$(\text{conditional}) \ \mathbb{P} \quad \overset{\text{large dev.}}{\longleftrightarrow} \quad \text{variational problems}$

"geometric rare events"

Large Deviations of Random Projections

Steven Soojin Kim

(w/ N. Gantert & K. Ramanan)

Brown University, USA

Classical probability

iid
$$(X_1, \dots, X_n) = X^{(n)}$$

empirical mean:

$$\frac{1}{n}S_n \doteq \frac{1}{n}\sum_{i=1}^n X_i.$$

as
$$n o \infty$$
 :

(LLN)
$$\frac{1}{n}S_n \to 0$$
;

(CLT)
$$\frac{1}{\sqrt{n}}S_n \Rightarrow N(0,1);$$

(LDP)
$$\mathbb{P}(S_n \geq n x) \approx \exp(-n I(x))$$
.

Geometric perspective

 $X_1, \dots, X_n \sim \text{iid Unif}([-1, 1]).$ $X^{(n)} \sim \text{Unif}([-1, 1]^n)$ (n-dim. cube).

empirical mean $= projection \text{ of } X^{(n)} \text{ onto unit vector}$ $\mathbf{1}_n \doteq \frac{1}{\sqrt{n}} (\underbrace{1,1,\cdots,1}_n) \in S^{n-1}$

$$rac{1}{n}\sum_{i=1}^n X_i = rac{1}{\sqrt{n}}\langle X^{(n)}, \mathbf{1}_n
angle.$$

Geometric questions

- I. General $\theta^{(n)} \in S^{n-1}$? weighted sum $\frac{1}{\sqrt{n}} \langle X^{(n)}, \theta^{(n)} \rangle$.
- II. Dependent $X^{(n)}$? e.g., uniform on convex body B_n .

KNOWN *CLT*: random proj. of convex body.

 $X^{(n)} \sim \text{Unif}(B_n)$ for convex body $B_n \subset \mathbb{R}^n$.

 $\Theta^{(n)} \sim \operatorname{Unif}(S^{n-1}).$

For large n, $\langle X^{(n)}, \Theta^{(n)} \rangle \approx \text{Gaussian (!!)}$

[Diaconis + Freedman, Klartag, Bobkov, Meckes, ...]

Known $LDP: \mathbf{1}_n$ proj. of product measure.

For $X^{(n)}$ iid \Rightarrow Cramér's thm, $\mathbb{P}(\frac{1}{n}S_n \geq x) \approx \exp(-n\Lambda^*(x))$.

Large deviations principles (LDP)

HEURISTIC:

$$\mathbb{P}(\frac{1}{n}S_n \geq x) \approx e^{-nI(x)}$$

DEF:

 \mathcal{X} topological space, $(\xi_n)_{n\in\mathbb{N}}$ seq of \mathcal{X} -valued r.v. \sim LDP with rate function $I: \mathcal{X} \to [0, +\infty]$ if $I(\cdot)$ l.s.c. &

$$\begin{split} \inf_{x\in A^\circ} I(x) & \leq \liminf_{n\to\infty} \tfrac{1}{n} \log \mathbb{P}(\xi_n \in A) \\ & \leq \limsup_{n\to\infty} \tfrac{1}{n} \log \mathbb{P}(\xi_n \in A) \leq \inf_{x\in \overline{A}} I(x). \end{split}$$

 $I(\cdot)$ is a *good* rate function (GRF) if compact level sets.

Why LDPs?

- ▶ asymptotic decay of "rare event" prob.
- ► MANTRA: "any large deviation is done in the least unlikely of all the unlikely ways!"

SETUP: ℓ^p balls

$$B_{n,p} \doteq \{x \in \mathbb{R}^n : ||x||_{\ell^p} \leq 1\};$$
 i.e., $X^{(n,p)}$ uniform on ℓ^p unit ball of \mathbb{R}^n .

QUESTION: LDP for projections of ℓ^p balls?

```
LDP for \kappa_n\langle X^{(n,p)}, \Theta^{(n)}\rangle for X^{(n,p)}\sim \mathrm{Unif}(\ell^p \text{ ball of }\mathbb{R}^n)? (scaling) natural scaling \kappa_n? ("annealed") LDP for random\ \Theta^{(n)}\sim \mathrm{Unif}(S^{n-1})? ("quenched") LDP for fixed\ \theta^{(n)}\in S^{n-1}?

• i.e., conditioning on \{\Theta^{(n)}=\theta^{(n)},n\in\mathbb{N}\}.

• how does rate function vary with \theta^{(n)}? (relationship) How do "quenched" and "annealed" relate?
```

The scaling heuristic

For LDP of
$$(\xi_n)_{n\in\mathbb{N}}$$
, want $\xi_n\sim 1/n$... e.g., $\operatorname{Var}(\frac{1}{n}S_n)\sim \frac{1}{n^2}\left(\sum_{i=1}^n 1\right)=\frac{1}{n}$

$$\kappa_n \langle X^{(n,p)}, \Theta^{(n)} \rangle$$

Note
$$X_i^{(n,p)} \sim n^{-1/p}$$
 and $\Theta_i^{(n)} \sim n^{-1/2}$... so $\text{Var}\langle n^{1/p} X^{(n,p)}, n^{1/2} \Theta^{(n)} \rangle \sim \sum_{i=1}^n (1 \cdot 1) = n$... $\Rightarrow \text{pick } \kappa_n = \frac{n^{1/2} n^{1/p}}{n}$.

