Section 1: UML

William Findlay January 16, 2019

Contents

1	UML Overview	3
	1.1 The UML Family	3
2	Use Case Diagrams	3
	2.1 Some Rules	3
3	Class Diagrams	4
	3.1 Some Rules	5
	3.2 Object Diagrams	5
4	State Machine Diagrams	6
	4.1 How it Looks	6
5	Activity Diagrams	7
6	Sequence Diagrams	8
7	Packages	8

1 UML Overview

- unified modeling language
- what is it?
 - > a tool for expressing system models
 - functional
 - dynamic
 - \blacksquare object

1.1 The UML Family

- each notation is for a specific model
- models and notations
 - > functional
 - \blacksquare use case diagrams
 - ➤ dynamic
 - state machine diagrams
 - \blacksquare sequence diagrams
 - activity diagrams
 - ➤ object
 - class diagrams

2 Use Case Diagrams

- what is a use case?
 - > behavior observed by **external entities**
 - > entities called actors
 - end users
 - ▷ different roles
 - \blacksquare external systems
 - > systems that our system will interact with
 - > can also be represented textually
 - table-based
- what are use case diagrams?
 - ➤ graphical representation of use cases
- purpose
 - \triangleright system boundaries
 - > always use a box in the drawing

2.1 Some Rules

- the box is important
- ovals for use cases
 - \triangleright use cases are labeled with verb phrases
- actors
 - \triangleright draw as stick figures
 - ➤ an actor is a **role**
 - ➤ not necessarily a person
 - > a person can have more than one role
- in our project
 - > SQL and Qt are not external roles
 - > they are part of the system

Figure 1: An example of a use case diagram. The stick figures are actors. The bubbles inside the box are use cases. A use case is always labeled with a verb phrase.

3 Class Diagrams

- graphical representation of classes and **objects**
- purpose
 - \triangleright describe a system
 - ➤ in terms of classes
 - ➤ include
 - \blacksquare attributes
 - \blacksquare operations
 - associations

Figure 2: An example of a class diagram. Each class is represented by a box with a name, attributes, and operations and is connected to other classes by associations.

3.1 Some Rules

- three sections
 - ➤ class name
 - \succ attributes
 - > operations
- attributes
 - ➤ access specifier
 - + public
 - \blacksquare # protected
 - \blacksquare private
 - ➤ name
 - \succ : followed by data type
- operations
 - ➤ access specifier
 - \blacksquare + public
 - \blacksquare # protected
 - \blacksquare private
 - ➤ name
 - > parameters
 - \blacksquare input
 - \blacksquare output
 - \blacksquare input-output
- associations
 - \succ direction
 - directed
 - \blacksquare undirected
 - > types
 - inheritance
 - ▷ aggregation
 - \blacksquare composition
 - > cardinality
 - none-to-many 0..*
 - \blacksquare one-to-many 1..*
 - etc.

3.2 Object Diagrams

- \bullet underlined \implies specific instance
 - ➤ also include an instance name before a : in front of class
 - \triangleright sometimes just a : if instance name is implied

Figure 3: An example of an object diagram. Note that the object name is not always specified if it is obvious.

4 State Machine Diagrams

- graphical representation of the state of a single objects
 - > only more complicated ones
 - > some may not have any states
- purpose
 - > set of states
 - > transitions from one state to another
 - ➤ state:
 - attribute values for an object
 - ➤ transition:
 - conditions under which an object changes state

4.1 How it Looks

- states in bubbles
- arrows (transitions)
 - ➤ labels are mandatory
 - except labels from start or to end

Figure 4: An example of a state machine diagram for a course registration request. The bubbles are the states and the labeled arrows are the transitions. Also note that a state can have one or more transitions to itself.

- ➤ labels are the transitions
- \succ you can have arrows from a state to itself

5 Activity Diagrams

- we won't use these a lot
- what are they?
 - > system behavior
 - sequencing
 - coordination
- purpose
 - ➤ describe sequential steps in processing
 - \blacksquare control flow
 - concurrency

• Example of course registration validation

Figure 5: An example of an activity diagram. The two halves of the squre are called "swim lanes". You can also have one swim lane or more than two swim lanes.

- 6 Sequence Diagrams
- 7 Packages