CS302 – Analysis and Design of Algorithms

Red-Black Tree and Complexity Classes

Content

Red-Black Trees

Rotations

Insertion

Deletion

Complexity Classes

- In BST, operations take O(h) time, where $h = \lg n$ is the height of the tree.
- An unbalanced tree may run no faster than a linked list.

- Red-black trees are binary search tree schemes that are balanced.
- They guarantee $O(\lg n)$ operations in the worst case.

- A red-black tree has an extra bit of storage per node: its color.
 - RED node
 - o BLACK node

• The height of a red-black tree with n keys is at most $2 \lg(n+1) = O(\lg n)$.

• BST node

Red-black tree node

- Properties of RB trees:
 - 1. Every node is either red or black.
 - 2. The root is black.
 - 3. Every leaf (NIL) is black.
 - 4. If a node is red, then both its children are black.
 - 5. For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

- Example
 - Every node is either red or black.

ExampleThe root is black.

- Example
 - Every leaf (NIL) is black.

- Example
 - o If a node is red, then both its children are black.

Example

o For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

- Example
 - o For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

- Since all leaf nodes have their left and right are NILs, assign a sentinel node to all of them.
 - Sentinel node is black → T.nil
 - The parent of the root point to the sentinel

- bh(x) refers to the black-height of the node x.
- Black-height is the number of black nodes on any path from node x to a leaf.
 - Node *x* is not counted

Content

Content

Red-Black Trees

Rotations

Insertion

Deletion

Complexity Classes

Rotations

- Rotation operation preserves the tree property when inserting or deleting elements.
- There are two rotations: left rotation and right rotation.
 - \circ Both take O(1), because they only change the pointers

Rotations

Left rotation

Figure 13.3 An example of how the procedure LEFT-ROTATE(T, x) modifies a binary search tree. Inorder tree walks of the input tree and the modified tree produce the same listing of key values.

Rotations

Right rotation

Content

Content

Red-Black Trees

Rotations

Insertion

Deletion

Complexity Classes

- To insert a node z in an RB-tree T:
 - 1. Set z's color to red
 - 2. BST-Insert(T, z)
 - 3. If the parent of z is black
 - 1. Stop
 - 4. If the parent of z is red
 - 1. Fix the tree

Insertion – Fix RB-tree

- While z.p.color = red:
- 1. If z.p is a left child
 - 1. y = right parent's sibling (uncle) of z.
 - 2. If y.color = red:
 - 1. z.p.color = black
 - $2. \quad y. color = black$
 - $3. \quad z.p.p.color = red$
 - 3. If y.color = black
 - 1. If z is a right child
 - 1. z = z.p
 - 2. LR(T, z)
 - $2. \quad z.p.color = black$
 - 3. z.p.p = red
 - 4. RR(T, z, p, p)

- 2. If z.p is a right child
 - 1. y = left parent's sibling (uncle) of z.
 - 2. If y.color = red:
 - 1. z.p.color = black
 - 2. y.color = black
 - $3. \quad z.p.p.color = red$
 - 4. z = z.p.p
 - 3. If y.color = black:
 - 1. If z is a left child
 - 1. z = z.p
 - 2. RR(T, z)
 - $2. \quad z.p.color = black$
 - $3. \quad z.p.p.color = red$
 - 4. LR(T, z, p, p)

T.root.color = black

• Example: insert 11

Inserting 0011

• z and parent are both red. z is a right child, parent is a left child

Single left rotation

• z and parent are red. z is left child, parent is left child

• Single right rotation

• Single right rotation

Recolor the nodes

Recolor the nodes

• Insert the values [10, 1, 17, 4, 2, 0, 15] in an RB-tree.

[10, 1, 17, 4, 2, 0, 15] – The tree is empty, so 10 is a black root node

[10, 1, 17, 4, 2, 0, 15] — 1 is created as a red node.

[10, 1, 17, 4, 2, 0, 15] – 1 is less than 10, so it's inserted on the left of 10.

[10, 1, 17, 4, 2, 0, 15] — 17 is created as a red node.

[10, 1, 17, 4, 2, 0, 15] — 17 is greater than 10, so it's inserted on the right.

[10, 1, 17, 4, 2, 0, 15] — 4 is created as a red node.

