Contents

1	Kinetic theory					
	1.1	Vlasov-Poisson equation	2			
	1.2	Schaeffer's global existence proof	4			
		1.2.1 Some observations	4			
		1.2.2 Ugly set	6			
		1.2.3 Bad set	6			
		1.2.4 Polynomial decay	6			
	1.3	Velocity averaging lemmas	8			
2	Rep	presentation formulas	11			
3	Stu	rm-Liouville theory	12			
	3.1	Self-adjointness	12			
	3.2	Regular Sturm-Liouville problem	12			
	3.3	Legendre's equation	13			
	3.4	Bessel's equation	14			
4	Pee	Peetre's theorem				
5	Cha	aracteristic curve	17			
	5.1	Wave equation	18			
	5.2	Burgers' equation	20			
6	We	Veak convergences 2				
7	Exi	stence theorems for ODE	22			
	7.1	Picard-Lindelöf theorem	22			
8	Statements in functional analysis and general topology					
9	Ultrafilter					
10	0 Selected analysis problems					
11	Phy	ysics problem	31			
		Resonance	31			

1 Kinetic theory

1.1 Vlasov-Poisson equation

Consider a Cauchy problem of the Valsov-Poisson system:

$$\begin{cases} f_t + v \cdot \nabla_x f + \gamma E \cdot \nabla_v f = 0, & (t, x, v) \in \mathbb{R}_t^+ \times \mathbb{R}_x^3 \times \mathbb{R}_v^3, \\ E(t, x) = -\nabla_x \Delta_x^{-1} \rho, \\ \rho(t, x) = \int f \, dv, \\ f(0, x, v) = f_0(x, v), \end{cases}$$

where $\gamma = \pm 1$ denotes the charge of particles we are concerned with. For example, $\gamma = -1$ for electrons in plasma and $\gamma = +1$ for galaxies. For the boundaryless problem in which the conservative potential function vanishes at infinity, we have

$$E = -\nabla_x (\frac{1}{4\pi|x|} * \rho) = \frac{x}{4\pi|x|^3} * \rho$$

for $\gamma = -1$. (ρ denotes mass density.)

Lemma 1.1.

$$\|\rho(t)\|_{L_{\infty}^{5/3}} \lesssim 1.$$

Proof.

$$\rho(t,x) = \int f(t,x,v) \, dv \le \int_{|v| < R} f \, dv + \frac{1}{R^2} \int_{|v| \ge R} |v|^2 f \, dv$$
$$\lesssim R^3 + R^{-2} \int |v|^2 f \, dv.$$

Set $R^3 = R^{-2} \int |v|^2 f \, dv$ to get

$$\rho(t,x)^{5/3} \lesssim \int |v|^2 f \, dv.$$

Take d=3, p=2, and $\lambda=2.$ Then, by the Hardy-Littlewood-Sobolev inequality,

$$\frac{1}{p} + 1 = \frac{1}{q} + \frac{\lambda}{d}$$

implies q = 6/5 and we can bound the L^2 -norm of the Riesz potential $||E(t)||_2$ by interpolation of $||\rho(t)||_{6/5}$ and $||\rho(t)||_1$:

$$||E(t)||_{L_x^2} \simeq ||\frac{1}{|x|^2} *_x \rho(t,x)||_{L_x^2} \lesssim ||\rho(t)||_{6/5} \leq ||\rho||_1^{7/12} ||\rho||_{5/3}^{5/12}.$$

Thus

$$||E(t)||_2 \lesssim ||\rho(t)||_{5/3}^{5/12} \lesssim (\int \int |v|^2 f \, dv \, dx)^{1/4}.$$

It means $(\iint |v|^2 f \, dv \, dx)^{1/2}$ bounds $(\iint |v|^2 f \, dv \, dx)$, hence the total kinetic energy of the system remains bounded in any time even if $\gamma = +1$. As a corollary, $\|\rho\|_{5/3}$ is also bounded.

Lemma 1.2. For $1 \le q < \frac{N}{N-2} = 3 < p \le \infty$,

$$||E(t,x)||_{L^{\infty}_{x}} \lesssim ||\rho(t,x)||_{L^{p}_{x}}^{\frac{2}{N}-1+\frac{1}{q}} ||\rho(t,x)||_{L^{q}_{x}}^{\frac{1-\frac{1}{p}-\frac{2}{N}}{\frac{1}{q}-\frac{1}{p}}}.$$

Proof. Fix time t. For 2p < N < 2q,

$$\begin{split} 4\pi |E(t,x)| &= |\frac{1}{|x|^2} *_x \rho(t,x)| \\ &\leq \int_{|x-y| < R} \frac{\rho(t,y)}{|x-y|^2} \, dy + \int_{|x-y| \ge R} \frac{\rho(t,y)}{|x-y|^2} \, dy \\ &\leq \|\rho\|_{p'} (\int_{|y| < R} \frac{dy}{|y|^{2p}})^{1/p} + \|\rho\|_{q'} (\int_{|y| \ge R} \frac{dy}{|y|^{2q}})^{1/q} \\ &\simeq \|\rho\|_{p'} (\int_0^R r^{N-1-2p} \, dr)^{1/p} + \|\rho\|_{q'} (\int_R^\infty r^{N-1-2q} \, dr)^{1/q} \\ &\simeq \|\rho\|_{p'} R^{\frac{N}{p}-2} + \|\rho\|_{q'} R^{\frac{N}{q}-2}. \end{split}$$

By choosing R such that $\|\rho\|_{p'}R^{\frac{N}{p}-2} = \|\rho\|_{q'}R^{\frac{N}{q}-2}$, we get

$$||E(t,x)||_{L_x^{\infty}} \lesssim ||\rho(t,x)||_{L_r^{p'}}^{\frac{2}{N} - \frac{1}{q}} ||\rho(t,x)||_{L_x^{q'}}^{\frac{\frac{1}{p} - \frac{2}{N}}{\frac{1}{p} - \frac{1}{q}}},$$

hence the inequality by interchaning p and q with their conjugates.

1.2 Schaeffer's global existence proof

Theorem (Schaeffer, 1991). Let $f_0 \in C^1_{c,x,v}$ and $f_0 \ge 0$. Then, the Cauchy problem for the VP system has a unique C^1 global solution.

Definition 1.1. For a local solution f,

$$Q(t) := 1 + \sup\{|v| : f(s, x, v) \neq 0 \text{ for some } s \in [0, t], x \in \mathbb{R}^3_x\}.$$

Decompose $[t - \Delta, t] \times \mathbb{R}^3_x \times \mathbb{R}^3_v$ as

$$\begin{split} &U = \left\{ \left. (s,x,v) : \; |v - \widehat{V}(t)| \geq P, \quad |y - \widehat{X}(s)| \geq r \right. \right\}, \\ &B = \left. \left\{ \left. (s,x,v) : \; |v - \widehat{V}(t)| \geq P, \quad |v| \geq P \right. \right\} \setminus U, \\ &G = \left. \left\{ \left. (s,x,v) : \; |v - \widehat{V}(t)| < P \quad \text{or} \quad |v| < P \right. \right\}. \end{split}$$

(We can let $U \mapsto U \cap \{|v| \geq P\}$ to make the decomposition disjoint.) Later we choose

$$P = Q^{4/11}, \quad r = R \max\{|v|^{-3}, |v - \hat{V}(t)|^{-3}\}, \quad R = Q^{16/33} \log^{1/2} Q.$$

Also, later we choose $\Delta \cdot \sup_{s \le t} ||E(s)||_{\infty} < \frac{P}{4}$.

