Apellidos	Earnis Catalán
Nombre	César

Preguntas sobre grupos:

1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $GL(2, \mathbb{F}_3)$ el grupo de matrices invertibles 2×2 con entradas en \mathbb{F}_3 .

- (a) (½ punto) En el conjunto de vectores no nulos $X=(\mathbb{F}_3\times\mathbb{F}_3)\backslash\{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v}\sim\vec{w}$ si y solo si $\vec{v}=\pm\vec{w}$. Prueba que \sim es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3)=X/\sim$, comprobando que hay exactamente cuatro.
- (b) ($\frac{1}{2}$ punto) Dada $A \in GL(2, \mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A : \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

- (c) (½ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in \mathrm{GL}(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.
- (d) (½ punto) Demuestra que la aplicación

$$f: \mathrm{GL}(2,\mathbb{F}_3) \longrightarrow S_4$$

 $A \longmapsto \sigma_A$

es un homomorfismo de grupos.

- (e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.
- (f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $GL(2, \mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2, \mathbb{F}_3)$.

Tema 2

$$(D_0)F_3=\sqrt{0}, \overline{1}, \overline{2}$$
; $X=(F_3\times F_3)$ \ $(0,0)$

Veamos que n es una relación de equivarencia:

o P. Reflexion:
$$\nabla^2 \wedge \nabla^2 \neq \nabla^2 \in X$$

$$\nabla^2 \wedge \nabla^2 \Leftrightarrow \nabla^2 = \pm \nabla^2 \text{ así que como } \nabla^2 = \nabla^2 \text{ sumpre,}$$
se cumple \square

· Psinetrica:
$$\nabla^2 v W \Leftrightarrow W^2 v V + \nabla^2 w \in X$$

$$\nabla^2 = \pm W \Leftrightarrow W^2 \pm V \text{ por tanto se cumple } \square$$

P. transition:
$$(V \cap W) \wedge (W \cap K) \Rightarrow V \cap K$$

$$(V = \pm W) \wedge (W = \pm K) \Rightarrow V = \pm K$$

por tanto se cumple Z

$$P^{2}(F_{3}) = X/N = \{(\overline{0}, \overline{1}), (\overline{0}, \overline{2}), (\overline{1}, \overline{1}), (\overline{1}, \overline{2})\}$$

b)
$$G_A$$
 está bien definida ya que sea $A \in GL(2, \mathbb{F}_3)$, $V[V] \in \mathbb{P}^2(\mathbb{F}_3)$. $V[V] \in \mathbb{P}^2(\mathbb{F}_3)$

$$\begin{bmatrix} A \cdot \nabla^2 \end{bmatrix} = \begin{bmatrix} \overline{W} \end{bmatrix}_{\mathbb{R}^2/\mathbb{F}_3}$$

$$\begin{cases} (AB) = \sigma_A \sigma_B = \int (A) \int (B) dA = \int (A) \int (A) dA = \int$$