EXERCÍCIOS - PESQUISA OPERACIONAL

1. FORMULAÇÃO

Ex. 1.1

Um fabricante produz duas ligas metálicas, e quer maximizar o lucro obtido com sua venda. A tabela mostra as composições das ligas, os lucros e as disponibilidades de matéria prima para fabricação dessas ligas. Formule o problema como de PL.

	liga A	liga B	Disponib.
cobre	2	1	16
zinco	1	2	11
chumbo	1	3	15
lucro/ un.	30	50	

Ex. 1.2

Um fazendeiro deseja otimizar as plantações de arroz e milho na sua fazenda. O seu lucro por unidade de área plantada de arroz é 5 u.m., e por unidade de área plantada de milho é 2 u.m.As áreas plantadas de arroz e milho não devem ser maiores que 3 e 4 respectivamente. Cada unidade de área plantada de arroz consome 1 homem-hora, e cada unidade de área plantada de milho consome 2 homens-hora. Há disponibilidade total de 9 homens-hora para as plantações.

Ex. 1.3

Uma empresa fabrica produtos 1 e 2. Cada produto requer um tempo de processamento em cada um dos tres departamentos da empresas. Os lucros de cada produto são respectivamente \$1,00 e \$1,50. Maximizar o lucro, respeitando a capacidade de produção.

Tempo de processamento em horas

	Departamentos			
Produto	A	В	С	
1	2	1	4	
2	2	2	2	

Disponibilidade em horas

Α	160
В	120
С	280

Ex. 1.4

Uma fornalha é usada para produzir 4000 kg de uma liga metálica, que deve ter as seguintes características:

%	mínima	máxima	
Si	3,25	3,4	
C	2.05	2.25	

As matérias primas disponíveis para produzir a liga são:

Materia prima	%C	%Si	Custo/kg
Sucata A	0,45	0,1	0,30
Sucata B	0,402	0,15	0,315
Sucata C	3,5	2,3	0,034
Sucata D	3,30	2,2	0,02
Carbono	100	0	0,3
Silício	0	100	0,5

Formule de modo a minimizar o custo de produção da liga.

Ex. 1.5

Uma empresa faz 3 produtos, a partir de 3 matérias-primas os dados estão na tabela. Observe que a fabricação do produto 2 gera um resíduo que pode ser usado como matéria-prima do tipo2, e a fabricação do produto 3 gera um resíduo que pode ser usado com matéria-prima do tipo 1. Dado que o objetivo é maximizar o lucro, formular como um problema de programação linear (P.L.)

_	PRODU	TOS		
Recurso	1	2	3	Disponib.
1	6	3		60
2	2		4	40
3	3	3	3	60
Residuo 1			4	
Residuo 2		4		
Lucro	3	2	6	

Ex. 1.6

Uma empresa produz quatro produtos, cujo lucro é respectivamente 4,5,9 e 11. Esses produtos utilizam 3 insumos segundo a tabela. Dado que o objetivo é maximizar o lucro, formule o problema

	Insumo 1	Insumo 2	Insumo 3
Produto 1	1	7	3
Produto 2	1	5	5
Produto 3	1	3	10
Produto 4	1	2	15
Disponib.	15	120	100

Ex. 1.7

As necessidades minimas diárias de certas vitaminas, bem como a quantidade fornecida por varios tipos de alimentos e seus preços encontram-se na tabela a seguir. Determine as quantidades de cada alimento a ser ingeridas diariamente, ao minimo custo possivel.

Vitamina	leite (1)	carne (kg)	ovos (dúzia)	Quant. mínima
A	0,25	2	10	1
С	25	20	10	50
D	2,5	200	10	10
Custo	2,2	17	4,2	

Ex. 1.8

Uma fazenda deve comprar grãos para compor uma ração para o gado; existem tres tipos de grão. As necessidades mínimas de nutrientes, os níveis desses nutrientes em cada tipo de grão e seus custos estão na tabela. Determinar a composição da mistura de grãos para satisfazer as necessidades mínimas dos nutrientes ao mínimo custo.

