Content-Aware Multi-Level Guidance for Interactive Instance Segmentation

Soumajit Majumder¹, Angela Yao²

¹University of Bonn and ²National University of Singapore

Motivation

Current interactive instance segmentation ignores the structures in the input image when generating *guidance* maps from user clicks. Our work proposes :

- ► Novel transformation of clicks based on superpixels and object proposals.
- ► Framework which accounts for the scale of an object.

With our guidance maps, a basic FCN outperforms existing approaches with state-of-the-art segmentation networks (DeepLabv3+)!

Guidance Maps

- ▶ $\{S\}$ set of superpixels [5], $\{\mathbf{s}_t = f_{SP}(\mathbf{p}_t)\}$ set of positive and negative superpixels for user-provided positive and negative clicks.
- $ightharpoonup d_c(s_i, s_i)$ Euclidean distance between the centers of superpixels s_i and s_i .
- ► Superpixel guidance map

$$\mathcal{G}_t^{\mathsf{sp}}(\mathbf{p}) = \min_{s \in \{\mathbf{s}_t\}} d_c\left(s, f_{SP}(\mathbf{p})\right), \text{ where } t = \{0, 1\},$$
 (1)

- ▶ $\{\mathcal{L}_p\}$ set of category-independent object proposals [5] for an image with support of pixel location \mathbf{p} .
- **▶** Object-based guidance map

$$\mathcal{G}^{\circ}(\mathbf{p}) = \sum_{\mathbf{p}' \in \{\mathbf{p}_0\}} \sum_{\mathcal{L} \in \{\mathcal{L}_{p'}\}} \mathbf{1}[\mathbf{p} \subset \mathcal{L}]$$
 (2)

- ightharpoonup s estimated scale, f_1 , f_2 tolerance factors.
- Scale-aware guidance map

$$\mathcal{G}^{\text{o-sc}}(\mathbf{p}) = \sum_{\mathbf{p}' \in \{\mathbf{p}_0\}} \sum_{\mathcal{L} \in \{\mathcal{L}_{\mathbf{p}'}\}} \mathbf{1}[\mathbf{p} \subset \mathcal{L}] \cdot \mathbf{1}[f_1 \leq |\mathcal{L}|/s^2 \leq f_2]. \tag{3}$$

- ▶ 621 objects (from PASCAL VOC 2012) smaller than 32×32 .
- \triangleright 2% improvement over the scale agnostic version.

Outline

Outline The generated guidance maps are concatenated (denoted as \oplus) with the 3-channel image and is fed to the segmentation network.

Example of Guidance Maps

Row 1: Original image with object of interest highlighted. **Rows 2-3**: positive and negative euclidean distance map. **Rows 4-5**: positive and negative superpixel based guidance map. **Row 6**: Object proposal based guidance map. **Final row**: Scale-aware guidance map.

Impact of Structure-Based Guidance

	GrabCut	Berkeley	VOC 2012
	@90%	@90%	@ 85%
Euclidean [6]	6.04	8.65	6.88
Superpixel	4.44	6.67	4.23
Superpixel + Object	3.82	6.05	4.02
Superpixel + Object + Iterative[3]	3.58	5.60	3.62

Clicks required to segment instance. Guidance maps leveraging structural information require significantly less clicks than Euclidean distance-based guidance, especially.

Results

Comparison to State-of-the-Art: Average clicks required.

Method	Base	GrabCut	Berkeley	VOC 12	MS-COCO	MS-COCO
	Network	@90%	@90%	@ 85%	seen@85%	unseen@85%
Graph cut [2]	_	11.10	14.33	15.06	18.67	17.80
iFCN [6]	FCN-8s	6.04	8.65	6.88	8.31	7.82
ITIS [3]	${\sf DeepLabv3} +$	5.60	-	3.80	-	_
DEXTR [4]	DeepLabv2	4.00	_	4.00	_	-
VOS-Wild [1]	ResNet-101	3.80	-	5.60	-	-
Ours	FCN-8s	3.58	5.60	3.62	5.40	6.10

First Row: 'acceptable' segmentations without any user guidance. **Second row**: a few clicks removes background and undesired objects. **Third row**: Representative failures include small objects, occlusion, motion blur and objects with fine structures.

Discussion

- ▶ Does encoding user clicks with superpixels and object proposals simplify learning?
- ➤ Too easy? Base network meets the mIoU criteria without any clicks: VOC 2012 (433 of 697), Grabcut (13 of 50), Berkeley (15 of 100).
- ➤ Too hard ? For objects with very fine detailing, e.g. bike wheel spokes, partially occluded chairs our algorithm exhausted the 20 click budget.

References

- [1] Bénard et al., Interactive video object segmentation in the wild, arXiv 2017.
- [2] Boykov et al., Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, ICCV 2001.
- [3] Mahadevan et al., Iteratively trained interactive segmentation, BMVC 2018.
- [4] Maninis et al., Deep extreme cut: From extreme points to object segmentation, CVPR 2018.
- [5] Pont-Tuset et al., Multiscale combinatorial grouping for image segmentation and object proposal generation, TPAMI 2017.
- [6] Xu et al., Deep interactive object selection, CVPR 2016.