

Fig. 1

Aldotetrose	DEry D-Erythrose
Ketotetrose	DThr D-Threose
Tetritol	LEry L-Erythrose
	LThr L-Threose
(Tetroses 9)	DEry D-Erythulose
	LEry L-Erythulose
	D,LEry D,L-Erythitol
	DThr D-Threitol
	LThr L-Threitol
Aldopentose	DRib D-Ribose
	DAra D-Arabinose
	DXyl D-Xylose
	DLyx D-Lyxose
	LRib L-Ribose
	LAra L-Arabinose
	LXyl L-Xylose
	LLyx L-Lyxose
Ketopentose	DRib D-Ribulose
	DXyl D-Xylulose
	LRib L-Ribulose
	LXyl L-Xylulose
Pentitol	D,LRib D-Ribitol,L-Ribitol
	DAra D-Arabinitol
	D,LXyl D-Xylitol,L-Xylitol
(Pentoses 16)	LAra L-Arabinitol
Aldohexose	DAll D-Allose
	DAlt D-Altrose
	DGlu D-Glucose
	DMan D-Mannose
	DGul D-Gulose
	DIdo D-Idose
	DGal D-Galactose
	DTal D-Talose
	LAll L-Allose
	LAlt L-Altrose
	Lglu L-Glucose
	DMan L-Mannose
	LGul L-Gulose
	LIdo L-Idose
	LGal L-Galactose
	LTal L-Talose
Ketohexose	DFru D-Fructose
	DPsi D-Psicose
	DSor D-Sorbose
	DTag D-Tagatose
	LFru L-Fructose
	LPsi L-Psicose
	LSor L-Sorbose
	LTag L-Tagatose
	D,LAll D-Allitol,L-Allitol
	DAlt,DTal D-Altritol,D-Talitol
	DGlu,LGul D-Glucitol,L-Gulitol
	DMan D-Mannitol
	DGul,LGlu D-Gulitol,L-Glucitol
	DIdi D-Iditol
	D,LGal D-Galactitol,L-Galactitol
	LAlt,LTal L-Altritol,L-Talitol
	LMan L-Mannitol
	LIdi L-Iditol
(Hexoses 34)	