	Nutrientes	Nutrientes / unidade			
	Grão 1	Grão 2	Grão 3	Nec. minimas	
Nutr. A	2	3	7	1250	
Nutr. B	1	1	0	250	
Nutr. C	5	3	0	900	
Nutr. D	0,6	0,25	1	232	
Custo/ unidade	41	35	96		

Ex. 1.9

Uma refinaria produz 2 tipos de gasolina (1 e 2) a partir de 2 tipos de petróleo (A e B). Os requisitos, preços de venda e custos são:

Petróleo	Qtd disp	custo	Gasolina	% min de A	Preço venda
A	100	6	1	60	8
В	200	3	2	30	5

Formular, de modo a decidir quanto comprar de A e B e quanto fabricar de 1 e 2, maximizando o <u>lucro.</u>

Ex. 1.10

A Politoy S/A fabrica soldados e trens de madeira. Cada soldado é vendido por \$27 e utiliza \$10 de matéria-prima e \$14 de mão-de-obra. Duas horas de acabamento e 1 hora de carpintaria são demandadas para produção de um soldado. Cada trem é vendido por \$21 e utiliza \$9 de matéria-prima e \$10 de mão-de-obra. Uma hora de acabamento e 1 h de carpintaria são demandadas para produção de um trem. A disponibilidade de horas para as operações de acabamento e carpintaria são 100 e 80 horas, respectivamente. Devido a problemas de demanda, não devem ser produzidas mais do que 40 unidades de soldados. Formular o problema, de modo a maximizar o lucro.

Ex. 1.11

Um aluno da disciplina PES, que não quer ser identificado, quer aproveitar os conhecimentos adquiridos em programação linear para resolver um problema particular muito grave. Atualmente ele possui duas namoradas: Maria e Luisa, das quais gosta com a mesma intensidade. Ele fez alguns calculos e constatou que:

Uma saída de 3 horas com Maria, elegante e sofisticada, custa \$120,00; já com Luisa, mais simples, o gasto é de \$60,00.

Cada saída com Maria consome 3000 calorias; com Luisa, mais extrovertida e alegre, o gasto de energia é o dobro.

Seus afazeres (trabalho, estudos) consomem muito do seu tempo e energia, de modo que, mensalmente lhe sobram 30 horas e 40000 calorias para as atividades sociais. Depois de pagar as contas da república onde mora, sobram \$360,00 para diversão.

O objetivo desse aluno é planejar sua vida social, de modo a obter o número máximo de saídas. Formular e resolver o problema graficamente.

2. SOLUÇÃO GRÁFICA

Ex. 2.1

max
$$z = 30 x_1 + 50 x_2$$

S.A.
$$\begin{cases} 2 x_1 + x_2 \leq 16 \\ x_1 + 2x_2 \leq 11 \\ x_1 + 3x_2 \leq 15 \\ x_1, x_2 \geq 0 \end{cases}$$

Ex. 2.2

max
$$z = 5x_1 + 2x_2$$

$$S. \ A \ . \begin{cases} \ x_1 & \leq \ 3 \\ \ x_2 \leq \ 4 \\ x_1 + \ 2x_2 \leq \ 9 \\ x_1, \ x_2 \geq 0 \end{cases}$$

Ex. 2.3

max
$$z = 4x_1 + 2x_2$$

$$S. \ A \begin{cases} 2x_1 + x_2 \le 12 \\ x_1 \le 8 \\ x_2 \le 4 \\ x_1, \ x_2 \ge 0 \end{cases}$$

Ex. 2.4

$$\max z = x_1 + 2x_2$$

$$S.A. \begin{cases} -x_1 + 3x_2 \leq 9 \\ x_1 - 2x_2 \leq 0 \\ 2x_1 + x_2 \leq 10 \\ 2x_1 + x_2 \geq 5 \\ x_1, x_2 \geq 0 \end{cases}$$

Ex. 2.5

$$\max z = 2x_1 + 3x_2$$

$$S.\ A\ . \begin{cases} -4x_1+2x_2\ \leq\ 8\\ -4x_1+4x_2\ \geq\ 4\\ x_1+x_2\ \geq\ 5\\ x_1,\ x_2\ \geq\ 0 \end{cases}$$

