MOOC Econometrics

Lecture S.1 on Building Blocks: Estimation

Erik Kole

Erasmus University Rotterdam

Statistical concepts

- $y_i \sim NID(\mu, \sigma^2), i = 1, 2, ..., n; \mu \text{ and } \sigma^2 \text{ unknown}$
- Statistic: function $g(y) = g(y_1, y_2, \dots, y_n)$
- Estimator: statistic related to a parameter (so μ or σ^2)

Sample mean:
$$m = \frac{1}{n} \sum_{i=1}^{n} y_i$$

General: estimator $\hat{\theta}$ for parameter θ .

• Estimate: value of an estimator for a particular sample. Example: m = 9.6%.

Statistics

- Probability theory: parameters of distributions are known
- Statistics: parameters are not known.
 Instead: observations

x-axis: return (in %); y-axis: frequency

- 26 yearly returns on the stock market.
- Sample mean: 9.6%

Lecture S.1, Slide 2 of 12, Erasmus School of Economics

Properties of sample mean m

Test

Find the distribution of the vector y and of $m = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \iota' y$.

Answer

- $y \sim N(\mu \iota, \sigma^2 I)$, multivariate normal as $y_i \sim NID(\mu, \sigma^2)$.
- $m \sim N(\mu, \frac{1}{n}\sigma^2)$, sum of normals is normal, $\iota'I\iota = \iota'\iota = n$, so

$$E[m] = E\left[\frac{1}{n}\iota'y\right] = \frac{1}{n}\iota'\iota\mu = \mu$$

$$\operatorname{var}[m] = \operatorname{var}\left[\frac{1}{n}\iota'y\right] = \frac{1}{n^2}\iota'\sigma^2I\iota = \frac{1}{n^2}\iota'\iota\sigma^2 = \frac{1}{n}\sigma^2$$

Bias and efficiency

Estimator $\hat{\theta}$ for parameter θ .

- If $E[\hat{\theta}] = \theta$, $\hat{\theta}$ unbiased.
- If $E[\hat{\theta}] \neq \theta$, $\hat{\theta}$ biased, bias $E[\hat{\theta}] \theta$.
- Since $E[m] = \mu$, sample mean is unbiased.
- Standard error: $\sqrt{\operatorname{var}[\hat{\theta}]}$.
- Efficient estimator: $var[\hat{\theta}]$ lowest over a set of estimators.

Lecture S.1, Slide 5 of 12, Erasmus School of Economics

z as a linear transformation of y

Properties of M

Write z = My with $M = I - \frac{1}{n}\iota\iota\iota'$. What properties does M have?

$$M = \frac{1}{n} \begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \ddots & -1 \\ \vdots & \ddots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{pmatrix}$$

- M is symmetric, $(I \frac{1}{n}\iota\iota\iota')' = I' \frac{1}{n}(\iota\iota\iota')' = I \frac{1}{n}\iota\iota\iota'$.
- $\operatorname{tr}(M) = \frac{1}{n} \sum_{i=1}^{n} m_{ii} = \frac{1}{n} \sum_{i=1}^{n} (n-1) = n-1.$
- $M^2 = (I \frac{1}{n}\iota\iota\iota')^2 = I^2 2\frac{1}{n}\iota\iota\iota'I + \frac{1}{n^2}\iota\iota\iota'\iota\iota' = I 2\frac{1}{n}\iota\iota\iota' + \frac{n}{n^2}\iota\iota\iota' = I \frac{1}{n}\iota\iota\iota' = M.$

70,7

Lecture S.1, Slide 7 of 12, Erasmus School of Economic

Towards an estimator for σ^2

Definition:
$$\sigma^2 = \text{var}[y_i] = E[(y_i - \mu)^2]$$

- \bullet μ is unknown, use m instead
- Define $z_i = y_i m$
- z is a linear transformation of y:

$$z = y - \iota m = y - \iota \cdot \frac{1}{n} \iota' y = \left(I - \frac{1}{n} \iota \iota'\right) y$$

Lecture S.1, Slide 6 of 12, Erasmus School of Economic

Distribution of z

$$y \sim N(\mu \iota, \sigma^2 I),$$
 $z = My,$ $M = I - \frac{1}{n} \iota \iota'$

- $z \sim N(\mu_z, \Sigma_z)$, with $\mu_z = 0$, because $E[z_i] = E[y_i m] = \mu \mu = 0$; $\Sigma_z = M\sigma^2 IM' = \sigma^2 M$.
- Unbiased estimator: so we need $E\left[\sum_{i=1}^{n} z_i^2\right] = E[z'z]$.

$$E[z'z] = E[\operatorname{tr}(z \cdot z')] = \operatorname{tr}(E[z \cdot z']) = \operatorname{tr}(\Sigma_z)$$

= $\sigma^2 \operatorname{tr}(M) = (n-1)\sigma^2$.

Sample variance

Sample variance:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - m)^2$$

• Unbiased:
$$E[s^2] = \frac{1}{n-1} E\left[\sum_{i=1}^n (y_i - m)^2\right] = \frac{1}{n-1} E[z'z] = \sigma^2$$
.

•
$$E\left[\frac{1}{n}\sum_{i=1}^{n}(y_i-m)^2\right]=\frac{n-1}{n}\sigma^2$$
: biased,
bias: $\frac{n-1}{n}\sigma^2-\sigma^2=-\frac{1}{n}\sigma^2$.

•
$$\sum_{i=1}^{n}((y_i-m)/\sigma)^2=\frac{z'z}{\sigma^2}=\frac{(n-1)s^2}{\sigma^2}\sim \chi^2(n-1)$$

• m and s^2 are independent.

Lecture S.1, Slide 9 of 12, Erasmus School of Economics

Consistency

- Consistent: estimator $\hat{\theta}$ ever more concentrated at θ .
- Sufficient conditions: if $E[\hat{\theta}] \to \theta$ and $var[\hat{\theta}] \to 0$ for increasing n, $\hat{\theta}$ is consistent.

Test

Are the sample average and sample variance consistent? (Hint: variance of $\chi^2(k)$ equals 2k).

Answer: both

- $E[m] = \mu$ and $E[s^2] = \sigma^2$, so first part fine.
- $var[m] = \sigma^2/n$
- $(n-1)s^2/\sigma^2 \sim \chi^2(n-1)$, so $\text{var}[(n-1)s^2/\sigma^2] = (n-1)^2 \, \text{var}[s^2]/\sigma^4 = 2(n-1)$, so $\text{var}[s^2] = 2\sigma^4/(n-1)$.
- If *n* increases, $var[m] \rightarrow 0$ and $var[s^2] \rightarrow 0$, so second part also fine.

Sample mean and variance: example

x-axis: return (in %); y-axis: frequency

- Normal distribution fits reasonably well.
- Sample mean: m = 9.6%, sample standard deviation: $\sqrt{s^2} = 17.9\%$.
- Standard error (se): $\sqrt{\text{var}[m]} = 17.9/\sqrt{26} = 3.5\%$.
- Rule-of-thumb: 95% confidence interval for m is (m-2se, m+2se), so (2.6, 15.6).

Lecture S.1, Slide 10 of 12, Erasmus School of Economics

Training Exercise S.1

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

(zafins