# Neural networks and project 2

# Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no<sup>1,2</sup>

<sup>1</sup>Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway <sup>2</sup>Department of Physics and Astronomy and Facility for Rare Ion Beams, Michigan State University, East Lansing, Michigan, USA

April 12

## Plans for the week of April 8-12, 2024

- 1. Neural Networks and Boltzmann Machines
- 2. Discussion of how to implement Slater determinants and other variants of project 2

# Neural Quantum States

The wavefunction should be a probability amplitude depending on x. The RBM model is given by the joint distribution of x and h

$$F_{rbm}(\boldsymbol{x}, \mathbf{h}) = \frac{1}{Z} e^{-\frac{1}{T_0} E(\boldsymbol{x}, \mathbf{h})}$$

To find the marginal distribution of  $\boldsymbol{x}$  we set:

$$F_{rbm}(\mathbf{x}) = \sum_{\mathbf{h}} F_{rbm}(\mathbf{x}, \mathbf{h})$$
$$= \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})}$$

#### Model for the trial wave function

Now this is what we use to represent the wave function, calling it a neural-network quantum state (NQS)

$$\begin{split} \Psi(\mathbf{X}) &= F_{rbm}(\mathbf{x}) \\ &= \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})} \\ &= \frac{1}{Z} \sum_{\{h_j\}} e^{-\sum_{i}^{M} \frac{(x_i - a_i)^2}{2\sigma^2} + \sum_{j}^{N} b_j h_j + \sum_{i,j}^{M,N} \frac{x_i w_{ij} h_j}{\sigma^2}} \\ &= \frac{1}{Z} e^{-\sum_{i}^{M} \frac{(x_i - a_i)^2}{2\sigma^2}} \prod_{j}^{N} (1 + e^{b_j + \sum_{i}^{M} \frac{x_i w_{ij}}{\sigma^2}}) \end{split}$$

# Allowing for complex valued functions

The above wavefunction is the most general one because it allows for complex valued wavefunctions. However it fundamentally changes the probabilistic foundation of the RBM, because what is usually a probability in the RBM framework is now a an amplitude. This means that a lot of the theoretical framework usually used to interpret the model, i.e. graphical models, conditional probabilities, and Markov random fields, breaks down.

# Squared wave function

If we assume the wavefunction to be positive definite, however, we can use the RBM to represent the squared wavefunction, and thereby a probability. This also makes it possible to sample from the model using Gibbs sampling, because we can obtain the conditional probabilities.

$$\begin{split} |\Psi(\mathbf{X})|^2 &= F_{rbm}(\mathbf{X}) \\ \Rightarrow \Psi(\mathbf{X}) &= \sqrt{F_{rbm}(\mathbf{X})} \\ &= \frac{1}{\sqrt{Z}} \sqrt{\sum_{\{h_j\}} e^{-E(\mathbf{X}, \mathbf{h})}} \\ &= \frac{1}{\sqrt{Z}} \sqrt{\sum_{\{h_j\}} e^{-\sum_{i}^{M} \frac{(X_i - a_i)^2}{2\sigma^2} + \sum_{j}^{N} b_j h_j + \sum_{i,j}^{M,N} \frac{X_i w_{ij} h_j}{\sigma^2}} \\ &= \frac{1}{\sqrt{Z}} e^{-\sum_{i}^{M} \frac{(X_i - a_i)^2}{4\sigma^2}} \sqrt{\sum_{\{h_j\}} \prod_{j}^{N} e^{b_j h_j + \sum_{i}^{M} \frac{X_i w_{ij} h_j}{\sigma^2}}} \\ &= \frac{1}{\sqrt{Z}} e^{-\sum_{i}^{M} \frac{(X_i - a_i)^2}{4\sigma^2}} \sqrt{\prod_{j}^{N} \sum_{h_j} e^{b_j h_j + \sum_{i}^{M} \frac{X_i w_{ij} h_j}{\sigma^2}}} \\ &= \frac{1}{\sqrt{Z}} e^{-\sum_{i}^{M} \frac{(X_i - a_i)^2}{4\sigma^2}} \prod_{j}^{N} \sqrt{e^0 + e^{b_j + \sum_{i}^{M} \frac{X_i w_{ij}}{\sigma^2}}} \\ &= \frac{1}{\sqrt{Z}} e^{-\sum_{i}^{M} \frac{(X_i - a_i)^2}{4\sigma^2}} \prod_{j}^{N} \sqrt{1 + e^{b_j + \sum_{i}^{M} \frac{X_i w_{ij}}{\sigma^2}}} \end{split}$$

#### Cost function

This is where we deviate from what is common in machine learning. Rather than defining a cost function based on some dataset, our cost function is the energy of the quantum mechanical system. From the variational principle we know that minimizing this energy should lead to the ground state wavefunction. As stated previously the local energy is given by

$$E_L = \frac{1}{\Psi} \hat{\mathbf{H}} \Psi.$$

# And the gradient

$$G_i = \frac{\partial \langle E_L \rangle}{\partial \alpha_i} = 2(\langle E_L \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_i} \rangle - \langle E_L \rangle \langle \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_i} \rangle),$$

where  $\alpha_i = a_1, ..., a_M, b_1, ..., b_N, w_{11}, ..., w_{MN}$ .

#### Additional details

We use that  $\frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_i} = \frac{\partial \ln \Psi}{\partial \alpha_i}$ , and find

$$\ln \Psi(\mathbf{X}) = -\ln Z - \sum_{m}^{M} \frac{(X_m - a_m)^2}{2\sigma^2} + \sum_{n}^{N} \ln(1 + e^{b_n + \sum_{i}^{M} \frac{X_i w_{in}}{\sigma^2}}).$$

# Final equation

This gives

$$\frac{\partial}{\partial a_m} \ln \Psi = \frac{1}{\sigma^2} (X_m - a_m)$$

$$\frac{\partial}{\partial b_n} \ln \Psi = \frac{1}{e^{-b_n - \frac{1}{\sigma^2} \sum_i^M X_i w_{in}} + 1}$$

$$\frac{\partial}{\partial w_{mn}} \ln \Psi = \frac{X_m}{\sigma^2 (e^{-b_n - \frac{1}{\sigma^2} \sum_i^M X_i w_{in}} + 1)}.$$

