Chapitre 2: Comparaison de suites

Toutes les suites considérées dans ce chapitre sont à valeurs réelles.

1 Relation de négligeabilité

Définition 1

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites.

On dit que $(u_n)_{n\in\mathbb{N}}$ est **négligeable** devant $(v_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty$ s'il existe un entier n_0 et une suite $(\epsilon_n)_{n\in\mathbb{N}}$ qui converge vers 0 tels que

$$\forall n \geqslant n_0 \quad u_n = \epsilon_n v_n.$$

On notera $u_n = \underset{n \to +\infty}{o} (v_n)$.

Remarque 1

- 1. Parfois, on omettra le « $n \rightarrow +\infty$ » et on écrira seulement $u_n = o(v_n)$.
- 2. \triangle La notation « petit o » (appelé notation de Landau) est un abus d'écriture : $o(v_n)$ ne désigne pas une suite particulière mais toute suite possédant la propriété d'être négligeable devant $(v_n)_{n\in\mathbb{N}}$. Ainsi, si $u_n=o(v_n)$ et $w_n=o(v_n)$ on n'a pas nécessairement $u_n=w_n$!

Exemple 1

1. $n = o(n^2)$.

En effet,

$$\forall n \in \mathbb{N}^*, \quad n = \frac{1}{n} \times n^2$$

$$et \lim_{n \to +\infty} \frac{1}{n} = 0.$$

2. $\sqrt{n} = o(n^2)$. En effet.

$$\forall n \in \mathbb{N}^*, \quad n = \frac{1}{n\sqrt{n}} \times n^2$$

$$et \lim_{n \to +\infty} \frac{1}{n\sqrt{n}} = 0.$$

3. $e^{-n} = o(1)$.

En effet,

$$\forall n \in \mathbb{N}, \quad e^{-n} = e^{-n} \times 1$$

$$et \lim_{n \to +\infty} e^{-n} = 0.$$

- 4. Plus généralement $u_n = o(1)$ si et seulement si la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0:
 - $si \lim_{n \to +\infty} u_n = 0$ alors, en prenant pour tout $n \in \mathbb{N}$, $\varepsilon_n = u_n$ on voit que $u_n = o(1)$.
 - si $u_n = o(1)$ alors il existe un entier n_0 et une suite $(\epsilon_n)_{n \in \mathbb{N}}$ qui converge vers 0 tels que

1

$$\forall n \geqslant n_0 \quad u_n = \epsilon_n \times 1$$

 $donc \lim_{n \to +\infty} u_n = 0.$

Remarque 2

 $Si \lim_{n \to +\infty} u_n = \ell \in \mathbb{R} \ alors \lim_{n \to +\infty} (u_n - \ell) = 0 \ donc \ u_n - \ell = o(1) \ ou \ encore \ u_n = \ell + o(1).$

Réciproquement si $u_n = \ell + o(1)$ où $\ell \in \mathbb{R}$ alors $\lim_{n \to +\infty} u_n = \ell$.

Test 1 (Voir la solution.)

Que signifie «
$$u_n = o(0)$$
 »?

Test 2 (Voir la solution.)

Montrer que
$$\frac{1}{n} = o\left(\frac{1}{\sqrt{n}}\right)$$
.

Proposition 1 (Caractérisation)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites. Si, à partir d'un certain rang $v_n\neq 0$ alors

$$u_n = \underset{n \to +\infty}{o}(v_n) \Longleftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 0.$$

Démonstration: Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites et supposons qu'à partir d'un certain rang $v_n\neq 0$.

• Supposons que $u_n = \underset{n \to +\infty}{o} (v_n)$. Par définition, cela signifie qu'il existe un entier n_0 et une suite $(\varepsilon_n)_{n \in \mathbb{N}}$ qui converge vers 0 tels que

$$\forall n \geqslant n_0 \quad u_n = \epsilon_n v_n.$$

De plus, il existe un rang n_1 à partir duquel $v_n \neq 0$. Donc

$$\forall n \geqslant \max(n_0, n_1) \quad \frac{u_n}{v_n} = \epsilon_n.$$

Ainsi,

$$\lim_{n\to+\infty}\frac{u_n}{v_n}=\lim_{n\to+\infty}\epsilon_n=0.$$

• Supposons que $\lim_{n\to+\infty}\frac{u_n}{v_n}=0$ et montrons que $u_n=\underset{n\to+\infty}{o}(v_n)$. Il existe un rang n_1 tel que

$$\forall n \geqslant n_1 \quad v_n \neq 0.$$

Donc, pour tout $n \ge n_1$, on a

$$u_n = \frac{u_n}{v_n} \times v_n = \epsilon_n v_n$$

où
$$\epsilon_n = \frac{u_n}{v_n}$$
. Or $\lim_{n \to +\infty} \epsilon_n = \lim_{n \to +\infty} \frac{u_n}{v_n} = 0$ donc $u_n = \underset{n \to +\infty}{o} (v_n)$.

Exemple 2

Dans chaque cas déterminer laquelle des deux suites est négligeable devant l'autre :

1. $u_n = n^2$ et $v_n = n^3$.

Les termes de la suite $(v_n)_{n\in\mathbb{N}}$ sont non nuls à partir du rang 1 et

$$\forall n \geqslant 1 \quad \frac{u_n}{v_n} = \frac{1}{n}.$$

Comme $\lim_{n\to+\infty} \frac{u_n}{v_n} = 0$, on a $u_n = o(v_n)$.

2. $u_n = \ln(n)$ et $v_n = n^2$

Les termes de la suite $(v_n)_{n\in\mathbb{N}}$ sont non nuls à partir du rang 1 et

$$\forall n \geqslant 1 \quad \frac{u_n}{v_n} = \frac{\ln(n)}{n^2}.$$

Par croissance comparée, $\lim_{n\to+\infty} \frac{u_n}{v_n} = 0$ donc $u_n = o(v_n)$.

Test 3 (Voir la solution.)

Dans chaque cas déterminer laquelle des deux suites est négligeable devant l'autre :

1.
$$u_n = 5^n$$
 et $v_n = n^3$.

2.
$$u_n = \ln(n)^7$$
 et $v_n = n$

3.
$$u_n = n^a$$
 et $v_n = n^b$ avec $0 < a < b$.

Plus généralement, les croissances comparées se traduisent en terme de négligeabilité par

2

Proposition 2 (Croissances comparées)

Soient q > 1, a > 0 et b > 0 des réels. On a

•
$$\ln(n)^b = \underset{n \to +\infty}{o}(n^a),$$

•
$$n^a = \underset{n \to +\infty}{o} (q^n),$$

•
$$\ln(n)^b = \underset{n \to +\infty}{o} (q^n).$$

Exemple 3

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\forall n \in \mathbb{N}, u_n = n^5 + n + 1 \text{ et } v_n = e^n + 3n^2 + 5.$$

Les deux suites sont à termes strictement positifs donc non nuls et pour tout $n \in \mathbb{N}$ on a

$$\frac{u_n}{v_n} = \frac{n^5 + n + 1}{e^n + 3n^2 + 5}.$$

Il s'agit d'une forme indéterminée mais on peut lever l'indétermination en factorisant numérateur et dénominateur par leur terme dominant :

$$\frac{u_n}{v_n} = \frac{n^5 \left(1 + \frac{1}{n^4} + \frac{1}{n^5}\right)}{e^n \left(1 + 3\frac{n^2}{e^n} + \frac{5}{e^n}\right)} = \frac{n^5}{e^n} \times \frac{1 + \frac{1}{n^4} + \frac{1}{n^5}}{1 + 3\frac{n^2}{e^n} + \frac{5}{e^n}}.$$

 $Or \lim_{n \to +\infty} \left(1 + \frac{1}{n^4} + \frac{1}{n^5}\right) = 1 \text{ et } \lim_{n \to +\infty} \left(1 + 3\frac{n^2}{e^n} + \frac{5}{e^n}\right) = 1 \text{ car } \lim_{n \to +\infty} \frac{n^2}{e^n} = \lim_{n \to +\infty} \frac{5}{e^n} = 0. \text{ Par le th\'eor\`eme d'op\'eration sur les limites, on en d\'eduit que}$

$$\lim_{n \to +\infty} \frac{1 + \frac{1}{n^4} + \frac{1}{n^5}}{1 + 3\frac{n^2}{e^n} + \frac{5}{e^n}} = 1$$

puis, par croissance comparée, $\lim_{n\to+\infty} \frac{n^5}{e^n} = 0$.

Finalement, par produit on en déduit que $\lim_{n\to+\infty} \frac{u_n}{v_n} = 0$ donc $u_n = o(v_n)$.

Test 4 (Voir la solution.)

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\forall n \ge 1$$
, $u_n = \frac{1}{n^2} + \frac{1}{n} + \frac{1}{3^n}$ et $v_n = \frac{1}{e^n} + \frac{1}{2^n} + \frac{1}{\ln n}$

Montrer que $u_n = o(v_n)$.

Proposition 3 (Opérations sur les *o*)

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites et $(\lambda, \mu) \in \mathbb{R}^2$.

- 1. (*Transitivité*) Si $u_n = o(v_n)$ et $v_n = o(w_n)$ alors $u_n = o(w_n)$.
- 2. (*Combinaison linéaire*) Si $u_n = o(w_n)$ et $v_n = o(w_n)$ alors $\lambda u_n + \mu v_n = o(w_n)$.
- 3. (Multiplication par un réel **non nul**) Si $\lambda \neq 0$ et $u_n = o(v_n)$ alors $u_n = o(\lambda v_n)$.
- 4. (*Produit*) Si $u_n = o(v_n)$ alors $u_n w_n = o(v_n w_n)$.

