

Entrance exam 2013-2014

PHYSICS

Duration: 2 h

Exercise I [20 pts]: Forced oscillations. Resonance phenomena.

An elastic horizontal pendulum consists of a solid (S), of mass $\mathbf{m} = 200$ g, attached to the end of a spring (R) of negligible mass and of stiffness \mathbf{k} , the other end of the spring being fixed. The centre of inertia G of the solid can move on a horizontal axis (O, \vec{i}), O being the position of G when (S) is at equilibrium. A suitable device exerts on the pendulum an exciting force of adjustable angular frequency ω . G starts to oscillate on both sides of O. At an instant t, the abscissa of G

is x and its velocity is $\vec{v} = v \vec{i} = \frac{dx}{dt} \vec{i}$; the exciting force is then of the form $\vec{F} = F \vec{i} = F_0 \sin(\omega t + \phi) \vec{i}$, of constant

amplitude F_0 and the solid (S) is subjected to a friction force of the form $\vec{f} = -h \vec{v} = -h \vec{v}$ where h is a positive constant. 1) Show that the differential equation in x associated with the motion of the pendulum is of the form:

$$\frac{d^2x}{dt^2} + \frac{h}{m}\frac{dx}{dt} + \frac{k}{m}x = \frac{F_0}{m}sin(\omega t + \phi).$$

- 2) In steady state, the solution of this differential equation is written as: $x = X_m \sin(\omega t)$.
 - a) Deduce, by giving ωt two particular values, the expression of tan ϕ in terms of the data and show that the amplitude X_m

is given by:
$$X_m = \frac{F_0}{\sqrt{h^2\omega^2 + (k - m\omega^2)^2}}$$
.

- b) By giving ω different values and by measuring, for each of these values, the corresponding value of X_m , we notice that we obtain an amplitude resonance phenomenon.
 - i) Determine the expression of the corresponding resonance angular frequency ω_r in terms of the data.
 - ii) Draw the shape of the amplitude resonance curve for two different values of h.
- 3. a) Determine the expression of v.
 - b) Deduce the expression of the amplitude V_m of v in terms of the data.
 - c) i) Determine the resonance angular frequency ω₀ of V_m.
 - ii) Draw the shape of the resonance curve of the amplitude V_m for two different values of h.
- 4. We give each of the quantities ω , h and k a particular value. Using an appropriate device, we perform, in steady state, the recording of F and x; the curves (1) and (2) represent respectively the variation of F and x as a function of time, where a vertical division represents a force of 0.3 N and a displacement of 1 cm and a horizontal division represents 30 ms.

b) Determine the values of k and h.

A. Opening and closing of the injector of a car

Exercise II [22 pts]: Different roles of a coil

An electromagnet, formed of a coil, is used to control the opening and closing of the injector in the modern car engines. This coil can also be used as a metal detector. In this exercise, we are interested to determine the inductance L of the coil.

Figure 2

Figure 1

To determine the inductance L of the coil of negligible resistance, we carry out the circuit of figure 1. The used generator delivers, across its terminals, a triangular asymmetrical voltage u_g . The resistance of (R) is equal to 1.0 k Ω . A suitable system allows us to obtain the curves of figure 2 which represent the variation of the voltage $u_R = u_{BM}$ across (R) and that of the voltage $u_L = u_{AB}$ across the coil as a function of time.

- 1. How did we obtain the curve u_L by using the recorded voltages on the channels Y_A and Y_B?
- 2. a) Give the expression of u_L in terms of u_R.
 - b) i) Referring to figure 2, determine the value of the inductance L in each of the two intervals Δt and $\Delta t'$.
 - ii) The manufacturer announces L ≈ 2.0 H. Comment on briefly the two values obtained of L by accepting a relative variation of absolute value 10%.

B. Effect of iron on the inductance

The set up used is that of figure 1, where we replace the generator by an ideal one of emf E = 3.2 V.

Using an appropriate device, we record the variation of the voltage $u_R = u_{BM}$ as a function of time. The origin of time is taken at the instant when the switch K is closed.

- 1. Derive, at an instant t, the differential equation in u_R.
- 2. The solution of this differential equation is of the form $u_R = U_0$ (1-e^{-1/ τ}). Determine the expressions of the constants U_0 and τ .
- 3. The recording of u_R is, initially, obtained in the absence of any metal placed near the coil (curve (a)), then in the presence of a piece of iron placed near the coil (curve (b)) (fig 3).
- a) Determine the values of the constants τ_a and τ_b associated respectively with (a) and (b).
- b) i) Compare the values L_a and L_b of the inductance of the coil in the absence and in the presence of iron.
 - ii) What can we deduce?

C. A metal detector

The metal detector is essentially made up of an ideal (L, C) electric oscillator.

- 1. Draw a diagram of the circuit showing the direction of the current i at an instant t.
- 2. Derive the differential equation in u_C, u_C being the voltage across the capacitor.
- 3. Deduce, from this differential equation, the expression of the proper frequency f_0 of the oscillator in terms of L and C.
- 4. The detector, associated with a frequency-meter, displays, in the absence of any metal, a signal of frequency $f_0=20$ kHz. The inductance of the coil being 2.0 H, calculate the value of C.
- 5. The previous detector displays, in the presence of a metal, a signal of frequency f = 21 kHz. Did we find iron? Justify.

Exercise III [18 pts]: Corpuscular aspect of radiations

A- Hydrogen atom

Given: $c = 2.998 \times 10^8 \text{ m/s}$; $h = 6.626 \times 10^{-34} \text{J·s}$; $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$.

The Balmer series consists of visible spectral lines and others lying in the ultraviolet domain. The wavelength of the first line H_{α} is 656.2 nm, that of the second H_{β} is 486.1 nm, that of the third H_{γ} is 434.0 nm, and so on. The wavelength of the limiting spectral line of this series is 364.6 nm.

- 1. Calculate, in eV, the energy of a photon associated with the limiting spectral line of Balmer series.
- 2. Determine the energy of the starting level and that of the arrival level.

B- Photoelectric effect

The potassium cathode (C) of a photoelectric cell has a useful surface area $S = 2.00 \text{ cm}^2$. The cathode, whose work function is $W_0 = 2.20 \text{ eV}$, receives radiations from a hydrogen point source placed at a distance D = 1.25 m which radiates uniformly in all directions, a power $P_S = 2.00 \text{ W}$.

