Aparelho Fonador Humano e Processamento Digital do Sinal de Voz

ESTI019 – Comunicações Multimídia

Profs. Celso S. Kurashima, Kenji Nose e Mário Minami UFABC

Raio-X do Aparelho Fonador Humano (AFH)

Elementos Anatômicos AFH

Laringe e Pregas Vocais

Tensão variável pelas articulações entre cartilagens Tireóide e Cricóide

Cordas (Pregas) Vocais

Laringe e Cordas Vocais

https://www.youtube.com/watch?v=0H5WKQ--q4c

Vários são os músculos que atuam nas Cordas (Pregas) Vocais.

Fábrica da Voz: Sistema Completo

https://www.youtube.com/watch?v=SfhGbCjHA3w

Ciclo de Vibração das Pregas Vocais

Adução Fechamento Abdução Abertura

Estruturas e Articuladores Trato Vocal e Nasal

- ightharpoonup cavidades \rightarrow filtro acústico \rightarrow estrutura ressonante da voz humana
- ► homem adulto → tamanho do trato vocal, em média, é de 17 cm
 - mulher adulta, cerca de 14 cm; na criança em idade escolar, 10 cm
- Com os articuladores, a seção transversal varia de 0 a 20 cm²
- Comprimento médio do trato nasal num homem adulto é de 12 cm
 - Utilização controlada através do palato mole
- A faixa de abertura do palato mole num homem adulto vai de 0 a 5 cm²
 - sons nasais (palato mole aberto) ou
 - sons não nasais (palato mole fechado).
- A excitação para o filtro acústico será periódica ou não, dependendo do que ocorrer na laringe, pela atuação das cordas vocais
 - cordas vocais vibrando na passagem do ar temos a excitação (periódica) dos chamados sons sonoros ("voiced's")
 - quando as cordas vocais não vibram a excitação é dita surda ("unvoiced").

Modelo Fonte-Filtro

Eletroglotografia (EGG)

É uma técnica não invasiva usada para registrar comportamento na laringe indiretamente pela medição da impedância eléctrica na garganta durante a fonação

Um sinal de alta frequência (300kHz a 5Mz) com minima potência (μW) e baixa corrente (≈ 1mA) e baixa tensão (<0.5V), para segurança fisiológica, atravessa dois eletrodos,

instalados na superfície da garganta próximo da cartilagem tireóide.

<u>Electroglottography, in:</u>
https://www2.ims.uni-stuttgart.de/EGG/frmst2.htm

Análise Temporal da Voz

- Segmentos
- Jane as: Processamento de Tempo Curto
- Energia de Tempo Curto
- ightharpoonupPitch, T_0
- Frequência Fundamental f_0

Segmentos (Quadros)

- Divisão do sinal em trechos "quase-estacionários"
- Frequência de amostragem f_a , segue o teorema de Nyquist (dobro da frequência máxima do sinal)
- \blacksquare duração do segmento, T_s , é fixa:

Maior que uma transição da articulação

Menor que a duração de uma vogal "rápida"

ightharpoonup Tamanho da Janela, ou número de amostras por segmento, N_I , é dado por:

Pois,
$$f_a = \frac{1}{T_a}$$
 $N_J = f_a T_s = \frac{T_s}{T_a}$

onde T_a é o período de amostragem.

Janelas e Espectro das Janelas

Energia de Curto Prazo

Num *l*-ésimo Segmento, de tamanho N_J :

$$E(l) = \frac{1}{N_J} \sum_{m=0}^{N_J - 1} (x_l(m))^2$$

$$0 \le l \le N_t$$

$$E_{dB}(l) = 10\log E(l)$$

Sendo N_t o número total de segmentos do sinal N_J o tamanho de cada segmento.

Contorno de Energia

Sons Vocálicos e Consonantais

- Sons vocálicos, quando o fluxo de ar praticamente não sofre restrições à sua passagem pelo trato vocal. Sons Vocálicos possuem *maior Energia*.
- Sons consonantais, quando as restrições (constrições) são significativas, diminuindo assim significativamente sua amplitude, e assim possuem menor Energia.

