Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И.Ульянова (Ленина) (СПбГЭТУ «ЛЭТИ»)

Направление	09.04.04 – Программная инженерия	
Профиль	Без профиля	
Факультет	КТИ	
Кафедра	мо эвм	

ПЛАН-ПРОСПЕКТ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

ТЕМА: Разработка алгоритма генерации ландшафта на основе графа связей трехмерных моделей

Финальный объем -80 стр.

Студент		 А.С. Скиба
Руководитель	д.т.н., доцент	 В.В. Геппенер
Консультанты		 Н.В. Шевская
	к.т.н., доцент	 А.А. Лисс

Санкт-Петербург 2021

СОДЕРЖАНИЕ

Введение	3
Глава 1. Обзор предметной области	3
1.1. Описание используемых в работе терминов	3
1.2. Описание проблемы	3
1.3. Сравнение существующих аналогов	3
1.3.1. Обоснование отбора существующих решений	3
1.3.2. Описание аналогов	3
1.3.3. Сводная таблица сравнения	4
1.3.4. Выводы	4
Глава 2. Формулировка требований к решению	5
2.1. Постановка задачи, выделение подзадач	5
2.2. Обоснование методов решения подзадач	5
Глава 3. Описание метода решения	6
3.1. Пользовательский интерфейс	6
3.1.1. Структура пользовательского интерфейса	6
3.1.2. Описание взаимодействия с приложением	6
3.2. Архитектура программной реализации	6
3.2.1. Общая архитектура приложения	7
3.2.2. Описание используемых библиотек	7
3.2.3. Архитектура реализации клиентской части	7
3.2.4. Архитектура реализации серверной части	7
3.3. Реализация системы хранения данных	8
Глава 4. Исследования свойств решения	8
4.1. Быстродействие приложения	8
4.1.1. Быстродействие интерфейса	8
4.1.2. Быстродействие сервера	8
4.2. Расход ресурсов приложения	9
4.3. Сравнение с аналогами	9
4.4. Выводы	9
Глава 5. Оценка и защита результатов интеллектуальной деятельности	9
Заключение	Q

Введение

Объем ~ 2 стр.

Глава 1. Обзор предметной области

1.1. Описание используемых в работе терминов

Объем ~ 2 стр.

1.2. Описание проблемы

Объем ~ 1 стр.

Будет выполнена постановки задачи генерации ландшафтов на основе существующих трехмерных моделей в реальном времени.

1.3. Сравнение существующих аналогов

1.3.1. Обоснование отбора существующих решений

Объем ~ 2 *стр*.

В подразделе будет описано обоснование отбора существующих аналогов. Будут выдвинуты общие признаки аналогичных решений. Аналогами будут служить приложения и/или сервисы, позволяющие генерировать псевдослучайные ландшафты. Будут приняты во внимание только общедоступные, бесплатные версии приложений, доступные в виде сервисов с сети Интернет, либо доступные для скачивания и установки на портативный компьютер.

1.3.2. Описание аналогов

Объем ~ 3 стр.

В подразделе будут описаны краткие характеристики выбранных аналогов. Для каждого аналога будут описаны плюсы и минусы данного решения.

На основе существующих недостатков и достоинств каждого аналога будут выдвинуты общие критерии сравнения. Сравнение будет производиться на основе количества шагов для достижения результата, а именно для генерации ландшафтов. Будут учитываться возможности генерации местности ландшафта. Также критериями могут послужить: количество параметров на основе которых строится ландшафт, алгоритмы, используемые для псевдослучайных сеток, используются ли чистые функции для генерации, то

есть ли какие-то зерна при которых псевдослучайная генерация будет всегда одинакова.

1.3.3. Сводная таблица сравнения

Объем ~ 2 *стр*.

В данном подразделе будет составлена сводная таблица аналогов и критериев их сравнения. Будут расписаны примечания к таблице и особенности сравнения аналогов.

1.3.4. Выводы

Объем ~ 1 стр.

Подраздел будет в себя включать общие выводы результатов сравнения. Также будут описаны достоинства и недостатки, присущие для всех решений.

Глава 2. Формулировка требований к решению

2.1. Постановка задачи, выделение подзадач

Объем ~ 3 стр.

В данном разделе будут описаны подзадачи, которые требуется решить в рамках глобальной задачи генерации ландшафтов на основе пользовательских моделей. К примеру, будут описаны: задача выбора параметров, на основе которых будет производиться генерация, задача загрузки моделей, задача определения местоположения моделей на ландшафте, задача выгрузки ландшафта в реальном времени, задача детализации ландшафта и т.д. Будет дано описание предполагаемых результатов решения данных подзадач.

2.2. Обоснование методов решения подзадач

Объем ~ 4 стр.

В разделе для каждой подзадачи будут приведены вероятные варианты решения и обоснование выбора конкретного решения. Обоснование будет заключаться в описании краткой характеристики выбранной архитектуры или алгоритма для конкретного пункта. Будут приведены сравнительные характеристики возможных решений, в виде затрат времени, памяти или прочих количественных данных.

Глава 3. Описание метода решения

3.1. Пользовательский интерфейс

В данном разделе будет описана визуальная составляющая клиентсерверного приложения, все решения проблем взаимодействия пользователя с приложением, а также все кейсы использования готовой клиентской части приложения для выгрузки готовых сгенерированных ландшафтов.

