2.2 Integrais Impróprias do tipo 2

Definição 6 (Integrais impróprias do tipo 2). Nas integrais impróprias do tipo 2 os limites de integração são finitos, mas a função do integrando possui uma assíntota vertical em um dos extremos ou em um ponto do interior do intervalo [a,b]. Neste caso:

1. Se f for contínua em (a,b] (assíntota em a), então

$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx$$

2. Se f for contínua em [a,b) (assíntota em b), então

$$\int_{a}^{b} f(x)dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x)dx$$

3. Se f possui uma assíntota vertical em $c \in (a,b)$, então

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Exemplo 23. Decida sobre a convergência da integral imprópria $\int_1^2 \frac{1}{(x-1)^2} dx$.

Solução:

Observe que x = 1 é uma descontinuidade para a função integrando. Neste caso, trata-se do extremo inferior do intervalo. Assim,

$$\int_{1}^{2} \frac{1}{(x-1)^{2}} dx = \lim_{c \to 1^{+}} \int_{c}^{2} \frac{1}{(x-1)^{2}} dx$$
$$= \lim_{c \to 1^{+}} \left[\frac{-1}{x-1} \right]_{c}^{2}$$
$$= -1 + \frac{1}{c-1}$$
$$= +\infty$$

Portanto, a integral diverge.

Exemplo 24. Decida sobre a convergência da integral imprópria $\int_1^3 \frac{1}{x-2} dx$. Solução:

Aqui a descontinuidade está no interior do domínio da função.

$$\int_{1}^{3} \frac{1}{(x-2)} dx = \int_{1}^{2} \frac{1}{(x-2)} dx + \int_{2}^{3} \frac{1}{(x-1)} dx$$

$$= \lim_{c \to 2^{-}} \int_{1}^{c} \frac{1}{(x-2)} dx + \lim_{c \to 2^{+}} \int_{c}^{2} \frac{1}{(x-2)} dx$$

$$= \lim_{c \to 2^{-}} (\ln|x-2|)_{1}^{c} + \lim_{c \to 2^{+}} (\ln|x-2|)_{c}^{3}$$

$$= \lim_{c \to 2^{-}} (\ln|c-2| - \ln|-1|) + \lim_{c \to 2^{+}} (\ln|c-2| - \ln|1|)$$

$$= -\infty$$

Esta integral também diverge!

Observação 5. Basta que uma das parcelas da integral divirja para que a integral divirja!

Critério da comparação

Teorema 2. Sejam f e g funções contínuas em $[a, \infty)$, com $0 \le f(x) \le g(x)$ pra qualquer $x \ge a$. Nessas condições:

- 1. Se $\int_{a}^{\infty} g(x)dx$ converge então $\int_{a}^{\infty} f(x)dx$ também converge.
- 2. Se $\int_a^{\infty} f(x)dx$ diverge então $\int_a^{\infty} g(x)dx$ também diverge.

Exemplo 25. Decida se a integral imprópria $\int_1^\infty \frac{\cos^2(x)}{x^2} dx$ converge ou diverge. Solução:

Observe que $\int_1^\infty \frac{1}{x^2} dx$ converge, pois é uma integral do tipo $\int_a^\infty \frac{1}{x^p} dx$ com p=2. Além disso, $0 \le \cos^2(x) \le 1$ para todo $x \ge 1$. Logo,

$$0 \le \frac{\cos^2(x)}{x^2} \le \frac{1}{x^2}.$$

Por comparação (teorema 2) a integral $\int_{1}^{\infty} \frac{\cos^2(x)}{x^2} dx$ é convergente.

Exemplo 26. Decida sobre a convergência da integral imprópria $\int_1^2 \frac{\sqrt{1+x^2}}{(x-1)^2} dx$. Solução:

Temos que $\sqrt{1+x^2} \ge 1$ e, portanto para todo x tal que $1 \le x \le 2$, temos

$$\frac{\sqrt{1+x^2}}{(x-1)^2} \ge \frac{1}{(x-1)^2}$$

Como $\int_1^2 \frac{1}{(x-1)^2} dx$ diverge, então $\int_1^2 \frac{\sqrt{1+x^2}}{(x-1)^2} dx$ também diverge.

Exemplo 27. Decida se a integral imprópria $\int_3^\infty \frac{1}{x^2 ln(x)} dx$ converge ou diverge.

Solução:

Começamos por observar que se x > e, então ln(x) > 1.

Assim,
$$x^2 ln(x) > x^2$$
. Isto implica que $\frac{1}{x^2 ln(x)} < \frac{1}{x^2}$

Como a integral $\int_3^\infty \frac{1}{x^2} \, dx$ converge, então $\int_3^\infty \frac{1}{x^2 ln(x)} \, dx$ também converge.

Critério de comparação no limite

Teorema 3. Sejam f e g funções contínuas em $[a, \infty)$ tais que $f(x) \ge 0$ e $g(x) \ge 0$ e $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$, com $0 < L < \infty$, então as integrais impróprias $\int_a^\infty f(x) dx$ e $\int_a^\infty g(x) dx$ tem o mesmo comportamento, isto é, ambas convergem ou ambas divergem.

Exemplo 28. Decida se a integral imprópria $\int_1^\infty \frac{\sqrt{1+x}}{(2x-1)} dx$ converge ou diverge.

Solução:

Temos que $\int_1^\infty \frac{1}{\sqrt{x}} dx$ diverge, pois é uma integral do tipo $\int_a^\infty \frac{1}{x^p} dx$ com $p = \frac{1}{2}$. Pela comparação no limite temos:

$$\lim_{x \to \infty} \frac{\frac{\sqrt{1+x}}{(2x-1)}}{\frac{1}{\sqrt{x}}} = \lim_{x \to \infty} \frac{\sqrt{x+x^2}}{(2x-1)} = \frac{1}{2}.$$

Como o limite do quociente resultou em um número positivo, então as integrais impróprias das duas funções têm o mesmo comportamento, ou seja, $\int_{1}^{\infty} \frac{\sqrt{1+x}}{(2x-1)} \, dx \ também \'e \ divergente!$

Exemplo 29. Decida se a integral imprópria $\int_1^\infty \frac{x^2+1}{x^3+2x+1} dx$ converge ou diverge.

Solução:

Temos que $\int_{1}^{\infty} \frac{1}{x} dx$ diverge.

Como $\lim_{x \to \infty} \frac{\frac{x^2+1}{x^3+2x+1}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{x^3+x}{x^3+2x+1} = 1$. A integral $\int_1^{\infty} \frac{x^2+1}{x^3+2x+1} dx$ também diverge.

A seguir mostraremos um teorema que estende o critério de comparação.

Teorema 4. Seja $f:[a,\infty)\to\mathbb{R}$ uma função contínua. Se $\int_a^\infty |f(x)|\,dx$ converge, então $\int_a^\infty f(x)\,dx$ também converge.

Demonstração:

Se $\int_a^\infty |f(x)| \ dx$ converge, então $\int_a^\infty 2|f(x)| \ dx$ também converge.

Como $0 \le |f(x)| + f(x) \le 2|f(x)|$, então por comparação

$$\int_{a}^{\infty} (|f(x)| + f(x)) dx$$

também converge.

Temos que $\int_a^{\infty} f(x) dx = \int_a^{\infty} (|f(x)| + f(x)) dx - \int_a^{\infty} |f(x)| dx < \infty$. Isto demonstra que $\int_a^{\infty} f(x) dx$ também converge.

Exemplo 30. Decida se $\int_1^\infty e^{-x} \cos(x) dx$ converge ou diverge.

Solução:

Observe que o critério de comparação não pode ser aplicado diretamente porque a função integrando assume valores negativos.

Temos que $0 \le |\cos(x)| \le 1$ implica em $0 \le |e^{-x}\cos(x)| \le e^{-x}$.

Como $\int_1^\infty e^{-x} dx$ converge, então pelo critério de comparação a integral $\int_1^\infty |e^{-x}cos(x)| dx$ converge. Logo, pelo teorema $4\int_1^\infty e^{-x}cos(x) dx$ também converge.

Abaixo você encontrará duas sugestões de exercícios. Faça-os como treinamento!

Exercício 18. 1. Mostre que a integral $\int_5^\infty \frac{\cos^2(x)}{x^3}$ converge.

2. Mostre que a integral $\int_{5}^{\infty} \frac{\cos(5x)}{x^3}$ converge.

Exercício 19. Decida se as integrais convergem ou divergem

1.
$$\int_0^\infty e^{-x} sen^4(x) dx$$

2.
$$\int_{1}^{\infty} \frac{1}{x^4 + 2x + 1} dx$$