- 1. Calculate the threshold wavelength of the potassium cathode.
- 2. Which are, among the Balmer series spectral lines, the radiations able to produce a photoelectric emission?
- 3. The maximum kinetic energy of an emitted electron is quantized. Why?
- 4. Using a filter, we illuminate the cathode with the blue light H_{β} . The emf E of the generator is adjusted to allow the anode collecting all the electrons emitted by the cathode whose quantum efficiency is $r_q = 0.875\%$.
 - a) Show that the radiant power P_0 received by the cell is equal to 2.04×10^{-5} W.
 - b) Determine the number N₀ of the incident photons on the cathode in one second;
 - c) Determine the current I₀ carried by the circuit.
- 5. We switch off the lamp, at an instant chosen as the origin of time $t_0 = 0$. The power received by (C), at an instant t, is then written as: $P = P_0 e^{-50 t}$.
 - a) Determine:
 - i) The number dn of the electrons emitted by (C) between the instants t and t+dt;
 - ii) The variation dq of the charge carried by the circuit between the instants t and t+dt;
 - b) Deduce the expression of the current i carried by the circuit at the instant t;
 - c) Determine the time at the end of which the current i will be supposed practically nil.

Entrance exam 2013-2014

Solution of Physics

14/7/2013

-		
Exerci	se I: Forced oscillations. Phenomena of resonance.	1
Q		Notes
1.	The mechanical energy of the system (oscillator, Earth) is given by: $E_m = E_C + E_{P\acute{e}} = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$. $\sum P = \frac{dE_m}{dt} \Rightarrow P(\vec{R}_N) + P(\vec{f}_1) + P(\vec{f}_2) = \frac{dE_m}{dt}$ $0 - hv \cdot v + F_0 \cdot \sin(\omega t + \phi)v = mv\frac{dv}{dt} + k x \frac{dx}{dt}; \text{ while simplifying by } v = \frac{dx}{dt} \text{ and while replacing } \frac{dv}{dt} \text{ by } \frac{d^2x}{dt^2}, \text{ we obtain: } -h\frac{dx}{dt} + F_0 \cdot \sin(\omega t + \phi) = m\frac{d^2x}{dt^2} + k x \Rightarrow \frac{d^2x}{dt^2} + \frac{h}{m}\frac{dx}{dt} + \frac{k}{m}x = \frac{F_0}{m}\sin(\omega t + \phi).$ Another method: $\sum \vec{F} = \frac{d\vec{P}}{dt} = m\frac{d\vec{V}}{dt} = m\frac{d^2x}{dt^2} \vec{I} = m\vec{g} + \vec{R}_N + \vec{f}_1 + \vec{T}_2 + \vec{F}_3, \text{ with } \vec{T}_3 = -kx\vec{I}_3$ After projection: $m\frac{d^2x}{dt^2} = -h\frac{dx}{dt} - kx + F_0\sin(\omega t + \phi) \Rightarrow \frac{d^2x}{dt^2} + \frac{h}{m}\frac{dx}{dt} + \frac{k}{m}x = \frac{F_0}{m}\sin(\omega t + \phi).$	3
2.a)	$\frac{dx}{dt} = \omega X_m cos(\omega t) \text{ et } \frac{d^2x}{dt^2} = -\omega^2 X_m sin(\omega t). \text{ While replacing in the differential equation, we obtain:}$ $-\omega^2 X_m sin(\omega t) + \frac{h}{m} \omega X_m cos(\omega t) + \frac{k}{m} X_m sin(\omega t) = \frac{F_0}{m} sin(\omega t + \phi).$ For $\omega t = 0 \Rightarrow \frac{h}{m} \omega X_m = \frac{F_0}{m} sin(\phi) \Rightarrow F_0 sin(\phi) = h\omega X_m.$ For $\omega t = \pi/2 \Rightarrow -\omega^2 X_m + \frac{k}{m} X_m = \frac{F_0}{m} sin(\pi/2 + \phi) = \frac{F_0}{m} cos(\phi). \Rightarrow -m\omega^2 X_m + k X_m = F_0 cos(\phi)$ $\Rightarrow [k - m\omega^2] X_m = F_0 cos(\phi) \Rightarrow tan\phi = \frac{h\omega}{k - m\omega^2} \text{ et } h^2\omega^2 X_m^2 + [k - m\omega^2]^2 X_m^2 = F_0^2$ $\Rightarrow X_m = \frac{F_0}{\sqrt{h^2\omega^2 + [k - m\omega^2]^2}}$	4
2.b.i	The resonance of amplitude takes place when the amplitude is maximum, i.e. when its derivative with	2
2.D. 1		2
	respect to ω is nil: $dX_m/d\omega = -\frac{1}{2}F_0[2\omega h^2 - 4m\omega(k-m\omega^2)][h^2\omega^2 + (k-m\omega^2)^2]^{-3/2} = 0$	
	$\Rightarrow 2\omega h^2 - 4m\omega(k - m\omega^2) = 0 \Rightarrow h^2 = -2m^2\omega^2 + 2mk \Rightarrow \omega_r = \sqrt{\frac{k}{m}} - \frac{1}{2}\left(\frac{h}{m}\right)^2$	
2.b.ii	when h increases, ω_r decreases.	1.5
3.a	We have $x = X_m \sin(\omega t) \Rightarrow$ the expression of $v : v = \omega X_m \cos(\omega t)$.	1
3.b	The expression of the amplitude V_m of $v: V_m = \omega X_m \Rightarrow V_m = \frac{F_0}{\sqrt{h^2 + [k/\omega - m\omega]^2}}$	1
3.c.i	There is a resonance of the amplitude V_m of the velocity, when the denominator is minimal, therefore for $k/\omega^2 - m = 0 \Rightarrow \omega_0 = \sqrt{\frac{k}{m}}$.	1

Exercise II Different roles of a coil

$ \begin{array}{c} \text{channel Y_B) and $ADD.} \\ \textbf{A.2.a} & \text{According to the Ohm's law in the case of a coil, we have: $u_L = L \text{di}/\text{dt}$ and the Ohm's law in the case of a resistor $u_R = R$ i, then $u_L = \frac{L}{R} \frac{du_R}{dt}$.} \\ \textbf{A.2.b.i} & \text{In the interval Δt: } \frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) \\ & \frac{du_R}{dt} = \frac{2+2}{3\times 10^{-3}} = 1333 \text{ V/s and } u_L = 2.5 \text{ V} \Rightarrow L = \frac{2.5\times 10^3}{1333} = 1.88 \text{ H.} \\ & \text{In the interval Δt: } \frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) \\ & \frac{du_R}{dt} = \frac{-2-2}{17\times 10^{-3}} = -235.3 \text{ V/s and } u_L = -0.5 \text{ V} \Rightarrow L = \frac{-0.5\times 10^3}{-235.3} = 2.12 \text{ H.} \\ \hline \textbf{A.2.b.ii} & \text{The obtained values are coherent with the value given by the manufacturer: } \frac{\Delta L_a}{L} = \frac{0.12}{2} \approx 6\% < 10\% \\ & \text{And } \frac{\Delta L_p}{\Delta t} = \frac{0.12}{2} \approx 6\% < 10\%. \\ \hline \textbf{B.1.} & \text{According to the law of voltage addition: } u_g = u_L + u_R \Rightarrow E = \frac{L}{R} \frac{du_R}{dt} + u_R. \\ \hline \textbf{B.2.} & \frac{du_R}{dt} = \frac{U_0}{\tau} e^{+\sqrt{\tau}}, E = \frac{L}{R} \frac{U_0}{\tau} e^{-\sqrt{\tau}} + U_0 - U_0 e^{-\sqrt{\tau}}. \\ & \text{By identification and whatever the time, one obtains: } U_0 = E \text{ et } \frac{U_0}{\tau} \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}. \\ \hline \textbf{B.3.a} & \text{For } t = \tau, u_R = 0.63\times 3.2 = 2.02 \text{ V} \\ \Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms.} \\ \hline \end{tabular} $	L'ACI CISC	If Different roles of a con	
A.2.a According to the Ohm's law in the case of a coil, we have: $u_L = Ldi/dt$ and the Ohm's law in the case of a resistor $u_R = R$ i, then $u_L = \frac{L}{R} \frac{du_R}{dt}$. A.2.b.i In the interval Δt : $\frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) $\frac{du_R}{dt} = \frac{2+2}{3\times 10^{-3}} = 1333 \text{ V/s and } u_L = 2.5 \text{ V} \Rightarrow L = \frac{2.5\times 10^3}{1333} = 1.88 \text{ H.}$ In the interval Δt ': $\frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) $\frac{du_R}{dt} = \frac{-2-2}{17\times 10^{-3}} = -235.3 \text{ V/s and } u_L = -0.5 \text{ V} \Rightarrow L = \frac{-0.5\times 10^3}{-235.3} = 2.12 \text{ H.}$ A.2.b.ii The obtained values are coherent with the value given by the manufacturer: $\frac{\Delta L_a}{L} = \frac{0.12}{2} \approx 6\% < 10\%$ B.1. According to the law of voltage addition: $u_g = u_L + u_R \Rightarrow E = \frac{L}{R} \frac{du_R}{dt} + u_R$. B.2. $\frac{du_R}{dt} = \frac{U_0}{\tau} e^{-U\tau}, E = \frac{L}{R} \frac{U_0}{\tau} e^{-U\tau} + U_0 - U_0 e^{-U\tau}.$ By identification and whatever the time, one obtains: $U_0 = E$ et $\frac{U_0}{\tau} \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}$. B.3.a For $t = \tau$, $u_R = 0.63\times 3.2 = 2.02 \text{ V}$ $\Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms.}$	A.1		1.5
a resistor $u_R = R$ i, then $u_L = \frac{L}{R} \frac{du_R}{dt}$. A.2.b.i In the interval $\Delta t : \frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) $\frac{du_R}{dt} = \frac{2+2}{3\times 10^{-3}} = 1333 \text{ V/s and } u_L = 2.5 \text{ V} \Rightarrow L = \frac{2.5\times 10^3}{1333} = 1.88 \text{ H.}$ In the interval $\Delta t : \frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) $\frac{du_R}{dt} = \frac{-2-2}{17\times 10^{-3}} = -235.3 \text{ V/s and } u_L = -0.5 \text{ V} \Rightarrow L = \frac{-0.5\times 10^3}{-235.3} = 2.12 \text{ H.}$ A.2.b.ii The obtained values are coherent with the value given by the manufacturer: $\frac{\Delta L_B}{L} = \frac{0.12}{2} \approx 6\% < 10\%$ And $\frac{\Delta L_b}{L} = \frac{0.12}{2} \approx 6\% < 10\%$. B.1. According to the law of voltage addition: $u_g = u_L + u_R \Rightarrow E = \frac{L}{R} \frac{du_R}{dt} + u_R$. B.2. $\frac{du_R}{dt} = \frac{U_0}{\tau} e^{-t/\tau}, E = \frac{L}{R} \frac{U_0}{\tau} e^{-t/\tau} + U_0 - U_0 e^{-t/\tau}$. By identification and whatever the time, one obtains: $U_0 = E$ et $\frac{U_0}{\tau} \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}$. B.3.a For $t = \tau$, $u_R = 0.63\times 3.2 = 2.02 \text{ V}$ $\Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms}$.			
A.2.b.i In the interval Δt : $\frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) $\frac{du_R}{dt} = \frac{2+2}{3\times 10^{-3}} = 1333 \text{ V/s}$ and $u_L = 2.5 \text{ V} \Rightarrow L = \frac{2.5\times 10^3}{1333} = 1.88 \text{ H}$. In the interval Δt ': $\frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) $\frac{du_R}{dt} = \frac{-2-2}{17\times 10^{-3}} = -235.3 \text{ V/s}$ and $u_L = -0.5 \text{ V} \Rightarrow L = \frac{-0.5\times 10^3}{-235.3} = 2.12 \text{ H}$. A.2.b.ii The obtained values are coherent with the value given by the manufacturer: $\frac{\Delta L_a}{L} = \frac{0.12}{2} \approx 6\% < 10\%$ And $\frac{\Delta L_b}{L} = \frac{0.12}{2} \approx 6\% < 10\%$. B.1. According to the law of voltage addition: $u_g = u_L + u_R \Rightarrow E = \frac{L}{R} \frac{du_R}{dt} + u_R$. 1 B.2. $\frac{du_R}{dt} = \frac{U_0}{\tau} e^{-t/\tau}, E = \frac{L}{R} \frac{U_0}{\tau} e^{-t/\tau} + U_0 - U_0 e^{-t/\tau}$. By identification and whatever the time, one obtains: $U_0 = E$ et $\frac{U_0}{\tau} \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}$. B.3.a For $t = \tau$, $u_R = 0.63\times 3.2 = 2.02 \text{ V}$ $\Rightarrow \tau_a = 2 \text{ ms}$ and $\tau_b = 3,3 \text{ ms}$. 2	A.2.a		2
