

Arduino-basic [wk04]

LED – 1

R,G,B,Y & RGB

Learn how to code Arduino from scratch

Comsi, INJE University

2nd semester, 2018

Email: chaos21c@gmail.com

My ID (ARnn)

성명	ID
백동진	AR01
김도훈	AR02
김희찬	AR03
류재현	AR04
문민규	AR05
박진석	AR06
이승현	AR07
이승협	AR08
이후정	AR09
최민구	AR10

김다영	AR11
공진영	AR12
김해인	AR13
류성현	AR14
류재환	AR15
박상현	AR16
박해주	AR17
백지혜	AR18
송원식	AR19
신송주	AR20
윤지훈	AR21
정은성	AR22
백지혜 송원식 신송주 윤지훈	AR18 AR19 AR20 AR21

[Review]

- ◆ [wk03]
- > Arduino LCD
- Complete your project
- Submit file: ARnn_Rpt02.zip

wk03: Practice-01: ARnn_Rpt02.zip

- [Target of this week]
 - Complete your works
 - Save your outcomes and compress all.

```
제출파일명 : ARnn_Rpt02.zip
```

- 압축할 파일들

- ① ARnn_period.ino
- 2 ARnn_number.ino
- 3 ARnn_LCD.fzz
- 4 ARnn_LCD_hello.png
- **5** Arnn_LCD.ino

Email: <u>chaos21c@gmail.com</u> [제목: id, 이름 (수정)]

2. Serial comm.

monitor &

plotter

2. Serial comm.

시리얼 통신

- 2.1 Arduino에서 컴퓨터로 데이터 전송하기
- 2.2 변수 유형별로 컴퓨터에 전송하기
- 2.3 Arduino에서 시리얼 통신을 이용하여 데이터 수신하기

3. LCD

Liquid Crystal Display

핀에 직접 연결 7 핀

> l²C 통신 2 핀

얇은 액정판 아래 조명을 비추는 장치로서 액정판의 전류 흐름을 제어하여 문자나 그림을 표시

3. LCD

Liquid crystal display

- 3.1 입출력 핀을 이용하여 LCD 모듈에 표시하기
- 3.2 I²C를 이용한 LCD 출력

(pin-4, 6, 11,12,13,14) 3.1.5 데이터 입력 초기화

Pin 1 to Arduino GND

Pin 2 to Arduino 5V

Pin 3 to wiper

Pin 4 to Arduino pin D12

Pin 5 to Arduino GND

Pin 6 to Arduino pin D11

Pin 11 to Arduino pin D5

Pin 12 to Arduino pin D4

Pin 13 to Arduino pin D3

Pin 14 to Arduino pin D2

Pin 15 to +5V

Pin 16 to GND

3.2 I²C를 이용한 LCD 출력

I²C(^{아이스케어드시}, Inter-Integrated Circuit)는 필립스에서 개발한 직렬 버스이다. 마더보드, 임베디드 시스템, 휴대 전화 등에 저속의 주변 기기를 연결하기 위해 사용된다.

I²C 는 <u>물업 저항</u>이 연결된 직렬 데이터(SDA)와 직렬 클럭(SCL)이라는 두 개의 양 방향 오픈 <u>컬렉터</u> 라인을 사용한다. 최대 전압은 +5 V 이며, 일반적으로 +3.3 V 시스템이 사용되지만 다른 전압도 가능하다.

https://ko.wikipedia.org/wiki/I%C2%B2C

http://www.ifuturetech.org/product/16x2-lcd-i2c-lcd/

3.2.6 I²C를 이용한 LCD 출력

EX 3.2 I²C를 이용한 LCD 출력 (3/3)

- 실습 결과 1. Arduino LCD 표시 후 백라이트가 2회 점멸한다.
 - 2. 시리얼 모니터를 실행 시킨 후 메시지를 입력하여 보자. → "Hello ARnn"
 - 3. 메시지가 LCD에 출력되는지를 확인해 보자.

Take a photo of LCD screen.

