

作业9

Log Creative

2024年1月4日

1(1). 解

$$\mathbf{A}_1 = \begin{pmatrix} 7 & 3 & -2 \\ 3 & 4 & -1 \\ -2 & -1 & 3 \end{pmatrix}$$

计算如表所示:

k	$\mathbf{u}_k^{\scriptscriptstyle \top}$	$\max(\mathbf{v}_k)$
0	(1, 1, 1)	
1	(1, 0.75, 0)	8.00000
2	(1, 0.64864865, -0.2972973)	9.25000
3	(1, 0.61756374, -0.37110482)	9.54054
4	(1, 0.60879835, -0.38883968)	9.59490
5	(1, 0.60641274, -0.39309539)	9.60407
6	(1, 0.60577683, -0.39412075)	9.60543
7	(1, 0.60560975, -0.39436892)	9.60557

故主特征值与其对应的特征向量为

$$\lambda_1 \approx 9.605, \quad \mathbf{x}_1 = (1, 0.60560975, -0.39436892)^{\mathsf{T}}$$

3. 解 令

$$\mathbf{B} = \mathbf{A} - 6\mathbf{E} = \begin{pmatrix} 0 & 2 & 1 \\ 2 & -3 & 1 \\ 1 & 1 & -5 \end{pmatrix}$$

取

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

以避免对角线上的0元素,进行LU分解,PB=LU,有

$$\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{4}{5} & 1 \end{pmatrix}, \quad \mathbf{U} = \begin{pmatrix} 2 & -3 & 1 \\ 0 & \frac{5}{2} & -\frac{11}{2} \\ 0 & 0 & \frac{27}{5} \end{pmatrix}$$

根据反幂法迭代公式,

$$\begin{cases} \mathbf{L}\mathbf{y}_k = \mathbf{P}\mathbf{u}_{k-1} \\ \mathbf{U}\mathbf{v}_k = \mathbf{y}_k \\ \mathbf{u}_k = \frac{\mathbf{v}_k}{\max(\mathbf{v}_k)} \end{cases}$$

根据 $\mathbf{U}_1\mathbf{v}_1 = (1,1,1)^{\mathsf{T}}$,有

 $\mathbf{v}_1 = (1.61851852, 0.80740741, 0.18518519)^{\mathsf{T}}, \quad \mathbf{u}_1 = (1, 0.49885584, 0.11441648)^{\mathsf{T}}$

则进行如下的迭代过程:

k	$\mathbf{u}_k^{\scriptscriptstyle \top}$	$\max(\mathbf{v}_k)$
1	(1, 0.49885584, 0.11441648)	1.6185
2	(1, 0.5349076, 0.2761807)	0.74294
3	(1, 0.51810545, 0.23348783)	0.78759
4	(1, 0.52470794, 0.24451802)	0.77284
5	(1, 0.52225069, 0.24155724)	0.77757
6	(1, 0.52312807, 0.24237021)	0.77602
7	(1, 0.52282154, 0.24214025)	0.77653
8	(1, 0.522927, 0.24220711)	0.77636
9	(1, 0.52289107, 0.24218715)	0.77642
10	(1, 0.52290323, 0.24219325)	0.77640
11	(1, 0.52289914, 0.24219135)	0.77640

最终可得 $\lambda \approx \frac{1}{0.77640} + 6 = 7.28799$,特征向量为 (1,0.52289914,0.24219135)。 9(1). **解**

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & -1 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$

根据 QR 方法迭代公式,

$$\mathbf{A}_k = \mathbf{Q}_k \mathbf{Q}_k$$
$$\mathbf{A}_{k+1} = \mathbf{R}_k \mathbf{Q}_k$$

有如下的迭代过程:

k	\mathbf{A}_k	k	\mathbf{A}_k
	(1.00000 -2.19089 0.00000)		(3.36420 -0.21413 0.00000)
1	-2.19089 -0.66667 1.19257	11	-0.21413 -2.34899 0.25820
	0.00000 1.19257 2.66667		0.00000 0.25820 1.98479
	(1.27586 2.33263 0.00000)		(3.36830 0.15067 0.00000)
2	2.33263 -0.56957 1.20507	12	0.15067 -2.35745 0.21783
	0.00000 1.20507 2.29371		0.00000 0.21783 1.98915
	(1.81951 -2.29349 0.00000)		(3.37031 -0.10599 0.00000)
3	-2.29349 -0.86236 1.06119	13	-0.10599 -2.36259 0.18375
	0.00000 1.06119 2.04285		0.00000 0.18375 1.99228
	2.40694 2.00767 -0.00000		(3.37131 0.07456 0.00000)
4	2.00767 -1.34810 0.88307	14	0.07456 -2.36581 0.15498
	0.00000 0.88307 1.94116		(0.00000 0.15498 1.99450)
	2.84138 -1.59080 0.00000		(3.37180 -0.05244 0.00000)
5	-1.59080 -1.76248 0.73085	15	-0.05244 -2.36789 0.13070
	0.00000 0.73085 1.92110		(0.00000 0.13070 1.99609)
	(3.09885 1.18594 0.00000)		(3.37204 0.03689 0.00000)
6	1.18594 -2.02892 0.60933	16	0.03689 -2.36926 0.11021
	(0.00000 0.60933 1.93006)		(0.00000 0.11021 1.99722)
	$\left(\begin{array}{cccc} 3.23554 & -0.85692 & 0.00000 \end{array}\right)$		$\left(\begin{array}{cccc} 3.37216 & -0.02595 & 0.00000 \end{array}\right)$
7	-0.85692 -2.18082 0.51118	17	-0.02595 -2.37019 0.09293
	0.00000 0.51118 1.94528		0.00000 0.09293 1.99802
	(3.30467 0.61009 0.00000)		(3.37222 0.01825 0.00000)
8	0.61009 -2.26397 0.43031	18	0.01825 -2.37082 0.07836
	(0.00000 0.43031 1.95930)		(0.00000 0.07836 1.99860)
	$\left(\begin{array}{ccccc} 3.33897 & -0.43143 & 0.00000 \end{array}\right)$		$\left(\begin{array}{ccccc} 3.37225 & -0.01284 & -0.00000 \end{array}\right)$
9	-0.43143 -2.30938 0.36279	19	-0.01284 -2.37125 0.06607
	(0.00000 0.36279 1.97041)		(0.00000 0.06607 1.99900)
	(3.35588 0.30415 0.00000)		(3.37227 0.00903 0.00000)
10	0.30415 -2.33460 0.30604	20	0.00903 -2.37156 0.05570
	(0.00000 0.30604 1.97873)		(0.00000 0.05570 1.99929)

此时,

$$\tilde{\mathbf{Q}}_{20} = \begin{pmatrix} 0.28304 & -0.51361 & -0.80999 \\ 0.33341 & 0.84455 & -0.41901 \\ 0.89929 & -0.15146 & 0.41029 \end{pmatrix}$$

列向量即为对应的特征向量。

10. 解

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ 2 & -4 & 5 \end{pmatrix}$$

 $\alpha_1 = (1,2,2)^{\scriptscriptstyle \sf T} \,, \ \, \text{\"{\it r}}\text{\'{\it w}} \, \, \|\alpha_1\|_2 = 3 \,, \ \, \text{\rlap{$\bar{\it w}}$} \, \, \textbf{\rlap{$\bar{\it y}}$}_1 = (-3,0,0)^{\scriptscriptstyle \sf T} \,, \ \, \text{\rlap{$\bar{\it q}$}} \, \, \textbf{\rlap{u}}_1 = \frac{\alpha_1 - {\bf y}_1}{\|\alpha_1 - {\bf y}_1\|} = \frac{1}{\sqrt{6}} (2,1,1)^{\scriptscriptstyle \sf T} \,, \ \, \text{\rlap{$\bar{\it m}}$} \, \, \text{\rlap{$\bar{\it m}}$}$

$$\mathbf{H}_1 = \mathbf{E} - 2\mathbf{u}\mathbf{u}^{\mathsf{T}} = \begin{pmatrix} -\frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

则

$$\mathbf{A}_2 = \mathbf{H}_1 \mathbf{A}_1 = \begin{pmatrix} -3 & 3 & -3 \\ 0 & 0 & -3 \\ 0 & -3 & 3 \end{pmatrix}$$

$$\tilde{\mathbf{H}}_2 = \mathbf{E} - 2\tilde{\mathbf{u}}_2\tilde{\mathbf{u}}_2^{\top} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{H}_2 = \begin{pmatrix} 1 & \\ & \tilde{\mathbf{H}}_2 \end{pmatrix} = \begin{pmatrix} 1 & \\ & 1 \end{pmatrix}$$

故

$$\mathbf{A}_3 = \mathbf{H}_2 \mathbf{A}_2 = \begin{pmatrix} -3 & 3 & -3 \\ & -3 & 3 \\ & & -3 \end{pmatrix} = \mathbf{R}$$

而

$$\mathbf{Q} = \mathbf{H}_1 \mathbf{H}_2 = \begin{pmatrix} -\frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$