3.1.1. Структура пользовательского интерфейса

Объем ~ 5 стр.

Подраздел будет включать в себя подробное описание всех визуальных компонентов, а также к каждому компоненту будет прикреплен скриншот из пользовательского интерфейса. В результате будет описан интерфейс приложения, которое предоставляет визуальный результат работы алгоритма для генерации ландшафтов.

3.1.2. Описание взаимодействия с приложением

Объем ~ 5 стр.

В данном разделе будут описаны основные страницы приложения, а также будут рассмотрены все возможные взаимодействия с этими страницами.

Все действия будут расписаны по пунктам для конкретных страниц. Будут описаны характеристики компонентов из пункта 3.1.1. в каждой отдельной странице.

3.2. Архитектура программной реализации

В данном разделе будут представлены все решения проблем построения трехмерного ландшафта на основе графа пользовательских объектов. Будут рассмотрены разработанные в рамках ВКР алгоритм генерации местности на основе структуры дерева — связного ациклического графа и алгоритм определения местоположения пользовательских объектов на основе задаваемых параметров в вершинах с типом местности, для конфигурации итогового ландшафта с загруженными объектами. Также будет описано взаимодействие с приложением, как с отдельным АРІ для разработки собственной клиентской части или использования в проектах в реальном времени.

3.2.1. Общая архитектура приложения

Объем ~ 2 *стр*.

Данный раздел будет включать подробное описание клиент-серверной архитектуры, которая используется в приложении. Будут рассмотрены основные принципы построения приложения на основе данной архитектуры. Будут описаны конкретные особенности сервера в данной архитектуре для работы в качестве API, где клиентом будут являться другие программные средства, на примере разработанной клиентской части в рамках страницы в сети Интернет.

3.2.2. Описание используемых библиотек

Объем ~ 4 *стр*.

В подразделе будут подробно описаны все сторонние модули и библиотеки, используемые в приложении. Раздел будет разбит на две части, соответственно модули, которые используются на стороне клиента и на стороне сервера.

3.2.3. Архитектура реализации клиентской части

Объем ~ 7 *стр*.

В данном разделе будет описана общая схема взаимодействия всех компонентов системы на клиентской стороне в соответствии с пунктом 3.1.2. Раздел будет разбит на пункты по компонентам.

В каждом отдельном пункте будут описаны алгоритмы и математические преобразования трехмерных объектов, использующиеся на клиентской стороне в рамках отдельных компонентов. Будут расписаны запросы, отправляемые на сервер с примерами параметров запроса, а также получаемых данных.

3.2.4. Архитектура реализации серверной части

Объем ~ 9 *стр*.

В данном разделе будет приведена структура серверной стороны приложения. Будут описаны основные модули сервера. В модулях прописаны все методы обработки запросов с клиентской стороны.

Отдельно в разделе будут описаны используемые алгоритмы реализации приложения. Подробное описание математических моделей, используемых в

приложении для генерации ландшафтов. Также будут расписаны все математические преобразования трехмерных моделей на серверной стороне.

3.3. Реализация системы хранения данных

Объем ~ 2 *стр*.

В разделе будет описана структура хранения конфигураций и загружаемых, пользователем, файлов. А также взаимодействие сервера с данной системой.

Глава 4. Исследования свойств решения

4.1. Быстродействие приложения

4.1.1. Быстродействие интерфейса

Объем ~ 4 *стр*.

Раздел будет содержать измерения скорости взаимодействия с компонентами интерфейса.

Будут приведены следующие количественные характеристики для ландшафта:

- Среднее количество шагов для получения вершины объекта;
- Среднее количество шагов для получения вершины места;

Будут приведены следующие графики измерения скорости

- Скорость первоначальной обработки трехмерной модели от объема загружаемого файла модели;
- Скорость генерации ландшафта от количества вершин графа;
- Скорость загрузки готового графа в зависимости от количества вершин графа;
- Скорость детализации ландшафта в зависимости от положения камеры наблюдателя.

4.1.2. Быстродействие сервера

Объем ~ 4 стр.

В разделе будут приведены измерения скорости алгоритмов, использующихся на стороне сервера. Возможные измерения скорости:

• Графики скорости записи и чтения графа в зависимости от количества вершин;

- График скорости генерации участка ландшафта в зависимости от уровня детализации;
- Средняя скорость генерации карты для вершины места;

4.2. Расход ресурсов приложения

Объем ~ 4 стр.

В данном разделе будут приведены измерения затрачиваемой памяти на хранение конфигурации графа в зависимости от количества вершин, количество операций с файловой системой при создании ландшафта, в зависимости от количества вершин созданного графа.

4.3. Сравнение с аналогами

Объем ~ 2 *стр*.

Раздел будет содержать описание приложения по каждому критерию выдвинутому в разделе 1.3.2. и его сравнение с аналогами: что удалось улучшить, что осталось неизменным, что пришлось исключить.

4.4. Выводы

Объем ~ 1 cmp.

В разделе будут описаны выводы по результатам исследования свойств решения, а также сравнения с аналогичными приложениями.

Глава 5. Оценка и защита результатов интеллектуальной деятельности

Объем ~ 9 *стр*.

Дополнительный раздел.

Заключение

Объем ~ 2 *стр*.