```
Normalization: 32 bit - Sign bit: 1, Sign exp: 1, Exp: 7, Normalized mantissa: 23.
    Absolute Error = |p - p^*|, Relative Error = \frac{|p - p^*|}{|p|}
     Significant Digits: RE < 5 \times 10^{-t}
     fl(x): Machine representation
     Cancellation Error: Subtracting nearly equal numbers Example: p = 0.54617, q = 0.54601, true r = p - q = 0.00016 4-digit: p^* = 0.5462, q^* = 0.5460, r^* = 0.002 (RE=25%)
     Nested Multiplication: Reduces error
      f(z) = 1.01z^{4} - 4.62z^{3} - 3.11z^{2} + 12.2z - 1.99 = (((1.01z - 4.62)z - 3.11)z +
      12.2)z - 1.99
• P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k
• Remainder: R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}, \xi \in (a,x)
     Linear Approx: f(x_0 + h) \approx f(x_0) + hf'(x_0)
                                                                                                                                                                                                       \begin{aligned} ||Ax|| &\leq ||A|| \cdot ||x|| \\ \text{Cauchy-Schwarz: } ||x+y||_2 &\leq ||x||_2||y||_2 \\ \text{Eigen: } \lambda \text{ is an eigenvalue if } A\lambda = v \cdot \lambda \\ \text{Finding Eigenthings: } \det(A - \lambda I) &= 0 : \forall \lambda. \\ \text{Spectral Radius: } \rho(A) &= \max |\lambda_i|, \ \rho(A) &\leq ||A|| \\ \text{Theorem: If A is } n \times n: \\ - \ ||A||_2 &= [\rho(A^t A)]^{1/2} \\ - \ \rho(A) &\leq ||A|| : \forall || \cdot || \\ \text{Constant } A^k = 0 \text{ and } A^k = 0 \end{aligned}
    Example: \xi \in (0, \pi/2), \sin \xi \le 1 \Rightarrow R_n \le \frac{(x_0)^n}{n!}
§1.3 Convergence
    \begin{array}{l} \alpha = \lim_{n \to \infty} (\alpha_n) \\ \text{Rate: } \alpha_n = \alpha + \mathcal{O}(\beta_n) \text{ if } |\alpha_n - \alpha| \leq K |\beta_n| \\ \text{Find largest } p \text{ where } \alpha_n - \alpha = \mathcal{O}(1/n^p) \end{array}
§1.4 Matrix Operations
• A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}, B = \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix}
                                                                                       \begin{bmatrix} b_{12} \\ b_{22} \\ b_{32} \end{bmatrix}
                                                                                                                                                                                                      Convergent: \lim_{k\to\infty}A^k=0\Leftrightarrow \rho(A)<1 Matrix Norms: matrix norms
                                                                                                                                                                                                    • Matrix N
- ||A|| \ge 0
• AB = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} \end{bmatrix}
§6.1 Gaussian Elimination
                                                                                    \begin{array}{l} a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{array}
     \mathcal{O}(n^3) complexity
                                                                                                                                                                                                    §Iterative Methods
• Pivoting:

- Partial (PP): Max element in column
                                                                                                                                                                                                    • General Iteration: x^{k+1} = Tx^k + c

• Jacobi: x^{k+1} = D^{-1}(L+U)x^k + D^{-1}b

• Gauss-Seidel: x^{k+1} = (D-L)^{-1}Ux^k + (D-L)^{-1}b
           Scaled PP: s_i = \max_j |a_{ij}|, pivot \max(a_{ik}/s_i)

Scaled PP: s<sub>i</sub> = max<sub>j</sub> |a<sub>ij</sub>|, pivot max(a<sub>ik</sub>/s<sub>i</sub>)
Complete (CP): Full matrix search (O(n³))
LU Decomposition: PA = LU through GE steps and LUx = Pb.
LU Algorithm: L = E<sup>-1</sup><sub>n-a,m-b</sub>E<sup>-1</sup><sub>n-a+1,m-b+1</sub> ··· U = GE.
Choleski Factorization: If a matrix is symmetric and positive definite, it may be factored to the form LDL<sup>T</sup>
86.2 Special Matrices

                                                                                                                                                                                                         Stein-Rosenberg: For matrices with positive diagonals: \rho_{GS} \leq \rho_J < 1
Speed of Convergence: given matrices T_{GS} = (D-L)^{-1}U and T_J = D^{-1}(L+1)
                                                                                                                                                                                                   • Error: ||x-x^k|| \leq \frac{||T||^k}{1-||T||} ||x^1-x^0||

• Stopping: \frac{||x^k-x^{k-1}||}{||x^k||} < \varepsilon
    Inverse Matrix: An inverse matrix of A is A^{-1} such that AA^{-1} = I Properties: (AB)^{-1} = B^{-1}A^{-1}, (A^{-1})^T = (A^T)^{-1} Singular: A matrix is singular iff its det is 0. Diagonal: d_{ij} = 0 for i \neq j: All non-diagonal entries are 0. Symmetric: A = A^T, (AB)^T = B^TA^T
                                                                                                                                                                                                    §2 Nonlinear Equations

    Bisection:

                                                                                                                                                                                                        - While f(p_n) \neq 0 or < T: p_n = \frac{a_1 + b_1}{2}

- Error: \frac{b_n - a_n}{2} < T, p = a + \frac{b - a}{2}
     Permutation: Row swaps of I_n, PA reorders rows: P^T = P^{-1} Diagonally Dominant: |a_{ii}| > \sum_{j \neq i} |a_{ij}| (nonsingular)
                                                                                                                                                                                                    • Fixed-Point:
     Positive Definite: x^T Ax > 0 \Rightarrow A = LDL^T, a_{ii} > 0, a_{ij}^2 < a_{ii}a_{jj}
      Minor: M_{ij} is a submatrix of A with the row i deleted and column j deleted.
                                                                                                                                                                                                    Newton:
     Band: an n \times n matrix is a band matrix if p, q \in \mathbb{Z}: 1 \le p, q \le n exist with a_{i_j} = 0 for i + p \le j or j + q \ge i The bandwidth is defined as w = p + q - 1. For
    adiagonal matrix, p=1, q=1, w=1 a diagonal matrix, p=1, q=1, w=1 Tridiagonal: Band with p=2, q=2. It exhibits the following properties -a_{ii}=l_{ii} -a_{i,i+1}=l_{ii}u_{i,i+1}: i=1\cdots n-1 -a_{i:i-1}=l_{i,i-1}: i=2,3,\cdots, n -a_{ii}=l_{i,i-1}u_{i-1,i}+l_{ii}: i=2\cdots n
                                                                                                                                                                                                         Secant:
- p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}
                                                                                                                                                                                                         - Approx derivative: \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}
     RoC With inf limit: set h = 1/n and solve accordingly.
      D \cdot (L+U): given D has ONLY diagonal entries and L+U has NO diagonal entries,
      the resulting matrix A is composed of entries a_{ij} = d_{ii} \cdot (l+u)_{ij}
     Verification of Bisection: To verify bisection can be applied, make sure that f(a) and f(b) are of different signs.
                                                                                                                                                                                                       Bisection: Suppose f \in C[a,b]: f(a) \cdot f(b) < 0. Bisection generates \{p_n\} approximating a zero p with |p_n - p| \le \frac{b-a}{2n}: n \ge 1

Fixed Point: If g \in C[a,b], g([a,b]) \subseteq [a,b] g has a fixed point in [a,b], addi-
      Error of Bisection: To compute the accuracy of bisection to an \varepsilon, we use
• Failure of Newton's Method: NM Fails if f'(x) = 0 for some x.

• Triangle Inequality: |x+y| \le |x| + |y|

§Key Definitions & Identities

• Continuity: f \in C^n[a, b] reads: the nth derivative of f on [a,b] is continuous.
                                                                                                                                                                                                         tionally if |g'| \le K < 1, then the fixed point is unique.

Fixed Point Theorem: Let g \in C[a,b] and g(x) \in [a,b] : \forall x \in [a,b]. Suppose
    Series Expansions
                                                                                                                                                                                                         n \ge 1 converges to the unique point p \in [a,b]
Corollary: If g satisfies the hypothesis of the above theorem, |p_n - p| \le 1
    Series Expansions -e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \quad (\forall x \in \mathbb{R})
-\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
-\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots
-\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \quad (|x| \le 1)
-\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \quad (|x| < 1)
-\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots \quad |x| < 1

Newton: For f∈ C<sup>2</sup>[a, b] with simple root, ∃δ > 0 : p<sub>0</sub> ∈ [p − δ, p + δ] converges.
Matrix Invertibility: |A| ≠ 0 ⇔ unique solution Ax = b ⇔ A<sup>-1</sup> exists

                                                                                                                                                                                                    • Taylor: With R_n(x) \Rightarrow f(x) = P_n(x) + R_n(x), R_n(x) = \frac{f^{n+1}(\xi)}{(n+1)!}(x - f(x))
                                                                                                                                                                                                     • Existence of Inverse: if A is square, detA \neq 0 \leftrightarrow Ax = 0 has soln x = 0 \leftrightarrow Ax = b has a unique soln for any n-vector b. \leftrightarrow A^{-1} exists.
• Diagonally Dominant Matrices: dd matrices are nonsingular. A being dd
     -\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots : |x| < 1
    -f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \dots
Core Identities
-\sin^2 \theta + \cos^2 \theta = 1
-\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b
-\cos(a \pm b) = \sin a \cos b + \cos a \sin b
                                                                                                       Angle Transformations
                                                                                                      Align Haistorian Haistorian -\sin 2\theta = 2\sin \theta \cos \theta

-\cos 2\theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta

-\sin^2 \theta = \frac{1-\cos 2\theta}{2}, \cos^2 \theta = \frac{1+\cos 2\theta}{2}
                                                                                                                                                                                                        Convergence of DD: If A is strictly DD, Jacobi and GS converge to the unique
           \cos(a \pm b) = \cos a \cos b \mp \sin a \sin b
     Vector Norms
- ||x|| > 0
- ||x|| = 0 \Leftrightarrow x = 0
                                                                                                       - ||\alpha x|| = |\alpha|||x||
                                                                                                      -||x+y|| \le ||x|| + ||y||
                                                                                                                                                                                                        soln. Ax=b. Positive Definitive Check: A matrix is PD if the leading principle submatrix
§Useful Examples
    Suppose g(x) = \frac{5}{x^2} + 2 Show p_n = g(p_{n-1}) will converge to g for \forall p_0[2.5, 3].
                                                                                                                                                                                                         Positive Definitive Check: A matrix is PD iff it may be factored into LL^T Non-singularity Check: A matrix A has an inverse iff det A \neq 0. Determinant of Triangular Matrices: The determinant of a triangular matrix
     Since this is a decreasing function, the max of g(x) is g(2.5) and the min of g(x)
           First compute the max, g(2.5) = 14/5 < 3
     - Second compute the min, g(3) = 5/9 + 2 > 2.5
- Second compute the min, g(3) = 5/9 + 2 > 2.5

- Last compute |g'(x)| = -10/x^3 \le \max_{x \in [2.5,3]} |g'(x)| = 16/25 < 1

• Given ||A|| is a natural matrix norm of matrix A. show |\lambda| \le ||A|| for any nonsingular A and any \lambda of A. ||A|| = \max_{||x||=1} ||Ax|| \ge ||Ax||: x is an e-vec s.t — x — = 1 = ||\lambda x|| = |\lambda|||x|| = |\lambda||

• When performing Jacobi or GS, when computing L+U, flip the signs of all entries.

• To determine convergence for fixed point, compute g'(p_0) \le 1, which gives a,b. Prove g(x) cts on [a,b], g(x) \in [a,b], g'(x) exists on (a,b), |g'(x)| \le k : \forall x \in (a,b), 0 < k < 1
                                                                                                                                                                                                    • Bisection (THM1): \forall n \geq 1: b_n - a_n = (b-a) \cdot \frac{1}{2^{n-1}} : p\epsilon(a_n, b_n). Since
                                                                                                                                                                                                    p_n=\frac{1}{2}(a_n+b_n): \forall n\geq 1, |p_n-p|\leq \frac{1}{2}(b_n-a_n)=\frac{b-a}{2n}. \Box
• Fixed Point: Part i: If g\in [a,b], g(x)\in [a,b]: \forall x\in [a,b] then g(x) has a fixed
                                                                                                                                                                                                         point in [a,b]: If g(a)=a or g(b)=b, g has a fixed point at an endpoint. Suppose for contra-
                                                                                                                                                                                                         diction that it does not. g(a) > a and g(b) < b. Define h(x) = g(x) - x. Then h is cts on [a,b] and h(a) = g(a) - a > 0 and h(b) = g(b) - b < 0 IVT states that
      (a,b), 0 < k < 1
```

In general, Aitken's method only accelerates convergence of linear sequences. So not bisection, Newton's, secant...

Truncation of IVPs is defined as the error made in one step. (assuming all previ-

ous steps executed without error.)

§1.1 Error Analysis

```
§LA Determinants
2x2: |A| = ad - bc
                                    \sum_{j=1}^{n} a_{ij} A_{ij} \quad \text{via} \quad \text{cofactors} \quad A_{ij}
                                                                                                         (-1)^{i+j} M_{ij}
• nxn:
                 |A|
                                                                    -\, Identical rows: |A|=0
   Properties
                                                                    - |AB| = |A||B|, |A^T| = |A|
- |A^{-1}| = \frac{1}{|A|}
   - Swap rows: |\tilde{A}| = -|A|
   - Scale row: |\tilde{A}| = \lambda |A|
§7 Norms & Eigen
• ||x||_2 = \sqrt{\sum x_i^2}, ||x||_{\infty} = \max |x_i| • ||A||_2 = \sqrt{\rho(A)}
  ||A||_{\infty} \stackrel{\bullet}{=} \max_{i} \sum_{j} |a_{ij}| \text{ Basically} \stackrel{\bullet}{\bullet} ||A|| = \max_{||x||=1} ||Ax||
   sum all rows together and deter-
   mine the largest one. \forall x \in \mathbb{R}^n : ||x||_{\infty} \le ||x||_2 \le \sqrt{n}||x||_{\infty}
A distance between matrices A and B wrt a matrix norm ||\cdot|| is ||A - B||
   Theorem: For any vector x \neq 0, matrix Am and abt natural norm ||\cdot|| we have
```

U), compare ρ . The bigger the ρ , the faster the convergence.

 $p_n = g(p_{n-1})$, converges if $|g'(x)| \le K < 1$ Algorithm: For $i < N_0$: $p = g(p_0)$, check $|p - p_0| < T$

A fixed point is defined as a point in which p = f(p)

Algorithm: Store $q_0 = f(p_0)$, $q_1 = f(p_1)$, SET $p = p_1 - \frac{q_1(p_1 - p_0)}{q_1 - q_0}$ IF STOP-PING CONDITION: RETURN p; i++, $p_0=p_1,q_0=q_1,p_1=p,q_1=f(p)$ ENDWHILE OUTPUT FAILURE.

as well that g' exists on (a,b) and positive K < 1 exists with $|g'(x)| \leq K : \forall x \in \mathcal{C}$ (a,b). Then for any number $p_0 \in [a,b]$ h the sequence defined by $p_n = g(p_{n-1})$:

means LU can be performed without P. A matrix is positive definite if $x^t Ax > 0$.

PD matrices are nonsingular, $\forall i = 1, \dots, n : a_{ii} > 0, \max |a_{kj}| > \max |a_{ii}|,$

 $k^n \max(p_0 - a, b - p_0)$ and $|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0| : \forall n > 1$

 $\exists p \in (a,b) : h(p) = 0$ Thus $g(p) - p = 0 \Rightarrow p$ is a fixed point of g.

Part ii: Suppose as well $|g'(x)| \le k < 1 : \forall x \in (a,b)$ and that $p,q \in [a,b] : p \ne q$. By MVT, $\exists \zeta : \frac{g(p) - g(q)}{p - q} = g'(\zeta)$. $|p - q| = |g(p) - g(q)| = |g'(\zeta)||p - q| \le g'(\zeta)$

matrix norms have the following $-||A|| = 0 \leftrightarrow A = 0$

- ||AB|| = ||A||||B||

 $||Ax|| \le ||A|| \cdot ||x||$

 $||\alpha A|| \le 0$ $||\alpha A|| = |\alpha| \cdot ||A||$ $||A + B|| \le ||A|| + ||B||$

Newton: $- p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$

 $(x_0)^{n+1}:\xi\epsilon(x,x_0)$

determinants are positive.

k|p-q| < |p-q| contradiction.

Quadratic convergence if $f'(p) \neq 0$

§2: Error Analysis and Acelerating Convergence

Basic Methods

Newton's Method: Quadratic convergence if $f'(p) \neq 0$. Iteration:

 $-f(x_n)/f'(x_n).$

Secant Method: Superlinear convergence (order ≈ 1.618). Uses two previous

Newton's Improved Method: $p_{n+1} = p_n - \frac{f(p_n)f'(p_n)}{f'(p_n)^2 - f(p_n)f''(p_n)}$

Order of convergence α : lim $\frac{|p_n+1-p|}{|p_n-p|^{\alpha}} = \lambda$ Linear $(\alpha = 1)$, Quadratic $(\alpha = 2)$

Fixed-point: Linear if $g'(p) \neq 0$, quadratic if g'(p) = 0 and g'' bounded.

