dble与sharding-JDBC, 中间件我该怎么选

爱可生开源社区 阎虎青

分布式数据库架构类型

1.单体数据库扩展

- 中间件型
- 嵌入驱动型
- 2.NewSQL
- 3.其他

01 中间件型

中间件型-dble

MySQL分库中间件

对象:

面向开发和运维人员

功能:

封装了数据库水平拆分架构下 SQL的解析,路由,改写, 执行,归并等操作。

额外提供:

读写分离,分布式事务,

权限管理,慢日志,

性能分析, 监控接口,

运维命令等

中间件型-dble

中间件型-dble内部模块

中间件型-dble常见问题

- 1. 支持异构数据库吗?
- 2. 支持单库分表吗?
- 3. 支持全文索引吗?

中间件型-dble的挑战

- 1. 分布式事务强一致性
- 2. 高隔离级别
- 3. 跨库并发更新可能的死锁
- 4.语法全覆盖

中间件型-dble的场景与案例

1.读多写少,海量并发的场景

某银行个人信息辅助系统: 承载用户超2亿,100分片 性能压测50wTPS,读写比10:1

2.应对压力峰谷明显的场景

某手机网络运营商: 轻松应对月初充值压力 用户资产记录30~40亿条

02 嵌入驱动型

驱动型-Sharding-JDBC

定位:

轻量级Java分库分表框架

对象:

面向开发人员

功能:

封装了数据库水平拆分架构下 简单SQL的解析,路由, 改写,执行,归并等操作。

额外提供: 读写分离 数据脱敏 分布式事务 trace等

驱动型-Sharding-JDBC模块

驱动型-Sharding-JDBC扩容

驱动型-Sharding-JDBC的核心问题

无法运维可能导致的问题:

- 一人员角色:无法剥离(开发?运维? devOps? DBA?)
- ●DBA无法做一致性备份还原高可用等操作。
- ●诊断:比如应用消耗内存较高,无法迅速诊断是业务逻辑问题还是拆分逻辑引发。
- ●审计:需要在各个MySQL上各自做审计,然后汇总
- ●数据库表零散分布,无法直接使用现有的GUI/console工具操作数据。比如:非业务的增删改查需要自行计算路由

ShardingSphere的挽尊

ShardingSphere的再次挽尊

驱动型-Sharding-JDBC的应用场景

- 熟悉源码人员(sharding-JDBC的开发)
- ●全栈(开发,运维,DBA)可以应付的项目
- ●可靠性要求不强
- 没有复杂业务逻辑
- 不需要系统测试

03中间件型VS嵌入驱动型

整体比较

	Sharding-JDBC	dble
支持数据库	任意支持JDBC的数据库	MySQL
支持开发语言	JAVA	任意
性能损耗	解析,路由,改写,归并	多一层网络传输,解析,路由,改写,归并
运维	没有整体运维视角	提供运维/监控命令及专门的日志
测试	无法脱离应用/Java测试,只能测语法	支持通用的测试方法
非分布式架构迁入	数据拆分,应用改造和配置,同步准备	数据拆分,应用配置,易于做调研
迁出到非分布式架构	数据聚合,应用改造和配置,同步准备	数据聚合,应用配置
扩容	数据迁移,应用改造和配置	数据迁移,中间件配置变更
代理层扩展	无法单独扩展代理层	可横向扩展

核心功能比较-算法

	Sharding-JDBC	dble
内置拆分算法	groovy表达式(例如求模)	hash, stringhash, enum, numberrange, patternrange, date, jumpstringhash.
自定义拆分算法	只支持计算路由	支持复杂算法配置加载及路由计算,可以支持通过同种算法,不同配置的方式来实现多种需求
拆分结构	支持分库,分表,多列拆分	只支持分库,可单实例多库,支持分区表

1.通用比较

	Sharding-JDBC	dble
group by	支持	支持
having	不支持	支持
order by	支持	支持
limit	支持	支持
CASE WHEN	不支持	支持
跨逻辑库支持度	不支持,解析会直接去掉逻辑库名	支持
	•聚合函数支持 MAX,MIN,SUM,COUNT,AVG •其他函数透传	支持

2.JOIN

	Sharding-JDBC	dble
left/right join	取结点交集直接下发合并,语义有风险	支持
inner join	取结点交集直接下发合并,笛卡尔积	支持
多表连接	取结点交集直接下发合并,笛卡尔积	支持
natural join	取结点交集直接下发合并,笛卡尔积	支持

注: Sharding-JDBC绑定表(ER表)会按照第一个表来路由

	Sharding-JDBC	dble
	•取结点交集直接下发合并,语义有风险 •各个分片的数据不会归并	支持
union all	取结点交集直接下发合并	支持
多表union	取结点交集直接下发合并,语义有风险	支持

注: Sharding-JDBC官方文档直接说不支持union,但没有禁止或者报错

	Sharding-JDBC	dble
标量子查询	不支持	支持
ANY,IN,ALL 子查询	不支持	支持
行子查询	不支持	不支持
(NOT) EXISTS	不支持	支持
相关子查询	不支持	不支持
派生子查询	支持最终只涉及到一张表的派生子查询	支持

	Sharding-JDBC	dble
INSERT	支持	支持
DELETE	支持单表删除 不支持多表删除	支持单表删除 支持符合条件的多表删除
UPDATE	支持单表更新 多表更新直接透传 可以更新拆分列	支持单表更新 支持符合条件的多表更新 不支持更新拆分列
REPLACE	不支持	支持,不支持变更拆分列
LOAD DATA	不支持	支持
CALL	不支持	hint方式支持
DO	不支持	不支持
HANDLER	不支持	不支持
LOAD XML	不支持	不支持

