Digrafy

dr inż. Bartłomiej Pawlik

14 sierpnia 2024

Digrafem (grafem skierowanym) D nazywamy parę zbiorów $\big(V(D), E(D)\big)$, gdzie V(D) to zbiór wierzchołków, a $E(D) \subset \big(V(D)\big)^2$ to zbiór łuków.

Wiele definicji dotyczących grafów (np. rząd, rozmiar, podgraf indukowany, izomorfizm) przenosi się również na digrafy.

Zauważmy, że z powyższej definicji wynika, że każdy łuk to uporządkowana para wierzchołków (zbiór łuków to <u>podzbiór</u> kwadratu kartezjańskiego zbioru wierzchołków).

Definicja

Niech $(x,y) \in E(D)$.

- Pare (x, y) nazywamy łukiem (krawędzią skierowaną) od x do y.
- Wierzchołek y nazywamy **sąsiednim** do x.
- ullet Wierzchołek x nazywamy **początkiem łuku**, a y **końcem łuku**.
- Krawędź (x,x) nazywamy **pętlą**.

B. Pawlik Digrafy

Przykład 1

Rysunek przedstawia reprezentację graficzną digrafu ${\cal D}$ takiego, że

$$V(D) = \{1, 2, 3, 4, 5, 6\}$$

$$E(D) = \{(1, 4), (3, 5), (4, 2), (4, 5)\}$$

Rząd D wynosi 6, natomiast rozmiar to 4.

Definicia

- Stopniem wyjściowym outdeg v wierzchołka v w digrafie D nazywamy liczbę krawędzi, których początkiem jest v.
- Stopniem wejściowym indeg v wierzchołka v w digrafie D nazywamy liczbę krawędzi, których końcem jest v.

Przykład 2

Stopnie wierzchołków digrafu z przykładu 1 to:

outdeg
$$(1) = 1$$
, outdeg $(2) = 0$, outdeg $(3) = 1$,
indeg $(1) = 0$, indeg $(2) = 1$, indeg $(3) = 0$,
outdeg $(4) = 2$, outdeg $(5) = 0$, outdeg $(6) = 0$,
indeg $(4) = 1$, indeg $(5) = 2$, indeg $(6) = 0$.

4 / 25

B Pawlik Digrafy

Podstawowe twierdzenie teorii digrafów

Dla każdego digrafu D zachodzi

$$\sum_{v \in V(D)} \operatorname{outdeg} v = \sum_{v \in V(D)} \operatorname{indeg} v = |E(D)|.$$

Dowód.

Podczas dodawania stopni wyjściowych każdy łuk jest liczony tylko raz podobnie jak podczas dodawania stopni wejściowych.

Powyższe twierdzenie jest digrafowym odpowiednikiem lematu o uściskach dłoni.

Macierzą sąsiedztwa (multi)digrafu D to macierz $A_D = [s_{ij}]$, w której a_{ij} określa liczbę łuków od i-tego do j-tego wierzchołka.

Przykład 3

Macierzą sąsiedztwa digrafu przedstawionego w przykładzie 1 jest

Macierz incydencji digrafu D to macierz $B_D = [b_{ij}]$, w której

$$B_{ij} = \left\{ \begin{array}{ll} 1, & \text{gdy wierzchołek } v_i \text{ jest początkiem łuku } e_j \\ -1, & \text{gdy wierzchołek } v_i \text{ jest końcem łuku } e_j \\ 0, & \text{gdy wierzchołek } v_i \text{ nie jest incydentny z łukiem } e_j \end{array} \right..$$

Wniosek

- Suma elementów w i-tym wierszu macierzy incydencji digrafu D wynosi out $\deg v_i + \mathrm{indeg}\,v_i$.
- ullet Suma elementów w j-tej kolumnie macierzy incydencji digrafu D wynosi 0.

