

FCC EVALUATION REPORT FOR CERTIFICATION

Manufacturer: NEWRUN Inc.

Date of Issue: February 14, 2014

803 IT Convergence-Industrial Building, 80 Daehak-ro

Order Number: GETEC-C1-13-362

Buk-gu, Daegu, Korea

Test Report Number: GETEC-E3-13-090

Attn: Mr. JaeHee Kang / General Manager

Test Site: GUMI COLLEGE EMC CENTER

FCC Registration Number: (100749, 443957)

FCC ID. :

2ABTORF-Z110

Applicant:

NEWRUN Inc.

Rule Part(s)

: FCC Part 15 Subpart C-Intentional Radiator § 15.247

Test Method

: ANSI C63.10 (2009)

Equipment Class

: Digital Transmission System(DTS)

EUT Type

: NEWRUN RF module

Type of Authority

: Certification

Model Name

: NEWRUN_RF_Z110

Trade Mark

: NEWRUN

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4 (2009)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the vest of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by,

Reviewed by,

Seung-Chul Lee, Associate Engineer GUMI COLLEGE EMC CENTER Jae-Hoon Jeong, Technical Manager GUMI COLLEGE EMC CENTER

GETEC-QP-28-007 (Rev.01)

EMC CENTER

CONTENTS

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
3. PRODUCT INFORMATION	6
3.1 DESCRIPTION OF EUT	6
3.2 SUPPORT EQUIPMENT / CABLES USED	6
3.3 MODIFICATION ITEM(S)	6
4. DESCRIPTION OF TESTS	7
4.1 TEST CONDITION	7
5. ANTENNA REQUIREMENT - §15.203	7
5.1 DESCRIPTION OF ANTENNA	7
5.2 CONDUCTED EMISSION	8
5.3 RADIATED EMISSION	9
6. CONDUCTED EMISSION	10
6.1 OPERATING ENVIRONMENT	10
6.2 TEST SET-UP	10
6.3 MEASUREMENT UNCERTAINTY	10
6.4 Limit	11
6.5 TEST EQUIPMENT USED	11
6.6 TEST DATA FOR CONDUCTED EMISSION	11
7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT	13
7.1 OPERATING ENVIRONMENT	13
7.2 TEST SET-UP (LAYOUT)	13
7.3 LIMIT	13
7.4 TEST EQUIPMENT USED	13
7.5 TEST RESULT	13
8. POWER SPECTRAL DENSITY MEASUREMENT	16
8.1 OPERATING ENVIRONMENT	16
8.2 TEST SET-UP (LAYOUT)	16
8.3 LIMIT	16
8.4 TEST EQUIPMENT USED	16
7.5 TEST RESULT	16
9. 6 DB SPECTRUM BANDWIDTH MEASUREMENT	
9.1 OPERATING ENVIRONMENT	19
9.2 TEST SET-UP (LAYOUT)	19
9.3 LIMIT	19
9.4 TEST EQUIPMENT USED	19
9.5 TEST RESULT	19
10. BAND EDGE MEASUREMENT	22
10.1 OPERATING ENVIRONMENT	22
10.2 TEST SET-UP (LAY-OUT)	22
10.3 LIMIT	22
10.4 TEST EQUIPMENT USED	22
10.5 TEST RESULT	22

11. RADIATED EMISSION	25
11.1 OPERATING ENVIRONMENT	
11.2 TEST SET-UP	
11.3 MEASUREMENT UNCERTAINTY	
11.4 LIMIT	
11.5 TEST EQUIPMENT USED	
11.6 RADIATED EMISSION TEST DATA	

APPENDIX A – ATTESTATION STATEMEN	A	PPENI	DIX A	- ATTES	FATION	STATEN	MENT
-----------------------------------	---	-------	-------	---------	---------------	--------	------

APPENDIX B - LABELLING

APPENDIX C - BLOCK DIAGRAM

APPENDIX D - SCHEMATIC DIAGRAM

APPENDIX E - TEST SETUP PHOTOGRAPH

APPENDIX F - EXTERNAL PHOTOGRAPH

APPENDIX G - INTERNAL PHOTOGRAPH

APPENDIX H – USER'S MANUAL

APPENDIX I - OPERATIONAL DESCRIPTION

APPENDIX J - ANTENNA SPECIFICATION

APPENDIX K - PART LIST

APPENDIX L - MAXIMUM PERMISSIBLE EXPOSURE

APPENDIX M – MODULAR APPROVAL LETTER

Scope: Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and / or unintentional radiators for compliance with technical rules and regulations of the Federal Communications Commission.

