SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH THPT LÊ QUÝ ĐÔN ------&&&-----

ĐỀ THI CHỌN HỌC SINH GIỚI LỚP 12 NĂM HỌC 2017 - 2018

Môn thi: Toán - Thời gian làm bài 180 phút (Đề thi gồm 01 trang)

Bài 1.(5 điểm)

Cho hàm số $y = \frac{2x-1}{2x-2}$ có đồ thị là (H). M là điểm trên (H) sao cho $x_M > 1$, tiếp tuyến của (H) tại M cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B. Xác định toạ độ điểm M sao cho $S_{\Delta OIB} = 8S_{\Delta OIA}$ (trong đó O là gốc toạ độ, I là giao của hai tiệm cận)

Bài 2.(6 điểm)

1) Giải hệ phương trình

$$\begin{cases} 4+9.3^{x^2-2y} = \left(4+9^{x^2-2y}\right).7^{2y-x^2+2} \\ \sqrt{2}-x^2+2x = \sqrt{2y-2x+4} \end{cases}$$

- 2) Giải bất phương trình: $x^2 + 5x < 4\left(1 + \sqrt{x(x^2 + 2x 4)}\right)$.
- 3) Cho ba số thực dương *a, b, c*. Tìm giá trị nhỏ nhất của biểu thức:

$$P = \frac{24}{13a + 12\sqrt{ab} + 16\sqrt{bc}} - \frac{3}{\sqrt{a+b+c}}.$$

Bài 3.(6 điểm).

- 1) . Cho hình chữ nhật ABCD. Gọi H là hình chiếu vuông góc của B lên AC; M, N lần lượt là trung điểm của AH, BH. Trên cạnh CD lấy điểm K sao cho MNCK là hình bình hành. Biết $M\left(\frac{9}{5};\frac{2}{5}\right)$, K(9; 2) và các đỉnh B,C lần lượt nằm trên các đường thẳng $d_1:2x-y+2=0, \quad d_2:x-y-5=0$. Tìm toạ độ các đỉnh của hình chữ nhật ABCD biết hoành độ điểm C lớn hơn 4.
- 2) Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại C, BC = 3a, AC = 4a, cạnh BB' = $\frac{2\sqrt{22}}{3}$ a. Hình chiếu vuông góc của B' trên (ABC) trùng với trọng tâm tam giác ABC. Tính theo a khoảng cách giữa hai đường thẳng BB' và AC'.
- 3) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 1, góc $\widehat{BAD} = 60^{\circ}$, SA = = SB = SD = 1. Gọi M, N là hai điểm lần lượt thuộc các cạnh AB và AD sao cho mp(SMN) vuông góc với (ABCD). Đặt AM = x, AN = y, tìm x, y để diện tích toàn phần của tứ diện SAMN nhỏ nhất.

Bài 4.(2 điểm)

Cho tam giác ABC có các góc thoả mãn $2\sin A + 3\sin B + 4\sin C = 5\cos\frac{A}{2} + 3\cos\frac{B}{2} + \cos\frac{C}{2}$.

Chứng minh tam giác ABC là tam giác đều.

Bài 5.(*1 điểm*) Trong mặt phẳng có n điểm, trong đó có k điểm thẳng hàng, số còn lại không có 3 điểm nào thẳng hàng. Biết rằng từ n điểm đó tạo được 36 đường thẳng phân biệt và tạo được 110 tam giác khác nhau. Hãy tìm n, k.

Hêt			
Lưu ý: Thí sinh không sử dụng tài liệu.	. Cán bộ coi thi không giải thích gì thêm.		
Họ tên thí sinh:	Số báo danh:		

HƯỚNG DẪN CHẨM ĐỀ THI CHỌN HỌC SINH GIỚI LỚP 12 NĂM HỌC 2017 - 2018

Môn thi : Toán (Gồm 6 trang)

