Devoir surveillé n°6 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $n \in \mathbb{N}^*$. Calculer le reste de la division euclidienne du polynôme $X^n + X + 1$ par le polynôme $(X - 1)^2$.

II. Une relation fonctionnelle.

- $\square \mathscr{C}^0(\mathbb{R},\mathbb{R})$ est l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} .
- \square L'objectif du problème est d'étudier les ensembles $\mathscr E$ et $\mathscr F$ suivants :

$$\mathscr{E} = \{ f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}) \mid \forall (x, y) \in \mathbb{R}^2, \ f(x + y) + f(x - y) = 2f(x)f(y) \}.$$

 ${\mathscr F}$ est la partie constituée des éléments f de ${\mathscr E}$ tels que :

- f n'est pas la fonction identiquement nulle.
- f s'annule au moins une fois sur \mathbb{R} .

Première Partie:

- 1) Montrer que la fonction cosinus est dans l'ensemble \mathscr{E} .
- 2) Démontrer la formule : $\forall (x,y) \in \mathbb{R}^2$, $\operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y = \operatorname{ch}(x+y)$. En déduire que la fonction ch est dans l'ensemble \mathscr{E} .
- 3) Soit f dans \mathscr{E} ; on définit pour tout α :

$$f_{\alpha}(x): \mathbb{R} \to \mathbb{R}$$
.
 $x \mapsto f(\alpha x)$.

Montrer que pour tout réel α , la fonction f_{α} est dans \mathscr{E} .

4) On fixe un élément f de \mathscr{E} .

En donnant à x et à y des valeurs particulières, prouver que :

- **a)** f(0) vaut 0 ou 1.
- **b)** Si f(0) = 0, alors f est la fonction identiquement nulle.
- c) Si f(0) = 1, alors f est une fonction paire.

Deuxième Partie:

On pourra utiliser librement le résultat suivant :

Si a est un élément fixé de \mathbb{R}_+^* et si $D_a = \left\{ a \frac{p}{2^q} \mid p \in \mathbb{Z}, q \in \mathbb{N} \right\}$, tout réel est limite d'une suite d'éléments de D_a .

Soit f un élément de \mathscr{F} . On pose $E = \{x > 0 \mid f(x) = 0\}$.

- 5) a) En utilisant un résultat de la première partie, montrer que f(0) = 1, et que f s'annule au moins une fois sur \mathbb{R}_+^* .
 - b) Montrer que E admet une borne inférieure que l'on note a.
 - c) Montrer que pour tout $n \in \mathbb{N}^*$, il existe $x_n \in E$ tel que $x_n \in [a, a + 1/n[$. En déduire qu'il existe une suite d'éléments de E qui converge vers a.
 - d) En utilisant la continuité de f en a, prouver que f(a) = 0. En déduire que : a > 0.
 - e) En utilisant le théorème des valeurs intermédiaires, montrer que : $\forall x \in [0, a[, f(x) > 0.$
- 6) On pose $\omega = \frac{\pi}{2a}$, et on note

$$g: \mathbb{R} \to \mathbb{R} .$$
$$x \mapsto \cos(\omega x)$$

a) Soit $q \in \mathbb{N}$.n se rappelant que f(0) = 1, montrer que

$$f\left(\frac{a}{2^q}\right) + 1 = 2\left[f\left(\frac{a}{2^{q+1}}\right)\right]^2.$$

b) En déduire, en raisonnant par récurrence sur q, que :

$$\forall q \in \mathbb{N}, \ f\left(\frac{a}{2^q}\right) = g\left(\frac{a}{2^q}\right).$$

On démontrerait de même le résultat suivant, que le candidat pourra utiliser librement : si $q \in \mathbb{N}$ est fixé, alors $\forall p \in \mathbb{N}$, $f\left(p\frac{a}{2^q}\right) = g\left(p\frac{a}{2^q}\right)$.

- c) Prouver que : $\forall x \in D_a, \ f(x) = g(x).$
- d) En déduire que f = g.
- 7) En déduire tous les éléments de \mathscr{F} .

III. Les polynômes de Tchebychev.

On définit la suite de polynômes de Tchebychev, notée $(P_n)_{n\in\mathbb{N}}\in\mathbb{R}[X]^{\mathbb{N}}$, par :

$$P_0 = 1,$$
 $P_1 = X,$ $\forall n \in \mathbb{N}, P_{n+2} = 2XP_{n+1} - P_n.$

On dit qu'un polynôme P est pair si P(-X) = P, impair si P(-X) = -P.

- 1) a) Montrer que, pour tout $n \in \mathbb{N}$, P_n est de degré n.
 - b) Montrer que, pour tout $n \in \mathbb{N}^*$, P_n a pour coefficient dominant 2^{n-1} .
 - c) Montrer que, pour tout $n \in \mathbb{N}$, le polynôme P_n est de même parité que n.
 - **d)** Calculer $P_n(1)$, $P_n(-1)$ et $P_n(0)$ pour tout $n \in \mathbb{N}$.
 - e) Soit $x \in \mathbb{R}$, quelle relation de récurrence vérifie la suite $(P_n(x))_{n \in \mathbb{N}}$? En déduire la valeur de $P_n(x)$, pour tout $n \in \mathbb{N}$. On discutera les trois cas suivants.
 - i) Si |x| > 1.
 - **ii)** Si |x| = 1.
 - **iii)** Si |x| < 1.
- 2) a) Montrer que $\forall n \in \mathbb{N}, \ \forall \alpha \in \mathbb{R}, \ P_n(\cos \alpha) = \cos(n\alpha)$.
 - **b)** Montrer que, pour tout $n \in \mathbb{N}$, P_n est l'unique polynôme de $\mathbb{R}[X]$ vérifiant la relation : $\forall \alpha \in \mathbb{R}$, $P_n(\cos \alpha) = \cos(n\alpha)$.
 - c) Déterminer, pour tout $n \in \mathbb{N}$, toutes les racines de P_n .
 - d) Déterminer, pour tout $n \in \mathbb{N}$, toutes les racines de P'_n .
- 3) Démontrer que $\forall n \in \mathbb{N}, P_n \wedge P_{n+1} = 1.$
- 4) Écrire dans le langage Python une fonction Tchebychev(n), prenant en argument un entier naturel n et renvoyant la liste des coefficients de P_n .

Ainsi, Tchebychev(2) renverra [2,0,-1], car $P_2 = 2X^2 - 1$.

Il sera apprécié que chaque boucle soit accompagnée de son invariant.

— FIN —