Save photo as ARnn_LCD_hello.png

4. LED

Light Emitting Diode

LED (Light Emitting Diode)

- ✔ 전기 신호를 빛으로 출력하는 반도체 소자
- ✓ 고효율, 반영구적 수명
- ✔ 가정용 실내등, 산업용 특수등, 자동차용 전조등 및 실내등에 사용

Polarity of LED

Polarity of Diode and LED

Find the longer leg, which should indicate the positive, anode pin.

https://learn.sparkfun.com/tutorials/polarity/diode-and-led-polarity

4.1 LED control

4 .1 LED 교차 점멸

4.1.1 LED control - 교차 점멸

EX 4.1 LED 교차 점멸 (1/3)

실습목표 두 개의 LED를 0.1초 간격으로 교차하여 점멸시키자.

Hardware

4.1.2 LED control - 교차 점멸

EX 4.1 LED 교차 점멸 (2/3)

Commands

• pinMode(핀번호, 설정)

핀의 입출력 모드를 설정한다. '핀번호' 에는 설정하고자 하는 핀의 번호와 '설정'에는 입력으로 사용하기 위해선 'INPUT', 출력으로 사용하기 위해선 'OUTPUT', 입력이며 풀업 사용시 'INPUT_PULLUP'을 설정한다.

• digitalWrite(핀번호, 값)

핀에 디지털 출력 (High or Low) 을 한다. '핀번호' 에는 출력하고자 하는 핀의 번호를, '값'에는 'HIGH' 혹은 'LOW' 를 설정하여 High 혹은 Low 출력을 한다.

Sketch 구성

- 1. LED의 핀 번호를 설정한다.
 - 2. setup()에서는 LED 출력으로 사용할 핀을 출력핀으로 설정한다.
 - 3. loop()에서는 하나의 LED를 켠 후 일정시간이 지난 후에 소등하고, 다른 LED를 켠다.

4.1.3 LED control - 교차 점멸

EX 4.1 LED 교차 점멸 (3/3)

실습 결과 LED A와 B가 0.1초 단위로 교차하며 점멸한다.

delay = 400 msec

delay = 500 msec

응용 문제 점멸 주기가 0.1초부터 2초로 0.1초 단위로 증가하였다가 다시 반대로 2초부터 0.1초까지 감소하는 동작을 반복하는 스케치를 작성해 보자. (hint: delay 명령어의 괄호 안의 숫자를 증감시킨다.)

 delay = 1600 msec
 delay = 500 msec

 delay = 1700 msec
 delay = 400 msec

 delay = 1800 msec
 delay = 300 msec

 delay = 1900 msec
 delay = 200 msec

 delay = 1900 msec
 delay = 100 msec

 delay = 1800 msec
 delay = 200 msec

 delay = 1800 msec
 delay = 300 msec

 delay = 300 msec
 delay = 300 msec

delay = 1700 msec

delay = 1600 msec

4.1.4 LED control - 교차 점멸 (code)

```
ex_4_1
 1 /*
   예제 4.1
   LED 점멸
 4 \times /
6 const int ledA
 7 const int TedB
                     = 5:
 8
9 void setup()
10 |{
     pinMode(ledA, OUTPUT);
     pinMode(ledB, OUTPUT);
12
13|}
14
15 void loop()
16 |
     digitalWrite(ledA,HIGH);
17 l
18
     digitalWrite(ledB,LOW);
     delay(100);
19
     digitalWrite(ledA,LOW);
20
21
     digitalWrite(ledB,HIGH);
22
    delay(100);
23|}
```

```
6 const int ledA = 3;
7 const int ledB = 5;
8
9 int number = 1;
10 boolean flag = true;
```

```
12 void setup()
13 {
14    Serial.begin(9600);
15    pinMode(ledA, OUTPUT);
16    pinMode(ledB, OUTPUT);
17 }
```

```
완성된 스케치 code를
ARnn_2led.ino
로 저장해서 제출.
```

```
19 void loop()
21 i digitalWrite(ledA, HIGH);
22 i digitalWrite(ledB, LOW);
23 delay(100 * number);
24 digitalWrite(ledA, LOW);
25 digitalWrite(ledB, HIGH);
   Serial.print("delay = ");
   Serial.print(100 * number);
    Serial.println(" msec");
   delay(100 * number);
30
  if (flag) {
      number++;
33 i } else {
      number--;
341
      Fill in your code!
39
  else if (number == 1) {
43 }
```


4.2 LED control - 밝기 조절

밝기 조절 : 디밍 (Dimming)

- ✓ LED에 입력되는 전력은 PWM (Pulse Width Modulation)을 이용하여 조절.
- ✓ PWM : 고속의 스위칭으로 High와 Low 신호의 비율을 조절하여 LED의 밝기, 모터의 회전 등을 조절하는 방법
- ✓ Arduino에서는 analogWrite() 명령어로 구현
- ✓ Arduino UNO의 경우 3, 5, 6, 9, 10, 11 번 핀이 PWM을 지원한다.

