

Python for Machine Learning UE19EC353

Department of ECE

Introduction to Data

Data and Visualization

K Venkat Ramnan

Importance of Data

- To truly understand how ML works, what type of ML algo to apply, we need to understand the data
- Data refers to: examples or cases from the domain that characterize the problem you want to solve.
- Anything can be expressed in terms of DATA.
- Understanding types of data: EDA and Data Engineering

Types of Data

Data and Visualization

Numerical Data

- any data where data points are exact numbers
- any form of measurable data
- Discrete: Exact or whole numbers i.e Distinct Values
- Continuous : any value within a range
- Note: Numerical data is not tied to any specific point in time, they are simply raw numbers

Categorical Data

- Represents characteristics
- It is non-numerical, meaning you are unable to add them together, average them out, or sort them in any chronological order.
- for grouping
- in classification, categorical data would be the class label
- Eg: gender, social class, ethnicity
- Ordinal data: categories are ordered or ranked in some particular way. Eg: Beginner,
 Intermediate, Advanced

Time Series Data and Text Data

- Sequence of numbers collected at regular intervals over some period of time
- Has established starting and ending points in terms of time
- Data over weeks, hours, years, etc

- Words, sentences, or paragraphs
- Most often grouped together or analyzed using various methods such as word frequency, text classification, or sentiment analysis

Image Data

Colour Image

														-,5
										151	152	153	154	155
										161	162	163	164	165
						35	3	6	37	38	39	173	174	175
				i	45 55		4	6	47	48	49	183	184	185
							56		57	58	59	193	194	195
1				_	65		66		67	68	69		_	
	31	32	33	3	4	3	5	6	77	78	79	1	_	
	41	42	43	4	4	4	5	6	87	88	89	١,	J	
	51	52	53	5	4	4 5		_	_		_	1		
1	61	62	62	6	1.	6								

141 142 143 144 145

[№] N x M x 3

Image Credits to Medium posts

Importance of Visualization

Why Visualization?

- Data will be transformed into some form of plots and analyzed further from that.
- grasp a lot of info from diagrammatic representation than the counterparts.
- Identify any main pattern
- Identify any anomalies
- Understand the distribution of data

Acknowledgments

- https://jakevdp.github.io/PythonDataScienceHandbook/
- Introduction to Scientific Computing (UCSB)
- J.R. Johansson's Notebooks

Data and Visualization