

```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import sqlite3
import csv
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from wordcloud import WordCloud
import re
import os
from sqlalchemy import create engine # database connection
import datetime as dt
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem.snowball import SnowballStemmer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear model import SGDClassifier
from sklearn import metrics
from sklearn.metrics import f1 score, precision score, recall score
from sklearn import svm
from sklearn.linear model import LogisticRegression
from skmultilearn.adapt import mlknn
from skmultilearn.problem_transform import ClassifierChain
from skmultilearn.problem transform import BinaryRelevance
from skmultilearn.problem_transform import LabelPowerset
from sklearn.naive bayes import GaussianNB
from datetime import datetime
```

Stack Overflow: Tag Prediction

1. Business Problem

1.1 Description

Description

Stack Overflow is the largest, most trusted online community for developers to learn, share their programming know careers.

Stack Overflow is something which every programmer use one way or another. Each month, over 50 million developed Overflow to learn, share their knowledge, and build their careers. It features questions and answers on a wide range programming. The website serves as a platform for users to ask and answer questions, and, through membership a vote questions and answers up or down and edit questions and answers in a fashion similar to a wiki or Digg. As of has over 4,000,000 registered users, and it exceeded 10,000,000 questions in late August 2015. Based on the type o questions, the top eight most discussed topics on the site are: Java, JavaScript, C#, PHP, Android, jQuery, Python and

Problem Statemtent

Suggest the tags based on the content that was there in the question posted on Stackoverflow.

Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/

1.2 Source / useful links

Data Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data

Youtube: https://youtu.be/nNDqbUhtIRg

Research paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tagging-1.pdf

Research paper: https://dl.acm.org/citation.cfm?id=2660970&dl=ACM&coll=DL

1.3 Real World / Business Objectives and Constraints

- 1. Predict as many tags as possible with high precision and recall.
- Incorrect tags could impact customer experience on StackOverflow.
- 3. No strict latency constraints.

2. Machine Learning problem

2.1 Data

2.1.1 Data Overview

Refer: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data

All of the data is in 2 files: Train and Test.

Train.csv contains 4 columns: Id, Title, Body, Tags.

Test.csv contains the same columns but without the Tags, which you are to predict.

```
Size of Train.csv - 6.75GB

Size of Test.csv - 2GB

Number of rows in Train.csv = 6034195
```

The questions are randomized and contains a mix of verbose text sites as well as sites related to math and program questions from each site may vary, and no filtering has been performed on the questions (such as closed questions)

Data Field Explaination

Dataset contains 6,034,195 rows. The columns in the table are:

```
Id - Unique identifier for each question

Title - The question's title

Body - The body of the question

Tags - The tags associated with the question in a space-seperated format (all lowercase, tabs '\t' or ampersands '&')
```

2.1.2 Example Data point

```
Title: Implementing Boundary Value Analysis of Software Testing in a C++ program?
Body :
```

```
#include<
iostream>\n
#include<
stdlib.h>\n\n
using namespace std;\n\n
int main()\n
{\n
        int n,a[n],x,c,u[n],m[n],e[n][4];\n
        cout<<"Enter the number of variables";\n
        cout<<"Enter the Lower, and Upper Limits of the variables";\n
        for(int y=1; y<n+1; y++)\n
        {\n
            cin>>m[y];\n
```

 $n\n$

1

2

```
cin>>u[y];\n
             }\n
             for(x=1; x< n+1; x++) n
             {\n
                 a[x] = (m[x] + u[x])/2;\n
             }\n
             c=(n*4)-4;\n
             for(int a1=1; a1<n+1; a1++)\n</pre>
             \{ n \
                 e[a1][0] = m[a1]; \n
                 e[a1][1] = m[a1]+1;\n
                 e[a1][2] = u[a1]-1;\n
                 e[a1][3] = u[a1]; \n
             }\n
             for(int i=1; i<n+1; i++)\n
             {\n
                 for(int l=1; l<=i; l++)\n
                 {\n
                     if(1!=1)\n
                     {\n
                         cout<<a[1]<<"\\t";\n
                     }\n
                 }\n
                 for(int j=0; j<4; j++)\n
                 {\n
                     cout<<e[i][j];\n</pre>
                     for(int k=0; k< n-(i+1); k++) \setminus n
                     \{ \n
                         cout<<a[k]<<"\\t";\n
                     }\n
                     cout<<"\\n";\n
                 }\n
             } \n\n
             system("PAUSE");\n
             return 0;
                           \n
    }\n
The answer should come in the form of a table like\n\n
<code>
             50
                               50\n
             50
                              50\n
99
             50
                              50\n
100
             50
                               50\n
50
             1
                              50\n
```

```
50
                    2
                                    50\n
       50
                    99
                                    50\n
       50
                                    50\n
                    100
       50
                    50
                                    1\n
                                    2\n
       50
                    50
       50
                    50
                                    99\n
       50
                    50
                                    100\n
       </code>\n\n
       if the no of inputs is 3 and their ranges are\n
       1,100\n
       1,100\n
       1,100\n
       (could be varied too)\n\n
       The output is not coming, can anyone correct the code or tell me what\'s wrong?
Tags : 'c++ c'
```

2.2 Mapping the real-world problem to a Machine Learning Problem

2.2.1 Type of Machine Learning Problem

It is a multi-label classification problem

Multi-label Classification: Multilabel classification assigns to each sample a set of target labels. This can be though of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A question on Stackary of C, Pointers, FilelO and/or memory-management at the same time or none of these.

__Credit__: http://scikit-learn.org/stable/modules/multiclass.html

2.2.2 Performance metric

Micro-Averaged F1-Score (Mean F Score): The F1 score can be interpreted as a weighted average of the precision score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 scor for the F1 score is:

F1 = 2 * (precision * recall) / (precision + recall)

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

'Micro f1 score':

Calculate metrics globally by counting the total true positives, false negatives and false positives. This is a better metric imbalance.

'Macro f1 score':

Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

https://www.kaggle.com/wiki/MeanFScore

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

Hamming loss: The Hamming loss is the fraction of labels that are incorrectly predicted. https://www.kaggle.com/wiki/HammingLoss

3. Exploratory Data Analysis

3.1 Data Loading and Cleaning

3.1.1 Using Pandas with SQLite to Load the data

```
#Creating db file from csv
#Learn SQL: https://www.w3schools.com/sql/default.asp
if not os.path.isfile('train.db'):
    start = datetime.now()
   disk engine = create engine('sqlite:///train.db')
   start = dt.datetime.now()
   chunksize = 180000
   j = 0
   index start = 1
   for df in pd.read csv('Train.csv', names=['Id', 'Title', 'Body', 'Tags'], chunksize=chunk
        df.index += index start
        j+=1
        print('{} rows'.format(j*chunksize))
        df.to sql('data', disk engine, if exists='append')
        index start = df.index[-1] + 1
   print("Time taken to run this cell :", datetime.now() - start)
```

3.1.2 Counting the number of rows

```
if os.path.isfile('train.db'):
    start = datetime.now()
    con = sqlite3.connect('train.db')
    num_rows = pd.read_sql_query("""SELECT count(*) FROM data""", con)
    #Always remember to close the database
    print("Number of rows in the database :","\n",num_rows['count(*)'].values[0])
    con.close()
    print("Time taken to count the number of rows :", datetime.now() - start)
else:
    print("Please download the train.db file from drive or run the above cell to genarate tra

Number of rows in the database :
    6034196
```

Time taken to count the number of rows: 0:01:15.750352

3.1.3 Checking for duplicates

```
#Learn SQl: https://www.w3schools.com/sql/default.asp
if os.path.isfile('train.db'):
    start = datetime.now()
    con = sqlite3.connect('train.db')
    df no dup = pd.read sql query('SELECT Title, Body, Tags, COUNT(*) as cnt dup FROM data GR
    con.close()
    print("Time taken to run this cell :", datetime.now() - start)
else:
    print("Please download the train.db file from drive or run the first to genarate train.db
     Time taken to run this cell: 0:04:33.560122
df_no_dup.head()
# we can observe that there are duplicates
8
                                       Title
                                                                                  Body
      0
                                                                                 Implementing Boundary Value Analysis
                                               <code>#include&lt;iostream&gt;\n#include&...
                                       of S...
      1
                                                        I should do binding for datagrid
         Dynamic Datagrid Binding in Silverlight?
                                                                                            c# silverlic
                                                                           dynamicall...
      2
                                                        I should do binding for datagrid
                                                                                           c# silverlig
         Dynamic Datagrid Binding in Silverlight?
                                                                           dynamicall...
      3
               java.lang.NoClassDefFoundError:
                                                             I followed the guide in <a</p>
                                                                        href="http://sta...
                                  javax/serv...
      4
               java.sql.SQLException:[Microsoft]
                                                  I use the following code\n\n
                                 [ODBC Dri...
                                                                              <code>...
print("number of duplicate questions :", num rows['count(*)'].values[0]- df no dup.shape[0],
     number of duplicate questions : 1827881 ( 30.2920389063 % )
# number of times each question appeared in our database
df_no_dup.cnt_dup.value_counts()
          2656284
     1
     2
          1272336
     3
           277575
     4
                90
     5
                25
     Name: cnt_dup, dtype: int64
start = datetime.now()
```

adding a new feature number of tags per question
print("Time taken to run this cell :", datetime.now() - start)
df_no_dup.head()

Time taken to run this cell: 0:00:03.169523

Тағ	Body	Title	
C++	<pre><pre><code>#include&Itiostream>\n#include&</code></pre></pre>	Implementing Boundary Value Analysis of S	0
c# silverlight dat bindir	l should do binding for datagrid dynamicall	Dynamic Datagrid Binding in Silverlight?	1
c# silverlight dat binding columr	l should do binding for datagrid dynamicall	Dynamic Datagrid Binding in Silverlight?	2
jsp j:	I followed the guide in <a href="http://sta</a 	java.lang.NoClassDefFoundError: javax/serv	3
java jdt	I use the following code\n\n <pre><code></code></pre>	java.sql.SQLException:[Microsoft] [ODBC Dri	4

distribution of number of tags per question
df_no_dup.tag_count.value_counts()


```
3 1206157
```

- 2 1111706
- 4 814996
- 1 568298
- 5 505158

Name: tag_count, dtype: int64

```
#Creating a new database with no duplicates
if not os.path.isfile('train_no_dup.db'):
   disk dup = create engine("sqlite:///train no dup.db")
   no_dup = pd.DataFrame(df_no_dup, columns=['Title', 'Body', 'Tags'])
   no_dup.to_sql('no_dup_train',disk_dup)
#This method seems more appropriate to work with this much data.
#creating the connection with database file.
if os.path.isfile('train no dup.db'):
   start = datetime.now()
   con = sqlite3.connect('train_no_dup.db')
   tag_data = pd.read_sql_query("""SELECT Tags FROM no_dup_train""", con)
   #Always remember to close the database
   con.close()
   # Let's now drop unwanted column.
   tag_data.drop(tag_data.index[0], inplace=True)
   #Printing first 5 columns from our data frame
   tag data.head()
   print("Time taken to run this cell :", datetime.now() - start)
```

else:

print("Please download the train.db file from drive or run the above cells to genarate tr