1. General Information

Applicant: NEWRUN Inc.

Applicant Address: 803 IT Convergence-Industrial Building, 80 Daehak-ro, Buk-gu, Daegu, Korea

Manufacturer: NEWRUN Inc.

Manufacturer Address: 803 IT Convergence-Industrial Building, 80 Daehak-ro, Buk-gu, Daegu, Korea

Contact Person: Mr. JaeHee Kang / General Manager

Telephone Number: +82-53-954-3733

• FCC ID. 2ABTORF-Z110

Equipment Class
 Digital Transmission System (DTS)

• EUT Type NEWRUN_RF_module

• Model Name NEWRUN_RF_Z110

• Rule Part(s) FCC Part 15 Subpart C-Intentional Radiator § 15.247

• Test Method ANSI C63.10 (2009)

• Type of Authority Certification

• **Test Procedure(s)** ANSI C63.4 (2009)

• Dates of Test January 30 ~ February 19, 2014

• Place of Test GUMI COLLEGE EMC CENTER (FCC Registration No.: 100749, 443957)

37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, Korea

• **Test Report Number** GETEC-E3-13-090

• **Dates of Issue** February 14, 2014

: GETEC-C1-13-362 : GETEC-E3-13-090

2. Introduction

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Nose Emissions From Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2009) was used in determining radiated and conducted emissions emanating from **NEWRUN Inc.** (**Model name: NEWRUN_RF_Z110**)

These measurement tests were conducted at **GUMI COLLEGE EMC CENTER**.

The site address is 37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, Gyeongnam 641-713, Korea

This test site is one of the highest point of Gumi 1 college at about 200 kilometers away from Seoul city and 40 kilometers away from Daege city. It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures. The detailed description of the measurement facility was found to be in compliance with the requirements of §2.948 according to ANSI C63.4 (2009)

Fig 1. The map above shows the Gumi College in vicinity area.

: GETEC-C1-13-362 : GETEC-E3-13-090

3. Product Information

3.1 Description of EUT

The Equipment under Test (EUT) is the **NEWRUN Inc.**

NEWRUN_RF_module (Model Name: NEWRUN_RF_Z110)

FCC ID.: 2ABTORF-Z110

-. **Protocol** : IEEE 802.15.4

-. Transmit power : 0 dBm, 32kbps ~1 Mbps

-. Product power : DC 3.3 V

-. Product current : Max rms current: 85 mA

Max peak current: 95 mA

-. **RF Frequency** : 2 405 MHz ~ 2 475 MHz

3.2 Support Equipment / Cables used

3.2.1 Used Support Equipment

Description	Manufacturer	Model Name	S/N & FCC ID.
EUT JIG	NEWRUN	-	-
Adapter	Weihal sunlin electronics	MCS-01KR	

See "Appendix E – Test Setup Photographs" for actual system test set-up

3.2.2 System configuration

Description	Manufacturer	Model Name	S/N & FCC ID.
None.	-	-	S/N: - FCC ID.: -

3.2.3 Used Cable(s)

Cable Name	Condition	Description
USB cable	Connected to the EUT and Adapter	0.50 m shielded

3.3 Modification Item(s)

- None

: GETEC-C1-13-362 mber : GETEC-E3-13-090

4. Description of tests

4.1 Test Condition

The EUT was installed, arranged and operated in a manner that is most representative of equipment as typically used.

The measurements were carried out while varying operating modes and cable positions within typically arrangement to

determine maximum emission level.

The representative and worst test mode(s) were noted in the test report.

- Test Voltage / Frequency: DC 3.3 V
- Test Mode(s):

 Executed "EUT JIG" to control the EUT continuously transmit RF signal. RF Transmitting Power set 21.

5. Antenna Requirement - §15.203

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the applicant can be used with the device. The use of permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with this requirement.

5.1 Description of Antenna

The **NEWRUN Inc.** comply with the requirement of §15.203 with a Patch antenna & Dipole antenna permanently attached to the transmitter.

Number : GETEC-C1-13-362 eport Number : GETEC-E3-13-090

5.2 Conducted Emission

The Line conducted emission test facility is inside a 4 m \times 8 m \times 2.5 m shielded enclosure. (FCC Registration No.: 100749)

The EUT was placed on a non-conducting 1.0 m by 1.5 m table, which is 0.8 m in height and 0.4 m away from the vertical wall of the shielded enclosure.

The EUT is powered from the Rohde & Schwarz LISN (ESH2-Z5) and the support equipment is powered from the Rohde & Schwarz LISN (ESH3-Z5). Powers to the LISN are filtered by high-current high insertion loss power line filter.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

The RF output of the LISN was connected to the EMI test receiver (Rohde & Schwarz, ESCS30).

Exploratory measurements were conducted to identify the highest emission by operating the EUT in a range of typical modes of operation, cable positions, system configuration and arrangement.

Based on exploratory measurements, the final measurements were conducted at the worst test conditions.

Exploratory measurements were scanned using Peak mode of EMI Test receiver from 150 kHz to 30 MHz with 20 ms sweep time. The final measurements were measured with Quasi-Peak and Average mode.

The bandwidth of EMI Test Receiver was set to 9 kHz. Interface cables were connected to the available interface ports of the test unit. Excess cable lengths were bundled at center with $30 \text{ cm} \sim 40 \text{ cm}$.

Fig 2. Impedance of LISN

GETEO

5.3 Radiated Emission

Exploratory Radiated measurements were conducted at the 3m semi anechoic chamber in order to identify the highest emission by operating the EUT in a range of typical modes of operation, cable positions, system configuration and arrangement.

Based on exploratory measurements, the final measurements were conducted at the worst test conditions.

Final measurements of below 1GHz were made at 3m Chamber (FCC Registration No.: 443957) or Open area test site (FCC Registration No.: 100749) that complies with CISPR 16/ANSI C63.4.

Above 1GHz final measurements were conducted at the 3m Chamber (FCC Registration No.: 443957) only.

For measurements above 1GHz, the bottom side of 3m chamber was installed with absorbers in order to meet SVSWR Limit.

Exploratory measurements were scanned using Peak mode of EMI Test receiver and final measurements were measured with Quasi-Peak mode (Below 1GHz) and Peak & Average mode (Above 1GHz).

The measurements were performed by rotating the EUT 360° and adjusting the receive antenna height from 1.0 m to 4.0 m. All frequencies were investigated in both horizontal and vertical antenna polarity.

Fig 3. Dimensions of test site (Below 1GHz)

Fig 4. Dimensions of test site (Above 1GHz)

CETEC

6. Conducted Emission

6.1 Operating Environment

Temperature : 23.40 °C Relative Humidity : 32.7 % R.H.

6.2 Test Set-up

The conducted emission measurements were performed in the shielded room.

The EUT was placed on wooden table, 0.8 m heights above the floor, 0.4 m from the reference ground plane (GRP) wall and 0.8 m from AMN & ISN.

AMN is bonded on horizontal reference ground plane.

The ground plane, which was electrically bonded to the shield room, ground system and all power lines entering the shield room, were filtered.

6.3 Measurement Uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement."

The measurement uncertainty was given with a confidence of 95 %.

Test Items	Uncertainty	Remark
Conducted emission (9 kHz ~ 150 kHz)	± 2.74 dB	Confidence level of approximately 95 % ($k = 2$)
Conducted emission (150 kHz ~ 30 MHz)	± 4.25 dB	Confidence level of approximately 95 % $(k = 2)$

: GETEC-C1-13-362 : GETEC-E3-13-090

6.4 Limit

RFI Conducted	FCC Limit(dBμV/m) Class B					
Freq. Range	Quasi-Peak	Average				
150 kHz ~ 0.5 MHz	66 ~ 56*	56 ~ 46*				
0.5 MHz ~ 5 MHz	56	46				
5 MHz ~ 30 MHz	60	50				

^{*}Limits decreases linearly with the logarithm of frequency.

