

大标题 ^{副标题}

答辩人

xxxx 专业 导师 xxx 教授

> XX 学院 中山大学

2023年9月20日

目 录

- 1 引言
- 2 研究现状
- 3 研究方法
- 4 实例验证
- 5 结论

介绍

- 修改自人大模板 Latex beamer template for RUC¹
 - 基于"中大绿"颜色²
 - Logo 等取自中山大学视觉形象识别系统

²http://www.sysu.edu.cn/

https://github.com/andelf/ruc-beamer-template

研究现状 研究

内容

引言内容包括:

- 1. 本研究课题的学术背景及理论与实际意义;
- 2. 本研究课题的来源及主要研究内容:
- 3. 建立研究的线索与思路。

研究问题-测试数学公式

本课题关注以下非凸优化问题:

$$\min_{\boldsymbol{x} \in \mathbb{E}} F(\boldsymbol{x}) := P(\boldsymbol{x}) + f(\boldsymbol{x}), \tag{1}$$

其中 \mathbb{E} 是有限维欧几里得空间,有内积运算 $\langle \cdot, \cdot \rangle$ 和导出范数 $\|\cdot\|$,函数 P, f 满足假设 1。

假设 1

函数 P, f 满足如下假设:

- (i) $f: \mathbb{E} \to \mathbb{R}$ 是连续可微(可能非凸)函数,并且梯度是利普 希茨连续的。
- (ii) $P: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ 是适当闭凸函数(可能非光滑)。
- (iii) F 是下水平有界的,即,对于任意 $\alpha \in \mathbb{R}$,下水平集合 $\{x \in \mathbb{E} : F(x) \leq \alpha\}$ 是有界(可能为空)的。

普通区块

国内 LATEX 讨论区

1. LaTeX Studio^a

ahttps://www.latexstudio.net/

国外 LATEX 讨论区

1. LaTeX Stack Exchange^a

ahttps://tex.stackexchange.com/

其他区块

定理 1

theorem 定理环境

引理 2

lemma 引理环境

证明.

proof 证明环境

其他区块

推论 3

corollary 推论环境

例 4

example 示例环境

alertblock 警示环境

公式

行内公式 $\theta \in \mathbb{R}^h$, 行间公式:

$$\theta_i \leftarrow \theta_i - \alpha \frac{\partial J(\theta)}{\partial \theta_i}$$

(2)

算法

算法 1: 本研究提出算法

Input: 训练数据 \mathcal{D} Output: 参数 θ

1 repeat

2 根据公式2迭代更新;

3 until 收敛;

言 研究现状 000

研究方法 8

结论 0

数据集

• 实验数据集:规模、时间跨度、区域。

实验环境

• 计算环境: Intel i7-9700K, 16GB RAM, RTX 2070 super

• 编程环境: PyTorch 1.4

实验结果

表 1: 不同模型实验结果对比

模型		指标 1	指标 2
Baseline1 Baseline2 Baseline3		0.889 0.901 0.922	0.909 0.921 0.913
本文模型	$\lambda = 10$ $\lambda = 20$ $\lambda = 50$	0.921 0.928 0.927	0.934 0.932 0.940

讨论

页内分栏:

图 1: $\alpha = 2.98, \beta = \frac{1}{1.24}$

图 2: $\alpha=2.98, \beta=\frac{1}{0.18}$

实例验证 88

工作总结

1. 本文提出 XXX。

研究展望

1. 针对问题 XXX。

感谢您的聆听。 请老师们批评指正!

