Prof. Howard Roatti

Análise de Dados Aplicada à Computação

Para cada exercício a seguir, utilize a linguagem Python para os cálculos e operações solicitadas.

Exercício 1 (IME/USP - http://www.ime.usp/giapaula/cursosgrad.htm)

A tabela abaixo mostra o numero de meses em que houve aumento do nível de atividade de quinze empresas de tamanho pequeno (P), médio (M) e grande (G), do setor comercial (C) e industrial (I).

Empresa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Meses	8	9	4	5	3	6	8	6	6	8	5	5	6	4	4
Setor	С	С	ı	ı	ı	С	С	I	ı	С	С	ı	С	ı	ı
Tamanho	G	М	G	М	М	Р	G	М	Р	М	Р	Р	М	М	G

- (a) Divida as empresas em dois grupos: comércio (C) e indústria (I). Compare os grupos em relação à média e à mediana do número de meses com crescimento.
- (b) Calcule o desvio padrão e a variância para os dois grupos. Qual dos grupos é mais homogênio em relação ao número de meses com crescimento?
- (c) Calcule a média, mediana, desvio padrão e variância do número de meses com crescimento para os três tamanhos (P, M e G). Compare essas medidas. Com base nessa análise, você diria que existe relação entre o tamanho da empresa e o número de meses com crescimento?

Exercício 2 (IME/USP - http://www.ime.usp/giapaula/cursosgrad.htm)

O peso (em Kg) de 30 mulheres com 168 cm de altura, segundo a idade (em anos) é apresentado abaixo:

Idade	Peso				
40	55	50	68	65	62
45	58	56	62	65	63
50	60	74	70	78	76
55	77	78	70	72	80
60	70	76	74	83	85
65	65	82	72	82	80

- (a) Calcule a média, mediana, desvio padrão e variância para o peso dos seis grupos de idades analisados.
- (b) Com base nas medidas obtidas no item (a), tire conclusão sobre o comportamento do peso com o aumento da idade.

Exercício 3 (IME/USP - http://www.ime.usp/giapaula/cursosgrad.htm)

Na tabela abaixo estão os dados referentes a uma amostra de 21 trabalhadores em que:

- S: renda (milhares de reais);

Prof. Howard Roatti

Análise de Dados Aplicada à Computação

- T: tipo de indústria, moderna (M) ou tradicional (T)
- Z: período em que está trabalhando, manhã (M), tarde (T) e noite (N)

S	T	Z	S	Т	Z	S	T	Z
4,5	М	N	2,7	Т	М	4,2	М	М
5	T	М	3,5	T	T	3,4	М	N
4,2	М	М	3,2	T	N	4,4	M	T
3,7	M	M	4,7	M	N	3,7	M	T
3,9	Т	Т	5,5	М	Т	2,8	Т	M
4,1	T	N	4,8	M	T	2,5	T	M
2,9	T	М	3,4	T	М	2,9	T	T

- (a) Agrupe os trabalhadores segundo o tipo de indústria. Calcule para cada grupo a média, mediana variância. Compare os resultados
- (b) Agrupe os trabalhadores segundo o período de trabalho. Calcule para cada grupo a média, mediana variância. Compare os resultados

Exercício 4 (Análise Exploratória de Dados - Prof. Dr. Waldir Medri)

Vinte e uma pacientes de uma clínica médica tiveram seu nível de potássio no plasma medido. Os resultados foram os seguintes:

Nível	Frequência
2,35 2,55	1
2,55 2,75	3
2,75 2,95	2
2,95 3,15	4
3,15 3,35	5
3,35 3,55	6

(a) Determine os quartis: 1º, 2º e 3º

(b) Construa um histograma

Exercício 5 (Prof. Adriana)

A Tabela a seguir mostra distribuição de frequência para o número de minutos por semana gasto por 400 jovens estudantes do ensino médio assistindo TV. Mais abaixo você encontra dados relativos a uma amostra de 30 estudantes universitários. Verifique se há diferenças notáveis entre os dois grupos estudantis quanto ao número de minutos por semana gasto assistindo TV. Analise as estatísticas descritivas, compare os histogramas e tire sua conclusão.

Tempo)	300-400	400-500	500-600	600-700	700-800	800-900	900-1000	1000-1100	1100-1200
Nº	de	14	46	58	76	68	62	48	22	6
Estuda	ntes									

350	560	580	710	945	880	760	640	660	820

Prof. Howard Roatti

Análise de Dados Aplicada à Computação

ı	775	910	920	850	810	790	890	685	730	850
	745	640	1010	420	770	850	915	840	930	895

Exercício 6 (USP - MAE0219)

Os alunos ingressantes numa universidade matriculados na disciplina de Educação Física foram submetidos a um treinamento de resistência por um período de 2 meses. Antes de iniciarem o treinamento foram submetidos a um teste de resistência quanto ao número de quilômetros que conseguiram correr sem parar. Depois de 2 meses de treinamento, foram novamente submetidos ao mesmo teste. Os dados estão apresentados a seguir.

	Frequência						
Faixas	Antes do treinamento	Depois do treinamento					
0 2	442	80					
2 4	200	200					
4 8	130	280					
8 12	34	179					
12 16	10	43					
16 22	3	8					

(a) Construa dois histogramas, um para o teste antes do treinamento e outro para depois. Estime a média, a mediana e os quartis em ambos os casos. Que conclusões você consegue obter?

Exercício 7 (USP - MAE0219)

As rendas mensais em reais dos 25 ingressantes num certo curso de pós-graduação em finanças de uma universidade foram as seguintes (em mil reais): 2,90; 2,90; 2,95; 2,95; 3,10; 3,10; 3,15; 3,20; 3,20; 3,25; 3,30; 3,40; 3,45; 3,45; 3,50; 3,65; 3,65; 3,80; 3,90; 3,90; 4,00; 5,00; 5,20; 5,50 e 6,40. Construa o boxplot. Comente.

Exercício 8 (USP - MAE0219)

Uma indústria, desejando melhorar o nível de seus funcionários em cargos de chefia, montou um curso experimental e indicou 25 funcionários para a primeira turma. Os dados referentes à seção a que pertencem (notas e graus obtidos no curso) estão na tabela a seguir.

Prof. Howard Roatti

Análise de Dados Aplicada à Computação

- (a) Calcule média, moda, mediana, desvio padrão e coeficiente de variação das variáveis Direito, Política e Estatística.
- **(b)** Compare e indique as diferenças existentes entre as distribuições das variáveis Direito, Política e Estatística utilizando boxplots.
- (c) Compare o aproveitamento dos funcionários na disciplina Estatística segundo a seção a que eles pertencem.

Seção	Direito	Política	Estatística
Pessoal	9	9,0	9
Pessoal	9	6,5	9
Pessoal	9	9,0	8
Pessoal	9	6,0	8
Pessoal	9	6,5	9
Pessoal	9	6,5	10
Pessoal	9	9,0	8
Técnica	9	6,0	8
Técnica	9	9,0	9
Técnica	9	9,0	8
Técnica	9	7,0	10
Técnica	9	5,5	7
Técnica	9	6,0	7
Técnica	9	8,0	9
Vendas	9	7,0	8
Vendas	9	9,0	7
Vendas	9	10,0	8
Vendas	9	5,5	9
Vendas	9	7,0	2
Vendas	9	6,0	7
Vendas	9	6,5	7
Vendas	9	6,0	8
Vendas	9	9,0	9
Vendas	9	6,5	8
Vendas	9	7,0	7

Prof. Howard Roatti

Análise de Dados Aplicada à Computação

Exercício 9 (UFRJ)

A tabela a seguir fornece para cada estado do Brasil, o valor total V da produção industrial (em milhões de cruzeiros), o número total (P) de pessoas ocupadas na indústria, o logaritmo decimal de V e o logaritmo decimal de P, segundo o censo industrial de 1980.

Estado	V	Р	log ₁₀ (V)=y	log ₁₀ (P)=x
Amazonas	333	527	2,52	2,72
Pará	2655	2035	3,42	3,31
Maranhão	71	271	1,85	2,43
Piauí	882	1290	2,95	3,11
Ceará	8874	13776	3,95	4,14
Rio Grande do Norte	5989	9816	3,78	3,99
Paraíba	1469	2499	3,17	3,40
Pernambuco	9134	12720	3,96	4,10
Alagoas	924	1031	2,97	3,01
Sergipe	951	961	2,98	2,98
Bahia	2234	4154	3,35	3,62
Minas Gerais	17089	30002	4,23	4,48
Espírito Santo	2653	4402	3,42	3,64
Rio de Janeiro	39503	49256	4,60	4,69
São Paulo	172229	195756	5,24	5,29
Paraná	4364	7619	3,64	3,88
Santa Catarina	34335	28949	4,54	4,46
Rio Grande do Sul	64851	91813	4,81	4,96
Mato Grosso do Sul	59	222	1,77	2,35
Mato Grosso	32	83	1,51	1,92
Goiás	1196	2415	3,08	3,38
Distrito Federal	99	239	2,00	2,38

- (a) Plote o gráfico de dispersão de log(V) e log(P) e comente
- (b) Calcule o coeficiente de correlação entre as variáveis de (a)

Exercício 10 (UFRJ)

Em seu livro "Uncertainties analysis, loads and safety in Structural Engineering (em português: Análise de incertezas, cargas e segurança em Engenharia de Estruturas), Prentice Hall, 1982", Gary C. Hart apresenta o conjunto de dados a seguir, que nos permite investigar a relação de dependência entre duas propriedades mecânicas do concreto: $X = módulo secante (em 10^6 psi) e Y = força de compressão. (em 10^3 psi)$

X	3,41	3,52	3,57	3,61	3,43	3,59	3,62	3,56	3,35	3,47
Υ	8,20	7,10	7,30	8,60	6,80	7,60	8,50	6,90	5,40	6,20
Х	3,53	3,33	3,54	3,22	3,49	3,25	3,79	3,64	3,67	3,72
Υ	7,90	5,80	9,10	4,50	6,30	5,20	9,50	8,90	7,40	8,70

(a) Plote o gráfico de dispersão das variáveis e comente

Prof. Howard Roatti

Análise de Dados Aplicada à Computação

(b) Calcule o coeficiente de correlação entre as variáveis de (a)