一、概述

SM8002C 是一个电流模式的 PWM 离线式开关电源开关芯片。它的待机功耗小,具有过流保护功能和欠压保护功能,在系统短路的情况下,芯片内部的定时电路开始工作,让整个系统工作在"打嗝"模式,同时监测系统工作的状态,直到系统恢复正常为止。开关频率为 100KHz,在实际工作过程中,为了降低整个系统的 EMI,芯片会在±2KHz 范围内自动调整开关频率。二、特色说明:

- 1. 外围电路元件少,成本低
- 2. 较低的待机功耗
- 3. 过流和欠压保护
- 4. 内部定时功能
- 5. 电流模式的 PWM
- 6. 短路"打嗝"保护
- 7. 封装格式:HDIP4
- 8. 输出功率:15W 以内(带散热片的情况下,可以达到 20W)
- 9. 开关频率:100KHz

三、应用:

- 1. 各种电池充电器
- 2. DVD、VCD、机顶盒等各种电源
- 3. 通用离线式开关电源系统

四、内部功能简单框图:

图一: 芯片内部功能框图。

五、封装示意图

图二

六、管脚说明

名称	功能说明				
VDD	芯片控制部分电源。在过流或者短路保护状态时,不断地复位				
	启动,起到保护作用。				
GND	芯片地				
SWO	PWM 波形输出口				
SWI	PWM 波形输入口				
DRAIN	驱动脚				
V _{start}	芯片启动电压输入口,正常工作之后,为芯片提供额外的电流				

共 18 页

七、元件参数

极限参数(TA= 25℃)

符号	说明	范围	单位
V _{start}	芯片启动脚	25	V
VDD	芯片控制电源电压	-0.36	V
$I_{ m vdd}$	芯片控制电源电流	20	mA
V_{drain}	驱动电压	700	V
I _{drain}	驱动电流	3	A
$T_{\rm j}$	结温	-40150	$^{\circ}$
T_{stg}	存储温度	-55150	$^{\circ}$ C

八、电气工作参数

(除非特殊说明,下列条件均为 Vvdd=4V,Tj=25℃)

符号	说明	条件	范围			单位
			最小	典型	最大	
V _{Vstart}	V _{start} 启动电压		10			V
VDD _{start}	VDD 启动电压		4.65	4.95	5.10	V
VDD _{close}	VDD 关断电压		3.32	3.35	3.50	V
$I_{ m vdd}$	VDD 工作电流		0.3	0.4	0.7	mA
F_{sw}	PWM 开关频率		90	100	110	KHz
I_{LIM}	Drain 限制电流	VDD=3.36V		0.8		A
D _{max}	PWM 最大占空比			75		%
D_{\min}	PWM 最小占空比		3			%
T_{r}	SW 上升沿时间	15Ω上拉电阻		10		ns
T_{f}	SW下降沿时间	15Ω上拉电阻		17		ns
I _{drain-off}	Drain 关断漏电流			20		uA
V_{drain}	驱动电压			700		V
T _{delay}	内部定时时间			0.65		S

3

九、功能表述

图三: 实际应用的简易电路图

1、上电开始阶段:

电源上电后, VIN (DC) 电压上升, 系统通过 R1 和 R2 向 start 脚充电, start 脚电压随之上升, 当 Vstart 电压上升到 10V 启动电压时, 芯片工作进入 VDD 充电阶段;

2、VDD 充电阶段:

Vstart 电压上升到 10V 启动电压后,芯片内部集成的开关(连接于 start 脚与 VDD 脚之间)导通,系统通过 start 脚和集成开关向 VDD 脚充电,VDD 电压上升,当 VDD 电压达到 5V 的时候,芯片进入内部定时电路工作阶段;

3、内部定时电路工作阶段:

当 VDD 电压达到 5V 的时候,芯片内部的定时电路开启,由于充电开关仍然导通,VDD 脚继续充电(实际上内部定时电路工作阶段可以看作 VDD 充电阶段的一部分),由于内部的稳压作用,VDD 电压最终达到 5.6V,定时电路在开启 0.65 秒之后结束工作,芯片进入 VDD 放电阶段;

4、VDD 放电阶段:

定时电路结束工作后,芯片内部集成充电开关关断,由于芯片内部电流消耗,VDD 电压下降, 当降到 4.8V 的时候,芯片进入了 PWM 工作模式;

5、PWM工作模式:

当 VDD 电压在 3.35—4.8V 之间时,芯片工作在 PWM 工作模式, SW 口有 PWM 波形输出,SW 波形的占空比随 VDD 电压的变化而变化:

6、PWM 关断模式:

当 VDD 电压高于 4.8V 或低于 3.35V 时,芯片的 PWM 关断,SW 口没有波形输出。

上电过程中各点波形如图四:

当 Vin (高直流电压)上电之后,首先通过 Vstart 脚使 Vsw 和 VDD 的电压逐渐上升,当 VDD 上升到 5V,内部定时器开始工作,同时电压上升,由于内部稳压管作用,电压最终到 5.6V;0.65 秒之后 (就是图中的 t),定时器结束,同时内部开关关断,由于电流消耗,VDD 下降,下降到 4.8V,Vsw 出现 PWM 波形,这个时候会在变压器的输出端输出一定的电压,经整流和滤波后在输出端有输出电压 Vout; Vout 电压逐渐上升,当上升到设计值,系统通过光耦对 VDD 做一次很小的电压调整,然后出现平稳,Vsw 的波形也趋向平稳。

十、应用电路

下面的电路图为常用的 5V 输出开关电源电路。在具体 PCB Layout 要注意的是,就是 C5 104 瓷片电容要尽量靠近芯片。

6

共 18 页

该电路特性:

空载或者小负载:由于负载耗电小,DC 输出端的电压稍微高于额定电压时,光藕打开,系统通过光耦对芯片充电,VDD 的电压上升。当 VDD 电压上升到 4.8V,芯片的 PWM 关断,负载电压由于电流消耗会逐渐下降,直到光藕关断,同时 VDD 也会随着电流消耗也逐渐下降,当下降到 4.8V,PWM 开启,负载电压也跟着上升,然后不断的重复上述过程。这种工作状态,可以保证在空载或者小负载的情况,系统有较低的功耗。

中等负载或者满负载:当负载增大到某种程度,也就是说,对芯片充电保持到了某种平衡, VDD 电压几乎不变(<4.8V),这个时候,PWM一直启动,只是随着负载的增大,PWM的占空比逐渐增大,VDD 电压逐渐下降直到 3.35V。

短路或者大负载: 当负载增大到某种程度或者直接短路,由于 VDD 电压下降到了 3.35V,这个时候,芯片系统关闭,需要重新启动,由于 Vstart 脚存在电压,芯片又重新启动,但由于负载的原因,芯片还是会关闭。这样不断的重复,直到负载正常,芯片就能恢复正常(图五)。这种工作状态,可以保障系统在非正常的情况下,保护电源系统,降低非正常功耗。

V1 为 VDD 启动电压(4.8V),V3 为 VDD 关闭电压(3.35V)。图中的 t 为延时时间(0.65 秒). 另外,在芯片短路过程中,最好放电的时间要短(就是 V1 到 V3 的时间),一般小于 30 ms,这个时间可以通过调整 C4.R5 来实现

十一、 正常工作情况下, 关键管脚波形 没有负载的情况下

交流 110VAC, SW 脚电压波形

交流 110VAC, SW 脚电流波形

交流 110VAC, DRAIN 脚电流波形

交流 220VAC, SW 脚电压波形

交流 220VAC, SW 脚电流波形

交流 220VAC, DRAIN 脚电流波形

小负载的情况下

交流 110VAC, SW 脚电压波形

交流 110VAC, SW 脚电流波形

交流 110VAC, DRAIN 脚电流波形

交流 220VAC, SW 脚电压波形

交流 220VAC, SW 脚电流波形

交流 220VAC, DRAIN 脚电流波形

满负荷的情况下

交流 110VAC, SW 脚电压波形

交流 110VAC, SW 脚电流波形

交流 110VAC, DRAIN 脚电流波形

交流 220VAC, SW 脚电压波形

交流 220VAC, SW 脚电流波形

交流 220VAC, DRAIN 脚电流波形

十二、 实际应用范例

DVD 应用电路(驱动 LED), 电路原理图如下。

该电路的电源输出有: +5V、+12V、-12V。总功率最大为 12W。该变压器使用的是 EEL19 骨架,变压器参数如下;

变压器原理图

骨架示意图

变压器绕组顺序

变压器绕组参数(初级绕组 1-3之间的电感量为: 1.5mH,两边留有气隙 D:2mm)

	管脚次序	匝数	线经 (mm)
第一绕组	12	41	0.25×1
第二绕组	96	5	0.50×3
第三绕组	97	12	0.25×1
第四绕组	109	12	0. 25×1
第五绕组	23	41	0. 25×1
第六绕组	54	14	0.25×1

11 共18页

DVD 应用电路(驱动 LED) 元件清单:

标号	数值	说明	标号	数值	说明
C1	0. 1uf	X2 电容	D8	FR104	快速二极管
C2	22uf/400V	电解电容	D9	FR104	快速二极管
С3	10uf/25V	电解电容	L1	10uh	定制
C4	4.7uf/25V	电解电容	LF	80mh	定制 UU10.5
C5	0. 1uf	瓷片电容	R1	1ΜΩ	1/2W
С6	0.01uf/1KV	瓷片电容	R2	100 Ω	1/2W
С7	470pf	Y1 电容	R3	100 Ω	1/4W
С8	0. 1uf	瓷片电容	R4	47Κ Ω	1W
С9	470uf/10V	电解电容	R5	330 Ω	1/4W
C10	470uf/10V	电解电容	R6	120 Ω	1/4W
C11	220uf/25V	电解电容	R7	5. 1K Ω	%1 1/4W
C12	220uf/25V	电解电容	R8	120ΚΩ	1/4W
D1	1N4007	整流二极管	R9	5. 1K Ω	%1 1/4W
D2	1N4007	整流二极管	U1	SM8002C	
D3	1N4007	整流二极管	U2	PC817B	
D4	1N4007	整流二极管	U3	TL431	%1
D5	FR107	快速二极管	ZD1	15V	1/2W
D6	FR104	快速二极管	FUSE	1A250VAC	
D7	SR360	快速二极管			

DVD 应用电路(驱动 VFD),电路原理图如下。

该电路的电源输出有: +5V、+12V、-12V、-23V、F+、F-。总功率最大为 12W。该变压器使用的是 EEL19 骨架,变压器参数如下;

变压器原理图

骨架示意图

变压器绕组顺序

变压器绕组参数(初级绕组 1-3之间的电感量为: 1.5mH,两边留有气隙 D:2mm)

	管脚次序	匝数	线经 (mm)
第一绕组	12	41	0.25×1
第二绕组	96	5	0.50×3
第三绕组	97	12	0. 25×1
第四绕组	109	23	0.25×1
第五绕组	1211	3	0. 25×1
第六绕组	23	41	0.25×1
第七绕组	54	14	0.25×1

DVD 应用电路(驱动 VFD)元件清单:

标号	数值	说明	标号	数值	说明
C1	0. 1uf	X2 电容	D10	FR104	快速二极管
C2	22uf/400V	电解电容	L1	10uh	定制
СЗ	10uf/25V	电解电容	LF	80mh	定制 UU10.5
C4	4.7uf/25V	电解电容	R1	1MΩ	1/2W
C5	0. 1uf	瓷片电容	R2	100 Ω	1/2W
C6	0.01uf/1KV	瓷片电容	R3	100 Ω	1/4W
С7	470pf	Y1 电容	R4	47ΚΩ	1W
C8	0. 1uf	瓷片电容	R5	330 Ω	1/4W
С9	470uf/10V	电解电容	R6	120 Ω	1/4W
C10	470uf/10V	电解电容	R7	5. 1K Ω	精度%1 1/4W
C11	220uf/25V	电解电容	R8	120Κ Ω	1/4W
C12	220uf/35V	电解电容	R9	5. 1K Ω	精度%1 1/4W
C13	220uf/25V	电解电容	R10	330 Ω	1/4W
C14	4.7uf/25V	电解电容	R11	1ΚΩ	1/4W
D1	1N4007	整流二极管	R12	10Κ Ω	1/4W
D2	1N4007	整流二极管	R13	3 Ω	1/2W
D3	1N4007	整流二极管	U1	SM8002C	
D4	1N4007	整流二极管	U2	PC817B	
D5	FR107	快速二极管	U3	TL431	精度%1
D6	FR104	快速二极管	FUSE	1A250VAC	
D7	SR360	快速二极管	ZD1	15V	1/2W
D8	FR104	快速二极管	ZD2	12V	1/2W
D9	FR104	快速二极管			

十三、 PCB 板布局注意事项 下图为一个 12V1A 的适配器 PCB 图

其中芯片 SM8002C 的第 5 脚的铺铜散热面积最好加大。如有可能,第 6 脚的铺铜面积也可加大,这可便于散热。

其他电流大的地方, 也尽可能加大面积, 一则减少电阻, 二则可以散热。

17 共 18 页

十四、 封装形式

HDIP4 封装图(单位: mm):

18 共18页