Numerical Methods in Engineering

LEAST SQUARES CURVE FITTING

Lectures 18-19:

Read Chapter 17 of the textbook

Lecturer: Associate Professor Naila Allakhverdiyeva

Lecture 18

Introduction to Least Squares

Motivation

Given a set of experimental data:

X	1	2	3
У	5.1	5.9	6.3

- The relationship between
 x and y may not be clear.
- Find a function f(x) that best fit the data

Motivation

- In engineering, two types of applications are encountered:
 - <u>Trend analysis:</u> Predicting values of dependent variable, may include extrapolation beyond data points or interpolation between data points.
 - <u>Hypothesis testing:</u> Comparing existing mathematical model with measured data.
- 1. What is the best mathematical function **f** that represents the dataset?
- 2. What is the best criterion to assess the fitting of the function **f** to the data?

Curve Fitting

Given a set of tabulated data, find a curve or a function that <u>best</u> <u>represents the data</u>.

Given:

- 1.The tabulated data
- 2.The form of the function
- 3. The curve fitting criteria

Find the <u>unknown</u> coefficients

Least Squares Regression

Linear Regression

Fitting a straight line to a set of paired observations:

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n).$$

$$y=a_0+a_1x+e$$

 a_1 -slope.

 a_0 -intercept.

e-error, or residual, between the model and the observations.

Selection of the Functions

Linear
$$f(x) = a + bx$$

Quadratic $f(x) = a + bx + cx^2$

Polynomial $f(x) = \sum_{k=0}^{n} a_k x^k$

General $f(x) = \sum_{k=0}^{m} a_k g_k(x)$
 $g_k(x)$ are known.

Decide on the Criterion

1. Least Squares Regression:

minimize
$$\sum_{i=1}^{n} (y_i - f(x_i))^2$$

2. Exact Matching (Interpolation):

$$y_i = f(x_i)$$

Least Squares Regression

Given:

X _i	X_1	\mathbf{x}_2	 X _n
y _i	y ₁	y ₂	 y _n

The form of the function is assumed to be known but the coefficients are unknown.

$$e_i^2 = (y_i - f(x_i))^2 = (f(x_i) - y_i)^2$$

The difference is assumed to be the result of experimental error.

Determine the Unknowns

We want to find a and b to minimize:

$$\Phi(a,b) = \sum_{i=1}^{n} (a + bx_i - y_i)^2$$

How do we obtain a and b to minimize : $\Phi(a,b)$?

Determine the Unknowns

Necessary condition for the minimum:

$$\frac{\partial \Phi(a,b)}{\partial a} = 0$$

$$\frac{\partial \Phi(a,b)}{\partial b} = 0$$

Determining the Unknowns

$$\frac{\partial \Phi(a,b)}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i - y_i) = 0$$

$$\frac{\partial \Phi(a,b)}{\partial b} = \sum_{i=1}^{n} 2(a+bx_i - y_i)x_i = 0$$

Normal Equations

$$n a + \left(\sum_{i=1}^{n} x_i\right) b = \left(\sum_{i=1}^{n} y_i\right)$$
$$\left(\sum_{i=1}^{n} x_i\right) a + \left(\sum_{i=1}^{n} x_i^2\right) b = \left(\sum_{i=1}^{n} x_i \ y_i\right)$$

Solving the Normal Equations

$$b = \frac{n\left(\sum_{i=1}^{n} x_i y_i\right) - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n\left(\sum_{i=1}^{n} x_i^2\right) - \left(\sum_{i=1}^{n} x_i\right)^2}$$

$$a = \frac{1}{n} \left(\left(\sum_{i=1}^{n} y_i \right) - b \left(\sum_{i=1}^{n} x_i \right) \right)$$

Example 1: Linear Regression

Assume:

$$f(x) = a + bx$$

X	1	2	3
У	5.1	5.9	6.3

Equations:

$$n a + \left(\sum_{i=1}^{n} x_i\right) b = \left(\sum_{i=1}^{n} y_i\right)$$
$$\left(\sum_{i=1}^{n} x_i\right) a + \left(\sum_{i=1}^{n} x_i^2\right) b = \left(\sum_{i=1}^{n} x_i y_i\right)$$

Example 1: Linear Regression

i	1	2	3	sum
Xi	1	2	3	6
y _i	5.1	5.9	6.3	17.3
x_i^2	1	4	9	14
$x_i y_i$	5.1	11.8	18.9	35.8

Equations:

$$3a + 6b = 17.3$$

$$6a + 14b = 35.8$$

Solving:
$$a = 4.5667$$
 $b = 0.60$

Multiple Linear Regression

Example:

Given the following data:

t	0	1	2	3
×	0.1	0.4	0.2	0.2
У	3	2	1	2

Determine a function of two variables:

$$f(x,t) = a + b x + c t$$

That best fits the data with the least sum of the square of errors.

Solution of Multiple Linear Regression

Construct Φ , the sum of the square of the error and derive the necessary conditions by equating the partial derivatives with respect to the unknown parameters to zero, then solve the equations.

t	0	1	2	3
X	0.1	0.4	0.2	0.2
У	3	2	1	2

Solution of Multiple Linear Regression

$$f(x,t) = a + bx + ct$$
, $\Phi(a,b,c) = \sum_{i=1}^{n} (a + bx_i + ct_i - y_i)^2$

Necessary conditions:

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 2\sum_{i=1}^{n} (a + bx_i + ct_i - y_i) = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial b} = 2\sum_{i=1}^{n} (a + bx_i + ct_i - y_i)x_i = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 2\sum_{i=1}^{n} (a + bx_i + ct_i - y_i)t_i = 0$$

System of Equations

$$a n + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} y_i$$

$$a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} (x_i)^2 + c\sum_{i=1}^{n} (x_i t_i) = \sum_{i=1}^{n} (x_i y_i)$$

$$a\sum_{i=1}^{n} t_i + b\sum_{i=1}^{n} (x_i t_i) + c\sum_{i=1}^{n} (t_i)^2 = \sum_{i=1}^{n} (t_i y_i)$$

Example 2: Multiple Linear Regression

i	1	2	3	4	Sum
t _i	0	1	2	3	6
Xi	0.1	0.4	0.2	0.2	0.9
y _i	3	2	1	2	8
x_i^2	0.01	0.16	0.04	0.04	0.25
$x_i t_i$	0	0.4	0.4	0.6	1.4
$x_i y_i$	0.3	0.8	0.2	0.4	1.7
t_i^2	0	1	4	9	14
t _i y _i	0	2	2	6	10

Example 2: System of Equations

$$\begin{cases} 4a + 0.9b + 6c = 8 \\ 0.9a + 0.25b + 1.4c = 1.7 \\ 6a + 1.4b + 14c = 10 \end{cases}$$

Solving:

$$a = 2.9574$$
, $b = -1.7021$, $c = -0.38298$
 $f(x,t) = a + bx + ct = 2.9574 - 1.7021 x - 0.38298 t$

Lecture 19

NONLINEAR LEAST SQUARES PROBLEMS

- Examples of Nonlinear Least Squares
- Solution of Inconsistent Equations
- ☐ Continuous Least Square Problems

Polynomial Regression

 The least squares method can be extended to fit the data to a higher-order polynomial

$$f(x) = a + bx + cx^2$$
, $e_i^2 = (f(x) - y_i)^2$

Minimize
$$\Phi(a,b,c) = \sum_{i=1}^{n} (a + bx_i + cx_i^2 - y_i)^2$$

Necessary conditions:

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 0, \quad \frac{\partial \Phi(a,b,c)}{\partial b} = 0, \quad \frac{\partial \Phi(a,b,c)}{\partial c} = 0$$

Equations for Quadratic Regression

Minimize
$$\Phi(a,b,c) = \sum_{i=1}^{n} (a + bx_i + cx_i^2 - y_i)^2$$

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 2\sum_{i=1}^{n} \left(a + bx_i + cx_i^2 - y_i \right) = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial b} = 2\sum_{i=1}^{n} \left(a + bx_i + cx_i^2 - y_i\right) x_i = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 2\sum_{i=1}^{n} \left(a + bx_i + cx_i^2 - y_i\right) x_i^2 = 0$$

Normal Equations

$$a n + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i$$

$$a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2 + c \sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{n} x_i y_i$$

$$a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i^3 + c\sum_{i=1}^{n} x_i^4 = \sum_{i=1}^{n} x_i^2 y_i$$

Example 3: Polynomial Regression

Fit a second-order polynomial to the following data

Xi	0	1	2	3	4	5	Σ=15
Yi	2.1	7.7	13.6	27.2	40.9	61.1	Σ=152.6
X _i ²	0	1	4	9	16	25	Σ=55
X_i^3	0	1	8	27	64	125	Σ=225
X _i ⁴	0	1	16	81	256	625	Σ=979
x _i y _i	0	7.7	27.2	81.6	163.6	305.5	Σ=585.6
$x_i^2 y_i$	0	7.7	54.4	244.8	654.4	1527.5	Σ=2488.8

Example 3: Equations and Solution

$$\begin{cases} 6a + 15b + 55c = 152.6 \\ 15a + 55b + 225c = 585.6 \\ 55a + 225b + 979c = 2488.8 \end{cases}$$

Solving...

$$a = 2.4786, b = 2.3593, c = 1.8607$$

 $f(x) = 2.4786 + 2.3593 x + 1.8607 x^2$

How Do You Judge Functions?

Given two or more functions to fit the data, How do you select the best?

Answer:

Determine the parameters for each function, then compute Φ for each one. The function resulting in smaller Φ (least sum of the squares of the errors) is the best.

Example showing that Quadratic is preferable than Linear Regression

Fitting with Nonlinear Functions

X _i	0.24	0.65	0.95	1.24	1.73	2.01	2.23	2.52
y _i	0.23	-0.23	-1.1	-0.45	0.27	0.1	-0.29	0.24

It is required to find a function of the form:

$$f(x) = a \ln(x) + b \cos(x) + c e^{x}$$
to fit the data.

$$\Phi(a,b,c) = \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

Fitting with Nonlinear Functions

$$\Phi(a,b,c) = \sum_{i=1}^{n} (a \ln(x_i) + b \cos(x_i) + c e^{x_i} - y_i)^2$$

Necessary condition for the minimum:

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial b} = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 0$$

Normal Equations

$$a\sum_{i=1}^{n}(\ln x_i)^2 + b\sum_{i=1}^{n}(\ln x_i)(\cos x_i) + c\sum_{i=1}^{n}(\ln x_i)(e^{x_i}) = \sum_{i=1}^{n}y_i(\ln x_i)$$

$$a\sum_{i=1}^{n}(\ln x_i)(\cos x_i) + b\sum_{i=1}^{n}(\cos x_i)^2 + c\sum_{i=1}^{n}(\cos x_i)(e^{x_i}) = \sum_{i=1}^{n}y_i(\cos x_i)$$

$$a\sum_{i=1}^{n}(\ln x_i)(e^{x_i}) + b\sum_{i=1}^{n}(\cos x_i)(e^{x_i}) + c\sum_{i=1}^{n}(e^{x_i})^2 = \sum_{i=1}^{n}y_i(e^{x_i})$$

Evaluate the sums and solve the normal equations.

