DEUXIÈME SESSION

Théorie de la mesure – 2018-2019 Pierre-O Goffard

Instructions: On éteint et on range son téléphone.

- La calculatrice et les appareils éléctroniques ne sont pas autorisés.
- Vous devez justifier vos réponses de manière claire et concise.
- Vous devez écrire de la manière la plus lisible possible. Souligner ou encadrer votre réponse finale.

Question:	1	2	3	Total
Points:	2	6	9	17
Score:				

1. (2 points) Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré avec μ une mesure finie. Soit $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} tels que $\mu(A_n) = \mu(\Omega)$, pour tout $n \in \mathbb{N}$.

Montrer que

$$\mu\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\mu(\Omega)$$

Solution: On considère A_1 et A_2 les deux premiers éléments de $(A_n)_n \in \mathbb{N}$. On a $A_1 \cup A_2 \in \Omega$ donc $\mu(A_1 \cup A_2) \leq \mu(\Omega)$, on a aussi $\mu(A_1 \cup A_2) \geq \mu(A_1) = \mu(\Omega)$ donc $\mu(A_1 \cup A_2) = \mu(\Omega)$. On déduit de

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) - \mu(A_1 \cap A_2)$$

que $\mu(A_1 \cap A_2) = \mu(\Omega)$. On montre par récurrence que $\mu(\bigcap_{k=1}^n A_k) = \mu(\Omega)$, la suite définie par $(\bigcap_{k=1}^n A_k)_{n \in \mathbb{N}}$ est une suite décroissante d'éléments de \mathcal{A} . On a donc

$$\mu\left(\bigcap_{k=1}^{n} A_k\right) = \lim_{n \to \infty} \mu(A_n) = \mu(\Omega).$$

2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonction $f_n:\mathbb{R}\mapsto\mathbb{R}$ définies par

$$f_n(x) = \left(1 - \frac{x}{n}\right)^n \cos(x) \mathbb{I}_{[0,n]}(x).$$

(a) (1 point) Montrer que $(f_n)_{n\in\mathbb{N}}$ est une suite de fonction mesurable.

Solution: $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions réelles et continues, donc mesurables

(b) (1 point) Montrer que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction f que l'on explicitera.

Solution: Pour tout $x \in \mathbb{R}$, on a l'équivalence

$$\left(1-\frac{x}{n}\right)^n \sim e^{-x}$$
, pour $n \to +\infty$

On en déduit que

$$f_n(x) \underset{n \to +\infty}{\longrightarrow} f(x) = e^{-x} \cos(x) \mathbb{I}_{[0,+\infty[}$$

(c) (4 points) Pour tout $n \ge 1$, on pose

$$I_n = \int_{[0,n]} \left(1 - \frac{x}{n}\right)^n \cos(x) d\lambda(x)$$

Montrer que $(I_n)_{n\in\mathbb{N}}$ est une suite convergente et donner sa limite.

<u>Indications</u>: On pourra utiliser l'inégalité $\ln(1-t) \leq -t$ pour $t \in [0,1[$.

Solution: On a

$$I_n = \int_{\mathbb{R}} f_n(x)\lambda(x),$$

où $(f_n)_n \in \mathbb{N}$ est une suite de fonctions mesurables convergeant vers $f(x) = e^{-x} \cos(x) \mathbb{I}_{[0,\infty[},$ de plus on a pour tout $x \in \mathbb{R}$,

$$|f_n(x)| \le \left| \exp\left[n\ln\left(1-\frac{x}{n}\right)\right] \right| \mathbb{I}_{[0,n]}(x) \le e^{-x} = g(x)$$

Par application du théorème de convergence dominée, la suite (I_n) converge et il vient

$$\lim_{n \to \infty} I_n = \int f(x) d\lambda(x)$$

$$= \int_0^\infty e^{-x} \cos(x) dx$$

$$= \Re \left\{ \int_0^\infty e^{-x} e^{-ix} dx \right\}$$

$$= \Re \left\{ \frac{1}{1+i} \right\} = 1/2$$

3. Soit l'intégrale

$$I = \int_0^{+\infty} \frac{\ln(x)}{x^2 - 1} \mathrm{d}x.$$

(a) (2 points) Montrer que l'intégrale I est bien définie.

