Исследование применения понятия нечеткого отношения, операций импликации и композиции при реализации нечетких высказываний и построении нечетких рассуждений

1. Цель работы: исследовать способы применения понятия нечеткого отношения, операций импликации и композиции при реализации нечетких высказываний.

2. Теоретическое введение

2.1. Понятие нечетких и лингвистических переменных

Нечеткая переменная (НП) определяется совокупностью параметров вида:

$$< p, X, A >$$
,

где p — название нечеткой переменной, X — область определения нечеткой переменной (множество значений $x \in X$, для которых (на которых) определена нечеткая переменная (все множество X), $A = \{x \in X, \mu_A(X)\}$ — нечеткое множество (HM) на X, элементы которого — нечеткие значения $\mu_A(x)$, которые принимает нечеткая переменная на X. Тогда нечеткое множество A определяет возможные значения ($\mu_A(x)$), которые принимает нечеткая переменная p для соответствующего значения $x \in X$.

<u>Пример.</u> Интенсивность трафика, передаваемого через сетевое устройство, может быть: малой – первая нечеткая переменная p_1 , средней – вторая нечеткая переменная p_2 и большой – третья нечеткая переменная p_3 . Все переменные $(p_i/i=\overline{I,3})$ определены на одном универсальном множестве X, допустим:

$$100 < X < 1000 \text{ Moum } / c$$
, T.e. $X = [100.1000]$.

Для каждой переменной ($p_i/i = \overline{I,3}$) определена своя функция принадлежности $\mu_A^i(x)$, определяющая НМ, соответствующее нечеткой переменной.

Тогда:

1) < Малая интенсивность трафика, (100 < X < 1000), $A_I >$, где

 $A_I = \{x, \mu_{A_i}^I(x)\}$ – нечеткое множество, соответствующее НП p_I ;

2) <Средняя интенсивность, (100 < X < 1000), $A_2 >$, где

 $A_2 = \{x, \mu_{A_2}^1(x)\}$ – нечеткое множество соответствующее p_2 ;

3) <Высокая интенсивность, ($100 < X < 1000\,$), $A_3 >$, где

 $A_3 = \{x, \mu_{A_3}^I(x)\}$ – нечеткое множество соответствующее p_3 .

Графический вид нечетких переменных ($p_i/i = \overline{1,3}$) представлен на Рис. 3.1 (три переменные сведены на один, рисунок).

Рисунок 3.1- Вид нечетких множеств для соответствующих переменных

<u>Лингвистическая переменная</u> определяется как совокупность параметров вида:

$$\langle LP, NLP, X, G, M \rangle$$
,

где:

- -LP название лингвистической переменной, характеризующей некоторые процессы (в рассматриваемом случае LP «интенсивность трафика»);
- NLP терм-множество значений лингвистической переменной (значения ЛП называются термами, совокупность этих значений образует множество NLP); терм-значение ЛП сопоставляется (однозначно) с соответствующим ему значением нечеткой переменной (т.е. должен быть задан способ сопоставления множества термов и соответствующего множества нечетких переменных); обозначим способ сопоставления через S, тогда $S:NLP \to \{p_i \mid i=\overline{l_1n}\}$ отображение множества NLP на множество нечетких переменных $\{p_i \mid i=\overline{l_1n}\}$ где n— количество нечетких переменных;

- Х область определения нечетких переменных (задаваемое универсальное множество);
- -G процедура, описывающая процесс формирования новых значений термов лингвистической переменной LP на основе имеющихся термов множества NLP (т.е. способ формирования новых термовзначений ЛП с именем LP на основе имеющихся термов из множества NLP).
- M процедура, сопоставляющая каждому новому терму-значению ЛП с именем LP, сгенерированному процедурой G, соответствующее ему (этому терму) нечеткое множество, таким образом, процедура G позволяет формировать (реализует формирование) новые значения термов на основе использования либо логических операций «U», «UЛU», либо с использованием модификаторов исходных термов вида: «очень», «не», «более менее» («слегка»), «не очень» и т.д.

Процедура M выполняет расчет значений $\Phi\Pi$ ($\mu(x)$) для соответствующих сгенерированных процедурой G термов (полученных модификацией исходных значений—термов).

Пример формирования лингвистических переменных.

Переменная, описывающая значения интенсивности трафика, поступающего на маршрутизатор. Имя переменный LP — «Интенсивность трафика». Параметры переменной:

- 1) множество значений термов лингвистической переменной *NLP*;
- 2) $NLP = \{\text{«Малая», «Средняя», «Большая»}\}$. Так как |NLP| = 3, то должны быть определены три значения нечетких переменных, т.е. множество $(p_i / i = \overline{1,3})$.
- 3) универсальное множество X представляет собой интервал [100,1000] мбит /c, тогда X = [100,1000]. Значения нечетких переменных задаются следующим образом (вид НП $(p_i \setminus i = \overline{I,3})$ и формализация способа определения значений $(\mu_{p_i}(x))$:
- а) переменная p_1 :

б) переменная p_2 :

$$\mu_{p_2}(x) = \begin{cases} 0, & x \le 300 \\ \frac{x - 300}{400 - 300}, & 300 < x < 400 \end{cases}$$

$$\mu_{p_2}(x) = \begin{cases} 1, & 400 \le x \le 700 \\ \frac{800 - x}{800 - 700}, & 700 < x \le 800 \\ 0, & 800 < x \end{cases}$$

в) переменная p_3 :

Сопоставление термов-значений лингвистической переменной LP (множество NLP) с соответствующими значениями нечетких переменных $p_i(i=\overline{1,3})$:

«Малая»
$$\rightarrow p_1$$
; «Средняя» $\rightarrow p_2$; «Большая» $\rightarrow p_3$.

Графическое представление значений лингвистической переменной на Рис. 3.2.

Рисунок 3.2 – Сопоставление значений ЛП и НП

Процедура G, формирующая новые значения — термы с использованием модификаторов «и», «или», «не», «очень», «более-менее» и т.д. Тогда значения (термы) лингвистической переменной LP следующие (новые значения, полученные путем модификации имеющихся): «не малая», «не большая», «очень большая», «более-менее средняя», «малая или средняя».

