```
In [1]:
```

import pandas as pd
.

import numpy as np

import os

import seaborn as sns

import matplotlib.pyplot as plt

 $from \ sklearn.feature_extraction.text \ import \ TfidfVectorizer$

from sklearn.feature_selection import VarianceThreshold

In [2]:

df = pd.read_csv("/Users/hjk2160@columbia.edu/Desktop/dataset.csv")

In [3]:

df.head()

Out[3]:

																Out	[3]:
	Un na me d: 0	in d e x		Sal ary Esti mat e	Job Description	R at in g	Com pany Nam e	Loc atio n	Head quar ters	Siz e	Fo un de d	Typ e of ow ner shi p	Ind ustr y	Sect or		Com petit ors	as y A p pl
(0	0	Sen ior Dat a Sci ent ist	\$18 1K	ABOUT HOPPER\n\n At Hopper, we're on a mission	3. 5		Ne w Yor k, NY	Mont real, Cana da	501 to 100 0 em plo yee s	20 07	y -	Tra vel Age ncie s	Trav el & Tou rism	Unk no wn / Non - App lica ble	-1	-1
1	1	1	ent ist, Pro	1K	At Noom, we use scientifically proven methods	4. 5	m	Ne w Yor k, NY	New York, NY	100 1 to 500 0 em plo yee s	20 08	Com pan y - Priv		Con sum er Serv ices	Unk no wn / Non - App lica ble	-1	-1
2	2	2	Dat a Sci enc e Ma nag	1K (Gla ssd	Decode_M\n\ nhttps://ww w.decode- m.com/\n\nD ata	- 1. 0	Deco de_M	Ne w Yor k, NY	New York, NY	1 to 50 em plo yee s	-1	Unk now n	-1	-1	Unk no wn / Non - App lica ble	-1	Tr ue
6.3	3	3	Dat a An	1K-	Sapphire Digital seeks a dynamic and driven mi	3. 4		Lyn dhu rst, NJ	Lynd hurst, NJ	201 to 500 em	20 19	nan	Inte rnet		Unk no wn /	Zocd oc, Heal	-1

	Un na me d: 0	in d e x		Sal ary Esti mat e	Job Description		pany	Loc atio n	Head quar ters	517	Fo un de d	ow	Ind ustr y	Sect or	Rev enu e	Com petit ors	E as y A p pl
			aly st	(Gla ssd oor est.)			al\n3 .4			plo yee s		Priv ate		hnol ogy		thgr ades	
Z	4	4	Dir ect or, Dat a Sci enc e	(Cla	Director, Data Science - (200537)\nD escription	3. 4	Unite d Enter tain ment Grou p\n3.	Ne w Yor k, NY	New York, NY	51 to 200 em plo yee s	20 07	pan y -	& Mar	Busi ness Serv ices	wn / Non - App	BBD O, Grey Grou p, Drog a5	-1

In [4]:

df.drop('Unnamed: 0', axis=1, inplace=True)

In [5]:

