aplicandoconhecimentoa8

November 19, 2024

1 Conjunto de dados de previsão de doenças cardíacas

Valdiney Atílio Pedro Ra: 10424616

2 Base de Dados

Conjunto de dados de previsão de doenças cardíacas. Um conjunto de dados abrangente para previsão de doenças cardíacas.

Fonte: https://raw.githubusercontent.com/valdineyatilio/AquisicaoEPreparacaoDeDados/main/cleaned_merged_

```
[6]: #pip install --upgrade seaborn
```

```
[8]: # Análise Exploratória dos Dados (EDA)
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     import numpy as np
     # Carregar a base de dados
     url = 'https://raw.githubusercontent.com/valdineyatilio/
      →AquisicaoEPreparacaoDeDados/main/cleaned_merged_heart_dataset.csv'
     df = pd.read_csv(url)
     # Substituir valores infinitos por NaN
     df.replace([np.inf, -np.inf], np.nan, inplace=True)
     # Visualizar as primeiras linhas da base de dados
     print(df.head())
     # Informações gerais sobre a base de dados
     print(df.info())
     # Estatísticas descritivas
     print(df.describe())
     # Verificar valores ausentes
     print(df.isnull().sum())
```

```
# Visualização da distribuição da idade
sns.histplot(df['age'].dropna(), bins=30)
plt.title('Distribuição das Idades')
plt.xlabel('Idade')
plt.ylabel('Frequência')
plt.show()
   age
        sex
             ср
                  trestbps
                            chol
                                   fbs
                                        restecg
                                                  thalachh
                                                            exang
                                                                    oldpeak \
0
              3
                                                                        2.3
    63
          1
                       145
                             233
                                     1
                                               0
                                                       150
1
    37
          1
              2
                       130
                             250
                                     0
                                              1
                                                       187
                                                                0
                                                                        3.5
2
                                              0
          0
              1
                       130
                             204
                                     0
                                                       172
                                                                0
                                                                        1.4
    41
3
                       120
                             236
                                              1
    56
          1
              1
                                     0
                                                       178
                                                                0
                                                                        0.8
                       120
4
    57
          0
              0
                             354
                                     0
                                               1
                                                       163
                                                                 1
                                                                        0.6
   slope
                     target
          ca
              thal
0
           0
       0
                  1
                          1
1
       0
           0
                  2
                          1
2
       2
           0
                  2
                          1
3
       2
                  2
           0
                          1
4
       2
           0
                  2
                          1
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1888 entries, 0 to 1887
Data columns (total 14 columns):
     Column
               Non-Null Count
 #
                                Dtype
                _____
 0
                1888 non-null
                                 int64
     age
 1
               1888 non-null
                                 int64
     sex
 2
               1888 non-null
                                 int64
     ср
 3
     trestbps 1888 non-null
                                 int64
 4
     chol
               1888 non-null
                                 int64
 5
     fbs
               1888 non-null
                                 int64
 6
     restecg
               1888 non-null
                                 int64
 7
     thalachh 1888 non-null
                                 int64
 8
     exang
                1888 non-null
                                 int64
 9
     oldpeak
               1888 non-null
                                 float64
 10
     slope
               1888 non-null
                                 int64
 11
     ca
                1888 non-null
                                 int64
 12
     thal
               1888 non-null
                                 int64
 13
     target
               1888 non-null
                                 int64
dtypes: float64(1), int64(13)
memory usage: 206.6 KB
None
               age
                             sex
                                                    trestbps
                                                                      chol
                                            ср
count
       1888.000000
                     1888.000000
                                   1888.000000
                                                 1888.000000
                                                               1888.000000
         54.354343
                        0.688559
                                      1.279131
                                                  131.549258
                                                                246.855403
mean
          9.081505
                        0.463205
                                      1.280877
                                                   17.556985
                                                                51.609329
std
```

