What the DAAM: Interpreting Stable Diffusion Using Cross Attention

Authors: Raphael Tang, Linqing Liu, Akshat Pandey, Zhiying Jiang, Gefei Yang, Karun Kumar, Pontus Stenetorp, Jimmy Lin, Ferhan Ture

Presented by: Alex Lin, Jason Jabbour, Mark Mazumder

Outline

- Related work
- Background: (simplified) Stable
 Diffusion
- DAAM for text-to-image attribution
- Results
 - Attribution quality analysis
 - Syntax to pixels
 - Entanglement
- Limitations & discussion
 DAAM estimates per-pixel attribution for each word in a prompt (post-hoc)

Stable Diffusion: Text to Image

DAAM: Diffusion **A**ttentive **A**ttribution

Vision-Language (VQA...)

Generative Models (GANs..)

Attention is Not Explanation [Jain et al.]

Attention is Not *Not* Explanation [Wiegreffe et al.]

This work applies existing techniques (cross-attention) to an **open source, SOTA** diffusion model to <u>probe limitations</u>

- Textual perturbation (Wallace et al., 2019), Attentional Visualization (Vig, 2019; Kovaleva et al., 2019, Shimoaka et al., 2016) and information bottlenecks (Jiang et al., 2020) to relate important input tokens to outputs of large language models
- Probing vision transformers for verb understanding (Hendricks and Nematzadeh, 2021)
- Enhancing diffusion models using prompt engineering (Hertz et al, 2020; Woolf, 2020)
- Disentangling e.g., style and spelling (Karras et al., 2019; Materzynska et al., 2022)

[2203.17247] VL-InterpreT: An Interactive Visualization Tool for Interpreting Vision-Language Transformers
[Aflalo et al]

How many pillars are in front

of the Façade of the Kurhaus ?

(b) **Predicted**: There are 6 pillars in front of the Façade of the Kurhaus.

Diffusion Models vs: GANs, VAEs, Flow

Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Diffusion Models vs: GANs, VAEs, Flow

Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Diffusion Models vs: GANs, VAEs, Flow

Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Image Generation: Predict and subtract noise

UNet Architectur 1505.04597] U-Net: Convolutional Networks for Biomedical Image Segmenta

Forward Process: Noise Schedule

Fixed additive noise model: E

Add noise for time steps t in $\{0\}$

Image Source: Diffusion models from scratch in PyTorch

Reverse Process: Learned Noise Estimate

Fixed additive noise model: €

Add noise for time steps t in $\{0\}$

Image Source: Diffusion models from scratch in PyTorch

Denoising model: ϵ_{θ} (image,

CITTICSCCP/

Diffusion Model Loss

$$L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[\|\epsilon - \epsilon_{\theta}(x_t,t)\|_2^2 \right]$$

Error of **noise** reconstruction

Source: <u>High-Resolution Image Synthesis with Latent Diffusion Models</u>

Source: <u>High-Resolution Image Synthesis with Latent Diffusion Models</u>

Latent Diffusion Model Logided noise (from Normal distribution) Denoising Model $L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[\|\epsilon - \epsilon_{\theta}(x_t,t)\|_2^2 \right]$

Image at time t

representation of

image at time t

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \right]$$
 Latent space encoder

Source: <u>High-Resolution Image Synthesis with Latent Diffusion Models</u>

Unconditional Sampling from Noisexiv.org/abs/2006.11239

Random Noise

Conditional Generation?

How do we go from a text prompt to an image?

Stable Diffusion Architect 12 12 27521 High-Resolution Image Synthesis with Latent Diffu

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x),y,\epsilon \sim \mathcal{N}(0,1),t} \Big[\|\epsilon - \epsilon_{\theta}(z_t,t, au_{ heta}(y))\|_2^2 \Big]^{ ext{Additionally parameterized on text encoding}}$$

Stable Diffusion Architect 12 12 27521 High-Resolution Image Synthesis with Latent Diffu

Cross-Attention for Text Conditioning

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$$

Queries: image tokens

Keys, Values: prompt tokens

DAAM estimates **per-word attribution** via this cross-attention **for each subset** of prompt tokens

DAAM Per-Word Heatmaps

Overlay attention maps on generated image

Summed map for each word $k, k \in \{1, ..., I_{w}\}$

Sum across: UNet blocks i, timesteps j, attention heads I

blocks

Outline

- Background: Stable Diffusion
- DAAM for text-to-image attribution
- Results
 - Attribution quality analysis
 - Syntax to pixels
 - Entanglement
- Related work
- Limitations & discussion

