Lower Bound for Comparison Based Sorting

Comparison Based Sorting Algorithms

Definition:

A comparison based sorting algorithm sorts objects by comparing pairs of them.

Example:

• insertion sort, selection sort, bubble sort $O(n^2)$

• shell sort $O(n^{1.5})$

mergesort, quicksort, heapsort
 O(nlogn)

Comparison Based Sorting Algorithms

Theorem:

Any comparison based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst case to sort n objects.

In other words:

For any comparison based sorting algorithm, there exists a list A[0..n-1] such that the algorithm performs at least $\Omega(n \log n)$ comparisons to sort A.

Decision Tree

- Count only comparisons.
- Each possible run of the algorithm corresponds to a rootto-leaf path in a decision tree

Decision Tree

Decision Tree

- The height of the decision tree is a lower bound on the running time
- Every input permutation must lead to a separate leaf output
- If not, some input $\dots 4 \dots 5 \dots$ would have same output ordering as $\dots 5 \dots 4 \dots$, which would be wrong
- Since there are n! = 1 · 2 · · · · n leaves, the height is at least log(n!)
- Thus, any comparison-based sorting algorithm takes at least log(n!) time

Comparison Based Sorting Algorithms

Theorem:

$$\log(n!) = \Omega(n \log n)$$

Proof:

$$\log(n!) = \log(1 \cdot 2 \cdot \dots \cdot n)$$

$$= \log 1 + \log 2 + \dots + \log n$$

$$\geq \log \frac{n}{2} + \log \left(\frac{n}{2} + 1\right) + \dots + \log n$$

$$\geq \frac{n}{2} \log \frac{n}{2} = \Omega(n \log n)$$

https://stackoverflow.com/questions/2095395/is-logn-On-logn

Non-Comparison Based Sorting Algorithms

Idea:

- Assume that all elements of A[1...n] are integers from 1 to M.
- By a single scan of the array A, count the number of occurrences of each $1 \le k \le M$ in the array A and store it in Count[k].
- Using this information, fill in the sorted array A'.

```
Algorithm CountingSort(A[1..n])
    Count[1..M] \leftarrow [0..0]
    for i \leftarrow 1 to n do
        Count[A[i]] \leftarrow Count[A[i]] + 1
    Pos[1..M] \leftarrow [0..0]
    Pos[1] \leftarrow 1
    for j \leftarrow 2 to M do
        Pos[j] \leftarrow Pos[j-1] + Count[j-1]
    for i \leftarrow 1 to n do
        A' \left[ Pos[A[i]] \right] \leftarrow A[i]
        Pos[A[i]] \leftarrow Pos[A[i]] + 1
```

Analysis:

Provided that all elements of A[1...n] are integers from 1 to M, CountSort(A[1..n]) sorts A[1...n] in O(n + M) time.

Remark:

If M = O(n), then the running time of the algorithm is O(n).

Example: sort the list of integers

10, 1000 1, 10, 10000, 100, 1000, 1, 1000, 10000

using counting sort.

What is n and M?

- n = 10
- M = 10000

Radix Sort

Radix Sort

- Radix sort (a.k.a. bin sort) is a fast distribution sorting algorithm that orders keys by examining the individual components (digits) of the keys instead of comparing or counting the keys themselves.
- The individual digits of the keys are observed from least significant to most significant.
- Radix sort can also be used to sort strings, floating-point values

22

Radix Sort: Example

- Bins are used to store various keys based on individual column values
- Consider an array of positive integers
- We use 10 bins, one for each digit

Distribute the Keys

- The process starts by distributing the keys among the various bins:
 - Based on the digits in the ones column
 - Stored in the order they occur in the array

Distribute the Keys

23 10	18	51	5	13	31	54	48	62	29	8	37
bin 0	10						bin	5	5		
bin 1	51	31					bin	6			
bin 2	62						bin	7	37		
bin 3	23	13					bin	8	18	48	8
bin 4	54						bin !	9 [29		

