CS 6109 Compiler Design

Dr. Arockia Xavier Annie R Asst. Professor, DCSE CEG, Anna University Chennai -600025 Email: annie@annauniv.edu

Lexical Analysis

Outline

- RE to NFA
- NFA to DFA
- RE to DFA
- Minimizing DFA
- Lexical analyzer generator
- Design of lexical analyzer generator

Converting A Regular Expression into NFA (Thomson's Construction)

- This is one way to convert a regular expression into a NFA.
- There can be other ways (much efficient) for the conversion.
- Thomson's Construction is simple and systematic method.
 - It guarantees that the resulting NFA will have exactly one final state, and one start state.
- Construction starts from simplest parts (alphabet symbols).
 - To create a NFA for a complex regular expression, NFAs of its sub-expressions are combined to create its NFA

Thomson's Construction (cont.)

• To recognize an empty string ε

ullet To recognize a symbol a in the alphabet Σ

- If $N(r_1)$ and $N(r_2)$ are NFAs for regular expressions r_1 and r_2
 - For regular expression $r_1 | r_2$

NFA for $r_1 | r_2$

Thomson's Construction (cont.)

• For regular expression $r_1 r_2$

Final state of $N(r_2)$ become final state of $N(r_1r_2)$

NFA for $r_1 r_2$

• For regular expression r*

Thomson's Construction Example - (a|b) * a

Converting a NFA into a DFA (subset constr)

```
put \varepsilon-closure(\{s_o\}) as an unmarked state into the set of
  DFA (DS)
while (there is one unmarked S<sub>1</sub> in DS) do
  begin
                               \epsilon-closure(\{s_0\}) is the set of all states can be accessible
       mark S,
                               from s_0 by \varepsilon-transition.
       for each input symbol a do
                                            set of states to which there is a transition o
          begin
                                             a from a state s in S_1
             S_{2} \leftarrow \varepsilon-closure(move(S_{1},a))
             if (S, is not in DS) then
              add S, into DS as an unmarked state
             transfunc[S_{1},a] \leftarrow S_{2}
        end
     end
```

- a state S in DS is an accepting state of DFA if a state in S is an accepting state of NFA
- the start state of DFA is E-closure ({s^An)ie R, DCSE, Anna University

Converting a NFA into a DFA (Example)


```
S_0 = \varepsilon-closure({0}) = {0,1,2,4,7}
                                                            S_0 into DS as an unmarked state
                             \downarrow \text{ mark } S_0
\epsilon-closure(move(S<sub>0</sub>,a)) = \epsilon-closure({3,8}) = {1,2,3,4,6,7,8} = S<sub>1</sub>
                                                                                                         S_1 into DS
\epsilon-closure(move(S<sub>0</sub>,b)) = \epsilon-closure({5}) = {1,2,4,5,6,7} = S<sub>2</sub>
                                                                                                         S<sub>2</sub> into DS
               transfunc[S_0,a] \leftarrow S_1 transfunc[S_0,b] \leftarrow S_2
                               \downarrow \text{ mark } S_1
\epsilon-closure(move(S<sub>1</sub>,a)) = \epsilon-closure({3,8}) = {1,2,3,4,6,7,8} = S<sub>1</sub>
\epsilon-closure(move(S<sub>1</sub>,b)) = \epsilon-closure({5}) = {1,2,4,5,6,7} = S<sub>2</sub>
               transfunc[S_1,a] \leftarrow S_1 transfunc[S_1,b] \leftarrow S_2
                               \downarrow \text{ mark } S_2
\epsilon-closure(move(S<sub>2</sub>,a)) = \epsilon-closure({3,8}) = {1,2,3,4,6,7,8} = S<sub>1</sub>
\epsilon-closure(move(S<sub>2</sub>,b)) = \epsilon-closure({5}) = {1,2,4,5,6,7} = S<sub>2</sub>
               transfunc[S_2,a] \leftarrow S_1 transfunc[S_2,b] \leftarrow S_2
```

Converting a NFA into a DFA (Example – cont.)

 S_0 is the start state of DFA since 0 is a member of $S_0 = \{0,1,2,4,7\}$ S_1 is an accepting state of DFA since 8 is a member of $S_1 = \{1,2,3,4,6,7,8\}$

Converting Regular Expressions Directly to DFAs

- We may convert a regular expression into a DFA (without creating a NFA first).
- First we augment the given regular expression by concatenating it with a special symbol #.
 - $r \rightarrow (r)$ # augmented regular expression
- Then, we create a syntax tree for this augmented regular expression.
- In this syntax tree, all alphabet symbols (plus # and the empty string) in the augmented regular expression will be on the leaves, and all inner nodes will be the operators in that augmented regular expression.
- Then each alphabet symbol (plus #) will be numbered (position numbers): Anna University

Regular Expression -> DFA (cont.)

$$(a|b)^* a \rightarrow (a|b)^* a #$$

augmented regular expression

Syntax tree of (a|b)* a #

- each symbol is numbered (positions)
- each symbol is at a leave
- inner nodes are operators

followpos

Then we define the function **followpos** for the positions (positions assigned to leaves).

followpos(i) -- is the set of positions which can follow the position 'i' in the strings generated by the augmented regular expression.

```
For example, (a | b)^* a #
```

```
followpos(1) = \{1,2,3\}
followpos(2) = \{1,2,3\}
followpos(3) = \{4\}
followpos(4) = \{\}
```

followpos is just defined for leaves, it is not defined for inner nodes.

firstpos, lastpos, nullable

- To evaluate followpos, we need three more functions to be defined for the nodes (not just for leaves) of the syntax tree.
- **firstpos**(**n**) -- the set of the positions of the **first** symbols of strings generated by the sub-expression rooted by n.
- **lastpos**(**n**) -- the set of the positions of the **last** symbols of strings generated by the sub-expression rooted by n.
- nullable(n) -- true if the empty string is a member of strings generated by the sub expression rooted by n false otherwise

How to evaluate firstpos, lastpos, nullable

<u>n</u>	nullable(n)	<u>firstpos(n)</u>	<u>lastpos(n)</u>
leaf labeled ε	true	Φ	Φ
leaf labeled with position i	false	{i}	{i}
c_1 c_2	nullable(c_1) or nullable(c_2)	$firstpos(c_1) \cup firstpos(c_2)$	$lastpos(c_1) \cup lastpos(c_2)$
c_1 c_2	nullable(c_1) and nullable(c_2)	if $(\text{nullable}(c_1))$ firstpos $(c_1) \cup \text{firstpos}(c_2)$ else firstpos (c_1)	if $(\text{nullable}(c_2))$ $lastpos(c_1) \cup lastpos(c_2)$ $else\ lastpos(c_2)$
* c ₁	true	firstpos(c ₁)	lastpos(c ₁)

How to evaluate followpos

- Two-rules define the function followpos:
- 1. If **n** is concatenation-node with left child c_1 and right child c_2 , and **i** is a position in **lastpos**(c_1), then all positions in **firstpos**(c_2) are in **followpos**(**i**).
- 2. If **n** is a star-node, and **i** is a position in **lastpos**(**n**), then all positions in **firstpos**(**n**) are in **followpos**(**i**).
- If firstpos and lastpos have been computed for each node, followpos of each position can be computed by making one depth-first traversal of the syntax tree.

Example -- (a | b) * a


```
pink – firstpos
blue – lastpos
```

Then we can calculate followpos

followpos(1) =
$$\{1,2,3\}$$

followpos(2) = $\{1,2,3\}$
followpos(3) = $\{4\}$
followpos(4) = $\{\}$

• After we calculate follow positions, we are ready to create DFA for the regular expression.

Algorithm (RE -> DFA)

- Create the syntax tree of (r) #
- Calculate the functions: followpos, firstpos, lastpos, nullable
- Put firstpos(root) into the states of DFA as an unmarked state.
- while (there is an unmarked state S in the states of DFA) do
 - mark S
 - for each input symbol a do
 - let s₁,...,s_n are positions in S and symbols in those positions are a
 - $S' \leftarrow \text{followpos}(s_1) \cup ... \cup \text{followpos}(s_n)$
 - move(S,a) ← S'
 - if (**S**' is not empty and not in the states of DFA)
 - put S' into the states of DFA as an unmarked state.
- the start state of DFA is firstpos(root)
- the accepting states of DFA are all states containing the position of #

Example -- (a | b) * a

$$S_1$$
=firstpos(root)={1,2,3}
 \forall mark S_1

a: followpos(1)
$$\cup$$
 followpos(3)={1,2,3,4}= S_2

b: followpos(2)=
$$\{1,2,3\}$$
= S_1
 \downarrow mark S_2

a: followpos(1)
$$\cup$$
 followpos(3)={1,2,3,4}= S_2

b: followpos(2)=
$$\{1,2,3\}=S_1$$

start state: S₁

accepting states: {S₂}

$$move(S_1,a)=S_2$$

$$move(S_1,b)=S_1$$

$$move(S_2,a)=S_2$$

$$move(S_2,b)=S_1$$

Example -- (a | ε) b c*

$$followpos(1) = \{2\} \quad followpos(2) = \{3,4\} \quad followpos(3) = \{3,4\}$$

$$followpos(4) = \{\}$$

$$S_1$$
=firstpos(root)={1,2}

$$\downarrow$$
 mark S_1

a: followpos(1)=
$$\{2\}$$
= S_2

b: followpos(2)=
$$\{3,4\}=S_3$$

$$\bigvee$$
 mark S_2

b: followpos(2)=
$$\{3,4\}=S_3$$

$$\downarrow$$
 mark S_3

c: followpos(3)=
$$\{3,4\}=S_3$$

$$move(S_1,a)=S_2$$

$$move(S_1,b)=S_3$$

$$move(S_2,b)=S_3$$

$$move(S_3,c)=S_3$$

start state: S₁

Minimizing Number of States of a DFA

- partition the set of states into two groups:
 - G₁: set of accepting states
 - G₂: set of non-accepting states
- For each new group G
 - partition G into subgroups such that states s₁ and s₂ are in the same group iff
 - for all input symbols a, states s_1 and s_2 have transitions to states in the same group.
- Start state of the minimized DFA is the group containing the start state of the original DFA.
- Accepting states of the minimized DFA are the groups containing the accepting states of the original DFA.

Minimizing DFA - Example

$$G_1 = \{2\}$$

 $G_2 = \{1,3\}$

G₂ cannot be partitioned because

$$move(1,a)=2$$

$$move(1,b)=3$$

$$move(3,a)=2$$

$$move(2,b)=3$$

So, the minimized DFA (with minimum states)

Minimizing DFA – Another Example

So, the minimized DFA

Some Other Issues in Lexical Analyzer

- The lexical analyzer has to recognize the longest possible string.
 - Ex: identifier newval -- n ne new newv newva newval
- What is the end of a token? Is there any character which marks the end of a token?
 - It is normally not defined.
 - If the number of characters in a token is fixed, in that case no problem: + -
 - But < → < or <> (in Pascal)
 - The end of an identifier: the characters cannot be in an identifier can mark the end of token.
 - We may need a lookhead

Some Issues in Lexical Analyzer (cont.)

- Skipping comments
 - Normally we don't return a comment as a token.
 - We skip a comment, and return the next token (which is not a comment) to the parser.
 - So, the comments are only processed by the lexical analyzer, and the don't complicate the syntax of the language.
- Symbol table interface
 - symbol table holds information about tokens (at least lexeme of identifiers)
 - how to implement the symbol table, and what kind of operations.
 - hash table open addressing, chaining
 - putting into the hash table, finding the position of a token from its lexeme.
- Positions of the tokens in the file (for the error handling).25

Architecture of a transitiondiagram-based lexical analyzer

```
TOKEN getRelop()
    TOKEN retToken = new (RELOP)
    while (1) {
                          /* repeat character processing until a
                                       return or failure occurs */
    switch(state) {
             case o: c= nextchar();
                           if (c == '<') state = 1;
                           else if (c == '=') state = 5;
                           else if (c == '>') state = 6;
                           else fail(); /* lexeme is not a relop */
                           break;
             case 1: ...
             case 8: retract();
                           retToken.attribute = GT;
                           return(retToken);
8/21/2020
```

Lexical Analyzer Generator - Lex

Structure of Lex programs

```
declarations
%%
translation rules
%%
auxiliary functions
```

Example

```
%{
   /* definitions of manifest constants
   LT, LE, EQ, NE, GT, GE,
   IF, THEN, ELSE, ID, NUMBER, RELOP */
%}
/* regular definitions
delim
            [ \t \]
            {delim}+
WS
letter
            [A-Za-z]
digit
            [0-9]
            {letter}({letter}|{digit})*
id
            \{digit\}+(\.\{digit\}+)?(E[+-]?\{digit\}+)?
number
%%
            {/* no action and no return */}
\{ws\}
if
            {return(IF);}
            {return(THEN);}
then
            {return(ELSE);}
else
{id}
            {yylval = (int) installID(); return(ID); }
            {yylval = (int) installNum(); return(NUMBER);}
{number}
```

```
Int installID() {/* funtion to install the
   lexeme, whose first character is
   pointed to by yytext, and whose
   length is yyleng, into the symbol
   table and return a pointer thereto
Int installNum() { /* similar to
   installID, but puts numerical
   constants into a separate table */
```

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow^{input} state

Finite Automata

Transition

$$S_1 \rightarrow^a S_2$$

Is read

In state s₁ on input "a" go to state s₂

- If end of input
 - If in accepting state => accept, othewise => reject
- If no transition possible => reject

Finite Automata State Graphs • A state

· The start state

An accepting state

· A transition

A Simple Example

• A finite automaton that accepts only "1"

 A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

• A finite automaton accepting any number of 1's

- A finite automaton accepting any number of i's followed by a single o
- Alphabet: {0,1}

• Check that "1110" is accepted but "110..." is not

And Another Example • Alphabet {0,1}

- What language does this recognize?

And Another Example

Alphabet still { o, 1 }

- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves• Another kind of transition: ε-moves

 Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- *Finite* automata have *finite* memory
 - Need only to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

- Input: 1 0 1
- Rule: NFA accepts if it can get in a final state

NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

 For a given language the NFA can be simpler than the DFA

DFA can be exponentially larger than NFA

Regular Expressions to Finite

Automata

High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ε

For input a

Regular Expressions to NFA (2)

For AB

For A | B

Regular Expressions to NFA (3)

• For A*

Example of RegExp -> NFA conversion

Consider the regular expression

$$(1 | o)*1$$

The NFA is

Next

NFA to DFA. The Trick

- Simulate the NFA
- Each state of resulting DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through ϵ -moves from NFA start state
- Add a transition $S \rightarrow a S'$ to DFA iff
 - S' is the set of NFA states reachable from the states in S after seeing the input a
 - considering ε-moves as well

NFA -> DFA Example

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states ?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
 - $2^{N} 1 =$ finitely many, but exponentially many

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbols"
 - For every transition $S_i \rightarrow a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state
 S_k
 - Very efficient

Table Implementation of a DFA

	0	1
5	۲	C
Т	Т	U
U	Т	U

Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex or jflex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

Lexical errors

- Some errors are out of power of lexical analyzer to recognize:
 - fi (a == f(x)) ...
- However it may be able to recognize errors like:
 - d = 2r
- Such errors are recognized when no pattern for tokens matches a character sequence

Error recovery

- Panic mode: successive characters are ignored until we reach to a well formed token
- Delete one character from the remaining input
- Insert a missing character into the remaining input
- Replace a character by another character
- Transpose two adjacent characters

Input buffering

- Sometimes lexical analyzer needs to look ahead some symbols to decide about the token to return
 - In C language: we need to look after -, = or < to decide what token to return
 - In Fortran: DO 5 I = 1.25
- We need to introduce a two buffer scheme to handle large look-aheads safely

Sentinels

```
M eof * C * * 2 eof
Switch (*forward++) {
   case eof:
          if (forward is at end of first buffer) {
                     reload second buffer;
                     forward = beginning of second buffer;
          else if {forward is at end of second buffer) {
                     reload first buffer;\
                     forward = beginning of first buffer;
          else /* eof within a buffer marks the end of input */
                     terminate lexical analysis;
          break;
```

cases for the other characters;

Why to separate Lexical analysis and parsing

- Simplicity of design
- 2. Improving compiler efficiency
- 3. Enhancing compiler portability