PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵:
A01N 43/04, A61K 31/70, C07H 17/00, C07K 3/00, 13/00, 15/00, 17/00, C12N 5/00, 15/00, C12P 21/06

(11) International Publication Number:

WO 95/02328

(43) International Publication Date:

26 January 1995 (26.01.95)

(21) International Application Number:

PCT/US94/07926

(22) International Filing Date:

15 July 1994 (15.07.94)

(30) Priority Data:

08/091,941 15 July 1993 (15.07.93) US 08/097,354 26 July 1993 (26.07.93) US

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK, LU, LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(71) Applicants: INDIANA UNIVERSITY FOUNDATION [US/US]; Showalter House, Bloomington, IN 47402 (US). INCYTE PHARMACEUTICALS, INC. [US/US]; 3330 Hillview Avenue, Palo Alto, CA 94304 (US).

(72) Inventors: TISCHFIELD, Jay, A.; 9982 Mill Run, Carmel, IN 46043 (US). SEILHAMER, Jeffrey, J.; 12555 LaCresta Drive, Los Altos Hills, CA 94022-2510 (US).

(74) Agents: MANSO, Peter, J. et al.; Holland & Knight, One East Broward Boulevard, P.O. Box 14070, Fort Lauderdale, FL 33302 (US).

Published

With international search report.

(54) Title: MAMMALIAN LOW MOLECULAR WEIGHT PHOSPHOLIPASE A2 NUCLEOTIDE AND AMINO ACID SEQUENCES

(57) Abstract

Novel mammalian phospholipase (PLA₂) nucleotide sequences and low molecular weight (about 14 KD) amino acid sequences encoded thereby are disclosed. More particularly, a cloned human HPLA₂ cDNA expressing HPLA₂-10 and its cloned rat RPLA₂ cDNA counterpart, expressing RPLA₂-10, which are characterized as PLA₂ Type IV, are disclosed. A second type of PLA₂ cDNA, characterized as PLA₂ Type III and exemplified by a rat PLA₂ cDNA encoding RPLA₂-8 and a partial human PLA₂ nucleotide sequence encoding HPLA₂-8, is disclosed. Expression of the cDNAs encode the two new types of PLA₂ enzymes which have phospholipase activity. The novel PLA₂s do not include disulfide bridges between cysteine amino acids 11 and 77 or elapid loops. However, the novel PLA₂s may include amino acid COOH-terminal extensions which can vary in length. Seventeen of the eighteen absolutely conserved amino acids in all active 14 KD PLA₂s are believed to be conserved in RPLA₂-8 and HPLA₂-8, whereas all eighteen are believed to be conserved in RPLA₂-10 and HPLA₂-10. Because the encoded sequences of RPLA₂-8 and HPLA₂-8 include only 16 cysteine amino acids, they have been designated as Type III. RPLA₂-10 and HPLA₂-10 are designated as Type IV since their encoded sequences include only 12 cysteine amino acids.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria				
		GB	United Kingdom	MIR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	Π	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	u	Liechtenstein	SN	
CN	China	LK	Sri Lanka	TD	Senegal
CS	Czechoslovakia	LU	Luxembourg		Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC		TJ	Tajikistan
DK	Denmark		Monaco	TT	Trinidad and Tobago
ES		MD	Republic of Moldova	UA	Ukraine
-	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				-

MAMMALIAN LOW MOLECULAR WEIGHT PHOSPHOLIPASE A2 NUCLEOTIDE AND AMINO ACID SEQUENCES

This application is a continuation in part of U.S. Serial No. 08/091,941, filed July 15, 1993, entitled MAMMALIAN PHOSPHOLIPASE A₂ NUCLEOTIDE SEQUENCES AND LOW MOLECULAR WEIGHT AMINO ACID SEQUENCES ENCODED THEREBY.

Field of the Invention

The present invention relates to novel mammalian phospholipase A₂ nucleotide sequences, low molecular weight (approximately 14KD) amino acid sequences encoded thereby, clones and vectors which include the mammalian phospholipase A₂ nucleotide sequences, antisense nucleotide sequences complementary to the genes and mRNA transcripts encoding for the phospholipase amino acid sequences, nucleotide sequences having internal ribosome binding sites which allow for internal initiation of mRNA cap-independent translation, and cell lines.

20 Background

Phospholipase A_2s - phosphatide 2-acylhydrolase, EC 3.1.1.4 (hereinafter "PLA2") constitute a diverse family of enzymes that hydrolyze the sn-2 fatty acyl ester bond of phosphogylcerides, producing

10

15

20

25

free fatty acid and lysophospholipids. See Dennis, E.A. Phospholiphases. In: The Enzymes, edited by Boyer, P. New York: Academic Press, p. 307-353 (1983). Over the past two decades, PLA2 activities have been purified and characterized from different tissues, cultured cells, and exudates from different mammals. See Rordorf, G. et al.: J. Neuroscience, 11:1829-1826 (1991); Seilhamer, J.J. et al.: <u>J.</u> Biochem., 106:38-42 (1989); Langlais J. et Biocham. & Biophys. Res. Comm., 182:208-214 (1992); Murakami, M. et al.: J. Biochem., 111:175-181 (1992); and Jordan, L.M. et al.: <u>J. Chromat.</u>, 597:299-308 (1992). These enzymes have been found to vary in molecular weight, optimal pH, Ca2+ dependence, substrate specificity, and solubility.

To date, two classes of unrelated PLA₂s have been reported. One is a family of low molecular mass, approximately 14kDa PLA₂s which are characterized by a rigid three dimensional structure maintained by disulfide bridges and a catalytic requirement for Ca²⁺. The other is a high molecular mass, 82kDa, intracellular PLA₂ found in the cytosolic subcellular fraction in the absence of calcium, but associated with cellular membranes at calcium concentrations from 0.1 to 10μM. See Clark, J.D. et al.: Cell, 65:1043-1051 (1991) and Sharp, J.D. et al.: J. Biol. Chem., 266:14850-14853 (1991).

In addition, several Ca⁺⁺-insensitive PLA₂ activities are believed to exist, however, it is also believed that as yet none of the genes encoding such activities have been cloned.

In terms of structure, low molecular 5 weight, e.g., about 14kDa, PLA2s rank among the best characterized enzymes. Complete primary sequences have been determined for more than 50 PLA2s from organisms such as snakes, bees and humans. Heinrikson, R.L.: Methods in Enzymology, 197:201-214 10 (1991); Davidson, F.F. et al.: J. Mol. Evolution, 31:228-238 (1990); and Dennis, E.A. Phospholiphases. The Enzymes, edited by Boyer, P. New York, In all active Academic Press, p. 307-353 (1983). 14kDa PLA2s, 18 amino acids are believed to be 15 Methods in See Heinrikson, R.L.: conserved. Enzymology, 197:201-214 (1991) and Davidson, F.F. J. Mol. Evolution, 31:228-238 (1990). Based on selected structural determinants, the low molecular weight PLA2s have been classified into two types. 20 al.: J. Biol. Chem., Heinrikson, R.L. et have a 252:4913-4921 (1977). Type I enzymes disulfide bridge connecting cysteines between amino acids 11 and 77. In addition, there is an insertion of three amino acids between residues 54 and 56, the 25 so-called elapid loop. The only identified mammalian Type I PLA2s, see Seilhamer, J.J. et al.: DNA,

10

15

20

25

5:519-527 (1986) and Ohara, O. et al.: J. Biochem., 99:733-739 (1986), are expressed mainly in the pancreas and function extracellularly in digestion. Type II PLA2s, on the other hand, lack the disulfide bridge between amino acids 11 77, and have carboxy-terminal (COOH-terminal) amino acid extensions which can vary in length, but are commonly seven amino acids in length, which typically terminate in a half-cysteine joined to Cys-50 near the catalytic site His-48. The mammalian Type II PLA2s reported to date occur in trace amounts in several tissues such as liver and spleen and are secreted from various cells in response appropriate stimuli. See Seilhamer, J.J. et al.: J. Biol. Chem., 264:5335-5338 (1989); Kramer, R.M. et al.: J. Biol. Chem., 264:5768-5775 (1989); Komada, M. et al.: J. Biochem., 106:545-547 (1989); Kusunoki, C. et al.: <u>Biochimica Et Biophysica Acta</u>, 1087:95-97 (1990); Aarsman, A.J. et al.: J. Biol. Chem., 264:10008-10014 (1989); Ono, T. et al.: J. Biol. <u>Chem.</u>, 264:5732-5738 (1988); Horigome, K. et al.: <u>J.</u> Biochem., 101:53-61 (1987); Nakano, T. et al.: Febs. Letters, 261:171-174 (1990); and Schalkwijk, C. et al.: Biochem. & Biophys. Res. Comm., 174:268-272 (1991). It is believed that Type II PLA2s are associated with the pathologies of several diseases involving infection, tissue damage, and inflammation,

10

15

20.

25

such as acute pancreatitis, septic shock, peritonitis and rheumatoid arthritis. See Vadas, P. et al.: Lab. Invest., 55:391-404 (1986); Pruzanski, W. et al.: Advances in Exper. Med. & Biol., 279:239-251 (1990); Uhl, W. et al.: J. Trauma, 30:1283-1290 (1990); and Malfertheiner, P. et al.: Klinische Wochenscrift, 67:183-185 (1989). Mammalian Type I and II PLA_2s share approximately 30-40% amino acid homology; however, eighteen amino acids are invariantly conserved in all known functional PLA2s. Type I mammalian PLA2 genes contain 4 coding exons; Type II mammalian genes contain five exons, the first of which is noncoding.

In 1990, a distinct 120 bp putative PLA2 exon-like fragment (h10a), homologous the amino-terminus encoding region of known PLA25, obtained by screening a human genomic DNA library with a 45 bp human PLA, Type II oligonucleotide probe. See Johnson, L.K. et al.: Advances in Exper. Med. & Biol., 275:17-34 (1990). Zoo blots indicated that the putative exon has been highly conserved during evolution. However, additional exons indicating the presence of a complete gene, corresponding cDNA, or evidence of transcription in different human tissues was not found.

Neuronal ceroid lipfuscinoses (NCL), or Batten disease, are terminal, inheritable, lysosomal

-6-

storage diseases of children. They are characterized by the accumulation of an autofluorescent pigment (ceroid or lipofuscin) in cells, especially neurons and epithelial pigment cells of the retina. NCL patients typically manifest high levels of the highly reactive compound, 4-hydroxynonenal. These levels are believed to be a consequence of a failure to resolve peroxidized, fatty acids in the normal way. It is believed that this failure could be the result of a phospholipase A2 defect.

The infantile form of NCL has now been linked to chromosome 1p33-35. See Jarvela, I. et al.: Genomics, 9:170-173 (1991). The non-pancreatic PLA₂ (Type II) has also been mapped to chromosome 1. additional Type gene and two putative exon-like "fragments" (h8 and h10a), see Johnson, et al.: Advances in Exper. Med. & Biol., 275:17-34 (1990), are located at about 1p34 - in the middle of the region where gene for infantile NCL is believed to reside. See Jarvala, I. et al.: Genomics, 9:170-173 (1991). h8 and h10a each contain a unique sequence which is highly homologous to, but distinct from, exon two (which contains the calcium binding domain) of PLA2 Type II.

25 Consequently, there is a continuing need to further identify and characterize additional PLA₂ exons if such exist. Such exons could be part of

5

10

15

10

15

20

unidentified genes. the extent To are additional unidentified PLA2 exons and genes, they may encode proteins (enzymes) that function in a manner different from, similar to, or overlapping with, the known PLA2s. Moreover, such unidentified exons and/or genes and the enzymes encoded thereby may be regulated by some of the same effectors as the known PLA2 genes and their proteins. Investigation of these unidentified exons and/or genes and their encoded enzymes may therefore result approaches to therapy of PLA2-related diseases, such Batten disease and inflammatory disease. Alternatively, these unidentified enzymes may have physiologic entirely different and pathologic functions. Thus, therapeutic approaches designed to block the activity of the known Type II PLA2 enzymes may also block or reduce the activity of these novel enzymes, thereby producing unexpected side effects. further, Still a better understanding the regulation of expression of the known and unidentified Type II PLA, genes in different tissues will likely expand the overall understanding of the biology and metabolic processes involving PLA2s.

Summary of the Invention

In brief, the present invention overcomes certain of the above-mentioned shortcomings and drawbacks associated with the present state of the

-8-

PLA₂ art through the discovery of a novel family of mammalian PLA₂ genes or nucleic acid sequences encoding low molecular weight amino acid sequences, clones, vectors, antisense nucleotide sequences, nucleotide sequences having internal binding sites, and cell lines.

particularly, the low molecular More 14kDa, amino acid sequences i.e., about encoded by the novel family of mammalian PLA, genes sequences of present invention may the generally characterized as enzymes having esterase activity specific for the acyl group at the sn2 Moreover, glycero-phospholipids. position of novel amino acid sequences of the present invention do not include disulfide bridges between cysteine amino acids 11 and 77 and elapid loops. amino acid sequences of further, the novel the present invention may in some instances include COOH-terminal amino acid extensions which can vary in length. In addition, because of the difference in the number of cysteine residues in the encoded amino acid sequences, those novel PLA2s of the present invention that include 16 cysteine amino acid residues have been designated as Type III whereas those novel Type IV PLA2s of the instant invention include 12 cysteines and have been designated at Type Exemplary of Type III PLA2s of the present IV.

5

10

15

20

invention are the genes identified as RPLA₂-8 (rat) and partial HPLA₂-8 (human), as well as the RPLA₂-8 (rat) cDNA. Examples of Type IV PLA₂s of the present invention are the cDNAs identified as RPLA₂-10 (rat) and HPLA₂-10 (human).

In accordance with the present invention, a human PLA2-encoding cDNA, which expresses HPLA2-10, see FIG. 12, has been isolated from human brain RNA by RACE-PCR technique. The HPLA2-10 cDNA also has been isolated from a human stomach cDNA library. addition, two rat PLA2 encoding cDNAs, designated $RPLA_2-8$ (FIG. 3) and $RPLA_2-10$ (FIG. 11), have been isolated from rat brain and heart cDNA libraries, respectively. The RPLA2-10 is believed to be the counterpart of the HPLA2-10. RPLA2-10 and HPLA2-10 share about 79% and 78% homology at the open reading frame nucleic acid and amino acid sequence levels, respectively. The mature enzyme encoded by the HPLA2-10 clone has a calculated molecular weight of about 13,592, whereas the mature enzyme encoded by the RPLA2-8 clone has a calculated molecular weight about 14,673. As indicated, a partial human genomic counterpart to RPLA2-8, HPLA2-8 genomic DNA, has been isolated. See FIG. 19.

25 Comparison of the RPLA2-8 amino acid sequence deduced from the cDNA sequence to Type I and Type II PLA2s is shown in FIGS. 8 and 9. The signi-

5

10

15

10

15

20

25

ficant structural features of the RPLA2-8 protein are summarized in TABLE I. Seventeen (17) of the eighteen (18) absolutely conserved amino acids in all active 14kDa PLA2s are conserved in RPLA2-8. RPLA2-8 protein does not contain either a disulfide bridge between Cysteines 11 and 77 or an elapid loop, which are both characteristic of Type I PLA2s. RPLA2-8 protein, however, does include a seven amino acid COOH-terminal extension having the sequence GRDKLHC, as shown in FIG. 27, which is a characteristic of Type II PLA2s as evidenced in FIGS. 22 Furthermore, unlike mammalian type I and II PLA2s which have 14 cysteine amino acid residues, RPLA2-8 protein includes 16 cysteine amino acid residues. is therefore believed that RPLA2-8 encodes a novel PLA2, which has been designated as PLA2 Type III.

The cDNAs of RPLA₂-10 and HPLA₂-10 are 1.8kb (FIG. 11) and 1.1kb (FIG. 12), respectively. A comparison between the deduced amino acid sequences from RPLA₂-10 and HPLA₂-10 is shown in FIG. 13. FIGS. 14 and 15 are comparisons between the HPLA₂-10 deduced amino acid sequence and those of Type I and II human PLA₂s, respectively. FIGS. 18 and 16 are comparisons between the RPLA₂-10 deduced amino acid sequence and those of Type I and II rat PLA₂s, respectively. A comparison between the deduced amino acid sequence and those of Type I and II rat PLA₂s, respectively. A comparison between the deduced amino acid sequences from RPLA₂-10 and RPLA₂-8 is shown in

-11-

FIG. 17. Th major structural features of human and rat PLA2-10 deduc d amino acid sequences are listed in TABLE I. All eighteen (18) conserved amino acids active low-molecular weight, the all of in approximately 14kDa, PLA2s are conserved in both human and rat PLA2-10 amino acid sequences of the present invention. Like the predicted RPLA2-8 amino acid sequence, human and rat PLA2-10 amino acid sequences also lack disulfide bridges between Cys-11 and 77 and elapid loops. However, PLA2-10 amino acid sequences are believed to differ from RPLA2-8 protein by having twelve (12) cysteine residues instead of sixteen (16). They further differ from RPLA2-8 in that RPLA2-10 does not have a COOH-terminal amino acid extension as depicted in FIG. 27 and HPLA2-10 has only a single serine amino acid COOH-terminal extension as illustrated in FIG. 22. The PLA₂-10 proteins of the present invention have therefore been designated, as mentioned hereinbefore, as PLA2 Type IV.

The present invention also contemplates antisense nucleotide sequences which are complementary to the genes and mRNA transcripts which encode for the Type III and Type IV PLA2s. Exemplary of antisense sequences in accordance with the present invention are those which are complementary to the entire or portions of the nucleotide sequences set

5

10

15

20

-12-

forth in FIGS. 3, 11, 12 and 19. It should therefore be understood that the present invention contemplates any antisense nucleotide sequence which may be useful in connection with inhibiting or interfering with the expression of the Type III and Type IV PLA2 enzyme genes and mRNA transcripts therefor.

The above features and advantages will be better understood with reference to the FIGS., Detailed Description and Examples which are set out hereinbelow. It should be understood that the biological materials of this invention are exemplary only and are not to be regarded as limitations of this invention.

Brief Description of the FIGS.

- 15 Reference is now made to the accompanying FIGS. in which are shown characteristics corresponding to the novel mammalian 14KD PLA₂s of the present invention from which certain of their novel features and advantages will be apparent:
- FIG. 1 depicts a diagram of RPLA₂-8 cDNA showing positions of open reading frame coding region, repeats, and 5' and 3' termini (the first and last eight (8) nucleotides are cloning linkers);
- FIG. 2 depicts a postulated secondary

 structure of RPLA₂-8 cDNA showing a stem and a loop

 containing the open reading frame coding region;

5

FIG. 3 depicts the RPLA₂-8 cDNA and derived amino acid sequence (th first and last eight (8) nucleotides are cloning linkers);

FIG. 4 depicts a diagram of the genomic DNA region containing exons 2, 3 and 4 of RPLA₂-8 in comparison to the corresponding cDNA;

FIG. 5 is a comparison between $HPLA_2-8$ Exon I and $RPLA_2-8$ Exon I sequences;

FIG. 6 is a comparison between HPLA₂-8 Exon

II and RPLA₂-8 Exon II sequences;

FIG. 7 is a comparison between RPLA₂-8 Exon IV and RPLA₂-8 Exon IV sequences;

FIG. 8 is a comparison of RPLA₂-8 deduced amino acid sequence and rat PLA₂ Type I amino acid sequence;

FIG. 9 is a comparison of the $RPLA_2-8$ deduced amino acid sequence and rat PLA_2 Type $_$ II amino acid sequence;

FIG. 10 depicts a flow diagram of 3' and 5'

RACE-RT PCR techniques used to obtain a full length

HPLA₂-10 sequence cDNA from brain mRNA;

FIG. 11 depicts the RPLA₂-10 cDNA sequence showing primary cDNA sequence and various primer sequences, which are used in sequencing and synthesis, are underlined;

FIG. 12 depicts the $HPLA_2-10$ cDNA (Type IV) sequence and a secondary (clone $HPLA_210-5$) cDNA

5

15

20

25

sequence which is slightly different at the 5' end and forshortened. Various primer sequences used in sequencing and synthesis are underlined.

FIG. 13 is a comparison between deduced amino acid sequences of $HPLA_2-10$ and $RPLA_2-10$;

FIG. 14 is a comparison between $HPLA_2-10$ deduced amino acid sequence and human Type I amino acid sequence;

FIG. 15 is a comparison between HPLA₂-10 deduced amino acid sequence and human PLA₂ Type II amino acid sequence;

FIG. 16 is a comparison between deduced amino acid sequences of RPLA₂-10 and rat PLA₂ Type II amino acid sequence;

15 FIG. 17 is a comparison between deduced amino acid sequences of RPLA₂-10 and RPLA₂-8;

FIG. 18 is a comparison between deduced amino acid sequence of $RPLA_2-10$ and rat PLA_2 Type I amino acid sequence;

FIG. 19 depicts the partial human genomic HPLA₂-8 DNA sequence. Putative exon 1 and exons 2 and 4 are underlined;

FIG. 20 depicts a diagram of the vector to express discistronic mRNA. The chloramphenical acetyl transferase and luciferase reporter genes are indicated by boxes. The intercistronic sequence that is replaced by part of RPLA₂-8 is shown;

10

FIG. 21 illustrates PLA₂ activity of expressed HPLA₂-10 cDNA. pCH10 is HPLA₂-10 cDNA cloned into an Epstein Barr virus-based expression vector. CpCH10-1B, CpCH10-1C, CpCH10-1D and CpCH20-2G are independent cell lines which express plasmid pCH10. The CpRASF-2B is a cell line which expresses plasmid pRASF into which a known human PLA₂ Type II gene has been cloned.

FIG. 22 depicts an alignment of amino acid sequences of human Types I, II and HPLA₂-10 PLA₂. Asterisks denote eighteen residues that have been conserved among all active PLA₂ sequences. The COOH-terminal amino acid extensions have been underscored;

15 FIG. 23 depicts the effects of pH on PLA₂ activity of RPLA2-8 encoded enzyme (Type III). particularly, FIG. 23 depicts the effects of pH on PLA₂ activity of RPLA₂-8 enzyme expressed by cell line CpR8-3'. The CpR8-3' cell line expresses plasmid pR8-3' which includes the coding region for 20 the mature RPLA2-8 protein (bases 806-1200) which is preceded by the signal peptide of pRASF 131-196). Assay for PLA2 activity is as indicated herein and in Elsbach, P. et al.: Methods in Enzymology, 197:24-31(1991); 25

FIG. 24 depicts the effects of calcium on PLA₂ activity of RPLA₂-8 encoded enzyme (Type III).

More particularly, FIG. 24 depicts the effects of calcium on PLA₂ activity of RPLA₂-8 enzyme expressed by cell line CpR8-3'. The CpR8-3' cell line expresses plasmid pR8-3' which includes the coding region for the mature RPLA₂-8 protein (bases 806-1200) which is preceded by the signal peptide of pRASF (bases 131-196). Assay for PLA₂ activity is as indicated herein and in Elsbach, P. et al.: Methods in Enzymology, 197:24-31(1991);

10 FIG. 25 depicts the effects of pH on PLA, activity of HPLA2-10 encoded enzyme (Type IV). More particularly, FIG. 25 depicts the effects of pH on \mathtt{PLA}_2 activity of \mathtt{PLA}_2 Type II enzyme expressed by cell line CpRASF-2B and of PLA₂ Type IV enzyme 15 expressed by cell line CpCH10-1D. The CpRASF-2B cell line expresses plasmid pRASF into which a known human PLA₂ Type II gene has been cloned. The CpCH10-1D cell line expresses plasmid pCH10 into which the HPLA₂-10 cDNA has been cloned. Assay for PLA2 activity is as indicated herein and in Elsbach, P. et 20 al.: Methods in Enzymology, 197:24-31 (1991);

FIG. 26 depicts the effects of calcium on PLA₂ activity of HPLA₂-10 encoded enzyme (Type IV). More particularly, FIG. 26 depicts the effects of calcium on PLA₂ activity of PLA₂ Type II enzyme expressed by cell line CpRASF-2B and of PLA₂ Type IV enzyme expressed by cell line CpCH10-1D. The

10

25

CpRASF-2B cell line expresses plasmid pRASF into which a known human PLA₂ Type II gene has been cloned. The CpCH10-1D cell line expresses plasmid pCH10 into which the HPLA₂-10 cDNA has been cloned. Assay for PLA₂ activity is as indicated herein and in Elsbach, P. et al.: Methods in Enzymology, 197:24-31 (1991); and

FIG. 27 depicts an alignment of amino acid sequences of rat Types I, II, RPLA₂-8 and RPLA₂-10 PLA₂s. Asterisks denote eighteen residues that have been conserved among all active PLA₂ sequences. The COOH-terminal amino acid extensions have been underscored.

Detailed Description

15 By way of illustrating and providing a more complete appreciation of the present invention and many of the attendant advantages thereof, the following detailed description is provided concerning the novel mammalian PLA2 nucleotide sequences, the 20 low molecular weight amino acid sequences encoded thereby, clones, vectors, antisense nucleotid sequences, nucleotide sequences having internal ribosome binding sites, and cell lines.

In accordance with the present invention, a 4.4 kb cDNA containing the r8 fragment, a rat genomic fragment containing sequences homologous to h8 fragment, is isolated from a rat fetal brain cDNA

- library. See FIG. 1. This cDNA is about five-times larger than any mammalian PLA₂ cDNA known to date. Uniquely, the entire coding region is contained on a putative 1 kb loop flanked by 121 bp inverted perfect repeats, leaving about a 3 kb 3' "tail." See FIG.
- 2. The sequence of the entire cDNA is shown in FIG.
- 3. The size of the gene is about 15 kb. See FIG
- 4. A preliminary screen of some rat tissues by reverse transcription and PCR (RT-PCR), using primers Pla8-1 and Pla8-4, reveals the pattern of RPLA2-8 gene expression indicated in Table I.

-19-

TABLE I

Characteristics of Type III and IV PLA2s

			Pre*	Pro*	Mature*
	Type		MKLLVLAVLLTVAAA 1	DSGISPR ²	AVWQF3
Hum	Type	ΙΙ	MKTLLLAVIMIFGLLQAHG ⁴	_	NLVNF ⁵
Rat	Type	III	MDLLVSSGMKGIAVFLVFIFC6	(WTTSTLS) ⁷	SFWOF ⁸
Hum	Type	IV	MKGLLPLAWFLACSVPAVQG ⁹	•	GLLDL ¹⁰
	Type	IV	MKRLLTLAWFLACSVPAVPG ¹¹		GLLEL ¹²

Human Type I PLA_2 has a 7 residue propeptide, human Type II does not. Human and rat Type IV are like Type II; Rat Type III might encode a 7 residue propeptide.

 * depicts the NH2-terminal amino acids in the amino acid sequences for the respective prepeptides, propeptides and mature peptides.

```
l represents SEQ ID NO:1:; 2 represents SEQ ID NO:2:; 3 represents SEQ ID NO:3:; 4 represents SEQ ID NO:4:; 5 represents SEQ ID NO:5:; 6 represents SEQ ID NO:6:; 7 represents SEQ ID NO:7:; 8 represents SEQ ID NO:8:; 9 represents SEQ ID NO:9:; 10 represents SEQ ID NO:10:; 12 represents SEQ ID NO:12:.
```

Conserved Characteristics of Pre, Pro and Mature Peptides:

Rat Type III	Human and Rat Type IV
Phe5	Ile9
Met8	Met8
YGCYCG Ca ²⁺ binding loop	YGCYCG Ca ²⁺ binding loop
His48, Asp49 active site	His48, Asp49 active site
Position of Cys residues	Position of Cys residues
(disregarding the two	(disregarding the two
extra Cys residues)	missing Cys residues)

Unusual Characteristics of Pre, Pro and Mature Peptides:

Rat Type III	Human and Rat Type IV		
Val9	Leu5		
Two extra Cys residues Ala 102, 103 missing Unusually large variable peptide loop	Two missing Cys residues Ala 102, 103 missing		

Other Characteristics of Pre, Pro and Mature Peptides:

nan and Rat Type IV		
elapid loops		
disulphide bridges		
between Cys 11 and 77		
Twelve Cys residues		
nan Type IV-one serine		
COOH-terminal extension		
Type IV-no COOH-		
terminal amino acid		
extension		

**The numbers designating the positions for the amino acids in Table I are for th mature peptides.

Moreover, according to Northern Blot data of several tissues, a RPLA₂ mRNA is detected in only the testis indicating that the RPLA₂-8 gene is testis specific, as reported in Table II.

TABLE II

Northern blot data

Type IV (cl 10) human

brain		-
heart		+++
kidney		-
liver		-
lung		+
pancreas		-
placenta		++
skeletal	muscle	-
spleen		-
testis		_

Type IV	(cl 10) rat	Type 1	[II (cl 8) rat
brain	_		-
heart	++		_
kidney			~ .
liver	_		-
lung	?		-
skeletal	muscle -		-
spleen	-		-
testis	-		++

Using parts of RPLA2-8 as probes, a partial human genomic cl ne which is homologous to genomic clone is identified. See FIG. 19. To date, all but the third of the four exons in the human 5-7, identified is genomic DNA, see FIGS. The 3' flanking regions of the human and sequenced. rat genes show very significant homology (about 50 percent) for about 500 bp. This conservation unusual and suggests functional importance. functionally demonstrated that RPLA2-8 cDNA contains internal ribosome binding site that enables internal translation initiation.

A comparison of the significant structural features of the putative protein encoded by RPLA2-8 cDNA sequence and encoded amino acid sequence to the corresponding those of pancreatic and non-pancreatic PLA2 enzymes are shown in FIG. 8 and Pancreatic PLA2 is known as Type I and the non-pancreatic PLA2 is designated as Type II. It is believed that PLA2-8 encodes a novel PLA2 which is designated as Type III. An enzyme encoded by a gene containing the h10a sequence is designated Type IV (see below). The proximity (within about a million base pair region in the mouse) of the genes for Types III and IV to the PLA2 Type II gene suggests a common evolutionary origin as does their localization to the same band on human chromosome 1. Further, Types II,

10

15

20

10

15

20

25

III and IV are likely to be members of a gene family and may represent isozymes. However, a homology comparison indicates that the RPLA₂-8 protein is relatively distant, evolutionarily, from both Type I and Type II PLA₂ enzymes, but is believed to be probably closer to Type II.

In accordance with the present invention, human cDNA that contains the h10a fragment and rat cDNA that contains the rat counterpart are isolated. See FIGS. 11 and 12. The predicted protein sequences of HPLA2-10 and RPLA2-10 and comparisons to each other and Types I and II are shown in FIGS. 13-17. Some of the significant structural features of the proteins encoded by these cDNAs are shown in TABLE I. Importantly, the 18 amino acids that are believed to be requisite for PLA, function are conserved in both predicted proteins. See FIG. 22. This fact, plus the high degree of conservation between species, suggests that these Type IV proteins play an phospholipid metabolism and in important role processes such as membrane structuring, inflammation and intracellular signaling.

The amino acid sequences of the present invention may be produced by, for example, recombinant technology, chemical synthesis or any other methods available in the art so long as the methodology selected does not interfere with their

-23-

utilities. Likewise, the nucleotide sequences of the instant invention may be produced by, for instance, PCR technology, chemical synthesis or any long available in the art so as methods methodology selected does not interfere with their Moreover, amino acid residues may utilities. deleted or added or alternative amino acid residues may be substituted for those recited in the amino acid sequences of the instant invention so long as such changes do not defeat the utilities of such amino acid sequences. Still further, it should be appreciated that the present invention contemplates any amino acid sequences which are equivalent to or constitute active fragments of the amino sequences for the Type III and Type IV PLA2 enzymes of the present invention. Of course, corresponding or other changes may be made to the nucleotide sequences of the present invention to accomplish the objectives of this invention.

It should also be appreciated that the present invention contemplates a.) any antisense nucleotide sequences which are capable of inhibiting or interfering with expression of genes and mRNA transcripts encoding Type III and Type IV PLA2 enzymes of the present invention, including any amino acid sequences that are equivalent thereto or active fragments thereof, and b.) any nucleotide sequences

5

10

15

20

10

15

having bases 116-720 of FIG. 3 and any equivalent fragments thereto or active fragments thereof that allow for internal initiation of mRNA cap-independent translation. Like other nucleotide sequences of the present invention. substitutions, deletions additions may be made to the antisense nucleotide sequences and the nucleotide sequences internal ribosome binding sites of the present invention so long as the objectives of the present invention are not defeated.

