Definition 1. For a parameter n, Let $L \subset \mathbb{N}^+$ be the set of non-periodic words over the alphabet $\Sigma = \mathbb{N}$ that are bigger in Arabic (right-to-left) lexicographical order than all of their rotations. Let L_n be the set of all the words in L whose length divides n.

Definition 2. For a word $w = w_1 \cdots w_{n-1} w_n$ let $R(w) = w_n w_1 \cdots w_{n-1}$ be the rotation of w to the right. Then, the nested invocation $R^m(w)$ is the m letter rotation to the right and its inverse $R^{-m}(w)$ is the m letter rotation to the left.

1 Forward and backwards transformations

Definition 3. For a word w whose length is smaller or equal than n, let f(w) be the transformation defined by successive applications of the following steps to w:

 f_1 : Increase the first letter of the word by one.

 f_2 : Pad with zeros on the left to get a word of length n.

 f_3 : Apply the substitution rules $u(vu)^+ \mapsto vu$ and then $w^+ \mapsto w$, with the longest possible u and the shortest possible w.

Definition 4. For a a word w whose length is smaller or equal than n, let b(w) be the transformation defined by successive applications of the following steps to w:

 b_1 : Expand w to uw^m where $m = \lfloor n/|w| \rfloor$ and u is the suffix of length n-m|w| of w.

 b_2 : Remove leading zeros.

 b_3 : Decrease the first letter by one.

Observation 1. For any $w \in L_n$, f(b(w)) = b(f(w)) = w.

Proposition 2. If we start with w(0) = 0 and generate a sequence of words by w(i+1) = f(w(i)), we get an enumeration of all the words in L whose length is smaller or equal to n.

Proof. This is a version of Duval's algorithm with a reversed order of the alphabet and a reversed order of letters in a word. \Box

Definition 5. Let $f^*(w)$ be the first word in $f(w), f(f(w)), \ldots$ whose length divides n and, similarly, let $b^*(w)$ be the first word in $b(w), b(b(w)), \ldots$ whose length divides n.

Definition 6. Let w(0), w(1), ... be the sequence generated by starting with w(0) = 0 and then continuing ad infinitum by $w(i+1) = f^*(w(i))$ and let $w^{\infty} \in \mathbb{N}^{\omega}$ be the concatenation of all these words.

2 Where can I find w as a sub-word of w^{∞} ?

In this section we point at the position of an arbitrary word w as a sub-word of w^{∞} relative to the position of the a corresponding word in L_n . This is given in Proposition 7 and in Proposition 8. Towards the proofs of these propositions, we first establish some technical results about the functions b and b^* specified, respectively, in Definition 4 and in Definition 5.

Proposition 3. If $w \in L_n$ and $|w| \neq n$ then b(w) = uw for some non-empty word u.

Proof. The first transformation b_1 extends w to the left producing the word $b_1(w) = uw^m$ where u is a tail of w. Since $w \in L_n$ and because it contains a letter σ that is not zero, we have, by maximality of w among its rotations in right-to-left lexicographical order, that its last letter is not zero. The last letter of w is the last letter of w so it is also not zero. This gives us that the next transformation b_2 , that deletes trailing zeros, leaves at least the last copy of w and the last letter of the before-last (full or partial) copy at the tail of $b_1(w)$. Thus, $b_2(b_1(w)) = uw$ where w is a non-empty word whose first letter is not zero. Then, the last transformation w only decreases the first letter of w by one which gives us that w only w for some non-empty word w.

Proposition 4. For any $w = 0^l \sigma \hat{w} \in L_n$ where σ is a non-zero letter and \hat{w} is a non-empty word there is a non-empty word u such that $b(w) = u\hat{w}$.

Proof. If $|w| \neq n$ the proof follows by Proposition 3. If |w| = n then $b_1(w) = w$, $b_2(b_1(w)) = \sigma \hat{w}$, and $b_3(b_2(b_1(w))) = (\sigma - 1)\hat{w}$ and the claim follows as well. \square

Proposition 5. For any $w = 0^l \sigma \hat{w} \in L_n$ where σ is a non-zero letter and \hat{w} is a non-empty word there is a non-empty word u such that $b^*(w) = u\hat{w}$.

