Influence maximization

Mario Michelessa

Context

• Influence maximization:

Given G = (V,E,P), $k \ge 1$, find $\operatorname{argmax}_{S \subset V,|S|=k} \sigma(S)$ with σ being the influence function.

- $P = (p_{u,v})$ = diffusion probability = probability of u influencing v when u posts something
- $\sigma(S) = \sum_{v \in V} (1 \prod_{u \in S} (1 p_{u,v}))$ under the assumption that the graph is bipartite [1]

Context

Goal:

Given $G_S = (V, E_S)$ the social graph, and (C_i) list of cascades, Find model m(., w) st $m(features(u, v), w) = p_{u,v}$

First step:

Find features

Subsampling of graph + labels

User profile information

Information about topic

Social graph information

Train the model

2-stage framework

decision-focused framework

social graph

graph induced by (C_i)

Cascade information

We call **influencer** a user initiating a cascade and **target** a user participating in the cascade.

=> total dataset : 300K cascades, 44K different influencers and 1.7M targets.

We only keep a small subset of users : only the targets participating in **more than 200 cascades** are selected. => 8K influencers and 1800 targets

Ultimately, the model will not use the cascades information, they are only used for deducing the ground truth diffusion probabilities

Example:

threshold: 3

Dataset:

#influencers = 44K #targets 1.7M

#influencers = 8K #targets = 1800

influencers

targets

graph induced by (C_i)

The model needs ground-truth diffusion probabilities, 2 methods have been implemented to estimate those:

Data-based method

$$p_{u,v} = \frac{\text{#times } v \text{ reposted } u's \text{ posts}}{\text{#times } u \text{ posted} + \text{#times } v \text{ reposted}}$$

However, the probabilities are very low due to the high number of actions made by u and v. In order to counter that, we box the values into 5 categories.

```
If p = 0, it stays at 0
If p > 0:

If p < low\_quantile then p = 0.1

ElseIf p < med\_quantile then p = low\_prob

ElseIf p < high\_quantile then p = med\_prob

Else p = high\_prob
```


The model needs ground-truth diffusion probabilities, 2 methods have been implemented to estimate those:

INFECTOR method

$$p_{u,v} = rac{\exp(E_u^T E_v)}{\sum_{v \in T} \exp(E_u^T E_v)}$$
 with E_u being the embedding vector of u estimated by the INFECTOR model

• User profile information

A file contains information about the user profiles :

2 egory
gory
egory
2
ect
egory
2
ect
egory
ect
egory
2
ect

From these information, we create 5 features :

 $\log(followersCount + 1)$ $\log(friendsCount + 1)$ $\log(statusesCount + 1)$ $verified \in \{0,1\}$ $gender \in 0,1$

Social graph information: "who follows whom?"

Given this induced graph on our subsampled dataset, we estimate 3 other features :

For each selected influencer, we estimate
ingoing degree
pagerank
number of nodes at distance less than 2

For each selected target, we estimate outgoing degree pagerank

For each pair of (influencer, target) we store

1 if an edge exists in the social graph, or 0 if not.

Topic information

Input:

topic distribution for each message = 100-vector where the i-th coefficient is the probability the message is in the i-th category.

- Step 1 : The 100-vectors are transformed in a 3-vector
- Step 2 : Creation of users features with these messages' features

Step 1: The 100-vectors are transformed in a 3-vector

- **Highly influencial topics (HT)**: The top 20 categories most positively correlated with influence (estimated by the number of targets/cascades and number of likes)
- Low influencial topics (LT): The top 20 categories most negatively correlated with influence
- **Neutral topics (NT)**: The remaining 60 topics that are uncorrelated with influence

For each message, the new topic distribution is estimated by summing the probabilities of the topics in the same category.

$$t_{m}{'} = (p{'}_{HT}, p{'}_{NT}, p{'}_{LT}) = \left(\sum_{t \in HT} p_{t}, \sum_{t \in NT} p_{t}, \sum_{t \in LT} p_{t}\right)$$

Step 2 : : Creation of users features from the message's features

message's topic classification : $(x_{HT}, x_{NT}, x_{LT}) \in [0,1]^3$

• For influencers, we estimate the average of all the topic distribution from the emitted message influencer's u topic classification = $mean(t'_m for m sent by u)$

