The Fundamentals of Organic Thermoelectic Materials

Martijn Kemerink

Outline

- Introduction: metrics for (organic) thermoelectrics
 - ZT
 - \$/Watt
- Fundamentals of charge and energy transport
 - Boltzmann transport equations
 - metallic systems
- Charge transport in organic semiconductors
 - energetic disorder
 - mobility edge model
 - hopping models & percolation
 - constant DOS
 - Gaussian disorder model (GDM)
- Beyond GDM
 - transport edge model
 - DOS design
 - role of dopant ions
 - · semiconductor blends

(low) quality of waste heat

http://www.interreg-central.eu / 28 06 2017

$$\eta = f(ZT)\eta_{Carnot} = f(ZT)\frac{T_h - T_c}{T_h}$$

Yee et al., En. Environ. Sci. 2013, 6, 2516

Metric 1: ZT

$$ZT = \frac{\sigma S^2}{\kappa} T = \frac{PF}{\kappa} T$$

 σ - electrical conductivity κ - thermal conductivity S - Seebeck coefficient

Metric 2: module \$ per W: G

Metric 1: ZT

$$ZT = \frac{\sigma S^2}{\kappa} T = \frac{PF}{\kappa} T$$

Metric 2: module \$ per W: G

Highest η does not always give highest G!

Contributing factors:

- heat exchanger costs
- areal production costs
- 3. volumetric material costs

Metric 2: \$ per W: G

To Do...

Contributing factors:

- 1. heat exchanger costs
- 2. areal production costs
- 3. volumetric material costs

- get rid of the heat exchanger...
- 2. design TEG for optimal G, not P or η
- 3. optimize ZT

 \rightarrow increase σ and/or S

Current status	ZT	$S = \frac{\sigma S^2}{\kappa} T$	$T = \frac{\mathrm{PF}}{\kappa} T$	
all numbers are approximate	σ (S/cm)	κ (W/m/K)	S (μV/K)	ZT @ RT (-)
Bi ₂ Te ₃	682	1.57	464	1
organics (p-type)	100	0.37	200	0.25
organics (n-type)	3.1	0.25	-568	0.11

Organics are not rare or toxic!

Huang et al., *JACS* **2017**, *139*, 13013 Bubnova et al., *Nat. Mater.* **2011**, *10*, 429 Yee et al., *En. Environ. Sci.* **2013**, *6*, 2516

Outline

- Introduction: metrics for (organic) thermoelectrics
 - ZT
 - \$/Watt
- Fundamentals of charge and energy transport
 - Boltzmann transport equations
 - metallic systems
- Charge transport in organic semiconductors
 - energetic disorder
 - mobility edge model
 - hopping models & percolation
 - constant DOS
 - Gaussian disorder model (GDM)
- Beyond GDM
 - transport edge model
 - DOS design
 - role of dopant ions
 - · semiconductor blends

Onsager relations

In general, transport involving irreversible processes can be described by the phenomenological transport relations. For n=2:

$$J_1 = L_{11}X_1 + L_{12}X_2$$

$$J_2 = L_{21}X_1 + L_{22}X_2$$

 J_i : generalized fluxes

 X_j : generalized forces

 L_{ij} : generalized conductances

with

$$L_{12} = L_{21}$$

reciprocity relation

The reciprocity relation was formally derived by Onsager (1931) on basis of microscopic reversibility. Hence, it holds as long as B=0.

Transport equations

For the case of combined charge and heat transport, the phenomenological equations become:

$$j = L_{11}\varepsilon + L_{12}(-\nabla T)$$
$$j^{q} = L_{21}\varepsilon + L_{22}(-\nabla T)$$

electrical current density

heat current density

with

$$L_{12} = L_{21}/T$$

and

$$\varepsilon = E + \frac{\nabla \mu}{q}$$

reciprocity relation

E: electric field

 μ : chemical potential

Transport equations – relation to experiments (1)

For the case of combined charge and heat transport, the phenomenological equations become:

$$j = L_{11}\varepsilon + L_{12}(-\nabla T)$$
 electrical current density $j^q = L_{21}\varepsilon + L_{22}(-\nabla T)$ heat current density

Electrical conductivity: constant T, apply E, measure j, compare to $j = \sigma E$

$$L_{11} = \sigma$$

Thermal conductivity: isolate electrically (j = 0), apply ∇T , measure heat flux j^q

$$j=0\rightarrow\varepsilon=\frac{L_{12}}{L_{11}}\nabla T\quad\text{and hence}\quad j^q=\left(L_{22}-L_{21}\frac{L_{12}}{L_{11}}\right)(-\nabla T)$$

comparison to the Poisson law $j^q = -\kappa \nabla T$ gives

$$\kappa = L_{22} - L_{21} \frac{L_{12}}{L_{11}}$$
 (and NOT just $\kappa = L_{22}$)

To stop the current flow carried by the flux of heat, and electric field has to build up $(j = 0, \varepsilon \neq 0) \rightarrow$ thermopower...

