Sequences and limits

Christoph Schottmüller

August 15, 2014

We start by defining what we mean when we say a sequence *converges* (if you have no idea what a "sequence" is, you might want to check the wikipedia entry https: //en.wikipedia.org/wiki/Sequence; note that in this handout we are interested in "infinite sequences" only): A sequence $(a_n)_{n=1}^{\infty}$, where each $a_n \in \mathbb{R}$, converges to $a \in \mathbb{R}$ if for any $\varepsilon > 0$ we can find a N such that

$$|a_n - a| \le \varepsilon$$
 for all $n \ge N$. (1)

We then say that "a is the *limit* of the sequence $(a_n)_{n=1}^{\infty}$ ".

Example 1. The sequence $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \ldots, \frac{n+1}{n}, \ldots$ converges to 1: For a given $\varepsilon > 0$, $\left| \frac{n+1}{n} - 1 \right|$ is less than ε for n high enough. More precisely, $\left| \frac{n+1}{n} - 1 \right| = \left| \frac{1}{n} \right| = \frac{1}{n} < \varepsilon$ for $n > \frac{1}{\varepsilon}$. Hence, by choosing $N = \left[\frac{1}{\varepsilon} \right] + 1$ (where [] indicates rounding to the next integer) we know that $|a_n - 1| \le \varepsilon$ for all $n \ge N$ and therefore the limit of the sequence is 1.

However, the members of a sequence do not have to be real numbers. We can also have sequences of vectors: A sequence $(a_n)_{n=1}^{\infty}$, where each $a_n \in \mathbb{R}^m$, converges to a vector $a \in \mathbb{R}^m$ if for any $\varepsilon > 0$ we can find a N such that

$$||a_n - a|| \le \varepsilon \quad \text{for all} \quad n \ge N.$$
 (2)

In the last equation " $||\cdot||$ " denotes a norm, e.g. for a vector $b=(b_1,\ldots,b_m)$ the Euclidean norm is

$$||b|| = \sqrt{b_1^2 + \dots + b_m^2}.$$
 (3)

Example 2. Let
$$a_n = \begin{pmatrix} \frac{n+1}{n} \\ \frac{1}{n} \end{pmatrix}$$
. So, the sequence starts $\begin{pmatrix} \frac{2}{1} \\ \frac{1}{1} \end{pmatrix}$, $\begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \end{pmatrix}$, $\begin{pmatrix} \frac{4}{3} \\ \frac{1}{3} \end{pmatrix}$ I claim that this sequence converges to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Note that $||a_n - \begin{pmatrix} 1 \\ 0 \end{pmatrix}|| = ||\begin{pmatrix} \frac{1}{n} \\ \frac{1}{n} \end{pmatrix}|| = \sqrt{\frac{1}{n^2} + \frac{1}{n^2}} =$

 $\frac{\sqrt{2}}{n}$ which is less or equal to $\varepsilon > 0$ if $n \ge \frac{\sqrt{2}}{\varepsilon}$. Hence, choosing $N = \left[\frac{\sqrt{2}}{\varepsilon}\right] + 1$ we have shown that $||a_n - \begin{pmatrix} 1 \\ 0 \end{pmatrix}|| \le \varepsilon$ for all $n \ge N$ and therefore $(a_n)_{n=1}^{\infty}$ converges indeed to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

You might have realized something in the previous example: The sequence in the first component of $\binom{n+1}{n}_{n=1}^{\infty}$ is $a_n^1 = \binom{n+1}{n}_{n=1}^{\infty}$ which was the sequence we looked at in example 1. There we showed that this sequence converges to 1. The sequence in the second component of $a_n = \binom{n+1}{n}_{n=1}^{\infty}$ is $a_n^2 = \binom{1}{n}_{n=1}^{\infty}$ and it is not so hard to see that this sequence converges to 0. If you take these two together it is hardly surprising that $\binom{n+1}{n}_{n=1}^{\infty}$ is $a_n^1 = \binom{n+1}{n}_{n=1}^{\infty}$ converges to $\binom{1}{0}$. The question is: Is this accidental or is it always the case that a vector sequence converges to the vector consisting of the limits of its component sequences? The following proposition says that this is always the case.

Proposition 1. A sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^m converges to a vector $a \in \mathbb{R}^m$ if and only if all component sequences converge.

Proof. Let's write $a_n = (a_n^1, a_n^2, \dots, a_n^m)$. We denote the sequence in the i - th component as $(a_n^i)_{n=1}^{\infty}$. First we show that if each component sequence $(a_n^i)_{n=1}^{\infty}$ for $i \in \{1, 2, \dots, m\}$ converges, then $(a_n)_{n=1}^{\infty}$ converges:

Denote the limit of the i-th component sequence as a^i and let $a=(a^1,a^2,\ldots,a^m)$. Take an $\varepsilon>0$.

Since $(a_n^i)_{n=1}^{\infty}$ converges we can find N^i such that $|a_n^i - a^i| \leq \frac{\varepsilon}{\sqrt{m}}$ for all $n \geq N^i$. Now take $N = \max\{N^1, \dots, N^m\}$. Then for all $n \geq N$, we have

$$||a_n - a|| = \sqrt{(a_n^1 - a^1)^2 + (a_n^2 - a^2)^2 + \dots + (a_n^m - a^m)^2}$$

$$\leq \sqrt{\left(\frac{\varepsilon}{\sqrt{m}}\right)^2 + \left(\frac{\varepsilon}{\sqrt{m}}\right)^2 + \dots + \left(\frac{\varepsilon}{\sqrt{m}}\right)^2} = \sqrt{m\frac{\varepsilon^2}{m}} = \varepsilon.$$

Therefore, $(a_n)_{n=1}^{\infty}$ converges to a.

Second we have to show that when $(a_n)_{n=1}^{\infty}$ converges, then all component sequences

 $(a_n^i)_{n=1}^{\infty}$ converge. This follows from

$$||a_n - a|| = \sqrt{(a_n^1 - a^1)^2 + (a_n^2 - a^2)^2 + \dots + (a_n^m - a^m)^2} \ge \sqrt{(a_n^i - a^i)^2} = |a_n^i - a^i|.$$

Since $(a_n)_{n=1}^{\infty}$ converges to a, $||a_n - a|| \le \varepsilon$ for all $n \ge N$. But then the last expression implies that also $|a_n^i - a^i| \le \varepsilon$. Consequently, $(a_n^i)_{n=1}^{\infty}$ converges to a^i .

We can define closed sets in \mathbb{R}^m in terms of sequences:

Definition 1. A set $S \in \mathbb{R}^m$ is **closed** if and only if every converging sequence in S has its limit in S.

Put differently, let $(s_n)_{n=1}^{\infty}$ be an arbitrary sequence in S, i.e. $s_n \in S$ for n = 1, 2, ..., and let $(s_n)_{n=1}^{\infty}$ converge to s. Then $s \in S$ if S closed. If $s \in S$ for every converging sequence (that is entirely contained in S), then S is closed.

Example 3. Let's look at the simple case where m=1, i.e. we have normal real sequences. The interval S=(1,2] (including 2 but not including 1) is not closed: Our sequence from the first example $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \ldots, \frac{n+1}{n}, \ldots$ is in S, i.e. each a_n is an element of S. But the limit of the sequence is 1 which is not in S.

Now let's look at the set S' = [1,2]. This set is closed and we can show this by contradiction: Suppose, S' was not closed. Then there would be a sequence $(a_n)_{n=1}^{\infty}$ such that (i) $a_n \in S'$ for all n, (ii) $(a_n)_{n=1}^{\infty}$ converges to a and (iii) $a \notin S'$. Hence, a would be either strictly greater than 2 or strictly smaller than 1. Let's say a was strictly greater than 2 (the other case is similar). Then define $\varepsilon = (a-2)/2$. As $(a_n)_{n=1}^{\infty}$ converges to a, there would have to be some a_n such that $|a_n - a| < \varepsilon$. But this would imply that $a_n > 2$ and therefore $a_n \notin S'$. But $a_n \notin S'$ contradicts (i). Hence, S' is closed.

One important concept is a *subsequence*. Intuitively, a subsequence is what is left over after you delete some terms of the original sequence. For example, take the sequence (1/1, 1/2, 1/3, 1/4, 1/5, ...). One subsequence of this sequence would be (1/1, 1/2, 1/4, 1/8, 1/16...). Another subsequence would be (1/2, 1/4, 1/10, 1/28, ...) (in case you wondered: the rule here is $1/(3^{n-1} + 1)$). For a more formal definition of a subsequence, check your math books, e.g. Simon/Blume ch. 12 (p.256).

One theorem that we need a couple of times is the Bolzano-Weierstrass theorem.¹

¹Recall: A set S in \mathbb{R}^m is *compact* if it is closed and bounded.

Theorem 1. Let S be a compact set in \mathbb{R}^m and let $(a_n)_{n=1}^{\infty}$ be a sequence that is entirely contained in S, i.e. $a_n \in S$ for all $n = 1, 2, \ldots$ Then $(a_n)_{n=1}^{\infty}$ has a convergent subsequence whose limit lies in S.

Instead of a full-fledged proof we just look at the idea for the simple case where m=1, i.e. the sequence is a sequence of real numbers. Then our compact set S is a closed interval and for simplicity we let S=[0,1]. Now we construct a subsequence $(b_n)_{n=1}^{\infty}$ of $(a_n)_{n=1}^{\infty}$ such that $(b_n)_{n=1}^{\infty}$ converges:

- 1. Let's split [0,1] in two subintervals [0,1/2] and [1/2,1]. At least one of the two subintervals will contain an infinite number of a_n . If [0,1/2] contains an infinite number of elements of $(a_n)_{n=1}^{\infty}$, then we choose b_1 as an arbitrary a_{n_1} in the subinterval [0,1/2]. If [0,1/2] does not contain an infinite number of a_n s, we let b_1 be some arbitrary a_{n_1} in [1/2,1].
- 2. Now we split [0, 1] into four subintervals: [0, 1/4], [1/4, 1/2], [1/2, 3/4] and [3/4, 1]. We let b_2 be an arbitrary a_{n_2} that satisfies 2 conditions: (i) $n_2 > n_1$ and (ii) a_{n_2} is in the lowest of the four subintervals that contains an infinite number of a_n s.
- 3. Now we split [0,1] into 16 equally long closed subintervals. We let b_3 be some a_{n_3} such that: (i) $n_3 > n_2$ and (ii) a_{n_3} is in the lowest of the 16 subintervals that contains an infinite number of a_n s.

4. ...

The sequence $(b_n)_{n=1}^{\infty}$ constructed in this way converges. As [0,1] is closed, the limit of this sequence will be in [0,1].

For a more detailed exposition, you can check almost any "Maths for economists" book (there are a lot of them). One (of many) that is good to read is

Carl P. Simon and Lawrence Blume: "Mathematics for Economists", W.W. Norton & Company Inc., 1994

where all these results (and many more) can be found in chapter 12 (and some more advanced results in chapter 29).