图算法篇: 所有点对最短路径问题

童咏昕

北京航空航天大学 计算机学院

中国大学MOOC北航《算法设计与分析》

提纲

问题定义

算法思想

算法设计

算法实例

算法分析

问题背景

• 航班价格

如何求出所有城市之间的最低航班价格?

所有点对最短路径问题

All Pairs Shortest Paths

输入

• 带权图 $G = \langle V, E, W \rangle$,W为边权

输出

• $\forall u, v \in V$, 从u到v的最短路径

提纲

问题定义

算法思想

算法设计

算法实例

算法分析

u	1	2	3	4	5
1	0	200	100	300	400
2					
3			5		
4					
5		***			***

v u	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3					
4					
5		***			***

				<u> </u>	
v u	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4					
5					***

v u	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	9 0	200	300
4	300	400	200	0	100
5		**	×		***

v	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

- 使用Dijkstra算法依次求解所有点
- 存在重叠子问题

从1到5的最短路径: $1\rightarrow 3\rightarrow 4\rightarrow 5$

从3到5的最短路径: 3→4→5

- 从1到4的路径更新
 - 可从前1个点中选择点经过: 500

● 从1到4的路径更新

• 可从前1个点中选择点经过: 500

● 可从前2个点中选择点经过: 500

● 从1到4的路径更新

• 可从前1个点中选择点经过: 500

● 可从前2个点中选择点经过: 500

• 可从前3个点中选择点经过: 300

• 从1到4的路径更新

• 可从前1个点中选择点经过: 500

• 可从前2个点中选择点经过: 500

• 可从前3个点中选择点经过: 300

• 可从前k个点中选择点经过: ...

• 从1到4的路径更新

• 可从前1个点中选择点经过: 500

• 可从前2个点中选择点经过: 500

• 可从前3个点中选择点经过: 300

● 可从前k个点中选择点经过: ...

可经过的中间点越多 距离逐渐变短

• 从1到4的路径更新

• 可从前1个点中选择点经过: 500

• 可从前2个点中选择点经过: 500

• 可从前3个点中选择点经过: 300

• 可从前k个点中选择点经过: ...

可经过的中间点越多 距离逐渐变短

提纲

问题定义

算法思想

算法设计

算法实例

算法分析

动态规划: 问题结构分析

• 给出问题表示

• D[k,i,j]: 可从前k个点选点经过时,i到j的最短距离

• 从1到4的路径更新

可从前1个点中选择点经过: D[1,1,4] = 500

• 可从前2个点中选择点经过: D[2,1,4] = 500

• 可从前3个点中选择点经过: D[3,1,4] = 300

问题结构分析

递推关系建立

自底向上计算

动态规划: 问题结构分析

• 给出问题表示

• D[k,i,j]: 可从前k个点选点经过时,i到j的最短距离

• 从1到4的路径更新

• 可从前1个点中选择点经过: D[1,1,4] = 500

• 可从前2个点中选择点经过: D[2,1,4] = 500

• 可从前3个点中选择点经过: D[3,1,4] = 300

• 明确原始问题

D[|V|,i,j]

问题结构分析

递推关系建立

自底向上计算

- 如果不选第 / 个点经过
 - D[k,i,j] = D[k-1,i,j]

本例中

$$k = 2, i = 1, j = 4$$

 $D[2, 1, 4] = D[1, 1, 4] = 500$

问题结构分析

递推关系建立

自底向上计算

- 如果不选第 k 个点经过
 - D[k, i, j] = D[k-1, i, j]
- 如果选择第 k 个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

表示松弛成功

= 100 + 200 = 300

问题结构分析

递推关系建立

自底向上计算

- 如果不选第 k 个点经过
 - D[k,i,j] = D[k-1,i,j]
- 如果选择第 k 个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

问题结构分析

递推关系建立

自底向上计算

- 如果不选第 k 个点经过
 - D[k,i,j] = D[k-1,i,j]
- 如果选择第 k 个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

从i到j可经过前k个点的最短路

• $D[k, i, j] = \min\{D[k-1, i, j],$ • $D[k-1, i, k] + D[k-1, k, j]\}$ 问题结构分析

递推关系建立

自底向上计算

- 如果不选第 k 个点经过
 - D[k,i,j] = D[k-1,i,j]
- 如果选择第 k 个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

