TEHNICI DE OPTIMIZARE Curs 6

Andrei Pătrașcu

Departament Informatică Universitatea din București

Metoda Newton

Metoda Newton (pentru constrângeri simple)

$$x^{k+1} = \underset{z \in Q}{\operatorname{argmin}} \ f(x^k) + \nabla f(x^k)^T (z - x^k) + \frac{1}{2\alpha_k} (z - x^k)^T \nabla^2 f(x^k) (z - x^k).$$

Metoda Newton (cu proiectie)

$$x^{k+1} = \underset{z \in Q}{\operatorname{argmin}} \ f(x^k) + \nabla f(x^k)^T (z - x^k) + \frac{1}{2\alpha_k} (z - x^k)^T \nabla^2 f(x^k) (z - x^k).$$

La iteraţia k, necesită rezolvarea:

$$QP: \min_{z \in Q} q^T z + \frac{1}{2\alpha_k} z^T H z.$$

Cuprins

- Constrângeri de egalitate.
- Condiţii de optimalitate

Serii de timp: Filtrare trend

Fie seria de timp $\{y_t\}_{t=1}^n \in \mathbb{R}^n$, presupunem descompunerea:

$$y_t = x_t + \epsilon_t$$

- x_t reprezintă componenta-trend de variație lentă
- ullet componenta zgomot de variație rapidă

Filtrare a trend-ului = estimarea componentei "netede" x_t .

Serii de timp: Filtrare trend

$$\min_{x} \frac{1}{2} \sum_{t=1}^{n} (x_{t} - y_{t})_{2}^{2} + \rho \sum_{t=2}^{n-1} (x_{t-1} - 2x_{t} + x_{t+1})^{2}.$$
 (1)

- Funcţia obiectiv urmăreşte reducerea reziduului $\{y_t x_t\}$ şi, în acelaşi timp, ajustarea "netezimii" lui x_t .
- Diferența de ordin 2: $x_{t-1} 2x_t + x_{t+1}$ este nulă dacă și numai dacă $\{x_{t-1}, x_t, x_{t+1}\}$ sunt coliniare.

Filtru H-P

În forma restrânsă:

$$x_{HP}^* := \underset{x}{\operatorname{argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \rho \|Dx\|_2^2, \quad \text{unde} \quad D \in \mathbb{R}^{(n-2) \times n}$$

$$D = \begin{bmatrix} 1 & -2 & 1 & & & \\ & 1 & -2 & 1 & & & \\ & & \vdots & \vdots & \vdots & & \\ & & & 1 & -2 & 1 \\ & & & & 1 & -2 & 1 \end{bmatrix}$$

$$x_{HP}^* := \underset{x}{\operatorname{argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \rho \|z\|_2^2$$

s.t. $Dx = z$.

Filtru ℓ₁

$$X_{\ell_1}^* := \underset{x}{\operatorname{argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \rho \|Dx\|_1$$

- \bullet $\|\cdot\|_2^2$ devine $\|\cdot\|_1$
- Dacă $D = I_n$ atunci problema este separabilă: $X_t^* = \operatorname{argmin}_{X_t \in \mathbb{R}} \frac{1}{2} (X_t - Y_t)_2^2 + \lambda |X_t|$

Filtru ℓ₁: rezultate

$$X = \begin{bmatrix} 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \end{bmatrix}$$

Fiecare X_i se poate recupera complet din baza b si codul z_i.

$$X = \begin{bmatrix} 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \end{bmatrix}$$

- Fiecare X_i se poate recupera complet din baza b şi codul z_i .
- Dimensiunea lui X (72 octeţi) poate fi redusă la $size(b) + size(z) = 9 \cdot 4 = 36$ octeţi.

$$X = \begin{bmatrix} 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \end{bmatrix}$$

- Fiecare X_i se poate recupera complet din baza b şi codul z_i .
- Dimensiunea lui X (72 octeţi) poate fi redusă la size(b) + size(z) = 9 · 4 = 36 octeţi.
- Dacă numărul de coloane m creşte (coliniar pe b), atunci dimensiunea lui z creşte proporţional 4m octeţi (dimensiunea bazei este constantă).

$$X = \begin{bmatrix} 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \end{bmatrix}$$

