$-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi} + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \partial_{\beta}h_{\alpha\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\gamma} \partial_{\gamma}h_{\alpha\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\gamma} \partial_{\gamma}$ $\frac{1}{4} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\beta} h^{\chi}_{\chi} + \frac{1}{4} a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\chi}_{\chi} - \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} + \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \frac{1}{2} a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \frac{11}{2} a_1 \partial^{\alpha} \Gamma^{\chi\delta}_{\delta} \partial_{\beta} \Gamma_{\chi\alpha}^{\beta} + \frac{1}{2} a_1 \partial^{\alpha} \Gamma_{\chi\alpha}^{\beta} \partial_{\beta} \Gamma^{\chi\delta}_{\delta} 19 a_1 \partial^{\alpha} \Gamma^{\chi \delta}_{\chi} \partial_{\beta} \Gamma_{\delta \alpha}^{\beta} + \frac{1}{4} a_0 h^{\alpha \beta} \partial_{\beta} \partial_{\alpha} h^{\chi}_{\chi} - \frac{1}{8} a_0 \partial_{\beta} h^{\chi}_{\chi} \partial^{\beta} h^{\alpha}_{\alpha} +$ $\frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\chi} h_{\beta}{}^{\chi} + \frac{1}{4} a_0 \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\chi} h_{\beta}{}^{\chi} + \frac{37}{4} a_1 \partial_{\beta} \partial_{\alpha} h^{\delta}_{\delta} \partial_{\chi} \Gamma^{\alpha\beta\chi} +$ $\frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\chi} \partial_{\alpha} h^{\delta}_{\delta} - \frac{1}{2} a_0 h^{\alpha\beta} \partial_{\chi} \partial_{\beta} h^{\chi}_{\alpha} + \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial_{\beta} h^{\beta\chi} +$ $\frac{1}{4} a_0 h^{\alpha\beta} \partial_{\chi} \partial^{\chi} h_{\alpha\beta} - \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial^{\chi} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{1}{8} a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} +$ $\frac{1}{2} a_0 h_{\beta \chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{\chi}{}^{\delta} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{\delta \chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} +$ $\frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta}^{\ \delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\delta} \partial^$ $\frac{3}{4} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{ \delta} \partial^{\chi} \Gamma^{\alpha}_{ \alpha}^{ \beta} - \frac{11}{2} a_1 \partial_{\beta} \Gamma^{ \delta}_{ \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{ \alpha} + \frac{19}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{ \chi \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{ \alpha} +$ $\frac{11}{2} a_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha \alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha \alpha}^{\alpha \beta} - \frac{37}{4} a_1 \partial_{\chi} \partial_{\beta} h_{\delta}^{\delta} \partial^{\chi} \Gamma_{\alpha \alpha}^{\alpha \beta} +$ $a_1 \, \partial_\alpha \Gamma_\chi^{\ \delta}_{\ \delta} \, \partial^\chi \Gamma^{\alpha\beta}_{\ \beta} - a_1 \, \partial_\chi \Gamma_\alpha^{\ \delta}_{\ \alpha} \, \partial^\chi \Gamma^{\alpha\beta}_{\ \beta} - \frac{9}{2} \, a_1 \, \partial_\chi \partial_\beta h^\delta_{\ \delta} \, \partial^\chi \partial_\alpha h^{\alpha\beta} +$ $\frac{17}{8} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{ \delta} \partial^{\chi} \partial^{\beta} h^{\alpha}_{ \alpha} - \frac{1}{2} a_1 \partial_{\chi} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \beta}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial_{\delta} \Gamma_{$ $\frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha}^{} + \frac{19}{2} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\beta\alpha}^{} + a_1 \partial^{\chi} \Gamma_{\beta}^{\alpha} \partial_{\delta} \Gamma_{\alpha}^{\alpha} +$ $\frac{1}{2} a_1 \partial^\chi \Gamma^\alpha_{\ \alpha}{}^\beta \partial_\delta \Gamma_{\chi\beta}{}^\delta + \frac{1}{2} a_1 \partial^\chi \Gamma^{\alpha\beta}_{\ \alpha} \partial_\delta \Gamma_{\chi\beta}{}^\delta - \frac{1}{2} a_1 \partial_\beta \Gamma^{\alpha\beta\chi} \partial_\delta \Gamma_{\chi\ \alpha}{}^\delta +$ $\frac{1}{2} a_1 \partial^{\chi} \Gamma_{\beta\alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta\alpha} + a_1 \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi \beta}^{\ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\chi \delta} +$ $a_1 \, \partial_\beta \Gamma^\alpha_{\ \alpha}{}^\beta \, \partial_\delta \Gamma^{\chi\delta}_{\ \chi} - \tfrac{1}{2} \, a_1 \, \partial_\beta \Gamma^{\alpha\beta}_{\ \alpha} \, \partial_\delta \Gamma^{\chi\delta}_{\ \chi} - \tfrac{37}{4} \, a_1 \, \partial_\chi \Gamma^{\alpha\beta\chi} \, \partial_\delta \partial_\alpha h_\beta^{\ \delta} \frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\chi}^{\delta} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\delta} + \frac{3}{8} a_1 \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\delta} +$ $\frac{37}{8} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} \frac{3}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{13}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} - \frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\chi} h_{\alpha}^{\delta} - \frac{1}{4} a_1 \partial^{\alpha} h^{\alpha\beta} \partial_{\alpha} h^{\alpha} \partial_{\alpha} h^{\alpha\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\alpha} h^{\alpha$ $\frac{43}{8} a_1 \partial_\alpha \partial^\chi h^{\alpha\beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{3}{4} a_1 \partial^\chi \Gamma^\alpha_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{37}{4} a_1 \partial^\chi \Gamma^{\alpha\beta}_{\ \alpha} \partial_\delta \partial_\chi h_\beta^{\ \delta} +$ $\frac{77}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} - \frac{29}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} + a_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta}$ $a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\quad \alpha} \partial_{\delta} \partial_{\chi} h^{\chi\delta} - \frac{1}{2} a_1 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + a_1 \partial_{\beta} \partial^{\beta} h^{\alpha}_{\quad \alpha} \partial_{\delta} \partial_{\chi} h^{\chi\delta} +$ $\frac{37}{4} a_1 \partial_\chi \Gamma^{\alpha\beta\chi} \partial_\delta \partial^\delta h_{\alpha\beta} + \frac{17}{8} a_1 \partial_\chi \partial^\chi h^{\alpha\beta} \partial_\delta \partial^\delta h_{\alpha\beta} + \frac{3}{4} a_1 \partial_\beta \Gamma^{\alpha\beta\chi} \partial_\delta \partial^\delta h_{\alpha\chi} +$ $\frac{1}{4} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial^{\chi} \partial^{\chi}$ $\frac{73}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} + \frac{17}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} +$ $a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} - \frac{1}{2} a_1 \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} + \frac{1}{2} a_1 \partial_{\alpha} \Gamma_{\beta\chi\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} +$ $a_1 \, \partial_\alpha \Gamma_{\beta \delta \chi} \, \partial^\delta \Gamma^{\alpha \beta \chi} + a_1 \, \partial_\alpha \Gamma_{\chi \beta \delta} \, \partial^\delta \Gamma^{\alpha \beta \chi} + \tfrac{1}{2} \, a_1 \, \partial_\alpha \Gamma_{\chi \delta \beta} \, \partial^\delta \Gamma^{\alpha \beta \chi} +$ $a_1 \, \partial_\alpha \Gamma_{\delta\beta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} + a_1 \, \partial_\alpha \Gamma_{\delta\chi\beta} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_1 \, \partial_\beta \Gamma_{\alpha\chi\delta} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_1 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_2 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, a_3 \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, \partial_\beta \Gamma_{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \, \partial_\beta \Gamma^{\alpha\delta\chi} \, \partial^\delta \Gamma^{\alpha$ $\frac{1}{2} a_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} a_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \gamma \delta} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \gamma \delta} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \gamma \delta} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \gamma \delta} - \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \gamma \delta} + \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \gamma \delta} + \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \gamma \delta} + \frac{1}{2} a_1 \partial_{\gamma} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \gamma \delta} + \frac{1}{2} a_1 \partial_{\gamma} \Gamma^{\alpha \gamma \delta} \partial^{\delta} \Gamma^{\alpha \gamma \delta} + \frac{1}{2} a_1 \partial_{\gamma$ $\frac{1}{2} a_1 \partial_\chi \Gamma_{\beta\alpha\delta} \partial^\delta \Gamma^{\alpha\beta\chi} + a_1 \partial_\chi \Gamma_{\beta\delta\alpha} \partial^\delta \Gamma^{\alpha\beta\chi} + \frac{3}{2} a_1 \partial_\chi \partial_\alpha h_{\beta\delta} \partial^\delta \Gamma^{\alpha\beta\chi} -$