从i到j可经过前k个点的最短路

• $D[k,i,j] = \min\{D[k-1,i,j],$ $D[k-1,i,k] + D[k-1,k,j]\}$ 最优子结构

问题结构分析

递推关系建立

自底向上计算

• 初始化

• D[0,i,i] = 0: 起终点重合,路径长度为0

问题结构分析

递推关系建立

自底向上计算

• 初始化

- D[0,i,i] = 0: 起终点重合,路径长度为0
- D[0,i,j] = e[i,j]: 任意两点直达距离为边权

问题结构分析

递推关系建立

自底向上计算

100

• 递推公式

• $D[k, i, j] = \min\{D[k-1, i, j],$ $D[k-1, i, k] + D[k-1, k, j]\}$

最终的表格: k = |V|

初始化的表格: k=0

	=///					
i	1	2	3	4	5	
1	0	200	100	500	500	
2	200	0	200	1200	1000	
3	100	200	0	200	600	
4	500	1200	200	0	100	
5	500	1000	600	100	0	

问题结构分析

递推关系建立

自底向上计算

• 递推公式

 \boldsymbol{k}

• $D[k, i, j] = \min\{D[k-1, i, j],$ $D[k-1, i, k] + D[k-1, k, j]\}$

k = 0

递推关系建立

自底向上计算

最优方案追踪

初始化的表格: k=0

i	1	2	3	4	5	
1	0	200	100	500	500	
2	200	0	200	1200	1000	
3	100	200	0	200	600	
4	500	1200	200	0	100	
5	500	1000	600	100	0	

递推公式

最终的表格: k = |V|

i j	1			
1				10
•••			2	
×			•	
•••				
•••				

初始化的表格: k=0

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

• 递推公式

最终的表格: k = |V|

i j	1	<u></u>		
1				10
•••			2	
			•	
•••				
•••				

初始化的表格: k=0

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

• 递推公式

 \boldsymbol{k}

 $D[k,i,j] = \min\{D[k-1,i,j],$ D[k-1,i,k] + D[k-1,k,j]

k = 1

k = 0

初始化的表格: $k=0$)
---------------	---

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

递推公式

k

按k增加的顺序

k = |V|

k = 2

k = 1

k = 0

i j	1	:::			
1					70
•••			2		
			•		
•••					
•••					

初始化的表格: k=0

\int_{I}	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

• 递推公式

• $D[k, i, j] = \min\{D[k-1, i, j],$ $D[k-1, i, k] + D[k-1, k, j]\}$

递推关系建立

自底向上计算

最优方案追踪

600

100

1000

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j],$$

 $D[k-1, i, k] + D[k-1, k, j]\}$

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j],$$

 $D[k-1, i, k] + D[k-1, k, j]\}$

递推关系建立

自底向上计算

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j], 0 + D[k-1, i, j] = D[k-1, i, j]\}$$
• $D[k-1, i, k] + D[k-1, k, j]\}$

• 若k = i或k = j

$$D[k,i,j] = D[k-1,i,j]$$

值相同,可以直接覆盖

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j], 0 + D[k-1, i, j] = D[k-1, i, j]\}$$
• $D[k-1, i, k] + D[k-1, k, j]\}$

• 若k = i或k = j

$$D[k,i,j] = D[k-1,i,j]$$

值相同,可以直接覆盖

若k ≠ i且k ≠ j

D[k-1,i,j]和D[k-1,i,k], D[k-1,k,j]不是相同子问题 求出D[k,i,j]后,D[k-1,i,j]不再被使用 可直接覆盖

i j	1		k		
1		8			
•••					
k					
•••					
•••	-37				
i j	1	•••	k		•••
1					
•••					
k					
•••				, X ²	%
•••	X 1			XXXX	

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j], 0 + D[k-1, i, j] = D[k-1, i, j]\}$$
• $D[k-1, i, k] + D[k-1, k, j]\}$

• 若k = i或k = j

$$D[k, i, j] = D[k-1, i, j]$$

值相同,可以直接覆盖

若k ≠ i且k ≠ j

D[k-1,i,j]和D[k-1,i,k], D[k-1,k,j]不是相同子问题 求出D[k,i,j]后,D[k-1,i,j]不再被使用 可直接覆盖

求出新值可直接在原位置覆盖 只需存储一层表格

					-
i j	1		k	•••	
1	70			3	95
•••					
k					
•••					
•••	-2	No.			
i j	1	•••	k		•••
1					
•••					
k		_&°			_&_
•••	, , '			X	
•••				XXXX	

问题结构分析

递推关系建立

自底向上计算

- 递推公式
 - $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

问题结构分析

递推关系建立

自底向上计算

最优方案追踪

求出新值可直接在原位置覆盖 只需存储一层表格

- 递推公式
 - $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$
- 追踪数组Rec, 记录经过的中间点
 - $D_k[i,j] = D_{k-1}[i,j]$: 0 表示没有中间点