[10, 1, 17, 4, 2, 0, 15] — 4 is less than 10 and greater than 1.

[10, 1, 17, 4, 2, 0, 15] – 4 and 1 are both red. Uncle of 4 (17) is red.

[10, 1, 17, 4, 2, 0, 15] — Recolor the nodes from the grandparent.

[10, 1, 17, 4, 2, 0, 15] — Root is red, set it to black.

[10, 1, 17, 4, 2, 0, 15] — 2 is created as a red node.

[10, 1, 17, 4, 2, 0, 15] - 2 < 10, 2 > 1, 2 < 4.

[10, 1, 17, 4, 2, 0, 15] – 2 and 4 are both red.

[10, 1, 17, 4, 2, 0, 15] - 2 is a left child, 4 is a right child \rightarrow RR

[10, 1, 17, 4, 2, 0, 15] — Right rotate

[10, 1, 17, 4, 2, 0, 15] – 2 and 4 are red, they are both right child

[10, 1, 17, 4, 2, 0, 15] - 2 and 4 are red, they are both right child \rightarrow LR

[10, 1, 17, 4, 2, 0, 15] — Left rotate

[10, 1, 17, 4, 2, 0, 15] — Recolor the nodes

[10, 1, 17, 4, 2, 0, 15] — 0 is created as a red node

[10, 1, 17, 4, 2, 0, 15] - 0 < 10, 0 < 2, 0 < 1

[10, 1, 17, 4, 2, 0, 15] — 0 and 1 are both red, uncle (4) is red.

[10, 1, 17, 4, 2, 0, 15] — Recolor from the grandparent

[10, 1, 17, 4, 2, 0, 15] — 15 is created as a red node.

[10, 1, 17, 4, 2, 0, 15] - 15 > 10, 15 < 17.

Content

Content

Red-Black Trees

Rotations

Insertion

Deletion

- RB-delete(T, z)
- 1. y = z
- 2. y-original-color = y. color
- 3. If z.left = T.nil:
 - 1. Replace z by its right child
- 4. Else If z.right = T.nil:
 - 1. Replace z by its left child

- 5. Else, y = Tree Minimum(z.right)
 - 1. y-original-color = y.color
 - 2. x = y.right
 - 3. If $y \neq z.right$
 - 1. Replace y with its right child
 - 4. Else, $x \cdot p = y$
 - 5. Replace z with y
 - 6. y.color = z.color
- 6. If y-original-color = black
 - 1. Fix the tree

- While $x \neq T.root$ and x.color = black
 - 1. If *x* is a left child:
 - 1. w =right sibling of x
 - 2. If $w.color = red: \rightarrow Case 1$
 - $1. \quad w.color = black$
 - 2. x.p.color = red
 - 3. LR(T, x, p)
 - $4. \quad w = x.p.right$

- While $x \neq T.root$ and x.color = black
 - 1. If *x* is a left child:
 - 1. w = right sibling of x
 - 2. If w.left.color = black and w.right.color = black: \rightarrow Case 2
 - 1. w.color = red
 - $2. \quad x = x. p$

- While $x \neq T.root$ and x.color = black
 - 1. If *x* is a left child:
 - 1. w = right sibling of x
 - 2. Else:
 - 1. If $w. color = black: \rightarrow Case 3$
 - 1. w.left.color = black
 - 2. w.color = red
 - 3. RR(T, w)
 - 4. w = x.p.right

$\overline{\mathsf{RB}}$ -DELETE-FIXUP(T,x)

- While $x \neq T.root$ and x.color = black
 - 1. If *x* is a left child:
 - 1. w = right sibling of x
 - 2. Else: \rightarrow Case 4
 - 1. w.color = x.p.color
 - 2. x.p.color = black
 - $3. \quad w.right.color = black$
 - 4. LR(T, x. p)
 - 5. x = T.root

- While $x \neq T.root$ and x.color = black
 - 1. If *x* is a right child:
 - 1. $w = x.p.left \rightarrow$ Apply the previous 4 cases but exchanging right and left
 - 2. If $w.color = red: \rightarrow Case 1$
 - 1. w.color = black
 - 2. x.p.color = red
 - 3. RR(T, x, p)
 - 4. w = x.p.left

