700	0	490017	1593	700	0	491017
1594 1597	700 700	0	492017 495017	1595 1598	700	0	493017 56017	1596 1599	700 700	0	494017 509017
1600	700	0	57017	1601	500	3	115017	1602	500	3	116017
1603	500	4	117017	1604	500	4	118017	1605	500	0	497017
1606	900	0	527017	1607	700	1	1018	1608	700	1	2018
1609	700	2	3018	1610	700	2	4018	1611	700	3	479018
1612	700	3	480018	1613	700	4	481018	1614	700	4	482018
1615	700	31	9018	1616	700	32	483018	1617	700	33	485018
1618	700	33	484018	1619	700	33	486018	1620	700	34	508018
1621	700	16	488018	1622	700	0	489018	1623	700 700	0	490018
1624 1627	700 700	0	491018 494018	1625 1628	700 700	0	492018 495018	1626 1629	700	0	493018 56018
1630	700	0	509018	1631	700	0	57018	1632	500	3	115018
1633	500	3	116018	1634	500	4	117018	1635	500	4	118018
1636	500	0	497018	1637	900	0	522018	1638	900	36	523018
1639	700	1	1019	1640	700	1	2019	1641	700	2	3019
1642	700	2	4019	1643	700	3	479019	1644	700	3	480019
1645	700	4	481019	1646	700	4	482019	1647	700	31	9019
1648	700	32	483019	1649	700	33	485019	1650	700	33	484019
1651 1654	700 700	33 34	486019 512019	1652 1655	700 700	35 34	510019 513019	1653 1656	700 700	15 16	511019 488019
1657	700	0	489019	1658	700	0	490019	1659	700	0	491019
1660	700	0	502019	1661	700	0	514019	1662	700	0	492019
1663	700	0	504019	1664	700	0	494019	1665	700	0	495019
1666	700	0	56019	1667	700	0	515019	1668	700	0	57019
1669	700	0	506019	1670	700	0	516019	1671	500	3	115019
1672	500	3	116019	1673	500	4	117019	1674	500	4	118019
1675 1678	500 700	0 1	497019 1020	1676 1679	900 700	0 1	522019 2020	1677 1680	900 700	36 2	523019 3020
1681	700	2	4020	1682	700	3	479020	1683	700	3	480020
1684	700	4	481020	1685	700	4	482020	1686	700	31	9020
1687	700	32	483020	1688	700	33	485020	1689	700	33	484020
1690	700	33	486020	1691	700	35	510020	1692	700	15	511020
1693	700	34	512020	1694	700	34	513020	1695	700	16	488020
1696	700	0	489020	1697	700	0	490020	1698	700	0	491020
1699 1702	700 700	0	502020 504020	1700 1703	700 700	0	514020 494020	1701 1704	700 700	0	492020 495020
1702	700	0	56020	1703	700	0	515020	1704	700	0	57020
1708	700	0	506020	1709	700	0	516020	1710	500	3	115020
1711	500	3	116020	1712	500	4	117020	1713	500	4	118020
1714	500	0	497020	1715	900	0	527020	1716	500	1	1021
1717	500	1	2021	1718	500	2	3021	1719	500	2	4021
1720	500	3	517021	1721	500	3	518021	1722	500	4	519021
1723	500	4	520021	1724	500	0	521021	1725	900	0	527021
1726	500	1	1022	1727	500	1	2022	1728	500	2	3022
1729 1732	500 500	2 4	4022 519022	1730 1733	500 500	3 4	517022 520022	1731 1734	500 500	3 0	518022 521022
1735	900	0	522022	1736	900	36	523022	1737	500	1	1023
1738	500	1	2023	1739	500	2	3023	1740	500	2	4023
1741	500	3	517023	1742	500	3	518023	1743	500	4	519023
1744	500	4	520023	1745	500	0	521023	1746	900	0	527023
1747	500	1	1024	1748	500	1	2024	1749	500	2	3024
1750 1753	500 500	2 4	4024 519024	1751 1754	500 500	3 4	517024 520024	1752 1755	500 500	3 0	518024 521024
1756	900	0	522024	1754	900	36	520024	1758	900	37	521024
1759	900	38	529024	1760	900	0	530024	1761	900	0	528027

