SQL Project: Operation Analytics & Metric Spike Investigation

Objective:

To utilize advanced SQL skills to analyse data, provide actionable insights, and enhance operational efficiency while investigating sudden changes in key metrics.

Project Overview:

Aimed at improving end-to-end company operations, this project involved analysing data from operations, support, and marketing teams to derive valuable insights. Advanced SQL queries and MySQL Workbench were used to identify areas of improvement and investigate metric spikes.

Skills Applied:

- Data importing and transformation (e.g., changing VARCHAR to DATETIME).
- SQL queries for trend analysis, duplicate detection, and engagement monitoring.
- Statistical analysis for user retention and email engagement.

Data Preparation:

Dataset for Job Data Analysis is formed based on given sample. The dataset is imported using Import Wizard.

```
CREATE DATABASE op_case_study_1;

USE op_case_study_1;

○ CREATE TABLE job_study1 (

ds VARCHAR(15),
 job_id INT,
 actor_id INT,
 event VARCHAR(15),
 language VARCHAR(15),
 time_spent INT,
 org VARCHAR(1)
);
```

The other tables are larger in size, an alternate method is used to upload them on server. For ease in further analysis datatype of date-time column is changed from VARCHAR to DATETIME.

```
CREATE TABLE users (
    user_id INT,
    created_at VARCHAR(50),
    company_id INT,
    language VARCHAR(20),
    activated_at VARCHAR(50),
    state VARCHAR(20)
);

CREATE TABLE email_events (
    user_id INT,
    occurred_at VARCHAR(100),
    action VARCHAR(50),
    user_type INT
);
```

```
user_id INT,
     occurred_at VARCHAR(70),
     event_type VARCHAR(50),
     event_name VARCHAR(50),
     location VARCHAR(50),
     device VARCHAR(30),
      user_type INT
  );
  SHOW variables LIKE 'secure_file_priv';
  #Table- users
  LOAD DATA INFILE "C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/users.csv "
  INTO TABLE users
  FIELDS TERMINATED BY ','
  ENCLOSED BY '"'
  LINES TERMINATED BY '\n'
  IGNORE 1 ROWS;
```

Key Insights - Job Data Analysis:

1. Jobs reviewed over time:

Calculated jobs reviewed per hour daily to measure operational performance to check efficiency of task performance.

```
# jobs reviewed over time
SELECT
    ds,
    time_spent,
    ROUND(3600 / time_spent) AS Num_of_reviews_per_hr
FROM
    job_study1
GROUP BY ds
ORDER BY ds;
```

	ds	time_spent	Num_of_reviews_per_hr
•	2020-11-01	11	327
	2020-11-02	113	32
	2020-11-03	90	40
	2020-11-04	113	32
	2020-11-05	83	43
	2020-11-06	17	212
	2020-11-07	73	49
	2020-11-08	47	77
	2020-11-09	71	51
	2020-11-10	58	62
	2020-11-11	23	157
	2020-11-12	98	37
	2020-11-13	39	92
	2020-11-14	14	257
	2020-11-15	109	33

ds	time_spent	Num_of_reviews_per_hr
2020-11-16	111	32
2020-11-17	59	61
2020-11-18	60	60
2020-11-19	79	46
2020-11-20	29	124
2020-11-21	98	37
2020-11-22	111	32
2020-11-23	100	36
2020-11-24	56	64
2020-11-25	45	80
2020-11-26	56	64
2020-11-27	104	35
2020-11-28	22	164
2020-11-29	20	180
2020-11-30	15	240

