Machine Learning for Image Processing

Zhaohan Xiong, Jichao Zhao

(20th June 2018)

Auckland Bioengineering Institute
The University of Auckland, New Zealand

Supervised Learning

- Given a dataset with known labels.
- "Train" a machine learning model using this dataset.
- Use the trained model to make predictions for new data which we do not know the labels for.

Types of Image Recognition Tasks

Classification CAT

Types of Image Recognition Tasks

Types of Image Recognition Tasks

Introducing Neural Networks

- Given some **input** data,
- **Transform** the data through intermediate layers (number can be $N \ge 0$ layers) (we can also have as many nodes as we want for the intermediate layers),
- So the output becomes the probability of being in each class

Starting with a (very) simple neural network:

Starting with a (very) simple neural network:

TASK: given a single number at the input (X_1) , predict if its **positive** or **negative** (at the output, Y).

Starting with a (very) simple neural network:

TASK: given a single number at the input (X_1) , predict if its **positive** or **negative** (at the output, Y).

<u>Ideally:</u>

If
$$x \ge 0$$
, we would want $[Y_1 \quad Y_2] = [1 \quad 0]$ (or any $Y_1 > Y_2$) If $x < 0$, we would want $[Y_1 \quad Y_2] = [0 \quad 1]$ (or any $Y_1 < Y_2$)

Starting with a (very) simple neural network:

TASK: given a single number at the input (X_1) , predict if its **positive** or **negative** (at the output, Y).

Ideally:

If
$$x \ge 0$$
, we would want $[Y_1 \ Y_2] = [1 \ 0]$ (or any $Y_1 > Y_2$) If $x < 0$, we would want $[Y_1 \ Y_2] = [0 \ 1]$ (or any $Y_1 < Y_2$)

To transform the input (1 node) to the output (2 nodes), we can perform a matrix multiplication:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

Starting with a (very) simple neural network:

TASK: given a single number at the input (X_1) , predict if its **positive** or **negative** (at the output, Y).

Ideally:

If
$$x \ge 0$$
, we would want $[Y_1 \quad Y_2] = [1 \quad 0]$ (or any $Y_1 > Y_2$) If $x < 0$, we would want $[Y_1 \quad Y_2] = [0 \quad 1]$ (or any $Y_1 < Y_2$)

To transform the input (1 node) to the output (2 nodes), we can perform a matrix multiplication:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

How do we choose which w's get our desired Y's ?

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

Sample Training Set:

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

This simple problem has many solutions for \mathbf{w} , e.g. $[\mathbf{w_1} \quad \mathbf{w_2}] = [\mathbf{0.6} \quad \mathbf{0.4}]$ (or any $w_1 > w_2$).

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

```
This simple problem has many solutions for w, e.g. [w_1 \ w_2] = [0.6 \ 0.4] (or any w_1 > w_2).
```

```
If we input X = 1 and X = -1:

[1][0.6 \quad 0.4] = [0.6 \quad 0.4] \quad (Y_1 > Y_2, \text{higher value for positive})

[-1][0.6 \quad 0.4] = [-0.6 \quad -0.4] \quad (Y_1 < Y_2, \text{higher value for negative})
```

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

This simple problem has many solutions for \mathbf{w} , e.g. $[w_1 \ w_2] = [0.6 \ 0.4]$ (or any $w_1 > w_2$).

```
If we input X = 1:

[1][0.6 \quad 0.4] = [0.6 \quad 0.4]
```

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

This simple problem has many solutions for \mathbf{w} , e.g. $[w_1 \ w_2] = [0.6 \ 0.4]$ (or any $w_1 > w_2$).

If we input X = 1:

[1][0.6 0.4] = [0.6 0.4]
normalize:
$$\left[\frac{e^{0.6}}{e^{0.6} + e^{0.4}} \quad \frac{e^{0.4}}{e^{0.6} + e^{0.4}}\right] = [0.550 \quad 0.450]$$

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

This simple problem has many solutions for \mathbf{w} , e.g. $[w_1 \ w_2] = [0.6 \ 0.4]$ (or any $w_1 > w_2$).