6.5 Test Equipment used

	Model Name	Manufacturer	Description	Serial Number	Due to Calibration
-	ESCS30	Rohde & Schwarz	EMI test receiver	839809/003	05. 03. 2014
□-	ESH3-Z5	Rohde & Schwarz	LISN	838979/020	05. 03. 2014
■ -	ESH2-Z5	Rohde & Schwarz	LISN	829991/009	05. 03. 2014
□-	ISN T8	TESEO. GmbH	ISN	24568	07. 25. 2014

6.6 Test data for Conducted Emission

-. Test Date : December 16, 2013

-. Reference Standard : Part 15 Subpart C, Sec. 15.207

-. Operating Condition (Worst Case) : RF transmitting mode (Low: 2 405 MHz)

-. Frequency rage : $0.15MHz \sim 30 MHz$

: GETEC-C1-13-362 : GETEC-E3-13-090

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.154000	31.8	1000.0	9.000	GND	L1	10.0	33.9	65.8	
0.308832	25.4	1000.0	9.000	GND	N	10.0	34.6	60.0	
0.523454	27.4	1000.0	9.000	GND	L1	10.0	28.6	56.0	
3.306541	23.1	1000.0	9.000	GND	L1	10.0	32.9	56.0	
4.809940	26.0	1000.0	9.000	GND	L1	10.0	30.0	56.0	
5.494394	25.8	1000.0	9.000	GND	L1	10.0	34.2	60.0	
27.669162	8.1	1000.0	9.000	GND	L1	10.6	51.9	60.0	

Final Result 2

1 111001 1 100011 2									
Frequency	CAverage	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.154000	15.6	1000.0	9.000	GND	L1	10.0	40.2	55 .8	
0.308832	14.9	1000.0	9.000	GND	N	10.0	35.1	50.0	
0.523454	23.3	1000.0	9.000	GND	L1	10.0	22.7	46.0	
3.306541	18.3	1000.0	9.000	GND	L1	10.0	27.7	46.0	
4.809940	20.9	1000.0	9.000	GND	L1	10.0	25.1	46.0	
5.494394	20.3	1000.0	9.000	GND	L1	10.0	29.7	50.0	
27.669162	4.2	1000.0	9.000	GND	L1	10.6	45.8	50.0	

< Fig 5. Conducted emission result >

7. Maximum Peak Output Power Measurement

7.1 Operating environment

Temperature : 17.0 °C Relative Humidity : 32.0 % R.H.

7.2 Test Set-up (Layout)

7.3 Limit

For systems using digital modulation in the (2 400~2 483.5) MHz, the limit for peak output power is 30 dBm The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

7.4 Test Equipment used

	Model Number	Manufacturer	Description	Serial Number	Due to Calibration
■ -	FSP	Rohde & Schwarz	Spectrum Analyzer	101431	05. 03. 2014

7.5 Test Result

-. Test Date : December 14, 2013

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(b)(3) / ANSI C63.10 Clause 6.10.2.1 (a)

-. Operating Condition : RF transmitting mode (Low: 2 405 MHz, Middle: 2 440 MHz, High: 2 475 MHz)

-. Power Source : DC 3.3 V

Spectrum Parameter

-. Resolution bandwidth
-. Video bandwidth
-. Sweep time
-. Span frequency
-. Detector
-. Trace mode
: 3 MHz
: 10 MHz
: Auto
: 20 MHz
: Peak
: Max. Hold

Configuration

Frequency (MHz)	·		Max. Limit (dBm)	Result
2 405	-0.55	0.881	30.00	Complies
2 440	-1.22	0.755	30.00	Complies
2 475	-1.28	0.744	30.00	Complies

Maximum Peak Output Power Plot on configuration / 2 405 MHz

Maximum Peak Output Power Plot on configuration / 2 440 MHz

: GETEC-C1-13-362

Maximum Peak Output Power Plot on configuration / 2 475 MHz

8. Power Spectral Density Measurement

8.1 Operating Environment

Temperature : 17.0 °C Relative Humidity : 32.0 % R.H.

