Claims:

1	1. A method of generating a communication frequency based on a modulo 23 solution for an
2	input variable, comprising:
3	receiving an input variable;
4	generating an intermediate modulo 23 solution by:
5	generating a binary representation of said input variable;
6	using the five rightmost digits of said binary representation of said input variable to
7	represent a first intermediate remainder (R');
8	using the remaining three leftmost digits to represent a first intermediate quotient
.9	(Q');
10	expressing said first intermediate modulo solution as a sum of said first intermediate
11	quotient (Q') multiplied by 9 plus said first intermediate remainder (R'); and
12	comparing said first intermediate modulo solution to the quantity 32;
13	indicating said first intermediate remainder (R') as the modulo remainder (R) if said
14	quantity of said first intermediate modulo solution is less than 32; and
15	using said modulo remainder to generate said communication frequency.
1 .	2. The method according to claim 1 wherein an iterative process is performed if said first
2	intermediate modulo solution is greater than 32, said iterative process comprising:
3	(a) generating a binary representation of said first intermediate modulo solution;
4	(b) using the five rightmost digits of said binary representation of said first intermediate
5	modulo solution to represent a second intermediate remainder (R")
6	(c) using said remaining three leftmost digits to represent a second intermediate

7			quotient (Q");
8		(d)	expressing said second intermediate modulo solution as a sum of said second
9			intermediate quotient (Q") multiplied by 9 plus said second intermediate remainder
10			(R");
11		(e)	comparing said second intermediate modulo solution to the quantity 32;
12		(f)	indicating said second intermediate remainder (R") as the modulo remainder (R) if
13			said quantity of said second intermediate modulo solution is less than 32; and
14		(g)	repeating steps (a) through (f) if said intermediate modulo solution is greater than 32
15			and continuing until the intermediate modulo solution is less than 32.
1	3.	The r	method according to claim 1, wherein said multiplication of said first intermediate
2	quoti	ent (Q')	by 9 is accomplished by:
3		shiftii	ng said binary representation of Q' to the left by three places; and
4		addin	g said left-shifted value of Q'to the original value of Q'.
1	4.	The r	method according to claim 2, wherein said multiplication of said second intermediate
2	quoti	ent (Q")	by 9 is accomplished by:
3		shifti	ng said binary representation of Q" to the left by three places; and
.4		addin	g said left-shifted value of Q" to the original value of Q".
1	5.	A me	thod of generating a modulo 79 solution for an input variable, comprising:
2		receiv	ving an input variable;
3		gener	rating an intermediate modulo 79 solution by:
4			generating a binary representation of said input variable;

5		using the seven rightmost digits of said binary representation of said input variable
6		to represent a first intermediate remainder (R');
7		using the remaining leftmost digits to represent a first intermediate quotient (Q');
8		expressing said first intermediate modulo solution as a sum of said first intermediate
9		quotient (Q') multiplied by 49 plus said first intermediate remainder (R');
10		and
11		comparing said first intermediate modulo solution to the quantity 128;
12	indica	ating said first intermediate remainder (R') as the modulo remainder (R) if said
13	•	quantity of said first intermediate modulo solution is less than 128; and
14	using	said modulo remainder to generate said communication frequency.
1	6. The i	method according to claim 5 wherein an iterative process is performed if said first
2	intermediate	modulo solution is greater than 128, said iterative process comprising:
3	(a)	generating a binary representation of said first intermediate modulo solution;
4	(b)	using the seven rightmost digits of said binary representation of said first
5		intermediate modulo solution to represent a second intermediate remainder (R")
6	(c)	using said remaining leftmost digits to represent a second intermediate quotient
7		(Q");
8	(d)	expressing said second intermediate modulo solution as a sum of said second
9		intermediate quotient (Q") multiplied by 49 plus said second intermediate remainder
10		(R");
11	(e)	comparing said second intermediate modulo solution to the quantity 128;
12	(f)	indicating said second intermediate remainder (R") as the modulo remainder (R) if

