FUNDAMENTAL ALGEBRA & ANALYSIS

Contents

1	Limit		
	1.1	Filters	1
	1.2	Order Limit	4
	1.3	Partially Ordered Groups	11
	1.4	Enhancement	13

Chapter 1

Limit

1.1 Filters

Definition 1.1.1 Let X be a set. We call **filter** on X any non-empty subset \mathcal{F} of $\wp(X)$ this satisfies:

 $(1) \forall (V_1, V_2) \in \mathcal{F}^2, V_1 \cap V_2 \in \mathcal{F}.$

(2) $\forall V \in \mathcal{F}, \forall W \in \wp(X)$, if $V \subseteq W$, then $W \in \mathcal{F}$.

Remark 1.1.2

If $\emptyset \in \mathcal{F}$, then $\mathcal{F} = \wp(X)$, we say that \mathcal{F} is degenerate.

Example 1.1.3 If $Y \subseteq X$, then

$$\mathcal{F}_Y := \{ V \in \wp(X) \mid Y \subseteq V \}$$

is a filter, called the principal filter of ${\cal Y}.$

If \mathcal{F} is a non-degenerate filter such that, for any non-degenerate filter \mathcal{G} , one has $\mathcal{F} \nsubseteq \mathcal{G}$. We say that \mathcal{F} is an **ultrafilter**.

Proposition 1.1.4 Let I be a non-empty set and $(\mathcal{F}_i)_{i\in I}$ is a family of filters on X, then $\mathcal{F}:=\bigcap_{i\in I}\mathcal{F}_i$ is also a filter on X.

Proof

(1) $\forall (V_1, V_2) \in \mathcal{F}^2$, one has

$$\forall i \in I, (V_1, V_2) \in \mathcal{F}_i^2$$

so $V_1 \cap V_2 \in \mathcal{F}_i$. This leads to $V_1 \cap V_2 \in \mathcal{F}$. (2) $\forall V \in \mathcal{F}$, one has $\forall i \in I, V \in \mathcal{F}_i$. If $W \in \wp(X), W \supseteq V$, then $\forall i \in I, W \in \mathcal{F}_i$.

Definition 1.1.5 Let S be a subset of $\wp(X)$. We denote by \mathcal{F}_S the intersection of all filters containing S. It is thus the least filter containing S. We call it the filter generated by S.

Remark 1.1.6 If $Y \subseteq X$, then the principal filter \mathcal{F}_Y is generated by $\{Y\}$.

Proposition 1.1.7 Let X be a set and S be a non-empty subset of $\wp(X)$, then

$$\mathcal{F}_S := \{ U \in \wp(X) \mid \exists n \in \mathbb{N}_{\geq 1}, \exists (A_1, \dots, A_n) \in S^n, A_1 \cap \dots \cap A_n \subseteq U \}.$$

Proof Denote by \mathcal{F}'_S the set on the right hand side of the equality. One has $\mathcal{F}'_S \subseteq \mathcal{F}_S$. It remains to check that \mathcal{F}'_S is a filter containing S. By definition, $S \subseteq \mathcal{F}'_S$. If $(U,V) \in \mathcal{F}'_S^2$, $\exists A_1, \ldots, A_n, B_1, \ldots, B_n \in S, A_1 \cap \cdots \cap A_n \subseteq U, B_1 \cap \cdots \cap B_n \subseteq V$, so $A_1 \cap \cdots \cap A_n \cap B_1 \cap \cdots \cap B_n \subseteq U \cap V$. If $W \supseteq U$, then $A_1 \cap \cdots \cap A_n \subseteq W$, so $W \in \mathcal{F}'_S$.

Definition 1.1.8 We say that a subset S of $\wp(X)$ is a **filter basis** if, for any $(A,B) \in S \times S$, there exists $C \in S$, such that $C \subseteq A \cap B$.

"If $n \in \mathbb{N}_{\geq 1}$ and $(A_1, \dots, A_n) \in S^n$, $\exists C \in S$ such that $C \subseteq A_1 \cap \dots \cap A_n$.

Remark 1.1.9 If S is a filter basis, then

$$\mathcal{F}_S = \{ U \in \wp(X) \mid \exists A \in S, A \subseteq U \}.$$

If S is a subset of $\wp(X)$, then

$$\mathcal{B}_S := \{ A_1 \cap \dots \cap A_n \mid n \in \mathbb{N}, \ (A_1, \dots, A_n) \in S^n \}$$

is a filter basis containing S. Moreover, $\mathcal{F}_S = \mathcal{F}_{\mathcal{B}_S}$.

Proposition 1.1.10 Let X be a set. Then

$$\mathcal{F} = \{ U \in \wp(X) \mid X \backslash U \text{ is finite} \}$$

is a filter on X. We call it the **Fréchet filter** of X.

1.1. FILTERS 3

Proof

If $(U,V) \in \mathcal{F}^2$, $X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V)$, is finite. If $U \in \mathcal{F}$, $W \in \wp(X)$, $U \subseteq W$, then $(X \setminus W) \subseteq (X \setminus U)$ is finite. \square

Example 1.1.11 Let $I \subseteq \mathbb{N}$ be an infinite set. Let $J \subseteq \mathbb{N}$ be infinite, then $\{I_{\geq j} \mid j \in J\}$ is a filter basis that generates the Fréchet filter of I. $\{I_{\geq j} \mid j \in J\}$ is a totally ordered subset of $\wp(I)$, so it is a filter basis. For any $j \in J$, $I \setminus I_{\geq j} = I_{< j}$ is finite. Let $U \in$ Fréchet filter of I, $I \setminus U$ is finite. There exists $j \in J$ such that $\forall i \in I \setminus U, i < j$. So $I \setminus U \subseteq I_{< j}, U \supseteq I \setminus I_{j <} = I_{\geq j}$.