4.2.1 LED control - 밝기 조절

PWM (Pulse Width Modulation)

Using <u>analogWrite(pin, pwm_value)</u> function in fading an LED off and on. AnalogWrite uses <u>pulse width modulation (PWM)</u>, turning a digital pin on and off very quickly with different ratio between on and off, to create a fading effect.

A call to <u>analogWrite()</u> is on a scale of **0 - 255**, such that analogWrite(255) requests a 100% duty cycle (always on), and analogWrite(127) is a 50% duty cycle (on half the time)

PWM frequency = 500 Hz

https://www.arduino.cc/en/Tutorial/PWM

4.2.2 LED control - 밝기 조절

EX 4.2 LED 밝기 조절 (1/2)

- 실습목표
- 1. 두 개의 LED의 밝기를 조절하자.
- 2. 각각의 LED가 교차하며 밝아졌다 어두워 졌다를 반복하도록 하자.

Hardware

- 1. 청색과 적색 LED의 Anode핀을 Arduino의 3번 5번 핀에 연결한다.
- 2. Cathode핀에 330Ω저항을 연결하여 저항의 반대쪽은 Arduino의 GND에 연결한다.
- 3. LED가 연결된 핀에 HIGH신호가 출력될 때 LED가 점등된다.

4.2.3 LED control - 밝기 조절

EX 4.2 LED 밝기 조절 (2/2)

Commands · analogWrite(핀번호, 값)

정해진 핀에 아날로그 출력을 한다. '값' 에는 0~255의 값을 넣는다.

Sketch 구성 1. LED의 핀 번호를 설정한다.

2. setup()에서는 LED 출력으로 사용할 핀을 출력핀으로 설정한다.

3. 밝기를 저장할 변수를 설정한다.

4. 하나의 LED가 밝아질 때 다른 LED는 어두워져야 하므로 이를 조절할 변수를 설정한다.

5. loop()에서는 밝기와 밝기 변수 증감을 위한 변수를 조절하여 두 개의 LED를 교차 점멸시키는 동작을 반복한다.

실습 결과 LED A와 B가 밝기가 변화하며 점멸한다.

응용 문제 1. 네개의 다른 색깔의 LED를 Arduino에 연결한다.

2. 네개의 LED가 순서대로 디밍하는 스케치를 작성해보자.

4.2.4 LED control - 밝기 조절 (code)

```
ex_4_2_start
2 에제 4.2
3 LED 밝기 조절
6 const int ledA = 3; //LED A를 3번핀에 연결
                        //LED B를 5번핀에 연결
7 const int ledB = 5;
₹ int brightness = 0;
                      //밝기를 조절하기 위한 변수

¶ int increment = 1;

                      //밝기 변수 증감을 위한 변수
11 void setup()
1<mark>1</mark>// analogWrite 핀에는 별도의 설정이 불필요하다
14|}
15
16 void loop()
18 <mark>analogWrite(ledA,brightness); // LED A 밝기 조절</mark>
19 <mark>! analogWrite</mark>(ledB,255-brightness); i// LED B 밝기 조절
20
  !brightness = brightness + increment; // 밝기 조절
22 : if((brightness >= 255)||(brightness <= 0)) increment = -increment; i// 밝기 변수 증감 방향 변경
   delay(10); // 0.01 초간 지연
24|}
```


4.2.5 LED control - DIY

- DIY. 1. 네개의 다른 색깔의 LED를 Arduino에 연결한다.
 - 2. 네개의 LED가 순서대로 디밍하는 스케치를 작성해보자.

4.2.5 LED control - DIY

DIY. 1. 네개의 다른 색깔의 LED를 Arduino에 연결한다. (pwm pin: 3,5,6,9)

완성된 회로를 ARnn_4led.fzz

로 저장해서 제출.

