

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	T	P	C
		3	0	0	3
APPLIED PHYSICS (BS1204)					

Course Objectives:

Physics curriculum which is re-oriented to the needs of Circuital branches of graduate engineering courses offered by Jawaharlal Nehru Technological University Kakinada that serves as a transit to understand the branch specific advanced topics. The course is designed to:

- Impart Knowledge of Physical Optics phenomena like Interference and Diffraction required to design instruments with higher resolution.
- ➤ Understand the physics of Semiconductors and their working mechanism for their utility in sensors.
- ➤ To impart the knowledge of materials with characteristic utility in appliances.

<u>UNIT-I</u> (10hrs)

WAVE OPTICS: Principle of Superposition - Interference of light - Conditions for sustained Interference - Interference in thin films (reflected geometry) - Newton's Rings (reflected geometry).

Diffraction - Fraunhofer Diffraction - Diffraction due to Single slit (quantitative), Double slit, N -slits and circular aperture (qualitative) - Intensity distribution curves - Diffraction Grating - Grating spectrum - missing order - resolving power - Rayleigh's criterion - Resolving powers of Microscope, Telescope and grating (qualitative).

Unit Outcomes:

The students will be able to

- **explain** the need of coherent sources and the conditions for sustained interference.
- **analyze** the differences between interference and diffraction with applications.
- **illustrate** the resolving power of various optical instruments.

<u>UNIT-II</u> (9hrs)

QUANTUM MECHANICS: Introduction – Matter waves – de Broglie's hypothesis – Davisson-Germer experiment – G. P. Thomson experiment – Heisenberg's Uncertainity Principle –interpretation of wave function – Schröedinger Time Independent and Time Dependent wave equations – Particle in a potential box.

Unit Outcomes:

The students will be able to

- **explain** the fundamental concepts of quantum mechanics.
- **analyze** the physical significance of wave function.
- > apply Schrödinger's wave equation for energy values of a free particle.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT-III (10hrs)

FREE ELECTRON THEORY & BAND THEORY OF SOLIDS: Introduction — Classical free electron theory (merits and demerits only) - Quantum Free electron theory — electrical conductivity based on quantum free electron theory — Fermi Dirac distribution function — Temperature dependence of Fermi-Dirac distribution function - expression for Fermi energy -

Density of states.

Bloch's theorem (qualitative) – Kronig-Penney model(qualitative) – energy bands in crystalline solids – E Vs K diagram – classification of crystalline solids – effective mass of electron – m* Vs K diagram - concept of hole.

Unit Outcomes:

The students will be able to

- **explain** the various electron theories.
- **calculate** the Fermi energy.
- > analyze the physical significance of wave function .
- > interpret the effects of temperature on Fermi Dirac distribution function.
- > summarise various types of solids based on band theory.

<u>UNIT-IV</u> (9hrs)

SEMICONDUCTOR PHYSICS: Introduction – Intrinsic semi conductors - density of charge carriers - Electrical conductivity – Fermi level – extrinsic semiconductors - p-type & n-type - Density of charge carriers - Dependence of Fermi energy on carrier concentration and temperature – Hall effect- Hall coefficient - Applications of Hall effect - Drift and Diffusion currents – Einstein's equation.

Learning Outcomes:

The students will be able to

- > classify the energy bands of semiconductors.
- **outline** the properties of n-type and p-type semiconductors.
- **identify** the type of semiconductor using Hall effect.

<u>UNIT-V</u> (10 hrs)

MAGNETISM & DIELECTRICS: Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and permeability – Origin of permanent magnetic moment – Bohr magneton – Classification of magnetic materials: Dia, para & Ferro – Domain concept of Ferromagnetism – Hysteresis – soft and hard magnetic materials – applications of Ferromagnetic material.

Introduction - Dielectic polarization - Dielectric Polarizability, Susceptibility and Dielectric constant-types of polarizations: Electronic and Ionic (Quantitative), Orientational polarizations (qualitative) - Lorentz Internal field - Claussius-Mossoti equation - Frequency dependence of polarization - Applications of dielectrics.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Unit Outcomes:

The students will be able to

- **explain** the concept of polarization in dielectric materials.
- > summarize various types of polarization of dielectrics.
- ➤ interpret Lorentz field and Claussius- Mosotti relation in dielectrics.
- **classify** the magnetic materials based on susceptibility and their temperature dependence.
- **explain** the applications of dielectric and magnetic materials.
- ➤ **Apply** the concept of magnetism to magnetic devices.

TEXT BOOKS:

- 1. "A Text book of Engineering Physics" by M.N. Avadhanulu, P.G.Kshirsagar S.Chand Publications, 2017.
- 2. "Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press (2015).
- 3. "Engineering Physics" by R.K Gaur. and S.L Gupta., Dhanpat Rai publishers, 2012.

REFERENCE BOOKS:

- 1. "Engineering Physics" by M. R. Srinivasan, New Age international publishers (2009).
- 2. "Optics" by Ajoy Ghatak, 6th Edition McGraw Hill Education, 2017.
- 3. "Solid State Physics" by A. J. Dekker, Mc Millan Publishers (2011).