- Fiecare X_i se poate recupera complet din baza b şi codul z_i .
- Dimensiunea lui X (72 octeţi) poate fi redusă la size(b) + size(z) = 9 · 4 = 36 octeţi.
- Dacă numărul de coloane m creşte (coliniar pe b), atunci dimensiunea lui z creşte proporţional 4m octeţi (dimensiunea bazei este constantă).
- În particular, fixând $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ avem reconstruţie perfectă $X_i = z_i b$ unde

$$z_1 = 15, z_2 = 0.1, z_3 = 0.5, z_4 = -100, z_5 = -1.01, z_6 = 0.00001$$

Analiza Componentelor Principale

Matricea de covarianță:

$$S = XX^T$$

Calculul componentei principale:

$$\begin{aligned} \textit{PCA}: & \max_{x \in \mathbb{R}^n} \|Sx\|_2^2 \\ & \text{s.l. } \|x\| = 1 \end{aligned}$$

$$\text{Rezultatul pentru } X = \begin{bmatrix} 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \\ 15 & 0.1 & 0.5 & -100 & -1.01 & 0.00001 \end{bmatrix} \text{ este }$$

$$x^* = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

(POCel:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $Ax = b$,

unde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

- f funcție diferențiabilă (netedă)
- $Q = \{x \in \mathbb{R}^n : a_i^T x = b_i, \forall i = 1, \dots, m\} \Rightarrow \text{proiecţie costisitoare.}$
- x^* minim local: $f(x^*) \le f(x)$ pentru $x \in Q$ în vecinătatea lui x^*

(POCel:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $Ax = b$,

unde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

• Funcţia Lagrange $\mathcal{L}: \text{dom}(f) \times \mathbb{R}^m$:

$$\mathcal{L}(\mathbf{x},\mu) = f(\mathbf{x}) + \mu^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b})$$

• $\mu \in \mathbb{R}^m$ multiplicatori Lagrange (variabile duale).

(POCel:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $Ax = b$,

unde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

Teoremă (Multiplicatori Lagrange)

Dacă x^* minim local, atunci există μ^* astfel încât:

$$\nabla_{x}\mathcal{L}(x^{*},\mu^{*}) := \nabla f(x^{*}) + \mu_{1}^{*}a_{1} + \mu_{2}^{*}a_{2} + \dots + \mu_{m}^{*}a_{m} = 0 \quad (optimalitate)$$
$$\nabla_{\mu}\mathcal{L}(x^{*},\mu^{*}) := Ax^{*} - b = 0. \quad (fezabilitate)$$

Dacă f convexă, atunci condițiile de mai sus sunt suficiente.

Demonstraţie pe scurt [rankA = p < n]:

$$x^* = \pi_Q(x^* - \nabla f(x^*)) = \arg\min_{Az = b} \|z - x^* + \nabla f(x^*)\|$$

= $x^* + \arg\min_{As = 0} \|s + \nabla f(x^*)\|.$

Reamintim: $v = \pi_{Ker(A)}(v) + \pi_{Im(A^T)}(v)$

$$0 = \underset{As=0}{\operatorname{arg\,min}} \|s + \nabla f(x^*)\| \ \Rightarrow \ -\nabla f(x^*) \in \operatorname{Im}(A^T)$$

Concluzie:

$$\exists \mu^* \in \mathbb{R}^m : -\nabla f(\mathbf{x}^*) = \mathbf{A}^T \mu^*.$$

$$\min_{x \in \mathbb{R}^2} x_1^2 - x_2^2$$
s.l. $x_2 = 0$.

$$\min_{x \in \mathbb{R}^2} \ x_1^2 + x_2^2 - x_1 x_2$$
s.l. $x_1 - x_2 = 0$.

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||x - y||_2^2$$
s.l. $a^T x = b$,

unde $a \in \mathbb{R}^n$, $b \in \mathbb{R}$.

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T H x + q^T x$$
s.l. $Ax = b$,

unde $H \succeq 0, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$.

Condiții de optimalitate:

$$Hx^* + q + A^T \mu^* = 0$$
 (optimalitate)
 $Ax^* = b$. (fezabilitate)

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T H x + q^T x$$
s.l. $Ax = b$,

unde $H \succ 0, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$.

