Counterexample-Guided Strategy Improvement for POMDPs Using Recurrent Neural Networks (IJCAI'19)

Weizhi Feng January 5, 2021

Outline

- Motivation & Contribution
- Formal Problem Statement
- Synthesis Procedure
- Experimental Results
- Conclusion

Motivation

- Autonomous agents that make decisions under uncertainty and incomplete information can be mathematically represented as POMDPs.
- It obtains observations and infers the likelihood of the system being in a certain state, known as the belief state.

• Traditional POMDP problems typically seek to compute a strategy that maximizes a cumulative reward over a finite horizon.

• But, the agent's behavior is often required to obey more complicated specifications.

Motivation

Strategy synthesis for POMDPs is a difficult problem.

- ► Example drone surveillance
 - The UAV wants to survey regions labeled with A and B, while avoiding the ground agent.
 - LTL formula:

$$\Box \Diamond A \land \Box \Diamond B \land \Box \neg \mathsf{Detected}.$$

Key questions

- How to generate a good strategy in the first place;
- How to improve a strategy if verification refutes the specification.

 Machine learning and formal verification techniques address these questions separately.

Contribution

- This paper propose a novel method that combines from machine learning and formal verification to handle strategy synthesis problem.
- ▶ 1) They train RNN (Recurrent Neural Network) to encode POMDP strategies.
- 2) They restrict the RNN-based strategy on a specific POMDP. For the resulting finite Markov chain, formal verification provides guarantees against temporal logic specifications.
- 3) If not satisfied, counterexample supply diagnostic information. The information is then used to improve the strategy by iteratively training the RNN.

Preliminaries – (PO)MDPs

- MDP: M = (S, Act, P, r)
- $P: S \times Act \rightarrow Distr(S)$
- $r: S \times a \rightarrow \mathbb{R}$
- A finite path π is a sequence of states and actions.
- The set of finite paths of M is $Paths_{fin}^{M}$.
- A strategy γ for an MDP M is a function:
- $\gamma: Paths_{fin}^M \to Distr(Act)$

Preliminaries – (PO)MDPs

- POMDP: M = (M, Z, O)
- Z: a finite set of observations;
- $O: S \times Z$ the observation function;
- $ObsSeq_{fin}^{M}$: the set of all finite observation-action sequences for a POMDP.

$$-z_0 \xrightarrow{a_0} z_1 \dots z_n$$

- POMDP Strategy:
 - A function $\gamma \in \Gamma_z^M$: $ObsSeq_{fin}^M \to Distr(Act)$.

Preliminaries – FSC (Finite-State Controllers)

• A k - FSC for a POMDP is a tuple $A = (N, n_I, \gamma_\alpha, \delta)$ where N is a finite set of k memory nodes.

Preliminaries – Specifications

• If φ is satisfied in a POMDP M under γ , we write $M^{\gamma} \models \varphi$, that is, the specification is satisfied in the induced MC.

Formal Problem Statement

For a POMDP M and a specification φ , where either $\varphi = \mathbb{P}_{\sim \lambda}(\psi)$ with ψ an LTL formula, or $\varphi = \mathbb{E}_{\sim \lambda}(\diamond a)$, the problem is to determine a finite-memory strategy $\gamma \in \Gamma_z^M$ such that $M^{\gamma} \models \varphi$.

- $\varphi = \mathbb{P}_{\sim \lambda}(\psi)$: the probability of satisfying an LTL-property respects a given bound.
- $\mathbb{E}_{\sim \lambda}(\diamond a)$: undiscounted expected reward properties, require that the expected accumulated cost until reaching a state satisfying a.

Workflow

- Flowchart of the RNN-based refinement loop:
- ▶ 1) train an RNN using observationaction sequences generated from an initial strategy.
- 2) the strategy network extract a strategy and we obtain the induced MC.

• 3) Model checking of this MC evaluates whether the φ is satisfied or not.

- Recurrent Neural Network
 - In traditional NN, it is assumed that every input is independent each other.
 - But with sequential data, input in current time step is highly likely depends on input in previous time step.
 - We need some additional structure that can model dependencies of inputs over time.
 - Given fixed input and target from data, RNN is to learn intermediate association between them and also the real-valued vector representation.

