PROJECT-BASED EXPERIENTIAL LEARNING PROGRAM (NALAIYA THIRAN) SIGNS WITH SMART CONNECTIVITY FOR BETTER ROAD SAFETY

A PROJECT REPORT

Submitted by

R. JANANI (412719106006)

S. SOWMIYAA (412719106014)

E. ANANDHI (412719106001)

K. JENIFER (412719106007)

K. PAVITHRA (412719106013)

TEAM ID: PNT2022TMID38378

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

TAGORE ENGINEERING COLLEGE

(Approved by AICTE, Affiliated to ANNA University)

NOVEMBER 2022

CONTENT

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE

13. APPENDIX

Source Code

GitHub & Project Demo Link

1.INTRODUCTION:

Based on current research and development efforts, we can all be fairly certain that smart road signs will be broadly utilized in the years to come. They serve as one of the major components of an emerging system designed to enhance the current infrastructure. These indicators are useful tools, and they can have a positive impact on all who share the roads. Most importantly, this type of signage has the potential to improve our way of life.

When vehicles approach such a sign on the roadway, vital information is imparted to their drivers via their dashboard or their head-up display. Along with the visual data, voice narration may also be used to indicate changing roadway conditions. Instead of trying to read passing road indicators, drivers are thus better able to pay attention to the road.

The road signage of the future might also be used to transmit crucial data to driverless cars. These signs may appear to humans to be conventional road indicators.

However, the information transmitted from a given sign is "visible" to the vehicle's infrared light. The sign alerts oncoming cars to slow down due to a change in the roadway. This sort of transmission can even help autonomous vehicles to stay in their lanes.

Smart signs provide:

- Preventing wrong-way crashes
- Better traffic management and safety
- Increased cost efficiency
- Combating poor visibility

1.1 PROJECT OVERVIEW:

The primary aim for developing these route placards is to make the roads safer for all of us. The enhanced signage creates a more efficient experience for drivers. It can also complement the system designs of driverless cars and to help people automate the roads by providing them with

a Web App through which they can monitor the parameters of the road like temperature, speed limit, and visibility of the road. They also show guides for schools and provide services of displaying hospitals, and restaurant signs accordingly.

1.2 PURPOSE:

Clearly, intelligent roadway smart signs can be a vital part of our driving experience. They enable a better way for drivers to access the information they need in real time on the roads. These signs can increase awareness of upcoming issues, which people might otherwise discover too late.

They may also augment the functionality of driverless vehicles. The value of implementing this technology should not be underestimated. Smart roadway indicators have the potential to increase cost-efficiency, which eases the burden on governments and taxpayers. They facilitate a smoother driving process for both human drivers and autonomous vehicles.

The smart signs can be more user-friendly than the analog route signs we currently employ. Above all, they may ultimately lead to a safer network of roads for everyone.

These smart connected sign boards get the speed limitations from a web app using weather API and update automatically, based on the weather changes the speed may increase or decrease.

Based on the traffic and fatal situations the diversion signs are displayed. Different modes of operation can be selected with the help of buttons.

2. LITERATURE SURVEY:

2.1 EXISTING PROBLEM:

Road traffic safety refers to the methods and measures used to prevent road users from being killed or seriously injured. Growth in population has led to growth in technology. People use cars in large numbers and the number of accidents taking place is increasing daily. Road accidents are undoubtedly the most frequent happening cases and overall, the cause of the most damage. There are many dangerous roads in the world like mountain roads, narrow curve roads, and T roads. Some mountain roads are very narrow and they have many curves. The problem with these curve roads is that the drivers are not able to see the vehicle or obstacles coming from another end of the curve. If the vehicles inatreat speed then it is difficult to control and there are chances of falling off a cliff. Hence there is a fored of many

 ${f road}$ safety systems. By us advanced technology to create smart connectivity for better road safety.

