Homework 3 on ASTR400B

Jiachuan Xu

January 26, 2018

1 Output Table: Mass Break Down of Local Group

Name	M_{Halo}	M_{Disk}	M_{Bulge}	M_{Total}	f_{bar}
	$1 \times 10^{12} \mathrm{M}_{\odot}$				
M31	1.921	0.12	0.019	2.06	0.068
M33	0.187	0.009	0.0	0.196	0.047
MW	1.975	0.075	0.01	2.06	0.041
Galaxy Group	4.082	0.204	0.029	4.316	0.054

Table 1: Mass break down of local group (snapnumber: 0)

2 Answers to The Questions on Homework 3

- \bullet The total mass of MW and M31 are the same in this simulation, the mass is dominated by dark matter halo, which composes 93.25% of M31 and 95.87% of MW.
- The stellar mass of M31 is more than MW on both disk and bulge components, and the baryon fraction of M31 is 65.85% higher than the MW's. This indicates that M31 should have a higher luminosity, providing these two galaxy have similiar stellar population.
- The dark matter of MW is only 2.81% more than M31's. Given the dominating fraction the dark matter takes, the little difference is understandable. The difference in stellar mass may be a result of different assembly history.
- The baryon fraction of M31, M33 and MW are 6.8%, 4.7% and 4.1%, which is much lower than the average fraction 16%. If the mass of gas in the disk in negligible compared to the stellar mass, the "missing baryons" may hide in non-luminous IGM, low-luminosity dwarfs or white dwarfs