How Do We Really Find Eigenvalues and Why Should You Care?

Thomas R. Cameron

Department of Mathematics Washington State University

March 12, 2015

Outline

- Introduction
 - Definition and Existence of Eigenvalues
 - Equivalence of Roots and Eigenvalues
- Invariant Subspaces
 - The Power Method
 - Simultaneous Iteration
 - The QR Algorithm
- 3 Large Sparse Eigenvalue Problems
 - Arnoldi Process
 - Symmetric Lanczos Process
 - Orthogonal Polynomials and Numerical Integration

Definition of Eigenvalues and Eigenvectors

Let $A \in \mathbb{C}^{n \times n}$. We say that $\lambda \in \mathbb{C}$ is an eigenvalue and $x \in \mathbb{C}^n \setminus \{0\}$ is a corresponding eigenvector, if

$$Ax = \lambda x$$
.

- $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{C}^{n \times n}$ if and only if $\lambda I A$ is singular.
- if and only if $det(\lambda I A) = 0$.
- if and only if λ is a root of the characteristic polynomial $p(\lambda) = \det(\lambda I A)$
- $p(\lambda)$ is a polynomial of degree n. By the fundamental theorem of algebra $p(\lambda)$ has n roots, counting multiplicities.

- $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{C}^{n \times n}$ if and only if $\lambda I A$ is singular.
- if and only if $det(\lambda I A) = 0$.
- if and only if λ is a root of the characteristic polynomial $p(\lambda) = \det(\lambda I A)$
- $p(\lambda)$ is a polynomial of degree n. By the fundamental theorem of algebra $p(\lambda)$ has n roots, counting multiplicities.

- $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{C}^{n \times n}$ if and only if $\lambda I A$ is singular.
- if and only if $det(\lambda I A) = 0$.
- if and only if λ is a root of the characteristic polynomial $p(\lambda) = \det(\lambda I A)$
- $p(\lambda)$ is a polynomial of degree n. By the fundamental theorem of algebra $p(\lambda)$ has n roots, counting multiplicities.

- $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{C}^{n \times n}$ if and only if $\lambda I A$ is singular.
- if and only if $det(\lambda I A) = 0$.
- if and only if λ is a root of the characteristic polynomial $p(\lambda) = \det(\lambda I A)$
- $p(\lambda)$ is a polynomial of degree n. By the fundamental theorem of algebra $p(\lambda)$ has n roots, counting multiplicities.

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
.

- The characteristic polynomial is $p(\lambda) = \lambda^2 2\lambda 3$.
- The spectrum of A is $\sigma(A) = \{3, -1\}$

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
.

- The characteristic polynomial is $p(\lambda) = \lambda^2 2\lambda 3$.
- The spectrum of A is $\sigma(A) = \{3, -1\}$

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
.

- The characteristic polynomial is $p(\lambda) = \lambda^2 2\lambda 3$.
- The spectrum of A is $\sigma(A) = \{3, -1\}$

Linear Algebra Done Right

No Determinants

- Linear algebra can be done better without determinants (Sheldon Axler, Down with Determinants!)
- I find it hard to conceive of a situation in which the numerical value of a determinant is needed (Henry Thacher, SIAM News, September 1988).

No Determinants

- Linear algebra can be done better without determinants (Sheldon Axler, Down with Determinants!)
- I find it hard to conceive of a situation in which the numerical value of a determinant is needed (Henry Thacher, SIAM News, September 1988).

Proof.

Let $x \in \mathbb{C}^n \setminus \{0\}$ and consider the Krylov sequence

$$x, Ax, A^2x, \dots$$

There exists a minimal integer $1 \le k < n$ such that $\{x, Ax, \ldots, A^kx\}$ is a set of linearly dependent vectors. There exists constants a_0, a_1, \ldots, a_k such that

$$a_0x + a_1Ax + \cdots + a_kA^kx = 0.$$

Define $p(z) = a_0 + a_1 z + \cdots + a_k z^k = c(z - r_1) \cdots (z - r_m)$, then

$$c(A-r_1I)\cdots(A-r_mI)x=0.$$

Outline

- Introduction
 - Definition and Existence of Eigenvalues
 - Equivalence of Roots and Eigenvalues
- 2 Invariant Subspaces
 - The Power Method
 - Simultaneous Iteration
 - The QR Algorithm
- 3 Large Sparse Eigenvalue Problems
 - Arnoldi Process
 - Symmetric Lanczos Process
 - Orthogonal Polynomials and Numerical Integration

Companion Matrix

Let $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$ be a monic scalar polynomial. We define the companion matrix of p to be the $n \times n$ matrix

Eigenvalues of Companion Matrix

Theorem

The eigenvalues of A_p are the roots of the polynomial $p(\lambda)$.

Proof.

The equation $A_p v = \lambda v$ is equivalent to

$$\begin{bmatrix} -a_{n-1}v_1 - \cdots - a_1v_{n-1} - a_0v_n \\ v_1 \\ \vdots \\ v_{n-1} \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ \lambda v_2 \\ \vdots \\ \lambda v_n \end{bmatrix}.$$

Therefore, $v_1 = \lambda^{n-1} v_n$, $v_2 = \lambda^{n-2} v_n$, ..., $v_{n-1} = \lambda v_n$.

