Program Structures & Algorithms Spring 2022 Assignment No. 03

Name: Akshay Kumthi Matad

(NUID): 002928833

Task: UF_HWQUPC

Step 1:

- (a) Implement height-weighted Quick Union with Path Compression. For this, you will flesh out the class UF_HWQUPC. All you have to do is to fill in the sections marked with // TO BE IMPLEMENTED ... // ... END IMPLEMENTATION.
- (b) Check that the unit tests for this class all work. You must show "green" test results in your submission (screenshot is OK).

Step 2:

Using your implementation of UF_HWQUPC, develop a UF ("union-find") client that takes an integer value n from the command line to determine the number of "sites." Then generates random pairs of integers between 0 and n-1, calling connected() to determine if they are connected and union() if not. Loop until all sites are connected then print the number of connections generated. Package your program as a static method count() that takes n as the argument and returns the number of connections; and a main() that takes n from the command line, calls count() and prints the returned value. If you prefer, you can create a main program that doesn't require any input and runs the experiment for a fixed set of n values. Show evidence of your run(s).

Step 3:

Determine the relationship between the number of objects (n) and the number of pairs (m) generated to accomplish this (i.e. to reduce the number of components from n to 1). Justify your conclusion in terms of your observations and what you think might be going on.

Output screenshot:

Step 1 OUTPUT:

UF HWQUPC Test.java - All test Cases PASSED

UF HWQUPC code:

STEP 2 OUTPUT:

UF_client.java code:

Output of client.java file:

Step 3 Relationship Conclusion:

I believe the relationship between Number of sites and Number of pairs(Count/m) is linear.

N is directly proportional to M

But taking the theoretical time complexity into consideration the relationship can be defined as

M = c(Nlogn)

Where c is the constant which varies from machine to machine. According to my output and graph,

M = 0.375(nlogn) (approx) | Number of connections = N - 1 (deduced from the graph and values) and number of connections is 1 less than the number of objects.

Evidence / Graph:

Number of sites	Count	logn	nlogn	0.375(nlogn)
2000	8187	10.96578428	21931.56857	8186.475763
4000	17646	11.96578428	47863.13714	17866.04596
6000	27863	12.55074679	75304.48071	28109.17533
8000	38280	12.96578428	103726.2743	38718.28081
10000	48681	13.28771238	132877.1238	49599.52363
12000	59775	13.55074679	162608.9614	60697.63398
14000	69897	13.77313921	192823.9489	71976.09141
16000	81344	13.96578428	223452.5486	83408.93936
18000	93245	14.13570929	254442.7671	94976.77012
20000	104506	14.28771238	285754.2476	106664.5194

Graph which says Number of sites (n) is linear to Number of pairs(count/m)

Graph which says Number of pairs(count/m) and 0.375(nlogn) are almost equal:

