

Lecture 10: Consistency of MLE, Covariance Matrices, and

课程 □ Unit 3 Methods of Estimation □ Multivariate Statistics

9. Multivariate Gaussian

Distribution

9. Multivariate Gaussian Distribution

Note: Now is a good time to review Gaussian random variables from Lecture 2.

Video Note: In the slide of the video below, there is a typo in the formula of the pdf of the multivariate Gaussian distribution: the exponent d in overall scaling factor should apply only to 2π , rather than $2\pi \det \Sigma$. The correct version is in the note below the video. (The unannotated slides in the resource section have also been corrected).

Multivariate Gaussian Distribution: Definition

Start of transcript. Skip to the end.

So now that I have a covariance matrix, I can actually talk about a multivariate Gaussian distribution, just like-if I want to describe a Gaussian-so what is nice about the Gaussian is that it's described by only two

its mean and its variance.

parameters--

视频 下载视频文件 字幕 下载 SubRip (.srt) file 下载 Text (.txt) file

Multivariate Gaussian Random Variable

A random vector $\mathbf{X}=\left(X^{(1)},\ldots,X^{(d)}\right)^T$ is a Gaussian vector , or multivariate Gaussian or normal variable , if any linear combination of its components is a (univariate) Gaussian variable or a constant (a "Gaussian" variable with zero variance), i.e., if $lpha^T {f X}$ is (univariate) Gaussian or constant for any constant non-zero vector $lpha \in \mathbb{R}^d$.

The distribution of \mathbf{X} , the \mathbf{d} -dimensional Gaussian or normal distribution, is completely specified by the vector mean $\mu=\mathbb{E}\left[\mathbf{X}
ight]=\left(\mathbb{E}\left[X^{(1)}
ight],\ldots,\mathbb{E}\left[X^{(d)}
ight]
ight)^T$ and the d imes d covariance matrix Σ . If Σ is invertible, then the pdf of \mathbf{X} is

$$f_{\mathbf{X}}\left(\mathbf{x}
ight) = rac{1}{\sqrt{\left(2\pi
ight)^{d}\mathrm{det}\left(\Sigma
ight)}}e^{-rac{1}{2}\left(\mathbf{x}-\mu
ight)^{T}\Sigma^{-1}\left(\mathbf{x}-\mu
ight)}, \;\;\; \mathbf{x} \in \mathbb{R}^{d}$$

where $\det(\Sigma)$ is the determinant of the Σ , which is positive when Σ is invertible.

If $\mu=\mathbf{0}$ and Σ is the identity matrix, then \mathbf{X} is called a **standard normal random vector** .

Note that when the covariant matrix Σ is diagonal, the pdf factors into pdfs of univariate Gaussians, and hence the components are independent.

Linear Transformation of a Multivariate Gaussian Random Vector

1/1 point (graded)

Consider the
$${f 2}$$
-dimensional Gaussian ${f X}=egin{pmatrix} X^{(1)} \ X^{(2)} \end{pmatrix}$ with covariance matrix $\Sigma_X=egin{pmatrix} 1 & 2 \ 2 & 5 \end{pmatrix}$ and mean $\mu_{f X}=egin{pmatrix} 0 \ 0 \end{pmatrix}$.

Consider the vector $\pmb{lpha}=\left(egin{array}{c}1\\-1\end{array}
ight)$, so that $\pmb{Y}=\pmb{lpha}^T\mathbf{X}$ is a $\mathbf{1}$ -dimensional Gaussian.

What is the variance Var(Y) of Y?

$$Var(Y) =$$
 2

Solution:

One way to answer this is to notice that $Y=X^{(1)}-X^{(2)}$, so

$$\mathsf{Var}\left(Y
ight) = \mathsf{Cov}\left(Y,Y
ight) = \mathsf{Var}\left(X^{(1)}
ight) + \mathsf{Var}\left(X^{(2)}
ight) - 2\mathsf{Cov}\left(X^{(1)},X^{(2)}
ight) = 1 + 5 - 4 = 2.$$

Another way is to define the matrix $\,M riangleq lpha^T = (egin{array}{cc} 1 & -1 \end{array})\,,\,$ and apply the formula $\Sigma_Y = M \Sigma_{\mathbf{X}} M^T = 2.$

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

Singular Covariance Matrices

1/1 point (graded)

Consider again a **2**-dimensional Gaussian
$$\mathbf{X}=\begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix}$$
. But instead, Σ_X is $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ and $\alpha=\begin{pmatrix} 2 \\ -1 \end{pmatrix}$, what is the variance $\mathsf{Var}(Y)$ of $Y=\alpha^T\mathbf{X}$?

