

CZĄSTKI ELEMENTARNE I ODDZIAŁYWANIA

VII MODEL KWARKOWY

Agnieszka Obłąkowska-Mucha

http://home.agh.edu.pl/~amucha/ Katedra Oddziaływań i Detekcji Cząstek D11 p. 106

- Struktura protonu opisana została przy pomocy funkcji struktury $F_2(x,Q^2)$.
- Funkcja ta zależy od partonowej funkcji gęstości (PDF), jest czuła na elektromagnetyczną część protonu.
- PDF jest to gęstość prawdopodobieństwa znalezienia partonu o określonym pędzie przy skali wyznaczonej wartością Q².
- PDF jest również obliczana w oparciu o modele i porównywana z wynikami doświadczalnymi.
- Kwarki w protonie zachowują się jako elementarne, swobodne obiekty.
- Nie można ich obserwować jako swobodne cząstki, ponieważ są uwięzione w potencjale, którego wartość rośnie w miarę zwiększania odległości między kwarkami.

Model partonowy opisuje zatem hadrony w sposób dynamiczny, w zależności od transferu energii widać różne partony.

PARTONY = kwarki i gluony

R.Feynman 1969

Funkcję struktury wyznacza się przeważnie dla protonu (ale również fotonu).

Tymczasem odkrywane zostały nowe cząstki, w których widać było nowy rodzaj kwarków.

Równolegle do opisu językiem funkcji struktury rozwijany był Model Kwarkowy (M. Gell-Mann 1964) jako statyczny model budowy hadronów.

Trochę historii

- Lata 50-te: znana budowa jądra (protony, neutrony), rozpady i neutrina, teoria Yukawy, piony i miony, równanie Diraca i odkryte antycząstki.
 - 1947 obserwacja cząstek o dziwnych własnościach: powstawały w dużych ilościach i miały dlugi czas życia, stany neutralne rozpadały się na dwa piony, a naładowane na trzy piony:

$$K^0 \to \pi^+ + \pi^-$$

 $K^+ \to \pi^+ + \pi^+ + \pi^-$

W następnych latach w eksperymentach ze zderzeniami pion-proton obserwowano produkcję nowych stanów:

$$\pi^{+} + p \rightarrow K^{+} + \Sigma^{-}$$

$$\pi^{+} + p \rightarrow K^{0} + \Sigma^{0}$$

$$\pi^{+} + p \rightarrow K^{0} + \Lambda$$

- 1953 M.Gell-Mann, Nishijima wprowadzają nową liczbę kwantową, zwaną dziwnością (strangeness), która jest zachowana w oddziaływaniach silnych (a więc przy produkcji), ale nie jest zachowana w oddziaływanich słabych (co tłumaczy długie życie).
- Kaony mają s = +1, Λ ma s = -1, piony i protony: s = 0.
- Liczba nowych stanów rosła... Doprowadziło to ułożenia wszystkich znanych stanów w multiplety (M. Gell-Mann, Eightfold Way, 1961) na wzór tablicy Mendelejewa.
- Od tamtych czasów nie ma lepszego pomysłu. Ostanio poszukuje się cząstek "egzotycznych" ale nie ma na nie przekonujacych dowodów.

W rolach głównych

W latach 30-tych znane były: p, n, e, potem miony i piony oraz neutrina.

- Odkrycie cząstek, które powstały w oddz. silnych, ale żyły zbyt długo (10^{-8} - 10^{-9} s czas charakterystyczny dla rozpadów słabych), np: $\pi p \to K^0 \Lambda$ doprowadziło do hipotezy istnienia kwarka nowego rodzaju: dziwnego s i odkrycia wielu nowych stanów.
- Pojawiła się potrzeba ich klasyfikacji. Z trzech kwarków (u d s grupa SU(3)) można zbudować (w stanie podstawowym) 9 mezonów i 27 barionów:

$$q = \begin{cases} u & \text{mezony} \quad 3 \otimes \overline{3} = 1 \oplus 8 \\ d & \text{bariony} \quad 3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 10 \end{cases}$$

W połowie lat 60 obserwowana symetria w świecie znanych cząstek doprowadziła Gell-Manna i Zweig'a do hipotezy istnienia kwarków.

