```
setwd("~/Desktop/Program Eval PS 4 ")
data <- read.csv("ps_4_data-1.csv")
head(data)
...</pre>
```

Description: df [6 × 4]						
	year <int></int>	village_id <int></int>	female_election_year <int></int>	gross_village_product <dbl></dbl>		
1	2001	1	2005	31550.84		
2	2002	1	2005	29309.80		
3	2003	1	2005	30112.12		
4	2004	1	2005	30359.09		
5	2005	1	2005	33267.16		
6	2006	1	2005	36256.35		

We can see that the dataset includes the year, village ID, the year of the female leader election, and gross village product (GVP) for each year and village.

```
# Create binary variable indicating whether a village had a female leader or not data$female_leader <- ifelse(is.na(data$female_election_year), 0, 1)

# Calculate average GVP for villages with and without a female leader mean_gvp_female <- mean(data[data$female_leader == 1,]$gross_village_product) mean_gvp_male <- mean(data[data$female_leader == 0,]$gross_village_product)

# Print results cat("Average GVP for villages with female leader:", round(mean_gvp_female, 2), "\n") cat("Average GVP for villages without female leader:", round(mean_gvp_male, 2), "\n")
```

Average GVP for villages with female leader: 39629.79 Average GVP for villages without female leader: 27969.64

We can see that the average GVP for villages with a female leader is higher than for villages without a female leader. However, this simple comparison has many limitations and does not account for potential confounding factors that may affect both the likelihood of electing a female leader and economic productivity. Therefore, it is not a reliable estimate of the causal effect of female leadership on economic productivity.

Question 7

Using regression to perform a time-series (ie pre vs. post) analysis of the effect of female leaders on economic productivity, using only villages who elected women in 2010:

```
````{r}
 (i) V
filter data to only include villages that elected female leaders in 2010
data_2010 <- subset(data, female_election_year <= 2010)
create dummy variable for villages that elected female leaders in 2010 or earlier
\label{lem:data_2010} data_2010\$ Female Election <- ifelse(data_2010\$ female_election_year <= \verb| 2010, 1, 0|) \\
create dummy variable for post-2010 period
data_2010$Post2010 <- ifelse(data_2010$year >= 2010, 1, 0)
estimate difference-in-differences regression
library(lmtest)
library(sandwich)
did_model <- lm(gross_village_product ~ FemaleElection + Post2010 + FemaleElection * Post2010, data =
coeftest(did_model, vcov = vcovHC(did_model, cluster = data_2010$village_id))
 t test of coefficients:
 Estimate Std. Error t value Pr(>|t|)
 Post2010 16048.679 170.081 94.359 < 2.2e-16 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Here, the coefficient estimate for the treatment variable represents the difference in average GVP between villages that elected a female leader in 2010 and those that did not. Based on the regression results, villages that elected female leaders in 2010 had a statistically significant increase in GVP of about 16048 rupees compared to villages that did not elect female leaders (p-value < 0.05). This suggests that female leadership at the village level may have a positive impact on economic productivity. Compared to the simple comparison of average economic productivity between villages with and without a female leader in Question 6, this regression allows us to control for potential confounding factors that may affect economic productivity over time, such as changes in economic policies, infrastructure development, and market conditions.

```
| Substitute | Sub
```

The plot shows that the average GVP for villages that elected female leaders in 2010 had a sharp increase in 2010 and continued to grow in the following years. This suggests that the effect of female leadership on economic productivity may be immediate and persist over time. Since the plot also shows a clear upward trend in GVP for all villages over time, which confirms the importance of controlling for time trends in the regression analysis. The difference between the pre-treatment and post-treatment GVP in the plot is consistent with the regression results, and suggests that female leadership may have a positive impact on economic productivity. However, we should keep in mind that further analysis is needed to establish causality.

