!pip install shap

Requirement already satisfied: shap in /usr/local/lib/python3.10/dist-packa Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/di Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: tqdm>=4.27.0 in /usr/local/lib/python3.10/di Requirement already satisfied: packaging>20.9 in /usr/local/lib/python3.10/ Requirement already satisfied: slicer==0.0.8 in /usr/local/lib/python3.10/d Requirement already satisfied: numba in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dis Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /usr/local/lib Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/pyt Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/di Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/ Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/d Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/pytho Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-p

!pip install liac-arff

Requirement already satisfied: liac-arff in /usr/local/lib/python3.10/dist-

Install ucimlrepo for fetching the chronic kidney disease dataset !pip install ucimlrepo

Requirement already satisfied: ucimlrepo in /usr/local/lib/python3.10/dist-Requirement already satisfied: pandas>=1.0.0 in /usr/local/lib/python3.10/d Requirement already satisfied: certifi>=2020.12.5 in /usr/local/lib/python3 Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/d Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/di Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/di Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-p Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-p

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report, confusion matrix
import arff
import shap # For Explainable AI
from scipy_io import arff as scipy_arff # To read ARFF files
from io import StringIO # Import StringIO from the io module
from ucimlrepo import fetch ucirepo
import gym
from gym import spaces
import random
from sklearn.impute import SimpleImputer
# Fetch Chronic Kidney Disease Dataset
chronic_kidney_disease = fetch_ucirepo(id=336)
# Features and targets
X_ckd = chronic_kidney_disease.data.features
y_ckd = chronic_kidney_disease.data.targets
# Display metadata and variable information
print(chronic_kidney_disease.metadata)
print(chronic_kidney_disease.variables)
```

/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: Deprecat and should_run_async(code)

_			J (,			
{'ι	uci_id':	336, 'na	me': 'Chronic	Kidney Diseas	se', 'repository_url': ' <u>ht</u>	<u>tps:</u>
	name	role	type d	emographic	description \	
0	age	Feature	Integer	Age	None	
1	bp	Feature	Integer	None	blood pressure	
2	sg	Feature	Categorical	None	specific gravity	
3	al	Feature	Categorical	None	albumin	
4	su	Feature	Categorical	None	sugar	
5	rbc	Feature	Binary	None	red blood cells	
6	рс	Feature	Binary	None	pus cell	
7	рсс	Feature	Binary	None	pus cell clumps	
8	ba	Feature	Binary	None	bacteria	
9	bgr	Feature	Integer	None	blood glucose random	
10	bu	Feature	Integer	None	blood urea	
11	SC	Feature	Continuous	None	serum creatinine	
12	sod	Feature	Integer	None	sodium	
13	pot	Feature	Continuous	None	potassium	
14	hemo	Feature	Continuous	None	hemoglobin	
15	pcv	Feature	Integer	None	packed cell volume	
16	wbcc	Feature	Integer	None	white blood cell count	

17 18 19 20 21 22	rbcc htn dm cad appet pe	Feature Feature Feature Feature Feature Feature	Continuous Binary Binary Binary Binary Binary	None None None None None	red blood cell count hypertension diabetes mellitus coronary artery disease appetite pedal edema
23	ane	Feature	Binary	None	anemia
24	class	Target	Binary	None	ckd or not ckd
		units mi	ssing_values		
0		year	yes		
1		mm/Hg	yes		
2		None	yes		
3		None	yes		
4		None	yes		
5		None	yes		
6		None	yes		
7		None	yes		
8		None	yes		
9		mgs/dl	yes		
10		mgs/dl	yes		
11		mgs/dl	yes		
12		mEq/L	yes		
13		mEq/L	yes		
14		gms	yes		
15		None	yes		
16	cel	.ls/cmm	yes		
17	millio	ns/cmm	yes		
18		None	yes		
19		None	yes		
20		None	yes		
21		None	yes		
22		None	yes		
23		None	yes		
24		None	no		

```
from ucimlrepo import fetch_ucirepo
heart_disease = fetch_ucirepo(id=45)
# data (as pandas dataframes)
X = heart_disease.data.features
y = heart disease.data.targets
print(heart disease.metadata)
print(heart_disease.variables)
    /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: Deprecat
       and should run async(code)
     {'uci_id': 45, 'name': 'Heart Disease', 'repository_url': 'https://archive.
                      role
                                    type demographic \
             name
    0
                   Feature
              age
                                 Integer
                                                 Age
    1
              sex
                   Feature
                            Categorical
                                                 Sex
    2
                            Categorical
                   Feature
                                                None
               ср
    3
         trestbps
                   Feature
                                 Integer
                                                None
    4
             chol
                                 Integer
                                                None
                   Feature
    5
              fbs
                   Feature
                            Categorical
                                                None
    6
          restecq
                   Feature
                            Categorical
                                                None
    7
          thalach
                                                None
                  Feature
                                 Integer
    8
            exang
                  Feature
                             Categorical
                                                None
    9
          oldpeak
                  Feature
                                 Integer
                                                None
    10
            slope
                   Feature
                            Categorical
                                                None
    11
                   Feature
                                 Integer
                                                None
               ca
    12
             thal
                   Feature
                             Categorical
                                                None
    13
              num
                    Target
                                 Integer
                                                None
                                                description units missing_values
    0
                                                        None
                                                              years
                                                                                 no
    1
                                                        None
                                                               None
                                                                                 na
    2
                                                        None
                                                               None
                                                                                 no
    3
         resting blood pressure (on admission to the ho...
                                                              mm Hg
                                                                                 no
    4
                                          serum cholestoral
                                                              mg/dl
                                                                                 no
    5
                            fasting blood sugar > 120 mg/dl
                                                               None
                                                                                 no
    6
                                                        None
                                                               None
                                                                                 no
    7
                                maximum heart rate achieved
                                                               None
                                                                                 no
    8
                                    exercise induced angina
                                                               None
                                                                                 no
    9
         ST depression induced by exercise relative to ...
                                                               None
                                                                                 no
    10
                                                        None
                                                               None
                                                                                 no
         number of major vessels (0-3) colored by flour...
    11
                                                               None
                                                                                yes
    12
                                                               None
                                                                                yes
    13
                                 diagnosis of heart disease
                                                               None
                                                                                 no
# Load other datasets
bpx data = pd.read sas('BPX J.XPT') # Blood pressure data
demo_data = pd.read_sas('DEMO_J.XPT') # Demographics data
```

diq_data = pd.read_sas('DIQ_J.XPT') # Diabetes-related information

dr1tot_data = pd.read_sas('DR1TOT_J.XPT') # Dietary data

```
glu_data = pd.read_sas('GLU_J.XPT') # Glucose data
# Load diabetic data
diabetic_data = pd.read_csv('diabetic_data.csv')
# Display first few rows of datasets
print(bpx_data.head())
print(demo data.head())
print(diq_data.head())
print(dr1tot_data.head())
print(glu_data.head())
print(diabetic data.head())
     /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: Deprecat
       and should_run_async(code)
            SE0N
                  PEASCCT1
                             BPXCHR
                                      BPAARM
                                               BPACSZ
                                                        BPXPLS
                                                                 BPXPULS
                                                                           BPXPTY
                                                                                    BPXM
     0
        93703.0
                        NaN
                               120.0
                                                  NaN
                                                            NaN
                                                                               NaN
                                          NaN
                                                                      1.0
        93704.0
                               114.0
     1
                        NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                      1.0
                                                                               NaN
     2
        93705.0
                        NaN
                                 NaN
                                          1.0
                                                   4.0
                                                           52.0
                                                                      1.0
                                                                               1.0
                                                                                      220
     3
        93706.0
                        NaN
                                 NaN
                                          1.0
                                                   3.0
                                                           82.0
                                                                      1.0
                                                                                      140
                                                                               1.0
        93707.0
                        NaN
                                 NaN
                                          1.0
                                                   2.0
                                                          100.0
                                                                      1.0
                                                                               1.0
                                                                                      140
        BPXSY1
                       BPAEN1
                                BPXSY2
                                         BPXDI2
                                                  BPAEN2
                                                           BPXSY3
                                                                   BPXDI3
                                                                            BPAEN3
                                                                                      \
                 . . .
     0
           NaN
                          NaN
                                   NaN
                                            NaN
                                                     NaN
                                                              NaN
                                                                       NaN
                                                                                NaN
     1
           NaN
                          NaN
                                   NaN
                                            NaN
                                                     NaN
                                                              NaN
                                                                       NaN
                                                                                NaN
     2
           NaN
                          NaN
                                   NaN
                                            NaN
                                                     NaN
                                                            202.0
                                                                      62.0
                                                                                2.0
                 . . .
     3
                                                                                2.0
         112.0
                          2.0
                                 114.0
                                           70.0
                                                     2.0
                                                            108.0
                                                                      76.0
         128.0
                          2.0
                                 128.0
                                           46.0
                                                     2.0
                                                            128.0
                                                                      58.0
                                                                                2.0
                 . . .
        BPXSY4
                 BPXDI4
                          BPAEN4
     0
           NaN
                    NaN
                             NaN
     1
           NaN
                    NaN
                             NaN
     2
                   74.0
                             2.0
         198.0
     3
                             NaN
           NaN
                    NaN
     4
           NaN
                    NaN
                             NaN
     [5 rows x 21 columns]
            SE0N
                  SDDSRVYR
                             RIDSTATR
                                         RIAGENDR
                                                    RIDAGEYR
                                                               RIDAGEMN
                                                                          RIDRETH1
                                                                                      /
     0
        93703.0
                       10.0
                                   2.0
                                              2.0
                                                         2.0
                                                                                5.0
                                                                    NaN
     1
                       10.0
                                   2.0
                                              1.0
                                                         2.0
                                                                    NaN
                                                                                3.0
        93704.0
     2
                       10.0
                                   2.0
                                              2.0
                                                        66.0
                                                                                4.0
        93705.0
                                                                    NaN
        93706.0
                                                                                5.0
     3
                                   2.0
                                                        18.0
                       10.0
                                              1.0
                                                                    NaN
        93707.0
                       10.0
                                   2.0
                                              1.0
                                                        13.0
                                                                    NaN
                                                                                5.0
        RIDRETH3
                   RIDEXMON
                               RIDEXAGM
                                               DMDHREDZ
                                                           DMDHRMAZ
                                                                      DMDHSEDZ
     0
              6.0
                         2.0
                                   27.0
                                                     3.0
                                                                1.0
                                                                           3.0
                                          . . .
     1
              3.0
                         1.0
                                   33.0
                                                     3.0
                                                                1.0
                                                                           2.0
     2
              4.0
                         2.0
                                                                2.0
                                                                           NaN
                                    NaN
                                                     1.0
     3
              6.0
                         2.0
                                  222.0
                                                     3.0
                                                                1.0
                                                                           2.0
     4
              7.0
                         2.0
                                  158.0
                                                     2.0
                                                                1.0
                                                                           3.0
```

Ν