And for targets, we estimate the average of all the topic distribution from the messages they reacted to

target's v topic classification = $mean(t'_m for m reposted by v)$

Feature vector

For each pair of influencer/target (u,v) the feature vector is then the concatenation of u's features, v's features and the pair (u,v)'s feature

features(u, v)

u	followers_count				
u	friends_count				
u	statuses_count				
u	verified				
u	gender				
u	outgoing degree				
u	pagerank				
u	# 2-reachable nodes				
u	high inf topic				
u	neutral topic				
u	low inf topic				
v	followers_count				
v	friends_count				
	statuses_count				
v	statuses_count				
v	verified				
	_				
v	verified				
v v	verified gender				
v v v	verified gender ingoing degree				
v v v	verified gender ingoing degree pagerank				
v v v v	verified gender ingoing degree pagerank high inf topic				
v v v v v v v v v v v v v v v v v v v	verified gender ingoing degree pagerank high inf topic neutral topic				

Training of the model

- The model is fed with multiple instances of fixed sizes, representing random subsampling of the graph
 - nT targets are randomly chosen among the targets
 - nI influencers are randomly chosen among the 20% influencers having the most numerous targets in their cascades
 - For the rest of the presentation, nI = nT = 500

Sakaue, Differentiable Greedy Submodular Maximization: Guarantees, Gradient Estimators, and Applications, <u>link</u>

Loss function

2 types of training frameworks are studied:

- 2-stage models
- Decision focused models

They differ by their loss function.

2-stage Model: Maximizes accuracy of model and then uses the output in an optimization algorithm to maximize influence

Loss function: MSE

Or unbalanced loss: $L(p_{pred}, p_{th}) = \exp(\phi * (p_{th} - p_{pred})) - \phi * (p_{th} - p_{pred}) - 1$

Loss function

2 types of training frameworks are studied:

- 2-stage models
- · Decision focused models

They differ by their loss function.

decision-focused model: returns the diffusion probability matrix giving the best performing seeds on the real network

$$\text{Gradient: } -\nabla_{\mathbf{w}} \mathbb{E}_{S \sim p(m(\mathbf{X}_i, \mathbf{w}))}[f(S, \boldsymbol{\theta}_i)] \approx -\frac{1}{N} \sum_{j=1}^N f(S_j, \boldsymbol{\theta}_i) \nabla_{\boldsymbol{\theta}} \ln p(S_j, \boldsymbol{\theta})|_{\boldsymbol{\theta} = m(\mathbf{X}_i, \mathbf{w})} \cdot \nabla_{\mathbf{w}} m(\mathbf{X}_i, \mathbf{w}).$$

Metrics

Quality metrics: measure the quality of seeds chosen.

2 methods:

Estimating the expectation of influenced nodes given that the graph is bipartite

$$\sigma(S) = \sum_{v \in T} \left(1 - \prod_{u \in S} (1 - p_{u,v}) \right)$$

Using the cascade data and computing the number of Different Nodes Influenced (DNI) For a seed set S,

 $DNI(S) = \#targets\ v\ st\ v\ appears\ in\ at\ least\ one\ cascade\ posted\ by\ u\in S$

Architecture and parameters

Architecture parameters :

- dropout proportion
- hidden layer size
- activation function ReLU sigmoid

Optimizer : Adam optimizer

- learning rate
- momentum
- batch size

The differentiable greedy algorithm of the decision-focused loss function has also parameters to tune:

- ϵ = perturbation factor of the distribution. It behaves like a temperature. When the temperature decreases, the distribution approaches argmax. When it increases, it approaches a uniform distribution.
- sample_size = number of differentiable greedy algorithms ran at each step.

Stochastic greedy algorithm:

Only selects a random subset of candidates among all candidates and then draws the best seed from there.

Supposed to speed up computations: fewer influence estimation executions

Algorithm 1 SMOOTHED GREEDY

```
1: S \leftarrow \emptyset

2: for k = 1, 2 \dots do

3: U_k = \{u_1, \dots, u_{n_k}\} \leftarrow \{v \notin S \mid S \cup \{v\} \in \mathcal{I}\}

4: \mathbf{g}_k(\boldsymbol{\theta}) = (g_k(u_1, \boldsymbol{\theta}), \dots, g_k(u_{n_k}, \boldsymbol{\theta})) \leftarrow (f_S(u_1, \boldsymbol{\theta}), \dots, f_S(u_{n_k}, \boldsymbol{\theta}))

5: \mathbf{p}_k(\boldsymbol{\theta}) = (p_k(u_1, \boldsymbol{\theta}), \dots, p_k(u_{n_k}, \boldsymbol{\theta})) \leftarrow \operatorname{argmax}_{\mathbf{p} \in \Delta^{n_k}} \{\langle \mathbf{g}_k(\boldsymbol{\theta}), \mathbf{p} \rangle - \Omega_k(\mathbf{p})\}

6: s_k \leftarrow u \in U_k with probability p_k(u, \boldsymbol{\theta})

7: S \leftarrow S \cup \{s_k\}

8: if S is maximal then return S
```

