Corso di Laurea in Informatica - A.A. 2022-2023

(Prof. Paolo Camarri – Prof. Vincenzo Caracciolo)

Cognome:	
Nome:	
Matricola:	

Secondo Appello autunnale del corso di Fisica del 21.09.2023

Problema n. 1

Uno skilift è costituito da una corda con appesi dei ganci a cui gli sciatori si attaccano per risalire le piste. La lunghezza del pendio è $L=1~\mathrm{km}$; l'angolo medio di inclinazione del pendio rispetto alla direzione orizzontale è α , con tg $\alpha=0,3$. Tra gli sci e il pendio c'è una forza di attrito dinamico con coefficiente $\mu_d=0,1$. In alta stagione la frequenza di sciatori che utilizzano lo skilift è $n=10~\mathrm{min^{-1}}$ (10 sciatori al minuto). La massa media di uno sciatore è $m=70~\mathrm{kg}$. Supponiamo che gli sciatori vengano trascinati lungo il pendio, in salita, con velocità costante avente modulo $v=2~\mathrm{m~s^{-1}}$

- a) Si calcolino la distanza d tra due ganci vicini dello skilift, e il numero N di sciatori presenti lungo il pendio in alta stagione (si approssimi quest'ultimo valore per difetto al numero intero più vicino).
- b) Si calcoli il modulo della forza complessiva esercitata dalla corda quando il numero di sciatori presenti lungo il pendio è quello calcolato al punto a).
- c) Si calcolino il lavoro W_p svolto dalla forza peso e il lavoro W_d svolto dalla forza di attrito dinamico su ogni sciatore lungo tutto il pendio.
- d) Si calcoli la potenza P che il motore dello skilift deve fornire in alta stagione.

Problema n. 2

Un blocchetto avente massa $m_1=0.5~{\rm kg}$ si sta muovendo di moto rettilineo uniforme, con velocità avente modulo $v=3~{\rm m~s^{-1}}$, su un piano privo di attrito verso un secondo blocchetto avente massa $m_2=1~{\rm kg}$, inizialmente fermo sullo stesso piano orizzontale. A questo secondo blocchetto è attaccata una molla ideale avente massa trascurabile e costante elastica $k=20~{\rm N~m^{-1}}$, disposta orizzontalmente e allineata lungo la direzione di moto del primo blocchetto, dal lato da cui proviene quest'ultimo (vedi figura in basso).

- a) Si calcolino il modulo V_{CM} della velocità del centro di massa e il valore μ della massa ridotta del sistema dei due blocchetti.
- b) Si calcolino i valori delle componenti scalari delle velocità dei due blocchetti lungo l'asse del moto dopo che la molla, al termine dell'urto, è tornata nella situazione di riposo.
- c) Si calcolino, in termini della massa ridotta del sistema, la massima compressione D_{max} della molla durante l'urto (supponendo che la lunghezza di riposo della molla sia sufficiente per non fare arrivare i due blocchetti a contatto durante l'urto) e (facoltativo) l'intervallo di tempo Δt tra l'istante in cui il blocchetto di massa m_1 entra in contatto con la molla e l'istante in cui la molla torna nella situazione di riposo.
- d) Quanto vale la variazione ΔK_{TOT} dell'energia cinetica totale del sistema tra l'istante iniziale e l'istante in cui la molla si trova nello stato di massima compressione, in termini della massa ridotta del sistema? Commentare il risultato.

Problema n. 3

Una sorgente di f.e.m. costante $\mathcal{E}=110~\mathrm{V}$ viene inserita in un circuito costituito da un resistore avente resistenza $r_1=1000~\Omega$ in serie con la connessione in parallelo di due resistori aventi resistenze $r_2=10~\Omega$ e R (vedi figura in basso a sinistra). Il resistore con resistenza R è costituito da un filo di costantana (la cui resistività è $\rho=5\times~10^{-7}~\Omega$ m) avente sezione costante $A=2,5\times~10^{-7}~\mathrm{m}^2$ e lunghezza $L=100~\mathrm{m}$.

- a) Si calcolino la resistenza R e la resistenza equivalente R_{eq} del circuito.
- b) Si calcolino la differenza di potenziale ai capi di ciascun resistore e la corrente che scorre in ciascun resistore.
- c) Si calcolino le potenze assorbite da ciascun resistore e si confronti la potenza totale assorbita dai resistori con la potenza fornita dalla sorgente di f.e.m.
- d) Se al resistore con resistenza r_1 viene collegato in parallelo un condensatore inizialmente scarico avente capacità $C=1~\mu F$, quanto vale la carica Q accumulata sul condensatore tra l'istante in cui l'interruttore S viene chiuso (vedi figura in basso a destra) e un istante in cui la corrente nel circuito ha raggiunto la condizione di regime?

L'esonero scritto prevede la risoluzione in TRE ore, a partire dall'ora comunicata dal docente all'inizio dello svolgimento della prova, dei tre esercizi sopra riportati, potendo consultare solo un formulario personale composto al massimo da 4 facciate di foglio protocollo. I fogli su cui svolgere i calcoli per la risoluzione dei problemi sono forniti dal docente.

Si richiede in ogni caso la consegna di tutti i fogli manoscritti su cui sono stati svolti i calcoli.

Un libro di testo è a disposizione sulla cattedra, portato dal docente.

Lo studente, oltre al foglio di carta, alla penna e a eventuali strumenti per disegno (matite, riga, squadra, compasso), può tenere sul tavolo solo una calcolatrice tascabile non programmabile.