## Probabilistic models - Bayesian Methods

Mengye Ren

NYU

Oct 17, 2023

## Logistics

- Midterm next week Oct 24 4:55 6:55 PM (same as lecture).
- Send me your course project group by Oct 20 (NetID + NYU ID, Email title contains CSCI-GA 2565).
- Course project 2 page proposal due Oct 27.

Overview

# Why probabilistic modeling?

- A unified framework that covers many models, e.g., linear regression, logistic regression
- Learning as statistical inference
- Principled ways to incorporate your belief on the data generating distribution (inductive biases)

## Two ways of generating data

- Two ways to model how the data is generated:
  - Conditional:  $p(y \mid x)$
  - Generative: p(x,y)
- How to estimate the parameters of our model? Maximum likelihood estimation.
- Compare and contrast conditional and generative models.

## Conditional models

## Linear regression

Linear regression is one of the most important methods in machine learning and statistics.

**Goal**: Predict a real-valued **target** y (also called response) from a vector of **features** x (also called covariates).

### **Examples**:

- Predicting house price given location, condition, build year etc.
- Predicting medical cost of a person given age, sex, region, BMI etc.
- Predicting age of a person based on their photos.

Data Training examples  $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$ , where  $x \in \mathbb{R}^d$  and  $y \in \mathbb{R}$ .

Model A *linear* function h (parametrized by  $\theta$ ) to predict y from x:

$$h(x) = \sum_{i=0}^{d} \theta_i x_i = \theta^T x, \tag{1}$$

where  $\theta \in \mathbb{R}^d$  are the parameters (also called weights).

#### Note that

- We incorporate the bias term (also called the intercept term) into x (i.e.  $x_0 = 1$ ).
- We use superscript to denote the example id and subscript to denote the dimension id.

Mengve Ren (NYU) CSCI-GA 2565 Oct 17, 2023 8 / 104

### Parameter estimation

Loss function We estimate  $\theta$  by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left( y^{(n)} - \theta^{T} x^{(n)} \right)^{2}.$$
 (empirical risk) (2)

Matrix form

- Let  $X \in \mathbb{R}^{N \times d}$  be the **design matrix** whose rows are input features.
- Let  $y \in \mathbb{R}^N$  be the vector of all targets.
- We want to solve

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} (X\theta - y)^{T} (X\theta - y). \tag{3}$$

Solution Closed-form solution:  $\hat{\theta} = (X^T X)^{-1} X^T y$ .

### Review questions

- Derive the solution for linear regression.
- What if  $X^TX$  is not invertible?

### Review

#### We've seen

- Linear regression: response is a linear function of the inputs
- Estimate parameters by minimize the squared loss

#### But...

- Why squared loss is a reasonable choice for regression problems?
- What assumptions are we making on the data? (inductive bias)

### Next,

• Derive linear regression from a probabilistic modeling perspective.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 10 / 104

## Assumptions in linear regression

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \tag{4}$$

where  $\epsilon$  is the **residual error** capturing all unmodeled effects (e.g., noise).

• The errors are distributed *iid* (independently and identically distributed):

$$\epsilon \sim \mathcal{N}(0, \sigma^2).$$
 (5)

What's the distribution of  $Y \mid X = x$ ?

$$p(y \mid x; \theta) = \mathcal{N}(\theta^T x, \sigma^2). \tag{6}$$

Imagine putting a Gaussian bump around the output of the linear predictor.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 11 / 104

# Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset  $\mathcal{D}$ , how to estimate the model parameters  $\theta$ ? The **maximum likelihood principle** says that we should maximize the (conditional) likelihood of the data:

$$L(\theta) \stackrel{\text{def}}{=} p(\mathcal{D}; \theta) \tag{7}$$

$$= \prod_{n=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta).$$
 (examples are distributed *iid*) (8)

In practice, we maximize the  $\log$  likelihood  $\ell(\theta)$ , or equivalently, minimize the negative log likelihood (NLL).

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 12 / 104

Let's find the MLE solution for our model. Recall that  $Y \mid X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$ .

$$\ell(\theta) \stackrel{\text{def}}{=} \log L(\theta) \tag{9}$$

$$= \log \prod_{n=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta)$$
 (10)

$$= \sum_{n=1}^{N} \log p(y^{(n)} \mid x^{(n)}; \theta)$$
 (11)

$$= \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\left(y^{(n)} - \theta^{T} x^{(n)}\right)^{2}}{2\sigma^{2}}\right)$$
(12)

$$= N \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2 \tag{13}$$

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 13 / 104

Recall that we obtained the normal equation by setting the derivative of the squared loss to zero. Now let's compute the derivative of the likelihood w.r.t. the parameters.

$$\ell(\theta) = N \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2$$
 (14)

$$\frac{\partial \ell}{\partial \theta_i} = -\frac{1}{\sigma^2} \sum_{n=1}^{N} (y^{(n)} - \theta^T x^{(n)}) x_i^{(n)}. \tag{15}$$

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 14 / 104

#### We've seen

- Linear regression assumes that  $Y \mid X = x$  follows a Gaussian distribution
- MLE of linear regression is equivalent to the least square method

### However,

- Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
- Can we use the same modeling approach for other prediction tasks?

### Next,

• Derive logistic regression for classification.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 15 / 104

## Assumptions in logistic regression

Consider binary classification where  $Y \in \{0,1\}$ . What should be the distribution  $Y \mid X = x$ ? We model  $p(y \mid x)$  as a Bernoulli distribution:

$$p(y \mid x) = h(x)^{y} (1 - h(x))^{1 - y}.$$
 (16)

How should we parameterize h(x)?

- What is p(y = 1 | x) and p(y = 0 | x)?  $h(x) \in (0, 1)$ .
- What is the mean of  $Y \mid X = x$ ? h(x). (Think how we parameterize the mean in linear regression)
- Need a function f to map the linear predictor  $\theta^T x$  in  $\mathbb{R}$  to (0,1):

$$f(\eta) = \frac{1}{1 + e^{-\eta}}$$
 logistic function (17)

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 16 / 104

## Logistic regression



- $p(y \mid x) = Bernoulli(f(\theta^T x)).$
- When do we have p(y = 1 | x) = 1 and p(y = 0 | x) = 1?
- Exercise: show that the log odds is

$$\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \theta^{T} x.$$
 (18)

 $\implies$  linear decision boundary (19)

 How do we extend it to multiclass classification? (more on this later)

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 17/104

## MLE for logistic regression

Similar to linear regression, let's estimate  $\theta$  by maximizing the conditional log likelihood.

