Progettazione di un amplificatore a base comune con frequenza di taglio pari a 1kHz e gain pari a 20 dB - Omar Moukawim 261628

Principali caratteristiche:

- Buon guadagno in tensione.
- Guadagno in corrente circa pari ad uno (poco minore)
- Bassa impedenza di ingresso
- Alta impedenza di uscita
- Non invertente

Principali applicazioni:

- Come stadio di uscita nella configurazione CASCODE
- Amplificatori per alte frequenze (radio, tv e telecomunicazioni in generale) dove la resistenza d'ingresso bassa è richiesta per motivi di adattamento di impedenza, e anche perché fra tutti gli amplificatori a BJT è quello che garantisce la banda passante più ampia. (non risente delle capacità di Miller)
- Generatori di corrente.
- Amplificatori di corrente, in quanto nonostante il guadagno sia unitario, soddisfa appieno le condizioni di massimo trasferimento di corrente sia in ingresso che in uscita.

Schematico su Lt-Spice

L'amplificatore è stato progettato con un transistor 2N3904 (datasheet) alimentato con una = 12V e supposta una $R_s = 50\Omega$.

Voglio che scorra una $I_{c\phi}=0.5mA$ così da avere una β = 60÷80 (vedo sul datasheet) ottengo che:

$$rac{1}{g_m}=r_e=rac{V_t}{I_{c\phi}}=50\Omega$$
 e di conseguenza $g_m=20mS$ con V_t definito come thermal voltage con valore $\cong 25mV$.

Calcolo ora la resistenza di collettore R_c :

$$\frac{V_{cc}}{2} = R_c I_{c\emptyset} - -> R_c = 12k\Omega$$

Per soddisfare la specifica sul guadagno pari a 20 dB alle medie frequenze:

$$\frac{R_c//R_l}{R_s + r_e} - -> R_l = 1090\Omega$$

Prendo R_e pari a $\frac{1}{10}$ di $R_c \rightarrow R_e = 1.2k \Omega$

Ora mi fisso le due resistenze di polarizzazione R_{b1} e R_{b2} osservando che $I_{c\emptyset}\cong I_{e\emptyset}$

$$V_e = 0.5mA \cdot 1.2k\Omega = 0.6V - -> V_b = V_e + 0.7V = 1.3V$$

$$\frac{R_{b2}}{R_{b1} + R_{b2}} \cdot 12V = 1.3V - -> 0.89R_{b2} = 0.11R_{b1}$$

$$\begin{cases} R_{b1} = 16k\Omega \\ R_{b2} = 2k\Omega \end{cases}$$

Ora dimensiono le capacità di disaccoppiamento analizzando il circuito alle basse frequenze: $(f_{Cin} = f_{Cout} = 1kHz)$

$$f_{Cin} = \frac{1}{2\pi (R_e / / r_e + R_s)C_{c1}} - -> C_{c1} = \frac{1}{2\pi (r_e + R_s)f_{Cin}} = 1.59\mu F = 1592nF$$

$$f_{Cout} = \frac{1}{2\pi[(R_c//r_o) + R_l]C_{c2}} - -> C_{c2} = \frac{1}{2\pi(R_c + R_l)f_{Cin}} = 12.1nF$$

Con queste capacità mi aspetto una $f_t=1kHz$ avendo volutamente posto i poli in modo da ottenerla ma simulando il circuito osservo che ho -3dB a 1.6 kHz invece.

Analizzando alle alte frequenze il circuito posso ottenere informazioni sulle frequenze di taglio alle alte. Sul datasheet vedo che la capacità di emettitore a 1Mhz vale 8pf mentre quella di collettore vale 4pF sempre a 1Mhz. Svolgendo i conti ricavo i limiti alle alte del mio amplificatore:(Simulando vedo che la $f_{thigh} \cong 54$ Mhz?!)

$$f_{h1} = \frac{1}{2\pi (R_e//r_e//R_s)C_e} = 796Mhz$$

$$f_{h2} = \frac{1}{2\pi (R_c//r_0//R_l)C_c} = 40Mhz$$

Analisi in frequenza (legenda sulla f_{tlow})

Operating Point			
V(vce):	5.12058	voltage	
V(vbe):	1.33006	voltage	
V(n001):	0.690155	voltage	
V(vcc):	12	voltage	
V(vin):	5.49363e-017	voltage	
V(vs):	0	voltage	
V(vout):	6.75353e-017	voltage	
Ic(Q1):	0.000573285	device current	
Ib(Q1):	1.8437e-006	device current	
Ie(Q1):	-0.000575129	device current	
I(C1):	1.33006e-018	device current	
I (Cc):	-6.1959e-020	device current	
I (Cb) :	-1.09873e-018	device current	
I(Rs):	1.09873e-018	device current	
I(R1):	6.1959e-020	device current	
I (R2):	0.000665028	device current	
I (R1):	0.000666872	device current	
I(Re):	0.000575129	device current	
I(Rc):	0.000573285	device current	
I (V2):	1.09873e-018	device current	
I (V1):	-0.00124016	device current	
•		_	

Analisi Dc

Schemi equivalenti:

Verifica del funzionamento tramite l'applicazione di un segnale in ingresso con le seguenti caratteristiche:

Ampiezza:1mVFrequenza:100kHz

In uscita mi aspetto un segnale con sfasamento totale nullo dato che il common base è non invertente e amplificato di 20dB (10) ed è proprio quello che ottengo. Inoltre, osservo viene amplificato correttamente tutto il segnale data la corretta polarizzazione (siamo nella zona attiva sempre).