- The eigenvalues of a matrix A are the roots of the characteristic polynomial.
- The roots of a polynomial are the eigenvalues of a companion matrix.
- We cannot expect to solve the eigenvalue problem in a finite number of steps.

- The eigenvalues of a matrix A are the roots of the characteristic polynomial.
- The roots of a polynomial are the eigenvalues of a companion matrix.
- We cannot expect to solve the eigenvalue problem in a finite number of steps.

- The eigenvalues of a matrix A are the roots of the characteristic polynomial.
- The roots of a polynomial are the eigenvalues of a companion matrix.
- We cannot expect to solve the eigenvalue problem in a finite number of steps.

Outline

- Introduction
 - Definition and Existence of Eigenvalues
 - Equivalence of Roots and Eigenvalues
- Invariant Subspaces
 - The Power Method
 - Simultaneous Iteration
 - The QR Algorithm
- 3 Large Sparse Eigenvalue Problems
 - Arnoldi Process
 - Symmetric Lanczos Process
 - Orthogonal Polynomials and Numerical Integration

Definition of dominant eigenvalue

We say that the eigenvalue λ is dominant, if there exists a positive number $r<|\lambda|$ such that

$$\sigma(A)\setminus\{\lambda\}\subseteq\{z\in\mathbb{C}:|z|\leq r\}.$$

• If λ is dominant, then every eigenvector v associated with λ is called a dominant eigenvector.

Definition of dominant eigenvalue

We say that the eigenvalue λ is dominant, if there exists a positive number $r<|\lambda|$ such that

$$\sigma(A)\setminus\{\lambda\}\subseteq\{z\in\mathbb{C}:|z|\leq r\}.$$

• If λ is dominant, then every eigenvector v associated with λ is called a dominant eigenvector.

The Power Method

Given a nonzero vector $x \in \mathbb{C}^n$, the power method forms the Krylov sequence of vectors

$$x, Ax, A^2x, \dots$$

 If x is not an unlucky choice and if A has a dominant eigenvector, then the Krylov sequence will converge to a dominant eigenvector of A.

The Power Method

Given a nonzero vector $x \in \mathbb{C}^n$, the power method forms the Krylov sequence of vectors

$$x, Ax, A^2x, \dots$$

 If x is not an unlucky choice and if A has a dominant eigenvector, then the Krylov sequence will converge to a dominant eigenvector of A.

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Then we update via

$$x_{n+1} = \frac{Ax_n}{\|Ax_n\|}$$

where $\|\cdot\|$ is the vector 2 norm.

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

• Then we update via

$$x_{n+1} = \frac{Ax_n}{\|Ax_n\|}$$

where $\|\cdot\|$ is the vector 2 norm.

п	Xn	n	Xn
1	0.4472	6	0.7081
	0.8944		0.7061
2	0.7809	7	0.7068
	0.6247		0.7074
3	0.6805	8	0.7072
	0.7328		0.7070
4	0.7158	9	0.7071
4	0.6983		0.7071
5	0.7042	10	0.7071
3	0.7100		0.7071

- The power method generally converges to a dominant eigenvector of A.
- The rate of convergence is linear and has contraction factor $\frac{r}{1\lambda 1}$.

- The power method generally converges to a dominant eigenvector of A.
- The rate of convergence is linear and has contraction factor $\frac{r}{|\lambda|}$.

Outline

- Introduction
 - Definition and Existence of Eigenvalues
 - Equivalence of Roots and Eigenvalues
- Invariant Subspaces
 - The Power Method
 - Simultaneous Iteration
 - The QR Algorithm
- 3 Large Sparse Eigenvalue Problems
 - Arnoldi Process
 - Symmetric Lanczos Process
 - Orthogonal Polynomials and Numerical Integration

Subspace Iteration

- When computing eigenvectors, our real object of interest are eigenspaces.
- If the eigenspace is one-dimensional, then a single eigenvector v is a basis for the space.
- We can view the power method as

$$S, AS, A^2S, ...$$

where $S = \operatorname{span} \{x\}$, and the above sequence converges to $\operatorname{span} \{v\}$.

Subspace Iteration

- When computing eigenvectors, our real object of interest are eigenspaces.
- If the eigenspace is one-dimensional, then a single eigenvector v is a basis for the space.
- We can view the power method as

$$S, AS, A^2S, \dots$$

where $S = \operatorname{span}\{x\}$, and the above sequence converges to $\operatorname{span}\{v\}$.

Subspace Iteration

- When computing eigenvectors, our real object of interest are eigenspaces.
- If the eigenspace is one-dimensional, then a single eigenvector v is a basis for the space.
- We can view the power method as

$$S, AS, A^2S, \dots$$

where $S = \text{span}\{x\}$, and the above sequence converges to $\text{span}\{v\}$.

Definition of Invariant Subspace

Let $A \in \mathbb{F}^{n \times n}$. A subspace S of \mathbb{F}^n is invariant under A if $Ax \in S$ whenever $x \in S$. That is,

$$AS \subseteq S$$
.

- For $x \in \text{span}\{v_1, \ldots, v_k\}$ we have $x = c_1v_1 + \cdots + c_kv_k$.
- $Ax = c_1Av_1 + \cdots + c_kAv_k = c_1\lambda_1v_1 + \cdots + c_k\lambda_kv_k \in \text{span}\{v_1, \ldots, v_k\}.$
- If A is semisimple (A has n linearly independent eigenvectors), then every invariant subspace under A has this form.

