Circuito Lógico

Curso ILC

Circuito Lógico

Uma chave pode estar em uma de duas possíveis posições:

- Chave fechada: corrente pode passar.
- Chave aberta: há interrupção de corrente.

Exemplo de uma chave num circuito:

- Lâmpada acende sse corrente passa por ela.
- Isto acontece, sse a chave está fechada.

Circuito Lógico: aplicação

Sejam os circuitos abaixo e os possíveis comportamentos:

Cha	Lâmpada	
P	Q	Estado
Fechada	Fechada	Acesa
Fechada	Aberta	Apagada
Aberta	Fechada	Apagada
Aberta	Aberta	Apagada

Cha	Lâmpada	
P	Q	Estado
Fechada	Fechada	Acesa
Fechada	Aberta	Acesa
Aberta	Fechada	Acesa
Aberta	Aberta	Apagada

- $P \wedge Q$ (conjunção); - $P \vee Q$ (disjunção).
 - (disjunção).

 normalmente substituídos pelos símbolos 1 e 0.

 → Estes símbolos são chamados de bits (binary digits).

Circuito Lógico: Aplicação

No projeto de circuitos digitais, os valores lógicos **verdadeiro** e **falso** são normalmente substituídos pelos símbolos 1 e **0**.

1. As variáveis booleanas só podem assumir os valores 0 ou 1, ou seja:

$$x = 0$$
 ou $x = 1$

2. O complemento ou negação de uma variável x, simbolizado por \overline{x} é obtida tal que:

Se:
$$x = 0$$
, então: $\overline{x} = 1$

Se:
$$x = 1$$
, então: $\overline{x} = 0$

3. A operação AND representada pelo símbolo: •, ou ^, corresponde à multiplicação lógica sendo definida pelas equações:

$$0 \cdot 0 = 0$$

$$1 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$
 $1 \cdot 1 = 1$

$$1 \cdot 1 = 1$$

4. A operação OR representada pelo símbolo +, ou V, corresponde à soma lógica sendo definida pelas equações:

$$0 + 0 = 0$$
 $1 + 0 = 1$

$$1 + 0 = 1$$

$$0+1=0$$
 $1+1=1$

$$1 + 1 = 1$$

5. A operação XOR representada pelo símbolo ⊕, corresponde à multiplicação lógica sendo definida pelas equações:

$$0 \oplus 0 = 0$$
 $1 \oplus 0 = 1$

- Portas Lógicas: são elementos de circuitos lógicos básicos que realizam as Operações Booleanas básicas:
 - ✓ Inversão (Negação), AND, OR, e XOR.

As portas lógicas básicas são as seguintes:

Porta Inversora ou NOT

Realiza a operação de complemento ou negação, sendo o símbolo e a tabela verdade como mostrado a seguir:

Α	В
1	0
0	1

Portas lógicas

Porta AND

Realiza a operação AND (multiplicação lógica) entre duas ou mais variáveis binárias.

O símbolo da porta AND de 2 entradas e a sua tabela verdade são mostrados a seguir:

A B C		C = A·B
0	0	0
0	1	0
1	0	0
1	1	1

Porta OR

Realiza a operação OR (soma lógica) entre duas ou mais variáveis binárias.

O símbolo da porta OR de 2 entradas e a sua tabela verdade são mostrados a seguir:

A	B C=A+B	
0	0	0
0	1	1
1	0	1
1	1	1

Portas lógicas

Porta XOR

Realiza a operação XOR (soma exclusiva) entre duas ou mais variáveis binárias.

O símbolo da porta XOR de 2 entradas e a sua tabela verdade são mostrados a seguir:

Α	В	C=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Porta NAND

Realiza a operação NAND (negação da multiplicação lógica) entre duas ou mais variáveis binárias.

O símbolo da porta NAND de 2 entradas e a sua tabela verdade são mostrados a seguir:

Α	В	С
0	0	1
0	1	1
1	0	1
1	1	0

Portas Lógicas

NOR

Realiza a operação NOR (negação da soma lógica) entre duas ou mais variáveis binárias.