2.2 REFERENCES:

BOOK/ JOURNAL	TOPIC	AUTHOR NAME	YEAR	INFERENCE
ROYA ro	oads for future mart cities	Chai K.Toh, Julio A. Sanguesa, Juna C. Cano and Francisco J. Martinez	2020	In the paper, they discussed therecent 10 technological advances and developments inthe area of smart roads. They include: (i) energy-harvesting road, (ii) musical road, (iii) automatic-weighing road, (iv) electrifiedroad, (v) roads with wireless digital traffic signs, (vi) roads with automatic traffic violation detection and notification, (vii) roads that talk(V2X), (viii) roads with smart intersections, (ix) roads with fast emergency rescue, and (x) roads withsmart street lights. These advances will aid in the progress, development and realization of smart transport for future smart cities.

ICT	Internet of	Arnav Thakur,	2017	Vehicle tovehicle
INNOVATIONS	ThingsBased	Reza Malekian,		communication and
2017	Solution	Dijana Capeska		vehicle to
	sfor Road	Bogatinoska		infrastructure based
	Safetyand			channels
	Traffic			are studied.
	Management			Wireless
	in			
	Intelligent			
	Transportation			
	Systems			
				communication
				technologies
				suitable for the
				channels are

				studied. Additional benefits and services that canbe added to a system with theIoT approach arealso studied. The effectiveness ofsuch a system isstudied with theuse of validationframework. Multiple case studies of current and future IoT based ITS along with the challenges in the application is discussed.
JOURNAL O FADVANCED TRANSPORTATIO N	Development and Testing of Road Signs Aler tSystem Using a Smart Mobile Phone	Eric M Masatu, Ramadhani Sinde, Anael Sam	2022	In this study a system for alerting drivers about road signs has been developed and
				tested using a smart mobile
SAGE JOURNALS	Reading Vehicular Messages from Smart Road Signs: A Novel Method to Support Vehicle- to-Infrastructure in Rural Settings	Enes Karaaslan, Burak Sen, Tolga Ercan,Haluk Laman,James pol	2021	phone. The objective of this paper is to investigate the operational challenges of the proposed low-cost solution in different V2I applications, including a Map Data message in an unsignalized traffic intersection, traveler information message in a work zone, and a redlight violation

warning with the help of a smart The sign. proposed system showed some important advantages, suchas invulnerabilityto thirdpartyalterations robust operation under harsh environmenta Iconditions.

2.3 PROBLEM STATEMENT DEFNITION:

In present Systems the road signs and the speed limits are Static. But the road signs can be changed in some cases. We can consider some cases when there are road diversions due to heavy traffic or due to accidents then we can change the road signs accordingly if they are digitalized.

PS-1	Traveller	Reach the	The routes	Any mislead	Perplex
		correct	are	inroad sign	and
		place in	confusing	instructions	frustrated
		correct	as	can cause	
		time	constructio	traffic and	
			nworks	congestion	
			are on		
			process		
PS-2	Traveller	Travel in	It takes	Of weather	Enraged
		a safer	longtime	conditions	and
		and a		and	uncomforta
		faster		environment	ble
		way		alchanges	

3.IDEATION & PROPOSED SOLUTION:

3.1 EMPATHY MAP CANVAS:

3.2 IDEATION AND BRAINSTORMING:

3.3 PROPOSED SOLUTION:

S.No	Parameter	Description	
•			
1.	Problem Statement	Road safety management refers to the	
	(Problem to be solved)	process of identifying safety	
		problems, devising potential strategies	
		to combat those safety problems, and	
		selecting and implementing the	
		strategies. Effective safety	
		management is also proactive and	
		looks for ways to prevent safety	
		problems before they arise. High-	
		quality safety data should be used to	
		determine the nature of road safety	
		problems and how best to solve them.	

	1	
		These data can be used to identify
		large-scale or small safety problems.
		Other data, such as roadway
		characteristics, traffic volume,
		citations, and driver history, can be
		integrated with crash data to assist in
		identifying safety trends and high- priority locations.
		T S S S S S S S S S S S S S S S S S S S
2.	Idea / Solution description	Connectivity also allows monitoring
	_	the flow velocity in real-time so you
		can warn drivers on the screen of
		their cars that they are exceeding
		the speed limit. They also warn the
		pilot to park in prohibited areas or
		other behaviors that do not comply
		with the law, thus
		avoiding penalties for drivers.
3.	Novelty / Uniqueness	It proposes a system that has digital
		signboards on which the signs can be
		changed dynamically. If there is
		rainfall then the roads will be slippery
		and the speed limit would be
		decreased. There is a web app through
		which you can enter the data of road
		diversions, and accident-prone areas,
		and the information sign boards can
		be entered through the web app. This
		data is
		retrieved and displayed on the signboards accordingly.
4.	Social Impact / Customer	From speed limits to directions on
	Satisfaction	where and when to turn, traffic signs
		provide a wealth of information.
		Following traffic signs helps to keep
		everyone on the road safe by reducing
		the chances of drivers colliding
		with other vehicles, pedestrians, or cyclists.
5.	Business Model (Revenue	IoT is already working to ensure road
	Model)	safety in areas such as vehicle
	,	maintenance, improved circulation,
		navigation, and monitoring of
		environmental conditions or the state
		of the roads. IoT obtains the majority
		of its data with the help of connected
		cars. These incorporate a large number
		of sensors that establish
		or someone that establish

		communication with the cloud, other vehicles, and devices.
6.	Scalability of the Solution	Traffic management networks for improving safety and reducing congestion. The network uses speed cameras to provide warning signs for hazardous conditions and sends automated traffic diversion signals that control traffic.

3.4.PROBLEM SOLUTION FIT:

4. REQUIREMENT ANALYSIS:

4.1. FUNCTIONAL REQUIREMENT:

Following are the functional requirements of the proposed solution.

FR	Functional	Sub Requirement (Story / Sub-Task)
No.	Requirement (Epic)	
FR-1	User Registration	Web App
		Installation
		Register with
		Gmail
FR-2	User Confirmation	Confirmation
		via Email
		Confirmation
		via OTP
FR-3	Proof of Identity	Customers can register one mail account
		on their respective mobile.
FR-4	Credit Score and	Purchaser has to get the premium
	History	package to access the information.
		Customers can check the history of the
		road signals.

4.2.NON-FUNCTIONAL REQUIREMENTS:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description
No.	Requirement	
NFR-	Usability	Customers can use the application
1		in almost all web browsers. It will
		indicate the people through audio or
		notifications about road safety, and
		weather conditions.
NFR-	Security	Customers are asked to create an
2		account for themselves using their
		email which is protected with an 8-
		character-long password, making it
		more

		secure.
NFR-	Reliability	Customers can raise their queries and will be replied
		with a valid reply, as soon as
		possible, making the application
		even more reliable and
		trustworthy.
NFR-	Performance	Customers will have a smooth
4		experience while using the
		application, as it is simple and
		well-
		optimized.
NFR-	Availability	Application is available 24/7 as it is
5		hosted on IBM Cloud
NFR-	Scalability	In the future, maybe cross-
U		platform mobile applications
		can be developed as the user
		base grows.

5.PROJECT DESIGN

5.1. DATA FLOW DIAGRAMS

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 SOLUTION AND TECHNICAL ARCHITECTURE SOLUTION ARCHITECTURE:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions.

Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

TECHNICAL ARCHITECTURE:

COMPONENTS AND TECHNOLOGIES:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.	HTML, CSS, JavaScript / Angular Js / React Js etc.
2.	Application Logic-2	Logic for a process in the application	IBM Watson STT service
3.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
4.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant etc.
5.	External API-1	Purpose of External API used in the application	IBM Weather API, etc

APPLICATION CHARACTERISTICS:

S.No	Characteristics	Description	Technology
1.	Security Implementations	Strong security	Firewall,
		system that	Firebase, cyber
		anyone without	resiliency
		login credentials	strategy
		and hackers are	
		not allowed to	
		enter the network.	
2.	Scalable Architecture	Easy to expand	IoT, internet.
		the operating	
		range by	
		increasing the	
		bandwidth of the	
		network.	
3.	Availability	Available anytime	IBM Cloud
		and everywhere	
		24/7 as long as	
		the user is signed	
		into the network.	
4.	Performance	Supports a large	IBM Cloud
		number of users	
		to access the	
		technology	
		simultaneously.	