Démonstration: Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites et $(\lambda,\mu)\in\mathbb{R}^2$.

- 1. Supposons que $u_n = o(v_n)$ et $v_n = o(w_n)$.
 - Comme $u_n = o(v_n)$, il existe donc un entier naturel n_1 et une suite $(\epsilon_n)_{n \in \mathbb{N}}$ qui converge vers zéro tels que

$$\forall n \geqslant n_1 \quad u_n = \epsilon_n v_n.$$

• Comme $v_n = o(w_n)$, il existe donc un entier naturel n_2 et une suite $(\omega_n)_{n \in \mathbb{N}}$ qui converge vers zéro tels que

$$\forall n \geqslant n_2 \quad v_n = \omega_n w_n.$$

Ainsi,

$$\forall n \ge \max(n_1, n_2), \quad u_n = \epsilon_n u_n = (\epsilon_n \omega_n) w_n$$

avec $\lim_{n \to +\infty} \epsilon_n \omega_n = 0$. Ainsi $u_n = o(w_n)$.

- 2. Supposons que $u_n = o(w_n)$ et $v_n = o(w_n)$.
 - Comme $u_n = o(w_n)$, il existe donc un entier naturel n_1 et une suite $(\varepsilon_n)_{n \in \mathbb{N}}$ qui converge vers zéro tels que

$$\forall n \geqslant n_1 \quad u_n = \epsilon_n w_n.$$

• Comme $v_n = o(w_n)$, il existe donc un entier naturel n_2 et une suite $(\tau_n)_{n \in \mathbb{N}}$ qui converge vers zéro tels que

$$\forall n \geqslant n_2 \quad v_n = \tau_n w_n.$$

Ainsi,

$$\forall n \geqslant \max(n_1, n_2), \quad \lambda u_n + \mu v_n = \lambda \varepsilon_n w_n + \mu \tau_n w_n = (\lambda \varepsilon_n + \mu \tau_n) w_n$$

avec $\lim_{n \to +\infty} (\lambda \epsilon_n + \mu \tau_n) = 0$. Ainsi $\lambda u_n + \mu v_n = o(w_n)$.

- 3. Voir test
- 4. Voir test

Exemple 4

Comparons les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\forall n \in \mathbb{N}$$
 $u_n = n^2 e^n + 3^n$ et $v_n = 4^n$.

Comme
$$\frac{3^n}{4^n} = \left(\frac{3}{4}\right)^n$$
 et que $\lim_{n \to +\infty} \left(\frac{3}{4}\right)^n = 0$ on $a: 3^n = o(4^n)$.

D'autre part, comme $\frac{e}{4} < 1$ par croissance comparée on a $\lim_{n \to +\infty} \frac{n^2}{\frac{4^n}{e^n}} = \lim_{n \to +\infty} n^2 \left(\frac{e}{4}\right)^n = 0$ donc $n^2 = o\left(\frac{4^n}{e^n}\right)$.

On en déduit par produit que $n^2e^n = o(4^n)$ puis par somme que $u_n = o(4^n)$.

Remarque 3

1. En général, on ne garde pas les constantes multiplicatives à l'intérieure du o grâce au troisième point. Par exemple, si $u_n = o(2n)$ alors $u_n = o(\frac{1}{2}2n) = o(n)$.

De même, si $u_n = o(2)$ alors $u_n = o(1)$.

2. En cas de doutes, il est conseillé de revenir à la définition ou à la caractérisation pour s'assurer que l'opération que l'on souhaite effectuer est licite.

Test 5 (Voir la solution.)

En revenant à la définition de la relation de négligeabilité, démontrer les points 3 et 4 de la proposition.

2 Relation d'équivalence

2.1 Généralités

Définition 2

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites.

On dit que $(u_n)_{n\in\mathbb{N}}$ est **équivalente** à $(v_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty$ s'il existe un entier n_0 et une suite $(\epsilon_n)_{n\in\mathbb{N}}$ qui converge vers 1 tels que

$$\forall n \geqslant n_0 \quad u_n = \epsilon_n v_n.$$

On notera $u_n \underset{n \to +\infty}{\sim} v_n$.

Remarque 4

Parfois, on omettra le « $n \rightarrow +\infty$ » et on écrira seulement $u_n \sim v_n$.

Exemple 5

 $u_n \underset{n \to +\infty}{\sim} 0$ si et seulement si u_n est nulle à partir d'un certain rang.

On n'écrira donc jamais cela!

Exemple 6

On a
$$n+1 \sim n$$
.

En effet, pour tout $n \in \mathbb{N}^*$ on a

$$n+1=\frac{n+1}{n}\times n$$
 et $\lim_{n\to+\infty}\frac{n+1}{n}=1$.

