BAB II

TINJAUAN PUSTAKA

Pada tahun 2010, G. Mustafaraj, J.Chen, dan G. Lowry melakukan penelitian yang membahas mengenai prediksi *thermal behavior* dengan menggunakan Jaringan Saraf Tiruan (JST) pada kantor tapak terbuka di bangunan komersial modern. Variabel yang diukur meliputi data cuaca eksternal, suhu *dry-bulb* ruang, laju kecepatan udara ventilasi, suhu udara ventilasi, dan suhu panas dan dingin air. Penelitian tersebut menggunakan 3 metode model *black-box non-linear neural nerwork*, yaitu: model *neural network-based non-linear autoregressive model with external inputs* (NNARX), model *neural network-based non-linear autoregressive moving average model with external inputs* (NNMARMAX), dan model *neural network-based non-linear output error* (NNOE). Penelitian tersebut menyimpulkan bahwa model NNA-RX lebih cocok dalam memprediksi suhu ruang menggunakan data pengembangan model dalam satu minggu selama musim *summer*, *autumn*, dan *winter*. Model ini dapat digunakan dalam sistem kendali HVAC dan dapat digunakan lebih luas pada jenis bangunan lainnya, termasuk rumah sakit, supermarket, bandara, dan sekolah[3].

Pada tahun 2015, Abbas Javed, Hadi Larijani, Ali Ahmadinia, Des Gibson, dan Caspar Clark melakukan penelitian yang membahas mengenai pemantauan dan analisis energi dan kondisi lingkungan dalam ruang. Pengendali pada paper ini menghasilkan nilai estimasi jumlah penghuni ruang dengan menggunakan informasi dari simpul sensor *wireless* yang ditempatkan pada saluran HVAC (*Heating, Ventilation, and Air Conditioning*) dan ruangan. Hasil penelitian tersebut menunjukkan...[4].

Pada tahun 2017, Zakia Afroz, GM Shafiullah, Tania Urmee dan Gary Higgins melakukan penelitian mengenai prediksi suhu ruangan pada bangunan institusi. Penelitian tersebut menggunakan jaringan saraf tiruan untuk memprediksi suhu udara ru-

angan. Penelitian tersebut menegaskan bahwa mengidentifikasi variabel-variabel input yang relevan dan menyortirnya berdasarkan relevansi untuk mewakili suhu ruang dalam bangunan adalah langkah-langkah kunci untuk menentukan arsitektur jaringan yang optimal yang pada gilirannya memberikan akurasi prediksi yang baik. Untuk kedua kasus bangunan dan untuk semua set data yang berbeda yang digunakan dalam penelitian tersebut Lovenberg-Marquardt telah menemukan algoritma pelatihan yang paling cocok untuk memprediksi suhu ruang dalam ruangan dalam hal akurasi prediksi, kemampuan generalisasi dan waktu iterasi untuk melatih algoritma[5].

Pada tahun 2017, Ing. Jan Drgona melakukan penelitian dengan membuat sebuah *model predictive control* untuk rumah bertingkat 6 ruang dengan memanipulasi sistem HVAC yang ada. Dia membandingan pengendalian dengan menggunakan beberapa metode, yakni *model predictive control* (MPC), PID, RBC, TDNN dan *Regression Tree*. Hasil penelitian tersebut menunjukan bahwa penggunaan metode[6].

Pada tahun 2018, Hyun-Jung Yoon, Dong-Seok Lee, Hyun Cho, dan Jae-Hun Jo melakukan penelitian mengenai prediksi lingkungan termal pada ruangan luas menggunakan jaringan saraf tiruan. Penelitian ini menjadikan stadium sebagai objek penelitiannya. Variabel yang diukur yaitu suhu permukaan tembok dalam ruang, dan suhu udara luar. Penelitian tersebut menyimpulkan bahwa metode prediksi lingkungan termal diusulkan menggunakan model JST untuk mengevaluasi lingkungan termal di ruangan besar yang dibagi menjadi zona-zona. Proses evaluasi lingkungan termal yang diturunkan dalam makalah ini dapat digunakan untuk mengontrol fasilitas HVAC di setiap zona bangunan ruang besar melalui pembelajaran mesin oleh model JST[7].

Pada tahun 2018, Zhipeng Deng dan Qingyan Chen melakukan penelitian menggunakan jaringan saraf tiruan untuk memprediksi kenyamanan termal pada ling-

kungan dalam ruang dengan parameter sensasi termal dan perilaku penghuni. Bangunan yang digunakan pada penelitian tersebut berupa 10 kantor dan 10 apartemen/rumah. Variabel yang diukur meliputi suhu udara, kelembapan relatif, insulasi pakaian, laju metabolisme tubuh, sensasi termal, dan perilaku penghuni. Model jaringan saraf yang dibuat mampu memprediksi kisaran suhu udara yang sama di kantor dengan nilai ...[8].

Tabel 2.1. Studi Pustaka

Tahun	2010	2017	2017	2020
Nama Peneliti	G. Mustafaraj, J. Chen,		Ing. Jan Drgona	Penelitian ini
	G. Lowry	ullah, Tania Urmee, dan		
		Garry Higgins		
Judul Penelitian	Thermal behaviour pre-	Prediction of Indo-	Model Predictive Con-	
	diction utilizing artifici-	or Temperatur in an	trol with Applications	
	al neural networks for	Institutional Building	in Building Thermal	
	an open office		Comfort Control	
Objek Penelitian	Kantor tapak terbuka	Bangunan institusi		Climate Chamber
	pada bangunan komer-			DTNTF
	sial modern			
Aplikasi	Prediksi	Prediksi	Kendali	Kendali
Variabel yang	External Weather,	Suhu udara, Kelembap-		Radiasi matahari, suhu
diukur	occupancy, dry-bulb	an relatif, insulasi paka-		lingkungan, suhu udara
	temperature, venti-	ian, laju metabolisme,		dan kelembapan udara
	lation air flow rate,	sensasi termal, perilaku		
	ventilation air tempera-	penghuni.		
	ture, dan hot and cold			
	water temperature.			
Metode yang di-	Black-box non-linear		Model Predictive Con-	Jaringan saraf tiru-
gunakan	neural networks: NNA-	an (Artificial Neural	trol, PID, RBC	an (Artificial Neural
	RX, NNARMAX, dan	Network)		Network)
	NNOE			
Hasil Penelitian				

Tabel 2.2. Studi Pustaka

Tohin	2018	2018	0000
Lanun		2010	2020
Nama Peneliti	Hyun-Jung Yoon,	Zhipeng Deng, Qingy-	Penelitian ini
	Dong-Seok Lee, Hyun	an Chen	
	Cho, dan Jae-Hun Jo		
Judul Penelitian	Prediction of thermal	Artificial neural ne-	
	Environment in a Lar-	twork models using	
	ge Space Using Artifi-	thermal sensations and	
	cial Neural Network	occupants' behavior	
		for predicting thermal	
		comfort	
Objek Penelitian	Stadium	Kantor (10) dan ruma-	Climate Chamber
		h/apartemen (10)	DINTF
Aplikasi	Prediksi	Prediksi	Kendali
Variabel yang	Indoor wall surface	Suhu udara, Kelembap-	Radiasi matahari, suhu
diukur	temperature, outdoor	an relatif, insulasi paka-	lingkungan, suhu udara
	air temperature.	ian, laju metabolisme,	dan kelembapan udara
		sensasi termal, perilaku	
		penghuni.	
Metode yang di-	Metode yang di- Jaringan saraf tiru-	Jaringan saraf tiru-	Jaringan saraf tiru-
gunakan	an (Artificial Neural	an (Artificial Neural	an (Artificial Neural
	Network)	Network)	Network)
Hasil Penelitian			
		-	