Leo Tsukada

 $\begin{tabular}{ll} Email: leo.tsukada@ligo.org\\ Website: leotsukada.github.io\\ \end{tabular}$

LinkedIn: leo-tsukada

EMPLOYMENT

Pennsylvania State University

Assistant Research Professor

University Park, PA

2022-present

Pennsylvania State University

Postdoctoral Scholar

University Park, PA

2021-2022

EDUCATION

The University of Tokyo

Ph.D. in Physics, Advisor: Prof.Kipp Cannon

Tokyo, Japan

2018-2021

 Thesis title: Modeling and Searching for Stochastic Gravitational-waves Backgrounds from Ultralight Boson Particles

The University of Tokyo

M.S. in Physics, Advisor: Prof.Kipp Cannon

Tokyo, Japan 2016–2018

- Thesis title : Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons

The University of Tokyo

B.S. in Applied Physics, Advisor: Prof.Norikatsu Mio

Tokyo, Japan

2011 - 2016

- Thesis title: Performance evaluation of the frequency reference cavity for KAGRA gravitational-wave detector

RESEARCH EXPERIENCE

Pennsylvania State University

University Park, PA

2021-present

- Development of a low-latency gravitational wave (GW) search pipeline, GstLAL
- Bayesian parameter estimation for targeted anisotropic GW background

Research Center for the Early Universe, The University of Tokyo

M.S./Ph.D. Research, supervised by Prof.Kipp Cannon

Tokyo, Japan

2016-2021

- Fast evaluation of trigger consistency between multiple detectors using GstLAL
- Searches for ultra-light bosons using stochastic GW background

LIGO Lab, California Institute of Technology

Pasadena, CA

Summer 2019

LIGO visitor program, hosted by Prof.Alan Weinstein

- Development and event follow-up for online analysis of a GW detection pipeline, GstLAL
- Joint study on GW search for the ultra-light boson particle through superradiant instability

Laboratoire d'Annecyde Physiquedes Particules

Annecy, France

Visiting research, supervised by Dr. Tania Regimbau

Fall 2018

 Mock data study for the detection of stochastic GW background from anisotopically distributed compact binary coalescence.

University of Minnesota

Minneapolis, MN

Visiting research, supervised by Prof. Vuk Mandic

Spring 2018

- Development of a search pipeline for GW background from ultra-light scalar fields.

The University of Tokyo

B.S. Research, supervised by Prof.Norikatsu Mio

Tokyo, Japan 2015–2016

- Evaluating optical properties and frequency stability of the reference cavity KAGRA.

LIGO Livingston Observatory, California Institute of Technology

 $LIGO\ SURF\ program,\ supervised\ by\ Dr.\ Valery\ Frolov$

Livingston, LA Summer 2014

- Constructing the theoretical model of the optical loss inside the arm cavities of the Advanced LIGO.

SCHOLARSHIPS AND AWARDS

2022
2020
2018 – 2021
2019
2019
2018
2014
2014

RESEARCH TALKS

Invited talks, seminars, panel, symposium

Invited talks, seminars, panel, symposium	
The improvement of $GstLAL$'s ranking statistics toward the fourth observing run Utrecht & UMass Dartmouth joint seminar	2023 USA (online)
Panel for gravitational waves and multi-messenger astronomy New Evolution of Multi-Messenger Astrophysics, Penn State	2023 State College, USA
Observation of neutron stars during LIGO-Virgo-KAGRA's observing runs APS April meeting	2022 New York, USA
Modeling and searching for a stochastic GW background from ultralight bosons GW Physics and Astronomy: Genesis, The Fourth Annual Area Symposium	2021 Japan (online)
Low-latency detection of the GWs from compact binary coalescences ISAS seminar, ISM astronomy seminar, JGW seminar	2022 Japan
Low-latency detection of the GWs from compact binary coalescences ISM astronomy seminar	2022 Japan (online)
Low-latency detection of the GWs from compact binary coalescences JGW seminar	2022 Japan (online)
Gravitational waves from neutron star-black hole coalescences LIGO-Virgo-KAGRA Collaboration webinar	2021
First observations of black hole and neutron star mergers Fundamental Theory Seminar, Penn State	2021 Pennsylvania, USA
First search for stochastic GW backgrounds from ultra-light bosons The CGCA seminar, University of Wisconsin Milwaukee	2018 Wisconsin, USA
Application of a low-latency whitening filter to CBC GW searches RESCEU joint seminar, The University of Tokyo	2016 Tokyo, Japan

