

Algorithmique Avancée

Partie B. Résolution de problèmes combinatoires polynomiaux Chap 4: Flots et Réseaux de transport

Florence Bannay

Master Informatique – Université Paul Sabatier 2020-2021

Intro

Les problèmes de flots et réseaux de transport

- Thème : Organiser de façon optimale sous contraintes, les mouvements d'un bien dans un réseau.
 - structurer le réseau
 - dimensionner le réseau
 - organiser la circulation
- Problème du flot maximal : faire circuler la plus grande quantité entre deux points du réseau sans excéder les capacités des arcs.
- Beaucoup d'applications :
 - réseau réel (routier/maritime/aérien/de communication) : création d'itinéraires de délestage, taxis de la Marne (septembre 1914), traffic maritime/aerien...
 - réseau de contraintes : affectation tâches-machines, pb des provisions, mine à ciel ouvert (open-pit mining), fermeture maximale, pb de la sélection...

I. Cycles, Flux et Flots

Rappel Chemin Chaîne

Définition (Chemin, Chaîne dans un graphe ORIENTÉ (X, U))

Chemin: suite d'au moins 2 sommets $(s_1, \ldots s_p)$ $t.q. \forall i \in [1, p-1]$, (s_i, s_{i+1}) est un arc $(\in U)$. Un chemin représenté par séquence d'arcs. Chaîne: suite d'au moins 2 sommets $(s_1, \ldots s_p)$ $t.q. \forall i \in [1, p-1]$, (s_i, s_{i+1}) ou (s_{i+1}, s_i) est un arc $(\in U)$.

- simple : si arcs tous différents,
- élémentaires : si sommets tous différents.
- *longueur*= *nombre d'arcs*.

Vecteur cycle (vu la semaine dernière)

Définition (Vecteur cycle dans G avec m arcs : u_1, \ldots, u_m)

- Cycle μ chaîne simple dont extrémités coincident.
- Vecteur cycle associé à cycle $\mu: \vec{\mu} = (\mu^1, \dots, \mu^m)$ de \mathbb{Z}^m t.q. $\forall i \in [\![1,m]\!], \mu^i = \begin{cases} 0 & \text{si l'arc } u_i \text{ n'apparaît pas dans le cycle } \mu \\ 1 & \text{si l'arc } u_i \text{ est utilisé dans le sens de } \mu \\ -1 & \text{si l'arc } u_i \text{ est utilisé dans le sens opposé à } \mu \end{cases}$

Exercice 1

Remplissez le tableau suivant avec un exemple pour chaque chose :

remphissez le tubleur sulvant avec un exemple pour enaque enose.			
chemin simple et élémentaire :	chemin non simple et non élémentaire :		
chemin simple et non élémentaire :	chaîne simple :		
chaîne non simple :	cycle élémentaire :		
cycle non élémentaire :	vecteur cycle :		

Exercice 1 (solution)

Remplissez le tableau suivant avec un exemple pour chaque chose :

· · · · · · · · · · · · · · · · · · ·			
chemin simple et élémentaire :	chemin non simple et non élémentaire :		
(u_1, u_4, u_5, u_7) s123t	$(u_2, u_3, u_4, u_5, u_3)$ s31231		
chemin simple et non élémentaire :	chaîne simple :		
(u_1, u_4, u_5, u_3) s1231	(u_1, u_3, u_7) s13t		
chaîne non simple :	cycle élémentaire :		
(u_5, u_7, u_6, u_5) 23t23	$\mu_1 = (u_5, u_7, u_6)$ 23t2		
cycle non élémentaire :	vecteur cycle :		
$\mu_2 = (u_7, u_6, u_5, u_3, u_1, u_2)$ 3t231s3	$ec{\mu_1} = (0,0,0,0,1,-1,1)$		

Cocycle

Définition (Cocycle de A dans G = (X, U))

Soit A : ensemble de sommets, on note :

- $\omega^+(A) = \{(x,y) \in U | x \in A, y \notin A\}$: arcs sortants de A
- $\omega^-(A) = \{(x,y) \in U | x \notin A, y \in A\}$: arcs entrants en A
- $\omega(A) = \omega^+(A) \cup \omega^-(A)$

Si $\omega(A)$ est non vide il est appelé cocycle de A.

