

Sistema embebido

Definición

"Sistema digital basado en un microprocesador, cuyo hardware y software estan especificamente diseñados y optimizados para resolver un problema concreto eficientemente.

Interactúa con el entorno (sensores) para controlar algún proceso (actuadores).

Por estar alojados dentro del sistema que controlan estan sujetos a cumplir exigentes requisitos de tamaño, fiabilidad, consumo y coste"

Sistema embebido

- Tecnologías:
- SBC (System Board Computer: Raspberry Pi, Beagle Bone, Intel Edison,...)
- Microcontrolador (Atmel de Arduino, PIC de Microchip,...)
- SoC (System on a Chip):
 - ASIC
 - FPGA

Sistema embebido

Un buen número de productos existentes en el mercado incluyen hardware y software de propósito específico.

- Industria automoción : navegador GPS
- Aviación: control de aterrizaje automático
- Telecomunicaciones: routers, modems
- Electrónica de consumo: teléfonos móviles, e-books ,etc.
- Electrónica del hogar: control de heladeras, microondas, lavadoras, etc.

Microcontrolador	FPGA
El hardware YA está DISEÑADO "solo" hay que diseñar el software y finalizar el PCB del sistema completo.	Mayor versatilidad al poder incluir un diseño específico para el SE
	Hay que diseñar el hardware
Método más simple para diseñar SE	Ya existen entornos que facilitan el diseño Hw (ISE-Xilinx)
sencillos. Diversos entornos de desarrollo (IDE)	Tambien existen entornos para ciertos microprocesadores para diseñar, periféricos, implantar SO
No es posible añadir/modificar el Hw en el mismo chip.	Es posible añadir/modificar más Hw
Son más lentos y tienen menos memoria, aunque de menor consumo y coste.	Permiten conseguir mejor rendimiento.

Procesadores para FPGAs

- Soft Cores ó IP Cores (Intelectual Property):
 - Proporcionado por
 - El fabricante de FPGA → Con soporte
 - Terceras compañías:
 - Propietarios

 Con soporte
 - Código abierto → Sin soporte
- Hard Cores
 - Proporcionado por
 - El fabricante de FPGA
- 3. Personalizados (Custom, HDL) \rightarrow Sin soporte

	Soft-core	Hard-core	Procesador HDL
Característica	Personalización de instrucciones, hardware, tamaño de datos y direcciones	Arquitectura fija, diseñada para una aplicación específica	Totalmente ajustado a las necesidades del diseño
Ventaja	 Instanciar un core cada vez que sea necesario Sirve para distintos modelos y marcas. Minimizan el tiempo de mercado. 	Más rápido que los soft-cores	El diseñador puede hacer modificaciones para optimizar área y potencia
Desventaja	Más <mark>lento</mark> que los hard- cores	 Es fijo, pueden quedar algunas características sin utilizar. Dependencia de la tecnología elegida 	 Proceso largo. Carecen de cualquier tipo de entorno de desarrollo ni soporte

5.1. Soft-Cores

Alternativas Soft-core para SE en FPGA

- 1. Repositorios oficiales
- 2. Desarrollados por empresas FPGA (Xilinx, Altera...)
- Otros desarrolladores:
 - Gratuito
 - De pago

5.1.1. Soft-Cores de repositorios

Alternativas Soft-core para SE en FPGA: Repositorios

- Disponibles de forma gratuita y de código abierto.
- Repositorios: www.opencores.org
- Otros desarrolladores (de pago y gratuito)

VENTAJAS	INCONVENIENTES
Válidos para cualquier modelo y marca (*)	Carecen de herramientas de
inoucio y marca ()	desarrollo

Alternativas Soft-core para SE en FPGA: Repositorios

■ ¿Que es Opencores?: http://opencores.org

"OpenCores is the world's largest site/community for development of hardware IP cores as open source. OpenCores.org host the source code for different digital HW projects (IP-cores, SoC, boards, etc) and support the users with different tools, platforms, forums and other useful information. Please join us! "

Alternativas Soft-core para SE en FPGA: Repositorios

Objetivos de Opencores:

- ➤ Diseñar, desarrollar y publicar IP-cores bajo licencia abierta (generalmente se usa la licencia LGPL) manteniendo los tres principios básicos de los sistemas abiertos:
 - disponible libremente
 - utilización libre
 - distribución libre (modificado o no)
- Crear metodologías y herramientas para el desarrollo
- Documentar adecuadamente los IP-cores de fuentes abiertas

Alternativas Soft-core para SE en FPGA

OPENCORES

Leon3, escrito en VHDL, licencia de bajo coste para usar en productos comerciales

OpenRISC, escrito en Verilog.