Bài		
(5 đ)	Cho hàm số $y = \frac{2x-1}{2x-2}$ có đồ thị là (H). M là điểm trên (H) sao cho x _M > 1, tiếp tuyến của	
	(H) tại M cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B. Xác định toạ độ điểm	
	M sao cho $S_{\Delta OIB}=8S_{\Delta OIA}$ (trong đó O là gốc toạ độ, I là giao của hai tiệm cận)	
	$M\left(x_0; \frac{2x_0-1}{2x_0-2}\right), x_0 > 1$ thuộc (H), Tiếp tuyến của (H) tại M có phương trình	1.0
	$(d): y - \frac{2x_0 - 1}{2x_0 - 2} = \frac{-2}{\left(2x_0 - 2\right)^2} (x - x_0)$	
	(d) cắt tiệm cận đứng tại $A\left(1; \frac{x_0}{x_0 - 1}\right)$, (d) cắt tiệm cận ngang tại $B(2x_0 - 1; 1)$	1.0
	$IA = \frac{1}{x_0 - 1}$, $IB = 2(x_0 - 1)$	1.0
	$S_{\Delta OIB} = 8S_{\Delta OIA} \iff 2(x_0 - 1) = \frac{8}{x_0 - 1} \Leftrightarrow (x_0 - 1)^2 = 4 \Leftrightarrow \begin{bmatrix} x_0 = -1(ktm) \\ x_0 = 3(tm) \end{bmatrix}$	1.0
	Vậy $M\left(3; \frac{5}{4}\right)$	1.0

Bài 2		
1 (2 ^đ)	Giải hệ phương trình	
	$\int 4 + 9.3^{x^2 - 2y} = \left(4 + 9^{x^2 - 2y}\right).7^{2y - x^2 + 2}$	
	$\begin{cases} 4+9.3^{x^2-2y} = \left(4+9^{x^2-2y}\right).7^{2y-x^2+2} \\ \sqrt{2}-x^2+2x = \sqrt{2y-2x+4} \end{cases}$	
	$ bk: y - x + 2 \ge 0 (*) $	0.5
	$\text{D} t = x^2 - 2y$	
	Pt(1) trở thành: $4 + 3^{t+2} = (4 + 9^t).7^{2-t} \Leftrightarrow \frac{4 + 3^{t+2}}{7^{t+2}} = \frac{4 + 3^{2t}}{7^{2t}}$	
	$f(t+2) = f(2t) \Leftrightarrow t+2 = 2t \Leftrightarrow t=2$	0.5
	$ \left(V \acute{o}i \ f(x) = \frac{4+3^x}{7^x} \text{ nghịch biến trên R} \right) \text{Từ đó } 2y = x^2 - 2 $	
	Thay $2y = x^2 - 2$ vào pt(2) ta được $\sqrt{2} - x^2 + 2x = \sqrt{x^2 - 2x + 2}$ (3)	0.5
	Đặt $\sqrt{x^2 - 2x + 2} = a \ge 1$ phương trình (3) trở thành $a^2 + a - (2 + \sqrt{2}) = 0$ (4)	
	Giải pt (4) được $a = \sqrt{2}$ tìm được $\begin{cases} x = 0 \\ y = -1 \end{cases}$ (tm *) $\begin{cases} x = 2 \\ y = 1 \end{cases}$ (tm *)	0.5
	$\begin{cases} x = 2 \\ y = 1 \end{cases} $ (tm *)	

\mathbf{r}	٦.	•	^
- 12	•		•
- 1)	7		_
_		_	_

2 (2 ^đ)	Giải bất phương trình: $x^2 + 5x < 4\left(1 + \sqrt{x(x^2 + 2x - 4)}\right)$ $(x \in R)$.	
	HD: ĐK: $\mathbf{x}(\mathbf{x}^2 + 2\mathbf{x} - 4) \ge 0 \Leftrightarrow \begin{bmatrix} -1 - \sqrt{5} \le \mathbf{x} \le 0 \\ \mathbf{x} \ge -1 + \sqrt{5} \end{bmatrix}$	0.5
	Khi đó (*) $\Leftrightarrow 4\sqrt{x(x^2+2x-4)} > x^2+5x-4$	0.5
	$\Leftrightarrow 4\sqrt{x(x^2 + 2x - 4)} > (x^2 + 2x - 4) + 3x \ (**)$	
	$TH 1: x \ge -1 + \sqrt{5} ,$	0.5
	Chia hai vế cho x > 0, ta có: (**) $\Rightarrow 4\sqrt{\frac{x^2 + 2x - 4}{x}} > \frac{x^2 + 2x - 4}{x} + 3$	
	Đặt $t = \sqrt{\frac{x^2 + 2x - 4}{x}}$, $t \ge 0$, ta có bpt: $t^2 - 4t + 3 < 0 \Leftrightarrow 1 < t < 3$	
	$1 < \sqrt{\frac{x^2 + 2x - 4}{x}} < 3 \Leftrightarrow \begin{cases} x^2 - 7x - 4 < 0 \\ x^2 + x - 4 > 0 \end{cases} \Leftrightarrow \frac{-1 + \sqrt{17}}{2} < x < \frac{7 + \sqrt{65}}{2}$	
	TH 2: $-1 - \sqrt{5} \le x \le 0$, $x^2 + 5x - 4 < 0$, (**) luôn thỏa	0.5
	Vậy tập nghiệm bpt (*) là $S = \left[-1 - \sqrt{5}; 0\right] \cup \left(\frac{-1 + \sqrt{17}}{2}; \frac{7 + \sqrt{65}}{2}\right)$	

