

09/920689

FILE 'HCAPLUS' ENTERED AT 11:57:49 ON 30 MAR 2004  
ACT LEVY92068/A

-----  
L1 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "TRANS-8,TRANS-10-DODEC  
  
L1 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "TRANS-8,TRANS-10-DODEC  
ADIEN-1-OL"/CN  
L2 ( 6) SEA FILE=REGISTRY ABB=ON PLU=ON (16974-11-1 OR  
2077-10-8 OR 33189-72-9 OR 33956-49-9 OR 40642-40-8 OR  
53120-26-6 OR 53120-27-7)/RN  
L3 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON 20711-10-8/RN  
L4 ( 7) SEA FILE=REGISTRY ABB=ON PLU=ON L2 OR L3  
L5 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "(Z)-11-TETRADECENYL  
ACETATE"/CN  
L6 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "(E)-11-TETRADECENYL  
ACETATE"/CN  
L7 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "(Z)-8-DODECENYL  
ACETATE"/CN  
L8 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "(E)-8-DODECENYL  
ACETATE"/CN  
L9 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "(Z)-8-DODECEN-1-OL"/CN  
  
L10 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "(Z,Z)-3,13-OCTADECADIE  
N-1-YL ACETATE"/CN  
L11 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "(E,Z)-3,13-OCTADECADIE  
N-1-OL ACETATE"/CN  
L12 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON "(Z)-9-DODECENYL  
ACETATE"/CN  
L13 ( 9) SEA FILE=REGISTRY ABB=ON PLU=ON L1 OR L2 OR L3 OR L4  
OR L5 OR L6 OR L7 OR L8 OR L9 OR L10 OR L11 OR L12  
L14 ( 1101) SEA FILE=HCAPLUS ABB=ON PLU=ON L13  
L15 ( 1) SEA FILE=REGISTRY ABB=ON PLU=ON WATER/CN  
L16 ( 518) SEA FILE=HCAPLUS ABB=ON PLU=ON TRANS(W)8(W)TRANS(W)10(W)  
D!DECAD? OR ((E OR Z)(W)8(W)DODEC? OR (E OR Z)(W)Z(W)3(W)  
13(W)(OCTADEC? OR OCTA DEC?) OR (E OR Z)(W)11(W)(TETRADE  
C? OR TETRA DEC?) OR Z(W)9(W)DODEC?)(3A)ACETATE OR Z 8  
DODECEN?  
L17 36 SEA FILE=HCAPLUS ABB=ON PLU=ON (L14 OR L16) AND (L15  
OR WATER OR H2O)

L17 ANSWER 1 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 14 Dec 2003  
ACCESSION NUMBER: 2003:971954 HCAPLUS  
DOCUMENT NUMBER: 140:28456  
TITLE: Method of encapsulating hydrophobic organic  
molecules in polyurea capsules  
INVENTOR(S): Stover, Harald D. H.; Li, Wen-Hui; Croll, Lisa  
M.; Shulkin, Anna  
PATENT ASSIGNEE(S): McMaster University, Can.  
SOURCE: PCT Int. Appl., 61 pp.  
CODEN: PIXXD2  
DOCUMENT TYPE: Patent  
LANGUAGE: English  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

09/920689

| PATENT NO.    | KIND                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE     | APPLICATION NO. | DATE     |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|----------|
| WO 2003101606 | A1                                                                                                                                                                                                                                                                                                                                                                                                                           | 20031211 | WO 2003-CA817   | 20030602 |
| W:            | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,<br>LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,<br>NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ,<br>TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW,<br>AM, AZ, BY, KG, KZ, MD, RU, TJ, TM |          |                 |          |
| RW:           | GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE,<br>BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT,<br>LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM,<br>GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                                                          |          |                 |          |

PRIORITY APPLN. INFO.: US 2002-384137P P 20020531

AB It is known to encapsulate various materials in polyurea microcapsules, but obtaining satisfactory microcapsules incorporating alc. materials has proven difficult. A process has now been found where polyurea microcapsules are formed by interfacial polymerization between an aqueous phase and a **water** -immiscible phase, and properties, particularly the solubility parameters, of the **water** immiscible phase are closely matched to corresponding properties of the polyurea. Microcapsules prepared by this process have improved stability, mech. strength and controlled release properties. Thus, 2.5 g Mondur ML in a mixture of 20 mL 1-dodecanol and 80 mL Bu acetate and 1.03 g diethylene triamine in 50 mL **water** were interfacially polymerized to give a microcapsule containing 1-dodecanol and Bu acetate.

IT 20711-10-8 28079-04-1 33956-49-9

40642-40-8

RL: MSC (Miscellaneous)

(microcapsule containing; method of encapsulating hydrophobic organic mols. in polyurea capsules)

REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 2 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 01 Nov 2002  
ACCESSION NUMBER: 2002:832534 HCPLUS  
DOCUMENT NUMBER: 137:329448  
TITLE: Controlled-release particles comprising inorganic matrix  
INVENTOR(S): Anderson, Mark T.; Budd, Kenneth D.; Marabella, Charles P.; Nigatu, Tadesse G.  
PATENT ASSIGNEE(S): 3M Innovative Properties Company, USA  
SOURCE: PCT Int. Appl., 38 pp.  
CODEN: PIXXD2  
DOCUMENT TYPE: Patent  
LANGUAGE: English  
FAMILY ACC. NUM. COUNT: 2  
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

09/920689

|                        |                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |            |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|------------|
| WO 2002085113          | A1                                                                                                                                                                                                                                                                                                                                                                                                             | 20021031 | WO 2002-US8969 | 20020322   |
| W:                     | AE, AG, AL, AM, AT, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, CZ, DE, DE, DK, DK, DM, DZ, EC, EE, EE, ES, FI, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ |          |                |            |
| RW:                    | GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                                                                                     |          |                |            |
| US 2003031694          | A1                                                                                                                                                                                                                                                                                                                                                                                                             | 20030213 | US 2001-920689 | 20010802   |
| EP 1392115             | A1                                                                                                                                                                                                                                                                                                                                                                                                             | 20040303 | EP 2002-764149 | 20020322   |
| R:                     | AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR                                                                                                                                                                                                                                                                                                         |          |                |            |
| PRIORITY APPLN. INFO.: |                                                                                                                                                                                                                                                                                                                                                                                                                |          | US 2001-838854 | A 20010420 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                |          | US 2001-920689 | A 20010802 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                |          | WO 2002-US8969 | W 20020322 |

AB A particle that includes an inorg. matrix that comprises channels and a composition disposed in the channels, the composition including organic

structure-directing agent and active agent, for example, pheromone, and the particle being capable of controllably releasing the active agent are disclosed.

IT 7732-18-5, Water, uses

RL: NUU (Other use, unclassified); USES (Uses)  
(controlled-release particles comprising inorg. matrix)

IT 16974-11-1, Z-9 Dodecanyl

acetate 20711-10-8 28079-04-1, Z

-8-Dodecanyl acetate

33189-72-9 33956-49-9, trans-8

,Trans-10-Dodecadien-1-ol

38363-29-0, E-8-Dodecanyl

acetate 40642-40-8, Z-8-

Dodecen-1-ol 53120-26-6, (E,Z

) -3,13-Octadecadienyl acetate

53120-27-7, (Z,Z)-3,13

-Octadecadienyl acetate

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(controlled-release particles comprising inorg. matrix)

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR  
THIS RECORD. ALL CITATIONS AVAILABLE IN  
THE RE FORMAT

L17 ANSWER 3 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 24 Jul 2000

ACCESSION NUMBER: 2000:497525 HCAPLUS

DOCUMENT NUMBER: 133:218810

TITLE: Comparison of pheromone application rates, point source densities, and dispensing methods for mating disruption of tufted apple bud moth (Lepidoptera: Tortricidae)

AUTHOR(S): Meissner, Heike E.; Atterholt, Cynthia A.;

Walgenbach, James F.; Kennedy, George G.

CORPORATE SOURCE: Department of Entomology, Mountain Horticultural

Searcher : Shears 571-272-2528

09/920689

Crops Research & Extension Center, North  
Carolina State University, Fletcher, NC, 28732,  
USA

SOURCE: Journal of Economic Entomology (2000), 93(3),  
820-827

CODEN: JEENAI; ISSN: 0022-0493

PUBLISHER: Entomological Society of America

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Small-plot ( $\approx 0.1$  ha) studies were used to evaluate different pheromone dispensing systems, application rates, and point-source densities for mating disruption of the tufted apple bud moth, *Platynota idaeusalis* (Walker). Using polyvinyl chloride spirals impregnated with tufted apple bud moth pheromone (1:1 ratio of E11-tetradecenyl alc./E11-tetradecenyl acetate), pheromone rates of  $\geq 1482$  spirals per ha (74.1 g pheromone per ha) were superior to a rate of 988 spirals per ha (49.4 g pheromone per ha) in decreasing male response to pheromone traps in 1995, whereas no differences were detected among rates of 988, 1482 and 1975 spirals per ha in 1996. Within a range of 370-988 pheromone dispensers per ha, point source densities were equally effective in suppressing male response to pheromone traps. Pheromone-impregnated paraffin disks were equally effective at inhibiting male response to pheromone traps compared with polyvinyl chloride spirals. However, a paraffin emulsion formulation of pheromone applied with a hand-held grease gun provided longer residual communication disruption effects than polyvinyl chloride spirals. Dilution of paraffin emulsion pheromone formulations in water for application with a backpack sprayer and airblast sprayer rendered them ineffective in reducing male response to pheromone traps. The releases of pheromone from polyvinyl chloride spirals and paraffin disks aged in the field were described by a linear and neg. logarithmic curve, resp., indicating that dispenser life time should be longer for spirals. The ratio of acetate to alc. components of pheromone released from spirals increased over time, whereas the release ratio remained more constant for paraffin disks. This suggests that the disruption efficacy of spirals may be prematurely reduced because of imbalance of the released components.

IT 33189-72-9

RL: AGR (Agricultural use); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study); USES (Uses)  
(pheromone application rates and point source densities and dispensing methods for mating disruption of tufted apple bud moth)

REFERENCE COUNT: 27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 4 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 19 Dec 1999

ACCESSION NUMBER: 1999:798133 HCPLUS

DOCUMENT NUMBER: 132:120195

TITLE: Identification and field evaluation of components of female sex pheromone of millet stem borer, *Coniesta ignefusalis*

09/920689

AUTHOR(S): Beevor, Peter S.; Youm, Ousmane; Hall, David R.; Cork, Alan

CORPORATE SOURCE: Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK

SOURCE: Journal of Chemical Ecology (1999), 25(12), 2643-2663

PUBLISHER: Kluwer Academic/Plenum Publishers

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Five active compds. were detected during analyses of ovipositor washings and effluvia from virgin female Coniesta ignefusalis moths by gas chromatog. (GC) linked to electroantennog. (EAG) recording from a male moth. These were identified as (Z)-7-dodecen-1-ol (Z7-12:OH), (Z)-5-decen-1-ol (Z5-10:OH), (Z)-7-dodecenal (Z7-12:Ald), (Z)-7-dodecetyl acetate (Z7-12:Ac), and (Z)-9-tetradecen-1-ol (Z9-14:OH) by comparison of their GC retention times, mass spectra, and EAG activities with those of synthetic stds. Laboratory tests of dispensers for these compds. showed that release rates from polyethylene vials increased to relatively uniform values after three to four days, but release from septa was very rapid and nonuniform and decreased to low levels after two to three days. Trapping tests in Niger showed that the major component, Z7-12:OH, and two of the minor components, Z5-10:OH and Z7-12:Ald, were essential for attraction of male C. ignefusalis moths. The most attractive blend contained these three components in a 100:5:3.3 ratio in a polyethylene vial, which emitted the components in similar proportions to those produced by the female C. ignefusalis moth. Water traps baited with this blend containing 1 mg of Z7-12:OH caught more male C. ignefusalis moths than traps baited with newly emerged female moths. Addition of up to 10% of the corresponding E isomers of the pheromone components had no effect on catches, but addition of the other two minor components detected, Z7-12:Ac and/or Z9-14:OH, to the attractive blend at naturally occurring levels caused significant redns. in trap catch.

IT 16974-11-1, (Z)-9-Dodecanyl

acetate 28079-04-1, (Z)-8-

Dodecanyl acetate 40642-40-8, (Z

) -8-Dodecen-1-ol

RL: BAC (Biological activity or effector, except adverse); BSU

(Biological study, unclassified); BIOL (Biological study)

(male millet stem borer response to)

REFERENCE COUNT: 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 5 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 01 Mar 1999

ACCESSION NUMBER: 1999:130923 HCPLUS

DOCUMENT NUMBER: 130:209433

TITLE: Purification of unsaturated higher aliphatic esters

INVENTOR(S): Fukumoto, Takehiko; Hirokawa, Kazushi; Suzuki, Hiroshi

PATENT ASSIGNEE(S): Shin-Etsu Chemical Industry Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 6 pp.

09/920689

CODEN: JKXXAF  
DOCUMENT TYPE: Patent  
LANGUAGE: Japanese  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO.  | KIND | DATE     | APPLICATION NO. | DATE     |
|-------------|------|----------|-----------------|----------|
| JP 11049723 | A2   | 19990223 | JP 1997-214612  | 19970808 |
| JP 3441630  | B2   | 20030902 |                 |          |

PRIORITY APPLN. INFO.: JP 1997-214612 19970808  
AB Title compds., useful as perfumes, agrochems., or insect pheromones (no data), are purified by mixing the compds. with saturated MeOH solns. and/or aqueous solns. of urea in the presence of lower fatty acids or their anhydrides and crystallizing urea adducts. (Z,E)-9,11-tetradecadienyl acetate (I) with 84.6% purity was mixed with MeOH solution of urea and AcOH at 58°, cooled to 5° over 3 h, filtered, and then the filtrate was washed with H<sub>2</sub>O to give I with 93.1% purity.

IT 28079-04-1P

RL: PUR (Purification or recovery); PREP (Preparation)  
(purification of unsatd. higher aliphatic esters as perfumes, agrochems., or insect pheromones)

L17 ANSWER 6 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 21 Aug 1998

ACCESSION NUMBER: 1998:524314 HCPLUS

TITLE: Residues of applied lepidopteran pheromones on commodities--a regulatory hurdle.

AUTHOR(S): Spittler, Terry D.; Leichtweis, Harrison C.; Dennehy, Timothy J.; Kirsch, Phillip

CORPORATE SOURCE: Analytical Laboratories, Cornell

SOURCE: University-NYSAES, Geneva, NY, 14456, USA  
Book of Abstracts, 216th ACS National Meeting,  
Boston, August 23-27 (1998), AGRO-046. American  
Chemical Society: Washington, D. C.  
CODEN: 66KYA2

DOCUMENT TYPE: Conference; Meeting Abstract

LANGUAGE: English

AB Chemical pesticide registration regulations in most of the world require extensive toxicity, environmental and residue testing of proposed active ingredients. These definitions included insect pheromone components used to disrupt or confuse mating cycles. Negligible residues were predicted for lepidopteran pheromones used in fruit production. In this study, fruits (apples, peaches, grapes) treated with a variety of pheromones were analyzed for their resp. component residues. Fruit samples were blended and extracted with acetone; following the addition of water, the analytes were extracted into hexane, concentrated, and adsorbed onto a Florisil Sep-pak. Elution was with 10% acetone/hexane. Chromatog. of Z-9-DDA (Z-9-Dodecen-1-ol Acetate), Z-11-TDA (Z-11-Tetradecen-1-ol Acetate) and E-11-TDA (E-11-Tetradecen-1-ol Acetate) utilized a H-P Model 5890 equipped with a Restek Stabilwax 10 capillary column, 30 m + 0.25 mm + 0.25 µm coating. EZ-3, 13-ODA (E-

09/920689

**Z-3, 13-Octadecadien-1-ol Acetate**) and ZZ-3, 13-ODA (**Z-Z-3, 13-Octadecadien-1-ol Acetate**) were chromatographed on a H-P Model 5890B using a Silar 10C, 50m + 0.25 mm + 0.25 µg column. Detection by HP-MSD Model 5970B was in the selective ion mode. Recoveries were generally 80%, or better, at a min. sensitivity of <5 ppb for all components analyzed. No residues have been detected on any commodity samples, a point cited by the EPA in their exemption of lepidopteran pheromones from tolerance.

L17 ANSWER 7 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 30 May 1998  
ACCESSION NUMBER: 1998:323365 HCAPLUS  
DOCUMENT NUMBER: 129:1659  
TITLE: Residue analysis of new pesticides. 3rd communication. Clomazone, cyprodinil, fluquinconazole, pymetrozine, quinoxyfen  
AUTHOR(S): Haenel, Ralf; Fischer, Ralf; Siebers, Johannes  
CORPORATE SOURCE: Fachgruppe Chemische Mittelpruefung, Biologische Bundesanstalt Land-Forstwirtschaft, Braunschweig, D-38104, Germany  
SOURCE: Nachrichtenblatt des Deutschen Pflanzenschutzdienstes (Braunschweig) (1998), 50(5), 118-126  
CODEN: NDPBA6; ISSN: 0027-7479  
PUBLISHER: Verlag Eugen Ulmer GmbH & Co.  
DOCUMENT TYPE: Journal  
LANGUAGE: German  
AB Physico-chemical data and residue anal. methods are presented for the determination of clomazone, cyprodinil, fluquinconazole, pymetrozine, and quinoxyfen in crops, food of plant and animal origin, soil, water, and air including quantification limits and recoveries obtained in fortification expts. Relative retention times and mass spectrometric data are presented.