Schemat ułożenia znanych hadronów w "multiplety" opisany jest przez Kwarkowy Model hadronów.

Kwarki uważane były za obiekty czysto matematyczne, a ich funkcja falowa musiała odzwierci własności hadronów i zasady zachowania, jakim podlegają.

W Modelu Kwarkowym opisujemy hadrony składające się z trzech najlżejszych kwarków u, d i s.

Na początek zakłada się, że kwarki poruszają się z prędkościami nierelatywistycznymi.

Zakładając istnienie tylko trzech kwarków (u,d,s) można było wytłumaczyć całe spektrum.

Pomiędzy multipletami o różnej dziwności występuje (prawie) stała różnica mas, równa masie kwarka s

Różne stany ładunkowe mają niewielkie różnice mas (oddział. elektromagnetyczne.

Będziemy konstruować "Reguły gry", które tłumaczą takie ułożenie hadronów oraz brak około 9

barionów.

Jakie reguły (symetrie) pozwalają na takie uporządkowanie cząstek? 1964 Gell-Mall, Zweig – pomysł kwarków i modelu kwarkowego.

dziwność

Model Kwarkowy dla trzech kwarków (u,d,s):

- opisywał obserwowane stany i przewidywał nowe,
- wyjaśniał ułożenie hadronów w multiplety,
- pozwalał na konstrukcję funkcji falowej,
- dlaczego nie obserwujemy pojedynczego kwarka?

Klasyfikacja hadronów ze względu na SPIN (całkowity) J i parzystość P

Zakładając istnienie tylko trzech kwarków (u,d,s) można było wytłumaczyć całe spektrum.

Pomiędzy multipletami o różnej dziwności występuje (prawie) stała różnica mas, równa masie kwarka s

Różne stany ładunkowe mają niewielkie różnice mas (oddział. elektromagnetyczne.

Będziemy konstruować "Reguły gry", które tłumaczą takie ułożenie hadronów oraz brak około 9

barionów.

Istnienie hadronów z 4. kwarkiem zostało przewidziane teoretycznie (w przeciwieństwie do kwarka s).

Oszacowano jego masę na ok. 2 GeV.

I pokolenie	Q	masa	II pokolenie	Q	masa
u	+2/3	0.35 GeV	С	+2/3	1.5 GeV
d	-1/3	0.35 GeV	S	-1/3	0.5 GeV

Charm – liczba kwantowa c jest zachowana w oddz. silnych i elm, nie zachowana w słabych (podobnie jak s).

Najlżejsze MEZONY POWABNE to skalary $D^0(cu), D^+(cd), D_s^+(cs)$

Mezony "czarmowe" wektorowe mają taki sam skład kwarkowy, ale spiny kwarków ustawione są równolegle: $D^{*0}(cu)$, $D^{*+}(cd)$, $D_s^{*+}(cs)$

Rozpady czarmowych mezonów zachodzą poprzez oddziaływania słabe $\tau \sim 10^{-12}$ s, przeważnie na mezony dziwne (z kwarkiem s).

• Model Kwarków został rozszerzony o następne multiplety, ale zachwiana (złamana) została prosta struktura różnic mas (degeneracja mas, oddziaływania spin-spin i spin-orbita).

$$J^P = 1/2^+$$

$J^P = 3/2^+$

Co wiemy o spinach - ćwiczenie

• W przyrodzie możemy spotkać dwa rodzaje momentu pędu: jeden związany z ruchem jednego ciała z układu względem drugiego (orbitalny moment pędu *L*), drugi – z własnym obrotem ciała (spin *S*).

W mechanice klasycznej można zmierzyć jednocześnie wszystkie współrzędne momentu pędu.