Biosynthesis strategy for all monosaccharides using Izumoring

10/541822

2/10

Fig. 2

1	ATGGCTGAATTCAAGGATCGCTCAGGATGTCGTTGCGCGGGAAAACGACAGGCACCGCTCG	60
1	M A E F R I A Q D V V A R E N D R R A S	20
61	GCGCTGAAGGAAGACTACGAGGCCTCGCGCGAATCTCGCCGCGCTGGCGTCGACATC	120
21	A L K E D Y E A L G A N L A R R G V D I	40
121	GAGGCCGTCACGGCCAAGGTCGAAAAGTTCTCGTCGCGTCCCCCTCTGGGCGTCGGC	180
41	E A V T A K V E K F F V A V P S W G V G	60
181	ACGGGCGGCACGCGCTTGCCTTCCCCGGCACCGGCAGCCGCGCAGCCGCGCATTCGAC	240
61	T G G T R F A R F P G T G E P R G I F D	80
241	AAGCTGGACGACTGCGCCGTCATCCAGCAGCTGACACGCGCCACGCCAATGTCTCGCTG	300
81	K L D D C A V I Q Q L T R A T P N V S L	100
301	CATATTCCGTGGGACAAGGCCGATCCGAAGGAGCTGAAGGCCAGGGCGACGCCCTCGGC	360
101	H I P W D K A D P K E L K A R G D A L G	120
361	CTCGGCTTCGACCGCATGAACTCCAATACCTTCTCGATGCGCCGCCAGGCCATTCC	420
121	L G F D A M N S N I F S D A P G Q A H S	140
421	TACAAATACGGCTCGCTCAGCCACACGGATGCGGCAACGCGCCAGCGGTGAGCAC	480
141	Y K Y G S L S H T D A A T R A Q A V E H	160
481	AATCTGGAATGCATCGAGATCGGCAAGGCCATCGGCTCCAAGGCCGTGACGGTCTGGATC	540
161	N L E C I E I G K A I G S K A L T V W I	180
541	GGTGACGGCTCCAACCTCCCCGGCCAGAGTAACCTCACCAAGGGCTTCGAACGTTATCTC	600
181	G D G S N F P G Q S N F T R A F E R Y L	200
601	TCGGCGATGGCGGAGATCTACAAGGGCCTGCCGGATGACTGGAAGCTGTTCTCGAGCAC	660
201	S A M A E I Y K G L P D D W K L F S E H	220
661	AAGATGTACGAGCCGGCTCTATTGACCGCTCGCAGGACTGGGGCACGAATTATCTC	720
221	K M Y E P A F Y S T V V Q D W G T N Y L	240
721	ATGCCAGACGCTCGGCCAACGGCCAGTGCCCTCGATCTGGCCATACGCCCG	780
241	I A Q T L G P K A Q C L V D L G H H A P	260
781	AACACCAATATCGAGATGATCGTCGCCGGCTCATCCAGTTGGCAAGCTGGCGCTTC	840
261	N T N I E M I V A R L I Q F G K L G G F	280
841	CATTCAACGATTCAAATACGGCGACGACGACCTCGATGCCGGCCATCGAGCCCTAT	900
281	H F N D S K Y G D D D L D A G A I E P Y	300
901	CGCCTCTCTCGTCTCAACGAGCTGGGATGCGGAGGGCGCGCCGTCAAGGGCTTC	960
301	R L F L V F N E L V D A E A R G V K G F	320
961	CACCCGGCCCACATGATCGACCAAGTCGACACAGTCACCGACCCGATCGAGAGCCTGATC	1020
321	H P A H M I D Q S H N Y T D P I E S L I	340
1021	AACAGCGCGAACGAAATCCGTCGCGCTATGCGCAGGCCCTCCTGTCGACCGCGCGCG	1080
341	N S A N E I R R A Y A Q A L L L V D R A A	360
1081	CTTCCGGCTACCAAGGGAGAACGACGCCCTGATGGGACGGAAACGTTGAAGCGCGCC	1140
361	L S G Y Q E D N D A L M A T E F L K R A	380
1141	TACCGTACCGATGTGGAGCCGATCTCGCCAGGCCGCCGCGCACGGCGCCGTC	1200
381	Y R I D V E P I L A E A R R R T G G A V	400
1201	GACCCCGTCGCGACCTATCGGGCCAGCGCTACCGCGCAGGGTCGCCGCCAGCGCCCC	1260
401	D P V A T Y R A S G Y R A R V A A E R P	420
1261	GCCTCCGTGCGGGTGGCGGGCATCATCTGA 1293	
421	A S V A G G G G I I * 431	

BEST AVAILABLE COPY

Fig. 3

M---AEFR AQDVVARENDRRASA KEDYEALGANLARRGVDT EAVTAKVEKFFVA--VP	55
MT KANYDSAKQAYEKWG DVEEA RQLEQVP SIHCWQGDD EGFEVNKGELSGG DVT	60
SWGVTGG TRFARFPGTGEPRG FDKLDCAV QQLTRATPNVSLH PWDKADPKELKAR	115
GNYPGKAQTPEELRRDLEKALSL PGKHRVNLHAIYAETNREAPERDELKPQHFENWVWK	120
GDAL GLGF DAMNSNTFSDAPGQAHSYKYGS SHTDAATRAQAVEHNLEG IEGKAIGSKA	175
AKNL GLGLDFNPTLFSHEKAADGLT SHPDPD REFWIRHC ACRR GEYFGKEL	175
L VW GDGSNFPQGSNFTR ---AFERYLSAMAEL Y-KGLPDDWKLFS-EHKMYEPAFYS	229
GTPCLTN WIPDGYKD PSDRLTPRKRLKESLDR FSEE SEQHNLDSIESKL FGLGSE	235
T V QDWGTYNL AQTEGPKAQCL VDLGH-HAPNTN IEM VAR I QFGKL GGFHFNDSKY G	288
Y V ---GSHEFYLAYALT NHKL C LDTGHFHPTET VSNK SSM LYTDKLA-LHVS RPVRW	292
DDLDAGA E PYRLFLVFNE LVD EA RGVKG FHPAHM DQSHNVTDP ESL INSANE IRR	348
DSDHVVVLDDEL ---E ALE VRN HALEKVA GLDFFDAS INRVA AWT GTRN MIK	346
AYAQ L V DRAA SGY QEDNDAL MATE TLKRAYRTD VEP LA EARRRT GGAVDPVAT YRA	408
ALLY L LPNGY L KQLQEEGRYTERL ALMEEFKTYPFGA WDSYCEQM QVPV KEAWLY D	406
SGYR RARV AAER PASVAGGGGG I 430	
KEYEQQV LLK RKASSP --- V 424	