IT 53120-27-7  
RL: AGR (Agricultural use); ANT (Analyte); PRP (Properties); ANST (Analytical study); BIOL (Biological study); USES (Uses)  
(residue anal. of clomazone, cyprodinil, fluquinconazole, pymetrozine, quinoxyfen, and octadecadienylacetate)

IT 7732-18-5, Water, analysis  
RL: AMX (Analytical matrix); ANST (Analytical study)  
(residue anal. of clomazone, cyprodinil, fluquinconazole, pymetrozine, quinoxyfen, and octadecadienylacetate)

L17 ANSWER 8 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 01 Mar 1997  
ACCESSION NUMBER: 1997:134987 HCAPLUS  
DOCUMENT NUMBER: 126:140996  
TITLE: Semiochemical-containing insecticidal preparation.  
INVENTOR(S): Loesel, Peter; Penners, Gunther;  
Cianciulli-Teller, Maria-G.  
PATENT ASSIGNEE(S): Bayer A.-G., Germany  
SOURCE: Ger. Offen., 13 pp.  
CODEN: GWXXBX

09/920689

DOCUMENT TYPE: Patent  
LANGUAGE: German  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO.                                                                                                                           | KIND | DATE     | APPLICATION NO.    | DATE     |
|--------------------------------------------------------------------------------------------------------------------------------------|------|----------|--------------------|----------|
| DE 19528529                                                                                                                          | A1   | 19970206 | DE 1995-19528529   | 19950803 |
| WO 9705778                                                                                                                           | A1   | 19970220 | WO 1996-EP3220     | 19960722 |
| W: AU, BB, BG, BR, BY, CA, CN, CZ, HU, JP, KR, KZ, LK, MX, NO,<br>NZ, PL, RO, RU, SK, TR, UA, US                                     |      |          |                    |          |
| RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,<br>PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,<br>TG |      |          |                    |          |
| AU 9667354                                                                                                                           | A1   | 19970305 | AU 1996-67354      | 19960722 |
| AU 710396                                                                                                                            | B2   | 19990916 |                    |          |
| EP 845942                                                                                                                            | A1   | 19980610 | EP 1996-927569     | 19960722 |
| EP 845942                                                                                                                            | B1   | 20021009 |                    |          |
| R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, NL, PT                                                                                    |      |          |                    |          |
| JP 11510174                                                                                                                          | T2   | 19990907 | JP 1996-508064     | 19960722 |
| AT 225604                                                                                                                            | E    | 20021015 | AT 1996-927569     | 19960722 |
| ES 2180790                                                                                                                           | T3   | 20030216 | ES 1996-927569     | 19960722 |
| PT 845942                                                                                                                            | T    | 20030228 | PT 1996-96927569   | 19960722 |
| ZA 9606582                                                                                                                           | A    | 19970217 | ZA 1996-6582       | 19960802 |
| US 6395776                                                                                                                           | B1   | 20020528 | US 1998-356        | 19980128 |
| PRIORITY APPLN. INFO.:                                                                                                               |      |          | DE 1995-19528529 A | 19950803 |
|                                                                                                                                      |      |          | WO 1996-EP3220 W   | 19960722 |

OTHER SOURCE(S): MARPAT 126:140996

AB The preparation comprises a semiochem. (pheromone, kairomone or insect attractant), a UV absorber with low water miscibility, an unsatd. oil with low water miscibility, and, optionally, pesticides and adjuvants. Thus, a composition contained. E,E-8,10-docadienol, 2-ethylhexyl 2-cyano-3,3-diphenyl-2-propenoate, 2-hydroxy-4-methoxybenzophenone and castor oil.  
IT 33956-49-9, (E,E)-8,10-Dodecadienol  
RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses) (semiochem.-containing insecticidal preparation)

L17 ANSWER 9 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 17 Jan 1997  
ACCESSION NUMBER: 1997:36676 HCPLUS  
DOCUMENT NUMBER: 126:101923  
TITLE: Four species of noctuid moths degrade sex pheromone by a common antennal metabolic pathway  
AUTHOR(S): Klun, Jerome A.; Potts, William J. E.; Oliver, James E.  
CORPORATE SOURCE: Agricultural Research Service, U. S. Department of Agriculture, Beltsville, MD, 20705, USA  
SOURCE: Journal of Entomological Science (1996), 31(4), 404-413  
CODEN: JESCEP; ISSN: 0749-8004  
PUBLISHER: Georgia Entomological Society, Inc.  
DOCUMENT TYPE: Journal  
LANGUAGE: English  
AB Z-9-tetradecenyl acetate (Z-9-14:OAc) is a component in the female sex pheromones of the cabbage looper, Trichoplusia ni, beet

Searcher : Shears 571-272-2528

armyworm, *Spodoptera exigua*, fall armyworm, *Spodoptera frugiperda*, and black cutworm, *Agrotis ipsilon*. The authors compared the in vivo catabolism of Z-9-14:OAc in time course fashion after the tritiated compound was applied topically to the antennae of males in the four species. Catabolism of tritiated European corn borer, *Ostrinia nubilalis*, sex pheromone (Z-11-14:OAc) was monitored concomitantly so direct comparisons could be made between the male borer and the noctuid males. Results showed that catabolism of pheromone in all four noctuid moths proceeded along the same hydrolysis-alc. oxidation pathway as has been observed in the European corn borer male. Catabolism was math. modeled with first-order differential equations as a four-compartment degradative system in which tritiated pheromonal acetate was sequentially converted to tetradecenol, tetradecenoic acid and water. The modeling revealed subtle differences in catabolism from one species to another and that most species exhibited a finite capacity to catabolize the pheromone.

IT 20711-10-8

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (four species of noctuid moths degrade sex pheromone by a common antennal metabolic pathway)

L17 ANSWER 10 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
 ED Entered STN: 12 Oct 1996  
 ACCESSION NUMBER: 1996:608098 HCAPLUS  
 DOCUMENT NUMBER: 126:7440  
 TITLE: Ruthenium tetroxide oxidation of alkenes. Part  
 7. A more complete picture  
 AUTHOR(S): Albarella, Laura; Piccialli, Vincenzo; Smaldone,  
 Dina; Sica, Donato  
 CORPORATE SOURCE: Dip. Chim. Organica Biol., Univ. Studi Napoli  
 Federico II, Naples, 80134, Italy  
 SOURCE: Journal of Chemical Research, Synopses (1996),  
 (9), 400-401  
 CODEN: JRPSDC; ISSN: 0308-2342  
 PUBLISHER: Royal Society of Chemistry  
 DOCUMENT TYPE: Journal  
 LANGUAGE: English  
 OTHER SOURCE(S): CASREACT 126:7440

AB The main reaction products of the RuO<sub>4</sub> oxidation of a number of linear and cyclic alkenes, at -70°C in acetone-water (5:1) are 1,2-diols, formed in a syn stereospecific manner, and/or α-ketols sometimes accompanied by small amts. of scission products, namely aldehydes and/or carboxylic acids; in some cases, 1,3-dioxolane products, formed by condensation of the 1,2-diol and aldehyde materials, are also obtained.

IT 20711-10-8 33189-72-9, trans-11-Tetradecen-1-yl acetate

RL: RCT (Reactant); RACT (Reactant or reagent)  
 (ruthenium tetroxide oxidation of alkenes)

L17 ANSWER 11 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
 ED Entered STN: 06 Sep 1996  
 ACCESSION NUMBER: 1996:532727 HCAPLUS  
 DOCUMENT NUMBER: 125:216010

TITLE: Efficient separation of fatty acyl precursors of *Spodoptera littoralis* sex pheromone by reversed-phase high-performance liquid chromatography

AUTHOR(S): Gosalbo, Laura; Fabrias, Gemma; Camps, Francisco

CORPORATE SOURCE: Dep. Biol. Organic Chemistry, C.I.D.-C.S.I.C., Barcelona, Spain

SOURCE: Archives of Insect Biochemistry and Physiology (1996), 33(1), 75-81

CODEN: AIBPEA; ISSN: 0739-4462

PUBLISHER: Wiley-Liss

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Chromatog. conditions are reported for the efficient separation of fatty acyl precursors of *S. littoralis* sex pheromone by reversed-phase HPLC. The procedure was optimized with a mixture of phenacyl derivative stds., using an octadecylsilane column, mixts. of acetonitrile-water, methanol-water, and methanol-isopropanol-water as mobile phases, and temperature control. This optimized method allowed the satisfactory separation of phenacyl esters obtained directly from *S. littoralis* sex pheromone gland exts.

IT 20711-10-8 33189-72-9

RL: BSU (Biological study, unclassified); BIOL (Biological study) (separation of fatty acyl precursors of *Spodoptera* sex pheromone by reversed-phase HPLC)

L17 ANSWER 12 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 01 Mar 1995

ACCESSION NUMBER: 1995:380428 HCAPLUS

DOCUMENT NUMBER: 122:132837

TITLE: Method for the isomerization of cis-alkenyl compounds.

INVENTOR(S): Terauchi, Takanobu; Sakurada, Toyohisa; Fukumoto, Takehiko; Suzuki, Hiroshi

PATENT ASSIGNEE(S): Shin-Etsu Chemical Co., Ltd., Japan

SOURCE: Eur. Pat. Appl., 7 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO.        | KIND | DATE     | APPLICATION NO. | DATE     |
|-------------------|------|----------|-----------------|----------|
| EP 635467         | A1   | 19950125 | EP 1994-111396  | 19940721 |
| EP 635467         | B1   | 19971015 |                 |          |
| R: CH, DE, GB, LI |      |          |                 |          |
| JP 07033683       | A2   | 19950203 | JP 1993-179528  | 19930721 |
| JP 3340517        | B2   | 20021105 |                 |          |
| US 5532421        | A    | 19960702 | US 1994-275753  | 19940719 |

PRIORITY APPLN. INFO.: JP 1993-179528 A 19930721  
OTHER SOURCE(S): CASREACT 122:132837

AB The invention provides a method for isomerization of cis-alkenyl compds. to their trans isomers, and is useful for preparation of geometrical isomers which are constituents of synthetic pheromones, perfumes, terpenes, etc. The method uses nitric acid as the sole

catalyst. For example, 500 g cis-4-tridecanyl chloride (cis-I) was stirred with 7.5 g nitric acid (expressed as pure HNO<sub>3</sub>) at 80–85° for 3 h. Washing with aqueous 5% NaOH, then pure H<sub>2</sub>O, and distillation gave a mixture of cis- and trans-I, obtained with 78% isomerization and 99% selectivity. The new method gave nearly identical results for cis-3-hexene, cis-3-heptenol, cis-3-octenyl chloride, oleic acid, and cis-8-dodecanyl acetate. In contrast, known methods using either 2-mercaptopropanoic acid or HCl/NaNO<sub>2</sub> gave only 62–65% isomerization and only 93% selectivity. The so-prepared cis/trans-I was used to prepare 4-tridecanyl acetate, the pheromone of Keiferia lycopersicella, with trans/cis ratio 78:22 and purity 98%.

- IT **38363-29-0P**, trans-8-Dodecanyl acetate  
 RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)  
 (cis/trans-isomerization of alkenyl compds. using nitric acid catalyst)
- IT **28079-04-1**, cis-8-Dodecanyl acetate  
 RL: RCT (Reactant); RACT (Reactant or reagent)  
 (cis/trans-isomerization of alkenyl compds. using nitric acid catalyst)

L17 ANSWER 13 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN  
 ED Entered STN: 24 Jul 1993  
 ACCESSION NUMBER: 1993:424890 HCPLUS  
 DOCUMENT NUMBER: 119:24890  
 TITLE: Sex pheromone catabolism in the redbanded leafroller moth  
 AUTHOR(S): Klun, J. A.; Schwarz, M.  
 CORPORATE SOURCE: Beltsville Agric. Res. Cent., Agric. Res. Serv., Beltsville, MD, 20705, USA  
 SOURCE: Journal of Chemical Ecology (1993), 19(4), 751-62  
 CODEN: JCECD8; ISSN: 0098-0331

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Tritium-labeled components of the red-banded leaf-roller (*Argyrotaenia velutinana*) female sex pheromone, (Z)- and (E)-[11,12-<sup>3</sup>H]-11-tetradecenyl acetate (57 Ci/mmole), applied to antennae of males and females were degraded causing formation of tritiated 11-tetradecenol, 11-tetradecenoic acid, and water. The catabolic pathway involves acetate hydrolysis, oxidation of alc. to fatty acid, and degradation of the acid via β-oxidation. Both geometric isomers were degraded equally well by males but degradation proceeded comparatively less rapidly with female antennae. It is surmised that under natural conditions of olfactory sensing, sex pheromone impinging upon the moth's antennae is probably subject to a similar catabolic fate.

- IT **20711-10-8 33189-72-9**  
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (metabolism of, by red-banded leafroller moth, sex in relation to)

L17 ANSWER 14 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN  
 ED Entered STN: 15 Nov 1992  
 ACCESSION NUMBER: 1992:586678 HCPLUS

DOCUMENT NUMBER: 117:186678  
 TITLE: Plastic dispenser for pheromones  
 INVENTOR(S): Neumann, Ulrich; Buehrle, Hans; Renz, Guenter;  
 Buschmann, Ernst  
 PATENT ASSIGNEE(S): BASF A.-G., Germany  
 SOURCE: Eur. Pat. Appl., 11 pp.  
 CODEN: EPXXDW  
 DOCUMENT TYPE: Patent  
 LANGUAGE: German  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                    | KIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE     | APPLICATION NO. | DATE     |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|----------|
| EP 496102                                     | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19920729 | EP 1991-122072  | 19911221 |
| EP 496102                                     | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19941026 |                 |          |
| R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, NL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                 |          |
| DE 4101878                                    | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19920730 | DE 1991-4101878 | 19910123 |
| ES 2063431                                    | T3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19950101 | ES 1991-122072  | 19911221 |
| PRIORITY APPLN. INFO.:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | DE 1991-4101878 | 19910123 |
| AB                                            | Small plastic chambers are described for the release of insect-attractant phenomena. The chambers have a surface/volume ratio of 2-8, preferably 3.7-6.2 cm <sup>-1</sup> , and a ratio of weight of plastic/chamber volume of ≤1.5, preferably 0.2-0.8 g/mL. The chamber is made of a thermoplastic polymer, preferably polyethylene, polypropylene, polyester, polyamide, or of a biodegradable material, such as poly(hydroxybutyric acid). The chambers are coated with a water-soluble pheromone-impervious polymer, such as polyamide, PVA, or polyester. The chambers are secured to a string at 0.5-10.0 m intervals. |          |                 |          |
| IT                                            | <b>16974-11-1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                 |          |
| RL:                                           | BIOL (Biological study)<br>(dispenser for, plastic chamber as)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |          |

L17 ANSWER 15 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
 ED Entered STN: 17 Oct 1992  
 ACCESSION NUMBER: 1992:549660 HCAPLUS  
 DOCUMENT NUMBER: 117:149660  
 TITLE: Exposure, fate and potential residues in food of applied lepidopteran pheromones  
 AUTHOR(S): Spittler, T. D.; Leichtweis, H. C.; Kirsch, P.  
 CORPORATE SOURCE: Cornell Anal. Lab., Cornell Univ., Geneva, NY, 14456, USA  
 SOURCE: BCPC Monograph (1992), 51 (Insect Pheromones Other Behav.-Modif. Chem.: Appl. Regul.), 93-108  
 CODEN: MBCCDO; ISSN: 0306-3941  
 DOCUMENT TYPE: Journal  
 LANGUAGE: English  
 AB Fruits (apples, peaches, grapes) treated with a variety of pheromones were analyzed for their resp. component residues. Fruit samples were blended and extracted with acetone; following the addition of water, and analytes were extracted into hexane, concentrated, and adsorbed onto a Florisil Sep-pak. Elution was with 10% acetone/hexane. Chromatog. of Z-9-DDA (**Z-9-dodecen-1-ol acetate**), Z-11-TDA (**Z-**

**11-tetradecen-1-ol acetate)** and E-11-TDA  
**(E-11-tetradecen-1-ol acetate)**  
) utilized a H-P Model 5890 equipped with a Restek Stabilwax 10  
capillary column, 30 m + 0.25 mm + 0.25 µm coating.  
Temperature program: 80-130° @ 5°/min, 130-200° @  
4°/min, hold 9 min. Detection by HP-MSD Model 5970B was in  
the selective ion mode. Retention times were 16.3, 21.1 and 20.9  
min, resp. EZ-3,13-ODA (**E-Z-3,**  
**13-octadecadien-1-ol acetate)** and  
ZZ-3,13-ODA (**Z-Z-3,13-**  
**octadecadien-1-ol acetate)** were chromatographed on  
a H-P Model 5890B using a Silar 10C, 50 m + 0.25 mm +  
0.25 µm column. Temperature program: initial temperature 80 °, hold 2  
min; 80°-130° @ 10°/min, hold 15 min.  
Detection was by HP-MSD Model 5970C operated in the selective ion  
mode. Retention times were 18.4 and 18.6 min, resp. Recoveries  
were generally 80%, or better, at a min. sensitivity of <5 ppb for  
all components analyzed. No residues have been detected on any  
commodity samples.

