

Плата отладочная VOSTOK UNO-VN035

Rev_D.1

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

Внимательно ознакомьтесь с данным техническим описанием, перед использованием изделия. Данное техническое описание соответствует отладочной плате VOSTOK UNO-VN035 версии Rev_D.1. Соответствие данного описания другим версиям следует уточнять у производителя.

Описание

Отладочная плата VOSTOK UNO-VN035 представляет собой устройство на базе российского 32-разрядного RISC-микроконтроллера К1921ВК035 производства АО «НИИЭТ». На плате установлен микроконтроллер К1921ВК035 в виде кросс-модуля.

Назначение

Плата предназначена ДЛЯ изучения основ программирования микроконтроллеров, прототипирования и отладки встраиваемых систем, а также может использоваться в образовательных и соревновательных целях, робототехнических например, олимпиадах И соревнованиях, робототехнических обучающих программах, кружках И курсов ПО радиоэлектронике и программированию в ВУЗах.

Плата VOSTOK UNO-VN035 подходит для встраивания в конечные устройства.

Совместимость с платформой Arduino UNO

Данная аппаратная платформа характеризуется pin-to-pin совместимостью с существующими платами расширения для оригинальной платформы Arduino UNO.

VOSTOK UNO-VN035 имеет значительные отличия от платформы Arduino UNO:

- Отсутствует возможность ввода аналоговых сигналов на выводах А4 и А5;
- Отсутствует возможность подключения внешнего опорного напряжения АЦП;
- Отсутствие разъема ISP/SPI;
- Наличие интерфейса CAN;
- Наличие второго интерфейса UART;
- Наличие пользовательской кнопки на отдельном выводе МК.

Общий вид платы

Общий вид отладочной платы VOSTOK UNO-VN035 представлен на рисунке 1.

Рисунок 1-а. Общий вид отладочной платы VOSTOK UNO-VN035 вид сверху

Рисунок 1-б. Общий вид отладочной платы VOSTOK UNO-VN035 вид снизу

Основные технические характеристики

Основные технические характеристики платы приведены в таблице 1.

Таблица 1

Технические характеристики VOSTOK UNO-VN035			
Микроконтроллер	1921BK035 (АО «НИИЭТ»)		
Архитектура контроллера	RISC 32 бит		
ОЗУ (SRAM)	16 КБ		
ПЗУ (FLASH)	64 КБ		
Опорный источник тактового сигнала, МГЦ	16		
Количество цифровых линий I/O	22		
Аналого-Цифровой преобразователь (АЦП)	4 канала, 12 бит, 1 Мвыб/с		
Интерфейс программирования	USB-to-UART, SWD		
Наличие цифровых интерфейсов	UART, SPI, CAN, I2C, PWM		
Номинально потребление платы, мА	60		
Габаритные размеры (ДхШхВ), мм	69 x 54 x 15		
Диапазон рабочих температур	от 0°C до +60°C		
Питание	От шины USB-Type C		
	От внешнего источника питания 7 – 12 В		
	0,5A		

Маркировка и опции

Отладочная плата поставляется без опций со следующей маркировкой:

VOSTOK UNO-VN035.

Каждая плата дополнительно маркируется наклейкой или RFID меткой с уникальным серийным номером.

Комплектация

VOSTOK UNO-VN035 – 1 шт.

Блок питания и провод USB-ТуреA—USB-ТуреС покупается пользователем самостоятельно.

Электрические параметры

Питание отладочной платы осуществляется от USB Туре-С разъема X1, подключенного к порту USB персонального компьютера. Плату можно подключить к внешнему источнику питания через разъемы X2 или X3 которые соединены на плате цепью VIN. В таблице 2 приведены электрические параметры платы.

Таблица 2

Электрические параметры			
Наименование параметра, единица измерения	Не менее	Не более	
Напряжение питания по линии VIN, В	6,5	12	
Напряжение питания по линии USB, В	4,5	5,5	
Ток потребления, мА	60	500	
Выходное напряжение низкого уровня І/О	-	0,4	
Выходное напряжение высокого уровня І/О	2,4	3,4	

Все I/О выводы платы подключены к МК через двунаправленные преобразователи логических уровней, обеспечивающие возможность подключения периферии с выходным напряжением логической единицы 5 В.

Значения предельно допустимых электрических режимов эксплуатации в диапазоне рабочих температур приведены в таблице 3.

Таблица 3

Предельно допустимые значения электрических режимов эксплуатации			
Наименование параметра, единица измерения	Не менее	Не более	
Напряжение питания по линии VIN, В	6,0	14	
Выходной ток по линии 5V, мА	-	200	
Выходной ток по линии 3V3, мА	-	200	
Входное напряжение низкого уровня I/O, В	-0,3	0,75	
Входное напряжение высокого уровня І/О, В	1,7	5,5	
Выходной ток низкого уровня І/О, мА	-	6	
Выходной ток высокого уровня І/О, мА	-6	-	
Емкость нагрузки I/O, пФ	-	40	
Время работы в одном из предельных режимов должно быть не более 5 с.			

Защита по питанию

На плате предусмотрено несколько схем защиты по питанию:

- На линии USB установлен самовосстанавливающийся предохранитель, который срабатывает при токе более 500 мА;
- Защитный транзистор на линии +5V_BUS ограничивает протекание тока с платы в линию питания шины USB;
- На линии VIN имеется диод Шотки, который выполнят защитную функцию от переполюсовки;
- На линиях +5V и +3V3 установлены ограничители тока, выполняющие функцию защиты от короткого замыкания и прохождения обратного тока в линии питания платы.

Разъемы питания платы:

На плате установлено два разъема для подключения внешнего источника питания. Разъем X3 типа DC Barrel Jack с положительным контактом в центре диаметром 2 мм. Разъем X2 типа B2B-XH-A с первым положительным контактом.

Индикация питания платы:

На плате установлено два красных светодиода для индикации наличия электропитания. Каждый светодиод соответствует своей цепи электропитания +5V и +3V3.

Назначение разъемов

На плате VOSTOK UNO-VN035 располагается 5 пользовательских разъемов из них 4 разъема типа PBS гнезда с шагом 2,54 мм и один PLD с шагом 2.54 мм. Каждое гнездо PBS разъемов на плате подписано. Соответствие выводов разъемов с контактами МК представлено в таблице 4.

Таблица 4

Соответствие выводов платы UNO-VN035				
Вывод разъема на плате UNO	Альтернативная функция	GPIO MK	Вывод МК	
D0 *	UARTO_RX / QEP_I	PB11	47	
D1 *	UARTO_TX / QEP_S	PB10	46	
D2	UART1_RX	PB9	45	
D3	PWM1_B	PA11	17	
D4	CAN1_RX / QEP_B	PB12	48	
D5 **	PWM2_A	PA12	20	
	ECAPO_IO	PA4 ***	10	
D6	PWM2_B	PA13	21	
D7	UART1_TX	PB8	44	
D8	CAN1_TX / QEP_A	PB13	1	
D9	PWM0_A	PA8	14	
D10 **	SPI_FSS	PB4	38	
	PWM1_A	PA10 ***	16	
D11 **	SPI_TX	PB7	41	
	PWM0_B	PA9 ***	15	
D12	SPI_RX	PB6	40	
D13 / USER_LED	SPI_SCK	PB5	39	
A0	ADC_CH0	PB0	26	
A1	ADC_CH1	PB1	27	
A2	ADC_CH2	PB2	28	
A3	ADC_CH3	PB3	29	
A4 / SDA	I2C_SDA	PA1	5	
A5 / SCL	I2C_SCL	PA0	4	
TCK	JTAG_TCK	PA3	8	
TMS	JTAG_TMS	PA2	9	

^{* –} Интерфейс USB-UART FT232RL подключен к выводам D0 и D1.

^{*** –} Вывод с низкой нагрузочной способностью, см. электрическую схему R2, R3, R6.

^{** –} К одному выводу подключено два порта МК, см. электрическую схему.

Назначение периферии

На плате VOSTOK UNO-VN035 располагается периферия, которая может быть использована для базового ввода и вывода информации. Для этого на плате находится один пользовательский светодиод и пользовательская тактовая кнопка без фиксации. Для сброса микроконтроллера на плате предусмотрена кнопка сброса МК.

Таблица 5

Соответствие периферии платы UNO-VN035			
Обозначение	Назначение	GPIO MK	Вывод МК
USER_LED	Светодиод индикации	PB5	39
USER_BUTTON	Пользовательская кнопка	A6	12
	Выбор сервисного режима	SERVEN	36
RESET_BUTTON	Сброс МК	RESET	33
LS_0	Служебный сигнал управления U9 *	A14	22
LS_1	Служебный сигнал управления U10 *	A15	23
LS_2	Служебный сигнал управления U11 *	B14	2
LS_3	Служебный сигнал управления U12 *	B15	3

^{* –} Служебные сигналы, см. электрическую схему.

Сервисный режим МК:

Для перевода микроконтроллера в сервисный режим, пользователь должен зажать кнопку сброса МК, затем не отпуская кнопку сброса нажать и удерживать пользовательскую кнопку, а после отпустить кнопку сброса. Далее по отладочному интерфейсу SWD должна быть подана команда записи значения 0000_0001h в регистр SERVCTL блока SIU, после чего будет активировано полное стирание загрузочной и основной Flash-памяти. До завершения полного стирания памяти МК необходимо удерживать пользовательскую кнопку. После полного стирания памяти МК, отпустите пользовательскую кнопку и однократно нажмите кнопку сброса.

Программирование

Драйвер USB-to-UART:

Платформа VOSTOK UNO-VN035 поставляется с уже записанным в память МК загрузчиком, упрощающим запись новых программ без использования внешних программаторов. Для работы со встроенным загрузчиком вам необходимо убедиться, что у вас установлен драйвер интерфейса USB-to-UART. Скачать актуальную версию VCP драйвера можно по ссылке:

Virtual COM port driver - https://ftdichip.com/drivers/vcp-drivers/

Среда разработки:

МК установленный на плате аппаратной платформы может быть запрограммирован посредством стандартного ПО совместимого с платформой Arduino, например, Arduino IDE или PlatformIO, которые являются кроссплатформенными и поддерживаются большинством ОС Windows и ОС Linux. Также имеется возможность не использовать загрузчик, а выполнять программирование и отладку по интерфейсу SWD.

Комплект средств разработки встраиваемого программного обеспечения для платформы VOSTOK UNO доступен по ссылке:

https://github.com/DCVostok/vostok-1-frmwrk-vn-arduino

Эксплуатация, хранение и транспортирование

Требования к условиям эксплуатации:

Изделие при испытаниях, перевозке, хранении и эксплуатации не наносит вреда окружающей среде и здоровью человека. Сохраняет свои параметры во всем диапазоне рабочих температур от 0°С до +60°С в закрытом помещении с относительной влажностью воздуха не более 80 %, без конденсата, при изменении напряжения первичного источника электропитания в допустимых пределах.

Требования к условиям хранения:

Изделие должно храниться в складских помещениях, защищенных от воздействий атмосферных осадков, на стеллажах в упаковке производителя при отсутствии в воздухе паров кислот, щелочей и других веществ, вызывающих коррозию. Условия хранения изделия по ГОСТ 15150-69: температура воздуха от +5°C до +40°C, относительная влажность до 80% при температуре +25°C. Предельный срок хранения в указанных условиях — три года.

Требования к условиям транспортирования:

Транспортирование изделия разрешается в упаковке производителя всеми видами транспорта, за исключением негерметизированных отсеков самолета, без ограничения расстояния. Транспортирование упакованных изделий может производиться в крытых вагонах и автомашинах, трюмах судов и герметичных кабинах самолетов при температуре воздуха от -20°C до +70°C. При любом способе транспортирования необходимо предусмотреть крепление ящика к кузову (платформе) транспортного средства с помощью крепежной арматуры.

Утилизация:

При утилизации отладочной платы ее необходимо утилизировать как промышленные отходы.