HPLA₂-10

In order to clone an cDNA containing the putative HPLA₂ exon, two primers, HClolo-1 and HClolo-1a, are generated according to the 120 bp presumptive exon II sequence. See FIG. 12. PCR amplification with these primers is used to screen human child brain, adult brain, liver, heart, and various white cell cDNA libraries. PCR amplification products are not obtained.

20 Since zoo blots have indicated that this putative exon is evolutionarily conserved, a rat genomic cosmid library (Clontech, Inc.) is screened using a PCR-generated copy of the HClo10-1 HClo10-la fragement as a probe. Three unique 25 positive clones are identified. Southern blot anaysis of the three EcoRI-digested clones using the HClo10-1 - HClo10-1a fragment as a probe identifies a

-25-

common 5kb band. This band is subcloned into EcoRI-digested pUC13 and sequenced. A region (rat-10 putative exon II) in the 5 kb sequence highly homologous to h10a is identified by computer analysis.

In order to search for the presence of exon genomic DNA clone containing I. human the 5kb putative exon II is sequenced completely. Computer the sequence identified two analysis of homologous regions. One appears to be exon II. contains a consensus splice acceptor site at its 5' end and a consensus splice donor site at its 3' end. The other region, located about 1.2 kb 5' of the exon II, contains a consensus splice donor site at its 3' end and a putative in-frame ATG start codon at its 5' It is likely to be exon I. Furthermore, when end. these two putative exons are joined together using the assumed splice donor and acceptor sites, the resulting sequence encodes a signal peptide and 41 amino acids which have significant homology to the amino terminus of known, mature PLA2s.

After determining the putative exon I sequence, H10-A, a 5' primer located within exon I, and H10-la, a 3' primer located within exon II, see FIG. 12, are used for RT-PCR of total human brain and lymphoblast RNA. A unique 140bp band from both PCR reactions is sequenced. The 140 bp contains coding exons I and II, but not the putative intron I of

5

10

15

20

10

15

20

25

HPLA2-10. 5' and 3' RACE-RT PCR techniques, Frohman, M.A. et al.: PNAS, 85:8998-9002 (1988); O'Hara, O. et al.: PNAS, 86:6883-6887 (1989); and Loh, Y. et al.: Science, 243:217-220 (1989), are then generate the full length cDNA sequence from total human brain RNA. See FIG. 10. The entire cDNA sequence, designated HPLA2-10, is shown in FIG. 12. Exon-intron junction sites are determined by genomic DNA analysis. Since the genomic DNA clone containing the first 120 bp of $HPLA_2-10$ is not obtained, it has not been determined if there are any introns in this region of the HPLA2-10 genomic sequence. additional exons are found, HPLA2-10 will apparently have an exon-intron structure typical of known Type II PLA2s with a 5' untranslated exon followed by four protein coding exons.

Primers H10-A (bases 149-170) and H10-C (bases 520~548) are used to screen by PCR amplification a human stomach CDNA library (Clonetech, Inc.). A 399 bp and а 290 gd PCR amplification product are obtained only from the stomach cDNA library. The two PCR fragments are cloned into pUC19 and sequenced. The sequence of the 399 bp fragment is identical to the HPLA2-10 RACE-RT PCR generated cDNA sequence from bases 148 to 541. 290 bp fragment is identical to the 399 bp fragment except that it is missing bases 316 to 422

10

15

20

25

which encompass the 5' end of exon III. See FIG. 11. The same two PCR fragments are also amplified from total human brain and lymphocyte RNA using primers H10-A and H10-C. The 290 bp PCR product is much less abundant than the 399 bp product when amplified from human stomach and brain RNA and stomach cDNA library. Since the 290 bp product codes only for the signal peptide and the first 41 amino acids of the mature protein because of an in-frame stop codon immediately following the 41st amino acid, the <u>in vivo</u> significance of this product is unknown at this time.

Using the 399 bp PCR product as a probe, 6x10⁵ individual plaques from the human stomach cDNA library are screened. Four positive clones identified. The clones, designated HPLA₂-10-2, -3, -5, -7, have inserts of 1.4, 2.3 0.9, and 0,8 kb, respectively. The inserts of these clones are released by EcoRI digestion, subcloned into pUC19 and sequenced completely. HPLA₂-10-2 contains exon I-intron I-exon II of HPLA2-10; HPLA2-10-3 contains intron III-exon IV-intron IV of HPLA2-10. The sequences of both HPLA₂-10-5 and HPLA₂-10-7 are identical to the corresponding regions RACE-RT-PCR generated HPLA2-10 sequence except that the 5' end of the HPLA2-10-5 starts at base 142 of

10

15

20

25

the RACE-RT-PCR sequence and the 5' end of HPLA₂-10-7 starts at base 23.

To determine the transcription pattern of HPLA2-10, a Human Multiple Northern Blot (Clontech, Inc.) is probed with a 399 bp fragment, i.e., HPLA2-10 PCR probe, generated by PCR with primers H10-A (bases 149-170) and H10-C (bases 520-548). seen in TABLE II, a 1.2 kb transcript is detected in heart and, less abundantly, in liver and lung RNA. addition, a 2 kb transcript is detected placental RNA. This suggests that the expression of HPLA₂-10 is not only tissue specific, but that alternative forms of the protein may be expressed in different tissues. The 2 kb transcript seen placental RNA may result from the use of a different promoter, alternative splicing or the use of alternative poly A site.

The HPLA2-10 cDNA encodes a mature protein of about 118 amino acids with a calculated molecular mass of · about 13,592 Daltons. The amino acid sequence has significant homology to known PLA2s. All of the 18 invariantly conserved amino acids in known active low molecular weight PLA2S, Davidson, F.F.: J. Mol. Evolution, 31:228-238 (1990), are conserved in this novel protein. See FIG. 22. However, HPLA₂-10 contains neither the disulfide bridge between Cys 11 and 77 nor the elapid loop

10

15

20

25

characteristic of Type I PLA25. HPLA2-10 does, however, c ntain a single serine amino acid COOH-terminal extension, as shown in FIG. 22, which is more characteristic of a Type I than Type II PLA2. As depicted in FIG. 22, Human Type I has a two amino acid COOH-terminal extension whereas Human Type II has a seven amino acid COOH-terminal extension. Furthermore, unlike mammalian Types I and II PLA2s which have 14 cysteine residues, this putative HPLA2 only has 12. The overall homology between $HPLA_2-10$ and a consensus Type I PLA2 is about 30.5% while the overall homology between HPLA2-10 and a consensus Type II PLA₂ is about 40.6%. The predicted isoelectric point (pI) of this protein is about 6.2 while that of other known Type II PLA2s is about 10.5.

To test whether this HPLA2-10 gene encodes an active, secreted PLA2, an Epstein Barr virus-based expression vector (pCEP) is used to express the HPLA2-10 cDNA in human 293s cells. pCEP contains two regions of the EBV genome required for episomal maintenance (EBNA-1 and OriP), a drug resistance gene for selection in human cells (hyg), bacterial sequences for maintenance in E. coli, resistance gene for selection in E. coli (amp), and an expression cassette for the production of high levels of mRNA from an introduced sequence by using an Rous/Sarcoma virus long terminal repeat (RSV LTR)

10

promoter and an Simian virus 40 (SV40) polyadenylation signal. HPLA2-10-5', a 5' primer beginning at base 126 of HPLA2-10 and containing a 10 NheI linker at its 5′ HPLA₂-10-3', a 3' primer ending at base 555 and beginning with a 10 nucleotide XhoI linker, are used for reverse-transcriptase-polymerase chain reaction (RT-PCR) of total human brain RNA to generate the appropriate cDNA insert. The PCR product is blunt-end ligated to HincII-digested pUC19 and sequenced. The insert is then released by digestion with NheI and XhoI and is cloned into the NheI-XhoI sites of pCEP. The resulting plasmid is designated pCh10.

- 15 A known human Type II PLA₂ cDNA is cloned into pCEP for use as a positive control. PCR primers RASF-5' and RASF-3' are used to amplify bases 130 to 581 of pRASF, a plasmid containing the entire human known PLA₂ Type II cDNA. See Seilhamer, J.J.: J.

 20 Biol. Chem., 264:5335-5338 (1989). The resulting plasmid is designated pRASF and is used as a control. The HPLA₂-2B (Type II) enzyme, as depicted in FIGS. 25 and 26, are expressed by pRASF and used as a control.
- Purified plasmid DNA is transfected into human 293s cells which are selected in DMEM containing 200 ug/ml hygromycin. Medium samples from

-31-

multiple cell lines transfected with either pCH10, pR8-3' or pRASF are then assayed for PLA2 activity. See FIG. 21. PLA2 activities derived from cell lines transfected with plasmids pCH10, pR8-3', and pRASF are accumulated in the medium. Neither 293s cells nor multiple cell lines transfected with an unrelated PLA2 cDNA inactivated by a one base pair deletion at the 5' end of the mature protein show detectable PLA2 activity in the medium even after 72 hours. Cell lysates that are prepared by sonication from cells stably transfected with either pCH10 or pRASF show approximately 50% of the activity of 72 hour medium samples.

Two cell lines, CpCH10-1D expressing pCH10 and CpRASF-2B expressing pRASF, are chosen for comparative study. The pH profile for the enzyme expressed by the cell lines is shown in FIG. 25. PLA₂ activity of HPLA₂-10 starts at about pH 5 and significant activity is reached at between about pH 6.5 and about pH 7.5 and remains relatively steady up to at least about pH 9.5, whereas the control Type II PLA₂ reaches peak activity at between about pH 7.0 and about pH 7.5 and then progressively declines.

Calcium concentration versus enzyme
25 activity profiles for CpCH10-1D and CpRASF-2B are
shown in FIG. 26. HPLA2-10 appears to be a
calcium-dependent PLA2 having activity starting at

5

10

15

10

15

about 0.07 mM Ca2+ amd reaching maximal activity at between about 7 mM and about 100 mM Ca²⁺. activity of HPLA2-10 then slowly decreases, but ca²⁺ maintains significant activity, as concentration approaches about 500 mM or more. This profile differs from that of the control cell line CpRASF-2 (Type II PLA₂) which shows maximal activity at between about 0.5 mM and 3.0 mM Ca2+ and becomes inactive at Ca²⁺ concentrations at about 100 mM or greater. Since HPLA2-10 expresses at least half of its maximal activity at Ca2+ concentrations between 1 and 100 mM, similar to previously described Type II phospholipases, Marshall: see Biochemical Pharmacology, V. 44:1849-1858 (1992), it is likely that HPLA₂-10 is capable of functioning concentrations found intracellularly (0.1 to 2 μM) and extracellularly (1mM).

RPLA₂-8

Two PCR primers, Pla8-1 and Pla8-2 (FIG. 3), are generated using the reported rat r8 presumptive exon II sequence. See Seilhamer, J.J. et al.: J. Cell. Biochem., 39:327-337 (1989). Four size-fractionated, newborn rat brain cDNA λZAPII libraries (two 0.5-1.5kb, one 1.5-4kb, and one greater than 4kb, provided by Dr. L. Yu, Indiana School of Medicine, are directly amplified by PCR, See Friedman, K.D. et al.: Nucleic Acids Research;

16:8718 (1988), using primers pla8-1 and pla-2. Only the >4 kb insert library gives the proper size 120 bp fragment prediced by the Clo8 DNA sequence. The band is purified from an agarose gel using a QIAEX gel extraction kit (QIAGEN), cloned into m13mp18, and is sequenced using a Sequenase kit (USB). The sequence proper identity of confirms the A total of 10⁶ individual clones from the cDNA library are screened using the PCR product as a Only two clones hybridize. The restriction probe. maps of the two clones are believed to be identical. One of them, clo8-2, is sequenced completely. The sequence, designated RPLA2-8, is shown in FIG. 3.

RPLA2-8 is a 4.4kb cDNA, which is about five-times larger than any known mammalian 14kDa PLA2 15 See Seilhamer, J.J. et al.: DNA, 5:519-527 CDNA. (1986); Seilhamer, J.J. et al.: <u>J. Biol. Chem.</u>, 264:5335-5338 (1989); Ohara, O. et al.: Proc. Natl. Acad. Sciences U.S.A., 86:6883-6887 (1989); Kramer, R.M. et al.: <u>J. Biol. Chem.</u>, 264:5768-5775 (1989); 20 et al.: J. Biochem., 106:545-547 and Komada, M. The 480 bp coding region is believed to be (1989). contained in a putative 1.2kb loop flanked by 121 bp perfect inverted repeats. See FIG. This 121 bp inverted 25 stem-loop is flanked by perfect This stem-loop structure leaves about 3kb of 3' "tail." See FIGS. 1 and 2. Translation of

5

RNAs containing such a secondary structure cannot readily be explained by the conventional translation scanning model. See Pain, V.M.: Biochemistry J., Nevertheless, it is believed 235:625-637 (1986). 5 that there an internal ribosome binding site is between the 5' repeat sequence and ATG translation start site. Cloning the sequence between base 116 and 3, in both normal FIG. and orientations in front of an internal luciferase gene 10 which lies downstream of a CAT gene, see Macejjak, D.G. et al.: Nature, 353:90-94 (1991), see FIG. 20, followed by detecting luciferase gene expression in transfected Hela cells (with positive and negative control constructs), confirms that the fragment does 15 contain a internal ribosome binding sequence. Luciferase expression is significantly higher when the fragment is cloned in normal orientation then in reverse orientation. Ιt is believed that the translation of mRNAs initiated by an internal ribosome binding mechanism may play an important role 20 in mitosis, meiosis or specific viral because cap-dependent translation during mitosis in mammalian cells is unlikely, due to the presence of underphosphorylated and therefore nonfunctional 25 translation initiation factor, eif-4F. See Macejjak, D.G. et al.: <u>Nature</u>, 353:90-94 (1991). It

10

· .

therefore believed that the RPLA₂-8 gene product could play a role during these processes.

As a preliminary study, the pattern of RPLA₂-8 gene expression, see TABLE III, is examined by screening rat tissues with reverse transcription followed by PCR (RT-PCR), using primers pla8-1 and pla8-2. See FIG. 3.

TABLE III

Reverse Transcription-PCR (RT-PCR) of Total RNA of Different Rat tissues by Primers Clo8-1 and Clo8-1a

1.	Brain	+
2.	Cerebellum, Brain Stem	+
3.	Kidney.	+
4.	Lung	+
5.	Heart	+
6.	Muscle (?)	+
7.	Pancreas	_
8.	Small intestine	_
9.	Liver	-
10.	Prostate	-
11.	Bladder	_
12.	Spleen	_
13.	Adrenal	_
14.	Submaxillary	_

In addition, to determine transcription patterns of RPLA₂-8 and RPLA₂-10, a Rat Multiple Northern Blot (Clontech, Inc.) is probed with a 489 bp fragment, i.e., RPLA₂-8 PCR probe, generated by PCR with primers RClo8-5' (bases 716-742) and Rclo8-3' (bases 1178-1205). A rat Multiple Northern Blot (Clontech, Inc.) is also probed with a 427 bp fragment, i.e.,

 $RPLA_2-10$ PCR probe, and amplified using primers Rclo10-5' (bases 226-253) and Rclo10-3' (bases 627-653). As seen in TABLE II, an $RPLA_2-8$ mRNA is detected in testis only and an $RPLA_2-10$ mRNA is detected in heart and perhaps lung only.

order to determine the exon-intron junction sites and confirm the 121 bp direct repeat sequence in the genomic DNA, a 15 kb rat genomic DNA clone containing RPLA2-8 coding exon II is analyzed by Southern blot, and partial sequencing. The 15 kb genomic DNA structure is shown in FIG. 4. It does not contain exon I and the 5' 121 bp repeat, but it does contain the 3' 121 bp repeat. To further investigate the 5' rat genomic DNA sequence, a cosmid genomic DNA library (Clontech, Inc.) is screened using PCR-generated fragment containing RPLA2-8 exon I-intron I-exon II. Twelve positive clones indentified. Restriction mapping indicates that all clones (about 40 kb each) identical. are Unfortunately, the cosmid clones could not contain the 5' 121 bp repeat because their 5' ends are located in intron I. Thus, RT-PCR is used to confirm the presence of the 5' 121 bp direct repeat sequence. Pla8-7, a 22 bp 5' primer starting at base 73, which lies within the 121 bp repeat sequence and pla8-8, a 22 bp 3' primer ending at base 212, see FIG. 3, are generated to conduct RT-PCR of rat brain total RNA.

10

15

20

WO 95/02328 PCT/US94/07926

-37-

The resulting RT-PCR fragment is purified from the agrose gel and cloned into ml3mpl8, and the sequence is confirmed to be as predicted by the cDNA.

To test whether this PLA2-8 gene encodes an active, secreted PLA2, an Epstein Barr virus-based expression vector (pCEP) is used to express the RPLA2-8 cDNA in human 293s cells. pCEP contains two regions of the EBV genome required for episomal maintenance (EBNA-1 and OriP), a drug resistance gene human cells bacterial (hyg), selection in for coli, for maintenance in E. drug seguences resistance gene for selection in E. coli (amp), and an expression cassette for the production of high levels of mRNA from an introduced sequence by using an Rous/Sarcoma virus long terminal repeat (RSV LTR) Simian virus 40 (SV40) and an promoter polyadenylation signal. pR8-3', а chimeric construct, is constructed as follows. RASF-5', a 5' primer beginning with a 10 nucleotide NheI linker followed by 22 nucleotides starting at base 130, and Ju9, a 22 nucleotide 3' primer complementary to base 177 and 198, see Seilhamer, J. et al.: J. Biol. Chem., 264:5335-5338 (1989), are used to PCR amplify plasmid pRASF from bases 130 to 198. pRASF contains the entire known PLA2 Type II cDNA. See Seilhamer, J. et al.: <u>J. Biol. Chem.</u>, 264:5335-5338 (1989). PCR product is purified and is digested with NheI

5

10

15

20

10

15

20

25

plus NcoI. JuR8-11, a 5' primer with a total length of 31 nucleotides, beginning with GCCATGGGA followed by base 806 to 827 of RPLA2-8 sequence, see FIG. 3, and R8-3', a 3' primer starting with a 10 nucleotide NheI linker at its 5' end, followed by 22 nucleotides complementary to RPLA2-8 base 1178 to 1200, see FIG. 3, are used to PCR amplify plasmid RPLA₂-8. product is purified and digested with XhoI plus Both digested PCR products are then ligated together into XhoI-NheI digested pCEP. Sequencing is carried out to confirm the nucleotide sequence of pR8-3'. CpR8-3' is a single clone of cells chosen to represent the typical pH optimum and Ca++ dependence of CpR8 transfected 293s cells. The effects of pH and calcium concentration on enzyme activity are illustrated in FIGS. 23 and 24, respectively, for the RPLA₂-8 enzyme (Type III) and are similar, but different to the pH and calcium profiles for the HPLA2-10 enzyme (Type IV) encoded for by the HPLA2-10 cDNA cloned into plasmid cPH10, as shown in FIGS. 25 and 26, respectively. In other words, RPLA2-8 also appears to be a pH and calcium-dependent PLA2 enzyme having activity starting at about pH 5.5 and having significant activity at between about pH 7 and about pH 9 and having activity starting at about 0.1 mM Ca2+ and having significant activity at between about 0.3 mM and about 2 mM Ca²⁺, respectively. The

WO 95/02328 PCT/US94/07926

-39-

apparently RPLA₂-8, however, activity of progressively declines at a pH of greater than about 9 and at a calcium concentration of greater than Nonetheless, FIGS. 23-26 about 2 mM. phsopholipase activity for the Type III and Type IV the present invention. phospholipase enzymes of Moreover, FIGS. 23-26 show that the pH and calcium profiles for the Type III and Type IV phospholipase enzymes of the present invention are different from the pH and calcium profiles for phospholipases known heretofore.

It should be appreciated by those skilled in the art that the novel PLA₂ Type III and Type IV enzymes described in the instant application may have many different potential uses.

Although both "Type II" soluble PLA2 and intracellular membrane-associated PLA2 have been shown to mediate many aspects of the inflammatory cascade, it may well be that the new PLA2 enzymes may also play a role, either by directly functioning to liberate arachidonic acid and 2-lysophospholipid, or by replacing the functions of the former in tissues and/or individuals in which the enzymes may be otherwise missing. As such, inhibition of these new enzymes by standard strategies known in the art (e.g., crystallography-based rational drug design;

5

10

15

20

WO 95/02328 PCT/US94/07926

-40-

antisense; triple helix; monoclonal antibodies) could be valuabl in anti-inflammatory therapy.

Phospholipases A2 are involved in other in vital to sustaining life processes including but not limited to pulmonary surfactant turnover, biomembrane maintenance and metabolism, various lipid catabolic pathways, platelet activation sperm-mediated metabolism, and factor activation. First, it is possible that certain diseases present today involve alterations in these functions, and could be treated therapeutically with exogenously added recombinant PLA2 or anti-PLA2. as new PLA2-inhibiting anti-inflammatory Second, therapeutics are developed, many may exhibit cross-inhibition with these other new enzymes, thereby causing undesired side-effects. knowledge of the sequence/structure of these new enzymes, and the ability to restore their function through addition of the appropriate recombinant enzyme could be of value in reducing such side-effects.

Although these enzymes have been characterized as PLA₂ enzymes, they may well have other vital enzymatic activities. For example, LCAT (lecithin-cholesterol acyl transferase) also exhibits PLA₂ activity. Alternatively, these enzymes may function as phospholipases Al, phospholipases B,

5

10

15

20

phospholipases C, lysophopholipases, acyl hydrolases, ribonucleases, lipases, or ph sphodiesterases, all of which are esterases which resemble phospholipase A_2 in chemical activity. If this is the case, these new enzymes could be used to treat defects in a variety of metabolic pathways.

PLA₂ is also useful in the food processing industry. See Dutilh et al.: <u>J. Sci. Food Agricul.</u>, 32:451-458 (1981), and in the preservation of fish, see Mazeaud et al.: <u>J. Fish Res. Board Cun.</u>, 33:1297-1303 (1976). Recombinant forms of the instant new PLA₂s may be useful to replace natural sources of these enzymes.

RPLA₂-8, by virtue of its specific synthesis in rat testis, may play a key role in activation during fertilization by sperm. Therefore, antagonism of its function may prove useful as a specific anti-fertility reagent in pests such as rodents.

HPLA₂10 and RPLA₂-10, by virtue of their specific synthesis in cardiac tissue, may play a key role in cardiac lipid metabolism specific to cardiac tissue, and may indicate a specialized new function for this enzyme. A major component of heart tissue is cardiolipin, and Type IV phospholipase may mediate metabolism of this related diphospholipid in this organ. Therefore, recombinant forms of the new PLA₂s

5

10

15

20

10

15

could prove useful in the treatment of disorders involving cardiac phospholipid metabolism.

In addition, the new PLA2s have been mapped into a genetic locus known to be associated with Batten's disease (or Neuronal Ceroid Lipfuscinosis; Since the latter disorder has been shown to involve alterations in activity phospholipases, see Dawson et al.: Advances in Experimental Medicine & Biology, 266:259-270 (1989), these new enzymes may be useful as a therapeutic to treat the former, and as a diagnostic to detect the presence of these genetic abnormalities so proper counseling and early treatment of the disease would be possible.

Examples of various embodiments of the present invention will now be further illustrated with reference to the following Examples.

Example I - CpCH10-1D Cell Line Transfected with pCH10 which Expresses HPLA₂-10

20 RNA is prepared according to the method of Chomcyzmski and Sacchi: Analytical Biochemistry, 162:156-159 (1987). 5' and 3' RACE-RT PCR techniques are used to generate the full length cDNA from total human brain RNA as described by 25 Ishisaki: Biochem. Biophysic. res. Comm., 162:1030-1036 (1989), and outlined in FIG. 10. PCR amplifications are done using 30 cycles at 95°C for 20 seconds, 60°C for 20 seconds and 72°C for 75

seconds in 100 µl of buffer containing a final concentration of 1.5 mM MgCl₂, 200 µM dNTP, 100 mM Tris-HCl, pH 8.3, and 3 units Taq polymerase. Anchor (300 ng) and adaptor (50 ng) primers are used in both 5' and 3' RACE-RT PCR. Primers HlO-C (300 µg) and HlO-la (300 µg) are used for 5' RACE-RT PCR. Primers HlO-A (300 µg) and HlO-l (300 µg), see FIG. 10, are used for 3' RACE-RT PCR. Primer sequences are listed in TABLE IV.

TABLE IV

Primers	Sequences
H10-A	CTGGCTTGGTTCCTGGCTTGTA 13
H10-1	GCAAGGAGGCTTGCTGGACCTA ¹⁴
H10-1a	ATCGGTGCCATCCTTGGGGGTT ¹⁵
H10-C	GCAGAGGATGTTGGGAAAGTAT ¹⁰
H10-5'	GAATTCGCTAGCCAGAGATGAAAGGCCTCCTCCCACTGGCTTGG17
H10-3'	CTCGCTCTCGAGGCCCTAGGAGCAGAGGATGTTGGGAAA
Anchor	GGCCACGCGTCGACTAGTAC(T) 19 17
Adaptor	GGCCACGCGTCGACTAGTAC ²⁰ 1'

13represents SEQ ID NO:13:; 14represents SEQ ID NO:14:; 15represents SEQ ID NO:15:; 16represents SEQ ID NO:16:; 17represents SEQ ID NO:17: 18represents SEQ ID NO:18:; 19represents SEQ ID NO:19:; 20represents SEQ ID NO:20:.

6x10⁵ clones from a human stomach cDNA phage library (Clontech, Inc.) and 5x10⁵ clones from a rat genomic DNA cosmid library (Clontech, Inc.) are screened according to the procedures provided by Clontech Inc.

A Human Multiple Northern Blot (Clontech, Inc.) is hybridized according to the manufacturer's directions.

293s cells (ATCC CRL 1573) are grown in Dulb cco's modified Eagle's medium (DMEM)

10

15

supplemented with 10% fetal bovine serum. Approximately 7.5x105 cells are transfected with 10 ug of purified supercoiled plasmid DNA from either pCH10 or pRASF to create cell lines of the type CpCH10-1D and CpRASF-2B, respectively, according to the methods of Kingston, R.E.: Calcium Phosphate in Current Protocols Transfection in Molecular Biology. ed. Frederick M. al., pp. Ausubel et 9.1.1-9.1.3 (1989). Twenty-four hours transfection, 200 units per ml of hygromycin is added the medium. Stably-transfected, hygromycin-resistant colonies are selected ten days after transfection and are maintained in **DMEM** containing 200 units per ml of hygromycin. To test for PLA₂ activity, 2.0x10⁶ cells are plated in a 25 cm² flask and medium is collected 24, 48 and 72 hours after plating.

Autoclaved [1-14C] oleic acid-labeled

Escherichia coli (E. coli) JM109 is prepared according to the methods described by Elsbach, P. et al.: Methods in Enzymology, 97:24-31 (1991) for use as a PLA₂ substrate. Briefly, 20 μl medium is incubated for 15 minutes at 37°C with E. coli substrate (a mix of 2.5x10⁸ labeled and unlabeled bacteria to provide 10,000 cpm) in a total volume of 250 μl (40 mM Tris/HCl, pH 7.8, 150 mM NaCl, 10 mM Ca²⁺). The reaction is stopped by the addition of

WO 95/02328 PCT/US94/07926

-45-

250 μ l ice cold 0.5% (W/V) fatty acid-poor BSA (USB). After incubation on ice for 5 minutes, the samples are centrifuged at 10,000 x g for 3 minutes and 250 μ l of the supernatant containing released (1-14C)oleic acid is counted in a scintillation counter.

The pH optimum for human Type IV PLA2 enzyme activity is determined using 20 µl of medium approximately 10% substrate diluted to produce Sodium acetate buffer (final hydrolysis. concentration 25 mM) is used for the pH range 4-6.5 and Tris/HCl buffer (final concentration 25 mM) for the pH range 7-9. See FIG. 25.

The calcium dependence of the human Type IV activity is examined in the calcium enzyme The buffer solution concentration range 0-400 mM. (Tris/HCl, pH 7.5, final concentration 25 mM) prepared with doubly distilled, deionized water which contained a minimal amount of metal ions. mcM) is added to the assay mixture in order chelate the residual calcium. 20 µl of medium diluted to produce 10% substrate hydrolysis. See FIG. 26.

Example II - CpR8-3'Cell Line Transfected With pCR8 Which Epxresses RPLA₂-8

293s cells (ATCC CRL 1573) are grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum.

5

10

15

20

10

15

20

25

Approximately 7.5x10⁵ cells are transfected with 10 μg of purified supercoiled plasmid DNA from pR8-3' to create a cell line of the type CpR8-3' according to the methods of Kingston, R.E.: Calcium Phosphate Current Protocols in Molecular in Transfection Ausubel Biology. ed. Frederick M. et al., pp. Twenty-four hours after (1989). 9.1.1-9.1.3 transfection, 200 units per ml of hygromycin is added Stably-transfected, medium. hygromycin-resistant colonies are selected ten days after transfection and are maintained containing 200 units per ml of hygromycin. for PLA₂ activity, 2.0x10⁶ cells are plated in a 25 cm² flask and medium is collected 24, 48 and 72 hours after plating.

Autoclaved [1-14C] oleic acid-labeled (E. coli) JM109 is prepared Escherichia coli according to the methods described by Elsbach, P. et al.: Methods in Enzymology, 97:24-31 (1991) for use as a PLA2 substrate. Briefly, 20 µl medium is incubated for 15 minutes at 37°C with E. coli substrate (a mix of 2.5x108 labeled and unlabeled bacteria to provide 10,000 cpm) in a total volume of 250 µl (40 mM Tris/HCl, pH 7.8, 150 mM NaCl, 10 mM Ca²⁺). The reaction is stopped by the addition of 250 µl ice cold 0.5% (W/V) fatty acid-poor (USB). After incubation on ic for 5 minutes, the

10

15

20

25

samples are centrifuged at 10,000 x g for 3 minutes and 250 μ 1 of the supernatant containing released (1-14C]oleic acid is counted in a scintillation counter.

The pH optimum for human Type III PLA₂ enzyme activity is determined using 20 µl of medium diluted to produce approximately 10% substrate hydrolysis. Sodium acetate buffer (final concentration 25 mM) is used for the pH range 4-6.5 and Tris/HCl buffer (final concentration 25 mM) for the pH range 7-9. See FIG. 23.

The calcium dependence of the human Type III enzyme activity is examined in the calcium concentration range 0-400 mM. The buffer solution (Tris/HCl, pH 7.5, final concentration 25 mM) is prepared with doubly distilled, deionized water which contained a minimal amount of metal ions. EDTA (300 mcM) is added to the assay mixture in order to chelate the residual calcium. 20 μ l of medium is diluted to produce 10% substrate hydrolysis. See FIG. 24.

Example III - PLA2 Activity

 7.5×10^5 293s cells are transfected with 10 ug of supercoiled plasmid DNA according to the method of Kingston, R.E.: Calcium Phosphate Transfection in Current Protocols in Molecular Biology. ed. Frederick M. Ausubel et al., pp.

10

15

20

9.1.1-9.1.3 (1989). Hygromycin-resistant colonies days after transfection and 10 are selected containing 200 units of in DMEM maintained CpCH10-1D CpCH10-1C, and hygromycin. CpCH10-1B, CpCH10-2G are independent, hygromycin-resistant cell lines transfected with pCH10, a plasmid containing PLA₂ CDNA; CpRASF-2B is IV the human Type line transfected with hygromycin-resistant cell pMCH6, a plasmid containing the known Type II PLA2 CpR8-3' is a hygromycin-resistant cell line transfected with pR8-3', a plasmid containing the rat Type III PLA, cDNA. These cell lines are tested two months after their stable transfection. Each has maintained subcloned in bas been hygromycin-containing medium. For this experiment, exponentially growing cells are plated at 4 x 105 cells per ml. Medium samples are taken 24, 48 and 72 hours after plating. 20 µl of each medium sample is assayed under standard conditions, see Elsbach, P. et al.: Methods in Enzymology, 197:24-31 (1991) for PLA2 activity. Activity is expressed as a fraction of autoclaved [1-14C]oleic acid labeled E. coli Y1090 incubated alone. See FIG. 21.

