Correction du TD8 de probabilités

Table des matières

1 TD8 : Consistance - Suffisance - Moments et Maximum de Vraisemblance		1	
	1.1	Exercice I	1
	1.2	Exercice II	2
	1.3	Exercice III	2
	1.4	Exercice IV	3
	1.5	Exercice V	3
	1.6	Exercice VI	5

1 TD8 : Consistance - Suffisance - Moments et Maximum de Vraisemblance

1.1 Exercice I

Soit $Y_1,Y_2,...,Y_n$ un échantillon aléatoire de n mesures indépendantes d'une distribution de Poisson de paramètre λ . On considère $\hat{\lambda}_1=\frac{Y_1+Y_2}{2}$ et $\hat{\lambda}_2=\hat{Y}$

1. Calculer l'efficacité de $\hat{\lambda}_1$ relativement à $\hat{\lambda}_2$.

Solution: On sait que ces deux estimateurs sont non biaisés. On cherche $Eff = \frac{V(\hat{\lambda}_1)}{V(\hat{\lambda}_2)}$

$$V(\hat{\lambda}_1) = V(\frac{Y_1 + Y_2}{2}) = \frac{1}{4}(V(Y_1) + V(Y_2)) = \frac{\lambda}{4} + \frac{\lambda}{4} = \frac{\lambda}{2}$$

$$V(\hat{\lambda}_2) = V(\bar{Y}) = V(\frac{1}{n} \sum_{i=1}^n Y_i) = \frac{1}{n^2} \sum_{i=1}^n V(Y_i) = \frac{1}{n^2} n \times \lambda = \frac{\lambda}{n}$$

Donc finalement

$$Eff = \frac{\frac{\lambda}{n}}{\frac{\lambda}{2}} = \frac{2}{n}$$

2. Sont-ils consistants?

Solution: On cherche à montrer la convergence en probabilité de $\hat{\lambda}_1$ vers λ . C a d : $\forall b > 0 \quad \forall \epsilon > 0$ $\exists N \in \mathbf{N} \mid \forall n > N \quad P(|\hat{\lambda}_1 - \lambda| > b) < \epsilon$ Ici on a des estimateurs non biasé donc on peut appliqué le théorème. $\hat{\lambda}_1$ n'est pas consistant car $\lim_{n \to +\infty} (V(\hat{\lambda}_1)) \neq 0$ et $\hat{\lambda}_1$ est consistant car $\lim_{n \to +\infty} (V(\hat{\lambda}_1)) = 0$

1.2 Exercice II

Soit $Y_1, Y_2, ..., Y_n$ un échantillon aléatoire indépendant d'une V.A. de fonction de densité

$$f(y) = \theta y^{\theta - 1} \quad \forall y \in]0, 1[$$

1. Montrer que \bar{Y} est un estimateur consistant de $\frac{\theta}{\theta+1}$

Solution: Montrons que on a un estimateur non biaisé puis que $\lim_{n\to+\infty} (\bar{Y}) = 0$.

$$E(Y) = \int_0^1 y f(y) dy = \int_0^1 \theta y^{\theta} dy = \left[\frac{\theta y^{\theta+1}}{\theta+1} \right]_0^1 = \frac{\theta 1^{\theta+1}}{\theta+1} - \frac{\theta 0^{\theta+1}}{\theta+1} = \frac{\theta}{\theta+1}$$

Donc on a bien un estimateur non biaisé.

$$V(\bar{Y}) = V(\frac{1}{n} \sum_{i=1}^{n} V(Y_i)) = \frac{1}{n^2} \sum_{i=1}^{n} V(Y_i)$$
 car indépendance $! = \frac{1}{n^2} n \times V(Y) = \frac{V(Y)}{n}$

Cette variance tends bien vers 0 donc on a un estimateur consistant.

1.3 Exercice III

Soit $Y_1, Y_2, ..., Y_n$ un échantillon aléatoire de n mesures indépendantes d'une distribution de Poisson de paramètre λ .

1. Montrer que $\sum_{i=1}^{n} Y_i$ est un estimateur suffisant de λ .

Solution: On cherche donc a montrer que la vraisemblance associé au Y est décomposable en deux facteurs non négatifs g et h: On pose $\forall i \in [1, n]$ $y_i \in \mathbb{N}$. $L = L(y_1, ..., y_n) = g(\sum_{i=1}^n y_i, \lambda) \times h(y_1, ..., y_n)$.

$$L(y_1, ..., y_n) = \prod_{i=1}^n \frac{\lambda^{y_i}}{y_i!} e^{-\lambda}$$

$$= \frac{\prod_{i=1}^n \lambda^{y_i}}{\prod_{i=1}^n (y_i!)} \prod_{i=1}^n e^{-\lambda}$$

$$= \lambda^{\sum_{i=1}^n y_i} e^{-n\lambda} \frac{1}{\prod_{i=1}^n (y_i!)}$$

$$= g(\sum_{i=1}^n y_i, \lambda) \times h(y_1, ..., y_n)$$

On a donc un estimateur suffisant.

