

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY RAMAPURAM CAMPUS DEPARTMENT OF MATHEMATICS

Year/Sem: II/III

Branch: Common to All branches

Unit 2 - Fourier Series

1. Write the formula for finding Euler's constants of a Fourier series in $0 \le x \le 2\pi$.

Solution:

Euler's constants of a Fourier series in $0 \le x \le 2\pi$ is given by

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx$$

2. Write the formula for finding Euler's constants of a Fourier series in $0 \le x \le 2l$.

Solution

Euler's constants of a Fourier series in $0 \le x \le l$ is given by

$$a_0 = \frac{1}{l} \int_0^{2l} f(x) dx$$

$$a_n = \frac{1}{l} \int_0^{2l} f(x) \cos nx \, dx$$

$$b_n = \frac{1}{l} \int_0^{2l} f(x) \sin nx \, dx$$

3. Write the formula for Fourier constants for f(x) in the interval $-\pi \le x \le \pi$.

Solution:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

4. Write the formula for Fourier constants for f(x) in the interval $-l \le x \le l$.

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos nx dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin nx dx$$

5. Find the constant value a_0 of the Fourier series for the function f(x) = k, $0 \le x \le 2\pi$.

Solution:

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} k dx = \frac{k}{\pi} (2\pi) = 2k$$

- a) K
- b) 2k
- c) 0
- d) k/2
- 6. Find the constant value a_0 of the Fourier series for the function f(x) = x, $0 \le x \le \pi$.

Solution:

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} x dx = \frac{2}{\pi} \frac{(\pi)^2}{2} = \pi$$
a) π b) 2π c) 0 d) $\pi/2$

7. If $f(x) = e^x$ in $-\pi \le x \le \pi$, find a_n

Solution:

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx \qquad = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{x} \cos nx \, dx \qquad = \frac{1}{\pi} \left\{ \frac{e^{x}}{(1+n^{2})} (\cos nx + n \sin nx) \right\}_{-\pi}^{\pi}$$

$$= \frac{(-1)^{n}}{\pi (1+n^{2})} (e^{\pi} - e^{-\pi})$$

$$a) \frac{(-1)^{n}}{\pi (1+n^{2})} (e^{\pi} - e^{-\pi})$$

$$b) \frac{(-1)^{n}}{\pi (1-n^{2})} (e^{\pi} - e^{-\pi})$$

c)
$$\frac{(-1)^n}{\pi(1-n^2)} (e^{\pi} + e^{-\pi})$$
 d) $\frac{(-1)^n}{\pi} (e^{\pi} - e^{-\pi})$

8) If $f(x) = e^x$ in $-\pi \le x \le \pi$, find b_n

Solution:

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx \qquad = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{x} \sin nx \, dx \qquad = \frac{1}{\pi} \left\{ \frac{e^{x}}{(1+n^{2})} (\sin nx - n\cos nx) \right\}_{-\pi}^{\pi}$$

$$= \frac{n(-1)^{n+1}}{\pi(1+n^{2})} (e^{\pi} - e^{-\pi})$$
a)
$$\frac{n(-1)^{n+1}}{\pi(1+n^{2})} (e^{\pi} - e^{-\pi})$$
b)
$$\frac{1}{\pi(1-n^{2})} (e^{\pi} - e^{-\pi})$$
c)
$$\frac{2}{\pi(1-n^{2})} (e^{\pi} + e^{-\pi})$$
d)
$$\frac{(-1)^{n}}{\pi} (e^{\pi} - e^{-\pi})$$

b)

9. Check whether the function is even or odd, where $f(x) = \begin{cases} 1 + \frac{2x}{l}, & -l \le x \le 0 \\ 1 - \frac{2x}{l}, & 0 \le x \le l \end{cases}$

Solution:

for
$$-l \le x \le 0$$
, $f(-x) = 1 + \frac{2(-x)}{l} = 1 - \frac{2x}{l} = f(x)$, where $0 \le x \le l$

- ⇒ the given function is even function
- a) Even function
- b) odd function
- c) constant function
- d) neither even nor odd
- 10. Find the constant value a_n of the Fourier series for the function f(x) = x, $0 \le x \le \pi$.