## Code example

This part is best seen using the jupyter-notebook

```
# 2-electron VMC code for 2dim quantum dot with importance sampling
# Using gaussian rng for new positions and Metropolis- Hastings
# Added restricted boltzmann machine method for dealing with the wavefunction
# RBM code based heavily off of:
\# https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/Programs/BoltzmannMachin
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys
# Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,a,b,w):
    sigma=1.0
    sig2 = sigma**2
Psi1 = 0.0
    Psi2 = 1.0
    Q = Qfac(r,b,w)
    for iq in range(NumberParticles):
         for ix in range(Dimension):
             Psi1 += (r[iq,ix]-a[iq,ix])**2
    for ih in range (NumberHidden):
         Psi2 *= (1.0 + np.exp(Q[ih]))
    Psi1 = np.exp(-Psi1/(2*sig2))
```

```
return Psi1*Psi2
# Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,a,b,w):
   sigma=1.0
   sig2 = sigma**2
   locenergy = 0.0
   Q = Qfac(r,b,w)
   for iq in range(NumberParticles):
        for ix in range(Dimension):
            sum1 = 0.0
            sum2 = 0.0
            for ih in range(NumberHidden):
                sum1 += w[iq,ix,ih]/(1+np.exp(-Q[ih]))
                sum2 += w[iq,ix,ih]**2 * np.exp(Q[ih]) / (1.0 + np.exp(Q[ih]))**2
            dlnpsi1 = -(r[iq,ix] - a[iq,ix]) / sig2 + sum1/sig2
            dlnpsi2 = -1/sig2 + sum2/sig2**2
locenergy += 0.5*(-dlnpsi1*dlnpsi1 - dlnpsi2 + r[iq,ix]**2)
    if(interaction==True):
        for iq1 in range(NumberParticles):
            for iq2 in range(iq1):
                distance = 0.0
                for ix in range(Dimension):
                    distance += (r[iq1,ix] - r[iq2,ix])**2
                locenergy += 1/sqrt(distance)
   return locenergy
# Derivate of wave function ansatz as function of variational parameters
def DerivativeWFansatz(r,a,b,w):
   sigma=1.0
   sig2 = sigma**2
   Q = Qfac(r,b,w)
   WfDer = np.empty((3,),dtype=object)
   WfDer = [np.copy(a),np.copy(b),np.copy(w)]
   WfDer[0] = (r-a)/sig2
   WfDer[1] = 1 / (1 + np.exp(-Q))
   for ih in range (NumberHidden):
        WfDer[2][:,:,ih] = w[:,:,ih] / (sig2*(1+np.exp(-Q[ih])))
   return WfDer
# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,a,b,w):
    sigma=1.0
   sig2 = sigma**2
   qforce = np.zeros((NumberParticles, Dimension), np.double)
   sum1 = np.zeros((NumberParticles, Dimension), np.double)
```

```
Q = Qfac(r,b,w)
    for ih in range(NumberHidden):
        sum1 += w[:,:,ih]/(1+np.exp(-Q[ih]))
    qforce = 2*(-(r-a)/sig2 + sum1/sig2)
    return qforce
def Qfac(r,b,w):
    Q = np.zeros((NumberHidden), np.double)
    temp = np.zeros((NumberHidden), np.double)
    for ih in range(NumberHidden):
        temp[ih] = (r*w[:,:,ih]).sum()
    Q = b + temp
    return Q
# Computing the derivative of the energy and the energy
def EnergyMinimization(a,b,w):
    NumberMCcycles= 10000
    # Parameters in the Fokker-Planck simulation of the quantum force
    D = 0.5
    TimeStep = 0.05
    # positions
    PositionOld = np.zeros((NumberParticles, Dimension), np.double)
    PositionNew = np.zeros((NumberParticles, Dimension), np.double)
    # Quantum force
    QuantumForceOld = np.zeros((NumberParticles, Dimension), np.double)
    QuantumForceNew = np.zeros((NumberParticles, Dimension), np.double)
    # seed for rng generator
    seed()
    energy = 0.0
    DeltaE = 0.0
    EnergyDer = np.empty((3,),dtype=object)
    DeltaPsi = np.empty((3,),dtype=object)
    DerivativePsiE = np.empty((3,),dtype=object)
    EnergyDer = [np.copy(a),np.copy(b),np.copy(w)]
    DeltaPsi = [np.copy(a),np.copy(b),np.copy(w)]
DerivativePsiE = [np.copy(a),np.copy(b),np.copy(w)]
    for i in range(3): EnergyDer[i].fill(0.0)
    for i in range(3): DeltaPsi[i].fill(0.0)
    for i in range(3): DerivativePsiE[i].fill(0.0)
    #Initial position
    for i in range(NumberParticles):
        for j in range(Dimension):
            PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)
    wfold = WaveFunction(PositionOld,a,b,w)
    QuantumForceOld = QuantumForce(PositionOld,a,b,w)
    #Loop over MC MCcycles
    for MCcycle in range(NumberMCcycles):
        #Trial position moving one particle at the time
        for i in range(NumberParticles):
```

```
PositionNew[i,j] = PositionOld[i,j] + normal variate(0.0,1.0) * sqrt(TimeStep) + \
                                               QuantumForceOld[i,j]*TimeStep*D
              wfnew = WaveFunction(PositionNew,a,b,w)
              QuantumForceNew = QuantumForce(PositionNew,a,b,w)
              GreensFunction = 0.0
              for j in range(Dimension):
                   GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
                                              (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])\\
                                              PositionNew[i,j]+PositionOld[i,j])
              GreensFunction = exp(GreensFunction)
              ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
              #Metropolis-Hastings test to see whether we accept the move
              if random() <= ProbabilityRatio:</pre>
                   for j in range(Dimension):
                        PositionOld[i,j] = PositionNew[i,j]
                        QuantumForceOld[i,j] = QuantumForceNew[i,j]
                   wfold = wfnew
         #print("wf new: ", wfnew)
#print("force on 1 new:", QuantumForceNew[0,:])
#print("pos of 1 new: ", PositionNew[0,:])
#print("force on 2 new: ", QuantumForceNew[1,:])
#print("pos of 2 new: ", PositionNew[1,:])
         DeltaE = LocalEnergy(PositionOld,a,b,w)
         DerPsi = DerivativeWFansatz(PositionOld,a,b,w)
         DeltaPsi[0] += DerPsi[0]
         DeltaPsi[1] += DerPsi[1]
         DeltaPsi[2] += DerPsi[2]
         energy += DeltaE
         DerivativePsiE[0] += DerPsi[0]*DeltaE
         DerivativePsiE[1] += DerPsi[1]*DeltaE
         DerivativePsiE[2] += DerPsi[2]*DeltaE
     # We calculate mean values
    energy /= NumberMCcycles
    DerivativePsiE[0] /= NumberMCcycles
    DerivativePsiE[1] /= NumberMCcycles
    DerivativePsiE[2] /= NumberMCcycles
    DeltaPsi[0] /= NumberMCcycles
DeltaPsi[1] /= NumberMCcycles
    DeltaPsi[2] /= NumberMCcycles
    EnergyDer[0] = 2*(DerivativePsiE[0]-DeltaPsi[0]*energy)
EnergyDer[1] = 2*(DerivativePsiE[1]-DeltaPsi[1]*energy)
EnergyDer[2] = 2*(DerivativePsiE[2]-DeltaPsi[2]*energy)
    return energy, EnergyDer
#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
NumberHidden = 2
interaction=False
# guess for parameters
a=np.random.normal(loc=0.0, scale=0.001, size=(NumberParticles,Dimension))
```

