Relating Proof Systems for Recursive Types

Clemens Grabmayer

 22^{nd} of March 2005

Types and Recursive Types

Types: "Collections of values sharing a common structure or shape." [Amadio, Cardelli].

- Basic types: e.g. Int (integers), Real (reals), Bool (booleans).
- Composite types: e.g. Int × Int (pairs), Real → Int (functions),
 Bool + Int (elements of constituent types).

22nd of March, 2005 slide 1 of 8

Types and Recursive Types

Types: "Collections of values sharing a common structure or shape." [Amadio, Cardelli].

- Basic types: e.g. Int (integers), Real (reals), Bool (booleans).
- Composite types: e.g. Int × Int (pairs), Real → Int (functions),
 Bool + Int (elements of constituent types).

Recursive Types: types that satisfy recursive equations like e.g.:

```
List = Unit + (Int \times List) \quad (type of integer lists)  (1)
```

(where Unit = $\{\underline{eol}\}$), because () $\triangleq \underline{eol}$, and e.g. $(5, 8, 13) \triangleq \langle 5, (8, 13) \rangle \in Int \times List$

Notation for a solution of (1): List = $\mu\alpha$. (Unit + (Int + α)).

Recursive Type Equality

Example. The recursive types

$$\tau \equiv \mu \alpha. (\alpha \to \bot)$$
 and $\sigma \equiv \mu \beta. ((\beta \to \bot) \to \bot)$

can be visualized as the different cyclic term graphs

but possess the same tree unfolding

$$\mathsf{Tree}(au) = \mathsf{Tree}(\sigma) =$$

Such pairs of recursive types satisfy the same recursive equations and are called *strongly equivalent*. For τ and σ this is expressed as: $\tau =_{\mu} \sigma$ ($=_{\mu}$ is called *recursive type equality*).

Proof Systems for Recursive Type Equality

- Sound and complete axiomatisations of $=_{\mu}$:
 - AC⁼ by Amadio and Cardelli (1993) is of "traditional form"
 (similar systems in formal language theory, process algebra, . . .).
 - **HB**⁼ by Henglein and Brandt (1998) is *coinductively motivated*.

$$\tau =_{\mu} \sigma \iff \vdash_{\mathbf{AC}^{=}} \tau = \sigma$$

$$\iff \vdash_{\mathbf{HB}^{=}} \tau = \sigma .$$

- A system on which "consistency-checking" w.r.t. $=_{\mu}$ can be based:
 - **AK**⁼, a "syntactic-matching" system à la Ariola and Klop (1995).

 $\tau =_{\mu} \sigma \iff$ no "contradiction" is derivable in $\mathbf{AK}^{=}$ from the assumption $\tau = \sigma$.

Specific Rules in AC⁼, HB⁼, and AK⁼

• in
$$\mathbf{AC}^{=}$$
: $\frac{\sigma_{1} = \tau[\sigma_{1}/\alpha]}{\sigma_{1} = \sigma_{2}}$ UFP (if $\alpha \downarrow \tau$)

$$\bullet \text{ in } \mathbf{AK}^{=} \colon \frac{\tau_{1} \to \tau_{2} = \sigma_{1} \to \sigma_{2}}{\tau_{i} = \sigma_{i}} \text{DECOMP (for } i \in \{1,2\})$$

Present in all systems: REFL, SYMM, TRANS, (FOLD/UNFOLD).

Questions investigated

- Main Question: What kind of proof-theoretic relationships do exist between the systems AC⁼, HB⁼, and AK⁼?
 - Can an observation of J.W. Klop about a seemingly close connection between $\mathbf{HB}^{=}$ and $\mathbf{AK}^{=}$ be made *precise*?
 - Can the "traditional" proofs in AC⁼ be transformed into the "coinductive" proofs in HB⁼?
 - And vice versa: Does there exist a transformation of proofs in HB⁼ into proofs in AC⁼?
- Side-Issue: What is the relevance of "derivability" and "admissibility" of inference rules for finding proof-transformations?

Answers offered

- Introduction of "analytic" variant systems $HB_0^=$ and $AK_0^=$ of the systems $HB^=$ and $AK^=$.
- A *network* of proof-transformations:
 - A *duality* via a reflection-effect between derivations in $\mathbf{HB}_0^=$ and "consistency-unfoldings" in $\mathbf{AK}_0^=$.

Answers offered

Example. A duality between a derivation in a variant $HB_0^=$ of $HB^=$ and a consistency-unfolding in variant $AK_0^=$ of $AK^=$:

FOLD_{$$l/r$$} $\underbrace{\frac{\left(\tau \to \bot = (\sigma \to \bot) \to \bot\right)^{\boldsymbol{u}}}{\tau = \sigma}}_{\underline{\tau} = \sigma \to \bot} \underbrace{\frac{(\text{REFL})}{\bot = \bot}}_{\text{ARROW}} \underbrace{\frac{(\text{REFL})}{\bot = \bot}}_{\underline{\tau} = \sigma \to \bot} \underbrace{\frac{(\text{REFL})}{\bot = \bot}}_{\text{FOLD}_l} \underbrace{\frac{(\text{REFL})}{\bot = \bot}}_{\text{FOLD}_{l/r}} \underbrace{\frac{\tau \to \bot = (\sigma \to \bot) \to \bot}_{\underline{\tau} \to \bot}}_{\text{FOLD}_{l/r}} \underbrace{\frac{(\alpha \to \bot) \to \bot}_{\underline{\tau} \to \bot}}_{\underline{\tau} \to \bot} \underbrace{\frac{(\beta \to \bot) \to \bot}_{\underline{\tau} \to \bot}}_{\underline{\tau} \to \bot} \underbrace{\frac{(\beta \to \bot) \to \bot}_{\underline{\tau} \to \bot}}_{\underline{\tau} \to \bot} \underbrace{\frac{(\beta \to \bot) \to \bot}_{\underline{\tau} \to \bot}}_{\underline{\tau} \to \bot} \underbrace{\frac{(\beta \to \bot) \to \bot}_{\underline{\tau} \to \bot}}_{\underline{\tau} \to \bot} \underbrace{\frac{(\beta \to \bot) \to \bot}_{\underline{\tau} \to \bot}}_{\underline{\tau} \to \bot} \underbrace{\frac{(\beta \to \bot) \to \bot}_{\underline{\tau} \to \bot}}_{\underline{\tau} \to \bot} \underbrace{\frac{(\beta \to \bot) \to \bot}_{\underline{\tau} \to \bot}}_{\underline{\tau} \to \bot}}_{\underline{\tau} \to \bot}$

22nd of March, 2005 slide 7 of 8

Answers offered

- Introduction of "analytic" variant systems $HB_0^=$ and $AK_0^=$ of the systems $HB^=$ and $AK^=$.
- A *network* of proof-transformations:
 - A duality via a reflection-effect between derivations in $\mathbf{HB}_0^=$ and "consistency-unfoldings" in $\mathbf{AK}_0^=$.
 - A proof-transformation from AC⁼ to HB⁼.
 - A proof-transformation from $HB^{=}$ via $HB_{0}^{=}$ to $AC^{=}$.
- A study of rule derivability and rule admissibility in abstract versions
 of pure Hilbert systems and of natural-deduction systems.
 - Results that help to clarify the relationship of these notions to the possibility of "rule elimination".

The found network of proof-transformations

Amadio-Cardelli systems

22nd of March, 2005 slide 8 of 8