

SC414761 Seminar in Mathematics

ผลบวกของส่วนกลับของจำนวนฟีโบนักชี On the sum of reciprocal Fibonacci numbers

โดย Hideyuki Ohtsuka และ Shigeru Nakamaru

จัดทำโดย นายอภิรัฐ มูลมณี รหัสประจำตัว 603020555-9

> อาจารย์ที่ปรึกษา รศ. ดร.นรากร คณาศรี

วันที่นำเสนอสัมมนา 11 กรกฎาคม พ.ศ.2566

รายงานนี้เป็นส่วนหนึ่งของวิชา SC414761 สัมมนาทางคณิตศาสตร์ (Seminar in Mathematics) สาขาวิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น ปีการศึกษา 2566

คำนำ

รายงานเล่มนี้เป็นส่วนหนึ่งของรายวิชา SC414761 สัมมนาทางคณิตศาสตร์ (Seminar in Mathematics) โดยรายงานนี้ได้จัดทำขึ้นจากการศึกษาบทความของ Hideyuki Ohtsuka และ Shigeru Nakamaru เรื่อง ผลบวกของส่วนกลับของจำนวนฟีโบนักชี (On the sum of reciprocal Fibonacci numbers) ซึ่งตีพิมพ์ในวารสาร The Fibonacci Quarterly ฉบับที่ 46/47 เล่มที่ 2 ปี ค.ศ.2008/2009 หน้า 153-159

ผู้จัดทำได้เรียบเรียงและบรรจุเนื้อหาสาระสำคัญรวมถึงบทนิยาม ทฤษฎีบทที่เกี่ยวข้อง และตัวอย่าง ที่เกี่ยวข้องกับผลบวกของส่วนกลับของจำนวนฟีโบนักชี และผู้จัดทำหวังเป็นอย่างยิ่งว่า รายงานสัมมนาเล่มนี้ จะเป็นประโยชน์แก่ผู้ที่สนใจศึกษา และเป็นแนวทางในการพัฒนาองค์ความรู้ทางด้านคณิตศาสตร์ ที่เกี่ยวข้องต่อไป

ขอขอบคุณอาจารย์ที่ปรึกษา รศ. ดร.นรากร คณาศรี ที่กรุณาให้คำแนะนำตลอดระยะเวลาในการทำ สัมมนาเล่มนี้ จนกระทั่งสำเร็จลุล่วงไปด้วยดี

> นายอภิรัฐ มูลมณี 11 กรกฎาคม พ.ศ.2566

บทคัดย่อ

ในบทความนี้ เราศึกษาเรื่องผลบวกของส่วนกลับของจำนวนฟีโบนักซี F_n (On the sum of reciprocal Fibonacci numbers) และจะได้ผลลัพธ์หลัก ดังนี้

$$\left\lfloor \left(\sum_{k=n}^{\infty}\frac{1}{F_k}\right)^{-1}\right\rfloor = \begin{cases} F_{n-2}, & \text{เมื่อ } n \text{ เป็นจำนวนคู่และ } n \geq 2; \\ F_{n-2}-1, & \text{เมื่อ } n \text{ เป็นจำนวนคู่และ } n \geq 1 \end{cases}$$

และ

$$\left\lfloor \left(\sum_{k=n}^{\infty}\frac{1}{F_k^2}\right)^{-1}\right\rfloor = \begin{cases} F_{n-1}F_n - 1, & \text{iden } n \text{ iden } n \geq 2; \\ F_{n-1}F_n, & \text{iden } n \text{ iden } n \geq 1 \end{cases}$$

สารบัญ

คำนำ บทคัดย่อ		i	
		ii	
1	บทนำ		1
2	ความรู้พื้นฐาน		2
	2.1	อนุกรมอนันต์ (Infinite Series)	2
	2.2	ฟังก์ชันจำนวนเต็มมากสุด (Greatest interger function)	4
	2.3	ลำดับฟิโบนักชี (Fibonacci sequence)	5
3	ทฤษฎีบทหลัก		7
	3.1	ผลบวกของส่วนกลับของเลขจำนวนฟีโบนักชี	7
	3.2	ผลบวกของส่วนกลับยกกำลังสองของเลขจำนวนฟีโบนักซี	15
บรรเ	บรรณานุกรม		21
ภาคเ	ภาคผนวก		22

บทที่ 1

บทน้ำ

จำนวนเลขฟีโบนักซี (Fibonacci numbers) เป็นชื่อของจำนวนที่ตั้งขึ้นเพื่อเป็นเกียรติแก่ นักคณิตศาสตร์ชาวอิตาลีชื่อ เลโอนาร์โดแห่งปีซา (Leonardo de Pisa) หรือ เลโอนาร์โด ฟีโบนักซี (Leonardo Fibonacci) ซึ่งเป็นที่รู้จักกันในนามฟีโบนักซี (Fibonacci) ผู้ค้นพบจำนวนฟีโบนักซีในต้นศตวรรษที่ 13 ฟีโบนักซีได้แสดงให้เห็นผ่านอนุกรมตัวเลขที่เขาคิดค้นขึ้น จากการสังเกตและศึกษาแง่มุมต่าง ๆ ในธรรมชาติ ซึ่งมีรูปแบบที่ค่อนข้างเสถียร สามารถนำมาแสดงเป็นลำดับเลขคือ $F_n=F_{n-1}+F_{n-2}(n\geq 3)$ และ $F_1=F_2=1$

บทความนี้ผู้เขียนบทความได้นำเอาบทแทรก เอกลักษณ์ ฟังก์ชัน และทฤษฎีบทต่าง ๆ ที่เกี่ยวข้องกับ จำนวนฟีโบนักชี มาศึกษาต่อยอดเพื่อให้ได้ทฤษฎีบทที่เกี่ยวข้องในการหาผลลัพธ์ของผลบวกของส่วนกลับของ จำนวนฟีโบนักชี

$$\left\lfloor \left(\sum_{k=n}^{\infty}\frac{1}{F_k}\right)^{-1}\right\rfloor = \begin{cases} F_{n-2}, & \text{ เมื่อ } n \text{ เป็นจำนวนคู่และ } n \geq 2; \\ F_{n-2}-1, & \text{ เมื่อ } n \text{ เป็นจำนวนคี่และ } n \geq 1 \end{cases}$$

และหาผลลัพธ์ของผลบวกของส่วนกลับยกกำลังสองของจำนวนฟีโบนักชี

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k^2}\right)^{-1} \right\rfloor = \begin{cases} F_{n-1}F_n - 1, & \text{เมื่อ } n \text{ เป็นจำนวนคู่และ } n \geq 2; \\ F_{n-1}F_n, & \text{เมื่อ } n \text{ เป็นจำนวนคี่และ } n \geq 1 \end{cases}$$

ผู้เขียนบทความนี้เชื่อว่าการคิดค้นทฤษฎีเหล่านี้จะเป็นแนวทางในการพัฒนาทฤษฎีใหม่ ๆ จึงได้ ทำการพิสูจน์ทฤษฎีบทสองทฤษฎีนี้ขึ้นมา

บทที่ 2

ความรู้พื้นฐาน

2.1 อนุกรมอนันต์ (Infinite Series)

