Mathematical Logic: Introduction

Yuting Wang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

September 11, 2023

Wechat Group

Course Information

Textbooks:

- A Mathematical Introduction to Logic (Second Edition), Herbert B. Enderton
- ► Logic in Computer Science: Modelling and Reasoning about Systems (Second Edition), Michael Huth and Mark Ryan

Teaching Staff:

- ► Lecturer: Yuting Wang
 - Office hours: Monday 16:00-18:00
 - Location: IEEE Building No.1, Room 203
- Teaching Assistants:
 - Ling Zhang
 - Siyu Liu
 - Jinhua Wu

Grading

ightharpoonup Assignments (50pt) + Quizzes (10pt) + Final Exam (40pt)

Why Study Logic?

Logic is the mathematics of Computer Science as Calculus is the mathematics of Physics.

▶ What is Logic?

- ▶ What is Logic?
- Uses of Logic

- ▶ What is Logic?
- Uses of Logic
- Limitations of Logic

What is Logic?

A logic system consists of a *formal language* for describing logical expressions and proof systems for deriving valid expressions.

A logic system consists of a *formal language* for describing logical expressions and proof systems for deriving valid expressions.

► **Formal Languages**: what expressions are legal with respect to the syntax? (Known as *propositions*)

A logic system consists of a *formal language* for describing logical expressions and proof systems for deriving valid expressions.

- ► **Formal Languages**: what expressions are legal with respect to the syntax? (Known as *propositions*)
- Proof Systems: deriving propositions from existing ones via proof rules.

Laozi by Zhang Lu, Ming Dynasty

Laozi by Zhang Lu, Ming Dynasty

An Example of Informal Reasoning:

Laozi by Zhang Lu, Ming Dynasty

An Example of Informal Reasoning:

- Assumption 1: Laozi is a man
- Assumption 2: Laozi is not asleep
- ► Assumption 3: If X is a man, then X is either asleep or awake

Laozi by Zhang Lu, Ming Dynasty

An Example of Informal Reasoning:

- Assumption 1: Laozi is a man
- Assumption 2: Laozi is not asleep
- ► Assumption 3: If X is a man, then X is either asleep or awake
- ► Conclusion: Laozi is awake

$$\frac{\mathbf{not}\ A\ A\ \mathbf{or}\ B}{B}$$

$$\frac{\text{for any } X, PX}{Pt}$$

$$\frac{\mathbf{not}\ A\ \ A\ \mathbf{or}\ B}{B}$$

$$\frac{\text{for any } X, PX}{Pt}$$

A Simple Example of Logical Proofs

$$\frac{\text{for any } X, PX}{Pt} X = t$$

Let PX = "If X is a man, then X is either asleep or awake", t = "Laozi". We get "If Laozi is a man, then Laozi is either asleep or awake".

A Simple Example of Logical Proofs

$$\frac{\text{for any } X, PX}{Pt} X = t$$

Let PX = "If X is a man, then X is either asleep or awake", t = "Laozi". We get "If Laozi is a man, then Laozi is either asleep or awake".

$\frac{A \quad \text{If } A \text{ then } B}{B}$

Let A = "Laozi is a man", B = "Laozi is either asleep or awake". We get "Laozi is either asleep or awake".

A Simple Example of Logical Proofs

$$\frac{\text{for any } X, PX}{Pt} X = t$$

Let PX = "If X is a man, then X is either asleep or awake", t = "Laozi". We get "If Laozi is a man, then Laozi is either asleep or awake".

$\frac{A \quad \text{If } A \text{ then } B}{B}$

Let A = "Laozi is a man", B = "Laozi is either asleep or awake". We get "Laozi is either asleep or awake".

$$\frac{\mathbf{not}\ A\ A\ \mathbf{or}\ B}{B}$$

Let A= "Laozi is asleep", B= "Laozi is awake". We get "Laozi is awake".

Complete Proofs

- ► *A* = "Laozi is asleep"
- \triangleright B = "Laozi is awake"
- ightharpoonup C = "Laozi is a man"

		for any X , if X is a man, then X is either asleep or awake
	С	If C then (A or B)
not A		A or B
		В

We had a glimpse of syntax and proof rules, but what do all these mean?

We had a glimpse of syntax and proof rules, but what do all these mean?

Answer: gives them semantics rooted in mathematics.

- ▶ When are logical statements *mathematically true*?
- ▶ When are logical statements *derivable via proof rules*?

We had a glimpse of syntax and proof rules, but what do all these mean?

Answer: gives them semantics rooted in mathematics.

- ▶ When are logical statements *mathematically true*?
- ▶ When are logical statements derivable via proof rules?

Provability vs. Truth:

Dichotomy in Logic:

- Syntax vs. Semantics
- Form vs. Essence
- Sense vs. Denotation
- ► Proofs vs. Models

Logic vs. Computation

- Provability
- ► Truth

Is there a mechanical way to decide whether a proposition is provable?

Uses of Logic

Mathematics

Rigorous mathematical reasoning:

Terrance Tao's three stages of mathematical educations:

- ► Pre-rigorous stage. Informal, examples, fuzzy, hand-waving...
- Rigorous stage. Think in a precise and formal manner...
- ▶ Post-rigorous stage. Unconciously rigorous, intuition, "big picture"...

```
https://terrytao.wordpress.com/career-advice/
theres-more-to-mathematics-than-rigour-and-proofs/
```

Mathematics

Rigorous mathematical reasoning:

Terrance Tao's three stages of mathematical educations:

- ▶ Pre-rigorous stage. Informal, examples, fuzzy, hand-waving...
- Rigorous stage. Think in a precise and formal manner...
- Post-rigorous stage. Unconciously rigorous, intuition, "big picture"...

```
https://terrytao.wordpress.com/career-advice/
theres-more-to-mathematics-than-rigour-and-proofs/
```

Mathematical logic is the tool for reaching the rigrous stage from the pre-rigorous one and for advancing to the final stage.

Artificial Intelligence

- ► Inference of Knowledge
- ► Automated Reasoning
- ► Logic Programming

Hardware Engineering

Logic Gates:

Source: https://glossaryweb.com/wp-content/uploads/2018/03/logic-gate.jpg

Programming Languages

Semantics and Program Verification

Source: https://www.softwaretestinghelp.com/flowchart-software/

Many Other Applications

- ▶ **Software Engineering**: Specification and Verification
- ▶ Databases: Relational Algebra and SQL
- Algorithms and Theory of Computation: complexity and computability
- **.**..

https://www.cs.cmu.edu/~rwh/papers/unreasonable/basl.pdf

Limitations of Logic

Axiomatizable Systems

An axiomatizable system consists of

- ► A decidable set of axioms, and
- ► Inference rules

An Example

Axioms Γ:

- Axiom 1: Laozi is a man
- ► Axiom 2: Laozi is not asleep
- Axiom 3: If X is a man, then X is either asleep or awake

Inference Rules:

$$\frac{\text{for any } X, PX}{Pt} X = t$$

$$\frac{A \quad \text{If } A \text{ then } B}{B}$$

$$\frac{\mathbf{not}\ A\ A\ \mathbf{or}\ B}{B}$$

Consistency and Completeness

We write $\Gamma \vdash P$ to denote that P is derivable (provable) from Γ .

An axiomatizable system with axioms Γ is

- **consistent** if there is no P s.t. $\Gamma \vdash P$ and $\Gamma \vdash$ **not** P;
- **▶** complete if for every P, either $\Gamma \vdash P$ or $\Gamma \vdash$ **not** P.

Remarks:

- Consistency ensures no contradiction can be derived;
- Completeness means any proposition is decidable w.r.t. Γ.

Incompleteness

Gödel's Incompleteness Theorem:

Given a sufficiently expressive consistent axiomatizable system F,

- ▶ there is some proposition P such that neither P or not P is provable in F;
- ▶ the consistency of *F* itself is such a proposition.

Incompleteness

Gödel's Incompleteness Theorem:

Given a sufficiently expressive consistent axiomatizable system F,

- ▶ there is some proposition P such that neither P or not P is provable in F;
- ▶ the consistency of *F* itself is such a proposition.

Corollary of the incompleteness theorem:

The consistency of F, when expressed as a sentence, is intuitively true. Therefore, it is often called "true but not provable".

Implications in Mathematics

David Hilbert's program:

- To establish mathematics as both complete and decidable
- ➤ To find absolute proofs of consistency, i.e. proofs that establish the consistency of an axiomatizable system without assuming the consistency of another axiomatizable system.

Implications in Mathematics

David Hilbert's program:

- To establish mathematics as both complete and decidable
- ➤ To find absolute proofs of consistency, i.e. proofs that establish the consistency of an axiomatizable system without assuming the consistency of another axiomatizable system.

Gödel's Incompleteness Theorem gives a definitive negative answer to Hilbert's program.

Implication in Computer Science

No sufficiently powerful and consistent formal (computational) system is decidable.

In fact, incompleteness informally is equivalent to the fact that there exists *effectively enumerable* sets that are not *effectively decidable*.

Incompleteness is related to the undecidability of Turing's Halting problem.

John Lucas's argument:

A cybernetic machine that claims to sufficiently model human mind, does not have the reasoning capability of human mind.

John Lucas's argument:

A cybernetic machine that claims to sufficiently model human mind, does not have the reasoning capability of human mind.

John Lucas's argument:

A cybernetic machine that claims to sufficiently model human mind, does not have the reasoning capability of human mind.

Informal Proof:

A cybernetic machine is an axiomatizable system

John Lucas's argument:

A cybernetic machine that claims to sufficiently model human mind, does not have the reasoning capability of human mind.

- A cybernetic machine is an axiomatizable system
- ► A machine modeling human mind is a sufficiently expressive axiomatizable system *F*

John Lucas's argument:

A cybernetic machine that claims to sufficiently model human mind, does not have the reasoning capability of human mind.

- A cybernetic machine is an axiomatizable system
- ► A machine modeling human mind is a sufficiently expressive axiomatizable system *F*
- F can neither prove its consistency or its inconsistency

John Lucas's argument:

A cybernetic machine that claims to sufficiently model human mind, does not have the reasoning capability of human mind.

- A cybernetic machine is an axiomatizable system
- ► A machine modeling human mind is a sufficiently expressive axiomatizable system *F*
- F can neither prove its consistency or its inconsistency
- ▶ Human mind knows *F* is consistent "intuitively"

John Lucas's argument:

A cybernetic machine that claims to sufficiently model human mind, does not have the reasoning capability of human mind.

- A cybernetic machine is an axiomatizable system
- ► A machine modeling human mind is a sufficiently expressive axiomatizable system *F*
- F can neither prove its consistency or its inconsistency
- ► Human mind knows *F* is consistent "intuitively"
- ▶ Human mind knows some truth which F does not

John Lucas's argument:

A cybernetic machine that claims to sufficiently model human mind, does not have the reasoning capability of human mind.

Informal Proof:

- A cybernetic machine is an axiomatizable system
- ► A machine modeling human mind is a sufficiently expressive axiomatizable system *F*
- F can neither prove its consistency or its inconsistency
- ▶ Human mind knows *F* is consistent "intuitively"
- ▶ Human mind knows some truth which F does not

Conclusion:

Minds and Machines are Inherently Different!

Objections to Lucas' Argument

The argument depends on knowing human mind is **consistent**. What if mind is **inconsistent**?

See interesting discussions at

https://www.sabinasz.net/

Connections to Eastern Philosophies

道可道,非常道

Connections to Eastern Philosophies

题西林壁

苏轼

横看成岭侧成峰,

远近高低各不同。

不识庐山真面目,

只缘身在此山中。

Course Contents

Part 1: Preliminaries

Part 1: Preliminaries

► Sets, Functions and Relations

Part 1: Preliminaries

- ► Sets, Functions and Relations
- Finiteness and Infinteness, Diagonal Arguments

(Also called Sentential Logic in Enderton's)

(Also called Sentential Logic in Enderton's)

Syntax: Connectives, Formulas, etc.

(Also called Sentential Logic in Enderton's)

Syntax: Connectives, Formulas, etc.

Semantics: Interpretations, Models, etc.

(Also called Sentential Logic in Enderton's)

Syntax: Connectives, Formulas, etc.

Semantics: Interpretations, Models, etc.

▶ **Proof System**: Natural Deduction.

(Also called Sentential Logic in Enderton's)

Syntax: Connectives, Formulas, etc.

Semantics: Interpretations, Models, etc.

Proof System: Natural Deduction.

▶ **Properties**: Compactness, Soundness, Completeness, etc.

Syntax: Connectives, Terms, Formulas, Proof System, etc.

- **Syntax**: Connectives, Terms, Formulas, Proof System, etc.
- **Semantics**: Interpretations, Models, etc.

- **Syntax**: Connectives, Terms, Formulas, Proof System, etc.
- **Semantics**: Interpretations, Models, etc.
- ▶ **Proof System**: Natural Deduction, Axiomatic Deduction System

- **Syntax**: Connectives, Terms, Formulas, Proof System, etc.
- **Semantics**: Interpretations, Models, etc.
- ▶ **Proof System**: Natural Deduction, Axiomatic Deduction System
- ▶ **Properties**: Compactness, Soundness, Completeness etc.

► Automatic Proof Deduction

- ► Automatic Proof Deduction
- ► Modal Logics

- ► Automatic Proof Deduction
- Modal Logics
- **▶** Program Verification