Krzysztof Pszeniczny nr albumu: 347208 str. 1/3 Seria: 7

Dowody wstępne

Lemat 1 (Subaddytywność rzędu). Jeśli f, g: $U \to W$ są przekształceniami liniowymi między przestrzeniami skończonego wymiaru, to $\dim \operatorname{im} f + \dim \operatorname{im} g \geqslant \dim \operatorname{im} (f + g)$.

Dowód. Niech $\alpha_1, \ldots, \alpha_n$ będzie bazą im f, zaś β_1, \ldots, β_m będzie bazą im g. Weźmy dowolne $\xi \in \operatorname{im}(f+g)$. Wtedy istnieje takie Ξ, że $(f+g)(\Xi)=\xi$, czyli $f(\Xi)+g(\Xi)=\xi$. Jednak zapisując $f(\Xi)$ i $g(\Xi)$ we współrzędych bazy mamy: $\alpha_1\alpha_1+\alpha_2\alpha_2+\ldots+\alpha_n\alpha_n+b_1\beta_1+b_2\beta_2+\ldots+b_m\beta_m=\xi$, stąd łatwo widzimy, że układ $\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ rozpina przestrzeń im(f+g), skąd teza.

Lemat 2 (Nierówność Sylvestra). Jeśli f, g: U \to U są przekształceniami liniowymi przestrzeniami liniowej wymiaru n, to dim im f + dim im g \leq n + dim im(f \circ g). Aby zachodziła równość, potrzeba i wystarcza, aby ker f = im g|_{ker(f \circ a)}.

Dowód. Z rank-nullity theorem mamy, że dim im $f + \dim \ker f = n$, analogicznie dla pozostałych przekształceń. Stąd teza jest równoważna: dim ker $f + \dim \ker g \geqslant \dim \ker (f \circ g)$.

Niech $h : \ker(f \circ g) \to W$ będzie obcięciem funkcji g. Wtedy oczywiście $\ker h = \ker g$, bo $\Xi \in \ker g \implies g(\Xi) = \emptyset \implies f(g(\Xi)) = \emptyset \implies \Xi \in \ker(f \circ g)$, a ponadto $\Xi \in \ker h \implies \Xi \in \ker g$, ponieważ h jest obcięciem funkcji g.

Jednak jeśli $v \in \ker(f \circ g)$, to $f(g(v)) = \vartheta$, skąd $g(v) \in \ker f$. Mamy stąd im $h \subseteq \ker f$. Stąd dim im $h \le \dim \ker f$. Stosując twierdzenie o rzędzie dla przekształcenia h mamy: $\dim \ker(f \circ g) = \dim \ker h + \dim \inf h \le \dim \ker g + \dim \ker f$, bo $\dim \ker h = \dim \ker g$ oraz $\dim \inf h \le \dim \ker f$.

Lemat 3. Jeśli $X \supseteq Y \supseteq Z$ są przestrzeniami liniowymi takimi, że $\dim(X/Y)$ i $\dim(Y/Z)$ są skończone, to $\dim(X/Z) = \dim(X/Y) + \dim(Y/Z)$.

Dowód. Niech $\alpha_1 + Y, \alpha_2 + Y, \dots, \alpha_n + Y$ będzie bazą X/Y, zaś $\beta_1 + Z, \dots, \beta_m + Z$ będzie bazą Y/Z.

Niech teraz $\Xi \in X$. Wtedy można zapisać, że $\Xi = a_1 \alpha_1 + \ldots + a_n \alpha_n + \digamma$, gdzie $\digamma \in Y$. Jednak \digamma można zapisać jako $\digamma = b_1 \beta_1 + \ldots + b_m \beta_m + \varkappa$, gdzie $\varkappa \in Z$. Stąd jednak $\Xi = a_1 \alpha_1 + \ldots + a_n \alpha_n + b_1 \beta_1 + \ldots + b_m \beta_m + \varkappa$, stąd łatwo widać, że wektory $\alpha_1 + Z, \alpha_2 + Z, \ldots, \alpha_n + Z, \beta_1 + Z, \ldots, \beta_m + Z$ rozpinają X/Z.

