Class 3a: Review of concepts in Probability and Statistics

Business Forecasting

Roadmap

Last set of classess

- Types of data
- How to describe data
 - With visualizations
 - With summary statistics

This set of classes

- How to evaluate estimators
- How to build confidence intervals
- How to test hypothesis

Motivating Example

- 1. You run a bunch of Airbnbs
- 2. Should you invest more in cleaning?
- 3. Can you get higher price if your cleanliness score exceeds 4.5?
- 4. Get a sample of listings and compare the price of
 - Those with cleanliness score below 4.5 (dirty)
 - o and above 4.5 (clean)

Motivating example

In statistical language:

- Population: Entire group we want to learn about, impossible to assess directly
 - All listings of Airbnb in Mexico City
 - Ideally we would like to know the entire distribution of prices
- Parameters: Number describing a characteristic of the population
 - \circ We want to know mean price of clean μ_c and dirty μ_d apartments
- Sample: Part of the population we have data for
 - We have a sample of 200 listings
- Goal: What we want to learn about the population?
 - Is $\mu_c > \mu_d$? If yes, by how much?
 - $\circ~$ But we do not know μ_c and μ_d
 - We will try to guess it using an estimator and a random IID sample

- **At random:** A sample is random if each member of the population (each listing) has an equal chance of being selected. This process of selecting is called *drawing* from a population or a sample.
- Random Variable: P_i :
 - \circ Random variable describing the observation i. Before drawing the sample, we don't know its value: it could be any price from the distribution.
- Random Sample is a collection of random variables $\{P_1, P_2, \dots, P_n\}$
- Observed Value: p_i :
 - \circ Once we observe a specific outcome for the random variable, it becomes a realized value, or p_i . It's no longer a random variable but a constant from our sample.

Before Drawing the Sample

Random Variables P_i (Before Drawing) P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 Selected Listings IDs

Realized Values p_i (After Drawing)

- Random Variable: P_i :
 - \circ Random variable describing the observation i. Before drawing the sample, we don't know its value: it could be any price from the distribution.
- Random Sample is a collection of random variables $\{P_1, P_2, \dots, P_n\}$
- Observed Value: p_i :
 - \circ Once we observe a specific outcome for the random variable, it becomes a realized value, or p_i . It's no longer a random variable but a constant from our sample.

After Drawing the Sample (Sample 1)

Random Variables P_i (Before Drawing) P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 Selected Listings IDs 8451 9015 8161 9085 8268 1622 1933 3947 Realized Values p_i (After Drawing) 120 150 800 200 1400 110 1800 900									
Realized Values p_i (After 120 150 800 200 1400 110 1800 900	- `	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
120 150 800 200 1400 110 1800 900	Selected Listings IDs	8451	9015	8161	9085	8268	1622	1933	3947
	• — •	120	150	800	200	1400	110	1800	900

- Random Variable: P_i :
 - \circ Random variable describing the observation i. Before drawing the sample, we don't know its value: it could be any price from the distribution.
- Random Sample is a collection of random variables $\{P_1, P_2, \dots, P_n\}$
- Observed Value: p_i :
 - \circ Once we observe a specific outcome for the random variable, it becomes a realized value, or p_i . It's no longer a random variable but a constant from our sample.

After Drawing the Sample (Sample 2)

Random Variables P_i (Before Drawing) P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 Selected Listings IDs 3145 3773 6721 3373 2102 5365 4453 3621 Realized Values p_i (After Drawing) 260 420 500 2120 800 1450 120 809									
Realized Values p_i (After 260 420 500 2120 800 1450 120 809	- `	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
760 470 500 7170 800 1450 170 809	Selected Listings IDs	3145	3773	6721	3373	2102	5365	4453	3621
	. – .	260	420	500	2120	800	1450	120	809

• Random Variable: P_i :

- \circ Random variable describing the observation i. Before drawing the sample, we don't know its value: it could be any price from the distribution.
- Random Sample is a collection of random variables $\{P_1, P_2, \dots, P_n\}$

• Observed Value: p_i :

 \circ Once we observe a specific outcome for the random variable, it becomes a realized value, or p_i . It's no longer a random variable but a constant from our sample.

After Drawing the Sample (Sample 3)

Random Variables P_i (Before Drawing)	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
Selected Listings IDs	4971	2684	6331	3999	1995	4582	1478	1633
Realized Values p_i (After Drawing)	150	980	3450	220	120	853	2353	1244

- IID (Independent and Identically Distributed):
 - \circ **Independent:** The selection of one unit (P_i) doesn't affect the selection of another (P_i)
 - \circ **Identically Distributed:** All units P_i come from the same distribution.

Estimators

Intuition

- o It's our method of guessing the parameter based on the data we have
- \circ A function of random variables in our sample $\hat{ heta} = f(P_1, P_2, \dots, P_n)$
- Given its random nature, we can analyze its statistical properties
- Examples we have seen:

$$\hat{\mu_c} = \bar{P} = f(P_1, P_2, \dots, P_n) = \frac{\sum_n P_i}{n}$$

$$s_c = g(P_1, P_2, \dots, P_n) = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (P_i - \bar{P})^2}$$

 \circ It cannot contain any unknown quantities (like σ or μ_p)

Point Estimate:

 $\circ~$ A single number computed from the realized sample data $\{p_1,p_2,\dots p_n\}$

$$ar{p}=f(p_1,p_2,\ldots,p_n)=rac{\sum_n p_i}{n}$$

No longer random

- Suppose we want to know average price of the apartment in Mexico City, but we don't have data for the whole population.
- We take a sample of 8 listings and calculate the average price.

Before Drawing the Sample

Random Variables P_i (Before Drawing) P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 Selected Listings IDs

Realized Values p_i (After Drawing)

Estimator:
$$\hat{\mu} = rac{P_1 + P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + P_8}{8}$$

- Suppose we want to know average price of the apartment in Mexico City, but we don't have data for the whole population.
- We take a sample of 8 listings and calculate the average price.

After Drawing the Sample (Sample 1)

Random Variables P_i (Before Drawing)	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
Selected Listings IDs	8451	9015	8161	9085	8268	1622	1933	3947
Realized Values p_i (After Drawing)	120	150	800	200	1400	110	1800	900

Estimator:
$$\hat{\mu} = rac{P_1 + P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + P_8}{8}$$

Point estimate:
$$\frac{p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{8} = 685$$

- Suppose we want to know average price of the apartment in Mexico City, but we don't have data for the whole population.
- We take a sample of 8 listings and calculate the average price.

After Drawing the Sample (Sample 2)

Random Variables P_i (Before Drawing)	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
Selected Listings IDs	3145	3773	6721	3373	2102	5365	4453	3621
Realized Values p_i (After Drawing)	260	420	500	2120	800	1450	120	809

Estimator:
$$\hat{\mu} = rac{P_1 + P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + P_8}{8}$$

Point estimate:
$$\frac{p_1+p_2+p_3+p_4+p_5+p_6+p_7+p_8}{8}=809.875$$

- Suppose we want to know average price of the apartment in Mexico City, but we don't have data for the whole population.
- We take a sample of 8 listings and calculate the average price.

After Drawing the Sample (Sample 3)

Random Variables P_i (Before Drawing)	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
Selected Listings IDs	4971	2684	6331	3999	1995	4582	1478	1633
Realized Values p_i (After Drawing)	150	980	3450	220	120	853	2353	1244

Estimator:
$$\hat{\mu} = rac{P_1 + P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + P_8}{8}$$

Point estimate:
$$\frac{p_1+p_2+p_3+p_4+p_5+p_6+p_7+p_8}{8}=1171.25$$

Estimators

- ullet The mean price in our sample is $ar{p}_c=$ 1245.43 MXN
- This is our point estimate
- Can can't really say how close this one number (point estimate) is to the true mean price in Mexico City without knowing the population
- But we can say how good our method of guessing (estimator) is by looking at it's sampling distribution

Estimators

• **Sampling distribution** is the distribution of the estimator calculated from multiple random samples drawn from the same population.

https://www.zoology.ubc.ca/~whitlock/Kingfisher/SamplingNormal.htm

Expectation of an estimator

• A good estimator should be unbiased:

$$E[\hat{ heta}] = heta$$

- Where heta is some parameter and $\hat{ heta}$ is its estimator
- This should be true for any value of θ
- The sampling distribution should be centered at the parameter's value
- Intuitively, on average the estimator should give us the parameter's value
- When I take a many, many, many samples of apartments and calculate mean price in each sample
 - The average of these means should be super close to the true mean price in Mexico City

$$Bias(\hat{ heta}) = E[\hat{ heta}] - heta$$

- Bias of an estimator is a difference between its expectation and the parameter
- Lets look at a couple of estimators and check if they are biased or not

Example 1: Estimator = 570

- ullet Consider some random variable X_i with unknown mean $E(X_i)=\mu$
- We want to estimate this mean
- The estimator: $\hat{ heta}_1 = 570$
- Expected Value: $E(\hat{ heta}_1) = 570$
- ullet Bias: $E(\hat{ heta}_1) \mu
 eq 0$ if $\mu
 eq 570$ (biased)

Example 2: Estimator = X_i

- ullet Consider some random variable X_i with unknown mean $E(X_i)=\mu$
- We want to estimate this mean
- The estimator: $\hat{ heta}_2 = X_i$
- ullet Expected Value: $E(\hat{ heta}_2) = E(X_i) = \mu$
- Bias: $E(\hat{ heta}_2) \mu = 0$ (unbiased)
- Is it a good estimator?

Example 3: Estimator = $(3X_1 + X_2)/5$

- ullet Consider some random variable X_i with unknown mean $E(X_i)=\mu$
- We want to estimate this mean
- The estimator: $\hat{ heta}_3 = rac{3X_1 + X_2}{5}$
- Expected Value: $E(\hat{ heta}_3)=rac{3}{5}E(X_1)+rac{1}{5}E(X_2)=rac{3}{5}\mu+rac{1}{5}\mu=rac{4}{5}\mu$
- Bias: $E(\hat{ heta}_3) \mu = \frac{4}{5}\mu \mu = -\frac{1}{5}\mu$ (biased)

Example 4: Estimator = $\frac{\sum X_i}{n}$

- ullet Consider some random variable X_i with unknown mean $E(X_i)=\mu$
- We want to estimate this mean
- ullet The estimator: $\hat{ heta}_4 = rac{\sum_n X_i}{n}$
- ullet Expected Value: $E(\hat{ heta}_4) = E(rac{\sum_n X_i}{n}) = rac{\sum_n E(X_i)}{n} = rac{\sum_n \mu}{n} = \mu$
- Bias: $E(\hat{ heta}_4) \mu = 0$ (unbiased)

Variance of the estimator

- Good estimator is unbiased
- But how do we choose among unbiased estimator?
 - \circ Suppose we sample IID from $X \sim \mathcal{N}(\mu = 10, \sigma = 10)$
 - o Imagine you don't know the mean is 10, and you try to estimate it:
 - \circ Estimator 1: $\hat{\mu}_1 = (3X_1 + X_2)/4$
 - \circ Estimator 2: $\hat{\mu}_2 = (X_1 + X_2 + X_3 + X_4)/4$
 - An estimator is more **efficient** if it has a smaller variance

Variance of the estimator

Variance of an estimator is defined as:

$$Var(\hat{\theta}) = E[(\hat{\theta} - E[\hat{\theta}])^2]$$

- We want the estimator to have low variance!
- Estimator with the lower variance is more efficient
- In the example above

$$var(\hat{\mu}_1) = var(rac{3X_1 + X_2}{4}) > var(rac{X_1 + X_2 + X_3 + X_4}{4}) = var(\hat{\mu}_2)$$

