

The Problem

- One of Japan's most beautiful and popular attractions, for visitors and locals alike, is the blooming sakura flowers
- These flowers bloom only for a short period of time in the spring, and correctly timing a trip to see them can be tricky

Can we use ambient temperature data to create a model that will accurately predict the "best" day to see the sakura flowers in peak bloom?

Who Might Care?

Travelers from far and wide

...and anyone with an appreciation for nature or Japanese culture!

Local families enjoying a picnic

What Factors Might Impact the Bloom?

- Weather and nature are very complicated and intertwined
- The annual bloom date could possibly be affected by:
 - Temperature
 - Rainfall
 - Sunshine
 - Air quality
 - Wind patterns
 - Natural disasters Japan is subject to earthquakes, tsunamis, and even volcanic activity
 - Etc.

Data Information

- Ambient temperature data, sourced from the Japanese Meteorological Agency
- Sakura bloom status data, specific to Hirosaki Park in Hirosaki City, sourced from the Hirosaki City Green Association
- Data acquired for the period of Jan 1, 1997 Dec 31, 2019
 - Initial dataset contained 3 columns (date, temperature, bloom status) and 9131 rows
 - File format: csv
 - Each record: an individual day

Data Wrangling

- Date values were split into 3 columns: day, month, year
- Bloom status values were labeled and imputed
 - 0: full bloom
 - 1: bloom
 - 2: scatter
 - 3: no bloom
- Historically non-blooming months were removed, leaving only April and May data
- Result was a cleaned DataFrame of 5 columns and 1525 rows

Data Exploration

The first figure indicates that, even in the blooming months, the bloom period itself is quite short.

Relationship Visualization

The second figure, a box and whisker plot, provides a visualization of the temperature ranges and medians with respect to blooming status, within the months of April and May.

Modeling

- Decision Tree Classifier model with binary categories
 - All blooming statuses (full, bloom, scatter): 1
 - Non-blooming status: 0
- Features were magnitude standardized
- Each model output included a Principal Component Analysis scatterplot and a Classification Report, providing precision, recall, F1, and accuracy scores

Modeling

- Because the data was extremely unbalanced, multiple models were created using different sampling methods:
 - imbalanced (baseline model)
 - oversampled
 - undersampled
 - oversampled with SMOTE technique
- The most successful model was the oversampled model

Model Results

Oversampled model PCA

Oversampled model Classification Report

-	precision	recall	f1-score	support
0	0.96	0.97	0.97	363
1	0.35	0.32	0.33	19
accuracy			0.94	382
macro avg	0.66	0.64	0.65	382
weighted avg	0.93	0.94	0.94	382

Takeaways and Future Steps

- This model demonstrated that the correlation between temperature and blooming was not very strong, and that many more features and factors are likely at play in determining the blossoming timeline
- Although the model was not very successful, the project was a good lesson for me with regards to data collection and project design
- In the future, I will build upon this foundation to select more comprehensive data and asking more discerning questions