Theoretical Chemistry and Computational Modelling

Statistical Mechanics and Applications on Simulations

Practical session 1

Calculation of partition functions and macroscopic properties for a gas-phase reaction from ab initio electronic structure data

Ramón Sayós

1

Study of the gas-phase elementary reaction:

 $O(^{3}P) + CH_{4}(^{1}A_{1}) \rightarrow OH(^{2}\Pi) + CH_{3}(^{2}A_{2}") \quad \Delta H^{\circ}_{298 K} = 2.48 \text{ kcal/mol (exp.)}$

- Calculate optimal geometries (R, P and TS), energies and harmonic vibrational frequencies at UMP2/6-311 G(d,p) level
- Calculate the partition functions and the thermodynamic properties $S_i(T)$, $G_i(T)$, $Q_i(NVT)$, $\Delta G^{\neq \circ}(T)$, $\Delta_r G^{\circ}(T)$, $\Delta_r S^{\circ}(T)$, K(T) at T=0.001, 300, 600 and 900 K and P=1 atm
- Calculate thermal rate constants by using Transition State Theory: k(T) at 300, 600 and 900 K
- Codes to use: GABEDIT, GAMESS, KISTHELP (with QUBUNTU)

 GAMESS (in IQTCUB cluster)
- Inputs: O.inp, CH4.inp, OH.inp, CH3.inp, TS.inp (without symmetry)

Download the input files into QUBUNTU environment:

- 1) From UAM (Moodle) using your account or
- 2) From IQTCUB cluster cerqt2.qt.ub.edu with your user:
 - open a terminal in QUBUNTU (use the icon at bottom right)
 - mkdir PS1 (create a directory)
 - cd PS1 (change to directory ps1)
 - scp your_user@cerqt2.qt.ub.edu:/work/MEAS/PS1/*.inp . (download all the files)
 - check the files: O.inp, CH4.inp, OH.inp, CH3.inp, TS.inp
 Is -la (in the terminal)
 or
 user>PS1 (open this folder with the mouse)

3

- 1. Calculations with GABEDIT/GAMESS:
 - A) Geometry optimization:
 - Open GABEDIT: applications > QC > Gabedit
 - Open the input file: file > open > CH4.inp (e.g. for CH₄)
 - Run GAMESS: run a program Camess (check "exited gracefully")

• See in output file (CH4.log) energies and optimal geometry:

Look for **** EQUILIBRIUM GEOMETRY LOCATED *****

- B) Calculation of frequencies and thermodynamics properties:
- Modify the input file CH4.inp and save as CH4_thermo.inp:

Change: RUNTYP=HESSIAN

Add a line: \$FORCE TEMP(1)=0.001,300, 600, 900 \$END

Substitute the geometry by the optimal geometry

- Execute GAMESS (1 atm, gas ideal)
- C) Repeat the calculations for all R, P and TS

For TS remove also in the input the line:

\$STATPT OptTol=1e-5 NStep=500 HESS=CALC \$END

5

GAMESS calculation using symmetry for CH3

\$SYSTEM MWORDS=20 \$END \$CONTRL RUNTYP=Optimize MAXIT=99 \$END \$CONTRL SCFTYP=UHF \$END

\$CONTRL MPLEVL=2 \$END \$CONTRL ICHARG=0 MULT=2 \$END

STATPT OptTol=1e-5 NStep=500 \$END \$BASIS GBASIS=N311 NGAUSS=6 \$END \$BASIS NDFUNC=1 NPFUNC=1 \$END

\$SCF DIRSCF=.TRUE. \$END \$CONTRL COORD=ZMT NZVAR=6 \$END

\$DATA
Molecule specification

4

H 1 1.09

H 1 1.09 2 120.000000

H 1 1.09 2 120.000000 3 180.000000

dnh 3 ____ add a new line

C 6 0.00000 0.00000 0.00000 H 1 1.07888908 0.00000 0.00000

\$END

- 1) Open CH3.inp with gabedit
- 2) See CH3.log (without symmetry)
- 3) Button Geom. Conv. > Draw (last geometry)
- 4) Use right button (mouse) > Symmetry > Group of symmetry
- 5) Look at the first geometry (with 2 atoms) and copy with the mouse
- 6) Modify CH3.inp (follow changes in red indicated in the left). Add the atomic numbers (6 1)
- 7) Save the file (CH3_sym.inp).
- 8) Run GAMESS again

(valid for CH₃)

GAMESS calculation using symmetry for CH₄

- 1) Open CH4.inp with GABEDIT
- 2) Draw the last geometry in CH₄ optimization (without symmetry) from CH4.log:

Select Geom. Conv > Draw (last point)

- 2) Use right button (mouse) over the plot > save as > XYZ file
- 3) Select: File > New > Gamess input
- 4) Select: Detected by Gabedit. (Td group)
- 5) Fill the other options as in CH4.inp calculation (i.e., same \$CONTRL and \$BASIS keywords):

Equilibrium geometry, UHF, MP2, 6-311G, Direct SCF,...

