KEY TERMS & MAIN RESULTS – DISCRETE MATHEMATICS

Key terms	Examples	Exercises – Do yourself
	Chapter 1 – Logic & Proc	ofs
Propositions	Ex. Determine whether the proposition is TRUE or FALSE. a/1 + 1 = 2 and $2 + 2 = 1$. b/1 + 1 = 2 or $2 + 2 = 1$. c/1 + 1 = 2 if and only if $2 + 2 = 1$. d/1 + 1 = 2 if $2 + 2 = 1$. e/I it is snowing, then it is snowing. Solution. $a/FALSE(T \wedge F)$ $b/TRUE(T \vee F)$ $c/FALSE(T \leftrightarrow F)$	1/ Determine whether the proposition is TRUE or FALSE. a/ 1 + 1 = 2 if and only if pigs can fly. b/ I am a superman if 1 + 1 = 2. c/ If 1 + 1 = 2 or 1 + 1 = 3 but not both, then I can fly. d/ For every nonnegative integer, n, the value of n ² + n + 41 is prime.
Truth tables	Ex. Write the truth table for the proposition $\neg(r \rightarrow \neg q) \lor (p \land \neg r)$. Solution. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2/ Construct the truth tables for the propositions: $a/(p \land \neg q) \lor (\neg p \land q)$ $b/[(p \rightarrow q) \land \neg q] \rightarrow \neg p$ $c/p \land r \rightarrow \neg q \lor p$ $d/p \rightarrow (q \oplus p)$
Connectives / Operations	Ex. Let p and q be the propositions p: It is below freezing. q: It is snowing.	3/ Let p, q, and r be the propositions: p:You get an A on the

	Write these propositions using p <i>and</i> q and	final exam.
	logical connectives (including negations).	q :You do every exercise in this book.
	a/ It is below freezing <i>but not</i> snowing. b/ It is <i>either</i> snowing <i>or</i> below freezing (or	r:You get an A in this
	both).	class.
	c/ That it is below freezing is <i>necessary and</i>	Write these propositions
	sufficient for it to be snowing.	using p, q, and r and
	Solution.	logical connectives
	$a/p \land \neg q$	(including negations).
	$b/p \vee q$	
	$c/p \leftrightarrow q$	a/ You get an A in this
		class, but you do not do
		every exercise in this
		book.
		b/ You get an A on the
		final, you do every
		exercise in this book, and you get an A in this class.
		c/ To get an A in this
		class, it is necessary for
		you to get an A on the
		final.
		d/ Getting an A on the
		final and doing every
		exercise in this book is
		sufficient for getting an A
		in this class.
Tautology	Ex. Determine whether this proposition is a	4/ Determine whether
	tautology : $[(p \rightarrow q) \land \neg q] \rightarrow \neg p$	each of these propositions
	Solution.	is a tautology : a/ $p \land q \rightarrow p$
	Truth table of $[(p \rightarrow q) \land \neg q] \rightarrow \neg p$:	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$b/(p \to q) \lor (q \to p)$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ c/\left[(p \to q) \land \neg p \right] \to \neg q $
	TTTFT	$d/\neg(p\rightarrow\neg p)\rightarrow q.$
	T F F T	
	F T T F T	
	F F T T T	
	$\Rightarrow [(p \to q) \land \neg q] \to \neg p \text{ is a tautology.}$	
If-then	Ex. Write each of these statements in the	5/ Write each of these
Necessary	form "if p, then q" in English.	statements in the form "if
Sufficient		

		/ T. *
	you study.	a/ It is necessary to walk
	b/ Studying is sufficient for passing.	8 miles to get to the top
	Solution.	of Long's Peak.
	a/ If you get a good grade, then you study.	b/ A sufficient condition
	(Equivalently, if you don't study, then you	for the warranty to be
	don't get a good grade.)	good is that you bought
	b/ If you study, then you pass.	the computer less than a
		year ago.
		c/ I will remember to
		send you the address only
		if you send me an e-mail
		message.
		(Hint: " if p, then q" can
		be written as "p only if
		q").
If and only if	Ex. Write each of these propositions in the	6/ Write each of these
in and only if	form "p if and only if q" in English.	propositions in the form
	· · · · · · ·	
	a/ If it is hot outside, you buy an ice cream	"p if and only if q" in
	cone, and if you buy an ice cream cone, it is	English.
	hot outside.	a/ If you read the
	b/ For you to win the contest it is necessary	newspaper every day, you
	and sufficient that you have the only	will be in formed, and
	winning ticket.	conversely.
	c/ If you watch television, your mind will	b/ For you to get an A in
	decay, and conversely .	this course, it is
	Solution.	necessary and sufficient
	a/ It is hot outside if and only if you buy an	that you learn how to
	ice cream cone.	solve discrete
	b/ You win the contest if and only if you	mathematics problems.
	have the only winning ticket.	c/ It rains if it is a
	c/ Your mind will decay if and only if you	weekend day, and it is a
	watch television.	weekend day if it rains.
Negation	Ex. Find the negation of the propositions	7/ Find the negation of
	a/ It is Thursday and it is cold.	the propositions.
	b/ I will go to the play or read a book.	a/ If you study, then you
	c/ If it is not rainy, then we go to the	pass.
	movies.	b/ Alex and Bob are
	Solution.	absent.
	a/ It is not Thursday or it is not cold.	c/ He is young or strong.
	(Keep in mind, $\overline{p \wedge q} = \overline{p \vee q}$)	in the second of successions.
	b/I won't go to the play and I won't read a	
	book.	

		1
	(Keep in mind, $\overline{p \lor q} = \overline{p \land q}$)	
	c/ It is not rainy but we don't go to the	
	movies.	
	(Keep in mind, $\overline{p \to q} \equiv p \wedge \overline{q}$)	
Equivalence	Ex1. a/ Write a proposition equivalent to	8/ a/ Write a proposition
	$p \vee q$ that uses only p, q, \neg and the	equivalent to $p \rightarrow q$ that
	connective \wedge .	uses only p, q, \neg and the
	b/ Write a proposition equivalent to	connective \wedge .
	$(p \to q) \land (p \to \overline{q}).$	b/ Write a proposition
	Solution.	equivalent to
		$(p \to q) \land (p \to q).$
	$a/\underbrace{p \lor q}_{=} = p \lor q \qquad \text{(double negation)}$	c/ Write a proposition
	$\equiv = = = = = = = = = = = = = = = = = = =$	equivalent to $(\neg p \lor \neg q)$
	So, $p \lor q \equiv \neg(\neg p \land q)$.	$ \rightarrow (p \land \neg q).$
	$b/(p \to q) \land (p \to \overline{q}) \equiv (\overline{p} \lor q) \land (\overline{p} \lor \overline{q})$	9/ Determine whether two
	$\equiv \overline{p} \vee (q \wedge \overline{q})$ (distributive law)	propositions are
		equivalent.
	$\equiv \overline{p} \vee (F)$	$a/p \rightarrow q \text{ and } q \rightarrow p$
	$\equiv \overline{p}$.	b/ $(p \rightarrow q \land r)$ and
	(Keep in mind, $p \to q \equiv \overline{p} \lor q$)	$(p \to q) \land (p \to r)$
		$c/\overline{p \oplus q}$ and $q \leftrightarrow q$
	Ex2. Determine whether two propositions	
	are equivalent.	
	$a/p \rightarrow q$ and $p \rightarrow q$	
	b/ $(p \rightarrow q \lor r)$ and $(p \rightarrow q) \lor (p \rightarrow r)$	
	Solution.	
	a/ Use a truth table	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	T F F T F F F F F F	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	⇒ NOT EQUIVALENT.	
	b/ Starting from the right-hand side,	
	1	<u> </u>

	$(p \to q) \lor (p \to r) \equiv (\overline{p} \lor q) \lor (\overline{p} \lor r)$	
	$\equiv p \lor q \lor p \lor r$	
	$\equiv (p \vee p) \vee q \vee r$ (commutative and associative laws)	
	$= p \lor q \lor r \qquad \text{(idempotent law)}$	
	$= p \lor (q \lor r) $ (associative law)	
	$\equiv p \rightarrow (q \lor r)$	
	→ EQUIVALENT.	
Predicates	Ex1. What is the truth values of each of	10/ What is the truth
Quantifiers	these propositions? (the domain for variable	values of each of these
	x is {-3, -2, -1, 0, 1, 2})	propositions? (the domain
	$a/ \forall x (x > 1 \land x^2 > 1)$	for variable x is the set of
	$b/ \forall x (x > 1 \lor x^2 > 1)$	all real numbers.)
	$c/ \forall x (x > 1 \rightarrow x^2 > 1)$	$ a/ \forall x (x > 1 \land x^2 > 1) $
	Solution.	$b/ \forall x (x > 1 \lor x^2 > 1)$
	a/ FALSE (counter example: x = -2)	$c/ \forall x (x > 1 \rightarrow x^2 > 1)$
	b/ FALSE (counter example: $x = 2$)	,
	c/ TRUE (no counter example)	11 / Suppose $P(x, y)$ is a
		predicate and the universe
	Ex2. Suppose $P(x, y)$ is a predicate and the	for the variables x and y
	universe for the variables x and y is $\{1, 2, 2\}$	is $\{1, 2, 3\}$.
	3}. Suppose <i>P</i> (1, 3), <i>P</i> (2, 1), <i>P</i> (2, 2), <i>P</i> (2, 3),	Suppose <i>P</i> (1,3), <i>P</i> (2,1), <i>P</i> (2,2), <i>P</i> (2, 3), <i>P</i> (2, 3),
	P(2, 3), P(3, 1), P(3, 2) are true, and $P(x, y)$	P(3, 1), P(3, 2) are true,
	is false otherwise.	and $P(x, y)$ is false
	Determine whether the following	otherwise.
	statements are true.	Determine whether the
	$ a/ \forall x \exists y P(x, y) $	following statements are
	$b/\exists y \forall x P(x,y)$	true.
	$c/ \forall x \exists y (P(x,y) \to P(y,x))$	$a/\forall y \exists x P(x,y)$
	Solution.	b/
	a/ TRUE (we can see P(1, 3), P(2, 2), P(3,	$\forall y \exists x \big(P(x, y) \to P(y, x) \big)$
	2) are true \rightarrow for each x in $\{1, 2, 3\}$, there	19/ Find a magnifican of
	is at least one y in {1, 2, 3}.)	12/ Find a <i>negation</i> of each of these statements:
	b/ FALSE (we can see that no y in {1, 2, 3}	a/ $\forall x(P(x) \rightarrow Q(x))$
	for all x in $\{1, 2, 3\}$, details are in below:	$b/\exists x(P(x) \land \neg Q(x))$
	• $y = 1$: $P(2, 1)$, $P(3, 1)$ are true only (true with $x = 2, 3$, all x in $\{1, 2, 3\}$).	$c/ \forall x \exists y (\neg P(x, y) \lor \neg Q(x, y)) \lor \neg Q(x, y)$
	• $y = 2$: $P(2, 2)$, $P(3, 2)$ are true only.	y)
	, (-, -,, - (-, -) -, -, -, -, -, -, -, -, -, -, -, -, -, -	$d/ \forall x \in R(x < 2 \rightarrow x^2 < 4)$

	_	T
	 y = 3: P(1, 3), P(2, 3) are true only. c/ TRUE x = 1: P(1, 3) → P(3, 1) x = 2: P(2, 2) → P(2, 2) x = 3: P(3, 1) → P(1, 3) Ex3. Find the negation of each of these statements. a/ b/ 	
	c/	
Translation	Ex. Suppose the variable x represents students and y represents courses, and: • $A(y)$: y is an advanced course • $M(y)$: y is a math course • $F(x)$: x is a freshman • $B(x)$: x is a full-time student • $T(x, y)$: student x is taking course y . Write these statements using these predicates and any needed quantifiers. a/ Linh is taking MAD101. b/ No math course is an advanced course. c/ Every freshman is a full-time student. d/ There is at least one course that every full-time student is taking. Solution. a/ $T(\text{Linh}, \text{MAD101})$ b/ $\forall y \left(M(y) \rightarrow \overline{A(y)} \right)$ or equivalently, $\neg \exists y \left(M(y) \land A(y) \right)$ c/ $\forall x \left(F(x) \rightarrow B(x) \right)$ d/ $\exists y \forall x \left(B(x) \rightarrow T(x, y) \right)$.	 13/ Suppose the variable <i>x</i> represents students and <i>y</i> represents courses, and: A(y): y is an advanced course M(y): y is a math course F(x): x is a freshman B(x): x is a full-time student T(x, y): student x is taking course y. Write these statements using these predicates and any needed quantifiers. A) Nam is taking a math course. There are some freshmen who are not taking any course. C/ There are some full-time students who are not taking any advanced course.
Arguments	Ex. Determine whether the following	14/ Determine whether
Valid/invalid	argument is valid.	the following argument is
Rules of	"Rainy days make gardens grow. Gardens	valid.
inference	don't grow if it is not hot. It always rains on	Dong is an AI Major or a
	a day that is not hot. Therefore, if it is not hot, then it is hot."	CS Major but not both. If he does not know discrete

Solution.

Consider the statements:

r: it a rainy day

g: gardens grow

h: it is hot

Then.

 Rainy days make gardens grow can be written as "r → g" (1)

- "Gardens don't grow if it is not hot" is denoted by "¬h → ¬g" (2)
- "It always rains on a day that is not hot" becomes " $\neg h \rightarrow r$ " (3)

From (3), $\neg h \rightarrow r$ and from (1), $r \rightarrow g$. So, $\neg h \rightarrow g$ (4) can be drawn.

From (2), $\neg h \rightarrow \neg g$, this is equivalent to $g \rightarrow h$ (5).

From (4) and (5), $\neg h \rightarrow g$ and $g \rightarrow h$, we can conclude that $\neg h \rightarrow h$, or in words "if it is not hot, then it is hot".

⇒ VALID ARGUMENT.

math, he is not an AI Major. If he knows discrete math, he is smart. He is not a CS Major. Therefore, he is smart.

Applications.

1. Logic Circuits. (readings – pages ____)

Find the output of each of these combinatorial circuits.

