

#### Costruzione di un albero sintattico

Sia G = (V, T, P, S) una CFG. Un albero e' un **albero sintattico** per G se:

- lacktriangle Ogni nodo interno e' etichettato con una variabile in V.
- ② Ogni foglia e' etichettata con un simbolo in  $V \cup T \cup \{\epsilon\}$ . Ogni foglia etichettata con  $\epsilon$  e' l'unico figlio del suo genitore.
- Se un nodo interno e' etichettato A, e i suoi figli (da sinistra a destra) sono etichettati

$$X_1, X_2, \ldots, X_k,$$

allora 
$$A \to X_1 X_2 \dots X_k \in P$$
.

## Esempio

#### Nella grammnatica

- 1.  $E \rightarrow \mathbf{a}$
- $2. \ E \rightarrow E + E$
- 3.  $E \rightarrow E * E$
- 4.  $E \xrightarrow{\cdot} (E)$

il seguente e' un albero sintattico:



Questo albero sintattico mostra la derivazione  $E \stackrel{*}{\rightarrow} a + E$ 

# Esempio

#### Nella grammatica

- 1.  $P \rightarrow \epsilon$
- $2. \ P \rightarrow 0$
- 3.  $P \rightarrow 1$
- 4.  $P \rightarrow 0P0$
- 5.  $P \rightarrow 1P1$

il seguente e' un albero sintattico:



Mostra la derivazione  $P \stackrel{*}{\rightarrow} 0110$ .

### ll prodotto di un albero sintattico

- Il prodotto di un albero sintattico e' la stringa di foglie da sinistra a destra.
- Sono importanti quegli alberi sintattici dove:
  - 1 Il prodotto e' una stringa terminale.
  - 2 La radice e' etichettata dal simbolo iniziale.
- L'insieme dei prodotti, formati da soli terminali, di questi alberi sintattici e' il linguaggio della grammatica.

# Esempio

Estendiamo la grammatica delle espressioni per arricchire il lingiaggio degli identificatri.

Consideriamo la grammatica  $G = (\{E, I\}, T, P, E)$  dove  $T = \{+, *, (,), a, b, 0, 1\}$  e P e' il seguente insieme di produzioni:

- 1.  $E \rightarrow I$
- 2.  $E \rightarrow E + E$
- 3.  $E \rightarrow E * E$
- $4. E \rightarrow (E)$
- 5.  $I \rightarrow a$
- 6.  $I \rightarrow b$
- 7.  $I \rightarrow Ia$
- 8.  $I \rightarrow Ib$
- 9.  $I \rightarrow I0$
- 10.  $I \rightarrow I1$

### Esempio



Il prodotto e' a \* (a + b00).

Sia G = (V, T, P, S) una CFG, e  $A \in V$ . I seguenti sono equivalenti:

- 3 C'e' un albero sintattico di G con radice A e' prodotto w.

## Alberi sintattici e Forme sentenzali



In particolare ad *ogni frontiera interna* di un albero sintattico corrisponde una forma sentenziale. Le frontiere interne in blu corrispondono rispettivamente alle forme sentanziali 0P0 e  $I^*(E)$ .

# Alberi sintattici e Derivazioni leftmost

#### Consideriamo l'albero:



Si puo' costruire una derivazione sinistra corrispondente espendendo le variabili secondo la lettura in preordine dei nodi dell'albero. Iniziamo con  $E \to E*E$  e espandiamo succesivamente la prima E in I e cosi' via:

$$E \xrightarrow{lm} E * E \xrightarrow{lm}$$

$$I * E \xrightarrow{lm} a * E \xrightarrow{lm}$$

$$a * (E) \xrightarrow{lm} a * (E + E) \xrightarrow{lm}$$

$$a * (I + E) \xrightarrow{lm} a * (a + E) \xrightarrow{lm}$$

$$a * (a + I) \xrightarrow{lm} a * (a + I0) \xrightarrow{lm}$$

$$a * (a + I00) \xrightarrow{lm} a * (a + b00)$$

C'e una corrispodenza biunivoca tre alberi sintattici e derivazioni leftmost.

# Alberi sintattici e Derivazioni rightmost

Allo stesso modo da un albero sintattico si puo' costruire una derivazione *destra* corrispondente espendendo le variabili in ordine inverso.

