Initialization Heuristics for Greedy Bayesian **Network Structure Learning**

Learning BN

Walter Perez Urcia Denis Deratani Mauá

> Universidade de São Paulo Instituto de Matemática e Estadística Departamento de Ciências da Computação

> > KDMiLE 2015

Contents

- Motivation
- 2 Bayesian Networks
- 3 Learning Bayesian networks from data
- Initialization Heuristics
- 5 Experiments

Example

Car Evaluation Dataset

- Buying price (B): v-high, high, med, low
- Maintain cost (M): v-high, high, med, low
- Doors (D): two, three, four, more
- Persons (P): two, four, more
- Luggage boot (L): small, medium, big
- Safety (S): low, medium, high

Represent:

- Half of cars that have four doors have a medium luggage boot
- 15% of cars are low safety, 77% medium safety and 8% high safety

Example

Using a probabilistic model of knowledge to represent all possible relations we have:

$$\mathbb{P}(B, M, D, P, L, S)$$

This requires $4 \times 4 \times 4 \times 3 \times 3 \times 3 = 1728$ probabilities hard to estimate, but we can drastically reduce this number by assuming (conditional) independences

For example:

Motivation

00 Example

- Doors and Persons are independent given Buying: $\mathbb{P}(D, P \mid B) = \mathbb{P}(D \mid B)\mathbb{P}(P \mid B)$
- Mantain and Safety are independent given Doors: $\mathbb{P}(M, S \mid D) = \mathbb{P}(M \mid D)\mathbb{P}(S \mid D)$

6 / 48

Bayesian Networks

A Bayesian Network consists of

- A DAG G over a set of variables X_1, \ldots, X_n
- Markov Property: Given its parents, every variable is conditionally independent from its non-descendant non-parents
- Probability constraints: $\mathbb{P}(X_i = k \mid Pa(X_i) = j) = \theta_{iik}$

Joint Probability Distribution

There is a unique probability function consistent with a BN:

$$\mathbb{P}(X_1,\ldots,X_n)=\prod_{i=1}^n\mathbb{P}(X_i\mid Pa(X_i))=\prod_{i=1}^n\theta_{ijk}$$

Luggage

Mantain

$$\mathbb{P}(B, M, D, P, L, S) = \mathbb{P}(B)\mathbb{P}(D \mid B)\mathbb{P}(P \mid B)\mathbb{P}(M \mid D)\mathbb{P}(S \mid D, P)\mathbb{P}(L \mid P)$$

Safety

This requires

Examples

$$4 + (4 \times 4) + (3 \times 4) + (4 \times 4) + (3 \times 4 \times 3) + (3 \times 3) = 93$$
 probabilities instead of 1728

Examples

Consider each variable has k values: We requires k^{33} probabilities without independences.

Constructing Bayesian networks

- Elicitation from expert knowledge
- Direct translation
- Learning from data

Constructing Bayesian networks

Elicitation

Motivation

ANDES: Intelligent Tutoring System to teach Newtonian Physics

Constructing Bayesian networks

Direct Translation

Learning Bayesian networks from data

Example

Learning BN from data

Given a data set infers a Bayesian network structure

Learning BN from data

Given a data set infers a Bayesian network structure

Age	Gender	City Education	Occupation	Transport	
adult	F	big	high	employee	car
adult	M	small	uni	employee	car
adult	F	big	uni	employee	train
young	M	big	high	self-emp	car
adult	M	big	high	employee	car
:	:	:	:	:	:

Initialization Heuristics

BN Structure Learning Approaches

Motivation

Constraint-based approaches

Perform multiple conditional independence hypothesis testing in order to build a DAG

Score-based approaches

Associate every DAG with a polynomial-time computable score value and search for structure with high score values

Initialization Heuristics

Score-based Structure Learning

Learning as optimization

Given dataset D, select G that maximizes decomposable score function:

$$sc(G, D) = LL(D \mid G) + \psi(N) \times |G|$$

 $sc(G) = \sum_{i} sc(X_i, Pa(X_i))$

Score-based Structure Learning

$$sc(G) = -9508.34$$

$$sc(G) = -6917.23$$

$$sc(G) = -8891.52$$

Greedy Search Approach

Greedy Search is a popular approach to find an approximate solution

```
GreedySearch (Dataset D, Solution G_0): return a BN G
      G = G_0
      For a number of iterations K
        best\_neighbor = find\_best\_neighbor(G)
5
         if score(best\_neighbor) > score(G) then
6
           G = best\_neighbor
      Return G
```

Initialization Heuristics

Greedy Search Approach

Greedy Search approaches for learning Bayesian networks can be classified as:

- Equivalence-based
- Structure-based
- Order-based

Structure-based Greedy Search

Consider incumbent solution is

Neighboorhood:

Add an edge

Remove an edge

Revert an edge's direction

Based on the observation that the problem of learning a Bayesian network can be written as

$$G^* = \arg \max_{\substack{< G \text{ consistent with } < i = 1}} \sum_{i=1}^{n} sc(X_i, Pa(X_i))$$

$$G^* = \arg\max_{\substack{< \\ i=1}} \sum_{p \subseteq \{X_j < X_i\}}^n sc(X_i, P)$$

An optimal DAG can be found by maximizing the local scores independently given an order of the variables

Initialization Heuristics

```
OrderBasedGreedySearch (Dataset D, Order L_0):
     return a BN
       L = L_0
       For a number of iterations K
 5
          current\_sol = L
6
7
          For each i = 1 to n-1 do
             L_i = swap(L, i, i + 1)
8
             if score(L_i) > score(current\_sol)
9
               current\_sol = L_i
          if score(current_sol) > score(L) then
10
11
             I = current sol
12
        Return network(L)
```

where swap(L, i, i + 1) swaps the values L[i] and L[i + 1]

Consider incumbent solution is

$$sc = -13192.33$$

Neighborhood:

- [G, A, E, C, O, T]sc = -10593.82
- [A, C, G, E, O, T]sc = -10891.48
- [A, G, E, C, O, T]sc = -8991.52
- [A, G, C, O, E, T]sc = -9917.23
- [A, G, C, E, T, O]sc = -9158.42

Now, incumbent solution is

$$sc = -8991.52$$

- \bullet [G, A, E, C, O, T] sc = -7593.82
- \bullet [A, E, G, C, O, T] sc = -8891.48
- [A, G, C, E, O, T] sc = -13192.33
- [A, G, E, O, C, T] sc = -6917.23
- \bullet [A, G, E, C, T, O] sc = -6999.99

Now, incumbent solution is

$$sc = -6917.23$$

- [G, A, E, O, C, T] sc = -8593.82
- \bullet [A, E, G, O, C, T] sc = -7289.48
- [A, G, O, E, C, T]sc = -9145.13
- [A, G, E, C, O, T] sc = -8991.52
- [A, G, E, O, T, C] sc = -6991.08

Problems

Problems

- Too many possible orders: n!
- Slow convergence
- Poor local maxima

Initialization Heuristics

Initial solution

We propose two different approaches to reduce the space of possible orders:

- DFS-based approach
- FAS-based approach

Upper bound

We can have an upper bound for $sc(G^*)$ by getting $sc(\overline{G})$

$$\overline{G} = \arg \sum_{i} \max_{Pa(X_i)} sc(X_i, Pa(X_i))$$

Best Parent Set

The parents of a variable X_i in graph G

DFS-based approach

- We can exploit the information provided by \overline{G} and avoid generating orders which are guaranteed sub-optimal
- Assume best parent set is unique
- Consider two variables X_i and X_j in \overline{G} , where X_j is parent of X_i , but there is no arc from X_i to X_j
- No optimal ordering can have X_i preceding X_j

The number of these orderings can be much smaller than the full space of orderings