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y^{(n)} \mid x^{(n)}; \theta)$$
 (20)

$$= \sum_{n=1}^{N} y^{(n)} \log f(\theta^{T} x^{(n)}) + (1 - y^{(n)}) \log (1 - f(\theta^{T} x^{(n)}))$$
 (21)

- Closed-form solutions are not available.
- But, the likelihood is concave—gradient ascent gives us the unique optimal solution.

$$\theta := \theta + \alpha \nabla_{\theta} \ell(\theta). \tag{22}$$

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 18 / 104

# Gradient descent for logistic regression

#### Math review: Chain rule

 $\partial \ell^n \quad \partial \ell^n \partial f^n$ 

If z depends on y which itself depends on x, e.g.,  $z = (y(x))^2$ , then  $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ .

The full gradient is thus  $\frac{\partial \ell}{\partial \theta_i} = \sum_{n=1}^N (y^{(n)} - f(\theta^T x^{(n)})) x_i^{(n)}$ .

Likelihood for a single example:  $\ell^n = y^{(n)} \log f(\theta^T x^{(n)}) + (1 - y^{(n)}) \log (1 - f(\theta^T x^{(n)}))$ .

$$\frac{\partial v}{\partial \theta_{i}} = \frac{\partial v}{\partial f^{n}} \frac{\partial v}{\partial \theta_{i}} \qquad (23)$$

$$= \left(\frac{y^{(n)}}{f^{n}} - \frac{1 - y^{(n)}}{1 - f^{n}}\right) \frac{\partial f^{n}}{\partial \theta_{i}} \qquad \frac{d}{dx} \ln x = \frac{1}{x} \qquad (24)$$

$$= \left(\frac{y^{(n)}}{f^{n}} - \frac{1 - y^{(n)}}{1 - f^{n}}\right) \left(f^{n}(1 - f^{n})x_{i}^{(n)}\right) \qquad \text{Exercise: apply chain rule to } \frac{\partial f^{n}}{\partial \theta_{i}} \qquad (25)$$

$$= \left(y^{(n)} - f^{n}\right)x_{i}^{(n)} \qquad \text{simplify by algebra} \qquad (26)$$

Mengye Ren (NYU)

## A closer look at the gradient

$$\frac{\partial \ell}{\partial \theta_i} = \sum_{n=1}^{N} (y^{(n)} - f(\theta^T x^{(n)})) x_i^{(n)}$$
(27)

- Does this look familiar?
- Our derivation for linear regression and logistic regression are quite similar...
- Next, a more general family of models.

# Compare linear regression and logistic regression

|                                         | linear regression     | logistic regression   |
|-----------------------------------------|-----------------------|-----------------------|
| Combine the inputs                      | $\theta^T x$ (linear) | $\theta^T x$ (linear) |
| Output                                  | real                  | categorical           |
| Conditional distribution                | Gaussian              | Bernoulli             |
| Transfer function $f(\theta^T x)$       | identity              | logistic              |
| $Mean \mathbb{E}(Y \mid X = x; \theta)$ | $f(\theta^T x)$       | $f(\theta^T x)$       |

- x enters through a linear function.
- The main difference between the formulations is due to different conditional distributions.
- Can we generalize the idea to handle other output types, e.g., positive integers?

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 21/104

# Construct a generalized regression model

**Task**: Given x, predict  $p(y \mid x)$ 

## Modeling:

- Choose a parametric family of distributions  $p(y;\theta)$  with parameters  $\theta \in \Theta$
- ullet Choose a transfer function that maps a linear predictor in  ${\mathbb R}$  to  $\Theta$

$$\underbrace{x}_{\in \mathbb{R}^d} \mapsto \underbrace{w^T x}_{\in \mathbb{R}} \mapsto \underbrace{f(w^T x)}_{\in \Theta} = \theta, \tag{28}$$

**Learning**: MLE:  $\hat{\theta} \in \arg\max_{\theta} \log p(\mathcal{D}; \hat{\theta})$ **Inference**: For prediction, use  $x \to f(w^T x)$ 

# Example: Construct Poisson regression

Say we want to predict the number of people entering a restaurant in New York during lunch time.

- What features would be useful?
- What's a good model for number of visitors (the output distribution)?

#### Math review: Poisson distribution

Given a random variable  $Y \in 0, 1, 2, ...$  following Poisson( $\lambda$ ), we have

$$p(Y=k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!},\tag{29}$$

where  $\lambda > 0$  and  $\mathbb{E}[Y] = \lambda$ .

The Poisson distribution is usually used to model the number of events occurring during a fixed period of time.

# Example: Construct Poisson regression

We've decided that  $Y \mid X = x \sim \text{Poisson}(\eta)$ , what should be the transfer function f? x enters linearly:

$$x \mapsto \underbrace{w^T x}_{\mathsf{R}} \mapsto \lambda = \underbrace{f(w^T x)}_{(0,\infty)}$$

Standard approach is to take

$$f(w^T x) = \exp(w^T x).$$

Likelihood of the full dataset  $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}:$ 

$$\log p(y_i; \lambda_i) = [y_i \log \lambda_i - \lambda_i - \log(y_i!)]$$
(30)

$$\log p(\mathcal{D}; w) = \sum_{i=1}^{n} \left[ y_i \log \left[ \exp \left( w^T x_i \right) \right] - \exp \left( w^T x_i \right) - \log \left( y_i! \right) \right]$$
(31)

$$= \sum_{i=1}^{n} \left[ y_{i} w^{T} x_{i} - \exp \left( w^{T} x_{i} \right) - \log \left( y_{i} ! \right) \right]$$
 (32)

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 24 / 104

# Multinomial Logistic Regression

- Say we want to get the predicted categorical distribution for a given  $x \in \mathbb{R}^d$ .
- First compute the scores  $(\in \mathbb{R}^k)$  and then their softmax:

$$x \mapsto (\langle w_1, x \rangle, \dots, \langle w_k, x \rangle) \mapsto \theta = \left(\frac{\exp(w_1^T x)}{\sum_{i=1}^k \exp(w_i^T x)}, \dots, \frac{\exp(w_k^T x)}{\sum_{i=1}^k \exp(w_i^T x)}\right)$$

• We can write the conditional probability for any  $y \in \{1, ..., k\}$  as

$$p(y \mid x; w) = \frac{\exp(w_y^T x)}{\sum_{i=1}^k \exp(w_i^T x)}.$$

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 25 / 104

### Review

Recipe for contructing a conditional distribution for prediction:

- Oefine input and output space (as for any other model).
- ② Choose the output distribution  $p(y | x; \theta)$  based on the task
- **3** Choose the transfer function that maps  $w^T x$  to a  $\Theta$ .
- (The formal family is called "generalized linear models".)

