Theorem 1.17. A strongly continuous semigroup $(T(t))_{t\geq 0}$ is eventually differentiable if and only if its generator A satisfies the following: there exist constants c>0, b>0, M>0 such that

$$\Sigma := \{\lambda \in \mathbb{C} : ce^{-b \cdot Re \lambda} \leq |Im\lambda|\} \subset \rho(A)$$

and $||R(\lambda,A)|| \le M \cdot |Im\lambda|$ for all $\lambda \in \Sigma$ satisfying Re $\lambda \le \omega(A)$.

Theorem 1.18. A strongly continuous semigroup $(T(t))_{t\geq 0}$ is differentiable if and only if its generator A satisfies the following: for all b>0 there exist c>0, M>0 such that

$$\Sigma := \{ \lambda \in \mathbb{C} : ce^{-b \cdot Re \lambda} \leq |Im\lambda| \} \subset \rho (A)$$

and $\|R(\lambda,A)\| \le M \cdot |Im_{\lambda}|$ for all $\lambda \in \Sigma$ satisfying Re $\lambda \le \omega(A)$.

For the proofs of these two theorems we refer to [Pazy (1983), Chap.3, Theorem 4.7 and 4.8].

Norm continuous semigroups

Let $(T(t))_{t\geq 0}$ be a strongly continuous semigroup and t'>0. If $\lim_{t \downarrow t} \|T(t) - T(t')\| = 0$, then it follows from the semigroup property, that the function $t \to T(t)$ is norm continuous on the whole half line (t', ∞) .

<u>Definition</u> 1.19. A semigroup $(T(t))_{t\geq 0}$ is called <u>eventually norm continuous</u> if there exists $t'\geq 0$ such that the function $t \to T(t)$ from (t',∞) into L(E) is norm continuous. The semigroup is called <u>norm continuous</u> if t' can be chosen equal to 0.

The spectrum of generators of eventually norm continuous semigroups still is compact in every right half-plane.

Theorem 1.20. Let A be the generator of an eventually norm continuous semigroup. Then for every $b \in \mathbb{R}$ the set

$$\{\lambda \in \sigma(A) : Re \lambda \ge b\}$$

is bounded.