BIPOLAR JUNCTION TRANSISTORS (BJTs)

INTRODUCTION

- What is transistor?
 - A three-terminal device whose output current, voltage and/or power are controlled by its input.
- Commonly used in audio application as an amplifier, in switching application as a switch and in power supply voltage and current regulator circuit.
- 2 basic transistor types: BJT and FET
- These two transistor differ in their operating characteristic and their internal construction.

OBJECTIVES

- $\,\succ\,$ Describe the basic structure of the bipolar junction transistor (BJT)
- $\ensuremath{\succ}$ Explain and analyze basic transistor bias and operation
- > Discuss the parameters and characteristics of a transistor and how they apply to transistor circuits

LECTURE OUTLINE

- □1. BJT structure
- □2. Basic BJT operations
- □3. BJT Characteristics and Parameters
- □4. BJT as an amplifier
- □5. BJT as a switch
- □6. Troubleshooting
- **□**Summary

1. BJT STRUCTURE

1. BJT STRUCTURE

- \succ The BJT is constructed with three doped semiconductor regions separated by two pn junctions.
- ➤ The three region are called emitter (E),base (B) and collector (C)
- ➤The BJT have 2 types:
 - 1. Two n region separate by a p region called npn
 - 2. Two p region separated by a n region called pnp
- \succ The pn junction joining the base region and the emitter region is called the *base-emiter* junction
- >The pn junction joining the base region and the collector region is call *base-collector* junction
- >The base region is lightly doped and very thin compared to the heavily doped emitter and the moderately doped collector region

1. BJT STRUCTURE

- BJT schematic symbol
- The arrow on schematic symbol is important because:
 - Identify the component terminal

The arrow is always drawn on the emitter terminal. The terminal opposite emitter is collector and the center terminal is base.

- The arrow always points toward n-type material

If the arrow point toward base, transistor is pnp type. If it points toward emitter, transistor is npn type.

1. BJT STRUCTURE

Transistor terminal current

1. BJT STRUCTURE

Transistor Currents:

ightharpoonup The directions of the currents in npn transistor and pnp transistor are shown in the figure.

 \succ The emitter current (IE) is the sum of the collector current (Ic) and the base current (IB)

$$I_E = I_B + I_C$$

≽IB << IE or Ic

➤The capital letter – dc value

>Transistor is a current-controlled device - the value of collector and emitter currents are determined by the value of base current.

>An increase or decrease in value of I_B causes similar change in values of I_C and I_E .

$$I_C = \beta_{DC} I_B$$

Current gain $(\beta) \rightarrow$ factor $I_C = \beta_{DC} I_B$ by which current indicates from base of transistor to its collector. by which current increases

1. BJT STRUCTURE

- Transistor Voltages:
- V_{CC} collector supply voltage. This is a power supply voltage applied directly to collector of transistor.
- \succ V_{BB} base supply voltage. this is dc voltage used to bias base of transistor.
- V_{EE} emitter supply voltage. dc biasing voltage and in many cases, VEE is simply a ground connection.

1. BJT STRUCTURE

- Transistor Voltages:
- V_C dc voltage measured from collector terminal of component to ground
- V_B dc voltage measured from base terminal to ground.
- $V_{\scriptscriptstyle F}$ dc voltage measured from emitter terminal to ground.

1. BJT STRUCTURE

- Transistor Voltages:
- V_{CE} dc voltage measured from collector to emitter terminal of transistor.
- V_{BE} dc voltage measured from base to emitter terminal of transistor.
- V_{CB} dc voltage measured from collector to base terminal of transistor.

2. BJT OPERATION

2. BJT OPERATION

- To operate the transistor properly, the two pn junction must be correctly biased with external dc voltages.
- The figure shows the proper bias arrangement for both *npn* and *pnp* transistor for its operation as an amplifier.

2. BJT OPERATION

- Transistor is made of 3 separate semiconductor materials that joined together to form two pn junction.
- Point at which emitter and base are joined forms a single pn junction → base-emitter junction
- Collector-base junction → point where base and collector meet.