Algorithm 2 STOCHASTIC SMOOTHED GREEDY

```
1: S \leftarrow \emptyset

2: for k = 1, 2 ..., K do

3: U_k = \{u_1, ..., u_{n_k}\} \leftarrow n_k elements chosen from V \setminus S uniformly at random

4: \mathbf{g}_k(\boldsymbol{\theta}) = (g_k(u_1, \boldsymbol{\theta}), ..., g_k(u_{n_k}, \boldsymbol{\theta})) \leftarrow (f_S(u_1, \boldsymbol{\theta}), ..., f_S(u_{n_k}, \boldsymbol{\theta}))

5: \mathbf{p}_k(\boldsymbol{\theta}) = (p_k(u_1, \boldsymbol{\theta}), ..., p_k(u_{n_k}, \boldsymbol{\theta})) \leftarrow \operatorname{argmax}_{\mathbf{p} \in \Delta^{n_k}} \{\langle \mathbf{g}_k(\boldsymbol{\theta}), \mathbf{p} \rangle - \Omega_k(\mathbf{p})\}

6: s_k \leftarrow u \in U_k with probability p_k(u, \boldsymbol{\theta})

7: S \leftarrow S \cup \{s_k\}

return S
```


Stochastic greedy algorithm:

- In practice, the parameter does not deteriorates the training process
- Barely speeds up calculations. Reason : influence function is fast to estimate

Regularization:

Often, the model is stuck in a local minima: It predicts constant matrices = 1 or 0 1. Cosine annealing with warm restart

0.0008 -0.0004 -0.0002 -0.0000 -0 1000 2000 3000 4000 5000 6000

0.0010

2. Penalizing outputs having a mean close to 0 or 1 by adding a term in loss function

Final goal: model that could predict cascades without cascades information

Comparison between models with cascades information and without cascades information :

Adding cascade features :

- nCascades : number of cascades initiated by influencer
- totalLikes : sum of likes of cascades initiated by influencer
- totalReposts : sum of lengths of cascades initiated by influencer

Without cascades features

features(u, v)

u	followers_count				
u	friends_count				
u	statuses_count				
u	verified				
u	gender				
u	outgoing degree				
u	pagerank				
u	# 2-reachable nodes				
u	high inf topic				
u	neutral topic				
u	low inf topic				
v	followers_count				
v	friends_count				
v	statuses_count				
v	verified				
v	gender				
v	ingoing degree				
v	pagerank				
v	high inf topic				
v	neutral topic				
v	low inf topic				
u,v	1(v follows u)				

Question: Can the models predict if a node v appears in a cascade of u? i.e. is the DP between u and v higher when v appears in a cascade of u?

Difference of predicted DPs when targets are in the cascade or not

2-stage model and df model seem to predict high DP only when v appears in a cascade of u

However, the average predicted probabilities are not significantly higher

Question: Can the model be used on an other dataset?

Test on the twitter dataset. Only few features 6/22:

- ingoing degree of i
- pagerank of i
- # of 2-reachable nodes from u
- outgoing degree of v
- pagerank of v
- presence of link between (u,v)

Others are set to 0

We only consider the influencers having more than 100 posts and targets reacting to more than 100 posts

Difference of predicted DPs in twitter

Results: DNI/Expected spread on training data on Model 1

On dense dataset tested on 20 instances of size 500x500

Model 1:

- Aggregated cascade features
- Regularization to avoid local minima
- Mapping of label on higher values
- data-based labels

Observations:

• DF is better than other methods for small k

		spread -	default - test		
00					
50					
00					
50					
00			Ţ		
50					
00				1	
50			1	1	
00				1	
50	0.01	0.02	0.05	0.1	0.2

DNI					
K/N	0.01	0.02	0.05	0.1	0.2
df	376.22 (19.92)	409.7 (18.51)	435.2 (11.42)	450.58 (7.29)	461.92 (5.23)
2s	83.97 (73.31)	137.93 (88.21)	249.95 (78.89)	350.55 (54.59)	424.07 (24.07)
random	79.93 (24.0)	154.25 (16.12)	279.22 (26.43)	382.33 (11.42)	436.72 (6.48)
greedy	384.85 (12.85)	414.73 (8.49)	454.2 (3.39)	472.57 (3.03)	482.55 (2.13)
degree	346.15 (10.67)	383.93 (10.83)	413.87 (6.12)	437.5 (4.22)	453.87 (4.11)