Densidade Espectral de Potência

Transformada Discreta de Fourier (TDF)

$$S_i(f) = 10 \log |\mathbf{S}_i[f]|^2$$

$$E(f) = 10\log_{10} \left| \mathbf{E}[f] \right|^2$$

$$I(f) = 10\log_{10} \left| \mathbf{I}[f] \right|^2$$

$$S_f(f) = 10\log_{10} \left| \mathbf{S}_f[f] \right|^2$$

$$\mathbf{S}_{i}[f] \stackrel{TDF}{\longleftrightarrow} s_{i}(t)$$

$$\mathbf{E}[f] \stackrel{TDF}{\longleftrightarrow} e(t)$$

$$\mathbf{I}[f] \stackrel{TDF}{\longleftrightarrow} i(t)$$

$$\mathbf{S}_f[f] \stackrel{TDF}{\longleftrightarrow} s_f(t)$$

Período Fundamental T_0 , Pitch, Frequência Fundamental f_0

$$f_0 = \frac{1}{T_0}$$

Palavra "ALÔ"

f_0 , T_0 e Pitch

O tempo decorrido entre duas aberturas sucessivas das cordas vocais é chamado de *período fundamental* T_0 e a freqüência de vibração é chamada de freqüência fundamental f_0 da fonação:

$$f_0 = \frac{1}{T_0}$$

- O''pitch'' significa na terminologia da psicologia cognitiva (e também em psicolingüística e psicofisologia) a percepção humana da freqüência fundamental
- Pitch pode ser tanto "percebido" pela f_0 quanto por T_0

FONEMAS SONOROS e SURDOS

- Fonemas sonoros ("voiced"), ou Excitação Sonora, são aqueles que ocorrem quando a força muscular empurra o ar dos pulmões, saindo pela traquéia e atravessando a glote, onde periodicamente o fluxo pode ser interrompido pelo movimento das cordas vocais. Os movimentos periódicos de abertura e o fechamento da glote ocorrem em resposta à pressão sub-glotal do ar da traquéia, sendo que este ciclo periódico é o responsável pelo formato da onda de ar emergente da glote.
 - Fonemas surdos, ou Excitação Surda ("unvoiced") ocorre quando forma-se uma constrição em algum lugar do trato vocal e depois força-se a passagem do ar através desta constrição.

Sinais de Voz Sonoros e Surdos

Análise do Sinal

- 1000ms de amostra, $f_a = 8$ kHz, banda telefônica (300-3400Hz)
- \blacksquare Segmentos de 37.5ms, J = 8000*0.0375 = 300
- Ruído de fundo 13dB, Fonema /s/ 25dB acima. Fonema consonantal, surdo constritivo: espectro quase branco (Fonema consonantal sonoro constritivo, p.ex. /v/ de/NOVE).
- Vogais /e/ e /i/ possuem "picos" e "vales" no espectro. Nas frequências *Formantes* f_1, f_2, f_3, f_4 , ou de *ressonância* nas cavidades, o sinal atinge maiores potências (em f_1 , 50dB). Nas *anti-ressonâncias* a potência cai a 30 dB.

Triângulo das Vogais, português

Adaptado de Russo e Behlau, 1993

Classificação das vogais

	Front	Central	Back
Close	i	(i)	u
Close-mid	e		0
Open-mid	3	В	Э
Open		a	

Português brasileiro Vogais orais

/٤/	/ ' \$٤/	sé	/ε/	
/e/	/ ' se/	sê	/e/	
/I ~ İ	/ / 'si /	se	/ i / '	
/i/	/ 'si /	si	/i/	
/c/	/'pos/	pós	/c/	
/o/	/'pos/	pôs	/o/	
/ u /	/'tu/	tu	/u/	
/ y /	\ , rsms\	rama	/ y /	
/a/	/'awmɐ/	alma	/a/	
Vogais nasais				
$/\widetilde{\mathbf{I}}/$	/ ' VĨ/	vim	$/\tilde{\mathbf{I}}/$	
/ẽ/	/'ẽtru/	entro	/ẽ/	
\ ỹ \	/'ẽtru/	antro	$/\tilde{a}/$	
/õ/	/'s \tilde{o} / (in some dialects: / $\tilde{o}\tilde{w}$ /) som	/õ/	

Plano de monotongos do português de São Paulo

https://pt.wikipedia.org/wiki/Fonologia_da_l%C3%ADngua_portuguesa#:~:text=O%20portugu%C3%AAs%20usa%20a%20altura,maioria%20dos%20dialetos%20do%20Brasil).

