Aufgabe 1

Linienelement: $ds^2 = g_1^2 dx_2^2 + g_2^2 dx_2^2 + g_3^2 dx_3^2$

Beispiele:

	x_1	x_2	x_3	g_1	g_2	g_3
kartes.	x	y	z	1	1	1
Zylinder	r	ϕ	z	1	r	1
Kugel	r	θ	ϕ	1	r	$r\sin\theta$

Volumenelement: ds $V = g_1g_2g_3dx_1dx_2dx_3$

Gradient: ds grad $U = \left(\frac{1}{g_1}Ux_1, \frac{1}{g_2}Ux_2, \frac{1}{g_2}Ux_2\right)$

 $\operatorname{rot}\operatorname{grad} U = 0$

 $\operatorname{div}\operatorname{rot}\vec{A}=0$

rot rot $\vec{A} = \operatorname{grad} \operatorname{div} \vec{A} - \Delta \vec{A}$ (kartesische Koordinaten)

 $\operatorname{div}(\vec{A} \times \vec{B}) = \vec{B} \operatorname{rot} \vec{A} - \vec{A} \operatorname{rot} \vec{B}$

 $\operatorname{grad}(UV) = U \operatorname{grad} V + V \operatorname{grad} U$

 $\operatorname{rot}(\lambda \vec{A}) = \lambda \operatorname{rot} \vec{A} + (\operatorname{grad} \lambda) \times \vec{A}$

 $\operatorname{div}(\lambda \vec{A}) = \lambda \operatorname{div} \vec{A} + \vec{A} \operatorname{grad} \lambda$

 $rot(\vec{A} \times \vec{B}) = (\vec{B} \operatorname{grad})\vec{A} - (\vec{A} \operatorname{grad})\vec{B} + \vec{A} \operatorname{div} \vec{B} - \vec{B} \operatorname{div} \vec{A}$

 $\operatorname{grad}(\vec{A}\vec{B}) = (\vec{B}\operatorname{grad})\vec{A} + (\vec{A}\operatorname{grad})\vec{B} + \vec{A} \times \operatorname{rot} \vec{B} + \vec{B} \times \operatorname{rot} \vec{A}$

a) Zylinderkoordinaten

Linienelement: $ds^2 = dr^2 + r^2 d\phi^2 + dz^2$

Volumenelement: $dV = r dr d\phi dz$

Gradient: grad $U = \frac{\partial U}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial U}{\partial \phi} \vec{e}_\phi + \frac{\partial U}{\partial z} \vec{e}_z$

Divergenz: $\operatorname{div} \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$

Rotation: $\operatorname{rot} \vec{A} = \begin{bmatrix} \frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \end{bmatrix} \vec{e}_r + \begin{bmatrix} \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \end{bmatrix} \vec{e}_{\phi} + \frac{1}{r} \begin{bmatrix} \frac{\partial}{\partial r} (rA_{\phi}) - \frac{\partial A_r}{\partial \phi} \end{bmatrix} \vec{e}_z$

Laplace-Operator: $\Delta U = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial U}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 U}{\partial \phi^2} + \frac{\partial^2 U}{\partial z^2}$

b) Kugelkoordinaten

Linienelement: $ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2$

Volumenelement: $dV = r^2 \sin \theta dr d\theta d\phi$

Gradient: grad $U = \frac{\partial U}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial U}{\partial \theta} \vec{e}_\theta + \frac{1}{r \sin \theta} \frac{\partial U}{\partial \phi} \vec{e}_\phi$

Divergenz:
$$\operatorname{div} \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{\partial A_\phi}{\partial \phi} \right]$$

Rotation:

$$\operatorname{rot} \vec{A} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) - \frac{\partial A_{\theta}}{\partial \phi} \right] \vec{e_r} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} (r A_{\phi}) \right] \vec{e_{\theta}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r A_{\theta}) - \frac{\partial A_r}{\partial \theta} \right] \vec{e_{\phi}}$$

Laplace-Operator:

$$\Delta U = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial U}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 U}{\partial \phi^2}$$