COMP-SCI 5542 (SP17) - Big Data Analytics and Applications

Presentation of Paper 6

VQA: Visual Question Answering

Stanislaw Antol, et al.

(Proceedings of the IEEE International Conference on Computer Vision, 2015)

```
Team 9: Chen Wang (44) - First Speaker (2-8)
```

Yunlong Liu (22) - (10-17)

Dayu Wang (45) - (19-23)

Mar 21st, 2017

Introduction

What color are her eyes?
What is the mustache made of?

Is this person expecting company? What is just under the tree?

How many slices of pizza are there? Is this a vegetarian pizza?

Does it appear to be rainy? Does this person have 20/20 vision?

VQA: Visual Question Answering

Introduction

AI-complete Task:

Ideal task should
(i) require multimodal knowledge
beyond a single subdomain
(ii) have a welldefined quantitative
evaluation metric to
track progress.

Introduction

Answers
of
Free-form
and
openended
VQA

Fine-grained recognition

What kind of cheese is on the pizza?

Object detection

How many bikes are there?

Activity recognition

Is this man crying?

Knowledge base reasoning

Is this a vegetarian pizza?

Commonsense reasoning

Is this person expecting company?

Related Work

Related Work	VQA Efforts	Text-based Q&A	Describing Visual Content	Other Vision+Language Tasks.
Use	Study visual question answering	Well studied problem in the NLP and text processing communities	Words or sentences are generated to describe visual content	Intersection of vision and language
Limited	fairly restricted settings with small datasets.	Text is the grounding of questions	Captions can often be non-specific	Limited set of visual concepts tend to be captured
Innovation	Involves open- ended, free-form questions and answers provided by humans	VQA requires the understanding of both text vision	VQA require detailed specific information about the image	Richer variety of visual concepts emerge from visual questions and their answers

VQA Dataset Collection

VQA Dataset Collection

VQA Dataset Collection

Questions?

The next speaker is *Yunlong Liu* (22).

VQA Dataset Analysis

questions analysis

1. Types of Questions

based on the words that start the question

questions analysis

2. Lengths of Questions

Distribution of Question Lengths

Answers analysis

- 1. typical Answers
 - typical answers using "yes" and "no"
 - rich diversity of responses
 - specialized responses

Answers with Images

Answers analysis

2. Lengths

	one word	two words	three words	
real images	89.32%	6.91%	2.74%	
abstract scenes	90.51%	5.89%	2.49%	

percentage of the lengths

3. 'Yes/No' and 'Number' Answers

- Many questions are answered using either "yes" or "no" (or sometimes "maybe")
- 38.37% and 40.66% of the questions on real images and abstract scenes respectively. Among these 'yes/no' questions, there is a bias towards "yes" 58.83% and 55.86% of 'yes/no' answers are "yes" for real images and abstract scenes.

Answers analysis

4. Subject Confidence

• When the subjects answered the questions, we asked "Do you think you were able to answer the question correctly?"

Number of questions per average confidence score (0 = not confident, 1 = confident) for real images and abstract scenes (black lines). Percentage of questions where 7 or more answers are same, 3-7 are same, less than 3 are same (color bars).

5. Inter-human Agreement

• the agreement between subjects increases with confidence.

Commonsense Knowledge

1. answers without images

 some questions can sometimes be answered correctly using commonsense knowledge alone without the need for an image.

Commonsense Knowledge

• the percentage of questions answered correctly when human subjects are given the question and a human-provided caption describing the image, but not the image.

Dataset	Input	All	Yes/No	Number	Other
Real	Question	40.81	67.60	25.77	21.22
	Question + Caption*	57.47	78.97	39.68	44.41
	Question + Image	83.30	95.77	83.39	72.67
Abstract	Question	43.27	66.65	28.52	23.66
	Question + Caption*	54.34	74.70	41.19	40.18
	Question + Image	87.49	95.96	95.04	75.33

Questions?

The next speaker is *Dayu Wang* (45).

VQA Baselines and Methods (Part 5)

Preliminary Results - Microsoft COCO Dataset

Randomly Choose from Top 1K Answers

Choose the Most Popular Answer

Choose the Most Popular Answer per Question Type

36.18%

Nearest Neighbor Approach

40.61%

k nearest (question, image) pairs \rightarrow based on the test question Spark Word2Vec used to get neighbors \rightarrow cosine similarity Pick m $(1 \le m \le k)$ answers which have "consensus" answers.