Barbosa, Plínio A. & Eleonora C. Albano (2004), "Brazilian Portuguese", *Journal of the International Phonetic Association* **34**(2): 227-232 doi:10.1017/S0025100304001756

Espectro e Forma de Onda/ Espectrograma

Exemplo para um sinal sonoro, como uma vogal

- Os três modelos lineares e separáveis, para simplicidade
- Propagação desde os pulmões, na traquéia, glote e trato vocal, através de uma onda de pressão plana, propagando-se progressivamente até os lábios

Modelo da Fonte de Excitação

Sonora: Cadeia quase-periódica de bolsões de ar

Surda: tipo turbulento, como ruído

Plosiva: Escape de ar após oclusão total

Sussurro (fricativo): Passagem através da glote semi-fechada

Silêncio: regiões do sinal sem som

Modelam a geração de fonemas de "mesma denominação"

Excitação SONORA ("Voiced")

- Características importantes:
 - ► Frequência fundamental f0
 - Duração de cada fase (aberta e fechada)
 - O instante da oclusão da Glote
 - O formato de cada pulso (abertura, fechamento)
- Exemplo de Modelo, no domínio-Z:

$$S(z) = \Theta_0 U(z) H(z) R(z)$$
$$= \Theta_0 E(z) G(z) H(z) R(z)$$

Comentários sobre o modelo:

- Os termos no domínio Z, correspondem exatamente aos análogos em w (contínuo)
- $lue{}$ Coeficiente de ganho Θ_0
- ightharpoonup E(z) é a transformada Z do trem de impulsos e(n), com período de pitch P
- ightharpoonup G(z) é o filtro de trato vocal (glote), g(n) sua reposta impulsiva
- Logo,

$$u(n) = \sum_{i=-\infty}^{\infty} g(n-iP)$$

Excitação SURDA

- Um tipo de excitação surda são sons que friccionam com grandes constrições no trato vocal (fricativo)
- Outro tipo é um súbito escape de ar depois da abertura rapidíssima de uma oclusão (plosivo)
- $lue{}$ O modelo para ambos é um **ruído branco** N(z):

$$S(z) = \Theta_0 N(z) H(z) R(z)$$

Ou, no domínio da frequência (DTFT):

$$S(w) = \Theta_0 N(w) H(w) R(w)$$

Modelamento do Trato Vocal

• Comprimento de onda de uma onda plana acústica de 4kHz:

$$\lambda_{4kHz} = \frac{v_{som}}{f} = \frac{340 \text{ m/s}}{4000 \text{ ciclos/s}} = 8.5 \text{ cm}$$

- Como o diâmetro do trato vocal é de ± 2 cm, a hipótese de uma onda plana se propagando dentro dele, é razoável.
- Leis importantes: da Continuidade e de Newton p(x,t) pressão sonora $\vec{v}_{\zeta}(x,y,z,t)$ Vetor velocidade no ar de uma partícula ζ ρ Densidade do ar no tubo

$$\frac{1}{\rho v_{som}^2} \frac{\partial p(x,t)}{\partial t} = -\nabla \vec{v}_{\zeta}(x, y, z, t)$$

$$\rho \frac{\partial \vec{v}_{\zeta}(x, y, z, t)}{\partial t} = -\nabla \bullet p(x, t)$$

Aproximação onda plana propagando na direção x (origem na glote para os lábios):

A(x,t) seção transversal variável do trato vocal, na posição x e instante t $\vec{v}(x,t)$ velocidade de um volume de ar, na posição x e instante t:

$$\vec{v}(x,t) = A(x,t)\vec{v}_{\zeta}(x,t)$$

Substituindo nas expressões tridimensionais:

$$-\frac{\partial v(x,t)}{\partial x} = \frac{1}{\rho v_{som}^2} \frac{\partial \left[p(x,t) A(x,t) \right]}{\partial t} + \frac{\partial A(x,t)}{\partial t}$$
$$-\frac{\partial p(x,t)}{\partial x} = \rho \frac{\partial \left[v(x,t) / A(x,t) \right]}{\partial t}$$

