```
Variable
                         Description or Formula
    height
                          max(Z)
    ht_mean
                          mean(height)
    ht skw Sp
                          skewness(height)
    ht_kurt_sp
                          kurtosis(height)
    ht_75p
                         75 percent heights of SfM points in crown segment
                         90 percent heights of SfM points in crown segment
    ht 90p
                         98 percent heights of SfM points in crown segment
    ht_98p
                          mean(G[Z > ht 75p])
    green_75p
    green_90p
                          mean(G[Z>ht 90p])
    green_98p
                          mean(G[Z>ht_98p])
    red_75p
                          mean(R[Z > ht_75p])
    red_90p
                          mean(R[Z > ht_90p])
    red_98p
                          mean(R[Z>ht_98p])
    blue 75p
                          mean(B[Z > ht 75p])
    blue_90p
                          mean(B[Z > ht_90p])
    blue_98p
                          mean(B[Z > ht_98p])
    greenness 75p
                         mean(G[Z >= ht 75p]/(R[Z >= ht 75p] + B[Z >= ht 75p]))
    greenness_90p
                          mean(G[Z >= ht_90p]/(R[Z >= ht_90p] + B[Z >= ht_90p]))
    greenness_98p
                          mean(G[Z >= ht_98p]/(R[Z >= ht_98p] + B[Z >= ht_98p]))
    redness 75p
                          mean(R[Z >= ht 75p]/(G[Z >= ht 75p] + B[Z >= ht 75p])
    redness_90p
                          mean(R[Z >= ht_90p]/(G[Z >= ht_90p] + B[Z >= ht_90p]))
                          mean(R[Z>ht_98p]/(G[Z>=ht_98p]+B[Z>=ht_98p]))
    redness_98p
                          mean(B[Z >= ht_75p]/(G[Z >= ht_75p]+R[Z >= ht_75p]))
    blueness_75p
    blueness_90p
                          mean(B[Z >= ht_90p]/(G[Z >= ht_90p] + R[Z >= ht_90p]))
```

median(Z)

mean(B[Z >= ht 98p]/(G[Z >= ht 98p]+R[Z >= ht 98p]))

blueness 98p

med_height

Variable Description or Formula

blueness_mean mean((B - G)/(B + G))mean((G - R)/(G + R))greenness_mean redness_mean mean((R - B)/(R + B))blueness_std sd((B - G)/(B + G))greenness_std sd((G - R)/(G + R))redness std sd((R - B)/(R + B))blueness_med median((B - G)/(B + G))greenness_med median((G - R)/(G + R))redness med median((R - B)/(R + B))blueness_skw skewness((B - G)/(B + G))greenness_skw skewness((G - R)/(G + R))redness_skw skewness((R - B)/(R + B))brightness_mean mean(B + G + R)brightness med median(B + G + R)brightness_std sd(B + G + R)brightness_skw skewness(B + G + R) red_norm_mean mean(R/(R+G+B))blue_norm_mean mean(B/(R+G+B))green_norm_mean mean(G/(R+G+B))R mean(R) G mean(G) В mean(B)

 R
 mean(R)

 G
 mean(G)

 B
 mean(B)

 R_ratio
 R/(R + G + B)

 G_ratio
 G/(R + G + B)

 B_ratio
 B/(R + G + B)

G_R_ratio G/R

 $G_R_{adj} = (G - R)/(G + R)$