1.2.1 Some observations

Our goal is to obtain a priori estimate like

$$||E(t)||_{\infty} \lesssim Q(t)^a$$
 for some $a < 1$.

Since the force field E measures the maximal rate of changes in velocity, the estimate can be read very roughly as

$$Q'(t) \lesssim Q(t)^a$$
,

which lead its polynomial growth.

So we need to bound the Riesz potential E. The following observation suggests a lower bound of relative velocity.

Claim. Fix t, x, v. If $|v - \widehat{V}(t)| \ge P$, then

$$|y - \widehat{X}(s)| \ge \frac{1}{4}|v - \widehat{V}(t)||s - s_0|$$

for some $s_0 \in [t - \Delta, t]$, where $\Delta \cdot \sup_{s \le t} ||E(s)||_{\infty} < \frac{P}{4}$.

Proof. Since $\Delta ||E(s)||_{\infty} < \frac{P}{4}$, we have

$$|v - w| < \frac{P}{4}$$
 and $|\widehat{V}(t) - \widehat{V}(s)| < \frac{P}{4}$.

The condition $|v - \hat{V}(t)| \ge P$ implies

$$\frac{1}{2}|v - \widehat{V}(t)| \le |v - \widehat{V}(t)| - \frac{P}{4} - \frac{P}{4} < |w - \widehat{V}(s)|.$$

Let $Z(s) := y - \widehat{X}(s)$. Then,

$$Z'(s) = w - \widehat{V}(s),$$

$$Z''(s) = \gamma [E(s, y, w) - E(s, \widehat{X}(s), \widehat{V}(s))].$$

Let $s_0 \in [t - \Delta, t]$ minimize $s \mapsto |Z(s)|$ and expand Z as

$$Z(s) = Z(s_0) + Z'(s_0)(s - s_0) + \frac{Z''(\sigma)}{2}(s - s_0)^2$$

for some σ between s and s_0 . Then,

$$|Z(s_0) + Z'(s_0)(s - s_0)| \ge |Z'(s_0)(s - s_0)| \ge \frac{1}{2}|v - \widehat{V}(t)||s - s_0||$$

and

$$\left|\frac{Z''(\sigma)}{2}(s-s_0)^2\right| \le \|E(t)\|_{\infty}(s-s_0)^2 \le \|E(t)\|_{\infty}\Delta|s-s_0|$$

$$\le \frac{P}{A}|s-s_0| \le \frac{1}{A}|v-\widehat{V}(t)||s-s_0|$$

proves

$$|y - \hat{X}(s)| = |Z(s)| \ge \frac{1}{4}|v - \hat{V}(t)||s - s_0|.$$

We introduce time averaging to use the above lower bound.

Claim. Fix t, x, v. If $|v - \widehat{V}(t)| \ge P$, then

$$\int_{t-\Delta}^{t} \frac{1}{|y-\widehat{X}(s)|^2} \chi_A(s) \, ds \lesssim \frac{r^{-1}}{|v-\widehat{V}(t)|},$$

where $A = \{s : |y - \widehat{X}(s)| \ge r\}.$

Proof. Since $|y - \widehat{X}(s)| \ge \frac{1}{4}|v - \widehat{V}(t)||s - s_0|$,

$$\int_{t-\Delta}^{t} \frac{1}{|y-\widehat{X}(s)|^{2}} \chi_{A}(s) \, ds \leq 16 \int_{t-\Delta}^{t} \frac{1}{|v-\widehat{V}(t)|^{2}|s-s_{0}|^{2}} \chi_{A}(s) \, ds$$

$$\leq 32 \int_{r}^{\infty} \frac{1}{|v-\widehat{V}(t)|^{3}|s-s_{0}|^{2}} \, d(|v-\widehat{V}(t)||s-s_{0}|)$$

$$= 32 \frac{r^{-1}}{|v-\widehat{V}(t)|}. \qquad \Box$$

1.2.2 Ugly set

Therefore, if we let $r^{-1} \simeq \min\{|v|^3, |v-\widehat{V}(t)|^3\}$, then

$$\int_{t-\Delta}^{t} \frac{1}{|y-\widehat{X}(s)|^2} \chi_A(s) \, ds \lesssim |v|^2$$

so that we have

$$\iiint_{U} \frac{f(s, y, w)}{|y - \widehat{X}(s)|^{2}} dw dy ds \lesssim R^{-1} \int |v|^{2} f(t, x, v) dv dx \lesssim R^{-1}$$

when

$$U \subset \{ (s, x, v) : |v - \widehat{V}(t)| \ge P, \quad |y - \widehat{X}(s)| \ge R \max\{|v|^{-3}, |v - \widehat{V}(t)|^{-3} \} \}.$$

1.2.3 Bad set

Consider U^c . We need to control the union of two regions

$$|y - \hat{X}(s)| < R|v|^{-3}$$
 and $|y - \hat{X}(s)| < R|v - \hat{V}(t)|^{-3}$.

Without any conditions, the integration of fundamental solution with respect to y gives

$$\int_{|y-\widehat{X}(s)| < r} \frac{1}{|y-\widehat{X}(s)|^2} \, dy \simeq r.$$

Claim. If $|v| \ge P$ and $|v - \widehat{V}(t)| \ge P$, then

$$\int_{U^c} \frac{1}{|y - \widehat{X}(s)|^2} \, dy \lesssim \max\{|w|^{-3}, |w - \widehat{V}(s)|^{-3}\}$$

for $s \in [t - \Delta, t]$.

Proof. It follows from

$$|w| \simeq |v|, \quad |w - \widehat{V}(s)| \simeq |v - \widehat{V}(t)|$$

for
$$|v| \ge P$$
 and $|v - \widehat{V}(t)| \ge P$.

1.2.4 Polynomial decay

Lemma 1.3. Along the time of existence we have

$$||E(t)||_{L_x^{\infty}} \lesssim Q(t)^{4/3}.$$

Proof. Note that we have

$$||E||_{\infty} \lesssim ||\rho||_{\infty}^{4/9} ||\rho||_{5/3}^{5/9}.$$

Since the velocity support of f is bounded by finite Q(t),

$$\rho(t,x) = \int_{|v| < Q(t)} f(t,x,v) \, dv \lesssim Q(t)^3 ||f_0(x)||_{L_v^{\infty}} \lesssim Q(t)^3,$$

so

$$||E(t)||_{L_x^{\infty}} \lesssim ||\rho(t)||_{L_x^{\infty}}^{4/9} \lesssim Q(t)^{4/3}.$$

1.3 Velocity averaging lemmas

The velocity averaging lemma is used to get regularity of averaged quantity when boundary condition is not given.

