plain concepts

ABOUT US

OUR SERVICES

UI/UX Design

Web & App development

Demos & Whitepapers

Marketing Campaigns **Custom CMS**

BIG DATA

IMPLEMENTACION DE HADOOP EN AZURE

Francisco Martínez

Data Engineer at Plain Concepts

fmartinez@plainconcepts.com

@pacommiranda

LEARNING PATH

- Learning Path
 - Dos jornadas presenciales
 - Tres sesiones on-line

LEARNING PATH

Sesiones Presenciales

18 Mayo – Implementación de Hadoop en Azure. Despliegue y administración

19 Mayo – Implementación de Hadoop en Azure. Desarrollo

LEARNING PATH

Sesiones On-Line

25 Mayo - Procesado de Streams sobre Hadoop y Azure Stream Analytics. https://goo.gl/eqx1v0

1 Junio - Machine Learning sobre Hadoop y Azure ML.

https://goo.gl/OoGJuA

8 Junio - Visualización en Hadoop IaaS y Power BI.

https://goo.gl/ucsnQU

plain concepts

SOBRE VOSOTROS

PREPARACION DEL ENTORNO

BIG DATA

¿Qué es Big Data? ¿Qué NO es Big Data?

¿Para qué sirve Big Data?

LAS TRES UVES

Volumen

Variabilidad

Velocidad

YAHOO!

Google

- Large Synoptic Survey Telescope (LSST)
- · Unos 40TB/día
- +100PB durante su expectativa de vida

- Illumina HiSeq 2000
- 1Tb por día aproximadamente
- Un solo laboratorio puede tener de 25 a 100 de estos

¿VOLUMEN?

VELOCIDAD

Ingeniería

- Mantenimiento Predictivo
- Gestión de Alarmas

Detección de Fraudes

- Análisis de Actividad
- Análisis de Logs

Publicidad Online

- Asignación de Anuncios
- Calculo de Rutas de Exposición

VARIABILIDAD

```
{"delete":{"status":{"id":55628890374275072,"user id":91674696,"id str":"55628890374275072","user id str":"91674696"}}}
{"delete":{"status":{"id":240507246616915968,"user id":382406164,"id str":"240507246616915968","user id str":"382406164"}}}
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192957165568,"id str":"337831192957165568","text":"RT @rokaya mohareb: \u0647\u0644 \u0641\u064a\u0645\u062
{"created_at":"Fri May 24 07:23:27 +0000 2013","id":337831192957161472,"id_str":"337831192957161472","text":"RT @bilio_muydunuz: 22:00-06:00 aras\u0131 i\u00e7ki yas
{"delete":{"status":{"id":6718146777976832,"user_id":47682688,"id_str":"6718146777976832","user_id_str":"47682688"}}}
{"delete":{"status":{"id":260724223939588096,"user id":592170650,"id str":"260724223939588096","user id str":"592170650"}}}
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192961380352,"id str":"337831192961380352","text":"benget lah opi :)) @OvieS12: Sehun is Mine \u2665","sou
{"created_at":"Fri May 24 07:23:27 +0000 2013","id":337831192986533888,"id_str":"337831192986533888","text":"RT @cherryaam1: \u307f\u3063\u3061\u3083\u3093\u306e\u5f
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192978145281,"id_str":"337831192978145281","text":"RT @ImamShafiee: When Imam Ahmad heard that any of his r
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192965570560,"id str":"337831192965570560","text":"\u0627\u0644\u06644\u0664f\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0645\u0
{"created_at":"Fri May 24 07:23:27 +0000 2013","id":337831192969768960,"id_str":"337831192969768960","text":"@_okamickey \u3048\u3001\u306a\u3093\u3067\uff1f","sourc
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192978141184,"id str":"337831192978141184","text":"\u306b\u3057\u3065\u3093\u3084\u3093\u3084\u3070\u308a\u3043\u
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192982327296,"id str":"337831192982327296","text":"To be able to play with the birds and to see the stars u
{"created_at":"Fri May 24 07:23:27 +0000 2013","id":337831192978137088,"id_str":"337831192978137088","text":"http:\/\/t.co\/lSMBPD0YD6","source":"\u003ca href=\"http
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192952971264,"id str":"337831192952971264","text":"RT @Hind34: \u0623\u0646\u0627 \u0644\u0627 \u0623\u0628
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192973946881,"id str":"337831192973946881","text":"RT @yakko talk: 4\u6642\u306b\u9a12\u3052\uff01\u3044\u3
{"created_at":"Fri May 24 07:23:27 +0000 2013","id":337831192961351681,"id_str":"337831192961351681","text":"\u5c11\u3057\u722a\u306e\u4f38\u3073\u305f\u624b\u3067\u
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192952967168,"id str":"337831192952967168","text":"\u201c \u0627\u0644\u0644\u0644\u0647 \u0645\u0627 \u064a\u062
{"created_at":"Fri May 24 07:23:27 +0000 2013","id":337831192973946882,"id_str":"337831192973946882","text":"@CmasPal yeah just do that and what time will you be at
{"created at":"Fri May 24 07:23:27 +0000 2013","id":337831192986525696,"id str":"337831192986525696","text":"RT @sahmk : @busine \n\u0627\u0633\u0647\u0645 \u064a\u0
```