1.4 Exercice IV

Soit $Y_1, Y_2, ..., Y_n$ un échantillon aléatoire indépendant d'une V.A. de fonction de densité

$$f(y) = (\theta + 1)y^{\theta} \forall y \in]0,1[$$

1. Trouver un estimateur pour θ par la méthode des moments.

Solution: On doit utiliser la méthode des moments. On doit résoudre $m_0^{\prime k} = m_0^k(\hat{\theta})$ (moment théorique = moment empirique), ici il n'y a que 1 paramètre à trouvé, θ donc on prendra k = 1.

$$m_0^1 = E(Y) = \int_0^1 y f(y) dy = \int_0^1 y^{\theta+1} (\theta+1) dy = (\theta+1) \left[\frac{y^{\theta+2}}{\theta+2} \right]_0^1 = (\theta+1) \frac{1}{\theta+2} = \frac{\theta+1}{\theta+2}$$

D'autre part

$$m_0^{\prime 1} = \frac{1}{n} \sum_{i=1}^n Y_i = \bar{Y}$$

On va choisir notre estimateur $\hat{\theta}$ tels que $m_0^{\prime 1} = m_0^1$ c a d

$$\bar{Y} = \frac{\hat{\theta} + 1}{\hat{\theta} + 2} \Rightarrow \hat{\theta}\bar{Y} + 2\bar{Y} = \hat{\theta} + 1 \Rightarrow \hat{\theta}\bar{Y} - \hat{\theta} = 1 - 2\bar{Y} \Rightarrow \hat{\theta}(\bar{Y} - 1) = 1 - 2\bar{Y} \Rightarrow \hat{\theta} = \frac{1 - 2\bar{Y}}{\bar{Y} - 1} \Rightarrow \hat{\theta} = \frac{1}{1 - \bar{Y}} - 2\bar{Y} \Rightarrow \hat{\theta}$$

On a trouvé un estimateur de θ .

2. Montrer qu'il est non biaisé lorsque n est suffisamment grand.

Solution: L'idée est que on peut pas dire que E(f(X)) = f(E(X)), on dit donc que \bar{Y} est environ égale à E(Y) (d'après le TCL on tend vers une loi qui a une variance de plus en plus faible), donc une constante. Ceci n'est absolument PAS rigoureux.

$$E(\hat{\theta}) = E(\frac{1 - 2\frac{\theta + 1}{\theta + 2}}{\frac{\theta + 1}{\theta + 2} - 1}) = \frac{\frac{\theta + 2 - 2\theta - 2}{\theta + 2}}{\frac{\theta + 1 - \theta - 2}{\theta + 2}} = \frac{-\theta}{-1} = \theta$$

Jensen si f est convexe:

$$f(E(X)) \le E(f(X))$$

Donc non biaisé si on fait l'approximation précédente.

1.5 Exercice V

Soit $Y_1,Y_2,...,Y_n$ un échantillon aléatoire de n mesure indépendantes d'une distribution de Poisson de paramètres λ

1. Trouver un estimateur $\hat{\lambda}$ de λ par la méthode du maximum de vraisemblance.

Solution: Il faut trouver $\hat{\lambda}$ qui maximise L. On pose $\forall i \in [1, n] \quad y_i \in \mathbb{N}$.

$$L(y_1, ..., y_n) = \prod_{i=1}^n \frac{\lambda^{y_i}}{y_i!} e^{-\lambda}$$

$$= \frac{\prod_{i=1}^n \lambda^{y_i}}{\prod_{i=1}^n (y_i!)} \prod_{i=1}^n e^{-\lambda}$$

$$= \lambda^{\sum_{i=1}^n y_i} e^{-n\lambda} \frac{1}{\prod_{i=1}^n (y_i!)}$$

$$= g(\sum_{i=1}^n y_i, \lambda) \times h(y_1, ..., y_n)$$

On regarde le maximum par rapport à λ , c'est à dire quand la dérivé s'annule. Produit de dérivé

$$\frac{dL}{d\lambda}(\lambda) = 0 \Rightarrow \left(\sum_{i=1}^{n} y_i \lambda^{(\sum_{i=1}^{n} y_i) - 1} e^{-n\lambda} - ne^{-n\lambda} \lambda^{\sum_{i=1}^{n} y_i}\right) \frac{1}{\prod_{i=1}^{n} (y_i!)} = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i \lambda^{\sum_{i=1}^{n} y_i} \lambda^{-1} e^{-n\lambda} = ne^{-n\lambda} \lambda^{\sum_{i=1}^{n} y_i}$$

$$\Rightarrow \sum_{i=1}^{n} y_i \lambda^{-1} = n$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} y_i = \lambda$$