2008 Year

2004

2012

### Question 8

Plotting (average) economic productivity against time for villages who never elected a female leader:

```
control_villages <- data[data$female_leader == 0,]
library(dplyr)
control_villages_avg <- control_villages %>%
 group_by(year) %>%
 summarize(avg_gvp = mean(gross_village_product))

library(ggplot2)
ggplot(control_villages_avg, aes(x = year, y = avg_gvp)) +
 geom_line() +
 ggtitle("Average Economic Productivity for Villages with Male Leaders Only") +
 xlab("Year") +
 ylab("Average Gross Village Product")
```

# Average Economic Productivity for Villages with Male Leaders Only



```
female_leader_villages <- data[data$year >= 2005 & data$year <= 2011,]
female_leader_villages <- female_leader_villages[female_leader_villages$female_leader == 1,]
female_leader_villages_avg <- female_leader_villages %>%
 group_by(year) %>%
 summarize(avg_gvp = mean(gross_village_product))

ggplot(female_leader_villages_avg, aes(x = year, y = avg_gvp)) +
 geom_line() +
 ggtitle("Average Economic Productivity for Villages with Female Leaders (Elected in 2005)") +
 xlab("Year") +
 ylab("Average Gross Village Product")
```



2008

Year

2010

# Question 9

32000 -

2006

```
⊕ ▼ ▶
Create a subset of the data for the male-leader-only villages and the 2005 female-electing villages
subset_data <- subset(data, female_election_year == 2005 & female_leader == 1)</pre>
Calculate the mean of gross_village_product for villages with a female leader
mean_female <- mean(subset_data$gross_village_product)</pre>
Create a subset of the data for the male-leader-only villages
subset_data_male <- subset(data, female_election_year == 2005 & female_leader == 0)</pre>
Calculate the mean of gross_village_product for villages with a male leader
mean_male <- mean(subset_data_male$gross_village_product)</pre>
Calculate the difference in means
diff_means <- mean_female - mean_male
diff_means
Simple regression without fixed effects
reg_simple <- lm(gross_village_product ~ female_leader, data = subset_data)</pre>
summary(reg_simple)
Regression with village fixed effects
reg_fe <- lm(gross_village_product \sim female_leader + factor(village_id), \ data = subset_data)
summary(reg_fe)
 [1] NaN
 Call:
 lm(formula = gross_village_product ~ female_leader, data = subset_data)
 Residuals:
 1Q Median
 30
 Min
 Max
```

-7610.3 -3693.5 452.1 3156.1 8205.6

NA

(Intercept) 35385.09

female\_leader

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

NA

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3677 on 14999 degrees of freedom

30.02 1179 <2e-16 \*\*\*

NA

NΑ

#### Call:

 $\label{lm} $$ \lim(formula = gross\_village\_product \sim female\_leader + factor(village\_id), $$ data = subset\_data)$$ 

## Residuals:

Min 1Q Median 3Q Max -7744.8 -3763.4 478.2 3161.9 7837.0

Coefficients: (1 not defined because of singularities)

Coefficients: (1 not d	lefined beca	use of singu	ılarities	s)	
	Estimate	Std. Error	t value		
(Intercept)	35790.8107	980.7851	36.492	<2e-16	***
female_leader	NA	NA	NA	NA	
factor(village_id)11	-267.8300	1387.0396	-0.193	0.847	
factor(village_id)21	-292.1487	1387.0396	-0.211	0.833	
factor(village_id)31	-574.0440	1387.0396	-0.414	0.679	
factor(village_id)41	-206.6433	1387.0396	-0.149	0.882	
factor(village_id)51	-463.5087	1387.0396	-0.334	0.738	
factor(village_id)61	-290.1533	1387.0396	-0.209	0.834	
factor(village_id)71	-499.4493	1387.0396	-0.360	0.719	
factor(village_id)81	-105.2900	1387.0396	-0.076	0.939	
factor(village_id)91	-563.6233	1387.0396	-0.406	0.684	
factor(village_id)101	-375.9400	1387.0396	-0.271	0.786	
factor(village_id)111	-517.3340	1387.0396	-0.373	0.709	
factor(village_id)121	-105.9440	1387.0396	-0.076	0.939	
factor(village_id)131	-284.6807	1387.0396	-0.205	0.837	
factor(village_id)141	-415.5607	1387.0396	-0.300	0.764	
factor(village_id)151	-0.7727	1387.0396	-0.001	1.000	
factor(village_id)161	-58.3067	1387.0396	-0.042	0.966	
factor(village_id)171	-485.3027	1387.0396	-0.350	0.726	
factor(village_id)181	-558.2720	1387.0396	-0.402	0.687	
factor(village_id)191	-369.5200	1387.0396	-0.266	0.790	
factor(village_id)201	-697.8573	1387.0396	-0.503	0.615	
factor(village_id)211	-521.0347	1387.0396	-0.376	0.707	
factor(village_id)221	-594.6813	1387.0396	-0.429	0.668	
factor(village_id)231	-804.6427	1387.0396	-0.580	0.562	
factor(village_id)241	-447.2133	1387.0396	-0.322	0.747	
factor(village_id)251	-258.2040	1387.0396	-0.186	0.852	
factor(village_id)261	-1020.3627	1387.0396	-0.736	0.462	
factor(village_id)271	-192.7000	1387.0396	-0.139	0.890	
factor(village_id)281	-329.4247	1387.0396	-0.238	0.812	
factor(village_id)291	-85.3653	1387.0396	-0.062	0.951	
factor(village_id)301	-364.0067	1387.0396	-0.262	0.793	

factor(village_	id)311	-755.2587	1387.0396	-0.545	0.586
factor(village_	id)321	-216.0867	1387.0396	-0.156	0.876
factor(village_	id)331	-355.7840	1387.0396	-0.257	0.798
factor(village_	id)341	-247.5793	1387.0396	-0.178	0.858
factor(village_	id)351	-620.9560	1387.0396	-0.448	0.654
factor(village_	id)361	-148.0960	1387.0396	-0.107	0.915
factor(village_	id)371	-373.5267	1387.0396	-0.269	0.788
factor(village_	id)381	-441.0027	1387.0396	-0.318	0.751
factor(village_	id)391	-127.3180	1387.0396	-0.092	0.927
factor(village_	id)401	-395.4587	1387.0396	-0.285	0.776
factor(village_	id)411	-270.7560	1387.0396	-0.195	0.845
factor(village_	id)421	-285.6593	1387.0396	-0.206	0.837
factor(village_	id)431	-575.5253	1387.0396	-0.415	0.678
factor(village_	id)441	-309.0720	1387.0396	-0.223	0.824
factor(village_	id)451	-630.3040	1387.0396	-0.454	0.650
factor(village_	id)461	-576.1140	1387.0396	-0.415	0.678
factor(village_	id)471	-398.8647	1387.0396	-0.288	0.774
factor(village_	id)481	-303.2533	1387.0396	-0.219	0.827
factor(village_	id)491	-856.1440	1387.0396	-0.617	0.537
factor(village_	id)501	-708.4227	1387.0396	-0.511	0.610
factor(village_		-526.8947	1387.0396	-0.380	0.704
factor(village_	id)521	-471.3407	1387.0396	-0.340	0.734
factor(village_		-776.5440	1387.0396	-0.560	0.576
factor(village_		-421.1760	1387.0396	-0.304	0.761
factor(village_		-288.9333	1387.0396	-0.208	0.835
factor(village_		-540.8567	1387.0396	-0.390	0.697
factor(village_		-323.8033	1387.0396	-0.233	0.815
factor(village_		-308.5940	1387.0396	-0.222	0.824
factor(village_		-215.2273	1387.0396	-0.155	0.877
factor(village_	-	-585.9760	1387.0396	-0.422	0.673
factor(village_		-658.1300	1387.0396	-0.474	0.635
factor(village_	-	42.7827	1387.0396	0.031	0.975
factor(village_		-613.2160	1387.0396	-0.442	0.658
factor(village_	-	-332.3873	1387.0396	-0.240	0.811
factor(village_	-	-662.8467	1387.0396	-0.478	0.633
factor(village_		-407.6233	1387.0396	-0.294	0.769
factor(village_		-663.7113	1387.0396	-0.479	0.632
factor(village_		-536.7693	1387.0396	-0.387	0.699
factor(village_		-173.2907	1387.0396	-0.125	0.901
factor(village_		-551.2073	1387.0396	-0.397	0.691
factor(village_		-261.7613	1387.0396	-0.189	0.850
factor(village_	id)721	-594.4647	1387.0396	-0.429	0.668

factor(village_id)731	-530.4680	1387.0396	-0.382	0.702
factor(village_id)741	-452.2427	1387.0396	-0.326	0.744
factor(village_id)751	-17.9107	1387.0396	-0.013	0.990
factor(village_id)761	-657.5780	1387.0396	-0.474	0.635
factor(village_id)771	-277.5800	1387.0396	-0.200	0.841
factor(village_id)781	-293.5140	1387.0396	-0.212	0.832
factor(village_id)791	-596.9007	1387.0396	-0.430	0.667
factor(village_id)801	-672.4733	1387.0396	-0.485	0.628
factor(village_id)811	-149.8673	1387.0396	-0.108	0.914
factor(village_id)821	-601.2633	1387.0396	-0.433	0.665
factor(village_id)831	-509.4280	1387.0396	-0.367	0.713
factor(village_id)841	-648.2133	1387.0396	-0.467	0.640
factor(village_id)851	-246.5840	1387.0396	-0.178	0.859
factor(village_id)861	-101.2560	1387.0396	-0.073	0.942
factor(village_id)871	-642.9120	1387.0396	-0.464	0.643
factor(village_id)881	-214.7753	1387.0396	-0.155	0.877
factor(village_id)891	-717.1907	1387.0396	-0.517	0.605
factor(village_id)901	-759.8493	1387.0396	-0.548	0.584
factor(village_id)911	-325.7520	1387.0396	-0.235	0.814
factor(village_id)921	-252.4167	1387.0396	-0.182	0.856
factor(village_id)931	-575.8427	1387.0396	-0.415	0.678
factor(village_id)941	-421.5267	1387.0396	-0.304	0.761
factor(village_id)951	-413.7553	1387.0396	-0.298	0.765
factor(village_id)961	-173.3380	1387.0396	-0.125	0.901
factor(village_id)971	-394.6853	1387.0396	-0.285	0.776
factor(village_id)981	-65.2533	1387.0396	-0.047	0.962
factor(village_id)991	-112.0527	1387.0396	-0.081	0.936
factor(village_id)1001	-804.0020	1387.0396	-0.580	0.562
factor(village_id)1011	-186.7420	1387.0396	-0.135	0.893
factor(village_id)1021	106.0933	1387.0396	0.076	0.939
factor(village_id)1031	-227.7853	1387.0396	-0.164	0.870
factor(village_id)1041	-705.0433	1387.0396	-0.508	0.611
factor(village_id)1051	-523.1040	1387.0396	-0.377	0.706
factor(village_id)1061	-203.3247	1387.0396	-0.147	0.883
factor(village_id)1071	38.8153	1387.0396	0.028	0.978
factor(village_id)1081	-227.1347	1387.0396	-0.164	0.870
factor(village_id)1091	-231.8567	1387.0396	-0.167	0.867
factor(village_id)1101	-653.0960	1387.0396	-0.471	0.638
factor(village_id)1111	-296.5853	1387.0396	-0.214	0.831
factor(village_id)1121	-416.6773	1387.0396	-0.300	0.764
factor(village_id)1131	-271.2560	1387.0396	-0.196	0.845
factor(village_id)1141	-585.6060	1387.0396	-0.422	0.673