上: *Pseudomonas stutzerii*
下: *Bacillus subtilis*

Fig. 4

RhI	MAEFRIAQDVVARENDRRASALKEDYEALGANLARRGVDEAVTAKVEKFFVAVPSWGVG	60
SISTR	MTE-----LAAVKAALKTQAVETPSWAYG	24
SITHE	M-----NMERIFKELDELKFELPSWAFS	24
RhI	TGGTTRFAREP GTGEPRGIFDKLDDCAV I QQLTRATPNVSLHI PWDKA-DPKELKARGDAL	119
SISTR	NSGTRFKVFAQPGVPRDPFEKLDAAKVHEFTGAAPTVLHIPMDRVEDYAAIAHAEKR	84
SITHE	DAGTRFAVHEEGAARNVEERIEDAALVHRLTGCCPSVALHIPWDKVENWEERFAEEK	84
RhI	GLGF DAMNSNTESDAPGQAHSYKYGSLSHTDAATRAQAVEHNLLEGIEIGKAIGSKALTWV	179
SISTR	GVRIGAINSNTFQDD-----DYRLGSICHPDAAVRRKAVDHILLEGVDIMDATGSRDLKLW	139
SITHE	GLKIGAINPNLFEQDP-----DYKYGSLTNPSEKIRKKIAHVMECVDIAEKTGSKVISLW	139
RhI	IGDGSNFPQGSNFTRAFFYRLSAMAEIYKGLPDDWKLFSHEKMYEPFYSTVVQDWGTY	239
SISTR	FADGTYNPGQDDI RSRQDRLAEGLAEVYERLGEQQRMLEYKLFEPAFYTTDVPDWGTY	199
SITHE	LADGTDYPGQDDFRSRKKRLEESRYIYENMPADMYLLIEYKFFEPAFYHTDIPDWGMSY	199
RhI	LIAQTLGPKAQCLVDLGHHAPNTNIEMLYARLIQFGKLGGFHFNDSKYGDDDL DAGAIEP	299
SISTR	AHCLKLGEKAQVVDTGHHAPGTNIEFIVATLLREGKLGGDFNSRFYADDDLMVGAADP	259
SITHE	LLSEKLGERALVIVDLGHHPQGTNIEYIVATLLSEKKLGFGHLNNRKYADDDTIASINP	259
RhI	YRLELVFNELVDAEARGVKGFH-----PAHMIDQSHNVTDPESLINSANEIRRAYERAQLLEV	356
SISTR	FQLERI-----MYEVVRGGGFTSD-----VAFMLDOCHNI EAKPAIIRSVMVQEATAKALLV	313
SITHE	YEVELIFKEIVFAKRDPELSDSAKKVVLMDQAHITKPKILAMIQSVLIAQELFTKALLI	319
RhI	DRAALSGYQEDNDALMATETLKRAYRTDVEPILAFAARRTGGAVIDPVATYRASGYRARVA	416
SISTR	DGTAAEAGAAGDVLLEANAVLMDAYNTDVRPLLREVREESGLDPERMKAYRSCGWAEKVV	373
SITHE	DENRLREAQKNYDVVEAEEIILDAFRTDVRRILREYRRQKGLPEDPLRVFREEDYMEKRR	379
RhI	AERPASVAGGGGII 430	
SISTR	AERIGGQQAGWG-A 386	
SITHE	RERR----- 383	

Fig. 5

Fig. 6

Fig. 7

BEST AVAILABLE COPY

10/541822

8/10

Fig. 8

BEST AVAILABLE COPY

Fig. 9

Fig. 10

BEST AVAILABLE COPY