DFS-based approach

Example

Graph \overline{G}

ABDC ACDB ADBC ADCB BDAC **BDCA** CDAB

DACB DBAC DBCA DCAB DCBA

CDBA

DABC

Possible orders from \overline{G}

DFS-based approach

The algorithm

- Take as input \overline{G} and mark all nodes unvisited
- Start with an empty list L
- While there is an unvisited node
 - Select an unvisited X_i uniformly random
 - Perform a depth-first search (DFS) rooted at X_i and add to L the visited nodes
- Return I

FAS-based approach

Motivation

Disadvantage of DFS approach

This approach can be seen as removing edges from \overline{G} such as to make it a DAG and then extract a topological order. But not all edges are equally relevant in terms of avoiding poor local maxima.

Estimating the relevance

We can estimate the relevance of an edge $X_i \to X_i$ by

$$W_{ji} = sc(X_i, Pa^*(X_i)) - sc(X_i, Pa^*(X_i) \setminus \{X_j\})$$

where $Pa^*(X_i)$ represents the best parent set for X_i .

We then wish to find a topological ordering of \overline{G} that violates the least cost of edges.

Example

- C is not very relevant as parent to D
- B is the most relevant parent of D

Graph \overline{G}

Min-Cost Feedback Arc Set

Given a weighted directed graph G = (V, E), a set $F \subseteq E$ is called a Min-Cost Feedback Arc Set (min-cost FAS) if every (directed) cycle of G contains at least one edge in F and the sum of weights is minimum.

$$F = \min_{G - F \text{ is a DAG}} \sum_{X_i o X_i \in E} W_{ij}$$

Finding FAS F

The following algorithm finds an approximate solution:

```
MinimumCostFAS(Graph G): Return FAS F
      F = empty set
3
4
      While there is a cycle C on G do
         W_{min} = lowest weight of all edges in C
5
6
7
        For each edge (u, v) \in C do
           W_{\mu\nu} = W_{\mu\nu} - W_{min}
         If W_{\mu\nu} = 0 add to F
8
      For each edge in F, add it to G if does not build a
           cycle
      Return F
```

The algorithm

- Take the weighted graph \overline{G} with weights W_{ii} as input
- Find min-cost FAS F
- Remove the edges in F from \overline{G}
- Return a topological order from $\overline{G} F$

Experiments

Configuration

For each dataset considered:

- Limit parent set size to 3
- Perform 1000 runs of Order-based Greedy Search
- For each run at most 100 iterations (K = 100)
- Use BIC score
- Find best parent sets by exhaustive search

Motivation

Setup

Density of \overline{G} n (#attributes) Dataset N (#instances) 15 30168 2.85 Census 17 20000 2.41 Letter 20 2310 2.45 **Image** Mushroom 23 8124 2.91 3.00 Sensors 25 5456 SteelPlates 28 1941 2.18 **Epigenetics** 30 72228 1.87 37 1000 Alarm 1.98 45 267 1.76 Spectf LungCancer 57 27 1.44