Example 1.1.12 Let X be a set. We call **pseudometric** on X any mapping

$$d: X \times X \to \mathbb{R}_{>0}$$
.

such that,

- $(1) \forall x \in X, d(x, x) = 0.$
- (2) $\forall (x, y) \in X^2, d(x, y) = d(y, x).$
- (3) (Triangle inequality) $\forall (x, y, z) \in X^3, d(x, z) \leq d(x, y) + d(y, z).$
- (X, d) is called the **pseudometric space**. If

$$\forall (x,y) \in X^2, x \neq y \Rightarrow d(x,y) > 0,$$

then (X, d) is called a **metric space**.

Let (X, d) be a pseudometric space. For any $x \in X$, and $\varepsilon \in \mathbb{R}_{\geq 0}$, we denote by $B(x, \varepsilon)$ the set

$$\{y \in X \mid \mathrm{d}(x,y) < \varepsilon\},\$$

called the **open ball** center at x of radius ε .

Then

$$\mathcal{V}_x := \{ U \in \wp(X) \mid \exists \varepsilon \in \mathbb{R}_{>0}, B(x, \varepsilon) \subseteq U \}$$

is a filter, called the **filter of neighborhood** of x.

Proposition 1.1.13 Let $J \subseteq \mathbb{R}_{>0}$ be a non-empty subset such that $\inf J = 0$. Then $\mathcal{B}_J = \{B(x, \varepsilon) \mid \varepsilon \in J\}$ is a filter basis such that $\mathcal{F}_{\mathcal{B}_J} = \mathcal{V}_x$.

Proof $\forall U \in \mathcal{V}_x, \exists \varepsilon \in J, \varepsilon < \delta$,

$$B(x,\varepsilon) \subseteq B(x,\delta) \subseteq U$$
.

1.2 Order Limit

We fix a partially ordered set (G, \leq) assumed to be order complete.

Example 1.2.1

- (1) $\mathbb{R} \cup \{-\infty, +\infty\}, \ \forall x \in \mathbb{R}, -\infty < x < +\infty.$
- (2) $[0, +\infty]$.
- (3) $(\wp(\Omega), \subseteq)$.

Definition 1.2.2 Let X be a set and $f: X \longrightarrow G$ be a mapping. For any $U \in \wp(X)$, we define

$$f^{s}(U) := \sup_{x \in U} f(x) = \sup f(U).$$

$$f^{i}(U) := \inf_{x \in U} f(x) = \inf f(U).$$

If $U \neq \emptyset$, $f^s(U) \geq f^i(U)$. Let \mathcal{F} be a filter on X. We define

$$\limsup_{\mathcal{F}} f := \inf_{U \in \mathcal{F}} f^s(U).$$

$$\liminf_{\mathcal{F}} f := \sup_{U \in \mathcal{F}} f^i(U).$$

They are called the **superior limit** and the **inferior limit** of f along \mathcal{F} . If

$$\liminf_{\mathcal{F}} f = \limsup_{\mathcal{F}} f,$$

we say that f has a limit along \mathcal{F} , and we denote $\lim_{\mathcal{F}} f$ this value.

Notation 1.2.3 Let $I \subseteq \mathbb{N}$ be an infinite subset. We call sequence in G parametrized by I any element of $G^I = \{(a_n)_{n \in I} \mid \forall n \in I, a_n \in G\}$. If \mathcal{F} is the Fréchet filter on I, then for any $f = (a_n)_{n \in I} \in G^I$, $\limsup_{n \to +\infty} a_n$ or as $\limsup_{n \to +\infty} a_n$. Resp. $\liminf_{n \to +\infty} a_n$.

Proposition 1.2.4 Let $f: X \longrightarrow G$ be a mapping and \mathcal{F} be a non-degenerate filter. Then

$$\forall (U, V) \in \mathcal{F} \times \mathcal{F}, f^s(U) \ge f^i(V).$$

In particular

$$\limsup_{\mathcal{F}} f \geq \liminf_{\mathcal{F}} f.$$

Proof

$$f^s(U) \ge f^s(U \cap V) \ge f^i(U \cap V) \ge f^i(V).$$

Taking $\inf_{U \in \mathcal{F}}$, we get $\forall V \in \mathcal{F}$, $\limsup_{F} f \geq f^{i}(V)$. Taking $\sup_{V \in \mathcal{F}}$, we get $\limsup_{F} f \geq \liminf_{F} f$.

Proposition 1.2.5 Let $f: X \longrightarrow G$ be a mapping, \mathcal{B} be a filter basis on X and \mathcal{F} be the filter generated by \mathcal{B} . Then

$$\limsup_{\mathcal{F}} f = \inf_{B \in \mathcal{B}} f^{s}(B), \ \liminf_{\mathcal{F}} f = \sup_{B \in \mathcal{B}} f^{i}(B).$$

Proof Since $\mathcal{B} \subseteq \mathcal{F}$, one has

$$\limsup_{\mathcal{F}} f = \inf_{U \in \mathcal{F}} f^s(U) \le \inf_{B \in \mathcal{B}} f^s(B).$$

For any $U \in \mathcal{F}$, $\exists A \in \mathcal{B}$ such that $U \supseteq A$. One has

$$f^s(U) \ge f^s(A) \ge \inf_{B \in \mathcal{B}} f^s(B).$$

Taking $\inf_{U \in \mathcal{F}}$, we get

$$\limsup_{\mathcal{F}} f \ge \inf_{B \in \mathcal{B}} f^s(B).$$

Consequence: If $I \subseteq \mathbb{N}$ is an infinite subset, $J \subseteq \mathbb{N}$ is another infinite subset, $\forall (a_n)_{n \in I} \in G^I$,

$$\lim\sup_{n\in I, n\to +\infty} a_n = \inf_{j\in J} \sup_{n\in I_{\geq j}} a_n,$$

$$\lim_{n \in I, n \to +\infty} \inf a_n = \sup_{j \in J} \inf_{n \in I_{\geq j}} a_n.$$

