Flow based routing

2018 2.14

Network Environment

Topology and traffic

Ten flows with some repeated destinations.

Focus on specific flow to choose action.

Experiment Design

Cut down action space for each agent.

```
flow profile, neighbor links status,
In one time epoch:
                                                reachable end-to-end throughputs
  inject flow one:
     agents get local state and take actions.
     update network state
                                                      Next hop for this flow;
  inject flow two:
                                                            ε-greedy
     agents get new local state and take actions.
     update network state
  All flows determined, rewards obtained.
                                                  Average of reachable
  Train each agent for each flow.
                                                 end-to-end throughputs
                AC model;
             Experience replay
```

Experiment Results

The global optimal is 600

Flow based RL has 19.05% improvement compared to Random.

Destination based RL has 13.31% improvement compared to Random.

Confirm solver for global optimal

Objective and constrains:

Objective Function $\max(\sum v^f, f \in F)$

$$\sum_{j:(i,j)\in E} x_{ij}^f - \sum_{i:(j,i)\in E} x_{ji}^f = \begin{cases} 0, & for all \ i \in V - s^f - t^f \\ 1 & for \ i = t^f \\ -1 & for \ i = s^f \end{cases}$$

$$x_{ij}^f \in \{0,1\}, for \forall f \in F, (i,j) \in E$$

$$0 \le \sum_{f \in F} (\mathbf{v}^f x_{ij}^f) \le u_{ij}$$

$$v^f \ge \min\{\frac{u_{ij}}{\sum_{f \in F} x_{ij}^f}\}_{f \ across \ ij}, \qquad \text{for } \forall f \in F$$

Example for test: (link capacity 100)

Global optimal = 33+33+33+66+100 = 265Flow based.

Dual Problem to solve (ref on Stephen Boyd, Stanford University)

Setting:

topology with n flows, m links. Link capacity c. flow j with rate f_i . Routing matrix R (fixed)

$$R_{ij} = \left\{ egin{array}{ll} 1 & ext{flow } j ext{ passes over link } i \ 0 & ext{otherwise} \end{array}
ight.$$

Original problem

minmize
$$-U(f) = -\sum_{j=1}^{n} U_j(f_j)$$

s.t. $Rf \le c$

write into Lagrange: $L(f,\lambda) = -U(f) + \lambda^T (Rf - c)$ If objective function is separable: $L(f,\lambda) = \sum_{j=1}^n \left(-U_j(f_j) + (r_j^T \lambda) f_j \right)$

Original problem with constrains is changed into solving Lagrange function:

maximize
$$g(\lambda) = -\lambda^T c + \sum_{j=1}^n \inf_{f_j} (-U_j(f_j) + (r_j^T \lambda)f_j)$$

 $\lambda > 0$