Credit Risk: Modeling Default Dependence with Copulas

Roza Galeeva e-mail: groza@bu.edu

DEPARTMENT OF FINANCE

Questrom School of Business

FALL 2021

Introduction and Outline of the Lecture

- ▶ The word *copula* is a Latin noun that means a link or tie that connects two different things. It is used in grammar to describe that part of a proposition which connects the subject and predicate.
- In Quantitative Risk Management: it is used to find good joint models.
- The idea of copulas is to go from individual models to joint model. The idea, study and applications of copulas is rather a modern phenomenon.
- In this lecture we will introduce copulas, discuss their properties and look at their applications in Credit Risk.

MF-772- Lecture 11 2 / 17

General Notion of Copula

Copulas are functions that join or "couple" multivariate distribution functions to their one-dimensional marginal distribution functions

Consider a pair of r.v. X and Y with distribution functions

$$F(x) = \mathbb{P}[X \le x]$$
 and $G(y) = \mathbb{P}[Y \le y]$

Consider a joint distribution function

$$H(x,y) = \mathbb{P}[X \le x, Y \le y]$$

- ▶ To each pair of real numbers (x,y) we can associate three numbers F(x), G(y) and H(x,y). Each of these numbers lies are in the interval [0,1]. Thus, each pair (x,y) of real numbers leads to a point (F(x),G(y)) in the unit square $[0,1] \times [0,1]$ and this ordered pair in turn corresponds to a number H(x,y) in [0,1].
- ► This correspondence which assigns the value of the joint distributions function is a function and called *copula*

MF-772- Lecture 11 3 / 17

Properties of Distribution Function of two Random Variables

1.

$$H(-\infty, y) = H(x, -\infty) = 0, H(+\infty, +\infty) = 1$$

2.

$$H(x,\infty) = F(x), H(\infty,y) = G(y)$$

3. For $x_1 \le x_2$ and $y_1 \le y_2$

$$\mathbb{P}\left(x_1 \le X \le x_2, Y \le y\right) = H(x_2, y) - H(x_1, y)$$

$$\mathbb{P}(X \le x, y_1 \le Y \le y_2) = H(x, y_2) - H(x, y_1)$$

4.

$$\mathbb{P}(x_1 \le X \le x_2, y_1 \le Y \le y_2) = H(x_2, y_2) - H(x_1, y_2) - H(x_2, y_1) + H(x_1, y_1)$$

MF-772- Lecture 11

Preliminaries

- (i) Let \mathbb{R} denote the real line $(-\infty, \infty)$, $\bar{\mathbb{R}}$ is the extended real line $[-\infty, \infty]$ and $\bar{\mathbb{R}}^2 = \bar{\mathbb{R}} \times \bar{\mathbb{R}}$ is extended real plane.
- (ii) A rectangle in \mathbb{R}^2 is the Cartesian product B of two closed intervals $B = [x_1, x_2] \times [y_1, y_2]$. The unit square \mathbb{I}^2 is the product $\mathbb{I} \times \mathbb{I}$ where $\mathbb{I} = [0, 1]$
- (iii) Let H be a function defined on a subset $Dom H = S_1 \times S_2$, S_1, S_2 be nonempty subsets of $\bar{\mathbb{R}}$. The H-volume of B is given by

$$H(B) = H(x_2, y_2) - H(x_2, y_1) - H(x_1, y_2) + H(x_1, y_1)$$
 (1)

(iv) $V_H(B)$ is also the H-mass of the rectangle B. We can define the first order difference H on the rectangle B as

$$\Delta_{x_1}^{x_2} = H(x_2, y) - H(x_1, y)$$
 and $\Delta_{y_1}^{y_2} = H(x, y_2) - H(x, y_1)$

(v) It follows that

$$V_H(B) = \Delta_{y_1}^{y_2} \Delta_{x_1}^{x_2} H(x, y)$$

MF-772- Lecture 11 5 /

Notion of non-decreasing function of two variables

Definition 1

The function H defined on subset Dom H is called 2- increasing if $V_H(B) \ge 0$ for all rectangles B whose vertices lie in domain Dom H.

a.

- b. The statement the function is 2- increasing neither implies or implied by the facts that H is non-decreasing in each argument.
 - 1. Let function H(x,y) be a function defined on \mathbb{I}^2 by $H(x,y) = \max(x,y)$.
 - 2. Let function H(x,y) be a function defined on \mathbb{I}^2 by H(x,y) = (2x-1)(2y-1).

