Planche nº 25. Structures. Corrigé

Exercice nº 1

1) • * est une loi interne dans \mathbb{R}^2 .

• Soit $(x, x', y, y', z, z') \in \mathbb{R}^6$.

$$\begin{split} ((x,y)*(x',y'))*(x'',y'') &= \left(x+x',ye^{x'}+y'e^{-x}\right)*(x'',y'') = \left(x+x'+x'',\left(ye^{x'}+y'e^{-x}\right)e^{x''}+y''e^{-x-x'}\right) \\ &= \left(x+x'+x'',ye^{x'+x''}+y'e^{-x+x''}+y''e^{-x-x'}\right), \end{split}$$

et

$$\begin{split} (x,y)*((x',y')*(x'',y'')) &= (x,y)*\left(x'+x'',y'e^{x''}+y''e^{-x'}\right) = \left(x+x'+x'',ye^{x'+x''}+\left(y'e^{x''}+y''e^{-x'}\right)e^{-x}\right) \\ &= \left(x+x'+x'',ye^{x'+x''}+y'e^{-x+x''}+y''e^{-x-x'}\right), \end{split}$$

Donc, pour tout $((x,y),(x',y'),(x'',y'')) \in (\mathbb{R}^2)^3$, ((x,y)*(x',y'))*(x'',y'') = (x,y)*((x',y')*(x'',y'')). La loi * est associative.

• Pour tout $(x, y) \in \mathbb{R}^2$,

$$(x,y)*(0,0) = (x+0, ye^{0} + 0e^{-x}) = (x,y),$$

et

$$(0,0)*(x,y) = (0+x,0e^x+ye^{-0}) = (x,y).$$

Donc, * admet un élément neutre à savoir (0,0).

• Pour tout $(x, y) \in \mathbb{R}^2$,

$$(x,y)*(-x,-y) = (x-x,ye^{-x}-ye^{-x}) = (0,0),$$

 et

$$(-x, -y) * (x, y) = (-x + x, -ye^{x} + ye^{x}) = (0, 0).$$

Donc, tout élément (x,y) de \mathbb{R}^2 admet un symétrique pour * dans \mathbb{R}^2 à savoir (-x,-y).

• $(1,0)*(0,1) = (1,e^{-1})$ et (0,1)*(1,0) = (1,e). Donc $(1,0)*(0,1) \neq (0,1)*(1,0)$. La loi * n'est donc pas commutative. On a montré que

$$(\mathbb{R}^2,*)$$
 est un groupe non abélien.

2) Soit f une fonction dérivable sur $\mathbb R$ puis $G=\{(x,f(x),\ x\in\mathbb R\}.$ Soit $(x,x')\in\mathbb R^2.$

$$(x, f(x)) * (x', f(x')) = (x + x', f(x)e^{x'} + f(x')e^{-x}).$$

Si G est un sous-groupe de $(\mathbb{R}^2,*)$, on doit avoir $f(x+x')=f(x)e^{x'}+f(x')e^{-x}$. Pour x=x'=0, on obtient f(0)=0. Ensuite, pour tout réel x et tout réel non nul h

$$\frac{f(x+h)-f(x)}{h} = \frac{1}{h} \left(f(x) \left(e^h - 1 \right) + f(h) e^{-x} \right).$$

Puisque f est dérivable sur \mathbb{R} , quand h tend vers 0, on obtient

$$f'(x) = f(x) + f'(0)e^{-x}$$
.

Donc, il existe un réel K tel que pour tout réel x, $f(x) = -\frac{f'(0)}{2}e^{-x} + Ke^x$. En dérivant, on obtient pour tout réel x, $f'(x) = \frac{f'(0)}{2}e^{-x} + Ke^x$ et pour x = 0 on obtient $K = \frac{f'(0)}{2}$. Finalement, pour tout réel x, $f(x) = \frac{f'(0)}{2}(e^x - e^{-x}) = f'(0)\operatorname{sh}(x)$. On a montré que si f est solution, alors il existe un réel λ tel que pour fout réel x, $f(x) = \lambda \operatorname{sh}(x)$.

