Math 55b: Honors Advanced Calculus and Linear Algebra

Homework Assignment #8 (31 March 2003): Life in Hilbert space

It is a mathematical fact that the casting of this pebble from my hand alters the centre of gravity of the universe.

— Thomas Carlyle (1795–1881), who apparently knew his John Donne ("if a clod be washed away by the sea, Europe is the less" 1) but was not as clear on Newton's Laws...

- 1. (More about separability) Let X be a metric space, and S any subspace. Prove that if X is separable than so is S. Prove that the following are equivalent:
 - i) S is separable;
 - ii) For each $\epsilon > 0$ there is a countable set of ϵ -neighborhoods in X whose union contains S;
 - iii) For each $\epsilon > 0$ there is a countable set of ϵ -neighborhoods in S whose union contains S.
- 2. i) Show directly (i.e., without Weierstrass approximation or Fourier analysis) that $\mathcal{C}([0,1])$ is separable. (As noted in class, the separability of $L_2([0,1])$ follows.)
 - ii) The space $L_2(\mathbf{R})$ is defined as the completion of the space of continuous functions on **R** with compact support, relative to the usual inner product (f,g) := $\int_{-\infty}^{\infty} f(x)g(x) dx$. [Since f, g have comapct support, this is actually an integral over a bounded interval, so it makes sense.] Prove that $L_2(\mathbf{R})$ is separable, and thus isometric with l_2 . Can you find an explicit onto for $L_2(\mathbf{R})$?
- 3. (Compact subsets of l_2):
 - i) Let r_1, r_2, r_3, \ldots be a sequence of positive real numbers. Prove that the "box"

$$\{x \in l_2 : |x_1| \le r_1, |x_2| \le r_2, \ldots\}$$

in l_2 is compact if and only if it is bounded, that is, $\inf \sum_{i=1}^{\infty} r_i^2 < \infty$. ii) Prove that the "ellipsoid" $\{x \in l_2 : \sum_{i=1}^{\infty} |x_i/r_i|^2 \le 1\}$ is compact $\inf r_i \to 0$ as $i \to \infty$.

A linear map $L:V\to W$ between complete normed spaces V,W is said to be **compact** if the closure in W of the image of the closed unit ball $N_1(0)$ in V is a compact subset of W. Clearly a compact map must be bounded (why?). Thus the last part of Problem 3 shows that the linear map $l_2 \rightarrow l_2$ defined by $(x_1, x_2, x_3, \ldots) \mapsto (r_1x_1, r_2x_2, r_3x_3, \ldots)$ is compact iff $r_i \to 0.2$ Note that this linear map is self-adjoint, and the unit vectors

¹From Donne's Meditation XVII, which more famously is the source of "no man is an island" and "never send to know for whom the bell tools; it tolls for thee". The Carlyle quote is from Sartor Resartus, according to several sources on the Web. No, this has no specific connection with Hilbert space, separability, or Fourier analysis.

²Here $\{r_i\}$ is any bounded sequence of scalars, which need not be positive reals.

constitute an orthonormal topological basis of eigenvectors. As was true in the finite dimensional case, there is a **spectral theorem** for compact self-adjoint linear transformations L of an infinite-dimensional separable Hilbert space \mathcal{H} , which states that any such L has an ontb of eigenvectors and thus is equivalent to the linear map above under a suitable identification of \mathcal{H} with l_2 (i.e. using those eigenvectors as the unit vectors of l_2). The proof is outlined in the next two problems, under the slightly stronger hypothesis that $L(\bar{N}_1(0))$ [rather than $\overline{L(\bar{N}_1(0))}$] is compact. You may assume that \mathcal{H} is a real Hilbert space; the complex case is essentially the same, but with a few extra wrinkles.

- 4. Let \mathcal{H} be a separable infinite-dimensional Hilbert space, and $L: \mathcal{H} \to \mathcal{H}$ a self-adjoint linear map such that $L(\bar{N}_1(0))$ is compact. Since $K = \{L(x): x \in \mathcal{H}, |x| \leq 1\}$ is compact, it contains some vector $L(x_1)$ of maximal norm. Prove that (unless L is identically zero, in which case we're done already) $|x_1| = 1$ and x_1 is an eigenvector of L^2 . Show also that if x is any vector of \mathcal{H} orthogonal to x_1 then $L^2(x)$ is also orthogonal to x_1 , i.e. that L^2 restricts to a linear map from the orthogonal complement of $\langle x_1 \rangle$ to itself.
- 5. Note that this restriction is itself compact and self-adjoint. Using the result of the previous problem, obtain orthonormal eigenvectors x_2, x_3, \ldots of L^2 , and use these to prove the spectral theorem for compact self-adjoint linear operators L on \mathcal{H} .
- 6. Show that for each $x \in [0,1]$ the functional $f \mapsto \int_0^x f(t) dt$ on $\mathcal{C}([0,1])$ extends continuously to a functional ϕ_x on $L_2([0,1])$. What is the norm of ϕ_x ? Show that for any $f \in L_2([0,1])$ the map $Tf: x \mapsto \phi_{1-x}(f)$ is continuous. Prove that $f \mapsto Tf$ is a continuous linear transformation from $L_2([0,1])$ to $\mathcal{C}([0,1])$, and thus to $L_2([0,1])$. Prove further that T, considered as a linear operator on $L_2([0,1])$, is self-adjoint and compact. Find an ontb of eigenvectors of T.

This abbreviated problem set is due Friday, April 4 in class.