1. Entwickeln Sie die Funktion $f(t) = |\sin t|$ auf dem Intervall $[-\pi, \pi]$ in eine **Fourier-Reihe** der Form

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kt) + b_k \sin(kt) \right).$$

- 2. Die Masse m = 4 kg ist mit zwei Federn (Federkonstanten D_1 und D_2) verbunden und befindet sich in Ruhelage auf einer reibungsfreien Unterlage (siehe Skizze).
 - a) Geben Sie die Differentialgleichung und ihre Lösung für die Bewegung der Masse im Falle kleiner Auslenkung an.
 - **b**) Stellen Sie die allgemeine Formel für die Schwingungskreisfrequenz ω_0 auf.
 - c) Berechnen Sie die Schwingungsfrequenz für $D_1 = 9 \text{ Nm}^{-1}$ und $D_2 = 7 \text{ Nm}^{-1}$. (*Lösung*: $1/\pi \text{ Hz}$).
 - d) Die Masse wird zum Zeitpunkt t = 0 um 1 mm ausgelenkt und losgelassen. Wann erreicht sie zum ersten Mal ihre ursprüngliche (Ruhe-)Lage? (<u>Lösung</u>: $\pi/4$ s)
 - e) Welche Geschwindigkeit hat die Masse zu diesem Zeitpunkt? (*Lösung*: -2 mms⁻¹)

- **3.** Berechnen Sie Form und Maximum der Resonanzkurve für die mittlere Leistungsaufnahme des **gedämpften, getriebenen harmonischen Oszillators**.
- **4. Komplexer getriebener Oszillator:** Ein **gedämpftes schwingungsfähiges System** wird mit einer **periodischen Funktion der Frequenz** Ω angeregt. Der Einfachheit halber wird diese in **komplexer Form** angeschrieben, sodass die Differentialgleichung folgende Form annimmt: $\ddot{x} + 2 \cdot \gamma \cdot \dot{x} + \omega_0^2 \cdot x = U_0 \cdot exp(i \cdot \Omega \cdot t)$, mit U_0 als reeller Amplitude.
 - a) Bestimmen Sie die Lösung der Gleichung im stationären Zustand mittels des komplexen Ansatzes $x(t) = \widehat{A} \cdot exp(i \cdot \Omega \cdot t)$, mit der komplexen, zeitunabhängigen Amplitude \widehat{A} .
 - b) Berechnen Sie **Real- und Imaginärteil von** \widehat{A} und interpretieren Sie diese.
 - c) Berechnen Sie **Real- und Imaginärteil von** x(t) und interpretieren Sie diese.

$$(L\ddot{o}sung: \ Re \ x(t) = \frac{U_0}{\sqrt{\left(\omega_0^2 - \Omega^2\right)^2 + \left(2 \cdot \gamma\right)^2 \cdot \Omega^2}} \cdot \left[\cos \psi \cdot \cos \left(\Omega \cdot t\right) + \sin \psi \cdot \sin \left(\Omega \cdot t\right)\right], \quad \tan \psi = \frac{2 \cdot \gamma \cdot \Omega}{\omega_0^2 - \Omega^2})$$

Bitte Seite wenden!

5. Ein kugelförmiges Gefäß mit dem **Radius** *R* ist zur Hälfte mit Wasser gefüllt. Durch leichtes Kippen wird das Wasser in Schwingung versetzt. In erster Näherung wird angenommen, dass die Flüssigkeit **eine starre Halbkugel** ist, welche um die Achse *A* (siehe Skizze) schwingt. Dieses System stellt somit ein **physikalisches Pendel** dar. Bei bekanntem Trägheitsmoment um die Achse *A* kann die Bewegung des Körpers vollständig durch die Bewegung des Schwerpunktes S beschrieben werden.

- a) Berechnen Sie allgemein die Eigenfrequenz des Physikalischen Pendels.
- b) Berechnen Sie die **Eigenfrequenz** und die **Periodendauer** der Schwingung für R = 3 cm. (*Lösung*.: $f_0 = 2,79$ Hz)

Das System wird nun durch permanente hin und her Bewegung angeregt.

- c) Wie groß muss der Dämpfungsfaktor γ sein, damit bei der Resonanzfrequenz die Amplitude der Flüssigkeit maximal das Doppelte der Amplitude bei geringer Anregungsfrequenz ist? (<u>Lösung</u>.: γ = 4,53 s⁻¹)
- **6.** Man ermittle die **Eigenschwingungen** und **Frequenzen** für die **gekoppelten Federn** (**Federkonstanten** K, K') **und Massen**, die reibungsfrei auf einer Fläche gleiten (siehe Skizze). Im Gleichgewicht sind die Federn entspannt. Für die Massen gilt $M_1 = M_2 = M$.