Example IV - Searching for human cDNA and Genomic DNA Sequences homologous to RPLA₂-8

Two primers, clo8-4 and clo8-5, synthesized according the published human h8 presumptive exon II sequence, Seilhamer, J.J.: J. of Cellular

Biochemistry, 39:327-329 (1989), are used in a PCR amplification screen of human child brain, adult brain, liver, heart, and various white cell cDNA libraries. No PCR amplification is obtained from any of them. Two overlapping human genomic DNA clones, clone 8 and walk 9, containing 10 kb of DNA 5' of h8 16 kb of DNA 3' of h8 exon exon II and Southern are then analyzed. blot respectively, analysis using the PCR fragment containing RPLA2-8 open reading frame DNA sequence as a probe identified two EcoRI fragments, one in clone 8 and one in walk 9. These two fragments are subcloned into pUC19 and sequenced. DNA sequence homology between these sequences and the RPLA2-8 cDNA indicated that one fragment contains a region homologous to RPLA2-8 exons I and II, and that the other fragment contains a region homologous to RPLA2-8 exon IV. See FIG. 16. In order to search for exon III of a human RPLA2-8 homologue, the entire region between exon II and exon IV is sequenced. No region homologous to RPLA2-8 coding exon III is found by computer analysis of this sequence. To determine if the HPLA2-8 sequence is transcribed, two primers, one in coding exon II and one in exon IV, are used to do RT-PCR of human brain lymphoblast total RNA. No PCR amplification and signal is obtained.

5

10

15

20

10

15

Example V - Phospholipase A₂ assay using aut - claved labeled bacterium as a substrate

Autoclaved [1-14C]oleic acid-labeled E.coli 1-¹⁴C 109 is prepared according to the P. et Methods in Elsbach: al.: described by Enzymology, 197:24-31 (1991) for use as the PLA2 substrate. Commercial porcine pancreatic PLA2 (Sigma) is used for the standard assay. Simply, the serialy diluted PLA, solutions are incubated for 15 minutes at 37°C with E.coli substrate (a mix of 2.5x108 labeled and unlabled bacteria to provide 10,000 cpm) in a total volume of 250 ul (40mM Tris/HCl, pH 7.8, 10mM Ca⁺²). The reaction is stopped by the addition of 250 ul ice cold 0.5% (W/V) fatty acid-poor BSA (USB). After incubatation on ice for 5 minutes, the samples are centrifuged at 10,000 x g for 2 minutes, and 250 ul of the supernatant containing released [1-14C]oleic acid is counted in a scintillation counter.

-51-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Tischfield, Jay A. Seilhamer, Jeffrey J.
 - (ii) TITLE OF INVENTION: Mammalian Phospholipase A2 Nucleotide Sequences and Low Molecular Weight Amino Acid Sequences Encoded Thereby, Antisense Sequences and Nucleotide Sequences Having Internal Ribosome Binding Sites
 - (iii) NUMBER OF SEQUENCES: 44
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Ruden, Barnett, McClosky, Smith, Schuster & Russell PA
 - (B) STREET: 200 East Broward Boulevard
 - (C) CITY: Fort Lauderdale
 - (D) STATE: FL
 - (E) COUNTRY: USA
 - (F) ZIP: 33301
 - (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/097,354
 - (B) FILING DATE: 26-JUL-1993
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Manso, Peter J.
 - (B) REGISTRATION NUMBER: 32,264
 - (C) REFERENCE/DOCKET NUMBER: IN21044-5
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 305-527-2498
 - (B) TELEFAX: 305-764-4996
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Lys Leu Leu Val Leu Ala Val Leu Leu Thr Val Ala Ala Ala

-52-

1 10 15

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Asp Ser Gly Ile Ser Pro Arg

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ala Val Trp Gln Phe

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Lys Thr Leu Leu Leu Ala Val Ile Met Ile Phe Gly Leu Leu Gln 15

Ala His Gly

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids

WO 95/02328 PCT/US94/07926

-53-

- (B) TYPE: amino acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Asn Leu Val Asn Phe

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Asp Leu Leu Val Ser Ser Gly Met Lys Gly Ile Ala Val Phe Leu

Val Phe Ile Phe Cys

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Trp Thr Thr Ser Thr Leu Ser

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Ser Phe Trp Gln Phe

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Lys Gly Leu Leu Pro Leu Ala Trp Phe Leu Ala Cys Ser Val Pro

Ala Val Gln Gly 20

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Gly Leu Leu Asp Leu

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Lys Arg Leu Leu Thr Leu Ala Trp Ph Leu Ala Cys Ser Val Pro

-55-

Ala	Val	Pro	Gly
			20

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
 - Gly Leu Leu Glu Leu
- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CTGGCTTGGT TCCTGGCTTG TA

22

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GCAAGGAGGC TTGCTGGACC TA

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

-56-

(11) MOLECULE TYPE: CDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
ATCGGTGCCA TCCTTGGGGG TT	22
(2) INFORMATION FOR SEQ ID NO:16:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GCAGAGGATG TTGGGAAAGT AT	22
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
GAATTCGCTA GCCAGAGATG AAAGGCCTCC TCCCACTGGC TTGG	4.4
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
CTCGCTCTCG AGGCCCTAGG AGCAGAGGAT GTTGGGAAA	39
(2) INFORMATION FOR SEQ ID NO:19:	

(i) SEQUENCE CHARACTERISTICS:

-57-

(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
GGCCACGCGT CGACTAGTAC T	2
(2) INFORMATION FOR SEQ ID NO:20:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
GGCCACGCGT CGACTAGTAC	20
(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4325 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 7221195	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
GAATTCCGCC TCCACCTCTC AAATGCTGGG ATTGCAGGAT GTCCCCCCAC CCCTGCTCCC	60
TTGTGTCCTT GCTTCCTGCT GCCGGAATGT ATCACTTAAT TGCCAGGTAC CCATGGTCTG	
ATTCCAGGAT AGAAGGGCGG GCGAGGGGGT TGGAGGAGAG GCCTCTATTA TTTCCGCGGT	
CTGGCAGGCC TGGAAGCAAA GCTTCAAGTG CAGAAGGAGG AGTGTCGGGG AATGGCAGAA	240
AAGGCTGGAA CAGCAATGCA GACCTAGGTA AAGGGCACAG AGCTGAGGGA AGCTCCTGGG	300
AGGCTCCCTG CAGCTCCTGC CTCTGCACAT GACCCGGACT CCTTTTCTCT CTTTGGATCT	
SCGTCCAGGG ACTGGCTTGT ACACACCCCT CCCAGGAGAC CCCTTGGCAG CTGCACACTC	420

AGG	CTC	CATC	CAAG	TTGG	CT (TGCC	CCTC	G G	SAAGO	CTG	TC	AAAA	GCC	TGGC	TCCC	AG 48
TTI	CTG	GGA	CCCA	CAGA	GA C	CCTC	TCAC	C T	GCAG	CTC	A GCT	CCA	rccg	CCTC	CTGT	GC 54
CTG	GCTC	CGA	CCAG	CTGG	GT C	TAAC	TATA	G AC	AGTO	AGC	ACT	TCAC	CCA	CTTC	ACCG	AG 60
TTI	CCCA	ACA	GCTT	TGAG	AT 1	TGGA	AGCC	G GA	LAGCO	TGAT	CGC	CTTC	TCA	GAAG	CTAC	GG 66
TCC	ACTA	CCT	CAGC	CATT	CT G	TTGG	AGCI	G AA	CTGG	CAGA	TGA	agg1	GAG	ACCC	AGGC	AC 72
C A	TG G et A	AC C	TC C eu L	TG G eu V	TC I	CC T er S	CA G	GA A	TG A let L	AG G ys G 10	GC A	TC G	CT C	TC T	TC he 15	76
CTT Leu	GTC Val	TTT Phe	ATC Ile	TTC Phe 20	Cys	TGG	ACA Thr	ACC	TCC Ser 25	Thr	CTC Leu	AGC Ser	AGC Ser	TTC Phe 30	TGG Trp	814
CAG Gln	TTC Phe	CAG Gln	AGG Arg 35	ATG Met	GTC Val	AAA Lys	CAC	ATC Ile 40	Thr	GGG	CGC Arg	AGC Ser	GCC Ala 45	TTC Phe	TTC Phe	862
TCC Ser	TAT	TAC Tyr 50	GGA Gly	TAT Tyr	GGC	TGC Cys	TAC Tyr 55	Cys	GGG	CTT Leu	GGG Gly	60 Gly GGC	Arg	GGG	ATC Ile	910
CCT Pro	GTG Val 65	GAC Asp	GCC Ala	ACA Thr	GAC Asp	AGG Arg 70	TGC Cys	TGC Cys	TGG Trp	GCT Ala	CAT His 75	GAC Asp	TGT Cys	TGC Cys	TAC Tyr	958
CAC His 80	AAG Lys	CTT	AAG Lys	GAA Glu	TAT Tyr 85	GGC Gly	TGC Cys	CAG Gln	CCC Pro	ATC Ile 90	TTG Leu	AAT Asn	GCC Ala	TAT Tyr	CAG Gln 95	1006
TTT Phe	GCC Ala	ATT Ile	GTC Val	AAC Asn 100	GGG Gly	ACC Thr	GTG Val	ACC Thr	TGT Cys 105	GGA Gly	TGC Cys	ACC Thr	ATG Met	GGT Gly 110	GGC Gly	1054
GGC Gly	TGC Cys	rea	TGC Cys 115	GGG Gly	CAG Gln	AAA Lys	GCC Ala	TGT Cys 120	GAG Glu	TGT Cys	GAC Asp	AAA Lys	CTG Leu 125	TCT Ser	GTG Val	1102
TAC Tyr	TGC Cys	TTC Phe 130	AAG Lys	GAG Glu	AAC Asn	CTG Leu	GCC Ala 135	ACC Thr	TAC Tyr	GAG Glu	AAA Lys	ACT Thr 140	TTC Phe	AAG Lys	CAG Gln	1150
red	TTC Phe 145	CCC Pro	ACC Thr	AGG Arg	CCC Pro	CAG Gln 150	TGT Cys	GGC Gly	AGG Arg	GAC Asp	AAA Lys 155	CTC Leu	CAT His	TGC Cys		1195
TAGG	CCTI	cc c	CTCC	AAGA	G TC	CCCA	GGC1	י ככז	GCAG	CTC	AGC	TTGC	TG 1	CTAG	GGAG:	r 1255
GTCT	TCTC	AG G	CATT	AGGG	G AC	CGGA	GCTG	GAG	AATT	CCT	GCCC	TGGA	AT (CAGAC	CATG	3 1315
GTAC	CTGG	CA A	TTAA	GTGA	T AC	ATTC	CGGC	AGC	AGGA	AGC	AAGG	ACAC	CAA C	GGAG	CAGG	G 1375
															GTAG	
CTCC.	ACTA	TA C	GGTA	AGTT	C AA	GCT	AACC	TGA	GCTA	CCT	GAGA	CCTI	GC (TTGA	AAAA	A 1495

					T GGGCTGAAAG	1555
GTACTCTCA.	A ACCGATTTC	C CAGGAAGAG	C GGAGAGCCC	C AGGTTCAGC	r ccagcctgaa	1615
					C AAGTCCTCCA	1675
					CCTAAGAGCC	1735
TCACCCGGA	F TCTCATCCC	C ATTTGCTCC	A GGACTGACC	r ctgtaaatc	T TCCAGCAGGA	1795
AGCAGGCTG	r ACCCATCTC	A GGAGGTGGG	TGCTGTTAG	A ACAATGGTGT	GCACCAGTGA	1855
CACAAAGATO	TCATGGTTAI	A GATGGCATCA	A AGAAGTGGAL	A AGGACATTCO	GAACAGTGGG	1915
TCCAAGGCAC	CCAAAGTCCT	CACCCCAATT	TAGAAGCCG	TGGTCCTGTA	AGACTTAAAT	1975
CTACTAAACA	AGGAAGGTCT	AACTGGGCTG	GAATCTGAAG	TTCATGGTGC	CAGGCTGGGG	2035
CGGTGGGTGG	GGACGTGGCC	GTGGCCATGA	CCATGATTG	CTCTCTGCAT	GGTGACACTT	2095
GCCTTTTGCA	CCCTAGCTCT	CAGCACATCI	GAAAAGGACA	GACTCTCCTG	TTCATTCCTT	2155
GAATCTGAGA	CTCTCCTCAC	TAATGTAGCA	AAAATGGAGG	TCTAAAGTGC	AGGCTTCAGC	2215
					AGAGCTTGCC	2275
					TGGGAGAGCC	2335
TGGCCGAGCC	CTGACTGCAG	CACACAGAGC	CGTGAGCCTC	ATACAAGAAG	CCACATTTTG	2395
•					CCGGGAGCAC	2455
					GATCTGAACT	2515
					AGCGAGGGGC	2575
					TAAGGACGTT	2635
AACATGGGTG	ACTGGGCATT	AGTCAGGTCA	CCTGGTTTTG	GGGTCTTTGA	ATCAGCTTTC	2695
				ACGATAAGGG		2755
					GCCTTGTTTA	2815
					ACAAACACGA	2875
				CAGGAACATG		2935
					AACTTCCTCT	2995
TAACAAGTTA	GTTGATGGCG	CTGGTCCTTA	GTCACCGATA	CTGTCAGGCT	CTCAGCTCTT	3055
GGGCCAGACT	TGGCGGCCAT	GGGAGTGTGG	TCACTTGCCC	CGTCCCCTTC	TTCCAGGAGG	3115
TACTGGGGAA	AATGGTTGGA	TTTGTGGAGT	TGTAGGGAAC	ACTCATGGCT	CCCTTCACTT	3175
AGTAGGTCAG	CTAACATATG	TGTATCGAGC	CCATACCGTG	TGCCATGTGC	AGTGCTGAGC	3235
AGCAGGGAGT	CAGAGATTTA	AAGACACACA	CACAGACTTC	AAGTCTGAGA	ATTITUTE A ATTIC	3305

					ACACCCGGAC	3355
TGAGAAAACT	AAGCACGAGG	AGACAGCAGG	GTCAGCAGAG	GGCCTGGGAG	CTAGGGCCCT	3415
GAGCAGTACC	TAGTTCAAAT	CACAGAGTCG	TCTTTCTTCC	TCCACCCTAC	CCAGGTACAG	3475
CAAGTAGACA	CGGGTGGGG	CAGGGCAGGG	ATGCAGGAAC	ATTAGGGCAC	ACCGATGTGG	3535
CTAGGCTAAG	CTAGAGCATG	TTACCTTCTC	AGGGGTCCTG	TCATGTCAGA	GACTGGTTCC	3595
AACCTGGAAA	GATGTCTGAG	TGACAGCTGT	GGTAGAAGAA	GAGAGGCCAG	GGTGATATCA	3655
GCATGAAGGG	CTGGATTGCT	ATGTGAGATC	CAGATCTCTT	CTGCCACTGG	GGTCAGCTTC	3715
TACACTGGAA	ATAGATGGGC	TGCGTTATGG	AGGGTGGTGT	GAGTCCCTGT	CTGCGTTGTG	3775
CCGGGAATCA	GAGCAGAGTG	TTAGCGCTGT	AAAAGGACAT	GCTGGTGTTT	GCAGGAAATC	3835
ATCGATTTCT	TGGAAGGGCA	GCCATTCATC	TACACCAGGG	ATTGACTTTA	TGCCAGGCTT	3895
GTGATGAGGG	TAGAAAAGTA	GAAATTCTGT	CCGCTGCAAG	GAGCAGTCAG	AGGACACAAG	3955
GACCAAATAG	CTTGGGAGTT	GCGGAAGTAG	GTGTCTGCTG	AGGGAGCAGT	GACCACTGGG	4015
GGAAAGGCTC	CTTCAAGGAA	TTCAGGGACA	GGGGTGAGGG	CTGACATCTT	GCCTGAGACC	4075
CTAAAGAAGA	GAAGGAGTTG	AGAGGGCTGA	GTATGCTGTG	TGGAGCCCCA	CCCCACCCC	4135
CACCCCACC	CCCACCCCAG	GTATATGGAT	GGAGGATAAT	GCGGGGGTCG	GGTTCCTCTC	4195
AATCCATCA	TCCCACCTTC	GAGCTGCTGG	CACGGCCTTG	CCAGCACAGC	CCGATTCTGT	4255
TTGACAAAA	TACTCGAACG	AAATGATTAC	ATGCAAATAA	AATGCAAGAG	GAAAAATCTA	4315
ACGGAATTC					•	4325

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 158 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Met Asp Leu Leu Val Ser Ser Gly Met Lys Gly Ile Ala Val Phe Leu
1 5 10 15

Val Phe Ile Phe Cys Trp Thr Thr Ser Thr Leu Ser Ser Phe Trp Gln 20 25 30

Phe Gln Arg Met Val Lys His Ile Thr Gly Arg Ser Ala Phe Phe Ser

Tyr Tyr Gly Tyr Gly Cys Tyr Cys Gly Leu Gly Gly Arg Gly Ile Pro
50 60

-61-

Val 65	Asp	Ala	Thr	Asp	Arg 70	Cys	Cys	Trp	Ala	His 75	Asp	Cys	Cys	Tyr	His 80	
Lys	Leu	Lys	Glu	Tyr 85	Gly	Cys	Gln	Pro	Ile 90	Leu	Asn	Ala	Tyr	Gln 95	Phe	
Ala	Ile	Val	Asn 100	Gly	Thr	Val	Thr	Cys 105	Gly	Cys	Thr	Met	Gly 110	Gly	Gly	
Cys	Leu	Cys 115	Gly	Gln	Lys	Ala	Cys 120	Glu	Cys	Asp	Lys	Leu 125	Ser	Val	Tyr	
Cys	Phe 130	Lys	Glu	Asn	Leu	Ala 135	Thr	Tyr	Glu	Lys	Thr 140	Phe	Lys	Gln	Leu	
Phe 145	Pro	Thr	Arg	Pro	Gln 150	Cys	Gly	Arg	Asp	Lys 155	Leu	His	Cys			
(2)	INFO	RMAT	MOI	FOR	SEQ	ID N	10:23	:								
	(i)	(A (B (C) LE) TY) ST	NGTH PE: RAND	ARAC nucl EDNE	bas eic SS:	e pa acid sing	irs								·
	(ii)	MOL	ECUL	E TY	PE:	CDNA										
					SCRI											
		CC C	CCTG	GTCT	C CT	CAGG.	AATG	AAG	GTCA	TTG	CCAT	CCTC	AC C	CTCC:	rccrc	. 60
TTCT																67
(2)	INFO	RMAT:	ION	FOR .	SEQ :	ID N	0:24	:								
	(i)	(A) (B) (C)) LEI) TYI) STI	NGTH PE: 1 RAND	ARAC' : 67 nucle EDNE: GY:	base eic a SS: s	e pa. acid sing:	irs								
	(ii)	MOLI	ECUL	E TY	PE: d	DNA										
	(xi)	SEQU	JENCI	E DES	SCRII	PTIO	N: 5]	EQ II	ои с	:24:						
ACCA	rggao	C TO	CTG	STCT	CTC	CAGG	AATG	AAG	GCA:	rcg d	TGT	TTC	T TO	TCTI	TATC	60
TCT	CT															67
(2)]	INFOR	LTAMS	ON I	FOR S	EQ 1	D NO	25:	:								
	(i)	(A)	LEN	GTH:	ARACT	bas	se pa	S: airs								

-62-

(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
TGGTGGCAGC CCCCACCCAC AGCAGTTTCT GGCAGTTTCA GAGGAGGGTC AAACACATCA	60
CGGGGCGAAG TGCCTTCTTC TCATATTACG GATATGGCTG CTACTGTGGG CTTGGGGATA	120
AAGGGATCCC CGTGGATGAC ACTGACAGGT G	151
(2) INFORMATION FOR SEQ ID NO:26:	151
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 151 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
CAGGGACAAC CTCCACCCTC AGCAGCTTCT GGCAGTTCCA GAGGATGGTC AAACACATCA	60
CGGGGCGCAG CGCCTTCTTC TCCTATTACG GATATGGCTG CTACTGTGGG CTTGGGGGCC	120
GAGGGATCCC TGTGGACGCC ACAGACAGGT G	151
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 170 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
TAGGTGGATG CACCCTTGGT CCTGGTGCCA GCTGCCACTG CAGGCTGAAG GCCTGTGAGT	60
GTGACAAGCA ATCCGTGCAC TGCTTCAAAG AGAGCCTGCC CACCTATGAG AAAAACTTCA	120
AGCAGTTCTC CAGCCGGCCC AGGTGTGGCA GACATAAGCC CTGGTGCTAG	170
(2) INFORMATION FOR SEQ ID NO:28:	1,0
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 167 base pairs (B) TYPE: nucleic acid	

283

-63-

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
CAGGTGGATG CACCATGGGT GGCGGCTGCT TGTGCGGGCA GAAAGCCTGT GAGTGTGACA	6
AACTGTCTGT GTACTGCTTC AAGGAGAACC TGGCCACCTA CGAGAAAACT TTCAAGCAGC	12
TCTTCCCCAC CAGGCCCCAG TGTGGCAGGG ACAAACTCCA TTGCTAG	16
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1828 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 233643	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GAATTCCGGT GGATGGAGGG GGCTGAGCAG GATGTTGACT GGCTATCGTT CATTGAGCAC	6
TCTCACGATC AGCATCACGC ACGGAATCCA TCCTTCCTGT GTTGCAGCTT GTAGACCCTG	12
ATGCTTGGGC TGCCAGCATA AACGTGGGGA TCCAGACTCT GTCTACCGAG GCTGCCCATA	186
GGGACAGGCC CTGGGAAGAG GAGCTGAGAC CAGGCTAAAA AGAACCCAAG AA ATG	23

GTC CCA GGG GGC TTG CTA GAA CTG AAG TCC ATG ATT GAG AAG GTG ACT 331 Val Pro Gly Gly Leu Leu Glu Leu Lys Ser Met Ile Glu Lys Val Thr GGG AAG AAT GCC GTA AAG AAC TAT GGC TTC TAC GGC TGC TAC TGT GGC 379 Gly Lys Asn Ala Val Lys Asn Tyr Gly Phe Tyr Gly Cys Tyr Cys Gly 35 TGG GGC GGC CAC GGG ACC CCT AAG GAT GGC ACT GAT TGG TGC TGT CGG 427 Trp Gly Gly His Gly Thr Pro Lys Asp Gly Thr Asp Trp Cys Cys Arg ATG CAC GAC CGT TGT TAT GGG CTA CTG GAG GAG AAA CAC TGT GCC ATC 475

AAG CGC CTC ACG CTG GCT TGG TTC CTG GCT TGC AGT GTG CCT GCA

Lys Arg Leu Leu Thr Leu Ala Trp Phe Leu Ala Cys Ser Val Pro Ala

-64-

Met Hi	s Asp	Arg	Cys 70	Tyr	Gly	Leu	Leu	Glu 75	Glu	Lys	His	Cys	Ala 80	Ile	
CGG ACC	C CAC r Glr	TCC Ser 85	TAT Tyr	GAC Asp	TAC Tyr	AGA Arg	TTC Phe 90	ACA Thr	CAG Gln	GAC Asp	TTA Leu	GTC Val 95	ATC Ile	TGC Cys	523
GAA CAG Glu His	GAC S Asp 100	Ser	TTC Phe	TGT Cys	CCA Pro	GTG Val 105	AGG Arg	CTT Leu	TGT Cys	GCT Ala	TGT Cys 110	GAC Asp	CGG Arg	AAG Lys	571
CTG GTC Leu Val	TAL	TGC	CTG Leu	AGG Arg	AGA Arg 120	AAC Asn	CTC Leu	TGG Trp	AGT Ser	TAC Tyr 125	AAC Asn	CGT Arg	CTT Leu	TAC Tyr	619
CAG TAT Gln Tyr 130	TAC	CCC Pro	AAC Asn	TTC Phe 135	CTC Leu	TGC Cys	TAAT	GTCC	TC :		GCTC	T CC	CCGC	GAGT	673
GCCTCCC	ACA	GTGGC	GGCC	c cc	CTCG	GCTG	TAT	TCCT	GAT	CCGT	CCAC	CC A	AGGT	ירייייכב	733
ATCTGCC															
AGAATCC															
TTGCAGA															
TTTCCTT															
GGAGAAG															1033
AGGCGAG															1093
CTTCTCT															1153
GGCCTTA															1213
AAGCCAG															1273
TTGAGCT															1333
GAACCTC					,										1393
CAATAGC															1453
ATCAGGAG															1513
GTCTCAGA															1573
GTGCGGGA															
TTAAGGGC															
AAGCAAGG															
CTCCAGAA															
TTTCTCC															1828

-65-

(2) INFORMATION	FOR	SEO	ID	NO: 3	0 :
-----------------	-----	-----	----	-------	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 137 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Met Lys Arg Leu Leu Thr Leu Ala Trp Phe Leu Ala Cys Ser Val Pro

Ala Val Pro Gly Gly Leu Leu Glu Leu Lys Ser Met Ile Glu Lys Val

Thr Gly Lys Asn Ala Val Lys Asn Tyr Gly Phe Tyr Gly Cys Tyr Cys

Gly Trp Gly Gly His Gly Thr Pro Lys Asp Gly Thr Asp Trp Cys Cys

Arg Met His Asp Arg Cys Tyr Gly Leu Leu Glu Glu Lys His Cys Ala 65 70 75 80

Ile Arg Thr Gln Ser Tyr Asp Tyr Arg Phe Thr Gln Asp Leu Val Ile

Cys Glu His Asp Ser Phe Cys Pro Val Arg Leu Cys Ala Cys Asp Arg 105

Lys Leu Val Tyr Cys Leu Arg Arg Asn Leu Trp Ser Tyr Asn Arg Leu 120

Tyr Gln Tyr Tyr Pro Asn Phe Leu Cys

- (2) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1014 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 131..544
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GGATACCAAT GTTCCGACTG GAGACGGGGA GCCCGCGAGA CCCGGGTCTC CAGGGTCTGC 60 CCAAGGAAGT TGCTCATGGG AGCAGACCCC TAGAGCAGGA TTTGAGGCCA GGCCAAAGAG

-66-

AAC	CCCA	GAG	ATG Met 1	AAA Lys	GGC	CTC Leu	CTC Leu 5	CCA Pro	CTG Leu	GCT Ala	TGG Trp	TTC Phe 10	CTG Leu	GCT Ala	TGT Cys	169
AGT Ser	GTG Val 15	PIC	GCI Ala	GTG Val	Gln	GGA Gly 20	GGC Gly	TTG Leu	CTG Leu	GAC Asp	CTA Leu 25	Lys	TCA Ser	A ATO	ATC : Ile	217
GAG Glu 30	AAG Lys	GTG Val	ACA Thr	GGG	AAG Lys 35	Asn	GCC Ala	CTG Leu	ACA Thr	AAC Asn 40	Tyr	GGC Gly	TTC Phe	TAC Tyr	GGC Gly 45	265
TGT Cys	TAC Tyr	TGC Cys	GGC Gly	TGG Trp 50	GIA	GGC Gly	CGA Arg	GGA Gly	ACC Thr 55	CCC Pro	AAG Lys	GAT Asp	GGC	ACC Thr	GAT Asp	313
TGG	TGC Cys	TGT Cys	TGG Trp 65	GCG Ala	CAT His	GAC Asp	CAC His	TGC Cys 70	TAT Tyr	GGG Gly	CGG Arg	CTG Leu	GAG Glu 75	Glu	AAG Lys	361
GGC Gly	TGC Cys	AAC Asn 80	ATT Ile	CGC Arg	ACA Thr	CAG Gln	TCC Ser 85	TAC Tyr	AAA Lys	TAC Tyr	AGA Arg	TTC Phe 90	GCG Ala	TGG Trp	GGC Gly	409
GTG Val	GTC Val 95	ACC Thr	TGC Cys	GAG Glu	CCC Pro	GGG Gly 100	CCC Pro	TTC Phe	TGC Cys	CAT His	GTC Val 105	AAC Asn	CTC Leu	TGT Cys	GCC Ala	457
TGT Cys 110	GAC Asp	ÇGG Arg	AAG Lys	CTC Leu	GTC Val 115	TAC Tyr	TGC Cyś	CTC Leu	AAG Lys	AGA Arg 120	AAC Asn	CTA Leu	CGG Arg	AGC Ser	TAC Tyr 125	505
AAC Asn	CCA Pro	CAG Gln	TAC Tyr	CAA Gln 130	TAC Tyr	TTT Phe	CCC Pro	AAC Asn	ATC Ile 135	CTC Leu	TGC Cys	TCC Ser	TAGO	SCCTO	ccc	554
CAGC	GAGC	TC C	TCCC	AGAC	CAA	GACT	TTTG	TTC	TGTI	TTT	CTAC	AACA	CA G	GAGTA	CTGAC	614
TCTG	CCTG	GT I	CCTG	AGAG	A GG	CTCC	TAAG	TCA	CAGA	CCT	CAGI	CTTI	CT C	GAAC	CTTGG	674
CGGA	cccc	CA G	GGCC	ACAC	T GI	ACCC	TCCA	GCG	AGTC	CCA	GGGG	AGTG	AC I	CTGG	TCATA	734
GGAC:	TTGG:	TA G	GGTC	CCAG	G GT	CCCT	AGGC	CTC	CACT	TCT	GAGG	GCAG	icc c	CTCI	GGTGC	794
CAAG	AGCT	CT C	CTCC	AACT	C AG	GGTT	GCT	GTG	TCTC	TTT	TCTT	CTCI	'GA A	GACA	GCGTC	854
CTGG	TCC	AG T	TGGA	ACAC	T TT	CCTG	agat	GCA	CTTA	CTT	CTCA	GCTT	CT G	CGAT	CAGAT	914
TATC!	ATCAC	CC A	CCAC	ccrc	C AG	AGAA!	FTTT	ACG	CAAG	AAG .	AGCC	AAAT	TG A	CTCT	CTAAA	974
rctgo	TGT	AT G	GGTA'	TTAA	A TA	AAAT"	CAT	TCT	CAAG	GCT						1014

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 138 amin acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

WO 95/02328 PCT/US94/07926

-67-

(ii) MC	DLECULE	TYPE:	proteir	1
---------	---------	-------	---------	---

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Met Lys Gly Leu Leu S Pro Leu Ala Trp Phe Leu Ala Cys Ser Val Pro 15

Ala Val Gln Gly Gly Leu Leu Asp Leu Lys Ser Met Ile Glu Lys Val 30

Thr Gly Lys Asn Ala Leu Thr Asn Tyr Gly Phe Tyr Gly Cys Tyr Cys 45

Gly Trp Gly Gly Arg Gly Thr Pro Lys Asp Gly Thr Asp Trp Cys Cys 50

Trp Ala His Asp His Cys Tyr Gly Arg Leu Glu Glu Lys Gly Cys 80

Ile Arg Thr Gln Ser Tyr Lys Tyr Arg Phe Ala Trp Gly Val Val Thr 95

Cys Glu Pro Gly Pro Phe Cys His Val Asn Leu Cys Ala Cys Asp Arg Lys Leu Lys Leu Val Tyr Arg Phe Arg Ser Tyr Asn Pro Gln Tyr Gln Tyr Phe Pro Asn Ile Leu Cys Ser

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15328 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

AAGCTTTGTG	GGATTTCTAT	TATGAACAAC	ATAGGTGCCT	TTCCAACTCG	GGAACAGAGG	60
AAATATGGAC	TCCTCAAAAG	AAAAAAAGAA	GAGATGAAGG	GATGATGTTG	CCAAAGAAAG	120
AAATTTGGAA	АААААААА	CAAACCAACA	TTTGCACTTT	CAAAACCATG	GAACCCTTCT	180
TATTTTTATA	TGTTCAGATC	TAAATGCCAG	AAAGGTTACC	ACATTCAAAG	GGAATGAGAT	240
TTGAAAATGA	TTTCTTTGAG	TCCTCTGCTG	AGGTCTTTCC	AAGGCACTAC	AATTAGGGCT	300
TTGCACCCAA	ATACCCTTGC	CTCATTTTGG	TCATTTTTGT	CCTGGAACAG	AGGTTCAGCT	360
GGGAGACCCC	TCACACACAG	GTGAAGGCGT	GGCTGTAGAA	CCTCAGACCC	CCTGGTCTCC	420
TCAGGAATGA	AGGTCATTGC	CATCCTCACC	CTCCTCCTCT	TCTGCTGTAA	GTAGAGAGCG	480