- While $x \neq T.root$ and x.color = black
 - 1. If *x* is a right child:
 - 1. $w = x.p.left \rightarrow$ Apply the previous 4 cases but exchanging right and left
 - 2. If w.right.color = black and w.left.color = black: \rightarrow Case 2
 - 1. w.color = red
 - 2. x = x.p

- While $x \neq T.root$ and x.color = black
 - 1. If *x* is a right child:
 - 1. $w = x.p.left \rightarrow$ Apply the previous 4 cases but exchanging right and left
 - 2. Else:
 - 1. If $w. color = black: \rightarrow Case 3$
 - $1. \quad w.right.color = black$
 - $2. \quad w.color = red$
 - 3. LR(T, w)
 - 4. w = x.p.left

- While $x \neq T.root$ and x.color = black
 - 1. If *x* is a right child:
 - 1. $w = x.p.left \rightarrow$ Apply the previous 4 cases but exchanging right and left
 - 2. Else: \rightarrow Case 4
 - 1. w.color = x.p.color
 - 2. x.p.color = black
 - $3. \quad w.left.color = black$
 - 4. RR(T, x, p)
 - 5. x = T.root

- While $x \neq T.root$ and x.color = blacko...
- x.color = black

Content

Content

Red-Black Trees

Rotations

Insertion

Deletion

Types of problems

Tractable

Problems that can be solved in polynomial time

Intractable

Problems that as they grow large, we are unable to solve them in reasonable time

Decision

A problem with a True/False answer

Optimization

A problem which asks, "What is the optimal solution to problem X?"

- Reasonable time = Polynomial time
 - \circ On an input size n, the worst-case running time is $O(n^c)$ for some constant c.
 - \circ Polynomial time: $O(n^2)$, $O(n^3)$, O(1), $O(n \lg n)$
 - \circ Non-polynomial time: $O(2^n)$, $O(n^n)$, O(n!)
- Intractable problems: there is no efficient algorithm to solve.

o Graph-coloring: coloring vertices such that no two adjacent vertices have the same

color.

- Optimization problems: what is the best (optimal) solution?
 - Minimum spanning tree (MST): a spanning tree that has the minimum weight among all the possible spanning trees.

- Decision problems: Yes, or No?
 - Does a graph have an MST of weight $\leq w$?

- **Deterministic algorithms**: always compute the same answer and do the same sequence of computations.
 - o Predictability: The same input will always result in the same output.
 - Fixed Steps: The algorithm follows a clear set of rules or steps.
 - No Randomness: There is no element of randomness or probability in the process.
- Non-deterministic algorithms: algorithms that "guess" the right solution.
 - Multiple outcomes: The same input might result in different outputs on different runs.
 - o **Probabilistic Elements**: Often involves randomness or probability in decision-making.
 - o Parallel Path Exploration: Can explore multiple solution paths simultaneously.

- **P (Polynomial Time)**: Problems **solvable** in polynomial time on deterministic algorithms.
 - Sorting algorithms.
- NP (Non-deterministic Polynomial Time): Problems verifiable in polynomial time, solved using non-deterministic algorithms.
 - Hard to find an optimal solution.
 - Solutions can be verified in polynomial time.
 - Example: graph-coloring algorithms.

- Sometimes you can solve a problem by reducing it to a different problem. E.g., solving Problem B by solving Problem A.
 - \circ If I can solve A in polynomial time, then I can construct a solution to B in polynomial time that is based on the solution of A.
- A problem is NP-hard if problems in NP are reducible to it.
 - Ex: Hamiltonian Cycle a path in a graph that visits each vertex exactly once.
- Example: Travelling salesman problem can be reduced to Hamiltonian Cycle.

- NP-Complete: A problem that is NP-hard and NP.
- Open question: P = NP? \rightarrow Is every problem whose solution can be verified quickly (in polynomial time) also solvable quickly (in polynomial time)?
- If P = NP, then all NP-complete problems would have efficient (polynomial-time) solutions
 - This has not been proven.
- Most computer scientists believe that $P \neq NP$.
 - This has not been proven.

- **P:** The easiest and can be solved efficiently.
- NP: Have a solution that can be verified quickly but finding it may be hard.
- NP-complete: The hardest problems in NP, and if one of them can be solved efficiently, so can all NP problems.
- NP-hard problems are at least as difficult as NP-complete problems, but they may not be decision problems and may not be in NP at all.

