Calcul Numeric Examen - Proba practică - Calculatoare și Tehnologia Informației, Anul I

INSTRUCȚIUNI:

- 1. Toate problemele sunt obligatorii.
- 2. Comentați și explicați toate rezolvările trimise. Codurile necomentate/neexplicate nu se punctează.
- 3. TIMP DE LUCRU: 2 ore
- 4. Rezolvările problemelor corespunzătoare acestui test vor fi trimise prin email de pe adresa instituțională:
 - ca fişier .txt, cu denumirea Nume_Prenume_Grupa_Examen.txt
 - la adresa alexandru.ghita@unibuc.ro;
 - vor avea următoarea linie de subiect:
 Examen CN Proba scrisă Nume şi prenume student, Grupa 16X
- 5. Termenul limită de trimitere prin email a rezolvărilor problemelor: 18 iunie 2021, orele 20:00.

Metoda Romberg: Metoda Romberg este o metodă de aproximare a integralei $I(f) = \int_a^b f(x) dx$ pornind de la o formulă simplă de aproximare a integralei (e.g. metoda trapezului).

Algorithm 1: Metoda Romberg

Input: $\mathbf{a} \in \mathbb{R}, \ \mathbf{b} \in \mathbb{R}, \ \mathbf{f} : [a,b] \longrightarrow \in \mathbb{R}, \ \mathbf{n} \in \mathbb{N} \ (\mathbf{n} - \text{ordinul de aproximare})$ Result: $\mathbf{I} \in \mathbb{R}$

- Pasul 1: Determină h (lungimea intervalului [a, b]).
- Pasul 2: Construiește o matrice $Q = (q_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R})$:
 - $q_{11} \leftarrow \frac{h}{2} (f(a) + f(b))$ (formula trapezului)
 - Pentru $i = \overline{2, n}$, completează prima coloană a matricei Q:

$$q_{i1} \longleftarrow \frac{h}{2^i} \left(f(a) + 2 \sum_{k=2}^{2^{i-1}} f\left(a + (k-1)\frac{h}{2^{i-1}}\right) + f(b) \right)$$

• Pentru $i = \overline{2, n}$ și $j = \overline{2, i}$, completează restul matricei Q:

$$q_{ij} \longleftarrow \frac{4^{j-1}q_{i,j-1} - q_{i-1,j-1}}{4^{j-1} - 1}$$

Pasul 3: $I \leftarrow q_{nn}$ Pasul 4: OUTPUT(I) STOP.

Algorithm 2: Interpolare Lagrange (metoda Lagrange)

Input:
$$\mathbf{X} \in \mathbb{R}^{n+1}$$
, $\mathbf{Y} \in \mathbb{R}^{n+1}$, $\mathbf{z} \in \mathbb{R}$
Result: $\mathbf{t} \in \mathbb{R}$

Pasul 1: (Determină funcțiile de bază $L_{n,k}(\mathbf{z})$)

for
$$k \leftarrow 1$$
 to $n+1$ do
$$L_{n,k} \leftarrow \prod_{\substack{j=1\\j\neq k}}^{n+1} \frac{\mathbf{z} - x_j}{x_k - x_j}$$

end

Pasul 2: (Determină aproximarea în punctul z)

$$\mathbf{t} \longleftarrow \sum_{k=1}^{n+1} \mathbf{L}_{n,k} \cdot y_k.$$

Pasul 3: OUTPUT(t) STOP.

Oficiu: 1 punct

Ex. 1 (3 puncte)

- (a) Implementează în **python** metoda Romberg cu numele **int_romberg**. Pentru implementare, urmărește algoritmul de mai sus.
- (b) Să se calculeze integrala exactă $I_{exact}(f) = \int_{-6}^{6} \frac{1}{1+x^2} dx;$
- (c) Să se aproximeze integrala de la punctul (b) folsind $metoda \ Romberg \ cu \ n=4;$
- (d) Să se calculeze eroarea $E = |I_{exact}(f) I_{Romberq(f)}|$.

Ex. 2 (6 puncte)

Presupunem că avem datele cunoscute \mathbf{X} în punctele obținute din discretizarea intervalului $[0, \pi]$ în 21 puncte echidistante. Valorile corespunzătoare punctelor rezultate \mathbf{Y} sunt obținute prin evaluarea funcției $f(x) = \cos(2x)$ în acele puncte.

- (a) Implementează în **python** metoda Lagrange de interpolare Lagrange cu numele **interp_lagrange**. Pentru implementare, urmărește algoritmul de mai sus.
- (b) Generează datele cunoscute \mathbf{X} și \mathbf{Y} și afișează-le la consolă.
- (c) Într-o figură, afișează datele cunoscute X și Y (sub formă de puncte discrete)
 - Graficul trebuie să includă minim notarea axelor OX și OY, titlul și legenda.
- (d) Aproximează valorile funcției în toate punctele din discretizarea cu 110 puncte echidistante a domeniului. Pentru aproximarea valorilor lipsă, folosește datele cunoscute \mathbf{X} și \mathbf{Y} și metoda Lagrange de interpolare Lagrange;
- (e) In figura de la pasul (c), adaugă graficul funcției exacte și aproximarea de la pasul (d);
- (f) Într-o figură nouă, generează graficul erorii de interpolare $e_t = |P_n(x) f(x)|$.