一些古典密码密码体制

杜育松

中山大学计算机学院

内容提要

- 1 密码体制的数学定义
- ② 移位密码
- ③ 代换密码
- 4 仿射密码
- 5 维吉尼亚密码
- 6 希尔密码
- 7 置换密码

内容提要

- 1 密码体制的数学定义
- 2 移位密码
- ③ 代换密码
- 4 仿射密码
- 5 维吉尼亚密码
- 6 希尔密码
- 7 置换密码

密码体制的数学定义

定义1

- 一个密码体制是满足以下条件的五元组 $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$:
 - P表示所有可能的明文组成的有限集合,被称为"明文空间"
 - ② C表示所有可能的密文组成的有限集合,被称为"密文空间"
 - ◎ K表示所有可能的密钥组成的有限集合,被称为"密钥空间"
 - ① 对于每一个密钥 $K \in \mathcal{K}$,都存在一个加密规则 $e_K \in \mathcal{E}$ 和相对应的解密规则 $d_K \in \mathcal{D}$,并且对每一对 $e_K \in \mathcal{E}$ 和 $d_K \in \mathcal{D}$,以及每一个明文 $x \in \mathcal{P}$,都有 $d_K(e_K(x)) = x$.

密码体制的数学定义

定义1

- 一个密码体制是满足以下条件的五元组 $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$:
 - P表示所有可能的明文组成的有限集合,被称为"明文空间"
 - ② C表示所有可能的密文组成的有限集合,被称为"密文空间"
 - ◎ K表示所有可能的密钥组成的有限集合,被称为"密钥空间"
 - ① 对于每一个密钥 $K \in \mathcal{K}$,都存在一个加密规则 $e_K \in \mathcal{E}$ 和相对应的解密规则 $d_K \in \mathcal{D}$,并且对每一对 $e_K \in \mathcal{E}$ 和 $d_K \in \mathcal{D}$,以及每一个明文 $x \in \mathcal{P}$,都有 $d_K(e_K(x)) = x$.
 - 定义中性质(4)最重要。它确保如果使用加密规则 e_K 对明文x进行加密,则可以使用对应的解密规则 d_K 对密文解密,得到明文x。

密码体制的数学定义

定义1

- 一个密码体制是满足以下条件的五元组 $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$:
 - P表示所有可能的明文组成的有限集合,被称为"明文空间"
 - ② C表示所有可能的密文组成的有限集合,被称为"密文空间"
 - ◎ K表示所有可能的密钥组成的有限集合,被称为"密钥空间"
 - ① 对于每一个密钥 $K \in \mathcal{K}$,都存在一个加密规则 $e_K \in \mathcal{E}$ 和相对应的解密规则 $d_K \in \mathcal{D}$,并且对每一对 $e_K \in \mathcal{E}$ 和 $d_K \in \mathcal{D}$,以及每一个明文 $x \in \mathcal{P}$,都有 $d_K(e_K(x)) = x$.
 - 定义中性质(4)最重要。它确保如果使用加密规则 e_K 对明文x进行加密,则可以使用对应的解密规则 d_K 对密文解密,得到明文x。
 - •实际上,需要加密的明文通常不是明文空间 \mathcal{P} 中的一个元素,而是由同属明文空间 \mathcal{P} 的多个元素组成的元素串,习惯上称之为"消息串"。例如消息串 $\mathbf{x}=x_1,x_2,\cdots,x_n$,其中 $x_i\in\mathcal{P}$ 。

加密与解密

● Alice和Bob随机选择一个密钥 $K \in \mathcal{K}$ 。这一步必须在安全的环境下进行,不能被敌手Oscar知道,例如两人在同一地点当面协商密钥,或者使用安全信道传送密钥。

加密与解密

- Alice和Bob随机选择一个密钥 $K \in \mathcal{K}$ 。这一步必须在安全的环境下进行,不能被敌手Oscar知道,例如两人在同一地点当面协商密钥,或者使用安全信道传送密钥。
- ② Alice想通过不安全的信道发送消息串(或称为明文串)

$$\mathbf{x} = x_1, x_2, \cdots, x_n$$

给Bob, 这里n 为正整数, $x_i \in \mathcal{P}$ 且 $i=1,2,\cdots,n$ 。Alice使用加密规则 $e_K \in \mathcal{E}$ 对消息串 \mathbf{x} 加密,K是上面协商好的密钥。对于 $i=1,2,\cdots,n$,Alice计算 $y_i=e_K(x_i)$,然后将密文串

$$\mathbf{y}=y_1,y_2,\cdots,y_n$$

发给Bob。

加密与解密

- Alice和Bob随机选择一个密钥 $K \in \mathcal{K}$ 。这一步必须在安全的环境下进行,不能被敌手Oscar知道,例如两人在同一地点当面协商密钥,或者使用安全信道传送密钥。
- ② Alice想通过不安全的信道发送消息串(或称为明文串)

$$\mathbf{x} = x_1, x_2, \cdots, x_n$$

给Bob, 这里n 为正整数, $x_i \in \mathcal{P}$ 且 $i=1,2,\cdots,n$ 。Alice使用加密规则 $e_K \in \mathcal{E}$ 对消息串 \mathbf{x} 加密,K是上面协商好的密钥。对于 $i=1,2,\cdots,n$,Alice计算 $y_i=e_K(x_i)$,然后将密文串

$$\mathbf{y}=y_1,y_2,\cdots,y_n$$

发给Bob。

③ Bob收到Alice发送的密文串 $\mathbf{y} = y_1, y_2, \cdots, y_n$ 后,Bob使用加密规则 $d_K \in \mathcal{E}$ 和协商好的密钥K对消息串 \mathbf{y} 解密,即计算 $x_i = d_K(y_i)$,就可以得到 $\mathbf{x} = x_1, x_2, \cdots, x_n$ 。