- 2. The goal of this exercise is to *translate* some assertions about binary strings into logic notation.
- The domain of discourse is the set of all finite-length binary strings: λ , 0, 1, 00, 01, 10, 11, 000, 001, (Here λ denotes the *empty string*.)
- Consider a string like 10x1y, if the value of x is 110 and the value of y is 11, then the value of 10x1y is the binary string 10110111.
- Here are some examples of formulas and their English translations. Names for these predicates are listed in the third column so that you can reuse them in your solutions (as I do in the definition of the predicate NO-1S below).

Meaning	Formula	Name
x is a prefix of y	$\exists z \ (xz = y)$	PREFIX(x, y)
x is a substring of y	$\exists u \exists v \ (uxv = y)$	SUBSTRING(x, y)
x is empty or a string of 0's	NOT(SUBSTRING(1, x))	NO-1S(x)

- a) x consists of three copies of some string.b) x is an even-length string of 0's.c) x does not contain both a 0 and a 1.

c) x does not contain both a 0 and a 1.				
Chapter 2 – sets, sequences, sums				
Sets	Ex1. Determine whether each of these	15/ Determine whether		
	statements is true or false.	each of these statements		
Elements	$a/2 \in \{2,\{2\}\}.$	is true or false.		
	$b/2 \in \{\{2\}, \{\{2\}\}\}.$	$a/2 \in \{\{\{2\}\}\}.$		
Empty set	$c/\emptyset \in \{0\}.$	$b/2 \in \{\{2\}, \{2, \{2\}\}\}\}.$		
	$d/\varnothing \in \{\varnothing, \{\varnothing\}\}.$	$c/\emptyset \in \{x\}.$		
Subsets	$e/\varnothing\subseteq\{0\}.$	$d/\varnothing\subseteq\{x\}.$		
	Solution.			
	a/ True			
	b/ False			
	c/ False			
	d/ True			
	e/ True			
Cardinality of	Ex. What is the cardinality of each of these	16/ What is the		
a set	sets?	cardinality of each of		
	a/{a, {a}}.	these sets?		
	$b/\{\emptyset, a, \{a, \{a\}\}\}.$	$a/\{\emptyset, \{\emptyset\}\}.$		
	Solution.	b/ { {a, {a}, b} }.		
	$a/\{a, \{a\}\}\} = 2.$			
	$ b/ \{\emptyset, a, \{a, \{a\}\}\} = 3.$	4717		
Power set	The power set of a set A , denoted by $P(A)$,	17/ Determine whether		
	is the set of all subsets of A.	each of these sets is the		
	For example, if $A = \{1, 2\}$, then the power	power set of a set?		
	set of A is the set $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$	a/\varnothing .		
	2}}. If A contains n elements, P(A) contains 2 ⁿ	$b/\{\emptyset\}.$		
	elements.	$c/\{\emptyset, \{a\}, \{\emptyset\}\}.$		
	Cicinonia.	d/ {Ø, {{1}}}, {2}, {{1}},		
	Ex1. Determine whether each of these sets	2}}.		
	is the power set of a set, where a and b are	18/ How many alamanta		
	distinct elements.	18/ How many elements does each of these sets		
	$a/\{\emptyset, \{a\}\}$	have?		
	[w (~, [u])	nave:		

b/ {∅, {a}, {∅,a}}
c/ {∅, {a}, {b}, {a, b}}
Solution.
a/ {∅, {a}} is the power set of the set {a}.
b/ {∅, {a}, {∅,a}} cannot be a power set of any set.
c/ {∅, {a}, {∅,a}} is the power set of the set {a, b}.

Ex2. How many elements does each of these sets have?
a/ P({a, {a}})
b/ P({∅, a, {a}, {{a}}})
c/ P(P(∅))
Solution.
a/ |{a, {a}}| = 2 → |P({a, {a}})| = 2² = 4.

a/ $P(\{\emptyset, \{a\}\})$. b/ $P(\{a, \{a\}, \{a, \{a\}\}\})$. c/ $P(P(\{\emptyset\}))$.

Union \cup

Ex1. Prove that, for all sets A, B:

 \rightarrow $|P(\{\emptyset, a, \{a\}, \{\{a\}\}\})| = 2^4 = 16.$

 $c/|\varnothing| = 0 \rightarrow |P(\varnothing)| = 2^0 = 1 \rightarrow |P(P(\varnothing))| =$

$$a/A - B = A \cap \overline{B}$$
.

Intersection \cap

$$b/A - B \subseteq A$$
.

$$c/A = (A - B) \cup (A \cap B).$$

 $b/|\{\emptyset, a, \{a\}, \{\{a\}\}\}| = 4$

Difference –

Solution.

 $2^1 = 2$.

a/ We use a membership table:

Symmetric difference \oplus

Complement

Α	В	\overline{B}	A - B	$A \cap \overline{B}$
1	1	0	0	0
1	0	1	1	1
0	1	0	0	0
0	0	1	0	0

Based on the agreement of two latest columns, an element belongs to A - B if and only if it belongs to $A \cap \overline{B}$.

So,
$$A - B = A \cap \overline{B}$$
.

b/ Membership table:

A	В	A - B	A
1	1	0	1
1	0	1	1
0	1	0	0
0	0	0	0

19/ Show that if A and B are sets with $A \subseteq B$, then $a/A \cup B = B$.

$$b/A \cap B = A$$
.

$$c/A \cap B \subseteq A$$
.

$$d/A \oplus B = B - A$$
.

$$e/\overline{B} \subseteq \overline{A}$$
.

(Hint: for the assumption $A \subseteq B$, you only consider three possible cases

A	В
1	1
0	1
0	0
)	

20/ Find the sets A and B if $A \subseteq B$ and $A \cup B = \{1, 3, 4, 5, 7, 9\}$, and $A \cap B = \{3, 4, 7\}$.

		1
	From the table, if an element belongs to A – B (the corresponding number is 1), then it also belongs to A (the corresponding number is also 1).	21/ Find the sets A and B if $A - B = \{2, 3, 5, 7\}$, B $- A = \{1, 4\}$, and $A \cap B$ $= \{8, 6\}$.
	Ex2. Find the sets A and B if $A - B = \{1, 5, 7, 8\}$, $B - A = \{2, 10\}$, and $A \cap B = \{3, 6, 9\}$. Solution. From Ex1 (c): • $A = (A - B) \cup (A \cap B) = \{1, 5, 7, 8, 3, 6, 9\}$ • $B = (B - A) \cup (A \cap B) = \{2, 10, 3, 6, 9\}$.	
A×B	Ex. Given the sets C = {red; blue; yellow} and S = {small, medium, large}. a/ Construct Cartesian product C×S. b/ What is the cardinality of the set C×S? How many subsets does C×S have? Solution. a/ C×S = {(red, small), (red, medium), (red, large), (blue, small), (blue, medium), (blue, large), (yellow, small), (yellow, medium), (yellow, large)}.	22/ Given the sets A = {0, 1}. a/ Construct the set A×A. b/ Find the complement of the set {(0, 1)} in A×A. c/ What is the cardinality of the set A×A? List all subsets of A×A.
Set representation	b/ $ C \times S = 3.3 = 9$ \rightarrow $C \times S$ has 2^9 subsets. Ex1. Let $U = \{a, b, c, d, e, f, g\}$ be the universal set. Find the bit string representing the subset $A = \{a, c, d, g\}$. Solution. $ U a b c d e f g $ $ U 1 1 1 1 1 1 $ $ A 1 0 1 1 0 0 1 $	23/ Suppose that the universal set is U = {1, 2, 3, 4, 5, 6, 7, 8}. Express each of these sets with bit strings. a/ {3, 4, 5}. b/ {1, 3, 6, 8}.
	Ex2. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Given the subsets $A = \{1, 2, 3, 5, 7\}$, $B = \{2, 4, 5\}$. Find the bit string representing the subset $A - B$. Solution. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	c/ $\{1, 2, 3, 5\} \oplus \{2, 3, 4, 6, 7\}$. 24/ Let U = $\{a, b, c, d, e, f, g\}$ be the universal set. Suppose A and B are sets given by bit strings 1010101 and 1100111. List all elements in the set $\overline{A \cap B}$.

	В	
functions	Ex1. Determine which rules are funct a/ f: $Z \rightarrow Z$; $f(x) = 1/(2x-1)$. b/ f: $Z \rightarrow R$; $f(x) = 1/(2x-1)$. c/ f: $R \rightarrow R$; $f(x) = 1/(2x-1)$. Solution. a/ f: $Z \rightarrow Z$; $f(x) = 1/(2x-1)$. This rule is not a function, because f(1/3 does not belong to the set Z (the sintegers). b/ f: $Z \rightarrow R$; $f(x) = 1/(2x-1)$. This rule is a function, we determine exactly one output value for each inprovalue. c/ f: $R \rightarrow R$; $f(x) = 1/(2x-1)$. This rule is not a function because f(1 not defined. Ex2. Determine whether f is a function from the set of all bit strings to the se integers if $f(S)$ is the position of a 0 is S . Solution. Consider the string $S = "10011"$ as an	rules are functions. $a/f: Z \rightarrow Z; f(x) = 1/(x^2 - 2).$ $b/f: Z \rightarrow R; f(x) = 1/(x^2 - 2).$ $2) = c/f: R \rightarrow R; f(x) = 1/(x^2 - 2).$ 26/ Determine whether f is a function from the set of all bit strings to the set of integers if $f(S)$ is the number of 0 bits in S. 1/2) is 27/ Let R be the set $\{(a, b) \mid a - 1 = b \text{ or } b - 1 = a\},$ where a and b are in $\{-2, -1, 0, 1, 2\}.$ a/ List all ordered pairs of R. b/ Is R a function?
	$f(S)$ = the position of a 0 bit in S \rightarrow $f(10011)$ can be 2 or 3 \rightarrow f is NOT a function.	
One-to-one Onto	Ex1. a/ Determine whether the functifrom $N = \{0, 1, 2,\}$ to N is one-to a/ $f(n) = (n-1)^2$. b/ Determine whether the function from	the function $f(n) = (n + 1)^2$ from $N = \{0, 1, 2,\}$
Bijection Inverse functions (f ⁻¹)	$\{, -2, -1, 0, 1, 2,\} \text{ to } N = \{0, 1, 2,\}$ is one-to-one. $f(n) = \begin{cases} -2n & \text{if } n < 0 \\ 2n+1 & \text{if } n \ge 0 \end{cases}$	2,} b/ Determine whether the function from $Z = \{, -2, -1, 0, 1, 2,\}$ to $N = \{0, 1, 2,\}$ is one-to-one.
Invertible	Solution. $a/f(2) = f(0) = 1 \implies f \text{ is not one-to-one}$	$f(n) = \begin{cases} n^2 & \text{if } n < 0 \end{cases}$
	 If n, m are different negative in 	-2n ≠ - in exercise 26/. Is f one-to-one?

integers \rightarrow f(n) \neq f(m) because 2n+1 \neq 2m + 1.

- If n is negative and m is nonnegative \rightarrow f(n) = -2n (even) and f(m) = 2m + 1 (odd) \rightarrow f(n) \neq f(m)
- $\Rightarrow \forall n \forall m (n \neq m \rightarrow f(n) \neq f(m))$
- → f is one-to-one.

Ex2. Determine whether the function f from the set of all bit strings to the set of integers is one-to-one if f(S) is the number of 1-bits in S.

Solution.

 $f(01011) = f(1110) = 3 \implies f$ is not one-to-one.

Ex3. a/ Determine whether the function $f(n) = (n-1)^2$ from $N = \{0, 1, 2, ...\}$ to N is **onto.**

b/ Determine whether the function from $Z = \{..., -2, -1, 0, 1, 2, ...\}$ to $N = \{0, 1, 2, ...\}$ is **onto.**

$$f(n) = \begin{cases} -2n & \text{if } n < 0\\ 2n+1 & \text{if } n \ge 0 \end{cases}$$

Solution.

a/Because $f(n) = (n-1)^2 \neq 2$ for all values of $n \rightarrow f$ is not onto.

b/Because $f(n) \neq 0$ for all $n \rightarrow f$ is not onto.

Ex4. Determine whether each of these functions is a **bijection** from R to R. In case f is a bijection, find the inverse function f^{-1} .

$$a/f(x) = -3x + 4$$

 $b/f(x) = -3x^2 + 7$

Solution.

a/ For every y in R, we can find **exactly one** x in R such that y = -3x + 4. In this case, x = (y - 4)/(-3).

And the **inverse function** is $f^{-1}(y) = (y - 4)/(-3)$.

b/ For some y in R, we cannot find x (or can

30a/ Determine whether the function $f(n) = (n + 1)^2$ from $N = \{0, 1, 2, ...\}$ to N is **onto.** b/ Determine whether the function from $N = \{0, 1, 2, ...\}$ to $Z = \{..., -2, -1, 0, 1, 2, ...\}$ is **onto** $f(n) = \begin{cases} n/2 \text{ if n is even} \\ -(n+1)/2 \text{ if n is odd} \end{cases}$

31a/ List all *functions* from $\{\Box, \varsigma\}$ to $\{SHOOT, PASS, SPRINT\}$. b/ List all *one-to-one* functions from $\{\Box, \varsigma\}$ to $\{SHOOT, PASS, SPRINT\}$. c/ List all *onto* functions from $\{\Box, \varsigma\}$ to $\{SHOOT, PASS, SPRINT\}$.

