

Effect of Zinc doping on the optoelectronic properties of CdS thin films deposited

WALAYSIA The National University of Malaysia WALAYSIA The National University Solar Energy Research

Fahia Tarannum Munna

Solar Energy Research Institute (SERI), National University of Malaysia, 43600 Bangi, Selangor, Malaysia

Introduction

Properties of Buffer Layer

- high energy band gap,
- uniform surface morphology
- pinhole-free film with a thickness in the range of 50 –
 100 nm
- low conduction band offset
- n-type conductivity

Chemical Bath Deposition (CBD)

Advantages

- Relatively Inexpensive
- The major advantage of CBD is that it requires in its simplest form only solution containers and substrate mounting devices
- Chemical bath deposition yields stable, adherent, uniform and hard films with good reproducibility by a relatively simple process
- The growth of thin films strongly depends on growth conditions, such as duration of deposition, composition and temperature of the solution, and topographical and chemical nature of the substrate

Disadvantage

 One of the drawbacks of this method is the wastage of solution after every deposition

Growth Mechanism of CdS

The formation of CdS films is promoted by the reaction of a cadmium salt dissolved in a basic ammonium solution. According to the chemical reactions, complex ion $[Cd(NH_3)_4]^{2+}$ is deposited onto glass substrates as $Cd(OH)_2$ and further reacts with the Thiourea. $[Cd(NH_3)_4]^{2+}$ can be adsorpted on the substrate and reacted with S^{2-} to form CdS film, which can accelerate the process of reaction. When the Zn^{2+} was added into the solution for preparing of CdS thin film, the growth process of CdZnS thin film can be influenced by the concentration of Zn^{2+}

$$NH_4^+ + OH^- \rightarrow NH_3 + H_2O$$
 (1)

$$Cd^{2+} + 4NH_3 \rightarrow [Cd(NH_3)_4]^{2+}$$
 (2)

$$CS(NH_2)_2 + 2OH \rightarrow S^{2-} + CN_2H_2 + 2H2O$$
 (3)

$$[Cd(NH_3)_4]^{2+} + S^{2-} \rightarrow CdS(s) + 4NH_3$$
 (4)

$$Zn^{2+} + 4NH_3 \rightarrow [Zn (NH_3)_4]^{2+}$$
 (5)

$[Zn (NH_3)_4]^{2+} + S^{2-} \rightarrow ZnS(s) + 4NH_3$ (6)

Figure: Schematic diagram of chemical bath deposition process

Optical Properties

- The averages optical transmittance of the films were found within the visible region spectrum (500-800 nm) and the value is over 80%
- It has been observed that optical transmittance has increased with the increase of Zn²⁺ concentration and thus results an increase in their optical bandgap value which is 2.45 eV for using N-Methyl Thiourea

Figure: Transmittance spectrum using N-Methyl Thiourea

Structural Properties

- It is observed that the peaks are associated with the (111),
 (220) and (311) planes for cubic phase.
- It is revealed that peak tends to sharper and more intense with the increment of Zn²⁺ molarity along with using N-Methyl Thiourea

Figure: XRD pattern using N-Methyl Thiourea

Electrical Properties

- Carrier concentration increased for using N-Methyl
 Thiourea and it is in the range of 10¹⁴ cm⁻³ to 10¹⁵ cm⁻³
- Due to the doping by zinc, the carrier concentration increased with the increased Zn²⁺ concentration

Conclusion

- CdS films with N-Methyl Thiourea showed better crystallinity than Thiourea
- It has been observed that with the increased Zn²⁺ concentration, films are more crystalline
- Moreover, transmittance of the film also increased with the doping of Zn^{2+} for both Thiourea and N-Methyl Thiourea
- The bandgap value increased using N- Methyl
 Thiourea
- However, future investigations are required to improve the film morphology and carrier concentration of CdS while using N-Methyl Thiourea as sulfur source

Contact

Solar Energy Research Institute (SERI), National University of Malaysia, 43600 Bangi, Selangor, Malaysia Email: fahiamunna@gmail.com