Special Cases

Multiple roots: Modify Newton's using $\mu(x) = f(x)/f'(x)$

Aitken's Δ^2 : Accelerates linear sequences. Is given by

$$\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{(p_{n+2} - p_{n+1}) - (p_{n+1} - p_n)}$$
Polynomial Methods

Horner's method: Efficient evaluation (n mults/adds) Algorithm: ex: evaluate $P(x) = \sum_{i=0}^{n} a_i x^i$ and derivative at x_0 . Input $n, a_j, x_0 : 0 \le j \le n$. Output: $Y(x) = \sum_{i=0}^{n} a_i x$ and derivative at x_0 . Input $x_0 y_i y_j = P(x_0)$, $z = P'(x_0)$. Set $y = a_n$, $z = a_n$. For j = n-1, n-2, ..., 1 set $y = x_0 y + a_j$, $z = x_0 z + y$. Endfor set $y - x_0 y + a_0$ output y.z. Deflation: Find roots sequentially via $P(x) \approx Q(x)(x - x_0)$ Fundamental thm of alg. If P(x) has a degree $n \ge 1$, P(x) has at least one root.

Cor: there also exists unique constants $x_1, ... x_k$ such that $\sum_{i=1}^k m_i = n, P(x) = a_n \times \prod_{i=1}^k (x-x_i)^{m_i}$

• Cor: these functions are unique.

Weierstrass: $\forall f$ cts on [a,b], $\forall \varepsilon > 0$, \exists polynomial p(x) with $|f(x) - p(x)| < \varepsilon$ $\forall x \in [a, b].$ Lagrange Interpolation (unique!):

$$P(x) = \sum_{m=0}^{N} f(x_m) L_m(x)$$
, where $L_m(x) = \prod_{\substack{k=0 \ k \neq m}}^{N} \frac{x - x_k}{x_m - x_k}$

Interpolation Error: $f(x) - P(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{k=0}^{n} (x - x_k)$ for $f \in C^{n+1}[a, b]$ Newton's Divided Differences:

$$f[x_i] = f(x_i), \quad f[x_i, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] - f[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

$$P_n(x) = \sum_{k=0}^n f[x_0, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j)$$

Hermite: Given $(x_j, f(x_j), f'(x_j))$, unique degree $\leq 2n + 1$ we have:

- $H(x) = \sum_{j=0}^{n} f(x_j) H_j(x) + \sum_{j=0}^{n} f'(x_j) \hat{H}_j(x)$
- $H_j(x) = [1 2(x x_j)L'_j(x_j)]L^2_j(x)$
- $\hat{H}_j(x) = (x x_j)L_j^2(x)$
- Note: $L_j(x)$ denotes the jth Lagrange coefficient polynomial of degree n. Error: $f(x) H(x) = \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi)$
- Parametric curve Interpolation:

$$x(t) = [2(x_0 - x_1) + 3(a_0 + a_1)]t^2 + [3(x_1 - x_0) - 3(a_1 + 2a_0)]t^2 + 3a_0t + x_0$$

$$y(t) = [2(y_0 - y_1) + 3(\beta_0 + \beta_1)]t^3 + [3(y_1 - y_0) - 3(\beta_1 + 2\beta_0)]t^2 + 3\beta_0t + y_0$$

Cubic Splines:

- $S_i^{(n)}(x) = S_{i+1}^{(n)}(x) : n = 0, 1, 2; x \text{ is}$ an interior point
- Err: $\max |f(x) S(x)| \le \frac{5M}{384}h^4$:
 - $h = \max(x_{j+1} x_j),$ $M = \max|f^{(4)}|$
- $S(x_j) = f(x_j) : \forall j \text{ provided.}$ • Clamped: S'(a) = f'(a), S'(b) =
- f'(b): a, b are endpoints Natural: S''(a) = S''(b) = 0: a, b

are endoints Richardson Extrapolation: $N_{j+1}(h) = N_j(h/2) + \frac{N_j(h/2) - N_j(h)}{2^{j-1}}$ Numerical Integration:

Trapezoid Rule $(O(h^2))$:

- Single: $\int_a^b f(x) dx \approx \frac{h}{2} [f(a) + f(b)]$, Error: $-\frac{h^3}{12} f''(\xi)$ Composite: $\int_a^b f(x) dx \approx \frac{h}{2} [f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b)]$ Error: $-\frac{(b-a)h^2}{12^2} f''(\xi) \approx -\frac{M(b-a)^3}{12n^2}$ where $M = \max |f''|$
- Midpoint Rule $(O(h^2))$:
- Single: $\int_a^b f(x) dx \approx (b-a) f(\frac{a+b}{2})$ Composite: $\int_a^b f(x) dx \approx h \sum_{i=1}^n f(a+(i-\frac{1}{2})h)$ Simpson's Rules $(O(h^4))$:

- Simpson's Rules $(O(n_i))$: $-1/3 \text{ Rule: } \int_a^b f(x) dx \approx \frac{h}{3} [f(a) + 4f(\frac{a+b}{2}) + f(b)]$ $\text{ Composite: } \int_a^b f(x) dx \approx \frac{h}{3} [f(a) + 4\sum_{i=1,3,5}^{n-1} f(x_i) + 2\sum_{i=2,4,6}^{n-2} f(x_i) + f(b)]$ $\text{ Error: } -\frac{h^5}{90} \int_a^{(4)} (\xi) \text{ (single)}, \quad -\frac{(b-a)h^4}{180} f^{(4)}(\xi) \text{ (composite)}$ $3/8 \text{ Rules: } \int_a^b f(x) dx \approx \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + 2f(x_3) + \ldots + f(x_n)]$ $3/8 \text{ Error: } -\frac{(b-a)^5}{6480} f^{(4)}(\xi)$

Romberg - $O(h_k^{2j})$:

- $R_{k,j} = R_{k,j-1} + \frac{R_{k,j-1} R_{k-1,j-1}}{4^{j-1} 1}$, error $O(h^{2j})$
- $R_{k,1}$ represents the approximation of the integral using $m_k = 2^{k-1}$ intervals

ODE Initial Value Problems

- Basic Problem: $y'(t) = f(t, y), y(a) = \alpha$
- **Lipschitz Condition**: $|f(t,y_1) f(t,y_2)| \le L|y_1 y_2|$ Existence/uniqueness guaranteed when $|\frac{\partial f}{\partial y}| \le L$ over convex domain D

- 'umerical Methods
 Euler's Method: $y_{i+1} = y_i + hf(t_i, y_i)$ [Error: O(h)]
 truncation error > round off in Euler for h large
- Taylor Methods: $y_{i+1} = y_i + hT^{(n)}(t_i, y_i)$ where $T^{(n)} = f + \frac{h}{2}f' + \cdots + \frac{h}{2}f' + \cdots + \frac{h}{2}f' + \cdots$ $\frac{h^{n-1}}{n!}f^{(n-1)}$

Runge-Kutta Methods: Midpoint (RK2)

Modified Euler (RK2)

$$\begin{array}{ll} y_{i+1} = y_i + hf(t_i + \frac{h}{2}, y_i + \frac{h}{2}f_i) & y_{i+1} = y_i + \frac{h}{2}(f_i + f(t_{i+1}, y_i + hf_i)) \\ k_1 = hf(t_i, y_i) & k_2 = hf(t_i + \frac{h}{2}, y_i + \frac{k_1}{2}) \end{array}$$

 $\begin{aligned} &h_1 & h_2(x_1, y_1) \\ &k_2 &= hf(t_i + \frac{h}{2}, y_i + \frac{k_1}{2}) \\ &k_3 &= hf(t_i + \frac{h}{2}, y_i + \frac{k_2}{2}) \\ &k_4 &= hf(t_i + h, y_i + k_3) \\ &y_{i+1} &= y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \end{aligned}$ [Error: $O(h^4)$] • Classical RK4:

- Local truncation error: $\tau_{i+1} = y(t_{i+1}) w_{i+1}$ given $w_i = y(t_i)$ Global truncation error: Accumulated error across all steps

- For Euler: $|\tau_i| \leq \frac{h^2}{2}M$ (local), O(h) (global) where $M = \max |y''|$ For RK4: $O(h^5)$ (local), $O(h^4)$ (global)
- Stability & Step Size

- Well-posed problem requires: unique solution exists + small input changes small output changes Step size formula: $h < \frac{2\varepsilon}{M(b-a)}$ for error ε , where $M = \max |y''|$
- Example: $y' = y \cos t$ has Lipschitz constant L = 1 since $|\frac{\partial f}{\partial y}| = |\cos t| \le 1$ Chapter 3: Interpolation Lagrange Interpolation

