SHAMAN: <u>SH</u>iny <u>Application</u> for <u>Metagenomic AN</u>alysis

Stevenn Volant, Amine Ghozlane Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS Biomics – CITECH

Ribosome

ITS (1): located between 18S and 5.8S rRNA genes

Quantitative metagenomics pipeline

HUB – 16S/18S/ITS pipeline

Uparse/Vsearch

♂ Integrated in QIIME, MOTHUR and LotuS

Nature methods, 10(10), 996-998.

Quantitative metagenomics pipeline

SHAMAN: shaman.c3bi.pasteur.fr

« There is no disputing the importance of statistical analysis in biological research, but too often it is considered only after an experiment is completed, when it may be too late. »

SHAMAN: shaman.c3bi.pasteur.fr

Counts

	D. b. 0	D. b. C H D4 CD4	Date - 0 11 40 - 040	D. b. C 11 67 667
OTUId		Delta.Compl1.31_S31		
OTU_41131	50	19	47	11
OTU_21509	641	356	1526	447
OTU_26144	204	88	32	68
OTU_34025	130	47	18	6
OTU_4597	1820	1628	16	_4
OTU_40251	11		63	74
OTU_35066	156	85	570	168
OTU_39472	17	_1	32	8
OTU_35326	297	51	61	47
OTU_2526	946	282	70	32
OTU_23642	303	106	65	40
OTU_44238	0	1	2	5
OTU_53265	6	9	7	3
OTU_31446	799	237	28	47
OTU_39136	28	235	179	152
OTU_8534	807	225	1973	267
OTU_38289	183	82	106	42
OTU_37452	95	41	132	70
OTU_53906	85	25	45	55
OTU_30585	828	319	49	46
OTU_51805	1	0	1	2
OTU_1	1316	532	573	1182
OTU_27211	422	131	61	59
OTU_41302	126	39	3	0
OTU_16427	8351	893	75	865
OTU_49006	0	0	0	0
OTU_51874	0	1	0	0
OTU_48435	0	1	0	0
OTU_20150	234	189	834	4055
OTU_24853	225	81	50	4
OTU_36396	448	81	20	111
OTU_27700	358	84	35	71
OTU_29553	186	149	273	1019
OTU_46484	3	0	0	0

Annotation

OTU	Kingdom	Phylum	Class	Order	Family	Genus	Specie
OTU_47937	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae		-,
OTU 50499	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae		
OTU_50493	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae		
OTU 52457	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alis tip es	
OTU_54350	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alis tip es	
OTU_48079	Bacteria	Firmicutes	Clos tridia	Clos tridiales	Lachnos pirace ae	Lachnos pirace ae	
OTU_51367	Bacteria	Firmicutes	Clos tridia	Clostridiales		,	
OTU_53666	Bacteria	Firmicutes	Clos tridia	Clostridiales	Lachnos pirace ae	Lachnos pirace ae	
OTU_53912	Bacteria	Firmicutes	Clos tridia	Clostridiales	Lachnos pirace ae	Lachnos pirace ae	
OTU_45606	Bacteria	Firmicutes	Clos tridia	Clostridiales	Lachnos pirace ae	Roseburia	
OTU_47565	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae		
OTU_53991	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	
OTU_51235	Bacteria	Bacteroidetes	Bacteroidia				
OTU_46289	Bacteria	Firmicutes	Clos tridia	Clos tridiales	Lachnos pirace ae	Lachnos pirace ae	
OTU_53310	Bacteria	Firmicutes	Clos tridia	Clos tridiales	Lachnos pirace ae	Lachnos pirace ae	
OTU_47779	Bacteria	Firmicutes	Clos tridia	Clos tridiales	Ruminococcaceae		
OTU_38495	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	
OTU_52264	Bacteria	Bacteroidetes	Bacteroidia				
OTU_54136	Bacteria	Bacteroidetes	Bacteroidia				
OTU_54531	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae		
OTU_41172	Bacteria	Firmicutes	Clos tridia	Clos tridiales	Ruminococcaceae	Os cillib acter	
OTU_54407	Bacteria	Firmicutes	Clos tridia	Clos tridiales	Ruminococcaceae		
OTU_44950	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Porphyromonadaceae	Odoribacter	
OTU_54051	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Porphyromonadaceae	Odoribacter	
OTU_54274	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Porphyromonadaceae		
OTU_51992	Bacteria	Firmicutes	Clos tridia	Clos tridiales	Lachnos pirace ae	Coprococcus	
OTU_26872	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alis tip es	
OTU_47012	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae		
OTU_48135	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alis tip es	
OTU_48860	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae		
OTU_52609	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alis tip es	
OTU_53138	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae		
OTU_53305	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alis tip es	
OTU_53604	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales			
OTU_53951	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae		
OTU_53964	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alistipes	
OTU_53990	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alistipes	
OTU_54067	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae		
OTU_54079	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alistipes	
OTU_54080	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alis tipes	
OTU_54268	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae		
OTU_52265	Bacteria	Firmicutes	Clos tridia	C los tridiales	L achnos pirace ae	L achnos pirace ae	

SHAMAN: shaman.c3bi.pasteur.fr

« There is no disputing the importance of statistical analysis in biological research, but too often it is considered only after an experiment is completed, when it may be too late. »

Metagenomic vs RNA-seq

DESeq2 approach is usually used for RNA-seq dataset

	Metagenomic	RNA-seq		
Distribution	Overdispersed counts → Negative binomial	Overdispersed counts → Negative binomial		
Constraints	Highly abundant species	Highly expressed genes		
Goal	Find differentially abundant features (species, familly,): OTU distributions and abundances vary between conditions	Find differentially expressed genes: Distributions and expression vary between conditions		

Metagenomic data are similar to RNA-seq data

Data normalization

Why?

To correct technical biaises and make samples comparables.

How?

- Fitting the distributions (Total Read Count, UpperQuartile, Median, Full Quantile)
- Account for the feature length (RPKM)
- Concept of « effective reads number » (TMM, DESeq2)

Remarks?

- Some methods normalize the counts, others the library sizes
- Some are designed for differential analysis

DESeq2 normalization (OTU level)

Assumption

Most of the OTU have the « same » abundance between 2 conditions

Normalization factor:

$$\hat{\mathbf{s}}_{j} = median_{i} \frac{\mathbf{x}_{ij}}{(\prod_{\nu=1}^{n} \mathbf{x}_{i\nu})^{1/n}}$$

where

X_{ij}: Number of mapped reads of the OTU i in sample j

n: Number of samples

Comparison with RPKM (1/3)

• RPKM : Reads Per Kilobase per Million mapped reads

Assumption

Counts are proportional to abundance, the length and the sequencing deepth.

Method

Comparison with RPKM (2/3)

Briefings in Bioinformatics Advance Access published September 17, 2012

BRIEFINGS IN BIOINFORMATICS. page 1 of 13

doi:10.1093/bib/bbs046

A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis

Marie-Agnès Dillies*, Andrea Rau*, Julie Aubert*, Christelle Hennequet-Antier*, Marine Jeanmougin*, Nicolas Servant*, Céline Keime*, Guillemette Marot, David Castel, Jordi Estelle, Gregory Guernec, Bernd Jagla, Luc Jouneau, Denis Laloë, Caroline Le Gall, Brigitte Schaëffer, Stéphane Le Crom*, Mickaël Guedj*, Florence Jaffrézic* and on behalf of The French StatOmique Consortium

Submitted: 12th April 2012; Received (in revised form): 29th June 2012

Comparison of 7 normalization methods

Comparison with RPKM (3/3)

Results on real data (7 samples)

FDR and Power

Dillies M. et al., Bioinformatics 2013

To sum up

Method	Distribution	Intra-Variance	Housekeeping	Clustering	False-positive rate
$^{\mathrm{TC}}$	-	+	+	-	-
$_{ m UQ}$	++	++	+	++	-
Med	++	++		++	-
\mathbf{DESeq}	++	++	++	++	++
\mathbf{TMM}	++	++	++	++	++
FQ	++	-	+	++	-
RPKM	-	+	+	-	-

DESeq2 normalization provides better results

OPEN & ACCESS Freely available online

Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible

Paul J. McMurdie, Susan Holmes*

Statistics Department, Stanford University, Stanford, California, United States of America

Recommend using DESeq2 to perform analysis of differential abundance

Statistical model of DESeq2

Generalized Linear Model

Advantages

Allows complex experimental designs.

Dispersion estimation

Problem

Get a good estimate of the dispersion with a small number of samples.

Modelisation of the dispersion:

$$\log \alpha_i \sim N(\log \alpha_{\rm tr}(\bar{\mu}_i), \sigma_{\rm d}^2)$$

Function of the mean of normalized count

Local parametric regression

Contrasts (comparisons)

Aim

* Testing a specific effect without having to re-fit the model.

Advantages

Parameters are estimated with all samples.

Conclusions

SHAMAN

- **16s/18s/its analysis**
- **Strong statistical approach**
- Several visualizations available
- Access: http://shaman.c3bi.pasteur.fr

Incoming features

- **WGS** analysis
- New visualizations (Taxonomy plot, Krona, continuous data)
- **Compatibility with FROGS**

CIB - FROGS 16S/18S - GALAXY Pasteur

Galaxy team : Mathieu Valade, Fabien Mareuil Emmanuel Quevillon, Eric Deveaud

Acknowledgements

C3BI Bioinformatics Biostatistics Hub

Olivier GASCUEL

Marie-Agnès DILLIES

Christophe MALABAT

Hugo VARET

Nicolas MAILLET

Pierre LECHAT

Anna ZHUKOVA

Rachel TORCHET