Example 4: Evaluating Sums

xi	0.24	0.65	0.95	1.24	1.73	2.01	2.23	2.52	∑=11.57
yi	0.23	-0.23	-1.1	-0.45	0.27	0.1	-0.29	0.24	Σ=-1.23
(ln xi) ²	2.036	0.1856	0.0026	0.0463	0.3004	0.4874	0.6432	0.8543	∑=4.556
In(xi) cos(xi)	-1.386	-0.3429	-0.0298	0.0699	-0.0869	-0.2969	-0.4912	-0.7514	∑=-3.316
In(xi) * e ^{xi}	-1.814	-0.8252	-0.1326	0.7433	3.0918	5.2104	7.4585	11.487	∑=25.219
yi * ln(xi)	-0.328	0.0991	0.0564	-0.0968	0.1480	0.0698	-0.2326	0.2218	∑=-0.0625
cos(xi) ²	0.943	0.6337	0.3384	0.1055	0.0251	0.1808	0.3751	0.6609	∑=3.26307
cos(xi) * e ^{xi}	1.235	1.5249	1.5041	1.1224	-0.8942	-3.1735	-5.696	-10.104	∑=-14.481
yi*cos(xi)	0.223	-0.1831	-0.6399	-0.1462	-0.0428	-0.0425	0.1776	-0.1951	∑=-0.8485
(e ^{xi}) ²	1.616	3.6693	6.6859	11.941	31.817	55.701	86.488	154.47	∑=352.39
yi * e ^{xi}	0.2924	-0.4406	-2.844	-1.555	1.523	0.7463	-2.697	2.9829	Σ=-1.9923

Example 4: Equations & Solution

$$\begin{cases} 4.55643 \, a - 3.31547 \, b + 25.2192 \, c = -0.062486 \\ -3.31547 \, a + 3.26307 \, b - 14.4815 \, c = -0.848514 \\ 25.2192 \, a - 14.4815 \, b + 352.388 \, c = -1.992283 \end{cases}$$

Solving the above equations:

$$a = -0.88815$$
, $b = -1.1074$, $c = 0.012398$ Therefore,

$$f(x) = -0.88815 \ln(x) - 1.1074 \cos(x) + 0.012398 e^{x}$$

Example 5

Given:

X _i	1	2	3
y _i	2.4	5	9

Find a function $f(x) = ae^{bx}$ that best fits the data.

$$\Phi(a,b) = \sum_{i=1}^{n} \left(ae^{bx_i} - y_i \right)^2$$

Normal Equations are obtained using:

$$\frac{\partial \Phi}{\partial a} = 2\sum_{i=1}^{n} \left(ae^{bx_i} - y_i \right) e^{bx_i} = 0$$

$$\frac{\partial \Phi}{\partial b} = 2\sum_{i=1}^{n} \left(ae^{bx_i} - y_i \right) a x_i e^{bx_i} = 0$$

Difficult to Solve

Linearization Method

Find a function $f(x) = ae^{bx}$ that best fits the data.

Define
$$g(x) = \ln(f(x)) = \ln(a) + bx$$

Define
$$z_i = \ln(y_i) = \ln(a) + bx_i$$

Let
$$\alpha = \ln(a)$$
 and $z_i = \ln(y_i)$

Instead of minimizing :
$$\Phi(a,b) = \sum_{i=1}^{n} (ae^{bx_i} - y_i)^2$$

Minimize:
$$\Phi(\alpha, b) = \sum_{i=1}^{n} (\alpha + bx_i - z_i)^2$$
 (Easier to solve)

Example 5: Equations

$$\Phi(\alpha,b) = \sum_{i=1}^{n} (\alpha + b x_i - z_i)^2$$

Normal Equations are obtained using:

$$\frac{\partial \Phi}{\partial \alpha} = 2\sum_{i=1}^{n} (\alpha + b x_i - z_i) = 0$$

$$\frac{\partial \Phi}{\partial b} = 2\sum_{i=1}^{n} (\alpha + b x_i - z_i) x_i = 0$$

$$\alpha n + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} z_i$$
 and $\alpha \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} (x_i z_i)$

Evaluating Sums and Solving

Xi	1	2	3	Σ=6
Yi	2.4	5	9	
$z_i = ln(y_i)$	0.875469	1.609438	2.197225	Σ=4.68213
X_i^2	1	4	9	Σ=14
$X_i Z_i$	0.875469	3.218876	6.591674	Σ=10.6860

Equations:

$$3\alpha + 6b = 4.68213$$

$$6 \alpha + 14 b = 10.686$$

Solving Equations:

$$\alpha = 0.23897, b = 0.66087$$

$$\alpha = \ln(a), \quad a = e^{\alpha}$$

$$a = e^{0.23897} = 1.26994$$

$$f(x) = ae^{bx} = 1.26994 e^{0.66087x}$$