13		said quantity of said second intermediate modulo solution is less than 128; and
14		(g) repeating steps (a) through (f) if said intermediate modulo solution is greater than
15		128 and continuing until the intermediate modulo solution is less than 128.
1	7.	The method according to claim 5, wherein said multiplication of said first intermediate
2	quotie	ent (Q') by 49 is accomplished by:
3		shifting said binary representation of Q'ato the left by 5 places to define a first shifted Q'
4		value,
5		shifting said binary representation of Q' to the left by 4 places to define a second shifted Q'
6		value; and
7		adding said first and second shifted values of Q' to the original value of Q'.
1	8.	The method according to claim 6, wherein said multiplication of said second intermediate
2	quotie	ent (Q") by 9 is accomplished by:
3		shifting said binary representation of Q' to the left by 5 places to define a first shifted Q'
4		value,
5		shifting said binary representation of Q' to the left by 4 places to define a second shifted Q'
6		value; and
7		adding said first and second shifted values of Q' to the original value of Q'.
1.	9.	A system for generating a communication signal at a predetermined frequency, comprising:
2		a transceiver, said transceiver comprising:
3		a radio frequency module;
4		a baseband core further comprising a frequency control functionality;

5		a freq	uency hopper within said baseband core of said transceiver, said frequency hopper
6	being	operabl	e to generate a plurality of frequencies related to a modulo 23 solution of an input
7	variabl	le, whei	rein said frequency hopper generates an intermediate modulo 23 solution by:
8			generating a binary representation of said input variable;
9			using the five rightmost digits of said binary representation of said input variableto
10			represent a first intermediate remainder (R');
11			using the remaining three leftmost digits to represent a first intermediate quotient
12			(Q');
13			expressing said first intermediate modulo solution as a sum of said first intermediate
14			quotient (Q') multiplied by 9 plus said first intermediate remainder (R');
15			comparing said first intermediate modulo solution to the quantity 32; and
16			indicating said first intermediate remainder (R') as the modulo remainder (R) if said
17			quantity of said first intermediate modulo solution is less than 32.
1	10.	The n	nethod according to claim 9 wherein an iterative process is performed if said first
2	interm	ediate r	modulo solution is greater than 32, said iterative process comprising:
3		(a)	generating a binary representation of said first intermediate modulo solution;
4		(b)	using the five rightmost digits of said binary representation of said first intermediate
5			modulo solution to represent a second intermediate remainder (R")
6		(c)	using said remaining three leftmost digits to represent a second intermediate
7			quotient (Q");
8		(d)	expressing said second intermediate modulo solution as a sum of said second
9			intermediate quotient (Q") multiplied by 9 plus said second intermediate remainder

10		(R");
11		(e) comparing said second intermediate modulo solution to the quantity 32;
12		(f) indicating said second intermediate remainder (R") as the modulo remainder (R) if
13 .		said quantity of said second intermediate modulo solution is less than 32; and
14		(g) repeating steps (a) through (f) if said intermediate modulo solution is greater than 32
15		and continuing until the intermediate modulo solution is less than 32.
1 .	11.	The method according to claim 9, wherein said multiplication of said first intermediate
2	quotie	nt (Q') by 9 is accomplished by:
3		shifting said binary representation of Q' to the left by three places; and
4		adding said left-shifted value of Q' to the original value of Q'.
1	12.	The method according to claim 10, wherein said multiplication of said second intermediate
2 -	quotie	int (Q") by 9 is accomplished by:
3		shifting said binary representation of Q" to the left by three places; and
4	•	adding said left-shifted value of Q" to the original value of Q".
1	13.	A system for generating a communication signal at a predetermined frequency, comprising:
2		a transceiver, said transceiver comprising:
3		a radio frequency module;
4		a baseband core further comprising a frequency control functionality;
5		a frequency hopper within said baseband core of said transceiver, said frequency hopper
6		being operable to generate a plurality of frequencies related to a modulo 79 solution
7		of an input variable, wherein said frequency hopper generates an intermediate