Réciproquement, supposons qu'il existe un réel λ tel que pour tout réel x, $f(x) = \lambda \operatorname{sh}(x)$. Alors,

- $(0,0) = (0,f(0)) \in G$.
- pour tout $(x, x') \in \mathbb{R}^2$,

$$\begin{split} f(x)e^{x'} + f(x')e^{-x} &= \lambda \left(\sinh(x)e^{x'} + \sinh(x')e^{-x} \right) = \frac{\lambda}{2} \left(\left(e^x - e^{-x} \right) e^{x'} + \left(e^{x'} - e^{-x'} \right) e^{-x} \right) \\ &= \frac{\lambda}{2} \left(e^{x+x'} - e^{-x-x'} \right) = \lambda \sinh(x + x') \\ &= f(x + x'), \end{split}$$

et donc $(x, f(x)) * (x', f(x')) \in G$.

• pour tout $x \in \mathbb{R}$,

$$(-x, -f(x)) = (-x, -\lambda \operatorname{sh}(x)) = (-x, \lambda \operatorname{sh}(-x)) = (-x, f(-x)),$$

et donc $(-x, -f(x)) \in G$.

Ceci montre que G est un sous-groupe de $(\mathbb{R}^2,*)$. Finalement, G est un sous-groupe de $(\mathbb{R}^2,*)$ si et seulement si il existe un réel λ tel que pour tout réel x, $f(x) = \lambda \operatorname{sh}(x)$.

Exercice nº 2

• Pour tout $(x, y) \in]-1, 1[^2, 1+xy \ge 1-|xy| > 0$ et en particulier $1+xy \ne 0$. Donc, pour tout $(x, y) \in]-1, 1[^2, x*y]$ existe. Ensuite,

$$1 - \frac{x+y}{1+xy} = \frac{1-x-y+xy}{1+xy} = \frac{(1-x)(1-y)}{1+xy} > 0$$

et

$$\frac{x+y}{1+xy} - (-1) = \frac{1+x+y+xy}{1+xy} = \frac{(1+x)(1+y)}{1+xy} > 0.$$

Donc, pour tout $(x,y) \in]-1,1[^2, x*y \in]-1,1[$. Ainsi, * est une loi interne dans]-1,1[.

• Soit $(x, y) \in]-1, 1[^2.$

$$x * y = \frac{x + y}{1 + xy} = \frac{x + y}{1 + yx} = y * x.$$

Donc, la loi * est commutative.

• Soit $(x, y, z) \in]-1, 1[^3]$.

$$(x * y) * z = \frac{x + y}{1 + xy} * z = \frac{\frac{x + y}{1 + xy} + z}{1 + \frac{x + y}{1 + xy}z} = \frac{x + y + z + xyz}{1 + xy + xz + yz}.$$

En échangeant les rôles de x, y et z, on obtient

$$x * (y * z) = (y * z) * x = \frac{x + y + z + xyz}{1 + xy + xz + yz}$$

et finalement (x * y) * z = x * (y * z). Donc, la loi * est associative.

- Pour tout x de] -1, 1[, $x * 0 = \frac{x + 0}{1 + x \times 0} = x$. Donc * admet un élément neutre à savoir 0.
- Pour tout x de]-1,1[, $-x \in]-1,1[$ et $x*(-x)=\frac{x-x}{1-x^2}=0$. Donc tout élément de]-1,1[admet un symétrique pour * dans]-1,1[

On a montré que (]-1,1[,*) est un groupe commutatif.

Exercice nº 3

- 1) 1 \in U car |1| = 1 et U $\subset \mathbb{C}^*$ car $0 \notin U$.
- Soient $(z, z') \in U^2$. Alors $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} = 1$. Donc $\frac{z}{z'} \in U$.

On a montré que U est un sous-groupe de (\mathbb{C}^*, \times) .

- 2) Soit $n \ge 2$.
- $\bullet\ 1\in U_n\ \mathrm{car}\ 1^n=1\ \mathrm{et}\ U_n\subset U\ \mathrm{car}\ \mathrm{pour}\ \mathrm{tout}\ z\in\mathbb{C},\, z^n=1\Rightarrow |z|^n=1\Rightarrow |z|=1.$
- Soit $(z,z') \in U_n^2$. $\left(\frac{z}{z'}\right)^n = \frac{z^n}{z'^n} = 1$ et donc $\frac{z}{z'} \in U_n$.

On a montré que U_n est un sous-groupe de (U, \times) .

