

DESENVOLVIMENTO DE SOFTWARE MULTIPLATAFORMA

Disciplina: IAL-010 Algoritmos e Lógica de Programação

Aula 01: Introdução Princípios de Sistemas Computacionais

Data 06/08/2024

Prof. Me. Anderson Silva Vanin

Faculdade de Tecnologia

Quem sou eu

- Técnico Eletrônico
- Bacharel em Ciência da Computação
- Pós Graduado em Banco de Dados
- Mestre em Gestão do Conhecimento e Informática (Aplicado a Visão Computacional)
- Atuação no CPS desde 2006
- Aulas nas disciplinas diversas de Programação
- Cursos extracurriculares em Inteligência Artificial e IoT

Faculdade de Tecnologia de Mauá

Avaliações e Trabalhos

P1: 24/09/2024

Avaliação Prática em Laboratório de Informática

• **P2**: 12/11/2024

Avaliação Prática em Laboratório de Informática

• **P3**: 03/12/2024

Avaliação Prática em Laboratório de Informática

• **T**: Trabalhos e atividades (12/11/2024)

Conjunto de Atividades solicitadas durante o semestre letivo somadas

Composição das Notas:

 $P1 \rightarrow 35\%$

P2 → 35%

 $T \rightarrow 30\%$

CONTRATO PEDAGÓGICO

HORÁRIO DAS AULAS:

- Inicio: 19h (Se chegar atrasado, respeite os colegas e o professor: ENTRE EM SILÊNCIO!)
- Intervalo: 20h30
- Retorno do Intervalo: 21h00 (RESPEITE O MESMO CRITÉRIO DE ENTRADA!)
- Saída: 22h30

ATIVIDADES PRÁTICAS:

Entregas efetuadas pelo ambiente Teams.

Não serão aceitas entregas fora do prazo!

AVALIAÇÕES PRÁTICAS:

 As avaliações práticas podem ocorrer de forma remota (<u>Atente-se ao dia da</u> <u>avaliação e horário programado!</u>)

DURANTE AS AULAS NO LABORATÓRIO

- NÃO CONSUMA NENHUM TIPO DE ALIMENTO NO LABORATÓRIO.
- NÃO SE DISTRAIA COM NENHUM OUTRO TIPO DE CONTEÚDO QUE NÃO AQUELE MINISTRADO EM AULA.
- NÃO INSTALE OU REMOVA QUALQUER OUTRO EQUIPAMENTO.
- MANTENHA O SILÊNCIO DURANTE A EXPLANAÇÃO DO PROFESSOR.
- NÃO CONVERSE ENQUANTO A AULA ESTIVER SENDO EXPLICADA!
- SE TIVER DÚVIDAS, PERGUNTE!

· GITHUB:

https://github.com/ProfAndersonVanin/FATEC_ALGORITMOS_2SEM2024

• EMAIL: anderson.vanin@fatec.sp.gov.br

Ementa da Disciplina

- Princípios de sistemas computacionais, representação binária, memória e endereçamento, compiladores.
- Tipos de dados básicos e representações gráficas dos principais comandos nas linguagens procedurais.
- Conceitos básicos sobre algoritmos e métodos para sua construção.
- Tipos de dados e variáveis.
- Operadores lógicos.
- Estruturas fundamentais de programas: sequencial, condicional e com repetição.
- Estilo de codificação, identação, legibilidade, comentários.
- Testes de mesa e unitários.
- Funções.
- Variáveis compostas homogêneas: vetores e matrizes.
- Conceitos de controle de versão e gestão de código fonte; Criação de repositórios locais e remotos; Envio (Commit) e resgate de versões, Checkin e Checkout.

A primeira geração de computadores tem como caraterística principal a utilização de válvulas. Válvulas são como pequenas lâmpadas que acendiam ou apagavam conforme a programação. O grande problema da sua utilização era o aquecimento, pois, devido a este fato, costumavam queimar com facilidade. O primeiro computador a utilizar válvulas foi o ENIAC, projetado e construído pela Universidade da Pensilvânia (HENNESSY, J. L.; PATTERSON, D. A, 2011). Era um computador utilizado pelo exército americano para o cálculo de balísticas, pesava cerca de 30 toneladas e utilizava 18.000 válvulas.

A utilização de válvulas não era interessante, visto que o computador não tinha uma forma de armazenamento para programa e dados. Em 1946, **Von Neumann** iniciou um projeto de um computador de programa armazenado, conhecido como computador IAS, em Princeton Institute for Advanced Studies (DELGADO; RIBEIRO, 2009).

