Algorithm Design and Analysis

บทที่ 10

Network flow Part II

Ford-Fulkerson Augmenting Path Algorithm

```
while(there exists an augmenting path){
     Find augmenting path P
     Compute bottleneck capacity of P
    Augment flow along P
คำถาม
O:การทำเช่นนี้ทำให้ได้ max flow ใช่หรือไม่
A: ใช่
```

Ford-Fulkerson Algorithm: Analysis

Assumption: ให้ความจุมีค่าเป็นจำนวนเต็ม

ในแต่ละรอบการทำงานจะมีการหา st-path ซึ่งใช้เวลาในการ ทำงาน O(N+M)

เราจะส่ง flow อย่างน้อย 1 หน่วยผ่าน path นี้

ถ้า max-flow มีค่าเป็น f* แล้วเวลาในการทำงานของ อัลกอริทึมมีค่าเป็น O((N+M)*|f*|)

Choosing Good Augmenting Path

residual graph

Choosing Good Augmenting Path

residual graph

Choosing Good Augmenting Path

residual graph

Choosing Good Augmenting Path

residual graph

8

Choosing Good Augmenting Path

ควรระวังในการเลือก augmenting path

- การเลือกบางวิธีทำให้ได้ exponential algorithm
- การเลือกบางวิธีทำให้ได้ polynomial algorithm

ออกแบบรูปแบบของ augmenting path ที่อยากได้

- หา augmenting path ได้อย่างมีประสิทธิภาพ
- ทำจำนวนรอบที่น้อย

เลือก augmenting path ด้วยวิธี

- lช้จำนวนเส้นเชื่อมที่น้อยที่สุด (shortest path)
- เลือกเส้นที่ bottleneck capacity ใหญ่สุด (fattest path)

Shortest augmenting path

หาได้ง่าย สามารถใช้ BFS ได้

หา augmenting path ที่มีจำนวนเส้นเชื่อมน้อยที่สุด

ในแต่ละรอบความยาวของ shortest augmenting path จะ เพิ่มขึ้น

- ความยาวเพิ่มไม่เกิน E
- ไม่เกิน EV augmenting path ทั้งหมด
- ▶ ดังนั้นเวลาในการทำงานเป็น O(E²V)

Fattest augmenting path

หา augmenting path ที่มี bottleneck capacity ที่มีค่ามาก ที่สุด

ส่ง flow ไปยัง sink

solve โดยใช้ dijkstra-style (Priority-first search) algorithm

การหา fattest path ใช้ O(E log V) ต่อการ augment โดย ใช้ binary heap

การหา min-cut

- เรารู้ว่า max flow min cut
- ตอนนี้เรารู้วิธีการหา max flow

Q: เราจะหา min-cut ได้อย่างไร

A: เราจะใช้ residual graph

การหา min-cut

🔲 เราจะลบ max flow ออกจาก original graph

แสดงแค่ topology ของ residual graph อย่าลืมเพิ่มเส้นย้อนกลับ

การหา min-cut _{จาก} topology ของ residual grap

- umark ทุกโหนดที่ไปถึงจาก s
 - เรียก set ของโหนดที่ไปถึงจาก s ว่า A

แยกโหนดเหล่านี้ออกจากกลุ่ม เส้นเชื่อมที่วิ่งจาก A ไปยัง V-A คือ cut นั่นเอง

การหา min-cut

พิจารณาใน original graph เพื่อให้ cut

Contents

- Disjoint paths
- Network connectivity
- Bipartite matching
- Vertex cover

Disjoint Paths

Disjoint path network: G=(V,E,s,t)

- 💶 กราฟแบบมีทิศทาง (V,E) source s และ sink t
- Path 2 path จะเป็น edge-disjoint path ถ้าทั้งสอง path นั้นไม่มีการใช้เส้นเชื่อม (edge) ที่เหมือนกันเลย

Disjoint path problem: ต้องการหา edge-disjoint s-t
 path จำนวนมากที่สุด

Application ที่นำไปใช้ได้แก่ เครือข่ายการติดต่อสื่อสาร

Disjoint Paths

อ. ดร. จักริน ชวชาติอ. เบญจมาศ ปัญญางาม

Disjoint Paths

เราจะแก้ปัญหานี้ได้อย่างไร

มีเงื่อนไขว่าเส้นเชื่อมหนึ่งเส้นถูกใช้ได้เพียงครั้งเดียว

เส้นเชื่อมที่เลือกต้องต่อกันเป็น path มีวิธีการอะไรคล้ายไหม

เราพบว่าปัญหา Max-flow คล้าย เพราะว่ามีการส่ง flow จาก s ไป t ซึ่งการส่ง flow ต้องต่อเนื่องกัน

เราจะเปลี่ยนไปเป็นปัญหา Max-flow นั้นต้องมีการปรับอะไรบ้าง เพิ่มอะไรบ้าง หรือลดอะไรบ้าง

