الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (04) صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

نشر نيوتن في 05 جويلية 1686م، كتابه الشّهير (المبادئ الرياضية للفلسفة الطبيعية) والذي تضمّن قوانينه الثّلاثة في الميكانيك الكلاسيكي. يقول نيوتن في كتابه: (إنّ تغيرات الحركة تتناسب مع القوّة المحرّكة وتتمّ وفق المنحى الذي أثّرت فيه هذه القوّة). للتّحقق من ذلك، نأخذ كنموذج، سقوط جسم صلب متجانس (S) من ارتفاع صغير في الهواء كتلته S كتلته S بعركة انسحابية شاقولية في لحظة نعتبرها مبدأ للأزمنة S دون سرعة ابتدائية من موضع S مبدأ لمعلم (S) موجّه نحو الأسفل، ومرتبط بمرجع سطحي أرضى نعتبره غاليليا (الشكل (1)).

I- المبدأ الأساسى للتحريك:

- 1. استعمل نيوتن في قوله، المصطلحات الآتية: تغيرات الحركة القوة المحرّكة. عبّر عن كل مصطلح بالمقدار الفيزبائي الموافق.
 - 2. إنّ القول السّابق لنيوتن، هو نصّ لأحد قوانينه الثلاثة والمعروف باسم المبدأ الأساسي للتّحريك.
 - 1.2. ما هو هذا القانون (القانون الأول أم الثّاني أم الثّالث لنيوتن)؟
 - 2.2. اكتب نصه، وعبر عنه بعلاقة رياضياتية.

كتاب المبادئ لنيوتن

phores Boliopolas. Ann MDCLXXXVII.

PHILOSOPHIÆ

NATURALIS PRINCIPIA

MATHEMATICA

ore J.S. NEBTON, Trin. Call. Cantals. Soc. Ma. Profetfore Lanakam, & Societatia Regalia Sodali.

II- خطوات تطبيق المبدأ الأساسي للتحريك:

- 1. من الشّروط الأساسية لتطبيق هذا القانون هو أن يكون مرجع الدّراسة غاليليا (عطاليا). = 1 اشرح كيف يحقّق المرجع السّطحي الأرضي هذا الشّرط، عند دراسة سقوط جسم في الهواء. = 1 اذكر خطوات تطبيق هذا القانون. = 1 الشكل (= 1 الشكل (=
 - 3. يخضع الجسم (S) أثناء سقوطه في الهواء، بالإضافة إلى ثقله \vec{P} ، إلى: دافعة أرخميدس $\vec{\Pi} = -\rho_0.V.g.\vec{j}$ (حيث: ρ_0 الكتلة الحجمية للهواء، V حجم الجسم الصلب \vec{P} (حيث: \vec{P} معامل ثابت موجب، \vec{P} سرعة مركز عطالة \vec{P} (حيث: \vec{P} معامل ثابت موجب، \vec{P} سرعة مركز عطالة \vec{P} (عيث: \vec{P} عطلي: \vec{P} شدّة تسارع الجاذبية الأرضية.
- ا سطح الأرض t=0 على الشّكل (1)، بدون سلم، القوى الخارجية المؤثّرة على (S)، في اللّحظة t=0 وفي لحظة t=0. بيان المؤرّرة على المؤرّرة على اللّم المؤرّرة على المؤرّرة الم

III - الدّراسة التّجريبية لحركة مركز عطالة الجسم (S):

إنّ تسجيل حركة سقوط الجسم (S)باستعمال آلة تصوير فيديو، ومعالجة شريطه ببرنامج إعلام آلي مناسب، سمح بالحصول على المنحنى البياني الممثّل لتطوّر شدّة محصّلة القوى الخارجية المؤثّرة على الجسم الصلب (S) بدلالة الزمن (S) الشكل (S) $F(x10^2N)$.

- 1. حدّد بيانيا قيمة F_0 شدّة محصّلة القوى الخارجية المؤثّرة على (S) في اللّحظة t=0 ، ثمّ تأكّد أنّ تأثير دافعة أرخميدس مهمل أمام القوى الأخرى.
 - 2. بالاعتماد على قول نيوتن السّابق ومنحنى الشكل(2):
 - توقّع شكل منحنى تغيرات تسارع مركز عطالة الجسم (s) بدلالة الزّمن $a_{G}(t)$ ثمّ ارسمه على ورقة إجابتك.
 - . $\frac{dv}{dt} + \frac{1}{\tau} \cdot v = g$ أثبت المعادلة التفاضلية .3

حيث τ هو الزمن المميّز للحركة والذي يُطلب إيجاد عبارته.

4. المستقيم (Δ) الموضّح في الشكل (2) يمثّل مماس المنحنى في

 $t=\tau$ اللّحظة t=0 اللّحظة في لحظة المستقيم (Δ) اللّحظة المّانمنة المستقيم المستقيم المّانمنة المستقيم المستقيم المستقيم المّانمنة المستقيم ال

. (S) معامل الاحتكاك k والسّرعة الحديّة ولم مركز عطالة الجسم $v_{\rm lim}$

التمرين الثاني: (07 نقاط)

يشكّل حمض الإيثانويك ذو الصيغة CH_3COOH المكوّن الأساسي للخل التّجاري بعد الماء، ويستعمل هذا الحمض كمتفاعل في العديد من تفاعلات تصنيع الكثير من المواد العطرية والمذيبات. حمض الإيثانويك يمكن اصطناعه في المخبر بأكسدة الإيثانول $(2K^+(aq) + Cr_2O_7^{2-}(aq))$ بواسطة محلول ثاني كرومات البوتاسيوم $(2K^+(aq) + Cr_2O_7^{2-}(aq))$ بهذف هذا التّحديث الحديد ثابت حموضة الثّنائية ويكونه تفاعل المرطناع حمض الإثانويك وتحديد ثابت حموضة الثّنائية المرطناء عموضة المرطناء المرطناء عموضة المرطناء عموضة المرطناء عموضة المرطناء عموضة المرطناء المرط

يهدف هذا التّمرين إلى دراسة حركية تفاعل اصطناع حمض الإيثانويك، وتحديد ثابت حموضة الثّنائية

 $.\left(CH_{3}COOH\left(aq\right)/CH_{3}COO^{-}(aq)\right)$

 $M\left(C_2H_5OH\right)=46g.mol^{-1}$ ، الكتلة المولية ، $\rho=0.8g.mL^{-1}$ الكتلة المولية ، الكتلة الحجمية ، معطيات - الإيثانول الكتلة الحجمية ، معطيات - كل القياسات تمّت في درجة حرارة $25^{0}C$

I- دراسة حركية تفاعل اصطناع حمض الإيثانويك:

1. وصف تطور التّحول الكيميائي الحادث:

نمزج في حوجلة، في لحظة نعتبرها مبدأ للأزمنة t=0، حجما $V_1=100m$ من محلول ثاني كرومات البوتاسيوم تركيزه المولي $c=0,5mol.L^{-1}$ ، مع حجم $V_2=3,4m$ من الإيثانول النّقي، بوجود حمض الكبريت المركّز بكفاية، فينتج حمض الإيثانويك وفق تحول تام وبطيء ننمذجه بتفاعل أكسدة – إرجاع، معادلته:

 $2Cr_2O_7^{2-}(aq) + 3C_2H_5OH(aq) + 16H^+(aq) = 4Cr^{3+}(aq) + 3CH_3COOH(aq) + 11H_2O(l)$

1.1. بين أنّ التّفاعل الكيميائي الحادث هو تفاعل أكسدة - إرجاع، ثمّ اكتب الثّنائيتين المشاركتين في التّفاعل.

- 2.1. وضّح دور حمض الكبريت المركز في هذا التحول.
- $n_0(C_2H_5OH) \simeq 60mmol$ ، $n_0(Cr_2O_7^{2-}) = 50mmol$. قاكّد أنّ كميّة مادّة المتفاعلات الابتدائية هي 3.1
 - $. X_{\rm max}$ يصف تقدّم التفاعل، ثمّ استنتج قيمة التقدّم الأعظمي $. X_{\rm max}$
 - 2. المتابعة الزمنية للتّحول الكيميائي الحادث:

.1.2 بيّن أنّ $\left[Cr_2O_7^{2-} \right]$ يعطى في كل لحظة بالعبارة: $\left[cr_2O_7^{2-} \right] \left[cr_2O_7^{2-} \right] (t) = 0,48-19,34.x(t)$

عرّف زمن نصف التفاعل $t_{1/2}$ ، ثم حدّد قیمته بیانیا. 2.2

حجمه $V_a=20mL$ عجمه $V_a=20mL$ بتركيز مولي $v_a=20mL$ ومعايرته بمحلول أساسي لهيدروكسيد الصوديوم بتركيز مولي $V_a=20mL$ بدلالة حجم المولي $v_a=20mL$

المحلول الأساسي المسكوب V_b (الشكل (4)).