W mechanice kwantowej można zmierzyć kwadrat długości momentu pędu i jedną współrzędną, przyjmuje się, że 3-cią współrzędną. Wynikiem są skwanowane wartości: $l(l+1)\hbar^2$ (dla operatora \hat{L}^2 i $m_l\hbar$ (gdzie $m_l=-l,-l+1...-1,0$, 1, ..., l-1,l) dla operatora \hat{L}_z .

Podobnie dla spinu – mierzymy S^2 i S_z , a wynikiem są odpowiednio: $s(s+1)\hbar^2$ i $m_s\hbar$ (gdzie $m_l=-s,-s+1...-1,0,1,...,s-1,s$), a $s=0,\frac{1}{2},1,\frac{3}{2},2,\frac{5}{2}...$).

Leptony, czy układ dwóch lub trzech kwarków mają określone spiny, ale moment pędu może przyjąć dowolną (byle skwantowaną) wartość.

$$\left|\frac{1}{2}\frac{1}{2}\right\rangle \left|\frac{1}{2}\frac{1}{2}\right\rangle = |1 1\rangle$$

Proszę znaleźć i zapisać pozostałe stany spinowe dwóch kwarków.

 Proszę określić, jaki może być całkowity moment pędu mezonów i barionów, które złożone są odpowiednio z dwóch i trzech kwarków.

Całkowity moment pędu cząstki jest to wektorowa suma jej spinu i momentu pędu: $\vec{J} = \vec{L} + \vec{S}$, ale jak dodajemy te wektory? W mechanice kwantowej nie znamy przecież wszystkich współrzędnych?

14

Stan o L = 0 – stan podstawowy,

wyższe L > 0 – wzbudzenia orbitalne

Całkowity moment pędu J:
$$\vec{J} = \vec{S} + \vec{L}$$
; $J = |L - S| ... |L + S|$

Spin S cząstki złożonej = całkowitemu momentowi pędu J w jej układzie spoczynkowym

$$(s, s_z), s = 0, \frac{1}{2}, 1, \frac{3}{2}, a s_z = -s, -s + 1, ..., s - 1, s$$

układ dwóch fermionów może być opisany za pomocą bazy:

$$|S = 1; S_3 = 1\rangle = \uparrow \uparrow$$

$$|S = 1; S_3 = 0\rangle = \frac{1}{\sqrt{2}}(\uparrow \downarrow + \downarrow \uparrow)$$

$$|S = 1; S_3 = -1\rangle = \downarrow \downarrow$$

$$|S = 0; S_3 = 0\rangle = \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow)$$
SINGLET, funkcja antysymetryczna

SINGLET, funkcja antysymetryczna

Spin układu dwóch fermionów

Nova baza, w której wektory będą stanami własnymi operatora permutacji: $P_{12} | s_1, s_2 \rangle = | s_2, s_1 \rangle$

$$P_{12} |s_1, s_2\rangle = |s_2, s_1\rangle$$

$$|1,1\rangle = |\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle = \uparrow \uparrow$$

$$|1,0\rangle = \frac{1}{\sqrt{2}}(|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle + |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle) = \frac{1}{\sqrt{2}}(\uparrow\downarrow + \downarrow\uparrow) \quad \text{(na zad sprawdzić!)}$$

$$|1,-1\rangle = |\frac{1}{2},-\frac{1}{2}\rangle |\frac{1}{2},-\frac{1}{2}\rangle = \downarrow \downarrow$$

$$|0,0\rangle = \frac{1}{\sqrt{2}}(|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle - |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle) = \frac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow)$$

stan antysymetryczny wzgl $1 \leftrightarrow 2$

MEZONY: dwa kwarki o s=1/2 i o ustawieniach:

$$\uparrow \uparrow$$
 $S = 1 i S_Z = \{+1,0,1\}$ TRYPLET $2 \otimes \overline{2} = 3 \oplus 1$
 $\uparrow \downarrow S = 0 i S_Z = 0$ SINGLET

Pomiar spinu cząstki:

1. pomiar przekrojów czynnych σ dla procesu typu $a + b \rightarrow c + d$. Zależy on od liczby dostępnych stanów spinowych:

$$\sigma(a+b\rightarrow c+d) \propto (2S_c+1)(2S_d+1)$$

2. mierząc rozkłady kątowe produktów jej rozpadu.

Całkowity moment pędu mezonów

Gdy L = 0 S = 0 mówimy o pseudoskalarach o J = 0,

Orbitalne wzbudzenia z L=1, to skalary o J=0 lub wektory aksjalne o J=1 lub J=2

	L	J
	0	0
S=0	1	1
	2	2
	0	1
S=1	1	0, 1, 2
	2	1, 2, 3

$$\vec{J} = \vec{S} + \vec{L}$$

$$J = |L - S| \dots |L + S|$$

Constituent-quark model

Operator parzystości przestrzennej

- Operator parzystości przestrzennej \widehat{P} powoduje inwersję osi układu współrzędnych.
 - Odwrócenie trzech osi odpowiada zmianie znaku jednej osi i obrotowi o 180°.
 - Nazywana również odbiciem zwierciadlanym.

Inwersja przestrzenna - def:
$$\widehat{P} \Psi(\vec{r}) = \Psi(-\vec{r})$$

Dla stanów własnych: $\widehat{P} \Psi(\vec{r}) = p \Psi(\vec{r})$
 $\Psi(-\vec{r}) = p \Psi(\vec{r})$

Dla stanów własnych:
$$\widehat{P} \Psi(\vec{r}) = p \Psi(\vec{r})$$

A jak jeszcze raz:
$$\widehat{P} \Psi(-\vec{r}) = p^2 \Psi(\vec{r}) \quad \Psi(\vec{r}) = p^2 \Psi(\vec{r})$$

stąd parzystość:
$$p = \pm 1$$

Stan własny operatora \hat{P} , jest to wewnętrzna parzystość cząstki p.

Dla układu parzystość (wewnętrzna) jest multiplikatywną liczbą kwantową:

$$\Psi(AB) = \Psi(A)\Psi(B)$$

- Będziemy sprawdzać, czy parzystość jest zachowana w oddziaływaniach (tzn, czy \widehat{P} komutuje z H):
 - \widehat{P} jest zachowane w oddz. silnych i elektromagnetycznych,
 - \widehat{P} nie jest zachowana w oddz. słabych.
- Harmoniki sferyczne mają dobrze określoną parzystość $p = (-1)^l$: (zad)

Parzystość mezonów

Parzystość układu kwantowego zależy od parzystości ruchu względnego i parzystości składników.

Układ 2 cząstek z krętem L ma parzystość $P = P_1 P_2 (-1)^L$

$$P_{Tot} = P_{wew} P_{wzgl}$$

- Zakł, że fermiony i antyfermiony maja przeciwne parzystości, (kwarki i leptony +1) Bozony i antybozony – te same parzystości, (foton, inne bozony pośredniczące -1)
- Zatem para kwark antykwark ma parzystość $(+1)(-1)(-1)^L = (-1)^{L+1}$

- Parzystość wewn. protonu przyjmujemy P = +1.
- Innych cząstek liczymy lub wyznaczamy dośw.

	L	J	P	J ^P
	0	0	-1	0 —
S=0	1	1	+1	1+
	2	2	-1	2 –
	0	1	-1	1 –
S=1	1	0, 1, 2	+1	0+, 1+, 2+
	2	1, 2, 3	-1	1-,2-,3-

Operator sprzężenia ładunkowego

Sprzężenie ładunkowe, zmienia znak ładunku i momentu magnetycznego (zależy od ładunku) na przeciwny. Spin bez zmiany.

Operator sprzężenia ładunkowego C, działając na funkcję falową, przyporządkowuje jej funkcję falową antycząstki:

 $\widehat{\boldsymbol{C}}|f\bar{f}\rangle = \eta_C|\bar{f}f\rangle$

 $\widehat{\mathbf{C}}|f\bar{f}\rangle = (-1)^{l+s}|f\bar{f}\rangle$

def:
$$\widehat{C} \psi = \overline{\psi}$$

dla stanów własnych:
$$\widehat{\boldsymbol{c}}|\psi(p,\lambda)\rangle = \eta_{c}|\psi(p,\lambda)\rangle$$

powtórne działanie operatorem:
$$\hat{C}\hat{C}|\psi\rangle = \eta_C\hat{C}|\bar{\psi}\rangle = \eta_C\eta_C|\psi\rangle$$

wartości własne:
$$\eta_C = \pm 1$$

Operator \hat{c} zmienia cząstkę (nawet elektrycznie obojętną) w jej antycząstkę. Jeżeli stan danej cząstki (jej funkcja falowa) jest stanem własnym \hat{c} , to cząstka = antycząstka Stanami własnymi \widehat{c} są tylko obojętne bozony.

Układ cząstka-antycząstka jest stanem własnym \hat{c} . W dodatku działanie \hat{c} jest takie samo, jak \hat{P} : czyli zamienia fermiony miejscami...

positive charge negative charge jeżeli:
$$|\bar{q}q\rangle = |\bar{q}q\rangle \ \ \text{to} \ \ \eta_C = +1$$

 $|\bar{q}q\rangle = -|\bar{q}q\rangle$ to $\eta_C = -1$

$$\hat{C}(\pi^{0}) = +(\pi^{0})$$

$$\hat{C}(\gamma) = -(\gamma)$$

$$\hat{C}(e^{-}) = (e^{+})$$

mezon	S	L	J	P	J PC	np
pseudosklarny	0	0	0	-1	0-+	π^0
pseudowektorowy	0	1	1	+1	1+-	h ₁
	0	2	2	-1	2-+	η_2
wektorowy	1	0	1	-1	1	ϱ^0
skalarny wektor aksjalny tensorowy	1	1	0, 1, 2	+1	0 ⁺⁺ 1 ⁺⁺ 2 ⁺⁺	$egin{array}{c} a^0 \\ a_1 \\ f_2 \end{array}$

Notacja spektroskopowa: ${}^{2S+1}L_J$

Stany L= 0, 1, 2, 3 oznaczamy jako S, P, D, F,

np. dla L=0, ${}^{1}S_{0}$ lub ${}^{3}S_{1}$

$$\hat{P}(\vec{p}) = \hat{P}(m \ d\vec{r}/dt) = -\vec{p}$$
 wektor $\hat{P}(\vec{M}) = \hat{P}(\vec{r} \times \vec{p}) = (-\vec{r}) \times (-\vec{p}) = \vec{M}$ pseudowektor

Operator permutacji

Rozważmy układ nierozróżnialnych cząstek.

Działanie operatora zamiany miejscami dwóch cząstek (operator permutacji):

Def:
$$\hat{P} \psi(1,2) = \psi(2,1)$$

Równanie własne: $\widehat{P} \psi(1,2) = \eta_P \psi(1,2)$

działamy drugi raz:
$$\widehat{P}$$
 \widehat{P} $\psi(1,2) = \widehat{P}$ η_P $\psi(2,1) = \eta_P \eta_P \psi(1,2)$

$$\psi(1,2) = \eta_P^2 \ \psi(1,2)$$

$$\eta_p = \pm 1$$

wartości własne: $\eta_P = +1$ dla bozonów, czyli funkcja własna jest symetryczna; $\eta_P = -1$ dla fermionów, funkcja własna - antysymetryczna

Stany złożone z nierozróżnialnych cząstek opisywane są tylko takimi kombinacjami liniowymi funkcji, falowych, które nie zmieniają właściwości symetrii względem permutacji (zamiany) par cząstek

Symetria przestrzenna funkcji falowej

gdy są blisko siebie:
$$\overrightarrow{r_1} = \overrightarrow{r_2} = \overrightarrow{r}$$

i podziałamy na fcje falową operatorem permutacji:

$$\widehat{P}\,\psi(\vec{r},\vec{r}) = -\psi(\vec{r},\vec{r}) = \psi(\vec{r},\vec{r})$$

to warunek jest możliwy do spełnienia, gdy: $\psi(\vec{r}, \vec{r}) = 0$

Dwa nierozróżnialne fermiony nie mogą przebywać w tym samym miejscu (zakaz Pauliego).

