Numerical Methods in Aeronautical Engineering $\ensuremath{\mathsf{HW2}}$ - Theoretical Questions

Almog Dobrescu ID 214254252

 $\mathrm{June}\ 2,\ 2025$

Contents

1	$\mathbf{Q2}$																						1	ĺ
	1.1	A			 								 										1	1
	1.2	D																					1	1

1 Q2

1.1 A

We are asked to prove:

$$\delta^2 = \Delta - \nabla \tag{1}$$

Where:

$$\bullet \ \delta f = f_{\left(x + \frac{h}{2}\right)} - f_{\left(x - \frac{h}{2}\right)}$$

$$\bullet \ \Delta f = f_{(x+h)} - f_{(x)}$$

$$\bullet \ \nabla f = f_{(x)} - f_{(x-h)}$$

$$\delta^{2} f = \delta \left(f_{(x+\frac{h}{2})} - f_{(x-\frac{h}{2})} \right) \qquad \Delta f - \nabla f = f_{(x+h)} - f_{(x)} - f_{(x)} + f_{(x-h)}
= \delta f_{(x+\frac{h}{2})} - \delta f_{(x-\frac{h}{2})}
= f_{(x+h)} - f_{(x)} - f_{(x)} + f_{(x-h)}
= f_{(x+h)} - 2f_{(x)} + f_{(x-h)}
= \delta^{2} = \Delta - \nabla \qquad \blacksquare$$
(2)

1.2 B