Estimation with Partial Linear Model: Asymptotics

川田恵介

Table of contents

1		大標本性質: Recap	1
	1.1	例: 平均値の推定	1
	1.2	例: 平均値の推定	2
	1.3	大標本性質: 平均値	2
	1.4	応用上の含意....................................	2
	1.5	平均値: $N=2000$	3
	1.6	平均値: $N=200$	3
	1.7	例: 速度の異なる収束	4
	1.8	正規分布への収束	4
	1.9	拡張: 合成指標	4
	1.10	拡張: Implicit function	5
2		大標本性質: with nuisance function	5
2	2.1	大標本性質: with nuisance function R-leaner	5
2			•
2	2.1	R-leaner	5
2	2.1 2.2	R-leaner	5
2	2.1 2.2 2.3	R-leaner	5 5 5
2	2.1 2.2 2.3 2.4	R-leaner	5 5 5 6
2	2.1 2.2 2.3 2.4 2.5	R-leaner	5 5 5 6 6
2	2.1 2.2 2.3 2.4 2.5 2.6	R-leaner	5 5 5 6 6 7
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7	R-leaner	5 5 5 6 6 7 8

1 大標本性質: Recap

1.1 例: 平均値の推定

• Estimand: Yの母平均 E[Y] の推定

- Estimator: サンプル平均 $\theta = \sum_i Y_i/N$
 - * Moment 法 ("置き換え法")
- Estimator は、データ上の Yの分布に依存するので、研究者によって異なる
 - -一般に $E[Y] \neq \theta$
 - 多くの実証研究では、点推定量と信頼区間 (ないし p 値) を報告し、対処する

1.2 例: 平均値の推定

```
readr::read_csv("Public/Data.csv") |>
  estimatr::lm_robust(
    Price ~ 1,
    data = _)
```

Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF (Intercept) 39.00496 0.2015849 193.4915 0 38.60984 39.40008 22138

- どのような解釈ができるのか?
 - 何が根拠か?

1.3 大標本性質: 平均値

- 事例数が無限大になると、Estimator の分布について、以下の性質が成り立つ
 - サンプル平均は、母平均 E[Y] に収束する $\theta \to E[Y], N \to \infty$
 - $-\theta$ の分布は、正規分布 $N(E[Y], \sigma^2/N)$ に収束する (中心極限定理)

1.4 応用上の含意

- 事例数が十分に大きいと
 - 点推定量は、ほぼほぼ母平均と一致する
 - 信頼区間は、ほぼほぼ 95% の"確率"で母平均を含む
- ただし、十分に大きい、の水準は違う

1.5 平均値: N=2000

1.6 平均値: N=200

1.7 例: 速度の異なる収束

1.8 正規分布への収束

- Berry-Esseen's Centraol Limit Theorem (see Chap 1 in CausalML)
- 任意の 標準化された X (平均 0, 分散 1) について

$$|\Pr[X \le x] - \Pr[N(0,1) \le x]| \le KE[|X|^3] / \sqrt(n)$$

• K = 何らかのパラメタ (< 0.5)

1.9 拡張: 合成指標

- Estimand: 複数の変数 $O = \{X_1,..,X_L\}$ によって、定義される指標 g(O) の平均値 E[g(O)]
 - サンプル平均値 $\theta = \sum g(O)/N$ で置き換える
 - ただし関数 g(O) は既知であり、全ての研究者が同じ式を用いる必要がある
- 例: 国語 X と算数 Y の合計点の平均値

$$g(O=\{X,Y\})=X+Y$$

1.10 拡張: Implicit function

• Estimand = θ 、ただし以下の関数を満たす

$$E[m(\theta, O)] = 0$$

- Estimator = サンプル平均 0 = $\sum m(\theta,O)$ を満たす θ
- 例: OLS
 - Estimand = $\min E[(Y \theta X)^2]$ を達成する θ
 - $-m(O,\theta) = X(Y \theta X)$

2 大標本性質: with nuisance function

2.1 R-leaner

• Estimand = 以下を満たす τ

$$0 = E[m(O, g(X), \tau)]$$

where

$$O = \{X, D, Y\}$$

$$\mu(X) = \{\mu_D(X), \mu_Y(X)\}$$

$$m = (D - \mu_D(X)) \times [Y - \mu_Y(X) - \tau(D - \mu_D(X))]$$

2.2 Estimator

- データ上で置き換えると、 $m(O,g(X),\tau)$ 、ただし $g(X)=\{g_D(X),g_Y(X)\}$ は Auxiliary data を用いて推定された関数
- 一見すると Moment 法がそのまま適用できそうだが、AI のミスに注意
 - $-\mu(X) \neq g(X)$
 - 研究者によって異なる
- AIのミスが推定結果に与える影響は、R-learber と Single model approach で異なる

2.3 分解

•

$$m(O, g(X), \tau)$$

$$=\underbrace{m(O,\mu(X),\tau)}_{Oracle} + \underbrace{m(O,g(X),\tau) - m(O,\mu(X),\tau)}_{AIO \ {\it i} \ {\it i} \ {\it o} \ {\it o} \ {\it o} \ {\it i} \ {\it o} \ {\it o}$$

- \bullet μ は、母平均であり、すべての研究者にとって共通
 - 第1項については、通常の Moment 法が適用可能
- 第2項については、適用不可能だが、R-learnerにおいては、AIのミスの影響は軽減されている

2.4 AI のミス: N = 100

- Main Data は共通、Auxiliary data は 101-109 まで存在
 - 黒線 = 母平均

2.5 DML: N = 100

• Main data が共通でも、Auxiliary data の違いにより、推定値の分布が生まれる

2.6 DML: N = 100

• Main data が異なれば、estimator はさらに異なる

2.7 Al のミス: N = 500

• AI のミスは減る

2.8 DML: N = 500

• R learner において、Auxiliary data がもたす分布が大きく減る

2.9 DML: N = 5000

• R learner において、Auxiliary data がもたす分布が大きく減る

2.10 Reference