กำหนดให้ $a_1,a_2,a_3,\ldots,a_n,\ldots$ เป็นลำดับ จะเรียก $\sum_{n=1}^\infty a_n=a_1+a_2+a_3+\cdots+a_n+\cdots$ ว่า อนุกรมอนันต์ (infinite series) และเรียก a_n ว่า พจน์ที่ n ของอนุกรม $(n^{th}$ term of the series) สำหรับอนุกรม $\sum_{n=1}^\infty a_n$ กำหนดให้

$$S_1 = a_1$$

$$S_2 = a_1 + a_2$$

$$\vdots$$

$$S_n = a_1 + a_2 + \ldots + a_n$$

เรียก (S_n) ว่า **ลำดับของผลบวกย่อย** (sequence of partial sums) ของอนุกรม $\sum_{n=1}^{\infty} a_n$

บทนิยาม 2.1. [2] กำหนดให้ (S_n) เป็นลำดับของผลบวกย่อยของอนุกรม $\sum_{n=1}^{\infty} a_n$

ถ้า (S_n) ลู่เข้าสู่จำนวนจริง S แล้วจะกล่าวว่า $\sum_{n=1}^{\infty} a_n$ เป็น **อนุกรมลู่เข้า** (covergent series) และเรียก S ว่า

เป็น **ผลบวก** (sum) ของอนุกรม $\sum_{n=1}^{\infty} a_n$ เขียนแทนด้วยสัญลักษณ์ $\sum_{n=1}^{\infty} a_n = S$

ถ้า (S_n) เป็นลำดับลู่ออก จะกล่าวว่า $\sum_{n=1}^{\infty} a_n$ เป็น **อนุกรมลู่ออก** (divergent series)

ตัวอย่าง 2.2. จงพิจารณาว่าอนุกรม $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n-1}}+\cdots$ เป็นอนุกรมลู่เข้าหรืออนุกรมลู่ ออก

วิธีทำ
$$S_n=1+rac{1}{2}+rac{1}{4}+\cdots+rac{1}{2^{n-1}}=rac{1-\left(rac{1}{2}
ight)^n}{1-rac{1}{2}}=\left[1-\left(rac{1}{2}
ight)^n
ight] imes2=2-\left(rac{1}{2}
ight)^{n-1}$$

 $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left[2 - \left(\frac{1}{2} \right)^{n-1} \right] = \lim_{n \to \infty} 2 - \lim_{n \to \infty} \left(\frac{1}{2} \right)^{n-1} = 2 - 0 = 2$ ดังนั้น อนุกรมนี้เป็นอนุกรมลู่เข้า

ตัวอย่าง 2.3. จงแสดงว่าอนุกรม $1+2+3+4+\cdots+n+\cdots$ เป็นอนุกรมลู่เข้าหรืออนุกรมลู่ออก วิธีทำ $S_n = 1 + 2 + 3 + 4 + \dots + n = \frac{n(n+1)}{2}$

พิจารณา $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\frac{n(n+1)}{2}=\lim_{n\to\infty}\frac{n^2+n}{2}=\infty$ ดังนั้น อนุกรมนี้เป็นอนุกรมลู่ออก

บทนิยาม 2.4. [2] ลำดับ $a_1,a_2,a_3,\ldots,a_n,\ldots$ จะเรียกว่า **ลำดับเรขาคณิต** ก็ต่อเมื่อ $\frac{a_{n+1}}{a_n}$ มีค่าคงตัว สำหรับทุก $n \geq 1$

ค่าคงตัวนี้เรียกว่า **อัตราส่วนร่วม** (common ratio) อัตราส่วนร่วมของลำดับเรขาคณิต เขียนแทนด้วย สัญลักษณ์ r นั่นคือ $rac{a_{n+1}}{a_n}=r$ สำหรับทุก $n\geq 1$

ตัวอย่าง 2.5. จงหาอัตราส่วนร่วมของลำดับเรขาคณิต $-2,1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\dots$ อัตราส่วนร่วมของลำดับเรขาคณิต $r=rac{a_2}{a_1}=rac{a_3}{a_2}=-rac{1}{2}$

บทนิยาม 2.6. [2] **อนุกรมเรขาคณิต** (Geometric Series) คือ อนุกรมที่เขียนได้ในรูป

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots + ar^{n-1} + \dots$$

เมื่อ $a \neq 0$ เป็นค่าคงตัวและ r เป็นอัตราส่วนร่วม

ทฤษฎีบท 2.7. [2] กำหนดให้อนุกรมเรขาคณิต $\sum_{n=0}^{\infty} ar^{n-1}, a \neq 0$

- 1. ถ้า |r| < 1 แล้ว $\sum_{n=0}^{\infty} ar^{n-1}$ เป็นอนุกรมลู่เข้า และมีผลบวกเท่ากับ $\frac{a}{1-r}$
- 2. ถ้า $|r| \geq 1$ แล้ว $\sum_{i=0}^{\infty} ar^{n-1}$ เป็นอนุกรมลู่ออก

ทฤษฎีบท 2.8. [2] การทดสอบแบบเปรียบเทียบ (comparison test)

กำหนดให้ $\sum^{\infty}a_n$ และ $\sum^{\infty}b_n$ เป็นอนุกรมอนันต์ ที่ซึ่ง $a_n>0$ และ $b_n>0$ สำหรับทุก $n\geq 1$ และ $k\in\mathbb{N}$

- 1. ถ้า $\sum_{n=0}^{\infty} b_n$ เป็นอนุกรมลู่เข้า และ $a_n \leq b_n$ สำรหับทุก $n \geq k$ แล้ว $\sum_{n=0}^{\infty} a_n$ เป็นอนุกรมลู่เข้า
- 2. ถ้า $\sum_{n=0}^{\infty} b_n$ เป็นอนุกรมลู่ออก และ $a_n \geq b_n$ สำรหับทุก $n \geq k$ แล้ว $\sum_{n=0}^{\infty} a_n$ เป็นอนุกรมลู่ออก

ตัวอย่าง 2.9. จะแสดงว่า
$$\sum_{n=1}^{\infty} \frac{1}{F_n}$$
 ลู่เข้า

วิธีทำ เรามีว่า
$$F_n>lpha^{n-2}$$
 สำหรับทุก $n\geq 3$ เมื่อ $lpha=rac{1+\sqrt{5}}{2}>1$

ดังนั้น
$$\frac{1}{F_n} < \left(\frac{1}{\alpha}\right)^{n-2}$$
 สำหรับทุก $n \geq 3$

จาก
$$\sum_{n=1}^{\infty} \left(\frac{1}{\alpha}\right)^{n-2} = \alpha + 1 + \frac{1}{\alpha} + \frac{1}{\alpha^2} + \dots$$

ซึ่งเป็นอนุกรมเรขาคณิตที่มีค่า $r=rac{1}{lpha}<1$

ดังนั้น
$$\sum_{n=1}^{\infty} \left(\frac{1}{lpha}\right)^{n-2}$$
 เป็นอนุกรมลู่เข้า นั่นคือ $\sum_{n=1}^{\infty} \frac{1}{F_n}$ เป็นอนุกรมลู่เข้าด้วย