Embora não concluído antes de 1952, o modelo de computador IAS é o protótipo de todos os computadores de uso geral. O conceito da Máquina De Von Neumann trouxe a possibilidade de buscar instruções lendo-as da memória, utilizando um programa criado ou alterado podendo definir os valores de uma parte da memória.

Conforme Monteiro (2007), esse tipo de computador tinha:

- Uma memória principal (MP), para armazenar dados e instruções;
- Unidade lógica e aritmética (ULA) para realização de operações;
- Uma unidade de controle (UC), para interpretar as instruções na memória e fazer com que fossem executadas;
- Uma unidade de Entrada e Saída (E/S).

Unidade Central de Processamento (CPU)

A segunda geração de computadores é marcada pela substituição das válvulas pelo uso de transistores. Com a utilização dessa nova tecnologia, o computador obteve alguns avanços, visto que o transistor é menor, mais barato e dissipa menos calor que uma válvula. Essa geração também foi caracterizada pela inicialização de unidades lógicas aritméticas mais complexas, utilização de linguagens de programação de alto nível1 e a possibilidade de um software como um sistema computacional (HARRIS; HARRIS, 2012).

Assim como a primeira e segunda geração de computadores vislumbravam o melhorar a capacidade de processamento e melhorar a eficiência dos computadores, a terceira geração vem com a inovação de circuitos integrados, que basicamente é a integração de circuitos eletrônicos em substrato de silício (MONTEIRO, 2007). Com advento de tal tecnologia, houve a redução em custo, tamanho, consumo e tempo de processamento.

O Quadro abaixo traz as classificações dos computadores em gerações com base na tecnologia empregada no hardware até os dias atuais:

Geração	Datas aproximadas	Tecnologia	Velocidade típica (operações por segundo)
1	1946 – 1957	Válvulas	40.000
2	1958 – 1964	Transistor	200.000
3	1965 – 1971	Integração em escala pequena e média	1.000.000
4	1972 – 1977	Integração em escala grande	10.000.000
5	1978 – 1991	Integração em escala muito grande	100.000.000
6	1991	Integração em escala ultra grande	1.000.000.000

Faculdade de Tecnologia

Estrutura e Função do Computador

- Função: são as operações que cada componente pode realizar dentro da estrutura.
- Estrutura: é a maneira como os componentes estão inter-relacionados.

Basicamente, o funcionamento do computador é simples.

Como funções de computador temos:

- Processamento de dados.
- Armazenamento de dados.
- Movimentação de dados.
- Controle.

Estrutura e Função do Computador

Interagimos com o computador de diversas formas, utilizando várias de suas funções. Já que a estrutura do computador é aquela que tem a comunicação com o meio externo, que é composta por quatro componentes estruturais principais:

- Unidade central de processamento (CPU): controla a operações do computador e realiza suas funções de processamento de dados;
- Memória principal: armazenam dados.
- E/S: move dados entre o computador e seu ambiente externo.
- Interconexão do sistema: mecanismo fornece comunicação entre CPU, memória principal e E/S. Um bom exemplo é o barramento do sistema, que, basicamente, são vários fios condutores que permitem que outros componentes se conectem (MONTEIRO,2007).

Estrutura e Função do Computador

A figura abaixo traz uma ilustração da estrutura da CPU. Devemos observar que a CPU é responsável por realizar diversas operações e armazenar dados, portanto, ela também possui componentes importantes para seu funcionamento:

COMPONENTES DA CPU

- Unidade de controle: controla qual a operação a CPU irá executar.
- Unidade aritmética e lógica (ULA): efetua as funções de processamento de dados.
- Registradores: possibilita um armazenamento interno e temporário da CPU.
- Interconexões da CPU: algum mecanismo fornece comunicação entre unidade de controle, ULA e registradores.

Sistema de Numeração Decimal

Nós utilizamos 10 algarismos, os números 0 ,1, 2, 3, 4, 5, 6, 7, 8 e 9 para criar, quantificar ou mesmo organizar qualquer coisa. É o chamado **sistema decimal**, são números que possuem **base 10** e sua classificação está relacionada a posição que ocupa.

$$12 = 1 \times 10^{1} + 2 \times 10^{0}$$

$$10 + 2$$

$$12$$

Para formar o decimal 12, é preciso multiplicar os algarismos por 10 elevados a sua posição (o 2 está na **posição 0** e o 1 está na **posição 1**). Depois disso nós fazemos a soma dos fatores e confirmamos o seu valor decimal!

