Contents

61

62	2 Acknowledgements						
63	Al	ostra	\mathbf{ct}		iv		
64	Co	onter	ıts		v		
65	Pr	efac	е		ix		
66	1	Intr	oducti	ion	1		
67	2	The	Stand	lard Model	2		
68	3	The	LHC	and the ATLAS detector	3		
69		3.1	The L	HC	3		
70		3.2	The A	TLAS detector	3		
71			3.2.1	Tracking	3		
72			3.2.2	Calorimetry	3		
73			3.2.3	Muon spectrometry	3		
74		3.3	Partic	le identification	3		
75			3.3.1	Muons	3		
76			3.3.2	Electrons and photons	3		
77			3.3.3	Hadrons	3		
78			3.3.4	Neutrinos	3		
79		3.4	Trigge	ring	3		
80			3.4.1	L1	3		
81			3.4.2	HLT	3		

Contents	V

82	4	Tau	ı leptons	11		
83		4.1	Tau leptons	11		
84		4.2	Leptonic tau decays, $ au_\ell$	11		
85		4.3	Hadronic tau decays, $\tau_{\rm had}$			
86			4.3.1 Reconstruction	13		
87			4.3.1.1 Calorimeter seeding	13		
88			4.3.1.2 Track and vertex association	13		
89			4.3.1.3 Calibration	14		
90		4.4	Identification	15		
91		4.5	Leptons mis-identified as $\tau_{\rm had}$	20		
92			4.5.1 Electrons	20		
93			4.5.2 Muons	20		
94	5	H-	$ o au_\ell au_{ ext{had}} ext{ strategy}$	23		
95		5.1	Introduction	23		
96			5.1.1 ATLAS Higgs program	23		
97			5.1.2 $H \to \tau\tau$	23		
98		5.2	Physics objects	23		
99			5.2.1 Electrons, muons, and τ_{had}	23		
100			5.2.2 Jets and $E_{\mathrm{T}}^{\mathrm{miss}}$	23		
101		5.3	Categorization			
102			5.3.1 Pre-selection	23		
103			5.3.2 VBF category	29		
104			5.3.3 Boosted category	29		
105		5.4	au au mass reconstruction	30		
106			$5.4.1 \tau\tau \text{ systems} \dots \qquad \dots \qquad \dots \qquad \dots$	30		
107			$5.4.2 m_{ au au}^{ m MMC}$ algorithm	30		
108			5.4.3 Performance	30		
109		5.5	MVA discrimination	30		
110			5.5.1 Inputs	30		
111			5.5.2 Correlations	32		
112			5.5.3 MVAs in other VBF analyses	40		
113	6	Sigr	nal and background predictions	42		

CONTENTS	vi
----------	----

114		6.1	Z o au au	42	
115			6.1.1 Mis-modeling of $Z(\to \ell\ell)$ +jets in simulation	42	
116			6.1.2 Embedding	42	
117			6.1.3 Validation	42	
118			6.1.4 Uncertainties	45	
119		6.2	$j\! ightarrow\! au_{ m had}$ mis-identification	46	
120			6.2.1 Mis-modeling of $j \rightarrow \tau_{\rm had}$ in simulation	46	
121			6.2.2 Fake factor method	46	
122			6.2.3 Composition of $j \rightarrow \tau_{\text{had}}$ in the SR	50	
123			6.2.4 Validation	55	
124			6.2.5 Uncertainties	60	
125		6.3	top, $Z \to \ell\ell$, diboson	61	
126		6.4	H o au au	61	
127			6.4.1 Generators	61	
128			6.4.2 Uncertainties	61	
129	7	Res	sults	63	
130		7.1		63	
131		7.2		63	
132		7.3		63	
133	8	Pro	spects for $H \to \tau\tau$		
134		8.1		69	
135				70	
136				72	
137			8.1.2.1 Object thresholds	72	
138			8.1.2.2 Topological requirements	73	
139			8.1.2.3 Gains with $\ell + \tau_{\text{had}}$ triggers	76	
140			8.1.3 Updates to the L1 $\tau_{\rm had}$ object	79	
141			8.1.3.1 Size	79	
142			8.1.3.2 Isolation	81	
143			8.1.4 Conclusions and contingencies	81	
144		8.2	HL-LHC	84	

	Contents				
146			8.2.2	Emulation of High-Luminosity LHC conditions	86
147				8.2.2.1 Performance assumptions	86
148				8.2.2.2 Pileup emulation	86
149				8.2.2.3 Impact on observables	87
150			8.2.3	Analysis	87
151				8.2.3.1 Boosted decision tree training	87
152				8.2.3.2 Kinematic distributions	89
153			8.2.4	Results	89
154				8.2.4.1 Uncertainties assumptions	
155			8.2.5	Conclusions	
156	\mathbf{A}	Con	ntrol re	egions for fakes	95
157		A.1	$W \rightarrow 0$	$\ell u_{\ell} \ \mathrm{CR} \ \ldots \ldots \ldots \ldots \ldots \ldots$	95
158		A.2	QCD	CR	98
159		A.3	$Z o \ell$	$\ell \ \mathrm{CR} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	100
160		A.4	top Cl	R	102
161	В	Inp	uts to	the $ au_{ m had}$ BDT identifier	104
162	\mathbf{C}	Per	formar	nce of $m_{ au au}$ algorithms	107
163	\mathbf{Bi}	bliog	graphy		110