from collections import Counter #항목들 계산해주는 라이브러리 import re #정규표현식임. 쉽게 말해, 내 키워드같은거 어떤 corpus 에서 찾을수 있는지 찾아주는거임.

```
keywords = ['data', 'machine learning', 'analysis', 'statistics',
'research', 'python']
def count keywords (description, keywords):
    description = description.lower()
    keyword counts = {keyword:
len(re.findall(r'\b{}\b'.format(re.escape(keyword)), description)) for
keyword in keywords}
    return keyword counts
                                                                        In [6]:
max keyword occurrence = 0
                                                                        In [7]:
for description in df['Job Description']:
    keyword_counts = count_keywords(description, keywords)
    max keyword occurrence = max(max keyword occurrence,
max(keyword counts.values()))
                                                                        In [8]:
def calculate score(keyword counts, max score):
    total count = sum(keyword counts.values())
    normalized score = 0.1 + 0.9 * (total count / max score) if max score >
0 else 0.1
    return normalized score
```

```
df['Keyword Counts'] = df['Job Description'].apply(lambda desc:
count keywords(desc, keywords))
df['Keyword Score'] = df['Keyword Counts'].apply(lambda counts:
calculate score(counts, max keyword occurrence))
                                                                               In [9]:
df.drop('Job Description', axis=1, inplace=True)
                                                                              In [10]:
df.drop('index',axis=1, inplace=True)
                                                                              In [11]:
# need to convert salary estimate into scores as well
def salary to_score(salary_string):
    salary string = re.sub(r'(\(Glassdoor est.\))|K|\', '',
salary_string).strip()
    numbers = re.findall(r'\d+', salary string)
    if len(numbers) == 2:
         lower bound = int(numbers[0]) * 1000
         upper bound = int(numbers[1]) * 1000
         score = (lower bound + upper bound) / 2
    else:
         score = None
    return score
                                                                              In [12]:
df['Salary Score'] = df['Salary Estimate'].apply(salary to score)
df = df.dropna(subset=['Salary Score'])
max_salary_score = df['Salary_Score'].max()
min salary score = df['Salary Score'].min()
df['Salary_Estimate_Score'] = df['Salary_Score'].apply(lambda x: 0.1 + 0.9
* ((x - min_salary_score) / (max_salary_score - min_salary_score)))
                                                                              In [13]:
df.head()
                                                                             Out[13]:
                                    Ty
                                                         a
             Com
      Sal
                                    pe
          R
  Jo
                       Hea
                                Fo
                                                Re
                                                                   Key
                                                         S
             pan Loc
                                                    Com
                                                            Keyw
                                                                       Sala
                                                                             Salary_
      ary
                                    of
                                       Ind
                           Siz
                                            Sec
   b
          at
                       dqu
                               un
                                                ve
                                                                  word
                                                         y
                                                    peti
                                                           ord_C
                                                                       ry_S | Estimat
      Est
                  ati
                                   \mathbf{ow}
                                       ust
               y
  Tit
          in
                      arte
                             e
                                de
                                            tor
                                                nu
                                                         A
                                                                  _Scor
      im
             Nam
                  on
                                   ner
                                                    tors
                                                            ounts
                                                                       core e_Score
                                        ry
                                 d
   le
                        rs
                                                  e
                                                         p
          g
      ate
                e
                                   shi
                                                         pl
                                     p
                                                         y
                           50
  Se
     $11
                                                           {'data'
                                                Un
                           1
                                   Co
 nio 1K-
                                           Tra
                                               kno
                                                           : 13.
                                       Tra
                 Ne
                           to
                                  mp
     $18
                     Mont
                                           vel
                                                wn
                                                           'mach
            Нор
                 w
                           10
                                  any
                                       vel
                                                                       146
    1K
         3.
                               20
                                                                 0.480
                                                                            0.65652
 Da
                     real,
                                           &
                                                           ine
                 Yor
                           00
                                                                       000.
            per\
                                       Age
                                                    -1
         5
                     Cana
                                               No
     (Gl
                                           Tou
                                                           learni 769
 ta
                               07
                                  Pri
                                                                       0
            n3.5
                 k,
                           em
                                      ncie
 Sci
     ass
                      da
                                           ris
                                                           ng': 3,
                                                n-
                 NY
                           plo
                                   vat
                                       s
                                                           'analy
 ent doo
                                           m
                                                Ap
                           yee
                                  e
                                                           sis'...
 ist
     r
                                                plic
```