- 1. اكتب معادلة تفاعل المعايرة.
- المسكوب المنتتج من المنحنى البياني حجم المحلول الأساسي المسكوب عند التكافؤ V_{bE} . ثم احسب قيمة c_a
- قمنا $\left[CH_3COO^-(aq) \right] = 2 \left[CH_3COOH\left(aq\right) \right]$ ، قمنا بقياس pH الوسط التفاعلي فوجدناه pH=5,1 استنتج قيمة ثابت . $(CH_3COOH(aq)/CH_3COO^-(aq))$ الحموضة pK_A

الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

بغرض تقويم الكفاءات العلمية والتجريبية لدى فوج من التلاميذ خلال حصة الأعمال المخبرية، في موضوع الدراسة التّجريبية لشحن وتفريغ مكثفة، طلب الأستاذ من الفوج، إنجاز التركيب الكهربائي الممثّل في الشكل(5) والمكون من: E مكثفة غير مشحونة سعتها C، ناقل أومي مقاومته C مقاومته C مولد مثالي للتوتر C قوته المحركة الكهربائية C مولد مثالي للتيار C يغذي الدّارة بتيار شدّته ثابتة C وبادلة C وبادلة C الإضافة إلى راسم المتزاز ذو ذاكرة، وطلب منهم الإجابة عن الأسئلة المرافقة لكل وضع من أوضاع البادلة C:

\mathbf{I} البادلة K في الوضع \mathbf{I}

من أجل دراسة شحن المكتِّفة، والبحث عن ثابت الزمن الموافق،

t=0 قي اللحظة K في الوضع (1) وضع البادلة

ومعاينة تطوّر التّوتر الكهربائي $u_c(t)$ بين طرفي المكثّفة بواسطة راسم الاهتزاز ذو الذاكرة، فتمّ مشاهدة المنحنى الممثّل في الشكل (6).

(المستقيم (Δ) يمثّل مماس المنحنى في اللحظة (Δ).

- 1. عرّف المكثّفة بإعطاء مبدأ تركيبها.
- 2. فسر مجهربا كيف تشحن المكثفة.
- 3. انقل على ورقة إجابتك مخطّط الدّارة الموافقة لوضع البادلة ومثّل عليه:
 - 1.3. جهة مرور التيّار الكهربائي.
 - 2.3. أسهم التوترات بين طرفي كل ثنائي قطب.
 - 3.3. كيفية ربط مدخل راسم الاهتزاز ذو الذاكرة.
 - 4. باستثمار منحنى الشكل(6):
 - 1.4. هل شحنت المكثفة آنيا؟ اشرح.
 - C . الزمن T ، ثمّ استنتج قيمة سعة المكثّفة E . عنه جد قيمة سعة المكثّفة عنه . 2.4

II البادلة *K* في الوضع (2):

بعد مدّة كافية من الزمن، تمّ تغيير موضع البادلة K إلى الوضع (2) من أجل تفريغ المكثفة، في لحظة نعتبرها مبدأ t=0.

2. اختر الحل المناسب للمعادلة التفاضلية من بين الحلول الآتية، ثمّ تحقّق منه:

$$i(t) = -I_0 e^{-\frac{t}{RC}}$$
 , $i(t) = I_0 e^{-\frac{t}{RC}}$, $i(t) = -I_0 e^{\frac{t}{RC}}$

i(t) مثّل كيفيا، المنحنى البياني لتغيرات شّدة التيّار المار بالدارة.

البادلة K في الوضع (3):

بعد تفريغ المكتَّفة، توضع البادلة K في الوضع (3) في لحظة نعتبرها مبدأ جديدا للأزمنة t=0. لو تتبّعنا تطور التوتر الكهربائي بين طرفي مولد التيار $u_{G2}(t)$.

- $u_{G2}(t)$ بتطبيق قانون جمع التّوترات، جد العبارة اللحظية للتوتر الكهربائي . G_2 بين طرفي المولد . G_2
 - 2. باستثمار منحنى الشكل(7)، جد قيمة: شدّة التيّار I المار في الدّارة، ثمّ تحقّق من قيمة سعة المكثفة C.

 $u_{\mathcal{C}}(V)$

1,5

(\(\Delta \)

الشكل(6)

الموضوع الثانى

يحتوي الموضوع على (04) صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

"اليربوع الأزرق" اسم أطلق على أحد التّفجيرات النّووية الفرنسية في الصّحراء الجزائرية بمنطقة الحمّودية برقّان، وذلك بتاريخ 13 فيفري 1960. خلّف هذا التّفجير النّووي ضحايا وتشوّهات طالت الإنسان والحيوان وأضرّت بالبيئة بفعل

الطاقة الهائلة المتحرّرة من التّفجير والإشعاعات المنبعثة من النّفايات المخلّفة.

إنّ معظم الطاقة المُحرّرة من القنبلة النووية المفجرّة نتج عن انشطار البلوتونيوم 239.

معطيات:

- * للبلوتونيوم عدة نظائر اصطناعية منها:
- $M\left(^{238}Pu\right)\simeq238g.mol^{-1}$ ، (γ) وغاما (α) البلوتونيوم (α) البلوتونيوم (α) البلوتونيوم (α
 - البلوتونيوم 239: انشطاري.
- انفجار قنبلة نووية 1an=365jours • $1u = 931,5 MeV/c^2$ • $N_A = 6,02 \times 10^{23} mol^{-1} *$

النواة	$^{102}_{42}Mo$	¹³⁵ ₅₂ Te	²³⁹ ₉₄ Pu	$\frac{1}{0}n$	₉₂ U
الكتلة (u)	101,9130	134,9167	239,0521	1,0087	
طاقة الربط (MeV)	852,88	1103,83		0	

يهدف التمرين إلى دراسة النشاط الإشعاعي لعينة من أنوية البلوتونيوم 238، وحساب الطّاقة المحرّرة من انشطار نواة البلوتونيوم 239.

I- دراسة النشاط الإشعاعي للبلوتونيوم 238:

- 1. أعط تركيب نواة البلوتونيوم 238.
- 2. اكتب معادلة التّفكك النّووي لنواة البلوتونيوم 238.
- 3. في 20 أوت 1977 أطلق المسبار فواياجر 2، والذي زُوّد ببطارية نووية تُنتج طاقة كهربائية مصدرها التّفكك النّووي m_0 لعيّنة من البلوتونيوم 238 كتلتها

بواسطة برمجية مناسبة تحصلنا على المنحنى البياني الممثّل لتغيرات $\frac{dN(t)}{dt}$ بدلالة الزمن t (الشكل(1)). (المستقيم (Δ) يمثّل مماس المنحنى في اللحظة t=0

- 1.3. اكتب العبارة الحرفية لقانون التناقص الإشعاعي.
- . λ والزمن λ

- 3.3. باستغلال المنحني البياني، جد:
- 1.3.3. قيمة الثّابت B معطيا مداوله الفيزيائي.
- $.m_0$ قيمة ثابت التّفكك الإشعاعي λ ، ثمّ استنتج قيمة .2.3.3
- 4.3. نعتبر أنّ صلاحية البطّارية تنتهي عندما يتناقص نشاطها الإشعاعي بنسبة 32% من قيمته الابتدائية.
 - حدّد بالسنوات العمر الافتراضي للبطّارية.

II - الطاقة المحررة من انشطار نواة البلوتونيوم 239:

 $^{239}_{94}Pu + ^{1}_{0}n \rightarrow ^{135}_{52}Te + ^{102}_{42}Mo + 3 ^{1}_{0}n$ يمكن للبلوتونيوم 239 أن ينشطر وفق المعادلة النووية:

- 1. عرّف تفاعل الانشطار النووي.
 - 2. باستغلال المعطيات:
- 1.2. احسب الطّاقة المحرّرة من انشطار نواة البلوتونيوم 239 .
 - 2.2. استنتج طاقة الربط لنواة البلوتونيوم 239 .
- 3.2. قارن معلّلا إجابتك بين استقرار النواتين $\int_{52}^{105} Te \cdot \int_{42}^{102} Mo$ والنواة والنواة هذا مع تعريف الانشطار?

التمرين الثاني: (07 نقاط)

التزلج مع القفز على الثّلج نوع من أنواع الرياضة الشّتوية، يتزلّج فيها الرياضي على منحدر، ثمّ يقوم بالقفز للوصول إلى أبعد نقطة ممكنة.

يهدف التّمرين إلى دراسة حركة مركز عطالة الجملة (متزحلق مع لوازمه) على مستو مائل، ثمّ حركته خلال مرحلة القفز في الهواء. نعتبر المتزحلق مع لوازمه جملة ميكانيكية (S)، مركز عطالتها G.

ندرس حركة مركز العطالة G في مرجع سطحي أرضى نعتبره غاليليا.

معطيات:

- نهمل تأثير الهواء.
- . $\alpha = 11^{\circ}$ المستوي المائل –
- $g = 9.8 \, m.s^{-2}$ شدّة تسارع حقل الجاذبية الأرضية
 - m = 70kg كتلة المتزحلق مع لوازمه

AB على المستوي المائل -I دراسة حركة مركز العطالة G

ينطلق المتزحلق من الموضع A في لحظة نعتبرها مبدأ للأزمنة (t=0) بدون سرعة ابتدائية، و يُتّم حركته على مستو مائل طوله AB = 173,7m بحركة انسحابية مستقيمة (الشكل(2)).

- 1. بإهمال قوى الاحتكاك على المستوي المائل:
- 1.1. مَثِّل القوى الخارجية المطبّقة على الجملة الميكانيكية (S).

- G بيْنَ الموضعين A و B، احسب سرعة مركز العطالة A. للجملة الميكانيكية (S) بيْنَ الموضع A . للجملة الميكانيكية (S) عند المرور من الموضع A .
 - $m{.}$ الموضع B الموضع 83,3 $km.h^{-1}$ في الموضع $m{2}$
- قارن بين قيمتي سرعة مركز العطالة G للجملة (S) عند الموضع B (القيمة المحسوبة في السؤال D1. والقيمة التي يعطيها عداد السرعة). إذا كان هناك اختلاف بين القيمتين، فاحسب قيمة المقدار الفيزيائي المسبب لهذا الاختلاف.

