Обучение с учителем. Классификация. Дискриминантный анализ. Логистическая регрессия. Метод опорных векторов. Выбор модели с помощью кросс-валидации. Метод стохастического градиента.

Белкова Анна, Редкокош Кирилл, Лобанова Полина, гр. 21.М03-мм $11~{\rm декабрs}~2022~{\rm r}.$

Содержание

1 Классификация					
	1.1	Постановка задачи			
	1.2	Метрики качества классификации			
		1.2.1 Матрица ошибок			
		1.2.2 Accuracy			
		1.2.3 Precision, recall и F-мера			
		1.2.4 AUC-ROC и AUC-PR			
	1.3	Модификации датасета для выравнивания соотношения классов			
		1.3.1 Случайная наивная избыточная выборка			
		1.3.2 SMOTE			
		1.3.3 Tomek Links			
2	Дис	скриминантный анализ			
	2.1	Байесовский классификатор			
	2.2	Линейный дискриминантный анализ			
	2.3	Канонические переменные			
	2.4	Значимость канонических переменных			
	2.5	Квадратичный дискриминантный анализ			
	2.6	Оценка параметров			
	2.7	Regularized Discriminant Analysis			
	2.8	Наивный байесовский классификатор			
3					
	3.1	SVM. Hard-margin SVM			
	3.2	SVM.Slack variables			
	3.3	Kernel trick			
	3.4	Сложность SVM			
	3.5	Мультиклассовый SVM			
4	Логистическая регрессия				
	4.1	Логистическая регрессия. Подход через минимизацию функции потерь			
	4.2	Логистическая регрессия. Вероятностный подход			
	4.3	Линейная и логистическая регрессия			
	4.4	Логистическая регрессия. Регуляризация			
	4.5	Многоклассовая логистическая регрессия			
	4.6	Логистическая регрессия. Преимущества и нелостатки			

1 Классификация

1.1 Постановка задачи

Дано:

- X матрица признаков, где $x_i \in \mathbb{R}^p$ i вектор этой матрицы (признаки i индивида).
- \mathcal{Y} конечное множество номеров (имён, меток) классов, где $y_i \in \mathcal{Y}$, а y вектор меток классов для матрицы X.

Задача:

- По выборке $(X_{train}, \boldsymbol{y}_{train})$, построить классификатор $f: \mathbb{R}^p \to \mathcal{Y}$, который по выборке $(X_{test}, \boldsymbol{y}_{test})$ предскажет метку класса.
- \bullet Хотим, чтобы на f достигается минимальная ошибка классификации в некотором смысле.

На генеральном языке:

- $\boldsymbol{\xi} \in \mathbb{R}^p$ случайный вектор признаков.
- $\eta \in \mathcal{Y}$ дискретная случайная величина, метка класса.
- $P(\xi, \eta)$ их совместное распределение.

Дано:

Выборка (X_{train}, y_{train}) – N реализаций случайного вектора (ξ, η) , по выборке необходимо построить классификатор

$$f: \mathbb{R}^p \to \mathcal{Y}$$
.

Линейная модель классификации в общем случае: $f(\mathbf{x}_i, \mathbf{w}) = sign\langle \mathbf{w}, \mathbf{x}_i \rangle$, где \mathbf{w} вектор весов признаков, а w_0 некоторый сдвиг, который позволяет нам не получить 0 значение.

Мы будем рассматривать классификатор в следующей форме, добавив вектор из единиц:

$$f(\boldsymbol{x}_i, \boldsymbol{w}) = sign\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle.$$

Отступ (margin): $M_i = \langle (\boldsymbol{w}, \boldsymbol{x}_i), \boldsymbol{x}_i \rangle y_i$ — "расстояние" между реальным и предсказанным значением . В случае отрицательного значения, считаем, что объект не принадлежит классу.

Функцию потерь $\mathcal{L}(M)$ — неотрицательная функция, характеризующая величину ошибки предсказания. Пороговая функция потерь: $[M(x_i) < 0]$.

Тогда задача классификации можно свести к минимизации функции потерь:

$$\mathcal{L}(M) \to \min$$

Далее будем рассматривать отступ, со знаком минус, как штраф за неверную классификацию.

1.2 Метрики качества классификации

Часто возникает необходимость в изучении различных аспектов качества уже обученного классификатора. Обсудим подробнее распространённые подходы к измерению качества моделей.

1.2.1 Матрица ошибок

Перед переходом к самим метрикам необходимо ввести важную концепцию для описания этих метрик в терминах ошибок классификации — confusion matrix (матрица ошибок).

Допустим, что у нас есть два класса и алгоритм, предсказывающий принадлежность каждого объекта одному из классов, тогда матрица ошибок классификации будет выглядеть следующим образом:

		y=1	y=0
	$\hat{y} = 1$	True Positive (TP)	False Positive (FP)
ĺ	$\hat{y} = 0$	False Negative (FN)	True Negative (TN)

Где \hat{y} — это ответ алгоритма на объекте, а y — истинная метка класса на этом объекте. Таким образом, ошибки классификации бывают двух видов: False Negative (FN) и False Positive (FP).