2. Engagement Analysis:

Monitored daily throughput and compared it with the 7-day rolling average for actionable insights.

```
#Throughput Analysis-
# Change data type of date column(ds) from varchar to datetime
ALTER TABLE job_study1 ADD COLUMN temp_date DATE;
UPDATE job_study1 SET temp_date =STR_TO_DATE(ds,'%d-%m-%Y');
ALTER TABLE job_study1 DROP COLUMN ds;
ALTER TABLE job_study1 CHANGE COLUMN temp_date ds DATE;

#Average Throughput calculation
SELECT
    WEEK(ds) AS weeknum,
    COUNT(WEEK(ds)) AS event_count,
    COUNT(WEEK(ds)) / SUM(time_spent) AS throughput
FROM
    job_study1
GROUP BY weeknum
ORDER BY weeknum, ds;
```

	weeknum	event_count	throughput
•	44	63	0.0139
	45	59	0.0164
	46	48	0.0149
	47	61	0.0166
	48	23	0.0191

3. Language Usage:

Identified Persian as the most used language (37.8%), followed by Arabic and English.

```
# percentage share of each language
SELECT
    language,
    ROUND(COUNT(language) / (SELECT COUNT(*) FROM job_study1) * 100,2)
    AS Share_of_each_language_perct
FROM
    job_study1
GROUP BY language;
```

	language	Share_of_each_language_perct
•	English	14.96
	Arabic	15.75
	Persian	37.80
	Hindi	11.42
	French	11.81
	Italian	8.27

4. Data Integrity:

Detected and eliminated duplicate entries to ensure data accuracy.

```
#duplicates
WITH duplicates AS (
    SELECt *,ROW_NUMBER() OVER (PARTITION BY ds,job_id,actor_id,event,language,time_spent,org ) AS rownum
    FROM job_study1)
SELECT * FROM duplicates having rownum>1;
```

	job_id	actor_id	event	language	time_spent	org	ds	rownum
•	20	1006	decision	English	39	В	2020-11-13	2
	19	1001	transfer	Arabic	111	В	2020-11-16	2
	21	1005	transfer	Italian	55	Α	2020-11-23	2
	21	1003	decision	Arabic	101	D	2020-11-25	2
	24	1007	transfer	Persian	33	Α	2020-11-30	2

Key Insights - Metric Spike Investigation:

1. User Engagement Trends:

Weekly analysis revealed peak engagement in August 2014, with gradual increases over prior months.

```
# weekly user engagement

SELECT
    RIGHT(YEARWEEK(LEFT(created_at, 10), 3),2) AS weeknum,
    -- LEFT(created_at, 10) AS activate_d,
    COUNT(LEFT(created_at, 10)) AS users_count,
    YEARWEEK(LEFT(created_at, 10), 3) AS weekcode

FROM
    users

GROUP BY weekcode;
```

weeknum	users_count	weekcode
01	26	201301
02	29	201302
03	47	201303
04	36	201304
05	30	201305
06	48	201306
07	41	201307
08	39	201308
09	33	201309
10	43	201310
11	33	201311
12	32	201312
13	33	201313
14	40	201314
15	35	201315
16	42	201316
17	48	201317
18	48	201318
19	45	201319
20	55	201320

weeknum	users_count	weekcode
21	41	201321
22	49	201322
23	51	201323
24	51	201324
25	46	201325
26	57	201326
27	57	201327
28	52	201328
29	71	201329
30	66	201330
31	69	201331
32	66	201332
33	73	201333
34	71	201334
35	79	201335
36	65	201336
37	71	201337
38	84	201338
39	92	201339
40	81	201340

weeknum	users_count	weekcode
41	88	201341
42	74	201342
43	97	201343
44	92	201344
45	97	201345
46	94	201346
47	82	201347
48	103	201348
49	96	201349
50	117	201350
51	123	201351
52	104	201352

weeknum	users_count	weekcode
01	132	201401
02	122	201402
03	112	201403
04	113	201404
05	130	201405
06	132	201406
07	135	201407
08	127	201408
09	127	201409
10	135	201410
11	152	201411
12	132	201412
13	151	201413
14	161	201414
15	166	201415
16	165	201416
17	176	201417