الهواء: G العطالة G خلال القفز في الهواء:

يغادر المتزحلق المستوي المائل AB عند الموضع B بالسرعة $v_B = 83,3km.h^{-1}$ في لحظة نعتبرها مبدأ جديدا للأزمنة (t=0)، ويواصل حركته في الهواء ليصطدم بسطح الأرض في الموضع (t=0).

(لتبسيط الدّراسة نعتبر أن مركز العطالة G للجملة (S) منطبق على النقطة B لحظة مغادرة المتزحلق للمستوي المائل وعلى النقطة C لحظة اصطدامه بسطح الأرض).

ندرس حركة مركز العطالة G في معلم متعامد ومتجانس $(B;\vec{i};\vec{k})$ مرتبط بمرجع سطحي أرضي نعتبره غاليليا.

- 1. ذَكِرْ بنص القانون الثاني لنيوتن.
- 2. بتطبيق القانون الثاني لنيوتن على مركز العطالة G للجملة الميكانيكية (S):

1.2. أكمل الجدول أدناه:

	$\sum \vec{F}_{ext} = \vec{P}$	$\vec{a} = \frac{\sum \vec{F}_{ext}}{m}$	$\overrightarrow{v_0} = \overrightarrow{v}_B$	المعادلة الزمنية للسرعة	المعادلة الزمنية للحركة	طبيعة الحركة
Bx المحور	$P_x = \dots$	$a_x = \dots$	$v_{0x} =$	$v_x(t) = \dots$	$x(t) = \dots$	
المحور Bz	$P_z = \dots$	$a_z =$	$v_{0z} = \dots$	$v_z(t) = \dots$	$z(t) = \dots$	

- $z(x) = 9.5 \times 10^{-3} \cdot x^2 + 0.19 \cdot x$ الشكل: على الشكل و تكتب على الشكل مركز العطالة G
- $z(x) = 0.59 \cdot x$ المار من النّقطتين B و C معادلته الرياضياتية من الشكل: BC المار من النّقطتين B
 - z_c و z_c عند الموضع، احداثيتي مركز العطالة z_c و عند .1.3
 - 2.3. احسب مدّة القفزة التي حققها المتزحلق انطلاقا من الموضع В.

الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

يُعتبر منجم "غار جبيلات" الواقع على بعد 130 km جنوب شرق ولاية تندوف من أحد أكبر مناجم الحديد في العالم.

تُصنَّف خامات الحديد حسب نسبة الحديد النَّقي الموجود فيها كما

هو مبيّن في الجدول الآتي:

خام الحديد في منجم غار جبيلات

غني	متوسط	فقير	صنف خام الحديد
أكثر من % 50	بين % 30 و % 50	أقل من % 30	نسبة الحديد النّقي

يهدف هذا التمرين إلى الدراسة التجريبية لتتبع تطوّر تفاعل معدن الحديد مع محلول حمض كلور الهيدروجين بقياس حجم غاز، ومن ثمّ التعرف على صنف خامات حديد منجم غار جبيلات.

 $m=1,00~{
m g}$ لهذا الغرض، ندخل في دورق عيّنة من مسحوق لخام الحديد المستخرج من منجم غار جبيلات كتلتها $c=0,3~{
m mol}\cdot {
m L}^{-1}$ ونسكب فيه في اللّحظة t=0 حجما $V=100~{
m mL}$ من محلول حمض كلور الهيدروجين تركيزه المولي t=0 لحظة t=0 يتمّ تجميع ثنائي الهيدروجين المنطلق في مخبار مدرج مُنكَّس فوق حوض من الماء، ونقيس حجمه في كل لحظة $Fe\left(s\right)+2H_3O^+\left(aq\right)=H_2\left(g\right)+Fe^{2+}\left(aq\right)+2H_2O\left(l\right)$ معطيات: - نعتبر أنّ حجم المزيج التّفاعلي يبقى ثابتا خلال مدّة التّحول، وأنّ الغاز المنطلق غاز مثالي.

$$V_{M} = 24L.mol^{-1}$$
: الحجم المولي للغاز في شروط التّجربة

$$M(Fe) = 56 \text{ g} \cdot \text{mol}^{-1}$$
 الكتلة المولية الذّرية للحديد

I- الدراسة التجرببية:

- 1. اذكر الاحتياطات الأمنية الواجب اتخاذها لإجراء هذا التّحول.
- 2. ارسم التّركيب التّجريبي المستعمل، موضّحا عليه البيانات الكافية، ثمّ اذكر كيف يمكن قياس حجم الغاز المنطلق.
 - 3. كيف يتم الكشف عن طبيعة الغاز المنطلق عند نهاية التّحول؟

II- المتابعة الزّمنية للتّحول الكيميائي بقياس حجم غاز:

مكّنتنا المتابعة الزّمنية لهذا التّحول الكيميائي التّام، عن طريق قياس حجم غاز ثنائي الهيدروجين المنطلق تحت ضغط

ثابت وفي درجة حرارة ثابتة، من رسم المنحنى البياني $V_{H_2} = f(t)$ (الشكل (3)). (2) (يمثّل المستقيم (Δ) مماس المنحنى البياني في اللحظة

1. صنّف التّحول الكيميائي الحادث من حيث المدّة المستغرقة.

2. بإنجاز جدول تقدّم التّفاعل واستثمار المنحنى البياني:

$$x\left(t
ight) = rac{V_{H_{2}}\left(t
ight)}{V_{M}}$$
: تكتب على الشكل عبارة التقدم $x(t)$ تكتب على الشكل 1.2

- 2.2. جد قيمة التقدم النهائي x_f وعيّن المتفاعل المُحِد.
- عند لحظة t تكتب أنّ السرعة الحجمية للتفاعل عند لحظة t

.
$$mol.L^{-1}\min^{-1}$$
 على الشّكل: $t=0$ على الشّكل $t=0$ على الشّكل ثمّ احسب قيمتها في الحظة $v_{Vol}(t)=\frac{1}{V.V_M}\frac{dV_{H_2}(t)}{dt}$

III- التّعرف على صنف خام حديد منجم غار جبيلات:

يُعَبَّرُ عن النّسبة الكتلية للحديد الموجود في خام الحديد بالعلاقة: $\frac{m_0(Fe)}{m}$ ، حيث $m_0(Fe)$ تمثّل كتلة الحديد النّقي، و m كتلة مسحوق الحديد الخام.

- . احسب $m_0(Fe)$ ، ثمّ استنتج النّسبة المئوية للحديد النّقي في خام الحديد.
 - 2. تعرّف على صنف خام حديد غار جبيلات.

انتهى الموضوع الثاني

اِمة	العلا	* £ * *
مجموع	مجزأة	عناصر الإجابة – الموضوع الأول
		الجزء الأول: (13 نقطة)
		<u>التمرين الأول</u> : (06 نقاط)
		I. المبدأ الأساسي للتحريك:
00,50	2x0,25	1. التعبير عن كل مصطلح بالمقدار الفيزيائي الموافق:
·		$ec{a}$ ، و $ec{d}$ ، و ec
		القوة المحركة: ∑Fext∑
00,75	0,25	1.2. اسم القانون الخاص بالمبدأ الأساسي للتحريك:
		هو القانون الثاني لنيوتن.
	0,25	2.2. *نص القانون الثاني لنيوتن:
	,	« في مرجع غاليلي، المجموع الشعاعي للقوى الخارجية المطبقة على جملة مادية، يساوي في
		كل لحظة، جداء كتلتها في شعاع تسارع مركز عطالتها»
	0,25	*التعبير عن القانون بعلاقة رياضياتينة <u>:</u>
	0,23	$\sum F_{\rm ext} = { m m.a}_{ m G}$
		II. خطوات تطبيق المبدأ الأساسي للتحريك: 1. شرح تحقيق المرجع السطحى الأرضى شرط مرجع غاليلى:
00,25	0,25	1. <u>سرح تحقيق المرجع السطحي الأرضي غاليليا، يجب</u> أن تكون مدة دراسة حركة السقوط في
		الهواء صغيرة جدا مقارنة بمدة حركة الأرض حول نفسها، وهذا ما يتحقق مادام السقوط كان من
		ارتفاع صغير.
		2. خطوات تطبيق القانون الثاني لنيوتن:
00,50	0,50	· ✓ اختيار الجملة الميكانيكية المدروسة.
		✓ تحديد مرجع الدراسة، ويجب أن يكون غاليليا ومزودا بمعلم متعامد.
		✓ احصاء وتمثيل القوى الخارجية المطبقة على الجملة المدروسة.
		$\sum_{\vec{r}} \vec{F}_{\text{ext}} = \vec{m}.\vec{a}_{\text{G}}$: تطبیق القانون الثاني لنیوتن
00,50	2x0,25	$G \stackrel{\uparrow}{\pi} \stackrel{\vec{\pi}}{\pi} \qquad G \stackrel{\vec{\pi}}{\sigma} \qquad :(S)$ المؤثرة على (S):
		$\sqrt{\overrightarrow{P}}$ $\sqrt{\overrightarrow{P}}$ $t>0$ اللحظة $t=0$ s

