李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)・课程资料包 @ShowMeAl

视频

课件

筆记

代码

中英双语字幕 一键打句下载 官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

nttps://www.bilibili.com/video/BV1fM4y137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 深度学习

Auto-encoder 生成式对抗网络

学习率 自注意力机

卷积神经网络 GAN

神经网络压缩 强化学习 元学习 Transformer 批次标准化

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分 支系列,覆盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提 供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**包页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复 [添砖加页]

NETWORK COMPRESSION

Hung-yi Lee 李宏毅

Smaller Model

Less parameters

Deploying ML models in resourceconstrained environments

Lower latency, Privacy, etc.

Outline

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation

We will not talk about hard-ware solution today.

Network Pruning

Network can be pruned

 Networks are typically over-parameterized (there is significant redundant weights or neurons)

Network Pruning

- Importance of a weight: absolute values, life long ...
- Importance of a neuron:
 the number of times it wasn't zero on a given data set
- After pruning, the accuracy will drop (hopefully not too much)
- Fine-tuning on training data for recover
- Don't prune too much at once, or the network won't recover.

Network Pruning - Practical Issue

Weight pruning

The network architecture becomes irregular.

Hard to implement, hard to speedup

Network Pruning - Practical Issue

Weight pruning

https://arxiv.org/pdf/1608.03665.pdf

Network Pruning - Practical Issue

Neuron pruning

The network architecture is regular.

Easy to implement, easy to speedup

Why Pruning?

- How about simply train a smaller network?
- It is widely known that smaller network is more difficult to learn successfully.
 - Larger network is easier to optimize?
 https://www.youtube.com/watch?v=_VuWvQU
 MQVk
- Lottery Ticket Hypothesis

https://arxiv.org/abs/1803.03635

Why Pruning?

Lottery Ticket Hypothesis

Why Pruning? **Lottery Ticket Hypothesis**

Random Init weights

Trained weight

Another random Init weights

Why Pruning?

Lottery Ticket Hypothesis

Different pruning strategy

"sign-ificance" of initial weights: Keeping the sign is critical

0.9, 3.1, -9.1, 8.5
$$+\alpha$$
, $+\alpha$, $-\alpha$, $+\alpha$

Pruning weights from a network with random weights

Weight Agnostic Neural Networks https://arxiv.org/abs/1906.04358

Why Pruning?

Rethinking the Value of Network Pruning

Dataset	Model	Unpruned	Pruned Model	Fine-tuned	Scratch-E	Scratch-B
	VGG-16	93.63 (±0.16)	VGG-16-A	93.41 (±0.12)	93.62 (±0.11)	93.78 (±0.15)
	ResNet-56	93.14 (±0.12)	ResNet-56-A	92.97 (±0.17)	92.96 (±0.26)	93.09 (±0.14)
CIFAR-10			ResNet-56-B	92.67 (±0.14)	92.54 (±0.19)	93.05 (±0.18)
	ResNet-110	93.14 (±0.24)	ResNet-110-A	93.14 (±0.16)	93.25 (±0.29)	93.22 (±0.22)
			ResNet-110-B	92.69 (±0.09)	92.89 (±0.43)	93.60 (±0.25)
ImageNet	ResNet-34	73.31	ResNet-34-A	72.56	72.77	73.03
Imagervet			ResNet-34-B	72.29	72.55	72.91

- New random initialization, not original random initialization in "Lottery Ticket Hypothesis"
- Limitation of "Lottery Ticket Hypothesis" (small Ir, unstructured)

Knowledge Distillation
https://arxiv.org/pdf/1503.02531.pdf
Do Deep Nets Really Need to be Deep?
https://arxiv.org/pdf/1312.6184.pdf

Knowledge Distillation
https://arxiv.org/pdf/1503.02531.pdf
Do Deep Nets Really Need to be Deep?
https://arxiv.org/pdf/1312.6184.pdf

