Along x axis $\Sigma F_x = 0$

 $R_{Ax} + 5kN = 0$

 $=>R_{Ax}=-5kN$

Along y axis $\Sigma F_y = 0$

 $R_{Ay} + R_{Cy} - 5kN = 0$ (1)

Moment along A ΣM_A =0

 $5kN*2cos(30^{\circ}) + 5kN*1 - R_{Cy}*2 = 0$

=> R_{Cy} =6.83kN(2)

 R_{Ay} =-1.83kN {putting (2) in (1)}

At A balancing forces:-

Along y axis $\Sigma F_v = 0$

 $F_{AB}sin(60^{0})+V_{a}=0$

 $=> F_{AB}=- R_{Ay}/\sin(60^{\circ}) = 2.11kN$

 $=>F_{AB}=2.11kN$

Along x axis $\Sigma F_x = 0$

 $F_{AB}\cos(60^{\circ}) + F_{AD} + R_{Ax} = 0$

=> F_{AD}=-3.945kN

At C balancing Forces:-

Along y axis $\Sigma F_y=0$

 $F_{BC}sin(60^{0}) + R_{Cy} = 0$

 $=> F_{BC}=- R_{Cy} / \sin(60^{\circ}) = -7.88 kN$

 $=> F_{BC}=-7.88kN$

Along x axis $\Sigma F_x = 0$

 $F_{BC}\cos(60^{\circ})+F_{DC}=0$

 $=> F_{DC} = -F_{BC}/2 = 3.94 \text{kN}$

 $=> F_{DC} = 3.94kN$

ME21BTECH11001

Abhishek Ghosh