



CS 329P: Practical Machine Learning (2021 Fall)

# 5. Model Combination

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

#### So far...



- Data
- ML Models for different types of data
- Good models perform well on unseen data
  - Model specific metrics VS business metrics
  - Generalization error depends on model / data complexity
  - TODAY: Methods for reducing generalization error





CS 329P: Practical Machine Learning (2021 Fall)

# 5.1 Bias & Variance

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

## Bias & Variance



- In statistic learning, assume a round truth  $y = f(x) + \varepsilon$
- Given a set of randomly sampled data, we can train a model  $\hat{f}(x)$
- Ideally,  $\hat{f}(x)$  is close to f(x) for any sample train dataset.



# **Bias-Variance Decomposition**



- Sample data  $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$  from  $y = f(x) + \varepsilon$
- Learn  $\hat{f}$  from D by minimizing MSE we want it generalizes well to an unseen data point (x,y)

$$E_{D}\left[(y-\hat{f}(x))^{2}\right] = E\left[\left((f-E[\hat{f}])-(\hat{f}-E[\hat{f}])+\varepsilon\right)^{2}\right]$$

$$= (f-E[\hat{f}])^{2} + E\left[(\hat{f}-E[\hat{f}]))^{2}\right] + E[\varepsilon^{2}]$$

$$= Bias[\hat{f}]^{2} + Var[\hat{f}] + \sigma^{2}$$

$$E[f] = f$$

$$E[f] = 0, Var[\varepsilon] = \sigma^{2}$$

$$\varepsilon \text{ is independent of } \hat{f}$$

### **Bias-Variance Tradeoff**



$$E_D\left[(y - \hat{f}(x))^2\right] = \operatorname{Bias}[\hat{f}]^2 + \operatorname{Var}[\hat{f}] + \sigma^2$$



### Reduce Bias & Variance



$$E_D\left[(y - \hat{f}(x))^2\right] = \operatorname{Bias}[\hat{f}]^2 + \operatorname{Var}[\hat{f}] + \sigma^2$$

- Reduce bias
  - A more complex model
    - e.g. increase #layers, #hidden units of MLP
  - Boosting
  - Stacking

- Reduce variance Reduce  $\sigma^2$ 
  - A simpler model
    - e.g. regularization
- Bagging
- Stacking

Improve data

Ensemble learning: train and combine multiple models to improve predictive performance