

El número π .

Carmen Laura Martín González Práctica de Laboratorio #10

9 de Abril de 2014

Resumen

El objetivo es describir y aprender un poco más sobre el número π .

1. Definición del número π

El número π es uno de los pocos conceptos en las matemáticas, cuya mención evoca una respuesta de reconocimiento y el interés en aquellos que no se traten profesionalmente con el tema. Ha sido una parte de la cultura humana y la imaginación, estudiado durante más de veinticinco siglos.

El número π se define como la razón entre la longitud de una circunferencia y su diámetro. Este no es un número exacto sino que es de los llamados irracionales¹. Se emplea frecuentemente en matemáticas, física e ingeniería.

2. Algunas curiosidades sobre el número π

- 1. En distintas culturas, china, egipcia, europea, india, etc., se trato de obtener mejores aproximaciones de π por ser de aplicación en campos tan distintos como la astronomía o la construcción.
- 2. Muchos de los intentos de evaluar π en la antigüedad utilizaban el método de calcular el perímetro de polígonos inscritos y circunscritos a circunferencias.
- 3. Modernamente para evaluar π se utiliza una serie infinita convergente. Este método fue utilizado por primera vez en Kerala (India) en el Siglo XV
- 4. En 1706, el inglés William Jones fue el primero en utilizar el símbolo griego π para denotar la relación entre la circunferencia y su diámetro. Euler en su obra Ïntroducción al cálculo infinitesimal", publicada en 1748, le dio el espaldarazo definitivo.
- 5. Ferdinand Lindemann(1852-1939) demostró que Pi es un número trascendental. Esto significa entre otras cosas que el problema de la cuadratura del círculo no tiene solución. Pese a ello todavía se sigue intentando.

 $^{^1}$ Los números irracionales tienen como definición que son números que poseen infinitas cifras decimales no periódicas, que por lo tanto no pueden ser expresados como fracciones.

2.1. Algunos valores de π [1]

Matemático o lugar	Año	Valor
La Biblia		3
Papiro de Ahmes(Egipto)	$1650 \; a.C$	3.16
Tablilla de Susa(Babilonia)	1600 a.C	3.125
Bandhayana(India)	500 a.C	3.09
Arquímedes de Siracusa	287-212 a.C	Entre 223/71 y 220/70
Liu Hui(China)	260 a.C	3.1416
Tsu Chung Chih	480 a.C	Entre 3.145926 y 3.1415927
Al-Kashia(Persia)	1429 a.C	3.1415926535897932
Franciscus Vieta (Francia)	1540-1603 a.C	3.1415926536 height

2.2. Cuestiones abiertas sobre π [2]

- 1. Cada uno de los dígitos decimales 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9, ¿tiene una aparición infinita en los decimales de π ?
- 2. La denominada cuestión de Brouwer: en la expansión decimal de π , ¿existe alguna posición donde exista una sucesión de mil ceros consecutivos?
- 3. ¿Es π simplemente normal en base 10? Es decir, ¿tiene cada uno de los diez dígitos del sistema decimal la misma probabilidad de aparición en una expansión decimal?
- 4. No se sabe si π +e, π /e, $\ln(\pi)$ son irracionales. Se sabe que no son raíces de polinomios de grado inferior a nueve y con coeficientes enteros del orden 109.48 49

Referencias

- [1] http://ciencianet.com/pi.html
- [2] http://es.wikipedia.org http://campusvirtual.ull.es/1314/pluginfile.php/197714/mod_resource/content/3/TeoriaLaTeX,1.pdf

 $http://campus virtual.ull.es/1314/pluginfile.php/197721/mod_resource/content/3/Teoria La TeX, 2.pdf$