Worst-case analysis

Sorting a sorted list should be fast!!

1 2 3 4 5 6 7 8

In this class, we will focus on worst-case analysis

Here is my algorithm!

Algorithm:

Do the thing Do the stuff Return the answer

Algorithm designer

- Pros: very strong guarantee
- Cons: very strong guarantee

Big-O notation

How long does an operation take? Why are we being so sloppy about that "6"?

- What do we mean when we measure runtime?
 - We probably care about wall time: how long does it take to solve the problem, in seconds or minutes or hours?
- This is heavily dependent on the programming language, architecture, etc.
- These things are very important, but are not the point of this class.
- We want a way to talk about the running time of an algorithm, independent of these considerations.

1000000

Remember this slide?

n	n log(n)	n^2
8	24	64
16	64	256
32	160	1024
64	384	4096
128	896	16384
256	2048	65536
512	4608	262144
1024	10240	1048576

Change nlog(n) to 5nlog(n)....

n	5 _n log(n)	n^2
8	120	64
16	320	256
32	800	1024
64	1920	4096
128	4480	16384
256	10240	65536
512	23040	262144
1024	51200	1048576

Asymptotic Analysis

How does the running time scale as n gets large?

One algorithm is "faster" than another if its runtime grows more "slowly" as n gets large.

This will provide a formal way of saying that n² is "worse" than 100 n log(n).

Pros:

- Abstracts away from hardware- and languagespecific issues.
- Makes algorithm analysis Without much more tractable. making Plucky grumpy!

This is especially relevant now, as data get bigger and bigger and bigger...

Cons:

 Only makes sense if n is large (compared to the constant factors).

 $2^{10000000000000}$ n is "better" than n^2 ?!?!

Now for some definitions...

- Quick reminders:
 - 3: "There exists"
 - ∀: "For all"
 - Example: ∀ students in CS161, ∃ an algorithms problem that really excites the student.
 - Much stronger statement: ∃ an algorithms problem so that, ∀ students in CS161, the student is excited by the problem.
- We're going to formally define an upper bound:
 - "T(n) grows no faster than f(n)"

O(...) means an upper bound

- Let T(n), f(n) be functions of positive integers.
 - Think of T(n) as being a runtime: positive and increasing in n.
- We say "T(n) is O(f(n))" if f(n) grows at least as fast as T(n) as n gets large.
- Formally,

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot f(n)$$

Parsing that...

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot f(n)$$

T(n) = O(f(n)) means:

Eventually, (for large enough n) something that grows like f(n) is always bigger than T(n).

Example 1

• T(n) = n, $f(n) = n^2$.

T(n) = O(f(n))

 $\exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0,$

Examples 2 and 3

- All degree k polynomials with positive leading coefficients are O(n^k).
- For any $k \ge 1$, n^k is not $O(n^{k-1})$.

(On the board)

Take-away from examples

• To prove T(n) = O(f(n)), you have to come up with c and n_0 so that the definition is satisfied.

- To prove T(n) is NOT O(f(n)), one way is by contradiction:
 - Suppose that someone gives you a c and an n_0 so that the definition is satisfied.
 - Show that this someone must by lying to you by deriving a contradiction.

 $\Omega(...)$ means an upper bound, and $\Omega(...)$ means a lower bound

• We say "T(n) is $\Omega(f(n))$ " if f(n) grows at most as fast as T(n) as n gets large.

• Formally,

$$T(n) = \Omega(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0,$$

$$0 \leq c \cdot f(n) \leq T(n)$$
Switched these!!

Parsing that...

Θ(...) means both!

• We say "T(n) is Θ(f(n))" if:

$$T(n) = O(f(n))$$

$$-AND$$

$$T(n) = O(f(n))$$

Yet more examples

•
$$n^3 - n^2 + 3n = O(n^3)$$

•
$$n^3 - n^2 + 3n = \Omega(n^3)$$

•
$$n^3 - n^2 + 3n = \Theta(n^3)$$

- 3ⁿ is **not** O(2ⁿ)
- $n \log(n) = \Omega(n)$
- n log(n) is **not** Θ(n).

Fun exercise: check all of these carefully!!

We'll be using lots of asymptotic notation from here on out

- This makes both Plucky and Lucky happy.
 - Plucky the Pedantic Penguin is happy because there is a precise definition.
 - Lucky the Lackadaisical Lemur is happy because we don't have to pay close attention to all those pesky constant factors like "4" or "6".
- But we should always be careful not to abuse it.
- In the course, (almost) every algorithm we see will be actually practical, without needing to take $n \ge n_0 = 2^{10000000}$.

Questions about asymptotic notation?

This is my happy face!