Multivariate Normal Log-likelihoods in the ${f mvtnorm}$ Package 1

Torsten Hothorn

Version 1.2-1

¹Please cite this document as: Torsten Hothorn (2023) Multivariate Normal Log-likelihoods in the **mvtnorm** Package. R package vignette version 1.2-1, URL https://CRAN.R-project.org/package=mvtnorm.

Contents

1	Introduction	1
2	Lower Triangular Matrices	2
	2.1 Multiple Lower Triangular Matrices	3
	2.2 Printing	8
	2.3 Reordering	ç
	2.4 Subsetting	10
	2.5 Diagonal Elements	16
	2.6 Multiplication	19
	2.7 Solving Linear Systems	23
	2.8 Crossproducts	28
	2.9 Cholesky Factorisation	33
	2.10 Kronecker Products	35
	2.11 Convenience Functions	40
	2.12 Marginal and Conditional Normal Distributions	44
	2.13 Continuous Log-likelihoods	48
	2.14 Application Example	52
3	Multivariate Normal Log-likelihoods	5 4
	3.1 Algorithm	55
	3.2 Score Function	
4	Maximum-likelihood Example	80
5	Continuous-discrete Likelihoods	88
6	Unstructured Gaussian Copula Estimation	93
7	Package Infrastructure	99

Licence

Copyright (C) 2022- Torsten Hothorn

This file is part of the **mvtnorm** R add-on package.

mvtnorm is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.

mvtnorm is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with **mvtnorm**. If not, see http://www.gnu.org/licenses/>.

Chapter 1

Introduction

This document describes an implementation of Genz (1992) and, partially, of Genz and Bretz (2002), for the evaluation of N multivariate J-dimensional normal probabilities

$$p_i(\mathbf{C}_i \mid \mathbf{a}_i, \mathbf{b}_i) = \mathbb{P}(\mathbf{a}_i < \mathbf{Y}_i \le \mathbf{b}_i \mid \mathbf{C}_i) = (2\pi)^{-\frac{J}{2}} \det(\mathbf{C}_i)^{-\frac{1}{2}} \int_{\mathbf{a}_i}^{\mathbf{b}_i} \exp\left(-\frac{1}{2}\mathbf{y}^\top \mathbf{C}_i^{-\top} \mathbf{C}_i^{-1} \mathbf{y}\right) d\mathbf{y}$$
(1.1)

where $\mathbf{a}_i = (a_1^{(i)}, \dots, a_J^{(i)})^{\top} \in \mathbb{R}^J$ and $\mathbf{b}_i = (b_1^{(i)}, \dots, b_J^{(i)})^{\top} \in \mathbb{R}^J$ are integration limits, $\mathbf{C}_i = (c_{jj}^{(i)}) \in \mathbb{R}^{J \times J}$ is a lower triangular matrix with $c_{jj}^{(i)} = 0$ for $1 \leq j < j < J$, and thus $\mathbf{Y}_i \sim \mathbb{N}_J(\mathbf{0}_J, \mathbf{C}_i \mathbf{C}_i^{\top})$ for $i = 1, \dots, N$.

One application of these integrals is the estimation of the Cholesky factor \mathbf{C} of a J-dimensional normal distribution based on N interval-censored observations $\mathbf{Y}_1, \dots, \mathbf{Y}_J$ (encoded by \mathbf{a} and \mathbf{b}) via maximum-likelihood

$$\hat{\mathbf{C}} = \underset{\mathbf{C}}{\operatorname{argmax}} \sum_{i=1}^{N} \log(p_i(\mathbf{C} \mid \mathbf{a}_i, \mathbf{b}_i)).$$

In other applications, the Cholesky factor might also depend on i in some structured way.

Function pmvnorm in package mvtnorm computes p_i based on the covariance matrix $\mathbf{C}_i \mathbf{C}_i^{\top}$. However, the Cholesky factor \mathbf{C}_i is computed in FORTRAN. Function pmvnorm is not vectorised over $i=1,\ldots,N$ and thus separate calls to this function are necessary in order to compute likelihood contributions.

The implementation described here is a re-implementation (in R and C) of Alan Genz' original FORTRAN code, focusing on efficient computation of the log-likelihood $\sum_{i=1}^{N} \log(p_i)$ and the corresponding score function.

The document first describes a class and some useful methods for dealing with multiple lower triangular matrices $\mathbf{C}_i, i=1,\ldots,N$ in Chapter 2. The multivariate normal log-likelihood, and the corresponding score function, is implemented as outlined in Chapter 3. An example demonstrating maximum-likelihood estimation of Cholesky factors in the presence of interval-censored observations is discussed in Chapter 4. We use the technology developed here to implement the log-likelihood and score function for situations where some variables have been observed exactly and others only in form of interval-censoring in Chapter 5 and for nonparametric maximum-likelihood estimation in unstructured Gaussian copulae in Chapter 6.

Chapter 2

Lower Triangular Matrices

```
"ltMatrices.R" 2\equiv
        \langle R \; Header \; 100 \rangle
        \langle ltMatrices 5a \rangle
        ⟨ dim ltMatrices 5b ⟩
        ⟨ dimnames ltMatrices 5c ⟩
        \langle names\ ltMatrices\ 5d\ \rangle
        ⟨ print ltMatrices 9 ⟩
        ⟨ reorder ltMatrices 10 ⟩
        ⟨ subset ltMatrices 12 ⟩
        ⟨ lower triangular elements 14 ⟩
        ⟨ diagonals ltMatrices 16 ⟩
         diagonal matrix 19
        (mult ltMatrices 20b)
        solve ltMatrices 27
        (tcrossprod ltMatrices 32)
         crossprod ltMatrices 33 >
         chol syMatrices 34 \
         add diagonal elements 17 \
         assign diagonal elements 18 \rangle
         kronecker\ vec\ trick\ 39\ \rangle
         convenience functions 42 \rangle
         aperm 44 \rangle
         marginal 45b \rangle
         conditional 47b
        ⟨ check obs 49b ⟩
        ⟨ ldmvnorm 49a ⟩
        \langle sldmvnorm 52 \rangle
        \langle ldpmvnorm 90 \rangle
        \langle sldpmvnorm 92 \rangle
        \langle standardize 94 \rangle
        \langle destandardize 96 \rangle
```

We first define and implement infrastructure for dealing with multiple lower triangular matrices $\mathbf{C}_i \in \mathbb{R}^{J \times J}$ for i = 1, ..., N. We note that each such matrix \mathbf{C} can be stored in a vector of length J(J+1)/2. If all diagonal elements are one (that is, $c_{jj}^{(i)} \equiv 1, j = 1, ..., J$), the length of this vector is J(J-1)/2.

2.1 Multiple Lower Triangular Matrices

We can store N such matrices in an $J(J+1)/2 \times N$ matrix (diag = TRUE) or, for diag = FALSE, the $J(J-1)/2 \times N$ matrix.

Each vector might define the corresponding lower triangular matrix either in row or column-major order:

$$\mathbf{C} = \begin{pmatrix} c_{11} & & & 0 \\ c_{21} & c_{22} & & & \\ c_{31} & c_{32} & c_{33} & & \\ \vdots & \vdots & & \ddots & \\ c_{J1} & c_{J2} & \dots & c_{JJ} \end{pmatrix} \text{ matrix indexing }$$

$$= \begin{pmatrix} c_{1} & & & 0 \\ c_{2} & c_{J+1} & & & \\ c_{3} & c_{J+2} & c_{2J} & & \\ \vdots & \vdots & & \ddots & \\ c_{J} & c_{2J-1} & \dots & c_{J(J+1)/2} \end{pmatrix} \text{ column-major, byrow = FALSE }$$

$$= \begin{pmatrix} c_{1} & & & 0 \\ c_{2} & c_{3} & & & \\ c_{4} & c_{5} & c_{6} & & \\ \vdots & \vdots & \ddots & \ddots & \\ c_{J((J+1)/2-1)+1} & c_{J((J+1)/2-1)+2} & \dots & c_{J(J+1)/2} \end{pmatrix} \text{ row-major, byrow = TRUE }$$

Based on some matrix object, the dimension J is computed and checked as

Fragment referenced in 5a.

Typically the J dimensions are associated with names, and we therefore compute identifiers for the vector elements in either column- or row-major order on request (for later printing)

```
\langle ltMatrices \ names \ 4b \rangle \equiv
     nonames <- FALSE
     if (!isTRUE(names)) {
          if (is.character(names))
               stopifnot(is.character(names) &&
                          length(unique(names)) == J)
          else
              nonames <- TRUE
     } else {
          names <- as.character(1:J)</pre>
      }
      if (!nonames) {
          L1 <- matrix(names, nrow = J, ncol = J)
          L2 <- matrix(names, nrow = J, ncol = J, byrow = TRUE)
          L <- matrix(paste(L1, L2, sep = "."), nrow = J, ncol = J)
          if (byrow)
              rownames(object) <- t(L)[upper.tri(L, diag = diag)]</pre>
          else
              rownames(object) <- L[lower.tri(L, diag = diag)]</pre>
     }
     \Diamond
Fragment referenced in 5a.
```

If object is already a classed object representing lower triangular matrices (we will use the class name ltMatrices), we might want to change the storage form from row- to column-major or the other way round.

```
⟨ ltMatrices input 4c ⟩ ≡

if (inherits(object, "ltMatrices")) {
    ret <- .reorder(object, byrow = byrow)
    return(ret)
}</pre>
```

Fragment referenced in 5a.

The constructor essentially attaches attributes to a matrix \mathtt{object} , possibly after some reordering / transposing

```
\langle ltMatrices 5a \rangle \equiv
      ltMatrices <- function(object, diag = FALSE, byrow = FALSE, names = TRUE) {</pre>
           if (!is.matrix(object))
                object <- matrix(object, ncol = 1L)</pre>
           \langle ltMatrices input 4c \rangle
           ⟨ ltMatrices dim 4a ⟩
           \langle ltMatrices names 4b \rangle
           attr(object, "J")
                                       <- J
           attr(object, "diag")
                                        <- diag
           attr(object, "byrow") <- byrow</pre>
           attr(object, "rcnames") <- names</pre>
           class(object) <- c("ltMatrices", class(object))</pre>
           object
      }
      \Diamond
Fragment referenced in 2.
The dimensions of such an object are always N \times J \times J and are given by
\langle dim \ ltMatrices \ 5b \rangle \equiv
      dim.ltMatrices <- function(x) {</pre>
           J <- attr(x, "J")
           class(x) <- class(x)[-1L]</pre>
           return(c(ncol(x), J, J))
      }
      dim.syMatrices <- dim.ltMatrices</pre>
Fragment referenced in 2.
The corresponding dimnames can be extracted as
\langle dimnames \ ltMatrices \ 5c \rangle \equiv
      dimnames.ltMatrices <- function(x)</pre>
           return(list(colnames(unclass(x)), attr(x, "rcnames"), attr(x, "rcnames")))
      dimnames.syMatrices <- dimnames.ltMatrices</pre>
Fragment referenced in 2.
The names identifying rows and columns in each C_i are
\langle names\ ltMatrices\ 5d\ \rangle \equiv
      names.ltMatrices <- function(x) {</pre>
           return(rownames(unclass(x)))
      names.syMatrices <- names.ltMatrices</pre>
Fragment referenced in 2.
```

Let's set-up an example for illustration. Throughout this document, we will compare numerical results using

> chk <- function(...) stopifnot(isTRUE(all.equal(...)))</pre>

```
We start with a a simple example demonstrating how to set-up ltMatrices objects
> library("mvtnorm")
> set.seed(290875)
> N <- 4L
> J <- 5L
> rn <- paste0("C_", 1:N)
> nm <- LETTERS[1:J]</pre>
> Jn <- J * (J - 1) / 2
> ## data
> xn <- matrix(runif(N * Jn), ncol = N)</pre>
> colnames(xn) <- rn
> xd <- matrix(runif(N * (Jn + J)), ncol = N)</pre>
> colnames(xd) <- rn
> (lxn <- ltMatrices(xn, byrow = TRUE, names = nm))</pre>
, , C_1
                                        DΕ
B 0.51236601 1.0000000 0.00000000 0.0000000 0
C 0.05847253 0.9095137 1.00000000 0.0000000 0
D 0.39448719 0.6612143 0.23352591 1.0000000 0
E 0.51647518 0.2979867 0.07517749 0.8182123 1
, , C_2
                   В
A 1.0000000 0.0000000 0.0000000 0.000000 0
B 0.8590665 1.0000000 0.0000000 0.000000 0
C 0.3744315 0.1022684 1.0000000 0.000000 0
D 0.1165248 0.7956529 0.8930589 1.000000 0
E 0.1948049 0.4730419 0.2377852 0.214606 1
, , C_3
                   В
A 1.0000000 0.0000000 0.0000000 0.0000000 0
B 0.4530153 1.0000000 0.0000000 0.0000000 0
C 0.9045608 0.9269936 1.0000000 0.0000000 0
D 0.4490011 0.1326375 0.4153967 1.0000000 0
E 0.9574833 0.4917481 0.7160702 0.2938002 1
, , C_4
                      В
B 0.4877241328 1.0000000 0.000000000 0.0000000 0
C 0.0593045885 0.7625270 1.000000000 0.0000000 0
D 0.0005227393 0.1995700 0.470508903 1.0000000 0
E 0.4913541358 0.2849431 0.005961103 0.8901458 1
```

```
> dim(lxn)
[1] 4 5 5
> dimnames(lxn)
[1] "C_1" "C_2" "C_3" "C_4"
[[2]]
[1] "A" "B" "C" "D" "E"
[[3]]
[1] "A" "B" "C" "D" "E"
> lxd <- ltMatrices(xd, byrow = TRUE, diag = TRUE, names = nm)
> dim(lxd)
[1] 4 5 5
> dimnames(lxd)
[[1]]
[1] "C_1" "C_2" "C_3" "C_4"
[1] "A" "B" "C" "D" "E"
[[3]]
[1] "A" "B" "C" "D" "E"
> class(lxn) <- "syMatrices"</pre>
> 1xn
, , C_1
           Α
A 1.00000000 0.5123660 0.05847253 0.3944872 0.51647518
B 0.51236601 1.0000000 0.90951367 0.6612143 0.29798667
C 0.05847253 0.9095137 1.00000000 0.2335259 0.07517749
D 0.39448719 0.6612143 0.23352591 1.0000000 0.81821229
E 0.51647518 0.2979867 0.07517749 0.8182123 1.00000000
, , C_2
          Α
                    В
                              С
                                         D
A 1.0000000 0.8590665 0.3744315 0.1165248 0.1948049
B 0.8590665 1.0000000 0.1022684 0.7956529 0.4730419
C 0.3744315 0.1022684 1.0000000 0.8930589 0.2377852
D 0.1165248 0.7956529 0.8930589 1.0000000 0.2146060
E 0.1948049 0.4730419 0.2377852 0.2146060 1.0000000
, , C_3
                              С
                    В
                                         D
```

