Supervised Learning

Modelling

UnSupervised Learning

Tuple { Relation

- Unsupervised Learning
 - Given X
 - ... the task of inferring a function to describe hidden structure from unlabeled data.
 - Distribution / Density, Summary statistics, Clustering, Association Rules, Dimensionality Reduction
- Supervised Learning
 - Given X & y (a <u>particular</u> random variable)
 - Find what is the relation between the particular random variable and other random variables
 - What if we are only interested in identifying customers who bought Milk?
 - Find how the value of the dependent variable depends on the value of others
 - Find how the outcome is related to the features.
 - Key Variations: Type of outcome / dependent r.v.
 - Numeric (Discrete, Continuous, [0,1])
 - · Categorical: Nominal, Ordinal

The idea of a Model

- Physical
 - a physical copy of an object such as a globe
- Computer
 - a simulation to reproduce behavior of a system
- Scientific
 - a simplified & idealized understanding of physical systems
 - Newton's Law model the physical universe

- Conceptual
 - a representation of a system using general rules & concepts

$$y = 3x + 4$$

Mathematical

$$y = x^2$$

• a representation of a system using mathematical concepts $y = e^x$

$$y = \log(x)$$

Statistical

$$y = \sin(x)$$

• a parameterized set of probability distributions

All models are false. Some models are useful.

The idea of a Statistical / ML Model

Model

- A function relates two (or more) variables
- Captures the relation between x and y
- For every value of x, there must be a unique value of y
- Data looks like $\{(x_1, y_1), (x_2, y_2), ..., (x_i, y_i), ..., (x_n, y_n)\}$

$$y = 3x + 4$$

$$y = x^{2}$$

$$y = e^{x}$$

$$y = \log(x)$$

$$y = \sin(x)$$

$$y = 3x + 4$$

$$y = f(x)$$

Statistical Model

- Real world data looks like $\{(x_1, y_1), (x_1, y_2), ..., (x_n, y_n)\}$
- Multiple values of y for a single value of x
- In expectation (on average), "model" captures the relationship between variables
- Effects due to unobserved variables / Errors in measurements : capture by ε
- Randomness / Stochasticity / Noise : Zero-mean; Normal distribution
- Violations of Assumption is an indication of systemic errors

TV

 $y = f(x) + \varepsilon$ $\varepsilon \sim N(0, \sigma)$

Un/Supervised Learning

- Given X
 - ... the task of inferring a function to describe hidden structure from unlabeled data.
 - Distribution / Density, Summary statistics, Clustering, Association Rules, Dimensionality Reduction

- Given X & y (a <u>particular</u> random variable)
 - Find what is the **relation** between the particular random variable and other random variables
 - Find how the value of the dependent (particular) variable depends on the value of others
 - Find how the outcome is related to the features
 - Generalize : Make predictions about new data

Supervised Learning

Variants

Un/Supervised Learning Models

- Supervised
 - Dependent vs. Independent Variables
 - Is there a variable of interest? Labelled data?
 - Do you know what you are looking for?
 - View the data as $\{(x_1, y_1), (x_1, y_2), ..., (x_n, y_n)\}$
 - Regression vs. Classification
- Unsupervised
 - No clearly defined Dependent Variable
 - Find patterns in data
 - View the data as $\{(x_1), (x_2), ..., (x_n)\}$
 - Often, a pre-processing step to Supervised

- Parameteric
 - Specify the "form" of f (Specify model class)
 - Learn exact f (Learn model parameters)
 - Restrictive but Interpretive
 - Less data required for learning
- Non-Parameteric
 - Learn model directly (No restrictions on model class)
 - Flexible but less Interpretive
- Model-Based vs. Model-Free
 - Models are not the only game in town
 - Model-Based: Linear Regression (What is the model?)
 - Model-Free: Nearest Neighbor, Collaborative Filtering

Supervised Learning: Linear Regression

p=1

p > 2?

Supervised Learning: Binary classification

Supervised Learning: From Binary to Multi Class

SL: Variant Summary

- Numeric y
 - Given input data x, f(x) is a numeric value
 - Regression: Linear, polynomial, lasso
 - Time Series : y = xt+1
- Numeric y in [0,1]
 - Given input data x, f(x) is a numeric value in between 0,1 (e.g. probability)
 - Regression: Logistic
- Categorical y
 - Given input data x, f(x) is a label / class / category (e.g. churn or not)
 - Classification: knn, logistic, decision tree, svm
- Ordinal y
 - Learn f(x) such that given input data x, f(x) is a rank (e.g. 1st, 2nd, ...)
 - Ranking

Machine Learning Framework

Let's play

Thought Experiments

Data Past credit card transactions of customers

Business Objective Identify fraudulent transactions

?

Analytics

Data Past purchases of customers

?

Business Objective What is a customer likely to buy next?

Analytics

Data Pricing and Sales data of a product portfolio

Business Objective Determine price elasticity

Analytics ?

Thought Experiments (cont'd)

Data ?

Business Objective How much should company spend on TV/radio/paper

ads?

Analytics ?

Data Past purchases of customers

?

Business Objective Segment customers with similar purchase behavior

Analytics

Data A set of emails marked junk or not by a human

Business Objective Build a rules engine to determine emails as Junk or

not?

Analytics ?

