Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ компьютерной безопасности и криптографии

Лабораторная работа №4

студента 5 курса 531 группы специальности 10.05.01 «Компьютерная безопасность» факультета компьютерных наук и информационных технологий Енца Михаила Владимировича

Преподаватель		B. A.
профессор		Молчанов
	подпись, дата	
Заведующий кафедрой		М. Б.
д.фм.н., доцент		Абросимов
	подпись, дата	

1. Постановка задачи.

Изучение основных методов проверки простоты чисел и их программная реализация.

2. Теоретические сведения по рассмотренным темам с их обоснованием.

Целое число $n \in \mathbb{Z} \setminus \{0, 1\}$ называется простым, если оно не имеет других делителей, кроме 1 и себя самого. В противном случае, число называется составным.

Нечётные составные числа n, для которых сравнение a $n-1 \equiv 1 \pmod{n}$ выполняется при любом a, $1 \leq a \leq n-1$, взаимно простом с n, называются числами Кармайкла.

Пусть $m,n\in Z$, где $n=p_1p_2$... p_r и числа $p_i>2$, $\forall~i=1,r$ простые (не обязательно различные). Символ Якоби $\left(\frac{m}{n}\right)$ определяется равенством: $\left(\frac{m}{n}\right)=\left(\frac{m}{p_1}\right)\left(\frac{m}{p_2}\right)\ldots\left(\frac{m}{p_r}\right)$.

Вероятностный алгоритм проверки числа на простоту использует генератор случайных чисел и дает не гарантированно точный ответ. Вероятностные алгоритмы в общем случае не менее эффективны, чем детерминированные.

Для того чтобы проверить вероятностным алгоритмом, является ли целое число n простым, выбирают случайное число a, 1 < a < n, и проверяют условие алгоритма. Если число n не проходит тест по основанию a, то алгоритм выдает результат «Число n составное», и число n действительно является составным.

Если же n проходит тест по основанию a, ничего нельзя сказать о том, действительно ли число n является простым. Последовательно проведя ряд проверок таким тестом для разных a и получив для каждого из них ответ «Число n, вероятно, простое», можно утверждать, что число n является простым с вероятностью, близкой к 1. После t независимых выполнений теста

вероятность того, что составное число n будет t раз объявлено простым, не превосходит $\frac{1}{2^t}$.

<u>**Теорема**</u>. Для нечетного составного числа n > 0 справедливы следующие утверждения.

- 1. Число n является псевдопростым по основанию a тогда и только тогда, когда n-1 делится на порядок числа a по модулю n.
- 2. Если число n псевдопростое по основаниям a и b, то n псевдопростое по основаниям $ab \pmod{n}$, $ab^{-1} \pmod{n}$ и $a^{-1}b \pmod{n}$.
- 3. Если число n не является псевдопростым хотя бы по одному основанию a, то n является псевдопростым не более чем по $\frac{\varphi(n)}{2}$ основаниям, где φ функция Эйлера.

Теорема. Критерия Корселта.

Нечетное составное число n является числом Кармайкла тогда и только тогда, когда:

- 1) n свободно от квадратов
- 2) для каждого простого делителя p числа n число n-1 делится на p-1.

3. Результаты работы.

Описание алгоритма теста Ферма проверки чисел на простоту.

Согласно малой теореме Ферма для простого числа p и произвольного целого числа a, $1 \le a \le p-1$, выполняется сравнение $a^{p-1} \equiv 1 \pmod{p}$.

Следовательно, если для нечетного n существует такое целое a, что $1 \le a < n$, НОД(a,n) = 1 и $a^{n-1} \equiv 1 \pmod{n}$, то число n составное.

Описание алгоритма теста Словея-Штрассена проверки чисел на простоту.

Теорема. Критерий Эйлера

Нечетное число n является простым тогда и только тогда, когда для любого целого числа $a,\ 1 \le a \le n-1$, взаимно простого с n, выполняется сравнение $a^{\frac{n-1}{2}} \equiv \left(\frac{a}{n}\right) (mod\ n).$

Критерий Эйлера лежит в основе вероятностного алгоритма Соловея-Штрассена.

Определение.

Пусть число n нечетное составное и число a произвольное целое, взаимно простое с n, $2 \le a \le n-1$. Число n называется эйлеровым ncesdonpocmым по основанию a, если выполняется сравнение $a^{\frac{n-1}{2}} \equiv \left(\frac{a}{n}\right) (mod \, n)$, т.е. если для числа n алгоритм Соловея-Штрассена выдает результат «Число n, вероятно, простое».

Теорема

Для нечетного составного числа n справедливы следующие утверждения.

