

Gravitational waves from topological defects

Any short subtitle

Nanna Bryne

CS: Astrophysics 60 ECTS study points

Institute of Theoretical Astrophysics, Department of Physics Faculty of Mathematics and Natural Sciences

Nanna Bryne

Gravitational waves from topological defects

Any short subtitle

Supervisor: David Fonseca Mota

Contents

Not	ation	ii
1	Introduction	1 3
l E	Background	5
2	Classical Field Theory and Gravity	7
	2.1 General Relativity	7
	2.2 Scalar-Tensor Theories?	7
	2.3 Perturbation Theory	7
_	2.4 Classical Solitons	7
3	Gravitational Waves	9
4	Lattice- and N-body simulations	11
II	Project	13
5	Calculating Gravitational Waves from Domain Walls	15
	5.1 General Formalism	18
6	Simulating Gravitational Waves from Domain Walls	19
7	Studying Gravitational Waves from Domain Walls	21
		23
8	Discussion	25
9	Conclusion and Outlook	27
		29
Bibl	iography	31
	I do not have an appendix	33

Contents

Notation

Constants and units. We use ['natural units']? where $\hbar = c = 1$, where \hbar is the reduced Planck constant and c is the speed of light in vacuum. Planck units? Set $k_B = G_N = 1$? The Newtonian constant of gravitation G_N is referenced explicitly, and we use Planck units such as the Planck mass $M_{\rm Pl} = (\hbar c/G_N)^{1/2} = G_N^{-1/2} \sim 10^{-8} \text{ kg}$.

Tensors. The metric signature (-,+,+,+) is considered, i.e. $\det[g_{\mu\nu}] \equiv |g| < 0$. The Minkowski metric is denoted $\eta_{\mu\nu}$, whereas a general metric is denoted $g_{\mu\nu}$. A four-vector $p^{\mu} =$

$$[\eta_{\mu\nu}] = \text{diag}(-1, 1, 1, 1)$$

Christophel symbols:

$$\Gamma^{\rho}_{\mu\nu} = \dots \tag{1}$$

"Lambda tensor":

$$\Lambda_{ijkl} = \dots \tag{2}$$

Fourier transforms. We use the following convention for the Fourier transform of f(x), $\tilde{f}(k)$, and its inverse, where x and k are Lorentz four-vectors:

$$f(x) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x} \tilde{f}(k)$$

$$\tilde{f}(k) = \int d^4x e^{ik \cdot x} f(x)$$
(3)

Here, $k \cdot x = k_{\sigma} x^{\sigma} = g_{\rho\sigma} k^{\rho} x^{\sigma}$.

Acronyms

CDM cold dark matter

CMB cosmic microwave background (radiation)

DW domain wall

GR general relativity

GW gravitational wave

ΛCDM Lambda (Greek Λ) cold dark matter model; Standard cosmological model

Nomenclature

In the table below is listed the most frequently used symbols in this paper, for reference.

Table 1: helo

Symbol	Referent	SI-value or definition
Natural consta	nts	
$G_{ m N}$	Newtonian constant of gravitation	1.2 kg
$k_{ m B}$	Boltzmann's constant	1.2 K
Fiducial quant	ities	
h_0	Reduced Hubble constant	0.67
Subscripts		
$Q_{ m gw}$	Quantity Q related to gravitational wave	
Functions and	operators	
$\Theta(\xi)$	Heaviside step function	$\begin{cases} 1 & \xi > 0 \\ 0 & \xi < 0 \end{cases}$
$sgn(\xi)$	Signum function	$2\Theta(\xi)-1$
$\delta^{(n)}(\xi)$	Dirac-Delta function of $\xi \in \mathbb{R}^n$, $n \in \mathbb{N}$.	
$\delta^{\mu \nu}$	Kronecker delta.	

