Homework 1

Nikhil Unni (nunni2)

1. I'll be inducting on the number of operations to construct a regular language. ¹

Base Case:

The base case is when the number of operations to construct the regular language is n = 1. The only way to get a regular language of a single operation is through the base case of the inductive definition of regular languages:

- \emptyset is represented by a top-plus regular expression, of the form $(\alpha_1 + \ldots + \alpha_k)$, where k = 1, because $\alpha_1 = \emptyset$ contains no '+'
- $\{\epsilon\}$, is also represented by a top-plus expression, again where k=1, where $\alpha_1=\epsilon$ contains no '+'.
- $\{a\}$, for any a in any arbitrary alphabet, Σ , is represented by a top-plus expression, where k = 1, where $\alpha_1 = a$ contains no '+'

Inductive Hypothesis:

Now assume all r_k and r_l where $1 \le k < n$, $1 \le l < m$, where r_k and r_l are regular expressions that represent regular languages, can be represented by a top-plus regular expression.

Inductive Step:

Without loss of generality, let r_{n-1} be any regular expression (representing a regular language) that was constructed in (n-1) steps, and let r_{m-1} be any regular expression constructed in (m-1) steps. Since they are both top-plus expressions, say that r_{n-1} is a top-plus expression with k=x terms, and let r_{m-1} be a top-plus expression with k=y terms.

We can get a top-plus regular expression of construction size n by constructing on r_{n-1} :

- $(r_{n-1} + r_{m-1})$ is a top-plus expression because it is the union of x and y terms all without any '+'. The result is a top-plus expression of k = x + y.
- $(r_{n-1}r_{m-1})$ is a top-plus expression as well. Through the distributive law of concatenation over union, we have $(r_{n-1}^1+r_{n-1}^2+\ldots+r_{n-1}^x)(r_{m-1}^1+r_{m-1}^2+\ldots+r_{m-1}^y)=(r_{n-1}^1r_{m-1}^1+r_{n-1}^1r_{m-1}^2+\ldots+r_{m-1}^x)$, which represents a top-plus expression of k=xy. (Here the "exponents" represent indices.)
- $(r_{n-1})^*$ is also a top-plus expression. Through the theorem included with the pset, we know that $(r_{n-1}^1 + r_{n-1}^2 + \ldots + r_{n-1}^x)^* = (r_{n-1}^1 * r_{n-1}^2 * \ldots r_{n-1}^x)$, which is a top-plus expression of k = 1.

Thus, every regular language can be represented by a top-plus regular expression.

¹Creds to Prof. Pitt: https://piazza.com/class/i4mrvddxr0h3sd?cid=185