语音识别技术基础

目录

- 语音信号的产生
- 语音识别的原理
- 语音识别的方法
 - 信号处理
 - 识别模型建模
 - 传统的识别模型
 - E2E的识别模型
- 工程实践进展
- 未来展望

语音信号的产生

信号的采集: 麦克风将声波转换成电压(电磁感应),完成模数信号转换,方便计算机处理。

语音识别的原理

基本问题:给定一系列观测信号,在语言空间中找到最可能的文本序列。

数学原理(后验概率最大): $W^* = \operatorname{argmax}_W \ P(W|X)$

若使用贝叶斯定理,则可得

$$P(W|X) = \frac{P(X|W)P(W)}{P(X)}$$

$$\sim P(X|W)P(W)$$

方法一:拆分建模的思路为传统的语音识别方法,即<mark>声学模型P(X | W)、语言模型P(W)</mark>独立建模。有GMM-HMM、DNN-HMM等,其中Kaldi框架中实现主要就是这两种。

方法二:直接对P(W | X)进行建模,即声学和语言模型放在一个系统进行联合建模,则为目前的端到端的语音识别方法。 有CTC、RNNT、Attention等,其中espnet、K2、wenet等框架实现的是这类最新的E2E方法。

语音识别的方法——信号处理

特征提取

- 分帧: 一般取25ms (太长则不满足短时平稳假设, 太短则无法表征特征)
- 预加重:缓解高频能量的衰减
- 加窗:缓解频谱泄漏的现象
- FFT: 时频转换 (三角函数的正交性)
- 三角滤波: 仿人耳声学感知变换和减少参数量 (每个bin合并成一个能量点计算)
- 取对数:非线性变换

问题

- 传统傅立叶分析的局限性? (平稳假设、相同频率分辨率、时间分辨率为零)
- 联合时频分析方法:短时傅里叶变换(LikkHallerRank)、小波分析等
- 直接从raw signal建模 (类似图像, RGB信号直接输入模型)

语音识别的方法——信号处理

前端处理(改善信号质量)

- 加性噪声
 - 谱减法, 假设噪声和原始语音的能量谱叠加得到带噪信号, 估计出噪声能量谱, 相减和平滑即可。
- 混响和回声
 - 估计出声源到接收端的传递函数 (房间的耐冲响应函数表示RIR) ,设计一个滤波器和RIR抵消
 - 设计逆滤波器使得生成的LPC参数非高斯化
 - 基于T60^(衰减60db)估计RIR. 然后利用谱减法
 - 线性预测模型(当前的信号由历史的信号延迟衰减并叠加当前信号形成)
- 信道差异:覆盖和补偿
- 麦克风阵列:
 - 阵列类型:线性阵列、环形阵列
 - 增益是入射角的函数;控制每路麦克风的延时即可控制指向性(相位一致)
 - 不同麦克风接受的噪音不相关,叠加则会抵消
 - 可利用时间和空间信息, 实现方向选择(延迟加和)、去噪、去混响
- CMVN:在线滤波器可以理解为一种高通滤波器(滤掉固定不变的成分)
- DAE:去噪自编码器,干净数据和带噪数据

语音识别的方法——传统语音识别

根据前述,是否对后验概率直接建模,语音识别可以分成传统方法和E2E方法。

传统方法的思路:通过声学模型将信号识别成音素序列,音素序列在声学和语言模型的共同约束下识别成字词序列。

P(X | W) 建模 (声学模型)

- GMM-HMM
 - 建模单元:一般选择音素,考虑到音素上下文相关和协同发音等信息,会进一步使用三音素或者双音素作为基础的建模单元,并通过聚类(合并相近的类,减少数量)得到最终的建模单元。

• 模型结构:每个建模单元(三音素或双音素)都用一个HMM表示,包含转移概率和发射概率(GMM模型建模),两者都可建模,但

后者一般更重要而前者可以取固定的值。

- 参数估计:GMM和HMM的参数使用EM算法
 - E步:
 - 根据现有参数计算*P*(ot | m)
 - M步:
 - 根据P(ot | m) 更新GMM参数
 - 不断重复E和M步,直到收敛
- DNN-HMM
 - 建模单元:和GMM-HMM相同,为三音素或者双音素
 - 模型结构:
 - 将GMM-HMM中DNN替换成DNN
 - DNN可以是TDNN、LSTM、CNN等网络结构
 - 参数估计:使用梯度下降算法估计DNN的参数

语音识别的方法——传统语音识别

P(W)建模(语言模型)

Ngram

- 使用N阶的马科夫模型建模:在给定历史词汇的条件下预测当前词汇出现的概率
- 通过统计词频和利用平滑算法估计文法的概率值
- 公式: $P(wi \mid wi-n+1, wi-n+2, ..., wi-1) = count(wi-n+1, wi-n+2, ..., wi) / count(wi-n+1, wi-n+2, ..., wi-1)$

• NNLM模型

- 使用历史的词汇信息预测当前词汇
- 网络的输出单元为词典的单元

• Ngram和NNLM对比

算法	优势	劣势
Ngram	存储是文法的概率值,计算复杂度O(1) 方便编辑,例如领域适应、文法概率惩罚或激励	建模长历史信息的能力较弱 阶数增加则参数相应增加指数倍数
NNLM	建模较长的历史信息	训练好后参数不易修改 文法概率需要临时计算,耗时较大(会有些优化算法可以将NNLM转成NGRAM格式存储,从而不需要每次进行前向计算)

E2E的语音识别建模方法(CTC、RNNT、AED)

E2E	model	math
СТС	Encoder	P(Yt Xt)
RNNT	Transciptor/Preditor/Joiner	P(Yu X1:t, Y1:u-1)
Attention	Encoder/Attention/Decoder	P(Yu X1:T, Y1:u-1)

Fig. 1.: Architectures of three popular end-to-end techniques [17]

CTC

- 基本形式:
 - 给定表示X的条件下,关于当前输出Y的各种对齐的概率
 - 通过引入blank符号和考虑所有可能对齐解决对齐问题
 - 一个网络之后直接接softmax, 模型较简单
 - output label序列长度小于等于输入序列长度
 - 各个output的label之间是独立的(没有LM的条件概率建模)
- 数学意义:对P(Yt | Xt)建模

• 公式展开:
$$P_{\text{CTC}}(\mathbf{y}|\mathbf{x}) = \sum_{\mathbf{a} \in \mathcal{B}^{-1}(\mathbf{y})} P(\mathbf{a}|\mathbf{h})$$

$$= \sum_{\mathbf{a} \in \mathcal{B}^{-1}(\mathbf{y})} \prod_{t=1}^{T'} P(a_t|h_t)$$

Fig. 1.: Architectures of three popular end-to-end techniques [17]

RNNT

- 基本形式:
 - 给定X和历史输出Y的条件下,关于当前输出Y的各种对齐的概率
 - 通过考虑所有可能对齐解决对齐问题
 - 当前的output依赖于历史的output(显示的LM建模)
 - input和output之间存在一对多的情况
- 数学意义:对P(Yu | X1:t, Y1:u-1)建模
- 公式展开:

$$egin{aligned} P_{ ext{RT}}(\mathbf{y}|\mathbf{x}) &= \sum_{\mathbf{a} \in \mathcal{B}^{-1}(\mathbf{y})} P(\mathbf{a}|\mathbf{h}) \ &= \sum_{\mathbf{a} \in \mathcal{B}^{-1}(\mathbf{y})} \prod_{t=1}^{T'} P(a_t|h_t, y_{< u_t}) \end{aligned}$$

Fig. 1.: Architectures of three popular end-to-end techniques [17]

Attention

- 基本形式:
 - 给定X的加权注意力和历史输出Y的条件下,关于当前输出Y的概率
 - 通过使用注意力机制解决对齐问题
 - 标准形式是使用全局注意力
 - 流式支持:需要改成局部注意力(WER会有损失)
- 数学意义:对P(Yu | X1:T, Y1:u-1)建模
- 公式展开: $P_{\text{Attn}}(\mathbf{y}|\mathbf{x}) = P(\mathbf{y}|\mathbf{h}) = \prod_{u=1}^{U} P(y_u|c_u, y_{< u})$

