Honors Marrs in \mathbb{R}^n Instructor(s): Marrs

Due Date: 2024-13-Marrs

Problem 1

Let E be a Banach space and $T: E \to E^*$ such that for all $x \in E$,

$$\langle Tx, x \rangle \ge 0.$$

Show that T is a bounded operator.

SOLUTION: By the closed graph theorem, it suffices to see that $G(T) \subset E \times E^*$ is closed. Let $Tx_n \to y$ with $x_n \to x$. Evidently $x \in E$. It suffices to show that Tx = y, that is, for any $u \in E$, we have that

$$\langle Tx, u \rangle = \langle y, u \rangle.$$

Let $u \in E$. There exists some $\lambda \in \mathbb{R}$ such that $x\lambda = u$, where $\lambda \in \mathbb{R}$. By assumption,

$$\langle Tx_n - Tu, x_n - u \rangle \ge 0 \to \langle y - Tu, x - u \rangle \ge 0.$$

Thus,

$$\langle y, x - u \rangle \ge \langle Tu, x - u \rangle,$$

and so plugging in our definition of u, we see that

$$\langle y, \frac{u}{\lambda} - u \rangle \ge \langle T(\lambda x), \frac{u}{\lambda} - u \rangle,$$

and so

$$(\frac{1}{\lambda} - 1)\langle y, u \rangle \ge (\frac{1}{\lambda} - 1)\langle T(\lambda), u \rangle \implies \langle y, u \rangle \ge \lambda \langle Tx, u \rangle$$

Letting $\lambda \to 1$ we see that $\langle y, u \rangle \geq \langle Tx, u \rangle$ and letting $\lambda \to -1$, see the opposite inequality.

Problem 2

Let E be Banach and $A:D(A)\subset E\to E^*$ be a densely defined unbounded operator.

(a) Suppose that there exists some C such that for all $u \in D(A)$, we have that

$$\langle Au, u \rangle \ge -C \|Au\|^2 \tag{1}$$

Show that $N(A) \subset N(A^*)$

SOLUTION: Since

$$A:D(A)\subset E\to E^*\implies A^*:D(A^*)\subset E^{**}\to E^*$$

By that lecture Marr's did in class, it suffices to show that since $N(A^*) = R(T)^{\perp}$, we have that $N(A) \subset R(T)^{\perp}$. That is, we want to show that

$$\{u \in E \mid Au = 0\} \subset \{u \in E^{**} : \langle u, Av \rangle = 0 \ \forall v \in D(A)\}.$$

In non-reflexive spaces, we have that $E \subset E^{**}$, so this might be an equality in reflexive spaces. Anyways, let $u \in N(A)$, then Au = 0. Let $v \in D(A)$. Then for any $t \in \mathbb{R}$, we have that by the given inequality,

$$\langle A(u+tv), u+tv \rangle \ge -C ||A(u+tv)||^2$$

Expanding the left side, we see that

$$\langle A(u+tv), u+tv \rangle = \langle Au, u+tv \rangle + \langle tAv, u+tv \rangle$$
$$= 0 + t\langle Av, u \rangle + t\langle Av, u \rangle + t^2\langle Av, v \rangle$$
$$\geq -Ct^2 ||Av||^2$$

Thus,

$$2t\langle Av, u\rangle + t^2(\langle Av, v\rangle + C||Av||^2) \ge 0.$$

This is a quadratic equation in terms of t, and thus

$$at^2 + bt > 0 \implies b^2 - 4ac < 0 \implies b^2 < 0$$

but
$$b^2 = (2\langle Av, u \rangle)^2 \leq 0 \implies b = 0$$
 and so $\langle Av, u \rangle = 0$, and so $u \in R(A)^{\perp}$.

(b) Prove that the converse holds if A is closed and R(A) is closed.