Time taken to run this cell: 0:00:52.992676

3.2 Analysis of Tags

3.2.1 Total number of unique tags

```
# Importing & Initializing the "CountVectorizer" object, which
#is scikit-learn's bag of words tool.
#by default 'split()' will tokenize each tag using space.
vectorizer = CountVectorizer(tokenizer = lambda x: x.split())
# fit transform() does two functions: First, it fits the model
# and learns the vocabulary; second, it transforms our training data
# into feature vectors. The input to fit transform should be a list of strings.
tag_dtm = vectorizer.fit_transform(tag_data['Tags'])
print("Number of data points :", tag_dtm.shape[0])
print("Number of unique tags :", tag_dtm.shape[1])
     Number of data points: 4206314
     Number of unique tags: 42048
#'get_feature_name()' gives us the vocabulary.
tags = vectorizer.get feature names()
#Lets look at the tags we have.
print("Some of the tags we have :", tags[:10])
     Some of the tages we have : ['.a', '.app', '.asp.net-mvc', '.aspxauth', '.bash-profile',
```

3.2.3 Number of times a tag appeared

tag_df.head()

	Tags	Counts
0	.a	18
1	.арр	37
2	.asp.net-mvc	1
3	.aspxauth	21
4	.bash-profile	138

```
tag_df_sorted = tag_df.sort_values(['Counts'], ascending=False)
tag_counts = tag_df_sorted['Counts'].values
plt.plot(tag_counts)
plt.title("Distribution of number of times tag appeared questions")
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
```



```
plt.plot(tag_counts[0:10000])
plt.title('first 10k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:10000:25]), tag_counts[0:10000:25])
```


first 10k tags: Distribution of number of times tag appeared questions

			10	ag number							
400 [33156						11162			9148	8054	7151
6466	5865	5370	4983				1144	3929			
3453	3299	3123	2989				2647	2527			
2259	2186	2097	2026				L828	1776			
1631	1574	1532	1479				L365	1328			
1245	1222	1197	1181				L121	1101			
1038	1023	1006	983			52	938	926			91
882	869	856	841			16	804	789			70
752	743	733	725			02	688	678			58
650	643	634	627			07	598	589			77
568	559	552	545			33	526	518			96
500	495	490	485			.77	469	465			50
447	442	437	432			-22	418	413			93
398	393	388	385			78	374	376			55
361	357	354	356			44	342	339			32
330	326	323	319			12	309	307			ð1
299	296	293	291			86	284	281			76
275	272	270	268			62	260	258			54
252	250	249	247			43	241	239			36
234	233	232	236			26	224	222			19
217	215	214	212			.09	207	205			3 3
201	200	199	198			.94	193	192			39
188	186	185	183			.81	180	179			77
175	174	172	171			.69	168	167			55
164	162	161	166			.58	157	156			55
154	153	152	151			.49	149	148			16
145	144	143	142			41	140	139			37
137	136	135	134			.33	132	131			30
129	128	128	127			.26	125	124			23
123	122	122	121			.20	119	118			17
117	116	116	115			14	113	113			11
111	110	109	109			.08	107	106			96
105	105	104	104			.03	102	102			ð1
100	100	99	99			98	97	97			96
95	95	94	94			93	93	92			91
91	90	90	89			88	88	87			36
86	86	85	85			84	83	83			32
82	82	81	81			80	80	79			78
78	78	78	77			76	76	76			75
75	74	74	74	1 7	3	73	73	73	3 72	2 7	72]

```
plt.plot(tag_counts[0:1000])
plt.title('first 1k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:1000:5]), tag_counts[0:1000:5])
```


first 1k tags: Distribution of number of times tag appeared questions

200 [331505 221533 122769 1639]

```
plt.plot(tag counts[0:500])
plt.title('first 500 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
```

print(len(tag_counts[0:500:5]), tag_counts[0:500:5])

first 500 tags: Distribution of number of times tag appeared questions


```
100 [331505 221533 122769 95160
                                    62023 44829 37170 31897
                                                                  26925 24537
  22429
         21820
                 20957
                        19758
                               18905
                                       17728
                                               15533
                                                      15097
                                                              14884
                                                                     13703
  13364
         13157
                 12407
                        11658
                               11228
                                       11162
                                               10863
                                                      10600
                                                              10350
                                                                     10224
  10029
          9884
                  9719
                         9411
                                 9252
                                        9148
                                                9040
                                                       8617
                                                               8361
                                                                      8163
   8054
          7867
                  7702
                         7564
                                 7274
                                        7151
                                                7052
                                                       6847
                                                               6656
                                                                      6553
                                                               5490
   6466
          6291
                  6183
                         6093
                                 5971
                                        5865
                                                5760
                                                       5577
                                                                      5411
   5370
          5283
                  5207
                         5107
                                 5066
                                        4983
                                                4891
                                                       4785
                                                               4658
                                                                      4549
                                                4239
   4526
          4487
                  4429
                         4335
                                 4310
                                        4281
                                                       4228
                                                               4195
                                                                      4159
   4144
          4088
                  4050
                                 3957
                                        3929
                                                3874
                                                                      3797
                         4002
                                                       3849
                                                               3818
   3750
          3703
                  3685
                         3658
                                 3615
                                        3593
                                                3564
                                                       3521
                                                               3505
                                                                      3483]
```

```
plt.plot(tag_counts[0:100], c='b')
plt.scatter(x=list(range(0,100,5)), y=tag_counts[0:100:5], c='orange', label="quantiles with
# quantiles with 0.25 difference
plt.scatter(x=list(range(0,100,25)), y=tag_counts[0:100:25], c='m', label = "quantiles with 0"]
for x,y in zip(list(range(0,100,25)), tag_counts[0:100:25]):
    plt.annotate(s="({} , {})".format(x,y), xy=(x,y), xytext=(x-0.05, y+500))

plt.title('first 100 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.legend()
plt.show()
print(len(tag_counts[0:100:5]), tag_counts[0:100:5])
```


20 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703]

```
# Store tags greater than 10K in one list
lst_tags_gt_10k = tag_df[tag_df.Counts>10000].Tags
#Print the length of the list
print ('{} Tags are used more than 10000 times'.format(len(lst_tags_gt_10k)))
# Store tags greater than 100K in one list
lst_tags_gt_100k = tag_df[tag_df.Counts>100000].Tags
#Print the length of the list.
print ('{} Tags are used more than 100000 times'.format(len(lst_tags_gt_100k)))
```


153 Tags are used more than 10000 times 14 Tags are used more than 100000 times

Observations:

- 1. There are total 153 tags which are used more than 10000 times.
- 2. 14 tags are used more than 100000 times.
- 3. Most frequent tag (i.e. c#) is used 331505 times.
- 4. Since some tags occur much more frequenctly than others, Micro-averaged F1-score is the appropriate metric

3.2.4 Tags Per Question

```
#Storing the count of tag in each question in list 'tag_count'
tag_quest_count = tag_dtm.sum(axis=1).tolist()
#Converting list of lists into single list, we will get [[3], [4], [2], [2], [3]] and we are
tag_quest_count=[int(j) for i in tag_quest_count for j in i]
print ('We have total {} datapoints.'.format(len(tag_quest_count)))
print(tag_quest_count[:5])
```


We have total 4206314 datapoints. [3, 4, 2, 2, 3]

```
print( "Maximum number of tags per question: %d"%max(tag_quest_count))
print( "Minimum number of tags per question: %d"%min(tag_quest_count))
print( "Avg. number of tags per question: %f"% ((sum(tag_quest_count)*1.0)/len(tag_quest_count)
```

8

Maximum number of tags per question: 5 Minimum number of tags per question: 1 Avg. number of tags per question: 2.899440

```
sns.countplot(tag_quest_count, palette='gist_rainbow')
plt.title("Number of tags in the questions ")
plt.xlabel("Number of Tags")
plt.ylabel("Number of questions")
plt.show()
```


Observations:

- 1. Maximum number of tags per question: 5
- 2. Minimum number of tags per question: 1
- 3. Avg. number of tags per question: 2.899
- 4. Most of the questions are having 2 or 3 tags

3.2.5 Most Frequent Tags

```
# Ploting word cloud
start = datetime.now()

# Lets first convert the 'result' dictionary to 'list of tuples'
tup = dict(result.items())
#Initializing WordCloud using frequencies of tags.
**//color receases general general complete (1) PRE-Fabrical Page 100 CREATING C
```


Time taken to run this cell: 0:00:05.470788

Observations:

A look at the word cloud shows that "c#", "java", "php", "asp.net", "javascript", "c++" are some of the most frequent tag

3.2.6 The top 20 tags

```
i=np.arange(30)
tag_df_sorted.head(30).plot(kind='bar')
plt.title('Frequency of top 20 tags')
plt.xticks(i, tag_df_sorted['Tags'])
plt.xlabel('Tags')
plt.ylabel('Counts')
plt.show()
```


Observations:

- 1. Majority of the most frequent tags are programming language.
- 2. C# is the top most frequent programming language.
- 3. Android, IOS, Linux and windows are among the top most frequent operating systems.