32/ Determine whether each of these functions is a **bijection** from R to R. In case f is a **bijection**, find the **inverse function** f⁻¹.

a/
$$f(x) = 2x - 5$$

b/ $f(x) = (x - 3)(x + 1)$

	find more than an avaluag of which D avale	
	find more than one values of x) in R such	
	that $y = -3x + 4$. For example, no value of x	
	in R such that $10 = -3x^2 + 7$ or $1 = -x^2$.	
G	\Rightarrow f is not onto \Rightarrow f is not a bijection.	
Composite	Ex1. Find fog and gof, where $f(x) = x^2 + 1$	33/ Find fog and gof,
function	and $g(x) = x + 2$, are functions from R to R.	where $f(x) = 2x + 1$ and
	Solution.	$g(x) = 1 - x^3$, are
	• $(f \circ g)(x) = f(g(x)) = f(x+2) = (x+2)^2$	functions from R to R.
	+ 1	
	• $(gof)(x) = g(f(x)) = g(x^2 + 1) = (x^2 + 1)$	34/ Let $g = \{(1, c); (2, b);$
	$1) + 2 = x^2 + 3.$	(3, a)} be a function from
	Ex2. Let $f = \{(a, 1); (b, 3); (c, 2)\}$ be a	$\{1, 2, 3\}$ to $\{a, b, c\}$.
	function from $\{a, b, c\}$ to $\{1, 2, 3\}$.	a/ Find g ⁻¹ .
	a/ Find f ⁻¹ .	b/ Find gog ⁻¹ and g ⁻¹ og.
	b/ Find fof ⁻¹ and f ⁻¹ of.	
	Solution.	
	$a/f^{-1} = \{(1, a); (3, b); (2, c)\}$	
	$b/ \text{ fof}^{-1} = \{(1, 1); (2, 2); (3, 3)\}$	
	and f^{-1} of = {(a, a); (b, b); (c, c)}.	
Sequences	Ex1. List the first 6 terms of each of these	35/ List the first 6 terms
	sequences.	of each of these
	a/ the sequence that lists each positive	Sequences.
	integer three times, in increasing order.	a/ the sequence whose n th
	b/ the sequence whose n^{th} term is $2^n - n^2$	term is the sum of the first
	c/ the sequence whose first term is 2,	n odd positive integers
	second term is 4, and each succeeding term	b/ the sequence whose n th
	is the sum of the two previous terms.	term is $n! - 2^n$
	Solution.	c/ the sequence whose
	a/ 111, 222, 333, 444, 555, 666.	first two terms are 1 and 5
	b/ 1, 0, -1, 0, 7, 28.	and each succeeding term
	c/ 2, 4, 6, 10, 16, 26.	is the sum of the two
	2, 1, 0, 10, 10, 20.	previous terms.
	Ex2. Find the first four terms of the	previous terms.
	sequence defined by each of these	36/ Find the first four
	recurrence relations and initial conditions.	terms of the sequence
	$a/a_n = -2a_{n-1}, a_0 = -1.$	defined by each of these
	$b/a_n = a_{n-1} - a_{n-2}, a_0 = 2, a_1 = -1.$	recurrence relations and
	$c/a_n = a_{n-1}, a_0 = 5.$	initial conditions.
	Solution.	$a/a_n = -a_{n-1}, a_0 = 5$
	$a/a_0 = -1$	$b/a_n = a_{n-1} - n, a_0 = 4$
	$a_1 = -2a_0 = -2.(-1) = 2$	$c/a_n = a_{n-2}, a_0 = 3, a_1 = 5$
	$a_1 = 2a_0 = 2.(1) = 2$ $a_2 = -2a_1 = -2(2) = -4$	$\alpha_{\text{II}} = \alpha_{\text{II}} = \beta$
	$u_2 - 2u_1 - 2(2) - 7$	

		T
	$a_3 = -2a_2 = -2(-4) = 8$	
	$b/a_0=2, a_1=-1$	
	$a_2 = a_1 - a_0 = -1 - 2 = -3$	
	$a_3 = a_2 - a_1 = -3 - (-1) = -2$	
	$c/a_0 = 5$	
	$a_1 = a_0 = 5$	
	$a_2 = a_1 = 5$	
	$a_3 = a_2 = 5$	
Special sums	Special sum:	37/ Find the value of each
	$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$	of these (double) sums.
	$\sum_{i=1}^{l-1+2+3++n-\frac{l}{2}}$	$a / \sum_{k=0}^{20} k$
	Ex1. Find the value of each of these sums.	k=10
	10	$\frac{7}{5}$
	$a/\sum_{i=1}^{\infty}i$	$b/\sum_{k=1}^{7}(2k-1)$
	$b / \sum_{i=1}^{10} 3$	$c/\sum_{i=1}^{3}\sum_{j=0}^{2}(2i-j)$
	$c / \sum_{i=1}^{10} (i+3)$	$d / \sum_{i=1}^{3} \sum_{j=0}^{2} j$
	i=1	$\bigcup_{i=1}^{G} \sum_{j=0}^{J} J$
	$d/\sum^{10} (3i+1)$	$e/\sum^{10}\sum^{20}(i\cdot j)$
	$\frac{d}{dl} \sum_{i=1}^{l} (3i+1)$	$\left \begin{array}{c} e/\sum_{i=1}^{n}\sum_{j=1}^{n}(i\cdot j)\end{array}\right $
	Solution.	<i>i-1 j-1</i>
	$a/\sum_{i=1}^{10} i = \frac{10(10+1)}{2} = 55$	
	$b / \sum_{i=1}^{10} 3 = 3 + 3 + + 3 = 3 \cdot 10 = 30$	
	$c/\sum_{i=1}^{10} (i+3) = \sum_{i=1}^{10} i + \sum_{i=1}^{10} 3 = 55 + 30 = 85$	
	d/	
	$\sum_{i=1}^{10} (3i+1) = \sum_{i=1}^{10} (3i) + \sum_{i=1}^{10} 1$	
	$=3\sum_{i=1}^{10}i+10$	
	i=1	
	=3.55+10	
	=175	
	Ex2. Compute each of these double sums.	
	$a / \sum_{i=1}^{2} \sum_{j=1}^{3} (i+j)$	
	$ a \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} (l+J)$	
	<u> </u>	

b/
$$\sum_{i=1}^{3} \sum_{j=1}^{4} i$$

c/ $\sum_{i=0}^{20} \sum_{j=1}^{30} (i \cdot j)$
Solution.
a/

$$\sum_{i=0}^{2} \sum_{j=1}^{3} (i+j) = (0+1) + (0+2) + (0+3) \quad \text{if } i = 0$$

$$+ (1+1) + (1+2) + (1+3) \quad \text{if } i = 1$$

$$+ (2+1) + (2+2) + (2+3) \quad \text{if } i = 2$$

$$= 27$$
b/

$$\sum_{i=1}^{3} \sum_{j=1}^{4} i = 1$$

$$1 + 1 + 1 + 1 \quad \text{if } i = 1$$

$$+ 2 + 2 + 2 + 2 \quad \text{if } i = 2$$

$$+ 3 + 3 + 3 + 3 \quad \text{if } i = 3$$

$$= 24$$
c/
$$\sum_{i=1}^{20} \sum_{j=1}^{30} (i \cdot j) = \sum_{j=1}^{30} j \quad \text{if } i = 1$$

$$+ \sum_{j=1}^{30} (2j) \quad \text{if } i = 2$$

$$+ \sum_{j=1}^{30} (3j) \quad \text{if } i = 3$$
...
$$+ \sum_{j=1}^{30} (20j) \quad \text{if } i = 20$$

$$= (1 + 2 + 3 + ... + 20) \sum_{j=1}^{30} j$$

$$= \frac{20(20+1)}{2} \cdot \frac{30(30+1)}{2}$$

$$= 97650.$$

Chapter 3 – Algorithms & Integers

Algorithms	Ev1 List all the stans used to seems for 0	29/ List all the stars used
Algorithms	Ex1. List all the steps used to search for 9	38/ List all the steps used
	in the sequence 2, 3, 4, 5, 6, 8, 9, 11 using a	to search for 8 in the
	linear search. How many comparisons	sequence 3, 5, 6, 8, 9, 11,
	required to search for 9 in the sequence?	13, 14 using a binary
	Solution.	search. How many
	Below is the linear search algorithm in	comparisons required to
	pseudocode	search for 8 in the
	procedure linear search(x: integer, a ₁ , a ₂ ,,	sequence?
	a _n : distinct integers)	20/1 1 11
	i := 1	39/ Josephus problem.
	while $(i \le n \text{ and } x = a_i)$	This problem is based on
	i := i + 1	an account by the
	if $i \le n$ then location := i	historian Flavius
	else location := 0	Josephus, who was part
	return location {location is the subscript of	of a band of 41 Jewish
	the term that equals x, or is 0 if x is not	rebels trapped in a cave
	found}	by the Romans during the
	All the steps used to search for 9 using a	Jewish Roman war of the
	linear search:	first century. The rebels
	i=1	preferred suicide to
	$(1 \le 8 \text{ and } 9 \ne 2) \implies i := i+1 = 2$	capture; they decided to
	i=2	form a circle and to
	$(2 \le 8 \text{ and } 9 \ne 3) \implies i := i+1 = 3$	repeatedly count off
	i = 3	around the circle, killing
	$(3 \le 8 \text{ and } 9 \ne 4) \implies i := i+1 = 4$	every third rebel left
	i = 4	alive. However, Josephus
	$(4 \le 8 \text{ and } 9 \ne 5) \implies i := i+1 = 5$	and another rebel did not
	i = 5	want to be killed this
	$(5 \le 8 \text{ and } 9 \ne 6) \implies i := i+1 = 6$	way; they determined the
	i = 6	positions where they
	$(6 \le 8 \text{ and } 9 \ne 8) \implies i := i+1 = 7$	should stand to be the last
	i = 7	two rebels remaining
	$(7 \le 8 \text{ and } 9 \ne 9)$ // the condition is false	alive.
	$7 \le 9 \implies \text{location} = 7.$	Devise an algorithm to
		determine the alive
	Based on the steps above, there are 15	positions if the number of
	comparisons (\leq, \neq) required.	rebels is n and an alive
	1 , , 1	rebel will be killed after
D. C		counting to $k (k < n)$.
Big-O	Ex1. In the table below, check ✓ if the fact	40/ Determine whether
Big-Omega	is true and check * otherwise.	each of these functions is
Big-theta	function $= O(x^2) = \Omega(x^2) = \Theta(x^2)$	$O(x^2)$.
	2x + 11	a/f(x) = 3x + 7.

	1 2 2			1	1/6() 1 (3) 2
	$\int_{1}^{1} x^2 + 3x + \int_{1}^{2} x^2 + \int_{1}^{2} $				$b/f(x) = log(x^3) + 2x.$
	1 21 2 22 1				$c/f(x) = (2x^3 + x^2 \log x)/(x+2)$
	$x^2 \log x + 2018$				x)/(x+2). $d/f(x) = 2^x + 1$.
	$\frac{2018}{x^3 - 5x^2}$				$ \mathbf{u}/1(\mathbf{x}) - \mathbf{z} + 1. $
	$\begin{vmatrix} x - 3x \\ +3 \end{vmatrix}$				41/ Find the least integer
	Solution.				k such that $f(x)$ is $O(x^k)$
	function	$= O(x^2)$	$= \Omega(x^2)$	$=\Theta(\mathbf{x}^2)$	for each of these
	2x + 11	√	x	*	functions.
	$x^2 + 3x +$	✓	✓	✓	$a/f(x) = 2x^2 + x^2 \log x.$
	1				$b/f(x) = x^3 + (\log x)^4$
	x ² logx +	×	✓	×	$c/f(x) = (x\log x + 3x)(x^2$
	2018				+100x + 1).
	x^3-5x^2	×	✓	×	42/ Show that 1 + 2 + 3 +
	+3				+ n is $O(n^2)$.
	E 3 E' 14	1 1	1 1	.1	• II IS O(II).
	Ex2. Find the contract $(\sqrt{x^8+x^4+1})$			i that	
	$\frac{(\sqrt{x^8+x^4+1}+1)}{x^2+1}$	$\frac{1}{1}$	$SO(x^k)$.		
	Solution.	-			
	$\sqrt{x^8 + x^4 + 1}$				
	$\log x + 3 \square \log x$				
	and $x^2 + 1 \square$	x^2			
			$+3) = x^4 \log x$	<i>X</i> 2.	
	So, $(\sqrt{x^8+x^4-x^4-x^4-x^4-x^4-x^4-x^4-x^4-x^4-x^4-$	x^2+1	$\frac{-}{x^2} \sqcup \frac{x^2}{x^2}$	$-=x^2\log x$	
	On the othe	r hand, x^2 l	$\log x$ is $O(x^3)$	\rightarrow the	
	least integer			•	
	Ex3. a/ Sho	_	_		
	b/ Show tha	it log(n!) is	s O(nlogn).		
	Solution.	1	. 🔼 1	in O(1)	
	$a/\log_{10}n = 1$	•	•		
	$b/\log(n!) =$	_	ıı) ≤ 10g(n	·11·11···n) =	
	$\log(n^n) = nl$ $\Rightarrow \log(n^n) = nl$	•	ogn)		
Complexity of	⇒ log(n!) is O(nlogn). Ex1. Consider the algorithm:			43/ Consider the	
an algorithm	procedure giaithuat $(a_1, a_2,, a_n : integers)$			algorithm: procedure	
6	count:= 0			thuattoan $(a_1, a_2,, a_n)$:	
	for i:= 1 to n do			positive real numbers).	
	if $a_i > 0$ then count: = count + 1			$\mathbf{m} := 0$	
	print(count)			for $i := 1$ to $n-1$	
	Give the be	st big-O c	omplexity	for the	for $j := i + 1$ to n

Ex2. How much time does an algorithm	
take to solve a problem of size n if this algorithm uses $2n^2 + 2^n$ operations, each requiring 10^{-9} seconds, with these values of n ? a/ 10 b/ 50 Solution. a/ $n = 10 \rightarrow$ the algorithm uses $2.10^2 + 2^{10}$ operations, each requiring 10^{-9} seconds \rightarrow need $(2.10^2 + 2^{10}).10^{-9} = 0.000001224$ seconds. b/ $n = 50 \rightarrow$ the algorithm uses $2.50^2 + 2^{50}$ operations, each requiring 10^{-9} seconds \rightarrow need $(2.50^2 + 2^{50}). 10^{-9} = 1125900$ seconds.	44/ How much time does an algorithm take to solve a problem of size n if this algorithm uses $2n^2 + 2^n$ operations, each requiring 10^{-9} seconds, with these values of n? a/ 30. b/ 100.
Ex1. Show that if $a \mid b$ and $b \mid c$, then $a \mid c$,	45/ Show that if a b and
——————————————————————————————————————	$b \mid a$, then $a = b$ or $a = -b$, where a , b are integers.
	where a, b are integers.
	46/ Prove or disprove that
 ⇒ c = m(ka) = (mk)a, where mk is an integer ⇒ a c. 	if a bc, then a b or a c, where a, b, and c are positive integers and a \neq 0.
 Ex2. Prove or disprove that if ab c, where a, b, and c are positive integers, then a c and b c. Solution. ab c → ∃k∈Z (c = kab) ⇒ c = (kb)a and c = (ka)b, where ka, kb are integers ⇒ a c and b c. Ex3. What are the quotient and remainder when a/1001 is divided by 13? b/-111 is divided by 11? 	47/ What are the quotient and remainder when a/ -1 is divided by 3? b/ 3 is divided by 13? c/ -123 is divided by 19? 48/ Evaluate these quantities. a/ -17 mod 2. b/ 144 mod 7. c/ -101 div 13. d/ 199 div 19.
	algorithm uses 2n² + 2n operations, each requiring 10⁻⁰ seconds, with these values of n? a/ 10 b/ 50 Solution. a/ n = 10 → the algorithm uses 2.10² + 2¹⁰ operations, each requiring 10⁻⁰ seconds → need (2.10² + 2¹⁰).10⁻⁰ = 0.000001224 seconds. b/ n = 50 → the algorithm uses 2.50² + 2⁵⁰ operations, each requiring 10⁻⁰ seconds → need (2.50² + 2⁵⁰). 10⁻⁰ = 1125900 seconds. Ex1. Show that if a b and b c, then a c, where a, b, c are integers. Solution. a b → ∃k∈Z (b = ka) b c → ∃m∈Z (c = mb) ⇒ c = m(ka) = (mk)a, where mk is an integer ⇒ a c. Ex2. Prove or disprove that if ab c, where a, b, and c are positive integers, then a c and b c. Solution. ab c → ∃k∈Z (c = kab) ⇒ c = (kb)a and c = (ka)b, where ka, kb are integers ⇒ a c and b c. Ex3. What are the quotient and remainder when a/ 1001 is divided by 13?

