19. Convolutional Networks STA3142 Statistical Machine Learning

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
May {21, 23}, 2024

* Slides adapted from EECS498/598 @ Univ. of Michigan by Justin Johnson

Assignment 4

- Due Friday 5/17 Wednesday 5/22, 11:59pm
- Topics
 - K-Means and Gaussian Mixture Models -> bug in description fixed
 - Principal Component Analysis
- Please read the instruction carefully!
 - Submit one <u>pdf</u> and one <u>zip</u> file separately
 - Write your code only in the designated spaces
 - Do not import additional libraries
 - ...
- If you feel difficult, consider to take option 2.

Recap: Backpropagation

Represent complex expressions as **computational graphs**

Forward pass computes outputs

Backward pass computes gradients

During the backward pass, each node in the graph receives **upstream gradients** and multiplies them by **local gradients** to compute **downstream gradients**

$$f(x) = Wx + b$$

$$f(x) = W_2 g(W_1 x + b_1) + b_2$$

Problem: So far our classifiers don't respect the spatial structure of images!

Solution: Define new computational nodes that operate on images!

Stretch pixels into column

Components of a Fully-Connected Network

Fully-Connected Layers

Activation Function

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

1 number:

the result of taking a dot product between a row of W and the input (a 3072-dimensional dot product)

3x32x32 image: preserve spatial structure

Filters always extend the full depth of the input volume

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

3x32x32 image

1 number:

the result of taking a dot product between the filter and a small 3x5x5 chunk of the image (i.e. 3*5*5 = 75-dimensional dot product + bias)

$$w^T x + b$$

Convolution Layer 1x28x28 activation map 3x32x32 image 3x5x5 filter 28 convolve (slide) over 32 all spatial locations 28 32

Convolution Layer two 1x28x28 activation map Consider repeating with 3x32x32 image a second (green) filter: 3x5x5 filter 28 convolve (slide) over all spatial locations 32 32

3x32x32 image Consider 6 filters, each 3x5x5 Convolution Layer 32 6x3x5x5 32 filters

6 activation maps, each 1x28x28

Stack activations to get a 6x28x28 output image!

3x32x32 image Also 6-dim bias vector:

filters

Convolution Layer 32 6x3x5x5 32

Stack activations to get a 6x28x28 output image!

6 activation maps,

each 1x28x28

28x28 grid, at each point a 6-dim vector

6x28x28 output image!

Stacking Convolutions

Q: What happens if we stack (Recall $y=W_2W_1x$ is two convolution layers?

a linear classifier)

A: We get another convolution!

Input:

N x 3 x 32 x 32

First hidden layer:

N x 6 x 28 x 28

Second hidden layer:

N x 10 x 26 x 26

Stacking Convolutions

Q: What happens if we stack (Recall $y=W_2W_1x$ is two convolution layers?

a linear classifier)

A: We get another convolution!

Input:

N x 3 x 32 x 32

First hidden layer:

N x 6 x 28 x 28

Second hidden layer:

N x 10 x 26 x 26

• The convolution of an image x with kernel k is computed as follows:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example:

• The convolution of an image x with kernel k is computed as follows:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example:

$$1 \times 0 + 0.5 \times 80 + 0.25 \times 20 + 0 \times 40 = 45$$

0	80	40
20	40	0
0	0	40
	\overline{x}	

• The convolution of an image x with kernel k is computed as follows:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example:

$$1 \times 80 + 0.5 \times 40 + 0.25 \times 40 + 0 \times 0 = 110$$

0	80	40
20	40	0
0	0	40
	\overline{x}	

• The convolution of an image x with kernel k is computed as follows:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example:

$$1 \times 20 + 0.5 \times 40 + 0.25 \times 0 + 0 \times 0 = 40$$

0	80	40
20	40	0
0	0	40
	x	

45	110
40	

• The convolution of an image x with kernel k is computed as follows:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example:

$$1 \times 40 + 0.5 \times 0 + 0.25 \times 0 + 0 \times 40 = 40$$

0	80	40			
20	40	0			
0	0	40			
\overline{x}					

45	110
40	40

(Discrete) Convolution in CNNs

• The convolution of an image x with kernel k is computed as follows:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

- Convolution comes from the context of signal processing, where we flip kernels because it has several nice mathematical properties.
- In CNNs, kernels/filters are **learnable**, so flipping does not matter; assume that we learn flipped kernels/filters.