Sharding-JDBC:

全库表广播 实际只支持create table,drop table, alter table, create index, drop index, truncate table

dble:

- ●流量端口 支持2阶段提交的 create table, drop table, alter table, create index, truncate table
- ●部分DDL可以作为online DDL直接下发,比如 drop index
- ●中间层支持create/drop view.
- ●管理端口支持建库

核心功能比较-SQL语法之事务和锁

	Sharding-JDBC	dble
START TRANSACTION, COMMIT, and ROLLBACK Syntax	JDBC方式,语句不支持	基本支持
Statements That Cause an Implicit Commit	运维语句(lock table)未知	支持隐式提交
SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax	路由到全库表	支持
LOCK TABLES and UNLOCK TABLES Syntax	不支持	支持 (有限制)
SET TRANSACTION Syntax	未细分,直接路由到全库表	支持 session级别的
XA Transactions	不支持	不支持

核心功能比较-SQL语法之Prepared

	Sharing-JDBC	dble
PREPARE Syntax	不支持	支持
EXECUTE Syntax	不支持	支持
DEALLOCATE PREPARE Syntax	不支持	支持

	Sharing-JDBC	dble
Account Management Statements	路由到全实例(用处?)	不支持
Table Maintenance Statements	不支持	不支持
Plugin and User-Defined Function Statements	不支持	不支持
SET Syntax	理论(文档)上全库路由,实际(代码)随机路由	支持
SHOW Syntax	随机路由	随机路由
Other Administrative Statements	不支持	支持kill,支持flush语 法(语义不支持)

核心功能比较-语法 Utility Statements

	Sharing-JDBC	dble
DESCRIBE	支持,随机路由	重构为观察表结构
EXPLAIN	不支持	重构为分布式执行计划, 提供explain2
HELP	不支持	不支持
USE	支持	支持

核心功能比较-SQL语法之其他

- Replication Statements和 Compound-Statement Syntax 两者均不支持
- Sharding-JDBC的语法不支持程度这件事,依赖于Java程序员对它的了解程度

核心功能比较-ER表

	Sharding-JDBC	dble
级别	表级别(依赖开发人员)	列级别
跨逻辑库	不支持	支持
多层转换更换关联列	不支持	通过父子表支持
实现方式	显式配置 不检查合理性,错误配置可能会在运行 时报错	• 智能计算 • 父子显式配置

注: Sharding-JDBC叫做绑定表

核心功能比较一全局表

	Sharding-JDBC	dble
广播范围	全部结点	自定义
和拆分表Inner Join	支持	支持
和拆分表Left Join	语义错误	支持
跨逻辑库	不支持	支持
一致性检查	不检查	早期粗糙检查,现在提供接口和定时任务

注: Sharding-JDBC叫做广播表

核心功能比较一全局序列

	Sharding-JDBC	dble
UUID算法	支持	不支持
Snowflake算法	原版	改进版,ZK变形版
Offset-Step算法	文档上写支持,截至4.0.0版本代码未找到	MySQL发号器版, ZK发号器变形版
是否必须是主键列	不需要,但是官方文档未注明	不需要

注: Sharding-JDBC叫做分布式主键

- SnowFlake 全局序列原版和改进版的区别:低并发下的全局列的数据拆分平衡性
- UUID算法的可用性
- 非主键的意义(数据库范式的概念,工行场景)

核心功能比较-事务

	Sharding-JDBC	dble
本地事务	支持	支持
XA事务	支持,JTA 的XA接口	支持,MySQL XA事务
柔性事务		不支持,规划中 txle(serviceComb)
事务接口	规划中	规划中
隐式分布式事务	不支持	支持

- ◆ Sharding-JDBC对XA事务认知不足(从文档中体现),实际也是MySQL XA事务。
- ◆强一致性,隔离性等其实无法使用XA得到可靠保证。深层原因是架构模式不是DBA视角,很难发现。
- ◆隐式分布式事务未支持。

核心功能比较一读写分离

	Sharding-JDBC	dble
负载均衡方式	ROUND_ROBIN RANDOM 可自定义	带权重的随机数
主是否参与读	内置两种算法都不参与	可配置参与性和权重
slave不可用的处理方式	未处理	读转向master
master不可用的处理方式	未处理	可配置是否提供只读服务
延迟检测	未处理	较粗糙,用show slave status决定
读逻辑判断	连接相关(和连接模型有关) "同一线程且同一数据库连接内,如有写入操作 , 以后的读操作均从主库读取,用于保证数据一 致性。"	读selectfor update select lock in share mode 发往主

核心功能比较-Hint功能

	Sharding-JDBC	dble
强制走主	支持	支持
强制走从	不支持	支持
制定路由级别	库/表	query
路由方式	指定结点索引	● 指定结点索引 • Query指定路由

注:Query指定路由的优点在于无需知道拆分算法细节,而是知道应该路由到和哪个查询一样的结点上

核心功能比较-连接模型及上下文

	Sharding-JDBC	dble
后端连接复用	session级别	事务级别
上下文处理	部分不正确,随机路由	随连接下发

复用级别备注:

dble可能在单个session多个事务(长连接)下需要更少的后端连接。短连接场景2 者没有太多区别。

Sharding-JDBC对此做了一定程度的优化,试图减少连接使用(以性能为代价)。

思考&讨论

单体数据库扩展

- 中间件型
- ●嵌入驱动型

大家更喜欢哪种架构方式?

有没有踩过坑?

关于爱可生开源社区

微信公众号「爱可生开源社区」

- · 每周更新至少1篇MySQL前沿技术文章
- 每月发布开源组件新版
- · 每年1024开源一款企业级组件

Thank You

