## Differential Geometry 1 – Final Exam

Junwoo Yang

June 10, 2020

- 1. Show that the set  $S := \{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + y^2 z^2 = 0\}$  is not a regular surface.
- 2. Let S be a compact regular surface. Assume that there is a differentiable function  $f\colon S\to\mathbb{R}$  with at most three critical points. Prove that S is connected.
- 3. Let  $f: S^2 \to (0, +\infty)$  be a positive differentiable function on the unit sphere.

$$S_f := \{ f(p)p = (f(p)x, f(p)y, f(p)z) \in \mathbb{R}^3 \mid p = (x, y, z) \in S^2 \}.$$

- (a) Show that  $S_f$  is a regular surface.
- (b) Show that the map  $\phi \colon S^2 \to S_f$  given by  $\phi(p) \coloneqq f(p)p$  is a diffeomorphism.
- 4. Let S be a regular surface. For a fixed point  $p_0 \in \mathbb{R}^3$ , let

$$f: S \to \mathbb{R}, \quad f(p) := |p - p_0|^2.$$

Show that p is a critical point of f if and only if  $p_0$  belongs to the normal line of S at p.

5. Let S be a regular surface given by the graph of a differentiable function z = f(x, y). Let R be a bounded region of S. Show that the area of R is

area(R) = 
$$\int_{\pi(O)} \sqrt{1 + (f_x)^2 + (f_y)^2} \, dx \, dy$$

where  $\pi: \mathbb{R}^3 \to \mathbb{R}^2$  given by  $\pi(x, y, z) := (x, y)$ , and  $f_x = \frac{\partial f}{\partial x}$  and  $f_y = \frac{\partial f}{\partial y}$ .

6. Let S be a regular oriented surface. Show that the mean curvature H at  $p \in S$  is equal to

$$H = \frac{1}{\pi} \int_0^{\pi} k_n(\theta) \, \mathrm{d}\theta$$

where  $k_n(\theta)$  denotes the normal curvature at p along a direction making an angle  $\theta \in [0, \pi]$  with a fixed direction.

7. Consider the parametrized surface

$$\mathbf{x}(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2\right).$$

- (a) Compute the coefficients of the first fundamental form.
- (b) Compute the coefficients of the second fundamental form.
- (c) Show that the principal curvatures are

$$k_1 = \frac{2}{(1+u^2+v^2)^2}, \quad k_2 = -\frac{2}{(1+u^2+v^2)^2}.$$

- (d) Compute the Gaussian curvature K and the mean curvature H at every point.
- 8. Let S be a regular surface.
  - (a) Let  $\alpha \colon [-1,1] \to S$  be a geodesic with  $|\alpha'(0)| = 1$ . Compute that arc length of  $\alpha$ .
  - (b) Let  $\beta \colon [-2,2] \to S$  be another geodesic with  $\beta(0) = \alpha(0)$  and  $-2\beta'(0) = \alpha'(0)$ . Compute the arc length of  $\beta$  and describe how  $\alpha$  and  $\beta$  are related.
- 9. Suppose that S is a regular, compact, connected, orientable surface.
  - (a) At any  $p \in S$ , locally S is the graph of some differentiable function h defined in a neighborhood of 0 in the tangent plane  $T_pS$ .  $(0 \in T_pS)$  is identified with  $p \in S$ .) Show that the second fundamental form at p equals the Hessian of h at  $0 \in T_pS$ .
  - (b) Show that there is a point  $p \in S$  with positive Gaussian curvature K(p) > 0.
  - (c) Show that if S is not homeomorphic to  $S^2$ , then there are points on S where the Gaussian curvature is zero and negative.
- 10. Let S be a compact regular oriented surface. Prove that the Gauss map  $N\colon S\to S^2$  is a local diffeomorphism if and only if S has positive Gaussian curvature everywhere.
- 11. Let  $\alpha \colon [0,1] \to S$  be a differentiable curve.
  - (a) Let  $P_{\alpha}: T_{\alpha(0)}S \to T_{\alpha(1)}S$  be the parallel transport map along  $\alpha$ . Show that  $P_{\alpha}$  is a linear isometry.
  - (b) Show that there exist two differentiable vector fields

$$w_1, w_2 \colon [0, 1] \to \bigcup_{t \in [0, 1]} T_{\alpha(t)} S, \quad w_1(t), w_2(t) \in T_{\alpha(t)} S$$

along  $\alpha$  which form an orthonormal basis of  $T_{\alpha(t)}S$  for all  $t \in [0,1]$ , i.e.,

$$|w_1(t)| = |w_2(t)| = 1, \quad \langle w_1(t), w_2(t) \rangle = 0 \quad \forall t \in [0, 1].$$

(c) Let w be a differentiable vector field along  $\alpha$ . Let  $P_{\alpha}^{t_0,t_1}\colon T_{\alpha(t_0)}S\to T_{\alpha(t_1)}S$  be the parallel transport map along  $\alpha|_{[t_0,t_1]}$  for  $t_0,t_1\in(0,1)$ . Prove that

$$\frac{dw}{dt}(t_0) = \frac{d}{dt}\Big|_{t=t_0} (P_{\alpha}^{t_0,t_1})^{-1}(w(t)).$$