3.3 Cleaning and preprocessing of Questions

3.3.1 Preprocessing

- 1. Sample 1M data points
- 2. Separate out code-snippets from Body
- 3. Remove Spcial characters from Question title and description (not in code)
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

```
def striphtml(data):
    cleanr = re.compile('<.*?>')
    cleantext = re.sub(cleanr, ' ', str(data))
    return cleantext
stop words = set(stopwords.words('english'))
stemmer = SnowballStemmer("english")
#http://www.sqlitetutorial.net/sqlite-python/create-tables/
def create connection(db file):
    """ create a database connection to the SQLite database
        specified by db_file
    :param db file: database file
    :return: Connection object or None
    11 11 11
    try:
        conn = sqlite3.connect(db_file)
        return conn
    except Error as e:
        print(e)
    return None
def create_table(conn, create_table_sql):
    """ create a table from the create_table_sql statement
    :param conn: Connection object
    :param create_table_sql: a CREATE TABLE statement
    :return:
    .....
    try:
        c = conn.cursor()
        c.execute(create_table_sql)
    except Error as e:
        print(e)
def checkTableExists(dbcon):
    curse = dheon cursor()
```

```
cui 31 - ubcoll.cui 301 (/
   str = "select name from sqlite_master where type='table'"
    table names = cursr.execute(str)
    print("Tables in the databse:")
   tables =table names.fetchall()
   print(tables[0][0])
   return(len(tables))
def create database table(database, query):
   conn = create connection(database)
   if conn is not None:
        create table(conn, query)
        checkTableExists(conn)
   else:
        print("Error! cannot create the database connection.")
   conn.close()
sql create table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL,
create_database_table("Processed.db", sql_create_table)
    Tables in the databse:
     QuestionsProcessed
# http://www.sqlitetutorial.net/sqlite-delete/
# https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
start = datetime.now()
read db = 'train no dup.db'
write db = 'Processed.db'
if os.path.isfile(read db):
   conn_r = create_connection(read_db)
   if conn r is not None:
        reader =conn_r.cursor()
        reader.execute("SELECT Title, Body, Tags From no dup train ORDER BY RANDOM() LIMIT 10
if os.path.isfile(write_db):
   conn w = create connection(write db)
   if conn_w is not None:
       tables = checkTableExists(conn w)
       writer =conn w.cursor()
        if tables != 0:
            writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
            print("Cleared All the rows")
print("Time taken to run this cell :", datetime.now() - start)
    Tables in the databse:
     OuestionsProcessed
     Cleared All the rows
     Time taken to run this cell: 0:06:32.806567
```

__ we create a new data base to store the sampled and preprocessed questions __

#http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/

```
start = datetime.now()
preprocessed_data_list=[]
reader.fetchone()
questions with code=0
len_pre=0
len post=0
questions_proccesed = 0
for row in reader:
   is code = 0
   title, question, tags = row[0], row[1], row[2]
   if '<code>' in question:
        questions_with_code+=1
        is code = 1
   x = len(question)+len(title)
   len pre+=x
   code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
    question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
    question=striphtml(question.encode('utf-8'))
   title=title.encode('utf-8')
   question=str(title)+" "+str(question)
   question=re.sub(r'[^A-Za-z]+',' ',question)
   words=word_tokenize(str(question.lower()))
   #Removing all single letter and and stopwords from question exceptt for the letter 'c'
    question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!
   len post+=len(question)
   tup = (question,code,tags,x,len(question),is_code)
   questions_proccesed += 1
   writer.execute("insert into QuestionsProcessed(question,code,tags,words_pre,words_post,is
   if (questions proccesed%100000==0):
        print("number of questions completed=",questions proccesed)
no_dup_avg_len_pre=(len_pre*1.0)/questions_proccesed
no dup avg len post=(len post*1.0)/questions proccesed
print( "Avg. length of questions(Title+Body) before processing: %d"%no_dup_avg_len_pre)
print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proc
print("Time taken to run this cell :", datetime.now() - start)
```



```
number of questions completed= 100000
number of questions completed= 200000
number of questions completed= 300000
number of questions completed= 400000
number of questions completed= 500000
number of questions completed= 600000
number of questions completed= 700000
number of questions completed= 800000
number of questions completed= 900000
Avg. length of questions(Title+Body) before processing: 1169
Avg. length of questions(Title+Body) after processing: 327
Percent of questions containing code: 57
Time taken to run this cell: 0:47:05.946582
```

```
# dont forget to close the connections, or else you will end up with locks
conn r.commit()
conn_w.commit()
conn r.close()
conn_w.close()
if os.path.isfile(write db):
    conn r = create connection(write db)
    if conn r is not None:
        reader =conn r.cursor()
        reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
        print("Questions after preprocessed")
        print('='*100)
        reader.fetchone()
        for row in reader:
            print(row)
            print('-'*100)
conn r.commit()
conn_r.close()
```


Questions after preprocessed

______ ('ef code first defin one mani relationship differ key troubl defin one zero mani relati -----('explan new statement review section c code came accross statement block come accross n -----('error function notat function solv logic riddl iloczyni list structur list possibl can ______ ('step plan move one isp anoth one work busi plan switch isp realli soon need chang lot -----('use ef migrat creat databas googl migrat tutori af first run applic creat databas ef e -----('magento unit test problem magento site recent look way check integr magento site given -----('find network devic without bonjour write mac applic need discov mac pcs iphon ipad con -----('send multipl row mysql databas want send user mysql databas column user skill time nno ('insert data mysql php powerpoint event powerpoint present run continu way updat slide ______

```
#Taking 1 Million entries to a dataframe.
write_db = 'Processed.db'
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcesse
conn_r.commit()
conn_r.close()
```

	question	tags
0	resiz root window tkinter resiz root window re	python tkinter
1	ef code first defin one mani relationship diff	entity-framework-4.1
2	explan new statement review section c code cam	C++
3	error function notat function solv logic riddl	haskell logic
4	step plan move one isp anoth one work busi pla	dns isp

```
print("number of data points in sample :", preprocessed_data.shape[0])
print("number of dimensions :", preprocessed_data.shape[1])
```


number of data points in sample : 999999 number of dimensions : 2

4. Machine Learning Models

4.1 Converting tags for multilabel problems

```
X y1 y2 y3 y4
                                                   x1 1 0 0 0
                                                   x1 0 1 0 0
# binary='true' will give a binary vectorizer
vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel y = vectorizer.fit transform(preprocessed data['tags'])
\_ We will sample the number of tags instead considering all of them (due to limitation of computing power) \_
def tags_to_choose(n):
    t = multilabel y.sum(axis=0).tolist()[0]
    sorted tags i = sorted(range(len(t)), key=lambda i: t[i], reverse=True)
    multilabel_yn=multilabel_y[:,sorted_tags_i[:n]]
    return multilabel yn
def questions explained fn(n):
    multilabel yn = tags to choose(n)
    x= multilabel yn.sum(axis=1)
    return (np.count nonzero(x==0))
questions explained = []
total tags=multilabel y.shape[1]
total_qs=preprocessed_data.shape[0]
for i in range(500, total tags, 100):
    questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3
fig, ax = plt.subplots()
ax.plot(questions_explained)
xlabel = list(500+np.array(range(-50,450,50))*50)
ax.set xticklabels(xlabel)
plt.xlabel("Number of tags")
plt.vlabel("Number Ouestions coverd partially")
```

```
plt.grid()
plt.show()
```

you can choose any number of tags based on your computing power, minimun is 50(it covers 90
print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")

with 5500 tags we are covering 99.04 % of questions

```
multilabel_yx = tags_to_choose(5500)
print("number of questions that are not covered :", questions_explained_fn(5500),"out of ", t

    number of questions that are not covered : 9599 out of 999999

print("Number of tags in sample :", multilabel_y.shape[1])
print("number of tags taken :", multilabel_yx.shape[1],"(",(multilabel_yx.shape[1]/multilabel_yx.shape of tags in sample : 35422
    number of tags taken : 5500 ( 15.527073570097679 %)

__We consider top 15% tags which covers 99% of the questions___
```

4.2 Split the data into test and train (80:20)

```
total_size=preprocessed_data.shape[0]
train_size=int(0.80*total_size)

x_train=preprocessed_data.head(train_size)
x_test=preprocessed_data.tail(total_size - train_size)

y_train = multilabel_yx[0:train_size,:]
y_test = multilabel_yx[train_size:total_size,:]
```

```
print("Number of data points in train data :", y_train.shape)
print("Number of data points in test data :", y_test.shape)
```

8

Number of data points in train data: (799999, 5500) Number of data points in test data: (200000, 5500)

4.3 Featurizing data

```
start = datetime.now()
vectorizer = TfidfVectorizer(min_df=0.00009, max_features=200000, smooth_idf=True, norm="12",
                             tokenizer = lambda x: x.split(), sublinear tf=False, ngram range
x train multilabel = vectorizer.fit transform(x train['question'])
x_test_multilabel = vectorizer.transform(x_test['question'])
print("Time taken to run this cell :", datetime.now() - start)
     Time taken to run this cell : 0:09:50.460431
print("Dimensions of train data X:",x_train_multilabel.shape, "Y :",y_train.shape)
print("Dimensions of test data X:",x test multilabel.shape,"Y:",y test.shape)
     Diamensions of train data X: (799999, 88244) Y: (799999, 5500)
     Diamensions of test data X: (200000, 88244) Y: (200000, 5500)
# https://www.analyticsvidhya.com/blog/2017/08/introduction-to-multi-label-classification/
#https://stats.stackexchange.com/questions/117796/scikit-multi-label-classification
# classifier = LabelPowerset(GaussianNB())
from skmultilearn.adapt import MLkNN
classifier = MLkNN(k=21)
# train
classifier.fit(x_train_multilabel, y_train)
# predict
predictions = classifier.predict(x test multilabel)
print(accuracy_score(y_test,predictions))
print(metrics.f1_score(y_test, predictions, average = 'macro'))
print(metrics.f1 score(y test, predictions, average = 'micro'))
print(metrics.hamming_loss(y_test,predictions))
.....
# we are getting memory error because the multilearn package
# is trying to convert the data into dense matrix
#MemoryError
                                           Traceback (most recent call last)
#<ipython-input-170-f0e7c7f3e0be> in <module>()
#----> classifier.fit(x_train_multilabel, y_train)
```


"\nfrom skmultilearn.adapt import MLkNN\nclassifier = $MLkNN(k=21)\n\m$ train\nclassifier

4.4 Applying Logistic Regression with OneVsRest Classifier

```
# this will be taking so much time try not to run it, download the lr_with_equal_weight.pkl f
# This takes about 6-7 hours to run.
classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='l1'), n_jo
classifier.fit(x_train_multilabel, y_train)
predictions = classifier.predict(x_test_multilabel)

print("accuracy :",metrics.accuracy_score(y_test,predictions))
print("macro f1 score :",metrics.f1_score(y_test, predictions, average = 'macro'))
print("micro f1 scoore :",metrics.f1_score(y_test, predictions, average = 'micro'))
print("hamming loss :",metrics.hamming_loss(y_test,predictions))
print("Precision recall report :\n",metrics.classification report(y test, predictions))
```


accuracy : 0.081965

macro f1 score : 0.0963020140154 micro f1 scoore : 0.374270748817 hamming loss : 0.00041225090909090907

