Mapeos proyectivos en sistemas de qubits

José Alfredo de León¹, Carlos Pineda², David Dávalos², Alejandro Fonseca³

¹Escuela de Ciencias Físicas y Matemáticas, U. de San Carlos de Guatemala ²Instituto de Física, U. Nacional Autónoma de México ³Departamento de Física, U. Federal de Pernambuco

> I Congreso Guatemalteco de Física 09 de julio de 2021

Outline

Sistemas cuánticos abiertos

Qubits

Operaciones PCE

Qubits

Operaciones PCE

¿Qué son?

¿Qué son?

Matriz de densidad ρ

Si un sistema se encuentra en alguno de los estados $|\psi_i\rangle$ con probabilidad p_i , la matriz de densidad del sistema se define como

$$\rho \equiv \sum_{i} p_{i} |\psi_{i}\rangle\!\langle\psi_{i}|.$$

Una matriz ρ es una matriz de densidad asociada a un ensamble de estados $\{p_i, |\psi_i\rangle\}$ si y sólo si

- 1. $Tr(\rho) = 1$,
- 2. $\rho \ge 0$.

Matriz de densidad ρ

Si un sistema se encuentra en alguno de los estados $|\psi_i\rangle$ con probabilidad p_i , la matriz de densidad del sistema se define como

$$\rho \equiv \sum_{i} p_{i} |\psi_{i}\rangle\!\langle\psi_{i}|.$$

Una matriz ρ es una matriz de densidad asociada a un ensamble de estados $\{p_i, |\psi_i\rangle\}$ si y sólo si

- 1. $Tr(\rho) = 1$,
- 2. $\rho \ge 0$.

Matriz de densidad ρ

Si un sistema se encuentra en alguno de los estados $|\psi_i\rangle$ con probabilidad p_i , la matriz de densidad del sistema se define como

$$\rho \equiv \sum_{i} p_{i} |\psi_{i}\rangle\!\langle\psi_{i}|.$$

Una matriz ρ es una matriz de densidad asociada a un ensamble de estados $\{p_i, |\psi_i\rangle\}$ si y sólo si

- 1. $Tr(\rho) = 1$,
- 2. $\rho \ge 0$.

Canales cuánticos

Una operación lineal ${\mathcal E}$ que actúa sobre la matriz de densidad ρ como

$$\mathcal{E}(\rho) = \rho'$$

es un canal cuántico si

- 1. Preserva las características de la matriz de densidad,
- 2. Es una operación completamente positiva.

Canales cuánticos

Una operación lineal ${\mathcal E}$ que actúa sobre la matriz de densidad ρ como

$$\mathcal{E}(\rho) = \rho'$$

es un canal cuántico si

- 1. Preserva las características de la matriz de densidad,
- 2. Es una operación completamente positiva.

Canales cuánticos

Una operación lineal ${\mathcal E}$ que actúa sobre la matriz de densidad ρ como

$$\mathcal{E}(\rho) = \rho'$$

es un canal cuántico si

- 1. Preserva las características de la matriz de densidad,
- 2. Es una operación completamente positiva.

Completa positividad

¿Para qué o qué?

Supongamos una operación ${\mathcal E}$ que actúa sobre el sistema A.

No es suficiente que $\mathcal{E}(\rho_A) \geq 0$, también $\mathcal{E} \otimes \mathbb{1}(\rho_{total}) \geq 0$.

Completa positividad ¿Para qué o qué?

Supongamos una operación $\mathcal E$ que actúa sobre el sistema A.

No es suficiente que $\mathcal{E}(\rho_A) \geq 0$, también $\mathcal{E} \otimes \mathbb{1}(\rho_{total}) \geq 0$.

Completa positividad

Una operación ${\mathcal E}$ es completamente positiva si y sólo si

$$\mathcal{E}\otimes \mathbb{1}(\rho_{\mathcal{E}})\geq 0$$
,

donde $\rho_{\mathcal{E}}$ es el estado maximamente entrelazado entre dos copias idénticas del sistema sobre el que actúa \mathcal{E} .

Qubits

Operaciones PCE

¿Qué es un qubit?

Un qubit es un sistema cuántico de dos niveles.

$$\rho = \frac{1}{2} \sum_{i=0}^{3} r_i \sigma_i$$

$$\rho = \frac{1 + r_1 \sigma_x + r_2 \sigma_y + r_3 \sigma_z}{2},$$

 (r_1, r_2, r_3) especifican las coordenadas cartesianas de un punto en la esfera de Bloch.

Canal bit-flip de 1 qubit

El bit-flip actúa sobre la esfera de Bloch como

Transforma a las componentes r_i de la matriz de densidad como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, (1-p)r_2, (1-p)r_3).$$

Matriz de densidad de *n* qubits

En la base de productos tensoriales de las matrices de Pauli, la matriz de densidad de n qubits se escribe

$$\rho = \frac{1}{2^n} \sum_{j_1,\ldots,j_n=0}^3 r_{j_1,\ldots,j_n} \sigma_{j_1} \otimes \ldots \otimes \sigma_{j_n}, \qquad r_{0,\ldots,0} = 1.$$

Llamaremos 'componentes de Pauli' a las $r_{i_1,...,i_n}$.

Matriz de densidad de *n* qubits

En la base de productos tensoriales de las matrices de Pauli, la matriz de densidad de n qubits se escribe

$$\rho = \frac{1}{2^n} \sum_{j_1,\ldots,j_n=0}^3 r_{j_1,\ldots,j_n} \sigma_{j_1} \otimes \ldots \otimes \sigma_{j_n}, \qquad r_{0,\ldots,0} = 1.$$

Llamaremos 'componentes de Pauli' a las $r_{i_1,...,i_n}$.

Qubits

Operaciones PCE

Motivación (1/2)

Un caso particular del canal bit-flip es cuando

Las componentes de Pauli r_i se transforman como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, 0, 0).$$

Motivación (1/2)

Un caso particular del canal bit-flip es cuando

Las componentes de Pauli r_i se transforman como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, 0, 0).$$

¿Son canales cuánticos todas las operaciones que borran cualesquiera de las componentes de Pauli de 1 qubit?

Motivación (2/2)

No. Las operaciones Λ que borran dos componentes de Pauli no son canales cuánticos.

 $\Lambda \otimes \mathbb{1}(|\mathsf{Bell}\rangle \langle \mathsf{Bell}|) \not\geq 0$, por consiguiente Λ no es completamente positiva.

Motivación (2/2)

No. Las operaciones Λ que borran dos componentes de Pauli no son canales cuánticos.

 $\Lambda \otimes \mathbb{1}(|\mathsf{Bell}\rangle\!\langle\mathsf{Bell}|) \not\geq 0,$ por consiguiente Λ no es completamente positiva.

Operaciones PCE

Una operación PCE ($Pauli\ component\ erasing$) es una operación lineal que transforma a las componentes de $Pauli\ de\ una\ matriz\ de\ densidad\
ho\ de\ n$ qubits como

$$r_{j_1,\ldots,j_n}\longmapsto \tau_{j_1,\ldots,j_n}r_{j_1,\ldots,j_n}, \qquad \tau_{j_1,\ldots,j_n}=0,1.$$

Una operación PCE borra o deja invariantes las componentes de Pauli.

Operaciones PCE

Una operación PCE ($Pauli\ component\ erasing$) es una operación lineal que transforma a las componentes de Pauli de una matriz de densidad ρ de n qubits como

$$r_{j_1,\ldots,j_n}\longmapsto \tau_{j_1,\ldots,j_n}r_{j_1,\ldots,j_n}, \qquad \tau_{j_1,\ldots,j_n}=0,1.$$

Una operación PCE borra o deja invariantes las componentes de Pauli.

Operaciones PCE

Una operación PCE ($Pauli\ component\ erasing$) es una operación lineal que transforma a las componentes de $Pauli\ de\ una\ matriz\ de\ densidad\
ho\ de\ n$ qubits como

$$r_{j_1,\ldots,j_n}\longmapsto \tau_{j_1,\ldots,j_n}r_{j_1,\ldots,j_n}, \qquad \tau_{j_1,\ldots,j_n}=0,1.$$

Una operación PCE borra o deja invariantes las componentes de Pauli.

Problema: ¿cuáles son las características del suconjunto de canales cuánticos de las operaciones PCE?

Eigenvalores matriz de Choi

Los eigenvalores de la matriz de Choi de una operación PCE de n qubits son

$$\vec{\lambda} = \underbrace{(a \otimes \ldots \otimes a)}_{n \text{ veces}} \vec{\tau}$$

con

y $\vec{\tau}$ un vector de 4^n componentes.

Regla 2^k

Los canales cuánticos PCE son operaciones que dejan 2^k componentes de Pauli $r_{j_1,...,j_n}$ invariantes. Sin embargo, no sólo importa cuántas $r_{j_1,...,j_n}$, sino también cuáles.

2 qubits, 8 componentes invariantes:

Operaciones PCE que no son canales cuánticos:

Todos los canales cuánticos PCE que borran 15 componentes:

Regla espejo

El número de canales PCE según la cantidad de componentes de Pauli invariantes obedece una regla 'espejo'.

3 qubits:

					1395				
canales PCE			63	651		651	63		
compon	entes	1 1	2	4	8	16	32	1 64	
operaciones PCE		63	39711		$\times 10^7$	1.2 ×	< 10 ¹⁴	9.2×10^{17}	
componentes	1 1	2	4		8	1	.6	32	1 64

Generadores

Los canales cuánticos PCE pueden escribirse como concatenación de canales generadores.

Generadores canales PCE de 2 qubits:

2 qubits

2 qubits

2 qubits

2 qubits

Canales PCE n qubits

Un canal PCE de *n* qubits puede escribirse como

$$\Phi = \underbrace{\mathcal{E}_{j_1} \circ \mathcal{E}_{j_2} \circ \ldots \circ \mathcal{E}_{j_l}}_{\text{máximo } 2^n},$$

con \mathcal{E}_{j_i} los generadores.

Los generadores \mathcal{E}_{j_i} son las únicas formas que están físicamente permitidas de borrar la mitad de las componentes de Pauli de un sistema de n qubits.

Canales PCE n qubits

Un canal PCE de *n* qubits puede escribirse como

$$\Phi = \underbrace{\mathcal{E}_{j_1} \circ \mathcal{E}_{j_2} \circ \ldots \circ \mathcal{E}_{j_l}}_{\text{máximo } 2^n},$$

con \mathcal{E}_{j_i} los generadores.

Los generadores \mathcal{E}_{j_i} son las únicas formas que están físicamente permitidas de borrar la mitad de las componentes de Pauli de un sistema de n qubits.

¡Muchas gracias!

Contacto: José Alfredo de León deleongarrido.jose@gmail.com