```
from google.colab import drive
drive.mount('/content/drive')
Fr Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force remount=True).
import pandas as pd
df = pd.read_csv('/content/drive/MyDrive/intro_data_science/Project/Resume Projects/Movies/moviedb.csv')
df.head()
<del>_</del>__
         Unnamed:
                                                                                                                                            丽
                              title
                                       overview release_date popularity
                      id
                                                                                                   poster_path vote_average vote_count
                                                                                                                                            d.
                                            New
                                         Yorkers
                             Did You
                                        Paul and
                          Hear About
                0 24438
                                                    2009-12-17
                                                                    14.832
                                                                              /f4ueTTP7pCLau2hoAGMuzrgg8rL.jpg
                                                                                                                        5.369
                                                                                                                                     911
                                           Mervl
                                the
                                         Morgan
                           Morgans?
                                         seem to
                                          have...
             Generate code with df
                                                                 New interactive sheet
                                   View recommended plots
 Next steps:
                                                              + Code
                                                                          + Text
df.info()
<<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 17620 entries, 0 to 17619
     Data columns (total 9 columns):
     # Column
                        Non-Null Count Dtype
     ---
     0
         Unnamed: 0
                        17620 non-null
                                        int64
         id
                        17620 non-null
                                        int64
         title
                        17620 non-null
                                        object
         overview
                        17619 non-null
                                        object
         release_date 17620 non-null
                                        object
                        17620 non-null
         popularity
                                        float64
         poster_path
                        17616 non-null
                                        object
         vote_average 17620 non-null
         vote_count
                        17620 non-null int64
     dtypes: float64(2), int64(3), object(4)
     memory usage: 1.2+ MB
df.isnull().sum()
→▼
                   0
      Unnamed: 0
                   0
                   0
           id
          title
                   0
        overview
      release_date
       popularity
                   0
      poster_path
      vote_average 0
       vote_count
     dtvpe: int64
#dropping the following columns as they are not relevant to analysis
```

#dropping the following columns as they are not relevant to analysi:
df = df.drop(['Unnamed: 0', 'poster_path', 'id'], axis=1)

df.shape

→ (17620, 6)

df.duplicated().sum()

→ np.int64(8579)

df = df.drop_duplicates() #dropped 8579 duplicated values

df.duplicated().sum()

→ np.int64(0)

df.describe()

	popularity	vote_average	vote_count	
count	9041.000000	9041.000000	9041.000000	ılı
mean	28.535513	6.645599	2000.366221	
std	45.345257	0.789913	3154.559308	
min	0.600000	3.699000	300.000000	
25%	14.528000	6.110000	469.000000	
50%	19.861000	6.664000	847.000000	
75%	29.767000	7.215000	1982.000000	
max	1857.801000	8.708000	34961.000000	
	mean std min 25% 50% 75%	count 9041.000000 mean 28.535513 std 45.345257 min 0.600000 25% 14.528000 50% 19.861000 75% 29.767000	count 9041.000000 9041.000000 mean 28.535513 6.645599 std 45.345257 0.789913 min 0.600000 3.699000 25% 14.528000 6.110000 50% 19.861000 6.664000 75% 29.767000 7.215000	count 9041.000000 9041.000000 9041.000000 mean 28.535513 6.645599 2000.366221 std 45.345257 0.789913 3154.559308 min 0.600000 3.699000 300.00000 25% 14.528000 6.110000 469.00000 50% 19.861000 6.664000 847.000000 75% 29.767000 7.215000 1982.000000

- · Both popularity and vote_count are highly skewed with many movies having low values and a few dominating the upper end.
- vote_average is more stable and normally distributed, with most ratings between 6 and 7.
- There is likely a positive correlation between popularity and vote count (popular movies get more votes).

```
df['release_date'] = pd.to_datetime(df['release_date'])
print(df['release_date'].dtypes)
→ datetime64[ns]
df['release_date'] = df['release_date'].dt.year
df['release_date'].dtypes
dtype('int32')
df.info()
    <class 'pandas.core.frame.DataFrame'>
    Index: 9041 entries, 0 to 17619
    Data columns (total 6 columns):
     # Column
                      Non-Null Count Dtype
     0 title
                      9041 non-null
                                      object
     1 overview
                      9040 non-null
                                      object
         release_date 9041 non-null
                                      int32
        popularity 9041 non-null
                                      float64
        vote_average 9041 non-null
                                      float64
         vote_count
                       9041 non-null
                                      int64
    dtypes: float64(2), int32(1), int64(1), object(2)
    memory usage: 459.1+ KB
df.head()
```


Categorize Vote Average column We would cut the vote_average values and make 4 categories: popular, avergae, below_avg and not_popular to describe it more using categorize_col() function provided above

```
def categorize_col(df, col, labels):
   categorize a certain column based on its quartiles
   Args:
   (df) df - dataframe we are processing
   (col) str - to be categorized column's name
   (labels) list - list of labels from min to max
          df - dataframe with the categorized col
   (df)
   # setting the edges to cut the clumn accordingly
   limits = [df[col].describe()['min'],
             df[col].describe()['25%'],
             df[col].describe()['50%'],
             df[col].describe()['75%'],
             df[col].describe()['max']]
   df[col] = pd.cut(df[col], limits, labels = labels, duplicates='drop')
   return df
# define labels for limits
labels = ['not_popular', 'below_avg', 'average', 'popular']
# categorize column baesd on labls and edges
categorize_col(df, 'vote_average', labels)
# confirming changes
df['vote_average'].unique()
    ['not_popular', 'popular', 'average', 'below_avg', NaN]
     Categories (4, object): ['not_popular' < 'below_avg' < 'average' < 'popular']
df.head()
₹
                                                                                                                                               丽
                                 title
                                                                             overview release_date popularity vote_average vote_count
      0 Did You Hear About the Morgans?
                                       New Yorkers Paul and Meryl Morgan seem to have...
                                                                                                2009
                                                                                                           14.832
                                                                                                                     not_popular
                                                                                                                                         911
                                                                                                                                                ıl.
      1
                     The Next Karate Kid
                                              Mr. Miyagi decides to take Julie, a troubled t...
                                                                                                1994
                                                                                                           23.460
                                                                                                                     not_popular
                                                                                                                                         939
      2
                                Tekken
                                            In the year of 2039, after World Wars destroy ...
                                                                                                2010
                                                                                                           17.098
                                                                                                                     not_popular
                                                                                                                                         635
      3
                      Cold Creek Manor
                                          A family moves from New York into an old mansi...
                                                                                                2003
                                                                                                                                         437
                                                                                                           15.491
                                                                                                                     not_popular
                                           A DEA agent whose family was slain as part of ...
                                                                                                2008
      4
                            Max Payne
                                                                                                           17.068
                                                                                                                                        1927
                                                                                                                     not_popular
             Generate code with df
                                     View recommended plots
                                                                   New interactive sheet
```

df['vote_average'].value_counts()

https://colab.research.google.com/drive/104EbAwMw6Jq4ntnNqlQIB-5O9pN5onPE#scrollTo=p1slsebxoxuR&printMode=true

df[['vote_average','overview']].dropna()

Data Visualisation

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
```

Which movie got the lowest popularity

df[df['popularity'] == df['popularity'].max()]

Which movie got the lowest popularity

df[df['popularity'] == df['popularity'].min()]


```
plt.figure(figsize=(12, 6))
sns.lineplot(x='release_date', y='popularity', data=df)
plt.title('Movie Popularity Over Time')
plt.xlabel('Release Year')
plt.ylabel('Popularity')
plt.show()
```

₹

Movie Popularity Over Time

200 -										