See e.g. Ziman, 'Electrons and Phonons: The Theory of Transport Phenomena in Solids'

Transport equations – relation to experiments (2)

For the case of combined charge and heat transport, the phenomenological equations become:

$$j = L_{11}\varepsilon + L_{12}(-\nabla T)$$
 electrical current density $j^q = L_{21}\varepsilon + L_{22}(-\nabla T)$ heat current density

Thermopower: apply ∇T , enforce j=0, measure E, compare to $\Delta V=-S\Delta T$

$$j=0 \rightarrow \varepsilon = \frac{L_{12}}{L_{11}} \nabla T \quad \text{ and hence} \quad S = \frac{L_{12}}{L_{11}}$$

In practice the absolute thermopower is difficult to measure due to the unavoidable temperature difference over the measurement apparatus.

Fig. 81. Measurement of Seebeck effect.

See e.g. Ziman, 'Electrons and Phonons: The Theory of Transport Phenomena in Solids'

Transport equations – relation to experiments (3)

For the case of combined charge and heat transport, the phenomenological equations become:

$$j = L_{11}\varepsilon + L_{12}(-\nabla T)$$
 electrical current density $j^q = L_{21}\varepsilon + L_{22}(-\nabla T)$ heat current density

Peltier effect: recall conductivity measurement ($\nabla T = 0$), then

$$\varepsilon = \frac{j}{L_{11}} \qquad \text{ and hence } j^q = \frac{L_{21}}{L_{11}} j$$

Hence, the electrical current is accompanied by a heat current. Comparing to $j^q = \Pi j$ gives

$$\Pi = \frac{L_{21}}{L_{11}}$$

and using $S = \frac{L_{12}}{L_{11}}$ and the reciprocity relation $L_{12} = L_{21}/T$ we get the

Kelvin relation.

$$\Pi = TS$$

Transport equations – summary

For the case of combined charge and heat transport, the phenomenological equations become:

$$j = L_{11}\varepsilon + L_{12}(-\nabla T)$$

$$j^{q} = L_{21}\varepsilon + L_{22}(-\nabla T)$$

electrical current density

heat current density

Electrical conductivity: $\sigma = L_{11}$

$$\kappa = L_{22} - L_{21} \frac{L_{12}}{L_{11}} = \kappa' \left(1 - \frac{S^2 \sigma T}{\kappa'} \right)$$

$$S = \frac{L_{12}}{L_{11}} = \kappa' \left(1 - \frac{ZT}{\kappa'} \right)$$

Thermopower:

$$S = \frac{L_{12}}{L_{11}}$$

Peltier effect

$$\Pi = \frac{L_{21}}{L_{11}}$$

Kelvin relation

$$\Pi = TS$$

small in metals, not small in thermoelectric materials!

Transport equations – calculating the L_{ij}

To be useful, the coefficients L_{ij} in the transport equations,

$$j = L_{11}\varepsilon + L_{12}(-\nabla T)$$
 and $j^q = L_{21}\varepsilon + L_{22}(-\nabla T)$,

should be calculable. For metallic systems, an established way of doing this is by Boltzmann transport theory. In the relaxation time approximation, this gives:

$$L_{11} = \mathcal{L}^{(0)}$$

$$L_{21} = TL_{12} = -\frac{1}{q}\mathcal{L}^{(1)}$$

$$L_{22} = \frac{1}{q^2T}\mathcal{L}^{(2)}$$

with

$$\mathcal{L}^{(\alpha)} = \int d\varepsilon \left(-\frac{\partial f}{\partial \varepsilon}\right) (\varepsilon - \varepsilon_F)^\alpha \sigma(\varepsilon)$$
 and

 $\sigma(\varepsilon) = q^2 \tau(\varepsilon) \int \frac{d\mathbf{k}}{4\pi^3} \delta(\varepsilon - \varepsilon(\mathbf{k})) \mathbf{v}(\mathbf{k}) \mathbf{v}(\mathbf{k})$

See e.g. Ashcroft & Mermin, 'Solid State Physics', International Edition, 1976

Transport equations – remarks

- f is the Fermi-Dirac distribution function; $f(\varepsilon) = 1/(1 + \exp((\varepsilon \varepsilon_F)/k_B T))$
- In $\mathcal{L}^{(\alpha)} = \int d\varepsilon \left(-\frac{\partial f}{\partial \varepsilon} \right) (\varepsilon \varepsilon_F)^{\alpha} \sigma(\varepsilon)$ the term $\sigma(\varepsilon)$ is the conductivity distribution function such that

$$\sigma = \int d\varepsilon \left(-\frac{\partial f}{\partial \varepsilon} \right) \sigma(\varepsilon)$$

While $\sigma(\varepsilon)$ may be associated with the conductivity a metal would show if its Fermi energy were equal to ε , it cannot be measured!

