INDUCTION ON Λ

Let Φ be some property of λ -terms. If the following conditions are all met:

- (LI1) For all variables x, Φ holds of x.
- (LI2) For all terms P and Q, if Φ holds of P and Φ holds of Q then Φ holds of PQ.
- (LI3) For all terms P and variables x, if Φ holds of P then Φ holds of $\lambda x.P$.

Then it follows that Φ holds of all λ -terms.

1

REMINDER: FVS AND SUBSTITUTION

$$FV(x) = \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

$$FV(\lambda x. N) = FV(N) \setminus \{x\}$$

$$y[N/x] = y$$
 if $x \neq y$
 $y[N/x] = N$ if $x = y$
 $(PQ)[N/x] = P[N/x]Q[N/x]$
 $(\lambda y. P)[N/x] = \lambda y. P$ if $y = x$
 $(\lambda y. P)[N/x] = \lambda y. P[N/x]$ if $y \neq x$ and $y \notin FV(N)$