	Jo b Tit le	Sal ary Est im ate	R at in g	Com pan y Nam e	Loc ati on	Hea dqu arte rs	Siz e	Fo un de d	Ty pe of ow ner shi p	Ind ust ry	Sec tor	Re ve nu e	Com peti tors	E a s y A p pl	Keyw ord_C ounts	Key word _Scor e	Sala ry_S core	
		est.)										abl e						
	Sci ent ist, Pr od uct An aly	1K	4. 5	Noo m US\n 4.5		New York, NY	11111	20 08	any -	Hea lth, Bea uty, & Fitn ess	Con sum er Ser vice s	Un kno wn / No n- Ap plic abl e	-1	-1	{'data' : 7, 'mach ine learni ng': 1, 'analy sis':	0.342 308	146 000. 0	0.65652
	Da ta Sci en ce Ma na ger	\$11 1K- \$18 1K (Gl ass doo r est.		Deco de_M		New York, NY	1 to 50 em plo yee s	-1	Unk no wn	-1	-1	Un kno wn / No n- Ap plic abl e	- I	T r u	{'data' : 11, 'mach ine learni ng': 2, 'analy sis'	0.446 154	146 000. 0	0.65652
	aly st		3. 1	Sapp hire Digit al\n 3.4	unu			20 19	-	Inte rne t	Info rma tion Tec hno logy	/ No	Zoc doc, Heal thgr ades	-1	{'data' : 26, 'mach ine learni ng': 0, 'analy sis'	0.636 538	146 000. 0	0.65652
Z	Dir ect or, Da ta Sci en ce	\$18 1K (Gl	4	ment	Yor	York, NY	51 to 20 0 em plo yee s	20 07	-	Adv erti sing & Mar keti ng	Bus ines s Ser vice s	Un kno wn / No n- Ap plic abl e	BBD O, Grey Gro up, Dro ga5	-1	{'data': 8, 'mach ine learni ng': 2, 'analy sis':	0.342 308	146 000. 0	0.65652

```
keywords = ['senior', 'analyst', 'director', 'manager', 'sr', 'lead',
'principal']
def contains keyword(title, keywords):
    title lower = title.lower()
    return any(keyword in title lower for keyword in keywords)
mask = df['Job Title'].apply(contains keyword, keywords=keywords)
df = df[\sim mask]
                                                                                   In [15]:
df.head(10)
                                                                                  Out[15]:
                                                              E
                                        Ty
                                                              a
         Sal
                                        pe
             R
                Com Lo
                          Hea
                                   Fo
                                                     Re
                                                          Co
                                                                        Key Sala Salary_
                                                                Keyw
                                            Ind
                                        of
         ary
                                                 Sec
                                                                        wor ry_S
                                                                                  Estima
    Job
             at pany
                          dqu
                               Siz
                      ca
                                   un
                                                     ve
                                                         mp
                                                              y
                                                                ord C
         Est
                                       ow
                                           ustr
                                                                             cor te_Scor
   Title
                                                         etit A
                                                                        d_Sc
             in
                Nam tio
                          arte
                                 e
                                   de
                                                 tor
                                                     nu
         im
                                       ner
                                                                ounts
                                              y
                       n
                            rs
                                    d
                                                       e
                                                         ors
                                                              p
                                                                        ore
                                                                                e
                                                                                        e
             g
         ate
                                       shi
                                                              pl
                                         p
                                                              y
1
        $1
        11
                                                     Un
                               10
        K-
                                                     kn
                                                                {'data
  Data
                               01
                                       Co
                                           Hea
                                                Con ow
        $1
                                                                ': 7,
  Scient
                      Ne
                               to
                                       mp
                                           lth,
        81
                Noo
                                                su
                                                    n /
                                                                'mach
                                                                             146
  ist.
                         New
                               50
                                           Bea
                      w
                                       any
             4.
                                   20
                                                mer No
                                                                       0.34
                                                                                  0.6565
        K
               m
                                                                ine
  Produ
                                                         -1
                     Yo York
                              00
                                           uty,
                                                             -1
                                                                             000.
        (Gl
            5
               US\n
                                   80
                                                                learni 2308
                                                                                  22
                                                Ser
                                                    n-
  ct
                         , NY
                                       Pri
                     rk,
                               em
                                           &
        ass
                4.5
                                                vice Ap
                                                                ng': 1,
  Analy
                      NY
                                           Fitn
                               plo
                                       vat
                                                     pli
                                                                 'analy
        do
  tics
                               yee
                                       e
                                           ess
                                                                sis':...
        or
                                                     cab
                               s
        est.
                                                    le
        )
5
        $1
        11
                                                     Un
                               20
        K-
                                                     kn
                                                        Colo
                                                                {'data
                                       Со
                               1
        $1
                                                                ': 8,
                                                        ny
                                                     ow
                IFG
                     Ne
                               to
                                       mp Insu
        81
                                                                 'mach
                                                     n/
                                                        Spe
  Data
                Com
                     w
                         Hart
                              |50
                                           ran
                                                Ins
                                                                             146
                                       any
             2.
                                   19
                                                                       0.30
                                                                                  0.6565
        K
                                                     No
                                                        cialt
                                                                ine
                panie Yo ford,
                                                              -1
```

ura

Carr nce

n-V,

Aр

pli

le

Un

kn

ow

n/

No

n-

Ap

pli

-1

Mar

kel,

cab RLI

ce

iers

Inve

stm

ent

&

Ass

et

Man

Ban Fin

king anc

000.

