Experiment Two Fundamentals of Electromagnetics Lab EECE2530/1

Michael Brodsкiy

Brodskiy.M@Northeastern.edu

October 11, 2023

Date Performed: October 4, 2023 Partners: Manas Mahajan & Priyam Modi

Instructor: Professor Marengo-Fuentes
TAs: Nicolas Casilli & Farah Ben Ayed

Abstract

The goal

Keywords:

1 Equipment

Available equipment included:

•

2 Introduction & Objectives

3 Results & Analysis

We begin with the values we measured using the single-slot analyzer (length values in centimeters):

f [GHz]	l_1	l_2	λ_{theor}	λ_{exp}	S_{short}	l _{short}	S_{open}	l_{open}
2.3	10.5	17.25	13.034	13.2	1.22	13.2	1.205	10.55
2.7	10.7	16.7	11.103	11.8	1.12	11.8	1.205	14.3

Next, we calculate the magnitude of the reflection constant and phase angle for the two frequencies:

$$\begin{split} |\Gamma_{short,2.3}| &= \frac{1.22 - 1}{1.22 + 1} = .099099 \\ \theta_{short,2.3} &= \pi + \frac{4\pi}{.132} \left[.132 - .105 \right] = 5.712 \\ |\Gamma_{open,2.3}| &= \frac{1.205 - 1}{1.205 + 1} = .092971 \\ \theta_{open,2.3} &= \pi + \frac{4\pi}{.132} \left[.1055 - .105 \right] = 3.1892 \end{split}$$

We now repeat for the 2.7 [GHz] values:

$$|\Gamma_{short,2.7}| = \frac{1.12 - 1}{1.12 + 1} = .056604$$

$$\theta_{short,2.7} = \pi + \frac{4\pi}{.118} [.118 - .107] = 4.313$$

$$|\Gamma_{open,2.7}| = \frac{1.205 - 1}{1.205 + 1} = .092971$$

$$\theta_{open,2.7} = \pi + \frac{4\pi}{.118} [.143 - .107] = 6.9754$$

Next, we find the full expression for Γ :

$$\Gamma_{short,2.3} = .099099e^{5.712j} = .083367 - .053577j$$

$$\Gamma_{open,2.3} = .092971e^{3.1892j} = -.092865 - .0044237j$$

$$\Gamma_{short,2.7} = .056604e^{4.313j} = -.022009 - .05215j$$

$$\Gamma_{open,2.7} = .092971e^{6.9754j} = .071572 + .059338j$$

Next, we use these values to find the impedances of such loads:

$$\begin{split} z_{short,2.3} &= 50 \left(\frac{1 + .083367 - .053577j}{.9166 + .053577j} \right) = 55.8316 - 2.7611j[\Omega] \\ z_{open,2.3} &= 50 \left(\frac{1 - .092865 - .0044237j}{1 + .092865 + .0044237j} \right) = 41.5011 - 0.3704j[\Omega] \\ z_{short,2.7} &= 50 \left(\frac{1 - .022009 - .05215j}{1 + .022009 + .05215j} \right) = 47.5924 - 4.9798j[\Omega] \end{split}$$

$$z_{open,2.7} = 50 \left(\frac{1 + .071572 + .059338j}{1 - .071572 - .059338j} \right) = 57.2708 + 6.8559j[\Omega]$$

We know combine the complementary impedance values to find z_{om} :

$$z_{om,2.3} = \sqrt{(55.8316 - 2.7611j)(41.5011 - .03704j)} = 48.1502 - 1.2114j[\Omega]$$

$$z_{om,2.7} = \sqrt{(47.5924 - 4.9798j)(57.2708 + 6.8559j)} = 52.5352 + 0.3911j[\Omega]$$

We now use these values in the following formula, with $\mu = 1$, $\eta_o = 120\pi$, and coaxial radius values of outer length 7[mm] and inner length 3[mm]:

$$\varepsilon_r = \mu_r \left(\frac{\eta_o \ln\left(\frac{b}{a}\right)}{2\pi z_{om}} \right)^2$$

$$\varepsilon_{r,2.3} = \left(\frac{120\pi \ln\left(\frac{7}{3}\right)}{2\pi (48.1502 - 1.2114j)} \right)^2 = 1.112638 + .056021j$$

$$\varepsilon_{r,2.7} = \left(\frac{120\pi \ln\left(\frac{7}{3}\right)}{2\pi (52.5352 + .3911j)} \right)^2 = .936271 - .013940j$$

Both of the real part values are near 1, as expected for air.

4 Conclusion