Relative efficiency of the two estimators is the ratio of their variances

$$Eff_{\hat{\mu}_1,\hat{\mu}_2} = rac{var(rac{3X_1+X_2}{4})}{var(rac{X_1+X_2+X_3+X_4}{4})} = rac{rac{10}{16}}{rac{4}{16}} = rac{5}{2}$$

Variance of estimators

Example 1: Estimator = 570

• $Var(\hat{\theta}_1) = E[(\hat{\theta}_1 - E[\hat{\theta}_1])^2] = E[(570 - E[570])^2] = 0$

Example 2: Estimator = X_i

• $Var(\hat{\theta}_2) = E[(X_i - \mu)^2] = \sigma^2$

Example 4: Estimator = $\frac{\sum X_i}{n}$

 $ullet \ Var(\hat{ heta}_4) = E\left[\left(rac{\sum X_i}{n} - \mu
ight)^2
ight] = rac{\sigma^2}{n}$

Example 3: Estimator = $\frac{3X_1+X_2}{4}$

• $Var(\hat{ heta}_4) = E\left[((3X_1 + X_2)/4 - \mu)^2\right] = \frac{10\sigma^2}{16}$

Side note

- In all previous cases of estimators we assumed an independent sample
- Suppose that X_1 and X_2 are **not independent**
- Example: daily sales of two products in the same store
- What is $E(X_1 + X_2)$
- What is $var(X_1 + X_2)$?
- What about $var(X_1 X_2)$?

Biased Estimator =
$$s_b^2 = rac{\sum_{i=1}^n (x_i - ar{x})^2}{n}$$

- ullet Consider the estimator: $\hat{ heta}_6=s_b^2$
- We are trying to estimate σ^2

$$E[\hat{ heta}_6] = E[s_b^2] = E[rac{\sum_{i=1}^n (x_i - ar{x})^2}{n}] = rac{(n-1)\sigma^2}{n}$$

So:

$$Bias(\hat{ heta}_6) = E[\hat{ heta}_6] - \sigma^2 = -rac{\sigma^2}{n}$$

- We are underestimating the variance
- The sample variance estimator (divided by $\frac{1}{n-1}$) is unbiased:

$$E[\hat{ heta}_7] = E[s^2] = E[rac{\sum_{i=1}^n (x_i - ar{x})^2}{n-1}] = rac{(n-1)\sigma^2}{n-1} = \sigma^2$$

Mean Squared Error

Mean Squared Error (MSE) is a summary measure of how good an estimator is:

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$$

- The lower MSE, the better the estimator
- It summarizes both the bias and the variance:

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}]$$

$$= E[(\hat{\theta} - E(\hat{\theta}) + E(\hat{\theta}) - \theta)^{2}]$$

$$= E[(\hat{\theta} - E(\hat{\theta}))^{2} + 2(\hat{\theta} - E(\hat{\theta}))(E(\hat{\theta}) - \theta) + (E(\hat{\theta}) - \theta)^{2}]$$

$$= E[(\hat{\theta} - E(\hat{\theta}))^{2}] + E[2(\hat{\theta} - E(\hat{\theta}))(E(\hat{\theta}) - \theta)] + E[(E(\hat{\theta}) - \theta)^{2}]$$

$$= E[(\hat{\theta} - E(\hat{\theta}))^{2}] + 2(E[\hat{\theta} - E(\hat{\theta})])(E(\hat{\theta}) - \theta) + E[(E(\hat{\theta}) - \theta)^{2}]$$

$$= var(\hat{\theta}) + Bias(\hat{\theta})^{2}$$

• If estimator is unbiased, then

$$MSE(\hat{\theta}) = var(\hat{\theta})$$

Trading Bias for Variance

- Suppose you want to estimate customer's income to know who to target.
- Red line shows the true value
- Which of the estimators would you prefer?

Mean Squared Error of sample mean (optional)

- $\frac{3X_1+X_2}{4}$ is worse than $\frac{X_1+X_2}{2}$?
- ullet Both estimators have the form of $\hat{ heta} = \sum_n c_i X_i$ with n=2
 - \circ They have different weights c_i or in vector form $\mathbf{c}=\{c_1,c_2,\ldots c_n\}$, with $\sum_i c_i=1$
 - $\circ~$ Sample mean is the best because for any n and ${f c}$ such that $\sum_i c_i = 1$:

$$argmin_{\mathbf{c}}E[(\sum_{n}c_{i}X_{i}-\mu)^{2}]=\{rac{1}{n},rac{1}{n},\ldotsrac{1}{n}\}$$

Mean Squared Error of sample mean (optional)

And hence

$$min_{f c}E[(\sum_n c_i X_i - \mu)^2] = E[(rac{\sum_n X_i}{n} - \mu)^2]$$

- ullet That is, for any estimator of μ of the form $\hat{ heta} = \sum_n c_i X_i$, sample mean has the lowest MSE!
 - \circ Having different c_i than $rac{1}{n}$ would increase the MSE

Sampling Distribution

- We know how to determine the mean and the variance of the estimator
- Can we say anything about the distribution of the estimator?
- In case of sample mean, yes!
- That's what **Central Limit Theorem** is about, the most exciting theorem in statistcs!

- Suppose X_1, X_2, \ldots, X_n are **i.i.d** variables drawn **at random** from a distribution with mean μ and standard deviation σ
- Let $S_n = \sum_n X_n$.
 - $\circ~$ Note that: $E[S_n] = n \mu$ and $st.\, dev.\, (S_n) = \sqrt{n} \sigma$
- Let $ar{X}_n = rac{\sum_n X_n}{n}$
 - $\circ~$ Note that: $E[ar{X}_n] = \mu$ and $st.\, dev.\, (ar{X}_n) = rac{\sigma}{\sqrt{n}}$
- Let $Z_n=rac{ar{X}_n-\mu}{rac{\sigma}{\sqrt{n}}}$
 - \circ Note that: $E[Z_n]=0$ and $st.\, dev.\, (Z_n)=1$
- Central Limit Theorem says that for large n:

$$S_n \sim \mathcal{N}(n\mu, \underbrace{\sqrt{n}\sigma}) \qquad ext{and} \qquad ar{X}_n \sim \mathcal{N}(\mu, rac{\sigma}{\sqrt{n}}) \qquad ext{and} \qquad ar{Z}_n \sim \mathcal{N}(0, 1)$$

• In large samples, sample mean is normally distributed with mean μ and st. dev. $\frac{\sigma}{\sqrt{n}}$

- ullet The original distribution of X_i does not matter (but outliers make convergence longer)
- Larger **n**, tighter distribution around the mean
- ullet Smaller σ , tighter distribution around the mean

Source: [https://seeing-theory.brown.edu/probability-distributions/index.html#section3)

What if it's a discrete variable?

ullet Let $X_i \sim \operatorname{Bernoulli}(p=0.5).$ Here is the distribution of $ar{X}_n$:

• What is the standard deviation?

$$ullet$$
 $\sigma_{ar{X}}=\sqrt{var(ar{X}_n)}=rac{\sigma_X}{\sqrt{n}}=rac{\sqrt{p(1-p)}}{\sqrt{n}}=rac{0.5}{\sqrt{n}}$

What happens if some assumptions are not respected?

- Random draws means that each member of the population has equal chance of being selected
- Keep in mind that some values occur more often in the population than others
- More members with this value higher chance of this value being sampled

Example

- Imagine you are evaluating a new skincare product to determine how people like it (on scale 1-5)
- However, you can only access online reviews
- The mean rating you calculated is 2.5
- Is it low because people don't like or because of other reason?

Suppose that this is the true distribution:

- But people who post online are more likely to be unhappy
- Suppose you are twice more likely to post if your rating is 1 or 2
- Sample is not at random from the population of customers
- Sampling distribution of the mean would look like this:

It's not centered at the correct value, no matter n ! 91 / 110

Example 2 What happens if some assumptions are not respected?

