

计算理论 第4章 可判定性

教材:

[S] 唐常杰等译, Sipser著, 计算理论导引, 机械工业.

参考资料:

[L] Lewis等著, 计算理论基础, 清华大学.

各种语言类的包含关系

A={0w1:w∈Σ*} 正则语言 B={0ⁿ1ⁿ: n≥0} 上下文无关语言

 $C = \{0^k: k=2^n, n \ge 0\}$

图灵可判定语言

- ◆ 1. 算法及其可判定性
- ◆ 2. 关于正则语言的可判定性
- ◆ 3. 关于图灵机的可判定性

—— 第4章 可判定性 第5章 可归约性

算法及其可判定性

- ◆ 丘奇-图灵论题
 - ¶算法≅图灵判定器
- ◆ 问题可解
 - ¶ 存在处处停机的算法
- ◆ 按照算法可解性给问题分类
 - ¶ 证明有些问题能用算法求解
 - ¶ 证明另一些问题不能用算法求解
- ◆ 研究不可解性的意义
 - 『避免做无用功
 - ¶ 激发想象力,理解什么是计算

问题及语言

- ♦ 语言: 给定字母表Σ, 称Σ上一些字符串的集合为Σ上的语言.
- ♦ $\Sigma^* = \{x \mid x \in \Sigma$ 上全体有限长度的字符串\
- ♦ Σ 上的任意语言A都是 Σ *的子集,及A \subseteq Σ *.
- ◆ 判定性问题与{0,1}上的语言一一对应
 - ¶ P(Σ*)=P({0,1}*):全体判定性问题
- ◆ 可判定性
 - ¶ 存在处处停机的TM程序

- ◆ 1. 算法及其可判定性
- ◆ 2. 关于正则语言的可判定性
 - ¶ DFA接受性问题
 - ¶ NFA接受性问题
 - ¶ 正则表达式派生性问题
 - ¶ DFA空性问题
 - ¶ DFA等价性问题
- ◆ 3. 关于图灵机的可判定性

DFA接受性问题

- ◆ DFA接受性问题(Acceptance Problem)
 - ¶ 检测一个给定的确定型有穷自动机
 - ¶ 是否接受一个给定的串
- ◆ 问题形式定义
 - ¶ A_{DFA}={<B, w>|DFA B接受串w}
 - ¶ DFA B接受串w⇔ <B,w>∈A_{DFA}.

定理:

ADFA={<B,w>|DFA B接受串w}是一个可判定语言

证明: ADEA是一个可判定语言

◆ 证明:设计一个判定A_{DFA}的TM M.

M = "对输入<B,w>,

其中B是DFA, w是串:

- ◆ 1) 在输入w上模拟B.
- ◆ 2) 若模拟以接受状态结束,

则接受;

若模拟以非接受状态结束,

则拒绝."

- \bullet L(M)= A_{DFA} .
- ◆ 下面说明实现细节

证明: ADEA是一个可判定语言

- ◆ 证明:(将B视为子程序或实现细节)
- ◆ 1. TM M首先检查输入<B, w>,
 - ¶ 若w不是字符串,或
 - ¶ B不是(Q,Σ,δ,q₀,F)形式,则拒绝.
- ◆ 2. M执行模拟.
 - ¶ M通过在带上写下信息,来
 - ▶ 跟踪B在w上运行时当前状态和当前位置.
 - ¶ 状态和位置的更新
 - ▶由B的转移函数确定.
 - ¶ 当M处理完w最后一个符号时,如果
 - ▶ B处于接受状态,则M接受,否则拒绝. #

NFA接受性问题

- ◆ NFA接受性问题(Acceptance Problem)
 - ¶ 检测一个给定的非确定型有穷自动机
 - ¶ 是否接受一个给定的串
- ◆ 形式定义
 - ¶ A_{NFA}={<B, w>|NFA B接受串w}
 - ¶ NFA B接受串w⇔ <B,w>∈A_{NFA}.

定理:

A_{NFA}={<B,w>|NFA B接受串w}是一个可判定语言

证明: ANEA是一个可判定语言

- ◆ 思路1: 直接模拟NFA
- ◆ 思路2: 先将NFA转换成DFA.
- ◆ 证明:如下构造A_{NEA}的判定器N:
- N="在输入<B,w>上, 其中B是NFA, w是串:
 - 1)将NFA B转换成一个等价的DFA C.
 - 2)在输入<C, w>上运行 A_{DFA} 的判定器M.
 - 3)如果M接受,则接受,否则拒绝."
- ◆ 运行图灵机M: M作为子程序加进N的设计中.
- $L(N) = A_{NFA}.$

正则表达式派生性问题

- ◆ 正则表达式派生性问题
- ◆ 一个正则表达式是否派生一个给定的串
- ◆ 形式定义:
- ♦ $A_{REX} = \{ \langle R, w \rangle | 正则表达式R派生串w \}$

定理:

 A_{REX} ={<R,w>|正则表达式R派生串w}是一个可判定语言

证明: AREX 是一个可判定语言

- ◆ 证明: 构造图灵机 P判定A_{REX}.
- ◆ P= "对于输入<R, w>,
 - ¶ R是正则表达式, w是串:
- ◆ 1) 把正则表达式 R转化成等价DFA A
- ◆ 2) 在输入<A, w>上运行图灵机 M
- ◆ 3) 如果M接受,则接受, 否则拒绝."#
- ◆ 说明:对于可判定性问题, DFA, NFA, REX提供给图灵机都是等价的, 因为图灵机能在这三种编码之间进行互相转换.

DFA空性问题

- ◆ DFA空性问题
 - ¶一个DFA是否根本不接受任何串?
- ****
- ◆ 定义语言
 - ¶ E_{DFA}={<A>|A是DFA, L(A)=Ø}可判定

定理:

 E_{DFA} ={<A>|A是DFA, L(A)=Ø}是一个可判定语言

证明: EDFA是一个可判定语言

- ◆ E_{DFA}={<A>|A是DFA, L(A)=Ø}是一个可判定语言
- ◆ 证明思路:
- ◆ DFA接受一个串当且仅当: 从初始状态出发,沿着此DFA的箭头方向, 能够到达一个接受状态。
- ◆ 若A为一个DFA,则 L(A)≠Ø ⇔ 存在从起始状态到某接受状态的路径.
- ◆ 证明思路: 检查从初始状态是否有路径到达接受状态
 - ¶ 采用图连通性测试中的标记算法

证明: EDFA是一个可判定语言

◆ 证明: 构造图灵机T

T="对于输入<A>, 其中A是一个DFA:

- 1)标记起始状态.
- 2)重复下列步骤,直到没有新标记出现.
- 3) 对任一未标记状态,若有从已标记状态到它的转移,则将它标记.
- 4)如果无接受状态被标记,则接受; 否则拒绝."#
- $L(T) = E_{DFA}.$

DFA等价性问题

- ◆ DFA等价性问题:
 - ¶ 检查两个DFA是否识别同一个语言
- ◆ 形式定义:
 - ¶ EQ_{DFA} ={<A, B>|A和B是DFA且L(A)=L(B)}

定理:

EQ_{DFA}={<A, B>|A和B是DFA且L(A)=L(B)} 是一个可判定语言

证明: EQDFA是一个可判定语言

- ◆ 证明思路:
 - ¶ 两个语言相等当且仅当其对称差为空语言
 - ¶ 正则语言对于对称差运算封闭
 - 『正则语言是否为空是可判定的

证明: EQDEA是一个可判定语言

- ◆ 证明: 构造TM F判定EQ_{DFA}
- ◆ 图灵机 F="对于输入<A, B>, A和B都是DFA:
 - 1) 构造DFA C使得

$$L(C)=L(A)\oplus L(B)$$

- 2) 在输入<C>上运行图灵机 T
- 3) 如果T接受,则接受,

否则拒绝."#

关于正则语言的问题总结

- ◆ 成员测试:
 - ¶ A_{DFA} = {<B, w>|B是DFA,w是串,B接受w}可判定
 - ¶ A_{NFA} = {<B, w>|B是DFA,w是串,B接受w}可判定
- ◆ 正则表达式派生性测试:
 - ¶ A_{REX} ={<R, w>|正则表达式R派生串w}可判定
- ◆ 空性质测试:
 - ¶ E_{DFA} = {<A>|A是DFA, L(A)=Φ}可判定
- ◆ 等价性质测试:
 - ¶ EQ_{DFA} = {<A,B>|A和B都是DFA,且L(A)=L(B)}可判定

第4章 可判定性

- ◆ 1. 算法及其可判定性
- ◆ 2. 关于正则语言的可判定性
- ◆ 3. 关于图灵机的可判定性
 - ¶ A_{TM}可识别 不可判定
 - ¶ HALT_{IM} 可识别 不可判定
 - ¶ E_{TM}图灵机空性问题不可判定
 - ¶ HALT_{TM} 的补 非图灵可识别
 - ¶ LBA接受性问题
- ◆ 不可判定问题举例

图灵机接受性问题ATM

- ◆ 图灵机接受性问题
 - ¶ 检查一个图灵机是否接受一个给定的串
- ◆ 语言
- ◆ A_{TM}={<M, w>|M是一个图灵机,且M接受串w}

定理:

 A_{TM} 是可识别的。 A_{TM} 是不可判定的。

北京理工大学

证明: ATM是可识别的

- ◆ 证明: 构造TM U识别A_{TM}。
- ◆ U = "对于输入<M, w>,M是一个图灵机, w是一个串
- ◆ 1. 在输入上模拟M;
- ◆ 2. 如果M进入接受状态,则接受 如果M进入拒绝状态,则拒绝。"#
- ◆ 说明:
 - ¶图灵机U是一个通用图灵机
 - ¶ U可以模拟任何其它图灵机

北京理工大学

证明: ATM是不可判定的

A_{TM} ={<M, w>|M是一个图灵机,且M接受串w}

- ◆ 证明思路: 反证法
 - ¶ 假设A_{TM}可判定,找矛盾:构造一个无法判定的特例。
- ◆ 假设A_{TM}可判定,且设H是其判定器。
- ◆ 构造TM D给出与H相反的结论。即:
- D="对于输入<w>,其中w是一个串:
 - 1)在串<M, w>上运行H.
 - 2)若H接受(<M, w>), 则D拒绝(w); 若H拒绝(<M, w>), 则D接受(w)."

	<m,w<sub>1></m,w<sub>	<m,w<sub>2></m,w<sub>
Н	ac	rej
D	rej	ac

Diagonal

证明: ATM是不可判定的

用对角线法证明如下:

判定器H依次在下列图灵机及其编码串<M, <M>>>上运行

All TM descriptions:

All TMs

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	 •	$\langle D \rangle$
M_1	acc					
M_2		rej				
M_3			acc			
M_4				acc		
•						
D						

Diagonal

证明: ATM是不可判定的

- ◆ A_{TM}={<M, w>|M是一个图灵机,且M接受串w}
- ◆ 证明: 假设A_{TM}可判定,且设H是其判定器。
- D="对于输入<M>,其中M是图灵机:
 - 1)在串<M, <M>>上运行H.
 - 2)若H接受(<M, <M>>), 则D拒绝(<M>); 若H拒绝(<M, <M>>), 则D接受(<M>)."
- ◆ 若在串<D, <D>> 上运行H
 若H接受(<D, <D>>), 则D拒绝(<D>);
 若H拒绝(<D, <D>>), 则D接受(<D>)."
- ◆ 矛盾, 所以H不存在.

	<m,<< th=""><th>(M>></th><th colspan="3"><d,<d>>></d,<d></th></m,<<>	(M>>	<d,<d>>></d,<d>		
H	ac	rej	ac	rej	
D	rej	ac	?	-?~	

证明:停机问题HALT_{TM}是图灵可识别的

- ◆ HALT_{TM}={ <M, x> | 图灵机M在串x上会停机 }
- ◆ 证明: 构造识别HALT_{TM}的TM T,
- **♦** T = "对于输入<M, x>, M是图灵机, x是串
 - 1. 在x上模拟M,
 - 2. 若M停机(接受或拒绝), 则接受."#
- **◆ T的语言是HALT**_{TM}.
- ◆ 注: T是识别器,不是判定器 例如: T上运行<R,01>

各种语言类的包含关系

定理:停机问题HALT_{TM}不可判定

- ◆ HALT_{TM}={ <M, x> | 图灵机M在串x上会停机 }|
- ◆ 证明1: 反证法, 对角线法
- ◆ 假设HALT_{TM}有判定器H, 构造D:
- ◆ D = "对于输入<M>, M是图灵机,
 - 1) 在<M,<M>>>上运行H,
 - 2) 若H接受, 则返回1);
 - 3) 若H拒绝, 则停机."
- ◆ 在D上输入串<D>"是否会停机?
 - ¶ 若D停机, H接受<D,<D>>, 则由2), D不停机
 - ¶ 若D不停机, H拒绝<D,<D>>, 则由3), D停机
- ◆ 矛盾, 所以H不存在.

证明:停机问题HALT_{TM}不可判定

- ◆ 证明思路2: 反证法: 与A_{TM}不可判定矛盾
- ◆ 假设HALT_{TM}可判定,TM R判定HALT_{TM},
- ◆ 则可利用R构造TM S 判定A_{TM},这与A_{TM}不可判定矛盾

证明:停机问题HALT_{TM}不可判定

- ◆ 证明2: (反证)假设图灵机R判定HALT_{TM}, 则构造图灵机S判定A_{TM}, 这产生矛盾!
- ◆ S="在输入<M,w>上, 其中M是图灵机, w是串:
 - 1) 在输入<M,w>上运行图灵机 R.
 - 2) 如果R拒绝,则拒绝.
 - 3) 如果R接受,则在w上模拟M,直到M停机.
 - 4) 若M接受,则接受; 若M拒绝,则拒绝."
- ◆ 若R是HALT_{TM}的判定器,则S是A_{TM}的判定器,
- ◆ 但是A_{TM}不可判定, 所以HALT_{TM}不可判定. #

证明方法: 归约

- ◆ 归约性 reducibility
 - ¶ P可归约到Q, (如:映射归约 $P \leq_m Q$)
- ◆ 如果P可归约到Q,那么
 - ¶如果Q成立,则P也成立
 - ¶如果P不成立,则Q也不成立
- ♦ 例如: 在 " $HALT_{TM}$ 不可判定"的证明中
 - ¶ A_{TM}可归约到HALT_{TM},则
 - ¶ 因为A_{TM}不可判定,所以HALT_{TM}也不可判定
 - ¶证明A_{TM}可归约到HALT_{TM}:若HALT_{TM}是可判定的,则A_{TM}是可判定的

- ◆ 例如:证明 "E_{TM}不可判定"
 - ¶ 如果 A_{TM} 可归约到 E_{TM} ,则
 - ¶ 因为A_{TM}不可判定,所以E_{TM}也不可判定
 - ¶ 证明 A_{TM} 可归约到 E_{TM} : 若 E_{TM} 是可判定的,则 A_{TM} 是可判定的

图灵机的空性问题ETM是不可判定的

- ◆ 图灵机的空性问题
 - 一个图灵机是否根本不接受任何串
- ◆ E_{TM} = {<M>|M是图灵机, L(M)=Ø} 是不可判定的。
- ◆ 证明思路: (反证法-归约)
- ◆ 反证法-归约
 - \P 下面证明 A_{TM} 可归约到 E_{TM} ,即
 - ¶假设图灵机R判定E_{TM}, 则利用R构造图灵机S判定A_{TM}.
- ◆ 空性:如果图灵机M接受任意串w,则L(M)≠Ø

证明: ETM是不可判定的

◆ 先修改图灵机M为M₁.

 M_1 拒绝除w外的所有串, M_1 在w上完全模拟M; x

证明: ETM是不可判定的

- ♦ 证明: $(\underline{\mu})$ 假设图灵机 \mathbb{R} 判定 \mathbb{E}_{TM} ,则构造图灵机 \mathbb{S} 判定 \mathbb{A}_{TM} .
- ◆ 修改型图灵机M₁. M₁="在输入x上:
 - 1) 如果x≠w, 则拒绝.
 - 2) 如果x=w,则在x上运行M,M接受就接受,M拒绝就拒绝."
- ◆ S = " 在输入<M, w>上:
 - 1) 用M和w的描述来构造上述图灵机 M₁.
 - 2) 在输入 M_1 上运行R.
 - 3) 如果R接受,则拒绝; 如果R拒绝,则接受."
- ◆ 若R是E_{TM}的判定器,则S是A_{TM}的判定器,
- ◆ 但是A_{TM}不可判定, 所以E_{TM}不可判定. #

图灵机的等价性问题EQTM

- ◆ 图灵机的等价性问题:
 - ¶ 检查两个给定的图灵机是否识别相同的语言
- ◆ EQ_{TM} = { < M_1 , M_2 > | M_1 和 M_2 是图灵机,且 $L(M_1)$ = $L(M_2)$ }
- ◆ 定理: EQ_{TM}是不可判定的。
- ◆ 证明思路: 使用从E_{TM}出发的归约,即E_{TM}归约到EQ_{TM}
- ◆ 若M₁, M₂中有一个识别空语言,则
 - \P 若 M_1 和 M_2 等价当且仅当
 - ¶ 另一个机器也识别空语言
- ◆ E_{TM}是EQ_{TM}的特例 其中一个机器识别空语言

证明: EQ_{TM}是不可判定的

- ◆ 假设图灵机R判定EQ_{TM}, 下面构造图灵机S判定E_{TM}.

证明: EQTM是不可判定的

- ◆ 证明: 假设图灵机R判定EQ_{TM},
- ◆ 下面构造图灵机S判定E_{TM}.
- ◆ S="对于输入<M>, M是图灵机:
 - 1) 在输入<M, $M_1>$ 上运行R, M_1 是拒绝所有输入的图灵机.
 - 2) 如果R接受,则接受;

如果R拒绝,则拒绝."

若R是 EQ_{TM} 的判定器,则S是 E_{TM} 的判定器,但是 E_{TM} 不可判定,所以 EQ_{TM} 不可判定.#

一个非图灵可识别语言

- ◆ HALT_{TM}的补(HALT_{TM})不是图灵可识别的。
- ◆ 语言A的补: A^c=Σ*-A
- ◆ 定理: A可判定⇔A和A°都是图灵可识别
- ◆ 证明: (⇒) 设A是可判定的,则A和A°都是图灵可识别.
- ◆ 设A是可判定的,

因为可判定语言对补运算封闭,所以A^c是可判定的.

又,可判定语言都是图灵可识别的

所以,A和A°都是图灵可识别的.

定理: HALT_{TM}的补不是图灵可识别的

- ◆ 证明: (⇐) 若A和A°都是图灵可识别,则A图灵可判定
- ◆ 设图灵机T和Q分别识别A和Ac,构造图灵机R:
 - R = "对于输入x, x是串,
 - 1. 在x上同步模拟T和Q, 直到有一个停机,
 - 2. 若T接受x, 则接受x;
 - 3. 若Q接受x,则拒绝x."

R是判定器, R的语言是A. #

 $\forall x \in A \Rightarrow T$ —定停机接受 $\Rightarrow R$ 停机接受

∀x∉A⇒Q一定停机接受⇒R停机拒绝

定理: HALT_{TM}的补不是图灵可识别的

- ◆ 定理: A可判定⇔A和A°都是图灵可识别
- ◆ 推论: 停机问题HALT_{TM}的补不是图灵可识别的.
- ◆ 证明: 归约,从A_{TM}开始的归约
 - ¶即,证明A_{TM}可归约到HALT_{TM}.
 - ¶ $HALT_{TM}$ 是可识别的,若 $HALT_{TM}^{c}$ 可识别,则 A_{TM} 可判定。

各种语言类的包含关系

$P(\Sigma^*)$

一些自然构造的问题

- ◆ 停机问题:
 - ¶ HALT_{TM} = { <M,x> | 图灵机M在串x上会停机 } 不可判定
- ◆ 成员测试:
 - ¶ A_{DFA} = {<B, w>|B是DFA,w是串,B接受w}可判定
 - ¶ A_{CFG} = {<B, w>|B是CFG,w是串,B派生w}可判定
 - ¶ $A_{TM} = \{ < M, w > | M是一个TM, 且接受w \} 不可判定$
- ◆ 空性质测试:
 - ¶ E_{DFA} = {<A>|A是DFA, L(A)= Φ }可判定
 - ¶ E_{CFG} = {<G>|G是CFG, L(G)=Φ}可判定
 - ¶ E_{TM} = {<M>|M是TM,L(M)=Ø}不可判定
- ◆ 等价性质测试:
 - ¶ EQ_{DEA} = {<A,B>|A和B都是DFA,且L(A)=L(B)}可判定
 - ¶ EQ_{CFC} = {<A,B>|A和B都是CFG,且L(A)=L(B)}不可判定
- Theory of Computation EQ_{TM} = {<A,B>|A和B都是TM,且L(A)=L(B)}不可判定

第4章 可判定性

- ◆ 1. 算法及其可判定性
- ◆ 2. 关于正则语言的可判定性
- ◆ 3. 关于图灵机的可判定性
 - ¶ A_{TM}图灵可识别 不可判定
 - ¶ HALT_{TM} 图灵可识别 不可判定
 - ¶ E_{TM}图灵机空性问题不可判定
 - ¶ HALT_{TM} 的补 非图灵可识别
 - ¶LBA接受性问题
 - ¶ 不可判定问题举例

- ◆ 线性界限自动机: Linear Bounded Automata
 - ¶ 带头不能移出输入区的图灵机.
 - ¶ 等价于"带头不能移出输入区的常数倍."

各种语言类的包含关系

$P(\Sigma^*)$

LBA接受性问题

- ◆ LBA接受性问题
 - ¶ 检测一个给定的线性界限自动机LBA 是否接受一个事先给定的串
- ♦ 语言
 - ¶ A_{LBA}={<M, w>| LBA M接受串w}

定理: ALBA是可判定的.

证明: ALBA是可判定的.

- ◆ 引理: 设M₁是一个确定型LBA, M₁有q个状态和g个带符号。 对于长度为n的带子, M₁恰有qngⁿ个不同格局.
- ◆ 证明:

图灵机格局包括当前状态,带头位置和带内容。这三者的不同组合数为 qng^n 。 所以 M_1 恰有 qng^n 个不同格局。

证明: ALBA是可判定的.

- ◆ 证明思路: 在输入w上模拟M
 - ¶ 如果M停机接受,则接受
 - ¶如果M停机拒绝,则拒绝
 - ¶ 如果M不停机,则.....?
 - ▶根据上述引理,M₁恰有qngn个不同格局
 - ▶ 如果M运行超过qngn步,
 - ▶则M重复了某个格局,
 - ▶ 因此M将陷入死循环。

证明: ALBA是可判定的.

◆ 证明: 图灵机L判定A_{LBA}.

L = "对输入<M, w>, M是LBA, w是串:

- 1) 在w上模拟M运行qngn步,或者直到它停机.
- 2) 如果M停机,则

当M接受时接受,

当M拒绝时拒绝;

如果M还没有停机,则拒绝."

#

不可判定问题举例

1) Hilbert第十问题: "多项式是否有整数根"有没有算法?

1970's 被证明不可判定 (没有判定器, 即没有算法)

M="对于输入"p", p是k元多项式,

- 1. 取k个整数的向量x(绝对值和从小到大)
- 2. 若p(x) = 0, 则停机接受.
- 3. 否则转1."

这个图灵机对输入 $p(x,y) = x^2 + y^2 - 3$ 不停机

2) PCP 问题: Post Correspondence Problem

对比:一个可判定问题

一元多项式是否有整数根?

M = "对于输入 "p", 1元k次多项式p(x),

- 1. 计算解的绝对值上界N
- 2. 对所有|x|≤N
- 4. 停机拒绝."

对比:一个可判定问题

设多项式 $c_1 x^{n+} c_2 x^{n-1} + \ldots + c_n x + c_{n+1}$ 有根 $x = x_0$, $c_{\text{max}} \neq c_i$ 的最大绝对值. 证明 $|x_0| < (n+1) c_{\text{max}} / |c_1|$

解: 不妨设 $c_1 \neq 0$.

若
$$|x_0| \le 1$$
, 则 $|x_0| \le 1 \le c_{\text{max}} / |c_1| < (n+1) c_{\text{max}} / |c_1|$, 性质成立 若 $|x_0| > 1$, 则由 $c_1 x_0^{n} + c_2 x_0^{n-1} + \ldots + c_n x_0 + c_{n+1} = 0$, 得
$$c_1 x_0^{n} = -(c_2 x_0^{n-1} + \ldots + c_n x_0 + c_{n+1}),$$
 $|c_1| |x_0|^{n} \le |c_2| |x_0|^{n-1} + \ldots + |c_n| |x_0| + |c_{n+1}|,$ $|c_1| |x_0|^{n} < (n+1) c_{\text{max}} |x_0|^{n-1},$ $|x_0| < (n+1) c_{\text{max}} / |c_1|.$

例如: $2x^3 + 3x^2 - 7x + 11 = 0$ $|x_0| < (3+1)*11/2=22$

语言类的封闭性

	补	交	并	连接	星号
图灵可识别语言 0型,图灵机	X	\checkmark	\checkmark	\checkmark	√
图灵可判定语言 1型,判定器	\checkmark	\checkmark	\checkmark	\checkmark	√
上下文有关语言 1型,LBA	\checkmark	\checkmark	\checkmark	\checkmark	√
上下文无关语言 2型,PDA	X	X	\checkmark	\checkmark	√
正则语言 线性 3型,DFA	\checkmark	$\sqrt{}$	\checkmark	√	√

END

计算理论第4章作业

4.1 对于右图所示的DFA M, 回答下列问题, 并说明理由

a. $\langle M,0100 \rangle \in A_{DFA}$? b. $\langle M,011 \rangle \in A_{DFA}$?

 $c. < M > \in A_{DFA}$?

 $e. < M > \in E_{DFA}$? $f. < M, M > \in EQ_{DFA}$?

4.2 考虑一个DFA和一个正则表达式是否等价的问题。 将这个问题描述为一个语言并证明它是可判定的。

4.3 设 ALL_{DFA} = {<A> | A是一个识别Σ*的DFA}. 证明 ALL_{DFA} 可判定.

4.15 设A = {<R> | R是一个正则表达式, 其所描述的语言中至少有一个串w以111为子串 }. 证明A是可判定的。