146

000.

0

0.6565

22

22

learni 7692

ng': 1,

'analy

sis':...

{'data

'mach

ng': 0,

'analy

sis':...

0.32

learni 5000

': 1,

ine

-1

0

em

plo

yee

s

51

to

20

0

em

plo

yee

S

New

York

, NY

CT

85

Pri

vat

e

Co

mp

any

Pri

vat

e

19

93

Scient

ist

6

9

s\n2. |rk,

NY

Ne

w

Yo

rk,

NY

PDT

Partn

ers\n

4.4

(Gl

ass

do

or

est.

\$1

11

\$1

81

(Gl

ass

do

Quant K-

Resea K

itativ

rcher

	Job Title	Sal ary Est im ate	R at in g	Com pany Nam e	ca	Hea dqu arte rs	Siz e	Fo un de d	Ty pe of ow ner shi p	Ind ustr y	Sec tor	Re ve nu e	Co mp etit ors	E a s y A p pl	Keyw ord_C ounts		ry_S	Salary_ Estima te_Scor e
		or est.)								age men t		cab le						
7	Quant itativ e Resea rch Assoc iate	\$1 11 K- \$1 81 K (Gl ass do or est.	1.	hten ment		New York , NY	1 to 50 em plo yee s	-1	Un kno wn	-1	-1	Un kn ow n / No n-Ap pli cab le	-1		{'data ': 1, 'mach ine learni ng': 0, 'analy sis':	0.15 1923	146 000. 0	0.6565
8	Scient ist	\$1 11 K- \$1 81 K (Gl ass do or est.	5. 0	Paige \n5.0	Ne w Yo rk, NY	New York , NY	1 to 50 em plo yee s	20 18	Co mp any - Pri vat e	Ent erpr ise Soft war e & Net wor k Solu tion s	Info rma tion Tec hno log y	Un kn ow n / No n- Ap pli cab le	-1	T r u e	{'data ': 1, 'mach ine learni ng': 1, 'analy sis':	0.18 6538	146 000. 0	0.6565
9	e Resea	\$1 11 K- \$1 81 K (Gl ass do or est.		Jane Stree t\n4. 8		, NY	50 1 to 10 00 em plo yee s	20 00	Co mp any - Pri vat e	Inve stm ent Ban king & Ass et Man age men t	Fin anc e	Un kn ow n / No n- Ap pli cab le	-1	-1	{'data ': 0, 'mach ine learni ng': 0, 'analy sis':	0.11 7308	146 000. 0	0.6565
1 0	Scient	\$1 11 K- \$1 81 K (Gl	3. 9	Quar tet Healt h\n3.		York , NY	20 1 to 50 0 em plo	20 14	Co mp any - Pri vat e	erpr ise Soft war e &	tion Tec hno	kn ow	-1		{'data ': 8, 'mach ine learni ng': 4,	0.41 1538	146 000. 0	0.6565 22

