MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányjel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

1812 írásbeli vizsga 3 / 20 2018. október 16.

I.

1. a) első megoldás		
Ha a sorozat első tagja <i>a</i> , akkor (a mértani sorozat		
összegképlete szerint)		
$a \cdot \frac{\left(\frac{1}{4}\right)^5 - 1}{\frac{1}{4} - 1} = 852, 5.$	1 pont	
$a \cdot \frac{-\frac{1023}{1024}}{-\frac{3}{4}} = a \cdot \frac{341}{256} = 852,5$	2 pont	
$a = \left(\frac{852, 5 \cdot 256}{341} = \right) 640$	1 pont	
Összesen:	4 pont	

1. a) második megoldás		
Ha a sorozat első tagja a , akkor az első öt tag összege $a + \frac{1}{4}a + \frac{1}{16}a + \frac{1}{64}a + \frac{1}{256}a = 852,5.$	1 pont	
$a \cdot \frac{256 + 64 + 16 + 4 + 1}{256} = a \cdot \frac{341}{256} = 852,5$	2 pont	
$a = \left(\frac{852, 5 \cdot 256}{341} = \right) 640$	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó a megoldásában közelítő értéket is használ, akkor legfeljebb 3 pontot kaphat.

1. b) első megoldás		
Jelölje a sorozat első tagját <i>a</i> , a differenciáját <i>d</i> .		
Ekkor az első öt tag összege $\frac{a+a+4d}{2} \cdot 5$,	1 pont	
az első tíz tag összege $\frac{a+a+9d}{2} \cdot 10$.		
Megoldandó tehát az alábbi egyenletrendszer:		
$\int 5a + 10d = 852,5$	1 pont	
10a + 45d = 2330.	•	
Az első egyenletből $a = \frac{852, 5 - 10d}{5} = 170, 5 - 2d$.		A második egyenletből ki-
Ezt beírjuk a második egyenletbe:	2 pont	
$10 \cdot (170, 5 - 2d) + 45d = 2330,$		kétszeresét: $25d = 625$.
azaz 1705 + 25d = 2330.	_	
Innen $d = 25$ a differencia.	1 pont	
$a = (170,5 - 2 \cdot 25 =) 120,5$ a sorozat első tagja.	1 pont	
Ellenőrzés a szöveg alapján:		
A sorozat ötödik tagja 220,5, tizedik tagja 345,5.		
Az első öt tag összege $\left(\frac{120,5+220,5}{2}\cdot 5=\right)$ 852,5,	1 pont	
az első tíz tag összege $\left(\frac{120,5+345,5}{2}\cdot 10=\right)$ 2330.		
Összesen:	7 pont	

1. b) második megoldás		
Jelölje a sorozat első tagját a, a differenciáját d,		
az első öt tag összegét S.		
A második öt tag összege $S + 5 \cdot 5d = S + 25d$, mert	2 pont	
minden tag 5 <i>d</i> -vel nagyobb a nála 5-tel korábbi tag-		
nál; az első tíz tag összege: $S + S + 25d = 2S + 25d$.		
$2 \cdot 852,5 + 25d = 2330,$	1 pont	
innen $d = 25$.	1 pont	
Az első öt tag összege $\frac{a+a+4d}{2} \cdot 5 = 852,5,$	1 pont	
azaz $5a + 10 \cdot 25 = 852,5$, innen $a = 120,5$.	1 pont	
Ellenőrzés a szöveg alapján:		
A sorozat ötödik tagja 220,5, tizedik tagja 345,5.		
Az első öt tag összege $\left(\frac{120,5+220,5}{2}\cdot 5=\right)852,5,$	1 pont	
az első tíz tag összege $\left(\frac{120,5+345,5}{2}\cdot 10=\right)$ 2330.		
Összesen:	7 pont	

2. a)		
(Az azonos alapú hatványok szorzatára vonatkozó azonosság miatt:) $25 \cdot \left(\frac{1}{5}\right)^{x} - 10 \cdot \left(\frac{1}{5}\right)^{x} + \frac{6}{5} \cdot \left(\frac{1}{5}\right)^{x} = 81.$	2 pont	
$\frac{81}{5} \cdot \left(\frac{1}{5}\right)^x = 81$	1 pont	
$\left(\frac{1}{5}\right)^x = 5$	1 pont	
$\left(\frac{1}{5}\right)^x = \left(\frac{1}{5}\right)^{-1}$	1 pont	
(Az $\frac{1}{5}$ alapú exponenciális függvény kölcsönösen egyértelmű, ezért) $x = -1$.	1 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalens átalakításokra hivatkozva.	1 pont	
Összesen:	7 pont	