B. Pawlik Digrafy 14 sierpnia 2024 7

Przykład 4

Macierzą incydencji digrafu przedstawionego w przykładzie 1 jest

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Niech D = (V(D), E(D)) będzie digrafem.

- D jest **symetryczny**, gdy dla każdej pary wierzchołków $u,v\in V(D)$ z warunku $(u,v)\in E(D)$ wynika, że również $(v,u)\in E(D)$.
- D jest **grafem zorientowanym**, gdy dla każdej pary wierzchołków $u,v\in V(D)$ z warunku $(u,v)\in E(D)$ wynika, że $(v,u)\not\in E(D)$.

Przykład 5

Zauważmy, że digraf z przykładu 1 jest grafem zorientowanym.

Co najmniej ile łuków należy do tego digrafu dołączyć (bez zwiększania jego rzędu), aby mieć pewność że nowo otrzymany digraf nie jest grafem zorientowanym?

12.

Grafem pierwotnym digrafu D nazywamy graf otrzymany przez zastąpienie każdego łuku (u,v) lub symetrycznej pary łuków (u,v) i (v,u) przez krawędź $\{u,v\}$.

Przykład 6

Poniższe digrafy D_1 i D_2 mają taki sam graf pierwotny (G).

Definicia

Niech D = (V(D), E(D)) będzie digrafem.

- **Droga** nazywamy ciąg wierzchołków (v_1, v_2, \ldots, v_n) taki, że $(v_i, v_{i+1}) \in E(D)$ dla każdego $1 \leq i \leq n-1$.
- **Droga nieskierowana** nazywamy ciąg wierzchołków (v_1, v_2, \ldots, v_n) taki, że $(v_i, v_{i+1}) \in E(D)$ lub $(v_{i+1}, v_i) \in E(D)$ dla kazdego $1 \leqslant i \leqslant n-1$.
- Ścieżka nazywamy drogę w której każdy wierzchołek występuje co najwyżej jeden raz.
- Cyklem nazywamy drogę w której $v_1 = v_n$ oraz wszystkie pozostałe wierzchołki występują co najwyżej jeden raz.
- Cyklem niewłaściwym nazywamy drogę w której $v_1 = v_n$.
- Digraf jest acykliczny, jeżeli nie posiada cykli.

Podobnie jak droga nieskierowana jest pierwotnym odpowiednikiem drogi w digrafie, tak i ścieżka nieskierowana, cykl nieskierowany i cykl niewłaściwy nieskierowany to pierwotne odpowiedniki ścieżki, cyklu i cyklu niewłaściwego.

> B Pawlik 14 sierpnia 2024 Digrafy

- Digraf D jest **spójny**, gdy dla każdej pary jego wierzchołków istnieje ścieżka nieskierowana łącząca te wierzchołki.
- ullet Digraf D jest **silnie spójny**, gdy dla każdej pary jego wierzchołków u i v istnieje ścieżka o początku w u i końcu w v oraz istnieje ścieżka o początku w v i końcu w u.

Przykład 7

Digraf przedstawiony w przykładzie 1 nie jest spójny — nie istnieje ścieżka łącząca wierzchołek 6 z pozostałymi. Rozważmy poniższe digrafy:

Digraf D_1 jest spójny, ale nie jest silnie spójny. Digraf D_2 jest silnie spójny.

Jeżeli G jest grafem pierwotnym grafu zorientowanego D, to D nazywamy **orientacją** grafu G.

Przykład 8

 $\mathsf{Graf}\ (G)\ \mathsf{i}\ \mathsf{jedna}\ \mathsf{z}\ \mathsf{jego}\ \mathsf{orientacji}\ (D).$

- Dowolną orientację grafu pełnego nazywamy turniejem.
- Digraf D jest r-regularny, jeżeli równania

$$outdeg v = indeg v = r$$

zachodzą dla każdego $v \in V(D)$.