4.2.5 LED control - DIY: code-1

ARnn 4 led start.ino

```
1 /*
2 Dimming 4 leds
3 */
4
5 int ledR = 3;  // LED connected to digital pin 3
6 int ledG = 5;
7 int ledB = 6;
8 int ledY = 9;
9 int dimTime = 20;
11
12 void setup() {
13  // nothing happens in setup
14 }
```

```
16 void loop() {
17 ! // fade in from min to max in increments of 5 points:
18 | for(int fadeYalue = 0 ; fadeYalue <= 255; fadeYalue +=5) {
      // sets the value (range from 0 to 255):
19|
      analogWrite(ledR, fadeValue);
      // wait for 30 milliseconds to see the dimming effect
      delay(dimTime);
23 |
24
25 1/ fade out from max to min in increments of 5 points:
26 | for(int fadeValue = 255 ; fadeValue >= 0; fadeValue -=5) {
     // sets the value (range from 0 to 255):
     analogWrite(ledR, fadeValue);
29 li
     // wait for 30 milliseconds to see the dimming effect
30
      delay(dimTime);
31
        --- 각 led에 동일한 dimming code 적용
33 for(int fadeValue = 0; fadeValue <= 255; fadeValue +=5) {
      // sets the value (range from 0 to 255):
34
35
      analogWrite(ledG, fadeValue);
36
      // wait for 30 milliseconds to see the dimming effect
37
      delay(dimTime);
```


4.2.5 LED control - DIY: code-2

```
1 /*
2 Dimming 4 leds
3 */
4
5 int ledR = 3;  // LED connected to digital pin 3
6 int ledG = 5;
7 int ledB = 6;
8 int ledY = 9;
9
10 int dimTime = 20;
11
12 void setup() {
13 // nothing happens in setup
14 }
```

완성된 스케치 code를
ARnn_4led.ino
로 저장해서 제출.

```
16 void loop() {
   // fade ledR
    dimLed(ledR);
    // fade ledG
                    각 led에 동일한 dimming code 적용
    dimLed(ledG);
    // fade ledB
                    dimLed(int led) 반복 사용
    dimLed(ledB);
    // fade ledY
    dimLed(TedY);
26 void dimLed(int led) {
     // fade in from min to max in increments of 5 points:
    for(int fadeValue = 0 ; fadeValue <= 255; fadeValue +=5) {</pre>
     // sets the value (range from 0 to 255):
     analogWrite(led, fadeValue);
     // wait for 20 milliseconds to see the dimming effect
      delay(dimTime);
33
    // fade out from max to min in increments of 5 points:
    for(int fadeValue = 255 ; fadeValue >= 0; fadeValue -=5) {
    // sets the value (range from 0 to 255):
37
     analogWrite(led, fadeValue);
     // wait for 20 milliseconds to see the dimming effect
      delay(dimTime);
40
```


4.3 RGB LED control - 색상 조절

RGB LED

- ✓ 빛의 삼원색인 빨강(Red), 초록(Green), 파랑(Blue)빛을 조절하여 다양한 색을 표현하는 LED.
- ✓ 각각의 색이 0~255단계로 조절됨.
- ✓ 간판, 조명기구 등에 사용
- ✓ 모든 색이 출력될 때 백색 빛을 출력

4.3.1 RGB LED control - 색상

RGB LED로 색상 표현하기 (1/2)

실습목표 RGB LED를 이용하여 다양한 색을 표현해 보자.

- Hardware 1. RGB LED는 Red, Green, Blue의 세 개의 Anode 핀과 공통으로 연결된 캐소드핀으로 구성 되어 있다.
 - 2. RGB LED 단독으로 연결하려면 각 Anode 핀에 330Ω의 저항을 연결해야 한다.
 - 3. 저항이 내장된 RGB LED 모듈을 사용한다면 별도의 저항이 필요 없다.
 - 4. Red, Green, Blue의 세 개의 Anode 핀을 Arduino의 3, 5, 6 번판에 연결한다.

http://howtomechatronics.com/tutorials/arduino/ how-to-use-a-rgb-led-with-arduino/

4.3.2 RGB LED control - 색상 조절

4.3.2 RGB module control - 색상 조절

완성된 회로를 ARnn_RGB.fzz

로 저장해서 제출.