Devlin, J., et al. (2015). Exploring nearest neighbor approaches for image captioning. arXiv preprint arXiv:1505.04467. Lin, T. Y., et al. (2014). Microsoft COCO: Common Objects in Context. Euro Conf Computer Vision (740-755). Springer. Mohapatra, A. (2015). Exploring Nearest Neighbor Approach on VQA. ECE 5554 (FS15) Class Project. Virginia Tech.

• Training Baselines - $k = 1000 \rightarrow \text{covers } 82.67\%$ of (train, val) answers.

Testing - "Open-Answer" and "Open-Choice" Tasks

Open-Answer

Answer with **highest activation** from **all possible** *k* **answers**

Open-Choice

> Answer with highest activation from the potential answers

		Open-Answer				Multiple-Choice			
	All	Yes/No	Number	Other	All	Yes/No	Number	Other	
Question	48.09	75.66	36.70	27.14	53.68	75.71	37.05	38.64	
Image	28.13	64.01	00.42	03.77	30.53	69.87	00.45	03.76	
Q+I	52.64	75.55	33.67	37.37	58.97	75.59	34.35	50.33	
LSTM Q	48.76	78.20	35.68	26.59	54.75	78.22	36.82	38.78	
LSTM Q+I	53.74	78.94	35.24	36.42	57.17	78.95	35.80	43.41	
Caption Q+C	26.70 54.70	65.50 75.82	02.03 40.12	03.86 42.56		69.79 75.89	02.06 41.16	03.82 52.53	

Study from the Results

Type of question matters.

LSTM is better.

Multiple-Choice is better.

All methods are significantly worse than human performance.

Further Insight

Question Type	Imp?
Requires more reasoning ("How many", "Is the")	N
Can be answered using scene-level information ("What sport")	Y
Answer contained in a generic caption ("What animal")	Y

For all question types, the results are <u>worse than human accuracies</u>.

Best Model (54.06%): LSTM Q + I

Behaves like a 4.45-year-old child.

	Open-Answer					Human Age	
Question	K = 1000			Human		To Be Able	
Type	Q	Q+I	Q+C	Q	Q + I	To Answer	
what is (13.84)	23.57	34.28	43.88	16.86	73.68	09.07	
what color (08.98)	33.37	43.53	48.61	28.71	86.06	06.60	
what kind (02.49)	27.78	42.72	43.88	19.10	70.11	10.55	
what are (02.32)	25.47	39.10	47.27	17.72	69.49	09.03	
what type (01.78)	27.68	42.62	44.32	19.53	70.65	11.04	
is the (10.16)	70.76	69.87	70.50	65.24	95.67	08.51	
is this (08.26)	70.34	70.79	71.54	63.35	95.43	10.13	
how many (10.28)	43.78	40.33	47.52	30.45	86.32	07.67	
are (07.57)	73.96	73.58	72.43	67.10	95.24	08.65	
does (02.75)	76.81	75.81	75.88	69.96	95.70	09.29	
where (02.90)	16.21	23.49	29.47	11.09	43.56	09.54	
is there (03.60)	86.50	86.37	85.88	72.48	96.43	08.25	
why (01.20)	16.24	13.94	14.54	11.80	21.50	11.18	
which (01.21)	29.50	34.83	40.84	25.64	67.44	09.27	
do (01.15)	77.73	79.31	74.63	71.33	95.44	09.23	
what does (01.12)	19.58	20.00	23.19	11.12	75.88	10.02	
what time (00.67)	8.35	14.00	18.28	07.64	58.98	09.81	
who (00.77)	19.75	20.43	27.28	14.69	56.93	09.49	
what sport (00.81)	37.96	81.12	93.87	17.86	95.59	08.07	
what animal (00.53)	23.12	59.70	71.02	17.67	92.51	06.75	
what brand (00.36)	40.13	36.84	32.19	25.34	80.95	12.50	

Conclusion and Discussion (Part 6)

Dataset	AI Capabilities		
250K Images	Computer Vision		
760K Questions	Natural Language Processing		
10M Answers	Common Sense Reasoning		

• The questions were open-ended and not task-specified.

Domain-Specific Data Sets

Enable practical VQA Apps.

Training on task-specific datasets

This is the END of the presentation.

Mar 21st, 2017

Paper 6 Presentation

"VQA: Visual Question Answering" - Stanislaw Antol, et al.

(Proceedings of the IEEE International Conference on Computer Vision, 2015)

Team 9: Chen Wang (44), Yunlong Liu (22), and Dayu Wang (45)

Questions?

Thank you!