Machine Learning Introduction

Yun-Nan Chang

Sampling & Learning

Overfitting vs Underfitting

Sampling

Same dataset but different results.

Machine learning

⋄*nx*: Input data dimension

⋄*ny*: output data dimension.

>ny=1 for binary classification, regression.

Machine Learning Application

- Image recognition
- **♦**Create Picture
- **♦**Chatbot
- **♦**AlphaGo
- ♦Play video game

Regression

♦Oil price forecast

^{*} The data range was chosen from July 2005 onwards because the Ringgit was unpegged after July 2005.

Classification

♦ Iris flowers classification

Pattern recognition

♦Image recognition

Generator

♦Create Picture

A stop sign is flying in A herd of elephants flyblue skies.

ing in the blue skies.

A toilet seat sits open in A person skiing on sand the grass field.

clad vast desert.

Figure 1: Examples of generated images based on captions that describe novel scene compositions that are highly unlikely to occur in real life. The captions describe a common object doing unusual things or set in a strange location.

Play Game

- **♦**AlphaGo
- ♦Play video game

Machine Learning Process

Model selection

- ♦ Different model we will get different result.
- ♦In SVM, new data is classified into Black group.
- ♦But if you use Logistic regression, it is classified into While group

Object function

Object function

Use different object function in same model will get different result.

Use Mean Absolute Error and Mean Square Error in Logistic Regression

Which separation line for classification is better?

Cut-off point for binary classification

- The selection of cut-off will affect decision/prediction outcome
 - ♦ Actual positive: TP+FN Actual negative: TN+FP.

	Actual Yes	Actual No
Predict Yes	TP	FP
Predict No	FN	TN

Confusion Matrix

	Actual Yes	Actual No
Predict Yes	TP (True Positive)	FP (False Positive)
Predict No	FN (False Negative)	TN (True Negative)

Standardization

♦Standardization

Missing Value

	Α	В	С	D
0	1	3	5	8
1	NaN	2	5	2
2	4	7	NaN	2
3	4	2	5	1

Dı	rop	Spo	ecif	ied	co	lum	n
		(If	A is	Na	ıN)		
					,		

	Α	В	С	D
0	1	3	5	8
1	NaN	2	5	2
2	4	7	NaN	2
3	4	2	5	1

Missing Value

	Α	В	С	D
0	1	3	5	8
1	NaN	2	5	2
2	4	7	NaN	2
3	4	2	5	1

	Α	В	С	D
0	1	3	5	8
1	3	2	5	2
2	4	7	5	2
3	4	2	5	1

	Α	В	С	D
0	1	3	5	8
1	4	2	5	2
2	4	7	5	2
3	4	2	5	1

Preprocessing in scikit-learn

Standardization

from sklearn import preprocessing

Standard X=preprocessing.StandardScaler.fit transform(X)

Normalization

from sklearn import preprocessing

Normalized X = preprocessing.normalize(X, norm='l2')

Preprocessing in scikit-learn

MinMaxScaler

from sklearn import preprocessing
Scalar_X = preprocessing.MinMaxScaler().fit_transform(X)

Missing Value

from sklearn.preprocessing import Imputer
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp_X = imp.fit(X)

Model Selection

 \diamond Cross-validation method can be applied for limited data, which allows a proportion (S-1)/S of the available data to be used for training.

Model complexity

- •We should choose the model with suitable complexity for the size of the given dataset.
 - ♦ High complexity -> more freedom -> low bias with potential high variance
 - ♦ Low complexity -> less freedom -> low variance with potential high bias
- Should we use all the features in the given dataset?

Type of input variables/feature

One-hot encoding

Fruit

Apple

Encode

Orange

Banana

Orange

Apple	Orange	Banana
1	0	0
0	1	0
0	0	1
0	1	0

Some well-known popular model (M)

- ♦ Regression
- SVM (Support Vector Machine)
- ♦ KNN (K-Nearest Neighbors)
- **♦** Logistic Regression
- Decision Tree
- ♦ K-Means
- Random Forest
- ♦ Naive Bayes
- Dimensional Reduction Algorithms
- Gradient Boosting Algorithms
- ♦ Convolutional Neural Network
- Deep learning

Polynomial Curve Fitting

♦ Model :

$$y(x, w) = w_0 + w_1 x + w_2 x^2 + \cdots w_M x^M$$

Error function:

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2$$

Polynomial Curve Fitting

Weight

Weight	M = 2	M = 6	M = 11
w_o	0	0	2.67850417
w_1	-3.48815	100.8412	-776755.1085
w_2	2.46723	-1046.57	4502951.55
W_3		5108.034	-14066940.4
w_4		-12573.3	24327608.55
w_5		14976.32	-18752447.23
w_6		-6864.09	-6136446.715
w_7			20332026.69
w_8			-2160559.429
w_9			-20347291.69
w_{10}			17932831.65
w_{11}			-4913022.544

Over-fitting and Under-fitting

Small degree -> underfitting Less variance

Large degree -> overfitting Less bias

More data More accurate

More data-> Accurate

Less data -> Inaccurate

Regularization for the control of overfitting

- The coefficient governs the relative importance of the regularization term
- ♦Ridge regression, L2 regularization

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 + \alpha ||w||^2$$
$$||w||^2 \equiv w^T w = w_0^2 + w_1^2 + \dots + w_M^2$$

Lasso regression, L1 regularization $E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 + \alpha ||w||^1$

Implicit factors

Some data we don't get, but important.