Exercice 2

Remplissez le tableau suivant :

$\omega^{+}(\{s,1\})$:	$\omega^-(\{s,1\}:$	$\omega(\{s,1\})$:
$\omega^+(\{s\})$:	$\omega^-(\{s\}:$	$\omega(\{s\})$:
$\omega^{+}(\{1,3,t\})$:	$\omega^{-}(\{1,3,t\}:$	$\omega(\{1,3,t\})$:
$\omega^+(\{1,2,3,t\})$:	$\omega^{-}(\{1,2,3,t\}:$	$\omega(\{1,2,3,t\})$:
((-,-,-,-,))	((=, =, =, =, =)	

Exercice 2 (solution)

Remplissez le tableau suivant :

$\omega^{+}(\{s,1\})$:	$\omega^{-}(\{s,1\}:$	$\omega(\{s,1\})$:
$\{u_2, u_4\}$	$\{u_3\}$	$\{u_2, u_3, u_4\}$
$\omega^+(\{s\})$:	$\omega^-(\{s\}:$	$\omega(\{s\})$:
$\{u_1, u_2\}$	Ø	$\{u_1, u_2\}$
$\omega^+(\{1,3,t\})$:	$\omega^{-}(\{1,3,t\}:$	$\omega(\{1,3,t\})$:
$\{u_4\}$	$\{u_1, u_2, u_5, u_6\}$	$\{u_1, u_2, u_4, u_5, u_6\}$
$\omega^+(\{1,2,3,t\})$:	$\omega^{-}(\{1,2,3,t\}:$	$\omega(\{1,2,3,t\})$:
Ø	$\{u_1,u_2\}$	$\{u_1,u_2\}=\omega(\{s\})$

Flux et Flots

Définition (Flot)

Un flot sur un graphe est un vecteur $\varphi = (\varphi^1, \dots, \varphi^m)$ de \mathbb{Z}^m qui vérifie

$$\forall x \in X, \sum_{u_i \in \omega^-(\{x\})} \varphi(u_i) = \sum_{u_i \in \omega^+(\{x\})} \varphi(u_i)$$
 (loi de Kirchhoff)

 $\varphi^i = \varphi(u_i)$ est le flux dans l'arc u_i : quantité qui circule sur u_i

Kirchhoff: en tout sommet, somme flux entrants = somme flux sortants.

Exercice 3

Supposons que le flot φ a un flux de 2 sur u_1 et 1 sur u_3 , quel flux doit-il avoir sur u_4 ? et sur u_2 ?

Exercice 3 (solution)

Supposons que le flot φ a un flux de 2 sur u_1 et 1 sur u_3 . $\varphi(u_4)=3$, $\varphi(u_2)=-2$.

Exercice 4

On a maintenant $\varphi(u_1)=2$, $\varphi(u_2)=-2$, $\varphi(u_3)=1$, et $\varphi(u_4)=3$. On pose $\varphi(u_5)=4$. Quels flux peut-on mettre sur u_6 et u_7 ? Écrivez le flot φ .

Exercice 4 (solution)

On a maintenant $\varphi(u_1) = 2$, $\varphi(u_2) = -2$, $\varphi(u_3) = 1$, $\varphi(u_4) = 3$, $\varphi(u_5) = 4$. Donc $\varphi(u_6) = -1$ et $\varphi(u_7) = 1$.

$$\varphi = (2, -2, 1, 3, 4, -1, 1)$$

Le flot nul

Le flot nul $(0,0,\ldots,0)$ est un flot sur tout graphe!

Le cycle $\mu_1 = (u_5, u_7, u_6)$ (23t2)

Son vecteur cycle est $\vec{\mu_1} = (0, 0, 0, 0, 1, -1, 1)$

Le vecteur cycle $\vec{\mu_1} = (0, 0, 0, 0, 1, -1, 1)$ est un flot.

Exercice 5 : combinons 2 flots

- Le vecteur $\varphi = (2, -2, 1, 3, 4, -1, 1)$ est un flot sur ce graphe.
- Le vecteur cycle $\vec{\mu_1} = (0, 0, 0, 0, 1, -1, 1)$ aussi
- Soit $v = 2\varphi 4\vec{\mu_1}$ (combinaison linéaire)
- Décrivez v, est-ce un flot?