Proposition 4 (Caractérisation)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites. On a

$$u_n \underset{n \to +\infty}{\sim} v_n \Longleftrightarrow u_n = v_n + o(v_n).$$

En pratique, si à partir d'un certain rang $v_n \neq 0$ alors

$$u_n \underset{n \to +\infty}{\sim} v_n \Longleftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 1.$$

Exemple 7

Si pour tout $n \ge 1$, $u_n = e^n + n^2 + 2 - \frac{1}{n}$ alors $u_n \underset{n \to +\infty}{\sim} e^n$. En effet, $\lim_{n \to +\infty} \frac{u_n}{e^n} = 1$.

Remarquons que ce n'est pas le seul équivalent possible : par exemple $u_n \underset{n \to +\infty}{\sim} e^n + n^2$. L'intérêt d'un équivalent est d'avoir une expression la plus simple possible de l'ordre de grandeur de la suite c'est pourquoi on préférera écrire le premier équivalent.

En revanche, l'équivalent $u_n - e^n \sim n^2$ apporte une information supplémentaire car il signifie que

$$u_n - e^n = n^2 + o(n^2)$$

alors que l'équivalent $u_n \sim e^n + n^2$ signifie

$$u_n = e^n + n^2 + o(e^n + n^2).$$

En particulier, $u_n-e^n\underset{n\to+\infty}{\sim} n^2$ ne se déduit pas de $u_n\underset{n\to+\infty}{\sim} e^n+n^2$ (on n'ajoute pas les équivalents membre à membre!)

Test 6 (Voir la solution.)

On considère la suite définie par $\forall n \ge 1$, $u_n = e^n + n^2 + n^3$.

- 1. Montrer que $u_n \underset{n \to +\infty}{\sim} e^n$. 2. Montrer que $u_n \underset{n \to +\infty}{\sim} e^n + n^2$. 3. A-t-on $u_n e^n \underset{n \to +\infty}{\sim} n^2$?

Proposition 5 (Opérations sur les équivalents)

Soient $(t_n)_{n\in\mathbb{N}}$, $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ quatre suites et soit $k\in\mathbb{N}$.

- 1. (*Symétrie*) Si $u_n \underset{n \to +\infty}{\sim} v_n$ alors $v_n \underset{n \to +\infty}{\sim} u_n$.
- 2. (*Transitivité*) Si $u_n \underset{n \to +\infty}{\sim} v_n$ et $v_n \underset{n \to +\infty}{\sim} w_n$ alors $u_n \underset{n \to +\infty}{\sim} w_n$.
- 3. (*Produit*) Si $u_n \underset{n \to +\infty}{\sim} v_n$ et $t_n \underset{n \to +\infty}{\sim} w_n$ alors $t_n u_n \underset{n \to +\infty}{\sim} v_n w_n$.
- 4. (Inverse) Si $u_n \underset{n \to +\infty}{\sim} v_n$ et $t_n \underset{n \to +\infty}{\sim} w_n$ avec $t_n \neq 0$ et $w_n \neq 0$ à partir d'un certain rang alors
- 5. (*Puissance*) Si $u_n \underset{n \to +\infty}{\sim} v_n$ alors $u_n^k \underset{n \to +\infty}{\sim} v_n^k$.
- 6. Si $u_n \underset{n \to +\infty}{\sim} v_n$ alors $|u_n| \underset{n \to +\infty}{\sim} |v_n|$.

Démonstration: Les points 1,2 et 6 sont laissés en exercice. Soient $(t_n)_{n\in\mathbb{N}}$, $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ quatre suites et soit $k \in \mathbb{N}$.

- 3. Supposons que $u_n \underset{n \to +\infty}{\sim} v_n$ et $t_n \underset{n \to +\infty}{\sim} w_n$.
 - Comme $u_n \underset{n \to +\infty}{\sim} v_n$, il existe un entier naturel n_1 et une suite $(\epsilon_n)_{n \in \mathbb{N}}$ convergeant vers 1 tels que

$$\forall n \geqslant n_1, \quad u_n = \epsilon_n v_n.$$

• Comme $t_n \underset{n \to +\infty}{\sim} w_n$, il existe un entier naturel n_2 et une suite $(\tau_n)_{n \in \mathbb{N}}$ convergeant vers 1 tels que

$$\forall n \geqslant n_2, \quad t_n = \tau_n w_n.$$

$$\forall n \ge \max(n_1, n_2), \quad t_n u_n = (\epsilon_n \tau_n) v_n w_n$$

où
$$\lim_{n\to+\infty} \epsilon_n \tau_n = 1$$
. Donc $t_n u_n \underset{n\to+\infty}{\sim} v_n w_n$.

5. Supposons que $u_n \underset{n \to +\infty}{\sim} v_n$. Il existe donc un entier naturel n_1 et une suite $(\varepsilon_n)_{n \in \mathbb{N}}$ convergeant vers 1 tels que

$$\forall n \geqslant n_1, \quad u_n = \epsilon_n v_n.$$

Par conséquent,

$$\forall n \geqslant n_1, \quad u_n^k = \epsilon_n^k v_n^k$$

et
$$\lim_{n \to +\infty} \epsilon_n^k = 1$$
. Ainsi $u_n^k \underset{n \to +\infty}{\sim} v_n^k$.