Załóżmy jednak, że nie są one liniowo niezależne. Wtedy $a_1\alpha_1+\ldots+a_n\alpha_n+b_1\beta_1+\ldots+b_m\beta_m\in Z$. Jednak stąd $a_1\alpha_1+\ldots a_n\alpha_n\in Y$, bo $\beta_i\in Y$ oraz $Z\subseteq Y$. Jednak z liniowej niezależności a_1+Y,a_2+Y,\ldots,a_n+Y mamy $a_1=a_2=\ldots=a_n=0$.

Teraz mamy, że $b_1\beta_1 + \ldots + b_m\beta_m \in Z$. Jednak znów z liniowej niezależności $b_1 + Z, b_2 + Z, \ldots, b_m + Z$ mamy, że $b_1 = b_2 = \ldots = b_m = 0$. Stąd istotnie $\alpha_1 + Z, \alpha_2 + Z, \ldots, \alpha_n + Z, \beta_1 + Z, \beta_2 + Z, \ldots, b_m + Z$ tworzą układ liniowo niezależny.

Lemat 4. Jeśli $V \supseteq X, Y$ są przestrzeniami liniowymi takimi, że $\dim(V/Y)$ jest skończony, to $\dim(X/(X \cap Y)) \leqslant \dim(V/Y)$.

Dowód. Niech $\phi, \psi \in X$. Zauważmy, że w $X/(X \cap Y)$ wektory $\phi + (X \cap Y)$ i $\psi + (X \cap Y)$ są równe wtedy i tylko wtedy, gdy $\phi - \psi \in X \cap Y$, lecz należenie do X jest oczywiste, skąd jest to warunek równoważny $\phi - \psi \in Y$, czyli równości wektorów $\phi + Y$ i $\psi + Y$ w V/Y.

Stąd widzimy, że przekształcenie $f: X/(X\cap Y) \to V/Y$ dane jako $f(\Xi + (X\cap Y)) = \Xi + Y$ jest dobrze określone, tzn. wybierając wartości z tej samej klasy abstrakcji w dziedzinie uzyskamy ten sam obraz. Oczywiście jest to przekształcenie liniowe.

Niech $(\varpi_i + (X \cap Y))_{i \in I}$ będzie bazą $X/(X \cap Y)$ (I jest pewnym zbiorem indeksów). Zauważmy, że biorąc dowolną niezerową kombinację liniową $a_1\varpi_{i_1} + a_2\varpi_{i_2} + \ldots + a_n\varpi_{i_n} + (X \cap Y)$ mamy, że $f(a_1\varpi_{i_1} + a_2\varpi_{i_2} + \ldots + a_n\varpi_{i_n} + (X \cap Y)) = a_1\varpi_{i_1} + \ldots a_n\varpi_{i_n} + Y$. Jednak, gdyby prawa strona była równa Y, to $a_1\varpi_{i_1} + \ldots a_n\varpi_{i_n} \in Y$, ale skoro wszystkie ϖ . należą do X, to wtedy $a_1\varpi_{i_1} + \ldots a_n\varpi_{i_n} \in (X \cap Y)$, co z liniowej niezależności daje $a_1 = a_2 = \ldots = a_n = 0$.

Jednak wymiar V/Y jest skończony, więc wymiar $X/(X \cap Y)$ także. Gdyby bowiem był on nieskończony, to biorąc odpowiednio duży skończony podzbiór bazy w poprzednim rozumowaniu, uzyskalibyśmy w V/Y liniowo niezależny układ o mocy większej niż wymiar V/Y, co jest sprzecznością z tw. Steiniza.

Co więcej, widzimy teraz, że obrazem (skończonej) bazy $X/(X \cap Y)$ jest układ liniowo niezależny w V/Y, skąd $\dim X/(X \cap Y) \leq \dim V/Y$.

Krzysztof Pszeniczny nr albumu: 347208 str. 2/3 Seria: 7

Zadanie 1

Dowód. Mamy na mocy subaddytywności rzędu i faktu, że rank(-g) = dim im(-g) = dim im g = rank g, że $rank(f+g) + rank(g) = rank(f+g) + rank(-g) \ge rank(f+g-g) = rank f$, skąd $rank(f+g) \ge rank f - rank g$. Analogicznie $rank(f+g) \ge rank g - rank f$. Stąd $rank(f+g) \ge |rank f - rank g|$.