Attribution Analysis Part 1: Object Attribution

We can evaluate DAAM as an image-segmentation tool

DAAM segments Stable Diffusion images

COCO-Gen		Unreal-Gen						
mIoU ⁸⁰	$mIoU^{\infty}$	mIoU ⁸⁰	$mIoU^{\infty}$					
Supervised Methods								
82.9	32.1	76.4	31.2					
80.8	31.3	78.3	35.0					
84.0	32.5	80.0	36.7					
78.6	71.6	74.6	70.9					
Unsupervised Methods								
20.4	21.1	19.5	19.3					
31.3	25.2	34.9	27.8					
35.8	53.6	42.9	54.5					
64.7	59.1	59.1	58.9					
64.8	60.7	60.8	58.3					
59.0	55.4	57.9	52.5					
	82.9 80.8 84.0 78.6 Method 20.4 31.3 35.8 64.7 64.8	$^{\text{mIoU}^{80}}$ $^{\text{mIoU}^{\infty}}$ lethods82.932.180.831.384.032.578.671.6Methods20.421.131.325.235.853.664.759.164.860.7	82.9 32.1 76.4 80.8 31.3 78.3 84.0 32.5 80.0 78.6 71.6 74.6 Methods 20.4 21.1 19.5 31.3 25.2 34.9 35.8 53.6 42.9 64.7 59.1 59.1 64.8 60.7 60.8					

- DAAM does not require explicit segmentation labels
- DAAM is "open vocabulary" can segment for any text input (not limited to known classes)

Attribution Analysis Part 2: Generalized Attribution

DAAM can segment beyond nouns

Evaluating DAAM with a user study

- 50 annotators, none see more than 18% of images
- Every image has three raters
- Abstract words / poor images were thrown out of evaluation

Head-Dependent Pairs

The cat sat on the mat

The red car

She ate the pizza

Head-Dependent Pairs

Measures of Overlap

- Mean Intersection over Union (mIoU)
- Mean Intersection over the Dependent (mloD)
- Mean Intersection over the Head (mIoH)

Measures of Overlap

- Mean intersection over union (mIoU)
- Mean Intersection over the Dependent (mIoD)
- Mean Intersection over the Head (mIoH)

Measures of Overlap

- Mean intersection over union (mIoU)
- Mean Intersection over the Dependent (mIoD)
- Mean Intersection over the Head (mloH)

#	Relation	mIoD	mIoH	Δ	mIoU
1 2	Unrelated pairs All head-dependent pairs	65.1 62.3	66.1 62.0	1.0 0.3	47.5 43.4
3	compound	71.3	71.5	0.2	51.1
4	punct	68.2	70.0	1.8	49.5
5	nconj:and	58.0	56.1	1.9	38.2
6	det	54.8	52.2	2.6	35.0
7	case	51.7	58.1	6.4	36.9
8	acl	67.4	79.3	12.	55.4
9	nsubj	76.4	63.9	12.	52.2
10	amod	62.4	77.6	15.	51.1
11	nmod:of	73.5	57.9	16.	47.5
12	obj	75.6	46.3	29 .	55.4
14	Coreferent word pairs	84.8	77.4	7.4	66.6

#	Relation	mIoD	mIoH	Δ	mIoU
1 2	Unrelated pairs All head-dependent pairs	65.1 62.3	66.1 62.0	1.0 0.3	47.5 43.4
3	compound	71.3	71.5	0.2	51.1
4	punct	68.2	70.0	1.8	49.5
5	nconj:and	58.0	56.1	1.9	38.2
6	det	54.8	52.2	2.6	35.0
7	case	51.7	58.1	6.4	36.9
8	acl	67.4	79.3	<u>12.</u>	55.4
9	nsubj	76.4	63.9	12.	52.2
10	amod	62.4	77.6	<u>15.</u>	51.1
11	nmod:of	73.5	57.9	16.	47.5
12	obj	75.6	46.3	29.	55.4
14	Coreferent word pairs	84.8	77.4	7.4	66.6

