Continuously Tracking Core Items in Data Streams with Probabilistic Decays

Junzhou Zhao Pinghui Wang Jing Tao Shuo Zhang John C.S. Lui Xi'an Jiaotong University The Chinese University of Hong Kong

Expensive to Process Big Data Streams

- Data streams are ubiquitous:
 - email stream, tweets stream, news stream, etc
 - geo-location stream generated by taxis, IoT devices, LBSNs, etc
 - user consuming record stream from Amazon, Taobao, etc
- Applications:
 - real-time trending topic detection
 - network security monitoring
 - online collaborative filtering
- However, the high speed and large volume cause troubles.

Two Ways for Handling Big Data Streams

scale up computation power

- reduce data complexity
 - cheap and green
 - rely on clever algorithms

Two Ways for Handling Big Data Streams

scale up computation power

this work

- reduce data complexity
 - cheap and green
 - rely on clever algorithms

Need for Reducing Data Complexity

- too much redundant and noisy data
 - E.g., reading just a few tweets (or news articles) is enough to know the majority of the topics in the stream.
- Core Items: informative or representative items in a data stream.
- Core Items Tracking (CIT): a streaming algorithm that can continuously track core items in a data stream in real-time.

The Right to be Forgotten

• We want the CIT algorithm to be able to gradually forget historical data in the stream.

CIT over insertion-only streams [KDD'14]:

CIT over sliding-window streams [WWW'17]:

The Right to be Forgotten

• We want the CIT algorithm to be able to gradually forget historical data in the stream.

• CIT over insertion-only streams [KDD'14]:

• CIT over sliding-window streams [WWW'17]:

Outline

- Motivation
- Problem formulation
- Algorithms
- Experiments
- Conclusion

Measuring Informativeness of a Set of Items

- Utility Function: $f: 2^V \mapsto \mathbb{R}_{\geq 0}$ where f(S) could measure the informativeness [JMLR'12, SIGIR'15], representativeness [KDD'14, CIKM'16, ICDE'18], diversity [WSDM'09], or coverage [PODS'14, KDD'15] of set $S \subseteq V$.
- f(S) commonly satisfies the monotone submodular property, i.e., $f(S \cup \{e\}) f(S) \ge f(T \cup \{e\}) f(T)$ for all $S \subseteq T \subseteq V$ and $e \in V$.
 - captures the **dimension return** property [Nemhauser et al. 1978]

Probabilistic-Decaying Stream (PDS) Model

- At time t, we let an item e arrived at time $t_e \le t$ participate in the analysis with a probability $p(e, t) = h_e(t t_e)$.
- $h_e: \mathbb{Z}_{\geq 0} \mapsto [0,1]$ is an item-specific decaying function.
- $h_e(age)$ decreases as age increases, e.g., $h_e(age) = p_e^{age}$, $p_e \in (0,1)$.

The Core Items Tracking (CIT) Problem

- Given a monotone submodular utility function f, a PDS with item-specific decaying function h_e , and a budget k > 0
- Want to find a subset $S_t^* \subseteq V$ at any query time t, s.t.

$$S_t^* = rg \max_{S \subseteq V \land |S| \le k} \mathbb{E}_{h_e} [f(S) | \mathcal{D}_t]$$

where $\mathcal{D}_t \triangleq \{e : t_e \leq t\}$ denotes the items arrived before t.

Outline

- Motivation
- Problem formulation
- Algorithms
- Experiments
- Conclusion

Expensive to Exactly Calculate $\mathbb{E}[f(S)|\mathcal{D}_t]$

• To calculate $\mathbb{E}[f(S)|\mathcal{D}_t]$, we have to consider the participation possibility of each item in S, e.g.,

$$\mathbb{E}\left[f(\{a,b\})|\mathcal{D}_t\right] = \underbrace{p(a,t)p(b,t)f(\{a,b\})}_{\text{both a and b participate in the analysis}} \\ + \underbrace{p(a,t)(1-p(b,t))f(\{a\})}_{\text{only a participates in the analysis}} + \underbrace{(1-p(a,t))p(b,t)f(\{b\})}_{\text{only b participates in the analysis}}.$$

• Exactly calculating $\mathbb{E}\left[f(S)|\mathcal{D}_t\right]$ requires $O(2^{|S|})$ oracle calls.

Monte-Carlo Approximation

• Generate n samples of the PDS, and estimate $\mathbb{E}[f(S)|\mathcal{D}_t]$.

By Monte-Carlo approximation, we have

$$F(S) \triangleq rac{1}{n} \sum_{i=1}^{n} f(S \cap \mathcal{D}_{t}^{(i)}) \stackrel{a.s.}{\longrightarrow} \mathbb{E}\left[f(S)|\mathcal{D}_{t}\right], \quad n \to \infty.$$

- The number of oracle calls reduces from $O(2^{|S|})$ to O(n).
- F(S) is still monotone and submodular.

Overview

- PNDCIT can efficiently solve the CIT problem over a special kind of probabilistic non-decaying case.
- PDCIT uses PNDCIT as a building block to solve the CIT problem over general PDS.
- PDCIT+ is designed to improve the efficiency of PDCIT.

algorithm	#oracle calls	memory	approx. ratio
PNDCIT	$O(n\epsilon^{-1}\log k)$	$O(nk\epsilon^{-1}\log k)$	$1/2 - \epsilon$
PDCIT	$O(Ln\epsilon^{-1}\log k)$	$O(Lnk\epsilon^{-1}\log k)$	$1/2 - \epsilon$
PDCIT+	$O(n\epsilon^{-2}\log^2 k)$	$O(nk\epsilon^{-2}\log^2 k)$	$1/4 - \epsilon$

- Probabilistic non-decaying case: $p(e,t) \equiv p_e$
- The PDS can be converted to an insertion-only stream.

- $\{(e_1, p_{e_1}), (e_2, p_{e_2}), \ldots\} \Rightarrow \{I(e_1), I(e_2), \ldots\}$ where $I(e) \in \{0, 1\}^n$
- submodular optimization over insertion-only streams has been extensively studied [SDM'08, DAM'12, SPAA'13, KDD'14].

- At time t, denote those non-zero sample vectors by \mathcal{B}_t .
- Ideally, if we can feed \mathcal{B}_t to a PNDCIT instance, we will get a quality guaranteed solution at time t.
- How to process \mathcal{B}_t in a streaming fashion?

$$egin{aligned} t_e \ t_e + 1 \ \end{array} egin{aligned} I_0(e) &= [1,1,1,1]^T \ I_1(e) &= [1,1,0,1]^T \end{aligned}$$

- At time t, denote those non-zero sample vectors by \mathcal{B}_t .
- Ideally, if we can feed \mathcal{B}_t to a PNDCIT instance, we will get a quality guaranteed solution at time t.
- How to process \mathcal{B}_t in a streaming fashion?

$$\begin{array}{c|c} t_e & l_0(e) = [1, 1, 1, 1]^T \\ t_e + 1 & l_1(e) = [1, 1, 0, 1]^T \\ \vdots & \vdots \\ t_e + \infty & l_\infty(e) = \mathbf{0} \end{array}$$

- At time t, denote those non-zero sample vectors by \mathcal{B}_t .
- Ideally, if we can feed \mathcal{B}_t to a PNDCIT instance, we will get a quality guaranteed solution at time t.
- How to process \mathcal{B}_t in a streaming fashion?

- At time t, denote those non-zero sample vectors by \mathcal{B}_t .
- Ideally, if we can feed \mathcal{B}_t to a PNDCIT instance, we will get a quality guaranteed solution at time t.
- How to process \mathcal{B}_t in a streaming fashion?

- Assume $I_l(e) = \mathbf{0}$ for $l \ge L, \forall e$. Thus an item has at most L non-zero sample vectors $\{I_l(e)\}_{0 \le l < L}$.
- PDCIT runs *L* PNDCIT instances, and processes each arrived item's sample vectors in parallel.
- At next time step, because each $I_l(e)$ evolves to $I_{l+1}(e)$, which has been processed by PNDCIT instances on the right side, thus we shift these L PNDCIT instances one unit to the left.

- Assume $I_l(e) = \mathbf{0}$ for $l \ge L, \forall e$. Thus an item has at most L non-zero sample vectors $\{I_l(e)\}_{0 \le l < L}$.
- PDCIT runs *L* PNDCIT instances, and processes each arrived item's sample vectors in parallel.
- At next time step, because each $I_l(e)$ evolves to $I_{l+1}(e)$, which has been processed by PNDCIT instances on the right side, thus we shift these L PNDCIT instances one unit to the left.

- Assume $I_l(e) = \mathbf{0}$ for $l \ge L, \forall e$. Thus an item has at most L non-zero sample vectors $\{I_l(e)\}_{0 \le l < L}$.
- PDCIT runs *L* PNDCIT instances, and processes each arrived item's sample vectors in parallel.
- At next time step, because each $I_l(e)$ evolves to $I_{l+1}(e)$, which has been processed by PNDCIT instances on the right side, thus we shift these L PNDCIT instances one unit to the left.

- Assume $I_l(e) = \mathbf{0}$ for $l \ge L, \forall e$. Thus an item has at most L non-zero sample vectors $\{I_l(e)\}_{0 \le l < L}$.
- PDCIT runs *L* PNDCIT instances, and processes each arrived item's sample vectors in parallel.
- At next time step, because each $I_l(e)$ evolves to $I_{l+1}(e)$, which has been processed by PNDCIT instances on the right side, thus we shift these L PNDCIT instances one unit to the left.

- Idea: selectively maintain just a few PNDCIT instances, that can well approximate the rest
- Similar to using a histogram to approximate a curve

- Idea: selectively maintain just a few PNDCIT instances, that can well approximate the rest
- Similar to using a histogram to approximate a curve

- Idea: selectively maintain just a few PNDCIT instances, that can well approximate the rest
- Similar to using a histogram to approximate a curve

```
1 \  \, \stackrel{\downarrow}{\Diamond} \  \, \cdots \  \, L = \infty
```

- Idea: selectively maintain just a few PNDCIT instances, that can well approximate the rest
- Similar to using a histogram to approximate a curve

 PDCIT needs to maintain L PNDCIT instances. What if L is extremely large?

$$1 \ \, \stackrel{\downarrow}{\Diamond} \ \, \cdots \ \, L = \infty$$

- Idea: selectively maintain just a few PNDCIT instances, that can well approximate the rest
- Similar to using a histogram to approximate a curve

checkout our paper for more details

Outline

- Motivation
- Problem formulation
- Algorithms ✓
- Experiments
- Conclusion

Data

- DBLP author stream: an item is a set of conferences that the author attended before
- MemeTracker article stream: an item is a set of memes that the article contains
- math.StackExchange question stream: an item is a set of tags that the question contains
- StackOverflow question stream: an item is a set of tags that the question contains

data stream	item	length	time period
DBLP	author	371,690	1936 - 2018
MemeTracker	article	714, 072	1/2009 (one month)
math.StackExchange	question	955, 284	7/2010 - 6/2018
StackOverflow	question	2, 904, 450	1/2015 - 3/2016

Settings

- Goal: maintain k most representative items that jointly have the maximum coverage, i.e., $f(S) = |\bigcup_{e \in S} e|$.
- Decaying Function: $h_e(x) = p^x, p \in (0, 1)$.
- Baselines:
 - GREEDY will serve as an upper bound
 - Unbiased Reservoir Sampling
 - Biased Reservoir Sampling

PDCIT vs PDCIT+

- How close is their solution quality?
- How significant can PDCIT+ reduce the number of oracle calls?

left: DBLP, right: MemeTracker, $\epsilon=0.2, k=10, n=20, L=100$ achieves similar solution quality, reduces more than a half of oracle calls

Solution Quality

• Comparing solution quality of different methods (higher is better)

left: DBLP, right: MemeTracker, p = 0.999, k = 10, n = 20

Scalability

 Comparing the number of oracle calls of different methods (lower is better)

left: DBLP, right: MemeTracker, p = 0.999, k = 10, n = 20

Outline

- Motivation
- Problem formulation
- Algorithms
- Experiments ✓
- Conclusion

Conclusion

- The optimization problem behind the CIT problem is to solve the streaming submodular optimization problem over probabilistic-decaying streams.
- We designed two streaming algorithms, namely PDCIT and PDCIT+, to address this CIT problem. They use PNDCIT as a building block.
- These techniques are verified on several public available data streams. The results demonstrate the effectiveness of these methods.

Thanks for listening!