Процедура M , реализующая определение значений $\Phi\Pi$ для соответствующих новых значений термов ЛП, использует следующие выражения:

a)
$$LP_i \rightarrow \mu e LP_i \rightarrow 1 - \mu_{p_i}(x)$$
 «He»;

б)
$$LP_i \rightarrow \text{ очень } LP_l \rightarrow \left(\mu_{p_i}(x)\right)^2$$
 «очень»;

в)
$$LP_i o более$$
 менее $LP_1 o [\mu_{p_i}(x)]^{0.5}$ «более-менее»;

$$\text{ r) } LP_i \text{ } u \text{ } LP_j \rightarrow LP_i \cap LP_j \rightarrow \min[\text{ } \mu_{p_1}(x), \text{ } \mu_{p_2}(x)] \text{ } \underbrace{\text{ win}};$$

д)
$$LP_i$$
 или $LP_j \to LP_i \cup LP_j \to max\{\mu_{p_j}(x), \mu_{p_j}(x)\}$ «или».

Вычисление значений ФП $\mu(x)$ для вновь полученных термов-значений ЛП «Интенсивность трафика» выполнено следующим образом:

«Средняя» → «более менее средняя» («сравнительно средняя»)

«млая», «Средняя» — «Малая или средняя» (сравнить с «Не большая»)

2.2.Основы нечеткой логики.

Понятия четкой логики.

Высказывание – утверждение, для которого возможно определить истинность или ложность.

Пример: «2 – натуральное число».

Для составления сложных высказывание на основе простых используются логические операции: «и», «или», «не», «если..., то...».

Истинность сложных высказываний определяется значениями истинности элементарных высказываний. Тогда имеется возможность исчисления высказываний (т.е. определение их истинности или ложности).

Образование (модификация) высказываний

1) Операция «не» – высказывание «не А», где А – исходное высказывание.

A	\overline{A}
1	0
0	1

Если высказывание (2 - натуральное число) есть истина, то (2 - не натуральное число) есть ложь. Если (-5 - натуральное число) - ложь, то (-5 - не натуральное число) - истина.

2) Конъюнкция высказываний

A	В	АиВ
1	1	1
1	0	0
0	1	0
0	0	0

Высказывание А: 2 – натуральное число.

Высказывание В: 2 – целое число.

Составное высказывание 1: «2 – натуральное число» и «2 – целое число» является истинным .

Составное высказывание 2: «1.5 – натуральное число» и «1.5 – целое число» является ложным.

- 3) По аналогии рассматривается дизъюнкция высказываний.
- 4) Импликация двух высказываний, соответствует союзу «если..., то...» и обозначается символом \rightarrow . Импликация \rightarrow интерпретируется с.о.: «Если A, то B» или «Если высказывание A верно, то верно высказывание B», или «из A следует B». Операция импликации это логическое следование. В импликации $A \rightarrow B$ высказывание A называют условием (посылкой) импликации, B заключение (следствие) импликации.

<u>Пример:</u> высказывание A – треугольник равносторонний, высказывание B – треугольник равноугольный. Если «треугольник равносторонний» то «треугольник равноугольный» («Если A, то B»).

В операции импликации высказывание, определяющее условие, может быть как простым, так и составным. Составные высказывания образуются из простых с использованием конъюнкции (операция «и») и дизъюнкции (операция «или»).

Пример составного высказывания на месте условия и действия.

Если A_1 и A_2 то В;

Если A_1 или A_2 то В;

Если A_1 и A_2 то B_1 и B_2 ;

Если A_1 и A_2 то B_1 или B_2 ;

Здесь A_i , B_i - высказывания

Таким образом, сформулированная операция импликации может быть обобщена в правило вывода истинного заключения В (правило «модус поненс»).

Посылка	А есть истинно
Импликация	Если A_1 то В
Логический вывод	В есть истинно

B соответствии с правилом вывода определяется заключение «B есть истинно», если известно, что «A истинно» и существует правило «Eсли A то B».

Понятие нечеткого высказывания

Нечетким высказыванием называется утверждение, относительно истинности которого возможно судить в некоторой степенью уверенности. Таким образом степень истинности элементарного нечеткого высказывания принимает значение из замкнутого интервала [0,1]. Степень истинности высказывания А обозначена как $\mu_{\rm A}(x)$.

Примеры элементарных нечетких высказываний.

3- малое число (степень истинности -0.9),

15 – не очень большое число (степень истинности – 0.7)

Интенсивность трафика очень большая.

<u>Отрицанием</u> нечеткого высказывания A является высказывание \overline{A} , степень истинности которого определяется выражением $\mu_{\overline{A}} = l - \mu_A$, где μ_A — степень истинности высказывания A.

Пример определения степени истинности высказываний.

Нечеткое множество А – "Малое число".

Нечеткое множество "Не А "- "Не малое число".

$$\mu_A(3) = 0.9;$$

$$\mu_{\overline{A}}(3) = 0,1;$$

Таким образом, степень истинности высказывания "3- малое число" равна 0,9, а высказывания "3- не малое число" равна 0,1.

Конъюнкцией нечетких высказываний A и B называется нечеткое

высказывание $A \cap B$, степень истинности которого определяется выражением:

$$\mu_{A \cap B}(x_1, x_2) = \mu_A(x_1) \cap \mu_B(x_2) = \min(\mu_A(x_1), \mu_B(x_2)).$$

Пример конъюнкции нечетких высказываний.

Определены две лингвистические переменные — интенсивность трафика и объем буфера для хранения пакетов. Соответствующие множества NLP_1 и NLP_2 имеют вид: $NLP_1 = \{$ малая, средняя, большая $\}$, $NLP_2 = \{$ малый, средний, большой $\}$.

Высказывание А: «220 – малая интенсивность трафика».

Высказывание В: «500 – большой размер буфера».