#	Relation	mIoD	mIoH	Δ	mIoU
1	Unrelated pairs	65.1	66.1	1.0	47.5
2	All head-dependent pairs	62.3	62.0	0.3	43.4
3	compound	71.3	71.5	0.2	51.1
4	punct	68.2	70.0	1.8	49.5
5	nconj:and	58.0	56.1	1.9	38.2
6	det	54.8	52.2	2.6	35.0
7	case	51.7	58.1	6.4	36.9
8	acl	67.4	79.3	12	55.4
9	nsubj	76.4	63.9	12.	52.2
10	amod	62.4	77.6	15.	51.1
11	nmod: of	73.5	57.9	16.	47.5
12	obj	75.6	46.3	<u>29.</u>	55.4
14	Coreferent word pairs	84.8	77.4	7.4	66.6

Verb contextualises the subject/object in its surroundings

#	Relation	mIoD	mIoH	Δ	mIoU
1	Unrelated pairs	65.1	66.1	1.0	47.5
2	All head-dependent pairs	62.3	62.0	0.3	43.4
3	compound	71.3	71.5	0.2	51.1
4	punct	68.2	70.0	1.8	49.5
5	nconj:and	58.0	56.1	1.9	38.2
6	det	54.8	52.2	2.6	35.0
7	case	51.7	58.1	6.4	36.9
8	acl	67.4	79.3	12.	55.4
9	nsubj	76.4	63.9	12.	52.2
10	amod	62.4	77.6	15.	51.1
11	nmod:of	73.5	57.9	16.	47.5
12	obj	75.6	46.3	<u>29.</u>	55.4
14	Coreferent word pairs	84.8	77.4	7.4	66.6

#	Relation	mIoD	mIoH	Δ	mIoU
1 2	Unrelated pairs All head-dependent pairs	65.1 62.3	66.1 62.0	1.0	47.5 43.4
3	compound	71.3	71.5	0.2	51.1
4	punct	68.2	70.0	1.8	49.5
5	nconj:and	58.0	56.1	1.9	38.2
6	det	54.8	52.2	2.6	35.0
7	case	51.7	58.1	6.4	36.9
8	acl	67.4	79.3	12.	55.4
9	nsubj	76.4	63.9	12.	52.2
10	amod	62.4	77.6	<u>15.</u>	51.1
11	nmod:of	73.5	57.9	<u>16.</u>	47.5
12	obj	75.6	46.3	<u>29.</u>	55.4
14	Coreferent word pairs	84.8	77.4	7.4	66.6

Takeaway:

Attribution map of the **dependent subsumes** that of the **head**, and **opposite** for others

Dominance is **intuitive** in some cases but **counter intuitive** in others

Visuosemantic Analysis

Do semantically **similar words** have **worse** generation quality?

Visuosemantic Analysis: Cohyponym Entanglement

Prompt Structure: "a(n) <noun> and a(n) <noun>" **Cohyponym Example:** "a giraffe and a zebra" **Non-Cohyponym Example:** "a zebra and a fridge"

Visuosemantic Analysis: Cohyponym Entanglement

Cohyponym

"a giraffe and a zebra"

Takeaway

Stable-Diffusion image generation worsens

Generates **one** of the nouns but **not both**

Attribution maps for the two nouns overlap ... Feature Entanglement

Visuosemantic Analysis: Cohyponym Entanglement

Non-Cohyponym

"a zebra and a fridge"

Takeaway

Generates both of the nouns

Attribution **maps** for the two nouns are **distinct**

Visuosemantic Analysis: Adjectival Entanglement

Prompt Structure: "<adj> <noun> <verb phrase>" **Example:** "a [rusty] shovel sitting in a clean shed" "a [bumpy] ball rolling down a hill"

Visuosemantic Analysis: Adjectival Entanglement

Expected Behavior

If **no entanglement**, background should **not gain attributes** pertaining to that adjective

Visuosemantic Analysis: Adjectival Entanglement

Takeaway

Attribution maps for adjectives attend too broadly across images beyond nouns they modify ... Feature

Entanglement

Summary

- DAAM provides pixel-level attribution maps for Stable Diffusion, a state-of-the-art text-to-image generator
- These maps appear to be informative, as evaluated through segmentation tasks and user study
- DAAM can be a useful tool for further understanding and analyzing Stable Diffusion – e.g. through visuosyntactic analysis and visuosemantic analysis

Class Discussion

- Does DAAM give a clear understanding about how a large-scale latent diffusion model synthesizes text to image and which parts of an image is influenced the most?
- Does DAAM explain all the dynamics of how images are synthesized? If not, how should DAAM be modified to better explain image generation?
 - Other explanatory tools besides **attention** and **segmentation proposals**?
- DAAM pointed out failure cases of stable-diffusion. Are there further interpretability methods needed to understand why **feature** entanglement is occurring and how it could be improved?