Integrals of Inverse Trig Functions

Function		General antiderivative	Function		General antiderivative
x^n		$\frac{1}{n+1}x^{n+1} + C, n \neq -1$	8.	e^{kx}	$\frac{1}{k}e^{kx} + C$
sin ka	;	$-\frac{1}{k}\cos kx + C$	9.	$\frac{1}{x}$	$\ln x + C, x \neq 0$
cos k	r	$\frac{1}{k}\sin kx + C$	10.	$\frac{1}{\sqrt{1-k^2x^2}}$	$\frac{1}{k}\sin^{-1}kx + C$
sec ² k	x	$\frac{1}{k}\tan kx + C$	11.	$\frac{1}{1+k^2x^2}$	$\frac{1}{k}\tan^{-1}kx + C$
csc ² k	x	$-\frac{1}{k}\cot kx + C$	12.	$\frac{1}{\sqrt{L^2 u^2 - 1}}$	$\sec^{-1}kx + C, kx > 1$
sec k	tan kx	$\frac{1}{k}\sec kx + C$		$x \vee k \cdot x^{-} - 1$ a^{kx}	
csc k	cot kx	$-\frac{1}{k}\csc kx + C$	13.	a**	$\left(\frac{1}{k \ln a}\right) a^{kx} + C, \ a > 0, \ a \neq$