Remarque 5

- 1. Un cas particulier du point 3 en prenant $(t_n)_{n\in\mathbb{N}}=(w_n)_{n\in\mathbb{N}}$ donne : si $u_n\underset{n\to+\infty}{\sim}v_n$ alors $u_nw_n\underset{n\to+\infty}{\sim}v_nw_n$.
- 2. Les points 3 et 4 signifie que la relation d'équivalence est compatible avec le produit et l'inverse.
- 3. En cas de doutes, il est conseillé de revenir à la définition ou à la caractérisation pour s'assurer que l'opération que l'on souhaite effectuer est licite.
- 4. On n'additionne jamais des équivalents, on ne peut pas appliquer une fonction de part et d'autre d'une relation d'équivalence!

Test 7 (Incompatibilité avec l'addition, voir la solution.)

On considère

$$\forall n \ge 1$$
 $u_n = n + \sqrt{n}$ et $v_n = n + \ln(n)$.

- 1. Montrer que $u_n \underset{n \to +\infty}{\sim} v_n$.
- 2. A-t-on $u_n n \sim v_n n$?

Test 8 (Incompatibilité avec la composition, voir la solution.)

On considère

$$\forall n \in \mathbb{N}$$
 $u_n = n+1$ et $v_n = n$.

- 1. Montrer que $u_n \underset{n \to +\infty}{\sim} v_n$.
- 2. A-t-on $e^{u_n} \sim_{n \to +\infty} e^{v_n}$?

2.2 Calculer un équivalent

2.2.1 Les outils

Proposition 6 (Équivalents usuels)

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $\lim_{n\to+\infty}u_n=0$. On a les équivalents suivants :

$$\ln(1+u_n) \underset{n \to +\infty}{\sim} u_n$$
; $e^{u_n} - 1 \underset{n \to +\infty}{\sim} u_n$; $(1+u_n)^a - 1 \underset{n \to +\infty}{\sim} au_n \ (a \in \mathbb{R}^*)$

2. Soit $(a_0, a_1, \dots, a_k) \in \mathbb{R}^{k+1}$ avec $a_k \neq 0$. Alors

$$a_0 + a_1 n + \cdots + a_{k-1} n^{k-1} + a_k n^k \underset{n \to +\infty}{\sim} a_k n^k$$
.

Exemple 8

On a

$$n^2 + 3n^3 + n^4 \underset{n \to +\infty}{\sim} n^4$$

et

$$n^3 + 6n^5 \sim 6n^5$$

donc par compatibilité avec le quotient

$$\frac{n^2 + 3n^3 + n^4}{n^3 + 6n^5} \underset{n \to +\infty}{\sim} \frac{1}{6n}.$$

Proposition 7 (Limite et équivalent)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites.

- 1. Si $u_n \underset{n \to +\infty}{\sim} v_n$ et si $(u_n)_{n \in \mathbb{N}}$ converge vers $\ell \in \mathbb{R} \cup \{\pm \infty\}$ alors $(v_n)_{n \in \mathbb{N}}$ converge aussi vers ℓ .
- 2. Si $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ non nul alors $u_n \underset{n\to+\infty}{\sim} \ell$.

Exemple 9

On cherche la limite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N} \quad u_n = \frac{(3n+4)^3 (8n^{-2} + 2n^{-4})}{9n+10}.$$

- $9n + 10 \sim 9n + 10 \sim 9n$ d'après la proposition 6.
- $3n + 4 \sim 3n$ d'après la proposition 6. Ainsi, d'après la compatibilité par passage aux puissances, on a

$$(3n+4)^3 \sim_{n\to+\infty} (3n)^3$$
.

•
$$8n^{-2} + 2n^{-4} \underset{n \to +\infty}{\sim} 8n^{-2} \operatorname{car} \lim_{n \to +\infty} \frac{8n^{-2} + 2n^{-4}}{8n^{-2}} = 1.$$

Par compatibilité des équivalents avec le produit et le passage au quotient, on en déduit que

$$u_n \underset{n \to +\infty}{\sim} \frac{(3n)^3 \times 8n^{-2}}{9n} = 24.$$

En appliquant le premier point de la proposition ci-dessous (avec $v_n = 24$) on en déduit que $\lim_{n \to +\infty} u_n = 24$.

2.2.2 Quelques méthodes

• Pour déterminer un équivalent simple, on peut procéder de manière directe : souvent de la même manière que pour lever une forme indéterminée (factorisation par le coefficient dominant, multiplication par la quantité conjuguée...).

Exemple 10

1. On considère la suite suivante :

$$\forall n \in \mathbb{N}^*$$
, $u_n = n - \ln(n)^2$.

