Physics 500A – Quantum Mechanics – Homework assignment 6 Due December 4, 2019, in class

Tritium beta decay [5pt]

The beta decay of the tritium nucleus is

$${}^{3}{\rm H} \rightarrow {}^{3}{\rm He} + e^{-} + \bar{\nu}_{e}$$

where the energy of the emitted electron is of the order of several keV, and so you can ignore the recoil of the nucleus. As a result of the decay, the binding potential for the atomic electron changes from $-e^2/r$ to $-2e^2/r$. In this problem, take the potential change as instantaneous.

- a) [3pt] For the tritium atom in the ground state (n=1) before the decay, find the probability p_n that the atom is in the *n*-th excited state after the decay. You should find $p_1 = 512/729 \approx 0.7$. What do you find for p_2 ? What do you find for p_3 ?
- b) [2pt] Now that you know p_n , evaluate numerically the sum of the probabilities $P = \sum_{n=1}^{\infty} p_n$. You should find that P is less than 1 by several percent. Give a physical interpretation of the non-zero value of 1-P.

Gauge invariance [5pt]

In class, I claimed that under gauge transformations, the wave function gets multiplied by a phase. Show this. In other words, show that if $\psi(\mathbf{x},t)$ satisfies the Schrödinger equation

$$i\hbar \,\partial_t \psi = \left(\frac{(\mathbf{p} - e\mathbf{A})^2}{2m} + V(\mathbf{x}) + e\varphi\right)\psi,$$

then the gauge-transformed wave function $\psi' = e^{ie\alpha/\hbar}\psi$ satisfies

$$i\hbar \,\partial_t \psi' = \left(\frac{(\mathbf{p} - e\mathbf{A}')^2}{2m} + V(\mathbf{x}) + e\varphi'\right)\psi'.$$

Here $\alpha = \alpha(\mathbf{x}, t)$ is the gauge function, and $\mathbf{A}' = \mathbf{A} + \nabla \alpha$ and $\varphi' = \varphi - \partial_t \alpha$ are the gauge transformed electromagnetic potentials. This tells you that the Schrödinger equation is invariant under the gauge transformation $A_{\mu} \to A_{\mu} + \partial_{\mu} \alpha$, $\psi \to e^{ie\alpha/\hbar} \psi$.

Lorentz force [3pt]

Recall that the time dependence of a Heisenberg-picture operator \mathcal{O} is

$$\frac{d\mathcal{O}}{dt} = \frac{\partial \mathcal{O}}{\partial t} + \frac{i}{\hbar} [H, \mathcal{O}] .$$

Use this to detive the Lorentz force equation in Quantum Mechanics,

$$\frac{d}{dt}(m\mathbf{v}) = e\mathbf{E} + \frac{e}{2}(\mathbf{v} \times \mathbf{B} - \mathbf{B} \times \mathbf{v}) ,$$

where $\mathbf{v} = \dot{\mathbf{x}}$ is the velocity operator, and $\mathbf{E}(\mathbf{x})$, $\mathbf{B}(\mathbf{x})$ are the electric and magnetic fields, which are functions of the operator \mathbf{x} .

Aharonov-Bohm effect [10pt]

Consider a particle of charge e moving between two very long concentric cylindrical shells with radii $\rho = a$ and $\rho = b > a$, in cylindrical coordinates. The particle can not penetrate the shells, hence its wave function $\psi(\mathbf{x})$ satisfies $\psi(\rho=a) = \psi(\rho=b) = 0$. Inside the inner shell there is a constant magnetic field $B \parallel \hat{z}$ with flux Φ , while B = 0 everywhere outside the inner shell. In other words, the particle can only move in the region where there is no magnetic field. The motion along the \mathbf{z} axis is just a plane wave, so let us look at z-independent states only.

- a) [4pt] Because of the cylindrical symmetry, the wave function can be taken as $\psi(\mathbf{x}) = e^{i\ell\varphi}\psi_{\ell}(\rho)$. Explain why ℓ must be an integer. Solve the Schrödinger equation, and derive a transcendental equation which (implicitly) determines the energy levels for the particle in terms of its angular momentum ℓ and the flux Φ . Express your answer in terms of the Bessel functions $J_{\nu}(z)$ and $N_{\nu}(z)$ [the Bessel function of the second kind $N_{\nu}(z)$ is often denoted as $Y_{\nu}(z)$, depending on the book].
- b) [2pt] Show that the energy spectrum (i.e. the set of all possible energies) remains the same when $e\Phi/(2\pi\hbar)$ changes by an integer. In particular, this implies that the energy spectrum for $e\Phi/(2\pi\hbar)$ =integer is indistinguishable from the energy spectrum for $\Phi=0$.
- c) [4pt] Use a computer algebra program such as Mathematica to plot the energies of the first four lowest-energy states as a function of the flux Φ , starting with $\Phi=0$, up to $e\Phi/(2\pi\hbar)=3$. You can pick some arbitrary values for the radii, e.g. b=3a. How do the energies of the ground state, first excited state, second excited state etc depend on the flux Φ ? [Note: "the first four lowest-energy states" means "the first four lowest-energy states". It does not mean $\ell=1,2,3,4$.]

Questions for Prof. Strickland [3pt]

[Optional for extra credit] Write down one question that you asked Prof. Donna Strickland on the morning of November 27-th, and give a brief version of her answer.