### Learning:

- Fit the model by maximum likelihood estimation.
- Closed solutions do not exist in general, so we use gradient ascent.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 26 / 104

Generative models

#### We've seen

- Model the conditional distribution  $p(y \mid x; \theta)$  using generalized linear models.
- (Previously) Directly map x to y, e.g., perceptron.

### Next,

- Model the joint distribution  $p(x, y; \theta)$ .
- Predict the label for x as  $\arg \max_{y \in \mathcal{Y}} p(x, y; \theta)$ .

# Generative modeling through the Bayes rule

Training:

$$p(x,y) = p(x \mid y)p(y)$$
(33)

Testing:

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$
 Bayes rule (34)

$$\underset{y}{\operatorname{arg\,max}} p(y \mid x) = \underset{y}{\operatorname{arg\,max}} p(x \mid y) p(y)$$
(35)

# Naive Bayes (NB) models

Let's consider binary text classification (e.g., fake vs genuine review) as a motivating example. Bag-of-words representation of a document

- ["machine", "learning", "is", "fun", "."]
- $x_i \in \{0,1\}$ : whether the *i*-th word in our vocabulary exists in the input

$$x = [x_1, x_2, \dots, x_d]$$
 where  $d = \text{vocabulary size}$  (36)

What's the probability of a document x?

$$p(x \mid y) = p(x_1, ..., x_d \mid y)$$

$$= p(x_1 \mid y)p(x_2 \mid y, x_1)p(x_3 \mid y, x_2, x_1) ... p(x_d \mid y, x_{d-1}, ..., x_1)$$
 chain rule (38)

$$= \prod_{i=1}^{d} p(x_i \mid y, x_{< i})$$
 (39)

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 30 / 104

## Naive Bayes assumption

**Challenge**:  $p(x_i | y, x_{< i})$  is hard to model (and estimate), especially for large *i*. Solution:

### Naive Bayes assumption

Features are conditionally independent given the label:

$$p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y).$$
 (40)

A strong assumption in general, but works well in practice.

# Parametrize $p(x_i | y)$ and p(y)

For binary  $x_i$ , assume  $p(x_i | y)$  follows Bernoulli distributions.

$$p(x_i = 1 \mid y = 1) = \theta_{i,1}, \ p(x_i = 1 \mid y = 0) = \theta_{i,0}.$$

Similarly,

$$p(y=1) = \theta_0. \tag{42}$$

Thus.

$$p(x,y) = p(x \mid y)p(y)$$

$$= p(y) \prod_{i=1}^{d} p(x_i \mid y)$$
NB assumption (44)

Indicator function I{condition} evaluates to 1 if "condition" is true and 0 otherwise.

 $= p(y) \prod \theta_{i,y} \mathbb{I}\{x_i = 1\} + (1 - \theta_{i,y}) \, \mathbb{I}\{x_i = 0\}$ 

(41)

(45)

32 / 104

We maximize the likelihood of the data  $\prod_{n=1}^{N} p_{\theta}(x^{(n)}, y^{(n)})$  (as opposed to the *conditional* likelihood we've seen before).

$$\begin{split} \frac{\partial}{\partial \theta_{j,1}} \ell &= \frac{\partial}{\partial \theta_{j,1}} \sum_{n=1}^{N} \sum_{i=1}^{d} \log \left( \theta_{i,y^{(n)}} \mathbb{I} \left\{ x_{i}^{(n)} = 1 \right\} + \left( 1 - \theta_{i,y^{(n)}} \right) \mathbb{I} \left\{ x_{i}^{(n)} = 0 \right\} \right) + \log p_{\theta_{0}}(y^{(n)}) \end{split}$$

$$&= \frac{\partial}{\partial \theta_{j,1}} \sum_{n=1}^{N} \log \left( \theta_{j,y^{(n)}} \mathbb{I} \left\{ x_{j}^{(n)} = 1 \right\} + \left( 1 - \theta_{j,y^{(n)}} \right) \mathbb{I} \left\{ x_{j}^{(n)} = 0 \right\} \right) \qquad \text{ignore } i \neq j \quad \text{(47)}$$

$$&= \sum_{n=1}^{N} \mathbb{I} \left\{ y^{(n)} = 1 \wedge x_{j}^{(n)} = 1 \right\} \frac{1}{\theta_{j,1}} + \mathbb{I} \left\{ y^{(n)} = 1 \wedge x_{j}^{(n)} = 0 \right\} \frac{1}{1 - \theta_{j,1}} \qquad \text{ignore } y^{(n)} = 0 \quad \text{(48)} \end{split}$$

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 33 / 104

### MLE solution for our NB model

Set  $\frac{\partial}{\partial \theta_{i,1}} \ell$  to zero:

$$\theta_{j,1} = \frac{\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 1 \land x_j^{(n)} = 1\right\}}{\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 1\right\}}$$
(49)

In practice, count words:

number of fake reviews containing "absolutely" number of fake reviews

Exercise: show that

$$\theta_{j,0} = \frac{\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 0 \land x_{j}^{(n)} = 1\right\}}{\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 0\right\}}$$

$$\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 1\right\}$$
(50)

$$\theta_0 = \frac{\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 1\right\}}{N} \tag{51}$$

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 34 / 104

### Review

NB assumption: conditionally independent features given the label Recipe for learning a NB model:

- **1** Choose  $p(x_i | y)$ , e.g., Bernoulli distribution for binary  $x_i$ .
- ② Choose p(y), often a categorical distribution.
- Stimate parameters by MLE (same as the strategy for conditional models) .

