MT210 MIDTERM 1 SAMPLE 1

ILKER S. YUCE FEBRUARY 16, 2011

QUESTION 1. SYSTEMS OF LINEAR EQUATIONS

Determine the values of k such that the linear system

$$9x_1 + kx_2 = 9$$

 $kx_1 + x_2 = -3$

is consistent.

QUESTION 2. ROW REDUCTION AND ECHELON FORMS

Determine when the augmented matrix below represents a consistent linear system.

$$\left[\begin{array}{cccc} 1 & 0 & 2 & a \\ 2 & 1 & 5 & b \\ 1 & -1 & 1 & c \end{array}\right]$$

QUESTION 3. VECTOR EQUATIONS

Determine if b is a linear combination of the vectors \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 where

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3 \\ -1 \\ -3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}$.

If **b** is a linear combination of the vectors \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 , express **b** as a linear combination of the vectors \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

QUESTION 4. THE MATRIX EQUATION Ax=b

A. Solve the matrix equation $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

B. Is it possible to solve $A\mathbf{x} = \mathbf{b}$ for any given $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ where A is the matrix given in part A? Explain.

C. Describe the set of all $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ for which $A\mathbf{x} = \mathbf{b}$ does have a solution.

QUESTION 5. SOLUTION SETS OF LINEAR SYSTEMS

Consider the linear system $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & -1 & -2 & -2 & -2 \\ 3 & -2 & -2 & -2 & -2 \\ -3 & 2 & 1 & 1 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}$$

- A. Solve the linear system.
- B. Write the general solution in parametric-vector form.
- **C.** Give a particular solution **p**.
- **D.** Write the solution set for the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

QUESTION 6. LINEAR INDEPENDENCE

Determine if the following sets of vector are linearly independent. If **not**, write one vector as a linear combination of other vectors in the set.

A.)
$$\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$
.

B.)
$$\left\{ \begin{bmatrix} -5\\10 \end{bmatrix}, \begin{bmatrix} -4\\-2 \end{bmatrix}, \begin{bmatrix} 36\\12 \end{bmatrix}, \begin{bmatrix} -3\\0 \end{bmatrix} \right\}$$

C.)
$$\left\{ \begin{bmatrix} -1\\2 \end{bmatrix}, \begin{bmatrix} 3\\3 \end{bmatrix} \right\}$$

D.)
$$\left\{ \begin{bmatrix} 1\\2\\-4 \end{bmatrix}, \begin{bmatrix} 3\\3\\-2 \end{bmatrix}, \begin{bmatrix} 4\\5\\-6 \end{bmatrix} \right\}$$

E.)
$$\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\3\\-4 \end{bmatrix}, \begin{bmatrix} -4\\2\\-1 \end{bmatrix} \right\}$$