(Discrete) Convolution vs. Cross-Correlation

What we have seen is in fact cross-correlation, NOT convolution.

Cross-Correlation (Slide filter over image)

Convolution (Flip filter, then slide it)

- Convolution comes from the context of signal processing, where we flip filters because it has several nice mathematical properties.
- In CNNs, filters are **learnable**, so flipping does not matter; assume that we learn flipped filters.

(Discrete) Convolution vs. Cross-Correlation

• The convolution of an image x with kernel k is computed as follows:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• C.f. the cross-correlation of an image x with kernel k is computed as:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r+p,r+q}$$

• Example:

Input: 7x7

Filter: 3x3

7

Input: 7x7

Filter: 3x3

7

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Output: 5x5

In general:

Problem: Feature

Input: W

maps "shrink" with each layer!

Filter: K

Output: W - K + 1

7

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Problem: Feature

Input: W maps "shrink"

with each layer!

Filter: K

Output: W - K + 1

Solution: padding

Add zeros around the input

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Very common:

Input: W Set P = (K - 1) / 2 to

Filter: K

Padding: P

Output: W - K + 1 + 2P

make output have

same size as input!

Receptive Fields

For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input

Receptive Fields

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Be careful – "receptive field in the input" vs "receptive field in the previous layer"

Hopefully clear from context!

Receptive Fields

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1+L*(K-1)

for each output to "see" the whole image image

Solution: Downsample inside the network

Strided Convolution

Input: 7x7

Filter: 3x3

Stride: 2

Strided Convolution

Input: 7x7

Filter: 3x3

Stride: 2

Strided Convolution

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

In general:

Input: W

Filter: K

Padding: P

Stride: S

Output: (W - K + 2P) / S + 1

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Parameters per filter: 3*5*5 + 1 (for bias) = 76

10 filters, so total is **10** * **76** = **760**

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Number of multiply-add operations: 768,000

10*32*32 = 10,240 outputs; each output is the inner product of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Example: 1x1 Convolution

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- Kernel size: $K_H \times K_W$
- Number filters: C_{out}
- Padding: P
- Stride: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$

giving C_{out} filters of size C_{in} x K_H x K_W

Bias vector: C_{out}

Output: C_{out} x H' x W' where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Common settings:

 $K_H = K_W$ (Small square filters)

P = (K - 1) / 2 ("Same" padding)

 C_{in} , C_{out} = 32, 64, 128, 256 (powers of 2)

K = 3, P = 1, S = 1 (3x3 conv)

K = 5, P = 2, S = 1 (5x5 conv)

K = 1, P = 0, S = 1 (1x1 conv)

K = 3, P = 1, S = 2 (Downsample by 2)

K = 7, P = 3, S = 2 (7x7 conv, downsample)

Other types of convolution

So far: 2D Convolution

1D Convolution

Input: C_{in} x W

Weights: C_{out} x C_{in} x K

Other types of convolution

So far: 2D Convolution

3D Convolution

Input: C_{in} x H x W x D

Weights: C_{out} x C_{in} x K x K x K

at each point

PyTorch Convolution Layer

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N,C_{
m in},H,W)$ and output $(N,C_{
m out},H_{
m out},W_{
m out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

PyTorch Convolution Layers

Conv2d

```
CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
```

[SOURCE]

Conv1d

```
CLASS torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
```

[SOURCE] &

Conv3d

```
CLASS torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
```

[SOURCE]

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Pooling Layers: Another way to downsample

Hyperparameters:

Kernel Size
Stride
Pooling function

Max Pooling

Single depth slice

64 x 224 x 224

Max pooling with 2x2 kernel size and stride 2

6	8
3	4

Introduces **invariance** to small spatial shifts
No learnable parameters!