Next, NB with continuous features.

Let's consider a multiclass classification task with continuous inputs.

$$p(x_i \mid y) \sim \mathcal{N}(\mu_{i,y}, \sigma_{i,y}^2)$$
 (52)

$$p(y=k) = \theta_k \tag{53}$$

Likelihood of the data:

$$p(\mathcal{D}) = \prod_{n=1}^{N} p(y^{(n)}) \prod_{i=1}^{d} p(x_i^{(n)} \mid y^{(n)})$$
(54)

$$= \prod_{n=1}^{N} \theta_{y^{(n)}} \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi} \sigma_{i,y^{(n)}}} \exp\left(-\frac{1}{2\sigma_{i,y^{(n)}}^{2}} \left(x_{i}^{(n)} - \mu_{i,y^{(n)}}\right)^{2}\right)$$
 (55)

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 36 / 104

Log likelihood:

$$\ell = \sum_{n=1}^{N} \log \theta_{y^{(n)}} + \sum_{n=1}^{N} \sum_{i=1}^{d} \log \frac{1}{\sqrt{2\pi} \sigma_{i,y^{(n)}}} - \frac{1}{2\sigma_{i,y^{(n)}}^{2}} \left(x_{i}^{(n)} - \mu_{i,y^{(n)}}\right)^{2}$$

$$\frac{\partial}{\partial \mu_{j,k}} \ell = \frac{\partial}{\partial \mu_{j,k}} \sum_{n:y^{(n)}=k} -\frac{1}{2\sigma_{j,k}^{2}} \left(x_{j}^{(n)} - \mu_{j,k}\right)^{2}$$
ignore irrelevant terms (57)

$$\frac{\partial}{\partial \mu_{j,k}} \ell = \frac{\partial}{\partial \mu_{j,k}} \sum_{n:y^{(n)}=k} -\frac{1}{2\sigma_{j,k}^2} \left( x_j^{(n)} - \mu_{j,k} \right)^2 \qquad \text{ignore irrelevant terms}$$
 (57)

$$= \sum_{n: v^{(n)} = k} \frac{1}{\sigma_{j,k}^2} \left( x_j^{(n)} - \mu_{j,k} \right) \tag{58}$$

Set  $\frac{\partial}{\partial \mu_{i,k}} \ell$  to zero:

$$\mu_{j,k} = \frac{\sum_{n:y^{(n)}=k} x_j^{(n)}}{\sum_{n:y^{(n)}=k} 1} = \text{sample mean of } x_j \text{ in class } k$$
 (59)

Mengye Ren (NYU) 37 / 104 CSCI-GA 2565 Oct 17, 2023

Show that

$$\sigma_{j,k}^{2} = \frac{\sum_{n:y^{(n)}=k} \left(x_{j}^{(n)} - \mu_{j,k}\right)^{2}}{\sum_{n:y^{(n)}=k} 1} = \text{sample variance of } x_{j} \text{ in class } k$$

$$\theta_{k} = \frac{\sum_{n:y^{(n)}=k} 1}{N} \quad \text{(class prior)}$$

$$(60)$$

CSCI-GA 2565 Oct 17, 2023 38 / 104

## Decision boundary of the Gaussian NB model

Is the Gaussian NB model a linear classifier?

$$\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \log \frac{p(x \mid y=1)p(y=1)}{p(x \mid y=0)p(y=0)}$$

$$= \log \frac{\theta_0}{1 - \theta_0} + \sum_{i=1}^{d} \left( \log \sqrt{\frac{\sigma_{i,0}^2}{\sigma_{i,1}^2}} + \left( \frac{(x_i - \mu_{i,0})^2}{2\sigma_{i,0}^2} - \frac{(x_i - \mu_{i,1})^2}{2\sigma_{i,1}^2} \right) \right)$$
 quadratic
assume that  $\sigma_{i,0} = \sigma_{i,1} = \sigma_{i,1}$  ( $\theta_0 = 0.5$ ) (64)

assume that 
$$\sigma_{i,0} = \sigma_{i,1} = \sigma_i$$
,  $(\theta_0 = 0.5)$ 

$$=\sum_{i=1}^{a}\frac{1}{2\sigma_{i}^{2}}\left((x_{i}-\mu_{i,0})^{2}-(x_{i}-\mu_{i,1})^{2}\right)$$
(65)

$$= \sum_{i=1}^{d} \frac{\mu_{i,1} - \mu_{i,0}}{\sigma_i^2} x_i + \frac{\mu_{i,0}^2 - \mu_{i,1}^2}{2\sigma_i^2}$$

linear

(66)

#### Decision boundary of the Gaussian NB model

Assuming the variance of each feature is the same for both classes, we have

$$\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \sum_{i=1}^{d} \frac{\mu_{i,1} - \mu_{i,0}}{\sigma_i^2} x_i + \frac{\mu_{i,0}^2 - \mu_{i,1}^2}{2\sigma_i^2}$$

$$= \theta^T x \qquad \text{where else have we seen it?}$$
(68)

$$\theta_i = \frac{\mu_{i,1} - \mu_{i,0}}{\sigma_i^2}$$
 for  $i \in [1, d]$  (70)

$$\theta_0 = \sum_{i=1}^d \frac{\mu_{i,0}^2 - \mu_{i,1}^2}{2\sigma_i^2}$$
 bias term (71)

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 40 / 104

|                    | logistic regression        | Gaussian naive Bayes |
|--------------------|----------------------------|----------------------|
| model type         | conditional/discriminative | generative           |
| parametrization    | $p(y \mid x)$              | p(x   y), p(y)       |
| assumptions on $Y$ | Bernoulli                  | Bernoulli            |
| assumptions on $X$ | <del>_</del>               | Gaussian             |
| decision boundary  | $\theta_{LR}^{T} x$        | $\theta_{GNB}^T x$   |

Given the same training data, is  $\theta_{LR}=\theta_{GNB}?$ 

#### Generative vs discriminative classifiers

Ng, A. and Jordan, M. (2002). On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems 14.