If we input X = 1:

[1][0.6 0.4] = [0.6 0.4]
normalize:
$$\left[\frac{e^{0.6}}{e^{0.6} + e^{0.4}} \quad \frac{e^{0.4}}{e^{0.6} + e^{0.4}}\right] = [0.550 \quad 0.450]$$
 (Softmax)

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

This simple problem has many solutions for \mathbf{w} , e.g. $[w_1 \ w_2] = [0.6 \ 0.4]$ (or any $w_1 > w_2$).

```
If we input X = 1 and X = -1:
[1][0.6 \quad 0.4] = [0.6 \quad 0.4]
\text{normalize: } \left[\frac{e^{0.6}}{e^{0.6} + e^{0.4}} \quad \frac{e^{0.4}}{e^{0.6} + e^{0.4}}\right] = [0.550 \quad 0.450]
[-1][0.6 \quad 0.4] = [-0.6 \quad -0.4]
\text{normalize: } \left[\frac{e^{-0.6}}{e^{-0.6} + e^{-0.4}} \quad \frac{e^{-0.4}}{e^{-0.6} + e^{-0.4}}\right] = [0.450 \quad 0.550]
```

import the packages we will be needing import tflearn


```
# import the packages we will be needing import tflearn
```

```
# define the input layer (1 node)
X_i = tflearn.input_data(shape=[None, 1])
```


Positive

```
# import the packages we will be needing import tflearn

# define the input layer (1 node)

X_i = tflearn.input_data(shape=[None, 1])

# define the output layer (2 nodes), softmax normalizes values between 0/1

Y_j = tflearn.fully_connected(X_i, n_units=2, activation='softmax')
```

Output

Positive

```
# import the packages we will be needing
import tflearn

# define the input layer (1 node)

X_i = tflearn.input_data(shape=[None, 1])

# define the output layer (2 nodes), softmax normalizes values between 0/1
```

Y j = tflearn.fully connected(X i, n units=2, activation='softmax')

We don't need to define w_i

```
Input
                                                                                     Output
# import the packages we will be needing
import tflearn
# define the input layer (1 node)
X i = tflearn.input data(shape=[None, 1])
# define the output layer (2 nodes), softmax normalizes values between 0/1
Y j = tflearn.fully connected(X i, n units=2, activation='softmax')
# set up optimization problem (sgd = stochastic gradient descent)
optimization problem = tflearn.regression(Y j, optimizer="sgd")
# initialize variables w i with random values to provide a starting point for optimization
model = tflearn.DNN(optimization problem)
```

```
Input
                                                                                     Output
# import the packages we will be needing
import tflearn
# define the input layer (1 node)
X i = tflearn.input data(shape=[None, 1])
# define the output layer (2 nodes), softmax normalizes values between 0/1
Y j = tflearn.fully connected(X i, n units=2, activation='softmax')
# set up optimization problem (sgd = stochastic gradient descent)
optimization problem = tflearn.regression(Y j, optimizer="sgd")
# initialize variables w i with random values to provide a starting point for optimization
model = tflearn.DNN(optimization problem)
# train the model (assuming we have some data) for 100 iterations, update w every iteration
model.fit(data, label, n epoch=100)
```

```
Input
                                                                                      Output
# import the packages we will be needing
import tflearn
# define the input layer (1 node)
X i = tflearn.input data(shape=[None, 1])
# define the output layer (2 nodes), softmax normalizes values between 0/1
Y j = tflearn.fully connected(X i, n units=2, activation='softmax')
# set up optimization problem (sgd = stochastic gradient descent)
optimization problem = tflearn.regression(Y i, optimizer="sgd")
# initialize variables w i with random values to provide a starting point for optimization
model = tflearn.DNN(optimization problem)
# train the model (assuming we have some data) for 100 iterations, update w every iteration
model.fit(data, label, n epoch=100)
# make a prediction
print( model.predict([[1]]) )
                                 \# should get Y1 > Y2 (output = [Y1, Y2])
print( model.predict([[-1]]) )
                                 \# should get Y1 < Y2 (output = [Y1, Y2])
```

More Layers/Nodes

To map
$$X_i \rightarrow Y_j$$
:

$$[X_1 \quad X_2] \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} \\ v_{21} & v_{22} & v_{23} & v_{24} \end{bmatrix} = [Y_1 \quad Y_2 \quad Y_3 \quad Y_4]$$

To map $Y_j \to Z_k$:

$$\begin{bmatrix} Y_1 & Y_2 & Y_3 & Y_4 \end{bmatrix} \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \\ w_{41} & w_{42} \end{bmatrix} = \begin{bmatrix} Z_1 & Z_2 \end{bmatrix}$$

