

Electrical Engineering I

Machines Lab Assessment:

DC Motor: Voltage Control and H-Bridge

Dr John Arvanitakis ac7632@coventry.ac.uk

Why DC Motors?

- Speed Control: Speed variation is accomplished by changing either the armature voltage or field voltage, or a combination of both.
- Constant Torque: Supplies constant torque over a wide speed application

Permanent Magnet DC Motor

- Simplest form of DC Motor
- Stator armature is substituted by permanent magnets
- Reduced size, applications in various fields (robotics etc.)

Applications of DC Motors

H-Bridge Controller

- A circuit that allows control over the direction of the applied voltage to the motor
- Traditional switches are mechanical components
- · Implementation of a electrical switch
- Control of the direction through digital signals
- Utilization of Transistors as electronic switches

BJT Transistor

NPN Transistor

PNP Transistor

- Fundamental semiconductor component in all electronic devices
- Can amplify AC signals (analog circuits) or used as a switch (digital circuits)
- Effectively two n-p junctions in cascade mode

N-P Junction

- An n-type region with increase free electron concentration
- · An p-type region with increase hole (lack of electrons) concentration
- · Can effectively conduct or not depending on the applied external voltage (bias)

BJT Transistor

- Four modes of operation: Active,
 Reverse Active, Cut Off, Saturation
- <u>Cut-off</u>: No current flowing between Collector and Emmiter. **CE contact** acts as an open switch.
- <u>Saturation</u>: Currents IC and IE are equal. The current flowing between CE contacts is independent of the voltages applied. **CE contact acts as a closed switch.**

BJT Transistor

NPN Transistor

	Voltage	
Operation Mode	$ m V_{BE}$	V_{BC}
Active	positive	negative
Reverse Active	negative	positive
Saturation	positive	positive
Cut-off	negative	negative

PNP Transistor

	Voltage	
Operation Mode	$ m V_{BE}$	V_{BC}
Active	negative	positive
Reverse Active	positive	negative
Saturation	negative	negative
Cut-off	positive	positive

H-Bridge circuit

- Simplest implementation of the H-Bridge
- Application of digital signals on inputs A-D to "open" or "close" the transistors
- Resistances R_1 R_4 reduce the input current
- Diodes D_1 D_4 are used as protection to prevent unwanted currents

	Input Voltage V _B	
Transistor Type	Low	High
NPN	Open	Close
PNP	Close	Open

Components

- 5V max PMDC-Motor
- ZTX751 PNP Transistor, 2 A, 60 V
- ZTX651 NPN Transistor, 2 A, 60 V
- 1N4001 Diode, 50V 1A
- Hall Effect Sensor
- $1k\Omega$ resistors