Per lo stesso albero sintattico si ottiene:

$$E \xrightarrow{rm} E * E \xrightarrow{rm}$$

$$E * (E) \xrightarrow{rm} E * (E + E) \xrightarrow{rm}$$

$$E * (E + I) \xrightarrow{rm} E * (E + I0) \xrightarrow{rm}$$

$$E * (E + I00) \xrightarrow{rm} E * (E + b00) \xrightarrow{rm}$$

$$E * (I + b00) \xrightarrow{rm} E * (a + b00) \xrightarrow{rm}$$

$$I * (a + b00) \xrightarrow{rm} a * (a + b00)$$

C'e una *corrispodenza biunivoca* anche tre alberi sintattici e derivazioni *rightmost*.

# Ambiguita' in Grammatiche e Linguaggi

#### Nella grammatica

- 1.  $E \rightarrow I$
- 2.  $E \rightarrow E + E$
- 3.  $E \rightarrow E * E$
- 4.  $E \rightarrow (E)$

la forma sentenziale E + E \* E ha due derivazioni:

$$E \rightarrow E + E \rightarrow E + E * E$$

$$E \rightarrow E * E \rightarrow E + E * E$$

Questo ci da' due alberi sintattici:





**Definizione:** Sia G = (V, T, P, S) una CFG. Diciamo che G e' **ambigua** se esiste una stringa in  $T^*$  che ha piu' di un albero sintattico.

Se ogni stringa in L(G) ha al piu' un albero sintattico, G e' detta **non ambigua**.

Esempio: La stringa terminale a + a \* a ha due alberi sintattici:



L'esistenza di varie derivazioni di per se non e' pericolosa, e' l'esistenza di vari alberi sintattici che rovina la grammatica. Esempio: Nella stessa grammatica la stringa a+b ha varie derivazioni:

$$E \rightarrow E + E \rightarrow I + E \rightarrow a + E \rightarrow a + I \rightarrow a + b$$

е

$$E \rightarrow E + E \rightarrow E + I \rightarrow I + I \rightarrow I + b \rightarrow a + b$$

Pero' il loro albero sintattico e' lo stesso, e la struttura di a+b e' quindi non ambigua.

Ma per dire che una grammatica e' ambigua basta che ci sia anche solo <u>una</u> (o piu') stringa con due alberi di derivazione diversi. Come quella della slide precedente (e molte altre in questo caso).

## Rimuovere l'ambiguita' dalle grammatiche

- Buone notizie: a volte possiamo rimuovere l'ambiguita'
- Cattive notizie: non c'e' nessun algoritmo per farlo in modo sistematico
- Ancora cattive notizie: alcuni CFL hanno solo CFG ambigue
- Studiamo la grammatica

$$E \rightarrow I \mid E + E \mid E * E \mid (E)$$
  
 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$ 

- ullet Non c'e' precedenza tra \* e +
- Non c'e' raggruppamento di sequenze di operatori: E + E + Ee' inteso come E + (E + E) o come (E + E) + E?

Soluzione: Introduciamo piu' variabili, ognuna che rappresenta espressioni con lo stesso grado di "forza di legamento"

- Un fattore e' un'espressione che non puo' essere spezzata da un \* o un + adiacente. I nostri fattori sono:
  - Identificatori
  - Un'espressione racchiusa tra parentesi.
- ② Un termine e' un'espressione che non puo' essere spezzata da un +. Ad esempio, a\*b non puo' essere spezzata da +, perche' ad esempio a1+a\*b e' (secondo le regole di precedenza) lo stesso di a1+(a\*b), e a\*b+a1 e' lo stesso di (a\*b)+a1.
- Il resto sono espressioni, cioe' possono essere spezzate con \* o +.

Usiamo F per i fattori, T per i termini, e E per le espressioni. Consideriamo la seguente grammatica:

- 1.  $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
- 2.  $F \rightarrow I \mid (E)$
- 3.  $T \rightarrow F \mid T * F$
- 4.  $E \rightarrow T \mid E + T$

Ora l'unico albero sintattico per a + a \* a e':



Perche' la nuova grammatica non e' ambigua?

- Un fattore e' o un identificatore o (E), per qualche espressione E.
- L'unico albero sintattico per una sequenza

$$f_1 * f_2 * \cdots * f_{n-1} * f_n$$

di fattori e' quello che da'  $f_1 * f_2 * \cdots * f_{n-1}$  come termine e  $f_n$  come fattore, come nell'albero del prossimo lucido.

