

CLAIMS

What is claimed is:

1 1. A method for distributing frames, comprising:
2 assigning a plurality of consecutive data frames to
3 different data packets, each data packet including data
4 frames that are sufficiently far apart such that loss of any
5 particular data packet distributes impact that the loss has
6 on quality of recovered data.

1 2. The method of claim 1, further comprising:
2 packing said each data packet with assigned frames; and
3 sending the data packets to a destination node.

1 3. The method of claim 1, wherein said each data
2 packet includes data frames that are at least two frames
3 apart.

1 4. The method of claim 1, wherein said data frames are
2 audio frames.

1 5. The method of claim 1, wherein said assigning
2 distributes data frames into different packets at a uniform
3 interval.

1 6. The method of claim 5, wherein the uniform interval
2 is 5.

1 7. The method of claim 1, wherein said plurality of
2 consecutive data frames includes at least two frames.

1 8. The method of claim 1, wherein said assigning a
2 plurality of consecutive data frames includes assigning a
3 current data frame of said plurality of consecutive data
4 frames to a packet that is at least two packets away from a
5 packet that contains a previous data frame.

1 9. A method for distributing data frames of a
2 multimedia entity, comprising:
3 distributing the data frames among a plurality of data
4 packets, each data packet including the data frames from
5 different parts of the multimedia entity, where said data
6 frames from different parts are sufficiently spread out among
7 said plurality of data packets to reduce the impact of a
8 packet loss on quality of recovered data compared to packing
9 consecutive data frames into sequential data packets.

1 10. The method of claim 9, wherein said multimedia
2 entity includes a video frame.

1 11. The method of claim 9, wherein said multimedia
2 entity includes a graphical image.

1 12. The method of claim 9, wherein said sufficiently
2 spreading out includes packing a data packet with data frames
3 that are at least two frames apart.

1 13. The method of claim 9, wherein said plurality of
2 data packets includes at least five packets.

1 14. A frame distribution system, comprising:
2 a processor configured to assign a plurality of
3 consecutive data frames to different data packets, each data
4 packet including data frames that are sufficiently far apart
5 such that loss of any particular data packet distributes
6 impact that the loss has on quality of recovered data; and
7 a packetizer to pack a current frame into a data packet
8 assigned by said processor.

1 15. The system of claim 14, wherein said data frames
2 are audio frames.

1 16. The system of claim 14, wherein said each data
2 packet includes data frames that are at least two frames
3 apart.

1 17. A data packetizing system, comprising:
2 a frame receiving element arranged to receive a sequence
3 of data frames including consecutive parts of a segmented
4 data entity; and
5 a frame assigning element arranged to assign a current
6 data frame in said sequence of data frames to a data packet,
7 where said frame assigning element assigns the current data
8 frame to the data packet different from a data packet
9 containing a previous data frame.

1 18. The system of claim 17, wherein said segmented data
2 entity is a video frame.

1 19. The system of claim 17, wherein said segmented data
2 entity is an audio sequence.

1 20. The system of claim 17, further comprising:
2 a frame packing element to pack data frames into
3 assigned data packets.