1 C^{∞} functions on \mathbb{R}^n

Definition 1. Let $U \subset \mathbb{R}^n$ be open, $p \in U$. $f: U \to \mathbb{R}$ is C^k at p if all partials of f of order $\leq k$ exist and are continuous at p. E.g. C^0 is continuous, C^1 is continuous w/ first partials also continuous.

For the sake of simplicity in this course, we care only about functions which are C^{∞} , in other words $f: U \to \mathbb{R}$ is C^{∞} at $p \in U$ if f is C^k for all $k = 0, 1, 2, \ldots$

We also care about another type of function, namely the analytic ones.

Definition 2. A function $f: U \to \mathbb{R}$ is **analytic** at p if f(x) is equal to its Taylor's series at p in a neighborhood of p.

Importantly, an analytic function is infinitely differentiable within its radius of convergence, since the power series can be differentiated term by term. This suggests the following lemma:

Lemma 1. Analytic $\Rightarrow C^{\infty}$.

Notice that, notably, the converse is not true:

Example 1. Take $f(x) = \begin{cases} \frac{1}{e^{\frac{1}{x}}} & x > 0 \\ 0 & x \le 0 \end{cases}$. It is evidently clear that this function is C^{∞} .

Derivative can easily be computed, and verifying that they are continuous is easy. However, notice that $f^{(k)}(0) = 0 \ \forall k = 0, 1, 2, \dots$ Actually demonstrating this is a simple matter of induction. Therefore, the Taylor's series of f at x = 0 is the zero function.

Thus f(x) is not equal to its Taylor's series at 0 in any neighborhood of 0.

Therefore, f is not analytic at zero.

Luckily, for C^{∞} functions there is an analogue that works.

The **Taylor's series with Remainder** of a function is equal to

$$f(x) = f(p) + \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p)(x^{i} - p^{i}) + \frac{1}{2!} \sum_{i,j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(p)(x^{i} - p^{i})(x^{j} - p^{j}) + \dots + k^{\text{th}} \text{ term } + \underbrace{k+1}_{\text{remainder}} p = (p^{1}, \dots, p^{n}) \in \mathbb{R}^{n}$$

You know what a star-shaped polygon is. It's a polygon with a nonempty visibility kernel.

Theorem 1. Taylor's Theorem with Remainder Let U be a star-shaped open set in \mathbb{R}^n with respect to some point $p \in U$.

If $f: U \to \mathbb{R}$ is C^{∞} , then $\exists C^{\infty}$ functions $g_1(x), \ldots, g_n(x)$ such that

$$f(x) = f(p) + \sum_{i=1}^{n} g_i(x)(x^i - p^i)$$
 and $g_i(p) = \frac{\partial f}{\partial x^i}(p)$.

Now we remember calc III... uh oh.

 $\frac{df}{dt} = \sum_{i=1}^n \frac{\partial f}{\partial x^i} * \frac{dx^i}{dt}.$ Yeah, it's the chain rule.

Proof. Let $y \in U$ The parametrization of \overline{py} is x(t) = p + t(y - p). Note that x(0) = p, x(1) = y, $x^{i}(t) = p^{i} + t(y^{i} - p^{i}) \frac{dx^{i}}{dt} = y^{i} - p^{i}$. And also see

$$f(y) - f(p) = f(x(1)) - f(x(0))$$

$$= \int_0^1 \frac{d}{dt} f(x(t)) dt$$

$$= \int_0^1 \sum_i \frac{\partial f}{\partial x^i} (x(t)) \frac{dx^i}{dt} dt$$

$$= \sum_i \underbrace{\int_0^1 \frac{\partial f}{\partial x^i} (p + t(y - p)) dt * (y^i - p^i)}_{g_i(y)}$$

And et cetera.

2 Tangent Vectors

We have the issue where our current understanding of a tangent vector where our parameterization of the vectors are firmly rooted in \mathbb{R}^3 . So we're going to re-define the tangent vector by what we want it to do: compute the **directional derivative**.

Idea. If $v_p \in T_p(U)$ and $f \in C^{\infty}(U)$, then

$$D_{v_p} = directional \ derivative \ of f \ in \ direction \ of v_p \ at p$$

$$= \frac{d}{dt} \bigg|_{t=0} f(\underbrace{p + tv_p}_{line \ thru \ p \ with \ dir. \ v_p})$$

Then, through application of the chain rule, we get

$$D_{v_p} = \sum v^i \left. \frac{\partial}{\partial x^i} \right|_p \tag{1}$$

Definition 3. Let (f, u) denote a C^{∞} function $f: U \to \mathbb{R}$, $p \in U$. We say that $(f, U) \sim (g, V)$ if $\exists W \subset U \cap V$ such that f = g on W.