• Un'espressione e' una sequenza

$$t_1 + t_2 + \cdots + t_{n-1} + t_n$$

di termini  $t_i$ . Puo' essere solo raggruppata con  $t_1 + t_2 + \cdots + t_{n-1}$  come un'espressione e  $t_n$  come un termine.



# Derivazioni a sinistra e ambiguita'

I due alberi sintattici per a + a \* a



danno luogo a due derivazioni:

$$\begin{array}{c} E \underset{lm}{\rightarrow} E + E \underset{lm}{\rightarrow} I + E \underset{lm}{\rightarrow} a + E \underset{lm}{\rightarrow} a + E * E \\ \underset{lm}{\rightarrow} a + I * E \underset{lm}{\rightarrow} a + a * E \underset{lm}{\rightarrow} a + a * I \underset{lm}{\rightarrow} a + a * a \end{array}$$

е

$$E \xrightarrow{} E * E \xrightarrow{} E + E * E \xrightarrow{} I + E * E \xrightarrow{} a + E * E \dots$$

Grammatiche libere dal contesto

(b)

#### In generale:

- Un albero sintattico, ma molte derivazioni
- Molte derivazioni a sinistra implica molti alberi sintattici.
- Molte derivazioni a destra implica molti alberi sintattici.

**Teorema 5.29:** Data una CFG G, una stringa terminale w ha due distinti alberi sintattici se e solo se w ha due distinte derivazioni a sinistra dal simbolo iniziale.

#### Prova:

- (Solo se.) Se due alberi sintattici sono diversi, hanno un nodo dove sono state usate due diverse produzioni:
   A → X<sub>1</sub>X<sub>2</sub> ··· X<sub>k</sub> e B → Y<sub>1</sub>Y<sub>2</sub> ··· Y<sub>m</sub>. Le corrispondenti derivazioni a sinistra useranno queste diverse produzioni e quindi saranno distinte.
- (Se.) Per come costruiamo un albero da una derivazione, e' chiaro che due derivazioni distinte generano due alberi distinti.

## Ambiguita' inerente

Un CFL L e' **inerentemente ambiguo** se **tutte** le grammatiche per L sono ambigue.

Esempio: Consideriamo L =

$${a^nb^nc^md^m: n \ge 1, m \ge 1} \cup {a^nb^mc^md^n: n \ge 1, m \ge 1}.$$

Una grammatica per L e'

$$S \rightarrow AB \mid C$$
  
 $A \rightarrow aAb \mid ab$   
 $B \rightarrow cBd \mid cd$   
 $C \rightarrow aCd \mid aDd$   
 $D \rightarrow bDc \mid bc$ 

Guardiamo la struttura sintattica della stringa aabbccdd.



Vediamo che ci sono due derivazioni a sinistra:

$$S \underset{lm}{ o} AB \underset{lm}{ o} aAbB \underset{lm}{ o} aabbB \underset{lm}{ o} aabbcBd \underset{lm}{ o} aabbccdd$$

e

$$S \xrightarrow{} C \xrightarrow{} aCd \xrightarrow{} aaDdd \xrightarrow{} aabDcdd \xrightarrow{} aabbccdd$$

Puo' essere provato che **ogni** grammatica per L si comporta come questa. Il linguaggio L e' quindi inerentemente ambiguo.

## Linguaggi regolari e grammatiche

- Un linguaggio regolare e' anche libero da contesto.
- Da una espressione regolare, o da un automa, si puo' ottenere una grammatica che genera lo stesso linguaggio.

### Da automa a grammatica

- Un simbolo non-terminale per ogni stato.
- Simbolo iniziale = stato iniziale.
- Per ogni transizione da stato s a stato p con simbolo a, produzione  $S \rightarrow aP$ .
- Se p stato finale, allora produzione  $P \to \epsilon$

# Esempio

Automa:



Grammatica:

$$egin{aligned} Q_0 & o 1 Q_0 \mid 0 \, Q_2 \ Q_2 & o 0 \, Q_2 \mid 1 \, Q_1 \ Q_1 & o 0 \, Q_1 \mid 1 \, Q_1 \mid \epsilon \end{aligned}$$

La stringa 1101 e' accettata dall'automa. Nella grammatica, ha la derivazione:

$$Q_0 \to 1Q_0 \to 11Q_0 \to 110Q_2 \to 1101Q_1 \to 1101$$