Econ 501A HW 2

David Zynda

September 5, 2018

Problem 2.3

If succeq is a complete and trasitive preference on a finite set X, then succeq has a utility representation Let X be a finite set with \succeq as a complete and transitive preference on the set. Then, define subsets of X for each element $x \in X$ such that:

$$W(x) = \{ y \in X : x \succeq y \}$$

If X is finite with a complete and transitive preference relation, that means there will be a W(x) since either $x \succeq y$ or $y \succeq x$ which implies W(x) = y or W(y) = x. This works as well if X is a singleton since $x \succeq x \implies W(x) = x$.

For transitivity, as usual let $x \succeq y$ and $y \succeq z$. Because the preference is transitive, then: $x \succeq z$. Also allow for $z \succeq t$. This implies, by definition of W(x) that: W(x) = y, W(y) = z, W(z) = t Then, $y \succeq z$ and $z \succeq t \implies y \succeq t$.

Then for each element in the set X, W(x) returns a set containing all the elements that are as preferred to x and not as preferred to x.

Define a function $u(x):W(x)\subseteq X\to\mathbb{R}$. Let u(x) return a real number representing the number of elements in $W(x)\subseteq X$.

Problem 3.1

If \succeq is complete, and B containts just two elements then $C_{\succeq}(B)$ is nonempty. Conversely, if \succeq is not complete, there exists some $B \subset X$ containing just two elements such that $C_{\succeq}(B)$ is empty. If \succeq is complete and transitive, \mathcal{B} and C_{\succeq} satisfies finite nonemptiness

- Problem 3.2
- Problem 3.3
- Problem 3.5