Solid line: naive Bayes; dashed line: logistic regression.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 42 / 104

#### Naive Bayes vs logistic regression

Logistic regression and Gaussian naive Bayes converge to the same classifier asymptotically, assuming the GNB assumption holds.

- Data points are generated from Gaussian distributions for each class
- Each dimension is independently generated
- Shared variance

What if the GNB assumption is not true?

#### Multivariate Gaussian Distribution

•  $x \sim \mathcal{N}(\mu, \Sigma)$ , a Gaussian (or normal) distribution defined as

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T \Sigma^{-1} (\mathbf{x} - \mathbf{\mu})\right]$$



- Mahalanobis distance  $(x \mu_k)^T \Sigma^{-1} (x \mu_k)$  measures the distance from x to  $\mu$  in terms of  $\Sigma$
- It normalizes for difference in variances and correlations

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 44 / 104





Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 46/104





## Gaussian Bayes Classifier

- Gaussian Bayes Classifier in its general form assumes that p(x|y) is distributed according to a multivariate normal (Gaussian) distribution
- Multivariate Gaussian distribution:

$$p(\mathbf{x}|t=k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

where  $|\Sigma_k|$  denotes the determinant of the matrix, and d is dimension of x

- ullet Each class k has associated mean vector  $\mu_k$  and covariance matrix  $\Sigma_k$
- ullet  $\Sigma_k$  has  $\mathfrak{O}(d^2)$  parameters could be hard to estimate

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 49 / 104

# Example



#### Gaussian Bayes Binary Classifier Cases

#### Different cases on the covariance matrix:

- Full covariance: Quadratic decision boundary
- Shared covariance: Linear decision boundary
- Naive Bayes: Diagonal covariance matrix, quadratic decision boundary

#### GBC vs. Logistic Regression:

- If data is truly Gaussian distributed, then shared covariance = logistic regression.
- But logistic regression can learn other distributions.

#### Summary

- Probabilistic framework of using maximum likelihood as a more principled way to derive loss functions.
- Conditional vs. generative
- Generative models the joint distribution, and may lead to more assumption on the data.
- When there is very few data point, it may be hard to model the distribution.
- Is there an equivalent "regularization" in a probabilistic framework?

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 52 / 104

# Bayesian ML: Classical Statistics

#### Parametric Family of Densities

• A parametric family of densities is a set

$$\{p(y \mid \theta) : \theta \in \Theta\},\$$

- where  $p(y \mid \theta)$  is a density on a sample space  $\mathcal{Y}$ , and
- $\theta$  is a parameter in a [finite dimensional] parameter space  $\Theta$ .
- This is the common starting point for a treatment of classical or Bayesian statistics.
- In this lecture, whenever we say "density", we could replace it with "mass function." (and replace integrals with sums).

#### Frequentist or "Classical" Statistics

• We're still working with a parametric family of densities:

$$\{p(y \mid \theta) \mid \theta \in \Theta\}.$$

- Assume that  $p(y \mid \theta)$  governs the world we are observing, for some  $\theta \in \Theta$ .
- If we knew the right  $\theta \in \Theta$ , there would be no need for statistics.
- But instead of  $\theta$ , we have data  $\mathcal{D}$ :  $y_1, \dots, y_n$  sampled i.i.d. from  $p(y \mid \theta)$ .
- Statistics is about how to get by with  ${\mathfrak D}$  in place of  ${\boldsymbol \theta}.$

- One type of statistical problem is **point estimation**.
- A statistic  $s = s(\mathcal{D})$  is any function of the data.
- A statistic  $\hat{\theta} = \hat{\theta}(\mathcal{D})$  taking values in  $\Theta$  is a **point estimator of**  $\theta$ .
- A good point estimator will have  $\hat{\theta} \approx \theta$ .
- Desirable statistical properties of point estimators:
  - Consistency: As data size  $n \to \infty$ , we get  $\hat{\theta}_n \to \theta$ .
  - **Efficiency:** (Roughly speaking)  $\hat{\theta}_n$  is as accurate as we can get from a sample of size n.
- Maximum likelihood estimators are consistent and efficient under reasonable conditions.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 56 / 104

# Example of Point Estimation: Coin Flipping

• Parametric family of mass functions:

$$p(\text{Heads} \mid \theta) = \theta$$
,

for 
$$\theta \in \Theta = (0, 1)$$
.

## Coin Flipping: MLE

- Data  $\mathfrak{D} = (H, H, T, T, T, T, T, H, \dots, T)$ , assumed i.i.d. flips.
  - n<sub>h</sub>: number of heads
  - $n_t$ : number of tails
- **Likelihood function** for data  $\mathcal{D}$ :

$$L_{\mathcal{D}}(\theta) = \rho(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• As usual, it is easier to maximize the log-likelihood function:

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &= \underset{\theta \in \Theta}{\arg\max} \log L_{\mathcal{D}}(\theta) \\ &= \underset{\theta \in \Theta}{\arg\max} [n_h \log \theta + n_t \log (1 - \theta)] \end{split}$$

• First order condition (equating the derivative to zero):

$$\frac{n_h}{\theta} - \frac{n_t}{1 - \theta} = 0 \iff \theta = \frac{n_h}{n_h + n_t} \qquad \hat{\theta}_{\text{MLE}} \text{ is the empirical fraction of heads}.$$

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 58 / 104

Bayesian Statistics: Introduction

#### Bayesian Statistics

- Baysian statistics introduces a crucial new ingredient: the **prior distribution**.
- A prior distribution  $p(\theta)$  is a distribution on the parameter space  $\Theta$ .
- The prior reflects our belief about  $\theta$ , before seeing any data.

## A Bayesian Model

- A [parametric] Bayesian model consists of two pieces:
  - A parametric family of densities

$$\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$$

- **2** A **prior distribution**  $p(\theta)$  on parameter space  $\Theta$ .
- Putting the pieces together, we get a joint density on  $\theta$  and  $\mathfrak{D}$ :

$$p(\mathcal{D}, \theta) = p(\mathcal{D} \mid \theta)p(\theta).$$

#### The Posterior Distribution

- The **posterior distribution** for  $\theta$  is  $p(\theta \mid \mathcal{D})$ .
- Whereas the prior represents belief about  $\theta$  before observing data  $\mathfrak{D}$ ,
- The posterior represents the rationally updated belief about  $\theta$ , after seeing  $\mathfrak{D}$ .

