Circuits, Spring 2014 Notes

Zack Garza

April 2, 2014

Contents

1	LRO	${\mathbb C}$															2	2								
	1.1	Inductors																							4	2
	1.2	Capacitors																								3

Chapter 1

LRC

1.1 Inductors

Current can not change instantaneously.

Figure 1.1: Inductor Sign Conventions

$$v = L \frac{di}{dt}$$
$$it = \frac{1}{L} \int_0^t v dt + i(t_0)$$

Power in an inductor:

$$p = Li\frac{di}{dt}$$

Energy in an inductor:

$$w = \frac{1}{2}Li^2$$

Figure 1.2: Capacitor Sign Conventions

1.2 Capacitors

Voltage can not change instantaneously.

$$i = C \frac{dv}{dt}$$

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i dt + v(t_0)$$

$$p = Cv \frac{dv}{dt}$$

$$w = \frac{1}{2} Cv^2$$