Example 1.2.6 $a_n = (-1)^n, (a_n)_{n \in \mathbb{N}} \in [-\infty, +\infty]^N,$

$$\lim_{n \to +\infty} \sup (-1)^n = \inf_{j \in 2\mathbb{N}} \sup_{n > j} (-1)^n = \inf_{j \in 2\mathbb{N}} 1 = 1.$$

$$\lim_{n \to +\infty} \inf (-1)^n = -1.$$

Example 1.2.7 $\left(\frac{1}{n}\right)_{n\in\mathbb{N}_{>1}}$,

$$\limsup_{n\to +\infty}\frac{1}{n}=\inf_{j\in\mathbb{N}_{\geq 1}}\sup_{n\geq j}\frac{1}{n}=\inf_{j\in\mathbb{N}_{\geq 1}}\frac{1}{j}=0,$$

$$\liminf_{n\to+\infty}\frac{1}{n}=\sup_{j\in\mathbb{N}_{>1}}\inf_{n\geq j}\frac{1}{n}=\sup_{j\in\mathbb{N}_{>1}}0=0.$$

Proposition 1.2.8 Let $f, g: X \longrightarrow G$ be mappings and \mathcal{F} be a filter on X. Suppose that there exists $A \in \mathcal{F}$ such that

$$\forall x \in A, f(x) \le g(x).$$

Then,

 $\limsup_{\mathcal{F}} f \leq \limsup_{\mathcal{F}} g, \ \liminf_{\mathcal{F}} f \leq \liminf_{\mathcal{F}} g.$

Proof Let

$$\mathcal{B} = \{ U \in \mathcal{F} \mid U \subseteq A \}.$$

 \mathcal{B} is a filter basis, and $\mathcal{B} \in \mathcal{F}$. For any $V \in \mathcal{F}$, one has $V \cap A \in \mathcal{B}$ and $V \supseteq V \cap A$. So \mathcal{F} is generated by \mathcal{B} . For any $B \in \mathcal{B}$, one has $B \subseteq A$ and hence

$$f^s(B) \le g^s(B), \ f^i(B) \le g^i(B).$$

So

$$\inf_{B \in \mathcal{B}} f^s(B) \le \inf_{B \in \mathcal{B}} g^s(B), \ \sup_{B \in \mathcal{B}} f^i(B) \le \sup_{B \in \mathcal{B}} g^i(B).$$

Theorem 1.2.9 (Squeeze Theorem) Let X be a set and \mathcal{F} be a non-degenerate filter on X. Let f, g, h be elements of G^X . Assume that there exists $A \in \mathcal{F}$ such that

$$\forall x \in A, f(x) \le g(x) \le h(x).$$

If f and h have limits along \mathcal{F} , and

$$\lim_{\mathcal{F}} f = \lim_{\mathcal{F}} h,$$

1.2. ORDER LIMIT

7

then, g also has a limit along \mathcal{F} , and

$$\lim_{\mathcal{F}} f = \lim_{\mathcal{F}} g = \lim_{\mathcal{F}} h.$$

Proof

$$\lim_{\mathcal{F}} f = \limsup_{\mathcal{F}} f \le \lim_{\mathcal{F}} \sup_{\mathcal{F}} g \le \lim_{\mathcal{F}} \sup_{\mathcal{F}} h = \lim_{\mathcal{F}} h.$$

So

$$\limsup_{\mathcal{F}} g = \lim_{\mathcal{F}} f = \lim_{\mathcal{F}} h.$$

$$\lim_{\mathcal{F}} f = \liminf_{\mathcal{F}} f \le \liminf_{\mathcal{F}} g \le \liminf_{\mathcal{F}} h = \lim_{\mathcal{F}} h.$$

So

$$\liminf_{\mathcal{F}} g = \lim_{\mathcal{F}} f = \lim_{\mathcal{F}} h.$$

Example 1.2.10 Let a > 1. Consider the sequence $\left(\frac{a^n}{n!}\right)_{n \in \mathbb{N}}$. If $n \geq N \geq 2a$, $a \leq \frac{N}{2}$, then

$$0 \le \frac{a^n}{n!} \le \frac{a^N}{N!} \cdot \frac{a^{n-N}}{(N+1)\dots n} \le \frac{a^N}{N!} \frac{1}{2^{n-N}}.$$

For any $n \geq N$, $0 \leq \frac{a^n}{n!} \leq \frac{(2a)^N}{N!} \cdot \frac{1}{2^n}$. So by squeeze theorem, $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$.

Theorem 1.2.11 (Monotone Convergence Theorem) Let I be an infinite subset of \mathbb{N} and $(a_n)_{n\in I}\in G^I$.

- (1) If $(a_n)_{n\in I}$ is increasing, then $(a_n)_{n\in I}$ admits $\sup a_n$ as its limit.
- (2) If $(a_n)_{n\in I}$ is decreasing, then $(a_n)_{n\in I}$ admits $\inf_{n\in I} a_n$ as its limit.

Proof

(1) Let $l = \sup_{n \in I} a_n, \forall n \in \mathbb{N}, \ a_n \leq l$. So

$$\limsup_{n \to +\infty} a_n \le \limsup_{n \to +\infty} l = l.$$

$$\forall j \in I, \inf_{n \in I_{>j}} a_n = a_j,$$

SO

$$\liminf_{n \to +\infty} a_n = \sup_{j \in I} \inf_{n \in I_{\geq j}} a_n = \sup_{j \in I} a_j = l.$$

Hence,

$$l = \liminf_{n \to +\infty} a_n \le \limsup_{n \to +\infty} a_n \le l.$$

Which means

$$\lim_{n \to +\infty} a_n = l.$$

Proposition 1.2.12 Let X be a set and $Y \subseteq X$.