- For $x \in \text{span}\{v_1, \ldots, v_k\}$ we have $x = c_1v_1 + \cdots + c_kv_k$.
- $Ax = c_1Av_1 + \cdots + c_kAv_k = c_1\lambda_1v_1 + \cdots + c_k\lambda_kv_k \in \text{span}\{v_1, \ldots, v_k\}.$
- If A is semisimple (A has n linearly independent eigenvectors), then every invariant subspace under A has this form.

- For $x \in \text{span}\{v_1, \ldots, v_k\}$ we have $x = c_1v_1 + \cdots + c_kv_k$.
- $Ax = c_1Av_1 + \cdots + c_kAv_k = c_1\lambda_1v_1 + \cdots + c_k\lambda_kv_k \in \text{span}\{v_1, \ldots, v_k\}.$
- If A is semisimple (A has n linearly independent eigenvectors), then every invariant subspace under A has this form.

- For $x \in \text{span}\{v_1, \ldots, v_k\}$ we have $x = c_1v_1 + \cdots + c_kv_k$.
- $Ax = c_1Av_1 + \cdots + c_kAv_k = c_1\lambda_1v_1 + \cdots + c_k\lambda_kv_k \in \text{span}\{v_1, \ldots, v_k\}.$
- If A is semisimple (A has n linearly independent eigenvectors), then every invariant subspace under A has this form.

$$\text{Let } A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right] \text{ and } S = \text{span} \left\{ \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right\}.$$

- Note that S is not spanned by eigenvectors of A.
- For $x \in S$, we have $x = \begin{bmatrix} 0 \\ a \\ b \end{bmatrix}$.

$$Ax = \begin{bmatrix} 0 \\ 2a+b \\ 2b \end{bmatrix} \in S.$$

$$\text{Let } A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right] \text{ and } S = \text{span} \left\{ \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right\}.$$

• Note that S is not spanned by eigenvectors of A.

• For
$$x \in S$$
, we have $x = \begin{bmatrix} 0 \\ a \\ b \end{bmatrix}$.

$$Ax = \begin{bmatrix} 0 \\ 2a+b \\ 2b \end{bmatrix} \in S.$$

$$\text{Let } A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right] \text{ and } S = \text{span} \left\{ \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right\}.$$

- Note that S is not spanned by eigenvectors of A.
- For $x \in S$, we have $x = \begin{bmatrix} 0 \\ a \\ b \end{bmatrix}$.

$$Ax = \begin{bmatrix} 0 \\ 2a+b \\ 2b \end{bmatrix} \in S.$$

$$\text{Let } A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right] \text{ and } S = \text{span} \left\{ \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right\}.$$

- Note that S is not spanned by eigenvectors of A.
- For $x \in S$, we have $x = \begin{bmatrix} 0 \\ a \\ b \end{bmatrix}$.

$$\bullet \ Ax = \left| \begin{array}{c} 0 \\ 2a+b \\ 2b \end{array} \right| \in S.$$

Definition of Dominant Invariant Subspace

A k-dimensional invariant subspace S is dominant if the eigenvalues $\lambda_1, \ldots, \lambda_k$ of the restricted operator $A \mid_S$ dominate the spectrum of A.

• That is, there exists an r such that $r < |\lambda_j|$ for j = 1, ..., k and the rest of the spectrum lies within the disc $\{z \in \mathbb{C} : |z| \le r\}$.

Definition of Dominant Invariant Subspace

A k-dimensional invariant subspace S is dominant if the eigenvalues $\lambda_1, \ldots, \lambda_k$ of the restricted operator $A \mid_S$ dominate the spectrum of A.

• That is, there exists an r such that $r < |\lambda_j|$ for j = 1, ..., k and the rest of the spectrum lies within the disc $\{z \in \mathbb{C} : |z| \le r\}$.

Subspace Iteration

Let S be a k-dimensional space, and not an unlucky choice. Then the sequence

$$S, AS, A^2S, \dots$$

will converge to a k-dimensional dominant invariant subspace under A, if A has one.

Deflating the Problem

Theorem

Let $S = span\{x_1, ..., x_k\}$ be invariant under $A \in \mathbb{F}^{n \times n}$ and

$$\{x_1,\ldots,x_k,x_{k+1},\ldots,x_n\}$$

be a basis for \mathbb{F}^n . Define $X = [x_1, \dots, x_n]$ and $B = X^{-1}AX$, then

$$B = \left[\begin{array}{cc} B_{11} & B_{12} \\ 0 & B_{22} \end{array} \right].$$

Deflating the Problem

Proof.

The equation $B = X^{-1}AX$ is equivalent to AX = XB. The j^{th} column of this equation is equivalent to

$$Ax_j = \sum_{i=1}^n x_i b_{ij}.$$

If S is invariant under A, then $Ax_j \in \text{span}\{x_1, \ldots, x_k\}$ for $j = 1, \ldots, k$. Therefore,

$$b_{ij}=0$$

for $1 \le j \le k$ and $k+1 \le i \le n$.

For $i = 0, 1, 2, ..., \text{ let } S^{(i)} = A^i S$.