A 1.0000000 0.4530153 0.9045608 0.4490011 0.9574833

```
B 0.4530153 1.0000000 0.9269936 0.1326375 0.4917481
C 0.9045608 0.9269936 1.0000000 0.4153967 0.7160702
D 0.4490011 0.1326375 0.4153967 1.0000000 0.2938002
E 0.9574833 0.4917481 0.7160702 0.2938002 1.0000000

, , C_4

A B C D E
A 1.0000000000 0.4877241 0.059304588 0.0005227393 0.491354136
B 0.4877241328 1.0000000 0.762527028 0.1995699527 0.284943077
C 0.0593045885 0.7625270 1.000000000 0.4705089033 0.005961103
D 0.0005227393 0.1995700 0.470508903 1.000000000 0.890145786
E 0.4913541358 0.2849431 0.005961103 0.8901457863 1.000000000
```

2.2 Printing

For pretty printing, we coerse objects of class ltMatrices to array. The method has a logical argument called symmetric, forcing the lower triangular matrix to by interpreted as a symmetric matrix.

```
diag <- attr(x, "diag")
byrow <- attr(x, "byrow")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)</pre>
```

Fragment referenced in 9, 10, 11, 14, 16, 18, 20b.

```
\langle print \ ltMatrices \ 9 \rangle \equiv
      as.array.ltMatrices <- function(x, symmetric = FALSE, ...) {
          ⟨ extract slots 8 ⟩
          class(x) <- class(x)[-1L]</pre>
          L <- matrix(1L, nrow = J, ncol = J)
          diag(L) <- 2L
          if (byrow) {
              L[upper.tri(L, diag = diag)] \leftarrow floor(2L + 1:(J * (J - 1) / 2L + diag * J))
               L <- t(L)
          } else {
               L[lower.tri(L, diag = diag)] \leftarrow floor(2L + 1:(J * (J - 1) / 2L + diag * J))
          if (symmetric) {
              L[upper.tri(L)] <- OL
               dg <- diag(L)
              L <- L + t(L)
               diag(L) <- dg</pre>
          ret <- rbind(0, 1, x)[c(L), , drop = FALSE]
          class(ret) <- "array"</pre>
          dim(ret) \leftarrow d[3:1]
          dimnames(ret) <- dn[3:1]</pre>
          return(ret)
     }
      as.array.syMatrices <- function(x, ...)
          return(as.array.ltMatrices(x, symmetric = TRUE))
     print.ltMatrices <- function(x, ...)</pre>
          print(as.array(x))
     print.syMatrices <- function(x, ...)</pre>
          print(as.array(x))
Fragment referenced in 2.
```

Symmetric matrices are represented by lower triangular matrix objects, but we change the class from ltMatrices to syMatrices (which disables all functionality except printing and coersion to arrays).

2.3 Reordering

It is sometimes convenient to have access to lower triangular matrices in either column- or row-major order and this little helper function switches between the two forms

```
\langle reorder\ ltMatrices\ 10\ \rangle \equiv
      .reorder <- function(x, byrow = FALSE) {</pre>
          stopifnot(inherits(x, "ltMatrices"))
          if (attr(x, "byrow") == byrow) return(x)
          \langle extract \ slots \ 8 \rangle
          class(x) <- class(x)[-1L]</pre>
          rL \leftarrow cL \leftarrow diag(0, nrow = J)
          rL[lower.tri(rL, diag = diag)] <- cL[upper.tri(cL, diag = diag)] <- 1:nrow(x)
          cL <- t(cL)
          if (byrow) ### row -> col order
               return(ltMatrices(x[cL[lower.tri(cL, diag = diag)], , drop = FALSE],
                                   diag = diag, byrow = FALSE, names = dn[[2L]]))
          ### col -> row order
          return(ltMatrices(x[t(rL)[upper.tri(rL, diag = diag)], , drop = FALSE],
                               diag = diag, byrow = TRUE, names = dn[[2L]]))
     }
```

Fragment referenced in 2.

We can check if this works by switching back and forth between column-major and row-major order

```
> ## constructor + .reorder + as.array
> a <- as.array(ltMatrices(xn, byrow = TRUE))</pre>
> b <- as.array(ltMatrices(ltMatrices(xn, byrow = TRUE),
                            byrow = FALSE))
> chk(a, b)
> a <- as.array(ltMatrices(xn, byrow = FALSE))</pre>
> b <- as.array(ltMatrices(ltMatrices(xn, byrow = FALSE),
                            byrow = TRUE))
> chk(a, b)
> a <- as.array(ltMatrices(xd, byrow = TRUE, diag = TRUE))
> b <- as.array(ltMatrices(ltMatrices(xd, byrow = TRUE, diag = TRUE),
                            byrow = FALSE))
> a <- as.array(ltMatrices(xd, byrow = FALSE, diag = TRUE))</pre>
> b <- as.array(ltMatrices(ltMatrices(xd, byrow = FALSE, diag = TRUE),
                            byrow = TRUE))
> chk(a, b)
```

2.4 Subsetting

We might want to select subsets of observations $i \in \{1, ..., N\}$ or rows/columns $j \in \{1, ..., J\}$ of the corresponding matrices \mathbf{C}_i .

```
\langle .subset \ ltMatrices \ 11 \rangle \equiv
      .subset_ltMatrices <- function(x, i, j, ..., drop = FALSE) {</pre>
          if (drop) warning("argument drop is ignored")
          if (missing(i) && missing(j)) return(x)
          \langle extract \ slots \ 8 \rangle
          class(x) <- class(x)[-1L]</pre>
          if (!missing(j)) {
               j <- (1:J)[j] ### get rid of negative indices</pre>
               if (length(j) == 1L && !diag) {
                   return(ltMatrices(matrix(1, ncol = ncol(x), nrow = 1), diag = TRUE,
                                        byrow = byrow, names = dn[[2L]][j]))
               L \leftarrow diag(OL, nrow = J)
               Jp <- sum(upper.tri(L, diag = diag))</pre>
               if (byrow) {
                   L[upper.tri(L, diag = diag)] <- 1:Jp</pre>
                   L \leftarrow L + t(L)
                   diag(L) \leftarrow diag(L) / 2
                   L \leftarrow L[j, j, drop = FALSE]
                   L <- L[upper.tri(L, diag = diag)]</pre>
               } else {
                   L[lower.tri(L, diag = diag)] <- 1:Jp</pre>
                   L \leftarrow L + t(L)
                   diag(L) \leftarrow diag(L) / 2
                   L \leftarrow L[j, j, drop = FALSE]
                   L <- L[lower.tri(L, diag = diag)]</pre>
               if (missing(i)) {
                   return(ltMatrices(x[c(L), , drop = FALSE], diag = diag,
                                        byrow = byrow, names = dn[[2L]][j]))
               return(ltMatrices(x[c(L), i, drop = FALSE], diag = diag,
                                    byrow = byrow, names = dn[[2L]][j]))
          }
          return(ltMatrices(x[, i, drop = FALSE], diag = diag,
                               byrow = byrow, names = dn[[2L]]))
      }
```

Fragment referenced in 12.

```
\langle subset\ ltMatrices\ 12 \rangle \equiv
     \langle .subset \ ltMatrices \ 11 \rangle
     ### if j is not ordered, result is not a lower triangular matrix
     "[.ltMatrices" <- function(x, i, j, ..., drop = FALSE) {
         if (!missing(j)) {
             if (all(j > 0)) {
                 if (any(diff(j) < 0)) stop("invalid subset argument j")</pre>
         }
         return(.subset_ltMatrices(x = x, i = i, j = j, ..., drop = drop))
     "[.syMatrices" <- function(x, i, j, ..., drop = FALSE) {
         class(x)[1L] <- "ltMatrices"</pre>
         ret <- .subset_ltMatrices(x = x, i = i, j = j, ..., drop = drop)</pre>
         class(ret)[1L] <- "syMatrices"</pre>
         ret
     }
Fragment referenced in 2.
We check if this works by first subsetting the ltMatrices object. Second, we coerse the object to
an array and do the subset for the latter object. Both results must agree.
> ## subset
> a <- as.array(ltMatrices(xn, byrow = FALSE)[1:2, 2:4])</pre>
> b <- as.array(ltMatrices(xn, byrow = FALSE))[2:4, 2:4, 1:2]
> chk(a, b)
> a <- as.array(ltMatrices(xn, byrow = TRUE)[1:2, 2:4])</pre>
> b <- as.array(ltMatrices(xn, byrow = TRUE))[2:4, 2:4, 1:2]
> a <- as.array(ltMatrices(xd, byrow = FALSE, diag = TRUE)[1:2, 2:4])
> b <- as.array(ltMatrices(xd, byrow = FALSE, diag = TRUE))[2:4, 2:4, 1:2]
> chk(a, b)
> a <- as.array(ltMatrices(xd, byrow = TRUE, diag = TRUE)[1:2, 2:4])
> b <- as.array(ltMatrices(xd, byrow = TRUE, diag = TRUE))[2:4, 2:4, 1:2]
> chk(a, b)
   With a different subset
> ## subset
> j < -c(1, 3, 5)
> a <- as.array(ltMatrices(xn, byrow = FALSE)[1:2, j])</pre>
> b <- as.array(ltMatrices(xn, byrow = FALSE))[j, j, 1:2]</pre>
> a <- as.array(ltMatrices(xn, byrow = TRUE)[1:2, j])</pre>
> b <- as.array(ltMatrices(xn, byrow = TRUE))[j, j, 1:2]</pre>
> chk(a, b)
> a <- as.array(ltMatrices(xd, byrow = FALSE, diag = TRUE)[1:2, j])</pre>
> b <- as.array(ltMatrices(xd, byrow = FALSE, diag = TRUE))[j, j, 1:2]
> chk(a, b)
```

> a <- as.array(ltMatrices(xd, byrow = TRUE, diag = TRUE)[1:2, j])
> b <- as.array(ltMatrices(xd, byrow = TRUE, diag = TRUE))[j, j, 1:2]</pre>

> chk(a, b)

with negative subsets

```
> ## subset
> j <- -c(1, 3, 5)
> a <- as.array(ltMatrices(xn, byrow = FALSE)[1:2, j])
> b <- as.array(ltMatrices(xn, byrow = FALSE))[j, j, 1:2]
> chk(a, b)
> a <- as.array(ltMatrices(xn, byrow = TRUE)[1:2, j])
> b <- as.array(ltMatrices(xn, byrow = TRUE))[j, j, 1:2]
> chk(a, b)
> a <- as.array(ltMatrices(xd, byrow = FALSE, diag = TRUE)[1:2, j])
> b <- as.array(ltMatrices(xd, byrow = FALSE, diag = TRUE))[j, j, 1:2]
> chk(a, b)
> a <- as.array(ltMatrices(xd, byrow = TRUE, diag = TRUE)[1:2, j])
> b <- as.array(ltMatrices(xd, byrow = TRUE, diag = TRUE)[1:2, j])
> b <- as.array(ltMatrices(xd, byrow = TRUE, diag = TRUE))[j, j, 1:2]
> chk(a, b)
```

and with non-increasing argument j (this won't work for lower triangular matrices, only for symmetric matrices)

```
> ## subset
> j <- sample(1:J)
> ltM <- ltMatrices(xn, byrow = FALSE)
> try(ltM[1:2, j])
> class(ltM) <- "syMatrices"
> a <- as.array(ltM[1:2, j])
> b <- as.array(ltM)[j, j, 1:2]
> chk(a, b)
```

Extracting the lower triangular elements from an ltMatrices object (or from an object of class syMatrices) returns a matrix with N columns, undoing the effect of ltMatrices

```
\langle lower triangular elements 14 \rangle \equiv
     Lower_tri <- function(x, diag = FALSE, byrow = attr(x, "byrow")) {</pre>
          if (inherits(x, "syMatrices"))
              class(x)[1L] <- "ltMatrices"</pre>
          stopifnot(inherits(x, "ltMatrices"))
          adiag <- diag
          x <- ltMatrices(x, byrow = byrow)</pre>
          \langle \ extract \ slots \ 8 \ \rangle
          if (diag == adiag)
              return(unclass(x))
          if (!diag && adiag) {
              diagonals(x) <- 1
              return(unclass(x))
          }
          x <- unclass(x)
          if (J == 1) {
              idx <- 1L
          } else {
            if (byrow)
                idx <- cumsum(c(1, 2:J))
                idx <- cumsum(c(1, J:2))
          }
          return(x[-idx,,drop = FALSE])
     }
     \Diamond
Fragment referenced in 2.
> ## J <- 4
> M <- ltMatrices(matrix(1:10, nrow = 10, ncol = 2), diag = TRUE)
> Lower_tri(M, diag = FALSE)
     [,1] [,2]
2.1
        2
              2
3.1
        3
              3
4.1
        4
              4
3.2
        6
              6
4.2
              7
        7
              9
> Lower_tri(M, diag = TRUE)
     [,1] [,2]
1.1
        1
              1
2.1
        2
              2
3.1
        3
              3
4.1
        4
              4
            5
2.2
        5
3.2
        6
             6
4.2
        7
             7
```

```
3.3
      8
            8
4.3
      9
            9
4.4
      10
           10
attr(,"J")
[1] 4
attr(,"diag")
[1] TRUE
attr(,"byrow")
[1] FALSE
attr(,"rcnames")
[1] "1" "2" "3" "4"
> M <- ltMatrices(matrix(1:6, nrow = 6, ncol = 2), diag = FALSE)
> Lower_tri(M, diag = FALSE)
    [,1] [,2]
2.1
      1
       2
3.1
            2
4.1
       3
            3
3.2
       4
           4
4.2
       5
            5
4.3
attr(,"J")
[1] 4
attr(,"diag")
[1] FALSE
attr(,"byrow")
[1] FALSE
attr(,"rcnames")
[1] "1" "2" "3" "4"
> Lower_tri(M, diag = TRUE)
    [,1] [,2]
1.1
      1
           1
2.1
            1
3.1
       2
            2
4.1
       3
            3
2.2
       1
           1
3.2
       4
           4
4.2
       5
          5
3.3
       1
           1
4.3
       6
            6
4.4
       1
            1
attr(,"J")
[1] 4
attr(,"diag")
[1] TRUE
attr(,"byrow")
[1] FALSE
attr(,"rcnames")
[1] "1" "2" "3" "4"
> ## multiple symmetric matrices
> Lower_tri(invchol2cor(M))
```

```
[,1]
                     [,2]
2.1 -0.7071068 -0.7071068
3.1 0.4364358 0.4364358
4.1 -0.4481107 -0.4481107
3.2 -0.9258201 -0.9258201
4.2 0.9189002 0.9189002
4.3 -0.9974149 -0.9974149
attr(,"J")
[1] 4
attr(,"diag")
[1] FALSE
attr(,"byrow")
[1] FALSE
attr(,"rcnames")
[1] "1" "2" "3" "4"
```