Precision recall report :

ion reca	all report :			
	precision	recall	f1-score	support
0	0.62	0.23	0.33	15760
1	0.79	0.43	0.56	14039
2	0.82	0.55	0.66	13446
3	0.76	0.42	0.54	12730
4	0.94	0.76	0.84	11229
5	0.85	0.64	0.73	10561
6	0.70	0.30	0.42	6958
7	0.87	0.61	0.72	6309
8	0.70	0.40	0.50	6032
9	0.78	0.43	0.55	6020
10	0.86	0.62	0.72	5707
11	0.52	0.17	0.25	5723
12	0.55	0.10	0.16	5521
13	0.59	0.25	0.35	4722
14	0.61	0.22	0.32	4468
15	0.79	0.52	0.63	4536
16	0.58	0.27	0.37	4545
17	0.80	0.53	0.64	4069
18	0.61	0.24	0.35	3638
19	0.57	0.18	0.27	3218
20	0.33	0.06	0.10	3000
21	0.73	0.34	0.46	2585
22	0.59	0.29	0.38	2439
23	0.88	0.61	0.72	2199
24	0.64	0.39	0.48	2157
25	0.67	0.39	0.49	2123
26	0.86	0.65	0.74	1948
27	0.35	0.07	0.12	2027
28	0.59	0.29	0.39	2013
29	0.61	0.20	0.30	1801
30	0.48	0.24	0.32	1728
31	0.94	0.75	0.84	1725
32	0.60	0.26	0.36	1581
33	0.49	0.14	0.22	1533
34	0.81	0.33	0.47	1565
35	0.75	0.62	0.68	1568
36	0.76	0.50	0.60	1542
37	0.74	0.50	0.59	1536
38	0.37	0.12	0.19	1524
39	0.40	0.12	0.19	1345
40	0.65	0.38	0.48	1292
41	0.41	0.11	0.17	1264
42	0.69	0.25	0.37	1265
43	0.59	0.29	0.38	1171
44 45	0.41	0.15	0.22	1173 1127
45 46	0.38	0.10	0.16	1137 1125
46 47	0.62 0.26	0.12 0.07	0.20 0.11	1125 1116
47 48	0.26 0.44	0.07 0.15	0.11 0.22	1116 1042
46 49	0.40	0.13	0.22	1042 1096
43	0.40	0.02	כש.ש	1096

		allenki	manideep@gma	il.com_19 - (
50	0.63	0.38	0.48	1031
51	0.47	0.14	0.22	1033
52	0.87	0.68	0.76	1042
53	0.32	0.09	0.14	1027
54	0.53	0.14	0.22	1063
55	0.63	0.34	0.44	1048
56	0.78	0.42	0.54	1054
57	0.91	0.77	0.83	1058
58	0.37	0.10	0.16	1000
59	0.26	0.03	0.05	973
60	0.76	0.42	0.54	978
61	0.74	0.43	0.54	977
62	0.27	0.06	0.10	957
63	0.81	0.22	0.34	958
64	0.88	0.63	0.73	944
65	0.76	0.49	0.60	923
66	0.67	0.36	0.47	959
67	0.55	0.15	0.24	951
68	0.38	0.13	0.20	924
69	0.71	0.25	0.37	897
70	0.78	0.47	0.59	900
71	0.82	0.40	0.54	893
72	0.21	0.01	0.01	836
73	0.74	0.16	0.26	850
74	0.58	0.37	0.45	838
75	0.88	0.64	0.74	855
76	0.47	0.28	0.35	837
77	0.68	0.41	0.52	824
78	0.14	0.01	0.01	793
79	0.34	0.09	0.14	75 1
80	0.31	0.08	0.13	793
81	0.71	0.33	0.45	758
82		0.28	0.43	764
83	0.60			
	0.82	0.59	0.69	710
84	0.82	0.48	0.61	734
85	0.79	0.42	0.55	723
86	0.44	0.23	0.30	708
87	0.93	0.58	0.72	714
88	0.91	0.53	0.67	683
89	0.58	0.20	0.30	711
90	0.71	0.42	0.53	699
91	0.44	0.03	0.06	725
92	0.71	0.47	0.57	676
93	0.47	0.10	0.16	672
94	0.66	0.40	0.50	645
95	0.86	0.66	0.75	691
96	0.57	0.09	0.15	664
97	0.91	0.59	0.72	633
98	0.64	0.38	0.48	615
99	0.53	0.19	0.29	667
100	0.89	0.71	0.79	656
101	0.22	0.03	0.05	648
102	0.64	0.13	0.22	654
103	0.92	0.63	0.75	653
104	0.87	0.52	0.65	656
105	0.20	0.02	0.04	607
106	0.68	0.34	0.45	635
107	0.23	0.03	0.45	594
	U.23			

		anomania	ildoop@giridii.ooii	
108	0.40	0.18	0.25	592
109	0.32	0.07	0.12	604
110	0.46	0.21	0.29	606
111	0.70	0.39	0.50	567
112	0.68	0.27	0.38	571
113	0.61	0.36	0.45	578
114	0.47	0.18	0.26	564
115	0.35	0.13	0.19	537
116	0.93	0.66	0.77	583
117	0.59	0.09	0.15	534
118	0.66	0.35	0.46	566
119	0.20	0.04	0.07	567
120	0.48	0.16	0.24	497
121	0.55	0.19	0.29	536
122	0.24	0.05	0.08	528
123				
	0.81	0.53	0.64	550
124	0.50	0.21	0.29	563
125	0.35	0.06	0.10	545
126	0.49	0.18	0.27	544
127	0.95	0.76	0.84	549
128	0.63	0.34	0.44	495
129	0.94	0.59	0.73	509
130	0.34	0.11	0.16	501
131	0.28	0.04	0.07	524
132	0.48	0.26	0.34	485
133	0.55	0.37	0.45	515
134	0.32	0.04	0.08	536
135	0.77	0.38	0.51	526
136	0.67	0.34	0.45	493
137	0.40	0.08	0.14	501
138	0.31	0.05	0.09	501
139	0.29	0.02	0.04	523
140	0.88	0.64	0.74	508
141	0.33	0.11	0.16	490
142	0.77	0.50	0.60	482
143	0.49	0.25	0.33	461
144	0.74	0.48	0.58	496
145	0.62	0.17	0.26	521
146	0.39	0.13	0.19	481
147	0.00	0.00	0.00	486
148	0.37	0.09	0.14	497
149	0.54	0.09	0.16	470
150	0.37	0.11	0.17	459
151	0.74	0.45	0.56	464
152	0.50	0.24	0.32	482
153	0.46	0.09	0.15	507
154	0.29	0.04	0.07	503
155	0.90	0.59	0.71	456
156	0.50	0.27	0.35	480
157	0.54	0.26	0.35	443
158	0.92	0.70	0.80	457
159	0.57	0.08	0.13	478
160	0.16	0.03	0.05	470
161	0.37	0.18	0.24	468
162	0.24	0.05	0.09	428
163	0.40	0.08	0.13	462
164	0.73	0.32	0.45	493
165	0.73 A Q2	0.52 0.60	0.45	433 127
			9HcGPPX#scrollT	

			ildeep@gmail.com	
166	0.40	0.20	0.26	435
167	0.30	0.02	0.03	448
168	0.53	0.16	0.25	436
169	0.36	0.10	0.15	437
170	0.38	0.09	0.15	410
171		0.32	0.41	
172	0.59 0.69	0.39		450
173	0.09		0.50	435
174		0.67	0.77	427
	0.45	0.16	0.24	427
175 176	0.43	0.17	0.24	424
176 177	0.64 0.67	0.43	0.52 0.40	410
177 178	0.74	0.29 0.49	0.59	426 459
179		0.49		433
180	0.52 0.71	0.36	0.20	
181	0.71		0.48 0.74	452
182		0.62 0.13	0.20	427
	0.46		0.04	410
183	0.28 0.69	0.02		404
184		0.42	0.52	406
185 186	0.68	0.41	0.52	411
	0.22	0.02	0.03	394
187	0.90	0.65	0.75	414
188	0.64	0.10	0.18	430
189	0.16	0.04	0.06	389
190	0.28	0.03	0.05	418
191	0.36	0.16	0.22	371
192 193	0.83	0.57	0.68	363
194	0.91 0.44	0.55	0.69 0.07	389
194	0.49	0.04	0.31	411
196	0.49	0.22 0.74	0.83	383 423
197	0.91	0.54	0.68	378
198	0.69	0.38	0.49	382
199	0.12	0.01	0.49	344
	0.71		0.44	
200 201	0.71	0.31 0.34	0.44	383
202	0.18	0.02	0.47	390 405
203	0.43	0.07	0.11	365
204	0.43	0.14	0.21	346
205	0.42	0.05	0.08	378
206	0.67	0.27	0.39	390
207	0.33	0.07	0.11	379
208	0.39	0.11	0.17	386
209	0.42	0.15	0.22	339
210	0.42	0.07	0.12	382
211	0.37	0.05	0.08	374
212	0.62	0.38	0.47	364
213	0.94	0.76	0.84	372
214	0.96	0.63	0.76	350
215	0.76	0.38	0.50	352
216	0.00	0.00	0.00	351
217	0.64	0.29	0.40	329
217	0.72	0.31	0.44	341
219	0.72	0.71	0.81	331
220	0.49	0.71	0.35	342
221	0.76	0.39	0.52	339
222	0.29	0.04	0.06	332
	0.23	0.04	0.00	ے د د

		allenki	manideep@gma	l.com_19 - (
223	0.43	0.12	0.18	327
224	0.31	0.06	0.11	324
225	0.51	0.21	0.30	352
226	0.65	0.30	0.41	317
227	0.54	0.12	0.20	355
228	0.57	0.19	0.29	341
229	0.58	0.37	0.46	334
230	0.64	0.49	0.56	304
231	0.43	0.04	0.07	321
232	0.77	0.50	0.61	311
233	0.32	0.10	0.15	312
234	0.09	0.01	0.02	306
235	0.03	0.00	0.01	305
236	0.16	0.02	0.04	340
237	0.58	0.30	0.40	316
238	0.65	0.23	0.34	297
239	0.35	0.13	0.19	305
240	0.73	0.44	0.55	310
241	0.67	0.36	0.47	307
242	0.58	0.16	0.25	316
243	0.26	0.07	0.11	314
244	0.51	0.12	0.19	316
245	0.67	0.46	0.55	313
246	0.79	0.46	0.58	325
247	0.60	0.36	0.45	291
248	0.33	0.01	0.02	311
249	0.57	0.24	0.33	314
250	0.38	0.05	0.09	309
251	0.30	0.08	0.13	300
252	0.55	0.27	0.36	325
253	0.76	0.51	0.61	316
254	0.43	0.09	0.15	306
255	0.54	0.19	0.28	289
256	0.49	0.11	0.18	304
257	0.16	0.02	0.04	268
258	0.85	0.58	0.69	266
259	0.06	0.00	0.01	298
260	0.55	0.36	0.43	292
261	0.25	0.05	0.08	289
262	0.50	0.01	0.01	305
263	0.00	0.00	0.00	281
264	0.59	0.25	0.35	295
265	0.16	0.02	0.04	281
266	0.83	0.52	0.64	269
267	0.45	0.12	0.19	312
268	0.75	0.40	0.52	294
269	0.34	0.05	0.09	285
270	0.56	0.33	0.42	279
271272	0.50 0.59	0.28 0.38	0.36 0.46	269 277
272	0.69	0.38	0.43	277
273	0.36	0.01	0.43	285
274	0.94	0.69	0.80	295
276	0.46	0.19	0.30	283
277	0.65	0.29	0.40	250
278	0.57	0.20	0.40	281
279	0.86	0.58	0.69	270
280	0.62	0.35	0.44	272
	- · · · -	3.22		_,_