More Layers/Nodes

To map
$$X_i \rightarrow Y_j$$
:

$$[X_1 \quad X_2] \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} \\ v_{21} & v_{22} & v_{23} & v_{24} \end{bmatrix} = [Y_1 \quad Y_2 \quad Y_3 \quad Y_4]$$

To map $Y_j \to Z_k$:

$$\begin{bmatrix} Y_1 & Y_2 & Y_3 & Y_4 \end{bmatrix} \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \\ w_{41} & w_{42} \end{bmatrix} = \begin{bmatrix} Z_1 & Z_2 \end{bmatrix}$$

Transformations are done with matrix multiplications

Convolutional Neural Networks

- Often referred to as "CNNs".
- More complex model.
- Is able to handle more complex data (such as images).

Convolutional Neural Networks

- Often referred to as "CNNs".
- More complex model.
- Is able to handle more complex data (such as images).

Main difference with previous example:

Instead of $X_i o Y_j$ being a simple matrix multiplication, we transform X_i to Y_j with the **convolution operation**.

Convolution Operation

0	1 2	0	2	2	Dot	Produ	1	0		0	-3	Γ
2	2	1	0	0		-1	0	1	=	-1	-4	
2	1	2	2	1		0	-1	0		0	0	
0	0	0	1	0			x3x ²			3x3x	(1 0	υl
		x5x°					Filter					

Convolution Operation

0	1	0	2	2
1	2	2	1	2
2	2	1	0	0
2	1	2	2	1
0	0	0	1	0

5x5x1 Input

-1	1	0
-1	0	1
0	-1	0
		<u> </u>

3x3x1 Filter

0	-3	2
-1	-4	-4
0	0	-3

3x3x1 Output

Parameters to optimize

0	1	0	2	2							
1	2	2	1	2	-1	1	0		0	-3	2
2	2	1	0	0	-1	0	1	=	-1	-4	-4
2	1	2	2	1	0	-1	0		0	0	-3
0	0	0	1	0	3	x3 x1		3x3×	(1 0	utpu	

Filter

5x5x1 Input

0	1	0	2	2	_						
1	2	2	1	2	-1	1	0		0	-3	2
2	2	1	0	0	-1	0	1	=	-1	-4	-4
2	1	2	2	1	0	-1	0		0	0	-3
0	0	0	1	0		x3 x1			3x3x	(1 0	utput
	<u>,</u>	x5x	1		F	Filter					

Input

0	1	0	2	2							
1	2	2	1	2	-1	1	0		0	-3	2
2	2	1	0	0	-1	0	1	=	-1	-4	-4
2	1	2	2	1	0	-1	0		0	0	-3
0	0	0	1	0	3	x3 x1		3x3×	(1 0	utpu [.]	

Filter

5x5x1 Input

	5	5x5x	1				Filter				
0	0	0	1	0			x3 x1			3x3x	(1 0
2	1	2	2	1		0	-1	0		0	0
2	2	1	0	0		-1	0	1	=	-1	-4
1	2	2	1	2		-1	1	0		0	-3
0	1	0	2	2							
	T				1						

Input

utput

-4

1	2	2	2	2	-1	1	0		0	-3	2
2	2	1	0	0	-1	0	1	=	-1	-4	-4
2	1	2	2	1	0	-1	0		0	0	-3
0	0	0 x5 x	1	0		x3x1 Filter			3x3x	(1 0	utpu

Input

0	1	0	2	2
1	2	2	1	2
2	2	1	0	0
2	1	2	2	1
0	0	0	1	0

5x5x1 Input

-1 -1	1	0	_	0 -1	-3 -4	2 -4							
0	-1	0		0	0	-3							
	x3x1 Filter		3x3x	1 0	utpu								
	Loss of pixels												

Convolution Operation (zero-padding)

0	0	0	0	0	0	9									
0	0	1	0	2	2	0					0	-2	-1	1	-4
0	1	2	2	1	2	0	-1	1	0		0	0	-3	2	-1
0	2	2	1	0	0	0	-1	0	1	=	1	-1	-4	-4	0
0	2	1	2	2	7	4	0	-1	0		3	0	0	-3	-2
0	0	0	0	1	0	0	3x3x1					1	2	_	-2
0	0	0	0	0	0	0		Filte	r		2	- 5 y 5 y		0	

7x7x1 Input 5x5x1 Output

(original dimension maintained)

Layer 1 → Layer 2:

Perform the convolution operation 8 times to get 8 feature maps.

