

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9701/23

Paper 2 AS Level Structured Questions

October/November 2022

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has 16 pages.

[2]

- 1 Atoms with nuclei containing an odd number of protons tend to have fewer isotopes than those with an even number of protons.
 - (a) Gallium has two stable isotopes, ⁶⁹Ga and ⁷¹Ga.
 - (i) Complete Table 1.1 to show the numbers of protons, neutrons and electrons in the two stable isotopes of gallium.

Table 1.1

isotope	number of protons	number of neutrons	number of electrons
⁶⁹ Ga			
⁷¹ Ga			

(ii)	Define relative atomic mass.
	[2]
(iii)	The relative atomic mass of gallium, A_r , is 69.723. The relative isotopic masses of 69 Ga and 71 Ga are:
	⁶⁹ Ga, 68.926; ⁷¹ Ga, 70.925.
	Use this information to calculate the percentage abundance of ⁶⁹ Ga in elemental gallium. Show your working. Assume that the element contains only the ⁶⁹ Ga and ⁷¹ Ga isotopes. Give your answer to four significant figures.
	percentage abundance of ⁶⁹ Ga = %

(b)	Pot	tassium also has two stable isotopes. Both isotopes have the same chemical properties.				
	(i)	Explain why both isotopes of potassium have the same chemical properties.				
		[1]				
	(ii)	State the full electronic configuration of an atom of potassium.				
		[1]				
	(iii)	The first, second and third ionisation energies of potassium are 418, 3070 and $4600\mathrm{kJ}\mathrm{mol}^{-1}$, respectively.				
		Use this information to explain why potassium is in Group 1.				
		[2]				
		[Total: 10]				

- 2 Magnesium shows reactions typical of a Group 2 metal.
 - (a) Draw a labelled diagram to show the bonding in magnesium metal.

[2]

(b) Fig. 2.1 shows some reactions of magnesium and its compounds.

Fig. 2.1

(i) Identify the other products of reactions 1 and 2.

reaction 1	
reaction 2	
	[2]

(ii) Reaction 3 is used to form a precipitate of $Mg(OH)_2$ from $MgCl_2(aq)$.

State why $Ca(OH)_2(aq)$ would **not** form a precipitate of $Ba(OH)_2$ from $BaCl_2(aq)$.

......[1]

(iii) State the type of reaction that occurs in reaction 4.

.....[1]

(c)	1 cm 3 of MgC l_2 (aq) is placed in a test-tube. A few drops of AgNO $_3$ (aq) are added, followed by 1 cm 3 of dilute NH $_3$ (aq).
	State in full what is observed in this experiment.
	[2]
(d)	When 1 cm^3 of $\text{MgC}l_2(\text{aq})$ is added to 1 cm^3 of $\text{Br}_2(\text{aq})$ in a test-tube, the solution remains orange.
	Explain this observation.
	[1]
	[Total: 9]

Some o	of the common chlorides of Period 3 elements are shown in the list.
	$NaCl MgCl_2 AlCl_3 SiCl_4 PCl_5$
(a) Fro	om this list, identify:
(i)	all the chlorides that have giant ionic structures in the solid state
	[1]
(ii)	all the chlorides that react vigorously with water to form strongly acidic solutions
	[1]
(iii)	the chloride that dissolves in water to form a neutral solution
	[1]
(iv)	the chloride formed from the element with the highest melting point.
	[1]
(b) Na	C <i>l</i> is one product of the reaction of chlorine gas and cold aqueous sodium hydroxide.
lde	ntify the other products.
	[1]
(c) PC	$l_{\scriptscriptstyle 5}$ reacts with alcohols to form chloroalkanes.
(C) PC	t_5 reacts with alcohols to form chloroalkanes.
(i)	Identify this type of reaction.
	[1]
(ii)	Draw the structure of the organic product formed in the reaction of an excess of PCl_5 with butane-1,3-diol.

[1]

(d)			hlorine to form several different cl vhen sulfur reacts with an excess	hlorides. The most common are S_2Cl_2 of chlorine.
		reaction 1	$S_8(s) + 4Cl_2(g) \rightarrow 4S_2Cl_2(g)$	I) $\Delta H_{\rm r} = -58.2 \rm kJ mol^{-1}$
		reaction 2	$S_2Cl_2(I) + Cl_2(g) \rightleftharpoons 2SCl_2(g)$	(I) $\Delta H_{\rm r} = -40.6 \rm kJ mol^{-1}$
	(i)	SCl ₂ is a cherry-re	d liquid that reacts vigorously with	h water to form an acidic solution.
		Use this information Explain your answer	on to deduce the bonding and struer.	icture shown by SCl_2 .
				[2]
	(ii)		alpy change of formation, $\Delta H_{\rm f}$, of struct an energy cycle.	$SCl_2(I)$. You may find it useful to use
		ent	halpy change of formation of SC $\it l$	$H_2(I), \Delta H_f = \text{kJ mol}^{-1}$
((iii)	State the effect of Explain your answer		position of equilibrium in reaction 2.
				F.43

Fig. 3.1 shows the two structural isomers of $\mathrm{S_2C}\mathit{l}_2$.

isomer I	isomer II
Cl S Cl	S S C1

Fig. 3.1

(iv)	Define the term structural isomer.	
(v)	Suggest a value for the C <i>l</i> –S–S bond angle in isomer I. Explain your answer.	
	bond angle = °	
	explanation	
		 [2]
vi)	Draw a dot-and-cross diagram to show the bonding in isomer II. Show outer shell elect	ons

[2]

[Total: 18]

© UCLES 2022 9701/23/O/N/22

only.

Question 4 starts on the next page.