		anomana	ildoop@giridii.ooii	
281	0.32	0.07	0.11	278
282	0.00	0.00	0.00	264
283	0.85	0.59	0.70	281
284	0.78	0.53	0.63	261
285	0.33	0.09	0.14	283
286	0.00	0.00	0.00	275
287	0.29	0.03	0.05	274
288	0.37	0.04	0.06	284
289	0.00	0.00	0.00	260
290	0.54	0.24	0.34	245
291	0.07	0.00	0.01	267
292	0.33	0.07	0.11	263
293	0.30	0.09	0.14	268
294	0.33	0.11	0.16	270
295	0.48	0.06	0.10	261
296	0.84	0.59	0.69	240
297	0.43	0.22	0.29	250
298	0.81	0.51	0.63	245
299	0.11	0.01	0.01	283
300	0.51	0.21	0.30	236
301	0.78	0.51	0.62	267
302	0.19	0.02	0.04	243
303	0.26	0.04	0.06	276
304	0.89	0.71	0.79	280
305	0.37	0.14	0.20	249
306	0.24	0.02	0.04	258
307	0.00	0.00	0.00	262
308	0.53	0.20	0.29	248
309	0.58	0.25	0.35	244
310	0.33	0.06	0.09	254
311	0.41	0.10	0.16	263
312	0.52	0.25	0.33	232
313	0.75	0.55	0.63	235
314	0.61	0.11	0.19	248
315	0.49	0.16	0.25	263
316	0.33	0.08	0.12	264
317	0.61	0.06	0.12	216
318	0.05	0.00	0.01	230
319	0.53	0.27	0.36	230
320	0.00	0.00	0.00	239
321	0.45	0.08	0.13	265
322	0.69	0.32	0.44	253
323	0.23	0.04	0.06	238
324	0.72	0.37	0.49	232
325	0.22	0.05	0.08	239
326	0.49	0.18	0.26	261
327	0.64	0.14	0.23	261
328	0.67	0.47	0.55	231
329	0.46	0.13	0.20	264
330	0.18	0.02	0.03	242
331	0.80	0.37	0.50	231
332	0.63	0.28	0.39	234
333	0.50	0.32	0.39	212
334	0.26	0.05	0.09	221
335	0.15	0.03	0.05	242
336	0.57	0.30	0.40	211
337	0.20	0.01	0.03	212
ale com/drive/1t	. മ BcE4hd3E.laxDl	a aa la0edzP10Y0W	っている OHcGPPX#scrollT	ລລລ ດ=ADX

			manideep@gma	
220	о. ээ	0.00 0.00	0.00	222
339	0.22	0.02	0.04	227
340	0.66	0.30	0.41	216
341	0.57	0.26	0.36	231
342	0.45	0.22	0.29	233
343	0.17	0.03	0.04	232
344	0.28	0.02	0.04	209
345	0.37	0.11	0.17	216
346	0.27	0.09	0.13	222
347	0.48	0.19	0.28	243
348	0.51	0.26	0.35	222
349	0.57	0.12	0.20	228
350	0.44	0.12	0.18	205
351	0.58	0.30	0.39	177
352	0.77	0.39	0.52	234
353	0.96	0.57	0.71	230
354	0.47	0.21	0.29	195
355	0.90	0.42	0.57	209
356	0.06	0.00	0.01	205
357	0.50	0.11	0.18	211
358	0.43	0.16	0.23	230
359	0.27	0.08	0.12	211
360	0.39	0.09	0.14	221
361	0.24	0.04	0.08	200
362	0.82	0.15	0.25	219
363	0.36	0.07	0.12	222
364	0.62	0.27	0.38	213
365	0.94	0.36	0.52	199
366	0.80	0.37	0.51	200
367	0.76	0.29	0.42	199
368	0.57	0.26	0.36	212
369	0.93	0.71	0.80	214
370 371	0.10	0.02	0.03	197
	0.20	0.03	0.05	212
372	0.41	0.14 0.03	0.21	210
373	0.43		0.05 0.22	211
374	0.41 0.00	0.15	0.22	213
375	0.87	0.00 0.53		216
376			0.66 0.79	195 197
377	0.95 0.15	0.67	0.79	187 191
378 379	0.17	0.03 0.02	0.04	178
380	0.79	0.48	0.60	193
381	0.13	0.02	0.04	187
382	0.67	0.03	0.04	193
383	0.17	0.04	0.06	204
384	0.28	0.15	0.19	193
385	0.12	0.02	0.19	207
386	0.84	0.45	0.59	211
387	0.06	0.00	0.01	210
388	0.31	0.04	0.06	223
389	0.24	0.09	0.13	203
390	0.72	0.24	0.13	199
391	0.40	0.08	0.13	200
392	0.22	0.05	0.09	183
393	0.62	0.31	0.41	189
394	0.96	0.66	0.78	194
395	0.53	0.18	0.78	183
	0.00	0.10	3.27	100

		allenki	manideep@gmai	il.com_19 -
396	0.43	0.21	0.28	189
397	0.71	0.34	0.46	191
398	0.34	0.06	0.11	206
399	0.33	0.01	0.03	221
400	0.28	0.04	0.07	196
401	0.28	0.09	0.14	179
402	0.28	0.08	0.12	187
403	0.51	0.22	0.31	203
404	0.46	0.12	0.19	205
405	0.35	0.08	0.13	218
406	0.19	0.04	0.06	196
407	0.72	0.35	0.47	206
408	0.31	0.06	0.10	203
409	0.70	0.43	0.53	187
410	0.85	0.54	0.66	208
411	0.83	0.45	0.58	193
412	0.33	0.02	0.03	192
413	0.66	0.36	0.46	182
414	0.45	0.19	0.27	175
415	0.64	0.49	0.55	181
416	0.00	0.00	0.00	202
417	0.92	0.44	0.60	202
418	0.17	0.01	0.02	195
419	0.78	0.25	0.38	177
420	0.26	0.07	0.11	168
421	0.80	0.45	0.58	187
422	0.92	0.46	0.62	209
423	0.66	0.16	0.26	177
424	0.35	0.06	0.10	182
425	0.52	0.14	0.23	187
426	0.22	0.04	0.07	185
427	0.43	0.13	0.20	185
428	0.42	0.18	0.25	185
429	0.92	0.46	0.61	175
430	0.90	0.49	0.64	190
431	0.31	0.03	0.05	185
432	0.71	0.03	0.05	189
433	0.60	0.20	0.30	184
434	0.79	0.36	0.49	200
435 436	0.20 0.21	0.01	0.01 0.03	167
437	0.50	0.01 0.07	0.12	209 200
438	0.29	0.09	0.12	169
439	0.44	0.15	0.14	170
440	0.25	0.04	0.23	182
441	0.62	0.34	0.44	156
442	0.20	0.02	0.03	170
443	0.00	0.00	0.00	189
444	0.00	0.00	0.00	172
445	0.33	0.11	0.16	180
446	0.21	0.06	0.10	175
447	0.48	0.12	0.19	187
448	0.00	0.00	0.00	170
449	0.41	0.24	0.30	170
450	0.35	0.10	0.16	176
451	0.62	0.15	0.24	194
452	0.61	0.31	0.41	175
453	0.19	0.04	0.07	187

		allerikii	manideep@gmai	ii.com_19 - C
454	0.11	0.01	0.01	181
455	0.62	0.14	0.23	177
456	0.50	0.18	0.26	170
457	0.24	0.03	0.05	182
458	0.68	0.37	0.48	172
459	0.00	0.00	0.00	190
460	0.43	0.16	0.23	183
461	0.94	0.63	0.75	182
462	0.35	0.16	0.22	173
463	0.91	0.69	0.79	171
464	0.58	0.27	0.37	173
465	0.77	0.41	0.53	184
466	0.72	0.22	0.34	175
467	0.43	0.19	0.26	162
468	0.12	0.01	0.02	176
469	0.91	0.46	0.61	177
470	0.52	0.07	0.13	167
471	0.27	0.06	0.10	192
472	0.50	0.32	0.39	168
473	0.32	0.05	0.09	188
474	0.31	0.05	0.08	163
475	0.44	0.17	0.24	160
476	0.89	0.56	0.69	180
477	0.92	0.46	0.61	182
478	0.49	0.27	0.35	171
479	0.57	0.18	0.27	174
480	0.96	0.52	0.68	162
481	0.21	0.04	0.06	169
482	0.33	0.03	0.06	157
483	0.77	0.48	0.59	200
484	0.58	0.21	0.31	177
485	0.51	0.26	0.34	175
486	0.64	0.51	0.57	185
487	0.96	0.52	0.67	167
488	0.00	0.00	0.00	192
489	0.30	0.09	0.14	176
490	0.00	0.00	0.00	167
491	0.33	0.01	0.01	177
492	0.47	0.26	0.33	160
493				
	0.46	0.22	0.30	159
494	0.15	0.03	0.04	159
495	0.31	0.10	0.15	162
496	0.82	0.46	0.59	167
497	0.17	0.02	0.03	168
498	0.40	0.12	0.19	154
499	0.00	0.00	0.00	184
500	0.14	0.03	0.05	167
501	0.41	0.20	0.27	153
502	0.78	0.55	0.65	143
503	0.22	0.07	0.10	177
504	0.69	0.32	0.44	177
505	0.90	0.50	0.64	152
506	0.80	0.40	0.54	179
507	0.60	0.12	0.20	171
508	0.61	0.28	0.39	151
509	0.51	0.23	0.32	162
510	0.63	0.24	0.35	158
F11	0 10	0 03	0 05	164

		allenkiman	iideep@gmail.com	_19 - (
PIT	ρ.18	0.03	0.05	1 04
512	0.00	0.00	0.00	149
513	0.78	0.60	0.68	174
514	0.51	0.15	0.23	172
515	0.34	0.14	0.20	144
516	0.57	0.15	0.23	164
517	0.88	0.67	0.76	152
518	0.60	0.02	0.03	175
519	0.29	0.04	0.06	168
520	0.52	0.11	0.18	145
521	0.89	0.38	0.53	165
522	0.91	0.55	0.69	151
523	0.93	0.57	0.71	171
524	0.89	0.53	0.66	160
525	0.59	0.41	0.49	139
526	0.57	0.19	0.29	165
527	0.57	0.22	0.31	148
528	0.64	0.21	0.32	178
529	0.31	0.06	0.10	152
530	0.11	0.01	0.01	143
531	0.57	0.20	0.30	174
532	0.63	0.20	0.30	135
533	0.35	0.05	0.09	179
534	0.26	0.04	0.08	135
535	0.29	0.09	0.14	157
536	0.88	0.53	0.66	163
537	0.79	0.39	0.53	127
538	0.73	0.13	0.19	130
539	0.55	0.20	0.29	155
540	0.43	0.18	0.25	165
541	0.35	0.11	0.16	139
542	0.38	0.05	0.09	159
543	0.44	0.18	0.25	140
544	0.76	0.17	0.28	143
545	0.44	0.12	0.19	147
546	0.47	0.18	0.26	153
547	0.76	0.28	0.41	165
548	0.35	0.10	0.16	149
549	0.62	0.26	0.37	123
550	0.82	0.06	0.11	148
551	0.68	0.41	0.51	145
552	0.50	0.04	0.07	157
553	0.46	0.23	0.31	151
554	0.50	0.01	0.01	152
555	0.43	0.17	0.24	147
556	0.72	0.35	0.47	143
557	0.47	0.20	0.28	139
558	0.92	0.54	0.68	165
559	0.37	0.10	0.16	147
560	0.27	0.13	0.17	139
561	0.29	0.08	0.12	152
562	0.45	0.26	0.33	132
563	0.41	0.17	0.24	150
564	0.30	0.08	0.13	165
565	0.73	0.38	0.50	147
566	0.27	0.05	0.08	151
567	0.52	0.24	0.33	153
568	0.48	0.19	0.27	148
	-			-