	a/ 1001 = 13.77 + 0 ⇒ quotient = 77 and remainder = 0. b/-111 = 11.(-11) + 10 ⇒ quotient = -11 and remainder = 10. Ex4. Suppose a mod 4 = 3 and b mod 8 = 7, find ab mod 4. Solution. • We have, b mod 8 = 7 → b = 8k + 7, where k is an integer ⇒ b = 4(2k + 1) + 3 ⇒ b mod 4 = 3 • So, ab mod 4 = ((a mod 4).(b mod 4)) mod 4 = (3.3) mod 4 = 1.	49 / Suppose a <i>mod</i> 3 = 2 and b <i>mod</i> 6 = 4, find ab <i>mod</i> 3.
Congruence	Ex. Decide whether each of these integers is congruent to 5 modulo 17 . a/80 b/103 c/-29 d/-122 Solution. Recall that a is congruent to b modulo m if and only if m divides a – b. Or equivalently, $a \equiv b \pmod{m} \Leftrightarrow m \mid (a-b)$ a/17 $\square (80-5) \Rightarrow 80$ is not congruent to 5 modulo 17. b/17 $\square (103-5) \Rightarrow 103$ is not congruent to 5 modulo 17. c/17 $\mid (-29-5) \Rightarrow -29$ is congruent to 5 modulo 17. d/17 $\square (-122-5) \Rightarrow -122$ is not congruent to 5 modulo 17.	50/ Decide whether each of these integers is congruent to 3 modulo 7. a/ 37. b/ 66. c/ -17. d/ -67. 51/ Find an integer x in $\{0, 1, 2,, 6\}$ such that: a/ $5.x \equiv 1 \pmod{7}$. b/ $x.x^2 \equiv 1 \pmod{7}$.
Encryption Decryption	Ex1. Suppose <i>pseudo-random numbers</i> are produced by using: $x_{n+1} = (3x_n + 11) \mod 13$.	52/ Suppose <i>pseudo-</i> <i>random numbers</i> are produced by using:
Hashing functions Pseudo	If $x_3 = 5$, find x_2 and x_4 . Solution. • $x_4 = (3x_3 + 11) \mod 13$ = $(3.5 + 11) \mod 13 = 0$	$x_{n+1} = (2x_n + 7)$ mod 9. a/ If $x_0 = 1$, find x_2 and x_3 . b/ If $x_3 = 3$, find x_2 and
random numbers	• $x_3 = (3x_2 + 11) \mod 13$ • $x_3 = (3x_2 + 11) \mod 13$ So, $5 = (3x_2 + 11) \mod 13$	X4.

$$\Leftrightarrow$$
 13 | (3x₂ + 11 – 5)

$$\Leftrightarrow$$
 13 | (3x₂ + 6) (*)

Note that x_2 is in 0..12 \Rightarrow $x_2 = 11$ is the solution of (*).

Ex2. Using the function

$$f(x) = (x + 10) \mod 26$$

to **encrypt** messages. Answer each of these questions.

a/ Encrypt the message STOP

b/ *Decrypt* the message LEI.

Solution.

A	В	С	• • •	Z
0	1	2		25

S	Т	О	P
18	19	14	15

X	18	19	14	15
f(x) =	2	3	24	25
f(x) = (x+10)				
mod				
26				

2	3	24	25
C	D	Y	Z

 \Rightarrow STOP has been encrypted to CDYZ. b/ We will **decrypt** the message LEI using the inverse function $f^{-1}(x) = (x - 10) \mod 26$.

Encrypted form	L	Е	I
X	11	4	8
$f^{-1}(x) = (x - 10)$	1	20	24
mod 26			
Original	В	U	Y
message			

Ex3. Which memory locations are assigned by the **hashing function** $h(k) = k \mod 101$ to the records of insurance company customers with these Social Security Numbers?

53 a/ **Encrypt** the message SELL using the function f(x) = (x + 21) mod 26.

b/ **Decrypt** the message "CFMVL" that was encrypted using the $f(x) = (x + 17) \mod 26$.

54/ A parking lot has 31 visitor spaces, numbered from 0 to 30. Visitors are assigned parking spaces using the hashing **function** $h(k) = k \mod$ 31, where k is the number formed from the first three digits on a visitor's license plate. Which spaces are assigned by the hashing function to cars that have these first three digits on their license plates: 317, 918, 007, 111?

	T	,
	a/ 104578690	
	b/ 432222187	
	Solution.	
	a/h(104578690) = 104578690 mod 101 =	
	58.	
	⇒ The memory location 58 is assigned	
	to the customer with the Social	
	Security number 104578690.	
	b/h(501338753) = 501338753 mod 101 =	
	3.	
	So, the memory location 3 is assigned to the	
	customer with the Social Security number	
Duima	501338753.	55/Which modition
Prime,	Ex1. Which positive integers less than 30	55/ Which positive
relatively	are relatively prime to 30?	integers less than 18 are
prime	Solution. Page 11 that two positive integers a and have	relatively prime to 18?
Gcd, lcm	Recall that two positive integers a and b are	56/ Find these values of
Gcu, iciii	called relatively prime if and only if their greatest common divisor is 1.	the Euler φ-function.
	So, positive integers less than 30 are	a/ $\varphi(4)$.
	relatively prime to 30 are: 1, 7, 11, 13, 17,	$b/\phi(5)$.
	19, 23, 29.	$c/\varphi(11)$.
	17, 23, 27.	$\varphi(11)$.
	Ex2. The value of the Euler φ -function at	57/ If the product of two
	the positive integer n, $\varphi(n)$, is defined to be	integers is 3072 and their
	the number of positive integers less than or	least common multiple
	equal to n that are relatively prime to n.	is 384, what is their
	Find these values of the Euler φ-function.	greatest common
	$a/\phi(6)$	divisor?
	$b/\varphi(7)$	W2 1 2002 1
	Solution.	
	a/n = 6: positive integers less than or equal	
	to 6 that are relatively prime to 6 are: 1, 5	
	$\Rightarrow \varphi(6) = 2$	
	b/n = 7: positive integers less than or equal	
	to 6 that are relatively prime to 6 are: 1, 2,	
	3, 4, 5, 6	
	$\Rightarrow \varphi(7) = 6$	
	Ex3. If the product of two integers is	
	$2^73^85^27^{11}$ and their greatest common	
	divisor is 2^33^45 , what is their least	
	common multiple?	

	Solution. If a and h are positive integers, then	
	If a and b are positive integers, then	
	ab = gcd(a, b).lcm(a, b).	
	So, $2^{7}3^{8}5^{2}7^{11} = \gcd(a, b).lcm(a, b) =$	
	$2^{3}3^{4}5.\text{lcm}(a, b) \rightarrow \text{lcm}(a, b) =$	
Г 1:1	$2^{7}3^{8}5^{2}7^{11}/2^{3}3^{4}5 = 2^{4}3^{4}5(7^{11})$	70/11 /1 17 1*1
Euclidean	Ex. Use the Euclidean algorithm to find	58/ Use the Euclidean
algorithm	a/gcd(8, 28)	algorithm to find
	b/ gcd(100, 101).	a/ gcd(12, 18).
	Solution.	b/ gcd(111, 201).
	$a/28 \mod 8 = 4 \implies \gcd(8, 28) = \gcd(4, 8)$	
	$8 \mod 4 = 0 \implies \gcd(4, 8) = \gcd(0, 4) = 4.$	
	$b/101 \mod 100 = 1 \implies \gcd(100, 101) =$	
	gcd(1, 100)	
	$100 \mod 1 = 0 \implies \gcd(1, 100) = \gcd(0, 1) = 1.$	
Integer	Ex1. Convert 96 to	59 / Convert 69 to
representation	a/ a binary expansion.	a/ a binary expansion.
Decimal	b/ a base 5 expansion.	b/ a base 6 expansion.
Binary	c/ a base 13 expansion.	c/ a base 9 expansion.
Octal	Solution.	c, a suse y empanistem
Hexadecimal	$a/96 = (1100000)_2$	60/ Convert each of the
Expansions	b/	following expansions to
	• 96 = 19.5 + 1	decimal expansion.
Base b	• 19 = 3.5 + 4	a/ (401) ₅
expansions	• $3 = 0.5 + 3$	b/ (12B7) ₁₃
1	$\Rightarrow 96 = 19.5 + 1 = (3.5 + 4).5 + 1$,15
	$\Rightarrow 96 = 3.5^2 + 4.5^1 + 1.5^0$	
	$\Rightarrow 96 = (341)_5$	
	c/	
	• 96 = 7.13 + 5	
	• 7 = 0.13 + 7	
	$\Rightarrow 96 = 7.13^1 + 5.13^0$	
	$\Rightarrow 96 = (75)_{13}$	
	Ex2. Convert each of the following	
	expansions to decimal expansion .	
	a/ (102) ₃	
	b/ (325) ₇	
	$c/(A3)_{12}$	
	Solution.	
	$a/(1021)_3 = 1.3^3 + 0.3^2 + 2.3^1 + 1.3^0 = 34$	

$b/(325)_7 = 3.7^2 + 2.7^1 + 5.7^0 = 166$	
$c/(A3)_{12} = A.12^1 + 3.12^0 = 10.12 + 3 = 123.$	

Applications: Check digits.

1/ UPCs. Retail products are identified by their Universal Product Codes (UPCs). The most common form of a UPC has 12 decimal digits: the first digit identifies the product category, the next five digits identify the manufacturer, the following five identify the particular product, and the last digit is a **check digit**. The check digit is determined by the congruence

 $3x_1 + x_2 + 3x_3 + x_4 + 3x_5 + x_6 + 3x_7 + x_8 + 3x_9 + x_{10} + 3x_{11} + x_{12} \equiv 0 \pmod{10}$. For example, if the first 11 digits of a UPC are 79357343104, then the check digit is $x_{12} = 2$.

In fact, let x_{12} be check digit, we have

$$3 \cdot 7 + 9 + 3 \cdot 3 + 5 + 3 \cdot 7 + 3 + 3 \cdot 4 + 3 + 3 \cdot 1 + 0 + 3 \cdot 4 + x_{12} \equiv 0 \pmod{10}$$

Simplifying, we have $98 + x_{12} \equiv 0 \pmod{10}$ $\Rightarrow x_{12} = 2$.

a/Find the check digit for the **USPS** money orders that have identification number that start with these ten digits 7555618873 and 6966133421.

b/ Determine whether 74051489623 and 88382013445 are valid **USPS** money order identification number.

2/ Parity Check Bits. Digital information is represented by bit string, split into blocks of a specified size. Before each block is stored or transmitted, an extra bit, called a **parity check** bit, can be appended to each block. The parity check bit x_{n+1} for the bit string $x_1x_2...x_n$ is defined by $x_{n+1} = x_1 + x_2 + \cdots + x_n \mod 2$.

(It follows that xn+1 is 0 if there are an even number of 1 bits in the block of n bits and it is 1 if there are an odd number of 1 bits in the block of n bits). When we examine a string that includes a parity check bit, we know that there is an error in it if the parity check bit is wrong. However, when the parity check bit is correct, there still may be an error. For example, if we receive in a transmission the bit string 11010110, we find that $1 + 1 + 0 + 1 + 0 + 1 + 1 = 1 \pmod{2}$, so the **parity check** is incorrect. So, we reject the string. Suppose you received these bit strings over a communications link, where the last bit is a **parity check** bit. In which string are you sure there is an error?

a/ 00100111111 b/ 10101010101

Chapter 4 – Induction & Recursion

Mathematical	Ex1. Prove the statement "6 divides n^3 - n	61/ Prove that 2 divides
induction	for all integers $n \ge 0$ ", using <i>mathematical</i>	$n^2 + n$ whenever n is a
	<i>induction</i> method.	positive integer.
Strong	Solution.	
induction	Basis step. The statement is true for $n = 0$,	62/ Prove that $2^n < n!$ if n
	since 6 divides 0.	is an integer greater than
	Inductive step.	3.

- Suppose for every integer k ≥ 0, the statement is true, that is, "6 divides k³ - k"
- We have, $(k+1)^3 (k+1) = (k^3 + 3k^2 + 3k + 1) (k+1) = k^3 k + 3(k^2 + k)$.

As 6 divides k^3 - k and $3(k^2 + k)$ is a multiple of 6, we conclude that $(k+1)^3$ - (k+1) is also a multiple of 6.

By induction, 6 divides n^3 - n for all integers $n \ge 0$.

Ex2. Suppose you wish to prove that the following is true for all positive integers *n* by using the Principle of Mathematical Induction:

$$P(n) = "1 + 3 + 5 + ... + (2n - 1) = n^2$$
"

- (a) Write P(1)
- (b) Write P(12)
- (c) Write *P*(13)
- (d) Use the fact "P(12) is true" to prove "P(13) is true"
- (e) Write P(k)
- (f) Write P(k + 1)
- (g) Use the Principle of Mathematical Induction to prove that P(n) is true for all positive integers n.

Solution.

Hence, $1 + 3 + 5 + ... + (2 \cdot 13 - 1) = 13^2$ and P(13) is true.

