The Alexandrov Moving Planes Method and Applications to Geometric Flows

Marco Tamburro marco.tamburro@students.uniroma2.eu

Università degli studi di Roma Tor Vergata Relatore: Prof. Carlo Sinestrari

11 Dic 2024

1/23

Equazione di cui ci occupiamo

Flusso geometrico di cui ci occupiamo

 X_0 varietà differenziabile *embedded* in \mathbb{R}^{n+1} , la facciamo evolvere secondo

$$\frac{\partial X_t}{\partial t} = -F(\kappa_1(x), \dots, \kappa_n(x))\nu$$

dove ν è il vettore normale, κ_i le curvature principali e F una funzione simmetrica tale che

$$\frac{\partial F}{\partial \kappa_i} > 0 \text{ for all } i = 1, \dots, n$$

Roadmap

- 1 Introduzione
- 2 Alexandrov Moving Planes Method
- 3 Il risultato di Chow-Gulliver
- 4 Due esempi di corollari
- 5 Cenni sulla parte originale della tesi
- 6 Riassunto

Struttura della tesi

- Capitolo 1: richiami e risultati preliminari
- Capitolo 2: introduzione del metodo dei piani di Alexandrov in \mathbb{R}^n , \mathbb{H}^n , S^n
- Capitolo 3: dimostrazione del teorema di Chow-Gulliver e conseguenze in \mathbb{R}^n
- Capitolo 4: estensione del teorema di Chow-Gulliver ad \mathbb{H}^n ed S^n
- Capitolo 5: flussi che preservano l'area e il volume

Struttura della presentazione

- 1 Introduzione
- 2 Alexandrov Moving Planes Method
- 3 Il risultato di Chow-Gulliver
- 4 Due esempi di corollari
- 5 Cenni sulla parte originale della tesi
- 6 Riassunto

Roadmap

- 1 Introduzione
- 2 Alexandrov Moving Planes Method
- 3 Il risultato di Chow-Gulliver
- 4 Due esempi di corollari
- 5 Cenni sulla parte originale della tesi
- 6 Riassunto

Cenni storici

• Tecnica per dimostrare la simmetria delle soluzioni a PDE ellittiche e paraboliche.

Cenni storici

- Tecnica per dimostrare la simmetria delle soluzioni a PDE ellittiche e paraboliche.
- Introdotto da Alexandrov per caratterizzare la sfera
 - ► Alexandrov A.D.; A characteristic property of spheres, 1962

Cenni storici

- Tecnica per dimostrare la simmetria delle soluzioni a PDE ellittiche e paraboliche.
- Introdotto da Alexandrov per caratterizzare la sfera
 - ► Alexandrov A.D.; A characteristic property of spheres, 1962
- Serrin e da Gidas-Ni-Nirenberg lo applicano a soluzioni di PDE ellittiche di natura non-geometrica
 - ► Serrin J.; A symmetry problem in potential theory, 1971
 - ► Gidas B., Ni W.M., Nirenberg L.; Symmetry and Related Properties via the Maximum Principle, 1979

Il metodo in breve

• Rifletto una soluzione rispetto a una famiglia di piani paralleli

Figure 1

Il metodo in breve

- Rifletto una soluzione rispetto a una famiglia di piani paralleli
- Considero il piano dove c'è "per la prima volta" tangenza interna dei grafici

Figure 1

Il metodo in breve

- Rifletto una soluzione rispetto a una famiglia di piani paralleli
- Considero il piano dove c'è "per la prima volta" tangenza interna dei grafici
- Applico il principio del massimo alla differenza di soluzione e riflessione

Figure 1

Il metodo in breve

- Rifletto una soluzione rispetto a una famiglia di piani paralleli
- Considero il piano dove c'è "per la prima volta" tangenza interna dei grafici
- Applico il principio del massimo alla differenza di soluzione e riflessione
- Deduco che la funzione è simmetrica rispetto a quel piano. Per arbitrarietà della direzione, ho simmetria sferica

Figure 1

Roadmap

- 1 Introduzione
- 2 Alexandrov Moving Planes Method
- 3 Il risultato di Chow-Gulliver
- 4 Due esempi di corollari
- 5 Cenni sulla parte originale della tesi
- 6 Riassunto

Equazione di cui ci occupiamo

Flusso geometrico di cui ci occupiamo

$$\frac{\partial X_t}{\partial t} = -F(\kappa_1(x), \dots, \kappa_n(x))\nu$$

dove u è il vettore normale, κ_i le curvature principali e F una funzione simmetrica tale che

$$\frac{\partial F}{\partial \kappa_i} > 0 \text{ for all } i = 1, \dots, n$$

Equazione di cui ci occupiamo

Flusso geometrico di cui ci occupiamo

$$\frac{\partial X_t}{\partial t} = -F(\kappa_1(x), \dots, \kappa_n(x))\nu$$

dove u è il vettore normale, κ_i le curvature principali e F una funzione simmetrica tale che

$$\frac{\partial F}{\partial \kappa_i} > 0 \text{ for all } i = 1, \dots, n$$

La condizione sulle derivate di F è equivalente a dire che questa sia una **equazione parabolica** (non-lineare). In particolare, possiamo applicare il principio del massimo e l'Hopf Boundary Point Lemma alla differenza di due soluzioni. Inoltre, la parabolicità garantisce l'esistenza per tempi piccoli.

