ra e nome:

e-mail:

Primeira Prova de Análise no \mathbb{R}^n , ps2012

- (1) (2 pontos) Considere a função $f: \mathbb{R} \to \mathbb{R}$, dada por $f(t) = t^2 \sin(1/t)$ para $t \neq 0$ e por f(0) = 0. Mostre que:
- (a) f é diferenciável mas não é C^1 em t=0 ,
- (b) $g: \mathbb{R}^2 \to \mathbb{R}$, dada por $g(x,y) = f(\sqrt{x^2 + y^2})$ é diferenciável mas não é C^1 em (x,y) = (0,0).

(2) (2 pontos) Considere uma função $f:U\subset\mathbb{R}^4\to\mathbb{R}^3,\,C^1$, tal que seu posto é constante e igual a 3 em U. Mostre que $|(f(x))|^2$ não assume máximo em U.

(3) (3 pontos) Seja uma função $g:U\subset\mathbb{R}^3\to\mathbb{R},\,C^1$ no aberto U e $a\in U$ tal que $\nabla g(a)\neq 0$. Considere o subconjunto S de $U\subset\mathbb{R}^3$ dado por g(x,y,z)=g(a). Mostre que existe um aberto $V\subset\mathbb{R}^2$, outro aberto $W\subset\mathbb{R}^3$ com $a\in W$ e uma função C^1 injetiva $f:V\subset\mathbb{R}^2\to W\cap S$, dada por f(u,v)=(x(u,v),y(u,v),z(u,v)). Verifique este resultado para $g(x,y,z)=z^2-x^2-y^2$ encontrando a tal f para a=(1,0,1). Note que neste caso o gradiente de g anula-se na origem do \mathbb{R}^3 ... mesmo para este ponto você acha que seria possível encontrar a tal f?

(4) (3 pontos) Enuncie e demonstre a forma local das imersões para $g: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ onde U é um aberto e g tem posto máximo em $a \in U$. Em seguida considere tal função dada por $g(t,\theta) = (x(t,\theta),y(t,\theta),z(t,\theta)), \ x(t,\theta) = t\cos\theta, \ y(t,\theta) = t\sin\theta, \ z(t,\theta) = t^2$, encontre um aberto $V \subset \mathbb{R}^3$ com $(1,0,1) = g(1,0) \in V$ e um difeomorfismo $h: V \subset \mathbb{R}^3 \to \mathbb{R}^3$, com h(x,y,z) = (u(x,y,z),v(x,y,z),w(x,y,z)) tal que $h(g(t,\theta)) = (t,\theta,0)$. Faça belos desenhos mostrando superfícies coordenadas do sistema naturalmente associado a h.