内容提要

- 1 密码体制的数学定义
- ② 移位密码
- ③ 代换密码
- 4 仿射密码
- 5 维吉尼亚密码
- 6 希尔密码
- 7 置换密码

定义2 (模运算)

假设a为整数,m是一个正整数。用m除以a,得到商q和余数r,并确保 余数r在0到m-1之间,即 $a=q\cdot m+r$,其中 $0\le r\le m-1$ 。这一运算 可以表示为a mod m=r,读作"a模m等于r"。特别地,当r=0 时,我们说"m整除a"。

定义2 (模运算)

假设a为整数,m是一个正整数。用m除以a,得到商q和余数r,并确保 余数r在0到m-1之间,即 $a=q\cdot m+r$,其中 $0\le r\le m-1$ 。这一运算 可以表示为 $a \bmod m=r$,读作"a模m等于r"。特别地,当r=0 时,我们说"m整除a"。

例如, 计算101 mod 7, 用7除以101得到101 = 14×7+3。因为0≤3≤6, 所以101 mod 7 = 3。

定义2 (模运算)

假设a为整数,m是一个正整数。用m除以a,得到商q和余数r,并确保 余数r在0到m-1之间,即 $a=q\cdot m+r$,其中 $0\le r\le m-1$ 。这一运算 可以表示为 $a \bmod m=r$,读作"a模m等于r"。特别地,当r=0 时,我们说"m整除a"。

- 例如, 计算101 mod 7, 用7除以101得到101 = 14×7+3。因为0≤3≤6, 所以101 mod 7 = 3。
- 又例如,计算 $(-101) \mod 7$,可以得到 $-101 = (-15) \times 7 + 4$ 。尽管这并不自然,但是确保了 $0 \le 4 \le 6$,所以 $(-101) \mod 7 = 4$ 。

定义2 (模运算)

假设a为整数,m是一个正整数。用m除以a,得到商q和余数r,并确保余数r在0到m-1之间,即 $a=q\cdot m+r$,其中 $0\le r\le m-1$ 。这一运算可以表示为 $a \bmod m=r$,读作"a模m等于r"。特别地,当r=0 时,我们说"m整除a"。

- 例如, 计算101 mod 7, 用7除以101得到101 = 14×7+3。因为0≤3≤6, 所以101 mod 7 = 3。
- 又例如,计算 $(-101) \mod 7$,可以得到 $-101 = (-15) \times 7 + 4$ 。尽管这并不自然,但是确保了 $0 \le 4 \le 6$,所以 $(-101) \mod 7 = 4$ 。
- 一种比较自然的处理方法是, 先得到

$$-101 = -(14 \times 7 + 3) = (-14) \times 7 - 3,$$

然后有(-101) mod 7 = (-3) mod 7 = (-3) + 7 = 4。

同余

定义3 (模加同余)

假设a和b均为整数,m是一个正整数。如果 $a \mod m = b \mod m$,则可以将其表示为

$$a \equiv b \pmod{m}$$
,

并读作"a与b模m同余",即余数相同的意思。

同余

定义3 (模加同余)

假设a和b均为整数,m是一个正整数。如果 $a \mod m = b \mod m$,则可以将其表示为

$$a \equiv b \pmod{m}$$
,

并读作"a与b模m同余",即余数相同的意思。

一般地,我们用m分别除以a和b,得到相应的商和余数,并且可以确保余数是在0到m-1之间的。这样,我们可以把a和b分别表示为

$$a = q_1 m + r_1 \quad 0 \le r_1 \le m - 1$$

和

$$b = q_2 m + r_2 \quad 0 \le r_2 \le m - 1.$$

显然, $a \equiv b \pmod{m}$ 当且仅当m整除b-a.

集合 \mathbb{Z}_m

定义4(集合 \mathbb{Z}_m)

设m是一个正整数。 \mathbb{Z}_m 定义为整数集合

$$\{0,1,2,\cdots,m-1\}.$$

 \mathbb{Z}_m 中定义两个数学运算,加法+和乘法×。它们与普通加法和乘法类似,不同之处只是所得的值总是取除m之后的余数,即模m运算。通常称 \mathbb{Z}_m 为模m的剩余类。

集合 \mathbb{Z}_m

定义4(集合 \mathbb{Z}_m)

设m是一个正整数。 \mathbb{Z}_m 定义为整数集合

$$\{0,1,2,\cdots,m-1\}.$$

 \mathbb{Z}_m 中定义两个数学运算,加法+和乘法×。它们与普通加法和乘法类似,不同之处只是所得的值总是取除m之后的余数,即模m运算。通常称 \mathbb{Z}_m 为模m的剩余类。

• 集合 \mathbb{Z}_m 中的加法和乘法满足我们所熟知的许多运算法则,用数学语言说 \mathbb{Z}_m 构成了一个环。

集合 \mathbb{Z}_m

定义4(集合 \mathbb{Z}_m)

设m是一个正整数。 \mathbb{Z}_m 定义为整数集合

$$\{0,1,2,\cdots,m-1\}.$$

 \mathbb{Z}_m 中定义两个数学运算,加法+和乘法×。它们与普通加法和乘法类似,不同之处只是所得的值总是取除m之后的余数,即模m运算。通常称 \mathbb{Z}_m 为模m的剩余类。

- 集合 \mathbb{Z}_m 中的加法和乘法满足我们所熟知的许多运算法则,用数学语言说 \mathbb{Z}_m 构成了一个环。
- $\mathbb{Z}_2=\{0,1\}$, $\mathbb{Z}_{26}=\{0,1,2,\cdots,25\}$ for $\mathbb{Z}_{256}=\{0,1,2,\cdots,255\}$.