(1) If \mathcal{F} is a filter on X, then

$$\mathcal{F}|_{Y} := \{ U \cap Y \mid U \in \mathcal{F} \}$$

is a filter on Y.

(2) If \mathcal{B} is a filter basis on X, and \mathcal{F} is the filter generated by \mathcal{B} , then

$$\mathcal{B}|_Y := \{B \cap Y \mid B \in \mathcal{B}\}$$

is a filter basis generates $\mathcal{F}|_{Y}$.

Proof

(1) Let U and V be elements of \mathcal{F} , one has

$$(U\cap Y)\cap (V\cap Y)=(U\cap V)\cap Y\in \mathcal{F}|_{Y}\,.$$

Let $U \in \mathcal{F}, W \subseteq Y, U \cap Y \subseteq W$. Let $V = U \cup W \in \mathcal{F}$.

$$Y \cap V = (U \cap Y) \cup (W \cap Y) = W.$$

Hence $W \in \mathcal{F}|_{Y}$.

(2) Let B_1, B_2 be elements of \mathcal{B} , then $\exists A \in B, A \subseteq B_1 \cap B_2$. Thus

$$A \cap Y \subseteq (B_1 \cap Y) \cap (B_2 \cap Y).$$

So $\mathcal{B}|_Y$ is a filter basis. Moreover, $\mathcal{B}|_Y \subseteq \mathcal{F}|_Y$. Let $U \in \mathcal{F}, \exists B \in \mathcal{B}$ such that $B \subseteq U$. Thus

$$B \cap Y \subseteq U \cap Y$$
.

So $U \cap Y$ contains an element of $\mathcal{B}|_{Y}$.

Example 1.2.13 Let $I \subseteq \mathbb{N}$ be an infinite subset, and $(a_n)_{n \in I} \in G^I$. If $J \subseteq I$ is an infinite subset, \mathcal{F} be the filter on I, then $\mathcal{F}|_J$ is the Fréchet filter on J. $(a_n)_{n \in J}$ is called a subsequence of $(a_n)_{n \in I}$.

Proposition 1.2.14 Let $f: X \longrightarrow G$ be a mapping, \mathcal{F} be a filter on $X, Y \subseteq X$. Then

(1)

$$\limsup_{\mathcal{F}|_{Y}} f|_{Y} \le \limsup_{\mathcal{F}} f,$$

$$\liminf_{\mathcal{F}|_{Y}} f|_{Y} \ge \liminf_{\mathcal{F}} f.$$

(2) Suppose that $\mathcal{F}|_Y$ is non-degenerate and f has a limit along \mathcal{F} , then $f|_Y$ has a limit along $\mathcal{F}|_Y$ and

$$\lim_{\mathcal{F}} f = \lim_{\mathcal{F}|_{Y}} f|_{Y}.$$

(3) If $Y \in \mathcal{F}$, then

$$\limsup_{\mathcal{F}|_{\mathcal{V}}} = \limsup_{\mathcal{F}} f,$$

$$\liminf_{\mathcal{F}|_{Y}}=\liminf_{\mathcal{F}}f.$$

Proof

 $\forall U \in \mathcal{F}, f^s(U \cap Y) \leq f^s(U)$. So

$$\limsup_{\mathcal{F}|_{Y}} f|_{Y} = \inf_{U \in \mathcal{F}} f^{s}(U \cap Y) \le \inf_{U \in \mathcal{F}} f^{s}(U) = \limsup_{\mathcal{F}} f.$$

(2)

$$\lim_{\mathcal{F}} f = \limsup_{\mathcal{F}} f \geq \limsup_{\mathcal{F}|_{Y}} f|_{Y} \geq \liminf_{\mathcal{F}|_{Y}} f|_{Y} \geq \liminf_{\mathcal{F}} f = \lim_{\mathcal{F}} f.$$

(3) $\mathcal{F}|_{Y}$ is a filter basis that generates \mathcal{F} if $Y \in \mathcal{F}$,

$$\limsup_{\mathcal{F}|_{Y}} f|_{Y} = \inf_{V \in \mathcal{F}|_{Y}} f^{s}(U) = \inf_{U \in \mathcal{F}} f^{s}(U) = \limsup_{\mathcal{F}} f.$$

Theorem 1.2.15 (Bolzano-Weierstrass) Suppose that G is totally ordered. Let $I \subseteq \mathbb{N}$ be an infinite subset and $(a_n)_{n \in I}$ be a sequence in G.

- (1) There exists an infinite subset J_1 such that $(a_n)_{n\in I}$ is monotone and admits $\limsup_{n\in I} a_n$ as its limit.
- (2) There exists an infinite subset J_2 such that $(a_n)_{n\in I}$ is monotone and admits $\liminf_{n\in I} a_n$ as its limit.