	Spread					
ŀ	K/N	0.01	0.02	0.05	0.1	0.2
	df	105.53 (10.29)	166.42 (14.96)	270.79 (19.2)	353.69 (19.09)	413.22 (11.44)
	2s	37.84 (13.91)	70.56 (21.35)	153.57 (27.82)	249.19 (26.2)	354.98 (22.77)
rar	ndom	40.96 (3.18)	72.79 (6.5)	163.58 (8.91)	267.05 (4.73)	369.52 (5.51)
gr	eedy	118.09 (6.55)	189.5 (7.45)	316.46 (6.14)	407.24 (4.06)	460.72 (2.72)
de	gree	92.97 (4.02)	148.75 (8.08)	246.21 (7.93)	329.03 (6.51)	399.04 (4.85)

Results: DNI/Expected spread on training data on Model 2: INFECTOR

On dense dataset tested on 20 instances of size 500x500

Model 2:

- Aggregated cascade features
- Regularization to avoid local minima
- Mapping of label on higher values
- INFECTOR labels

Observations:

everything is as good as random

Spread					
K/N	0.01	0.02	0.05	0.1	0.2
df	75.06 (1.88)	136.27 (3.21)	262.3 (5.32)	367.47 (6.09)	440.77 (4.93)
2s	74.04 (2.47)	133.04 (5.02)	250.92 (9.92)	350.83 (11.03)	426.58 (7.71)
random	73.71 (1.79)	132.31 (2.98)	249.48 (4.34)	350.41 (4.49)	427.5 (3.41)
greedy	76.17 (1.86)	138.2 (3.1)	266.68 (4.74)	374.02 (4.78)	446.19 (3.4)
 degree	72.82 (1.75)	129.68 (2.82)	241.95 (4.1)	339.86 (4.26)	419.19 (3.35)

Results: DNI/Expected spread on training data on Model 3: no mapping

On dense dataset tested on 20 instances of size 500x500

Model 3:

- Aggregated cascade features
- Regularization to avoid local minima
- NO Mapping of label on higher values
- data-based labels

Observations:

- greedy gives very bad results for low K
- DF performs better than other methods
- 2s has very large std

		DN	NI .		_
K/N	0.01	0.02	0.05	0.1	0.2
df	<u>382.78 (17.11)</u>	411.31 (17.9)	437.51 (12.92)	451.18 (8.98)	463.55 (5.05)
2s	77.0 (55.59)	139.53 (70.48)	248.55 (73.58)	347.95 (48.94)	424.83 (22.02)
Random	82.11 (14.53)	143.33 (12.95)	285.27 (9.19)	378.63 (7.85)	439.25 (2.53)
greedy	169.93 (8.91)	371.22 (6.38)	452.88 (0.64)	464.9 (0.59)	473.88 (0.52)
degree	<u>354.83 (3.21)</u>	386.83 (2.78)	415.97 (1.85)	440.28 (1.02)	455.02 (0.95)

		Sprea	d		
K/N	0.01	0.02	0.05	0.1	0.2
Df	0.58 (0.03)	1.11 (0.1)	2.54 (0.26)	4.64 (0.48)	7.98 (0.74)
2s	0.24 (0.1)	0.48 (0.15)	1.22 (0.27)	2.46 (0.41)	4.95 (0.58)
random	0.25 (0.02)	0.5 (0.02)	1.28 (0.04)	2.55 (0.06)	5.12 (0.06)
greedy	1.02 (0.02)	1.68 (0.02)	3.42 (0.03)	5.95 (0.03)	10.18 (0.04)
degree	0.53 (0.01)	0.99 (0.01)	2.25 (0.02)	4.02 (0.03)	7.23 (0.05)

Results: DNI/Expected spread on training data on Model 4: No regularization

On dense dataset tested on 20 instances of size 500x500

Model 4:

- Aggregated cascade features
- NO Regularization to avoid local minima
- Mapping of label on higher values
- data-based labels

Observations:

DF is still better in average but with higher std

	DNI				
K/N	0.01	0.02	0.05	0.1	0.2
df	376.0 (52.19)	407.45 (40.29)	433.65 (29.19)	451.97 (13.08)	466.02 (4.19)
2 s	79.45 (59.42)	145.47 (83.28)	251.97 (72.27)	350.67 (49.34)	418.37 (27.19)
random	84.65 (23.04)	160.05 (30.34)	281.22 (25.88)	374.43 (15.19)	440.65 (7.07)
greedy	391.08 (8.52)	420.75 (7.88)	456.27 (2.9)	474.25 (2.29)	484.28 (1.9)
degree	353.5 (14.92)	386.25 (10.76)	415.53 (6.28)	441.35 (4.23)	455.88 (3.02)

Spread					
K/N	0.01	0.02	0.05	0.1	0.2
df	105.53 (10.29)	166.42 (14.96)	270.79 (19.2)	353.69 (19.09)	413.22 (11.44)
2s	37.84 (13.91)	70.56 (21.35)	153.57 (27.82)	249.19 (26.2)	354.98 (22.77)
random	40.96 (3.18)	72.79 (6.5)	163.58 (8.91)	267.05 (4.73)	369.52 (5.51)
greedy	118.09 (6.55)	189.5 (7.45)	316.46 (6.14)	407.24 (4.06)	460.72 (2.72)
 degree	92.97 (4.02)	148.75 (8.08)	246.21 (7.93)	329.03 (6.51)	399.04 (4.85)

Results: DNI/Expected spread on training data on Model 5: Without cascade features

On dense dataset tested on 20 instances of size 500x500

Model 5:

- NO Aggregated cascade features
- Regularization to avoid local minima
- Mapping of label on higher values
- data-based labels

Observations:

• DF performs as good as degree heuristic

		spr	ead noCas test		
0					
0					
0					
0 —					1
0					
0					
0			,	_	
0			1		
0		I			
0	-	1			
0		0.02	0.05	0.1	0.2

DNI						
K/N	0.01	0.02	0.05	0.1	0.2	
df	354.37 (27.5)	392.22 (17.75)	427.83 (11.79)	449.92 (6.87)	465.6 (4.91)	
2s	98.02 (65.12)	162.55 (77.18)	272.3 (59.61)	365.15 (35.03)	430.07 (22.11)	
random	82.62 (31.61)	158.27 (31.75)	272.17 (18.49)	381.25 (13.49)	440.43 (4.58)	
greedy	389.18 (12.72)	418.88 (7.84)	454.87 (3.79)	473.25 (3.17)	483.53 (2.34)	
degree	350.18 (15.53)	383.3 (9.65)	414.28 (8.08)	440.33 (4.01)	455.8 (4.18)	

	Spread						
	K/N	0.01	0.02	0.05	0.1	0.2	
	df	97.2 (9.78)	154.71 (10.95)	255.24 (13.53)	341.19 (15.03)	411.38 (8.62)	
	2s	42.21 (15.13)	79.03 (17.81)	160.67 (26.59)	252.97 (26.91)	357.07 (26.0)	
	random	38.26 (4.03)	76.64 (7.28)	164.98 (6.05)	267.95 (8.61)	371.79 (7.87)	
	greedy	118.39 (5.95)	189.76 (7.05)	316.78 (6.92)	407.96 (4.97)	462.16 (3.21)	
_	degree	95.0 (5.16)	147.15 (6.14)	246.54 (7.85)	332.53 (6.23)	401.93 (5.49)	

Results: DNI/Expected spread on sparse instance on Model 1

On sparse dataset tested on 20 instances of size 1000x1000

Model 1:

- Aggregated cascade features
- Regularization to avoid local minima
- Mapping of label on higher values
- data-based labels

Observations:

- DF is better for low K for DNI
- For spread, DF performs as good as degree

DNI					
K/N	0.01	0.02	0.05	0.1	0.2
df	<u>42.21 (8.7)</u>	<u>62.7 (11.81)</u>	<u>100.3 (16.91)</u>	141.83 (21.45)	200.78 (23.59)
2s	6.3 (8.98)	11.54 (13.64)	25.55 (21.89)	47.13 (29.22)	89.08 (39.13)
random	4.03 (0.55)	8.51 (0.97)	20.74 (1.94)	42.03 (1.98)	82.82 (3.35)
greedy	37.65 (0.0)	51.75 (0.0)	95.45 (0.0)	199.4 (0.0)	329.45 (0.0)
degree	26.1 (0.0)	44.35 (0.0)	98.15 (0.0)	151.15 (0.0)	212.0 (0.0)

