Artificial Intelligence

Lec 17: Propositional Logic (contd.)

Pratik Mazumder

De Morgan's Theorem

$$\neg(P \land Q) = \neg P \lor \neg Q$$

$$\neg(P \lor Q) = \neg P \land \neg Q$$

Р	Q	PVQ	¬(PVQ)	¬P	¬Q	¬P∧¬Q
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

Equivalences

• Prove that the following formulas are equivalent:

- \circ ¬(PV(¬P \wedge Q)) and ¬P \wedge ¬Q
- o ¬(P⇒Q) and P∧¬Q

Variations of Implications

- Converse of an implication P⇒Q is Q⇒P
- Inverse of an implication P⇒Q is ¬P⇒¬Q
- Contrapositive of an implication ¬Q⇒¬P
- Compare them using Truth Tables and also using the equivalences

Reasoning

Using the given propositions try to derive new propositions

If it is the month of July then it rains It is the month of July

Conclude: It rains

P: It is the month of July

Q: It rains R: P⇒Q

P⇒Q

Modus Ponens inference rule

Q

Reasoning

Prove the Modus Ponens inference rule = Prove (P⇒Q) ∧ P⇒Q is a tautology.

Inference Rules

 $P \wedge Q$

PVQ

P⇒R Q⇒R

R

•	$P \wedge Q$	[And Elimination] [Explanation: If P and Q both are true, then P will also be True]
	<u>——</u> Р	

•	Р	[And Introduction] [Explanation: If we know that P is True and Q is True, then P and Q will also be True]
	Q	

Р	[Or Introduction] [Explanation: If P is true, then PVQ will also be True]

PVQ [Or Elimination] [Explanation: If P or Q is true, and P⇒R and Q⇒R are True, then R will also be True]

Inference Rules

P⇒Q [Chain Rule]Q⇒RP⇒R

P⇒Q [Modus Tollens]¬Q¬P

The name of the inference rule used MUST be mentioned.

Otherwise No Considerations

Explanations cannot be in place of the name of the inference rules.

Satisfiability

- A sentence is **satisfiable under an interpretation** if that sentence evaluates to **True under that interpretation**.
- If no interpretation makes the sentence True, then it is unsatisfiable.
- e.g., P ∧ ¬P

Entailment

- If we have a set of sentences S and a set of Interpretations I for which all sentences in S is True.
 - o If another sentence s1 is also true for all the Interpretations in I then we say that S entails s1.
 - This is logical entailment.
- S ⊨ s1
- s1 logically follows S.
- s1 is a logical consequence of S.
- S logically entails s1.
- Basically, S ⊨ s1 means that in every interpretation for which S is True, s1 is also True.
- S ⊨ s1 if and only if S ⇒ s1 is valid

Entailment

We can directly check if S entails s1. If yes, then s1 will be True.

- Also called Truth Table Enumeration
- Let: Knowledge Base (KB) = A ∨ C, B ∨ ¬C
- New proposition/query $\beta = AVB$
- Show that: $KB \models \beta$
- All logically distinct cases must be checked to prove that a sentence can be derived from KB.

• KB = AVC, BV \neg C, β = AVB, Show that: KB $\models \beta$ $\alpha = (A \lor C) \land (B \lor \neg C)$

A	В	С	AVC	в∨¬с	α	AVB	α⇒□
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т	Т
Т	F	Т	Т	F	F	Т	Т
Т	F	F	Т	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	F	Т	Т
F	F	Т	Т	F	F	F	Т
F	F	F	F	Т	F	F	Т

• KB = AVC, BV \neg C, β = AVB, Show that: KB $\models \beta$ $\alpha = (A \lor C) \land (B \lor \neg C)$

	A	В	С	AVC	ву¬с	α	AVB	α⇒□
	Т	Т	Т	Т	Т	Т	Т	Т
Interpretations for which all sentences	Т	Т	F	Т	Т	Т	Т	Т
in KB are True	Т	F	Т	Т	F	F	Т	Т
	Т	F	F	Т	Т	Т	Т	Т
	F	Т	Т	Т	Т	Т	Т	Т
	F	Т	F	F	Т	F	Т	Т
	F	F	Т	Т	F	F	F	Т
	F	F	F	F	Т	F	F	Т

• KB = AVC, BV \neg C, β = AVB, Show that: KB $\models \beta$ $\alpha = (A \lor C) \land (B \lor \neg C)$

