	Ostfalia
Hochschule für	angewandte
147:-	

Fakultät Fahrzeugtechnik Prof. Dr.-Ing. V. von Holt Institut für Fahrzeugsystemund Servicetechnologien Modulprüfung Embedded Systems BPO 2011

> WS 2019/2020 13.01.2020

Name:
Vorname
Matr.Nr.:
Unterschrift

Zugelassene Hilfsmittel: Einfacher Taschenrechner

Zeit: 60 Minuten

1	2	3	Summe	Note
(10)	(30)	(20)	(60)	

Aufgabe 1 (12 Punkte) – Kurzfragen		
a)	(2 P) Wann bezeichnet man ein Schedulingverfahren als " optimal "?	
b)	(2 P) Was versteht man unter einem "Ereignisgesteuerten System" und was unter einem "Zeitgesteuerten System"?	

c) (6 P) Geben Sie im u.a. Task-Zustands-Diagramm die Bedeutung der einzelnen Zeitparameter an!

Aufgabe 2 (30 Punkte) - Scheduling

Ein Gateway-Steuergerät besitzt 3 Busanschlüsse, über welche sowohl periodische wie aperiodische Botschaften eintreffen. Die Botschaften werden von 2 interruptgetriebenen Empfänger-Tasks **Rx-Task1**, und **Rx-Task2** entgegengenommen und zum Routing an die **Gw-Task** weitergeleitet. Desweiteren läuft auf dem Gateway-Steuergerät noch eine Diagnosemanager-Task **DM-Task**. Die folgende Tabelle enthält die Zykluszeiten sowie die Laufzeiten der einzelnen Tasks:

Tasks	Zykluszeit [ms]	Laufzeit[ms]
Rx-Task1	510	12
Rx-Task2	1020	12
Gw-Task	10	12
DM-Task	40	6

(Die **Deadline** der Tasks **entspricht** der **Periodendauer/Zykluszeit**.)

a) (4 P) Berechnen Sie die maximale **Prozessorlast**, die durch das **Taskset** verursacht wird! Ist das gegebene Taskset **realisierbar**?

- b) (14 P) Um den Realisierungsaufwand geringstmöglich zu halten, soll untersucht werden, ob sich das Taskset durch ein **nicht-preemptives RMS-Scheduling** realisieren lässt.
 - Welches ist das Worst-Case-Szenario für das gegebene Problem?
 - Welche **Prioritäten** müssen den **Tasks** dann jeweils zugewiesen werden? (**Höchste Priorität : 0**)
 - Nach welcher **Regel** werden die **Prioritäten vergeben**?
 - Beweisen oder widerlegen Sie die **Schedulebarkeit** anhand eines **Diagramms**! Lösung ⇒ Beiblatt

- c) (12 P) Wenn das Taskset alternativ durch ein **preemptives Rate-Monotonic-Scheduling** realisiert werden soll:
 - Ändert sich etwas an der **Prioritätenvergabe** gegenüber der Teilaufgabe b) ?
 - Ist das **Taskset** in jedem Fall mit RMS-Scheduling **umsetzbar**?
 - Beweisen oder widerlegen Sie die Schedulebarkeit anhand eines Diagramms!
 Lösung ⇒ Beiblatt

zu b)

zu c)

Aufgabe 3 (20 Punkte) - Synchronisation/Kommunikation

Eine Signalverarbeitung besteht aus einer Sensor-Task **Sens** und 2 nachgeschalteten Verarbeitungs-Tasks **Worker1** und **Worker2**.

- Da die von Sens gelieferten Daten mit 8kb recht umfangreich sind, sollen diese für die weitere Verarbeitung nicht unnötig kopiert werden.
- Da die Sensordaten unregelmäßig eintreffen und die Verarbeitungszeiten von Worker1/2 je nach den Daten schwanken, sind die Daten bei der Weiterleitung zu puffern.
- Um eine Datenüberflutung der Worker-Tasks zu vermeiden ist eine Flusskontrolle vorzusehen, so dass sich maximal 10 Datensätze im gesamten System in Verarbeitung befinden.

Folgende Funktionen stehen seitens des Betriebssystems zur Verfügung:

Kommunikationsmittel	Funktionen
Shared Memory	SharedMemWrite(), SharedMemRead()
Memory Pool	MemPoolAlloc(), MemPoolRelease()
Message Queue	MsgQPost(), MsgQPend()
Mutex	MuxPost(), MuxPend()
Semaphore	SemPost(), SemPend()
Event Flags	FlagPost(), FlagPend()

a) (8 P) Entwerfen Sie eine Kommunikationsstruktur in UML-/SysML-Notation, welche die o.g. Anforderungen umsetzt! Vermerken Sie an den Assoziationen der Tasks mit den Kommunikationsmitteln die jeweils benutzten Methoden.

<<Task>> Sens <<Task>> Worker1

k	o)	b) (12 P) Erläutern Sie die Funktionsweise Ihrer gewählten Anordnung a eines Aktivitätsdiagramms für jede der 3 Tasks!	anhand von Pseudocode oder