- 6) Save the new input file as CH4_sym.inp
- 7) Run GAMESS again (valid for CH₄)

/

D) Analyse the results:

- Check the spin state (SPIN SZ and S-SQUARED values)
- Plot the vibrational normal modes (e.g., using wxMacMoltPlt).
- Compare geometries and v_i (R,P) with experimental data:

Species	Symmetry group	geometry (Å, °)	ν _i (cm-1)	σ
CH ₄ (¹ A ₁)	T_d	d _{CH} =1.091 <hch 109.47<="" =="" td=""><td>1534.0 (2) 2916.5 1306.0 (3) 3018.7 (3)</td><td>12</td></hch>	1534.0 (2) 2916.5 1306.0 (3) 3018.7 (3)	12
CH ₃ (² A ₂)	D _{3h}	d _{CH} =1.079 <hch 120.0<="" =="" td=""><td>580 1383 (2) 3002 3184 (2)</td><td>6</td></hch>	580 1383 (2) 3002 3184 (2)	6
OH (² Π)	C∞v	d _{OH} =0.9706	3846.6	1

(JANAF experimental data)

• Calculate $\Delta \varepsilon^{\neq}$ and $\Delta_r \varepsilon$ (ε no internal energy!) with and without zero point energy correction.

Species	Symmetry group	geometry (Å, °)		/i n ⁻¹)	Δε≠ (kcal/mol)
TS	≈ C _{3V}	d _{OH} =1.206 d _{HC} =1.254 d _{H'C} =1.080 d _{H''C} =1.080 <h'ch 104.7<="" =="" td=""><td>377.0 624.4 1098.2</td><td>1367.2 1461.1 3116.7</td><td>13.3 (9.4 with ZPE)</td></h'ch>	377.0 624.4 1098.2	1367.2 1461.1 3116.7	13.3 (9.4 with ZPE)

 $\Delta_r \mathcal{E} = 5.3 \text{ kcal/mol (1.3 with ZPE)}$

Calculations in JCP 110 (1999) 7326: (in Moodle) PUMP4//UMP2/6-311G (3d2f, 3p2d)

9

- Do a table with $S_i(T)$, $G_i(T)$ and $Q_i(NVT)$ for all species at all T.
- Calculate $\Delta G^{\neq \circ}$ (T), $\Delta_r G^{\circ}$ (T), $\Delta_r S^{\circ}$ (T) and K(T) for all T: $\Delta_r G^{\circ}$ (T)=-RT•lnK

(you can use LibreOffice calc for the calculations)

• Compare with the experimental data (JANAF; in Moodle) for this reaction (1 bar, ideal gas):

T (K)	Δ _r S° (cal/mol•k)	Δ _r G° (kcal/mol)	К
0	-	1.8	0.05
300	7.3	0.3	0.6
600	8.8	-2.2	6.2
900	8.9	-4.8	15.0

 $E_a = 9.3$, 10 kcal/mol (400-575 K)

• Compare the energetic profiles using ε , with and without ZPE $(\varepsilon \neq \varepsilon(T))$ and G(T) for this reaction, taking the zero of energy in reactants.

(you can use LibreOffice draw for the plots)

11

- 2. Calculations with KISTHELP (2016) (1 bar, gas ideal): A) Calculation of $\Delta_r G^{\circ}$ (T), $\Delta_r S^{\circ}$ (T) and K(T) for all T
- 10011101C 10101011C 111qtc0 110111101 110000010 B
- Prepare GAMESS outputs: change in the line GAMESS VERSION the year: $2014 \rightarrow 2012$ and save the files:

(O_thermo.log, CH4_thermo.log, CH3_thermo.log, OH_thermo.log)

- •Open KISTHELP: Applications > QC > KiSThelP
- •Session > New, Calculation > Keq ... (read *_thermo.log files)
- B) Calculation of $\Delta G^{\neq\,\circ}$ (T), Q_i and thermal rate constants (k(T)) for all T
- Prepare TS_thermo.log file: 2014 \rightarrow 2012
- Open KISTHELP
- Build a TS.kinp file: Data > Build RoPath.kinp > 1 > TS_thermo.log > TS.kinp
- Session > New, Calculation > k/TST > Bimolecular > read files: O_thermo.log, CH4_thermo.log and TS.kinp

KISTHELP Inputs (name.kinp):

CH4.kinp

```
*MASS (in amu)
16.0312800000000002
*END
*NUMBER OF SYMMETRY
*END
*FREQUENCIES (in cm-1)
1365.02
1365.07
1365.09
```

