Точечные группы симметрии кристаллов

Hamlet

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

W. Shakespeare

Пастернак Борис

Гораций, много в мире есть того, (Вариант: *Гораций, в мире много кой-чего,*) что вашей философии не снилось.

Полевой Николай

Есть многое на свете, друг Горацио, что и не снилось нашим мудрецам.

Поплавский Виталий

Горацио, не все, что есть в природе, наука в состоянье объяснить.

Фельдман Яков

Есть многое на свете, милый мой, что и во сне не видела наука

Данилевский А.М.

На небесах и на земле есть более таких вещей, о которых вашей школьной мудрости и не снится, Горацио.

Князь К.К. Романов

Есть много в небесах и на земле такого, что нашей мудрости, Гораций, и не снилось.

Аверкиев Дмитрий

Горацио, -- на небе И на земле есть более вещей, Чем нашей философии мечталось.

Вронченко Михаил

Есть многое в природе, друг Горацио, Что и не снилось нашим мудрецам.

Гнедич Петр

Горацио, - на небе и земле Есть многое, что и не снилось даже Науке.

Каншин П.А.

На небе и на земле, Гораций, есть много такого, Что даже не снилось нашей мудрости.

Каншин П.А.

На небе и на земле, Гораций, есть много такого, Что даже не снилось нашей мудрости.

Кронберг Андрей

Есть многое на небе и земле, Что и во сне, Горацио, не снилось Твоей учености.

Лозинский Михаил

И в небе и в земле сокрыто больше, Чем снится вашей мудрости, Горацио.

Морозов Михаил

На небе и земле есть больше вещей Гораций, Чем снилось вашей философии.

Пешков И.В.

На небе и в земле всего довольно, Что философии, Горацио, не снилось.

Радлова Анна

Ведь много скрыто в небе и земле Таких вещей, Горацио, что не снились Всей вашей философии.

Рапопорт Виталий

Горацио, есть в этом мире вещи, Что философии не снились и во сне.

Россов Николай

Есть в небесах и на земле такое, Что нашей мудрости и не приснится.

Сокольский А.Л.

Горацио, что на земле и в небе Есть более чудес, чем снилось вашей Людской премудрости.

Сомин Ефим

Есть тьма чудес на небе и земле, Гораций, Не снившихся философам твоим

Фельдман Яков

Есть многое на свете, милый мой, Что и во сне не видела наука

Чернов Андрей

Горацио, наш мир куда чудесней, Чем снился он философам твоим.

<u>Варианты без указания авторства</u>:

Есть многое на свете, друг Горацио, Что человеку знать не положено.

Есть многое на свете, друг Горацио Что и не снилось нашим мудрецам.

В мире есть много такого, друг Горацио, Что и не снилось нашим мудрецам.

Есть многое на Свете, друг Горацио, Что неизвестно нашим мудрецам.

На Земле и на Небе, Горацио, Есть много всего, Что и не снилось нашим мудрецам.

Нелинейная поляризуемость среды

$$\begin{split} \dot{\mathbf{D}}_{\mathbf{i}}(\omega_{3}) &= E_{i}(\omega_{3}) + \sum_{j} \chi_{ij}^{(1)} E_{j}(\omega_{3}) + 1/2 \sum_{j} \sum_{k} \chi_{ijk}^{(2)} \, \dot{E}_{j}(\omega_{1}) \dot{E}_{k}(\omega_{2}) \\ \dot{\mathbf{P}}_{\mathbf{HEJI},\mathbf{i}}(\omega_{3}) &= 1/2 \sum_{j} \sum_{k} \chi_{ijk}^{(2)} \, \dot{E}_{j}(\omega_{1}) \dot{E}_{k}(\omega_{2}) \\ i, j, k \to x, y, z \end{split}$$

<u>Индексы</u>: Нелинейные восприимчивости (χ_{ijk}) $i(\omega_3) \leftarrow j(\omega_1), k(\omega_2)$

<u>Индексы</u>: Показатели преломления (одноосные n_o , n_e , двухосные n_s , n_f)

Одноосные					
Отрицательные	Положительные				
ooe: $o(\omega_1) + o(\omega_2) \rightarrow e(\omega_3)$	eeo: $e(\omega_1) + e(\omega_2) \rightarrow o(\omega_3)$				
oee: $o(\omega_1) + e(\omega_2) \rightarrow e(\omega_3)$	oeo: $o(\omega_1) + e(\omega_2) \rightarrow o(\omega_3)$				
eoe: $e(\omega_1) + o(\omega_2) \rightarrow e(\omega_3)$	eoo: $e(\omega_1) + o(\omega_2) \rightarrow o(\omega_3)$				
Двух	осные				
ssf: $s(\omega_1)$ +	$s(\omega_2) \rightarrow f(\omega_3)$				
fsf: $f(\omega_1) + s(\omega_2) \rightarrow f(\omega_3)$					
sff: $s(\omega_1) + f(\omega_2) \rightarrow f(\omega_3)$					

