5. 공공데이터(Titanic) 분석

EDA 실습 (Kaggle)

학습목표

수행결과

- 타이타닉 승객 파일에서 여러 가지 정보를 추출해 본다
- 승객 중에서 최고령자가 누구인가 ?
- 타이타닉 호 침몰 사건 당시의 사망자와 생존자를 구분하는 요인 분석
- 어떤 승객이 생존 가능성이 높은가? 남자 (여자), 1등석 등

Pandas Titanic 데이터셋

test set (test.csv)

https://www.kaggle.com/c/titanic/data

데이터셋개요

타이타닉 데이터셋

• 타이타닉 탑승자에 대한 데이터셋 train.csv를 다운로드 받음

ie	Sex	Age	SibSp	Parch
nd, Mr. Ov	male	22	1	0
ings, Mrs.	female	38	1	0
kinen, Miss	female	26	0	0
elle, Mrs. Ja	female	35	1	0
1, Mr. Willia	male	35	0	0
an, Mr. Jan	male		0	0

데이터셋개요

데이터 딕셔너리

• Passengerld: 승객의 ID

• Survived: 생존 여부

• Pclass: 탑승 등급을 나타낸다. 클래스 1, 클래스 2, 클래스 3로 구성

• Name: 승객의 이름

• Sex: 승객의 성별

• Age: 승객의 나이

• SibSp: 승객에게 형제 자매와 배우자가 있음을 표현

• Parch: 승객이 혼자인지 또는 가족이 있는지 여부를 표현

• Ticket: 승객의 티켓 번호

• Fare: 운임

Cabin : 승객의 선실

• Embarked: 탑승한 지역

Data Dictionary

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

데이터셋개요

- 승객 891명에 대한 데이터를 포함
- 각 행은 탑승자 1인의 정보를 나타냄 (생존여부 포함)
 - SibSp 형제 자매, 배우자 유무
 - Parch 혼자인지 또는 가족이 있는지 유무
 - Cabin 승객의 선실

분석파이프라인 데이터준비

• 판다스 패키지 import 하며 pd 별명 지정하기

```
import pandas as pd
```

• Titanic 데이터셋 읽고 데이터프레임 df 구성하기

```
titanic_df = pd.read_csv(url)
```

• Titanic 데이터셋 확인하기

```
titanic_df.head()
```

분석파이프라인 데이터보기

- 데이터프레임의 기본정보 출력 titanic_df.info()
- 데이터프레임 기초통계확인 titanic_df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000

[] titanic_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
_			

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

분석파이프라인

자료 특징 확인

탐색 대상 변수	두 그룹 간의 분포 혹은 평균의 차이가 있는가?
pclass	
age	X
sibsp, parch	\triangle
fare	
sex	
embarked	Δ

분석파이프라인 데이터보기

- 데이터 유형 확인 titanic_df.dtypes
- 데이터 행 인덱스 확인 titanic_df.loc[0]
- 데이터 앞 자료 추출
- 데이터 뒷 자료 추출
- 데이터프레임 인덱스 보기
- 행, 열 구조 보기

분석파이프라인 데이터보기

• 요금 기준 오름차순 정렬

```
titanic_df.sort_values(by=['Fare'], axis=0)
```

• 요금 기준 내림차순 정렬

```
titanic_df.sort_values(by=['Fare'], axis=0, ascending=False)
```

• 열이름을 알파벳 순으로 정렬하기

```
titanic_df.sort_index(axis=1)
```

분석파이프라인 자료에서 특정 정보 얻기

• 승객나이 추출하기

• 타이타닉 탑승객 중에서 최고령 나이 확인하기

• 타이타닉 승객데이터 기본 통계 확인하기(생존율 확인)

• 타이타닉 탑승객 평균 나이를 계산하기

분석파이프라인 결측치 다루기

• 자료에서 결측치를 확인한다

```
titanic_df.count() # 데이터 개수 확인
titanic_df.isnull().sum() # 결측치 확인
```

- 확인된 결측치 대체/제거를 통해 데이터 클린징 수행
 - Age는 중간값으로 대치
 - Cabin은 해당 열을 제거
 - Embarked는 최대빈도값으로 대치

(실습) 데이터준비

• 승객 ID 인 PassengerID 를 인텍스로 지정하여 자료를 읽어 데이터프레임을 구성한다

```
titanic_df = pd.read_csv(url, index_col='PassengerId')
titanic_df.head()
```

자료에서 특정 정보 얻기

• 타이타닉 탑승객의 이름, 나이, 성별 정보 얻기 (해당 자료를 df1 프레임워크로 구성)

• 20세 미만의 승객얻어 필터링하기 (조건에 맞는 행을 below_20 프레임워크로 구성)

• 1등석, 2등석에 탑승 승객 출력하기

• 1등석, 2등석에 탑승 승객 이름 출력하기 (df.loc [조건, 열레이블])

자료 통계

• 타이타닉 승객의 평균 연령 구하기

• 타이타닉 승객 연령 (요금)의 중간값 구하기

데이터집계

데이터 그룹 분석(group analysis)

- 특정조건에 맞는 데이터가 하나 이상 데이터 그룹을 이루는 경우 해당 집단 특성을 보여주 기 위해 사용
- 그룹분석 과정
 - 범주형 필드를 기준으로 정하여 그룹으로 데이터 분할(splitting)
 - 그룹에 평균, 합 등의 독립적인 함수 적용(applying)
 - 결과물을 하나의 데이터 구조로 결합(combining)

데이터집계

데이터 그룹 분석(group analysis)

• 선실별로 자료를 그룹핑한 후 평균연령 확인해 본다

```
titanic_df.groupby('Pclass').mean()
```

• 승객의 선실 등급의 성별에 따른 평균 요금 구하기

```
titanic_df.groupby(['Pclass', 'Sex'], as_index=False).mean()
```

• 선실의 성별에 따른 평균연령 구하기

```
part_df = titanic_df[['Pclass', 'Sex', 'Age']]
part_df.groupby(['Pclass', 'Sex']).mean()
```

데이터 집계

데이터 그룹 분석(group analysis)

• 선실의 남녀별 최고령 나이 구하기

```
part_df.groupby(['Pclass', 'Sex'], as_index=False).max()
```