15.99491

*END

*END

*END

-74.9225863972

```
1582.68
1582.71
3074.08
3210.86
3210.91
3210.98
*END
*ELECTRONIC DEGENERACY
*END
*MOMENT OF INERTIA (in
Amu.bohr**2)
11.409810809550905
11.409811530894157
11.409918290701015
*END
*LINEAR
not linear
*END
*POTENTIAL ENERGY (in hartree)
-40.3805285792
*END
```

0

B

13

Questions and additional calculations:

- Which would be the effect into the chemical equilibrium if the total pressure increase until 2 bar?.
- Calculate by hand q_O , S_O , q_{OH} and S_{OH} at 300 K using the appropriate formulas.
- Use the symmetry in GAMESS calculations (i.e., CH_3 and CH_4) and check again q_i values, σ and the classification of the vib. frequencies.
- Check the occupation of the spin-orbit electronic states of $O(^{3}P)$ at T = 0 and 300 K.

s-o states	ε (cm⁻¹)	
3P ₂ (5 states)	0	
³ P ₁ (3 states)	158.265	
3P _o (1 state)	226.977	
¹ D ₂ (5 states)	15867.862	

JANAF experimental data

15

GAMESS calculation in IQTC cluster

-Steps:

- Connect to the cluster (ssh):
 ssh -l -X your_user cerqt2.qt.ub.edu (or ssh -Y)
- Make a directory in your home:

mkdir PS1

 Copy input files (5) and script (1) from /work/MEAS into your home:

cd PS1
cp /work/MEAS/PS1/*.

- Send your calculation with GAMESS16 in a batch queue (e.g., for CH4.inp file put as name CH4):
 - qsub -N name rungamess16(send the calculation)qstat(show the status of your job)
- Show all available cluster software: module_cerqt2 avail

- To copy files from QUBUNTU to CERQT2 user's home: scp_name_of_file_your_user@cerqt2.qt.ub.edu:/home/your_user
- To copy files from CERQT2 user's home to QUBUNTU current directory: scp_your_user@cerqt2.qt.ub.edu:/home/your_user/name_of_file_.

17

Additional slides

Pople basis sets

• Example: H₂O with a split-valence 6-311G basis set

$$H_2O: O(1+3+9) + H(3) + H(3) = 19$$
 basis functions (ϕ_i)
 $O(6+5+15) + H(5) + H(5) = 36$ primitive functions (χ^{cro}_i)

$$\begin{split} & \phi_{2s} = \sum_{s=1}^{3} c_s \chi_s = c_1 \chi_1 + c_2 \chi_2 + c_3 \chi_3 \\ & \chi_1 \equiv \chi_1^{CGTO} = b_1 \chi_1^{GTO} + b_2 \chi_2^{GTO} + b_3 \chi_3^{GTO} \\ & \chi_2 \equiv \chi_2^{CGTO} = b_4 \chi_4^{GTO} \\ & \chi_3 \equiv \chi_3^{CGTO} = b_5 \chi_5^{GTO} \end{split}$$

19

GTO: Gaussian Type Orbital

$$\begin{split} \chi^{GTO}_{n,l,m}\left(\vec{r}\right) &= N \cdot r^l e^{-\alpha r^2} \cdot Y_{l,m}(\theta, \phi) \text{ , } \alpha > 0 \text{ (depens of n and l)} \\ \chi^{GTO}_{s,t,u}\left(x,y,z\right) &= N \cdot x^s \cdot y^t \cdot z^u \quad l = s + t + u \text{ (in cartesians)} \end{split}$$

- 6–311G Pople basis set: uses 1 basis function for each core orbital with 6 primitive gaussians, and 3 basis functions for each valence orbital with 5 primitive gaussians with a contraction of 3+1+1.
- Polarizations functions (d,p): means one set of 6 extra d-type orbitals for nonhydrogen atoms or one set of 3 p-type orbitals for H atoms.

 1
 O

 2
 H
 1
 0.9584

 3
 H
 1
 0.9584
 2
 104.45

95.84 pm

21

Dihedral angle (DCBA)

23

$$k = A \cdot e^{-E_a/RT}$$
, $\ln k = \ln A - \frac{E_a}{RT}$, $\frac{d \ln k}{d(1/T)} = -\frac{E_a}{R}$ (Arrhenius equation)

- A and Ea are empirical parameters:
 - A: Preexponential factor (units like k); does not depend on T
 - E_a : activation energy (energy units/mol); does not depend on T
 - T: temperature (units: K)

origin intercept =
$$\ln A$$

 $slope = -E_a/R$

• Other empirical equations:

$$k = A \cdot T^m \cdot e^{-B/T}$$
 (Kooij equation; 3 parameters: A, B, m)

$$k = A \cdot T^{m}$$
 (Harcourt & Esson; 2 parameters: A, m)