A.2.b.i In the interval Δt : $\frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) $\frac{du_R}{dt} = \frac{2+2}{3\times 10^{-3}} = 1333 \text{ V/s}$ and $u_L = 2.5 \text{ V} \Rightarrow L = \frac{2.5\times 10^3}{1333} = 1.88 \text{ H}$. In the interval Δt ': $\frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) $\frac{du_R}{dt} = \frac{-2-2}{17\times 10^{-3}} = -235.3 \text{ V/s}$ and $u_L = -0.5 \text{ V} \Rightarrow L = \frac{-0.5\times 10^3}{-235.3} = 2.12 \text{ H}$. A.2.b.ii The obtained values are coherent with the value given by the manufacturer: $\frac{\Delta L_a}{L} = \frac{0.12}{2} \approx 6\% < 10\%$ And $\frac{\Delta L_b}{L} = \frac{0.12}{2} \approx 6\% < 10\%$. B.1. According to the law of voltage addition: $u_g = u_L + u_R \Rightarrow E = \frac{L}{R} \frac{du_R}{dt} + u_R$. 1 B.2. $\frac{du_R}{dt} = \frac{U_0}{\tau} e^{-t/\tau}, E = \frac{L}{R} \frac{U_0}{\tau} e^{-t/\tau} + U_0 - U_0 e^{-t/\tau}$. By identification and whatever the time, one obtains: $U_0 = E$ et $\frac{U_0}{\tau} \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}$. B.3.a For $t = \tau$, $u_R = 0.63\times 3.2 = 2.02 \text{ V}$ $\Rightarrow \tau_a = 2 \text{ ms}$ and $\tau_b = 3,3 \text{ ms}$. 2		a resistor $u_R = R$ i, then $u_L = \frac{L}{R} \frac{du_R}{dt}$.	
In the interval $\Delta t'$: $\frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line) $\frac{du_R}{dt} = \frac{-2-2}{17\times10^{-3}} = -235.3 \text{ V/s and } u_L = -0.5 \text{ V} \Rightarrow L = \frac{-0.5\times10^3}{-235.3} = 2.12 \text{ H}.$ A.2.b.ii The obtained values are coherent with the value given by the manufacturer: $\frac{\Delta L_a}{L} = \frac{0.12}{2} \approx 6\% < 10\%$ And $\frac{\Delta L_b}{L} = \frac{0.12}{2} \approx 6\% < 10\%$. B.1. According to the law of voltage addition: $u_g = u_L + u_R \Rightarrow E = \frac{L}{R} \frac{du_R}{dt} + u_R$. B.2. $\frac{du_R}{dt} = \frac{U_0}{\tau} e^{-t/\tau}, E = \frac{L}{R} \frac{U_0}{\tau} e^{-t/\tau} + U_0 - U_0 e^{-t/\tau}.$ By identification and whatever the time, one obtains: $U_0 = E$ et $\frac{U_0}{\tau} = \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}$. B.3.a For $t = \tau$, $u_R = 0.63\times3.2 = 2.02 \text{ V}$ $\Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms}.$	A.2.b.i		3
$\frac{du_R}{dt} = \frac{-2-2}{17 \times 10^{-3}} = -235.3 \text{ V/s and } u_L = -0.5 \text{ V} \Rightarrow L = \frac{-0.5 \times 10^3}{-235.3} = 2.12 \text{ H}.$ A.2.b.ii The obtained values are coherent with the value given by the manufacturer: $\frac{\Delta L_a}{L} = \frac{0.12}{2} \approx 6\% < 10\%$ And $\frac{\Delta L_b}{L} = \frac{0.12}{2} \approx 6\% < 10\%.$ B.1. According to the law of voltage addition: $u_g = u_L + u_R \Rightarrow E = \frac{L}{R} \frac{du_R}{dt} + u_R.$ B.2. $\frac{du_R}{dt} = \frac{U_0}{\tau} e^{-t/\tau}, E = \frac{L}{R} \frac{U_0}{\tau} e^{-t/\tau} + U_0 - U_0 e^{-t/\tau}.$ By identification and whatever the time, one obtains: $U_0 = E$ et $\frac{U_0}{\tau} \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}$. B.3.a For $t = \tau$, $u_R = 0.63 \times 3.2 = 2.02 \text{ V}$ $\Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms}.$			7
A.2.b.ii The obtained values are coherent with the value given by the manufacturer: $\frac{\Delta L_a}{L} = \frac{0.12}{2} \approx 6\% < 10\%$ B.1. According to the law of voltage addition: $u_g = u_L + u_R \Rightarrow E = \frac{L}{R} \frac{du_R}{dt} + u_R.$ B.2. $\frac{du_R}{dt} = \frac{U_0}{\tau} e^{-t/\tau}, E = \frac{L}{R} \frac{U_0}{\tau} e^{-t/\tau} + U_0 - U_0 e^{-t/\tau}.$ By identification and whatever the time, one obtains: $U_0 = E \text{ et } \frac{U_0}{\tau} \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}.$ B.3.a For $t = \tau$, $u_R = 0.63 \times 3.2 = 2.02 \text{ V}$ $\Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms.}$		In the interval $\Delta t'$: $\frac{du_R}{dt} = \frac{\Delta u_R}{\Delta t}$ (curve carried by a line)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A.2.b.ii	The obtained values are coherent with the value given by the manufacturer: $\frac{\Delta L_a}{L} = \frac{0.12}{2} \approx 6\% < 10\%$	1
B.2. $\frac{du_R}{dt} = \frac{U_0}{\tau} e^{-t/\tau}, E = \frac{L}{R} \frac{U_0}{\tau} e^{-t/\tau} + U_0 - U_0 e^{-t/\tau}.$ By identification and whatever the time, one obtains: $U_0 = E$ et $\frac{U_0}{\tau} \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}$. B.3.a For $t = \tau$, $u_R = 0.63 \times 3.2 = 2.02 \text{ V}$ $\Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms.}$		And $\frac{\Delta L_b}{L} = \frac{0.12}{2} \approx 6\% < 10\%$.	
By identification and whatever the time, one obtains: $U_0 = E$ et $\frac{U_0}{\tau}$ $\frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}$. B.3.a For $t = \tau$, $u_R = 0.63 \times 3.2 = 2.02$ V $\Rightarrow \tau_a = 2$ ms and $\tau_b = 3,3$ ms.	B.1.	According to the law of voltage addition: $u_g = u_L + u_R \Rightarrow E = \frac{L}{R} \frac{du_R}{dt} + u_R$.	1.5
B.3.a For $t = \tau$, $u_R = 0.63 \times 3.2 = 2.02 \text{ V}$ $\Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms.}$	B.2.		2
$\Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms.}$		By identification and whatever the time, one obtains: $U_0 = E$ et $\frac{U_0}{\tau} = \frac{L}{R} = U_0 \Rightarrow \tau = \frac{L}{R}$.	
Ti. 2	B.3.a	$\Rightarrow \tau_a = 2 \text{ ms and } \tau_b = 3,3 \text{ ms.}$	2
Figure 3.		Figure 3.	
B.3.b.i $L_a = R \times \tau_a = 10^3 \times 2 \times 10^{-3} = 2 \text{ H et } L_b = R \times \tau_b = 10^3 \times 3.3 \times 10^{-3} = 3.3 \text{ H.} \Rightarrow L_a < L_b.$	B.3.b.i	$L_a = R \times \tau_a = 10^3 \times 2 \times 10^{-3} = 2 \text{ H et } L_b = R \times \tau_b = 10^3 \times 3.3 \times 10^{-3} = 3.3 \text{ H.} \Rightarrow L_a < L_b.$	1.5
B.3.b.ii The presence of iron near the coil causes an increase in its inductance.	B.3.b.ii	The presence of iron near the coil causes an increase in its inductance.	0.5

