Math 421

Monday, September 15

Announcements

- Homework 2 due Friday,
 September 19 at 11:59 pm
- Drop-in hours
 - Wednesday 12-1 pm in VV 311
 - Thursday 9-11 in VV B205
- MLC
 - Proof Table (M-Th 3:30-7 VV B227)
 - Course Assistant (Th 4-7 Table 4)

Example 2 – Discussion

- **Theorem:** If $n \in \mathbb{N}$, then $n! \leq n^n$.
- What proof technique should we use? Why?

 \diamond Do you believe the statement? Verify for n=2,3.

What is the base case?

What is the inductive assumption?

Note: In simple cases we don't need to explicitly state P_n .

Example 2 – Proof

Proof.

Activity - Proof

Theorem: For all $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} (2j-1) = n^2.$$

Example 3 - Discussion

- **Theorem:** For all $n \in \mathbb{N}$ and $n \geq 4$, we have $2^n < n!$.
- Note: We can use any number as the "base case".
- What proof technique should we use? Why?

Do you believe the statement? Why does it start at 4?

What is the base case?

What is the inductive assumption?

Example 3 – Proof

Proof.

Definition – Power Set

Def: The power set, $\mathcal{P}(S)$, of a set S is a set of all subsets of S.

Examples

1.
$$S = \{a\}, \mathcal{P}(S) =$$

2.
$$T = \{1,2\}, \mathcal{P}(T) =$$

Group Activity

Theorem: Let $n \in \mathbb{N}$. The power set of a set S with n elements has 2^n elements.

- 1. Convince yourselves this statement is true.
- 2. This statement can be proven using a proof by induction.
 - A. What is the base case?
 - B. Assume P_2 is true, how would you prove P_3 is true?
 - C. Can you generalize this to the case where you assume P_k is true and prove that P_{k+1} is true?