## Problemes S4



### Outline

Sessió 2: Classificació

Sessió 3: Backprop

Sessió 4: Memorització



Què es feia abans?

### Outline

Sessió 2: Intro + Classificació

Sessió 3: Nets + Backprop

Sessió 4: KNN + Memorització



### Entregues

Sessió 2: Intro + Classificació

Regresor Logistic + SVM

Sessió 3: Nets + Backprop

Feedforward + CNN

Sessió 4: KNN + Memorització
NN search (raw data + features)



Haureu d'entregar un informe sobre Jupyter Notebook amb el codi explicant el que heu fet

# Sessió 4: KNN, memorització

Búsqueda dels K-veïns més propers

### **KNN**



### Nearest Neighbour

- Brute-force
- Approximate
  - sklearn: KD-Tree
  - sklearn: Ball-Tree
  - annoy (Approximate Nearest Neighbors Oh Yeah): used in spotify

D'altres implementacions més eficients (però més difícils de instalar..)

- NMSLIB(Non-Metric Space Library) used in Amazon Elasticsearch & Yandex
- NGT(Neighborhood Graph and Tree for Indexing High-dimensional Data): developed at yahoo
- FAISS (Fair AI Similarity Search): developed at facebook
- SCANN (Scalable Nearest Neighbors): developed at google

### Brute-force

for i in query item:

for j in train item:

compute distance(i,j)

#### time complexity:

 $O(d * n^2)$ 

fast for small n (<100)



### Sklearn: KDtree

Distribute data in a tree

Split the data,

one dimension each time

#### time complexity:

O(d \* n \* log(n))

faster with n costly for large d



### Sklearn: BallTree

ball trees partition data

of nesting hyper-spheres

#### time complexity:

O(d \* n \* log(n))

faster with n efficiency related to data

# Ball-tree Example level 1 level 2 level 3 level 4

### Annoy

multiple trees

with random hyper-planes

#### time complexity:

O(d \* n \* log(n))

the evil is in the details..



### **NMSLib**

Hierarchical Navigable Small World graph

#### time complexity:

$$O(d * n * log(n))$$

but, not only time is important.. space complexity is also relevant



### **FAISS**

#### **Product Quantization: Memory efficient**



### **FAISS**



### Summary

|                         | search time | 1-R@1  | index size   | index build time |
|-------------------------|-------------|--------|--------------|------------------|
| Flat-CPU                | 9.100 s     | 1.0000 | 512 MB       | 0 s              |
| nmslib (hnsw)           | 0.081 s     | 0.8195 | 512 + 796 MB | 173 s            |
| IVF16384,Flat           | 0.538 s     | 0.8980 | 512 + 8 MB   | 240 s            |
| IVF16384,Flat (Titan X) | 0.059 s     | 0.8145 | 512 + 8 MB   | 5 s              |
| Flat-GPU (Titan X)      | 0.753 s     | 0.9935 | 512 MB       | 0 s              |

The database consists of 1,000,000 SIFT descriptors (128D) extracted from image patches.

 $Guia\ interessant\ de\ llegir:\ \underline{https://towardsdatascience.com/comprehensive-guide-to-approximate-nearest-neighbors-algorithms-8b94f057d6b6}$ 

### Summary



### **ScaNN**

#### Model Architecture





### Data

Fashion-MNIST

60.000 training samples

10.000 testing samples

each sample is 28x28 pixels

784 dimensions

10 categories

T-Shirt/Top

Trouser

Pullover

Dress

Coat

Sandals

Shirt

Sneaker

Bag

Ankle boots







Apartat A. Búsqueda Brute Force



Apartat B. Búsqueda Aproximada



Apartat C. Net Encoding. Búsqueda Brute Force



Apartat D. Net Encoding. Búsqueda Aproximada

#### Apartat A. Búsqueda Brute Force (2pts)

PREGUNTA: Implementa el mètode query de la classe BruteForce.

PREGUNTA: Executa la búsqueda amb diferents k.

#### **Apartat B. Búsqueda Aproximada (4pts)**

PREGUNTA: Implementa els mètode build i query de les 3 classes anteriors.

PREGUNTA: Compara els resultats del bruteforce i els 3 ANN.

PREGUNTA: Executa cerques amb varis paràmetres dels ANN.

#### **Apartat C. Net Encoding (2pts)**

PREGUNTA: Aprèn un model i extreu les caracteristiques de la penúltima capa.

PREGUNTA: Modifica la dimensionalitat del model de la capa fc2 i reaprèn el model.

#### Apartat D. Net Encoding. Búsqueda BruteForce i Aproximada (3pts)

PREGUNTA: Compara els resultats del bruteforce i els 3 ANN utilitzant les caracteristiques de la xarxa

PREGUNTA: Explica les diferències respecte utilitzant les dades originals.

PREGUNTA: Executa cerques amb varis paràmetres dels ANN.

PREGUNTA: Mostra una gràfica mostrant les queries/s respecte el recall que aconsegueixen.

Recall-Queries per second (1/s) tradeoff - up and to the right is better



ann-benchmarks fashion-mnist-784-euclidean (k = 10)

https://github.com/erikbern/ann-benchmarks

Recall-Queries per second (1/s) tradeoff - up and to the right is better



ann-benchmarks fashion-mnist-784-euclidean (k = 10)

https://github.com/erikbern/ann-benchmarks