Computer Science 112 Data Structures

Lecture 03:

More operations on linked lists

Linked Lists

 Suppose what you store is "what comes next"

Nodes

- A node is an object that has
 - a field for data
 - a field to refer to the next node in the linked list

A One-Element List

Adding to the front of a list

```
IntNode temp = new IntNode(20, null);
temp.next = front;
front = temp;
```

or, in one line:

front = new IntNode(20, front);

A three-element list

In Memory

In Memory

How do you get to the 67?

front . next . data

How do you get to the 67?

How do you get a reference to the 2nd node?

How do you get a reference to the 2nd node?

How do you get a reference to the 2nd node?

How do you get a reference to the 2nd node?

addAtFront as a Method

```
// does NOT WORK
public static void addAtFront(int data, IntNode front){
  front = new IntNode(data, front);
public static void main(String [ ] args){
 IntNode front = null;
 addAtFront(6, front);
 printList(front); // prints nothing
```

addAtFront as a Method

```
// WORKS
public static IntNode addAtFront(int data, IntNode front){
  front = new IntNode(data, front);
  return front;
public static void main(String [ ] args){
 IntNode front = null;
 front = addAtFront(6, front);
 printList(front); // prints 6
```

Reference Parameters

• See ParamTest2.java

More Methods

- void printList(IntNode front)
- IntNode deleteFront(IntNode front)
- boolean search(IntNode front, int target)
- boolean addAfter(IntNode front, int target, int item) // false if target // not in list
- IntNode delete (IntNode front, int target)

printList

```
public static printList(IntNode front){
    for (IntNode ptr = front; // first node
        ptr != null; // continue if not at null
        ptr = ptr . next){ // go to next node
        System.out.println(ptr . data);
    }
```

Starting Point

deleteFront

```
IntNode deleteFront(IntNode front) {
  front = front.next;
  return front;
}
```


search

```
public static boolean search(IntNode front, int target) {
  for (IntNode ptr = front; ptr != null; ptr = ptr.next) {
    if (target = = ptr.data) {
       return true;
  return false;
```

addAfter

```
public static boolean addAfter(IntNode front,
                                 int target,
                                 int item){
 for (IntNode ptr = front; ptr != null; ptr = ptr.next){
    if (ptr.data == target){
       ptr.next = new IntNode(item, ptr.next);
       return true;
 } }
 return false;
```

delete

```
public static IntNode delete(IntNode front, int target) {
  IntNode ptr=front, prev=null;
  while (ptr != null && ptr.data != target) {
    prev = ptr;
    ptr = ptr.next; }
  if (ptr == null) {
    return front;
 } else if (ptr == front) {
    return ptr.next; }
 prev.next = ptr.next;
 return front;}
```

More methods

- test if two lists are equal
- find last
- append two lists