Exercice nº 4

- 1) $\mathcal{P}(\mathsf{E})$ n'est pas vide car $\varnothing \in \mathcal{P}(\mathsf{E})$.
- Δ est une loi interne dans $\mathscr{P}(\mathsf{E})$.
- Δ est commutative et associative (voir planche n° 2, exercice n° 2, 2) et 3))
- $\forall A \in \mathscr{P}(E)$, $A\Delta\varnothing = A$ et donc Δ possède un élément neutre dans $\mathscr{P}(E)$ à savoir \varnothing .
- $\bullet \ \forall A \in \mathscr{P}(\mathsf{E}), \ A\Delta A = \varnothing \ \mathrm{et \ donc \ tout \ \'el\'ement \ de \ } \mathscr{P}(\mathsf{E}) \ \mathrm{poss\`ede \ un \ sym\'etrique \ pour \ } \Delta \ \mathrm{dans} \ \mathscr{P}(\mathsf{E}) \ \grave{\mathrm{a}} \ \mathrm{savoir \ lui-m\'eme}.$

On a montré que $(\mathcal{P}(\mathsf{E}), \Delta)$ est un groupe commutatif.

- 2) $(\mathcal{P}(E), \times)$ est un groupe commutatif.
- \cap est une loi interne dans $\mathscr{P}(\mathsf{E})$.
- $\bullet \cap$ est commutative et associative.
- $\forall A \in \mathcal{P}(E), A \cap E = A$ et donc \cap possède un élément neutre dans $\mathcal{P}(E)$ à savoir E.
- Soit $(A, B, C) \in (\mathscr{P}(E))^3$.

$$(A\Delta B) \cap C = ((A \cap \overline{B}) \cup (\overline{A} \cap B)) \cap C = (A \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap C)$$

et

$$(A \cap C) \Delta (B \cap C) = ((A \cap C) \cap (\overline{B \cap C})) \cup ((\overline{A \cap C}) \cap (B \cap C))$$

$$= ((A \cap C) \cap (\overline{B} \cup \overline{C})) \cup ((\overline{A} \cup \overline{C}) \cap (B \cap C))$$

$$= ((A \cap \overline{B} \cap C) \cup (A \cap C \cap \overline{C})) \cup ((\overline{A} \cap B \cap C) \cup (B \cap C \cap \overline{C}))$$

$$= (A \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap C)$$

et donc $(A\Delta B) \cap C = (A \cap C) \Delta (B \cap C)$. Ainsi, \cap est distributive sur Δ .

On a montré que $(\mathscr{P}(\mathsf{E}), \Delta, \cap)$ est un anneau (commutatif et unitaire).

Exercice nº 5

Posons
$$G = \left\{ a + b\sqrt{2}, \ (a,b) \in \mathbb{Q}^2 \right\}.$$

Montrons que G est un sous-groupe de $(\mathbb{R}, +)$.

- $G \subset \mathbb{R}$ et $0 = 0 + 0 \times \sqrt{2} \in G$.
- Soit $(a, a', b, b') \in \mathbb{Q}^2$.

$$\left(\alpha+b\sqrt{2}\right)-\left(\alpha'+b'\sqrt{2}\right)=(\alpha-\alpha')+(b-b')\sqrt{2}$$

avec $a - a' \in \mathbb{Q}$ et $b - b' \in \mathbb{Q}$.

On a montré que G est un sous-groupe de $(\mathbb{R},+)$ et en particulier, (G,+) est un groupe commutatif.

Montrons que $G \setminus \{0\}$ est un sous-groupe de (\mathbb{R}^*, \times) .

- Vérifions tout d'abord que si $(a,b) \neq (0,0)$ alors $a+b\sqrt{2} \neq 0$. Soit $(a,b) \in \mathbb{Q}^2$ tel que $a+b\sqrt{2}=0$. Si $b\neq 0$, on en déduit que $\sqrt{2}=-\frac{a}{b}$. Ceci est impossible car $\sqrt{2} \notin \mathbb{Q}$ et $-\frac{a}{b} \in \mathbb{Q}$. Donc, pour tous rationnels a et b, si $a+b\sqrt{2}=0$ alors a=b=0. Par contraposition, pour tous rationnels a et b, si $(a,b) \neq (0,0)$ alors $a+b\sqrt{2}\neq 0$.
- $1 = 1 + 0 \times \sqrt{2} \in G$.