-68-

TTGGTGGGTC AGCACCAAGC TTCTGTCTTC CTGTTTATGT CAGTGGGAGG GGGGACTCTC	540
CAGGTGGCAC CAGGTGAGGG AAGTCACAAG TCCCGCAGAA AAGAATCAGG AAAGGAACGG	600
GCTCCCACCA ACGTCCTCTT GCTTCTGTTT CTGCTATAAA ATGGGCTGAT CCCAGTGTTG	660
GGATCTTATA AAGTGTCTAG GAAATCAGAG GTTGCCAACC ATTTGCTAGA AAGGGAGTTT	720
GAGTAGTATT TTACCCCCCC TCACCCTCAA GAGTCTTTTT ACTTTGGATG CTAGTAGCCT	780
TTTATTTAGG CATTGGATCA GAACAAAAAT GCAGGACATA TATCCAGCCT AATTTAACCA	840
ATGGATTAAA TGGCCTTATC AGGAAAAGAC CATTTTATGG TGACTTATGG GATAATTGGT	900
AGTTATAAGT CATTGCTGCC GGGAGATCCG ATTGCTTACC TCTGCAAAGT GAAGAAAGAC	960
CTACTGGGAA ACAGTTTGGG GTCTACTGGA GACTGATAGA CTCTTTTGCT GGATTCGTTG	1020
AGTGGAGGTT TCTCCAGATC CATTTTCCTG TCTCTTTCAA TTGAGTCACA ATAACTTTTG	1080
AGTCCCTAAG TCAAAGATGT CAAAAACAGA CTTCCTTTCC CCACAGTGAG TGGTGGAATT	1140
TACACTTTGC AAGGTGATAG TGCAGGAGGA TACCTGTACG CAGGGATGAC CGCCTCTGCA	1200
GCCCTCAGTG CGGCTCCAGG ACTGCTTGGG CACCAGTGAC CGCCCCATGG GTTTCTTCCG	1260
CCACACCCC GTTTAGACTG AACACGATAG GTAGATCGAA GGCCACCTGA GAAAACTCCC	1320
CCAAAACTCT ATTTCTGTTT CTCTTCTTCA AAGTTCATGT CTTTGTTGTA TTTTTATTGC	1380
AAATTTACTA CATGCTTATA GTTAAAAAGT AAAATAAATG AGTATATAGC AACAAGGTAA	1440
AGCTCCTCCT CATCCTCCC AGACCCCAGT TTTTTCCCTA CATCCAGATG TGACCACTCT	1500
TAAGAGTTTG ATATACATCC TCTATACAGC GTTTACCACA CACACATTCA AAACACCATA	1560
ATAGGAAGGG AACACATGCT GGGCCGGGCG CGGTTGTTCA TGACTATAAT CCCAGCACTT	1620
TGGGAGGCCG AGGCGGGCGG ATCACCTGAG GTCAGGAGTT CGAGACCAGC CTGGCCAGCT	1680
GGCAACATGG TGAAACCCGT CTCTATTAAA AATACAAAAA ATTAGTCAAG CATGGCAGTT	1740
GGGCACCTGT AATCCCAGCT ACTCAGGAGG CTGAGGCAGG AGAATTGCCT GAACCCGGGA	1800
GGCGGAGGTT GCAGTGAGCC GAGATCACAC CATTGCACTC CAGCCTGGGT AACAACAGCG	1860
AAACTCCGTC TCAAAAAAAA AAAAAAAAGA AGGAAAGGGA CACACGCTTA TTATGAAAGA	1920
CATGAGACAG CGGAGACGTG TATAAATGAT GTTGCCTGTT TTCTTTCTCT CTCTTCATCC	1980
ATGCTAGAGA TAGTGCTATC AAATGTAGTT ATTTTTGAGA CACATATTTC GTATTATCCC	2040
TGTCGTGACA TGTGGGTGGT TTCCAATTTT TTGATATCAC AGATAATGCT TCAGGAAACC	2100
ATTTTGTGTA TCGATTTGTG CCCACTCTCA TAAGCATCTT GTAGAAGCAA AAACAGCTGA	2160
GTTCATGTGT ACTTGTCATT TAAAAAAATA ATAATTGAGG ATACCTTTCC TGCCTCTTAA	2220
GTATTTTGTT TCTCCTGTGA GATAGTAAAG GCCTGATGAC ATCTGGAGGG ACTGGCGTTT	2280

-69-

					T GCCTAGAACT	2340
GTGGTTTCT	T GCTTTGAGG	G GGAAGACTA	r ggttgatgg	AAAGCCTTG	T TCTGAACCTC	2400
ATGGAAACT	G GGTATTCAT	C TGGGTTAGC	A AAAAACTAGO	TGTGTTACA	G GGGCAAATCT	2460
GAACCTATT	T TATTCCCCA	G GAAAGAGGC	r ggtgattcc	GCCATGCCC	TTGCACTTCG	2520
CTTTGGGGA'	T CTGGTGATA	T TTCGAATGC	CAGCACTCTA	GTAAGGGGA	GGGACATCAA	2580
GGCAGCATC	A TGCTCATTG	AACTTCCTTC	TICCTITITI	TCTCATCGGT	GGTGGCAGCC	2640
CCCACCCAC	A GCAGTTTCT	GCAGTTTCAG	AGGAGGGTCA	AACACATCAC	GGGGCGAAGT	2700
GCCTTCTTCT	CATATTACGO	ATATGGCTGC	TACTGTGGGC	TTGGGGATA	AGGGATCCCC	2760
GTGGATGAC	A CTGACAGGTO	GGTGCAGAGG	CTCTAAGGCC	ACTTATCATI	TGTTTTGCAT	2820
TAAAGTTCAT	GCTCAAAGCC	AGAGAGAGGG	TCTTAGGATT	CTTGCCTGGC	AAATAACAGA	2880
AAACAACTCA	GGCTAATGGA	AGGAAGAACT	GAACGGGATT	TGGAGGATGG	GTCTTGAGAA	2940
ACCCAGGGTC	GGGGCCAGCT	TCTTGAGTGT	GTGACCTGTG	AAGTTTCACA	GGGCCCAACA	3000
		CTTCTTGAGC				3060
CACTCATAAC	CCCCTAAACA	TGGTTTACTG	CTCTGCTGCC	ACATCTTGAA	ATTCTTAATA	3120
AAGGGCCTCA	TGTTTTCATT	TTGCTTTACT	CTCTGCAATT	ATGCCGTTGG	TCCTGCCCAG	3180
AGCTCTAGAA	GCTGTTTCAT	CCTCATAGTA	AAAGTGCTCT	GCTTTCAGCT	CTCCAGCTTT	3240
		AACTGACTCA				3300
		AGAAGTTGTC				3360
		GGATGGGGGT				3420
		TGTACGTGTG				3480
	•	GAAAGCAAAA				3540
		CTTAAATATC				3600
		GTTCGAAGGG				3660
		ATTGGCATAC				3720
					TAAACCACCT	
					TTTGCCTATT	
					CAAAGGCTGA	3900
					TTGCAGATGG	3960
					TTAGAATCCA	4020
AGCTTAAGTT	TCTGCCTTCC	TGTCCCTTGT	GTAGTGGTTG	AGGACATGGA	CTGAGCCCAT	4080

	GCTCCAGATG	GTATTTCTC	C TCCAGTGCT	C TCCCATCC	G CCCCAGC	CA ACTCTGGGTG	4140
	CCATGAATGG	GACTACGTC	G GCTTTTACA	G ACAGTTGTO	T CCTCAGAG	AC CGTTACAGTG	4200
	CCTGACTCAC	AGTAGGTGC	CAGTAAAA	G TGTTAAATC	A ATGAATGG	C CTAGGTTTGT	4260
	GTCCTGGGTC	TATCATTCT	CAGCTGCCT	A AGTTTGGGA	A ATTGGCCT	T TGGAATCTCA	4320
	GTCCCTCCCC	TACAAAAGGG	CAGCAATGA	T TGTACTTTA	T AGTTTCTAG	T AGCTAATGAG	4380
	ATAGCAACAG	ATACTACAGA	GGGCTCAGG	A AATGCTACT	G GTTATTATI	A TTATTTTTA	4440
	TTTTATTTAT	TTTTTGGGAG	ACGGGGTCT:	r getetatta	T CCAGGCCTG	G GGTGGAGAGG	4500
						C CTGAGTAGCC	4560
						С ТТААААААСА	4620
						G CGATCCTCCT	4680
						G GCCTATGTTT	4740
						G GAGGAGGCAG	4800
						ACCCACTTCC	4860
						CTGCCAGCCT	4920
						GTAGCCTTTT	4980
	CTGTATGGAA	ATGTCTTTTA	ACCTGGGCCT	TTCCTTAACG	TTCACCTCCT	CTTTGACCCA	5040
	GAGATCTTTT :						5100
	TCCTGATGCT (5160
	CATGAGTGTA C	CTCCTGAAC	TCTCTGGGGG	CCCAGAGCCT	GGCAGATAGT	ACATGCTCAG	5220
	TAAATACTTG T						5280
	ACATGTTTCC T	TGTTTCTGT	GATTTTGTTA	ACAAAACGGC	TCAGCTGTCT	TCCAGTTGGA	5340
	CAAATATTTA T						5400
	AAAGCAAATA G	GTGGGAAGG	GAAGGGGGAC	TCACATGTTA	CTGAGACCAT	TCAAGGAGCC	5460
	ATGTGGGCAA G						5520
	CTGCGGCTGG T	AGGGTATGG (STATGTGCAG	GGCAATCCTG	GCCTAGACAG	CAGGCACATT	5580
	TGGAGGCACG G	GACAGTAGT (-	CTTTCGTGAG	CACCATCCTT	TCCAGCATAG	CCAGGGTGGA	5640
•	TCCTGGGGTC C	TGGGCTGGG 1	AGGGTGAAGA	GCAACAAATA	AAGAAGTGGC	TTCTTGGCCG	5700
	SGCGCGGTGG C	TCACGCTTG 1	PAATCCCAGC	ACTTTGGGAG	GCCGAGGCGG	GCGGATCACG	5760
F	AGGTCAGGAG A	ICGAGACCA 1	CCTGGCTAA	CACGGTGAAA	CCCCGTCTCT	ACTAAAAATA	5820
(CAAAAAAAT TI	AGCCGGGCG 1	GATGGTGGG	CGCCTGTAGT	CCCAGCTACT	CGGGAGGCTG	5880

10001-01						
					AG ATTGCGCCAC	
					AAAAAAAAAG	
					G GGTTGCATGA	6060
					G AGTTCCTCTG	6120
					T GGCGGGAGAT	6180
					T GAGCTCCCCA	6240
					A GGTCTCCCTG	6300
GCACCAGCT	G TGTGGGTTG	G GGGCTCGGA	C CCCTGCACC	G GGAGGACCT	G CCTCAGCTCT	6360
					C CCCTTTTGTT	6420
CCCCACGTG	A GCTCAAGCA	A TCCACCCAC	TCAGCCTCC	r gagtagetg	G GATTACAGGT	6480
GCCCACTGC	C ATGCTTGAC	I AATTTTTTGT	TATTTTTAAT	A GAGACGGGG	TTCACCATCT	6540
TGGCCAGCT	C AGCACACAC	C AATACCCAGA	GTTAGGACTO	TGAGGTCTC	CTGGCACCAG	6600
CTGTGTGGG	T TGGGGGCTC	GACCCTGCAC	CGGGAGACCI	GCCTCAGCTC	TTGGACTGCC	6660
TGCCACTGC	C ACCAGCACG	GTTGACAGGG	AAAGAACCCC	TTTTGTTCCC	ACGTGAGCTC	6720
AAGGAGACT	T CCCTGAGTTC	GAGCTCTCTG	GTGTGGTCCT	TCTCAGGCCT	AAAGCAAAGT	6780
GTCTTTTCT	G TGACACCTCC	AAGGCCATGT	TCAGGAGAGG	GGAAGGGATC	AGGGCCTGGT	6840
GGGAGGGAT	G GGGAGAGGGG	ACTGGAGAAG	GTGGCCTCCA	GGGATCGAGT	TTCCCATGGC	6900
CTCTTCCCAC	CTGTCTTTGC	CACAGGGGTG	GGGACACCTG	GCTGGCCCAG	CCCAAGCCTC	6960
CACCCTGGGC	TCCTGTGGGC	TGGCTGCACT	CGCCAGGGCT	GGCCTAGGCT	CTCTGCACCC	7020
AGGGAAGCTT	CTCTATTCAA	TGCTCTTCAC	CCTCCCAGCC	CAGGACCCCA	GGAGATGAGG	7080
GAGAGTGGAG	CAAAGGTTGA	GGAGCAGAGG	CTGGAGCCCC	AGGCAGTGGC	ACTGCTGGGC	7140
AGTGGTGGGA	GGTGCCAGCC	AGGGCTGGGA	GTTGGACCCG	AAAGTACGTG	GCCTGGGCTG	7200
		CCTTCAGAGC				7260
		GCCTTGCTCA				7320
CAGTACAGGG	CATCAGCACC	CGCCTCCTCA	GCTGACCCAG	CCCCGTGAGG	ACCCAGGCCC	7380
AGCCCCCTGT	CATCCCCACC	CCCACCTTGC	CAAGCCCCTG	CCCCCAGGAG	CAGGGCTGAG	7440
AGCGAGGTGA	TCTGGGTTCT	AATCCAGAGT	CTGCTGCTGA	CATGTGCTGA	GCCCCAGGCC	7500
CATTGGTTTA	CTTGCCCCAG	TATTGAGCGA	GCATCCACTG	GGTACCCGCC	CAGTGCCGGT	7560
GCTGTGCCAG	GGGCCGGGC	ACAGAATAAA	GCAGACCCGT	CCCTGCTCTT	CTGGCATTCA	7620
CAGTCTTGTG	GAAACTCCAG	ACTGAAAGTG	CCCTTAGAGA	TTATCCAGAT	CAGCCCCTCC	7680

-72-

TTGTAGCAA	T GAAGAGACT	G AGACCCACAC	AGGGGATGA	TTTGATCCA	GAAACAGACA	7740
AGATTAAGA	T GCATGTGTC	T TGAACCTTT	CAGTGCTCTC	GAACATACCO	TCTGGCCGGA	7800
GTTGTCTGG	G CTTTGGTTT	T CCCATCCATO	AAATGGGTAC	AATAACAACA	GCTATAGTGT	7860
ATGAGCCTC	T GTGATAGAT	G CTGTACGCAC	AGCACCTGA	CTCACATGAT	AAACCACTGA	7920
GGTGAGCAT	T ATCTCCCAT	T ATCAAGGAGG	ACCCTGGGG	TCAGAGAGGT	TAAGCACGAT	7980
GCCAAGGCC	A CACAGCCAG	G GAAAGAAGAG	TTGGAATTCA	AACCCCGGGT	GCCCTGTCTC	8040
ACACTAGCT	r cccctgtgg/	A GGGTGCTGGT	GTGTGCATGA	TTGGAGGCCC	TCACACAGTG	8100
TAAGTCTCAG	G GATCTGCAGO	AAACTGGTCA	GAATGCTCTG	CCCTGGCCCA	GGGAAGGAAA	8160
GAGGGGCAG	A TGGAGTTTG	TTCGCTGTAA	GGCCCCGGAG	CITTGTGTTC	CTGCTGAGAA	8220
GCCTCAGAGT	CGGGCAACAC	TGGGTCTAAT	TCCAGCTCCA	CCCCTTGTAT	TAATAGCTGG	8280
GCCTTAATCT	CCTCATCTGT	` AAAATGGAGA	GAATCGTCGC	CTGTACTTCA	TAAGGCTGCT	8340
GGAAGGATTA	GCTAAAGCAA	CCCAGCTACA	GTGGCTGGCC	TACAGTAGGT	GCTTCATTAA	8400
TGCCCTTCCT	TTTAGATGTG	GAAATTCCTC	TTTTTGTCCA	AGTTTTCTTT	TCCTCTTTGC	8460
TTACGGCACT	GGGATTTTCT	TTATTACTGT	TTCTTTGAAG	AGTCCGCTCT	GTACTTGTGC	8520
		CCCTTATGGA				8580
		CACTCTGGGA				8640
		CAACACAGTG				8700
		CATACCTGTA				8760
		ATGAGGCCAC				8820
		CCCTACCTCA				8880
		ATTCAAAGAG				8940
		TCCTGCACCC				9000
		GGTAAGCAGG				9060
		TGAGAGATCA				9120
GGGCCCAATT	TGCCTGGTGG	TAGGGACAGC	TGCCCTCAGG	CCACCTGGGA	GGTGGTTATC	9180
CCTCCTTTGA	GTGGGCTTAC	ATAACTACTT	GGCATTTTTG	CAAGGGACTT	TAAGCTCACT	9240
		GCCCACATGC				9300
TGTGGGAGGC	AGAGATGGGG	TTCCAGCCAA	CTGAAACTCC	ATCATCTGCA	TCTCCCGGCC	9360
TCTGACTGCC	TCCCTCTGCC	AAAGCGGGAA	GATGAAAATG	GTAACTGCTG	GAATTTGTAT	9420
TTTGCAAAGA	CTTTTCTCAT	TTACTGCTGA .	ATATATTCCT	CATCTCAGCC	TCCACTCGCT	9480

	GACACGCTA	C CCACTGTCT	C TCCCAGCAT	CATCTCTAC	TGAAATGAT	C TTGTTTACTT	9540
	CTCTGTGTC	T GTGTGCCTC	G ACTOTOCOC	C ACCGACTAGE	AAGGTCCGT	G AGAGCAAGGA	9600
	GCAAGCCTG	T CTTGTTTGA	G GGCACTGGT	CTCATAGAGO	CACAGGGAA	GATGCCCCTG	9660
	GACTAAGCA	G TGTGGGGTC	r GCTGGCTTG	ACCTGTGCCC	CCAGCTCCT	GCCAAAGACC	9720
	AGACACATG	T TGGGAACTC	A ATACTTGTTT	GTTTAATGAG	TAGATGAAC	AAAGCACTCA	9780
	TGAAATAGG	C AGTGCACGT	TCTTTATCAC	CATTTGAAAG	CTGAGGAAAC	AGGCTTGGAG	9840
	AGGGAAGCA	A CTTGCCTGA	ACCCCAAATC	ACAGAAGCAG	CATATTTGGC	CCAAGAACCT	9900
	GGCTTCCTG	CTCCAAGGGG	TCAGGTCCAG	CTGGCATTGG	CCTGTAGGCA	TGTGAGTGTG	9960
	GCAAGGTAGT	CAGCAAAGAG	CCTTTACTGC	ATGTTGGGGT	CAGAAGATCA	GCAATAAGGA	10020
	GGACAAAAT	CTTGCCTGGA	AGGAGCTTGT	GTTCCAAAAA	GAACAAGAGA	CCACAGCATA	10080
	TTCATTAATA	AAGACACATI	CAAACAGGGC	CAAGTGCTCT	GAAGCACCTC	AGACAAAGCG	10140
	ACAGGCTGCA	AAATGACAGO	GTTTGGGGGT	CAGGAGACAG	AAGGGTGCCT	GCTTTAGGTG	10200
	GTCGAAGAAG	GCCTCTCTGG	GGAGGTGGCA	TTTGGTCTGA	GACCTCAGGG	CCAATGTGCT	10260
	AGGAGCAGAG	GAGCCTTGGG	Gaagaatgga	GATGAGGTTG	GACAGGATGA	GACACGTGCC	ì0320
	TTCTATGTCA	ATGGCAAGGG	AGTCATTGGA	GCATGTGAAG	CAGAGGATGC	TCTACTTTTG	10380
	CCCCAGAAAG	ATCACTCTGG	CTACAGTGCA	GAGAAAGAAG	AGAGTCAAGG	AGGAAAGAAG	10440
	GGCCTCATTA	GGGGACTGTT	GCAAAGCACA	GGGAGGCACA	ACCACAGCCA	AGATCAGCAT	ļ0500
	GGTGACCAAT	GGATGGAAGT	GTCAGATGTC	GCATGCTGTC	GGTAGGTCAG	GGCCGACAGG	10560
	ACCTGTCGAT	GGGTTCAGCG	TGGGGTGTGA	AGGAACACAG	GCTGCACCCC	AGCTCCTGGC	10620
	CTGAGTGGCT	GTAGATAGTG	GCACCAAATA	CTGAGCTCGT	GAAGATGGGG	GAGAGCTGAT	10680
	GATGAAGACA	GCAAGAGTTT	GGTGTGAGTC	ACCTTGAGTT	TGAGACACGT	GTCAGACATG	10740
٠			ACGTGCTTAT	•			10800
			GTATTCAGAG				10860
	GAATTCAGAG	ACAACCAGGG	CTGAGGCGAG	GGGCTTAGAC	TGGGGCCTGG	GACAGCCACA	10920
	GGCAGGAATG	CAGACTTGCT	GCCTCTTCTT	ATTTGTGGAG	ATGTAGTTCA	TGCAGCAAGA	10980
	AAGTCATTCC	AAAGCCCTCC	TTTCCTTTCT	TCATGCCTCA	GTTTCTCCAT	TAGCACATTA	11040
			TAAGCTTGTT				11100
			TCATCCAGGT				11160
			CTGCAAAAGA				11220
	GGCAATGGGG	CAGGCCACTG	AAGTAGAACT	GGATGTCAGA	TGCACGCATT	AGAAAGGACA	11280

GGAAGACCA	A ATGAGAAAG	G GAGAGGGG	C AGGGAGAAA	G GAAGGAGAG	C TAGAGACTTG	11340
AGGCAAAGG	A AACAAGAGA	T GGAATAGAA	G AAGACAGAG	G ACCAGAAGA	C AGTGAGACCA	11400
ACAGAAAGA	G AGAGGGACG	a gaaagaagg:	r ggctgaggai	A GGTGAGAAA	GTGTTTCCAG	11460
GGCGACAGC	A ACTGGACCA	G GCCCTCTAG	TGGACAGTG	A GGCTGGCTGG	GGGGCCTGAG	11520
CTCAAGTAG	C CCTCGTCCC	C TGAGAGAGT	GGGGCTACCT	GGGGAGCTG	GCTTGATGCA	11580
TCTGGAAGG.	A TCTTCACAG	A GGCAGGAGGG	GGAGTGGGAG	GGCAGAGGG	ACCCAGGCGC	11640
TAGAACAGT	G GGAGTGGCG	GACGCAAAAC	CGGAGAGCCA	GAGGAGTGAA	CATCCCTGGC	11700
AGATTCCCC	T GCGGCCGAG	AGGAGGGCAG	GAAGCTCAGI	GGTGTTGGCA	CAACGTGAGA	11760
AGTTCCAGG	G AGGCGTGGG	GGACGGCTTC	TGCAGGACGC	AGACTITGCA	GAGGGAGAGT	11820
	A CTGACTGCAG					11880
	GAGTGCATCA					11940
	ACATCCGGAC					12000
	AGTGTCATGI					12060
	AGCTAACTTG					12120
	CCTGAGAGCG					12180
	ACACACATGO					12240
	GCGCACGCAC					12300
	ATGCACACAG					12360
	GCACACAGTG					12420
	CGGCCAAAGT					12480
	TATTCTTCAT					12540
	GGGGATACTG					12600
	GGAGGCAGAC					12660
	GACAAACGGG					12720
	CTCTCTGAGG					12780
	AGATCCTGGG					12840
	GACAGAGCAA					12900
	AGTGGAGGG					12960
	GCCTGGCCAC					13020
AACCACACTG	GGCTGTAACA	GAGAGTGACG	TACTCGGTAC	GTTGAGAAGG	TCCTGCTTAT	13080

TTCCTTCC	ST GAAGGAGGA	A GAGCTGCTG	A TGACAGAGA	T TGGCAGTGG	C CAAAGACATA	13140
GAGAGAAG	AG GGCAGAACA	T GGGCTATTI	T AAACACAGA	G AAGATTAGO	G GGACCCGCTG	13200
GCAGACCGG	A CGTGAAATG	T GGAAGGAGC	G GGGGCAGCG	A GGTCGGCTC	C TAGTTTCCTG	13260
AGAATGTGG	G TGAATCACG	G GCTCACAGG	C AGAGGGAGC	A CTAGGATAT	C AAGGGTTCCC	13320
TTGTGAACG	C CTCAAGTTG	G AGATGCCTG	A GACATCCAA	G TGAGATGTC	A AGCAGGCAGC	13380
TGGAAATAG	G AGATGAGCT	C TGGGAAAAT	G CTCCCATCA	C CCTGGCCTG	T GTGCTGCCTG	13440
GGCGCACCC	A TTCAGGGCC	C TCCACGCAG	C CCACGCCCC	T GCCTCCTGA	T TCCTTCTAGG	13500
CTTCTCCAG	C ACTCGTGGG	A TGCCCAGAT	G TGATCAGGG.	A AGGGCTTGA	G GATGCAGGGA	13560
AGCTGTGGC	T GAGAGCCCT	A AACACACAC	A TGCACACGC	A CACACACAT	A CACAGGCACA	13620
TGCACACAC	G ACCATACAC	A CACACAAAT	G CACGCAGAT	CACACAAAT	G CATATGCACG	13680
CACACAAAT	G CATATGCAC	A CACACACATO	CACACATAT	CATACACGT	A TCCCTTTCAG	13740
TGGCTTTCC	TTCTGTCCTT	AACCCTTGG	CCCTTACAG	GAGCTCCCA	TTCTCCCCAG	13800
CCTTAGAAC	AAACCCTGGG	GCTGGGCTGG	GAGCCCCCAG	TGACCCTCTC	TGTCTCTGTA	13860
GGTGGATGC	A CCCTTGGTCC	TGGTGCCAGC	TGCCACTGC	GGCTGAAGGC	CTGTGAGTGT	13920
					AAACTTCAAG	13980
					ACACCACAGG	14040
					TTCTCAGATC	14100
					CCGCAGGGCA	³ 14160
					GAGGGCTGGA	14220
					GTGGAGTGGG	14280
					TAAGTGCTAT	14340
					CAGGGGTTTC	14400
					CTGCAAACCG	14460
			ATGCCCAGCT			14520
					TTTTCTTATC	14580
					GCTTAGTTTG	14640
					CAGGAGGTCT	14700
					CCTGGGCTAG	14760
CCTGCTGGAG	GATGAGAGCC	CACCTGGATC	AGTTGTCTCA	GCTGATTTCA	GACACGTGAG	14820
AGAGAGCTCA	GCGAGACTCA	GCTTGTAGCT	GACTACAGAT	GTGTGAGGGA	ACCTGGCTGA	14880

GACCAAAACA	ACTGTCCAGC	TGAGCCCAGG	CTAAACTGCC	AACATGCACA	ATTGTGAGCT	
AAATAAAGGC	Tecterions	\		MICHIGA	ATIGIGAGCT	1494
	TOCIGITCIA	AGTCACTGGG	TTTTGGTATG	GTTTGTTAGG	CAGCCATAAC	15000
TAACAGGTGT	AATTGGTCCT	TATTCCCTTA	TTCACTGAGA	GTGATGGGTT	CTCAGCCCTG	15060
AGCTGGACTT	GGAGGCCATG	GAAATGCAGT	GGACATGGCC	ThatCantCom	ACCTTGAAGC	
TGTGGAAGGA	GGTCAACTTC	1000110		TITGLICCIT	ACCITGAAGC	15120
	GG1CMMG11C	ATGGAATAAT	GGAGAACACA	CAGCTGTAAT	CGTTTGCTTG	15180
TTCAGGGAAC	ACACATTTAT	TGAGCACTTG	CTATGTGCCA	GGCACAGTCC	C1 CCC1 cm1 c	
GGATCCAGAT	ATTTAAACAA				CAGGCAGTAG	15240
	I I I I I I I I I I I I I I I I	ААСАААСААА	AATCAGGTCC	AAAACTCCTG	GGGAGAATGC	15300
FGAGAGTGGT	ATCAGCTTTT	AGGAATTC				
					,	15328

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 146 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Met Lys Leu Leu Leu Ala Ala Leu Leu Thr Ala Gly Val Thr Ala 1 10 15

His Ser Ile Ser Thr Arg Ala Val Trp Gln Phe Arg Asn Met Ile Lys

Cys Thr Ile Pro Gly Ser Asp Pro Leu Arg Glu Tyr Asn Asn Tyr Gly
35 40 45

Cys Tyr Cys Gly Leu Gly Gly Ser Gly Thr Pro Val Asp Asp Leu Asp 50 55 60

Arg Cys Cys Gln Thr His Asp His Cys Tyr Asn Gln Ala Lys Lys Leu 65 70 75 80

Glu Ser Cys Lys Phe Leu Ile Asp Asn Pro Tyr Thr Asn Thr Tyr Ser

Tyr Lys Cys Ser Gly Asn Val Ile Thr Cys Ser Asp Lys Asn Asn Asp 100 105 110

Cys Glu Ser Phe Ile Cys Asn Cys Asp Arg Gln Ala Ala Ile Cys Phe 115 120 125

Ser Lys Val Pro Tyr Asn Lys Glu Tyr Lys Asp Leu Asp Thr Lys Lys

His Cys 145

-77-

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 146 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Met Lys Val Leu Leu Leu Ala Val Val Ile Met Ala Phe Gly Ser

Ile Gln Val Gln Gly Ser Leu Leu Glu Phe Gly Gln Met Ile Leu Phe

Lys Thr Gly Lys Arg Ala Asp Val Ser Tyr Gly Phe Tyr Gly Cys His

Cys Gly Val Gly Gly Arg Gly Ser Pro Lys Asp Ala Thr Asp Trp Cys

Cys Val Thr His Asp Cys Cys Tyr Asn Arg Leu Glu Lys Arg Gly Cys 65 70 75 80

Gly Thr Lys Phe Val Thr Tyr Lys Phe Ser Tyr Arg Gly Gly Gln Ile

Ser Cys Ser Thr Asn Gln Asp Ser Cys Arg Lys Gln Leu Cys Gln Cys 105

Asp Lys Ala Ala Glu Cys Phe Ala Arg Asn Lys Lys Ser Tyr Ser

Leu Lys Tyr Gln Phe Tyr Pro Asn Lys Phe Cys Lys Gly Lys Thr Pro

Ser Cys 145

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 148 amino acids(B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Lys Leu Leu Val Leu Ala Val Leu Leu Thr Val Ala Ala Ala Asp

-78-

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 144 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Met Lys Thr Leu Leu Leu Ala Val Ile Met Ile Phe Gly Leu Leu 1 10 15

Gln Ala His Gly Asn Leu Val Asn Phe His Arg Met Ile Lys Leu Thr 20 25 30

Thr Gly Lys Glu Ala Ala Leu Ser Tyr Gly Phe Tyr Gly Cys His Cys 35 40 45

Gly Val Gly Gly Arg Gly Ser Pro Lys Asp Ala Thr Asp Arg Cys Cys 50 55 60

Val Thr His Asp Cys Cys Tyr Lys Arg Leu Glu Lys Arg Gly Cys Gly 65 70 75 80

Thr Lys Phe Leu Ser Tyr Lys Phe Ser Asn Ser Gly Ser Arg Ile Thr 85 90 95

-79-

Cys Ala Lys Gln Asp Ser Cys Arg Ser Gln Leu Cys Glu Cys Asp Lys

Ala Ala Ala Thr Cys Phe Ala Arg Asn Lys Thr Thr Tyr Asn Lys Lys 115 120 125

Tyr Gln Tyr Tyr Ser Asn Lys His Cys Arg Gly Ser Thr Pro Arg Cys
130 140

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 126 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Ala Val Trp Gln Phe Arg Lys Met Ile Lys Cys Val Ile Pro Gly Ser 1 5 10 15

Asp Pro Phe Leu Glu Tyr Asn Asn Tyr Gly Cys Tyr Cys Gly Leu Gly 20 25 30

Gly Ser Gly Thr Pro Val Asp Glu Leu Asp Lys Cys Cys Gln Thr His 35 40 45

Asp Asn Cys Tyr Asp Gln Ala Lys Lys Leu Asp Ser Cys Lys Phe Leu 50 60

Leu Asp Asn Pro Tyr Thr His Thr Tyr Ser Tyr Ser Cys Ser Gly Ser 65 70 75 80

Ala Ile Thr Cys Ser Ser Lys Asn Lys Glu Cys Glu Ala Phe Ile Cys 85 90 95

Asn Cys Asp Arg Asn Ala Ala Ile Cys Phe Ser Lys Ala Pro Tyr Asn 100 105 110

Lys Ala His Lys Asn Leu Asp Thr Lys Lys Tyr Cys Gln Ser

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 124 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

-80-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Asn Leu Val Asn Phe His Arg Met Ile Lys Leu Thr Thr Gly Lys Glu

5 10 15

Ala Ala Leu Ser Tyr Gly Phe Tyr Gly Cys His Cys Gly Val Gly Gly 20 25 30

Arg Gly Ser Pro Lys Asp Ala Thr Asp Arg Cys Cys Val Thr His Asp 35 40 45

Cys Cys Tyr Lys Arg Leu Glu Lys Arg Gly Cys Gly Thr Lys Phe Leu 50 60

Ser Tyr Lys Phe Ser Asn Ser Gly Ser Arg Ile Thr Cys Ala Lys Gln 70 75 80

Asp Ser Cys Arg Ser Gln Leu Cys Glu Cys Asp Lys Ala Ala Ala Thr 85 90 95

Cys Phe Ala Arg Asn Lys Thr Thr Tyr Asn Lys Lys Tyr Gln Tyr Tyr
100 105 110

Ser Asn Lys His Cys Arg Gly Ser Thr Pro Arg Cys

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 118 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
- Gly Leu Leu Asp Leu Lys Ser Met Ile Glu Lys Val Thr Gly Lys Asn 1 5 10 15
- Ala Leu Thr Asn Tyr Gly Phe Tyr Gly Cys Tyr Cys Gly Trp Gly Gly 25 30
- Arg Gly Thr Pro Lys Asp Gly Thr Asp Trp Cys Cys Trp Ala His Asp 35 40 45
- His Cys Tyr Gly Arg Leu Glu Glu Lys Gly Cys Asn Ile Arg Thr Gln
 50 55 60
- Ser Tyr Lys Tyr Arg Phe Ala Trp Gly Val Val Thr Cys Glu Pro Gly 65 70 75 80
- Pro Phe Cys His Val Asn Leu Cys Ala Cys Asp Arg Lys Leu Val Tyr 85 90 95
- Cys Leu Lys Arg Asn Leu Arg Ser Tyr Asn Pro Gln Tyr Gln Tyr Phe

-81-

100

105

110

Pro Asn Ile Leu Cys Ser 115

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 124 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Ala Val Trp Gln Phe Arg Asn Met Ile Lys Cys Thr Ile Pro Gly Ser 1 5 10 15

Asp Pro Leu Arg Glu Tyr Asn Asn Tyr Gly Cys Tyr Cys Gly Leu Gly 20 25 30

Gly Ser Gly Thr Pro Val Asp Asp Leu Asp Arg Cys Cys Gln Thr His
35 40 45

Asp His Cys Tyr Asn Gln Ala Lys Lys Leu Glu Ser Cys Lys Phe Leu 50 55 60

Ile Asp Asn Pro Tyr Thr Asn Thr Tyr Ser Tyr Lys Cys Ser Gly Asn 65 70 75 80

Val Ile Thr Cys Ser Asp Lys Asn Asn Asp Cys Glu Ser Phe Ile Cys 85 90 95

Asn Cys Asp Arg Gln Ala Ala Ile Cys Phe Ser Lys Val Pro Tyr Asn 100 105 110

Lys Glu Tyr Lys Asp Leu Asp Thr Lys Lys His Cys

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

Ser Leu Leu Glu Phe Gly Gln Met Ile Leu Phe Lys Thr Gly Lys Arg
1 10 15

-82-

Ala Asp Val Ser Tyr Gly Phe Tyr Gly Cys His Cys Gly Val Gly Gly 20 25 30

Arg Gly Ser Pro Lys Asp Ala Thr Asp Trp Cys Cys Val Thr His Asp 35 40 45

Cys Cys Tyr Asn Arg Leu Glu Lys Arg Gly Cys Gly Thr Lys Phe Val

Thr Tyr Lys Phe Ser Tyr Arg Gly Gly Gln Ile Ser Cys Ser Thr Asn 65 70 75 80

Gln Asp Ser Cys Arg Lys Gln Leu Cys Gln Cys Asp Lys Ala Ala Ala 85 90 95

Glu Cys Phe Ala Arg Asn Lys Lys Ser Tyr Ser Leu Lys Tyr Gln Phe

Tyr Pro Asn Lys Phe Cys Lys Gly Lys Thr Pro Ser Cys

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

Ser Phe Trp Gln Phe Gln Arg Met Val Lys His Ile Thr Gly Arg Ser

Ala Phe Phe Ser Tyr Tyr Gly Tyr Gly Cys Tyr Cys Gly Leu Gly Gly 25 30

Arg Gly Ile Pro Val Asp Ala Thr Asp Arg Cys Cys Trp Ala His Asp 35 40 45

Cys Cys Tyr His Lys Leu Lys Glu Tyr Gly Cys Gln Pro Ile Leu Asn 50 55

Ala Tyr Gln Phe Ala Ile Val Asn Gly Thr Val Thr Cys Gly Cys Thr 65 70 75 80

Met Gly Gly Cys Leu Cys Gly Gln Lys Ala Cys Glu Cys Asp Lys 85 90 95

Leu Ser Val Tyr Cys Phe Lys Glu Asn Leu Ala Thr Tyr Glu Lys Thr

Phe Lys Gln Leu Phe Pro Thr Arg Pro Gln Cys Gly Arg Asp Lys Leu 115 120 125

His Cys

-83-

130

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
- Gly Leu Leu Glu Leu Lys Ser Met Ile Glu Lys Val Thr Gly Lys Asn
- Ala Val Lys Asn Tyr Gly Phe Tyr Gly Cys Tyr Cys Gly Trp Gly Gly 20 25 30
- His Gly Thr Pro Lys Asp Gly Thr Asp Trp Cys Cys Arg Met His Asp 35 40 45
- Arg Cys Tyr Gly Leu Leu Glu Glu Lys His Cys Ala Ile Arg Thr Gln 50 55 60
- Ser Tyr Asp Tyr Arg Phe Thr Gln Asp Leu Val Ile Cys Glu His Asp
- Ser Phe Cys Pro Val Arg Leu Cys Ala Cys Asp Arg Lys Leu Val Tyr 85 90 95
- Cys Leu Arg Arg Asn Leu Trp Ser Tyr Asn Arg Leu Tyr Gln Tyr Tyr 105

Pro Asn Phe Leu Cys 115

The present invention may, of course, be carried out in other specific ways than those herein set forth without departing from the spirit and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced herein.

10

5

Having described our invention, we claim:

- 1.) A substantially pure or isolated low molecular weight PLA₂ enzyme having phospholipase activity, said enzyme being free of disulfide bridges between cysteine amino acids 11 and 77 and an elapid loop, said enzyme having at least seventeen amino acids in its sequence which are identical to those amino acids conserved in Type II PLA₂ enzymes having phospholipase activity.
- 2.) A PLA_2 enzyme of claim 1, said PLA_2 enzyme having only 12 cysteine amino acids residues in its mature sequence.
- 3.) A PLA₂ enzyme of claim 1, said PLA₂ enzyme having only 16 cysteine amino acid residues in its mature sequence.
- 4.) A PLA_2 enzyme of claim 1, said PLA_2 enzyme having a molecular weight of about 14KD.
- 5.) A PLA_2 enzyme of claim 1, said PLA_2 enzyme having an amino acid sequence set forth in FIG. 3 or an equivalent fragment thereto or an active fragment thereof.

6.)

- A PLA_2 enzyme of claim 1, said PLA_2 enzyme having an amino acid sequence set forth in FIG. 11 or
- an equivalent fragment thereto or an active fragment thereof.
- A PLA_2 enzyme of claim 1, said PLA_2 enzyme having an amino acid sequence set forth in FIG. 12 or an equivalent fragment thereto or an active fragment thereof.
- A PLA2 enzyme of claim 1, said PLA2 enzyme having an amino acid sequence encoded for by the nucleotide sequence of FIG. 19 or an equivalent fragment thereto or an active fragment thereof.
- A PLA₂ enzyme of claim 2, said PLA₂ enzyme having an amino acid sequence which includes the prepeptide amino acid sequence following MDLLVSSGMKGIAVFLVFIFC.
- A PLA_2 enzyme of claim 2, said PLA_2 enzyme 10.) having an amino acid sequence which includes the following propeptide amino acid sequence WTTSTLS.

- 11.) A PLA₂ enzyme of claim 2, said PLA₂ enzyme having the following features:
- a.) a phenylalanine residue conserved at position 5 in the mature sequence;
- b.) a methionine residue conserved at
 position 8 in the mature sequence;
- c.) a histidine residue conserved at position 48 and an aspartic acid residue at position 49 in the mature sequence;
- d.) a valine residue conserved at position9 in the mature sequence; and
- e.) being free of alanine residues at positions 102 and 103 in the mature sequence.
- 12.) A PLA₂ enzyme of claim 2, said PLA₂ enzyme having a YGCYCG Ca²⁺ binding loop.
- 13.) A PLA₂ enzyme of claim 3, said PLA₂ enzyme having an amino acid sequence which includes a prepeptide amino acid sequence selected from a group consisting of MKGLLPLAWFLACSVPAVQG and MKRLLTLAWFLACSVPAVPG.

- -88-
- 14.) A PLA₂ enzyme of claim 3, said PLA₂ enzyme having the following features:
- a.) an isoleucine residue conserved at position 9 in the mature sequence;
- b.) a methionine residue conserved at
 position 8 in the mature sequence;
- c.) a histidine residue conserved at position48 and an aspartic acid residue conserved at position49 in the mature sequence;
- d.) a leucine residue conserved at position5 in the mature sequence; and
- e.) being free of alanine residues at positions 102 and 103 in the mature sequence.
- 15.) A PLA₂ enzyme of claim 3, said PLA₂ enzyme having a YGCYCG Ca²⁺ binding loop.
- 16.) A PLA₂ enzyme of claim 1, said PLA₂ enzyme being a Type III PLA₂ enzyme or an equivalent fragment thereto or an active fragment thereof.
- 17.) A PLA₂ enzyme of claim 1, said PLA₂ enzyme being a TYPE IV PLA₂ enzyme or an equivalent fragment thereto or an active fragment thereof.

- 18.) A PLA_2 enzyme of claim 1, said PLA_2 enzyme further including a COOH-terminal amino acid extension.
- 19.) A PLA₂ enzyme of claim 18, said PLA₂ enzyme being a Type III PLA₂ enzyme or an equivalent fragment thereto or an active fragment thereof, said Type III PLA₂ enzyme having an about seven amino acids COOH-terminal extension.
- 20.) A PLA₂ enzyme of claim 19, said seven amino acids COOH-terminal extension having the following amino acid sequence GRDKLHC, said Type III PLA₂ enzyme being a rat Type III PLA₂ enzyme.
- 21.) A PLA₂ enzyme of claim 18, said PLA₂ enzyme being a Type IV PLA₂ enzyme or an equivalent fragment thereto or an active fragment thereof, said type IV PLA₂ enzyme having an about one amino acid COOH-terminal extension.
- 22.) A PLA₂ enzyme of claim 21, said one amino acid COOH-terminal extension having a serine amino acid COOH-terminal extension, said Type IV PLA₂ enzyme being a human Type IV PLA₂ enzyme.

- 23.) A substantially pure or isolated nucleotide sequence coding for a polypeptide having phospholipase activity, the polypeptide having no disulfide bridges between cysteine amino acids 11 and 77 and no elapid loops.
- 24.) A nucleotide sequence of claim 23, the polypeptide having the amino acid sequence set forth in FIG. 3 or an equivalent fragment thereto or an active fragment thereof.
- 25.) A nucleotide sequence of claim 23, the polypeptide having the amino acid sequence set forth in FIG. 11 or an equivalent fragment thereto or an active fragment thereof.
- 26.) A nucleotide sequence of claim 23, the polypeptide having the amino acid sequence set forth in FIG. 12 or an equivalent fragment thereto or an active fragment thereof.
- 27.) A nucleotide sequence of claim 23, the polypeptide having the amino acid sequence encoded by the nucleotide sequence set forth in FIG. 19 or an equivalent fragment thereto or an active fragment thereof.

- 28.) A nucleotide sequence of claim 23, the polypeptide sequence having:
- a.) a phenylalanine residue conserved at position 5 in the mature amino acid sequence;
- b.) a methionine residue conserved at position 8 in the mature amino acid sequence;
- c.) a histidine residue conserved at position
 48 and an aspartic acid residue conserved at position
 49 in the mature amino acid sequence; and
- d.) being free of alanine residues at positions 102 and 103 in the mature amino acid sequence.
- 29.) A nucleotide sequence of claim 28, the polypeptide sequence having only 16 cysteine residues in its mature amino acid sequence.
- 30.) A nucleotide sequence of claim 29, the polypeptide sequence including the following prepeptide amino acid sequence MDLLVSSGMKGIAVFLVFIFC.

- 31.) A nucleotide sequence of claim 23, the polypeptide sequence having:
- a.) an isoleucine residue conserved at position 9 in the mature amino acid sequence;
- b.) a methionine residue conserved at position 8 in the mature amino acid sequence;
- c.) a histidine residue conserved at position 48 and an aspartic acid residue conserved at position 49 in the amino acid sequence;
- d.) 12 cysteine residues in the mature amino acid sequence; and
- e.) being free of alanine residues at position 102 and 103 in the mature amino acid sequence.
- 32.) A nucleotide sequence of claim 29, the polypeptide sequence including the following propeptide amino acid sequence WTTSTLS.
- 33.) A nucleotide sequence of claim 31, the polypeptide sequence including a prepeptide amino acid sequence selected from a group consisting of MKGLLPLAWFLACSVPAVQG and MKRLLTLAWFLACSVPAVPG.

- 34.) A nucleotide sequence of claim 23, the polypeptide being a Type III PLA₂ enzyme or an equivalent fragment thereto or an active fragment thereof.
- 35.) A nucleotide sequence of claim 23, the polypeptide being a Type IV PLA₂ enzyme or an equivalent fragment thereto or an active fragment thereof.
- 36.) A nucleotide sequence of claim 23, the polypeptide further including a COOH-terminal amino acid extension.
- 37.) A nucleotide sequence of claim 36, the polypeptide being a Type III PLA₂ enzyme or an equivalent fragment thereto or active fragment thereof, said Type III PLA₂ enzyme having an about seven amino acids COOH-terminal extension.
- 38.) A nucleotide sequence of claim 37, said seven amino acids COOH-terminal extension having the following amino acid sequence GRDKLHC, said Type III PLA₂ enzyme being a rat Type III PLA₂ enzyme.

- 39.) A nucleotide sequence of claim 36, the polypeptide being a Type IV PLA₂ enzyme or an equivalent fragment thereto or active fragment thereof, said Type IV PLA₂ enzyme having an about one amino acid COOH-terminal extension.
- 40.) A nucleotide sequence of claim 39, said one amino acid COOH-terminal extension being a serine amino acid COOH-terminal extension, said Type IV PLA₂ enzyme being a human Type IV PLA₂ enzyme.

5

- 41.) A recombinant DNA expression vector comprising:
- a first DNA segment having a nucleotide sequence containing bases whose translated region codes for a PLA2 enzyme selected from a group consisting of Type III and Type IV or an equivalent fragment thereto or an active fragment thereof; and
- a second DNA segment heterologous to said first DNA segment wherein said first DNA segment is operably linked to said second DNA segment.
 - 42.) A recombinant expression vector DNA of claim 41. said first DNA segment having the nucleotide sequence set forth in FIG. 3 or equivalent fragment thereto or an active fragment thereof.
 - 43.) A recombinant DNA expression vector claim 41, said first DNA segment having the nucleotide sequence set forth in FIG. 11 or an equivalent fragment thereto or an active fragment thereof.

- 44.) A recombinant DNA expression vector of claim 41, said first DNA segment having the nucleotide sequence set forth in FIG. 12 or an equivalent fragment thereto or an active fragment thereof.
- 45.) A recombinant DNA expression vector of claim 41, said first DNA segment having the nucleotide sequence set forth in FIG. 19 or an equivalent fragment thereto or an active fragment thereof.
- 46.) A recombinant expression vector of claim 41, said vector being pCH10.
- 47.) A recombinant expression vector of claim 41, said vector being pR8-3'.
- 48.) A host transfected with said recombinant expression vector of claim 41.
- 49.) A host of claim 48, said host being a cell line.
- 50.) A host of claim 49, said cell line being a cell line designated as CpCH10-1D.

- 51.) A host of claim 49, said cell line being a cell line selected from a gr up consisting of CpCH10-1B, CpCH10-1C and CpCH10-2G.
- 52.) A host of claim 49, said cell line being a cell line designated as CpR8-3'.

- 53.) A cDNA encoding a phospholipase enzyme having phospholipase activity, said phospholipase enzyme being selected from a group consisting of Type III and Type IV, including equivalent fragments thereto and active fragments thereof.
- 54.) A cDNA of claim 53, said phospholipase enzyme being RPLA₂-8 or an equivalent fragment thereto or an active fragment thereof.
- 55.) A cDNA of claim 53, said phospholipase enzyme being $HPLA_2-10$ or an equivalent fragment thereto or an active fragment thereof.
- 56.) A cDNA of claim 53, said phospholipase enzyme being RPLA₂-10 or an equivalent fragment thereto or an active fragment thereof.

- 57.) A method of producing a PLA₂ enzyme selected from a group consisting of Type III and Type IV or an equivalent fragment thereto or an active fragment thereof, said method comprising:
- a.) inserting a recombinant expression vector into a host by transfection, said recombinant expression vector having a nucleotide sequence containing bases whose translated region codes for the Type III or Type IV PLA₂ enzyme or an equivalent fragment thereto or an active fragment thereof;
 - b.) cultivating the transfected host; and
 - c.) expressing the Type III or Type IV PLA2 enzyme or an equivalent fragment thereto or an active fragment thereof by the transfected host.
 - 58.) A method of claim 57, said cultivating step comprises growing the host in a cell culture medium.
 - 59.) A method of claim 57, said cultivating step comprises introducing the host into an animal.
 - 60.) A method of claim 57, the host being an eukaryotic cell.
 - 61.) A method of claim 57, the host being a prokaryotic cell.

- 62.) A method of expressing a Type III or Type IV PLA_2 enzyme or an equivalent fragment thereto or an active fragment thereof in an animal comprising:
- introducing a nucleotide sequence containing bases whose translated region codes for the Type III or Type IV PLA2 enzyme or an equivalent fragment thereto or an active fragment thereof; and expressing the nucleotide sequence in the animal.
 - 63.) A method of claim 62, said nucleotide sequence including the nucleotide sequence set forth in FIG. 3 or an equivalent fragment thereto or an active fragment thereof.
 - 64.) A method of claim 62, said nucleotide sequence including the nucleotide sequence set forth in FIG. 11 or an equivalent fragment thereto or an active fragment thereof.
 - 65.) A method of claim 62, said nucleotide sequence including the nucleotide sequence set forth in FIG. 12 or an equivalent fragment thereto or an active fragment thereof.

- 66.) A method of claim 62, said nucleotide sequence including the nucleotide sequence set forth in FIG. 19 or an equivalent fragment thereto or an active fragment thereof.
- 67.) A method of claim 62, said introduction step comprises introducing a recombinant expression vector into the animal, the recombinant expression vector having the nucleotide sequence.
- A method of claim 62, said introduction step comprises introducing the nucleotide sequence into the genome of an animal.

WO 95/02328 PCT/US94/07926

-102-

69.) A substantially pure or isolated antisense nucleotide sequence which has the ability to inhibit or interfere with expression of a gene or mRNA transcript encoding for a Type III PLA₂ enzyme or an amino acid sequence which is an equivalent thereto or an active fragment thereof.

70.) A substantially pure or isolated antisense nucleotide sequence which has the ability to inhibit or interfere with expression of a gene or mRNA transcript encoding for a Type IV PLA₂ enzyme or an amino acid sequence which is an equivalent thereto or an active fragment thereof.

- 71.) A substantially pure or isolated Type III PLA₂ enzyme, or an equivalent fragment thereto or an active fragment thereof, said PLA₂ enzyme having phospholipase activity which is significant at a pH of between about 7 and about 9 and at a calcium concentration of between about 0.3 mM and about 2 mM.
- 72.) A Type III PLA₂ enzyme of claim 71, said phospholipase activity progressively declining at a pH which is greater than about 9 and at a calcium concentration which is greater than about 2 mM.

-105-

- 73.) A substantially pure or isolated Type IV PLA₂ enzyme, or an equivalent fragment thereto or an active fragment thereof, said PLA₂ enzyme having phospholipase activity which is significant at a pH of between about 6.5 and about 7.5 and at a calcium concentration of between about 7 mM and about 100 mM.
- 74.) A Type IV PLA₂ enzyme of claim 73, said phospholipase activity progressively declining at a calcium concentration of greater than about 100 mM.

5

- 75.) A substantially pure or isolated nucleotide sequence having an internal ribosome binding site which allows for internal initiation of cap-independent mRNA translation, said nucleotid sequence including bases 116-720 designated in FIG. 3 or an equivalent fragment thereto or an active fragment thereof.
 - 76.) A nucleotide sequence of claim 75, said nucleotide sequence being operably linked to a second nucleotide sequence heterologous to said nucleotide sequence.
 - 77.) A nucleotide sequence of claim 76, said second nucleotide sequence containing bases whose translated region encodes for luciferase.
 - 78.) A nucleotide sequence of claim 76, said second nucleotide sequence containing bases whose translated region encodes for a Type III PLA₂ enzyme or an equivalent fragment thereto or an active fragment thereof.
 - 79.) A nucleotide sequence of claim 78, said second nucleotide sequence includes the nucleotide sequence set forth in FIG. 3 or an equivalent fragment thereto or an active fragment thereof.

- 80.) A nucleotide sequence of claim 78, said second nucleotide sequence includes the nucleotide sequence set forth in FIG. 19 or an equivalent fragment thereto or an active fragment thereof.
- 81.) A nucleotide sequence of claim 76, said second nucleotide sequence containing bases whose translated region encodes for a Type IV PLA₂ enzyme or an equivalent fragment thereto or an active fragment thereof.
- 82.) A nucleotide sequence of claim 81, said second nucleotide sequence includes the nucleotide sequence set forth in FIG. 11 or an equivalent fragment thereto or an active fragment thereof.
- 83.) A nucleotide sequence of claim 81, said second nucleotide sequence includes the nucleotide sequence set forth in FIG. 12 or an equivalent fragment thereto or an active fragment thereof.
- 84.) A nucleotide sequence of claim 86, a recombinant expression vector including said nucleotide sequence operably linked to said second nucleotide sequence heterologous to said nucleotide sequence.

Pig. 1

RPLA2-8 cDNA Structure

Fig. 2

RPLA2-8 cDNA Secondary Structure

Fig. 3	RPLA2-8	CDNA	and	Derived	Amino	Acid	Sequence	
(1/5)								
	10	20		30	40)	50	60
		CTCA	AATG	CTGGGATT	GCAGGA1	GTCC	CCCACCCCT	GCTCCC
clone li	nker			0.0			• • •	
*********	70 	recte	-ces	3 U 2 D T T T T T T T T T T T T T T T T T T	4 و تعملت و 2007 م	ארכרר: י	110 AGGTACCCAT	120
11414161		Plas	3-8	AATGTATC/ (primer) 150 :GGGTTGG/	304 1441	1000	.colvectvl	001610
	.30	140		150	160)	170	
ATTCCAGG	ATAGAAGGG	CGGG	CAGC	:GGGTTGG!	AGGAGAG	GCCT	TATTATTTC	CGCGGT
	90	200		210	220	;	230	240
CTGGCAGG	CCTGGAAGC	AAAGC	TTC	<u>LAGTGCAG</u>	LAGGAGG	AGTGT	CGGGGAATG	GCAGAA
_	F	Pla8-7		imer)				
	50	260		270	280		290	300
AAGGCTGG	AACAGCAA	'GCAGA	rcc1.	GGTAAAGC	GCACAG	AGCTG	AGGGAAGCT	CCTGGG
3	10	320		330	340		350	360
							TCTCTCTT	GGATCT
_	~~	200						
	70 GENCTGGGT	JETAC JEU	-2-2-	390 390	400	-	410 GGCAGCTGC	420
GCGICCAG	GOVET GOET	LGING			SUGNUAL		.GGCAGC1GC	ACACTO
	30	440		450	460		470	480
AGGCTCCA	TCCAAGTTG	GCTCI	GCCC	CTGGGGAA	rectec	TCAAA	AGGCCTGGC	TCCCAG
4	90	500		510	520		530	540
	GACCCACAG	AGAGO	CTCI	CACCTCGC	AGCTCA	GCTCC	ATCCGCCTC	CTGTGC
	50 c)	560		570	580		590	600
C1666166	GACCAGCIG	.GG1C1	.AMC,1	.A.I AUALAU	TCAGCA	ACTTC	AGCCACTTC	ACCGAG
	10	620		630	640		650	660
TTTCCCAA	CAGCTTTGA	GATTI	'GGAA	GCCGGAAG	CCTGAC	TGCCT	TCTCAGAAG	CTACGG
£.	70	680		690	700		710	
	 CTCAGCCAT	TCTGI	TGGA	GCTGAACT	OO. AGGCAGA	TGAAG	710 GTGAGACCCI	720
								VORCWE
7.	30	740		750	760		770	780
CATGGACE	TCCTGGTCT	CCTCA	GGAA	TGAAGGGC	ATCCCT	GTCTI	CCTTGTCTT	TATCTT
Relos-	s' (prime	. L) ET 26T	GIYM	ecraecta	TIENTS	Valbu	eLeuValPh	ellePh
7:	90	800		810	820		830	840
CTGCTGGA	CAACCTCCA	CCCTC	AGCA	GETTETE	CAGTTC	CAGAG	GATGGTCAA	ACACAT
eCysTrpT	hrThrSerT	hrLeu	Sers	erPheTrp	GlnPhe	GlnAr	gMetValLy	sHisIl
		050			.a8-1 (E)	
		760 860		870 '3 TT 3 CCC 3	088 77766		890	900
eThrGlvA	rgSerAlaP	hePhe	Sett	YTTAGGGA	TATGGC	TGCTA	CTGTGGGCT TCysGlyLe	TGGGGG
	- 70			77-0-7	111011	cysty	rcysgryne	netået
	10	920		930	940		950	960
CC <u>GYGGGY</u>	TCCCTGTGG	ACGCC	ACAG	ACAGGTGC	TGCTGG	GCTCA	TGACTGTTG	CTACCA
	-						saspCysCy	sTyrHi
RPLA2-8 cDi	VA sequence	corre	spond	s to SEQ I	D NO:21	and	Derived	
Amino Acid	sequence c	orresp	onds	to SEQ ID	NO:22:.			

FIG. 3 (2/5)

Pla8-2 (primer)

	F140-2	(br imer)				
	970	980	990	1000	1010	1020
CAASCT	TAAGGAAT	ATGGCTGCCAC	SCCCATCTTG	AATGCCTATC	1,5555,551	TOTON A
slysle	uLysGluT	yrGlyCysGl:	ProlleLeu	AsnalaTurc'	nDhallatle	Valle
•	•					
	1030	1040	1050	1060	1070	1080
CGGGAC	CGTGACCT	STGGATGCACO	CATGGGTGGC		1070 :	CCCTC
nGlyTh	rValThrC	ysGlyCysThr	MetGlyGly	2) NCACT 2010	eccockers.	100010
				riciprenci	SGIAGIUTA	ALACY
	1090	1100	1110	1120	1130	1140
		GTCTGTGTAC	TECTTON	1120 1120	1130	1140
s61uCv	SASDIVEL	uSerValTyr	Cuchhatus	1	-LACCIACGAC	AAAAC
001107	oop2) 520	reservatiji	.cysrneLyso	TURSULLEUR	arnrryrgiu	iLysin
	1150	1160	1170	••••		
		1100	11/0	1180	1190	1200
TITCAA	acyacitii	CCCCACCAGG	CCCCAGTGTG	GCAGGGACAA	ACTCCATTGC	TAGGC
rrnery.	SGINLEUPI	eProThrArg	brogruche	lyargasply	'sLeuHisCys	End
	1210			Ro	:108-3' (pr	imer)
	1210	1220	1230	1240	1250	1260
	1270	1280	1290	1300	1310	1320
CITCCC	CICCAAGAG	TCCCCAGGCT	CCTGCAGCTC	AGCCTTGCTG	TCTAGGGAGT	GTCTT
						7.
	1330	1340	1350	1360	1370	1380
CTCAGG	CATTAGGGG	ACCGGAGGTG	GAGAATTCCT	GCCCTGGAAT	CAGACCATGG	GTACC
						Ki.
	1390	1400 .	1410	1420	1430	1440
TGGCAA	ITAAGTGAT	ACATTCCGGC	AGCAGGAAGC	AAGGACACAA	GGGAGCAGGG	GTGGG
	1450		1470	1480	1490	1500
GGGACAT	ICCTGCAAT	CCCAGCATTT	Gagaggtgga	GGCAAGAGGT	GGGGGGTAGC	CTCCA
					•	
	1510	1520		1540	1550	1560
CTATACO	SGTAAGTTC	AAGGCTAACC	TGAGCTACCT	GAGACCTTGC	CTTGAAAAA	CTTTT
-						
	L570	1580	1590	1600	1610	1620
TTAAAAA	<i>l</i> acgtttaa	aggaaaagaa	AACAGAAAGA	CACGGGGACT	GGGCTGAAAG	GTACT
	L630	1640	1650	1660	1670	1680
CTCAAAC	CCGATTTCC	CAGGAAGAGC	GGAGAGCCCC	AGGTTCAGCT	CCAGCCTGAA	
	•					
	690	1700	1710	1720	1730	1740
CCATACO	CTCAGTCC	TGGTCAGGAT	GTGTGTCTGA	CTGGGGAACC	A A GTCCTCCA	1740
					WOICTCEN	
	.750	1760	1770	1780	1790	1800
GTGGAGC	TTAGCTGG	GAACTACGCA	GGTGTCCTAG	AAAATACAGT	CCTAACACC	1800
				.amutvevat	CCINAGAGCC	TCACC
1	810	1820	1830	1840	1050	
CGGAGTO	TCATCCCC	ATTTGCTCCA	GGACTGACCT	CTCTXXXXCC	1850 TCC::cc::cc:	1860
				CIGINAVICI	LCAGCAGGA	AGCAG
•	.870	1880	1890	1900		
				1900	1910	1920
		GAGGTGGGG?	recreit AGA,	ACAATGGTGT	GCACCAGTGA(CACAA
•	970	1040	1050			
1	.930	1940	1950	1960	1970	1980

FIG. 3 (3/5)

