VIDYA PRATISHTHAN'S

Kamalnayan Bajaj Institute of Engineering and Technology, Baramati Department of Artificial Intelligence and Data Science

MID-SEM EXAMINATION ACADEMIC YEAR 2021-22

SUBJECT:-DATA STRUCTURES AND ALGORITHMS

Max Marks:-30

1	l. Total 30 questions								
2	2. Each question carries 1 mark								
	3. Figures to right indicates CO, RBT Level and Marks								
4	4. Use of scientific calculator(non programmable) is allowed								
	4. Ose of selentine calculator (non-programmable) is anowed								
C	${\mathbb C} O_1$ Identify and ar	CTICULATE THE COMPLE	EXITY GOALS AND BENE	EFITS OF A GOOD HASHING					
	CHEME FOR REAL-WOR								
1. Assume that the hash function used is not producing any collisions and starge, what would be the worst case time requirement				size of hash table is sufficiently CO_1, L_1 [1]					
	(a) $O(1)$	(b) $O(n)$	(c) $\Omega(n)$	(d) $\theta(n)$					
2.	Select one out of giver	n functions as collision r	esolution techniques	CO_1, L_1 [1]					
	(a) Open Addressing	(b) Division Method	(c) Folding Method	(d) Mid Square Method					
3. Chained hashing is compared with open addressing scheme, which one of the statement them									
them (a) Space requirement of chained hashing is less than Open Addressing CO_1 , I									
	(b) Deletion is simple	in chaining							
(c) Worst case complexity of chaining is less									
	(d) Open addressing b								
4.	The internet accessed CO_1 , L_1 [1]	The internet accessed through browsers on computers stores pages for short time inthat uses CO_1 , L_1 [1]							
	(a) Linked List	(b) Buffers	(c) Arrays	(d) Hashing					
5.	Collision resolution by	open addressing infers		$CO_1,L_1[1]$					
	a) We look for memory outside the existing hash table								
	(b) We look for free memory location in current hash table								
	(c) We create a separate hash table newly								
	(d) We invoke other collision detection function								
6.	Find out the packaging density if there are 75 records and size of the hash table 100 and all the records are unique CO_1 , L_4 [
	(a) 0.75	(b) 0.30	(c) 0.70	(d) 0.30					
7.	Use the formula $P(x)$ assigned if packaging of	$0 = \frac{(\frac{r}{N})^x e^{(\frac{-r}{n})}}{x!}$ and find density is 0.5	out how many of addr	resses should have no records CO_1, L_3 [1]					
	(a) 607	(b) 706	(c) 670	(d) 770					

		$\langle -r \rangle$				
8.	Use the formula $P(x) = \frac{(\frac{r}{N})^x e^{(\frac{-r}{n})}}{x!}$ and find out how many of addresses should have one record assigned if packaging density is CO_1 , L_3 [3]					
	(a) 304	(b) 305	(c) 203	(d) 303		
9.	Select the one who is o	pen addressing scheme			$CO_1, L_1 [1]$	
	(a) Linked List	(b) Bucketing	(c) Double Hashing	(d) Linear Probi	ng	
10.	The packaging density occupied	of certain hash table is	0.60, chose the correct c	ount of number o	of places not CO_1, L_3 [1]	
	(a) 548	(b) 584	(c) 600	(d) 1000		
11.	Packaging density is 0. number of total records	60 and number of place s	where assignment of ke	ey is done is 452 i	find out the CO_1, L_4 [1]	
	(a) 500	(b) 1000	(c) 452	(d) 600		
12.	The packing density of certain hash table is 0.40 find out number of place occupied by at least one entry CO_1 , L_4 [1]					
	(a) 303	(b) 330	(c) 670	(d) 570		
13.	The hash table of size 8 Find out the places of	and using hash function collision	key%8, function. Try to	store the values {	$8, 11, 14, 23, 27$. CO_1, L_4 [1]	
	(a) 1,2	(b) 1,2,3	(c) $2,3,4$	(d) 3		
14.		ize 8 and the hash function linear probing and find			hash table CO_1, L_3 [1]	
	(a) 0,1,6	(b) 1,6	(c) 1,2,6	(d) $2,5,6$		
15.	Which of the following	is hashing techniques m	nakes use of bit prefix	($CO_1, L_1\Upsilon$ [1]	
	(a) Chaining CO_2 APPLY NONLINEAR	(b) Linear Probing AR DATA STRUCTURES F	(c) Quadratic Probing OR SOLVING PROBLEMS	` '	~	
16.	The maximum number of the nodes accommodated in a binary search tree with height h is equal to CO_2 , L_2 [1]					
	(a) $2^h - 1$	(b) 2^{h-1}	(c) 2^h	(d) 2^{h+1}		
17.	There are n keys to be accommodated into a binary search tree what would be the minimum possible height of BST CO_2 , L_3 [1]					
	(a) $\lg_2 n$	(b) $\lg_1 0n$	(c) $\lg_2 n - 1$	(d) $\log_1 0n$		
18.		$= \{4, 6, 8, 3, 5, 9, 11, 7\}$ as multiple number of the				
	(a) $\{3, 4, 5, 6, 7, 8, 9, 11\}$	$\{4, 3, 6, 5, 8, 9, 11\}$	(c) $\{3, 5, 7, 11, 9, 8, 6, 4\}$	$(d) \{5, 3, 7, 11, 9, \dots, 6, 11, 9, \dots, 6, 11, 9, \dots, 6, \dots, 6,$	$\{8,4,6\}$	
19.	The worst case running	g time of the binary sear	rch tree is		CO_2,L_2 [1]	
	(a) $O(n)$	(b) $O(1)$	(c) $O(\log n)$	(d) n^3		
20.	Binary Search Tree with in order as $\{3,4,6,7,8,9,12,22\}$ and post order $\{3,4,7,9,22,12,8,6\}$ what would be the pre order of that tree traversal CO_2 , L_3 [1]					
	$(a) \ \{4,6,3,8,7,12,9,22\} \\ (b) \ \{6,4,3,8,7,12,9,22\} \\ (c) \ \{6,4,3,8,12,7,9,22\} \\ (d) \ \{3,6,4,8,7,12,22,9\} \\$					
21.		recurrence relation for E (b) $T(n) = T(k) + c$	· ·	(d) $T(n) = T(n)$	CO_2, L_2 [1] + c	