Bài		
2		
3	Cho ba số thực dương a, b, c . Tìm giá trị nhỏ nhất của biểu thức:	
(2 ^đ)	24 3	
	$P = \frac{24}{13a + 12\sqrt{ab + 16\sqrt{bc}}} - \frac{3}{\sqrt{a+b+c}}.$	
	Áp dụng bất đẳng thức Côsi ta có	0.5
	$13a + 12\sqrt{ab} + 16\sqrt{bc} = 13a + 6\sqrt{a.4b} + 8\sqrt{b.4c} \le 13a + 6.\frac{a+4b}{2} + 8.\frac{b+4c}{2} = 16(a+b+c)$	
	$\Rightarrow 13a + 12\sqrt{ab} + 16\sqrt{bc} \le 16(a + b + c) . \text{ Dấu "} = \text{" xảy ra} \Leftrightarrow a = 4b = 16c .$	
	Suy ra $P \ge \frac{3}{2(a+b+c)} - \frac{3}{\sqrt{a+b+c}}$.	0.5
	Đặt $t = a + b + c$, $t > 0$. Khi đó ta có: $P \ge \frac{3}{2t} - \frac{3}{\sqrt{t}}$	
	Xét hàm số $f(t) = \frac{3}{2t} - \frac{3}{\sqrt{t}}$ trên khoảng $(0; +\infty)$, ta có $f'(t) = \frac{3}{2t\sqrt{t}} - \frac{3}{2t^2}$.	0.5
	$f'(t) = 0 \Leftrightarrow \frac{3}{2t\sqrt{t}} - \frac{3}{2t^2} = 0 \Leftrightarrow t = 1; \lim_{x \to 0^+} f(t) = +\infty; \lim_{x \to +\infty} f(t) = 0$	
	BBT.	

f'(t)	0 -	1 0	+	+∞	
f(t)	+∞_	$-\frac{3}{2}$		0	
Vậy ta có $P \ge -\frac{3}{2}$, đẳng thu	rc xảy ra ⇔ {	a + b + c = 1 $a = 4b = 16c$	$\Leftrightarrow a = \frac{16}{21};1$	$b = \frac{4}{21}; c = \frac{1}{21}.$	0.5
Vậy giá trị nhỏ nhất của P l	$\frac{3}{2}$ khi và	chỉ khi (a,b,c)	$=\left(\frac{16}{21}, \frac{4}{21}, \right)$	$\left(\frac{1}{21}\right)$.	

	T		
Bài 3			
1	Cho hình chữ nhật ABCD. Gọi H là hình chiếu vuông góc của B lên AC; M, N lần lượt là	trung	
(2 ^đ)	điểm của AH, BH. Trên cạnh CD lấy điểm K sao cho MNCK là hình bình hành. Biết M	$\frac{9}{5}$; $\frac{2}{5}$,	
	K(9; 2) và các đỉnh B,C lần lượt nằm trên các đường thẳng $d_1: 2x-y+2=0$, $d_2: x-y-5=0$		
	Tìm toạ độ các đỉnh của hình chữ nhật ABCD biết hoành độ điểm C lớn hơn 4.		
	A M N C		
	MN là đường trung bình của tam giác HAB \Rightarrow MN / /AB, MN = $\frac{1}{2}$ AB . Do MNCK là hình	0.5	
	bình hành $\Rightarrow MN / / CK$, $MN = CK = \frac{1}{2}AB$ suy ra K là trung điểm của CD Ta có $MN \perp BC$, $BH \perp MC$ nên N là trực tâm tam giác BCM $\Rightarrow CN \perp BM$, mà MK //		
	$CN \Rightarrow BM \perp MK$		
	Viết phương trình BM qua M và và vuông góc với MK, suy ra toạ độ	0.5	
	$B = BM \cap d_1 \Rightarrow B(1;4)$		
	$C \in d_2 \Rightarrow C(a; a-5)$. $\overrightarrow{BC}.\overrightarrow{CK} = 0 \Leftrightarrow \begin{bmatrix} a=9\\ a=4 \end{bmatrix}$. Do $x_C > 4$ nên C(9; 4).	0.5	
	K là trung điểm CD suy ra D(9;0). $\overrightarrow{AB} = \overrightarrow{DC} \Rightarrow A(1;0)$	0.5	
	Vậy A(1; 0), B(1; 4), C(9; 4), D(9; 0)		

Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại C, BC = 3a, AC = 4a, cạnh $BB' = \frac{2\sqrt{22}}{3}a$. Hình chiếu vuông góc của B' trên (ABC) trùng với trọng tâm tam giác ABC. Tính theo a khoảng cách giữa hai đường thẳng BB' và AC'.

