

IT융합대학 인공지능공학과

백찬형

2024년 02월 06일

Contents

I. Introduction

II. EDA

III. Strategies

IV. Conclusion

■ I. Introduction

1. 대회 목표

 4x4의 격자 형태의 16개의 조각으로 구성된 순서가 뒤바뀐 퍼즐 이미지를 대상으로 원래 순서를 맞추는 것

2. 평가 산식

- 퍼즐 재구성 정확도 : (1x1 퍼즐 재구성 정확도 + 2x2 퍼즐 재구성 정확도 + 3x3 퍼즐 재구성 정확도 + 4x4 퍼즐 재구성 정확도) / 4
- 0.3 * (Seen 이미지 퍼즐 재구성 정확도) + 0.7 * (Unseen 이미지 퍼즐 재구성 정확도)

9	2 12	3	4 14
5 6	6	7 10	8
9	10	11 3	12 1
13 4	14 5	15 2	16 7

II. EDA

1. 정렬된 이미지

- 실사 이미지와 생성 이미지로 구성되어 있으며 생성 이미지가 더 많은 경향을 보임.
- 단색이 대부분을 차지하는 이미지나 복잡한 패턴을 보이는 데이터도 있음.

실사 이미지

생성 이미지

대부분 단색인 이미지

II. EDA

2. gradCAM

- class 예측 시 특정 부분(Edge, Vertex)을 집중적으로 보는 경향이 있음.
- 사람처럼 edge 부분을 보면서 판단하는 경향이 있음.
- Vertex 부분에 속단하는 경향이 있음.

gradCAM 시각화

1. Model Selection

- Model: SegFormer
- (batch, 16, 4, 4)를 output으로 출력하도록 실험했을 때, 퍼즐 재구성 정확도가 높은 모델을 선정함.

Model	Public Score
U-Net(baseline)	0.08603
ResNet50	0.11836
DeepLabV3	0.20338
DTrC	0.41533
SegFormer	0.85638

1. Model Selection

- Output shape를 맞추기 위해 Down Sampling 실험함.
- Baseline과 같이 Conv를 통해 shape를 맞춘다면 성능이 떨어지는 경향을 보임.
- AdaptiveAvgPool을 사용함으로써 Conv를 사용하는 경우보다 모델의 복잡도를 줄이도록 유도함.

Model	Public Score
SegFormer + Conv	0.42717
SegFormer + AdaptiveAvgPool2d	0.85638

2. Augmentation

- 퍼즐의 Edge 근처에서 feature를 얻도록 Custom Cutout을 설계함.
- 인간이 퍼즐을 푸는 것처럼 Edge를 우선적으로 보고 판단하도록 유도함.

Original Image

Custom Cutout

2. Augmentation

■ 퍼즐의 Vertex 부분에 속단하는 경향을 방지하기 위해 Custom Cutout을 설계함.

Original Image

2. Augmentation

- 퍼즐의 Edge 근처에서 다양한 부위를 보고 클래스를 예측함
- 퍼즐의 Vertex 부분을 덜 보며 클래스를 예측함

Custom Cutout 적용 전/후

2. Augmentation

- 단색이 많은 이미지에 대해 쉽게 풀 수 있도록 밝기, 채도 등의 변화 시도
- 최대한 비슷한 퍼즐이 발생하지 않도록 유도함.

중복 제거

- Inference 과정에서 중복이 발생함.
- 이를 방지하기 위해 한번 선택된 logit은 소거하는 방식으로 추론

2x2 퍼즐에서 중복 제거 전략 예시

	1	2	3	4
1	0.1	0.7	0.1	0.8
2	0.6	0.1	0.1	0.1
3	0.2	0.1	0.2	0.05
4	0.1	0.1	0.6	0.05

기존 argmax 방식: [2, 1, 4, 1]

	1	2	3	4	
	0.1	0.7	0.1	0.0	
_	0.0	0.4	0.4	0.4	
	0.0	0.1	0.1	0.1	
3	0.2	0.1	0.2	0.05	
_		~	~ ~		
4	0.1	0.1	0.0	0.05	

새로운 argmax 방식

■ 1열에서 label을 정하고 해당 행을 소거: [2,] (blue)

2열에서 label을 정하고 해당 행을 소거: [2, 1] (red)

3열에서 label을 정하고 해당 행을 소거: [2, 1, 4] (green)

4열에서 label을 정하고 해당 행을 소거: [2, 1, 4, 3]

(자세한 방법은 코드 참고)

4. Ensemble

- Train data를 random split한 10가지 버전으로 학습한 10개 모델 중 성능이 가장 잘 나온 7개를 Ensemble한다.
- Hard Vote보다 Soft Vote가 성능이 나오는 경향을 보임.

Model	Public Score
Segformer (Best Model)	0.99617
Segformer * 7	0.99762
Segformer * 10	0.99727
SegFormer * 7 + custom argmax	0.99764

■ IV. Conclusion

1. 마무리

- Down Sampling 방법에 따라 성능 차이가 발생함.
- Cutout, 색조, 채도 등을 적용하여 어려운 퍼즐 이미지를 풀 수 있도록 유도함.
- 성능이 가장 잘 나오는 7개 모델을 Ensemble하고 중복 제거한 결과물이 가장 높은 score를 기록함.

Thank you for listening

Q&A

