序号	位置	原文	更正	备注
1	第 V 页倒数第 3 行	代生系统	代 数 系统	
2	第2页倒数第4行	集合 A 中的每个元素也都是集合	集合 A 中的每个元素也都是集合	
		A 中的元素	B 中的元素	
3	第 3 页倒数第 11 行	对于任何集体 A	对于任何集 合 A	
4	第7页第1行	$A((\emptyset \cap B) \cap \emptyset)$	$A \square ((\emptyset \cap B) \square \emptyset)$	两处
5	第8页第8行	结果 n ∈ E	如 果 n ∈ E	
6	第 12 页第 20 行	一个整数至少有两个因子	除了 1 以外的 整数至少有两个因	存疑
		, , , , , , , , , , , , , , , , , , , ,	子	
7	第 17 页倒数第 5 行	$(x_0 + \frac{b}{(a,b)}t) + b(y_0 - \frac{a}{(a,b)}t) = n$	$a(x_0 + \frac{b}{(a,b)}t) + b(y_0 - \frac{a}{(a,b)}t) = n$	
8	第 17 页倒数第 4 行	反过来,若 x,y 是	反过来, 若 xo,yo 是	
9	第 18 页第 5 行	y ₀ = 20 是一组特解	y ₀ = 25 是一组特解	
10	第 21 页倒数第 4 行			
11	第 25 页第 12 行	但是 2 340	但是 341 不是素数	存疑
12	第 25 页倒数第 2 行	必有 a'≡ b'(mod p)	必有 a'⊨ b'(mod p)	
13	第 27 页第 11 行	$(2_{p-1}-1)\cdot 2_p$	$(2^p-1)\cdot 2^p$	
14	第 28 页倒数第 8 行	得到 $\frac{l}{(l,k)} j\cdot a^k$ 的阶应是	得到 $\frac{l}{(l,k)} j,\;\;a^k$ 的阶应是	应为逗号
15	第 29 页第 5 行	则 g^p 也是模 m 的原根.	则 g¹ 也是模 m 的原根.	
16	第 29 页第 10 行	$a^{\eta} \equiv 0 \pmod{p}$	$a_n \equiv 0 \pmod{p}$	
17	第 31 页第 6行	得到 $g_{yk} \equiv g_{ind_gn}(mod\ p)$	得到 $g_{yk} \equiv g_{indgn}(mod p)$	
18	第 31 页第 16 行	它们是 x³ ≡ 3(mod 11) 的解	它们是 x8 = 3(mod 11) 的解	
19	第 31 页倒数第 13 行	$ind_5 = 4$	$ind_2 5 = 4$	
新增	第33页表中	$ind_2 28 = 31 \pmod{37}$	ind ₂ 28的值是34(mod 37)	将 31 改
	p=37,c=28 处			为 34
20	第 39 页第 5 行	集合 A 中的元素个数一定大于集	集合 A 中的元素个数一定大于等	
		合 B 中的	于 集合 B 中的	
21	第 44 页第 1 行	$ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \sigma_6 $	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \sigma_6$	
22	第 47 页函数 f7 运算	X1 · X2	X1 + X2	
	规则表表头			
23	第 49 页第 9 行	$f \cdot f + h \cdot f = 0 + h \cdot f$	$h \cdot f + h \cdot f = 0 + h \cdot f$	
24	第 51 页倒数 11 行	$f(x_1, x_2, x_3) = f(0, 0, 0,)x_1^0 x_2^0 x_3^0$	$f(x_1, x_2, x_3) = f(0, 0, 0)x_1^0 x_2^0 x_3^0$	多了逗号

25	第 52 页习题 2 第 1 行	其中 A = {-1,0,0} ²	其中 A = {-1,0, 1 } ²
26	第 55 页正文第 8 行	$\{y\}\ y\in B, \exists\ x\in A,$	$\{y\mid y\in B,\exists\ x\in A,$
27	第 56 页第 6 行	$(x_{0},y_{0})\in R$	$(x_0,y_2) \in R$
28	第 57 页第 10 行	例如 aaR ₉ bc	例如 abR ₉ bc
29	第 58 页第 15 行	两上不同结点	图上不同结点
30	第 59 页第 6 行	若 $a_i \in A$,	若 a _i ∈ A ₁ ,

序号	位置	原文	更正	备注
31	第60页第1行	S = {(1,3,),(2,5)	S = {(1,3),(2,5)	
32	第 61 页第 4 行	如果 $c,b \in A$, $aR+b$,	如果 <i>c,b</i> ∈ <i>A</i> , c <i>R</i> + <i>b</i> ,	
33	第 62 页定理 4.5 证明	从而必有 [a] ∪ [b] = Ø	从而必有 [a] ∩ [b] = Ø	
	第8行			
34	第66页倒数第6行	b 是 α 的可控制元素 α°ρb	b ₁ 是 α 的可控制元素 α°ρb ₁	
35	第 67 页第 4 行		b	
36	第69页第4行行首	有元素 b 使 $b\tilde{\rho}a$ $y_2\tilde{\rho}y_1$	有元素 b 使 $a\widetilde{\rho}$	
27			· ·	
37	第 72 页第 15 行	由此得出 A < P(A)	由此得出 A/□ P(A)	
38	第74页习题3第3行	$R_2 = \{a,d\}, (b,c)$	$R_2 = \{(a,d), (b,c)\}$	
39	第74页习题6第2行	$(a,b) \sim (b,d)$	$(a,b) \sim (c,d)$	
40	第 75 页习题 13.(4)		克头 英白练习	
	图	3 ←→ 4	应为单向箭头 	
41	第 75 页习题 20	证明 N×N与实数集合 R	证明 R×R与实数集合 R	
42	第 77 页例 5 表格内	1 1 i -i	1 -1 i - i	
	容前两行	-1 -1 -i i	-1 1 -i i	
43	第 78 页定理 5.3 证明	那么 $e_2 * e_1 = e_1$	那么 e ₂ * e ₁ = e ₂	
	第2行			
44	第 78 页定理 5.3 证明	那么 e ₂ * e ₁ = e ₂	那么 e ₂ * e ₁ = e ₁	
	第3行			
45	第 78 页倒数第 11 行	(a')' = a'	(a')' = a	
46	第80页倒数第4行	又由 (3) 知 a * e = e _r	又由 (3) 知 $a * x = e_r$	
47	第 81 页第 9 行	即 <i>G'</i> ⊆' <i>G</i>	即 <i>G'</i> ⊆ <i>G</i>	
48	第 81 页第 19 行	可以用一个群来表示	可以用一个群表来表示	存疑

49	第 82 页第 4 行第 2	G_4	C ₄	
	个表标题			
50	第 82 页例 2 第 1 行	有理数方阵记为 (Q)n	有理数方阵记为 Q _n	
51	第 84 页倒数第 12 行	如果本身就是 G 的子群	如果 S 本身就是 G 的子群	
52	第84页倒数第9行	$T = \{a_1^{e_1} * a_2^{e_2} * \dots * a_n^{e_n}\} \mid a_1, a_2$	$T = \{a_1^{e_1} * a_2^{e_2} * \dots * a_n^{e_n} \mid a_1, a_2$	
53	第 85 页第 5 行	$\{ \square m, n \square \cdot k \mid k \in Z \}$	$\{(m,n)\cdot k\mid k\in Z\}$	
54	第 85 页例 1 第 2 行	$i^3 = -1$	$i^3 = -i$	
55	第 86 页第 3 行	使 b = a ⁱ	使 b = a ¹	
56	第 86 页第 7 行	从而 $a^n \in H$	从而 a ^v ∈ H	
57	第 87 页定理 5.13 证	n 元转换共有	n 元 置 换共有	
	明第 4 行			
58	第 90 页倒数第 3 行	分别换名为 e, b, c	分别换名为 e, a, b, c	
59	第 91 页第 3 行	②G,*②与 ②G₂,·②是两个群	②G1,*② 与 ②G2,·②是两个群	

序号	位置	原文	更正	备注
60	第 91 页倒数第 8 行	非负实数乘群. 与实数加群	正实数乘群与实数加群	两处
61	第 91 页倒数第 2 行	$\psi: N \to N^+$	$\psi: \mathbb{R} \to \mathbb{R}^+$	
62	第 92 页第 3 行	若 a 是 n 阶无	若 a 是 n 阶 元	
63	第 92 页倒数第 4 行	长为 n 的轮换 $(a^0, a^1, \dots, a^{n-1})$. 令 G' = $\mathbb{Z}(a^0, a^1, \dots, a^{n-1})\mathbb{Z}$	长为 n 的轮换 $(a^0 a^1 \cdots a^{n-1})$. 令 G'' = $\mathbb{Z}(a_0 a_1 \cdots a_{n-1})\mathbb{Z}$	用空格, 不用逗号
64	第 94 页习题 13	$G = \{f_{a*b} \mid f_{a*b}$	$G = \{f_{a,b} \mid f_{a,b}$	
65	第 94 页习题 13	$H = \{f_{1b} \mid b \in Q\}$	$H = \{\mathbf{f}_{1,b} \mid b \in Q\}$	
66	第 97 页例 2		所有 u 改为 μ	参考 87 页 例 1
67	第 97 页定理 6.2	H 是所有左陪集集合	H 的 所有左陪集集合	
新增	第97页倒数第2行	左 (右) 陪集 体 个数	左 (右) 陪集个数	删 "体"
68	第 99 页 6.2 节第 1 行	李节介绍一类	本节介绍一类	
69	第 100 页倒数第 10 行	$n_3 * n_1 \in N$	$n_3 * n_2 \in N$	
70	第 101 页倒数第 1 行	对任意 <i>a,b</i> ∈ <i>G</i>	对任意 <i>a,b</i> ∈ G ₁	
71	第 104 页第 3 行	定义 $f: G_1/Kerf \rightarrow G_2$	定义 \widetilde{f} : $G_1/Ker\ f \to G_2$	
72	第 104 页倒数第 12 行	$f(n) = a^n$	$f(m) = a^m$	

73	第 104 页倒数第 8 行	n 阶循环群同构子模 n 同余类群	n 阶循环群同构 于 模 n 同余类群	
74	第 111 页定义 7.6 第	使得 a·c'=1 _R	使得 a·a'=1 _R	
	2 行			
75	第 113 页第 5 行	$f(1_{R1})=1_{R1}$	$f(1_{R_1}) = 1_{R_2}$	
76	第 113 页第 10 行	构成环 @L(R ⁿ ,N ⁿ),+,· @	构成环 □L(R ⁿ ,R ⁿ),+,·□	
77	第 114 页第 3 行	$f([x]_{24}) \cdot [y]_{24}) =$	$f([x]_{24} \cdot [y]_{24}) =$	删右括号
78	第 115 页倒数第 5 行	I是环 R的空子集	I是环 R的 非 空子集	
79	第 116 页第 5 行	I ₁ = {[1],[3]} 是理想	I ₁ = { [0] ,[3]} 是理想	
80	第 116 页倒数第 7 行	$Z \times Z/I_2 = \{(m,0)+I \mid m \in Z\}$	$Z \times Z/I_2 = \{(m,0) + I_2 \mid m \in Z\}$	
81	第 118 页定理 7.11 第	则存在唯一的 $g(x)$,	则存在唯一的 q(x),	
	2 行			
82	第 119 页倒数第 7 行	对任何 $g(x) \in F[x]$	对任何 q(x) ∈ F[x]	
83	第 120 页倒数第 7 行	从环 R_1 到环 R_1 的同态映射	从环 R1到环 R2的同态映射	
84	第 120 页倒数第 5 行	Ker φ 是 R ₂ 的理想	Ker φ 是 R ₁ 的理想	
85	第 121 页第 6 行	$\Leftrightarrow \varphi \colon R_1 \to R_2/I_1$	$\Leftrightarrow \varphi \colon R_1 \to R_1/I_1$	
86	第 121 页第 15 行	基本定理知 $e\varphi$: $R_1Ker \varphi \rightarrow R_2$	基本定理知 e φ : $R_1/Ker \varphi \rightarrow R_2$	
87	第 121 页倒数第 4 行	由定理 7.13 知	由定理 7.11 知	
88	第 121 页倒数第 2 行	$p(\sqrt{2}) = a_0 - a_1\sqrt{2}$	$p(-\sqrt{2}) = a_0 - a_1\sqrt{2}$	
89	第 122 页第 11 行	则 f(S1) 是 R1的子环	则 f(S1) 是 R2 的子环	
90	第 124 页第 8 行	如果 <i>a,b ∈ I</i> 能推出	如果 a · b ∈ I 能推出	

序号	位置	原文	更正	 备注
91	第 125 页定理 7.18 证 明第 9 行	$A = \{-i + ax \mid i \in 1, x \in R\}$	$A = \{-i + ax \mid i \in I, x \in R\}$	
92	第 127 页习题 21	找出从 Z2到 Z的所有同态映射	找出从 Z 到 Z ₂ 的所有同态映射	
93	第 139 页定义 8.11 第 1 行	2 <i>A</i> ,∗,⊕2	2A1,*,⊕2	

94	第 139 页定义 8.11 第	2 <i>A,</i> ∧,∨2	2A2,∧,∨2	
	5 行			
95	第 139 页倒数第 10 行	是由第一分量接 A₁中的·和 ⊕	是由第一分量按 A1中的 □和 ⊕	两处
96	第 142 页定理 8.13	格是模当且仅当	格是模 格 当且仅当	
97	第 142 页倒数第 4 行	$a*b(\oplus c) = (a*b) \oplus (a*c)$	$a*(b \oplus c) = (a*b) \oplus (a*c)$	