O símbolo da porta NOR de 2 entradas e a sua tabela verdade são mostrados a seguir:

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	0

XNOR

Realiza a operação XNOR (negação da soma exclusiva) entre duas ou mais variáveis binárias.

O símbolo da porta XNOR de 2 entradas e a sua tabela verdade são mostrados a seguir:

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	1

Portas lógicas

XOR com portas NOT/AND/OR

XNOR com portas NOT/AND/OR

Exercicio

Observe o comportamento abaixo e desenhe o circuito

Exercicio

Observe o comportamento abaixo e desenhe o circuito

Α	В	С	X = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Como exemplo: o circuito abaixo pode ser expresso pela expressão booleana: $x = \overline{A}$. B + C

Qualquer circuito lógico, por mais complexo que seja, pode ser completamente descrito através das operações booleanas OR, AND, e NOT.

Como exemplo: o circuito abaixo pode ser expresso pela expressão booleana: $x = \overline{A}$. B + C

Qualquer circuito lógico, por mais complexo que seja, pode ser completamente descrito através das operações booleanas OR, AND, e NOT.

Já a expressão booleana: \overline{A} . (B + C) descreve o circuito:

Observe que as expressões: \overline{A} . B + C e \overline{A} . (B + C), diferem apenas na presença dos parênteses, o que deixa claro que a operação AND precede as demais operações, exceto se a precedência for quebrada pelos parênteses.

A)
$$X = \overline{A} \cdot B \cdot C \cdot (\overline{A + D})$$

B)
$$X = [D + (\overline{A + B}).C].E$$

Exercícios: mostre os circuitos resultantes

Avaliação das expressões boolenas

a) Na expressão: $X = \overline{A}$. B . C . $(\overline{A + D})$, substituindo-se as variáveis A, B, C, e D, por 0, 1, 1, e 1, respectivamente, obtém-se:

$$X = \overline{0} \cdot 1 \cdot 1 \cdot (\overline{0+1}) = 1 \cdot 1 \cdot 1 \cdot (\overline{0+1}) = 1 \cdot 1 \cdot 1 \cdot (\overline{1}) = 1 \cdot 1 \cdot 1 \cdot 0 = 0$$

b) Na expressão: $X = [D + (\overline{A + B}).C].E$, substituindo-se as variáveis A, B, C, D, e E, por 0, 0, 1, 1, e 1, respectivamente, obtém-se:

$$X = [1 + (\overline{0 + 0}).1].1 = [1 + (\overline{0.1})].1 = [1 + 1].1 = 1.1 = 1$$

Avaliação da saída do circuito lógico

Avaliação da saída do circuito lógico

Pode-se implementar (sintetizar) um circuito lógico através da expressão booleana associada a este.

Por exemplo a expressão: $X=\overline{A}$. B . C . $(\overline{A+D})$, pode se implementada partindo-se das partes que a compõem: $Y=\overline{A}$. B . C e $Z=(\overline{A+D})$,

Sintetizando-as e por fim associando as duas através da operação booleana AND, pois: $\mathbf{X} = \mathbf{Y} \cdot \mathbf{Z}$

O circuito lógico da expressão booleana: Y = \overline{A} . B . C , \acute{e} o seguinte:

O circuito lógico da expressão booleana: $Z = (\overline{A + D})$, é o seguinte:

$$A \rightarrow A \rightarrow D \rightarrow A \rightarrow D$$

Por fim, as saldas dos dois blocos de circuito anteriores são entradas de uma porta AND, e a expressão booleana:

$$X = Y \cdot Z = [\overline{A} \cdot B \cdot C] \cdot (\overline{A + D})$$

AND

Que resulta no circuito mostrado abaixo:

Implementando o circuito

1. Identidade:

$$A + 0 = A$$
 e $A \cdot 1 = A$ (dual)

2. Elemento Nulo:

$$A + 1 = 1$$
 e $A \cdot 0 = 0$ (dual)

3. Idempotência:

$$A + A = A$$
 e $A \cdot A = A$ (dual)

