QUANTUM MECHANICS

Ivan Iorsh • Autumn 2015 • ITMO University

Last Revision: September 18, 2015

Table of Contents

T	Inti	roduction	2		
	1.1	Schrödinger formalism	2		
	1.2	Heisenberg formalism	2		
		Building an operator's matrix	2		
		$f_n m(t)$ time dependence	:		
		Operator matrix properties	3		
	1.3	Switching to a different state basis			
	1.4	Pauli uncertainty principle			
		Single-slit electron diffraction	-		
		Black holes	F		
		Quantum Pencil	ŗ		
	1.5	Problems			
	2.0				
2	Ana	alytical Solutions	(
	2.1	Rectangular quantum well	6		
	2.2	Harmonic oscillator	6		
	2.3	Spherically symmetric potential	6		
	2.4	Problems	6		
3	Qua	asi-classical approximation	7		
•		Problems	7		
4	Spi		8		
	4.1	Problems	8		
5	Per	turbation theory	ę		
	5.1	Time-independent	ϵ		
	5.2	Time-dependent	Ć		
	5.3	Problems	Ć		
6	Problem Solutions 10				
	6.1	Introduction	1(
	6.2		1(
	6.3	·	1(
	6.4	· · · · · · · · · · · · · · · · · · ·	10		
	6.5	·	1(

References 11

Abstract

Quantum Mechanics Lecture Notes.

1 Introduction

1.1 Schrödinger formalism

$$\hat{f}\Phi = E\Phi \tag{1.1}$$

$$\Phi \to dP = |\Phi|^2 dq \tag{1.2}$$

$$x \leftrightarrow \hat{x} \tag{1.3}$$

$$p_x \leftrightarrow -i\hbar \frac{\partial}{\partial x} \tag{1.4}$$

$$f \leftrightarrow \hat{f}$$
 (1.5)

$$\bar{f} = \int \hat{f} dp = \int \Phi^* \hat{f} \Phi dq \tag{1.6}$$

1.2 Heisenberg formalism

Schrödinger was good at math, which is why his quantum mechanics formalism is full of complex mathematical constructs. Heisenberg, on the other hand, had a lot of difficulty with math, which is why his matrix quantum mechanics formalism is limited almost exclusively to linear algebra constructs

Roman \dots

Name	Schrödinger	Heisenberg
State Basis	Wave function of basis states $\{\Phi_n\}$	Column vector of basis states $\begin{pmatrix} \phi_1 \\ \dots \\ \phi_n \end{pmatrix}$
Observables	Operator $\bar{f} = \int \Phi_n^* \hat{f} \Phi_m$	Operator matrix $\begin{pmatrix} \phi_{11} & \dots & \phi_{n1} \\ & \dots & \\ \phi_{1n} & \dots & \phi_{nn} \end{pmatrix}$
Shrödinger Equation	$\hat{f}\Phi=E\Phi$	$\begin{pmatrix} \phi_{11} & \dots & \phi_{n1} \\ & \dots & \\ \phi_{1n} & \dots & \phi_{nn} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \dots \\ \psi_n \end{pmatrix} = \lambda \begin{pmatrix} \psi_1 \\ \dots \\ \psi_n \end{pmatrix}$

Building an operator's matrix

For a system with a discrete state basis, $\{\Psi_n\}$, any state of the system can be described as a linear combination of the basis' wave functions:

$$\Psi = \sum_{n} a_n \Psi_n \tag{1.7}$$

Observable \bar{f} for such a wave function can be decomposed into a sum over the basis state wave functions:

$$\bar{f} = \int \Psi^* \hat{f} \Psi dq = \int \sum_n a_n^* \Psi_n^* \hat{f} \sum_m a_m \Psi_m dq$$

$$= \sum_n \sum_m a_n^* a_m \int \Psi_n^* \hat{f} \Psi_m dq = \sum_n \sum_m a_n^* a_m f_{nm}(t)$$

$$= \sum_n \sum_m a_n^* f_{nm}(t) a_m \tag{1.8}$$

Where f_{nm} is the operator matrix.

$f_n m(t)$ time dependence

Move to appendix?