Exercice 5 : combinons 2 flots (solution)

- Le vecteur $\varphi = (2, -2, 1, 3, 4, -1, 1)$ est un flot sur ce graphe.
- Le vecteur cycle $\vec{\mu_1}=(0,0,0,0,1,-1,1)$ aussi
- Soit $v = 2\varphi 4\vec{\mu_1}$ (combinaison linéaire)
- v = (4, -4, 2, 6, 4, 2, -2), c'est bien un flot (il vérifie Kirchhoff).

Propriétés à montrer (travail personnel + TD)

Propriété

- 1. Le vecteur nul de \mathbb{Z}^m est un flot sur tout graphe G (dit "flot nul")
- 2. Tout vecteur cycle de G est un flot sur G
- 3. Toute combinaison linéaire de flots sur G définit un flot sur G

Propriété

 φ est un flot sur G ssi

$$\forall \emptyset \subset A \subset X, \sum_{u \in \omega^{-}(A)} \varphi(u) = \sum_{u \in \omega^{+}(A)} \varphi(u) \quad \text{(loi de Kirchhoff généralisée)}$$

Exercice 6

On considère le vecteur v = (4, -4, 2, 6, 4, 2, -2). Remplissez le tableau :

	$\sum_{u\in\omega^+(A)}v(u)$	$\sum_{u\in\omega^{-}(A)}v(u)$
$A = \{s, 1\}$		
$A = \{s\}$		
$A = \{1, 3, t\}$		
$A = \{1, 2, 3, t\}$		

Exercice 6 (solution)

On considère le vecteur v = (4, -4, 2, 6, 4, 2, -2). Remplissez le tableau :

	$\sum_{u\in\omega^+(A)}v(u)$	$\sum_{u\in\omega^{-}(A)}v(u)$	
$A = \{s, 1\}$	-4+6	2	
$A = \{s\}$	4-4	0	
$A = \{1, 3, t\}$	6	4-4+4+2	
$A = \{1, 2, 3, t\}$	0	4-4	

flot = Kirchhoff (en tout sommet) \Leftrightarrow Kirchhoff généralisée (en tout A)

II. Flots compatibles dans un

Réseau de transport

Réseau de transport

Définition (réseau de transport)

Un réseau de transport est un graphe orienté connexe

$$R = (X, U = \{u_1, \dots u_m\})$$
 avec

- un sommet sans prédecesseur appelé entrée noté s $(\Gamma^-(s)=\emptyset)$
- un sommet sans successeur appelé sortie noté t $(\Gamma^+(t) = \emptyset)$
- une application capa : $U \to \mathbb{N} \cup \{+\infty\}$ qui à chaque arc u associe sa capacité capa $(u) \ge 0$.

On ajoute un arc fictif $u_0 = (t, s)$ avec capa infinie appelé arc de retour.

Exemple

Soit le réseau suivant avec les capacités indiquées entre parenthèses.

C'est un réseau de transport.

Capacités viennent du monde réel (ne vérifient pas forcément Kirchhoff)

Flot compatible sur un réseau de transport

Définition (flot compatible sur réseau $R = (X, U = \{u_1, \dots, u_m\})$)

C'est un vecteur φ de \mathbb{Z}^{m+1} t.q. :

- φ : flot sur $R \cup \{u_0\}$: $\forall x \in X$, $\sum_{u \in \omega^+(\{x\})} \varphi(u) = \sum_{u \in \omega^-(\{x\})} \varphi(u)$ (Loi de Kirchhoff)
- φ : compatible avec capacités : $\forall u \in U$, $0 \le \varphi(u) \le \text{capa}(u)$

Définition (Valeur du flot)

$$v(\varphi) = \varphi(u_0) = \sum_{u \in \omega^+(\{s\})} \varphi(u) = \sum_{u \in \omega^-(\{t\})} \varphi(u)$$
flux sur arc somme des flux somme des flux
de retour sortant de s arrivant en t

- Si $\varphi(u) = c(u)$: u est saturé.
- Flot de valeur max : maximise $v(\varphi)$ parmi tous les flots compatibles

Exercice 7

Est-ce un flot compatible, quelle est sa valeur? Y-a-t'il des arcs saturés? si oui lesquels?