- If $\left\{q_1^{(i)}, \dots, q_k^{(i)}\right\}$ is a basis for $S^{(i)}$, then $\left\{Aq_1^{(i)}, \dots, Aq_k^{(i)}\right\}$ is a basis for $S^{(i+1)}$.
- ullet In practice we specify that $\left\{q_1^{(i)},\ldots,q_k^{(i)}
 ight\}$ be orthonormal.
- We can obtain an orthonormal basis $\left\{q_1^{(i+1)},\ldots,q_k^{(i+1)}\right\}$ for $S^{(i+1)}$ by applying the Gram-Schmidt process to $\left\{Aq_1^{(i)},\ldots,Aq_k^{(i)}\right\}$.

For $i = 0, 1, 2, ..., let S^{(i)} = A^i S$.

- If $\left\{q_1^{(i)},\ldots,q_k^{(i)}\right\}$ is a basis for $S^{(i)}$, then $\left\{Aq_1^{(i)},\ldots,Aq_k^{(i)}\right\}$ is a basis for $S^{(i+1)}$.
- ullet In practice we specify that $\left\{q_1^{(i)},\ldots,q_k^{(i)}
 ight\}$ be orthonormal.
- We can obtain an orthonormal basis $\left\{q_1^{(i+1)},\ldots,q_k^{(i+1)}\right\}$ for $S^{(i+1)}$ by applying the Gram-Schmidt process to $\left\{Aq_1^{(i)},\ldots,Aq_k^{(i)}\right\}$.

For $i = 0, 1, 2, ..., let S^{(i)} = A^i S$.

- If $\left\{q_1^{(i)},\ldots,q_k^{(i)}\right\}$ is a basis for $S^{(i)}$, then $\left\{Aq_1^{(i)},\ldots,Aq_k^{(i)}\right\}$ is a basis for $S^{(i+1)}$.
- ullet In practice we specify that $\left\{q_1^{(i)},\ldots,q_k^{(i)}
 ight\}$ be orthonormal.
- We can obtain an orthonormal basis $\left\{q_1^{(i+1)},\ldots,q_k^{(i+1)}\right\}$ for $S^{(i+1)}$ by applying the Gram-Schmidt process to $\left\{Aq_1^{(i)},\ldots,Aq_k^{(i)}\right\}$.

For $i = 0, 1, 2, ..., \text{ let } S^{(i)} = A^i S$.

- If $\left\{q_1^{(i)},\ldots,q_k^{(i)}\right\}$ is a basis for $S^{(i)}$, then $\left\{Aq_1^{(i)},\ldots,Aq_k^{(i)}\right\}$ is a basis for $S^{(i+1)}$.
- ullet In practice we specify that $\left\{q_1^{(i)},\ldots,q_k^{(i)}
 ight\}$ be orthonormal.
- We can obtain an orthonormal basis $\left\{q_1^{(i+1)},\ldots,q_k^{(i+1)}\right\}$ for $S^{(i+1)}$ by applying the Gram-Schmidt process to $\left\{Aq_1^{(i)},\ldots,Aq_k^{(i)}\right\}$.

Important Benefits

 The Gram-Schmidt process preserves all lower dimensional subspaces

$$\operatorname{span}\left\{q_1^{(i+1)},\ldots,q_j^{(i+1)}\right\} = \operatorname{span}\left\{Aq_1^{(i)},\ldots,Aq_j^{(i)}\right\}$$

for
$$j = 1, ..., k$$
.

- We are simultaneously performing subspace iteration on subspaces of dimension $1, \ldots, k$.
- We are always looking for the opportunity to break off a smaller problem of size $j \times j$, for j = 1, ..., k.

Important Benefits

 The Gram-Schmidt process preserves all lower dimensional subspaces

$$\operatorname{span}\left\{q_1^{(i+1)},\ldots,q_j^{(i+1)}\right\} = \operatorname{span}\left\{Aq_1^{(i)},\ldots,Aq_j^{(i)}\right\}$$

for
$$j = 1, ..., k$$
.

- We are simultaneously performing subspace iteration on subspaces of dimension 1, ..., k.
- We are always looking for the opportunity to break off a smaller problem of size $j \times j$, for j = 1, ..., k.

Important Benefits

 The Gram-Schmidt process preserves all lower dimensional subspaces

$$\operatorname{span}\left\{q_1^{(i+1)},\ldots,q_j^{(i+1)}\right\} = \operatorname{span}\left\{Aq_1^{(i)},\ldots,Aq_j^{(i)}\right\}$$

for
$$j = 1, ..., k$$

- We are simultaneously performing subspace iteration on subspaces of dimension 1, ..., k.
- We are always looking for the opportunity to break off a smaller problem of size $j \times j$, for j = 1, ..., k.

Outline

- Introduction
 - Definition and Existence of Eigenvalues
 - Equivalence of Roots and Eigenvalues
- Invariant Subspaces
 - The Power Method
 - Simultaneous Iteration
 - The QR Algorithm
- 3 Large Sparse Eigenvalue Problems
 - Arnoldi Process
 - Symmetric Lanczos Process
 - Orthogonal Polynomials and Numerical Integration

Deflating the Problem

Theorem

Let $S = span \{q_1, \ldots, q_k\}$ be invariant under $A \in \mathbb{F}^{n \times n}$ and

$$\{q_1,\ldots,q_k,q_{k+1},\ldots,q_n\}$$

be an orthonormal basis for \mathbb{F}^n . Define $Q = [q_1, \ldots, q_n]$ and $B = Q^*AQ$, then

$$B = \left[\begin{array}{cc} B_{11} & B_{12} \\ 0 & B_{22} \end{array} \right].$$

- We get $Ae_1, Ae_2, ..., Ae_n$, and then orthonormalize to get $q_1, q_2, ..., q_n$.
- We perform the similarity transformation $\hat{A} = Q^*AQ$, where $Q = [q_1, q_2, ..., q_n]$.
- The vectors $q_1, q_2, ..., q_n$ in the old coordinate system are $e_1, e_2, ..., e_n$ in the new coordinate system.

