CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 18 MAGGIO 2015

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di *anello* e quella di *divisore dello zero* in un anello. Fornire poi un esempio di divisore dello zero (non nullo) in un anello ed un esempio di anello privo di divisori dello zero non nulli.

Esercizio 2. Per ogni $n \in \mathbb{N}$, sia $D^*(n)$ l'insieme dei divisori propri di n in \mathbb{N} (ad esempio, $D^*(6) = \{1, 2, 3\}$). Posto $S = \mathbb{N}^* \setminus \{1\}$, consideriamo l'applicazione $\varphi \colon n \in S \mapsto \max D^*(n) \in \mathbb{N}^*$.

- (i) φ è iniettiva? φ è suriettiva?
- (ii) Calcolare l'immagine $\vec{\varphi}(\{n \in \mathbb{N} \mid 1 < n < 10\})$ e l'antiimmagine $\vec{\varphi}(\{5\})$.

Sia \mathcal{R} il nucleo di equivalenza di φ e sia \mathcal{R}' il nucleo di equivalenza della restrizione di φ a $X := \{n \in \mathbb{N} \mid 1 < n < 10\}.$

- (iii) Descrivere le classi $[5]_{\mathcal{R}}$ e $[10]_{\mathcal{R}}$ in S/\mathcal{R} .
- (iv) Quanti elementi ha X/\mathcal{R}' ? Descrivere $[6]_{\mathcal{R}'}$.

Sia Σ la relazione d'ordine definita in S da: $(\forall a, b \in S)(a \Sigma b \iff (a = b \vee 2\varphi(a) \mid \varphi(b)).$

(v) Determinare gli elementi minimali e gli elementi massimali in (S, Σ) .

Posto $A = \{4, 8, 12, 17, 24, 40, 1200\},\$

- (vi) si disegni il diagramma di Hasse di (A, Σ) .
- (vii) (A, Σ) è un reticolo? Nel caso, è distributivo? È complementato?
- (viii) Determinare, se esiste, un $a \in A$ tale che $(A \setminus \{a\}, \Sigma)$ sia un reticolo distributivo.
 - (ix) Determinare, se esiste, un $n \in S$ tale che $(A \cup \{n\}, \Sigma)$ sia un reticolo booleano.

Esercizio 3. Si consideri, nell'insieme \mathbb{Z}_{15} , l'operazione binaria * definita ponendo $a*b = \bar{6}(a+b) - \bar{5}ab$ per ogni $a, b \in \mathbb{Z}_{15}$.

- (i) Si stabilisca se * è commutativa e se è associativa.
- (ii) Determinare $a \in \mathbb{Z}_{15}$ tale che $a * \overline{1} = \overline{1}$ e stabilire se tale a è un elemento neutro di $(\mathbb{Z}_{15}, *)$.
- (iii) Che tipo di struttura è $(\mathbb{Z}_{15}, *)$?
- (iv) Si trovi, in $(\mathbb{Z}_{15}, *)$, una parte chiusa di cardinalità 2 (suggerimento, si parta dall'elemento $\bar{5}$).
- (v) Se la domanda ha senso, si elenchino gli elementi simmetrizzabili in ($\mathbb{Z}_{15},*$) (suggerimento: assegnato $a \in \mathbb{Z}$, il MCD positivo d tra 6-5a e 15 è uno tra 1 e 3 (perché?). Se $d=1, \bar{a}$ è simmetrizzabile in ($\mathbb{Z}_{15},*$)? E se d=3?)

Esercizio 4. Si trovi un primo p tale che il polinomio $f = \bar{3}x^4 + x^3 + x + \bar{2} \in \mathbb{Z}_p[x]$ sia divisibile, in $\mathbb{Z}_p[x]$, per $x^2 + 1$. Quanti di tali primi p esistono? Per il fissato primo p,

- (i) Si scomponga f come prodotto di polinomi irriducibili in $\mathbb{Z}_p[x]$.
- (ii) Quanti sono i polinomi associati a f in $\mathbb{Z}_p[x]$? Se possibile, se ne scriva uno monico.