${\mathcal T}_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	0	0	0
$\Delta_{1^-}^{\#6}{}_{\alpha}$	0	0	0	0	$50 \sqrt{\frac{2}{3}} a_1 k^2$ $a_0^2 - 33 a_0 a_1 k^2$	$-\frac{a_0 - 28a_1 k^2}{6a_0^2 - 198a_0 a_1 k^2}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{7(a_0+2a_1k^2)}{3\sqrt{2}a_0(a_0-33a_1k^2)}$	$\frac{5}{3(a_0-33a_1k^2)}$	0
$\Delta_{1^{+}\alpha}^{\#5}$	0	0	0	0	$\frac{10a_1k^2(-11a_0+118a_1k^2)}{\sqrt{3}a_0^2(a_0-33a_1k^2)}$	$-\frac{a_0^2 - 118 a_0 a_1 k^2 + 2560 a_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{\frac{5}{2}} (a_0-82 a_1 k^2)}{6 a_0 (a_0-33 a_1 k^2)}$	$\frac{17a_0^2 - 236a_0a_1k^2 + 1280a_1^2k^4}{6a_0^2(a_0 - 33a_1k^2)}$	$-\frac{7(a_0+2a_1k^2)}{3\sqrt{2}a_0(a_0-33a_1k^2)}$	0
$\Delta_{1^{-}\alpha}^{\#4}$	0	0	0	0	$-\frac{5\sqrt{\frac{10}{3}}a_1k^2}{a_0^2-33a_0a_1k^2}$	$\frac{\sqrt{5} (5a_0 - 164a_1 k^2)}{12 a_0 (a_0 - 33a_1 k^2)}$	$\frac{1}{12a_0 - 396a_1 k^2}$	$\frac{\sqrt{\frac{5}{2}} (a_0-82 a_1 k^2)}{6 a_0 (a_0-33 a_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	0
$\Delta_{1}^{\#3}{}_{\alpha}$	0	0	0	0	$\frac{5\sqrt{\frac{2}{3}}a_1k^2(7a_0-236a_1k^2)}{a_0^2(a_0-33a_1k^2)}$	$\frac{-19a_0^2 + 472a_0a_1k^2 + 5120a_1^2k^4}{12a_0^2(a_0 - 33a_1k^2)}$	$\frac{\sqrt{5} (5 a_0 - 164 a_1 k^2)}{12 a_0 (a_0 - 33 a_1 k^2)}$	$-\frac{a_0^2 - 118 a_0 a_1 k^2 + 2560 a_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 a_1 k^2)}$	$-\frac{a_0 - 28a_1 k^2}{6a_0^2 - 198a_0 a_1 k^2}$	0
$\Delta_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2\sqrt{2}}{a_0}$	$\frac{2(a_0^2 - 30 a_0 a_1 k^2 + 401 a_1^2 k^4)}{a_0^2 (a_0 - 33 a_1 k^2)}$	$\frac{5\sqrt{\frac{2}{3}}a_1k^2(7a_0-236a_1k^2)}{a_0^2(a_0-33a_1k^2)}$	$-\frac{5\sqrt{\frac{10}{3}}a_1k^2}{a_0^{2-33}a_0a_1k^2}$	$\frac{10a_1 k^2 (-11a_0 + 118a_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33a_1 k^2)}$	$50 \sqrt{\frac{2}{3}} a_1 k^2$ $a_0^2 - 33 a_0 a_1 k^2$	0
$\Delta_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0
$\Delta_{1}^{\#3}_{+\alpha\beta}$	0	$\frac{40\sqrt{2}a_1k^2}{a_0^2-29a_0a_1k^2}$	$\frac{4}{a_0-29a_1k^2}$	0	0	0	0	0	0	0
$\Delta_{1}^{\#2}_{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2(a_0^2-14a_0a_1k^2-35a_1^2k^4)}{a_0^2(a_0-29a_1k^2)}$	$\frac{40 \sqrt{2} a_1 k^2}{a_0^2 - 29 a_0 a_1 k^2}$	0	0	0	0	0	0	0
$\Delta_{1}^{\#1}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
	$\Delta_1^{\#1} + \alpha^\beta$	$\Delta_{1}^{\#2} + \alpha \beta$	$\Delta_1^{\#3} + ^{lphaeta}$	$\Delta_{1}^{\#1} \uparrow^{\alpha}$	$\Delta_1^{\#2} +^{\alpha}$	$\Delta_{1}^{\#3} +^{lpha}$	$\Delta_{1}^{\#4} +^{\alpha}$	$\Delta_{1}^{\#5} +^{lpha}$	$\Delta_{1}^{\#6} {\dagger}^{\alpha}$	$\mathcal{T}_{1}^{\#1} \dagger^{\alpha}$

0	Γ ₃ -1 †'	$\alpha\beta\chi$ $\frac{1}{2}$		-1 αβχ -7 a ₁	<i>k</i> ²)	$\Delta_3^{#1}$	† ^{αβχ}	$\Delta_3^{\#1} - \frac{2}{a_0 + 7}$				
>	$rac{1}{lpha}$										_	
	$h_{1^-}^{\#1} \alpha$	0	0	0	0	0	0 (²) 0	0	0	0	
D	$\Gamma_{1}^{\#6}$	0	0	0	$-\frac{5a_1k^2}{\sqrt{3}}$	0	$\begin{vmatrix} \frac{1}{6} (-a_0 + 20 a_1 k^2) \end{vmatrix}$	$-\frac{1}{6} \sqrt{5} (a_0 - 5 a_1 k^2)$	$\frac{a_0 + 40a_1k^2}{6\sqrt{2}}$	$\frac{5}{12} (a_0 - 17 a_1 k^2)$	0	
O	$\Gamma_{1}^{\#5}$	0	0	0	$5\sqrt{\frac{3}{2}}a_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16a_1k^2) \left -\frac{1}{6} \sqrt{5} (a_0 - 5a_1k^2) \right $	<u>0</u> €	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	0	
0	$\Gamma_{1}^{\#4}{}_{\alpha}$	0	0	0	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	0	$\frac{1}{6}\sqrt{5}(a_0-8a_1k^2)$	$\frac{1}{3}(a_0 + 7a_1k^2)$	$-\frac{1}{6} \sqrt{\frac{5}{2}} \left(a_0 + 16 a_1 k^2 \right)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	0	
0	$\Gamma_{1}^{\#3}$	0	0	0	$\frac{5}{2}\sqrt{3}a_1k^2$	0	- <u>a0</u>	$\frac{1}{6}\sqrt{5}(a_0-8a_1k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	0	
	$\Gamma_{1}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	
))	$\lceil r_1^{\#1} _{\alpha}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 a_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2}\sqrt{3}a_1k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	$5\sqrt{\frac{3}{2}}a_1k^2$	$-\frac{5a_1k^2}{\sqrt{3}}$	0	
D	$\Gamma_{1}^{\#3}$	$5a_1k^2$	0	$\frac{1}{4} (a_0 - 29 a_1 k^2)$	0	0	0	0	0	0	0	
o	$\Gamma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0	
D	$\Gamma^{\#1}_{1}$	k^2)	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	0	0	0	0	0	