Table 1: Data sets characteristics

Results

Small Domains

Dataset	Approach	Best Score	Avg. Initial Score	Avg. Best Score	Avg. It.
Census	Random	-212186.79	-213074.18 ± 558.43	-212342.26 ± 174.21	7.26 ± 2.90
	DFS-based	-212190.05	-212736.80 ± 379.96	-212339.83 ± 152.26	5.90 ± 2.61
	FAS-based	-212191.64	-212287.99 ± 92.54	-212222.12 ± 70.99	$\textbf{3.28}\pm\textbf{1.67}$
Letter	Random	-138652.66	-139774.54 ± 413.74	-139107.13 ± 329.15	6.07 ± 2.50
	DFS-based	-138652.66	-139521.38 ± 396.61	-138999.84 ± 310.06	5.75 ± 2.35
	FAS-based	-138652.66	-139050.43 ± 70.55	-139039.26 ± 87.97	$\textbf{2.24}\pm\textbf{0.96}$
Image	Random	-12826.08	-13017.13 ± 44.35	-12924.24 ± 41.39	7.59 ± 2.71
	DFS-based	-12829.10	-12999.09 ± 38.56	-12921.13 ± 37.88	7.10 ± 2.47
	FAS-based	-12829.10	-12930.63 ± 20.83	-12882.30 ± 26.43	5.05 ± 1.72
Mushroom	Random	-55513.38	-58450.72 ± 1016.54	-56563.84 ± 616.59	7.59 ± 2.76
	DFS-based	-55513.38	-58367.11 ± 871.25	-56472.72 ± 546.19	7.75 ± 2.58
	FAS-based	-55574.71	-56450.49 ± 154.54	-56198.66 ± 174.64	$\textbf{4.65}\pm\textbf{1.63}$
Sensors	Random	-62062.13	-63476.33 ± 265.46	-62726.60 ± 251.26	9.22 ± 2.94
	DFS-based	-62083.21	-63392.60 ± 255.90	-62711.50 ± 257.79	9.65 ± 3.12
	FAS-based	-62074.88	-62530.26 ± 133.44	-62330.94 ± 121.82	$\textbf{5.17}\pm\textbf{2.24}$

Results

Large Domains

Dataset	Approach	Best Score	Avg. Initial Score	Avg. Best Score	Avg. It.
SteelPlates	Random	-13336.14	-13566.50 ± 65.80	-13429.13 ± 52.14	8.96 ± 3.43
	DFS-based	-13332.91	-13572.77 ± 81.12	-13432.30 ± 57.57	9.30 ± 3.38
	FAS-based	-13341.73	-13485.26 ± 38.27	-13397.08 ± 29.53	7.77 ± 2.24
Epigenetics	Random	-56873.76	-57722.30 ± 228.44	-57357.60 ± 222.12	5.89 ± 2.67
	DFS-based	-56868.87	-57615.36 ± 189.17	-57308.93 ± 165.18	6.42 ± 2.47
	FAS-based	-56868.87	-57660.09 ± 146.45	-57379.59 ± 148.42	$\textbf{5.33}\pm\textbf{2.28}$
Alarm	Random	-13218.22	-13324.52 ± 30.49	-13245.43 ± 15.63	10.92 ± 3.24
	DFS-based	-13217.97	-13250.72 ± 17.70	-13236.71 ± 12.02	$\textbf{4.32}\pm\textbf{2.32}$
	FAS-based	-13220.55	-13249.77 ± 2.57	-13233.98 ± 6.19	6.34 ± 1.74
Spectf	Random	-8176.81	-8202.03 ± 5.23	-8189.69 ± 4.65	7.20 ± 2.17
	DFS-based	-8172.37	-8200.04 ± 4.08	-8187.29 ± 4.91	7.86 ± 2.49
	FAS-based	-8172.51	-8176.98 ± 2.01	-8176.07 ± 2.05	$\textbf{2.27}\pm\textbf{1.11}$
LungCancer	Random	-711.23	-723.79 ± 2.69	-718.03 ± 2.84	5.46 ± 1.78
	DFS-based	-711.36	-720.47 ± 2.51	-715.29 ± 1.86	5.02 ± 1.50
	FAS-based	-711.39	-716.13 ± 0.89	-715.67 ± 1.19	$\textbf{2.73}\pm\textbf{1.79}$

Figure 1: Census

Figure 2: Letter

Figure 3: Image

Random
 DFS-based

- FAS-based

-12900 -12950

-13000

Figure 5: Sensors

Figure 6: SteelPlates

Figure 7: Epigenetics

Figure 8: Alarm

Figure 9: Spectf

Figure 10: LungCanc

Conclusions and Future Work

Motivation

- The proposed heuristics lead to better solutions on average, and increase the convergence of the search with only a small overhead
- Larger differences for datasets with more variables are expected
- Our proposed techniques could return directed acyclic graphs instead of node orderings to be used for Structure- and Equivalence-based search approaches
- Employ the proposed heuristics in branch-and-bound solvers for finding optimal solutions

Conclusions and Future Work

Thanks!

Experiments 000000