22.	We are hunting for missing entry in Binary Search Tree where inorder is $\{3, 4, 6, 7, 8, 9, 12, 22\}$ if you would have asked to find out the preorder but a lazy guy has missed key 8. You are being a sincere asked to open a campaign at least to search a place to place it CO_2 , L_4 [1]					
	(a) Its after 3 and befo	re 7	(b) Its after 3 and befo	re 4		
	(c) Its a root		(d) Its after 12 and bef	Fore 22		
23.	A Binary Search Tree was constructed with an input keys $L = \{11, 5, 6, 8, 3, 15, 4\}$, 11 has decided not to be part of the tree and came out who are the next eligible root to hold given tree as BST CO_2 , L_4 [1]					
	(a) 8 or 15	(b) 5 or 15	(c) 4 or 5	(d) 6 or 8		
24.	There are 7 members elected in a village and numbered them 1 through 7, their binary search tree is constructed, which is COMPLETE binary search tree, A member number 4 has decided not to be part of gram panchayat and opted for resign the post, who will be most eligible to be a root of the binary search tree CO_2 , L_4 [1]					
	(a) 3 or 7	(b) 2 or 6	(c) 1 or 3	(d) 5 or 7		
25.	There are 7 members elected in a village and numbered them 1 through 7, their binary search tree is constructed, which is COMPLETE binary search tree, A member number 1 has decided not to be part of gram panchayat and opted for resign the post, What would be effect on binary search tree CO_2 , L_3 [1]					
	(a) Still its BST		(b) Not a BST			
	(c) Requires selection of	of new root	(d) Resign is not allowed	ed		
26.	There are 7 members elected in a village and numbered them 1 through 7, their binary search tree is constructed, which is COMPLETE binary search tree, A member number 6 has decided not to be part of gram panchayat and opted for resign the post, who will be most eligible to be a root of the binary search tree CO_2 , L_4 [1]					
	(a) 5 or 7	(b) 1 or 3	(c) 2 or 1	(d) 2 or 3		
27.	There are 7 members elected in a village and numbered them 1 through 7, their binary search tree is constructed, which is COMPLETE binary search tree, A member number 2 has decided not to be part of gram panchayat and opted for resign the post, who will be most eligible to be a root of the binary search tree CO_2 , L_4 [1]					
	(a) 1 or 3	(b) 5 or 7	(c) 4,6	(d) 6 or 7		
28.	How many nodes will be there in complete binary search of level 5 CO_2 , L_3 [
	(a) 30	(b) 31	(c) 33	(d) 23		
29.	A binary search tree which completely left associated, then cost of deleting the node which is at largest depth is CO_2 , L_3 [1]					
	(a) $O(n)$	(b) $O(\ln n)$	(c) n^2	(d) $O(1)$		
30.	There are n sorted (ascending order) elements and its BST was constructed and decided to delete the smallest element, what would be the cost of deletion CO_2 , L_3 [1]					
	(a) $O(n)$	(b) $O(\lg n)$	(c) $O(1)$	(d) $O(n^2)$		