Pour déterminer un équivalent simple, on procède souvent de la même manière que pour lever une forme indéterminée. Ici, par exemple, on va factoriser par le terme prépondérant :

$$\forall n \in \mathbb{N}^* \quad u_n = n \left(1 - \frac{\ln(n)^2}{n} \right).$$

 $Par les croissances comparées, \lim_{n \to +\infty} \frac{\ln{(n)^2}}{n} = 0 \ donc \lim_{n \to +\infty} \left(1 - \frac{\ln{(n)^2}}{n}\right) = 1.$ Ainsi, $u_n \underset{n \to +\infty}{\sim} n$.

2. On considère la suite suivante :

$$\forall n \in \mathbb{N}^*, \quad u_n = \sqrt{n+1} - \sqrt{n-1}.$$

Ici, les deux termes sont du même ordre de grandeur. L'astuce consiste à multiplier par la quantité conjuguée $\sqrt{n+1} + \sqrt{n}$:

$$\forall n \in \mathbb{N}^*, \quad u_n = (\sqrt{n+1} - \sqrt{n-1}) \times \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1 - (n-1)}{\sqrt{n+1} + \sqrt{n}} = \frac{2}{\sqrt{n+1} + \sqrt{n}}$$

Puis

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{2}{\sqrt{n}\left(\sqrt{1+\frac{1}{n}}+1\right)} = \frac{1}{\sqrt{n}} \times \frac{2}{\sqrt{1+\frac{1}{n}}+1}$$

$$avec \lim_{n \to +\infty} \frac{2}{\sqrt{1 + \frac{1}{n} + 1}} = 1.$$

Ainsi,
$$u_n \underset{n \to +\infty}{\overset{\checkmark}{\sim}} \frac{1}{\sqrt{n}}$$
.

Test 9 (Voir la solution.)

Déterminer un équivalent simple de la suite définie par

$$\forall n \in \mathbb{N}^*$$
, $u_n = \sqrt{n^2 + 1} - \sqrt{n}$.

Test 10 (Voir la solution.)

Déterminer un équivalent simple de la suite définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n-1} - \frac{1}{n+1}.$$

 On peut aussi parfois déterminer un équivalent d'une suite (u_n)_{n∈N} à l'aide d'un encadrement par deux suites équivalentes entre elles.

Exemple 11

Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que

$$\forall n \in \mathbb{N}, \quad 2n+1 \leqslant \frac{u_n}{2} \leqslant 2n+2.$$

Montrons que $u_n \sim 4n$.

On a:

$$2n+1 \underset{n \to +\infty}{\sim} 2n$$
 et $2n+2 \underset{n \to +\infty}{\sim} 2n$.

En divisant par 2n membre à membre, on trouve

$$1 + \frac{1}{2n} \leqslant \frac{u_n}{4n} \leqslant 1 + \frac{1}{n}.$$

 $\begin{array}{l} \textit{Comme } \lim_{n \to +\infty} \left(1 + \frac{1}{2n}\right) = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right) = 1 \; \textit{on d\'eduit par encadrement que } \lim_{n \to +\infty} \frac{u_n}{4n} = 1 \\ \textit{c'est-\`a-dire que } u_n \mathop{\sim}_{n \to +\infty} 4n. \end{array}$

Test 11 (Voir la solution.)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que

$$\forall n \in \mathbb{N}, \quad n + \sqrt{n} \le u_n \le n + 2\sqrt{n}.$$

Montrer que $u_n \sim_{n \to +\infty} n$.

2.3 Les erreurs à ne pas commettre

- 1. Il ne faut pas sommer (ou soustraire) les équivalents (voir les tests 6 et 7).
- 2. On ne compose pas les équivalents : on ne passe pas à l'exponentielle, au logarithme dans un équivalent; cela est faux en général ou demande une justification! (voir test 8)
- 3. On ne passe pas à la « puissance *n* » dans un équivalent (où *n* est l'indice de la suite) : dans la proposition 5.5 l'exposant est indépendant de *n*! (Voir TD exercice 4)
- 4. On n'écrit jamais $u_n \underset{n \to +\infty}{\sim} 0$: lorsqu'on écrit cela, dans 99,99% des cas c'est qu'on a faux (dans le 0,01% de cas où c'est juste, c'est dire de façon inutilement compliqué que $u_n = 0$ à partir d'un certain rang...)
- 5. On ne supprime pas les constantes multiplicatives dans les équivalents (contrairement à ce qu'on a pu voir sur les *o*) :

$$u_n = o(2e^n) \Longleftrightarrow u_n = o(e^n)$$

mais

$$u_n \underset{n \to +\infty}{\sim} 2e^n$$
 n'a rien avoir avec $u_n \underset{n \to +\infty}{\sim} e^n$

3 Objectifs

- 1. Connaître et avoir compris la définition de suite négligeable devant une autre, de suites équivalentes.
- 2. Savoir montrer que deux suites sont équivalentes ou que l'une est négligeable devant l'autre à l'aide de la définition ou de la caractérisation.