- Once we know $\sigma(\varepsilon)$, all thermoelectric properties can be calculated! σ , S, Π and κ cannot be changed independently.
- In the following we shall be concerned with determining (approximations for) $\sigma(\varepsilon)$ for various systems. For convenience, the derivative of f shall often be integrated in $\sigma(\varepsilon)$.

Transport equations – Metallic systems (1)

For metallic systems $(kT \ll \varepsilon_F)$...

... one can use the Sommerfeld expansion of $\mathcal{L}^{(\alpha)}$ and obtain

$$L_{11} = \sigma(\varepsilon_F) = \sigma$$

$$L_{21} = TL_{12} = -\frac{\pi^2}{3q} (k_B T)^2 \sigma' \quad \text{with } \sigma' = \frac{\partial}{\partial \varepsilon} \sigma(\varepsilon) \Big|_{\varepsilon_F}$$

$$L_{22} = \frac{\pi^2}{3} \left(\frac{k_B}{q}\right)^2 T \sigma = \kappa'$$

Since for a metallic system ZT

1 we have

$$\kappa = \kappa'(1 - ZT) \approx \kappa' = \frac{\pi^2}{3} \left(\frac{k_B}{q}\right)^2 T\sigma = L_0 \left(\frac{k_B}{q}\right)^2 T\sigma$$

which is the Wiedemann-Franz law.

Wiedemann-Franz law in highly doped organics?

The Wiedemann-Franz law as derived for metallic conduction:

$$\kappa_{el} = \frac{\pi^2}{3} \left(\frac{k_B}{q}\right)^2 T\sigma = L_0 \left(\frac{k_B}{q}\right)^2 T\sigma$$

with L_0 the Lorentz factor.

- The lattice contribution κ_{lat} must be added to the electronic contribution from WF
- The fitted value for L exceeds L_0 by $\sim 2.3 \times$
- More work needed!

Transport equations – Metallic systems (2)

For metallic systems $(kT \ll \varepsilon_F)$...

... one can use the Sommerfeld expansion of $\mathcal{L}^{(\alpha)}$ and obtain

$$L_{11} = \sigma(\varepsilon_F) = \sigma$$

$$L_{21} = TL_{12} = -\frac{\pi^2}{3q} (k_B T)^2 \sigma' \quad \text{with } \sigma' = \frac{\partial}{\partial \varepsilon} \sigma(\varepsilon) \Big|_{\varepsilon_F}$$

$$L_{22} = \frac{\pi^2}{3} \left(\frac{k_B}{q}\right)^2 T \sigma = \kappa'$$

•
$$S = \frac{L_{12}}{L_{11}} = -\frac{\pi^2}{3q} k_B^2 T \frac{\sigma'}{\sigma} = \left[-\frac{\pi^2}{3q} k_B^2 T \frac{d(\ln \sigma(\varepsilon))}{d\varepsilon} \right]_{\varepsilon_F}$$

which is sometimes called the Mott expression for S. It does not generally hold for hopping systems!

Ashcroft & Mermin, 'Solid State Physics', International Edition, 1976 Mott & Davis, 'Electronic Processes in Non-Crystalline Materials', 2nd Edition, 1979 S. Ihnatsenka et al., *Phys. Rev. B.* **92**, 035201 (2015)

Outline

- Introduction: metrics for (organic) thermoelectrics
 - ZT
 - \$/Watt
- Fundamentals of charge and energy transport
 - Boltzmann transport equations
 - metallic systems
- Charge transport in organic semiconductors
 - energetic disorder
 - mobility edge model
 - hopping models & percolation
 - constant DOS
 - Gaussian disorder model (GDM)
- Beyond GDM
 - transport edge model
 - DOS design
 - role of dopant ions
 - semiconductor blends

$$N\equiv C$$
 F
 $C\equiv N$
 $N\equiv C$
 F
 $C\equiv N$
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Disorder

Delocalization of charge carriers limited by defects and therefore limited to a chain segment.

Defects occur randomly, giving rise to a distribution for the delocalization length of the carriers (∞segment size). The energy of the carrier depends on the degree of delocalization so there is a broad distribution of energy levels associated with the segments.

Disorder

Apart from confinement effects also differences in local morphology, polarizability and the presence of charged species (mono-, di- & quadrupoles) can give rise to static energetic disorder. There exists also dynamic disorder that will not be discussed here.

on OFET: substrate with dipolar (dis)order

There are many and strong indications that the disorder in OFETs is different than in e.g. OLEDs due to the substrate.

Disorder: the Anderson model

Figure 2. Potential energy function introduced by Anderson (1958). (a), In the absence of a random potential; (b), with random potential. The density of states is also shown.

Disorder – Mobility Edge model

In case the disorder is sufficiently large* there exists a well defined energy above (below) which all states are extended (localized). This is the 'Mobility Edge'.

number 6 (cubic lattice)

N.F. Mott, J. Phys. C: Solid State Phys. 20, 3075 (1987).

Disorder – Mobility Edge model

Assumption: only delocalized states contribute to the charge transport.

Disorder – Mobility Edge model

$$\mathcal{L}^{(\alpha)} = \int d\varepsilon \left(-\frac{\partial f}{\partial \varepsilon} \right) (\varepsilon - \mu)^{\alpha} \sigma(\varepsilon)$$

When only delocalized states contribute to charge transport: $\sigma(\varepsilon) = \sigma_0 \times \Theta(\varepsilon - E_C)$ (Heaviside step function)

And when ε_F is far below E_C (and ε): $-\frac{\partial f}{\partial \varepsilon} \approx \exp\left(-\frac{\varepsilon - \varepsilon_F}{k_B T}\right)$

Then

$$\mathcal{L}^{(0)} = \sigma \approx \sigma_0 \exp\left(-\frac{E_C - \varepsilon_F}{k_B T}\right)$$

and

$$\mathcal{L}^{(1)} pprox \sigma_0(E_C - \varepsilon_F) \exp\left(-\frac{E_C - \varepsilon_F}{k_B T}\right)$$

So that

$$S = \frac{L_{12}}{L_{11}} = -\frac{1}{qT} \frac{\mathcal{L}^{(1)}}{\mathcal{L}^{(0)}} \approx -\frac{E_C - \varepsilon_F}{qT}$$

Note that σ and S are now expressed in just 2 characteristic energies!

However, there is a more transparent way to get to the same result for S....

A general expression for the thermoelectric power

Recall that (including $\frac{\partial f}{\partial s}$ in $\sigma(\varepsilon)$):

$$\sigma = \int d\varepsilon \, \sigma(\varepsilon)$$

- The Peltier coefficient is the energy carried by the electrons per unit charge $(i^q = \Pi i).$
- Energy carried is measured relative to the Fermi energy
- Each electron contributes to Π in proportion to its relative contribution to the total conduction. The weighting factor is $\sigma(\varepsilon)/\sigma$ with $\sigma(\varepsilon)$ as defined above.

Then:

$$\Pi = -\frac{1}{q} \int d\varepsilon \, (\varepsilon - \varepsilon_F) \frac{\sigma(\varepsilon)}{\sigma}$$

which happens to be equal to $\Pi = \frac{L_{21}}{L_{11}} = -\frac{1}{a} \frac{\mathcal{L}^{(1)}}{\mathcal{L}^{(0)}}$. Using the reciprocity relation

 $S = \Pi/T$ one gets

$$S = -\frac{k_B}{q} \int d\varepsilon \frac{\varepsilon - \varepsilon_F}{k_B T} \frac{\sigma(\varepsilon)}{\sigma}$$

For the mobility edge case, using $\sigma(\varepsilon) \propto \Theta(\varepsilon - E_C)$ leads directly to

$$S = -\frac{E_C - \varepsilon_F}{qT} + A$$
H. Fritzsche, Solid State Comm. **9**, 1813 (1971).

Disorder – Hopping models

Assumption: charge transport by 'jumping' between localized states

One may anticipate $S \cong -\frac{E_t - E_{eq}}{T}$ on basis of the previous findings...

N.F. Mott, Phil. Mag. **19**, 835 (1969).

Disorder – Hopping models – assumptions

- 1. There is only weak electronic coupling between the sites/segments
- 2. Localized particles move by Miller Abrahams hopping

$$v_{ij} = \begin{cases} v_0 f(r_{ij}) \exp\left[-\frac{E_j - E_i}{kT}\right] & \text{if } E_j - E_i > 0\\ v_0 f(r_{ij}) & \text{if } E_j - E_i < 0 \end{cases}$$

$$f(r_{ij}) = \exp(-2\alpha r_{ij})$$

- 3. Hopping distance $r_{ij} \approx 1$ -3 nm (distance between benzene rings stacked on top of each other ≈ 3.5 Å). The localization radius $\alpha^{-1} \ll r_{ij}$.
- 4. Attempt frequency v_0 for hopping time is related to molecular vibrations 30-3000 cm⁻¹ $\approx 10^{12} 10^{14}$ s⁻¹.
- Assume a Gaussian/Exponential/Constant density-of-states (DOS) for the energy levels available to the carrier.