Layer 1 → Layer 2:

- Perform the convolution operation 8 times to get 8 feature maps.
- Use 8 "3x3x1 filters" to achieve this.

Layer 2 → Layer 3:

- Perform the convolution operation 16 times to get 16 feature maps.

Layer 2 → Layer 3:

- Perform the convolution operation 16 times to get 16 feature maps.
- Since the input now has 8 feature maps, use **16** "3×3×8 filters" to achieve this.

Layer 3 → Layer 4:

- Perform the convolution operation 2 times to get 2 feature maps.
- Since the input now has 16 feature maps, use **2** "3×3×16 filters" to achieve this.

Layer 4:

- The two feature maps represents the probability of each pixel (in nxn pixels) being either positive or negative.

2018 Atrial Segmentation Challenge

Home Data Evaluation Submission Discussion Forum

Data Summary

Size

100 Data for Training

25 Data for Testing

Left Atrial Cavity

Pathology

Atrial Fibrillation

Images

3D Gadolinium-Enhanced Magnetic Resonance Imaging

Labels

3D Binary Masks of the Left Atrial Cavity

Raw LGE-MRI

3D Left Atria Superimposed on LGE-MRI

3D Left Atria Visualization

Background

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. The poor performance of current AF treatment is due to a lack of understanding of the structure of the human atria.

Organizers

Jichao Zhao Zhaohan Xiong

http://atriaseg2018.cardiacatlas.org/

Atria Segmentation

2D

- Given the raw MRI (left), identify the pixels which belong to the atria (right).

- Segmenting each slice of an MRI will result in 3D segmentation.

- Make a CNN to predict the mask for given a 3D MRI.
- CNN performs 2D slice-by-slice prediction for every slice of the MRI.
- Train the CNN with 2D MRI slices.

import packages
import tflearn
import numpy as np
import SimpleITK as sitk

```
# import packages
import tflearn
import numpy as np
import SimpleITK as sitk
# helper function to load .nrrd files
def load nrrd(full path filename):
      # this function loads .nrrd files into a 3D matrix and outputs it
      # the input is the specified file path
      # the output is the Z x X by Y x Z for Z slices sized X x Y
      data = sitk.ReadImage(full path filename)
                                                                      # read in image
      data = sitk.Cast( sitk.RescaleIntensity(data), sitk.sitkUInt8 )
                                                                      # convert to 8 bit (0-255)
      data = sitk.GetArrayFromImage( data )
                                                                      # convert to numpy array
      # expand the dimension to n slices x width x height x 1
      data = np.expand dims(data,4)
      return(data)
```

load the data given path to file
image = load_nrrd("lgemri.nrrd")

the size is 88 x 640 x 640 x 1 print(image.shape)

load the data given path to file image = load_nrrd("lgemri.nrrd")

the size is 88 x 640 x 640 x 1 print(image.shape)

load the label, normalize to [0,1]
mask = load_nrrd("mask.nrrd")//255


```
# load the data given path to file
image = load_nrrd("lgemri.nrrd")

# the size is 88 x 640 x 640 x 1
print(image.shape)

# load the label, normalize to [0,1]
mask = load_nrrd("mask.nrrd")//255

# encode the data into 2 layers
# (as shown in the neural network)
label = np.zeros(shape=[88,640,640,2])
label[:,:,:,0] = mask
label[:,:,:,1] = 1 - mask
```

For each slice: 640 640

```
# load the data given path to file
image = load_nrrd("lgemri.nrrd")

# the size is 88 x 640 x 640 x 1
print(image.shape)

# load the label, normalize to [0,1]
mask = load_nrrd("mask.nrrd")//255

# encode the data into 2 layers
# (as shown in the neural network)
label = np.zeros(shape=[88,640,640,2])
label[:,:,:,0] = mask
label[:,:,:,1] = 1 - mask
```

the size is 88 x 640 x 640 x 2 print(label.shape)

"image" (88x640x640x1)

