

Sistemas de Numeração O Sistema Hexadecimal de Numeração

Prof. Gabriel Marchesan gabriel.marchesan@rolante.ifrs.edu.br

O Sistema Hexadecimal de Numeração

O sistema hexadecimal possui 16 algarismos, sendo sua base igual a 16. Os algarismos são assim enumerados:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, e F.

Este sistema é muito utilizado na área dos microprocessadores e também no mapeamento de memórias em sistemas digitais, tratando-se de um sistema numérico muito importante, sendo aplicado em projetos de **software** e **hardware**.

O Sistema Hexadecimal de Numeração

L DECIMAL	HEXADECIMAL
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	Е
15	F
16	10
17	11
18	12
19	13
20	14

Conversão do Sistema Hexadecimal para o Sistema Decimal

A regra de conversão é análoga à de outros sistemas, somente que neste caso, a base é 16. Como exemplo, vamos utilizar o número $3F_{16}$ e convertê-lo em decimal.

$$3 \times 16^{1} + F \times 16^{0} =$$

sendo $F_{16} = 15_{10}$, substituindo temos:

$$3 \times 16^{1} + 15 \times 16^{0} = 3 \times 16 + 15 \times 1 = 63_{10}$$

$$\therefore 3F_{16} = 63_{10}$$

Conversão do Sistema Decimal para o Sistema Hexadecimal

Da mesma forma que nos casos anteriores, esta conversão se faz através de divisões sucessivas pela base do sistema a ser convertido. Para exemplificar vamos transformar o número 1000_{10} em hexadecimal.

Sendo
$$14_{10} = E_{16}$$
, temos: $3E8_{16}$

$$\therefore 1000_{10} = 3E8_{16}$$

Conversão do Sistema Hexadecimal para o Sistema Binário

É análoga à conversão do sistema octal para o sistema binário, somente que, neste caso, necessita-se de 4 bits para representar cada algarismo hexadecimal.

Como exemplo, vamos converter o número C13₁₆ para o sistema binário:

$$C_{1100} \Rightarrow (C_{16} = 12_{10}) \quad \frac{1}{0001} \quad \frac{3}{0011}$$

$$\therefore$$
 C13₁₆ = 110000010011₂

Conversão do Sistema Binário para o Sistema Hexadecimal

É análoga à conversão do sistema binário para o octal, somente que neste caso, agrupamos de 4 em 4 bits da direita para a esquerda. A título de exemplo, vamos transformar o número 10011000₂ em hexadecimal.

$$\underbrace{10011000}_{9} : 10011000_{2} = 98_{16}$$

Referências

IDOETA, I. V., CAPUANO, F. G. Elementos de Eletrônica Digital. Ed. Érica, 40^a Ed, 2010.

