

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen

Die Differenzialgleichung 1. Ordnung mit getrennten Variablen hat die Gestalt

$$f(y) dy = g(x) dx$$

Satz:

Sei f(y) im Intervall I und g(x) im Intervall I stetig. Die Anfangswertaufgabe

$$f(y) dy = g(x) dx$$
, $y(x_0) = y_0$, $x_0 \in I_x$, $y_0 \in I_y$

ist in einer hinreichend kleinen Umgebung von x_0 eindeutig lösbar

$$\int f(y) dy = \int g(x) dx + C$$

Die Integrationskonstante C soll soll so gewählt werden, dass die Anfangsbedingung erfüllt wird.

Trennung der Variablen

Eine Differenzialgleichung 1. Ordnung vom Typ

$$f(y) dy = g(x) dx$$

lässt sich schrittweise wie folgt lösen:

- Trennung der beiden Variablen.
- Integration auf beiden Seiten der Gleichung.
- Auflösung der in Form einer impliziten Gleichung vom Typ

$$F(y) = G(x)$$

vorliegenden allgemeinen Lösung nach der Variablen *y* (falls überhaupt möglich).

Trennung der Variablen: Beispiel

$$xy' + y = 0$$

Schritt 1: Trennung der Variablen

$$xy' + y = 0,$$
 $x\frac{dy}{dx} + y = 0,$ $\frac{dy}{y} = -\frac{dx}{x}$

Schritt 2: Integration

$$\int \frac{dy}{y} = -\int \frac{dx}{x}, \qquad \ln|y| = -\ln|x| + \ln|C| = \ln\left|\frac{C}{x}\right|$$

$$\ln|y| = \ln\left|\frac{C}{x}\right|$$

Schritt 3: Die Gleichung nach y aufzulösen $y = \frac{C}{x}$

Trennung der Variablen: Aufgaben

Lösen Sie die folgenden Differentialgleichungen 1. Ordnung:

Aufgabe 1:
$$y' = x + 1$$
, $y(-2) = -1$

Aufgabe 2:
$$y' = 0.5 (3 - y)$$
, $y(0) = 2$

Aufgabe 3:
$$y' = y - 5$$
, 1) $y(0) = 2$, 2) $y(1) = -2$

Aufgabe 4:
$$y' = y^2 \sin x$$

$$y_1(0) = 1, \quad y_2(0) = \frac{1}{2}, \quad y_3(0) = -2$$

Aufgabe 5:
$$y' = y \cos x$$
, 1) $y(\pi) = 4$, 2) $y(\pi/2) = 2$

Aufgabe 6:
$$(x-1)y'=2y$$
, 1) $y(0)=3$, 2) $y(3)=-2$

Aufgabe 7:
$$(2x - 1)y' = y$$
, $y(1) = 7$

Aufgabe 8:
$$(x-2)y' = y$$
, $y(0) = \frac{1}{2}$

Aufgabe 9:
$$(2x - 1)y' = 2y$$
, $y(0) = 3$

Trennung der Variablen: Aufgaben

Lösen Sie die folgenden Differentialgleichungen 1. Ordnung:

Aufgabe 10:
$$(x^2 - 1) y' = 2 y$$
, $y(0) = 5$

Aufgabe 11:
$$xy + (x + 1)y' = 0$$
, 1) $y(0) = 2$, 2) $y(-2) = -3$

Aufgabe 12:
$$2xy + (x + 1)y' = 0$$
, 1) $y(0) = 1$, 2) $y(1) = 1$

Aufgabe 13:
$$xy + (x + 2)y' = 0$$
, 1) $y(0) = 1$, 2) $y(1) = 2$

Aufgabe 14:
$$x y^2 + (x + 1) y' = 0$$
, 1) $y(0) = 1$, 2) $y(1) = 1$

Aufgabe 15:
$$y' = -x e^y$$
, 1) $y(0) = -2$, 2) $y(0) = 1$

Aufgabe 16:
$$y' = -x^2 e^y$$
, $y(0) = -3$

Aufgabe 17:
$$y' = x e^{y-2}$$
, 1) $y(0) = 1$, 2) $y(0) = -1$

$$y' = x + 1, \qquad \frac{dy}{dx} = x + 1$$

Allgemeine Lösung:
$$y(x) = \frac{x^2}{2} + x + C$$

Spezielle Lösung:

$$y(-2) = -1,$$
 $C = -1,$ $y(x) = \frac{x^2}{2} + x - 1$

Abb. L1-1: Integralkurven der DGL y' = x + 1. Die blaue Kurve entspricht der speziellen Lösung der Gleichung mit C = -1, die dunkelrote Kurve C = 1 und die rote Kurve C = 2

Abb. L1-2: Richtungsfeld der DGL y' = x + 1. Die blaue Kurve entspricht $f(x) = x^2/2 + x - 1$, der speziellen Lösung der Gleichung mit y(-2) = -1

