Lecture: Coloring (3) and Planarity

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Use chromatic recurrence to compute $c_G(k)$

- Example: Compute $c_{P_3}(k) = k^4 3k^3 + 3k^2 k$
- Check: $c_{P_3}(1) = 0$, $c_{P_3}(2) = 2$

FIGURE 1.102. Two 2-colorings of P_4 .

More examples

• Path P_{n-1} has n-1 edges (n vertices)

$$c_{P_{n-1}}(k) = k(k-1)^{n-1}$$

Any tree T on n vertices

$$c_T(k) = k(k-1)^{n-1}$$

• Cycle C_n

$$c_{C_n}(k) = (k-1)^n + (-1)^n(k-1)$$

- When n is odd, $c_{C_n}(2) = 0$, $c_{C_n}(3) > 0$
- When n is even, $c_{C_n}(2) > 0$

Properties of chromatic polynomials

- Theorem (1.49, H; Ex 3, S1.6.4, H) Let G be a graph of order n
 - $c_G(k)$ is a polynomial in k of degree n
 - The leading coefficient of $c_G(k)$ is 1
 - The constant term of $c_G(k)$ is 0
 - If G has i components, then the coefficients of k^0, \dots, k^{i-1} are 0
 - G is connected \Leftrightarrow the coefficient of k is nonzero
 - The coefficients of $c_G(k)$ alternate in sign
 - The coefficient of the k^{n-1} term is -|E(G)|
 - A graph G is a tree \iff $c_G(k) = k(k-1)^{n-1}$

 \Leftrightarrow (Theorem 1.10, 1.12, H) T is connected with n-1 edges

• A graph G is complete $\Leftrightarrow c_G(k) = k(k-1)\cdots(k-n+1)$

Proof Using Coloring

Example -- Instant Insanity 四色方柱问题 (1.2, L)

- Problem make a stack of these cubes so that all four colors appear on each of the four sides of the stack
- An edge indicates that the two adjacent colors occur on opposite faces of the cube
- Problem necessary to find two subgraphs s.t.
 - are regular of degree 2
 - four edges from each cube
 - no edge in common

Example -- Instant Insanity 四色方柱问题 (1.2, L)

- Problem necessary to find two subgraphs s.t.
 - are regular of degree 2
 - four edges from each cube
 - no edge in common

An example about sets (1E, L)

- Let $A_1, ..., A_n$ be n distinct subsets of the n-set $N := \{1, ..., n\}$. Show that there is an element $x \in N$ such that the sets $A_i \setminus \{x\}, 1 \le i \le n$, are all distinct
- Proof Consider a graph with vertices A_1, \dots, A_n .
 - An edge of `color' x between A_i and A_j iff $A_i \Delta A_j = \{x\}$
 - Then the problem is equivalent to find y s.t. no color y
 - Notice that a cycle in this graph must have even length and each color appears even times
 - Then we can remove an edge if there is an edge with same color
 - Thus the number of colors remain the same and no cycle exists
 - By tree property, the number of edges is at most n-1

Planarity

Motivation

FIGURE 1.72. Original routes.

Definition and examples

- A graph G is said to be planar if it can be drawn in the plane in such a
 way that pairs of edges intersect only at vertices
- If G has no such representation, G is called nonplanar
- A drawing of a planar graph G in the plane in which edges intersect only at vertices is called a planar representation (or a planar embedding) of G

Region

- Given a planar representation of a graph G, a region is a maximal section of the plane in which any two points can be joined by a curve that does not intersect any part of G
- The region R_7 is called the exterior (or outer) region

An edge bounds a region

 An edge can come into contact with either one or two regions

FIGURE 1.76. Edges e_1 , e_2 , and e_3 touch one region only.

- Example:
 - Edge e_1 is only in contact with one region S_1
 - Edge e_2 , e_3 are only in contact with S_2
 - Each of other edges is in contact with two regions
- An edge e bounds a region R if e comes into contact with R and with a region different from R
- The bounded degree b(R) is the number of edges that bound the region
 - Example: $b(S_1) = b(S_3) = 3$, $b(S_2) = 6$

The relationship between numbers of vertices, edges and regions

- The number of vertices n
- The number of edges *m*
- The number of regions r

$$n = 7$$

$$m = 9$$

$$r = 4$$

$$n = 8$$

$$m = 12$$

$$r = 6$$

$$n = 10$$

$$m = 9$$

$$r = 1$$

Euler's formula

• Theorem (1.31, H; Euler 1748) If G is a connected planar graph with n vertices, m edges, and r regions, then

$$n-m+r=2$$

Need Lemma: Every tree is planar

$K_{3,3}$ is nonplanar

• Theorem (1.32, H) $K_{3,3}$ is nonplanar

FIGURE 1.72. Original routes.

Upper bound for *m*

- Theorem (1.33, H) If G is a planar graph with $n \ge 3$ vertices and m edges, then $m \le 3n 6$. Furthermore, if equality holds, then every region is bounded by 3 edges.
- Corollary (1.34, H) K_5 is nonplanar
- Theorem (1.35, H) If G is a planar graph, then $\delta(G) \leq 5$