Condiții de optimalitate (Sistem Kuhn-Tucker):

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \mu^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}.$$

Constrângeri de egalitate neliniare

(POCe:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

 \bullet f, g_i sunt funcţii netede

Constrângeri de egalitate neliniare

(POCe:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

- f, g_i sunt funcții netede
- $Q = \{x \in \mathbb{R}^n : g_i(x) = 0, \forall i = 1, \cdots, m\} \Rightarrow \text{proiecţie dificilă}$

Constrângeri de egalitate neliniare

(POCe:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

- f, g_i sunt funcţii netede
- $Q = \{x \in \mathbb{R}^n : g_i(x) = 0, \forall i = 1, \cdots, m\} \Rightarrow \text{proiecţie dificilă}$
- x^* minim local: $f(x^*) \le f(x)$ pentru $x \in Q$ în vecinătatea lui x^*

(POCe:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

(POCe:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

• Funcţia Lagrange \mathcal{L} : dom $(f) \times \mathbb{R}^m$:

$$\mathcal{L}(\mathbf{x}, \mu) = f(\mathbf{x}) + \mu^{\mathsf{T}} g(\mathbf{x})$$

ullet μ multiplicatori Lagrange (variabile duale)

(POCe:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

Definiție

Punctul x^* este minim regulat dacă f(x), $g_i(x)$ sunt continuu diferențiabile în vecinătatea lui x^* și $\{\nabla g_i(x^*)\}$ sunt liniar independenți.

$$\min_{x \in \mathbb{R}^2} x_2$$

s.l.
$$(x_1 - 1)^2 + x_2^2 - 1 = 0$$
, $(x_1 + 1)^2 + x_2^2 - 1 = 0$

$$(POCe:)$$
 $\min_{x \in \mathbb{R}^n} f(x)$
s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

Teoremă (Multiplicatori Lagrange)

Dacă x^* minim regulat, atunci există μ^* astfel încât:

$$\nabla_{x}\mathcal{L}(x^{*},\mu^{*}) := \nabla f(x^{*}) + \mu_{1}^{*}\nabla g_{1}(x^{*}) + \mu_{2}^{*}\nabla g_{2}(x^{*}) + \dots + \mu_{m}^{*}\nabla g_{m}(x^{*}) = 0 (opt.)$$

$$\nabla_{\mu}\mathcal{L}(x^{*},\mu^{*}) := g(x^{*}) = 0 (fezabilitate)$$

Condiții de ordin 2

(POCe:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

Definiție (Plan tangent)

Fie $Q = \{x : g_i(x) = 0, i = 1, \dots, m\}$, unde g_i diferenţiabile în jurul lui y. Mulţimea direcţiilor tangente în punctul y este descrisă de $T(x) = \{s : \nabla g_i(x)^T s = 0 \quad \forall i = 1, \dots, m\}$.

Condiții de ordin 2

(POCe:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

Teoremă (Condiții necesare ord. 2)

Dacă x^* minim regulat și f și g_i dublu diferențiabile în jurul lui x^* . Atunci există μ^* astfel încât:

$$s^T \nabla^2 \mathcal{L}(x^*, \mu^*) s \ge 0 \qquad \forall s \in T(x^*)$$

unde
$$T(x^*) = \{s : \nabla g_i(x^*)^T s = 0 \mid \forall i = 1, \dots, m\}.$$

Echivalent, $\nabla_x^2 \mathcal{L}(x^*, \mu^*)$ pozitiv semidefinită pe planul tangent $T(x^*)$.

Condiții de ordin 2

(POCe:)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.l. $g_i(x) = 0$ $\forall i = 1, \dots, m$

Teoremă (Condiții suficiente ord. 2)

Fie $g_i(x^*)=0$, f şi g_i dublu diferenţiabile în jurul lui x^* . Mai mult, presupunem $\{\nabla g_i(x^*)\}$ liniar independenţi. Atunci dacă:

$$s^T \nabla^2 \mathcal{L}(x^*, \mu^*) s > 0$$
 $\forall s \in T(x^*)$

unde $T(x^*) = \{s : \nabla g_i(x^*)^T s = 0 \quad \forall i = 1, \dots, m\}$, atunci x^* este minim local.

Dacă $\nabla_x^2 \mathcal{L}(x^*, \mu^*)$ este pozitiv definită pe planul tangent $T(x^*)$ atunci x^* este minim local.

Condiții de ordin 2

Exemplu:

$$\min_{x \in \mathbb{R}^2} x_1^2 - x_2^2$$
s.l. $x_2 = 0$.

