Time Series:
$$y_t$$
, $t=1, 2, ..., N$.

Stationary process ≈ a random process where all of its statistical properties do not vary with time.

$$E(Y_t) = \mu.$$
 $Var(Y_t) = \sigma_Y^2.$

$$\gamma(k) = Cov(Y_t, Y_{t+k}) = E[(Y_t - \mu)(Y_{t+k} - \mu)]$$

= $Cov(Y_t, Y_{t-k}) = E[(Y_t - \mu)(Y_{t-k} - \mu)].$

$$\gamma(0) = Var(Y_t) = \sigma_Y^2$$
.

$$\rho_k = \operatorname{Corr}(Y_t, Y_{t+k}) = \frac{\operatorname{Cov}(Y_t, Y_{t+k})}{\sqrt{\operatorname{Var}(Y_t)\operatorname{Var}(Y_{t+k})}} = \frac{\operatorname{E}(Y_t - \mu)(Y_{t+k} - \mu)}{\sigma_Y^2},$$

$$k = \pm 1, \pm 2, \dots.$$

$$\rho_k = \frac{\gamma(k)}{\gamma(0)}. \qquad \rho_0 = 1.$$

Sample autocorrelation coefficient:
$$r_k = \frac{\sum_{t=1}^{N-k} (y_t - \overline{y})(y_{t+k} - \overline{y})}{\sum_{t=1}^{N} (y_t - \overline{y})^2}$$

(Note: In practice reliable autocorrelation estimates are only obtained from series consisting of approximately 50 observations or more.)

$$r_{k} = \frac{\sum_{t=1}^{N-k} (y_{t} - \overline{y})(y_{t+k} - \overline{y})}{\sum_{t=1}^{N} (y_{t} - \overline{y})^{2}}$$

$$\overline{y} = \frac{16 + 22 + 19 + 25 + 18}{5} = 20.$$

y_t	$y_t - \overline{y}$	$(y_t - \overline{y})^2$	$(y_t - \overline{y})(y_{t+1} - \overline{y})$	$(y_t - \overline{y})(y_{t+2} - \overline{y})$
16	-4	16	-8	4
22	2	4	-2	10
19	-1	1	-5	2
25	5	25	-10	
18	-2	4		
		50	-25	16

$$r_1 = \frac{\sum_{t=1}^{N-1} (y_t - \overline{y})(y_{t+1} - \overline{y})}{\sum_{t=1}^{N} (y_t - \overline{y})^2} = \frac{-25}{50} = -0.5.$$

$$r_2 = \frac{\sum_{t=1}^{N-2} (y_t - \overline{y})(y_{t+2} - \overline{y})}{\sum_{t=1}^{N} (y_t - \overline{y})^2} = \frac{16}{50} = \mathbf{0.32}.$$

Consider the following "regression" (autoregressive) model: AR(1)

Then
$$\gamma(0) = \text{Var}(Y_t) = E[(Y_{t-1})^2]$$

$$= E[(\phi(Y_{t-1} -) + e_t)^2]$$

$$= \phi^2 E[(Y_{t-1} -)^2] + 2\phi E[(Y_{t-1} -) e_t] + E[e_t^2]$$

$$= \phi^2 \text{Var}(Y_{t-1}) + \text{Var}(e_t)$$

$$= \phi^2 \gamma(0) + \sigma_e^2$$

Therefore, $\gamma(0) = \text{Var}(Y_t) = \frac{\sigma_e^2}{1 - \phi^2}$, \Rightarrow need $|\phi| < 1$.

$$\begin{split} \gamma(k) &= \text{Cov}(\mathbf{Y}_t, \mathbf{Y}_{t-k}) = \mathbf{E}[(\mathbf{Y}_{t-})(\mathbf{Y}_{t-k} -)] \\ &= \mathbf{E}[(\phi(\mathbf{Y}_{t-1} -) + e_t)(\mathbf{Y}_{t-k} -)] \\ &= \phi \mathbf{E}[(\mathbf{Y}_{t-1} -)(\mathbf{Y}_{t-k} -)] + \mathbf{E}[e_t(\mathbf{Y}_{t-k} -)] \\ &= \phi \gamma(k-1), \qquad k \ge 1. \end{split}$$

Then $\rho_k = \phi \rho_{k-1}$, $k \ge 1$.

Therefore, $\rho_k = \rho_{-k} = \phi^k$, $k \ge 1$.