Przykład 9

Grafy D_1 i D_2 z przykładu 7 są jedynymi turniejami rzędu 3 (a zarazem jedynymi orientacjami grafu K_3). Ponadto graf D_2 jest grafem 1-regularnym.

lle jest turniejów rzędu 4? Są cztery takie turnieje:

 $T_{4,3}$

 $T_{4,4}$

Turniej T jest **przechodni**, jeżeli z tego, że (u,v) i (v,w) są łukami w T wynika, że (u,w) również jest łukiem w T.

Przykład 10

Które turnieje rzędu 4 (przykład 9) są przechodnie?

Jedynym przechodnim turniejem rzędu 4 jest $T_{4,4}$.

15 / 25

B. Pawlik Digrafy 14 sierpnia 2024

Twierdzenie

Turniej jest przechodni wtedy i tylko wtedy, gdy jest acykliczny.

Dowód. (1/2)

 (\Leftarrow)

Niech T będzie acyklicznym turniejem i niech $(u, v), (v, w) \in E(T)$.

Z acykliczności wynika, że $(w,u) \notin E(T)$. Pamiętajmy, że T jest turniejem, więc dla każdej pary wierzchołków v_1, v_2 jeżeli $(v_1, v_2) \notin E(T)$, to $(v_2, v_1) \in E(T)$.

Zatem z $(w,u) \notin E(T)$ otrzymujemy, że $(u,w) \in E(T)$, więc T jest przechodni.

Dowód. (2/2)

 (\Rightarrow)

Niech T będzie przechodnim turniejem. Załóżmy niewprost, że w turnieju T istnieje cykl (v_1,v_2,\ldots,v_k,v_1) , gdzie $k\geqslant 3$. Przechodniość T pozwala nam skonstruować ciąg krawędzi:

- $\mathsf{Z}\;(v_1,v_2),(v_2,v_3)\in E(T)$ wynika, że $(v_1,v_3)\in E(T)$.
- ullet Z $(v_1,v_3),\,(v_3,v_4)\in E(T)$ wynika, że $(v_1,v_4)\in E(T)$.
- ...
- Z $(v_1,v_{k-1}),(v_{k-1},v_k)\in E(T)$ wynika, że $(v_1,v_k)\in E(T)$ daje to sprzeczność z faktem, że $(v_k,v_1)\in E(T)$.

Zatem T jest acykliczny.

Twierdzenie

Dla każdej liczby całkowitej $n\geqslant 3$ istnieje dokładnie jeden przechodni (acykliczny) turniej rzędu n.

Definicia

- ullet Jeżeli w digrafie D istnieje cykl niewłaściwy d przechodzący przez każdą krawędź digrafu D dokładnie jeden raz, to d nazywamy **cyklem Eulera**, a digraf D — digrafem eulerowskim.
- ullet Jeżeli digraf D nie jest digrafem eulerowskim i istnieje ścieżka d przechodząca przez każdą krawędź digrafu D dokładnie jeden raz, to d nazywamy ścieżką Eulera, a digraf D — digrafem jednobieżnym (półeulerowskim).

Przykład 11

Rozważmy turnieje rzędu 3 (przykład 7). D_2 jest eulerowski, natomiast D_1 nie jest ani eulerowski ani jednobieżny.

18 / 25

B Pawlik Digrafy

Stwierdzenie

ullet Digraf D jest eulerowski wtedy i tylko wtedy, gdy jest spójny oraz dla każdego wierzchołka $w\in V(D)$ zachodzi

outdeg
$$w = indeg w$$
.

ullet Digraf D jest jednobieżny wtedy i tylko wtedy, gdy jest spójny i zawiera dwa wierzchołki u i v takie. że

$$\operatorname{outdeg} u = \operatorname{indeg} u + 1$$
 oraz $\operatorname{indeg} v = \operatorname{outdeg} v + 1$

oraz

$$\operatorname{outdeg} w = \operatorname{indeg} w$$

dla wszystkich pozostałych łuków $w \in V(D)$. Co więcej, u jest początkiem, a v końcem każdej ścieżki Eulera w D.

