Machine Learning Lecture 3

Participation and Assignment

Pilot News Updates
Zach Introduction (office hours)
Assignment 1 will be on linear regression
(yesterday + today's class)

Categories Within Supervised ML

Classification machine learning systems: Systems where we seek a yes-or-no prediction, such as "Is this tumer cancerous?", "Does this cookie meet our quality standards?"

a. Binary or Multiclass classifier: Output y in {-1, 1} or y in {1,..k}

Regression machine learning systems: Systems where the value being predicted falls somewhere on a continuous spectrum. These systems help us with questions of "How much?" or "How many?".

Regression

Regression

How do we choose the "right function"? How do we measure the "rightness"?

How do we trade off between the degree of fit and the complexity of solution?

Linear Regression: single variable

Consider the single independent variable case:

$$y = h\theta(x) s. t.$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function

Find the values of $\Theta_0 \& \Theta_1$ to minimize this expression:

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost Function

Optimization

We have created a cost function that we want to minimize over the training data samples We want to experiment with different values of $\Theta_0 \& \Theta_1$ so that the cost function $J(\Theta_0,\Theta_1)$ keeps reducing so we can end up in the minimum (hopefully)

 α is called the Learning Rate (some books also use η), \in [0,1]

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

α is called the Learning Rate, ∈ [0,1]

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

What is the global minimum?
What happens to the 2nd term once we reach

there?

Repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

Some Pointers On Implementation:

Using temp variables (2nd parameter is a function of Θ_0 and Θ_1)

Updating the parameters at the end simultaneously, after computing the partial derivatives for each parameter

Values of α : varying from 0 to 1

Multivariate Gradient Descent

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Note: Both x and theta are now (n+1) dimensional

For m training samples, then we get:

```
Repeat until convergence { \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \quad \text{(for every } j\text{)}.
```

Batch vs Online

Batch: considers all the training samples in the data (or batches at a time)

Online: considers each training sample one at a time

Q: Is our method online or batch?

How to check for the learning rate?

$J(\theta)$	$J(\theta)$	$J(\theta)$	

Feature Scaling

Are there any challenges here that could affect our optimization function (cost function)?

Feature 1	Feature 2	Target
0	4100	255
1	6544	422
2	7711	122
1	100	661

Feature Scaling

Replace feature x with: (x - mean(x)) / (max(x) - min(x))

Feature 1	Feature 2	Target
0	4100	255
1	6544	422
2	7711	122
1	100	661

How to verify that the Algorithm is working as it should?

What should the cost function look like over time? (What is time here??)

Stopping Criteria

This is an iterative algorithm How do we know when to stop?

choose a small threshold ε : if the change in cost function is below ε , stop the iterations

Hard code the number of iterations

A combination of both (look at the graph first)

Polynomial Features

Suppose I have this function:

$$h_{\theta}(x) = \Theta_0 + \Theta_1 x + \Theta_2 x^2$$

Does this change the algorithm we have learned so far?

Polynomial Features

Suppose I have this function:

$$h_{\theta}(x) = \Theta_0 + \Theta_1 x + \Theta_2 X^2$$

Does this change the algorithm we have learned so far?

Is feature scaling important?

Assignment 1

Will be posted online

Technical report addressing all the questions posed

Analysis is the main difference in graduate assignments - Why? What? How?

Question: How many planning to do a thesis?

Assignment 1

Training Vs Test Data

- Can they overlap?
- Which would give the highest performance?
- What could be a concern?
- What are alternatives?

Classification

We need a transformation that 'forces' the output to $\{0, 1\}$ $h_{\theta}(x)$

Fitting a straight line: how will that look? Is it a good idea?

Fitting a straight line: how will that look? Is it a good idea?

Concerns:

- 1.Linear representation of hypothesis function
- 2.Range

Specifically, we need a transformation s.t.

$$0 \le h \ominus (x) \le 1$$

linear regression:

$$h_{\theta}(x) = \theta^T x$$

Clearly, we are looking at classification

Specifically, we need a transformation s.t.

$$0 \le h \ominus (x) \le 1$$

linear regression:

$$h_{\theta}(x) = \theta^T x$$

Let's consider sigmoid function

$$f(x) = \frac{1}{1 + e^{-x}}$$

So does this equation satisfy our criteria? Plot the curve to find out

$$f(x) = \frac{1}{1 + e^{-x}}$$

What if x=0?

What if x<0?

What if x>0?

So what will be the sigmoid function for the logistic regression

Interpretation

So how do we interpret $h \ominus (x)$? What if $h \ominus (x) = 0.8$? Let's use the malignant tumor use case.