		allenkiman	ideep@gmail.com	1_19 - (
569	0.17	0.04	0.06	142
570	0.11	0.02	0.04	140
571	0.07	0.01	0.01	149
572	1.00	0.02	0.04	146
573	0.51	0.29	0.37	135
574	0.73	0.24	0.36	137
575	0.50	0.11	0.18	142
576	0.24	0.10	0.14	145
577	0.82	0.25	0.38	145
578	0.72	0.33	0.45	131
579	0.40	0.15	0.22	142
580	0.00	0.00	0.00	143
581	0.38	0.09	0.15	139
582	0.57	0.15	0.24	150
	0.00	0.00	0.00	121
	0.57	0.28	0.38	148
	0.61	0.41	0.49	134
586	0.64	0.37	0.47	151
	0.74	0.11	0.20	150
	0.48	0.11	0.18	141
	0.20	0.03	0.05	137
	0.79	0.36	0.50	154
	0.52	0.22	0.31	126
	0.85	0.49	0.62	144
	0.29	0.06	0.10	130
	0.46	0.15	0.22	148
	0.13	0.02	0.03	115
	0.64	0.46	0.53	142
597	0.95	0.46	0.62	123
598	0.63	0.21	0.32	150
599	0.00	0.00	0.00	134
	0.24	0.04	0.07	154
	0.36	0.08	0.14	165
602	0.50	0.02	0.04	150
603	0.49	0.15	0.23	137
604	0.89	0.53	0.67	133
605	0.38	0.14	0.21	146
606	0.88	0.14	0.21	129
607	0.17	0.03	0.05	151
	0.86	0.55	0.67	138
	0.36	0.13	0.19	124
		0.01	0.03	
	0.40		0.00	144
	0.00 0.00	0.00 0.00	0.00	150
		0.05	0.08	130
	0.21			127
	0.41	0.17	0.24	141
	0.10	0.02	0.03	133
	0.54	0.29	0.38	132
	0.67	0.02	0.03	131
	0.21	0.03	0.06	125
	0.63	0.37	0.46	123
	0.00	0.00	0.00	148
	0.12	0.01	0.02	117
622	0.72	0.47	0.57	129
623	0.36	0.04	0.06	113
624	0.88	0.51	0.64	110
625	0.92	0.63	0.75	121
626 agle com/drive/1tB	0.22 RcE4hd3E lavDI	0.08	0.12	125

		allerikiri	nanideep@gma	II.COM_19 - V
627	0.95	0.59	0.73	132
628	0.67	0.30	0.42	116
629	0.81	0.38	0.52	126
630	0.29	0.04	0.07	126
631	0.28	0.06	0.10	148
632	0.91	0.61	0.74	140
633	0.50	0.02	0.03	128
634	0.40	0.16	0.22	128
635	0.00	0.00	0.00	140
636	0.95	0.41	0.57	130
637	0.62	0.23	0.34	126
638	0.75	0.08	0.15	143
639	0.67	0.31	0.42	121
640	0.16	0.04	0.07	117
641	0.36	0.12	0.19	112
642	0.46	0.14	0.21	137
643	0.96	0.61	0.74	141
644	0.71	0.37	0.49	127
645	0.28	0.06	0.10	128
646	0.10	0.01	0.01	124
647	0.11	0.03	0.05	138
648	0.11	0.03	0.04	119
649				
	0.00	0.00	0.00	137
650	0.33	0.01	0.02	121
651	0.07	0.02	0.03	108
652	0.72	0.41	0.52	122
653	0.61	0.26	0.36	139
654	0.40	0.02	0.03	112
655	0.53	0.14	0.22	125
656	0.64	0.19	0.29	124
657	0.30	0.08	0.12	117
658	0.50	0.20	0.28	116
659	0.37	0.08	0.14	130
660	0.15	0.02	0.03	121
661	0.75	0.35	0.48	124
662	0.48	0.12	0.19	121
663	0.84	0.63	0.72	126
664	0.00	0.00	0.00	118
665	0.18	0.06	0.09	113
666	0.00	0.00	0.00	128
667	0.53	0.12	0.20	139
668	0.29	0.04	0.07	131
669	0.26	0.05	0.08	127
670	0.47	0.07	0.12	125
671	0.33	0.02	0.03	111
672	0.55	0.37	0.44	127
673	0.72	0.48	0.57	130
674	0.19	0.02	0.04	130
675	0.60	0.20	0.30	126
676	0.15	0.02	0.03	104
677	0.13	0.02	0.22	127
678	0.57	0.15	0.24	130
679	0.26	0.10	0.14	112
680	0.43	0.09	0.15	131
681	0.00	0.00	0.00	140
682	0.53	0.35	0.42	114
683	0.78	0.12	0.22	112
CO4		2.00	^ 1^	445

		allenki	manideep@gmai	l.com_19 - (
684	0.35	0.06	0.10	115
685	0.66	0.15	0.24	128
686	0.57	0.10	0.17	122
687	0.25	0.03	0.05	109
688	0.29	0.02	0.03	108
689	0.00	0.00	0.00	125
690	0.50	0.01	0.02	117
691	0.36	0.09	0.15	127
692	0.80	0.35	0.49	129
693	0.42	0.16	0.23	118
694	0.72	0.37	0.49	151
695	0.67	0.29	0.41	112
696	0.81	0.22	0.34	119
697	0.19	0.05	0.07	109
698	0.58	0.33	0.42	122
699	0.96	0.49	0.65	102
700	0.29	0.07	0.11	102
701	0.46	0.26	0.33	107
702	0.25	0.03	0.05	105
703	0.25	0.01	0.02	113
704	0.62	0.27	0.37	98
705	0.21	0.05	0.08	100
706	0.72	0.33	0.45	131
707	0.45	0.21	0.29	112
708	0.44	0.03	0.06	119
709	0.28	0.07	0.11	105
710	0.18	0.03	0.04	117
711	0.39	0.14	0.21	115
712	0.41	0.10	0.16	129
713	0.68	0.27	0.38	101
714	0.57	0.10	0.17	122
715	0.00	0.00	0.00	97
716	0.38	0.16	0.23	116
717	0.43	0.08	0.14	110
718	0.38	0.04	0.08	113
719	0.75	0.49	0.59	110
720	0.78	0.05	0.10	130
721	0.00	0.00	0.00	104
722	0.89	0.66	0.75	119
723	0.00	0.00	0.00	108
724	0.43	0.22	0.29	112
725	0.32	0.05	0.08	126
726	0.93	0.67	0.78	120
727	0.30	0.05	0.09	130
728	0.67	0.02	0.04	103
729	0.70	0.17	0.28	111
730	0.33	0.03	0.05	110
731	0.00	0.00	0.00	96
732	0.55	0.05	0.10	112
733	0.39	0.08	0.13	90
734	0.28	0.11	0.15	95
735	0.80	0.39	0.52	116
736	0.40	0.02	0.03	128
737	0.25	0.09	0.13	93
738	0.89	0.15	0.26	107
739	0.58	0.29	0.39	99 105
740	0.40	0.04	0.07	105
741	0.46	0.05	0.09	116

		dilotiki	mamaccpægman	
742	0.68	0.43	0.53	105
743	0.40	0.19	0.26	84
744	0.44	0.14	0.21	102
745	0.69	0.23	0.34	111
746	0.36	0.10	0.15	104
747	0.44	0.14	0.21	110
748	0.58	0.21	0.30	92
749	0.87	0.57	0.69	106
750	0.00	0.00	0.00	116
751	0.28	0.09	0.14	109
752	0.85	0.54	0.66	104
753	1.00	0.01	0.02	119
754	0.27	0.06	0.10	96
755	0.17	0.04	0.06	104
756	0.00	0.00	0.00	101
757	0.50	0.19	0.28	114
758	0.00	0.00	0.00	112
759	0.67	0.04	0.08	95
760	0.00	0.00	0.00	102
761	0.31	0.11	0.17	105
762	0.57	0.25	0.35	109
763	0.09	0.01	0.02	112
764	0.94	0.40	0.56	116
765	0.60	0.31	0.41	109
766	0.00	0.00	0.00	96
767	0.50	0.09	0.15	114
768	0.00	0.00	0.00	99
769	0.65	0.15	0.25	98
770	0.48	0.21	0.30	107
771	0.00	0.00	0.00	103
772	0.00	0.00	0.00	96
773	0.00	0.00	0.00	106
774	0.76	0.33	0.46	97
775	0.27	0.03	0.06	91
776	0.00	0.00	0.00	101
777	0.76	0.38	0.50	109
778	0.00	0.00	0.00	104
779	0.33	0.08	0.13	116
780	0.00	0.00	0.00	102
781	0.85	0.26	0.40	106
782	0.64	0.15	0.24	108
783	0.80	0.08	0.15	95
784	0.91	0.36	0.52	108
785	0.94	0.43	0.59	113
786	0.40	0.06	0.10	109
787	0.78	0.41	0.54	112
788	0.00	0.00	0.00	104
789	0.43	0.17	0.25	92
790	0.44	0.06	0.11	116
791	0.29	0.04	0.07	96
792	0.58	0.15	0.24	118
793	0.64	0.27	0.38	106
794	0.26	0.06	0.10	93
795	0.80	0.31	0.45	103
796	0.39	0.12	0.18	104
797	0.57	0.09	0.16	89
798	0.55	0.06	0.11	97
799	0 . 00 /drive/1tBcE4hd3E.lax	0 . 00 DHa0edzP10Y	0 . 00 OW9HcGPPX#si	92 crollTo=ADX