Процессы преобразования частоты

$$\omega_3 = \omega_1 + \omega_2$$

$$\omega_1 + \omega_2$$
 ($\omega_3 = \omega_1 + \omega_2$) - генерация суммарной частоты (ГСЧ), $\omega_2 = \omega_1 = \omega$ ($\omega_3 = 2\omega$) - генерация второй гармоники (ГВГ), $\omega_2 = 2\omega_1 = 2\omega$ ($\omega_3 = \omega + 2\omega = 3\omega$) - генерация третьей гармоники (ГТГ), $\omega_1 = \omega$, $\omega_2 = 3\omega$ ($\omega_3 = \omega + 3\omega = 4\omega$) - генерация четвертой гармоники (ГЧГ), $\omega_1 = 2\omega$, $\omega_2 = 3\omega$ ($\omega_3 = 2\omega + 3\omega = 5\omega$) - генерация пятой гармоники (ГПГ), $\omega_1 = \omega$, $\omega_2 = 4\omega$ ($\omega_3 = \omega + 4\omega = 5\omega$) - генерация пятой гармоники (ГПГ), $\omega_3 - \omega_1$ ($\omega_2 = \omega_3 - \omega_1$) - генерация разностной частоты (ГРЧ), $\omega_3 - \omega_2$ ($\omega_1 = \omega_3 - \omega_2$) - генерация разностной частоты (ГРЧ).

ΓΤΓ

 $\omega_3 \omega_1 = \omega_3 - \omega_2$ $\widetilde{\omega}_2$ ГРЧ

ГСЧ

Законы сохранения

$\theta_3 = \theta_1 + \theta_2$ - Сохранение энергии

Отношение энергий входного излучения $\theta_1 / \theta_2 = \theta_1 / \theta_2 = \lambda_2 / \lambda_1$

ГРЧ:
$$N_3 h \omega_3 \to N_1 h \omega_1 + N_2 h \omega_2$$
 $N_3 = N_2 = N_1$

 $\Gamma P H: Nh\omega_1 = Nh\omega_3 - (h\omega_2)$

 $\Gamma P Y: Nh\omega_2 = Nh\omega_3 - (h\omega_1)$

$$\Delta \overline{k} = \overline{k}_3 - \overline{k}_2 - \overline{k}_1$$

 $\Delta \overline{k} = \overline{k}_3 - \overline{k}_2 - \overline{k}_1$ - Фазовый синхронизм (сохранение импульса)

$$n_3/\lambda_3 = n_1/\lambda_1 + n_2/\lambda_2$$
 $n_3\omega_3 = n_1\omega_1 + n_2\omega_2$

$$n_3\omega_3=n_1\omega_1+n_2\omega_2$$

Свойства тензора нелинейной восприимчивости

1. Перестановка индексов

$$\chi_{ijk}^{(2)} = \chi_{ikj}^{(2)}$$

В соответствии с международной конвенцией, принятой для упорядочения теоретических и экспериментальных данных (Шен, 1989; Сухоруков, 1988).

$$\chi_{ijk}^{(2)} = 2d_{ijk}$$

Из перестановки индексов – переход к 2-х индексному обозначению:

$$d_{ijk} \rightarrow d_{ij}$$
 , i =1..3, j =1..6

$$d_{ij} = d_{ijk} = \begin{vmatrix} d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\ d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\ d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36} \end{vmatrix}$$

Свойства тензора нелинейной восприимчивости

2. <u>Условие симметрии Клейнмана</u> (перестановка всех индексов) $(\chi_{ijk}^{(2)}, d_{ij}$ – отсутствие дисперсии)

$$d_{ij} = const$$

$$\chi_{ijk}^{(2)} = \chi_{ikj}^{(2)} = \chi_{kij}^{(2)} = \chi_{jik}^{(2)} = \chi_{kji}^{(2)} = \chi_{kji}^{(2)}$$

$$d_{12} = d_{26}$$
, $d_{13} = d_{35}$, $d_{14} = d_{25} = d_{36}$, $d_{15} = d_{31}$, $d_{16} = d_{21}$, $d_{24} = d_{32}$

Ограничение применения – при генерации разностных частот ($\lambda_1 << \lambda_2$, λ_3)

Формирование ТГц излучения при генерации разностных частот.