- 1. Если число n эйлерово псевдопростое по основанию a и не является таковым по основанию b, то оно не эйлерово псевдопростое по основанию $ab \pmod{n}$.
- 2. Если число n эйлерово псевдопростое по основаниям a и b, то n псевдопростое по основаниям $ab \pmod n$, $ab^{-1} \pmod n$ и $a^{-1}b \pmod n$.
- 3. Если число b не является эйлеровым псевдопростым хотя бы по одному основанию a, то n является эйлеровым псевдопростым не более чем по $\frac{\varphi(n)}{2}$ основаниям, где φ функция Эйлера.
- 4. Если число n является эйлеровым псевдопростым по основанияю a, то оно является псевдопростым по основанию a.

Вероятность того, что тест Соловэя-Штрассена объявит нечетное составное число и простым, меньше чем $\frac{1}{2}$.

Описание алгоритма теста Миллера-Рабина проверки чисел на простоту

Определение

Пусть число n нечетное простое, $n-1=2^s r$, где r — нечетное, и a — произвольное целое число, $1 \le a \le n-1$, взаимно простое с n. Число n называется сильно псевдопростым по основанию a, если $a^r \equiv -1 \pmod n$.

Вероятность того, что тест Миллера-Рабина объявит нечетное составное число n, не являющееся степенью простого числа, простым, меньше чем $\frac{1}{4}$. Для большинства нечетных составных чисел n оснований, по которым n является сильно псевдопростым, на самом деле гораздо меньше чем $\frac{\varphi(n)}{4}$.

Псевдокоды рассмотренных алгоритмов

Тест Ферма.

Bxo∂. Нечетное целое число $n \ge 5$.

Bыход. «Число n, вероятно, простое». В противном случае результат: «Число n составное».

- 1. Выбрать случайное целое число $a, 2 \le a \le n 2$.
- 2. Вычислить $r = a^{n-1} (mod \ n)$
- 3. При r=1 результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное».

Тест Соловея-Штрассена.

Bxo∂. Нечетное целое число $n \ge 5$.

Выход. «Число n, вероятно, простое» или «Число n составное».

- 1. Выбрать случайное целое число $a, 2 \le a \le n 2$.
- 2. Вычислить $r = a^{\frac{n-1}{2}} \pmod{n}$.
- 3. При $r \neq 1$ и $r \neq n-1$ результат: «Число п составное».
- 4. Вычислить символ Якоби $s = \left(\frac{a}{n}\right)$.
- 5. При $r \equiv s \pmod{n}$ результат: «Число п составное». В противном случае результат: «Число n, вероятно, простое».

Тест Миллера-Рабина.

Bxo∂. Нечетное целое число $n \ge 5$.

Bыход. «Число n, вероятно, простое» или «Число n составное».

- 1. Представить n-1 в виде $n-1=2^{s}r$, где число r нечетное.
- 2. Выбрать случайное целое число $a, 2 \le a \le n 2$.
- 3. Вычислить $y = a^r \pmod{n}$.
- 4. При $y \neq 1$ и $y \neq n-1$ выполнить следующие действия.
- 4.1. Положить j = 1.
- 4.2. Если $j \le s 1$ и $y \ne n 1$, то
- 4.2.1. Положить $y = y^2 \pmod{n}$.
- 4.2.2. При y = 1 результат: «Число n составное».
- 4.2.3. Положить j = j + 1.
- 4.3. При $y \neq n 1$ результат: «Число n составное».
- 5. Результат: «Число n, вероятно, простое».

Коды программ, реализующей рассмотренные алгоритмы

Программа реализована на языке Python (версия интерпретатора 3.6).

Модуль программы prime.py:

```
import random
from time import time
import sympy
from utils import jacobi_symbol
def fermat_primality(n, K=5):
  for i in range(K):
    a = random.randint(2, n - 2)
    if pow(a, (n - 1), n) != 1:
       return False
  return True
def solovay_strassen(n, K=10):
  if n == 2: return True
  if not n & 1: return False
  for k in range(K):
    a = random.randrange(2, n - 2)
    r = pow(a, (n - 1) // 2, n)
    if r != 1 and r != n - 1:
       return False
    s = jacobi_symbol(a, n) \% n
    if r != s:
       return False
  return True
```

```
def miller_rabin(n, K=10):
  if n == 2 or n == 3:
     return True
  if n < 2 or n \% 2 == 0:
     return False
  s, t = 0, n - 1
  while t % 2 == 0:
    t //= 2
     s += 1
  for k in range(K):
     a = random.randrange(2, n - 2)
     x = pow(a, t, n)
     if x == 1 or x == n - 1:
       continue
     for i in range(1, s):
       x = (x * x) % n
       if x == 1:
          return False
       if x == n - 1:
          break
     if x != n - 1:
       return False
  return True
def test(n=3277, K=3):
  fermat = 0
  solo = 0
  milrab = 0
  for i in range(1000):
     if fermat_primality(n, K):
       fermat += 1
    if solovay_strassen(n, K):
       solo += 1
     if miller_rabin(n, K):
       milrab += 1
  print(fermat, solo, milrab)
def prime_error_test(f_test, n, K):
  err = 0
  g_res = sympy.isprime(n)
  for i in range(1000):
     if f_test(n, K) != g_res:
       err += 1
  return err
```

```
def speed_test(f_test, n, K, cnt):
  start = time()
  for i in range(cnt):
     f test(n, K)
  return time() - start
def main():
  K = 1
  test(3277, K)
  test(1729, K)
  N = 104087
  print(speed_test(fermat_primality, N, K, 200000))
  print(speed_test(solovay_strassen, N, K, 200000))
  print(speed_test(miller_rabin, N, K, 200000))
  trys = list(range(1, 6))
  for k in trys:
     print('Fermat err k={}: '.format(k), prime_error_test(fermat_primality, N, k))
  for k in trys:
     print('Solovey err k={}: '.format(k), prime_error_test(solovay_strassen, N, k))
  for k in trys:
     print('Miller err k={}: '.format(k), prime_error_test(miller_rabin, N, k))
if __name__ == '__main__':
  main()
```

