39. Limit Theorems

The Central Limit Theorem (CLT) [Ross 8.3]

Proposition 39.1 The Central Limit Theorem

Let $X_1, X_2, ...$ be a sequence of iid random variables having mean μ and variance σ^2 . Then, the distribution of

$$Z_{n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{X_{i} - \mu}{\sigma}$$

$$= \frac{X_{1} + X_{2} + \dots + X_{n} - n\mu}{\sigma \sqrt{n}}$$

$$= \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$
where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$

tends to the standard normal as $n \to \infty$. Specifically,

$$P[Z_n \le a] \to \underbrace{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-u^2/2} du}_{\Phi(a)} \quad \text{as } n \to \infty$$

[See textbook Section 8.3 for proof]

The CLT can be used to approximate probabilities:

Example 39.1: An astronomer takes iid measurements $X_1, X_2, ...$ of the distance of a star.

Each X_i has mean μ (the true distance) and variance $\sigma^2 = 4$ light-years².

How many measurements are needed to be 95% certain that the sample average \bar{X} of the measurements is within ± 0.5 light-years of the true value μ ?

Solution: Let

$$Z_n = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \tag{39.1}$$

By the CLT, when n is large, this is approximately $\mathcal{N}(0,1)$.

$$P\left[-0.5 \le \bar{X} - \mu \le 0.5\right] = P\left[\frac{-0.5}{\sigma/\sqrt{n}} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{0.5}{\sigma/\sqrt{n}}\right]$$
$$= P\left[-\frac{\sqrt{n}}{2\sigma} \le Z_n \le \frac{\sqrt{n}}{2\sigma}\right]$$
$$\approx \Phi\left(\frac{\sqrt{n}}{4}\right) - \Phi\left(-\frac{\sqrt{n}}{4}\right)$$
$$= 2\Phi\left(\frac{\sqrt{n}}{4}\right) - 1$$

For this to be at least 0.95, we need

$$\Phi\left(\frac{\sqrt{n}}{4}\right) \ge 0.975$$

From the $\Phi(.)$ Table [Notes #18], $\sqrt{n}/4 \ge 1.96$.

The smallest integer than makes this true is n = 62.

Note: This analysis assumes that with 62 observations, Z_n is well approximated by a Gaussian. In statistics, $n \ge 30$ is often assumed to be enough.

The Chebyshev inequality is not an approximation.

$$E\left[\bar{X}\right] = \mu \qquad Var\left[\bar{X}\right] = \frac{\sigma^2}{n}$$

So by Chebyshev:

$$P\left[\left|\bar{X} - \mu\right| \ge 0.5\right] \le \frac{\sigma^2/n}{(0.5)^2} = \frac{16}{n}$$

95% confident $\Rightarrow 16/n \le 0.05 \Rightarrow n \ge 320$ measurements are enough.

What if we don't know σ^2 ?

Use sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ instead of σ^2 in (39.1) to get

$$T_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{S} = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$
 (39.2)

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then T_n has **Student-t** distribution with n-1 degrees of freedom:

- pdf of T_n depends on n but not μ or σ
- pdf of T_n similar to $\mathcal{N}(0,1)$ but has heavier tails
- as $n \to \infty$, pdf of T_n converges to that of $\mathcal{N}(0,1)$

For $\alpha \in (0,1)$, let t_{α} be such that $P[T_n \geq t_{\alpha}] = \alpha$. Then:

$$1 - \alpha = P[-t_{\alpha/2} < T_n < t_{\alpha}/2] \tag{39.3}$$

$$=P[-t_{\alpha/2}<\frac{\bar{X}-\mu}{S/\sqrt{n}}< t_{\alpha}/2] \tag{39.4}$$

$$= P[-t_{\alpha/2} \frac{S}{\sqrt{n}} < \bar{X} - \mu < t_{\alpha/2} \frac{S}{\sqrt{n}}]$$
 (39.5)

So \bar{X} is within $\pm t_{\alpha/2} \frac{S}{\sqrt{n}}$ of μ with prob. $1 - \alpha$.

Note: the width of the interval is now random and depends on S.

 t_{α} is well-tabulated. With $\alpha = 0.05$:

n	$t_{\alpha/2}$
16	2.131
30	2.045
40	2.021
62	2.000
120	1.980
1000	1.962

If
$$n \to \infty$$
 then $t_{\alpha/2} \to z_{\alpha/2} = 1.960$

Large Sample Confidence Interval: If X_i are not Gaussian or σ not known, when n large enough (e.g., 30, 40 or 120), replace σ with S and use $z_{\alpha/2}$.

Strong Law of Large Numbers [Ross S8.4]

We saw earlier the *weak* law of large numbers. This suggests that there is a strong law of large numbers as well (and there is).

Proposition 39.2 Strong Law of Large Numbers

Let X_1, X_2, \ldots be iid with common mean $E[X_i] = \mu$. Then

$$P\left[\lim_{n\to\infty}\frac{X_1+X_2+\cdots+X_n}{n}=\mu\right]=1$$