Riflessione stretta

Riflessione stretta

Possiamo riflettere $X:M^n\to\mathbb{R}^{n+1}$ strettamente rispetto a π se entrambe le seguenti cose non succedono:

Figure 2: Contatto interno

Figure 3: Tangenza al bordo

Il teorema di Chow e Gulliver

Teorema (Chow-Gulliver)

Data una soluzione del flusso che stiamo considerando, se possiamo riflettere il dato iniziale X_0 strettamente rispetto ad un piano π , allora possiamo riflettere X_t strettamente rispetto a π per ogni $t \in [0,T)$ (intervallo in cui è definita la soluzione).

Il teorema di Chow e Gulliver

Teorema (Chow-Gulliver)

Data una soluzione del flusso che stiamo considerando, se possiamo riflettere il dato iniziale X_0 strettamente rispetto ad un piano π , allora possiamo riflettere X_t strettamente rispetto a π per ogni $t \in [0,T)$ (intervallo in cui è definita la soluzione).

Interpretazione intuitiva: i piani rispetto a cui posso riflettere *aumentano* nel tempo, per cui la varietà diventa *più simmetrica* e *tonda*.

Roadmap

- 1 Introduzione
- 2 Alexandrov Moving Planes Method
- 3 Il risultato di Chow-Gulliver
- 4 Due esempi di corollari
- 5 Cenni sulla parte originale della tesi
- 6 Riassunto

Due corollari

Corollario (Chow)

Data una soluzione C^2 al problema, esiste C, che dipende solo dal dato iniziale, tale che ad ogni istante t:

$$\max_{x \in X_t} |x| - \min_{x \in X_t} |x| < C \tag{1}$$

Due corollari

Corollario (Chow)

Data una soluzione C^2 al problema, esiste C, che dipende solo dal dato iniziale, tale che ad ogni istante t:

$$\max_{x \in X_t} |x| - \min_{x \in X_t} |x| < C \tag{1}$$

Se considero la soluzione riscalata, $\frac{X_t}{\max_{x \in X_t} |x|}$, per un flusso espansivo dove $\lim_{t \to T} \max_{x \in X_t} |x| = +\infty$, converge a una sfera

Due corollari

Corollario (Chow)

Data una soluzione C^2 al problema, esiste C, che dipende solo dal dato iniziale, tale che ad ogni istante t:

$$\max_{x \in X_t} |x| - \min_{x \in X_t} |x| < C \tag{1}$$

Se considero la soluzione riscalata, $\frac{X_t}{\max_{x \in X_t} |x|}$, per un flusso espansivo dove $\lim_{t \to T} \max_{x \in X_t} |x| = +\infty$, converge a una sfera

Corollario (Risa-Sinestrari)

Non esistono soluzioni antiche espansive (F < 0) che escono fuori da un punto oltre alle sfere.

Roadmap

- 1 Introduzione
- 2 Alexandrov Moving Planes Method
- 3 Il risultato di Chow-Gulliver
- 4 Due esempi di corollari
- 5 Cenni sulla parte originale della tesi
- 6 Riassunto

Il risultato di Chow e Gulliver si estende al caso in cui lo spazio ambiente è \mathbb{H}^{n+1} o S^{n+1} .

• L'equazione continua ad essere parabolica anche negli spazi a curvatura costante

Figure 4: Iperpiani totalmente geodetici perpendicolari a una data geodetica in \mathbb{H}^2

Il risultato di Chow e Gulliver si estende al caso in cui lo spazio ambiente è \mathbb{H}^{n+1} o S^{n+1} .

- L'equazione continua ad essere parabolica anche negli spazi a curvatura costante
- Introduciamo una notazione che consente di impostare il problema

Figure 4: Iperpiani totalmente geodetici perpendicolari a una data geodetica in \mathbb{H}^2

Il risultato di Chow e Gulliver si estende al caso in cui lo spazio ambiente è \mathbb{H}^{n+1} o S^{n+1} .

- L'equazione continua ad essere parabolica anche negli spazi a curvatura costante
- Introduciamo una notazione che consente di impostare il problema
- La dimostrazione di Chow-Gulliver può essere estesa

Figure 4: Iperpiani totalmente geodetici perpendicolari a una data geodetica in \mathbb{H}^2

Differenze con il caso euclideo

• Iperpiani sostituiti da superfici totalmente geodetiche

Figure 5: Iperpiani totalmente geodetici perpendicolari a una data geodetica in \mathbb{H}^2

Differenze con il caso euclideo

- Iperpiani sostituiti da superfici totalmente geodetiche
- Anche dimostrare che delle riflessioni esistono non è più banale

Figure 5: Iperpiani totalmente geodetici perpendicolari a una data geodetica in \mathbb{H}^2