L17 ANSWER 16 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 11 Jul 1992  
ACCESSION NUMBER: 1992:402843 HCAPLUS  
DOCUMENT NUMBER: 117:2843  
TITLE: Asymmetric microporous polymer beads for  
controlled release  
INVENTOR(S): Smith, Kelly L.; Holmes, Matthew F.; Brooke,  
James W.  
PATENT ASSIGNEE(S): Bend Research, Inc., USA  
SOURCE: Eur. Pat. Appl., 13 pp.  
CODEN: EPXXDW  
DOCUMENT TYPE: Patent  
LANGUAGE: English  
FAMILY ACC. NUM. COUNT: 2  
PATENT INFORMATION:

| PATENT NO.                                                              | KIND | DATE     | APPLICATION NO. | DATE     |
|-------------------------------------------------------------------------|------|----------|-----------------|----------|
| EP 466986                                                               | A1   | 19920122 | EP 1990-311027  | 19901009 |
| EP 466986                                                               | B1   | 19940427 |                 |          |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE<br>CA 2014595 | AA   | 19911012 | CA 1990-2014595 | 19900412 |
| AT 104826                                                               | E    | 19940515 | AT 1990-311027  | 19901009 |
| ES 2053120                                                              | T3   | 19940716 | ES 1990-311027  | 19901009 |
| PRIORITY APPLN. INFO.:                                                  |      |          | US 1990-547929  | 19900702 |
|                                                                         |      |          | EP 1990-311027  | 19901009 |

AB A controlled release device comprises active ingredient in the pores  
of a polymeric microporous bead having an anisotropic pore structure  
of large pores in the interior and small pores at the surface. The  
gradation of pore sizes between the interior and the surface is  
continuous. A solution (120 g/L) of polysulfone in DMF was pressurized  
through a needle into a precipitation bath of 0.5% surfactant solution in  
water. The beads formed were dried and loaded with  
gossypium. Other active ingredients are pesticides, drugs,  
cosmetics, etc.

IT **33956-49-9**, Codlemone

09/920689

RL: BIOL (Biological study)  
(polymer beads containing, for sustained release)

L17 ANSWER 17 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 31 May 1992  
ACCESSION NUMBER: 1992:211357 HCAPLUS  
DOCUMENT NUMBER: 116:211357  
TITLE: Biological activity and in vivo degradation of tritiated female sex pheromone in the male European corn borer  
AUTHOR(S): Klun, J. A.; Schwarz, M.; Uebel, E. C.  
CORPORATE SOURCE: Beltsville Agric. Res. Cent., Agric. Res. Serv., Beltsville, MD, 20705, USA  
SOURCE: Journal of Chemical Ecology (1992), 18(3), 283-98  
CODEN: JCECD8; ISSN: 0098-0331  
DOCUMENT TYPE: Journal  
LANGUAGE: English  
AB Isomers of [11,12-<sup>3</sup>H<sub>2</sub>]-11-tetradecenyl acetate (57 Ci/mM) were synthesized. Behavioral assay of the two compds. using Z- and E-type European corn borer (ECB) males showed that introduction of tritium into the double bond of the pheromone caused a significant isotope effect in the E-type ECB but not in the Z-type ECB. Measurements of tritium associated with the male antennae after a 3-min exposure showed that radioactivity equivalent to 10-17 mol pheromone was adsorbed onto male antennae. Time-course in vivo metabolic studies with picogram amts. of compound applied topically to antennae of E- and Z-type males and Z-type females showed that they metabolized pheromone similarly but females degraded pheromone more slowly than males. Pheromone was hydrolyzed, and the only other major radiolabeled metabolite observed by combined high-pressure and liquid chromatog.-radiodetection was tritiated water. Capillary gas chromatog. and radiomonitoring permitted detection of a trace amount of 11-tetradecenoic acid, which indicated that alc. oxidase activity is associated with the antennae. Evidence shows that clearing of pheromone from the ECB male antennae involves hydrolysis and oxidation of the alc. to fatty acid, which in turn is degraded, probably via β-oxidation, to carbon dioxide and water.

IT 20711-10-8P

RL: BPR (Biological process); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); PROC (Process)  
(preparation and isomerization and metabolism by antenna of male European corn borer)

IT 33189-72-9P

RL: BPR (Biological process); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); PROC (Process)  
(preparation and metabolism by antenna of male European corn borer)

L17 ANSWER 18 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 10 Nov 1989

ACCESSION NUMBER: 1989:573597 HCAPLUS

DOCUMENT NUMBER: 111:173597

TITLE: Process for the production of dien-1-ols, 9-hydroxydodec-10-enyl-1-tert-butyl ether, and

Searcher : Shears 571-272-2528

09/920689

its use as an intermediate in the synthesis of  
8,10-dodecane dienol  
INVENTOR(S): Mackenroth, Wolfgang; Hoelderich, Wolfgang;  
Becker, Rainer; Seufert, Walter  
PATENT ASSIGNEE(S): BASF A.-G., Fed. Rep. Ger.  
SOURCE: Eur. Pat. Appl., 11 pp.  
CODEN: EPXXDW  
DOCUMENT TYPE: Patent  
LANGUAGE: German  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO.                                    | KIND | DATE     | APPLICATION NO. | DATE     |
|-----------------------------------------------|------|----------|-----------------|----------|
| EP 305913                                     | A1   | 19890308 | EP 1988-113911  | 19880826 |
| EP 305913                                     | B1   | 19910522 |                 |          |
| R: AT, BE, CH, DE, ES, FR, GB, IT, LI, NL, SE |      |          |                 |          |
| DE 3729225                                    | A1   | 19890323 | DE 1987-3729225 | 19870902 |
| IL 87478                                      | A1   | 19920818 | IL 1988-87478   | 19880817 |
| CA 1311502                                    | A1   | 19921215 | CA 1988-575015  | 19880817 |
| US 4925991                                    | A    | 19900515 | US 1988-235478  | 19880824 |
| AT 63740                                      | E    | 19910615 | AT 1988-113911  | 19880826 |
| ES 2028963                                    | T3   | 19920716 | ES 1988-113911  | 19880826 |
| AU 8821726                                    | A1   | 19890302 | AU 1988-21726   | 19880901 |
| AU 606202                                     | B2   | 19910131 |                 |          |
| HU 48566                                      | A2   | 19890628 | HU 1988-4525    | 19880901 |
| HU 200154                                     | B    | 19900428 |                 |          |
| HU 204488                                     | B    | 19920128 | HU 1990-158     | 19880901 |
| JP 01083032                                   | A2   | 19890328 | JP 1988-218656  | 19880902 |
| US 4973765                                    | A    | 19901127 | US 1989-453901  | 19891220 |
| PRIORITY APPLN. INFO.:                        |      |          | DE 1987-3729225 | 19870902 |
|                                               |      |          | US 1988-235478  | 19880824 |
|                                               |      |          | EP 1988-113911  | 19880826 |

OTHER SOURCE(S): CASREACT 111:173597; MARPAT 111:173597  
AB R1R2C:CR3CR4:CR5(CR6R7)nOH (R1-R7 = H, C1-12 alkyl; n = 1-14) were prepared from R1R2C:CR3CR4(OH)CHR5(CR6R7)nOCMe<sub>3</sub> by treatment with an acid catalyst at elevated temperature Suitable catalyst are H<sub>2</sub>SO<sub>4</sub>, tosic acid, etc. The reaction may be carried out in the gas phase at 100-500° using a heterogeneous catalyst or in the liquid phase at 80-180° using a homogeneous catalyst. Thus, crotonaldehyde in THF was added to a -10° solution of BrMg(CH<sub>2</sub>)<sub>8</sub>OCMe<sub>3</sub> in THF. The mixture was stirred 1 h at -10° to give 77% trans-MeCH:CHCH(OH)(CH<sub>2</sub>)<sub>8</sub>OCMe<sub>3</sub>. The latter was heated with tosic acid to 140° with distillation of H<sub>2</sub>O and then to 170° to give 90% MeCH:CHCH:CH(CH<sub>2</sub>)<sub>7</sub>OH.  
IT 33956-49-9P, E,E-8,10-Dodecadienol  
RL: SPN (Synthetic preparation); PREP (Preparation)  
(preparation of)

L17 ANSWER 19 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 26 May 1989  
ACCESSION NUMBER: 1989:191339 HCPLUS  
DOCUMENT NUMBER: 110:191339  
TITLE: Biorational control of crop pests by mating disruption. Residue analyses of Z-9-dodecen-1-yl acetate

AUTHOR(S) : and **Z-11-tetradecen-1-yl acetate** in grapes  
 Spittler, Terry D.; Leichtweis, Harrison C.;  
 Dennehy, Timothy J.

CORPORATE SOURCE: Anal. Lab., Cornell Univ., Geneva, NY, 14456,  
 USA

SOURCE: ACS Symposium Series (1988), 379(Biotechnol.  
 Crop. Prot.), 430-6  
 CODEN: ACSMC8; ISSN: 0097-6156

DOCUMENT TYPE: Journal  
 LANGUAGE: English

AB **(Z)-9-Dodecen-1-yl acetate**  
**(I)** and **(Z)-11-tetradecen-1-yl acetate** (II), primary components of grape berry moth pheromone, were applied in vineyards via tie-on dispensers for the entire growing season. Mature grapes (100 g) were blended and extracted with acetone; following the addition of water, the analytes were extracted into hexane which, after evaporation, was adsorbed onto a Florisil Sep-pak. Elution was with 10% acetone in hexane. Chromatog. was on a Supelcowax 10 capillary column with temperature programming from 80 to 130° at 5°/min then 130 to 200 at 4°/min with a hold 9 min. Detection by HP-MSD Model #5970B was in the selective ion mode at 166 m/e and 194 m/e for I and II, resp. Corresponding retention times were 17.7 and 22.7 min. The sensitivity was <5 ppb for both materials at 80% recovery. Insect control by this biotech. approach was good, and it eliminated the use of traditional chemical pesticides against grape berry moth. No residues were detected in grape berries.

IT **16974-11-1, (Z)-9-Dodecen-1-yl acetate 20711-10-8, (Z)-11-Tetradecen-1-yl acetate**  
 RL: ANT (Analyte); ANST (Analytical study)  
 (determination of, in grapes by gas chromatog.)

L17 ANSWER 20 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
 ED Entered STN: 17 Feb 1989  
 ACCESSION NUMBER: 1989:52976 HCAPLUS  
 DOCUMENT NUMBER: 110:52976  
 TITLE: Polystyrene carrier for pheromones  
 INVENTOR(S): Angerer, Winfried; Klimesch, Roger; Parg, Adolf; Sanner, Axel  
 PATENT ASSIGNEE(S): BASF A.-G., Fed. Rep. Ger.  
 SOURCE: Ger. Offen., 4 pp.  
 CODEN: GWXXBX

DOCUMENT TYPE: Patent  
 LANGUAGE: German  
 FAMILY ACC. NUM. COUNT: 2  
 PATENT INFORMATION:

| PATENT NO.                                        | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------------------------------------------|------|----------|-----------------|----------|
| DE 3708297                                        | A1   | 19880922 | DE 1987-3708297 | 19870314 |
| EP 281918                                         | A2   | 19880914 | EP 1988-103158  | 19880302 |
| EP 281918                                         | A3   | 19901017 |                 |          |
| R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, NL, SE |      |          |                 |          |
| US 5163994                                        | A    | 19921117 | US 1988-165304  | 19880308 |

09/920689

JP 63230601 A2 19880927 JP 1988-53876 19880309  
PRIORITY APPLN. INFO.: DE 1987-3707692 19870311  
DE 1987-3708297 19870314

AB Pheromones are incorporated into a macroporous cross-linked polystyrene matrix. Beads (100-250  $\mu\text{m}$  diameter) were produced by emulsion polymerization of 135 g styrene, 45 g divinylbenzene (containing .apprx.50% ethylbenzene) and 20 g dimethylaminoethyl methacrylate in 1300 mL water and 200 mL octane, in the presence of 2 g lauryl peroxide and 1 g poly(vinylpyrrolidone). An agent was prepared by treating 100 g of the above polymer with 100 g of a 1:1 mixture of Z7,Z9- and Z7,E9-hexadecadienyl acetate.

IT 16974-11-1

RL: BIOL (Biological study)  
(pheromone, polystyrene carrier for)

L17 ANSWER 21 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 10 Dec 1988

ACCESSION NUMBER: 1988:607719 HCAPLUS

DOCUMENT NUMBER: 109:207719

TITLE: Mass spectra of lepidopterous sex pheromones with a conjugated diene system

AUTHOR(S): Ando, Tetsu; Ogura, Yasushi; Uchiyama, Masaaki

CORPORATE SOURCE: Fac. Agric., Tokyo Univ. Agric. Technol., Tokyo, 183, Japan

SOURCE: Agricultural and Biological Chemistry (1988), 52(6), 1415-23

CODEN: ABCHA6; ISSN: 0002-1369

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Dodecadien-1-ols, tetradecadien-1-ols, and hexadecadien-1-ols with a conjugated (E,E)- or (E)-diene system between the  $\omega_1, \omega_3$ - and  $\omega_5, \omega_7$ -positions, their acetates, and aldehyde derivs. (lepidopterous sex pheromones and candidates) were analyzed by electron-impact mass spectrometry, which was operated at 70-eV ionization voltage. Three functional derivs. with a same diene system presented a similar spectral pattern, except for the mol. ions ( $M^+$ ),  $[M-\text{H}_2\text{O}]^+$  of the alcs., and  $[M-\text{CH}_3\text{CO}_2\text{H}]^+$  of the acetates. Each isomer showed a characteristic fragment ion series of  $\text{C}_n\text{H}_{2n-2}^+$  .apprx. $\text{C}_n\text{H}_{2n-5}^+$  (C4.apprx.C9), which reflected the double-bond position in the mol., indicating a method for determining the position of a natural diene pheromone by comparing its mass spectrum with those of the synthetic dienes. By this method, the natural pheromone of Hellula undalis was confirmed to be a  $\omega_3, \omega_5$ -diene. Furthermore, the fitness indexes proposed by Y. Kuwahara et al. (1986) were calculated for some pheromone components, using the mass spectra of synthetic dienes, to examine the possibilities and limitations for applications of those mass spectra to natural pheromone studies.

IT 33956-49-9

RL: PRP (Properties)  
(mass spectrum of, electron-impact, in lepidopterous sex pheromone study)

L17 ANSWER 22 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 13 May 1988

ACCESSION NUMBER: 1988:166969 HCAPLUS

09/920689

DOCUMENT NUMBER: 108:166969  
TITLE: Preparation of (8E,10E)-8,10-dodecadien-1-ol as  
an insect pheromone  
INVENTOR(S): Kalvoda, Ladislav; Vrkoc, Jan  
PATENT ASSIGNEE(S): Czech.  
SOURCE: Czech., 16 pp.  
CODEN: CZXXA9  
DOCUMENT TYPE: Patent  
LANGUAGE: Czech  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO. | KIND | DATE     | APPLICATION NO. | DATE     |
|------------|------|----------|-----------------|----------|
| CS 233069  | B1   | 19850214 | CS 1983-3157    | 19830504 |
|            |      |          | CS 1983-3157    | 19830504 |

PRIORITY APPLN. INFO.: AB The title compound (I) is prepared from 3-bromo-2-propynyltetrahydropyran (II) by a multistep synthesis. I is useful as a sex pheromone for monitoring and control of Cydia pomonella (no data). II was prepared by reaction of BrMgC.tplbond.CMe and 2,3-dibromotetrahydropyran. The crude II was added to a boiling mixture of water, NH4Cl, and powdered Zn. After boiling and stirring for 1 h, the mixture was cooled, and concentrated NH4OH was added. After removal of Zn by filtration and phase separation, the organic layer was concentrated and purified by distillation to give HO(CH2)3CH:CHC.tplbond.CMe. The latter was tosylated and the product treated with MgBr2 in boiling C6H6-Et2O to give Br(CH2)3CH:CHC.tplbond.CMe. Coupling the latter with ClMg(CH2)4OCH2OMe in chilled THF containing Li2CuCL4 and cleaving the CH2OMe group in a boiling mixture of EtOH, (HOCH2)2, and H2SO4 gave HO(CH2)7CH:CHC.tplbond.CMe which was hydrogenated over (AcO)2Ni in EtOH and the resulting (8E,10Z)-HO(CH2)7CH:CHC.tplbond.CMe was isomerized by heating with PhSH at 100° to yield I.

