Roll	l. No.:
Nan	ne:
	INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR
	MID SEMESTER EXAMINATION
Date	e: 21 -04-2017 AN Time: 3 hours Full Marks: 50
Spri	ng Semester: 2016-2017 Department : Mathematics
Subj	ject No.:MA20104 Subject Name: Probability & Statistics
Cou	rse: B.Tech./M.Sc. 2 nd Year (AG, BT, CE, CS, HS, IM, MA, MI, MF, QE, QM, breadth,
addi	tional, backlog)
No.	of students: 700
Inst	ructions:
1.	There are 12 questions in this question paper. Answer all questions. Marks are indicated
1.	at the end of each question.
2.	Answer to every question should be given in the space provided after that question only
2.	on the question paper. Answers at any other place will not be evaluated. After the exam
	the question paper MUST be submitted along with the answer script.
3.	Detailed working should be done in the answer script provided. Please write clearly
٥.	your name and Roll. No. on the answer script also. The submission of question paper
	and the answer script is MUST. If a student does not submit both the question paper
	and answer script, it will not be evaluated.
4.	Statistical tables may be used.
••	Questions
	<u> </u>
1.	The life X (in hours) of an electronic tube manufactured by a certain process is
	normally distributed with parameter $\mu = 160$ and standard deviation σ . The value of
	σ , if the life of the tube is to have probability 0.80 of being between 120 and 200
	hours, is 2M
2.	A parachute lands on the road joining towns A and B. Suppose the landing point
	follows a uniform distribution over the length AB. The probability that the ratio of
	distance of the landing point from A to the distance of the landing point from B is more
	than 3 is

A radioactive source is observed during four time intervals of 6 seconds each. The

numbers of particles emitted during each time interval are counted. If the number of

3.

	particles emitted follow a Poisson distribution at a rate 0.5 particles per second, find the probability that						
	(a) in each of the 4 time intervals, 3 or more particles will be emitted						
	(b) in at least one of the 4 time intervals, 3 or more particles will be emitted						
	(c) in an hour period, there are at most 1850 particles emitted (use normal						
	approximation to Poisson) (1+1+2)						
4.	In 500 independent calculations a scientist has made 25 errors. If a second scientist						
	cross-checks 7 of these calculations randomly, what is the probability of detecting 2						
	errors? (Assuming second scientist does not make any errors) (2M)						
5.	The distribution of service time (in minutes) at a ticket counter is exponential with						
	mean 4 minutes. When John reaches the counter there are two persons ahead (one						
	getting the service and the other one waiting for his/her turn). What is the probability						
	that John will have to wait for at least 6 minutes before his turn comes?(3M)						
6.	The distribution of IQ of a randomly selected student from a certain college is						
	N(110,16). What is the probability that average IQ of 10 randomly selected students						
_	from this college is at least 112? (2M)						
7.	A physical quantity is measured 50 times and the average of these measurements is						
taken as a result. If each measurement has a random error uniformly dis							
	(-1,1), what is the probability that the result differs from the actual value by less than						
0	0.1 ? (3M)						
8.	Let the joint probability mass function of the discrete random variables X and Y be						
	given by $p(x, y) = \frac{1}{25}(x^2 + y^2)$ if $x = 1, 2$ and $y = 0, 1, 2$. Then						
	(a) $E(X) = $						
	(b) $E(Y) = $						
	(c) $Var(X) = $						
	(d) $Var(Y) = $						
	(e) $Corr(X,Y) = $ (1+1+1+2)						
9.	Let X be a continuous random variable with the density function						
	$f(x) = \begin{cases} 4x^3, & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$						
	Let $Y = 1 - 3X^2$.						
	(a) The range of Y is						

(b) The density of Y is ______ (1+1)
10. A point (X,Y) is selected at random uniformly in the region S = {(x,y):|x|+|y|≤1}.
(a) Plot the region S in the two dimensional plane. (2M)

(b) Find the joint density of
$$(X, Y)$$
 on S . (1M)

(c) Find
$$P(X^2 + Y^2 \le 0.5)$$
. (1M)

(d) The marginal density of X for $-1 \le x \le 1$ is

(e)
$$Var(X) =$$
 (1M)

(f)
$$P(|X+Y|<0.5) =$$
 ______(2M)

(g)
$$P(Y < 0.25 \mid X = 0.5) =$$
 ______(2M)

$$(h) Cov (X,Y) = \underline{\qquad} (2M)$$

11. In order to compare biological values of protein from cow's milk and buffalo's milk at a certain level two independent random samples of milk from 6 cows and 6 buffalos each were taken and the following values were recorded.

Cow's milk (X)	1.81	2.02	1.88	1.61	1.81	1.54
Buffalo's milk (Y)	2.00	1.83	1.86	2.03	2.19	1.88

(a) 95% confidence interval for mean protein content in cow's milk

(2M)

(b) 90% confidence interval for the variance of protein content in buffalo's milk

(2M)

- (c) difference in the two sample means _____ (1M)
- (d) Pooled Sample Variance = (1M)
- (e) Assuming the values to be normally distributed with equal and unknown variances, find 90% confidence interval for the difference in mean protein contents of buffalo and cow milk. (2M)
- 12. Let $X_1, X_2, ..., X_{3n}$ be independent and identically distributed $N(\mu, \sigma^2)$ random variables. Let $Y_1 = \frac{1}{n} \sum_{i=1}^n X_i$, $Y_2 = \frac{1}{n} \sum_{i=n+1}^{2n} X_i$, $Y_3 = \frac{1}{n} \sum_{i=2n+1}^{3n} X_i$, $V = \sum_{i=2n+1}^{3n} \left(X_i Y_3 \right)^2$.
 - (a) The distribution of $Y_1 Y_2$ is _____
 - (b) The distribution of $\frac{V}{\sigma^2}$ is _____
 - (c) The distribution of $\sqrt{\frac{n(n-1)}{2V}} (Y_1 Y_2)$ is ______ (3M)