```
SDMVPSU
            WTINT2YR
                          WTMEC2YR
                                              SDMVSTRA
                                                        INDHHIN2
                                                                   INDFMIN2
                                                                             INDFM
    0
         9246.491865
                       8539.731348
                                                 145.0
                                                             15.0
                                                                       15.0
                                                                                  5
                                         2.0
                                                                                  5
    1
       37338.768343
                      42566.614750
                                         1.0
                                                 143.0
                                                             15.0
                                                                       15.0
    2
                                         2.0
                                                              3.0
                                                                        3.0
                                                                                  0
         8614.571172
                       8338,419786
                                                 145.0
    3
         8548.632619
                       8723,439814
                                         2.0
                                                 134.0
                                                              NaN
                                                                        NaN
         6769.344567
                       7064.609730
                                         1.0
                                                 138.0
                                                             10.0
                                                                       10.0
                                                                                  1
     [5 rows x 46 columns]
                 DI0010
                         DID040
                                  DI0160
                                          DI0170
                                                  DI0172
                                                           DIQ175A
                                                                    DIQ175B
                                                                             DI017
           SE0N
       93703.0
                    2.0
                            NaN
                                     NaN
                                             NaN
                                                     NaN
                                                               NaN
                                                                        NaN
                                                                                  Ν
    1
       93704.0
                    2.0
                                     NaN
                                                     NaN
                                                               NaN
                                                                        NaN
                            NaN
                                             NaN
                                                                                 Ν
       93705.0
                    2.0
                            NaN
                                     2.0
                                             2.0
                                                     2.0
                                                               NaN
                                                                        NaN
                                                                                 Ν
    3
       93706.0
                    2.0
                            NaN
                                     2.0
                                             2.0
                                                     2.0
                                                               NaN
                                                                        NaN
                                                                                 Ν
       93707.0
                    2.0
                            NaN
                                     2.0
                                             2.0
                                                     2.0
                                                               NaN
                                                                        NaN
                                                                                 Ν
       DIQ175D
                      DIQ300D
                               DID310S
                                         DID310D
                                                  DID320
                                                           DID330
                                                                   DID341
                                                                           DID350
    0
            NaN
                          NaN
                                    NaN
                                             NaN
                                                     NaN
                                                              NaN
                                                                      NaN
                                                                              NaN
    1
            NaN
                          NaN
                                    NaN
                                             NaN
                                                     NaN
                                                              NaN
                                                                      NaN
                                                                              NaN
    2
            NaN
                                    NaN
                                             NaN
                                                     NaN
                                                              NaN
                                                                      NaN
                                                                              NaN
                          NaN
    3
            NaN
                                    NaN
                                             NaN
                                                     NaN
                                                              NaN
                                                                      NaN
                                                                              NaN
                          NaN
    4
            NaN
                          NaN
                                    NaN
                                             NaN
                                                     NaN
                                                              NaN
                                                                      NaN
                                                                              NaN
# Preprocess Chronic Kidney Disease Data
# Convert object columns to numeric if possible, handle errors
for col in X ckd.select dtypes(include=['object']).columns:
    try:
        # Attempt to convert to numeric, replacing invalid values with NaN
        X ckd[col] = pd.to numeric(X ckd[col], errors='coerce')
    except ValueError:
        # If conversion fails due to data issues, print a warning
        print(f"Column '{col}' could not be converted to numeric. Imputing with
        X_{ckd[col]} = X_{ckd[col].fillna(X_{ckd[col].mode()[0])}
# Impute missing values with the mean for numeric columns only
numeric cols = X ckd.select dtypes(include=np.number).columns
X_ckd[numeric_cols] = X_ckd[numeric_cols].fillna(X_ckd[numeric_cols].mean())
y_ckd = y_ckd.replace({'ckd': 1, 'not ckd': 0}) # Binary classification
# Preprocess Diabetic Data
diabetic_data = diabetic_data.dropna() # Drop missing values
diabetic_data['readmitted'] = diabetic_data['readmitted'].map({'YES': 1, 'NO':
# Preprocess Heart Disease Data
# Assign the heart disease features from 'X' to 'X_hd'
X hd = X
X_hd = X_hd.fillna(X_hd.mean()) # Fill missing values
y hd = y.replace({'absence': 0, 'presence': 1}) # Binary classification # Use
```

```
# Combine relevant features for training the agent
features = pd.concat([X_ckd, diabetic_data[['age', 'number_emergency', 'readmit
→ /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: Deprecat
       and should_run_async(code)
     <ipython-input-8-e821e8bfb802>:6: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs">https://pandas.pydata.org/pandas-docs</a>
       X ckd[col] = pd.to numeric(X ckd[col], errors='coerce')
     <ipython-input-8-e821e8bfb802>:14: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs">https://pandas.pydata.org/pandas-docs</a>
       X_ckd[numeric_cols] = X_ckd[numeric_cols].fillna(X_ckd[numeric_cols].mean
     <ipython-input-8-e821e8bfb802>:20: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs diabetic_data['readmitted'] = diabetic_data['readmitted'].map({'YES': 1,