- Δ^k : $\Delta^2 f_i = \Delta(\Delta(f_i)) = \Delta(f_{i+1} f_i) = f_{i+2} 2f_{i+1} + f_i$ Reuse computations with **Neville's Method**:
- Reuse computations with **Nevine's Method**. for i = 1, 2, ..., n do: for j = 1, 2, ..., i do $Q_{i,j} \leftarrow \frac{(x x_{i-j}Q_{i,j-1}) (x x_{i})Q_{i-1,j}}{x_{i} x_{i-j}}$

for
$$i=1,2,...,n$$
 do: for $j=1,2,...,i$ do $Q_{i,j} \leftarrow \frac{(--i-j+i,j-1)\cdot(--i+i+1,j-1)}{x_i-x_{i-j}}$
Hermite Interpolation

- Error term: $\frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} \max |f^{(2n+2)}|$
- Handle derivatives via **divided differences** with repeated nodes: $z_{2i} = z_{2i+1}$
- Warning: Noisy derivatives \Rightarrow amplified errors.
- Cubic splines: Solve tridiagonal system (O(n) ops) with:

$$h_{i-1}c_{i-1} + 2(h_{i-1} + h_i)c_i + h_i c_{i+1} = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i-1}}(a_i - a_{i-1})$$

Romberg:Stop when $|R_{k,k}-R_{k-1,k-1}|<\epsilon$. The degree of precision of a quadrature formula is the largest n such that the formula is exact for $x^k: \forall k=0,1,\cdots,n$ Adaptive Quadrature

- Error estimate: $\frac{1}{15}|S(a,b)-S(a,c)-S(c,b)|, c=(a+b)/2$ Subdivide intervals where error $>\epsilon/2$.
- Step 1: Apply Simpson's with h = (b a)/2
- $\int_{a}^{b} f(x) = h/3 \left[f(a) + 4f(a+h) + f(b) \right] \frac{h^{5}}{90} f^{(4)}(\mu) \mu \in (a,b)$

Step 2: Find error using Simpson's on h = (b-a)/4

- $\int_{a}^{b} f(x) = h/6[f(a) + 4f(a+h/2) + 2f(a+b) + 4f(a+3h/2) + f(b)] (\frac{h}{2})^{4}$ $\frac{(b-a)}{2} f^{(4)}(\tilde{n}) \cdot \tilde{n} \in (a,b)$ $\frac{(a-a)}{180}f^{(4)}(\tilde{\mu}): \tilde{\mu} \in (a,b)$
- Note: We assume $f^4(\mu) = f^4(\tilde{\mu})$: true for small h.
- Step 3: Calculate error as $1/10 \left| S(a,b) S(a,\frac{a+b}{2}) S(\frac{a+b}{2},b) \right| < \varepsilon$
- Step 4: If true, RETURN. Else, GOTO step 1. Gaussian Quadrature

- $\int_a^b w(x)f(x)dx = \sum_{i=1}^b nw_i f(x_i)$ where w(x): weight functions, w_i : weight at i, x_i node at i.
 - Nodes: Roots of Legendre polynomials $P_n(x)$. Weights: $c_i = \int_{-1}^1 \prod_{j \neq i} \frac{x x_j}{x_i x_j} dx$
- Exact for polynomials of degree $\leq 2n-1$. Step 1: Transform to [-1,1]: $x=\frac{(b-a)t+(a+b)}{2},\ dx=\frac{b-a}{2}dt$
 - Step 2: substitute x into integrand Step 3: use the formulae to get the answer: 1-point: $\int_{-1}^{1} f(x)dx = 2f(0)$
- 2-point: $\int_{-1}^{1} f(x)dx = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}}) : w_1 = w_2; x_1 = -\frac{1}{\sqrt{3}}, x_2 = \frac{1}{\sqrt{3}}$
- 3-point: $\int_{-1}^{1} f(x)dx = \frac{5}{9}f(-\sqrt{\frac{3}{5}}) + \frac{8}{9}f(0) + \frac{5}{9}f(\sqrt{\frac{3}{5}})$