IT 33956-49-9P  
RL: SPN (Synthetic preparation); PREP (Preparation)  
(preparation of, as insect pheromone)

L17 ANSWER 23 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 31 Oct 1987  
ACCESSION NUMBER: 1987:549231 HCPLUS  
DOCUMENT NUMBER: 107:149231  
TITLE: Phosphorylated ethylene oxide-propylene oxide-ethylene oxide block copolymer as dispersing agent for pesticide emulsions  
INVENTOR(S): Albrecht, Konrad; Heinrich, Rudolf; Schumacher, Hans  
PATENT ASSIGNEE(S): Hoechst A.-G. , Fed. Rep. Ger.  
SOURCE: Ger. Offen., 5 pp.  
CODEN: GWXXBX  
DOCUMENT TYPE: Patent  
LANGUAGE: German  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|            |      |      |                 |      |

09/920689

|                                           |    |          |                 |            |
|-------------------------------------------|----|----------|-----------------|------------|
| DE 3542439                                | A1 | 19870604 | DE 1985-3542439 | 19851130   |
| EP 224846                                 | A1 | 19870610 | EP 1986-116327  | 19861125   |
| EP 224846                                 | B1 | 19901003 |                 |            |
| R: AT, BE, CH, DE, FR, GB, GR, IT, LI, NL |    |          |                 |            |
| AT 57061                                  | E  | 19901015 | AT 1986-116327  | 19861125   |
| DK 8605734                                | A  | 19870531 | DK 1986-5734    | 19861128   |
| DK 174127                                 | B1 | 20020701 |                 |            |
| AU 8665821                                | A1 | 19870604 | AU 1986-65821   | 19861128   |
| AU 597314                                 | B2 | 19900531 |                 |            |
| JP 62132801                               | A2 | 19870616 | JP 1986-282197  | 19861128   |
| JP 2581682                                | B2 | 19970212 |                 |            |
| ZA 8609001                                | A  | 19870729 | ZA 1986-9001    | 19861128   |
| HU 43228                                  | A2 | 19871028 | HU 1986-4940    | 19861128   |
| HU 202714                                 | B  | 19910429 |                 |            |
| CA 1285785                                | A1 | 19910709 | CA 1986-524055  | 19861128   |
| PRIORITY APPLN. INFO.:                    |    |          |                 |            |
|                                           |    |          | DE 1985-3542439 | A 19851130 |
|                                           |    |          | EP 1986-116327  | A 19861125 |

AB Aqueous pesticide emulsions contain  $\alpha$ - and  $\omega$ -phosphorylated ethylene oxide-propylene oxide-ethylene oxide block copolymers or their salts. An emulsion was prepared by adding a mixture of 35% by weight Diclofopmethyl, 18% xylene and 6% fatty acid polyglycol ester to a mixture of 2% K salt of phosphorylated ethylene oxide-propylene oxide-ethylene oxide block copolymer, 10% ethylene glycol and 28% water.

IT 33956-49-9

RL: BIOL (Biological study)  
(emulsion of, dispersing agents for, phosphorylated ethylene oxide-propylene oxide-ethylene oxide block copolymers as)

L17 ANSWER 24 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 07 Mar 1987

ACCESSION NUMBER: 1987:63772 HCAPLUS

DOCUMENT NUMBER: 106:63772

TITLE: Separation of lepidopterous sex pheromones by reversed-phase thin layer chromatography and high performance liquid chromatography

AUTHOR(S): Ando, Tetsu; Hasegawa, Yuki; Uchiyama, Masaaki

CORPORATE SOURCE: Fac. Agric., Tokyo Univ. Agric. Technol., Tokyo, 183, Japan

SOURCE: Agricultural and Biological Chemistry (1986), 50(11), 2935-7  
CODEN: ABCHA6; ISSN: 0002-1369

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The separation of sex pheromonal compds. (C12, C14, and C16 alcs., acetates, and aldehydes) is described by reversed-phase TLC and HPLC. The reversed-phase TLC system consisted of a Merck RP-8F254s plate and MeCN-H<sub>2</sub>O (90:10) as the solvent system. The HPLC system used a Deverosil ODS-5 column with a mobile phase of MeCN-H<sub>2</sub>O (97:3) and a UV detector. Chromatograms of sex pheromonal compds. are presented and the results indicate that reversed-phase TLC and HPLC are useful tools for estimating the chain length and number of double bonds of a pheromone component.

IT 33956-49-9, (8E,10E)-8,10-Dodecadien-1-ol

RL: ANST (Analytical study)  
(separation of, by reversed-phase HPLC and TLC, sex pheromone

09/920689

components separation in relation to)  
IT 38363-29-0, (E)-8-Dodeceny1  
acetate  
RL: PROC (Process)  
(separation of, of sex pheromones by reversed-phase HPLC)

L17 ANSWER 25 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 14 Jun 1986  
ACCESSION NUMBER: 1986:202331 HCPLUS  
DOCUMENT NUMBER: 104:202331  
TITLE: Adhesive composition for controlled-release  
pheromone preparation  
INVENTOR(S): Yamada, Koichiro; Shimakawa, Sakae; Washiyama,  
Nobumasa; Ogawa, Kinya; Yamamoto, Akira; Nagura,  
Shigehiro  
PATENT ASSIGNEE(S): Shin-Etsu Chemical Industry Co., Ltd., Japan;  
Nisshin Chemical Industry Co., Ltd.  
SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp.  
CODEN: JKXXAF  
DOCUMENT TYPE: Patent  
LANGUAGE: Japanese  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO.  | KIND | DATE     | APPLICATION NO. | DATE     |
|-------------|------|----------|-----------------|----------|
| JP 60252403 | A2   | 19851213 | JP 1984-107729  | 19840528 |
| JP 03072602 | B4   | 19911119 |                 |          |

PRIORITY APPLN. INFO.: JP 1984-107729 19840528  
AB An adhesive for controlled-release pheromone preparation (e.g.,  
microparticles, microcapsules) is formulated from (1) one or more of  
unsatd. monocarboxylic acid esters, unsatd. dicarboxylic acid  
esters, and vinyl carboxylates, (2) one or more of polymerizing monomers  
with CO<sub>2</sub>H, glycidyl, alkyl-(un)substituted methylol, OH, NH<sub>2</sub>, and  
CONH<sub>2</sub> groups, (3) one or more of polymerizing monomers with vinyl, aryl,  
methacryl, and sulfonyl groups. The composition allows the  
controlled-release pheromone preparation to adhere onto the plant by  
spraying. Thus, a composition containing **Z-11-tetradecenyl acetate** microcapsules in cellulose  
acetate terephthalate 1, aqueous adhesive (2-ethylhexyl acrylate 70,  
vinyl acetate 16, methacrylic acid 7, and Na vinylsulfonate 7 parts)  
0.6, and **water** 8.4 parts was sprayed onto a polyethylene  
sheet. The microcapsules adhered onto the sheet by 100%.

IT 20711-10-8  
RL: BIOL (Biological study)  
(as pheromone, adhesives for)

L17 ANSWER 26 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 22 Sep 1985  
ACCESSION NUMBER: 1985:483549 HCPLUS  
DOCUMENT NUMBER: 103:83549  
TITLE: Durable controlled release microcapsules  
INVENTOR(S): Baker, Richard W.  
PATENT ASSIGNEE(S): Bend Research, Inc., USA  
SOURCE: Eur. Pat. Appl., 18 pp.  
CODEN: EPXXDW

09/920689

DOCUMENT TYPE: Patent  
LANGUAGE: English  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO.                                    | KIND | DATE     | APPLICATION NO. | DATE     |
|-----------------------------------------------|------|----------|-----------------|----------|
| EP 141584                                     | A2   | 19850515 | EP 1984-307158  | 19841018 |
| EP 141584                                     | A3   | 19850626 |                 |          |
| EP 141584                                     | B1   | 19880323 |                 |          |
| R: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE |      |          |                 |          |
| US 4670250                                    | A    | 19870602 | US 1983-544251  | 19831021 |
| CA 1258622                                    | A1   | 19890822 | CA 1984-465355  | 19841012 |
| AT 33103                                      | E    | 19880415 | AT 1984-307158  | 19841018 |
| BR 8405324                                    | A    | 19850903 | BR 1984-5324    | 19841019 |
| PRIORITY APPLN. INFO.:                        |      |          | US 1983-544251  | 19831021 |
|                                               |      |          | EP 1984-307158  | 19841018 |

AB Norporous thermoplastics, such as polysulfones, polycarbonates, and acrylonitrile-styrene copolymer [9003-54-7] are used in the preparation of sustained- and controlled-release microcapsules containing biol. active ingredients. Thus, 2 g Merlon (polycarbonate) [24936-68-3] and 2 g Naled [300-76-5] were dissolved in CH<sub>2</sub>Cl<sub>2</sub>, then the solution was emulsified in H<sub>2</sub>O containing 1% gelatin and stirred continuously at 45° to give microcapsules having an insecticidal effect against German cockroach for ≤6 mo.

IT 33956-49-9  
RL: BIOL (Biological study)  
(controlled-release microcapsules containing thermoplastics and)

L17 ANSWER 27 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 07 Sep 1985  
ACCESSION NUMBER: 1985:470782 HCPLUS  
DOCUMENT NUMBER: 103:70782  
TITLE: Mass spectra of dodecadienic compounds with a conjugated double bond, lepidopterous sex pheromones  
AUTHOR(S): Ando, Tetsu; Katagiri, Yoshio; Uchiyama, Masaaki  
CORPORATE SOURCE: Fac. Agric., Tokyo Univ. Agric. Technol., Fuchu, 183, Japan  
SOURCE: Agricultural and Biological Chemistry (1985), 49(2), 413-21  
CODEN: ABCHA6; ISSN: 0002-1369  
DOCUMENT TYPE: Journal  
LANGUAGE: English

AB All geometrical isomers of 5,7-, 6,8-, 7,9-, 8,10- and 9,11-dodecadien-1-ols, and their acetates and aldehyde derivs. were analyzed by electron impact mass spectrometry. The abundance of mol. ion (M<sup>+</sup>) was observed in every spectrum, and the relative intensity of M<sup>+</sup> tended to be strong if the compound possessed an (E)-double bond(s). In addition to M<sup>+</sup>, [M - H<sub>2</sub>O]<sup>+</sup> (alcs.) and [M - CH<sub>3</sub>CO<sub>2</sub>H]<sup>+</sup> (acetates), every dienic compound showed typical series of C<sub>n</sub>H<sub>2n-2</sub><sup>+</sup> .apprx. C<sub>n</sub>H<sub>2n-5</sub><sup>+</sup> with abundance maximum around C<sub>4</sub>, C<sub>5</sub>, C<sub>6</sub> or C<sub>7</sub>. Each double bond positional isomer characteristically yielded different ion peaks in the series, which were useful for its distinction from other isomers. These results indicate that the chemical structure of a natural pheromone of Lepidoptera is easily

deduced successfully by GC-MS anal. if it is a conjugated dienic pheromone.

IT **33956-49-9**

RL: PRP (Properties)  
(mass spectra of)

L17 ANSWER 28 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 20 Apr 1985

ACCESSION NUMBER: 1985:127364 HCPLUS

DOCUMENT NUMBER: 102:127364

TITLE: Sustained vapor-releasing body for environmental control

INVENTOR(S): Nagura, Shigehiro; Chiba, Tohru; Niyomura, Katuya; Ogawa, Kinya; Aiba, Noboru; Yamamoto, Akira; Aizawa, Michio

PATENT ASSIGNEE(S): Shin-Etsu Chemical Industry Co., Ltd. , Japan

SOURCE: Eur. Pat. Appl., 41 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

**PATENT INFORMATION:**

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE     |
|------------------------|------|----------|-----------------|----------|
| EP 131783              | A1   | 19850123 | EP 1984-107132  | 19840620 |
| EP 131783              | B1   | 19890913 |                 |          |
| R: DE, GB, IT          |      |          |                 |          |
| JP 60004111            | A2   | 19850110 | JP 1983-110605  | 19830620 |
| JP 60016914            | A2   | 19850128 | JP 1983-124161  | 19830708 |
| JP 62029056            | B4   | 19870624 |                 |          |
| AU 8429471             | A1   | 19850103 | AU 1984-29471   | 19840618 |
| AU 566939              | B2   | 19871105 |                 |          |
| CA 1244343             | A1   | 19881108 | CA 1984-456814  | 19840618 |
| BR 8403042             | A    | 19850528 | BR 1984-3042    | 19840620 |
| PRIORITY APPLN. INFO.: |      |          | JP 1983-110605  | 19830620 |
|                        |      |          | JP 1983-124161  | 19830708 |

AB A sustained vapor-releasing body capable of emitting a gasifiable and diffusible substance, such as insect pheromones, at a controlled rate was prepared comprising an inert carrier and the gasifiable active substance together with a binder and a film-forming coating layer. Thus, a mixture of 30 parts Aerosil, 30 parts cis-11-tetradecenyl acetate [20711-10-8], 2 parts hydroxypropyl cellulose [9004-64-2], and 180 parts EtOH was extruded into beads, then the beads were coated with hydroxypropyl Me cellulose phthalate [9050-31-1]. The rate of emission of the pheromone was constant at 2.1 mg/day during the 1st 40 days. The coated beads had high stability against water. Other pheromones used were: cis-11-hexadecenyl acetate [34010-21-4], cis-11-hexadecenyl aldehyde [53939-28-9], cis-7-eicosen-11-one [63408-44-6], cis-8-dodecenyl acetate [28079-04-1]. Naphthalene [91-20-3] and  $\alpha$ -limonene [138-86-3] were also used as the gasifiable or diffusible substance.

IT **20711-10-8P 28079-04-1P**

RL: SPN (Synthetic preparation); PREP (Preparation)  
(preparation of sustained-release formulation of)

09/920689

L17 ANSWER 29 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 18 Aug 1984  
ACCESSION NUMBER: 1984:452092 HCAPLUS  
DOCUMENT NUMBER: 101:52092  
TITLE: Biosynthesis of sex pheromone components and  
glycerolipid precursors from sodium  
[1-14C]-acetate in redbanded leafroller moth  
AUTHOR(S): Bjostad, Louis B.; Roelofs, Wendell L.  
CORPORATE SOURCE: Dep. Entomol., New York State Agric. Exp. Stn.,  
Geneva, NY, 14456, USA  
SOURCE: Journal of Chemical Ecology (1984), 10(4),  
681-91  
CODEN: JCECD8; ISSN: 0098-0331  
DOCUMENT TYPE: Journal  
LANGUAGE: English  
AB Na [1-14C]acetate in water-DMSO (1:1) was applied  
topically to sex pheromone glands of *Argyrotaenia velutinana*.  
Radiolabel was incorporated into the pheromone components (Z)- and (E)-11-tetradecenyl acetates,  
and also into tri- and diacylglycerols, ethanolamine phosphatides,  
and choline phosphatides. In the triacylglycerols, radiolabel  
appeared in (Z)- and (E)-11-tetradecenoate, tetradecanoate,  
hexadecanoate, and octadecanoate. In the choline phosphatides, the  
same acyl moieties incorporated radiolabel but at lower levels. In  
the diacylglycerols and ethanolamine phosphatides, only the  
radiolabel in hexadecanoate and octadecanoate was above the limit of  
detection. At different times following application of Na  
[1-14C]acetate, the relative proportions of labeled (Z)- and (E)-11-tetradecenyl acetates  
changed very little, but the relative proportions of labeled fatty  
acyl moieties in the triacylglycerols and choline phosphatides  
changed markedly. After 8 min, triacylglycerols had incorporated  
about equal amts. of radiolabel into (Z)- and (E)-11-tetradecenoates  
and tetradecanoate. As the incubation time was increased,  
triacylglycerols accumulated proportionately more radiolabeled  
(E)-11-tetradecenoate, and tetradecanoate. As the incubation time  
was increased, triacylglycerols accumulated proportionately more  
radiolabeled (E)- than (Z)-11-tetradecenoate, and accumulated  
proportionately less radiolabeled tetradecanoate. In the choline  
phosphatides, at all times of incubation the amount of radiolabel  
incorporated into (Z)-11-tetradecenoate was small but above the  
limit of detection, and the amts. of radiolabel in  
(E)-11-tetradecenoate and tetradecanoate were smaller and often  
below the limit of detection. In both the triacylglycerols and the  
choline phosphatides, the relative proportion of radiolabeled  
hexadecanoate decreased with time, and that of octadecanoate  
increased.  
IT 20711-10-8 33189-72-9  
RL: FORM (Formation, nonpreparative)  
(formation of, by redbanded leafroller moth)

L17 ANSWER 30 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 12 May 1984  
ACCESSION NUMBER: 1984:116487 HCAPLUS  
DOCUMENT NUMBER: 100:116487

09/920689

TITLE: Weather resistant controlled release pheromone preparation  
PATENT ASSIGNEE(S): Shin-Etsu Chemical Industry Co., Ltd., Japan  
SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.  
CODEN: JKXXAF  
DOCUMENT TYPE: Patent  
LANGUAGE: Japanese  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE     |
|------------------------|------|----------|-----------------|----------|
| JP 58183601            | A2   | 19831026 | JP 1982-67013   | 19820421 |
| PRIORITY APPLN. INFO.: |      |          | JP 1982-67013   | 19820421 |

AB A pheromone composition is microencapsulated with cellulose derivs. containing carboxyl groups to produce a weather resistant controlled-release product. Thus, a solution of 2 g hydroxypropylmethyl cellulose acetate succinate [71138-97-1] in 40 g 0.3% NaOH was stirred and to this were added 2 g **z-11-tetradecenyl acetate** [20711-10-8], 20 g 20% Na<sub>2</sub>SO<sub>4</sub>, and 10 g 3% HCl at 20°. The mixture was stirred for an addnl. 5 min, and microcapsules were filtered off, washed, and air-dried. The pheromone microcapsules were placed in a wind chamber (wind velocity 0.5 m/s) at 30° for 60 days. The pheromone decrease rate was only 5%. Subsequently, the microcapsules were soaked in water at 30° for 20 days. No significant changes were observed in the pheromone content.

