

Projeto de Máquinas

Análise dimensional e estrutural

Prof. Eduardo Furlan 2023

Cargas

- Cargas fundamentais nos componentes de um equipamento
 - Carga axial
 - Cisalhamento
 - Torção
 - Flexão
- As cargas podem provocar deformação, mudança na estrutura do equipamento

• O prolongamento ou encolhimento total de uma barra uniforme que esteja em condição de tração pura ou compressão pura, é dado por

extensão ou contração
$$\delta = \frac{Fl}{AE}$$
 area módulo de elasticidade

 Não podemos aplicar essa equação para uma barra longa carregada em compressão se existir a possibilidade de flambagem

Figura 2.13 | (a) Uma mola linear; (b) uma mola de enrijecimento; (c) uma mola de não linear não linear

• Figura 2.13 (a)

- Viga reta com comprimento l, apoiada pelas extremidades e carregada por uma força transversal F
- Deflexão y e força estão relacionadas linearmente se o limite elástico do material não for excedido

- Figura 2.13 (b)
 - Viga reta apoiada em dois cilindros
 - O comprimento entre os apoios diminui quando a viga é fletida pela força F
 - É necessária uma força maior caso se deseje fletir uma viga curta em vez de uma longa
 - Quanto mais essa viga for fletida, mais rígida ela se tornará
- Figura 2.13 (c)
 - Vista lateral de um disco de forma convexa
 - Para tornar o disco plano, é preciso aumentar a força no início
 - E depois diminuí-la conforme o disco se aproxima da configuração plana

• Força-deflexão linear

razão de mola
$$k = \frac{F}{y}$$
 força [N/m] Newton por metro deflexão

• Do slide anterior, contração $\delta = \frac{Fl}{AE}$

• Considerando $\delta = y$

• Constante de mola de uma barra carregada axialmente

constante de mola
$$k=rac{AE}{l}$$
 módulo de elasticidade comprimento da viga

- Deflexão angular em barra redonda uniforme
 - Seção pode ser cheia ou vazada
 - Sujeita a um momento de torção T

momento de torção

comprimento

deflexão angular
$$\theta = \frac{Tl}{GI}$$
 (θ em radianos)

módulo de cisalhamento

segundo momento polar de área

segundo momento polar de área [m⁴]

- Barra redonda maciça
 - Multiplicando por $\frac{180}{\pi}$ e substituindo $J = \pi \frac{d^4}{32}$

diâmetro externo

Figura 2.15 | Carregamento axial

- A influência da força será difusa e se distribuirá ao longo da seção transversal da barra
- Esse processo constitui a ideia básica por trás das tensões em componentes mecânicos

Tensão
$$\sigma = rac{F}{A}$$
 Força A Área da seção transversal

Coeficiente de Poisson

• Coeficiente (ou razão) de Poisson (ν)

$$v = \frac{Def_{transversal}}{Def_{longitudinal}}$$
 deformação

- Propriedade do material que quantifica a contração ou a expansão de uma seção transversal
 - Quando uma barra é axialmente alongada pela colocação de uma carga, a área da seção transversal do material deve diminuir

Figura 2.18 | Identificação de cisalhamento.

• A força V resulta da combinação das tensões de cisalhamento que atuam sobre uma determinada área

Dimensionamento

Dimensionamento e seleção de componentes

- Dimensões necessárias para que o componente possa suportar as solicitações
- Conhecimento dos materiais e de suas propriedades
- Materiais com propriedades adequadas para as condições de operação
- Os materiais de engenharia são classificados principalmente como
 - Metais e suas ligas, como ferro, aço, cobre, alumínio, etc.
 - Não metais, como vidro, borracha, plástico, etc.

- Dimensionamento e seleção de atuadores lineares e rotativos
- No dimensionamento de um componente, é necessário
 - Entender quais serão as suas solicitações
 - Descrever todas as solicitações mecânicas
- Análise
 - esforços envolvidos
 - amplitude de deslocamentos
 - tipos de montagem
- Especificação final em catálogos comerciais de fabricantes e revendedores

Figura 2.19 | Atuador pneumático linear de simples efeito com retorno por mola

- (1) Entrada e saída de ar
- (2) Vedação do êmbolo em neoprene
- (3) Êmbolo
- 4 Elemento de fixação

- (5) Camisa
- 6 Mola
- 7 Tampa frontal
- 8 Haste em aço especial

- Atuadores pneumáticos são elementos mecânicos que, por meio de movimentos lineares ou rotativos, transformam em energia pneumática a energia cinética gerada pelo ar pressurizado e em expansão, produzindo trabalho
- Para dimensionar um atuador é necessário identificar as cargas as quais o dispositivo está sujeito
- O diâmetro Dp é determinado em função da força de avanço Fa, que é a força de projeto Fp, e da pressão de trabalho Pt (vide próx. slide)

$$Dp = 2.\sqrt{\frac{Fp.\varphi}{\pi.Pt}}$$
 vide próx. slide

Dp = Mínimo diâmetro aceitável do pistão [cm]

Fp = Forca de projeto, força necessária para execução da operação [kp]

 φ = Fator de correção da força de projeto, Tabela 2.1

Pt = Pressão de trabalho [kp/cm²]

1 kp = 9,8 N 1 kp/cm² = 9,8 kPa kp (kilopond) = kgf (kilograma-força) p não é S.I.

Fator de correção de força

Tabela 2.1 | Fator de correção de força.

Velocidade de deslocamento da haste do atuador	Exemplo	Fator de correção φ
Lenta e carga aplicada somente no fim do curso	Operação de rebitagem	1,25
Lenta e carga aplicada em todo o desenvolvimento do curso	Talha pneumática	1,35
Rápida com carga aplicada somente no fim do curso	Operação de estampagem	1,35
Rápida com carga aplicada em todo o desenvolvimento do curso	Deslocamento de mesas	1,50
Situações gerais não descritas anteriormente		1,25

Referências

BUDYNAS, R. G. Elementos De Maquinas De Shigley. 8ª edição. [S. l.]: AMGH, 2011.

COLLISN, J. A.; BUSBY, H. R.; STAAB, G. H. Projeto Mecânico de Elementos de Máquinas: uma Perspectiva de Prevenção da Falha. 2ª edição. [S. l.]: LTC, 2019.

LOBO, Y. R. de O.; JÚNIOR, I. E. de O.; ESTAMBASSE, E. C.; SHIGUEMOTO, A. C. G. Projeto de máquinas. Londrina: Editora e Distribuidora Educacional S.A., 2019.

NORTON, R. L.; BOOKMAN, E.; STAVROPOULOS, K. D.; AGUIAR, J. B. de; AGUIAR, J. M. de; MACHNIEVSCZ, R.; CASTRO, J. F. de. Projeto de Máquinas: Uma Abordagem Integrada. 4ª edição. [S. l.]: Bookman, 2013.

https://github.com/efurlanm/teaching/

Prof. Eduardo Furlan 2023