63/ Suppose you wish to use the Principle of Mathematical Induction to prove that $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + ... + n \cdot n! = (n+1)! - 1,$ for all $n \ge 1$.

(a) Write P(1).

(b) Write P(5).

(c) Use P(5) to prove

- P(6). (d) Write *P*(*k*).
- (e) Write P(k + 1).
- (f) Use the Principle of Mathematical Induction to prove that P(n) is true for all $n \ge 1$.

64/ Suppose that the only currency were 2-VND bills and 5-VND bills. Use **strong induction** to show that any amount greater than 3 VND could be made from a combination of these bills.

e/"1+3+...+(2k-1) =
$$k^2$$
"
f/"1+3+...+[2(k+1)-1] = (k+1)^2"
g/

• BASIC STEP.

" $1 = 1^2$ " \rightarrow P(1) is true.

• INDUCTIVE STEP.

Suppose for each positive integer k, P(k) is true, that is,

"
$$1 + 3 + ... + (2k - 1) = k2$$
" is true.

Then, 1 + 3 + ... + (2k - 1) + [2(k + 1) - 1]= $k^2 + [(2(k + 1) - 1)]$ (due to the truth of P(k))

$$= k^2 + 2k + 1$$

= $(k + 1)^2$

Hence, $1 + 3 + 5 + ... + [2 \cdot (k+1) - 1] = (k + 1)^2$ and P(k + 1) is true.

By induction, P(n) is true for all positive integers n.

Ex3. Use **strong induction** to prove that every amount of postage of six cents or more can be formed using 3-cent and 4-cent stamps.

Solution.

- BASIS STEP.
- 6 cents: two 3-cent stamps
- 7 cents: one 3-cent stamp and one 4-cent stamp.
- 8 cents: two 4-cent stamps.
- INDUCTIVE STEP.

Assume every amount of postage of j cents $(6 \le j \le k, k \ge 8)$ can be formed using 3-cent and 4-cent stamps.

We need to show that an amount of postage of (k+1) cents can be formed using 3-cent and 4-cent stamps.

In fact, k + 1 = (k - 2) + 3, and since $6 \le (k - 2) \le k$, it follows that (k - 2) cents can be formed using 3-cent and 4-cent stamps (by the assumption above).

So, (k-2) + 3 cents can be formed using 3-cent and 4-cent stamps.

Recursive	Ex1. Give a recursive definition of each of	65/ Give a recursive
definitions	these functions.	definition of each of
definitions	a/f(n) = n, n = 1, 2, 3,	these functions.
	b/f(n) = 3n + 5, n = 0, 1, 2,	$a/f(n) = (-1)^n, n = 0, 1, 2,$
	Solution.	$3, \dots$
	a/f(n) = n, n = 1, 2, 3,	b/f(n) = 7, for all $n = 1$,
	BASIS STEP.	$\begin{bmatrix} 0/1(1) - 7, 101 & an & n - 1, \\ 2, 3, \dots \end{bmatrix}$
	f(1) = 1	c/f(n) = 1 + 2 + 3 + +
	RECURSIVE STEP.	n, n = 1, 2, 3,
	For $n > 1$, $f(n) = n$	11, 11 1, 2, 3,
	$\Rightarrow f(n-1) = n-1$	66/ Find f(3), f(4) if:
	$\Rightarrow f(n-1) = n-1$ $\Rightarrow f(n) = f(n-1) + 1$	a/f(1) = 3 and $f(n) =$
	b/f(n) = 3n + 5, n = 0, 1, 2,	2f(n-1) + 5.
	BASIS STEP.	b/f(n) = f(n-1).f(n-2) and
	f(0) = 5	
	RECURSIVE STEP.	f(0) = 1, f(1) = 2.
		$c/f(n) = (f(n-1))^2 - 1$ and
	For $n > 0$, $f(n) = 3n + 5$	f(1)=2.
	$\Rightarrow f(n-1) = 3(n-1) + 5 = 3n + 2$	67/ Cive a magninaire
	f(n) = f(n-1) + 3	67/ Give a recursive
	Era Cive a manuaire definition of each of	definition of each of
	Ex2. Give a recursive definition of each of	these sets.
	these sets.	$a/A = \{0, 3, 6, 9, 12,\}.$
	$a/A = \{2, 5, 8, 11, 14,\}.$	$b/B = \{, -8, -4, 0, 4, 8,\}$
	$b/B = \{, -5, -1, 3, 7, 10,\}.$	\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	$c/C = \{3, 12, 48, 192, 768, \ldots\}.$	$c/C = \{0.9, 0.09, 0.0$
	Solution.	0.0009,}.
	$a/A = \{2, 5, 8, 11, 14,\}$	
	BASIS STEP.	
	2 ∈ A	
	RECUSIVE STEP.	
	$x \in A \rightarrow x + 3 \in A$.	
	$b/B = {, -5, -1, 3, 7, 10,}$	
	BASIS STEP.	
	3 ∈ B	
	RECUSIVE STEP.	
	$x \in B \rightarrow (x + 4 \in B \text{ and } x - 4 \in B).$	
	$c/C = \{3, 12, 48, 192, 768,\}$	
	BASIS STEP.	
	3 ∈ C	
	RECUSIVE STEP.	
	$x \in C \rightarrow 4x \in C$.	
Recursive	Ex1. Consider an recursive algorithm to	68/ Consider an
1		

algorithms

compute the n^{th} Fibonacci number: procedure Fibo(n : positive integer) if n = 1 return 1 else if n = 2 return 1 else return Fibo(n - 1) + Fibo(n - 2)

How many additions (+) are used to find Fibo(6) by the algorithm above? *Solution.*

From the tree below, there are 7 additions.

Ex2. a/Give a **recursive algorithm** to find $S_m(n) = m + n$, where n is a non-negative integer and m is an integer.

b/ Use mathematical induction to show that the algorithm is correct.

Solution. a/

• Recursive definition of S_m(n):

BASIS STEP.

$$S_m(0) = m + 0 = m$$

RECURSIVE STEP.

For
$$n > 0$$
, $S_m(n) = m + n$

$$\Rightarrow S_m(n-1) = m + (n-1)$$

$$\Rightarrow$$
 $S_m(n) = S_m(n-1) + 1$

• Recursive algorithm to find $S_m(n)$: procedure sum(m: integer; n: non-negative integer)

if n = 0 then sum(m, n) := melse then sum(m, n) := sum(m, n - 1) + 1b/ Prove the correctness of the algorithm: algorithm: procedure Fibo(n: positive integer) if n = 1 return 1 else if n = 2 return 1 else if n = 3 return 2 else return Fibo(n - 1) + Fibo(n - 2) + Fibo(n - 3)

How many additions (+) are used to find Fibo(6) by the algorithm above?

69a/ Write a **recursive algorithm** to find the sum of first n positive integers. b/ Use **mathematical induction** to prove that the algorithm in (a) is correct. c/ Write a **recursive algorithm** to find the value of the function f(n) = 7, for n = 1, 2, 3, ...

70/ Consider the following algorithm: procedure tinh(a: real number; n: positive integer) if n = 1 return a else return a·tinh(a, n-1). a/ What is the output if inputs are: n = 4, a = 2.5? Explain your answer. b/ Show that the algorithm computes n·a using Mathematical Induction.

BASIS STEP.

If n = 0: $sum(m, n) := m = m + 0 = m + n = S_m(n)$.

INDUCTIVE STEP.

Suppose for every integer $k \ge 0$, sum(m, k) returns m + k.

We need to show that sum(m, k + 1) returns m + k + 1.

In fact, from the algorithm, k + 1 > 0 and sum(m, k + 1): = sum(m, k) + 1 and then returns m + k + 1.

(by the assumption, sum(m, k) returns m + k).

Applications.

- 1. Determine whether each of the following bit strings belongs to the set S recursively defined by:
- BASIS STEP: $0 \in S$
- RECURSIVE STEP: $1w \in S$ or $0w \in S$ if $w \in S$

 a/λ (the empty string)

b/0

c/ 110

d/10110

- 2. Let S be set of all bit strings of any length. Define the number $\#_0(s)$ recursively by:
- *Basis step:* $\#_0(s) = 0$, where λ is the empty string.
- Recursive step:

$$\#_0(xs) = \begin{cases} \#_0(s) \text{ if } x \neq 0\\ 1 + \#_0(s) \text{ if } x = 0 \end{cases}.$$

- a) Find $\#_0(111)$
- b) Find $\#_0(010)$
- c) What can we say about s if $\#_0(s) = 0$?

Solution.

d) If s and w are two bit strings, show that $\#_0(sw) = \#_0(s) + \#_0(w)$.

Chapter 5 – Counting

Product rule	&
sum rule	

Ex1. Find the number of strings of length 7 of letters of the alphabet, with no repeated letters, that begin with a vowel.

Counting functions

• Keep in mind a row of seven blanks:

Counting oneto-one functions

- There are *five ways* in which the first letter in the string can be a vowel.
- Once the vowel is placed in the first

71/ There are three available flights from Hanoi to Bangkok and, regardless of which of these flights is taken, there are five available flights from Bangkok to Manila. In how many ways can a person fly

blank, there are 25 ways in which to fill in the second blank, 24 ways to fill in the third blank, etc.

• Using the product rule, we obtain $5 \cdot \underbrace{25 \cdot 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20}_{\text{place other letters}}$

Ex2. Find the number of strings of length 7 of letters of the alphabet, with no repeated letters, that begin with C or V and end with C or V.

Solution.

Using a row of 7 blanks, we first count the number of strings belonging one of two cases:

- Case 1: Strings begin with C and end with V: C - - V.
- \Rightarrow By the product rule, the number of ways to fill in the five interior letters is $24 \cdot 23 \cdot 22 \cdot 21 \cdot 20$.
- Case 2: Strings begin with V and end with C: V - - C.
- \Rightarrow By the product rule, the number of ways to fill in the five interior letters is $24 \cdot 23 \cdot 22 \cdot 21 \cdot 20$.

Therefore, by the **sum rule**, the answer is $(24 \cdot 23 \cdot 22 \cdot 21 \cdot 20) + (24 \cdot 23 \cdot 22 \cdot 21 \cdot 20) = 2(24 \cdot 23 \cdot 22 \cdot 21 \cdot 20)$.

Ex3. How many subsets of the set $\{1, 2, 3, 4, 5\}$

a/ contain 2 and 3?b/ do not contain 3?c/ have more than one element?

Solution.

a/ Suppose A is a subset of {1, 2, 3, 4, 5}, then A contains members chosen from {1, 2, 3, 4, 5}. We can see:

- 1 may belong to A or not.
- 2 may belong to A or not.
- 3 may belong to A or not.

from Hanoi to Manila via Bangkok?

72/ Find the number of strings of length 7 of letters of the alphabet, with repeated letters allowed, that have vowels in the first two positions.

73/ Find the number of strings of length 7 of letters of the alphabet, with no repeated letters, that begin with E and end with V or a vowel.

74/ A final test of the course MAD101 contains 50 multiple choice questions. There are four possible answers for each question.
a/ In how many ways can

a/ In now many ways can a student answer the questions if the student answers every question? b/ In how many ways can a student answer the questions on the test if the student can leave answers blank?

75/ How many **subsets** of the set {(0, 0), (0, 1), (1, 0), (1, 1)} a/ are there in total? b/ contain (0, 0) and (1, 1)?

76/ a/ How many functions are there from the set {a, b, c, d} to the

- 4 may belong to A or not.
- 5 may belong to A or not. Therefore, there 2·2·2·2·2 ways to construct A.
- ⇒ There are $2^5 = 32$ subsets of $\{1, 2, 3, 4, 5\}$.

b/ Similarly to the part a/, there are $2^4 = 16$ subsets of $\{1, 2, 3, 4, 5\}$ do not contain 3. c/ number of subsets having more than one element = number of all subsets – number of subsets having no element = $2^5 - 1 = 31$.

Ex4. a/ How many functions are there from the set {a, b, c, d} to the set {1, 2, 3, 4}? a/ How many one-to-one functions are there from the set {a, b, c, d} to the set {1, 2, 3, 4}?

Solution.

a/ A function corresponds to a choice of one of the 4 elements in the codomain{1, 2, 3, 4} for each of elements {a, b, c, d}in the domain. Therefore, we have:

- 4 ways to choose the value of the function at a.
- 4 ways to choose the value of the function at b.
- 4 ways to choose the value of the function at c.
- 4 ways to choose the value of the function at d.
- ⇒ By the product rule, there are 4⁴ functions.

b/ An one-to-one function corresponds to a choice of one of the 4 elements in the codomain{1, 2, 3, 4} for each of elements {a, b, c, d}in the domain so that no value of the codomain can be used again.

Therefore, we have:

- 4 ways to choose the value of the function at a.
- 3 ways to choose the value of the function at b (because the value used

set {1, 2, 3}? **b**/ How many **one-to-one**functions are there from
the set {a, b, c, d} to the
set {1, 2, 3}?

for a cannot be used again for b). 2 ways to choose the value of the function at c. 1 ways to choose the value of the function at d. \Rightarrow Therefore, there are 4.3.2.1 one-toone functions. **Ex1.** Find the number of integers from 100 77/ Find the number of $|A \cup B| =$ $|A| + |B| - |A \cap B|$ to 1000 inclusive that are integers from 999 to 9999 (in A or in B) a/ divisible by 7. inclusive that are: b/ divisible by 7 or 11. a/ divisible by 13 or 17. Solution. b/ divisible by 13 but not a/ When we divide 1000 by 7, we obtain by 17. 142 + 6/7. Then, the largest integer in our range that is divisible by 7 is 142.7, or 994. **78**/ Find the number of And if we divide 100 by 7, the result is strings of length 7 of letters of the alphabet, about 14 + 2/7. So, the smallest integer in with no repeated letters, 100..1000 that is divisible by 7 is 21, not 14. that a/ begin with V or end Therefore, the number of integers between with a vowel. 100 and 1000 inclusive that are divisible by b/ begin or end with a 7 is (994 - 21)/7 + 1, or 139. vowel. b/ c/ begin or end with a • From the part a/, there are 139 vowel (but not both). integers that are divisible by 7. Similarly, there are (990 - 110)/11 +1, or 81 integers between 100 and 1000 inclusive that are divisible by 11. And again, there are (924 - 154)/77+ 1, or 11 integers between 100 and 1000 inclusive that are divisible by By Inclusion – Exclusion principle, the answer is 139 + 81 - 11 = 209. **Ex2.** Find the number of strings of length 7 of letters of the alphabet, with no repeated letters, that begin with E or end with a vowel. Solution. Using a row of seven blanks: - - - - -

•	There are $25 \cdot 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20$ strings
	of the form E

- There are 25·24·23·22·21·20·5 strings of the form - - (a vowel)
- There are 24·23·22·21·20·4 strings of the form E- - (a vowel, not E)

By Inclusion – Exclusion principle, the answer is 25·24·23·22·21·20 + 25·24·23·22·21·20·5 – 24·23·22·21·20·4.

