

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. **(Currently amended)** An organic electroluminescence element material comprising a platinum complex having a platinum ion and a ligand comprising an aryl group of which free rotation is blocked or an aromatic heterocycle group of which free rotation is blocked, wherein the platinum complex is an ortho-metallated complex,

wherein the ortho-metallated complex is selected from the group consisting of:

a platinum complex represented by Formula (3) or a tautomer of a compound represented by Formula (3);

a platinum complex represented by Formula (4) or a tautomer of a compound represented by Formula (4);

a platinum complex represented by Formula (5) or a tautomer of a compound represented by Formula (5);

a platinum complex represented by Formula (6) or a tautomer of a compound represented by Formula (6);

a platinum complex represented by Formula (7) or a tautomer of a compound represented by Formula (7); and

a platinum complex represented by Formula (8) or a tautomer of a compound represented by Formula (8);

Formula (3)

wherein R₅ and R₆ each represent a hydrogen atom or a substituent; Z₃ represents a group of atoms necessary to form an aromatic hydrocarbon ring or an aromatic heterocycle; n₃ represents an integer of 1 or 2, provided that, when n₃ is 1, L₃ represents a bidentate ligand; p₃ represents an integer of 0 - 3; and q₃ represents an integer of 0 - 4,

Formula (4)

wherein R_7 and R_8 each represent a hydrogen atom or a substituent; $R_9 - R_{13}$ each represent a hydrogen atom or a substituent; n_4 represents an integer of 1 or 2, provided that, when n_4 is 1, $L4$ represents a bidentate ligand; p_4 represents an integer of 0 - 3; and q_4 represents an integer of 0 - 4,

Formula (5)

wherein R₁₄ and R₁₅ each represent a hydrogen atom or a substituent; Z₄ represents a group of atoms necessary to form an aromatic hydrocarbon ring or an aromatic heterocycle; n5 represents an integer of 1 or 2, provided that, when n5 is 1, L5 represents a bidentate ligand; p5 represents an integer of 0 - 4; and q5 represents an integer of 0 - 3,

Formula (6)

wherein R_{16} and R_{17} each represent a hydrogen atom or a substituent; R_{18} - R_{22} each represent a hydrogen atom or a substituent; n_6 represents an integer of 1 or 2, provided that, when n_6 is 1, L_6 represents a bidentate ligand; p_6 represents an integer of 0 - 3; and p_7 represents an integer of 0 - 4,

Formula (7)

wherein R_{23} and R_{24} each represent a hydrogen atom or a substituent; Z_5 represents a group of atoms necessary to form an aromatic heterocycle containing a nitrogen atom; n_7 represents an integer of 1 or 2, provided that, when n_7 is 1, L_7 represents a bidentate ligand; p_8 represents an integer of 0 - 3; and q_6 represents an integer of 0 - 4, and

Formula (8)

wherein R₂₅ and R₂₆ each represent a hydrogen atom or a substituent; Z₆ represents a group of atoms necessary to form an aromatic heterocycle containing a nitrogen atom; n₈ represents an integer of 1 or 2, provided that, when n₈ is 1, L₈ represents a bidentate ligand; p₉ represents an integer of 0 - 3; and q₇ represents an integer of 0 - 4.

2-11. **(Cancelled)**

12. **(Original)** The organic electroluminescence element material of claim 1, wherein the aryl group of which free rotation is blocked is an aryl group having a substituent A and the aromatic

heterocycle of which free rotation is blocked is an aromatic heterocycle having a substituent B.

13. **(Original)** The organic electroluminescence element material of claim 1, wherein the substituent A or the substituent B is a electron donating substituent.

14. **(Original)** An organic electroluminescence element comprising the organic electroluminescence element material of claim 1.

15. **(Original)** An organic electroluminescence element comprising a emission layer as a constituting layer, wherein the emission layer comprises the organic electroluminescence element material of claim 1.

16. **(Original)** The organic electroluminescence element of claim 15, wherein the emission layer comprises a compound represented by Formula (10):

Formula (10)

wherein R_1 , R_2 , R_3 and R_4 each represent a hydrogen atom or a substituent; $n1$, $n2$, $n3$, and $n4$ each represent an integer of 0 - 4; and Ar_1 and Ar_2 each represent an arylene group or a divalent aromatic heterocycle group; and L_{01} represents a divalent linking group.

17. **(Currently amended)** The organic electroluminescence element of claim 15, wherein the emission layer comprises a compound represented by Formula (11):

Formula (11)

wherein R_5 - R_{16} each represent a hydrogen atom or a substituent, provided that one of R_{13} - R_{16} represents [[the]] a substituent; and $n5$ - $n8$ each represent an integer of 0 - 4.

18. **(Currently amended)** The organic electroluminescence element of claim 15, wherein the emission layer comprises a carboline derivative or a carboline derivative, of which one of carbon atoms of a hydrocarbon ring constituting a carboline ring of the carboline derivative being is replaced with a nitrogen atom.

19. **(Currently amended)** The organic electroluminescence element of claim 15 further comprising a hole blocking layer as a constituting layer, wherein the hole blocking layer comprises a

carboline derivative or a carboline derivative, of which one of carbon atoms of a hydrocarbon ring constituting a carboline ring of the carboline derivative ~~being~~ is replaced with a nitrogen atom.

20. (**Original**) The organic electroluminescence element of claim 15 further comprising a hole blocking layer as a constituting layer, wherein the hole blocking layer comprises a boron derivative.

21. (**Currently amended**) The organic electroluminescence element comprising an emission layer and a hole blocking layer as constituting layers,

wherein the emission layer and the hole blocking layer each comprise the organic electroluminescence element material of claim 1; and the hole blocking layer further comprises a carboline derivative or a carboline derivative, of which one of carbon atoms of a hydrocarbon ring constituting a carboline ring of the carboline derivative ~~being~~ is replaced with a nitrogen atom.

22. **(Original)** The organic electroluminescence element comprising an emission layer and a hole blocking layer as constituting layers,

wherein

the emission layer and the hole blocking layer each comprise the organic electroluminescence element material of claim 1; and the hole blocking layer further comprises a boron derivative.

23. **(Currently amended)** A display ~~device~~ device comprising the organic electroluminescence element of claim 1.

24. **(Currently amended)** An illumination ~~device~~ device comprising the organic electroluminescence element of claim 1.

25. **(New)** The organic electroluminescence element material of claim 1, wherein the ortho-metallated complex is a platinum complex represented by Formula (3) or a tautomer of a compound represented by Formula (3).

26. (**New**) The organic electroluminescence element material of claim 1, wherein the ortho-metallated complex is a platinum complex represented by Formula (4) or a tautomer of a compound represented by Formula (4).

27. (**New**) The organic electroluminescence element material of claim 1, wherein the ortho-metallated complex is a platinum complex represented by Formula (5) or a tautomer of a compound represented by Formula (5).

28. (**New**) The organic electroluminescence element material of claim 1, wherein the ortho-metallated complex is a platinum complex represented by Formula (6) or a tautomer of a compound represented by Formula (6).

29. (**New**) The organic electroluminescence element material of claim 1, wherein the ortho-metallated complex is a platinum complex represented by Formula (7) or a tautomer of a compound represented by Formula (7).

30. (**New**) The organic electroluminescence element material of claim 1, wherein the ortho-metallated complex is a platinum complex represented by Formula (8) or a tautomer of a compound represented by Formula (8).