8_Speical+Networks

Wednesday, November 9, 2022 11:34

Advanced Network Analysis 8. Special Networks

Weihua An

1 / 1/

Outline

- ► Weighted Networks
- ► Two-Mode Networks
- ► Text Networks

Weighted Networks

In a weighted (valued) network, each cell contains a weight that may indicate the frequency of interactions or strength of ties, etc.

$$A = \left[\begin{array}{ccc} 0 & 2 & 1 \\ 2 & 0 & 0.5 \\ 1 & 0.5 & 0 \end{array} \right]$$

Outdegree Centrality

 Degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality are available in "statnet" or "tnet"

ERGMs on Weighted Networks

ERGM has been extended to model weighted networks (Krivitsky and Butts 2013). The weights are modeled as following a Poisson distribution (or a binomial distribution).

$$w_{ij} \sim \text{Poisson}(\mu_{ij})$$
 (1)

$$Pr(w_{ij} = k) = \frac{\mu_{ij}^{k} e^{-\mu_{ij}}}{k!}$$

$$log(\mu_{ij} | w_{ij}^{c}) = \beta_{1} + \beta_{2} \boldsymbol{X}_{i|j} + \beta_{3} \boldsymbol{S}_{ij}$$
(2)

$$\log(\mu_{ij}|w_{ij}^c) = \beta_1 + \beta_2 \boldsymbol{X}_{i|j} + \beta_3 \boldsymbol{S}_{ij}$$
(3)

where w^c_{ij} represents the network except w_{ij} , $\pmb{X}_{i|j}$ receiver and sender effects, and S_{ij} endogenous tie formation processes.

	b	fodel I		Model 2			
Variables	Est	SE	P	Est	SE	P	
Main Effects							
Associate Professor	1.78	0.47	0.00	1.63	0.46	0.00	
Full Professor	2.36	0.54	0.00	2.12	0.55	0.00	
Tenure	-0.05	0.01	0.00	-0.04	0.01	0.00	
Male	-0.15	0.18	0.40	-0.13	0.17	0.44	
Quantitative Approach	0.25	0.25	0.33	0.18	0.22	0.4	
Homophily							
Rank	0.32	0.32	0.31	0.40	0.35	0.25	
Sex	0.16	0.24	0.52	0.20	0.26	0.44	
Quantitative Approach	0.78	0.34	0.02	0.93	0.32	0.00	
Area	0.28	0.27	0.29	0.38	0.29	0.20	
Network Structure							
Transitivity				1.23	0.35	0.00	
Constant	-4.52	1.01	0.00	-5.58	0.99	0.00	
AIC	-324			-344			

- The dependent variable is the average connection.
- lacktriangle The average connection for members with a trait is expected to be e^{eta} times the average connection for members without the trait.
- ▶ The average connection for a full prof. is $e^{2.12} = 8.33$ times the average connection for an assistant prof.
- The average connection between faculty using the same analytical approach is ${
 m e}^{0.93}=2.53$ times the average connection between faculty with different analytical approach.

Two-Mode Networks

A two-mode network (a bipartite network) is composed of relations between two types of nodes. For example, each student will select three to four faculty members to form a dissertation committee.

 A two-model network can be converted to a one mode network showing the ties between students.

$$A = BB^T$$

The diagonal shows the number of advisors each student has and the off-diagonal the number of advisors shared by any two students.

 A two-model network can also be converted to a one mode network showing the ties between faculty members.

$$F = B^T B$$

The the diagonal shows the number of students a faculty has and the off-diagonal the number of students co-advised by two faculty members.

6/16

Example: The Advising Network

Students in the rows; faculty in the columns.

7/16

The Co-advising Network between Faculty Members

Text Networks

The goal is to study networks of words or concepts or to extract social networks from textual data (e.g., citations and biographies).

- Word networks
- Discourse network analysis
- ► Citation network analysis

0.716

Word Networks

Word network analysis examines the co-occurrence of words in texts (the building blocks of meanings and concepts) in order to study language patterns and writing features.

- If two words occur adjacently or within certain distance (e.g., in the same sentence), they are treated as co-occurring.
- "AutoMap" developed by Katherine Carley's lab at CMU is an useful tool for word network analysis.

10 / 16

Example

Source: Tanenbaum and Brand (2008)

Discourse Network Analysis

Discourse network analysis examines how actors utilizes different concepts to present and communicate ideas.

- Make a matrix with actors in the rows and the concepts in the columns. The cells could be coded according to whether the concepts are supported or opposed. 1 = support, 0 = not use, -1 = oppose.
- Convert the matrix to an actor network to study discourse coalition.
- Convert the matrix to a concept network to examine storyline.
- "DNA" in R is useful for this purpose.

	Model I full network			Model 2 core network			Model 3 core network		
	Est	SE		Est	SE		Est	SE	
Edges Receiver effects	- 13.82	0.15	***	- 7.53	0.15	***	- 6.82	0.32	***
Funding	1.25	0.05	***	1.20	0.05	***	0.63	0.12	***
U.S. Author	0.38	0.02	***	- 0.02	0.02		- 0.10	0.05	
Short Last Name	- 0.54	0.04	***	-0.43	0.04	***	- 0.23	80.0	**
More Authors	-1.25	0.04	***	- 1.14	0.04	40.0	- 0.91	0.08	***
Prestigious University	0.59	0.03	***	0.20	0.03	***	0.45	0.08	***
Article	- 0.11	0.12		- 0.52	0.12	***	- 0.41	0.24	
Longer Publications	1.32	0.05	***	1.21	0.05	40.0	0.70	0.11	***
Mare Keywords	0.15	0.02	***	- 0.01	0.02		- 0.19	0.05	***
Recent Publications	- 2.55	0.04	***	- 3.03	0.04	***	116	0.09	***
Method Journal	0.29	0.03	***	- 0.93	0.03	***	- 0.07	80.0	
Top Journal	1.14	0.02	***	0.25	0.02	***	- 0.14	0.06	
Sender effects									
Funding	0.36	0.03	***	0.16	0.03	***	0.09	0.06	
U.S. Author	0.50	0.02	***	0.20	0.02	***	0.27	0.05	***
Short Last Name	- 0.07	0.03		- 0.04	0.03		0.01	0.06	
More Authors	- 0.34	0.03	***	- 0.1B	0.03	***	-0.38	0.06	***
Prestigious University	0.42	0.03	***	0.17	0.03	***	0.16	0.06	**
Article	- 0.34	0.08	***	- 0.37	0.08	***	- 0.48	0.17	**
Longer Publications	0.13	0.03	***	0.04	0.03		0.27	0.07	***
Mare Keywords	0.17	0.02	***	0.13	0.02	***	0.33	0.05	***
Recent Publications	0.67	0.03	***	0.31	0.03	***	0.13	0.07	
Method Journal	1.60	0.02	***	0.52	0.02	***	1.01	0.06	***
Top Journal Homophily	0.66	0.02	***	0.09	0.02	***	0.04	0.05	
Same Field	0.83	0.02	***	0.82	0.02	***	0.94	0.06	***
Shared Authors	5.98	0.08	***	4.94	0.09	***	4.69	0.28	***
Network structures									
GWESP (Transitivity)							3.47	0.05	***
GWDSP (Two-Path)							- 0.49	0.02	***
GWIDEGREE							- S.77	0.16	***
GWODEGREE							3.86	0.00	***
Forward Referencing							- S.E+15	4.E+04	***
Number of Nodes	33,306			4,769			4,769		
Number of Edges	8.367			8.367			8.367		