## Expressing the Posterior Distribution

• By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

- Let's consider both sides as functions of  $\theta$ , for fixed  $\mathfrak{D}$ .
- Then both sides are densities on  $\Theta$  and we can write

$$\underbrace{p(\theta \mid \mathcal{D})}_{\text{posterior}} \propto \underbrace{p(\mathcal{D} \mid \theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}.$$

- Where  $\propto$  means we've dropped factors that are independent of  $\theta$ .
- Maximum a posteriori: Find  $\hat{\theta}_{MAP}$  Maximize the posterior distribution.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 63 / 104

## Coin Flipping: Bayesian Model

• Recall that we have a parametric family of mass functions:

$$p(\text{Heads} \mid \theta) = \theta$$
,

for 
$$\theta \in \Theta = (0, 1)$$
.

- We need a prior distribution  $p(\theta)$  on  $\Theta = (0,1)$ .
- One convenient choice would be a distribution from the Beta family

## Coin Flipping: Beta Prior

#### • Prior:



Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta\_distribution\_pdf.svg.

# Coin Flipping: Beta Prior

Prior:

$$egin{array}{ll} \theta & \sim & \operatorname{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} \left(1-\theta
ight)^{t-1} \end{array}$$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

• Mode of Beta distribution:

$$\arg\max_{\theta} p(\theta) = \frac{h-1}{h+t-2}$$

for h, t > 1.

## Coin Flipping: Posterior

Prior:

$$\theta \sim \operatorname{Beta}(h,t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$ 

Likelihood function

$$L(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

Posterior density:

$$\begin{array}{lll}
\rho(\theta \mid \mathcal{D}) & \propto & \rho(\theta)\rho(\mathcal{D} \mid \theta) \\
& \propto & \theta^{h-1}(1-\theta)^{t-1} \times \theta^{n_h}(1-\theta)^{n_t} \\
& = & \theta^{h-1+n_h}(1-\theta)^{t-1+n_t}
\end{array}$$

## The Posterior is in the Beta Family!

Prior:

$$\theta \sim \operatorname{Beta}(h,t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$ 

Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

Posterior is in the beta family:

$$\theta \mid \mathcal{D} \sim \text{Beta}(h + n_h, t + n_t)$$

- Interpretation:
  - Prior initializes our counts with h heads and t tails.
  - Posterior increments counts by observed  $n_h$  and  $n_t$ .

## Sidebar: Conjugate Priors

- In this case, the posterior is in the same distribution family as the prior.
- Let  $\pi$  be a family of prior distributions on  $\Theta$ .
- Let P parametric family of distributions with parameter space  $\Theta$ .

#### Definition

A family of distributions  $\pi$  is conjugate to parametric model P if for any prior in  $\pi$ , the posterior is always in  $\pi$ .

• The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 69 / 104

## Coin Flipping: Concrete Example

• Suppose we have a coin, possibly biased (parametric probability model):

$$p(\mathsf{Heads} \mid \theta) = \theta.$$

- Parameter space  $\theta \in \Theta = [0, 1]$ .
- Prior distribution:  $\theta \sim \text{Beta}(2,2)$ .



Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 70 / 104

## Example: Coin Flipping

• Next, we gather some data  $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$ :

• Heads: 75 Tails: 60 •  $\hat{\theta}_{MLE} = \frac{75}{75+60} \approx 0.556$ 

• Posterior distribution:  $\theta \mid \mathcal{D} \sim \text{Beta}(77, 62)$ :



Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 71 / 104

#### Bayesian Point Estimates

- We have the posterior distribution  $\theta \mid \mathcal{D}$ .
- What if someone asks us for a point estimate  $\hat{\theta}$  for  $\theta$ ?
- Common options:
  - posterior mean  $\hat{\theta} = \mathbb{E}[\theta \mid \mathcal{D}]$
  - maximum a posteriori (MAP) estimate  $\hat{\theta} = \arg \max_{\theta} p(\theta \mid D)$ 
    - Note: this is the **mode** of the posterior distribution

What else can we do with a posterior?

- Look at it: display uncertainty estimates to our client
- Extract a **credible set** for  $\theta$  (a Bayesian confidence interval).
  - e.g. Interval [a, b] is a 95% credible set if

$$\mathbb{P}\left(\theta \in [a,b] \mid \mathcal{D}\right) \geqslant 0.95$$

- Select a point estimate using Bayesian decision theory:
  - Choose a loss function.
  - Find action minimizing expected risk w.r.t. posterior

Bayesian Decision Theory

# Bayesian Decision Theory

- Ingredients:
  - Parameter space  $\Theta$ .
  - **Prior**: Distribution  $p(\theta)$  on  $\Theta$ .
  - Action space A.
  - Loss function:  $\ell : \mathcal{A} \times \Theta \to \mathsf{R}$ .
- The **posterior risk** of an action  $a \in A$  is

$$r(a) := \mathbb{E}[\ell(\theta, a) \mid \mathcal{D}]$$
  
=  $\int \ell(\theta, a) p(\theta \mid \mathcal{D}) d\theta$ .

- It's the expected loss under the posterior.
- A Bayes action  $a^*$  is an action that minimizes posterior risk:

$$r(a^*) = \min_{a \in \mathcal{A}} r(a)$$

# Bayesian Point Estimation

- General Setup:
  - Data  $\mathcal{D}$  generated by  $p(y \mid \theta)$ , for unknown  $\theta \in \Theta$ .
  - We want to produce a **point estimate** for  $\theta$ .
- Choose:
  - **Prior**  $p(\theta)$  on  $\Theta = R$ .
  - Loss  $\ell(\hat{\theta}, \theta)$
- Find action  $\hat{\theta} \in \Theta$  that minimizes the posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[\ell(\hat{\theta}, \theta) \mid \mathcal{D}\right]$$
$$= \int \ell(\hat{\theta}, \theta) \rho(\theta \mid \mathcal{D}) d\theta$$

### Important Cases

- Squared Loss :  $\ell(\hat{\theta}, \theta) = \left(\theta \hat{\theta}\right)^2 \implies$  posterior mean
- Zero-one Loss:  $\ell(\theta,\hat{\theta}) = \mathbb{1}[\theta \neq \hat{\theta}] \quad \Rightarrow \text{ posterior mode}$
- $\bullet \ \, \mathsf{Absolute Loss} : \, \ell(\hat{\theta}, \theta) = \left| \theta \hat{\theta} \right| \quad \Rightarrow \mathsf{posterior median}$
- Optimal decision depends on the loss function and the posterior distribution.
- We will derive the square loss case next.

