ИССЛЕДОВАНИЕ ТЕРМИЧЕСКИХ СВОЙСТВ НАТРИЙ-КАЛЬЦИЙ СИЛИКАТНОГО СТЕКЛА, ДОПИРОВАННОГО В₂О₃

Гладких Ю.С. (1,2), Першина С.В. (1), Власова С.Г. (2)
(1) Институт высокотемпературной электрохимии УрО РАН 620137, г. Екатеринбург, ул. Академическая, д. 20
(2) Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Известно, что боратные биостекла характеризуются повышенной скоростью и степенью превращения в гидроксиапатит, способствующий регенерации тканей. Кроме того, B_2O_3 является легкоплавким соединением, которое понижает температуру варки стекла, а также его вязкость и склонность к кристаллизации. Поэтому введение данного оксида благоприятно сказывается на термических характеристиках стекла. Целью данного исследования является изучение влияния B_2O_3 на термические свойства $45{\rm Si}O_2$ – $24,5{\rm Na}_2O$ – $24,5{\rm Ca}O$ – $6{\rm P}_2O_5$.

Для синтеза использовались SiO₂ (о.с.ч), NH₄H₂PO₄ (ч.д.а.), Na₂CO₃ (х.ч.), CaCO₃ (ч.д.а.) и H₃BO₃ (ч.д.а.), которые плавили при 1450 °C в течение 1 ч. Образцы, полученные методом закаливания расплава, отжигали при 500 °C в течение 1 ч. В результате были получены прозрачные, однородные стекла. На приборе STA 449 F1 Jupiter (NETZSCH, Германия) в диапазоне от 35 до 900 °C со скоростью нагрева 10 °C/мин в атмосфере воздуха изучались термические свойства методом дифференциально-сканирующей калориметрии (ДСК). На рисунке отмечены температуры стеклования (T_g), начала (T_x) и пика кристаллизации (T_p) составов с замещением SiO₂ на B₂O₃.

ДСК-кривые стекол $(45-x)SiO_2-24,5Na_2O-24,5CaO-6P_2O_5-xB_2O_3$

Введение дополнительного стеклообразователя в систему снижает T_g стекла от 541 °C (x = 0) до 510 °C (x = 3) за счет «разрыхления» сетки стекла. На ДСК-кривых наблюдается уменьшение T_x от 734 °C до 715 °C и T_p от 760 °C до 746 °C при увеличении содержания B_2O_3 до 3 мол. %. Повышение концентрации B_2O_3 приводит к увеличению разности между T_x и T_g , возрастает термическая стабильность стекла и снижается его склонность к кристаллизации. Полученные результаты коррелируют с данными работ о термических свойствах бордопированных стекол и обусловлены изменением локальной структуры.