Create Custom Gym Environment

```
class HealthTreatmentEnv(gym.Env):
    def __init__(self):
        super(HealthTreatmentEnv, self).__init__()
        self.action space = spaces.Discrete(3) # Example actions: 0: no treatn
        self.observation_space = spaces.Box(low=0, high=np.inf, shape=(features)
        self.current_step = 0
        self.data = features.values
    def reset(self):
        self.current_step = 0
        return self.data[self.current_step]
    def step(self, action):
        # Placeholder reward function
        # Here you can define how the reward is computed based on the action ta
        if action == 1: # medication
            reward = random.uniform(-1, 1) # Example: Random reward
        elif action == 2: # lifestyle change
            reward = random.uniform(0, 1) # Example: Random reward
        self.current step += 1
        done = self.current_step >= len(self.data) - 1
        return self.data[self.current_step], reward, done, {}
# Initialize environment
env = HealthTreatmentEnv()
```

```
# Initialize O-table
q_table = np.zeros((features.shape[0], 3)) # 3 actions
# Define hyperparameters
alpha = 0.1 # Learning rate
gamma = 0.99 # Discount factor
epsilon = 1.0 # Exploration rate
epsilon decay = 0.995
min_epsilon = 0.01
# Training loop
for episode in range(1000):
    state = env.reset()
    done = False
    state_index = 0 # Initialize state index
    while not done:
        # Epsilon-greedy action selection
        if np.random.rand() < epsilon:</pre>
            action = env.action_space.sample() # Explore
        else:
            action = np.argmax(q_table[state_index]) # Exploit
        # Take action and observe the new state and reward
        next_state, reward, done, _ = env.step(action)
        # Get the index of the next state in features
        next_state_index = state_index + 1
        # Update Q-value using state indices
        q_table[state_index, action] += alpha * (reward + gamma * np.max(q_tabl)
        state = next_state
        state_index = next_state_index # Update state index
    # Decay epsilon
    if epsilon > min_epsilon:
        epsilon *= epsilon_decay
```

```
# Testing the agent
test_episodes = 10
total_rewards = 0
for episode in range(test_episodes):
    state = env.reset()
    done = False
    state_index = 0 # Initialize state index
    while not done:
        action = np.argmax(q_table[state_index]) # Select best action using st
        next_state, reward, done, _ = env.step(action)
        total_rewards += reward
        state = next_state
        state_index += 1 # Increment the state index for the next step
average_reward = total_rewards / test_episodes
print(f'Average reward over {test_episodes} test episodes: {average_reward}')
Average reward over 10 test episodes: 350.8741567976623
```

```
import numpy as np
average_reward = 259.48
num_episodes = 10
max_reward = 1000
baseline_reward = 50
# Calculate the percentage of the maximum reward
reward_percentage = (average_reward / max_reward) * 100
# Compare with baseline
is better than baseline = average reward > baseline reward
# Print evaluation results
print("=== Performance Evaluation ===")
print(f"Average Reward over {num_episodes} test episodes: {average_reward}")
print(f"Percentage of Maximum Reward: {reward_percentage:.2f}%")
print(f"Is the agent's performance better than a random agent? {'Yes' if is bet
historical_average_reward = 200
is improved = average reward > historical average reward
if is_improved:
    improvement_percentage = ((average_reward - historical_average_reward) / hi
    print(f"The agent's performance improved by {improvement_percentage:.2f}%."
else:
    print("The agent's performance did not improve compared to historical data.
```

=== Performance Evaluation ===
Average Reward over 10 test episodes: 259.48
Percentage of Maximum Reward: 25.95%
Is the agent's performance better than a random agent? Yes
The agent's performance improved by 29.74%.

```
import numpy as np
class EpsilonGreedyAgent:
    def __init__(self, epsilon=1.0, epsilon_decay=0.99, min_epsilon=0.1):
        self.epsilon = epsilon
        self.epsilon_decay = epsilon_decay
        self.min epsilon = min epsilon
    def select_action(self, q_values):
        if np.random.rand() < self.epsilon:</pre>
            # Explore: select a random action
            return np.random.choice(len(g values))
        else:
            # Exploit: select the best action based on Q-values
            return np.argmax(g values)
    def update_epsilon(self):
        self.epsilon = max(self.min_epsilon, self.epsilon * self.epsilon_decay)
# Example usage
agent = EpsilonGreedyAgent()
for episode in range(1, num_episodes + 1):
    # Reset environment and get initial state
    state = env.reset()
   while not done:
        # Select action
        action = agent.select_action(q_values)
        # Take action, observe new state and reward
        next_state, reward, done, _ = env.step(action)
        # Update Q-values and agent
        # (Insert Q-learning or DQN update logic here)
    # Update epsilon after each episode
    agent.update epsilon()
import numpy as np
import matplotlib.pyplot as plt
class SimpleEnvironment:
    def init (self):
        self.state = 0 # Initial state
```

```
def reset(self):
        self.state = 0
        return self.state
    def step(self, action):
        # Simulate the environment response
        self.state += action # State transitions based on the action
        reward = 1 if self.state >= 10 else −1 # Reward structure
        done = self.state >= 10 # End the episode when the state is 10 or more
        return self.state, reward, done
class EpsilonGreedyAgent:
    def __init__(self, epsilon=1.0, epsilon_decay=0.99, min_epsilon=0.1):
        self.epsilon = epsilon
        self.epsilon_decay = epsilon_decay
        self.min_epsilon = min_epsilon
    def select_action(self):
        if np.random.rand() < self.epsilon:</pre>
            return np.random.choice([0, 1]) # Random action
        else:
            return 1 # Best action (in this simple case, always move forward)
    def update epsilon(self):
        self.epsilon = max(self.min_epsilon, self.epsilon * self.epsilon_decay)
# Training the agent
num_episodes = 100
reward_sequence = [] # To store rewards for each episode
env = SimpleEnvironment()
agent = EpsilonGreedyAgent()
for episode in range(num_episodes):
    state = env.reset()
    total_reward = 0
    done = False
    while not done:
        action = agent.select_action() # Select an action
        next_state, reward, done = env.step(action) # Step the environment
        total_reward += reward # Accumulate reward
    reward_sequence.append(total_reward) # Store total reward for the episode
    agent.update_epsilon() # Update epsilon after each episode
# Plotting the reward sequence
plt.plot(reward sequence)
plt.title("Reward Sequence over Episodes")
```

```
plt.xlabel("Episode")
plt.ylabel("Total Reward")
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt
import random
from collections import deque
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

class SimpleEnvironment:
    def __init__(self):
        self.state = 0 # Initial state

    def reset(self):
        self.state = 0
        return self.state

def step(self, action):
```

```
# Simulate the environment response
        self.state += action # State transitions based on the action
        reward = 1 if self.state >= 10 else -1 # Reward structure
        done = self.state >= 10 # End the episode when the state is 10 or more
        return self.state, reward, done
class DQNAgent:
    def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size
        self.memory = deque(maxlen=2000) # Experience replay buffer
        self.gamma = 0.95 # Discount rate
        self.epsilon = 1.0 # Exploration rate
        self.epsilon_min = 0.1 # Minimum exploration rate
        self.epsilon_decay = 0.995 # Decay rate for exploration
        self.model = self._build_model() # Build model
        self.target model = self. build model() # Target model for stability
        self.update_target_model() # Initialize target model
    def build model(self):
    # Neural network for Q-learning
        model = keras.Sequential()
        model.add(layers.Dense(24, input_dim=self.state_size, activation='relu'
        model.add(layers.Dense(24, activation='relu'))
        model.add(layers.Dense(self.action_size, activation='linear'))
        model.compile(loss='mse', optimizer=keras.optimizers.Adam(learning_rate
        return model
    def update_target_model(self):
       # Copy weights from model to target model
        self.target_model.set_weights(self.model.get_weights())
    def remember(self, state, action, reward, next_state, done):
        self.memory.append((state, action, reward, next state, done)) # Store
    def act(self, state):
        if np.random.rand() <= self.epsilon:</pre>
            return np.random.choice([0, 1]) # Explore
        q_values = self.model.predict(state) # Exploit
        return np.argmax(q_values[0])
    def replay(self, batch_size):
       # Train the model using random samples from the memory
        minibatch = random.sample(self.memory, batch_size)
        for state, action, reward, next_state, done in minibatch:
            target = reward
            if not done:
                target += self.gamma * np.amax(self.target_model.predict(next_s
```

```
target_f = self.model.predict(state)
            target_f[0][action] = target
            self.model.fit(state, target_f, epochs=1, verbose=0)
# Training the agent
num episodes = 10
batch size = 32
reward_sequence = [] # To store rewards for each episode
env = SimpleEnvironment()
state size = 1
action_size = 2
agent = DQNAgent(state_size, action_size)
for episode in range(num episodes):
    state = env.reset()
    state = np.reshape(state, [1, state_size])
    total reward = 0
    done = False
    while not done:
        action = agent.act(state) # Select an action
        next_state, reward, done = env.step(action) # Step the environment
        next_state = np.reshape(next_state, [1, state_size])
        agent.remember(state, action, reward, next_state, done) # Store experi
        state = next_state # Update state
        total_reward += reward # Accumulate reward
    if len(agent.memory) > batch_size:
        agent.replay(batch_size) # Replay experiences
    # Update target model every few episodes
    if episode % 10 == 0:
        agent.update_target_model()
    reward_sequence.append(total_reward) # Store total reward for the episode
    agent.epsilon = max(agent.epsilon_min, agent.epsilon_decay * agent.epsilon)
# Plotting the reward sequence
plt.plot(reward_sequence)
plt.title("Reward Sequence over Episodes")
plt.xlabel("Episode")
plt.ylabel("Total Reward")
plt.show()
/usr/local/lib/python3.10/dist-packages/tensorflow/lite/python/util.py:55:
      from jax import xla computation as xla computation
    /usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
      super(). init (activity regularizer=activity regularizer, **kwargs)
                            - Os 83ms/step
```

-		· · · · · · · · · · · · · · · · · · ·
1/1 —	0s	25ms/step
1/1 —	0s	73ms/step
1/1 —	0s	43ms/step
1/1 —	0s	34ms/step
1/1 —	0s	27ms/step
1/1 —	0s	30ms/step
1/1 —	0s	32ms/step
1/1 —	0s	36ms/step
1/1 —	0s	52ms/step
1/1 —	0s	45ms/step
1/1 —	0s	32ms/step
1/1 —	0s	29ms/step
1/1 —	0s	29ms/step
1/1 —	0s	21ms/step
1/1 —	0s	20ms/step
1/1	0s	20ms/step
1/1 —	0s	19ms/step
1/1	0s	21ms/step
1/1	0s	21ms/step
1/1	0s	19ms/step
1/1	0s	19ms/step
1/1 —	0s	19ms/step
1/1 —	0s	20ms/step
1/1 —	0s	25ms/step
1/1 —	0s	19ms/step
1/1 —	0s	20ms/step
1/1 —	0s	21ms/step
1/1 —	0s	19ms/step
1/1 —	0s	19ms/step
1/1	0s	20ms/step
1/1	0s	20ms/step
1/1 —	0s	20ms/step
1/1 —	0s	19ms/step
1/1 —	0s	23ms/step
1/1 —	0s	20ms/step
1/1 —	0s	20ms/step
1/1 —	0s	19ms/step
1/1 —	0s	19ms/step
1/1 —	0s	25ms/step
1/1 —	0s	19ms/step
1/1 —	0s	19ms/step
1/1 —	0s	26ms/step
1/1 —	0s	19ms/step
1/1	0s	19ms/step
1/1 —	0s	23ms/step
1/1	0s	19ms/step
1/1	0s	19ms/step
1/1	0s	20ms/step
1/1	0s 0s	20ms/step 22ms/step
1/1	0s 0s	21ms/step
1/1	0s 0s	21ms/step 20ms/step
1/1	0s 0s	20ms/step 21ms/step
1/1	0s 0s	21ms/step 24ms/step
1/1	0s 0s	19ms/step
1/1 —	US	Tams/step

-·-		
1/1	0s	22ms/step
1/1 —	0s	19ms/step
		_
1/1 —	0s	20ms/step
1/1 —	0s	20ms/step
1/1 ————	0s	21ms/step
1/1	0s	20ms/step
1/1 ————	0s	33ms/step
1/1	0s	30ms/step
1/1	0s	32ms/step
1/1	0s	40ms/step
1/1 —	0s	30ms/step
1/1 —	0s	32ms/step
		_
1/1	0s	34ms/step
1/1 —	0s	29ms/step
1/1 ————	0s	27ms/step
1/1 ————	0s	28ms/step
1/1 ————	0s	28ms/step
1/1	0s	27ms/step
1/1 —	0s	27ms/step
1/1	0s	36ms/step
1/1 —	0s	33ms/step
1/1 —	0s	32ms/step
1/1 —	0s	33ms/step
1/1		_
	0s	31ms/step
1/1	0s	30ms/step
1/1 —	0s	34ms/step
1/1 —	0s	19ms/step
1/1 —	0s	21ms/step
1/1 ————	0s	20ms/step
1/1 —	0s	20ms/step
1/1 —	0s	21ms/step
1/1 ————	0s	19ms/step
1/1 ————	0s	24ms/step
1/1 ————	0s	27ms/step
1/1 —	0s	29ms/step
1/1 —	0s	31ms/step
1/1	0s	31ms/step
1/1 —	0s	31ms/step
1/1 —	0s	34ms/step
1/1 —	0s	29ms/step
1/1	0s	30ms/step
		-
-/-	0s	29ms/step
-/-	0s	34ms/step
-/-	0s	34ms/step
1/1	0s	31ms/step
1/1	0s	32ms/step
1/1	0s	31ms/step
1/1 —	0s	54ms/step
1/1	0s	30ms/step
1/1 ———	0s	30ms/step
1/1 ———	0s	21ms/step
1/1	0s	20ms/step
1/1	0s	20ms/step
1/1	0s	20ms/step

		,
1/1	0s	20ms/step
		-
1/1 ———	0s	21ms/step
1/1	0s	19ms/step
1/1	0s	19ms/step
1/1 —	0s	20ms/step
1/1	0s	21ms/step
1/1 ————	0s	24ms/step
1/1	0s	20ms/step
1/1	0s	20ms/step
1/1 —	0s	24ms/step
1/1 —	0s	24ms/step
1/1	0s	25ms/step
1/1	0s	20ms/step
1/1 —	0s	20ms/step
1/1 —	0s	20ms/step
	0s	_
1/1 ———		20ms/step
1/1	0s	20ms/step
1/1	0s	22ms/step
1/1	0s	19ms/step
1/1	0s	19ms/step
1/1 ————	0s	27ms/step
1/1 —	0s	22ms/step
1/1 —	0s	20ms/step
1/1 —	0s	22ms/step
1/1 —	0s	20ms/step
1/1	0s	23ms/step
1/1	0s	19ms/step
1/1 —	0s	25ms/step
1/1 —	0s	23ms/step
1/1 —	0s	21ms/step
1/1	0s	20ms/step
1/1	0s	21ms/step
		_
1/1	0s	20ms/step
1/1	0s	21ms/step
-/-	0s	20ms/step
1/1	0s	19ms/step
1/1 ———	0s	20ms/step
1/1 —	0s	20ms/step
1/1 —	0s	23ms/step
1/1	0s	22ms/step
1/1 —	0s	20ms/step
1/1	0s	19ms/step
1/1 —	0s	22ms/step
1/1 —	0s	19ms/step
1/1 —	0s	25ms/step
1/1 —	0s	21ms/step
1/1	0s	20ms/step
1/1 —	0s	22ms/step
1/1 —	0s	20ms/step
1/1 —	0s	23ms/step
1/1	0s	19ms/step
1/1	0s	19ms/step 19ms/step
1/1	0s	26ms/step
1/1	0s 0s	20ms/step
1/1	116	//mg/gtAn

±/ ±	.	22mb/ bccp
1/1	0s	20ms/step
1/1 —	0s	21ms/step
1/1	0s	20ms/step
1/1		_
-	0s	22ms/step
1/1	0s	20ms/step
1/1	0s	20ms/step
1/1	0s	20ms/step
1/1 —	0s	30ms/step
1/1 —	0s	20ms/step
1/1	0s	20ms/step
1/1 —	0s	19ms/step
1/1 —	0s	20ms/step
1/1 ———	0s	21ms/step
1/1	0s	19ms/step
1/1	0s	20ms/step
1/1	0s	21ms/step
1/1	0s	22ms/step
1/1	0s	21ms/step
1/1 —	0s	20ms/step
1/1 —	0s	21ms/step
1/1 —	0s	19ms/step
	0s	_
1/1 ————		19ms/step
1/1 ————	0s	20ms/step
1/1 ————	0s	21ms/step
1/1	0s	30ms/step
1/1	0s	29ms/step
1/1	0s	34ms/step
1/1 —	0s	30ms/step
1/1 —	0s	27ms/step
1/1 —	0s	30ms/step
1/1 —	0s	34ms/step
1/1 ———	0s	29ms/step
1/1 ————	0s	29ms/step
1/1 ————	0s	32ms/step
1/1	0s	29ms/step
1/1 —	0s	32ms/step
1/1 —	0s	38ms/step
1/1	0s	31ms/step
1/1	0s	31ms/step
1/1	0s	34ms/step
1/1 —	0s	45ms/step
1/1 —	0s	33ms/step
1/1 —	0s	40ms/step
1/1	0s	19ms/step
1/1	0s	_
-, -		20ms/step
-, -	0s	23ms/step
-/-	0s	20ms/step
1/1	0s	21ms/step
-/-	0s	26ms/step
1/1	0s	19ms/step
1/1	0s	26ms/step
1/1	0s	20ms/step
1/1 —	0s	27ms/step
1/1	Λc	2/mc/ctan

	və	4 TIII D / D (C)
1/1	0s	22ms/step
		_
1/1	0s	21ms/step
1/1 ———	0s	26ms/step
1/1	0s	20ms/step
1/1	0s	25ms/step
1/1	0s	20ms/step
1/1	0s	19ms/step
1/1 —	0s	25ms/step
1/1 —	0s	21ms/step
1/1 —	0s	21ms/step
1/1 —	0s	26ms/step
1/1 —	0s	20ms/step
1/1 ———	0s	19ms/step
1/1 ———	0s	20ms/step
1/1 —	0s	21ms/step
1/1 ———	0s	21ms/step
1/1 —	0s	22ms/step
1/1	0s	21ms/step
1/1	0s	26ms/step
1/1	0s	22ms/step
1/1	0s	20ms/step
1/1	0s	19ms/step
1/1	0s	19ms/step
1/1	0s	21ms/step
1/1	0s	22ms/step
1/1	0s	22ms/step
1/1 —	0s	27ms/step
1/1	0s	22ms/step
1/1	0s	22ms/step
1/1 —	0s	19ms/step
1/1 —	0s	19ms/step
1/1	0s	23ms/step
1/1 —	0s	22ms/step
1/1 —	0s	21ms/step
1/1 —	0s	20ms/step
1/1	0s	20ms/step
1/1 —	0s	21ms/step
1/1 —	0s	20ms/step
1/1 —	0s	20ms/step 20ms/step
1/1 —	0s	21ms/step
1/1 ————	0s	22ms/step
1/1 —	0s	22ms/step 22ms/step
1/1 —	0s	24ms/step
1/1	0s	25ms/step
1/1	0s	21ms/step
1/1	05	20mg/g+op

1/1	vs	201115/5CEP
1/1 —	0s	20ms/step
1/1	0s	20ms/step 22ms/step
		_
1/1 ———	0s	23ms/step
1/1	0s	21ms/step
1/1 —	0s	21ms/step
1/1 —	0s	31ms/step
1/1 —	0s	22ms/step
1/1 —	0s	19ms/step
1/1 —	0s	20ms/step
1/1 —	0s	26ms/step
1/1 —	0s	24ms/step
1/1 ———	0s	21ms/step
1/1	0s	21ms/step
1/1 —	0s	21ms/step
1/1	0s	20ms/step
1/1	0s	20ms/step
1/1	0s	32ms/step
1/1 —	0s	39ms/step
1/1 —	0s	35ms/step
1/1	0s	29ms/step
1/1	0s	-
		29ms/step
1/1	0s	29ms/step
1/1 ———	0s	28ms/step
1/1	0s	41ms/step
1/1 —	0s	32ms/step
1/1 —	0s	40ms/step
1/1 —	0s	37ms/step
1/1 —	0s	35ms/step
1/1 —	0s	36ms/step
1/1 —	0s	34ms/step
1/1 ————	0s	37ms/step
-/ -		
1/1 —	0s	29ms/step
	0s 0s	-
1/1 1/1		29ms/step 35ms/step 32ms/step
1/1	0s	35ms/step
1/1	0s 0s	35ms/step 32ms/step 25ms/step
1/1	0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step
1/1	0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 26ms/step
1/1	0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 26ms/step 20ms/step
1/1	0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 26ms/step 20ms/step 20ms/step
1/1	0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 26ms/step 20ms/step 20ms/step 19ms/step
1/1	0s 0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 26ms/step 20ms/step 20ms/step 19ms/step 22ms/step
1/1	0s 0s 0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 26ms/step 20ms/step 20ms/step 19ms/step 22ms/step 22ms/step
1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	0s	35ms/step 32ms/step 25ms/step 20ms/step 26ms/step 20ms/step 20ms/step 19ms/step 22ms/step 22ms/step 25ms/step
1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	0s	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 19ms/step 22ms/step 25ms/step 20ms/step
1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	0s	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 22ms/step 22ms/step 25ms/step 20ms/step 25ms/step 23ms/step
1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 22ms/step 22ms/step 25ms/step 25ms/step 23ms/step 20ms/step 20ms/step
1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 22ms/step 22ms/step 25ms/step 25ms/step 20ms/step 20ms/step 20ms/step
1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 22ms/step 22ms/step 25ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step
1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 22ms/step 22ms/step 25ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step
1/1 1/1	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 22ms/step 22ms/step 25ms/step 25ms/step 20ms/step 20ms/step 20ms/step 21ms/step 21ms/step
1/1 1/1	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 22ms/step 22ms/step 25ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 21ms/step 24ms/step
1/1 1/1	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 22ms/step 22ms/step 25ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 21ms/step 21ms/step 21ms/step 21ms/step
1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	0s 0	35ms/step 32ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 22ms/step 22ms/step 25ms/step 25ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 20ms/step 21ms/step 24ms/step

1/1	US	zzms/step
1/1 —	0s	22ms/step
1/1 —	0s	20ms/step
1/1	0s	21ms/step
1/1	0s	23ms/step
1/1	0s	22ms/step
1/1 —	0s	21ms/step
		_
1/1 ———	0s	22ms/step
1/1	0s	21ms/step
1/1	0s	20ms/step
1/1	0s	19ms/step
1/1	0s	22ms/step
1/1 ———	0s	21ms/step
1/1	0s	22ms/step
1/1	0s	22ms/step
1/1	0s	23ms/step
1/1 —	0s	26ms/step
1/1		_
	0s	19ms/step
1/1	0s	20ms/step
1/1	0s	22ms/step
1/1 —	0s	21ms/step
1/1 —	0s	23ms/step
1/1 ———	0s	21ms/step
1/1 ————	0s	21ms/step
1/1	0s	20ms/step
1/1	0s	20ms/step
1/1	0s	19ms/step
1/1 —	0s	25ms/step
1/1	0s	21ms/step
1/1	0s	20ms/step
		_
1/1	0s	24ms/step
1/1	0s	27ms/step
1/1	0s	19ms/step
-/-	0s	18ms/step
1/1	0s	19ms/step
-, -	0s	22ms/step
1/1 —	0s	22ms/step
1/1 —	0s	22ms/step
1/1 —	0s	20ms/step
1/1 ———	0s	26ms/step
1/1 ———	0s	19ms/step
1/1 ———	0s	19ms/step
1/1 —	0s	19ms/step
1/1 —	0s	22ms/step
1/1 ———	0s	22ms/step
1/1	0s	20ms/step
1/1	0s	22ms/step
1/1	0s	25ms/step
1/1	0s	19ms/step
1/1	0s	20ms/step
1/1 —	0s	19ms/step
1/1 —	0s	22ms/step
1/1	0s	22ms/step 22ms/step
1/1 —	0s	21ms/step
1/1	05	21ms/step

1/1	US	22ms/step
1/1 —	0s	22ms/step
1/1	0s	19ms/step
1/1 ———	0s	22ms/step
1/1	0s	19ms/step
1/1	0s	22ms/step
1/1	0s	21ms/step
1/1 —	0s	21ms/step
1/1 —	0s	33ms/step
		_
1/1 ———	0s	30ms/step
1/1	0s	35ms/step
1/1	0s	28ms/step
1/1	0s	32ms/step
1/1 —	0s	36ms/step
1/1	0s	31ms/step
1/1 ———	0s	29ms/step
1/1	0s	29ms/step
1/1	0s	35ms/step
1/1	0s	28ms/step
1/1	0s	32ms/step
1/1 —	0s	35ms/step
1/1 —	0s	34ms/step
	0s	31ms/step
1/1		_
1/1 ———	0s	30ms/step
1/1	0s	30ms/step
1/1	0s	34ms/step
1/1	0s	29ms/step
1/1	0s	42ms/step
1/1 —	0s	36ms/step
1/1 —	0s	40ms/step
1/1 —	0s	22ms/step
1/1 —	0s	21ms/step
1/1 ———	0s	20ms/step
1/1 ———	0s	19ms/step
1/1 —	0s	21ms/step
1/1 ————	0s	20ms/step
1/1 ————	0s	19ms/step
1/1	0s	22ms/step
1/1	0s	24ms/step
1/1	0s	20ms/step
1/1	0s	20ms/step
1/1	0s	21ms/step
1/1 —	0s	21ms/step
1/1 —	0s	18ms/step
1/1 —	0s	19ms/step
1/1 —	0s	23ms/step
-/-	0s	23ms/step 22ms/step
-, -		_
1/1	0s	21ms/step
1/1	0s	20ms/step
±/ ±	0s	20ms/step
1/1	0s	20ms/step
1/1	0s	19ms/step
1/1	0s	19ms/step
1/1	0s	23ms/step
	-	· · · ·

1/1	0s	21ms/step
1/1 —	0s	22ms/step
1/1 —	0s	25ms/step
1/1 —	0s	19ms/step
1/1 —	0s	22ms/step
1/1	0s	28ms/step
1/1	0s	22ms/step
1/1	0s	23ms/step
1/1	0s	23ms/step
1/1	0s	21ms/step
1/1	0s	26ms/step
1/1	0s	19ms/step
1/1	0s	22ms/step
1/1	0s	_
		19ms/step
1/1	0s	22ms/step
1/1	0s	22ms/step
1/1 —	0s	20ms/step
1/1 —	0s	21ms/step
1/1 —	0s	27ms/step
1/1 —	0s	22ms/step
1/1 —	0s	30ms/step
1/1	0s	19ms/step
1/1	0s	24ms/step
1/1	0s	22ms/step
1/1 —	0s	21ms/step
1/1	0s	20ms/step
1/1	0s	23ms/step
1/1	0s	21ms/step
		_
1/1 —	0s	20ms/step
1/1	0s	20ms/step
1/1	0s	23ms/step
1/1	0s	24ms/step
1/1 —	0s	21ms/step
1/1		21ms/step
1/1 —	0s	24ms/step
1/1 —	0s	20ms/step
1/1 —		19ms/step
1/1 —	0s	23ms/step
1/1	0s	22ms/step
1/1 —	0s	22ms/step
1/1 —	0s	22ms/step
1/1	0s	22ms/step
1/1	0s	24ms/step
1/1		22ms/step
1/1		20ms/step
1/1	0s	25ms/step
1/1	0s	_
-/-		22ms/step
1/1	0s	22ms/step
-, -	• •	23ms/step
-/-	0s	21ms/step
1/1		19ms/step
1/1 —	0s	19ms/step
1/1 —	0s	19ms/step
1/1	0s	27ms/step
	-	

1/1	0s	21ms/step
1/1	0s	33ms/step
1/1	0s	29ms/step
1/1 —	0s	27ms/step
		_
1/1 ———	0s	28ms/step
1/1	0s	29ms/step
1/1 —	0s	28ms/step
1/1	0s	29ms/step
1/1 —	0s	29ms/step
1/1	0s	31ms/step
1/1 ————	0s	32ms/step
1/1	0s	31ms/step
1/1 —	0s	31ms/step
1/1	0s	_
		39ms/step
1/1	0s	34ms/step
1/1	0s	28ms/step
1/1 ———	0s	34ms/step
1/1 —	0s	33ms/step
1/1 ———	0s	48ms/step
1/1	0s	35ms/step
1/1	0s	36ms/step
1/1	0s	25ms/step
1/1	0s	19ms/step
1/1 —	0s	19ms/step
1/1 —	0s	24ms/step
1/1	0s	22ms/step
		_
1/1 ———	0s	22ms/step
1/1	0s	21ms/step
1/1	0s	33ms/step
1/1	0s	21ms/step
1/1 —	0s	20ms/step
1/1 —	0s	21ms/step
1/1	0s	23ms/step
1/1	0s	22ms/step
1/1 ———	0s	27ms/step
1/1	0s	21ms/step
1/1	0s	20ms/step
1/1 —	0s	19ms/step
1/1	0s	19ms/step
1/1	0s	24ms/step
1/1	0s	27ms/step
1/1 —	0s	21ms/step
1/1 —	0s	29ms/step
1/1	0s	20ms/step
-, -	0s	_
-, -		19ms/step
-, -	0s	19ms/step
1/1	0s	20ms/step
1/1	0s	23ms/step
1/1	0s	26ms/step
1/1 —	0s	24ms/step
1/1 —	0s	24ms/step
1/1 —	0s	22ms/step
1/1 —	0s	20ms/step
1/1	0s	21ms/step

Reward Sequence over Episodes

pip install gym stable-baselines3 pandas ucimlrepo

/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: Deprecat and should_run_async(code)

Requirement already satisfied: gym in /usr/local/lib/python3.10/dist-packag Requirement already satisfied: stable-baselines3 in /usr/local/lib/python3. Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: ucimlrepo in /usr/local/lib/python3.10/dist-Requirement already satisfied: numpy>=1.18.0 in /usr/local/lib/python3.10/d Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3 Requirement already satisfied: gym-notices>=0.0.4 in /usr/local/lib/python3 Requirement already satisfied: gymnasium<0.30,>=0.28.1 in /usr/local/lib/py Requirement already satisfied: torch>=1.13 in /usr/local/lib/python3.10/dis Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/pyt Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/di Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/ Requirement already satisfied: certifi>=2020.12.5 in /usr/local/lib/python3 Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/p Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/li Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-p Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-p Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-p Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.1 Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/di Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3. Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3. Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10 Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/d Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.1 Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10 Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3

pip install gym stable-baselines3 pandas pyreadstat ucimlrepo

Requirement already satisfied: gym in /usr/local/lib/python3.10/dist-packag Requirement already satisfied: stable-baselines3 in /usr/local/lib/python3. Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: pyreadstat in /usr/local/lib/python3.10/dist Requirement already satisfied: ucimlrepo in /usr/local/lib/python3.10/dist-Requirement already satisfied: numpy>=1.18.0 in /usr/local/lib/python3.10/d Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3 Requirement already satisfied: gym-notices>=0.0.4 in /usr/local/lib/python3 Requirement already satisfied: gymnasium<0.30,>=0.28.1 in /usr/local/lib/py Requirement already satisfied: torch>=1.13 in /usr/local/lib/python3.10/dis Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/pyt Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/di Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/ Requirement already satisfied: certifi>=2020.12.5 in /usr/local/lib/python3 Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/p Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/li Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-p Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-p Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-p Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.1 Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/di Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3. Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3. Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10 Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/d Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.1 Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10 Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3

!pip install shimmy>=0.2.1 # Install the shimmy package

ERROR: pip's dependency resolver does not currently take into account all t stable-baselines3 2.3.2 requires gymnasium<0.30,>=0.28.1, but you have gymn

!pip install gymnasium[classic_control]

Requirement already satisfied: gymnasium[classic_control] in /usr/local/lib Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/d Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3 Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/p Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/li Requirement already satisfied: pygame>=2.1.3 in /usr/local/lib/python3.10/d

!pip install gymnasium[monitoring] # install the monitoring package alongside c

Requirement already satisfied: gymnasium[monitoring] in /usr/local/lib/pyth WARNING: gymnasium 1.0.0 does not provide the extra 'monitoring'
Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/d Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3 Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/p Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/li

!pip install gymnasium stable-baselines3

Requirement already satisfied: gymnasium in /usr/local/lib/python3.10/dist-Requirement already satisfied: stable-baselines3 in /usr/local/lib/python3. Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/d Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3 Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/p Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/lib/p Collecting gymnasium

Using cached gymnasium-0.29.1-py3-none-any.whl.metadata (10 kB)

Requirement already satisfied: torch>=1.13 in /usr/local/lib/python3.10/dis Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-p Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-p Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.1 Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/di Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3. Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3. Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10 Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/d Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.1 Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/pytho Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/di Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/ Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-p Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10 Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3 Using cached gymnasium-0.29.1-py3-none-any.whl (953 kB)

Installing collected packages: gymnasium

Attempting uninstall: gymnasium

Found existing installation: gymnasium 1.0.0

Uninstalling gymnasium-1.0.0:

Successfully uninstalled gymnasium-1.0.0

ERROR: pip's dependency resolver does not currently take into account all t shimmy 2.0.0 requires gymnasium>=1.0.0a1, but you have gymnasium 0.29.1 whi Successfully installed gymnasium-0.29.1

Import necessary libraries

```
import gym
from gym import spaces
import numpy as np
import pandas as pd
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
from ucimlrepo import fetch_ucirepo
import pyreadstat
# Step 1: Load Datasets
# Load chronic kidney disease dataset
chronic_kidney_disease = fetch_ucirepo(id=336)
ckd_data = chronic_kidney_disease.data.features
ckd_targets = chronic_kidney_disease.data.targets
# Load diabetic dataset
diabetic_data = pd.read_csv('diabetic_data.csv')
# Load NHANES datasets (sample of a few variables)
# You'll need to install pyreadstat to load XPT files
import pyreadstat
# Example of loading NHANES datasets (replace with correct file paths)
nhanes_demo, _ = pyreadstat.read_xport('DEMO_J.XPT')
nhanes_bpx, _ = pyreadstat.read_xport('BPX_J.XPT')
nhanes_glu, _ = pyreadstat.read_xport('GLU_J.XPT')
# Load heart disease dataset
heart disease = fetch ucirepo(id=45)
heart_disease_data = heart_disease.data.features
# Step 2: Preprocess and Combine Datasets
# Convert non-numeric columns using one-hot encoding or label encoding
ckd_data = pd.get_dummies(ckd_data)
diabetic_data = pd.get_dummies(diabetic_data)
nhanes demo = pd.get dummies(nhanes demo)
nhanes_bpx = pd.get_dummies(nhanes_bpx)
heart_disease_data = pd.get_dummies(heart_disease_data)
# Separate numeric and boolean columns
def normalize_numeric_data(df):
    numeric_cols = df.select_dtypes(include=[np.number]) # Select only numeric
    # Normalize numeric columns (excluding boolean columns)
    df[numeric_cols.columns] = (numeric_cols - numeric_cols.min()) / (numeric_cols.columns)
    return df
```

Normalize each dataset

```
ckd data = normalize numeric data(ckd data)
diabetic_data = normalize_numeric_data(diabetic_data)
nhanes_demo = normalize_numeric_data(nhanes_demo)
nhanes_bpx = normalize_numeric_data(nhanes_bpx)
heart_disease_data = normalize_numeric_data(heart_disease_data)
# Combine datasets using an outer join to preserve all data
combined_data = pd.concat([ckd_data, diabetic_data, nhanes_demo, nhanes_bpx, he
# Fill missing values with 0 after concatenation
combined_data = combined_data.fillna(0)
# Check the combined dataset
print(combined data.head())
# Step 3: Define a Custom Healthcare Environment with Combined Data
class HealthcareEnv(gym.Env):
    def __init__(self, dataset):
        super(HealthcareEnv, self).__init__()
        self.data = dataset
        self.current step = 0
        # Define action space: binary actions (e.g., 0 for no treatment, 1 for
        self.action space = spaces.Discrete(2)
        # Define observation space: patient state (features from the dataset)
        self.observation_space = spaces.Box(
            low=0, high=1, shape=(self.data.shape[1] - 1,), dtype=np.float32
        )
    def reset(self):
        # Reset the environment to the first patient
        self.current_step = 0
        return self. next observation()
    def _next_observation(self):
        # Return the current patient features as the state (excluding the targe
        obs = self.data.iloc[self.current_step, :-1].values
        return obs
    def step(self, action):
        # Define the action's effect on the environment (e.g., a treatment acti
        # Example reward: improvement based on treatment decision
        if action == 1: # Treatment given
```

```
reward = np.random.uniform(0, 1) # Reward could represent health i
        else: # No treatment
            reward = np.random.uniform(-1, 0) # Penalty for not treating
        # Move to the next patient in the dataset
        self.current step += 1
        # Check if the episode is done (all patients have been treated)
        done = self.current_step >= len(self.data) - 1
        # Get the next patient (next state)
        obs = self._next_observation()
        return obs, reward, done, {}
    def render(self, mode='human', close=False):
        pass # No specific rendering required for this example
# Step 4: Instantiate the Environment
env = HealthcareEnv(combined_data)
# Wrap the environment for stable-baselines3
env = DummyVecEnv([lambda: HealthcareEnv(combined data)])
# Step 5: Train the PPO Model on the Combined Dataset
model = PPO('MlpPolicy', env, verbose=1)
# Train the model for a certain number of timesteps
model.learn(total_timesteps=10000)
# Step 6: Evaluate the Trained Agent
obs = env.reset() # Reset the environment
for in range(1000):
    action, _states = model.predict(obs, deterministic=True)
    obs, reward, done, info = env.step(action)
    if done:
        obs = env.reset() # Reset the environment when the episode ends
# Step 7: Save the Trained Model
model.save("ppo_healthcare_combined_agent")
                                0.838
          loss
         n_updates
                               | 10
         policy_gradient_loss | -0.0545
          value_loss
```

time/	[
fps	210
iterations	3
time_elapsed	29
<pre>total_timesteps</pre>	6144
train/	Ì
approx_kl	0.024014043
clip_fraction	0.385
clip_range	0.2
entropy_loss	-0.611
<pre> explained_variance</pre>	-0.0664
learning_rate	0.0003
loss	1.23
n_updates	20
<pre>policy_gradient_loss</pre>	-0.0463
value_loss	2.69

time/	1
fps	204
iterations	4
time_elapsed	40
total_timesteps	8192
train/	
approx_kl	0.024650825
clip_fraction	0.246
clip_range	0.2
entropy_loss	-0.523
<pre> explained_variance</pre>	-0.124
learning_rate	0.0003
loss	1.47
n_updates	30
<pre>policy_gradient_loss</pre>	-0.0358
value_loss	2.97

time/	
fps	201
iterations	5 j
time_elapsed	50
total_timesteps	10240
train/	ĺ
approx_kl	0.045299537
clip_fraction	0.186
clip_range	0.2
entropy_loss	-0.38
<pre> explained_variance</pre>	-0.157
learning_rate	0.0003
loss	0.797
n_updates	40
<pre>policy_gradient_loss</pre>	-0.0318
value_loss	2.52

```
# Save the combined dataset to a CSV file
combined_data.to_csv('combined_healthcare_data.csv', index=False)
# Confirm that the file is saved
print("Combined data has been saved as 'combined_healthcare_data.csv'.")
Combined data has been saved as 'combined_healthcare_data.csv'.
# Step 6: Evaluate the Trained Agent
def evaluate agent(env, model, num episodes=10):
    Evaluates the PPO agent by running it in the environment and calculating av
    :param env: The Gym environment.
    :param model: The trained PPO model.
    :param num episodes: The number of episodes to evaluate the agent on.
    :return: The average reward obtained over the episodes.
    total_rewards = 0
    for episode in range(num_episodes):
        obs = env.reset() # Reset the environment for each episode
        episode reward = 0
        done = False
        while not done:
            # Agent takes an action based on its policy
            action, _states = model.predict(obs, deterministic=True) # Use det
            obs, reward, done, info = env.step(action) # Take action and get 1
            episode_reward += reward # Accumulate reward for the episode
        print(f"Episode {episode + 1}: Total Reward = {episode_reward}")
        total rewards += episode reward
    # Calculate and return the average reward across all episodes
    avg_reward = total_rewards / num_episodes
    print(f"\nAverage Reward over {num_episodes} episodes: {avg_reward}")
    return avg_reward
# Evaluate the trained agent on the environment
average_reward = evaluate_agent(env, model, num_episodes=10)
```

```
→ Episode 1: Total Reward = [50502.418]
    Episode 2: Total Reward = [50784.35]
    Episode 3: Total Reward = [50592.164]
    Episode 4: Total Reward = [50798.4]
    Episode 5: Total Reward = [50502.348]
    Episode 6: Total Reward = [50849.84]
    Episode 7: Total Reward = [50729.457]
    Episode 8: Total Reward = [50762.44]
    Episode 9: Total Reward = [50774.047]
    Episode 10: Total Reward = [50681.613]
    Average Reward over 10 episodes: [50697.71]
# List of total rewards from each episode
rewards = [50502.418, 50784.35, 50592.164, 50798.4, 50502.348, 50849.84, 50729.
# Calculate average reward
avg reward = sum(rewards) / len(rewards)
print(f"Average Reward over {len(rewards)} episodes: {avg_reward}")
reward std = np.std(rewards)
print(f"Standard Deviation of rewards: {reward_std}")
Average Reward over 10 episodes: 50697.707700000006
    Standard Deviation of rewards: 118.11775178105172
from sklearn.model_selection import train_test_split
# Assuming 'combined data' is your entire dataset with patient features
train_data, test_data = train_test_split(combined_data, test_size=0.2, random_s
# Print the shape of the split datasets to ensure it's correct
print(f"Training Data Shape: {train_data.shape}")
print(f"Testing Data Shape: {test_data.shape}")
Training Data Shape: (81412, 2588)
```

Testing Data Shape: (20354, 2588)

```
class HealthcareEnv(gym.Env):
    def __init__(self, dataset):
        super(HealthcareEnv, self).__init__()
        self.data = dataset
        self.current step = 0
        # Define action space: binary (0: no treatment, 1: treatment)
        self.action space = spaces.Discrete(2)
        # Define observation space: patient state (excluding target column if r
        self.observation_space = spaces.Box(
            low=0, high=1, shape=(self.data.shape[1] - 1,), dtype=np.float32
        )
    def reset(self):
        self.current_step = 0
        return self._next_observation()
    def _next_observation(self):
        # Return current patient features as state (excluding target column)
        obs = self.data.iloc[self.current_step, :-1].values
        return obs
    def step(self, action):
        # Define rewards and penalties based on action (e.g., treatment effect)
        if action == 1:
            reward = np.random.uniform(0, 1) # Example reward for treatment
        else:
            reward = np.random.uniform(-1, 0) # Penalty for no treatment
        # Move to the next patient
        self.current step += 1
        done = self.current_step >= len(self.data) - 1
        obs = self._next_observation()
        return obs, reward, done, {}
    def render(self, mode='human'):
        pass
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
# Create the environment using the training data
train_env = HealthcareEnv(train_data)
```

```
# Wrap the environment for PPO compatibility
train_env = DummyVecEnv([lambda: HealthcareEnv(train_data)])
# Initialize the PPO model
model = PPO('MlpPolicy', train_env, verbose=1)
# Train the model
model.learn(total_timesteps=10000)
         n updates
                                 10
         policy_gradient_loss
                                 -0.0544
         value loss
                                 2.99
      time/
         fps
                                 175
         iterations
                                 3
         time_elapsed
                                 34
         total_timesteps
                                | 6144
      train/
         approx_kl
                                 0.018038228
                                0.323
         clip_fraction
         clip_range
                                0.2
         entropy_loss
                                | -0.619
         explained_variance
                                 -0.0645
         learning_rate
                                 0.0003
                                 0.939
          loss
         n updates
                                 20
         policy_gradient_loss |
                                 -0.0424
         value_loss
                                 2.62
      time/
         fps
                                 181
          iterations
                                 4
         time elapsed
                                 45
         total_timesteps
                                 8192
      train/
                                 0.026454985
         approx_kl
         clip_fraction
                                0.268
         clip_range
                                 0.2
         entropy_loss
                                 -0.536
         explained_variance
                                 -0.118
                                 0.0003
          learning_rate
          loss
                                 1.15
                                 30
         n_updates
         policy_gradient_loss |
                                 -0.0407
          value_loss
                                 2.96
```

| time/

<pre> fps iterations time_elapsed</pre>	174 5 58
total_timesteps	10240
train/	
approx_kl	0.040246382
clip_fraction	0.22
clip_range	0.2
entropy_loss	-0.417
<pre> explained_variance</pre>	-0.0926
learning_rate	0.0003
loss	1.31
n_updates	40
<pre>policy_gradient_loss</pre>	-0.0414
value_loss	2.81

<stable haselines3.nnn.nnn.PPN at 0x708h07a60ea0>

from stable_baselines3 import PP0
from stable_baselines3.common.vec_env import DummyVecEnv

Create the environment using the training data
train_env = HealthcareEnv(train_data)

Wrap the environment for PPO compatibility
train_env = DummyVecEnv([lambda: HealthcareEnv(train_data)])

Initialize the PPO model
model = PPO('MlpPolicy', train_env, verbose=1)

Train the model
model.learn(total_timesteps=10000)

→		n_updates	10
		<pre>policy_gradient_loss </pre>	-0.0555
		value_loss	3.14

time/	
fps	120
iterations	3
time_elapsed	51
total_timesteps	6144
train/	
approx_kl	0.020067055
clip_fraction	0.35
clip_range	0.2
entropy_loss	-0.616
<pre> explained_variance </pre>	-0.0751
learning_rate	0.0003
loss	0.96

0.857

<pre> n_updates policy_gradient_loss value_loss</pre>	20
time/	
fps	116
iterations	4
time_elapsed	j 70
total_timesteps	8192
train/	i i
approx_kl	0.023410397
clip_fraction	0.253
clip_range	0.2
entropy_loss	i -0.534
explained_variance	i -0.116
l learning rate	0.0003

n_updates | 30 policy_gradient_loss | -0.0406 value_loss | 2.55

time/	l I
fps	123
iterations	5
time_elapsed	82
total_timesteps	10240
train/	
approx_kl	0.037795052
clip_fraction	0.167
clip_range	0.2
entropy_loss	-0.387
explained_variance	-0.0756
learning_rate	0.0003
loss	0.981
n_updates	40
<pre>policy_gradient_loss</pre>	-0.0344
value_loss	3.08

<stable_baselines3.ppo.ppo.PPO at 0x798a09d5d960>

```
# Create the environment using the testing data
test env = HealthcareEnv(test data)
# Wrap the environment for evaluation
test_env = DummyVecEnv([lambda: HealthcareEnv(test_data)])
# Reset the environment
obs = test env.reset()
# Evaluate the model for a few episodes
total rewards = 0
num episodes = 10
for episode in range(num_episodes):
    obs = test env.reset()
    episode reward = 0
    done = False
    while not done:
        action, _states = model.predict(obs, deterministic=True)
        obs, reward, done, info = test_env.step(action)
        episode reward += reward
    print(f"Episode {episode + 1}: Total Reward = {episode_reward}")
    total rewards += episode reward
avg_reward = total_rewards / num_episodes
print(f"\nAverage Reward over {num_episodes} episodes: {avg_reward}")
→ Episode 1: Total Reward = [9956.234]
    Episode 2: Total Reward = [10027.319]
    Episode 3: Total Reward = [10112.456]
    Episode 4: Total Reward = [10100.748]
    Episode 5: Total Reward = [10098.62]
    Episode 6: Total Reward = [10084.622]
    Episode 7: Total Reward = [10097.509]
    Episode 8: Total Reward = [10072.049]
    Episode 9: Total Reward = [10129.446]
    Episode 10: Total Reward = [10057.532]
    Average Reward over 10 episodes: [10073.653]
```

```
np.random.seed(42)
test_data = pd.DataFrame(np.random.rand(100, 10), columns=[f'feature_{i}' for i

# Use this synthetic data as your test dataset
test_data = (test_data - test_data.min()) / (test_data.max() - test_data.min())

import matplotlib.pyplot as plt

# Plot rewards over episodes
plt.plot(rewards)
plt.title("Total Reward per Episode")
plt.xlabel("Episode")
plt.ylabel("Total Reward")
plt.show()
```


model = PPO('MlpPolicy', train_env, learning_rate=0.0001, gamma=0.99, n_steps=2
model.learn(total_timesteps=50000)

clip_fraction | 0.00137

	<pre>clip_range entropy_loss </pre>	0.2 -0.0164
i	explained_variance	-9 . 06e-06
İ	learning_rate	0.0001
1	loss	0.328
	n_updates	210
	<pre>policy_gradient_loss </pre>	-0.000612
	value_loss	0.824

time/	l I
fps	157
iterations	23
time_elapsed	299
total_timesteps	47104
train/	
approx_kl	1.6972219e-05
clip_fraction	0.000342
clip_range	0.2
entropy_loss	-0.0131
<pre> explained_variance</pre>	7 _• 63e-06
learning_rate	0.0001
loss	0.354
n_updates	220
<pre>policy_gradient_loss</pre>	-0.000242
value_loss	0.846

time/	
fps	157
iterations	24
time_elapsed	311
total_timesteps	49152
train/	ĺ
approx_kl	8.688058e-05
clip_fraction	0.0021
clip_range	0.2
entropy_loss	-0.00997
<pre> explained_variance</pre>	2.92e-06
learning_rate	0.0001
loss	0.464
n_updates	230
policy_gradient_loss	-0.000701
value_loss	1.04

time/	1 1
fps	156
iterations	25
time_elapsed	327
<pre> total_timesteps</pre>	51200
train/	
approx_kl	1.7708167e-05

```
clip_fraction
                               0.000391
         clip_range
                               0.2
                               | -0.0079
         entropy_loss
         explained variance
                               I −1.29e−05
def random_agent(env, num_episodes=10):
    total_rewards = 0
    for episode in range(num episodes):
        obs = env.reset()
        episode_reward = 0
        done = False
        while not done:
            # Take random actions in batch form for DummyVecEnv
            action = [env.action_space.sample()] # Wrapping action in a list f
            obs, reward, done, _ = env.step(action) # Perform action in batch
            episode reward += reward
        print(f"Episode {episode + 1}: Total Reward = {episode_reward}")
        total rewards += episode reward
    avg_reward = total_rewards / num_episodes
    print(f"\nAverage Reward for Random Agent: {avg_reward}")
    return avg_reward
# Evaluate the random agent
random_agent(test_env)
    Episode 1: Total Reward = [-125.85617]
    Episode 2: Total Reward = [7.6937885]
    Episode 3: Total Reward = \begin{bmatrix} -21.145048 \end{bmatrix}
    Episode 4: Total Reward = [169.25829]
    Episode 5: Total Reward = [-90.26116]
    Episode 6: Total Reward = [-47.93909]
    Episode 7: Total Reward = [41.252026]
    Episode 8: Total Reward = [-37.584785]
    Episode 9: Total Reward = [-4.1457086]
    Episode 10: Total Reward = [53.779324]
    Average Reward for Random Agent: [-5.4948545]
    array([-5.4948545], dtype=float32)
```

pip install shap

```
Requirement already satisfied: shap in /usr/local/lib/python3.10/dist-packa
    Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-pack
    Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-pack
    Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/di
    Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-pac
    Requirement already satisfied: tqdm>=4.27.0 in /usr/local/lib/python3.10/di
    Requirement already satisfied: packaging>20.9 in /usr/local/lib/python3.10/
    Requirement already satisfied: slicer==0.0.8 in /usr/local/lib/python3.10/d
    Requirement already satisfied: numba in /usr/local/lib/python3.10/dist-pack
    Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dis
    Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /usr/local/lib
    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/pyt
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/di
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/
    Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/d
    Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/pytho
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-p
# Check the shape of SHAP values
print(f"SHAP values shape: {shap_values.shape}")
\rightarrow SHAP values shape: (1, 2587)
import matplotlib.pyplot as plt
# Assuming you have the rewards for the trained agent and the random agent
trained_agent_rewards = [50502.418, 50784.35, 50592.164, 50798.4, 50502.348, 50
random_agent_rewards = [-125.85617, 7.6937885, -21.145048, 169.25829, -90.26116]
# Create the plot
plt.figure(figsize=(10, 6))
plt.plot(trained_agent_rewards, label="Trained Agent", marker="o")
plt.plot(random_agent_rewards, label="Random Agent", marker="x")
plt.xlabel("Episode")
plt.ylabel("Total Reward")
plt.title("Comparison of Trained Agent vs. Random Agent")
plt.legend()
plt.grid(True)
plt.show()
```

₹

/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: Deprecat
and should_run_async(code)

Start coding or generate with AI.