- We get $Ae_1, Ae_2, ..., Ae_n$, and then orthonormalize to get $q_1, q_2, ..., q_n$.
- We perform the similarity transformation $\hat{A} = Q^*AQ$, where $Q = [q_1, q_2, ..., q_n]$.
- The vectors $q_1, q_2, ..., q_n$ in the old coordinate system are $e_1, e_2, ..., e_n$ in the new coordinate system.

- We get $Ae_1, Ae_2, ..., Ae_n$, and then orthonormalize to get $q_1, q_2, ..., q_n$.
- We perform the similarity transformation $\hat{A} = Q^*AQ$, where $Q = [q_1, q_2, \dots, q_n]$.
- The vectors $q_1, q_2, ..., q_n$ in the old coordinate system are $e_1, e_2, ..., e_n$ in the new coordinate system.

- We get $Ae_1, Ae_2, ..., Ae_n$, and then orthonormalize to get $q_1, q_2, ..., q_n$.
- We perform the similarity transformation $\hat{A} = Q^*AQ$, where $Q = [q_1, q_2, \dots, q_n]$.
- The vectors $q_1, q_2, ..., q_n$ in the old coordinate system are $e_1, e_2, ..., e_n$ in the new coordinate system.

QR Algorithm

Simultaneous iteration with a change of coordinate system

$$A_i = Q_{i+1}R_{i+1}, \ A_{i+1} = Q_{i+1}^*A_iQ_{i+1},$$

for
$$i = 1, 2,$$

i	Α		
0	$\left[\begin{array}{cc} 4 & 2 \\ 3 & 3 \end{array}\right]$	i	А
1	$ \begin{bmatrix} 6.0400 & 0.2800 \\ -0.7200 & 0.9600 \end{bmatrix} $	5	6.0001 0.9995 -0.0005 0.9999
2		6	$\begin{bmatrix} 6.0000 & -0.9999 \\ 0.0001 & 1.0000 \end{bmatrix}$
3		7	6.0000 1.0000 -0.0000 1.0000
4	6.0006 -0.9968 0.0032 0.9994		

- J.G. Francis. The QR transformation, part 1. Computer J., 4:265-272, 1961.
- J.G. Francis. The QR transformation, part 2. Computer J., 4:332-245, 1961.
- The Best of the 20th Century: Editors Name top 10 Algorithms. SIAM News, May 16, 2000.
- David S. Watkins. Francis's Algorithm. American Math Monthly, May 2011.

- J.G. Francis. The QR transformation, part 1. Computer J., 4:265-272, 1961.
- J.G. Francis. The QR transformation, part 2. Computer J., 4:332-245, 1961.
- The Best of the 20th Century: Editors Name top 10 Algorithms. SIAM News, May 16, 2000.
- David S. Watkins. Francis's Algorithm. American Math Monthly, May 2011.

- J.G. Francis. The QR transformation, part 1. Computer J., 4:265-272, 1961.
- J.G. Francis. The QR transformation, part 2. Computer J., 4:332-245, 1961.
- The Best of the 20th Century: Editors Name top 10 Algorithms. SIAM News, May 16, 2000.
- David S. Watkins. Francis's Algorithm. American Math Monthly, May 2011.

- J.G. Francis. The QR transformation, part 1. Computer J., 4:265-272, 1961.
- J.G. Francis. The QR transformation, part 2. Computer J., 4:332-245, 1961.
- The Best of the 20th Century: Editors Name top 10 Algorithms. SIAM News, May 16, 2000.
- David S. Watkins. Francis's Algorithm. American Math Monthly, May 2011.

Outline

- Introduction
 - Definition and Existence of Eigenvalues
 - Equivalence of Roots and Eigenvalues
- 2 Invariant Subspaces
 - The Power Method
 - Simultaneous Iteration
 - The QR Algorithm
- 3 Large Sparse Eigenvalue Problems
 - Arnoldi Process
 - Symmetric Lanczos Process
 - Orthogonal Polynomials and Numerical Integration

The Problem of Sparsity

- A sparse matrix is one in which the vast majority of their entries are zero.
- We may be limited by storing constraints.
- Similarity transformations are a bad idea.

The Problem of Sparsity

- A sparse matrix is one in which the vast majority of their entries are zero.
- We may be limited by storing constraints.
- Similarity transformations are a bad idea.

The Problem of Sparsity

- A sparse matrix is one in which the vast majority of their entries are zero.
- We may be limited by storing constraints.
- Similarity transformations are a bad idea.

Example

Given $x \in \mathbb{C}^n \setminus \{0\}$, the power method forms the Krylov sequence of vectors

$$x, Ax, A^2x, \dots$$

- At the k^{th} iteration we only have $A^k x$.
- After k steps in the Arnoldi process we have

$$x, Ax, \ldots, A^kx$$
.