	Job Title	Sal ary Est im ate	R at in g	pany	ca	Hea dqu arte rs	Siz e	Fo un de d	Ty pe of ow ner shi p	Ind ustr y	Sec tor	Re ve nu e	Co mp etit ors	E a s y A p pl	Keyw ord_C ounts		ry_S	Salary_ Estima te_Scor e
		ass do or est.)					yee s			wor k Solu tion s		pli cab le			'analy sis':			
1	Data Scient ist/M achin e Learn ing	\$1 11 K- \$1 81 K (Gl ass do or est.	4. 4	Pulse Point \n4.4	Yo	New York , NY	51 to 20 0 em plo yee s	20	Co mp any - Pri vat e	Inte rnet	Info rma tion Tec hno log y	\$1 00 to \$5 00 mil lio n (US D)	Cro ssix Solu tion s Inc., App Nex us, The Tra de Des k	-1	{'data ': 5, 'mach ine learni ng': 4, 'analy sis':	0.32 5000	146 000. 0	0.6565
1 2		K		data Solut ions\	Yo	York	10 01 to 50 00 em plo yee s	19 99	Pub	Net	,,,	lio n to	Ora cle	-1	{'data ': 10, 'mach ine learni ng': 3, 'analy sis'	0.41 1538	146 000. 0	0.6565
3	Data Scient ist	\$1 11 K- \$1 81 K (Gl ass do or est.	3. 9	Point 72\n 3.9		Stam ford, CT		20 14	Co mp any - Pri vat e	Inve stm ent Ban king & Ass et Man age men t	anc	Un kn ow n / No n- Ap pli cab le	-1	-1	{'data ': 14, 'mach ine learni ng': 2, 'analy sis'	0.48 0769	146 000. 0	0.6565 22

In [16]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2149 entries, 1 to 3908
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Job Title	2149 non-null	object
1	Salary Estimate	2149 non-null	object
2	Rating	2149 non-null	float64
3	Company Name	2149 non-null	object
4	Location	2149 non-null	object
5	Headquarters	2149 non-null	object
6	Size	2149 non-null	object
7	Type of ownership	2149 non-null	object
8	Industry	2149 non-null	object
9	Sector	2149 non-null	object
10	Revenue	2149 non-null	object
11	Competitors	2149 non-null	object
12	Easy Apply	2149 non-null	object
13	Keyword_Counts	2149 non-null	object
14	Keyword_Score	2149 non-null	float64
15	Salary_Score	2149 non-null	float64
16	Salary_Estimate_Score	2149 non-null	float64
d+ vn	es: float64(4) object(13)	

dtypes: float64(4), object(13)

memory usage: 302.2+ KB

df.drop('Size', axis = 1, inplace=True)

df.drop('Easy Apply', axis=1, inplace=True)

df.describe()

	Rating	Keyword_Score	Salary_Score	Salary_Estimate_Score
count	2149.000000	2149.000000	2149.000000	2149.000000
mean	3.265891	0.331161	108511.167985	0.493527
std	1.628358	0.171478	37667.785608	0.163773
min	-1.000000	0.100000	18000.000000	0.100000
25%	3.200000	0.203846	77500.000000	0.358696
50%	3.700000	0.290385	105500.000000	0.480435
75%	4.100000	0.428846	133000.000000	0.600000
max	5.000000	1.138462	225000.000000	1.000000

In [21]:

In [18]:

In [19]:

In [20]:

Out[20]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2149 entries, 1 to 3908
Data columns (total 15 columns):

Column Non-Null Count Dtype

0	Job Title	2149	non-null	object
1	Salary Estimate	2149	non-null	object
2	Rating	2149	non-null	float64
3	Company Name	2149	non-null	object
4	Location	2149	non-null	object
5	Headquarters	2149	non-null	object
6	Type of ownership	2149	non-null	object
7	Industry	2149	non-null	object
8	Sector	2149	non-null	object
9	Revenue	2149	non-null	object
10	Competitors	2149	non-null	object
11	Keyword_Counts	2149	non-null	object
12	Keyword_Score	2149	non-null	float64
13	Salary_Score	2149	non-null	float64
14	Salary_Estimate_Score	2149	non-null	float64

dtypes: float64(4), object(11)

memory usage: 268.6+ KB

EDA 파트 1

In [22]:

#본격적인 EDA

numerical_vars = ['Keyword_Score', 'Salary_Score', 'Salary_Estimate_Score',
'Rating']

df[numerical_vars].describe().T

Out[22]:

	cou nt	mean	std	min	25%	50%	75%	max
Keyword_Scor e	214 9.0	0.331161	0.171478	0.1	0.203846	0.290385	0.428846	1.138462
Salary_Score	214 9.0	108511.16 7985			77500.00 0000		133000.00 0000	225000.00 0000
Salary_Estimat e_Score	214 9.0	0.493527	0.163773	0.1	0.358696	0.480435	0.600000	1.000000
Rating	214 9.0	3.265891	1.628358	-1.0	3.200000	3.700000	4.100000	5.000000