MF-772- Lecture 11 6 / 17

Grounded functions

• If S_1 and S_2 are nonempty subsets of \mathbb{R} . Suppose S_1 has a least element a_1 , and and S_2 has a least element a_2 .

Definition 2

The function H from $S_1 \times S_2$ into \mathbb{R} is grounded, if

$$H(a_1, y) = 0 = H(x, a_2)$$

Proposition 1

Let H be defined as before, it is 2-increasing and grounded. Then H is nondecreasing in each argument. (Prove it)

Now assume S_1 has a greatest element b_1 and S_2 has a greatest element b_2 .

Definition 3

We say that function H has margins defined:

$$F(x) = H(x, b_2), \forall x \in S_1, G(y) = H(b_1, y), \forall y \in S_2$$

MF-772- Lecture 11 7 / 17

Example 1

Let H be a function with domain $[-1,1] \times [0,\infty]$ given by

$$H(x,y) = \frac{(x+1)(e^y - 1)}{x + 2e^y - 1}$$

Check if H is grounded and find its margins, $F(x) = H(x, \infty)$ and G(y) = H(1, y).

$$S_1 = \{-1,0\}$$
 $S_2 : \{1,\infty\}$
 $H(0,y) = \frac{(-1+1)(e^{y}-1)}{-1+2e^{y}-1} = 0$ grounded!
 $H(x,1) = 0$

$$F(X) = H(X,\infty) = \lim_{y \to \infty} \frac{(X+1)(e^{y}-1)}{X+2e^{y}-1} = \frac{X+1}{2}$$

$$G(x) = H(1,y) = \frac{2(e^{y}-1)}{2e^{y}} = \frac{e^{y}-1}{e^{y}} = 1-e^{-y}$$

Example and some properties

Example 1

Let H be a function with domain $[-1,1] \times [0,\infty]$ given by

$$H(x,y) = \frac{(x+1)(e^y - 1)}{x + 2e^y - 1}$$

Check if H is grounded and find its margins, $F(x) = H(x, \infty)$ and G(y) = H(1, y).

Proposition 2

Let H is as defined in Proposition 1, and it has margins F(x) and F(y). Let x_1, y_1 and x_2, y_2 be any points in $S_1 \times S_2$. Then

$$|H(x_2,y_2)-H(x_1,y_1)| \le |F(x_2)-F(x_1)| + |G(y_2)-G(y_1)|$$

MF-772- Lecture 11 8 / 1

Definition of copula in two-dimensional case

Definition 4

A two -dimensional copula is a function C from \mathbb{I}^2 to \mathbb{I} with the following properties:

1. For every u, v in \mathbb{I}

$$C(u,0) = 0 = C(0,v)$$

$$C(u,1) = u \text{ and } C(1,v) = v$$

2. For every u_1, u_2, v_1, v_2 in \mathbb{I} such that $u_1 \leq u_2$ and $v_1 \leq v_2$

$$C(u_2, v_2) - C(u_2, v_1) - C(u_1, v_2) + C(u_1, v_1) \ge 0$$

Theorem 3

If C is a copula, then for every (u,v) in \mathbb{I}^2 we have

$$\max(u+v-1,0) \le C(u,v) \le \min(u,v)$$

Notion of Comonotonicity and Countermonotonicity

Perfect dependence (or Comonotonicity) can be defined in many equivalent ways. Either by a copula $M(u, v) = \min(u, v)$, or

Definition 5

R.v. X_1 , X_2 are called comonotonic, if they can be presented as monotonically increasing function of a single r.v. (one single source of risk):

$$(X_1, X_2) =_d (v_1(Z), v_2(Z))$$

where v_1 , v_2 are increasing functions.