4.3.3 RGB LED control - 색상 조절

EX 4.3

RGB LED로 색상 표현하기 (2/2)

Commands

• analogWrite(핀번호, 값)

정해진 핀에 아날로그 출력을 한다. '값' 에는 0~255의 값을 넣는다.

• delay(지연시간)

지연시간에는 잠시 동작을 지연시키기 위한 값을 넣는다. 1/1000초 단위로 넣는다.

즉 1초를 지연시키기 위해선 1000의 값을 입력시킨다.

• for(변수=시작 값; 조건; 변수의 증분){}

변수의 시작 값부터 조건이 만족하는 경우 '{}' 내의 명령을 수행한다. '변수의 증분'에서는 1회 명령이 수행될 때마다 변수를 증가 혹은 감소시킨다.

Sketch 구성

- 1. LED의 핀번호를 설정한다.
- 2. setup()에서는 LED 출력으로 사용할 핀을 출력 핀으로 설정한다.
- 3. ledOutput(int Red, int Green, int Blue)라는 함수를 만든다. 적색, 녹색, 청색 LED의 빛의 세기를 조합하여 원하는 색을 출력하는 함수이다.
- 4. 적색, 녹색, 청색 LED의 세기를 조절하면서 LED에 빛을 출력시킨다.

실습 결과

LED의 색상이 변화를 조사한다.

DIY

http://www.rapidtables.com/web/color/RGB Color.htm

4.3.4 RGB LED control - code

```
ex_4_3_start
2 여저 4.2
3 LED 밝기 조절
4 =/
6 const int RedLed
                     = 3;
                            //를 3번핀에 연결
7 const int GreenLed =
                            //LED B를 5번핀에 연결
                       5:
8 const int BlueLed = 6;
                            //LED B를 5번핀에 연결
10 void setup()
11 {
    ledOutput (255, 0, 0);
12
13
    delay(1000);
    ledOutput(0, 255, 0);
14
    delay(1000);
15
16
    ledOutput(0, 0, 255);
    delay(1000);
17
18 }
```

```
48 void ledOutput(int Red, int Green, int Blue){
49    analogWrite(RedLed,Red);
50    analogWrite(GreenLed,Green);
51    analogWrite(BlueLed,Blue);
52 }
```

```
20 void loop()
21 {
    for(Int I=0; I<=255; ++1){
23
       ledOutput (255, i, 0);
24
      delay(10):
    for(int i=0;i<=255;++i){
27
      ledOutput(0,255,1);
28
      delay(10):
29
30
    for(int i=0;i<=255;++i){
31
       ledOutput(1.0, 255);
32
      delay(10);
33
34
    for(Int 1=0;1<=255;++1){
       ledOutput(1, 255, 255);
35
36
      delay(10);
37
38
    for(int 1=0;1<=255;++1){
39
       ledOutput (255, 1, 255);
40
      delay(10);
41
42
    for(int i=0;i<=255;++i){
43
       ledOutput (255, 255, 1);
      delay(10);
44
45
```


4.4 RGB LED control - 색상 조절 [DIY]

DIY. RGB LED의 색이 노란색일 때 사진을 촬영하시오.

ARnn_RGB_Y.png 로 저장

[Practice]

- ◆ [wk04]
- Arduino LED I
- Complete your project
- Submit file: ARnn_Rpt03.zip

wk04: Practice-03: ARnn_Rpt03.zip

- [Target of this week]
 - Complete your works
 - Save your outcomes and compress all.

```
제출파일명 : ARnn_Rpt03.zip
```

- 압축할 파일들

- ① ARnn_2led.ino
- 2 ARnn_4led.fzz
- 3 ARnn_4led.ino
- **4** ARnn RGB.fzz
- **5** Arnn_RGB_Y.png

Email: <u>chaos21c@gmail.com</u> [제목: id, 이름 (수정)]

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.github.com GitHub
- http://www.google.com Googling
- ✓ https://www.youtube.com Youtube

Github.com/Redwoods/Arduino

Github.com/Redwoods/Arduino

주교재

Uno team

아두이노 키트(Kit)

http://arduinostory.com/goods/goods_view.php?goodsNo=1000000306

아두이노 키트(Kit): Part-1

아두이노 키트(Kit): Part-2

[참고: 저항 값 읽기]

