Zbiory częściowo uporządkowane

 $(P, \preceq), x, y \in P, x, y$ są porównywalne jeśli $x \preceq y$ lub $y \preceq x$, nieporównywalne jeśli ¬porównywalne, $(x \parallel y)$

- 1. Łańcuchem w zbiorze częściowo uporządkowanym jest każdy podzbiór parami porównywalnych elementów
- 2. Antyłańcuchem jest każdy podzbiór parami nieporównywalnych elementów
- 3. Twierdzenie(Lemat Kuratowskiego- Zorna):

Jeśli w zbiorze częściowo uporządkowanym każdy łańcuch ma ograniczenie górne (dolne), to na (P, \preceq) istnieje element maksymalny (minimalny)

Wniosek: W dowolnym zbiorze częściowo uporządkowanym każdy łańcuch można rozszerzyć do łańuccha maksymalnego (w sensie inkluzji)

Dowód: (P, \preceq) - zbiór częsciowo uporządkowany. C_0 -łańcuch w (P, \preceq) , \mathcal{P} - zbiór łańcuchów w (P, \preceq) rozszerzających C_0 (\mathcal{P}, \subseteq) - zbiór częsciowo uporządkowany

 \mathcal{C} - łańcuch w (\mathcal{P},\subseteq)

Skoro \mathcal{C} jest łańcuchem,
to $C_1, C_2 \in \mathcal{C}$, więc $C_1 \subseteq C_2$ lub $C_2 \subseteq C_1$.

 $\bigcup \mathcal{C} = \{x \in P : \exists_{c \in \mathcal{C}} x \in C\} = \{x \in P : \exists_{c} c \in \mathcal{C} \land x \in C\} \text{ Powiemy, } \text{\'e} \bigcup \mathcal{C} \in \mathcal{P} \text{ i \'e} \bigcup \mathcal{C} \text{ jest ograniczeniem g\'ornym dla zbioru } \mathcal{C}$

 $x,y\in\mathcal{C} \implies \exists_{C_1\in\mathcal{C}}x\in C_1 \land \exists_{C_2\in\mathcal{C}}y\in C_2 \ . \ C_1\subseteq C_2 \ \text{lub} \ C_2\subseteq C_2 \ \text{ponieważ} \ C_1,C_2\in\mathcal{C}$

Stad $\bigcup \mathcal{C} \in \mathcal{P}$.

 $\forall_{C \in \mathcal{C}} c \subseteq \bigcup \mathcal{C} = \bigcup_{C \in \mathcal{C}}$

Stad $\bigcup \mathcal{C}$ jest ograniczeniem górnym zbioru \mathcal{C} w (\mathcal{P},\subseteq) . Stosujemy Lemat Kuratowskiego-Zorna dla (\mathcal{P},\subseteq)

W zbiorze (\mathcal{P},\subseteq) istnieje element maksymalny, czyli maksymalny w sensie inkluzji łańcuch w (P,\preceq) rozszerzający C_0

- 4. def: Zbiór częściowo uporządkowany (P, \preceq) jest liniowo uporządkowany, jeśli $\forall_{x,y \in P} x \preceq y$ lub $y \preceq x$
- 5. **def:** Zbiór liniowo uporządkowany jest dobrze uporządkowany jeśli w każdym niepustym jego podzbiorze jest element najmniejszy