

Space is a computation resource. Unlike time it can be reused.

1 / 43

Synopsis

- 1. Space Bounded Computation
- 2. Logspace Reduction
- 3. PSPACE Completeness
- 4. Savitch Theorem
- 5. NL Completeness
- 6. Immerman-Szelepcsényi Theorem

Space Bounded Computation

Space Bounded Computation

Let $S: \mathbf{N} \to \mathbf{N}$ and $L \subseteq \{0, 1\}^*$.

We say that $L \in \mathbf{SPACE}(S(n))$ if there is some c and some TM deciding L that never uses more than cS(n) nonblank worktape locations on inputs of length n.

Space Constructible Function

Suppose $S: \mathbf{N} \to \mathbf{N}$ and $S(n) \ge \log(n)$.

- 1. S is space constructible if there is a Turing Machine that computes the function $1^n \mapsto \lfloor S(n) \rfloor$ in O(S(n)) space.
- 2. S is space constructible if there is a Turing Machine that upon receiving 1^n uses exactly S(n)-space.

The second definition is slightly less general than the first.

Space Bounded Computation, the Nondeterministic Case

 $L \in \mathbf{NSPACE}(S(n))$ if there is some c and some NDTM deciding L that never uses more than cS(n) nonblank worktape locations on inputs of length n, regardless of its nondeterministic choices.

For space constructible function S(n) we could allow a machine in **NSPACE**(S(n)) to diverge and to use more than cS(n) space in unsuccessful computation paths.

Configuration

A configuration of a running TM \mathbb{M} with input x consists of the following:

- ▶ the state:
- ▶ the content of the work tape; [In the study of space complexity one may always assume that there is one work tape.]
- ▶ the head positions.

We write C_{start} for the unique initial configuration.

We assume that there is a single accepting configuration C_{accept} .

Configuration Graph

A configuration graph $G_{\mathbb{M},x}$ of \mathbb{M} with input x is a directed graph:

- the nodes are configurations;
- ▶ the arrows are one-step computations.

"M accepts x" iff "there is a path in $G_{M,x}$ from C_{start} to C_{accept} ".

Reachability Predicate for Configuration Graph

Suppose \mathbb{M} is an S(n)-space TM .

- ▶ A vertex of $G_{\mathbb{M},x}$ is described using O(S(|x|)) bits.
- ▶ Therefore $G_{\mathbb{M},x}$ has at most $2^{O(S(|x|))}$ nodes.

There is an O(S(n))-size CNF $\varphi_{\mathbb{M},x}$ such that for every two configurations C and C', $\varphi_{\mathbb{M},x}(C,C')=1$ iff $C\to C'$ is an edge in $G_{\mathbb{M},x}$.

- $\varphi_{\mathbb{M},x}(C,C')$ can be checked by essentially comparing C and C' bit by bit. It can be accomplished in both
 - ightharpoonup O(S(n)) time, and
 - ▶ $O(\log S(n))$ space.

Space vs. Time

Theorem. Suppose $S(n): \mathbb{N} \to \mathbb{N}$ is space constructible. Then

$$\mathsf{TIME}(S(n)) \subseteq \mathsf{SPACE}(S(n)) \subseteq \mathsf{NSPACE}(S(n)) \subseteq \mathsf{TIME}(2^{O(S(n))}).$$

An algorithm proving that $NSPACE(S(n)) \subseteq TIME(2^{O(S(n))})$ starts by constructing $G_{\mathbb{M},x}$ in $2^{O(S(n))}$ time, and then applies the breadth first search algorithm to $G_{\mathbb{M},x}$.

Space vs. Time

Theorem. For all space constructible S(n), **TIME** $(S(n)) \subseteq SPACE(S(n)/\log S(n))$.