Theorem 1.4 (Velocity averaging). Let L be a free transport operator $\partial_t + v \cdot \nabla_x$ on $\mathbb{R}_t \times \mathbb{R}_x^n \times \mathbb{R}_v^n$. Then,

$$\| \int u\varphi \, dv \|_{H^{1/2}_{t,x}} \lesssim_{\varphi} \|u\|_{L^{2}_{t,x,v}}^{1/2} \|Lu\|_{L^{2}_{t,x,v}}^{1/2}$$

for $\varphi \in C_c^{\infty}(\mathbb{R}_v^n)$,

Proof. Let $m(t,x) = \int u\varphi \, dv$. By Fourier transform with respect to t and x, we have

$$\widehat{u}(\tau, \xi, v) = \frac{1}{i} \frac{\widehat{Lu}(\tau, \xi, v)}{\tau + v \cdot \xi}$$

and

$$\widehat{m}(\tau,\xi) = \int \widehat{u}(\tau,\xi,v)\varphi(v) \, dv.$$

Fixing τ, ξ , decompose the integral and use Hölder's inequality to get

$$\begin{aligned} |\widehat{m}(\tau,\xi)| &\leq \int_{|\tau+v\cdot\xi| < \alpha} |\widehat{u}\varphi| \, dv + \int_{|\tau+v\cdot\xi| \ge \alpha} \frac{|\widehat{Lu}\varphi|}{|\tau+v\cdot\xi|} \, dv \\ &\leq \|\widehat{u}\|_{L^{2}_{v}}^{1/2} \, \left(\int_{|\tau+v\cdot\xi| < \alpha} |\varphi|^{2} \, dv \right)^{1/2} + \|\widehat{Lu}\|_{L^{2}_{v}}^{1/2} \, \left(\int_{|\tau+v\cdot\xi| \ge \alpha} \frac{|\varphi|^{2}}{|\tau+v\cdot\xi|^{2}} \, dv \right)^{1/2}, \end{aligned}$$

where $\alpha > 0$ is an arbitrary constant that will be determined later. Let

$$I_s(\tau,\xi,\alpha) := \int_{|\tau+v\cdot\xi| < \alpha} |\varphi|^2 \, dv, \qquad I_n(\tau,\xi,\alpha) := \int_{|\tau+v\cdot\xi| > \alpha} \frac{|\varphi|^2}{|\tau+v\cdot\xi|} \, dv.$$

We are going to estimate the integrals as

$$I_s \lesssim \frac{\alpha}{\sqrt{\tau^2 + |\xi|^2}}, \qquad I_n \lesssim \frac{1}{\alpha \sqrt{\tau^2 + |\xi|^2}}.$$

Define coordinates (v_1, v_2) on \mathbb{R}_v as follows:

$$v_1 := \frac{\tau + v \cdot \xi}{|\xi|} \in \mathbb{R} , \qquad v_2 := v - \frac{v \cdot \xi}{|\xi|^2} \xi \in \ker(\xi^T) \cong \mathbb{R}^{n-1}.$$

Note that

$$|v|^2 = (v_1 - \frac{\tau}{|\xi|})^2 + |v_2|^2$$
 and $\int dv = \iint dv_2 dv_1$.

For the first integral, suppose that φ is supported on a ball $|v| \leq R$. If $\frac{|\tau| - \alpha}{|\xi|} > R$, then the region of integration vanishes so that $I_s = 0$. If $|\tau| \leq \alpha + R|\xi|$, then

$$\begin{split} I_s &\lesssim \int_{|v_1| < \frac{\alpha}{|\xi|}} \int_{|v_2|^2 \leq R^2 - (v_1 - \frac{\tau}{|\xi|})^2} dv_2 dv_1 \\ &\lesssim \int_{|v_1| < \frac{\alpha}{|\xi|}, \ |v_1| \leq R} \int_{|v_2| \leq R} dv_2 dv_1 \\ &\lesssim \min\{\frac{2\alpha}{|\xi|}, R\} \cdot R^{n-1} \\ &\simeq \frac{1}{\sqrt{1 + (\frac{|\xi|}{\alpha})^2}} \\ &\lesssim \frac{\alpha}{\sqrt{\tau^2 + |\xi|^2}}. \end{split}$$

For the second integral, suppose that φ is supported on |v| < R so that $|v_1 - \frac{\tau}{|\xi|}|, |v_2| < R$. Then,

$$\begin{split} I_n &\lesssim \int_{|v_1| \geq \frac{\alpha}{|\xi|}, \ |v_1 - \frac{\tau}{|\xi|}| < R} \int_{|v_2| < R} \frac{1}{v_1^2 |\xi|^2} \, dv_2 \, dv_1 \\ &\simeq \int_{\max\{\frac{\alpha}{|\xi|}, \frac{|\tau|}{|\xi|} - R\} \leq v_1 < \frac{|\tau|}{|\xi|} + R} \frac{1}{v_1^2 |\xi|^2} \, dv_1 \\ &\simeq \frac{1}{|\xi|^2} \Big(\frac{1}{\max\{\frac{\alpha}{|\xi|}, \frac{|\tau|}{|\xi|} - R\}} - \frac{1}{\frac{|\tau|}{|\xi|} + R} \Big). \end{split}$$

If $\frac{|\tau|}{|\xi|} - R > \frac{\alpha}{|\xi|}$, then

$$I_n \lesssim \frac{2R}{\tau^2 - (R|\xi|)^2} < \frac{2R}{\alpha(|\tau| + R|\xi|)} \simeq \frac{1}{\alpha\sqrt{\tau^2 + |\xi|^2}}$$

If $|\tau| \le \alpha + R|\xi|$, then

$$I_n \lesssim \frac{1}{|\xi|} \frac{(|\tau| + R|\xi|) - \alpha}{\alpha(|\tau| + R|\xi|)} \leq \frac{2R}{\alpha(|\tau| + R|\xi|)} \simeq \frac{1}{\alpha\sqrt{\tau^2 + |\xi|^2}}.$$

To sum up, we have

$$|\widehat{m}(\tau,\xi)| \lesssim \frac{1}{(\tau^2 + |\xi|^2)^{1/4}} (\sqrt{\alpha} \cdot \|\widehat{u}\|_{L_v^2}^{1/2} + \frac{1}{\sqrt{\alpha}} \cdot \|\widehat{Lu}\|_{L_v^2}^{1/2}).$$

Letting $\alpha = \sqrt{\|\widehat{Lu}\|_{L^2_v}/\|\widehat{u}\|_{L^2_v}}$ and squaring

$$(\tau^2 + |\xi|^2)^{1/2} |\widehat{m}(\tau, \xi)|^2 \lesssim \|\widehat{u}\|_{L_v^2}^{1/2} \|\widehat{Lu}\|_{L_v^2}^{1/2}.$$

Therefore, the integration on $\mathbb{R}_{\tau} \times \mathbb{R}^n_{\xi}$ and Plancheral's theorem gives

$$||m||_{H_{t,x}^{1/2}} \lesssim_{\varphi} ||u||_{L_{t,x,v}^2}^{1/2} ||Lu||_{L_{t,x,v}^2}^{1/2}.$$

Corollary 1.5. Let \mathcal{F} be a family of functions on $\mathbb{R}_t \times \mathbb{R}_x^n \times \mathbb{R}_v^n$. If \mathcal{F} and $L\mathcal{F}$ are bounded in $L^2_{t,x,v}$, then $\int \mathcal{F}\varphi \, dv$ is bounded in $H^{1/2}_{t,x}$.

Theorem 1.6. Let \mathcal{F} be a family of functions on $I_t \times \mathbb{R}^n_x \times \mathbb{R}^n_v$. If \mathcal{F} is weakly relatively compact and $L\mathcal{F}$ is bounded in $L^1_{t,x,v}$, then $\int \mathcal{F}\varphi \, dv$ is relatively compact in $L^1_{t,x}$.

2 Representation formulas

Theorem 2.1. Define $\Phi \in L^1_{loc}(\mathbb{R}^d)$ by

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log|x| &, d = 2, \\ \frac{\Gamma(\frac{d}{2} + 1)}{d(d - 2)\pi^{d/2}} \frac{1}{|x|^{d-2}} &, d \ge 3. \end{cases}$$

1. $u = \Phi$ solves

$$-\Delta u = \delta.$$

2. $u = \Phi * f \ solves$

$$-\Delta u = f.$$

Proof.

1. Fix $\varphi \in C_c^{\infty}$. We want to show

$$-\int \Phi \Delta \varphi = \varphi(0).$$

Divide and apply Stokes' theorem twice to get

$$\begin{split} \int \Phi \Delta \varphi &= \int_{|x| < \varepsilon} \Phi \Delta \varphi + \int_{|x| \ge \varepsilon} \Phi \Delta \varphi \\ &= \int_{|x| < \varepsilon} \Phi \Delta \varphi - \int_{|x| \ge \varepsilon} \nabla \Phi \cdot \nabla \varphi + \int_{|x| = \varepsilon} \Phi \nabla \varphi \cdot d\sigma. \\ &= \int_{|x| < \varepsilon} \Phi \Delta \varphi + \int_{|x| \ge \varepsilon} \varphi \Delta \Phi - \int_{|x| = \varepsilon} \varphi \nabla \Phi \cdot d\sigma + \int_{|x| = \varepsilon} \Phi \nabla \varphi \cdot d\sigma \\ &= \int_{|x| < \varepsilon} \Phi \Delta \varphi - \int_{|x| = \varepsilon} \varphi \nabla \Phi \cdot d\sigma + \int_{|x| = \varepsilon} \Phi \nabla \varphi \cdot d\sigma. \end{split}$$

The first integral is bounded as

$$|\int_{|x|<\varepsilon} \Phi \Delta \varphi| \lesssim_{\varphi} |\int_{|x|<\varepsilon} \Phi| \lesssim \begin{cases} \varepsilon^2 |\log \varepsilon| &, d=2, \\ \varepsilon^2 &, d \geq 3. \end{cases}$$

The third integral is bounded as

$$|\int_{|x|=\varepsilon} \Phi \nabla \varphi \cdot d\sigma| \lesssim_{\varphi} |\int_{|x|=\varepsilon} \Phi \, d\sigma| \lesssim \begin{cases} \varepsilon |\log \varepsilon| &, \ d=2, \\ \varepsilon &, \ d \geq 3. \end{cases}$$

For the second integral, since

$$\nabla \Phi = -\frac{1}{d \alpha(d)} \frac{x}{|x|^d},$$

we have

3 Sturm-Liouville theory

3.1 Self-adjointness

Let I = [a, b] and

$$L = -\frac{1}{w(x)} \left[\frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x) \right],$$

$$0 \le p(x) \in C^{\infty}(I), \quad q(x) \in C^{\infty}(I), \quad 0 < w(x) \in C^{\infty}(I).$$

We expect L to be self-adjoint. In this regard, our interest is ellimination of the difference term

$$\langle f, Lq \rangle - \langle Lf, q \rangle = p(f'q - fq')|_a^b$$

Name	Operator	Domain	B.C.
Helmholtz	$L = -\frac{d^2}{dx^2}$	[a,b]	Periodic
Helmholtz	$L = -\frac{d^2}{dx^2}$	[a,b]	Separated Robin
Legendre	$L = -\frac{d}{dx}\left((1-x^2)\frac{d}{dx}\right)$	[-1,1]	None
A. Legendre	$L = -\left[\frac{d}{dx}\left((1-x^2)\frac{d}{dx}\right) - \frac{m^2}{1-x^2}\right]$	[-1,1]	Dirichlet
Hermite	$L = -e^{x^2} \left[\frac{d}{dx} \left(e^{-x^2} \frac{d}{dx} \right) \right]$	$\left \ (-\infty,\infty) \right $	Polynomial growth
Laguerre			

3.2 Regular Sturm-Liouville problem

We mean regular Sturm-Liouville problems by the case that p does not vanish on the boundary of I that we should cancel $f'g - fg'|_a^b$. View the Sturm-Liouville operator L as a non-densely defined operator on the space $C^{\infty}(I)$ with inner product $\langle f,g\rangle = \int_I fgw$ with domain

$$V = \{ u \in C^{\infty}(I) : \alpha_0 u(a) + \alpha_1 u'(a) = 0, \ \beta_0 u(b) + \beta_1 u'(b) = 0 \},\$$

the subspace for the *separated* Robin boundary condition.

Proposition 3.1. The operator $L: V \to C^{\infty}(I)$ is self-adjoint when $C^{\infty}(I)$ has the inner product $\langle f, g \rangle = \int_{I} fgw$.

We are interested in the eigenvalue problem of $L:V\to C^\infty(I)$ on V. Fortunately, if we choose a constant $z\in\mathbb{C}\setminus\mathbb{R}$, then $(L-z)^{-1}:C^\infty(I)\to V$ is well-defined.

Proposition 3.2. If z is not an eigenvalue of L, then $L-z:V\to C^\infty(I)$ is bijective.

Proof. The injectivity follows from the definition of eigenvalues. We may assume that L is injective by translation $q \mapsto q - \lambda$.

Suppose $f \in C^{\infty}(I)$. The surjectivity is equivalent to the existence of a second order inhomogeneous boundary problem:

$$-pu'' - p'u' - qu = fw,$$

 $\alpha_0 u(a) + \alpha_1 u'(a) = 0, \quad \beta_0 u(b) + \beta_1 u'(b) = 0.$

Let u_a , u_b be the unique solutions of the corresponding homogeneous equation with initial conditions

$$\alpha_0 u(a) + \alpha_1 u'(a) = 0, \quad \beta_0 u(b) + \beta_1 u'(b) = 0.$$

Then we can define $L^{-1}: C^{\infty}([0,1]) \to D(L)$ by

$$L^{-1}f(x) := u_a(x) \int_x^1 \frac{u_b}{W[u_a, u_b]} \frac{f}{(-p)} w + u_b(x) \int_0^x \frac{u_a}{W[u_a, u_b]} \frac{f}{(-p)} w,$$

where $W[u_a, u_b] := u_a u_b' - u_b u_a'$ denotes the Wronskian. This formula is derived from variation of parameters: we can compute c_a and c_b from the fact that

$$\begin{pmatrix} 0 \\ \frac{f}{(-p)}w \end{pmatrix} = \begin{pmatrix} u_a & u_b \\ u'_a & u'_b \end{pmatrix} \begin{pmatrix} c'_a \\ c'_b \end{pmatrix} \implies L(c_a u_a + c_b u_b) = f.$$

Then, we can easily check that

$$L^{-1}Lu = u$$

for $u \in D(L)$, which implies L is surjective.

3.3 Legendre's equation

The Legendre equation is

$$(1-x^2)u'' - 2xu' + l(l+1)u = 0$$
, on $[-1,1]$.

The Sturm-Liouville operator is

$$L = -\frac{d}{dx}\left((1-x^2)\frac{d}{dx}\right).$$

Since $p(\pm 1) = 0$, the operator $L: C^{\infty}([-1,1]) \to C^{\infty}([-1,1])$ is self-adjoint on the whole domain.

Its eigenvalues and corresponding eigenspaces are

	Eigenvalue	Eigenbasis
l	l(l+1)	
0	0	$P_0(x) = 1$
1	2	$P_1(x) = x$
2	6	$P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$
3	12	$P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$
4	20	$P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}$

If we admit

$$Q_0(x) = \frac{1}{2} \log \frac{1+x}{1-x}, \quad Q_1(x) = 1 - \frac{1}{2} x \log \frac{1+x}{1-x}, \quad \dots \in L^2(-1,1) \setminus C^{\infty}([-1,1])$$

as eigenvectors of L, then the self-adjointness fails on the extended domain. For example,

$$\langle Q_0, Lf \rangle - \langle LQ_0, f \rangle = p(x) \left(Q_0'(x) f(x) - Q_0(x) f'(x) \right) \Big|_{-1}^1$$
$$= f(1) - f(-1)$$

does not vanish in general even for $f \in C^{\infty}([-1,1])$.

3.4 Bessel's equation

The Bessel equation is

$$x^2u'' + xu' + (k^2x^2 - \nu^2)u = 0$$
, on $(0, \infty)$.

The Sturm-Liouville operator is

$$-\frac{1}{x} \left[\frac{d}{dx} \left(x \frac{d}{dx} \right) - \nu^2 \frac{1}{x} \right].$$

4 Peetre's theorem

Lemma 4.1. Suppose a linear operator $L: C_c^{\infty}(M) \to C_c^{\infty}(M)$ satisfies

$$\operatorname{supp}(Lu) \subset \operatorname{supp}(u) \quad for \quad u \in C_c^{\infty}(X).$$

For each point $x \in M$, there is a bounded neighborhood U together with a nonnegative integer m such that

$$||Lu||_{C^0} \lesssim ||u||_{C^m}$$

for $u \in C_c^{\infty}(U \setminus \{x\})$.

Proof. Suppose not. There is a point x at which the inequality fails; for every bounded neighborhood U and for every nonnegative m, we can find $u \in C_c^{\infty}(U \setminus \{x\})$ such that

$$||Lu||_{C^0} \ge C||u||_{C^m},$$

for arbitrarily large C. We want to construct a function $u \in C_c^{\infty}(U)$ such that Lu has a singularity at x.

(Induction step) Take a bounded neighborhood U_m of x such that

$$U_m \subset U \setminus \bigcup_{i=0}^{m-1} \overline{U}_i.$$

There is $u_m \in C_c^{\infty}(U_m \setminus \{x\})$ such that

$$||Lu_m||_{C^0} > 4^m ||u_m||_{C^m}$$
.

Note that

$$supp(u_i) \cap supp(u_i) = \emptyset$$
 for $i \neq j$.

Define

$$u := \sum_{i > 0} 2^{-i} \frac{u_i}{\|u_i\|_{C^i}}.$$

We have that $u \in C_c^{\infty}(U)$ since the series converges in the inductive topology of the LF space $C_c^{\infty}(U)$: it converges absolutely with respect to the seminorms $\|\cdot\|_{C^m}$ for all m:

$$\sum_{i \ge 0} \|2^{-i} \frac{u_i}{\|u_i\|_{C^i}}\|_{C^m} = \sum_{0 \le i < m} 2^{-i} \frac{\|u_i\|_{C^m}}{\|u_i\|_{C^i}} + \sum_{i \ge m} 2^{-i} \frac{\|u_i\|_{C^m}}{\|u_i\|_{C^i}}$$

$$\le \sum_{0 \le i < m} 2^{-i} \frac{\|u_i\|_{C^m}}{\|u_i\|_{C^i}} + \sum_{i \ge m} 2^{-i}$$

$$< \infty.$$

Also, since the supports of each term are disjoint and L is locally defined, we have

$$Lu = \sum_{i \ge 0} 2^{-i} \frac{Lu_i}{\|u_i\|_{C^i}}.$$

Thus,

$$||Lu||_{C^0} = \sup_{i \ge 0} 2^{-i} \frac{||Lu_i||_{C^0}}{||u_i||_{C^i}} > \sup_{i \ge 0} 2^{-i} \cdot 4^i = \infty,$$

which leads a contradiction.

5 Characteristic curve

Algorithm:

- (1) Establish the associated vector field by substituting $u \mapsto y$.
- (2) Find the integral curve.
- (3) Eliminate the auxiliary variables to get an algebraic equation.
- (4) Verify the computed solution is in fact the real solution.

Proposition 5.1. Suppose that there exists a smooth solution $u: \Omega \to \mathbb{R}_y$ of an initial value problem

$$\begin{cases} u_t + u^2 u_x = 0, & (t, x) \in \Omega \subset \mathbb{R}_{t \ge 0} \times \mathbb{R}_x, \\ u(0, x) = x, & at \ x \in \mathbb{R}, \end{cases}$$

and let M be the embedded surface defined by y = u(t, x).

Let $\gamma: I \to \Omega \times \mathbb{R}_y$ be an integral curve of the vector field

$$\frac{\partial}{\partial t} + y^2 \frac{\partial}{\partial x}$$

such that $\gamma(0) \in M$. Then, $\gamma(\theta) \in M$ for all $\theta \in I$.

Proof. We may assume γ is maximal. Define $\tilde{\gamma}: \tilde{I} \to M$ as the maximal integral curve of the vector field

$$\tilde{X} = \frac{\partial}{\partial t} + u^2 \frac{\partial}{\partial x} \in \Gamma(TM)$$

such that $\tilde{\gamma}(0) = \gamma(0)$. Since X and X coincide on M, the curve $\tilde{\gamma}$ is also an integral curve of X with $\tilde{\gamma}(0) = \gamma(0)$. By the uniqueness of the integral curve, we get $\tilde{I} \subset I$ and $\gamma(\theta) = \tilde{\gamma}(\theta)$ for all $\theta \in \tilde{I}$.

Since M is closed in E, the open interval $\tilde{I} = \gamma^{-1}(M)$ is closed in I, hence $\tilde{I} = I$ by the connectedness of I.

Definition 5.1. The projection of the integral curve γ onto Ω is called a *characteristic*.

This proposition implies that we might be able to describe the points on the surface M explicitly by finding the integral curves of the vector field X. Once we find a necessary condition of the form of algebraic equation, we can demostrate the computed hypothetical solution by explicitly checking if it satisfies the original PDE.

Since X does not depend on u, we can solve the ODE: let $\gamma(\theta) = (t(\theta), x(\theta), y(\theta))$ be the integral curve of X such that $\gamma(0) = (0, \xi, \xi)$. Then, the system of ODEs

$$\frac{dt}{d\theta} = 1, t(0) = 0,$$

$$\frac{dx}{d\theta} = y(\theta)^2, x(0) = \xi,$$

$$\frac{dy}{d\theta} = 0, y(0) = \xi$$

is solved as

$$t(\theta) = \theta,$$
 $y(\theta) = \xi,$ $x(\theta) = \xi^2 \theta + \xi.$

Therefore,

$$u(t,x) = \frac{-1 + \sqrt{1 + 4tx}}{2t}.$$

From this formula, we would be able to determine the suitable domain Ω as

$$\Omega = \{ (t, x) : tx > -\frac{1}{4} \}.$$

5.1 Wave equation

$$u_{tt} - c^2 u_{xx} = 0$$
 for $t, x > 0$,
 $u(0, x) = g(x)$, $u(0, x) = h(x)$, $u_x(t, 0) = \alpha(t)$.

Define $v := u_t - cu_x$. Then we have

$$\begin{cases} v_t + cv_x = 0 & t, x > 0, \\ v(0, x) = h(x) - cg'(x). \end{cases}$$

By method of characteristic,

$$v(t,x) = h(x - ct) - cg'(x - ct).$$

Then, we can solve two system

$$\begin{cases} u_t - cu_x = v, & x > ct > 0, \\ u(0, x) = g(x), & \end{cases}$$

and

$$\begin{cases} u_t - cu_x = v, & ct > x > 0, \\ u_x(t, 0) = \alpha(t), & \end{cases}$$

For the first system, introducing parameter $\xi > 0$,

$$\begin{aligned} \frac{dt}{d\theta} &= 1, & \frac{dx}{d\theta} &= -c, & \frac{dy}{d\theta} &= -v(t, x), \\ t(0) &= 0, & x(0) &= \xi, & y(0) &= g(\xi) \end{aligned}$$

is solved as

$$t(\theta) = \theta,$$
 $x(\theta) = -c\theta + \xi,$ $y(\theta) = g(\xi) + \int_0^{\theta} -v(\theta', \xi - c\theta') d\theta',$

hence for x > ct > 0,

$$u(t,x) = g(\xi) - \int_0^\theta v(s,\xi - cs) \, ds$$

$$= g(x + ct)$$

$$= \frac{3g(x + ct) - g(x - ct)}{2} - \int_0^t h(x + c(t - 2s)) \, ds$$

5.2 Burgers' equation

Consider the inviscid Burgers' equation

$$u_t + uu_x = 0.$$

- (1) Suppose $u(0,x) = \tanh(x)$. For what values of t > 0 does the solution of the quasi-linear PDE remain smooth and single valued? Given an approximation sketch of the characteristics in the tx-plane.
- (2) Suppose $u(0,x) = -\tanh(x)$. For what values of t > 0 does the solution of the quasilinear PDE remain smooth and single valued? Given an approximation sketch of the characteristics in the tx-plane.
- (3) Suppose

$$u(0,x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 1, \\ 1, & 1 \le x \end{cases}$$

Sketch the characteristics. Solve the Cauchy problem. Hint: solve the problem in each region separately and "paste" the solution together.

6 Weak convergences

7 Existence theorems for ODE

7.1 Picard-Lindelöf theorem

Let $I = [0,T] \subset \mathbb{R}_t$ and $\Omega = \overline{B_r(a)} \subset \mathbb{R}_x^d$. Consider the following initial value problem:

$$x' = f(t, x), \qquad x(0) = a.$$

Theorem 7.1 (Global existence, $\Omega = \mathbb{R}^d$). If f is $C_t \operatorname{Lip}_x$ on $I \times \mathbb{R}^d$, the equation has a unique C^1 global solution on I.

Proof. Step 1: Construction of an approximation. Define a sequence of functions $\{x_n\}$ as

$$x'_{n+1} = f(t, x_n(t)), \quad x_{n+1}(0) = a; \quad x_0 \equiv a.$$

The explicit formula is given by

$$x_{n+1}(t) = a + \int_0^t f(s, x_n(s)) dx.$$

The sequence belongs to C(I).

Step 2: Convergence of the approximation. Let

$$\sup_{t \in I} |f(t,x) - f(t,y)| \le K|x - y| \quad \text{and} \quad \sup_{t \in I} |f(t,a)| \le M.$$

First we have

$$|x_1(t) - x_0(t)| \le \int_0^t |f(s, a)| ds \le Mt.$$

By induction, we have

$$|x_{n+1}(t) - x_n(t)| \le \int_0^t |f(s, x_n(s)) - f(s, x_{n-1}(s))| ds$$

$$\le K \int_0^t |x_n(s) - x_{n-1}(s)| dx$$

$$\le MK^n \int_0^t \frac{s^n}{n!} ds$$

$$= MK^n \frac{t^{n+1}}{(n+1)!}.$$

This proves the absolute convergence

$$\sum_{n=0}^{n} ||x_{n+1} - x_n||_{C_t} \lesssim e^{KT} - 1,$$

hence x_n converges uniformly.

Step 3: Verification of the approximation. Let x^* be the limit of x_n . Then, by limiting

$$x_{n+1}(t) = a + \int_0^t f(s, x_n(s)) ds,$$

we get

$$x^*(t) = a + \int_0^t f(s, x^*(s)) ds.$$

Thus, x^* is a solution and it is easy to check x^* is C^1 .

Theorem 7.2 (Local existence). If f is $C_t^0 \operatorname{Lip}_x$ on $I \times \Omega$, then the equation has a unique C^1 local solution.

The interval of existence may be arbitrarily chosen such that

$$T \le R \cdot ||f||_{C_{t,x}(I \times \Omega)}^{-1}.$$

Proof. Define $\varphi: C([0,T], \overline{B(x_0,R)}) \to C([0,T], \overline{B(x_0,R)})$ as:

$$\varphi(x)(t) := x_0 + \int_0^t f(s, x(s)) ds.$$

It is well-defined since

$$|\varphi(x)(t) - x_0| \le \int_0^t |f(s, x(s))| ds$$

 $\le TM \le R.$

It is a contraction since we have

$$|\varphi(x)(t) - \varphi(y)(t)| \le \int_0^t |f(s, x(s)) - f(s, y(s))| ds$$

$$\le \int_0^t K|x(s) - y(s)| ds$$

$$\le TK||x(s) - y(s)||$$

so that

$$\|\varphi(x) - \varphi(y)\| \le TK\|x - y\|$$

The above one looses the Lipschitz condition to local condition.

8 Statements in functional analysis and general topology

Function analysis:

- Suppose a densely defined operator T induces a Hilbert space structure on its domain. If the inclusion is bounded, then T has the bounded inverse. If the inclusion is compact, then T has the compact inverse.
- A closed subspace of an incomplete inner product space may not have orthogonal complement: setting L^2 inner product on C([0,1]), define $\phi(f) = \int_0^{\frac{1}{2}} f$.
- Every seperable Banach space is linearly isomorphic and homeomorphic. But there are two non-isomorphic Banach spaces.
- open mapping theorem -> continuous embedding is really an embedding.
- $D(\Omega)$ is defined by a *countable stict* inductive limit of $D_K(\Omega)$, $K \subset \Omega$ compact. Hence it is not metrizable by the Baire category theorem. (Here strict means that whenever $\alpha < \beta$ the induced topology by \mathcal{T}_{β} coincides with \mathcal{T}_{α})
- A net $(\phi_d)_d$ in $D(\Omega)$ converges if and only if there is a compact K such that $\phi_d \in D_K(\Omega)$ for all d and ϕ_d converges uniformly.
- Th integration with a locally integrable function is a distribution. This kind of distribution is called regular. The nonregular distribution such as δ is called singular.
- D' is equipped with the weak* topology.
- $\frac{\partial}{\partial x}$: $D' \to D'$ is continuous. They commute (Schwarz theorem holds).
- $D \to S \to L^p$ are continuous (immersion) but not imply closed subspaces (embedding).

General topology:

• $H \subset \mathbb{C}$ and $H \subset \widehat{\mathbb{C}}$ have distinct Cauchy structures which give a same topology. In addition, the latter is precompact while the former is not.

9 Ultrafilter

Definition 9.1. An *ultrafilter* is a synonym for maximal filter. If we sat \mathcal{U} is an *ultrafilter on a set* A, then it means \mathcal{U} is a maximal filter as a directed subset of $\mathcal{P}(A)$.

existence of ultrafilter.

Theorem 9.1. Let \mathcal{U} be an ultrafilter on a set A and X be a compact space. For a function $f: A \to X$, the limit \mathcal{U} -lim f always exists.

Theorem 9.2. Let $X = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be a product space of compact spaces X_{α} . A net $f : \mathcal{D} \to X$ has a convergent subnet.

Proof 1. Use Tychonoff. Compactness and net compactness are equivalent. \Box

Proof 2. It is a proof without Tychonoff. Let \mathcal{U} be a ultrafilter on a set \mathcal{D} contatining all $\uparrow d$. Define a directed set $\mathcal{E} = \{(d, U) \in \mathcal{D} \times \mathcal{U} : d \in U\}$ as $(d, U) \succ (d', U')$ for $U \subset U'$. Let $f : \mathcal{E} \to X$ be a subnet of $f : \mathcal{D} \to X$ defined by $f_{(d,U)} = f_d$.

By the previous theorem, \mathcal{U} -lim $\pi_{\alpha}f_d \in X_{\alpha}$ exsits for each α . Define $f \in X$ such that $\pi_{\alpha}f = \mathcal{U}$ -lim $\pi_{\alpha}f_d$. Let $G = \prod_{\alpha} G_{\alpha} \subset X$ be any open neighborhood of f. Then, $\pi_{\alpha}f \in G_{\alpha}$ and we have $G_{\alpha} = X_{\alpha}$ except finite. For α , we can take $U_{\alpha} := \{d : \pi_{\alpha}f_d \in G_{\alpha}\} \in \mathcal{U}$ by definition of convergence with ultrafilter Since $U_{\alpha} = \mathcal{D}$ except finites, we can take an upper bound $U_0 \in \mathcal{U}$ of $\{U_{\alpha}\}_{\alpha}$. Then, by taking any $d_0 \in U_0$, we have $f_{(d,U)} \in G$ for every $(d,U) \succ (d_0,U_0)$. This means $f = \lim_{\mathcal{E}} f_{(d,U)}$, so we can say $\lim_{\mathcal{E}} f_{(d,U)}$ exists.

10 Selected analysis problems

Problem 10.1. The following series diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n^{1+|\sin n|}}.$$

Solution. Let $A_k := [1, 2^k] \cap \{x : |\sin x| < \frac{1}{k}\}$. Divide the unit circle $\mathbb{R}/2\pi\mathbb{Z}$ by 7k uniform arcs. There are at least $2^k/7k$ integers that are not exceed 2^k and are in a same arc. Let S be the integers and x_0 be the smallest element. Since, $|x - x_0| \pmod{2\pi} < \frac{2\pi}{7k}$ for $x \in S$,

$$|\sin(x-x_0)| < |x-x_0| \pmod{2\pi} < \frac{2\pi}{7k} < \frac{1}{k}.$$

Also, $1 \le x - x_0 \le x \le 2^k$, $x - x_0 \in A_k$.

$$|A_k| \ge \frac{2^k}{7k}.$$

Therefore,

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{n^{1+|\sin n|}} &\geq \sum_{n \in A_N} \frac{1}{n^{1+|\sin n|}} \\ &\geq \sum_{k=1}^{N} (|A_k| - |A_{k-1}|) \frac{1}{2^{k+1}} \\ &= \sum_{k=1}^{N} \frac{|A_k|}{2^{k+1}} - \sum_{k=1}^{N-1} \frac{|A_k|}{2^{k+2}} \\ &= \frac{|A_N|}{2^{N+1}} + \sum_{k=1}^{N-1} \frac{|A_k|}{2^{k+2}} \\ &> \sum_{k=1}^{N} \frac{2^k}{2^{k+2}} \frac{1}{7^k} \\ &= \frac{1}{28} \sum_{k=1}^{N} \frac{1}{k} \\ &\to \infty. \end{split}$$

Problem 10.2. If $|xf'(x)| \leq M$ and $\frac{1}{x} \int_0^x f(y) dy \to L$, then $f(x) \to L$ as $x \to \infty$. Solution. Since

$$\left| f(x) - \frac{F(x) - F(a)}{x - a} \right| \le \frac{1}{x - a} \int_a^x |f(x) - f(y)| \, dy$$

$$= \frac{1}{x - a} \int_a^x (x - y)|f'(c)| \, dy$$

$$\le \frac{M}{x - a} \int_a^x \frac{x - y}{c} \, dy$$

$$\le M \frac{x - a}{a}$$

by the mean value theorem and

$$f(x) - L = \left[f(x) - \frac{F(x) - F(a)}{x - a} \right] + \frac{x}{x - a} \left[\frac{F(x)}{x} - L \right] + \frac{a}{x - a} \left[\frac{F(a)}{a} - L \right],$$

we have for any $\varepsilon > 0$

$$\limsup_{x \to \infty} |f(x) - L| \le \varepsilon$$

where a is defined by $\frac{x-a}{a} = \frac{\varepsilon}{M}$.

Problem 10.3. Let $f_n: I \to I$ be a sequence of real functions that satisfies $|f_n(x) - f_n(y)| \le |x - y|$ whenever $|x - y| \ge \frac{1}{n}$, where I = [0, 1]. Then, it has a uniformly convergent subsequence.

Solution. By the Bolzano-Weierstrass theorem and the diagonal argument for subsequence extraction, we may assume that f_n converges to a function $f: \mathbb{Q} \cap I \to I$ pointwisely.

Step [.1] For $n \geq 4$, we claim

$$|x-y| \le \frac{1}{n} \implies |f_n(x) - f_n(y)| \le \frac{5}{n}.$$
 (1)

Fix $x \in I$ and take $z \in I$ such that $|x - z| = \frac{2}{n}$ so that

$$|f_n(x) - f_n(z)| \le |x - z| = \frac{2}{n}.$$

If y satisfies $|x-y| \leq \frac{1}{n}$, then we have $|y-z| \geq |x-z| - |x-y| \geq \frac{1}{n}$, so we get

$$|f_n(y) - f_n(z)| \le |y - z| \le |y - x| + |x - z| \le \frac{3}{n}.$$

Combining these two inequalities proves what we want.

Step [.2] For $\varepsilon > 0$ and $N := \lceil \frac{15}{\varepsilon} \rceil$ we claim

$$|x - y| \le \frac{1}{N}$$
 and $n > N \implies |f_n(x) - f_n(y)| \le \frac{\varepsilon}{3}$ (2)

when $N \geq 4$. It is allowed for |x - y| to have the following two cases:

$$|x - y| \le \frac{1}{n}$$
 or $\frac{1}{n} < |x - y| \le \frac{1}{N}$.

For the former case, by the inequality (1) we have

$$|f_n(x) - f_n(y)| \le \frac{5}{n} < \frac{5}{N} \le \frac{\varepsilon}{3}.$$

For the latter case, by the assumption at the beginning of the problem, we have

$$|f_n(x) - f_n(y)| \le |x - y| \le \frac{1}{N} \le \frac{\varepsilon}{15}$$

Hence the claim is proved.

Step [.3] We will prove f is uniformly continuous. For $\varepsilon > 0$, take $\delta := \frac{1}{N}$, where $N := \lceil \frac{15}{\varepsilon} \rceil$. We will show

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

for $x, y \in \mathbb{Q} \cap I$ and $N \geq 4$. Fix rational numbers x and y in I which satisfy $|x - y| < \delta$. Since $f_n(x)$ and $f_n(y)$ converges to f(x) and f(y) respectively, we may take an integer n_x and n_y , such that

$$n > n_x \implies |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$
 (3)

and

$$n > n_y \implies |f_n(y) - f(y)| < \frac{\varepsilon}{3}.$$
 (4)

Choose an integer n such that $n > \max\{n_x, n_y, N\}$. Then, combining (3), (2), and (4), we obtain

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Since f is continuous on a dense subset $\mathbb{Q} \cap I$, it has a unique continuous extension on the whole I. Let it denoted by the same notation f.

Step [.4] Finally, we are going to show $f_n \to f$ uniformly. For $\varepsilon > 0$, let $N := \left\lceil \frac{15}{\varepsilon} \right\rceil$. The uniform continuity of f allows to have $\delta > 0$ such that

$$|x - y| < \delta \implies |f(x) - f(y)| < \frac{2}{3}\varepsilon.$$
 (5)

Take a rational $r \in I$, depending on $x \in I$, such that $|x - r| < \min\{\frac{1}{N}, \delta\}$. Then, by (2) and (5), given $n > N \ge 4$, we have an inequality

$$|f_n(x) - f(x)| \le |f_n(x) - f_n(r)| + |f_n(r) - f(r)| + |f(r) - f(x)|$$

 $< \frac{\varepsilon}{3} + |f_n(r) - f(r)| + \frac{2}{3}\varepsilon$

for any $x \in I$. By limiting $n \to \infty$, we obtain

$$\lim_{n \to \infty} |f_n(x) - f(x)| < \varepsilon.$$

Since ε and x are arbitrary, we can deduce the uniform convergence of f_n as $n \to \infty$.

Problem 10.4. A measurable subset of \mathbb{R} with positive measure contains an arbitrarily long subsequence of an arithmetic progression. (made by me!)

Solution. Let $E \subset \mathbb{R}$ be measurable with $\mu(E) > 0$. We may assume E is bounded so that we have $E \subset I$ for a closed bounded interval since \mathbb{R} is σ -compact. Let n be a positive integer arbitrarily taken. Then, we can find N such that $\sum_{k=1}^{N} \frac{1}{k} > (n-1)\frac{\mu(I)}{\mu(E)}$.

Assume that every point x in E is contained in at most n-1 sets among

$$E, \ \frac{1}{2}E, \ \frac{1}{3}E, \ \cdots, \ \frac{1}{N}E.$$

In other words, it is equivalent to:

$$\bigcap_{k \in A} \frac{1}{k} E = \emptyset$$

for any subset $A \subset \{1, \dots, N\}$ with $|A| \ge n$. Define

$$E_A := \bigcap_{k \in A} \frac{1}{k} E \cap \bigcap_{k' \in A} \left(\frac{1}{k'} E \right)^c$$

for $A \subset \{1, \dots, N\}$. Then, $\mu(E_A) = 0$ for $|A| \ge n$. Note that we have

$$\mu(\frac{1}{k}E) = \sum_{k \in A} \mu(E_A) = \sum_{\substack{k \in A \\ |A| < n}} \mu(E_A).$$

Summing up, we get

$$\sum_{k=1}^{N} \mu(\frac{1}{k}E) = \sum_{k=1}^{N} \sum_{\substack{k \in A \\ |A| < n}} \mu(E_A) = \sum_{|A| < n} |A| \mu(E_A)$$

by double counting, and since E_A are dijoint, we have

$$\sum_{|A| < n} |A| \mu(E_A) = (n-1) \sum_{0 < |A| < n} \mu(E_A) \le (n-1)\mu(I),$$

hence a contradiction to

$$\sum_{k=1}^{N} \mu(\frac{1}{k}E) > (n-1)\mu(I).$$

Therefore, we may find an element x that belongs to $\frac{1}{k}E$ for $k \in A$, where $A \subset \{1, \dots, N\}$ with |A| = n. Then, $ax \in E$ for all $a \in A \subset \mathbb{Z}$.

11 Physics problem

11.1 Resonance

Let m, b, k, A, ω_d be positive real constants. Consider an underdamped oscillator with sinusoidal diving force described as

$$mx'' + bx' + kx = A\sin\omega_d t$$
, $x(0) = x_0$, $x'(0) = 0$.

There are some observations:

- (1) The underdamping condition means $b^2 4mk < 0$ so that the roots of characteristic equation are imaginary.
- (2) The positivity of m, b implies the real part of solution that will be denoted by $-\beta = -\frac{b}{2m}$ is negative; it shows exponential decay of solutions.
- (3) Introducing the natural frequency $\omega_n = \sqrt{k/m}$, we can rewrite the equation as

$$x'' + 2\zeta \omega_n x' + \omega_n^2 x = A \sin \omega t.$$

(4) The complementary solution is computed as

$$x_c(t) = x_0 e^{-\beta t} \cos \sqrt{\beta^2 - \omega_n^2} t,$$

and it can be verified that this solution is asymptotically stable, i.e.

$$\lim_{t \to \infty} x_c(t) = 0.$$

- (5) The condition $\beta > \omega_n$ is equivalent to that the oscillator is underdamped.
- (6) Let m, k be fixed. Then, the solution x_c decays most fastly when b satisfied $b^2 = 4mk$, equivalently, $\beta = \omega_n$.
- (7) When $\omega_d = \omega_n$ such that the amplitude of particular solution diverges.