- Recurrent Neural Network
 - Input, output and internal representation (hidden states):
 - x_t : input vector;
 - \hat{y} : output vector;
 - h_t : hidden states;
 - (*U*, *W*, *V*): parameter matrices;
 - $h_t = \tanh(Ux_t + Wh_{t-1})$.
 - $\hat{y} = \lambda(Vht)$.

- Recurrent Neural Network
 - A type of a neural network that has a recurrence structure.
 - The recurrence structure allows us to operate over a sequence of vectors.

- Recurrent Neural Network
 - A type of a neural network that has a recurrence structure.
 - The recurrence structure allows us to operate over a sequence of vectors.

- Recurrent Neural Network
 - $h_t = \tanh(Ux_t + Wh_{t-1})$.
 - $\hat{y} = \lambda(Vht)$.

- Make a prediction
 - Initial hidden state h_0 .
 - Assume we currently have observation x_1 and want to predict x_2 .
 - First we compute hidden states h_1 .

$$h_1 = \tanh(Ux_1 + Wh_0)$$

- Make a prediction
 - Then we generate prediction: $\widehat{x_2} = \widehat{y}$.

- Make a prediction multiple steps
 - Predicted value $\widehat{x_2}$ from previous step is considered as input x_2 at time step 2.

- Problem of Long-Term Dependencies
 - Sometimes we need long-term information.
 - Example:
 - "I grew up in France... I speak fluent French."

- Gating mechanism
 - Add gates to produce paths where gradients can flow more constantly in longerterm without vanishing nor exploding.

- Long Short-term Memory (LSTM)
 - Memory cells;
 - Gates.

- Long Short-term Memory (LSTM)
 - RNN:

$$-h_t = \tanh(Ux_t + Wh_{t-1})$$

- LSTM:
 - Instead of having a single NN layer, there are four, interacting in a very special way.

Long Short-term Memory (LSTM)

- Long Short-term Memory (LSTM)
 - The horizontal line:
 - It is easy for information to just flow along it unchanged.

• Gates are used to remove or add information to the cell state.

- Long Short-term Memory (LSTM)
 - The "forget gate layer";
 - Output a number between 0 and 1;

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Long Short-term Memory (LSTM)
 - The "input gate layer" and a tanh layer.
 - Decide what new information we're going to store in the cell state.

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Long Short-term Memory (LSTM)
 - The "input gate layer" and a tanh layer.
 - Decide what new information we're going to store in the cell state.

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Long Short-term Memory (LSTM)
 - The "output gate layer" and a tanh layer.
 - Decide what we are going to output.

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Learning Strategies with RNNs

- Policy gradient algorithms are not well suited for POMDPs.
- Constructing the strategy network. (LSTM architecture)
 - $\hat{\gamma}$: $ObsSeq_{fin}^{M} \rightarrow Distr(Act)$.
 - For a given observation-action sequence from $ObsSeq_{fin}^{M}$, the model learns a strategy $\hat{\gamma}$. The output is a discrete probability distribution over the actions Act.

RNN training

- For a POMDP M and a specification φ :
- First compute a strategy γ of the underlying MDP M that satisfies φ .
- Then sample uniformly over all states of the MDP and generate finite paths of the induced MC M^{γ} , thereby creating multiple trajectory trees.

RNN training

- For a POMDP M and a specification φ :
- First compute a strategy γ of the underlying MDP M that satisfies φ .
- Then sample uniformly over all states of the MDP and generate finite paths of the induced MC M^{γ} , thereby creating multiple trajectory trees.
- For each finite path π , generate one possible observation-action sequence: $\pi_z = z_0, a_0, z_1, a_1, \dots, a_{n-1}, z_n, z_i = O(\pi[i])$.
- Form the training set *D* from a number of m observation-action sequences with observations as input and actions ad output labels.

Strategy Extraction and Evaluation

- How to extract a memoryless strategy from the strategy network.
 - Given a POMDP M, we use the trained strategy network $\hat{\gamma}$: $ObsSeq_{fin}^{M} \rightarrow Distr(Act)$ directly as observation-based strategy.

