# Running OpenACC Programs on NVIDIA and AMD GPUs

Michael Wolfe, Compiler Engineer

The Portland Group

www.pgroup.com

### What is OpenACC?

A set of directive-based extensions to C, C++ and Fortran that allow you to annotate regions of code and data for offloading from a CPU host to an attached Accelerator

https://www.pgroup.com/lit/videos/ieee\_openacc\_webinar\_june2013.html

## **NVIDIA Kepler Overall Block Diagram\***



<sup>\*</sup> From the whitepaper "NVIDIA's Next Generation CUDA<sup>TM</sup> Compute Architecture: Kepler TM GK110", © 2012 NVIDIA Corporation. " Fills

### **NVIDIA Kepler SMX Block Diagram\***



- 192 SP CUDA cores
- 64 DP units
- 32 SFUs
- 32 ld/st units



\* From the whitepaper "NVIDIA's Next Generation CUDA™ Compute Architecture: Kepler TM GK110", © 2012 NVIDIA Corporation.

The Portland Group

### AMD Radeon 7970 Block Diagram\*

|                     | Asynchronous Compute Engine / Command Processor                                                                             | Asynchronous Compute Engine / Command Processor                                                                                                                                                                                                                |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SC cache<br>I cache | Scalar Unit Vector Unit L1 LDS | LDS L1 Vector Unit Scalar Unit                                                                                                                                    |
| SC cache<br>I cache | Scalar Unit Vector Unit L1 LDS | LDS L1 Vector Unit Scalar Unit  LDS L1 Vector Unit Scalar Unit |
| SC cache<br>I cache | Scalar Unit Vector Unit L1 LDS | LDS L1 Vector Unit Scalar Unit                                                                      |
| SC cache<br>I cache | Scalar Unit Vector Unit L1 LDS | LDS L1 Vector Unit Scalar Unit                                                                                                                                    |
| Level 2 cache       |                                                                                                                             |                                                                                                                                                                                                                                                                |
| GDDR5 Memory System |                                                                                                                             |                                                                                                                                                                                                                                                                |

<sup>\*</sup>From "AMD Accelerated Parallel Processing – OpenCL Programming Guide", © 2012 Advanced Micro Devices, Inc.

#### AMD Radeon 7970 Compute Unit\*



\*From "AMD Accelerated Parallel Processing – OpenCL Programming Guide", © 2012 Advanced Micro Devices, Inc.

# CPU+Accelerator Abstract Machine Architecture



#### **OpenACC Directives**

```
#pragma acc data copyin(in[0:n]) copyout(out[0:n]) \
                 copy(force[0:n], vel[0:n])
    #pragma acc parallel loop
        for (int i = 0; i < n; i++)
        . . . // update forces
    #pragma acc parallel loop
        for (int i = 0; i < n; i++)
        . . . // update positions, velocities
```

### **Building OpenACC Programs**

```
% pgcc -acc -ta=nvidia -c foo.c
% pgcc -acc -ta=nvidia -o foo.exe foo.o
% foo.exe

% pgcc -acc -ta=radeon -c bar.c
% pgcc -acc -ta=radeon -o bar.exe bar.o
% bar.exe

% pgcc -help -ta
```

#### **OpenACC Features**

- Single source code for CPU and GPU
- Offload data and loops with directives
- Incrementally tune data movement
- Overlap data movement with computation
- Re-use Accelerator data across kernels, even across procedure calls
- Easy to experiment with alternative loop schedules, mapping of parallelism to HW

# OpenACC 2.0 Upcoming Features

- Procedure calls on the Accelerator
- Unstructured Accelerator data lifetimes
- Nested parallelism
- Atomic operations
- Better interaction with OpenMP parallelism
- and more...

# Running OpenACC Programs on NVIDIA and AMD GPUs

- -acc -ta=nvidia -ta=radeon
- Accelerators exploit parallelism, regularity
  - expose, express, exploit
    - algorithm
    - language
    - compiler + runtime + hardware

www.pgroup.com/openacc

www.openacc.org

https://www.pgroup.com/lit/videos/ieee\_openacc\_webinar\_june2013.html