

Predicting Loss Ratios for Auto Insurance Portfolios

Aditya Kamble

Urma Haldar

Niraj Bista

Mike Teague

Agenda

Introduction

Domain Knowledge

EDA

Preprocessing

Modeling

Evaluation

Conclusions

Problem

In the Insurance Industry...

50% of all policies

Can be
Mispriced
by more or
Less than
10%
(up to 50%)

Introduction

- Historical dataset of around 400K input samples of Auto Insurance policies
 - 64 input features (ex. vehicle make year, vehicle performance, usage, miles to work etc.)
 - Most of these input features were categorical.
- Testing dataset of 330 policy portfolios
 - Each consisting of at least 1000 policies
 - Included almost all of features above EXCEPT those such as loss_amount.

Introduction

- Predict Missing Loss Amounts in Test Data
- Find Natural Logarithm (In_LR) of the loss ratio for each portfolio in testing dataset

$$Total_Premium = \sum_{i=1}^{N} AnnualPremium(i) \qquad Total_Losses = \sum_{i=1}^{N} LossAmount(i)$$

$$\textbf{Target: natural log of portfolio loss ratio}$$

$$\textbf{ln_LR} = \textbf{ln}(\frac{Total_{Losses}}{Total_{Premium}})$$

Goal

Create a competitive advantage for an Insurance Provider by developing a model(s) capable of predicting the loss ratios of policy portfolios, which will enable them to more accurately access the overall risk of a given portfolio as well as make better informed decisions on premium rates.

Domain Knowledge

2		Basis for Risk	Data Quality	Description	Predicted Impact	Usage Proposal (Initial - Mike)	Usag Prop (Urm
3						1	7
4	PolicyNo	N/A		Account Number' of insured person	None, only good as identifier	No	
5	Policy_Company	N/A		Provider of Insurance Service	likely not, could be significant depending on how company reports claims	No	
6	Policy_Installment_Term	MATH		Duration of term	Could be an issue with comparing policies, would need to evaluate closer the spread of data	Maybe	
7	Policy_Billing_Code	N/A		Possibly the method of billing used for customer	Very Likely is NOT significant, values are largely the same from data sampled	No	
8	Policy Method Of Payment	MATH		Rather the customer pays the full premium upfront or in installments during the term	This could potentially have a bearing on loss, would be worth investigating more	Mavbe	

Exploratory Data Analysis

Histogram

Pair Plot

Correlation Matrix

Bar Chart Comparison

Data Preprocessing

Modeling Techniques

Decision trees

Random Forest

Neural Networks

Ada Boost

XGBoost

Evaluation Methods

- Splitting training portfolios into training and holdout sets
- Calculated the Mean Absolute Error (MAE) on these new splits
- Predicted loss amounts on our test portfolios using our model
- Calculated the loss ratio and corresponding Natural Logarithm on the testing portfolios
- Submitted results on Kaggle which provided a rank based on the MAE of our submission

Evaluation Methods

Conclusions

Statistical modeling offers a unique competitive advantage in many industries...

It offers a notable advantage for the Insurance Industry.

Thank You!