Оценки сложности рассмотренных алгоритмов

Сложность алгоритма теста Ферма: $O(log^3n)$ при умножении в столбик.

Сложность алгоритма теста Соловэя-Штрассена определеяется сложностью вычисления символа Якоби и равна: $O(log^3a)$.

Сложность алгоритма теста Миллера-Рабина: $O((loga)^3)$.

Результаты тестирования программ

Пример работы алгоритмов Евклида

Тестируемое	Число	Результат		
число	повторов	Тест Ферма	Тест Словея-	Тест
	теста		Штрассена	Миллера-
				Рабина

113	30	Простое	Простое	Простое
12673	1	Простое	Составное	Составное

При использовании алгоритмов в силу вероятностного характера проводимого тестирования возможно ошибочное определение составных чисел как простых по двум причинам:

- 1) число повторов теста слишком мало
- 2) тест Ферма применен к числам Кармайкла

Для исследования зависимости числа ошибок, сделанных каждым тестом (для числа, не являющимся числом Кармайкла), от числа повторов использовалось число 3277. Число повторов — 1000.

Число повторов	Тест Ферма	Тест Соловея-	Тест Миллера-
		Штрассена	Рабина
1	253	112	83
2	62	16	9
3	30	0	1
4	11	0	0

Для исследования зависимости числа ошибок, сделанных при тестировании числа Кармайкла, от числа проходов использовалось число 1729:

Число повторов	Тест Ферма	Тест Соловея-	Тест Миллера-
		Штрассена	Рабина
1	766	376	93
2	547	133	7
3	402	52	0
4	308	26	1
5	246	3	0
6	157	5	0
7	144	0	0

Рассмотрим теперь, как влияет выбор числа на каждый из алгоритмов.

Число повторов	Число ошибок		
для теста Ферма	n = 645	n = 6601	n = 1365
1	149	802	58
2	31	648	2
3	4	488	0

Лучший результат получился для сильно составного числа 1365 = 3 * 5 * 7 * 13. Для чисел, в каноническое разложение которых входят большие простые множители (645 = 3 * 5 * 43 и 2147 = 19 * 113), тест Ферма работает хуже. Худший результат для данного вида теста получается для чисел Кармайкла.

Число повторов	Число ошибок		
для теста	n = 645	n = 6601	n = 1365
Соловея-			
Штрассена			
1	46	203	5
2	2	36	0
3	0	12	0
4	0	3	0

Для чисел, являющихся сильно составными, или в разложение которых входят большие простые множители, тест Соловея-Штрассена почти не даёт сбоев. Худший результат получается, когда на вход подаётся число Кармайкла, однако с увеличением количества повторов число ошибок теста уменьшается.

Число	повторов	Число ошибок		
для	теста	n = 645	n = 6601	n = 1365
Миллер	а-Рабина			
1		18	46	0
2		0	0	0
3		0	0	0
4		0	0	0

Тест Миллера-Рабина является устойчивым ко всем видам чисел. В частности, для чисел Кармайкла худший результат получается, когда количество повторов теста равно 1. В остальных случаях тест почти не даёт сбоев.

Результаты тестирования алгоритмов на быстродействие

Для получения объективной оценки быстродействия алгоритмов нужно применить их к простым числам. Для числа 104087 и 200000 повторов теста получились следующие результаты: время выполнения теста Ферма — 3.9, Соловея-Штрассена — 9.23, Миллера-Рабина — 4.09.

Худший результат по времени показал тест Соловея-Штрассена, но по достоверности он превосходит тест Ферма. Тест Миллера-Рабина хоть и является самым достоверным, однако по скорости не превосходит тест Ферма. Тест Ферма неэффективен по сравнению с тестом Миллера-Рабина, так как не все числа выдерживают проверки на простоту, в особенности числа Кармайкла