2.2 ฟังก์ชันจำนวนเต็มมากสุด (Greatest interger function)

ฟังก์ชันจำนวนเต็มมากสุด (Greatest interger function) หรือ **ฟังก์ชันฟลอร์** (Floor function) เป็น ฟังก์ชันที่ใช้กันมากในทฤษฎีจำนวน ซึ่งมีนิยามดัง นี้

บทนิยาม 2.10. [1] สำหรับจำนวนจริง x ใดๆ

|x| คือ จำนวนเต็มค่ามากสุดที่มีค่าน้อยกว่าหรือเท่ากับ x

ตัวอย่าง 2.11. ฟังก์ชันจำนวนเต็มค่ามากสุด

- 1. $\lfloor 1/4 \rfloor = 0$
- $2. \lfloor \sqrt{3} \rfloor = 1$
- 3. $[\pi] = 3$
- 4. $\lfloor -\pi \rfloor = -4$
- 5. |e| = 2

ทฤษฎีบท 2.12. [1] ให้ $x \in \mathbb{R}$ จะได้ว่า $x-1 < \lfloor x \rfloor \leq x$

บทแทรก 2.13. [1] ให้ $x \in \mathbb{R}$ จะได้ว่า

- $1. \ \lfloor x \rfloor \le x < \lfloor x \rfloor + 1$
- 2. $0 \le x \lfloor x \rfloor < 1$

สมบัติเบื้องต้นของฟังก์ชันจำนวนเต็มมากสุด

ทฤษฎีบท 2.14. [1] กำหนดให้ $x,y\in\mathbb{R}$ และ $m,n,k\in\mathbb{I}$ จะได้ว่า

1.
$$\lfloor x \rfloor + \lfloor -x \rfloor = 0$$
 ถ้า x เป็นจำนวนเต็ม $\lfloor x \rfloor + \lfloor -x \rfloor = -1$ ถ้า x ไม่เป็นจำนวนเต็ม

$$2. \ \lfloor x + y \rfloor \ge \lfloor x \rfloor + \lfloor y \rfloor$$

3.
$$|x+k|=|x|+k$$
 เมื่อ $k\in\mathbb{I}^+$

4.
$$\lfloor \frac{\lfloor x \rfloor}{n} \rfloor = \lfloor \frac{x}{n} \rfloor$$
 เมื่อ $n \in \mathbb{I}^+$

5. $-\lfloor -x \rfloor =$ จำนวนเต็มค่ามากสุดที่น้อยกว่าหรือเท่ากับ x

2.3 ลำดับฟีโบนักชี (Fibonacci sequence)

บทนิยาม 2.15. [5] **ลำดับฟิโบนักซี** (Fibonacci sequence) คือ ลำดับ (F_n) ซึ่ง $F_1=1, F_2=1$ และ $F_n=F_{n-1}+F_{n-2}$ เมื่อ $n\geq 3$ โดยเรียกแต่ละพจน์ของลำดับฟิโบนักซีว่า **จำนวนฟิโบนักซี** (Fibonacci number)

ตัวอย่าง 2.16. เราจะคำนวนสิบอันดับแรกของจำนวนฟีโบนักชีได้ดังนี้

$$F_{1} = 1$$

$$F_{2} = 1$$

$$F_{3} = F_{2} + F_{1} = 1 + 1 = 2$$

$$F_{4} = F_{3} + F_{2} = 2 + 1 = 3$$

$$F_{5} = F_{4} + F_{3} = 3 + 2 = 5$$

$$F_{6} = F_{5} + F_{4} = 5 + 3 = 8$$

$$F_{7} = F_{6} + F_{5} = 8 + 5 = 13$$

$$F_{8} = F_{7} + F_{6} = 13 + 8 = 21$$

$$F_{9} = F_{8} + F_{7} = 21 + 13 = 34$$

$$F_{10} = F_{9} + F_{8} = 34 + 21 = 55$$

ทฤษฎีบท 2.17. [4] กำหนดให้ $n\in\mathbb{N}$ และให้ $lpha=rac{1+\sqrt{5}}{2}$ และ $eta=rac{1-\sqrt{5}}{2}$ จะได้จำนวนฟิโบนักซี F_n คือ

$$F_n = \frac{1}{\sqrt{5}}(\alpha^n - \beta^n)$$

ข้อสังเกต : $\alpha+\beta=1, \alpha-\beta=\sqrt{5}, \alpha\beta=-1$

ทฤษฎีบท 2.18. [5] เอกลักษณ์ของจำนวนฟิโบนักชี เมื่อ $n\geq 2$

$$F_{n-1}F_{n+1} - F_n^2 = (-1)^n$$

ตัวอย่าง 2.19. จากลำดับฟีโบนักชี $1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$

$$F_{4-1}F_{4+1} + F_4^2 = 2 \times 5 - 3^2 = 1 = (-1)^4$$

$$F_{5-1}F_{5+1} + F_5^2 = 3 \times 8 - 5^2 = -1 = (-1)^5$$

$$F_{6-1}F_{6+1} + F_6^2 = 5 \times 13 - 8^2 = 1 = (-1)^6$$

$$F_{7-1}F_{7+1} + F_7^2 = 8 \times 21 - 13^2 = -1 = (-1)^7$$

$$F_{8-1}F_{8+1} + F_8^2 = 13 \times 34 - 21^2 = 1 = (-1)^8$$

บทที่ 3

ทฤษฎีบทหลัก

3.1 ผลบวกของส่วนกลับของเลขจำนวนฟีโบนักชี

ในการพิสูจน์ทฤษฎีบทที่ 3.3 เราจะต้องใช้บทตั้ง 2 บท ต่อไปนี้

บทตั้ง 3.1.

$$\sum_{k=n}^{\infty} \frac{F_{n-2}}{F_k} < 1 \, เมื่อ \, n \, เป็นจำนวนคู่ และ \, n \geq 2 \tag{3.1}$$

พิสูจน์. ให้
$$n>0$$

$$\begin{split} &\frac{1}{F_n} - \frac{2}{F_{n+2}} - \frac{1}{F_{n+3}} = \frac{F_{n+2} - 2F_n}{F_n F_{n+2}} - \frac{1}{F_{n+3}} \\ &= \frac{(F_n + F_{n+1}) - F_n - F_n}{F_n F_{n+2}} - \frac{1}{F_{n+3}} \\ &= \frac{F_{n+1} - F_n}{F_n F_{n+2}} - \frac{1}{F_{n+3}} \\ &= \frac{(F_n + F_{n-1}) - F_n}{F_n F_{n+2}} - \frac{1}{F_{n+3}} \\ &= \frac{F_{n-1}}{F_n F_{n+2}} - \frac{1}{F_{n+3}} \\ &= \frac{F_{n-1}}{F_n F_{n+2}} - \frac{1}{F_{n+3}} \\ &= \frac{F_{n-1} F_{n+3} - F_n F_{n+2}}{F_n F_{n+2} F_{n+3}} \\ &= \frac{(F_{n+1} - F_n)(F_{n+2} + F_{n+1}) - (F_{n+1} - F_{n-1})(F_n + F_{n+1})}{F_n F_{n+2} F_{n+3}} \\ &= \frac{[F_{n+1} F_{n+2} + F_{n+1}^2 - F_n F_{n+2} - F_n F_{n+1}] - [F_n F_{n+1} + F_{n+1}^2 - F_n F_{n-1} - F_{n-1} F_{n+1}]}{F_n F_{n+2} F_{n+3}} \end{split}$$

$$= \frac{[F_{n+1}^2 - F_n F_{n+2} + F_{n+1} (F_{n+2} - F_n)] - [F_{n+1}^2 - F_{n-1} F_{n+1} + F_n (F_{n+1} - F_{n-1})]}{F_n F_{n+2} F_{n+3}}$$

$$= \frac{[F_{n+1}^2 - F_n F_{n+2}] - [F_n^2 - F_{n-1} F_{n+1}]}{F_n F_{n+2} F_{n+3}}$$

$$= \frac{-[F_n F_{n+2} - F_{n+1}^2] + [F_{n-1} F_{n+1} - F_n^2]}{F_n F_{n+2} F_{n+3}}$$

$$= \frac{-(-1)^{n+1} + (-1)^n}{F_n F_{n+2} F_{n+3}}$$

$$= \frac{2(-1)^n}{F_n F_{n+2} F_{n+3}}$$

ถ้า n เป็นจำนวนคู่ และ n>0, จะได้

$$\frac{1}{F_n} - \frac{2}{F_{n+2}} - \frac{1}{F_{n+3}} > 0$$

$$\frac{1}{F_n} > \frac{1}{F_{n+2}} + \frac{1}{F_{n+2}} + \frac{1}{F_{n+3}}$$

พิจารณาอสมการบนเงื่อนไข n>2 เราจะได้

$$\begin{split} \frac{1}{F_{n-2}} &> \frac{1}{F_n} + \frac{1}{F_n} + \frac{1}{F_{n+1}} \\ &> \frac{1}{F_n} + \frac{1}{F_{n+1}} + (\frac{1}{F_{n+2}} + \frac{1}{F_{n+2}} + \frac{1}{F_{n+3}}) \\ &> \frac{1}{F_n} + \frac{1}{F_{n+1}} + \frac{1}{F_{n+2}} + \frac{1}{F_{n+3}} + (\frac{1}{F_{n+4}} + \frac{1}{F_{n+4}} + \frac{1}{F_{n+5}}) \\ &> \frac{1}{F_n} + \frac{1}{F_{n+1}} + \frac{1}{F_{n+2}} + \frac{1}{F_{n+3}} + \frac{1}{F_{n+4}} + \frac{1}{F_{n+5}} + \dots \\ &= \sum_{k=n}^{\infty} \frac{1}{F_k} \end{split}$$

และกรณี n=2

$$\sum_{k=2}^{\infty} \frac{F_{2-2}}{F_k} = \frac{0}{1} + \frac{0}{1} + \frac{0}{2} + \dots < 1$$

เราจะได้

$$\sum_{k=n}^{\infty} \frac{F_{n-2}}{F_k} < 1$$
 เมื่อ n เป็นจำนวนคู่ และ $n \geq 2$

จบการพิสูจน์ (3.1)

ถ้า n เป็นจำนวนคี่ และ n>0, จะได้

$$\frac{1}{F_n} - \frac{2}{F_{n+2}} - \frac{1}{F_{n+3}} < 0$$

$$\frac{1}{F_n} < \frac{1}{F_{n+2}} + \frac{1}{F_{n+2}} + \frac{1}{F_{n+3}}$$

เราจะได้

$$\begin{split} \frac{1}{F_{n-2}} &< \frac{1}{F_n} + \frac{1}{F_n} + \frac{1}{F_{n+1}} \\ &< \frac{1}{F_n} + \frac{1}{F_{n+1}} + (\frac{1}{F_{n+2}} + \frac{1}{F_{n+2}} + \frac{1}{F_{n+3}}) \\ &< \frac{1}{F_n} + \frac{1}{F_{n+1}} + \frac{1}{F_{n+2}} + \frac{1}{F_{n+3}} + (\frac{1}{F_{n+4}} + \frac{1}{F_{n+4}} + \frac{1}{F_{n+5}}) \\ &< \frac{1}{F_n} + \frac{1}{F_{n+1}} + \frac{1}{F_{n+2}} + \frac{1}{F_{n+3}} + \frac{1}{F_{n+4}} + \frac{1}{F_{n+5}} + \dots \\ &= \sum_{k=n}^{\infty} \frac{1}{F_k} \end{split}$$

ดังนั้น

$$\sum_{k=n}^{\infty} \frac{F_{n-2}}{F_k} > 1$$
 เมื่อ n เป็นจำนวนคี่ และ $n \geq 1$

จบการพิสูจน์ (3.2)

บทตั้ง 3.2. เมื่อ $n \geq 1$

$$\sum_{k=n}^{\infty} \frac{F_{n-2} - 1}{F_k} < 1 \tag{3.3}$$

$$\sum_{k=n}^{\infty} \frac{F_{n-2} + 1}{F_k} > 1 \tag{3.4}$$

พิสูจน์. เราให้
$$\alpha=\frac{1+\sqrt{5}}{2}$$
 และ $\beta=\frac{1-\sqrt{5}}{2}$ และ $k\geq m\geq 1$ จะได้ว่า

$$\sqrt{5}(F_{k-m} - \alpha^{-m}F_k) = \alpha^{k-m} - \beta^{k-m} - \alpha^{-m}(\alpha^k - \beta^k)$$

$$= \alpha^{k-m} - \beta^{k-m} - \alpha^{k-m} + \alpha^{-m}\beta^k$$

$$= \alpha^{-m}\beta^k - \beta^{k-m}$$

$$\leq \alpha^{-m}|\beta|^k + |\beta|^{k-m}$$

$$< \alpha^0|\beta|^0 + |\beta|^0$$

$$= 2 < \sqrt{5}$$

จะได้

$$F_{k-m} - \alpha^{-m} F_k < 1$$

$$F_{k-m} < 1 + \alpha^{-m} F_k$$

$$F_{k-m} - 1 < \alpha^{-m} F_k$$

$$\frac{F_{k-m} - 1}{F_k} < \alpha^{-m}$$

เมื่อให้ m=k-n+2 จะได้

$$\frac{F_{k-(k-n+2)} - 1}{F_k} < \alpha^{-k+n-2}$$

$$\frac{F_{n-2} - 1}{F_k} < \alpha^{n-k-2} \qquad (2 \le n \le k+1)$$

จากอสมการเราจะได้

$$\sum_{k=n}^{\infty} \frac{F_{n-2} - 1}{F_k} < \sum_{k=n}^{\infty} \alpha^{n-k-2} = \sum_{j=2}^{\infty} \alpha^{-j} = \frac{1}{\alpha^2 (1 - \alpha^{-1})} = \frac{1}{\alpha^2 - \alpha} = 1$$

จบการพิสูจน์ (3.3)

เราให้
$$\alpha=rac{1+\sqrt{5}}{2}$$
 และ $eta=rac{1-\sqrt{5}}{2}$

กรณีเมื่อ $k \neq m$ และ $k > m \geq 1$ และให้

$$A = |\beta^{k-m}| = \left| \left(\frac{1 - \sqrt{5}}{2} \right)^{k-m} \right| = \left(\frac{\sqrt{5} - 1}{2} \right)^{k-m} \le \frac{\sqrt{5} - 1}{2}$$

จะได้

$$|\beta^{k-m}| \le \frac{\sqrt{5} - 1}{2}$$

และ

$$\left(\frac{\beta}{\alpha}\right)^m = \left(\frac{1-\sqrt{5}}{2} \times \frac{2}{1+\sqrt{5}}\right)^m$$
$$= \left(-\frac{(1-\sqrt{5})^2}{4}\right)^m = (-0.381)^m$$

ดังนั้น

$$-1 < (-0.381...)^m < 1$$
$$-2 < (-0.381...)^m - 1 < 0$$

และให้

$$B = \left| \left(\frac{\beta}{\alpha} \right)^m - 1 \right| < 2$$

พิจารณา $A \times B$

$$\left| \beta^{k-m} \right| \times \left| \left(\frac{\beta}{\alpha} \right)^m - 1 \right| \le \sqrt{5} - 1 < \sqrt{5}$$

$$\left| \left(\frac{\beta^k}{\beta^m} \times \frac{\beta^m}{\alpha^m} \right) - \frac{\beta^k}{\beta^m} \right| < \sqrt{5}$$

$$\left| \frac{\beta^k}{\alpha^m} - \frac{\beta^k}{\beta^m} \right| < \sqrt{5}$$

$$\left| \frac{\beta^{k+m} - \alpha^m \beta^k}{\alpha^m \beta^m} \right| < \sqrt{5}$$

$$\left| \alpha^{-m} \beta^k - \beta^{k-m} \right| < \sqrt{5}$$

ดังนั้น

$$-\sqrt{5} < \alpha^{-m}\beta^k - \beta^{k-m} < \sqrt{5}$$

กรณีเมื่อ k=m จาก

$$\left| \left(\frac{\beta}{\alpha} \right)^m - 1 \right| < 2$$

 $A \times B$ จะได้

$$\left| \beta^0 \right| \times \left| \left(\frac{\beta}{\alpha} \right)^m - 1 \right| \le \sqrt{5} - 1 < 1 \times 2$$

$$\left| \left(\frac{\beta}{\alpha} \right)^m - 1 \right| < 2$$

$$\left| \left(\frac{\beta}{\alpha} \right)^m - 1 \right| < \sqrt{5}$$

ดังนั้น

$$-\sqrt{5} < \alpha^{-m}\beta^k - \beta^{k-m} < \sqrt{5}$$

จากการพิจารณากรณีที่ $k \neq m$ และ k = m สรุปได้ว่า

$$-\sqrt{5} < \alpha^{-m}\beta^k - \beta^{k-m} < \sqrt{5}$$

ในทำนองเดียวกันกับการพิสูจน์ (3.3) จะได้อสมการ

$$\alpha^{-m}\beta^k - \beta^{k-m} > -\sqrt{5}$$

จะได้

$$\sqrt{5}(F_{k-m} - \alpha^{-m}F_k) > -\sqrt{5}$$

$$F_{k-m} - \alpha^{-m}F_k > -1$$

$$F_{k-m} > \alpha^{-m}F_k - 1$$

$$F_{k-m} + 1 > \alpha^{-m}F_k$$

$$\frac{F_{k-m} + 1}{F_k} > \alpha^{-m}$$

เมื่อให้ m=k-n+2 จะได้

$$\frac{F_{k-(k-n+2)} + 1}{F_k} > \alpha^{-k+n-2}$$

$$\frac{F_{n-2} + 1}{F_k} > \alpha^{n-k-2}$$

เราจะได้

$$\sum_{k=n}^{\infty} \frac{F_{n-2} + 1}{F_k} > \sum_{k=n}^{\infty} \alpha^{n-k-2} = 1$$

จบการพิสูจน์ (3.4)

ทฤษฎีบท 3.3.

$$\left\lfloor \left(\sum_{k=n}^{\infty}\frac{1}{F_k}\right)^{-1}\right\rfloor = \begin{cases} F_{n-2}, & \text{เมื่อ } n \text{ เป็นจำนวนคู่ และ } n\geq 2;\\ F_{n-2}-1, & \text{เมื่อ } n \text{ เป็นจำนวนคี่ และ } n\geq 1 \end{cases}$$

 $\mbox{\it η} \mbox{\it η} \mbox{\it η} \mbox{\it u}$ กรณี n เป็นจำนวนคู่ และ $n \geq 2$ พิจารณาที่ n=2,

$$\sum_{k=2}^{\infty} \frac{1}{F_k} > \frac{1}{F_2} = 1$$

ดังนั้น

$$0 < \left(\sum_{k=2}^{\infty} \frac{1}{F_k}\right)^{-1} < 1$$

นำฟังก์ชันจำนวนเต็มมากสุดมาพิจารณา จะได้ว่า

$$\left| \left(\sum_{k=2}^{\infty} \frac{1}{F_k} \right)^{-1} \right| = 0 = F_{2-2}$$

จากบทตั้ง 3.1 และบทตั้ง 3.2 พิจารณาที่ $n \geq 4$

$$\frac{1}{F_{n-2}+1} < \sum_{k=n}^{\infty} \frac{1}{F_k} < \frac{1}{F_{n-2}}$$

ดังนั้น

$$F_{n-2} < \left(\sum_{k=n}^{\infty} \frac{1}{F_k}\right)^{-1} < F_{n-2} + 1$$

นำฟังก์ชันจำนวนเต็มมากสุดมาพิจารณา จะได้ว่า

$$\left|\left(\sum_{k=n}^{\infty}\frac{1}{F_k}\right)^{-1}\right|=F_{n-2}$$
 เมื่อ n เป็นจำนวนคู่ และ $n\geq 2$

กรณี n เป็นจำนวนคี่ และ $n\geq 1$ พิจารณาที่ n=1

$$\sum_{k=1}^{\infty} \frac{1}{F_k} > \frac{1}{F_1} = 1$$

ดังนั้น

$$0 < \left(\sum_{k=1}^{\infty} \frac{1}{F_k}\right)^{-1} < 1$$

นำฟังก์ชันจำนวนเต็มมากสุดมาพิจารณา จะได้ว่า

$$\left[\left(\sum_{k=1}^{\infty} \frac{1}{F_k} \right)^{-1} \right] = 0 = F_{1-2} - 1$$

พิจารณาที่ n=3

$$\sum_{k=3}^{\infty} \frac{1}{F_k} = \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \dots$$
$$= \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \dots > 1$$

ดังนั้น

$$0 < \left(\sum_{k=3}^{\infty} \frac{1}{F_k}\right)^{-1} < 1$$

นำฟังก์ชันจำนวนเต็มมากสุดมาพิจารณา จะได้ว่า

$$\left[\left(\sum_{k=3}^{\infty} \frac{1}{F_k} \right)^{-1} \right] = 0 = F_{3-2} - 1$$

จากบทตั้ง 3.1 และบทตั้ง 3.2 พิจารณาที่ $n \geq 5$

$$\frac{1}{F_{n-2}} < \sum_{k=n}^{\infty} \frac{1}{F_k} < \frac{1}{F_{n-2} - 1}$$

ดังนั้น

$$F_{n-2} - 1 < \left(\sum_{k=n}^{\infty} \frac{1}{F_k}\right)^{-1} < F_{n-2}$$

นำฟังก์ชันจำนวนเต็มมากสุดมาพิจารณา จะได้ว่า

$$\left|\left(\sum_{k=n}^{\infty}\frac{1}{F_k}\right)^{-1}\right|=F_{n-2}-1$$
 เมื่อ n เป็นจำนวนคี่ และ $n\geq 1$

จบการพิสูจน์ทฤษฎีบทแรก

3.2 ผลบวกของส่วนกลับยกกำลังสองของเลขจำนวนฟีโบนักชี

ในการพิสูจน์ทฤษฎีบทที่ 3.6 เราจะต้องใช้บทตั้ง 2 บท ต่อไปนี้

บทตั้ง 3.4. เมื่อ n>1

$$\sum_{k=n}^{\infty} \frac{F_{n-1}F_n}{F_k^2} > 1$$
เมื่อ n เป็นจำนวนคู่ และ $n \ge 2$ (3.5)

$$\sum_{k=n}^{n-n} \frac{F_{n-1}F_n}{F_k^2} < 1$$
 เมื่อ n เป็นจำนวนคี่ และ $n \ge 1$ (3.6)

พิสูจน์. ให้ n>1 จะได้

$$\begin{split} \frac{1}{F_{n-1}F_n} - \frac{1}{F_n^2} - \frac{1}{F_{n+1}^2} - \frac{1}{F_{n+1}F_{n+2}} &= \frac{F_n^2 - F_{n-1}F_n}{F_{n-1}F_nF_n^2} - \frac{F_{n+1}F_{n+2} + F_{n+1}^2}{F_{n+1}F_{n+2}F_{n+1}^2} \\ &= \frac{F_n - F_{n-1}}{F_{n-1}F_n^2} - \frac{F_{n+2} + F_{n+1}}{F_{n+1}^2F_{n+2}} \\ &= \frac{F_{n-2}}{F_{n-1}F_n^2} - \frac{F_{n+3}}{F_{n+1}^2F_{n+2}} \\ &= \frac{F_{n-2}F_{n+1}^2F_{n+2} - F_{n+3}F_{n-1}F_n^2}{F_{n-1}F_n^2F_{n+1}^2F_{n+2}} \\ &= \frac{F_{n-1}^2(F_n - F_{n-1})(F_n + F_{n+1}) - F_n^2(F_{n+1} - F_n)(F_{n+1} + F_{n+2})}{F_{n-1}F_n^2F_{n+1}^2F_{n+2}} \end{split}$$

พิจารณาเฉพาะเศษของสมการ

$$\begin{split} F_{n+1}^2(F_n - F_{n-1})(F_n + F_{n+1}) - F_n^2(F_{n+1} - F_n)(F_{n+1} + F_{n+2}) \\ &= F_{n+1}^2(F_n^2 + F_n F_{n+1} - F_{n-1} F_n - F_{n-1} F_{n+1}) - F_n^2(F_{n+1}^2 + F_{n+1} F_{n+2} - F_n F_{n+1} - F_n F_{n+2}) \\ &= F_{n+1}^2(F_n^2 + F_n(F_{n+1} - F_{n-1}) - F_{n-1} F_{n+1}) - F_n^2(F_{n+1}^2 + F_{n+1}(F_{n+2} - F_n) - F_n F_{n+2}) \\ &= F_{n+1}^2(F_n^2 + F_n^2 - F_{n-1} F_{n+1}) - F_n^2(F_{n+1}^2 + F_{n+1}^2 - F_n F_{n+2}) \\ &= F_{n+1}^2(F_n^2 - (F_{n-1} F_{n+1} - F_n^2)) - F_n^2(F_{n+1}^2 - (F_n F_{n+2} - F_{n+1}^2)) \\ &= F_{n+1}^2(F_n^2 - (-1)^n) - F_n^2(F_{n+1}^2 - (-1)^{n+1}) \\ &= (F_{n+1}^2 F_n^2 - F_{n+1}^2(-1)^n) - (F_n^2 F_{n+1}^2 - F_n^2(-1)^{n+1}) \\ &= -F_{n+1}^2(-1)^{n+1} + F_n^2(-1)^{n+1} \\ &= F_{n+1}^2(-1)^{n+1} + F_n^2(-1)^{n+1} \\ &= (F_{n+1}^2 + F_n^2)(-1)^{n+1} \end{split}$$

จะได้

$$\frac{1}{F_{n-1}F_n} - \frac{1}{F_n^2} - \frac{1}{F_{n+1}^2} - \frac{1}{F_{n+1}F_{n+2}} = \frac{F_{2n+1}(-1)^{n+1}}{F_{n-1}F_n^2F_{n+1}^2F_{n+2}}$$

กรณี n เป็นจำนวนคู่ และ $n\geq 2$ ดังนั้น

$$\begin{aligned} \frac{1}{F_{n-1}F_n} - \frac{1}{F_n^2} - \frac{1}{F_{n+1}^2} - \frac{1}{F_{n+1}F_{n+2}} < 0 \\ \frac{1}{F_{n-1}F_n} < \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+1}F_{n+2}} \end{aligned}$$

วิเคราะห์อสมการ

$$\frac{1}{F_{n-1}F_n} < \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+1}F_{n+2}}$$

$$< \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + (\frac{1}{F_{n+2}^2} + \frac{1}{F_{n+3}^2} + \frac{1}{F_{n+3}F_{n+4}})$$

$$< \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2} + \frac{1}{F_{n+3}^2} + (\frac{1}{F_{n+4}^2} + \frac{1}{F_{n+5}^2} + \frac{1}{F_{n+5}F_{n+6}})$$

$$< \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2} + \frac{1}{F_{n+3}^2} + \frac{1}{F_{n+4}^2} + \frac{1}{F_{n+5}^2} + \dots$$

$$= \sum_{k=n}^{\infty} \frac{1}{F_k^2}$$

เราจะได้

$$\sum_{k=n}^{\infty} rac{F_{n-1}F_n}{F_k^2} > 1$$
 มื่อ n เป็นจำนวนคู่ และ $n \geq 2$

จบการพิสูจน์ (3.5)

กรณีที่ n เป็นจำนวนคี่ พิจารณาที่ n=1 จะได้

$$\sum_{k=n}^{\infty} \frac{F_{n-1}F_n}{F_k^2} = \sum_{k=1}^{\infty} \frac{F_{1-1}F_1}{F_k^2}$$
$$= \frac{0(1)}{1^2} + \frac{0(1)}{1^2} + \frac{0(1)}{2^2} + \dots < 1$$

ดังนั้น

$$\sum_{k=n}^{\infty} \frac{F_{n-1}F_n}{F_k^2} < 1$$

พิจารณาที่ $n \geq 3$

$$\frac{1}{F_{n-1}F_n} - \frac{1}{F_n^2} - \frac{1}{F_{n+1}^2} - \frac{1}{F_{n+1}F_{n+2}} = \frac{F_{2n+1}(-1)^{n+1}}{F_{n-1}F_n^2F_{n+1}^2F_{n+2}} > 0$$

จะได้

$$\frac{1}{F_{n-1}F_n} - \frac{1}{F_n^2} - \frac{1}{F_{n+1}^2} - \frac{1}{F_{n+1}F_{n+2}} > 0$$

$$\frac{1}{F_{n-1}F_n} > \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+1}F_{n+2}}$$

วิเคราะห์อสมการ

$$\frac{1}{F_{n-1}F_n} > \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+1}F_{n+2}}$$

$$> \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + (\frac{1}{F_{n+2}^2} + \frac{1}{F_{n+3}^2} + \frac{1}{F_{n+3}F_{n+4}})$$

$$> \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2} + \frac{1}{F_{n+3}^2} + (\frac{1}{F_{n+4}^2} + \frac{1}{F_{n+5}^2} + \frac{1}{F_{n+5}F_{n+6}})$$

$$> \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2} + \frac{1}{F_{n+3}^2} + \frac{1}{F_{n+4}^2} + \frac{1}{F_{n+5}^2} + \cdots$$

$$= \sum_{k=n}^{\infty} \frac{1}{F_k^2}$$

เราจะได้

$$\sum_{k=n}^{\infty} rac{F_{n-1}F_n}{F_k^2} < 1$$
 มื่อ n เป็นจำนวนคี่ และ $n \geq 1$

จบการพิสูจน์ (3.6)

บทตั้ง 3.5. เมื่อ $n\geq 1$

$$\sum_{k=n}^{\infty} \frac{F_{n-1}F_n - 1}{F_k^2} < 1 \tag{3.7}$$

$$\sum_{k=n}^{\infty} \frac{F_{n-1}F_n + 1}{F_k^2} > 1 \tag{3.8}$$

พิสูจน์. ให้ n=1 จาก

$$\sum_{k=n}^{\infty} \frac{F_{n-1}F_n - 1}{F_k^2} = \sum_{k=1}^{\infty} \frac{F_0F_1 - 1}{F_k^2} = \sum_{k=1}^{\infty} \frac{-1}{F_k^2}$$

$$= \frac{-1}{F_1^2} + \frac{-1}{F_2^2} + \frac{-1}{F_3^2} + \dots$$

$$= \frac{-1}{1^2} + \frac{-1}{1^2} + \frac{-1}{2^2} + \dots$$

$$< 1$$

ให้ $n \geq 2$

$$\frac{1}{F_{n-1}F_n - 1} - \frac{1}{F_n^2} - \frac{1}{F_nF_{n+1} - 1} = \frac{(F_nF_{n+1} - 1) - (F_{n-1}F_n - 1)}{(F_{n-1}F_n - 1)(F_nF_{n+1} - 1)} - \frac{1}{F_n^2}$$

$$= \frac{F_nF_{n+1} - F_nF_{n-1}}{(F_{n-1}F_n - 1)(F_nF_{n+1} - 1)} - \frac{1}{F_n^2}$$

$$= \frac{F_n(F_{n+1} - F_{n-1})}{(F_{n-1}F_n - 1)(F_nF_{n+1} - 1)} - \frac{1}{F_n^2}$$

$$= \frac{F_n^2}{(F_{n-1}F_n - 1)(F_nF_{n+1} - 1)} - \frac{1}{F_n^2}$$

$$= \frac{F_n^4 - (F_{n-1}F_n - 1)(F_nF_{n+1} - 1)}{(F_{n-1}F_n - 1)(F_nF_{n+1} - 1)F_n^2}$$

พิจารณาเฉพาะเศษของสมการ

$$F_n^4 - (F_{n-1}F_n - 1)(F_nF_{n+1} - 1) = F_n^4 - F_{n-1}F_n^2F_{n+1} + F_{n-1}F_n + F_nF_{n+1} - 1$$

$$= F_n^4 - F_n^2(F_n^2 + (-1)^n) + F_n(F_{n-1} + F_{n+1}) - 1$$

$$= F_n^4 - F_n^4 - (-1)^nF_n^2 + F_n(F_{n-1} + F_{n+1}) - 1$$

$$= -(-1)^nF_n^2 + F_n(F_{n-1} + F_{n+1}) - 1$$

$$\geq -F_n^2 + F_n(F_{n-1} + F_{n+1}) - 1$$

$$= -F_n^2 + F_nF_{n-1} + F_nF_{n+1} - 1$$

$$= F_n(-F_n + F_{n-1} + F_{n+1}) - 1$$

$$= F_n(F_{n-1} + F_{n-1}) - 1$$

$$= 2F_nF_{n-1} - 1 > 1 > 0$$

จะได้

$$\frac{1}{F_{n-1}F_n - 1} - \frac{1}{F_n^2} - \frac{1}{F_nF_{n+1} - 1} = \frac{2F_nF_{n-1} - 1}{(F_{n-1}F_n - 1)(F_nF_{n+1} - 1)F_n^2} > 0$$

กรณีที่ n>2 เราจะได้

$$\frac{1}{F_{n-1}F_n - 1} - \frac{1}{F_n^2} - \frac{1}{F_nF_{n+1} - 1} > 0$$

$$\frac{1}{F_{n-1}F_n - 1} > \frac{1}{F_n^2} + \frac{1}{F_nF_{n+1} - 1}$$

วิเคราะห์อสมการ

$$\begin{split} \frac{1}{F_{n-1}F_n-1} &> \frac{1}{F_n^2} + \frac{1}{F_nF_{n+1}-1} \\ &> \frac{1}{F_n^2} + (\frac{1}{F_{n+1}^2} + \frac{1}{F_{n+1}F_{n+2}-1}) \\ &> \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + (\frac{1}{F_{n+2}^2} + \frac{1}{F_{n+2}F_{n+3}-1}) \\ &> \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2} + (\frac{1}{F_{n+3}^2} + \frac{1}{F_{n+3}F_{n+4}-1}) \\ &> \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2} + \frac{1}{F_{n+3}^2} + \frac{1}{F_{n+4}^2} + \dots \\ &= \sum_{k=n}^{\infty} \frac{1}{F_k^2} \end{split}$$

เมื่อ $n \geq 1$ ดังนั้น

$$\sum_{k=n}^{\infty} \frac{F_{n-1}F_n - 1}{F_k^2} < 1$$

จบการพิสูจน์ (3.7)

ให้ n=1 จาก

$$\sum_{k=n}^{\infty} \frac{F_{n-1}F_n + 1}{F_k^2} = \sum_{k=1}^{\infty} \frac{F_0F_1 + 1}{F_k^2} = \sum_{k=1}^{\infty} \frac{1}{F_k^2}$$
$$= \frac{1}{F_1^2} + \frac{1}{F_2^2} + \frac{1}{F_3^2} + \dots$$
$$= \frac{1}{1^2} + \frac{1}{1^2} + \frac{1}{2^2} + \dots$$
$$> 1$$

ให้ $n \geq 2$

$$\frac{1}{F_{n-1}F_n+1} - \frac{1}{F_n^2} - \frac{1}{F_nF_{n+1}+1} = \frac{(F_nF_{n+1}+1) - (F_{n-1}F_n+1)}{(F_{n-1}F_n+1)(F_nF_{n+1}+1)} - \frac{1}{F_n^2}$$

$$= \frac{F_nF_{n+1} - F_nF_{n-1}}{(F_{n-1}F_n+1)(F_nF_{n+1}+1)} - \frac{1}{F_n^2}$$

$$= \frac{F_n(F_{n+1} - F_{n-1})}{(F_{n-1}F_n+1)(F_nF_{n+1}+1)} - \frac{1}{F_n^2}$$

$$= \frac{F_n^2}{(F_{n-1}F_n+1)(F_nF_{n+1}+1)} - \frac{1}{F_n^2}$$

$$= \frac{F_n^4 - (F_{n-1}F_n+1)(F_nF_{n+1}+1)}{(F_{n-1}F_n+1)(F_nF_{n+1}+1)F_n^2}$$

พิจารณาเฉพาะเศษของสมการ

$$F_n^4 - (F_{n-1}F_n + 1)(F_nF_{n+1} + 1) = F_n^4 - F_{n-1}F_n^2F_{n+1} - F_{n-1}F_n - F_nF_{n+1} - 1$$

$$= F_n^4 - F_n^2(F_n^2 + (-1)^n) - F_n(F_{n-1} + F_{n+1}) - 1$$

$$= -(-1)^n F_n^2 - F_n(F_{n-1} + F_{n+1}) - 1$$

$$\leq F_n^2 - F_n(F_{n-1} + F_{n+1}) - 1$$

$$= F_n^2 - F_nF_{n-1} - F_nF_{n+1} - 1$$

$$= F_n(F_n - F_{n-1} - F_{n+1}) - 1$$

$$= F_n[F_n - F_{n-1} - (F_n + F_{n-1})] - 1$$

$$= F_n(F_n - F_{n-1} - F_n - F_{n-1}) - 1$$

$$= F_n(-2F_{n-1}) - 1$$

$$= -2F_nF_{n-1} - 1 < -3 < 0$$

จะได้

$$\frac{1}{F_{n-1}F_n+1} - \frac{1}{F_n^2} - \frac{1}{F_nF_{n+1}+1} = \frac{-2F_nF_{n-1}-1}{(F_{n-1}F_n+1)(F_nF_{n+1}+1)F_n^2} < 0$$

กรณีที่ n>2 เราจะได้

$$\frac{1}{F_{n-1}F_n+1} - \frac{1}{F_n^2} - \frac{1}{F_nF_{n+1}+1} < 0$$

$$\frac{1}{F_{n-1}F_n+1} < \frac{1}{F_n^2} + \frac{1}{F_nF_{n+1}+1}$$

วิเคราะห์อสมการ

$$\frac{1}{F_{n-1}F_n+1} < \frac{1}{F_n^2} + \frac{1}{F_nF_{n+1}+1}$$

$$< \frac{1}{F_n^2} + (\frac{1}{F_{n+1}^2} + \frac{1}{F_{n+1}F_{n+2}+1})$$

$$< \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + (\frac{1}{F_{n+2}^2} + \frac{1}{F_{n+2}F_{n+3}+1})$$

$$< \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2} + (\frac{1}{F_{n+3}^2} + \frac{1}{F_{n+3}F_{n+4}+1})$$

$$< \frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2} + \frac{1}{F_{n+3}^2} + \frac{1}{F_{n+4}^2} + \dots$$

$$= \sum_{k=n}^{\infty} \frac{1}{F_k^2}$$

เมื่อ n > 1 ดังนั้น

$$\sum_{k=n}^{\infty} \frac{F_{n-1}F_n + 1}{F_k^2} > 1$$

จบการพิสูจน์ (3.8)

ทฤษฎีบท 3.6.

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k^2} \right)^{-1} \right\rfloor = \begin{cases} F_{n-1} F_n - 1, & \text{เมื่อ } n \text{ เป็นจำนวนคู่ และ } n \geq 2; \\ F_{n-1} F_n, & \text{เมื่อ } n \text{ เป็นจำนวนคี่ และ } n \geq 1 \end{cases}$$

พิสูจน์. กรณีที่ n เป็นจำนวนคู่ และ $n\geq 2$ จากบทตั้ง 3.4 และบทตั้ง 3.5 เราจะได้

$$\frac{1}{F_{n-1}F_n} < \sum_{k=n}^{\infty} \frac{1}{F_k^2} < \frac{1}{F_{n-1}F_n - 1}$$

ดังนั้น

$$F_{n-1}F_n - 1 < \left(\sum_{k=n}^{\infty} \frac{1}{F_k^2}\right)^{-1} < F_{n-1}F_n$$

นำฟังก์ชันจำนวนเต็มมากสุดมาพิจารณา จะได้ว่า

$$\left|\left(\sum_{k=n}^{\infty}\frac{1}{F_k^2}\right)^{-1}\right|=F_{n-1}F_n-1$$
 เมื่อ n เป็นจำนวนคู่ และ $n\geq 2$

กรณีที่ n เป็นจำนวนคี่ และ $n \geq 1$ พิจารณา n = 1

$$\sum_{k=1}^{\infty} \frac{1}{F_k^2} > \frac{1}{F_1^2} = 1$$

จะได้ว่า

$$0 < \left(\sum_{k=1}^{\infty} \frac{1}{F_k^2}\right)^{-1} < 1$$

นำฟังก์ชันจำนวนเต็มมากสุดมาพิจารณา จะได้ว่า

$$\left[\left(\sum_{k=1}^{\infty} \frac{1}{F_k^2} \right)^{-1} \right] = 0 = F_0 F_1$$

พิจารณา $n\geq 3$, จาก 3.4 และบทตั้ง 3.5 เราจะได้

$$\frac{1}{F_{n-1}F_n+1} < \sum_{k=n}^{\infty} \frac{1}{F_k^2} < \frac{1}{F_{n-1}F_n}$$

ดังนั้น

$$F_{n-1}F_n < \left(\sum_{k=n}^{\infty} \frac{1}{F_k^2}\right)^{-1} < F_{n-1}F_n + 1$$

นำฟังก์ชันจำนวนเต็มมากสุดมาพิจารณา จะได้ว่า

$$\left|\left(\sum_{k=n}^{\infty}\frac{1}{F_k^2}\right)^{-1}\right|=F_{n-1}F_n$$
 เมื่อ n เป็นจำนวนคี่ และ $n\geq 1$

จบการพิสูจน์ทฤษฎีบทสอง

บรรณานุกรม

- [1] นรากร คณาศรี.ทฤษฎีจำนวน 1. โรงพิมพ์มหาวิทยาลัยขอนแก่น, 2555.
- [2] David M. Burton. (2011). ELEMENTARY NUMBER THEORY. Prentice-Hall. 7th ed. New York: The McGraw-Hill Companies, Inc.
- [3] Hideyuki Ohtsuka , Shigeru Nakamaru. (2008/2009). On the sum of reciprocal Fibonacci numbers.Quarterly . 46/47. 153 159.
- [4] Jeffrey R. Chasnov. (2016). Fibonacci Numbers And The Golden Ratio. The Hong Kong University Of Scince And Technilogy.
- [5] T. Koshy. Fibonacci and Lucas numbers with Applications. John Wiley and Sons. New York, 2001.