Welcome to instats

The Session Will Begin Shortly

(At the top of the hour, Eastern USA time)

1

START

Nonlinear Time Series Analysis, Part I: Detecting Nonlinearity

Barney Ricca Lyda Hill Institute for Human Resilience University of Colorado Colorado Springs

3

Seminar Overview

- Day 1
 - Session 1: Introduction to Nonlinear Time Series (NTLS)
 - Session 2: Behaviors and State Spaces
- Day 2
 - Session 3: State Spaces (continued)
 - Session 4: Recurrences
- Dav 3
 - Session 5: Tests
 - Session 6: Singular Spectrum Analysis and Noise
- Day 4
 - Session 7: Surrogate Data
 - Session 8: Convergent Cross Mapping

Statistics History

- Fisher (1931): F-test
- Quenouille (1949): Jackknife
- Rosenblatt (1957): Perceptron
- Efron (1979): Bootstrap

5

The Lady Tasting Tea

- Possibly apocryphal
- Fisher
 - Milk before tea or milk after tea?
 - Prepare 10 samples
 - List all possible arrangements ($2^{10} = 1024$ distinct patterns)
 - Calculate odds
- Wasn't possible in general
 - No computing power!
 - Approximated by the *F*-test

FIGURE 2.2. The 64 possible paths generated by assuming the bag contains one blue and three white marbles.

7

Hardware History

- Zuse (1941): Z3
 - 22 bits x 64 words, 10 Hz
 - General purpose computer (software!)
- BCS (1947): Semiconductor transistor
 - Moore's law
- Desktops (1980s-now)
 - 1992: 10 MHz, 16-bit single processor; \$40/MB for RAM
 - 2020: 2.3 GHz, 64-bit, 8-processor chip; \$5/GB for RAM

Jackknife

- · Jackknife: Shuffle the data
 - A.k.a., permutation
 - Resample without replacement
 - Multiple repetitions to get histogram of possible outcomes
- Jackknives stand-in for the population
 - Empirical, not theoretical, distribution

9

Bootstrap

- Resample with replacement
 - More flexible research designs
 - Better (mostly) asymptotic convergence
- Many replications
 - Variance estimates
 - · Count number in/out of condition
- Beer, water, and mosquito bites in R

Some R Examples

Resampling or Counting	Approximation
fisher.test()	chisq.test()
chisq.test(simulate.p.value = TRUE)	chisq.test()
lmPerm::lmp()	lm()
lmPerm::aovp()	aov()

Beer, water, and mosquito bites in R

11

Dynamics and Resampling

Jackknife: Independent, identically distributed (i.i.d.)

Time Series

Dynamics: State dependent on previous states

Surrogate Data

- Frame the null hypothesis about the shadow state space
 - · Watch your assumptions!
 - E.g., If not i.i.d., need to maintain sequence structure during resampling
- Generate surrogates compatible with the null
 - Maintain some connection between consecutive data points
- Common approaches
 - Block resampling (general time series approach)
 - Fourier transform power spectrum (FTPS)
 - Amplitude-adjusted Fourier transform (AAFT)
 - Pseudo-periodic surrogates (PPS)

13

Block Resampling

- Shuffle blocks of data
 - · Each block maintains the dynamics internally
- · Lots of details are important
 - · Block length
 - How many blocks
 - · Do blocks overlap or not
- Surrogate data in R (package:tsboot)

Phase Resampling: FTPS and AAFT

- Work with the spectra
- Shuffle the phases
 - Maintains each oscillatory component
- Process
 - · Fourier transform time-series to spectra
 - Shuffle
 - · Transform back to time-domain to create surrogate data
 - · Embed and estimate
- Surrogate data in R

15

Pseudo-Periodic Surrogates

- Tests aperiodic oscillations
 - · Can't use Fourier transforms
- Process:
 - Embed data
 - · Randomly walk on the shadow attractor
 - First coordinate (e.g., un-delayed coordinate) is surrogate

Why Use FTPS and AAFT?

- PPS: Nonlinear
- FTPS & AAFT: Linear
- Q: Why use the linear?
 - A: Suppose PPS and FTPS/AAFT give the same results?
- Possibly:
 - Use the comparison to filter out linear signal
 - Maybe

17

General Resampling Notions

- Null hypothesis
- Assumptions
- Discriminating statistics

Distinguishing Statistics

- Distinguish between random and deterministic
 - HBR: "...there is general agreement that [these] measures can be used reliably..."
- Correlation dimension
 - · Fractional dimension of reconstructed attractor
- Maximum Lyapunov exponent
 - Sensitivity to initial conditions (positive only in nonlinear situations)
- Nonlinear prediction error
 - Nash-Sutcliffe

19

Questions

21

Next session @ UTC 1900