8.2 Test Set-up (Layout)

8.3 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

8.4 Test Equipment used

	Model Number	Model Number Manufacturer		Serial Number	Due to Calibration	
■ -	FSP	Rohde & Schwarz	Spectrum Analyzer	101431	05. 03. 2014	

7.5 Test Result

-. Test Date : December 14, 2013

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(e)

-. Operating Condition : RF transmitting mode (Low: 2 405 MHz, Middle: 2 440 MHz, High: 2 475 MHz)

-. Power Source : DC 3.3 V

Spectrum Parameter

-. Resolution bandwidth
 -. Video bandwidth
 -. Sweep time
 -. Auto

-. Span frequency : 1.5 times the DTS bandwidth

-. Detector : Peak -. Trace mode : Max. Hold

Configuration

Frequency	(dBm)		Result
2 412 MHz	- 15.78	8.00	Complies
2 442 MHz	- 13.96	8.00	Complies
2 462 MHz	- 12.07	8.00	Complies

Center 2.44 GHz

Power Density Plot on configuration

EUT Type: NEWRUN_RF_module FCC ID.: 2ABTORF-Z110

500 kHz/

Span 5 MHz

Power Density Plot on configuration

9. 6 dB Spectrum bandwidth Measurement

9.1 Operating environment

Temperature : 17.0 °C Relative Humidity : 32.0 % R.H.

9.2 Test Set-up (Layout)

9.3 Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

9.4 Test Equipment used

	Model Name	Manufacturer	Description	Serial Number	Due to Calibration	
■ -	FSP	Rohde & Schwarz	Spectrum Analyzer	101431	05. 03. 2014	

9.5 Test result

-. Test Date : December 14, 2013

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(a)(2)

-. Operating Condition : RF transmitting mode (Low: 2 405 MHz, Middle: 2 440 MHz, High: 2 475 MHz)

-. Power Source : DC 3.3 V

Spectrum Parameter

Resolution bandwidth
 Video bandwidth
 Sweep time
 Span frequency
 Detector
 Trace mode
 100 kHz
 Auto
 300 kHz
 Auto
 Peak
 Max. Hold

Configuration

Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied bandwidth (MHz)	Min. Limit (kHz)	Result
2 405	1.40	2.38	500	Complies
2 440	1.44	2.38	500	Complies
2 475	1.48	2.38	500	Complies

6 dB Bandwidth Plot on Configuration / 2 405 MHz

6 dB Bandwidth Plot on Configuration / 2 440 MHz

6 dB Bandwidth Plot on Configuration / 2 475 MHz

10. Band Edge Measurement

10.1 Operating environment

Temperature : 22.0 °C Relative Humidity : 43.0 % R.H.

10.2 Test set-up (Lay-out)

10.3 Limit

Below -20 dB of the highest emission level of operating band (in 100 kHz resolution band width)

10.4 Test equipment used

	Model Name	Manufacturer	Description	Serial Number	Due to Calibration
-	FSP	Rohde & Schwarz	Spectrum Analyzer	101431	05. 03. 2014

10.5 Test Result

-. Test Date : December 14, 2013

-. Reference standard : Part 15 Subpart C, Sec. 15.247(d)

-. Operating condition : RF transmitting mode (Low: 2 405 MHz, High: 2 475 MHz)

-. Power Source : DC 3.3 V

The spectrum plots are attached on the following 4 images, D1 line indicates the highest level, D2 line indicates the 20 dB offset below D1. It shows compliance with the requirement in part 15.247(d)

Spectrum Parameter

-. Resolution bandwidth : 100 kHz
-. Video bandwidth : 100 kHz
-. Sweep time : Auto
-. Detector : Peak
-. Trace mode : Max. Hold

For Emission not in Restricted Band Low Band Edge Plot on Configuration / 2 405 MHz

Date: 14.DEC.2013 08:59:00

High Band Edge Plot on Configuration / 2 475 MHz

Date: 14.DEC.2013 08:49:22

GETEC

11. Radiated Emission

11.1 Operating Environment

Temperature : 24.0 °C Relative Humidity : 44.0 % R.H.

11.2 Test set-up

The formal radiated emission was measured at 3 m distance anechoic chamber.

The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane.

The turntable with EUT was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels.

This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

11.3 Measurement uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

The measurement uncertainty was given with a confidence of 95 %.

Test Items (Semi anechoic chamber)	Uncertainty	Remark
Radiated emission (30 MHz ~ 300 MHz, 3 m, Vertical)	± 4.66 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (30 MHz ~ 300 MHz, 3 m, Horizontal)	± 4.44 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Vertical)	± 4.79 dB	Confidence level of approximately 95 % ($k = 2$)
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Horizontal)	± 4.77 dB	Confidence level of approximately 95 % $(k = 2)$

11.4 Limit

20 dB in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	2400/F (kHz)	300
$0.490 \sim 1.705$	2400/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

[Limit at 3 m] = [Limit at 300 m] -40 \times log (3 [m] / 300 [m])

[Limit at 3 m] = [Limit at 30 m] -40 \times log (3 [m] / 30 [m])

: GETEC-C1-13-362 : GETEC-E3-13-090

11.5 Test equipment used

	Model Name	Manufacturer	Description	Serial Number	Due to Calibration
-	ESIB26	Rohde & Schwarz	EMI Test Receiver	830482/010	05. 02. 2014
■ -	FSP	Rohde & Schwarz	Spectrum Analyzer	101431	05. 03. 2014
■,-	VULB9160	Schwarzbeck	Broadband test antenna	3193	03. 15. 2014
■,-	MCU066	maturo GmbH	Position Controller	1390306	N/A
■ -	TT2.5SI	maturo GmbH	Turntable	1390307	N/A
■,-	AM4.0	maturo GmbH	Antenna Mast	1390308	N/A
■ -	BBHA9120D	Schwarzbeck	Horn antenna	597	02. 28. 2015
■ -	3160-09	ETS LINDGREN	Horn antenna	LM3423	11. 08. 2015
■ -	AFS44-00101800-25-10P-44	MITEQ	Preamplifier	1258942	01. 24. 2014
■	AFS44-00101800-25-10P-44	MITEQ	Preamplifier	1258943	01. 24. 2014

11.6 Radiated emission test data

-. Test Date : January $6 \sim$ January 7, 2014

-. Reference standard : Part 15 Subpart C, Sec. 15.247(d) / ANSI C63.10

-. Operating condition : RF transmitting mode (Low: 2 405 MHz, Middle: 2 440 MHz, High: 2 475 MHz)

-. Measuring distance : 3 m -. Power Source : DC 3.3 V -. Note : None.

-. Measurement

Frequency	9 kHz ~ 90 kHz,	90 kHz ~	150 kHz ~	490 kHz ~	30 MHz ~	About 1 CH-	
range	110 kHz ~ 150 kHz	110 kHz	490 kHz	30 MHz	1 GHz	Above 1 GHz	
Detector type	Peak / Average	Quasi peak	Peak / Average	Quasi peak	Quasi peak	Peak / Average	
IF bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz	1 MHz	

Result of radiated emission (9 kHz to 30 MHz)

No emission found between lowest internal used/generated frequency to 30 MHz.