			ımanıdeep@gma	
800	0.55	0.14	0.22	85
801	1.00	0.04	0.08	93
802	0.79	0.28	0.41	93
803	0.36	0.13	0.19	102
804	0.65	0.12	0.20	108
805	0.87	0.37	0.52	111
806	0.61	0.14	0.23	98
807	0.20	0.03	0.06	94
808	0.15	0.02	0.04	84
809	0.84	0.32	0.46	100
810	0.22	0.02	0.04	92
811	0.37	0.11	0.17	88
812	0.39	0.13	0.20	104
813	0.50	0.04	0.08	90
814	0.38	0.07	0.12	109
815	0.23	0.04	0.06	81
816	0.70	0.22	0.33	96
817	0.98	0.53	0.69	88
818	0.56	0.24	0.33	101
819	0.94	0.45	0.61	103
820	0.00	0.00	0.00	94
821	0.72	0.17	0.27	108
822	0.29	0.06	0.09	90
823	0.81	0.44	0.57	97
824	0.50	0.02	0.04	90
825	0.52	0.23	0.32	102
826	0.12	0.01	0.02	85
827	0.20	0.02	0.03	109
828	0.30	0.03	0.05	103
829	0.98	0.40	0.56	106
830	0.88	0.26	0.40	108
831	0.50	0.04	0.07	84
832	0.00	0.00	0.00	98
833	0.77	0.26	0.39	92
834	0.50	0.10	0.17	91
835	0.87	0.28	0.43	92
836	0.28	0.07	0.11	104
837	0.63	0.24	0.34	102
838	0.22	0.07	0.11	111
839	0.00	0.00	0.00	96
840	0.41	0.15	0.22	86
841	0.34	0.10	0.16	105
842	0.20	0.01	0.02	92
843	0.39	0.16	0.23	86
844	0.00	0.00	0.00	108
845	0.45	0.06	0.11	82
846	0.22	0.04	0.07	101
847	0.97	0.60	0.74	94
848	1.00	0.41	0.58	101
849	0.39	0.14	0.20	88
850	0.88	0.36	0.51	81
851	0.79	0.10	0.18	109
852	0.45	0.13	0.20	101
853	0.25	0.03	0.06	91
854	0.29	0.06	0.10	95
855	0.20	0.01	0.02	99
856	0.14	0.01	0.02	79
~	^	2 22	2.02	2.5

		alleriki	manideep@gma	ii.com_19 -
857	0.67	0.32	0.43	91
858	0.00	0.00	0.00	89
859	0.42	0.09	0.15	91
860	0.49	0.19	0.28	88
861	0.32	0.07	0.11	101
862	0.51	0.30	0.37	81
863	0.69	0.20	0.31	101
864	0.28	0.11	0.16	80
865	0.00	0.00	0.00	97
866	0.88	0.46	0.60	94
867	0.00	0.00	0.00	97
868	0.29	0.07	0.11	91
869	0.35	0.09	0.14	88
870	0.53	0.25	0.34	112
871	0.93	0.57	0.71	94
872	0.00	0.00	0.00	84
873	0.89	0.53	0.66	74
874	0.91	0.53	0.67	80
875	0.46	0.23	0.31	79
876	0.56	0.07	0.12	71
877	0.77	0.26	0.39	92
878	1.00	0.08	0.15	99
879	0.56	0.14	0.23	98
880	0.37	0.18	0.24	82
881	0.70	0.35	0.47	80
882	0.91	0.55	0.69	94
883	0.07	0.01	0.02	102
884	0.88	0.22	0.35	95
885	0.91	0.57	0.70	87
886	0.20	0.01	0.02	88
887	0.41	0.08	0.13	90
888	0.84	0.46	0.60	104
889	0.20	0.01	0.02	93
890	0.14	0.02	0.04	83
891	0.00	0.00	0.00	92
892	0.58	0.17	0.26	88
893	0.00	0.00	0.00	74
894	1.00	0.40	0.57	98
895	0.47	0.22	0.30	73
896	0.00	0.00	0.00	87
897	0.29	0.03	0.05	73
898	0.58	0.22	0.32	86
899	0.24	0.08	0.12	100
900	0.43	0.14	0.21	93
901	0.82	0.36	0.50	86
902	0.38	0.07	0.12	107
903	0.43	0.03	0.06	97
904	0.52	0.17	0.26	88
905	0.00	0.00	0.00	94
906	0.14	0.02	0.04	83
907	0.00	0.00	0.00	85
908	0.00	0.00	0.00	90
909	0.14	0.01	0.02	83
910	0.60	0.07	0.13	83
911	0.19	0.03	0.06	87
912	0.94	0.38	0.54	87
913	0.56	0.10	0.18	86
914	0.52	0.16	0.25	91
ノエマ	0.52	0.10	0.25	71

		alleriki	manideep@gmaii	.com_19 -
915	0.25	0.02	0.04	87
916	0.00	0.00	0.00	92
917	0.00	0.00	0.00	92
918	0.81	0.37	0.51	78
919	0.44	0.10	0.16	81
920	0.00	0.00	0.00	87
921	0.00	0.00	0.00	95
922	0.85	0.27	0.41	82
923	0.33	0.02	0.04	89
924	0.00	0.00	0.00	73
925	0.41	0.09	0.14	82
926	0.43	0.03	0.06	91
927	0.38	0.10	0.15	83
928	0.33	0.03	0.05	79
929	0.55	0.07	0.12	89
930	0.29	0.07	0.11	85
931	0.00	0.00	0.00	95
932	0.25	0.01	0.02	80
933	0.50	0.07	0.12	72
934	0.64	0.29	0.40	79
935	0.52	0.15	0.23	75
936	0.70	0.22	0.34	85
937	0.47	0.09	0.16	75
938	0.23	0.09	0.13	69
939	0.00	0.00	0.00	85
940	0.11	0.01	0.02	72
941	0.00	0.00	0.00	69
942	0.44	0.09	0.14	94
943	0.00	0.00	0.00	85
944	0.94	0.36	0.52	89
945	0.19	0.04	0.06	77
946	0.78	0.15	0.25	93
947	0.00	0.00	0.00	81
948	0.95	0.50	0.66	78 75
949	0.00	0.00	0.00	75
950	0.00	0.00	0.00	80
951	0.12	0.01	0.02	88
952	0.29	0.03	0.05	80
953	1.00	0.71	0.83	85 71
954 955	0.83 0.00	0.55 0.00	0.66 0.00	71 80
956	0.81	0.37	0.51	68
957	0.81		0.65	75
958	0.43	0.52 0.13	0.20	90
959	0.43	0.15	0.25	87
960	0.81	0.38	0.53	87
961	0.74	0.29	0.33	68
962	0.65	0.25	0.42	86
963	0.57	0.19	0.28	85
964	0.43	0.15	0.23	78
965	0.76	0.44	0.56	88
966	0.93	0.46	0.61	85
967	0.52	0.23	0.32	70
968	0.32	0.23	0.07	82
969	0.88	0.47	0.61	92
970	0.31	0.05	0.09	73
971	0.00	0.00	0.00	77
972	0.00 0.46	0.00	0.00	22

			manideep@gmaii	
973	0.80	0.10	0.18	80
974	0.12	0.01	0.02	83
975	0.98	0.58	0.73	76
976	0.00	0.00	0.00	85
977	0.00	0.00	0.00	65
978	0.57	0.11	0.19	72
979	0.33	0.02	0.04	85
980	0.23	0.05	0.04	64
981	0.25	0.03	0.05	76
982	0.58	0.07	0.03	96
983	0.94	0.31	0.46	94
984	0.29	0.02	0.40	87
985	0.33	0.01	0.03	75
986	0.00	0.00	0.00	75 79
987	0.00	0.00	0.00	86
988	0.50	0.01	0.02	88
989	0.00	0.00	0.02	84
990	0.52	0.14	0.22	95
991	0.37	0.15	0.22	71
992	0.57	0.38	0.46	68
993	0.00	0.00	0.40	75
994	0.00	0.00	0.00	90
995	0.95	0.43	0.60	83
996	0.89	0.43	0.58	79
997	0.71	0.43	0.14	64
998	0.71	0.04	0.14	74
999	0.81	0.36	0.50	81
1000	0.00	0.00	0.00	74
1001	0.14	0.02	0.03	62
1001	0.67	0.25	0.37	71
1002	0.00	0.00	0.00	72
1003	0.50	0.08	0.14	75
1005	0.93	0.53	0.67	72
1005	0.52	0.15	0.23	81
1007	0.00	0.00	0.00	74
1007	0.17	0.01	0.03	72
1009	0.00	0.00	0.00	75
1010	0.47	0.16	0.24	91
1011	0.59	0.18	0.27	90
1012	0.62	0.25	0.36	80
1013	0.00	0.00	0.00	88
1014	0.80	0.06	0.11	71
1015	0.57	0.11	0.18	74
1016	0.88	0.22	0.35	68
1017	0.70	0.39	0.50	71
1017	0.65	0.21	0.32	80
1019	0.00	0.00	0.00	83
1020	0.46	0.08	0.14	74
1021	0.93	0.49	0.64	78
1022	0.86	0.32	0.47	77
1023	0.12	0.01	0.02	78
1024	0.68	0.31	0.43	67
1025	0.50	0.01	0.02	80
1026	0.69	0.23	0.35	77
1027	0.80	0.32	0.46	88
1028	0.24	0.06	0.09	70
1029	0.00	0.00	0.00	79

		allenk	ımanıdeep@gmaıl	.com_19 -
1030	0.33	0.07	0.12	67
1031	0.88	0.47	0.61	75
1032	0.56	0.28	0.38	64
1033	0.88	0.21	0.34	70
1034	0.17	0.06	0.09	69
1035	0.44	0.10	0.16	72
1036	0.30	0.04	0.07	79
1037	0.24	0.05	0.08	84
1038	0.00	0.00	0.00	87
1039	0.68	0.35	0.46	65
1040	0.72	0.36	0.48	73
1041	0.00	0.00	0.00	77
1042	0.27	0.05	0.09	77
1043	0.16	0.07	0.09	60
1044	0.00	0.00	0.00	73
1045	0.00	0.00	0.00	67
1046	0.43	0.04	0.07	83
1047	1.00	0.40	0.57	70
1048	1.00	0.02	0.03	65
1049	0.62	0.14	0.22	74
1050	0.50	0.02	0.03	62
1051	0.58	0.16	0.25	70
1052	0.00	0.00	0.00	69
1053	0.25	0.08	0.12	72
1054	0.44	0.15	0.23	72
1055	0.90	0.52	0.66	73
1056	0.74	0.34	0.46	92
1057	0.67	0.05	0.10	73
1058	0.31	0.12	0.17	68
1059	0.00	0.00	0.00	71
1060	0.33	0.10	0.16	69
1061	0.85	0.24	0.37	72
1062	0.44	0.29	0.35	66
1063	0.14	0.01	0.02	84
1064	0.00	0.00	0.00	78
1065	0.81	0.45	0.58	66
1066	0.21	0.04	0.07	69
1067	0.11	0.01	0.02	80
1068	1.00	0.01	0.03	71
1069	0.52	0.18	0.27	60
1070	0.20	0.01	0.02	77
1071	0.88	0.29	0.43	80
1072	0.25	0.06	0.10	80
1073	0.00	0.00	0.00	74
1074	0.21	0.04	0.07	69
1075	0.44	0.07	0.12	56
1076	0.32	0.13	0.18	63
1077	0.58	0.19	0.29	58
1078	0.00	0.00	0.00	63
1079	0.83	0.24	0.37	85
1080	0.52	0.15	0.24	78
1081	0.00	0.00	0.00	84
1082	0.74	0.42	0.54	73
1083	0.09	0.02	0.03	55
1084	0.51	0.26	0.34	70
1085	0.69	0.26	0.38	85
1086	0.00	0.00	0.00	68
1087	0.40	0.02	0.05	82