		III. الدراسة التجريبية لحركة مركز عطالة (S) :
00,75	0,25	$:F_0$ تحدید بیانیا قیمة. $:F_0$
		$F_0 \simeq 14.7 \times 10^{-2} \ N$: من البيان
		$F_0 \simeq 15,0 \times 10^{-2} \ N$ ملاحظة: تقبل القيمة N
	2x0,25	*التأكد من اهمال دافعة أرخميدس أمام الثقل:
		$ec{P}+ec{\pi}=ec{F}_0$: $t=0$ من خلال تطبيق القانون الثاني لنيوتن في اللحظة
		$\pi=mg-F_0$ بالإسقاط على محور الحركة نجد $F_0=P-\pi$ و منه و $\pi=P-F_0$ أي
		$\pi = 0.3 \times 10^{-2} N$ نجد $\pi = 15.10^{-3} \times 10 - 0.147 : (تطبیق عددي)$
		\overrightarrow{p} . \overrightarrow{p} مهملة أمام شدة $\overrightarrow{\pi}$ مهملة أمام شدة $\frac{P}{\pi} = \frac{15.10^{-2}}{0,3.10^{-2}} = 50$
		$F_0 \simeq 15,0 \times 10^{-2} N$ ومن أجل القيمة $P_0 \simeq 15,0 \times 10^{-2} N$
		\overrightarrow{p} ومنه: نستنتج أن شدة $\overrightarrow{\pi}$ مهملة أمام شدة ومنه: $F_0 = \frac{F_0}{P} = \frac{F_0}{mg} = 1 \Rightarrow a_0 = g$
00.50	0,50	$a_{\rm G}$ (m.s ⁻²) $a_{\rm G} = f(t)$ البيان .2
		حسب قول نيوتن : إن تغيرات الحركة تتناسب مع القوة المحركة.
		$\overrightarrow{a_G}$ قان: \overrightarrow{F} تتناسب طردا مع
		$t(s)$ لذلك فإن a_G تتناقص من قيمة عظمى إلى قيمة معدومة.
00,75	3x0,25	au اثبات المعادلة التفاضلية للسرعة، وايجاد عبارة $ au$
00,75	2110,23	الجملة المدروسة: (S)
		مرجع الدراسة: مرجع سطحي أرضي، نعتبره غاليليا، مزود بالمعلم (o,\vec{j})
		القوى الخارجية: \overline{p} و \overline{p}
		$\sum \vec{\mathbf{F}}_{ ext{ext}} = \mathbf{m}. \mathbf{a}_{ ext{G}}:$ تطبیق القانون الثانی لنیوتن
		$mg - kv = m \cdot \frac{dv_G}{dt}$ بالإسقاط على محور الحركة نجد $mg - kv = m \cdot \frac{dv_G}{dt}$ بالقسمة على
		$ au=rac{m}{k}$ نجد $ au=rac{dv_G}{dt}+rac{k}{m}v_G=g$ و بالتطابق مع العلاقة نجد
00,75	3x0,25	$t_1 = \tau$ يقطع محور الأزمنة في لحظة. (Δ) يقطع محور الأزمنة في لحظة.
		$K = (rac{dF}{dt})_{t=0}$: (Δ) عامل توجیه المماس
		حيث: K معامل توجيه المماس (Δ) عبارته t_1 ، $K=-rac{F_0}{t_1}=-rac{ma_0}{t_1}$ عبارته عبارته المماس عبارت
		تلامس (Δ) مع محور الأزمنة.
		F=mg-kv أي $F=p-f$

	1			
		$(\frac{dF}{dt})_{(t=0)} = (\frac{d(mg-kv)}{dt})_{(t=0)} = -k(\frac{dv}{dt})_{(t=0)} = -ka_0$: بالاشتقاق		
		$t_1=rac{m}{k}= au$ بالمساوات نجد $-rac{m.a_0}{t_1}=-k.a_0$ بالمساوات نجد		
		ملاحظة: تقبل الإجابة التالية: الاعتماد على معادلة المماس		
00,75	0,25	5 <u>- ایجاد قیمة 4، و </u> 11 -5		
		$k = \frac{15.10^{-3}}{0.1}$: (تطبیق عددي) $ au = 0.1s$: بیانیا: $t = \frac{m}{ au}$ ومنه $ au = \frac{m}{ au}$: $t = \frac{m}{k}$		
		$k = 0,15 kg.s^{-1}$ نجد		
	2x0,25	$a=rac{dv}{dt}=0$ فإن $v=v_{ m lim}$ *قيمة $v=v_{ m lim}$ فيمة النظام الذائم لما أنتفاضلية، وفي النظام الذائم لما		
		$v_{ m lim} = 1m.s^{-1}$ نجد $v_{ m lim} = 0.1 imes 10$ (تطبیق عددي) $v_{ m lim} = rac{mg}{k} = au.g$: \Leftarrow		
		التمرين الثاني: (07 نقاط)		
		I . دراسة حركية لتفاعل اصطناع حمض الإيثانويك:		
		1. وصف تطور التحول الكيميائي الحادث:		
01,00	2x0,25	1.1 تبيان أن التفاعل الحادث تفاعل أكسدة - إرجاع وتحديد الثنائيتين المشاركتين في التفاعل:		
		$C_2H_5 - OH + H_2O = CH_3CO_2H + 4H^+ + 4e^-$: (م.ن.للأكسدة)		
		$Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$ (م.ن. للإرجاع)		
	2x0,25	$(Cr_2O_7^{2-}/Cr^{3+})$ ، (CH_3CO_2H/C_2H_5-OH) ، هما: $(Cr_2O_7^{2-}/Cr^{3+})$ ، (CH_3CO_2H/C_2H_5-OH)		
00,25	0,25	2.1. توضيح دور حمض الكبريت المركز:		
		حمض الكبريت المركز يوفر الشوارد ($H^+(aq)$ للوسط التفاعلي حتى يسمح		
		$(C_2H_5 - OH)$ من اكتساب الالكترونات المفقودة من المرجع ($C_2O_7^{2-}(aq)$) من اكتساب الالكترونات المفقودة من المرجع		
01,00	2x0,50	3.1. التأكد من قيمة كمية المادة الابتدائية للمتفاعلات : m oV		
		$n_{02}(C_2H_5 - OH) \approx 60 \text{ m mol} \cdot n_{01}(C_2H_5 - OH) = \frac{m}{M} = \frac{\rho V_2}{M}$		
		$n_{01}(Cr_2O_7^{2-}) = 50 \text{ m mol } \cdot n_{01}(Cr_2O_7^{2-}) = cV_1$		
01,25	3x0,25_	4.1. انجاز جدول تقدم التفاعل، واستنتاج قيمة X _{max} :		
,		$2Cr_2O_{7(aq)}^{2-} + 3C_2H_5OH_{(l)} + 16H_{(aq)}^+ = 4Cr_{(aq)}^{3+} + 3CH_3CO_2H_{(l)} + 11H_2O_{(l)}$		
		الحالة الابتدائية 0 n_{01} n_{02} 0 0		
		الحالة الانتقالية $n_{01}-2x$ $n_{02}-3x$ $3x$ $3x$		
		$\left \begin{array}{c c} X_f \end{array}\right $ الحالة النهائية $\left \begin{array}{c c} x_f \end{array}\right $ $\left \begin{array}{c c} n_{01}-2X_f \end{array}\right $ $\left \begin{array}{c c} n_{02}-3x_f \end{array}\right $ الحالة النهائية		

X_{max} = 25 mmol \Leftarrow 50 – 2 X_{max} = 0 : متفاعل محد: $(Cr_2O_7^{2-}(ac) \times X_{\text{max}})$ المنافية المتحول الكيميائي الحادث: $(Cr_2O_7^{2-}(ac) \times X_{\text{max}})$ المنافية المتحدة: $(Cr_2O_7^{2-}(ac) \times X_{\text{max}})$ المنافي المحدد: $(Cr_2O_7^{2-}(ac) \times X_{\text{max}})$ المنافي المتحدد $(Cr_2O_7^{2-}(ac) \times X_{\text{max}})$	بفرض (((بفرض (ا نأخذ أص نأخذ أص 2. المتاب 1.2. اثبا من جدول
$X_{\text{max}} = 20 \text{ mmol} \Leftarrow 60 - 3X_{\text{max}} = 0 : 30 \text{ mmol} \Rightarrow (C_2H_5 - O)$ $X_{\text{max}} = 20 \text{ mmol} \Rightarrow (C_2H_5 - O)$ $E literate $	بفرض (H) بفرض نأخذ أص 2. المتاب 1.2. اثبا من جدول
$X_{\text{max}} = 20 \text{ mmol}$ غبر قيمة، ومنه $X_{\text{max}} = 20 \text{ mmol}$ غبر قيمة، ومنه الكيميائي الحادث: $[\text{Cr}_2\text{O}_7^{2-}](t) = 0.48 - 19.34.\text{x}:$ $[\text{Cr}_2\text{O}_7^{2-}](t) = 0.48 - 19.34.\text{x}:$ $[\text{Cr}_2\text{O}_7^{2-}](t) = \frac{c\text{V}_1 - 2\text{x}(t)}{\text{V}_1 + \text{V}_2} = \frac{c\text{V}_1}{\text{V}_1 + \text{V}_2} - \frac{2}{\text{V}_1 + \text{V}_2}\text{x}(t):$ $[\text{Cr}_2\text{O}_7^{2-}](t) = \frac{50}{100 + 3.4} - \frac{2}{(100 + 3.4).10^{-3}}.\text{x}(t)$ عبر نصف التقاعل $[\text{Cr}_2\text{O}_7^{2-}](t) = 0.48 - 19.34.\text{x}(t)$ $[C$	نأخذ أص 2. <u>المتاب</u> 1.2. اثبا من جدول
00,50 $Cr_2O_7^{2-}](t) = 0,48 - 19,34.x$: $ [Cr_2O_7^{2-}](t) = \frac{cV_1 - 2x(t)}{V_1 + V_2} = \frac{cV_1}{V_1 + V_2} - \frac{2}{V_1 + V_2}x(t) $ $ [Cr_2O_7^{2-}](t) = \frac{50}{100 + 3,4} - \frac{2}{(100 + 3,4).10^{-3}}.x(t) $ $ [Cr_2O_7^{2-}](t) = \frac{50}{100 + 3,4} - \frac{2}{(100 + 3,4).10^{-3}}.x(t) $ $ [Cr_2O_7^{2-}](t) = 0,48 - 19,34.x(t) $ $ [Cr_2O_7^{2-}](t) = 0,48 - 19,34.x(t$	 المتاب 1.2 اثبا من جدول
$ [Cr_2O_7^{2-}](t) = 0,48 - 19,34.x : \frac{1}{2} $	1.2. اثبا من جدول
$ \begin{bmatrix} \operatorname{Cr}_2 \operatorname{O}_7^{2-} \end{bmatrix}(t) = \frac{\operatorname{cV}_1 - 2\operatorname{x}(t)}{\operatorname{V}_1 + \operatorname{V}_2} = \frac{\operatorname{cV}_1}{\operatorname{V}_1 + \operatorname{V}_2} - \frac{2}{\operatorname{V}_1 + \operatorname{V}_2} \operatorname{x}(t) : $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = \frac{50}{100 + 3, 4} - \frac{2}{(100 + 3, 4) \cdot 10^{-3}} \cdot \operatorname{x}(t) (100 + 3, 4) \cdot 10^{-3} \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot \operatorname{x}(t) $ $ [\operatorname{Cr}_2 \operatorname{O}_7^{2-}](t) = 0, 48 - 19, 34 \cdot x$	من جدول
$\begin{bmatrix} \operatorname{Cr}_2 \operatorname{O}_7^{2-} \end{bmatrix}$ (t) = $\frac{50}{100 + 3, 4} - \frac{2}{(100 + 3, 4).10^{-3}}.\mathrm{x}$ (t) (ددي $(\operatorname{Cr}_2 \operatorname{O}_7^{2-}]$ (t) = $(0.48 - 19, 34.\mathrm{x})$ ($(0.48 - 19, 34.\mathrm{x})$	
$\left[\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}\right](t) = \frac{50}{100+3,4} - \frac{2}{(100+3,4).10^{-3}}.\mathrm{x}(t)$ ددي $\left[\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}\right](t) = 0,48-19,34.\mathrm{x}(t)$ و $\left[\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}\right](t) = 0,48-19,34.\mathrm{x}(t)$ و $\left[\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}\right](t) = 0,48-19,34.\mathrm{x}(t)$ و تحديد قيمته بيانيا: $\left[\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}\right](t) = 0,48-19,34.\mathrm{x}(t)$ و $\left[\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}\right](t) = 0,48-19,34.\mathrm{x}(t)$	
00,75 $ [Cr_2O_7^{2-}](t) = 0,48-19,34.x ($ $ [Cr_2O_7^{2-}](t) = 0,4$	1
00,75 مريف زمن نصف التفاعل £ t _{1/2} و تحديد قيمته بيانيا: اللازم لبلوغ تقدم التفاعل نصف قيمته النهائية. 2x0 25	(تطبیق ع
اللازم لبلوغ تقدم التفاعل نصف قيمته النهائية. مته بيانيا:	نجد: (t
اللازم لبلوغ تقدم التفاعل نصف قيمته النهائية. مته بيانيا:	2.2. *ئ
$\frac{1}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}$	هو الزمن
$\begin{bmatrix} 2x0,25 \\ Cr_2O_2^{2-} \end{bmatrix} = 0.48 - 19.34. \frac{20.10^{-3}}{}$ التعويض $\mathbf{x} = \frac{\mathbf{X_f}}{}$ فان $\mathbf{x} = \frac{\mathbf{X_f}}{}$	*تحديد ق
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $: t _{1/2} لما
$t_{1/2} = 5,6 ext{min}$ بالإسقاط نجد: $\left[\text{Cr}_2 \text{O}_7^{2-} \right]_{(\mathbf{t}_{1/2})} \simeq 0,29 ext{ mol}$	
$5,5\mathrm{min} \leq t_{1/2} \leq 5,7\mathrm{min}$: تقبل القيم في المجال	ملاحظة:
ثابت حموضة الثنائية (CH ₃ CO ₂ H/C ₂ H ₅ - OH):	II. <u>تحدی</u> د
- تفاعل المعايرة: - تفاعل المعايرة:	1. معادل
00,50 $0,50$ $CH_3COOH(aq) + HO^-(aq) = CH_3COO^-(aq) +$	$H_2O(1)$
V_{bE} عند التكافؤ: V_{bE}	2. *استة
$01,25$ 0.75 $\frac{[CH_3COO^-]}{[CH_3COOH]} = 1$ و منه: $[CH_3CO_2^-] = [CH_3CO_2^-] = [CH_3CO_2^-]$ و منه:	عند نقط
$\mathbf{V}_{\mathrm{bE}} = 20\mathrm{mL}$: یکون عندها: $\mathbf{V}_{\mathrm{b}} = \frac{\mathbf{V}_{\mathrm{bE}}}{2} = 10\mathrm{mL}$ و منه	
يمة c _a : c	*حساب
$\mathbf{c_aV_a} = \mathbf{c_b.V_{bE}}$. و يكون المتفاعلان بنسب ستوكيومترية، أي	عند التكاه
$c_a = 10^{-2} \text{ mol.} L^{-1}$ نجد $c_a = \frac{c_b V_b}{V_a}$	I
" تاج قيمة الثابت . pK :	و منه: -
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

		$pK_A = 4,8$ ينتج، $pK_A = pH - \log 2$
		الجزء الثاني: (07 نقاط)
		التمرين التجريبي: (07 نقاط)
		I- <u>البادلة (K) في الوضع</u> (1):
00,25	0,25	1. تعريف المكثفة بإعطاء مبدأ تركيبها:
00,25		المكثفة ثنائي قطب، يتكون من ناقلين كهربائيين يدعى كل منهما لبوس المكثفة، يفصل بينهما
		عازل كهربائي.
00,25	0,25	2. التفسير المجهري لشحن المكثفة:
00,23	,	عند شحن المكثفة، يُحدث المولد اختلالا في التوازن الكهربائي بين لبوسي المكثفة، فتحدث
		هجرة جماعية للإلكترونات من اللبوس المرتبط بالقطب الموجب للمولد (و يشحن موجبا) إلى
		اللبوس المرتبط بالقطب السالب للمولد (ويشحن سالبا)، فتتكاثف عليه دون الانتقال عبر العازل
04.00		الكهريائي v
01,00	0,25	3. تمثيل على مخطط الدارة:
	2x0,25	$\begin{array}{c c} & & & \\ & & &$
	0,25	<u>1.2.3</u> أسهم التوترات:
	0,23	3.3. كيفية ربط راسم الاهتزاز ذو الذاكرة:
		 استثمار منحنى الشكل (6):
01,50	2x0,25	1.4. شحن المكثفة:
		المكثفة لم تشحن آنيا، وإنما شحنت وفق نظام انتقالي مدته 1ms حتى بلوغ نظام دائم.
	0.25	2.4 . *ايجاد قيمة كل من E و τ:
	0,25	$\mathbf{E} = \mathbf{6V}$ و بيانيا $\mathbf{U_{c}}_{\mathbf{max}} = \mathbf{E}$ و بيانيا $-$
	0,25	$-$ فاصلة نقطة تقاطع المماس (Δ) مع الخط المقارب للمنحى تمثل $ au$ ، و بيانيا نجد:
	·	$ au = 0,2 ext{ms}$
		*استنتاج قيمة سعة المكثفة C:
	2x0,25	$C = 8.10^{-7} F = 0.8 \mu$ F نجد $C = \frac{0.2.10^{-3}}{250}$: (تطبیق عددي $C = \frac{\tau}{R}$ نجد $C = R.C$
		II. البادلة (K) في الوضع (2):
00,75	3x0,25	1. ايجاد المعادلة التفاضلية لشدة التيار i(t) بتطبيق قانون جمع التوترات:
		$\frac{1}{C}$.q(t)+Ri(t)=0 : بتطبیق قانون جمع التوترات $u_{C}(t)+u_{R}(t)=0$. بتطبیق قانون جمع التوترات

