In-Class Assignment 13

- 1. For the price field in the diamonds dataset
 - a. First plot a histogram of the data. Does it look approximately exponential?

Yes!

hist(diamonds\$price)

- b. Adapt the LL optimization code to find the maximum likelihood estimate for an exponential distribution for the price data.
 - i. f <- function (lamb)length(diamonds\$price)*log(lamb)-1*lamb*sum(diamonds\$price)
 - ii. optimize(f,c(0,3),maximum=TRUE)
 - 1. \$maximum
 - 2. [1] 0.000239011
 - 3. \$objective
 - 4. [1] -500508.4
- 2. A sample consists of $\{0.1, 0.2, 0.5, 0.7, 0.8, 0.9, 0.95\}$. It is thought to fit a probability distribution of the form $p(x) = (\alpha+1)x^{\alpha}$, for $0 \le x \le 1$. Find the maximum likelihood estimate for the parameter α .
 - a. samp <- c(0.1, 0.2, 0.5, 0.7, 0.8, 0.9, 0.95)

b.

- c. product <- prod(samp)</p>
- d. summed <- sum(samp)

e.

f.	$LL \leftarrow function(x) log(product) + length(diamonds$z) * log(x) - summed*x$
g.	optimize(LL, c(0, 4), maximum = TRUE)
	i. \$maximum
	ii. [1] 3.99994
	iii.
	iv. \$objective
	v. [1] 74753.96

- 3. From diamonds dataset take the field z. Adopt the code to find the MLE's for the parameters of the normal distribution.
 - a. glimpse(diamonds\$z)
 - b. product <- prod(diamonds\$z)
 - c. summed <- sum(diamonds\$z)
 - d. $LL \leftarrow function(x) \log(product) + length(diamonds$z) * log(x) summed*x$
 - e. optimize(LL, c(0, 4), maximum = TRUE)
 - i. \$maximum
 - ii. [1] 3.99994
 - iii.
 - iv. \$objective
 - v. [1] -Inf