Thick Film Chip Resistors

Performance Specification

Temperature Coefficient $1\Omega \sim 10\Omega$ $\pm 400 PPM/^{\circ}C$ $11\Omega \sim 100\Omega$ $\pm 200 PPM/^{\circ}C$

>100 Ω ±100PPM/°C (0201: >100 Ω ≤ ±200PPM/°C)

Short Time Overload $\pm 5\%$: $\pm (2.0\% + 0.1\Omega)$ Max

 $\pm 1\%$: $\pm (1.0\% + 0.1Ω)$ Max

Insulation Resistance Min. 1,000 Mega Ohm

Dielectric Withstanding Voltage No evidence of flashover, mechanical damage, arcing or insulation

breakdown.

Terminal Bending $\pm (1.0\% + 0.05\Omega)$ Max Soldering Heat $\pm (1.0\% + 0.05\Omega)$ Max Solderability Min. 95% coverage.

Temperature Cycling $\pm 5\%$: $\pm (1.0\% + 0.05\Omega)$ Max

 $\pm 1\%$: $\pm (0.5\% + 0.05Ω)$ Max

Humidity (Steady State) $\pm 5\%$: $\pm (3.0\% + 0.1\Omega)$ Max

 $\pm 1\%$: $\pm (0.5\% + 0.1Ω)$ Max

Load Life in Humidity $\pm 5\%$: $\pm (3.0\% + 0.1\Omega)$ Max

 $\pm 1\%$: $\pm (1.0\% + 0.1Ω)$ Max

Load Life $\pm 5\%$: $\pm (3.0\% + 0.1\Omega)$ Max

 $\pm 1\%$: $\pm (1.0\% + 0.1\Omega)$ Max

Ordering Procedure: Ex.: 1206, 1/4W-S, +/-5%, 10Ω T/R-5000

1 2 0 6 S 4 J 0 1 0 0 T 5 E

Resistor Size:

0201, 0402, 0603, 0805, 1206,

1210, 1812, 2010, 2512

Wide Terminals:

0508, 0612,1020, 1218, 1225

Wattage:

Normal size: WH=1/32W, WM=1/20W, WG=1/16W,

WA=1/10W, W8=1/8W, W4=1/4W,

W2=1/2W, 1W=1W

Small size: SA=1/10W-S, S8=1/8W-S, S4 =1/4W-S,

S3=1/3W-S, 07=3/4W-S

Applicable for Wide Terminal only: WJ=1.5W, 2W, 3W

Resistance Value:

E-24 series:

1st digit is "0"
2nd & 3rd digits are significant figures of the resistance
4th indicates the number of zeros

• E-96 series:

1st to 3rd digits are significant figures of the resistance 4th digit indicates the number of

zeros.

"J" ~ 0.1, "K" ~ 0.01, "L" ~ 0.001 **Ex**. 012J ~ 1Ω2, 226K ~ 2Ω26

Jumper: use "0" for 1st to 4th

digits

Tolerance:

0 = Jumper

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $G = \pm 2\%$ $J = \pm 5\%$

nper

Packing Type: T = Tape/Reel

Packing Qty:

1 = 1,000 pcs. 2 = 2,000 pcs. 4 = 4,000 pcs. 5 = 5,000 pcs.

A = 500 pcs. C = 10,000 pcs.

D = 20,000 pcs. E = 15,000 pcs.

Note:

- 1.) Special resistance value, tolerance, T.C.R. requirement is available on a case-to-case basis.
- 2.) Standard reel size = 7"
- 3.) 4", 10", & 13" reels are available upon request

Special Feature:

E = Lead (Pb) Free Plating Type/

RoHS compliant

Thick Film Chip Resistors

Features

- Small size and light weight
- Suitable for both wave and reflow soldering
- Reduction of assembly costs
- AEC Q200 compliance

Dimension

	Marking
Protective coating	Termination (Middle) Ni Termination (Outer) Sn
High purity alumina substrate	Termination (Outer) 311
Resistive element	Termination (Inner) Ag

Type	Power	Max Max Working Overload Voltage Voltage	Dielectric Withstanding Voltage	Tolerance %	Resistance	Dimension (mm)					
	Rating at 70°C				Range	L	W	Н	ℓ 1	ℓ2	
0201 (0603)	1/20W	0.5A	1A	-	Jumper	$<$ 50m Ω					
		25V	50V	-	±1% ±2% ±5%	$10\Omega \sim 1 M\Omega$ $10\Omega \sim 1 M\Omega$ $1\Omega \sim 1 M\Omega$	0.60±0.03	0.30±0.03	0.23±0.03	0.10±0.05	0.15±0.05
0402 (1005)	1/16W	1A	2A		Jumper	<50m Ω		0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
		50V	100V	100V	±1% ±2% ±5%	$10\Omega \sim 1M\Omega$ $1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$					
		1A	2A		Jumper	$<$ 50m Ω		0.80 +0.15	0.45±0.10	0.30±0.20	0.30±0.20
0603 (1608)	1/10W-S 1/16W	50V	100V	300V	±1% ±2% ±5%	$10\Omega \sim 1M\Omega$ $1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$					
	1/8W-S 1/10W	2A	4A		Jumper	$<$ 50m Ω		1.25 ^{+0.15} -0.10	0.55±0.10	0.40±0.20	0.40±0.20
0805 (2012)		150V	300V	500V	±1% ±2% ±5%	$10\Omega \sim 1M\Omega$ $1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$	2.00±0.15				
1206 (3216)	1/4W-S 1/8W	2A	4A		Jumper	<50mΩ	3.10±0.15	1.55 ^{+0.15} -0.10	0.55±0.10	0.45±0.20	0.45±0.20
		200V	400V	500V	±1% ±2% ±5%	$10\Omega \sim 1M\Omega$ $1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$					
1210 (3225)	1/3W-S 1/4W	2A	4A		Jumper	<50mΩ	3.10±0.10	2.60±0.15	0.55±0.10	0.50±0.25	0.50±0.20
		200V	400V	500V	±1% ±2% ±5%	$10\Omega \sim 1M\Omega$ $1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$					
1812	1/2W 3/4W-S	2A	10A		Jumper	<50m Ω	4.50±0.20	3.20±0.20	0.55±0.20	0.50±0.20	0.050±0.20
		200V	500V	500V	±1% ±5%	$1\Omega \sim 10 M\Omega$					
2010 (5025)	3/4W-S 1/2W	2A	4A		Jumper	$<$ 50m Ω	5.00±0.10	2.50±0.15	0.55±0.10	0.60±0.25	0.50±0.20
		200V	400V	500V	±1% ±2% ±5%	$10\Omega \sim 1M\Omega$ $1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$					
	1W	2.5A	5A		Jumper	$<$ 50m Ω					
2512 (6432)		200V	400V	500V	±1% ±2% ±5%	$10\Omega \sim 1M\Omega$ $1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$	6.35±0.10	3.20±0.15	0.55±0.10	0.60±0.25	0.50±0.20

- 1.) 1210 size in 1/2W could be provided specially (1210U2)
- 2.) Metric information inside parenthesis.
 3.) Standard Operating Temp (°C): -55 ~ +155

4.) Standard: E-96 series: 0.5%, 1% E-24 series: 2%, 5%

Derating Curve