Вычисление значения функции принадлежности для конъюнкции нечетких высказываний выполняется следующим образом:

$$\mu_{A \cap B}(x_1, x_2) = \min(\mu_A(x_1), \mu_B(x_2)) = \mu_B(x_2).$$

Дизъюнкция нечетких высказываний A и B называется нечеткое высказывание $A \cup B$, степень истинности которого определяется выражением вида:

$$\mu_{A \cup B}(x_1, x_2) = max(\mu_A(x_1), \mu_B(x_2)).$$

Вычисление степени истинности высказывания $\mu_{A \cup B}(x_I, x_2)$ выполняется аналогично, при этом $\mu_{A \cap B}(x_I, x_2) = \mu_A(x_I)$.

В общем виде выражения для вычисления значений $\mu_{A \wedge B}$ и $\mu_{A \cup B}$ могут быть записаны следующим образом:

$$\mu_{A \cap B}(x_1, x_2) = T(\mu_A(x_1), \mu_B(x_2))$$

$$\mu_{A \cup B}(x_1, x_2) = S(\mu_A(x_1), \mu_B(x_2)),$$

где $T(\cdot)$ и $S(\cdot)$ — функции, называемые t -нормой и t -конормой (s -нормой). Тогда один из способов задания t - и s - норм является:

$$t(x_1,x_2) = min(\mu_A(x_1),\mu_B(x_2))$$
;

$$s(x_1, x_2) = max(\mu_A(x_1), \mu_B(x_2))$$
.

Понятия t - и s -норм определены ниже следующим образом:

- 1) t -норма, обозначаемая как $T(\cdot)$ коммутативная, ассоциативная бинарная функция, для которой выполняются условия: T(x,0) = 0; T(x,1) = 1, $\forall x \in X$. Виды t -норм $T(\cdot)$:
- а) логическое произведение:

$$T(\mu_A, \mu_B) = min(\mu_A(x_1), \mu_B(x_2));$$

б) граничное произведение:

$$T(\mu_A, \mu_B) = max(\mu_A(x_1) + \mu_B(x_2) - 1,0);$$

в) алгебраическое произведение:

$$T(\mu_A, \mu_B) = \mu_A(x_1) \cdot \mu_B(x_2).$$

2) t -конорма (s -норма), обозначаемая как $S(\cdot)$ —это коммутативная ассоциативная бинарная функция, для которой выполняются условия:

$$S(x,0) = x; S(x,1) = 1, \forall x \in X$$
. Виды s -норм:

а) логическая сумма:

$$S(\mu_A, \mu_B) = max(\mu_A(x_1), \mu_B(x_2));$$

б) алгебраическая сумма:

$$S(\mu_A, \mu_B) = \mu_A(x_1) + \mu_B(x_2) - \mu_A(x_1) \cdot \mu_B(x_2);$$

в) граничная сумма:

$$S(\mu_A, \mu_B) = min(\mu_A(x_1) + \mu_B(x_2), 1).$$

Таким образом при определении степени истинности высказывания $A \cup B$ может быть использована любая из функций, являющихся s- нормой (t-конормой), при вычислении степени истинности высказывания $A \cap B$ может быть использована любая функция, являющаяся t- нормой.

Импликацией нечетких высказываний A и B называется нечеткое высказывание $A \to B$ (где \to знак импликации), степень истинности которого $\mu_{A \to B}(x_1, x_2)$ определяется следующим образом:

$$\mu_{A\to B}(x_1, x_2) = I(\mu_A(x_1), \mu_B(x_2)),$$

где I — знак функции импликации.

Виды функций – импликаторов:

- 1) $(1 \mu_A(x_1) + \mu_A(x_1) \cdot \mu_B(x_2))$;
- 2) $max(1-\mu_A(x_1),\mu_B(x_2))$ импликатор Клина-Дайнела;
- 3) $min(1 \mu_A(x_1) + \mu_B(x_2), 1)$ импликатор Лукасевича;
- 4) $min(\mu_A(x_1), \mu_B(x_2))$ импликатор Мандани.

Тогда для $A \to B$ в качестве примера применим импликатор Клина–Дайнела:

$$\mu_{A\to B}(x_1,x_2) = max(1-\mu_A(x_1),\mu_B(x_2)).$$

В импликации $A \to B$ выполняется связывание элемента $x_1 \in X_1$, обладающего свойством A, с элементом $x_2 \in X_2$, обладающим свойством B. Тогда, выражение (значение) $\mu_{A \to B}(x_1, x_2)$ соответствует степени истинности свойства (отношения), связывающего $x_1 \in X_1$ с $x_2 \in X_2$.

Если x_1 и x_2 – конкретные значения (с заданными $\mu_A(x_1)$ и $\mu_B(x_2)$), то $\mu_{A\to B}(x_1,x_2) = \mu_R(x_1,x_2)$ – значение функции принадлежности отношения R , соответствующего свойству, связывающему множества X_1 и X_2 .

Пример. Если «200 – малая интенсивность трафика», то «500 – большой размер буфера».

В качестве импликатора используем импликатор Лукасевича. Степень истинности высказываний определяется значениями функций принадлежностей в виде: $\mu_A(x_1) = 0.9$, $\mu_B(x_2) = 0.6$. Тогда

$$\mu_{A\to B}(x_1, x_2) = min(1-0.9+0.6; 1) = min(0.7; 1) = 0.7$$
.

2.3. Механизмы логического вывода (с использованием понятия отношения и операции композиции)

Пусть LP_1 и LP_2 — наименования входной и выходной лингвистических переменных, A и B — значения—термы ЛП LP_1 и LP_2 (значениям A, B соответствуют нечеткие переменные p_i и p_j , то есть нечеткие множества). Лингвистическим правилом логического вывода «Если ..., то...» называется конструкция вида:

K: Если LP_1 есть A , то LP_2 есть B ; либо в альтернативной записи:

K: Если $LP_1 = A$, то $LP_2 = B$;

В правиле K выражение « $LP_1 = A$ » - это нечеткое высказывание, называемое предпосылкой, « $LP_2 = B$ » - нечеткое высказывание называемое следствием правила. Правило K интерпретируется как нечеткое следствие (отношение, импликация), то есть в виде $A \to B$, либо в виде нечеткого отношения R между предпосылкой и следствием, то есть $R = A \to B$.

