Étude d'un filtre passe bas du second ordre

Le montage de Sallen-Key permettant de réaliser un filtre passe bas du second ordre (avec une amplification statique égale à 1) est le suivant :

Étude du schéma

- 1. Que vaut v_A en fonction de v_{in} , v_B , v_{out} , R et C_1 ?
- 2. Que vaut v_B en fonction de v_{out} , puis en fonction de v_A ?
- 3. Montrer que:

$$v_A = \frac{v_{out}(1 + jRC_1\omega) + v_{in}}{2 + jRC_1\omega}$$

4. Montrer que:

$$v_{out} = \frac{v_A}{1 + jRC_2\omega}$$

5. À l'aide des expressions précédentes montrer que la fonction de transfert $H(j\omega)$ du montage est :

$$H(j\omega) = \frac{1}{1 + 2RC_2j\omega + R^2C_1C_2(j\omega)^2}$$

6. La fonction de transfert canonique (normalisée) d'un filtre passe bas du second ordre est :

$$H(j\omega) = \frac{1}{1 + 2m\frac{j\omega}{\omega_0} + \left(\frac{j\omega}{\omega_0}\right)^2}$$

avec m le facteur d'amortissement et ω_0 la pulsation propre. Par identification, exprimer m et ω_0 en fonction de R, C_1 et C_2 .

Étude de la fonction de transfert

- 1. On s'intéresse au gain de H.
 - (a) exprimer le gain de H en décibel.
 - (b) que vaut le gain en dB lorsque $f \to 0$?
 - (c) que vaut le gain en dB lorsque $f \to +\infty$?
 - (d) que vaut le gain en dB lorsque $f = f_0$?
 - (e) pour $f > f_0$, que vaut la pente du gain en décibels par décade?
- 2. On s'intéresse à la phase de H.
 - (a) exprimer la phase de H en degrés.
 - (b) que vaut la phase en degrés lorsque $f \to 0$?
 - (c) que vaut la phase en degrés lorsque $f \to +\infty$?
 - (d) que vaut la phase en degrés lorsque $f = f_0$?

Application

On souhaite fixer la valeur de ω_0 à 10^4 $rad.s^{-1}$. Les valeurs des composants mis à disposition sont les suivantes :

Pour R : 1,8 k Ω 2,2 k Ω 22 k Ω

Pour C_1 et C_2 : 1 nF 22 nF 33 nF 47 nF 68 nF

Trouver les valeurs de R, C_1 et C_2 qui permettent de régler au plus près les valeurs du tableau suivant, puis compléter celui-ci.

Valeurs souhaitées			Valeurs normalisées			Valeurs exactes		
ω_0 (rad.s ⁻¹)	f_0 (Hz)	m	$R(k\Omega)$	$C_1(nF)$	$C_2(nF)$	ω_0 (rad.s ⁻¹)	f_0 (Hz)	m
10^{4}		0,2						
		0,7						
		1,2						

Tracé du diagramme de Bode

1. Tracer sur la figure suivante le diagramme de Bode asymptotique et réel du filtre étudié pour m = 0,2, m = 0,7 et m = 1,2.