Counting problems and Recurrence relations

Ex1. A vending machine dispensing books of stamps accepts only one-dollar coins, \$1 bills, and \$5 bills.

a/ Find a recurrence relation for the number of ways to deposit n dollars in the vending machine, where the order in which the coins and bills are deposited matters.

b/ Find a₀, a₁, a₂, a₃, a₄.

c/ How many ways are there to deposit \$7 for a book of stamps?

Solution.

a/ Let a_n be the number of ways to deposit n dollars in the vending machine.

Some ways to deposit n dollars:

- One \$1 coin first, then (n-1) dollars. In this case, there are a_{n-1} ways corresponding to (n-1) remaining dollars.
- One \$1 bill first, then (n-1) dollars. In this case, there are also a_{n-1} ways corresponding to (n-1) remaining dollars.
- One \$5 bill first, then (n 5) dollars (if n > 5). In this case, there are a_{n-5} ways corresponding to (n 5) remaining dollars.

So, we have the recurrence relation

$$a_n = 2a_{n-1}$$
, if $5 > n \ge 1$
 $a_n = 2a_{n-1} + a_{n-5}$, if $n \ge 5$

b/

• $a_0 = 1$ // the only way to deposit zero dollar is depositing nothing.

79/ How many bit strings of length eight do not contain three consecutive 0s?

80/ Verify that $a_n = 3^n$ and $a_n = 3^n + 1$ are solutions to the recurrence relation $a_n = 4a_{n-1} - 3a_{n-2}$.

81/ You take a job that pays \$10,000 annually. a/ How much do you earn 20 years from now if you receive a ten percent raise each year? b/ How much do you earn 20 years from now if each year you receive a raise of \$1000 plus four percent of your previous year's salary?

```
• a_1 = 2a_0 = 2.
```

•
$$a_2 = 2a_1 = 4$$

\$1-coin, \$1-bill

\$1-bill, \$1-coin

\$1-coin, \$1-coin

\$1-bill, \$1-bill

•
$$a_3 = 2a_2 = 2.4 = 8$$

•
$$a_4 = 2a_3 = 16$$
.

$$c/a_5 = 2a_4 + a_0 = 32 + 1 = 33$$

$$a_6 = 2a_5 + a_1 = 66 + 2 = 68$$

$$a_7 = 2a_6 + a_2 = 136 + 4 = 140.$$

Ex2. Find a **recurrence relation** for the number of bit strings of length n that do not contain three consecutive 0s.

Solution.

Let a_n be the number of bit strings of length n that do not contain three consecutive 0s. For example, $a_1 = 2$ (two bit strings "0" and "1" of length 1), $a_2 = 4$ and $a_3 = 7$ (except for the string "000").

Strings of length n we want to count are of exactly one of three cases:

- 1 (n − 1 remaining bits satisfying the condition). For example, with n = length = 4, 1001 and 1100 are strings of this type, but 1000 or 0110 are not. → there are a_{n-1} such strings.
- 01 (n − 2 remaining bits satisfying the condition) → there are a_{n-2} such strings.
- 001(n − 3 remaining bits satisfying the condition) → there are a_{n-3} such strings.

Therefore, $a_n = a_{n-1} + a_{n-2} + a_{n-3}$.

Ex3. Verify that $a_n = 3^{n+2}$ is a solution to the recurrence relation $a_n = 4a_{n-1} - 3a_{n-2}$. *Solution.*

$$a_n = 3^{n+2}$$

$$\Rightarrow a_{n-1} = 3^{(n-1)+2} = 3^{n+1}$$

$$\Rightarrow a_{n-2} = 3^{(n-2)+2} = 3^n$$

Applications.

- 1/ Messages are transmitted over a communications channel using two signals. The transmittal of one signal requires 1 microsecond, and the transmittal of the other signal requires 2 microseconds.
- a/ Find a **recurrence relation** for the number of different messages consisting of sequences of these two signals, where each signal in the message is immediately followed by the next signal, that can be sent in n microseconds.
- b/ What are the initial conditions?
- c/ How many different messages can be sent in 10 microseconds using these two signals?
- 2/ Suppose inflation continues at five percent annually. (That is, an item that costs \$1.00 now will cost \$1.05 next year). Let a_n = the value (that is, the purchasing power) of one dollar after n years.
- a/ Find a **recurrence relation** for a_n .
- b/ What is the value of \$1000 after 10 years?
- c/What is the value of \$1000 after 50 years?
- d/ If inflation were to continue at ten percent annually, find the value of \$1000 after 50 years.

Chapter 8 - Relations Binary relation **Ex1.** List the ordered pairs in the **relation** R 82/ List the ordered pairs from A = $\{0, 1, 2, 3, 4\}$ to B = $\{0, 1, 2, 3\}$, in the **relation** R from A Properties of where $(a, b) \in R$ if and only if $=\{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3, 4\}$ relations a/a + b = 4. 1, 2, 3}, where $(a, b) \in R$ b/ a | b. if and only if Combination Solution. a/a > b. of relations $a/R = \{(1, 3); (2, 2); (3, 1); (4, 0)\}$ b/a - b = 1.

Composite relation

b/ R = {(1, 1); (1, 2); (1, 3); (1, 0); (2, 0); (2, 2); (3, 0); (3, 3)}.

Ex2. Determine whether the relation R on the set of all real numbers is **reflexive**, **symmetric**, **antisymmetric**, **and/or transitive**, where $(x, y) \in R$ if and only if $a/(x, y) \in R \Leftrightarrow x = 2y$. b/x = 1.

Solution.

a/x = 2y.

- $(1, 1) \notin R$ (because $1 \neq 2.1$) \rightarrow R is not reflexive.
- $2 = 2.1 \Rightarrow (2, 1) \in \mathbb{R}$ but $(1, 2) \notin \mathbb{R}$ (because $1 \neq 2.2$) $\Rightarrow \mathbb{R}$ is not symmetric.
- If xRy and yRx \rightarrow x = 2y and y = 2x \rightarrow x = y (= 0) \rightarrow R is antisymmetric.
- (4, 2)∈R and (2, 1)∈R but (4, 1)∉R
 R is not transitive.

 $b/(x, y) \in R \Leftrightarrow x = 1.$

- $(2, 2) \notin \mathbb{R} \rightarrow \mathbb{R}$ is not reflexive.
- $(1, 2) \in R$ but $(2, 1) \notin R \rightarrow R$ is not symmetric.
- If $(x, y) \in R$ and $(y, x) \in R$, then x = 1 and $y = 1 \Rightarrow x = y$. Hence, R is antisymmetric.
- If $(x, y) \in R$ and $(y, z) \in R$, then x = 1 and $y = 1 \rightarrow (x, z) \in R$. Hence, R is transitive.

Ex3. Let R be the relation on the set of ordered pairs of positive integers such that $(a, b)R(c, d) \Leftrightarrow a + d = b + c$. Show that

a/R is reflexive.

b/ R is symmetric.

c/R is transitive.

Solution.

a/ For every positive integer a, (a, a) R (a, a) because a + a = a + a.

 $b/(a, b)R(c, d) \Leftrightarrow a + d = b + c$

c/a = 2b.

83/ Determine whether the relation R on the set of all real numbers is **reflexive**, **symmetric**, **antisymmetric**, **and/or transitive**, where $(x, y) \in R$ if and only if a/xy = 0. b/x = y + 1 or x = y - 1. $c/x \equiv y \pmod{5}$.

84/ Let R be the relation on the set of ordered pairs of positive integers such that $(a, b)R(c, d) \Leftrightarrow ad = bc$. Show that a/R is reflexive. b/R is symmetric. c/R is transitive.

85/ Let $R = \{(1, 2), (1, 3), (2, 3), (3, 1)\}$, and $S = \{(2, 1), (3, 1), (3, 2)\}$ be relations on the set $\{1, 2, 3\}$. Find a/R - S. $b/R \cap S$. $c/R \cup S$. $d/R \oplus S$. e/\overline{R} f/S^{-1} . g/SoR.

86/ List the 16 different relations on the set {0, 1}.

87/ Which of the 16 relations on $\{0, 1\}$, are

	\Leftrightarrow c + b = d + a \Leftrightarrow (c, d)R(a, b). Hence, R is symmetric. c/ For all positive integers a, b, c, d, m and n, if (a, b)R(c, d) and (c, d)R(m, n), then $a+d=b+c$ and $c+n=d+m$ \Rightarrow $a+d+c+n=b+c+d+m$ \Rightarrow $a+n=b+m$ \Rightarrow (a, b)R(m, n). Therefore, R is transitive. Ex4. Let R = {(1, 1), (3, 3), (2, 3)}, and S = {(1, 2), (3, 1), (2, 2)} be relations on the set {1, 2, 3}. Find $a/R - S$. $b/R \cap S$. $c/R \cup S$. $d/R \oplus S$. e/\overline{R} f/S^{-1} . g/SoR.	a/ reflexive? b/ ir-reflexive? c/ symmetric? d/ anti-symmetric? e/ asymmetric? f/ transitive?
Counting relations	Ex1. How many different relations on {a, b} contain the pair (a, b)? Solution. Every relation on the set {a, b} is a subset of the Cartesian product {a, b} × {a, b}. On other hand, {a, b} × {a, b} = {(a, a); (a, b); (b, a); (b, b)}, which has 2⁴ subsets. ⇒ There are 2⁴ = 16 relations. Ex2. How many different reflexive relations are there on the set {a, b}? Solution. Every relation on the set {a, b} is a subset of the Cartesian product {a, b} × {a, b}. And a reflexive relations on the set {a, b} is a set containing both (a, a); and (b, b). By the product rule, there are 1.1.2.2 such subsets. Therefore, there are 4 reflexive relations on	88/ a/ How many different relations are there on the set {a, b, c}? b/ How many different relations on the set {a, b, c} do not contain (a, a)? c/ How many different irreflexive relations are there on the set {a, b, c}?

	the set $\{a, b\}$.	
	Ex3. How many different relations are there from $\{a, b, c, d\}$ to $\{1, 2, 3\}$? <i>Solution.</i> There are $2^{4\cdot 3} = 2^{12}$ relations from $\{a, b, c, d\}$ to $\{1, 2, 3\}$.	
Representation s of relations	Ex1. Represent each of these relations on $\{1, 2, 3, 4\}$ with a matrix (with the elements of this set listed in increasing order). a/ $\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$. b/ $\{(1, 1), (1, 4), (2, 2), (3, 3), (4, 1)\}$. Solution. $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.	89/ Represent each of these relations on {1, 2, 3, 4} with a matrix (with the elements of this set listed in increasing order). a/ {(1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 1), (4, 1), (4, 2)} b/ {(1, 4), (3, 1), (3, 2), (3, 4)}.
	$b / \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$ Ex2. How many 1-entries does the matrix representing the relation R on A = {1, 2, 3,, 100} consisting of the first 100 positive integers have if R is a/ {(a, b) a \le b}?	90/ How many 1- entries does the matrix representing the relation R on A = $\{1, 2, 3,, 100\}$ consisting of the first 100 positive integers have if R is $a/\{(a, b) \mid a = b \pm 1\}$? $b/\{(a, b) \mid a + b < 101\}$?
	b/ {(a, b) a + b = 100}? Solution. a/ aRb \Leftrightarrow a \leq b. R 1 2 99 100 1 1 1 1 1 2 0 1 1 1 99 0 0 0 1 1 100 0 0 0 0 1 \Rightarrow The number of 1-entries is (1 + 2 + 3 + + 100) = 5050.	91/ Let R and S be relations on a set represented by the matrices $M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ and }$ $M_S = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$

The matrix has the size of 100x100.

 $b/aRb \Leftrightarrow a + b = 100.$

Find the matrices that represent

Since the (row i, column 100 - i)-position in the matrix is the only 1-entry of row i, it follows that the matrix has n 1-entries.

Ex3. Let R be the relation represented by the matrix

$$M_R = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Find the matrix representing

 a/R^{-1} .

 b/\overline{R} .

 c/R^2 .

 $d/R - R^2$.

 $e/R \oplus R^2$.

Solution.

a/ Let M_R and $M_{R^{-1}}$ be the matrices representing relations R and R^{-1} . Recall that $(i, j) \in R^{-1} \Leftrightarrow (j, i) \in R$, or

Recall that $(1, j) \in \mathbb{R}^{-1} \Leftrightarrow (j, 1) \in \mathbb{R}$, or equivalently,

(i, j)-entry = 1 in $M_{R^{-1}} \Leftrightarrow (j, i)$ -entry = 1 in M_R .

 $\Rightarrow M_{R^{-1}}$ is the transpose of M_R.

$$\Rightarrow M_{R^{-1}} = (M_R)^T = M_R = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

b/ Let M_R and $M_{\overline{R}}$ be the matrices

representing relations R and \overline{R} .

Recall that $(i, j) \in \overline{R} \iff (i, j) \notin \mathbb{R}$, or equivalently,

(i, j)-entry = 1 in $M_{\overline{R}} \Leftrightarrow$ (i, j)-entry = 0 in $M_{\overline{R}}$

$$\Rightarrow M_{\overline{R}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

c/ Let M_{R^2} be the matrix representing the relation \mathbb{R}^2 .

The matrix of R^2 (= RoR) can be computed

 $a/R \cup S$.

b/ $R \cap S^{-1}$.

 $c/R - \overline{S}$.

d/ R⊕S.

e/RoS.

92/ Suppose that the relation R on a set is represented by the matrix

 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$

a/ Is R reflexive?

b/ Is R **symmetric**?

c/ Is R antisymmetric?

by Boolean product of $M_R \epsilon M_R$

$$M_{R^2} = M_R \square M_R = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \square \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

d/ Let M_{R-R^2} be the matrix representing relation $R - R^2$.