4. Complemento:

$$A + \overline{A} = 1$$
 e $A \cdot \overline{A} = 0$ (dual)

5. Involução:

$$\overline{(\overline{A})} = A$$

6. Comutativa:

$$A + B = B + A$$

7. Associativa:

$$(A + B) + C = A + (B + C)$$

8. Distributiva:

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

e
 $(A + B) \cdot (A + C) = A + A \cdot C + B \cdot A + B \cdot C$ (dual)

Teoremas da álgebra booleana

9. Cobertura:

$$A + A \cdot B = A$$

 e
 $A \cdot (A + B) = A$

10. Combinação:

$$A \cdot B + A \cdot \overline{B} = A$$

$$\underbrace{e}_{(A + B) \cdot (A + \overline{B})} = A \quad \text{(dual)}$$

$$A + \overline{A} \cdot B = A + B$$

$$\overline{A} + A \cdot B = \overline{A} + B$$

11. Consenso (Termo Fantasma):

$$A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$$

$$e$$

$$(A + B) \cdot (\overline{A} + C) \cdot (B + C) = (A + B) \cdot (\overline{A} + C) \qquad (dual)$$

12. De Morgan:

$$\overline{(A.B)} = \overline{A} + \overline{B}$$

$$e$$

$$(\overline{A+B}) = \overline{A}.\overline{B} \quad \text{(dual)}$$

Teoremas da álgebra booleana

Teoremas da álgebra booleana

Simplificação algébrica de circuitos lógicos

$$X = A \cdot B \cdot (\overline{A} + BC) = A \cdot B \cdot A \cdot \overline{B \cdot C} = A \cdot B \cdot A \cdot (\overline{B} + \overline{C}) =$$

= $A \cdot B \cdot A \cdot \overline{B} + A \cdot B \cdot A \cdot \overline{C} = A \cdot B \cdot \overline{B} + A \cdot B \cdot \overline{C} = 0 + A \cdot B \cdot \overline{C}$
= $A \cdot B \cdot \overline{C}$

Simplificação algébrica de circuitos lógicos

Simplificação algébrica de circuitos lógicos

$$Z = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A} \cdot \overline{C}) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A} + \overline{C})$$

$$= A \cdot B \cdot C + A \cdot \overline{B} \cdot (A + C) = A \cdot B \cdot C + A \cdot \overline{B} + A \cdot \overline{B} \cdot C$$

$$= A \cdot C \cdot (B + \overline{B}) + A \cdot \overline{B} = A \cdot C \cdot 1 + A \cdot \overline{B} = A \cdot (\overline{B} + C)$$

Simplificação algébrica de circuitos lógicos

$$Z = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A} \cdot \overline{C}) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A} + \overline{C})$$

$$= A \cdot B \cdot C + A \cdot \overline{B} \cdot (A + C) = A \cdot B \cdot C + A \cdot \overline{B} + A \cdot \overline{B} \cdot C$$

$$= A \cdot C \cdot (B + \overline{B}) + A \cdot \overline{B} = A \cdot C \cdot 1 + A \cdot \overline{B} = A \cdot (\overline{B} + C)$$

Mapa de Karnaugh

• Método gráfico usado para simplificar uma equação lógica ou converter uma tabela verdade no seu circuito logico correspondente

 Sair do circuito idealizado para o circuito otimizado que você vai realmente construir

• A partir da tabela verdade que determina o comportamento, chegase ao circuito a ser construído que reproduz tabela verdade

Considerações importantes

• Na construção da tabela, manter a distancia de Hamming de 1, isto é, mudar apenas 1 bit em cada passo (onde as pessoas erram mais;)

Aprendendo por exemplos

EXEMPLO: Tabela Verdade

Α	В	Υ
1	1	1
1	0	0
0	1	0
0	0	1

DA TABELA VERDADE PARA MAPA DE KARNAUGH

Α	В	Υ
1	1	1
1	0	0
0	1	0
0	0	1

$A\B$	0	1
0	1	
1		1

DA TABELA VERDADE PARA MAPA DE KARNAUGH

Α	В	Υ			
1	1	1	$A\B$	0	1
1	0	0	0	1	
0	1	0	1		1
0	0	1			

$$Y = \underline{A} \cdot \underline{B} + A \cdot B$$

DA TABELA VERDADE PARA MAPA DE KARNAUGH

Α	В	Υ
1	1	1
1	0	0
0	1	0
0	0	1

Exemplo: Considere a tabela verdade abaixo

Α	В	C	SAIDA
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Exemplo: Construa o mapa de Karnaugh

