Contest #1 Answers must be integers from 0 to 999, inclusive. 2016 – 2017

No calculators are allowed.

Time: 10 minutes

- 1) A clock chimes 4 times at 4 o'clock. It takes 6 seconds from the first chime to the last chime. At the same constant rate, compute the number of seconds from the first chime to the last chime at 12 o'clock.
- 2) Compute the sum of the roots of $3^{2x} 4 \cdot 3^{x+1} = -27$.

Time: 10 minutes

- 3) A linear function is defined by f(x + 5) = f(x) + 100. Compute the slope of the linear function f(x).
- 4) The measure of one angle of $\triangle ABC$, which is inscribed in circle O, is 47° . The measures of the three angles of $\triangle ABC$ form an arithmetic sequence. If the length of the second longest side of $\triangle ABC$ is 12 and the radius of circle O, in simplest radical form, is $p_{\sqrt{q}}$, compute pq.

Time: 10 minutes

- 5) If $a^2 + b^2 = 15$ and ab = 5, compute the positive value of a + b.
- In isosceles ΔRST , point M is the midpoint of altitude \overline{RL} to base \overline{ST} . Lines \overrightarrow{TM} and \overrightarrow{SM} intersect \overline{RS} and \overline{RT} in points H and K, respectively. The ratio of the area of quadrilateral RHMK to the area of ΔRST may be expressed in simplest form as $\frac{p}{q}$. Compute p+q.

Solutions for Contest #1

- 1) When the clock strikes 4 o'clock there are 3 two-second intervals between strikes. So, for the clock to strike 12 o'clock, there are 11 two-second intervals. Therefore, it takes 22 seconds for this clock to strike 12 o'clock.
- 2) Re-write the given equation as $3^{2x} 4 \cdot 3^{x+1} + 27 = 0 \rightarrow 3^{2x} 12 \cdot 3^x + 27 = 0$. Now let $a = 3^x$. So we have $a^2 12a + 27 = 0 \rightarrow (a 9)(a 3 = 0 \rightarrow 3x 93x 3 = 0 \rightarrow 3x = 9 \text{ or } 3x = 3 \rightarrow x = 2 \text{ or } x = 1$. The required sum is **3.**
- 3) Since f is linear, f(x) = mx + b. So, $f(x + 5) = m(x + 5) + b = mx + b + 100 \rightarrow mx + 5m + b = mx + b + 100 \rightarrow 5m = 100 \rightarrow m = 20$.
- 4) Let the measures of the angles of $\triangle ABC$ in degrees be 47,47+d, and 47+2d. Setting their sum equal to 180 yields d=13. The degree-measures of the angles of $\triangle ABC$ are 47,60, and 73. If $m \angle A=60^\circ$, draw radii \overline{OB} and \overline{OC} to form isosceles $\triangle BOC$ with $m \angle BOC=120^\circ$. Let \overline{OD} bisect $\angle BOC$ forming two 30° - 60° - 90° congruent triangles. Since BC=12 and DC=6, radius $OC=4\sqrt{3}$ and the required product is **12**.

- 5) Start with $(a + b)^2 = a^2 + b^2 + 2ab = 15 + 10 = 25$. So $a + b = \pm 5$. The required value is **5**.
- 6) Let RM = ML = b and let SL = LT = a. Place ΔRST in the coordinate plane with S(0,0), L(a,0), T(2a,0), M(a,b) and R(a,2b), where a > 0 and b > 0. Then, the equation of SMK is $y = \frac{b}{a}x$ and the equation of \overline{KKT} is $y 0 = \frac{-2b}{a}(x 2a)$. Solve the system of equations to get the coordinates of point K: $\frac{b}{a}x = \frac{-2b}{a}(x 2a) \rightarrow x = -2x + 4a \rightarrow 3x = 4a \rightarrow x = \frac{4a}{3}$ and $y = \frac{4b}{3}$. By symmetry, the coordinates of H are $\left(\frac{2a}{3}, \frac{4b}{3}\right)$. Since $\Delta RHM \cong \Delta RKM$ by ASA and $\overline{RH} \cong \overline{RK}$ and $\overline{HM} \cong \overline{KM}$, RHMK is a kite. The area of the kite is $\frac{1}{2}(HK)(RM) = \frac{1}{2}\left(\frac{2a}{3}\right)(b) = \frac{ab}{3}$. The area of $\Delta RST = \frac{1}{2}(2a)(2b) = 2ab$. So, the required ratio is $\frac{ab}{3}/2ab = \frac{1}{6}$ and the required sum is 7.

R M K

Alternatively, use mass points. The masses at S and T are each 1. So, L and R are each 2, M is 4, and H and K are each 3. So, let RH = RK = d, HS = KT = 2d, and RM = ML = b. Let $m \not\preceq SRL = \theta$. Therefore, $\frac{(RHMK)}{(RST)} = \frac{(RHM)}{(RSL)} = \frac{RHM}{RSL}$

$$\frac{\frac{1}{2}bd\sin\theta}{\frac{1}{6}2b\cdot3d\sin\theta} = \frac{1}{6}.$$
 The required sum is **7.**