IT **20711-10-8**

RL: PROC (Process)  
(microencapsulation of, with cellulose derivs., as controlled-release pheromone)

L17 ANSWER 31 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 12 May 1984

ACCESSION NUMBER: 1983:455385 HCPLUS

DOCUMENT NUMBER: 99:55385

TITLE: Detergents containing a 1,3-diene group in the hydrophobic segment. Facile chemical modification by a Diels-Alder reaction with hydrophilic dienophiles in aqueous solution

AUTHOR(S): Keana, John F. W.; Guzikowski, Anthony P.; Morat, Claude; Volwerk, Johannes J.

CORPORATE SOURCE: Dep. Chem., Univ. Oregon, Eugene, OR, 97403, USA

SOURCE: Journal of Organic Chemistry (1983), 48(16), 2661-6

CODEN: JOCEAH; ISSN: 0022-3263

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Octaethylene glycol tert-butylcyclopentadienylethyl ether (I) [86217-94-9] (a Triton X-100 analog), dodecadienyl sulfate Na salt (II) [86217-85-8], and dodecadienyl maltoside (III) [86217-86-9] were synthesized. Detergents II and III reacted rapidly with the potent hydrophilic dienophile 4-(2,6-diisopropyl-3-sulfophenyl)-1,2,4-triazoline-3,5-dione Na salt (IV) [86217-87-0] in aqueous solution at 25°, forming Diels-Alder adducts quant. Adducts also

09/920689

formed readily between I, II, and III and N-(p-sulfophenyl)maleimide Na salt [86238-49-5], although the reaction rate was somewhat slower than that of IV. II led to a stable CHCl<sub>3</sub>-water emulsion while its Diels-Alder adduct did not. Monitoring the enzymic activity of phospholipase A2 [9001-84-7] and chymotrypsin [9004-07-3] as a function of added IV both in the presence and absence of detergents showed that IV reacted preferentially with the 1,3-diene unit of the detergents rather than with the proteins.

IT **33956-49-9**

RL: RCT (Reactant); RACT (Reactant or reagent)  
(sulfation of)

L17 ANSWER 32 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 12 May 1984

ACCESSION NUMBER: 1982:117531 HCPLUS

DOCUMENT NUMBER: 96:117531

TITLE: Study on using sex pheromones for the identification of corn borers

AUTHOR(S): Jiang, Zhungxie; Klun, J. A.

CORPORATE SOURCE: Dep. Plant Prot., Henan Coll. Agric., Changsha, Peop. Rep. China

SOURCE: Kunchong Xuebao (1981), 24(4), 356-60

CODEN: KCHPA2; ISSN: 0454-6296

DOCUMENT TYPE: Journal

LANGUAGE: Chinese

AB In Aug. field tests with Asian corn borer and European corn borer pheromones, with different ratios of components, were conducted. The Asian borer sex pheromone (Z)-12-tetradecen-1-ol acetate [35153-20-9], (E)-12-tetradecen-1-ol acetate [35153-21-0], and tetradecyl acetate [638-59-5] at 34:39:27, tested for 11 days, attracted 71 moths and the effect was significant. When European borer sex pheromones (Z) [35153-21-0] and (E)-11-tetradecen-1-ol acetate [33189-72-9] at 97:3 and 3:97 were used, only 3 moth were captured with the former and 2 moths were attracted by the later mixture. However, European borer sex pheromone (Z) and (E)-11-tetradecen-1-ol acetate at 35:65 captured no moths. Thus, the major corn borers in Xiuchang region of Henan Province are apparently Asian corn borers. Rubber septa impregnated with sex pheromone were more effective than capillaries, and water-basin traps were better than using Pherocon traps.

IT **33189-72-9**

RL: BIOL (Biological study)  
(corn borer attraction by pheromone component mixts. containing, species identification in relation to)

L17 ANSWER 33 OF 36 HCPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 12 May 1984

ACCESSION NUMBER: 1981:582226 HCPLUS

DOCUMENT NUMBER: 95:182226

TITLE: Further studies on mating disruption of the red bollworm, Diparopsis castanea Hampson (Lepidoptera: Noctuidae), with a microencapsulated mating inhibitor

AUTHOR(S): Marks, R. J.; Hall, D. R.; Lester, R.; Nesbitt, B. F.; Lambert, M. R. K.

09/920689

CORPORATE SOURCE: Makoka Res. Stn., Minist. Agric. Nat. Resour.,  
Thondwe, Malawi

SOURCE: Bulletin of Entomological Research (1981),  
71(3), 403-18  
CODEN: BEREAA; ISSN: 0007-4853

DOCUMENT TYPE: Journal  
LANGUAGE: English

AB Water-based ultra-low volume (WULV) applications to cotton at four-day intervals of a 1% a.i. polyurea-based microencapsulated formulation of the pheromone inhibitor 9-dodecetyl acetate [35148-19-7] (E/Z 80:20) in a field cage resulted in an average reduction of 60.2% in nightly mating of females of *D. castanea*. A relatively constant level of inhibitor was maintained by spraying with 30 g/ha initially and decreasing by 10% with each successive spray. Examination of the mated status of 1712 female moths sampled on 88 occasions revealed that, in the presence of inhibitor, mating increased linearly with increasing population d. from 22 to 2844 moths/ha (equal nos. of males and females). In an open-field trial, WULV applications of 30 and 60 g of 1% microencapsulated inhibitor/ha to isolated cotton plots (0.4-1.2 ha) at seven- and 14-day intervals had no disruptive effect on released populations of moths as measured by oviposition and larval infestation of the crop, although there was some reduction in egg fertility and catches of males in pheromone traps in the treated plots. Time-series analyses by gas-liquid chromatog. (GLC) of the residual inhibitor on filter-paper discs and cotton leaves in the field gave similar results, and GLC measurement of inhibitor on filter papers removed at intervals from the test plots showed that inhibitor loss was very rapid, typically 60% within two days and almost 100% after six days. Loss of inhibitor was less rapid in the field cage and under laboratory conditions. Phys. and chemical evaluation of microcapsule deposition on cotton plants revealed that spray droplets penetrated to all parts of the plant but that deposition was greatest on the upper laminae of the top leaves of the plant. Methodol. for assessing the success of mating-disruption expts. is described and discussed, and the failure of the open-field expts. is attributed mainly to the rapid loss of inhibitor from the formulation in the field.

IT 16974-11-1

RL: BIOL (Biological study)  
(mating disruption by microencapsulated, in red bollworm)

L17 ANSWER 34 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN

ED Entered STN: 12 May 1984

ACCESSION NUMBER: 1981:42586 HCAPLUS

DOCUMENT NUMBER: 94:42586

TITLE: Modification of the attractiveness of the primary pheromone component of the Egyptian cotton leafworm, *Spodoptera littoralis* (Boisduval) (Lepidoptera:Noctuidae), by secondary pheromone components and related chemicals

AUTHOR(S): Campion, D. G.; Hunter-Jones, P.; McVeigh, L. J.; Hall, D. R.; Lester, R.; Nesbitt, B. F.

CORPORATE SOURCE: Cent. Overseas Pest Res., Overseas Dev. Adm., London, W8 5SJ, UK

SOURCE: Bulletin of Entomological Research (1980),

09/920689

70(3), 417-34  
CODEN: BERE2; ISSN: 0007-4853

DOCUMENT TYPE:

Journal

LANGUAGE:

English

GI



AB Known components of the female sex pheromone of *S. littoralis*, tetradecyl acetate (I) [638-59-5], (Z)-9-tetradecenyl acetate (II) [16725-53-4], (Z,E)-9,11-tetradecadienyl acetate (III) [50767-79-8], and (Z,E)-9,12-tetradecadienyl acetate (IV) [30507-70-1], and related compds. dispensed from polyethylene vials were used to bait water traps and funnel traps in lucerne fields. In comparison with the catches of males in traps baited with the primary component, III, alone, catches were increased by the addition of 1-100% of I in relation to the amts. of III, decreased by the addition of >5% II and decreased by the addition of >5% IV. The diene III was more attractive than any of the other 3 geometric isomers, although combining the Z,Z isomer (V) [54664-97-0] or the E,E isomer (VI) [54664-98-1] with III increased catches whereas the addition of the E,Z isomer (VII) [30562-09-5] decreased catches. The alcs. VIII [65726-40-1] and IX [35153-15-2] corresponding to the acetates III and II were not attractive but caused a marked reduction in trap catch when combined with III. The homolog of III (Z,E)-11-methyl-9,11-tetradecadienyl acetate (X) [75888-43-6], was unattractive to males but increased trap catches when combined with III. 9-Tetradecynyl acetate (XI) [53596-75-1] exhibited neither attractant nor inhibitory activity, and similar results were obtained with Et cyclohexane carboxylate (XII) [3289-28-9] and 2-nonynal di-Me acetal (XIII) [13257-44-8], compds. which have similar far-IR spectra to that of diene III. The distributions of males landing on sticky board traps baited with III or mixts. of III with I, II, or IV showed that a greater percentage of the months landed at the periphery of the traps baited with certain combinations of III with I and IV than on traps baited with III alone. Collection and anal. of the volatiles emitted by virgin

females of different origins indicated that those from Crete produced I and III only, those from Israel produced I, III, and IV, whereas those from Egypt produced I, III, IV, and II and (or) (E)-11-tetradecenyl acetate [

33189-72-9]. The results are discussed in relation to previous work on *S. littoralis* and current theories on insect communication, and also in terms of their relevance to the practical field usage of pheromones to control this pest.

IT 33189-72-9

RL: BIOL (Biological study)  
(as insect attractant component, for *Spodoptera littoralis*)

L17 ANSWER 35 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
ED Entered STN: 12 May 1984  
ACCESSION NUMBER: 1977:600799 HCAPLUS  
DOCUMENT NUMBER: 87:200799  
TITLE: Carboxylic acids  
INVENTOR(S): Uchida, Minoru; Matsui, Masanao; Mori, Kenji  
PATENT ASSIGNEE(S): Otsuka Pharmaceutical Co., Ltd., Japan  
SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.  
CODEN: JKXXAF  
DOCUMENT TYPE: Patent  
LANGUAGE: Japanese  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO.                | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------------------|------|----------|-----------------|----------|
| JP 52059110               | A2   | 19770516 | JP 1975-136589  | 19751112 |
| JP 56023413               | B4   | 19810530 |                 |          |
| PRIORITY APPLN. INFO.: GI |      |          | JP 1975-136589  | 19751112 |



AB PrC.tplbond.C(CH<sub>2</sub>)<sub>n</sub>+3CO<sub>2</sub>H (I; n = 2-4) were prepared by reductive ring cleavage of II with N<sub>2</sub>H<sub>4</sub>.H<sub>2</sub>O in NaOH followed by acidification. Thus, 7.8 g 1,3-cyclohexanedione and 12.4 g PrC.tplbond.CCH<sub>2</sub>Br were refluxed 7 h with NaOH in MeOH to give 6.0 g II (n = 3), which (7.2 g) and 9 mL 80% N<sub>2</sub>H<sub>4</sub>.H<sub>2</sub>O in MeOH was heated 12 h at 125° with 7.8 g powdered NaOH in (HOCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O. The residue was heated 8 h at 195° and cooled. The resulting solid in H<sub>2</sub>O was acidified with HCl and extracted with Et<sub>2</sub>O to give 4.8 g I (n = 3), which was converted to cis-8-dodecenyl acetate by reduction and acetylation.

IT 28079-04-1P

RL: SPN (Synthetic preparation); PREP (Preparation)  
(preparation of)

L17 ANSWER 36 OF 36 HCAPLUS COPYRIGHT 2004 ACS on STN  
 ED Entered STN: 22 Apr 2001  
 ACCESSION NUMBER: 1957:25281 HCAPLUS  
 DOCUMENT NUMBER: 51:25281  
 ORIGINAL REFERENCE NO.: 51:4961f-i,4962a-i,4963a  
 TITLE: Experiments on the synthesis of the pyrethrins.  
 XI. Synthesis of cis-pyrethrolone and pyrethrin  
 I. cis-Penta-2,4-dienyl system by selective  
 hydrogenation  
 AUTHOR(S): Crombie, L.; Harper, S. H.; Newman, F. C.  
 CORPORATE SOURCE: Sci. Technol., Imperial Coll., London  
 SOURCE: Journal of the Chemical Society, Abstracts  
 (1956) 3963-71  
 CODEN: JCSAAZ; ISSN: 0590-9791  
 DOCUMENT TYPE: Journal  
 LANGUAGE: Unavailable  
 AB cf. C.A. 50, 12847d. The addition of 1 mole H to a monosubstituted vinylacetylene in the presence of Pd catalyst gave a cis vinylic diene. Absorption of H did not stop at this stage, even when poisoned catalysts were used, but continued until the vinyl group was saturated, and yielded a cis monoolefin. With poisoned catalysts, gas absorption then was very slow. The hydrogenations were not completely selective. Intermediates described in the previous paper were used in the synthesis of ( $\pm$ )-cis-pyrethrolone (I), which was found to be identical with pyrethrolone B-2 of natural origin. The final stage in this synthesis involved controlled hydrogenation of a vinylacetylene system to give the cis diene side-chain. Improvements to the synthesis of ( $\pm$ )-trans-pyrethrolone (II) were described. From synthetic I the diastereoisomeric mixture of (+)-cis-pyrethronyl (+)-trans-chrysanthemate (III) and (-)-cis-pyrethronyl (-)-trans-chrysanthemate (IV) was prepared III was natural pyrethrin I. Other insecticidal rethrins having pent-4-en-2-ynyl and hexa-trans-2,trans-4-dienyl side-chains were reported. Catalytic hydrogenations were conducted at room temperature and atmospheric pressure, generally in EtOAc. After filtration, using Filter-Cel, the filtrate was washed (if quinoline was added) with 15% HCl, then H<sub>2</sub>O, dried, and the product distilled Oct-7-en-2-one (V) gave a semicarbazone, plates, m. 112-12.5° (from aqueous alc.). The semicarbazone with aqueous (CO<sub>2</sub>H)<sub>2</sub> regenerated V, b<sub>12</sub> 66°, n<sub>D20</sub> 1.4306; 2,4-dinitrophenylhydrazone, m. 65.0-5.5°. Catalytic hydrogenation of V semicarbazone gave octan-2-one semicarbazone (VI), m. and mixed m.p. 124.5°. Catalytic hydrogenation of oct-trans-5-en-2-one semicarbazone, m. 62.5-3.5° gave VI. Oct-7-en-5-yn-2-one (VII) (488 mg.) hydrogenated over Pb-poisoned Pd-CaCO<sub>3</sub> (VIII) in the presence of quinoline (IX) to an uptake of 1 mole H, more VIII and IX added to complete the reduction, and the mixture fractionally distilled gave 0.91 g. octa-cis-5,7-dien-2-one (X), b<sub>5</sub> 62-7°, n<sub>D20</sub> 1.467-1.473,  $\lambda$  228 m $\mu$  ( $\epsilon$  15,000); semicarbazone, m. 112.5-14°; 2,4-dinitrophenylhydrazone, m. 55.0-5.5°. The structure of X was confirmed by comparison of the infrared spectrum of X with that of an authentic ketone prepared by the elimination of p-toluenesulfonic acid from 8-p-toluenesulfonyloxyoct-cis-5-en-2-one. Hept-6-en-4-yneoic acid (XI) (622 mg.) hydrogenated over VIII with IX to an uptake of 2 moles H in 10 min. gave 500 mg.