The keys are then gathered back into the array one bin at a time:

26

- Start with the bin 0 and continue in bin order
- Gathered without rearranging

bin 0 10 bin 5 5

bin 1 51 31 bin 6

bin 2 62 bin 7 37

bin 3 23 13 bin 8 18 48 8

bin 4 54 bin 9 29

bin 0 10 bin 5 5
bin 1 51 31 bin 6

bin 2 62 bin 7 37

bin 3 23 13 bin 8 18 48 8

bin 4 54 bin 9 29

10

bin 0 10 bin 5 5

bin 1 51 31 bin 6

bin 2 62 bin 7 37

bin 3 23 13 bin 8 18 48 8

bin 4 54 bin 9 29

10 51 31

bin 0 10 bin 5 5

bin 1 51 31 bin 6

bin 2 62 bin 7 37

bin 3 23 13 bin 8 18 48 8

bin 4 54 bin 9 29

10 51 31 62

bin 0 10 bin 5 5

bin 1 51 31 bin 6

bin 2 62 bin 7 37

bin 3 23 13 bin 8 18 48 8

bin 4 54 bin 9 29

10 51 31 62 23 13

bin 0 10 bin 5 5

bin 1 51 31 bin 6

bin 2 62 bin 7 37

bin 3 23 13 bin 8 18 48 8

bin 4 54 bin 9 29

10 51 31 62 23 13 54

bin 0 10 bin 5 5

bin 1 51 31 bin 6

bin 2 62 bin 7 37

bin 3 23 13 bin 8 18 48 8

bin 4 54 bin 9 29

10 51 31 62 23 13 54 5

bin 0 10 bin 5 5

bin 1 51 31 bin 6

bin 2 62 bin 7 37

bin 3 23 13 bin 8 18 48 8

bin 4 54 bin 9 29

10 51 31 62 23 13 54 5 37

bin 0 10

bin 5 5

bin 1 51 31

bin 6

bin 2 62

bin 7 | 37

bin 3 23 13

bin 8 | 18 48 8

bin 4 54

bin 9 29

10 51 31 62 23 13 54 5 37 18 48 8

bin 0 10

bin 5 5

bin 1 51 31

bin 6

bin 2 62

bin 7 | 37

bin 3 23 13

bin 8 | 18 48 8

bin 4 54

bin 9 29

10 51 31 62 23 13 54 5 37 18 48 8 29

Repeat the Process

 Repeat the process, but this time based on the tens column

Repeat the Process

10 51	31	62	23	13	54	5	37	18	48	8	29
bin 0	5	8					bin	5 [51		
bin 1	10	13	18				bin	6	62		
bin 2	23	29					bin	7			
bin 3	31	37					bin	8			
bin 4	48						bin !	9			

 bin 0
 5
 8

 bin 1
 10
 13
 18

 bin 2
 23
 29

bin 5

51

54

bin 6

62

bin 3 31 37 bin 8

bin 4 48 bin 9

bin 0 5 8

bin 5 51 54

bin 1 10 13 18

bin 6 62

bin 2 23 29

bin 7

bin 3 31 37

bin 8

bin 4 48

bin 9

5 8 10 13 18 23 29 31 37 48 51 54 62

Radix Sort Analysis

Assume:

- a sequence of n keys
- each key consists of d components
- each component contains a value between 0 and m
- use queue

Radix Sort Analysis

- The construction of the array and queues: O(m)
- The distribution and gathering: $O(d \cdot n)$
 - distribute the n keys across m bins: O(n)
 - gather the n keys back into the array: O(n)
- Total time: $O(m + d \cdot n)$
 - In practice m and d are constant
 - When sorting integers, the time only depends on the number of keys: O(n)

Exercises

1. Apply the counting sort to the list of integers

2. Apply the radix sort to the list of integers

329, 3, 457, 657, 92, 839, 87, 436, 720, 355, 444