Proof

(1) Let

$$J = \{ n \in I \mid \forall m \in I_{\geq n}, a_m \leq a_n \}.$$

If J is infinite, $(a_n)_{n\in J}$ is decreasing. Hence it admits

$$\alpha := \inf_{n \in J} a_n$$

as its limit. For any $n \in J$, $\sup_{m \in I_{>n}} a_m = a_n$. So

$$\lim_{n \in I, n \to +\infty} \sup_{n \in I} a_n = \inf_{n \in J} \sup_{m \in I_{\geq n}} a_m = \alpha.$$

Suppose that J is finite. Pick $n_0 \in I$ such that $\forall j \in J, j < n_0$. We construct in a recursive way a strictly increasing sequence $(n_k)_{k \in \mathbb{N}}$ in I as follows: Suppose $n_0 < n_1 < \cdots < n_k$ have been chosen. Since G is totally ordered, there exists $i \in I$ such that $n_0 \le i \le n_k$ and

$$a_i = \max\{a_j \mid j \in I, n_0 \le j \le n_k\}.$$

Since $i \notin J$, there exists $n_{k+1} \in I$, $n_{k+1} > i$ such that

$$a_{n_{k+1}} > a_i.$$

Note that $n_{k+1} > n_k$. Let

$$J_1 = \{ n_k \mid k \in \mathbb{N} \},\$$

 $(a_n)_{n\in J_1}$ is increasing, hence it admits

$$\beta := \sup_{n \in I} a_n$$

as its limit. For any $j \in I$ such that $j \geq n_0$, there exists $k \in \mathbb{N}$ such that $j \leq n_k$. Thus $a_j \leq a_{n_{k+1}} \leq \beta$. So $\limsup_{n \in I, n \to +\infty} a_n \leq \beta$. Moreover, since $J_1 \subseteq I$,

$$\beta = \lim_{n \in J_1, n \to +\infty} a_n = \limsup_{n \in J_1, n \to +\infty} a_n \le \limsup_{n \in I, n \to +\infty} a_n.$$

Therefore,

$$\beta = \lim \sup_{n \in I, n \to +\infty} a_n.$$

Partially Ordered Groups 1.3

Definition 1.3.1 Let (G, *) be a group, and \leq be a partial order on G. If

$$\forall (a, b, c) \in G^3, a < b \Rightarrow a * c < b * c \text{ and } c * a < c * b,$$

we say that $(G, *, \leq)$ is a **partially ordered group**. If in addition \leq is a total order, we say that $(G, *, \leq)$ is a **totally ordered group**. (Resp. semigroup, monoid.)

Example 1.3.2

$$(1)$$
 $(\mathbb{R},+,\leq)$.

$$(2) (\mathbb{R}_{>0}, \cdot, \leq).$$

$$(1) (\mathbb{R}, +, \leq). \quad (2) (\mathbb{R}_{>0}, \cdot, \leq). \quad (3) (\mathbb{N} \setminus \{0\}, \cdot, |).$$

Remark 1.3.3

(1) If (G, *) is a partially ordered group, then

$$\forall (a, b, c) \in G^3, a \le b \Rightarrow a * c \le b * c, c * a \le c * b.$$

(2) $(G, \hat{*}, \leq)$ is a partially ordered group.

Resp. semigroup, monoid.

Proposition 1.3.4

Let $(G, *, \leq)$ be a partially ordered semigroup. Let $(a_1, a_2, b_1, b_2) \in G^4$.

- (1) If $a_1 \le a_2$, $b_1 \le b_2$, then $a_1 * b_1 \le a_2 * b_2$.
- (2) If $a_1 < a_2$, $b_1 \le b_2$, then $a_1 * b_1 < a_2 * b_2$.
- (3) If $a_1 \le a_2$, $b_1 < b_2$, then $a_1 * b_1 < a_2 * b_2$.

Proof

- $(1) a_1 * b_1 \le a_2 * b_1 \le a_2 * b_2$
- (2),(3) At least one of the above inequality is strict.

Proposition 1.3.5 Let $(G, *, \leq)$ be a partially ordered semigroup, $(x, y, a) \in$ G^3 . Assume that, either \leq is a total order, or (G,*) is a monoid and $a \in G^{\times}$. Then the following conditions are quivalent:

- (1) $x \leq y$.
- (2) $x * a \le y * a$.
- (3) $a * x \le a * y$.

Proof By definition, $(1) \Rightarrow (2)$, $(1) \Rightarrow (3)$. Assume that $x * a \le y * a$. If (G, *)

is a monoid and $a \in G^{\times}$, then

$$x = (x * a) * \iota(a) \le (y * a) * \iota(a) = y.$$

Suppose that \leq is a total order. If $x \not\leq y$, then x > y and x * a > y * a, contradiction.

Corollary 1.3.6 A totally ordered semigroup satisfies the left and right cancellation laws.

Proof Let $(G, *, \leq)$ be a totally ordered semigroup. Let $(x, y, a) \in G^3$ such that x * a = y * a. Then

$$x * a \le y * a, y * a \le x * a.$$

Hence $x \leq y$ and $y \leq x$.

Proposition 1.3.7 Let $(G, *, \leq)$ be a partially ordered monoid. Then,

$$\iota:G^{\times}\longrightarrow G^{\times}$$

is strictly decreasing.

Proof Let $(x,y) \in G^{\times} \times G^{\times}$ such that x < y. Then

$$e = \iota(x) * x < \iota(x) * y,$$

where e is the neutual element of (G, *). Thus

$$e * \iota(y) < \iota(x) * y * \iota(y).$$

That is $\iota(y) < \iota(x)$.

Proposition 1.3.8 Let $(G, *, \leq)$ be a totally ordered group, and e be the neutual element of (G, *). If $G \neq \{e\}$, then G has neither a greatest element nor a least element.

Proof Suppose that (G, \leq) has a greastest element β . We first show by contradiction that $\beta \neq e$. Suppose that $e = \max G$. Pick $x \in G, x \neq e$. Then x < e.

Thus $\iota(x) > \iota(e)$. Contradiction. If $\beta > e, \beta * \beta > e * \beta = \beta$, contradiction, too.