Countermonotonicity can defined in a similar fashion. We can define it through a copula $W(u, v) = \max(u + v - 1, 0)$, or

Definition 6

R.v. X_1 , X_2 are called countercomonotonic, if

$$(X_1, X_2) =_d (v_1(Z), v_2(Z))$$

where v_1 is increasing function, and v_2 is decreasing (or vice versa)

MF-772- Lecture 11

Fundamental Copulas

- 1. Comonotonicity copula: $M(u,v) = \min(u,v)$
- 2. Countermonotonicity copula: $W(u,v) = \max(u+v-1,0)$
- 3. According to the theorem, the two above copulas give the bounds for any copula, they are called "Fréchet- Hoeffding bounds.
- 4. The *independence copula*: the third important copula is the product copula

$$\Pi(u,v) = uv$$

A simple but useful way to present the graph of a copula with a contour diagram , with graphs of its level sets in $\overline{\mathbb{I}}^2$ given by C(u,v)=const

Questions

- 1. Prove that M(u,v) is a copula
- 2. Give contour diagrams for all three copulas

MF-772- Lecture 11

Distribution Functions

Definition 7

A distribution function is a function F with domain $\overline{\mathbb{R}}$ such that

- 1. F is non-decreasing
- 2. $F(-\infty) = 0$ and $F(\infty) = 1$

Definition 8

A joint distribution function H with domain \mathbb{R}^2 such that

- 1. H is 2-increasing
- 2. $H(x,-\infty) = H(-\infty,0) = 0$ and $H(\infty,\infty) = 1$

MF-772- Lecture 11 12 / 17

Sklar's Theorem, 1959

Theorem 4

(a) Let H be a joint distribution function with margins F and G. Then, there exists a copula C such that for all x, y in $\overline{\mathbb{R}}$

$$H(x,y) = C(F(x), G(y))$$
 (2)

If F and G are continuous, then C is unique.

(b) If C is a copula function and F,G are distribution functions, then the function H defined by 2 is a joint distribution function with margins F and G.

MF-772- Lecture 11 13 / 17

Notion of quasi-inverse

Definition 9

Let F be a distribution function with range RanF. Then a quasi-inverse of F is a function $F^{(-1)}(t)$ with domain \mathbb{I} such that

1. If t is in RanF then $F^{(-1)}(t)$ is a number x in \mathbb{R} such that F(x) = t, so

$$F(F^{(-1)}(t)) = t$$

2. If t is not in RanF, then

$$F^{(-1)}(t) = \inf[x|F(x) \ge t] = \sup[x|F(x) \le t]$$

If F is strictly increasing, then it has an unique quasi-inverse, which coincides with the usual inverse F^{-1} .

MF-772- Lecture 11 14 / 17

Copula from distribution

1) $\chi = \infty$, $H(-\infty,y) = \frac{1}{1+e^{-x}}$ $y = \infty$, $H(x,\infty) = \frac{1}{1+e^{-x}}$

H(x,y)=[1+ 12 + 1-v] = c(u,v)

15 / 17

=> ((UN) = UV = UV = UV = UV

Example 2

joint d.f.

for all x, y in \mathbb{R}

Example 3

MF-772- Lecture 11

1. Find d.f. of X, Y (margins)

for all x, y in \mathbb{R} and $\theta \in [-1, 1]$.

Gumbel's bivariate logistic distribution lacks parameter which

limits its use. This can be corrected in different ways, for example,

one can define the following family and answer the same questions:

 $H_{\theta}(x,y) = (1 + e^{-x} + e^{-y} + (1 - \theta)e^{-x-y})^{-1}$

Gumbel's bivariate logistic distribution Let X and Y be r.v. with

 $H(x,y) = (1 + e^{-x} + e^{-y})_{\text{the}}^{\text{-1}} = \frac{1}{v} \qquad e^{y} = \frac{1-v}{v}$

2. Write down copula C(u, v) for X and Y.

Dependence control

The Gaussian Copula

If X,Y belong to bivariate normal distribution with correlation ρ then their copula is so-called Gauss (or Gaussian) copula. Without loss of generality we can assume that X,Y are standard normal ¹ Then margins are N(x) and N(y), $u=N^{-1}(x)$, $v=N^{-1}(y)$ and the bivariate Gaussian copula is given by

$$C_{\rho}(u,v) = \frac{1}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{N^{-1}(u)} \int_{-\infty}^{N^{-1}(v)} e^{\left(-\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2(1-\rho^2)}\right)} dx_1 dx_2.$$

The independence and comonotonicity copulas are special cases : $\rho=0$ corresponds to independence, $\rho=1$ to comonotonicity, and $\rho=-1$ to countermonotonicity.

MF-772- Lecture 11 16 / 17

¹A copula is invariant under monotone transformations

References

R. Nelsen

An Introduction to Copulas .

Lecture Notes in Statistics, 1998

17 / 17 MF-772- Lecture 11