These vectors form a basis for the Krylov subspace

$$K_{k+1}(A,x) = \operatorname{span}\left\{x, Ax, \dots, A^k x\right\}$$

Given $x \in \mathbb{C}^n \setminus \{0\}$, the power method forms the Krylov sequence of vectors

$$x, Ax, A^2x, \dots$$

- At the k^{th} iteration we only have $A^k x$.
- After k steps in the Arnoldi process we have

$$x, Ax, \ldots, A^kx$$
.

These vectors form a basis for the Krylov subspace

$$K_{k+1}(A,x) = \operatorname{span}\left\{x, Ax, \dots, A^k x\right\}.$$

Given $x \in \mathbb{C}^n \setminus \{0\}$, the power method forms the Krylov sequence of vectors

$$x, Ax, A^2x, \dots$$

- At the k^{th} iteration we only have $A^k x$.
- After k steps in the Arnoldi process we have

$$x, Ax, \ldots, A^kx$$
.

• These vectors form a basis for the Krylov subspace

$$K_{k+1}(A,x) = \operatorname{span}\left\{x, Ax, \dots, A^k x\right\}$$

Given $x \in \mathbb{C}^n \setminus \{0\}$, the power method forms the Krylov sequence of vectors

$$x, Ax, A^2x, \dots$$

- At the k^{th} iteration we only have $A^k x$.
- After k steps in the Arnoldi process we have

$$x, Ax, \ldots, A^kx$$
.

These vectors form a basis for the Krylov subspace

$$K_{k+1}(A,x) = \operatorname{span}\left\{x,Ax,\ldots,A^kx\right\}.$$

We want Orthonormal vectors

On the first step of the Arnoldi process we take $q_1 = rac{x}{\|x\|}$.

• On the second step we take

$$\hat{q}_2 = Aq_1 - \langle Aq_1, q_1 \rangle q_1, \ \ q_2 = \frac{\hat{q}_2}{\|\hat{q}_2\|}.$$

On subsequent steps we take

$$\hat{q}_{k+1} = Aq_k - \sum_{j=1}^k q_j h_{jk}, \quad q_{k+1} = \frac{\hat{q}_{k+1}}{h_{k+1,k}},$$

where $h_{ik} = \langle Aq_k, q_i \rangle$ and $h_{k+1,k} = \|\hat{q}_{k+1}\|$

We want Orthonormal vectors

On the first step of the Arnoldi process we take $q_1 = rac{x}{\|x\|}$.

• On the second step we take

$$\hat{q}_2 = Aq_1 - \langle Aq_1, q_1 \rangle q_1, \ \ q_2 = \frac{\hat{q}_2}{\|\hat{q}_2\|}.$$

On subsequent steps we take

$$\hat{q}_{k+1} = Aq_k - \sum_{j=1}^k q_j h_{jk}, \quad q_{k+1} = \frac{\hat{q}_{k+1}}{h_{k+1,k}},$$

where $h_{ik} = \langle Aq_k, q_i \rangle$ and $h_{k+1,k} = \|\hat{q}_{k+1}\|$

We want Orthonormal vectors

On the first step of the Arnoldi process we take $q_1=rac{x}{\|\mathbf{x}\|}$.

• On the second step we take

$$\hat{q}_2 = Aq_1 - \langle Aq_1, q_1 \rangle q_1, \ \ q_2 = \frac{\ddot{q}_2}{\|\hat{q}_2\|}.$$

On subsequent steps we take

$$\hat{q}_{k+1} = Aq_k - \sum_{j=1}^k q_j h_{jk}, \quad q_{k+1} = \frac{\hat{q}_{k+1}}{h_{k+1,k}},$$

where $h_{ik} = \langle Aq_k, q_i \rangle$ and $h_{k+1,k} = \|\hat{q}_{k+1}\|$.

Matrix Representation of Arnoldi Process

We can write the previous steps as

$$Aq_k = \sum_{j=1}^{k+1} q_j h_{jk}, \quad k = 1, 2, 3, \dots$$

We can write this as

$$A[q_1\cdots q_m]=[q_1\cdots q_mq_{m+1}]H_{m+1,m}$$

Where

$$H_{m+1,m} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1m} \\ h_{21} & h_{22} & \cdots & h_{2m} \\ & & h_{32} & & \vdots \\ & & & \ddots & h_{mm} \\ & & & & h_{m+1,m} \end{bmatrix}$$

Matrix Representation of Arnoldi Process

We can write the previous steps as

$$Aq_k = \sum_{j=1}^{k+1} q_j h_{jk}, \quad k = 1, 2, 3, \dots$$

We can write this as

$$A[q_1\cdots q_m]=[q_1\cdots q_mq_{m+1}]H_{m+1,m}$$

Where

$$H_{m+1,m} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1m} \\ h_{21} & h_{22} & \cdots & h_{2m} \\ & & h_{32} & & \vdots \\ & & & \ddots & h_{mm} \\ & & & & h_{m+1,m} \end{bmatrix}$$