Proof. By definition, b^* consists of repeated applications of b until a word whose length devides n is obtained. In particular, only the first of these applications of b act on a parameter whose length may be n. By Proposition 4, this first application produces a word that ends with \hat{w} and by Proposition 3 each of the remaining applications only add prefixes.

Proposition 6. Let w be an arbitrary word in \mathbb{N}^n and let and let $\bar{w} = f_3(w)$. Let l be the (possibly zero) number of trailing zeros (from the left) in w. Then, for all $0 \le i \le |w| - l - 1$, the word $R^i(\bar{w})$ comes i + n - |w| letters before w as a sub-word of w^{∞} .

Proposition 7. For a given $w \in L_n$, let l be the number of trailing zeros (from the left) in w and let $\bar{w} = b_1(w)$. Then, for all $0 \le i \le |w| - l - 1$, the word $R^i(\bar{w})$ comes i + n - |w| letters before w as a sub-word of w^{∞} .

Proof. By Proposition 5 the words that come before w ends with the last |w|-l letters of w. In particular, the n letter word that starts i+n-|w| before w is $R^i(\bar{w})$.

Proposition 8. For a given $w \in L_n$, let l be the number of trailing zeros (from the left) in w and let $\bar{w} = b_1(w)$. Then, for all $|w| - l \le i \le n - 1$ the word $R^i(\bar{w})$ comes $i - (n - |f_3(u)| \pmod{n})$ letters before the first $u \in \langle 0^{m-1}(\bar{w}_m+1)\bar{w}_{m+1}\cdots\bar{w}_n\rangle_{m=i+1}^n$ such that $u \in L_n$ and $\max\{u_1,\ldots,u_{n-1}\} \le \max(w)$.

Proposition 9. The word w^{∞} contains all the words in \mathbb{N}^n as subwords.

Proof. Any word of length n is a rotation of the expansion of a word in L_n . \square

Proposition 10. For any k the prefix $w_1^{\infty} \cdots w_{k^n}^{\infty}$ is an n-order de Bruijn sequences. Moreover, it is the reversed of the n-order prefer-max sequence on the alphabet $(0, \ldots, k-1)$ (in this order).

Proof. Counting argument + arguing that if |w| = n - 1 and $\sigma_1 < \sigma_2$ then $w\sigma_1$ comes before $w\sigma_2$ as subwords of w^{∞} .

Proposition 11. For $w \in \mathbb{N}^n$, let i be the minimal index such that $R^{-i}(w) \in L$ and let $\bar{w} = R^{-i}(w)$. Let $\bar{w}^+ = \bar{w}_{1..i}(\bar{w}_{i+1} + 1)\bar{w}_{(i+2)..n}$, i.e., the word obtained by increasing the (i+1)th letter of \bar{w} by one. Then, the function

$$next(w) = \begin{cases} f^*(f_3(w))_1 & \text{if } w \in L; \\ w_1 + 1 & \text{if } \bar{w}_{1..i} = 0^i \wedge \bar{w}^+ \in L \wedge \max{(\bar{w}_{1..(n-1)}^+)} \leq \max(w); \\ 0 & \text{if } \bar{w}_{1..i} = 0^i \wedge (\bar{w}^+ \notin L \vee \max{(\bar{w}_{1..(n-1)}^+)} > \max(w)); \\ w_1 & \text{otherwise.} \end{cases}$$

represents the mapping of a word w to the letter that follows the (one and only) occurrence of w as a subword of w^{∞} .

Definition 7. Let $w(0) = 0, w(1) = f^*(w(0)), \ldots, w(i) = f^*(w(i-1)), \ldots$ be our enumeration of all the words in L_n . Let $w^{(i)} = w(0) \cdots w(i)$ be the concatenation of the first i words in this enumeration and let $u(j) = w_{j-n+1}^{(i)} \cdots w_j^{(i)}$ be the "window" of length n before the jth letter in $w^{(i)}$.

Proposition 12. For a word w = w(i) be the ith word in the above enumeration. Let l be the number of leading zeros in w and let $\hat{w} = R^{-l}(b_1(b^*(w)))$. Then, inserting the cycle $\langle R^{-s}(b_1(w))\rangle_{s=0}^{n-1}$ after the word $\hat{w}_{1..(n-l)}0^l$ in $\langle u(j)\rangle_{j=0}^{i-1}$ yields the sequence $\langle u(j)\rangle_{j=0}^i$.