Zadanie 2

W rozwiązaniu będę używał faktów, które udowodniłem w poprzedniej pracy domowej: liczby elementów przestrzeni n-wymiarowej nad ciałem 7-wymiarowym: 7^n oraz liczby uporządkowanych liniowo niezależnych układów n wektorów w tej przestrzeni: $\prod_{k=0}^{n-1} (7^n - 7^k)$. Choć tam dowodziłem dla przestrzeni nad GF(4), to dowód jest analogiczny dla GF(7).

Część a

Zauważmy, że przekształcenie liniowe będzie jednoznacznie wyznaczone przez wartości na bazie. W związku z tym dla każdego z n wektorów bazy wybieramy na 7ⁿ sposobów obraz tego wektora w ustalanym przekształceniu. Stąd mamy $(7^n)^n$ przekształceń.

Część b

Zauważmy, że znowu chcemy jedynie określić wartości na bazie. Chcemy jednak, aby jądro tego przekształcenia było trywialne. W związku z tym musimy na pewno wybrać takie wartości obrazów wektorów bazy, aby były one liniowo niezależne.

Istotnie, $0 = a_1 f(\alpha_1) + a_2 f(\alpha_2) + \ldots + a_n f(\alpha_n) = f(a_1 \alpha_1 + \ldots + a_n \alpha_n)$, więc aby ker f było trywialne musi zajść $a_1 \alpha_1 + \ldots + a_n \alpha_n = 0$, czyli $a_1 = a_2 = \ldots = a_n = 0$.

Jednak gdy wybierzemy $f(\alpha_1), \ldots, f(\alpha_n)$ tak, aby był to układ liniowo niezależny, to łatwo widać, że rozpina ona całe $GF(7)^n$, więc dim im f = n, czyli jest to izomorfizm.

Stąd chcemy znaleźć liczbę liniowo niezależnych układów $f(\alpha_1), f(\alpha_2), \ldots, f(\alpha_n)$, co jak powiedzieliśmy wynosi $\prod_{k=0}^{n-1} (7^n - 7^k)$.

Zadanie 3

Dowód. Niech $W, U \subseteq V$. Mamy na podstawie lematów:

$$\infty > \dim(V/U) + \dim(V/W) \stackrel{4}{\geqslant} \dim(V/U) + \dim(U/(U \cap W)) \stackrel{3}{\geqslant} \dim(V/(U \cap W))$$

Zadanie 4

Dowód. Załóżmy nie wprost, że $rank(A+A^T) = rank(B+B^T) = 2013$. Na mocy lematów (gdzie w razie potrzeby interpretujemy macierze jako macierze odpowiednich przekształceń liniowych mamy:

$$2 \cdot 2013 = \operatorname{rank}(A + A^{\mathsf{T}}) + \operatorname{rank}(B + B^{\mathsf{T}}) \stackrel{1}{\leqslant}$$

$$\stackrel{1}{\leqslant} \operatorname{rank} A + \operatorname{rank} A^{\mathsf{T}} + \operatorname{rank} B + \operatorname{rank} B^{\mathsf{T}} =$$

$$= 2(\operatorname{rank} A + \operatorname{rank} B) \stackrel{2}{\leqslant} 2(\operatorname{rank} AB + 2013)$$

$$= 2 \cdot 2013$$

A więc wszystkie powyższe nierówności są rownościami. Stąd jednak rank $A+{\rm rank}\ B=2013$, skąd przynajmniej jeden z tych rzędów jest mniejszy bądź równy $1006=\lfloor\frac{2013}{2}\rfloor$. Załóżmy bez straty ogólności, że jest to rank A. Wtedy rank $A^T={\rm rank}\ A<\frac{2013}{2}$, skąd z lematu 1 mamy ${\rm rank}(A+A^T)\leqslant {\rm rank}\ A+{\rm rank}\ A^T<2013$.

Geometria i algebra liniowa

albumu: 347208 str. 3/3 Seria: 7

Zadanie 5

Niech $\exists: W \to Z$ będzie rozważanym izomorfizmem. Określ
my funkcję $\gimel: V \to V$ jako:

$$\gimel(\Upsilon) = egin{cases} \exists (\Upsilon) & \text{gdy } \Upsilon \in W \\ \Upsilon & \text{gdy } \Upsilon \in \mathsf{Z} \\ \vartheta & \text{w pozostałych przypadkach} \end{cases}$$

Wtedy oczywiście $\mathbb{I}^2=\mathbb{I}$, co jak udowodniliśmy na ćwiczeniach, jest równoważne byciu rzutem.