|          | Home Work Assignment -1                                                                  |                  |
|----------|------------------------------------------------------------------------------------------|------------------|
| <u> </u> | a) giver RTT = 50ms                                                                      |                  |
|          | initial time = 2×RTT = 100m<br>bardwidth = 1-5mbP)<br>parlet size = 1KB = 1×1024 ×8 bits |                  |
| ert 6    | transmission time per packet = packet size                                               |                  |
| 1/2      | = 8192 × 1000                                                                            | Barrell in 18    |
| MA N L   | = 5.46 asec                                                                              |                  |
| y Nur    | - 100 ms 4 55 m 1 ms + 25                                                                | opagation delay: |
|          | RT + 5.46 msus+ RT                                                                       | ;                |
|          | = 5.585 se us                                                                            | 2) N3            |
|          | -> herce total time required = 5.585                                                     | seus             |
|          |                                                                                          |                  |

|       |       | b) giver case is similar to a but we need to                                                                                                                   |
|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |       | b) giver case is similar to a but we need to wait for RTT time testires two packets here we have 1000 packets so to send 1000 packets we need to wait 999 RTT. |
|       |       | here we have 1000 packets so to send 1000                                                                                                                      |
|       |       | we need to wait 999 RTT.                                                                                                                                       |
|       |       |                                                                                                                                                                |
| -     |       | total traismission line = 8192 ×1000 + 999(RTr)                                                                                                                |
|       |       | aria tana a la con aria no 1,5 × 106 at                                                                                                                        |
|       | 14    | = 5,46 max + 9901=                                                                                                                                             |
|       |       | 110 11 1 2012 15.46 xelotof 49.95 xel                                                                                                                          |
|       |       | 3-11-12-based = 55.41 secs                                                                                                                                     |
|       |       | 6001×5612 =                                                                                                                                                    |
|       | 1     | total time required = initial time + transmission line                                                                                                         |
|       |       | + Propert                                                                                                                                                      |
|       | 1     | + Propagation                                                                                                                                                  |
|       | - (·) | RTT/2 RTT 4 SS(L) 14 RTT/2                                                                                                                                     |
| K 170 | 97    | 1+ con 2/2 RTE of the SS, Whit + by RTT/2                                                                                                                      |
|       |       |                                                                                                                                                                |
| 1     | Tr,   | = 100 ms + 55-41 sec + 25 msec                                                                                                                                 |
|       |       | + and on 14.2 + TEAX 557.535 seus                                                                                                                              |
|       |       | Show 151 1 18                                                                                                                                                  |
|       |       | > herce total time required = 55.535 secs                                                                                                                      |
|       |       |                                                                                                                                                                |
|       |       | 25.585.36.0                                                                                                                                                    |
|       |       |                                                                                                                                                                |
|       | 23    | -> here total time negurined = 5.58                                                                                                                            |
| +     |       |                                                                                                                                                                |

|    | no of RTT required is                                           |
|----|-----------------------------------------------------------------|
|    | no of RTT required is                                           |
|    |                                                                 |
|    | no of RTT required = 1000/20 = 50 RTT                           |
|    |                                                                 |
|    | but for the last RTT we only require RTT/2                      |
|    | 111 = 49-5RTT                                                   |
|    | so total no of RTT required to transfer 1000 paciets = 49-5 RTT |
|    |                                                                 |
| 1  | - see the total and the see that area +                         |
|    | total time required = initial time + transmission time          |
| jΔ | manuel + and but all a bon upper and botat                      |
|    | = 2 × RTT + 49.5 RTÎ                                            |
|    | CAZIF to TUBER and Should be of                                 |
|    | = 51.5 RTT                                                      |
|    | 109 2.11 = 51.5 x 50 ms                                         |
|    | - 1.5 x 50 moor                                                 |
|    | = 2.575 seus                                                    |
|    | 180 280 0 S. C                                                  |
|    |                                                                 |
|    | -> here total time required = 2.575 secs                        |
|    | -> herce total time required = 2.575 secs                       |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |

|          | d) no of pachets sent in a RTT follows the senses                                         |
|----------|-------------------------------------------------------------------------------------------|
| <u>^</u> | 1+2+4                                                                                     |
|          | sur of the series = $2^n - 1$                                                             |
|          | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                   |
|          | 1 1 1 200 accillate une have 2 <sup>n</sup> -1 = 100n                                     |
| . 7 1    | to transfer 1000 parties                                                                  |
| 1        | $\Gamma$ |
| = ,1     | for the last RTT we only require RTT/2                                                    |
|          | -> herce total no of RTT required for transmission = 9.5 Bit                              |
| olani    | 111 10 8 1 - 102 till time + transmission                                                 |
|          | total time neguired = Initial time + transmission time                                    |
|          | z 2×RTT + 9.5 RTS                                                                         |
|          | TTR 2.12 51.5 RTT                                                                         |
|          | CP 02 x 2112= 11.5 RTT                                                                    |
|          | = 11.5 × 50 MSeL                                                                          |
|          | 100 2 5 2 5 26 1 - 15 MELS                                                                |
|          | = 0.575 seis                                                                              |
|          |                                                                                           |
| (        | soczess - baringer entlatet and 6                                                         |
|          | -> herce total time required = 0.575 secs                                                 |
|          | U                                                                                         |
| 2        |                                                                                           |
|          |                                                                                           |
|          |                                                                                           |
|          |                                                                                           |