SOLUTION: Since $N(A) \subset N(A^*)$ by assumption, then $N(A) \subset R(A)^{\perp}$, and so for any $u \in N(A)$, we have that $u \in R(A)^{\perp}$. We claim that it suffices to find some $v \in D(A)$ for any $u \in D(A)$ such that Au = Av. That is,

$$\langle Au, x \rangle = \langle Av, x \rangle, \quad \forall x \in D(A) \implies Au - Av = A(u - v) = 0 \implies u - v \in \ker A.$$

Thus, we see that by assumption, $u - v \in R(A)^{\perp}$, and so for any $x \in D(A)$

$$\langle u - v, Ax \rangle = 0.$$

In particular, letting x = u we see that

$$\langle Au, u \rangle = \langle Au, v \rangle$$

Letting x = v, we see that

$$\langle Av, u \rangle = \langle Av, v \rangle.$$

Thus,

$$\langle Au, u \rangle = \langle Av, v \rangle \tag{2}$$

To find such a v, consider that since $R(A) \subset E^*$ is a closed subset of a Banach space, then R(A) is a Banach space. Thus, A is an open mapping, i.e, there exists some c > 0 such that

$$B_c^{R(A)}(0) \subset A(B_1^{(D(A))}(0)).$$

Thus, for any $f \in R(A)$, with $||f|| \le c$, there exists some $u \in D(A)$ such that Au = cf, and so Au' = f, where $u' = \frac{u}{c} \in D(A)$ since D(A) is densely defined linear subspace. Thus, $||u'|| = ||\frac{u}{c}|| \le ||f|| \implies ||u|| \le c||f||$ Because this holds for any $f \in R(A)$ (you can just scale any f not in the c-ball) and A is surjective, then let $u \in D(A)$ with Au = f. But since $f \in R(A)$, then we know by the open mapping theorem there exists some $v \in D(A)$ with Av = f and $-c||Au|| \le ||v|| \le ||c||||Au||$. Thus, we have found our $u - v \in N(A)$. Hence by (2), we have that since $|\langle f, u \rangle| \le ||f|||u||$, then

$$\langle Au, u \rangle \ge -c||Au||||v|| \ge -c||Au||^2$$

Marrs Problem Set Marrs

Problem 3

Suppose X is a separable Banach space and $M \subset X$ is a closed subspace. Then X/M is separable.

SOLUTION: Let $\pi: X \to X/M$ be the canonical linear surjection and let (v_n) be a countably dense subset of X. We claim that $\pi(v_n)$ is a countably dense subset of X/M. Recall that for any since X is Banach, then X/M is Banach with respect to the norm

$$||u||_{X/M} = \inf_{m \in M} ||u - m||_X.$$

Let $u \in X/M$, and $\epsilon > 0$. Since π is surjective, there exists some $v \in X$ such that $\pi(v) = x$, and thus there exists some $v_k \in (v_n)$ such that

$$||v_k - v|| < \epsilon$$

Thus, we have that

$$\|\pi(v_n) - u\|_{X/M} = \|\pi(v_n) - \pi(v)\|_{X/M}$$

$$= \|\pi(v_n - v)\|_{X/M}$$

$$= \inf_{m \in M} \|v_n - v - m\|_X$$

$$\leq \|v_n - v\|_X + \inf_{m \in M} \|m\|_X$$

$$= \|v_n - v\|$$

$$< \epsilon.$$

Then we have that $(\pi(v_n))$ is countably dense in X/M, as required.

Problem 4

Suppose that X is a Banach space, $M \subset X$ is closed and separable. If X/M is separable, then X is separable.

SOLUTION: Let $(u_n) \subset M$ be a countably dense subset of M and let $([w_n]) \subset X/M$ be a countably dense subset of X/M and choose a representative $w_n \in X$ such that $[w_n] = \pi(w_n)$. Thus, let $u \in M$ and $[w] \in X/M$, then there exist $u_n \in (u_n)$, $[w_k] \in ([w_n])$ such that

$$||u_n - u||_X < \frac{\epsilon}{2} \tag{3}$$

$$||[w_k] - [w]||_{X/M} = ||\pi(w_k - w)||_{X/M} = \inf_{m \in M} ||w_k - w - m|| < \frac{\epsilon}{2}$$
(4)

Consider $F = \{u_n + w_n : u_n \in (u_n), w_n \in (w_n)\}$, we claim that F is countably dense in X. The countability comes from the fact that

$$F = \bigcup_{k=1}^{\infty} \bigcup_{n=k}^{\infty} (u_n + w_k).$$

Let $x \in X$. Then for any $\epsilon > 0$, we have by the above that if $m \in M$ and u_n and w_k are chosen such that (3) and (4) are satisfied, then

$$||x - (u_n + w_n)||_X \le ||x - w_n - m|| + ||m - u_n||$$

 $< \epsilon$

Thus, we are done.

REFLECTIONS: This might be wrong, I didn't use the fact that X was Banach, but in the book the quotient space is only defined for Banach spaces, so maybe I did?