Recall that A - B is the set of elements that belong to A but not belong to B.

So, the relation $R - R^2$ contains only ordered pairs (a, b) where $(a, b) \in R$ but $(a, b) \notin R^2$.

So, the (i, j)-entry of M_{R-R^2} is $1 \Leftrightarrow$ the (i, j)-entry of M_R is 1 and the (i, j)-entry of M_{R^2} is 0.

Therefore,
$$M_{R-R^2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
.

e/ Let $M_{R \oplus R^2}$ be the matrix representing the relation $R \oplus R^2$.

Recall that $R \oplus R^2$ contains only ordered pairs (a, b) that belong to exactly one of $(R - R^2)$ and $(R^2 - R)$.

So, (i, j)-entry of $M_{R \oplus R^2}$ is $1 \Leftrightarrow (i, j)$ -entry of M_R is 1 OR (i, j)-entry of M_{R^2} is 1 (BUT NOT BOTH).

Therefore,
$$M_{R \oplus R^2} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
.

Ex4. Suppose that the relation R on a set is

represented by the matrix $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

a/ Is R reflexive?

	b/ Is R symmetric?	
	c/ Is R antisymmetric?	
	Solution.	
	a/Recall that a relation R on a set A is	
	reflexive if and only if	
	$\forall a \in A, (a, a) \in R.$	
	Or equivalently, in the matrix M_R , the	
	(row i, column i)-entry is 1 for every value of i.	
	We can see $(3, 3)$ -entry of M_R is $0 \rightarrow (3, 3)$	
	$\notin R \rightarrow R$ is not reflexive.	
	b/ Recall that a relation R on a set A is	
	symmetric if and only if	
	$\forall a \forall b, (a, b) \in \mathbb{R} \to (b, a) \in \mathbb{R}.$	
	Based on this definition, R is symmetric if	
	and only if the matrix M_R is symmetric, that	
	is, the (i, j) -entry of M_R equals to the (j, i) -	
	entry of M _R .	
	Since M_R is not symmetric ((1, 2)-entry of	
	M_R is 1 and (2, 1)-entry of M_R is 0), we can	
	conclude that R is not symmetric.	
	c/ Recall that the relation R is	
	antisymmetric if and only if $(a, b) \in R$ and	
	$(b, a) \in R$ imply that $a = b$. Consequently,	
	the matrix of an antisymmetric relation has	
	the property that if $m_{ij} = 1$ with $i \neq j$, then	
	$m_{ji} = 0$. Or, in other words, either $m_{ij} = 0$ or	
	$m_{ii} = 0$ when $i \neq j$.	
	So, it is easy to see that R is not	
	antisymmetric ($m_{23} = m_{32} = 1$).	
Equivalence	Ex1. Let R be the relation on the set of real	93/ Which of these
relations	numbers such that	relations on {0, 1, 2, 3}
	aRb if and only if $a - b$ is an integer.	are equivalence
Partitions &	Show that R is an equivalence relation .	relations? What are the
equivalence	Solution.	equivalence classes of
classes	• Because $a - a = 0$ is an integer for all	that equivalence relation?
	real numbers a, aRa for all real	$a/R = \{(0,0), (1,1), (2,$
	numbers a. Hence, R is reflexive.	2), (3, 3)}.
	• Now suppose that aRb. Then a –b is	$b/S = \{(0,0), (1,1), (1,$
	an integer, so $b - a$ is also an integer.	2), (2, 1), (2, 2), (3, 3)}.
	Hence, bRa. It follows that R is	$c/T = \{(0,0), (1,1), (1,$
	symmetric.	3), (2, 2), (2, 3), (3, 1),

If aRb and bRc, then a - b and b - c are integers. Therefore, a -c = (a - b) + (b - c) is also an integer. Hence, aRc. Thus, R is transitive.

Consequently, R is an **equivalence** relation.

Ex2. (Congruence Modulo m). Let m be an integer with m > 1. Show that the relation

 $R = \{(a, b) \mid a \equiv b \pmod{m}\}$ is an **equivalence relation** on the set of integers. *Solution*.

Recall that $a \equiv b \pmod{m}$ if and only if m divides a - b.

- Note that a a = 0 is divisible by m, because 0 = 0 · m. Hence, a ≡ a (mod m), so congruence modulo m is reflexive.
- Now suppose that a ≡ b (mod m).
 Then a − b is divisible by m, so a − b = km, where k is an integer. It follows that b − a = (-k)m, so b ≡ a (mod m). Hence, congruence modulo m is symmetric.
- Next, suppose that a ≡ b (mod m) and b ≡ c (mod m). Then m divides both a − b and b − c. Therefore, there are integers k and l with a − b = km and b − c = lm. Adding these two equations shows that a − c = (a − b) + (b − c) = km + lm = (k + l)m. Thus, a ≡ c (mod m). Therefore, congruence modulo m is transitive.

It follows that congruence modulo m is an **equivalence relation**.

Ex3. List the ordered pairs in the **equivalence relation** R produced by the **partition** $A_1 = \{1, 2\}, A_2 = \{3\}, \text{ and } A_3 = \{4\} \text{ of } S = \{1, 2, 3, 4\}.$ *Solution.*

 $R = \{(1, 1); (1, 2); (2, 1); (2, 2); (3, 3); (4, 4)\}$

(3, 2), (3, 3)}.

94/ Suppose that A is a nonempty set, and f is a function that has A as its domain. Let R be the relation on A consisting of all ordered pairs (x, y) such that f(x) = f(y). Show that R is an equivalence relation on A.

95/ Which of these relations on the set of all people are **equivalence relations**? Determine the properties of an equivalence relation that the others lack. a/ {(a, b) | a and b are the same age}. b/ {(a, b) | a and b share a common parent}. c/ {(a, b) | a and b speak a common language}.

96/ What is the congruence class [3]_m (that is, the equivalence class of 4 with respect to congruence modulo m) when m is

a/2

b/ 3

c/ 4

d/5

97/ List the ordered pairs in the **equivalence relations** produced by the **partition** {a, b}, {c,

4)}.

Ex4. Determine whether the relation with the directed graph shown is an **equivalence relation** on the set $\{a, b, c, d\}$.

Solution.

- R is reflexive (there are loops at every vertex).
- R is symmetric (there is an edge from v1 to v2 whenever there is an edge from v2 to v1).
- R is transitive (if there is an edge from v1 to v2 and an edge from v2 to v3, then there is an edge from v1 to v3).

So, R is an equivalence relation.

Ex5. Which of these relations on $\{0, 1, 2, \dots, 1, 2, \dots, 1, 2, \dots, 2, \dots$ 3) are **equivalence relations**? What are the equivalence classes of that equivalence relation?

$$a/R = \{(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}.$$

$$b/S = \{(0, 0), (1, 2), (2, 1), (2, 2), (2, 3), (3, 3)\}.$$

Solution.

a/R is reflexive, symmetric and transitive. So, R is an equivalence relation. Equivalence classes are: $\{0\}$; $\{1, 2\}$; $\{3\}$.

b/S is not an equivalence relation because S is not symmetric $((2, 3) \in S \text{ but } (3, 2) \notin S)$.

Therefore, S is not an equivalence relation.

Ex1. The 3-tuples in a 3-ary relation n-ary relations

d}, {e} of {a, b, c, d, e}.

98/ Determine whether the relation with the directed graph shown is an equivalence relation.

99/ The 4-tuples in a 4-

and	represent the following attributes of a	ary relation represent
application to	student database: student ID number, name,	these attributes of
database	phone number. What is a likely primary	published books: title,
database	key for this relation?	ISBN, publication date,
	Solution.	number of pages. What is
		a likely primary key for
	• Two students may have the same	this relation?
	name → is not a likely primary key	uns relation?
	for this relation.	100/Which music stiem
	Some students may not have phone	100/ Which projection
	numbers \rightarrow phone number is also not	mapping is used to delete the first, second, and
	a likely primary key for this	
	relation.	fourth components of a 6-
	Students have different ID numbers	tuple?
	→ student ID number is a likely	
	primary key for this relation.	
	Ex2. What do you obtain when you apply	
	the projection $P_{2,3,5}$ to the 5-tuple (a, b, c, d,	
	e)?	
	Solution.	
	$P_{2,3,5}(a, b, c, d, e) = (a, d).$	
	Applications.	
	Chapter 9 – Graph Theor	y
Simple graphs	Ex1. The degree sequence of a graph is the	101/ Draw these simple
	sequence of the degrees of the vertices of	graphs.
Edge	the graph in non-increasing order. How	a/ K ₇ .
Vertex/vertice	many edges does a graph have if its degree	b/ C ₇ .
S	sequence is 4, 3, 3, 2, 2?	c/ W ₇ .
	Solution.	d/ K _{3,4} .
Special simple	Based on the handshaking theorem ,	
graphs: K _n , C _n ,	number of edges = $(\frac{1}{2})$ (the sum of degrees	102 / Find the degree
W _n , Q _n	of vertices) = $(\frac{1}{2})(4 + 3 + 3 + 2 + 2) = 7$.	sequence of each of the
		graphs in the exercise
Handshaking	Ex2. A sequence d_1 , d_2 ,, d_n is called	101.
theorem.	graphic if it is the degree sequence of a	
	simple graph . Determine whether each of	103/ An undirected graph
Degree of a	these sequences is graphic . For those that	has five vertices of
vertex	are, draw a graph having the given degree	degree three and three
	sequence.	vertices of degree five.
Adjacent	a/3, 3, 3, 3, 2, 0.	How many edges does
Incident	b/5, 4, 3, 2, 1.	the graph have?
	c/7, 6, 5, 4, 4, 2, 1, 1.	8-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

Solution.

Recall that a simple graph has no any a multiple edge or a loop. a/Below is a simple graph having the degree sequence 3, 3, 3, 3, 2, 0.

b/ Recall that a graph cannot have an odd number of vertices that have odd degrees. So, no graph having the degree sequence $\mathbf{5}$, $\mathbf{4}$, $\mathbf{3}$, $\mathbf{2}$, $\mathbf{1}$ (3 vertices that have odd degrees). c/ Suppose there is such a **simple graph** with vertices a, b, c, d, e, f, g, h where $\deg(a) = 7$, $\deg(b) = 6$, $\deg(c) = 5$, $\deg(d) = 4$, $\deg(e) = 4$, $\deg(f) = 3$, $\deg(g) = 1$ and $\deg(h) = 1$.

- First, vertex a must be adjacent to 7 other vertices. Hence, vertex a is adjacent to both g and h.
- Next, there are 6 vertices that are adjacent to b. From 7 remaining vertices beside b, at least one of g and h is adjacent to b. In this situation, at least one of g and h must have degree 2 or larger. It is a contradiction with the fact deg(g) = deg(h) = 1.

So, there is no such a simple graph.

Ex4. The **complementary graph** \overline{G} of a simple graph G has the same vertices as G. Two vertices are adjacent in G if and only if they are not adjacent in G.

104/ Determine whether each of these sequences is **graphic**. For those that are, draw a graph having the given degree sequence.

a/5, 4, 3, 2, 1, 0. b/1, 1, 1, 1. c/4, 4, 3, 2, 1. b/8, 8, 4, 4, 2, 2, 0, 0.

105/ The

complementary graph

G of a simple graph G has the same vertices as G. Two vertices are adjacent in G if and only if they are not adjacent in G.

a/ If G is a simple graph with 9 vertices and \overline{G} has 11 edges, how many edges does G have? b/ If the degree sequence of the simple graph G is 4, 2, 2, 1, 1, what is the degree sequence of G? Draw the graphs G and \overline{G} .

Draw the **complementary graph** of the graph below. Solution. By the definition, the **complementary graph** \overline{G} is given below: Note that the union of G and \overline{G} is the complete graph K_n, where n is the number of vertices of G. So, if G has m edges, then \overline{G} has n(n-1)/2 - m edges. Bipartite **Ex1.** For which values of n is the graph C_n 106/ For which values of bipartite? n are these graphs graphs bipartite? a/C_n. b/W_n . a/K_n . Solution. b/Q_n . a/C_n. **107**/ Determine whether • If n is even, "odd-position" vertices and "even-position" vertices must be the graph represented by colored by different color (e.g., red the adjacency matrix is bipartite. for "odd-position" and black for "even-position" vertices). Since no edge connects an "odd-position" 1 vertex to an "even-position" vertex, 0 1 0 the graph C_n is bipartite if n is even. If n is odd, the first and the final

	vertices in the cycle are both in "odd-	
	positions" and they connect each	
	other. This means, they are colored	
	by the same color while they are	
	adjacent. Therefore, C _n is not	
	bipartite if n is odd.	
	b/W_n .	
	Since the vertex at the center connecting to	
	all other vertices around the cycle, the graph	
	W _n is a non-bipartite graph.	
	Ex2. Determine whether the graph	
	represented by the adjacency matrix is	
	bipartite.	
	$\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$	
	1 0 0 1	
	Solution.	
	From the matrix, the corresponding graph is	
	bipartite.	
	In fact, the set of vertices can be divided	
	into two parts $\{v_1, v_4\}$ and $\{v_2, v_3\}$, where	
	v_1 (row 1) and v_4 (row 4) are not adjacent;	
	and v ₂ and v ₃ are not adjacent.	
Connected	Ex1. Find all cut vertices of the given	108/ Find all cut vertices
graphs	graph.	and all cut edges (or
	B C	bridges) of the given
Cut vertex		graph.
		•
Cut edge		
	6	<u>A</u>
	Solution.	
	If vertex B is removed, the graph becomes	
	6 ,0	6
	and disconnected . So, B is a cut vertex.	
	Similarly, if we remove vertex G, the graph	
	becomes a disconnected graph. Hence, G is	

	also a cut vertex .	
	Ex2. Find all cut edges (or bridges) of the given graph.	
	Solution. The given graph is connected and a removing a cut edge (or bridge) makes a disconnected graph. For example, if BC is removed, the graph becomes a disconnected graph as below	
	So, BC is a bridge of the given graph. Similarly, other bridges are BF, BG, GD, and AB.	
Representing graphs Adjacency matrix Incidence matrix	Ex1. Find an adjacency matrix for each of these graphs. a/ K_5 . b/ W_5 . c/ $K_{2,3}$. Solution. $\begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$	109/ Find an adjacency matrix for each of these graphs. a/ K ₆ . b/ C ₆ . c/ W ₆ . d/ K _{2,4} . e/ Q ₃ . 110/ Find the number of 1-entries in the incidence matrix of each of these graphs. a/ K _n . b/ W _n . c/ K _{m,n} .

