

Universidade Federal de Santa Catarina Campus Blumenau Engenharia de Controle e Automação

Engennaria de Controle e Automação Metrologia e Instrumentação para Automação

Trabalho 2

1) (6 pontos) Na medição de temperatura com termopar, sabe-se que é necessário compensar a temperatura da junção de referência para obter uma medida adequada da temperatura do processo. Uma das formas de realizar essa compensação é usar um sensor de temperatura para medir a temperatura da junção e, em seguida, gerar uma tensão elétrica que compense a queda de tensão na junção de referência do termopar. Nesse contexto, o objetivo desta primeira parte do trabalho é compensar a junção de referência de um termopar tipo J usando um termistor e uma ponte de Wheatstone. O diagrama geral da medição é apresentado na Figura 1.

Figura 1 – sistema de medição de temperatura com termopar e compensação da junção de referência com termistor.

A seguir são apresentadas as principais informações sobre a implementação no LTspice.

• O termopar deve ser implementado através da biblioteca "TC_J.sub" disponível no Moodle.

Universidade Federal de Santa Catarina Campus Blumenau Engenharia de Controle e Automação Metrologia e Instrumentação para Automação

- Conforme apresentado na Figura 2, a temperatura do processo e a temperatura da junção de referência devem ser fornecidas através de fontes de tensão CC, sendo que nesse caso o valor da temperatura em °C. O parâmetro global "temp" no LTspice contém a temperatura ambiente considerada na simulação. Essa temperatura ambiente será usada como a temperatura da junção de referência (T_{ref}).
- O amplificador de instrumentação INA128 deve ser implementado através da biblioteca "INA128.sub" (disponível no Moodle), com ganho G = 200.
 O *datasheet* do INA128 também está disponível no Moodle.
- Considere que a temperatura da junção de referência (T_{ref}) pode variar entre 0 °C e 50 °C. Nessa faixa, o termopar tipo J apresenta comportamento aproximadamente linear com sensibilidade 0,0517 mV/°C, resultando em $V_T = 0,0517 \cdot T$ mV para $0 \le T \le 50$ °C. Dessa forma, faça o projeto da ponte de Wheatstone com o objetivo de fornecer a tensão $V_0 = 200 \cdot V_T$ para $0 \le T \le 50$ °C, onde V_0 é a tensão indicada na Figura 1. A não linearidade de V_0 deve ser inferior à 2%.
- O termistor apresenta resistência de 12 k Ω em 298 K, com β = 3740,0.
- Para obter o resultado da temperatura lida pelo sistema de medição, implemente uma função no LTspice que receba como argumentos de entrada as tensões V₀ e V_{amp} (em V). O retorno da função deve ser a temperatura T_m indicada na Figura 1. Essa função pode ser implementada diretamente no gráfico de saída do LTspice. Os coeficientes para implementação da função podem ser obtidos no seguinte link:
 - o https://srdata.nist.gov/its90/type_i/jcoefficients_inverse.html

Universidade Federal de Santa Catarina **Campus Blumenau** Engenharia de Controle e Automação

Metrologia e Instrumentação para Automação

Figura 2 – implementação do termopar tipo J no LTspice.

Roteiro

- a) Apresente os cálculos e gráficos usados para projetar a ponte de Wheatstone.
- b) Descreva a implementação de todo o sistema de medição no LTspice.
- c) Para uma temperatura do processo de 650 °C, varie a temperatura da junção de referência (T_{ref}) entre 0 ° e 50 °C. Demonstre, a partir de um gráfico no LTspice, que a temperatura lida pelo sistema fica em torno de 650 ° C.
- d) Para uma temperatura na junção de referência (T_{ref}) de 40 °C, varie a temperatura do processo (T_p) entre 300 ° e 650 °C. Demonstre, a partir de um gráfico no LTsplice, que a temperatura lida pelo sistema corresponde à temperatura do processo.
- 2) (4 pontos) A medição de deformação com extensômetro apresenta dois principais problemas: 1 – a resistência elétrica dos extensômetros varia com a temperatura; 2 – baixa variação da resistência em função da deformação (baixa sensibilidade). Para superar tais problemas, tipicamente são utilizados mais de um extensômetro na ponte de Wheatsone para compensar a temperatura e/ou aumentar a sensibilidade. Na Figura 3 são apresentadas três configurações de medição de deformação com extensômetro: (a) apenas um extensômetro; (b) dois extensômetros iguais; e (c) quatro extensômetros iguais. Considere

Universidade Federal de Santa Catarina Campus Blumenau

Engenharia de Controle e Automação Metrologia e Instrumentação para Automação

resistores de carbono com coeficiente de temperatura (tc) igual a -0,5 m °C⁻¹ e extensômetros de alumínio com tc = 3,9 m °C⁻¹. O gauge fator dos extensômetros é G = 2,2 e a resistência sem deformação é $R_{e=0} = R_0 = 120~\Omega$. Considere que a deformação por compressão varia na faixa -8·10⁻³ \leq e \leq 0 e a deformação por tração varia na faixa $0 \leq$ e \leq 8·10⁻³.

Figura 3 – Medição de deformação com extensômetro: (a) apenas um extensômetro; (b) dois extensômetros iguais, um sob compressão e outro sem estresse; e (c) quatro extensômetros iguais, dois sob tração e dois sob compressão.

Roteiro

- a) Obtenha o gráfico da tensão V_0 em função da deformação para cada um dos circuitos apresentados na Figura 3. Neste item, use tc=0 para todos os componentes, ou seja, a resistência não varia com a temperatura. Compare as curvas obtidas e discuta sobre as vantagens e desvantagens de cada circuito.
- b) Obtenha o gráfico da tensão V_0 em função da deformação para cada um dos circuitos apresentados na Figura 3. Neste item, considere a variação da resistência em função da temperatura. Varie a temperatura ambiente (parâmetro "temp" no LTspice) na faixa $0 \le T \le 50^{\circ}$ C. Compare as curvas obtidas e discuta sobre as vantagens e desvantagens de cada circuito.