| 12) | giver propagation delay = 5us/1km                                                |
|-----|----------------------------------------------------------------------------------|
|     |                                                                                  |
|     | ada frances are 1000 sits long                                                   |
|     | Between A to BO2-                                                                |
|     | propogation delay = 4000 x Sus/im                                                |
|     | 2.20                                                                             |
|     | Transmission time of 1006 bits = $1000 = 10$ msc $100 \times 10^3$               |
| _   | 100 × 103                                                                        |
|     | To one yele it transfers 3 data praros = 2000 bits                               |
|     | In one cycle it transfers 3 data paras = 3000 bits                               |
|     |                                                                                  |
|     | time required to transfer 2000 bits = 2Tp + 2Tm                                  |
|     | = 2 x 20 msec + 3 x 10 msec                                                      |
|     | = 50 mac                                                                         |
|     | 29dX 021 = X = 150 Kbps                                                          |
|     | Between B to L:                                                                  |
| 150 | = ) 19 remited diare minimum to be always and to                                 |
|     | Proposition dalan = 1000 x Surley                                                |
|     | Propagation delay = 1000 x Sus/km = 5 mrec                                       |
|     | Transmission time of 1000 bits = 1000                                            |
|     |                                                                                  |
|     | Where R is barderfalth to be found out                                           |
|     | When I is schoolant to the                                                       |
|     | Sion Read a way stop and wait to                                                 |
|     | Since Bard c uses stop and wait to<br>send 3000 51ts time required = 3 (Tp + Tn) |
| +   | sino sou si a ura raquira - s (- p                                               |
|     | = 3 (2×5mxlc + 1000)                                                             |
|     | $\left(\begin{array}{c} R \end{array}\right)$                                    |

In order not to flood the buffer of B the time required to send 2000 bits must be equal for A to B and B to C, when we do that we have 50 msec = 3 (10 msec 4 1000) 7 30 msec + 3000 along colonia 20: Mase colle 230000 I dinin + 915 = 11d out Rung 2000; bits enit -> R = 150 KbPS -> Herce required transmission note between B&C = 150 Kbps

| 3           | A) cicode words = 2111, 100,001,0103                                                                  |
|-------------|-------------------------------------------------------------------------------------------------------|
| <u>Mark</u> | data lits is 2 herie $K=2$ and minimum hamming distance $d=2$                                         |
|             | (x, y, y) = (x, y, y)                                                                                 |
|             | (n, k, d) = (3, 2, 2)                                                                                 |
|             | ploo store along parties sel                                                                          |
|             | -> desta coding nate = 14/n = 2/3 = 0.66                                                              |
| 4           | to political one I so at the a should                                                                 |
| J.          | A code in raid to 16 error detecting of its                                                           |
| 1- 1-       | A code is said to Kernon detecting if its satisfies K = dmin -1 where dmin = minimum hamming distance |
| 1           | -> so here since down = 2 this code is 1 error detecting                                              |
| IAM         | A code is said to K error correcting if it satisfies                                                  |
|             | K = dmin -) where dmin = minimum harming                                                              |
|             | 2 -s distance                                                                                         |
| 1           | K=2-1=1/2                                                                                             |
|             | Variable By Lance Calledon                                                                            |
|             | -> error correcting capability of code = 1/2                                                          |
|             | $\rightarrow (n, k, d)$ $\rightarrow (3, 2, 2)$                                                       |
|             | -> ternor detecting capability 1201                                                                   |
|             | -> error correcting capability 2 1/2                                                                  |
|             | → coding nate = 0.66                                                                                  |
|             |                                                                                                       |



Scanned with CamScanner



Matrix transition diagram a)

giver  $P(x_1=1) = P(x_1=2) = \frac{1}{4}$ P) ue was that p(x1=3, x2=2, x3=1) = p(x1=3) x p(x2=2/x1=3) x p(x3=1/x1=2) = P(x1=3) x (P32 x P2) we have P(x,=1)+P(x,=2)+P(x,=3)=1 So  $P(x_1=3) = 1 - P(x_1=2) - P(x_1=2) = 1 - \frac{1}{2}$ 140 = 1/25 sination out li from table P32 = 1/2, P21 = 1/2  $P(x_1=3, x_2=2, x_3=1) = P(x_1=3) \times P_{32} \times P_2$ red 7 = = /2 x 1/2 x /3 11 and our minim or Dr 25 = 10 00 > P(x1=3, x2=2, x3=1) = 12 = 0.0833