1.4 **Enhancement**

Definition 1.4.1 Let (S, *, <) be a partially ordered semigroup. Suppose that (S, \leq) has no greastest element and has no least element. Let \perp and \top be formal elements and let

$$\bar{S} = S \cup \{\bot, \top\}.$$

We extend \leq to \bar{S} by letting $\perp < x < \top, \forall x \in S$. We extend * to a mapping

$$(\bar{S} \times \bar{S}) \setminus \{(\bot, \top), (\top, \bot)\} \longrightarrow \bar{S},$$

such that

$$\forall x \in S \cup \{\top\}, x * \top = \top * x = \top.$$

$$\forall x \in S \cup \{\bot\}, x * \bot = \bot * x = \bot.$$

 $\top * \bot$ and $\bot * \top$ are NOT DEFINED. $(\bar{S}, *, \leq)$ is called the **enhancement** of $(S, *, \leq)$. If A and B are subset of \bar{S} , we denote by A * B the set

$$\{x * y \mid (x, y) \in A \times B, \{x, y\} \neq \{\bot, \top\}\}.$$

Example 1.4.2

- $(1) (\mathbb{R}, +, \leq), \bar{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}.$
- (2) $(\mathbb{R}_{>0},\cdot,\leq), \bar{\mathbb{R}}_{>0} = \mathbb{R}_{>0} \cup \{0,+\infty\}.$

Remark 1.4.3

- (1) $\forall (a,b) \in \bar{S} \times \bar{S}, a * b \text{ is defined if and only if } b * a \text{ is defined.}$
- (2) If * is commutative, and a * b is defined, then a * b = b * a.

Definition 1.4.4 Let a_0, \ldots, a_n be elements of \bar{S} , if $a_0 * \cdots * a_n$ is defined, and $(a_0,\ldots,a_{n-1})*a_n$ is also defined, then we let $a_0*\cdots*a_n=(a_0*\cdots*a_{n-1})*a_n$.

Proposition 1.4.5 Let a_0, \ldots, a_n be elements of \bar{S} . For any $i \in \{0, \ldots, n\}$, $a_0 * \cdots * a_{i-1} * (a_i * a_{i+1}) * \cdots * a_n$ is defined if and only if $a_0 * \cdots * a_n$ is defined. Moreover, $a_0 * \cdots * a_n = a_0 * \dots (a_{i-1} * a_i) * \cdots * a_n$.

Proof Both terms are defined is and only if

$$\{\top,\bot\} \not\subseteq \{a_0,\ldots,a_n\}.$$

If $\bot \in \{a_0, \ldots, a_n\}$, then both terms are equal to \bot . If $\top \in \{a_0, \ldots, a_n\}$, then both terms are equal to \top .

Proposition 1.4.6 Let $(S, *, \leq)$ be a partially ordered semigroup. Let $(a, b) \in \bar{S} \times \bar{S}$. If a < b, then for any $c \in S$, a * c < b * c, c * a < c * b.

Proof If $\{a,b\} \subseteq S$, this follows from the definition of a partially ordered semigroup. If $a=\bot$, then $b>\bot$. $a*c=c*a=\bot$. $b*c\ne\bot$, $c*b\ne\bot$. So a*c< b*c, c*a< c*b. If $\{a,b\}\subseteq S$ and $a\ne\bot$, then $b=\top$, $b*c=c*b=\top$. $a*c\ne\top$, $c*a\ne\top$. So a*c< b*c, c*a< c*b.

Proposition 1.4.7

Let $(S, *, \leq)$ be a partially ordered semigroup and $(x, y, a, b) \in \bar{S}^4$.

- (1) If x < a and y < b, then x * y and a * b are defined, and x * y < a * b.
- (2) If $x \le a, y \le b$ and x * y and a * b are defined, $x * y \le a * b$.

Proof

(1) Since $x < a, y < b, \top \notin \{x, y\}, \bot \notin \{a, b\}$. So x * y and a * b are defined. If $\top \in \{a, b\}$, then $a * b = \top$. Since $\top \notin \{x, y\}, x * y \neq \top$, so x * y < a * b. If $\bot \in \{x, y\}$, then $x * y = \bot$. Since $\bot \notin \{a, b\}, a * b \neq \bot$. So x * y < a * b. If $\top \notin \{a, b\}, \bot \notin \{x, y\},$, then $\{x, y, a, b\} \subseteq S$. So x * y < x * b < a * b. (2) If $\top \in \{x, y\}$, then $\top \in \{a, b\}$, so $x * y = \top = a * b$. If $\bot \in \{x, y\}$, then $\bot \in \{a, b\}$, so $x * y = \bot = a * b$. If $\top \in \{x, y\}$, then $x * y = \bot \le a * b$. If $\bot \in \{x, y\}$, then $x * y \ge \top = a * b$. If $\{x, y, a, b\} \subseteq S$, then $x * y \le a * y \le a * b$. \Box

Proposition 1.4.8 Let $(S,*,\leq)$ be a partially ordered monoid and $e\in S$ be the neutual element. Let $(a,b)\in \bar{S}\times \bar{S}$, with $a\in S^\times\cup\{\bot,\top\}$. Then the following conditions are equivalent.

- (1) a < b.
- (2) $\iota(a) * b$ is defined and $e < \iota(a) * b$. (Where $\iota(\bot) = \top, \iota(\top) = \bot$.)
- (3) $b * \iota(a)$ is defined and $e < b * \iota(a)$.

Proof Suppose that a < b. Then a and b cannot be both \top or be both \bot . Hence $\{\iota(a),b\} \neq \{\bot,\top\}$. Therefore, $\iota(a)*b$ and

$$b * \iota(a)$$

are defined. If $\{a,b\} \subseteq S$, then $e = \iota(a) * a < \iota(a) * b$, $e = a * \iota(a) < b * \iota(a)$. If $a = \bot$, then $\iota(a) = \top$ and $\iota(a) * b = b * \iota(a) = \top$. So $e < \iota(a) * b$, $e < b * \iota(a)$. If $b = \top$, then $\iota(a) * b = b * \iota(a) = \top > e$.