 λ_{2} , λ_{3} - видимый, ближний ИК, средний ИК диапазоны.

$$\lambda_1$$
 - 50 ... 1000 мкм

 λ_2 , λ_3 - электронная поляризуемость, λ_1 - ионная поляризуемость

Правило Миллера

$$\Delta_{ijk} = \frac{\chi_{ikj}^{(2)}[-\omega_3, \omega_2, \omega_1]}{\chi_{ii}^{(1)}(\omega_3)\chi_{jj}^{(1)}(\omega_1)\chi_{kk}^{(1)}(\omega_2)}$$

$$\chi_{ikj}^{(2)}[-\omega_3, \omega_2, \omega_1] = \Delta_{ijk}\chi_{ii}^{(1)}(\omega_3)\chi_{jj}^{(1)}(\omega_1)\chi_{kk}^{(1)}(\omega_2)$$

 $\chi_{ii}^{(1)}(\omega_i) = n_i^2 - 1$ - элементы тензора линейной восприимчивости,

 $\Delta_{ijk} = const.$

R. C. Miller. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett., 1964, v.5, N1, p.17–19. — эмипирическое наблюдение

Правило Миллера

W.J. Alford, A.V. Smith. Wavelength variation of the second-order nonlinear coefficients of $KNbO_3$, $KTiOPO_4$, $KTiOAsO_4$, $LiNbO_3$, $LiIO_3$, β -BaB₂O₄, KH_2PO_4 , and LiB_3O_5 crystals: a test of Miller wavelength scaling. *JOSA*, *B*, 2001, v.18, N4, p.524-533.

Интегральные параметры

<u>Задачи</u> — определить интегральные параметры, определяющие процесс преобразования частоты.

		Одноосные	Двухосные
Показатели преломления	n_i : n_x , n_y , $n_z \rightarrow n_j$ (n_i , ϕ , θ , λ_i)	$n_e(n_i, \theta, \lambda_i)$ $n_o(n_x, \lambda_i)$	n_s (n_i , $φ$, $θ$, $δ$, $λ_i$) n_f (n_i , $φ$, $θ$, $δ$, $λ_i$)
Коэффициент эффективной нелинейности	$\chi_{ijk}^{(2)} \rightarrow d_{eff}(\chi_{ijk}^{(2)}, \varphi, \theta, \lambda_{i})$	$d_{eff}(\chi_{ijk}^{(2)}, \varphi, \theta, \lambda_i)$	$d_{eff}(\chi_{ijk}^{(2)}, \varphi, \theta, \delta, \lambda_i)$

Кристаллография

Кристаллогра́фия — <u>наука о кристаллах, их структуре, возникновении и свойствах</u>. Она тесно связана с минералогией, физикой твёрдого тела и химией. Исторически кристаллография возникла в рамках минералогии, как наука, описывающая идеальные кристаллы.

Задача кристаллографии - изучение строения, физических свойств кристаллов, условий их образования, разработка методов исследования и определения вещества по кристаллической форме, физическим особенностям и т.п.

<u>Подразделяют кристаллографию на:</u>

физическую кристаллографию (изучает физические свойства кристаллов — механические, *тепловые*, *оптические*),

<u>геометрическую кристаллографию</u> (изучает формы кристаллов), <u>кристаллогенез</u> (изучает образование и рост кристаллов),

<u>кристаллохимию</u> (изучает связь между химическим составом вещества и его физическими и химическими свойствами).

Кристаллохимия

Кристаллохи́мия — наука о кристаллических структурах и их связи с природой вещества. Кристаллохимия изучает пространственное расположение и химическую связь атомов в кристаллах, а также зависимость физических и химических свойств кристаллических веществ от их строения.

Будучи разделом химии, кристаллохимия тесно связана с кристаллографией

Ю.Л.Словохотов Кристаллохимия (строение кристаллических веществ и материалов) Лекции для студентов химического факультета МГУ

Cambridge Structural Database (CSD), или Кембриджский банк структурных данных (КБСД)

основан в 1965 г.

Год	1970	1983	1990	2001	2009	2016
кол-во стр-р	9000	50000	100000	250000	500000	850000

Рост числа структур в CSD

Что нравится кристаллографам

Кристаллофизика

Кристаллофизика — физическая кристаллография (раздел молекулярной физики/кристаллографии), изучает физические свойства кристаллов и кристаллических агрегатов (в связи с их строением), изменение этих свойств под влиянием различных воздействий.

Исследует закономерности таких явлений как: двойное лучепреломление и вращение плоскости поляризации света, прямой и обратный пьезоэффекты, электро-оптический эффект, генерация световых гармоник ...

В отношении многих физических свойств дискретность решётчатого строения кристалла не проявляется, и кристалл можно рассматривать как однородную, но анизотропную среду.

Понятие однородности среды означает рассмотрение физических явлений в объёмах, значительно превышающих некоторый характерный для данной кристаллической среды объём: объём элементарной ячейки для монокристалла, средний объём кристаллита для кристаллических агрегатов (металлов в поликристаллической форме, горных пород, и т. д.).

Анизотропность среды означает, что её свойства изменяются с изменением направления, но одинаковы в направлениях, эквивалентных по симметрии.

Кристаллофизика непосредственно связана с кристаллохимией.

https://ru.wikipedia.org - Сингония

В литературе существует путаница всех трёх понятий — сингонии (crystal family), кристаллической системы (crystal system)-и системы решётки, которые часто используются как синонимы.

В книге «Основы кристаллографии» авторы используют термин «Сингония решётки» (По симметрии узлов пространственные решетки могут быть разделены на семь категорий, называемых сингониями решеток). У тех же авторов сингонии называются системами (Наиболее установившейся классификацией групп является их разделение на шесть систем по признаку симметрии комплексов граней).

<u>Сингония</u>: классификационное подразделение кристаллов по признаку симметрии элементарной ячейки кристалла, характеризуется соотношениями между ее ребрами и углами.

Сингония: За координатные оси выбираются оси симметрии кристалла, а при их отсутствии — ребра кристалла.

Кристаллическая система:

Разбиение на кристаллические системы выполняется в зависимости от набора элементов симметрии, описывающих кристалл.

Решетки Браве

Сингония Тип решетки	Три- клинная	Моно- клинная	Ромби- ческая	Тетра- гональная	Триго- нальная (ромбоэд- рическая)	Гексаго- нальная	Куби- ческая
Примитивный							
Базоцентри- рованный							
Объемноцен- трированный							
Гранецентри- рованный							

Решетка Браве - математическая модель, отражающая трансляционную симметрию кристалла. Все многообразие кристаллов может быть описано с помощью 14 типов кристаллических решеток. Их принято группировать в семь систем — *сингоний*, различающихся видом элементарной ячейки: триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую.

• • • •

Современное определение кристаллической системы (применимое не только к обычным трёхмерным группам, но и для пространств любых размерностей) относит точечные группы (и производные от них пространственные группы) к одной кристаллической системе, если эти группы могут комбинироваться с одними и теми же типами решёток Браве.

Например, группы mm2 и 222 обе принадлежат ромбической системе, так как для каждой из них существуют пространственные группы со всеми типами ромбической решётки (Pmm2, Cmm2, Imm2, Fmm2 и P222, C222, I222, F222), в то же время группы 32 и 6 не принадлежат одной кристаллической системе, так как для группы 32 допустимы примитивная и дважды-центрированная гексагональные ячейки (группы P321 и R32), а группа 6 комбинируется только с примитивной гексагональной ячейкой (есть группа P6, но не существует R6).

Оси и плоскости симметрии

Простые формы высшей категории

Структуры нелинейных кристаллов

Элементы симметрии

Название	Международный	По формуле	Изображение по	отношению к
	символ	симметрии	плоскости	чертежа
			перпендикулярное	параллельное
Плоскость	m	P	// ==	
симметрии			//	
Центр симметрии	$\overline{1}$	С	•	0
Поворотная ось	n	Ln		
симметрии:				
двойная	2	L_2		•
тройная	3	L_3	A	
четверная	4	L_4		
шестерная	6	L_6	•	• •
Инверсионная ось	\overline{n}	$L_n = L_{ni}$		
симметрии:				
тройная	3	$L_3 = L_{3i}$	A	ΔΔ
четверная	4	$L_4 = L_{4i}$	•	
шестерная	<u></u> 6	$L_6 = L_{6i}$		(a)

Сингония и кристаллическая система

Сингония	Кристаллическая система
Низшая категория (все трансляции не равны друг другу)	Низшая категория (нет осей высшего порядка)
Триклинная: $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$,	<u>Триклинная</u> : нет симметрии или только центр инверсии
Моноклинная: $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ} \beta \neq 90^{\circ}$,	Моноклинная: одна ось 2-го порядка и/или плоскость симметрии m
Ромбическая: $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^\circ$	Ромбическая: три взаимно-перпендикулярных оси 2-го порядка и/или плоскости симметрии m (направлением плоскости симметрии считается перпендикуляр к ней)
Средняя категория (две трансляции из трёх равны между собой)	Средняя категория (одна ось высшего порядка)
<u>Тетрагональная</u> : a = b ≠ c, α = β = γ = 90°	<u>Тетрагональная</u> : одна ось 4-го порядка или $\overline{4}$ <u>Тригональная</u> : одна ось 3-го порядка
Гексагональная: $a = b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$,	<u>Гексагональная</u> : одна ось 6-го порядка или $\overline{6}$
Высшая категория (все трансляции равны между собой)	Высшая категория (несколько осей высшего порядка)
<u>Кубическая</u> : $a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$	Кубическая : четыре оси 4-го порядка

