UNCLASSIFIED

Australian Government

Department of Defence

Defence Science and Technology Group

Estimating Transonic Drag

(Optimisation and Parametrisation)

Land Simulation, Experimentation, and Wargaming

Oleg Mazonka

DST

Science and Technology for Safeguarding Australia

Estimating Transonic Drag

Oleg Mazonka

Coordinators: Robert McKibbin, Brendan J. Florio.

Contributors: Kaname Matsue, Jin-Hwan Cho, Yuta Hatakeyama, Patrick Hassard, Calum Braham, Ignacio Ortega, Bill Whiten, Colin Please, John Ockenden, John van der Hoek, Sayyed Mirnaziry

February 16, 2017

The problem

Range = 8659.45m, Range = 8598.72m Difference = 61m (Relative error of 0.8 %) Target ≈ 5 m High precision needed!

The basics

The trajectory is governed by gravity and drag forces.

$$m\frac{d\mathbf{v}}{dt} = F_g + F_d$$

$$m\frac{d\boldsymbol{v}}{dt} = m\boldsymbol{g} - \frac{1}{2}A\rho_a C_d v \boldsymbol{v}$$

Issues:

- $C_d = C_d(M)$ is complicated,
- Mach number: M = v/c(z)
- The speed of sound changes with height via the density of air.

The physics

$$M \ll c, \qquad M = 1 - arepsilon, \qquad M = 1, \qquad M \gg 1.$$

Fitting against firing tables.

 C_d for each projectile can be estimated by

- Point by point optimisation,
- Parameterisation:

$$\alpha = \alpha_0 + \frac{\beta_d}{M}$$

$$\alpha = \alpha_0 + \frac{\beta_1}{1 + \exp\left(-w_\alpha^{-1}(\mu - \alpha_\mu)\right)}$$

$$\beta = \frac{\beta_1}{1 + \exp\left(-w_\beta^{-1}(\mu - \beta_\mu)\right)}$$

7 Free parameters

Our contributions

Functional forms for C_d

• Hyperbolic tan form with 3 free parameters.

$$C_d = \begin{cases} a + b \tanh \left(c(M - 1) \right), & M \le 1\\ a + \frac{b}{M} \tanh \left(c(M - 1) \right), & M > 1 \end{cases}$$

Functional forms for C_d

• Hyperbolic tan form with 5 free parameters.

$$C_d = \begin{cases} \left(a + b \tanh\left(c(M-1)\right)\right) \times \\ \left(1 + d(M-1)\exp\left(-e(M-1)^2\right)\right), \quad M \le 1 \\ a + \frac{b \tanh\left(c\left(1 + \frac{ad}{bc}\right)(M-1)\right)}{M\left(1 + \frac{M-1}{ad + bc}\right)}, \quad M > 1 \end{cases}$$

Optimising with the 3-parameter tanh

Angle	r(R)	$r(\theta)$	r(Vf)	r(ToF)	t(Hmax)	r(TopR)	a	b	С
0.0833	1.38	1	1.00	1.38	1.73	1.38	0.191	0.18	2.9
0.15	1.119	1	1.00	1.1312	1.23	1.11	0.243	0.22	3
0.2333	1.03	1	1.00	1.04	1.07	1.02	0.274	0.23	3.1
0.3333	0.991	1	0.99	0.99	0.98	0.98	0.265	0.26	11
0.4833	0.960	1	1.00	0.98	1.01	0.96	0.351	0.215	3
0.6667	0.984	1	1.00	0.99	1.00	0.98	0.335	0.208	2.9
0.9667	0.991	1	1.00	1.04	1.12	0.98	0.35	0.238	9.5
1.1	1.00	1	1.00	0.99	0.98	0.98	0.31	_0.21	2.7

Point-by-point optimisation

Functional forms cannot be used for all C_d profiles:

Experimental radar data shows many strange drag functions.

Point-by-point optimisation

Using Oleg's C++ Optimisation scheme can yield messy results, but these can be smoothed my Bezier curves

Mach number formulation

$$m\frac{d\boldsymbol{v}}{dt} = m\boldsymbol{g} - \frac{1}{2}A\rho_a C_d v \boldsymbol{v}$$

Becomes:

$$\frac{dM}{dt} = -\frac{g\dot{z}}{c(z)^2M} - \frac{1}{2m}C_d(M)A\rho_a(z)M^2c(z) - M\frac{c'(z)}{c(z)}\dot{z}.$$

$$\frac{d\dot{z}}{dt} = -g - \frac{1}{2m}C_d(M)\dot{z}A\rho_a(z)Mc(z)$$

- Advantage: Explicit formulation with three state variables means no recalculation of C_d each step.
- C_d is only dependent on state variable.
- Optimise with possible objective function:

$$\mathcal{J}(C_d) = \lambda \int_0^T \left[C_d^{(k)}(M) \right]^2 dt + z(T)^2$$

Determining C_d from Horizontal shot data

- Run simulations with given values for a, b, c_0
- Compute a, b with this algorithm and compare

Determining C_d using |v| and θ

SR1

> Components of velocities in a projectile motion in presence of air resistance

$$\begin{split} V_{\mathrm{x}}' &= -\frac{1}{2}\frac{C_{\mathrm{d}}A\rho_{\mathrm{a}}}{m}VV_{\mathrm{x}}, \\ V_{\mathrm{z}}' &= -g - \frac{1}{2}\frac{C_{\mathrm{d}}A\rho_{\mathrm{a}}}{m}VV_{\mathrm{z}}, \end{split}$$

By Changing the variables to Θ (The velocity angle) and V(the absolute velocity) equations can be simplified in the form of

> Numerical techniques are required to compute V and Θ.

- 2 dimensional equations of motion for v = (u, v).
- Assuming constant air temperature/pressure.

$$\frac{d\boldsymbol{v}}{dt} = \boldsymbol{g} - C_d \frac{A\rho_a}{2m} \boldsymbol{v} |\boldsymbol{v}|$$

• Scaled using $u = cu^*$, $v = cv^*$, and $t = \frac{2m}{A\rho_a c}t^*$ to give:

$$\frac{du}{dt} = -C_d u \sqrt{u^2 + v^2}$$

$$\frac{dv}{dt} = -J - C_d v \sqrt{u^2 + v^2} \quad \text{where} \quad J = \frac{2mg}{A\rho_a c^2}$$

- Consider a drag coefficient rising sharply from constants a to b across Mach 1 ($\sqrt{u^2 + v^2} = 1$).
- Solving for regions where Mach 1 is a stable velocity gives: $J\sqrt{1-u^2}=C_d$.
- This allows us to classify projectiles into three classes by their J number.

J value	Terminal velocity	Stable region
J < a	subsonic	none
a < J < b	sonic	$0 < u < \sqrt{1 - \frac{a^2}{J^2}}$
J > b	supersonic	$\sqrt{1 - \frac{b^2}{J^2}} < u < \sqrt{1 - \frac{a^2}{J^2}}$

Figure: u, v phase plane with J number in sonic range

Low angle trajectories

- We now consider a projectile shot at a low angle such that we may assume v << u and $|v| \approx u$.
- Under these assumptions the u equation becomes uncoupled.
- With u > 0 we have:

$$\frac{du}{dt} = -C_d(u)u^2$$

• Integrate to give:

$$\int_{u_f}^{u_i} \frac{du}{C_d(u)u^2} = T$$

Low angle trajectories

• Consider multiple trials with different launch angles giving data T, u_f and u_i . Label them by index x to give.

$$\int_{u_f(x)}^{u_i(x)} \frac{du}{C_d(u)u^2} = T(x)$$

• Numerically differentiating with respect to x gives:

$$C_d(u_f) = -\frac{1}{u_f^2} \frac{du_f}{dx} \frac{1}{dt/dx}$$

• This can be used to estimate C_d over a range of u

Low angle trajectories

Transonic C_d from terminal velocity

It is very difficult to get transonic C_d data from wind tunnel experiments.

•

•

Transonic C_d from terminal velocity

It is very difficult to get transonic C_d data from wind tunnel experiments.

- The terminal velocity near Mach 1 is very insensitive to γ (dimensionless mass).
- We can use this to gain very fine control over the velocity in "dropping" experiments.