Introduction

- GOALS:
 - Gather framework about GWs from DWs

$$\tilde{h}_{\circledast}^{"} + 2\mathcal{H}\tilde{h}_{\circledast}^{'} + k^{2}\tilde{h}_{\circledast} = 16\pi G_{N}a^{2}\tilde{\sigma}_{\circledast}; \quad \circledast = +, \times$$

$$\tag{1.1}$$

$$\left(\tilde{h}^{\mathrm{TT}}\right)_{ij}(\eta, \mathbf{k}) = \sum_{\circledast = +, \times} e_{ij}^{\circledast}(\hat{\mathbf{k}})\tilde{h}_{\circledast}(\eta, \mathbf{k}) \tag{1.2}$$

$$\tilde{h}^{\text{TT}}_{ij}(\eta, \mathbf{k}) = \sum_{\circledast = +\times} e_{ij}^{\circledast}(\hat{\mathbf{k}}) \tilde{h}_{\circledast}(\eta, \mathbf{k})$$
(1.3)

1.1 Preliminaries

- variational calculus/ varying action
- action
- pert. theory?
- line element
- gauge invariance
- FRW cosmology
- classical field theory

$$G_{\mu\nu} = 8\pi G_{\rm N} T_{\mu\nu} \tag{1.4}$$

The action

$$S_{ST} = S_{EH} + S_{\phi} + S_{m} = \int d^{4}x \sqrt{-|g|} \left\{ \frac{M_{Pl}^{2}}{2} R - \frac{1}{2} \nabla_{\rho} \phi \nabla^{\rho} \phi - V(\phi) \right\} + S_{m}$$
 (1.5)

GR as we know it is reconstructed when varying $S_{\rm E}$ with respect to the metric $g_{\mu\nu}(x)$

Part I Background

Classical Field Theory and Gravity

The action and blah blah

2.1 General Relativity

The Einstein-Hilbert action [in vacuum]? is check Planck mass def._

$$S_{\rm EH} = {}^{1}/{}_{2}M_{\rm Pl}^{2} \int d^{4}x \,\mathcal{R},$$
 (2.1)

where $\mathcal{R} = g^{\mu\nu}\mathcal{R}_{\mu\nu}$. By varying $S_{\rm EH}$ with respect to $g_{\mu\nu}$ one obtains the equation of motion

$$\mathcal{G}_{\mu\nu} \equiv \mathcal{R}_{\mu\nu} + \frac{1}{2} g_{\mu\nu} \mathcal{R} = 0. \tag{2.2}$$

Thus, we interpret GR classical field theory where the tensor field $g_{\mu\nu}$ is the gravitational field, [with the particle realisation? \square named "graviton" \square .

- scalar field (ST theories)
- 2.2 Scalar-Tensor Theories?
- 2.3 Perturbation Theory
- 2.4 Classical Solitons

Chapter 2. Classical Field Theory and Gravity

Gravitational Waves

Chapter 3. Gravitational Waves

Lattice- and N-body simulations

Chapter 4. Lattice- and N-body simulations

Part II Project

Calculating Gravitational Waves from Domain Walls

DRAFT

Ė

Consider a planar domain wall in the xy-plane in a flat FRW universe, represented by a scalar field $\phi(\eta, x)$ and a potential $V(\phi)$. The background metric is

$$d\bar{s}^2 = \bar{g}_{\mu\nu} d\bar{x}^\mu \bar{x}^\nu = -dt^2 + a^2(t) \delta_{ij} dx^i dx^j = a^2(\eta) \left\{ -d\eta^2 + dx^2 + dy^2 + dz^2 \right\}. \tag{5.1}$$

The solution to $\Box \phi = dV/d\phi$ is denoted $\bar{\phi}(\eta, z)$. We let indices a, b, c = 1, 2 and $i, j, k, l, \ldots = 1, 2, 3$. Now we add a linear perturbation $\zeta(\eta, x^a)$ to the wall such that

$$\phi(\eta, \mathbf{x}) = \bar{\phi}(\eta, z; \zeta(\eta, x^a)) = \bar{\phi}(\eta, z; 0) + \zeta(\eta, x^a) \frac{\partial \bar{\phi}}{\partial z} \Big|_{\zeta=0} + O(\zeta^2).$$
 (5.2)

Furthermore, Fourier transforming [←show this!] the spatial components gives

$$\phi(\eta, \mathbf{k}) = \int d^3x \, e^{ik_i x^i} \phi(\eta, \mathbf{x}) = \left[(2\pi)^2 \delta^{(2)}(k_a) - ik_3 \zeta(\eta, k_a) \right] \bar{\phi}(\eta, k_3; 0) + O(\zeta^2). \tag{5.3}$$

