

计算机视觉表征与识别 Chapter 11: Course Summary

王利民修改

媒体计算课题组

http://mcg.nju.edu.cn/

Course summary

- Chapter 1. Introduction (1.5 学时)
- Chapter 2. Images and Filter (2.5 学时)
- Chapter 3. Frequency Domain and Sampling (1 学时)
- Chapter 4. Template, Pyramid, and Filter Banks (4 学时)
- Chapter 5. Edges (2 学时)
- Chapter 6. Segmentation and Grouping (2 学时)
- Chapter 7. Interest Points: detector (1 学时)
- Chapter 8. Interest Points: descriptor (1 学时)
- Chapter 9. Alignment & Transformation (1 学时)
- Chapter 10. Recognition (1 学时)

Introduction to computer vision

- What is computer vision
 - Extract "meaning" from pixels
 - Geometric information (measurement)
 - Semantic information (perception and interpretation)
- Computer vision is useful
 - Many application: face recognition, surveillance, driver safety, medical images
- Computer vision is difficult
 - Gap between low level signal and high level meanings
- Computer vision is fast developing

Images and Filtering

- Basic image formation: light and color
- Image as matrix
- Filtering operation
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)
- Image filters in spatial domain
 - Filter is a mathematical operation on values of each patch
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression
- Pyramid representation: Gaussian pyramid, Laplacian pyramid, Steerable pyramid
- Texture: Texture classification: filter bank, texton representation, Texture synthesis

Edges

- Gradient and edges
 - Noise, Gaussian Smooth, Derivative of Gaussian, LoG
- Canny edge detector
 - Non-maximum suppression, Linking and thresholding
- Object contour
 - Human segmentation vs. gradient magnitude
 - Berkeley Segmentation Data Set
- Pb edge detector.
 - Brightness, Color, Texture
 - Learning based classifier
- Recent advances in edge detection.
 - Global Pb, Random forest, Deep networks
- Straight line detection
 - Second moment matrix

Segmentation and grouping

- Grouping problem and segmentation
- Inspiration from human perception
 - Gestalt properties
- Segmentation via clustering
 - K-means, GMM, Mean-shift
- Segmentation via graph based method
 - Normalized cut
- Superpixel algorithms
 - Watershed, Felzenszwalb and Huttenlocher graph-based
- Multiple segmentations
 - Hierarchical segmentation, region proposals, vary segmentation parameters

Correspondence and alignment

- Interest point detectors
 - Harris, Hessian, LoG, DoG etc.
 - Region detection: scale, rotation, affine etc.
- Interest point descriptors
 - SIFT, SURF, GIST etc.
 - Deep learning based descriptor
- Fitting and alignment algorithm
 - Least Squares, Hough Voting, RANSAC etc.
- 2D Transformation
 - Translation, similarity, affine, projective etc.
- Instance recognition by alignment
 - Matching, voting, verification
- Image stitching by alignment

Image Recognition

- Introduction to categorization
 - Object, Places, Action, Fine-grained
- Basic task
 - Image classification, object detection, pixel labeling
- Classification pipeline and general issue
 - Spatial pyramid + BoW
 - Feature, Classifier
- Deep learning: CNN & Transformer
 - Large scale dataset, representation learning
 - Transfer learning
- Object Detection:
 - HoG + SVM
 - R-CNN line of detectors
 - YOLO
 - Query based detectors

Not covered

- Image recognition
 - Pixel labeling
 - Human pose estimation
- Geometry & reconstruction
 - Camera model and calibration
 - Epipolar Geometry and stereo
 - Structure from motion
- Video analysis
 - Tracking
 - Optical flow
 - Action recognition
- More advanced topics
 - Vision and language
 - Deep learning and geometry (3D)
 - Weakly supervised learning, self-supervised learning
 - Transformer for vision

Vision as part of an intelligent system

3D Scene

Feature Extraction

Texture

Colo r Optical Flow

Stereo Disparity

Grouping

Surface s Bits of objects

Sense of depth Motion pattern

Interpretation

Objects

Agents and goals

Shapes and properties

Open path

Word s

Action

Walk, touch, contemplate, smile, evade, read on, pick up, ...

Important note:

In general, computer vision does not work

(except in certain situations/conditions)

Hope you learn something useful!