slightly impure hept-cis-4-enoic acid (XII), b12 116-16.5°, nD<sub>20</sub> 1.4426; p-bromophenacyl ester, m. 41-2°. XI (621 mg.) hydrogenated over VIII in the presence of excess IX took up 1 mole H in 15 min. giving 240 mg. hepta-cis-4,6-dienoic acid, b12 122-4°, nD<sub>20</sub> 1.4749; p-bromophenacyl ester, plates, m. 80-1°. VII treated with NaH in Et<sub>2</sub>CO<sub>3</sub>-Et<sub>2</sub>O gave 44-6% Et 2-oxooct-7-en-5-yne-1-carboxylate (XIII), b0.1 77-85° nD<sub>20</sub> 1.478-1.483. The consistent b.p. spread may be due to partial separation of oxo and enol forms or to some methylene-C substitution. XIII (11.1 g.) shaken under N with 3% NaOH during 6 hrs. at 20° and set aside overnight at 0° gave 0.3 g. VII identified by conversion to the 2,4-dinitrophenylhydrazone, m. and mixed m.p. 67-8°. AcCHO (7.3 ml., 68% weight/volume) added to the clear alkaline solution of VII, the pH adjusted to 8.5, the mixture kept at 35° and the product distilled gave 4.61 g. 3-hydroxyundec-10-en-8-yne-2,5-dione (XIV), b0.1 115-17°, nD<sub>20</sub> 1.5035. Acidification of the aqueous liquor and warming to 50° followed by Et<sub>2</sub>O extraction gave 0.15 g. crude XI; in addition some polymeric material was formed but no hydroxy dione was present. XIV (8.6 g.) added during 1 hr. to 2% NaOH containing a trace of quinol and stirred at 10° after 1 hr. further stirring, salt added, and the product isolated gave 3.27 g. (±)-pent-4-en-2-ynylrethrolone (XV), b0.1 128-31°, nD<sub>20</sub> 1.5520; semicarbazone, needles, when heated blackened without a definite m. or decomposition temperature. Catalytic hydrogenation of XV semicarbazone took

up 3 moles H giving tetrahydropyrethrolone semicarbazone (XVI), m. 174-5°. XV (0.5 g.) hydrogenated over VIII with 250 mg. IX took up 0.9 mole H giving 200 mg. I, b0.06 120-3°, nD<sub>20</sub> 1.536. In another reduction over 200 mg. catalyst with 200 mg. IX, the uptake was rapid and the product contained some overhydrogenated material, the semicarbazone, m. 198.5-200° (decomposition), did not depress the m.p. of pyrethrolone B-2 semicarbazone. Et 2-oxooctane-1-carboxylate (44 g.) by similar methods was converted to 3-hydroxyundecane-2,5-dione (XVII). XVII without distillation was cyclized to 12.6 g. (±)-tetrahydropyrethrolone (XVIII), b0.4 134-7°, nD<sub>20</sub> 1.4901; XVI, prisms, m. 175.5-7.0°. Material from 2,3-dichlorotetrahydropyran, insol. in H<sub>3</sub>PO<sub>4</sub>, was washed with Na<sub>2</sub>CO<sub>3</sub>, dried, and fractionally distilled giving a fraction, b14 73.0-3.5° nD<sub>20</sub> 1.4565, which was mainly 3-chloro-2-ethoxytetrahydropyran (XIX). KOH (100 g.) refluxed 2 hrs. with 150 g. XIX and 400 ml. diethylene glycol yielded 46.5 g. 2-ethoxy-5,6-dihydropyran, b13 50-2° nD<sub>20</sub> 1.443-1.446. Octa-trans-5,7-dien-2-one formed a semicarbazone as plates, m. 96.5-8.0°. By the above procedure Et 2-oxoocta-trans-5,7-diene-1-carboxylate (13.1 g.) was converted to 3-hydroxyundeca-trans-8,10-diene-2,5-dione (XX), b0.1 112-13° nD<sub>20</sub> 1.5000. No hydroxy dione was obtained from the extracted liquor on acidification. Cyclization of XX gave 52% II, b0.15 132-4°, nD<sub>20</sub> 1.5447; semicarbazone, m. 199-200° (decomposition). Catalytic hydrogenation of the semicarbazone over VIII took up 2 moles H and gave XVI. Nona-trans-5,-trans-7-dien-2-one (22.1 g.) was ethoxycarbonylated to Et 2-oxonona-trans-5,trans-7-diene-1-carboxylate (XXI), b0.2 89-99°, nD<sub>20</sub> 1.478-1.484. XXI (6 g.) was hydrolyzed and treated with 68% aqueous AcCHO to give 3.23 g. 3-hydroxydodeca-trans-8,trans-10-diene-2,5-dione (XXII), b0.4

09/920689

126-33°, nD<sub>20</sub> 1.498-1.502. XXII gave an immediate precipitate of dodecatrans-3,trans-8,trans-10-triene-2,5-dione semicarbazone (XXIII), m. 224-7° (decomposition). XXII (2.9 g.) cyclized to 0.8 g. (±)-sorbylrethrolone (XXIV), b0.2 130-8° nD<sub>20</sub> 1.539; semicarbazone, m. 210-12° (decomposition). No maleic anhydride adduct could be obtained with XXIV. XV (508 mg.) and 573 mg. (+)-trans-chrysanthemoyl chloride (XXV) in C<sub>5</sub>H<sub>5</sub>N-C<sub>6</sub>H<sub>6</sub> heated 1 hr. at 0.05 mm./60° gave 780 mg. (±)-pent-4-en-2-ynylrethronyl (+)-trans-chrysanthemate (XXVI), nD<sub>20</sub> 1.523. In a similar manner, interaction of 114 mg. I and 133 mg. XXV gave 205 mg. mixed III and IV, nD<sub>20</sub> 1.514. Likewise XXIV (500 mg.) and 535 mg. XXV gave (±)-sorbylrethronyl (±)-trans-chrysanthemate (XXVII), nD<sub>20</sub>, 1.517. III, IV, XXVI, and XXVII were prepared for insecticidal assay to be reported elsewhere. Ultraviolet absorption spectra given for: I, II, III, IV, XLII, XIV, XV, XVI, XVIII, XX, XXI, XXII, XXIII, XXIV, XXVI, and XXVII.

(FILE 'MEDLINE, BIOSIS, EMBASE, WPIDS, CONFSCI, SCISEARCH, JICST-EPLUS, JAPIO, RAPRA, PLASNEWS, PROMT, PLASPEC, PIRA, VETU, VETB, CABA, AGRICOLA' ENTERED AT 12:05:18 ON 30 MAR 2004)

L18            27 S L17  
L19            18 DUP REM L18 (9 DUPLICATES REMOVED)

L19 ANSWER 1 OF 18 PROMT COPYRIGHT 2004 Gale Group on STN

ACCESSION NUMBER: 2002:620895 PROMT  
TITLE: OPD Chemical Buyers Directory 2003: Chemicals & Related Materials. (A: Abrasives - 4-Aminobutyric Acid). (Directory)  
SOURCE: Chemical Market Reporter, (29 Oct 2002) pp. 61(22). ISSN: ISSN: 1092-0110.  
PUBLISHER: Schnell Publishing Company, Inc.  
DOCUMENT TYPE: Newsletter  
LANGUAGE: English  
WORD COUNT: 11075  
\*FULL TEXT IS AVAILABLE IN THE ALL FORMAT\*

AB        A

L19 ANSWER 2 OF 18 MEDLINE on STN                          DUPLICATE 1  
ACCESSION NUMBER: 2000285920 MEDLINE  
DOCUMENT NUMBER: PubMed ID: 10826170  
TITLE: Monitoring of the European corn borer (Lepidoptera: Crambidae) in central Maine.  
AUTHOR: Ngollo E D; Groden E; Dill J F; Handley D T  
CORPORATE SOURCE: Department of Biological Sciences, University of Maine, Orono 04469, USA.  
SOURCE: Journal of economic entomology, (2000 Apr) 93 (2) 256-63.  
PUB. COUNTRY: United States  
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)  
LANGUAGE: English  
FILE SEGMENT: Priority Journals  
ENTRY MONTH: 200007  
ENTRY DATE: Entered STN: 20000810  
                    Last Updated on STN: 20000810

Searcher : Shears                          571-272-2528

09/920689

Entered Medline: 20000727

AB Pheromone trap types and within-field trap locations were compared for their effectiveness in monitoring the flight activity of European corn borer, *Ostrinia nubilalis* (Hubner), and its relationship to egg mass density and crop damage in sweet corn in central Maine from 1995 to 1996. The use of both 3:97 Z:**E**-11-tetradecenyl acetate and 97:3 Z:**E**-11 tetradecenyl acetate

pheromone blends confirmed that European corn borer in central Maine is attracted to both pheromone lure types. European corn borer moths were captured predominantly with the E-lure type than with the Z-lure type in both years. The Scentry Heliothis trap was more effective than the Multi-Pher trap, but similar to the pheromone-baited water pan trap for monitoring European corn borer flights. With the Scentry Heliothis trap, the grassy border and 1st corn rows were the best locations for moth capture during the early flight period, but during the peak flight period, traps located in the middle of the field caught the most moths. Corn damage was recorded before moth captures in some sites and before egg mass counts in others, indicating poor efficacy of traps for early flights. Significant and positive correlations were found between moth captures in the midfield location and egg mass counts, and corn leaf damage, and between egg mass counts and corn leaf damage. However, low coefficients of variation suggest that pheromone trap captures were not good predictors of European corn borer leaf damage in sweet corn.

L19 ANSWER 3 OF 18 PROMT COPYRIGHT 2004 Gale Group on STN

ACCESSION NUMBER: 1999:575152 PROMT  
TITLE: EPA approves applications to register pesticide products.  
SOURCE: Pesticide & Toxic Chemical News, (26 Aug 1999) Vol. 27, No. 44.  
ISSN: 0146-0501.  
PUBLISHER: Food Chemical News, Inc.  
DOCUMENT TYPE: Newsletter  
LANGUAGE: English  
WORD COUNT: 338

\*FULL TEXT IS AVAILABLE IN THE ALL FORMAT\*

AB EPA issued a notice in the Aug. 4 Federal Register announcing agency approval of the following applications to register pesticide products containing new active ingredients not included in any previously registered products:

THIS IS THE FULL TEXT: COPYRIGHT 1999 CRC Press, Inc.

Subscription: \$957 per year as of 1/97. Published weekly. Contact Food Chemical News, Inc., 1101 Pennsylvania Ave. S.E., Washington D.C. 20003. Phone 202-544-1980. Fax 202-546-3890.

L19 ANSWER 4 OF 18 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN

ACCESSION NUMBER: 1998:600278 SCISEARCH  
THE GENUINE ARTICLE: 106HR  
TITLE: Methods for determining the vapour pressure of active ingredients used in crop protection. Part V: Thermogravimetry combined with Solid Phase

Searcher : Shears 571-272-2528

09/920689

AUTHOR: MicroExtraction (SPME)  
Krohl T (Reprint); Kastel R; Konig W; Ziegler H;  
Kohle H; Parg A  
CORPORATE SOURCE: BASF AG, CROP PROTECT PROD DEV, D-67114  
LIMBURGERHOF, GERMANY (Reprint)  
COUNTRY OF AUTHOR: GERMANY  
SOURCE: PESTICIDE SCIENCE, (AUG 1998) Vol. 53, No. 4, pp.  
300-310.  
Publisher: JOHN WILEY & SONS LTD, BAFFINS LANE  
CHICHESTER, W SUSSEX PO19 1UD, ENGLAND.  
ISSN: 0031-613X.  
DOCUMENT TYPE: Article; Journal  
FILE SEGMENT: AGRI  
LANGUAGE: English  
REFERENCE COUNT: 16

\*ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS\*

AB The well-established evaporation rate method for determining the vapour pressure of active ingredients in crop protection down to the order of 10(-12) mbar can be supplemented by the new sample preparation technique of Solid Phase MicroExtraction (SPME). With this technique, it is possible to identify evaporating substances by analysis after partitioning into the polymer coating of a thin fibre in the outlet-gas flow of thermogravimetric equipment.

The active ingredients fenpropimorph, kresoxim-methyl, metolachlor, clomazone and **(Z)-9-dodecenyl acetate** were used in this study, which showed that, despite the relatively small amount of collected material, an analytical identification of the evaporating compound by SPME/GC can be successfully achieved. In particular, the experiments have demonstrated a clear correlation between the linearity of the weight loss curve and the evaporation process of a pure compound.

In the case of organic compounds that are unstable to heat, the SPME method can also be utilized to show whether, and at what temperatures, decomposition of the sample into fragments of higher volatility occurs. For example, the insecticide dimethoate showed a clear temperature dependence of both evaporation behaviour and in the SPME/GC analysis. (C) 1998 SCI.

L19 ANSWER 5 OF 18 CABA COPYRIGHT 2004 CABI on STN  
ACCESSION NUMBER: 97:101308 CABA  
DOCUMENT NUMBER: 19971106949  
TITLE: Placement of pheromone traps within the vegetation canopy to enhance capture of male European corn borer (Lepidoptera: Pyralidae)  
AUTHOR: Mason, C. E.; Stromdahl, E. Y.; Pesek, J. D., Jr.  
CORPORATE SOURCE: Department of Entomology and Applied Ecology, University of Delaware, Newark, DE 19717-1303, USA.  
SOURCE: Journal of Economic Entomology, (1997) Vol. 90, No. 3, pp. 795-800. 37 ref.  
ISSN: 0022-0493  
DOCUMENT TYPE: Journal  
LANGUAGE: English  
ENTRY DATE: Entered STN: 19970916

Searcher : Shears 571-272-2528

09/920689

Last Updated on STN: 19970916

AB Ostrinia nubilalis pheromone traps are typically placed in the open or above vegetation to monitor adult presence and abundance in areas where adults are likely to aggregate. After noting in another study that more adults were captured in traps overgrown with vegetation than in traps above it, replicated field experiments were conducted at 2 locations in Delaware to determine whether placement of traps within the vegetation was more effective than traps placed above the canopy. At Newark, 3.83 times more males were captured in traps baited with (Z)-11-tetradecenyl acetate when traps were placed just below the canopy top in mixed weedy vegetation compared with traps 3 m away with the pheromone source 50 cm above the plant canopy. At Laurel in a monoculture of developing wheat, 2.72 times more males were captured in traps baited with (E)-11-tetradecenyl acetate which were placed below the top of the canopy versus traps above the canopy. Greater variation in adult male captures was associated with greater diversity of the weedy sample location relative to samples in wheat monoculture. Also, traps placed within vegetation resulted in less variation in mean adult captures versus traps placed above the canopy. This indicates that a better estimate of the population may be obtained by placing traps within vegetation. The results suggest that males are more likely to respond to calling females within the vegetation as opposed to above the canopy. Placement of pheromone traps with the pheromone source below the top of the canopy appears to be critical for maximizing their effective capture of adult males of O. nubilalis. It is suggested that enhancement of pheromone lures within vegetation may be caused by water vapour and volatiles associated with plants.

L19 ANSWER 6 OF 18 PROMT COPYRIGHT 2004 Gale Group on STN

ACCESSION NUMBER: 93:531507 PROMT  
TITLE: TOLERANCE EXEMPTION PROPOSALS PENDING ON DEC. 31,  
1992  
SOURCE: Pesticide & Toxic Chemical News, (27 Jan 1993) pp.  
N/A.  
ISSN: 0146-0501.  
LANGUAGE: English  
WORD COUNT: 1947

\*FULL TEXT IS AVAILABLE IN THE ALL FORMAT\*

AB ACAL. To exempt from tolerance requirements in or on all raw agricultural commodities. Espro June 10, 1992 (June 17, 1992, Page 11).

ACETIC ACID. To revoke exemptions from tolerance requirements in or on alfalfa, barley grain, bermuda grass, bluegrass, brome grass, clover, corn grain, cowpea hay, soybean hay, sudan grass, timothy, vetch, wheat grain. The revocations would become effective Feb. 28, 1993. EPA proposal Aug. 12, 1992 (Aug. 19, 1992, Page 5).

ADJUVANTS. To exempt from tolerance requirements sodium metabisulfite used as a stabilizer in formulations applied to growing crops. EPA proposal, based on request from Mobay Chemical, published July 18, 1984 (July 25, 1984, Page 7).

ADJUVANTS. To exempt from tolerance requirements methylnaphthalene sulfonic acid-formaldehyde condensate, sodium salt, when used as a

09/920689

dispersant in formulations applied to growing crops. EPA proposal, based on request from Diamond Shamrock, published July 18, 1984 (July 25, 1984, Page 7).

ADJUVANTS. To exempt from tolerance requirements acetyl tributyl citrate used as a component of plastic animal tags. EPA proposal, based on a request from Alpha Chemical and Plastics, published Aug. 3, 1988 (Aug. 10, 1988, Page 5).

ADJUVANTS. To exempt from tolerance requirements (1) acrylonitrile-butadiene copolymers used as a carrier, (2) FD&C Yellow Number 6 aluminum lake used as a pigment, (3) 2-2'-hydroxy-5'-methylphenyl)benzo-triazole used as an ultraviolet light absorber/stabilizer, and (4) octadecyl 3,5-di-tert-butyl-4-hydroxyhydrocinnamate used as a thermal stabilizer/antioxidant, with all four for use in ear tags and similar slow-release devices for pesticide formulations applied to animals. EPA proposal, based on a request from Y-Tex Corporation, published Feb. 3, 1989 (Feb. 8, 1989, Page 8).

THIS IS AN EXCERPT: Copyright 1993 by CRC Press, Inc.

L19 ANSWER 7 OF 18 CABA COPYRIGHT 2004 CAB International on STN

ACCESSION NUMBER: 94:43707 CABA

DOCUMENT NUMBER: 19941103487

TITLE: Sex pheromone catabolism in the redbanded leafroller moth

AUTHOR: Klun, J. A.; Schwarz, M.

CORPORATE SOURCE: Insect Chemical Ecology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.

SOURCE: Journal of Chemical Ecology, (1993) Vol. 19, No. 4, pp. 751-762. 17 ref.

ISSN: 0098-0331

DOCUMENT TYPE: Journal

LANGUAGE: English

ENTRY DATE: Entered STN: 19941101

Last Updated on STN: 19941101

AB Tritium-labelled components of the sex pheromone of females of *Argyrotaenia velutinana*, (Z)- and (E)-[11,12-[<sup>3</sup>H]-H<sub>2</sub>]-11-tetradecenyl acetate (57 Ci/mmol), applied to the antennae of males and females were degraded into tritiated 11-tetradecenol, 11-tetradecenoic acid and water. The results indicated that the catabolic pathway involved acetate hydrolysis, oxidation of alcohol to fatty acid and degradation of the acid via [beta]-oxidation. Both geometric isomers were degraded equally well by males, but degradation proceeded comparatively less rapidly with female antennae. It is surmised that under natural conditions of olfactory sensing, sex pheromone impinging upon the antennae was probably subject to a similar catabolic fate.

L19 ANSWER 8 OF 18 JAPIO (C) 2004 JPO on STN

ACCESSION NUMBER: 1988-215602 JAPIO

TITLE: SEX ATTRACTANT FOR TETRAMOERA SCHISTACEANS  
SHELLEN

INVENTOR: TAMAKI YOSHIO; SUGIE HAJIME; KANESHIRO MIEKO

PATENT ASSIGNEE(S): NORIN SUISANSYO NOGYO KANKYO GIJUTSU KENKYUSHO

PATENT INFORMATION:

09/920689

| PATENT NO   | KIND | DATE     | ERA   | MAIN IPC   |
|-------------|------|----------|-------|------------|
| JP 63215602 | A    | 19880908 | Showa | A01N037-02 |

APPLICATION INFORMATION

STN FORMAT: JP 1987-46253 19870228  
ORIGINAL: JP62046253 Showa  
PRIORITY APPLN. INFO.: JP 1987-46253 19870228  
SOURCE: PATENT ABSTRACTS OF JAPAN (CD-ROM), Unexamined Applications, Vol. 1988

AN 1988-215602 JAPIO

AB PURPOSE: To obtain a sex attract for controlling Tetramoera schistaceans Shellen, a major insect pest of sugar cane, comprising a mixture of (*Z*)-9-dodecenyacetate and (E)-9,11-dodecadienyl acetate as an active ingredient.

CONSTITUTION: The titled sex attractant comprising a mixture of *Z* form of a compound shown by formula I and E form of a compound shown by formula II in a blending ratio of 100:3~0.3. Since the compounds are effective with an extremely small amount and volatile, preferably the compounds are adsorbed on a carrier (e.g. synthetic high polymer, natural rubber or synthetic rubber) or sealed in a molded article of carrier material and used in the state. The amount of the compounds added is preferably 0.1~100mg based on 1g carrier. The carrier containing the active ingredient is placed on a container charged with water, etc., on a material coated with a proper tacky substance or in the vicinity thereof to attract the aimed insect pest.

COPYRIGHT: (C)1988,JPO&Japio

L19 ANSWER 9 OF 18 CABA COPYRIGHT 2004 CAB International on STN

ACCESSION NUMBER: 87:30291 CABA

DOCUMENT NUMBER: 19870540070

TITLE: Sex pheromone of the podborer, Matsumuraes falcana (Walshingham) (Lepidoptera: Tortricidae): activity of the third component, (E,*Z*)-7,9-dodecadienyl acetate, and 3-component formulation

AUTHOR: Wakamura, S.; Kegasawa, K.

CORPORATE SOURCE: Lab. Appl. Entomology, Shikoku National Agric. Exp. Sta., Zentsuji, Kagawa 765, Japan.

SOURCE: Applied Entomology and Zoology, (1986) Vol. 21, No. 2, pp. 334-339. 2 fig. 6 ref.

ISSN: 0003-6862

DOCUMENT TYPE: Journal

LANGUAGE: English

ENTRY DATE: Entered STN: 19941101

Last Updated on STN: 19941101

AB Adult males of Matsumuraes falcana [M. phaseoli], a pest of soyabean, were attracted to water traps using a 1:1 mixture of (E)-8-dodecenyacetate and (8E,10E)-8,10-dodecadienyl acetate in field tests conducted in Shikoku, Japan. The attractancy was significantly increased when (7E,9Z)-7,9-dodecadienyl acetate was added to the 2-component blend, though this synergist attracted no males on its

09/920689

own. One of the best formulations tested was a rubber septum impregnated with 167 [micro]g of each of these 3 components. It attracted about 1.5 times more males than the septum impregnated with 250 [micro]g of each of the 2 main components, and about 5 times more males than 10 live virgin females. Typical precopulatory behaviour was displayed by males exposed to (7E,9Z)-7,9-dodecadienyl acetate, confirming that it was the 3rd component of the sex pheromone of the tortricid. The other 2 components did not have such sex-stimulatory activity.

L19 ANSWER 10 OF 18 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN  
DUPLICATE 2

ACCESSION NUMBER: 1986:299078 BIOSIS  
DOCUMENT NUMBER: PREV198682032984; BA82:32984  
TITLE: EVALUATION OF SAKE-LEES BAIT AS AN ATTRACTANT FOR THE SMALLER TEA TORTRIX MOTH ADOXOPHYES-SP AND TEA TORTRIX MOTH HOMONA-MAGNANIMA.  
AUTHOR(S): HORIKAWA T [Reprint author]; SHIRATORI C; SUZUKI T; SONE K; MURAMATSU M  
CORPORATE SOURCE: SHIZUOKA TEA EXPERIMENT STN, KIKUGAWA-CHO, OGASE-GUN, SHIZUOKA 439, JPN  
SOURCE: Japanese Journal of Applied Entomology and Zoology, (1986) Vol. 30, No. 1, pp. 27-34.  
CODEN: NIPTAR. ISSN: 0021-4914.  
DOCUMENT TYPE: Article  
FILE SEGMENT: BA  
LANGUAGE: JAPANESE  
ENTRY DATE: Entered STN: 25 Jul 1986  
Last Updated on STN: 25 Jul 1986  
AB Sake-lees bait composed of sake lees, distilled spirits and water was attractive for both the females and males of the smaller tea tortrix moth (Adoxophyes sp.) and tea tortrix moth (Homona magnanima DIAKONOFF) in the communication disruption tea field with a common sex pheromone component (z)-11-tetradecenyl acetate and in the non-treated tea field. The attractiveness of sake for the two species was not significantly different from that of sake-lees, but distilled spirits, ethyl alcohol and water were did not attract two species. Most of the females of the smaller tea tortix moth were trapped from 19:00 to 20:00 and the males from 2:00 to 5:00 in the sake-lees trap. The trapping time of the smaller tea tortrix male by a pheromone trap was mainly from 23:00 to 4:00 in the same field. The sex ratio of the two species captured in the sake-lees trap in the tea fields changed with the trapping methods, the seasons and the fields. The percentage of mating of the female moths of both species caught in the sake-lees trap consistently exceeded 95% in the non-treated field as well as in the disruption field. In the disruption field, however the mating rate of females of both species directly collected in the field was lower than in the non-treated field. It is suggested that mated females are more sensitive to the sake-lees bait than unmated females in both species. Most of the females of both species which were attracted to the sake-lees trap produced a large amount of eggs.

L19 ANSWER 11 OF 18 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

Searcher : Shears 571-272-2528

09/920689

ACCESSION NUMBER: 1984:307665 BIOSIS  
DOCUMENT NUMBER: PREV198478044145; BA78:44145  
TITLE: BIOSYNTHESIS OF SEX PHEROMONE COMPONENTS AND GLYCERO  
LIPID PRECURSORS FROM CARBON-14 LABELED SODIUM  
ACETATE IN RED-BANDED LEAF-ROLLER MOTH  
ARGYROTAENIA-VELUTINANA.  
AUTHOR(S): BJOSTAD L B [Reprint author]; ROELOFS W L  
CORPORATE SOURCE: DEP ENTOMOL, NY STATE AGRIC EXP STN, GENEVA, NY  
14456, USA  
SOURCE: Journal of Chemical Ecology, (1984) Vol. 10, No. 4,  
pp. 681-692.  
CODEN: JCECD8. ISSN: 0098-0331.  
DOCUMENT TYPE: Article  
FILE SEGMENT: BA  
LANGUAGE: ENGLISH  
AB Sodium [1-14C]acetate in water-dimethyl sulfoxide (1:1)  
was applied topically to sex pheromone glands of *A. velutiana*.  
Radiolabel was incorporated into the pheromone components (*Z*  
*)*-11-tetradecenyl acetate and (*E*)-11-tetradecenyl acetate,  
and also into triacylglycerols, diacylglycerols, ethanolamine  
phosphatides, and choline phosphatides. In the triacylglycerols,  
radiolabel appeared in (*Z*)-11-tetradecenoate, (*E*)-11-tetradecenoate,  
tetradecanoate, hexadecanoate and octadecanoate. In the choline  
phosphatides, the same acyl moieties incorporated radiolabel but at  
lower levels. In the diacylglycerols and ethanolamine phosphatides,  
only the radiolabel in hexadecanoate and octadecanoate was above the  
limit of detection. At different times following application of  
sodium [1-14C]acetate, the relative proportions of labeled (*Z*)-11-tetradecenyl acetate and  
(*E*)-11-tetradecenyl acetate  
changed very little, but the relative proportions of labeled fatty  
acyl moieties in the triacylglycerols and choline phosphatides  
changed markedly. After 8 min, triacylglycerols had incorporated  
about equal amounts of radiolabel into (*Z*)-11-tetradecanoate,  
(*E*)-11-tetradecenoate and tetradecanoate. As the incubation time  
was increased, triacylglycerols accumulated proportionately more  
radiolabeled (*E*)-11-tetradecenoate than (*Z*)-11-tetradecenoate, and  
accumulated proportionately less radiolabeled tetradecanoate. In  
the choline phosphatides, at all times of incubation the amount of  
radiolabel incorporated into (*Z*)-11-tetradecenoate was small but  
above the limit of detection, and the amounts of radiolabel in  
(*E*)-11-tetradecenoate and tetradecanoate were smaller and often  
below the limit of detection. In both the triacylglycerols and the  
choline phosphatides, the relative proportion of radiolabeled  
hexadecanoate decreased with time, and that of octadecanoate  
increased.

L19 ANSWER 12 OF 18 CABA COPYRIGHT 2004 CABI on STN  
ACCESSION NUMBER: 84:68145 CABA  
DOCUMENT NUMBER: 19840513714  
TITLE: Epigamic behaviour of the cereal pest  
Cnephasia pumicana (Lepidoptera, Tortricidae)  
investigated with pheromone traps  
AUTHOR: Kontev, C.; Zdarek, J.; Kalvoda, L.  
CORPORATE SOURCE: Wheat and Sunflower Research Institute, 9300

09/920689

SOURCE: Tolbukhin, Bulgaria.  
Acta Entomologica Bohemoslovaca, (1984) Vol.  
81, No. 2, pp. 90-98. 4 fig. 12 ref.  
ISSN: 0001-5601

DOCUMENT TYPE: Journal  
LANGUAGE: English  
SUMMARY LANGUAGE: Russian  
ENTRY DATE: Entered STN: 19941101  
Last Updated on STN: 19941101

AB During studies in wheat fields in Bulgaria in 1981-82, a mixture of (Z)-9-dodecenyl acetate, (E)-9-dodecenyl acetate and dodecyl acetate at a ratio of 1:1:2 was shown to be an effective sex attractant for males of *Cnephiasia pumicana* (Zell.). A cylindrical sticky trap, a water pot trap and a water bottle trap were all suitable for population monitoring at moderate densities. The optimum dosage of synthetic pheromone was 1 mg formulated in rubber caps. A well defined circadian rhythm of epigamic activity in both sexes was demonstrated using traps baited with pheromone or a virgin female. The peak of male response to the pheromone occurred about 30 min before sunrise and coincided with the period of female calling. Caged virgin females were attractive to males from the first night after eclosion onwards. Pheromone traps proved useful for determining seasonal distribution; in 1982, the flight period lasted from mid-June to the end of July. The maxima of flight activity coincided with periods of wet weather and low morning temperatures. The curve of seasonal distribution was similar for traps in open wheat fields and adjoining wooded areas, but fewer males were caught in traps in the field than in those in the woods. Most males were captured in the upper canopy of the trees.

L19 ANSWER 13 OF 18 CABO COPYRIGHT 2004 CABI on STN  
ACCESSION NUMBER: 84:77354 CABO  
DOCUMENT NUMBER: 19840514474  
TITLE: Female-baited traps for *Ostrinia nubilalis* Hb.; addition of synthetic pheromones reduces the attraction  
AUTHOR: Maini, S.; Gavioli, F.  
CORPORATE SOURCE: Istituto di Entomologia, Universita degli Studi, 40126 Bologna, Italy.  
SOURCE: Les mediateurs chimiques agissant sur le comportement des insectes. Symposium international. Versailles, 16-20 novembre 1981, (1982) pp. 391-393. 2 fig.; Colloques de l'INRA no. 7. 5 ref.  
Publisher: Institut National de la Recherche Agronomique. Paris  
Meeting Info.: Les mediateurs chimiques agissant sur le comportement des insectes. Symposium international. Versailles, 16-20 novembre 1981.  
PUB. COUNTRY: France  
DOCUMENT TYPE: Conference Article  
LANGUAGE: English  
ENTRY DATE: Entered STN: 19941101  
Last Updated on STN: 19941101

09/920689

AB Previous laboratory tests indicating that (E)-9-tetradecenyl acetate reduced male response to the stimuli provided by the females of *Ostrinia nubilalis* Hb. were confirmed by field tests in Bologna, Italy, with **water** traps baited either only with laboratory-reared females of a stock originating from New York or both with females and with different blends of synthetic pheromone components. Fewer males were attracted to the doubly baited traps than to those with females alone, the reduction in attraction of New York females being highly significant when a mixture of (E)-9-tetradecenyl acetate, (E)-11-tetradecenyl acetate and (Z)-11-tetradecenyl acetate was used. It is suggested that this mixture might be used to disrupt the mating of *O. nubilalis* in maize fields.

L19 ANSWER 14 OF 18 CABA COPYRIGHT 2004 CABI on STN  
ACCESSION NUMBER: 82:25543 CABA  
DOCUMENT NUMBER: 19810587821  
TITLE: Further studies on mating disruption of the red bollworm, *Diparopsis castanea* Hampson (Lepidoptera: Noctuidae), with a microencapsulated mating inhibitor  
AUTHOR: Marks, R. J.; Hall, D. R.; Lester, R.; Nesbitt, B. F.; Lambert, M. R. K.  
CORPORATE SOURCE: Ministry of Agriculture and Natural Resources, Makoka Research Station, Private Bag 3, Thondwe, Malawi.  
SOURCE: Bulletin of Entomological Research, (1981) Vol. 71, No. 3, pp. 403-418. 5 fig. 11 ref.  
ISSN: 0007-4853  
DOCUMENT TYPE: Journal  
LANGUAGE: English  
ENTRY DATE: Entered STN: 19941101  
Last Updated on STN: 19941101

AB **Water**-based ultra-low volume (WULV) applications to cotton at 4-day intervals of a 1% a.i. polyurea-based microencapsulated formulation of the pheromone inhibitor 9-dodecenyl acetate (E/Z 80:20) in a 0.2-ha field cage in Malawi resulted in an average reduction of 60.2% in nightly mating of females of *Diparopsis castanea* Hmps. A relatively constant level of inhibitor was maintained by spraying with 30 g/ha initially and decreasing by 10% with each successive spray. Examination of the mated status of 1712 female moths sampled on 88 occasions revealed that, in the presence of inhibitor, mating increased linearly with increasing population density from 22 to 2844 moths/ha (equal numbers of males and females). In an open-field trial, WULV applications of 30 and 60 g of 1% a.i. microencapsulated inhibitor/ha to isolated cotton plots (0.4-1.2 ha) at 7- and 14-day intervals had no measurable disruptive effect on released populations of moths as measured by oviposition and larval infestation of the crop, although there was some reduction in egg fertility and catches of males in pheromone traps in the treated plots. Time-series analyses by gas-liquid chromatography (GLC) of the residual inhibitor on filter-paper discs and cotton leaves in the field gave similar results, and GLC measurement of inhibitor on filter papers removed at intervals from the test plots showed that inhibitor loss was very rapid, typically

09/920689

60% within 2 days and almost 100% after 6 days. Loss of inhibitor was less rapid in the field cage and under laboratory conditions. Physical and chemical evaluation of microcapsule deposition on cotton plants revealed that spray droplets penetrated to all parts of the plant but that deposition was greatest on the upper laminae of the top leaves of the plant. Methodology for assessing the success of mating-disruption experiments is described and discussed, and the failure of the open-field experiments is attributed mainly to the rapid loss of inhibitor from the formulation in the field.

L19 ANSWER 15 OF 18 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on  
STN DUPLICATE 3

ACCESSION NUMBER: 1983:152259 BIOSIS  
DOCUMENT NUMBER: PREV198375002259; BA75:2259  
TITLE: USING SEX PHEROMONE FOR THE IDENTIFICATION OF CORN  
BORER.  
AUTHOR(S): JIANG Z-X [Reprint author]; KLUN J A  
CORPORATE SOURCE: DEP PLANT PROT, HENAN COLL AGRIC  
SOURCE: Acta Entomologica Sinica, (1981) Vol. 24, No. 4, pp.  
356-360.  
CODEN: KCHPA2. ISSN: 0454-6296.  
DOCUMENT TYPE: Article  
FILE SEGMENT: BA  
LANGUAGE: CHINESE

AB In Aug. 1979, a field test with 1 type of Asian corn borer sex pheromone and 3 types of European corn borer pheromones, using different ratios of mixing components, was conducted in a corn field near by Xiuchang [China]. The Asian borer sex pheromones (Z)-12-tetradecen-1-ol acetate, (E)-12-tetradecen-1-ol acetate and tetradecyl acetate 34:39:27 were tested for 11 days and 71 moths were captured. When European borer sex pheromone (Z)- and (E)-11-tetradecen-1-ol acetate 97:3 and 3:97 were used, only 3 moths were captured for the former and 2 moths were captured for the latter, indicating these pheromones have some active capacity. European borer sex pheromone (Z)- and (E)-11-tetradecen-1-ol acetate 35:65 captured none of the moths, indicating it has no active capacity. The corn borers in Xiuchang region of Henan Province are mainly Asian corn borers; rubber septa impregnated with sex pheromone has a better effect than those in capillaries and water-basin traps were better than Pherocon traps for capturing the moths.

