Segment OVerlap Score

The Segment OVerlap score (SOV) is based on the average overlap between the observed and the predicted segments instead of the average per-residue accuracy [1,2]. The SOV measures provide more elaborate scoring, in which the predictions that have high per-residue accuracy but deviate from experimental segment length distributions are assigned lower scores. For instance, the definition of the SOV measure for α -helices is as follows:

$$SOV_{\alpha} = \frac{1}{N_{\alpha}} \sum_{S_{\alpha}} \frac{minOV(s_1, s_2) + \delta(s_1, s_2)}{maxOV(s_1, s_2)}.$$
 (1)

Here, s_1 and s_2 are the observed and predicted secondary structure segments in the α -helix state; S_{α} is the number of all segment pairs (s_1, s_2) , where s_1 and s_2 have at least one residue in α -helix state in common, $minOV(s_1, s_2)$ is the length of the actual overlap of s_1 and s_2 and $maxOV(s_1, s_2)$ is the length of the total extent for which either of the segments s_1 or s_2 has a residue in α -helix state. N_{α} is the total number of amino acid residues observed in the α -helix conformation. The definition of $\delta(s_1, s_2)$ is as follows [2]:

$$\delta(s_1, s_2) = min \left\{ \begin{array}{c} maxOV(s_1, s_2) - minOV(s_1, s_2) \\ minOV(s_1, s_2) \\ int(0.5 \times len(s_1)) \\ int(0.5 \times len(s_2)). \end{array} \right\}$$
(2)

Here, $len(s_1)$ is the number of amino acid residues in the segment s_1 . The segment overlap measure for all three states, $SOV_3(\%)$, is similar to the $Q_3(\%)$ sensitivity measure:

$$SOV_3(\%) = \frac{1}{N} \left(\sum_{i \in H, E, L} \sum_{S(i)} \left[\frac{minOV(s_1, s_2) + \delta(s_1, s_2)}{maxOV(s_1, s_2)} \times len(s_1) \right] \right) \times 100$$
 (3)

Here, s_1 and s_2 are the observed and predicted secondary structure segments in state i. N is the total length of proteins under consideration. The SOV scores of BSPSS and IPSSP are evaluated and compared on the set of "sequence-unique" proteins derived from the PDB database. The set can be downloaded from the EVA server [3]. In terms of the Segment Overlap scores, IPSSP performs uniformly better than BSPSS under the single-sequence condition (Table 1).

Table 1: Segment overlap measures, $SOV_{\cdot}(\%)$, for BSPSS and IPSSP evaluated on the EVA set under the single-sequence condition. To reduce 8 states to 3, the third conversion rule (CK mapping: H to H, E to E and all other states to L) is used with the length adjustments.

SOV	$SOV_3(\%)$	$SOV_{\alpha}(\%)$	$SOV_{\beta}(\%)$	$SOV_L(\%)$
BSPSS	61.064	67.418	45.940	62.514
IPSSP	63.662	69.765	54.682	63.171

References

- 1. Rost B, Sander C, Schneider R: Redefining the goals of protein secondary structure prediction. J. Mol. Biol. 1994, 235:13–26.
- 2. Zemla A, Venclovas C, Fidelis K, Rost B: A modified definition of SOV, a segment-based measure for protein secondary structure prediction assessment. *Proteins* 1999, 34:220–223.
- 3. EVA Set. [http://cubic.bioc.columbia.edu/eva/doc/ftp.html].