Solutions to the time-independent Shrödinger equation:

$$\hat{H}\Psi_n = E_n \Psi_n \tag{1.9}$$

$$\Psi_n(t) = e^{-\frac{i}{\hbar}E_n t} \Phi_n \tag{1.10}$$

Which, in operator matrix terms translates into

$$f_{nm}(t) = \int \Psi_n^* \hat{f} \Psi_m dq = \int \Phi_n^* (e^{-\frac{i}{\hbar}E_n t})^* \hat{f} \Phi_m e^{-\frac{i}{\hbar}E_m t} dq$$

$$= e^{+\frac{i}{\hbar}E_n t} e^{-\frac{i}{\hbar}E_m t} \int \Phi_n^* \hat{f} \Phi_m dq = e^{i\frac{E_n - E_m}{\hbar}t} \int \Phi_n^* \hat{f} \Phi_m dq$$

$$= f_{nm} e^{i\omega_{nm} t}$$

$$(1.11)$$

Operator matrix properties

1. The operator matrix is hermitian ¹ Transposed operator:

$$(\int \Phi \hat{f} \Psi dq)^T = \int \Psi (\hat{f})^T \Phi dq \tag{1.12}$$

Complex conjugate:

$$(\hat{f})^* = \hat{f}^* \tag{1.13}$$

Hermitian conjugate:

$$\bar{f}^* = \int \Psi^* \hat{f}^\dagger \Psi dq \tag{1.14}$$

 $^{^{1}}H^{\dagger} = H = (H^{*})^{T}$

In operator matrix terms:

$$(f_{nm}^*) = \int \varphi_n^* \hat{f}^{\dagger} \varphi_m dq = \int \varphi_n^* (\hat{f}^*)^T \varphi_m dq$$
$$= \int \varphi_m (\hat{f}^* \varphi_n^*) dq = (\int \varphi_m^* \hat{f}^{\dagger} \varphi_n dq)^* = (f_{mn})^*$$
(1.15)

Which means, if f_{nm} is real, meaning $f_{nm}^* = f_{nm}$ that

$$f_{nm} = f_{mn}^* = f_{nm}^{\dagger} \tag{1.16}$$

2. The matrix' diagonal elements are time-independent and real

$$f_{nn} = \int \Psi_n \hat{f} \Psi_n dq \equiv \bar{f}_n \tag{1.17}$$

Where \bar{f}_n is the value of observable f in basis state n.

3. The matrix of the product of two operators is the product of their matrices For operators \hat{f} and \hat{g} , what is the operator matrix for operator $\hat{f} \times \hat{g} - (\hat{f} \times \hat{g})_{nm}$? Move to appendix?

$$\hat{f}\varphi_n = \sum_m f_{mn}\varphi_m \tag{1.18}$$

$$\int \varphi_k^* dq \times \hat{f} \varphi_n = \int \varphi_k^* dq \times \sum_m f_{mn} \varphi_m$$

$$\int \varphi_k^* \hat{f} \varphi_n dq = \sum_m f_{mn} \int \varphi_k^* \varphi_m dq f_{kn} = \sum_m f_{mn} \delta_{km} = f_{kn}$$
(1.19)

Because for state basis φ_n , φ_n and φ_m are orthogonal for all $m \neq n$.

Using 1.18, we can write:

$$\hat{f}\hat{g}\varphi_n = \hat{f}(\hat{g}\varphi_n) = \hat{f}\sum_k g_k n\varphi_k = \sum_k g_{kn}\hat{f}\varphi_k$$

$$= \sum_k g_{kn}\sum_m f_{mk}\varphi_m = \sum_{k,m} g_{kn}f_{mk}\varphi_m$$

$$= \sum_{k,m} f_{mk}g_{kn}\varphi_m$$
(1.20)

And knowing that:

$$(\hat{f}\hat{g})\varphi_n = \sum_m (\hat{f}\hat{g})_{nm}\varphi_m \tag{1.21}$$

We end up with:

$$(\hat{f}\hat{g})_{mn} = \sum_{k} f_{mk} g_{kn} \tag{1.22}$$

4. The operator's matrix is equivalent to the operator

- 1.3 Switching to a different state basis
- 1.4 Pauli uncertainty principle

Single-slit electron diffraction

Black holes

Quantum Pencil

[1]

1.5 Problems

2 Analytical Solutions

- 2.1 Rectangular quantum well
- 2.2 Harmonic oscillator
- 2.3 Spherically symmetric potential
- 2.4 Problems

- 3 Quasi-classical approximation
- 3.1 Problems

4 Spin

4.1 Problems

5 Perturbation theory

- 5.1 Time-independent
- 5.2 Time-dependent
- 5.3 Problems

6 Problem Solutions

- 6.1 Introduction
- 6.2 Analytical solutions
- 6.3 Quasiclassical approximation
- 6.4 Spin
- 6.5 Petrubation theory

References

[1] D. Easton, "The quantum mechanical tipping pencil – a caution for physics teachers," <u>European Journal of Physics</u>, vol. 28, no. 6, p. 1097, 2007.