$\Gamma_{2}^{\#2}$	0	0	0	0	0	$\frac{1}{4} (a_0 - 5 a_1 k^2)$	-
$\Gamma_{2^{^{-}}\alpha\beta\chi}^{\#1}$	0	0	0	0	$\frac{1}{4} (a_0 - a_1 k^2)$	0	
$h_{2}^{\#1}$	$-\frac{11ia_1k^3}{4\sqrt{2}}$	$\frac{5ia_1k^3}{\sqrt{3}}$	$-\frac{5ia_1k^3}{\sqrt{6}}$	$-\frac{1}{8}k^{2}(a_{0}-11a_{1}k^{2})$	0	0	
$\Gamma_{2}^{\#3}$	$\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{1}{12} (3 a_0 + a_1 k^2)$	$\frac{5ia_1k^3}{\sqrt{6}}$	0	0	
$\Gamma_{2}^{\#2}$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\frac{1}{6} (-3 a_0 + a_1 k^2)$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$-\frac{5ia_1k^3}{\sqrt{3}}$	0	0	
$\Gamma_{2}^{\#1}_{\alpha\beta}$	$\Gamma_{2^{+}}^{#1} +^{\alpha\beta} \frac{1}{4} (a_0 + 11 a_1 k^2)$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\frac{5a_1k^2}{\sqrt{3}}$	$\frac{11 i a_1 k^3}{4 \sqrt{2}}$	0	0	
	$\lceil \Gamma_{2}^{\#1} + \alpha^{\beta} \rceil$	$\Gamma_2^{#2} + \alpha \beta$	$\Gamma_{2}^{#3} + \alpha^{\beta}$	$h_2^{#1} + \alpha \beta$	$\Gamma_{2}^{#1} +^{\alpha\beta\chi}$	$\Gamma_{2}^{#2} + \alpha \beta \chi$	

$\Delta_{2}^{\#2}$	0	0	0	0	0	4 a0-5a
$\Delta_{2^{-}}^{\#1}\alpha_{\beta\chi} \Delta_{2^{-}}^{\#2}$	0	0	0	0	$\frac{4}{a_0 - a_1 k^2}$	0
${\mathcal T}_{2}^{\#1}_{\alpha\beta}$	$-\frac{44 \sqrt[3]{\sqrt{2}} \sqrt{2}}{a0^2}$	$-\frac{80ia_1k}{\sqrt{3}a_0^2}$	$-\frac{80 i \sqrt{\frac{2}{3}} a_1 k}{a_0^2}$	$-\frac{8(a_0+11a_1k^2)}{a_0^2k^2}$	0	0
$\Delta_{2}^{\#3}_{+}\alpha\beta$	$-\frac{80a_1k^2}{\sqrt{3}a_0^2}$	$-\frac{2\sqrt{2}a_1k^2}{3a_0^2}$	$\frac{4(3a_0-a_1k^2)}{3a_0^2}$	$\frac{80 i \sqrt{\frac{2}{3}} a_1 k}{a_0^2}$	0	0
$\Delta_2^{\#_2^2}$	$-\frac{40\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{2(3a_0+a_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2}a_1k^2}{3a_0^2}$	$\frac{80ia_1 k}{\sqrt{3} a_0^2}$	0	0
$\Delta_{2}^{\#1}{}_{\alpha\beta}$	$\frac{4(a_0-11a_1k^2)}{a_0^2}$	$-\frac{40\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{80a_1k^2}{\sqrt{3}a_0^2}$	$\frac{44\sqrt{2}a_1k}{a_0^2}$	0	0
	$\Delta_{2}^{#1} + \alpha \beta$	$\Delta_{2}^{#2} + \alpha \beta$	$\Delta_{2}^{#3} + \alpha \beta$	$\mathcal{T}_{2}^{\#1} \dagger^{\alpha\beta}$	$\lambda_{2}^{#1} + \alpha \beta \chi$	$\int_{2^{-}}^{\#2} + \alpha \beta \chi$

 $-\frac{25 \, i \, a_1 \, k^3}{2 \, \sqrt{2}}$

 $-\frac{10\,i\,a_1\,k^3}{\sqrt{3}}$

 $5 i \sqrt{\frac{2}{3}} a_1 k^3$

 $\frac{1}{4}k^2(a_0+25a_1k^2)$

0

0

 $0 \quad \frac{1}{2} \left(-a_0 + a_1 \, k^2 \right)$

 $-\frac{10a_1k^2}{\sqrt{3}}$

 $-\frac{a_0}{2\sqrt{2}}$

 $-\frac{3 a_0 + 46 a_1 k^2}{6 \sqrt{2}}$

 $(3a_0 + 23a_1k^2)$

 $-5\,i\,\sqrt{\tfrac{2}{3}}\,a_1\,k^3$

0

0

 $\frac{23a_1k^2}{3}$

8 2 1 1 4 #

 $2 \Delta_{0+}^{\#4} + 3 \Delta_{0+}^{\#2} == 0$

$\Delta_{0^{-1}}^{\#_1}$	0	0	0	0	0	0	$-\frac{2}{a_0 - a_1 k^2}$
7 "±	0	0	0	0	0	0	0
$\int_{0}^{\pi^{+}}$	$-\frac{50i\sqrt{2}a_1k}{a_0^2}$	$\frac{20i\sqrt{3}a_1k}{a_0^2}$	$-\frac{20ia_1k}{\sqrt{3}a_0^2}$	$-\frac{20i\sqrt{\frac{2}{3}}a_1k}{a_0^2}$	$\frac{4(a_0-25a_1k^2)}{a_0^2k^2}$	0	0
$\Delta_0^{"\mp}$	$-\frac{20a_1k^2}{\sqrt{3}a_0^2}$	$-\frac{a_0-23a_1k^2}{2\sqrt{2}a_0^2}$	$-\frac{3a_0 + 23a_1k^2}{6\sqrt{2}a_0^2}$	$\frac{3a_0 - 23a_1 k^2}{6a_0^2}$	$\frac{20i\sqrt{\frac{2}{3}}a_1k}{a_0^2}$	0	0
$\Delta_0^{"}$	$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$\frac{5a_0 + 23a_1 k^2}{4a_0^2}$	$-\frac{9a_0+23a_1k^2}{12a_0^2}$	$\frac{3a_0 + 23a_1 k^2}{6 \sqrt{2} a_0^2}$	$\frac{20ia_1k}{\sqrt{3}a_0^2}$	0	0
$\Delta_0^{"}$ ‡	$\frac{10\sqrt{6}a_1k^2}{a_0^2}$	$-\frac{3(a_0+23a_1k^2)}{4a_0^2}$	$\frac{5a_0 + 23a_1 k^2}{4a_0^2}$	$-\frac{a_0 - 23 a_1 k^2}{2 \sqrt{2} a_0^2}$	$\frac{20i\sqrt{3}a_1k}{a_0^2}$	0	0
$\Delta_0^{"\dot{\mp}}$	$-\frac{2(a_0+25a_1k^2)}{a_0^2}$	$\frac{10\sqrt{6}a_1k^2}{a_0^2}$	$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{20a_1k^2}{\sqrt{3}a_0^2}$	$\frac{50 i \sqrt{2} a_1 k}{a_0^2}$	0	0

 $\Delta_{0}^{\#1}$ $\Delta_{0}^{\#2}$

 $\Delta_{0}^{#3}$

 $\Delta_{0}^{#4}$

 $\mathcal{T}_{0}^{\#1} + \\ \mathcal{T}_{0}^{\#2} + \\ \Delta_{0}^{\#1} + \Big|$

$\frac{1}{2} a_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} a_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$	$\Delta_1^{#2}$	$-\frac{2}{a_{\parallel}}$
$\frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + a_1 \partial_{\chi} \Gamma_{\beta \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} a_1 \partial_{\chi} \partial_{\alpha} h_{\beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$		
$a_1 \partial_\delta \Gamma_{\alpha\beta\chi} \partial^\delta \Gamma^{\alpha\beta\chi} - a_1 \partial_\delta \Gamma_{\alpha\chi\beta} \partial^\delta \Gamma^{\alpha\beta\chi} - \tfrac{1}{2} a_1 \partial_\delta \Gamma_{\beta\alpha\chi} \partial^\delta \Gamma^{\alpha\beta\chi} - \tfrac{1}{2} a_1 \partial_\delta \Gamma_{\beta\chi\alpha} \partial^\delta \Gamma^{\alpha\beta\chi} - \tfrac{1}{2} a_2 \partial_\delta \Gamma_{\beta\chi\alpha} \partial^\delta \Gamma^{\alpha\beta\chi} - \tfrac{1}{2} a_3 \partial_\delta \Gamma_{\alpha\chi\beta} \partial^\delta \Gamma^{\alpha\gamma} - \tfrac{1}{2} \Delta^2 \partial^\delta \partial^\delta$	~	
$\frac{1}{2} a_1 \partial_{\delta} \Gamma_{\chi\beta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \frac{3}{2} a_1 \partial_{\delta} \partial_{\beta} h_{\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{3}{2} a_1 \partial_{\delta} \partial_{\chi} h_{\alpha\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} -$	$\Delta_1^{\#1}$	0
$\frac{11}{2} a_1 \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\alpha \chi}_{\ \chi} - \frac{1}{2} a_1 \partial^{\alpha} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma_{\beta \ \chi}^{\ \chi} + \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\chi \alpha}_{\ \chi} -$		$+^{\alpha\beta}$
$\frac{3}{4} a_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} a_1 \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} - \frac{3}{4} a_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta}$		$\Delta_1^{\#1}$
** MassiveAnalysisOfSector		

0 (3 -		
$-\frac{\sqrt{2}}{6a_0}\frac{1}{(a_0-33a_1k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	0	ν-1-1
$6\sqrt{2}a_0^2(a_0-33a_1k^2)$	$-\frac{a_0 - 28a_1 k^2}{6a_0^2 - 198a_0 a_1 k^2}$	0	Γ#4 1- α
$\sqrt{3} a_0^2 (a_0-33a_1 k^2)$	$\frac{50 \sqrt{\frac{2}{3}} a_1 k^2}{a_0^2 - 33 a_0 a_1 k^2}$	0	Γ#2 1- α Γ#3
0	0	0	$\lceil \frac{\pi}{1} \rceil$
0	0	0	Γ#3 1+α8
0	0	0	ς#2 Γ#2
0	0	0	# L-

0	0	0	0	
Δ_{1} - T	$\Delta_1^{\#5} +^{lpha}$	$\Delta_{1}^{\#6} +^{\alpha}$	$\mathcal{T}_1^{\#1} \dagger^{\alpha}$	

$\Gamma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 a_1 k^2 \right)$	0p
$\Gamma_{1}^{\#3}$	5α ₁ κ ²	0	$\frac{1}{4} (a_0 - 29 a_1 k^2)$	0	
$\Gamma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	
$\Gamma_{1}^{\#1}_{\alpha\beta}$	$^{+}_{+}$ $^{+}$ $^{\alpha\beta}$ $^{-}$ $^{$	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	
	$_{+}^{1}+^{\alpha eta }$	2 †αβ	$^{\frac{3}{4}} + ^{\alpha\beta}$	$_{1}^{#1}$ $+^{\alpha}$, c#

$1^{\top}\alpha \beta$	$) \left -\frac{a_0}{2\sqrt{2}} \right $	0	0	0
$1^{+}\alpha\beta$	$\Gamma_1^{\#1} + \alpha \beta \left \frac{1}{4} (-a_0 - 15 a_1 k^2) \right $	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0
•	$\Gamma_1^{\#1} + \alpha \beta$	$\Gamma_1^{#2} + \alpha \beta$	$\Gamma_{1}^{#3} + \alpha \beta$	$\Gamma_{1}^{\#1} +^{\alpha}$

		1 4							
7 \ 7	0	0	0	0	0	0	0	0	0
. 4	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	0	0	0	0	0
	$_{1}^{+#2}$ $+^{\alpha\beta}$	$^{-#3}_{1}$ $^{+}$	$\Gamma_{1}^{\#1} +^{\alpha}$	$\Gamma_1^{\#^2} +^{\alpha}$	$\Gamma_1^{\#3} +^{\alpha}$	$\Gamma_{1}^{\#4} +^{\alpha}$	$\Gamma_{1}^{\#5} +^{lpha}$	$\Gamma_{1}^{\#6} +^{lpha}$	$h_1^{\#1} + \alpha$

αρ . τ	$\frac{1}{4}$ (- a_0 - 15 a	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	
	$\Gamma_1^{#1} + \alpha \beta$	$\Gamma_1^{\#2} + \alpha \beta$	$\Gamma_1^{\#3} + ^{\alpha\beta}$	$\Gamma_1^{\#1} +^{lpha}$	$\Gamma_1^{\#2} +^{\alpha}$	Ċ

,	γ3	- ,-	
$h_0^{#1}$ †	$\frac{25 i a_1 k^3}{2 \sqrt{2}}$	0	
$h_0^{\#2}$ †	0	0	
$\Gamma_0^{\#1}$ †	0	0	

 $10 \sqrt{\frac{2}{3}} a_1 k^2$

 $\Gamma_{0}^{#2}$ †

Γ₀^{#3} †

 $-\frac{10 a_1 k^2}{\sqrt{3}}$ $-\frac{a_0}{2\sqrt{2}}$ $\frac{3a_0 + 46a_1 k^2}{6\sqrt{2}}$ Γ₀^{#4} † $\frac{10\,i\,a_1\,k^3}{\sqrt{3}}$ 0

 $\Gamma_{0+}^{\#1} + \left| \frac{1}{2} \left(-a_0 + 25 \, a_1 \, k^2 \right) \right| \quad 0 \quad \left| 10 \, \sqrt{\frac{2}{3}} \, a_1 \, k^2 \right|$

<u>a₀</u> 2

** MassiveAnalysisOfSector...