Team 20 Semi-Supervised Semantic Segmentation with Cross-**Consistency Training**

KAIST

Le Viet Thanh Long (20190780), Nguyen Tuan Kiet* (20200734), Cao Viet Hai Nam (2020817), Ayhan Suleymanzade (20210784), Eugene Lee (20214195)

Problem Formulation

Semantic Segmentation

Fig 1. Semantic Segmentation example

- Pixel-level classification
- PASCAL VOC dataset:
 - 21 classes
 - 1464 images Training:
 - Validation: 1449 images

Semi-Supervised Learning (SSL)

- A small amount of expensive labeled data
- A large amount of unlabeled data

Related Work

Semi-supervised Learning

Temporal Ensembling

Weakly-supervised Learning (WSL) Pseudo-label: utilize image-level label

Semantic Segmentation

 Generative Adversarial Network (GAN): provide guidance from a discriminator

Evaluation

Metric

• mloU: mean of class-wise intersection over union.

Quantitative Results

Fig 4. 1000 labeled examples using different perturbations and various numbers of auxiliary decoders K.

Method	Pixel-level Labeled Examples	Image-level Labeled Examples	Val - mIoU
WSSL	1.5k	9k	64.6
MDC	1.5k	9k	65.7
FickleNet	1.5k	9k	65.8
Hung et al	1.5k	_	68.1
CCT	1k	_	64.0
CCT	1.5k	-	69.4
CCT	1.5k	9k	73.2

Table 1. Comparison with the-state-of-the-art (in 2020).

Qualitative results

Method

Cluster assumption

 Classes must be separated by low density regions

Hidden representation

Fig 3. CCT architecture - Y Ouali et al. CVPR 2020

Consistency training

• Enforce invariance of model's predictions over small **perturbations** on hidden features

Segmentation Network

Main encoder, main decoder

$$\mathcal{L}_{s} = \frac{1}{|\mathcal{D}_{l}|} \sum_{\mathbf{x}_{i}^{l}, y_{i} \in \mathcal{D}_{l}} \mathbf{H}(y_{i}, f(\mathbf{x}_{i}^{l}))$$
Cross Entrapy (CE) based supervised less

Cross-Entropy (CE) based supervised loss

 Auxiliary decoders: Cross-consistency training (with unsupervised loss)

$$\mathcal{L}_{u} = \frac{1}{|\mathcal{D}_{u}|} \frac{1}{K} \sum_{\mathbf{x}_{i}^{u} \in \mathcal{D}_{u}} \sum_{k=1}^{K} \mathbf{d}(g(\mathbf{z}_{i}), g_{a}^{k}(\mathbf{z}_{i}))$$
Unsupervised loss

• Perturbation types: Feature-based, Prediction-based, random (Dropout)

Exploiting weak labels

Assign class to pixel: attention score

$$\mathcal{L}_w = \frac{1}{|\mathcal{D}_w|} \frac{1}{K} \sum_{\mathbf{x}_i^w \in \mathcal{D}_w} \sum_{k=1}^K \mathbf{H}(y_p, g_a^k(\mathbf{z}_i))$$
Weakly supervised loss

Objective Function

$$\mathcal{L} = \mathcal{L}_{s} + \omega_{u}\mathcal{L}_{u} + \omega_{w}\mathcal{L}_{w}$$

Improvement Approach

Different Encoder Backbone

Encoder Backbone	Pixel-level Labeled Examples	Image-level Labeled Examples	Val - mloU
poolformer-m36	1.5k	_	70.8
convnext_base_ink22	1.5k	_	72.5

Table 2. Different Encoders results.

Seg-GAN network

• **Discriminator**: give signal to improve segmentation network

$$\mathcal{L}_{D} = -\sum_{h,w} (1 - y_{n}) \log(1 - D(S(\mathbf{X}_{n}))^{(h,w)}) + y_{n} \log(D(\mathbf{Y}_{n})^{(h,w)})$$

- Segmentation network: generate better output to trick discriminator $\mathcal{L}_{seg} = \mathcal{L}_{ce} + \lambda_{adv} \mathcal{L}_{adv} + \lambda_{semi} \mathcal{L}_{semi}$
- Incorporate WSL signal

Temporal Ensembling

- Weighted moving average of previous predictions as weak label $L = L_{sup} + w * L_{un_sup}$
- Require large memory
- Train on 1000 labeled data

Confidence Map Label Map

Fig 5. AdvSemiSeg architecture - Hung et al. BMVC 2018

Method	Pixel-level Labeled Examples	Image-level Labeled Examples	Continual Training Epoch	Val - mloU
Seg-GAN	1.5k	_	10	73.30
Seg-GAN semi	1.5k	9k	10	73.46
Seg-GAN semi + WSL	1.5k	9k	10	73.50
Temporal Ensembling	1.0k	_	10	68.10

Table 3. Continual training result.

Qualitative results