Связь между сингонией, кристаллической системой и системой решётки в трёхмерном пространстве

Сингония	<u>Кристаллическа</u> <u>я система</u>	<u>Точечные</u> <u>группы</u>	Число пространственн ых групп	Решетка Браве	Система решётки	Голоэдрия
2 Триклинная		1, 1	2	aP	<u>Триклинная</u>	1
2 Моноклинная		2, m, 2/m	13	mP, mS	<u>Моноклинная</u>	2/m
2 Орторомбиче	<u>ская</u>	222, mm2, mmm	59	oP, oS, oI, oF	<u>Ромбическая</u>	mmm
1 Тетрагональна	<u>।</u> प्र	4, 4 , 422, 4mm, 4 2m, 4/m, 4/mm	68	tP, tI	<u>Тетрагональная</u>	4/mmm
	<u>1 Тригональная</u>	3, 3 , 32, 3m, 3 m	7	hR	Ромбоэдрическая	3m
<u>Гексагональная</u>			18			
TENCAI OHA/IBHAA	<u>1 Гексагональная</u>	6, 6, 622, 6mm, 6m2, 6/m, 6/mmm	27	hP	<u>Гексагональная</u>	6/mmm
Кубическая		23, m3, 43m, 432, m3m	36	cP, cI, cF	<u>Кубическая</u>	m3m
Bcero: 6	7	<u>32</u>	230	14	7	

Кристаллическая система	точечная группа / класс симметрии	Символ Шёнфлиса	Международный символ	Символ Шубникова	Тип
2 Триклинная	моноэдрический	C ₁	1	1	<u>Энантиоморфный</u> <u>Полярный</u>
<u> </u>	пина	O	н о		<u>Центросимметричный</u>
	диэд осево –	Ĭ	i II		<u>Энантиоморфный</u> <u>Полярный</u>
2 Моноклинная	диэд О безо (дом		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	<u>Полярный</u>
	приз	 			<u>Центросимметричный</u>
	ромб тетра	J	OH		<u>Энантиоморфный</u>
2 Ромбическая	ромб пира Тартра́ты	— соли и	эфиры винной кі	ислоты.	<u>Полярный</u>
	ромб О-С	C-CH(OH)	-CH(OH)-COO ⁻ . евой промышлен	1	<u>Центросимметричный</u>

Форма кристаллов. Энантиомеры образуют энантиоморфные кристаллы, рацемические конгломераты существуют в виде двух типов кристаллов, которые по форме являются зеркальными отражениями друг друга. Именно этот факт позволил <u>Л. Пастеру</u> вручную разделять кристаллы рацемических <u>тартратов</u>.

	тетрагонально- пирамидальный	C ₄	4	4	<u>Энантиоморфный</u>
	тетрагонально- тетраэдрический	S ₄	4	4	<u>Полярный</u>
	тетрагонально- дипирамидальный	C _{4h}	4 / m	4 : m	<u>Центросимметричный</u>
<u> 1 Тетрагональная</u>	тетрагонально- трапецоэдрический	D_4	422	4:2	<u>Энантиоморфный</u>
<u> 1 Тетрагональная</u>	дитетрагонально- пирамидальный	C_{4v}	4mm	4 · m	
	тетрагонально- скаленоэдрический	D_2d	42 <i>m</i> или 4 <i>m</i> 2	$\overline{4}\cdot m$	<u>Полярный</u>
	дитетрагонально- дипирамидальный	D _{4h}	4 / mmm	m · 4 : m	<u>Центросимметричный</u>

	тригонально- пирамидальный	C ₃	3	3	<u>Энантиоморфный</u> <u>Полярный</u>
	ромбоэдрический	S ₆ (C _{3i})	3	<u> </u>	<u>Центросимметричный</u>
<u>1 Тригональная</u>	тригонально- трапецоэдрический	D_3	32 или 321 или 312	3:2	<u>Энантиоморфный</u>
	дитригонально- пирамидальный	C _{3v}	3m или 3m1 или 31m	3 · m	Полярный
	дитригонально- скаленоэдрический	D _{3d}	$\overline{3}m$ или $\overline{3}m1$ или $\overline{3}1m$	<u>-</u> 6⋅m	<u>Центросимметричный</u>