Implicit factors

Some data we don't get, but important.

$$f(x) = \sin(x)$$

 \diamond If we don't get x_2 , we can't get correct model

$$f(x) = \sin(x_1) + 0.3 * x_2$$

- ♦Green line is $f(x) = \sin(x_1)$
- $ightharpoonup \operatorname{Red line}$ is $f(x) = \sin(x_1) + 0.3 * x_2$

Implicit factors

Linear Regression Example


```
from sklearn import linear model, datasets
import numpy as np
import matplotlib.pyplot as plt
# Load the diabetes dataset
diabetes = datasets.load diabetes()
# Use one feature
x = diabetes.data[:, np.newaxis, 2]
# split dataset
x train = x[:-20]
x \text{ test} = x[-20:]
y train = diabetes.target[:-20]
y test = diabetes.target[-20:]
regr = linear model.LinearRegression()
regr.fit(x train, y train)
y pred = regr.predict(x test)
plt.scatter(x test, y test, color='blue')
plt.plot(x test, y pred, color='red')
plt.show()
```


- �diabetes dataset from sklearn
 diabetes = datasets.load_diabetes()
- If use csv file
 import pandas as pd
 df = pd.read_csv('file.csv')


```
$Split dataset
x_train = x[:-20]
x_test = x[-20:]
y_train = diabetes.target[:-20]
y_test = diabetes.target[-20:]
$Can use normalize or other method
from sklearn import preprocessing
x = preprocessing.scale(x)
```

y = preprocessing.scale(y)

- ♦Use linear regression model from sklearn regr = linear_model.LinearRegression()
- ♦Use this model to train regr.fit(x_train, y_train)

♦Get predict

y_pred = regr.predict(x_test)

\$Use matplotlib
import matplotlib.pyplot as plt
plt.scatter(x_test, y_test, color='blue')
plt.plot(x_test, y_pred, color='red')
plt.show()

Preprocessor.fit_transform()

Model.fit(train_x, train_y)

Model.predict(test_x)

How to solve function's minimum/maximum

- Suppose we want to find the parameter w to minimize L(w)
 - The most direct naïve approach is to find many w candidates.
 - What if we have multiple parameters to solve?

$$L(w_1, w_2, w_3, \cdots, w_{100})$$

- the number of candidates will be very huge. Ex: 10¹⁰⁰
- the actual weights to train could be up to million.

arg min L(w)

- Suppose we want to find w to minimize L(w)
 - We don't know the exact form of L(w)

$$w \leftarrow w_0 - |\Delta w|$$

 $L' = L_0 + 0$ optimized w

Start with a initial solution w_0

$$\frac{L'=L_0-|\Delta L|}{2}$$

$$w \leftarrow w_0 + |\Delta w|$$

Problem of Gradient Descent

- Stuck at the local minimum
- Oscillate around the minimum point

Differential equation

$$L(w) = aw^n$$
 $\longrightarrow \frac{\partial L}{\partial w} = \frac{\partial (aw^n)}{\partial w} = naw^{(n-1)}$

Adjustment rate η

$$slope = -\eta \frac{\partial L}{\partial w}$$

$$\frac{\partial L}{\partial w} = -3$$

$$\frac{\partial L}{\partial w} = 1$$

$$-\eta \, \frac{\partial L}{\partial w} = -\eta$$

$$\frac{\partial L}{\partial w} = 0$$

Gradient Descent for linear regression

 w_0

 \diamond If $e_0 < 0$, increase w in order to increase t

Gradient Descent for multi-variable linear

regression (v)

• Again, we want to find w to minimize L(w)

• We have the exact form of L(w)

Slope =
$$x_0$$
 y_0 $L(w) = (t - y_0)^2$ $L_0 = L(w_0)$

evaluator

Slope =
$$\frac{\partial L(w)}{\partial w}\Big|_{w=w_0} = 2(t - y_0)x_0 = 2(wx_0 - y_0)x_0 = 2e_0x_0$$

♦ If $e_0 < 0$, increase w in order to increase t

Gradient Descent for multi-variable linear

regression

Slope =
$$\frac{\partial L(w_0, w_1)}{\partial w_0}\Big|_{w_0, =w_{0,0}} = 2(t - y_0)x_{0,0} = 2(w_0x_{0,0} + w_1x_{0,1} - y_0)x_{0,0} = 2e_0x_{0,0}$$

♦ If $e_0 < 0$, increase w_0 in order to increase t

Batch & Epoch & Iteration

Batch & Epoch

Back propagation

Chain rule:
$$\frac{\partial L}{\partial w} = \frac{\partial f_1}{\partial w} \times \frac{\partial f_2}{\partial f_1} \times \cdots \times \frac{\partial L}{\partial f_9}$$

Gradient vanish or explode

Chain rule:
$$\frac{\partial L}{\partial w} = \frac{\partial f_1}{\partial w} \times \frac{\partial f_2}{\partial f_1} \times \cdots \times \frac{\partial L}{\partial f_9}$$

• What if
$$\frac{\partial f_{i+1}}{\partial f_i} \ll 1$$
 Gradient vanish

$$\Leftrightarrow$$
 What if $\frac{\partial f_{i+1}}{\partial f_i} \gg 1$ Gradient explode

Gradient Descent for logistic regression

- Again, we want to find w to minimize L(w)
 - We have the exact form of L(w)

$$u(t) = 1, t \ge 0 \\ a_2 - wa_1 - u() \\ b_0 - u() - y_0)^2 - b_0 - L(w) = L(w_0)$$
Slope = L_0

$$\frac{\partial L(w)}{\partial w}\Big|_{w=w_0} = 2(u()-y_0) \times u'() \times x_0$$

Activation function

Before

datasimulation 200 175 150 125 50 25 0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

After

Training process

- ♦ Use Linear Regression.
- **♦**Three data
- **♦**Learning = 0.001
- **♦**Epoch = 1000

Linear Regression Training process

♦ Data and loss

Linear Regression Training process

♦Training process.