This result tells us that the Gaussian $(X^{(1)}, X^{(2)})^T$ is actually a one-dimensional Gaussian, orthogonal to the direction of $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

Solution:

Define a matrix $M=lpha^T$. We have $\Sigma_Y=M\Sigma_XM^T=0$, since M^T is a column vector in the nullspace of Σ_X .

Such a Gaussian (with a singular covariance matrix) is sometimes referred to as a degenerate Gaussian.

提交

你已经尝试了2次 (总共可以尝试3次)

Answers are displayed within the problem

(Optional) Diagonalization of the Covariance Matrix

Let Σ be a covariance matrix of size $d \times d$. Note that its entries are all real numbers with diagonal elements being non-negative. Σ has the following properties:

- Σ is symmetric. That is, $\Sigma = \Sigma^T$.
- Σ is diagonalizable to a diagonal matrix D via a transformation $D=U\Sigma U^T$, where U is an orthogonal matrix (recall that a square matrix A is orthogonal if $AA^T=A^TA=I$, where I is the identity matrix). This implies that $\Sigma=U^TDU$.

• Σ has a unique square root. That is, there exists a matrix $\Sigma^{\frac{1}{2}}$ that is unique such that $\Sigma^{\frac{1}{2}} \cdot \Sigma^{\frac{1}{2}} = \Sigma$.
• If Σ is of size $d \times d$, then it has d orthonormal eigenvectors (even if there are repeated eigenvalues). Furthermore, if U is a matrix with rows corresponding to the orthonormal eigenvectors, then the diagonal matrix $D = U\Sigma U^T$ contains the eigenvalues of Σ along its diagonal. Therefore, diagonalization of a symmetric matrix involves finding its eigenvalues and the orthonormal eigenvectors.
• If Σ is positive definite, i.e. the diagonal matrix $D=U\Sigma U^T$ has diagonal entries that are all strictly positive, then it is invertible and the inverse Σ^{-1} satisfies the following: $\Sigma^{-\frac{1}{2}}\cdot\Sigma^{-\frac{1}{2}}=\Sigma^{-1}$, where $\Sigma^{-\frac{1}{2}}$ is the inverse of the square root of Σ .
<u>Hide</u>
(Optional) Gaussian Random Vectors I
0 points possible (ungraded) Recall from an earlier part of this lecture that the covariance between two random variables being 0 does not necessarily imply that the random variables are independent. However, this is true if the random variables are multivariate Gaussian.
Let $f X$ be a Gaussian random vector with mean $m \mu$ and covariance $m \Sigma$. Assume that $m \Sigma$ is positive definite. Determine if the following statement is true or false.
"There exists a vector B and a matrix A such that $A\left(\mathbf{X}+B ight)$ is a Gaussian random vector whose components are independent and each of mean 0 ".
● True □
O False
Hint: Refer to the note above on diagonalization of the covariance matrix.
Solution:
True. First, in order to remove the effect of μ we can set $B=-\mu$ to make the individual Gaussian random variables be of zero mean. Let $\widehat{\mathbf{X}}=\mathbf{X}-\mu$. From an earlier problem we know that the covariance matrix of $\widehat{\mathbf{X}}$ is the same as Σ .
From the above note on covariance matrices we can see that there exists an orthogonal matrix U such that $D=U\Sigma U^T$.
Consider the following transformation: $\mathbf{Y} = U\widehat{\mathbf{X}}$.
The covariance matrix of ${f Y}$ is (from an earlier problem)
$U\Sigma U^T,$
which is precisely equal to the diagonal matrix D . Therefore, \mathbf{Y} has component Gaussian random variables that are uncorrelated and hence independent.

ullet Moreover, $oldsymbol{\Sigma}$ is positive semidefinite. That is, the diagonal matrix $oldsymbol{D}$ has diagonal entries that are all non-negative.

主题: Unit 3 Methods of Estimation:Lecture 10: Consistency of MLE, Covariance Matrices, and Multivariate Statistics / 9. Multivariate Gaussian Distribution

你已经尝试了1次 (总共可以尝试1次)

☐ Answers are displayed within the problem

提交

讨论

显示讨论