

CHEMISTRY

Chapter 7
Química Orgánica e
Hidrocarburos

Verano San Marcos

2021

QUÍMICA ORGÁNICA

Denominada también química del carbono debido a que estudia los compuestos con estructura molecular carbonada, natural o sintetizado en laboratorios.

Compuestos tales como el CO, CO₂, HCN, NaCNO, CaCO3, aunque presentan carbono, no son compuestos orgánicos, son inorgánicos: no pertenecen a ninguna función orgánica.

ANTECEDENTES

Jacob Berzelius propuso la teoría vitalista. Creyó que solo los seres vivos producían compuestos orgánicos debido a una "fuerza vital"

Luego, en 1828, Friedrich Wöhler sintetizó por primera vez un compuesto orgánico (urea) a partir de uno inorgánico (cianato de amonio)

 $NH_4CNO \rightarrow NH_2CONH_2$ (ÚREA)

Propiedades del átomo de carbono

Tetravalencia y covalencia

El carbono siempre forma 4 enlaces covalentes

Hibridación: mezcla de orbitales s y p de valencia

Esta propiedad está relacionada con la

tetravalencia.

Tipo de hibridación	Geometria molecular	Ángulo de enlace
sp ³	Tetraédrica	109.5°
sp ²	Triangular plana	120°
sp	Lineal	180°

Enlace sigma σ y Enlace $\rho \pi$

Autosaturación y

concatenación: cadenas carbonadas

cadena lineal

cadena ramificada

ciclo

Categorías del Carbono (solo en

Primario

Esta unido a un carbono

 CH_3

Secundario

Esta unido a dos carbonos

CH₂

Terciario

Esta unido a tres carbonos

CH

Cuaternario

Esta unido a cuatro carbonos

C

FÓRMULA DESARROLLADA

FÓRMULA SEMIDESARROLLADA

Etanol (alcohol etílico)

CH₃-CH₂-OH Etanol (alcohol etílico)

FÓRMULA TOPOLÓGICA

FÓRMULA GLOBAL

$$C_2H_6O$$

HIDROCARBUROS

LOS HIDROCARBUROS SON COMPUESTOS ORGÁNICOS BINARIOS FORMADOS SOLO POR CARBONO E HIDRÓGENO : C_xH_y

1) HIDROCARBUROS SATURADOS

ALCANOS : presentan enlace simple entre carbonos(parafinas) C_nH_{2n+2}

2) HIDROCARBUROS INSATURADOS

ALQUENOS: presentan enlace doble entre carbonos(olefinas) C_nH_{2n}

ALQUINOS : presentan enlace triple entre carbonos (acetilénicos) C_nH_{2n-2}

ALQUENINOS : presentan enlace doble y triple entre carbonos $C_nH_{2n+2-2d-4t}$

NOMENCLARURA DE HIDROCARBUROS

NOMBRE DE LOS RADICALES EN ORDEN ALFABÉTICO

PREFIJO NUMÉRICO DE LA CADENA PRINCIPAL

SUFIJO DEL HIDROCARBURO

BUTIL CH3-CH2-CH2-CH2-

ETIL CH3-CH2-

METIL CH3-

PROPIL CH3-CH2-CH2-

LA CADENA PRINCIPAL ES LA MAS
LARGA CON EL MAYOR NÚMERO DE
INSATURACIONES Y RADICALES

SE NUMERA INICIANDO POR EL EXTREMO MAS CERCA A LAS INSATURACIONES Y RADICALES

MET 1C ET 2C PROP 3C
BUT 4C PENT 5C HEX 6C
HEPT 7C OCT 8C NON 9C
DEC 10C

ANO SUFIJO DE ALCANO

ENO SUFIJO DE ALQUENO

INO SUFIJO DE ALQUINO

EN-INO SUFIJO DE ALQUENINO

01

La mas larga con insaturaciones y radicales

#2) NUMERAMOS LA CADENA PRINCIPAL

Se inicia por el extremo mas cercano a la insaturación(enlace

#3 UB AMOS LOS RADICALES ALQUILO

#4) DISEÑAMOS LA NOMENCLATURA IUPAC

3,4,-dimetil-1-hexino

3,4,-dimetihex-1-ino

Indique la cantidad de enlaces pi y sigma $CH3 - CH2 - CH = CH - C \equiv C - CH = CH2$

A) 10; 4 B) 11; 1 C) 17; 4 (A) 4; 17

RESOLUCIÓN:

$$\pi = 4$$

$$\sigma = 17$$

Indique la cantidad de enlaces pi y sigma

A) 10; 3 B) 30; 2 C) 3; 10 D) 2; 0

RESOLUCIÓN:

$$\pi = 2$$
 $\sigma = 30$

$$CH_{3}^{\sigma}CH^{\sigma}CH^{\tau}CH^{\tau}CH^{\tau}CH^{\tau}CH^{\sigma}CH_{2}^{\sigma}CH^{\sigma}CH^{\tau}CH_{3}^{\tau}CH^{\tau}CH^{\tau}CH_{3}^{\tau}CH^{\tau}CH^{\tau}CH_{3}^{\tau}CH^{\tau}CH_{3}^{\tau}CH^{\tau}CH_{3}^{\tau}CH^{\tau}CH_{3}^{\tau}CH^{\tau}CH_{3}^{\tau}CH^{$$

Indique la cantidad de carbonos secundarios

RESOLUCIÓN:

LOS CARBONOS SECUNDARIOS SON CARBONOS HIBRIDIZADOS EN SP³ (4 enlaces simples)QUE ESTAN UNIDOS A DOS CARBONOS Y GENERALMENTE SE EXPRESAN:

Indique el hidrocarburo saturado.

