Tutorium Grundlagen der VWL 2

Sommersemester 2022

Aufgabenblatt 8

Lange Frist - Das Solow Model

Aufgabe 1 (Multiple Choice)

Teilaufgabe a)

Die gesamtwirtschaftliche Produktionsfunktion sei gegeben durch $Y = A_t F(K_t, N_t)$, wobei A technisches Wissen, N Beschäftigung und K Kapitalbestand zum Zeitpunkt t sei. Die Beziehung zwischen Produktion je Beschäftigten und Kapitalintensität kann geschrieben werden als

$$\frac{Y_t}{N} = f\left(\frac{K_t}{N}\right).$$

Welche Annahmen liegen zugrunde?

- a) Sinkende Bevölkerungsgröße, Partizipationsrate und steigende Arbeitslosenquote; kein technischer Fortschritt; konstante Skalenerträge
- b) Konstante Bevölkerungsgröße, steigende Partizipationsrate und Arbeitslosenquote; steigender technischer Fortschritt; konstante Skalenerträge
- c) Konstante Bevölkerungsgröße, Partizipationsrate und Arbeitslosenquote; kein technischer Fortschritt; konstante Skalenerträge
- d) Konstante Bevölkerungsgröße, Partizipationsrate und Arbeitslosenquote; abnehmender technischer Fortschritt; konstante Skalenerträge

Teilaufgabe b)

Die Dynamik von Kapitalbildung und Produktion kann wie folgt dargestellt werden:

gund Produktion kann wie folgt dargestellt werden:
$$\frac{K_{t+1}}{N} - \frac{K_t}{N} = sf(\frac{K_t}{N}) - \delta \frac{K_t}{N}$$

$$\Rightarrow \Delta \omega \Rightarrow 0$$
At:

Welche Interpretation ist korrekt?

a) Wenn die Investition je Beschäftigten größer ist als die Abschreibungen je Beschäftigten, dann fällt das Kapital je Beschäftigten.

- b) Wenn die Investition je Beschäftigten kleiner ist als die Abschreibungen je Beschäftigten, dann fällt das Kapital je Beschäftigten.
- c) Wenn die Investition je Beschäftigten kleiner ist als die Abschreibungen je Beschäftigten, dann steigt die Kapitalintensität.
- d) Wenn die Investition je Beschäftigten kleiner ist als die Produktion je Beschäftigten, dann fällt das Kapital je Beschäftigten.

Aufgabe 2 (Wahr/Falsch)

Gehen Sie von einer Produktionsfunktion einer Volkswirtschaft der Form

$$Y = A K^{\alpha} N^{1-\alpha}$$

Aus, wobei A = 1. Nehmen Sie folgende Parameter an: $\alpha = 0.33$, $\delta = 0.1$, $g_N = 0.02$. Der Marktzinssatz sei gegeben mit s = 0.20.

Teilaufgabe a)

- a) Die Produktionsfunktion weist konstante Skalenerträge auf für alle $\alpha \in \mathbb{Z}$.
- b) Im steady state ergibt sich ein Pro-Kopf Kapitalstock von K/N = 1.375 und eine Pro-Kopf Produktion von Y/N = 1.1.
- c) Wenn sich die Sparquote halbiert, so halbiert sich K/N ebenfalls.
- d) Angenommen A würde auf 0.5 sinken. Dann würde im steady state Y/N = 0.09 gelten.

Teilaufgabe b)

- a) Eine höhere Sparquote kann die Wachstumsrate der Produktion langfristig (steady state) erhöhen.
- b) Wenn es keine Abschreibungen gäbe, d.h. $\delta=0$, würde die Pro-Kopf Produktion kontinuierlich wachsen.
- c) Im Solow-Modell hat eine Erhöhung der Sparquote keine Auswirkung auf die Wirtschaft im steady state.

Loringevorsillag

Aufgabe 2 (Wahr/Falsch)

Gehen Sie von einer Produktionsfunktion einer Volkswirtschaft der Form

$$Y = A K^{\alpha} N^{1-\alpha}$$

Aus, wobei A = 1. Nehmen Sie folgende Parameter an: $\alpha=0.33, \delta=0.1, g_N=0.02$. Der waggelassen Marktzinssatz sei gegeben mit s = 0.20.

Teilaufgabe a)

Aufgabe 2 (Wahr/Falsch)

Gehen Sie von einer Produktionsfunktion einer Volkswirtschaft der Form

$$Y = A K^{\alpha} N^{1-\alpha}$$

Aus, wobei A = 1. Nehmen Sie folgende Parameter an: $\alpha=0.33, \delta=0.1, g_N=0.02$. Der Marktzinssatz sei gegeben mit s=0.20.

Teilaufgabe a)

- a) Die Produktionsfunktion weist konstante Skalenerträge auf für alle $\alpha \in \mathbb{Z}$.
- b) Im steady state ergibt sich ein Pro-Kopf Kapitalstock von K/N = 1.375 und eine Pro-Kopf Produktion von Y/N = 1.1.

lewegungsgleichung:
$$\frac{K_{t+1}}{N} - \frac{K_t}{N} = sf(\frac{K_t}{N}) - \delta \frac{K_t}{N}$$
 (1)

$$N_{t+1} = (1 + g_N) N_t = N_t = \frac{N_{t+1}}{1 + g_N}$$

$$m(1): \frac{kt+1}{Nt+1} (1+g_N) - \frac{kt}{Nt} = 8 \cdot \frac{4t}{Nt} - 8 \cdot \frac{kt}{Nt}$$

$$\frac{3 \cdot \frac{y}{N}}{N} = \left(g_N + \theta\right) \frac{k}{N}$$

$$\stackrel{(a)}{=} \frac{y}{N} = \frac{g}{N} \frac{A \cdot k^{\infty} N^{1-\frac{1}{2}}}{N}$$

$$\frac{K}{N} = 1 \cdot \left(\frac{0.2}{0.4 + 0.02} \right) \frac{1}{1 - 0.22} \sim 2.14$$

$$\frac{Y}{N} = A \left(\frac{K}{N} \right)^{2} = 1.2, 14^{013.5} \sim 1,286$$

_ =	= /	4.	K)	ے م	6)J.	2,	.14	013	3	~	0.	64	3					
Teilaufgabe b) a) Eine höhere Sparquote kann die Wachstumsrate der Produktion langfristig (steady state) erhöhen. b) Wenn es keine Abschreibungen gäbe, d.h. δ = 0, würde die Pro-Kopf Produktion kontinuierlich wachsen. f Llowwigser we St. c) Im Solow-Modell hat eine Erhöhung der Sparquote keine Auswirkung auf die Wirtschaft im steady state. ### ### ############################																			
					·			N	_	(-	0+	gN		π	J/				