	T	
		R و بالقسمة على $i(t) = \frac{dq(t)}{dt}$ ، حيث $i(t) = \frac{dq(t)}{dt} + R \frac{di(t)}{dt} = 0$ و بالقسمة على
00,75		$\frac{\mathrm{di}(t)}{\mathrm{dt}} + \frac{1}{\mathrm{RC}}\mathrm{i}(t) = 0$: ينتج
	0,25	2. *اختيار الحل المناسب للمعادلة التفاضلية:
	250 25	$\mathbf{i}(\mathbf{t}) = -\mathbf{I}_0 \mathbf{e}^{-\frac{\mathbf{t}}{\mathbf{RC}}}$
	2x0,25	* <u>التحقق من الحل</u> :
		$\frac{\mathrm{di}(t)}{\mathrm{dt}} = \frac{\mathrm{I}_0}{\mathrm{RC}} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}$ نشتق الحل
		و نعوضه في المعادلة التفاضلية:
00,50	0,50	$\frac{1}{RC}e^{-\frac{t}{RC}} - \frac{1}{RC}I_0e^{-\frac{t}{RC}} = 0$ ومنه: $\frac{1}{RC}e^{-\frac{t}{RC}} - \frac{1}{RC}I_0e^{-\frac{t}{RC}} = 0$
	0,20	i=f(t) تمثیل کیفی للبیان: $i=f(t)$
		$\mathbf{i}(t) = \mathbf{I}_0 \mathbf{e}^{-\frac{t}{RC}}$ المعادلة التفاضلية تقبل الحل التالي $\mathbf{i}(t) = \mathbf{I}_0 \mathbf{e}^{-\frac{t}{RC}}$
		و بالتالي يكون البيان مقلوبا.
00,75	20.25	III. البادلة (K) في الوضع (3):
	3x0,25	1. العبارة اللحظية للتوتر (u _{G2} (t) :
01,25		$\mathbf{u}_{\mathrm{G2}}(t)=\mathbf{u}_{\mathrm{C}}(t)+\mathbf{u}_{\mathrm{R}}(t)$ $\mathbf{u}_{\mathrm{G2}}(t)=\frac{\mathbf{I}}{C}.t+\mathrm{R}.\mathrm{I}$: جيث $\mathbf{u}_{\mathrm{c}}(t)=\frac{\mathbf{q}(t)}{C}=\frac{\mathbf{I}}{C}.t$, $\mathbf{u}_{\mathrm{R}}(t)=\mathrm{R}.\mathrm{I}$ خيث
		2. *باستثمار منحنى الشكل (7) ايجاد قيمة شدة التيار I:
		معادلة البيان: $\mathbf{u}_{G2}(t) = \mathbf{a}.t + \mathbf{b}$ (حيث \mathbf{a} معامل توجيه البيان و $\mathbf{u}_{G2}(t) = \mathbf{a}.t + \mathbf{b}$
		$\mathbf{u_{G2}}(t) = \frac{\mathbf{I}}{\mathbf{C}} \cdot \mathbf{t} + \mathbf{R} \cdot \mathbf{I}$ العبارة النظرية:
	2x0,25	$\mathbf{b} = 6 \mathbf{V}$: حيث من البيان $\mathbf{I} = \frac{\mathbf{b}}{\mathbf{R}}$ و منه $\mathbf{I} = \frac{\mathbf{b}}{\mathbf{R}}$ و منه
	0,25	$I = 0,024 A = 24 mA$ نجد $I = \frac{6}{250}$ (تطبیق عددي)
		*ا <u>لتحقق من قيمة</u>
	0,25	$a = \frac{\Delta U}{\Delta t} = \frac{6}{0,2.10^{-3}} = 3.10^4 \text{V.s}^{-1}$ حيث $C = \frac{I}{a}$ و منه $C = \frac{I}{a}$
	0,25	$C = 8.10^{-7} F = 0.8 \mu$ F نجد $C = \frac{0.024}{3.10^4}$ (تطبیق عددي)

العلامة		
مجموع	مجزأة	عناصر الإجابة – الموضوع الثاني
		الجزء الأول: (13 نقطة)
		التمرين الأول: (06 نقاط)
		I- دراسة النشاط الإشعاعي للبلوتونيوم: 238
00,50	2x0,25	1. تركيب نواة البلوتونيوم 238:
		Z=94 عدد البروتونات: $Z=94$
		N = A - Z = 238 - 94 = 144 عدد النترونات:
00,75		2. معادلة التفكك النووي لنواة البلوتونيوم 238:
		:بتطبيق قانوني الانحفاظ $238 Pu ightarrow {A \over 2} X + {4 \over 2} He + {0 \over 0} \gamma$
	0,25	$A=234 \iff 238=A+4$ انحفاظ عدد النويات:
	0,25	$Z=92 \Leftrightarrow 94=Z+2$ انحفاظ الشحنة الكهربائية: $Z=92$
		النواة المتشكلة حسب الجدول: $^{234}_{92}U$ ومنه تكون معادلة التفكك
	0,25	${}^{238}_{94}Pu \rightarrow {}^{234}_{92}U + {}^{4}_{2}He + {}^{0}_{0}\gamma$
02,50		1.3. العبارة الحرفية لقانون التناقص الاشعاعي:
	0,25	$N(t) = N_0 e^{-\lambda t}$
		$\frac{1}{2} \lambda_{-\epsilon} N_0$ بدلالة $\frac{dN}{dt}$ بدلالة بدلالة .2.3
	0,25	$rac{dN\left(t ight.)}{dt}$ = $-\lambda N_{0}e^{-\lambda t}$ باشتقاق لقانون التناقص الاشعاعي نجد
		3.3. استغلال المنحنى البياني:
	0,25	: B إيجاد قيمة الثابت: B: 1.3.3.*
		$B = 9.10^{22} noyaux / ans$: i.i.y
		*المدلول الفيزيائي للثابت B:
		$(rac{dN(t)}{dt})_{(t=0)} = -\lambda N_0$ من معادلة البيان و لما $t=0$ فإن
	0,25	بالمطابقة $B=\lambda.N_0$ و نعلم أن $A_0=\lambda.N_0$ و منه B يمثل النشاط الابتدائي A_0 للعينة المشعة
	2x0,25	* ایجاد قیمه * :
		$\lambda = \frac{1}{ au}$ من البيان : $ au = 126ans$ و نعلم أن $ au = 1$
		$\lambda = 7,94.10^{-3} ans^{-1}$ نجد $\lambda = \frac{1}{126}$ (تطبیق عددي)