2.5 Diagonal Elements

Fragment referenced in 2.

The diagonal elements of each matrix C_i can be extracted and are always returned as an $J \times N$ matrix.

```
\langle diagonals \ ltMatrices \ 16 \rangle \equiv
      diagonals <- function(x, ...)
          UseMethod("diagonals")
      diagonals.ltMatrices <- function(x, ...) {</pre>
          ⟨ extract slots 8 ⟩
          class(x) <- class(x)[-1L]</pre>
          if (!diag) {
               ret <- matrix(1, nrow = J, ncol = ncol(x))</pre>
               colnames(ret) <- dn[[1L]]</pre>
               rownames(ret) <- dn[[2L]]</pre>
               return(ret)
          } else {
               if (J == 1L) return(x)
               if (byrow)
                    idx <- cumsum(c(1, 2:J))
               else
                    idx <- cumsum(c(1, J:2))
               ret <- x[idx, , drop = FALSE]</pre>
               rownames(ret) <- dn[[2L]]</pre>
               return(ret)
          }
     }
      diagonals.syMatrices <- diagonals.ltMatrices
      diagonals.matrix <- function(x, ...) diag(x)</pre>
```

```
> all(diagonals(ltMatrices(xn, byrow = TRUE)) == 1L)
```

[1] TRUE

Fragment referenced in 2.

Sometimes we need to add diagonal elements to an ltMatrices object defined without diagonal

```
\langle \ add \ diagonal \ elements \ 17 \, \rangle \equiv
      .adddiag <- function(x) {</pre>
           stopifnot(inherits(x, "ltMatrices"))
           if (attr(x, "diag")) return(x)
           byrow_orig <- attr(x, "byrow")</pre>
           x <- ltMatrices(x, byrow = FALSE)</pre>
           N \leftarrow dim(x)[1L]
           J \leftarrow dim(x)[2L]
           nm <- dimnames(x)[[2L]]
           L <- diag(J)
           L[lower.tri(L, diag = TRUE)] \leftarrow 1:(J * (J + 1) / 2)
           ret <- matrix(D[lower.tri(D, diag = TRUE)],</pre>
                           nrow = J * (J + 1) / 2, ncol = N)
           colnames(ret) <- colnames(unclass(x))</pre>
           ret[L[lower.tri(L, diag = FALSE)],] <- unclass(x)</pre>
           ret <- ltMatrices(ret, diag = TRUE, byrow = FALSE, names = nm)</pre>
           ret <- ltMatrices(ret, byrow = byrow_orig)</pre>
           ret
      }
      \Diamond
```

```
\langle assign \ diagonal \ elements \ 18 \rangle \equiv
      "diagonals<-" <- function(x, value)
          UseMethod("diagonals<-")</pre>
      "diagonals<-.ltMatrices" <- function(x, value) {
          \langle extract \ slots \ 8 \rangle
          if (byrow)
              idx <- cumsum(c(1, 2:J))
               idx <- cumsum(c(1, J:2))
          ### diagonals(x) <- NULL returns ltMatrices(..., diag = FALSE)</pre>
          if (is.null(value)) {
               if (!attr(x, "diag")) return(x)
               if (J == 1L) {
                   x[] <- 1
                   return(x)
               }
              return(ltMatrices(unclass(x)[-idx,,drop = FALSE], diag = FALSE,
                                   byrow = byrow, names = dn[[2L]]))
          }
          x <- .adddiag(x)</pre>
          if (!is.matrix(value))
               value <- matrix(value, nrow = J, ncol = d[1L])</pre>
          stopifnot(is.matrix(value) && nrow(value) == J
                                        && ncol(value) == d[1L])
          if (J == 1L) {
              x[] <- value
               return(x)
          x[idx, ] \leftarrow value
          return(x)
     }
      "diagonals<-.syMatrices" <- function(x, value) {
          class(x)[1L] <- "ltMatrices"</pre>
          diagonals(x) <- value
          class(x)[1L] <- "syMatrices"</pre>
          return(x)
     }
Fragment referenced in 2.
> 1xd2 <- 1xn
> diagonals(lxd2) <- 1</pre>
> chk(as.array(lxd2), as.array(lxn))
```

A unit diagonal matrix is not treated as a special case but as an ltMatrices object with all lower triangular elements being zero

```
\langle diagonal\ matrix\ 19 \rangle \equiv
     diagonals.integer <- function(x, ...)
          ltMatrices(rep(0, x * (x - 1) / 2), diag = FALSE, ...)
Fragment referenced in 2.
> (I5 <- diagonals(5L))</pre>
, , 1
  1 2 3 4 5
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
> diagonals(I5) <- 1:5</pre>
> I5
, , 1
  1 2 3 4 5
1 1 0 0 0 0
2 0 2 0 0 0
3 0 0 3 0 0
4 0 0 0 4 0
5 0 0 0 0 5
```

2.6 Multiplication

Products $\mathbf{C}_i \mathbf{y}_i$ or $\mathbf{C}_i^{\top} \mathbf{y}_i$ with $\mathbf{y}_i \in \mathbb{R}^J$ for i = 1, ..., N can be computed with \mathbf{y} being an $J \times N$ matrix of columns-wise stacked vectors $(\mathbf{y}_1 \mid \mathbf{y}_2 \mid \cdots \mid \mathbf{y}_N)$. If \mathbf{y} is a single vector, it is recycled N times.

If the number of columns of a matrix y is neither one nor N, we compute C_iy_j for all i = 1, ..., N and j. This is dangerous but needed in cond_mvnorm later on.

We start with $\mathbf{C}_i^{\top} \mathbf{y}_i$ (transpose = TRUE), which can conveniently be computed in R (although no attention is paid to the lower triangular structure of \mathbf{x})

```
if (transpose) {
          J \leftarrow dim(x)[2L]
          if (\dim(x)[1L] == 1L) x <- x[rep(1, N),]
          ax <- as.array(x)</pre>
          ay <- array(y[rep(1:J, J),,drop = FALSE], dim = dim(ax),
                       dimnames = dimnames(ax))
          ret <- ay * ax
          ### was: return(margin.table(ret, 2:3))
          ret <- matrix(colSums(matrix(ret, nrow = dim(ret)[1L])),</pre>
                          nrow = dim(ret)[2L], ncol = dim(ret)[3L],
                          dimnames = dimnames(ret)[-1L])
          return(ret)
     }
      \
Fragment referenced in 20b.
For C_i y_i, we call C code computing the product efficiently without copying data by leveraging the
lower triangular structure of x
\langle mult\ ltMatrices\ 20b \rangle \equiv
      ### C %*% y
     Mult <- function(x, y, transpose = FALSE) {</pre>
          if (!inherits(x, "ltMatrices")) {
               if (!transpose) return(x %*% y)
              return(crossprod(x, y))
          ⟨ extract slots 8 ⟩
          if (!is.matrix(y)) y <- matrix(y, nrow = d[2L], ncol = d[1L])</pre>
          N \leftarrow ifelse(d[1L] == 1, ncol(y), d[1L])
          stopifnot(nrow(y) == d[2L])
          if (ncol(y) != N)
              return(sapply(1:ncol(y), function(i) Mult(x, y[,i], transpose = transpose)))
          ⟨ mult ltMatrices transpose 20a ⟩
          x <- ltMatrices(x, byrow = TRUE)
          class(x) <- class(x)[-1L]</pre>
          storage.mode(x) <- "double"</pre>
          storage.mode(y) <- "double"</pre>
          ret <- .Call(mvtnorm_R_ltMatrices_Mult, x, y, as.integer(N),</pre>
                         as.integer(d[2L]), as.logical(diag))
          rownames(ret) <- dn[[2L]]</pre>
          if (length(dn[[1L]]) == N)
              colnames(ret) <- dn[[1L]]</pre>
          return(ret)
     }
Fragment referenced in 2.
```

 $\langle mult\ ltMatrices\ transpose\ 20a \rangle \equiv$

The underlying C code assumes C_i (here called C) to be in row-major order.

```
/* pointer to C matrices */
double *dC = REAL(C);
/* number of matrices */
int iN = INTEGER(N)[0];
/* dimension of matrices */
int iJ = INTEGER(J)[0];
/* C contains diagonal elements */
Rboolean Rdiag = asLogical(diag);
/* p = J * (J - 1) / 2 + diag * J */
int len = iJ * (iJ - 1) / 2 + Rdiag * iJ;
```

Fragment referenced in 22, 26, 31, 37a.

We also allow C_i to be constant (N is then determined from ncol(y)). The following fragment ensures that we only loop over C_i if dim(x)[1L] > 1

```
⟨ C length 21b⟩ ≡

int p;
if (LENGTH(C) == len)
    /* C is constant for i = 1, ..., N */
    p = 0;
else
    /* C contains C_1, ..., C_N */
    p = len;

◊
```

Fragment referenced in 22, 26, 37a.

The ${\sf C}$ workhorse is now

```
\langle mult \ 22 \rangle \equiv
     SEXP R_ltMatrices_Mult (SEXP C, SEXP y, SEXP N, SEXP J, SEXP diag) {
         SEXP ans;
         double *dans, *dy = REAL(y);
         int i, j, k, start;
         \langle RC input 21a \rangle
         \langle C length 21b \rangle
         PROTECT(ans = allocMatrix(REALSXP, iJ, iN));
         dans = REAL(ans);
         for (i = 0; i < iN; i++) {
             start = 0;
             for (j = 0; j < iJ; j++) {
                 dans[j] = 0.0;
                 for (k = 0; k < j; k++)
                      dans[j] += dC[start + k] * dy[k];
                 if (Rdiag) {
                      dans[j] += dC[start + j] * dy[j];
                      start += j + 1;
                 } else {
                      dans[j] += dy[j];
                      start += j;
             }
             dC += p;
             dy += iJ;
             dans += iJ;
         UNPROTECT(1);
         return(ans);
     }
Fragment referenced in 3.
Some checks for C_i y_i
> lxn <- ltMatrices(xn, byrow = TRUE)
> lxd <- ltMatrices(xd, byrow = TRUE, diag = TRUE)
> y <- matrix(runif(N * J), nrow = J)</pre>
> a <- Mult(lxn, y)
> A <- as.array(lxn)</pre>
> b <- do.call("rbind", lapply(1:ncol(y),</pre>
      function(i) t(A[,,i] \%\% y[,i,drop = FALSE])))
> chk(a, t(b), check.attributes = FALSE)
> a <- Mult(lxd, y)
> A <- as.array(lxd)</pre>
> b <- do.call("rbind", lapply(1:ncol(y),</pre>
      function(i) t(A[,,i] %*% y[,i,drop = FALSE])))
> chk(a, t(b), check.attributes = FALSE)
> ### recycle C
> chk(Mult(lxn[rep(1, N),], y), Mult(lxn[1,], y), check.attributes = FALSE)
> ### recycle y
```

```
> chk(Mult(lxn, y[,1]), Mult(lxn, y[,rep(1, N)]))
> ### tcrossprod as multiplication
> i <- sample(1:N)[1]</pre>
> M <- t(as.array(lxn)[,,i])</pre>
> a <- sapply(1:J, function(j) Mult(lxn[i,], M[,j,drop = FALSE]))</pre>
> rownames(a) <- colnames(a) <- dimnames(lxn)[[2L]]</pre>
> b <- as.array(Tcrossprod(lxn[i,]))[,,1]</pre>
> chk(a, b, check.attributes = FALSE)
   and for \mathbf{C}_i^{\top} \mathbf{y}_i
> a <- Mult(lxn, y, transpose = TRUE)</pre>
> A <- as.array(lxn)</pre>
> b <- do.call("rbind", lapply(1:ncol(y),</pre>
      function(i) t(t(A[,,i]) %*% y[,i,drop = FALSE])))
> chk(a, t(b), check.attributes = FALSE)
> a <- Mult(lxd, y, transpose = TRUE)</pre>
> A <- as.array(lxd)</pre>
> b <- do.call("rbind", lapply(1:ncol(y),</pre>
      function(i) t(t(A[,,i]) %*% y[,i,drop = FALSE])))
> chk(a, t(b), check.attributes = FALSE)
> ### recycle C
> chk(Mult(lxn[rep(1, N),], y, transpose = TRUE),
      Mult(lxn[1,], y, transpose = TRUE), check.attributes = FALSE)
> ### recycle y
> chk(Mult(lxn, y[,1], transpose = TRUE),
      Mult(lxn, y[,rep(1, N)], transpose = TRUE))
```

2.7 Solving Linear Systems

Computeing \mathbf{C}_i^{-1} or solving $\mathbf{C}_i \mathbf{x}_i = \mathbf{y}_i$ for \mathbf{x}_i for all i = 1, ..., N is another important task. We sometimes also need $\mathbf{C}_i^{\top} \mathbf{x}_i = \mathbf{y}_i$ triggered by transpose = TRUE.

C is C_i , i = 1, ..., N in column-major order (matrix of dimension $J(J-1)/2 + J \operatorname{diag} \times N$), and y is the $J \times N$ matrix $(\mathbf{y}_1 \mid \mathbf{y}_2 \mid \cdots \mid \mathbf{y}_N)$. This function returns the $J \times N$ matrix $(\mathbf{x}_1 \mid \mathbf{x}_2 \mid \cdots \mid \mathbf{x}_N)$ of solutions.