Отношение R задано на декартовом произведении универсальных множеств X_1 и X_2 , являющихся областями определения нечетких (лингвистических) параметров LP_1 и LP_2 .

Если $A \to B$ в правиле K – это нечеткая импликация (отношение), то отношение R (значение $\Phi\Pi$ для нечеткого отношения R $\mu_{A\to B}=\mu_R$) может быть определено с использованием одной из функций импликаторов I.

<u>Пример</u> определения значений $\Phi\Pi$ отношения R при заданном правиле нечеткого вывода:

K: Если интенсивность трафика = малая, то размер буфера = малый.

Таким образом имеется 2 ЛП: LP_1 = «Интенсивность трафика» и LP_2 = «Размер буфера».

Лингвистические значения и их сопоставление с значениями нечетких переменных имеет следующий вид (при $X_1 = [100,1000]$ $X_2 = [300,800]$ (размер буфера измеряется в пакетах)).

 $LP_1 = \langle Maлas \rangle \rightarrow p_{11};$

 $LP_1 =$ «Средняя» $\rightarrow p_{12}$;

 $LP_1 =$ «Большая» $\rightarrow p_{13}$;

 p_{Ii} – i - ые значения (нечетные множества) для ЛП LP_I .


```
LP_2 =  «Малый» \rightarrow p_{21}; LP_2 =  «Средний» \rightarrow p_{22}; LP_3 =  «Большая» \rightarrow p_{23}; p_{2i}-i-ые значения (HM) для ЛП LP_2.
```

 $X_1 = \{100,200,300,400,500,600,700,800,900,1000\}$ $X_2 = \{300,400,500,600,700,800\}$

Нечеткая переменная p_{11} , соответствующая значению LP_I = «Малая», определяется следующим образом: $p_{11} = \{100/1; 200/1; 300/0,5; 400/0; 500/0; 600/0; 700/0; 800/0; 900/0; 1000/0\}$

Нечеткая переменная P_{21} определяется в виде: $p_{21} = \{\,300\,/\,1;\,400\,/\,1;\,500\,/\,0;\,600\,/\,0;\,700\,/\,0;\,800\,/\,0\,\}$

Для определения $\mu_{A\to B}=\mu_R$ применим импликатор Лукасевича: $I=\min(\ I-\mu_A(\ x_I\)+\mu_B(\ x_2\),I\ \}$

Матрица A_R (значений ФП для отношения R) размером [10x6] имеет вид:

Определим способ вычисления значений выходных лингвистических переменных на примере. В случае, если заданы X_1 и X_2 , значение ЛП LP_1 в условии правила, а также отношение R, то может быть определено значение ЛП LP_2 (значение НП p_{21}) с использованием композиционного правила вывода.

В рассматриваемом случае являются заданными X_I , X_2 , значение LP_I и отношение R, необходимо определить значение LP_2 (при этом отношение R определено на множестве $X_1 \times X_2$). Нечеткая переменная p_{11} определена следующим образом:

$$p_{11} = \{(1/1), (2/0.6), (3/0.2), (4/0)\}.$$

Значение p_{11} (НП p_{11}) соответствует значению ЛП LP_1 = «малое число». Отношение R задано матрицей значений $\Phi\Pi$ μ_R — матрица A_R — в виде:

$$A_R = \begin{vmatrix} 1 & 0.5 & 0 & 0 \\ 0.5 & 1 & 0.5 & 0 \\ 0 & 0.5 & 1 & 0.5 \\ 0 & 0 & 0.5 & 1 \end{vmatrix}.$$

Значение НП p_{21} может быть получено с использованием макси-миной ($max\ min\ -$ ой) композиции в виде:

$$\mu_B(x_2) = \bigcup [\mu_A(x_1) \cap \mu_R(x_1, x_2)] = max(min(\mu_A(x_1), \mu_R(x_1, x_2))) =$$

$$= \begin{bmatrix} 1 & 0.6 & 0.2 & 0 \end{bmatrix} \circ \begin{bmatrix} 1 & 0.5 & 0 & 0 \\ 0.5 & 1 & 0.5 & 0 \\ 0 & 0.5 & 1 & 0.5 \\ 0 & 0 & 0.5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0.6 & 0.5 & 0.2 \end{bmatrix}.$$

Тогда значение p_{21} имеет вид

$$p_{21} = \{(1/1), (2/0.6), (3/0.5), (4/0.2)\},$$

что соответствует нечеткому значению LP_2 «достаточно малое число» («более-менее малое число»).

Таким образом процедура нечеткого вывода предполагает использование композиции нечетких множеств (в частности, НМ и НО).

Свойство импликации (положенное в основу при построении нечетких правил) – свойство отделения, которое соответствует выполнению (истинности) двух предпосылок (A
ightarrow B и $LP_I = A$) для получения значения в ЛП LP_2 .

Свойство импликации (свойство определения) может быть записано следующими двумя способами:

1)

Посылка 1

Если $LP_1 = A$ то $LP_2 = B$ (правило)

Посылка 2

 $LP_{1} = A$ (утверждение о значении LP_{1}) $LP_{2} = B$ (заключение о значении LP_{2})

Заключение (вывод)

2)

ЕСЛИ $(A \rightarrow B)$ истинно и A истинно, ТО B истинно.

В правиле исходное высказывание на месте условия имеет вид: LP_1 есть A ($LP_1 = A$). Исходное высказывание в правиле может быть модифицировано следующим образом:

$$LP_1$$
 есть ∇A ,

где ∇ - модификатор, соответствующий таким словам как «очень», «более-менее», «не», «и», «или», и т.д. Пример модификации высказываний:

 LP_1 есть очень A;

 LP_1 есть более-менее A;

 LP_1 есть не очень A; и т.д.

