Π обедит #398

Анализ методов сегментации зерен сплава WC-Co

Д.Г.Каграманян 1 , Д.Ю.Камалова 2 , Б.Б.Страумал 3 , Л.Н.Щур 4 13 апреля 2021 г.

1 Аннотация

Во время решения задачи сегментации зерен сплава WC-Co возникла неопределенность выбора подхода. Каждый метод показывает свой результат, отличный от других. Неясно какой подход будет оптимален.

2 Задача

Провести анализ подходов и сравнить какой будет наиболее эффективен при решении задачи сегментации зерен.

3 Визуальный осмотр

Визуальный осмотр и анализ исходных фотографий играет важную роль в задачах обработки изображений.

¹исследователь,dgkagramanyan@edu.hse.ru

²исследователь,dyukamalova@edu.hse.ru

 $^{^3}$ соруководитель,straumal@issp.ac.ru

⁴руководитель,levshchur@gmail.com

3.1 Отсутствие видимых границ

На изображении микроструктуры отчетливо выделены только границы между зернами и связующим веществом. Видимые границы между смежными зернами отсутвует, из-за чего возникает сложноотделимая масса из кристаллов сплава (рис. 1).

Рис. 1: Красными линиями обведены потенциальные границы смежных зерен

3.2 Неравномерное распределение шумов

Большие зерна выделяется на общем фоне уровнем шума, но это неверно для средних и мелких зерен. Если пропустить исходное изображение через детектор границ и контуров [1], то можно крупные объекты шума можно выделить и соединить их крестиком. Пример такого преобразования на рисунке 2. Их уровень шума примерно на одном уровне.

Рис. 2: Зеленой линией отмечено явное изменение шума, обозначающее наличие границы. Красной линией - отсутсвие изменения шума для тех мет, где должна быть гранциа

4 Возможные подходы решения задачи

4.1 Явная сегментация

Методы сегментации не смогли сегментировать то, чего не видит даже человек

4.2 Сегментация на основе шума зерен

Неточный метод определения границ. Границы больших зерен можно выделить по уровню шума, а средних и мелких - нет

4.3 Сегментация на основе EDT

Euclidean distance transform - преобразование изображения, для которого строится карта расстояний пикселей.

При первичном осмотре кажется, что указанное преобразование выделяет зерна, но на деле оно создает ту же неразделимую комбинацию зерен (рис. 3).

Рис. 3: Карта расстояний, полученная преобразованием EDT

Рис. 4: Наложение карты расстояний и исходного изображения

4.4 Сегментация на основе нейронной сети

Разметить несколько изображений вручную и подать их на вход нейронной сети. Разметка данных - длительный и монотонный процесс, но благодаря ему можно опустить детали и принцип определения границ пустот.

Метод имеет место быть, но на деле его применение неоправданно. Затраты времени на разметку слишком большие.

4.5 Сегментация на основе контуров пустот

Выделим все пустоты и аппроксимируем их контуры с помощью линейной функции (рис. 5). Затем будет соединять острые вершины с другими вершинами по особому правилу. По какому - неясно

Рис. 5: Выделенные пустоты с линейно приближенными контурами

5 Выводы

Единственный метод, который может показать хороший результат сегментации зерен - графовый алгоритм, проходящий по контурам пустот (глава 4.5).

Список литературы

[1] Каграманян Д.Г. - Сегментации пустот сплава WC-Co