5.3 USER STORIES:

User Type	Functiona l Requirem ent (Epic)	User story No.	User Story	Acceptance criteria	Priority	Release
Custome r (Mobile user)	Registration	USN-1	I can get my speed limitation using weather application	I can receive speed limitations	High	Sprint-1
		USN-2	As a user, I can register for the application by entering my email, password, and confirming my password. As a user	I can access my account / dashboard	Medium	Sprint-2
		USN-3	As a user, I can increase or decrease my speed according to the weather change	I can increase or decrease my speed	High	Sprint-1
		USN-4	As a user, I can I get my traffic diversion signs depending on the traffic and fatal stn.	I can access my traffic status ahead in my travel	Medium	Sprint-1
	Login	USN-5	As a user, I can log into the open weather map by entering email & password	I can access the application through my Gmail login	High	Sprint-2
	Interface	USN-6	As a user the interface should be simple and	I can access the interface easily	High	Sprint-1

<u>. </u>		1	1			1
			easily accessible			
Custome r(Webus er)	Data generation	USN-7	As a user I use open weather application to access the data regarding the weather changes	I can access the data regarding the weather through the application	High	Sprint-1
Administ ration (officials)	Problem solving/ Fault clearance	USN-8	As an official who is in charge for the proper functioning of the sign boards have to maintain it through periodic monitoring.	Officials can monitor the sign boards for proper functioning.	Medium	Sprint-2

CUSTOMER JOURNEY:

6. PROJECT PLANNING AND SCHEDULING:

6.1 SPRINT PLANNING & ESTIMATION:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, and password, and confirmingmy password.	2	High	SOWMIYAA
Sprint-1		USN-2	As a user, I will receive a confirmation email onceI have registered for the application	1	High	JANANI
Sprint-1		USN-3	As a user, I can register for the applicationthrough Facebook	2	Low	ANANDHI
Sprint-1		USN-4	As a user, I can register for the applicationthrough Gmail	2	Medium	JENIFER
Sprint-1	Login	USN-5	As a user, I can log into the application byentering my email & password	1	High	PAVITHRA
Sprint-1	Dashboard	USN-6	As a user, I can log into the application by entering my email & password and access all the resources and services available	2	High	SOWMIYAA

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Member s
Sprint-2	Login	USN-1	As a weather data controller, I log into my profile and start monitoring the weather	3	High	JANANI

			updates			
Sprint-2	Dashboard	USN-2	I receive all the information about weather fromweb from weather API. Whenever there is change in weather, corresponding updates are made on sign boards.	2	Medium	ANANDHI
Sprint-3	Login	USN-1	As a image controller, I keep note of all the images received from various areas and detect traffic in that particular area.	3	High	JANANI
Sprint-3	Dashboard	USN-2	With the traffic, updates I change the status of sign board as "take diversion".	2	Medium	JENIFER
Sprint-4	Login	USN-1	As a zonal officer, I ensure that boards near school display "slow down" and near hospitals display "no horn".	3	High	PAVITHRA
Sprint-4	Login	USN-1	As an administrator, I ensure that all departments work co-ordinated and ensure the accuracy and efficiency.	2	Medium	ANANDHI

6.2 SPRINT DELIVERY SCHEDULE:

TITLE	DESCRIPTION	COMPLETED DATE
Literature Survey & Information Gathering	Prepare a Literature survey for the selected project & gathering information	29 SEPTEMBER 2022
Prepare Empathy Map	Prepare Empathy Map Canvasto capture the user Pains & Gains, Prepare list of problemstatements	25 SEPTEMBER 2022
Ideation	List the by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	26 SEPTEMBER 2022
Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	24 SEPTEMBER 2022