18	172	201418
19	160	201419
20	186	201420
21	177	201421
22	186	201422
23	197	201423
24	198	201424
25	222	201425
26	210	201426
27	199	201427
28	223	201428
29	215	201429
30	228	201430
31	234	201431
32	189	201432
33	250	201433
34	259	201434
35	266	201435


```
#user growth over period
SELECT
    LEFT(created_at, 7) AS user_join,
    COUNT(LEFT(created_at, 7)) AS counts
FROM
    users
GROUP BY LEFT(created_at, 7);
```

user_join	counts
2013-01	160
2013-02	160
2013-03	150
2013-04	181
2013-05	214
2013-06	213
2013-07	284
2013-08	316
2013-09	330
2013-10	390

user_join	counts
2013-11	399
2013-12	486
2014-01	552
2014-02	525
2014-03	615
2014-04	726
2014-05	779
2014-06	873
2014-07	997
2014-08	1031

2. Retention Analysis:

a. Monitored weekly logins, showing a 125% increase in sign-ups by the second week post-launch.

```
#weekly retention analysis

SELECT
    event_name,
    occurred_at,
    WEEK(LEFT(occurred_at, 10)) - 16 AS weeknu,
    COUNT(WEEK(LEFT(occurred_at, 10))) AS counts

FROM
    events

WHERE
    event_name IN ('login' , 'complete_signup')

GROUP BY weeknu;
```

event_name	occurred_at	weeknu	counts
login	2014-05-02 11:02:00	1	959
login	2014-05-09 17:52:00	2	2148
login	2014-05-15 13:52:00	3	2215
login	2014-05-20 07:29:00	4	2269
login	2014-05-28 14:10:00	5	2169
login	2014-06-09 07:06:00	7	2384
login	2014-06-03 15:12:00	6	2353
login	2014-06-20 14:31:00	8	2494
login	2014-06-22 18:46:00	9	2451
login	2014-07-20 12:18:00	13	2654
login	2014-07-04 10:33:00	10	2467
login	2014-07-30 06:10:00	14	2821
login	2014-07-18 20:39:00	12	2708
login	2014-07-12 08:53:00	11	2619
login	2014-08-04 23:54:00	15	2471
login	2014-08-15 14:03:00	16	2343
login	2014-08-20 17:48:00	17	2332
login	2014-08-27 11:19:00	18	2311
login	2014-08-31 17:06:00	19	122

b. Tracked individual user activity patterns, identifying inactive periods for targeted interventions. The example below shows activity of user ID 492.

```
#weekly retention analysis
WITH activity AS(
SELECT user_id,
       event name,
       location, LEFT (occurred_at, 10) AS login_date,
       yearweek(LEFT(occurred_at, 10)) AS weekcode,
       RIGHT(yearweek(LEFT(occurred_at,10)),2) AS weeknum,
       DENSE_RANK() OVER(PARTITION BY user_id ORDER BY user_id, yearweek(LEFT(occurred_at,10))) AS retention
FROM events
WHERE event_name ='login'
-- group by user_id
order by user_id)
SELECT DISTINCT user_id,
                event_name,
                location,
                weeknum
```

user_id	event_name	location	weeknum
492	login	United States	17
492	login	United States	18
492	login	United States	20
492	login	United States	21
492	login	United States	23
492	login	United States	24
492	login	United States	27
492	login	United States	28
492	login	United States	29
492	login	United States	30
492	login	United States	31
492	login	United States	34

FROM activity;

3. <u>Device Retention:</u>

Evaluated weekly engagement per device, ranking the top 20 and bottom 20 devices by usage.

```
#weekly engagement per device
SELECT tnow FROM (
SELECT COUNT(DISTINCT WEEK(LEFT(occurred_at,10))) AS thow FROM events) AS total_weeks;
# The query returns total number of weeks in given data.
#There are 19 weeks in given data
SELECT user_id,
      device,
      COUNT(DISTINCT WEEK(LEFT(occurred_at,10))) AS activeness,
      CASE
      WHEN COUNT(DISTINCT WEEK(LEFT(occurred_at,10))) >= 17 THEN 'Excellent'
      WHEN COUNT(DISTINCT WEEK(LEFT(occurred_at,10))) BETWEEN 12 and 17 THEN 'Very Good'
      WHEN COUNT(DISTINCT WEEK(LEFT(occurred_at,10))) BETWEEN 8 AND 12 THEN 'Good'
       ELSE 'Poor'
       END AS Retention
FROM events
GROUP BY user_id
ORDER BY activeness DESC, user_id;
```

