

 ${\it Callum Rollo1 (c.rollo@uea.ac.uk) Karen J Heywood1 Rob Hall1 Alex Phillips2 1 University of East Anglia, Norwich, UK$2 Marine Autonomous Robotics Systems group, Southampton UK$2 University of East Anglia, Norwich, UK$2 Marine Autonomous Robotics Systems group, Southampton UK$3 University of East Anglia, Norwich, UK$2 Marine Autonomous Robotics Systems group, Southampton UK$3 University of East Anglia, Norwich, UK$3 Marine Autonomous Robotics Systems group, Southampton UK$3 University of East Anglia, Norwich, UK$3 Marine Autonomous Robotics Systems group, Southampton UK$4 University of East Anglia, Norwich, UK$4 University of East Anglia, University of East Ang$

Oceanography Centre
NATURAL ENVIRONMENT RESEARCH COUNCIL

 ${\it Callum\ Rollo}^1 \ ({\it c.rollo@uea.ac.uk}) \quad {\it Karen\ J\ Heywood}^1 \quad {\it Rob\ Hall}^1 \quad {\it Alex\ Phillips}^2 \\ {\it 1} \ {\it University\ of\ East\ Anglia,\ Norwich,\ UK} \quad {\it 2}^{\it Marine\ Autonomous\ Robotics\ Systems\ group,\ Southampton\ UK}$

- Vertical shear of horizontal velocity coherent between ensembles
- Strong along loch shear across pycnocline

 ${\it Callum\ Rollo}^1 \ ({\it c.rollo@uea.ac.uk}) \quad {\it Karen\ J\ Heywood}^1 \quad {\it Rob\ Hall}^1 \quad {\it Alex\ Phillips}^2 \\ {\it 1} \ {\it University\ of\ East\ Anglia,\ Norwich,\ UK} \quad {\it 2}^{\it Marine\ Autonomous\ Robotics\ Systems\ group,\ Southampton\ UK}$

Dive profile from trials with glider depth and bins out to 15 m plotted

Good agreement for horizontal velocities between descents and ascents

-0.05

0.00

Bottom referenced velocity (m s-1)

Data qc

0.05

0.15

0.10

Time, mins from apogee

-0.15

-0.10

Callum Rollo¹ (c.rollo@uea.ac.uk) Karen J Heywood¹ Rob Hall¹ Alex Phillips²

¹University of East Anglia, Norwich, UK ²Marine Autonomous Robotics Systems group, Southampton UK

Deployment to the Faroe Shetland Channel April 2019 in conjunction with ADCP mooring and PIES see expected conditions

Callum Rollo¹ (c.rollo@uea.ac.uk) Karen J Heywood¹ Rob Hall¹ Alex Phillips²

1 University of East Anglia, Norwich, UK

2 Marine Autonomous Robotics Systems group, Southampton UK

Tidal currents of $0.2~{\rm m~s^{-1}}$ and a mean flow of $0.1~{\rm m~s^{-1}}$ bottom intensified baroclinic tidal flows will be a good test of the ADCP glider. ADCP data courtesy of Bee Berx, Marine Scotland Science

Callum Rollo¹ (c.rollo@uea.ac.uk) Karen J Heywood¹ Rob Hall¹ Alex Phillips² ¹University of East Anglia. Norwich, UK ²Marine Autonomous Robotics Systems group, Southampton UK

Quality control and calculation steps

- Discard cells where glider attitude causes beam miss of > 1 m (see plot)
- Discard cells where the ping correlation is less than 50% see plot
- Rotate from beam coordinates to East-North-Up using data from attitude sensors and compass on the ADCP
- Calculate shear between each remaining adjacent cell
- Average shear data in 2 m vertical bins
- Integrate shear to get relative velocity profiles
- Reference relative velocity profiles using dive average current from the glider for "absolute" velocity profiles
- ▶ What if we don't use quality control? See plot

Callum Rollo¹ (c.rollo@uea.ac.uk) Karen J Heywood¹ Rob Hall¹ Alex Phillips²

1 University of East Anglia, Norwich, UK

2 Marine Autonomous Robotics Systems group, Southampton UK

Flight angles affect the vertical location of the three beams. Plot shows the vertical distance between beams sampling a cell 15 m from the glider over a range of pitch and roll angles. Perfect sampling (0 m beam miss) is achieved at $\pm 17.3^{\circ}$ pitch 0° roll

 ${\sf Callum\ Rollo}^1\ ({\tt c.rollo@uea.ac.uk}) \quad {\sf Karen\ J\ Heywood}^1 \quad {\sf Rob\ Hall}^1 \quad {\sf Alex\ Phillips}^2$ ¹University of East Anglia, Norwich, UK ²Marine Autonomous Robotics Systems group, Southampton UK

Dots are vertical missmatch of beams at 15 m from glider. white for descent, red for ascent. Closer to 0 =better flight

100

Callum Rollo 1 (c.rollo@uea.ac.uk) Karen J Heywood 1 Rob Hall 1 Alex Phillips 2 ty of East Anglia, Norwich, UK 2 Marine Autonomous Robotics Systems group, Southampton UK ¹University of East Anglia, Norwich, UK

The same data as the introduction, without quality control steps

Callum Rollo¹ (c.rollo@uea.ac.uk) Karen J Heywood¹ Rob Hall¹ Alex Phillips² ¹University of East Anglia, Norwich, UK ²Marine Autonomous Robotics Systems group, Southampton UK

Seaglider max depth 1000m, vertical velocity 0.1 m/s ADCP spec:

- Sampling frequency 1 MHz
- Range 30 m (max) 10-15 m (typical)
- 3 downward looking beams at 30 degrees from vertical
- Cell size 2 m
- 2 second ensemble of 8 pings every 30 seconds
- Expected endurance 6 weeks

PICO adapted from the template by Anselm Köhler found here: https://github.com/snowtechblog/pico-latex-presentation