De plus

$$\frac{dL}{d\lambda}(\lambda) = \left(\left(\sum_{i=1}^{n} y_i \lambda^{-1} - n \right) e^{-n\lambda} \lambda^{\sum_{i=1}^{n} y_i} \right) \frac{1}{\prod_{i=1}^{n} (y_i!)}$$

donc si $\lambda < \frac{1}{n} \sum_{i=1}^{n} y_i$:

$$\left(\sum_{i=1}^{n} y_i \lambda^{-1} - n\right) > 0$$

Et inversement. On a bien un maximum et on prendra donc $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} y_i$

2. Calculer l'espérance et la variance $\hat{\lambda}$ et montrer qu'il est consistant pour λ

Solution: On utilise l'indépendance pour la variance.

$$E(\hat{\lambda}) = \frac{1}{n} \sum_{i=1}^{n} E(Y_i) = \frac{n\lambda}{n} = \lambda$$

$$V(\hat{\lambda}) = \frac{1}{n^2} \sum_{i=1}^{n} V(Y_i) = \frac{n\lambda}{n^2} = \frac{\lambda}{n}$$

 $\lim_{n\to+\infty} (V(\hat{\lambda})) = 0$ donc on a estimateur consistant.

1.6 Exercice VI

Soit $Y_1, Y_2, ..., Y_n$ un échantillon aléatoire indépendant d'une V.A. de fonction de densité

$$f(y) = \frac{1}{2\theta + 1} \forall y \in]0, 2\theta + 1[$$

1. Trouver un estimateur pour θ par la méthode du maximum de vraisemblance

Solution:

$$L = L(y_1, ..., y_n) = \left(\frac{1}{2\theta + 1}\right)^n$$

vu l'indépendance. On cherche à annuler la dérivé.

$$\frac{dL}{d\theta} = n \left(\frac{-2}{(2\theta + 1)^2} \right) \left(\frac{1}{2\theta + 1} \right)^{n-1} = -n \left(\frac{2}{(2\theta + 1)^{n+1}} \right)$$

Cette dérivé ne s'annule pas. On peut pas trouver de maximum de vraisemblance par la méthode classique. L'idée a avoir est que au maximum Y peut valoir $2\theta + 1$ vu la loi uniforme. Donc on peut espérer que $\hat{\theta} = max(Y_1, ..., Y_n)$ soit un bon estimateur de $2\theta + 1$. On cherche à définir ce nouvelle estimateur. On cherche donc sa densité de probabilité f_{max} . Soit $y \in \mathbb{R}$, vu l'indépendance des Y on a

$$F_{max}(y) = P(Y_1 < y, ..., Y_n < y) = F(y)^n$$

$$f_{max}(y) = nf(y)F(y)^{n-1}$$

Or on sait que $\forall y \in [0, 2\theta + 1]$ $f(y) = \frac{1}{2\theta + 1}$ et $F(y) = \frac{y}{2\theta + 1}$.

$$\forall y \in [0, 2\theta + 1] \quad \hat{\theta} = f_{max}(y) = n \left(\frac{y}{2\theta + 1}\right)^{n-1} \frac{1}{2\theta + 1} = ny^{n-1} \frac{1}{(2\theta + 1)^n}$$

Et 0 partout ailleurs.

On a donc trouvé un estimateur de θ .

2. Vérifier s'il est non biaisé, et sinon le modifier.

Solution:

$$E(\hat{\theta}) = \int_0^{2\theta+1} y \times ny^{n-1} \frac{1}{(2\theta+1)^n} dy$$

$$= \frac{n}{(2\theta+1)^n} \int_0^{2\theta+1} y^n dy$$

$$= \frac{n}{(2\theta+1)^n} \left[\frac{y^{n+1}}{n+1} \right]_0^{2\theta+1}$$

$$= \frac{n}{(2\theta+1)^n} \frac{(2\theta+1)^{n+1}}{n+1}$$

$$= \frac{n}{n+1} \frac{(2\theta+1)^{n+1}}{(2\theta+1)^n}$$

$$= \frac{n}{n+1} (2\theta+1)$$

On a un estimateur qui est différent de θ , il est biasé, donc on va poser un nouvelle estimateur $\hat{\theta}_2$ tel que $\frac{n}{n+1}(2\hat{\theta}_2+1)=\hat{\theta}$ pour avoir un estimateur de θ non biaisé.

$$\frac{n}{n+1}(2\hat{\theta}_2 + 1) = \hat{\theta} \iff (2\hat{\theta}_2 + 1) = \frac{n+1}{n}\hat{\theta} \iff \hat{\theta}_2 = \frac{1}{2}\left(\frac{n+1}{n}\hat{\theta} - 1\right)$$
$$E(\hat{\theta}_2) = \frac{1}{2}\left(\frac{n+1}{n}E(\hat{\theta}) - 1\right) = \frac{1}{2}\left(\frac{n+1}{n}\frac{n}{n+1}(2\theta + 1) - 1\right) = \theta$$

On a trouver un estimateur θ non biaisé.