2. b)		
$(5^x > 0 \text{ és } 5^{-x} > 0, \text{ ezért}) \frac{\lg(5^x \cdot 5^{-x})}{2} \le \lg \frac{5^x + 5^{-x}}{2}.$	1 pont	$\frac{x \lg 5 - x \lg 5}{2} \le \lg \frac{5^x + 5^{-x}}{2}$
$0 \le \lg \frac{5^x + 5^{-x}}{2}$	1 pont	
A 10-es alapú logaritmusfüggvény szigorúan monoton növekedő, ezért	1 pont	
$1 \le \frac{5^x + 5^{-x}}{2}$, vagyis $2 \le 5^x + 5^{-x}$.	1 pont	
Az 5^x és az 5^{-x} pozitív számok egymás reciprokai, ezért az összegük legalább 2.	2 pont*	$0 \le (5^x - 1)^2$, ami minden $x \in \mathbf{R}$ esetén teljesül.
Ekvivalens átalakításokat végeztünk, ezért ebből következik, hogy az eredeti állítás is igaz.	1 pont	
Összesen:	7 pont	

Megjegyzések:

1. A *-gal jelölt pontokat akkor is megkaphatja a vizsgázó, ha az 5^x és az 5^{-x} pozitív számok számtani és mértani közepe közötti összefüggésre hivatkozik: $5^x + 5^{-x} \ge 2\sqrt{5^x \cdot 5^{-x}} = 2$.

2. Az alábbi gondolatmenet is teljes pontszámot ér.

(Szemlélet alapján elfogadjuk, hogy) a tízes alapú logaritmusfüggvény konkáv. (1 pont)

Ezért ha a és b két tetszőleges pozitív szám (1 pont), akkor $\frac{\lg a + \lg b}{2} \le \lg \frac{a + b}{2}$. (2 pont)

Mivel most $5^x > 0$ és $5^{-x} > 0$ (1 pont), így $\frac{\lg 5^x + \lg 5^{-x}}{2} \le \lg \frac{5^x + 5^{-x}}{2}$ igaz. Ez volt a bizonyítandó állítás. (2 pont)

3. a)		
A szabályos 12-szög felbontható 12 darab egybevágó, 30°-os szárszögű egyenlő szárú háromszögre.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A 12-szög középpontja O , az A_1OA_2 egyenlő szárú háromszög alapjához tartozó magassága $m = 90$ (cm),	1 pont	
alapja $a = A_1 A_2 = 2 \cdot 90 \cdot \text{tg } 15^{\circ} \approx 48,2 \text{ (cm)}.$	1 pont	\approx 48,23 (cm)
A 12-szög területe $12 \cdot \frac{am}{2} \approx 26\ 000\ (\text{cm}^2)$.	1 pont	$\approx 26~045~(\text{cm}^2)$
Az óralap térfogata $26000 \cdot 0.2 = 5200 \text{ cm}^3 \approx$	1 pont	$\approx 5209 \text{ cm}^3$
$\approx 0.0052 \text{ m}^3,$	1 pont	
tömege $0,0052 \cdot 2700 \approx 14 \text{ kg}.$	1 pont	A pontos értékkel szá- molva \approx 14,1 kg.
Összesen:	7 pont	

3. b)		
A Thalész-tétel (megfordítása) miatt derékszögű háromszöget akkor kapunk, ha a háromszög leghosszabb oldala a 12-szög köré írt körének átmérője, tehát ennek az oldalnak a két végpontja a 12-szög két átellenes csúcsa.	1 pont	
Ha A_1 az átfogó egyik végpontja, akkor a másik végpont A_7 .	1 pont	
A háromszög harmadik (derékszögű) csúcsa ekkor a maradék 10 csúcs közül bármelyik lehet. Ez 10 lehetőség.	1 pont	
Ha A_1 a derékszögű csúcs, akkor a háromszög átfogója 5-féle lehet: A_2A_8 , A_3A_9 , A_4A_{10} , A_5A_{11} vagy A_6A_{12} . Ez 5 lehetőség.	1 pont	
Összesen (10 + 5 =) 15 különböző, a feltételeknek megfelelő derékszögű háromszög van.	1 pont	
Összesen:	5 pont	

4. a)		
(Mivel $400 = \frac{500 + 300}{2}$, azért) 400 Ft/kg-os egységáron a baracknak $\left(\frac{50 + 70}{2}\right) = 60\%$ -a,	1 pont	
azaz $(200 \cdot 0.6 =) 120 \text{ kg fogyna el.}$	1 pont	
Az ebből származó bevétel (120 · 400 =) 48 000 Ft lenne.	1 pont	
Összesen:	3 pont	

Megjegyzés: Teljes pontszámot kapjon a vizsgázó, ha a b) feladat állítását felhasználva ad helyes választ.

