Metody optymalizacji – laboratorium

zad. O Przeczytać opis języka GNU MathProg w celu zapoznania się z możliwościami GNU MathProg.

zad. 1 (Sysło, Deo, Kowalik 1993) Jednym z testów na dokładność i odporność algorytmów LP jest następujące zagadnienie

$$\min \boldsymbol{c}^T \boldsymbol{x}$$

Przy warunkach

$$A\boldsymbol{x} = \boldsymbol{b}, \ \boldsymbol{x} \geqslant \boldsymbol{0},$$

gdzie

$$a_{ij} = \frac{1}{i+j-1}, \ i, j = 1, \dots, n,$$

$$c_i = b_i = \sum_{j=1}^n \frac{1}{i+j-1}, \ i = 1, \dots, n.$$

Rozwiązaniem tego zagadnienia jest $x_i=1,\ i=1,\ldots,n$. Macierz A występująca w tym teście, zwana macierzą Hilberta, powoduje złe uwarunkowanie zagadnienia nawet dla niezbyt dużych n.

Zapisać model w GNU Math Prog i użyć glpsol do określenia rozmiaru problemu n jaki jeszcze można rozwiązać z dokładnością do co najmniej 2 cyfr. Drukować błąd względny $||x-\tilde{x}||_2/||x||_2$ dla danego n, gdzie \tilde{x} jest rozwiązaniem obliczonym a x dokładnym.

Uogólnić metodę rozwiązania, tj. oddzielić model od danych, tak aby można było zadawać dane (n), w sekcji data lub w pliku, na podstawie, których GNU MathProg generowałby model i go rozwiązywał. Maksymalnie sparametryzować zapis modelu.

zad. 2 (Nykowski 1980) W firmie budowlanej zlokalizowanej w południowo-zachodniej części Polski powstał problem niedoboru dźwigów samojezdnych (dwa typy) w jednych miejscach pracy, przy ich nadmiarze w innych. Zaistniałą sytuację przedstawia poniższa tabela:

	Niedobór		Nadmiar	
Miejscowości	typ I	typ II	typ I	typ II
Opole	_	2	7	_
Brzeg	10	_	_	1
Nysa	_	_	6	2
Prudnik	4	_	_	10
Strzelce Opolskie	_	4	5	_
Koźle	8	2	_	_
Racibórz	_	1	_	_
Razem	22	9	18	13

Należy ustalić plan przemieszczania dźwigów przy minimalizacji kosztów transportu, jeśli:

- koszt transportu dźwigu typu I jest proporcjonalny do odległości,
- koszt transportu dźwigu typu II jest o 20% wyższy niż dźwigu typu I,
- dźwig typu I może być zastąpiony przez dźwig typu II, ale nie na odwrót.

Zapisać model programowania liniowego w GNU MathProg i rozwiązać go za pomocą glpsol Uogólnić metodę rozwiązania, tj. oddzielić model od danych, tak aby można było zadawać dane w pliku na podstawie, których glpsol generowałby model i go rozwiązywał. Maksymalnie sparametryzować zapis modelu.

Sprawdzić, czy założenie całkowitoliczbowości zmiennych decyzyjnych jest potrzebne?

zad. 3 Przedstawiona na poniższym schemacie rafineria dysponuje jednostką destylacji (pozwalającą otrzymywać cztery rodzaje produktów: paliwa silnikowe, oleje, destylaty ciężkie i resztki), jednostką reformowania oraz jednostką krakowania katalitycznego (która może przetwarzać destylaty ciężkie).

Podczas rozpatrywanego okresu czasu, rafineria może przetworzyć dwa rodzaje ropy naftowej: **B1** i **B2**. Wydajności procesów podane są na schemacie (dla paliw silnikowych podane wydajności odpowiadają produktom końcowym po przejściu przez jednostkę reformowania). Ceny **B1** i **B2** wynoszą odpowiednio 1 300 \$/t i 1 500 \$/t. Koszty destylacji ocenia się na 10 \$/t, a koszty obróbki destylatów w próżni w jednostce krakowania na 20 \$/t. Rozróżnia się jedynie trzy typy produktów końcowych: paliwa silnikowe, domowe paliwa olejowe i ciężkie paliwa olejowe. W ciągu rozpatrywanego okresu rafineria ma wyprodukować co najmniej 200 000 t paliw silnikowych, 400 000 t domowego paliwa olejowego i 250 000 t ciężkiego paliwa olejowego. Rafineria chce zminimalizować swe koszty produkcji.

Produkty końcowe mają spełniać pewne ograniczenia wynikające z wymagań jakościowych:

• zawartość siarki w domowym paliwie olejowym nie może przekraczać 0.5%, przy czym zawartość siarki w olejach pochodzących z destylacji ropy **B1** wynosi 0.2% wagi i odpowiednio 1.2% dla ropy **B2**, a zawartość siarki w oleju pochodzącym z krakowania wynosi 0.3% dla **B1** i 2.5% dla **B2**.

Zapisać model programowania liniowego w GNU MathProg i rozwiązać go za pomocą glpsol.

zad. 4 Student uczęszcza na pięć następujących przedmiotów: algebrę, analizę, fizykę, chemię minerałów i chemię organiczną. Ze względu na dużą liczbę studentów, do każdego z tych przedmiotów zorganizowano cztery grupy ćwiczeniowe. W poniższej tabeli podane są godziny zajęć każdej z tych grup:

	Algebra	Analiza	Fizyka	Chemia min.	Chemia org.
	Pn.	Pn.	Wt.	Pn.	Pn.
I	13-15	13-15	8-11	8-10	9-10:30
	Wt.	Wt.	Wt.	Pn.	Pn.
II	10-12	10-12	10-13	8-10	10:30-12
	Śr.	Śr.	Cz.	Cz.	Pt.
III	10-12	11-13	15-18	13-15	11-12:30
	Śr.	Cz.	Cz.	Pt.	Pt.
IV	11-13	8-10	17-20	13-15	13-14:30

Dla każdego z przedmiotów student wyraził swoje preferencje wobec poszczególnych grup, przyporządkując każdej z nich ocenę między 0 a 10 punktów. Ocena ta bierze pod uwagę godzinę odbywania się ćwiczeń oraz opinię, jaką cieszy się prowadzący je asystent. Preferencje te podane są w poniższej tabeli:

	Algebra	Analiza	Fizyka	Chemia min.	Chemia org.
Ι	5	4	3	10	0
II	4	4	5	10	5
III	10	5	7	7	3
IV	5	6	8	5	4

Student pragnie w ten sposób zapisać się na zajęcia z pięciu obowiązujących go przedmiotów, by zmaksymalizować sumę punktów preferencyjnych. Chce on przy tym respektować trzy następujące ograniczenia:

- nie zapisywać się na więcej niż cztery godziny ćwiczeń dziennie,
- mieć codziennie między 12 a 14 jedną godzinę wolną (by zjeść obiad w stołówce, która otwarta jest tylko w tych godzinach),
- móc trenować przynajmniej raz w tygodniu swoją ulubioną dyscyplinę sportu. Treningi odbywają się: w poniedziałek od 13 do 15 oraz w środę od 11 do 13 i od 13 do 15 (może więc trenować raz, dwa lub trzy razy w tygodniu).
- Zapisać model programowania calkowitoliczbowego w GNU MathProg i rozwiązać go za pomocą glpsol.
- 2. Czy istnieje taki rozkład zajęć, w którym wszystkie ćwiczenia z przedmiotów obowiązkowych byłyby zgrupowane w trzech dniach w poniedziałek, wtorek i czwartek oraz wszystkie odpowiadałyby preferencjom nie mniejszym niż 5?

Rozwiązania problemów przedstawić w sprawozdaniu, plik pdf, które powinno zawierać:

1. modele

- (a) definicje zmiennych decyzyjnych (opis, jednostki),
- (b) ograniczenia wraz z interpretacją (nie umieszczać źródeł modelu),
- (c) funkcje celu wraz z interpretacja,
- 2. wyniki oraz ich interpretację.

Model, zmienne w sprawozdaniu zapisujemy matematycznie (nie w GNU MathProg) - zob. na stronie przykład opisu modelu.

Do sprawozdania należy dołączyć pliki w GNU MathProg (*.mod, *.dat) Pliki powinny być skomentowane: imię i nazwisko autora, komentarze zmiennych, zaetykietowane ograniczenia oraz komentarz ograniczeń.

Uwaga: Za zadania 1, 2, 3 (zadania obowiązkowe) można otrzymać co najwyżej ocenę dobrą.