Predicting Customer Churn and Retention Strategies README

Churn Prediction Project

This project involves data preprocessing, exploratory data analysis (EDA), and machine learning models (Logistic Regression, Decision Tree, Random Forest, and Gradient Boosting) for predicting customer churn in a telecom dataset. It uses Python and several data science libraries.

Requirements

Before running the project, ensure that the following dependencies are installed:

1. **Install dependencies**:

Use the following commands to install the necessary Python libraries:

```
"bash
pip install kagglehub
pip install kaggle
pip install pandas
pip install numpy
pip install seaborn
pip install matplotlib
pip install plotly
pip install scikit-learn
```

2. **Kaggle API Credentials**:

To access the Kaggle dataset, you need to set up Kaggle API credentials. Ensure that you have your `KAGGLE_USERNAME` and `KAGGLE_KEY` as environment variables:

```
```bash
export KAGGLE_USERNAME="your_kaggle_username"
export KAGGLE_KEY="your_kaggle_key"
.```
```

## ## Project Structure

- \*\*final\_complete\_code.py\*\*: The main Python script containing all steps: data cleaning, EDA, modeling, and evaluation.

- \*\*cleaned\_stage1.csv\*\*: Intermediate data after initial cleaning.
- \*\*cleaned\_stage2.csv\*\*: Final cleaned dataset after handling outliers and missing values.
- \*\*monthly\_charges\_summary\_3\_months.csv\*\*: Summary statistics for monthly charges, churn, and customer counts in 3-month intervals.
- \*\*monthly charges summary 6 months.csv\*\*: Similar to the above but for 6-month intervals.
- \*\*tenure\_bin\_counts\_monthly\_charges\_summary.csv\*\*: Contains customer counts, churn percentage, and monthly charges by tenure bin.

## How to Run the Code

1. \*\*Clone the Repository\*\*:

Clone this repository to your local machine:

```
"bash git clone https://github.com/your_username/churn-prediction.git cd churn-prediction
```

#### 2. \*\*Dataset Download\*\*:

The dataset used in this project is `WA\_Fn-UseC\_-Telco-Customer-Churn.csv` from Kaggle. Ensure you have Kaggle API credentials set up (as mentioned above) to download the dataset by running:

```
```bash
!kaggle datasets download -d blastchar/telco-customer-churn -p ./ --unzip
```

3. **Run the Script**:

Once the dataset is downloaded, you can run the main script ('final complete code.py'):

```
```bash
python final_complete_code.py
...
```

## 4. \*\*Results\*\*:

- The script performs data cleaning, visualizes key trends, and evaluates various machine learning models.
- The final outputs include models' performance metrics and various visualizations (such as feature importance and churn rates).

### ## Key Sections of the Code

## ### 1. \*\*Data Cleaning\*\*:

- Duplicate and missing data are handled.
- Columns with categorical values are encoded.
- Outliers are detected and removed based on the IQR method.

# ### 2. \*\*Exploratory Data Analysis (EDA)\*\*:

- Plots like histograms, bar charts, and box plots are used to explore features like `MonthlyCharges`, `Tenure`, and `Churn`.

# ### 3. \*\*Modeling\*\*:

- Models such as Logistic Regression, Decision Tree, Random Forest, and Gradient Boosting are trained.
  - Hyperparameter tuning is performed using GridSearchCV.
  - The models are evaluated based on accuracy, precision, recall, F1-score, and AUC.

## ### 4. \*\*Results\*\*:

- Feature importance is analyzed to understand the key drivers of customer churn.
- The best-performing models are evaluated using precision-recall curves and ROC curves.

#### ## Notes

- \*\*Customization\*\*: If you want to use a different dataset, make sure to adjust the column names and any preprocessing steps accordingly.
- \*\*Further Improvements\*\*: You can experiment with other models, such as Support Vector Machines (SVM) or XGBoost, for potentially better performance.

#### ## Conclusion

This project demonstrates a comprehensive workflow for predicting customer churn, from data cleaning and visualization to model development and evaluation. You can further extend it by adding new features or fine-tuning the models.