factor(village_id)1	.151 -440.7387	1387.0396	-0.318	0.751
factor(village_id)1	.161 -726.5987	1387.0396	-0.524	0.600
factor(village_id)1	.171 -551.1553	1387.0396	-0.397	0.691
factor(village_id)1	.181 -24.7987	1387.0396	-0.018	0.986
factor(village_id)1	.191 -232.7293	1387.0396	-0.168	0.867
factor(village_id)1	.201 -579.6673	1387.0396	-0.418	0.676
factor(village_id)1	.211 -394.4620	1387.0396	-0.284	0.776
factor(village_id)1	.221 -546.2693	1387.0396	-0.394	0.694
factor(village_id)1	.231 -476.1607	1387.0396	-0.343	0.731
factor(village_id)1	.241 -671.9267	1387.0396	-0.484	0.628
factor(village_id)1	.251 -407.0940	1387.0396	-0.293	0.769
factor(village_id)1	.261 -793.1533	1387.0396	-0.572	0.567
factor(village_id)1	.271 -850.2547	1387.0396	-0.613	0.540
factor(village_id)1	.281 -503.9033	1387.0396	-0.363	0.716
factor(village_id)1	.291 -706.6640	1387.0396	-0.509	0.610
factor(village_id)1	.301 -720.1573	1387.0396	-0.519	0.604
factor(village_id)1	.311 -76.0580	1387.0396	-0.055	0.956
factor(village_id)1	.321 -413.9487	1387.0396	-0.298	0.765
factor(village_id)1	.331 -309.4780	1387.0396	-0.223	0.823
factor(village_id)1	.341 -325.9180	1387.0396	-0.235	0.814
factor(village_id)1	.351 -470.6520	1387.0396	-0.339	0.734
factor(village_id)1	.361 -734.6380	1387.0396	-0.530	0.596
factor(village_id)1	.371 -136.7427	1387.0396	-0.099	0.921
factor(village_id)1	.381 -565.2567	1387.0396	-0.408	0.684
factor(village_id)1		1387.0396	-0.406	0.685
factor(village_id)1	.401 -601.4607	1387.0396	-0.434	0.665
factor(village_id)1		1387.0396	-0.445	0.656
factor(village_id)1		1387.0396	-0.355	0.723
factor(village_id)1		1387.0396	-0.158	0.874
factor(village_id)1		1387.0396	-0.355	0.722
factor(village_id)1		1387.0396	-0.190	0.850
factor(village_id)1		1387.0396	-0.379	0.704
factor(village_id)1		1387.0396	-0.176	0.860
factor(village_id)1		1387.0396	-0.430	0.667
factor(village_id)1		1387.0396	-0.426	0.670
factor(village_id)1		1387.0396	-0.463	0.644
factor(village_id)1		1387.0396	-0.252	0.801
factor(village_id)1		1387.0396	-0.395	0.693
factor(village_id)1		1387.0396	-0.306	0.759
factor(village_id)1		1387.0396	-0.183	0.855
factor(village_id)1		1387.0396	-0.163	0.871
factor(village_id)1	.561 -219.8720	1387.0396	-0.159	0.874

```
factor(village_id)1571 -225.8980 1387.0396
 0.871
factor(village_id)1581 -397.8740 1387.0396
 -0.287
 0.774
factor(village_id)1591 -259.3400
 1387.0396
 -0.187
 0.852
factor(village_id)1601
 -333.4393
 1387.0396
 0.810
factor(village_id)1611 -522.0087
 0.707
 1387.0396
 -0.376
factor(village_id)1621 -458.8760
 1387.0396
 -0.331
 0.741
factor(village_id)1631
 -456.2667
 0.742
 1387.0396
 -0.329
factor(village_id)1641 -306.5420
 1387.0396
 -0.221
 0.825
factor(village_id)1651 -527.1600
 1387.0396
 -0.380
 0.704
factor(village_id)1661
 -643.8880
 0.642
 1387.0396
 -0.464
factor(village_id)1671 -641.8100
 -0.463
 1387.0396
 0.644
factor(village_id)1681 -584.3487
 0.674
 1387.0396
 -0.421
factor(village_id)1691
 -604.5973
 1387.0396
 0.663
 -0.436
factor(village_id)1701 -269.3980
 -0.194
 1387.0396
 0.846
factor(village_id)1711 -277.1393
 1387.0396
 -0.200
 0.842
factor(village_id)1721
 -665.0193
 0.632
 1387.0396
 -0.479
factor(village_id)1731 -604.1873
 -0.436
 1387.0396
 0.663
factor(village_id)1741 -392.1313
 1387.0396
 -0.283
 0.777
factor(village_id)1751
 -570.7140
 1387.0396
 0.681
factor(village_id)1761 -562.6200
 -0.406
 1387.0396
 0.685
 -51.3113
factor(village_id)1771
 -0.037
 0.970
 1387,0396
factor(village_id)1781 -496.0760
 0.721
 1387.0396
 -0.358
factor(village_id)1791 -264.3840
 1387.0396
 -0.191
 0.849
factor(village_id)1801 -400.7747
 0.773
 1387.0396
 -0.289
factor(village_id)1811 -149.8720
 1387.0396
 0.914
 -0.108
factor(village_id)1821 -538.7867
 1387.0396
 -0.388
 0.698
 -0.474
factor(village_id)1831 -657.1273
 1387.0396
 0.636
factor(village_id)1841
 -799.5360
 0.564
 1387,0396
 -0.576
factor(village_id)1851 -592.3940
 1387.0396
 -0.427
 0.669
factor(village_id)1861 -496.5953
 -0.358
 0.720
 1387.0396
factor(village_id)1871
 -601.5907
 1387.0396
 0.664
 -0.434
factor(village_id)1881 -637.1627
 1387.0396
 -0.459
 0.646
factor(village_id)1891 -568.5327
 1387.0396
 -0.410
 0.682
factor(village_id)1901
 -987.3300
 0.477
 1387.0396
 -0.712
factor(village_id)1911 -317.3340
 1387.0396
 -0.229
 0.819
factor(village_id)1921 -102.1000
 -0.074
 1387.0396
 0.941
factor(village_id)1931 -537.1087
 0.699
 1387.0396
 -0.387
factor(village_id)1941 -417.9040
 -0.301
 0.763
 1387.0396
factor(village_id)1951 -131.1407
 -0.095
 0.925
 1387.0396
factor(village_id)1961
 93.5833
 0.067
 0.946
 1387.0396
factor(village_id)1971 -140.9453
 1387.0396
 -0.102
 0.919
factor(village_id)1981 -312.6587
 1387.0396
 -0.225
 0.822
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3799 on 14000 degrees of freedom
Multiple R-squared: 0.003659, Adjusted R-squared: -0.06744
F-statistic: 0.05146 on 999 and 14000 DF, p-value: 1
```

## Comparing results to our outputs in 6, 7 and 8:

In step 6, we used a naive estimator that suffered from selection bias, which meant that we could not directly compare villages with female leaders to those without, as there may be other factors affecting the results. In step 7, we used a time series approach, but this method is limited by time-varying unobservable factors that violate the non-zero trends assumption. In step 8, we attempted to identify a suitable control group for the villages with female leaders using the difference-in-differences (DID) approach, which relies on the common trends assumption. We found that this assumption was not met when comparing villages that never elected a female leader to those that did in 2010, but it was satisfied when comparing villages that never elected a female leader to those that did in 2005.

## Question 10

```
library(dplyr)
library(ggplot2)

Filter villages that elected female leaders in each year from 2005 to 2010

female_electing_villages <- data %>%

filter(female_election_year >= 2005 & female_election_year <= 2010) %>%

group_by(female_election_year) year) %>%

summarize(mean_gvp = mean(gross_village_product))

Plot average economic productivity over time for each female electing year

ggplot(female_electing_villages, aes(x = year, y = mean_gvp, color = as.factor(female_election_year))) +

geom_line() +

labs(title = "Average Economic Productivity Over Time by Year of Female Election",

x = "Year", y = "Average GVP")

A X

R Console
```

#### Average Economic Productivity Over Time by Year of Female Election



The plot shows the average economic productivity over time for villages that elected a female leader in each year from 2005 to 2010. We can observe that the villages that elected a female leader in 2010 have a notably different trend in economic productivity compared to the other years. Thus, we drop the villages that elected a female leader in 2009, and use the remaining villages to estimate the causal effect of female leadership on economic productivity.

```
Filter villages that elected female leaders in years 2005, 2006, 2007, 2008, and 2009

female_electing_villages <- data %>%
 filter(female_election_year %in% c(2005, 2006, 2007, 2008, 2009)) %>%
 group_by(village_id) %>%
 filter(length(unique(female_election_year)) == 1) %>%
 group_by(female_election_year, village_id) %>%
 summarize(mean_gvp = mean(gross_village_product)) %>%
 ungroup()

Create panel data
panel_data <- pdata.frame(female_electing_villages, index = c("village_id", "female_election_year"))
Fixed effects regression
fixed_effects_model <- plm(mean_gvp ~ female_election_year, data = panel_data, model = "within", effect = "individual")
summary(fixed_effects_model)
```

## Question 11

```
```{r}
                                                                                                                                                                                                                                                                                                                               library(plm)
 data$T_2010 <- ifelse(data$female_election_year == 2010, 1, 0)</pre>
  event\_study\_reg <- plm(gross\_village\_product \sim T\_2010 + T\_2010:I(year != 2009) + T_2010:I(year != 2009) + T_2010:I(year
                                                                T_2010:I(year != 2009 & year != 2010) +
                                                                T_2010:I(year != 2009 & year != 2010 & year != 2011) +
                                                               T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012) +
                                                                T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012 & year != 2013) +
                                                           \label{eq:data} \textit{data} = \ \textit{data}[\textit{data}\\ \textit{female}\_\textit{election}\_\textit{year} \ \textit{\%in}\\ \textit{\%} \ \ \textit{2005}\\ : \textit{2010}, \end{black},
                                                           index = c("village_id", "year"),
                                                          model = "within")
  summary(event_study_reg)
                                                                                                                                                                                                                                                                                                                         Oneway (individual) effect Within Model
    Call:
    plm(formula = gross_village_product ~ T_2010 + T_2010:I(year !=
              2009) + T_2010:I(year != 2009 & year != 2010) + T_2010:I(year !=
               2009 & year != 2010 & year != 2011) + T_2010:I(year != 2009 &
               year != 2010 & year != 2011 & year != 2012) + T_2010:I(year !=
               2009 & year != 2010 & year != 2011 & year != 2012 & year !=
               2013) + year, data = data[datafemale_election_year \%in\%
              2005:2010, ], model = "within", index = c("village_id", "year"))
    Balanced Panel: n = 6000, T = 15, N = 90000
    Residuals:
                                                                Median 3rd Qu. Max.
492.68 2737.43 64368.75
               Min. 1st Qu.
    -29811.43 -1416.86
    Coefficients:
                                                                                                                                                                                                                                                       Estimate
    year2002
                                                                                                                                                                                                                                                         -57.866
    year2003
                                                                                                                                                                                                                                                         917.388
    year2004
                                                                                                                                                                                                                                                       2517.787
    vear2005
                                                                                                                                                                                                                                                       3083.785
```

```
year2006
                                                                                          4942.837
year2007
                                                                                          7219.636
year2008
                                                                                          8689.016
year2009
                                                                                         10684.034
year2010
                                                                                         11717.335
year2011
                                                                                         12289.379
year2012
                                                                                         12613.620
year2013
                                                                                         13006.010
year2014
                                                                                         22468.002
year2015
                                                                                         25174.944
T_2010:I(year != 2009)TRUE
                                                                                         21722.572
T_2010:I(year != 2009 & year != 2010)TRUE
                                                                                          7629.156
T_2010:I(year != 2009 & year != 2010 & year != 2011)TRUE
                                                                                          7239.260
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012)TRUE
                                                                                          7605.985
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012 & year != 2013)TRUE -48475.246
                                                                                        Std. Error
year2002
                                                                                           184.236
year2003
                                                                                           184.236
year2004
                                                                                           184.236
year2005
                                                                                           184.236
year2006
                                                                                           184.236
year2007
                                                                                           184.236
year2008
                                                                                           184.236
year2009
                                                                                           194.105
                                                                                           194.105
year2010
year2011
                                                                                           194.105
year2012
                                                                                           194.105
                                                                                           194.105
year2013
year2014
                                                                                           184.236
year2015
                                                                                           184.236
T_2010:I(year != 2009)TRUE
                                                                                           494.357
T_2010:I(year != 2009 & year != 2010)TRUE
                                                                                           494.357
T_2010:I(year != 2009 & year != 2010 & year != 2011)TRUE
                                                                                           494.357
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012)TRUE
                                                                                           494.357
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012 & year != 2013)TRUE
                                                                                           366.625
                                                                                          t-value
year2002
                                                                                          -0.3141
                                                                                          4.9794
year2003
year2004
                                                                                          13.6661
year2005
                                                                                          16.7382
year2006
                                                                                          26.8288
year2007
                                                                                          39.1869
```

```
vear2008
                                                                                          47.1624
year2009
                                                                                          55.0426
year2010
                                                                                          60.3660
year2011
                                                                                          63.3131
year2012
                                                                                          64.9836
                                                                                          67.0051
vear2013
year2014
                                                                                         121.9522
year2015
                                                                                         136.6450
T 2010:I(vear != 2009)TRUE
                                                                                          43.9410
T_2010:I(year != 2009 & year != 2010)TRUE
                                                                                          15.4325
T_2010:I(year != 2009 & year != 2010 & year != 2011)TRUE
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012)TRUE
                                                                                          15.3856
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012 & year != 2013)TRUE -132.2202
                                                                                         Pr(>|t|)
vear2002
                                                                                           0.7535
year2003
                                                                                         6.39e-07
year2004
                                                                                        < 2.2e-16
year2005
                                                                                        < 2.2e-16
year2006
                                                                                        < 2.2e-16
year2007
                                                                                        < 2.2e-16
year2008
                                                                                        < 2.2e-16
year2009
                                                                                        < 2.2e-16
year2010
                                                                                        < 2.2e-16
year2011
                                                                                        < 2.2e-16
year2012
                                                                                        < 2.2e-16
year2013
                                                                                        < 2.2e-16
year2014
                                                                                        < 2.2e-16
year2015
                                                                                        < 2.2e-16
T_2010:I(year != 2009)TRUE
                                                                                        < 2.2e-16
T_2010:I(year != 2009 & year != 2010)TRUE
                                                                                        < 2.2e-16
T_2010:I(year != 2009 & year != 2010 & year != 2011)TRUE
                                                                                        < 2.2e-16
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012)TRUE
                                                                                        < 2.2e-16
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012 & year != 2013)TRUE < 2.2e-16
vear2002
                                                                                        ***
year2003
year2004
                                                                                        ***
                                                                                        ***
vear2005
year2006
year2007
vear2008
year2009
year2010
                                                                                         ***
year2011
                                                                                         ***
year2012
year2013
year2014
                                                                                         ***
                                                                                         ***
vear2015
                                                                                         ***
T_2010:I(year != 2009)TRUE
T_2010:I(year != 2009 & year != 2010)TRUE
                                                                                         ***
                                                                                         ***
T_2010:I(year != 2009 & year != 2010 & year != 2011)TRUE
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012)TRUE
T_2010:I(year != 2009 & year != 2010 & year != 2011 & year != 2012 & year != 2013)TRUE ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                         1.8796e+13
Residual Sum of Squares: 8.5517e+12
R-Squared:
                0.54503
Adj. R-Squared: 0.51243
F-statistic: 5295.08 on 19 and 83981 DF, p-value: < 2.22e-16
```

Based on the output, we can see that the treatment effect varies over time. The coefficient estimates for each year indicate that the gross village product increases over time, which suggests a positive trend. The coefficients for the interaction terms between the treatment variable (T_2010) and each year show how the treatment effect varies over time. The coefficient estimate for the interaction term between T_2010 and (year != 2009 & year != 2010 & year != 2011 & year != 2012 & year != 2013) is negative and

significantly different from zero (p<0.05), indicating that the treatment effect is negative in this year. This suggests that the treatment may have had a detrimental effect on the gross village product in this year. On the other hand, the coefficients for the interaction terms between T_2010 and the other years are positive and significantly different from zero (p<0.05), indicating that the treatment effect is positive in these years. This suggests that the treatment had a positive effect on the gross village product in these years. Overall, the treatment effect varies over time and the magnitude and direction of the effect depends on the year.

Question 12

The event study design seems to yield the best results as it allows us to understand the effect of treatment on GVP. We had to eliminate the naive estimator due to selection bias, and the time series approach had problems with counterfactuals and the fundamental problem of causal inference. After finding a good counterfactual through the parallel trends assumption, we ran a fixed effects model, but noticed a year with very different trends in 2010, which we realized was probably just a weighted average of effects. We then ran an event study design, which allowed us to divide our data into a series of events and observe the trend of GVP throughout the entire timeline while also segregating the outlier year of 2010. This approach lines up treatment at the same time for everyone, and we can still use fixed effects to account for confounders. We get a partial test of the identifying assumption, so I would recommend using event study estimates. The estimated effects in graph 11 show a high magnitude, with a low negative of USD 939 to an increase of up to USD 10,299. These results suggest that PROGRAMEVAL should strongly promote female village leadership based on increases in GVP. However, the event study approach may be subject to potential bias, including the selection problem in treatment and untreated villages on different trends, coincident treatments, anticipatory effects, and the Ashenfelter dip. Results can also be impacted by independent and unexpected events.