4 Organic compounds can be distinguished using chemical tests. Table 4.1 shows four pairs of compounds.

Table 4.1

organic co	ompounds	reagent	positive result of chemical test on identified compound
A1 0 0	A2 OH		
B1	B2 0		
C1	C2		
D1 OH HO OH	D2 HO OH		

- (a) Complete Table 4.1 to:
 - identify a reagent that could distinguish between the compounds in each pair
 - give the **positive** result of the chemical test **and** identify which compound shows this result.

Use a different reagent for each test.

[8]

(b) C1 has melting point –94 °C and boiling point +49 °C.

Explain these properties by referring to the type of van der Waals' forces between molecules.

(c)	Dra	w the structure of the cis isomer of C2 .	
			[1]
			Γ.1
(d)	C2	forms a polymer when heated gently.	
	(i)	Identify the type of polymer that forms from C2.	
			[1]
	(ii)	Draw one repeat unit of the polymer formed from C2 .	

[2]

[Total: 14]

[1]

 Lactones are cyclic esters. Under suitable conditions, lactones form from molecules that have both an alcohol and a carboxylic acid functional group.
 Equation 1 shows an example of the formation of a lactone.

Fig. 5.1 shows the synthesis of lactone **P** from compound **M**.

Fig. 5.1

(a) (i) M reacts with hot concentrated acidified $KMnO_4(aq)$ to form N, $C_6H_{10}O_3$, in reaction 1. Draw the structure of N.

(ii)	N is reduced by NaBH ₄ to form 5-hydroxyhexanoic acid in reaction 2 .	
	Construct an equation for reaction 2 using molecular formulae. In the equation, use [H] to represent one atom of hydrogen from the reducing agent.	
		[1]
(iii)	Reaction 2 is a nucleophilic addition.	
	Suggest why reaction 2 creates a mixture of two organic compounds.	
		[2]

(iv) Draw lactone P, the product of reaction 3.

[1]

(b) A student monitors the progress of reaction 2 using infrared spectroscopy.

Use Table 5.1 to suggest why it is difficult to distinguish between **N** and 5-hydroxyhexanoic acid using infrared spectroscopy.

Table 5.1

bond	functional group containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C-O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≣N	nitrile	2200–2250
C–H	alkane	2850–3100
N–H	amine, amide	3300–3500
O–H	carboxyl hydroxy	2500–3000 3200–3650

(c) Unknown lactone **Q** is analysed using mass spectrometry. Table 5.2 shows information from the mass spectrum.

Table 5.2

peak	m/e	abundance				
M+	72	95.5				
M+1	73	3.15				

Use these data to deduce the structure of **Q**. Show your working.

Q	

[2]

[Total: 9]

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol^{-1}}$
electronic charge	$e = -1.60 \times 10^{-19} C$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 {}^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

The Periodic Table of Elements

								Т														
	18	2	He	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	22	Xe	xenon 131.3	98	R	radon	118	Og	oganesson
	17				6	Щ	fluorine 19.0	17	Cl	chlorine 35.5	35	й	bromine 79.9	53	н	iodine 126.9	85	Αŧ	astatine	117	<u>R</u>	tennessine
	16				8	0	oxygen 16.0	16	ഗ	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	84	Ъ	moloulum	116	_	livermorium
	15				7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ξ	bismuth 209.0	115	Mc	moscovium
	14				9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Рр	lead 207.2	114	Εl	flerovium
	13				5	В	boron 10.8	13	Ρl	aluminium 27.0	31	Ga	gallium 69.7	49	I	indium 114.8	81	<i>1</i> L	thallium 204.4	113	R	nihonium
										12	30	Zu	zinc 65.4	48	ပ	cadmium 112.4	80	Нg	mercury 200.6	112	ပ်	copernicium
										7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium
Group										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	₽	platinum 195.1	110	Ds	darmstadtium -
Gro										o	27	ပိ	cobalt 58.9	45	뫈	rhodium 102.9	77	'n	iridium 192.2	109	Ĭ	meitnerium -
		-	I	hydrogen 1.0						œ	26	Fe	iron 55.8	44	Ru	ruthenium 101.1	92	Os	osmium 190.2	108	Нs	hassium
					_					7	25	Mn	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	뮵	bohrium
						lod	SS			9	24	ပ်	chromium 52.0	42	Мо	molybdenum 95.9	74	≯	tungsten 183.8	106	Sg	seaborgium
				Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Щ	tantalum 180.9	105	Q O	dubnium
						ato	T.			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	Ŗ	rutherfordium -
										က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57–71	lanthanoids		89–103	actinoids	
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	88	Š	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium
	_				3	:=	lithium 6.9	=	Na	sodium 23.0	19	×	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	Ļ	francium

1.1	P	lutetium 175.0	103	۲	lawrencium	1
		ytterbium 173.1			_	1
69	E	thulium 168.9	101	Md	mendelevium	_
89	ш	erbium 167.3	100	Fm	ferminm	_
29	운	holmium 164.9	66	Es	einsteinium	_
99	ò	dysprosium 162.5	86	Ç	californium	-
65	₽ L	terbium 158.9	6	Ř	berkelium	_
64	Вg	gadolinium 157.3	96	Cm	curium	_
63	Ш	europium 152.0	92	Am	americium	-
62	Sm	samarium 150.4	94	Pu	plutonium	-
61	Pm	promethium -	93	ď	neptunium	_
09	2	neodymium 144.4	92	\supset	uranium	238.0
59	ቯ	praseodymium 140.9	91	Ра	protactinium	231.0
28	Ö	cerium 140.1	06	H	thorium	232.0
22	Гa	lanthanum 138.9	88	Ac	actinium	-

lanthanoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.