	Α	В	С	AVC	в∨¬С	α	AVB	α⇒□	
7	Т	Т	Т	Т	Т	Т	T [₹]	Ŧ	
Interpretations for which all sentences	Т	Т	F	Т	Т	Т	T [↑]	Т	☐ is True for all interpretations for
in KB are True	Т	F	Т	Т	F	F	Т	Т	which all sentences in KB are True. So KB ⊨ □ is valid
	Т	F	F	Т	Т	Т	T	T	
	F	Т	Т	Т	Т	Т	T	T	
	F	Т	F	F	Т	F	Т	Т	
	F	F	Т	Т	F	F	F	Т	
	F	F	F	F	Т	F	F	Т	

• KB = AVC, BV \neg C, β = AVB, $\alpha = (A \lor C) \land (B \lor \neg C)$

Show that: $KB \models \beta$

Α	В	С	AVC	в∨¬с	α	AVB	α⇒□
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	T	Т	Т	Т
Т	F	Т	Т	F	F	Т	Т
Т	F	F	Т	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	F	Т	Т
F	F	Т	Т	F	F	F	Т
F	F	F	F	Т	F	F	Т

Checking for entailment

- Inference by enumeration requires building a complete truth table in order to determine if a sentence is entailed by the knowledge base.
- If 100 atomic propositions are present, then the truth table will have 2¹⁰⁰ rows.
- Therefore, inference by enumeration is very slow and takes exponential time.

Inference Technique 2: Natural Deduction using Sound Inference Rules

- A more **efficient** algorithm than enumeration that uses a set of **inference rules** and logical **equivalences** to
 - incrementally deduce new sentences that are true given the initial set of sentences in the knowledge base (KB).
- Requires constructing a proof.
- A proof is a sequence of inference steps that leads from KB to β (query).

```
KB:
(P∧Q)⇒R
(S∧T)⇒Q
S
T
P
```

Query: R

Proof by Natural Deduction

KB: (P∧Q)⇒R (S∧T)⇒Q S T P

Query: R

[Premise, i.e., given sentence in KB] [Premise] 3. [Premise] SAT [And Introduction to 1,2] 5. (S∧T)⇒Q [Premise] 6. [Modus Ponens to 4,5] Q $P\Lambda Q$ [And Introduction to 3,6] (P∧Q)⇒R 8. [Premise] 9. R [Modus Ponens to 8,9]

Proved...

Monotonicity Property

- Natural Deduction relies on the **monotonicity property** of Propositional Logic, i.e.,
 - Deriving a new sentence and adding it to the knowledge base does not affect what can be entailed from the original KB.
- Hence, we can incrementally add new True sentences that are derived in any order.
- Once something is proved True, it will remain True.

Clause

Literal: A single proposition or its negation

• A clause is a disjunction of literals

Clausal form is very useful for inferencing

Converting a Compound Proposition to Clausal Form

Consider the sentence $\neg(A \Rightarrow B) \lor (C \Rightarrow A)$

- Eliminate the implication sign ¬(¬AVB)V(¬CVA)
- Eliminate double negation and reduce the scope of "not" signs (De-Morgan's law).
 (A∧¬B)∨(¬C∨A)
- Convert to conjunctive normal form by using distributive and associative laws. (A∨¬C∨A)∧(¬B∨¬C∨A) (A∨¬C)∧(¬B∨¬C∨A)
- 4. Get the set of clauses(AV¬C)(¬BV¬CVA)

Clausal Form allows us to apply Inference by Resolution.

Converting to Clausal Form: Examples

```
A \Rightarrow B \longrightarrow \neg A \lor B [one clause]
A \Leftrightarrow B \longrightarrow (A \Rightarrow B) \land (B \Rightarrow A) \longrightarrow (\neg A \lor B) \land (\neg B \lor A) \longrightarrow \text{two clauses: } \neg A \lor B, \neg B \lor A
\neg(A \lor B) \longrightarrow \neg A \land \neg B \longrightarrow two clauses: \neg A, \neg B
\neg(A \land B) \longrightarrow \neg A \lor \neg B [one clause]
(A \land B) \land C \longrightarrow A \land B \land C \longrightarrow \text{three clauses: A, B, C}
(AVB)VC \longrightarrow AVBVC [one clauses]
(A \land B) \lor C \longrightarrow (A \lor C) \land (B \lor C) \longrightarrow two clauses: A \lor C, B \lor C
(AVB)AC \longrightarrow two clauses: AVB, C
```

Always mention the equivalences/laws being used - distributing.. or implication elimination or