Rec

i	1	ç 	j	···	V
1	- 1/1/N		3/1/5		
•••	(S)		× ()		
i			0		
•••	70	5	1		
V					

问题结构分析

递推关系建立

自底向上计算

递推公式

- $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$
- 追踪数组Rec, 记录经过的中间点
 - $D_k[i,j] = D_{k-1}[i,j]$: 0 表示没有中间点
 - $D_k[i,j] = D_{k-1}[i,k] + D_{k-1}[k,j]$: k 表示经过中间点k

问题结构分析

递推关系建立

松弛时使用的点

Rec

i j	1	٠	j	•••	V
1					2
•••					
i			k		
•••	100	5			
V					

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i j	1	2	3	4	5
1			0		3
2					
3				0	4
4	100		.400		0
5			<i>1</i> /3		

问题结构分析

递推关系建立

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i 1	2 [3]	4	5
1	0 ←		3
2			
$\begin{bmatrix} \overline{3} \end{bmatrix}$		0	4
4			0
5		8	

问题结构分析

递推关系建立

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i j	1	2	3	4	5
1		×	0		3
2					≫ ¹
3				0	$\left\{\begin{array}{c}4\end{array}\right\}$
4					0
5	<i>`</i>		<u> </u>		

问题结构分析

递推关系建立

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i j	1	2	3		5
1			0		3
2					> 1
3				0-	$\begin{bmatrix} 4 \end{bmatrix}$
$\left\{\begin{array}{c} 4 \end{array}\right\}$					£0
5			<i>3</i> /3		

问题结构分析

递推关系建立

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i j	1	2	3	4	5
1			0		3
2					
3				$\begin{bmatrix} \overline{0} \end{bmatrix}$	4
4	100		1700	· — —	0
5	`		ZY)		

问题结构分析

递推关系建立

自底向上计算

问题定义

算法思想

算法设计

算法实例

算法分析

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

所有点对都没有经过其他点

Rec

k = 0

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	0	0 ×
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

D

i j	1	2	3	4	5_
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

Rec

k = 1

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

$$k = 1$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1 ×
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5	
1	0	200	100	500	500	
2	200	0	200	700	700	
3	100	200	0	200	600	
4	500	700	200	0	100	1
5	500	1000	600	100	0	X

$$k = 1$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1 ,
3	0	0	0	0	0
4	0	1 C	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0_

$$k = 1$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1 .
3	0	0	0	0	0
4	0	, de	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k=2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0		0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0_	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k=2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1 00	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k=2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0		0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5	
1	0	200	100	500	500	
2	200	0	200	700	700	
3	100	200	0	200	600	
4	500	700	200	0	100	,
5	500	700	600	100	0	X

$$k=2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0		0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200_	0	100
5	500	<u>700</u>	600	100	_0_

$$k=2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1 ×
3	0	0	0	0	0
4	0	1 00	0	0	0
5	0	0	0	20	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k=3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0		0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k=3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1 ,
3	0	0	0	0	0
4	0	1 00	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	$\begin{bmatrix} 0 \end{bmatrix}$	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k=3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	0		0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k=3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0_

$$k=3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1 ,
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	700
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	1
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5	
1	0	200	100	300	400	
2	200	0	200	400	500	
3	100	200	0	200	600	
4	300	400	200	0	100	
5	500	700	600	100	0	X

$$k=4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	_0_	200	400	500
3	100	200	0_	200	300
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200		100
5	500	700	600	100	0

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	$\begin{bmatrix} 0 \end{bmatrix}$

$$k = 4$$

i j	1	2	3	4	5	
1	0	0	0	3	4	
2	0	0	0	3	4	
3	0	0	0	0	4	
4	3	3	0	0	0	
5	4	4	4	0	0	

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0_	100
5	400	500	300	100	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300_	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0_	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300_	400	200	0	100
5	400	500	300	100	

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

查询从1到5的最短路

i	j	1	2	3	4	5	
	1	0	200	100	300	400	
	2	200	0	200	400	500	
	3	100	200	0	200	300	
	4	300	400	200	0	100	
	5	400	500	300	100	0	×

Rec

$$k = 5$$

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

查询从1到5的最短路

i j	1	2	3	4	5	
1	0	200	100	300	400	
2	200	0	200	400	500	
3	100	200	0	200	300	
4	300	400	200	0	100	
5	400	500	300	100	0	X

Rec

$$k = 5$$

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

查询从1到5的最短路

i j	1	2	3	4	5	
1	0	200	100	300	400	
2	200	0	200	400	500	
3	100	200	0	200	300	
4	300	400	200	0	100	
5	400	500	300	100	0	X