Solution:

$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx \, dx$$

$$= \frac{2}{\pi} \left[x \frac{\sin nx}{n} + \frac{\cos nx}{n^{2}} \right]_{0}^{\pi} = \frac{2}{\pi} \left(\frac{(-1)^{n} - 1}{n^{2}} \right)$$
a)
$$\frac{2}{\pi} \left(\frac{(-1)^{n} - 1}{n^{2}} \right)$$
b)
$$2\pi$$
c)
$$\frac{2(-1)^{n}}{\pi}$$
d)
$$\pi/2$$

11. Find the constant value b_n of the Fourier series for the function f(x) = x, $-\pi \le x \le \pi$.

Solution:

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} x \sin nx \, dx$$

$$= \frac{2}{\pi} \left[x \frac{-\cos nx}{n} + \frac{\sin nx}{n^2} \right]_0^{\pi} = \frac{-2(-1)^n}{n}$$
a)
$$\frac{2}{\pi} \left(\frac{(-1)^n - 1}{n^2} \right)$$
b)
$$\frac{(-1)^n}{\pi}$$
c)
$$\frac{-2(-1)^n}{n}$$
d) $\pi/2$

12. Find the constant term of the Fourier series for the function $f(x) = |x|, -\pi \le x \le \pi$.

Solution:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \pi$$

a) π b)2 π c)0 d) $\pi/2$

13. Find the Fourier coefficient b_n of the Fourier series for the function f(x) = x, $0 \le x \le 2\pi$.

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_0^{2\pi} x \sin nx \, dx = \frac{1}{\pi} \left[x \frac{-\cos nx}{n} + \frac{\sin nx}{n^2} \right]_0^{2\pi}$$

$$= \left(-2(-1)^n \right) / n$$
a) π b) $\left(-2(-1)^n \right) / n$ c) 0 d) 3π

14. Half-range cosine series for f(x) in $(0,\pi)$ is

a)
$$\frac{(a_0)}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$
 b) $\sum_{n=1}^{\infty} b_n \cos nx$ c) $\sum_{n=1}^{\infty} a_n \cos nx$ d) $\frac{(a_0)^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n)^2 + (b_n)^2$

15. If $f(x) = x^2$ in $(-\pi, \pi)$ then the value of b_n is?

Solution:

Since the given function is even in the given interval, the Fourier coefficient bn value is zero in this case.

- a) 1 b)0 c)-1 d)2
- 16. In the Fourier series expansion of $f(x) = \sin x$ in $(-\pi, \pi)$. What is the value of a_n ?

Solution:

The function $f(-x) = \sin(-x) = -\sin x = -f(-x)$ so f(x) is odd function So $a_n = 0$ a) 1 b)0 c) π d) $-\pi$

17. Find the constant value a₀ from the following table:

Ī	Х	0 $\pi/3$		$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π	
	F(x) = y	1	1.4	1.9	1.7	1.5	1.2	1	

Solution:

$$a_0 = \frac{2\sum y}{n} = \frac{2(1+1.4+1.9+1.7+1.5+1.2)}{6} = 2.9$$

a) 1.9 b)2.9 c)4.9 d)6.9

18. What is the sum of the Fourier series at a point x = 1 where the function has a finite discontinuity.

Solution:

$$f(x) = \frac{f(x + x_0) + f(x - x_0)}{2}$$

Here
$$x_0 = 1$$
, $f(x) = \frac{f(x+1) + f(x-1)}{2}$

a)
$$f(x) = \frac{f(x+1)+f(x-1)}{2}$$
 b) $f(x) = \frac{f(x+1)}{2}$ c) $f(x) = \frac{f(x-1)}{2}$

19. In the expansion of $f(x) = \sinh x \, in \, (-\pi, \pi)$ as a Fourier Series, find the coefficient of a_n .

$$f(x) = \sin h x = \frac{e^x - e^{-x}}{2}$$

$$f(-x) = \frac{e^{-x} - e^x}{2} = \frac{-(e^x - e^{-x})}{2} = -\sin hx = -f(x)$$

So, f(x) is an odd function, the fourier coefficient a_n is 0

- a) (
- b)1
- c)2
- d)3
- 20. To what value, the Fourier series corresponding to $f(x) = x^2$ in $(0, 2\pi)$ converges at x = 0? **Solution:**

The Fourier series converges to $\frac{f(0)+f(2\pi)}{2}=2\pi^2$

- a)π
- b)2π
- c) π^2
- $d)2\pi^2$
- 21. Examine whether the function $f(x) = \frac{1}{1-x}$, can be expanded in Fourier series in any interval including x=1

Solution:

At x = 1, the function $f(x) = \frac{1}{1-x}$ is not continuous

By Dirichlet's condition, we cannot expand f(x) as a Fourier series.

- a) Can be expanded since f(x) is not continuous
- b) Cannot be expanded since f(x) does not satisfies Dirichlet's condition
- c) Can be expanded since f(x) satisfies Dirichlet's Condition
- d) Cannot be expanded since f(x) is continuous
- 22. Find the constant term in the Fourier series corresponding to $f(x) = x x^3$ in $(-\pi, \pi)$

Solution:

$$f(x) = x - x^3$$

$$f(-x) = -x + x^3 = -(x - x^3) = -f(x)$$

$$f(x)$$
 is an odd function $(-\pi, \pi)$

Hence Constant term $a_0 = 0$

- a) 0
- b)1
- c)2
- d)3
- 23. Find the R.M.S Value of the function f(x) = x in (0, l).

Solution:

R. M. S =
$$\frac{\sqrt{\int_0^l x^2 dx}}{l} = \frac{\sqrt{\left(\frac{x^3}{3}\right)_0^l}}{l} = \sqrt{\frac{l^3}{3l}} = \frac{l}{\sqrt{3}}$$

a) $\frac{l}{\sqrt{3}}$ b) $\frac{1}{\sqrt{2}}$ c) $\frac{l^2}{\sqrt{3}}$ d) $\frac{l^2}{\sqrt{2}}$

24. Find the value of a_n in the cosine series expansion of f(x) = k in (0,10).

Solution:

$$a_n = \frac{1}{5} \int_0^{10} k \cos \frac{n\pi x}{10} \ dx = \frac{k}{5} \left[\frac{\sin \frac{n\pi x}{10}}{\frac{n\pi}{10}} \right]_0^{10} = 0$$
a) 0 b)10 c)20 d)30

25. Find the R.M.S Value of the function f(x) = k in (-l, l).

R. M. S =
$$\frac{\sqrt{\int_{-l}^{l} k^{2} dx}}{2l} = \frac{\sqrt{k^{2}(x)_{-l}^{l}}}{2l} = k$$

a) $\frac{1}{\sqrt{3}}$ b) \mathbf{k} c) $\frac{1^{2}}{\sqrt{3}}$ d) $\frac{1^{2}}{\sqrt{2}}$

In the Fourier series expansion of $f(x) = |\sin x|$ in $(-\pi, \pi)$. What is the value of b_n ? 26.

Solution:

$$f(-x) = |\sin(-x)| = |-\sin x| = |\sin x| = f(x)$$

since $f(x)$ is an odd function $b_n = 0$

- a) 1
- b)0
- $\mathsf{d}) \pi$

27. Find b_1 , if f(x) = k in $0 < x < \pi$

Solution:

$$b_1 = \frac{2}{\pi} \int_0^{\pi} f(x) \sin x \, dx = \frac{2}{\pi} \int_0^{\pi} k \sin x \, dx$$
$$= \frac{2}{\pi} k (-\cos x)_0^{\pi} = \frac{2}{\pi} (-(-1) + 1) = \frac{4}{\pi}$$

- a) $\frac{2}{\pi}$ b) $\frac{4}{\pi}$ c) $\frac{1}{2\pi}$ d) $\frac{1}{4\pi}$

Find the R.M.S Value of the function f(x) = 2x in (0,3). 28.

Solution:

$$R.M.S = \frac{\sqrt{\int_0^3 4x^2 dx}}{3} = \frac{\sqrt{4\left(\frac{x^3}{3}\right)_0^3}}{3} = \frac{6}{3} = 2$$
a) 2 b)6 c)9 d)0

 $F(x) = x + x^2 in(-\pi, \pi) is$ 29.

Solution:

$$F(-x) = -x + (-x)^2 = -x + x^2 \neq -f(x)$$
 so it is neither ever nor odd function

- a) Odd function
- b)Even function
- c) Constant function
- d)Neither odd nor even

30. Find the series value
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} + \dots$$
, if f(x) = x² in the interval (- π , π), a₀ = 2 π ²/3, a_n = 4(-1)ⁿ⁺¹/n²

Solution:

The Fourier cosine series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos nx$$

When x = 0,

$$f(0) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2}$$

$$\frac{f(-\pi) + f(\pi)}{2} = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2}$$

$$\pi^2 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \implies \frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
a)
$$\frac{\pi^2}{12} \qquad \text{b)} \frac{\pi^2}{8} \qquad \text{c)} \frac{\pi^2}{2} \qquad \text{d)} 0$$

Answers

5	b	6	а	7	а	8	а	9	а	10	а	11	С	12	а	13	b
14	а	15	b	16	b	17	b	18	а	19	а	20	d	21	b	22	а
23	а	24	а	25	b	26	b	27	b	28	а	29	d	30	а		