CS326-02 Concurrency and Locks

Project03 - Queve/List based scheduling

Xub Book: Chapters 6 and 7

Concurrency

CPU.

Memory

lint X

Manory architecture

Race conditions

What are the possible values of x?

int X=0}

Process A

Process B

Possible interleavings

14	ro C o	17
A 2	ro E ro +1	BZ
A3	X610 X27	B 3
BI	roEl	41
B2	ro Erotz	A-2
B3	x6 10 [X=3]	A)
	V	

A1	r. 60	14	ro 60
BI	ro 60	BI	r. 6- 6
12	10 E 10 x 1 10 = 1	B2	ro E ro + 2
A3	x 6 so += 1	03	x Ero x=2
•	Lo F Lo +5 Lo = 5	45	10 t 10 t 1
	X & 10 [X=2]	A3	X6 10 [X = 1]
	V		X=1

Locks intx=0; lock x-lock=0;

Process A

Process B

acquire (& x_lock)

(x = x + 1)

% release (Ax_lock)

(ritical Section

release (&x-lock)

Atomic update spinlocks

acquire (int *lock) {

7

rclease (intolock) 5

while (atomie_swan (& lock, 1) == 1)

Cor