Reference Papers

1. SybilGuard Defending Against Sybil Attacks via Social Networks, *Haifeng Yu, Michael Kaminsky*, *Phillip B. Gibbons*, *Abraham Flaxman*

Outline

- Sybil Attack
- Sybil Guard

Background: Sybil Attack

- Sybil attack: Single user pretends many fake/sybil identities
 - Creating multiple accounts from different IP addresses
- Sybil identities can become a large fraction of all identities
 - Out-vote honest users in collaborative tasks

SybilGuard Basic Insight: Leveraging Social Networks

Our Social Network Definition

- Undirected graph
- Nodes = identities
- Edges = strong trust
 - E.g., colleagues, relatives

SybilGuard Basic Insight

- n honest users: One identity/node each
- Malicious users: Multiple identities each (sybil nodes)

- Edges to honest nodes are "human established"
- Attack edges are difficult for Sybil nodes to create
- •Sybil nodes may collude the adversary

Observation: Adversary cannot create extra edges between honest nodes and sybil nodes

SybilGuard Basic Insight

SybilGuard's Model

- A social network exists containing honest nodes and Sybil nodes
- Honest nodes provide a service to or receive a service from nodes that they "accept"

Goal: Enable a *verifier* node to decide whether to accept another *suspect* node

- Accept: Provide service to / receive service from
- Idealized guarantee: An honest node accepts and only accepts other honest nodes

SybilGuard:

- Bounds the number of sybil nodes accepted
- Guarantees are with high probability
- Accepts and is accepted by most honest nodes
- Approach: Acceptance based on random route intersection between verifier and suspect

Random Routes

- Every node picks a random routing from input to output edges
- A directed edge is in exactly one route of unbounded length
- A directed edge is in at most w routes of length w

Clever Use of Random Routes

- Each node finds all the length w random routes that start at the node itself
- Honest node V accepts node S if most of V's random routes intersect a random route of S

Random Route Intersection: Honest Nodes

- Verifier accepts a suspect if the two routes intersect
 - Route length w:

$$\sim \sqrt{n} \log n$$

- verifier's route stays within honest region
- routes from two honest nodes intersect

Random Route Intersection: Sybil Nodes

- Each attack edge gives one intersection
- Intersection points are SybilGuard's equivalence sets

Random Route Intersection: Sybil Nodes

- SybilGuard bounds the number of accepted sybil nodes within g*w
 - g: Number of attack edges
 - w: Length of random routes
- Next ...
 - Convergence property to bound the number of intersections within g
 - Back-traceable property to bound the number of accepted sybil nodes per intersection within w

Bound # Intersections Within g

must cross attack edge to intersect even if sybil nodes do not follow the protocol

Convergence: Each attack edge gives one intersection

at most *g* intersections with *g* attack edges

Intersection = (node, incoming edge)

Bound # Sybil Nodes Accepted per Intersection within w

- Back-traceable: Each intersection should correspond to routes from at most w honest nodes
- Verifier accepts at most w nodes per intersection
 - Will not hurt honest nodes

Conclusions

- Sybil attack: Serious threat to collaborative tasks in decentralized systems
- SybilGuard: Fully decentralized defense protocol
 - Based on random routes on social networks
 - Effectiveness shown via simulation and analysis
- Future work: (Already Done)
 - Local Partitioning using PageRank
 - Evaluation using real and large-scale social networks

Thank you – Enjoy the rest of your night