HEU-MET-FAST-067

1762 1765 1768 1771 1774 1777 1780 1783 1786 1789 1792 1795 1798 1801 1804 1807 1810 1813 1816 1819 1822 1825 1828 1831 1834 1837 1840 1843 1846	900 900 900 900 900 900 900 900 900 900	0 0 0 37 0 0 0 0 0 0 37 37 37 37 37 37 37 37 37 37 37 37 37	529028 533029 536029 539029 540030 542030 544030 546030 531031 536031 536031 557032 558032 558032 558032 558032 558033 534033 534033 534033 53603 53603	1763 1766 1769 1772 1775 1778 1781 1784 1787 1790 1793 1796 1802 1805 1808 1811 1814 1820 1823 1826 1823 1826 1823 1835 1844 1844	900 900 900 900 900 900 900 900 900 900	37 37 0 0 37 37 37 0 0 0 0 37 37 0 0 0 0	530028 534029 537029 532029 541030 543030 545030 547030 548031 550031 552031 554031 554032 547032 564033 564033 564033 564033 564033 570033 570034 575034 576034 576034	1764 1770 1773 1776 1779 1782 1785 1788 1791 1794 1794 1797 1800 1803 1806 1809 1812 1818 1821 1824 1827 1830 1830 1830 1831 1836 1839 1842 1845	900 900 900 900 900 900 900 900 900 900	0 0 37 0 37 37 37 37 37 37 37 37 37 37 37 37 37	531029 535029 538029 531030 534030 534030 532030 549031 551031 555031 555031 556032 543032 561032 562032 532032 532032 567033 567033 567033 571033 572034 534034 577034 578034
210300230300240300290300340300370300380300450300 210300230300240300290300340300370300380300450300											
21030023	030024	40300	2903003	403003	703003	8030	0450300				
210300230300240300290300340300370300380300450300											
21030023	030024	40300	2903003	403003	703003	8030	0450300				
21030023	030024	40300	2903003	403003	703003	8030	0450300				
60030061	030062	20300	0630300								
60030061	030062	20300	0630300								
240300											
240300											
30300 4	0300 6	60300	803002	703003	503005	4030	0570300				
30300 4	0300 6	60300	803002	7030035	503005	4030	0570300				
30300 4	0300 6	60300	803002	7030035	503005	4030	0570300				
21030023	030024	40300	2903003	403003	703003	8030	0450300				
240300											
23030027	0300										
210300230300240300290300340300370300380300450300											
210300230300240300290300340300370300380300450300											
240300											
240300											
210300230300240300290300340300370300380300450300											

240300

600300610300620300630300

210300220300230300270300280300290300340300380300 210300220300230300270300280300290300340300380300

