Name:

First Name:

Class:

Midterm exam n°1

Exercise 1 (3 points)

1. Determine the Taylor expansion around 0 at order 3 of $\ln(2 + \sin(x))$.

2. Determine $\lim_{x \to +\infty} \left(\cos \left(\frac{1}{x} \right) \right)^{x^2}$.

3. Determine the nature of $\sum n^2 e^{-n}$.

Exercise 2 (5 points)

1. Using d'Alembert's test, determine the nature of $\sum \frac{(n!)^3}{(3n)!}$.

2. Using a Taylor expansion, determine the nature of $\sum \ln \left(\cos\left(\frac{1}{n}\right)\right)$.

4. Determine the nature of $\sum \frac{(-1)^n}{n\sqrt{n}}$.

Exercise 3 (4 points)

Let us consider the sequence $(u_n)_{n\in\mathbb{N}^*}$ defined for every $n\in\mathbb{N}^*$ by

$$u_n = \ln\left((n-1)!\right) - \left(n - \frac{1}{2}\right)\ln(n) + n$$

1. Show that

$$u_{n+1} - u_n = 1 - \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right)$$

2. Show that $u_{n+1} - u_n \underset{+\infty}{\sim} -\frac{1}{12n^2}$.

3. Deduce that (u_n) is convergent.

Exercise 4 (4 points)

Let us consider the sequence (u_n) defined for every $n \in \mathbb{N}^*$ by $u_n = \sqrt[n]{n+1} - \sqrt[n]{n}$.

1. Determine $\lim_{n\to+\infty} \sqrt[n]{n}$.

2. Show that for every $n \in \mathbb{N}^*$, $u_n = \sqrt[n]{n} \left(\left(1 + \frac{1}{n} \right)^{1/n} - 1 \right)$.

3. Using a Taylor expansion, determine an equivalent of $\left(1+\frac{1}{n}\right)^{1/n}-1$, then of u_n .

4. Deduce the nature of $\sum u_n$.

Exercise 5 (4 points)

Let us consider the sequence (u_n) defined for every $n \ge 2$ by $u_n = \frac{(-1)^n}{\ln(n) - (-1)^n}$.

1. What is the following limit : $\lim_{n \to +\infty} \frac{n}{\ln^2(n)}$?

2. Deduce the nature of $\sum \frac{1}{\ln^2(n)}$.

3. Check that for every $n \in \mathbb{N}^*$, $u_n = \frac{(-1)^n}{\ln(n)} \left(1 - \frac{(-1)^n}{\ln(n)}\right)^{-1}$.

4. Determine $a \in \mathbb{R}$ such that $u_n = \frac{(-1)^n}{\ln(n)} + \frac{a}{\ln^2(n)} + o\left(\frac{1}{\ln^2(n)}\right)$.

5. Deduce the nature of $\sum u_n$.