THE 18.821 MATHEMATICS PROJECT LAB REPORT [PROOFS]

JONATHAN ALLEN

1. Theorems

1.1. Notation.

t: Time

l: Path length

s: Speed

 a_T : Tangential acceleration a_C : Centripetal acceleration

 \vec{x} : Position \vec{v} : Velocity

 \vec{a} : Acceleration

2. Cylindrical Coordinates Calculus

(1)
$$\mathbf{r} = r\hat{\mathbf{r}}$$

(2)
$$\dot{\mathbf{r}} = \dot{r}\hat{\mathbf{r}} + r\dot{\phi}\hat{\phi}$$

(3)
$$\ddot{\mathbf{r}} = \left(\ddot{r} - r\dot{\phi}^2\right)\hat{\mathbf{r}} + \frac{1}{r}\frac{d}{dt}\left(r^2\dot{\phi}\right)\hat{\phi}$$

3. Theorems

Theorem 3.1. For a given speed and bounded centripetal acceleration, it is always optimal to minimize the turning radius. This turning radius is

Proof. Well, yes. \Box

REFERENCES

[1] http://en.wikipedia.org/wiki/Polar_coordinate_system

Date: September 19, 2013.