移位密码

西方的古典密码大多数都是建立在对字母进行操作的基础上。例如, 凯撒密码通过按特定顺序移动字母来加密和解密。

移位密码

- 西方的古典密码大多数都是建立在对字母进行操作的基础上。例如,凯撒密码通过按特定顺序移动字母来加密和解密。
- 以英语26个字母为例,从数学角度来看,可以在26个字母和 \mathbb{Z}_{26} 之间建立一一对应。例如,a对0,b对1,c对2, \cdots ,y对24,z对25。这样一个被称为移位密码的广义凯撒密码就建立了起来。

移位密码

- 西方的古典密码大多数都是建立在对字母进行操作的基础上。例如,凯撒密码通过按特定顺序移动字母来加密和解密。
- 以英语26个字母为例,从数学角度来看,可以在26个字母和 \mathbb{Z}_{26} 之间建立一一对应。例如,a对0,b对1,c对2, \cdots ,y对24,z对25。这样一个被称为移位密码的广义凯撒密码就建立了起来。

密码体制1 (移位密码)

设 $\mathcal{P}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{26}$ 。对于 $0\leq K\leq 25$ 和任意的 $x,y\in\mathbb{Z}_{26}$,加密规则定义为

$$e_K(x) = (x + K) \bmod 26.$$

解密规则定义为

$$d_K(y) = (y - K) \bmod 26.$$

特别地,如果K=3,则此密码体制通常被称为凯撒密码。

现代计算机中可用的移位密码

移位密码只能加密由26个英文字母组成的消息。可否修改移位密码,使之可以用来加密存储在计算机中的任何数字文件?

现代计算机中可用的移位密码

• 移位密码只能加密由26个英文字母组成的消息。可否修改移位密码, 使之可以用来加密存储在计算机中的任何数字文件?

密码体制2 (移位密码)

设 $\mathcal{P}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{256}$ 。对于 $0\leq K\leq 255$ 和任意的 $x,y\in\mathbb{Z}_{256}$,加密规则定义为

$$e_K(x) = (x+K) \bmod 256.$$

解密规则定义为

$$d_K(y) = (y - K) \bmod 256.$$

现代计算机中可用的移位密码

移位密码只能加密由26个英文字母组成的消息。可否修改移位密码,使之可以用来加密存储在计算机中的任何数字文件?

密码体制2 (移位密码)

设 $\mathcal{P}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{256}$ 。对于 $0\leq K\leq 255$ 和任意的 $x,y\in\mathbb{Z}_{256}$,加密规则定义为

$$e_K(x) = (x+K) \bmod 256.$$

解密规则定义为

$$d_K(y) = (y - K) \bmod 256.$$

移位密码显然是不安全的,可以用密钥穷尽搜索方法来破译。因为密钥空间太小,只有26或256种可能。敌手穷举所有可能的密钥,如果发现了有意义的明文,那么极有可能是破译成功了。

内容提要

- 1 密码体制的数学定义
- 2 移位密码
- ③ 代换密码
- 4 仿射密码
- 5 维吉尼亚密码
- 6 希尔密码
- 7 置换密码

置换与代换

定义5 (置换与逆置换)

设正整数m>2,集合 $\mathcal{S}=\{1,2,3,\cdots,m-1,m\}$ 。 \mathcal{S} 的置换 π 定义为

也即 $\pi(x) = i_x$, $\pi^{-1}(i_x) = x$,其中, $1 \le i_1, i_2, \cdots, i_m \le m$ 且对于任意两个整数 $1 \le j < k \le m$ 有 $i_j \ne i_k$ 。关于S的置换 π 的逆置换 π^{-1} 可以定义为

其中 i_1, i_2, \cdots, i_m 通常还会按照从小到大的顺序重新排例。

置换与逆置换举例

例1

设集合
$$S = \{1, 2, 3, \cdots, 7, 8\}$$
。 S 的置换 π 定义为

\boldsymbol{x}	1	2	3	4	5	6	7	8
$\pi(x)$	4	1	6	2	7	3	8	5

置换与逆置换举例

例1

设集合 $S = \{1, 2, 3, \cdots, 7, 8\}$ 。S的置换 π 定义为

$x \mid$	1	2	3	4	5	6	7	8
$\pi(x)$	4	1	6	2	7	3	8	5

例2

设集合 $S = \{1, 2, 3, \cdots, 7, 8\}$ 。关于S的置换 π 的逆置换 π^{-1} 定义为

对26个字母的置换

例3

设集合 $S = \{a, b, c, \dots, x, y, z\}$ 。 S的置换 π 定义为

x	$\mid a \mid$	b	c	d	e	$\mid f \mid$	g	h	i	j	k	l	m
$\pi(x)$	X	N	Y	\overline{A}	H	P	0	G	Z	Q	W	B	T
x	$\mid n \mid$	0	p	q	r	s	t	u	v	w	x	y	z
$\pi(x)$	S	F	L	R	C	V	M	U	E	K	J	D	I

这里用大写字母是为了更好地与小写字母区分开来。

代换密码

密码体制3 (代换密码)

设 $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$ 。密钥空间 \mathcal{K} 是由26个数字 $0, 1, 2 \cdots, 25$ 的所有可能的置换组成。对于置换 $\pi \in \mathcal{K}$ 和任意的 $x, y \in \mathbb{Z}_{26}$,定义加密规则为

$$e_{\pi}(x) = \pi(x).$$

解密规则为

$$d_{\pi}(y) = \pi^{-1}(y).$$

代换密码

密码体制3 (代换密码)

设 $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$ 。密钥空间 \mathcal{K} 是由26个数字 $0, 1, 2 \cdots, 25$ 的所有可能的置换组成。对于置换 $\pi \in \mathcal{K}$ 和任意的 $x, y \in \mathbb{Z}_{26}$,定义加密规则为

$$e_{\pi}(x) = \pi(x).$$

解密规则为

$$d_{\pi}(y) = \pi^{-1}(y).$$

• 普通计算机运计算量大于等于280数量级是难以实现。

代换密码

密码体制3(代换密码)