Matrix Representation of Arnoldi Process

We can write the previous steps as

$$Aq_k = \sum_{j=1}^{k+1} q_j h_{jk}, \quad k = 1, 2, 3, \dots$$

We can write this as

$$A[q_1\cdots q_m]=[q_1\cdots q_mq_{m+1}]H_{m+1,m}$$

Where

$$H_{m+1,m} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1m} \\ h_{21} & h_{22} & \cdots & h_{2m} \\ & h_{32} & & \vdots \\ & & \ddots & h_{mm} \\ & & & h_{m+1,m} \end{bmatrix}.$$

Degree 25 Eigenvalue Approximations

Degree 50 Eigenvalue Approximations

Outline

- Introduction
 - Definition and Existence of Eigenvalues
 - Equivalence of Roots and Eigenvalues
- Invariant Subspaces
 - The Power Method
 - Simultaneous Iteration
 - The QR Algorithm
- 3 Large Sparse Eigenvalue Problems
 - Arnoldi Process
 - Symmetric Lanczos Process
 - Orthogonal Polynomials and Numerical Integration

Arnoldi Simplified

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and consider the matrix representation of A with respect to $(q_j)_{j=1}^m$.

$$H_{m+1,m} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1m} \\ h_{21} & h_{22} & \cdots & h_{2m} \\ & & h_{32} & & & \\ & & & h_{mm} \\ & & & h_{m+1,m} \end{bmatrix}.$$

Arnoldi Simplified

We can write H as follows

$$H_{m+1,m} = \left[egin{array}{cccc} lpha_1 & eta_2 & & & & \ eta_2 & lpha_2 & & & & \ eta_3 & & & eta_m & & \ & & & lpha_m & & \ & & & lpha_{m+1} \end{array}
ight],$$

where $\alpha_k = \langle Aq_k, q_k \rangle$ and $\beta_k = \langle Aq_k, q_{k-1} \rangle$.

Outline

- Introduction
 - Definition and Existence of Eigenvalues
 - Equivalence of Roots and Eigenvalues
- Invariant Subspaces
 - The Power Method
 - Simultaneous Iteration
 - The QR Algorithm
- 3 Large Sparse Eigenvalue Problems
 - Arnoldi Process
 - Symmetric Lanczos Process
 - Orthogonal Polynomials and Numerical Integration

A functional space example

Let $T: \mathcal{H} \to \mathcal{H}$ be the linear operator Tf(x) = xf(x).

• $\mathcal{H} = L^2(-1,1)$ with inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx,$$

where f and g are real valued Lebesgue integrable functions over the interval [-1, 1].

A functional space example

Let $T: \mathcal{H} \to \mathcal{H}$ be the linear operator Tf(x) = xf(x).

• $\mathcal{H} = L^2(-1,1)$ with inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx,$$

where f and g are real valued Lebesgue integrable functions over the interval [-1, 1].

Space of polynomials

Consider the Krylov sequence starting from $1 \in \mathscr{H}$

$$1, x, x^2, \ldots$$

- The Symmetric Lanczos process will provide an orthonormal basis for this space!
- ullet Starting from $q_1 \in \mathscr{H}$ such that $\|q_1\| = 1$, we have

$$\beta_{k+1}q_{k+1} = (x - \alpha_k)q_k - \beta_k q_{k-1}.$$

Space of polynomials

Consider the Krylov sequence starting from $1 \in \mathscr{H}$

$$1, x, x^2, \dots$$

- The Symmetric Lanczos process will provide an orthonormal basis for this space!
- ullet Starting from $q_1 \in \mathcal{H}$ such that $\|q_1\| = 1$, we have

$$\beta_{k+1}q_{k+1} = (x - \alpha_k)q_k - \beta_k q_{k-1}.$$

Space of polynomials

Consider the Krylov sequence starting from $1 \in \mathscr{H}$

$$1, x, x^2, \dots$$

- The Symmetric Lanczos process will provide an orthonormal basis for this space!
- ullet Starting from $q_1 \in \mathscr{H}$ such that $\|q_1\| = 1$, we have

$$\beta_{k+1}q_{k+1}=(x-\alpha_k)q_k-\beta_kq_{k-1}.$$

Let
$$p_1(x) = \frac{1}{\sqrt{2}}$$
.

•
$$\beta_2 p_2(x) = (x - \alpha_1) p_1(x)$$
,

•
$$\frac{1}{\sqrt{3}}p_2(x) = \frac{1}{\sqrt{2}}x \Rightarrow p_2(x) = \sqrt{\frac{3}{2}}x$$
.

•
$$\beta_3 p_3(x) = (x - \alpha_2) p_2(x) - \beta_2 p_1(x)$$
,

•
$$\frac{2}{\sqrt{15}}p_3(x) = \sqrt{\frac{3}{2}}(x^2 - 1) \Rightarrow p_3(x) = \sqrt{\frac{5}{2}}(\frac{3}{2}x^2 - \frac{1}{2}).$$

Let
$$p_1(x) = \frac{1}{\sqrt{2}}$$
.

•
$$\beta_2 p_2(x) = (x - \alpha_1) p_1(x)$$
,

•
$$\frac{1}{\sqrt{3}}p_2(x) = \frac{1}{\sqrt{2}}x \Rightarrow p_2(x) = \sqrt{\frac{3}{2}}x$$
.

•
$$\beta_3 p_3(x) = (x - \alpha_2) p_2(x) - \beta_2 p_1(x)$$
,

•
$$\frac{2}{\sqrt{15}}p_3(x) = \sqrt{\frac{3}{2}}(x^2 - 1) \Rightarrow p_3(x) = \sqrt{\frac{5}{2}}(\frac{3}{2}x^2 - \frac{1}{2}).$$

Let
$$p_1(x) = \frac{1}{\sqrt{2}}$$
.

