CS531: Memory Systems and Architecture Jan-Apr 2022

Dr. Shirshendu Das Assistant Professor, Department of CSE IIT Ropar.

Topic: Introduction to Memory

History of Computers:

Universal Turing Machine (1936)

Alan Turing (1912-1954)

History of Computers:

Von Neumann Architecture

Chip Designing:

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

How Computer Works

Fetch Decode (ID) Execute Memory access (MEM) Write-back (IF) (EX) (WB)

Program Counter (PC)

Increment:

- ☐ PC will not increment linearly every time.
- ☐ Predicting the next instruction after executing a branch instruction is a major area of research.
- ☐ In case of loop, the next instruction can be predicted easily.

Note: *do-while* statement is not a part of MIPS. It is added here to easily show an example of loop. However loops can be easily implemented in MIPS.

How Computer Works

MIPS implementation in Computer. Source: Patterson and Hennessy, "Computer Organization and Design", Third edition, 2005.

Memory

12003

base address

How Computer Works

MIPS implementation in Computer. Source: Patterson and Hennessy, "Computer Organization and Design", Third edition, 2005.

Multi-cycle Instruction Execution:

MIPS implementation in Computer. Source: Patterson and Hennessy, "Computer Organization and Design", Third edition, 2005.

For more detail read Chapter 5 of Patterson and Hennessy, "Computer Organization and Design", Third edition, 2005.

Performance of Computer

$$CPU time = \frac{CPU \ clock \ cycles \ for \ a \ program}{}$$

Cycles Per Instruction (CPI) means average cycles required to execute an instruction.

$$CPI = \frac{CPU \text{ clock cycles for a program}}{CPI}$$

CPU time = Instruction count
$$\times$$

$$\frac{\text{Instructions}}{\text{Program}} \times \frac{\text{Clock cycles}}{\text{Instruction}} \times \frac{\text{Seconds}}{\text{Clock cycle}} = \frac{\text{Seconds}}{\text{Program}} = \text{CPU time}$$

Memory **Hierarchy**

How cache memory work.

Structure of cache

Principle of locality

- Cache Memory: Placed on-chip.
 - ✓ L1-I, L1-D
 - L2

✓ Last Level Cache (LLC). ** The levels of cache varies in different

- processors.
- **Main Memory**

All the basic concepts starting from this slide must be cleared to continue with this course.

Memory Hierarchy

C1: A, D, A, F, L, G,

F.....

Processor chip

ABCD EFGH IJKLM NOPQ RSTU

Main Memory

- ☐ Cache Memory: Placed on-chip.
 - ✓ L1-I, L1-D
 - **✓** L2
 - ✓ Last Level Cache (LLC). ** The levels of cache varies in different processors.
- ☐ Main Memory

Principle of locality:

- Temporal Locality
- Spatial Locality

Cache memory is an on-chip fast memory placed very near to the core. It improves the performance of the computer.

- ✓ Design technology: SRAM
- Technology Block size. The basic unit of cache storage. Core requests

for word. Multiple words stored in a block.

- Some important terms:
 - Cache hit, Cache miss.
 - Miss rate: Miss per memory access.
 - Miss penalty: Cost to fetch a block from main memory when the block is not found in cache.
- ✓ Data management policy of cache: block searching, block placement, block replacement.

Direct mapped cache, fully associative cache, set-associative cache.

Memory Hierarchy: *Some important terms*

CPU execution time = (CPU clock cycles + Memory stall cycles) × Clock cycle time

Memory stall cycles = Number of misses \times Miss penalty

$$=$$
 IC \times \times Miss penalty

$$= IC \times \frac{\text{Memory accesses}}{\text{Instruction}} \times 1 \times \text{Miss penalty}$$

Memory stall clock cycles = $IC \times Reads$ per instruction $\times Read$ miss rate $\times Read$ miss penalty + $IC \times Writes$ per instruction $\times Write$ miss rate $\times Write$ miss penalty

$$\frac{\text{Misses}}{\text{Instruction}} = \frac{\text{Miss rate} \times \text{Memory accesses}}{\text{Instruction count}} = \text{Miss rate} \times \frac{\text{Memory accesses}}{\text{Instruction}}$$

Average memory access time = Hit time + : × Miss penalty

AMA

For more detail read **Appendix C** of Hennessy and Patterson, "Computer Architecture A Quantitative Approach", Fourth edition, 2007.

Direct mapped cache, fully associative cache, set-associative

Data management policy of cache: block searching, block placement, block replacement.

- ☐ Direct mapped cache:
 - Advantage: Easy to implement. Easy to search.
 - Disadvantage: More collision of blocks.
- ☐ Fully associative cache:
 - Advantage: Less number of misses. Best utilization of the cache.
 - Disadvantage: Expensive to implement in hardware. Search time is also high.

- ☐ Set associative cache:
 - **♦** Advantage:
 - Less hardware overhead (compared to fully associative).
 - Less number of collisions (compared to direct mapped).
 - Less searching time (compared to fully associative).
 - Disadvantage: ??

Which one is better?

Non-Uniform Cache Access (NUCA)

Static NUCA: SNUCA:

^[1] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, "Multi-Core Cache Hierarchies," Morgan Claypool Publishers, 2011.

^[2] C. Kim, D. Burger, and S. W. Keckler, "An adaptive, non-uniform cache structure for wire- delay dominated on-chip caches," SIGOPS Oper. Syst. Rev., vol. 36, 2002.

❖ D-NUCA:

The data management of D-NUCA is based on the following three concepts:

- **1. Mapping:** How the blocks are mapped to the banks.
- **2. Search:** How the set of possible locations are searched to find a block.
- **3. Movement:** Under what conditions the data should be migrated from one bank to other.

^[1] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, "Multi-Core Cache Hierarchies," Morgan Claypool Publishers, 2011.

^[2] C. Kim, D. Burger, and S. W. Keckler, "An adaptive, non-uniform cache structure for wire- delay dominated on-chip caches," SIGOPS Oper. Syst. Rev., vol. 36, 2002.

❖ D-NUCA Data Mapping:

- Data can be mapped to a single bank (S-NUCA).
- 2. Data can be mapped in any bank (extreme).
- 3. An intermediate solution called bank-sets.

❖ D-NUCA Searching:

- ☐ Incremental Search.
- Multicast Search.
- ☐ Limited Multicast Search.
- ☐ Smart Search

Advantages:

- Medionces auceiserlafemessages.
- Low energy consumption.
- Fewer banks are accessed when result is a early hit.

Disadvantages:

- Highwes pyeronaumption crease
- Increases laterwork contention.

Read about the D-NUCA searching

techniques from monian, N. P. Jouppi, and N. Muralimanohar, "Multi-Core Cache Hierarchies," *Morgan Claypool Publishers, 2011.*[2] C. Kim, D. Burger, and S. W. Keckler, "An adaptive, non-uniform cache structure for wire- delay dominated on-chip caches," *SIGOPS Oper. Syst. Rev.*, vol. 36, 2002.

❖ D-NUCA Migration:

- ☐ Heavily used blocks are gradually migrated towards the closer banks.
- ☐ A data is initially placed into the farthest bank and gradually move closer.

D-NUCA Migration Example

D-NUCA performs 18% better than SNUCA-2 and 20% better than monolithic shared LLC.

NUCA in CMP

Chipmultiprocessor (CMP)

CMP with Centralized LLC

Possible Attack: Discussed later.

- [1] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, "Multi-Core Cache Hierarchies," Morgan Claypool Publishers, 2011.
- [2] C. Kim, D. Burger, and S. W. Keckler, "An adaptive, non-uniform cache structure for wire- delay dominated on-chip caches," *SIGOPS Oper. Syst. Rev.*, vol. 36, 2002.

For more detail please read

- 1. Appendix C of Hennessy and Patterson, "Computer Architecture A Quantitative Approach", Fourth edition, 2007.
- 2. Multicore Cache Hierarchies by Rajeev Balasubramonian, Norman Jouppi and Naveen Muralimonohar.

Thank You