Industrial Economics Prof. Chien-Yuan Sher

Lecture I. 基本工具:迴歸分析入門

Part 1 迴歸分析所能解決的問題以及解決問題的方式

- A. 目標:透過大量資料確認或否證兩個變數間是否有所關聯或是存在因果關係。
 - 例,i. 天候不佳會否影響電影首周票房?若答案為是,程度為何?
 - ii. 公布斷層分布地圖,會否使位於斷層沿線的房價下跌?若然,程度為何?
 - iii. 十個技安 (肥宅) 同時同地點跳一下是否會引起地震?

- PS.: 台灣孕震構造圖: https://www.twreporter.org/a/dangerous-fault-architect 台灣活動斷層分布查詢: http://fault.moeacgs.gov.tw/MgFault/
- B. 方式或流程 (對照關於平均數的計算與檢定)
 - i. 確立問題,建立假設或模型 (依據背景知識, background knowledge)

- ii. 蒐集資料
- iii. 由資料中計算估計值
- iv. 進行假設檢定

Part 2 普通最小平方估計式 (ordinary least squares estimators, OLS)

A. 估計式之基本想法:最小平方法

B. 估計式之推導

C. 以向量來表示 OLS 估計式

D. 配適性的衡量:R ²
Part 3 假設檢定
1. 假設檢定的基本想法
2. OLS 估計式的分配 以 OLS 估計式算出來的值是隨機的,所以要知道其分配為何。
A. 傳統對殘差項的假設

D	印	(1)	万发六	台下百	454	段設
B.	7兄/	「大美」」「	タジェ	ラノ目 .	ロソイ	FALA

•	TP 24 - T 1/2 11 11 TT 1.L LID 24 14 L	^	
1	松丰 旧怪性分型队用设有 丛	() ,	或解釋變數與殘差項不相關
1.	- /文/T:9	0	

數學意義

實做上之意涵

ii. 每次抽取的樣本皆為獨立且相等之分配 實做上之意涵

以時間序列資料或空間資料為例

iii. 沒有極端值/分配不要太奇怪

小結: 對殘差項做假設的重點在於要進行假設檢定,吾人需找出估計值的機率分配。

Part 4 其他需要注意的問題

1. 殘差項具同質性 (homoskedasticity) 或異質性 (heteroskedasticity) 的討論

2. 當解釋變數為二元變數時之處理:虛擬變數 (dummy variable)

	有多個解釋變數時,需注意共線性的問題 完全多重共線性 (perfect multicollinearity)
	虚擬變數陷阱
	虚擬變數與常數項共線
B.	不完全多重共線性 (imperfect multicollinearity)

4. R² 與 調整後的R² (adjusted R²)

Part 5 如何評估迴歸分析的結果

1. 內生性 (endogeneity) 或內在效度的問題:假性相關;
A. 遺漏變數偏誤 (omitted variable bias):檢定所需的殘差項假設不成立
B. 函數形式錯誤設定 (misspecification); 遺漏重要變數或非線性關係
C. 同時因果關係 (simultaneous causality):檢定所需的殘差項假設不成立
11 1.
D. 變數的測量誤差 (errors-in-variable bias):檢定所需的殘差項假設可能不成立
D. 复数时烟里跃足(CHOIS-III-Variable blas),做定用而时发足有限取引能不成立
E. 樣本選擇 (sample selection bias)
L. (永平) (Sample Selection of as)

National Sun Yat-Sen University, Spring 2024	
 外在效度的問題:適當解讀、推廣與運用迴歸分析所得之結果;理解研究限制 A. 不要聽到「演算法」或其他看似高深的資料科學名詞就覺得好棒棒,要理解它背後的原理與限制 	
Lazer, D., Kennedy, R., King, G., and Vespignani, A. (2014). The Parable of Google Flu: Traps in Big Data Analysis. <i>Science</i> , 343(6176): 1203-1205. B. 如何適當理解「統計上顯著」的意涵;正確理解 <i>p</i> -value	

C. 將結果推廣至其他類型/其他年的樣本

3. 因果推論與干預

Lucas, R. (1976). Econometric Policy Evaluation: A Critique. pp. 19–46 in Brunner, K. and Meltzer, A (eds.), *The Phillips Curve and Labor Markets. Carnegie-Rochester Conference Series on Public Policy. 1.* New York: Elsevier.

Part 6 實際解讀迴歸分析的結果

做測驗成績	對生師比	和控制變數	學生特徵的	的迴歸結果
(1)	(2)	(3)	(4)	(5)
-2.28**	-1.10*	-1.00**	-1.31**	-1.01**
(0.52)	(0.43)	(0.27)	(0.34)	(0.27)
	- 0.650**	-0.122**	-0.488**	-0.130**
	(0.031)	(0.033)	(0.030)	(0.036)
		-0.547**		-0.529**
		(0.024)		(0.038)
			- 0.790**	0.048
			(0.068)	(0.059)
698.9**	686.0**	700.2**	698.0**	700.4**
(10.4)	(8.7)	(5.6)	(6.9)	(5.5)
18.58	14.46	9.08	11.65	9.08
0.049	0.424	(0.773)	0.626	0.773
420	420	420	420	420
	(1) -2.28** (0.52) 698.9** (10.4) 18.58 0.049	(1) (2) -2.28** -1.10* (0.52) (0.43) -0.650** (0.031) 698.9** 686.0** (10.4) (8.7) 18.58 14.46 0.049 0.424	(1) (2) (3) -2.28** -1.10* -1.00** (0.52) (0.43) (0.27) -0.650** -0.122** (0.031) (0.033) -0.547** (0.024) 698.9** 686.0** 700.2** (10.4) (8.7) (5.6) 18.58 14.46 9.08 0.049 0.424 0.773	-2.28** -1.10* -1.00** -1.31** (0.52) (0.43) (0.27) (0.34) -0.650** -0.122** -0.488** (0.031) (0.033) (0.030) -0.547** (0.024) -0.790** (0.068) 698.9** 686.0** 700.2** 698.0** (10.4) (8.7) (5.6) (6.9) 18.58 14.46 9.08 11.65 0.049 0.424 0.773 0.626

這些迴歸結果是利用附錄 4.1 中描述的美國加州 K-8 學區的資料所估計,標準誤在係數下面的括號裡。 利用雙尾檢定,單一個係數在 5% 的顯著水準下顯著為*,或 1% 的顯著水準下顯著為**。