Average Pooling

Single depth slice

64 x 224 x 224

Avg pooling with 2x2 kernel size and stride 2

4	5
2	2

Introduces **invariance** to small spatial shifts
No learnable parameters!

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

-
$$H' = (H - K) / S + 1$$

-
$$W' = (W - K) / S + 1$$

Learnable parameters: None!

Common settings:

max,
$$K = 2$$
, $S = 2$

max,
$$K = 3$$
, $S = 2$ (AlexNet)

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

Problem: Deep Networks very hard to train!

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Batch Normalization

Consider a single layer y = Wx

The following could lead to tough optimization:

- Inputs x are not centered around zero (need large bias)
- Inputs x have different scaling per-element (entries in W will need to vary a lot)

Idea: force inputs to be "nicely scaled" at each layer!

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization

We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

This is a **differentiable function**, so we can use it as an operator in our networks and backprop through it!

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Input: $x \in \mathbb{R}^{N \times D}$

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

Problem: What if zero-mean, unit variance is too hard of a constraint?

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Problem: Estimates depend on minibatch; can't do this at test-time!

Input:
$$x \in \mathbb{R}^{N \times D}$$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = rac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
 Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,
Shape is N x D

Batch Normalization: Test-Time

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{Values seen during training}}$$

Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output,
Shape is N x D

Batch Normalization: Test-Time

Input:
$$x \in \mathbb{R}^{N \times D}$$

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

Per-channel mean, shape is D

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_i^{test} = 0$$

For each training iteration:

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\mu_{j}^{test} = 0.99 \, \mu_{j}^{test} + 0.01 \, \mu_{j}$$

(Similar for σ)

Batch Normalization: Test-Time

Input:
$$x \in \mathbb{R}^{N \times D}$$

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

Per-channel mean, shape is D

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

During testing batchnorm becomes a linear operator!
Can be fused with the previous fully-connected or conv layer

$$\sigma_j^2 = \frac{\text{(Running) average of }}{\text{values seen during training}}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

$$x: N \times D$$
Normalize
$$\mu, \sigma: 1 \times D$$

$$\gamma, \beta: 1 \times D$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

Normalize
$$x: N \times C \times H \times W$$
 $\mu, \sigma: 1 \times C \times 1 \times 1$
 $\gamma, \beta: 1 \times C \times 1 \times 1$
 $y = \frac{(x - \mu)}{\sigma} \gamma + \beta$

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
 - Original paper: BN reduces internal covariate shift (ICS)
 - Santurkar et al.: ICS is not the reason of improvement;
 even BN might not reduce ICS;
 instead, BN makes the optimization landscape smoother
- Behaves differently during training and testing: this is a very common source of bugs!

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Santurkar et al, "How Does Batch Normalization Help Optimization?". NeurIPS 2018

Layer Normalization

Batch Normalization for **fully-connected** networks

Normalize
$$\begin{array}{c|c}
x : N \times D \\
\hline
Normalize
\\
\mu, \sigma : 1 \times D \\
\gamma, \beta : 1 \times D \\
y = \frac{(x - \mu)}{\sigma} \gamma + \beta
\end{array}$$

Layer Normalization for fullyconnected networks Same behavior at train and test! Used in RNNs, Transformers

Normalize
$$\begin{array}{c} x:N\times D \\ \mu,\sigma:N\times 1 \\ \gamma,\beta:1\times D \\ y=\frac{(x-\mu)}{\sigma}\gamma+\beta \end{array}$$

Instance Normalization

Batch Normalization for convolutional networks

Instance Normalization for convolutional networks

Comparison of Normalization Layers

Wu and He, "Group Normalization", ECCV 2018

Group Normalization

Wu and He, "Group Normalization", ECCV 2018

Summary: Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Summary: Components of a Convolutional Network

Problem: What is the right way to combine all these components?

Next: CNN Architectures