AGATGTCATGG	TTAAGATGGCA	TCAAGAAGT	GGAAACCACAT	T000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
			GOWANGGACAI	TCGGAACAG	rgggtccaa
1990	2000	2010	2020	2020	2242
GGCACCCAAAG	TCCTCACCCCA	ATTTAGAAG	CCGTTGGTCCT	2030 ST&&G&CTTA	2040
				atwww.tit	MAICIAC:
2050	2060	2070	2080	2090	2100
AAACAAGGAAG	STCTAACTGGG	CTGGAATCT	AAGTTCATGG	TGCCAGGCTG	GGGCGGTG
2110	2120	2130	2140	2150	2160
GGTGGGGACGTG	GCCG I GGCCA	rgaccatga:	TECCTCTCTC	CATGGTGACA	CTTGCCTT
2170	2180				
TTGCACCCTAGO	TCTCAGCACAT	CTGAAAAGG	2200	2210	2220
			MCMCTCTC(TGTTCATTC	CTTGAATC
2230	2240	2250	2260	2226	
TGAGACTCTCCT	CACTAATGTAG	CAAAAATGG	AGGTCTAAACT	2270	2280
2290	2300	2310	2320	2330	2240
AGGTCCAGGGCA	GGAGGAAGCTG	GGGCTCAGC	CTCCTGGAGGA	TGAGAGCTTC	2340 SCCGGGTG
	2360 AGCAGAGGGGTT	2370	2380	2390	2400
AGCATCAGCGAC	AGCAGACCETT	GGGCTCAGA	GAGTCCGCAAG	CCTGGGAGAG	CCTGGCC
2410	2420	2420			
GAGCCCTGACTG	AGCACACAGA	GCCGTGlace	244U ~~~~~~~	2450	2460
			CATACAAGA	AGCCACATTT	TGGGGAA
24.70	2480	2490	2500	3510	
GCTTCAGGGTGGC	TGATTCCACA	GCTGTTGGG	TCAGAACGGA	2510 AGCCGGGAGG	2520
				HOCCGGGAGE	ACTCACT
2530 TCAGATATGCARG	2540	2550	2560	2570	2580
TCAGATATGGAAG	CITICITITA	EGAGCGCTTA	GCACCAGTTC	AGGATCTGAA	CTTCGTC
2590		2610			
CTGACCGGAGAGT	CCGTACCACAS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2620	2630	2640
CTGACCGGAGAGT	incenen	LATITALAGG	ATGGGAACAC	AGAGCGAGGG	SCGTGGA
2650	2660	2670	2680		
GTAAGCTGTTGAA	CGACCGATCAT	ATTTTGACC	ZOGU TAAGAGGTTA 1	2690	2700
			aroung I I W	GTAAGGACG	TAACAT
2710	2720	2730	2740	2750	2244
GGGTGACTGGGCA	ITAGTCAGGTC	ACCIGGITI	TGGGGTCTTTG	AATCAGCTTT	2/60 CCTCCC
2770					CGIGGC
CAGGTCCCTTCCT	2780	2790	2800	2810	2820
CAGGTCCCTTCCT	BONCILIGGCI	CGGAATTTA	Gaacgataagg	GAACGAAGAG	GTGGGC
2830	2840	2000			
AAGCTTCGGGCAGT	CAGTAAGAGG	CAGCACATT	2860	2870	2880
2890	2900	2910	LATGACCTGTG 2920	TGCCTTGTTT	'AGATAA
TGGGATAAGAGTAT	CICCICICIT	ACACCCCTT	ACTECTURA CA	2930	2940
			GGI IAACA	GACAAACACG	AGACAT
• • • •					
2950	2960	2970	2980	2990	3000
CTGAAGAAGCAGGA	CAGGAGTTAG	GTTCTGGGG	CACAGGAACAT	GAACTCGGTT	TTCATC
3010					TIGATE
2010	3020	3030	3040 .	3050	3060

FIG. 3 (4/5)

CTGCCGGCA	AGGTGGATCTT	STTCCTGAGAA	GGCTGGACTCA	GGAAACTTCC	TCTTAACA
307	0 3080 Atggcgctggto	3090	3100	3110	3120
			•		CTTEGGCC
313	0 3140	3150	3160	3170	3180
AGACTTGGC	GGCCATGGGAGI	GTGGTCACTT	GCCCCGTCCCC.	TCTTCCAGG.	AGGTACTG
319	0 3200	3210	3220	3230	3240
GGGAAAATG	GTTGGATTTGTG	GAGTTGTAGG	BACACTCATGO	SCTCCCTTCA	CTTAGTAG
3250	0 3260	3270	3280	2000	
	CATATGTGTATC	GAGCCCATAC	3280 GTGTGCCATG1	3290 GCAGTGCTG	3300
					- CAUCAG
GGAGTCAGA	3320	3330	3340	3350	3360
	SATTTAAAGACA	-u-v-v-v-van	.ITCAAGTCTGA	GAATTTTGA	NTCCCAGG
3370		3390	3400	3410	3420
GAGAACCGCI	GAGAGCCATGG	CGCTTCTACCA	ATGCCAGAGGC	TAACACCCGG	ACTGAGA
3430	3440	3450	3460	2470	2422
AAACTAAGCA	CGAGGAGACAG	CAGGGTCAGCA	GAGGGCCTGGG	AGCTAGGGCC	3480 CTGAGCA
	CAAATCACAGA	TCGTCTTCT	3520 Tectecacet	3530 ACCCAGGTAG	3540
					AGCAAGT
3550 AGACACGGGT) 3560 GGGGGCAGGC	3570 AGGATCOAC	3580	3590	3600
	GGGGGCAGGGC				GGCTAGG
3610	3620	3630	3640	3650	3660
CIAAGCIAGA	GCATGTTACCTT	CTCAGGGGTC	CTGTCATGTCA	SAGACTGGTT	CCAACCT
3670	3680	3690	3700	3710	3720
GGAAAGATGT	CTGAGTGACAGO	TGTGGTAGAA	GAAGAGAGGCC	AGGGTGATAT	CAGCATG
3730			3760		
AAGGGCTGGA'	TTGCTATGTGAG	ATCCAGATCT	CTTCTGCCACT	3770 SGGGTCAGCT	3780
3790					I NCAC
TGGAAATAGA:	IGGGCTGCGTTA	J810 TGGAGGGTGG'	3820 TGTG) GTCCCTC	3830	3840
					rgcc gg
3850	3860	3870	3880	3890	3900
	SAGTGTTAGCGC	I GIRAAAGGA	CATGCTGGTGCT	TGCAGGAAAT	CATCGA
3910	3920	3930	3940	3950	3960
TTTCTTGGAAC	GGCAGCCATTC	ATCTACACCAC	GGATTGACTT	TATGCCAGGCT	TGTGAT
3970		3990	4000	4010	4000
GAGGGTAGAA	AGTAGAAATTC	TGTCCGCTGC	LAGGAGCAGTCA	GAGGACACA2	4020
4030					.oonech
	AGTTGCGGAAG		4060 TGAGGGAGGA	4070	4080
			unaccanacato	TGACCACTGG	GGGAAA
4090	4100	4110	4120	4130	4140

FIG. 3 (5/5)

7/47

GGCTCCTTCAAGGAATTCAGGGACAGGGGTGAGGGCTGACATCTTGCCTGAGACCCTAAA

4210 4220 4230 4240 4250 4260 CCACCCCCACCCCAGGTATATGGATGGAGGATAATGCGGGGGTCGGGTTCCTCTCAAATC

4270 4280 4290 4300 4310 4320 CATCATCCCACCTTCGAGCTGCTGGCACGGCCTTGCCAGCACAGCCCGATTCTGTTGA

4330 4340 4350 4360 4370 4380 CAAAATACTCGAACGAAATGATTACATGCAAATAAAATGCAAGAGGAAAAATCTAAACGG Polyadenylation site

AATTC clone linker

RPLA2-8 Partial Genomic DNA and cDNA Structure Pig. 4

☐ Intron sequence ☐ Open reading frame

_ Nontranslated region

Comparison Batween HPLA2-8 Exon I and RPLA2-8 Exon I Bequences S Fig.

ACCTCAGACCCCCTGGTCTCCTCAGGAATGAAGGTCATTGCCATCCTCACCCTCCTC	TTCTGCT	Triger	
400	460	179	

Matches = 51 Mismatches = 16 Unmatched = 0
Length = 67 Matches/length = 76.1 percent

Top strand is HPLA2-8 exon I sequence; bottom is RPLA2-8 e.on I sequence. The underlined ATG is the putative RPLA2-8 translation start codon,

Top strand is SEQ ID NO:23:; Bottom strand is SEQ ID NO:24:. Comparison Between HPLA2-6 Exon II and RPLA2-8 Exon II Bequences Fig. 6

2633 tgg TGGCAGCCCCACCACAGCAGTTTCTGGCAGTTTCAGAGGAGGGTCAAACACATCACGG		GGCGCAGCGCCTTCTTCTCCTATTACGGATATGGCTGCTACTGTGGGCCTTGGGGGCCCGAG		GGATCCCTGTGGACGCCACAGACAG gtg
263.	2693	846	2753	906

Matches = 126 Mismatches = 19 Unmatched = 0 Length = 145 Matches/length = 86.9 percent Top strand is HPLA2-8 coding exon II sequence; bottom strand is RPLA2-8 exon II sequence

Top strand is SEQ ID NO:25:; Bottom strand is SEQ ID NO:26:.

Fig. 7 Comparison Between HPLA2-8 Exon IV and RPLA2-8 Exon IV Bequences

Matches = 128 Mismatches = 33 Unmatched = Length = 170 Matches/length = 75.3 percent

Top strand is SEQ ID NO:27:; Bottom strand is SEQ ID NO:28:.

Fig. 8 Comparison of RFLA2-8 D duced Amino Acid Sequence and Rat PLA2 Type I Amino Acid Sequence

```
MetAspLeuLeuValSerSerGlyMetLysGlyIleAlaValPheLeuValPheIlePhe
          MetLysLeuLeuLeuLeuAlaAlaLeu
                                            LeuThrAla
                                                         GlyVal
                                                                  Thr
          CysTrpThrThrSerThrLeuSerSerPheTrpGlnPheGlnArgMetValLys
21
          AlaHisSerIleSerThrArgAlaVal
16
                                         TrpGlnPheArgAsnMetIleLysCysThr
          IleThrGlyArgSerAlaPhePheSerTyrTyrGlyTyrGlyCysTyrCysGlyLeuGly
40
          lleProGlySerAspProLeuArgGluTyrAsnAsnTyrGlyCysTyrCysGlyLeuGly
35
          GlyArgGlyIleProValAspAlaThrAspArgCysCysTrpAlaHisAspCysCysTyr
60
          GlySerGlyThrProValAspAspLeuAspArgCysCysGlnThrHisAspHisCysTyr
55
80
          HisLysLeuLysGluTyrGly
                                  CysGlnProIleLeu
                                                     AsnalaTyr
          AsnGlnAlaLysLysLeuGluSerCysLysPheLeuIleAspAsnProTyrThrAsnThr
75
96
          PheAla
                   IleValAsnGlyThrValThrCysGlyCysThrMetGlyGlyGlyCysLeu
          TyrSerTyrLysCysSerGlyAsnVallleThr
                                               CysSerAspLysAsnAspAsp
          CysGlyGlnLysAlaCysGluCysAspLysLeuSerValTyrCysPheLysGluAsnLeu
115
          CysGluSerPheIleCysAsnCysAspArgGlnAlaAlaIleCysPhe
113
                                                              SerLysVal
          AlaThrTyrGluLysThrPheLysGlnLeuPheProThrArgProGlnCysGlyArgAsp
135
132
          Pro
                TyrAsnLysGluTyrLysAspLeu
                                           ASPThrLys
155
          LysLeuHisCys
144
          Lys
                HisCys
```

Matches = 56 Mismatches = 84 Unmatched = 24 Length = 164 Matches/length = 34.1 percent

Top line is RPLA2-8 deduced amino acid sequence; bottom line is rat type I PLA2 amino acid sequence. a vertical line indicates a match, : a conservative substitution, and no symbols a mismatch.

Top line is SEQ ID NO:22:; Bottom line is SEQ ID NO:34:.

Fig.9 Comparison of the RFLA2-8 Deduced Amino Acid Sequence and Rat PLA2 Type II Amino Acid Sequence

```
MetAspLeuLeuValSerSerGlyMetLysGlyIleAlaValPheLeuValPheIlePhe
1
          MetLysValLeuLeu
1
                                   Leu
                                             LeuAlaVal
                                                         VallleMetAlaPhe
          {\tt CysTrpThrThrSerThrLeuSerSerPheTrpGlnPheGlnArgMetValLysHisIle}
21
                SerIleGlnValGlnGlySerLeuLeuGluPheGlyGlnMetIleLeuPheLys
15
41
          ThrGly
                   ArgSerAlaPhePheSerTyr
                                            TyrGlyTyrGlyCysTyrCysGlyLeu
34
          ThrGlyLysArgAlaAspVal
                                   SerTyrGlyPhe
                                                   TyrGlyCysHisCysGlyVal
          GlyGlyArgGlyIleProValAspAlaThrAspArgCysCysTrpAlaHisAspCysCys
59
          GlyGlyArgGlySerProLysAspAlaThrAspTrpCysCysValThrHisAspCysCys
52
79
          TyrHisLysLeuLysGluTyrGlyCysGlnProIleLeuAsnAlaTyrGlnPheAlaIle
          TyrAsnArgLeuGluLysArgGlyCysGlyThrLysPheValThrTyrLysPheSerTyr
72
99
          ValAsnGlyThrValThrCysGlyCysThrMetGlyGlyGlyCysLeuCysGlyGlnLys
92
          ArgGlyGlyGlnIleSerCysSerThrAsn
                                            GlnAspSerCysArg
                                                               LysGlnLeu
119
          AlaCysGluCysAspLysLeuSerValTyrCysPheLysGluAsnLeuAlaThrTyrGlu
             CysGlnCysAspLysAlaAlaAlaGluCysPheAlaArgAsnLysLysSerTyrSer
110
139
          LysThrPheLysGlnLeuPheProThrArgProGlnCys
                                                     GlyArgAspLysLeuHis
          LeuLysTyr
129
                      GlnPheTyrProAsnLys
                                            PheCysLysGlyLysThrPro
158
          Cys
146
          Cys
```

Matches = 56 Mismatches = 87 Unmatched = 18 Length = 161 Matches/length = 34.8 percent

Top line is RPLA2-8 deduced amino acid sequence; bottom line is rat type II amino acid sequence. l indicates match, : a consevative substitution and no symbol, a mismatch.

Top line is SEQ ID NO:22:; Bottom line is SEQ ID NO:35:.

FIG. 10

Fig. 11 (1/3)	RPLA2-1	O CDNA	and	Deriv	a ;	Amin	Acid	Sequ	ence	
1	0	20		30		40		50		60
GAATTCCGG Clone lin	TGGATGGA ker	.GGGGGCT	GAGC	AGGATO	TT	SACTG	GCTAT	GTTC	ATTGA	GCAC
7		80		90		100		110		120
TCTCACGAT	CAGCATCA	.CGCACGG	AATC	CATCCI	TC	CTGTG	TTGCAC	CTTG	TAGAC	CCTG
13:	0	140	7	50		160		170		
ATGCTTGGG			TGGG	GATCCA	GAC	ADCADCIO TOO	TOTE 3 CC	170		180
Gaattccg	arccagge	ctgtcct	atgg	acaaca	geo	stegg	tagaca	gagt.		-AIA
190)	200	2	10	•	220		230		240
GGGACAGGC	CTGGGAA	GAGGAGC:	rgag.	ACCAGG	CTA	AAAA	GAAC <u>CC</u>	AAGA	ATGA	AGCG
				•					MetLy	
250		260	2	70		280		290		300
CCTCCTCACC	<u>scre</u> gerr	SGTTCCT	GCT	TGCAGT	GTG	CCIC	CAGTCC	CAGGO	GGCT	CGCT
	(br rmer)			Val	.ProA.	laValP	roGly	'GlyLe	euL
310		320		30		340		350		360
AGAACTGAAC	SerMetT	LIGAGAAC	5GTG/	actggg.	AAG	AATG	CGTAA	AGAAC	TATGG	CTT
uGluLeuLys Rclo10-1 (primer)	regrarys	VAT:	rargly.	Lys	ASDA	.avalL	ysasn	TYTG1	yPh
370)	380	39	• 0		400		410		420
CTACGGCTGC	TACTGTG	CTGGGG	GGC	CACGGG	4	CCTAA	CCNTC		CATTC	
eTyrGlyCys	TYTCYSG]	LYTrpGly	Gly	lisGly.	Thr	ProLy	SASDG	lvThr	ASDTr	DCA O 1 O
						Rci	010-2	(pri	mer)	2-1
430		40	45	50		460		470	•	480
CTGTCGGATG	Hichena	TTGTTAT	GGGC	TACTG	GAG	GAGAA	ACACT	STGCC	ATCCG	GAC
sCysArgMet	_	igeyslyr							IleAr	gTh
CCAGTCCTAT			.C.) C.).G.C.	TO COMPANY	· · · · ·	520		530		540
rGlnSerTyr	ASpTyrAr	gPheThr	GlnA	SDI DU	3 i L. 7 a 7 '	TIOCU	CGAAC	CGAC	TCCTT	CTG
		3		.DDCG	, a <u>.</u> .	rrecy	SGIUM.	ISASP	serpn	ecy
550		60	57	0		580	:	590		600
TCCAGTGAGG	CITIGIGO	TTGTGAC	CGGA	LAGCTGO	TC:	TACTG	CCTGA	GAGA	AACCT	CTG
sProValArg	Penchevi	acysasp	Argi	ysLeui	7al:	LALCA	sLeuAi	gArg	AsnLe	uTr
610	6	20	63	10		640		550		
GAGTTACAAC	CGTCTTTA	CCAGTAT	TACC	CCAACT	TC	عالبالك	רדא אידור	TCCT	CTCTC	660 GGC
pSerTyrAsn	ArgLeuTy	TGlnTyr	TyrP	roAsni	he!	LeuCy	sEnd		_1010	GGC
				Ro	:10	10-3	(prin	er)		
670 TCTCGCCGG		80 CC) C) CO	69	0		700		10		720
TCTCGCCGGG.	Maidecic	CCACAGT	GGCG	GCCCCC	CTC	CGGCT	GTATTO	CTGA	TCCGT	CCA
730		40	75	0	-	760	-	70		780
CCCAAGGTCT	TGGATCTG	CCTTCCT	CTGT	'GTACCA	CTC	GCT	GACAC	AGCC	CAGGG'	TTA
790		00	81	.0	٤	320	8	30	1	B40
CACCCTACCC	TCCAGAAT	CCTAGAG	aggg	ACTOTG	ATC	TAGA	STCTG	GGAC	CTGG	ATA
RPLA 2-10 CD	NA sequenc	e corresp	onds	to SEO	ID :	NO:29:				
Amino Acid se	adrieuce co	rresponds	to S	SEQ ID N	10:3	0:.				

WO 95/02328 PCT/US94/07926

FIG. 11 (2/3)

16/47

FIG. 11 (3/3)

17/47

The top sequence comes from RPLA2-10-1. The bottom sequence is from RPLA2-10-2. Both the sequences are identical except for the 5' and 3' sequences indicated by the lower case letters.

SUBSTITUTE SHEET (RULE 26)

Fig. 12 HPLA2-10 cDNA (Type IV) and Derived Amino Acid Sequenc

```
10
                   20
                             30
                                       40
                                                  50
  GGATACCAATGTTCCGACTGGAGACGGGGAGCCCGCGAGACCCGGGTCTCCAGGGTCTGC
         70
                   80
                             90
                                      100
                                                110
 CCAAGGAAGTTGCTCATGGGAGCAGACCCCTAGAGCAGGATTTGAGGCCAGGCCAAAGAG
        130
                  140
                            150
                                                170
 AACCCCAGAGATGAAAGGCCTCCTCCCACTGGCTTGGTTCCTGGCTTGTAGTGTGCCTGC
           MetLysGlyLeuLeuProLeuAlaTrpPheLeuAlaCysSerValProAl
    Hclo10-5'(primer)
                                  Hclol0-A (primer)
    Clone HPLA2-10-5-
                        ·CCTCC....
        190
                  200
                            210
                                      220
                                                230
                                                          240
 TGT<u>GCAAGGAGGCTTGCTGGACCTAAA</u>ATCAATGATCGAGAAGGTGACAGGGAAGAACGC
 aValGlnGlyGlyLeuLeuAspLeuLysSerMetIleGluLysValThrGlyLysAsnAl
        Clo10-1 (primer)
                                     Clone HPLA2-10-7----AACGC
                  260
                            270
                                      280
                                                290
 CCTGACAAACTACGGCTTCTACGGCTGTTACTGCGGCTGGGGCGGCCGAGG<u>AACCCCCAA</u>
                                                          300
 aLeuThrAsnTyrGlyPheTyrGlyCysTyrCysGlyTrpGlyGlyArgGlyThrProLy
                  320
                            330
                                     340
                                                350
 <u>GGATGGCACCGATT</u>GGTGCTGTTGGGCGCATGACCACTGCTATGGGCGGCTGGAGGAGAA
 sAspGlyThrAspTrpCysCysTrpAlaHisAspHisCysTyrGlyArgLeuGluGluLy
  Clo10-la (primer)
       370
                 380
                           390
GGGCTGCAACATTCGCACACAGTCCTACAAATACAGATTCGCGTGGGGCGTGGTCACCTG
sGlyCysAsnIleArgThrGlnSerTyrLysTyrArgPheAlaTrpGlyValValThrCy
                 440
                           450
                                     460
                                               470
CGAGCCCGGGCCCTTCTGCCATGTGAACCTCTGTGCCTGTGACCGGAAGCTCGTCTACTG
sGluProGlyProPheCysHisValAsnLeuCysAlaCysAspArgLysLeuValTyrCy
                 500
                           510
                                     520
                                               530
CCTCAAGAGAAACCTACGGAGCTACAACCCACAGTACCAATACTTTCCCAACATCCTCTG
                                                         540
sLeuLysArgAsnLeuArgSerTyrAsnProGlnTyrGlnTyrPheProAsnIleLeuCy
                                           Hclo10-C (primer)
                 560
                           570
                                     580
                                               590
CTCCTAGGCCTCCCAGCGAGCTCCTCCCAGACCAAGACTTTTGTTCTGTTTTTCTACAA
                                                         600
sSerEnd
Hclo10-3' (primer)
       610
                 620
                           630
                                     640
                                               650
CACAGAGTACTGACTCTGGCTGGTTCCTGAGAGGGCTCCTAAGTCACAGACCTCAGTCT
                                                         660
       670
                 680
                           690
                                     700
                                               710
TTCTCGAAGCTTGGCGGACCCCCAGGGGCCACACTGTACCCTCCAGCGAGTCCCAGGGGAG
       730
                 740
                           750
                                     760
                                               770
TGACTCTGGTCATAGGACTTGGTAGGGTCCCAGGGTCCCTAGGCCTCCACTTCTGAGGGC
       790
                 800
                           810
                                     820
                                               830
850
                860
                           870
                                    880
                                               890
910
                920
                           930
                                    940
                                               950
TTCTGCGATCAGATTATCATCACCACCACCCTCCAGAGAATTTTACGCAAGAAGAGCCAA
                                                         960
                980
                           990
                                   1000
ATTGACTCTCTAAATCTGGTGTATGGGTATT<u>AAATAAAA</u>TTCATTCTCAAGGCT
                    Polyadenylation site
                                                 . . . . . <u>AATAA</u>A
                                                 Additional
```

AACCACATTGGCATTTTC---HPLA2-10-3 Polyadenylation site

HPLA2-10 cDNA sequence corresponds to SEQ ID NO:31: and Derived Amino Acid Sequence corresponds to SEQ ID NO:32:.

Fig. 13 Comparison Between Deduced Amino Acid Sequences of HFLA2-10 and RPLA2-10

```
MetLysGlyLeuLeuProLeuAlaTrpPheLeuAlaCysSerValProAlaValGlnGly
1
                MetLysArgLeuLeuThrLeuAlaTrpPheLeuAlaCysSerValProAlaValProGly
         GlyLeuLeuAspLeuLysSerMetIleGluLysValThrGlyLysAsnAlaLeuThrAsn
21
                       GlyLeuLeuGluLeuLysSerMetIleGluLysValThrGlyLysAsnAlaValLysAsn
21
41
         TyrGlyPheTyrGlyCysTyrCysGlyTrpGlyGlyArgGlyThrProLysAspGlyThr
         TyrGlyPheTyrGlyCysTyrCysGlyTrpGlyGlyHisGlyThrProLysAspGlyThr
41
         AspTrpCysCysTrpAlaHisAspHisCysTyrGlyArgLeuGluGluLysGlyCysAsn
         AspTrpCysCysArgMetHisAspArgCysTyrGlyLeuLeuGluGluLysHisCysAla
61
         IleArgThrGlnSerTyrLysTyrArgPheAlaTrpGlyValValThrCysGluProGly
81
         IleArgThrGlnSerTyrAspTyrArgPheThrGlnAspLeuValIleCysGluHisAsp
81
101
         ProPheCysHisValAsnLouCysAlaCysAspArgLysLeuValTyrCysLeuLysArg
                       SerPheCysProValArgLeuCysAlaCysAspArgLysLeuValTyrCysLeuArgArg
101
        AsnLeuArgSerTyrAsnProGlnTyrGlnTyrPheProAsnIleLeuCysSer
121
                                 1 1 : 1 1
121
        AsnLeuTrpSerTyrAsnArgLeuTyrGlnTyrTyrProAsnPheLeuCys
```

Matches = 107 Mismatches = 30 Unmatched = 1 Length = 138 Matches/length = 77.5 percent

Top and bottom lines are deduced amino acid sequences of HPLA2-10 and RPLA2-10, respectively.

Top line is SEQ ID NO:32:; Bottom line is SEQ ID NO:30:. WO 95/02328 PCT/US94/07926

20/47

Fig. 14 Comparison Between HPLA2-10 Deduced Amino Acid Sequence and Ruman Type I Amino Acid Sequence

```
1
           MetLysGlyLeuLeuProLeuAlaTrpPheLeuAlaCysSerValProAlaValGln
           MetLys
                    LeuLeuValLeuAlaValLeuLeuThrValAlaAlaAlaAspSerGlyIle
 1
 20
           GlyGly
                    LeuLeu
                             AspLeuLysSerMetIleGlu
                                                      LysValThrGlyLysAsn
           SerProArgAlaValTrpGlnPheArgLysMetIleLysCysValIleProGlySerAsp
20
37
          AlaLeuThrAsnTyrGlyPheTyrGlyCysTyrCysGlyTrpGlyGlyArgGlyThrPro
40
          ProPheLeuGluTyrAsnAsnTyrGlyCysTyrCysGlyLeuGlyGlySerGlyThrPro
57
          LysAspGlyThrAspTrpCysCysTrpAlaHisAspHisCysTyrGlyArgLeuGluGlu
60
          ValAspGluLeuAspLysCysCysGlnThrHisAspAsnCysTyrAspGlnAlaLysLys
77
              LysGlyCysAsn
                             IleArgThrGlnSerTyrLysTyrArgPheAlaTrp
          LeuAspSerCysLysPheLeuLeuAspAsnProTyrThrHisThrTyrSerTyrSerCys
80
                       ValThrCysGluProGlyProPhe
93
             GlyVal
                                                  CysHisValAsnLeuCysAla
          SerGlySerAlaIleThrCysSerSerLysAsnLysGluCysGluAlaPheIleCysAsn
100
110
          CysAspArgLysLeuValTyrCysLeuLysArgAsnLeuArgSerTyrAsnProGlnTyr
120
          CysAspArgAsnAlaAlaIleCysPheSerLysAla
                                                     ProTyrAsnLysAlaHis
130
          GlnTyrPheProAsnIleLeu
138
          LysAsnLeuAspThrLysLysTyrCysGlnSer
```

Matches = 45 Mismatches = 90 Unmatched = 16 Length = 151 Matches/length = 29.8 percent

Top line is HPLA2-10 deduced amino acid sequence; bottom line is human type I amino acid sequence.

Top line is SEQ ID NO:32:; Bottom line is SEQ ID NO:36:.

Fig. 15 Comparison Between HPLA2-10 Deduced Amino Acid Sequence and Ruman PLA2 Type II Amino Acid Sequence

```
MetLysGlyLeuLeuProLeuAlaTrpPheLeuAlaCysSerValProAlaValGlnGlv
1
          MetLysThrLeuLeuLeuAlaValIleMetIlePheGlyLeuLeuGlnAlaHisGly
1
21
          GlyLeuLeuAspLeuLysSerMetIleGluLysValThrGlyLysAsnAlaLeuThrAsn
          AsnLeuValAsnPheHisArgMetIleLysLeuThrThrGlyLysGluAlaAlaLeuSer
21
41
          TyrGlyPheTyrGlyCysTyrCysGlyTrpGlyGlyArgGlyThrProLysAspGlyThr
41
          TyrglyPheTyrglyCysHisCysGlyValGlyGlyArgGlySerProLysAspAlaThr
          AspTrpCysCysTrpAlaHisAspHisCysTyrGlyArgLeuGluGluLysGlyCysAsn
61
61
          AspArgCysCysValThrHisAspCysCysTyrLysArgLeuGluLysArgGlyCysGly
81
          IleArgThrGlnSerTyrLysTyrArgPheAlaTrpGlyVal
                                                        ValThrCysGluPro
81
          ThrLysPheLeuSerTyrLysPheSerAsnSer
                                              GlySerArgIleThrCysAlaLys
          GlyProPheCysHisValAsnLeuCysAlaCysAspArgLysLeuValTyrCysLeuLys
100
          GlnAspSerCysArgSerGlnLeuCysGluCysAspLysAlaAlaAlaThrCysPheAla
100
120
          ArgAsnLeuArgSerTyrAsnProGlnTyrGlnTyrPheProAsnIleLeuCys
          ArgAsnLysThrThrTyrAsnLysLysTyrGinTyrTyrSerAsnLysHisCysArgGly
120
```

140 SerThrProArgCys

Matches = 63 Mismatches = 74 Unmatched = 8 Length = 145 Matches/length = 43.4 percent

Top line is HPLA2-10 deduced amino acid sequence; bottom line is human PLA2 type II amino acid sequence.

Top line is SEQ ID NO:32:; Bottom line is SEQ ID NO:37:.

Pig. 16. Comparison Between Deduced Amino Acid Sequences of RPLA2-10 and Rat PLA2 Type II Amino Acid Sequence

```
MetLysArgLeuLeuThrLeuAlaTrpPheLeuAlaCys
 1
                                                     SerValProAlaValPro
           MetLysValLeuLeuLeuLeuAiaValValIleMetAlaPheGlySerIleGlnValGln
 20
           GlyGlyLeuLeuGluLeuLysSerMetIleGluLysValThrGlyLysAsnAlaValLys
          GİySerLeuLeuGiuPheGlyGlnMetlieLeuPheLysThrGİyLysArgAiaAspVal
21
          AsnTyrGlyPheTyrGlyCysTyrCysGlyTrpGlyGlyHisGlyThrProLysAspGly
40
                                                        : | |
          SerTyrGiyPheTyrGiyCysHisCysGiyValGiyGiyArgGiySerProLysAspAla
41
          ThrAspTrpCysCysArgMetHisAspArgCysTyrGlyLeuLeuGluGluLysHisCys
60
          ThrAspTrpCysCysValThrHisAspCysCysTyrAsnArgLeuGluLysArgGlyCys
61
          AlaIleArgThrGlnSerTyrAspTyrArgPheThrGlnAspLeuValIleCysGlu
80
          GlyThrLysPheValThrTyrLysPheSerTyrArgGlyGlyGlnIleSerCysSerThr
81
99
          HisAspSerPheCysProValArgLeuCysAlaCysAspArgLysLeuValTyrCysLeu
          AsnGlnAspSerCysArgLysGlnLeuCysGlnCysAspLysAlaAlaAlaGluCysPhe
101
          ArgArgAsnLeuTrpSerTyrAsnArgLeuTyrGlnTyrTyrProAsn
119
                                                              Phe
          AlaArgAsnLysLysSerTyrSerLeuLysTyrGinPheTyrProAsnLysPheCysLys
121
136
                Leu
141
          GlyLysThrProSercvs
Matches = 62
                 Mismatches = 75
```

Matches = 62 Mismatches = 75 Unmatched = 9 Length = 146 Matches/length = 42.5 percent

Top line is RPLA2-10 deduced amino acid sequence; bottom line is rat PLA2 type II amino acid sequence.

Top line is SEQ ID NO:30:; Bottom line is SEQ ID NO:35:.