• IID means one draw does not change likelihood of other draws

Example

- Suppose you want to learn what's an average speed of internet in CDMX
- You choose at random the first apartment to measure the speed
- For the rest of the observations, you stay in the same building and measure at neighbors apartments

Suppose that this is the true distribution of speed:

- Speed across neighbors in the same building is likely correlated
- Observations are not independent
- Sampling distribution of the mean would look like this:

Variance is wider than implied by CLT!

Normal Distribution

Consider the event that a customer who opened the DiDi app will call the car. Suppose X and Y represent the events that a customer calls a car in Cancun (X) and Puerto Vallarta (Y) respectively.

- X and Y are Bernoulli variables with probabilities 0.4 and 0.6 respectively
- Suppose you have a random (iid) sample of 100 customers opening the app from Cancun and 80 from Puerto Vallarta.
- What is the probability that more than 100 people will call the car?

Reminders

If
$$X \sim \mathcal{N}(\mu, \sigma)$$
 and c is a constant, then $X + c \sim \mathcal{N}(\mu + c, \sigma)$

If
$$X \sim \mathcal{N}(\mu, \sigma)$$
 and c is a constant, then $cX \sim \mathcal{N}(c\mu, |c|\sigma)$

$$\text{If } X \sim \mathcal{N}(\mu_1, \sigma_1) \text{ and } Y \sim \mathcal{N}(\mu_2, \sigma_2), \text{ then } X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$$

What if I don't know σ

- Suppose that sales in stores are normally distributed with mean 200 and with unknown variance
- I want to take a sample of 80 stores and I want to know the probability that the average sales in a sample will be greater than 220

$$P(\frac{\sum_{i=1}^{80} X_i}{80} > 220)$$

Ok, I know that according to central limit theorem

$$rac{\sum_{i=1}^{80} X_i}{80} \sim N(200, rac{\sigma}{\sqrt{80}})$$

- But if I don't know σ how can I use it?
- ullet We can use the sample standard deviation instead to estimate σ
- Since it is just an estimate, it adds uncertainty
- But if you have big sample, then you are really good at estimating standard deviation and the error is small
- So the distribution will still converge to normal, but you will need a bit more observations (say 50 rather than 40)

99 / 110

Standard deviation

- Great, sample means have normal distribution in large samples
- Can we say something about the standard deviation?
- If X_i is normal, then yes! Standard deviation will have **chi-square** distribution

From Normal to Chi-Square

- We start with the standard random normal distribution N(0, 1).
- The transformation $X=Z^2$ gives rise to the Chi-Square distribution with 1 degree of freedom $\chi^2(1)$.
- The expectation of $\chi^2(1)$ is $E[X]=E[Z^2]=Var(Z)+E[Z]^2=Var(Z)=1$
- The variance of $\chi^2(1)$ is var(X)=2

Visualizing the Connection

- ullet The shaded areas represent probability that $X=Z^2>1$
- ullet Where $X \sim \chi^2(1)$ and $Z \sim N(0,1)$
- Shaded areas are the same in both graphs

Chi-Square and the Sum of Random Normals

- More generally, sum of n iid squared standard normal variables is distributed as Chi-Square with n degrees of freedom
- $\sum_n Z^2 \sim \chi^2(n)$
- The expectation of $\chi^2(n)$ is $E[X(n)] = E[\sum_n Z_i^2] = \sum_n Var(Z_i) = n$
- The variance of $\chi^2(n)$ is var(X) = 2n

- Why the shapes converges to normal with large n?
- Because of CLT it's sum of random variables

Exercises:

- Review Exercises:
 - PDF 3: 1,2,3,4,6,7(b),9,10,11,12,13,14,15,16
- Homeworks
 - Lista 00.1: 6,7,8,9,10,11,12,13,14,15
 - Lista 00.2: 1,2,3,4,5,6,7,8,9,10,11,12,16,17,18,19,