C.1	A M q q N	0.5
C.2	We have $u_{AB} = u_{MN} \Rightarrow L \frac{di}{dt} = u_C$, but $i = -\frac{dq}{dt} = -C \frac{du_C}{dt} \Rightarrow -LC \frac{d^2u_C}{dt^2} = u_C$ thus $: \frac{d^2u_C}{dt^2} + \frac{1}{LC} u_C = 0$.	2.5
C.3	The general form of this differential equation is $\frac{d^2u_C}{dt^2} + \omega_0^2 u_C = 0 \Rightarrow \omega_0^2 = \frac{1}{LC}$. As the proper frequency $f_0 = \omega_0/2\pi$, then $f_0 = 1/[2\pi\sqrt{LC}]$.	1.5
C.4	The proper frequency $f_0 = 20 \text{ kHz} = 1/[2\pi\sqrt{LC}] \Rightarrow LC = 6.33 \times 10^{-11} \Rightarrow C = 3.16 \times 10^{-11} \text{ F}.$	1.5
C.5	With a frequency of 21 kHz $>$ 20 kHz \Rightarrow L' $<$ L; this implies that L has decreased. Thus iron was not found.	1
		22

Exercise III Corpuscular aspect of radiations

The electronic transition corresponding to the emission of this photon is from the level of ionization to the first excited level (n = 2) of the hydrogen atom. The starting level has by convention a zero energy and the level of arrival is such as: $E = E_{\infty} - E_{\Sigma} \Rightarrow 3.40 = 0 - E_{\Sigma} \Rightarrow E_{\Sigma} = -3.40 \text{ eV}.$ B.1 The threshold wavelength λ_S of the potassium cathode is such that $W_0 = hc/\lambda_S \Rightarrow \lambda_S = hc/W_0$. $\lambda_S = \frac{6.626 \times 10^{-34} \cdot 2.998 \times 10^9}{2.20 \cdot 1.60 \times 10^{-19}} = 5.65 \times 10^7 \text{ m or } 565 \text{ mm}.$ B.2 The lines of the Balmer series that can cause a photoelectric emission may verify the relation $\lambda < \lambda_S$, thus only H_0 , which has $\lambda = 656.2 \text{ nm} > \lambda_S$ do not cause the emission of photoelectrons. All the other lines verify $\lambda < \lambda_S$. B.3 We have, according to the relation of Einstein, the energy of the received photon: $E = W_0 + E_{C(max)} \cdot A_S$ $W_0 \text{ is a constant of the metal, and as } E \text{ is quantized thus the maximum kinetic energy } E_{C(max)} \text{ is quantized.}$ B.4.a The radiant power P_0 received by the cell: $P_0 = P_S \times s/4\pi D^2 = \frac{2 \times 2.0 \times 10^{-4}}{4 + \pi \cdot 1.25^2} = 2.04 \times 10^{-5} \text{ W}.$ 1.5 B.4.b The number N_0 of the incident photons on the cathode in one second is equal to: $N = \frac{\text{energic duaphoton}}{\text{energic duaphoton}} + \frac{1}{8} \cdot \frac{1}{10} = \frac{1}{10} = \frac{1}{10} \cdot \frac$	Exercise	e III Corpuscular aspect of radiations	
the first excited level (n = 2) of the hydrogen atom. The starting level has by convention a zero energy and the level of arrival is such as : $E = E_\infty - E_2 \Rightarrow 3.40 = 0 - E_2 \Rightarrow E_2 = -3.40 eV.$ B.1 The threshold wavelength λ_8 of the potassium cathode is such that $W_0 = hc/\lambda_8 \Rightarrow \lambda_8 = hc/W_0$. $\lambda_8 = \frac{6.26 \times 10^{-34} \cdot 2.998 \times 10^8}{2.201.66 \times 10^{-19}} = 5.65 \times 10^{-7} \text{ m or } 565 \text{ nm}.$ B.2 The lines of the Balmer series that can cause a photoelectric emission may verify the relation $\lambda < \lambda_8$, thus only H_a , which has $\lambda = 656.2 \text{ nm} > \lambda_8$ do not cause the emission of photoelectrons. All the other lines verify $\lambda < \lambda_8$. B.3 We have, according to the relation of Einstein, the energy of the received photon: $E = W_0 + E_{C(max)}$. As W ₀ is a constant of the metal, and as E is quantized thus the maximum kinetic energy $E_{C(max)}$ is quantized. B.4.a The radiant power P_0 received by the cell: $P_0 = P_8 \times 8/4\pi D^2 = \frac{2 \times 2.0 \times 10^{-4}}{4 \times \pi 1.25^2} = 2.04 \times 10^{-5} \text{ W}$. 1.5 B.4.b The number No of the incident photons on the cathode in one second is equal to: $N = \frac{c_{nergie} \text{ des photons } \frac{1}{6 \times 10^{-3}} = 4.99 \times 10^{13} \text{ photons emitted during } 1 \text{ s is } 1$ No energie duphoton $N = \frac{2.04 \times 10^{-5}}{4.09 \times 10^{-19}} = 4.99 \times 10^{13} \text{ photons emitted in } 1 \text{ s}$. B.5.a.i Knowing that $P = \frac{dW}{dt}$, dW being the energy received by (C) during dt; and dW = dN·E = dN·hv. The number dn of electrons emitted, during dt, at the instant t is given by: $dn = r_0 \cdot dN = \frac{P_0}{R} dt = r_0 \cdot \frac{P_0 e^{-50 t}}{R} dt$ B.5.a.ii The variation dq of the charge between the instants t and t + dt, is: $ dq = dn \cdot e$; $ dq = r_0 \cdot \frac{P_0 e^{-50 t}}{E} e \cdot dt$ B.5.b. i $ dq/dt = dn/dt = \frac{r_0 \cdot e^{-p_0}}{E} = \frac{r_0 \cdot e^{-p_0}}{E}$	A.1	We have $E = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \cdot 2.998 \times 10^8}{364.6 \times 10^{-9}} = 5.448 \times 10^{-19} \text{ J and } E = \frac{5.448 \times 10^{-19}}{1.60 \times 10^{-19}} = 3.40 \text{ eV}.$	2.5
