Graph sparsity/ Low dimensional embeddings (d)	GridCV on embedding dimensions	Information theory measure (penalize number of parameters = f(d)	Sparse matrix factorization	Non- negative matrix factorization	Normalized matrix factorization
	Select best dimension that improves predictive performance on independent test set	Select dimension that compromises loglikelihood and model complexity	Encourages unused components to move towards zero Set dimension of embeddings to maximum Lasso shrinks the unused dimensions => effective dimension if smaller than max	Rejects negative values of embedding elements, ensures sparsity	Uses projected gradients to ensure the L2 norm=1 for all embeddings
Boosting	(-) Computationally costly (many dimensions are tested * #folds * number of bootstrap samples) (-) The embeddings are undetermined by rotation => unidentifiability Computing classical confidence intervals is not possible (+) However, we can obtain a	(-) Computationally costly (range of dimensions * bootstrap) Could be done in two-times: estimate dimension using information criteria Use Bootstrap to get uncertainty over associations (complexity of one fit * (range of dimensions + bootstrap)) (+) Sparse	1)Lasso on embeddings (+) Allows the selection of the dimension (lower-dimensional embeddings) => (+) could lead to sparse associations or => (-) could simply cancel some unused dimensions but still yield dense associations (No theoretical	(+) Induce sparsity (-) No possible negative associations (-) Still requires the selection of the embedding dimension	(+) Normalized association matrix (Only in the symmetric case) Adds an additional constraint on the embeddings => plays against the sparsity of the embeddings

Graph sparsity/ Low dimensional embeddings (d)	confidence interval for the interval for the confidence interval for the interval for the confidence interval for	information (CINE filtering) measure dipensions (Information criterial for SIC has been shown to favor	Sparse matrix factorization	Non- negative matrix factorization	Normalized matrix factorization
	which does not suffer from the same issue) We cannot aggregate the embeddings or quantify the uncertainty over their values (but any statistic that is not sensitive to rotation of their dimension) can be aggregated across bootstrap samples.	complex models (-) BIC has been shown to favor too simple models with few data	using this with bootstrap) 2) Lasso on associations => Confidence intervals should be computed using selective inference from Tibshirani et al 2016 to compute confidence intervals, classical formula of Mean+-1.96SE is not correct (lasso reduces the variance of the estimators of the parameters) => (+) Associations are sparse But, (-) Embeddings could be high dimensional (with negative + positive components) to achieve		

Graph sparsity/ Low dimensional embeddings (d)	GridCV on embedding dimensions	Information theory measure (penalize number of parameters = f(d)	Sparse matrix factorization	Non- negative matrix factorization	Normalized matrix factorization
			sparsity (zeros) in their dot product = association matrix		
Generate N subsamples with replacement of the same size than the number of observations. Fit the model on each subsample. Compute confidence intervals on estimated associations. Drop edges with Cl containing 0. NB: This procedure allows to have a quantification of uncertainty (confidence intervals) on inferred edges					

/2020		1	able preview		
Graph sparsity/ Low dimensional embeddings (d)	GridCV on embedding dimensions	Information theory measure (penalize number of parameters = f(d)	Sparse matrix factorization	Non- negative matrix factorization	Normalized matrix factorization
CV based selection of lambda	To select both d and lambda (Computational cost)	I	1	1	1
Vanilla graphical Lasso / GLMNET approach	CV overfits in regression problems	(-) AIC + BIC perform poorly with glasso		/	1
Create a lasso path = a list of decreasing values of a penalty parameter \$\lambda\$ For each value of lambda, fit the estimator on all the dataset For the highest value of lambda the graph has					

zero edges
(density=0) As
we decrease
lambda, more
edges are
added to the
graph
Lambda is
selected

Graph sparsity/ Low dimensional embeddings (d)	GridCV on embedding dimensions	Information theory measure (penalize number of parameters = f(d)	Sparse matrix factorization	Non- negative matrix factorization	Normalized matrix factorization
based on various criteria: * Predictive log likelihood, \$R^2\$ * AIC, BIC, (number of parameters is computed using number of non zero elements of the precision matrix) NB: This approach infers a graph contained in the true graph (minimizes false positives)					
StARS = Lasso + stability				1	1
Generate N subsamples without replacement of size \$10\sqrt(n)\$ Fit the model on each subsample for each value of the lambda					

Graph sparsity/ Low dimensional embeddings (d)	GridCV on embedding dimensions	Information theory measure (penalize number of parameters = f(d)	Sparse matrix factorization	Non- negative matrix factorization	Normalized matrix factorization
path For each					
value of					
lambda along					
the lasso					
path: -					
Obtains N					
graphs per					
value of					
lambda -					
Define for					
each pair of					
nodes a					
Bernoulli					
indicator of					
whether an					
edge is					
inferred					
(needs a					
threshold or					
an epsilon					
value to select					
edges here) -					
Compute					
using the					
population of size N the					
variance of					
this indicator -					
Average this					
variance					
across all					
pairs (edges)					
=> obtain a					
measure of					
instability With					
highest					

Table preview

5/27/2020

regularization, all graphs are empty (Highest sparsity, high	
empty (Highest sparsity, high	
(Highest sparsity, high	
sparsity, high	
$a_{i} = a_{i} \otimes a_{i} \otimes a_{i}$	
stability = low	
instability) As we decrease	
lambda,	
edges are	
added but	
they are not	
necessarily	
the same =>	
increase	
instability At	
some point,	
the graphs get	
dense =>	
decrease	
instability	
Networks on	
subsamples	
will then tend	
to converge towards a	
common	
structure (up	
to an	
accepted level	
of instability	
recommended	
Beta=0.05)	
This	
procedure	
selects	

Graph sparsity/ Low dimensional embeddings (d)	GridCV on embedding dimensions	Information theory measure (penalize number of parameters = f(d)	Sparse matrix factorization	Non- negative matrix factorization	Normalized matrix factorization
lambda only.					
Then, the					
model is					
trained with all					
the data with					
the selected					
penalty to					
obtain the					
final graph.					
NB: StARS					
infers a graph					
that contains					
the true graph					
(minimizes					
false					
positives)					