Problem Solution Fit	Prepare problem - solution fit document.	30 SEPTEMBER 2022
Solution Architecture	Prepare solution architecture document.	29 SEPTEMBER 2022
Customer Journey	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	17 OCTOBER 2022
Data Flow Diagrams	Draw the data flow diagrams and submit for review.	15 OCTOBER 2022

Technology Architecture	Prepare the technology architecture diagram.	14 OCTOBER 2022
Prepare Milestone & ActivityList	Prepare the milestones & activity list of the project.	22 OCTOBER 2022
Sprint delivery plan	Prepare the sprint delivery plan of the project	22 OCTOBER 2022
Project Development -Delivery of Sprint-1	Develop & submit the developed code by testing it.	IN PROGRESS
Project Development - Deliveryof Sprint-	Develop & submit the developed code by testing it.	IN PROGRESS
Project Development - Delivery of Sprint-	Develop & submit the developed code by testing it.	IN PROGRESS
Project Development - Deliveryof Sprint-	Develop & submit the developed code by testing it.	IN PROGRESS

6.3 REPORTS FROM JIRA:

Velocity:

Imagine we have 10 day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown chart:

A burn-down chart is graphical representation of work left to do versus time. It is often used in agile software development methodologies such as scrum. However, burn-down charts can be applied to any project containing measurable progress over time.

7. CODING AND SOLUTIONING:

7.1 FEATURE 1:

```
import wiotp.sdk.device
import time
import random
import ibmiotf.application
import ibmiotf.device
import requests, json
myConfig = { #Configuration
  "identity": {
"orgId": "fvh76j",
"typeId": "Connectivity123", "deviceId": "ESP32"},
#API Key
"auth": {
"token": "12345678"
#Receiving callbacks from IBM IOT platform
def myCommandCallback(cmd):
```

```
print("Message received from IBM IoT Platform: %s" %
cmd.data['command'])
m=cmd.data['command']
client =
wiotp.sdk.device.DeviceClient(config=myConfig,logHandlers=None)
client.commandCallback = myCommandCallback client.connect()
#OpenWeatherMap Credentials
BASE_URL ="https://api.openweathermap.org/data/2.5/weather?"
CITY = "Chennai"
URL = BASE_URL + "q=" + CITY + "&units=metric"+"&appid=" +
" aacfd527963a5d91a8b5db80c6fe67b4"
while True:
 response = requests.get(URL) if response.status_code ==200:
   data = response.json()
                           main = data['main']
                                                 temperature
                humidity = main['humidity']
=main['temp']
                                              pressure =
main['pressure']
   report = data['visibility']
#messge part msg=random.randint(0,5)
                                           if msg==1:
```

```
message="SLOW DOWN, SCHOOL IS NEAR"
                                                  elif
             message="NEED HELP, POLICE STATION
msg==2:
AHED"
          elif msg==3:
    message="EMERGENCY, HOSPITAL NEARBY"
                                                     elif
msg==4:
    message="DINE IN, RESTAURENT AVAILABLE"
                                                      else:
    message="" #Speed Limit
       speed=random.randint(0,150)
                                    if
part
speed>=100:
                speedMsg="Limit Exceeded" elif speed>=60 and
speed<100:
    speedMsg="Moderate"
                            else:
    speedMsg="Slow"
#Diversion part
                 sign=random.randint(0,5)
                                           if
             signMsg="Right Diversion"
sign==1:
                                        elif sign==3:
    signMsg="Left Diversion"
                               elif sign==5:
    signmsg="U Turn"
                         else:
    signMsg=""
#Visibility
            if temperature < 24:
    visibility="Fog Ahead, Drive Slow" elif temperature < 20:
    visibility="Bad Weather"
                              else:
    visibility="Clear Weather"
```

```
else:
```

print("Error in the HTTP request")

myData={'Temperature':temperature, 'Message':message, 'Sign':signMsg, 'Speed':speedMsg,

'Visibility':visibility}

client.publishEvent(eventId="status", msgFormat="json", data=myData, qos=0, onPublish=None)

#PUBLISHING TO IOT WATSON

print("Published data Successfully: %s", myData)

client.disconnect()

OUTPUT:

7.2 FEATURE 2:

By running the python code, the data will be published in the IBM Cloud.

8. TESTING:

Test cases help guide the tester through a sequence of steps to validate whether a software application is free of bugs, and working as required by the end-user. Learning how to write test cases for software requires basic writing skills, attention to detail, and a good understanding of the application under test (AUT).

8.1 TEST CASES:

NODE RED

OUTPUT

8.2 USER ACCEPTANCE TESTING:

MIT APP INVENTER

9. RESULTS: 9.1 PERFORMANCE METRICS:
9.1 PERFORMANCE METRICS.

10. ADVANTAGES:

Preventing Wrong-way Crashes

The National Highway Traffic Safety Administration has stated that hundreds of lives are lost annually to wrong-way crashes. In addition, thousands of people sustain injuries in such accidents. Based on research and field tests performed by the Florida Department of Transportation, certain kinds of intelligent road indicators may effectively catch the attention of people driving the wrong way on a roadway. The indicators that were tested included blank indicators that light up when they detect the presence of wrong-way vehicles. Another type of sign was designed with lights that light up in an asynchronous manner. Once a driver is alerted by the lights and can see the "Wrong Way" lettering, that person can turn around and proceed in the correct direction. This could save numerous lives and prevent countless injuries.

Better Traffic Management and Safety

Through refined telematics and intelligent technology, it can be easier to "read" the locations and speeds of vehicles, such as those in a fleet. When vehicles and smart traffic control systems are connected via the cloud, the end results may be more manageable traffic, decreased gridlock, and better traffic

Increased Cost Efficiency

We need to explore more cost-effective ways to strengthen the infrastructure. Building roads is expensive. While there is no substitution for new and upgraded roads, smart roadway indicators can be added to increase efficiency. They provide innovative ways to improve traffic flow, reduce congestion, regulate the patterns of traffic, and create an optimal balance of public and private transportation.

Combating Poor Visibility

Road placards cannot help us if we are unable to read them. Many factors may cause drivers to misinterpret roadside signage or to miss it altogether. Aging drivers can have difficulty seeing roadway signs as they drive past them. Inexperienced drivers can easily misunderstand their meanings. Even those of us who have driven for years may find it challenging to remember the messages conveyed by conventional road signs. Additionally, bad lighting and weather can further decrease our capacity to use the signage as intended. Smart road indicators make it easier for us to detect and implement their alerts and instructions.

DISADVANTAGES:

• Important investment:

Buying a screen is much more expensive than putting up a poster and the solutions to control screens are rarely free. In the long run, it is possible to make the screen more profitable but it will take months or years depending on your needs.

• Editing and renewing the content can be complex:

If the people managing the screens are not graphic designers, it can be difficult to update the content regularly on the screen.

• Return on investment:

ROI can be hard to calculate. There is a high initial spend in installing digital signage and the ROI can become complex when you try and calculate sale's increases with incidents such as screen damage and repair. However, the vulnerability of digital

signage screens can be protected with an LCD enclosure preventing the need for additional repair costs.

• Still new and improving:

As such there is always going to be a better, cheaper and more effective solution around the corner. Prices for the technology are still falling too which may be leading to many potential installers playing the waiting game until the price and technology is just right.

• May require multiple partners:

With hardware such as LCD enclosures, screens, media players, content and networking involved in many campaigns there may be four or five different companies involved in a single project.

• Lack of understanding:

There are many common mistakes made because of a lack of understanding. Poor content, the wrong location and the wrong screen are particularly common especially with outdoor digital signage where demands can differ.

• Environment:

While digital screens require power and therefore can't claim to be green, there is high energy use in the printing, erecting and replacement of traditional print media.

Lack of a clear purpose behind many campaigns:

Many people embark on digital signage without a clear purpose in mind which can affect the effectiveness of the system.

11. CONCLUSION:

Smart signs offer crucial information to drivers as well as other common road users. They not only save the lives of those driving the vehicle, but also those using the road on foot. Neglecting their installation is dangerous for both car drivers as well as pedestrians. Maintaining order and reducing accidents, these speed limit signs are the lifeline of today's road networks across the globe. No smart road transport system can be imagined without these devices.

The world doesn't change on its own but we humans can change the world to be safe, better, and harmless. Since the road isn't said to be safe let's make it safer with the technologies present and available to us. The Internet of Things is one of the technologies that can lead us to travel on enhanced safe roads. So let's come together to create a better world with no accidents and a smart road for the future generation.

12. FUTURE SCOPE:

IOT obtains the majority of its data with the help of connected cars. These incorporate a large number of sensors that establish communication with the cloud, other vehicles, and devices.

It provides data and information of great utility for the improvement of road safety. The safe system approach to road safety emphasizes safety by design ensuring safe vehicles, road networks, and road users. Evolving towards the future, the road needs to boil with advanced sensors and antenna systems to have peace with the new era.

13. APPENDIX:

13.1 SOURCE CODE:

```
import wiotp.sdk.device
import time
import random
import ibmiotf.application
import ibmiotf.device
import requests, json
myConfig = { #Configuration
  "identity": {
"orgId": "fvh76j",
"typeId": "SMARTBOARD", "deviceId": "SMARTCONNECTIVITY"},
#API Kev
"auth": {
"token": "12345678"
#Receiving callbacks from IBM IOT platform
def myCommandCallback(cmd):
 print("Message received from IBM IoT Platform: %s" %
cmd.data['command'])
 m=cmd.data['command']
client =
wiotp.sdk.device.DeviceClient(config=myConfig,logHandlers=None)
client.commandCallback= myCommandCallback
client.connect()
#OpenWeatherMap Credentials
BASE URL ="https://api.openweathermap.org/data/2.5/weather?"
CITY = "Chennai"
```

```
URL = BASE_URL + "q=" + CITY + "&units=metric"+"&appid=" + "
aacfd527963a5d91a8b5db80c6fe67b4"
while True:
 response = requests.get(URL)
 if response.status_code == 200:
   data = response.json()
   main = data['main']
   temperature =main['temp']
   humidity = main['humidity']
   pressure = main['pressure']
   report = data['visibility']
#messge part
   msg=random.randint(0,5)
   if msg==1:
     message="SLOW DOWN, SCHOOL IS NEAR"
   elif msg==2:
     message="NEED HELP, POLICE STATION AHED"
   elif msg==3:
     message="EMERGENCY, HOSPITAL NEARBY"
   elif msg==4:
     message="DINE IN, RESTAURENT AVAILABLE"
   else:
     message=""
#Speed Limit part
   speed=random.randint(0,150)
   if speed>=100:
     speedMsg=" Limit Exceeded"
   elif speed>=60 and speed<100:
     speedMsg="Moderate"
   else:
     speedMsg="Slow"
#Diversion part
```

```
sign=random.randint(0,5)
   if sign==1:
     signMsg="Right Diversion"
   elif sign==3:
     signMsg="Left Diversion"
   elif sign==5:
     signmsg="U Turn"
   else:
     signMsg=""
#Visibility
   if temperature < 24:
     visibility="Fog Ahead, Drive Slow"
   elif temperature < 20:
     visibility="Bad Weather"
   else:
     visibility="Clear Weather"
 else:
   print("Error in the HTTP request")
 myData={'Temperature':temperature, 'Message':message,
'Sign':signMsg, 'Speed':speedMsg, 'Visibility':visibility}
 client.publishEvent(eventId="status", msgFormat="json",
data=myData, qos=0, onPublish=None)
#PUBLISHING TO IOT WATSON
 print("Published data Successfully: %s", myData)
 client.commandCallback= myCommandCallback
 time.sleep(5)
client.disconnect()
```

GitHub Link: https://github.com/IBM-EPBL/IBM-Project-20798- 1659763505 Project Demo Link: https://drive.google.com/file/d/1rSeh- GW0VPe6yQN9WYFsAMr33_mWRuIL/view?usp=share_link