The simplest case: DOS = constant

- Conceptually instructive.
- Not very realistic in intrinsic organic semiconductors
- Maybe relevant some highly doped organic semiconductors (PEDOT:PSS)

Case II: DOS = Gaussian

- Partially analytically treatable.
- Very relevant in intrinsic organic semiconductors
- •Here: look at T-dependence in the Boltzmann-limit (low n,p)

Gaussian DOS – equilibrium energy

Thermal equilibrium: charge distribution over DOS $g(\varepsilon)$ according to Boltzmann.

Density of occupied states (DOOS): the set of energy levels occupied by the charges (usually at thermal equilibrium).

Question: What are the average energy $\langle \varepsilon \rangle_{\infty}$ and width σ of this distribution?

Gaussian DOS – relaxation & transport

initially: anomalous or *dispersive* transport (high μ when $\varepsilon_s > \varepsilon_\infty$)

at steady state:
Gaussian transport

Gaussian DOS –transport energy (1/3)

When the carrier jumps up in energy from a low energy site it faces a *dilemma*:

Jumping to high-energy sites requires more thermal energy then to low-energy sites.

but

At higher energies more states become available in close proximity

SO

There is a trade-off between hopping near (to a high energy) and far (to a low energy)

Gaussian DOS -transport energy (2/3)

$$v_{up}\left(\varepsilon_{i},\varepsilon_{f}\right) = v_{0} \exp\left[-\frac{2r_{if}}{\alpha} - \frac{\varepsilon_{f} - \varepsilon_{i}}{kT}\right]$$

Probability to jump up in energy according to Miller-Abrahams

 $arepsilon_{i/f}$: initial/final energy level of the particle

 r_{if} : distance from initial to final site, $|r_f - r_i|$

To find the maximum of v_{up} at a given ε_i , we need a relation between ε_f and r_{if} . We can obtain one by estimating r_{if} in the following way:

A crash course percolation theory...

Within a 4D sphere (radius r, energy window ΔE) the number of sites is:

$$\# \approx r^3 \cdot \Delta E \cdot g(E_F) = B_c$$

The hopping probability (~conductivity, mobility) is

$$p \propto \exp(-2\alpha r) \cdot \exp(-\Delta E/kT)$$

Hence, keep the sphere as small as possible. Percolation theory gives

 $B_c = 2.8.$

Gaussian DOS –transport energy (2/3)

$$v_{up}\left(\varepsilon_{i},\varepsilon_{f}\right) = v_{0} \exp\left[-\frac{2r_{if}}{\alpha} - \frac{\varepsilon_{f} - \varepsilon_{i}}{kT}\right]$$

Probability to jump up in energy according to Miller-Abrahams

 $arepsilon_{i/f}$: initial/final energy level of the particle

 r_{if} : distance from initial to final site, $|r_f - r_i|$

To find the maximum of v_{up} at a given ε_i , we need a relation between ε_f and r_{if} . We can obtain one by estimating r_{if} in the following way:

Since $\int_{-\infty}^{\varepsilon_f} g(\varepsilon) d\varepsilon$ equals the total density of states with an energy below

$$\varepsilon_f$$
 ([] = m⁻³),

the average distance r_{av} between these sites is $r_{av} = \left(\frac{4\pi}{3} \int_{-\infty}^{\varepsilon_f} g(\varepsilon) d\varepsilon\right)^{-\frac{1}{3}}$

Taking r_{av} as an approximation for r_{if} , v_{up} can be calculated...

Gaussian DOS –transport energy (3/3)

$$v_{up}\left(\varepsilon_{i},\varepsilon_{f}\right) = v_{0} \exp \left[-\frac{2r_{if}}{\alpha} - \frac{\varepsilon_{f} - \varepsilon_{i}}{kT}\right]$$

The *transport energy* is the energy that the carrier jumping up most likely jumps to, i.e. the maximum of the $\log[v_{up}(\varepsilon_i, \varepsilon_f)]$ vs. ε_f curve.

The position of this maximum is (almost) independent of ε_i !

This allows us to predict the temperaturedependence of the carrier mobility. For this, we need a relation between v_{up} and μ ...

Baranovskii et al., Phys. Rev. B 62, 7934 (2000)

Gaussian DOS – the relaxation time

The relaxation time τ is the time needed for the equilibrium transport to start, i.e. the time to reach ε_t from ε_s . The rate limiting step is from ε_∞ to ε_t . This is also a typical time between two hops in equilibrium transport.

Since:

- • ε_t is independent of ε_{∞} (and hence r_{av} is independent of ε_{∞})
- • ε_{∞} depends on T as $-\sigma^2/k_BT$

$$au$$
 will depend on T as $au = v_{up}^{-1} \left(\mathcal{E}_{\infty}, \mathcal{E}_{T} \right) \propto \exp \left[\left(\frac{B\sigma}{k_{B}T} \right)^{2} \right]$

with $B \approx 1$. When $\sigma \gg k_B T$, τ becomes very long.

