HELP MANUAL

Neural Networks in Python

Multi Layer Perceptron Classifier

Neural Network using MLP

- Required packages
 - from sklearn.datasets import load_breast_cancer
 - from sklearn.model_selection import train_test_split
 - from sklearn.preprocessing import StandardScaler
 - from sklearn.neural_network import MLPClassifier
 - from sklearn.metrics import classification_report,confusion_matrix

- Load dataset
 - Eg:cancer = load_breast_cancer()
- Creating Feature set and Target set from Data set
 - Eg: X = cancer['data']
 - \square y = cancer['target']
- Split Feature set and Target Set into Training set and Target Set.
 - X_train, X_test, y_train, y_test = train_test_split(X, y)

- Standardizing features by removing the mean and scaling to unit variance
 - scaler = StandardScaler()
- Fitting scaled data only to the training data
 - scaler.fit(X_train)
- Transforming Training and Test data of feature set
 - X_train = scaler.transform(X_train)
 - X_test = scaler.transform(X_test)

- Instantiate MLPClassifer with specific hidden layer size
 - MLPClassifier(hidden_layer_size)
 - mlp = MLPClassifier(hidden_layer_sizes=(30,30,30))
- □ Fit MLP Classifier on Training Data of Feature set.
 - mlp.fit(X_train,y_train)
- Perform Prediction on Testset data of feature set.
 - predictions = mlp.predict(X_test)

- Print "Confusion Matrix"
 - print (confusion_matrix(y_test,predictions))
- Print "Classification Report"
 - print(classification_report(y_test,predictions))