 $A)C_2H_4$ $B)C_3H_4$ $C)COM_{12}$ $D)C_8H_{16}$

RESOLUCION

LOS HIDROCARBUROS SATURADOS SON LOS ALCANOS O PARAFINAS PRESENTAN ENLACE SIMPLE EN SU ESTRUCTURA MOLECULAR SU FÓRMULA MOLECULAR ES : C_nH_{2n+2}

FÓRMULA MOLECULAR ES: C5H12

La atomicidad de un alcano es 26, entonces el número de átomos de carbono del alcano es:

- A) 5 B) 6 C) 7 D) 8 N

RESOLUCIÓN:

LA FÓRMULA MOLECULAR DE LOS ALCANOS ES: CnH2n+2

$$3n+2 = 26$$

$$n = 8$$

Forme la cadena de 2, 2, 4-trimetilpentano. Dé como respuesta su fórmula general.

A) C_6H_{14} B) C_8H_{16} $(C_8H_{18}$ D) C_3H_{8}

SE ANALIZA LA NOMENCLATURA DEL COMPUESTO Y SE IDENTIFICA COMO UN HIDROCARBURO SATURADO(ALCANO) PORQUE SU NOMBRE TERNINA EN EL SUFIJO: ANO

2,2,4-trimetil pentano

LA CADENA PRINCIPAL TIENE 3 RADICALES -CH₃

LA CADENA PRINCIPAL DEL **ALCANO TIENE 5 CARBONOS**

#DE ATOMOS DE CARBONO : n = 8

SU FÓRMULA MOLECULAR ES: CnH2n+2

FÓRMULA MOLECULAR ES: C8H18

PROBLEMA # 7

Del número de todos los carbonos en 2, 4, 5, 6-tetrametil-3, 6-dietiloctano.

A) 15

B106

C) 17

D) 18.

SE ANALIZA LA NOMENCLATURA
DEL COMPUESTO Y SE IDENTIFICA
COMO UN HIDROCARBURO
SATURADO(ALCANO) PORQUE SU
NOMBRE TERNINA EN EL SUFIJO:
ANO

RESOLUCIÓN:

2,4,5,6-tetrametil-3,6-dietiloctan

LA CADENA PRINCIPAL
TIENE 4 RADICALES –CH₃
(4)

ASI MISMO TIENE 2
RADICALES –CH2-CH3
(4)

PRINCIPAL DEL
ALCANO TIENE 8
CARBONOS

#DE ATOMOS DE CARBONO : n = 16

Nombre el siguiente compuesto:

- A) 3, 4, 4-trimetil-1-hexaino
- 3, 4, 4-trimetil-1-hexino
- C) 3, 4, 4-trimetil-5-hexaino
- D) 3, 4-dimetil-4-etil, 1-hexaeno

#1)DETERMINAMOS LA CADENA PRINCIPAL La mas larga con insaturaciones y radicales

#2)NUMERAMOS LA CADENA PRINCIPAL Se inicia por el extremo mas cercano a la insaturación(enlace triple)

#3)UBICAMOS LOS RADICALES ALQUILO

#4) DISEÑAMOS LA NOMENCLATURA IUPAC

PROBLEMA # 9

Nombre el siguiente compuesto:

- A) 3-metil-3-hexino-6-ino
- B) 3-metil-6-hexino-3-eno
- 4-metil-3-hexen-1-ino
- D) 4-metil-1-hexino-3-eno

#1)DETERMINAMOS LA CADENA PRINCIPAL

 La mas larga con insaturaciones y radicales

 #2)NUMERAMOS LA CADENA PRINCIPAL

 Se inicia por el extremo mas cercano a
 la insaturación(enlace triple y/o doble)

 #3)UBICAMOS LOS RADICALES ALQUILO
 #4)DISEÑAMOS LA NOMENCLATURA IUPAC

$$\frac{1}{CH} = \frac{2}{C} - \frac{3}{CH} = \frac{4}{C} + \frac{5}{CH_2} - \frac{6}{CH_3}$$

$$\frac{CH_3}{4-metihex-3-en-1-ino}$$

¿Cuál de las siguientes fórmulas es correcta?

A)
$$CH3 - CH2 - C \equiv CH2$$

$$\bigcirc$$
 CH \equiv C $-$ CH2 $-$ CH2 $-$ CH3

C)
$$CH2 = CH - CH2 - CH_- CH3$$

EL CARBONO PRESENTA 5 ENLACES(INCORRECTO)

EL CARBONO PRESENTA 3 ENLACES(INCORRECTO)

EL CARBONO PRESENTA 3 ENLACES(INCORRECTO)