Exercice 7 (solution)

- Flot : seulement si on ajoute u_0 !
- Compatible : oui (pour tout arc $u, \varphi(u) \geq 0$ et $\varphi(u) \leq capa(u)$)
- Valeur : 4
- (s,3), (1,2), (2,3), (3,t) sont saturés.

III. Théorème de la coupe

Coupe dans réseau de transport (X, U) d'entrée s de sortie t

Définition (Coupe)

Une coupe cp séparant s et t est une partition des sommets en deux :

$$cp = (A, X \setminus A)$$
 tel que $A \subset X, s \in A$ et $t \notin A$

Définition (arcs de la coupe)

Les arcs de la coupe $cp = (A, X \setminus A)$

sont les arcs de $\omega^+(A)$: c'est-à-dire les arcs sortants de A

Définition (capacité d'une coupe)

La capacité d'une coupe cp est la somme des capacités des arcs de cp

$$capa(cp) = \sum_{u \in \omega^+(A)} capa(u)$$

Exercice 8

Complétez le tableau en créant les coupes $cp = (A, X \setminus A)$ pour chaque A:

	coupe cp	arcs de cp	capacité de cp
$A = \{s, 1\}$			
$A = \{s\}$			
$A = \{1, 3, t\}$			
$A = \{s, 1, 3, t\}$			

Exercice 8 (solution)

Complétez le tableau en créant les coupes $cp = (A, X \setminus A)$ pour chaque A:

	coupe cp	arcs de cp	capacité de cp
$A = \{s, 1\}$	$({s,1},{2,3,t})$	{(s,3),(1,2)}	6
$A = \{s\}$	$({s},{1,2,3,t})$	$\{(s,1),(s,3)\}$	7
$A = \{1, 3, t\}$	pas de coupe : $s \notin A$	/	/
$A = \{s, 1, 3, t\}$	non plus : $t \in A$	/	/

F. Bannay Algo Avancée : Chap.4 Flots 29/52

Théorème de la coupe (à montrer en travail personnel)

Remarque

Le retrait dans un réseau R de tous les arcs d'une coupe supprime tous les chemins de s à t.

Théorème (de la coupe)

Pour tout flot φ compatible sur R et pour toute coupe cp séparant s et t la valeur du flot est inférieure à la capacité de cette coupe :

$$v(\varphi) \leq capa(cp)$$

Calcul d'un flot Maximum : Principe

de Ford-Fulkerson

Principe de marquage Ford-Fulkerson

- ullet principe de marquage relatif à un flot compatible arphi
- NB : si on n'a pas de flot compatible on peut choisir le flot nul.

Définition (Marquage de Ford-Fulkerson)

On marque s puis

x étant marqué, y marquable depuis x ssi

• y n'est pas marqué ET

•
$$\begin{cases} \exists u = (x, y) \in R \text{ et } \varphi(u) < capa(u) & marquage direct & OU \\ \exists u = (y, x) \in R \text{ et } \varphi(u) > 0 & marquage indirect \end{cases}$$

marquage direct

marquage indirect

Principe de marquage de Ford-Fulkerson

- ullet principe de marquage relatif à un flot compatible arphi
- NB : si on n'a pas de flot compatible on peut choisir le flot nul.

Définition (Marquage Ford-Fulkerson)

On marque s puis

x étant marqué, y marquable depuis x ssi

• y n'est pas marqué ET

•
$$\begin{cases} \exists u = (x, y) \in R \text{ et } \varphi(u) < capa(u) & marquage direct & OU \\ \exists u = (y, x) \in R \text{ et } \varphi(u) > 0 & marquage indirect \end{cases}$$

marquage direct

marquage indirect

On marque d'abord s. Depuis s, quels sommets peut-on marquer? S'agit-il de marquages directs ou indirects?

Exercice 9 (solution)

- on peut marquer 1 par marquage direct : 1 n'était pas marqué et $\varphi(s,1) < capa(s,1)$: on peut augmenter le flux sur cet arc.
- on ne peut pas marquer 3 par marquage direct car (s,3) est saturé : le flux de cet arc ne peut pas être augmenté.
- on ne peut pas marquer t car u_0 ne permet pas le marquage $(u_0 \notin R)$.

Quels sommets peut-on marquer maintenant?

Exercice 10 (solution)

- on ne peut pas marquer 2 par marquage direct : car (1,3) est saturé
- on peut marquer 3 par marquage indirect : car 3 n'est pas marqué, et le flux sur l'arc (1,3) est > 0 : on peut diminuer le flux revenant vers 1

Et maintenant?

Exercice 11 (solution)

On peut marquer 2 depuis 3 en marquage indirect. (on ne peut pas marquer t depuis 3 car (3, t) saturé).

Et ensuite?

Exercice 12 (solution)

On peut marquer t depuis 2 en marquage direct.

Fin du marquage

Propriété

Si à la fin de la procédure de marquage basée sur le flot φ

- 1. on parvient à marquer t grâce à une chaîne ch
 - alors on peut augmenter la valeur du flot
 - ch est appelée chaîne augmentante
 - soit ch⁺= arcs de ch utilisés pour marquage direct,
 - soit ch⁻ = arcs de ch utilisés pour marquage indirect,
 - $k = \min(\min_{u \in ch^+} capa(u) \varphi(u), \min_{u \in ch^-(u)} \varphi(u))$
 - $\varphi' = \varphi + k\vec{\mu}$ où μ = cycle (ch + u_0)
 - augmentation de k sur ch⁺ et u₀
 - diminution de k sur arcs de ch⁻
- 2. on ne parvient pas à marquer t alors flot maximum

- Donnez la chaîne augmentante ch correspondant au marquage :
- Quels sont les arcs de *ch*⁺?
- Quels sont les arcs de ch⁻?
- Combien vaut *k*?

Exercice 13 (solution)

- chaîne augmentante *ch* correspondant au marquage : s132t
- arcs de ch^+ : (s,1) et (2,t)
- arcs de ch^- : (3,1) et (2,3)
- $k \text{ vaut} : \min(5-2,2,3,5-1) = 2$

- $\varphi' = \varphi + 2.(s132ts)$, valeur : $v(\varphi') = 6$
- Pourquoi φ' est-il un flot ? pourquoi est-il compatible ?

Exercice 14 (solution)

- Dans le cas général : $\varphi' = \varphi + k.(\vec{\mu})$ où μ est le cycle composé de ch et u_0 ,
- ullet est un vecteur cycle donc un flot,
- φ' est une combinaison linéaire de flots, donc un flot.
- φ' est compatible par définition de k :
 - on a augmenté de k sur les arcs directs (sans dépasser les capacités)
 - et diminué de *k* sur les arcs indirects (sans devenir négatif).

• Comment savoir si le flot φ' est maximum?

Exercice 15 (solution)

- \bullet Pour savoir si φ' est maximum : on refait un marquage.
- On marque s

- On marque s.
- Quels sommets peut-on marquer depuis s en faisant un marquage complet exhaustif?

Exercice 16 (solution)

- Pour savoir si φ' est maximum : on refait un marquage.
- On marque s puis on marque 1.
- ullet On ne peut plus rien marquer : φ' est maximum. Les sommets marqués donnent une coupe cp de capa min séparant s et t: $cp = (\{s, 1\}, \{2, 3, t\})$.
- les arcs de *cp* sont $\omega^+(\{s,1\}) = \{(s,3),(1,2)\}$
- capa(cp) = capa(s,3) + capa(1,2) = 2 + 4 = 6
- $v(\varphi') = capa(cp)$ donc φ' est de valeur max et cp de capa min

Théorème du flot maximum (Ford Fulkerson 1957)

Théorème

Soit F l'ensemble des flots compatibles et K l'ensemble des coupes dans un réseau de transport,

$$\max_{\varphi \in F} v(\varphi) = \min_{cp \in K} capa(cp)$$

La valeur maximum du flot est égale à la capacité minimum d'une coupe.

Complexité : polynomiale

- Dinic en 1970, puis Edmond et Karp en 1972 ont montré que
 - si recherche des chemins de *s* à *t* en largeur d'abord (plus courts chemins en nombre d'arcs).
 - alors Ford Fulkerson polynomial en $O(n.m^2)$
- Complexité réduite par Dinic et Karzamov en 1974 $O(n^3)$.
- Complexité encore réduite par Orlin en 2013 O(nm) :
 - structures de données plus performantes (arbres dynamiques)
 - "compactification" de graphes.

Autres notions à propos des flots (à voir en TD)

- Graphes d'écart.
- Flots sur des réseaux avec capacités et coûts de transport.