设 $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{26}$ 。密钥空间 \mathcal{K} 是由26个数字 $0,1,2\cdots,25$ 的所有可能的置换组成。对于置换 $\pi\in\mathcal{K}$ 和任意的 $x,y\in\mathbb{Z}_{26}$,定义加密规则为

$$e_{\pi}(x) = \pi(x).$$

解密规则为

$$d_{\pi}(y) = \pi^{-1}(y).$$

 普通计算机运计算量大于等于280数量级是难以实现。穷尽26!个代 换密钥至少需要执行

$$26! > 4.0 \times 10^{26} > 4.0 \times (2^{3.3})^{26} = 2^{3.3 \times 26 + 2} = 2^{87.8}$$

次运算。所以,利用穷尽密钥搜索的攻击方法攻击代换密码并不有效,甚至是不可行的。

内容提要

- 1 密码体制的数学定义
- 2 移位密码
- 3 代换密码
- 4 仿射密码
- 5 维吉尼亚密码
- 6 希尔密码
- 7 置换密码

互素

定义6 (最大公因数)

设a和b均为整数。称整数d是a和b的最大公因数,如果d是a和b的公因数,即d既整除a又整除b,并且如果有d'也是a和b的公因数,则一定满足d' $\leq d$ 。整数d是a和b的最大公因数表示为 $\gcd(a,b)=d$ 。

互素

定义6 (最大公因数)

设a和b均为整数。称整数d是a和b的最大公因数,如果d是a和b的公因数,即d既整除a又整除b,并且如果有d'也是a和b的公因数,则一定满足 $d' \leq d$ 。整数d是a和b的最大公因数表示为 $\gcd(a,b) = d$ 。

定义7(互素)

设a和b均为正整数,如果a和b之间的最大公因数为1,则称a和b互素,表示为 $\gcd(a,b)=1$ 。

互素

定义6 (最大公因数)

设a和b均为整数。称整数d是a和b的最大公因数,如果d是a和b的公因数,即d既整除a又整除b,并且如果有d'也是a和b的公因数,则一定满足d' $\leq d$ 。整数d是a和b的最大公因数表示为 $\gcd(a,b)=d$ 。

定义7(互素)

设a和b均为正整数,如果a和b之间的最大公因数为1,则称a和b互素,表示为 $\gcd(a,b)=1$ 。

• 例如, 7与13的最大公因数是1, 表示为gcd(7,13) = 1。

互素

定义6 (最大公因数)

设a和b均为整数。称整数d是a和b的最大公因数,如果d是a和b的公因数,即d既整除a又整除b,并且如果有d'也是a和b的公因数,则一定满足 $d' \leq d$ 。整数d是a和b的最大公因数表示为 $\gcd(a,b) = d$ 。

定义7(互素)

设a和b均为正整数,如果a和b之间的最大公因数为1,则称a和b互素,表示为gcd(a,b)=1。

- 例如, 7与13的最大公因数是1, 表示为gcd(7,13) = 1。
- 又例如, 13与26的最大公因数是13, 表示为gcd(13,26) = 13。这也表明13与26不互素。

• 集合 \mathbb{Z}_m 中有加法和乘法运算,有没有除法运算呢?例如,在 \mathbb{Z}_{26} 中,1除以3等于多少?1能不能除以13呢?

- 集合 \mathbb{Z}_m 中有加法和乘法运算,有没有除法运算呢?例如,在 \mathbb{Z}_{26} 中,1除以3等于多少?1能不能除以13呢?
- 换一种说法,1除以3等于就是3的逆,即3⁻¹。在 \mathbb{Z}_{26} 中,有3⁻¹吗? 等于多少?那么13⁻¹呢?

- 集合 \mathbb{Z}_m 中有加法和乘法运算,有没有除法运算呢?例如,在 \mathbb{Z}_{26} 中,1除以3等于多少?1能不能除以13呢?
- 换一种说法,1除以3等于就是3的逆,即3⁻¹。在 \mathbb{Z}_{26} 中,有3⁻¹吗? 等于多少?那么13⁻¹呢?

定义 $8(\mathbb{Z}_m$ 上的乘法逆)

设 $a \in \mathbb{Z}_m$ 。如果存在 $a' \in \mathbb{Z}_m$ 使得

$$aa' \equiv a'a \equiv 1 \pmod{m}$$
,

则称a'是a在 \mathbb{Z}_m 上的乘法逆,或者称为a'是a模m的乘法逆,并记为 a^{-1} $\mathrm{mod}m$,有时还简记为 a^{-1} 。

- 集合 \mathbb{Z}_m 中有加法和乘法运算,有没有除法运算呢?例如,在 \mathbb{Z}_{26} 中,1除以3等于多少?1能不能除以13呢?
- 换一种说法,1除以3等于就是3的逆,即3⁻¹。在 \mathbb{Z}_{26} 中,有3⁻¹吗? 等于多少?那么13⁻¹呢?

定义 $8(\mathbb{Z}_m$ 上的乘法逆)

设 $a \in \mathbb{Z}_m$ 。如果存在 $a' \in \mathbb{Z}_m$ 使得

$$aa' \equiv a'a \equiv 1 \pmod{m}$$
,

则称a'是a在 \mathbb{Z}_m 上的乘法逆,或者称为a'是a模m的乘法逆,并记为 a^{-1} $\mathrm{mod}m$,有时还简记为 a^{-1} 。

• 根据乘法逆的定义,在 \mathbb{Z}_{26} 中,我们来检验, $1^{-1}=1$, $3^{-1}=9$, $5^{-1}=21$, $7^{-1}=15$, $11^{-1}=19$, $17^{-1}=23$, $25^{-1}=25$

模型加乘法逆的存在性

• 想一想, 在 \mathbb{Z}_{26} 中, 为什么没有 2^{-1} , 4^{-1} , 6^{-1} , 8^{-1} ?

模ℤℼ乘法逆的存在性

• 想一想, 在 \mathbb{Z}_{26} 中, 为什么没有 2^{-1} , 4^{-1} , 6^{-1} , 8^{-1} ?