	2 0 2 7	
	2x0,25	m_0 استنتاج قیمة st :
		$m_0=rac{M}{\lambda.N_A}.A_0$ ومنه $N_0=rac{m_0}{M}N_A$ و $A_0=B=\lambda N_0$ نعلم أن
		$(A_0 = B = 9.10^{22} noyaux .ans^{-1})$
		$m_0 = 4481, 3g \simeq 4.5 \text{kg}$ نجد $m_0 = \frac{238}{7,94.10^{-3} \times 6,02.10^{23}} \times 9.10^{22}$ (تطبیق عددي)
	2x0,25	4.3. تحديد بالسنوات العمر الافتراضي للبطارية:
		$A = 68\% A_0 = 0,68 A_0$ حیث $t = \frac{1}{\lambda} Ln \frac{A_0}{A}$ و منه $A(t) = A_0.e^{-\lambda.t}$
		$t \simeq 48,6 \ ans$ نجد $t = \frac{1}{7,94.10^{-3}} Ln \frac{1}{0,68}$ (تطبیق عددي)
00.25	0.25	II <u>الطاقة المحررة من انشطار نواة البلوتونيوم</u> 239 :
00,25	0,25	1. تعريف تفاعل الانشطار النووي:
		هو تفاعل نووي مفتعل، ناتج عن انقسام نواة ثقيلة غير مستقرة، الى نواتين أخف وأكثر
		استقرار، اثر قذفها بنترون مبطأ، مع تحرير طاقة ونترونات.
02,00		2. باستغلال المعطيات:
,	2x0,25	1.2. حساب الطاقة المحررة من انشطار نواة بلوتونيوم 239:
		$\Delta m = m(^{239}Pu) - m(^{135}Te) - m(^{102}Mo) - 2m(n)$ $\Delta m = E_{lib} = \Delta m \times 931,5$
		$\Delta m = m(^{239}Pu) - m(^{135}Te) - m(^{102}Mo) - 2m(n)$ حیث $E_{lib} = \Delta m \times 931,5$ $E_{lib} = (239,0521 - 134,9167 - 101,9130 - 2 \times 1,0087) \times 931,5$ (تطبیع عددي)
	2x0,25	$E_{lib} = (239,0521-134,9167-101,9130-2 imes 1,0087) imes 931,5 (تطبيع عددي) $ نجد $E_{lib} \simeq 190,96MeV$ نجد $E_{lib} \simeq 190,96MeV$: 2.2
	2x0,25	$E_{lib}=(239,0521-134,9167-101,9130-2 imes1,0087) imes931,5$ (تطبيع عددي) $E_{lib}\simeq 190,96MeV$ نجد $: rac{239}{94}Pu$ للنواة $: 2.2$ $: E_{lib}=E_l(rac{135}{52}Te)+E_l(rac{102}{42}Mo)-E_l(rac{239}{94}Pu)$
	2x0,25	$E_{lib}=(239,0521-134,9167-101,9130-2 imes1,0087) imes931,5$ (تطبيع عددي) $E_{lib}\simeq 190,96MeV$ نجد $:{}^{239}_{94}Pu$ $:{}^{239}_{94}Pu$ $:{}^{239}_{10}Pu$ $:{}^$
	2x0,25	$E_{lib}=(239,0521-134,9167-101,9130-2 imes1,0087) imes931,5$ (تطبيع عددي) $E_{lib}\simeq190,96MeV$ نجد $:rac{239}{94}Pu$ قبل النواة الربط للنواة $E_{lib}=E_l(rac{239}{52}Te)+E_l(rac{102}{42}Mo)-E_l(rac{239}{94}Pu)$ و منه $E_l(rac{239}{94}Pu)=E_l(rac{135}{52}Te)+E_l(rac{102}{42}Mo)-E_{lib}$ و منه عددي) $E_l(rac{239}{94}Pu)=1103,83+852,88-190,96$
	2x0,25	$E_{lib}=(239,0521-134,9167-101,9130-2 imes1,0087) imes931,5$ (تطبيع عددي) $E_{lib}\simeq190,96MeV$ نجد $:{}^{239}_{94}Pu$ المنتتاج طاقة الربط للنواة $E_{lib}=E_{l}({}^{135}_{94}Te)+E_{l}({}^{102}_{42}Mo)-E_{l}({}^{239}_{94}Pu)$ $E_{l}({}^{239}_{94}Pu)=E_{l}({}^{135}_{52}Te)+E_{l}({}^{102}_{42}Mo)-E_{lib}$ و منه $E_{l}({}^{239}_{94}Pu)=1103,83+852,88-190,96$ (تطبيق عددي) $E_{l}({}^{239}_{94}Pu)=1765,75MeV$ نجد $E_{l}({}^{239}_{94}Pu)=1765,75MeV$
	2x0,25 3x0,25	$E_{lib}=(239,0521-134,9167-101,9130-2\times1,0087) imes 931,5$ (تطبيع عددي) $E_{lib}\simeq 190,96MeV$ نجد $:{}^{239}_{94}Pu$ الربط للنواة الربط للنواة $=E_{l}({}^{135}_{52}Te)+E_{l}({}^{102}_{42}Mo)-E_{l}({}^{239}_{94}Pu)$ $E_{l}({}^{239}_{94}Pu)=E_{l}({}^{135}_{52}Te)+E_{l}({}^{102}_{42}Mo)-E_{lib}$ و منه $E_{l}({}^{239}_{94}Pu)=1103,83+852,88-190,96$ (تطبيق عددي) $E_{l}({}^{239}_{94}Pu)=1765,75MeV$ نجد $E_{l}({}^{239}_{94}Pu)=1765,75MeV$ مقارنة استقرار النواتين $E_{l}({}^{239}_{94}Pu)=1765,75MeV$ معارنة استقرار النواتين $E_{l}({}^{239}_{94}Pu)=1765,75MeV$ معارنة استقرار النواتين $E_{l}({}^{239}_{94}Pu)=1765,75MeV$
	ŕ	$E_{lib} = (239,0521-134,9167-101,9130-2 imes 1,0087) imes 931,5$ (تطبيع عددي) $E_{lib} \simeq 190,96MeV$ نجد $: {}^{239}_{94}Pu$ النواة الربط للنواة $= E_l({}^{135}_{52}Te) + E_l({}^{102}_{42}Mo) - E_l({}^{239}_{94}Pu)$ $E_l({}^{239}_{94}Pu) = E_l({}^{135}_{52}Te) + E_l({}^{102}_{42}Mo) - E_{lib}$ و منه $E_l({}^{239}_{94}Pu) = 1103,83 + 852,88 - 190,96$ (تطبيق عددي) $E_l({}^{239}_{94}Pu) = 1765,75MeV$ نجد $E_l({}^{239}_{94}Pu) = 1765,75MeV$ مقارنة استقرار النواتين $E_l({}^{239}_{94}Pu) = {}^{135}_{52}Te$ و $E_l({}^{102}_{42}Mo) = {}^{135}_{52}Te$ $E_l({}^{135}_{52}Te) = {}^{135}_{52}Te$
	ŕ	$E_{lib}=(239,0521-134,9167-101,9130-2\times1,0087) imes 931,5$ (تطبيع عددي) $E_{lib}\simeq 190,96MeV$ نجد $: {}^{239}_{94}Pu$ المنتقاح طاقة الربط للنواة $=E_{l}({}^{135}_{52}Te)+E_{l}({}^{102}_{42}Mo)-E_{l}({}^{239}_{94}Pu)$ $E_{l}({}^{239}_{94}Pu)=E_{l}({}^{135}_{52}Te)+E_{l}({}^{102}_{42}Mo)-E_{lib}$ و منه $E_{l}({}^{239}_{94}Pu)=1103,83+852,88-190,96$ (تطبيق عددي) $E_{l}({}^{239}_{94}Pu)=1765,75MeV$ نجد $E_{l}({}^{239}_{94}Pu)=1765,75MeV$ مقارنة استقرار النواتين $E_{l}({}^{239}_{94}Pu)={}^{135}_{52}Te$ مقارنة استقرار النواتين $E_{l}({}^{239}_{94}Pu)={}^{135}_{52}Te$
	ŕ	$E_{lib} = (239,0521-134,9167-101,9130-2 imes 1,0087) imes 931,5$ (تطبيع عددي) $E_{lib} \simeq 190,96MeV$ نجد $: {}^{239}_{94}Pu$ النواة الربط للنواة $= E_l({}^{135}_{52}Te) + E_l({}^{102}_{42}Mo) - E_l({}^{239}_{94}Pu)$ $E_l({}^{239}_{94}Pu) = E_l({}^{135}_{52}Te) + E_l({}^{102}_{42}Mo) - E_{lib}$ و منه $E_l({}^{239}_{94}Pu) = 1103,83 + 852,88 - 190,96$ (تطبيق عددي) $E_l({}^{239}_{94}Pu) = 1765,75MeV$ نجد $E_l({}^{239}_{94}Pu) = 1765,75MeV$ مقارنة استقرار النواتين $E_l({}^{239}_{94}Pu) = {}^{135}_{52}Te$ و $E_l({}^{102}_{42}Mo) = {}^{135}_{52}Te$ $E_l({}^{135}_{52}Te) = {}^{135}_{52}Te$
	3x0,25	$E_{lib} = (239,0521-134,9167-101,9130-2\times1,0087)\times931,5$ (تطبيع عددي) $E_{lib} \simeq 190,96MeV$ نجد $: {}^{239}_{94}Pu$ $: {}^{239}_{94}Pu$ $: {}^{135}_{52}Te) + E_l({}^{102}_{12}Mo) - E_l({}^{239}_{94}Pu)$ $E_l({}^{239}_{94}Pu) = E_l({}^{135}_{52}Te) + E_l({}^{102}_{42}Mo) - E_{lib}$ $= E_l({}^{239}_{94}Pu) = 1103,83+852,88-190,96$ نجد $= E_l({}^{239}_{94}Pu) = 1765,75MeV$ نجد $= E_l({}^{239}_{94}Pu) = 1765,75MeV$ $= E_l({}^{239}_{94}Pu) = 1765,75MeV$ $= E_l({}^{102}_{94}Pu) = 1765,75MeV$ $= E_l({}^{102}_{42}Mo) = 8,39MeV/nuc$ $= E_l({}^{102}_{94}Pu) = 8,39MeV/nuc$ $= E_l({}^{135}_{12}Te) = 8,18MeV/nuc$ $= E_l({}^{239}_{94}Pu) = 7,40MeV/nuc$
	ŕ	$E_{lib}=(239,0521-134,9167-101,9130-2\times1,0087) imes 931,5$ (ريط يع عددي) $E_{lib}=190,96MeV$ نجد $E_{lib}=190,96MeV$ نجد $E_{lib}=190,96MeV$ $E_{lib}=100,96MeV$ $E_{lib}=1$

		وهذا ما يتوافق مع الحسابات.
		التمرين الثاني: (07 نقاط)
01,25	20.25	- دراسة حركة مركز العطالة على المستوي المائل AB: - دراسة حركة مركز العطالة على المستوي المائل AB: - 1. بإهمال قوى الاحتكاك على المستوي المائل:
	2x0,25 3x0,25	ا 1.1. تمثیل القوی الخارجیة المطبقة علی الجملة (S) : B
	,	B بتطبيق مبدأ انحفاظ الطاقة للجملة (S)بين الوضعين A و
		و منه $mg.AB.\sin\alpha = \frac{1}{2}.m.v_B^2$ اُي $E_c(A) + W(\overrightarrow{P})_{A \to B} = E_c(B)$
		$v_B = \sqrt{2 \times 9.8 \times 173,7 \times \sin 11^\circ}$ (تطبیق عددي) $v_B = \sqrt{2.g.AB.\sin \alpha}$
		$v_B \simeq 25,5 m.s^{-1}$ نجد
01,00	0.27	2. المقارنة بين السرعتين وحساب شدة قوة الاحتكاك:
	0,25	$v_{B(th)} = 25,5 m s^{-1} \rangle v_{B(\exp)} = 83,3 km h^{-1} = 23,14 m s^{-1}$ *نلاحظ أن
	3x0,25	$ec{f}$ سبب اختلاف السرعتين راجع الى وجود قوة احتكاك بين المستوي المائل و المتزلج $ec{f}$
		B و لحساب قيمتها نكتب معادلة انحفاظ طاقة الجملة S) بين الموضعين A و
		$mg.AB.\sin\alpha - f.AB = \frac{1}{2}.m.v_B^2 \stackrel{f}{\bowtie} E_c(A) + W(\overrightarrow{P})_{A \to B} - W(\overrightarrow{f})_{A \to B} = E_c(B)$
		$f = 70 \times (9.8 \times \sin 11^{\circ} - \frac{23.14^{2}}{2 \times 173.7})$ (تطبیق عددي) $f = m.(g.\sin \alpha - \frac{v_{B(\exp)}^{2}}{2 \cdot AB})$ و منه
		f = 23 N نجد
		ملاحظة: يمكن استخدام القانون الثاني لنيوتن:
		و منه $ec{P}+ec{f}=m.ec{a}_G$ و منه و $ec{P}+ec{f}=m.ec{a}_G$
		$a_G = rac{v_{B(\exp)}^2}{2 \cdot AB}$ خيث نعلم أن $f = m.(g.\sin lpha - rac{v_{B(\exp)}^2}{2 \cdot AB})$
		II-دراسة حركة مركز العطالة خلال القفز في الهواء:
00,25	0,25	1. تذكير بنص قانون نيوتن:
		في مرجع غاليلي، المجموع الشعاعي للقوى الخارجية المطبقة على جملة مادية، يساوي في كل
		$\sum \overrightarrow{F}_{ext} = m.\overrightarrow{a}$ لحظة، جداء كتلتها في شعاع تسارع مركز عطالتها
03,50		1.2. ملأ الجدول بتطبيق القانون الثاني لنيوتن:
		$\sum \vec{F}_{ext} = m \cdot \vec{a} \Rightarrow \vec{P} = m \cdot \vec{a}$

								تكملة الجدول:	
	12x0,25		$ec{P}$	\vec{a}	\vec{v}_0	المعادلة الزمنية للسرعة	المعادلة الزمنية للحركة	طبيعة الحركة	
		Вх	0	0	$v_B \cdot \cos \alpha$	$v_B \cdot \cos \alpha$	$v_B \cdot \cos \alpha t$	ح. منتظمة	
		Bz	P	g	$v_B \cdot \sin \alpha$	$g \cdot t + v_B \cdot \sin \alpha$	$\frac{1}{2} \cdot g \cdot t^2 + v_B \cdot \sin \alpha \cdot t$	ح. متغيرة بانتظام	
	2x0,25	$z(x) = 9.5 \times 10^{-3} \cdot x^2 + 0.19 \cdot x$: تبیان أن معادلة مسار المتزحلق تکتب علی الشکل: 2.2.							
			$\int_{1}^{\infty} x(t) = v_{B} \cdot \cos \alpha \cdot t \cdots (1)$						
			$\begin{cases} z(t) = \frac{1}{2} \cdot g \cdot t^2 + v_B \cdot \sin \alpha \cdot t \cdots (2) \end{cases}$						
			$t = \frac{x}{v_B \cos \alpha} : 1)$ من						
			$z(x) = \frac{g}{2 \cdot v_B^2 \cdot \cos^2 \alpha} \cdot x^2 + \tan \alpha \cdot x :$ بالتعویض في (2) نجد						
		$z(x) = 9.5 \times 10^{-3} \cdot x^{2} + 0.19 \cdot x \leftarrow z(x) = \frac{9.8}{2 \cdot (23.14)^{2} \cdot \cos^{2}(11)} \cdot x^{2} + \tan(11) \cdot x$ $\vdots z_{C} x_{C} x_{C} \exists x_{C} $							
01,00	3x0,25								
	BC هي نقطة مشتركة بين مسار المتزلج و الخط المستقيم C								
		$9.5 \times 10^{-3} \cdot x_{C}^{2} - 0.40 \cdot x_{C} = 0 \text{ign} 0.59 \cdot x_{C} = 9.5 \times 10^{-3} \cdot x_{C}^{2} + 0.19 \cdot x_{C}$						• •	
			$z_c = 24,8m$ بحل هذه المعادلة نجد $x_c \simeq 42m$ و بالتعويض في احدى المعادلة نجد						
	0,25	$t_c = 1,85 s$ نجد $t_c = \frac{42}{23,14 \times \cos 11^\circ}$ (تطبیق عددي) $t_c = \frac{x_c}{v_B.\cos \alpha}$							
		$z_c = f(t)$ ملاحظة: يمكن ايجاد مدة القفز من المعادلة الزمنية							
							(* 1 ** 0 7)	m94 . m94	
							•	التمرين التجريب	
00.50	20.25					اء القصاب	ييه: أمنية الواجب اتخاذها لإجر	I <u>الدراسة التجرب</u> 1 الاحتيامات ال	
00,50	2x0,25						منيه الواجب الحادها لإجر القفازات ووضع النظارات		
01,00							التجريبي مع توضيح البيا		
								· # 3 \ 3	

	3x0,25	مخبار مدرج انطلاق HCl محلول							
	0,25	*طريقة قياس حجم الغاز المنطلق: قياس مباشر من تدريجات المخبار المدرج 2. الكثناء من الذان المنالة المدرج							
00,25	0,25	3. الكشف عن الغاز المنطلق: الغاز المنطلق: الغاز المنطلق هو غاز ثنائي الهيدروجين، و للكشف عنه، نسد المخبار المدرج و نخرجه من الحوض عند نهاية التحول، ثم نقرب من فوهته عود ثقاب مشتعل فتحدث فرقعة غازية.							
00,50	2x0,25	II - المتابعة الزمنية للتحول الكيميائي: 1. تصنيف التحول الكيميائي الحادث من حيث المدة المستغرقة: يدوم التحول الكيميائي حوالي 60min، فهو تحول بطيء.							
03,75	3x0,25	: نجاز جدول تقدم التفاعل $2H_3O^+(aq)+Fe\left(s\right) \ = \ H_2\left(g\right)+Fe^{2+}\left(aq\right)+H_2O\left(l\right)$ معادلة التفاعل							
		الحالة	التقدم					$n_0 = \frac{m_0}{M}$	
		$t = 0$ $t > 0$ t_f		n_1 $n_1 - 2x$ $n_1 - 2x_f$	$n_0 - x$ $n_0 - x$	$\begin{array}{c c} 0 \\ x \\ x_f \end{array}$	$\begin{bmatrix} 0 \\ x \\ x_f \end{bmatrix}$	برور بوفرة بوفرة	$n_1 = c \cdot V$ $= 0,03 \text{ mol}$
	0,50		l	J	<u> </u>	1	1		الم
	3x0,25	$X_f = \frac{V_f(H_2)}{V_M} = \frac{0,240}{24}$ البيانيا: $X_f = \frac{V_f(H_2)}{V_M} = \frac{0,240}{24}$ وحسب علاقة التقدم التقدم $V_f(H_2) = 240~mL$							
	2 0 25	$X_f = 0.01 \; \mathrm{mol} = 10 \; \mathrm{mmol}$ نجد: المتفاعل المحد:						نجد: 0 mmol *تعيين المتفاعل الد	
	2x0,25		کمیة مادة المتفاعل $(H_3 O^+)$ عند نهایة التفاعل: $n_f \left(H_3 O^+ \right) = CV - 2X_f = 30 - 2 \times 10 = 10 \; \mathrm{mmol} \; \neq 0$						
	0,25			٠.	المتفاعل المح) حتما هو	Fe) حدید	، تام إذن الـ	و بما أن التحول

	250 25	3.2. *اثبات عبارة السرعة الحجمية للتفاعل:
	2x0,25	$v_{vol}(t) = \frac{1}{V} \frac{dx(t)}{dt}$: من تعريف السرعة الحجمية للتفاعل، لدينا
		$v_{vol}(t) = \overline{V} - \overline{dt}$ من تعريف السرعة الحجمية للتفاعل، لدينا:
		بتعویض عبارة التقدم السابقة $x=rac{V_{_{H_{2}}}(t)}{V_{_{M}}}$: بتعویض عبارة المطلوبة
		$v_{vol}(t) = \frac{1}{V.V_M} \frac{dV_{H_2}(t)}{dt}$
	2x0,25	* حساب قيمتها في اللحظة ($t=0$):
		$\left. \frac{dV_{H_2}(t)}{dt} \right _{t=0} = \frac{250.10^{-3}}{12} \simeq 0,021 \text{ L} \cdot \text{min}^{-1} (\Delta) \text{(Δ)}$ using the property of the second states of the second st
		$v_{vol}\left(0\right) \simeq 8,7.10^{-3} mol. L^{-1}. min^{-1}$ نجد $v_{vol}\left(0\right) = \frac{1}{0,1 \times 24} \times 0,021$ (تطبیق عددي):
		ملاحظة:تقبل قيم السرعة الحجمية المحصورة بين:
		$9.10^{-3} mol .L^{-1}.min^{-1}$ $gray 8.10^{-3} mol .L^{-1}.min^{-1}$
		III- التعرف على صنف خام غار جبيلات:
00,75	2x0,25	صاب الكتلة m_0 كتلة الحديد النقية المتفاعلة: \star
		$n_f(Fe) = rac{m_0}{M} - X_f = 0$:وجدنا أن المتفاعل المحد هو الحديد (Fe)، إذن
		و منه $m_0(Fe) = 56 \times 0.01$ (تطبیق عددي) $m_0(Fe) = M \times X_f$ نجد
		$m_0(Fe) = 0.56 g$
		*استنتاج النسبة المئوية للحديد النقي في الخام:
	0,25	$Fe\% = 56\%$ نجد $Fe\% = \frac{0.56}{1} \times 100\%$ (تطبیق عددي) $Fe\% = \frac{m_0(Fe)}{m} \times 100\%$
00,25	0,25	2. التعرف على صنف خام غار جبيلات:
)	,	حسب الجدول المعطى سابقا، يصنف خام حديد غار جبيلات بالغني لأن نسبة الحديد النقي
		فيه أكثر من %50 .