for j in range(Dimension):

```
b=np.random.normal(loc=0.0, scale=0.001, size=(NumberHidden)) w=np.random.normal(loc=0.0, scale=0.001, size=(NumberParticles, Dimension, NumberHidden))
# Set up iteration using stochastic gradient method
Energy = 0
EDerivative = np.empty((3,),dtype=object)
EDerivative = [np.copy(a),np.copy(b),np.copy(w)]
# Learning rate eta, max iterations, need to change to adaptive learning rate
eta = 0.001
MaxIterations = 50
iter = 0
np.seterr(invalid='raise')
Energies = np.zeros(MaxIterations)
EnergyDerivatives1 = np.zeros(MaxIterations)
EnergyDerivatives2 = np.zeros(MaxIterations)
while iter < MaxIterations:
    Energy, EDerivative = EnergyMinimization(a,b,w)
    agradient = EDerivative[0]
    bgradient = EDerivative[1]
    wgradient = EDerivative[2]
    a -= eta*agradient
    b -= eta*bgradient
    w -= eta*wgradient
    Energies[iter] = Energy
print("Energy:",Energy)
     #EnergyDerivatives1[iter] = EDerivative[0]
    #EnergyDerivatives2[iter] = EDerivative[1]
#EnergyDerivatives3[iter] = EDerivative[2]
    iter += 1
#nice printout with Pandas
import pandas as pd
from pandas import DataFrame
pd.set_option('max_columns', 6)
data ={'Energy':Energies}#,'A Derivative':EnergyDerivatives1,'B Derivative':EnergyDerivatives2,'W
frame = pd.DataFrame(data)
print(frame)
```