SELECTED CONTRIBUTED TALKS

The improvement of $GstLAL$'s ranking statistics toward the fourth observing run APS April meeting	2023 Minnesota, USA
First observations of black hole and neutron star mergers The 8th KAGRA International Workshop	2021 Korea (online)
Modeling and searching for a stochastic GW background from ultralight bosons Amaldi 14 $$	2021 Australia (online)
Stochastic GW backgrounds from ultra-light vectors The 29th Workshop on General Relativity and Gravitation in Japan	2019 Kobe, Japan
Anisotropic GW background Mock data study Gravitational Wave Physics and Astronomy Workshop	2019 Tokyo, Japan
$A\ first\ search\ for\ stochastic\ GW\ backgrounds\ from\ ultra-light\ scalars$ Gravitational Wave Physics and Astronomy Workshop	$\begin{array}{c} 2018 \\ \text{Maryland, USA} \end{array}$
$Application\ of\ a\ low-latency\ whitening\ filter\ to\ CBC\ GW\ searches$ The Third KAGRA International Workshop	2017 Taipei, Taiwan

TEACHING EXPERIENCE

• Substitute Lecturer at Pennsylvania State University Electromagnetism Fall 2022

• **Teaching Assistant** at The University of Tokyo *Analytical mechanics*

Fall 2016

MENTORING EXPERIENCE

- Soichiro Kuwahara Ph.D student at The University of Tokyo GPU-accelerated parameter estimation for anisotropic gravitational-wave backgrounds
- Santiago Jaraba Ph.D student at Universidad Aut'onoma de Madrid Parameter estimation for anisotropic gravitational-wave backgrounds [9]
- Deepali Agarwal Ph.D student at Inter-University Centre for Astronomy and Astrophysics (IUCAA)

 Parameter estimation for anisotropic gravitational-wave backgrounds [9]
- Erik Floden Ph.D student at University of Minnesota

 Parameter estimation and spherical-harmonics searches of anisotropic gravitational-wave backgrounds [9], [13], [26]
- Anarya Ray Ph.D student at University of Wisconsin-Milwaukee Improving background sampling procedure for GstLAL
- Richard George Ph.D student at The University of Texas at Austin Improving SNR $-\xi^2$ signal model of GstLAL [2]
- Andre Guimaraes Ph.D student at Louisiana State University Improving SNR $-\xi^2$ signal model of GstLAL [2]
- Shio Sakon Ph.D student at Pennsylvania State University Optimization of GstLAL's template bank [11]
- Shomik Adhicary Ph.D student at Pennsylvania State University
 Improving ranking statistics for gravitational-wave detection pipeline, GstLAL [2]
- Prathamesh Joshi Ph.D student at Pennsylvania State University
 Implementation of contamination removal and bank-ξ² statistics in GstLAL [2], [7]
- Takuya Tsutsui Ph.D student at The University of Tokyo Rapid localization of gravitational wave sources [17]

PROFESSIONAL SERVICE

• International Space Education Board Student Program

• Thesis committee, Pennsylvania State University	2023-2023
• Co-leader of anisotropic stochastic-background working group, LVK Collaboration	2022–present
• Referee, Physical Review D	2022–present
• Advanced LIGO science summaries, Writer and japanese translator	2021-present
• Vice director, Cosmic/Astrophysics Student Summer School in Japan	2019
• Workshop Assistant, Gravitational Wave Physics and Astronomy Workshop	2019
Outreach	
• KAGRA outreach group	2020-2021
• SCJSF&JABA forum talk	2020
• Japanese translation of GW190425's science summary	2019
• GW education at a public school in Pasadena	2019
• RESCEU Open Lab	2017, 2018