If y is not given, \mathbf{C}_i^{-1} is returned in the same order as the original matrix \mathbf{C}_i . If all \mathbf{C}_i have unit diagonals, so will \mathbf{C}_i^{-1} .

```
\langle setup \ memory \ 24a \rangle \equiv
     /* return object: include unit diagonal elements if Rdiag == 0 */
     /* add diagonal elements (expected by Lapack) */
     nrow = (Rdiag ? len : len + iJ);
     ncol = (p > 0 ? iN : 1);
     PROTECT(ans = allocMatrix(REALSXP, nrow, ncol));
     dans = REAL(ans);
     ansx = ans;
     dansx = dans;
     dy = dans;
     if (y != R_NilValue) {
          dy = REAL(y);
          PROTECT(ansx = allocMatrix(REALSXP, iJ, iN));
          dansx = REAL(ansx);
     }
     \Diamond
Fragment referenced in 26.
```

The LAPACK functions dtptri and dtpsv assume that diagonal elements are present, even for unit diagonal matrices.

```
\langle\; copy\; elements\; 24b\; \rangle \equiv
     /* copy data and insert unit diagonal elements when necessary */
     if (p > 0 || i == 0) {
          jj = 0;
          k = 0;
          idx = 0;
          j = 0;
          while(j < len) {</pre>
              if (!Rdiag && (jj == idx)) {
                   dans[jj] = 1.0;
                   idx = idx + (iJ - k);
                   k++;
              } else {
                   dans[jj] = dC[j];
                   j++;
              jj++;
          if (!Rdiag) dans[idx] = 1.0;
     }
     if (y != R_NilValue) {
          for (j = 0; j < iJ; j++)
              dansx[j] = dy[j];
     }
Fragment referenced in 26.
```

The LAPACK workhorses are called here

```
\langle call\ Lapack\ 25a \rangle \equiv
      if (y == R_NilValue) {
          /* compute inverse */
          F77_CALL(dtptri)(&lo, &di, &iJ, dans, &info FCONE FCONE);
          if (info != 0)
               error("Cannot solve ltmatices");
      } else {
          /* solve linear system */
          F77_CALL(dtpsv)(&lo, &tr, &di, &iJ, dans, dansx, &ONE FCONE FCONE FCONE);
          dansx += iJ;
          dy += iJ;
      }
Fragment referenced in 26.
\langle return \ objects \ 25b \rangle \equiv
      if (y == R_NilValue) {
          UNPROTECT(1);
          /* note: ans always includes diagonal elements */
          return(ans);
      } else {
          UNPROTECT(2);
          return(ansx);
      }
      \Diamond
Fragment referenced in 26.
```

We finally put everything together in a dedicated ${\sf C}$ function

```
\langle solve 26 \rangle \equiv
      SEXP R_ltMatrices_solve (SEXP C, SEXP y, SEXP N, SEXP J, SEXP diag, SEXP transpose)
           SEXP ans, ansx;
           double *dans, *dansx, *dy;
           int i, j, k, info, nrow, ncol, jj, idx, ONE = 1;
           \langle RC input 21a \rangle
           \langle \ C \ length \ {\bf 21b} \ \rangle
           char di, lo = 'L', tr = 'N';
           if (Rdiag) {
                /* non-unit diagonal elements */
                di = 'N';
           } else {
                /* unit diagonal elements */
                di = 'U';
           }
           /* t(C) instead of C */
           Rboolean Rtranspose = asLogical(transpose);
           if (Rtranspose) {
                /* t(C) */
                tr = 'T';
           } else {
                /* C */
                tr = 'N';
           \langle \, setup \, \, memory \, \mathbf{24a} \, \rangle
           /\ast loop over matrices, ie columns of C \, / y \ast/
           for (i = 0; i < iN; i++) {
                ⟨ copy elements 24b ⟩
                \langle \ call \ Lapack \ 25a \ \rangle
                /* next matrix */
                if (p > 0) {
                     dans += nrow;
                     dC += p;
                }
           }
           ⟨ return objects 25b ⟩
      }
      \Diamond
Fragment referenced in 3.
```

with R interface

```
\langle solve\ ltMatrices\ 27 \rangle \equiv
      solve.ltMatrices <- function(a, b, transpose = FALSE, ...) {</pre>
          byrow_orig <- attr(a, "byrow")</pre>
          x <- ltMatrices(a, byrow = FALSE)
          diag <- attr(x, "diag")</pre>
          d \leftarrow dim(x)
          J \leftarrow d[2L]
          dn <- dimnames(x)</pre>
          class(x) <- class(x)[-1L]</pre>
          storage.mode(x) <- "double"</pre>
          if (!missing(b)) {
               if (!is.matrix(b)) b <- matrix(b, nrow = J, ncol = ncol(x))</pre>
               stopifnot(nrow(b) == J)
              N \leftarrow ifelse(d[1L] == 1, ncol(b), d[1L])
               stopifnot(ncol(b) == N)
               storage.mode(b) <- "double"</pre>
              ret <- .Call(mvtnorm_R_ltMatrices_solve, x, b,</pre>
                             as.integer(\mathbb{N}), as.integer(\mathbb{J}), as.logical(diag),
                             as.logical(transpose))
               if (d[1L] == N) {
                   colnames(ret) <- dn[[1L]]</pre>
               } else {
                   colnames(ret) <- colnames(b)</pre>
              rownames(ret) <- dn[[2L]]</pre>
              return(ret)
          }
          if (transpose) stop("cannot compute inverse of t(a)")
          ret <- try(.Call(mvtnorm_R_ltMatrices_solve, x, NULL,</pre>
                             as.integer(ncol(x)), as.integer(J), as.logical(diag),
                              as.logical(FALSE)))
          colnames(ret) <- dn[[1L]]</pre>
          if (!diag)
               ### ret always includes diagonal elements, remove here
              ret <- ret[- cumsum(c(1, J:2)), , drop = FALSE]</pre>
          ret <- ltMatrices(ret, diag = diag, byrow = FALSE, names = dn[[2L]])</pre>
          ret <- ltMatrices(ret, byrow = byrow_orig)</pre>
          return(ret)
      }
Fragment referenced in 2.
and some checks
> ## solve
> A <- as.array(lxn)</pre>
> a <- solve(lxn)</pre>
> a <- as.array(a)
> b <- array(apply(A, 3L, function(x) solve(x), simplify = TRUE),
                dim = rev(dim(1xn))
```

```
> chk(a, b, check.attributes = FALSE)
> A <- as.array(lxd)</pre>
> a <- as.array(solve(lxd))</pre>
> b <- array(apply(A, 3L, function(x) solve(x), simplify = TRUE),
              dim = rev(dim(lxd)))
> chk(a, b, check.attributes = FALSE)
> chk(solve(lxn, y), Mult(solve(lxn), y))
> chk(solve(lxd, y), Mult(solve(lxd), y))
> ### recycle C
> chk(solve(lxn[1,], y), as.array(solve(lxn[1,]))[,,1] %*% y)
> chk(solve(lxn[rep(1, N),], y), solve(lxn[1,], y), check.attributes = FALSE)
> ### recycle y
> chk(solve(lxn, y[,1]), solve(lxn, y[,rep(1, N)]))
   also for \mathbf{C}_i^{\top} \mathbf{x}_i = \mathbf{y}_i
> chk(solve(lxn[1,], y, transpose = TRUE),
      t(as.array(solve(lxn[1,]))[,,1]) %*% y)
```

2.8 Crossproducts

Compute $\mathbf{C}_i \mathbf{C}_i^{\top}$ or $\mathrm{diag}(\mathbf{C}_i \mathbf{C}_i^{\top})$ (diag_only = TRUE) for $i=1,\ldots,N$. These are symmetric matrices, so we store them as a lower triangular matrix using a different class name symmetrices. We write one C function for computing $\mathbf{C}_i \mathbf{C}_i^{\top}$ or $\mathbf{C}_i^{\top} \mathbf{C}_i$ (Rtranspose being TRUE).