Condiții de ordin 2

•
$$\min_{x} \sum_{i=1}^{n} x_{i}^{2}$$
 s.l. $\sum_{i=1}^{n} x_{i} = 1$

- $\min_{x} \sum_{i=1}^{n} x_{i}$ s.l. $\sum_{i=1}^{n} x_{i}^{2} = 1$
- $\min_{x} x^{T} A x$ s.l. $\sum_{i=1}^{n} x_{i}^{2} = 1$
- $\min_{x} ||x||^2$ s.l. $x^T A x = 1$

Cuprins

- Constrângeri de egalitate
- Condiţii de optimalitate
- Filtrare de trend

Serii de timp: Filtrare trend

Fie seria de timp $\{y_t\}_{t=1}^n \in \mathbb{R}^n$, presupunem descompunerea:

$$y_t = x_t + \epsilon_t$$

- x_t reprezintă componenta-trend de variație lentă
- ullet componenta zgomot de variație rapidă

Filtrare a trend-ului = estimarea componentei "netede" x_t

Serii de timp: Filtrare trend

Filtru H-P

$$\min_{x} \frac{1}{2} \sum_{t=1}^{n} (x_{t} - y_{t})_{2}^{2} + \rho \sum_{t=2}^{n-1} (x_{t-1} - 2x_{t} + x_{t+1})^{2}.$$
 (1)

- Funcţia obiectiv urmăreşte reducerea reziduului $\{y_t x_t\}$ şi, în acelaşi timp, ajustarea "netezimii" lui x_t .
- Diferența de ordin 2: $x_{t-1} 2x_t + x_{t+1}$ este nulă dacă și numai dacă $\{x_{t-1}, x_t, x_{t+1}\}$ sunt coliniare.

Filtru H-P

În forma restrânsă:

$$x^*_{\mathit{HP}} := \underset{x}{\operatorname{argmin}} \ \frac{1}{2} \|x-y\|_2^2 + \rho \|Dx\|_2^2, \quad \text{unde} \quad D \in \mathbb{R}^{(n-2) \times n}$$

$$D = \begin{bmatrix} 1 & -2 & 1 & & & \\ & 1 & -2 & 1 & & & \\ & & \vdots & \vdots & \vdots & \\ & & & 1 & -2 & 1 \\ & & & & 1 & -2 & 1 \end{bmatrix}$$

Soluția modelului HP are forma:

$$x_{HP}^* := \left(I + 2\rho D^T D\right)^{-1} y.$$

Eroarea relativă de estimare satisface:

$$\|y - x_{HP}^*\|_2 \le \frac{32\rho}{1 + 32\rho} \|y\|_2$$

Filtru ℓ₁

$$x_{\ell_1}^* := \underset{x}{\operatorname{argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \rho \|Dx\|_1$$

- \bullet $\|\cdot\|_2^2$ devine $\|\cdot\|_1$
- Dacă $D = I_n$ atunci problema este separabilă: $X_t^* = \operatorname{argmin}_{X_t \in \mathbb{R}} \frac{1}{2} (X_t - Y_t)_2^2 + \lambda |X_t|$

Filtru ℓ₁

Reformulăm:

$$x_{\ell_1}^* := \underset{x}{\operatorname{argmin}} \frac{1}{2} ||x - y||_2^2 + \rho ||z||_1$$

s.l. $Dx = z$

Funcția Lagrangian:

$$\mathcal{L}(x, z, \lambda) := \frac{1}{2} \|x - y\|_2^2 + \rho \|z\|_1 + \lambda^T (Dx - z)$$

Observăm:

$$[z(x,\lambda)]_i := egin{cases} 0, & \mathsf{dac}\ -
ho \leq \lambda_i \leq
ho \ -\infty, & \mathsf{dac}\ |\lambda_i| >
ho. \end{cases}$$

Filtru ℓ₁

Condiţii de optimalitate:

$$x_{\ell_1}^* = y - D^T \lambda^*$$

Problema duală:

$$\begin{split} \lambda^* &= \arg\max_{\lambda} \; -\frac{1}{2} \|D^T\lambda\|_2^2 + \lambda^T Dy \\ \text{s.l.} \; -\rho &\leq \lambda_i \leq \rho \quad \forall i=1,\cdots,n-2. \end{split}$$

Filtru ℓ₁: rezultate