Largo etcétera de todo tipo de procesadores

http://www.rte.se/blog/blogg-modesty-corex/index

5.1.2. Soft-Cores de empresas que diseñan FPGA

Alternativas Soft-core para SE en FPGA: Empresas FPGA

XILINX	ALTERA
Picoblaze (8-bits), propietario pero gratuito	
Microblaze (32-bits), propietario de pago. S.O.:Linux	NIOS II (32-bits) propietario de pago. S.O.:Linux
	ARM Cortex-M1 (32 bits)
	ARM Cortex-A9 MPCore Processor

Ofrecen soporte para el desarrollo de sistemas con sus procesadores soft-core

Alternativas Soft-core para SE en FPGA: Empresas FPGA

VENTAJAS	INCONVENIENTES
Herramientas de diseño	No se dispone del código fuente
Optimizados para su tecnología	Total dependencia tecnológica del fabricante
Ofrecen múltiples periféricos compatibles	

5.1.3. Soft-Cores de otras empresas

Alternativas Soft-core para SE en FPGA: Otras empresas

- Third-party (Diseñan para Xilinx o Altera):
 - 4dsp
 - www.design-reuse.com
 - CAST: procesadores de 8 bits antiguos (68000, 8051...)

- > Otros desarrolladores:
 - ZPUino → Usa IDE Arduino y es compatible con placas Xula, Papilio,...
 - SPOC0 → fpga4fun.com

Alternativas Soft-core para SE en FPGA: Otras empresas

VENTAJAS	INCONVENIENTES
Herramientas de diseño	No se dispone del código fuente
Optimizados para una tecnología	Total dependencia tecnológica del fabricante
Ofrecen múltiples periféricos compatibles	

5.1.4. Más sobre Soft-core

Tarjeta de desarrollo con FPGA

XILINX	ALTERA	Third-Party
ARTY (Artix7, on-chip ADC, Microblaze, Arduino connector) → 99\$	Cyclone V GX Starter Kit (Cyclone V, ADC off- chip) → 179\$	Mojo v.03 (Spartan6, Arduino) → 75\$
Basys2,Nexys3,Nexys4 → 70\$ >	Deo Nano (Cyclone IV, ADC off-chip) → 86\$	Papilio (Spartan 6, Arduino) → 87,99\$
		XuLA2 (Opensource design, Spartan6, RPi)→ 119\$

https://joelw.id.au/FPGA/CheapFPGADevelopmentBoards

Aplicaciones de los Soft-cores

- > Ejecutar software ya existente
 - Reemplaza MCU externos (más de uno)
 - Ejecuta SO, servidores web, redes...
- ➤ Sustituir FSM complejas →

 Unidad de control del sistema diseñado
- Tu sistema puede cambiar de uP sin cambiar Hw

5. 2. Hard-Cores

5.1.1. Generalidades sobre Hard-core en FPGA

Hard-Cores para FPGA

- ➤ El fabricante adquiere la licencia de algún microprocesador para poderlo incluir en el chip de la FPGA. (Ya solo <u>ARM</u>)
- Integra tanto un procesador como una FPGA en un solo chip
- Ventajas: mayor integración, menor consumo, menor ocupación en placa, mayor ancho de banda entre procesador y FPGA
- ➤ Incluyen un gran número de periféricos: high speed transceivers, on-chip memory, UART, I2C, CAN,...

Hard-Cores para FPGA

XILINX	ALTERA
Zynq (Dual-core ARM® Cortex™-A9 MPCore™)	Altera SOC – Arria10 (ARM-Cortex-A9)
Zynq Ultrascale (Quad- core ARM [®] Cortex [™])	Altera SOC – Cyclone5 (ARM-Cortex-A9)
	Altera SOC – Stratix 10 (ARM-Cortex-A9)

5.1.2. Más sobre Soft-core

Placas de desarrollo con FPGA SoC

XILINX	ALTERA
Zybo (Zynq-7000) → 189 \$	DE1-SoC Development Kit → 249 \$
ZedBoard (Zynq-7000) → 450 \$	

Aplicaciones de FPGA SoC

 Para diseños que ya utilizan FPGA y procesadores ó DSP por separado

Fuente: Altera Corp.

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ab/ab1_soc_fpga.pdf

Aplicaciones de FPGA SoC

 Para sustituir ASIC que ya incluían ARM, pudiendo ser personalizados por el fabricante

Fuente: Altera Corp.

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ab/ab1_soc_fpga.pdf

HDL-Cores Custom

Procesador software custom para FPGAs

Diseñar un soft-core

- Comprender mejor la arquitecura CPU
- Diseñar arquitecturas muy especiales para tareas concretas
- Ofrecerlo a terceros (Opencores)
- Es posible basarse en una versión anterior.