Jakie są własności symetrii f. falowej opisującej zbiór identycznych fermionów względem zamiany współrzędnych dowolnej pary?

Taka zamiana nie zmienia stanu kwantowego, czyli wartości $|\Psi|^2$.

Zatem funkcja falowa fermionów (część przestrzenna) powinna być antysymetryczna, $\Psi \rightarrow -\Psi$, a bozonów - symetryczna $\Psi \rightarrow \Psi$.

$$\psi(\overrightarrow{r_1}, \overrightarrow{r_2}; S_1, S_2) = \phi(\overrightarrow{r_1}, \overrightarrow{r_2}) \alpha(S_1, S_2)$$

Fcja falowa dwóch fermionów musi być antysymetryczna względem zamiany ich miejscami, spinowe stany singletowe mają symetryczną część przestrzenną, trypletowe- antysymetryczną (zad.)

Funkcja falowa hadronów

Pełna funkcja falowa hadronów:

$$\Psi$$
(pełna) = ϕ (przestrzenna) α (spinowa) χ (zapachowa) η (kolorowa)

"zamiana miejscami"

ustawienie spinu kwarków

kwarki: u, d, s

kwarki mogą być w trzech kolorach

Co to właściwie znaczy, że hadrony zbudowane są z kwarków?

Funkcje falową hadronów buduje się z funkcji falowej kwarków.

Oznaczymy:
$$|u\rangle \equiv \Psi_u$$
; $|p\rangle \equiv \Psi_p$, to: $|p\rangle \equiv |uud\rangle$

Ale czasem trudniej: $|\pi^0\rangle = \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d})$ - złożone kombinacje funkcji falowych kwarków

Np., gdy mezony mają być neutralne kolorowo to: $\eta(kolor) = \frac{1}{\sqrt{3}}(r\overline{r} + g\overline{g} + b\overline{b})$

Inne reguły i symetrie stawiają dodatkowe ograniczenia na postać funkcji falowej.

Funkcja falowa hadronów – część flavorowa

 $m(u) \sim 0.3 \text{ GeV}$

 $m(d) \sim 0.3 \ GeV$

 $m(s) \sim 0.5 \text{ GeV}$

 $\chi(zapachowa) \propto |uds\rangle$

Kwarki są uwięzione w mezonach $q\bar{q}$ (9 cząstek)

lub w barionach qqq - 27 stanów?

Stany spinowe układu trzech kwarków

BARIONY: trzy kwarki

111
$$S = \frac{3}{2}$$
 i $S_Z = \left\{ +\frac{3}{2}; +\frac{1}{2}; -\frac{1}{2}; -\frac{3}{2} \right\}$

$$\uparrow \uparrow \downarrow S = \frac{1}{2} \text{ i } S_Z = \left\{ +\frac{1}{2}; -\frac{1}{2} \right\}$$

$$\uparrow \downarrow \downarrow S = -\frac{1}{2} \text{ i } S_Z = \left\{ +\frac{1}{2}; -\frac{1}{2} \right\}$$

$$2 \otimes 2 \otimes 2 = 4 \oplus 2 \oplus 2$$

Jak skonstruować funkcję o wymaganej symetrii? Skoro mamy $\psi(1,2)$, która spełnia RS, to funkcja $\psi(2,1)$ również musi je spełniać. A zatem:

$$\psi_{sym} = A\{\psi(1,2) + \psi(2,1)\}$$

$$\psi_{antysym} = A\{\psi(1,2) - \psi(2,1)\}$$

Sprawdzamy!