		Spr	read		
K/N	0.01	0.02	0.05	0.1	0.2
df	4.8 (0.73)	7.81 (1.03)	14.71 (1.43)	24.64 (2.04)	4.8 (0.73)
2s	1.45 (0.94)	2.89 (1.56)	7.39 (2.86)	14.91 (3.87)	1.45 (0.94)
random	1.55 (0.17)	3.01 (0.23)	7.54 (0.41)	14.9 (0.51)	1.55 (0.17)
greedy	14.49 (0.0)	24.49 (0.0)	54.41 (0.0)	86.08 (0.0)	14.49 (0.0)
degree	3.61 (0.0)	6.18 (0.0)	14.58 (0.0)	25.79 (0.0)	3.61 (0.0)

Results: DNI/Expected spread on sparse data on Model 3: no mapping

On sparse dataset tested on 20 instances of size 1000x1000

Model 3:

- Aggregated cascade features
- Regularization to avoid local minima
- NO Mapping of label on higher values
- data-based labels

Observations:

- Spreads are close to random
- df and degree are better than greedy for low k

	DNI					
K/N	0.01	0.02	0.05	0.1	0.2	
df	<u>39.72 (9.9)</u>	60.19 (13.92)	97.99 (22.75)	<u>139.8 (28.74)</u>	196.35 (31.84)	
2s	6.01 (8.58)	11.65 (13.2)	25.61 (21.92)	47.38 (29.47)	89.15 (38.88)	
random	4.07 (0.65)	8.23 (0.85)	21.39 (1.41)	42.16 (2.35)	84.17 (1.94)	
greedy	13.5 (0.0)	28.75 (0.0)	75.65 (0.0)	137.7 (0.0)	274.95 (0.0)	
degree	<u>26.1 (0.0)</u>	44.35 (0.0)	<u>98.15 (0.0)</u>	<u>151.15 (0.0)</u>	212.0 (0.0)	

Spread						
K/N	0.01	0.02	0.05	0.1	0.2	
df	0.27 (0.02)	0.55 (0.01)	1.38 (0.05)	2.78 (0.1)	5.5 (0.17)	
2s	0.22 (0.05)	0.45 (0.09)	1.18 (0.18)	2.42 (0.27)	4.95 (0.42)	
random	0.25 (0.04)	0.52 (0.04)	1.26 (0.09)	2.47 (0.15)	5.02 (0.13)	
greedy	3.52 (0.0)	5.7 (0.0)	10.34 (0.0)	15.08 (0.0)	22.69 (0.0)	
degree	0.27 (0.0)	0.53 (0.0)	1.41 (0.0)	2.79 (0.0)	5.54 (0.0)	

Results: DNI/Expected spread on sparse data on Model 4: No regularization

On sparse dataset tested on 20 instances of size 1000x1000

Model 4:

- Aggregated cascade features
- NO Regularization to avoid local minima
- Mapping of label on higher values
- data-based labels

Observations:

• DF is better for lower K

	DNI						
	K/N	0.01	0.02	0.05	0.1	0.2	
	df	43.9 (6.26)	<u>64.15 (9.0)</u>	104.13 (11.51)	145.54 (14.24)	203.68 (12.25)	
	2s	6.3 (9.26)	11.66 (13.44)	24.9 (21.32)	46.88 (28.5)	87.67 (37.13)	
ra	ndom	4.45 (0.62)	8.37 (0.96)	21.59 (1.7)	42.98 (2.05)	84.71 (3.32)	
gı	reedy	37.65 (0.0)	51.75 (0.0)	95.45 (0.0)	199.4 (0.0)	329.45 (0.0)	
de	egree	26.1 (0.0)	44.35 (0.0)	98.15 (0.0)	151.15 (0.0)	212.0 (0.0)	

Spread						
K/N	0.01	0.02	0.05	0.1	0.2	
df	5.02 (0.52)	7.92 (0.68)	15.03 (1.09)	25.1 (1.48)	42.49 (1.09)	
2s	1.47 (0.97)	2.87 (1.53)	7.22 (2.68)	14.97 (3.97)	29.58 (5.13)	
random	1.44 (0.16)	3.11 (0.34)	7.6 (0.41)	14.79 (0.59)	30.13 (0.98)	
greedy	14.49 (0.0)	24.49 (0.0)	54.41 (0.0)	86.08 (0.0)	133.45 (0.0)	
degree	3.61 (0.0)	6.18 (0.0)	14.58 (0.0)	25.79 (0.0)	43.31 (0.0)	

Results: DNI/Expected spread on sparse data on Model 5: Without cascade features

On sparse dataset tested on 20 instances of size 1000x1000

Model 5:

- NO Aggregated cascade features
- Regularization to avoid local minima
- Mapping of label on higher values
- data-based labels