2015, 2016

SHORT AUTHOR LIST PUBLICATIONS AND PREPRINTS

- [1] **L. Tsukada**, Extension of the bayesian searches for anisotropic stochastic gravitational-wave background with non-tensorial polarizations, Aug. 2023. arXiv: 2308.09020 [astro-ph.IM].
- [2] L. Tsukada, P. Joshi, S. Adhicary, R. George, A. Guimaraes, C. Hanna, R. Magee, A. Zimmerman, P. Baral, A. Baylor, K. Cannon, S. Caudill, B. Cousins, J. D. E. Creighton, B. Ewing, H. Fong, P. Godwin, R. Harada, Y.-J. Huang, R. Huxford, J. Kennington, S. Kuwahara, A. K. Y. Li, D. Meacher, C. Messick, S. Morisaki, D. Mukherjee, W. Niu, A. Pace, C. Posnansky, A. Ray, S. Sachdev, S. Sakon, D. Singh, R. Tapia, T. Tsutsui, K. Ueno, A. Viets, L. Wade, and M. Wade, "Improved ranking statistics of the gstlal inspiral search for compact binary coalescences", *Physical Review D*, vol. 108, no. 4, Aug. 2023.
- [3] S. Morisaki, R. Smith, L. Tsukada, S. Sachdev, S. Stevenson, C. Talbot, and A. Zimmerman, Rapid localization and inference on compact binary coalescences with the advanced ligo-virgo-kagra gravitational-wave detector network, Jul. 2023. arXiv: 2307.13380.
- [4] A. I. Renzini, A. Romero-Rodríguez, C. Talbot, M. Lalleman, S. Kandhasamy, K. Turbang, S. Biscoveanu, K. Martinovic, P. Meyers, L. Tsukada, K. Janssens, D. Davis, A. Matas, P. Charlton, G.-C. Liu, I. Dvorkin, S. Banagiri, S. Bose, T. Callister, F. D. Lillo, L. D'Onofrio, F. Garufi, G. Harry, J. Lawrence, V. Mandic, A. Macquet, I. Michaloliakos, S. Mitra, K. Pham, R. Poggiani, T. Regimbau, J. D. Romano, N. van Remortel, and H. Zhong, "Pygwb: A python-based library for gravitational-wave background searches", The Astrophysical Journal, vol. 952, no. 1, p. 25, Jul. 2023.
- [5] A. Ray, W. Niu, S. Sakon, B. Ewing, J. D. E. Creighton, C. Hanna, S. Adhicary, P. Baral, A. Baylor, K. Cannon, S. Caudill, B. Cousins, H. Fong, R. N. George, P. Godwin, R. Harada, Y.-J. Huang, R. Huxford, P. Joshi, S. Kapadia, J. Kennington, S. Kuwahara, A. K. Y. Li, R. Magee, D. Meacher, C. Messick, S. Morisaki, D. Mukherjee, A. Pace, C. Posnansky, S. Sachdev, D. Singh, R. Tapia, L. Tsukada, T. Tsutsui, K. Ueno, A. Viets, L. Wade, and M. Wade, When to point your telescopes: Gravitational wave trigger classification for real-time multi-messenger followup observations, Jun. 2023. arXiv: 2306.07190 [gr-qc].
- [6] B. Ewing, R. Huxford, D. Singh, L. Tsukada, C. Hanna, Y.-J. Huang, P. Joshi, A. K. Y. Li, R. Magee, C. Messick, A. Pace, A. Ray, S. Sachdev, S. Sakon, R. Tapia, S. Adhicary, P. Baral, A. Baylor, K. Cannon, S. Caudill, S. S. Chaudhary, M. W. Coughlin, B. Cousins, J. D. E. Creighton, R. Essick, H. Fong, R. N. George, P. Godwin, R. Harada, J. Kennington, S. Kuwahara, D. Meacher, S. Morisaki, D. Mukherjee, W. Niu, C. Posnansky, A. Toivonen, T. Tsutsui, K. Ueno, A. Viets, L. Wade, M. Wade, and G. Waratkar, Performance of the low-latency gstlal inspiral search towards ligo, virgo, and kagra's fourth observing run, May 2023. arXiv: 2305.05625 [gr-qc].
- [7] P. Joshi, L. Tsukada, and C. Hanna, Background filter: A method for removing signal contamination during significance estimation of a gstlal analysis, May 2023. arXiv: 2305.18233 [gr-qc].
- [8] S. Banagiri, C. P. L. Berry, G. S. C. Davies, **L. Tsukada**, and Z. Doctor, *A unified p_{astro} for gravitational waves: Consistently combining information from multiple search pipelines*, Apr. 2023. arXiv: 2305.00071 [astro-ph.IM].
- [9] **L. Tsukada**, S. Jaraba, D. Agarwal, and E. Floden, "Bayesian parameter estimation for targeted anisotropic gravitational-wave background", *Physical Review D*, vol. 107, no. 2, Jan. 2023.
- [10] C. Hanna, J. Kennington, S. Sakon, S. Privitera, M. Fernandez, J. Wang, C. Messick, A. Pace, K. Cannon, P. Joshi, R. Huxford, S. Caudill, C. Chan, B. Cousins, J. D. E. Creighton, B. Ewing, H. Fong, P. Godwin, R. Magee, D. Meacher, S. Morisaki, D. Mukherjee, H. Ohta, S. Sachdev, D. Singh, R. Tapia, L. Tsukada, D. Tsuna, T. Tsutsui, K. Ueno, A. Viets, L. Wade, and M. Wade, "Binary tree approach to template placement for searches for gravitational waves from compact binary mergers", Physical Review D, vol. 108, no. 4, 2023.

- [11] S. Sakon, L. Tsukada, H. Fong, C. Hanna, J. K. W. Niu, S. Adhicary, P. Baral, A. Baylor, K. Cannon, S. Caudill, B. Cousins, J. D. E. Creighton, B. Ewing, P. Godwin, R. Harada, Y.-J. Huang, R. Huxford, P. Joshi, S. Kuwahara, A. K. Y. Li, R. Magee, D. Meacher, C. Messick, S. Morisaki, D. Mukherjee, A. Pace, C. Posnansky, S. Sachdev, D. Singh, R. Tapia, T. Tsutsui, K. Ueno, A. Viets, L. Wade, M. Wade, and J. Wang, Template bank for compact binary mergers in the fourth observing run of advanced ligo, advanced virgo, and kagra, Nov. 2022. arXiv: 2211.16674 [gr-qc].
- [12] C. Hanna, P. Joshi, R. Huxford, K. Cannon, S. Caudill, C. Chan, B. Cousins, J. D. E. Creighton, B. Ewing, M. Fernandez, H. Fong, P. Godwin, R. Magee, D. Meacher, C. Messick, S. Morisaki, D. Mukherjee, H. Ohta, A. Pace, S. Privitera, S. Sachdev, S. Sakon, D. Singh, R. Tapia, L. Tsukada, D. Tsuna, T. Tsutsui, K. Ueno, A. Viets, L. Wade, M. Wade, and J. Wang, "Metric assisted stochastic sampling search for gravitational waves from binary black hole mergers", *Physical Review D*, vol. 106, no. 8, Oct. 2022.
- [13] E. Floden, V. Mandic, A. Matas, and L. Tsukada, "Angular resolution of the search for anisotropic stochastic gravitational-wave background with terrestrial gravitational-wave detectors", *Physical Review D*, vol. 106, no. 2, Jul. 2022.
- [14] K. Cannon, S. Caudill, C. Chan, B. Cousins, J. D. Creighton, B. Ewing, H. Fong, P. Godwin,
 C. Hanna, S. Hooper, R. Huxford, R. Magee, D. Meacher, C. Messick, S. Morisaki, D. Mukherjee,
 H. Ohta, A. Pace, S. Privitera, I. de Ruiter, S. Sachdev, L. Singer, D. Singh, R. Tapia, L. Tsukada,
 D. Tsuna, T. Tsutsui, K. Ueno, A. Viets, L. Wade, and M. Wade, "Gstlal: A software framework for gravitational wave discovery", Software X, vol. 14, p. 100680, Jun. 2021, ISSN: 2352-7110.
- [15] D. Mukherjee, S. Caudill, R. Magee, C. Messick, S. Privitera, S. Sachdev, K. Blackburn, P. Brady, P. Brockill, K. Cannon, S. J. Chamberlin, D. Chatterjee, J. D. Creighton, H. Fong, P. Godwin, C. Hanna, S. Kapadia, R. N. Lang, T. G. Li, R. K. Lo, D. Meacher, A. Pace, L. Sadeghian, L. Tsukada, L. Wade, M. Wade, A. Weinstein, and L. Xiao, "Template bank for spinning compact binary mergers in the second observation run of advanced ligo and the first observation run of advanced virgo", Physical Review D, vol. 103, no. 8, Apr. 2021.
- [16] L. Tsukada, R. Brito, W. E. East, and N. Siemonsen, "Modeling and searching for a stochastic gravitational-wave background from ultralight vector bosons", *Phys. Rev. D*, vol. 103, p. 083 005, 8 Apr. 2021.
- [17] T. Tsutsui, K. Cannon, and L. Tsukada, "High speed source localization in searches for gravitational waves from compact object collisions", *Phys. Rev. D*, vol. 103, p. 043 011, 4 Feb. 2021.
- [18] S. Sachdev, R. Magee, C. Hanna, K. Cannon, L. Singer, J. R. SK, D. Mukherjee, S. Caudill, C. Chan, J. D. E. Creighton, B. Ewing, H. Fong, P. Godwin, R. Huxford, S. Kapadia, A. K. Y. Li, R. K. L. Lo, D. Meacher, C. Messick, S. R. Mohite, A. Nishizawa, H. Ohta, A. Pace, A. Reza, B. S. Sathyaprakash, M. Shikauchi, D. Singh, L. Tsukada, D. Tsuna, T. Tsutsui, and K. Ueno, "An early-warning system for electromagnetic follow-up of gravitational-wave events", *The Astrophysical Journal*, vol. 905, no. 2, p. L25, Dec. 2020.
- [19] C. Messick, S. Sachdev, K. Cannon, S. Caudill, C. Chan, J. D. E. Creighton, R. Everett, B. Ewing, H. Fong, P. Godwin, C. Hanna, R. Huxford, S. Kapadia, A. K. Y. Li, R. K. L. Lo, R. Magee, D. Meacher, S. R. Mohite, D. Mukherjee, A. Nishizawa, H. Ohta, A. Pace, A. Reza, M. Shikauchi, L. Singer, D. Singh, J. R. SK, L. Tsukada, D. Tsuna, T. Tsutsui, K. Ueno, and A. Zimmerman, Automating the inclusion of subthreshold signal-to-noise ratios for rapid gravitational-wave localization, Nov. 2020. arXiv: 2011.02457 [astro-ph.IM].
- [20] P. Godwin, R. Essick, C. Hanna, K. Cannon, S. Caudill, C. Chan, J. D. E. Creighton, H. Fong, E. Katsavounidis, R. Magee, D. Meacher, C. Messick, S. Morisaki, D. Mukherjee, H. Ohta, A. Pace, I. de Ruiter, S. Sachdev, L. Tsukada, T. Tsutsui, K. Ueno, L. Wade, and M. Wade, *Incorporation of statistical data quality information into the gstlal search analysis*, Oct. 2020. arXiv: 2010.15282 [gr-qc].

- [21] C. Chan, K. Cannon, S. Caudill, H. Fong, P. Godwin, C. Hanna, S. Kapadia, R. Magee, D. Meacher, C. Messick, S. R. Mohite, S. Morisaki, D. Mukherjee, A. Nishizawa, H. Ohta, A. Pace, S. Sachdev, M. Shikauchi, L. Singer, L. Tsukada, D. Tsuna, T. Tsutsui, and K. Ueno, "Improving the background estimation technique in the gstlal inspiral pipeline with the time-reversed template bank", Sep. 2020. eprint: 2009.03025.
- [22] C. Hanna, S. Caudill, C. Messick, A. Reza, S. Sachdev, L. Tsukada, K. Cannon, K. Blackburn,
 J. D. E. Creighton, H. Fong, P. Godwin, S. Kapadia, T. G. F. Li, R. Magee, D. Meacher,
 D. Mukherjee, A. Pace, S. Privitera, R. K. L. Lo, and L. Wade, "Fast evaluation of multidetector consistency for real-time gravitational wave searches", *Physical Review D*, vol. 101, no. 2, Jan. 2020.
- [23] **L. Tsukada**, T. Callister, A. Matas, and P. Meyers, "First search for a stochastic gravitational-wave background from ultralight bosons", *Physical Review D*, vol. 99, no. 10, May 2019.
- [24] S. Sachdev, S. Caudill, H. Fong, R. K. L. Lo, C. Messick, D. Mukherjee, R. Magee, L. Tsukada, K. Blackburn, P. Brady, P. Brockill, K. Cannon, S. J. Chamberlin, D. Chatterjee, J. D. E. Creighton, P. Godwin, A. Gupta, C. Hanna, S. Kapadia, R. N. Lang, T. G. F. Li, D. Meacher, A. Pace, S. Privitera, L. Sadeghian, L. Wade, M. Wade, A. Weinstein, and S. L. Xiao, The gstlal search analysis methods for compact binary mergers in advanced ligo's second and advanced virgo's first observing runs, Jan. 2019. arXiv: 1901.08580 [gr-qc].
- [25] L. Tsukada, K. Cannon, C. Hanna, D. Keppel, D. Meacher, and C. Messick, "Application of a zero-latency whitening filter to compact binary coalescence gravitational-wave searches", *Physical Review D*, vol. 97, no. 10, May 2018.

COLLABORATION PUBLICATIONS (MAJOR CONTRIBUTION)

- [26] B. P. Abbott *et al.*, "Search for anisotropic gravitational-wave backgrounds using data from advanced ligo and advanced virgo's first three observing runs", *Phys. Rev. D*, vol. 104, p. 022 005, 2 Jul. 2021.
- [27] B. P. Abbott *et al.*, "Gwtc-2: Compact binary coalescences observed by ligo and virgo during the first half of the third observing run", *Physical Review X*, vol. 11, no. 2, Jun. 2021.
- [28] B. P. Abbott *et al.*, "Observation of gravitational waves from two neutron star-black hole coalescences", *The Astrophysical Journal Letters*, vol. 915, no. 1, p. L5, Jun. 2021.