

Shallow Neural Networks

Building Complex Concept from Simple Components

Biological neuron

Dendrites (information coming from other neurons)

Synapses (information output to other neurons)

Artificial neuron

Artificial neural network (ANN)

Layers of neurons

Intelligence

Can intelligence emerge from a complex network of simple functions?

$$y = f[x, \phi]$$

= $\phi_0 + \phi_1 a[\theta_{10} + \theta_{11}x] + \phi_2 a[\theta_{20} + \theta_{21}x] + \phi_3 a[\theta_{30} + \theta_{31}x]$

Is it possible to build complex functions in this manner?

We Need to Add Nonlinearity!

ReLU: Rectified Linear Unit

$$\mathbf{a}[z] = \text{ReLU}[z] = \begin{cases} 0 & z < 0 \\ z & z \ge 0 \end{cases}$$

 $h_3 = \mathbf{a}[\theta_{30} + \theta_{31}x]$

ReLU: __/

Piecewise Linear Functions

ReLU:

Universal Approximation Theorem

$$h_d = \mathbf{a}[\theta_{d0} + \theta_{d1}x]$$

Piecewise Linear Functions

$$y = \phi_0 + \sum_{d=1}^{D} \phi_d h_d$$

Multivariate Outputs

$$y_1 = \phi_{10} + \phi_{11}h_1 + \phi_{12}h_2 + \phi_{13}h_3 + \phi_{14}h_4$$

$$y_2 = \phi_{20} + \phi_{21}h_1 + \phi_{22}h_2 + \phi_{23}h_3 + \phi_{24}h_4$$

Multivariate Inputs

Building Artificial Neural Networks

Chapters 4, 5, & 6 of UDL

Reading for next week