1. Hopcroft, Paul and Valiant. On Time versus Space and Related Problems. FOCS, 1975.

Space Complexity Class

$$\begin{array}{ccc} \mathsf{PSPACE} & \stackrel{\mathrm{def}}{=} & \bigcup_{c>0} \mathsf{SPACE}(n^c), \\ \mathsf{NPSPACE} & \stackrel{\mathrm{def}}{=} & \bigcup_{c>0} \mathsf{NSPACE}(n^c), \\ \mathsf{L} & \stackrel{\mathrm{def}}{=} & \mathsf{SPACE}(\log(n)), \\ \mathsf{NL} & \stackrel{\mathrm{def}}{=} & \mathsf{NSPACE}(\log(n)). \end{array}$$

Games are Harder than Puzzles

 $NP \subseteq PSPACE$.

Example

The following problems are in L:

```
 \begin{array}{ll} {\sf EVEN} & \stackrel{\rm def}{=} & \{x \mid x \text{ has an even number of } \mathbf{1's}\}, \\ {\sf PLUS} & \stackrel{\rm def}{=} & \{(\llcorner m \lrcorner, \llcorner n \lrcorner, \llcorner m + n \lrcorner) \mid m, n \in \mathbf{N}\}, \\ {\sf MULP} & \stackrel{\rm def}{=} & \{(\llcorner m \lrcorner, \llcorner n \lrcorner, \llcorner m \times n \lrcorner) \mid m, n \in \mathbf{N}\}. \\ \end{array}
```

PATH is in **NL**

PATH = $\{\langle G, s, t \rangle \mid \text{there is a path from } s \text{ to } t \text{ in the digraph } G\}.$

Theorem. PATH \in NL.

Proof.

Both a node and a counter can be stored in logspace.

Universal Turing Machine without Space Overhead

Theorem. There is a universal TM that operates without space overhead for input TM's with space complexity $\geq \log(n)$.

A universal TM can simulate \mathbb{M}_{α} by recording all the non-blank tape content of \mathbb{M}_{α} in its single work tape. A counter is used to store the location of the reader at x. Some additional space, whose size depends only on \mathbb{M}_{α} , is needed for bookkeeping.

Space Hierarchy Theorem

Theorem. If f, g are space constructible such that f(n) = o(g(n)), then

$$\mathsf{SPACE}(f(n)) \subsetneq \mathsf{SPACE}(g(n)).$$

We design V by modifying the universal machine so that

- $ightharpoonup \mathbb{V}(x)$ simulates $\mathbb{M}_x(x)$, and
- \triangleright it stops when it is required to use more than g(n) space, and
- ▶ it negates the result after it completes simulation.

If $\mathbb V$ was executed in f(n) space, then $\mathbb V=\mathbb M_\alpha$ for some large enough α so that $\mathbb V$ can complete the simulation of $\mathbb M_\alpha$ on α .

But then
$$\overline{\mathbb{M}_{\alpha}(\alpha)} = \mathbb{V}(\alpha) = \mathbb{M}_{\alpha}(\alpha)$$
.

^{1.} J. Hartmanis and R. Stearns. On the Computational Complexity of Algorithms. Transactions of AMS, 117:285-306, 1965.

Logspace Reduction

Logspace Reduction

A function $f: \{0,1\}^* \to \{0,1\}^*$ is implicitly logspace computable if the following hold:

- 1. $\exists c. \forall x. |f(x)| \leq c|x|^c$,
- 2. $\{\langle x, i \rangle \mid i \leq |f(x)|\} \in \mathbf{L}$ and
- 3. $\{\langle x,i\rangle \mid f(x)_i=1\} \in \mathbf{L}$.

Problem B is logspace reducible to problem C, written $B \leq_L C$, if there is an implicitly logspace computable f such that $x \in B$ iff $f(x) \in C$.

- ► Logspace reductions are Karp reductions. [The converse implication is unknown.]
- ▶ All known NP-completeness results can be established using logspace reduction.

Transitivity of Logspace Reduction

Lemma. If $B \leq_L C$ and $C \leq_L D$ then $B \leq_L D$.

