MATH6222 week 5 lecture 12

Rui Qiu

2017-03-20

Midterm on April 21st.

4 Questions:

- 1. Is \mathbb{N} smallest infinite set?
- 2. Other sizes besides \mathbb{N} and \mathbb{R} ?
- 3. What is a real number?
- 4. Is our definition of \leq sensible?

Face: Every real number has a unique decimal expansion if we disallow expansions that ends in an infinite sequence of 9's.

13.000...

Let's call such an expansion "good".

Theorem: $|\mathbb{N}| < |\mathbb{R}|$.

Proof: Suppose \exists bijection $f : \mathbb{N} \to \mathbb{R}$.

$$1 \to \dots a_{11}a_{12}a_{13}\dots$$

$$2 \to \dots \dots a_{21} a_{22} a_{23} \dots$$

$$3 \rightarrow \dots \dots a_{31}a_{32}a_{33}\dots$$

Let's produce a real number **not** in the image of f. Let's define b_1, b_2, b_3, \ldots by rule:

$$b_i := \begin{cases} 4, & \text{if } a_{ii} \neq 4; \\ 5, & \text{if } a_{ii} = 4. \end{cases}$$

Claim that the real number $......b_1b_2b_3...$ is not in image of f. Same diagonal argument as before.

Is
$$\mathbb{R}^2 \to \mathbb{R}$$
?

$$(0,1) \times (0,1) \to (0,1)$$

$$.x_1x_2x_3x_4\dots$$

 $y_1y_2y_3y_4\dots$

 $\rightarrow .x_1y_1x_2y_2x_3y_3x_4y_4\dots$

Check injective and surjective.

Injectivity:

$$(.x_1x_2x_3...,.y_1y_2y_3...) \rightarrow .x_1y_1x_2y_2x_3y_3...x_i$$

$$(.x_1'x_2'x_3'\ldots,.y_1'y_2'y_3'\ldots) \rightarrow .x_1'y_1'x_2'y_2'x_3'y_3'\ldots x_i'$$

For some i, either $x_i \neq x_i'$ or $y_i \neq y_i'$

Surjectivity:

Think about .1919191919..., not surjective.

Question: Does
$$|A| \le |B|$$
 and $|B| \le |A| \implies |A| = |B|$?

This is to say, \exists injection $A \to B$, \exists injection $B \to A$, but exists bijection $A \to B$?

This is true. Pretty obvious for finite sets, but for infinite sets? (It is true as well)

Corollary: $|(0,1) \times (0,1)| = |(0,1)|$.

Theorem: $|\mathbb{N}| < |S|$ where S is the set of 0, 1 sequences.

I claim $S \to 2^{\mathbb{N}} := \{ \text{subsets of } \mathbb{N} \}$

$$01100010 \cdots \rightarrow \{2, 3, 7, \dots\}$$

$$10110010 \cdots \rightarrow \{1, 3, 4, 7, \dots\}$$

Theorem: For any set S, we claim $|S| < |2^S|$.

Corollary: $|\mathbb{N}| < |2^{\mathbb{N}}| < |2^{2^{\mathbb{N}}}| < \dots$

Proof:

Injection:
$$S \to 2^S$$
. $x \to \{x\} (\subseteq S)$

Bijection:

Suppose \exists bijection $f: S \to 2^S$

We want to produce a subset $T \subseteq S$ such that T is not in the image of

Define T as follows:

$$x \in T \iff x \not\in f(x)$$

It follow that $T \neq f(x)$ for any $x \in S$. Done.

We have 2 sets from $A \to B$ $f: A \to B$ and $g: B \to A$