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ 夕♀♡

19/25

B. Pawlik Digrafy 14 sierpnia 2024

Przykład 12

 D_1 - digraf eulerowski

 D_2 - digraf jednobieżny

 D_3 - digraf nie eulerowski i nie jednobieżny

- Jeżeli w digrafie D istnieje cykl h przechodzący przez każdy wierzchołek digrafu D dokładnie jeden raz, to h nazywamy **cyklem Hamiltona**, a D **digrafem hamiltonowskim**.
- Jeżeli digraf D nie jest digrafem hamiltonowskim i istnieje ścieżka h
 przechodząca przez każdy wierzchołek tego grafu dokładnie jeden raz, to h
 nazywamy ścieżką Hamiltona, a D digrafem trasowalnym
 (półhamiltonowskim).

Przykład 13

 D_1 - digraf hamiltonowski

 D_2 - digraf trasowalny

 D_3 - digraf nie hamiltonowski i nie trasowalny

Przykład 14

Które turnieje rzędu 4 (przykład 9) są hamiltonowskie, a które są trasowalne?

 $T_{4.1}$ — turniej hamiltonowski

 $T_{4,2}, T_{4,3}, T_{4,4}$ — turnieje trasowalne

Zauważmy, że turnieje mogą mieć źródła i ujścia, co sugeruje że na ogół nie są one digrafami hamiltonowskimi. Zachodzi jednak następujące twierdzenie:

Twierdzenie (Rédei, Camion)

Każdy turniej jest trasowalny lub hamiltonowski.

Dowód. (1/2)

Aby teza była prawdziwa, wystarczy aby turniej zawierał ścieżkę Hamiltona. Niech T będzie turniejem i niech

$$P = (v_1, v_2, \dots, v_k)$$

będzie najdłuższą ścieżką w T. Jeżeli P nie jest ścieżką Hamiltona, to $1 \leqslant k < n$ oraz istnieje wierzchołek $v \in V(T)$ taki, że $v \notin P$. Z faktu, że P jest najdłuższą ścieżką otrzymujemy, że

$$(v, v_1), (v_k, v) \notin E(T).$$

Zatem, na mocy faktu że T jest turniejem, mamy

$$(v_1, v), (v, v_k) \in E(T).$$

Dowód. (2/2)

W takim razie istnieje największa liczba całkowita i ($1 \le i < k$) taka, że $(v_i, v) \in E(T)$, co oznacza że $(v, v_{i+1}) \in E(T)$.

Zauważmy, że teraz w turnieju T istnieje ścieżka

$$(v_1, v_2, \ldots, v_{i-1}, v_i, v, v_{i+1}, \ldots, v_{k-1}, v_k),$$

która ma większą długość (k+1) niż ścieżka P — co daje nam sprzeczność z faktem, że P nie jest ścieżką Hamiltona.

14 sierpnia 2024

24 / 25

B. Pawlik Digrafy

Wniosek

Każdy turniej przechodni zawiera dokładnie jedną ścieżkę Hamiltona.

Przykładowe warunki na digrafy hamiltonowskie:

Twierdzenie

Niech D będzie digrafem i niech |V(D)| = n.

• Jeżeli dla każdej pary wierzchołków $u,v\in V(G)$ takich, że $(u,v)\not\in E(D)$ zachodzi

outdeg
$$u + \text{indeg } v \ge n$$
,

to D jest hamiltonowski.

ullet Jeżeli dla każdego wierzchołka $v \in V(D)$ zachodzi

$$\operatorname{outdeg} v \geqslant \frac{n}{2} \qquad \operatorname{oraz} \qquad \operatorname{indeg} v \geqslant \frac{n}{2},$$

to D jest hamiltonowski.

← 4 回 ト 4 回 ト 4 亘 ト ■ り 9 ○ ○