定理1 (乘法逆的存在性)

 $a \in \mathbb{Z}_m$ 在 \mathbb{Z}_m 上的有乘法逆当且仅当 $\gcd(a,m)=1$ 。特别地,如果m是素数,则 \mathbb{Z}_m 中的元素除0外都有乘法逆。

• 有了模m乘法逆的概念,就可以考虑 \mathbb{Z}_m 中的除法运算了。例如,设 $a,b\in\mathbb{Z}_m$,并且 $\gcd(a,m)=1$ 。那么在 \mathbb{Z}_m 中,即

$$\frac{b}{a} = b \cdot a^{-1} \bmod m.$$

需要注意,在 \mathbb{Z}_m 中我们不再用"b除以a"的说法,而习惯上说"b乘以a的逆"。

• 扩展的欧几里得算法可以有效地计算模m的乘法逆。

定理2 (一次方程解的存在性)

设 \mathbb{R} 为全体实数集合。给定 $a \in \mathbb{R}$,对于任意的 $b \in \mathbb{R}$,一次方程

$$ax = b$$

有唯一解 $x \in \mathbb{R}$ 当且仅当

定理2 (一次方程解的存在性)

设 \mathbb{R} 为全体实数集合。给定 $a \in \mathbb{R}$,对于任意的 $b \in \mathbb{R}$,一次方程

$$ax = b$$

有唯一解 $x \in \mathbb{R}$ 当且仅当 $a \neq 0$,即 $x = \frac{b}{a} = b \cdot a^{-1}$ 。

定理2 (一次方程解的存在性)

设 \mathbb{R} 为全体实数集合。给定 $a \in \mathbb{R}$,对于任意的 $b \in \mathbb{R}$,一次方程

$$ax = b$$

有唯一解 $x \in \mathbb{R}$ 当且仅当 $a \neq 0$,即 $x = \frac{b}{a} = b \cdot a^{-1}$ 。

定理3 (一次同余方程解的存在性)

给定 $a \in \mathbb{Z}_m$,对于任意的 $b \in \mathbb{Z}_m$,同余方程

$$ax \equiv b \pmod{m}$$

有唯一解 $x \in \mathbb{Z}_m$ 当且仅当

定理2 (一次方程解的存在性)

设 \mathbb{R} 为全体实数集合。给定 $a\in\mathbb{R}$,对于任意的 $b\in\mathbb{R}$,一次方程

$$ax = b$$

有唯一解 $x \in \mathbb{R}$ 当且仅当 $a \neq 0$,即 $x = \frac{b}{a} = b \cdot a^{-1}$ 。

定理3 (一次同余方程解的存在性)

给定 $a \in \mathbb{Z}_m$,对于任意的 $b \in \mathbb{Z}_m$,同余方程

$$ax \equiv b \pmod{m}$$

有唯一解 $x \in \mathbb{Z}_m$ 当且仅当 $\gcd(a, m) = 1$, 即a和m互素。

密码体制4 (仿射密码)

设 $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$ 。密钥空间 $\mathcal{K} = \{(a,b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a,26) = 1\}$ 。对于密钥 $K = (a,b) \in \mathcal{K}$ 和任意的 $x,y \in \mathbb{Z}_{26}$,定义加密规则为

$$e_K(x) = (ax + b) \bmod 26,$$

解密规则定义为

$$d_K(y) = a^{-1}(y - b) \bmod 26.$$

密码体制4 (仿射密码)

设 $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$ 。密钥空间 $\mathcal{K} = \{(a,b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a,26) = 1\}$ 。对于密钥 $K = (a,b) \in \mathcal{K}$ 和任意的 $x,y \in \mathbb{Z}_{26}$,定义加密规则为

$$e_K(x) = (ax + b) \bmod 26,$$

解密规则定义为

$$d_K(y) = a^{-1}(y - b) \bmod 26.$$

• 仿射密码可以解密成功因为有同余式

密码体制4 (仿射密码)

设 $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$ 。密钥空间 $\mathcal{K} = \{(a,b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a,26) = 1\}$ 。对于密钥 $K = (a,b) \in \mathcal{K}$ 和任意的 $x,y \in \mathbb{Z}_{26}$,定义加密规则为

$$e_K(x) = (ax + b) \bmod 26,$$

解密规则定义为

$$d_K(y) = a^{-1}(y - b) \bmod 26.$$

• 仿射密码可以解密成功因为有同余式

$$d_K(y) \equiv d_K((ax+b)) \equiv a^{-1}(ax+b-b) \equiv a^{-1}ax \equiv x \bmod 26$$

成立。

• 仿射密码所有能的密钥一共有多少个呢?

密码体制4 (仿射密码)

设 $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$ 。密钥空间 $\mathcal{K} = \{(a,b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a,26) = 1\}$ 。对于密钥 $K = (a,b) \in \mathcal{K}$ 和任意的 $x,y \in \mathbb{Z}_{26}$,定义加密规则为

$$e_K(x) = (ax + b) \bmod 26,$$

解密规则定义为

$$d_K(y) = a^{-1}(y - b) \bmod 26.$$

• 仿射密码可以解密成功因为有同余式

$$d_K(y)\equiv d_K((ax+b))\equiv a^{-1}(ax+b-b)\equiv a^{-1}ax\equiv x\,\mathrm{mod}26$$

● 仿射密码所有能的密钥一共有多少个呢?答案是26×12=312。

定义9 (Euler函数 $\phi(n)$)

集合 \mathbb{Z}_n 中所有与n互素的数组成的集合记为 \mathbb{Z}_n^* 。Euler函数 $\phi(n)$ 定义为集合 \mathbb{Z}_n 中所有与n互素的数的个数,即 $|\mathbb{Z}_n^*| = \phi(n)$ 。特别地,如果p是素数,则 $\phi(p) = p-1$,也即 $\mathbb{Z}_p^* = \{1,2,3,\cdots,p-1\}$, $|\mathbb{Z}_p^*| = p-1$ 。

