Problem A. Байтовый компьютер

Input file: stdin
Output file: stdout
Time limit: 2 seconds
Memory limit: 256 megabytes

Задана последовательность из n чисел x_1, \ldots, x_n из множества $\{-1,0,1\}$. Байтовый компьютер — это устройство, которое позволяет сделать следующую операцию с числами: выбрать i от 1 до n-1 и увеличить x_{i+1} на x_i Значения, которые могут принимать x_i не ограничены.

Найдите программу для байтового компьютера, которая превращает заданную последовательность в неубывающую за минимальное число операций.

Input

Первая строка содержит n ($1 \le n \le 10^6$). Вторая строка содержит n чисел x_1, \ldots, x_n из множества $\{-1, 0, 1\}$.

Output

Выведите одно число — минимальное число операций, которое необходимо для того, чтобы превратить заданную последовательность в неубывающую

Examples

stdin	stdout
6	3
-1 1 0 -1 0 1	

Тесты с $n \le 500$ приносят до 24 баллов.

Тесты с $n \le 10\,000$ приносят до 48 баллов.

Problem B. Цветная цепочка

Input file: stdin
Output file: stdout
Time limit: 2 seconds
Memory limit: 256 megabytes

Маленький Байти любит играть с цветными цепочками. У него есть коллекция таких цепочек и он любит некоторые из них больше чем другие. Каждая цепочка состоит из некоторого числа цветных звеньев.

Байтзар заметил, что чувство прекрасного Байти очень точное. А именно, он считает некоторый отрезок последовательных звеньев цепочки симпатичным, если он содержит ровно l_1 звеньев цвета c_1 , l_2 звеньев цвета c_2 , ... l_m звеньев цвета c_m , и не содержит звеньев других цветов.

Красота цепочки равна количеству различных симпатичных фрагментов в ней.

Помогите Байтзару выяснить красоту различных цепочек.

Input

Первая строка содержит два целых числа n и m (1 < m < n < 1000000).

Далее следует m целых чисел $l_1, \ldots, l_m \ (1 \le l_i \le n)$.

На третьей строке находится m различных целых чисел c_1, \ldots, c_m $(1 \le c_i \le n)$.

Четвертая строка содержит n целых чисел a_1, \ldots, a_n — цвета звеньев в цепочке.

Output

Выведите одно число — красоту заданной во входном файле цепочки.

Examples

stdin	stdout
7 3	2
2 1 1	
1 2 3	
4 2 1 3 1 2 5	

Подходят отрезки 2, 1, 3, 1 и 1, 3, 1, 2.

Тесты с $n \le 5000$ приносят до 50 баллов.

Problem C. Поляризация

Input file: stdin
Output file: stdout
Time limit: 2 seconds
Memory limit: 256 megabytes

Недавно в Байтландии изобрели Битовый Поляризационный Магнит. Если его применить, каждая дорога в Байтландии станет односторонней. Это будет очень плохо, ведь в Байтландии дороги образуют дерево — от каждого города до каждого ровно один путь. В зависимости от того, в какую сторону окажется ориентирована каждая дорога, различные города станут недостижимы друг из друга.

Теперь ученые решили выяснить, насколько плохо будет жить в Байтландии, если применить БПМ. Определите минимальное и максимальное количество пар городов, что из первого по прежнему можно будет добраться до другого после применения магнита.

Input

Первая строка содержит число n — число городов в Байтландии ($1 \le n \le 250\,000$).

Следующие n-1 строка описывают дороги, каждая дорога описывается двумя различными числами от 1 до n — номерами городов, которые он соединяет. От каждого города можно добраться до любого другого.

Output

Выведите два числа: минимальное и максимальное число искомых пар городов.

Examples

stdin	stdout
4	3 5
1 2	
1 3	
1 4	
8	7 28
1 2	
2 3	
3 4	
4 5	
5 6	
6 7	
7 8	

Тесты с $n \le 100$ приносят до 30 баллов.

Тесты с $n \le 10\,000$ приносят до 60 баллов.