Isomorphism	b/ b/ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1	112/ Use paths either to show that these graphs 112/ Use paths either to show that these graphs
Path of length n Counting paths	graphs are not isomorphic or to find an isomorphism between them.	show that these graphs are not isomorphic or to find an isomorphism between them.

Solution.

We will show that two graphs are not isomorphic by using a special path the one graph has but another graph has not. In fact, the left-hand side graph (G) has one path making a "triangle" (e.g. u₁-u₂-u₃) while the graph H has no the same property. So, two graphs are not isomorphic.

Ex2. How many paths of length 3 between A and B does the graph have?

Solution.

The adjacency matrix of the graph is

$$M = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix}$$

To find the number of paths of length 3 between A and B, we can multiply the (1, 2)-entry of the matrix M^3 . First, we will compute M^2 .

113/ How many paths of length 2 between a and b does each of these graph have?

	$M^{2} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 3 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ Next, to find the (1, 2)-entry of M³, we multiply the first row of M² by the second column of M. The result is 4.	
Euler	Ex1. For which values of n do these graphs	114/ For which values of
paths/circuits	have an Euler circuit ?	n do these graphs have an
TT '1,	a/K _n .	Euler circuit?
Hamilton	b/C _n . Solution.	a/W_n .
paths/circuits	Recall that a connected graph has an Euler	b/ Q _n .
	circuit if and only if every vertex of this	115/ For which values of
	graph has even degree.	m and n does the
	a/ Every vertex of K_n has degree $n-1$. So,	complete bipartite
	K_n has an Euler circuit if and only if n is an	graph K _{m,n} have an
	odd integer and $n > 1$.	a/ Euler circuit?
	b/ Every vertex of C _n has degree 2. So, C _n	b/ Euler path?
	has an Euler circuit for every integer $n > 2$.	T
	, ,	116/ For which values of
	Ex2. Does the undirected graph represented	m and n does the
	by the adjacency matrix	complete bipartite graph
		K _{m,n} have a Hamilton
	2 0 0 4	circuit?
	$\begin{bmatrix} 2 & 0 & 0 & 4 \\ 1 & 0 & 2 & 3 \\ 1 & 4 & 3 & 0 \end{bmatrix}$	
		117/ What is the length
		of the longest simple
	have an Euler circuit ? And what is the	circuit in the graph W ₇ ?
	length of an Euler circuit in this graph? Solution.	110/E' 1 II 94
	The graph is connected and its degree	118/ Find a Hamilton
	sequence is 8, 8, 6, 6. So, it has an Euler	circuit in the graph or
	circuit. The length of an Euler circuit	explain that it does not have.
	equals to the number of edges the graph has,	nave.
	which is $(8 + 8 + 6 + 6)/2 = 14$ by the	
	· · · · · · · · · · · · · · · · · · ·	
	handshaking theorem.	

Ex3. a/ Determine whether K_{2,3} has a Hamilton circuit or a Hamilton path. b/ Determine whether K_{3,3} has a Hamilton circuit or a Hamilton path. c/ Determine whether K_{2,4} has a Hamilton circuit or a Hamilton path.

Solution.

a/ The graph K_{2,3} has a **Hamilton path**, has no **Hamilton circuit**.

(Hamilton path, not a Hamilton circuit C-A-D-B-E)

b/ $K_{3,3}$ has a **Hamilton circuit** and a **Hamilton path**.

(Hamilton circuit and Hamilton path: A-D-B-E-C-F-A) c/ K_{2,4} has no a Hamilton circuit or a

c/ $K_{2,4}$ has no a **Hamilton circuit** or a **Hamilton path**.

Ex4. What is the length of the longest simple **circuit** in the graph K_{11} ? *Solution*.

 K_{11} has an **Euler circuit** (because every vertex in this graph has degree 10). Recall that an **Euler circuit** is a simple circuit containing every edge of the graph K_{11} . So, an **Euler circuit** in K_{11} is also the longest simple circuit. Therefore, the length

of the longest simple circuit equals to the number of edges of the graph K_{11} , which is 55.

Ex5. Find a **Hamilton circuit** in the graph or explain that it does not have.

Solution.

Suppose the graph has a **Hamilton circuit**, call it (H). If a vertex has degree 2, then (H) must pass through both two edges incident with this vertex. So, (H) passes through the edges a-b, a-e, f-e, f-g, c-b and c-g exactly once.

Because b (g) has degree 3, (H) cannot pass through all edges incident with b (g). Hence, (H) cannot pass through d-b two edges and d-g. It follows that (H) cannot pass through d. It is a contradiction.

Applications.

1/ Use **Dijkstra's algorithm** to find a least expensive route in terms of total dollars using the roads in the graph between Camden and Atlantic City.

2/ Solve the **traveling salesman problem** for this graph by finding the total weight of all Hamilton circuits and determining a circuit with minimum total weight.

3/ The following is a floor plan of a house. Is it possible to enter the house in room A, travel through every interior doorway of the house exactly once, and exit out of room E? If so, how can this be done?

	Solution.	d/
	a/ The graph is disconnected. So, it is not a tree.	D E
	b/ The graph is connected, but it has a simple circuit (see a triangle). So, it is not a	3 B
	tree.	0 6
	c/ This graph is a tree because it is a	
	connected graph with no simple circuit.	
	Ex2. Given the tree	120/ Given the tree
	D E F	If J is chosen as the root
	If B is chosen as the root of the tree, what is the height of the tree?	of the tree, what is the height of the tree?
	Solution.	
	If B is the root of the tree, the levels of	
	nodes in the tree are shown as below:	
	Level 0: B Level 1: E, F, A	
	Level 2: C, D	
	Level 3: I, G, H	
	Level 4: J	
	Recall that the height of the tree is the	
	maximum level of the tree. Hence, the	
	height of the tree is 4.	
m-ary trees	Ex1. a/ How many edges does a tree with	121a/ How many vertices
full m-ary	10,000 vertices have?	does a full 5-ary tree with
trees and	b/ How many edges does a full binary tree	100 internal vertices
properties	with 1000 internal vertices have?	have?
	Solution.	b/ How many leaves does
	a/ number of edges = number of vertices -1 = $10000 - 1 = 9999$.	a full 3-ary tree with 100 vertices have?
	b/ Keep in mind, in a full m-ary tree we	
	have $n = mi + 1$, where n is number of	122/ Suppose a full
	nodes and i is the number of internal	ternary tree has 16
	nodes.	leaves.

In this case, n = 2.1000 + 1 = 2001.

 \Rightarrow Number of edges = 2001 - 1 = 2000.

Ex2. Suppose a full binary tree has 35 nodes.

a/ How many **leaves** does the tree have? b/ How large can the **height** of the tree possibly be?

c/ How small can the **height** of the tree possibly be?

Solution.

a/n = mi + 1 and n = i + l

 \Rightarrow 35 = 2·i + 1 and 35 = i + l

 \Rightarrow i = 17 and l = 18.

b/ maximum height of the tree = number of internal nodes of the tree = 17.

c/ minimum height of the tree = $\lceil \log_{m}(l) \rceil$ = $\lceil \log_{2}(18) \rceil$ = 5.

a/ How large can the **height** of the tree possibly be? b/ How small can the **height** of the tree possibly be?

Binary search trees

Ex1.

Build a **binary search tree** for the words *banana, peach, apple, pear, coconut, mango*, and *papaya* using alphabetical order.

Solution.

Ex2. How many comparisons are needed to locate or to add each of these words in the **binary search tree** for Ex1, starting fresh each time?

a/ pearb/ banana

123/ Build a binary search tree for the words EAGLE, ANT, BAT, DUCK, BEAR, PIG, CAT and DOG using alphabetical order.

124/ How many comparisons are needed to locate or to add each of these words in the binary search tree for exercise 123, starting fresh each time?
a/ BEAR
b/ DOG
c/ MONKEY.

125/ Using alphabetical order, construct a binary search tree for the words in the sentence "Let the cat out of the bag."

c/ orange.

Solution.

a/ Staring from the root of the tree to locate/insert the word pear:
banana < pear → go to the right
peach < pear → locating/inserting
successfully.

 \Rightarrow 3 comparisons.

b/ banana = banana → strop locating after one comparison.

c/ banana < orange → go to the right
peach > orange → go to the left
coconut < orange → go to the right
mango < orange → go to the right
papaya > orange → go to the left
left child of papaya is null → fail to locate
the word orange.

⇒ We fail to locate orange by comparing it successively to banana, peach, coconut, mango, and papaya.
 Once we determine that orange should be in the left subtree of papaya, and find no vertices there, we know that orange is not in the tree. Thus 5 comparisons were used.

Ex3. Using alphabetical order, construct a **binary search tree** for the words in the sentence "The quick brown fox jumps over the lazy dog." *Solution.*

brown fox
dog jumps
over

Prefix codes

Huffman code

Ex1. Which of these codes are **prefix codes**?

a/ a: 11, e: 00, t: 10, s: 010. b/ a: 01, e: 101, t: 110, s: 1101. *Solution.*

a/ This code scheme is a prefix code. b/ From the code scheme, we can see that t is encoded by 110 which is also the first part of the string 1101 used for s. So, this code scheme is not a prefix code.

Ex2. What are the codes for a, e, i, k, o, p, and u if the coding scheme is represented by this tree?

Solution.

Moving from the root of the tree to each leaf and writing the bits labeled on edges, we obtain the codes:

a: 000, e: 001, i: 01, k: 1100, o: 1101, p: 11110, u: 11111.

Ex3. Use Huffman coding to encode the word "google". What is the average number of bits required to encode a symbol? *Solution.*

126/ Which of these codes are **prefix codes**? a/ a: 101, e: 11, t: 001, s: 011, n: 010 b/ a: 010, e: 11, t: 011, s: 1011, n: 1001, i: 10101

127/ Construct the binary tree with **prefix codes** representing these coding schemes.

a/ a: 11, e:0, t : 101, s: 100.

b/ a:1, e: 01, t: 001, s: 0001, n: 00001.

128/ Use **Huffman coding** to encode the word "success". What is the average number of bits required to encode a symbol?

129/ Use Huffman coding to encode these symbols with given frequencies: A: 0.10, B: 0.25, C: 0.05, D: 0.15, E: 0.30, F: 0.07, G: 0.08. What is the average number of bits required to encode a symbol?

	d/ A preorder traversal produces the list: 1,	
	3, 5, 2, 9, 11, 8, 7.	
Expression	Ex1. What is the value of each of these	131/ What is the value of
tree	expressions?	each of these
Prefix	$a/ + - \uparrow 32 \uparrow 23 / 6 - 42$	expressions?
Infix	$\frac{a}{b} + \frac{32}{52} + \frac{23}{50} + \frac{42}{50} = \frac{42}{50}$	a/742134++*
Postfix	Solution.	$b/*+3+3\uparrow 3+3 3 3$
notations	a/ This is a prefix notation	$c/21*2\uparrow77-93/*-$
notations	$+-\uparrow 32\uparrow 23/6-42$	C/21*2 //-93/*
	$\begin{bmatrix} 1 & 32 2370 - 42 \\ 2 & 2 \end{bmatrix}$	132a/ Represent the
	$=+-\uparrow 32\uparrow 23/62$	expressions $(2*x + y)*((y)$
	3	$(x + y)$ ((y - x)) \(\frac{1}{2}\) using binary
	$=+-\uparrow 32\uparrow 233$	trees.
	$= + - \uparrow 3 \ 2 \ 8 \ 3$	Write these expressions
	$= + - \uparrow 3283$	in
	= + -9 83	b/ prefix notation.
	1	c/ postfix notation.
	$= +1 \ 3$	Co postna notation.
	4	
	=4	
	b/ This is a postfix notation	
	62/5+52-*	
	= 62/5 + 52 - *	
	3	
	= 35 + 52 - *	
	= 8 5 2 - *	
	3	
	= 8 3 *	
	=24.	
	Ex2. a/Represent the expressions $(x + y) \uparrow 2$	
	-y*(5-x) using binary trees.	
	Write these expressions in	
	b/ prefix notation.	
	c/ postfix notation.	
	Solution.	
	a/ Expression tree for the given expression:	

Applications.

- 1/ a/ Use Huffman coding to encode these symbols with frequencies a: 0.4, b: 0.2, c: 0.2, d: 0.1, e: 0.1 in two different ways by breaking ties in the algorithm differently. First, among the trees of minimum weight select two trees with the largest number of vertices to combine at each stage of the algorithm. Second, among the trees of minimum weight select two trees with the smallest number of vertices at each stage. b/ Compute the average number of bits required to encode a symbol with each code and compute the variances of this number of bits for each code. Which tie-breaking procedure produced the smaller variance in the number of bits required to encode a symbol?
- 2/ Suppose that m is a positive integer with $m \ge 2$. An **m-ary Huffman code** for a set of N symbols can be constructed analogously to the construction of a **binary Huffman code**. At the initial step, ((N-1) mod (m-1)) + 1 trees consisting of a single vertex with least weights are combined into a rooted tree with these vertices as leaves. At each subsequent step, the m trees of least weight are combined into an m-ary tree. Using the symbols 0, 1, and 2 use ternary (m = 3) Huffman coding to encode these letters with the given frequencies: A: 0.25, E: 0.30, N: 0.10, R: 0.05, T: 0.12, Z: 0.18.
- 3/ Use a **decision tree** to give the best way to find the lighter counterfeit coin among 24 coins.
- 4/ The **tournament sort** is a sorting algorithm that works by building an ordered binary tree. We represent the elements to be sorted by vertices that will become the leaves. We build up the tree one level at a time as we would construct the tree representing the winners of matches in a tournament. Working left to right, we compare pairs of consecutive elements, adding a parent vertex labeled with the larger of the two elements under comparison. We make similar comparisons between labels of vertices at each level until we reach the root of the tree that is labeled with the largest element. The tree constructed by the tournament sort of 22, 8, 14, 17, 3, 9, 27, 11 is illustrated in part (a) of the figure. Once the largest element has been determined, the leaf with this label is

relabeled by $-\infty$, which is defined to be less than every element. The labels of all vertices on the path from this vertex up to the root of the tree are recalculated, as shown in part (b) of the figure. This produces the second largest element. This process continues until the entire list has been sorted.