Sistema de Numeração Decimal

Para os computadores a formação do padrão numérico é muito semelhante. Todavia, as máquinas compreendem os números em um **sistema binário**.

Sistema Binário

O **sistema binário** funciona da mesma maneira que o decimal. Porém, o decimal tem 10 algarismos como base, e **o binário tem apenas dois algarismos**. A regra de formação é a mesma, cada dígito é o seu valor multiplicado por 2, elevado ao valor da sua posição no número total menos um. Depois de calcular o valor de cada dígito, basta somá-los para ter o valor final em decimal.

Então temos inicialmente o decimal 12 dividido por 2, e seu resultado é 6. O número 0 é o resto da divisão, é o que sobra. Dessa forma, precisamos dividir todo o número até não existir mais unidade divisível. O resto da divisão é o que corresponde ao número binário, nós apenas precisamos inverter a ordem e 12 em binário é igual a **1100**

Resumo conversão Decimal -> Binário e Binário -> Decimal

29 Decimal = 11101 Binário

Faculdade de Tecnologia

Exercícios

- 1. Converta os números seguintes de Decimal para Binário.
- a) $77_{(10)}$
- b) 189₍₁₀₎
- c) $234_{(10)}$
- d) 999₍₁₀₎
- e) 325₍₁₀₎
- f) $650_{(10)}$
- g) $10_{(10)}$

Faculdade de Tecnologia

Exercícios

- 2. Converta os números seguintes de Binário para Decimal.
- a) 11001₍₂₎
- b) 101101011₍₂₎
- c) 10001111₍₂₎
- d) 111000₍₂₎
- e) 111₍₂₎
- f) 1001₍₂₎
- g) 10000₍₂₎

Com certeza todos já ouviram falar nos Megabytes, Gigabytes. Esses nomes, nada mais são que **UNIDADES DE MEDIDA** para as informações que guardamos no computador, assim como temos unidades de medida de distância (metros, centímetros) e unidades de peso (quilo, grama).

Nas unidades de medida distância, a menor unidade é o milímetro e aí vamos aumentando para centímetro, decímetro, metro, decâmetro, hectômetro e quilômetro.

No caso das unidades de medida do computador, a menor unidade de medida é o **BIT**. E na sequência temos o **Byte – um byte é formado por 8 bits**. Para terem uma ideia, para cada caractere (letra, espaço, ponto, etc) que inserimos no computador, ocupamos um byte.

Portanto, uma palavra com 5 letras ou um número, como 12453, ocupa 5 bytes de memória do computador.

TODAS AS UNIDADES DE MEDIDA					
UNIDADE	SIGLA	QUANTIDADE DE CARACTERES			
Byte	В	1	8 bits		
Kilobyte	KB	1.024	1.024 bytes		
Megabyte	MB	1.048.576	1.024 KBytes		
Gigabyte	GB	1.073.741.824	1.024 MBytes		
Terabyte	TB	1.099.511.627.776	1.024 GBytes		
Petabyte	PB	1.125.899.906.842.624	1.024 TBytes		
Exabyte	EB	1.152.921.504.606.846.976	1.024 PBytes		
Zettabyte	ZB	1.180.591.620.717.411.303.424	1.024 EBytes		
Yottabyte	YB	1.208.925.819.614.629.174.706.176	1.024 ZByte		

Assim sendo, para convertermos valores, devemos utilizar o esquema abaixo:

Exercícios

- 1. Imaginemos um pen-drive de 4 Gigabytes (GB),
- a) Quantos Bytes ele é capaz de armazenar?
- b) Quantos bits ele é capaz de armazenar?
- c) Quanto essa quantidade representa em Terabyte (TB)?
- d) Um documento de 37 Bytes possui quantos bits?
- 2. Quantos documentos de 2 Megabytes (MB) podem ser armazenados num pen drive de 2 Gigabytes (GB)?
- 3. Um disquete pode armazenar até cerca de 1,4 Mbytes. Tirei 3 fotos que, salvas em formato compactado ficaram com tamanhos de 400 Kbytes, 500 Kbytes e 250 Kbytes. Todas as fotos caberão no disquete? Porque?

Experimento

Faça esse experimento:

- Abra o Bloco de Notas e insira a frase: Boa tarde!
- Salve o arquivo no disco com o nome de curso.txt
- Utilize o Explorer e veja o tamanho do arquivo. Você irá descobrir que o arquivo ocupa um espaço de _____ bytes, ___ byte(s) para cada caractere.
- Adicione seu nome ao final da sentença e salve novamente, o tamanho do arquivo irá subir para o número referente de_____ bytes.