Let \mathbb{M}_f , \mathbb{M}_g be logspace machines that compute $x, i \mapsto f(x)_i$ respectively $y, j \mapsto g(y)_j$. We construct a machine that, given input x, j with $j \leq |g(f(x))|$, outputs $g(f(x))_j$.

- ▶ The machine operates as if f(x) were stored on a virtual tape.
 - ▶ It stores the address *i* of the current cell of the virtual tape.
 - ▶ It uses $O(\log |f(x)|) = O(\log |x|)$ space to calculate $g(f(x))_j$.

Logspace Computability

A function $f: \{0,1\}^* \to \{0,1\}^*$ is logspace computable if it can be computed by a TM that has a write-once output tape using $O(\log n)$ work tape space.

Lemma. Implicitly logspace computability = logspace computability.

PSPACE Completeness

Space Completeness

A language L' is **PSPACE**-hard if $L \leq_L L'$ for every $L \in$ **PSPACE**.

If in addition $L' \in \mathbf{PSPACE}$ then L' is \mathbf{PSPACE} -complete.

Quantified Boolean Formula

A quantified Boolean formula (QBF) is a formula of the form

$$Q_1x_1Q_2x_2\ldots Q_nx_x.\varphi(x_1,\ldots,x_n)$$

where each Q_i is one of the two quantifiers \forall , \exists , x_1, \ldots, x_n range over $\{0, 1\}$, and φ is a quantifier free Boolean formula containing no free variables other than x_1, \ldots, x_n .

Let TQBF be the set of true QBFs.

Quantified Boolean Formula

Suppose φ is a CNF.

- $ho \varphi \in SAT$ if and only if $\exists \widetilde{x}. \varphi \in TQBF$.
- $\varphi \in \mathtt{TAUTOLOGY}$ if and only if $\forall \widetilde{\mathbf{x}}. \varphi \in \mathtt{TQBF}$.

Stockmeyer-Meyer Theorem. TQBF is **PSPACE**-complete.

1. Larry Stockmeyer, Albert Meyer. Word Problems Requiring Exponential Time. STOC, 1973.

Proof of Stockmeyer-Meyer Theorem

$TQBF \in \mathbf{PSPACE}$.

Suppose
$$\psi = Q_1 x_1 Q_2 x_2 \dots Q_n x_x \cdot \varphi(x_1, \dots, x_n)$$
.

- ▶ A counter of length *n* can be identified to an assignment.
- Apply the depth first tree traversal.

We actually have a linear space algorithm.

Proof of Stockmeyer-Meyer Theorem

Let \mathbb{M} be a TM that decides L in polynomial space, say S(n) space.

We reduce $x \in \{0,1\}^*$ to a QBF φ_x of size $O(S(|x|)^2)$ in logspace such that $\mathbb{M}(x) = 1$ iff φ_x is true.

- 1. Construct in logspace ψ_0 such that $\psi_0(C, C')$ is true if and only if $C \to C'$.
- 2. Let $\psi_i(C, C')$ be true if and only if there exists a path of length $\leq 2^i$ from C to C'. It can be defined by the following formula, which is computable in logspace.

$$\exists C'' \forall D^1 \forall D^2 . ((D^1 = C \land D^2 = C'') \lor (D^1 = C'' \land D^2 = C')) \Rightarrow \psi_{i-1}(D^1, D^2).$$

3. Now $|\psi_i| = |\psi_{i-1}| + O(S(|x|))$. Hence $|\varphi_x| = |\psi_{S(|x|)}| = O(S(|x|)^2)$.

QBF Game

Two players make alternating moves on the board

$$\exists x_1 \forall x_2 \exists x_3 \forall x_4 \cdots \exists x_{2n-1} \forall x_{2n} \varphi(x_1, \ldots, x_n).$$

Player I moves first. It has a winning strategy if φ is true after Player II's last move, no matter how Player II plays.

