



# TEMA 2. ALMACENAMIENTO (1° PARTE)

Centro de procesamiento de datos

Departamento de Arquitectura y Tecnología de Computadores, Universidad de Granada

# Los requerimientos de almacenamiento están creciendo

- Datos generados por:
  - Instrumentos de investigación física nuclear
  - Química computacional
  - Estudios biométricos
  - Imágenes médicas
  - Datos de astronomía
  - Análisis de datos en red
  - Transacciones Online, etc.,
- Estos datos necesitan ser procesados de forma rápida y compartida entre computadores.
- □ Está emergiendo un nuevo paradigma... BigData





 Desde el 2005 hasta 2020, el universo digital crecerá en un factor de 300, desde los 130 exabytes hasta los 40.000 exabytes, o 40 mill millones de terabytes (más de 5.200 gigabytes para cada persona en la tierra in 2020).

 $Giga \rightarrow Tera \rightarrow Peta \rightarrow Exa \rightarrow Zetta$ 

#### Almacenamiento NAS

- Solución sencilla basada en ficheros
- □ Ej: NFS, CIFS (Windows)
- □ Diseño altamente centralizado
- □ Problemas de escalado
- □ Puede saturarse bajo carga
- Posibles problemas de disponibilidad
  - Redundancia puede ser necesaria





#### Almacenamiento SAN

- Servidores pueden acceder directamente a las unidades de almacenamiento,
- Ocasionalmente los clientes también pueden acceder, dependiendo de la configuración a dichas unidades.
- □ Permite mayor redundancia
- Sistema de ficheros controla cómo se distribuyen los datos



## Almacenamiento SAN (II)

- Problemas relacionados con la compartición
- □ Tipo de red
  - □ iSCSI (SCSI over TCP/IP)
  - FC (FCP (Fibre Channel Protocol) over FC)
- Pueden ofrecer mejor solución (vs NAS) con redundancia
  - De red
  - De almacenamiento (RAID)

### Soluciones SAN-NAS

#### **HP-StorageWorks**

- iSCSI SAN
- Windows NAS
- Soluciones propietarias
  - Elementos simétricos
  - Limitaciones en el escalado



#### Almacenamiento RAID

- RAID (Redundant Array of Independent Disks)
  - Reducir coste
  - Aumentar Ancho de banda (BW)
  - Aumentar MTBF (Mean Time Between Failures)



Time Between Failures = { down time - up time}

Mean time between failures = MTBF = 
$$\frac{\Sigma(\text{downtime} - \text{uptime})}{\text{number of failures}}$$

- Nivel 0 Los datos se dividen en trozos (STRIPED)
   y se escriben alternadamente en los discos que forman parte del conjunto.
- No proporciona redundancia. La capacidad total es igual al número de discos multiplicado por la capacidad del menor.



- □ Tasa de fallos
  - MTBF de RAID 0 es aproximadamente proporcional al número de discos.
  - □ Ej. Si Pr(fallo disco) = 5% →
    - Pr(falle al menos algún disco) = 1 Pr(no falle ninguno) =  $1 (1-0.05)^2 = 9.75\%$
- Prestaciones
  - Permite un alto rendimiento de E/S al poder escribir simultáneamente en los dos dispositivos.

- Nivel 1 Dos o mas discos trabajan en espejo (MIRROR),
   toda la información se graba clonada en los discos. El usuario solo ve un disco lógico.
- Ofrece una gran fiabilidad de los datos y mejora el rendimiento de las aplicaciones de lectura intensa sólo que a mayor coste, la capacidad total es la de un disco.



- □ Tasa de fallos
  - □ Ej. Si Pr(fallo disco) = 5% →
    - La probabilidad de que fallen ambos discos
    - $\blacksquare$  Pr(ambos) =  $(0,05)^2 = 0,25\%$
- □ Prestaciones
  - Si se utilizan controladoras distintas para cada disco puede incrementarse las prestaciones al hacer las operaciones en paralelo.

- Nivel 5 Discos independientes con paridad distribuida.
- Buena combinación de prestaciones, tolerancia a fallo, alta capacidad y eficiencia. Es muy utilizado. (Al menos 3 discos)
- □ Basa su seguridad en el cálculo de la paridad de los datos.
- Los datos se distribuyen entre los discos de la matriz.
- La paridad se almacena entre todos los discos de la matriz.



- MTBF es algo mejor que RAID 0 porque el fallo en un disco no plantea una problema.
- La prestaciones pueden ser mejores que un RAID 0, puede leer y escribir varios bloques en paralelo.
- La limitación viene por el cálculo de la paridad por el controlador RAID, por lo que las operaciones de escritura podrían ser algo más lentas.

# RAID (0+1) 10

 Combina RAID 1 y RAID 0 por lo que combina las ventajas de ambos. Buenas prestaciones y mayor MTBF.







 Combina RAID 1 y RAID 0 por lo que combina las ventajas de ambos. Buenas prestaciones y mayor MTBF.



#### Hardware RAID vs Software RAID

#### □ Hardware:

- Requiere un controlador RAID.
- El procesador queda liberado del de las operaciones.



#### □ Software:

- La implementación está disponible en muchos S.O.
- Una capa ofrece la abstracción entre el disco lógico (RAID) y los discos físicos.
- El procesador debe ejecutar el software.
- Más sencillo para configuraciones RAIDO y RAID1.