Cantor's Diagonal Lemma

Last time Infinite sets are not rigid!

An infinite set can be equinumerous to its proper subsets.

$$E.g.$$
 $(-1,1) \approx 1R$

Question IN ~ IR?

La Cantor's answer.

Cantor's Diagonal Lemma

Cantor's Diagonal Lemma with work that of the control of the contr

Cantor's Diagonal Lemma

Let f be any function from \mathbb{N} to (0,1)? Then there exists $y \in (0,1)$ such that y does not belong to the range of f.

Below is a key consequence of Cantor's diagonal lemma.

Theorem 1 (Cantor, 1873)

 $\mathbb R$ is not equinumerous to $\mathbb N$.

Proof Suppose IR
$$\approx$$
 IN. By symmetry of \approx , IN \approx IR. We know from Wed that IR \approx (0,1). Hence, by transitivity of \approx , IN \approx (0,1). So there is a bijection f from IN to (0,1). This f is a function from IN to (0,1). Thus, by CDL, there is $y \in (0,1)$ such that $y \notin \text{Rng}(f)$. Hence f is not a Surj. From IN to (0,1), so f is not a bijection from IN to (0,1). This is a contradiction f such that f is not f in f is not f in f is not f .

Cantor's Diagonal Lemma: Idea of Proof

To prove Cantor's diagonal lemma, we need to find/construct $y \in (0,1)$ such that $u \notin \operatorname{Rng}(f) = \{ f(n) : n \in \mathbb{N} \}.$ does not end in repeating 9's.

Decimal expansion of f(n)

For each $n \in \mathbb{N}$, $f(n) \in (0,1)$ so it has the standard decimal expansion

$$f(n) = 0.x_{n1}x_{n2}x_{n3}x_{n4}\dots$$

That is.

$$f(1) = 0.x_{11}x_{12}x_{13}x_{14} \dots,$$

$$f(2) = 0.x_{21}x_{22}x_{23}x_{24} \dots,$$

$$f(3) = 0.x_{31}x_{32}x_{33}x_{34} \dots,$$

$$f(4) = 0.x_{41}x_{42}x_{43}x_{44} \dots,$$

and so on.

$$\frac{\text{c.g.}}{2} = 0.5$$

Cantor's Diagonal Lemma: Idea of Proof (cont')

f(2) = 0. 52314-... f(2) = 0. 15314-...

Construction of y

For each $n \in \mathbb{N}$, let

$$y_n = \begin{cases} 5 & \text{if } x_{nn} \neq 5, \\ 4 & \text{if } x_{nn} = 5. \end{cases}$$
 Then for each $n \in \mathbb{N}, y_n \neq x_{nn}$. Now let y be the number whose standard

Then for each $n \in \mathbb{N}$, $y_n \neq x_{nn}$. Now let y be the number whose standard decimal expansion is

$$y=0.y_1y_2y_3y_4\ldots.$$

Observation

- $y \in (0,1)$; in fact, $0.444... \le y \le 0.555...$
- $y \notin \operatorname{Rng}(f)$ because for each $n \in \mathbb{N}$, $y \neq f(n)$.

(Frein) (yn + Inn)

they differ in the nth decimal place

Example

$$f(1) = 0.4732651---$$

$$f(2) = 0.3496781---$$

$$f(3) = 0.7261238---$$

f (4) = 0.0055555...

Higher Orders of Infinity

Denumerable, Countable, and Uncountable

Definition 2

Let A be a set.

- **1** To say that A is denumerable means that A is equinumerous to \mathbb{N} .
- \bigcirc To say that A is countable means that A is finite or denumerable.
- **3** To say that *A* is uncountable means that *A* is not countable.

Example. \wp ,
• Each of $\mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$, and \mathbb{Q} is denumerable.

 \mathbb{R} is uncountable.

7/10

Cardinality

Definition 3

Let A and B be sets.

- ① To say that the cardinality of A is less than or equal to the cardinality of B (denoted $\overline{\overline{A}} \leqslant \overline{\overline{B}}$) means that A is equinumerous to a subset of B.
- ② To say that the cardinality of A is strictly less than the cardinality of B (denoted $\overline{\overline{A}} < \overline{\overline{B}}$) means that A is equinumerous to a subset of B but A is not equinumerous to B.
- **3** To say that the cardinality of A is equal to the cardinality of B (denoted $\overline{\overline{A}} = \overline{\overline{B}}$) means that A is equinumerous to B.

IN S TO THE SERVENT T

Example. $\overline{\overline{\mathbb{N}}} < \overline{\overline{\mathbb{R}}}$.

Cardinality (cont')

Notes.

• Let A and B be sets. Then $\overline{\overline{A}} \leqslant \overline{\overline{B}}$ iff there exists an injection from A to B.

• Let A be any set. Then $\overline{\overline{A}} \leqslant \overline{\overline{\mathcal{P}(A)}}$.

Cantor's Generalized Diagonal Lemma

Cantor's Generalized Diagonal Lemma

Let A be a set and let f be a function on A such that for each $x \in A$, f(x) is a set. Then there exists a subset $C \subseteq A$ such that C does not belong to the range of f.

Below is a key consequence of Cantor's generalized diagonal lemma.

Theorem 4 (Cantor, 1891)

Any set has strictly smaller cardinality than its power set.