- 3. Connaître par coeur les croissances comparées en terme de petits o et les équivalents usuels.
- 4. Savoir manipuler les opérations avec les petits o et les équivalents pour déterminer une limite.
- 5. Savoir déterminer un équivalent par encadrement ou de manière directe.

4 Correction des tests

Correction du test 1 (Retour à l'énoncer.)

D'après la définition de « o », $u_n = o(0)$ si et seulement si il existe une suite $(\varepsilon_n)_{n \in \mathbb{N}}$ qui converge vers 0 telle que, à partir d'un certain rang, $u_n = \varepsilon_n \times 0$. Autrement, une suite est un petit o de 0 si et seulement si u_n est nul à partir d'un certain rang.

Correction du test 2 (Retour à l'énoncer.)

Pour tout $n \ge 1$, on a

$$\frac{1}{n} = \frac{1}{\sqrt{n}} \times \frac{1}{\sqrt{n}}$$

avec
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$
. Donc $\frac{1}{n} = o\left(\frac{1}{\sqrt{n}}\right)$.

Correction du test 3 (Retour à l'énoncer.)

Toutes les suites sont non nulles à partir d'un certain rang, on peut donc utiliser la caractérisation.

- 1. Par croissance comparée, $\lim_{n\to+\infty} \frac{v_n}{u_n} = 0$. Donc $v_n = o(u_n)$.
- 2. Par croissance comparée, $\lim_{n\to+\infty}\frac{u_n}{v_n}=0$. Donc $u_n=o(v_n)$.
- 3. On a $\lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} \frac{1}{n^{b-a}} = 0 \text{ car } b a > 0.$ Donc $u_n = o(v_n)$.

Correction du test 4 (Retour à l'énoncer.)

Les termes de $(v_n)_{n\geqslant 1}$ sot non nuls et, pour tout $n\geqslant 1$,

$$\frac{u_n}{v_n} = \frac{\frac{1}{n^2} + \frac{1}{n} + \frac{1}{3^n}}{\frac{1}{e^n} + \frac{1}{2^n} + \frac{1}{\ln n}} = \frac{\frac{1}{n}}{\frac{1}{\ln n}} \times \frac{\frac{1}{n} + 1 + \frac{n}{3^n}}{\frac{\ln n}{e^n} + \frac{\ln n}{2^n} + 1}$$
$$= \frac{\ln n}{n} \times \frac{\frac{1}{n} + 1 + \frac{n}{3^n}}{\frac{\ln n}{e^n} + \frac{\ln n}{2^n} + 1}.$$

Or, par croissance comparée, on a

$$\lim_{n \to +\infty} \frac{n}{3^n} = \lim_{n \to +\infty} \frac{\ln n}{\rho^n} = \lim_{n \to +\infty} \frac{\ln n}{2^n} = \lim_{n \to +\infty} \frac{\ln n}{n} = \lim_{n \to +\infty} \frac{1}{n} = 0$$

donc, par somme, quotient et produit,

$$\lim_{n\to+\infty}\frac{\frac{1}{n}+1+\frac{n}{3^n}}{\frac{\ln n}{\rho^n}+\frac{\ln n}{2^n}+1}=1 \quad puis \quad \lim_{n\to+\infty}\frac{u_n}{v_n}=0.$$

Ainsi, $u_n = o(v_n)$.

Correction du test 5 (Retour à l'énoncer.)

3. Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ deux suites et $\lambda \neq 0$ un réel non nul. Supposons que $u_n = o(v_n)$. Il existe donc un rang n_0 et une suite $(\varepsilon_n)_{n\geqslant n_0}$ convergeant vers 0 tels que

$$\forall n \geqslant n_0, \quad u_n = \epsilon_n v_n.$$

Par conséquent, comme $\lambda \neq 0$, on a

$$\forall n \geqslant n_0, \quad u_n = \left(\frac{1}{\lambda}\epsilon_n\right)(\lambda \nu_n)$$

$$avec \lim_{n \to +\infty} \frac{1}{\lambda} \epsilon_n = \frac{1}{\lambda} \lim_{n \to +\infty} \epsilon_n = 0. \ Donc \ u_n = o(\lambda v_n).$$

4. Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suite et supposons que $u_n=o(v_n)$. Il existe donc un rang n_0 et une suite $(\varepsilon_n)_{n\geqslant n_0}$ convergeant vers 0 tels que

$$\forall n \geqslant n_0, \quad u_n = \epsilon_n v_n.$$

Donc.

$$\forall n \geqslant n_0, \quad u_n w_n = \epsilon_n v_n w_n.$$

Ainsi,
$$u_n w_n = \underset{n \to +\infty}{o} (v_n w_n)$$
.

Correction du test 6 (Retour à l'énoncer.)