• Soit $(a, a', b, b') \in \mathbb{Q}^4$ tel que $(a, b) \neq (0, 0)$ et $(a', b') \neq (0, 0)$. D'après la remarque initiale, $a' + b'\sqrt{2} \neq 0$ et $a' - b'\sqrt{2} \neq 0$.

$$\frac{a+b\sqrt{2}}{a'+b'\sqrt{2}} = \frac{\left(a+b\sqrt{2}\right)\left(a'-b'\sqrt{2}\right)}{\left(a'+b'\sqrt{2}\right)\left(a'-b'\sqrt{2}\right)} = \frac{aa'-2bb'}{a'^2-2b'^2} + \frac{ba'-ab'}{a'^2-2b'^2}\sqrt{2}.$$

Puisque $\frac{aa'-2bb'}{a'^2-2b'^2}$ et $\frac{ba'-ab'}{a'^2-2b'^2}$ sont des rationnels, $\frac{a+b\sqrt{2}}{a'+b'\sqrt{2}} \in G$.

On a montré que $G \setminus \{0\}$ est un sous-groupe de (\mathbb{R}^*, \times) et en particulier, $(G \setminus \{0\}, \times)$ est un groupe commutatif.

Finalement, $(G, +, \times)$ est un corps commutatif.

Exercice nº 6

- 1) Soient $a \in \mathbb{Z}$ puis $G = a\mathbb{Z}$.
 - $0 = 0 \times \alpha \in \alpha \mathbb{Z} \text{ et } \alpha \mathbb{Z} \subset \mathbb{Z}.$
 - Soit $(n, m) \in \mathbb{Z}^2$. $an am = a(n m) \in a\mathbb{Z}$.

Donc, $\mathfrak{a}\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.

2) Soit G un sous-groupe de $(\mathbb{Z}, +)$. Si $G = \{0\}$, alors $G = 0\mathbb{Z}$ et G est de la forme voulue.

On suppose dorénavant que G est un sous-groupe de $(\mathbb{Z},+)$ non réduit à $\{0\}$. Il existe dans G un entier relatif non nul \mathfrak{n}_0 . Puisque G est un sous groupe de $(\mathbb{Z},+)$, l'entier $-\mathfrak{n}_0$ est aussi dans G et l'un des deux entiers \mathfrak{n}_0 ou $-\mathfrak{n}_0$ est strictement positif.

Soit alors $A = G \cap \mathbb{Z}_+^*$. A est une partie non vide de \mathbb{N} . A admet donc un plus petit élément que l'on note \mathfrak{a} . \mathfrak{a} est par définition le plus petit entier strictement positif de G.

Montrons alors que $G = \alpha \mathbb{Z}$. Puisque α est dans G, G contient encore $\alpha + \alpha = 2\alpha$, puis $\alpha + \alpha + \alpha = 3\alpha$ et plus généralement tous les $n\alpha$, $n \in \mathbb{N}^*$. G contient aussi les opposés de ces nombres, et puisque G contient également $0 = 0 \times \alpha$, G contient finalement tous les $n\alpha$, $n \in \mathbb{Z}$. On a montré que $\alpha \mathbb{Z} \subset G$.

Réciproquement, soit $\mathfrak n$ un élément de G. La division euclidienne de $\mathfrak n$ par $\mathfrak a$ s'écrit $\mathfrak n = \mathfrak a\mathfrak q + r$ où $\mathfrak q$ et r sont deux entiers relatifs tels que $\mathfrak 0 \leqslant r \leqslant \mathfrak a - 1$ (puisque $\mathfrak a$ est un entier strictement positif, $\mathfrak a - 1$ est un entier positif).

Or, n est dans G et qa est dans G. Donc, r = n - qa est dans $G \cap [0, a - 1] = \{0\}$ (par définition de a) puis $n = qa \in a\mathbb{Z}$. On a ainsi montré l'inclusion contraire et donc $G = a\mathbb{Z}$.

Les sous-groupes de $(\mathbb{Z}, +)$ sont donc les $\mathfrak{a}\mathbb{Z}$ où $\mathfrak{a} \in \mathbb{Z}$.

Exercice nº 7

1) Soit G un sous groupe non nul de $(\mathbb{R}, +)$ ($\{0\} = 0\mathbb{Z}$ est du type voulu).

Il existe dans G un réel non nul x_0 . Puisque G est un sous groupe de $(\mathbb{R}, +)$, le réel $-x_0$ est aussi dans G et l'un des deux réels x_0 ou $-x_0$ est strictement positif. Soit alors $A = G \cap]0, +\infty[$.