Baranovskii et al., Phys. Rev. B 62, 7934 (2000)

Gaussian DOS - mobility

After the relaxation time, the carrier will perform a random walk with a time-independent diffusion constant *D* (Brownian motion).

Using:

$$D = \frac{d^2}{6\tau}$$

The Einstein-Smoluchowski relation d = typical hopping distance: r_{av} , τ = average jump time

and

$$\mu = \frac{q}{k_B T} D$$

Einstein relation

we finally arrive at

$$\mu \propto \exp\left[-\left(\frac{C\sigma}{k_BT}\right)^2\right]$$

with $C \approx 0.7$.

Gaussian DOS – density & field dependent mobility

When

n is not 'small'...

or

the field is not 'small'...

The mobility will increase!

a hand-waving explanation: dence: field dependence:

 $E_f = eFL_{typ}$

Gaussian DOS – density & field dependent mobility

density dependence:

• field (F) dependence:

The energy picked up by hopping in the direction of a large field gives rise to an effective temperature $T_{eff} \ge T$:

$$T_{eff} = \left[T^{\beta} + \left(\gamma \frac{qF\alpha}{k_B} \right)^{\beta} \right]^{1/\beta}$$
 with $\beta \approx 2$ and $\gamma \approx 0.67$

S.D. Baranovskii, Phys. Status. Solidi B **251**, 487-525 (2014) S. Marianer and B.I. Shklovskii, Phys. Rev. B **46**, 13100 (1992)

Gaussian DOS - density dependent mobility: experiment

In 2003:

Good fit in FET region using a Mott-type mobility model, assuming hopping in an exponential DOS.

No explanation for the concentration independent mobility at low concentrations, observed for LEDs.

Explanation possible assuming a Gaussian DOS

Gaussian DOS – thermopower

Starting from

$$S = -\frac{k_B}{q} \int d\varepsilon \frac{\varepsilon - \varepsilon_F}{k_B T} \frac{\sigma(\varepsilon)}{\sigma}$$

and assuming that $\sigma(\varepsilon)$ is narrowly centered around ε_t (only in this case is the transport energy a relevant concept), one gets*

- There are several more elaborate VRH-based methods available in literature, see the Refs. below.
- Due to the concentrations of ionized dopants and charge carriers, the assumption of a purely Gaussian DOS will break down (shown later), so we need a more flexible model...

R. Schmechel, *J. Appl. Phys.* **2003**, *93*, 4653 G. Kim and K.P. Pipe, *Phys. Rev. B.* **2012**, *86*, 085208

S. Ihnatsenka et al., *Phys. Rev. B.* **2015**, *92*, 035201

*Note the similarity to the mobility edge case that gave $S \approx -\frac{E_C - \varepsilon_F}{aT}$ N. Lu et al., *Phys. Rev. B.* **2015**, *91*, 195205

Gaussian DOS – thermopower

Using kinetic Monte Carlo simulations in which S is calculated from

$$S = -\frac{k_B}{q} \int d\varepsilon \frac{\varepsilon - \varepsilon_F}{k_B T} \frac{\sigma(\varepsilon)}{\sigma}$$

we can compare the error made by using $S \approx -\frac{\varepsilon_t - \varepsilon_F}{qT}$. Especially for the nearest neighbor hopping (nnH) case the error is very small.

parameters used:

$$\sigma_{DOS} = 60 \text{ meV}$$
 $\varepsilon_r = 3.6$
 $T = 300 \text{ K}$
 $\alpha^{-1} = 0.36 \text{ nm}$
 $v_0 = 10^{11} \text{ s}^{-1}$
 $c = 10^{-4} \dots 10^{-2}$

nnH:

simple cubic lattice, a_{NN} = 1.8 nm

VRH: random lattice, $\overline{a_{NN}}$ = 1.8 nm

Details on the analytical model will follow below.

Outline

- Introduction: metrics for (organic) thermoelectrics
 - ZT
 - \$/Watt
- Fundamentals of charge and energy transport
 - Boltzmann transport equations
 - metallic systems
- Charge transport in organic semiconductors
 - energetic disorder
 - mobility edge model
 - hopping models & percolation
 - constant DOS
 - Gaussian disorder model (GDM)
- Beyond GDM
 - transport edge model
 - DOS design
 - role of dopant ions
 - semiconductor blends

Beyond GDM | failure of known models

A universal $S \propto \sigma^{-1/4}$ relation is observed, but...