In [23]:

df[numerical_vars].hist(bins=20, figsize=(12,6))
plt.show()

for var in numerical_vars:
 df[var].plot(kind='box')
 plt.title(var)
 plt.show()

In [24]:

Rating		
		In [25]:
df['Job Title'].value_count	s()	
Data Scientist		Out[25]:
Data Engineer		260
Machine Learning Engineer		47
Big Data Engineer		41
Research Scientist		22
Research Sciencisc		22
Scottsdale Data Science Tut	or Johs	1
Mesa Data Science Tutor Job		1
Cloud Data Engineer - Solut		1
Chandler Data Science Tutor		1
	Safety Scientist - UK, Europe or the US	1
Name: Job Title, Length: 11		_
	ar, magratical and a	In [26]:
<pre>value counts = df['Job Titl</pre>	e'].value counts()	m [20].
_	<pre>(value counts[value counts >= 20].index)</pre>	
df = df[mask]		
		In [27]:
<pre>df['Job Title'].value_count</pre>	s()	
		Out[27]:
Data Scientist	274	
Data Engineer	260	
Machine Learning Engineer	47	
Big Data Engineer	41	
Research Scientist	22	
Name: Job Title, dtype: int	64	
1611-1		In [28]:
df['Industry'].value_counts	()	0 . [00]
-1	145	Out[28]:
IT Services	102	
Staffing & Outsourcing	49	
Enterprise Software & Netwo		
Consulting	40	
0011541 01119		
Food & Beverage Manufacturi		
Consumer Product Rental	1	
Casual Restaurants	1	
Grantmaking Foundations	1	
oraniamaning roundactons	±	

```
Energy
                                                 1
Name: Industry, Length: 65, dtype: int64
                                                                            In [29]:
df = df[df['Industry'] != '-1']
                                                                            In [30]:
value counts = df['Industry'].value counts()
mask = df['Industry'].isin(value counts[value counts >= 20].index)
df = df[mask]
                                                                            In [31]:
df['Industry'].value counts()
                                                                           Out[31]:
IT Services
                                               102
Staffing & Outsourcing
                                                49
Enterprise Software & Network Solutions
                                                42
Consulting
                                                40
Computer Hardware & Software
                                                38
Internet
                                                32
Advertising & Marketing
                                                24
Name: Industry, dtype: int64
                                                                            In [32]:
def categorize industry(industry):
    if industry == 'Consulting':
        return 'Consulting Industry'
    elif industry in ['IT Services', 'Computer Hardware & Software',
'Internet', 'Enterprise Software & Network Solutions', 'Advertising &
Marketing']:
        return 'Tech Industry'
    else:
        return 'Other Industry'
                                                                            In [33]:
df['categorized industry'] = df['Industry'].apply(categorize industry)
                                                                            In [34]:
df.drop('Competitors', axis=1, inplace=True)
                                                                            In [35]:
df.drop('Sector', axis=1, inplace=True)
                                                                            In [36]:
df.drop('Revenue', axis=1, inplace=True)
                                                                            In [37]:
df.drop('Location', axis=1, inplace=True)
                                                                            In [38]:
df.drop('Headquarters', axis=1, inplace=True)
                                                                            In [39]:
df.head()
                                                                           Out[39]:
       Salar
                         Type
   Iob
                 Compa
           y Rat
                           of Indus Keyword
                                             Keywor Salary
                                                             Salary_Esti
                                                                        categorize
   Titl
                     ny
                                             d_Score | _Score | mate_Score |
        Esti ing
                        owne
                                     _Counts
                                                                        d_industry
                                try
                  Name
     e
       mate
                        rship
1 Data $111
                 Quartet
                              Enter
                                    {'data': 8,
                                             0.41153
                                                     14600
                        Comp
                                                                       Tech
            3.9
                                                            0.656522
O Scie K-
                Health\
                                    'machine
                              prise
                                                     0.0
                                                                       Industry
                        any -
```

ntist \$181

n3.9

Softw

learning':