## Bayesian Point Estimation: Square Loss

• Find action  $\hat{\theta} \in \Theta$  that minimizes posterior risk

$$r(\hat{\theta}) = \int (\theta - \hat{\theta})^2 p(\theta \mid \mathcal{D}) d\theta.$$

• Differentiate:

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2(\theta - \hat{\theta}) p(\theta \mid \mathcal{D}) d\theta$$

$$= -2 \int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta} \underbrace{\int p(\theta \mid \mathcal{D}) d\theta}_{=1}$$

$$= -2 \int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta}$$

# Bayesian Point Estimation: Square Loss

Derivative of posterior risk is

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta}.$$

• First order condition  $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$  gives

$$\hat{\theta} = \int \theta p(\theta \mid \mathcal{D}) d\theta 
= \mathbb{E}[\theta \mid \mathcal{D}]$$

• The Bayes action for square loss is the posterior mean.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 79 / 104

## Bayesian Point Estimation: Absolute Loss

- Loss:  $\ell(\theta, \hat{\theta}) = \left| \theta \hat{\theta} \right|$
- Bayes action for absolute loss is the posterior median.
  - That is, the median of the distribution  $p(\theta \mid \mathcal{D})$ .
  - Exercise: Show this.

### Bayesian Point Estimation: Zero-One Loss

- Suppose  $\Theta$  is discrete (e.g.  $\Theta = \{\text{english, french}\}\)$
- Zero-one loss:  $\ell(\theta, \hat{\theta}) = \mathbb{1}[\theta \neq \hat{\theta}]$
- Posterior risk:

$$r(\hat{\theta}) = \mathbb{E} \left[ \mathbb{1}[\theta \neq \hat{\theta}] \mid \mathcal{D} \right]$$
$$= \mathbb{P} \left( \theta \neq \hat{\theta} \mid \mathcal{D} \right)$$
$$= \mathbb{1} - \mathbb{P} \left( \theta = \hat{\theta} \mid \mathcal{D} \right)$$
$$= \mathbb{1} - p(\hat{\theta} \mid \mathcal{D})$$

• Bayes action is

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\theta \mid \mathcal{D})$$

- This  $\hat{\theta}$  is called the maximum a posteriori (MAP) estimate.
- The MAP estimate is the **mode** of the posterior distribution.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 81/104

Interim summary

### Recap and Interpretation

- The prior represents belief about  $\theta$  before observing data  $\mathfrak{D}$ .
- The posterior represents rationally updated beliefs after seeing  $\mathfrak{D}$ .
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
  - No issue of justifying an estimator.
  - Only choices are
    - family of distributions, indexed by  $\Theta$ , and
    - prior distribution on Θ
  - For decision making, we need a loss function.

Recap: Conditional Probability Models

# Conditional Probability Modeling

- Input space X
- Outcome space  $\mathcal{Y}$
- Action space  $\mathcal{A} = \{p(y) \mid p \text{ is a probability distribution on } \mathcal{Y}\}.$
- Hypothesis space  $\mathcal{F}$  contains prediction functions  $f: \mathcal{X} \to \mathcal{A}$ .
- Prediction function  $f \in \mathcal{F}$  takes input  $x \in \mathcal{X}$  and produces a distribution on  $\mathcal{Y}$
- A parametric family of conditional densities is a set

$$\{p(y \mid x, \theta) : \theta \in \Theta\},\$$

- where  $p(y \mid x, \theta)$  is a density on **outcome space**  $\mathcal{Y}$  for each x in **input space**  $\mathcal{X}$ , and
- $\theta$  is a parameter in a [finite dimensional] parameter space  $\Theta$ .
- This is the common starting point for either classical or Bayesian regression.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 85 / 104

#### Classical treatment: Likelihood Function

- Data:  $\mathcal{D} = (y_1, ..., y_n)$
- ullet The probability density for our data  ${\mathcal D}$  is

$$p(\mathcal{D} \mid x_1, \ldots, x_n, \theta) = \prod_{i=1}^n p(y_i \mid x_i, \theta).$$

• For fixed  $\mathcal{D}$ , the function  $\theta \mapsto p(\mathcal{D} \mid x, \theta)$  is the **likelihood function**:

$$L_{\mathcal{D}}(\theta) = p(\mathcal{D} \mid x, \theta),$$

where  $x = (x_1, ..., x_n)$ .

• The maximum likelihood estimator (MLE) for  $\theta$  in the family  $\{p(y \mid x, \theta) \mid \theta \in \Theta\}$  is

$$\hat{\theta}_{\mathsf{MLE}} = \underset{\theta \in \Theta}{\mathsf{arg\,max}} L_{\mathcal{D}}(\theta).$$

- MLE corresponds to ERM, if we set the loss to be the negative log-likelihood.
- The corresponding prediction function is

$$\hat{f}(x) = p(y \mid x, \hat{\theta}_{\mathsf{MLE}}).$$

# Bayesian Conditional Probability Models

# Bayesian Conditional Models

- Input space  $\mathfrak{X} = \mathsf{R}^d$  Outcome space  $\mathfrak{Y} = \mathsf{R}$
- The Bayesian conditional model has two components:
  - A parametric family of conditional densities:

$$\{p(y \mid x, \theta) : \theta \in \Theta\}$$

• A prior distribution  $p(\theta)$  on  $\theta \in \Theta$ .

- The prior distribution  $p(\theta)$  represents our beliefs about  $\theta$  before seeing  $\mathcal{D}$ .
- The posterior distribution for  $\theta$  is

$$p(\theta \mid \mathcal{D}, x) \propto p(\mathcal{D} \mid \theta, x) p(\theta)$$

$$= \underbrace{L_{\mathcal{D}}(\theta)}_{\text{likelihood prior}} p(\theta)$$

- Posterior represents the rationally updated beliefs after seeing D.
- $\bullet$  Each  $\theta$  corresponds to a prediction function,
  - i.e. the conditional distribution function  $p(y \mid x, \theta)$ .

