Survivor Function

3/3 points (graded)

Consider a neuron with relative refractoriness. Given the last spike time \hat{t} , the probability of firing for $t \geq \hat{t}$ is given by $ho \, (t - \hat{t}\,)$ where $ho\left(s
ight)$ is the hazard function defined for s>0 in the following way.

$$ho \left(s
ight) = egin{cases} 0 & ext{for } 0 <= s < t_{abs} \ rac{
ho_0}{b} (s - t_{abs}) & ext{for } t_{abs} <= s < t_{abs} + b \
ho_0 & ext{for } t_{abs} + b <= s \end{cases}$$

In the expression above, t_{abs} and b are just two fixed numbers. In fact the hazard function $ho\left(s
ight)$ is zero during the absolute refractory period $0 <= s < t_{abs}$ and it increases linearly up to maximum firing rate ho_0 .

Then, **survivor** function of such neuron for $t>\hat{t}$ is given by

$$S\left(t|\hat{t}
ight) = egin{cases} e^{-A} & ext{ for } 0 <= t - \hat{t} < t_{abs} \ e^{-B} & ext{ for } t_{abs} <= t - \hat{t} < t_{abs} + b \ e^{-C} & ext{ for } t_{abs} + b <= t - \hat{t} \end{cases}$$

Indicate A, B and C:

A:

$$igcup
ho_0^2(t-\hat{t}\,-t_{abs})^2$$

$$\bigcirc
ho_0 \left(t - \hat{t} \, - t_{abs}
ight)$$

$$\bigcirc
ho_0 \left(-1 + t - \hat{t} \, - t_{abs}
ight)$$

$$igcup_{rac{
ho_0}{2b}}(-1+t-\hat{t}\,-t_{abs})^2$$

B:

$\bigcirc ho_0^2 (t-\hat{t}-t_{abs})^2$
$\int C rac{ ho_0}{b} (t-\hat{t}-t_{abs})$
$iggledown_{rac{ ho_0}{2b}}(t-\hat{t}-t_{abs})^2$
$\bigcirc ho_0 \left(-b + t - \hat{t} - t_{abs} ight)$
$\mathcal{O} ho_0^2(-rac{b}{2}+t-\hat{t}-t_{abs})^2$
✓
C:
$\bigcirc ho_0^2 (t-\hat{t}-t_{abs})^2$
$\left(-rac{ ho_0}{2b}(t-\hat{t}-t_{abs})^2 ight)$
$igcup_0{rac{ ho_0}{b}}(-b+t-\hat{t}\ -t_{abs})$
$lacksquare eta_0 \left(-rac{b}{2} + t - \hat{t} - t_{abs} ight)$
$\bigcirc ho_0 \left(-b + t - \hat{t} \ - t_{abs} ight)$
$\bigcirc ho_0 \left(rac{b}{2} + t - \hat{t} \ - t_{abs} ight)$
✓
Submit You have used 1 of 1 attempt

For the neuron defined above, calculate the **interval distribution** function $P(t|\hat{t}|)$. Then evaluate this function at the following indicated

✓ Correct (3/3 points)

Interval Distribution

 $P\left(t|\hat{t}\>
ight)$ for $t=\hat{t}\>+rac{1}{2}t_{abs}$ is equal to:

3/3 points (graded)

time values.

• 0

 \bigcirc 1

 $\bigcirc
ho_0 e^{-b
ho_0}$

 $\bigcirc rac{
ho_0}{2}e^{-rac{b
ho_0}{4}}$

 $\bigcirc_{2
ho_0 e^{-rac{b
ho_0}{8}}}$

 $\bigcirc \frac{b
ho_0}{2}$

\bigcirc 1	
$\bigcirc_{2 ho_0e^{-rac{b ho_0}{4}}}$	
$\bigcirc ho_0 e^{-b ho_0}$	
$\bigcirc rac{ ho_0}{2}e^{-rac{b ho_0}{4}}$	
$\bigcirc ho_0 e^{-rac{b ho_0}{4}}$	
$\bigcirc_{2 ho_0 e^{-rac{b ho_0}{8}}}$	
$ \bullet \frac{\rho_0}{2} e^{-\frac{b\rho_0}{8}} $	
✓	
$P(t \hat{t})$ for $t=\hat{t}+t_{abs}+rac{3b}{2}$ is equal to:	
$\bigcirc ho_0 e^{-2b ho_0}$	
$\bigcirc 2 ho_0 e^{-rac{b ho_0}{4}}$	
$lacksquare eta ho_0 e^{-b ho_0}$	
$\bigcirc rac{ ho_0}{2}e^{-rac{b ho_0}{8}}$	
$\bigcirc ho_0^2e^{-rac{b ho_0}{4}}$	
$\bigcirc ho_0 e^{-rac{b ho_0}{2}}$	
$\bigcirc e^{-rac{b ho_0}{2}}$	
✓	
Submit You have used 1 of 1 attempt	
✓ Correct (3/3 points)	
Discussion	Show Discussion
Topic: Week 6 / Homework 6.1: Relative refractoriness	

 $P(t|\hat{t}\,)$ for $t=\hat{t}\,+t_{abs}+rac{b}{2}$ is equal to: