			l .
PROPOSITIONAL	LOGIC	8	NFERENCE

(1) We want a computationally efficient way to determine we'll whether $x \models \beta$ for sentences α , $\beta \in \mathcal{L}(\Sigma)$. -- The settle for way. Revisiting our animal angular way.

Revisiting our animal example, we could ask (for example): $(P \Rightarrow iF) \land (B \Rightarrow F) \not\models P \Rightarrow \neg B$

Without resorting to enumerating the truth table, how can we determine whether this entailment holds?

2) Here is a helpful result:

Thm I For all $\alpha, \beta \in \mathcal{L}(\Sigma)$, $\alpha \models \beta$ iff $\mathbb{I}(\alpha \land \neg \beta) = \emptyset$

Proof: (only if) Suppose $\alpha \models \beta$ and assume there exists a model $m \in \mathbb{I}(\alpha \land \neg \beta)$. Thus $m \in \mathbb{I}(\alpha)$

and ™ I(¬B), which means m ≠ I(B).

Now $\alpha \models \beta$ means (by defin) that $\Xi(\alpha) \subseteq \Xi(\beta)$, which means there is no model m' such that $m' \in \Xi(\alpha)$ and $m' \notin \Xi(\beta)$. Contradiction! So $\Xi(\alpha \land \beta) = \emptyset$.

(if) Suppose $\Pi(\alpha \Lambda \neg \beta) = \emptyset$. Thus $\Pi(\alpha) \cap \Pi(\neg \beta) = \emptyset$. Now consider $m \in M(\Sigma)$. If $m \in \Pi(\alpha)$, then we know $m \notin \Pi(\neg \beta)$, thus $m \in \Pi(\beta)$ by definition of \neg . So $M(\alpha) \subseteq \Pi(\beta)$, which means $\alpha \models \beta$. 3) Now we have a simple test for entailment:

does < A - B have any models?

This means we can focus on finding an algorithm to determine whether an arbitrary sentence $\delta \in \mathcal{L}(\Sigma)$ is satisfiable (defined as $T(\delta) \neq \emptyset$).

4) We'll begin by finding an algorithm for testing satisfiability that assumes the sentence of has a particular form called Conjunctive Normal Form (CNF), which means that it is a conjunction (i.e. ANDing) of disjunctions (ORS), like

(JPVF) A (PVB) A (BVJFVJP)

5) More formally, define the <u>literals</u> of signature Σ to be LITERALS $(\Sigma) = \frac{2}{3}\sigma | \sigma \in \Sigma_3^3 \cup \frac{2}{3}\sigma | \sigma \in \Sigma_3^3$

We'll use the notation I (for literal 1) to mean:

The clauses of alphabet \(\Sigma\) are defined:

CLAUSES (Z) = {l, V Vlk | k = 1, lie LITERALS}
U & False}

6 A sentence is in CNF if it is a conjunction of clauses. CNF sentences have the benefit that they are somewhat intuitive to work with. Consider, for example, the sentence oc:

(¬PVF) A (PVB) A (¬BV¬FVP)

To show this is satisfiable, we need to find a satisfying model of α . In other words, we need $I(\alpha)$ (to be inonempty: II ((-PVF) N (PVB) N (-BV-FVP))

= II(¬PVF) (T(PVB) (TBV¬FVP)

955ign P-0

or F->1

models that

assign P->1 or B->1

models that 955ign B=0 or F=0 or P->1

So we can view each clause as a constraint on our model m: m needs to assign

From inspection we see that model {P=0, B=1, F=0} satisfies &, so & is satisfiable.

3) But how do we show a CNF sentence is unsatisfiable? Somehow we need to prove that there's no possible assignment that satisfies the constraints.

One strategy is to show that the sentence repritails a sentence we already know is unsatisfiable. If we know β is unsatisfiable, and we show $\alpha \models \beta$, then:

implies $\Pi(\alpha) \subseteq \Pi(\beta)$ implies $\Pi(\alpha) \subseteq \phi$ implies $\Pi(\alpha) = \phi$ So α is unsatisfiable.

by def'n because β is unsat.

3 Do we know any sentences that are unsatisfiable? We definitely know one. The sentence False

is unsatisfiable by definition, because II (False) = Ø.

So we can show & is unsatisfiable by showing & False

PROPOSITIONAL LOGIC: NFERENCE

(9) What we'd like are some sound rewrite rules so that if α can be rewritten as β according to those rules (written $\alpha + \beta$), then $\alpha \neq \beta$.

Then we can show sentence α is unsatisfiable by showing:

« Ha, H. Hak - False

Since that means:

x ⊨ x ⊨ False

and thus:

implies $\underline{\mathbb{T}}(\alpha) \subseteq \underline{\mathbb{T}}(\alpha_{k}) \subseteq \dots \subseteq \underline{\mathbb{T}}(\alpha_{k}) \subseteq \underline{\mathbb{T}}(F_{a}|se) = \emptyset$

10 Consider the example CNF sentence d:

(¬PV¬F) N (PVB) N F N¬B

As before, we can view each clause as a constraint on any model $m \in \mathbb{T}(\infty)$:

m needs to assign

PV-F

P-0 or F-0

PVB

P-1 or R-1

PVB P>1 or B>1

7B B→0

PROPOSITIONAL	OGIC:	NFERENCE
1 1-01-031 1101 110	0,0	

1) If we look at the first two clauses:

We can infer that:

∝ F ¬FVB

Note that this also means:

Q=(FVB)/Q

because for any sentence of

$$M \propto \neq M$$
 implies $I(\alpha) \subseteq I(X)$
implies $I(\alpha) \subseteq I(X) \cap I(\alpha)$
implies $\alpha \neq X \cap X$

12) We can continue this process:

we need F-0

And prove that & is unsatisfiable.

PROPOSITIONAL LOGIC: NFERENCE
13) The general version of this rewrite (called the Resolution Rule) can be defined in the base case as:
l, $\Lambda \bar{l}$, $\Lambda \beta \vdash False$
and in the general case as
(e, V Ve, V Vem) N(l; V Ve; V Ven) NB
1-(2, VVli-, Vli+, VVlmVl; VVl; VVl; VVl
for literals $l_1,, l_m, l'_1,, l'_n \in L_{TERALS}(\Sigma)$ 5.t. $l_i = \overline{l'_i}$ and arbitrary sentence $\beta \in \mathcal{L}(\Sigma)$.
[4] Soundness Thm: If x + V, then x = V.
Proof: (base) \$\Pi(l, \Li\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(general) TM (l, V Vl; V Vl, V Vl, V Vl, V Vl, N. Vl, N. Vl, N. Vl, N. Vl,
= 西(l, V.~Vl; V.~Vl~)) 面(l; V.~Vl; V.~Vl~) (压(B)
= II(li) UII(l, VVl., Vl., Vl., Vl., Vl., Vl., Vl.
$= (\mathbb{Z}(f) \cap \mathbb{Z}(\lambda^{(j)}) \cup (\mathbb{Z}(f) \cap \mathbb{Z}(\lambda^{(j)})) \cup \mathbb{Z}(\lambda^{(j)}) \cup \mathbb{Z}(\lambda^{(j)}) \cup \mathbb{Z}(\lambda^{(j)})$

 $\subseteq (M(\lambda)) M(\lambda)) UM(\beta)$

= #((x, Vx;) Λβ)

PROPOSITIONAL	LOGIC:	NFERENCE
---------------	--------	----------

15) So that means, if we can find a sequence of rewrites $\alpha + \alpha_1 + \dots + \alpha_k + \text{False}$

then

a F False

But is it also true that if we can't find a sequence of rewrites s.t. $\propto 1^{\frac{1}{2}} \text{ False}$, then we can conclude $\propto 1/2 \text{ False}$ (hence $\propto 1/2 \text{ satisfiable}$)?

16) Surprisingly, yes. To show this, first define the resolution closure of a set of clauses Sastle Smallest set RC(6) such that:

- c∈S. => c∈RC(Si)

- C, Cz ∈ RC(S) and C, Acz + c ⇒ c∈ RC(S) In other words, RC(S) is the set of clauses you can derive through repealed application of the Resolution Rule.

IF S= \(AVB, \text{TBV-C}\) then RC(S)=\(AVB, \text{TBV-C}\) AV-C\(S\)

IF S=\(\frac{2}{6}\) AVB, BV-C\(\frac{2}{6}\) then RC(S) = S.

PROPOSITIONAL LOGIC: INFERENCE

(18) Completeress Thm: If CNF sentence c. A ... Acn is unsatisfiable, then False & RC(2ci,..., CN3)

Proof:

(i) We'll show the contrapositive, i.e. if

False & RC(5) for $S = \{c_1, ..., c_N\}$,

then $c_1 \wedge ... \wedge c_N$ is satisfiable.

Let $\Sigma = \{\sigma_1, ..., \sigma_M\}$

Assume False & RC(5).

(ii) Let's construct a conjunction l, 1... Alm of literals s.t. l, 1... Alm = c for every clause c ∈ RC(S).

If we can do that, then $l_1 \wedge ... \wedge l_M \models c_1 \wedge ... \wedge c_N$ so $I(l_1 \wedge ... \wedge l_M) \subseteq I(c_1 \wedge ... \wedge c_N)$, and Since $I(l_1 \wedge ... \wedge l_M)$ is nonempty, therefore $I(c_1 \wedge ... \wedge c_N)$ is nonempty, $... \cdot c_1 \wedge ... \wedge c_N$ is satisfiable.

Examples:

(i) Let: $\Sigma = \{A, B, C, \}$ $S = \{C_1, C_2\}$ Where: C_1 is $7BV_7C$ C_2 is 7AVCThus: $PC(5) = \{7BV_7C_1$ $7AV_7B\}$

(ii) if we construct

AMTBMC

then:

AMTBMC = TBVTC

AMTBMC = TAVC

AMTBMC = TAVTB

PROPOSITIONAL LOGIC: INFERENCE

(8) (cont.)

(iii) We'll mibalize lo= True.

For m=1 to M, set lm & 20m, 70m)

(if possible) such that:

lo 1... Alm # 7c for each clause c & RC(S)

otherwise set lm = 0m.

(iii) lo = True li = A li = A li = A (otherwise A/B = True (A/B = True (A/B = True (A/B = True (A/B = True) (otherwise (A/B)

(iv) For the sake of contradiction:

Assume m is the first iteration at which lo 1. Alm = 10 for some clause $C \in RC(5)$.

We know m>0, because True \$ 70 for all c except False, which is not in RC(5) by the premise in (i)

(V) At iteration m, those exist clauses c, c2 ERC(5) s.t. lo 1 ... 1 lm. 1 / om = 7 c,

lo N ... Nlm-1 N - om = - cz

These clauses must have the forms:

C,: C, V-Om

Cz: c2 Vom

Offerwise:

lo / ... / lm-1 = 7c2

earliest Heration s.t. l. N. Mlm = 1c for cERC(5)

(v) say at iteration 3, we have lo=True li=A

True NANBACF TC,

True NANBACF TC,

True NANBATCF TCZ

TAVC

PROPOSITIONAL LOGIC: INFERENCE

18 (cont.)

(vi) Since $c_1, c_2 \in RC(5)$, thus $c_1' \vee c_2' \in RC(5)$, since c_1 and c_2 resolve to $c_1' \vee c_2'$.

(vi) TBVTC resolves with TAVC to obtain TAVTB, which is in RC(5).

 $\begin{array}{l} \text{(vii)} \quad lo \; \wedge \cdots \; \wedge l_{m-1} \; \wedge \sigma_m \; \models \; \neg \; c_i \; \\ \text{(ci V } \neg \sigma_m) \\ \text{(so } lo \; \wedge \cdots \; \wedge l_{m-1} \; \wedge \sigma_m \; \models \; \neg \; c_i \; \wedge \sigma_m \; \boxed{\text{De Margan}} \\ \text{(so } lo \; \wedge \cdots \; \wedge l_{m-1} \; \mid \; \vdash \; \neg \; c_i \; \\ \text{(Analogously, } lo \; \wedge \cdots \; \wedge l_{m-1} \; \mid \; \vdash \; \neg \; c_i \; \\ \text{(Therefore, } lo \; \wedge \cdots \; \wedge l_{m-1} \; \mid \; \vdash \; \neg \; c_i \; \wedge \; \neg \; c_i \; \\ & = \; \neg \; (c_i \; \vee \; c_i \;) \; \boxed{\text{De Margan}} \\ \end{array}$

(viii) Thus, at every iteration m, li / ... / lm = c \text{VC} \in RC(S) So li / ... / lm = c \text{VC} \in RC(S)

QED

PROPOSIT	IONAL LOGIC: INFERENCE		
19 50	what have we shown so	far?	
(;)			this is equivalent to showing whether
	$\alpha \models \beta$	\sim	«V7B
	for any $\alpha, \beta \in \mathcal{L}(\Sigma)$	22?	is satisfiable
(ii)	we want to compute whether		this can be done using resolution
	V is satisfiable	~>>	in a finite number

of steps

for any d∈ L(E) such that disin

CNF

²⁰ We're missing one key piece to bring this home. Given a non-CNF sentence α , can we convert this into a CNF sentence β such that α is satisfiable iff β is satisfiable?

PROPOSITIONAL	OGIC:	NFERENCE
	_	

- 21) The answer is yes. Let's go through the recipe, using example (non-CNF) sentence (Bird = (Penguin VFly))
 - (i) Replace (∞ β) with ((α ⇒ β) Λ (β ⇒ α)): ((β ⇒ (PVF)) Λ ((PVF) ⇒ B))
 - (ii) Replace (α→β) with (¬αVβ): ((¬BV(PVF)) Λ (¬(PVF) VB))
 - (iii) Move ¬ "inwards" with three replacements: ¬¬α with α, ¬ (αΛβ) with (¬α V¬β), and ¬ (α Vβ) with (¬αΛ¬β):

 ((¬Β V(PVF)) Λ ((¬PΛF) V B))
 - (iv) Distribute and over are and are over and with two replacements: $(\alpha \Lambda(\beta V_7))$ with $((\alpha \Lambda \beta) V(\alpha \Lambda_7))$ and $(\alpha V(\beta \Lambda_7))$ with $((\alpha V\beta) \Lambda(\alpha V\delta))$

PROPOSITIONAL	OGIC:	NFERENCE
---------------	-------	----------

22) It is relatively straightforward to prove be correctness of this conversion by showing the correctness of each step. For instance, we can show that

$$I(\neg(\alpha \land \beta)) = I((\neg \alpha \lor \neg \beta))$$

as follows:

$$I(\neg(\alpha \land \beta)) = M(\Sigma) - I(\alpha \land \beta)$$

$$= M(\Sigma) - (I(\alpha) \cap I(\beta))$$

$$I(\alpha) \cap I(\beta)$$

$$= (M(z) - I(\alpha)) \cup (M(z) - I(\beta))$$