Fig. 1.: Architectures of three popular end-to-end techniques [17]

语音识别的传统方法和E2E方法对比

算法	优势	劣势
传统	模块拆分,方便独立优化特定子模块	声学和语言模型独立建模(模块建模的累计误差、个别模块需要专家知识、系统复杂模块众多)
E2E	联合建模(无累积误差、统一优化、架构简单)	依赖大量数据、引入额外文本在理论上不太直接

工程实践进展

K2基础功能

算法	核心点	
WFST	相对传统WFST(如openwfst)不同主要是 <mark>可微分</mark> (指的是FSA算法、运算是可导, 比如求最短路径) 高效的GPU求导和解码(compose、shortest等算法)	
LF-MMI	E2E,不依赖HMM(相对Kaldi简洁)	
СТС	可以结合各种模型和loss(attention、LF-MMI等)	
RNNT	Pruned(训练速度提升2-8倍) Emformer、Chunk-Based-Confomer(支持流式)	
Rransfer learning	VQ based(度量模型编码后向量的距离)	
Rework	Eva(adam + RMS-control)、ActivationBalancer、BasicNorm、DoubleSwish、Warmup(model level)	

Training data preparation

Core Algorithms

Recipes

工程实践进展

RNNT剪枝

- 标准的前后向算法需要考虑T和U两个维度 (espnet等框架rnnt速度慢、较难训练)
- 语音和文本满足单调对齐 -> 只有对角线上小部分路径是有效的
- 先用am+Im估算有效的 '窄带',计算am+Im+joiner只考虑窄带内的节点,使得计算复杂度从T * U 降到 T * beam (其中beam << U)

多	更大的batch_size 更多的模型参数
快	计算复杂度降低
省	显存占用更少
好	丢掉噪声干扰

工程实践进展

1.算法维度和业务价值

算法	核心点
WFST	 训练阶段:方便联合使用传统Ngram模型,支持GPU加速 解码阶段:不依赖openwfst,方便使用海量文本(Ngram查找复杂度O(1),快NNLM几个数量级),on-the-fly-compose(not rescore)
E2E	 更好的单一模型 RNNT 联合声学语言建模同时支持流式 (对比ctc+attention的hybrid模型, ctc的output独立性假设导致ctc本身无lm, 而chunk-based流式弱化了hybrid模型基于attention的LM) 具有更高的准确率(满足全场景识别的需求和一致的体验)、更稳定的流式识别(提升中间结果的效果)、更低的功耗 (落地可参考google on-device-speech) 也支持组合优化各种Loss和模型构建复杂系统 LF-MMI、CTC、RNNT、Attention

2.实验效果

Toolkit	Test_Net	Test Meeting
ESPNET	8.9	15.9
WENET	9.7	15.59
K2_release	8.71	13.41
K2_our_finetune	8.14	13.23

Fig. 1.: Architectures of three popular end-to-end techniques [17]

语音识别未来的发展方向

完全端到端的语音识别	目前端到端的方法通常只是 <mark>考虑声学和语言模型的同时优化;</mark> 如果能进一步,"同时优化信号处理、特征表示、声学模型、语言模型",那么这种完全端到端方法的建模能力和鲁棒性将会更强。
低资源语音识别	方言、少数语种、特定场景的音频获取和标注都非常困难(音频数据一般成本在100-500元/小时,一些敏感场景或者稀有数据甚至无法获得),如果解决低资源语音识别 将极大降低算法落地成本。大致思路有:知识迁移、无监督、 <mark>半监督(少量标注、海量无标注</mark>)。
自适应语音识别	模型根据上下文进行识别结果自适应;例如将历史信息或者用户指令,作为先验塞给prompt,影响模型解码的偏向;例如prompt设定"当前为游戏场景"则可以强化相关 游戏领域专有术语的识别率,从而特定领域定制和自适应的效果。
多任务多模态音频理解模型	语音方向从单任务往多任务(多任务音频模型包括whisper、audioPaLM、SpeechPrompt等),从单模态往多模态(多模态模型包括audioPaLM、SeamlessM4T等)发展。