Observations:

- DF is better for lower K
- Spread are close to random

DNI						
K/N	0.01	0.02	0.05	0.1	0.2	
df	<u>41.51 (3.84)</u>	<u>62.12 (5.46)</u>	<u>101.57 (7.84)</u>	<u>145.3 (9.41)</u>	203.03 (9.28)	
2s	7.36 (10.3)	13.1 (15.13)	27.81 (22.37)	51.63 (29.77)	95.42 (37.02)	
random	4.35 (0.5)	8.5 (0.82)	20.83 (1.83)	41.65 (2.02)	84.7 (3.39)	
greedy	13.5 (0.0)	28.75 (0.0)	75.65 (0.0)	137.7 (0.0)	274.95 (0.0)	
degree	26.1 (0.0)	44.35 (0.0)	98.15 (0.0)	<u>151.15 (0.0)</u>	212.0 (0.0)	

	Spread						
K/N	0.01	0.02	0.05	0.1	0.2		
df	0.27 (0.01)	0.53 (0.02)	1.39 (0.03)	2.86 (0.08)	5.68 (0.12)		
2s	0.24 (0.06)	0.5 (0.08)	1.2 (0.18)	2.48 (0.2)	5.06 (0.31)		
random	0.26 (0.04)	0.48 (0.06)	1.23 (0.08)	2.52 (0.11)	4.98 (0.19)		
greedy	3.52 (0.0)	5.7 (0.0)	10.34 (0.0)	15.08 (0.0)	22.69 (0.0)		
degree	0.27 (0.0)	0.53 (0.0)	1.41 (0.0)	2.79 (0.0)	5.54 (0.0)		

Results: DNI/Expected spread on twitter instance on Model 1

On twitter dataset tested on 20 instances of size 1000x1000

Model 1:

- Aggregated cascade features
- Regularization to avoid local minima
- Mapping of label on higher values
- data-based labels

Observations:

• DF is better than others

DNI						
K/N	0.01	0.02	0.05	0.1	0.2	
df	8.46 (2.36)	14.47 (4.6)	31.08 (10.36)	55.34 (18.87)	85.95 (28.61)	
2s	4.42 (2.66)	7.75 (5.03)	15.65 (11.25)	23.69 (18.27)	34.25 (28.69)	
random	2.06 (0.36)	4.36 (0.42)	10.69 (0.76)	21.42 (0.99)	43.28 (1.11)	
greedy	15.5 (0.0)	25.75 (0.0)	55.85 (0.0)	107.9 (0.0)	209.8 (0.0)	
degree	2.3 (0.0)	4.0 (0.0)	10.05 (0.0)	20.05 (0.0)	40.8 (0.0)	

	Spread						
K/N	0.01	0.02	0.05	0.1	0.2		
df	1.09 (0.23)	1.9 (0.47)	4.47 (1.2)	9.04 (2.55)	17.54 (4.96)		
2s	0.8 (0.27)	1.42 (0.64)	3.23 (1.75)	5.47 (3.33)	8.66 (6.32)		
random	0.69 (0.09)	1.41 (0.22)	3.53 (0.15)	7.17 (0.52)	14.18 (0.5)		
greedy	6.06 (0.0)	11.07 (0.0)	26.07 (0.0)	50.87 (0.0)	70.29 (0.0)		
degree	0.71 (0.0)	1.24 (0.0)	3.1 (0.0)	6.21 (0.0)	12.88 (0.0)		

Results: DNI/Expected spread on twitter data on Model 3: no mapping

On twitter dataset tested on 20 instances of size 1000x1000

Model 3:

- Aggregated cascade features
- Regularization to avoid local minima
- NO Mapping of label on higher values
- data-based labels

Observations:

• DF is better than others

DNI						
K/N	0.01	0.02	0.05	0.1	0.2	
df	8.51 (2.35)	14.74 (4.11)	31.28 (9.89)	55.52 (17.28)	86.1 (26.6)	
2s	4.41 (2.62)	7.85 (5.17)	15.86 (11.03)	24.15 (18.06)	34.01 (28.43)	
random	2.3 (0.21)	4.39 (0.5)	10.7 (0.8)	21.12 (0.9)	42.73 (1.71)	
greedy	13.35 (0.0)	23.5 (0.0)	53.75 (0.0)	111.7 (0.0)	209.75 (0.0)	
degree	2.3 (0.0)	4.0 (0.0)	10.05 (0.0)	20.05 (0.0)	40.8 (0.0)	

