Notas		
	1	
	2	
	3	
	4	

Nome: _____ RA: ____

Exame Final - MA 211 - Turma _____ 10 de dezembro de 2008.

É proibido usar calculadora e desgrampear as folhas da prova. Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. BOA PROVA!

- 1. (2,5 pontos)
 - (a) Verifique se a função

$$f(x,y) = \begin{cases} \frac{y^2 \sin^2 x}{2y^4 + x^4}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

é contínua.

(b) Determine e represente graficamente o maior conjunto no qual a função

$$f(x, y, z) = \frac{\sqrt{y}}{x^2 - y^2 + z^2}$$

é contínua.

- 2. (2,5 pontos) Determine o pontos de máximo e de mínimo absolutos de $f(x,y) = 2x^2 + y^2$ no disco $x^2 + y^2 \le 1$.
- 3. (2,5 pontos) Seja C um círculo centrado na origem. Encontre o raio de C supondo que

$$\oint_C (2x^3 + 2xy^3 + y)dx + (3y^4 + 3x^2y^2 + 4y - 3x)dy = -\pi.$$

onde C está orientada no sentido anti-horário.

(Sug. Use o Teorema de Green)

- 4. (2,5 pontos) Sejam S_1 a superfície dada pela equação $z=x^2+2y^2$, S_2 a superfície dada pela equação $z=4-x^2$ e F o campo de vetores dado por F(x,y,z)=(x,y,z)
 - (a) Calcule o fluxo de F através da superfície fronteira do sólido Q limitado por S_1 e S_2 .
 - (b) Calcule a integral de linha $\oint_C F \cdot d\vec{r}$ onde C é a curva intersecção das superfícies S_1 e S_2 .