1. Дана функция $f(x,y)=x^2$ и множество $M=\{(x,y)\colon x^2+y^2=x^4+y^4\}$ Тогда

- а) множество M ограниченное
- Ответ: выберите ответ ‡
- 6) множество M заминутов
- Ответ. Дв 🕴
- в) функция f(x,y) на множествfM достигает наименьшего значения в единотвенной точке
- Ответ Быберите ответ \$
- г) точка (-1,0) ввляется точкой локального минимума функции f(x,y) на множестве M
- Ответ Амберите ответ 💠
- с) в точке $\left(\sqrt{rac{1+\sqrt{2}}{2}},-rac{1}{\sqrt{2}}
 ight)$ функция f(x,y) достигает наибольшего значения на множестве M

53000 10 0000 0000

Ответ:	Нет	
CIDE!	1102010	

г) точка (-1,0) является точкой локального минимума функции f(x,y) на множестве M

д) в точке $\left(\sqrt{rac{1+\sqrt{2}}{2}},-rac{1}{\sqrt{2}}
ight)$ функция f(x,y) достигает наибольшего значения на множестве M

e) число локальных минимумов функции f(x,y) на множестве M четно

ж) число локальных максимумов функции f(x,y) на множестве M четно

з) в точке
$$\left(rac{1}{2},-\sqrt{rac{2+\sqrt{7}}{4}}
ight)$$
 функция $f(x,y)$ достигает наибольшего значения на множестве M

Матрица A, задает оператор проектирования в пространстве ${m R}^4$ и имеет ранг, равный 3. Известно, что векторы

$$x_1=egin{pmatrix}1\0\1\0\end{pmatrix},\quad x_2=egin{pmatrix}0\1\0\1\end{pmatrix}$$

являются собственными векторам матрицы A, а векторы

$$y_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad y_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$

являются собственными векторам транспонированной матрицы A^T . Тогда

являю	собственными векторам транспонированной матрицы $A^{T^{\prime}}$. Тогда	Про
а) вект	$oldsymbol{x}_1$ и $oldsymbol{x}_2$ соответствуют одному собственному числу матрицы $oldsymbol{A}$	8-
Ответ.	берите ответ 💠	
б) вект	x_1 и x_2 соответствуют разным собственным числам матрицы A	
Ответ.	берите ответ 💠	
в) если	тор y_1 является собственным вектором матрицы A , то и вектор y_2 является собственным вектором матрицы A	
Ответ:	вберите ответ 🙏	
г) суще	ет ровно одна симметричная матрица A , удовлетворяющая поставленным условиям	
Ответ.	вберите ответ 💠	
д) суще	ует ровно две несимметричные матрицы A , удовлетворяющие поставленным условиям	
Ответ.	іберите ответ 💠	
если	рица $m{A}$ симметричная, то сумма ее первого и второго столбцов равна сумме ее третьего и четвертого столбцов	
AURIGI	21:16	/ 1:35:18

Дан функциональный ряд $\sum_{n=1}^\infty f_n(x)$, где $f_n(x)=rac{1}{n^lpha+n^2x^2}$ (здесь lpha- вещественный параметр). Обозначим через

- M множество сходимости данного ряда. Тогда
- а) множество M открытое
- Ответ: выберите ответ 💠
- б) множество M замкнутое
- Ответ: Выберите ответ 💠
- в) множество M ограниченное

Ответ: выберите ответ \$

последовательность $f_n(x)$ равномерно сходится к нулю на множестве M

Дано дифференциальное уравнение

$$y' = \frac{y(2x^2 - y^2)}{2x^3}.$$

Обозначим через g(x) максимальное (не продолжаемое) решение уравнения, для которого g(1)=a, где a>0. Тогда

- а) среди решений уравнения есть ненулевая линейная функция, определенная на множестве $(0,+\infty)$
- Ответ: выберите ответ 💠
- б) существуе такое a>0, что график функции y=g(x) пересекает ось Ox
- ответ: выберите ответ 💠
- в) при a=1 функция g(x) имеет локальный максимум в точке x=1/e

в) при $a=1$ функ	јия $g(x)$ имеет локальный максимум в точке x	=1/e
Ответ: Нет	\$	
г) при $a=1$ функ	ия $g(x)$ имеет локальный минимум в точке $x=$	= $1/\sqrt{e}$
Ответ. Да	\$	
д) при любом $a>$	0 график функции $y=g(x)$ имеет асимптоту	
Ответ. Да	‡	
е) существуе такое	$a>0$, что $\lim_{x o +0}g(x)=0$	
Ответ.	\$	
ж) $\lim_{x \to +\infty} g(x) =$	+∞	
Ответ. Да	•	
з) график функции	$g(x)$ замкнут в $oldsymbol{R}^2$	
ответ: выберите	ответ 💠	

ответить и заверши