Differenze con il caso euclideo

- Iperpiani sostituiti da superfici totalmente geodetiche
- Anche dimostrare che delle riflessioni esistono non è più banale
- Non è più ben definito un concetto di parallelismo tra gli iperpiani
 - Nel metodo consideriamo quelli ortogonali a una geodetica, ma non restano equidistanti in tutti i punti

Figure 5: Iperpiani totalmente geodetici perpendicolari a una data geodetica in \mathbb{H}^2

Differenze con il caso euclideo

- Iperpiani sostituiti da superfici totalmente geodetiche
- Anche dimostrare che delle riflessioni esistono non è più banale
- Non è più ben definito un concetto di parallelismo tra gli iperpiani
 - Nel metodo consideriamo quelli ortogonali a una geodetica, ma non restano equidistanti in tutti i punti
- Il trasporto parallelo non è banale

Figure 5: Iperpiani totalmente geodetici perpendicolari a una data geodetica in \mathbb{H}^2

Estensione a spazi a curvatura costante Corollari

Alcuni corollari continuano a valere, ad esempio resta vero che

Corollario

Non esistono soluzioni antiche espansive (F < 0) che escono fuori da un punto oltre alle sfere (intese come luogo dei punti equidistanti da un'origine).

Estensione a spazi a curvatura costante Corollari

Alcuni corollari continuano a valere, ad esempio resta vero che

Corollario

Non esistono soluzioni antiche espansive (F < 0) che escono fuori da un punto oltre alle sfere (intese come luogo dei punti equidistanti da un'origine).

Flussi ad area e volume costante

Flusso ad area/volume costante

$$\frac{\partial X_t}{\partial t} = \left(-\frac{\sum_i \kappa_i(x)}{n} + \phi(t)\right) \nu$$

consideriamo il flusso dove F è la curvatura media H, e aggiungiamo un termine globale che lo rende a area/volume costante. Per conservare il volume:

$$\phi(t) = \frac{\int_{X_t} H^2(x,t) d\mu}{\int_{X_t} H(x,t) d\mu}$$

Flussi ad area e volume costante

Flusso ad area/volume costante

$$\frac{\partial X_t}{\partial t} = \left(-\frac{\sum_i \kappa_i(x)}{n} + \phi(t)\right) \nu$$

consideriamo il flusso dove F è la curvatura media H, e aggiungiamo un termine globale che lo rende a area/volume costante. Per conservare il volume:

$$\phi(t) = \frac{\int_{X_t} H^2(x,t) d\mu}{\int_{X_t} H(x,t) d\mu}$$

Il teorema di Chow e Gulliver si estende anche a questa classe di flussi

Flussi ad area e volume costante

Flusso ad area/volume costante

$$\frac{\partial X_t}{\partial t} = \left(-\frac{\sum_i \kappa_i(x)}{n} + \phi(t)\right) \nu$$

consideriamo il flusso dove F è la curvatura media H, e aggiungiamo un termine globale che lo rende a area/volume costante. Per conservare il volume:

$$\phi(t) = \frac{\int_{X_t} H^2(x,t) d\mu}{\int_{X_t} H(x,t) d\mu}$$

Il teorema di Chow e Gulliver si estende anche a questa classe di flussi

Usando il metodo è possibile dimostrare che il flusso non esce fuori da un compatto

Roadmap

- 1 Introduzione
- 2 Alexandrov Moving Planes Method
- 3 Il risultato di Chow-Gulliver
- 4 Due esempi di corollari
- 5 Cenni sulla parte originale della tesi
- 6 Riassunto

• Il metodo dei piani di Alexandrov è una tecnica che consente di dimostrare simmetrie radiali per soluzioni di un'ampia classe di PDE

- Il metodo dei piani di Alexandrov è una tecnica che consente di dimostrare simmetrie radiali per soluzioni di un'ampia classe di PDE
- Una ampia classe di flussi geometrici è parabolica, e a questi si può applicare un risultato di monotonia delle simmetrie di Chow e Gulliver

- Il metodo dei piani di Alexandrov è una tecnica che consente di dimostrare simmetrie radiali per soluzioni di un'ampia classe di PDE
- Una ampia classe di flussi geometrici è parabolica, e a questi si può applicare un risultato di monotonia delle simmetrie di Chow e Gulliver
- La tecnica è estremamente versatile e consente di dimostrare facilmente molti risultati apparentemente difficili

- Il metodo dei piani di Alexandrov è una tecnica che consente di dimostrare simmetrie radiali per soluzioni di un'ampia classe di PDE
- Una ampia classe di flussi geometrici è parabolica, e a questi si può applicare un risultato di monotonia delle simmetrie di Chow e Gulliver
- La tecnica è estremamente versatile e consente di dimostrare facilmente molti risultati apparentemente difficili
- I risultati principali possono essere estesi anche nel caso di spazi a curvatura costante e a flussi *modificati* per conservare il volume interno o l'area

The Alexandrov Moving Planes Method and Applications to Geometric Flows

Marco Tamburro marco.tamburro@students.uniroma2.eu

Università degli studi di Roma Tor Vergata Relatore: Prof. Carlo Sinestrari

11 Dic 2024

