

Class: Machine Learning

Unsupervised learning: k-means

Instructor: Matteo Leonetti

Learning outcomes

• Apply the k-means algorithm to a dataset

Clustering

UNIVERSITY OF LEEDS

7

How many clusters do we have?

K-means

- 1. Choose the number of clusters (in the example: k=3)
- 2. Place k centroids randomly (the triangles)

K-means

- 3. Identify the closest centroid to each point
- 4. Compute the new centroids for the clusters

K-means

5. Repeat until the centroids do not move

Cluster new points with the closest cluster centre (centroid)

K-means - characteristics

Very easy to implement

You have to choose the number of clusters

Subject to local minima (clusters depend on initial positions of the centroids)

Yet, a popular first thing to try!

Chapter 14 (intro) Chapter 14.1