Spread							
K/N	0.01	0.02	0.05	0.1	0.2		
df	0.96 (0.19)	1.69 (0.32)	3.93 (0.83)	7.66 (1.9)	14.5 (3.84)		
2s	0.69 (0.21)	1.28 (0.52)	2.79 (1.47)	4.74 (2.76)	7.75 (5.64)		
random	0.6 (0.11)	1.22 (0.17)	3.1 (0.18)	6.21 (0.3)	12.63 (0.27)		
greedy	5.28 (0.0)	10.28 (0.0)	25.28 (0.0)	45.68 (0.0)	62.4 (0.0)		
degree	0.59 (0.0)	1.1 (0.0)	2.64 (0.0)	5.4 (0.0)	11.4 (0.0)		

Results: DNI/Expected spread on twitter data on Model 4: No regularization

On twitter dataset tested on 20 instances of size 1000x1000

Model 4:

- Aggregated cascade features
- NO Regularization to avoid local minima
- Mapping of label on higher values
- data-based labels

Observations:

- DF is better for lower K
- DF has higher std

DNI						
K/N	0.01	0.02	0.05	0.1	0.2	
df	8.74 (2.07)	15.12 (3.75)	32.61 (8.44)	58.28 (15.3)	87.71 (25.07)	
2s	4.56 (2.66)	7.84 (4.94)	15.67 (10.92)	24.72 (18.51)	34.95 (28.82)	
random	2.08 (0.31)	4.17 (0.5)	10.76 (0.89)	22.05 (0.95)	42.84 (1.26)	
greedy	15.5 (0.0)	25.75 (0.0)	55.85 (0.0)	107.9 (0.0)	209.8 (0.0)	
degree	2.3 (0.0)	4.0 (0.0)	10.05 (0.0)	20.05 (0.0)	40.8 (0.0)	

Spread						
K/N	0.01	0.02	0.05	0.1	0.2	
df	1.1 (0.24)	1.94 (0.47)	4.52 (1.2)	9.25 (2.44)	17.34 (5.04)	
2s	0.79 (0.27)	1.43 (0.6)	3.22 (1.67)	5.41 (3.29)	8.91 (6.47)	
random	0.77 (0.09)	1.36 (0.13)	3.45 (0.26)	7.1 (0.28)	14.0 (0.43)	
greedy	6.06 (0.0)	11.07 (0.0)	26.07 (0.0)	50.87 (0.0)	70.29 (0.0)	
degree	0.71 (0.0)	1.24 (0.0)	3.1 (0.0)	6.21 (0.0)	12.88 (0.0)	

Results: DNI/Expected spread on twitter data on Model 5: Without cascade features

On twitter dataset tested on 20 instances of size 1000x1000

Model 5:

- NO Aggregated cascade features
- Regularization to avoid local minima
- Mapping of label on higher values
- data-based labels

Observations:

Spread and DNI are close to random

DNI						
K/N	0.01	0.02	0.05	0.1	0.2	
df	2.49 (0.86)	4.16 (1.52)	9.94 (3.8)	19.17 (7.41)	37.61 (14.65)	
2s	2.36 (0.61)	4.1 (1.15)	9.73 (2.97)	18.11 (6.95)	35.28 (15.73)	
random	1.99 (0.32)	4.33 (0.38)	10.9 (0.67)	21.33 (0.96)	42.8 (1.3)	
greedy	13.35 (0.0)	23.5 (0.0)	53.75 (0.0)	111.7 (0.0)	209.75 (0.0)	
degree	2.3 (0.0)	4.0 (0.0)	10.05 (0.0)	20.05 (0.0)	40.8 (0.0)	

Spread						
K/N	0.01	0.02	0.05	0.1	0.2	
df	0.63 (0.24)	1.14 (0.43)	2.75 (1.06)	5.58 (2.19)	10.96 (4.28)	
2s	0.62 (0.17)	1.22 (0.33)	2.77 (0.9)	5.26 (2.01)	10.0 (4.49)	
random	0.62 (0.1)	1.21 (0.12)	3.15 (0.24)	6.47 (0.28)	12.78 (0.46)	
greedy	5.28 (0.0)	10.28 (0.0)	25.28 (0.0)	45.68 (0.0)	62.4 (0.0)	
degree	0.59 (0.0)	1.1 (0.0)	2.64 (0.0)	5.4 (0.0)	11.4 (0.0)	

Results: Model 1

Results: Model 3: no mapping

Results: Model 4: no regularization

Results: Model 5: no cascade feature

Results : comparison of df models