Α	В	C	SAIDA
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

A \BC	"00"	"01"	"11"	"10"
"0"	1	1	1	
"1"			1	1

Exemplo: Grupe (grupos de 2ⁿ)

Α	В	C	SAIDA
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Exemplo: quem muda não entra no circuito

Α	В	C	SAIDA
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Circuito = \underline{A} . \underline{B} + B . C + A. B

Exemplo: quem muda não entra no circuito

Α	В	C	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

EXEMPLO #2: DADA A TABELA VERDADE

Α	В	С	D	Υ
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

EXEMPLO #2: DADA A TABELA VERDADE

Α	В	C	D	Υ
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

AB\CD	"00"	"01"	"11"	"10"
"00"	1	1		1
"01"	1	1		1
"11"			1	
"10"	1			1

EXEMPLO #2: DADA A TABELA VERDADE

Α	В	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

AB\CD	"00"	<u>"01</u> "	"11"	"10"
"00"	1	1		1
"01"	1	1		1
"11"			1	
"10"	1)		1
	\nearrow			

$$Y=\underline{A}.\underline{C}+\underline{A}.\underline{D}+A.\underline{B}.\underline{D}+A.B.C.D$$

Α	В	C	Υ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

EXERCICIO \rightarrow mapa de karnaugh

Α	В	C	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

A\BC	"00"	"01"	"11"	"10"
0	(1)	1)		1
1				1

EXERCICIO \rightarrow mapa de karnaugh

Α	В	C	Υ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$Y=\underline{A}.\underline{B} + \underline{A}.\underline{C} + B.\underline{C}$$

$$y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}.$$

			_	_
	CLADD	1 7	1 4001	\mathbf{r}
$\nu =$	CCABD	+ //)	$\pm ABC \pm$,,
<i>y</i>	0/211212	. 2	+ABC+	$\boldsymbol{\nu}$.

	Ζ̈́D	ĒD	ÇD	CD
ÂB	1	1	0	1
ĀB	1	1	0	. 1
АВ	1	1	0	1
$A\bar{B}$	1	-1	. 1	1.

$$y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}.$$

AB\CD	"00"	"01"	"11"	"10"
"00"	1	1	0	1
"01"	1	1	0	1
"11"	1	1	0	1
"10"	1	1	1	1

$$y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}.$$

AB\CD	"00"	"01"	"11"	"10"
"00"	1	1	0	/ 1
"01"	1		0	1
"11"	1	1	0	1
"10"	1	1	1	1
,				

$$y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}.$$

AB\CD	"00"	"01"	"11"	"10"
"00"		1	0	/ 1
"01"	1	1	0	1
"11"	1	1	0	1
"10"	1	1	1	1
,				

$$Y = \underline{C} + A.\underline{B} + \underline{D}$$

Exercícios para casa

• Determine a expressão mínima para os mapas abaixo:

	ĊĎ	ĈD	CD	CD
ĀĒ	1	1	1	1
ĀВ	1	1	0	0
АВ	0	0	0	1
ΑŘ	0	0	1	1
	1	(a)	

	ĒΘ	ĒD	CD	CD
ĀĒ	1	0	1	1
ĀВ	1	° 0	0	1
АВ	0	0	0	0
ΑÃ	1	0	1	1
		(b	o)	

Exercícios para casa

• Simplifique as expressões usando o mapa de Karnaugh

$$y = \overline{(C + \underline{D})} + \overline{A}C\overline{D} + A\overline{B}C + \overline{A}BCD + AC\overline{D}$$
$$x = AB(\overline{C}D) + \overline{A}BD + \overline{B}C\overline{D}$$