Assume (2). $\iota(a) * b$ is defined and $e < \iota(a) * b$. If $a \in S$,

$$a = a * e < a * (\iota(a) * b) = (a * \iota(a)) * b = e * b = b.$$

If $a = \bot, \iota(a) = \top, b \neq \bot$, so a < b. If $a = \top, \iota(a) = \bot, \iota(a) * b = \bot < e$, contradiction.

Corollary 1.4.9 Let $(S, *, \leq)$ be a partially ordered monoid and $(a, b) \in (S^{\times} \cup \{\bot, \top\})^2$. Then a < b if and only if $\iota(a) > \iota(b)$.

Proof If a < b, then $\iota(a) * b$ is defined and

$$e < \iota(a) * b = \iota(a) * \iota(\iota(b)).$$

So $\iota(b) < \iota(a)$.

Lemma 1.4.10 Let $(S, *, \leq)$ be a partially ordered monoid. Let $A \subseteq \bar{S}, b \in S^{\times} \cup \{\bot, \top\}$. Then the following statements hold:

(1) If $\sup(A)*b$ is defined, then $A*\{b\}$ has a supremum in \bar{S} , and

$$\sup(A * \{b\}) = \sup(A) * b.$$

(2) If $\inf(A) * b$ is defined, then $A * \{b\}$ has a infimum in \bar{S} , and

$$\inf(A * \{b\}) = \inf(A) * b.$$

(3) If $b * \sup(A)$ is defined, then $A * \{b\}$ has a supremum in \bar{S} , and

$$\sup(\{b\} * A) = b * \sup(A).$$

(4) If $b * \inf(A)$ is defined, then $A * \{b\}$ has a infimum in \bar{S} , and

$$\inf(\{b\} * A) = b * \inf(A).$$

Proof

$$a = (a * b) * \iota(b) \le M * \iota(b).$$

We then deduce $\sup(A) \leq M * \iota(b)$. Hence $\sup(A) * b \leq M * \iota(b) * b$. Therefore, $\sup(A) * b$ is the supremum of $A * \{b\}$.

Remark 1.4.11 Consider

$$S = \{0\} \cup [2, 3[\cup [4, +\infty[\subseteq \mathbb{R}.$$

$$A = [2, 3[, \sup(A) = 4, A + \{2\} = [4, 5[, \sup(A + \{2\}) = 5, \sup(A) + 2 = 6.$$

Theorem 1.4.12 Let $(S, *, \leq)$ be a partially ordered group. Let A and B be subsets of \bar{S} .

(1) If $\sup(A) * \sup(B)$ is defined, then A * B has a supremum in \bar{S} and

$$\sup(A*B) = \sup(A)*\sup(B).$$

(2) If $\inf(A) * \inf(B)$ is defined, then A * B has a infimum in \bar{S} and

$$\inf(A * B) = \inf(A) * \inf(B).$$

Proof For any $(a, b) \in A \times B$, if a * b id defined, then

$$a * b \le \sup(A) * \sup(B)$$
.

So $\sup(A) * \sup(B)$ is an upper bound of A * B. If $\bot \in \{\sup(A), \sup(B)\}$, then A * B has \bot as an upper bound. So $\sup(A * B) = \bot = \sup(A) * \sup(B)$. We suppose that $\bot \notin \{\sup(A) * \sup(B)\}$. Thus $A \setminus \{\bot\} \neq \varnothing$, $B \setminus \{\bot\} \neq \varnothing$. Suppose that $\sup(A) = \top$. Take $b \in B \setminus \{\bot\}$.

$$\sup(A * B) \ge \sup(A) * \{b\} = \sup(A) * b = \top.$$

So $\sup(A*B) = \top = \sup(A)*\sup(B)$. Similarly, if $\sup(B) = \top$, then

$$\sup(A * B) = \top = \sup(A) * \sup(B).$$

Suppose that $\top \notin \{\sup(A), \sup(B)\}$. For any $b \in B$, $\sup(A) * b$ is defined since $\sup(A) \in S$. Hence

$$\sup(A) * \{b\} = \sup(A) * b.$$

$$A*B=\bigcup_{b\in B}A*\{b\},$$

$$\{\sup(A) * b \mid b \in B\} = \{\sup(A)\} * B.$$

By the lemma, $\{\sup(A)\} * B$ has a supremum, which is $\sup(A) * \sup(B)$. So $\sup(A * B)$ exists, and is equal to

$$\{\sup(A * \{b\}) \mid b \in B\} = \sup(A) * \sup(B).$$

Corollary 1.4.13 Let $(S, *, \leq)$ be a partially ordered group. Let $f, g: X \longrightarrow \bar{S}$ be two mappings. Let

$$Y = \{x \in X \mid f(x) * g(x) \text{ is defined } \}.$$

Let

$$f * g : Y \longrightarrow \bar{S},$$

$$y \longmapsto f(y) * g(y).$$

(1) If $(\sup f) * (\sup g)$ is defined, and f * g has a supremum, then

$$\sup(f * g) \le \sup(f) * \sup(g).$$

(2) If $(\inf f) * (\inf g)$ is defined, and f * g has a infimum, then

$$\inf(f * g) \ge \inf(f) * \inf(g).$$

Proof Let A = f(X), B = g(X). By the theorem, A * B has a supremum, and

$$\sup(A * B) = \sup(A) * \sup(B).$$

Let

$$C = (f * g)(Y) = \{f(y) * g(y) \mid y \in Y\}.$$

One has

$$C \subseteq A * B = \{f(x) * g(y) \mid (x, y) \in X \times X, \ f(x) * g(y) \text{ is defined } \}.$$

So
$$\sup(C) \le \sup(A * B)$$
.