Result of radiated emission (30 MHz to 1 000 MHz)/ Used a Patch Antenna

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Height	Polarization	Azimuth	Corr.	Margin	Limit
(MHz)	(dBµV/m)	Time	(kHz)	(cm)		(deg)	(dB)	(dB)	(dBµV/m)
		(ms)							
30.640000	14.2	1000.0	100.000	100.0	V	185.0	11.3	25.8	40.0
53.793653	11.5	1000.0	100.000	100.0	V	156.0	12.8	28.5	40.0
72.371143	16.1	1000.0	100.000	125.0	V	80.0	11.3	23.9	40.0
99.520460	19.3	1000.0	100.000	100.0	V	195.0	10.5	24.2	43.5
143.736991	17.3	1000.0	100.000	100.0	V	25.0	14.9	26.2	43.5
723.495650	30.8	1000.0	100.000	115.0	Н	352.0	26.8	15.2	46.0
997.929224	36.5	1000.0	100.000	210.0	Н	275.0	31.1	9.5	46.0

Result of radiated emission (30 MHz to 1 000 MHz)/ Used a Dipole Antenna

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
		(ms)							
57.263929	15.5	1000.0	100.000	125.0	V	27.0	12.6	24.5	40.0
70.946531	12.0	1000.0	100.000	100.0	٧	140.0	11.5	28.0	40.0
111.796899	16.3	1000.0	100.000	115.0	٧	40.0	11.6	27.2	43.5
272.026084	20.4	1000.0	100.000	100.0	V	15.0	15.8	25.6	46.0
288.003574	32.3	1000.0	100.000	100.0	٧	132.0	16.4	13.7	46.0
304.006176	34.5	1000.0	100.000	125.0	V	132.0	17.0	11.5	46.0

Worst case result of radiated emission (1 GHz to 25 GHz) / Used a Patch Antenna

*Comment : AMP/CL_Cable loss value + AMP gain value

AF : Antenna factor value Pol. : H(Horizontal), V(Vertical)

Result of radiated emission (Band Edge) / Used a Patch Antenna

2 405 MHz

			Measure	ment Level			Limit		Margin		Positioning System		
Frequency (MHz)	Reading Value (dBμV/m)		AF	AMP / CL	Test Result (dBμV/m)		(dBµV/m)		(dB)		Pol.	Height	Angle
	Peak	Average	(dB/m)	(dB)	Peak Average		Peak	Average	Peak	Average	(H/V)	(cm)	(°)
2387.58	56.29	45.99	26.95	-36.94	46.30	36.00	74.00	54.00	27.70	18.00	Н	100	35

2 475 MHz

	Measur ement Level							Limit		Margin		Positioning System		
Frequency (MHz)	Reading Value (dBμV/m)		AF	AMP / CL	Test Result (dBµV/m)		(dBµV/m)		(dB)		Pol.	Height	Angle	
	Peak	Average	(dB/m)	(dB)	Peak	Average	Peak	Average	Peak	Average	(H/V)	(cm)	(°)	
2483.50	60.5 7	49.17	27.21	-36.78	51.00	39.60	74.00	54.00	23.00	14.40	V	100	344	

Worst case result of radiated emission (1 GHz to 25 GHz) / Used a Dipole Antenna

*Comment: AMP/CL_Cable loss value + AMP gain value

AF : Antenna factor value Pol. : H(Horizontal), V(Vertical)

Result of radiated emission (Band Edge) / Used a Dipole Antenna

2 405 MHz

			Measure	ment Level			Limit		Margin		Positioning System		
Frequency (MHz)	Reading Value (dBμV/m)		AF	AMP / CL	Test Result (dBμV/m)		(dBµV/m)		(dB)		Pol	Height	Angle
	Peak	Average	(dB/m)	(dB)	Peak	Average	Peak	Average	Peak	Average	(H/V)	(cm)	(°)
2389.20	57. 98	46.08	26.96	-36.94	48.00	36.10	74.00	54.00	26.00	17.90	V	115	207

2 475 MHz

		Measurement Level							Margin		Positioning System		
Frequency (MHz)	Reading Value (dBμV/m)		AF	AMP/CL	Test Result (dBµV/m)		Limit (dBµV/m)		(dB)		Pol.	Height	Angle
	Peak	Average	(dB/m)	(dB)	Peak	Average	Peak	Average	Peak	Average	(H/V)	(cm)	(°)
2483.50	64.07	54.37	27.21	-36.78	54.50	44.80	74.00	54.00	19.50	9.20	V	115	225

Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

Corrected reading: Antenna factor + Cable loss + Preamplifier gain + Read value = Test result

- The end -

GETEC