COMP3121 Lecture 7 Notes: Divide and Conquer

Module 2: Divide and Conquer

- Instructor: Paul Hunter (K17-217D)
- Course Admins: cs3121@unsw.edu.au (Song, Liam, James)
- School of Computer Science and Engineering, UNSW Sydney
- Term 2, 2025

Table of Contents

- 1. Introductory Examples
 - (a) Coin puzzle
 - (b) Binary search
 - (c) Merge sort
 - (d) Quick sort
 - (e) Divide and Conquer paradigm
- 2. Recurrences
 - (a) Framework
 - (b) Master Theorem
- 3. Integer Multiplication
 - (a) Applying D&C to multiplication
 - (b) Karatsuba trick
- 4. Convolutions
 - (a) Polynomials
 - (b) Fast Fourier Transform
- 5. Puzzle

1. Introductory Examples

1.1 Coin Puzzle

- Problem: Find counterfeit (lighter) coin among 27 coins using only 3 weighings
- Solution:
 - 1. Divide into 3 groups of 9 (A, B, C)

- 2. Weigh A vs B
 - If unequal: lighter group contains counterfeit
 - If equal: counterfeit is in C
- 3. Repeat with groups of 3, then individual coins
- Classic divide-and-conquer example reduces problem size by 1/3 each step

1.2 Binary Search

- Steps:
 - **Divide**: Test midpoint $(\Theta(1))$
 - Conquer: Search one side recursively
 - Combine: Pass answer up $(\Theta(1))$
- Time complexity: $\Theta(\log n)$ (recursion depth $\log_2 n$)
- Extensions:
 - Lower bound: smallest i where $A[i] \geq x$
 - Upper bound: largest i where $A[i] \leq x$
 - Equal range: find all indices with $A[\ell] = \cdots = A[r] = x$

1.3 Merge Sort

- Steps:
 - **Divide**: Split array equally $(\Theta(1))$
 - Conquer: Sort halves recursively
 - Combine: Merge sorted subarrays $(\Theta(n))$
- Time complexity: $\Theta(n \log n)$ (log n levels, $\Theta(n)$ work per level)
- Counting Inversions:
 - Measure of array "disorder" (pairs where i < j but A[i] > A[j])
 - Modified merge sort counts inversions in $\Theta(n \log n)$ time
 - Key insight: inversions = left inversions + right inversions + split inversions

1.4 Quick Sort

- Steps:
 - **Divide**: Choose pivot, partition $(\Theta(n))$
 - Conquer: Sort partitions recursively
 - Combine: Pass answer up $(\Theta(1))$
- Average case: $\Theta(n \log n)$
- Worst case: $\Theta(n^2)$ (bad pivot choices)

1.5 Divide and Conquer Paradigm

• General Approach:

1. \mathbf{Divide} : Split problem into smaller subproblems

2. Conquer: Solve subproblems recursively

3. Combine: Merge solutions to solve original problem

• Correctness: Proved by induction on problem size

- Base case: trivial solution

- Inductive step: assume works for smaller sizes, show combine step works

2. Recurrences

2.1 Framework

• General form: T(n) = aT(n/b) + f(n)

− a: number of subproblems

− b: size reduction factor

- f(n): divide/combine cost

• Examples:

– Binary search: $T(n) = T(n/2) + \Theta(1)$

– Merge sort: $T(n) = 2T(n/2) + \Theta(n)$

– Karatsuba: $T(n) = 3T(n/2) + \Theta(n)$

2.2 Master Theorem

For recurrences of form T(n) = aT(n/b) + f(n) with $a \ge 1, b > 1$:

1. If $f(n) = O(n^{c^* - \epsilon})$ for $\epsilon > 0$, then $T(n) = \Theta(n^{c^*})$

2. If $f(n) = \Theta(n^{c^*} \log^k n)$, then $T(n) = \Theta(n^{c^*} \log^{k+1} n)$

3. If $f(n) = \Omega(n^{c^*+\epsilon})$ and regularity condition holds, then $T(n) = \Theta(f(n))$

where $c^* = \log_b a$ is the critical exponent.

3. Integer Multiplication

3.1 Naive D&C Approach

• Split n-bit numbers A, B into halves:

$$A = A_1 2^{n/2} + A_0$$

$$B = B_1 2^{n/2} + B_0$$

• Compute recursively:

$$AB = A_1 B_1 2^n + (A_1 B_0 + A_0 B_1) 2^{n/2} + A_0 B_0$$

3

 • Recurrence: $T(n) = 4T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$ (no improvement)

3.2 Karatsuba Algorithm

• Key insight: Compute only three products:

$$W = A_1 B_1$$

$$X = A_0 B_0$$

$$V = (A_1 + A_0)(B_1 + B_0)$$

$$AB = W2^n + (V - W - X)2^{n/2} + X$$

- Recurrence: $T(n) = 3T(n/2) + \Theta(n)$
- Solution: $T(n) = \Theta(n^{\log_2 3}) \approx \Theta(n^{1.585})$

4. Convolutions and FFT

4.1 Polynomials and Convolutions

• Polynomial multiplication equivalent to convolution:

$$C_t = \sum_{i+j=t} A_i B_j$$

- Naive approach: $\Theta(n^2)$ time
- Value Representation:
 - Represent degree-n polynomial by n+1 point-value pairs
 - Multiplication: pointwise multiply values $(\Theta(n))$

4.2 Fast Fourier Transform

- Strategy:
 - 1. Evaluate polynomials at roots of unity (FFT)
 - 2. Pointwise multiply values
 - 3. Interpolate to get coefficients (inverse FFT)
- Roots of Unity:

$$-\omega_m = e^{2\pi i/m}$$
 (primitive *m*-th root)

- Properties:

 - $* \omega_m^m = 1$ $* \omega_m^{m/2} = -1$
 - * $\omega_m^{m+k} = \omega_m^k$

• FFT Algorithm:

- Divide: Split into even/odd coefficients
- Conquer: Compute FFT of halves
- Combine: Use ω_m^k properties
- Time: $T(n) = 2T(n/2) + \Theta(n) \Rightarrow \Theta(n \log n)$

• Applications:

- Polynomial multiplication
- integer multiplication (via polynomial evaluation)
- Signal processing, image compression

5. Pirate Puzzle

- Problem: 5 pirates must divide 100 gold bars with voting rules
- Priorities:
 - 1. Survival
 - 2. Maximize gold
 - 3. See others walk plank
- Solution Approach: Backwards induction
 - Solve for 1 pirate, then 2, ..., up to 5 $\,$
 - At each step, pirates anticipate next steps
- Final Solution: First pirate proposes (98, 0, 1, 0, 1)