#### Point Estimates of Parameter

- What if we want point estimates of  $\theta$ ?
- We can use Bayesian decision theory to derive point estimates.
- We may want to use
  - $\hat{\theta} = \mathbb{E}[\theta \mid \mathcal{D}, x]$  (the posterior mean estimate)
  - $\hat{\theta} = \text{median}[\theta \mid \mathcal{D}, x]$
  - $\hat{\theta} = \operatorname{arg\,max}_{\theta \in \Theta} p(\theta \mid \mathcal{D}, x)$  (the MAP estimate)
- depending on our loss function.

# Back to the basic question - Bayesian Prediction Function

- Find a function takes input  $x \in \mathcal{X}$  and produces a **distribution** on  $\mathcal{Y}$
- In the frequentist approach:
  - Choose family of conditional probability densities (hypothesis space).
  - Select one conditional probability from family, e.g. using MLE.
- In the Bayesian setting:
  - We choose a parametric family of conditional densities

$$\{p(y \mid x, \theta) : \theta \in \Theta\},\$$

- and a prior distribution  $p(\theta)$  on this set.
- Having set our Bayesian model, how do we predict a distribution on y for input x?
- We don't need to make a discrete selection from the hypothesis space: we maintain uncertainty.

#### The Prior Predictive Distribution

- Suppose we have not yet observed any data.
- In the Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$x \mapsto p(y \mid x) = \int p(y \mid x; \theta) p(\theta) d\theta.$$

• This is an average of all conditional densities in our family, weighted by the prior.

#### The Posterior Predictive Distribution

- Suppose we've already seen data  $\mathfrak{D}$ .
- The posterior predictive distribution is given by

$$x \mapsto p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta.$$

• This is an average of all conditional densities in our family, weighted by the posterior.

## Comparison to Frequentist Approach

- In Bayesian statistics we have two distributions on  $\Theta$ :
  - the prior distribution  $p(\theta)$
  - the posterior distribution  $p(\theta \mid \mathcal{D})$ .
- These distributions over parameters correspond to distributions on the hypothesis space:

$$\{p(y \mid x, \theta) : \theta \in \Theta\}.$$

• In the frequentist approach, we choose  $\hat{\theta} \in \Theta$ , and predict

$$p(y \mid x, \hat{\theta}(\mathcal{D})).$$

• In the Bayesian approach, we integrate out over  $\Theta$  w.r.t.  $p(\theta \mid D)$  and predict with

$$p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta$$

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 95 / 104

What if we don't want a full distribution on y?

- Once we have a predictive distribution  $p(y | x, \mathcal{D})$ ,
  - we can easily generate single point predictions.
- $x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$ , to minimize expected square error.
- $x \mapsto \text{median}[y \mid x, \mathcal{D}]$ , to minimize expected absolute error
- $x \mapsto \arg\max_{y \in \mathcal{Y}} p(y \mid x, \mathcal{D})$ , to minimize expected 0/1 loss
- Each of these can be derived from p(y | x, D).

# Gaussian Regression Example

## Example in 1-Dimension: Setup

- Input space  $\mathfrak{X} = [-1, 1]$  Output space  $\mathfrak{Y} = \mathsf{R}$
- Given x, the world generates y as

$$y = w_0 + w_1 x + \varepsilon$$
,

where  $\varepsilon \sim \mathcal{N}(0, 0.2^2)$ .

• Written another way, the conditional probability model is

$$y \mid x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2)$$
.

- What's the parameter space?  $R^2$ .
- Prior distribution:  $w = (w_0, w_1) \sim \mathcal{N}(0, \frac{1}{2}I)$

### Example in 1-Dimension: Prior Situation

• Prior distribution:  $w = (w_0, w_1) \sim \mathcal{N}\left(0, \frac{1}{2}I\right)$  (Illustrated on left)



• On right,  $y(x) = \mathbb{E}[y \mid x, w] = w_0 + w_1 x$ , for randomly chosen  $w \sim p(w) = \mathcal{N}(0, \frac{1}{2}I)$ .

Bishop's PRML Fig 3.7

99 / 104

### Example in 1-Dimension: 1 Observation



- On left: posterior distribution; white cross indicates true parameters
- On right:
  - blue circle indicates the training observation
  - red lines,  $y(x) = \mathbb{E}[y \mid x, w] = w_0 + w_1 x$ , for randomly chosen  $w \sim p(w|\mathcal{D})$  (posterior)

Bishop's PRML Fig 3.7

Mengye Ren (NYU)

### Example in 1-Dimension: 2 and 20 Observations



Gaussian Regression: Closed form

#### Closed Form for Posterior

Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$
  
 $y_i \mid x, w \text{ i.i.d. } \mathcal{N}(w^T x_i, \sigma^2)$ 

- Design matrix X Response column vector y
- Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)$$
  

$$\mu_P = (X^T X + \sigma^2 \Sigma_0^{-1})^{-1} X^T y$$
  

$$\Sigma_P = (\sigma^{-2} X^T X + \Sigma_0^{-1})^{-1}$$

• Posterior Variance  $\Sigma_P$  gives us a natural uncertainty measure.

#### Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

$$\begin{array}{rcl} w \mid \mathcal{D} & \sim & \mathcal{N}(\mu_P, \Sigma_P) \\ \mu_P & = & \left( X^T X + \sigma^2 \Sigma_0^{-1} \right)^{-1} X^T y \\ \Sigma_P & = & \left( \sigma^{-2} X^T X + \Sigma_0^{-1} \right)^{-1} \end{array}$$

• If we want point estimates of w, MAP estimator and the posterior mean are given by

$$\hat{w} = \mu_P = (X^T X + \sigma^2 \Sigma_0^{-1})^{-1} X^T y$$

• For the prior variance  $\Sigma_0 = \frac{\sigma^2}{\lambda} I$ , we get

$$\hat{\mathbf{w}} = \mathbf{\mu}_P = \left(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}\right)^{-1} \mathbf{X}^T \mathbf{y},$$

which is of course the ridge regression solution.

Mengye Ren (NYU) CSCI-GA 2565 Oct 17, 2023 104 / 104