## Karnaugh Maps With Don't Cares - Answers

There will be times when you don't care about the output from a circuit for certain combinations of inputs. Take the following example. It is part of a circuit that will light up one of the digits on a calculator display. This means that the only inputs that are of interest to the designer are those that represent the denary digits 0 to 9. So we could draw the truth table as follows:

| A | В | C | D | X |             |
|---|---|---|---|---|-------------|
| 0 | 0 | 0 | 0 | 1 | /A./B./C./D |
| 0 | 0 | 0 | 1 | 0 |             |
| 0 | 0 | 1 | 0 | 0 |             |
| 0 | 0 | 1 | 1 | 1 | /A./B.C.D   |
| 0 | 1 | 0 | 0 | 1 | /A.B./C./D  |
| 0 | 1 | 0 | 1 | 0 |             |
| 0 | 1 | 1 | 0 | 0 |             |
| 0 | 1 | 1 | 1 | 1 | /A.B.C.D    |
| 1 | 0 | 0 | 0 | 1 | A./B./C./D  |
| 1 | 0 | 0 | 1 | 0 |             |
| 1 | 0 | 1 | 0 | d | A./B.C./D   |
| 1 | 0 | 1 | 1 | d | A./B.C.D    |
| 1 | 1 | 0 | 0 | d | A.B./C./D   |
| 1 | 1 | 0 | 1 | d | A.B./C.D    |
| 1 | 1 | 1 | 0 | d | A.B.C./D    |
| 1 | 1 | 1 | 1 | d | A.B.C.D     |



The idea is that you plot the d's on the map as well as the ones. When you are looking for groups, you can include them in a box if it makes the box bigger (and the corresponding term therefore simpler), or you can leave them out of a box if that makes the resulting term simpler.

So for the map above, you could end up with the following expression:

$$Z = C.D + /C./D$$

## **Exercise**

Write a simplified expression for the truth table shown below:

|   | D |   | ъ | 3.7 | 1           |
|---|---|---|---|-----|-------------|
| Α | В | C | D | X   |             |
|   |   |   |   |     |             |
| 0 | 0 | 0 | 0 | d   | /A./B./C./D |
| 0 | 0 | 0 | 1 | 0   |             |
| 0 | 0 | 1 | 0 | 0   |             |
| 0 | 0 | 1 | 1 | 0   |             |
| 0 | 1 | 0 | 0 | 1   | /A.B./C./D  |
| 0 | 1 | 0 | 1 | 0   |             |
| 0 | 1 | 1 | 0 | d   | /A.B.C./D   |
| 0 | 1 | 1 | 1 | 1   | /A.B.C.D    |
| 1 | 0 | 0 | 0 | d   | A./B./C./D  |
| 1 | 0 | 0 | 1 | 0   |             |
| 1 | 0 | 1 | 0 | d   | A./B.C./D   |
| 1 | 0 | 1 | 1 | d   | A./B.C.D    |
| 1 | 1 | 0 | 0 | d   | A.B./C./D   |
| 1 | 1 | 0 | 1 | 0   |             |
| 1 | 1 | 1 | 0 | 1   | A.B.C./D    |
| 1 | 1 | 1 | 1 | 1   | A.B.C.D     |



$$X = B.C + /C./D$$