MATH 240 Assignment 1

Mihail Anghelici 260928404

February 8, 2021

Question 1

(a)

(b)

The simplest description of the given Venn diagram is

 $B \oplus (A \cap C)$.

Question 2

(a)

$$(\subseteq)$$

$$\text{Let } x \in \overline{A \cup B}. \Longrightarrow x \notin A \cup B$$

$$\Longrightarrow x \notin A \text{ and } x \notin B$$

$$\Longrightarrow x \in \overline{A} \text{ and } x \in \overline{B}$$

$$\Longrightarrow x \notin A \cup B$$

$$\Longrightarrow x \in \overline{A} \cap \overline{B}$$

$$\Longrightarrow x \notin A \cup B$$

$$\Longrightarrow x \in \overline{A \cup B}$$

(b)

$$(A \backslash B) \cap (C \backslash B) = (A \cap \overline{B}) \cap (C \cap \overline{B})$$
 [Set difference law]

$$= A \cap (\overline{B} \cap C) \cap \overline{B}$$
 [Associative law]

$$= A \cap (C \cap \overline{B}) \cap \overline{B}$$
 [Commutative law]

$$= (A \cap C) \cap (\overline{B} \cap \overline{B})$$
 [Associative law]

$$= (A \cap C) \cap \overline{B}$$
 [Idenpotent law]

$$= (A \cap C) \backslash B$$
 [Set difference law]

Question 3

(a)

- (i) The statement is true since $\forall v \in \mathbb{R}$ we can chose u = 1 such that the equality uv = v holds.
- (ii) $\neg(\exists u \in \mathbb{R}, \forall v \in \mathbb{R}, uv = v) = \forall u \in \mathbb{R}, \exists v \in \mathbb{R}, uv \neq v$. Here we let u = 1 then $\nexists v \in \mathbb{R} | uv \neq v$. The statement is therefore false.

(b)

- (i) The given statement is false. Indeed, let x = 1, y = 1, then $z = 1 1 = 0 \notin \mathbb{N}$.
- (ii) $\neg(\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, \exists z \in \mathbb{N}, z = x y) = \exists x \in \mathbb{N}, \exists y \in \mathbb{N}, \forall z \in \mathbb{N}, z \neq x y$. Here to disprove the statement we have to show $\nexists z \in \mathbb{N}$ such that there is at least one x and y in \mathbb{N} for which $z \neq x y$. This is impossible since we can just pick z = x = y which satisfies $z \neq x y$. The statement is therefore true.

Question 4

(a)

p	q	r	$p \Longrightarrow r$	$q \Longrightarrow r$	$(p \Longrightarrow r) \Longleftrightarrow (q \Longrightarrow r)$
\overline{T}	T	T	T	T	T
T	T	\boldsymbol{F}	F	F	T
T	F	T	T	T	T
T	F	F	F	T	F
F	T	T	T	T	T
F	T	F	T	F	F
F	F	T	T	T	T
F	F	F	T	T	T

Not all values are true in the last column, therefore this is not a tautology.

(b)

					$p \wedge \overline{q}$	$(\overline{p} \vee q) \vee (p \wedge \overline{q})$
				T	T	T
				F	T	T
F	T	T	F	T	F	T
F	F	T	T	T	T	T

All values are true in the last column, therefore this is a tautology.

(c)

				:= <u>P</u>		:= <i>Q</i>		
p	q	r	$p \oplus q$	$(p \oplus q) \wedge r$	$p \wedge r$	$q \wedge r$	$p \wedge r \oplus q \wedge r$	$P \iff Q$
\overline{T}	T	T	F	F	T	T	F	T
T	T	F	F	F	F	F	F	T
T	F	T	T	T	T	F	T	T
T	F	F	T	F	F	F	F	T
F	T	T	T	T	F	T	T	T
F	T	F	T	F	F	F	F	T
F	F	T	F	F	F	F	F	T
F	F	F	F	F	F	F	F	T

All values are true in the last column, therefore this is a tautology.

Question 5

(a)

$$p \Longrightarrow (q \Longrightarrow r) \equiv \overline{p} \lor (q \Longrightarrow r)$$

$$\equiv \overline{p} \lor (\overline{q} \lor r)$$

$$\equiv \overline{p} \lor \overline{q} \lor r$$

$$\equiv \overline{p} \land \overline{q} \lor r$$

$$\equiv (p \land q) \Longrightarrow r$$
[Definition of \Longrightarrow]
[Commutativity of \lor]
[Definition of \Longrightarrow]

(b)

$$\overline{p \Longrightarrow q} \equiv \overline{\overline{p} \lor q} \equiv \overbrace{p \land \overline{q}}^{\text{[De Morgan]}}$$

$$[\text{Definition of } \Longrightarrow]$$

(c)

$$(\overline{p \vee \overline{q}}) \vee (\overline{p} \wedge \overline{q}) \equiv (\overline{p} \wedge q) \vee (\overline{p} \wedge \overline{q})$$

$$\equiv \overline{p} \wedge (q \vee \overline{q})$$

$$\equiv \overline{p} \wedge 1$$

$$\equiv \overline{p}$$
[De Morgan]

[Distributive law]

[Complement rule]

[Identity rule]

Question 6

(a)

$$\begin{array}{ccc}
p & & \\
p & & \\
\end{array}$$

$$\overline{p \wedge p} \equiv \overline{p}$$

(b)

(c)