Modelo de 1 Tubo sem Perdas

Terminação ABERTA, lábios abertos, o desvio da pressão será nulo em x=l (l=17,5cm), em relação à pressão ambiente:

$$p(l,t) = p_{labios}(t) = 0$$

Para regime permanente, a fonte na glote pode ser modelada por exponencial complexa: $v(0,t) = u_{glote}(t) = \overline{U}_{glote}(\Omega)e^{j\Omega t}$

Modelo para lábios abertos:

$$v(l,t) = \frac{\overline{U}_{glote}(\Omega)}{\cos(\Omega l / v_{som})} e^{j\Omega t} = \overline{U}_{labios}(\Omega) e^{i\Omega t}$$

Onde $\overline{U}_{glote}(\Omega)$ é o fasor para o sinal $u_{glote}(t)$.

A função de transferência para o trato vocal é dada pela relação entre os fasores das velocidades nos lábios e na glote:

$$H(\Omega) = \frac{\overline{U}_{labios}(\Omega)}{\overline{U}_{glote}(\Omega)} = \frac{u_{labios}(t)}{u_{glote}(t)} = \frac{1}{\cos(\Omega l / v_{som})}$$

Resultados para lábios abertos:

As frequências de ressonância f_i para este modelo são obtidas igualando o denominador a zero:

$$\frac{\Omega_i l}{v_{som}} = \frac{\pi}{2} (2i - 1)$$
 para $i = 1, 2, 3, 4, ...$

Como $\Omega_i = 2\pi f_i$, as ressonâncias ocorrerão nas frequências:

$$f_i = \frac{v_{som}}{4l}(2i-l)$$
 para $i = 1,2,3,4,...$

Resposta em Frequência, modelo 1 Tubo

$$v_{som} = c = 353.027 \text{ m/s}, \Theta = 37^{\circ}\text{C}, l = 17.5 \text{ cm}$$

fonte: http://www.sengpielaudio.com/calculator-speedsound.htm

```
% modelamento acustico do trato vocal
% Minami - 29 agosto 2013
maxgain = 50; % ganho maximo = 50dB
1 = 17.5e-2; % comprimento do trato vocal em m
v = 350; % velocidade do som, m/s, no ar na temperatura de 37 celsius
fat = 1/v;
omega = 0:6000;
w = 2*pi*omega*fat;
den = cos(w);
                                            Script
ntot = prod(size(den));
for i=1:ntot
                                             Matlab
 H(i) = 20*log10(abs(1/den(i)));
 if H(i)>maxqain
                                             modelo
   H(i) = maxgain;
                                             de 1 tubo
  end
end
clf
plot(omega, H);
xtitle ( 'Resposta em Frequência de um Tubo Acústico Uniforme',
'frequência, f(kHz)', '20log(|H(f)|)');
```

Modelo 2 Tubos

Frequências de Ressonância do Modelo 2 tubos

Multi-Tubos

Aproximação para qualquer conformação

Condições de Contorno

$$u_k^+(t) = u_k^+(t - 0/c)$$

$$u_k^-(t) = u_k^-(t + 0/c)$$

$$u_k(0, t) = u_k^+(t) - u_k^-(t)$$

$$u_{k}^{+}(t - \tau_{k}) = u_{k}^{+}(t - l_{k}/c)$$

$$u_{k}^{-}(t + \tau_{k}) = u_{k}^{-}(t + l_{k}/c)$$

$$u_{k}(l_{k}, t) = u_{k}^{+}(t - \tau_{k}) - u_{k}^{-}(t + \tau_{k})$$

Ondas Progressivas e Regressivas

$$u_{k+1}^{+}(t) = u_k^{+}(t - \tau_k) \left[\frac{2A_{k+1}}{A_{k+1} + A_k} \right] + u_{k+1}^{-}(t) \left[\frac{A_{k+1} - A_k}{A_{k+1} + A_k} \right]$$

$$u_k^-(t+\tau_k) = u_{k+1}^-(t) \left[\frac{2A_{k+1}}{A_{k+1} + A_k} \right] - u_k^+(t-\tau_k) \left[\frac{A_{k+1} - A_k}{A_{k+1} + A_k} \right]$$

