A3-05

C2-06

Train simple ★

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} .

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

Corrigé voir .

A3-05

C2-06

Train simple ★

Soit le train d'engrenages suivant.

Question 4 Tracer le graphe des liaisons.

Question 5 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} .

Question 6 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

Corrigé voir 3.

Poulie Redex ★

Soit le train d'engrenages suivant.

Question 7 Tracer le graphe des liaisons.

Question 8 Déterminer littéralement, en fonction des nombres de dents, la loi E/S du système (c'est-à-dire le rapport de transmission).

Corrigé voir 6.

D'aprè

Train simple ★

A3-05 C2-06

On s'intéresse à la chaîne de transmission de puissance d'un tracteur Fendt. Cette dernière est composée d'un moteur (et d'une pompe) hydraulique (Mh) ainsi que d'un moteur thermique MAN (Mm).

Le moteur MAN a pour but de fournir de la puissance à la pompe hydraulique et au tracteur (récepteur R). On donne ci-dessous le schéma de la transmission.

Xavier Pessoles Sciences Industrielles de l'Ingénieur − PSI★

Les rayons des pignons sont les suivants : $R_{12}=60$, $R_{1M}=33$, $R_2=30$, $R_{32}=120$, $R_{3P}=54$, $R_M=54$, $R_M'=48$, $R_R=42$, $R_R'=48$.

Une étude antérieure a permis d'établir que $\frac{\omega(Ph/0)}{\omega(Mh/0)} = \frac{2y}{x}$ avec $x \in [0,71;1]$ et $y \in [0;1]$.

La fréquence de rotation du moteur Man est de 1900 tr/min.

Question 9 Déterminer la relation entre $\omega(1/0)$, $\omega(3/0)$ et $\omega(4/0)$.

Question 10 Montrer que la relation entre la rotation du moteur hydraulique et le moteur Man peut se mettre sous la forme : $\frac{\omega(Mh/0)}{\omega(Mm/0)} = -\frac{Ax}{BR_py + Cx}$ où on explicitera A, B et C.

Corrigé voir 8.

