AI1103 Assignment-4

V Rahul - AI20BTECH11030

Download all python codes from

https://github.com/vrahul02/AI1103-Probabilityand-Random-Variables/tree/main/Assignment -4/Codes

and latex-tikz codes from

https://github.com/vrahul02/AI1103-Probabilityand-Random-Variables/tree/main/Assignment -4/Assignment-4.tex

PROBLEM GATE 2021 (ST), Q.15

A fair die is rolled twice independently. Let X and Y denote the outcomes of the first and second roll, respectively. Then $E(X + Y | (X - Y)^2 = 1)$ equals

Solution

X and Y are two independent random variables that can take the values 1, 2, 3, 4, 5, 6.

$$(X - Y)^2 = 1 (0.0.1)$$

$$X - Y = +1, X - Y = -1$$
 (0.0.2)

X+Y=n	3	5	7	9	11
Outcomes	(1,2),	(2,3),	(3,4),	(4,5),	(5,6),
	(2,1)	(3,2)	(4,3)	(5,4)	(6,5)

$$E(X + Y | (X - Y)^{2} = 1)$$

$$= \sum n \times \Pr(X + Y = n | (X - Y)^{2} = 1)$$

$$(0.0.3)$$

$$= \sum n \times \frac{\Pr(X + Y = n, (X - Y)^{2} = 1)}{\Pr((X - Y)^{2} = 1)}$$

$$(0.0.4)$$

$$= 3 \times \frac{2}{10} + 5 \times \frac{2}{10} + 7 \times \frac{2}{10} + 9 \times \frac{2}{10} + 11 \times \frac{2}{10}$$

$$(0.0.5)$$

$$= 7$$

$$(0.0.6)$$