The TT-part of the energy-momentum tensor is [←refer to some section]

$$T_{ij}^{\text{TT}}(\eta, \mathbf{k}) = \Lambda_{ij,kl}(\hat{\mathbf{k}}) \int \frac{d^3p}{(2\pi)^3} p_k p_l \phi(\eta, \mathbf{p}) \phi(\eta, \mathbf{k} - \mathbf{p}). \tag{5.4}$$

We define a quantity t_{kl} by

$$T_{ij}^{\text{TT}}(\eta, \mathbf{k}) = \Lambda_{ij,kl}(\hat{\mathbf{k}}) \left(\frac{1}{2\pi} \cdot t_{kl}(\eta, \mathbf{k}) + O(\zeta^2) \right), \tag{5.5}$$

and the additional function

$$\mathfrak{I}_{n}(\eta, q_{0}) = \int_{\mathbb{R}} dq \, q^{n} \bar{\phi}(\eta, q; 0) \bar{\phi}(\eta, q_{0} - q; 0). \tag{5.6}$$

After some manipulation [\leftarrow show this!], we get the following:

$$t_{ab}(\eta, \mathbf{k}) = k_a k_b \left[-i\zeta(\eta, k_c) \right] \Im_1(\eta, k_3) \tag{5.7a}$$

$$t_{a3}(\eta, \mathbf{k}) = k_a \left[-i\zeta(\eta, k_c) \right] \Im_2(\eta, k_3) \tag{5.7b}$$

$$t_{33}(\eta, \mathbf{k}) = k_3 \left[-i\zeta(\eta, k_c) \right] \Im_2(\eta, k_3) + (2\pi)^2 \delta^{(2)}(k_a) \Im_2(\eta, k_3)$$
 (5.7c)

There are some *small* constraint on the perturbation from this. Need to be commented!

Gravitational waves sourced by this field is – to first order in ζ – given by

$$ah_{ij}(\eta, \mathbf{k}) = \frac{16\pi G_{\rm N}}{k} \int_{\eta_i}^{\eta} \mathrm{d}\eta' \sin\left(k\left[\eta - \eta'\right]\right) a(\eta') T_{ij}^{\rm TT}(\eta', \mathbf{k})$$

$$= \frac{8G_{\rm N}}{k} \Lambda_{ij,kl}(\hat{\mathbf{k}}) \int_{\eta_i}^{\eta} \mathrm{d}\eta' \sin\left(k\left[\eta - \eta'\right]\right) a(\eta') t_{kl}(\eta', \mathbf{k}) + O(\zeta^2).$$
(5.8)

Remaining is the $\Lambda_{ij,kl}t_{kl}$ -elements, which in total are $\lceil 6 \rfloor_{?}$ terms per ij, due to symmetry in t_{kl} :

$$\Lambda_{ij,kl}(\hat{\boldsymbol{k}})t_{kl}(\eta,\boldsymbol{k}) = 2\left\{\Lambda_{ij,12}t_{12} + \Lambda_{ij,13}t_{13} + \Lambda_{ij,23}t_{23}\right\}(\eta,k\hat{\boldsymbol{k}})
+ \left\{\Lambda_{ij,11}t_{11} + \Lambda_{ij,22}t_{22} + \Lambda_{ij,33}t_{33}\right\}(\eta,k\hat{\boldsymbol{k}})$$
(5.9)

5.1 General Formalism

Simulating Gravitational Waves from Domain Walls

Chapter 6. Simulating Gravitational Waves from Domain Walls

Studying Gravitational Waves from Domain Walls

Chapter 7. Studying Gravitational Waves from Domain Walls

Discussion

Conclusion and Outlook

Chapter 9. Conclusion and Outlook

Bibliography

- [1] Majdi Amr. Particle production by gravitational perturbations in domain walls. *Nuclear Physics B*, 945:114648, August 2019.
- [2] Aleksandr Azatov, Miguel Vanvlasselaer, and Wen Yin. Dark Matter production from relativistic bubble walls. *Journal of High Energy Physics*, 2021(3):288, March 2021.
- [3] Tanmay Vachaspati. Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge, 2006.

Bibliography

Appendix A I do not have an appendix