Rec

$$k = 5$$

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

查询从1到5的最短路

i j	1	2	3	4	5	
1	0	200	100	300	400	
2	200	0	200	400	500	
3	100	200	0	200	300	
4	300	400	200	0	100	
5	400	500	300	100	0	X

$$k = 5$$

200 4

1200 000

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

查询从1到5的最短路

i j	1	2	3	4	5	
1	0	200	100	300	400	
2	200	0	200	400	500	
3	100	200	0	200	300	
4	300	400	200	0	100	
5	400	500	300	100	0	X

Rec

$$k = 5$$

提纲

问题定义

算法思想

算法设计

算法实例

算法分析

All-Pairs-Shortest-Paths(G)

```
输入: 图G = \langle V, E, W \rangle
输出: 任意两点最短路径
新建二维数组D[1..|V|,1..|V|],Rec[1..|V|,1..|V|]
for i \leftarrow 1 to |V| do
                                                        初始化
    for j \leftarrow 1 to |V| do
        Rec[i,j] \leftarrow 0
        if i = j then
          D[i,j] \leftarrow 0
        end
        else
          D[i,j] \leftarrow W[i,j]
        end
    end
end
```


All-Pairs-Shortest-Paths(G)

All-Pairs-Shortest-Paths(G)

```
for k \leftarrow 1 to V do
                                                     按照k增大的顺序
     for i \leftarrow 1 to |V| do
          for j \leftarrow 1 to |V| do
              if D[i,j] > D[i,k] + D[k,j] then D[i,j] \leftarrow D[i,k] + D[k,j]
                   Rec[i,j] \leftarrow k
               end
          end
     end
 end
 return D, Rec
```


• All-Pairs-Shortest-Paths(G)

```
for k \leftarrow 1 to |V| do
    for i \leftarrow 1 to |V| do
         for j \leftarrow 1 to |V| do
             (if D[i,j] > D[i,k] + D[k,j] then D[i,j] \leftarrow D[i,k] + D[k,j]
                                                                         松弛操作
             Rec[i,j] \leftarrow k
              end
         end
    end
end
return D, Rec
```


• Find-Path(Rec, u, v)

• Find-Path(Rec, u, v)

```
输入: 备忘数组Rec,起点u,终点v
输出: 最短路径(逆序)
if Rec[u,v]=0 then
print v
return
end
(k \leftarrow Rec[u,v]
Find-Path(Rec,u,k)
Find-Path(Rec,k,v)
```

时间复杂度

• All-Pairs-Shortest-Paths(G)

- 该算法由Floyd和Warshall于1962年分别提出
- 也被称为Floyd-Warshall算法

Robert Floyd 1936-2001

Stephen Warshall 1935-2006

• 直观思路: 使用Dijkstra算法依次求解所有点

```
输入: 图G
输出: 任意两点最短路径
for i \leftarrow 1 to |V| do
   Paths[i] \leftarrow Dijkstra - PriQueue(\overline{G}, \overline{i}) - -
                                                  -O(|E|\log|V|) - O(|V||E|\log|V|)
end
return Paths
                      回顾
                                     //执行单源最短路径算法
                                     while 优先队列Q非空 do
                                        v \leftarrow Q.ExtractMin()
                                        for u \in G.adj[v] do
                                            if dist[v] + w(v, u) < dist[u] then
                                               dist[u] \leftarrow dist[v] + w(v, u)
                                               pred[u] \leftarrow v
                                               Q.DecreaseKey((u, dist[u]))
                                           end
                                        end
                                        color[v] \leftarrow BLACK
                                                                          时间复杂度O(|E| \cdot \log |V|)
                                     end
```


• 直观思路: 使用Dijkstra算法依次求解所有点

```
输入: 图G 输出: 任意两点最短路径 for i \leftarrow 1 to |V| do |Paths[i] \leftarrow Dijkstra - PriQueue(G,i) end return Paths
```

• Floyd-Warshall算法时间复杂度: $O(|V|^3)$

• 直观思路: 使用Dijkstra算法依次求解所有点

```
输入: 图G
输出: 任意两点最短路径
for i \leftarrow 1 to |V| do
                                            O(|E|\log|V|) - O(|V||E|\log|V|)
   Paths[i] \leftarrow Dijkstra - PriQueue(G, i)
end
return Paths
                                                                     针对稠密图
                                                                     |E| = O(|V|^2)
```

Floyd-Warshall算法时间复杂度: $O(|V|^3)$

 $O(|V|^3 \log |V|)$

• 直观思路: 使用Dijkstra算法依次求解所有点

```
输入: 图G 输出: 任意两点最短路径 for i\leftarrow 1 to |V| do |Paths[i]\leftarrow Dijkstra-PriQueue(G,i) end return Paths 针对稠密图 |E|=O(|V|^2)
```

• Floyd-Warshall算法时间复杂度: $O(|V|^3)$ 优于 $O(|V|^3\log|V|)$

最短路径算法小结

