

Бизнис статистика

Комбинаторика

Варијации со повторување

Нека A е множество со n елементи.

Секој елемент од множеството $\underbrace{A \times A \times \cdots \times A}_{k-\text{пати}}$ се нарекува варијација

со повторување од n елементи класа k.

Бројот на сите варијации со повторување од n елементи класа k се пресметува на следниот начин:

$$\overline{V}_n^k = n^k$$

Нека $A = \{a, b, c, d\}$. Варијации со повторување класа 3 од ова множество со 4 елементи се:

aaa	aab	aac	aad	caa	cab	cac	cad
aba	abb	abc	abd	cba	cbb	cbc	cbd
aca	acb	acc	acd	cca	ccb	ccc	ccd
ada	adb	adc	add	cda	cdb	cdc	cdd
baa	bab	bac	bad	daa	dab	dac	dad
bba	bbb	bbc	bbd	dba	dbb	dbc	dbd
bca	bcb	bcc	bcd	dca	dcb	dcc	dcd
bda	bdb	bdc	bdd	dda	ddb	ddc	ddd

Се договараме заградите и запирките да ги изоставиме заради поедноставно испишување на варијациите.

Вкупниот број на варијации со повторување од 4 елементи класа 3 е $\overline{V_4}^3 = 4^3 = 64$.

Варијации без повторување

Секоја варијација од n елементи класа k во која сите елементи се различни се нарекува варијација без повторување од n елементи класа k.

Бројот на сите варијации без повторување од n елементи класа k се пресметува на следниот начин:

$$V_n^k = n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$$

Бидејќи една варијација претставува подредена k-торка, може да се заклучи дека распоредот на елементите во една варијација е битен.

Нека $A = \{a, b, c, d\}$. Варијации без повторување класа 3 од ова множество со 4 елементи се:

abc	abd	acb	acd	adb	adc
bac	bad	bca	bcd	bda	bdc
cab	cad	cba	cbd	cda	cdb
dab	dac	dba	dbc	dca	dcb

Вкупниот број на варијации без повторување од 4 елементи класа 3 е

$$V_4^3 = \frac{4!}{(4-3)!} = 24.$$

Пермутации без повторување

Секоја варијација без повторување од n елементи класа n, се нарекува пермутација без повторување од n елементи.

Бројот на сите пермутации без повторување од n елементи се пресметува на следниот начин:

$$P_n = n!$$

Нека $A = \{a, b, c, d\}$. Пермутации без повторување од овие 4 елементи се:

abcd	abdc	acbd	acdb	adbc	adcb
bacd	badc	bcad	bcda	bdac	bdca
cabd	cadb	cbad	cbda	cdab	cdba
dabc	dacb	dbac	dbca	dcab	dcba

Вкупниот број на пермутации без повторување од 4 елементи е

$$P_4 = 4! = 24.$$

Пермутации со повторување

Нека a_1, \ldots, a_k се k различни елементи. Секој различен распоред каде што a_1 се појавува n_1 пати, a_2 се појавува n_2 пати, \ldots , a_k се појавува n_k пати $(n_1 + n_2 + \ldots + n_k = n)$ се нарекува пермутација со повторување од n елементи каде броевите на повторувања се n_1, n_2, \ldots, n_k .

Бројот на сите пермутации со повторување од n елементи каде броевите на повторувања се $n_1, n_2, ..., n_k$ се пресметува на следниот начин:

$$P_n(n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!}.$$

Нека $A = \{a, b\}$. Бројот на пермутации со повторување во кои елементот a се повторува 3 пати, а елементот b се повторува 2 пати е:

$$P_5(3,2) = \frac{5!}{3!2!} = 10.$$

Такви пермутации се следните:

aaabb aabab aabba abaab abaaa baaab baaba babaa baaab

Комбинации без повторување

Нека A е множество со n елементи. Секое подмножество на A со k различни елементи се нарекува комбинација без повторување од n елементи класа k.