Функции потерь $\mathcal{L}(M)$ в задачах классификации на два класса

$$E(M) = e^{-M}$$
 — экспоненциальная (AdaBoost);

$$L(M) = \log_2(1 + e^{-M})$$
 — логарифмическая (LogitBoost);

$$G(M) = \exp(-cM(M+s))$$
 — гауссовская (BrownBoost);

$$Q(M) = (1-M)^2$$
 — квадратичная; $S(M) = 2(1+e^M)^{-1}$ — сигмоидная;

$$S(M) = 2(1 + e^M)^{-1}$$
 — сигмоидная;

$$V(M) = (1 - M)_{+}$$
 — кусочно-линейная (SVM);

1.2.2Accuracy

Интуитивно понятной, очевидной и почти неиспользуемой метрикой является accuracy — доля правильных ответов алгоритма:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Эта метрика бесполезна в задачах с неравными классами, и это легко показать на примере.

Допустим, мы хотим оценить работу спам-фильтра почты. У нас есть 100 не-спам писем, 90 из которых наш классификатор определил верно (True Negative = 90, False Positive = 10), и 10 спамписем, 5 из которых классификатор также определил верно (True Positive = 5, False Negative = 5). Тогда accuracy:

$$accuracy = \frac{5+90}{5+90+10+5} = 86,4\%$$

Однако если мы просто будем предсказывать все письма как не-спам, то получим более высокую accuracy:

$$accuracy = \frac{0+100}{0+100+0+10} = 90,9\%$$

При этом, наша модель совершенно не обладает никакой предсказательной силой, так как изначально мы хотели определять письма со спамом. Преодолеть это нам поможет переход с общей для всех классов метрики к отдельным показателям качества классов.

1.2.3 Precision, recall и F-мера

Для оценки качества работы алгоритма на каждом из классов по отдельности введем метрики precision (точность) и recall (полнота).

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

Precision можно интерпретировать как долю объектов, названных классификатором положительными и при этом действительно являющимися положительными, а recall показывает, какую долю объектов положительного класса из всех объектов положительного класса нашел алгоритм.

Именно введение precision не позволяет нам записывать все объекты в один класс, так как в этом случае мы получаем рост уровня False Positive. Recall демонстрирует способность алгоритма обнаруживать данный класс вообще, а precision — способность отличать этот класс от других классов.

Precision и recall не зависят, в отличие от ассигасу, от соотношения классов и потому применимы в условиях несбалансированных выборок.

Существует несколько различных способов объединить precision и recall в агрегированный критерий качества. F-мера (в общем случае F_{β}) — среднее гармоническое precision и recall :

$$F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{(\beta^2 \cdot precision) + recall}$$

 β в данном случае определяет вес точности в метрике, и при $\beta=1$ это среднее гармоническое (с множителем 2, чтобы в случае precision = 1 и recall = 1 иметь $F_1=1$) F-мера достигает максимума при полноте и точности, равными единице, и близка к нулю, если один из аргументов близок к нулю.

1.2.4 AUC-ROC и AUC-PR

Одним из способов оценить модель, является AUC-ROC (или ROC AUC) — площадь (Area Under Curve) под кривой ошибок (Receiver Operating Characteristic curve). Данная кривая представляет из себя линию от (0,0) до (1,1) в координатах True Positive Rate (TPR) и False Positive Rate (FPR):

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

TPR- это полнота, а FPR показывает, какую долю из объектов negative класса алгоритм предсказал неверно. В идеальном случае, когда классификатор не делает ошибок (FPR=0, TPR=1) мы получим площадь под кривой, равную единице; в противном случае, когда классификатор случайно выдает вероятности классов, AUC-ROC будет стремиться к 0.5, так как классификатор будет выдавать одинаковое количество TP и FP.

Каждая точка на графике соответствует выбору некоторого порога. Площадь под кривой в данном случае показывает качество алгоритма.

Precision и recall также используют для построения кривой и, аналогично AUC-ROC, находят площадь под ней:

1.3 Модификации датасета для выравнивания соотношения классов

Одним из распространенных способов решения проблемы несбалансированных данных является избыточная выборка. Чрезмерная выборка относится к различным методам, которые направлены на увеличение количества экземпляров из недопредставленного класса в наборе данных.

1.3.1 Случайная наивная избыточная выборка

Самый простой способ сделать это - случайным образом выбрать наблюдения из класса меньшинства и добавить их в набор данных, пока мы не достигнем баланса между большинством и классом меньшинства.

Одна проблема со случайной наивной избыточной выборкой заключается в том, что она просто дублирует уже существующие данные. Поэтому, хотя алгоритмы классификации подвергаются большему количеству наблюдений из класса меньшинства, они не узнают больше о том, как отличить наблюдения одного класса от другого. Новые данные не содержат больше информации о характеристиках класса, чем старые данные.

Рис. 1: ROC-кривая

Рис. 2: PR-кривая

1.3.2 SMOTE

Метод увеличения числа примеров миноритарного класса (Synthetic Minority Over-sampling Technique, SMOTE) — это алгоритм предварительной обработки данных, используемый для устранения дисбаланса классов в наборе данных.

В общих чертах этот алгоритм можно описать следующим образом. Он находит разность между данным образцом и его ближайшим соседом. Эта разность умножается на случайное число в интер-

вале от 0 до 1. Полученное значение добавляется к данному образцу для формирования нового синтезированного образца в пространстве признаков. Подобные действия продолжаются со следующим ближайшим соседом, до заданного пользователем количества образцов.

Проиллюстрируем алгоритм более подробно. Предположим, у нас есть несбалансированный набор данных (индивидов одного класса гораздо больше, чем другого).

Берем индивида и вычисляем k-ближайших соседей. Затем выбираем случайного ближайшего соседа из k-ближайших соседей.

Вычисляем разность между двумя точками и умножаем ее на случайное число от 0 до 1. Получаем синтезированный образец вдоль линии между двумя точками.

Выбираем m соседей для этого индивида и повторяем процедуру дублирования. m подбирается из соотношения классов.

Для каждого из исходных индивидов повторяем весь алгоритм для достижения равного количества индивидов в классах.

SMOTE Расширения

Как и в большинстве алгоритмов, есть несколько расширений SMOTE. Они нацелены на улучшение SMOTE путем добавления его функциональности или уменьшения его слабых сторон. Примеры расширений SMOTE, которые можно найти в imblearn, включают:

- BorderlineSMOTE: Вместо избыточной выборки между всеми наблюдениями меньшинств, BorderlineSMOTI стремится увеличить количество наблюдений меньшинств, которые граничат с наблюдениями большинства. Цель здесь дать классификатору возможность более четко различать эти пограничные наблюдения.
- SVMSMOTE: SVMSMOTE, как следует из его названия, использует алгоритм машины опорных векторов для генерации новых наблюдений меньшинства вблизи границы между классами большинства и меньшинства.

1.3.3 Tomek Links

Пусть индивиды E_i и E_j принадлежат к различным классам, $d(E_i, E_j)$ – расстояние между указанными примерами. Пара (E_i, E_j) называется связью Томека, если не найдется ни одного примера E_l такого, что будет справедлива совокупность неравенств:

$$\begin{cases} d(E_i, E_l) < d(E_i, E_j), \\ d(E_j, E_l) < d(E_i, E_j) \end{cases}$$

Согласно данному подходу, все индивиды из большей группы, входящие в связи Томека, должны быть удалены из набора данных. Этот способ хорошо удаляет записи, которые можно рассматривать в качестве «зашумляющих». Далее визуально показан набор данных в двумерном пространстве признаков до и после применения поиска связей Томека.

2 Дискриминантный анализ

Суть дискриминантного анализа заключается в том, чтобы смоделировать распределение X в каждом из классов отдельно, а затем использовать теорему Байеса, чтобы получить $P(Y=i \mid X=x)$

2.1 Байесовский классификатор

В качестве меры ошибки предсказания введем функцию потерь. Рассмотрим матрицу $\mathbf L$ размера $K \times K$, где $K = card(\mathcal Y)$. На диагонали $\mathbf L$ стоят нули, а $\mathbf L(i,j) = \lambda_{ij}$ – цена ошибки отнесения элемента класса Y_i к классу Y_j . Часто используется 0-1 функция потерь, где каждая ошибка оценивается единицей.

Математическое ожидание функции потерь (средний риск):

$$R(a) = \mathbb{E}(\mathbf{L}(\eta, a(\xi))) = \mathbb{E}_{\xi} \sum_{k=1}^{K} L(Y_i, a(\xi)) P(Y_i \mid \xi).$$

Отсюда получаем функцию классификации:

$$f(x) = \underset{Y \in \mathcal{Y}}{\operatorname{arg\,min}} \sum_{k=1}^{K} L(Y_i, Y) P(Y_i \mid \xi = x).$$

Если подставим сюда 0-1 функцию потерь, получим

$$f(x) = \operatorname*{arg\,min}_{Y \in \mathcal{V}} 1 - P(Y \mid \xi = x).$$

Или, что то же самое

$$f(x) = \operatorname*{arg\,max}_{Y \in \mathcal{Y}} P(Y \mid \xi = x) = \operatorname*{arg\,max}_{Y \in \mathcal{Y}} P(Y) P(\xi \mid \eta = Y).$$

Это решение называется байесовским классификатором, а такой подход – принципом максимума апостериорной вероятности.

Для построения байесовского классификатора, нам необходимо знать апостериорные вероятности $P(Y \mid \xi = x)$.

Обозначим $p_i(x) = P(\xi = x \mid \eta = Y_i)$ условные плотности классов, $\pi_i = P(\eta = Y_i)$ – априорные вероятности, $\sum_{i=1}^K \pi_i = 1$. По теореме Байеса получим:

$$P(Y = i \mid X = x) = \frac{p_i(x)\pi_i}{\sum_{i=1}^{K} p_i(x)\pi_i}.$$

Поэтому в качестве классифицирующих функций берут

$$f_i(x) = \frac{p_i(x)\pi_i}{\sum_{j=1}^k p_j(x)\pi_j}.$$

Так как знаменатель у всех f_i одинаковый, его можно отбросить, и итоговые классифицирующие функции будут выглядеть как $f_i(x) = P(x|C_i) \pi_i = p_i(x)\pi_i$.

Возникает вопрос: откуда брать априорные вероятности?

- 1. Равномерно, $\forall i \in 1 : k \ \pi_i = 1 / k$.
- 2. По соотношениям в обучающей выборке: $\pi_i = n_i \ / \sum_{j=1}^k n_j$.
- 3. На основе другой дополнительной информации о данных (результаты предыдущих исследований, etc.)

Построенный метод классификации $\operatorname{predict}(x) = \operatorname{arg} \max_i \pi_i p_i(x)$ минимизирует среднюю апостериорную ошибку:

$$\sum_{i=1}^{k} \pi_i P(\operatorname{predict}(x)! = i \mid Y_i).$$

2.2 Линейный дискриминантный анализ

Модель: ξ — дискретная с.в., принимающая значения $\{Y_i\}_{i=1}^k$, $\mathcal{P}(\eta \mid \xi = Y_i) = \mathcal{N}(\mu_i, \Sigma)$. (Предполагаем, что классы имеют нормальное распределение с одинаковой ковариационной матрицей)

Тогда плотность в точке x:

$$p_i(x) = p(x|\xi = Y_i) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(x^T - \mu_i)\mathbf{\Sigma}^{-1}(x - \mu_i)\right),$$

и классифицирующая функция $f_i(x) = \pi_i p(x|\xi = Y_i)$, где π_i — априорная вероятность наблюдения попасть в i-ю группу. Для упрощения вычислений можно переписать классифицирующую функцию через возрастающее монотонное преобразование как

$$g_i(x) = \log f_i(x) = \log \pi_i - \frac{1}{2} \log |\Sigma| - \frac{1}{2} (x^T - \mu_i) \Sigma^{-1} (x - \mu_i).$$

Сократив часть, не зависящую от номера класса, получаем линейные классифицирующие функции:

$$h_i(x) = -\frac{1}{2}\mu_i^T \mathbf{\Sigma}^{-1} \mu_i + \mu_i^T \mathbf{\Sigma}^{-1} x + \log \pi_i.$$

2.3 Канонические переменные

Задача: найти линейное преобразование $\mathbf{Z} = A^{\mathrm{T}}\mathbf{X}$, в результате которого получаются признаки наилучшим образом разделяющие группы. Хотелось бы, чтобы эти признаки оказались ортогональны. Далее опишем эту задачу более формально.

Вычислим внутриклассовую ковариационную матрицу:

$$\mathbf{E} = \frac{1}{n - K} \sum_{i=1}^{K} \sum_{j: y_i = Y_i} (x_j - \widehat{\mu}_i)^{\mathrm{T}} (x_j - \widehat{\mu}_i)$$

Вычисляем межклассовую ковариационную матрицу (с точностью до коэффициента):

$$\mathbf{H} = \sum_{i=1}^{K} n_i (\widehat{\mu}_i - \widehat{\mu})^{\mathrm{T}} (\widehat{\mu}_i - \widehat{\mu}).$$

Пусть $\zeta = A\xi$ – новый признак, тогда распределение $P(\zeta \mid \eta = Y_k) = \mathcal{N}_p(A^{\mathrm{T}}\mu_k, A^{\mathrm{T}}\Sigma_k A)$.

На выборочном языке новые признаки $\mathbf{Z} = A^{\mathrm{T}}\mathbf{X}$. Выборочная ковариационная матрица (с точностью до коэффициента) новых признаков имеет вид:

$$A^{\mathrm{T}}\mathbf{T}A = A^{\mathrm{T}}(\mathbf{E} + \mathbf{H})A = A^{\mathrm{T}}\mathbf{E}A + A^{\mathrm{T}}\mathbf{H}A.$$

где ${\bf T}$ – total covariance matrix, первое слагаемое – оценка внутригрупповых отклонений, а второе – оценка межгрупповых отклонений. Воспользовавшись критерием Фишера перейдем к обобщенной задаче на собственные числа и собственные вектора:

$$\frac{A^{\mathrm{T}}\mathbf{H}A}{A^{\mathrm{T}}\mathbf{E}A} \to \max_{A}.$$

Пусть $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$ — собственные числа матрицы $\mathbf{E}^{-1}\mathbf{H}$, а A_1,\ldots,A_d — соответствующие им собственные вектора. Тогда максимум выше равен λ_1 и достигается на A_1 . При этом $A_i^{\mathrm{T}}\mathbf{E}A_j=0$. Далее

$$\max_{A, A \perp A_1} \frac{A^{\mathrm{T}} \mathbf{H} A}{A^{\mathrm{T}} \mathbf{E} A} = \lambda_2,$$

достигается на A_2 и так далее.

Вектора A_i называют каноническими коэффициентами, а новые признаки Z_i – каноническими переменными, Z_i ортогональны.

2.4 Значимость канонических переменных

Возникает вопрос: сколько канонических переменных нам окажется достаточно взять? Другими словами, нужно проверить гипотезу:

 $H_0: A_i, i=\ell,\ldots,d$ не описывают отличия.

Введем статистику $\Lambda - prime$ (Wilks' Lambda):

$$\Lambda_{\ell}^{p} = \prod_{i=1}^{d} \frac{1}{1 + \lambda_{i}}.$$

Тогда гипотезу выше можно переформулировать так

$$H_0: \Lambda_\ell^p = 1 \Leftrightarrow \lambda_\ell = \ldots = \lambda_d = 0 \Leftrightarrow rank \mathbf{B} = \ell - 1.$$

Критерий:

$$t = \Lambda_{\ell}^p \sim \Lambda_{\nu_{\mathbf{R}} + (\ell-1), \nu_{\mathbf{W}} - (\ell-1)}$$
.

Другими вариантами статистиками для проверки гипотезы могут являться:

• Roy's greatest root

$$r_1^2 = \frac{\lambda_1}{1 + \lambda_1};$$

• Pillai's trace

$$V = trace(\mathbf{H}(\mathbf{H} + \mathbf{E})^{-1});$$

• Hotelling-Lawley trace

$$V = trace(\mathbf{H}\mathbf{E}^{-1}).$$

2.5 Квадратичный дискриминантный анализ

Модель: ξ — дискретная с.в., принимающая значения $\{Y_i\}_{i=1}^k$, $\mathcal{P}(\eta \mid \xi = Y_i) = \mathcal{N}(\mu_i, \Sigma_i)$. (Предполагаем, что каждый класс имеет многомерное нормальное распределение с различными ковариационными матрицами)

Тогда плотность в точке x:

$$p(x|\xi = Y_i) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}_i|^{1/2}} \exp\left(-\frac{1}{2}(x^T - \mu_i)\mathbf{\Sigma}_i^{-1}(x - \mu_i)\right),$$

и классифицирующая функция $f_i(x) = \pi_i p(x|\xi = Y_i)$. Применяем возрастающее монотонное преобразование и оставляем в классифицирующей функции только члены, отличающиеся в разных группах:

$$g_i(x) = \log f_i(x) = \log \pi_i - \frac{1}{2} \log |\Sigma_i| - \frac{1}{2} (x^T - \mu_i) \Sigma_i^{-1} (x - \mu_i),$$

получаем квадратично зависящую от x классифицирующую функцию.

2.6 Оценка параметров

На практике параметры распределений классов нам не известны, поэтому предлагается использовать следующие оценки максимального правдоподобия параметров нормальных плотностей классов.

- Среднее $\overline{\mu}_i = \frac{1}{n_i} \sum_{j: y_i = Y_i} x_j$,
- Ковариационная матрица класса $\widehat{\Sigma}_i = \frac{1}{n_i-1} \sum_{j:y_i=Y_i} (x_j \overline{\mu}_i)^{\mathrm{T}} (x_j \overline{\mu}_i),$
- Pooled ковариационная матрица $\widehat{\mathbf{\Sigma}} = \sum\limits_{i=1}^K rac{n_i-1}{n-K} \widehat{\mathbf{\Sigma}}_i.$

2.7 Regularized Discriminant Analysis

Оценка ковариационной матрицы $\hat{\Sigma}_i$ может оказаться выражденной или плохо обусловленной. Опишем компромис между LDA и QDA, а так же борьбу с мультиколлинеарностью.

- Regularized Discriminant Analysis. Рассматривается матрица $\widehat{\Sigma}_i(\alpha) = \alpha \widehat{\Sigma}_i + (1-\alpha)\widehat{\Sigma}$, где $\widehat{\Sigma}$ pooled ковариационая матрица. Здесь $\alpha \in [0,1]$ порождает континуум моделей между LDA и QDA, выбирается скользящим контролем.
- Дополнительно к предыдущему методу можно похожим образом модифицировать pooled ковариационную матрицу и рассматривать $\hat{\Sigma}(\gamma) = \gamma \hat{\Sigma} + (1-\gamma)\sigma^2 \mathbf{I}_p$, где γ определяет вид ковариационной матрицы и выбирается скользящим контролем.

2.8 Наивный байесовский классификатор

Предположим, что признаки независимы внутри групп и имеют нормальное распределение:

$$p_i(x) = \prod_{j=1}^p p_{ij}(x_j), \quad p_{ij}(x_j) = \frac{1}{\sqrt{2\pi}\sigma_{ij}} e^{-\frac{(x_j - \mu_{ij})^2}{2\sigma_{ij}^2}}.$$

Отсюда классифицирующую функцию можно представить в виде:

$$\delta_i(x) = -\frac{1}{2} \sum_{j=1}^p \frac{(x_j - \mu_{ij})^2}{2\sigma_{ij}^2} + \log(\pi_i).$$

Аналогично подходам выше, можно подбирать ковариационную матрицу скользящим контролем в виде:

$$\widehat{\Sigma}_i(\alpha) = \alpha \widehat{\Sigma}_i + (1 - \alpha) \operatorname{diag}(\sigma_{i1}^2, \dots, \sigma_{ip}^2), \alpha \in [0, 1].$$

Такой подход может быть полезен, когда признаков очень много и оценивать плотности классов оказывается сложно. Плотности p_{ki} можно оценивать по отдельности, а если признак дискретный, для этого можно использовать гистограмму.

Не смотря на такое оптимистичное предположение, наивный байесовский классификатор часто превосходит более сложные методы.

3 SVM. Метод опорных векторов.

Входные данные: $\{(\boldsymbol{x}_1,y_1),\dots,(\boldsymbol{x}_n,y_n)\},\,\boldsymbol{x}_i\in\mathbb{R}^p,\,y_i\in\{-1,1\};$ Задача: построение классифицирующего правила $f:\mathbb{R}^p\to\{-1,1\}.$

Предположим, что присутствует линейная разделимость, т.е. существует гиперплоскость (определяемая уравнением $x^T w - w_0 = 0 \ (x, w \in \mathbb{R}^p; w_0 \in \mathbb{R}).$

Как и прежде у нас есть линейный классификатор:

$$f(\mathbf{x}_i) = sign(\langle \mathbf{x}_i, \mathbf{w} \rangle - w_0),$$

где $\boldsymbol{x}, \boldsymbol{w} \in \mathbb{R}^p; w_0 \in \mathbb{R}$. И кусочно линейна функция потерь, где $M_i = -\langle (\boldsymbol{w}, \boldsymbol{x}_i), \boldsymbol{x}_i \rangle y_i$:

$$L(M_i) = \max\{0, 1 + M_i\}$$

3.1 SVM. Hard-margin SVM

Предположим, что присутствует линейная разделимость, т.е. существует гиперплоскость (определяемая уравнением $x^Tw - w_0 = 0$), такая, что точки, соответствующие разным классам лежат в различных полу-пространствах относительно гиперплоскости.

Факт принадлежности наблюдений из разных классов разным полупространствам можно (возможно, изменив знаки β, β_0) описать уравнениями:

$$\begin{cases} \boldsymbol{x}^T \boldsymbol{w} - w_0 < 0 & y_i = -1 \\ \boldsymbol{x}^T \boldsymbol{w} - w_0 > 0 & y_i = 1 \end{cases} \Leftrightarrow (\boldsymbol{x}^T \boldsymbol{w} - w_0) y_i > 0$$

В таком случае, классифицирующим правилом разумно принять $f(x) = sign(x^T w - w_0)$

В линейно разделимых данных может существовать более одной гиперплоскости, разделяющей данные. Введём критерий оптимальности: максимальное расстояние между двумя гиперплоскостями, параллельных данной и симметрично расположенных относительно неё, при котором между ними не находится ни одна из точек; это расстояние будем называть зазором (margin).

Для каждой из двух параллельных гиперплоскостей будет принадлежать некоторое количество точек из соответствующего класса (иначе, так как количество точек в выборке конечно, то расстояние между гиперплоскостями можно увеличить, сместив гиперплоскость, которой не принадлежит ни одной точки); точки, которые принадлежат одной из гиперплоскостей — будем называть опорными векторами.

С точностью до нормировки вектора w эта пара гиперплоскостей может быть описана парой уравнений:

$$\begin{cases} \boldsymbol{x}^T \boldsymbol{w} - w_0 = -1 \\ \boldsymbol{x}^T \boldsymbol{w} - w_0 = 1 \end{cases}$$

а расстояние между ними составит $\frac{2}{||w||}$ (см. рисунок) Принадлежность точек обучающей выборки полу-пространствам описывается уравнениями

$$\begin{cases} x_i^{\mathsf{T}}\beta - \beta_0 \le 1 & y_i = -1 \\ x_i^{\mathsf{T}}\beta - \beta_0 \ge 1 & y_i = 1 \end{cases} \Leftrightarrow (x_i^{\mathsf{T}}\beta - \beta_0) y_i \ge 1$$

Тогда задачу можно свести к задаче квадратичного программирования с линейными ограничениями:

$$egin{cases} rac{1}{2}\langle oldsymbol{w}, oldsymbol{w}
ightarrow \min oldsymbol{w} \ (\langle oldsymbol{x}_i, oldsymbol{w}
angle - w_0) \, y_i \geq 1 \end{cases}$$

Воспользуемся методом множителей Лагранжа:

$$\begin{cases} \inf_{\boldsymbol{w}, w_0} \frac{1}{2} \langle \boldsymbol{w}, \boldsymbol{w} \rangle - \sum_{i=1}^{n} \alpha_i \left[y_i \left(\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} + w_0 \right) - 1 \right] \to \max_{\alpha_i} \\ \alpha_i \ge 0, \forall i \\ y_i \left(\boldsymbol{x}_i, \boldsymbol{w} \right) - w_0 \right) \ge 1 \end{cases}$$

Так как оптимизируемая функция гладкая, можно воспользоваться необходимыми условиями экстремума

$$\frac{\partial}{\partial \boldsymbol{w}}: \boldsymbol{w} = \sum_{i=1}^{n} \alpha_i y_i \boldsymbol{x}_i$$

$$\frac{\partial}{\partial w_0} : 0 = \sum_{i=1}^n \alpha_i y_i$$

Двойственная задача Вольфа:

$$\begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^T \boldsymbol{x}_j \to \max_{\alpha_i} \\ \alpha_i \geq 0, \forall i \\ y_i \left(\langle \boldsymbol{x}_i, \boldsymbol{w} \rangle - w_0 \right) \geq 1 \\ \boldsymbol{w}_0 = \sum_{i=1}^{n} \alpha_i y_i \boldsymbol{x}_i \end{cases}$$

В точке оптимума выполнены условия Каруша-Куна-Такера, в частности:

$$\alpha_i \left[1 - y_i \left(\langle \boldsymbol{x}_i, \boldsymbol{w} \rangle - w_0 \right) \right] = 0 \, \forall i$$

Т.е. либо

- $\alpha_i = 0$ т.е. наблюдение не влияет на ${\bm w}, w_0$
- $\alpha_i > 0 \Rightarrow y_i \left(\langle {m x}_i, {m w} \rangle w_0 \right) = 1$ такое наблюдение будем называть опорным вектором

3.2 SVM.Slack variables

Поскольку в случае линейно неразделимой выборки по определению любой линейный классификатор будет ошибаться, условие $(\langle \boldsymbol{x}_i, \boldsymbol{w} \rangle - w_0) y_i \geq 1$ не может быть выполнено для всех i. Введём ошибки $\xi \geq 0$ алгоритма и штрафы за эти ошибки в минимизируемую функцию следующим образом:

$$\begin{cases} \frac{1}{2} \langle \boldsymbol{w}, \boldsymbol{w} \rangle + C \sum_{i=1}^{n} \xi_{i} \to \min_{\boldsymbol{w}, w_{0}} \\ (\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle - w_{0}) y_{i} \geq 1 - \xi_{i} \end{cases}$$

где С задает размер штрафа за ошибки.

Мы опять получили задачу линейного программирования.

3.3 Kernel trick

Чтобы применять SVN в нелинейном случае, строилось спрямляющее пространство. В основе этого лежит очень простая и очень красивая идея: если в каком-то исходном пространстве признаков классы не являются линейно разделимыми, то может быть можно отобразить это пространство признаков в какое-то новое, в котором классы уже будут линейно разделимы.

Пусть $\phi(x_i)$ - спрямляющее отображение. Тогда, можем записать SVM в спрямляющем отображении, используя следующее скалярное произведение:

$$x_i \to \phi(x), \ w \to \phi(w), \ \langle w, x_i \rangle \to \langle \phi(w), \phi(x_i) \rangle$$

Чтобы получить нелинейную разделимость в исходном пространстве - зададим скалярное произведение следующего вида:

$$K(\boldsymbol{w}, \boldsymbol{x}_i) = \langle \phi(\boldsymbol{w}), \phi(\boldsymbol{x}_i) \rangle$$

K - симметричная нелинейная функция

Наиболее часто используемые ядра

• Линейное ядро:

$$K(\boldsymbol{w}, \boldsymbol{x}_i) = \langle \boldsymbol{w}, \boldsymbol{x}_i \rangle$$

• Полиномиальное ядро:

$$K(\boldsymbol{w}, \boldsymbol{x}_i) = (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + r)^d$$

• Радиальное ядро:

$$K(\boldsymbol{w}, \boldsymbol{x}_i) = exp(-\gamma||(\boldsymbol{w} - \boldsymbol{x}_i)||^2)$$

• Сигмовидное ядро.

Примеры:

3.4 Сложность SVM

Так как для SVM нужно решать задачу квадратичного программирования, то сложность варьируется между $O(p \cdot n^2)$ и $O(p \cdot n^3)$, где p – количество признаков, n – количество индивидов, зависимости от набора данных.

Рис. 3: Сигмовидное ядро

3.5 Мультиклассовый SVM

• Сравнение "один со многими". Строим N классифицирущих правил $f_i(x)$, кодирующих принадлежность к i-му классу за 1, -1 иначе. В качестве решающего правила используется

$$f(\boldsymbol{x}) = \underset{i}{argmax} f_i(\boldsymbol{x})$$

• Сравнение "каждый с каждым". Строим $\frac{N(N-1)}{2}$ классифицирущих правил, производящих классификацию для каждой возможной пары классов. Обозначим за N_i количество сравнений, в которых элемент x был классифицирован как принадлежный к i-му классу. В качестве решающего правила используется

$$f(\boldsymbol{x}) = \underset{i}{argmax} N_i$$

4 Логистическая регрессия

4.1 Логистическая регрессия. Подход через минимизацию функции потерь

Линейная модель классификации:

- $f(x,\theta) = \operatorname{sign}\langle \theta, x \rangle, \quad x, \theta \in \mathbb{R}^p$
- $M = \langle \theta, x \rangle y$ отступ.

В качестве аппроксимации пороговой функции потерь берется логарифмическая функция потерь $L(M) = \log(1 + e^{-M})$.

Задача 1.
$$Q(X_n, \theta) = \sum\limits_{i=1}^n \log(1 + \exp{(-y_i\langle \theta, x_i\rangle)}) o \min_{\theta}$$

Методы решения задачи минимизации:

- метод стохастического градиента
- метод Ньютона-Рафсона

4.2 Логистическая регрессия. Вероятностный подход

 $\mathsf{P}(\mathsf{y}=1|\mathsf{x},\theta)=\sigma_{\theta}(\mathsf{M})=rac{1}{1+\mathsf{e}^{-\langle\mathsf{x},\theta
angle\mathsf{y}}}$ — сигмоидная функция. Свойства $\sigma(\mathsf{z})$:

- $\sigma(\mathsf{z}) \in [0,1]$, задана на $(-\infty, +\infty)$
- $\sigma(z) \to 1$, $z \to +\infty$; $\sigma(z) \to 0$, $z \to -\infty$
- $\sigma(z) + \sigma(-z) = 1$
- $\sigma'(z) = \sigma(z)\sigma(-z)$

Рис. 4: Сигмоидная функция

Пусть $Y = \{0, 1\}.$

•
$$P(y_i = 1|x; \theta) = \sigma_{\theta}(x)$$

•
$$P(y_i = 0 | x; \theta) = 1 - \sigma_{\theta}(x)$$

Тогда $P(y|x;\theta) = (\sigma_{\theta}(x))^{y}(1-\sigma_{\theta}(x))^{1-y}.$

Функция правдоподобия:

$$\begin{split} Q(X_n,\theta) &= -\log L(\theta) = -\log \prod_{i=1}^n (\sigma_\theta(x_i))^{y_i} (1-\sigma_\theta(x_i))^{1-y_i} = \\ &= -\sum_{i=1}^n [y_i \log(\sigma_\theta(x_i) + (1-y_i)) \log(1-\sigma_\theta(x_i))] \to \min_\theta \end{split}$$

4.3 Линейная и логистическая регрессия

Существуют примеры данных, для которых логистическая регрессия показывает лучшие результаты, чем линейная.

Рис. 5: Линейная и логистическая регрессия

4.4 Логистическая регрессия. Регуляризация

$$Q(\theta) = -\textstyle\sum_{i=1}^n [y_i \log(\sigma_\theta(x_i) + (1-y_i)) \log(1-\sigma_\theta(x_i))]$$

Регуляризация в логистической регрессии:

• **L2**:
$$Q_{\tau}(\theta) = Q(\theta) + \frac{\tau}{2} \sum_{j=1}^{p} \theta_{j}^{2} \rightarrow \min_{\theta}$$

• L1:
$$Q_{\tau}(\theta) = Q(\theta) + \tau \sum_{j=1}^{p} |\theta_j| \rightarrow \min_{\theta}$$

Параметр au можно подбирать с помощью кросс-валидации. Методы решения задачи минимизации:

- метод стохастического градиента
- метод Ньютона-Рафсона.

4.5 Многоклассовая логистическая регрессия

Линейный классификатор при произвольном числе классов $Y = \{1, \dots, K\}$:

$$\hat{f}(x,\theta) = \underset{y \in Y}{\arg\max} \langle \theta_y, x \rangle, \ x, \theta_y \in \mathbb{R}^p$$

Вероятность того, что объект x относится к классу i:

$$\mathsf{P}(y=i|x;\theta) = \frac{\exp{\langle \theta_y, x \rangle}}{\sum\limits_{z \in Y} \exp{\langle \theta_z, x \rangle}} = \frac{e^{\theta_i^{\mathrm{T}} x}}{\sum\limits_{k=1}^K e^{\theta_k^{\mathrm{T}} x}}$$

Задача:

$$Q(X_n, \theta) = -\sum_{i=1}^n \log P(y_i|x_i; \theta) \to \min_{\theta}$$

4.6 Логистическая регрессия. Преимущества и недостатки

Плюсы:

- 1. Позволяет оценить вероятности принадлежности объектов к классу
- 2. Достаточно быстро работает при больших объемах выборки
- 3. Применима в случае отсутствия линейной разделимости, если на вход подать полиномиальные признаки

Минусы:

1. Плохо работает в задачах, в которых зависимость сложная, нелинейная