	Job Titl e	Salar y Esti mate	Rat ing	Compa ny Name	Type of owne rship	Indus try	Keyword _Counts	Keywor d_Score	Salary _Score	Salary_Esti mate_Score	categorize d_industry
		K (Glas sdoor est.)			Privat e	are & Netw ork Soluti ons	4, 'analysis': 				
1 5	Scie	\$111 K- \$181 K (Glas sdoor est.)	3.0	Affinity Solutio ns\n3.0	Comp any - Privat e	Adver tising & Mark eting	{'data': 8, 'machine learning': 2, 'analysis': 	0.34230 8	14600 0.0	0.656522	Tech Industry
2 4	Scie	\$111 K- \$181 K (Glas sdoor est.)	4.4	WITHI N\n4.4	Comp any - Privat e	Adver tising & Mark eting	{'data': 6, 'machine learning': 1, 'analysis': 	0.23846	14600 0.0	0.656522	Tech Industry
6	Scie	\$111 K- \$181 K (Glas sdoor est.)	4.1	Datado g\n4.1	Comp any - Public	ware	{'data': 8, 'machine learning': 2, 'analysis': 	0.34230 8	14600 0.0	0.656522	Tech Industry
3 0	Scie	\$120 K- \$140 K (Glas sdoor est.)	4.3	Caserta \n4.3	Comp any - Privat e	IT Servic es	{'data': 10, 'machine learning': 1, 'analysis'.	0.35961 5	13000 0.0	0.586957	Tech Industry

In [40]:

df.drop("Type of ownership", axis=1, inplace=True)

In [41]:

df.head()

Out[41]:

	Job Title		Rat ing	Compa ny Name	Indus try	Keyword_ Counts	-		Salary_Estim ate_Score	categorized _industry
0	Data	\$181	3.9	Quartet Health\ n3.9	rise Softwa	{'data': 8, 'machine learning': 4, 'analysis':.	0.411538	146000 .0	111 656577	Tech Industry

	Job Title	Salar y Estim ate	Rat	Compa ny Name	Indus try	Keyword_ Counts	Keyword _Score	Salary_ Score	Salary_Estim ate_Score	categorized _industry
		door est.)			Soluti ons					
1 5	Scie	\$111 K- \$181 K (Glass door est.)	3.0		Advert ising & Marke ting	{'data': 8, 'machine learning': 2, 'analysis':.	0.342308	146000 .0	0.656522	Tech Industry
24	Scie	\$111 K- \$181 K (Glass door est.)	4.4	WITHIN \n4.4	Advert ising & Marke ting	{'data': 6, 'machine learning': 1, 'analysis':.	0.238462	146000 .0	0.656522	Tech Industry
6	Scie	\$111 K- \$181 K (Glass door est.)	4.1	Datadog \n4.1	are &	{'data': 8, 'machine learning': 2, 'analysis':.	0.342308	146000 .0	0.656522	Tech Industry
3 0	Scie	\$120 K- \$140 K (Glass door est.)	4.3	Caserta\ n4.3	IT Servic es	{'data': 10, 'machine learning': 1, 'analysis'	0.359615	130000 .0	0.586957	Tech Industry
<pre>In [43]: df.drop('Salary Estimate', axis=1, inplace=True) df.drop('Industry', axis=1, inplace=True)</pre>										
	<pre>custom_colors = ['#339FFF']</pre> In [44]:									

```
In [43]

df.drop('Salary Estimate', axis=1, inplace=True)

df.drop('Industry', axis=1, inplace=True)

custom_colors = ['#339FFF']

grouped = df.groupby('categorized_industry').agg({'Salary_Score': 'median'}))

fig, ax = plt.subplots()

grouped.plot(kind='bar', ax=ax, color=custom_colors, legend=False)
```

```
ax.set_xlabel('Industry_Salaries', fontsize=12, fontweight='bold')
ax.set_ylabel('Median Value', fontsize=12, fontweight='bold')
ax.tick params(axis='both', which='both', labelsize=10, width=2, length=6)
for spine in ax.spines.values():
     spine.set linewidth(2)
ax.set_xticklabels(ax.get_xticklabels(), rotation=0, fontsize=10)
plt.show()
  120000
  100000
Median Value
   80000
   60000
   40000
   20000
                  Other Industry
Industry_Salaries
        Consulting Industry
                                Tech Industry
                                                                                    In [45]:
```

```
grouped = df.groupby('Job Title').agg({'Salary_Score': 'median'})
fig, ax = plt.subplots()
grouped.plot(kind='bar', ax=ax)
ax.set_xlabel('Median Salaries For Each Job Titles')
ax.set_ylabel('Median Value')
plt.show()
```


