

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

493- V3. (50-72)

Academic year 2020-2021 (Even Sem)

DEPARTMENT OF

INFORMATION SCIENCE & ENGINEERING

4th 1 2021	Maximum Marks	50	
4" June 2021	IVIAXIIIIUIII IVIAIKS		
18IS46	Duration	120 Min	
IV Semester	Closed Book Online Test-1		
		18IS46 Duration	

Sl.	Questions	M	BT	СО
No.	List the steps to convert regular grammar into finite automata. Convert the following grammar using the same. $S \rightarrow 0A \mid 1B \mid 0 \mid 1$ $A \rightarrow 0S \mid 1B \mid 1$ $B \rightarrow 0A \mid 1S$	04	L1	CO3
1.b	Convert the below grammar to CNF form: $S \to AB ABC, A \to BA BC a \epsilon, B \to AC CB b \epsilon, C \to BC AB A c$	06	L3	CO3
2.a	State Pumping Lemma for Regular Languages. By using P.L, Prove that $L = \{ww^R \mid w \in (0+1)^*\}$ is not regular.	06	L5	CO1
2.b	Check whether the following grammar is ambiguous. Prove your answer. $S \rightarrow aB \mid bA$ $A \rightarrow aS \mid bAA \mid a$	04	L3	CO3
3.a	B \rightarrow bS aBB b Convert the following ε -NFA to its equivalent DFA $ \begin{array}{cccccccccccccccccccccccccccccccccc$	07	L3	COI
3.b	Left factor the following grammar: S → bSSaaS bSSaSb bSb a S → aSSbS aSaSb abb b	03	L3	CO3
4.a	Define left linear grammar and Obtain the same for the given DFA:	05	L3	CO3

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Academic year 2020-2021 (Even Sem)

4.b	Find a string of minimum length in {a,b}* NOT in the language a*b*(ba)*a*	02	Ll	CO3
4.c	Define left recursion. Eliminate left recursion from the following grammar: $S \to L \mid x$ $L \to L, S \mid S$	03	L3	CO3
-		04	L2	CO1
5.a 5.b	 Write a short note on decision properties of regular languages. Define useless variables. In each case, given the context free grammar G, find an equivalent CFG with no useless variables. i. S → ABC BaB, A → aA BaC aaa, B → bBb a, C → CA AC ii. S → AB AC, A → aAb bAa a ε, B → bbA aaB AB, C → abCa aDb ε D → bD aC 		L3	CO3

RT-Rlooms Taxonomy, CO-Course Outcomes, M-Marks

			BI-BI	ooms ra	Taxonomy, Co-Course outcome				* *	T 4	1.5	16
	Parti	culars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	LS	LU
Marks Distribution	Test	Max	17		33		4	34	-		6	-
Distribution		Marks										

Toc CIE-1 Solution V-3.

04/06/2021.

1.a] Given: $S \rightarrow \emptyset A \mid 1B \mid 0 \mid 1$ $A \rightarrow \emptyset S \mid 1B \mid 1$ $B \rightarrow \emptyset A \mid 1S$. Steps: Se($A \rightarrow \emptyset B \Rightarrow S \mid A \otimes \emptyset$)

Steps: Se($f A \rightarrow \alpha B \Rightarrow s(A,\alpha) = B$ $A \rightarrow \alpha \Rightarrow s(A,\alpha) = F,s \Rightarrow 2m$ $A \rightarrow \epsilon \Rightarrow s(A,\epsilon) = A \rightarrow F,s$

1.6) $S \rightarrow AB | ABC$ $A \rightarrow BA | BC | 9 | E$ $B \rightarrow AC | CB | b | E$ $C \rightarrow BC | AB | A | C$

S, A, B, C are nulable variables.

Eliminali nul produltions - &M.

convert to (NF-2M

S -> AB | AC | BC | AB & | BA | CB | a | b | C A -> BA | BC | AC | CB | AB | a | b | C.

B > ____

C > _____

Y -> AP.BC

2.a) statement of pumping lemma- 2m.
proof: L= { ww | w + (D+1)*} de ->4m.

100 00 00 00 00 00 00

2.6) $S \rightarrow aB|bA$ $A \rightarrow aS|bAA|a$ $B \rightarrow bS|aBB|b$.

The grammae is ambiguous. - IM

$$S \Rightarrow aB$$
. $S \Rightarrow aB$
 $aabBB$
 $aabBB$
 $aabBB$
 $aabBB$
 $aabBB$
 $aabbBB$
 $aabbBB$

3.a) E-NFA to DFA convension.

Frank ECROSE (State) on E = {a,b} - 4M.
State ECROSE (State)

State EC	LOSE (Stale)
1 11,	2, 3, 4, 6, 7, 8, 9, 11, 12 3 -> A
. 2 82	3,4,6,7,8 9,11,12}-13
3 83	4,67,123
4 8.	Find initial fine states - 1 m

2

36] Left failor the following:

$$(S' \rightarrow SS aas | SSaSb | Sb$$

 $(S' \rightarrow SS')$

$$(1.5 * 2 = 3)$$

11)
$$S \rightarrow assbs|asasb|abb|b$$
 $solver$
 $solve$

Reverse OFA

B -> OA/OC/OB A > 1A/E. IM

(3) Reverse powdultons on RHS

$$C \rightarrow C_1 | B_1$$
 $B \rightarrow A_0 | C_0 | B_0$
 $A \rightarrow A_1 | C$
 $2M$

C → C, B, B → A0 | C0 | B0 ... G= ({C,B,A}, {0,1}, A > Ai C 2M. P, C) is required RAG.

46] bab. - 2M. (Other strings wont be given marker) since it is a direct obj 2n.

40] Left recurssion- A -> Ax B Sof2: A → <A1 | B. 8-7-L/2 -> NO L.R $L \rightarrow L, S \mid S \rightarrow L \rightarrow SL' \rightarrow 2M$ L' → € |,SL'

sa] Decision Poroporties of regular languages: Explain G membership property

- -> Infiniteness ---
- -> Emptiness 4-

Defi - 1M.

56) S -> ABC | BaB, A -> aA | BaC | aaa } no null & unit

B -> bBb | a, C -> CA | AC

Soft C is useless : C does not derive any fring.

' S -> BaB

A -> aA | aaa -> 2M

A > a A | aaa

B > b B b | a

A is useless! A is not accussible.

6: final 5-3 Bab a.

7i) $S \rightarrow AB | AC$ $A \rightarrow aAb | bAa | a | e$ $B \rightarrow bbA | aaB | AB$ $C \rightarrow abCa | abb | e$ $D \rightarrow bb | aC$.

variables s, A, C are nulable.

Eliminate unit productions.

variable D is useless .: D > a D does notderive any string.

abCalaba

A) aAb|bAa|ab| ba|a
B > bbA | aaB| AB| bb
C > abCa|aba.