1. La suite $(e^n)_{n\in\mathbb{N}}$ est à termes non nuls et

$$\lim_{n \to +\infty} \frac{u_n}{e^n} = \lim_{n \to +\infty} \left(1 + \frac{n^2}{e^n} + \frac{n^3}{e^n} \right) = 1$$

 $car \lim_{n \to +\infty} \frac{n^2}{e^n} = \lim_{n \to +\infty} \frac{n^3}{e^n} = 0$ par croissance comparée. D'après la caractérisation de l'équivalence on a bien

$$u_n \underset{n \to +\infty}{\sim} e^n$$
.

2. De même, la suite $(e^n + n^2)_{n \in \mathbb{N}}$ est à termes non nuls et

$$\lim_{n \to +\infty} \frac{u_n}{e^n + n^2} = \lim_{n \to +\infty} \left(1 + \frac{n^3}{e^n + n^2} \right) = 1$$

car

$$\lim_{n \to +\infty} \frac{n^3}{e^n + n^2} = \lim_{n \to +\infty} \frac{n^3}{e^n} \times \frac{1}{1 + \frac{n^2}{e^n}} = 0.$$

D'après la caractérisation de l'équivalence on a bien

$$u_n \underset{n \to +\infty}{\sim} e^n + n^2.$$

3. En revanche, pour tout $n \ge 1$, on a

$$\frac{u_n - e^n}{n^2} = \frac{n^2 + n^3}{n^2}$$

 $donc \lim_{n \to +\infty} \frac{u_n - e^n}{n^2} = +\infty$. Par conséquent, u_n n'est pas équivalent à $e^n - n^2$. En particulier, on ne peut pas soustraire ou additionner membre à membre des équivalents!

Correction du test 7 (Retour à l'énoncer.)

1. Les termes sont non nuls et pour tout $n \ge 1$

$$\frac{u_n}{v_n} = \frac{n+\sqrt{n}}{n+\ln n} = \frac{1+\frac{1}{\sqrt{n}}}{1+\frac{\ln n}{n}}$$

D'après les croissances comparées et les opérations sur les limites, on a donc

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = 1.$$

Donc $u_n \underset{n \to +\infty}{\sim} v_n$.

2. Pour tout $n \ge 1$, on a

$$\frac{u_n - n}{v_n - n} = \frac{\sqrt{n}}{\ln n}$$

donc

$$\lim_{n\to+\infty}\frac{u_n-n}{v_n-n}=+\infty.$$

Ainsi, $u_n - n$ n'est pas équivalent à $v_n - n$. On voit encore qu'on ne peut pas soustraire ou additionner membre à membre des équivalents!

Correction du test 8 (Retour à l'énoncer.)

On considère

$$\forall n \in \mathbb{N} \quad u_n = n+1 \quad et \quad v_n = n.$$

- 1. On voit facilement que $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$ donc $u_n \underset{n \to +\infty}{\sim} v_n$.
- 2. En revanche

$$\frac{e^{u_n}}{e^{v_n}} = \frac{e^{n+1}}{e^n} = e$$

Le quotient ne converge donc pas vers 1. Par conséquent, e^{u_n} et e^{v_n} ne sont pas équivalents.

Correction du test 9 (Retour à l'énoncer.)

On considère la suite définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \sqrt{n^2 + 1} - \sqrt{n}.$$

Ici, le terme prépondérant est $\sqrt{n^2+1}$ qui est de l'ordre de n (car $\sqrt{n^2+1}=n\sqrt{1+\frac{1}{n^2}}$). Pour tout $n\geqslant 1$, on a

$$u_n = n\sqrt{1 + \frac{1}{n^2}} - \sqrt{n} = n\left(\sqrt{1 + \frac{1}{n^2}} - \frac{1}{\sqrt{n}}\right).$$

Comme, $\lim_{n\to+\infty} \left(\sqrt{1+\frac{1}{n^2}} - \frac{1}{\sqrt{n}} \right) = 1$, on a, par définition de la relation d'équivalence

$$u_n \underset{n \to +\infty}{\sim} n.$$

Correction du test 10 (Retour à l'énoncer.)

On considère la suite définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n-1} - \frac{1}{n+1}.$$

pour tout $n \ge 1$ on a

$$u_n = \frac{1}{n-1} - \frac{1}{n+1} = \frac{n+1-n+1}{(n-1)(n+1)} = \frac{2}{n^2-1} = \frac{2}{n^2} \frac{1}{1 - \frac{1}{n^2}}.$$

Comme, $\lim_{n\to+\infty}\frac{1}{1-\frac{1}{n^2}}=1$, on a, par définition de la relation d'équivalence

$$u_n \underset{n \to +\infty}{\sim} \frac{2}{n^2}.$$

Correction du test 11 (Retour à l'énoncer.)

En divisant membre à membre par n on a

$$\forall n \in \mathbb{N}^*, \quad 1 + \frac{1}{\sqrt{n}} \leqslant \frac{u_n}{n} \leqslant 1 + \frac{2}{\sqrt{n}}$$

Par encadrement, on a donc

$$\lim_{n \to +\infty} \frac{u_n}{n} = 1$$

donc $u_n \sim n$.