Temperature for softmax

$$y_i' = \frac{exp(y_i)}{\sum_j exp(y_j)} \qquad \qquad y_i' = \frac{exp(y_i/T)}{\sum_j exp(y_j/T)}$$

$$T = 100$$

$$y_1 = 100$$
 $y'_1 = 1$
 $y_2 = 10$ $y'_2 \approx 0$
 $y_3 = 1$ $y'_3 \approx 0$

$$y_1/T = 1$$
 $y'_1 = 0.56$
 $y_2/T = 0.1$ $y'_2 = 0.23$
 $y_3/T = 0.01$ $y'_3 = 0.21$

Parameter Quantization

Parameter Quantization

- 1. Using less bits to represent a value
- 2. Weight clustering

weights in a network

0.5	1.3	4.3	-0.1
0.1	-0.2	-1.2	0.3
1.0	3.0	-0.4	0.1
-0.5	-0.1	-3.4	-5.0

Clustering

Parameter Quantization

- 1. Using less bits to represent a value
- 2. Weight clustering

- 3. Represent frequent clusters by less bits, represent rare clusters by more bits
 - e.g. Huffman encoding

Binary Weights

Your weights are always +1 or -1

Binary Connect

network with real

value weights

Binary Connect:

https://arxiv.org/abs/1511.00363

Binary Network:

https://arxiv.org/abs/1602.02830

XNOR-net:

https://arxiv.org/abs/1603.05279

network with binary weights

Update direction (compute on real weights)

Binary Weights

Method	MNIST	CIFAR-10	SVHN
No regularizer	$1.30 \pm 0.04\%$	10.64%	2.44%
BinaryConnect (det.)	$1.29 \pm 0.08\%$	9.90%	2.30%
BinaryConnect (stoch.)	$1.18 \pm 0.04\%$	8.27%	2.15%
50% Dropout	$1.01 \pm 0.04\%$		

Architecture Design

Depthwise Separable Convolution

Review: Standard CNN

Input feature map

2 channels

$$3 \times 3 \times 2 \times 4 = 72$$
 parameters

Depthwise Separable Convolution

1. Depthwise Convolution

- Filter number = Input channel number
- Each filter only considers one channel.
- The filters are $k \times k$ matrices
- There is no interaction between channels.

Depthwise Separable Convolution

1. Depthwise Convolution

$$3 \times 3 \times 2 = 18$$

2. Pointwise Convolution

I: number of input channels

O: number of output channels

 $k \times k$: kernel size

$$\frac{k \times k \times I + I \times O}{k \times k \times I \times O}$$

$$= \frac{1}{O} + \frac{1}{k \times k}$$

$$k \times k \times I$$

$$k \times k \times I + I \times O$$

$$(k \times k \times I) \times O$$

Low rank approximation

To learn more

- SqueezeNet
 - https://arxiv.org/abs/1602.07360
- MobileNet
 - https://arxiv.org/abs/1704.04861
- ShuffleNet
 - https://arxiv.org/abs/1707.01083
- Xception
 - https://arxiv.org/abs/1610.02357
- GhostNet
 - https://arxiv.org/abs/1911.11907

Dynamic Computation

Dynamic Computation

The network adjusts the computation it need.

• Why don't we prepare a set of models?

Dynamic Depth

$$L = e_1 + e_2 + \dots + e_L$$

high battery

Dynamic Width

$$L = e_1 + e_2 + e_3$$

Slimmable Neural Networks https://arxiv.org/abs/1812.08928

Computation based on Sample Difficulty

- SkipNet: Learning Dynamic Routing in Convolutional Networks
- Runtime Neural Pruning
- BlockDrop: Dynamic Inference Paths in Residual Networks

Concluding Remarks

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation

李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)·课程资料包 @ShowMeAl

视频 中英双语字幕 课件

笔记

代码

英双语字幕 一键打包下载

官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1fM4v137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 Auto-encoder 生成式对抗网络 学 深度学习 _{卷积神经网络} GAN 自监督

批次标准化 神经网络压缩 强化学习 元学习 Transformer

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复 [添砖加页]