Solution: La fonction $f(x) = \ln(x)/(x^2 - 1)$ est continue sur $(0,1) \times (1,+\infty)$ donc localement intégrable. Nous devons étudier la situation en $x = 0, 1, +\infty$.

- Au voisinage de $0, \sqrt{x}f(x) \to 0$ donc $f(x) = o(x^{-1/2})$ et f est intégrable en 0.
- Au voisinage de 1, on a $f(x) \to 1/2$ donc prolongeable par continuité et partant intégrable.
- Au voisinage de ∞ , on a $x^{3/2}f(x) \to 0$ donc $f(x) = o(x^{-3/2})$ et f est intégrable.
- (b) (2 points) Montrer que

$$\int_{[0,\infty[^2]} \frac{1}{(1+y)(1+x^2y)} d\lambda_2(x,y) = \frac{\pi^2}{2},$$

où λ_2 est la mesure de Lebesgue sur \mathbb{R}^2 .

<u>Indication</u>: Intégrer d'abord par rapport à x.

Solution:

$$\int_{[0,\infty[^2]} \frac{1}{(1+y)(1+x^2y)} d\lambda_2(x,y) = \int_0^{+\infty} \int_0^{+\infty} \frac{1}{(1+y)(1+x^2y)} dxdy
= \frac{\pi}{2} \int_0^{+\infty} \frac{1}{(1+y)\sqrt{y}} dy
= \int_0^{+\infty} \frac{1}{(1+y)\sqrt{y}} dy
= \frac{\pi^2}{2}$$

(c) (2 points) Montrer que pour tout $x > 0, x \neq 1$

$$\int_0^\infty \frac{1}{(1+y)(1+x^2y)} \mathrm{d}y = \frac{2\ln(x)}{x^2-1}.$$

Indication: On effectuera une décomposition en éléments simples.

Solution:

$$\int_0^\infty \frac{1}{(1+y)(1+x^2y)} dy = \int_0^\infty \frac{-1}{(x^2-1)(1+y)} + \frac{x^2}{(x^2-1)(1+x^2y)} dy$$
$$= \frac{1}{x^2-1} \left[\ln \left(\frac{1+x^2y}{1+y} \right) \right]_0^{+\infty}$$
$$= \frac{2\ln(x)}{x^2-1}$$

(d) (1 point) En déduire que $I = \frac{\pi^2}{4}$.

Solution: Conséquence de (b) et (c)

(e) (1 point) Montrer que

$$I = 2 \int_0^1 \frac{\ln(x)}{x^2 - 1} dx.$$

Indication: Relation de Chasles à partir de $I = \int_0^{+\infty} \frac{\ln(x)}{x^2 - 1}$

Solution:

$$I = \int_0^1 \frac{\ln(x)}{x^2 - 1} dx + \int_1^{+\infty} \frac{\ln(x)}{x^2 - 1} dx$$

puis changement de variable u = 1/x dans la deuxième intégrale

$$I = 2\int_0^1 \frac{\ln(x)}{x^2 - 1} \mathrm{d}x$$

(f) (1 point) Déduire de la question précédente que

$$\sum_{k=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

Indication: Effectuer un développement en série entière de $x\mapsto \frac{1}{1-x^2}$ valable pour $x\in [0,1[$.

Solution:

$$I = -2\sum_{k=0}^{\infty} \int_{0}^{1} x^{2k} \ln(x) dx$$
$$= 2\sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2}}.$$

puis $\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \pi^2/8$

Théorie de la mesure DEUXIÈME SESSION

FONCTIONS TRIGONOMÉTRIQUES

Fonction	Ensemble de définition	Dérivée
$\sin x$	$\mathbb R$	$\cos x$
$\cos x$	\mathbb{R}	$-\sin x$
$\tan x$	$\bigcup_{n\in\mathbb{Z}}]n\pi - \pi/2, n\pi + \pi/2[$	$1 + \tan^2 x$
$\arccos x$	[-1, 1]	$-\frac{1}{\sqrt{1-x^2}}$
$\arcsin x$	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	$\mathbb R$	$\frac{1}{1+x^2}$