- ...cannot be described by 'known' models
- ...why is this (quasi) universal?
 -morphology?
 -energetics?
- ...how about n-type materials?
 -suggested not to hold in
 DOI: 10.1002/adma.201701641.
- ...evident relation to maximum obtainable ZT

$$ZT = \frac{\sigma S^2}{\kappa} T = \frac{PF}{\kappa} T$$

Beyond GDM | Transport edge model

Starting from the common expression

$$\sigma = \int d\varepsilon \left(-\frac{\partial f}{\partial \varepsilon} \right) \sigma(\varepsilon)$$

Kang and Snyder define an empirical transport function as

$$\sigma_{E}(E,T) = \sigma_{E_{0}}(T) \times \left(\frac{E - E_{t}}{k_{B}T}\right)^{S} \quad (E > E_{t})$$

$$\sigma_{E}(E,T) = 0 \quad (E < E_{t})$$

Although it fits experiments well, the physical meaning of the model and its parameters is unclear.

S.D. Kang, G.J. Snyder, *Nature Mater.* **2016**, *16*, 252-257

Beyond GDM | Contents

1. Transport edge model

2. Unintentional density of states (DOS) design: doping

- a. universal $S \propto \sigma^{-1/4}$ relation
- b. superior n-type thermoelectrics?

- 3. Intentional DOS design: blending
 - a. high (S ≈ 2000 µV/K) electronic Seebeck coefficient
 - b. role of morphology

4. Conclusions

Beyond GDM | Intro Density of States design

#sites, volume

Total density of states: $N_t = \frac{nr.of\ sites}{volume}$ (m⁻³) typical value: 1 per 1-10 nm⁻³ \rightarrow 10²⁶-10²⁷ m⁻³

Density of states: $g(E) = \frac{nr.of \ sites}{volume \times energy}$ (eV⁻¹m⁻³)

But: DOS shape can be more complicated and can be designed:

DOS – property relations!

Beyond GDM | effect of dopant ions

ON THE ORIGIN OF EXPONENTIAL BAND TAILS IN AMORPHOUS SEMICONDUCTORS

M. Silver
Department of Physics and Astronomy, University of North Carolina
Chapel Hill, North Carolina 27599, USA

L. Pautmeier and H. Bässler Fachbereich Physikalische Chemie, Philipps Universität D 3550 Marburg FRG

Ions induce an exponential tail of traps with a slope T_0 that depends on ε_r and a_{NN} but *not* on concentration or T.

Beyond GDM | effect of dopant ions

Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors

V. I. Arkhipov and P. Heremans IMEC, Kapeldreef 75, B-3001 Heverlee-Leuven, Belgium

E. V. Emelianova

Semiconductor Physics Laboratory, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee-Leuven, Belgium

Dopant ions induce deep tail of traps.

FIG. 1. The effect of doping on the DOS distribution in a disordered organic semiconductor. The Coulomb interaction between ionized dopants and charge carriers creates additional deep traps and broadens the deep tail of the DOS.

Phys. Rev. B. 2005, 71, 045214

Beyond GDM | hopping model (VRH)

$$\sigma = \sigma_0 \exp\left(-2\alpha R^* - \frac{E^* - E_F}{k_B T}\right)$$

Miller-Abrahams hopping

$$B_C = \frac{4}{3}\pi R^* \int_{E_F}^{E^*} \boldsymbol{g}(\boldsymbol{E}) dE$$

$$E^* = \text{constant}; R^* = \text{constant}$$

Percolation criterion $\begin{cases} (3D VRH) \\ (3D nnH) \end{cases}$

$$g_i(E) = \frac{N_i}{\sqrt{2\pi}\sigma_{DOS}} \exp\left(-\frac{(E - E_i)^2}{2\sigma_{DOS}^2}\right)$$

Unperturbed DOS (Gaussian)

$$g(E) = A \int_{-\infty}^{0} \frac{dE_c}{E_c^4} \exp\left(\frac{A}{3E_c^3}\right) g_i(E - E_C)$$

Ion-perturbed DOS

$$E_C(r) = -q^2/4\pi\varepsilon_0\varepsilon_r r$$

Coulomb energy

$$S = \frac{E^* - E_F}{qT}$$

Thermopower (holes)

Beyond GDM | hopping model vs kinetic Monte Carlo

: analytical model

Phys. Rev. B. **2016**, 93, 235203 J.Phys. Chem. C. **2017**, 121, 7767–7775

Beyond GDM | hopping model vs kinetic Monte Carlo

Comparison of numerical and analytical modeling:

parameters used:

$$\sigma_{DOS} = 75 \text{ meV}$$
 $\varepsilon_r = 3.6$
 $T = 300 \text{ K}$
 $v_0 = 10^{11} \text{ s}^{-1}$
 $HOMO_{osc} = -5.2 \text{ eV}$
 $LUMO_{acc} = -5.2 \text{ eV}$ (red)
 -5.5 eV (blue)

nearest neighbor hopping on simple cubic lattice, $a_{NN} = 1.8 \text{ nm}$

As for the case w/o Coulomb interactions, the error is relatively small.

