MAIN REPORT TITLE SUBTITLE

Assignment XXX for Course Name. Course AE6969-I of the 2nd year Bachelor Aerospace Engineering 2022/2023, TU Delft. Project group A01 mentored by *M. Entor*.

Executed and written by:

Student One	0000001	Student Six	0000006
Student Two	0000002	Student Seven	0000007
Student Three	0000003	Student Eight	8000000
Student Four	0000004	Student Nine	0000009
Student Five	0000005	Student Ten	0000010

Submitted for assessment to: I.N. Structor, M. Entor

TECHNICAL UNIVERSITY DELFT, FACULTY OF AEROSPACE ENGINEERING

Kluyverweg 1, 2629 HS Delft info@tudelft.nl, www.tudelft.nl

Starting date: January 1st 2022

TABLE OF CONTENTS

Li	st of Figures	II
Li	st of Tables	II
Li	st of Symbols	III
Pr	reface	1
Su	ımmary	2
1	Introduction	3
2	Literature study	4
3	Design	5
4	Manufacturing	6
5	Testing	7
6	Conclusion	8
A	Task distribution	9
Bi	bliography	9

List of Figures

LIST OF TABLES

LIST OF SYMBOLS

Symbol	Definition	Unit
\overline{D}	Drag	[kN]
L	Lift	[kN]
x, y, z	Cartesian coordinates	[m]
arepsilon	Strain	[-]
σ	Stress	[MPa]

PREFACE

Summary

– PART 1 ——

Introduction

– PART 2 –

LITERATURE STUDY

References [1, 2]

- PART 3 -----

DESIGN

– PART 4 –––

Manufacturing

– PART 5 ———

Testing

– PART 6 –––

Conclusion

- PART A -

Task distribution

```
1
   import numpy as np
   fastener_data = np.array([
3
     [0, 0, 0.1],
4
     [1, 0, 0.1],
5
     [0, 1, 0.1],
6
     [1, 1, 0.1]
7
8
        #x-coord, z-coord, area [m],[m],[m^2]
9
       #the diameter of the fastener is inferred from the hole area
10
   t_plate = 0.01 #plate thickness [m]
11
12
   F = np.array([0.3, 0.56,1]) #force on bearing at (0,0) [N]
13
   print("F =", F, "[N]")
14
15
   #===========
16
17
   #calculate CG
18
   cg = np.array([0,0,0])
19
   tot_area = np.sum(fastener_data[:,2])
20
   for p in fastener_data:
21
22
     cg = cg + np.array([p[0], 0, p[1]])*p[2]/tot_area
   print("CG =", cg, "[m]")
23
2.4
25
   #big moment
   M = np.cross(F,cg) #swapped r*F because cg vector is flipped
26
   print("M =",M, "[Nm]")
   print("".join(["="]*25))
28
29
   #Forces due to moments
30
   Ar_{sq} = np.sum([((p[0]-cg[0])**2 + (p[1]-cg[2])**2)*p[2] for p in
31
                                            fastener_data])
32
   F_f = F/len(fastener_data)
33
   F_m = np.zeros((len(fastener_data),3))
34
   for p in fastener_data:
35
    F_m[n] = np.cross(M, [p[0]-cg[0], 0, p[1]-cg[2]]) * p[2]/Ar_sq
36
    n += 1
37
  print("F_m =\n",F_m, "[N]")
38
39
40
   #Total forces
   F_tot = np.zeros((len(fastener_data),3))
41
   for i in range(len(fastener_data)):
42
     F_{tot}[i] = F + F_{m}[i]
43
   print("F_tot =\n",F_tot, "[N]")
44
45
46
   Exception
47
    _init__
   True append
48
```

BIBLIOGRAPHY

- [1] Knuth, D. E., "Literate Programming," *The Computer Journal*, Vol. 27, No. 2, 1984, pp. 97–111.
- [2] Lesk, M. and Kernighan, B., "Computer Typesetting of Technical Journals on UNIX," *Proceedings of American Federation of Information Processing Societies: 1977 National Computer Conference*, Dallas, Texas, 1977, pp. 879–888.