PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN SEGUNDO SEMESTRE DE 2023

IIC 3263 – Teoría de Modelos Finitos

Tarea 1

Entrega: Viernes 29 de Septiembre hasta las 18:00 hrs. Por correo electronico

Pregunta 1 Sea $\mathcal{L} = \{E(\cdot, \cdot)\}$ un vocabulario con una sola relación binaria. Muestra al menos que dos de estas tres propiedades o consultas no son definibles en lógica de primer orden (un vértice n en un grafo conexo es un separador si el grafo que resulta de remover n y todas las aristas incidentes a n deja de ser conexo. Llamamos \mathcal{G} a la clase de todas las \mathcal{L} -estructuras que son grafos dirigidos, y \mathcal{B} a la clase de todas las \mathcal{L} -estructuras que son árboles binarios.

- la propiedad P_1 sobre \mathcal{G} definida como $P_1 = \{\mathfrak{A} \mid \mathfrak{A} \text{ es un grafo 2-coloreable}\}.$
- la propiedad P_2 sobre \mathcal{B} definida como $P_2 = \{\mathfrak{A} \mid \mathfrak{A} \text{ es un arbol binario balanceado } \}$
- la consulta sobre \mathcal{G} definida como $Q(G) = \{n \mid n \text{ es un separador}\}.$

Problema 2 Considera nuevamente $\mathcal{L} = \{E(\cdot, \cdot)\}$. Decimos que una \mathcal{L} -estructura $\mathfrak{A} = \langle A, E^{\mathfrak{A}} \rangle$ es una relación de sucesor finita si $A = \{a_1, \dots, a_\ell\}$, con $\ell \geq 2$, y $E^{\mathfrak{A}} = \{(a_i, a_{i+1}) \mid 1 \leq i \leq \ell - 1\}$, y además para $a_i, a_j \in A$ decimos que a_i es un antecesor de a_j en \mathfrak{A} si y sólo si i < j. Finalmente, definimos \mathcal{S} como la clase de todas las \mathcal{L} -estructuras que son relaciones de sucesor finitas.

Utilizando juegos de Ehrenfeucht-Fraïssé, demuestre que no es posible construir una \mathcal{L} -fórmula $\varphi(x,y)$ en lógica de primer orden tal que, para todo $\mathfrak{A} \in \mathcal{S}$ con dominio A y para todo $a,b \in A$:

 $\mathfrak{A} \models \varphi(a,b)$ si y sólo si a es un antecesor de b en \mathfrak{A} .