▶ Deciding if Player I has a winning strategy for QBF game is **PSPACE**-complete.

1. Christos Papadimitriou. Games Against Nature. FOCS, 1983.

Savitch Theorem

Savitch Theorem. If *S* is space constructible then **NSPACE**(S(n)) \subseteq **SPACE**($S(n)^2$).

Suppose \mathbb{N} is an NDTM that decides L in S(n) space.

Given $x \in \{0,1\}^*$, a divide-and-conquer depth first algorithm can be designed that searches for a path from C_{start} to C_{accept} in $G_{\mathbb{N},x}$.

The depth of the recursive calls is S(|x|).

^{1.} W. Savitch, Relationships between Nondeterministic and Deterministic Tape Complexities, JCSS, 177-192, 1970.

PSPACE = NPSPACE

NL Completeness

NL-Completeness

C is **NL**-complete if it is in **NL** and $B \leq_L C$ for every $B \in \mathbf{NL}$.

NL-Completeness

Theorem. PATH is **NL**-complete.

Suppose a nondeterministic TM $\mathbb N$ decides L in $O(\log(n))$ space. A logspace reduction from L to PATH is defined by

$$x \mapsto \langle G_{\mathbb{N},x}, C_{\mathtt{start}}, C_{\mathtt{accept}} \rangle.$$

The graph $G_{\mathbb{N},x}$ is represented by an adjacent matrix, every bit of it can be calculated in $O(|C|) = O(\log |x|)$ space.

We may assume that all space bounded TM's terminate by making use of counters. It follows that PATH remains **NL**-complete if only acyclic graphs are admitted.

NL is nothing but PATH.

Immerman-Szelepcsényi Theorem

Savitch Theorem implies coNPSPACE = NPSPACE.

But coNL = NL is a different story.

Immerman-Szelepcsényi Theorem. PATH ∈ NL.

- 1. R. Szelepcsényi. The Method of Forcing for Nondeterministic Automata. Bulletin of EATCS, 1987.
- 2. N. Immerman. Nondeterministic Space is Closed under Complementation. SIAM Journal Computing, 1988.

Proof of Immerman-Szelepcsényi Theorem

Design a logspace NDTM $\mathbb N$ such that for vertices s,t of a graph G with n-vertices, $\mathbb N(\langle G,s,t\rangle)=1$ iff there is no path from s to t.

For $i \in [n-1]$,

- \triangleright let C_i be the set of nodes reachable from s in i-steps, and
- ▶ let $c_i = |C_i|$. Notice that c_1 can be computed in logspace.

We can store a fixed number of c_i 's, but we cannot store any of C_i 's.

Set $c_{i+1} = 0$. For each vertex $v \neq s$, \mathbb{N} guesses C_i and increments c_{i+1} if either $v \in C_i$ or $u \to v$ for some $u \in C_i$.

- ▶ For each u in C_i check that $s \to^* u$ in i steps. This is PATH.
- ▶ A counter is maintained to ensure that $|C_i| = c_i$.

After c_{n-1} has been calculated, guess C_{n-1} and accept if $t \notin C_{n-1}$.

Immerman-Szelepcsényi Theorem

Corollary. For every space constructible $S(n) \ge \log(n)$, one has

$$coNSPACE(S(n)) = NSPACE(S(n)).$$

Theorem. 2SAT is **NL**-complete.

Given $\langle G, s, t \rangle$, where G is acyclic, we translate an edge $x \to y$ to the clause $\overline{x} \lor y$. We also add clauses s and \overline{t} . This is a logspace reduction from acyclic $\overline{\text{PATH}}$ to 2SAT.

By Hierarchy Theorems some of the following inclusions are strict.

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$$
.

Yet we don't know which is strict.

- ▶ It is widely believed that $NL \subseteq P$.
- " $L \stackrel{?}{=} NL$ " is a major open problem in the structural theory.