SF 016/2

Physics
Paper 2
Semester I
Session 2016/2017
2 ½ hours

SF 016/2 Fizik Kertas 2 Semester I Sesi 2016/2017 2 ½ jam

BAHAGIAN MATRIKULASI MATRICULATION DIVISION

PEPERIKSAAN SEMESTER PROGRAM MATRIKULASI

MATRICULATION PROGRAMME EXAMINATION

FIZIK Kertas 2 2 ½ jam

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU

DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO

Answer question 1 and any other five questions.

The period T of vibration of a tuning fork with density ρ , Young's modulus Y and length l is given by

$$T = kl \sqrt{\frac{\rho}{Y}}$$

where k is a constant. The values of length l and frequency f are given in **TABLE 1**.

TABLE 1

Length, l (cm)	Frequency, f (Hz)	Period, T(s)
14.2	256	
12.8	289	
10.9	325	
9.7	384	
8.6	444	
7.6	486	

The density and modulus Young of the tuning fork are 8.2×10^3 kg m⁻³ and 2.3×10^{11} N m⁻² respectively.

(a) Copy **and** complete **TABLE** 1.

[2 marks]

(b) Plot a graph of T versus l.

[7 *marks*]

(c) Determine the gradient of the graph.

[4 marks]

(d) Determine the constant k.

[2 *marks*]

2 (a) Define free falling body.

[1 *mark*]

(b)

FIGURE 2

FIGURE 2 shows a displacement-time graph of a particle.

- (i) Determine the total distance travelled by the particle.
- (ii) Which segment of the journey does the particle move the slowest?
- (iii) How many times does the particle return to its starting point?

[4 *marks*]

- (c) A diver travelling at 100 km h^{-1} on a straight road suddenly sees a cow 32 m ahead and immediately applies the brake. His braking deceleration is 6 m s^{-2} . Calculate the
 - (i) speed when the car hits the cow
 - (ii) minimum time that he should apply the brake so that he does not hit the cow.

[4 *marks*]

- (d) An archer standing on a cliff 48 m high shoots an arrow at an angle of 30⁰ above the horizontal with a speed of 80 m s⁻¹. Calculate the
 - (i) duration the arrow is in the air
 - (ii) horizontal range of the arrow

[6 *marks*]

3 (a) State the principle of conservation of linear momentum.

[1 *mark*]

(b)

FIGURE 3.1

FIGURE 3.1 shows a 12 g bullet shot vertically into a 5 kg block and lifting it upwards to a maximum height of 4 mm. The bullet travelled for 1 ms in the block before stopping completely. Calculate the

- (i) speed of the block and bullet just after collision.
- (ii) impulse on the block.
- (ii) depth of the bullet embedded in the block.

[10 *marks*

FIGURE 3.2

FIGURE 3.2 shows a stationary block P tied to a hanging block Q. The weight of block P is 25 N and the coefficient of static friction between block P and the horizontal surface is 0.4. Assume the pulley is smooth and the string is light.

(i) Sketch a free body diagram of block P.

(ii) Calculate the mass of block Q.

[4 *marks*]

4 (a)

FIGURE 4.1

Sketch the change in the velocity of an object due to position P and Q which will show that the object is in a uniform circular motion as shown in **FIGURE 4.1**. [2 marks]

(b)

FIGURE 4.2 shows a 250 g bob suspended by a light string rotating in a horizontal circle of radius 30 cm with a linear speed of 2 m s⁻¹.

- (i) Calculate the angle θ which the string makes with the vertical axis.
- (ii) Calculate the tension in the string.
- (iii) If the speed is increased, how would it affect the circular motion of the bob? Explain your answer .[6 marks]

- (c) (i) State Newton's law of gravitation.
 - (ii) Sketch the graphs of gravitational field strength, ag and gravitational potential, V versus distance, r from the surface of the earth.
 - (iii) The period of the moon orbiting Pluto is 4.8 days. The radius of the orbit is 4×10^7 m. Calculate the mass of Pluto. [7 marks]
- 5 (a) (i) Define instantaneous angular acceleration.
 - (ii) State three (3) factors which affect the moment of inertia of a rigid body. [3 marks]
 - (b) A flywheel with moment of inertia 8 kg m² is acted upon by a constant torque of 50 N m. Calculate the
 - (i) angular acceleration.
 - (ii) time for it to rotate from rest to 70 rad s^{-1} .

ball. Calculate the speed of the ball at point B.

(iii) power when the angular velocity is 50 rad s⁻¹. [4 marks]

(c)

FIGURE 5.1 shows a tiny ball with mass, M is released from point A rolls without slipping on the inside surface of a hemisphere with radius of curvature 50 cm. The moment of inertia of the ball is $\frac{2}{5}MR^2$ where R is the radius of the

(d)

FIGURE 5.2

FIGURE 5.2 shows a top view of a 1m rod pivoted freely at its center and placed horizontally. A 20 g ball with velocity 5 m s⁻¹ collides and stick at one end of the rod causing them to rotate. The moment of inertia of the ball –rod system is 0.02 kg m². Calculate the angular velocity of the rod.

- 6 (a) (i) What is meant by simple harmonic motion?
 - (ii) Is a bouncing ball an example of simple harmonic motion? Explain your answer. [2 marks]
 - (b) A particle in simple harmonic motion along the x-axis starts from the equilibrium position and moves towards the right with an amplitude of 2 cm and a frequency of 1.5 Hz.
 - (i) Write the simple harmonic equation of the particle.
 - (ii) Calculate the maximum speed of the particle.
 - (ii) Calculate the acceleration of the particle at t = 3.2 s.

[5 *marks*]

- (c) A 50 g object connected to a spring with a spring constant 35 N m⁻¹ ocillates with amplitude 4 cm on a horizontal frictionless surface. Calculate the
 - (i) total energy of the system.
 - (ii) speed of the object at displacement 1.6 cm.
 - (iii) change the period of the oscillation if a load of 6 g is added to the object. [8 marks]
- 7 (a) (i) Explain the formation of stationary wave.
 - (ii) A violin string has a mass per unit length of 0.01 kg m⁻¹ and experiences a tension of 0.36 N. Calculate the wavelength of the string if it vibrates at a frequency of 8 Hz.
 - (iii) The first overtone standing wave is formed in a 30 cm closed pipe. Sketch the wave and calculate its frequency. The speed of sound is 340 m s⁻¹. [8 marks]
 - (b) (i) What is Doppler effect for sound wave?
 - (ii) A car is travelling at 25 m s⁻¹ emits a sound of frequency 1100 Hz approaches a stationary observer. Calculate the apparent frequency of the sound heard by the observer. The speed of sound is 340 m s⁻¹.

[3 marks]

(c) A solid cylinder 10 m high and 10 cm in diameter is compressed by a

 $1 \times 10^5 \ kg$ load. Calculate the strain energy stored in the cyclinder. The Young's Modulus of cylinder is $1.9 \times 10^{11} Pa$. [4 marks]

- 8 (a) A 200 cm³ glass cylinder is filled to the brim with mercury at 27° C. Calculate the amount of overflow when the temperature of the system increases to 100° C. The coefficient of linear expansion of the glass and mercury are $4 \times 10^{-6} K^{-1}$ and $6 \times 10^{-5} K^{-1}$ respectively. [4 marks]
 - (b) (i) Define the degree of freedom of gas molecules.
 - (ii) State the principle of equipartition of energy.
 - (iii) Two moles of a polyatomic ideal gas has volume of 0.05 m³ at pressure 250 kPa. Calculate the internal energy and temperature of the gas.

[6 *marks*]

FIGURE 8 shows a p-V graph of an isothermal process at 600 K for two moles ideal gas in a cylinder with frictionless piston. If the internal energy at point A is 2.5×10^4 J, does the heat being absorbed or released during the process from A to B? Justify your answer.

[5 *marks*]