Spezielle Lösung:
$$y(-2) = -1$$
, $C = -1$, $f(x) = \frac{x^2}{2} + x - 1$

Abb. L2-1: Integralkurven der DGL y' = (3 - y)/2. Die blaue Kurve mit C = -1 entspricht der speziellen Lösung der Gleichung mit y(0) = 2

$$y' = 0.5 (3-y) \quad \Rightarrow \quad \int \frac{dy}{y-3} = -\frac{1}{2} \int dx \quad \Rightarrow \quad \ln|y-3| = -\frac{x}{2} + \ln|C|$$

$$\ln\left|\frac{y-3}{C}\right| = -\frac{x}{2} \quad \Rightarrow \quad y-3 = C e^{-\frac{x}{2}} \quad \Rightarrow \quad y = 3 + C e^{-\frac{x}{2}}$$

Abb. L2-2: Richtungsfeld der DGL y' = (3 - y)/2. Die blaue Kurve entspricht y = f(x), der speziellen Lösung der Gleichung mit y(0) = 2

$$f(x) = 3 - e^{-\frac{x}{2}}$$

Abb. L2-3: Integralkurven der DGL y' = (3 - y)/2

$$y' = y - 5,$$

1)
$$y(0) = 2$$

$$y' = y - 5$$
, 1) $y(0) = 2$, 2) $y(1) = -2$

Allgemeine Lösung: $y = C e^x + 5$

Spezielle Lösungen:

1)
$$y(0) = 2$$
, $y_1(x) = 5 - 3e^x$

2)
$$y(1) = -2$$
, $y_2(x) = 5 - 7e^{x-1}$

$$y' = y^2 \sin x$$
, $\frac{dy}{dx} = y^2 \sin x$, $\int \frac{dy}{y^2} = \int \sin x \, dx$
 $-\frac{1}{y} = -\cos x + C$, $y = \frac{1}{\cos x - C}$
Allgemeine Lösung: $y = \frac{1}{\cos x - C}$

Spezielle Lösungen:

1)
$$y_1(0) = 1$$
, $1 = \frac{1}{\cos 0 - C_1} = \frac{1}{1 - C_1}$, $C_1 = 0$, $y_1(x) = \frac{1}{\cos x}$
2) $y_2(0) = \frac{1}{2}$, $\frac{1}{2} = \frac{1}{\cos 0 - C_2} = \frac{1}{1 - C_2}$, $C_2 = -1$, $y_2(x) = \frac{1}{\cos x + 1}$
3) $y_3(0) = -2$, $-2 = \frac{1}{\cos 0 - C_2} = \frac{1}{1 - C_2}$, $C_3 = \frac{3}{2}$, $y_3(x) = \frac{1}{\cos x - 3/2}$

Abb. L4-1: Integralkurven der DGL $y' = y^2 \sin x$. Die mit Farbe gezeichneten Kurven entsprechen folgenden Werten der Integrationskonstante C: -1, 0, 1.5

Ma 2 – Lubov Vassilevskaya

Abb. L4-2: Integralkurven der DGL $y' = y^2 \sin x$. Die mit Farbe gezeichneten Kurven entsprechen folgenden Werten der Integrationskonstante C: -3, -1.5, -1.3, 1.3, 1.5

Ma 2 – Lubov Vassilevskaya

2-4c

$$y' = y \cos x$$
, 1) $y(\pi) = 4$, 2) $y(\pi/2) = 2$

Allgemeine Lösung: $y = C e^{\sin x}$

Spezielle Lösungen:

1)
$$y(\pi) = 4$$
, $y_1(x) = 4e^{\sin x}$

2)
$$y(\pi/2) = 2$$
, $y_2(x) = 2e^{\sin x - 1} = \frac{2}{e} \cdot e^{\sin x}$

$$(x-1)y'=2y$$
, 1) $y(0)=3$, 2) $y(3)=-2$

Allgemeine Lösung: $y = C(x - 1)^2$

Spezielle Lösungen:

1)
$$y(0) = 3$$
, $y_1(x) = 3(x - 1)^2$

2)
$$y(3) = -2$$
, $y_2(x) = -\frac{1}{2}(x-1)^2$

$$(2x-1)y'=y, y(1)=7$$

Allgemeine Lösung:
$$y(x) = C\sqrt{2x-1}$$

Spezielle Lösung:

$$y(1) = 7, y(x) = 7\sqrt{2x - 1}$$

Aufgabe 8:
$$(x-2)y' = y$$
, $y(0) = \frac{1}{2}$

Allgemeine Lösung:
$$y(x) = C(x - 2)$$

Spezielle Lösung:
$$y(0) = \frac{1}{2}$$
, $y(x) = \frac{1}{2} - \frac{x}{4}$

Aufgabe 9:
$$(2x - 1)y' = 2y$$
, $y(0) = 3$

Allgemeine Lösung:
$$y(x) = C(2x - 1)$$

Spezielle Lösung:
$$y(0) = 3$$
, $y(x) = 3 - 6x$

$$(x^{2} - 1) y' = 2 y, y(0) = 5$$

$$(x^{2} - 1) y' = 2 y, \int \frac{dy}{y} = \int \frac{2 dx}{x^{2} - 1}$$

$$\frac{2}{x^{2} - 1} = \frac{1}{x - 1} - \frac{1}{x + 1}$$

$$\ln |y| = \ln \left| \frac{x-1}{x+1} \right| + \ln |C|, \quad y = C \frac{x-1}{x+1}$$

Allgemeine Lösung:
$$y = C \frac{x-1}{x+1}$$

Spezielle Lösung:
$$y(0) = 5$$
, $y = 5 \frac{1-x}{x+1}$

Abb. L10: Integralkurven der DGL $(x^2 - 1) y' = 2 y$

$$xy + (x + 1)y' = 0, 1) y(0) = 2, 2) y(-2) = -3$$

$$\int \frac{dy}{y} = -\int \frac{x \, dx}{x+1}, \ln|y| = -x + \ln|x+1| + \ln|C|$$

$$\ln|y| = -x + \ln|C(x+1)|, \ln\left|\frac{y}{C(x+1)}\right| = -x$$

$$\frac{y}{C(x+1)} = e^{-x}, y = C(x+1)e^{-x}$$

Allgemeine Lösung:
$$y(x) = C(x + 1)e^{-x}$$

Spezielle Lösung: 1)
$$y(0) = 2$$
, $y_1(x) = 2(x+1)e^{-x}$
2) $y(-2) = -3$, $y_2(x) = 3(x+1)e^{-x-2}$

$$2xy + (x + 1)y' = 0$$
, $1)y(0) = 1$, $2)y(1) = 1$

Allgemeine Lösung:
$$y(x) = C(x + 1)^2 e^{-2x}$$

Spezielle Lösung: 1)
$$y(0) = 1$$
, $y_1(x) = (x + 1)^2 e^{-2x}$

2)
$$y(1) = 1$$
, $y_2(x) = \frac{1}{4} (x + 1)^2 e^{2-2x}$

$$xy + (x + 2)y' = 0$$
, 1) $y(0) = 1$, 2) $y(1) = 2$

Allgemeine Lösung:
$$y(x) = C(x + 2)^2 e^{-x}$$

Spezielle Lösung: 1)
$$y(0) = 1$$
, $y_1(x) = \frac{1}{4} (x + 2)^2 e^{-x}$
2) $y(1) = 2$, $y_2(x) = \frac{2}{9} (x + 2)^2 e^{1-x}$

$$x y^2 + (x + 1) y' = 0,$$
 1) $y(0) = 1,$ 2) $y(1) = 1$

Allgemeine Lösung:
$$y = \frac{1}{C + x - \ln|x + 1|}$$

Spezielle Lösung: 1)
$$y(0) = 1$$
, $y = \frac{1}{1 + x - \ln|x + 1|}$

2)
$$y(1) = 1$$
, $y = \frac{1}{\ln 2 + x - \ln|x + 1|}$

$$y' = -x e^{y}$$
, 1) $y(0) = -2$, 2) $y(0) = 1$

$$\int e^{-y} dy = -\int x dx$$
, $e^{-y} = \frac{x^{2}}{2} + C$, $\ln(e^{-y}) = \ln\left(\frac{x^{2}}{2} + C\right)$
 $y = -\ln\left(\frac{x^{2}}{2} + C\right)$

Allgemeine Lösung:
$$y(x) = -\ln\left(\frac{x^2}{2} + C\right)$$

Spezielle Lösung: 1)
$$y(0) = -2$$
, $y_1(x) = -\ln\left(\frac{x^2}{2} + e^2\right)$
2) $y(0) = 1$, $y_2(x) = -\ln\left(ex^2 + 2\right) + 1 + \ln 2$

$$y' = -x^2 e^y$$
, $y(0) = -3$

$$y(x) = -\ln\left(\frac{x^3}{3} + C\right)$$

$$y(0) = -3,$$
 $y(x) = -\ln\left(\frac{x^3}{3} + e^3\right)$

Aufgabe 17:

$$y' = x e^{y-2}$$
, 1) $y(0) = 1$, 2) $y(0) = -1$

$$y(x) = -\ln\left(C - \frac{x^2}{2e^2}\right)$$

1)
$$y(0) = 1$$
, $y_1(x) = 2 - \ln\left(e - \frac{x^2}{2}\right)$

2)
$$y(0) = 1$$
, $y_2(x) = 2 - \ln\left(e^3 - \frac{x^2}{2}\right)$

