

QUAD INVERTING TRANSISTOR SWITCH

1 FEATURES

- OUTPUT VOLTAGE TO 50V
- OUTPUT CURRENT TO 1.2A
- VERY LOW SATURATION VOLTAGE
- TTL COMPATIBLE INPUTS
- INTEGRAL SUPPRESSION DIODE

2 DESCRIPTION

The L9222 monolithic quad transistor switch is designed for high current, high voltage switching applications.

Each of the four switches is controlled by a logic input and all four are controlled by a common enable input. All inputs are TTL-compatible for direct connection to logic circuits. Each switch consists of an open-collector transistor plus a clamp diode for applications with inductive loads.

Figure 1. Packages

Table 1. Order Codes

Part Number	Packa ge
L9222	P.7IF 12+2+?)
L9222 D	(SC?(!)

The emitters of the four switches are connected together to GND. The switches of the same device may be paralled. The device is intended to drive coils such as relays, solenoids, unipolar stepper motors, LED etc.

Figure 2. BLOCK DIAGRAM

REV. 3

May 2004 1/7

Table 2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{OUT}	Output Voltage	– 0.7 to 50	V
Vcc	Logic Supply Voltage	7	V
Vi	Input Voltage	-0.7 to $V_{CC} + 0.3$	V
T _j , T _{ST}	Junction and Storage Temperature Range	– 55 to 150	°C

Figure 3. PIN CONNECTION (Top view)

Table 3. TRUTH TABLE

Enable	15 Input	Power Out
н	C L	ON
Ve. 1000	Н	OFF
205-010	X	OFF

For each input:

H= High level L= Low level

X = Don't care

Table 4. THERMAL DATA

Symbol	Parameter	Value	Unit	
R _{th j-amb}	Thermal Resistance Junction to ambient	Max	90	°C/W
R _{th-J-case}	Thermal Resistance Junction to case	Max	14	°C/W

Table 5. ELECTRICAL CHARACTERISTICS

 V_{CC} = 5Vdc ± 5% V_{EN} = 5V – 40 ≤ T_j ≤ 125°C unless otherwise specified

V _{CE(sus)}	Parameter	Test Condition	Min.	Тур.	Max.	Unit
	Output Sustaining Voltage	V _{IN} = 2V V _{EN} = 2V, I _{OUT} = 100mA	46			V
I _{CEX}	Output Leakage Current	V _{CE} = 50V V _{IN} = 2V, V _{EN} = 0.8V			1	mA
VCE(sat)	Collector Emitter Saturation	$V_{IN} \ge 0.8V$ $I_{OUT} = 0.1A$ $I_{OUT} = 0.3A$ $I_{OUT} = 0.6A; -40 + 105 °C$			0.3 0.5 0.8	V V V
V _{IL}	Input Low Voltage				0.8	V
l₁∟	Input Low Current	$V_{IN} = 0.4V$	– 15			μΑ
V _{IH}	Input High Voltage		2.0			V
l _{IH}	Input High Current	V _{IN} ≥ 2.0V	– 15			μ4
Is	Logic Supply Current	All Outputs ON I _{OUT} = 06A		50	02	inA
		All Outputs OFF		10	20	mA
I _R	Clamp Diode Leakage Current	V _R = 50V Diode Reverse Voltage		6/	100	μА
V _F	Clamp Diode Forward Voltage	I _F = 0.6A	*6		1.8	V
		I _F = 1.2A	8	- 9/	2.0	V
Іоит	Output Current	$V_{IN} = 0.4V, R = 10\Omega, V_{S} = 13V$	0.9	1.2		Α
T _{PHL}	Propagation Delay Time (high to low transition)	T _j = 25°C I _L = 600mA	N.		20	μs
T _{PHL}	Propagation Delay Time (low to high transition)	I _L = 600mA T _j = 25°C			20	μs
V _{ENL}	Low Enable Voltage	*(2) 50			0.8	V
I _{ENL}	Low Enable Current	\'EN = 0.4V	– 15			μΑ
V_{ENH}	Low Enable Current High Enable Voltage High Enable Voltage		2.0			V
IENIL	High Enable Voltage	V _{EN} ≥ 2.0V	– 15		15	μΑ

Figure 4. Powerdip (12+2+2 0Mechanical Data & Package Dimensions

DIM.	mm					
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			20.0			0.787
Е		8.80			0.346	
е		2.54			0.100	
e3		17.78			0.700	
F			7.10			0.280
I			5.10			0.201
L		3.30			0.130	
Z			1.27			0.050

OUTLINE AND MECHANICAL DATA

47/

Figure 5. SO20L Mechanical Data & Package Dimensions

DIM.	mm			inch		
Dilvi.	MIN. TYP. MAX. MIN. T		TYP.	MAX.		
Α	2.35		2.65	0.093		0.104
A1	0.10		0.30	0.004		0.012
В	0.33		0.51	0.013		0.200
С	0.23		0.32	0.009		0.013
D ⁽¹⁾	12.60		13.00	0.496		0.512
Е	7.40		7.60	0.291		0.299
е		1.27			0.050	
Н	10.0		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.40		1.27	0.016		0.050
k		0	° (min.),	8° (max	.)	
ddd			0.10			0.004

^{(1) &}quot;D" dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15mm per side.

OUTLINE AND MECHANICAL DATA

Table 6. Revision History

Date	Revision	Description of Changes	
March 2004	2	Second Issue	
May 2004	3	Stylesheet update. No content change	

Obsolete Product(s) obsolete Product(s)
Obsolete Product(s) obsolete Product(s)

Obsolete Product(s)
Solete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

