1

JEE Main 2020 05-09-2024 Shift2

ai24btech11014 - Charitha Sri

	1.	Матн	
1) If $x = 1$ is a critical p	oint of the function f	$(x) = \left(3x^2 + ax - 2 - a\right)e^{-ax}$	e ^x , then:
a) $x = 1$ is a local min b) $x = 14$ is a local ma c) $x = 1$ and $x = -\frac{2}{3}$ a d) $x = 1$ and $x = -\frac{2}{3}$ a	axima and $x = -\frac{2}{3}$ is a		
2) $\lim_{x\to 0} x \frac{\left(e^{\frac{\sqrt{1+x^2+x^4}-1}{x}-1}\right)}{\sqrt{1+x^2+x^4}-1}$	·		
a) is equal to \sqrt{e}	b) is equal to 1	c) is equal to 0	d) does not exist

- 3) The statement $(p \to (q \to p)) \to (p \to (p \cup q))$ is:
 - a) equivalent to $(p \cup q) \cap (\sim p)$
 - b) equivalent to $(p \cap q) \cup (\sim p)$
 - c) a contradiction
 - d) a tautology
- 4) If $L = \sin^2\left(\frac{\pi}{16}\right) \sin^2\left(\frac{\pi}{8}\right)$ and $M = \cos^2\left(\frac{\pi}{8}\right) \sin^2\left(\frac{\pi}{8}\right)$, then:
 - a) $M = \frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$ b) $M = \frac{1}{4\sqrt{2}} + \frac{1}{4}\cos\frac{\pi}{8}$ c) $L = -\frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$ d) $L = \frac{1}{4\sqrt{2}}\frac{1}{4}\cos\frac{\pi}{8}$
- 5) If the sum of the first 20 terms of the series $\log_{7\frac{1}{2}} x + \log_{7\frac{1}{3}} x + \log_{7\frac{1}{4}} x + \dots$ is 460, then x is equal
 - a) $7^{\frac{1}{2}}$

b) 7^2

c) e^2

- d) $7^{\frac{46}{21}}$
- 6) There are 3 sections in a question paper and each section contains 5 questions candidate has to answer a total of 5 questions, choosing at least one question from each section. Then the number of ways, in which the candidate can choosethe questions, is:
 - a) 2250

b) 2255

- c) 1500
- d) 3000
- 7) If the mean and the standard deviation of the data 3,5,7,a,b are 5 and 2 respectively, then a and bare the roots of the equation:

 - a) $x^2 20x + 18 = 0$ b) $x^2 10x + 19 = 0$ c) $2x^2 20 + 19 = 0$ d) $x^2 10x + 18 = 0$
- 8) The derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ at $x=\frac{1}{2}$ is:

d) $\frac{\sqrt{3}}{10}$

	a) $\frac{5(2\sin\theta+1)}{\sin\theta+3}$	b) $\frac{5(\sin\theta+3)}{2\sin\theta+1}$	c) $\frac{2\sin\theta+1}{\sin\theta+3}$	d) $\frac{2\sin\theta+1}{5(\sin\theta+3)}$		
10)	If the length of the cord of the circle, $x^2 + y^2 = r^2 (r > 0)$ along the line, $y - 2x = 3$ is r, then r^2 is equal to:					
	a) 12	b) $\frac{24}{5}$	c) $\frac{9}{5}$	d) $\frac{12}{5}$		
11)	11) If α and β are the roots of the equation, $7x^2 - 3x - 2 = 0$, then the value of $\frac{\alpha}{1 - \alpha^2} + \frac{\beta}{1 - \beta^2}$					
	a) $\frac{27}{32}$	b) $\frac{1}{24}$	c) $\frac{27}{16}$	d) $\frac{3}{8}$		
12)	12) If the sum of the second, third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of the G.P. is:					
	a) $\frac{2}{13} \left(3^{50} - 1 \right)$	b) $\frac{1}{26} \left(3^{49} - 1 \right)$	c) $\frac{1}{13} \left(3^{50} - 1 \right)$	d) $\frac{1}{26} \left(3^{50} - 1 \right)$		
13) If the line $y = mx + c$ is a common tangent to the hyperbola $\frac{x^2}{100} - \frac{y^2}{64} = 1$ and the circle $x^2 + y^2 = 36$, then which one of the following is true?						
	a) $4c^2 = 369$	b) $c^2 = 369$	c) $8m + 5 = 0$	d) $5m = 4$		
14) The area (in sq.units) of the region $A = \{(x, y) : (x - 1) [x] \le y \le 2\sqrt{x}, 0 \le x \le 2\}$ where [t] denotes the greatest integer funtion, is:						
	a) $\frac{4}{3}\sqrt{2} - \frac{1}{2}$	b) $\frac{8}{3}\sqrt{2} - \frac{1}{2}$	c) $\frac{8}{3}\sqrt{2} - 1$	d) $\frac{4}{3}\sqrt{2} + 1$		
15) If $a+x=b+y=c+z+1$, where a, b, c,x, y, z are non-zero distinct real numbers, then $\begin{vmatrix} x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c \end{vmatrix}$ is equal to:						
	a) $y(a-b)$	b) 0	c) $y(b-a)$	d) $y(a-c)$		

9) If $\int \frac{\cos \theta}{5+7\sin \theta-2\cos^2 \theta} d\theta = A \log_e |B(\theta)| + C$ where C is a constant of integration, then $\frac{B(\theta)}{A}$ can be:

a) $\frac{2\sqrt{3}}{3}$ b) $\frac{2\sqrt{3}}{5}$ c) $\frac{\sqrt{3}}{12}$