Ex. 2.6

$$\max z = 2x_1 + x_2$$

$$S. \ A \ . \begin{cases} x_1 \ - \ x_2 \ \leq \ 0 \\ x_2 \ \leq \ 2 \\ x_1 + 2x_2 \ \geq \ 8 \\ x_1, \ x_2 \ \geq \ 0 \end{cases}$$

Ex. 2.7

$$\max z = 2x_1 + 2x_2$$

S.A.
$$\begin{cases} x_1 + x_2 & \leq 10 \\ x_1 + 2x_2 & \geq 8 \\ -x_1 + x_2 & = 2 \\ x_1, x_2 & \geq 0 \end{cases}$$

Ex. 2.8

$$\max z = 3x_1 + 2x_2$$

S.A.
$$\begin{cases} 2x_1 + 1x_2 \le 100 \\ x_1 + 1x_2 \le 80 \\ x_1 \le 40 \\ x_1, x_2 \ge 0 \end{cases}$$

Ex. 2.9

$$\max z = 2x_1 - x_2$$

S. A.
$$\begin{cases} x_1 - x_2 \leq 1 \\ 2x_1 + x_2 \leq 6 \\ x_1, x_2 \geq 0 \end{cases}$$

3. SIMPLEX

Ex. 3.1

Resolver Ex. 2.1 por SIMPLEX

Ex. 3.2

Resolver Ex. 2.2 por SIMPLEX

Ex. 3.3

Resolver Ex. 2.3 por SIMPLEX

Ex. 3.4

max
$$z = 3x_1 + 2x_2 + 6x_3$$

$$S. \ A \ \begin{cases} 6x_1 + 3x_2 - 4x_3 & \leq 60 \\ 2x_1 - 4x_2 + 4x_3 & \leq 40 \\ 3x_1 + 3x_2 + 3x_3 & \leq 60 \\ x_1, \ x_2, x_3 \geq 0 \end{cases}$$

Ex. 3.5

Resolver Ex. 1.10 por SIMPLEX

Ex. 3.6

Resolver Ex. 1.11por SIMPLEX

Ex. 3.7

Resolver Ex. 2.4 por SIMPLEX Repita, minimizando

Ex. 3.8

Resolver Ex. 2.5 por SIMPLEX

Ex. 3.9

Resolver Ex. 2.6 por SIMPLEX

Ex. 3.10

Resolver Ex. 2.7 por SIMPLEX

Ex. 3.11

$$\max z = 3x_1 + 2x_2$$

S.A.
$$\begin{cases} 2x_1 + x_2 \ge 4 \\ x_1 - 2x_2 = 0 \\ x_1 + 2x_2 \le 8 \\ x_1, x_2 \ge 0; \end{cases}$$

Ex. 3.12

 $\max z = x_1 + 1,5 x_2$

S.A.
$$\begin{cases} 2x_1 + 2x_2 \le 160 \\ x_1 + 2x_2 \le 120 \\ 4x_1 + 2x_2 \le 280 \\ x_2 \ge 45 \\ x_1 = 25 \end{cases}$$

Ex. 3.13

 $min z= 5x_1 +8x_2 +4x_3$

S.A.
$$\begin{cases} x_1 + x_2 + x_3 \ge 2 \\ x_1 + x_2 \ge 1 \\ x_1, x_2, \ , x_3 \ge 0 \end{cases}$$

Ex. 3.14

 $\max z = 3x_1 - x_2$

$$S.A. \begin{cases} 2x_1 - x_2 \ge 0 \\ x_2 \ge 2 \\ x_2 \le 4 \\ x_1 + 2 x_2 \ge 12 \\ x_1, x_2 \ge 0; \end{cases}$$

Ex. 3.15

 $\max z=2 x_1 + x_2$

$$S.A = \begin{cases} x_1 \leq 10 \\ x_1 \geq 5 \\ x_2 \leq 20 \\ x_2 \geq 10 \\ x_1, x_2 \geq 0 \end{cases}$$

Ex. 3.16

 $min z = x_1 + x_2 + x_3$

S.A.
$$\begin{cases} x_1 + x_2 + x_3 & \leq 10 \\ x_1 + x_2 & \geq 20 \\ x_1 & + x_3 & \geq 5 \\ x_1, x_2, , x_3 \geq 0 \end{cases}$$