定义9 (Euler函数 $\phi(n)$)

集合 \mathbb{Z}_n 中所有与n互素的数组成的集合记为 \mathbb{Z}_n^* 。Euler函数 $\phi(n)$ 定义为集合 \mathbb{Z}_n 中所有与n互素的数的个数,即 $|\mathbb{Z}_n^*| = \phi(n)$ 。特别地,如果p是素数,则 $\phi(p) = p-1$,也即 $\mathbb{Z}_p^* = \{1,2,3,\cdots,p-1\}$, $|\mathbb{Z}_p^*| = p-1$ 。

定理4

设 $m = \prod_{i=1}^n p_i^{e_i}$, 其中 p_i 为素数且互不相同, $e_i > 0$ 。集合 \mathbb{Z}_m 中所有与m互素的数的个数为

$$\prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1}).$$

特别地, $m = p \cdot q$, 而p和q为素数,则 $\phi(n) = \phi(p) \cdot \phi(q)$ 。

定义9 (Euler函数 $\phi(n)$)

集合 \mathbb{Z}_n 中所有与n互素的数组成的集合记为 \mathbb{Z}_n^* 。Euler函数 $\phi(n)$ 定义为集合 \mathbb{Z}_n 中所有与n互素的数的个数,即 $|\mathbb{Z}_n^*| = \phi(n)$ 。特别地,如果p是素数,则 $\phi(p) = p-1$,也即 $\mathbb{Z}_p^* = \{1,2,3,\cdots,p-1\}$, $|\mathbb{Z}_p^*| = p-1$ 。

定理4

设 $m = \prod_{i=1}^n p_i^{e_i}$, 其中 p_i 为素数且互不相同, $e_i > 0$ 。集合 \mathbb{Z}_m 中所有与m互素的数的个数为

$$\prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1}).$$

特别地, $m = p \cdot q$, 而p和q为素数,则 $\phi(n) = \phi(p) \cdot \phi(q)$ 。

• ℤ26中与26互素的的数的个数为

$$\phi(26) =$$

定义9 (Euler函数 $\phi(n)$)

集合 \mathbb{Z}_n 中所有与n互素的数组成的集合记为 \mathbb{Z}_n^* 。Euler函数 $\phi(n)$ 定义为集合 \mathbb{Z}_n 中所有与n互素的数的个数,即 $|\mathbb{Z}_n^*| = \phi(n)$ 。特别地,如果p是素数,则 $\phi(p) = p-1$,也即 $\mathbb{Z}_p^* = \{1,2,3,\cdots,p-1\}$, $|\mathbb{Z}_p^*| = p-1$ 。

定理4

设 $m = \prod_{i=1}^n p_i^{e_i}$, 其中 p_i 为素数且互不相同, $e_i > 0$ 。集合 \mathbb{Z}_m 中所有与m互素的数的个数为

$$\prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1}).$$

特别地, $m = p \cdot q$, 而p和q为素数,则 $\phi(n) = \phi(p) \cdot \phi(q)$ 。

• ℤ26中与26互素的的数的个数为

$$\phi(26) = \phi(3) \cdot \phi(13) = (2-1) \cdot (12-1) = 12.$$

定义10 (素数与合数)

设整数 $p \neq 0, \pm 1$ 。如果它除了显然因数 ± 1 , $\pm p$ 以外没有其它的约数,那么,p就称为是不可约数,或素数。如果 $a \neq 0, \pm 1$ 且a不是素数,则a称为合数。一般地,没有特别说明,素数总是指正的。

定义10 (素数与合数)

设整数 $p \neq 0, \pm 1$ 。如果它除了显然因数 ± 1 , $\pm p$ 以外没有其它的约数,那么,p就称为是不可约数,或素数。如果 $a \neq 0, \pm 1$ 且a不是素数,则a称为合数。一般地,没有特别说明,素数总是指正的。

• 例如, 2,3,5,7,11,13,17,19,23,29,31都是素数。

定义10 (素数与合数)

设整数 $p \neq 0, \pm 1$ 。如果它除了显然因数 ± 1 , $\pm p$ 以外没有其它的约数,那么,p就称为是不可约数,或素数。如果 $a \neq 0, \pm 1$ 且a不是素数,则a称为合数。一般地,没有特别说明,素数总是指正的。

• 例如, 2,3,5,7,11,13,17,19,23,29,31都是素数。

定理5 (合数必有素因子)

a>1是合数的充要条件是a=de,其中1< d< a且1< e< a。如果a是合数,则必有素数p整除a。

定义10 (素数与合数)

设整数 $p \neq 0, \pm 1$ 。如果它除了显然因数 ± 1 , $\pm p$ 以外没有其它的约数,那么,p就称为是不可约数,或素数。如果 $a \neq 0, \pm 1$ 且a不是素数,则a称为合数。一般地,没有特别说明,素数总是指正的。

• 例如, 2,3,5,7,11,13,17,19,23,29,31都是素数。

定理5 (合数必有素因子)

a>1是合数的充要条件是a=de,其中1< d< a且1< e< a。如果a是合数,则必有素数p整除a。

定理6 (素数的个数)

素数有无穷多个。

内容提要

- 1 密码体制的数学定义
- 2 移位密码
- ③ 代换密码
- 4 仿射密码
- 5 维吉尼亚密码
- 6 希尔密码
- 7 置换密码

维吉尼亚密码

密码体制5 (维吉尼亚密码)

设
$$\mathcal{P} = \mathcal{C} = \mathcal{K} = (\mathbb{Z}_{26})^m$$
。对于密钥 $K = (k_1, k_2, \cdots, k_m)$ 和任意的

$$x = (x_1, x_2, \dots, x_m) \in (\mathbb{Z}_{26})^m, y = (y_1, y_2, \dots, y_m) \in (\mathbb{Z}_{26})^m,$$