VARIABILIDAD

- Schema-on-write
- Trabajamos con un schema estático
- Transformamos los datos a este schema (utilizando ETL)
- Antes de admitir nuevos datos, debemos modificar el esquema

- Schema-on-read
- Copiamos los datos con su schema original
- Creamos un schema
- Consultamos los datos usando el formato original (ETL on the fly)
- Los datos siempre están ahí, solo necesitamos crear el schema que los describe

SISTEMA TRADICIONAL

Y LA UTILIDAD?

BIG DATA NO ES...

RESUMEN

Big Data es el cambio de paradigma que representa la búsqueda de soluciones para almacenar y procesar datos NO estructurados Y datos estructurados conjuntamente de un modo económico y escalable

HADOOP CORE

¿QUE ES APACHE HADOOP?

Framework de la fundación Apache para el procesado distribuido de datos Pensado para trabajar sobre "commodity hardware" Basado en dos pilares: MapReduce y HDFS

MI INFRAESTRUCTURA PUEDE SER ASI...

O ASI...

APACHE HADOOP

MapReduce

Divide las tareas entre procesadores "cercanos" a los datos Compone los resultados

HDFS

Almacenamiento distribuido Auto-reparable Redundante Nodo maestro (NameNode)

ECOSISTEMA DE HADOOP V1

HDFS

- Sistema de Ficheros distribuido
- Construido sobre Hardware no específico
- Alta Resistencia a fallos
 - Replicación de ficheros
 - Deteccion y Recuperación automática
- Optimizado para procesos por lotes (batch)
 - Lista de úbicaciones expuesta para minimizar trafico
 - Proporciona un ancho de banda agregado muy elevado

HDFS CLUSTER

Name Node

- Gestiona los Data Nodes
- Guarda metadatos para todos los ficheros y bloques

Data Nodes

- Almacenan los bloques de datos
- Se distribuyen por la topología de racks

Clientes

• Hablan directamente con el Name Node, y después con los Data Nodes necesarios

HDFS - ORGANIZACION

- Sistema de Ficheros Lógico
 - Soporta creación, borrado, renombrado, etc...
- Gestionado por el Name Node
- Metadatos
 - Organización en ficheros y directorios
 - POSIX compatible (permisos, estructura...)

HDFS - NAME NODE

- Mantiene una imagen del sistema de ficheros en memoria
 - 4GB de memoria son suficientes
- Utiliza un log de transacciones (EditLog) para almacenar cambios en el Sistema de ficheros (nuevos ficheros, cambios en el numero de replicas, etc...)
 - Se almacena en el Sistema de ficheros local del Name Node
- El Sistema de ficheros complete, incluyendo el mapeo de bloques y demás metadatos, se almacena en un fichero FsImage
 - También se almacena en el Sistema de ficheros local del Name Node
- Utiliza un Sistema de checkpoints para poder recuperar el sistema en caso de fallo
 - En cada arranque, recupera FsImage, lo actualiza con la información de EditLog y almacena una copia de FsImage como checkpoint

HDFS - DATA NODE

- Un Data Node almacena bloques de ficheros en su Sistema de ficheros local
- No conoce la existencia de HDFS
- Almacena cada bloque en un fichero diferente
- No crea todos los ficheros en el mismo directorio
 - Utiliza un algoritmo para calcular en numero optimo de ficheros por directorio,
 creando directorios nuevos a medida que los necesita
- Cuando arranca, genera una lista de todos los bloques y se los envía al Name Node como BlockReport

HDFS - REPLICACION

- Diseñado para almacenar ficheros muy grandes en varias máquinas
 - Cada fichero se divide en bloques, del mismo tamaño salvo el último
 - Los bloques se replican automáticamente
 - El tamaño del bloque y el numero de réplicas es configurable por fichero
 - Por defecto, bloques de 64MB y 3 réplicas

HDFS

Optimizado para la lectura y tolerante a fallos

MAP REDUCE - ¿QUE ES?

- Framework de computación distribuida para el análisis de datos
 - Grandes conjuntos de datos
- Computación de datos locales
 - Llevar la computación a los datos y no al revés
- Procesado en paralelo
- Función Map, procesa un par clave-valor para generar un valor intermedio
- Función Reduce, procesa los valores intermedios con la misma clave intermedia

MAP REDUCE - ¿COMO FUNCIONA?

