

Arduino Hardware Overview

What is Arduino?

The **Arduino Family** has **revolutionized** programing microcontrollers

.arduino.cc

AVR Microcontroller

ATMEL 8 bit AVR microcontroller

Boards and Shields

Boards

Modules

- ☐ Comes with a **Power Supply Socket**
- ☐ Powered through a regular <u>power</u>

<u>adaptor</u>

Shields

- ☐ Features of boards can be <u>extended</u> by adding one or more shields
- ☐ Shields **attachments** directly mounted on

COPYRIGHT 2009 rd SAW ACADEMY
DO NOT COPY OR REDISTRIBUTE WITHOUT PERMISSION

Arduino Boards - UNO

- □ Based on the ATmega328P (32 KB)
- □ **14 Digital** IO (6 PWM)
- **□ 6 Analog** inputs
- Most commonly used Arduino board
- □ First in a series of USB Arduino boards
- □ Reference model for Arduino platform
- □ 'Uno' marked release 1.0 of Arduino IDE

Modules

- □ Small in size
- ☐ Used for a specific function in a <u>larger project</u>
- □ Can be <u>soldered directly</u> on to a bigger PCB
- □ Can be mounted on a breadboard
- □ Cannot be used in conjunction with shields
- Cost effective and well suited for rapid development

Arduino Module - Nano

- □ Small
- Complete
- Breadboard friendly
- □ Inexpensive

- □ ATmega328P (32KB, v3.x) **ATmega168P** (16KB, v2.x) **18 Digital** IO (6 PWM)
- **8 Analog** inputs

Cannot be used in conjunction with Arduino shields

- □ Works with **Mini-B USB** cable
- □ Well suited for rapid development

Arduino Module - Micro

- □ ATmega32U4 (32KB, integrated USB)
- □ 20 Digital IO
 - 7 PWM outputs
 - 12 Analog inputs

- Smallest Arduino module
- □ Breadboard-friendly
- **Built-in USB** communication (virtual serial, mouse & keyboard)

- □ Emulates keyboard & mouse from your sketch
- □ Works with micro USB cable

Arduino Module - Mega

- □ ATmega2560 (256 KB memory)
- □ **54 Digital** IO (15 PWM)
- □ 16 Analog inputs
- □ 4 UARTs
- □ **Bluetooth** module

- □ Used in 3D printers, robotics
- Compatible with most shields designed for the Uno

3D Printers

Robotics Project COPYRIGHT 2019: JIGSAW ACADEMY

Arduino Module - Due

- 32-bit **ARM Cortex** M3 CPU
 - 84 MHz
 - 256-512 KB embedded flash
 - MPU memory protection unit makes it possible to run high level operating systems such as <u>LINUX</u>
- □ **54 Digital IO** (12 PWM)
- □ **12 Analog**, 4 UARTs, 2 DACs
- Works at 3.3V
- Applying voltage higher than 3.3 volts to any of the IO pins could damage the board
- Compatible with all Arduino shields that work at 3.3V

Arduino Module - 101

The intel tool chain compiles the Arduino sketch optimally across <u>both cores</u> to accomplish the most <u>demanding tasks</u>

- □ Based on **Intel Curie module**
 - x86 (Quark) + 32-bit ARC clocked at 32 MHz
- □ Integrated **BLE**
- □ Integrated 6-axis **Accelerometer**, **Gyroscope**
- Bluetooth connectivity
- □ 20 Digital IO
 - 4 PWM output
 - 6 Analog inputs
- Keeps the same form factor as UNO
- □ Works at 3.3 V
 - Protected against 5 V overvoltage
 - Outputs from pins maxes out the 3.3 V

Arduino Module - Yún

Power of LINUX

Ease of use of Arduino

- □ Designed for <u>connected devices and IOT projects</u>
- □ ATmega32U4 + Atheros AR9331
- □ Atheros processor supports LINUX distribution based on open WRT - **OpenWrt- Yún**
- In addition to LINUX commands like cURL, shell scripts and python scripts can be written for robust interactions
- □ Built-in Ethernet & Wi-Fi support
- □ USB-A (host) port
- Micro-SD card slot

Arduino Yún

Virtual serial/com port

Non-official Arduino boards

- □ Non-official boards compatible with Arduino IDE
- □ Can be programmed with the **same ease** as Arduino boards

Digispark USB Development Board

Made by **Digistump**

- □ ATtiny85 (8 Pins)
- □ 6 Digital IO
- Simple board
 - A regulator
 - An on-board LED
- □ Directly connects to **USB-A connector**
- □ Uses **V-USB** a software-only implementation of a low-speed USB device
- Emulates a keyboard or a mouse from the sketch
- □ Similar to other arduino boards but much cheaper, smaller and less powerful

NodeMCU Development Kit

ESP8266 platform package comes with <u>libraries to communicate over Wi-Fi</u> (using TCP and UDP, set up HTTP, mDNS, SSDP, and DNS servers)

- □ **ESP8266 Wi-Fi MCU** (RISC architecture)
- □ Low cost
- □ Wi-Fi SoC
- □ 80 MHz RISC processor
- □ 96KB Data RAM
- 4MB Flash
- □ **11 Digital** IO (10 PWM)
- □ 1 Analog input
- □ Wi-Fi module
- ☐ Works at **3.3V**
- □ Compatible with Arduino IDE
- □ Uses a file system in flash memory, work with SD cards, servos, SPI and I2C peripherals

Microcontroller Concepts 1

Microcontroller Concepts

Inside Arduino Nano

- Microcontroller inside the Arduino Atmega328T
- Designed by Atmel

□ Microcontroller concepts are <u>broadly applicable</u> to other microcontrollers

Atmega328T - Block Diagram

Block Diagram

Schematic representation of the components inside a microcontroller

CPU

- □ Where the program runs
- Where the compiler translates code to a series of machine instructions
- Execution of those instructions
- Heart of the machine

CPU Architecture

DO NOT COPY OR REDISTRIBUTE WITHOUT PERMISSION

COPYRIGHT 2019: JIGSAW ACADEMY
DO NOT COPY OR REDISTRIBUTE WITHOUT PERMISSION

Memory	Volatile?	Read/Write?	Applications
SRAM	Yes	Yes	Used for data, constants, stack
Flash	No	Yes	Needs to be erased and written in blocks from host. Used for code (program memory)
Why Station	No No	Yes	Needs to be written using special instructions. Used for configuration (user settings
ROM	No	No	Fixed when chip is manufactured. Used for bootloader and commonly used code

SRAM- <u>Static</u> Random Access Memory

- □ Where all the data needed by the code is kept
- □ Can both read and write to it with no restriction
- □ **Volatile** <u>All contents are lost</u> when power is switched off

Dynamic RAM - needs to be refreshed periodically, else all its contents will be lost

Static RAM - does not require a refresh cycle Better, faster, but <u>bulkier</u>

Memory Volatile? Rea		Read/Write?	Applications
SRAM	Yes	Yes	Used for data, constants, stack
Flash	No	Yes	Needs to be erased and written in blocks from host. Used for code (program memory)

Flash

- □ Contents are not erased when power is turned off
- □ Can write to it but the write needs to happen in a special sequence
- □ An entire block of memory (typically 4 KB or 2 KB) has to be erased and then rewritten in one shot relatively slow

Memory	Memory Volatile? Read/Write?		Applications	
SRAM	Yes	Yes	Used for data, constants, stack	
Flash	No	Yes	Needs to be erased and written in blocks from host; used for code (program memory)	
EEPROM	No	Yes	Needs to be written using special instructions. Used for configuration (user settings)	
ROM	No	No	Fixed when chip is manufactured. Used for bootloader and commonly used code	

EPROM - Electrically Erasable Programmable Read Only Memory

- □ Can write individual bytes to it; can be done from the program
- □ Typically used for storing configuration value

Memory Volatile? Read/Write?		Read/Write?	Applications
SRAM	Yes	Yes	Used for data, constants, stack
Flash	No	Yes	Needs to be erased and written in blocks from host; used for code (program memory)
EEPROM	No	Yes	Needs to be written using special instructions. Used for configuration (user settings)
ROM	ROM No No		Fixed when chip is manufactured. Used for bootloader and commonly used code

ROM - Read Only Memory

□ Data that is built into the chip and can <u>never be rewritten</u> or changed in any way

Bootloader

Atmega's data sheet does not explain this

Functions in ROM are exposed to user codes - certain library functions can be <u>placed in ROM</u>

Microcontroller Peripherals

Microcontroller Peripherals

PD 0-7

PB 0-7

PC 0-6

Types of Sensors

LDR or Light Dependent Resistor

Photo resistor made of a material whose **resistivity** is a function of the intensity of light incident on it

Turns ON in dark and turns OFF in light

Sensor Modules

Advantages

Integrates necessary external components

Saves the trouble of procuring components and assembling circuitry

Breadboard-friendly

- Pins fit in <u>standard breadboards</u> easily
- Pins can be <u>directly connected</u> to a controller

Additional value added functions

- E.g.: Threshold output in LDR
- Without sacrificing any flexibility
- Good to have features, for use with low power microcontrollers

Microphone Module

High or Low output depending upon the intensity of the sound

Module incorporates all external circuitry needed for the microphone to measure sound

DHT11 Sensor

- ☐ Used to measure temperature and relative humidity in its surrounding area
- ☐ Uses a proprietary, 1-wire protocol for communication
- ☐ Libraries for taking readings from this sensor are readily available for Arduino and other controllers
- ☐ Typically used in household applications

Tracking Sensor

High Accuracy

This mechanism can be used to detect an object within 1mm to 3cm from the sensor

Ultrasonic Distance Sensor

- ☐ Used to find distance of an object within 3cm to 70cm range
- ☐ Longer range than IR sensor but does not require a black line on floor

- ☐ <u>Time</u> measured is converted to <u>distance</u>
- Used for obstacle detection, gesture detection or a simple contact-less counter

DO.

Relay Module

- ☐ Controls <u>high-voltage electrical appliances</u> from a <u>low-voltage controller</u>
- ☐ Widely used in Home & Industrial Automation

Summary

Sensor Modules	Туре	Applications
LDR	Analog	Automatic room/path lights, Burglar alarm
Microphone Module	Digital	Presence detection, 'Clap' controlled devices
DHT11	Digital	Home automation, Personal weather station
Magnetic Sensors	Digital	Door Alarms
Tracking Sensor	Digital	Contact-less switch, Line follower robot
Ultrasonic Distance Sensor	Digital	Gesture Detection, Industrial Automation
Motion Detection	Digital	Smart Lights, Surveillance Systems