Южный федеральный университет Институт математики, механики и компьютерных наук им. И. И. Воровича направление подготовки «Прикладная математика и информатика»

Работа с модулем turtle¹

Библиотека turtle позволяет рисовать на экране простые рисунки. Рисование осуществляется путем перемещения по экрану черепашки, управление которой осуществляется при помощи инструкций Python.

Программу, использующую модуль turtle надо запускать в графической оболочке. Все программы, работающие с черепашкой, должны начинаться с команд import turtle и turtle.reset(), а заканчиваться строкой turtle.mainloop() или done() (оставить графическое окно на экране после выполнения программы) или turtle.exitonclick() (закрытие графического окна по щелчку мыши).

Основные команды черепашки:

команда	действие черепашки
$forward(X) \mid fd()$	пройти вперёд на X пикселей
$backward(X) \mid bk() \mid back()$	пройти назад на Х пикселей
$left(X) \mid lt()$	повернуть налево на Х градусов
$right(X) \mid rt()$	повернуть направо на Х градусов
circle(r)	нарисовать окружность радиуса $ r $, центр которой находится слева
	от черепашки, если $r < 0$ и справа, если $r > 0$
circle(r, a)	нарисовать дугу радиуса $ r $ и градусной мерой a . Дуга рисуется
	против часовой стрелки, если $r>0$ и по часовой стрелке, если $r<0$
$penup() \mid pu() \mid up()$	не оставлять след по пути движения (по умолчанию включено)
$pendown() \mid pd() \mid down()$	оставлять след по пути движения
shape(X)	изменить значок черепашки. Возможные значения:
	'arrow', 'turtle', 'circle', 'square', 'triangle', 'classic'
reset()	возвращение черепашки в начальное положение
stamp()	нарисовать копию черепахи в текущем месте
color()	установить цвет
begin_fill()	вызывыается перед рисованием фигуры,
	которую нужно закрасить
end_fill()	вызывается после окончания рисования фигуры
width() pensize()	толщина линии
speed(X)	изменение скорости движения черепахи. Х может быть строкой
	или числом от 0.5 до 10. Возможные варианты: 'fastest' или 0,
	'fast' или 10, 'normal' или 6, 'slow' или 3, 'slowest' или 1
goto(x, y)	переместить черепашку в точку (х, у)
clear()	очистка экрана
write(text)	вывести text на экран в точке нахождения черепашки

Co списком всех команд можно ознакомиться на docs.python.org

 $^{^{1}}$ Разработано А.М. Филимоновой (кафедра ВМи
МФ мехмата ЮФУ)

Пример 1. Рисование геометрических фигур

```
from turtle import *
t=Turtle()
t.screen.bgcolor("black") # смена цвета фона
t.color("red")
                         # смена цвета черепашки
t.hideturtle()
                          # черепашка невидима
\operatorname{def} \operatorname{change\_pos}(x,y): # функция, двигающая черепашку на угол x и расстояние у
    t.up()
    t.right(x)
    t.forward(y)
    t.right(x)
    t.pendown()
                           # функция рисования квадрата
def square(length):
    for steps in range(4):
        t.fd(length)
        t.left(90)
def slanted_rectangle(length, width, angle):
    t.setheading(angle)
                           # функция рисования прямоугольника
    for steps in range(2):
        t.fd(width)
        t.left(90)
        t.fd(length)
        t.left(90)
def triangle(length,angle=120):
    for steps in range(3):# функция рисования треугольника
        t.fd(length)
        t.left(angle)
def star():
                           # функция рисования звезды
    for i in range(5):
        t.forward(150)
        t.right(144)
slanted_rectangle(length=200,angle=45,width=100)
change_pos(90, 300)
t.color("blue")
square(100)
change_pos(90, 450)
t.color("green")
t.begin_fill()
                           # нарисуем закрашенную фигуру
triangle(120)
t.end_fill()
change_pos(-180, 100)
t.color("white")
t.circle(50,180)
                           # нарисуем полукруг
```

```
change_pos(90, -500)
t.color("purple")
t.write("Turtle is cool! ",move=True,align="center",font=("Freestyle Script",50,"normal"))
change_pos(500, -400)
star()
mainloop()
```

Пример 2. Случайное движение черепашки

```
import random
from turtle import *
t=Turtle()
t.screen.bgcolor("black")

def random_drawing(turns,distance):
    for x in range(turns):
        right=t.right(random.randint(0,360))
        left=t.left(random.randint(0,360))
        t.color(random.choice(["blue","red","green", "purple", "white"]))
        random.choice([right,left])
        t.fd(distance)

random_drawing(100,50)
```

Пример 3. Рисование фракталов

```
from turtle import *
def tree(sz, level, angle):
    if level > 0:
        pencolor(0, 255//level, 0) # установим какой-то оттенок зелёного
        fd(sz) # движение вперед на sz пикселей
        rt(angle) #
        tree(0.8 * sz, level-1, angle) # отрисовка правого поддерева
        pencolor(0, 255//level, 0)
        lt(2 * angle) # поворот налево на angle градусов
        tree(0.8 * sz, level-1, angle) # отрисовка левого поддерева
        pencolor(0, 255//level, 0)
        rt(angle) # поворот направо на angle градусов
        fd(-sz) # движение вперед на -sz пикселей (т.е. назад)
speed("fastest") # установка скорости движения черепашки
rt(-90) # поворот на 90 градусов влево (направление движения вверх)
angle = 50 # угол отклонения при отрисовке
size = 80 # начальная длина одной "ветки"
rec_level = 7 # глубина рекурсии
tree(size, rec_level, angle)
```

Задачи для самостоятельного решения.

- 1. Нарисуйте 10 вложенных друг в друга квадратов. Рисование одного квадрата оформить в виде функции.
- 2. Нарисуйте квадратную спираль.
- 3. Доработайте **Пример 1** так, чтобы случайная фигура появлялась в случайном месте
- 4. Используя Пример 4, нарисуйте разноцветный лес.
- 5. Нарисуйте что хотите :)