Notation 1. [(f, U)] = equiv class of (f, U) = germ of f at p. $C_p^{\infty} = \{\text{germs of } C^{\infty} \text{ func at } p\}.$

Lemma 2. Germs are **module-like**, and we will call them a C_p^{∞} algebra over \mathbb{R} .

Proposition 1. $D_{v_p}: C_p^{\infty} \to \mathbb{R}$.

(i) D_{v_p} is \mathbb{R} -linear.

$$D_{v_p}(f+g) = D_{v_p}f + D_{v_p}g$$
$$D_{v_p}(\lambda f) = \lambda D_{v_p}f.$$

(ii)
$$D_{v_p}(fg) = (D_{v_p}f)g(p) + f(p)D_{v_p}g$$
 (Liebniz rule)

Definition 4. A function $D = C_p^{\infty} \to \mathbb{R}$ satisfying conditions (i) and (ii) prior is called a derivation at p or a point derivation of C_p^{∞} .

Definition 5. $\mathcal{D}_p(\mathbb{R}^n) = \{\text{all point-derivations of } C_p^{\infty}\}$

Notice that the structure of $\mathcal{D}_p(\mathbb{R}^n)$ has an addition and scalar multiplication structure, but notably not a vector multiplication structure. So this is a vector space.

Theorem 2. The map $\varphi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$ is a linear isomorphism of vector spaces.

Lemma 3. If $D \in \mathcal{D}_p(\mathbb{R}^n)$ then $Dc = 0 \ \forall c \in \mathbb{R}$.

Proof. $D1 = D(1 \cdot 1) = (D1) \cdot 1 + 1 \cdot D1$, so 0 = D1. Thus $Dc = D(c \cdot 1) = cD1 = c \cdot 0 = 0$.

Thus

$$Df = D(f(p) + \sum_{i} g_i(x)(x^i - p^i))$$

$$= D(f(p)) + \sum_{i} (Dg_i)(p^i - p^i) + g_i(pD(x^i - p^i))$$

$$= \sum_{i} (Dx^i) \frac{\partial}{\partial x^i} \Big|_p f$$

$$= \sum_{i} (Dx^i) e_{ip}$$

Thus we have established the one-to-one correspondane

$$v_p = \sum v^i e_{i,p} \longleftrightarrow D_{v_p} = \sum v^i \left. \frac{\partial}{\partial x^i} \right|_p$$
 (2)

Of theorem. We do the usual thing.

Inj. Suppose $\varphi(v_p) = D = \sum v^i \frac{\partial}{\partial x^i}\Big|_p = 0$. Now apply to x^j : $\sum v^i \frac{\partial}{\partial x^i}\Big|_p x^j = 0$. And

$$\frac{\partial x^{j}}{\partial x^{i}} = \begin{cases} 1 & \text{for } j = i, \\ 0 & \text{for } j \neq i \end{cases}.$$

$$= \delta_{i}^{\gamma}.$$

$$\sum_{i} v^{i} \frac{\partial x^{j}}{\partial x^{i}}(p) = \sum_{i} v^{i} \delta_{i}^{j}$$

$$= v^{j} \forall j.$$

So $v_p = 0$.

Surj. Let $D \in \mathcal{D}_p(\mathbb{R}^n)$. Suppose $D = D_{v_p}$ for $v_p \in T_p(\mathbb{R}^n)$. So then

$$D = \sum_{i} v^{i} \left. \frac{\partial}{\partial x^{i}} \right|_{p}.$$

Apply both sides to x^j :

$$Dx^{j} = \sum_{i} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{n} x^{j} = \sum_{i} v^{i} \delta_{i}^{j} = v^{j}.$$

So $v_p = \sum (Dx^i) \frac{\partial}{\partial x^i} \Big|_p$, then by Taylor's Theorem with Remainder, $\exists g_i \in C^{\infty}(U)$ such that $f(x) = f(p) + \sum g_i(x)(x^i - p^i)$, and $g_i(p) = \frac{\partial f}{\partial x^i}(p)$.

Definition 6. $T_p(U) = \{ \text{point-derivations of } C_p^{\infty} \}$

Definition 7. A vector field on open $U \subset \mathbb{R}^n X : U \to \coprod_{p \in U} T_p(U)$ (where \coprod denotes the disjoint union) such that $X_p \in T_p(U)$.

Note. If $X_p \in T_p(U)$, then $X_p = \sum a^i(p) \frac{\partial}{\partial x^i}|_p$.

Lemma 4. $X = \sum a6i \frac{\partial}{\partial x_i}$, where $a^i : U \to \mathbb{R}$ are functions.

Definition 8. A vector field $X = \sum a^i \frac{\partial}{\partial x^i}$ on U is C^{∞} if all $a^i : U \to \mathbb{R}$ are C^{∞} functions.

Notation 2. $\mathcal{X}(U) = \{C^{\infty} \text{ v.f. on U }\}$ is a vector space on \mathbb{R} .