TORNADO.CASH

By Simon CHEREL & Enguerrand DECLERCQ

Contents

Topics to tackle

- 1. ZKP reminder
- 2. Deep down into zk-SNARK
- 3. Tornado
- 4. Questions

ZKP

A cryptosystem

- Prover and Verifier want to prove ∃w | Q(x,w)=0
- Anyone has access to the context x
- Prover has a secret w
- Verifier wants to verify Q(x,w)=0
- Prover and verifier cannot share w
- Prover sends proof π which does not reveal w but verifies Q(x,w)=0

An exemple of zkp

zk-SNARK

Succinct non-iterative argument of knowlege

- Argument of knowledge: V accepts $\pi \Rightarrow P$ knows w | Q(x,w)=0;
- **Succint:** π is easy to compute and easy to verify (vital to minimize gas fees);
- Non-iterative: a single exchange between P and V is sufficient to transmit π .

Standard usage

zk-SNARKs usage

- Compliance
- Scalability
- Private transaction on public blockchain

Perks for public blockchains

zk-SNARKs perks

- Easy to compute
- Needs only one interaction
- Does not require storage

- Less gas fees
- Adapted to public blockchain where SC storage is public

Arithmetic circuits

A way to represents P problems

- P problem can be describe as an arithmetic circuits
- Directed acyclic graph
- Node operation : +, -, x
- Inputs : x1, x2, 1
- |C| = number of gates

Example circuits

Testing hash circuts and SHA256 circuts

- Test if SHA256(m)=h,
- C-testinghash(h,m)=(h-SHA256(m))
- |C-SHA256|=20K gates

Argument systems

Definition

- Arithmetic circuit : C(x,w)
- x public statement
- w secret witness

Properties of argument system

Properties

Complete:

• $\forall x,w, C(x,w)=0 \rightarrow P[V(Sv,x, P(Sp,x,w))=accept]=1$

Argument of knowledge:

• V accepts $\pi \Rightarrow P$ knows w (C(x,w)=0)

Zero knowledge (optional):

• (Sv,x,π) reveals nothing about w

- Arithmetic circuit : C(x,w)
- x public statement
- w secret witness

Prepocessing argument systems

Definition

Preprocessing setup:

public parameters (Sp, Sv)

To prove:

P(Sp,x,w)-> proof π

To verify

V(Sv,x,π)

- Arithmetic circuit : C(x,w)
- x public statement
- w secret witness

Succinct property

Properties

- Short proof π ($|\pi| = O(\log(|C|))$;
- Fast-to-verify proof π (time(V) = $O(\log(|C|))$;;
- The circuit preprocessing aims at providing a "summary" of the circuit so that the verifier does not have to read it all.

- Arithmetic circuit : C(x,w)
- x public statement
- w secret witness

Example

Size(π) and VerifyTime(π) is O(log(n))

- Arithmetic circuit : C(x,w)
- x public statement
- w secret witness

Types of preprocessing

3 models

Trusted setup : S(C,r), r a secret

if r reveal -> false statement can be proved

Trusted but universal: secret r independent of C

- S(C)=(Sinit,Sindex):
- One time : Sinit(r)-> pk
- Every time : Sindex(pk,C)->(Sp,Sv)

Transparent setup:

• S(C) has no secret

- Arithmetic circuit : C(x,w)
- x public statement
- w secret witness

Types of SNARKs

Properties

	Size of proof π	Size of Sp	Verifier time	Trusted setup
Groth16	O(1)	O(C)	O(1)	Yes/per circuit
Plonk/Marlin	O(1)	O(C)	O(1)	Yes/universal
Bulletproofs	$O(\log(C))$	O(1)	O(C)	No
STARK	$O(\log(C))$	O(1)	$O(\log(C))$	No
DARK	O(log(C))	O(1)	O(log(C))	No

SNARKs software

Architectures

Possible improvements

Fuzzing bots network

- Issue: the low amount of transactions passing through the mixer,
 which forces users to wait before withdrawing
- Network of off-chain bots
- Each bot sends multiple transactions/day to artificially grow the mixer's traffic
- Liquidity providers give money to the bots to play with
- Liquidity providers are financially incentivized (they earn a fee on each "organic" transaction)

Possible improvements

Simultaneous exit

- Issue: the amounts in the protocols are discrete
- Avoiding discret amounts by discretizing the exit
- To avoid temporal inference, sends batched transactions mixed with other users
- Drawbacks : gas fees