原码除法

$$[x]_{\mathbb{F}} = x_f \cdot x_{n-1} \cdot x_1 x_0, \quad [y]_{\mathbb{F}} = y_f \cdot y_{n-1} \cdot y_1 y_0$$

则商q=x/y的原码为:

$$[q]_{\mathbb{F}} = (x_f \oplus y_f) + (0.x_{n-1}...x_1x_0 / 0.y_{n-1}...y_1y_0)$$

例:被除数x=0.1001,除数y=0.1011。手工计算x/y的过程如下:

0. 1 1 0 1	
0. 1 0 1 1 0. 1 0 0 1	
-0.1011	x < y,商0
0. 1 0 0 1 0	得余数r ₀ (即x)
-0.01011	除数右移一位,余数减除数,商1
0. 0 0 1 1 1 0	得余数r ₁
-0.001011	除数右移一位,余数减除数,商1
0. 0 0 0 0 1 1 0	得余数r ₂
-0.0001011	除数右移一位,余数不减除数,商0
0. 0 0 0 0 1 1 0 0	得余数r ₃
-0.00001011	除数右移一位,余数减除数,商1
0. 0 0 0 0 0 0 1	得余数r ₄

恢复余数法

被除数x=0.1001,除数y=0.1011 [-y]_补= 1.0101

为保证余数左移时符号位不 变,应采用双符号位

对了工业公园以外

(1)将心算比较余数和除数大小改为减法比较,并且减y改为加[-y]_补。余数减除数大于等于0则商1,小于0则商0。

(2) 将除数右移改为余 数左移。

如果余数减除数的差 小于0,应将差加上除数 ,恢复原来的余数。这就 是恢复余数法。

0 0. 1	1 0	0	1	商	说明
<mark>立不</mark> 一y] _补 1 1. (0 1	0	1		x—y
1 1. 1	1 1	1	0	0	余数 $r_0 < 0$,商 0
+0 0. 1	1 0	1	1		加y恢复余数
0 0. 1	1 0	0	1		
0 1. (0 0	1	0		余数左移一位
$+[-y]_{i}$ 1 1. (0 1	0	1		减y比较
0 0. (0 1	1	1	0.1	余数r ₁ > 0,商1
← 0 0. 1	1 1	1	0		余数左移一位
+[-y] _{补 1 1. (}	0 1	0	1		减y比较
0 0. (0 0	1	1	0.11	余数r ₂ > 0,商1
← 0 0. (0 1	1	0		余数左移一位
+[-y] _¾ 1 1. (0 1	0	1		减y比较
1 1. 1	1 0	1	1	0.110	余数 $r_3 < 0$,商 0
+0 0. 1	1 0	1	1		加y恢复余数
0 0. (0 1	1	0		
← 0 0. 1	1 1	0	0		余数左移一位
+[-y] _ネ 1 1. (0 1	0	1		减y比较
	0 0	0	1	0.1101	余数r ₄ > 0,商1

加减交替法

恢复余数法中,设某次余数为r_i,要继续进行下面的求商运算,需要将r_i左移一位,然后减去除数,进行比较:

结果小于0时商上0,并加y恢复余数:

$$(2r_i-y)+y=2r_i$$

继续下面的求商,又要将它左移一位,再减去除数

$$2(2r_i)-y=4r_i-y$$

当(2r_i-y)小于0时,商仍上0,但不进行加y恢复余数的操作,而是将 (2r_i-y)左移一位,然后加上除数

$$2(2r_i-y)+y=4r_i-y$$

也得到同样的余数(4r_i-y)。所以,当比较结果小于0时,仍将结果左移一位,然后加上除数y。这就是不恢复余数法,也称加减交替法。

加减交替法的运算规则是:

余数为正时,商上1,余数左移一位,再减去除数,得到新的余数; 余数为负时,商上0,余数左移一位,再加上除数,得到新的余数。

0 0. 1 0 0 1	商	说明
+[-y] 1 1. 0 1 0 1		x—y
1 1. 1 1 1 0	0	余数 $r_0 < 0$,商 0
← 1 1. 1 1 0 0		左移一位
+y 0 0. 1 0 1 1		余数为负,加 y
0 0. 0 1 1 1	0.1	余数 r ₁ > 0,商1
← 0 0. 1 1 1 0		左移一位
+[-y]* 1 1. 0 1 0 1		余数为正,减 y
0 0. 0 0 1 1	0.11	余数r ₂ > 0,商1
← 0 0. 0 1 1 0		左移一位
+[-y] $+ 1 1. 0 1 0 1$		余数为正,减 y
1 1. 1 0 1 1	0.110	余数 $r_3 < 0$,商 0
-11.0110		左移一位
+y 0 0. 1 0 1 1		余数为负,加 y
0 0. 0 0 0 1	0.1101	余数r ₄ > 0,商1

余数:

注意: 得到的余数是经过左移4次后的结果故余数为 0.0001 × 2⁻⁴

余数是经过左移后的结果,需进行还原,即余数×2-n

不带符号原码除法

即:被除数、除数的绝对值(都转为正数)

余数符号

以十进制为例:

$$14 \div 3 = 4 \cdots 2$$

 $(-14) \div (-3) = 4 \cdots -2 \leftarrow 余数变号$
 $14 \div (-3) = -4 \cdots 2$
 $(-14) \div 3 = -4 \cdots -2 \leftarrow 余数变号$

被除数=除数×商+余数

余数符号

以十进制为例:

$$14 \div 3 = 5 \cdots -1$$

 $(-14) \div (-3) = 5 \cdots 1 \leftarrow 余数变号$
 $14 \div (-3) = -5 \cdots -1$
 $(-14) \div 3 = -5 \cdots 1 \leftarrow 余数变号$

被除数=除数×商+余数

• 当被除数为负时,余数要变号

· 如何变号? 从[y]** 变成[-y]**

• 原因: 当为负数时,变成绝对值进行处理,已经变号

- 商的符号由被除数、除数符号决定。
- 余数的符号由被除数决定

运算过程中,当余数为负数时

- •恢复余数法,需要对进行恢复余数
- •加减交替法的余数需要"回溯"至上一个正数

恢复余数法

被除数x=0.1001,除数y=0.1011 [-y]_补= 1.0101

0.1101

若商保留小数点后三位 余数为00.0011 × 2⁻²

若商保留小数点后三位 余数为00.0110 × 2⁻³

余数r₄ > 0,商1

被除数x=1001,除数y=1011

同乘以一个比例因子2-4,变小(都变成小于1的数)

注意:

此时被除数已经缩小,余数需要还原(乘以24)

总结

• 当被除数为负时,余数要变号

• 余数是经过左移后的结果,需进行还原,即余数×2-n

• 若余数为负数,需回溯至上一个正数

• 若计算前, 乘以比例因子, 余数需还原