# Monotone MVI approximate solution

Find  $\hat{x} \in \mathcal{X}$  such that

$$\mathsf{GAP}(\hat{x}) = \sup_{x \in \mathcal{X}} \langle F(x), \hat{x} - x \rangle \le \varepsilon.$$

| Order  | Convergence                     | Lower bound                          |
|--------|---------------------------------|--------------------------------------|
| First  | $O\left(arepsilon^{-1} ight)$   | $\Omega\left(arepsilon^{-1} ight)$   |
| Second | $O\left(arepsilon^{-2/3} ight)$ | $\Omega\left(arepsilon^{-2/3} ight)$ |

Inexact Jacobian 
$$\|\nabla F(v) - J(v)\| \le \delta$$

# The lower bound for methods with inexact Jacobians

$$\mathsf{GAP}(\hat{x}) = \Omega\left(\frac{L_1 D^3}{T^{3/2}} + \frac{\delta D^2}{T}\right)$$

## The Model

**Inexact Taylor approximation** 

$$\Psi_{v}(x) = F(v) + J(v)[x - v]$$

The model of objective

$$\Omega_{v}^{\eta}(x) = \Psi_{v}(x) + \eta \delta(x - v) + 5L_{1}||x - v||(x - v)$$

### The Method

#### Algorithm 1 VIII

**Input:** initial point  $x_0 \in \mathcal{X}$ , parameters  $L_1$ ,  $\eta$ , sequence  $\{\beta_k\}$ , and opt  $\in \{0, 1, 2\}$ . **Initialization:** set  $s_0 = 0 \in \mathbb{R}^d$ .

for  $k = 0, 1, 2, \dots, T$  do

Compute  $v_{k+1} = \operatorname{argmax}_{v \in \mathcal{X}} \{ \langle s_k, v - x_0 \rangle - \frac{1}{2} \|v - x_0\|^2 \}$ . Compute  $x_{k+1} \in \mathcal{X}$  such that

 $\sup_{x \in \mathcal{X}} \langle \Omega_{v_{k+1}}(x_{k+1}), x_{k+1} - x \rangle \le \frac{L_1}{2} \|x_{k+1} - v_{k+1}\|^3 + \delta \|x_{k+1} - v_{k+1}\|^2.$ 

Compute  $\lambda_{k+1}$  such that  $\frac{1}{32} \le \lambda_{k+1} \left( \frac{L_1}{2} \| x_{k+1} - v_{k+1} \| + \beta_{k+1} \right) \le \frac{1}{22}$ . Compute  $s_{k+1} = s_k - \lambda_{k+1} F(x_{k+1})$ .

Output:  $\hat{x} = \begin{cases} & \tilde{x}_T = \frac{1}{\sum_{k=1}^T \lambda_k} \sum_{k=1}^I \lambda_k x_k, & \text{if opt} = 0, \\ & x_T, & \text{else if opt} = 1, \\ & x_{k_T} \text{ for } k_T = \operatorname{argmin}_{1 \leq k \leq T} \|x_k - v_k\|, & \text{else if opt} = 2. \end{cases}$ 









# Exploring Jacobian Inexactness in Second-Order Methods for Variational Inequalities

- Lower Bound
- Optimal Algorithm
- Quasi-Newton Approximation

Artem Agafonov
Petr Ostroukhov
Roman Mozhaev
Konstantin Yakovlev
Eduard Gorbunov
Martin Takáč
Alexander Gasnikov
Dmitriy Kamzolov



# **Insights**

- Subproblem is monotone VI. For QN approximation solution is reduced to minimization problem.
- Converging to optimum,  $\beta_k$  starts to have a greater influence on the choice of  $\lambda_k$ , preventing the method from taking overly aggressive steps

# Convergence

*Monotone.*  $L_1$ -smooth VIs

$$\mathsf{GAP}(\hat{x}) = O\left(\frac{L_1 D^3}{T^{3/2}} + \frac{\delta D^2}{T}\right)$$
optimal second-
order rate

Tensor generalization. Monotone  $L_i$ -smooth VIs

GAP(
$$\hat{x}$$
) =  $O\left(\frac{L_{p-1}D^{p+1}}{T^{\frac{p+1}{2}}} + \sum_{i=1}^{p-1} \frac{\delta_i D^{i+1}}{T^{\frac{i+1}{2}}}\right)$ 

Non-monotone generalization. Minty condition,  $L_1$ -smooth VIs

$$\mathsf{RES}(\hat{x}) = \sup_{x \in \mathcal{X}} \langle F(\hat{x}), \hat{x} - x \rangle = O\left(\frac{L_1 D^3}{T} + \frac{\delta D^2}{\sqrt{T}}\right)$$

# **Quasi-Newton approximation**

Damped L-Broyden  $J^{i+1} = J^i + \frac{1}{m+1} \frac{(y_i - J^i s_i) s_i^{\mathsf{T}}}{s_i^{\mathsf{T}} s_i}$ 

• 
$$s_i = z_{i+1} - z_i$$
,  $y_i = F(z_{i+1}) - F(z_i)$ 

•  $s_i$  are sampled,  $y_i = \nabla F(x) s_i$ 

**Experiments** 

$$\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^d} f(x, y) = y^{\mathsf{T}} (Ax - b) + \frac{\rho}{6} ||x||^3$$

