$12n_{0472} \ (K12n_{0472})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 59u^{11} + 169u^{10} + \dots + 377b + 257, -861u^{11} - 1495u^{10} + \dots + 754a - 3284,$$

$$u^{12} + 2u^{11} - 4u^{10} - 8u^9 + 7u^8 + 9u^7 - 10u^6 + u^5 + 8u^4 - 17u^3 - 15u^2 + 2u + 1 \rangle$$

$$I_2^u = \langle b - 1, a^2 - 2a + 2u - 3, u^2 - u - 1 \rangle$$

$$I_3^u = \langle b + 1, a + 1, u^2 + u - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 18 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 59u^{11} + 169u^{10} + \dots + 377b + 257, -861u^{11} - 1495u^{10} + \dots + 754a - 3284, u^{12} + 2u^{11} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.14191u^{11} + 1.98276u^{10} + \dots - 12.8289u + 4.35544 \\ -0.156499u^{11} - 0.448276u^{10} + \dots + 2.06366u - 0.681698 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.985411u^{11} + 1.53448u^{10} + \dots - 10.7653u + 3.67374 \\ -0.156499u^{11} - 0.448276u^{10} + \dots + 2.06366u - 0.681698 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.32493u^{11} + 1.91379u^{10} + \dots - 7.68302u + 5.08488 \\ 0.196286u^{11} + 0.172414u^{10} + \dots + 1.75066u - 0.246684 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.982759u^{11} + 1.58621u^{10} + \dots + 1.84748u - 0.762599 \\ -0.145889u^{11} - 0.155172u^{10} + \dots + 1.84748u - 0.762599 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.44430u^{11} - 2.58621u^{10} + \dots + 15.7401u - 5.79973 \\ 0.301061u^{11} + 0.379310u^{10} + \dots - 2.07162u + 1.14191 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{805}{377}u^{11} + \frac{83}{29}u^{10} - \frac{3610}{377}u^9 - \frac{296}{29}u^8 + \frac{6558}{377}u^7 + \frac{2345}{377}u^6 - \frac{510}{29}u^5 + \frac{4614}{377}u^4 + \frac{1112}{377}u^3 - \frac{11957}{377}u^2 - \frac{4385}{377}u - \frac{5337}{377}u^7 + \frac{2345}{377}u^7 + \frac{2345}{377$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{12} - 3u^{11} + \dots + 59u + 1$
c_{2}, c_{5}	$u^{12} + 3u^{11} + \dots + 11u + 1$
$c_3, c_4, c_8 \ c_9$	$u^{12} + u^{11} + \dots - 12u - 4$
c_6, c_7, c_{10} c_{11}, c_{12}	$u^{12} - 2u^{11} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{12} + 11y^{11} + \dots - 1875y + 1$
c_{2}, c_{5}	$y^{12} + 3y^{11} + \dots - 59y + 1$
c_3, c_4, c_8 c_9	$y^{12} - 7y^{11} + \dots - 176y + 16$
c_6, c_7, c_{10} c_{11}, c_{12}	$y^{12} - 12y^{11} + \dots - 34y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.327774 + 1.008010I		
a = 0.125111 - 1.395870I	3.00343 - 3.59147I	-14.5630 + 3.1404I
b = 0.62225 + 1.49572I		
u = 0.327774 - 1.008010I		
a = 0.125111 + 1.395870I	3.00343 + 3.59147I	-14.5630 - 3.1404I
b = 0.62225 - 1.49572I		
u = -1.049180 + 0.328681I		
a = 0.227437 + 0.113345I	-3.63748 + 0.95206I	-18.5953 - 2.4083I
b = 1.043330 + 0.669500I		
u = -1.049180 - 0.328681I		
a = 0.227437 - 0.113345I	-3.63748 - 0.95206I	-18.5953 + 2.4083I
b = 1.043330 - 0.669500I		
u = 1.196290 + 0.592671I		
a = -0.801458 + 0.561608I	0.38150 - 2.09841I	-15.3966 + 1.5939I
b = -0.45032 - 1.39377I		
u = 1.196290 - 0.592671I		
a = -0.801458 - 0.561608I	0.38150 + 2.09841I	-15.3966 - 1.5939I
b = -0.45032 + 1.39377I		
u = -1.50943		
a = -1.21747	-11.5846	-22.3790
b = -1.31818		
u = -1.56587 + 0.38910I		
a = 0.939600 + 0.740035I	-3.19868 + 8.72155I	-18.7407 - 4.5394I
b = 1.19135 - 1.12676I		
u = -1.56587 - 0.38910I		
a = 0.939600 - 0.740035I	-3.19868 - 8.72155I	-18.7407 + 4.5394I
b = 1.19135 + 1.12676I		
u = 1.63097		
a = 0.940425	-13.8390	-17.9400
b = 0.160276		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.285895		
a = -0.821672	-0.495710	-19.9520
b = 0.229843		
u = -0.225459		
a = 6.11734	-6.65661	-13.1380
b = -0.885138		

II.
$$I_2^u = \langle b-1, a^2-2a+2u-3, u^2-u-1 \rangle$$

(i) Arc colorings

a) Art colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a+1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} au-u-1 \\ au+a-u-2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} au-2 \\ au-2u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^4$
c_2	$(u+1)^4$
c_3, c_4, c_8 c_9	$(u^2-2)^2$
c_6, c_7	$(u^2 - u - 1)^2$
c_{10}, c_{11}, c_{12}	$(u^2+u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^4$
c_3, c_4, c_8 c_9	$(y-2)^4$
c_6, c_7, c_{10} c_{11}, c_{12}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -1.28825	-7.56670	-24.0000
b = 1.00000		
u = -0.618034		
a = 3.28825	-7.56670	-24.0000
b = 1.00000		
u = 1.61803		
a = 0.125968	-15.4624	-24.0000
b = 1.00000		
u = 1.61803		
a = 1.87403	-15.4624	-24.0000
b = 1.00000		

III.
$$I_3^u = \langle b+1, \ a+1, \ u^2+u-1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -14

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
$c_3,c_4,c_8 \ c_9$	u^2
<i>C</i> 5	$(u+1)^2$
c_6, c_7	$u^2 + u - 1$
c_{10}, c_{11}, c_{12}	$u^2 - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^2$
c_3, c_4, c_8 c_9	y^2
c_6, c_7, c_{10} c_{11}, c_{12}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -1.00000	-2.63189	-14.0000
b = -1.00000		
u = -1.61803		
a = -1.00000	-10.5276	-14.0000
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{12} - 3u^{11} + \dots + 59u + 1)$
c_2	$((u-1)^2)(u+1)^4(u^{12}+3u^{11}+\cdots+11u+1)$
c_3, c_4, c_8 c_9	$u^{2}(u^{2}-2)^{2}(u^{12}+u^{11}+\cdots-12u-4)$
<i>c</i> ₅	$((u-1)^4)(u+1)^2(u^{12}+3u^{11}+\cdots+11u+1)$
c_{6}, c_{7}	$((u^{2}-u-1)^{2})(u^{2}+u-1)(u^{12}-2u^{11}+\cdots-2u+1)$
c_{10}, c_{11}, c_{12}	$(u^{2} - u - 1)(u^{2} + u - 1)^{2}(u^{12} - 2u^{11} + \dots - 2u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{12}+11y^{11}+\cdots-1875y+1)$
c_2,c_5	$((y-1)^6)(y^{12}+3y^{11}+\cdots-59y+1)$
c_3, c_4, c_8 c_9	$y^{2}(y-2)^{4}(y^{12}-7y^{11}+\cdots-176y+16)$
c_6, c_7, c_{10} c_{11}, c_{12}	$((y^2 - 3y + 1)^3)(y^{12} - 12y^{11} + \dots - 34y + 1)$