Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	09-11-2023				
Team ID	Team-593025				
Project Name	Project - Online Payments Fraud Detection Using ML				
Maximum Marks	8 Marks				

Project planning is vital for successful project execution as it establishes a roadmap for achieving objectives, allocating resources, managing risks, and ensuring effective communication. It provides clarity on project scope, timelines, and budgets, enabling teams to allocate resources efficiently, manage risks proactively, and make informed decisions. A well-defined plan facilitates effective communication among stakeholders, helps in maintaining control over project costs, and ensures that quality standards are met. Additionally, project planning contributes to customer satisfaction by delivering outcomes within scope and timelines, while also providing a foundation for continuous improvement and adherence to legal and regulatory requirements. Overall, project planning is an indispensable process that sets the foundation for project success by providing a structured approach to project management.

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

SPRINT	FUNCTIONA L REQUIREME NT	USER STORY NUMBER	USER STORY OR TASK	STORY POINTS	PRIORITY	TEAM MEMBERS
1	Data Ingestion	US-01	Collect transaction data from databases	5	HIGH	Shivam & Sweety
1	Data Ingestion	US-02	Implement real-time data stream ingestion	8	HIGH	Shivam & Sweety
1	Data Ingestion	US-03	Develop data cleaning and normalizatio n	8	HIGH	Shivam & Sweety
1	Data Preprocessi	US-04	Implement feature	5	MEDIUM	Shivam & Sweety

	ng		engineering			
2	Data Sampling	US-05	Apply oversamplin g for handling class imbalance	5	HIGH	Shivam & Sweety
2	Feature Selection	US-06	Implement Recursive Feature Elimination	8	HIGH	Shivam & Sweety
2	Machine Learning	US-07	Train Decision Tree classifier	8	HIGH	Shivam & Sweety
2	Machine Learning	US-08	Train Random Forest classifier	8	HIGH	Shivam & Sweety
3	Model	US-09	Perform	8	HIGH	Shivam &

	Validation		k-fold cross-validat ion			Sweety
3	Model Evaluation	US-10	Calculate precision, recall, F1-score	5	HIGH	Shivam & Sweety
3	Model Serialization	US-11	Serialize and save the best model	5	MEDIUM	Shivam & Sweety
3	Flask API Development	US-12	Create a RESTful API for real-time predictions	8	HIGH	Shivam & Sweety
4	IBM Cloud Deployment	US-13	Deploy the system on IBM Cloud	13	HIGH	Shivam & Sweety
4	Real-time Scoring	US-14	Implement real-time	13	HIGH	Shivam & Sweety

	scoring of		
	transactions		

Project Tracker, Velocity & Burndown Chart: (4 Marks)

SPRINT	TOTAL STORY POINTS	DURATION	SPRINT START DATE	SPRINT END DATE	Story Points Sprint Release Date	ACTUAL RELEASE DATE	VELOCIT Y(STORY POINTS PER SPRINT)	AVERAG E VELOCIT Y (STORY POINTS PER DAY)
1	26	10 days	10-OCT-2 023	20-OCT-2 023	26	20-OCT-2 023	20	2
2	29	10 days	21-OCT-2 023	30-OCT-2 023	29	30-OCT-2 023	20	2
3	26	10 days	31-OCT-2 023	9-NOV-20 23	26	9-NOV-20 23	20	2
4	26	10 days	10-NOV-2 023	20-NOV-2 023	26	20-NOV-2 023	20	2

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

BURNDOWN CHART SPRINT 1

SPRINT 2

SPRINT 3

SPRINT 4

SPRINT 4

CUMULATIVE FLOW DIAGRAM

