Semaine du 14 Octobore - Planche nº 1

Exercice no 1:

(Question de cours) : Propriétés algébriques du logarithme et de l'exponentielle (Propriétés 4 et 9 du Chapitre 7).

Exercice nº 2:

(Systèmes linéaires) : Résoudre le système suivant :

$$\begin{cases} x - y + z + t &= 0 \\ x - 2y + z - t &= 1 \\ x + y + 2z + t &= -1 \end{cases}$$

Exercice no 3:

(Fonctions usuelles) : Soit f la fonction définie par $f: x \in \mathbb{R}_+^* \mapsto x^x$.

- 1. Donner les limites de f en 0 et $+\infty$.
- 2. Étudier les variations de f.
- 3. On prolonge f par continuité, en posant f(0) = 1. En utilisant que $\lim_{u \to 0} \frac{e^u 1}{u} = 1$ vérifier que le graphe de f possède une tangente verticale au point d'abscisse 0.

Semaine du 14 Octobre - Planche nº 2

Exercice no 1:

(Question de cours) : Propriétés algébriques des puissances (Propriétés 13 du Chapitre 7).

Exercice nº 2:

(Systèmes linéaires) : Résoudre les systèmes suivant :

$$(S_1): \begin{cases} x-y = 2\\ 2x+2y-z = -2\\ -x-y+2z = 4 \end{cases}$$

$$(S_2): \begin{cases} x-y = 2\\ 2x+2y-z = -2\\ -x-y+\frac{1}{2}z = 4 \end{cases}$$

Exercice no 3:

(Fonctions usuelles) : On défnit une fonction f par $f(x) = \frac{\ln(x)}{x}$

- 1. Étudier complètement la fonction f, et tracer une allure de sa courbe représentative \mathcal{C}_f
- 2. Déterminer tous les couples d'entiers (a,b) tels que $2 \le a < b$ et $a^b = b^a$.
- 3. Entre e^{π} et π^e , quel est le nombre le plus grand?

Semaine du 14 Octobore - Planche nº 3

Exercice no 1:

(Question de cours) : Croissances comparées (Propriétés 15 du Chapitre 7).

Exercice nº 2:

(Systèmes linéaires) : Déterminer les valeurs de a pour lesquelles le système suivant :

$$\begin{cases} x+y-z &= 1\\ x+2y+az &= -2\\ 2x+ay+2z &= 3 \end{cases}$$

- 1. possède une unique solution.
- 2. ne possède pas de solutions.
- 3. possède une infinité de solutions.

Exercice nº 3:

(Fonctions usuelles): Pour tout réel strictement positif m, on définit la fonction f_m par

$$f_m(x) = \ln(e^x + me^{-x})$$

et on notera C_m la courbe représentative de la fonction f_m .

- 1. Quel est le domaine de définition des fonctions f_m ?
- 2. Étudier les variations de la fonction f_m , puis montrer que \mathcal{C}_m admet deux asymptotes dont l'une est commune à toutes les courbes de la famille.
- 3. Quelle transformation simple faut-il effectuer à partir de la courbe C_1 pour obtenir la courbe C_m ?