user_id	device	activeness	Retention
10498	lenovo thinkpad	18	Excellent
2398	macbook air	17	Excellent
5633	lenovo thinkpad	17	Excellent
7510	macbook pro	17	Excellent
3774	lenovo thinkpad	16	Very Good
8733	nexus 5	16	Very Good
9956	macbook pro	16	Very Good
10067	macbook air	16	Very Good
2661	macbook pro	15	Very Good
3390	iphone 5	15	Very Good
3708	iphone 5	15	Very Good
5394	macbook pro	15	Very Good
6410	macbook pro	15	Very Good
8258	iphone 4s	15	Very Good
9003	hp pavilion des	15	Very Good
10712	nexus 5	15	Very Good
12976	iphone 5s	15	Very Good
366	iphone 5	14	Very Good
1384	macbook pro	14	Very Good
2419	asus chromebook	14	Very Good

user_id	device	activeness	Retention
49	hp pavilion desktop	1	Poor
170	macbook pro	1	Poor
244	hp pavilion desktop	1	Poor
271	iphone 5	1	Poor
335	nexus 5	1	Poor
341	hp pavilion desktop	1	Poor
406	lenovo thinkpad	1	Poor
460	nexus 10	1	Poor
471	macbook air	1	Poor
546	lenovo thinkpad	1	Poor
655	windows surface	1	Poor
709	dell inspiron desktop	1	Poor
726	windows surface	1	Poor
773	nexus 7	1	Poor
1035	lenovo thinkpad	1	Poor
1119	dell inspiron desktop	1	Poor
1126	macbook pro	1	Poor
1164	acer aspire notebook	1	Poor
1179	iphone 5	1	Poor
1238	ipad air	1	Poor

4. Email Campaign Effectiveness:

a. Analyzed email open and click rates to measure engagement.

```
#email engagement
WITH email_open AS (
    SELECT user_id,
            COUNT(action) AS email_open FROM email_events WHERE action = 'email_open'
    GROUP BY user_id),
email_cl A5 (
SELECT user_id,
       COUNT(action) AS email_click FROM email_events WHERE action = 'email_clickthrough'
GROUP BY user_id )
SELECT
    swd.user_id,
    COUNT(action) AS weekly_digest_count,
    eo.email_open,
    ecl.email_click
FROM email_events AS swd
       LEFT JOIN
    email_open AS eo ON swd.user_id = eo.user_id
        LEFT JOIN
    email_cl AS ecl ON swd.user_id = ecl.user_id
WHERE action = 'sent_weekly_digest'
GROUP BY swd.user_id
ORDER BY email_open DESC;
```

user_id	weekly_digest_count	email_open	email_click
5987	18	12	2
10224	18	12	3
10975	17	12	7
11044	17	12	4
11936	17	12	3
347	17	11	4
2979	17	11	3
3390	17	11	9
3744	17	11	3
5010	18	11	4
5952	18	11	3
6612	18	11	8
8156	17	11	3
8462	17	11	5

b. Identified maximum and minimum user interactions with campaigns.

Outcome:

The project delivered critical insights into operational performance, user engagement, and email campaign efficiency. Key outcomes included:

- Improved data integrity and analysis accuracy through SQL techniques.
- Enhanced understanding of application popularity and user retention patterns.
- Actionable recommendations for optimizing email campaigns and user engagement strategies.

Conclusion:

This project demonstrated the power of SQL in extracting actionable insights and guiding decision-making to improve operational efficiency and user engagement. The findings underscore the importance of continuous monitoring and data-driven strategies for organizational growth.