L19 ANSWER 16 OF 18 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on  
STN DUPLICATE 4

ACCESSION NUMBER: 1981:147453 BIOSIS  
DOCUMENT NUMBER: PREV198171017445; BA71:17445  
TITLE: MODIFICATION OF THE ATTRACTIVENESS OF THE PRIMARY  
PHEROMONE COMPONENT OF THE EGYPTIAN COTTON LEAFWORM  
SPODOPTERA-LITTORALIS LEPIDOPTERA NOCTUIDAE BY  
SECONDARY PHEROMONE COMPONENTS AND RELATED CHEMICALS.  
AUTHOR(S): CAMPION D G [Reprint author]; HUNTER-JONES P; MCVEIGH  
L J; HALL D R; LESTER R; NESBITT B F  
CORPORATE SOURCE: CENT OVERSEAS PEST RES, OVERSEAS DEV ADM, COLLEGE  
HOUSE, WRIGHTS LANE, LONDON W8 5SJ, ENGL, UK  
SOURCE: Bulletin of Entomological Research, (1980) Vol. 70,

09/920689

No. 3, pp. 417-434.  
CODEN: BEREA2. ISSN: 0007-4853.

DOCUMENT TYPE: Article  
FILE SEGMENT: BA  
LANGUAGE: ENGLISH

AB Known components of the female sex pheromone of *S. littoralis* (Boisd.), tetradecyl acetate (I), (Z)-9-tetradecenyl acetate (IIA), (Z,E)-9,11-tetradecadienyl acetate (III) and (Z,E)-9,12-tetradecadienyl acetate (IV), and related compounds dispensed from polyethylene vials were used to bait water traps and funnel traps in lucerne fields in Crete [Greece]. In comparison with the catches of males in traps baited with the primary component (III) alone, catches were increased by the addition of 1-100% of I in relation to the amounts of III, decreased by the addition of 5% or more of IIA and decreased by the addition of more than 5% of IV. The diene III was more attractive than any of the other 3 geometric isomers, although combining the Z,Z isomer (V) or the E,E isomer (VI) with III increased catches while the addition of the E,Z isomer (VII) decreased catches. The alcohols VIII and IX corresponding to the acetates III and IIA were not attractive but caused a marked reduction in trap catch when combined with III. The homolog of III (Z,E)-11-methyl-9,11-tetradecadienyl acetate (X) was unattractive to males but increased trap catches when combined with III. 9-Tetradecynyl acetate (XI) exhibited neither attractant nor inhibitory activity, and similar results were obtained with ethyl cyclohexane carboxylate (XII) and 2-nonynal dimethyl acetal (XIII), compounds which have similar far-IR spectra to that of diene III. The distributions of males landing on sticky board traps 70 cm in diameter baited with III or mixtures of III with I, IIA or IV showed that a greater percentage of the moths landed at the periphery of the traps baited with certain combinations of III with I and IV than on traps baited with III alone. Collection and analysis of the volatiles emitted by virgin females of different origins indicated that those from Crete produced I and III only, those from Israel produced I, III and IV, while those from Egypt produced, I, III, IV and IIA and/or (E)-11-tetradecenyl acetate (IIB). The results are discussed in relation to previous work on *S. littoralis* and current theories on insect communication, and in terms of their relevance to the practical field usage of pheromones in control of this pest.

L19 ANSWER 17 OF 18 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on  
STN DUPLICATE 5

ACCESSION NUMBER: 1978:151762 BIOSIS  
DOCUMENT NUMBER: PREV197865038762; BA65:38762  
TITLE: ENVIRONMENT AND SEXUAL ACTIVITY OF THE EUROPEAN CORN  
BORER.  
AUTHOR(S): DEROZARI M B [Reprint author]; SHOWERS W B; SHAW R H  
CORPORATE SOURCE: DEP PERHUBANGAN PUSAT METEOROL DAN GEOFIS, JUL AR  
HAKIM 3 JAKARTA, INDONES  
SOURCE: Environmental Entomology, (1977) Vol. 6, No. 5, pp.  
657-665.  
CODEN: EVETBX. ISSN: 0046-225X.  
DOCUMENT TYPE: Article  
FILE SEGMENT: BA  
LANGUAGE: ENGLISH

Searcher : Shears 571-272-2528

09/920689

AB Field studies were conducted to determine the relationship between low-altitude (< 3m) flight and sexual activity of the European corn borer [ECB], *Ostrinia nubialis* (Huebner), and to delineate the effect of environmental factors on these activities. ECB moths flew out of tall, dense foxtailgrass (*Setaria spp.*) at 2000-2200 h and moved over short grass where dew had formed. The number of males flying under 3 m was not synchronized with the number of males captured in traps baited with virgin ECB females or the synthetic pheromone, Z:E-11 tetradecenyl acetate (96:4 Z:E-11-tda) until after dew or raindrops were deposited on the grass leaves. Free water contributed to the aggregation of ECB adults in patches of tall, dense foxtailgrass. Multivariate regressions showed that dew (dewpoint temperature, dewpoint depression, temperature interaction with dewpoint depression) significantly affected the sexual activity of feral males. And even though the caged females (baits) were kept close to water, there was a suggestion of a natural dependence on free water from dew or rain to stimulate the sexual activity of females. The presence of free water is only a condition required for the initiation of sexual activity. Whether this potential is expressed depends on the availability of both sexes (competition) combined with several physical parameters (temperature, relative humidity, illumination). These studies also suggest that low illumination and a slight wind is necessary to provide guidance to the ECB male in mate seeking.

L19 ANSWER 18 OF 18 CABA COPYRIGHT 2004 CABI on STN  
ACCESSION NUMBER: 75:32258 CABA  
DOCUMENT NUMBER: 19750528169  
TITLE: The behavioural basis of a pheromone monitoring system for pea moth, *Cydia nigricana*  
AUTHOR: Lewis, T.; Wall, C.; Macaulay, E. D. M.; Greenway, A. R.  
CORPORATE SOURCE: Rothamsted Experimental Station, Harpenden, Herts., UK.  
SOURCE: Annals of Applied Biology, (1975) Vol. 80, No. 3, pp. 257-274. 10 fig. 36 ref.  
ISSN: 0003-4746  
DOCUMENT TYPE: Journal  
LANGUAGE: English  
ENTRY DATE: Entered STN: 19941101  
Last Updated on STN: 19941101

AB The flight and mating behaviour of *Cydia nigricana* (F.) was studied at overwintering sites and in pea fields in south-eastern England in 1973-74 to see whether it could be exploited to provide early warning of adult immigration into pea crops. The field threshold temperature for take-off was found to be 10 deg C. Most flight activity occurred in June and July between 4 and 6 p.m. (B.S.T.) with peak activity at about 5 p.m. Moths were not caught in suction traps at heights above 0.4 m, but they can probably travel several kilometres by fluttering above vegetation in winds of up to 10 km/h. Female moths produced a sex pheromone highly attractive to males; 'calling' by females and mating occurred during the period of maximum flight activity. Suction traps and egg counts detected the presence of moths in crops at about the same time. On average,

09/920689

sticky traps and water traps containing live virgin females as a lure caught, respectively, 17 and 130 times as many males as suction traps and, on occasions, 25 and 300 times as many; these attractive traps should detect the arrival of immigrants sooner than suction traps or egg counts. Extracts of virgin females dispensed from filter paper at doses of 1 and 5 FE (female equivalents) attracted males rapidly but temporarily. Rubber dispensers with extracts of 20 FE remained attractive for 6 days. Several synthetic attractants were screened at doses of 0.1 mg on rubber dispensers in sticky traps. Cis-8-dodecanyl acetate and **trans-8,trans-10-dodecadienol** at doses of 0.1 mg were slightly attractive; the latter at 1.0 mg was more attractive than 20 FE of extract and could be used for experimental monitoring of *C. nigricana* until its own synthetic sex pheromone is available.

(FILE 'HCAPLUS, MEDLINE, BIOSIS, EMBASE, WPIDS, CONFSCI, SCISEARCH, JICST-EPLUS, JAPIO, RAPRA, PLASNEWS, PROMT, PLASPEC, PIRA, VETU, VETB, CABA, AGRICOLA, USPATFULL' ENTERED AT 12:19:24 ON 30 MAR 2004)

L35        19916 S "ANDERSON M"?/AU  
 L36        405 S "BUDD K"?/AU  
 L37        37 S "MARABELLA C"?/AU  
 L38        15 S "NIGATU T"?/AU  
 L39        4 S L35 AND L36 AND L37 AND L38  
 L40        24 S L35 AND (L36 OR L37 OR L38)  
 L41        4 S L36 AND (L37 OR L38)  
 L42        4 S L37 AND L38  
 L43        7 S (L40 OR L35 OR L36 OR L37 OR L38) AND (L14 OR L16)  
 L44        7 S L39 OR L41 OR L42 OR L43  
 L45        5 DUP REM L44 (2 DUPLICATES REMOVED)

-- Author(s)

L45 ANSWER 1 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1  
 ACCESSION NUMBER: 2003:118401 HCAPLUS  
 DOCUMENT NUMBER: 138:132635  
 TITLE: Controlled release particles with inorganic matrix  
 INVENTOR(S): Anderson, Mark T.; Budd, Kenton  
                  D.; Marabella, Charles P.;  
                  Nigatu, Tadesse G.  
 PATENT ASSIGNEE(S): 3M Innovative Properties Company, USA  
 SOURCE: U.S. Pat. Appl. Publ., 14 pp., Cont.-in-part of  
                  U.S. Ser. No. 838,854, abandoned.  
                  CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 2  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                          | KIND | DATE     | APPLICATION NO. | DATE        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|-------------|
| US 2003031694                                                                                                                                                                                                                                                                                                                                                                                                                       | A1   | 20030213 | US 2001-920689  | 20010802    |
| WO 2002085113                                                                                                                                                                                                                                                                                                                                                                                                                       | A1   | 20021031 | WO 2002-US8969  | 20020322    |
| W: AE, AG, AL, AM, AT, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,<br>CH, CN, CO, CR, CU, CZ, CZ, DE, DE, DK, DK, DM, DZ, EC, EE,<br>EE, ES, FI, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,<br>JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,<br>MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD,<br>SE, SG, SI, SK, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,<br>VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ |      |          |                 |             |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE,<br>CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,<br>SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,<br>SN, TD, TG                                                                                                                                                                                                                         |      |          |                 |             |
| EP 1392115                                                                                                                                                                                                                                                                                                                                                                                                                          | A1   | 20040303 | EP 2002-764149  | 20020322    |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,<br>PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR                                                                                                                                                                                                                                                                                                                        |      |          |                 |             |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                                                              |      |          | US 2001-838854  | B2 20010420 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |          | US 2001-920689  | A 20010802  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |          | WO 2002-US8969  | W 20020322  |

AB A particle includes an inorg. matrix that includes channels and a composition disposed in the channels, the composition including organic structure-directing agent and active agent, e.g., pheromone, and the

09/920689

particle being capable of controllably releasing the active agent.

L45 ANSWER 2 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 2

ACCESSION NUMBER: 2002:832534 HCAPLUS

DOCUMENT NUMBER: 137:329448

TITLE: Controlled-release particles comprising  
inorganic matrix

INVENTOR(S): Anderson, Mark T.; Budd, Kenneth  
D.; Marabella, Charles P.;  
Nigatu, Tadesse G.

PATENT ASSIGNEE(S): 3M Innovative Properties Company, USA

SOURCE: PCT Int. Appl., 38 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

| PATENT NO.             | KIND                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE     | APPLICATION NO. | DATE       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------|
| WO 2002085113          | A1                                                                                                                                                                                                                                                                                                                                                                                                                               | 20021031 | WO 2002-US8969  | 20020322   |
| W:                     | AE, AG, AL, AM, AT, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,<br>CH, CN, CO, CR, CU, CZ, CZ, DE, DE, DK, DK, DM, DZ, EC, EE,<br>EE, ES, FI, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,<br>JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,<br>MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD,<br>SE, SG, SI, SK, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,<br>VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ |          |                 |            |
| RW:                    | GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE,<br>CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,<br>SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,<br>SN, TD, TG                                                                                                                                                                                                                          |          |                 |            |
| US 2003031694          | A1                                                                                                                                                                                                                                                                                                                                                                                                                               | 20030213 | US 2001-920689  | 20010802   |
| EP 1392115             | A1                                                                                                                                                                                                                                                                                                                                                                                                                               | 20040303 | EP 2002-764149  | 20020322   |
| R:                     | AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,<br>PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR                                                                                                                                                                                                                                                                                                                        |          |                 |            |
| PRIORITY APPLN. INFO.: |                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | US 2001-838854  | A 20010420 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | US 2001-920689  | A 20010802 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | WO 2002-US8969  | W 20020322 |

AB A particle that includes an inorg. matrix that comprises channels  
and a composition disposed in the channels, the composition including  
organic

structure-directing agent and active agent, for example, pheromone,  
and the particle being capable of controllably releasing the active  
agent are disclosed.

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR  
THIS RECORD. ALL CITATIONS AVAILABLE IN  
THE RE FORMAT

L45 ANSWER 3 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1975:509751 HCAPLUS

DOCUMENT NUMBER: 83:109751

TITLE: Oak leaf roller (*Archips semiferanus*) sex  
pheromone complex. Field and laboratory  
evaluation of requisite behavioral stimuli

AUTHOR(S): Hendry, L. B.; Jugovich, J.; Mumma, R. O.;

09/920689

Robacker, D.; Weaver, K.; **Anderson, M.**

E.

CORPORATE SOURCE: Dep. Chem., Pennsylvania State Univ., University Park, PA, USA

SOURCE: Experientia (1975), 31(6), 629-31  
CODEN: EXPEAM; ISSN: 0014-4754

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Of 21 Z and E tetradecenyl acetate isomers having double bonds in the 2-5 and 7-13 positions, 17 showed attractancy for males of the oak leaf roller (*Archips semiferanus*) in field trap tests. All isomers evoked response in electroantennogram analyses; however, there was no correlation between the attractancy in field traps and the electroantennogram response. Z-11-

**tetradecenyl acetate [20711-10-8]** gave the best male antennal response, but was among the lowest in attracting male oak leaf rollers into the traps. Greatest number of males were caught in traps baited with Z-10- [35153-16-3], Z-5- [35153-13-0], E-4- [56209-67-7], Z-4- [54897-66-4], and Z-3- [54897-65-3] tetradecenyl acetates.

L45 ANSWER 4 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1975:122040 HCAPLUS

DOCUMENT NUMBER: 82:122040

TITLE: Sex pheromone of the oak leaf roller. Complex chemical messenger system identified by mass fragmentography

AUTHOR(S): Hendry, L. B.; **Anderson, M. E.**;  
Jugovich, J.; Mumma, R. O.; Robacker, D.;  
Kosarych, Z.

CORPORATE SOURCE: Dep. Chem., Pennsylvania State Univ., University Park, PA, USA

SOURCE: Science (Washington, DC, United States) (1975), 187(4174), 355-7  
CODEN: SCIEAS; ISSN: 0036-8075

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The sex pheromone of the oak leaf roller, *Archips semiferanus*, is composed of a complex mixture of chemical signals. The attractant component of the pheromone contains a series of tetradecenyl acetates having double bonds in positions 2 to 12. Mass fragmentog. of the ozonolysis products of the attractant component was used to locate the double bonds in the various isomers.

L45 ANSWER 5 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1975:475328 HCAPLUS

DOCUMENT NUMBER: 83:75328

TITLE: Evidence for origin of insect sex pheromones.  
Presence in food plants

AUTHOR(S): Hendry, L. B.; Wichmann, J. K.; Hindenlang, D. M.; Mumma, R. O.; **Anderson, M. E.**

CORPORATE SOURCE: Dep. Chem., Pennsylvania State Univ., University Park, PA, USA

SOURCE: Science (Washington, DC, United States) (1975), 188(4183), 59-63  
CODEN: SCIEAS; ISSN: 0036-8075

09/920689

DOCUMENT TYPE: Journal  
LANGUAGE: English

AB Compds. identified as sex attractant pheromones in a number of phytophagous insects were found in a variety of host plants. These agents vary in chemical composition in different plant species, which suggests that dietary factors may provide an evolutionary mechanism for diversification of certain insect species. A theor. framework to explain this phenomenon is postulated on the basis of expts. with the oak leaf roller moth.

FILE 'HOME' ENTERED AT 12:24:35 ON 30 MAR 2004

Searcher : Shears 571-272-2528