Funkcja falowa hadronów

- dla mezonów symetryczna wzgl. zamiany kwarków,
- dla barionów antysymetryczna.

$$\Psi(\vec{q}) = \phi(\vec{r}) \alpha(s) \chi(zapach) \eta(kolor)$$

Część opisująca zapach – jest symetryczna (bo hadrony są neutralne kolorowo)

$$\eta(kolor) = \frac{1}{\sqrt{3}}(r\overline{r} + g\overline{g} + b\overline{b})$$

Pozostała część funkcji – iloczyn części spinowej i zapachowej musi mieć dobrze określoną symetrię.

Żmudna procedura prowadzi do np:

$$|p\uparrow\rangle = \frac{1}{\sqrt{18}}(2u\uparrow u\uparrow d\downarrow - u\uparrow u\downarrow d\uparrow - u\downarrow u\uparrow d\uparrow + 2u\uparrow d\downarrow u\uparrow - u\uparrow d\uparrow u\downarrow - u\downarrow d\uparrow u\uparrow + 2d\downarrow u\uparrow u\uparrow - d\uparrow u\downarrow u\uparrow - d\uparrow u\uparrow u\uparrow)$$

Warunki symetrii ograniczają liczbę najlżejszych barionów do 18 stanów (oktet i dekuplet), chociaż teoretycznie mogłoby ich występować 27!

- opisywał obserwowane stany i przewidywał nowe,
- wyjaśniał ułożenie hadronów w multiplety,
- pozwalał na konstrukcję funkcji falowej,
- dlaczego nie obserwujemy pojedynczego kwarka?

Baryon angular momentum quantum numbers for L = 0, 1, 2, 3

Baryon angular momentum quantum numbere for E = 0, 1, E, 0						
Spin (S)	Orbital angular momentum (L)	Total angular momentum (<i>J</i>)	Parity (<i>P</i>) (See below)	Condensed notation (J ^P)		
	0	1/2	+	1/2+		
1/2	1	³ / ₂ , ¹ / ₂	_	3/2-, 1/2-		
/2	2	5/2, 3/2	+	5/2+, 3/2+		
	3	⁷ / ₂ , ⁵ / ₂	-	7/2-, 5/2-		
	0	³ / ₂	+	3/2+		
³ / ₂	1	⁵ / ₂ , ³ / ₂ , ¹ / ₂	-	5/2-, 3/2-, 1/2-		
	2	7/2, 5/2, 3/2, 1/2	+	⁷ / ₂ ⁺ , ⁵ / ₂ ⁺ , ³ / ₂ ⁺ , ¹ / ₂ ⁺		
	3	9/2, 7/2, 5/2, 3/2	-	9/ ₂ -, ⁷ / ₂ -, ⁵ / ₂ -, 3/ ₂ -		

Poszukiwaniem i badaniem różnych stanów zajmuje się SPEKTROSKOPIA

1964 – Model Kwarków – izospin pochodzi od podobnej masy kwarków u i d, cząstki z nich zbudowane mają podobne masy, a różnią się jedynie ładunkiem u(+2/3), d(-1/3), np.:

$$\begin{cases} N^{+}(p) = |uud\rangle & m \sim 1 \text{ GeV} \\ N^{0}(n) = |udd\rangle & m_{n} - m_{p} = 939.6 \text{ MeV} - 938.3 \text{ MeV} = 1.3 \text{ MeV} \end{cases}$$

$$\begin{cases} \pi^{+} & u \, \bar{d} \\ \pi^{0} & 1/\sqrt{2}(u \, \bar{u} - d \, \bar{d}) \\ \pi^{-} & \bar{u} \, d \end{cases} m \sim 140 \, \text{MeV} \qquad I = 1; \ I_{3} = \begin{cases} +1 \\ 0 \\ -1 \end{cases}$$

BARIONY:

Na podobieństwo spinu można napisać stany nukleon-nukleon:

$$|I = 1; I_3 = 1\rangle = pp,$$

 $|I = 1; I_3 = 0\rangle = \frac{1}{\sqrt{2}}(pn + np),$
 $|I = 1; I_3 = -1\rangle = nn,$

$$|I=0; I_3=0\rangle = \frac{1}{\sqrt{2}}(pn-np),$$

Oddziaływania silne zachowują izospin *I* i nie rozróżniają I_3 (nie rozróżniają między n a p). Nie wszystkie oddziaływania zachowują opisane liczby kwantowe

$$\pi^- + p \rightarrow \pi^0 + n$$

Model kwarkowy – widmo mas

Nierelatywistyczny model kwarkowy:

1. Energia kinetyczna kwarków o wiele mniejsza niż ich masy spoczynkowe.

Założenie to jest poprawne dla stanów kwarków powabnych i pięknych (c i b).

Dla stanów lekkich kwarków (u, d, s) czasem daje dobre wyniki.

2. Rozwiązanie równania Schrödingera z potencjałem oddziaływania kwark-kwark (QCD)

$$V(r) = \frac{a}{r} + br$$

a/r – człon typu kulombowskiego, wynika z oddz. między dwoma kwarkami przez wymianę gluonu, dominuje dla małych r,

br – człon liniowy uwzględniający uwięzienie kwarków w hadronach; dominuje dla dużych r.

FAKTY doświadczalne:

- 1. $m(\rho^+) > m(\pi^+)$ (770 MeV vs 140 MeV), a ten sam skład {u -anty d}
 - mezony te różnią się orientacją spinów: ↑↑ S=1 i S=0 ↑↓ (oddz. spin-spin)

3. oddz. pomiędzy kwarkami a gluonami (kolorowe $\sim \alpha_s$)

Przyczynki do mas hadronów:

- 1. Masy konstytuentne kwarków (liczone jako ułamek masy hadronu masa z oddziaływaniem),
- 2. Efekty związane z kulombowskim oddz. kwarków (rzędu 1-2 MeV),
- 3. Rozszczepienie nadsubtelne:
 - oddz. momentów magnetycznych ($\Delta m = 1-2 \text{ MeV}$),
 - kolorowe oddz. magnetyczne przesunięcie poziomów energetycznych dla kwarków.
 Formuła masowa (A- stała):

$$M_{q\bar{q}} = m_1 + m_2 + A \frac{\overrightarrow{S_1} \cdot \overrightarrow{S_2}}{m_1 m_2}$$

A co z masą barionów?

2 ++

kwark	masa prądowa [MeV]	masa konstytuentna [MeV]		
u	1.5-3.3	330		
d	3,5-6	330		
S	80-130	500		
С	1150-1350	1600		
b	4100-4400	4200		
t	170 900	171 000		

masa kostytuentna =
masa prądowa
+ pole gluonowe

np proton: m=938 MeV "goła" masa 3 kwarków = 11 MeV Gluony są bezmasowe, ale przenoszą energię.

Dla lekkich kwarków m prądowa < m konstytuentnej.

Dla ciężkich kwarków – wynik zależy od skali i przyjętych modeli.

	masa obliczona [MeV]	masa zmierzona [MeV]	
π	140	138	mezony skalarne
K	484	496	mezony skarame
ρ	780	770	
ω	939	939	
Λ	1116	1114	wektorowe
Σ	1193	1179	

- Energia kinetyczna kwarków o wiele mniejsza niż ich masy spoczynkowe.
 - Założenie to jest poprawne dla stanów kwarków powabnych i pięknych (c i b).
 - Dla stanów lekkich kwarków (u, d, s) czasem daje dobre wyniki.
- Model kwarkowy może uporządkować mezony i bariony w multiplety.
- Model kwarkowy przewiduje masy i momenty magnetyczne hadronów (zgadza się z dośw.)
- Model kwarkowy musi zostać rozszerzony po odkryciu cięższych kwarków.

Model Kwarków został rozszerzony o następne multiplety, ale zachwiana (złamana) została prosta struktura różnic mas (degeneracja mas, oddziaływania spin-spin i spin-orbita).

$$J^P = 1/2^+$$

$J^P = 3/2^+$

