goal: tools for analysis using transfer functions, root lows plots

1°. frequency domain analysis

1' seisitivity functions

12. root locus

[AMV2 ch 12.1, 12.2] [NV7 not careed]
[AMV2 ch 12.5] [NV7 ch 9]

* general comment: these techniques were Leveloped before we had cheap computers, so there are many graphing heuristics that are traditionally taught;

-> we'll rely an computers to graph, but still extract intuition

1º frequercy damain analysis

1! seisitivity functions

-> determine Gur (how input distorbance affects input) or measures (y)

¿ Gym (how ortput distorbance affects aspert)

	η	μ	e	и	У
l	PCF	CF	F	CF	PCF
r	$\overline{1 + PC}$				
١.,	P	1	-P	-PC	P
V	$\overline{1 + PC}$	$\overline{1+PC}$	$\overline{1 + PC}$	$\overline{1 + PC}$	$\overline{1 + PC}$
١.,,	-PC	-C	-1	-C	1
w	$\overline{1+PC}$	$\overline{1+PC}$	$\overline{1+PC}$	$\overline{1+PC}$	$\overline{1+PC}$

_9-frequency-domain

12. root locus

$$P_{a}(s) = k \frac{s+1}{s^{2}}, \qquad P_{b}(s) = k \frac{s+1}{s(s+2)(s^{2}+2s+4)},$$

$$P_{c}(s) = k \frac{s+1}{s(s^{2}+1)}, \qquad P_{d}(s) = k \frac{s^{2}+2s+2}{s(s^{2}+1)}.$$
(12.18)

Figure 12.18: Examples of root loci for processes with the transfer functions $P_a(s)$, $P_b(s)$, $P_c(s)$, and $P_d(s)$ given by equation (12.18).

-> which of these systems can be stabilized by proportional feedback?

(can the gain be arbitrarily large?)

-> how would you use the root loans to determine whether a system can be stabilized with proportional feedback?

-> have would you use the most lows to determine whether a stable system can track a non-zero reference with integral feedback?