Бројот на сите комбинации без повторување од n елементи класа k се пресметува на следниот начин:

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Нека $A = \{a, b, c, d\}$. Бројот на комбинации без повторување класа 3 од ова множество со 4 елементи е:

$$C_4^3 = {4 \choose 3} = \frac{4!}{3!(4-3)!} = 4.$$

Такви комбинации се:

$$\{a, b, c\}$$
 $\{a, b, d\}$ $\{a, c, d\}$ $\{b, c, d\}$

Комбинации со повторување

Нека A е множество со n елементи. Секој избор на k објекти од A, каде некои елементи може и да се повторуваат се нарекува комбинација со повторување од n елементи класа k.

Бројот на сите комбинации со повторување од n елементи класа k се пресметува на следниот начин:

$$\overline{C}_n^k = C_{n+k-1}^k = \binom{n+k-1}{k}.$$

Две комбинации со повторување се идентични, ако се содржат исти елементи кои се појавуваат ист број пати, независно од редоследот.

Нека $A = \{a, b, c, d\}$. Бројот на комбинации со повторување класа 3 од ова множество со 4 елементи е:

$$\overline{C}_4^3 = C_{4+3-1}^3 = C_6^3 = \binom{6}{3} = 20.$$

Такви комбинации се:

Како да се разликуваат варијации, пермутации, комбинации?

- Ако распоредот на елементите не е битен, станува збор за комбинации.
- Ако распоредот на елементите е битен, тогаш се работи за варијации или за пермутации.
 - Ако се распоредуваат сите елементи, тогаш распоредите се пермутации.
 - Во спротивно, станува збор за варијации.

Правило на производ

Правило на производ: : Ако некоја работа се извршува во 2 чекори (со две подзадачи), од кои првиот чекор може да се изврши на n - начини, и за секој од овие начини за првиот чекор, постојат m - начини за вториот, тогаш постојат вкупно $m \cdot n$ - начини за завршување на работата.

Обопштено правило на производ: Ако некоја работа се извршува во k чекори, од кои i-тиот чекор може да се заврши на n_i - начини, независно од останатите задачи, тогаш постојат вкупно $n_1 \cdot n_2 \cdot \ldots \cdot n_k$ начини за завршување на работата.

Правило на збир

Правило на збир: Ако за завршување на една работа има 2 различни пристапи и притоа постојат m начини за да се заврши работата со користење на првиот пристап и n начини да се заврши со вториот пристап, тогаш постојат вкупно m+n начини за завршување на работата.

Различни пристапи значи дека не може еден начин на решавање да се смести и во првиот и во вториот пристап.

Обопштено правило на збир: Ако за завршување на една работа има k различни пристапи и постојат n_i - начини за да се заврши работата со користење на i-тиот пристап, тогаш постојат вкупно $n_1 + n_2 + \ldots + n_k$ начини за завршување на работата.

Колку троцифрени броеви може да се образуваат од цифрите 1,2,...,9 ако

- а) Во секој број цифрите се различни
- б) Броевите може да содржат и еднакви цифри

a)
$$V_9^3 = \frac{9!}{(9-3)!} = 504$$

$$6) \, \overline{V_9}^3 = 9^3 = 729$$

На поодделни картици се напишани броеви од 1 до 9. Картиците добро се мешаат, а потоа од нив се извлекуваат 4 и се подредуваат по редот на извлекување. На колку начини може да се изврши извлекувањето за да се добие парен четирицифрен број?

$$4 \cdot V_8^3 = 4 \cdot 336 = 1344$$

Од шпил со 52 карти се извлекуваат 3 карти истовремено. На колку начини може да се изврши изборот така што:

- а) Сите три карти се со иста вредност.
- б) Сите три карти се со ист знак.
- в) Две карти се со иста вредност, а третата е 1.

