

EE2211 Pre-Tutorial 4

Dr Feng LIN feng_lin@nus.edu.sg

Agenda

- Recap
- Self-learning
- Tutorial 4

Recap

- Operations on Vectors and Matrices
 - Dot-product, matrix inverse
- System of Linear Equations
 - Matrix-vector notation, linear dependency, invertible
 - Even-, over-, under-determined linear systems
- Set and Functions
 - Inner product function
 - Linear and affine functions

Recap on Notations, Vectors, Matrices

Scalar	Numerical value	15, -3.5

Variable Take scalar values x or a

Vector An ordered list of scalar values **x** or **a**

Attributes of a vector
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Matrix A rectangular array of numbers arranged in rows and columns
$$\mathbf{X} = \begin{bmatrix} 2 & 4 \\ 21 & -6 \end{bmatrix}$$

Capital Sigma
$$\sum_{i=1}^{m} x_i = x_1 + x_2 + ... + x_{m-1} + x_m$$

Capital Pi
$$\prod_{i=1}^{m} x_i = x_1 \cdot x_2 \cdot \dots \cdot x_{m-1} \cdot x_m$$

Operations on Vectors and Matrices

Dot Product or Inner Product of Vectors:

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}T \mathbf{y}$$

$$= [x_1 \ x_2] \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$= x_1 \ y_1 + x_2 y_2$$

Geometric definition:

$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$$

Where θ is the angle between x and y , and $||x|| = \sqrt{x \cdot x}$ is the Euclidean length of vector x

Operations on Vectors and Matrices

Matrix-Matrix Product

$$\mathbf{XW} = \begin{bmatrix} x_{1,1} & \dots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{m,1} & \dots & x_{m,d} \end{bmatrix} \begin{bmatrix} w_{1,1} & \dots & w_{1,h} \\ \vdots & \ddots & \vdots \\ w_{d,1} & \dots & w_{d,h} \end{bmatrix}$$

$$= \begin{bmatrix} (x_{1,1}w_{1,1} + \dots + x_{1,d}w_{d,1}) & \dots & (x_{1,1}w_{1,h} + \dots + x_{1,d}w_{d,h}) \\ \vdots & \ddots & \vdots \\ (x_{m,1}w_{1,1} + \dots + x_{m,d}w_{d,1}) & \dots & (x_{m,1}w_{1,h} + \dots + x_{m,d}w_{d,h}) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{i=1}^{d} x_{1,i} w_{i,1} & \dots & \sum_{i=1}^{d} x_{1,i} w_{i,h} \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{d} x_{m,i} w_{i,1} & \dots & \sum_{i=1}^{d} x_{m,i} w_{i,h} \end{bmatrix}$$

If **X** is $m \times d$ and **W** is $d \times h$, then the outcome is a $m \times h$ matrix

Operations on Vectors and Matrices

Matrix inversion computation

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

- det(A) is the determinant of A
- adj(A) is the adjugate or adjoint of A, $adj(A) = C^T$
- C is the cofactor matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{23} & a_{23} \end{bmatrix}$$
 Minor of \mathbf{a}_{12} is $\mathbf{M}_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$

• The (i,j) entry of the **cofactor matrix** C is the minor of (i,j) element times a sign factor

Cofactor $C_{ij} = (-1)^{i} M_{ij}$

• The determinant of A can also be defined by minors as

$$\det(\mathbf{A}) = \sum_{i=1}^{k} = a_{ij} C_{ij} = (-1)^{i+j} a_{ij} M_{ij}$$

Python Functions

import numpy as np

Declare a matrix X	np.array([[x_1, x_2], [x_3, x_4]])	
Inverse of X	np.linalg.inv(X)	
Transpose of X	X.transpose() or X.T	
Determinant of X	np.linalg.det(X)	
Dot product (1D Arrays)	X.dot(y) or X@y	
Matrix multiplication (2D Matrices)	X.dot(y) or X@y (@ operator is introduced in Python 3.5)	

Systems of Linear Equations

Even-, over-, under-determined linear systems

$$X \in \mathbb{R}^m \times d$$
 e.g. Samples of features w : Weightings y : Target values

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & \dots & x_{m,d} \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}.$$

X is Square	Even-determined	m = d	One unique solution in general	$\widehat{w} = X^{-1}y$
X is Tall	Over-determined	m > d	No exact solution in general; An approximated solution	$\widehat{w} = (X^T X)^{-1} X^T y$ Left-inverse
X is Wide	Under-determined	m < d	Infinite number of solutions in general; Unique constrained solution	$\widehat{w} = X^T (XX^T)^{-1} y$ Right-inverse

Systems of Linear Equations

^{*} This particular case will not be covered in this course.

Functions

The inner production function

Suppose a is a d-vector. We can define a scalar valued function f of d-vectors, given by

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = a_1 x_1 + a_2 x_2 + \dots + a_d x_d$$
 (1)

for any *d*-vector **x**

The inner product of its d-vector argument x with some (fixed) d-vector a

• We can also think of f as forming a **weighted sum** of the elements of x; the elements of a give the weights

Functions

Linear Functions

Superposition and linearity

• The inner product function $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ defined in equation (1) (slide 9) satisfies the property

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \mathbf{a}^{T}(\alpha \mathbf{x} + \beta \mathbf{y})$$

$$= \mathbf{a}^{T}(\alpha \mathbf{x}) + \mathbf{a}^{T}(\beta \mathbf{y})$$

$$= \alpha(\mathbf{a}^{T}\mathbf{x}) + \beta(\mathbf{a}^{T}\mathbf{y})$$

$$= \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$$

for all d-vectors \mathbf{x} , \mathbf{y} , and all scalars α , β .

- This property is called superposition, which consists of homogeneity and additivity
- A function that satisfies the superposition property is called linear

Functions

Linear and Affine Functions

A linear function plus a constant is called an affine function

A linear function $f: \mathcal{R}^d \to \mathcal{R}$ is **affine** if and only if it can be expressed as $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + \mathbf{b}$ for some d-vector \mathbf{a} and scalar \mathbf{b} , which is called the offset (or bias)

Example:

$$f(\mathbf{x}) = 2.3 - 2x_1 + 1.3x_2 - x_3$$

This function is affine, with b = 2.3, $a^T = [-2, 1.3, -1]$.

Summary

- Operations on Vectors and Matrices
- Assignment 1 (week 6 Fri)
 Tutorial 4

- Dot-product, matrix inverse
- Systems of Linear Equations Xw = y
 - Matrix-vector notation, linear dependency, invertible
 - Even-, over-, under-determined linear systems
- Set and Functions

X is Square	Even- determined	m = d	One unique solution in general	$\widehat{\mathbf{w}} = \mathbf{X}^{-1} \mathbf{y}$
X is Tall	Over- determined	m > d	No exact solution in general; An approximated solution	$\widehat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ Left-inverse
X is Wide	Under- determined	m < d	Infinite number of solutions in general; Unique constrained solution	$\widehat{\mathbf{w}} = \mathbf{X}^T (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{y}$ Right-inverse

- Scalar and vector functions
- Inner product function
- Linear and affine functions

python package *numpy* Inverse: *numpy.linalg.inv(X)*

Transpose: X.T

THANK YOU