Max-flow formulation

กำหนดให้แต่ละเส้นเชื่อมมีความจุ 1 หน่วยทุกเส้นเชื่อม

จากนั้นใช้ Max-flow algorithm ในการแก้ปัญหา

คำถาม ถ้า Max-flow algorithm หาคำตอบได้ k หน่วยแสดงว่ามี edgedisjoint paths กี่ path

Disjoint Paths Problem & Max Flow Problem

Theorem

มี k edge-disjoint paths จาก s ไป t ก็ต่อเมื่อ max flow มีค่าเป็น k

Network Connectivity

Network connectivity network: G=(V, E, s, t)

- 💶 กราฟแบบมีทิศทาง (V,E) source s และ sink t
- □ เซตของเส้นเชื่อม $F \subseteq E$ ที่ตัดการเชื่อมต่อ (disconnect) ระหว่าง t กับ s ถ้าทุกๆ s-t paths ใช้อย่างน้อย 1 เส้น เชื่อมใน F

Network connectivity: หาจำนวนเส้นเชื่อมที่น้อยที่สุดที่เมื่อ เอาเส้นเชื่อมออกแล้วจะตัดการเชื่อมต่อระหว่าง t กับ s

Input

Network Connectivity

ข้อสังเกต จำนวนของเส้นเชื่อมที่ต้องเอาออกมีค่าเท่ากับอะไร จำนวนของ edge-disjoint s-t path

Theorem (Menger's Theorem)
จำนวนของ edge-disjoint s-t paths ที่มากที่สุด
จะเท่ากับ จำนวนของเส้นเชื่อมที่น้อยที่สุดที่ตัดการเชื่อมต่อ
ระหว่าง s กับ t

Matching

Matching

- □ Input: กราฟแบบไม่มีทิศทาง G=(V,E)
- M ⊆ Eเป็น matching ถ้าแต่ละโหนดปรากฏอยู่ในเส้นเชื่อม M ไม่เกิน 1
 ครั้ง

Max matching: หาจำนวนของ matching ที่มากที่สุด

Bipartite matching

- 💶 🛮 Input: กราฟแบบไม่มีทิศทาง G=(L U R,E)
- M ⊆ Eเป็น matching ถ้าแต่ละโหนดปรากฏอยู่ในเส้นเชื่อม M ไม่เกิน 1
 ครั้ง

Max matching: หาจำนวนของ matching ที่มากที่สุด

Bipartite matching

- 💶 🛮 Input: กราฟแบบไม่มีทิศทาง G=(L U R,E)
- M ⊆ Eเป็น matching ถ้าแต่ละโหนดปรากฏอยู่ในเส้นเชื่อม M ไม่เกิน 1
 ครั้ง

Max matching: หาจำนวนของ matching ที่มากที่สุด

Max flow formulation

- □ สร้างกราฟแบบมีทิศทาง G'=(L U R U {s,t},E')
- กำหนดทิศทางจาก L ไป R โดยให้ capacity เป็น infinity
- เพิ่ม source s และเพิ่มเส้นเชื่อมแบบมีทิศทางความจุ 1 หน่วย
 จาก s ไปยังแต่ละโหนดใน L
- เพิ่ม sink t และเพิ่มเส้นเชื่อมแบบมีทิศทางความจุ 1 หน่วยจาก
 แต่ละโหนดใน R ไปยัง t

Max flow formulation

Bipartite Matching

flow f ที่มีค่า k ใน G'จะทำให้ได้ matching ขนาด k ใน G

กำหนดกราฟแบบมีทิศทาง G=(V,E)

vertex cover คือ subset ของ vertices $C \subseteq V$ ที่ ทุกเส้น เชื่อม $(v,w) \in E$ มี $v \in C$ หรือ $w \in C$ หรือทั้งคู่

กำหนดกราฟแบบมีทิศทาง G=(V,E)

vertex cover คือ subset ของ vertices $C \subseteq V$ ที่ ทุกเส้น เชื่อม $(v,w) \in E$ มี $v \in C$ หรือ $w \in C$ หรือทั้งคู่

ข้อสังเกต ให้ M เป็น matching และให้ C เป็น vertex cover เรา สังเกตได้ว่า |M| < |C|

แต่ละ vertex สามารถ cover ได้ไม่เกิน 1 เส้นเชื่อมใน matching

Matching

1-b,3-a,4-e

Konig-Egervary Theorem: ใน bipartite undirected graph, จำนวนของ matching ที่มากที่สุดจะเท่ากับจำนวนของ vertex cover ที่น้อยที่สุด

$$M*={1-a,2-b,3-c,5-e}$$

$$|M^*| = 4$$

$$C^*=\{a,b,3,e\}$$

$$|C^*| = 4$$