ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 25 giugno 2012

Esercizio A

$R_i = 3.4 \text{ k}\Omega$	$R_S = 1 \text{ k}\Omega$
$R_1 = 6.65 \text{ k }\Omega$	$R_D = 1.5 \text{ k}\Omega$
$R_C = 1.8 \text{ k}\Omega$	$R_L = 3 \text{ k}\Omega$
$R_3 = 100 \Omega$	C ₄ = 47 μF
$R_4 = 400 \Omega$	C ₆ = 200 nF
$R_5 = 900 \Omega$	$C_L = 3.5 \text{ nF}$
$R_6 = 1100 \Omega$	$V_{\rm CC} = 15 \text{ V}$

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$. Q_2 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.25 mA/V² e $V_T = -1$ V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_2 in modo che, in condizioni di riposo, la tensione di drain di Q_2 sia 6 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_2 = 1138.57 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_4 , C_6 e C_L possono essere considerati dei corto circuiti. (R: $V_U/V_i = 0.748$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z4} = 8.4657$ Hz; $f_{p4} = 37.052$ Hz; $f_{z6} = 1607.63$ Hz; $f_{p6} = 1018.16$ Hz; $f_{zL} = 0$ Hz $f_{pL} = 10105$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{A} \left(\overline{BC} + D(\overline{AC}) \right) + D \left(\overline{\overline{AB}} + \left(\overline{B+C} \right) \right)$$

con in totale, non più di 10 transistori e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i 10 transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1$ V. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 2142.28 Hz)

IRZ = IRI - IR - IB = 1.433 mA => RZ = VB = 1138.57 R

 $I_{R1} = V_{CC} - V_{B} = 15 - 1.7 = 2 \text{ mA}$ $R_1 = 6.65 \text{ K}$

 $I_{R} = \frac{V_B}{R} = \frac{1.4}{3.4\kappa} = 0.5 \text{ m/A}$

$$R_{1} = 4.8 K \Omega$$

$$R_{1} = 4.8 K \Omega$$

$$R_{2} = 9m = 2 K |V_{65} - V_{7}| = 2 \frac{mA}{V}$$

$$R_{1} = 4.8 K \Omega$$

$$R_{3} = 4.8 K \Omega$$

$$R_{4} = 4.8 K \Omega$$

$$R_{5} = 4.8 K \Omega$$

$$R_{6} = 4.8 K \Omega$$

$$R_{7} = 4.8 K \Omega$$

$$R_{8} = 4.8 K \Omega$$

RellRe

2.71 × 10-2

Rv4 = R411 [R3+ [(R:11R211R2)+ hie]] = 8000000 10 31.393 12 (olcolo del plotean Ap PC4 = 37.052 HZ Ap= AcB f26 = 0.119 (-18.489. 42c4 = 1 = 8.4657 HZ (8): Rv4= R611 (R5+Rc)= 781,58 S fPC6 = 1 = 1018.16 H3 126 = 1 = 1607.63 HZ CLI: Ruce = Ro+Re = 4.5K2 fpu= 1 = 10105 Hz $42\alpha = 6$ 420 (0.448)2.52 13 0.1 1 - 18.43 AB (0.113) - 50 2018/de 20 ABIL -40 20 10 xc

$$R_{1} = 1 k 2 \qquad R_{3} = 2 k 2$$

$$R_{4} = 9 k 2$$

$$R_{6} = 1 k 2$$

$$C = 1 \mu F$$

$$|V_{TH}| = \frac{2}{3} V_{CC}$$

$$|V_{TH}| = \frac{2}{3} V_{CC}$$

$$|V_{TH}| = \frac{2}{3} V_{CC}$$

$$|V_{CC}| = V_{CC} + (V_i - V_C)e^{-\frac{4}{C_1}}$$

$$|V_{CC}| = \frac{4}{3} V_{CC}$$

$$|V_{CC}|$$

$$\frac{I_{R12} \ V_{CC} - \frac{2}{3} V_{CC}}{R_{i}} = \frac{\frac{1}{3} V_{CC}}{1 \kappa R} = 1.6 \text{ mb} \left(\frac{5}{3} \times 10^{-3} \text{ d} \right)$$

$$V_{conn} = \frac{2}{3}V_{cc} - R_2 T_{e2} = 2.937 V$$

$$V_{conn} = V_{k} + (V_{i} - V_{k})e^{-\frac{t}{\epsilon_{k}}} = F_{k} - \epsilon_{k} \ln\left[\frac{V_{i} - V_{k}}{V_{conn} - V_{k}}\right] =$$

$$\overline{A}$$
 $\left(\overline{BC} + D(\overline{AC})\right) + D(\overline{AB} + (\overline{B+C})) =$

$$= \overline{A} \left(\overline{B} + \overline{C} + D \overline{A} + D \overline{C} \right) + D \left(A + \overline{B} + \overline{B} \overline{C} \right) =$$

$$\frac{1}{3n} + \frac{1}{x} = \frac{1}{n}$$

$$\frac{1}{x} = \frac{1}{n} - \frac{1}{3n} = \frac{3 \cdot 1}{3n} = \frac{2}{3n}$$

$$\Rightarrow x = \frac{3}{2}n$$