D'après ce qui précède, A est une partie non vide et minorée (par 0) de \mathbb{R} . A admet donc une borne inférieure que l'on note \mathfrak{a} .

1er cas. Si a = 0. Montrons dans ce cas que G est dense dans \mathbb{R} (c'est par exemple le cas de $(\mathbb{Q}, +)$).

Soient x un réel et ε un réel strictement positif.

Puisque inf $A = \inf(G \cap]0, +\infty[) = 0$, il existe dans G un élément g tel que $0 < g < \epsilon$. Puis il existe un entier relatif n tel que $ng \leqslant x - \epsilon < (n+1)g$ à savoir $n = \left\lfloor \frac{x - \epsilon}{g} \right\rfloor$.

Soit y = (n+1)g. D'une part, y est dans G (si n+1 = 0, $(n+1)g = 0 \in G$, si n+1 > 0, $(n+1)g = g+g+...+G \in G$ et si n+1 < 0, $(n+1)g = -(-(n+1)g) \in G$) et d'autre part

$$x - \varepsilon < (n+1)q = nq + q < x - \varepsilon + \varepsilon = x$$
.

On a montré que $\forall x \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists y \in G / \ x - \varepsilon < y < x \ \text{et donc } G \ \text{est dense dans } \mathbb{R}.$

2ème cas. Supposons a > 0. Montrons dans ce cas que $G = a\mathbb{Z}$.

Pour cela, montrons tout d'abord que a est dans G.

Mais si $\mathfrak a$ n'est pas élément de G, par définition de $\mathfrak a$, il existe un réel $\mathfrak x$ dans $G\cap \mathfrak a, 2\mathfrak a[$ puis il existe un réel $\mathfrak y$ dans $G\cap \mathfrak a, \mathfrak x[$. Le réel $\mathfrak x-\mathfrak y$ est alors dans $G\cap \mathfrak I\mathfrak a, \mathfrak a[$ ce qui est impossible. Donc $\mathfrak a$ est élément de G.

Montrons alors que $G = \alpha \mathbb{Z}$. Puisque α est dans G, G contient encore $\alpha + \alpha = 2\alpha$, puis $\alpha + \alpha + \alpha = 3\alpha$ et plus

généralement tous les na, $n \in \mathbb{N}^*$. G contient aussi les opposés de ces nombres, et puisque G contient également $0 = 0 \times a$, G contient finalement tous les na, $n \in \mathbb{Z}$. On a montré que $a\mathbb{Z} \subset G$.

Réciproquement, soit x un élément de G et $n = \left\lfloor \frac{x}{a} \right\rfloor$ $(\in \mathbb{Z})$. Alors, $n \leqslant \frac{x}{a} < n+1$ puis $0 \leqslant x-na < a$. Or, x est dans G et na est dans G. Donc, x-na est dans $G \cap [0,a[=\{0\}, \text{puis } x=na \in a\mathbb{Z}.$ On a ainsi montré l'inclusion contraire et donc $G=a\mathbb{Z}$.

- 2) Soit $G = \left\{ a + b\sqrt{2}, \ (a,b) \in \mathbb{Z}^2 \right\}$. Montrons que G est un sous-groupe de $(\mathbb{R},+)$.
 - $G \subset \mathbb{R}$ et $0 = 0 + 0 \times \sqrt{2} \in G$.
 - Soit $(a, a', b, b') \in \mathbb{Z}^4$.

$$\left(a+b\sqrt{2}\right)-\left(a'+b'\sqrt{2}\right)=(a-a')+(b-b')\sqrt{2},$$

$$\mathrm{avec}\ \mathfrak{a}-\mathfrak{a}'\in\mathbb{Z}\ \mathrm{et}\ \mathfrak{b}-\mathfrak{b}'\in\mathbb{Z}.\ \mathrm{Donc}\ \left(\mathfrak{a}+\mathfrak{b}\sqrt{2}\right)-\left(\mathfrak{a}'+\mathfrak{b}'\sqrt{2}\right)\in\mathsf{G}.$$

On a montré que G est un sous-groupe de $(\mathbb{R},+)$. Maintenant, la formule du binôme de NEWTON montre que, pour chaque entier naturel n, $\left(\sqrt{2}-1\right)^n\in G\cap]0,+\infty[$. Or, $0<\sqrt{2}-1<1$ et donc $\lim_{n\to +\infty}\left(\sqrt{2}-1\right)^n=0$. Ceci montre que $\inf(G\cap]0;+\infty[)=0$ et donc que G est dense dans \mathbb{R} .