Legrendre Polynomials

- $P_n(x)$ denotes the n'th degree Legrendre polynomial $\int_{-1}^{1} P(x)P_n(x)dx = 0$: P(x) is of degree; n
- $P_0(x) = 1, P_1(x) = x, P_2(x) = x^2 1/3, P_3(x) = x^3 3/5x, P_4(x) = x^4 6/7x^2 + 1/3$ 3/35

- Tips:
 Use Gaussian quadrature with n = c → apply c-point Gauss-Legendre Rule.
 When asked for the degree of precision, plug in x⁰, x¹, x², ···, xⁿ until failure. The n before it fails is the degree of precision. A formula is Quadrature if it has
- Polynomial interpolation. When asked for the degree, apply $\Delta x^k x_{i+j} x_i \rightarrow$ Δx^{k+1} until $\Delta x^k : x_i = c : \forall i \text{ Return } k.$
- When asked to approximate x for f(x) on $(\hat{x}, f(\hat{x}))$, construct iteration such that $f = d/dx((\hat{x}) x)^2 + (f(\hat{x}) f(x))^2$. Use this function as the iteration function. Theorems:

Thm 2.8: Let p be a soln of the eq x = g(x) and suppose g'(p) = 0 and g'' is cts and strictly bounded by M on an interval I containing p. Then $\exists \delta > 0$ such that $p_0 \in [p-\check{\delta},p+\delta]$ the seq: $p_n=g(p_{n-1}): n\geq 1$ converges at least quadratically to p. Moreover, for large n, $|p_{n+1}-p|<\frac{M}{2}|p_n-p|^2$

- Thm 2.10: $f \in C'[a,b]$ has a simple zero at p in (a,b) iff f(p) = 0, $f'(p) \neq 0$ Thm 2.11: The function $f \in C^m[a,b]$ has a zero of multiplicity m at p iff $0 = f(p) = f'(p) = f''(p) = \cdots = f^{(m-1)}(p)$
- **Thm 3.3**: Suppose $x_0, x_1, ..., x_n$ are distinct numbers in [a,b] and $f \in C^{n+1}[a,b]$
 - then for each x in [a,b], a number $\xi(x)$ in (a,b) exists with $f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x-x_i) \text{ with P(x) being the nth Lagrange inter-}$ polating polynomial
- Thm: Err Trapezoid: Let $f \in C^2[a,b]$, h = (b-a)/n, $x_j = a+jh: 0 \le j \le n$. Then $\exists \mu \in (a,b)$ for which the composite trapezoid rule with n subivis has an err term of $\frac{b-a}{12}h^2f''(\mu)$
- Thm: Legrendre Thm: suppose x_1, x_2, \dots, x_n are the roots of the nth degree Legrendre Polynomial and $\forall i = 1, 2, \dots, n$ are the numbers c_i such that $c_i = \int_{-1}^{1} \prod_{j=1, j \neq}^{n} \frac{x x_j}{x_i x_j} dx$. If P(x) is any polynomial of degree < 2, then $\int_{-1}^{1} P(x)dx = \sum_{i=1}^{n} c_{i} P(x_{i})$
- Thm: Convexity: A set is convex if for $(t_1, y_1) \in D : D \subset \mathbb{R}$, the point $((1 \lambda)t_1 + \lambda t_2, (1 \lambda)y_1 + \lambda y_2) \in D : \lambda \in [0, 1]$
- **Thm:** Convex-Lipschitz: Let f(t,y) be defined on convex $D \subset \mathbb{R}^2$. If $\exists L > 0$: $|df/dy(t,y)| \le L, \forall (t,y) \in D$ Thm: Uniqueness-Lipschitz: Suppose $D = \{(t,y) | a \le t \le b, -\infty < y < \infty\}$
- Thm: IVP well-posed-ness: IVP is well posed it a unique soln exists and $\exists \varepsilon_0, k > 0$ st $\forall \varepsilon, \varepsilon_0 > \varepsilon > 0$, whenever $\delta(t)$ is cts with $|\delta(t) < \epsilon| : \forall t \in [a, b]$ and $|\delta_0| < \varepsilon$, the IVP: $dz/dt = f(t, z) + \delta(t), a \le t \le b, z(0) = \alpha + \delta_0$ has a unique soln with $dy/dt = f(t, y), a \le t \le b, y(0) = \alpha$

and f(t,y) cts on D. If f satisfies a Lipschitz on D in y, then $y'(t) = f(t,y), a \le$

Proofs: • $||A|| = \max_{||x||=1} ||Ax|| \ge ||\lambda x = |\lambda|||x|| = |\lambda|$