Extension to FSCs (N, n_I, γ, δ)

- LTL specifications as well as observation-dependencies in POMDPs require memory.
- Assume the FSC is in memory node n_k at position i of π_z , we define $\delta(n_k, z_i, a_i) = n_{k+1}$, if $\pi_z[i] = (z_i, a_i)$.

Extension to FSCs (N, n_I, γ, δ)

- Once δ has been defined, we compute a product POMDP $M \times A$.
- Generate observation-node-action sequence: $(z_0, n_0), a_0, ...$
- In this case, the RNN is learning the mapping of observation and memory node to the Distr(Act) as an FSC strategy network.

Improving the Represented Strategy

- A local improvement for a strategy that does not satisfy the specification.
- POMDP M, φ , the strategy γ and $M^{\gamma} \not\models \varphi$.
- Create diagnostic information on why the specification φ is not satisfied.

Improving the Represented Strategy

- Critical Decision
 - $\varphi = \mathbb{P}_{\leq \lambda}(\psi)$, for some threshold $\lambda' \in [0,1]$, a state s is critical iff $Pr^*(s) > \lambda'$.
 - The set of critical decision serves as a counterexample, generated by the set of critical states and the strategy γ .
- For each observation with a critical decision, we construct an optimization problem that minimizes the number of critical actions the strategy chooses per observation class.

$$\max_{\gamma(z)(a), a \in Act} \min_{s \in S} p_s$$

$$subject \ to$$

$$\forall s \in O^{-1}(z). \quad p_s = \sum_{a \in Act} \gamma(z)(a) \cdot \sum_{s' \in S} \mathscr{P}(s, a, s') \cdot p^*(s')$$

Improving the Represented Strategy

- The probabilities of action choices under γ are redistributed such that the critical choices are minimized.
- From the resulting improved strategy, we generate a new set of paths starting from the critical states.

Implementation

- PRISM
 - LTL model checking

- STORM
 - undiscounted expected rewards

Experimental results

- PRISM-POMDP
- The point-based solver SolverPOMDP

Navigation with moving obstacles – an agent and a single stochastically moving obstacle. The agent task is to maximize the probability to navigate to a goal state A while not colliding with obstacles (both static and moving): $\varphi_1 = \mathbb{P}_{\text{max}} (\neg X \cup A)$ with $x = \hat{x} \cup \tilde{x}$,

Delivery without obstacles – an agent and static objects (landmarks). The task is to deliver an object from A to B in as few steps as possible: $\varphi_2 = \mathbb{E}_{\min}(\lozenge(A \land \lozenge B))$.

Slippery delivery with static obstacles – an agent where the probability of moving perpendicular to the desired direction is 0.1 in each orientation. The task is to maximize the probability to go back and forth from locations A and B without colliding with the static obstacles \hat{x} : $\varphi_3 = \mathbb{P}_{\text{max}} (\Box \Diamond A \land \Box \Diamond B \land \neg \Diamond X)$, with $x = \hat{x}$,

