Software Project Development

Assignment 3: Applications

Ioannis Z. Emiris

emiris@di.uoa.gr

December 2016

Outline

This project is comprised of two parts.

- Olustering of proteins: dRMSD vector, cRMSD metric (Emiris)
- Recommendation: vector (cosine-LSH), metric space (Chamodrakas)

Outline

Clustering of proteins

Importance of proteins

Dogma (or principle) of molecular biology:

aminoacid \longrightarrow 3-dim \longrightarrow chemical sequence folding structure ''surface" function

Aminoacid (residue) sequence determines 3D (tertiary) structure (almost).

Proteins

Chains of aminoacids, from 20 choices. Each aminoacid consists of: backbone N-C α -C, residue Ri attached to C α , $i \in \{1, ..., 20\}$, Ri starts at C_i^{β} .

Structure determined by 3d coordinates of backbone atoms, basically $C\alpha$.

distance Root Mean Squared Deviation

Assume r distances d_i , i = 1, ..., r are known between point-pairs in X and the corresponding pairs in Y, denoted by a'_i , $i = 1, \ldots, r$; clearly $r \leq \binom{n}{2}$.

Definition (d-RMSD)

There is a distance metric, namely d-RMSD, where

distance-RMSD =
$$\sqrt{\frac{1}{r}\sum_{i=1}^{r}(d_i-d_i')^2}$$
,

for r corresponding distances, $r \leq \binom{n}{2}$.

Advantage: d-RMSD invariant under rigid transforms (incl. translation, rotation).

Vector of distances

Equivalent formulation

Let

$$v(X)=(d_1,\ldots,d_r), v(Y)=(d_1',\ldots,d_r')\in\mathbb{R}^r$$

be the vectors of distances in X, Y respectively. Then their Euclidean distance is

$$|v(X) - v(Y)|_2 = \sqrt{r} \cdot \text{d-RMSD}(X, Y).$$

Subset of distances

- Use $r \leq \binom{n}{2}$ distances.
- Must correspond to the same pairs of points in all conformations.
- Typical choice 1: r uniformly selected pairs among $\binom{n}{2}$.
- Typical choice 2: smallest or largest distances, in one conformation.

coordinate Root Mean Square Deviation

Definition (c-RMSD)

Two sets of *n* corresponding points $x_i, y_i \in \mathbb{R}^3$, i = 1, ..., n, expressing the backbone (C_{α}) atom coordinates in SAME coordinate frame. Then,

$$\text{c-RMSD} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|^2}.$$

Equivalently: Let $X = [x_1, \dots, x_n]^T$, $Y = [y_1, \dots, y_n]^T \in \mathbb{R}^{n \times 3}$, then

c-RMSD
$$(X,Y) = \frac{1}{\sqrt{n}}|X-Y|_F$$
, where $|M|_F^2 = \sum_{i,j} M_{ij}^2 = \text{tr}(M^T M)$

is the Frobenius norm of M, $tr(A) = \sum_i A_{ii}$ is the trace of square matrix A.

Optimal 3D Alignment

Definition (Problem)

Find (1) translation and (2) rotation minimizing c-RMSD.

1. Translate to common origin by subtracting the centroid from all $x_i \in X$:

$$x_c = \frac{1}{n} \sum_{i=1}^n x_i,$$

and by subtracting centroid y_c from all points y_i in "set" Y.

Rotation matrices

2. Rotate to optimal alignment by 3×3 rotation matrix Q.

By definition, $Q^TQ = I$, det Q = |Q| = 1.

Recall rotated vector is $v^T Q$ or Qv, for column vector $v \in \mathbb{R}^3$. Counter-clockwise rotation in the plane about the origin by θ :

$$\mathsf{Q} = \left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right], \qquad \mathsf{Q} \left[\begin{array}{c} \mathsf{x} \\ \mathsf{y} \end{array} \right] = \text{rotated vector,}$$

where

$$Q^TQ = I$$
, det $Q = |Q| = 1$.

Rotation on 3D sphere by θ , α :

$$\begin{bmatrix} \cos \theta & -\sin \theta \cdot \cos \alpha & \sin \theta \cdot \sin \alpha \\ \sin \theta & \cos \theta \cdot \cos \alpha & -\cos \theta \cdot \sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$$

Optimal rotation

Assume common centroid = 0, for pointsets $X, Y \in \mathbb{R}^{n \times 3}$:

$$c\text{-RMSD}(X,Y) = \min_{Q} |Y - XQ|_F,$$

for rotation matrix Q.

Lemma

Optimizing rotation $Q \in \mathbb{R}^{3 \times 3}$ reduces to finding optimum

$$\max_{\boldsymbol{Q}} \textit{tr}(\boldsymbol{Q}^{\mathsf{T}}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}), \qquad \boldsymbol{Q}^{\mathsf{T}}\boldsymbol{Q} = \textit{I}_{3}, \det \boldsymbol{Q} = 1,$$

where we compute rotation matrix Q.

Proof. Linear algebra calculations.

Rotation by matrices

SVD (Singular value decomposition): $X^TY = U\Sigma V^T$, where

$$U^{\mathsf{T}}U = V^{\mathsf{T}}V = I, \ \Sigma = \left[\begin{array}{ccc} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{array} \right] : \sigma_1 \geq \sigma_2 \geq \sigma_3,$$

where U, V, Σ are 3×3 , singular values $\sigma_i = |e_i| \ge 0$, e_i eigenvalues of $X^T Y$.

We search for rotation Q maximizing $tr(Q^TU\Sigma \cdot V^T) = tr(V^T \cdot Q^TU\Sigma) \le tr(\Sigma)$.

Theorem

Maximum occurs at $V^T Q^T U = I \Leftrightarrow Q = UV^T$, for rotation matrix Q.

If $\det(UV^T) \simeq -1$, then negate 3rd column of U to define matrix W, return rotation $Q = WV^T$ (right-handed system).

Algorithm

Algorithm

Input: pointsets $X, Y \in \mathbb{R}^{n \times 3}$ of *n* corresponding points.

Output: minimum c-RMSD of translated and rotated sets.

$$x_c \leftarrow \sum_{i=1}^n x_i/n, \ y_c \leftarrow \sum_{i=1}^n y_i/n.$$

$$X \leftarrow \{x - x_c : x \in X\}, \ Y \leftarrow \{y - y_c : y \in Y\}.$$

SVD:
$$X^T * Y = U \Sigma V^T$$
.

Check: Confirm $\sigma_3 > 0$, where $\Sigma = \text{diag}[\sigma_1, \sigma_2, \sigma_3]$.

$$Q \leftarrow U * V^T$$
.

if
$$\det Q < 0$$
 then $Q \leftarrow [U_1, U_2, -U_3] * V^T$

$$//U_i$$
: ith column

Return
$$|X * Q - Y|_F / \sqrt{n}$$

$$// = \sqrt{\sum_{i=1}^{n} |Qx_i - y_i|^2/n}$$

Implementation

- LAPACKE: (high-level) C Interface to LAPACK, www.netlib.org/lapack/lapacke.html.
 - lapacke.h: 2D arrays passed as pointers (to 1D array), and int ∈ { LAPACK ROW MAJOR, LAPACK COL MAJOR }
 - Routines: LAPACKE_xbase: $x \in \{ s, d \}$ for single, double precision, base = gesvd for SVD, getrf for LU decomposition (for det).
 - BLAS Support with cblas.h: cblas_xgemm computes $\alpha \operatorname{op}(A)\operatorname{op}(B) + \beta C$, $\operatorname{op}(A) \operatorname{can} \operatorname{be} A \operatorname{or} A^T$.

Implementation (cont'd)

- GNU Scientific Library (GSL)
 - Vectors and Matrices: containers, gsl_matrix_add, qsl_matrix_sub.
 - BLAS Support: qsl_blas_xqemm
 - Linear Algebra: gsl linalg LU det, gsl linalg SV decomp
- EIGEN C++ library