Pig. 17. Comparison Between Deduced Amino Acid Sequences of RPLA2-10 and RPLA2-8

```
MetLysArgLeuLeuThr
                                   Leu
                                         Ala
                                                      Trp
                                                               PheLeuAla
           MetAspleuLeuValSerSerGlyMetLysGlyIleAlaValPheLeuValPheIlePhe
1
13
                 SerValProAlaValProGlyGlyLeuLeuGluLeuLysSerMetIleGluLys
21
           CysTrpThrThrSerThrLeu
                                   SerSerPheTrpGlnPheGlnArgMetValLysHis
           ValThrGlyLysAsnAlaValLysAsnTyrGlyPhe
32
                                                  TyrGlyCysTyrCysGlyTrp
           IleThrGlyArgSerAlaPhePheSerTyr
40
                                            TyrGlyTyrGlyCysTyrCysGlyLeu
          GlyGlyHisGlyThrProLysAspGlyThrAspTrpCysCysArgMetHisAspArgCys
51
          GlyGlyArgGlyIleProValAspAlaThrAspArgCysCysTrpAlaHisAspCysCys
59
          TyrGlyLeuLeuGluGluLysHisCysAlaIleArgThrGlnSerTyrAspTyrArgPhe
71
          TyrHisLysLeuLysGluTyrGlyCysGlnProIleLeuAsnAlaTyrGlnPheAlaIle
79
91
          ThrGlnAspLeuVallleCysGlu
                                      His
                                          AspSer
                                                        PheCysProValArg
          ValAsnGlyThrValThrCysGlyCysThrMetGlyGlyGlyCysLeuCysGlyGlnLys
99
          LeuCysAlaCysAspArgLysLeuValTyrCysLeuArgArgAsnLeuTrpSerTyrAsn
107
          AlaCysGluCysAspLysLeuSerValTyrCysPheLysGluAsnLeuAlaThrTyrGlu
119
127
          ArgLeuTyr
                      GlnTyrTyrProAsnPhe
                                                               Leu
                                                                     Cys
          LysThrPheLysGinLeuPheProThrArgProGlnCysGlyArgAspLysLeuHisCys
139
```

Matches = 48 Mismatches = 87 Unmatched = 25 Length = 160 Matches/length = 30.0 percent

Top line is RPLA2-10 deduced amino acid sequence; bottom line is RPLA2-8 deduced amino acid sequence.

Top line is SEQ ID NO:30:; Bottom line is SEQ ID NO:22:.

T (8)

4

24/47

Fig. 18 Comparison Between Deduced Amino Acid Sequence of RPLA2-10 and Rat PLA2 Type I Amino Acid Sequence

```
MetLysArgLeuLeuThrLeuAlaTrpPheLeuAlaCysSerVal
 1
                                                            Pro
                                                                  AlaVal
           MetLys
                    LeuLeuLeuAiaAlaLeuLeuThrAlaGlyValThrAlaHisSerIle
           ProGly
                    GlyLeuLeuGluLeuLysSerMetIleGlu
 19
                                                      LysValThrGlyLysAsn
           SerThrArgAlaValTrpGlnPheArgAsnMetIleLysCysThrIleProGlySerAsp
 20
           AlaValLysAsnTyrGlyPheTyrGlyCysTyrCysGlyTrpGlyGlyHisGlyThrPro
 37
           ProLeuArgGluTyrAsnAsnTyrGlyCysTyrCysGlyLeuGlyGlySerGlyThrPro
 40
57
          LysAspGlyThrAspTrpCysCysArgMetHisAspArgCysTyrGlyLeuLeuGluGlu
          ValAspAspLeuAspArgCysCysGlnThrHisAspHisCysTyrAsnGlnAlaLysLys
60
77
              LysHisCysAla
                             IleArgThrGlnSerTyr
                                                         TyrargPhe
          LeuGluSerCysLysPheLeuIleAspAsnProTyrThrAsnThrTyrSerTyrLysCys
80
          ThrGlnAspLeuVallleCys GluHisAspSerPheCysProValArgLeuCysAla
91
          SerGlyAsnVallleThrCysSerAspLysAsnAsnAspCysGluSerPheIleCysAsn
100
          CysAspArgLysLeuValTyrCysLeuArgArgAsnLeuTrpSerTyrAsnArgLeuTyr
110
          CysAspArgGlnAlaAlaIleCysPheSerLys
120
                                               Val
                                                     ProTyrAsnLysGluTyr
130
             GlnTyrTyrProAsnPheLeuCys
138
          LysAspLeuAspThrLysLysHisCys
```

Matches = 45 Mismatches = 89 Unmatched = 15 Length = 149 Matches/length = 10.2 percent

Top line is RPLA2-10 deduced amino acid sequence; bottom line is rat PLA2 type I amino acid sequence.

Top line is SEQ ID NO:30:; Bottom line is SEQ ID NO:34:. Fig. 19 Human Genomic HPLA $_2$ -8 Sequence (1/15)

SEQ ID NO:33:

10	20	30	40	50	- 60
AAGCTTTGTG	GGATTTCTAT	TATGAACAAC	ATAGGTGCCT	TTCCAACTCG	GGAACAGAGG
70	80	90	100	110	120
AAATATGGAC	TCCTCAAAAG	AAAAAAAA	GAGATGAAGG	GATGATGTTG	CCAAAGAAAG
130	140	150 CAAACCAACA	160	170	180
190	200	210	220	230	240
TATTTTTATA	TGTTCAGATC	TAAATGCCAG	AAAGGTTACC	ACATTCAAAG	GGAATGAGAT
250	260	270	280	290	300
TTGAAAATGA	TTTCTTTGAG	TCCTCTGCTG	AGGTCTTTCC	AAGGCACTAC	AATTAGGGCT
310	320	330	340	350	360
TTGCACCCAA	ATACCCTTGC	CTCATTTTGG	TCATTTTTGT	CCTGGAACAG	AGGTTCAGCT
370 GGGAGACCCC	380 TCACACACAG	390 GTGAAGGCGT	400 GGCTGTAG <u>AA</u>	CCTCAGACCC	CCTGGTCTCC
				Exon	1 ?
TCAGGAATGA	440	450	460	470	480
	AGGTCATTGC	CATCCTCACC	CTCCTCCTCT	<u>TCTGCT</u> GTAA	GTAGAGAGCG
TTGGTGGGTC	AGCACCAAGC	510 TTCTGTCTTC	CTGTTTATGT	CAGTGGGAGG	GGGGACTCTC
550	560	570	580	590	600
CAGGTGGCAC	CAGGTGAGGG	AAGTCACAAG	TCCCGCAGAA	AAGAATCAGG	AAAGGAACGG
610	620	630	640	650	660
GCTCCCACCA	ACGTCCTCTT	GCTTCTGTTT	CTGCTATAAA	ATGGGCTGAT	CCCAGTGTTG
670	680	690	700	710	720
GGATCTTATA	AAGTGTCTAG	GAAATCAGAG	GTTGCCAACC	ATTTGCTAGA	AAGGGAGTTT
730	740	750 TCACCCTCAA	760	770	780
790	800	810	820	830	840
TTTATTTAGG	CATTGGATCA	GAACAAAAAT	GCAGGACATA	TATCCAGCCT	AATTTAACCA
	860	870	880	890	900
	TGGCCTTATC	AGGAAAAGAC	CATTTTATGG	TGACTTATGG	GATAATTGGT
910	920	930	940	950	960
AGTTATAAGT	CATTGCTGCC	GGGAGATCCG	ATTGCTTACC	TCTGCAAAGT	Gaagaaagac
	980	990	1000	1010	1020
	ACAGTTTGGG	GTCTACTGGA	GACTGATAGA	CTCTTTTGCT	GGATTCGTTG

FIG. 19 (2/15)

1030	1040	1050	1060	1070	1080
AGTGGAGGTT	TCTCCAGATC	CATTITCCTG	TCTCTTTCAA	TTGAGTCACA	ATAACTITIG
				1170	1140
1090	1100	1110		CCACAGTGAG	TGGTGGAATT
AGTCCCTAAG	TCAAAGATGT	CAAAAACAGA	CITCUITCE	CCACAGIGAG	1001004411
1150	1160	1170	1180	1190	1200
TACECTTCC	AAGGTGATAG	TGCAGGAGGA	TACCTGTACG	CAGGGATGAC	CGCCTCTGCA
1210	1220	1230	1240	1250	1260
GCCCTCAGTG	CGGCTCCAGG	ACTGCTTGGG	CACCAGTGAC	CGCCCCATGG	GTTTCTTCCG
1270	1280	1290	1300	1310	1320
CCACACCCCC	1280 GTTTAGACTG	AACACGATAG	GTAGATCGAA	GGCCACCTGA	GAAAACTCCC
	1340	1050		1270	1280
1330	1340	1350	1360	T 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1200
CCAAAACTCT	ATTTCTGTTT	CICITCITCA	AAGITCATGI	CITIGITALA	IIIIIIII
1390	1400	1410	1420	1430	1440
AAATTTACTA	CATGCTTATA	GTTAAAAAGT	AAAATAAATG	AGTATATAGC	AACAAGGTAA
1450	1460	1470	1480	1490	1500
AGCTCCTCCT	CATCCTCCCC	AGACCCCAGT	TITTTCCCTA	CATCCAGATG	TGACCACTCT
1510	1520	1530	1540	1550	1560
TAAGAGTTTG	ATATACATCC	TCTATACAGC	GTTTACCACA	CACACATTCA	AAACACCATA
1570	1580	1500	1600	1610	1620
1570	AACACATGCT	GEGCCGGGGG	CCCTTCTTCA	TGACTATAAT	CCCAGCACTT
AIAGGAAGGG	WCVCVIAC.	000000000			
1630	1640	1650	1660	1670	1680
TGGGAGGCCG	AGGCGGGCGG	ATCACCTGAG	GTCAGGAGTT	CGAGACCAGC	CTGGCCAGCT
1690	1700	1710	1720	1730	1740
GGCAACATGG	TGAAACCCGT	CTCTATTAAA	AATACAAAAA	ATTAGTCAAG	CATGGCAGTT
	1760		1700		1000
1/50	AATCCCAGCT	1//0	7/60	1/90	C
GGGCACCIGI	AMICCCAGCI	VCICVOGVOG	CIGNOCAGO	VOVVII TOCCI	GAMECEGGGA
1810	1820	1830	1840	1850	1860
GGCGGAGGTT	GCAGTGAGCC	GAGATCACAC	CATTGCACTC	CAGCCTGGGT	AACAACAGCG
	1880				1920
AAACTCCGTC	TCAAAAAAAA	AAAAAAAAGA	AGGAAAGGGA	CACACGCTTA	TTATGAAAGA
			1960		1980
CATGAGACAG	CGGAGACGTG	TATAAATGAT	GTTGCCTGTT	TTCTTTCTCT	CTCTTCATCC
1000	2000	2010	2020	2020	2040
744C TAAO	TAGTGCTATC	2010 2010 2010	7020	CACATATTC	GTATTATCCC
AIGCIAGAGA	TVGIGCIVIC		ATTITIONS.		
2050	2060	2070	2080	2090	2100
TGTCGTGACA	TGTGGGTGGT	TTCCAATTTT	TTGATATCAC	AGATAATGCT	TCAGGAAACC
		_			

WO 95/02328 PCT/US94/07926

27/47

FIG. 19 (3/15)

	2120	2130	2140	2150	2160
2110	2120	COCA CTCTCA	TARGCATCTT	GTAGAAGCAA.	AAACAGCTGA
ATTTTGTGTA	TCGATTTGTG	CCCACTCTCA	172100		
		2190	2200	2210	7720
2170	2180	2190	2200	2210	
CTTCATGTGT	ACTIGICATI	TAAAAAAATA	ATAATTGAGG	ATACCILICO	.uccician
3.10					
2220	2240	2250	2260	2270	2280
2230	TOTOTTETES	GATAGTAAAG	GCCTGATGAC	ATCTGGAGGG	ACTGGCGTTT
GTATITIGIT	ICICCIGION	G/12/10 COLOUR			
		2310	2320	2330	2340
2290	2300	2310	AMONONCOCC	AGGTGTTCT	GCCTAGAACT
CTGGCTTTGA	ACTITITGCCA	TTCATGTTGC	WICWGWCCCG	7000101111	000000000000000000000000000000000000000
2350	2360	2370	2380	2390	2400
CTCCTTTCTT	GCTTTGAGGG	GGAAGACTAT	GGTTGATGGG	AAAGCCITGT	TCTGAACCTC
0100111011	••••		•		
	2/20	2430	2440	2450	2460
2410	2420	TGGGTTAGCA	AAAAACTAGC	TGTGTTACAG	GGGCAAATCT
ATGGAAACTG	GGTATTCATC	Inagitace	,6666141111		
		2490	2500	2510	2520
2470	2480	2490	2500		TTECACTTCE
GAACCTATTT	TATTCCCCAG	GAAAGAGGCT	GGTGATTCCA	GCCAIGCCCC	IIGCACIICO
2530	2540	2550	2560	2570	2580
CTTTGGGGAT	CTGGTGATAT	TTCGAATGCT	CAGCACTCTA	GTAAGGGGAG	GGGACATCAA
2500	2500	2610	2620	2630	2640
2390	2000	AACTTCCTTC	للململململما كالمد	TCTCATCGGT	GGTGGCAGCC
GGCAGCATCA	TGCTCATTGC	Welleare			
		2670	2680	2690	2700
2650	2660	2070	2000	AACACATCAC	GGGGGAAGT
CCCACCCACA	GCAGTTTCTG	GCAGTTTCAG	AGGAGGG I CA	AACACA1 CAC	GGGGCGAAGT
•					
2710	2720	2730	2740	2750	2760
GCCTTCTTCT	CATATTACGG	ATATGGCTGC	TACTGTGGGC	TTGGGGATAA	AGGGATCCCC
Exon 2					
2770	2780	2790	2800	2810	2820
-T-C3TC3C3	CTGACAGGTG	GGTGCAGAGG	CTCTAAGGCC	ACTTATCATT	TGTTTTGCAT
GIGGAIGACA					
	2040	2850	2860	2870	2880
2830	2040	. NCNCNGNGGG	TOTALGATT	CTTCCCTGGC	AAATAACAGA
TAAAGTTCAT					
			2020	2020	2940
2890	. 2900	2910	2920	2330	2340
AAACAACTCA	GGCTAATGGA	AGGAAGAACI	GAACGGGATI	TGGAGGATGG	GTCTTGAGAA
2950	2960	2970	2980	2990	. 3000
ACCCAGGGTO	GGGGCCAGCI	TCTTGAGTGT	GTGACCTGTG	AAGTTTCACA	GGGCCCAACA
				•	
2016	3076	3030	3040	3050	3060
3010	, mexecces	CTTCTTCAGO	GTGTGATCT	TAAAGTTTCA	CAGGGCCTGG
CTCATAAGG	, I LAGGGCLAG	,			
		300	3 3300	3116	3120
3070	3080	3090	, ~, ~, 1100	, YCZUCCICY , TTT	מחמ מידירות מידים
CACTCATAA	CCCCTAAAC	TGGTTTACT	. CTCTGCTGCC	. MUNICIIUM	ATTCTTAATA

WO 95/02328 PCT/US94/07926

F1(a .	19	(4/	10)

FIG	. 13 (17)	,				
	3130	3140	3150	3160	3170	3180
220	GCCTCA	TGTTTTCATT	TIGCTITACT	CTCTGCAATT	ATGCCGTTGG	TCCTGCCCAG
m						
	3190	3200	3210	3220	3230	3240
AGC	TCTAGAA	GCTGTTTCAT	CCTCATAGTA	AAAGTGCTCT	GCTTTCAGCT	CTCCAGCTTT
	3250	3260	3270	3280	3290	3300
TAC	CACTATA	CCCACAGCAC	AACTGACTCA	CTAGTCCTAA	TTCCATATTC	TGGAGAGGGC
	3310	3320	3330	3340	3350	0026
TCC	CAAAGTGG	CCCACTTTGG	AGAAGTTGTC	CATCTGGGTG	ACGIICCAIG	GCACAAACCI
			2200	3400	3410	3420
	3370	3380	CCAMCCCCCT	GGGGGAGTGT	CACTTCCTAG	AAAAGTAGA
GGC	TTCAGGC	CTACTCCAAA	GCATGGGGGT	GGGGGAG1G1	GVGIICCIVG	MANAGEMEN
	2422	2440	3450	3460	3470	3480
	3430	3440	TOTA COTOTO	GGGAGGTAAG	AAACGGGACA	CTTTCCCTCT
GG1	recereic	ATCTGGTGAA	IGINCAIGIA	GGGYGGTYYG	Mucodanen	0111000101
	3490	3500	3510	3520	3530	3540
C 1 7	יייייייי גריייייייייייייייייייייייייייי	CAACACATAA	GAAAGCAAAA	TGTTCCTTGC	CACATTTAAG	GTAGTATGGA
CA						
	3550	3560	3570	3580	3590	3600
GAZ	AACATGTC	CCACAGTGGC	CTTAAATATC	ACTCTGAGCT	CGAGTCTTGT	GGTGGCTCAT
	3610	3620	3630	3640	3650	3660
GAZ	ACCATGGA	GGACCTAGAG	GTTCGAAGGG	CAATTGACGC	TTATCAAATG	CCCTTATGTG
	3670	3680	3690	3700	3710	3720
CC	AAGCACTG	GGACTGGCCG	ATTGGCATAC	AAACCTAATT	TAATTCTCGC	AGGGAATGCA
		2740	7750	3760	7770	1780
	3730	3/40	CATTTEACAG	CCTGAGGACA	TETELETTEC	TAAACCACCT
CGA	ACACAGII	GATACCAGCE	CVITIGUENO	ccianagueu	1010401100	1/DB/COMPCI
	3790	3800	3810	3820	3830	3840
~~	TAAAGGCA	ATGCAGCTTC	TAAGTGGCAG	AGTTTAGGAT	TGAACGAGAA	TTTGCCTATT
	3850	3860	3870	3880	3890	3900
TC	AAAGTTTG	TCCCCTCTCC	TTGATGGTCT	GTGCCTCCCC	TGTCAAAGTC	CAAAGGCTGA
	3910	3920	3930	3940	3,950	3960
TT	AGAAATTG	AACATCATTA	GCCAAAGCTG	ATCAACAGCA	GAGCCCCCAC	TTGCAGATGG
	3970	3980	3990	4000	4010	4020
GA	atggtgag	AGAGGGAGAC	TGAAACACIT	TTTTCTTGGC	CITICAGGGT	TIAGAATCCA
			4050	4060	4070	4000
	4030	4040	ساتشارار مسات ۱۹۵۸ م	GTAGTGGTTG	AGCACATGGA	CTGAGCCCAT
AG	CITAAGIT	TOTACCTITCE	1010001101	GINGIGGIIG	VOGV CVI OOV	CIGNOCHENI
	4000	4100	4110	4120	#13D	4140
~~	4 0 3 0 アクロスクライン	C4244444444444444444444444444444444444	TCCAGTGCTC	TCCCATCCAG	CCCCCAGCCA	ACTCTGGGTG
<u> </u>						
	4150	4160	4170	4180	4190	4200
CC	ATGAATGG	GACTACGTCG	GCTTTTACAG	ACAGTTGTCT	CCTCAGAGAC	CGTTACAGTG

FIG. 19 (5/15)

	J ,				
4210	4220	4230	4240	4250	4260
4210	ACTACCTCCT	CAGTAAAAAG	TGTTAAATGA	ATGAATGGGC	CTAGGTTTGT
	4380	4290	4300	4310	4320
4270	4250	CACCTCCCTA	ACTTTGGGAA	ATTGGCCTCT	TGGAATCTCA
GICCIGGGIC	TATCATTCTC	CVCCIACCIN	VOIT TO COM		•••••
		4250	4360	4370	4350
4330	4340	0.000	TATOMAN AND	7	ACCTARTGES
GICCCTCCCC	TACAAAAGGG	CAGCAATGAT	TGTACTITAT	AGTTTCTAGT	VOCIVITANA
				4430	4440
4390	4400	4410	4420	4430	****
ATAGCAACAG	ATACTACAGA	GGGCTCAGGA	AATGCTACTG	GTTATTATTA	TIATILITIA
				4.400	4500
4450	4460	4470	4480	4490	4500
TTTTATTTAT	TTTTTGGGAG	ACGGGGTCTT	GCTCTATTAT	CCAGGCCTGG	GGTGGAGAGG
4510	4520	4530	4540	4550	4560
CTCAATCAGA	GCTCACTGCA	GGTCCTCAAG	CAATCCACCC	ACTTCACCTC	CTGAGTAGCC
4570	4580	4590	4600	4610	4620
CCCACCACAG	CCTCCTCCCA	CCATGCCTGG	CHIPTITIT	TTTTTTAAAC	TTAAAAAACA
4630	4640	4650	4660	4670	4680
#1000		CCAGGCTGGT	CTCAAACTCC	TGGACTGAAG	CGATCCTCCT
TAGGCGGCTC	CCINIGIIGE				
4600	4700	4710	4720	4730	4740
4690	4700	TCCCATTCCA	GCCATGAGCC	ACCACACCTG	CCCTATCTT
GCCTTATCCT	CACAAAGIGC	IGGGYIIGCY	GOCUTGNOCC	veeverer.	0001713111
		- 4770	4790	4790	4800
4/50	4/60			4790 TTCCCT2C2	C) CC) CC) C
AATATTATTG	ATAATTCACC	TUCTUACULI	CWYIGCCIIC	TTGCCTAGAG	GAGGAGGCAG
		4020	4040	4050	4060
4810	4820	4630	4840	4850	1000
GTGAGCCCTT	TCTAGTCCCC	AGATAAGGTC	CTCCAGCAGA	TTCCTGAGGG	ACCUACTICC
		4000	4000		4000
4870	4880	4890	4900	4910	4920
AGGCACAGCC	CCTCATCTCC	CTCTCCCTAC	GAGAAGCTGA	AGGAGTTCAG	CIGCCAGCCI
4930	4940	4950	4960	4970	4980
GTGTTGAACA	GCTACCAGTT	CCACATCGTC	AATGGCGCAG	TGGTTTGTGA	GTAGCCTTTT
				5030	
CTGTATGGAA	ATGTCTTTTA	ACCTGGGCCT	TTCCTTAACG	TTCACCTCCT	CTTTGACCCA
5050	5060	5070	5080	5090	
GAGATCTTTT	AGAAAATGAA	ATGCTTCCAA	GTGCTTGGAA	GGAGATATTC	CTGAGCTTTC
5110	5120	5130	5140	5150	5160
TECTGATGET	CCAGAGCTTC	TCAGAGTGTC	CGTGCTCATC	CTGCCCTGGT	CTCTCCCACC
		-			
5170	5180	5190	5200	5210	5220
CATGAGTGTA	CCTCCTGAAC	TCTCTGGGG	CCCAGAGCCT	GGCAGATAGT	ACATGCTCAG
CUTANGIGIU					
5220	5240	5250	5260	5270	5280
TALATACTTG	TTCACTTGAG	CTAATCITGA	AGCTTCCCTT	GACAACTGCT	GCTGTTGAGA

FIG. 19 (6/15)

5290 ACATGTTTCC	5300 TTGTTTCTGT	5310 GATTTTGTTA	5320 ACAAAACGGC	5330 TCAGCTGTCT	5340 TCCAGTTGGA
5350 CAAATATTTA	5360 TTAAGGGCGA	5370 CTGCATGCCA	5380 AGCACTAAGA	5390 TAGGTGCTGC	5400 CAGGGCCACA
5410 AAAGCAAATA	5420 GGTGGGAAGG	5430 GAAGGGGGAC	5440 TCACATGTTA	5450 CTGAGACCAT	5460 TCAAGGAGCC
5470 ATGTGGGCAA	5480 GTGGATCAGT	5490 GCCCTTCACA	5500 TGGGGCGTGG	5510 CCTGGCATCC	5520 GGAGCGTGTT
5530 CTGCGGCTGG	5540 TAGGGTATGG	5550 GTATGTGCAG	5560 GGCAATCCTG	5570 GCCTAGACAG	5580 CAGGCACATT
5590 TGGAGGCACG	5600 GGACAGTAGT	5610 CTTTCGTGAG	5620 CACCATCCTT	5630 TCCAGCATAG	5640 CCAGGGTGGA
TCCTGGGGTC	CTGGGCTGGG	5670 AGGGTGAAGA	GCAACAAATA	AAGAAGTGGC	TTCTTGGCCG
		5730 TAATCCCAGC			
AGGTCAGGAG	ATCGAGACCA	5790 TCCTGGCTAA	CACGGTGAAA	CCCCGTCTCT	ACTAAAAATA
		5850 TGATGGTGGG			
5000	E000	5910	5920	5930	5940
AGGCAGGAGA	ATGGCGTGAA	CCCGGGAGGC	GGAGCTTGCA	GTGAGCCGAG	ATTGCGCCAC
AGGCAGGAGA 5950 TGCACTCCCG	ATGGCGTGAA 5960 CCTGGGCCAC	CCCGGGAGGC 5970 AGAGCGAGAC	GGAGCTTGCA 5980 TCCGTCTCAA	GTGAGCCGAG 5990 AAAAAAAAAA	ATTGCGCCAC 6000 AAAAAAAAA
AGGCAGGAGA 5950 TGCACTCCCG 6010 AAGAAGTGGC	ATGGCGTGAA 5960 CCTGGGCCAC 6020 TTCTTATAGT	5970 AGAGCGAGAC 6030 GTGTGGCTCA	GGAGCTTGCA 5980 TCCGTCTCAA 6040 CTTCCTGCCT	STGAGCCGAG 5990 AAAAAAAAAA 6050 GGCCTCGTGG	ATTGCGCCAC 6000 AAAAAAAAAAG 6060 GGTTGCATGA
AGGCAGGAGA 5950 TGCACTCCCG 6010 AAGAAGTGGC 6070 ATCACTTTCC	ATGGCGTGAA 5960 CCTGGGCCAC 6020 TTCTTATAGT 6080 TTCCCAGGTG	5970 AGAGCGAGAC 6030 GTGTGGCTCA 6090 TATTTATTCA	5980 TCCGTCTCAA 6040 CTTCCTGCCT 6100 GAGCTGTGAG	5990 AAAAAAAAAA 6050 GGCCTCGTGG 6110 TGCACCTTGG	ATTGCGCCAC 6000 AAAAAAAAAAG 6060 GGTTGCATGA 6120 AGTTCCTCTG
AGGCAGGAGA 5950 TGCACTCCCG 6010 AAGAAGTGGC 6070 ATCACTTTCC. 6130 TTTCCTCCTG	ATGGCGTGAA 5960 CCTGGGCCAC 6020 TTCTTATAGT 6080 TTCCCAGGTG 6140 AGGTCAGGGA	5970 AGAGCGAGAC 6030 GTGTGGCTCA 6090 TATTTATTCA 6150 ACTACCACCT	5980 TCCGTCTCAA CTTCCTGCCT 6040 CTTCCTGCCT GAGCTGTGAG CTCTGCCACT	5990 AAAAAAAAAA 6050 GGCCTCGTGG 6110 TGCACCTTGG 6170 CATCCCCTAT	ATTGCGCCAC 6000 AAAAAAAAAG 6060 GGTTGCATGA 6120 AGTTCCTCTG 6180 GGCGGGAGAT
AGGCAGGAGA 5950 TGCACTCCCG 6010 AAGAAGTGGC ATCACTTTCC 6130 TTTCCTCCTG 6190 ACATCCTCCA	ATGGCGTGAA 5960 CCTGGGCCAC 6020 TTCTTATAGT 6080 TTCCCAGGTG AGGTCAGGGA 6200 TCCCGTAGTG	5970 AGAGCGAGAC 6030 GTGTGGCTCA 6090 TATTTATTCA 6150 ACTACCACCT 6210 GGTTCCAGGG	5980 TCCGTCTCAA CTTCCTGCCT GAGCTGTGAG CTCTGCCACT 6100 CTCTGCCACT 6220 CTCAGAACCC	STGAGCCGAG 5990 AAAAAAAAAA GGCCTCGTGG GGCCTCGTGG TGCACCTTGG CATCCCCTAT 6230 TGGTACTCCT	ATTGCGCCAC 6000 AAAAAAAAAA G GGTTGCATGA 6120 AGTTCCTCTG 6180 GGCGGGAGAT GAGCTCCCCA
AGGCAGGAGA 5950 TGCACTCCCG 6010 AAGAAGTGGC ATCACTTTCC 6130 TTTCCTCCTG 6190 ACATCCTCCA	ATGGCGTGAA 5960 CCTGGGCCAC TTCTTATAGT TTCCCAGGTG AGGTCAGGGA TCCCGTAGTG 6260	5970 AGAGCGAGAC 6030 GTGTGGCTCA 6090 TATTTATTCA 6150 ACTACCACCT	GGAGCTTGCA 5980 TCCGTCTCAA CTTCCTGCCT GAGCTGTGAG CTCTGCCACT 6220 CTCAGAACCC	STGAGCCGAG 5990 AAAAAAAAAA GGCCTCGTGG GGCCTCGTGG TGCACCTTGG CATCCCCTAT 6230 TGGTACTCCT	ATTGCGCCAC 6000 AAAAAAAAAG 6060 GGTTGCATGA 6120 AGTTCCTCTG 6180 GGCGGGAGAT GAGCTCCCCA

WO 95/02328 PCT/US94/07926

FIG. 19 (7/15)	31/47
----------------	-------

			_		
6370	6380	6390	6400	6410	6420
TGGCCTGCCC	TGCCCACTGC	CACCAGCACG	TGGTTGACAG	GGAAAGAACC	CCCTTTTGTT
	-				
6430	6440	6450	6460	64/0	0940
CCCCACGTGA	GCTCAAGCAA	TCCACCCACT	TCAGCCTCCT	GAGIAGCIGG	GWIIWCWGGI
6490	6500	6510	6520	6530	6540
	ATGCTTGACT				
	6560				
TGGCCAGCTC	AGCACACACC	AATACCCAGA	GTTAGGACTG	TGAGGTCTCC	CTGGCACCAG
		6600			
	6620				
CTGTGTGGGT	TEGEGETTEE	GACCCTGCAC	CGGGAGACCT	GCCTCAGCTC	TTGGACTGCC
6670	6680	6690	6700	6710	6720
TOTAL CTOC	ACCAGCACGT	CTTCACAGGG	111C) 1CCC	0.10	ACCTGACCTC
IGCCACIGCE	ACCAGCACG1	GIIGACAGGG	WARREST	111101100	VCGIGVOCIC
6730	6740	6750	6760	6770	6780
AAGGAGACTT	CCCTGAGTTG	GAGCTCTCTG	GTGTGGTCCT	TCTCAGGCCT	AAAGCAAAGT
6790		6810	6820	6830	6840
GTCTTTTCTG	TGACACCTCC	AAGGCCATGT	TCAGGAGAGG	GGAAGGGATC	AGGGCCTGGT
6050	6860	6870	6000	6900	6000
	CCCACACCC	ACTICALA	CTCCCCTCC	0050	0900
GGGNGGGNIG	GGGAGAGGGG	VCIGGYGYYG	GIGGEETEEA	GGGATCGAGT	TTCCCATGGC
6910	6920	6930	6940	6950	6960
CTCTTCCCAC	CIGICITIGC	CACAGGGGTG	GGGACACCTG	GCTGGCCCAG	CCCAAGCCTC
6970	6980	6990	7000	7010	7020
CACCCTGGGC	TCCTGTGGGC	TGGCTGCACT	CGCCAGGGCT	GGCCTAGGCT	CTCTGCACCC
7030	7040	7050	7060	7070	7000
ACCCAACCTT	CTCTATTCAA	TECTITION	CCTCCCACCC	7070	7080
VOGOVINGC11	CICINIICAN	1001011000	CCICCENGCE	CAGGACCCCA	GGAGAIGAGG
7090	7100	7110	7120	7130	7140
GAGAGTGGAG	CAAAGGTTGA	GGAGCAGAGG	CTGGAGCCCC	AGGCAGTGGC	ACTGCTGGGC
7150	7160	7170	7180	7190	7200
AGTGGTGGGA	GGTGCCAGCC	AGGGCTGGGA	GTTGGACCCG	AAAGTACGTG	GCCTGGGCTG
7210	7770	7720	7244		
7210	7220 CCACGTTGCC	7230	7240	7250	7260
INCITICITE	CCACGIIGCE	CCIICAGAGC	AGAAGCAGCC	AGTTGCTCCT	GAAGCCTTGA
7270	7280	7290	7300	7310	7320
CCAGGGCTCC	TGAGTCCAGA	GCCTTGCTCA	GGGCACTAGC	GTGGGAGGAG	GCTTCCGCAT
7330	7340	7350	7360	7370	7380
CAGTACAGGG	CATCAGCACC	CGCCTCCTCA	GCTGACCCAG	CCCCGTGAGG	ACCCAGGCCC
7780	7400	7410	3400		
AGCCCCCTGT	CATCCCCACC	CCC3CCTTCC	/420 CAAGCCCCTC	7430	7440
				アイドーマのひとり	CAGGGCTGAG

WO 95/02328 PCT/US94/07926

FIG. 19 (8/15)

7450 AGCGAGGTGA	7460 TCTGGGTTCT	7470 AATCCAGAGT	7480 CTGCTGCTGA	7490 CATGTGCTGA	7500 GCCCAGGCC
7510	7520	7530	7540	7550	7560
		TATTGAGCGA			
7570 GCTGTGCCAG	7580 GGGCCGGGGC	7590 ACAGAATAAA	7600 GCAGACCCGT	7610 CCCTGCTCTT	7620 CTGGCATTCA
7630	7640	7650	7660	. 7670	7680
CAGTCTTGTG	GAAACTCCAG	ACTGAAAGTG	CCCTTAGAGA	TTATCCAGAT	CAGCCCCTCC
7690	7700	7710	7720	7730	7740
TIGTAGCAAT	GAAGAGACIG	AGACCCACAG	AGGGGATGAG	TITGATCCAA	GAAACAGACA
7750	7760	7770	7780	7790	7800
AGATTAAGAT	GCATGTGTCT	TGAACCTTTT	CAGTGCTCTG	GAACATACCG	TCTGGCCGGA
7810	7820	7830	7840	7850	7860
		CCCATCCATG			
7870	7880	7890	7900	7910	7920
ATGAGCCTCT	GTGATAGATG	CTGTACGCAC	AGCACCTGAA	CTCACATGAT	AAACCACTGA
7930	7940	7950	7960	7970	7980
GGTGAGCATT	ATCTCCCATT	ATCAAGGAGG	ACCCTGGGGC	TCAGAGAGGT	TAAGCACGAT
7990	8000	8010	8020	8030	8040
GCCAAGGCCA	CACAGCCAGG	GAAAGAAGAG	TTGGAATTCA	AACCCCGGGT	GCCCTGTCTC
8050	8060	8070	8080	8090	æ 8100
ACACTAGCTT	CCCCTGTGGA	GGGTGCTGGT	GTGTGCATGA	TTGGAGGCCC	TCACACAGTG
8110	8120	8130 AAACTGGTCA	8140	8150	8160
8170	8180	8190	8200	8210	8220
GAGGGGCAGA	TGGAGTTTGC	TTCGCTGTAA	GGCCCCGGAG	CTTTGTGTTC	CTGCTGAGAA
8230	8240	8250	8260	8270	8280
GCCTCAGAGT	CGGGCAACAC	TGGGTCTAAT	TCCAGCTCCA	CCCCTTGTAT	TAATAGCTGG
8290	8300	8310	8320	8330	8340
GCCTTAATCT					
	CCTCATCTGT	AAAATGGAGA	GAATCGTCGC	CTGTACTTCA	TAAGGCTGCT
8350	8360	8370	8380	8390	8400
8350 GGAAGGATTA	8360	8370 CCCAGCTACA	8380	8390	8400
GGAAGGATTA 8410	8360 GCTAAAGCAA 8420	8370 CCCAGCTACA 8430	8380 GTGGCTGGCC	8390 TACAGTAGGT 8450	8400 GCTTCATTAA
GGAAGGATTA 8410	8360 GCTAAAGCAA 8420	8370	8380 GTGGCTGGCC	8390 TACAGTAGGT 8450	8400 GCTTCATTAA
GGAAGGATTA 8410 TGCCCTTCCT	8360 GCTAAAGCAA 8420 TTTAGATGTG	8370 CCCAGCTACA 8430	8380 GTGGCTGGCC 8440 TTTTTGTCCA	8390 TACAGTAGGT 8450 AGTTTTCTTT	8400 GCTTCATTAA 8460 TCCTCTTTGC

FIG. 19 (9/15)

					•
0530	9540	8550	8560	8570	8580
8530	0.000	0000	171111CCCC	THE CHECK	AGGTGTGGTG
CCACGGCTAT	GGTCAGTAAC	CCCTTAIGGA	VIVVVCCCC	TTTCCTGGCC	V001010010
8590	8600	,8610	8620	8630	8640
	GTAATCCCAG	CACTCTGGGA	GGCTGAGGCG	GGAGGATCAC	TTGAGCCCAG
ULLUMAMULA	GINVICCENA	CUC. C. C.			
				0.00	0700
8650	8660	8670	8680	8690	8700
CACTTCGAGA	CCAGCCTGGG	CAACACAGTG	AGACCCCTGT	CTCTACTAAA	CATACAAACA
		9770	9740	8750	8760
8710	8720	8/30	6740		TCACATACCA
ATTAGCCAGA	TGTGGTGGTG	CATACCIGIA	GTCCCAGCTA	CTCAGAAGGC	IGAGATAGGA
2770	8780	8790	8800	8810	8820
	1666616616	ATCACCCAC	ACTGAGCTGT	GATTGCACCA	CTGCACTCCA
GGATCACCTG	AGCCCAGGAG	W10W00CCWC	VG1QVQC1G1	GATIOCACCA	CIOCHCICCA
			•		
8830	8840	8850	8860	8870	8880
CCCTGGGCAA	CAGAGTGAGA	CCCTACCTCA	AAAAGAAAGC	AACAACAGAA	AACCTATTTC
actingacum	CUANO Y GUAN	•••••			
			2022	8838	2242
8890	8900	8310	.8920	8930	8940
CCTATCCTAA	TTGCACCTCC	ATTCAAAGAG	CTGCCCCTGC	AAGAGTTAAC	CAACTCCCTA
9050	9960	8970	8980	8990	9000
0930	2000	macancos coc	> CCCCTCCTC		ACCAACCCC
GCCTCCCATG	AGTICIGAAA	TCCTGCACCC	MOGCETGGTC	CCAGTTGCCT	WACHVERGO
9010	9020	9030	9040	9050	9060
CONTROTO	GGATGCAGTA	GGTAAGCAGG	GGAGGGAGAG	GAAGAAAACA	ACTTGGTCTG
9961961619	GGYIGCHGIN				
		0000	0100	9110	0120
9070	9080	9090	9100	9110	9120
TCCACGACTC	TAAATGTCAC	TGAGAGATCA	GTGCAGAGAA	AGGCCTGTCA	CCAGAGCCCA
•					
9130	9140	9150	9160	9170	9180
	TECETECTEC			CCACCTGGGA	
GGGCCCAATI	1000100	INGGOVENGE	100001000	CENCELOGGY	GGIGGIIMIC
9190	9200	9210	9220	9230	9240
CCTCCTTTGA	GTGGGCTTAC	ATAACTACTT	GGCATTTTTG	CAAGGGACTT	TAAGCTCACT
•••••					
0050	0260	9270	0200	9290	9300
CAGCAGTGAC	ACCCCCTCC	GCCCACATGC	ACATACATGT	GTGGTACAGG	GAGGACCEGG
9310	9320	9330	9340	9350	9360
				ATCATCTGCA	
1010GGAGGC	YOYPY 10000	TICCAGCCA	CIGAMCICC	AT CATCIOCA	101000000
		/			
9370		9390			9420
TCTGACTGCC	TCCCTCTGCC	AAAGCGGGAA	GATGAAAATG	GTAACTGCTG	GAATTTGTAT
	0440	9450	0460	0470	9480
9430	9440	7430	7460	94/0	
TTTGCAAAGA	CITITCICAT	TTACTGCTGA	ATATATTCCT	CATCTCAGCC	TECACTEGET
0400	9500	9510	9520	9530	9540
C		TOCOLOGICATO	Cydronous CC	TGAAATGATC	
GACACGCTAC	CCWCIGICIC	Technocati	CATCTACC	- GUUVI GVIC	gincli
	_				
9550	9560	9570	9580	9590	9600
CTCTCTCTCT	GTGTGCCTCG	ACTCTCCCCC	ACCGACTAGA	AAGGTCCGTG	AGAGCAAGGA

FIG. 19 (10/15)

9610 GCAAGCCTGT	9620 CTTGTTTGAG	9630 GGCACTGGTT	9640 CTCATAGAGC	9650 CACAGGGAAT	9660 GATGCCCCTG
9670 GACTAAGCAG	9680 TGTGGGGTCT	9690 GCTGGCTTGC	9700 ACCTGTGCCC	9710 CCAGCTCCTA	9720 GCCAAAGACC
				9770 TAGATGAACA	
				9830 CTGAGGAAAC	
				9890 CATATTTGGC	
				9950 CCTGTAGGCA	
				10010 CAGAAGATCA	
				10070 GAACAAGAGA	
				10130 GAAGCACCTC	
				10190 AAGGGTGCCT	
				10250 GACCTCAGGG	
10270 AGGAGCAGAG	10280 GAGCCTTGGG	10290 GAAGAATGGA	10300 GATGAGGTTG	10310 GACAGGATGA	10320 GACACGTGCC
				10370 CAGAGGATGC	
				10430 AGAGTCAAGG	
				10490 ACCACAGCCA	10500 AGATCAGCAT
				10550 GGTAGGTCAG	10560 GGCCGACAGG
					10620 AGCTCCTGGC
			10660 CTGAGCTCGT		. 10680 GAGAGCTGAT

FIG. 19 (11/15)

10500	10700	10710	10770	10770	10740
		GGTGTGAGTC			
GAT CANGRER	00/0//0//0//		,	24	
		10770			
Taaggggtag	GCAGGTGGAC	ACGTGCTTAT	TGAAGTCTGG	AGCCAAGGGA	GAGGTGTGGG
		10000		10050	10040
		10830 GTATTCAGAG			
CIGCAGCGGA	QWQ11000V	GIVII CUGUG	IICIGACACI	GACCAAGAAC	ACCCCI CAGA
10870	10880	10890	10900	10910	10920
GAATTCAGAG	ACAACCAGGG	CTGAGGCGAG	GGGCTTAGAC	TGGGGCCTGG	GACAGCCACA
10930	10940	10950	10960	10970	10980
GGCAGGAATG	CAGACTTGCT	GCCTCTTCTT	ATTTGTGGAG	ATGTAGTTCA	TGCAGCAAGA
10990	11000	11010	11020	11020	11040
AAGTCATTCC	AAAGCCCTCC	TTTCCTTTCT	TCATGCCTCA	GTTTCTCCAT	TAGCACATTA
11050	11060	11070	11080	11090	11100
AAAGATGCAA	GATCTGGAGT	TAAGCTTGTT	TTTAAAAGGT	GGCCTCCAAA	GACGGTTTTT
11110	11120	11130	11140	. 11150	11160
CTTGGCCTGG	GGCTGTCTCA	TCATCCAGGT	CATGACAGGC	CCCCTCCATC	CTTCACCAAT
11170	11180	. 11190	11200	11210	11220
GCCACAGAAG	TGACAGTCCA	CTGCAAAAGA	CTGCTGCTCC	AGATCAGTTC	TGGAAGGCCT
11230	11240	11250	11260	11270	11280
GGCANIGGGG	CVGGCCVCIG	AAGTAGAACT	GGATGTCAGA	TGCACGCATT	AGAAAGGACA
11290	11300	11310	11320	11330	11340
GGAAGACCAA	ATGAGAAAGG	GAGAGGGGC	AGGGAGAAAG	GAAGGAGAGC	TAGAGACTTG
11250					
11350	11360	11370	11380	11390	11400
NUUCAAAUGA	VVCVVQVQVI	GGAATAGAAG	AAGACAGAGG	ACCAGAAGAC	AGTGAGACCA
11410	11420	11430	11440	11450	11460
ACAGAAAGAG	AGAGGGACGA	GAAAGAAGGT	GGCTGAGGAA	GGTGAGAAA	GTGTTTCCAG
11470	11480	11490	11500	11510	11520
GGCGACAGCA	ACTGGACCAG	GCCCTCTAGT	TGGACAGTGA	GGCTGGCTGG	GGGGCCTGAG
11530	11540	11550	11560	11570	
CTCAAGTAGC	CCTCGTCCCC	TGAGAGAGTG	GGGGCTACCT	GGGGACCTCC	11580
			doodernee.	aggrac190	GCIIGAIGCA
11590	11600	11610	11620	11630	11640
TCTGGAAGGA	TCTTCACAGA	GGCAGGAGGG	GGAGTGGGAG	GGCAGAGGGC	ACCCAGGCGC
11650	11660	11670			
TAGAACAGTG	GGAGTGGGGG	11670 GACGCAAAAC	CCCFCFCCS TIPRO	11690	11700
	-44470000		COUNTRICEA	GAGGAGTGAA	CATCCCTGGC
11710		11730		11750	11760
AGATTCCCCT				GGTGTTGGCA	CAACGTGAGA

FIG. 19 (12/15)

11770	11780	11790	11800	11510	11820
		•		AGACTTTGCA	
11830	11840	11850	11860	11870	11880
GGCAAACAGA	CTGACTGCAG	GCAGCTCTGC	CGGCTCCACA	GGGCGCTGCT	TTTTCTCCAC
11890	11900	11910	11920	11930	11940
GGTGGAGCTG	GAGTGCATCA	CCCTGAGAAC	CAGCAGCAAG	CCCCCACAGG	GCACCTTCTG
11950	11960	11970	11980	11990	12000
CGTGCCAGGC	ACATCCGGAC	CACTTGTCGG	TAGACACCAG	TGACCCTCAC	C) CC) CCC)
12010	12020	12030	12040	12050	12060
				TTAGCACCAT	
12070	12080	12090	12100	12110	12120
AGGAAGCTGA	AGCTAACTTG	CCCAAGGTCA	TAAACCGGGC	GTCTGGTGGC	
12130	12140	12150	12160	12170	12180
CACTGCCAAC	CCTGAGAGCG	GACTAGGGTG	GAGTTATCTG	GAAAGAGGAA	12100
			aug. TV1.C10	GAAAAGAGGAA	GCIGIACCIG
12190	12200	12210	12220	12230	12240
AGAGCCCTAA	ACACACATEC	GCGCGCACGA	CACACACACA	CGCACAAACA	22240
			enenenenen	COCACAAACA	CACAATGCAC
12250	12260	12270	12280	12290	12300
GCACACACAT	GCGCACGCAC	ATACACACAC	ATGCACACAT	GGACACATAC	72300
			NIOCNCHENI	GGACACATAC	CIGCACACAC
12310	12320	12330	12340	12350	12260
AAGCATACAC	ATGCACACAG	GCACACGCAT	GCACACACGC	GCATGCACAC	12360
					14.7
12370	12380	12390	12400	12410	12420
ACATGTGCAT	GCACACAGTG	CGACAGCTCT	GATTAGTAGG	TAAATAAAAG	
12430	12440	12450	12460	12470	12480
AGTGGTGACT	CGGCCAAAGT	GCAGACACTG	AACCCCAAAG	GCCCATAGAG	
12490	12500	12510	12520	12530	12540
TCCCTTCTCT	TATTCTTCAT	TCATGGATTC	TATTGAGCAT	CTGCTCTGTG	
			···· · · · · · · · · · · · · · · · · ·	CIGCICIGIG	CAGCAICIGI
12550	12560	12570	12580	12590	12600
CCTGGATGCT'	GGGGATACTG	TGATGACTTA	GACAAGGTCT	CAGCCGCACA	
					CAGCITATGC
12610	12620	12630	12640	12650	12660
TTCTTTGAGG	GGAGGCAGAC	ACAAGCCAGG	AAACCAATAA	GAGAAGTTAA	12000
			MUCCULIAN	GNGNAGIIAA	GTAAAAAGCA
12670	12680	12690	12700	12710	12700
CAGTGAGTGA	GACAAACGGG	TACGGAGGAC	377777777	AGAGCTTTAG	12/20
	-u-many	- WEGGWOOME	A GOLLAGAG	MUAGCTTTAG	TTCAGGTGGT
12730	12740	12750	12760	12770	1330-
CAGGGAGCAC		ACCTCAAATT	TC3 CC3 3 CC3	TCAAACAGTG	12780
		uagranti!	IGACCAAGCC	TCAAACAGTG	GCAGGGATCC
12700	12800	12210	12020	12830	
12 130	A CAMPOTTOCO	T7010	12620	12830	12840
CACIGCTIGC	WOWICHIGO	GAGAAGCATT	TTAGACAAAA	AGAACAGCAA	GTCCAAAGGC

FIG. 19 (13/15)

12850	12860	12870	12880	12890	12900
•					CAGAGCAGGG
12910 AGGCTGGGAG	12920 AGTGGAGGG	12930 GAGGGGGATG	12940 AGGTGGACA	12950	12960 GGTGGCATCC
				•	
12970 CGGCAAGTGI	12980 GCCTGGCCAC	12990 GGAGGCCACG	13000 GAAGGATTCA	13010 GCATGTCTT	13020 CCCGAATAGG
AACCACACTG	GGCTGTAACA	GAGAGTGACG	13060 TACTCGGTAC	13070 GTTGAGAAGG	13080 TCCTGCTTAT
TTCCTTCCGT	GAAGGAGGAA	GAGCTGCTGA	13120 TGACAGAGAT	13130 TGGCAGTGGC	13140 CAAAGACATA
GAGAGAAGAG	GGCAGAACAT	GGGCTATTTT	13180 AAACACAGAG	13190 AAG ATTAGCG	13200 GGACCCGCTG
			13240		
GCAGACCGGA	CGTGAAATGT	GGAAGGAGCG	GGGGCAGCGA	13250 GGTCGGCTCC	13260 TAGTTTCCTG
13270	13280	13290	17700	12214	• • • • •
AGAATGTGGG	TGAATCACGG	GCTCACAGGC	AGAGGGAGCA	CTAGGATATC	AAGGGTTCCC
13330	13340	13350	13360	12220	
TTGTGAACGC	CTCAAGTTGG	AGATGCCTGA	GACATCCAAG	TGAGATGTCA	AGCAGGCAGC
13390	13400	13410	13420	13430	13440
TGGAAATAGG	AGATGAGCTC	TGGGAAAATG	CTCCCATCAC	CCTGGCCTGT	GTGCTGCCTG
13450	13460	13470	13480	13490	13500
GGCGCACCCA	TTCAGGGCCC	TCCACGCAGC	CCACGCCCCT	GCCTCCTGAT	TCCTTCTAGG
13510	13520	13530	13540	13550	13560
orrerection.	NC1CG1GGGA	TGCCCAGATG	TGATCAGGGA	AGGGCTTGAG	GATGCAGGGA
13570 AGCTGTGGCT	GAGAGCCCTA	13590	13600 TGCACACGCA	13610	13620
TGCACACACG	13640 ACCATACACA	13650.	13660 CACGCAGATG	13670	13680
13690 CACACAAATG	CATATGCACA	13710 CACACACATG	13720 CACACATATG	13730	13740
TGGCTTTCCT	13760	13770	13780	13790	13800
			CCCTTACAGT		
13810	13820	13830	13840	13850	13860
CCTTAGAACC	AAACCCTGGG	GCTGGGCTGG	GAGCCCCCAG	TGACCCTCTG	TGTCTCTGTA
13870	13880	13890	13900	13910	13920
G <u>GTGGATGCA</u>	CCCTTGGTCC	TGGTGCCAGC	TGCCACTGCA	GGCTGAAGGC	CTGTGAGTGT

FIG. 19 (14/15)

13930	13940	13950	13960	13970	13980
GACAAGCAAT	CCGTGCACTG	CTTCAAAGAG	AGCCTGCCCA	CCTATGAGAA	AAACTTCAAG
	E	xon 4			
•					
13990	14000	14010	14020	14030	14040
CAGTTETECA	GCCGGCCCAG	<u>GTGTGGCAGA</u>	CATAAGCCCT	<u>GGTGCTAG</u> GG	ACACCACAGG
14050	14060	14070	14080	14090	14100
GTCCCTCTCA	. TCATCCAGCA	TCCGCTCTAG	TGTTGCTCTT	CCAGGAAGCC	TTCTCAGATC
14110	14120	14130	14140	14150	14160
ATCCCCAACA	GCCCCTGTT	CTTCCACTGG	GAGGGAGGAC	AAAATGTCTC	CCGCAGGGCA
14170	14100	14100			
241/0	14180	14190	14200	14210	14220
GCICACCCII	CAGCATTCTG	ACCAAGGGGA	CICCCIGICG	TTCAGCATCA	GAGGGCTGGA
14770	14240	1/250			
CACCACAAAT	14240	14250	14260	14270	14280
GUGCUGUANI	GGGAAAGATG	AGATGCCTGC	CCTGCAGGAG	CIGGCATICT	GTGGAGTGGG
14290	14300	14210			
GAGGACTACA	AATGCATGGA	TATAGAACTA	14320	14330	14340
	.u.i.ocui.oou	TATAGAMGIA	MONGACACAT	TAGACTGTAG	TAAGTGCTAT
14350	14360	14370	14380	14300	14400
GATGCAGTAA	AACAAAGGGA	CGGGATAGAG	ATGCACCCAA	CCCCACATCC	14400
			•		
14410	14420	14430	14440	14450	14460
CAGGAGGGGA	GAAGCCCCAG	GATCTACCCC	AAACTCTCTC	TTCACCCCA	CTGCAAACCG
14470	14480	14490	14500	14510	14520
GGACACAGAG	CAGACTTGAG	CGCCAGGCCC	ATGCCCAGCT	CTAGCTGGCA	ACANAGCCAC
14530	14540	14550	14560	14570	14580
CACTTTCCTT	GCCCCTCTGC	GTCCTCAGTT	TTTATGATGT	CATTCTTAGC	TTTTCTTATC
	•				
14590	14600	14610	14620	14630	14640
AAGAGGCAGA	ATCTGTTTTC	CCCATCCCAT	GAATCTGAAC	TESTCTTSTS	GCTTAGTTTG
				•	
14650	14660	14670	14680	14690	14700
GICAATAGAA	TGTTGTGGGA	GGGATGGTTT	ACCAGITITG	AGCTAGGCCT	CAGGAGGTCT
14710	14720		- 4- 4-		
AGGGCATCTC	14720	14/30	14740	14750	14760
VOCCATOIC	TACTCTCTCT	INGGACAGCI	GCCCCCACCC	TGCAAAAAAG	CCTGGGCTAG
14770	14780	14700	14800		
CCTCCTCCAC	GATGAGAGCC	CACCTCCATC	14000	14810	14820
	on a condition	CUCCIONIC	MOTIGICICA	GCTGATTTCA	GACACGTGAG
14830	14840	14850	14960	14070	
AGAGAGCTCA	GCGAGACTCA	CCTTCTACCT	GACTACAGAT	CTCTC3CCC3	14880
			-uerueunut	G1G1GWGGGW	ACCIGGCIGA
14890	14900	14910	14920	14020	14045
GACCAAAACA	ACTGTCCAGC	TGAGCCCAGG	CTAAACTGCC	TABOUT	14940
					_
14950	14960	14970	14980	14990	15000
AAATAAAGGC	TGCTGTTCTA	AGTCACTGGG	TTTTGGTATG	GTTTCTTACC	CYCCCYMYYC
					-WRC-WYWVC

FIG. 19 (15/15)

39/47

15010	15020	15030	15040	15050	15060
TAACAGGTGT	AATTGGTCCT	TATTCCCTTA	TTCACTGAGA	GTGATGGGTT	CTCAGCCCTG
15070	15080	15090	15100	15110	15120
AGCTGGACTT	GGAGGCCATG	GAAATGCAGT	GGACATGGCC	TTTGTTCCTT	ACCTTGAAGC
15130	15140	15150	15160	15170	15180
TGTGGAAGGA	GGTCAAGTTC	ATGGAATAAT	GGAGAACACA	CAGCTGTAAT	CGTTTGCTTG
15190	15200	15210	15220	15230	15240
TTCAGGGAAC	ACACATTTAT	TGAGCACTTG	CTATGTGCCA	GGCACAGTGC	CAGGCAGTAG
15250	15260	15270	15280	15290	15300
GGATCCAGAT	ATTTAAAGAA	AACAAACAAA	AATCAGGTCC	AAAACTCCTG	GGGAGAATGC
15310	15320				
TGAGAGTGGT	ATCAGCTTTT	AGGAATTC			

40/47

Fig. 20 Diagram of Vector to Express Dicistronic mRNA

Fig. 21

PLA2 ACTIVITY

42/47 **FIG. 22**

Human Type I Human Type II HPLA ₂ -10	1 50 AVWQFRKMIKCVIPGSDPFLEYNNYGCYCGLGGSGTPVDELDKCCQTHDN NLVNFHRMIK-LTTGKEAALSYGFYGCHCGVGGRGSPKDATDRCCVTHDC GLLDLKSMIE-KVTGKNALTNYGFYGCYCGWGGRGTPKDGTDWCCWAHDH * ** ** **
Human Type I Human Type II HPLA ₂ -10	100 CYDQAKKLDSCKFLLDNPYTHTYSYSCSGSAITCSSKNKECEAFICNCDR CYKRLEKR-GCGTKFLSYKFSNSGSRITC-AKQDSCRSQLCECDK CYGRLEEK-GCNIRTQSYKYRFAWGVVTC-EPGPFCHVNLCACDR **
Human Type I Human Type II HPLA ₂ -10	.01 NAAICFSKAPYNKAHKNLDTKKYC <u>OS</u> AAATCFARNKTTYNK-KYQYYSNKHC <u>RGSTPRC</u> KLVYCLKRNLRSYNP-QYQYFPNILC <u>S</u>

Alignment of amino acid sequences of human type I, II and HPLA₂-10 PLA₂. Asterisks denote eighteen residues that have been conserved among all active PLA₂ sequences. Underscored residues denote the amino acid COOH-terminal extensions.

Top line is SEQ ID NO:38:; Middle line is SEQ ID NO:39:; Bottom line is SEQ ID NO:40:.

FIG. 23

FIG. 25

FIG. 26

FIG. 27

RPLA2-Type I RPLA2-Type II RPLA2-8 RPLA2-10	1 AVWQFRNMIKCTIPGSDPLREYNNYGCYCGLGGSGTPVDDLDRCCQ SLLEFGQMIL-FKTGKRADVSYGFYGCHCGVGGRGSPKDATDWCCV SFWQFQRMVK-HITGRSAFFSYYGYGCYCGLGGRGIPVDATDRCCW GLLELKSMIE-KVTGKNAVKNYGFYGCYCGWGGHGTPKDGTDWCCR
RPLA2-Type I RPLA2-Type II RPLA2-8 RPLA2-10	47 THDHCYNQAKKLESCKFLIDNPYTNTYSYKCSGNVITCSDKNND THDCCYNRLEKR-GCGTKFVTYKFSYRGGQISCS-TNQDS- AHDCCYHKLKEY-GCQPILNAYQFAIVNGTVTCGCTMGGGC MHDRCYGLLEEK-HCAIRTQSYDYRFTQDLVICEHDSF
RPLA2-Type I RPLA2-Type II RPLA2-8 RPLA2-10	93 -CESFICNCDRQAAICFSKVPYNKEYKDL-DTKKHC -CRKQLCQCDKAAAECFARNKKSYSLKY-QFYP-NKFCKGKTPSC LCGQKACECDKLSVYCFKENLATYEKTFKQLFPTRPQCGRDKLHC -CPVRLCACDRKLVYCLRRNLWSYNRLY-QYYP-NFLC

Alignment of amino acid sequences of rat Type I, II, RPLA₂-8 and RPLA₂-10 PLA₂s. Asterisks denote eighteen residues that have been conserved among all active PLA₂ sequences. Underscored residues denote the amino acid COOH-terminal extensions.

RPLA₂-Type I sequence shown corresponds to SEQ ID NO: 41:; RPLA₂-Type II sequence shown corresponds to SEQ ID NO:42:; RPLA₂-8 sequence shown corresponds to SEQ ID NO:43:; RPLA₂-10 sequence shown corresponds to SEQ ID NO:44:.

A. CLASSIFICATION OF SUBJECT MATTER			
IPC(5) :Please See Extra Sheet. US CL :435/69.1, 172.1, 172.3, 240.2, 320.1; 514/44: 530/350; 536/23.1, 23.5, 24.5 According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification syste	m followed by classification symbols)		
U.S. : 435/69.1, 172.1, 172.3, 240.2, 320.1; 514	./44; 530/350; 536/23.1, 23.5, 24.5		
Documentation searched other than minimum document	ation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international	search (name of data base and, where practicable, search terms used)		
APS, CAS, BIOSIS, EMBASE, MEDLINE, DERV phospholipase A2, gene, cDNA, type III, type	VENT BIOTECHNOLOGY ABSTRACTS		
C. DOCUMENTS CONSIDERED TO BE RELI	EVANT		
Category* Citation of document, with indication	, where appropriate, of the relevant passages Relevant to claim No.		
expression vector for high- foreign proteins in Escheric	Gene, Volume 93, issued 1990, T. Deng et al, "A novel expression vector for high-level synthesis and secretion of foreign proteins in Escherichia coli: overproduction of bovine pancreatic phospholipase A ₂ ", pages 229-234, see the entire document.		
J.J. Seilhamer et al, "No	nistry, Volume 39, issued 1989, vel Gene Exon Homologous to A ₂ : Sequence and Chromosomal enes", pages 23-33.		
X Further documents are listed in the continuation	of Box C. See patent family annex.		
Special categories of cited documents:	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the		
"A" document defining the general state of the art which is not to be of particular relevance	considered principle or theory underlying the invention		
"E" earlier document published on or after the international fil "L" document which may throw doubts on priority claim(s) of	considered novel or cannot be considered to involve an inventive step		
"L" document which may throw doubts on priority claim(s) of cited to establish the publication date of another citation special reason (as specified)	will the		
"O" document referring to an oral disclosure, use, exhibition	considered to involve an inventive step when the document is no other combined with one or more other such documents, such combination		
P document published prior to the international filing date but the priority date claimed	being obvious to a person skilled in the art t later than "&" document member of the same patent family		
Date of the actual completion of the international search	ch Date of mailing of the international search report		
14 OCTOBER 1994	2 4 OCT 1994		
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks	Authorized officer BRUCE CAMPELL A. May S. A.		
Box PCT Washington, D.C. 20231	BRUCE CAMPELL		
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/07926

ا ـ ا	Charles of decrease with indication asked amountains of the calculate	Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, f the relevant passages	Relevant to cidum 140.
?	Biochimica et Biophysica Acta, Volume 1089, issued 1991, A.C.A.P.A. Bekkers et al, "The use of genetic engineering to obtain efficient production of porcine pancreatic phospholipase A ₂ by Saccharomyces cerevisiae", pages 345-351, see the entire document.	41-52, 57-58, 60- 61
A, P	Biochemical Pharmacology, Volume 48, No. 1, issued 1994, A.B. Mukherjee et al, "Phospholipase A ₂ Enzymes: Regulation and Physiological Role", pages 1-10.	1-84
r	Critical Reviews in Biotechnology, Volume 12, No. 4, issued August 1992, N-S. Yang, "Gene Transfer into Mammalian Somatic Cells In Vivo", pages 335-356, see the entire document.	59, 62-68
	·	
	·	
	·	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

Box I Observations where certain claims were found unsearchable (Continuation f item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER: IPC (5):

A01N 43/04; A61K 31/70; C07H 17/00; C07K 3/00, 13/00, 15/00, 17/00; C12N 5/00, 15/00; C12P 21/06

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-22 and 71-74, drawn to PLA2 proteins.

Group II, claim(s) 23-40, 53-56, 69-70 and 75-84, drawn to nucleotide sequences encoding PLA2 proteins. Group III, claim(s) 41-52, 57-58 and 60-61, drawn to expression vectors, host cells, and methods of making PLA2 proteins.

Group IV, claims 59 and 62-68, drawn to methods for gene therapy.

The inventions listed as Groups I-IV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Group I is distinct from each of II and IV because the proteins of I are not required for the nucleotide sequences and gene therapy methods of II and IV, and the compositions and methods of II and IV are not required for production of the proteins of I.

Groups I and III are distinct, each from the other, because the proteins of I can be produced without the vectors, cells and methods of III. The protein can be isolated from tissues, or produced synthetically. Furthermore, the proteins of I are not required for the compositions and methods of III.

Group II is distinct from each of III and IV, because the nucleotide sequences of II can be used for several different purposes. Besides the methods of III and IV, the sequences of II can be used as hybridization probes for isolation of related genes.

Groups III and IV are distinct, each from the other, because the vectors, cells and methods of III are not necessary for the methods of claims 62-68. The method of claim 59 requires reagents and procedures not required by the methods of III, and the methods are not obvious variants. Furthermore, the methods of IV are not required for the production or use of the compositions and methods of III.

Accordingly, the claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept.

Form PCT/ISA/210 (extra sheet)(July 1992)*