	•	
8		modulo 79 solution by:
9		generating a binary representation of said input variable;
10		using the seven rightmost digits of said binary representation of said input variable
11	•	to represent a first intermediate remainder (R');
12		using the remaining leftmost digits to represent a first intermediate quotient (Q');
13		expressing said first intermediate modulo solution as a sum of said first intermediate
14		quotient (Q') multiplied by 49 plus said first intermediate remainder (R');
15		comparing said first intermediate modulo solution to the quantity 128; and
16	•	indicating said first intermediate remainder (R') as the modulo remainder (R) if said
17		quantity of said first intermediate modulo solution is less than 128.
1	14. The m	nethod according to claim 13 wherein an iterative process is performed if said first
2	intermediate r	nodulo solution is greater than 128, said iterative process comprising:
3	(a)	generating a binary representation of said first intermediate modulo solution;
4	(b)	using the seven rightmost digits of said binary representation of said first
5		intermediate modulo solution to represent a second intermediate remainder (R")
6	(c)	using said remaining leftmost digits to represent a second intermediate quotient
7		(Q");
8	(d)	expressing said second intermediate modulo solution as a sum of said second
9		intermediate quotient (Q") multiplied by 49 plus said second intermediate remainder
10		(R");
11	(e)	comparing said second intermediate modulo solution to the quantity 128;
12	(f)	indicating said second intermediate remainder (R") as the modulo remainder (R) if

13	said quantity of said second intermediate modulo solution is less than 128; and
14	(g) repeating steps (a) through (f) if said intermediate modulo solution is greater than
15	128 and continuing until the intermediate modulo solution is less than 128.
1	15. The method according to claim 13, wherein said multiplication of said first intermediate
2	quotient (Q') by 49 is accomplished by:
3	shifting said binary representation of Q' to the left by 5 places to define a first shifted Q
4	value,
5	shifting said binary representation of Q' to the left by 4 places to define a second shifted Q
6	value; and
7	adding said first and second shifted values of Q' to the original value of Q'.
1	16. The method according to claim 14, wherein said multiplication of said second intermediate
2	quotient (Q") by 9 is accomplished by:
3	shifting said binary representation of Q' to the left by 5 places to define a first shifted Q'
4	value,
5	shifting said binary representation of Q' to the left by 4 places to define a second shifted Q'
6	value; and
7	adding said first and second shifted values of Q' to the original value of Q'.

1	17. A system for generating communication frequencies in a wireless interface system that
2	services communications between a wirelessly enabled host and at least one user input device,
3	comprising:
4	a wireless interface unit that wirelessly interfaces with the wirelessly enabled host, wherein
5	the wireless interface unit comprises:
6	an analog module including a transceiver unit and a frequency synthesizer,
7	a baseband module including a frequency hopper, wherein said frequency hopper is
8	operable to generate a plurality of frequencies related to a modulo 23
9	solution of an input variable, wherein said frequency hopper generates an
10	intermediate modulo 23 solution by:
11	generating a binary representation of said input variable;
12	using the five rightmost digits of said binary representation of said input
13	variable to represent a first intermediate remainder (R');
14	using the remaining three leftmost digits to represent a first intermediate
15	quotient (Q');
16	expressing said first intermediate modulo solution as a sum of said first
17	intermediate quotient (Q') multiplied by 9 plus said first intermediate
18	remainder (R');
19	comparing said first intermediate modulo solution to the quantity 32; and
20	indicating said first intermediate remainder (R') as the modulo remainder
21	(R) if said quantity of said first intermediate modulo solution is less
22	than 32; and

23			wherein said frequency synthesizer is operable to generate a frequency hop
24			sequence using said result of said modulo 23 solution generated by
25			said frequency hopper.
1	18.	The s	system according to claim 17 wherein an iterative process is performed if said first
2	intern	nediate	modulo solution is greater than 32, said iterative process comprising:
3		(a)	generating a binary representation of said first intermediate modulo solution;
4		(b)	using the five rightmost digits of said binary representation of said first intermediate
5			modulo solution to represent a second intermediate remainder (R")
6		(c)	using said remaining three leftmost digits to represent a second intermediate
7			quotient (Q");
8		(d)	expressing said second intermediate modulo solution as a sum of said second
9			intermediate quotient (Q") multiplied by 9 plus said second intermediate remainder
10			(R");
11		(e)	comparing said second intermediate modulo solution to the quantity 32;
12		(f)	indicating said second intermediate remainder (R") as the modulo remainder (R) if
13			said quantity of said second intermediate modulo solution is less than 32; and
14		(g)	repeating steps (a) through (f) if said intermediate modulo solution is greater than 32
15			and continuing until the intermediate modulo solution is less than 32.
1	19.	The 1	method according to claim 17, wherein said multiplication of said first intermediate
2.	quotie	ent (Q')	by 9 is accomplished by:
3		shifti	ng said binary representation of Q' to the left by three places; and

4		adding said left-shifted value of Q' to the original value of Q'.
1	20.	The method according to claim 18, wherein said multiplication of said second intermediate
2	quotie	ent (Q") by 9 is accomplished by:
3		shifting said binary representation of Q" to the left by three places; and
4		adding said left-shifted value of Q" to the original value of Q".
1	21.	A system for generating communication frequencies in a wireless interface system that
2	servic	es communications between a wirelessly enabled host and at least one user input device,
3	comp	rising:
4		a wireless interface unit that wirelessly interfaces with the wirelessly enabled host, wherein
5		the wireless interface unit comprises:
6	•	an analog module including a transceiver unit and a frequency synthesizer,
7		a baseband module including a frequency hopper, wherein said frequency hopper is
8		operable to generate a plurality of frequencies related to a modulo 79
9		solution of an input variable, wherein said frequency hopper generates an
10		intermediate modulo 79 solution by:
11		generating a binary representation of said input variable;
12		using the seven rightmost digits of said binary representation of said input variableto
13		represent a first intermediate remainder (R');
14		using the remaining leftmost digits to represent a first intermediate quotient (Q');
15		expressing said first intermediate modulo solution as a sum of said first intermediate
16		quotient (Q') multiplied by 49 plus said first intermediate remainder (R');

The second of th

Morato Complete (S. 19) Proposition (S. 19)

	1111011	icy Doc.	
17			comparing said first intermediate modulo solution to the quantity 128; and
18			indicating said first intermediate remainder (R') as the modulo remainder (R) if said
19		,	quantity of said first intermediate modulo solution is less than 128.
1	22.	The	system according to claim 21 wherein an iterative process is performed if said first
2	intern	nediate	modulo solution is greater than 128, said iterative process comprising:
3		(a)	generating a binary representation of said first intermediate modulo solution;
4		(b)	using the seven rightmost digits of said binary representation of said first
5			intermediate modulo solution to represent a second intermediate remainder (R")
6		(c)	using said remaining leftmost digits to represent a second intermediate quotient
7			(Q");
8		(d)	expressing said second intermediate modulo solution as a sum of said second
9			intermediate quotient (Q") multiplied by 49 plus said second intermediate remainder
10			(R");
11		(e)	comparing said second intermediate modulo solution to the quantity 128;
12		(f)	indicating said second intermediate remainder (R") as the modulo remainder (R) if
13			said quantity of said second intermediate modulo solution is less than 128; and
. 14		(g)	repeating steps (a) through (f) if said intermediate modulo solution is greater than
15			128 and continuing until the intermediate modulo solution is less than 128.
1	23.	The	system according to claim 22, wherein said multiplication of said first intermediate
2	quotie	ent (Q')) by 49 is accomplished by:
3		shifti	ng said binary representation of Q' to the left by 5 places to define a first shifted Q'

4		value,	
5		shifting said binary representation of Q' to the left by 4 places to define a second shift	ted Q
6		value; and	
7		adding said first and second shifted values of Q' to the original value of Q'.	
1	24.	The system according to claim 14, wherein said multiplication of said second interm	nediate
2	quotie	ent (Q") by 9 is accomplished by:	
3		shifting said binary representation of Q' to the left by 5 places to define a first shift	ted Q'
4		value,	
5 .		shifting said binary representation of Q' to the left by 4 places to define a second shift	ted Q'
6	• .	value; and	
7		adding said first and second shifted values of Q' to the original value of Q'.	