CS3243 Tutorial 2

Eric Han

Feburary 3, 2022

Annoucements

Important admin:

- 1. Attendance Marking via CAS:
 - 2120/CS3243/T14 03-02-2022 13:00-14:00
 - 2120/CS3243/T15 03-02-2022 15:00-16:00
 - 2120/CS3243/T16 03-02-2022 16:00-17:00
- 2. Assignment 1 scores and comments are out on turnitin, do check!

Questions from tutorials

- 1. What is the type of proof for Q4?
 - See wiki https://en.wikipedia.org/wiki/Mathematical_proof link to see the different math proofs. I would consider Q4 to be proof by construction.

Introduction

Eric Han

4th Year PhD Student

I am interested in scaling machine learning towards higher dimensions in Bayesian Optimization, Gaussian Processes, Convex and non-convex optimization and Reinforcement Learning.

Feel free to telegram me $@Eric_Vader/on$ our group:

- 1. regarding the module,
- 2. research,
- 3. grad sch,
- 4. NUS
- 5. etc...

3

Expectations

Expectations of you

- 1. Fill the seats from the front.
- 2. Come prepared to the Tutorial.
 - 2.1 You will be asked at random to discuss your answer.
- 3. Refrain from taking pictures of the slides.
 - 3.1 Learn to take good notes.
 - 3.2 The slides will *not* be distributed.
- 4. Try to be on time.

Any comments or suggestions for the lessons going forward?

- a. Provide a counter-example to show that the tree-based implementation for the Greedy Best-First Search algorithm is incomplete.
- Briefly explain why the limited-graph-based implementation of the Greedy Best-First Search algorithm is complete.
- c. Provide a counter-example to show that neither the tree-based nor the limited-graph-based implementations of the **Greedy Best-First Search** algorithm are optimal.

Recap

- What is Greedy-Best-First Search (GBFS) algorithm?
- What does is incomplete?
 - Incomplete describes the algorithm being stuck in a loop where h(.) are lowest.

Question 1a - Answer

s	<i>S</i> 0	<i>S</i> 1	<i>S</i> 2	G
h(s)	3	4	5	0

Figure 1: GBFS Infinite Loop (Incomplete) Example

- 1. S0 is explored, S1 is added to front of frontier.
- 2. S1 is explored, S0 is added to the front of frontier.
- 3. etc...

Question 1b - Answer

- Limited-graph-based implementation of GBFS will not explore redundant paths.
- Assuming a finite search space, there are finite paths.
- Hence, limited-graph-based implementation of GBFS will eventually visit all states within the search space and find a goal state.

Question 1c - Answer

s	<i>S</i> 0	<i>S</i> 1	<i>G</i> 1	<i>G</i> 2
h(s)	9	1	0	0

Figure 2: Non-Optimal Example

For both implementations:

- 1. S0 is explored, G1 is added to front of frontier f(.) = h(.)
- 2. Non-optimal path $S0 \rightarrow G1$ returned.

- a. Prove that the tree-based variant of the **A* Search** algorithm is optimal when an admissible heuristic is utilised.
- b. Prove that the limited-graph-based variant of the **A* Search** algorithm is optimal when a **consistent heuristic** is utilised.

Recap

- What is the intuition behind A* Search?
- What is an admissible heuristic?
- What is a consistent heuristic?

Recap

- What is the intuition behind A* Search?
- What is an admissible heuristic?
- What is a consistent heuristic?

Summary

- A* Search: f(N) = g(N) + h(N)
- Admissible heuristic: $h(N) \leq h^*(N)$
- Consistent heuristic: $h(N) \le c(N, N') + h(N')$

Where,

- f(.) Evaluation Function.
- g(.) Cost Function from start to current node.
- h(.) Estimated cost from current node to goal.
- c(N, N') Action cost from N to N'.

Question 2a - Answer

Figure 3: Illustration

Where:

- *S* Inital State
- N Intermediate State along optimal Path0, Path1
- T Sub Optimal Goal state along sub-optimal Path2
- T* Goal state along optimal Path0, Path1

Proof by Contradiction:

- 1. Assume sub-optimal T is found instead of the T^*
- 2. \implies *T* is found before $N \rightarrow f(T) < f(N)$
- 3. Since T^* is optimal, $f(T) > f(T^*)$
 - 3.1 $f(T) > f(T^*)$
 - 3.2 $f(T) > g(T^*) + h(T^*) \implies f(T) > g(T^*)$
 - 3.3 $f(T) > g(N) + h^*(N) \implies f(T) > g(N) + h(N)$
 - $3.4 \implies f(T) > f(N)$
- 4. Since Tree-Search would have explored T^* , $\perp f(T) < f(N)$

Question 2b - Answer

Intuition: Show that when a node is popped from frontier, optimal path to it is found.

Let the optimal path from start node s_0 to any node s_g be $P_{0\to g}=s_0,s_1,\cdots,s_g$. We show that when s_g is popped, $f(s_g)=g(s_g)+h(s_g)=g^*(s_g)+h(s_g)$ where $g^*(s_g)$ is the optimal path cost over $P_{0\to g}$ using induction.

- Base: $f(s_0) = g(s_0) + h(s_0) = h(s_0)$.
- Inductive: Assume for $P_{0\rightarrow k}$, \Longrightarrow $g(s_k) = g^*(s_k)$
 - $g^*(s_{k+1})$ is the minimum path cost, $\implies g(s_{k+1}) \geq g^*(s_{k+1})$
 - Since consistent, $h(s_k) \le c(s_k, s_{k+1}) + h(s_{k+1}) \implies s_k$ is popped.
 - $f(s_{k+1}) \leq g(s_k) + c(s_k, s_{k+1}) + h(s_{k+1})$
 - $\implies g(s_{k+1}) + h(s_{k+1}) \leq g(s_k) + c(s_k, s_{k+1}) + h(s_{k+1})$
 - $\implies g(s_{k+1}) \leq g(s_k) + c(s_k, s_{k+1}) = g^*(s_k) + c(s_k, s_{k+1}) = g^*(s_{k+1})$
 - $\blacksquare \implies g(s_{k+1}) \leq g^*(s_{k+1})$
 - $g(s_{k+1}) \le g^*(s_{k+1}) \land g(s_{k+1}) \ge g^*(s_{k+1}) \implies g(s_{k+1}) = g^*(s_{k+1})$

- a. Given that a heuristic h is such that h(t) = 0, where t is any goal state, prove that if h is consistent, then it must be admissible.
- b. Give an example of an admissible heuristic that is not consistent.

Recap

- Admissible heuristic: $h(N) \leq h^*(N)$
- Consistent heuristic: $h(N) \le c(N, N') + h(N')$

Question 3a - Answer

Intuition: Show on the number of action required to reach the goal from n to goal t.

Let the no. of actions k(n) to be required to reach from n to t; Node n_k is k steps away from t, ie. $k=3 \implies P_{n_3 \to t}: n_3 \to n_2 \to n_1 \to t$.

- Base: 1 action; i.e. node n_1 is one step away from t.
 - Since consistent, $h(n_1) \le c(n_1, t) + h(t)$ and h(t) = 0
 - $\bullet \implies h(n_1) \leq c(n_1, t) = h^*(n_1)$
- Inductive: Assume for k-1 actions, path $P_{n_{k-1}\to t}$, $h(n_{k-1}) \le h^*(n_{k-1})$.
 - Since consistent, $h(n_k) \leq c(n_k, n_{k-1}) + h(n_{k-1})$
 - $\implies h(n_k) \leq c(n_k, n_{k-1}) + h^*(n_{k-1}) = h^*(n_k).$

Question 3b - Answer

Figure 4: Example

S	<i>S</i> 0	<i>S</i> 1	G
h(s)	3	1	0
$h^*(s)$	3	2	0
$h(s) \leq h^*(s)$	Т	Т	Т

Heuristic h is

- Admissible $\forall s : h(s) \leq h^*(s)$
- Not consistent $3 = h(s_0) > c(s_0, s_1) + h(s_1) = 2$

We have seen various search strategies in class, and analyzed their worst-case running time. Prove that any deterministic search algorithm will, in the worst case, search the entire state space. More formally, prove the following theorem

Theorem 1. Let \mathcal{A} be some complete, deterministic search algorithm. Then for any search problem defined by a finite connected graph $G = \langle V, E \rangle$ (where V is the set of possible states and E are the transition edges between them), there exists a choice of start node s_0 and goal node g so that \mathcal{A} searches through the entire graph G.

Question 4 - Answer

Intuition: We try to find a goal node g such that A searches all of G.

In the t-th iteration (Count only iterations where A explores a new node),

- Let g_t to be the goal node chosen only in t, to be $U_{t-1} \setminus U_t$
- Let U_t be the set of unsearched nodes, $V = U_0$.
- 1. Since there is finite |V| and $\mathcal A$ is complete, then $U_0\subset U_1\subset U_2\subset \cdots \subset U_{|V|}=\emptyset$
- 2. A terminates on the k-th iteration with search sequence S_k , finding goal node g_k .
- 3. Since A is deterministic, when we reset the goal node to be any in U_{k+1} (worse case to be g_{k+1}), it will take the same search route $S_k + [g_{k+1}]$ to reach the new goal.

Hence, we can always choose $g_{|V|}$ to be the goal node, such that A searches all of G.

- a. In the search problem below, we have listed 5 heuristics. Indicate whether each heuristic is admissible and/or consistent in the table below.
- b. Write out the order of the nodes that are explored by the A^* Search algorithm. Assume a limited-graph-based implementation that utilises heuristic h_4 .
- c. Which heuristic would you use? Explain why.
- d. Prove or disprove the following statement:

The heuristic $h(n) = max\{h3(n), h5(n)\}$ is admissible.

Question 5 - Answer

Question 5a

S	S	Α	В	G	Admissible	Consistent
$h_1(s)$	0	0	0	0	Т	Т
$h_2(s)$	8	1	1	0	Т	F
$h_3(s)$	9	3	2	0	Т	Т
$h_4(s)$	6	3	1	0	Т	F
$h_5(s)$	8	4	2	0	F	F
$\max\{h_3(s),h_5(s)\}$	9	4	2	0	F	F

Question 5b

$$S-A-B-G$$

Question 5c

 h_3 , as $h_3 = h^*$ is the optimal heuristic.

Question 5d

$$4 = h(A) > h^*(A) = 3$$