Experimental results

► PRISM-POMDP

			DNINI I	acad Cynthacic	DDICA	4 DOMDD
Problem	Ctatas	Tuna a		pased Synthesis		
Problem	States	Type, φ	Res.	Time (s)	Res.	Time (s)
Navigation (3)	333	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.74	14.16	0.84	73.88
Navigation (4)	1088	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.82	22.67	0.93^{\dagger}	1034.64
Navigation (4) [2-FSC]	13373	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.91	47.26	_	_
Navigation (4) [4-FSC]	26741	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.92	59.42	_	_
Navigation (4) [8-FSC]	53477	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.92	85.26	_	_
Navigation (5)	2725	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.91	34.34	MO	MO
Navigation (5) [2-FSC]	33357	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.92	115.16	_	_
Navigation (5) [4-FSC]	66709	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.92	159.61	_	_
Navigation (5) [8-FSC]	133413	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.92	250.91	_	_
Navigation (10)	49060	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.79	822.87	MO	MO
Navigation (10) [2-FSC]	475053	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.83	1185.41	_	_
Navigation (10) [4-FSC]	950101	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.85	1488.77	_	_
Navigation (10) [8-FSC]	1900197	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.81	1805.22	_	_
Navigation (15)	251965	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.91	1271.80*	MO	MO
Navigation (20)	798040	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.96	4712.25*	MO	MO
Navigation (30)	4045840	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	0.95	25191.05*	MO	MO
Navigation (40)	_	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_1$	TO	TO	MO	MO
Delivery (4) [2-FSC]	80	$\mathbb{E}_{\min}^{\mathscr{M}}, \varphi_2$	6.02	35.35	6.0	28.53
Delivery (5) [2-FSC]	125	$\mathbb{E}_{\min}^{\mathcal{M}}$, φ_2	8.11	78.32	8.0	102.41
Delivery (10) [2-FSC]	500	$\mathbb{E}_{\min}^{\mathscr{M}}, \varphi_2$	18.13	120.34	MO	MO
Slippery (4) [2-FSC]	460	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_3$	0.78	67.51	0.90	5.10
Slippery (5) [2-FSC]	730	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_3$	0.89	84.32	0.93	83.24
Slippery (10) [2-FSC]	2980	$\mathbb{P}_{\max}^{\mathscr{M}}, \varphi_3$	0.98	119.14	MO	MO
Slippery (20) [2-FSC]	11980	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_3$	0.99	1580.42	MO	МО

Experimental results

- ► PRISM-POMDP
- The point-based solver SolverPOMDP

Problem	S	Act	Z
Navigation (c)	c^4	4	256
Delivery (c)	c^2	4	256
Slippery (c)	c^2	4	256
Maze(c)	3c + 8	4	7
Grid(c)	c^2	4	2
RockSample[4,4]	257	9	2
RockSample[5,5]	801	10	2
RockSample[7,8]	12545	13	2

		RNN-based Synthesis		PRISM-POMDP		pomdpSolve		
Problem	Type	States	Res	Time (s)	Res	Time (s)	Res	Time (s)
Maze (1)	$\mathbb{E}^{\mathscr{M}}_{min}$	68	4.31	31.70	4.30	0.09	4.30	0.30
Maze (2)	$\mathbb{E}_{\min}^{\mathscr{M}}$	83	5.31	46.65	5.23	2.176	5.23	0.67
Maze (3)	$\mathbb{E}_{\min}^{\mathscr{M}}$	98	8.10	58.75	7.13	38.82	7.13	2.39
Maze (4)	$\mathbb{E}_{\min}^{\mathscr{M}}$	113	11.53	58.09	8.58	543.06	8.58	7.15
Maze (5)	$\mathbb{E}_{\min}^{\mathcal{M}}$	128	14.40	68.09	13.00^{\dagger}	4110.50	12.04	132.12
Maze (6)	$\mathbb{E}_{\min}^{\mathscr{M}}$	143	22.34	71.89	MO	MO	18.52	1546.02
Maze (10)	$\mathbb{E}_{\min}^{\mathscr{M}}$	203	100.21	158.33	MO	MO	MO	MO
Grid (3)	$\mathbb{E}^{\mathscr{M}}_{min}$	165	2.90	38.94	2.88	2.332	2.88	0.07
Grid (4)	$\mathbb{E}_{\min}^{\mathscr{M}}$	381	4.32	79.99	4.13	1032.53	4.13	0.77
Grid (5)	$\mathbb{E}_{\min}^{\mathscr{M}}$	727	6.62	91.42	MO	MO	5.42	1.94
Grid (10)	$\mathbb{E}^{\mathscr{M}}_{\min}$	5457	13.63	268.40	MO	MO	MO	MO
RockSample[4,4]	$\mathbb{E}^{\mathscr{M}}_{\max}$	2432	17.71	35.35	N/A	N/A	18.04	0.43
RockSample[5,5]	$\mathbb{E}_{\max}^{\mathscr{M}}$	8320	18.40	43.74	N/A	N/A	19.23	621.28
RockSample[7,8]	$\mathbb{E}_{\max}^{\mathscr{M}}$	166656	20.32	860.53	N/A	N/A	21.64 [†]	20458.41