

# Multi-Task Self-Supervised Learning for Disfluency Detection

Shaolei Wang, Wanxiang Che, Qi Liu, Pengda Qin, Ting Liu, William Yang Wang

School of Computer Science and Technology Harbin Institute of Technology, Harbin, China

# **Disfluency Detection**

□ The transcribed speech text is mostly disfluent

I want a flight [ 
$$to Boston + \{um\}$$
 to Denver ]

Figure 1: A sentence from the English Switchboard corpus with disfluencies annotated. RM=Reparandum, IM=Interregnum, RP=Repair. The preceding RM is corrected by the following RP.

### **Disfluency Effect on Machine Translation**



#### **Our Motivations**

- □ tackle the training data bottleneck
  - construct large-scale pseudo training data by randomly adding or deleting words from unlabeled news data
  - propose two self-supervised pre-training task

#### Step3: fine-tune on supervised disfluency data



#### Step2: pre-train two self-supervised tasks



#### Step1: construct pseudo training data



#### Construct pseudo training data

- $\square$  Type1:  $S_{disf}$ 
  - $\square$  Repetition(k):the m (randomly selected from one to six) words starting from the position k are repeated.
  - Inserting(k): randomly pick a m-gram (m is randomly selected from one to six) from the news corpus and insert it to the position k.
  - $\square$  Eg: I like the cat  $\rightarrow$  I think like the the cat
- $\square$  Type2:  $S_{del}$ 
  - Delete(k): for selected position k, m (randomly selected from one to six) words starting from this position are deleted.
  - $\square$  Eg: he has two kids  $\rightarrow$  he two kids

- □ Tagging Task
  - $\square$  detect the added noisy words in  $S_{disf}$

```
eg: input: I think like the the cat output: O D O O
```

- □ Classification Task
  - distinguish original sentences from grammatically-incorrect sentences.

```
eg: inout: <he has two kids ||| he two kids> output: del_1
```



Figure 3: Model structure. The parameters of input embedding layer I, encoder layer E, and tagging layer T (yellow box) are shared among pre-training and fine-tuning

# **Experimental Setting**

- Dataset
  - □ Pre-training data: 12 million
    - 3 million for tagging task
    - 9 million for classification task
  - English Switchboard corpus
    - About 100000 sentences for training data
- Model Size
  - □ 512 hidden units, 8 heads, 6 hidden layers

■ Experiment results on the development and test data of English Switchboard data

|                     | Full |      |      |      |      | 1000 sents |      |      |      |      |      |      |
|---------------------|------|------|------|------|------|------------|------|------|------|------|------|------|
| Method              | Dev  |      |      | Test |      |            | Dev  |      |      | Test |      |      |
|                     | P    | R    | F1   | P    | R    | F1         | P    | R    | F1   | P    | R    | F1   |
| Transition-based    | 92.2 | 84.7 | 88.3 | 92.1 | 84.1 | 87.9       | 82.2 | 57.4 | 67.6 | 81.2 | 56.7 | 66.8 |
| Transformer-based   | 86.5 | 70.4 | 77.6 | 86.1 | 71.5 | 78.1       | 78.2 | 51.3 | 62.0 | 79.1 | 51.1 | 62.1 |
| Our self-supervised | 92.9 | 88.1 | 90.4 | 93.4 | 87.3 | 90.2       | 90.0 | 82.8 | 86.3 | 88.6 | 83.7 | 86.1 |

□ Comparison with the previous state-of-the-art methods

| Method                              | P    | R    | F1   |
|-------------------------------------|------|------|------|
| UBT (Wu et al. 2015)                | 90.3 | 80.5 | 85.1 |
| Semi-CRF (Ferguson et al., 2015)    | 90.0 | 81.2 | 85.4 |
| Bi-LSTM (Zayats et al., 2016)       | 91.8 | 80.6 | 85.9 |
| LSTM-NCM (Lou and Johnson 2017)     | _    | -    | 86.8 |
| Transition-based (Wang et al. 2017) | 91.1 | 84.1 | 87.5 |
| Our self-supervised (1000 sents)    | 88.6 | 83.7 | 86.1 |
| Our self-supervised (Full)          | 93.4 | 87.3 | 90.2 |

□ Ablation over the two self-supervised tasks

| Method         |      | Full |      | 1000 sents |      |      |  |
|----------------|------|------|------|------------|------|------|--|
| Method         | P    | R    | F1   | P          | R    | F1   |  |
| Random-Initial | 86.1 | 71.5 | 78.1 | 79.1       | 51.1 | 62.1 |  |
| Tagging        | 91.8 | 84.0 | 87.7 | 85.1       | 79.6 | 82.3 |  |
| Classification | 91.2 | 83.1 | 87.0 | 83.2       | 78.3 | 80.7 |  |
| Multi-Task     | 93.4 | 87.3 | 90.2 | 88.6       | 83.7 | 86.1 |  |







#### Comparison with BERT

| Method              | F1 (Full) | F1 (1000 sents) |
|---------------------|-----------|-----------------|
| Random-Initial      | 78.1      | 62.1            |
| BERT-fine-tune      | 90.1      | 82.4            |
| Our self-supervised | 90.2      | 86.1            |
| Combine             | 91.4      | 87.8            |

Table 7: Comparison with BERT. "random-initial" means training transformer network on gold disfluency detection data with random initialization. "combine" means concatenating hidden representations of BERT and our self-supervised models for fine-tuning.

#### Conclusion

□ Propose two self-supervised tasks for disfluency detection to tackle the training data bottleneck.

■ Experimental results show that our approach can achieve competitive performance compared to the previous systems by using less than 1% (1000 sentences) of the training data



# Thank you!