Thursday, October 02, 25147 M. O. A.

Parametric
$$\begin{cases} B_i nomial \\ Poisson \\ Normal \\ Mixtow Normal \\ Mixtow Normal \\ Mon parametric $\begin{cases} P_i nomial \\ P_i nomial \\$$$

Applicate; (1) Test the model assumption. Kolmogrou-Smirnou.
@ Multiple testy: False Drawy Rate (FDR)
Hypother. Testing. Yes/No question
Ho. Model assumption
Randd A. Fisher
Elements of Hypothers Testing
Flypothers, Ho null hypothers (convention knowledge)
Ha: Alterative hypothesis. (we want to demonstrate)
Everyle (linil Trel I = P (Success of Surgicel Procedure)
Ho: v ≤ 0.2 Ha, T > 0,2 Hypother should never depends on the data
Compositie Hypothes
EVENU: T= number of West Nile vins
$\underline{\underline{H}}_{0}$. $\tau = 55$. $\underline{\underline{H}}_{a}$: $\tau \Rightarrow 55$
Single Hypothes
Test Statistic: a function of the data
Rejection Region. Sets of values that a researcher wants to

Rejection Region. Sets of values that a vesearcher wants to

Types of Evers.

	Reject Ho	Fail-to-regat	<u> </u>
<i>H</i> ,	Type T error		
Ha	\ \ \	Type II	

False Discovery

Talse Positive = Type I

- False Negative = Type I

Type I prov , & Significano luce of &

Simple: & = P(R|Ho)

&= sup P(R|Pois true)

P.6H.

Type I emor; B

B = P(DC | D = Ha)

<u>bower</u> = 1 − β = P(R | 0 ∈ Ha)

Control Type I error of at 0,1 0,05, 0,01,
Minimize the type II error.

Phoose Rejertion regre $P(R \mid H_0) \leq \omega$ distribute of $(T \mid H_0)$

Example 6,2,3.

Example 6.2.3. Ho: T = 0,2 $H_{a.}$ $\overline{\iota} = 0.5$ N = 25 subjects. Y be the number of success 1 ~ Bin (25, T)

 $R = \{Y > 8\}$ Type I and II?

Type I = P(R | Ho) = P(Y>8 | T= 0,2) = 0,04)

Type II = P (R° | Ha) = P (Y = 8) = 0.5) = 0.054

P-value. P(140)

P-value is the smallest "I" that one con reject +1. If d < P-value, Foil-to-rejet Ho 2 > P-value, reject Ho

 $N = 25, \qquad Y = 10,$ P(Y>\$0 | T=0,2) = 0,005 € ×. → reject Ho

- 1 Hypotess 3 ""
- (2) data -> Statistic
- (4) Find the distribution of Turder H.
- Rejection region & T, rejecting -> make adelist

P-value,
$$\{p\text{-value}, \omega\} \rightarrow \text{make a decision}$$

Liphthan Ratio Text $\{GLRT\}$

Heat Statistic: $LR = \frac{\max_{0 \le 0.00} L(B)}{\max_{0 \le 0.00} L(B)}$

Max $L(B)$

Reg. $\frac{\max_{0 \le 0.00} L(B)}{\sup_{0 \le 0.00} L(B)}$

Reg. $\frac{\max_{0 \le 0.00} L(B)}{\sup_{0 \le 0.00} L(B)}$

Then for one population mean.

Heat $\mu = 17.60 = \mu$.

 $\chi_1 \times \chi_1 \times \chi_2 \times \chi_3 \sim N(\mu_1, \sigma^2)$
 $\chi_1 \times \chi_1 \times \chi_2 \times \chi_3 \sim N(\mu_1, \sigma^2)$

$$\frac{1}{2\pi\sigma^{2}} \exp\left\{-\frac{\sum (\chi_{i} - |\chi_{0}|^{2})}{2\sigma^{2}}\right\} = \exp\left\{-\frac{\sum (\chi_{i} - |\chi_{0}|^{2})}{2\sigma^{2}}\right\}$$

$$\frac{1}{2\pi\sigma^{2}} \exp\left\{-\frac{\sum (\chi_{i} - |\chi_{0}|^{2})}{2\sigma^{2}}\right\} = \exp\left\{-\frac{\sum (\chi_{i} - |\chi_{0}|^{2})}{2\sigma^{2}}\right\}$$

$$\frac{1}{2\pi\sigma^{2}} \exp\left\{-\frac{\sum (\chi_{i} - |\chi_{0}|^{2})}{2\sigma^{2}}\right\} = \exp\left\{-\frac{\sum (\chi_{i} - |\chi_{0}|^{2})}{2\sigma^{2}}\right\}$$

$$\frac{1}{2\pi\sigma^{2}} \exp\left\{-\frac{\sum (\chi_{i} - |\chi_{0}|^{2})}{2\sigma^{2}}\right\} = \exp\left\{-\frac{\sum (\chi_{i} - |\chi_{0}|^{2})}{2\sigma^{2}}\right\}$$

$$= (-exp \left\{ \frac{h}{2\sigma^2} \left(\frac{\lambda}{2} - \frac{h}{9} \right)^2 \right\}$$

Region Region
$$R = \begin{cases} 1 & \text{Region} \\ \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{1}{2} & \text{Region} \end{cases} = \begin{cases} 1 & \text{Region} \\ \frac{$$

Let
$$2 = \frac{\overline{X} - \mu_0}{\sqrt{5}}$$

$$V du H_0$$
, $Z \sim N(0,1)$

$$\omega = P(|z| > k^*) H_0$$

$$k = \begin{cases} \frac{\sqrt{x-h_0}}{\sqrt{x}} > 5^{\frac{1}{2}} \end{cases} = \begin{cases} |5| > 5^{\frac{1}{2}} \end{cases}$$

$$Z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{17.30 - 17.60}{1.3 / \sqrt{n}} = -1.63$$

Rejat Rejat
$$Q = 0.10$$
 $R=\{121>1.645\}$

$$\frac{2-value}{} = P(|2|>1.63 | H_0)^{=2}$$

= 0, 103

Dested null and alternative

$$\underline{H}_{0}$$
, $0 \in \underline{\mathfrak{B}}_{P^{-r}}$
 \underline{H}_{a} , $0 \in \underline{\mathfrak{B}}_{P}$
 \underline{H}_{a} , $0 \in \underline{\mathfrak{B}_{P}$
 \underline{H}_{a} , $0 \in$

Multinomial "c" category
$$\sum_{i=1}^{C} T_i = 1$$

$$P(Y_1=y_1, \dots, Y_{c}=y_c) = \frac{n!}{y_1! \cdots y_c!} \frac{n}{j=1} \frac{y_i}{y_i}$$

$$\widehat{y_i} = \frac{y_i}{n}$$

Let 0, 0, ... 0, be the daily rate of suiccide d, d, d, do be the number of days in each month

$$T_1 = d_1 \theta_1$$

$$T_2 = d_1 \theta_1$$

$$T_3 = d_2 \theta_1$$

$$T_3 = d_2 \theta_2$$

$$T_4 = d_1 \theta_2$$

$$T_5 = d_1 \theta_2$$

7117

GLRT
$$2(\delta) = \frac{n!}{y_1! \cdots y_{n2}!} \prod_{i=1}^{n} (A_i A_i)^{y_i}$$
 $1 = \sum \prod_{i=1}^{n} = \sum d_i A_i$
 $1 =$