	EE 4009 Mechatronics Profibus
)_	OP Communications Profile
	Designed for the efficient exchange of data at
	the field.
	1 Bus Access
	> Token passing between master of master-slave procedure.
	→ Mono-master or multi-master system is possible
	-> Max of 126 devices per bus
	TELL, U TEC GEORGES PA DOS
	@ Communications
	-> PaPor multicast
)	-> Cyclic moster/slove -> user data communication
	gette metale route - took death communication
	3 Operating States
	-> Operate: Cyclic transmission of I/O data
	-> Clear: IlP read, OIP in fail-safe mode
-	
	-> Stop: Nouser data, diagnostics/parameterization
	4 Synchronisation
	-> Sync. mode -> Olfs synchronise
	-> Fleeze mode -> IlPs synchronise
)—	rieute mode > IIIs synchrouse
	5 Functions
	-> Cyclic user data transfer
	-> Dynamic activation deactivation of individual slaves
	-> Diagnosties -> 3 levels
	-> Synchronisation of IIP, OIP date
-	-> Address assignment for slaves (optional) via the bus.
)—	

Robot Centred Cell

- -> Robot positioned at centre of cell
- > Machines serviced by the Robot surround it
- > Ensures god utilisation of the robot:
 - · Dervicing multiple machines
 - · Raxely idle
- → Difficult part delivery: parts must be supplied et a discrete location
- -> One typical application is die costing

In-Line Cell

Intermittent

- -> Conveyor stops when part is in front of each robot
- > Robot must register the part location:
 - Requires either en observer or accurate
 - control M part positioning
- > Robot complexity is reduced as the part is stationary

Continuous Cell

- -> Part moves at a constant velocity while robot performs its task
- > Pert registering is difficult of is accomplished in one of two ways:
 - · The entire robot moves clong with the part at the same velocity (using moving baseline tracking) - This requires careful mechanical layout of
 - collision avoidence control
 - · The base of the robot is stationery of the tool is controlled to move at the part velocity - Requires complex control

Non-Synchronous

- -> Optimised use of Resources: Each part moves independently from work cell to work cell -> Requires a more complicated conveyor system but less complex
- -> Widely used in the automotive industry

Mobile Robot Cell

- -> Robot moves to the past or machine on an overhead or floor-mounted rail
- -> Costly to set up
- -> Robot can service a number of cells
- -> Overhead rail system saves floor space