managing text data

Dominik Köppl Tokyo Medical and Dental University

why text data?

text data (strings) are ubiquitous:

natural texts

source code

DNA


```
namespace C = packed::character;
void print_packed(uint64_t packed) {
   for(size_t i = 0; i < C::FIT_CHARS; ++i) {
     std::cout << C::character(packed, i);
   }
}</pre>
GCTACGT...
```

011001110101100

binary code

etc.

why text data?

text data (strings) are ubiquitous:

we can interpret all data one-dimensionally by serialization

- graphs: adjacency lists
- trees: depths first search (mentioned later)

why strings?

string is a simple data type

⇒ already exhaustively treated?

why strings?

string is a simple data type

⇒ already exhaustively treated?

many problems occur with big data sizes!

estimated information capacity of the world

data collections in the web
 Wikipedia, Google Books, etc.

 version control systems git, SVN, etc.

biological data
 1000 Genome Project:

human genomes, each ~ 3.2 · 109 characters

to manage big data we need

- memory- and
- time-efficient

solutions, in particular for data transfer!

 the problems to solve are often easily describable

like pattern matching

 the problems to solve are often easily describable

like pattern matching

but:

- naive solutions are often
 - too slow
 - use too much space

scalability

- how good performs a data structure or an algorithm when scaling the data size?
- goal: given a text with n characters
 - number of steps of an algorithm should be at most linear to *n* (linear-time algorithm).
 - We say: O(n) time
 - same for space (linear-space consumption) We say: O(n) space

example text

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ a & b & a & b & b & a & b & b & a \end{bmatrix}$$

- text length: n = |T| = 9
- alphabet $\Sigma = \{a, b\}$
- alphabet size $\sigma = |\Sigma| = 2$

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ a & b & a & b & b & a & b & b & a \end{bmatrix}$$

```
6
                                       9
     2
          3
              4
                   5
                                  8
a
```



```
|b[a[b]b[a[b]b]a
           (b)(b)(a)(b)(a)
           [a[b[b]a]b[b[a]
3
   4
       5
                           13 / 44
```


I. sampling

- assume we are only interested in indexing m text positions
- such a suffix array should
 - take O(n) time and
 - O(m) space, also during the construction
 - *⇒ sparse* suffix array

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ a & b & a & b & b & a & b & b & a \end{bmatrix}$$

- sort only m suffixes
- but why?

Once upon a time

- only interested in word beginnings
- coding sections of DNA sequences

16 / 44

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ a & b & a & b & b & a & b & b & a \end{bmatrix}$$

- can construct suffix array in O(n) time and O(n) space [Nong+ '11]
- how much time do we need to construct the sparse suffix array in O(m) space?
 - naive: O(mn) time (+ sorting integers)
 - each suffix has a length of at most n
 - sort all m suffixes $\Rightarrow O(mn)$ character comparisons

with its lexicographic predecessor

21 / 44

construction of the sparse suffix array

- c: sum of all LCPs
- need to compare c characters to determine the order of the suffixes
- ⇒ at least *c* time necessary

[TALG' 20]:

- O(*m*) space
- $O(c \lg n + m \lg^2 n)$ time
- fastest (deterministic)
 solution for small c

```
1 a b a b a b a b a
```

a b b a b b a

5 b a b b a b b a

all distinct squares

square: substring of the form A A

all distinct squares

- square: substring of the form A A
- aim: list only all different squares (useful for DNA fingerprinting, etc.)
- at most 2*n* many different squares

naive approach

• test for all text positions j and lengths k if T[j..j+k-1] and T[j+k..j+2k-1] make a square

 \Rightarrow at least n^2 time

linear time algorithm

- [CPM $^{\prime}$ 17]: O(n) time algorithm
- only choose specific *j* und *k*

linear time algorithm

• idea: only report the leftmost ones

linear time algorithm

- idea: only report the leftmost ones
- find them with the Lempel-Ziv 77 (LZ77) factorization

linear time algorithm

- idea: only report the leftmost ones
- find them with the Lempel-Ziv 77 (LZ77) factorization

suffix array

LZ77

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ a & b & a & b & b & a & b & a \end{bmatrix}$$

LZ77

read text from left to right

- read text from left to right
- replace longest repetition occurring in read part

T = a b a b b a b a

- read text from left to right
- replace longest repetition occurring in read part
- support overlapping

$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline a & b & a & b & b & a & b & b & a \end{bmatrix}$

- read text from left to right
- replace longest repetition occurring in read part
- support overlapping
- ⇒ finds repetitions (and leftmost squares)

LZ77 compression

[Lempel, Ziv '77]

- high compression ratios
- popular: zip, gzip, 7zip, png, ...
- technique: window search

fixed window

search for repetitions only within a fixed window width

- memory-efficient
- but: far redundancies cannot be found e.g. compress 100 *identical* human genomes

repetitive data with a gap are overlooked repetitively

fixed window

search for repetitions only within a fixed window width

- memory-efficient
- but: far redundancies cannot be found
 e.g. compress 100 *identical* human genomes
 already forgotten

repetitive data with a gap are overlooked repetitively

without window

solution: work on the entire input!

- improves compression rate
- for 200 MiB repetitive DNA:

compressor	ratio	memory
	(less better)	
gzip -1	30,73%	7 MiB
gzip -9	26,22%	7 MiB
LZ77 without window	4,05%	2900 MiB

suffix array **I** sampling II applications distinct squares based on III compression LZ77 factorization outlook compression on disk

III. compress big data

if the data does not fit into memory, work

1) with compact data structures for LZ77 [Algorithmica '18]

2) on hard disk

[ESA '19]

III. compress big data

if the data does not fit into memory, work

1) with compact data structures for LZ77 [Algorithmica '18]

2) on hard disk

[ESA '19]

smallest space among linear-time algorithms!

III. compress big data

if the data does not fit into memory, work

1) with compact data structures for LZ77 [Algorithmica '18]

2) on hard disk

[ESA '19]

- variation of LZ77
- works on hard drive for really large data
- idea:
 - search for longest factors first
 - permute LCPs of suffix array

```
suffix array
      9
            [a]b]b]a]b]b]a
```


scan the permuted LCP values in text order

benchmark

1) plcpcomp [ESA '19]

2) EM-LPF [Kärkkäinen+ '14]

currently fastest LZ77 factorization algorithm on disk space

web pages compression

http://tudocomp.org

C++ compression framework for

- benchmarks
- combinations of compressors

current research

compression not only for strings, but also for 2D structures like matrices

faster matrix multiplication (multi-purpose: e.g., deep learning)

$$\begin{bmatrix} 2 & 4 & 6 & 0 & 3 \\ 3 & 0 & 3 & 5 & 7 \\ 2 & 4 & 3 & 5 & 3 \\ 4 & 0 & 6 & 0 & 3 \\ 3 & 0 & 3 & 5 & 0 \end{bmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{pmatrix}$$

why Japan?

- high number of collaborators
- good research network
- many domestic conferences

