Problem Set - 19 Jan 2024

PROBLEM 1 (2011 AMC 12B #9)

Two real numbers are selected independently and at random from the interval [-20, 10]. What is the probability that the product of those numbers is greater than zero?

- $(\mathbf{A})\frac{1}{9}$

- **(B)** $\frac{1}{3}$ **(C)** $\frac{4}{9}$ **(D)** $\frac{5}{9}$ **(E)** $\frac{2}{3}$

PROBLEM 2 (2022 AMC 12B #16)

Suppose x and y are positive real numbers such that

$$x^y = 2^{64}$$
 and $(\log_2 x)^{\log_2 y} = 2^7$.

What is the greatest possible value of $log_2 y$?

- **(A)** 3
- **(B)** 4
- (C) $3 + \sqrt{2}$ (D) $4 + \sqrt{3}$
- (\mathbf{E}) 7

PROBLEM 3 (2011 UNCO MATH CONTEST II #6)

What is the remainder when $1! + 2! + 3! + \cdots + 2011!$ is divided by 18?

PROBLEM 4 (2014 AIME I #13)

On square ABCD, points E, F, G, and H lie on sides $\overline{AB}, \overline{BC}, \overline{CD}$, and \overline{DA} , respectively, so that $\overline{EG} \perp \overline{FH}$ and EG = FH = 34. Segments \overline{EG} and \overline{FH} intersect at a point P, and the areas of the quadrilaterals AEPH, BFPE, CGPF, and DHPG are in the ratio 269:275:405:411. Find the area of square ABCD.

PROBLEM 5 (2011 USAMO #4)

This problem is from both the 2011 USAJMO and the 2011 USAMO, so both problems redirect here.

Consider the assertion that for each positive integer $n \ge 2$, the remainder upon dividing 2^{2^n} by $2^n - 1$ is a power of 4. Either prove the assertion or find (with proof) a counter-example.

Using content from the AoPS Wiki | amctrivial.com