Theorem 1.4.14 Let $(S,*,\leq)$ be a partially ordered group. We suppose that \bar{S} is order complete. Let X be a set and $f,g:X\longrightarrow \bar{S}$ be mappings. Let \mathcal{F} be a filter on X that is non-degenerate. Suppose that $\forall x\in X, f(x)*g(x)$ is defined. Then

$$\limsup_{\mathcal{F}} (f * g) \leq \limsup_{\mathcal{F}} f * \limsup_{\mathcal{F}} g,$$

$$\limsup_{\mathcal{F}} (f * g) \geq \limsup_{\mathcal{F}} f * \liminf_{\mathcal{F}} g,$$

$$\liminf_{\mathcal{F}} (f * g) \geq \liminf_{\mathcal{F}} f * \liminf_{\mathcal{F}} g,$$

$$\liminf_{\mathcal{F}} (f * g) \leq \liminf_{\mathcal{F}} f * \limsup_{\mathcal{F}} g.$$

Provided that the term on the right hand side id defined.

Proof

(1)
$$\forall U \in \mathcal{F}$$
,

$$(f * g)^s(U) \le f^s(U) * g^s(U).$$

Provided that $f^s(U) * g^s(U)$ is defined. If $\limsup_{\mathcal{F}} f * \limsup_{\mathcal{F}} g$ is defined, then

$$\limsup_{\mathcal{F}} (f * g) = \inf_{U \in \mathcal{F}} (f * g)^s(U) \leq \inf_{U \in \mathcal{F}} \left[f^s(U) * g^s(U) \right].$$

$$\begin{split} \limsup_{\mathcal{F}} f * \limsup_{\mathcal{F}} g &= \left(\inf_{U \in \mathcal{F}} f^s(U)\right) * \left(\inf_{V \in \mathcal{F}} g^s(V)\right) \\ &= \inf_{(U,V) \in \mathcal{F} \times \mathcal{F}, \text{ defined}} \left(f^s(U) * g^s(V)\right) \end{split}$$

If $(U, V) \in \mathcal{F} \times \mathcal{F}$ is such that $f^s(U) * g^s(V)$ is defined, then

$$f^s(U)*g^s(V) \geq f^s(U\cap V)*g^s(U\cap V) \geq l$$

provided that $f^s(U \cap V) * g^s(U \cap V)$ is defined. If $f^s(U \cap V) * g^s(U \cap V)$ is not defined, then $\top \in \{f^s(U), g^s(V)\}$, so that

$$f^s(U) * g^s(V) = \top \ge l.$$

Therefore,

$$\limsup_{\mathcal{F}} f * \limsup_{\mathcal{F}} g \ge l \ge \limsup_{\mathcal{F}} f * g.$$

(2)

$$\limsup_{\mathcal{F}} f * g \ge \limsup_{\mathcal{F}} f * \liminf_{\mathcal{F}} g.$$

Let $U \in \mathcal{F}$. Suppose that $(f * g)^s(U) \neq \top$. $\forall V \in \mathcal{F}$, one has $\forall x \in U \cap V$,

$$(f * g)^s (U \cap V) \ge f(x) * g(x) \ge f(x) * g^i(U \cap V) \ge f(x) * g^i(V).$$

So

$$(f * g)^s(U) \ge f^s(U \cap V) * g^i(V),$$

provided that $f^s(U\cap V)*g^i(V)$ is defined. Taking the infimum which respect to U, we obtain

$$\limsup_{\mathcal{F}} f * g \ge \limsup_{\mathcal{F}} f * g^{i}(V),$$

provided that $\limsup_{\mathcal{F}} f * g^i(V)$ is defined. Taking the supremum with respect to V, we obtain

$$\limsup_{\mathcal{F}} f * g \ge \limsup_{\mathcal{F}} f * \liminf_{\mathcal{F}} g.$$

Corollary 1.4.15 Let $(S,*,\leq)$ be a partially ordered group, such that \bar{S} is order complete. Let $f,g:X\longrightarrow \bar{S}$ be mappings such that $\forall x\in X, f(x)*g(x)$ is defined. Let \mathcal{F} be a non-degenerate filter on X. Assume that g has a limit along \mathcal{F} .

(1)

$$\limsup_{\mathcal{F}} f * g = \limsup_{\mathcal{F}} f * \lim_{\mathcal{F}} g.$$

(2)

$$\liminf_{\mathcal{F}} f * g = \liminf_{\mathcal{F}} f * \lim_{\mathcal{F}} g.$$

Provided that the term on the right hand side is defined.

Proof

$$\limsup_{\mathcal{F}} f * g \leq \limsup_{\mathcal{F}} f * \limsup_{\mathcal{F}} g = \limsup_{\mathcal{F}} f * \lim_{\mathcal{F}} g.$$

$$\limsup_{\mathcal{F}} f * g \ge \limsup_{\mathcal{F}} f * \liminf_{\mathcal{F}} g = \limsup_{\mathcal{F}} f * \lim_{\mathcal{F}} g.$$

Example 1.4.16

(1)

$$\lim_{n \to +\infty} \sup \left((-1)^n + \frac{1}{n} \right) = \lim_{n \to +\infty} \sup (-1)^n = 1.$$
(2) For $a > 1$, let $a = 1 + b$. $a^n = (1 + b)^n \ge nb$. so

$$0 \le \frac{\sqrt{n}}{a^n} \le \frac{1}{b\sqrt{n}},$$

$$\lim_{n\to+\infty}\frac{\sqrt{n}}{a^n}.$$

$$\forall k \in \mathbb{N}_{\geq 1}, \lim_{n \to +\infty} \left(\frac{\sqrt{n}}{a^n}\right)^k.$$