4. b) első megoldás		
Ha lineáris kapcsolat van az egységár (x) és az eladott barack mennyisége (y) között, akkor $y = mx + b$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A feladat szövege alapján (mivel a 200-nak a fele 100, a 70%-a pedig 140): $100 = 500m + b$ és $140 = 300m + b$.	1 pont	A lineáris függvény grafi- konja egy olyan egyenesre illeszkedik, amelynek me- redeksége:
A két egyenletet kivonva egymásból: $-40 = 200m$, tehát $m = -\frac{1}{5}$,	1 pont	$\frac{200 \cdot 0.5 - 200 \cdot 0.7}{500 - 300} = -\frac{1}{5}.$
majd visszahelyettesítve $b = 200$. (Tehát valóban $y = -\frac{1}{5}x + 200$.)	1 pont	
Összesen:	4 pont	

4. b) második megoldás		
A lineáris kapcsolatot két értékpár meghatározza.	1 pont	
(A 200-nak a fele 100, a 70%-a pedig 140.) Mivel $100 = -\frac{1}{5} \cdot 500 + 200$ és $140 = -\frac{1}{5} \cdot 300 + 200$ is teljesül,	2 pont	
ezért valóban $y = -\frac{1}{5}x + 200$.	1 pont	
Összesen:	4 pont	

1 0		
4. c) Ha x (Ft/kg) az eladási ár, akkor a napközben eladott		
barackmennyiség $-\frac{1}{5}x + 200$ (kg), az ebből származó	1 pont	
bevétel $\left(-\frac{1}{5}x + 200\right) \cdot x = -\frac{1}{5}x^2 + 200x$ (Ft),	- F	
a nap végén megmaradt barackmennyiség		
$200 - \left(-\frac{1}{5}x + 200\right) = \frac{1}{5}x \text{ (kg)},$	1 pont	
az ebből származó bevétel pedig $\frac{1}{5}x \cdot 80 = 16x$ (Ft).		
Az összes bevétel tehát x (Ft/kg) eladási ár esetén		
$-\frac{1}{5}x^2 + 216x$ (Ft).	1 pont	
Keressük ezért a $B(x) = -\frac{1}{5}x^2 + 216x \ (0 \le x \le 1000)$	1 point	
függvény maximumát.		
$B(x) = -\frac{1}{5}(x - 540)^2 + 58320$	1 pont*	$B(x) = x \cdot \left(-\frac{1}{5}x + 216 \right)$
Mivel az első tag nem pozitív, ezért $B(x) \le 58320$.	1 pont*	B(x) grafikonja egy olyan "lefelé nyíló" parabolá- nak egy íve, mely a 0 és az 1080 helyen metszi az x tengelyt,
A legnagyobb értékét $B(x)$ akkor veszi fel,		tengelypontjának első ko-
ha $(x-540)^2 = 0$, vagyis $x = 540$	1 pont*	ordinátája pedig 540 (ami eleme a B értelme-
(ami eleme az értelmezési tartománynak).		zési tartományának).
A napi bevétel tehát 540 Ft/kg egységár esetén maximális. (A maximális bevétel $B(540) = 58320$ Ft.)	1 pont	,
Összesen:	7 pont	

Megjegyzések:
1. A *-gal jelölt pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó:

(Keressük a $0 < x < 1000$ intervallumon a <i>B</i> függvény maximumát.) $B(x) \text{ deriváltfüggvénye:}$ $B'(x) = -\frac{2}{5}x + 216 \text{ (0 < } x < 1000\text{)}.$	1 pont	,
(A <i>B</i> függvénynek ott lehet szélsőértéke, ahol a deriváltfüggvényének zérushelye van.) $-\frac{2}{5}x+216=0,$ $x = 540$ (és ez eleme az értelmezési tartományának).	1 pont	
B'(x) az $x < 540$ esetben pozitív, az $x > 540$ esetben pedig negatív, ezért a B -nek az 540 (lokális és egyben abszolút) maximumhelye.	1 pont	B''(x) = -0.4 < 0 a teljes értelmezési tartományon, tehát a B-nek az 540 (ab- szolút) maximumhelye.

2. A *-gal jelölt pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó:

2.11 Suiferent pennenun all unaest genaerannenteten ist		J 11 11 7 1 = 2 G 11 = 1 1
Az $x \mapsto ax^2 + bx + c$ $(a < 0, x \in \mathbb{R})$ másodfokú függvény maximumhelye $-\frac{b}{2a}$,	1 pont	
ezért az $x \mapsto -\frac{1}{5}x^2 + 216x \ (x \in \mathbf{R})$ másodfokú függvény maximumhelye: $-\frac{216}{-\frac{2}{5}} = 540$ (és ez eleme a <i>B</i> függvény értelmezési tartományának is, tehát <i>B</i> -nek is maximumhelye).	2 pont	

II.

5. a)		
Ha Kinga egyet sem old meg a szorgalmi feladatok közül, akkor 3! = 6-féle, ha pedig mind a hármat megoldja, akkor 6! = 720-féle különböző sorrendben oldhatja meg a házi feladatait.	1 pont	
Ha egyet old meg a szorgalmi feladatok közül, akkor a négy feladatot 4! = 24-féle különböző sorrendben oldhatja meg,	1 pont	
viszont a szorgalmi feladat kiválasztására is 3 lehetősége van, így ez összesen 24 · 3 = 72 különböző sorrendet jelent.	1 pont	
Ha kettőt old meg a szorgalmi feladatok közül, akkor az öt feladatot 5! = 120-féle különböző sorrendben oldhatja meg,	1 pont	
viszont a két szorgalmi feladat kiválasztására is 3 lehetősége van, így ez összesen 120 · 3 = 360 különböző sorrendet jelent.	1 pont	
Ez összesen 6 + 72 + 360 + 720 = 1158 különböző lehetséges sorrendet jelent.	1 pont	
Összesen:	6 pont	

5. b)		
A számok összege $1000 \cdot 500 = 500\ 000$.	1 pont	
A lehetséges legnagyobb számot akkor kaphatjuk meg, ha a többi 499 szám a lehető legkisebb.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A legkisebb 499 különböző pozitív egész szám összege $1 + 2 + 3 + + 499 = \frac{500 \cdot 499}{2} = 124750.$	2 pont	
A számok közül a legnagyobb tehát legfeljebb (500 000 – 124 750 =) 375 250 lehet.	1 pont	
Összesen:	5 pont	

5. c) első megoldás		
Ha mindannyian legalább egy tanulót vállalnak, ak- kor (valamilyen sorrendben) 4, 1, 1, 1 vagy 3, 2, 1, 1	1 pont	
vagy 2, 2, 1 tanulót fognak korrepetálni.		

Az első esetben 4-féleképpen választható ki közülük a négy tanulót korrepetáló személy. Ez 4 lehetőség.	1 pont	
A második esetben 4-féleképpen választható ki a három tanulót korrepetáló személy, ezután pedig 3-féleképpen a 2 tanulót korrepetáló. Ez tehát 4·3 = 12 lehetőség.	1 pont	
A harmadik esetben 4-féleképpen választható ki az egy tanulót korrepetáló személy. Ez is 4 lehetőség.	1 pont	
Összesen tehát $(4 + 12 + 4 =) 20$ -féleképpen állapodhatnak meg.	1 pont	
Összesen:	5 pont	

5. c) második megoldás		
Egy korrepetálást mindenki vállal, ezért elegendő azt		
meghatározni, hogy a további három korrepetálásból	1 pont	
melyikük hányat vállal.		
A három korrepetálást jelentse három kör: o o o, és		
három függőleges vonalat tegyünk a körök elé, közé,		
illetve mögé úgy, hogy rendre ezek határozzák meg a		
Kinga, Linda, Misi, illetve Nándi által vállalt korre-	2 pont	
petáltak számát.		
(Például o o jelentése: Kinga 1, Linda 0, Misi 2,		
Nándi 0 korrepetálást kap a további háromból.)		
A 3 függőleges vonalból és 3 körből álló (6 hosszú-		
ságú) jelsorozatok száma $\frac{6!}{3! \cdot 3!}$ (= 20).	2	(6)
sagu) jeisorozatok szama $\frac{3! \cdot 3!}{3! \cdot 3!}$	2 pont	$\left(\left(3\right) \right)$
Összesen tehát 20-féleképpen állapodhatnak meg.		
Összesen:	5 pont	

5. c) harmadik megoldás		
Egy korrepetálást mindenki vállal, ezért elegendő azt		
meghatározni, hogy a további három korrepetálásból	1 pont	
melyikük hányat vállal.		
Kinga, Linda, Misi és Nándi közül kell kiválasztanunk három személyt, aki ezt a három korrepetálást vállalja. A kiválasztás sorrendje nem számít, és egy személyt többször is kiválaszthatunk. Ez megfelel 4 elem harmadosztályú ismétléses kombinációi számának.	2 pont	
Összesen tehát $C_4^{3,i} = {4+3-1 \choose 3} = {6 \choose 3} = 20$ -félekép-	2 pont	
pen állapodhatnak meg.		
Osszesen:	5 pont	

Megjegyzés: Ha a vizsgázó az összes lehetséges esetet rendezetten felsorolva válaszol, akkor teljes pontszámot kapjon.

6. a)		
I. Az állítás hamis.	1 pont	
Ellenpélda az olyan trapéz, amelynek 2-2 szemközti szöge egyenlő, míg a szomszédos szögei különbözők (ezek a nem téglalap paralelogrammák).	2 pont*	
II. Az állítás igaz.	1 pont	
Ha $a = b$, akkor $\alpha = \beta$, így $3\alpha = 3\beta$, tehát valóban sin $3\alpha = \sin 3\beta$.	2 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó indoklásként paralelogrammára hivatkozik, de nem zárja ki a téglalapot (nem mellékel egy megfelelő ábrát), akkor a *-gal jelölt 2 pontból 1 pontot kapjon.

6. b)		
A II. állítás megfordítása: Ha egy háromszögben sin $3\alpha = \sin 3\beta$, akkor $a = b$.	1 pont*	
A II. állítás megfordítása hamis.	1 pont	
Ha $3\alpha = 180^{\circ} - 3\beta$ (azaz $\alpha + \beta = 60^{\circ}$), akkor sin $3\alpha = \sin 3\beta$, de ($\alpha \neq 30^{\circ}$ esetén) $a \neq b$.	2 pont	Egy ellenpélda: $\alpha = 20^{\circ}$ és $\beta = 40^{\circ}$ esetén $\sin 3\alpha = \sin 3\beta$ ($\sin 60^{\circ} =$ $= \sin 120^{\circ}$), de $a \neq b$.
Összesen:	4 pont	

Megjegyzés: A *-gal jelölt pont akkor is jár, ha a vizsgázó az állítás megfordításával ekvivalens kijelentést fogalmaz meg (például: Ha egy háromszögben $a \neq b$, akkor sin $3\alpha \neq \sin 3\beta$.).

6. c)		
(0,4 annak a valószínűsége, hogy egy adott kérdésre hibásan válaszol Béla.) A nulla helyes tipp valószínűsége $p_0 = 0, 4^3 = 0,064$.	1 pont	
Az egy helyes tipp valószínűsége $p_1 = {3 \choose 1} \cdot 0, 6 \cdot 0, 4^2 = 0,288.$	1 pont	
A két helyes tipp valószínűsége $p_2 = {3 \choose 2} \cdot 0, 6^2 \cdot 0, 4 = 0,432.$	1 pont	
A három helyes tipp valószínűsége $p_3 = 0,6^3 = 0,216$.	1 pont	$p_3 = 1 - (0.064 + 0.288 + 0.432) = 0.216$
Béla pontszámának várható értéke $p_3 \cdot 2 + p_2 \cdot 1 (+p_1 \cdot 0 + p_0 \cdot 0) =$	1 pont	
= 0,864.	1 pont	
Összesen:	6 pont	

7. a) első megoldás		
A négy csontocska összesen 4! (= 24) különböző módon érkezhet le úgy, hogy az eredmény Venus-dobás legyen (és ezen leérkezések egyformán valószínűek).	2 pont	
Mindegyik leérkezés valószínűsége ugyanannyi: $\frac{4}{10} \cdot \frac{4}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} = 0,0016$).	2 pont	
A kérdezett valószínűség tehát $4! \cdot \frac{4}{10} \cdot \frac{4}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \left(= \frac{24}{625} \right) = 0,0384.$	1 pont	
Összesen:	5 pont	

7. a) második megoldás		
Modellezzük a dobásokat a következő módon: Legyen egy dobozban 4 darab <i>A</i> , 4 darab <i>B</i> , 1 darab <i>C</i> , illetve 1 darab <i>D</i> jelű (összesen tehát 10 darab) korong. A dobozból négyszer húzunk visszatevéssel egy-egy korongot. (Mindegyik húzásnál 0,4 az <i>A</i> , illetve a <i>B</i> jelű korong, és 0,1 a <i>C</i> , illetve a <i>D</i> korong húzásának valószínűsége.) Mekkora annak a valószínűsége, hogy négy különböző betűjelű korongot húzunk (Venus-dobás)?	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az összes (egyenlően valószínű) eset száma 10 ⁴ .	1 pont	
Az A , B , C , D jelű korongokat ebben a sorrendben $4 \cdot 4 \cdot 1 \cdot 1$ (= 16)-féleképpen húzhatjuk ki.	1 pont	
Mivel négy különböző jelű korong bármely sorrendben való kihúzása Venus-dobást jelent, ezért a kedvező esetek száma 4!·4·4·1·1 (= 384).	1 pont	
A kérdezett valószínűség $\frac{384}{10^4} = 0,0384.$	1 pont	
Összesen:	5 pont	

7. b)		
Annak a valószínűsége, hogy egyik taxillus sem a C helyzetben érkezik le: $0.9^4 (= 0.6561)$,	1 pont	Az I. esemény valószínű- sége: $\binom{4}{1} \cdot 0, 1 \cdot 0, 9^{3} + $ $+\binom{4}{2} \cdot 0, 1^{2} \cdot 0, 9^{2} + $ $+\binom{4}{3} \cdot 0, 1^{3} \cdot 0, 9 + 0, 1^{4} = $
tehát az I. esemény valószínűsége (1 – 0,6561 =) 0,3439.	1 pont	= (0.2916 + 0.0486 + 0.0036 + 0.0001) = 0.3439.
Annak a valószínűsége, hogy egy előre megjelölt taxillus az A helyzetben érkezik le, a többi pedig nem: $0.4 \cdot 0.6^3$ (= 0.0864).	1 pont	A II. esemény valószínű- sége az $n = 4$ és $p = 0,4$ paraméterű binomiális el-
A négy taxillus bármelyike lehet az előre megjelölt, ezért a II. esemény valószínűsége $(4 \cdot 0, 4 \cdot 0, 6^3 =) 0,3456.$	1 pont	oszlás segítségével: $\begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot 0, 4 \cdot 0, 6^3 = 0,3456.$
Fentiek alapján a II. esemény valószínűbb, mint az I.	1 pont	Indoklás nélküli válaszért ez a pont nem jár.
Összesen:	5 pont	

7. c) első megoldás		
$GCF\Delta \cong BDF\Delta$, mert $CF = FD$, és egyenlők a CF , illetve FD oldalukon fekvő szögeik is.	1 pont	
Hasonlóan $ACF\Delta \cong HDF\Delta$ (mert $CF = FD$, és egyenlők a CF , illetve FD oldalukon fekvő szögeik is).	1 pont	
Fentiek miatt $AF = FH$ és $BF = FG$, vagyis az $ABHG$ négyszög átlói kölcsönösen felezik egymást.	1 pont	$AF = FH \text{ \'es } BF = FG \text{ \'es}$ $AFB \angle = HFG \angle$
Az ABHG négyszög tehát paralelogramma,	1 pont	$ABF\Delta \cong HGF\Delta$
ezért $AB = HG$, Thalész állítása tehát valóban igaz.	2 pont	
Összesen:	6 pont	

7. c) második megoldás		
Tükrözzük az ábrát az F pontra.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Ekkor az AG és a BH egyenes egymás tükörképei lesznek (hiszen C és D egymás tükörképei, és mindkét egyenes merőleges a CD szakaszra).	1 pont	
Ebből következik, hogy A és H , illetve B és G egymás tükörképei, $D'=C'$ $B'=G$ $H'=A'$ $B'=G$	1 pont	
vagyis az <i>AGHB</i> négyszög középpontosan szimmetrikus (paralelogramma).	1 pont	
Az <i>AB</i> szakasz tükörképe a <i>HG</i> szakasz (ezért egyenlő hosszúak), Thalész állítása tehát valóban igaz.	2 pont	
Összesen:	6 pont	

8. a) első megoldás		
Az <i>EF</i> egyenes merőleges az <i>AEHD</i> síkra (mert merőleges két metsző egyenesére, ezért merőleges a sík minden egyenesére),	1 pont	
ezért az EF és AH egyenesek, így az \overrightarrow{EF} és \overrightarrow{AH} vektorok is merőlegesek.	1 pont	
Tehát $\overrightarrow{EF} \cdot \overrightarrow{AH} = 0$.	1 pont	
Összesen:	3 pont	

8. a) második megoldás		
Vegyünk fel egy koordináta-rendszert, melynek origója az <i>A</i> csúcs, <i>x</i> , <i>y</i> , <i>z</i> tengelye pedig rendre illeszkedik a <i>B</i> , <i>D</i> , <i>E</i> csúcsokra.	1 pont	
Ebben a koordináta-rendszerben $\overrightarrow{EF} = (8; 0; 0), \overrightarrow{AH} = (0; 8; 15).$	1 pont	
$\overrightarrow{EF} \cdot \overrightarrow{AH} = 8 \cdot 0 + 0 \cdot 8 + 0 \cdot 15 = 0$	1 pont	
Összesen:	3 pont	

8. b) első megoldás		
Jelölje O az $ABCD$ négyzetnek (és a kúp alaplapjának) a középpontját, Q az $EFGH$ négyzet középpontját. A kúpból az $EFGH$ sík egy kisebb kúpot metsz ki, amely az eredetihez (középpontosan) hasonló (a hasonlóság középpontja a P pont). $PQ = PO - OQ = 45 - 15 = 30$, így a hasonlóság aránya $\frac{PQ}{PO} = \frac{30}{45} = \frac{2}{3}$.	2 pont	30 H G Q F 15
A kisebb kúp alapkörének sugara (az <i>EFGH</i> négyzet köré írt kör sugara) $QE = \frac{\sqrt{2} \cdot 8}{2} = 4\sqrt{2} \ (\approx 5,66)$. A hasonlóság miatt a körülírt kúp alapkörének a sugara ennek az 1,5-szerese: $R = 6\sqrt{2} \ (\approx 8,49)$.	2 pont	
A körülírt kúp alkotója (az alapkör sugarából és a kúp magasságából Pitagorasz-tétellel) $a = \sqrt{(6\sqrt{2})^2 + 45^2} = \sqrt{2097} \ (\approx 45,79).$	2 pont	
A körülírt kúp felszíne $R^2\pi + R\pi a \approx 1446,9$ (területegység).	1 pont	
Összesen:	7 pont	

8. b) második megoldás		
Jelölje O az $ABCD$ négyzetnek (és a kúp alaplapjának) a középpontját, Q az $EFGH$ négyzet középpontját. A kúpból az $EFGH$ sík egy kisebb kúpot metsz ki, amely az eredetihez (középpontosan) hasonló (a hasonlóság középpontja a P pont). $PQ = PO - OQ = 45 - 15 = 30,$ így a hasonlóság aránya $\frac{PO}{PQ} = \frac{45}{30} = \frac{3}{2}.$	2 pont	30 H Q 45 E F 15
A kisebb kúp alapkörének sugara (az <i>EFGH</i> négyzet köré írt kör sugara) $r = QE = \frac{\sqrt{2} \cdot 8}{2} = 4\sqrt{2}$ ($\approx 5,66$).	1 pont	
A kisebb kúp alkotója (Pitagorasz-tétellel az EQP háromszögben) $l = \sqrt{QE^2 + PQ^2} = \sqrt{932}$ ($\approx 30,53$).	1 pont	
A kisebb kúp felszíne $r^2\pi + r\pi l \approx 643,07$ (területegység).	1 pont	
Hasonló testek felszíne a hasonlóságuk arányának négyzetével egyenlő,	1 pont	
így a körülírt kúp felszíne kb. $1,5^2 \cdot 643,07 \approx 1446,9$ (területegység).	1 pont	
Összesen:	7 pont	

8. b) harmadik megoldás		
Tekintsük a kúpnak azt a síkmetszetét, amely a tengelyére és a hasáb <i>E</i> csúcsára illeszkedik. A síkmetszet a <i>VPS</i> egyenlő szárú háromszög, <i>O</i> a kúp alapkörének középpontja.	1 pont	
A kúpot az <i>EFGH</i> négyzet síkja egy, az alapkörrel párhuzamos síkú körben metszi, ennek egyik átmérője az <i>EG</i> szakasz (a kör középpontja a <i>Q</i> pont).	1 pont	
EG a 8 cm oldalú $EFGH$ négyzet átlója, tehát $EG = 8\sqrt{2} \ (\approx 11,31)$, vagyis a metszetkör sugara $QE = 4\sqrt{2} \ (\approx 5,66)$.	1 pont	
A <i>VOP</i> derékszögű háromszög hasonló az <i>EQP</i> derékszögű háromszöghöz (a <i>P</i> -nél fekvő hegyesszögük közös), hasonlóságuk aránya <i>PO</i> : <i>PQ</i> = 45: 30 = 3:2.	1 pont	
Az alapkör sugara tehát $OV = 1.5 \cdot QE = 6\sqrt{2} \ (\approx 8.49)$.	1 pont	
A kúp alkotója Pitagorasz-tétellel: $PV = \sqrt{(6\sqrt{2})^2 + 45^2} = \sqrt{2097} \ (\approx 45,79).$	1 pont	
A körülírt kúp felszíne: $(6\sqrt{2})^2 \pi + 6\sqrt{2}\sqrt{2097}\pi \approx 1446,9$ (területegység).	1 pont	
Összesen:	7 pont	

8. c)		
Az ismeretlen befogó hossza legyen b , az átfogó hossza pedig c (és mindkettő pozitív egész szám). A Pitagorasz-tétel miatt $15^2 + b^2 = c^2$, innen $225 = c^2 - b^2 = (c - b)(c + b)$.	2 pont	
$225 = 3^{2} \cdot 5^{2}.$ Mivel $0 < c - b < c + b$, ezért a tényezőkre bontás lehetőségei: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 pont	
c lehetséges értékei rendre 113, 39, 25, 17, a hozzájuk tartozó b értékek rendre 112, 36, 20, 8. Tehát 4 megfelelő derékszögű háromszög van.	2 pont	Mivel $c - b + c + b = 2c$, ezért $c + b$ és $c - b$ azonos paritása miatt mind a négy esethez tartozik egyegy megfelelő derékszögű háromszög. Tehát 4 megfelelő derékszögű háromszög van.
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó (indoklás nélkül) felsorolja a 4 megfelelő derékszögű háromszöget, de nem bizonyítja, hogy több megoldás nincs, akkor 3 pontot kapjon. Indoklás nélkül felsorolt 3 megfelelő háromszögért 2 pont, 2 megfelelő háromszögért 1 pont, 2-nél kevesebb megfelelő háromszögért 0 pont jár.

9. a)		
$\int_{0}^{p} (3x^{2} - 24x + 20)dx = [x^{3} - 12x^{2} + 20x]_{0}^{p}$	2 pont	
Megoldandó a $p^3 - 12p^2 + 20p = 0$ egyenlet.	1 pont	
Mivel $p > 0$, ezért ez ekvivalens a $p^2 - 12p + 20 = 0$ másodfokú egyenlettel.	1 pont	$p(p^2 - 12p + 20) = 0$
Ennek (pozitív) gyökei a 2 és a 10, ezek tehát a <i>p</i> lehetséges értékei.	1 pont	
Összesen:	5 pont	

9. b)		
A zérushelyre vonatkozó előírás miatt $8a + 4b + 2c + 28 = 0$.	1 pont	
(A lokális maximumhelyre vonatkozó előírás teljesü- lésének szükséges feltétele, hogy a függvény deri- váltja a -4 helyen 0 legyen.) $f'(x) = 3ax^2 + 2bx + c$	1 pont	
f'(-4) = 48a - 8b + c = 0	1 pont	
(Az inflexiós pontra vonatkozó előírás teljesülésének szükséges feltétele, hogy a függvény második deriváltja a -1 helyen 0 legyen.) $f''(x) = 6ax + 2b$	1 pont	
f''(-1) = -6a + 2b = 0	1 pont	
Megoldandó a $\begin{cases} 8a + 4b + 2c + 28 = 0 \\ 48a - 8b + c = 0 \\ -6a + 2b = 0 \end{cases}$ egyenletrendszer.	1 pont	
Az egyenletrendszer harmadik egyenletéből $b=3a$. Ezt az első két egyenletbe helyettesítve (és egyszerűsítve) a $\begin{cases} 10a+c=-14\\ 24a+c=0 \end{cases}$ kétismeretlenes egyenletrendszert kapjuk. Ennek megoldása $a=1$ és $c=-24$, tehát $b=3$.	3 pont	
(A lokális maximumhely és az inflexiós pont elégséges feltételének vizsgálata:) Ha $f(x) = x^3 + 3x^2 - 24x + 28$ ($x \in \mathbb{R}$), akkor f' -nek a -4 zérushelye, és itt f' pozitívból negatívba megy át, ezért az f -nek valóban lokális maximumhelye van -4 -nél;	1 pont	f"(-4) = -18 < 0
f''-nek zérushelye a -1 , és itt f'' előjelet vált, ezért az f -nek valóban inflexiós pontja van itt. Összesen:	1 pont 11 pont	$f'''(-1) = 6 \neq 0$