- 3) a) Soit f une application de \mathbb{R} dans lui-même et $G_f = \{T \in \mathbb{R} / \ \forall x \in \mathbb{R}, \ f(x+T) = f(x)\}$. Montrons que G_f est un sous-groupe de $(\mathbb{R}, +)$.
 - 0 est élément de G_f (et c'est même le seul élément de G_f si f n'est pas périodique) et donc $G \neq \emptyset$.
 - \bullet De plus, si T et T' sont deux éléments de G alors, pour tout réel x,

$$f(x + (T - T')) = f((x - T') + T) = f(x - T') = f(x - T' + T') = f(x),$$

et T - T' est encore un élément de G.

On a montré que G_f est un sous groupe de $(\mathbb{R},+)$. Le groupe des périodes d'une fonction est donc soit de la forme $\mathfrak{a}\mathbb{Z}$, $\mathfrak{a}\in\mathbb{R}$, soit dense dans \mathbb{R} .

b) Soit f une application de \mathbb{R} dans \mathbb{R} admettant 1 et $\sqrt{2}$ pour périodes. G_f contient encore tous les nombres de la forme $a + b\sqrt{2}$, $(a,b) \in \mathbb{Z}^2$ et est donc dense dans \mathbb{R} .

Montrons que si de plus f est continue sur \mathbb{R} , f est constante.

Soit x un réel quelconque. Soit T une période strictement positive de f.

Il existe un entier relatif n tel que $nT \le x < (n+1)T$ à savoir $n = \left\lfloor \frac{x}{T} \right\rfloor$. Avec cet entier n, on a bien f(x) = f(x - nT) avec $0 \le x - nT < T$.

Puisque G_f est dense dans \mathbb{R} , pour tout $N \in \mathbb{N}^*$, il existe dans G_f un réel T_N tel que $0 < T_N < \frac{1}{N}$ ce qui implique que $\lim_{N \to +\infty} T_N = 0$.

Mais alors, puisque $0 < x - \left\lfloor \frac{x}{T_N} \right\rfloor T_N < T_N$, on a aussi $\lim_{N \to +\infty} x - \left\lfloor \frac{x}{T_N} \right\rfloor T_N = 0$. Or, la suite $\left(f \left(x - \left\lfloor \frac{x}{T_N} \right\rfloor T_N \right) \right)_{N \geqslant 0}$ est constante (égale à (f(x))) et donc convergente. On en déduit que

$$\begin{split} f(x) &= \lim_{N \to +\infty} f\left(x - \left\lfloor \frac{x}{T_N} \right\rfloor T_N \right) = f\left(\lim_{N \to +\infty} \left(x - \left\lfloor \frac{x}{T_N} \right\rfloor T_N \right)\right) \quad \text{(par continuit\'e de f en 0)} \\ &= f(0) \end{split}$$

ce qu'il fallait démontrer.

- c) Soit r un nombre rationnel. Soit x un réel.
 - Si x est un rationnel, alors x + r est un rationnel et donc $\chi_{\mathbb{Q}}(x + r) = 1 = \chi_{\mathbb{Q}}(x)$,
 - Si x est un irrationnel, alors x + r est un irrationnel (dans le cas contraire, x = (x + r) r serait un rationnel ce qui n'est pas) et donc $\chi_{\mathbb{Q}}(x + r) = 0 = \chi_{\mathbb{Q}}(x)$.

Ainsi, pour tout réel x, $\chi_{\mathbb{Q}}(x+r) = \chi_{\mathbb{Q}}(x)$. Tout rationnel est période de $\chi_{\mathbb{Q}}$.

Soit s un nombre irrationnel. $\chi_{\mathbb{Q}}(0+s)=\chi_{\mathbb{Q}}(s)=0$ et $\chi_{\mathbb{Q}}(0)=1$. Donc, s n'est pas une période de $\chi_{\mathbb{Q}}$.

Finalement, le groupe des périodes de $\chi_{\mathbb{Q}}$ est \mathbb{Q} . Ce groupe des périodes est dense dans \mathbb{R} mais n'est pas égal à \mathbb{R} .