 $0 \ 0 \ 0 \ 0 \ 0$

: kinetic Monte Carlo model

: analytical model

Phys. Rev. B. **2016**, 93, 235203 J.Phys. Chem. C. **2017**, 121, 7767–7775

Energy transport in doped... | experiments

- Empirical power law with slope -1/4 is reproduced
- Materials: F₄TCNQ-doped P3HT, PCPDTBT, PTB7, MEH-PPV and P3HT:PTB7 blends (10⁻⁴-10⁻¹ molar) & I₂-doped PPV.

Energy transport in doped... | variable range hopping model

- © Power law behavior is reproduced
- © Slope is (virtually) independent of parameters
- © Slope ~1/4 is consistent with experiment

Energy transport in doped... | temperature dependence

Energy transport in doped... | n-type materials

Energy transport in doped... | n-type materials

n-type thermoelectrics...

- follow 'universal' power law
- have a higher attempt-to-hop frequency $v_0!$ (see also DOI: 10.1002/aenm.201602143)

Relation to ZT | p- vs. n-type materials

gray lines:

$$ZT = \frac{\sigma S^2}{\kappa} T \to S = \sqrt{\frac{\kappa ZT}{\sigma T}}$$

with

$$\kappa = \kappa_e + \kappa_l$$

$$\kappa_e = \left(\frac{k_B}{q}\right)^2 L\sigma T$$

$$L = L_0 = \frac{\pi^2}{3}$$

- highest S (n-type, this work)
- highest PF (n-type, this work)
- N-DMBI-doped A-DCV-DPPTT (n-type, J. Am. Chem. Soc. 2017, 139, 13013); ZT≈0.11
- PEDOT:ToS (p-type, Nat. Mater. 2011, 10, 429); ZT≈0.25

Relation to ZT | p- vs. n-type materials

How to increase ZT?

- Increase doping ----- (increase σ, lower S)
- DOS design \longrightarrow (increase S, constant σ)

Next...

Beyond GDM | Contents

- 1. Transport edge model
- 2. Unintentional density of states (DOS) design: doping
 - a. universal $S \propto \sigma^{-1/4}$ relation
 - b. superior n-type thermoelectrics?

3. Intentional DOS design: blending

- a. high (S ≈ 2000 µV/K) electronic Seebeck coefficient
- b. role of morphology

4. Conclusions

DOS engineering | principle

G. D. Mahan, J. O. Sofo, *Proc. Natl. Acad. Sci.* 1996, *93*, 7436
 H. E. Katz, *Macromolecules* 2010, *43*, 2897

UPS by Xianjie Liu & Mats Fahlman, LiU

CPs	E _F (eV)	IP (eV)
P3HT	4.19	4.7
PTB7	4.54	5.03
TQ1	4.49	5.16

dopant: F₄TCNQ

$$F = C \equiv N$$

$$N \equiv C = F$$

$$N \equiv C = F$$

DOS engineering | blends of p-type materials - experiment

Experiments:

- High electronic Seebeck coefficients of 1-2 mV/K
- Cannot be explained by effective medium model

Adv. Funct. Mater. 2017, 1703280

PF (uW/K²m)

DOS engineering | blends of p-type materials - simulations

Simulations by kinetic Monte Carlo:

- Reproduces experimental findings
- No free fitting parameters involved

doping concentration $c = 10^{-2}$ attempt to hop frequency $v_0 = 10^{-13}$ s⁻¹ intersite distance $a_{NN} = 1.8$ nm Gaussian disorder $\sigma_{DOS} = 0.075$ eV temperature T = 300 K HOMO_A - LUMO_{dopant} = 0.24 eV

Adv. Funct. Mater. 2017, 1703280

DOS engineering | did it work?

DOS engineering can be used to improve ZT by selectively increasing S.

Future: with a better starting material...

Role of morphology | P3HT:PTB7 revisited

high thermopower in blend systems depends on energy levels and phase separation....

Doping & DOS design | Conclusions

Unintentional DOS design in doped organic semiconductors leads to

'universal' power law relation between S and σ .

- n- and p-type materials follow same trend
- n-type materials have higher σ at equal S
- Intentional DOS design gives S = 1-2 mV/K at reasonable σ
- Method is demonstrated for n- and p-type blends (but morphology matters)
- Experiments are quantitatively reproduced by numerical simulations

The end | Acknowledgements

Many thanks to...

Guangzheng Zuo

Hassan Abdalla

Olof Andersson

Xianjie Liu

Mats Fahlman

Zhaojun Li

Ergang Wang

Spatial vs. energetic disorder

FAQ: It may seem odd that more attention is paid to energetic disorder than to spatial disorder. Why?

Answer: Consider a 'bad site' in real space and in energy space:

The tunneling rate is symmetric, so a spatially bad site is hard to get in, and will hardly contribute. Thermal activation is asymmetric, so an energetically bad site is easy to get in and hard to get out.

idea for this slide: Sergey Novikov