In [46]:

df.corr()

Out[46]:

	Rating	Keyword_Score	Salary_Score	Salary_Estimate_Score
Rating	1.000000	0.077334	0.041348	0.041348
Keyword_Score	0.077334	1.000000	-0.016377	-0.016377
Salary_Score	0.041348	-0.016377	1.000000	1.000000
Salary_Estimate_Score	0.041348	-0.016377	1.000000	1.000000

Out[47]:

	Job Title	Rati ng	Compa ny Name	Keyword_Co unts	Keyword_S core	Salary_Sc ore	Salary_Estimate _Score	categorized_in dustry
1 0	Data Scient ist	3.9	Quarte t Health	{'data': 8, 'machine learning': 4, 'analysis':	0.411538	146000.0	0.656522	Tech Industry
1 5	Data Scient ist	3.0	Affinit y Solutio ns	{'data': 8, 'machine learning': 2, 'analysis':	0.342308	146000.0	0.656522	Tech Industry
2 4	Data Scient ist	4.4	WITHI N	{'data': 6, 'machine learning': 1, 'analysis':	0.238462	146000.0	0.656522	Tech Industry
2 6	Data Scient ist	4.1	Datado g	{'data': 8, 'machine learning': 2, 'analysis':	0.342308	146000.0	0.656522	Tech Industry
3 0	Data Scient ist	4.3	Casert a	{'data': 10, 'machine learning': 1, 'analysis'	0.359615	130000.0	0.586957	Tech Industry

In [54]:

df.columns

Out[54]:

두번째 EDA 시작

In [48]:

df.describe()

Out[48]:

	Rating	Keyword_Score	Salary_Score	Salary_Estimate_Score
count	327.000000	327.000000	327.000000	327.000000
mean	3.727217	0.364167	110550.458716	0.502393
std	1.096855	0.153006	33821.432809	0.147050
min	-1.000000	0.117308	43500.000000	0.210870
25%	3.400000	0.255769	83750.000000	0.385870
50%	3.900000	0.342308	109000.000000	0.495652
75%	4.300000	0.463462	132750.000000	0.598913

Ratin	g Keyword_Score	Salary_Score	Salary_Estimate_	Score			
max 5.000000	0.982692	225000.000000	1.000000				
<pre>In [70]: plt.figure(figsize=(10,6)) sns.histplot(data = df, x = "Salary_Score", kde = True, hue = "categorized_industry") plt.xlabel('Salary_Score') plt.ylabel('categorized_industry') Out[70]: Text(0, 0.5, 'categorized industry')</pre>							
40 35 30 30 25 15 10 50000 750	00 100000 125000 Salary 5	150000 175000 2	prized_industry ech Industry consulting Industry ther Industry 2000000 225000				
nl+ figuro/fig	airo=(10 6))			In [65]:			
<pre>plt.figure(figsize=(10,6)) sns.histplot(data = df, x = "Rating", kde = True, hue = "categorized_industry") plt.xlabel('Rating') plt.ylabel('categorized_industry')</pre>							
Text(0, 0.5, '	categorized_in	dustry')		Out[65]:			
categorized_ind Tech Indust Consulting Other Indus 30 20 20 20 20 20 20 20 20 20	ry ndustry						

df.to_csv('updated_DS_jobs.csv', index=False)

10

In [55]:

THEY ARE ALL ENTRY LEVEL DS JOBS!

2 Rating 3

```
In [66]:
```

```
plt.figure(figsize=(10,6))
sns.scatterplot(data=df, x='Rating', y='Salary_Score',
hue='categorized_industry')
plt.title('Rating and Salary')
plt.legend(title='industry', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
```


In []: