ECE113: DSP

Homework 2 Solutions

Problem 1: Problem 2.24 in R1 (i.e., Proakis 4th Edition)

Solution:

If

$$y_1(n) = ny_1(n-1) + x_1(n)$$
 and
 $y_2(n) = ny_2(n-1) + x_2(n)$ then
 $x(n) = ax_1(n) + bx_2(n)$

produces the output

$$y(n) = ny(n-1) + x(n)$$
, where $y(n) = ay_1(n) + by_2(n)$.

Hence, the system is linear. If the input is x(n-1), we have

$$y(n-1) = (n-1)y(n-2) + x(n-1)$$
. But $y(n-1) = ny(n-2) + x(n-1)$.

Hence, the system is time variant. If x(n) = u(n), then $|x(n)| \le 1$. But for this bounded input, the output is

$$y(0) = 1,$$
 $y(1) = 1 + 1 = 2,$ $y(2) = 2x^2 + 1 = 5,...$

which is unbounded. Hence, the system is unstable.

Problem 2: Problem 2.32 in R1

Solution:

(a)
$$L_1 = N_1 + M_1$$
 and $L_2 = N_2 + M_2$

(b) Partial overlap from left:

low
$$N_1 + M_1$$
 high $N_1 + M_2 - 1$

Full overlap: low $N_1 + M_2$ high $N_2 + M_1$

Partial overlap from right:

low
$$N_2 + M_1 + 1$$
 high $N_2 + M_2$

(c)

$$x(n) = \left\{1, 1, 1, 1, 1, 1, 1\right\}$$

$$h(n) = \left\{2, 2, 2, 2\right\}$$

$$N_1 = -2,$$

$$N_2 = 4,$$

$$M_1 = -1,$$

$$M_2 = 2,$$

Partial overlap from left: n = -3 n = -1 $L_1 = -3$

Full overlap: n = 0 n = 3

Partial overlap from right: n = 4 n = 6 $L_2 = 6$

Problem 3: Problem 2.35 in R1

Solution:

(a)
$$h(n) = h_1(n) * [h_2(n) - h_3(n) * h_4(n)]$$

(b)
$$h_3(n) * h_4(n) = (n-1)u(n-2)$$

$$h_2(n) - h_3(n) * h_4(n) = 2u(n) - \delta(n)$$

$$h_1(n) = \frac{1}{2}\delta(n) + \frac{1}{4}\delta(n-1) + \frac{1}{2}\delta(n-2)$$
Hence $h(n) = \left[\frac{1}{2}\delta(n) + \frac{1}{4}\delta(n-1) + 2\delta(n-2)\right] * [2u(n) - \delta(n)]$

$$= \frac{1}{2}\delta(n) + \frac{5}{4}\delta(n-1) + 2\delta(n-2) + \frac{5}{2}u(n-3)$$
(c)
$$x(n) = \left\{1, 0, 0, 3, 0, -4\right\}$$

 $y(n) = \left\{ \frac{1}{2}, \frac{5}{4}, \frac{25}{4}, \frac{13}{2}, 5, 2, 0, 0, \ldots \right\}$

(Looks like y(1)=4 is missing from the above answer)

Problem 4: Problem 2.57 in R1

Solution:

$$y(n) - 4y(n-1) + 4y(n-2) = x(n) - x(n-1)$$

The characteristic equation is
$$\lambda^2 - 4\lambda + 4 = 0$$
$$\lambda = 2, 2. \text{ Hence,}$$
$$y_h(n) = c_1 2^n + c_2 n 2^n$$

The particular solution is

$$y_p(n) = k(-1)^n u(n).$$

Substituting this solution into the difference equation, we obtain

$$k(-1)^n u(n) - 4k(-1)^{n-1} u(n-1) + 4k(-1)^{n-2} u(n-2) = (-1)^n u(n) - (-1)^{n-1} u(n-1)$$

For $n=2, k(1+4+4)=2 \Rightarrow k=\frac{2}{9}$. The total solution is

$$y(n) = \left[c_1 2^n + c_2 n 2^n + \frac{2}{9} (-1)^n\right] u(n)$$

From the initial condtions, we obtain y(0) = 1, y(1) = 2. Then,

$$c_1 + \frac{2}{9} = 1$$

$$\Rightarrow c_1 = \frac{7}{9},$$

$$2c_1 + 2c_2 - \frac{2}{9} = 2$$

$$\Rightarrow c_2 = \frac{1}{3},$$

Problem 5: Problem 5.5 in R1

Solution:

(a)

$$y(n) = x(n) + x(n-10)$$

 $Y(w) = (1 + e^{-j10w})X(w)$
 $H(w) = (2cos5w)e^{-j5w}$

Refer to fig 5.5-1.

(b)

Figure 5.5-1:

$$H(\frac{\pi}{10}) = 0$$

$$H(\frac{\pi}{3}) = (2\cos\frac{5\pi}{3})e^{-j\frac{5\pi}{3}}$$

$$y(n) = (6\cos\frac{5\pi}{3})\sin(\frac{\pi}{3} + \frac{\pi}{10} - \frac{5\pi}{3})$$

$$= (6\cos\frac{5\pi}{3})\sin(\frac{\pi}{3} - \frac{47\pi}{30})$$

(c)
$$\begin{array}{rcl} H(0) & = & 2 \\ H(\frac{4\pi}{10}) & = & 2 \\ y(n) & = & 20 + 10\cos\frac{2\pi n}{5} + \frac{\pi}{2} \end{array}$$

Problem 6: Problem 5.24 in R1

Solution:

$$y(n) = \frac{1}{2}y(n-1) + x(n) + \frac{1}{2}x(n-1)$$

$$Y(z) = \frac{1}{2}z^{-1}Y(z) + X(z) + \frac{1}{2}z^{-1}X(z)$$

$$H(z) = \frac{Y(z)}{X(z)}$$

$$= \frac{1 + \frac{1}{2}z^{-1}}{1 - \frac{1}{2}z^{-1}}$$

(a)

$$H(z) = \frac{2}{1 - \frac{1}{2}z^{-1}} - 1$$

$$h(n) = 2(\frac{1}{2})^n u(n) - \delta(n)$$

(b)

$$H(w) = \sum_{n=0}^{\infty} h(n)e^{-jwn}$$

$$= \frac{2}{1 - \frac{1}{2}e^{-jw}} - 1$$

$$= \frac{1 + \frac{1}{2}e^{-jw}}{1 - \frac{1}{2}e^{-jw}}$$

$$= H(z)|_{z=e^{jw}}$$

(c)

$$\begin{array}{rcl} H(\frac{\pi}{2}) & = & \frac{1+\frac{1}{2}e^{-j\frac{\pi}{2}}}{1-\frac{1}{2}e^{-j\frac{\pi}{2}}} \\ & = & \frac{1-j\frac{1}{2}}{1+j\frac{1}{2}} \\ & = & 1e^{-j2tan^{-1}\frac{1}{2}} \\ \text{Hence, } y(n) & = & cos(\frac{\pi}{2}n+\frac{\pi}{4}-2tan^{-1}\frac{1}{2}) \end{array}$$

Problem 7: Problem 9.5 in R1

Solution:

$$H(z) = \frac{6 + \frac{9}{2}z^{1} - \frac{5}{3}z^{-2}}{(1 + \frac{1}{3}z^{-1})(1 - \frac{1}{2}z^{-1})}$$
$$= \frac{6 + \frac{9}{2}z^{1} - \frac{5}{3}z^{-2}}{1 - \frac{1}{6}z^{1} - \frac{1}{6}z^{-2}}$$

Refer to fig 9.5-1

Figure 9.5-1:

Problem 8: Problem 9.9 in R1 (Part b)

Solution:

$$H(z) = \frac{0.7(1 - 0.36z^{-2})}{1 + 0.1z^{-1} - 0.72z^{-2}}$$

$$= \frac{0.7(1 - 0.6z^{-1})(1 + 0.6z^{-1})}{(1 + 0.9z^{-1})(1 - 0.8z^{-1})}$$

$$= 0.35 - \frac{0.1647}{1 + 0.9z^{-1}} - \frac{0.1853}{1 - 0.8z^{-1}}$$

Refer to fig 9.9-2

Direct form I:

Direct form II:

Cascade: Parallel:

Figure 9.9-2:

Problem 9:

Problem 9. Consider a discrete-time sinewave sequence defined by $x(n) = \sin(\pi n/4)$ which was obtained by sampling a CW tone $x(t) = \sin(2\pi F_0 t)$ with the frequency F_0 Hz. If the sampling rate was $F_s = 160$ Hz, what are the possible positive frequency values for F_0 , measured in Hz, that would result in the sequence x(n)?

Solution:

$$x(n) = \sin(\frac{n\pi}{4}) = \sin(2\pi F_0 n T_s) = \sin(\frac{2\pi F_0 n}{F_s})$$

$$\implies \frac{n\pi}{4} = \frac{2\pi F_0 n}{F_s}$$

$$F_0 = \frac{F_s}{n} \pi / 42\pi n = \frac{F_s}{8} = \frac{160}{8} = 20 \,\text{Hz}$$

But we have:

$$x(n) = \sin(\frac{n\pi}{4}) = \sin(2\pi F_0 n T_s) = \sin(2\pi (F_0 + kF_s) n T_s)$$

And therefore:

$$F_0 = 20 + k \times 160 \,\mathrm{Hz}$$
, for any integer k

MATLAB:

P2.19 A linear and time-invariant system is described by the difference equation

```
y(n) - 0.5y(n-1) + 0.25y(n-2) = x(n) + 2x(n-1) + x(n-3)
```

- Using the filter function, compute and plot the impulse response of the system over 0 < n < 100.
- 2. Determine the stability of the system from this impulse response.
- 3. If the input to this system is $x(n) = [5 + 3\cos(0.2\pi n) + 4\sin(0.6\pi n)] u(n)$, determine the response y(n) over $0 \le n \le 200$ using the filter function.

Solution:

(a) Impulse response using the Using the filter function.

```
% P0219a: System response using the filter function
clc; close all;

b = [1 2 0 1]; a = [1 -0.5 0.25]; [delta,n] = impseq(0,0,100);
h = filter(b,a,delta);

Hf_1 = figure; set(Hf_1,'NumberTitle','off','Name','P0219a');
Hs = stem(n,h,'filled'); set(Hs,'markersize',2);
axis([min(n)-5,max(n)+5,min(h)-0.5,max(h)+0.5]);
xlabel('n','FontSize',LFS); ylabel('h(n)','FontSize',LFS);
title('Impulse response','FontSize',TFS);
```

There are various ways to represent a discrete impulse in MATLAB. Below is a general function that is called in the above script, and you may find it useful:

The plots of the impulse response h(n) is shown in Figure 2.34.

Figure 2.34: Problem P2.19.1 impulse response plot

- (b) Clearly from Figure 2.34 the system is stable.
- (c) Response y(n) when the input is $x(n) = [5 + 3\cos(0.2\pi n) + 4\sin(0.6\pi n)]u(n)$:

xlabel('n','FontSize',LFS); ylabel('y(n)','FontSize',LFS);

title('Output response', 'FontSize', TFS);

```
\% PO219c: Output response of a system using the filter function. clc; close all;
```

```
b = [1 2 0 1]; a = [1 -0.5 0.25]; n = 0:200;
x = 5*ones(size(n))+3*cos(0.2*pi*n)+4*sin(0.6*pi*n); y = filter(b,a,x);
Hf_1 = figure; set(Hf_1,'NumberTitle','off','Name','P0219c');
Hs = stem(n,y,'filled'); set(Hs,'markersize',2); axis([-10,210,0,50]);
```

The plots of the response y(n) is shown in Figure 2.35.

Figure 2.35: Problem P2.19.3 response plot

P3.16 For a linear, shift-invariant system described by the difference equation

$$y(n) = \sum_{m=0}^{M} b_m x (n-m) - \sum_{\ell=1}^{N} a_{\ell} y (n-\ell)$$

the frequency-response function is given by

$$H(e^{j\omega}) = \frac{\sum_{m=0}^{M} b_m e^{-j\omega m}}{1 + \sum_{\ell=1}^{N} a_{\ell} e^{-j\omega \ell}}$$

Write a MATLAB function freqresp to implement this relation. The format of this function should be

```
function [H] = freqresp(b,a,w)
% Frequency response function from difference equation
% [H] = freqresp(b,a,w)
% H = frequency response array evaluated at w frequencies
% b = numerator coefficient array
% a = denominator coefficient array (a(1)=1)
% w = frequency location array
```

Solution:

MATLAB function freqresp.