Nižanje stopnje Bézierjevih krivulj z metodo najmanjših kvadratov

Luka Polanič, Justin Raišp

Ljubljana, 2024

Motivacija

Podano imamo Bézierjevo krivuljo stopnje n:

$$\rho_n(t) = \sum_{i=0}^n b_i B_i^n(t), \quad t \in [0,1],$$

kjer so b_i kontrolne točke in $B_i^n(t)$ Bernsteinovi bazni polinomi stopnje n. Naš cilj je poiskati Bézierjevo krivuljo stopnje m < n,

$$ilde{
ho}_m(t)=\sum_{i=0}^m c_i B_i^m(t), \quad t\in[0,1],$$

Metoda najmanjših kvadratov

Kontrolne točke c_i določimo tako, da minimiziramo L_2 -normo med krivuljama p_n in \tilde{p}_m , pri čemer je L_2 -norma definirana kot:

$$d_2(p_n, \tilde{p}_m) = \sqrt{\int_0^1 \|p_n(t) - \tilde{p}_m(t)\|^2} dt,$$

kjer je $\|p_n(t) - \tilde{p}_m(t)\|^2$ kvadrat evklidske razdalje med krivuljama.

Konstrukcija

Nižanje stopnje iz n na n-1. Če bi želeli zvišati stopnjo Bézierjeve krivulje, bi uporabili naslednjo zvezo:

$$b_i = \frac{i}{n}c_{i-1} + \frac{n-i}{n}c_i, \quad i = 0, 1, \dots, n.$$

Sedaj lahko na dva načina izrazimo zaporedje neznanih kontrolnih točk $\{c_i\}_{i=0}^{n-1}$. Dobimo dva sistema enačb, pri čemer bomo v obeh primerih zanemarili eno enačbo, saj bi bil sistem sicer predoločen.

• Zanemarimo zadnjo enačbo za i = n in dobimo

$$c_i^{(I)} = \frac{1}{n-i} \left(nb_i - ic_{i-1}^{(I)} \right)$$
 za $i = 0, 1, \dots, n-1$.

Dodatno upoštevamo, da je $c_{-1} = 0$.

• Pri drugi izražavi zanemarimo prvo enačbo, tj. za i=0, in dobimo

$$c_{i-1}^{(II)} = \frac{1}{i} \left(nb_i - (n-i)c_i^{(II)} \right)$$
 za $i = n, \dots, 1$.

Množici kontrolnih točk $\{c_i^{(I)}\}_{i=0}^{n-1}$ in $\{c_i^{(II)}\}_{i=0}^{n-1}$ predstavljata kontrolna poligona za dve različni Bézierjevi krivulji stopnje n-1. Označimo ju z $\tilde{p}_{n-1}^{(I)}$ in $\tilde{p}_{n-1}^{(II)}$.

Sedaj moramo poiskati še kontrolne točke $\{c_i\}_{i=0}^{n-1}$ končne Bézierjeve krivulje \tilde{p}_{n-1} . Za kontrolne točke vzamemi linearno kombinacijo točk, določenih z zgornjima izrazoma:

$$c_i = (1 - \lambda_i) \cdot c_i^{(I)} + \lambda_i \cdot c_i^{(II)}$$
 za $i = 0, 1, \dots, n-1$.

Z uvedbo faktorjev $\{\lambda_i \in \mathbb{R}\}$ prevedemo problem iskanja kontrolnih točk $\{c_i\}_i$ na problem računanja ustreznih faktorjev $\{\lambda_i\}_i$, za katere velja, da je $d_2(p_n, \tilde{p}_{n-1})$ minimalna.

Izbira uteži

Da se pokazati, da če za krivuljo p_n z $\Delta_n b_0 \neq 0$ in $2\alpha \leq n$, izberemo faktorje λ_i kot:

$$\lambda_i = \left(\frac{2n}{n+2\alpha}\right)^{-1} \cdot \sum_{j=0}^i \left(\frac{n}{j-\alpha}\right) \left(\frac{n}{j+\alpha}\right), \quad i = 0, 1, \dots, n-1,$$

potem za $t_0=0$ in $t_1=1$ velja:

$$\left. \frac{d^r}{dt^r} \rho_n(t) \right|_{t=t_0} = \left. \frac{d^r}{dt^r} \tilde{\rho}_{n-1}(t) \right|_{t=t_0}, \quad 0 \le r \le \alpha - 1.$$

Algoritem

- Začetni podatki: kontrolne točke b_0, \ldots, b_n in ciljna stopnja m.
- Postopek:
 - 1 Izračun $c_i^{(I)}$ in $c_i^{(II)}$ za stopnjo n do n-1.
 - 2 Izračun kombinacije c_i z utežmi λ_i .
 - Ponavljanje postopka za nižanje stopnje do m.
- Lastnosti algoritma:
 - Ohranja zveznost do reda $\alpha-1$ v robnih točkah.
 - L₂-norma ostaja minimalna.

Primeri v Matlabu.