ISIS 1106 - LENGUAJES Y MÁQUINAS ALEJANDRO SOTELO MÁQUINAS DE TURING: EJEMPLOS

PARTE A: Reconocimiento de lenguajes

Convenciones:

- El símbolo blanco se denota con el carácter '#'.
- En cada configuración, la posición donde se encuentra la cabeza corresponde con el símbolo subrayado.
- Dado cierto alfabeto Σ , el contenido inicial de la cinta es de la forma $\#\omega\#$, donde $\omega\in\Sigma^*$.
- Antes de la cadena de entrada ω aparece exactamente un símbolo blanco '#'.
- Se puede dañar la cadena original durante el proceso, y la cabeza puede terminar en cualquier lugar.
- Para aceptar cadenas se debe escribir en la cinta exactamente una vez el carácter 'Y' (mayúscula).
- Para rechazar cadenas se debe escribir en la cinta exactamente una vez el carácter 'N' (mayúscula).

1. anbn_simplified.txt

Indicar si la cadena de entrada $\omega \in a^*b^*$ pertenece al lenguaje $L = \{a^nb^n | n \ge 0\}$

2. anbncn simplified.txt

Indicar si la cadena de entrada $\omega \in a^*b^*c^*$ pertenece al lenguaje $L = \{a^nb^nc^n | n \ge 0\}$

3. anbn.txt

Dado $\Sigma = \{a, b\}$, indicar si la cadena de entrada $\omega \in \Sigma^*$ pertenece al lenguaje $L = \{a^n b^n | n \ge 0\}$

4. anbncn.txt

Dado $\Sigma = \{a, b, c\}$, indicar si la cadena de entrada $\omega \in \Sigma^*$ pertenece al lenguaje $L = \{a^n b^n c^n | n \ge 0\}$

PARTE B: Procesamiento de cadenas

Convenciones:

- El símbolo blanco se denota con el carácter '#'.
- En cada configuración, la posición donde se encuentra la cabeza corresponde con el símbolo subrayado.
- Después de que la máquina finalice su ejecución, la respuesta puede quedar en cualquier lugar de la cinta, y el resto de casillas de la cinta deben tener el símbolo blanco '#'..

1. Copy.txt (máquina de copiado)

Diseñe una máquina de Turing que reciba como entrada una cadena de la forma $\underline{\#}\omega \#$ donde $\omega \in \Sigma^*$ (' $\#' \notin \Sigma^*$), y que entregue como salida una cadena de la forma $\#\omega \#\omega \#$.

2. ShiftRight.txt (máquina de corrimiento a la derecha)

Diseñe una máquina de Turing que reciba como entrada una cadena de la forma $\underline{\#}\omega \#$ donde $\omega \in \Sigma^*$ (' $\#' \notin \Sigma^*$), y que entregue como salida una cadena de la forma $\#\# \omega \#$.

