Observations and Insights

Type *Markdown* and LaTeX: α^2

```
In [609]:
           1 # Dependencies and Setup
           2 import matplotlib.pyplot as plt
           3 import pandas as pd
           4 import scipy.stats as st
             import numpy as np
           7 # Study data files
           8 mouse_metadata_path = "Data/Mouse_metadata.csv"
              study_results_path = "Data/Study_results.csv"
          10
             # Read the mouse data and the study results
          11
              mouse metadata = pd.read csv(mouse metadata path)
          13
              study results = pd.read csv(study results path)
          14
          15
             # Combine the data into a single dataset
             df1 = mouse metadata.merge(study results, on="Mouse ID")
          16
          17
          18 # Display the data table for preview
          19
```

Out[609]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
0	k403	Ramicane	Male	21	16	0	45.000000	0
1	k403	Ramicane	Male	21	16	5	38.825898	0
2	k403	Ramicane	Male	21	16	10	35.014271	1
3	k403	Ramicane	Male	21	16	15	34.223992	1
4	k403	Ramicane	Male	21	16	20	32.997729	1
1888	z969	Naftisol	Male	9	30	25	63.145652	2
1889	z969	Naftisol	Male	9	30	30	65.841013	3
1890	z969	Naftisol	Male	9	30	35	69.176246	4
1891	z969	Naftisol	Male	9	30	40	70.314904	4
1892	z969	Naftisol	Male	9	30	45	73.867845	4

1893 rows × 8 columns

```
In [384]: 1 # Checking the number of mice.
2 number_of_mice = dfl.nunique()["Mouse ID"]
3 number_of_mice
```

Out[384]: 249

Out[401]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
908	g989	Propriva	Female	21	26	0	45.000000	0
910	g989	Propriva	Female	21	26	5	48.786801	0
912	g989	Propriva	Female	21	26	10	51.745156	0
914	g989	Propriva	Female	21	26	15	51.325852	1
916	g989	Propriva	Female	21	26	20	55.326122	1
918	g989	Propriva	Female	21	26	25	56.045564	1
919	g989	Propriva	Female	21	26	30	59.082294	1
920	g989	Propriva	Female	21	26	35	62.570880	2

```
In [402]:
```

- 1 # Create a clean DataFrame by dropping the duplicate mouse by its ID.
- 2 df1.drop_duplicates(subset = ['Mouse ID', 'Timepoint'], inplace = True)
- 3 df = df1
- 4 df

	ID	Regimen	Sex	Age_montns	(g)	Imepoint	(mm3)	Sites
0	k403	Ramicane	Male	21	16	0	45.000000	0
1	k403	Ramicane	Male	21	16	5	38.825898	0
2	k403	Ramicane	Male	21	16	10	35.014271	1
3	k403	Ramicane	Male	21	16	15	34.223992	1
4	k403	Ramicane	Male	21	16	20	32.997729	1
1888	z969	Naftisol	Male	9	30	25	63.145652	2
1889	z969	Naftisol	Male	9	30	30	65.841013	3
1890	z969	Naftisol	Male	9	30	35	69.176246	4
1891	z969	Naftisol	Male	9	30	40	70.314904	4
1892	z969	Naftisol	Male	9	30	45	73.867845	4

```
In [403]:
```

- 1 # Checking the number of mice in the clean DataFrame.
- 2 number_of_mice = df.nunique()["Mouse ID"]
- 3 number of mice

Out[403]: 249

In [404]:

#WATCH END OF 1/26 LECTURE FOR HW INSIGHTS

Summary Statistics

In [405]: Geherate a summary statistics table of mean, median, variance, standard dev Use groupby and summary statistical methods to calculate the following programe an, median, variance, standard deviation, and SEM of the tumor volume.

Astemble the resulting series into a single summary dataframe.

5

1mm6= df.groupby('Drug Regimen')['Tumor Volume (mm3)'].mean()
rugs = df['Drug Regimen'].unique()
1mosmean = list(summ)
1mosmedian = list(df.groupby('Drug Regimen')['Tumor Volume (mm3)'].median())
1mosmor = list(df.groupby('Drug Regimen')['Tumor Volume (mm3)'].var(ddof=0))
1mostd = list(df.groupby('Drug Regimen')['Tumor Volume (mm3)'].std(ddof=0))
1mostd = list(df.groupby('Drug Regimen')['Tumor Volume (mm3)'].sem(ddof=0))
1mostd = list(df.groupby('Drug Regimen')['Tumor Volume (mm3)'].sem(ddof=0))
1mostd = list(zip(drugs,tumormean,tumormedian,tumorvar,tumorstd,tumorSEM))
1mmaryl = pd.DataFrame(data, columns = ['Drug Regimen','Mean of Tutor Volume (mma)]

Out[405]:

	Drug Regimen	Mean of Tutor Volume Per Drug	Median of Tutor Volume Per Drug	Variance of Tutor Volume Per Drug	Standard Deviation of Tutor Volume Per Drug	SEM of Tutor Volume Per Drug
0	Ramicane	40.675741	41.557809	24.839296	4.983904	0.328629
1	Capomulin	52.591172	51.776157	39.069446	6.250556	0.468499
2	Infubinol	52.884795	51.820584	42.886388	6.548770	0.490851
3	Placebo	55.235638	53.698743	68.188930	8.257659	0.602252
4	Ceftamin	54.331565	52.509285	65.817708	8.112811	0.594860
5	Stelasyn	54.033581	52.288934	60.830138	7.799368	0.579722
6	Zoniferol	52.393463	50.909965	42.862273	6.546928	0.524174
7	Ketapril	40.216745	40.673236	23.383692	4.835669	0.320250
8	Propriva	54.233149	52.431737	59.122106	7.689090	0.571526
9	Naftisol	53.236507	51.818479	48.266689	6.947423	0.514977

Out[406]:

	mean	median	var	std	sem
Drug Regimen					
Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
Propriva	52.393463	50.909965	43.138803	6.568014	0.525862
Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

Bar and Pie Charts

```
In [407]: 1 # Generate a bar plot showing the total number of timepoints for all mic
2 x = drugs
3 yax = df.groupby('Drug Regimen').count()['Timepoint']
4 df1 = pd.DataFrame({'Drugs': x, 'Timpoint Count': yax})
5 ax = df1.plot.bar(rot=90)
```



```
In [408]: 1# Generate a bar plot showing the total number of timepoints for all mice
2plt.bar(drugs, yax, color = 'g')
3plt.xticks(rotation = 90)
4plt.xlabel("Drug Regimen")
5plt.ylabel("Total Time Points")
6plt.title("Total Time Points per Drug Regimen")
```

Out[408]: Text(0.5, 1.0, 'Total Time Points per Drug Regimen')

Male 958
Female 930
Name: Sex, dtype: int64

Quartiles, Outliers and Boxplots

```
In [711]:  # Calculate the final tumor volume of each mouse across four of the tre
2
3 grouped = df1.drop_duplicates('Mouse ID', keep='last')
4 cap = grouped.loc[grouped['Drug Regimen'] == 'Capomulin', 'Tumor Volume
5 ram = grouped.loc[grouped['Drug Regimen'] == 'Ramicane', 'Tumor Volume
6 inf = grouped.loc[grouped['Drug Regimen'] == 'Infubinol', 'Tumor Volume
7 ceft = grouped.loc[grouped['Drug Regimen'] == 'Ceftamin', 'Tumor Volume
8 d = {'Capomulin': cap, 'Ramicane': ram, 'Infubinol': inf, 'Ceftamin': c
9 ser = pd.Series(data = d, index = ['Capomulin', 'Ramicane', 'Infubinol'
```

```
# Generate a box plot of the final tumor volume of each mouse across fo
In [726]:
              fig1, ax1 = plt.subplots()
            2
              ax1.set_title('Tumor Volume per Drug')
            3
              ax1.set_ylabel('Tumor Volume')
              ax1.set_xlabel('Capomulin
                                                Ramicane
                                                               Infubinol
                                                                                  Ceft
              ax1.boxplot(ser, flierprops={'marker': 'o', 'markersize': 10, 'markerfa
            7
              plt.show()
              outliers = inf[(inf <= lower_bound) | (inf >= upper_bound)]
            8
              print('The following are the outliers in the boxplot:{}'.format(outlier
```


The following are the outliers in the boxplot:669 36.321346 Name: Tumor Volume (mm3), dtype: float64

```
In [727]:
           1
              # Only showing statistics for Infubinol as the box plot showed it's the
           2
           3
              quartiles = inf.quantile([.25,.5,.75])
              lowerq = quartiles[0.25]
              upperq = quartiles[0.75]
           5
              iqr = upperq-lowerq
            7
              print(f"The lower quartile of Infubinol is: {lowerq}")
           8
              print(f"The upper quartile of Infubinol is: {upperq}")
          10
              print(f"The interquartile range of Infubinol is: {iqr}")
           11
           12
              lower_bound = lowerq - (1.5*iqr)
           13
              upper_bound = upperq + (1.5*iqr)
              print(f"Values below {lower bound} could be outliers.")
           14
              print(f"Values above {upper bound} could be outliers.")
           15
```

The lower quartile of Infubinol is: 54.04860769
The upper quartile of Infubinol is: 65.52574285
The interquartile range of Infubinol is: 11.477135160000003
Values below 36.83290494999999 could be outliers.
Values above 82.74144559000001 could be outliers.

Line and Scatter Plots

```
In [515]:  # Generate a line plot of tumor volume vs. time point for a mouse treat
    df.loc[df['Drug Regimen'] == 'Capomulin']
    df2 = df.loc[df['Mouse ID'] == 's185']
    tumorvol = list(df2['Tumor Volume (mm3)'])
    timepoint = list(df2['Timepoint'])
    plt.title('Tumor Volume per Time Point of Mouse s185 on Capomulin')
    plt.xlabel('Time Points')
    plt.ylabel('Tumor Volume (mm3)')
    plt.scatter(timepoint, tumorvol, color='green')
```

Out[515]: <matplotlib.collections.PathCollection at 0x7fbe2c957d30>

Out[528]: <matplotlib.collections.PathCollection at 0x7fbe2caa4550>

Correlation and Regression

```
In [553]: Calculate the correlation coefficient and linear regression model for mouse relation = st.pearsonr(x, y) int%f'The correlation coefficient for mouse weight and average tumor volume f
```

The correlation coefficent for mouse weight and average tumor volume for the Capomulin regimen is: 0.95

```
(slope, intercept, rvalue, pvalue, stderr) = st.linregress(x, y)
In [569]:
              regress_values = np.array(x) * slope + intercept
           2
              line_eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,2)
           3
              plt.scatter(x,y)
              plt.plot(x,regress_values, "r-")
              plt.annotate(line_eq, (6,10), fontsize=15,color="red",)
              plt.title('Linear Regression Model for Weight vs. Tumor Vol.')
              plt.xlabel('Weight (g)')
              plt.ylabel('Average Tumor Volume per Weight of Mice on Capomulin')
              plt.show()
           10
           11
              print(line_eq)
```



```
y = 0.89x + 22.76
```

In []:

1