B.1 The threshold wavelength λ_S of the potassium cathode is such that $W_0 = hc/\lambda_S \Rightarrow \lambda_S = hc/W_0$. $\lambda_S = \frac{6.626 \times 10^{-34} \cdot 2.998 \times 10^8}{2.20 \cdot 1.60 \times 10^{-19}} = 5.65 \times 10^{-7} \text{ m or } 565 \text{ nm}.$ B.2 The lines of the Balmer series that can cause a photoelectric emission may verify the relation $\lambda < \lambda_S$, thus only H_0 , which has $\lambda = 656.2 \text{ nm} > \lambda_S$ do not cause the emission of photoelectrons. All the other lines verify $\lambda < \lambda_S$. B.3 We have, according to the relation of Einstein, the energy of the received photon: $E = W_0 + E_{C(max)}$. As W_0 is a constant of the metal, and as E is quantized thus the maximum kinetic energy $E_{C(max)}$. As W_0 is a constant of the incident photons on the cathode in one second is equal to: B.4.a The radiant power P_0 received by the cell: $P_0 = P_S \times S/4\pi D^2 = \frac{2 \times 2.0 \times 10^{-4}}{4 \pi \cdot 1.25^2} = 2.04 \times 10^{-5} \text{ W}.$ 1.5 B.4.b The number N_0 of the incident photons on the cathode in one second is equal to: $N = \frac{\text{energic des photons emistel } s}{\text{energic dun photon}}$ $N = \frac{2.04 \times 10^{-5} \cdot 1}{4.99 \times 10^{-3}} = 4.99 \times 10^{13} \text{ photons emitted in } 1 \text{ s.}$ B.4.c The number of electrons emitted during $1 \text{ s is } :$ $N_0 = \frac{1}{4.90 \times 10^{-3}} = 4.99 \times 10^{13} = 4.37 \times 10^{11} \text{ electrons emitted in } 1 \text{ s.}$ $I_0 = q/t = \frac{N_0 \cdot q}{t} = \frac{4.37 \times 10^{11} \cdot 1.60 \times 10^{-19}}{1} = 6.99 \times 10^{-8} \text{ A}$ Knowing that $P = \frac{dW}{t}$, dW being the energy received by (C) during dt; and $dW = dN \cdot E = dN \cdot hv$. The number dn of electrons emitted, during dt, at the instant t is given by: $dn = r_q \cdot dN = r_q \frac{P_0 e^{-50t}}{t} = \frac{P_0 e^{-50t}}{t} = \frac{1}{E} \cdot \frac{1}{E}$	A.2	the first excited level $(n = 2)$ of the hydrogen atom.	2
B.1 The threshold wavelength $λ_S$ of the potassium cathode is such that $W_0 = hc/λ_S \Rightarrow λ_S = hc/W_0$. $λ_S = \frac{6c26×10^{-34} \cdot 2998×10^8}{2.201.60×10^{-19}} = 5.65×10^{-7}$ m or 565 nm. B.2 The lines of the Balmer series that can cause a photoelectric emission may verify the relation $λ < λ_S$, thus only H_0 , which has $λ = 656.2$ nm > $λ_S$ do not cause the emission of photoelectrons. All the other lines verify $λ < λ_S$. B.3 We have, according to the relation of Einstein, the energy of the received photon: $E = W_0 + E_{C(max)}$. As W_0 is a constant of the metal, and as E is quantized thus the maximum kinetic energy $E_{C(max)}$ is quantized. B.4.a The radiant power P_0 received by the cell: $P_0 = P_S × S/4πD^2 = \frac{2×2.0×10^{-4}}{4.π1.25^2} = 2.04×10^{-5} W$. 1.5 The number N_0 of the incident photons on the cathode in one second is equal to: $N = \frac{e^{inergie} des photons emis en 1 s}{e^{inergie} du n photon}$. $N = \frac{e^{inergie} des photons emis en 1 s}{e^{inergie} du photon} = 4.99×10^{13}$ photons emitted in 1 s. B.4.c The number of electrons emitted during 1 s is: $N_0 = r_0 + \frac{N_0 \cdot q_0}{1} = \frac{4.37×10^{11} + 16.0×10^{-19}}{1} = 6.99×10^{18} A$ B.5.a.i Knowing that $P = \frac{dW}{dt}$, dW being the energy received by (C) during dt; and dW = dN·E = dN·hv. The number of of electrons emitted, during dt, at the instant t is given by: $N_0 = \frac{N_0 \cdot q_0}{1} = N_0 \cdot q_$			
only H_{α} , which has $\lambda = 656.2$ nm $> \lambda_S$ do not cause the emission of photoelectrons. All the other lines verify $\lambda < \lambda_S$. B.3 We have, according to the relation of Einstein, the energy of the received photon: $E = W_0 + E_{C(max)}$. As W_0 is a constant of the metal, and as E is quantized thus the maximum kinetic energy $E_{C(max)}$ is quantized. B.4.a The radiant power P_0 received by the cell: $P_0 = P_S \times S/4\pi D^2 = \frac{2 \times 2.0 \times 10^{-5} \text{ d}}{4 \cdot \pi \cdot 1.25^2} = 2.04 \times 10^{-5} \text{ W}$. B.4.b The number N_0 of the incident photons on the cathode in one second is equal to: $N = \frac{\text{energie des photons émis en 1 S}}{\text{energie d'un photon}}.$ $N = \frac{2.04 \times 10^{-5} \cdot 1}{4.09 \times 10^{-19}} = 4.99 \times 10^{13} \text{ photons emitted in 1 s.}$ $I_0 = q/t = \frac{N_0 \cdot q_0}{t} = \frac{4.37 \times 10^{13} \cdot 1.60 \times 10^{-19}}{1} = 6.99 \times 10^{-8} \text{ A}}$ B.5.a.i Knowing that $P = \frac{dW}{t}$, dW being the energy received by (C) during dt; and dW = dN·E = dN·hv. The number dn of electrons emitted, during dt, at the instant t is given by: $dn = r_q \cdot dN = r_q \frac{P}{E} \cdot dt = r_q \frac{P_0 e^{-50} t}{E} \cdot dt$ B.5.a.ii The variation dq of the charge between the instants t and t + dt, is: $ dq = dn \cdot e$; $ dq = r_q \frac{P_0 e^{-50} t}{E} \cdot e \cdot dt$ B.5.b $i = dq/dt = e dn/dt \ i = \frac{r_q \cdot e \cdot P_0}{E} e^{-50} t = \frac{I_0 \cdot e^{-50} t}{E} \cdot \frac{1}{E}$ B.5.c i becomes practically nil when $\Delta t \approx 5\tau$, with $\tau = 1/50 = 0.02$ s $\Rightarrow \Delta t = 0.10$ s.	B.1	The threshold wavelength λ_S of the potassium cathode is such that $W_0 = hc/\lambda_S \Rightarrow \lambda_S = hc/W_0$.	1.5
W ₀ is a constant of the metal, and as E is quantized thus the maximum kinetic energy E _{C(max)} is quantized. B.4.a The radiant power P ₀ received by the cell: P ₀ = P _S ×s/4πD ² = $\frac{2\times2.0\times10^{-4}}{4\pi1.25^2}$ = 2.04×10 ⁻⁵ W. 1.5 B.4.b The number N ₀ of the incident photons on the cathode in one second is equal to: $N = \frac{\frac{\text{energie des photons émis en 1 s}}{\text{energie dun photon}}.$ $N = \frac{2.04\times10^{-5} \cdot 1}{4.09\times10^{-19}} = 4.99\times10^{13} \text{ photons emitted in 1 s.}$ B.4.c The number of electrons emitted during 1 s is: $N_c = r_q \cdot N = 0.00875 \cdot 4.99\times10^{13} = 4.37\times10^{11} \text{ electrons emitted in 1 s.}$ $I_0 = q/t = \frac{N_e \cdot q_e}{t} = \frac{4.37\times10^{11} \cdot 1.60\times10^{-19}}{t} = 6.99\times10^{-8} \text{ A}$ B.5.a.i Knowing that P = $\frac{dW}{dt}$, dW being the energy received by (C) during dt; and dW = dN·E = dN·hv. The number dn of electrons emitted, during dt, at the instant t is given by: $dn = r_q \cdot dN = r_q \cdot \frac{P_0 e^{-50 t}}{E} \cdot dt$ B.5.a.ii The variation dq of the charge between the instants t and t + dt, is: dq = dn \cdot e; dq = r_q \cdot \frac{P_0 e^{-50 t}}{E} \cdot e \cdot dt B.5.b i = dq/dt = e dn/dt i = $\frac{r_q \cdot e \cdot P_0}{E} e^{-50 t} = I_0 \cdot e^{-50 t}$. 1 b.5.c i becomes practically nil when Δt ≈ 5τ, with τ = 1/50 = 0.02 s ⇒ Δt = 0.10 s.	B.2	only H_{α} , which has $\lambda = 656.2$ nm $> \lambda_S$ do not cause the emission of photoelectrons. All the other lines verify $\lambda < \lambda_S$.	1
B.4.b The number No of the incident photons on the cathode in one second is equal to: $N = \frac{\text{énergie des photons émis en 1 s}}{\text{énergie dun photon}} = 4.99 \times 10^{13} \text{ photons emitted in 1 s.}$ B.4.c The number of electrons emitted during 1 s is: $N_e = r_q \cdot N = 0.00875 \cdot 4.99 \times 10^{13} = 4.37 \times 10^{11} \text{ electrons emitted in 1 s.}$ $I_0 = q/t = \frac{N_e \cdot q_e}{r} = \frac{4.37 \times 10^{11} \cdot 1.60 \times 10^{-19}}{1} = 6.99 \times 10^{-8} \text{ A}$ B.5.a.i Knowing that $P = \frac{dW}{dt}$, dW being the energy received by (C) during dt; and dW = dN·E = dN·hv. The number dn of electrons emitted, during dt, at the instant t is given by: $dn = r_q \cdot dN = r_q \cdot \frac{P}{E} \cdot dt = r_q \cdot \frac{P_0 e^{-50 t}}{E} \cdot dt$ B.5.a.ii The variation dq of the charge between the instants t and t + dt, is: $ dq = dn \cdot e$; $ dq = r_q \cdot \frac{P_0 e^{-50 t}}{E} \cdot e \cdot dt$ B.5.b $i = dq/dt = e dn/dt i = \frac{r_q \cdot e \cdot P_0}{E} e^{-50 t} = I_0 \cdot e^{-50 t}.$ B.5.c i becomes practically nil when $\Delta t \approx 5\tau$, with $\tau = 1/50 = 0.02$ s $\Rightarrow \Delta t = 0.10$ s.	B.3		1.5
B.4.bThe number N₀ of the incident photons on the cathode in one second is equal to: $N = \frac{\text{énergie des photons émis en 1 s}}{\text{énergie d'un photon}}.$ $N = \frac{2.04 \times 10^{-5} \cdot 1}{4.09 \times 10^{-19}} = 4.99 \times 10^{13} \text{ photons emitted in 1 s.}$ $E = \frac{2.04 \times 10^{-5} \cdot 1}{4.09 \times 10^{-19}} = 4.99 \times 10^{13} \text{ photons emitted during 1 s is :}$ $N_e = r_q \cdot N = 0.00875 \cdot 4.99 \times 10^{13} = 4.37 \times 10^{11} \text{ electrons emitted in 1 s.}$ $I_0 = q/t = \frac{N_e \cdot q_e}{t} = \frac{4.37 \times 10^{11} \cdot 1.60 \times 10^{-19}}{1} = 6.99 \times 10^{-8} \text{ A}$ $E = \frac{N_e \cdot q_e}{t} = \frac{4.37 \times 10^{11} \cdot 1.60 \times 10^{-19}}{1} = 6.99 \times 10^{-8} \text{ A}$ $E = \frac{N_e \cdot q_e}{t} = \frac{q_e \cdot q_e}{t} = \frac{4.37 \times 10^{11} \cdot 1.60 \times 10^{-19}}{1} = 6.99 \times 10^{-8} \text{ A}$ $E = \frac{N_e \cdot q_e}{t} = \frac{q_e \cdot q_e}{t$	B.4. a	The radiant power P_0 received by the cell: $P_0 = P_S \times s/4\pi D^2 = \frac{2 \times 2.0 \times 10^{-4}}{4 \cdot \pi \cdot 1.25^2} = 2.04 \times 10^{-5} \text{ W}.$	1.5
B.4.c The number of electrons emitted during 1 s is : $N_e = r_q \cdot N = 0,00875 \cdot 4.99 \times 10^{13} = 4.37 \times 10^{11} \text{ electrons emitted in 1 s.}$ $I_0 = q/t = \frac{N_e \cdot q_e}{t} = \frac{4.37 \times 10^{11} \cdot 1.60 \times 10^{-19}}{1} = 6.99 \times 10^{-8} \text{ A}$ B.5.a.i Knowing that $P = \frac{dW}{dt}$, dW being the energy received by (C) during dt; and dW = dN·E = dN·hv. The number dn of electrons emitted, during dt, at the instant t is given by: $dn = r_q \cdot dN = r_q \cdot \frac{P_0 e^{-50 t}}{E} \cdot dt$ B.5.a.ii The variation dq of the charge between the instants t and t + dt, is: dq = dn \cdot e; dq = $\frac{P_0 e^{-50 t}}{E} \cdot e \cdot dt$ B.5.b $i = dq/dt = e dn/dt i = \frac{r_q \cdot e \cdot P_0}{E} e^{-50 t} = I_0 \cdot e^{-50 t}.$ 1 B.5.c i becomes practically nil when Δt ≈ 5τ, with τ = 1/50 = 0.02 s ⇒ Δt = 0.10 s.	B.4.b	The number N_0 of the incident photons on the cathode in one second is equal to: $N = \frac{\text{énergie des photons \'emis en 1 s}}{\text{énergie d'un photon}}.$	1.5
B.5.a.i Knowing that $P = \frac{dW}{dt}$, dW being the energy received by (C) during dt; and dW = dN·E = dN·hv. The number dn of electrons emitted, during dt, at the instant t is given by: $dn = r_q \cdot dN = r_q \cdot \frac{P}{E} \cdot dt = r_q \cdot \frac{P_0 e^{-50 t}}{E} \cdot dt$ B.5.a.ii The variation dq of the charge between the instants t and t + dt, is: $ dq = dn \cdot e$; $ dq = r_q \cdot \frac{P_0 e^{-50 t}}{E} \cdot e \cdot dt$ B.5.b $i = dq/dt = e dn/dt \cdot i = \frac{r_q \cdot e \cdot P_0}{E} e^{-50 t} = I_0 \cdot e^{-50 t}$. 1 B.5.c i becomes practically nil when $\Delta t \approx 5\tau$, with $\tau = 1/50 = 0.02$ s $\Rightarrow \Delta t = 0.10$ s.	B.4.c	The number of electrons emitted during 1 s is : $N_e = r_q \cdot N = 0,00875 \cdot 4.99 \times 10^{13} = 4.37 \times 10^{11} \text{ electrons emitted in 1 s.}$	2
B.5.b $i = dq/dt = e dn/dt $ $i = \frac{r_q \cdot e \cdot P_0}{E} e^{-50 t} = \frac{I_0 \cdot e^{-50 t}}{E}$ 1 B.5.c i becomes practically nil when $\Delta t \approx 5\tau$, with $\tau = 1/50 = 0.02$ s $\Rightarrow \Delta t = 0.10$ s. 1.5	B.5.a.i	Knowing that $P = \frac{dW}{dt}$, dW being the energy received by (C) during dt; and dW = dN·E = dN·hv. The number dn of electrons emitted, during dt, at the instant t is given by:	1
B.5.b $i = dq/dt = e dn/dt $ $i = \frac{r_q \cdot e \cdot P_0}{E} e^{-50 t} = \frac{I_0 \cdot e^{-50 t}}{E}$ 1 B.5.c i becomes practically nil when $\Delta t \approx 5\tau$, with $\tau = 1/50 = 0.02$ s $\Rightarrow \Delta t = 0.10$ s. 1.5	B.5.a.ii	The variation dq of the charge between the instants t and t + dt, is: $ dq = dn \cdot e$; $ dq = \frac{P_0 e^{-50 t}}{E} \cdot e \cdot dt$	1
	B.5.b		1
18	B.5.c	i becomes practically nil when $\Delta t \approx 5\tau$, with $\tau = 1/50 = 0.02$ s $\Rightarrow \Delta t = 0.10$ s.	1.5
			18