a)
$$C_{13}^1 \cdot C_4^3 = 13 \cdot 4 = 52$$

6)
$$C_4^1 \cdot C_{13}^3 = 4 \cdot 286 = 1144$$

B)
$$C_4^3 + C_{12}^1 \cdot C_4^2 \cdot C_4^1 = 4 + 12 \cdot 6 \cdot 4 = 292$$

Четворица студенти се јавиле на испит во ист ден на ист предмет. Тие биле оценети со оценките 7,8,9 и 10. На колку начини може да се распоредат оценките така што:

- а) Никои двајца од нив да не добијат иста оценка.
- б) Студентот А добил повисока оценка од студентот В (А и В се фиксни студенти од четворицата) и повторно сите се оценети со различна оценка.
- в) Сите четворица се оценуваат со двете највисоки оценки.

a)
$$P_4 = 4! = 24$$

a)
$$P_4 = 4! = 24$$

6) $C_4^2 \cdot P_2 = 12$

B)
$$\overline{V_2}^4 = 2^4 = 16$$

До крајот на првенството во Првата фудбалска лига, еден тим треба да одигра уште 6 натпревари. Според пресметката на тренерот било потребно да се победат 2 натпревари и еден да се одигра нерешено, за да се обезбеди минималниот број поени за опстанок во лигата. На колку начини може да се обезбеди потребниот минимум поени?

Решение: Потребниот број на поени за опстанок во лигата е $2 \cdot 3 + 1 \cdot 1 = 7$.

победи	нерешени	порази
2	1	3
1	4	1

$$P_6(2,1,3) + P_6(1,4,1) = \frac{6!}{2! \cdot 1! \cdot 3!} + \frac{6!}{1! \cdot 4! \cdot 1!} = 90$$

На еден јарбол наредени се 8 знаменца. Секој распоред на знаменцата претставува одреден сигнал. Колку сигнали може да бидат претставени со знаменцата, ако меѓу нив има 4 бели, 3 црвени и 1 сино знаменце?

$$P_8(4,3,1) = \frac{8!}{4! \cdot 3! \cdot 1!} = 280$$

На еден турнир се одиграни 45 партии шах. Според правилата на турнирот, секој одиграл со секого по една партија. Колку учесници имало на турнирот?

$$C_n^2 = 45$$

$$\binom{n}{2} = 45$$

$$\frac{n(n-1)}{2} = 45$$

$$n^2 - n - 90 = 0$$

$$n^{2} - n - 90 = 0$$

$$n_{1,2} = \frac{1 \pm \sqrt{1 + 360}}{2} = \frac{1 \pm 19}{2}$$

$$n_{1} = -9, \qquad n_{2} = 10,$$

$$n = 10$$

• Еден сигнал се состои од три знака. Првиот знак се избира од множеството {1,3,5,7}, вториот од множеството {2,4,6,8}, а третиот од множеството {0,9}. Секој сигнал претставува коден збор за одредена активност. Колку можни активности може да се претстават на ваков начин?

Решение: Може да се искористи обопштеното правило на производ.

- Првиот знак може да се избере на 4 начини (произволен елемент од множеството {1,3,5,7}).
- За секој избор на прв знак, вториот може да се избере, исто така, на 4 начини (произволен елемент од множеството {2,4,6,8}).
- За ској избор на првите два елементи, третиот може да се избере на 2 начини (произволен елемент од множеството {0,9}).
- Вкупниот број на можни избори е $4 \cdot 4 \cdot 2 = 32$.

• На колку начини од шпил со карти може да се извлече црна карта со слика или црвена карта со парен број?

Решение: Постојат три вредности со слика (J, Q, K) и пет вредности со парен број (2,4,6,8,10). Можен избор е една карта од:

- 3 карти (J, Q, K) треф
- 3 карти (J, Q, K) пик
- 5 карти херц со парен број
- 5 карти каро со парен број
- Согласно правилото за збир, вкупниот број на можни избори е 3 + 3 + 5 + 5 = 16.