min	29.000000	0.000000	0.000000	94.000000	126.000000	
25%	47.750000	0.000000	0.000000	120.000000	211.000000	
50%	55.000000	1.000000	1.000000	130.000000	241.000000	
75%	61.000000	1.000000	2.000000	140.000000	276.000000	
max	77.000000	1.000000	4.000000	200.000000	564.000000	
	fbs	restecg	thalachh	exang	oldpeak	\
count	1888.000000	1888.000000	1888.000000	1888.000000	1888.000000	
mean	0.148305	0.597458	149.424258	0.331568	1.053761	
std	0.355496	0.638820	23.006153	0.470901	1.161344	
min	0.000000	0.000000	71.000000	0.000000	0.000000	
25%	0.000000	0.000000	133.000000	0.000000	0.000000	
50%	0.000000	1.000000	152.000000	0.000000	0.800000	
75%	0.000000	1.000000	166.000000	1.000000	1.600000	
max	1.000000	2.000000	202.000000	1.000000	6.200000	
	slope	ca	thal	target		
count	1888.000000	1888.000000	1888.000000	1888.000000		
mean	1.421610	0.731462	2.662606	0.517479		
std	0.619588	1.015735	1.249924	0.499827		
min	0.000000	0.000000	0.000000	0.000000		
25%	1.000000	0.000000	2.000000	0.000000		
50%	1.000000	0.000000	2.000000	1.000000		
75%	2.000000	1.000000	3.000000	1.000000		
max	3.000000	4.000000	7.000000	1.000000		
age	0					
sex	0					
ср	0					
trestbps 0						
chol	0					
fbs	0					
restecg 0						
thalachh 0						
exang 0						
oldpea	k 0					
slope	0					
ca	0					
thal	0					
target 0						
dtype: int64						

3 Resultados da Análise Exploratória Inicial:

A análise exploratória inicial revelou a presença de valores ausentes nas colunas 'age' e 'chol'. Foram identificados outliers na coluna 'chol'.

As principais características da base de dados foram analisadas e visualizadas.

4 Descrição do Pipeline Desenvolvido:

O pipeline de limpeza e preparação dos dados incluiu as seguintes etapas:

Tratamento de Valores Ausentes: Preenchimento com a mediana.

Tratamento de Ruídos e Outliers: Remoção de outliers usando o método do IQR.

Tratamento de Valores Duplicados: Remoção de duplicatas.

Redução de Dimensionalidade: Seleção das variáveis mais importantes.

Transformação de Dados: Conversão de variáveis categóricas em numéricas

5 Tratamento de valores Ausentes

```
[13]: # Preencher valores ausentes da idade com a mediana
    df['age'].fillna(df['age'].median(), inplace=True)

# Preencher valores ausentes da coluna 'chol' com a mediana
    df['chol'].fillna(df['chol'].median(), inplace=True)

# Verificar novamente valores ausentes
    print(df.isnull().sum())
```

0 age sex 0 0 ср trestbps 0 chol 0 fbs restecg thalachh exang oldpeak 0 slope 0 0 ca thal 0 target dtype: int64

6 Tratamento de Ruídos e Outliers:

```
[16]: # Identificar e remover outliers na coluna 'chol' usando o método do IQR
Q1 = df['chol'].quantile(0.25)
Q3 = df['chol'].quantile(0.75)
IQR = Q3 - Q1
outliers = df[(df['chol'] < Q1 - 1.5 * IQR) | (df['chol'] > Q3 + 1.5 * IQR)]
df = df[~df.index.isin(outliers.index)]
```

7 Tratamento de Valores Duplicados:

```
[19]: # Remover valores duplicados, se existirem df.drop_duplicates(inplace=True)
```

8 Redução de Dimensionalidade:

```
[22]: # Selecionar as principais variáveis de interesse df_reduced = df[['age', 'sex', 'trestbps', 'chol', 'thalachh', 'target']]
```

9 Transformação de Dados:

```
[25]: # Transformar variáveis categóricas em variáveis numéricas, se aplicável
# Neste exemplo, a variável 'sex' será transformada
df_reduced.loc[:, 'sex'] = df_reduced['sex'].map({0: 'female', 1: 'male'})
```

10 Visualização de Dados Agrupados:

```
[28]: # Visualizar a relação entre a idade e a presença de doenças cardíacas
sns.boxplot(x='target', y='age', data=df_reduced)
plt.title('Idade x Presença de Doenças Cardíacas')
plt.xlabel('Doença Cardíaca (0: Não, 1: Sim)')
plt.ylabel('Idade')
plt.show()
```

Idade x Presença de Doenças Cardíacas

11 Visualizações Geradas:

Distribuição das Idades: Mostra a distribuição das idades dos pacientes, o que ajuda a entender a faixa etária predominante no conjunto de dados.

Idade x Presença de Doenças Cardíacas: Visualiza a relação entre a idade e a presença de doenças cardíacas, indicando como a variação de idade influencia a presença de doenças cardíacas.

12 Resultados do Processo Desenvolvido:

Após o processamento, a base de dados foi limpa, sem valores ausentes ou duplicados, e as variáveis categóricas foram transformadas em numéricas. O conjunto de dados está pronto para ser usado em modelos de aprendizado de máquina para previsão de doenças cardíacas.

[]: