Therefore $ab = c^{x+y}$.	We can rewrite these equations to give us two equations involving powers.
Let $\log_c a = x$ and $\log_c b = y$.	Therefore $\log_c ab = \log_c a + \log_c b$, as required.
$c^x = a$ and $c^y = b$	We will prove that $\log_c a + \log_c b = \log_c ab$ for any $a,b>0$ and $c>0$, but $c\neq 1$.
We would like to express $\log_c ab$ in terms of $\log_c a$ and $\log_c b$. If we try to express ab in terms of c , we might be $able$ to say more $about \log_c ab$.	