

Student Satellite Project Indian Institute of Technology, Bombay Powai, Mumbai - 400076, INDIA

Website: www.aero.iitb.ac.in/satlab

Readme file for dynamics.py

Attitude Determination and Control Subsystem

$x_dot_BO()$

Author: Riya **Date:** 5/8/18

Input: Satellite object, time, state vector Output: Derivative of error vector w.r.t. time

- 1. Obtain the total torque acting on satellite. There are two types of torques, control torque and disturbance torque. These are accessed from satellite object sat using methods getControl_b() and getDisturbance_b() respectively. The torque vector is expressed in body frame.
- 2. First four components of (1×7) state vector form quaternion q_{BO} and last three components form angular velocity of body frame w.r.t. orbit frame expressed in body frame.
- 3. $\dot{q}_{BO}=\frac{1}{2}\begin{bmatrix} -\vec{v}^T\omega_{BOB} \\ s\omega_{BOB}+\vec{v}\times\omega_{BOB} \end{bmatrix}$ where ω_{BOB} is the angular velocity of body wrt orbit frame, \vec{v} is vector part of q_{BO} , s is scalar part of q_{BO} .
- 4. $J\dot{\omega}_{BOB} = -\omega \times J\omega + \tau J[R(\omega_{BOB} \times \omega_d + \dot{\omega}_d)]))$ where J is moment of inertia and τ is total torque. ω is the angular velocity of body wrt ECI frame, ω_d is the angular velocity of orbit wrt inertial frame. R is the rotation matrix corresponding to q_{BO} .