 $V_{C',ABC} = V_{B,ACC'} = \frac{1}{3}S_{\Delta ACC'}.d(B,(ACC'))$

 $\Rightarrow d(B,(ACC')) = \frac{3V_{C',ABC}}{S_{_{\Delta ACC'}}} = \frac{3\sqrt{2}}{2} a \text{ . K\'e\'t luận d(BB', AC')} = \frac{3\sqrt{2}}{2} a \text{ (đvd)}$

3 (2 d)

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 1, góc $\widehat{BAD} = 60^{\circ}$,

SA = SB = SD = 1. Gọi M, N là hai điểm lần lượt thuộc các cạnh AB và AD sao cho mp(SMN) vuông góc với (ABCD). Đặt AM = x, AN = y, tìm x, y để diện tích toàn phần của tứ diện SAMN nhỏ nhất.

0.5

Bài 4 (2 đ)	Cho tam giác ABC có các góc thoả mãn $2\sin A + 3\sin B + 4\sin C = 5\cos\frac{A}{2} + 3\cos\frac{B}{2} + \cos\frac{C}{2}$.
	Chứng minh tam giác ABC là tam giác đều.

Ta có: $\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \le 2 \cos \frac{C}{2}$	0.5
$\Leftrightarrow \frac{1}{2}(\sin A + \sin B) \le \cos \frac{C}{2}$	
dấu (=) xảy ra khi và chỉ khi chỉ khi $A = B$ (1)	
Tương tự: $\frac{5}{2} (\sin B + \sin C) \le 5 \cos \frac{A}{2}$ (2)	0.5
$\frac{3}{2}(\sin C + \sin A) \le 3\cos \frac{B}{2} \tag{3}$	0.5
Từ (1), (2), (3), suy ra : $2\sin A + 3\sin B + 4\sin C \le 5\cos \frac{A}{2} + 3\cos \frac{B}{2} + \cos \frac{C}{2}$	0.5
Đẳng thức xảy ra khi và chỉ khi tam giác ABC đều.	

Bài 5	Trong mặt phẳng có n điểm, trong đó có k điểm thẳng hàng, số còn lại không có 3 điể	m nào
(1 d)	thẳng hàng. Biết rằng từ n điểm đó tạo được 36 đường thẳng phân biệt và tạo được 110 ta	m giác
	khác nhau. Hãy tìm n, k.	
	$+$ Số đường thẳng phân biệt có được $C_n^2-C_k^2+1$	0.25
	+ Số tam giác phân biệt có được $C_n^3 - C_k^3$	
	Theo bài ra ta có:	0.25
	$\int C_n^2 - C_k^2 + 1 = 36 \qquad \int n(n-1) - k(k-1) = 70 \qquad \int (n-k)(n+k-1) = 70 (1)$	
	$\begin{cases} C_n^2 - C_k^2 + 1 = 36 \\ C_n^3 - C_k^3 = 110 \end{cases} \Leftrightarrow \begin{cases} n(n-1) - k(k-1) = 70 \\ C_n^3 - C_k^3 = 110 \end{cases} \Leftrightarrow \begin{cases} (n-k)(n+k-1) = 70 \\ C_n^3 - C_k^3 = 110 \end{cases} $ (2)	
	Từ (2) ta có $C_n^3 > 110 \Rightarrow n \ge 10$ mà k ≥ 3 suy ra n+k-1 ≥ 12	
	Do đó (1) tương đương với các trường hợp sau	0.25
	1) $\begin{cases} n+k-1=14 \\ n-k=5 \end{cases} \Rightarrow \begin{cases} n=10 \\ k=5 \end{cases}$ thỏa mãn (2)	
	2) $\begin{cases} n+k-1=35 \\ n-k=2 \end{cases} \Rightarrow \begin{cases} n=19 \\ k=17 \end{cases}$ không thỏa mãn (2)	
	3) $\begin{cases} n+k-1=70 \\ n-k=1 \end{cases} \Rightarrow \begin{cases} n=36 \\ k=35 \end{cases}$ không thỏa mãn (2)	
	Vậy n=10, k=5.	0.25