BASADA EN EI ESTÁNDAR IEEE 802.11 MATÍAS ROQUETA

Transmisión OFDM

Transmisión OFDM basada en el Estándar IEEE 802.11

Matías Roqueta

ICNPG, Instituto Balseiro

Transmisión OFDM BASADA EN EL ESTÁNDAR IEEE 802.11 MATÍAS

ROQUETA

Problema a Resolver

Transformar una trama de bits en una señal temporal compleja:

0101 1101 1011 1101 0110 0110 0011 1001 1000 1001 1011 1101 1011 0111 0001 1010 0000 1101 1001 1010 1000 1011 1100 0101 1100

 \downarrow Modulación OFDM \downarrow

Matías Roqueta

DESCRIPCIÓN DE OFDM

- La unidad fundamental transmitida es el Símbolo OFDM.
- Cada símbolo corresponde a 48 números complejos.
- Cada número complejo en un símbolo corresponde a n bits, dependiendo de la modulación.
- Entonces, un símbolo corresponde a $N=48\,n$ bits.
- En el ejemplo se usó modulación 16-QAM con n=4, por lo que un símbolo OFDM codificará N=192 bits.
- Se implementaron 3 etapas
 - Entrelazado \rightarrow Modulación \rightarrow IFFT

ETAPA ENTRELAZADO

- La trana de bits se subdivide en bloques de ${\cal N}=192$ bits y cada bloque se entrelaza
- Consiste en una permutación de índices de la trama de bits. Se realiza en dos etapas: $k \to i \to j$
- Las reglas de cambio de índice son las siguientes

$$\begin{split} i &= \frac{N}{16} \times (k \bmod 16) + \left\lfloor \frac{k}{16} \right\rfloor \\ j &= \frac{N}{2} \times \left\lfloor \frac{i}{\frac{N}{2}} \right\rfloor + \left\lceil i + N - \left\lfloor \frac{16 \times i}{N} \right\rfloor \right\rceil \bmod \frac{N}{2} \end{split}$$

Transmisión OFDM BASADA EN EL ESTÁNDAR IEEE 802.11

> Matías Roqueta

ETAPA ENTRELAZADO

 Las reglas de entrelazado se pueden interpretar como productos por matrices ralas en donde los 1s indican cuales elementos se permutan.

Transmisión OFDM BASADA EN EL ESTÁNDAR IEEE 802.11 MATÍAS

ROQUETA

ETAPA MODULACIÓN

Consiste en asignar a cada grupo de n bits consecutivos un número complejo según alguna constelación

FIGURE 1: Ejemplo: Constelación 16-QAM, en donde n=4.

Transmisión OFDM BASADA EN EL ESTÁNDAR IEEE 802.11

Matías Roqueta

ETAPA MODULACIÓN

La constelación 16-QAM tiene algunas propiedades

Primeros bits \rightarrow parte real Últimos bits \rightarrow parte imag

16-QAM				
0010	0110	1110	1010	
0011	0111	1111	1011	
-3	-1	1	3	
0001	0101	1101	1001	
0000	0100 • -3	1100	1000	

Bits		Valor
00	\longrightarrow	-3
01	\longrightarrow	-1
11	\longrightarrow	1
10	\longrightarrow	3

Ejemplo: 1001 $\longrightarrow 3-j$

Transmisión OFDM Basada en el Estándar IEEE 802.11

> Matías Roqueta

ETAPA IFFT

- ullet El bloque de 192 bits se transformó en 48 números ${\mathbb C}$
- Se interpretan como descripción en frecuencia de la señal, y se transforma al domino temporal usando una IFFT