	гексагонально- пирамидальный	C ₆	6	6	<u>Энантиоморфный</u>
	тригонально- дипирамидальный	C _{3h}	<u>6</u>	3 : m	<u>Полярный</u>
	гексагонально- дипирамидальный	C _{6h}	6 / m	6 : m	<u>Центросимметричный</u>
1 Гексагональная	гексагонально- трапецоэдрический	D_6	622	6:2	<u>Энантиоморфный</u>
	дигексагонально- пирамидальный	C _{6v}	6mm	6 · m	
	дитригонально- дипирамидальный	D _{3h}	6m2 или 62m	m · 3 : m	<u>Полярный</u>
	дигексагонально- дипирамидальный	D_6h	6 / mmm	m · 6 : m	Центросимметричный
	тритетраэдрический	T	23 ?	3/2	<u>Энантиоморфный</u>
<u>Кубическая</u>	дидодекаэдрический	T_h	$m\overline{3}$	6/2	<u>Центросимметричный</u>
	гексатетраэдрический	T_d	$\overline{4}3m$	$3/\overline{4}$	
	триоктаэдрический	0	432 ?	3/4	<u>Энантиоморфный</u>
	гексоктаэдрический	O_h	$m\overline{3}m$	6/4	Центросимметричный

Точечные группы нецентросимметричных кристаллов для задач нелинейной оптики

Категория	Система	Точечная группа
		4
0.5000000000		4
Одноосные кристаллы	Тетрагональная	422
кристаллы		4mm
		$\overline{4}2m$
		6
		<u>6</u>
	Гексагональная	622
		6mm
		<u>62m</u>
		3
	Тригональная	32
		3m
	Орторомбическая	222
Двухосные	орторомой теский	mm2
кристаллы	Моноклинная	2
		m
	Триклинная	1 30

Карта электронной плотности около позиций атомов нецентросимметричного кристалла

Тензоры квадратичной нелинейной восприимчивости

Система				
Тетрагональная				
	4	4	4mm	$\overline{4}2m$
Гексагональная				• • • • • • • • • • • • • • • • • • • •
	6	<i>6mm</i>	<u>6</u>	<u>6</u> m2
Тригональная		• • • • • • • • • • • • • • • • • • • •		
	3	32	3m	
Орторомбическая				
	222	mm2		
Моноклинная				
	2	m		
Триклинная				
	1			

Обозначения:

- . компонента, равная нулю,
- компонента, отличная от нуля,
- равные компоненты,
- о → компоненты, равные по величине, но противоположные по знаку,
- компонента, равная взятой с обратным знаком удвоенной компоненте, обозначенной жирной точкой, с которой данный символ соединен линией.

Нелинейная поляризуемость среды

$$d_{36} \neq 0$$
 $d_{36} \rightarrow d_{3 \leftarrow 12} \rightarrow d_{z \leftarrow xy}$

$$P_{\text{Heл, z}} = d_{z-xy} \cdot E_x \cdot E_y = d_{z-xy} \cdot E^2 \cdot \sin 2\phi/2 =$$

= $d_{36} \cdot E^2 \cdot \sin 2\phi/2$

$$P_{\text{Heл, e}} = d_{36} \cdot E^2 \cdot \sin 2\phi / 2 \cdot \sin \theta$$

Кристаллы одноосные

	<u>Одноосные</u>
	<u>Тетрагональная</u>
4	-
$\bar{4}$	CMTC (CdHg(SCN) ₄); Mercury Thiogallate (HgGa ₂ S ₄)
4mm	(BaTiO ₃) при 278 K < T < 393 K; кубическая T > 393 K;
	LB4 ($\text{Li}_2\text{B}_4\text{O}_7$); THI (TI_4HgI_6); KLN ($\text{K}_3\text{Li}_2\text{Nb}_5\text{O}_{15}$)
$\bar{4}2m$	KDP (KH ₂ PO ₄) при T > 122 K
	DKDP (KD ₂ PO ₄); ADP (NH ₄ H ₂ PO ₄); CDA (CsH ₂ AsO ₄); DCDA (CsD ₂ AsO ₄);
	RDP (RbH ₂ PO ₄); CGA (CdGeAs ₂); Urea (CO(NH ₂) ₂); CLBO (CsLiB ₆ O ₁₀);
	AGS (AgGaS ₂); AGSe (AgGaSe ₂); AGISe (AgGa _x In _{1-x} Se ₂); ZGP (ZnGeP ₂);
	<u>Гексагональные</u>
6	Lithium Iodate (LiIO ₃)
-	BABF (BaAlBO ₃ F ₂);
6mm	Cadmium Selenide (CdSe);
<u>-</u> 62 <i>m</i>	GaSe;

Кристаллы двухосные

	Двухосные
	Орторомбическая
222	LRB4 (LiRbB ₄ O ₇); CBO (CsB ₃ O ₅); α -lodic Acid (α -HIO ₃)
mm2	LBO (LiB ₃ O ₅), KTP (KTiOPO ₄); KTA (KTiOAsO ₄); RTA (RbTiOAsO ₄); RTP (RbTiOPO ₄);
	CTA (CsTiOAsO ₄); Nb:KTiOPO ₄ (Nb _x K _{1-x} Ti _{1-x} OPO ₄); KN (KNbO ₃); MgBaF ₄ ;
	Banane.BNN (Ba ₂ NaNb ₅ O ₁₅); LIS (LiInS ₂); LISe (LiInSe ₂); LGS (LiGaS ₂); LGSe (LiGaSe ₂);
	$Nd:Gd_2(MoO_4)_3$ ($Nd_{2x}Gd_{2-2x}(MoO_4)_3$);
	KB5 (KB ₅ O ₈ · 4H ₂ O), LFM (LiCOOH·H ₂ O); NdGMO (Nd2 _x Gd _{2-2x} (MoO ₄) ₃)
	KDP (KH ₂ PO ₄) при T<122 K;
	(BaTiO ₃) при 183 K < T < 278 K;
	<u>Моноклинная</u>
2	BIBO (BiB ₃ O ₆); LCB (La ₂ CaB ₁₀ O ₁₉); DLAP (C ₄ H ₇ D ₁₂ N ₄ PO ₇)
m	GdCOB (GdCa ₄ O(BO ₃) ₃); YCOB (YCa ₄ O(BO ₃) ₃);
	GDYCOB ($Gd_xY_{1-x}Ca_4O(BO_3)_3$); Nd:YCOB ($Nd_xY_{1-x}COB$);
	$Nd:GdCOB (Nd_xGd_{1-x}COB); Yb:GdCOB (Yb_xGd_{1-x}COB); Yb:YCOB (Yb_xY_{1-x}COB);$
	<u>Триклинная</u>

35

Коэффициенты тензора нелинейной восприимчивости

$\bar{4}2m$		<u>AGS</u> : d ₃₆ (1,054 мкм)=23,6 пм/В	KDP: $d_{36}(1,319 \text{ MKM}) = 0,31 \text{ mM/B}$
		$d_{36}(2,53 \text{ мкм})= 13,7 \text{ пм/B}$	$d_{36}(1,064 \text{ мкм}) = 0,38 \text{ пм/B}$
	:::::	$d_{36}(10,6 \text{ мкм}) = 12,5 \text{ пм/B}$	
	•	<u>ZGP</u> : d ₃₆ (5,29 мкм)=70,0 пм/В	CLBO : $d_{36}(1,319 \text{ мкм}) = 0,92 \text{ пм/B}$
		$d_{36}(9,6 \text{ мкм}) = 75,0 \text{ пм/B}$	$d_{36}(0,852 \text{ мкм}) = 0,83 \text{ пм/B}$
		$d_{36}(10,6 \text{ мкм})=68,9 \text{ пм/B}$	$d_{36}(1,064 \text{ мкм}) = 0,74 \text{ пм/B}$
3m		ВВО: $d_{22}(1,064 \text{ мкм}) = 2,2 \text{ пм/B}$	LiNbO₃ : $d_{31}(1,064 \text{ мкм}) = 4,6 \text{ пм/B}$
	•••••	$d_{15}(1,064 \text{ мкм}) = 0,03 \text{ пм/B}$	$d_{33}(1,064 \text{ мкм})=25,2 \text{ пм/B}$
mm2		LIS : $d_{31}(1,064 \text{ мкм}) = 6,1 \text{ пм/B}$	KTP : $d_{15}(1,064 \text{ MKM}) = 0.85 \text{ mM/B}$
		$d_{32}(1,064 \text{ мкм})=5,3 \text{ пм/B}$	$d_{24}(1,064 \text{ мкм})=3,7 \text{ пм/B}$
	• .	$d_{33}(1,064 \text{ мкм})=9,8 \text{ пм/B}$	$d_{31}(1,064 \text{ мкм})=2,2 \text{ пм/B}$
			$d_{32}(1,064 \text{ мкм})=3,7 \text{ пм/B}$
			$d_{33}(1,064 \text{ мкм})= 14,6 \text{ пм/B}$
		Banane : $d_{31}(1,64 \text{ MKM}) = 12,0 \text{ IIM/B}$	LBO : $d_{31}(1,064 \text{ MKM}) = 0,67 \text{ mM/B}$
		$d_{32}(1,64 \text{ мкм})=12,0 \text{ пм/B}$	$d_{32}(1,064 \text{ мкм}) = 0,85 \text{ пм/B}$
		$d_{33}(1,64 \text{ мкм})=16,5 \text{ пм/B}$	$d_{33}(1,064 \text{ мкм}) = 0,04 \text{ пм/B}$
<u></u> 62 <i>m</i>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GaSe : $d_{22}(10,6 \text{ мкм}) = 54 \text{ пм/B}$	36

