Topologie & Calcul différentiel

Quizz 3

1) Soit $d \ge 1$. Il existe des constantes m et M telles que, pour $d \ge 1$, toute norme $\ \cdot\ $ sur \mathbb{R}^d , on ait $m \ x\ \le \ x\ _{\infty} \le M \ x\ \forall x \in \mathbb{R}^d$
Vrai \square Faux \square
2) Soit $f = (f_1, \ldots, f_m)$ une application de \mathbb{R}^n dans \mathbb{R}^m , différentiable en x .
Vrai \square Faux \square La <i>i</i> ème ligne de la jacobienne de f en x contient les coordonnées dans la base canonique du gradient de la fonction f_i en x
3) Soit $\alpha \in]0,+\infty[$. Préciser, selon les valeurs de α , les points de différentiabilité de la
function $f_{\alpha}: (x,y) \in \mathbb{R}^2 \longmapsto f_{\alpha}(x,y) = x ^{\alpha} + y ^{\alpha}.$
4) Applicalibilité du Théorèmes des Fonctions Implicites (TFI)
Vrai \square Faux \square On peut exprimer localement y fonction de x au voisinage de $(0,0)$, avec x et y liés par la relation $yx^2+y^2x-1=0$.
Vrai \square Faux \square On peut exprimer localement y fonction de x au voisinage de $(1,0)$, avec x et y liés par la relation $yx^2 + y^2x - 1 = 0$.
Vrai \square Faux \square On peut exprimer localement (y_1,y_2) fonction de x au voisinage de $(1,2,0)$, avec x et (y_1,y_2) liés par la relation $y_1x^2+y_2^2x-1=0$.

Exercice 1

(Retour sur le théorème de point fixe de Banach (ou Picard))

a) On considère la fonction

$$f: x \in \mathbb{R} \longmapsto \sqrt{1+x^2}$$
.

Montrer que f est faiblement contractante au sens où |f(y) - f(x)| < |y - x| pour tous $x \neq y$. Montrer que f n'admet pas de point fixe.

b) On considère maintenant une application T définie d'un compact K dans lui même, telle que

$$d(T(x), T(y)) < d(x, y).$$

Montrer que T admet un point fixe unique.

Exercice 2 (Coordonnées sphériques)

a) On considère la fonction

$$f: (r, \varphi, \theta) \in U =]0, +\infty[\times \mathbb{R}^2 \longmapsto \left(\begin{array}{c} r \cos \varphi \cos \theta \\ r \cos \varphi \sin \theta \\ r \sin \varphi \end{array} \right) \in \mathbb{R}^3$$

- a) Calculer la matrice jacobienne de f, et montrer que f est différentiable sur U.
- b) L'application f est elle bijective? Peut on la rendre bijective en modifiant les espaces d'arrivée et de départ?
- c) En quels points de U la différentielle de f est-elle inversible?