"label" (88x640x640x2)


```
# # # make the neural network
# 640 x 640 x 1
layer_1 = tflearn.input_data(shape=[None,640,640,1])
```



```
# # # make the neural network
# 640 x 640 x 1
layer_1 = tflearn.input_data(shape=[None,640,640,1])
# 640 x 640 x 1 ---> 640 x 640 x 8
layer_2 = tflearn.conv_2d(layer_1, nb_filter=8, filter_size=3)

**n × n × 16**
```

```
# # # make the neural network
# 640 x 640 x 1
layer_1 = tflearn.input_data(shape=[None,640,640,1])
# 640 x 640 x 1 ---> 640 x 640 x 8
layer_2 = tflearn.conv_2d(layer_1, nb_filter=8, filter_size=3)
# 640 x 640 x 8 ---> 640 x 640 x 16
```

layer_3 = tflearn.conv_2d(layer_2, nb_filter=16, filter_size=3)

```
### make the neural network
#640 x 640 x 1
layer_1 = tflearn.input_data(shape=[None,640,640,1])

#640 x 640 x 1 ---> 640 x 640 x 8
layer_2 = tflearn.conv_2d(layer_1, nb_filter=8, filter_size=3)

#640 x 640 x 8 ---> 640 x 640 x 16
layer_3 = tflearn.conv_2d(layer_2, nb_filter=16, filter_size=3)
```

640 x 640 x 16 ---> 640 x 640 x 2, softmax normalizes values between 0/1

layer 4 = tflearn.conv 2d(layer 3, nb filter=2, filter size=3, activation='softmax')

 $n \times n \times 16$

```
### make the neural network
# 640 x 640 x 1
layer 1 = tflearn.input data(shape=[None,640,640,1])
# 640 x 640 x 1 ---> 640 x 640 x 8
                                                                 n \times n
layer_2 = tflearn.conv_2d(layer_1, nb_filter=8, filter_size=3)
                                                                               n \times n \times 8
# 640 x 640 x 8 ---> 640 x 640 x 16
layer 3 = tflearn.conv 2d(layer 2, nb filter=16, filter size=3)
# 640 x 640 x 16 ---> 640 x 640 x 2, softmax normalizes values between 0/1
layer 4 = tflearn.conv 2d(layer 3, nb filter=2, filter size=3, activation='softmax')
# set up optimization problem (sgd = stochastic gradient descent)
optimization problem = tflearn.regression(layer 4, optimizer="sgd")
# initialize variables
model = tflearn.DNN(optimization problem)
```

 $n \times n \times 16$

```
### make the neural network
# 640 x 640 x 1
layer 1 = tflearn.input data(shape=[None,640,640,1])
# 640 x 640 x 1 ---> 640 x 640 x 8
                                                                n \times n
layer_2 = tflearn.conv_2d(layer_1, nb_filter=8, filter_size=3)
                                                                               n \times n \times 8
# 640 x 640 x 8 ---> 640 x 640 x 16
layer 3 = tflearn.conv 2d(layer 2, nb filter=16, filter size=3)
# 640 x 640 x 16 ---> 640 x 640 x 2, softmax normalizes values between 0/1
layer 4 = tflearn.conv 2d(layer 3, nb filter=2, filter size=3, activation='softmax')
# set up optimization problem (sgd = stochastic gradient descent)
optimization problem = tflearn.regression(layer 4, optimizer="sgd")
# initialize variables
model = tflearn.DNN(optimization problem)
# train the model
model.fit(image, label, n epoch=100)
```

 $n \times n \times 16$

```
### make the neural network
# 640 x 640 x 1
layer 1 = tflearn.input data(shape=[None,640,640,1])
# 640 x 640 x 1 ---> 640 x 640 x 8
                                                                 n \times n
layer_2 = tflearn.conv_2d(layer_1, nb_filter=8, filter_size=3)
                                                                               n \times n \times 8
# 640 x 640 x 8 ---> 640 x 640 x 16
layer 3 = tflearn.conv 2d(layer 2, nb filter=16, filter size=3)
# 640 x 640 x 16 ---> 640 x 640 x 2, softmax normalizes values between 0/1
layer 4 = tflearn.conv 2d(layer 3, nb filter=2, filter size=3, activation='softmax')
# set up optimization problem (sgd = stochastic gradient descent)
optimization problem = tflearn.regression(layer 4, optimizer="sgd")
# initialize variables
model = tflearn.DNN(optimization problem)
# train the model
model.fit(image, label, n epoch=100)
# make a prediction, repeat this for every slice (0,1,2..... 87)
model.predict([ new data[0,:,:,:] ])
```