AMENDMENT UNDER 37 C.F.R. § 1.114(c) Attorney Docket No.: Q80508

U.S. Appln. No.: 10/825,329

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (currently amended): A method for optimizing the operation of a plurality of

compressor assemblies of a natural-gas compression station, comprising:

after start of at least a second compressor assembly, running the rotational speeds of the

running compressor assemblies in a fixed rotational speed ratio with respect to characteristic-

map data filed for each compressor assembly,

thereafter varying the fixed rotational speed ratio by means of an equal-percentage

adjustment of an operational volume of each of the running compressor assemblies and thereby

adjusting the throughflow quantity adjustment of the natural-gas compression station via the

rotational speed, until surge prevention valves of each of the running compressor assemblies of

the natural-gas compression station are closed,

thereafter leading the operating points of the compressor assemblies in their characteristic

maps toward the maximum efficiency line by varying the rotational speeds of the running

compressor assemblies,

thereafter, in a continuous operating mode of the natural-gas compression station,

determining optimum rotational-speed desired values by means of a reciprocal mutually

coordinated variation of the rotational-speed desired values of the compressor assemblies, in

3

AMENDMENT UNDER 37 C.F.R. § 1.114(c)

U.S. Appln. No.: 10/825,329

Attorney Docket No.: Q80508

which the compressor station has a minimal fuel consumption of the natural-gas compression

station and a minimal emission of an exhaust-gas quantity, and,

on the basis of the optimum rotational-speed desired values determined, adjusting and

storing the fixed rotational speed ratio.

2. (original): The method as claimed in claim 1, wherein the operating points of the

compressor assemblies in their characteristic maps are led as far as possible toward the

maximum efficiency line.

3. (original): The method as claimed in claim 1, wherein sequence control is

implemented utilizing an automation program for operating the natural-gas compression station.

4. (original): The method as claimed in claim 1, further comprising transmitting the

rotational-speed desired values for the compressor assemblies by a station controller to

rotational-speed controllers of the compressor assemblies, wherein the controlled variable used

for the station controller is that controlled variable of a plurality of controlled variables that has

the lowest positive control deviation.

4

AMENDMENT UNDER 37 C.F.R. § 1.114(c) U.S. Appln. No.: 10/825,329

Attorney Docket No.: Q80508

5. (original): The method as claimed in claim 1, in which at least one of throughflow quantity, suction pressure, final pressure, and final temperature for a natural-gas compression station function as controlled variables for the method.

6. (original): The method as clamed in claim 3, wherein the mutually coordinated variation of the rotational-speed desired values of the compressor assemblies of the natural-gas compression station is carried out by means of an optimization computer arranged between the station controller and the rotational-speed controllers of the compressor assemblies.