定义加密规则为

$$e_K(x_1, x_2, \cdots, x_m) = (x_1 + k_1, x_2 + k_2, \cdots, x_m + k_m),$$

解密规则定义为

$$d_K(y_1, y_2, \cdots, y_m) = (y_1 - k_1, y_2 - k_2, \cdots, y_m - k_m),$$

并且以上运算都在2%上进行。

维吉尼亚密码

密码体制5 (维吉尼亚密码)

设
$$\mathcal{P} = \mathcal{C} = \mathcal{K} = (\mathbb{Z}_{26})^m$$
。对于密钥 $K = (k_1, k_2, \cdots, k_m)$ 和任意的

$$x = (x_1, x_2, \dots, x_m) \in (\mathbb{Z}_{26})^m, y = (y_1, y_2, \dots, y_m) \in (\mathbb{Z}_{26})^m,$$

定义加密规则为

$$e_K(x_1, x_2, \cdots, x_m) = (x_1 + k_1, x_2 + k_2, \cdots, x_m + k_m),$$

解密规则定义为

$$d_K(y_1, y_2, \cdots, y_m) = (y_1 - k_1, y_2 - k_2, \cdots, y_m - k_m),$$

并且以上运算都在2%上进行。

• 维吉尼亚密码是m维向量形式的移位密码。

从单表代换到多表代换

定义11 (单表代换)

一旦密钥被选定,每个字母都被加密规则变换成唯一的密文字母,就好像有唯一的一张事先确定好了的表一样。例如,移位密码、代换密码和 仿射密码都是单表代换的密码体制。

定义12 (多表代换)

密钥被选定后,相同字母仍有可能被加密规则变换成不同的密文字母,就好像有多张表一样不断地变换使用。维吉尼亚密码是多表代换的密码体制,一个字母可以被映射为m个字母中的某一个,即有m 种可能。

维吉尼亚密码字母矩阵

Table 3 A Vigenère square.

Plain	a b c d e f g h i j k l m n o p q r s t u v w x y z	Z
1	BCDEFGHIJKLMNOPQRSTUVWXYZA	<u> </u>
2	CDEFGHIJKLMNOPQRSTUVWXYZAE	3
3	DEFGHIJKLMNOPQRSTUVWXYZABO	=
4	E F G H I J K L M N O P Q R S T U V W X Y Z A B C E)
5	F G H I J K L M N O P Q R S T U V W X Y Z A B C D E	Ε
6	GHIJKLMNOPQRSTUVWXYZABCDEI	F
7	HIJKLMNOPQRSTUVWXYZABCDEFO	3
8	IJKLMNOPQRSTUVWXYZABCDEFGH	1
9	J K L M N O P Q R S T U V W X Y Z A B C D E F G H I	1
10	K L M N O P Q R S T U V W X Y Z A B C D E F G H I .	j
11	LMNOPQRSTUVWXYZABCDEFGHIJI	<
12	MNOPQRSTUVWXYZABCDEFGHIJKI	L
13	NOPQRSTUVWXYZABCDEFGHIJKLM	1
14	O P Q R S T U V W X Y Z A B C D E F G H I J K L MN	V
15	PQRSTUVWXYZABCDEFGHIJKLMNO	0
16	QRSTUVWXYZABCDEFGHIJKLMNOF	P
17	RSTUVWXYZABCDEFGHIJKLMNOPO	2
18	STUVWXYZABCDEFGHIJKLMNOPQI	R
19	TUVWXYZABCDEFGHIJKLMNOPQRS	5
20	UVWXYZABCDEFGHIJKLMNOPQRS	Т
21	V W X Y Z A B C D E F G H I J K L M N O P Q R S T I	J
22	WXYZABCDEFGHIJKLMNOPQRSTUV	V
23	XYZABCDEFGHIJKLMNOPQRSTUVV	N
24	Y Z A B C D E F G H I J K L M N O P Q R S T U V W	×
25	ZABCDEFGHIJKLMNOPQRSTUVWX	Υ
26	A B C D E F G H I J K L M N O P Q R S T U V W X Y X	Z

内容提要

- 1 密码体制的数学定义
- 2 移位密码
- ③ 代换密码
- 4 仿射密码
- 5 维吉尼亚密码
- 6 希尔密码
- 7 置换密码

ℤ26上向量和矩阵运算

设 \mathbf{x} 是m维的向量,而 \mathbf{K} 是m imes m的矩阵。对于任意的

$$\mathbf{x} = (x_1, x_2, \cdots, x_m) \in (\mathbb{Z}_{26})^m,$$

向量 \mathbf{x} 乘以矩阵 \mathbf{K} 得到另一个向量 $\mathbf{y} = (y_1, y_2, \cdots, y_m) \in (\mathbb{Z}_{26})^m$,即

$$(y_1, y_2, \cdots, y_m) = (x_1, x_2, \cdots, x_m) \begin{pmatrix} k_{11} & k_{12} & \cdots & k_{1m} \\ k_{21} & k_{22} & \cdots & k_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ k_{m1} & k_{m2} & \cdots & k_{mm} \end{pmatrix},$$

并且以上运算都在26上进行,可以简单记为

 $\mathbf{y} = \mathbf{x} \cdot \mathbf{K} \bmod 26.$

逆矩阵

如果先有向量

$$\mathbf{y}=(y_1,y_2,\cdots,y_m)\in(\mathbb{Z}_{26})^m,$$

那么向量 $\mathbf{x}=(x_1,x_2,\cdots,x_m)\in(\mathbb{Z}_{26})^m$ 可以通过向量 \mathbf{y} 乘以矩阵 \mathbf{K} 的逆矩阵 \mathbf{K}^{-1} 的方式得到,即

$$\mathbf{y}\cdot\mathbf{K}^{-1} = \mathbf{x}\cdot\mathbf{K}\cdot\mathbf{K}^{-1} = \mathbf{x}\cdot(\mathbf{K}\cdot\mathbf{K}^{-1}) = \mathbf{x}\cdot\mathbf{I}_m = \mathbf{x}\,\mathrm{mod}26.$$

其中 \mathbf{I}_m 是m阶的单位矩阵。

逆矩阵

如果先有向量

$$\mathbf{y}=(y_1,y_2,\cdots,y_m)\in(\mathbb{Z}_{26})^m,$$

那么向量 $\mathbf{x}=(x_1,x_2,\cdots,x_m)\in(\mathbb{Z}_{26})^m$ 可以通过向量 \mathbf{y} 乘以矩阵 \mathbf{K} 的逆矩阵 \mathbf{K}^{-1} 的方式得到,即

$$\mathbf{y}\cdot\mathbf{K}^{-1} = \mathbf{x}\cdot\mathbf{K}\cdot\mathbf{K}^{-1} = \mathbf{x}\cdot(\mathbf{K}\cdot\mathbf{K}^{-1}) = \mathbf{x}\cdot\mathbf{I}_m = \mathbf{x}\,\mathrm{mod}26.$$

其中 \mathbf{I}_m 是m阶的单位矩阵。

定理7(图,上逆矩阵的存在性)

K是 \mathbb{Z}_n 上的 $m \times m$ 矩阵。存在K的逆矩阵 K^{-1} 使得 $K \cdot K^{-1} = \mathbf{I}_m \bmod n$ 当且仅当

$$\gcd(\det(K), n) = 1,$$

这里 $\det(K)$ 是矩阵K的行列式。

希尔密码

密码体制6 (希尔密码)

设 $\mathcal{P} = \mathcal{C} = (Z_{26})^m$ 。密钥空间 \mathcal{K} 是定义在 \mathbb{Z}_{26} 上的所有 $m \times m$ 可逆矩阵。对于密钥 $\mathbf{K} \in \mathcal{K}$ 和任意的

$$\mathbf{x} = (x_1, x_2, \cdots, x_m) \in (\mathbb{Z}_{26})^m$$

和

$$\mathbf{y}=(y_1,y_2,\cdots,y_m)\in(\mathbb{Z}_{26})^m,$$

定义加密规则为

$$e_K(\mathbf{x}) = \mathbf{x} \cdot \mathbf{K} \bmod 26,$$

解密规则为

$$d_K(\mathbf{y}) = \mathbf{y} \cdot \mathbf{K}^{-1} \bmod 26.$$

内容提要

- 1 密码体制的数学定义
- 2 移位密码
- ③ 代换密码
- 4 仿射密码
- 5 维吉尼亚密码
- 6 希尔密码
- 7 置换密码

置换密码

密码体制7(置换密码)

设 $\mathcal{P} = \mathcal{C} = (Z_{26})^m$,密钥空间 \mathcal{K} 是由m个数字 $1, 2 \cdots, m$ 的所有可能的置换组成。对于置换 $\pi \in \mathcal{K}$ 和任意的 $\mathbf{x} = (x_1, x_2, \cdots, x_m) \in (\mathbb{Z}_{26})^m$ 和 $\mathbf{y} = (y_1, y_2, \cdots, y_m) \in (\mathbb{Z}_{26})^m$,定义加密规则为

$$e_{\pi}(\mathbf{x}) = (x_{\pi(1)}, x_{\pi(2)}, \cdots, x_{\pi(m)}),$$

解密规则为

$$d_{\pi}(\mathbf{y}) = (y_{\pi^{-1}(1)}, y_{\pi^{-1}(2)}, \cdots, y_{\pi^{-1}(m)}).$$

这里, π^{-1} 是 π 的逆置换。

置换密码

密码体制7(置换密码)

设 $\mathcal{P} = \mathcal{C} = (Z_{26})^m$,密钥空间 \mathcal{K} 是由m个数字 $1, 2 \cdots, m$ 的所有可能的置换组成。对于置换 $\pi \in \mathcal{K}$ 和任意的 $\mathbf{x} = (x_1, x_2, \cdots, x_m) \in (\mathbb{Z}_{26})^m$ 和 $\mathbf{y} = (y_1, y_2, \cdots, y_m) \in (\mathbb{Z}_{26})^m$,定义加密规则为

$$e_{\pi}(\mathbf{x}) = (x_{\pi(1)}, x_{\pi(2)}, \cdots, x_{\pi(m)}),$$

解密规则为

$$d_{\pi}(\mathbf{y}) = (y_{\pi^{-1}(1)}, y_{\pi^{-1}(2)}, \cdots, y_{\pi^{-1}(m)}).$$

这里, π^{-1} 是 π 的逆置换。

• 代换密码利用置换的结果加密, 而置换密码利用置换的方式加密。

置换密码是特殊的希尔密码

例4

考虑课本例 1.7的 置换密码。设集合 $S=\{1,2,3,\cdots,6\}$ 。其置换 π 定义为

• 对于此置换 π 和任意的 $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5, x_6)^m$, 我们有密文

$$\pi(x) = \mathbf{y} = (y_1, y_2, y_3, y_4, y_5, y_6) = (x_3, x_5, x_1, x_6, x_4, x_2) \in (\mathbb{Z}_{26})^m$$

置换密码是特殊的希尔密码(续)

• 把此置换密码看成是一个希尔密码,那么明文看成是6维向量 $\mathbf{x} = (x_1, x_2, \dots, x_6) \in (\mathbb{Z}_{26})^m$,而密钥 $\pi \in \mathcal{K}$ 等价于 $m \times m$ 矩阵,

$$(y_1, y_2, \cdots, y_6) = (x_1, x_2, \cdots, x_6) \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

$$= (x_3, x_5, x_1, x_6, x_4, x_2)$$

内容提要

- 1 密码体制的数学定义
- ② 移位密码
- ③ 代换密码
- 4 仿射密码
- 5 维吉尼亚密码
- 6 希尔密码
- 7 置换密码

谢谢!

杜育松

东校园北学院楼三楼(国家保密学院)A304室 15918768869 duyuong@mail.sysu.edu.cn