Tomamos un problema y lo dividimos en sub-problemas

Aplicamos la misma función a cada subproblema Combinamos el resultado de todas las funciones

MAP REDUCE

MAPREDUCE - ARQUITECTURA

MAP REDUCE

Funcionalmente

Map $f(k1,v1) \rightarrow list(k2,v2)$ Reduce $f(k2, list(v2)) \rightarrow (k2, v3)$

Código

```
var map = function (key, value, context) {
   var words = value.split(/[^a-zA-z]/);
   for (var i = 0; i < words.length; i++) {
       if (words[i] !== "") {
            context.write(words[i].toLowerCase(), 1);
       }
   }
};

var reduce = function (key, values, context) {
   var sum = 0;
   while (values.hasNext()) {
       sum += parseInt(values.next());
   }
   context.write(key, sum);
};</pre>
```

En la práctica, WordCount

chalaneru chalaneru que lleves en la chalana

Map

```
(chalaneru,1) (chalaneru,1), (que, 1), (lleves,1), (en,1), (la,1),(chalana,1)
```

Shuffle

(chalaneru,(1,1)) (que,1), (lleves,1), (en,1), (la,1),(chalana,1)

Reduce

(chalaneru,2) (que,1), (lleves,1), (en,1), (la,1), (chalana,1)

plain concepts

MAP REDUCE

MAP REDUCE - PROBLEMAS

- Presencia de "single-point of failure"
 - Si el JobTracker falla, todo se viene abajo
- Pobre escalado
- Amplio consumo de memoria
- Rendimiento pobre
- Acoplamiento entre la gestión de recursos y el proceso de datos

EVOLUCION A HADOOP 2.0

Single Use System

Batch Apps

Multi Use Data Platform

Batch, Interactive, Online, Streaming, ...

HADOOP 2.0

YARN - ¿QUE ES?

- Yet Another Resource Negotiator
- YARN Application Resource Negotiator
- Framework de proposito general del que MapReduce es una aplicación más
 - Nos permite trabajar con muchas otras aplicaciones, como Tez
- Nace para separar las funcionalidades del JobTracker
 - El ResourceManager y sus NodeManager se encargan de gestionar los recursos de las aplicaciones de forma distribuida
 - El AplicationMaster se encarga de gestionar una aplicación
- Reemplaza la parte de gestión de recursos de MapReduce

YARN

plain concepts

YARN

DESPLIEGUE DE HDINSIGHT

- Azure SQL Database como Metastore
- Azure Storage como HDFS
- Azure Data Lake como HDFS
- Administración
- Clusters bajo demanda con PowerShell

HD INSIGHT - ¿QUE ES?

- Distribución de Apache Hadoop en Azure
 - Basado en la distribución de HortonWorks
- Nos permite levanter clusters en minutos
- Utilizando Azure Blob Storage como almacenamiento

HDINSIGHT - ARQUITECTURA

AZURE SQL DATABASE COMO METASTORE

- HDInsight requiere una base de datos para almacenar metadatos
 - Veremos mas detalle de esto cuando veamos HIVE
- Por defecto se despliega con una base de datos no permanente
- Si queremos poder crear y destruir el cluster a nuestro antojo, pero mantener esos metadatos necesitamos una Azure DB como Metastore
- Configurable durante la creación del cluster
 - Desde PowerShell, SDK o Web UI

MULTIPLES CLUSTERS

plain concepts

CONFIGURANDO EL

METASTORE

AZURE STORAGE COMO HDFS

- HDInsight trabaja con Windows Azure Blob Storage
 - Azure Blob Storage proporciona almacenamiento persistente, escalable, geo-replicado y compartible
- Al desacoplar el almacenamiento de los datos del cluster que se encarga de procesarlos, habilitamos nuevos escenarios
- ¿Y el rendimiento?
 - Azure Flat Network Storage
 - Casi el mismo rendimiento que el HDFS local en lecturas
 - Mucho mejor rendimiento en escrituras
 - Replicación en nodos
 - En muchos casos, el cuello de botella es la velocidad de proceso y no la de transferencia de datos

plain concepts

HDINSIGHT CON BLOB
STORAGE

MULTIPLES STORAGE ACCOUNTS

AZURE DATA LAKE COMO HDFS

- Data Lake Store es un repositorio de datos en su formato original
 - Diseñado para volumenes infinitos y alto rendimiento en el procesado y el analisis
 - Gran cantidad y variedad, rapidez, estructurados y no estructurados...lo que viene siendo Big
 Data
- Azure Data Lake Analytics es un servicio analítico distribuido construido sobre YARN
 - Permite ejecutar jobs en U-SQL directamente contra los datos almacenados en el Data Lake
- Azure Data Lake HDI es HDInsight sobre Azure Data Lake
 - Las mismas características de HDInsight, pero trabajando con datos almacenados en Data
 Lake

AZURE DATA LAKE COMO HDFS

ADMINISTRACION DE HDINSIGHT

- Los clusters de HDInsight pueden gestionarse desde el portal de Azure
 - Creación y destruccion de clusters
 - Escalado
 - Conexion por RDP
 - Ejecución de queries desde el portal
 - Consulta de la UI de YARN
- También podemos utilizer Azure PowerShell
- Si los clusters son Linux, podemos administrarlos usando Ambari
 - Si son Windows también, pero necesitaremos usar la API (no hay Web UI)

plain concepts

ADMINISTRACIÓN DE CLUSTERS

plain concepts

HDINSIGHT Y POWERSHELL

PROS Y CONTRAS DE HDINSIGHT

Pros

- Facilidad de despliegue, clúster desplegado en unos 25 minutos
- Soporte de Hadoop por parte de Microsoft (y Hortonworks)
- Separación entre los datos y la computación
- SLA en disponibilidad del clúster
- Gestión por parte de MS de actualizaciones de SO, VM, Hadoop (PaaS)

Contras

- Restricciones inherentes a un servicio PaaS
- Ecosistema menos maduro

INSTALACION DE HWX EN AZURE

- Sandbox
- Multinodo
- Automatización con PowerShell

HORTONWORKS SANDBOX

- Maquina virtual de VMWare o Virtualbox
- Todo lo necesario para desplegar un cluster de Hadoop
 - En local
 - Con un único nodo
 - Sobre Linux
- Nos permite hacer pruebas en una MV local sin necesidad de desplegar
 Hadoop desde cero
- · Tambien podemos desplegarla en Azure desde el Marketplace

plain concepts

HORTONWORKS SANDBOX

HORTONWORKS DATA PLATFORM

- Nos permite desplegar toda la infraestructura de Hadoop empresarial en Azure
 - Sobre maquinas virtuales que podemos gestionar a nuestro antojo
- No es necesario que configuremos nada
 - La configuración por defecto nos permite comenzar a trabajar
- Versión de evaluación con un número reducido de nodos

HORTONWORKS DATA PLATFORM

- Data Management
 - YARN para gestionar los recursos, HDFS para almacenar los datos
- Data Access
 - MR, Pig, Hive, TEZ…
 - Pero tambien HBase (NoSQL), Storm (data streaming), Spark (in memory)...
- Data Governance & Integration
 - Sqoop, Oozie, Flume...

plain concepts

DESPLEGANDO HDP IN
AZURE

INSTALACION DE CLOUDERA EN AZURE

- Cloudera Enterprise Data Hub
- Automatización con PowerShell

CLOUDERA ENTERPRISE DATA HUB

- Maquinas virtuales en Azure Marketpace
- Despliega el Enterprise Data Hub de Cloudera
 - En maquinas DS13 o DS14
 - Con un número de nodos variable entre 3 y 90
 - Sobre Linux
- Nos permite configurar entornos para hacer pruebas de concepto, o en producción

plain concepts

DESPLEGANDO CEDH EN

AZURE

CLOUDERA CON POWERSHELL

https://github.com/Azure/azure-quickstart-templates/tree/master/cloudera-on-centos

plain concepts

CLOUDERA CON
POWERSHELL

PROS Y CONTRAS DE HDP Y CLOUDERA

Pros

- Customización completa de la experiencia
- Soporte a todo el stack de Hadoop
- Similitudes con solución on-premises
- Servicios "propios" de cada distribución, como Impala

Contras

- Mayores costes de mantenimiento
- Mayor coste operacional (riesgos de seguridad...)

AMBARI

- Administración de clusters Hadoop
- API programática

AMBARI

- Ambari es una plataforma Open Source para provisionar, gestionar, monitorizar y securizar clusters de Hadoop
- Dispone de una interfaz web y una API REST
- Extensible y customizable

USER VIEWS

- Tez
 - Permite visualizar y optimizar el uso de recursos del cluster
- Hive
 - Permite ejecutar consultas HiveQL (ANSI SQL)
- Pig
 - Permite ejecutar scripts Pig
- Capacity Scheduler
 - Permite gestionar workloads y queues en YARN
- Files
 - Permite gestionar ficheros en HDFS

plain concepts

AMBARI WEB UI

plain concepts

CLOUDERA MANAGER

LA API DE AMBARI

- Ambari ofrece una API REST para acceder a sus características
- En los clusters Windows de HDInsight es la única opción
 - Los clusters Linux si tienen Web UI

plain concepts

AMBARI API

¿PREGUNTAS?

GRACIAS

plain concepts