Annealed and Quenched

$$\begin{split} W^{(n,p)} &\doteq \kappa_n \langle X^{(n,p)}, \Theta^{(n)} \rangle \quad \text{(random direction)} \\ W^{(n,p)}_{\theta} &\doteq \kappa_n \langle X^{(n,p)}, \theta^{(n)} \rangle \quad \text{(condition on fixed direction)} \end{split}$$

Prop.

(an)
$$2 \leq p \leq \infty$$
: $(W^{(n,p)})_{n \in \mathbb{N}} \sim \text{LDP w/ GRF } \mathbb{I}_p^{\mathsf{A}}$.

$$\begin{array}{ll} (\mathrm{qu}) \ 1$$

(for the experts)

- the rate functions are quasiconvex;
- ▶ annealed $1 \le p < 2$? slower speed of LDP;
- quenched p = 1? domain problems;
- ▶ Cramér directions $(1, 1, \cdots)$ NOT in the "a.e." set!!

What does "a.e." mean?

Let
$$\theta = (\theta^{(n)})_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{R}^n \doteq \mathbb{A}$$
. (sequence of directions, or triangular array)

Empirical measure
$$L_{n,\theta} \doteq \frac{1}{n} \sum_{i=1}^{n} \delta_{\sqrt{n}\theta_{i}^{(n)}}$$
.

Let $\gamma \in \mathcal{P}(\mathbb{A})$. If, for γ -a.e. $\theta \in \mathbb{A}$,

$$L_{n,\theta} \xrightarrow{n \to \infty} \mathbf{v} \in \mathcal{P}(\mathbb{R}),$$

then, the quenched LDP holds:

$$\gamma\left(m{\theta}\in\mathbb{A}:(W_{m{ heta}}^{(n,p)})_{n\in\mathbb{N}}\sim ext{LDP w/ GRF }\mathbb{I}_{p,
u}^{\mathbf{Q}}
ight)=1.$$

Example

$$\sigma_n$$
 uniform meas. on S^{n-1} ... and $\gamma = \bigotimes_{n \in \mathbb{N}} \sigma_n \in \mathcal{P}(\mathbb{A})$... then $\gamma \sim N(0,1)$ (Poincaré-Maxwell-Borel)

The variational formula

For $\mathbf{v} \in \mathcal{P}(\mathbb{R})$, $\mu \sim N(0,1)$, let

$$\begin{split} \mathbb{H}(\mathbf{v}) & \doteq \overset{\text{relative entropy}}{H(\mathbf{v}\|\mu)} + \frac{1}{2}(1 - \int\limits_{\mathbb{R}}^{2\text{nd moment}} x^2 \mathbf{v}(\,dx)), \quad \text{ if } \int\limits_{\mathbb{R}} x^2 \mathbf{v}(\,dx) \leq 1, \\ & \doteq +\infty, \quad \text{else.} \end{split}$$

LEM.

 \mathbb{H} is LDP good rate function for $(L_{n,\theta})_{n\in\mathbb{N}}$ (the empirical measure for uniform on S^{n-1})

Thm. For
$$p>2$$
,
$$\mathbb{I}_p^{\mathsf{A}}(w)=\inf_{\mathbf{v}\in\mathcal{P}(\mathbb{R})}\{\underbrace{\mathbb{H}(\mathbf{v})}_{\text{environment}}+\underbrace{\mathbb{I}_{p,\mathbf{v}}^{\mathsf{Q}}(w)}\}.$$
 For $p=2$, $\mathbb{I}_p^{\mathsf{A}}=\mathbb{I}_{p,\mu}^{\mathsf{Q}}$.

The minimizer

Lemma

A unique minimizer exists! For $w \in \mathbb{R}$, let

$$u_w \doteq \arg\min_{\mathbf{v} \in \mathcal{P}(\mathbb{R})} \{ \mathbb{H}(\mathbf{v}) + \mathbb{I}_{p,\mathbf{v}}^{\mathsf{Q}}(w) \}.$$

IDEA:

Minimizer v_w related to conditional law of environment Θ , given $W^{(n,p)} \geq w$.

CONJ.

For
$$p>2$$
, as $|w|\to 1$... $\nu_w``\to "\frac{1}{2}(\delta_{-1}+\delta_{+1})$... i.e., conditional on a very large projection, $\mathrm{Law}(\theta^{(n)}) \approx \mathrm{Unif}\left(\frac{1}{\sqrt{n}}\{-1,+1\}^n\right)$.

Some concluding thoughts

THE TOOLBOX:

- ▶ geometry of ℓ^p balls
- classical large deviations
- (simple) Glivenko-Cantelli and Sanov-type theorems for dependent triangular arrays
- **▶** + ...

GOAL: "conditional geometry", generally;

(e.g., [asymptotic] behavior of surface measure on ℓ^p sphere, conditioned on small ℓ^q moment?)

Thank you!