			1 03	
1088	0.00	0.00	0.00	67
1089	0.81	0.44	0.57	78
1090	0.70	0.11	0.19	64
1091	0.35	0.09	0.15	75
1092	0.38	0.16	0.23	61
1093	0.65	0.17	0.28	63
1094	0.00	0.00	0.00	77
1095	0.36	0.13	0.19	70
1096	0.86	0.34	0.48	71
1097	0.44	0.12	0.18	69
1098	0.58	0.22	0.32	63
1099	0.80	0.49	0.61	67
1100	0.57	0.06	0.11	68
1101	0.00	0.00	0.00	57
1102	0.90	0.54	0.67	69
1103	0.14	0.01	0.03	70
1104	0.40	0.05	0.09	75
1105	0.21	0.05	0.08	62
1106	0.25	0.01	0.03	72
1107	0.00	0.00	0.00	76
1108	0.00	0.00	0.00	72
1109	0.00	0.00	0.00	86
1110	0.85	0.43	0.57	82
1111	0.00	0.00	0.00	70
1112	0.50	0.01	0.03	72
1113	0.65	0.24	0.35	70
1114	0.20	0.02	0.03	57
1115	0.25	0.04	0.07	68
1116	0.00	0.00	0.00	64
1117	0.29	0.03	0.05	66
1118	0.50	0.11	0.18	81
1119	0.68	0.24	0.35	63
1120	0.15	0.06	0.09	62
1121	0.00	0.00	0.00	79
1122	0.80	0.21	0.34	56
1123	0.24	0.06	0.09	71
1124	0.00	0.00	0.00	78
1125	0.80	0.06	0.11	66
1126	0.00	0.00	0.00	62
1127	0.75	0.18	0.29	66
1128	0.00	0.00	0.00	70
1129	0.94	0.46	0.62	65
1130	0.85	0.37	0.51	63
1131	0.89	0.52	0.66	79
1132	0.38	0.07	0.12	67
1133	0.00	0.00	0.00	64
1134	0.20	0.03	0.05	67
1135	0.73	0.21	0.32	78
1136	0.44	0.07	0.13	54
1137	0.00	0.00	0.00	64
1138	0.39	0.09	0.15	76
1139	0.00	0.00	0.00	64
1140	0.00	0.00	0.00	67
1140	0.06	0.01	0.02	70
1141	0.44	0.01	0.02	66
1142	0.44	0.40	0.52	62
1143	0.74	0.40	0.00	67
11/15	0.00	a ac	0.00 0 11	47

				nail.com_19 - (
11 <i>1</i> 6	0.45 0.45	0.00	0.11	4 7
1146	0.35	0.09 0.40	0.14	69
1147	0.71		0.51	63
1148	0.37	0.10	0.16	70
1149	0.41	0.13	0.19	55
1150	0.57	0.33	0.42	49
1151	0.57	0.07	0.12	58
1152	0.00	0.00	0.00	65
1153	0.00	0.00	0.00	67
1154	0.00	0.00	0.00	66
1155	0.94	0.52	0.67	62
1156	0.62	0.07	0.12	72
1157	0.90	0.42	0.57	62
1158	0.00	0.00	0.00	60
1159	0.43	0.16	0.23	64
1160	0.30	0.05	0.09	59
1161	0.10	0.02	0.03	55
1162	0.51	0.29	0.37	63
1163	0.77	0.36	0.49	64
1164	0.00	0.00	0.00	54
1165	0.32	0.10	0.15	62
1166	0.00	0.00	0.00	73
1167	0.46	0.21	0.29	56
1168	0.33	0.03	0.06	60
1169	0.35	0.11	0.17	63
1170	0.80	0.05	0.10	73
1171	0.60	0.31	0.41	58
1172	0.29	0.03	0.06	59
1173	0.23	0.04	0.07	68
1174	0.45	0.14	0.22	63
1175	0.98	0.60	0.74	70
1176	0.87	0.42	0.57	62
1177	0.00	0.00	0.00	62
1178	0.00	0.00	0.00	45
1179	0.97	0.37	0.53	79
1180	0.70	0.12	0.21	58
1181	0.88	0.30	0.44	71
1182	0.12	0.02	0.03	56
1183	0.00	0.00	0.00	63
1184	0.00	0.00	0.00	72
1185	0.33	0.04	0.06	56
1186	0.82	0.19	0.30	75
1187	0.17	0.02	0.03	57
1188	0.45	0.08	0.14	60
1189	0.25	0.02	0.03	65
1190	0.50	0.01	0.03	68
1191	0.59	0.16	0.25	62
1192	0.00	0.00	0.00	68
1193	0.00	0.00	0.00	66
1193	0.40	0.04	0.06	
				57 67
1195	0.11	0.01	0.03	67 69
1196	0.88	0.10	0.18	69 66
1197	0.36	0.06	0.10	66
1198	0.40	0.03	0.06	62
1199	0.33	0.08	0.14	59
1200	0.92	0.21	0.34	57
1201	1.00	0.31	0.47	62
1202	0.87	0.47	0.61	58

		allerikir	nanideep@gmai	i.com_19 - (
1203	0.00	0.00	0.00	67
1204	0.63	0.35	0.45	74
1205	0.50	0.02	0.04	55
1206	0.55	0.09	0.16	65
1207	0.47	0.11	0.17	75
1208	0.63	0.20	0.30	61
1209	0.69	0.39	0.49	62
1210	0.14	0.02	0.03	59
1211	0.50	0.19	0.28	47
1212	0.00	0.00	0.00	59
1212				
	0.95	0.36	0.52	59 74
1214	1.00	0.03	0.05	74
1215	0.25	0.02	0.03	65
1216	0.00	0.00	0.00	60
1217	0.53	0.19	0.27	54
1218	0.00	0.00	0.00	62
1219	0.93	0.68	0.79	78
1220	0.85	0.57	0.68	72
1221	0.75	0.35	0.48	60
1222	0.43	0.14	0.21	63
1223	0.00	0.00	0.00	66
1224	0.56	0.14	0.23	69
1225	0.00	0.00	0.00	69
1226	0.80	0.18	0.29	68
1227	0.53	0.17	0.26	58
1228	0.00	0.00	0.00	51
1229	0.00	0.00	0.00	59
1230	0.00	0.00	0.00	75
1231	0.50	0.11	0.18	64
1232	0.00	0.00	0.00	66
1233	0.29	0.03	0.06	58
1234	0.00	0.00		63
1235			0.00	
	0.06	0.02	0.03	62
1236	0.00	0.00	0.00	57 77
1237	1.00	0.01	0.03	77
1238	0.81	0.40	0.54	52
1239	0.86	0.30	0.45	63
1240	0.90	0.40	0.55	48
1241	0.00	0.00	0.00	71
1242	0.79	0.18	0.29	62
1243	0.43	0.10	0.16	61
1244	0.00	0.00	0.00	53
1245	0.09	0.01	0.02	75
1246	0.38	0.05	0.10	55
1247	0.50	0.02	0.04	55
1248	0.00	0.00	0.00	49
1249	0.33	0.05	0.09	74
1250	0.97	0.47	0.64	59
1251	0.38	0.14	0.21	56
1252	0.33	0.10	0.15	63
1253	0.59	0.21	0.31	48
1254	0.95	0.60	0.73	62
1255	0.00	0.00	0.00	69
1256	0.30	0.05	0.08	65
1257	0.00	0.00	0.00	62
1258	0.39	0.14	0.20	51
1259	0.62	0.14	0.20	64
1260	0.00	0.00	0.00	64

				_
1261	0.00	0.00	0.00	63
1262	0.93	0.22	0.36	58
1263	0.36	0.07	0.12	54
1264	0.00	0.00	0.00	62
1265	0.00	0.00	0.00	59
1266	0.90	0.46	0.60	57
1267	0.14	0.02	0.03	51
1268	0.25	0.04	0.07	46
1269	0.97	0.53	0.68	55
1270	0.88	0.10	0.18	69
1271	0.60	0.14	0.22	65
1271	0.38	0.08	0.22	60
1273	0.35	0.10	0.14	59
1274	0.25	0.05	0.08	62
1274	0.00	0.00	0.00	52
1275	0.40	0.07	0.12	57
1277	0.29		0.12	
		0.03		61
1278	0.70	0.11	0.19	62
1279	0.93	0.57	0.71	47
1280	0.25	0.03	0.06	63
1281	0.58	0.11	0.19	61
1282	0.60	0.18	0.28	50
1283	0.27	0.08	0.12	52
1284	0.68	0.23	0.35	56
1285	0.67	0.04	0.07	57
1286	0.71	0.10	0.18	49
1287	0.57	0.14	0.23	56
1288	0.57	0.27	0.36	49
1289	0.00	0.00	0.00	55
1290	0.00	0.00	0.00	68
1291	0.90	0.50	0.64	52
1292	0.29	0.03	0.05	73
1293	0.88	0.43	0.58	67
1294	0.00	0.00	0.00	54
1295	0.25	0.06	0.10	34
1296	1.00	0.34	0.51	56
1297	0.00	0.00	0.00	66
1298	1.00	0.03	0.06	68
1299	0.57	0.06	0.11	64
1300	0.91	0.50	0.65	64
1301	0.00	0.00	0.00	48
1302	0.00	0.00	0.00	63
1303	0.00	0.00	0.00	62
1304	0.50	0.02	0.04	54
1305	0.23	0.10	0.14	51
1306	0.22	0.07	0.11	55
1307	0.00	0.00	0.00	53
1308	0.61	0.31	0.41	54
1309	0.67	0.16	0.26	61
1310	0.00	0.00	0.00	42
1311	0.25	0.02	0.03	55
1312	0.00	0.00	0.00	64
1313	0.00	0.00	0.00	58
1314	0.90	0.36	0.51	50
1315	0.00	0.00	0.00	57
1316	0.59	0.22	0.32	46
1317	1.00	0.05	0.09	42
1317	0 E0	0.03	0.03 a 2a	7/
	rive/1tBcF4hd3F.la			