Coeficientes de Transmissão e Reflexão

Transmissão:
$$r_k^+ = \frac{2A_{k+1}}{A_{k+1} + A_k}$$

Reflexão:
$$r_k^- = \frac{A_{k+1} - A_k}{A_{k+1} + A_k}$$

$$r_k \stackrel{\text{def}}{=} r_k^-$$

$$-1 \le r_k \le 1.$$

Modelo do Trato Vocal

Modelo de Tempo Discreto

Pitch Diferentes Definições

Determinar o Pitch pela Autocorrelação

$$r(d,q) = \frac{1}{K} \sum_{n=q}^{q+K+d} s(n)s(n+d)$$

Janela K, ponto q

RABINER, L. R. (1977, February). On the Use of Autocorrelation Analysis for Pitch Detection. *IEEE Transactions On Acoustics, Speech, And Signal Processing*, pp. 24-33.

Questões (P2 - 0,5 pts) para entregar:

- 1. (<u>Questão Obrigatória, Já fazendo parte da P2, isto é, quem não entregar esta, não terá as outras corrigidas nem incluídas na nota</u>) Grave com o Audacity (ou outro programa) com sua própria voz, os seguintes CINCO (05) roteiros de arquivos, salvos no formato .wav:
 - a) Seu nome completo, pronunciado com clareza, salve como "NomesSobrenomes.wav", pex. "JoaoCarlosMartinsDeSouza.wav"
 - b) Os números do seu RA completo, pronunciado dígito a dígito, salve como "RAxxxxxxxxxx.wav", pex. a aluno com RA11062416 grava os dígitos "um", "um", "zero", "seis", "dois", "quatro", "um", "seis" e nomeia o arquivo como "RA11062416.wav".
 - Os pares de seu RA completo, p.ex. o aluno com RA11062416, grava os pares "onze", "seis", "vinte e quatro" e "dezesseis", e salva como "RA11062416_pares.wav".
 - d) Grave o trecho de O burrinho pedrês em Sagarana, salve como "Burrinho_NomeSobrenome.wav":

"Folgado, Sete-de-Ouros endireitou para a coberta. Farejou o cocho. Achou milho. Comeu. Então, rebolcouse, com as espojadelas obrigatórias, dançando de patas no ar e esfregando as costas no chão. Comeu mais"

e) Grave o trecho da Lírica de Camões e salve como Camoes_NomeSobrenome::

"Campos bem aventurados, Tornai-vos agora tristes, Que os dias em que me vistes Alegre, já são passados".

Questões para entregar/PROVA P2 (2,0 pts)

- 2. O que são o **pitch** e fundamental f_0 ? Usando a forma de onda e o espectrograma e do Audacity, encontre um **pitch** no seu Nome e uma f_0 no seu sobrenome, usando o arquivo <u>1.a</u> anterior, imprima a imagem usada e destaque suas respostas na imagem, indicando de qual fonema está efetuando cada medição (*).
- 3. O que é o modelo Fonte-Filtro para o trato vocal? Quais são os tipos de Fonte e os articuladores no Filtro?
- 4. O que são as formantes f_1 a f_4 ? Usando dois números diferentes dentro do arquivo <u>1.b</u> anterior, usando o espectrograma ou o espectro, determine as formantes de duas vogais diferentes, imprimindo e destacando na imagem estes valores (*).
- 5. No que consiste o modelo de tubos acústicos para as formantes? O que é o coeficiente de reflexão (k_i) neste modelo?
- 6. Desenhe o modelo de tubos acústicos do trato vocal, sendo o vetor dos coeficientes de reflexão, considerando $A_1 = \pi$ cm² para $\mathbf{k} = [0.5 0.7 0.3 0.2 0.4 0.9]$
- 7./ Quais as diferenças entre as excitações surda e sonora? E o que são as consoantes? Registre trechos no arquivo 1.d anterior para trechos sonoros, surdos e consoantes, usando ou forma de onda ou espectrograma, indicando qual fonema está destacando (*).
- 8. O que são os fonemas plosivos? No arquivo <u>1.e</u> anterior, encontre-os através do espectrograma e da forma de onda e registre nas figuras qual fonema destacou (*).
- 9. O que é a Energia de Tempo-Curto? Que informações ela revela?
- 10. Pesquise pelo menos dois métodos (um temporal e outro na frequência) para determinação do Pitch.
 - (*) Se desejar, envie TAMBÉM o trecho específico de voz .wav analisado.