Project Abacus

Specifications

A User should be able to:

- actually evaluate basic expressions like 3 + 5
- graph functions from $\mathbb R$ to $\mathbb R$ and restrict its domain
- graph functions in 3D, so $\mathbb{R}^2 o \mathbb{R}$ and again be able to restrict domains
- graph implicit functions, i.e. functions of the form f(x,y)=0 and f(x,y,z)=0.
- plot multiple graphs on the same set of axes
- do operations on the functions they define, i.e. if they have a function f(x) and g(x), they should be able to plot f(x) + g(x), f(x) g(x), f(x)g(x), $\frac{f(x)}{g(x)}$, f(g(x))
- zoom in and out of graph
- be able to rotate viewpoint around for 3D graphs

Possible extensions:

- Plotting parametric curves and surfaces
- Plotting complex functions
- Finding derivatives and integrals

Classes

Entities:

- Expression
 - Converts strings to Expression objects that we can manipulate and evaluate (likely using Abstract Syntax Trees)
 - Stores the functions/expressions that the user inputs
- Axes
 - The coordinate system and the space where the graphs are being stored
 - Handles the scales of the axes
- Viewpoint
 - The 'camera' for 3D graphs, handles the orientation, position, distance from graphs/axes

Use cases

- Graph
 - The graph of an expression
 - Uses expression to evaluate points at respective domain

Presenters:

- Renderer
 - Actually used to draw/render the graphs

Gateways:

• UserInterface

- o Converting user input into something our program can understand
- Although we will be starting out with a command line interface, we ideally want to transition to a graphical user interface