•
$$\beta_2 p_2(x) = (x - \alpha_1) p_1(x)$$
,

•
$$\frac{1}{\sqrt{3}}p_2(x) = \frac{1}{\sqrt{2}}x \Rightarrow p_2(x) = \sqrt{\frac{3}{2}}x$$
.

•
$$\beta_3 p_3(x) = (x - \alpha_2) p_2(x) - \beta_2 p_1(x)$$
,

•
$$\frac{2}{\sqrt{15}}p_3(x) = \sqrt{\frac{3}{2}}(x^2 - 1) \Rightarrow p_3(x) = \sqrt{\frac{5}{2}}(\frac{3}{2}x^2 - \frac{1}{2}).$$

Let
$$p_1(x) = \frac{1}{\sqrt{2}}$$
.

•
$$\beta_2 p_2(x) = (x - \alpha_1) p_1(x)$$

•
$$\frac{1}{\sqrt{3}}p_2(x) = \frac{1}{\sqrt{2}}x \Rightarrow p_2(x) = \sqrt{\frac{3}{2}}x$$
.

•
$$\beta_3 p_3(x) = (x - \alpha_2) p_2(x) - \beta_2 p_1(x)$$
,

•
$$\frac{2}{\sqrt{15}}p_3(x) = \sqrt{\frac{3}{2}}(x^2 - 1) \Rightarrow p_3(x) = \sqrt{\frac{5}{2}}(\frac{3}{2}x^2 - \frac{1}{2}).$$

Let
$$p_1(x) = \frac{1}{\sqrt{2}}$$
.

- $\beta_2 p_2(x) = (x \alpha_1) p_1(x)$,
- $\frac{1}{\sqrt{3}}p_2(x) = \frac{1}{\sqrt{2}}x \Rightarrow p_2(x) = \sqrt{\frac{3}{2}}x$.
- $\beta_3 p_3(x) = (x \alpha_2) p_2(x) \beta_2 p_1(x)$,
- $\frac{2}{\sqrt{15}}p_3(x) = \sqrt{\frac{3}{2}}(x^2 1) \Rightarrow p_3(x) = \sqrt{\frac{5}{2}}(\frac{3}{2}x^2 \frac{1}{2}).$

We are building the following infinite matrix

$$H = \begin{bmatrix} 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{15}} \\ \frac{2}{\sqrt{15}} & 0 & \frac{3}{\sqrt{35}} \\ & & \frac{3}{\sqrt{35}} & 0 & \ddots \end{bmatrix}.$$

Suppose we want to compute

$$I = \int_{-1}^{1} x \sin(x) dx.$$

We can approximate this integral by Gauss Quadrature

$$Q_m = 2\sum_{i=1}^m f(x_i)w_i$$

where $f(x) = x\sin(x)$, x_i are interpolation points, and w_i are weights.

Suppose we want to compute

$$I = \int_{-1}^{1} x \sin(x) dx.$$

We can approximate this integral by Gauss Quadrature

$$Q_m = 2\sum_{i=1}^m f(x_i)w_i$$

where $f(x) = x\sin(x)$, x_i are interpolation points, and w_i are weights.

The 4^{th} degree approximation to I is given by the eigenvalues and eigenvectors of

$$H_4 = \begin{bmatrix} 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{15}} \\ & \frac{2}{\sqrt{15}} & 0 & \frac{3}{\sqrt{35}} \\ & & \frac{3}{\sqrt{35}} & 0 \end{bmatrix} = UDU^T$$

- The correct interpolation points and weights are $x_i = d_{ii}$ and $w_i = u_{1i}^2$.
- $Q_4 = 2 (f(d_{11})u_{11}^2 + f(d_{22})u_{12}^2 + f(d_{33})u_{13}^2 + f(d_{44})u_{14}^2) = 0.60234.$

The 4^{th} degree approximation to I is given by the eigenvalues and eigenvectors of

$$H_4 = \begin{bmatrix} 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{15}} \\ & \frac{2}{\sqrt{15}} & 0 & \frac{3}{\sqrt{35}} \\ & & \frac{3}{\sqrt{35}} & 0 \end{bmatrix} = UDU^T$$

- The correct interpolation points and weights are $x_i = d_{ii}$ and $w_i = u_{1i}^2$.
- $Q_4 = 2 (f(d_{11})u_{11}^2 + f(d_{22})u_{12}^2 + f(d_{33})u_{13}^2 + f(d_{44})u_{14}^2) = 0.60234.$

The 4^{th} degree approximation to I is given by the eigenvalues and eigenvectors of

$$H_4 = \begin{bmatrix} 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{15}} \\ & \frac{2}{\sqrt{15}} & 0 & \frac{3}{\sqrt{35}} \\ & & \frac{3}{\sqrt{35}} & 0 \end{bmatrix} = UDU^T$$

- The correct interpolation points and weights are $x_i = d_{ii}$ and $w_i = u_{1i}^2$.
- $Q_4 = 2 (f(d_{11})u_{11}^2 + f(d_{22})u_{12}^2 + f(d_{33})u_{13}^2 + f(d_{44})u_{14}^2) = 0.60234.$

