CompTIA Network+ Exam N10-008

Explaining Network Topologies and Types

Objectives

- Explain network types and characteristics
- Explain tiered switching architecture
- Explain virtual LANs

Topic 8A

Explain Network Types and Characteristics

Client-server versus Peer-to-peer Networks

- Server makes network applications and resources available
- Client consumes the services provided by servers
- Client-server
 - Machines are dedicated to a client or to a server role
 - Centralized administration
- Peer-to-peer
 - Machines can be configured in both client and server roles
 - Administration is decentralized

Network Types

- Local area network (LAN)
 - Home/residential network/small office/home office (SOHO)
 - Small and medium sized enterprise (SME)
 - Larger network with hundreds or thousands of servers and clients
 - Campus area network (CAN)
 - Datacenters
- Wide area network (WAN)
 - Metropolitan area network (MAN)
- Personal area network (PAN)

Network Topology

- Physical topology is the placement of nodes and media links between them
- Logical topology is the flow of data
- Point-to-point topology

and receive simultaneously.

Star Topology

In a star topology, each node is connected to a concentrator over dedicated network media.

Mesh Topology

In a fully connected mesh network, each node has a point-to-point link with every other node. This requires exponentially more links as nodes are added: n*(n-1)/2

Provisioning so many interfaces and links is difficult, so partial mesh networks are often preferred, In a partial mesh, nodes can forward packets to a destination by learning the network topology.

Packets can take multiple routes through the network, providing resilience if some nodes or links fail.

Ring Topology

The destination node halts transmission of the signal and processes the packet. The token continues to pass around the ring, allowing other nodes to communicate.

Bus Topology

Hybrid Topology

- Different logical and physical topologies
 - Switched Ethernet is a logical bus but physical star
 - Star-wired ring
- Hierarchical hybrid topology
 - Hierarchical star
 - Hierarchical star-mesh
 - Star of stars
 - Star with ring

Review Activity: Network Types and Characteristics

- Client-server versus Peer-to-peer Networks
- Network Types
- Network Topology
- Star Topology
- Mesh Topology
- Ring Topology
- Bus Topology
- Hybrid Topology

Topic 8B

Explain Tiered Switching Architecture

Three-tiered Network Hierarchy

- Access/edge layer
 - Workgroup switches connect end systems
- Distribution/aggregation layer
 - Fault tolerant links between access blocks and core
 - Layer 3 switches
- Core layer
 - Network backbone

Spanning Tree Protocol

- Multiple paths between switches (or bridges) provide fault tolerance
- But multiple paths allow infinite loops as Ethernet has no TTL
- Spanning Tree Protocol (STP)
 - Prevent switching loops
 - Designate a single active path from any one device to the root bridge

Spanning Tree Protocol Configuration

- Ensure selection of appropriate root bridge
- Devices exchange bridge protocol data units (BPDUs) to determine topology
- Network is converged when all bridge ports are blocking or forwarding
- Rapid STP (RSTP)/IEEE 802.1w reduces outages

Switching Loop and Broadcast Storm Issues

- Switching loops can be catastrophic as there is no Time To Live (TTL) to expire a frame
- Broadcast storms occur when switches keep receiving the same broadcasts and re-broadcast them continually and also start flooding unicast traffic
- "Classic" cause is to bridge two ports with a misplaced patch cord
- Verify STP is functioning correctly
- Verify physical configurations and interconnections

Review Activity: Tiered Switching Architecture

- Three-tiered Network Hierarchy
- Spanning Tree Protocol
- Spanning Tree Protocol Configuration
- Switching Loop and Broadcast Storm Issues

Topic 8C

Explain Virtual LANs

Virtual LAN IDs and Membership

- Virtual LANs (VLANs)
 - Break up broadcast domains
 - Filter traffic between VLAN segments using access control lists (ACLs)
 - Prioritize traffic in voice VLANs
- Static assignment
 - Set VLAN ID as part of switch port interface configuration
- Dynamic assignment
 - Assign by MAC address
 - Assign by authentication

```
interface swp5
  bridge-access 100
interface swp6
  bridge-access 100
interface swp7
  bridge-access 100
interface swp8
  bridge-access 100
interface swp9
 bridge-access 200
interface swp10
  bridge-access 200
interface swp11
  bridge-access 200
interface swp12
  bridge-access 200
interface bridge
  bridge-ports swp5 swp6 swp7 swp8 swp9 swp10 swp11 swp12
  bridge-vids 10 100 200
  bridge-vlan-aware yes
```

Trunking and IEEE 802.1Q

- Switches interconnected via trunk links
- VLAN ID information might need to be transported across trunks
- 802.1Q frame format used on trunks to store VLAN ID

Tagged and Untagged Ports

- Untagged
 - Host or access ports
 - Switch assigns tags, not end systems
- Tagged port
 - Typically trunk link
 - Also used by virtualization hosts

Voice VLANs

- Voice over IP (VoIP) bandwidth and latency requirements
- Voice VLAN allows VoIP handset to share physical port with PC
- Handset operates a 2-port switch
 - PC data sent as untagged frames
 - VoIP data sent as 802.1Q in a voice or auxiliary VLAN
- Switch assigns PC data to one VLAN and VoIP data to another

Review Activity: Virtual LANs

- Virtual LAN IDs and Membership
- Trunking and IEEE 802.1Q
- Tagged and Untagged Ports
- Voice VLANs

CompTIA Network+ Exam N10-008

Summary