Interpretation

What if $h \ominus (x) = 0.8$? Classification?

Decision Boundary

A **decision boundary (DB)** is the region of a problem space in which the output label of a classifier is ambiguous. So it separates the data space into "y=1" and "y=0" in the malignant tumor example.

If the **decision** surface is a hyperplane, then the classification problem is linear, and the classes are linearly separable.

Decision Boundary

A **decision boundary (DB)** is the region of a problem space in which the output label of a classifier is ambiguous. So it separates the data space into "y=1" and "y=0" in the malignant tumor example.

What should the value of y be at the DB?

DB

If we assign y=1 when $h \ominus (x) >= 0.5$, what is the value of $\theta^T x$?

What is the DB for polynomial data?

y=1 if
$$\theta^T x >= 0$$

What if theta2 =1, theta1=0, and theta0=2?

Training Set $\{(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}),, (x^{(2)},y^{(2)})\}$ 1 through m; $y \in \{0,1\}$ Consider the earlier cost function for Linear Regression

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

But now we have $J(\Theta)$ is a non-convex function!! (Remember, what is the logistic hypothesis function?)

Consider:

```
Cost (h \ominus (x), y) = -\log(h \ominus (x)) if y = 1
-\log(1 - h \ominus (x)) if y = 0
```

For each of the training samples.

Can we write this cost function in a single equation?

So how do we merge the two cases for y = 0 or y = 1?

Consider:

```
Cost (h \ominus (x), y) = (y)^* (-log(h \ominus (x))) + (1-y)^*(-log(1 - h \ominus (x)))
```

$$= -y^*\log(h\ominus(x)) - (1-y)^*\log(1 - h\ominus(x))$$

And now we need to consider this for each of the training samples.

Final cost function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

How does this model work?

Given a new input x, compute the hypothesis

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Which we then interpret as the $p(y=1|x; \Theta)$

Algorithm

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update all θ_j)

hide slide

Algorithm

Substitute the partial derivative term

```
Repeat \{ \theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \} (simultaneously update all \theta_j)
```

So now can we cneck the performance in this case?

Optimization Concepts

Other sophisticated algorithms BFGS, conjugate gradient (may want to consider implementing for project)

Example

Example:

$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$$

$$\frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)$$

Multiclass classification

Cookies = {chocolate, oatmeal, raisin}

Multiclass classification

Cookies = {chocolate, oatmeal, raisin}

Multiclass classification

Cookies = {chocolate, oatmeal, raisin}

One - vs - all

For a new input x, to make a prediction, pick the class label i such that it is the max value of the hypothesis function

$$\max_{i} h_{\theta}^{(i)}(x)$$

Overfitting

Overfitting

If we have too many features, the learned hypothesis may fit the training data very well but fail to generalize to new examples

Overfitting: Logistic Regression

Addressing Overfitting

Reducing # of features

Some models help screen out less important features

Regularization

Keep all features but reduce magnitudes or values of the theta parameters

Useful for cases with a lot of 'weak' features

Regularization

Suppose we try to penalize the parameters in the equation

$$extstyle \mathbf{G}(_{\theta_0+\theta_1x+\theta_2x^2+\theta_3x^3+\theta_4x^4})$$

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + 1000^*\Theta_3^2$$

Regularization

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Gradient Descent without Regularization

```
Repeat {
          \theta_j := \theta_j - \alpha \qquad \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}(j = 0, 1, 2, 3, \dots, n)
```

Gradient Descent with Regularization

```
Repeat { \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} \theta_j := \theta_j - \alpha \left[ \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \underbrace{\lambda}_{\mathsf{M}} \underbrace{\lambda}_{\mathsf{M}} \underbrace{\lambda}_{\mathsf{M}} \right] }
```

Gradient Descent with Regularization

$$\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \right]$$

$$(j = \mathbf{X}, 1, 2, 3, \dots, n)$$

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Regularized Logistic Regression

Recap: Previously without regularization

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))\right]$$

So now we add the regularization term

$$+\frac{\lambda}{\lambda}\sum_{j=1}^{\infty}O_{j}^{2}$$

Regularized Logistic Regression

```
Repeat { \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} \theta_j := \theta_j - \alpha \left[ \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right] } \( \left( j = \mathbf{X}, \frac{1}{2}, \frac{3}{2}, \ldots, \frac{n}{2} \right). \)
```

Debugging

Plot J(Θ) and make sure it is decreasing over the iterations