This is the beginning of an exciting subtraction of derivatives. Relax and enjoy!

By Tuzman Alexander
December 17, 2020

Riddle from Jacques Fresco

$$\sin(x+8) + (\cos(x^9+9))^2$$

Me: Can I have

 \mathcal{X}

Mom: "No, we have already this function at home"

this function at home:

1

What I have studied in school:

 x^9

What I am studing in university:

$$x^{9-1} \cdot 9 \cdot 1$$

Me: Can I have

$$x^9 + 9$$

Mom: "No, we have already this function at home"

this function at home:

$$x^{9-1} \cdot 9 \cdot 1 + 0$$

$$\cos(x^9 + 9)$$

$$(0 - \sin(x^9 + 9)) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0)$$

BEFORE / MOTH

$$(\cos(x^9+9))^2$$

AFTER / MOTH.

$$(\cos(x^9+9))^{2-1} \cdot 2 \cdot (0 - \sin(x^9+9)) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0)$$

What I have studied in school:

8

What I am studing in university:

0

What I have studied in school:

 \mathcal{X}

What I am studing in university:

1

Functions in 1970:

x + 8

Functions in 2020:

1 + 0

$$\sin(x+8)$$

$$\cos(x+8)\cdot(1+0)$$

What I have studied in school:

$$\sin(x+8) + (\cos(x^9+9))^2$$

What I am studing in university:

$$\cos(x+8) \cdot (1+0) + (\cos(x^9+9))^{2-1} \cdot 2 \cdot (0 - \sin(x^9+9)) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0)$$

Let's make expressions simpler and easier!

I have a problem, doctor. Nobody understands me.

$$\cos(x+8) \cdot (1+0) + (\cos(x^9+9))^{2-1} \cdot 2 \cdot (0 - \sin(x^9+9)) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0)$$

Just try to be simpler.

Ok.

$$\cos(x+8) + \cos(x^9+9) \cdot 2 \cdot \sin(x^9+9) \cdot x^8 \cdot 9$$

$$\cos(x+8) + \cos(x^9+9) \cdot 2 \cdot \sin(x^9+9) \cdot x^8 \cdot 9$$

We have just calculated the derivative!

2 This is subtraction of 2'st derivative

Riddle from Jacques Fresco

$$\cos(x+8) + \cos(x^9+9) \cdot 2 \cdot \sin(x^9+9) \cdot x^8 \cdot 9$$

Me: Can I have

9

Mom: "No, we have already this function at home"

this function at home:

0

What I have studied in school:

 \mathcal{X}

What I am studing in university:

1

Me: Can I have

 x^8

Mom: "No, we have already this function at home"

this function at home:

 $x^{8-1} \cdot 8 \cdot 1$

What I have studied in school:

$$x^8 \cdot 9$$

What I am studing in university:

$$x^{8-1} \cdot 8 \cdot 1 \cdot 9 + x^8 \cdot 0$$

Functions in 1970:

 x^9

Functions in 2020:

 $x^{9-1} \cdot 9 \cdot 1$

Functions in 1970:

$$x^9 + 9$$

Functions in 2020:

$$x^{9-1} \cdot 9 \cdot 1 + 0$$

$$\sin(x^9 + 9)$$

$$\cos(x^9 + 9) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0)$$

Functions in 1970:

$$\sin(x^9+9)\cdot x^8\cdot 9$$

Functions in 2020:

$$\cos(x^9 + 9) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0) \cdot x^8 \cdot 9 + \sin(x^9 + 9) \cdot (x^{8-1} \cdot 8 \cdot 1 \cdot 9 + x^8 \cdot 0)$$

What I have studied in school:

2

What I am studing in university:

0

What I have studied in school:

9

What I am studing in university:

0

Functions in 1970:

$$x^9 + 9$$

Functions in 2020:

$$x^{9-1} \cdot 9 \cdot 1 + 0$$

Me: Can I have

$$\cos(x^9 + 9)$$

Mom: "No, we have already this function at home"

this function at home:

$$(0 - \sin(x^9 + 9)) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0)$$

$$\cos(x^9 + 9) \cdot 2$$

AFTER / MOTU

$$(0-\sin(x^9+9))\cdot(x^{9-1}\cdot9\cdot1+0)\cdot2+\cos(x^9+9)\cdot0$$

What I have studied in school:

$$\cos(x^9+9)\cdot 2\cdot \sin(x^9+9)\cdot x^8\cdot 9$$

What I am studing in university:

$$((0 - \sin(x^9 + 9)) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0) \cdot 2 + \cos(x^9 + 9) \cdot 0) \cdot \sin(x^9 + 9) \cdot x^8 \cdot 9 + \cos(x^9 + 9) \cdot 2 \cdot (\cos(x^9 + 9) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0) \cdot x^8 \cdot 9 + \sin(x^9 + 9) \cdot (x^{8-1} \cdot 8 \cdot 1 \cdot 9 + x^8 \cdot 0))$$

Functions in 1970:

8

Functions in 2020:

0

What I have studied in school:

$$\cos(x+8)$$

What I am studing in university:

$$(0 - \sin(x+8)) \cdot (1+0)$$

Functions in 1970:

$$\cos(x+8) + \cos(x^9+9) \cdot 2 \cdot \sin(x^9+9) \cdot x^8 \cdot 9$$

Functions in 2020:

$$(0 - \sin(x+8)) \cdot (1+0) + ((0 - \sin(x^9+9)) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0) \cdot 2 + \cos(x^9+9) \cdot 0) \cdot \sin(x^9+9) \cdot x^8 \cdot 9 + \cos(x^9+9) \cdot 2 \cdot (\cos(x^9+9) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0) \cdot x^8 \cdot 9 + \sin(x^9+9) \cdot (x^{8-1} \cdot 8 \cdot 1 \cdot 9 + x^8 \cdot 0))$$

Let's make expressions simpler and easier!

Teacher: don't worry, tasks on exam will be like this:

$$\sin(x+8) + \sin(x^9+9) \cdot x^8 \cdot 9 \cdot 2 \cdot \sin(x^9+9) \cdot x^8 \cdot 9 + \cos(x^9+9) \cdot 2 \cdot (\cos(x^9+9) \cdot x^8 \cdot 9 + \sin(x^9+9) \cdot x^7 \cdot 8 \cdot 9)$$

Tasks on exam:

$$(0 - \sin(x+8)) \cdot (1+0) + ((0 - \sin(x^9+9)) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0) \cdot 2 + \cos(x^9+9) \cdot 0) \cdot \sin(x^9+9) \cdot x^8 \cdot 9 + \cos(x^9+9) \cdot 2 \cdot (\cos(x^9+9) \cdot (x^{9-1} \cdot 9 \cdot 1 + 0) \cdot x^8 \cdot 9 + \sin(x^9+9) \cdot (x^{8-1} \cdot 8 \cdot 1 \cdot 9 + x^8 \cdot 0))$$

$$\sin(x+8) + \sin(x^9+9) \cdot x^8 \cdot 9 \cdot 2 \cdot \sin(x^9+9) \cdot x^8 \cdot 9 + \cos(x^9+9) \cdot 2 \cdot (\cos(x^9+9) \cdot x^8 \cdot 9 + \sin(x^9+9) \cdot x^7 \cdot 8 \cdot 9)$$

We have just calculated the derivative!

That is all! Source code is available on mv GitHub:

