1.4 Uncertainty in Healthcare

Prof Jose Miguel Hernandez-Lobato

jmh233@cam.ac.uk

https://jmhl.org

Most information can be found in: http://www.cs.man.ac.uk/~fumie/tmp/bishop.pdf

Notes added referring to Bishop

Bayesian approach to machine learning

$$p(\theta|Data) = \frac{p(\theta|Data)p(\theta)}{p(Data)}A$$

$$P(Y|Data) = \int p(Y|\theta)p(\theta|Data)d\theta.$$

Variational Inference

https://gregorygundersen.com/blog/2018/04/29/reparameterization/

Monte-Carlo Methods

Metropolis-Hastings

11.2.2 The Metropolis-Hastings algorithm

lan Murray (https://homepages.inf.ed.ac.uk/imurray2/teaching/09mlss/slides.pdf)

Monte-Carlo methods example: Linear regression with spike and slab priors

https://link.springer.com/article/10.1007/s10994-014-5475-7#citeas

Pros and Cons of Monte-Carlo methods:

- Advantage:
 - More accurate than Laplace, EP, and VI
 - When enough computation time
 - Theoretical results guarantee asymptotic convergence to the true posterior

- o Simple and easy to implement
 - Better than EP but worse than VI
- o Disadvantages:
 - Hard to debug and check for convergence
 - Requires hyper-parameters
 - Need to be tuned in a non-straightforward manner
 - Slower than Laplace, VI and EP generally