

Dense Matrix Multiplication

Outlines

- Vector-vector multiplication
- Matrix-vector multiplication
- ➤ Matrix matrix multiplication

Vector – Vector Multiplication

Vector-Vector Multiplication

- **>** Vector $u = (u_1, u_2, u_3)$
- **>** Vector $v = (u_1, u_2, u_3)$
- > Then, the product of vector u and v is

$$(u_1\ u_2\ u_3) egin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Matrix – Vector Multiplication

Matrix-Vector Multiplication

Example

Decomposition of dense matrix-vector multiplication into n tasks, where n is the number of rows in the matrix

Serial Algorithm

Input: Matrix A: $n \times n$

Vector b: $1 \times n$

Output: $y = A \cdot b$

Matrix y: n x 1

$$y[i] = \sum_{j=1}^{n} A[i, j].b[j]$$

All tasks are independent

Decomposition of dense matrix-vector multiplication into n tasks, where n is the number of rows in the matrix

Serial Algorithm

```
    procedure MAT_VECT ( A, x, y)
    begin
    for i := 0 to n - 1 do
    begin
    y[i]:=0;
    for j := 0 to n - 1 do
    y[i] := y[i] + A[i, j] x x[j];
    endfor;
    end MAT_VECT
```

Run time/ Algorithm Complexity

 $\Theta(N^2)$

Parallelism

> There are different ways of decompositions

Decomposition of dense matrix-vector multiplication into n tasks, where n is the number of rows in the matrix

Matrix – Matrix Multiplication

General case

- > Matrix A= $[a_{ii}]$: size $m \times n$
- > Matrix B= $[b_{ii}]$: size $n \times k$
- Product of C= [c_{ij}]: size m x k where c_{ij} is the product of the ith row of A and the j-th column of B, C=AB

$$\begin{bmatrix} c & c_{ij} \\ c & c_{ij} \end{bmatrix} = \begin{bmatrix} c_{ij} \\ c & c_{ij} \end{bmatrix}$$
A
B
C=AB

Special case

- Matrices are at the same size
- \rightarrow M = N = K
- \rightarrow Algorithm complexity: $\Theta(N^3)$

Special case

Example

```
\begin{bmatrix} A(11) & A(12) & A(13) \\ A(21) & A(22) & A(23) \\ A(31) & A(32) & A(33) \end{bmatrix} * \begin{bmatrix} B(11) & B(12) & B(13) \\ B(21) & B(22) & B(23) \\ B(31) & B(32) & B(33) \end{bmatrix} = \begin{bmatrix} C(11) & C(12) & C(13) \\ C(21) & C(22) & C(23) \\ C(31) & C(32) & C(33) \end{bmatrix}
 C(11) = A(11)*B(11) + A(12)*B(21) + A(13)*B(31)
 C(21) = A(21)*B(11) + A(22)*B(21) + A(23)*B(31)
 C(31) = A(31)*B(11) + A(32)*B(21) + A(33)*B(31)
 C(12) = A(11)*B(12) + A(12)*B(22) + A(13)*B(32)
 C(22) = A(21)*B(12) + A(22)*B(22) + A(23)*B(32)
 C(32) = A(31)*B(12) + A(32)*B(22) + A(33)*B(32)
C(13) = A(11)*B(13) + A(12)*B(23) + A(13)*B(33)
C(23) = A(21)*B(13) + A(22)*B(23) + A(23)*B(33)
C(33) = A(31)*B(13) + A(32)*B(23) + A(33)*B(33)
```


Parallelism - Data Decomposition and Data Sharing

▶ 1-D Row-based decomposition

1-D Column-based decomposition

Parallelism - Data Decomposition and Data Sharing

2-D Row/column-based decomposition (block distribution)

Example

```
C(11) = A(11)*B(11) + A(12)*B(21) + A(13)*B(31)
                                                                    Thread 1
           C(21) = A(21)*B(11) + A(22)*B(21) + A(23)*B(31)
           C(31) = A(31)*B(11) + A(32)*B(21) + A(33)*B(31)
Thread 2
           C(12) = A(11)*B(12) + A(12)*B(22) + A(13)*B(32)
           C(22) = A(21)*B(12) + A(22)*B(22) + A(23)*B(32)
           C(32) = A(31)*B(12) + A(32)*B(22) + A(33)*B(32)
           C(13) = A(11)*B(13) + A(12)*B(23) + A(13)*B(33)
                                                                    Thread 3
           C(23) = A(21)*B(13) + A(22)*B(23) + A(23)*B(33)
           C(33) = A(31)*B(13) + A(32)*B(23) + A(33)*B(33)
```


A decomposition induced by a partitioning of D

Task 01: $D_{1,1,1} = A_{1,1}B_{1,1}$

Task 02: $D_{2,1,1} = A_{1,2}B_{2,1}$

Task 03: $D_{1,1,2} = A_{1,1}B_{1,2}$

Task 04: $D_{2,1,2} = A_{1,2}B_{2,2}$

Task 05: $D_{1,2,1} = A_{2,1}B_{1,1}$

Task 06: $D_{2,2,1} = A_{2,2}B_{2,1}$

Task 07: $D_{1,2,2} = A_{2,1}B_{1,2}$

Task 08: $D_{2,2,2} = A_{2,2}B_{2,2}$

Task 09: $C_{1,1} = D_{1,1,1} + D_{2,1,1}$

Task 10: $C_{1,2} = D_{1,1,2} + D_{2,1,2}$

Task 11: $C_{2,1} = D_{1,2,1} + D_{2,2,1}$

Task 12: $C_{2,2} = D_{1,2,2} + D_{2,2,2}$

$$\left(\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right) \cdot \left(\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array}\right) \rightarrow \left(\begin{array}{cc} \left(\begin{array}{cc} D_{1,1,1} & D_{1,1,2} \\ D_{1,2,2} & D_{1,2,2} \\ D_{2,1,1} & D_{2,1,2} \\ D_{2,2,2} & D_{2,2,2} \end{array}\right)\right)$$

Stage II

$$\left(\begin{array}{cc} D_{1,1,1} & D_{1,1,2} \\ D_{1,2,2} & D_{1,2,2} \end{array} \right) + \left(\begin{array}{cc} D_{2,1,1} & D_{2,1,2} \\ D_{2,2,2} & D_{2,2,2} \end{array} \right) \rightarrow \left(\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array} \right)$$

A decomposition induced by a partitioning of D

Task 01: $D_{1,1,1} = A_{1,1}B_{1,1}$

Task 02: $D_{2,1,1} = A_{1,2}B_{2,1}$

Task 03: $D_{1,1,2} = A_{1,1}B_{1,2}$

Task 04: $D_{2,1,2} = A_{1,2}B_{2,2}$

Task 05: $D_{1,2,1} = A_{2,1}B_{1,1}$

Task 06: $D_{2,2,1} = A_{2,2}B_{2,1}$

Task 07: $D_{1,2,2} = A_{2,1}B_{1,2}$

Task 08: $D_{2,2,2} = A_{2,2}B_{2,2}$

Task 09: $C_{1,1} = D_{1,1,1} + D_{2,1,1}$

Task 10: $C_{1,2} = D_{1,1,2} + D_{2,1,2}$

Task 11: $C_{2,1} = D_{1,2,1} + D_{2,2,1}$

Task 12: $C_{2,2} = D_{1,2,2} + D_{2,2,2}$

Task dependence graph

Task dependence graph

References

[1] Introduction to Parallel Computing, Ananth Grama, George Karypis, Vipin Kumar, Anshul Gupta, Addison Wesley, 2003, Chapter 9.