Revision: 0

Date: September 30, 2003

HEU-MET-FAST-067

600300610300620300630300 240300 220300230300270300290300340300380300 220300230300270300290300340300380300 210300220300230300270300280300290300340300380300 210300230300240300290300340300370300380300450300 210300230300240300290300340300370300380300450300 210300230300240300290300340300370300380300450300 240300 240300 230300270300290300380300 MildStee 230300270300290300380300 Cast.Iron 230300270300290300380300 CastIron 2.16506E-05 3.53326E-05 2.03684E-02 8.21183E-06 2.48813E-05 9.41841E-06 583 1.20547E-04 2.32281E-04 583 1 5.40311E-05 8.81125E-05 5.07177E-02 2.04074E-05 6.19222E-05 2.34059E-05 583 2 3.00396E-04 5.78666E-04 583 2 6.11407E-05 9.97315E-05 5.73728E-02 2.31773E-05 7.00656E-05 2.65828E-05 584 3 3.39872E-04 6.54516E-04 584 3 $6.09948E-05 \hspace{0.1cm} 9.93609E-05 \hspace{0.1cm} 5.71780E-02 \hspace{0.1cm} 2.30278E-05 \hspace{0.1cm} 6.98169E-05 \hspace{0.1cm} 2.64114E-05 \hspace{0.1cm} 2.6414E-05 \hspace{0.1cm} 2.64114E-05 \hspace{0.1cm} 2.64114E-05 \hspace{0.1cm} 2.64114E$ 584 4 3.38761E-04 6.52435E-04 584 4 $3.71528{\pm}-05 \ 5.76194{\pm}-05 \ 4.51572{\pm}-02 \ 1.05441{\pm}-04 \ 2.02808{\pm}-05 \ 2.15130{\pm}-05$ 566 5 9.16767E-05 2.11877E-03 566 5 3.70285E-05 5.76272E-05 4.51547E-02 1.05342E-04 2.02581E-05 2.14530E-056 567 9.14689E-05 2.11861E-03 567 6 1.55503E-02 8.36225E-03 1.79011E-02 1.66065E-02 395 7 1.55467E-02 8.36034E-03 1.78970E-02 1.66027E-02 396 8 2.54423E-02 319 9 2.48703E-02 320 10 4.31359E-02 2.49725E-03 4.27261E-04 2.04842E-04 1.34460E-04 3.88918E-05 576 11 6.74453E-05 1.99725E-04 576 11 4.28711E-02 2.48081E-03 4.24456E-04 2.03451E-04 1.36092E-04 3.79195E-05 575 12 6.82884E-05 2.02253E-04 575 12 4.29149E-02 2.49075E-03 4.26089E-04 2.04260E-04 1.41232E-04 4.08364E-05 582 13 7.08176E-05 2.09681E-04 582 13 3.71528E-05 5.76194E-05 4.51572E-02 1.05441E-04 2.02808E-05 2.15130E-05 568 14 9.16767E-05 2.11877E-03 568 14 5.99284E-02 563 15 2.59580E-02 1.18713E-03 108 16 4.71396E-05 7.31323E-05 5.72934E-02 1.33797E-04 2.57003E-05 2.72984E-05 572 17 1.16296E-04 2.68820E-03 572 17 $4.71272E-05\ 7.30955E-05\ 5.72903E-02\ 1.33708E-04\ 2.56780E-05\ 2.72288E-05$ 573 18 1.16196E-04 2.68799E-03 573 18 5.91520E-02 556 19 6.00918E-02 565 2.0 $4.71396E-05\ 7.31323E-05\ 5.72934E-02\ 1.33797E-04\ 2.57003E-05\ 2.72984E-05\ 574$ 21 1.16296E-04 2.68820E-03 574 2.1 5.94607E-02 561 22 1.64049E-02 6.74895E-03 5.87854E-02 2.32581E-04 1.21323E-04 1.31366E-03 589 23 1.46536E-04 3.31545E-04 589 23 1.64050E-02 6.74897E-03 5.87856E-02 2.32387E-04 1.21312E-04 1.31362E-03 590 2.4 1.46511E-04 3.31488E-04 590 24 1.52523E-02 8.20202E-03 1.75581E-02 1.62883E-02 426 25 1.59809E-02 8.59381E-03 1.83968E-02 1.70663E-02 427 2.6 5.99284E-02 592 27 7.51131E-06 8.06681E-02 5.75208E-04 3.30433E-04 6.93968E-06 3.13766E-05 134 28 7.75361E-06 8.06701E-02 5.74813E-04 3.30748E-04 7.16354E-06 3.10651E-05 591 1.65059E-02 6.80650E-03 5.82463E-02 1.83577E-04 1.99182E-04 1.27630E-03 110 30 1.50360E-04 4.44872E-04 110 30 $4.42936{\mathtt E}-05\ 6.87964{\mathtt E}-05\ 5.39056{\mathtt E}-02\ 1.25863{\mathtt E}-04\ 2.41760{\mathtt E}-05\ 2.56695{\mathtt E}-05\ 569$ 31 1.09399E-04 2.52924E-03 569 31 $4.42936E-05 \ 6.87964E-05 \ 5.39056E-02 \ 1.25863E-04 \ 2.41760E-05 \ 2.56695E-05 \ 571$ 32

Revision: 0

1.09399E-04 2.52924E-03

Date: September 30, 2003 Page 124 of 125

4.43039E-05 6.87482E-05 5.39084E-02 1.25794E-04 2.40787E-05 2.55786E-05 570

571

32

HEU-MET-FAST-067

1.09361E-04 6.00220E-02 5.99953E-02	2.52933E-03				į	570 33 564 34 593 35
.08387	.00079	.00047	.00051		M:	ildStee
.07395	.01153	.00076	.00266		Ca	astIron
.00740	.00115	.00008	.00027		Ca	astIron
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.20519	0.29481	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.25000	0.25000	0.25000	0.25000	51
0.25000	0.25000	0.75000	0.75000	0.75000	5.18812	51
11.04292						51

Revision: 0 Date: September 30, 2003 Page 125 of 125