Литература

- **C.S. Weiss**: De indagando formarum crystallinarum charactere geometrico principali dissertatio. Lipsiae [Leipzig] 1809
- **C.S. Weiss**: *Ueber die natürlichen Abtheilungen der Crystallisations Systeme.* Abhandl. k. Akad. Wiss., Berlin 1814—1815, S. 290—336.
- **Friedrich Mohs**: Grund-Riß der Mineralogie. Erster Theil. Terminologie, Systematik, Nomenklatur, Charakteristik. Dresden 1822
- Carl Friedrich Naumann, Lehrbuch der Mineralogie Mineralogie, 1828 online
- **Carl Friedrich Naumann**, Lehrbuch der reinen und angewandten Krystallographie, 1830 online
- Edward Salisbury Dana, James Dwight Dana, A text-book of mineralogy, 1880 online
- Carl Friedrich Naumann, Elemente der mineralogie, 1874 online
- **Шубников А. В., Бокий Г. Б., Флинт Е. Е.**, Основы кристаллографии, Изд-во АН СССР, 1940
- **Загальская Ю.Г., Литвинская Г.П., Егоров-Тисменко Ю.К.** Геометрическая кристаллография. М: Издательство Московского университета, 1986. 168 с.
- **Ю. К. Егоров-Тисменко, Г. П. Литвинская**, Теория симметрии кристаллов, ГЕОС, 2000. Глава III. Координатные системы, категории, сингонии.
- Фёдоров Е. С., Курс кристаллографии. Изд. 3-е, 1901
- **Вайнштейн Б.К.** Современная кристаллография. Том 1. Симметрия кристаллов, методы структурной кристаллографии. Наука, Москва, 1979.
- **Шаскольская М.П.** Кристаллография. М., Высшая школа, 1976
- Сиротин Ю.И., Шаскольская М.П. Основы кристаллофизики. Наука, Москва, 1979.
- **Флинт Е.Е.** Практическое руководство по геометрической кристаллографии. Изд-е 3-е, перараб. и доп., Госгеолтехиздат, Москва, 1956.

Дей К., Селбин Д.

Теоретическая неорганическая химия. Изд. 3-е, испр. и доп. М., «Химия», 1976.

Книга представляет собой руководство по теоретической неорганической химии и охватывает квантовую химию, методы валентных связей и молекулярных орбиталей, периодический закон, теорию химической связи, стереохимию неорганических соединений, теорию кислот и оснований, химию координационных соединений и неводных растворов.

Глава 6. Кристаллическое состояние				. 212
Закон постоянства гранных углов				. 214
Симметрия кристаллов	20		2048	. 217
Элементы симметрии и операции симметрии			120	. 227
Стереографические проекции	20			. 230
Классификация кристаллов по симметрии	988	4	0.50	. 242
Внутренняя структура		• •	0.43	. 242
Пространственная решетка	•	٠.	•	. 242
Элементарная ячейка	i	• •	•	. 242
Четырнадцать решеток Бравэ	٠		•	. 249
Констанного финесина и пассы	•		: - ::	. 249
Кристаллографические классы	•		•	. 253
Пространственные группы	•	• •	9.0	. 254
Индексы Миллера	•			. 256
Классификация по типу связи	•			. 259
молекулярные кристаллы				. 260
ионные кристаллы			900	. 266
ковалентные кристаллы				. 277
металлические кристаллы				. 278
Кристаллы со смешанными связями				. 281
Использованная литература			14	. 285
Рекомендуемая литература				. 285
Задачи	1921	전 원 설	15	. 285
	35	30 T	85	

Википедия

https://ru.wikipedia.org/wiki/Кристаллография

https://ru.wikipedia.org/wiki/Кристаллохимия

https://ru.wikipedia.org/wiki/Кристаллофизика

https://ru.wikipedia.org/wiki/Кристаллографическая_группа

https://ru.wikipedia.org/wiki/Кристаллическая_структура

https://ru.wikipedia.org/wiki/Кристаллографическая_точечная_группа_симметрии

https://ru.wikipedia.org/wiki/Сингония

https://ru.wikipedia.org/wiki/Точечная_группа_симметрии

https://ru.wikipedia.org/wiki/Полиморфизм_кристаллов

https://ru.wikipedia.org/wiki/Изоморфизм_(кристаллохимия)

https://ru.wikipedia.org/wiki/Энантиотропия

Более подробно:

Россия, город Москва, Ленинский проспект, 59

Институт кристаллографии им. А.В. Шубникова РАН

(Федеральный научно-исследовательский центр "Кристаллография и фотоника" РАН)

Московская психиатрическая клиническая больница № 1 имени Н.А. Алексеева

(1922-1994 им. П.П. Кащенко)

117152, г. Москва, Загородное шоссе, д. 2 (Канатчикова дача)

Московский городской голова Николай Александрович Алексеев

Ленинградская область, Гатчинский район, село Никольское, улица Меньковская, д.10 Психиатрическая больница № 1 им. П. П. Кащенко