Тогда модифицированные значения «очень A», «более-менее A», «не очень A» и т.д. могут быть обозначены как A'. В этом случае должно быть определено значение выходной ЛП LP_2 , которое обозначено через B' при учете, что предпосылка, на основе которой определяется B' имеет вид: « LP_1 есть $A'\gg$.

Для определения B' может быть применено правило, связывающее $LP_I = A$ и $LP_2 = B$ (отношение (импликация) для $LP_1 = A$ и $LP_2 = B$).

Логический вывод, который использует введенное правило, будет иметь вид:

Посылка 1

Если LP_1 есть A , то LP_2 есть B

Посылка 2

Заключение

 LP_2 есть B'

Так как посылка 1 есть ничто иное, как отношение $R(p_i, p_j) = A \rightarrow B$, где A – значение—терм, p_i - соответствующая этому значение нечеткая переменная, то с использованием операции композиции может быть определено НМ p'_i , соответствующее лингвистическому значению B'.

Таким образом, суть решаемой задачи состоит в определении какой должны быть LP_2 , если $LP_1 = A$ и выполняется предпосылка 1. Последовательность при определении B следующая:

- 1) определение $R = A \to B$ с использованием какой-либо функции импликатора, например:
- $\mu_{R}(\ A,B\) = \min(\ 1 \mu_{A}(\ x_{1}\) + \mu_{B}(\ x_{2}\),1\); \quad \forall x_{1} \in X_{1}, \quad \forall x_{2} \in X_{2}\ ;$
- 2) с использованием maxmin-ой композиции определение нечеткого множества (нечеткой переменной p_j):
- $\mu_{B}{'}(x_{2}) = max(min(\ \mu_{A}{'}(x_{1}),\mu_{R}(A,B)) = max(min(\ \mu_{A}{'}(x_{1}),\mu_{A\rightarrow B}(x_{1},x_{2}));$
- 3) в результате выполнения шага 2 будет определена НП p'_{j} , соответствующая значению—терму B' (то есть нечеткое множество). Для перехода от нечеткого множества (нечеткой переменной) p'_{j} к четкому значению необходимо выполнить этап дефазификации НМ по одному из методов.

Пример реализации операции композиции при получении значения B' (имена переменных: LP_I - интенсивность трафика, LP_2 - размер буфера).

Схема логического вывода имеет вид:

Заключение (вывод) $LP_2 = B'$

 $X_1 = [100,1000], X_2 = [300,800].$

Значению—терму ЛП LP_I = «малая» соответствует нечеткая переменная P_{II} : P_{II} = { $100/1, 200/1, 300/0, 5, 400/0; 500/0; 600/0; 700/0; 800/0; 900/0; 100/0 }.$

Значение—терму ЛП LP_2 = «малый» соответствует нечеткая переменная P_{21} : $P_{21} = \{300/1, 400/1, 500/0, 600/0; 700/0; 800/0\}$.

Алгоритм получения значения LP_2 предусматривает выполнение следующих шагов:

1. Для определения значений элементов $\mu_{A\to B} = \mu_R$ матрицы отношения A_R использована функция-импликатор Мамдани в виде:

$$\mu_{A\to B} = \mu_R = min(\ \mu_A(\ x_I\), \mu_B(\ x_2\)\ .$$

Значения элементов матрицы A_R для рассматриваемых переменных p_{11} и p_{21} получены с использованием введенного выражения.

- 2. Модификатор значения ЛП LP_1 «очень» соответствует операции концентрирования НМ (т.е. $[\mu_A(x^I)]^2$
-). Тогда НМ (НП) p_{11} , определенное на основе НП p_{11} с использованием операции концентрирования, примет следующий вид:

```
p_{II} = \{\,100/1, 200/1, 300/0, 25, 400/0; \,500/0; \,600/0; 700/0; \,800/0; \,900/0; \,100/0\,\}.
```

3. Значение переменной p'_{21} определено в результате операции композиции нечетких множеств (НП p_{11} и НО R(A,B)) следующим образом:

 $=(0.25 \quad 0.25 \quad 0 \quad 0 \quad 0 \quad 0);$

Тогда исходный вид НП p_{21} и полученный вид НП p'_{21} представлены на Рис.3.3.

Рисунок 3.3 – Вид нечетких переменных p_{21} и p'_{21}

Определение четкого значения размера буфера для исходного множества p_{21} и модифицированного множества p'_{21} используется метод центра тяжести, т.е. вычисление x_2 и x'_2 - четких значений по формулам:

$$x_{2}^{\textit{qemk}} = \frac{\sum_{r=1}^{m} x_{2}^{r} \mu_{B}(x_{2}^{r})}{\sum_{r=1}^{m} \mu_{B}(x_{2}^{r})} = 350; \ x_{2}^{\textit{qemk}} = \frac{\sum_{r=1}^{m} x_{2}^{r} \mu_{B'}(x_{2}^{r})}{\sum_{r=1}^{m} \mu_{B'}(x_{2}^{r})} = 350.$$

Таким образом, для хранения пакетов при малой интенсивности трафика достаточно 350 ячеек (каждая ячейка — один пакет), для хранения пакетов при очень малой интенсивности трафика также достаточно 350 ячеек.

Возможные варианты выражений для реализации операции композиции нечетких множеств

Для определения $\mu_{B'}(x_2)$ использовалась *тахтіп*-ая композиция в виде:

$$\mu_{B'}(x_2) = max(min(\mu_{A'}(x_1), \mu_{A \to B}(x_1, x_2)),$$

где $min(\mu_{A'}(x_1), \mu_{A \to B}(x_1, x_2))$ – это выражение для t - нормы.

Оператор t - нормы обозначен через T , тогда способ вычисления композиции НМ может быть представлен в следующем виде:

$$\mu_{B'}(x_2) = max(\mu_{A'}(x_1)T \mu_{A\to B}(x_1,x_2)).$$

Тогда вместо T при выполнении операции композиции может быть указан любой способ вычисления значений, предусматривающий использование выражений для t - норм (в скобках для рассматриваемого выражения используется любая из приведенных выше t - норм).

В тоже время наиболее часто используемыми выражениями для определения операции композиции автиготея:

- 1) (max min) ная композиция $max(min(\mu_A'(x_1), \mu_R(x_1, x_2));$
- 2) (max prod) -композиция $max(\mu_A'(x_1) \bullet \mu_R(x_1, x_2))$, где – знак произведения.

2.4. Система продукционного вывода, основанная на лингвистических правилах «ЕСЛИ...ТО...»

Нечеткой системой логического вывода, основанного на лингвистических правилах «ЕСЛИ..., ТО...» (нечеткой системой логического вывода), называется конструкция вида:

$$K_1$$
: если X есть A_1 , то Y есть B_1 ; K_2 : если X есть A_2 , то Y есть B_2 ;

 K_m :если X есть A_m , то Y есть B_m ;

где A_i и B_i ($i=\overline{I,m}$) — соответствующие значения—термы ЛП X и Y, для которых определены нечеткие переменные p_i и p_j . Т.е. значениям— термам A_i, B_i лингвистических переменных X и Y поставлены в соответствие нечеткие множества.

Существует необходимость определения с использованием вводной системы правил $K_i(i=\overline{I,m})$ для вводимого значения A' лингвистической переменной X значения B' выходной лингвистической переменной Y. Для решения поставленной задачи могут быть применены два способа определения значения B' ЛП Y при вводимом значении A' ЛП X:

1) предварительная агрегация нечетких отношений (определение некоторого отношения R, являющегося обобщающим отношения R_i с использованием операции агрегации вида $R = Agg(R_1, R_2...R_m)$; в последствии результат B' при заданном втором значении A' определяется с использованием композиционного правила ввода $B' = A' \circ R$, где \circ - знак операции композиции НМ и НО; в качестве оператора агрегации $Agg(\bullet)$ может быть использована любая s - норма (t - конорма), в частности операция:

$$max(\mu_{A_i \to B_i}(x_1, x_2), \mu_{A_{i+1} \to B_{i+1}}(x_1, x_2)),$$

где $A_i \to B_i$ — соответствующая операция импликации (отношения между множествами); это же выражение может быть записано следующим образом $max(\mu_{R_i}(x_1,x_2),\mu_{R_{i+1}}(x_1,x_2))$; для операции агрегации $Agg(\bullet)$, предполагающей использование s - нормы в виде $max(\mu_{R_i},\mu_{R_{i+1}})$, введено обозначение:

 $Agg(R_1,...R_m) = \bigcup_{i=1}^m R_i$, где операция объединения НО R_i в виде $\bigcup_{i=1}^m R_i$ и представляет собой определение максимума для соответствующих значений R_i - ых отношений;

2) первоначальное определение выходов для каждого i -го правила с использованием композиции $B_i{'}=A_i{'}{}^{\circ}R_i$ ($i=\overline{I,m}$); после определения всех m нечетких значений $B_i{'}$ выполняется их агрегация в виде:

$$B' = Agg(B'_1, B'_2, ..., B'_m) = \bigcup_{i=1}^{m} (A' \circ R_i).$$

Для агрегации может быть применена s - норма, использованная в предыдущем пункте.

<u>Пример</u> определения значения B' по заданному значению A' при заданной системе правил логического вывода и первом способе получения логического значения (первом способе агрегации правил).

Система правил имеет вид:

 K_I : если LP_I = малая, то LP_2 = малый; K_2 : если LP_I = средняя, то LP_2 = средний; K_3 : если LP_I = большая, то LP_2 =большой;

Значение A' определено с использованием модификаторов «не» и «очень» в виде LP_I =" не очень большая". Необходимо определить значение размера буфера (в пакетах) — переменная LP_2 , который необходимо выделить для хранения пакетов при задаваемой в соответствии с значением A' интенсивности трафика.

Шаг №1. Определение отношений $R_i(i=\overline{I,3})$ с использованием импликации Мамдани (выбор минимума из двух значений ФП). Универсальные множества X_1 и X_2 имеют вид: $X_1 = [100,1000]$, $X_2 = [300,800]$. Нечеткая переменная p_{II} , определенная для лингвистического значения «Малая» лингвистической переменной LP_I , имеет вид:

$$p_{11} = \{\,100/1;\,200/1;\,300/0,5;\,400/0;\,500/0;\,600/0;\,700/0;\\800/0;\,900/0;\,1000/0\,\}.$$

Нечеткая переменная p_{21} определяемая для лингвистического значения «малый» лингвистической переменной LP_2 имеет вид:

$$p_{21} = \{\,300\,/\,1,400\,/\,1,500\,/\,0,600\,/\,0,700\,/\,0,800\,/\,0\,\}.$$

Тогда матрица A_{R_l} значений функции принадлежности $\mu_{R_l}(x_l,x_2)$ отношения R_l примет следующий вид (используется импликация Мандини):

Аналогичным образом выполняются действия для правила K_2 . Нечеткая переменная p_{12} соответствует значению—терму лингвистической переменной LP_1 = «средняя»:

 $P_{12} = \{100/0, 200/0, 300/0, 5, 400/1, 500/1, 600/1, 700/0, 5, 800/0, 900/0, 1000/0\}.$

Нечеткая переменная p_{22} соответствует значению—терму лингвистической переменной LP_2 = «средний»: $P_{22} = \{300/0, 400/0, 500/1, 600/1, 700/0, 800/0\}$.

Тогда матрица A_{R_2} отношения R_2 имеет вид:

Аналогично для правила K_3 . Нечеткая переменная p_{13} соответствует значению LP_1 = «Большая». Нечеткая переменная p_{23} соответствует значению LP_2 = «Большой».

 $p_{13} = \{100/0, 200/0, 300/0, 400/0, 500/0, 600/0, 700/0, 5, 800/1, 900/1, 1000/1\};$

 $p_{23} = \{\,300\,/\,0,400\,/\,0,500\,/\,0,600\,/\,0,700\,/\,1,800\,/\,1\,\}.$

Определение значения «очень большая» ($\mu_{A_3}(x_I)$) $^2=\mu_{A_3'}(x_I)$ – операция концентрирования: $p'_{13}=\{100/0,200/0,300/0,400/0,500/0,600/0,700/0,25,800/1,900/1,1000/1\}.$

Определение значения «не очень большая» $(\mu_{A_i}(x_I) = 1 - \mu_{A_i}(x_I)$:

 $p'_{13} = \{100/1, 200/1, 300/1, 400/1, 500/1, 600/1, 700/0, 75, 800/0, 900/0, 1000/0\}.$

В результате агрегации матрица обобщающего отношения имеет вид:

Получение выходного значения B' в результате maxmin-ой композиции значения A' и отношения R .

$$p'_{23} = \{1 \ 1 \ 1 \ 1 \ 1 \ 0.75 \ 0 \ 0 \ 0\} \circ \begin{bmatrix} 1 \ 1 \ 0 \ 0 \ 0 \ 0 \\ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \\ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 0.5 \ 0.5 \ 0.5 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \end{bmatrix} =$$

 $=\{0,5; 0,5; 0,5; 0,5; 0,5; 0,5\}.$

Этап дефазификации по центру тяжести позволяет получить четкое значение размера буфера (в пакетах) по полученному НМ p'_{23} ($x_2^{\textit{чет}} = 550$).

3. Программа выполнения работы

- 3.1. Изучить теоретические положения аппарата выполнения операций теории нечетких множеств.
- 3.2. Определить способ представления значений нечетких переменных p_{1k} и p_{2s} ($k=\overline{I,3}$; $s=\overline{I,3}$), соответствующих значениям лингвистических переменных LP_1 —"интенсивность входного трафика" и LP_2 —"Размер буфера для хранения пакетов", в виде треугольных чисел (при учете, что универсальные множества X_1 и X_2 заданы следующим образом : $X_1 = [100,1000]$; $X_2 = [300,800]$). Реализовать программно способ представления значений нечетких переменных p_{1k} и p_{2s} (разработать соответствующую процедуру).
- 3.3. Для заданного по варианту нечеткого правила (из базы правил) K_i разработать процедуру определения отношения между значениями нечетких переменных p_{Ik} и p_{2s} (лингвистических переменных LP_I и LP_2), используя заданную по варианту функцию импликации.
- 3.4. Для заданного по варианту модификатора исходного значения нечеткой переменной p_{1k} (соответствующей лингвистический переменой LP_1), разработать процедуру определения измененного значения этой переменной.
- 3.5. Используя заданный по варианту способ выполнения операции композиции, разработать процедуру определения модифицированного значения нечеткой переменной p_{2s} (соответствующей лингвистической переменной LP_2). Разработать процедуру дефазификации полученного нечеткого значения (значения нечеткой переменной p_{2s}) с использованием метода центра тяжести.

- 3.6. Для введенной в рассмотрение базы правил разработать процедуру определения значений функции принадлежности отношений R_i ($i = \overline{1,3}$) для каждого из правил K_i ($i = \overline{1,3}$) (использовать для того заданную по варианту функцию импликации).
- 3.7. Разработать процедуру, выполняющую модификацию значения нечеткой переменной $p_{\it Ik}$ (соответствующего задаваемому по варианту значению лингвистической переменной LP_1), в которой применен способ модификации, заданный по варианту
- 3.8. Реализовать процедуру агрегации полученных отношений, с использованием полученного обобщенного (агрегированного) отношения определить модифицированное значение нечеткой переменной p_{2s} (переменной LP_2). С использованием разработанной ранее процедуры выполнить дефазификацию по методу центра тяжести полученного значения нечеткой переменной p_{Ik} .
- 3.9. Проанализировать полученные результаты и сделать выводы.

4. Методика выполнения работы

- 4.1. В среде программирования Visual Studio создать проект, в котором реализовать все определенные в пункте 3 настоящих методических указаний процедуры.
- 4.2. Реализовать выполнение программы, продемонстрировать результаты ее выполнения.
- 4.3. Полученные результаты выполнения программы включить в отчет
- 4.4. Оформить отчет, сделать выводы.

5. Задание на работу

При реализации задания на лабораторную работу рассматриваются лингвистические переменные, соответствующие параметрам процесса передачи данных через сетевое устройство: LP_I – "интенсивность входного трафика" и LP_2 – "Размер буфера для хранения пакетов". Множества значений лингвистических переменных LP_1 и LP_2 имеют вид:

 $NLP_1 = \{$ малая, средняя, большая $\}$, $NLP_2 = \{$ малый, средний, большой $\}$.

Универсальные множества X_1 и X_2 определены следующим образом: $X_1 = [100,1000]; X_2 = [300,800]$. Для получения значений аргументов x_1 и x_2 дискретизация заданных интервалов выполнена с шагом 100. Аппроксимация функций принадлежности для нечетких переменных p_{1k} и p_{2s} ($k=\overline{1,3}$; $s=\overline{1,3}$) выполнена с использованием аналитических выражений, форма записи которых соответствует треугольным числам. Способ задания переменных p_{1k} и p_{2s} определяется выражениями вида:

Для
$$p_{11}$$
:

$$\mu_{p_{II}}(x) = \begin{cases} \frac{400 - x}{400 - 100}, & 100 < x < 400; \\ 0, & 400 \le x; \end{cases}$$

Для
$$p_{12}$$
:
$$\mu_{p_{12}}(x) = \begin{cases} 0, & x \leq 300; \\ \frac{x-300}{600-300}, & 300 < x \leq 600; \\ \frac{800-x}{800-600}, & 600 < x < 800; \\ 0, & 800 \leq x; \end{cases}$$
 Для p_{13} :

Для p_{13} :

$$\mu_{p_{13}}(x) = \begin{cases} 0, & x \le 700; \\ \frac{x - 700}{1000 - 700}, & 700 < x < 1000; \\ 1, & 1000 \le x; \end{cases}$$
 Для p_{21} :
$$\mu_{p_{21}}(x) = \begin{cases} \frac{500 - x}{500 - 300}, & 300 \le x < 500; \\ 0 & 500 \le x; \end{cases}$$

$$\mu_{p_{2l}}(x) = \begin{cases} \frac{500 - x}{500 - 300}, & 300 \le x < 500, \\ 0 & 500 \le x; \end{cases}$$

Для
$$p_{22}$$

Для
$$p_{22}$$
:
$$\mu_{p_{22}}(x) = \begin{cases} 0, & x \le 400; \\ \frac{x - 400}{550 - 400}, & 400 < x \le 550; \\ \frac{700 - x}{700 - 550}, & 550 < x < 700; \\ 0, & 700 \le x; \end{cases}$$
Для p_{23} :
$$\mu_{p_{23}}(x) = \begin{cases} 0, & x \le 600; \\ \frac{x - 600}{800 - 600}, & 600 < x < 800; \\ 1, & 800 \le x; \end{cases}$$

$$\mu_{p_{23}}(x) = \begin{cases} 0, & x \le 600; \\ \frac{x - 600}{800 - 600}, & 600 < x < 800 \\ 1, & 800 \le x; \end{cases}$$

В лабораторной работе также используется введенная в теоретической части база правил следующего вида:

$$K_I$$
: если LP_I = "малая", то LP_2 = "малый"; K_2 : если LP_I = "средняя", то LP_2 = "средний"; K_3 : если LP_I = "большая", то LP_2 = "большой".

После того, как исходные данные для задания определены, необходимо сформулировать само задание, содержание которого будет зависеть от назначенного студенту варианта. Содержание вариантов заданий следующее.

Вариант 1.

- 1. В соответствии с правилом K_1 базы правил необходимо определить отношение между значениями нечетких переменных p_{1k} и p_{2s} (лингвистических переменных LP_1 и LP_2), используя импликатор Клина-Дейнела. После этого, используя модификатор "очень", определить значение нечеткой переменной p_{Ik} , соответствующей лингвистической переменной LP_I , для которого с использованием maxmin -ой композиции вычислить значение p_{2s} (соответствующее LP_2). Для полученного нечеткого значения переменной p_{2s} выполнить операцию дефазификации (с использованием метода центра тяжести).
- 2. Для введенной в рассмотрение базы правил выполнить определение значений функций принадлежности отношений R_i (i = 1,3) c использованием импликатора Мамдани. Для значения LP_I = "большая" применить модификатор "не очень", сформировать новое значение нечеткой переменной p_{2s} (лингвистической переменной LP_1). С использование агрегации полученных отношений определить модифицированное значение переменной p_{2s} , для которого выполнить дефазификацию по методу центра тяжести.

Вариант 2.

1. В соответствии с правилом K_2 базы правил необходимо определить отношение между значениями нечетких переменных p_{1k} и p_{2s} (лингвистических переменных LP_1 и LP_2), используя импликатор Лукасевича. После этого, используя модификатор "более менее", определить значение нечеткой переменной p_{1k} (лингвистической переменной LP_{1}), для которого с использованием maxmin-ой композиции вычислить значение p_{2s} . Для полученного нечеткого значения переменной p_{2s} (лингвистической переменной LP_{2}) выполнить операцию дефазификации (с использованием метода центра тяжести).

2. Для введенной в рассмотрение базы правил выполнить определение значений функций принадлежности отношений R_i ($i=\overline{1,3}$) с использованием импликатора Мамдани. Для значений LP_1 = "малая" и LP_1 = "средняя" применить модификатор "или", сформировать новое значение нечеткой переменной p_{1k} (лингвистической переменной LP_1). Выполнив предварительную агрегацию полученных отношений, определить модифицированное значение переменной p_{2s} (переменной LP_2), для которого выполнить дефазификацию по методу центра тяжести.

Вариант 3.

- 1. В соответствии с правилом K_3 базы правил необходимо определить отношение между значениями нечетких переменных p_{1k} и p_{2s} (лингвистических переменных LP_1 и LP_2), используя импликатор Мамдани. После этого, используя модификатор "не", определить значение лингвистической переменной LP_1 (нечеткой переменной p_{1k}) для которого с использованием maxmin-ой композиции вычислить значение p_{2s} (значение LP_2). Для полученного нечеткого значения переменной p_{2s} выполнить операцию дефазификации (с использованием метода центра тяжести).
- 2. Для введенной в рассмотрение базы правил выполнить определение значений функций принадлежности отношений R_i ($i=\overline{I,3}$) с использованием импликатора Лукасевича. Для значений $LP_I=$ "малая" и $LP_I=$ "средняя" применить модификатор "или", сформировать новое значение нечеткой переменной p_{Ik} (лингвистической переменной LP_I). Выполнив определение модифицированных значений нечеткой переменной p_{2s} на основе базы правил, реализовать агрегацию полученных результатов (обобщение результатов правил). Для полученного агрегированного значения переменной p_{2s} реализовать операцию дефазификацию по методу центра тяжести. Сравнить результаты пунктов 1 и 2.

6. Контрольные вопросы

- 6.1. Что означает понятие нечеткого множество, как оно интерпретируется для элементов универсального множества X.
- 6.2. Что представляют из себя простые правила нечеткого продукционного вывода.
- 6.3. Какие могут быть применены выражения для аналитического задания функций принадлежности.
- 6.4. Какие применяются выражения для реализации операции импликации для нечетких множеств.
- 6.5. Какие виды выражений используются для реализации операции композиции нечетких множеств.
- 6.6. Что означает модификация значений-термов лингвистических переменных, каковы способы выполнения этой модификации и способы вычисления модифицированных значений нечетких переменных для полученных новых значений-термов.
- 6.7. Какие могут быть применены способы агрегации при вычислении значений функций принадлежности результирующих значений нечетких переменных для совокупности продукционных правил.