We differentiate between computation of the diagonal elements of the crossproduct

```
dans[0] = 1.0;
if (Rdiag)
    dans[0] = pow(dC[0], 2);
if (Rtranspose) { // crossprod
    for (k = 1; k < iJ; k++)
        dans[0] += pow(dC[IDX(k + 1, 1, iJ, Rdiag)], 2);
}</pre>
```

Fragment referenced in 29, 30a.

```
\langle tcrossprod \ diagonal \ only \ 29 \rangle \equiv
     PROTECT(ans = allocMatrix(REALSXP, iJ, iN));
     dans = REAL(ans);
     for (n = 0; n < iN; n++) {
          ⟨ first element 28 ⟩
          for (i = 1; i < iJ; i++) {
              dans[i] = 0.0;
              if (Rtranspose) { // crossprod
                  for (k = i + 1; k < iJ; k++)
                      dans[i] += pow(dC[IDX(k + 1, i + 1, iJ, Rdiag)], 2);
                               // tcrossprod
              } else {
                  for (k = 0; k < i; k++)
                       dans[i] += pow(dC[IDX(i + 1, k + 1, iJ, Rdiag)], 2);
              }
              if (Rdiag) {
                  dans[i] += pow(dC[IDX(i + 1, i + 1, iJ, Rdiag)], 2);
              } else {
                  dans[i] += 1.0;
              }
          }
          dans += iJ;
          dC += len;
     }
Fragment referenced in 31.
```

and computation of the full $J \times J$ cross product matrix

```
\langle tcrossprod full 30a \rangle \equiv
     nrow = iJ * (iJ + 1) / 2;
     PROTECT(ans = allocMatrix(REALSXP, nrow, iN));
     dans = REAL(ans);
     for (n = 0; n < INTEGER(N)[0]; n++) {
          ⟨first element 28⟩
          for (i = 1; i < iJ; i++) {
              for (j = 0; j \le i; j++) {
                   ix = IDX(i + 1, j + 1, iJ, 1);
                   dans[ix] = 0.0;
                   if (Rtranspose) { // crossprod
                       for (k = i + 1; k < iJ; k++)
                           dans[ix] +=
                                dC[IDX(k + 1, i + 1, iJ, Rdiag)] *
                                dC[IDX(k + 1, j + 1, iJ, Rdiag)];
                   } else {
                                     // tcrossprod
                       for (k = 0; k < j; k++)
                            dans[ix] +=
                                dC[IDX(i + 1, k + 1, iJ, Rdiag)] *
                                dC[IDX(j + 1, k + 1, iJ, Rdiag)];
                   }
                   if (Rdiag) {
                       if (Rtranspose) {
                            dans[ix] +=
                                dC[IDX(i + 1, i + 1, iJ, Rdiag)] *
                                dC[IDX(i + 1, j + 1, iJ, Rdiag)];
                       } else {
                            dans[ix] +=
                                dC[IDX(i + 1, j + 1, iJ, Rdiag)] *
                                dC[IDX(j + 1, j + 1, iJ, Rdiag)];
                       }
                   } else {
                       if (j < i)
                           dans[ix] += dC[IDX(i + 1, j + 1, iJ, Rdiag)];
                           dans[ix] += 1.0;
                   }
              }
          }
          dans += nrow;
          dC += len;
     }
     \Diamond
Fragment referenced in 31.
and put both cases together
\langle IDX 30b \rangle \equiv
     \#define\ IDX(i, j, n, d)\ ((i) >= (j)\ ?\ (n)\ *\ ((j)\ -\ 1)\ -\ ((j)\ -\ 2)\ *\ ((j)\ -\ 1)/2\ +\ (i)\ -\ (j)\ -\ (!d)\ *\ (
Fragment referenced in 31, 37a.
```

```
\langle tcrossprod 31 \rangle \equiv
       \langle \mathit{IDX} \; 30b \, \rangle
       SEXP R_ltMatrices_tcrossprod (SEXP C, SEXP N, SEXP J, SEXP diag,
                                                 SEXP diag_only, SEXP transpose) {
             SEXP ans;
             double *dans;
             int i, j, n, k, ix, nrow;
             \langle RC input 21a \rangle
             Rboolean Rdiag_only = asLogical(diag_only);
             Rboolean Rtranspose = asLogical(transpose);
             if (Rdiag_only) {
                  \langle \; tcrossprod \; diagonal \; only \; \mathbf{29} \; \rangle
             } else {
                  \langle \; tcrossprod \; full \; 30a \; \rangle
             UNPROTECT(1);
             return(ans);
       }
       \Diamond
Fragment referenced in 3.
```

with ${\sf R}$ interface

```
\langle tcrossprod \ ltMatrices \ 32 \rangle \equiv
      ### C %*% t(C) => returns object of class syMatrices
      ### diag(C %*% t(C)) => returns matrix of diagonal elements
      .Tcrossprod <- function(x, diag_only = FALSE, transpose = FALSE) {
          if (!inherits(x, "ltMatrices")) {
               ret <- tcrossprod(x)</pre>
               if (diag_only) ret <- diag(ret)</pre>
               return(ret)
          byrow_orig <- attr(x, "byrow")</pre>
          diag <- attr(x, "diag")</pre>
          d \leftarrow dim(x)
          J \leftarrow d[2L]
          dn <- dimnames(x)</pre>
          x <- ltMatrices(x, byrow = FALSE)</pre>
          class(x) \leftarrow class(x)[-1L]
          N \leftarrow d[1L]
          storage.mode(x) <- "double"</pre>
          ret <- .Call(mvtnorm_R_ltMatrices_tcrossprod, x, as.integer(N), as.integer(J),</pre>
                          as.logical(diag), as.logical(diag_only), as.logical(transpose))
          colnames(ret) <- dn[[1L]]</pre>
          if (diag_only) {
               rownames(ret) <- dn[[2L]]</pre>
               ret <- ltMatrices(ret, diag = TRUE, byrow = FALSE, names = dn[[2L]])</pre>
               ret <- ltMatrices(ret, byrow = byrow_orig)</pre>
               class(ret)[1L] <- "syMatrices"</pre>
          return(ret)
      }
      Tcrossprod <- function(x, diag_only = FALSE)</pre>
           .Tcrossprod(x = x, diag_only = diag_only, transpose = FALSE)
Fragment referenced in 2.
```

We could have created yet another generic tcrossprod, but base::tcrossprod is more general and, because speed is an issue, we don't want to waste time on methods dispatch.

```
> # diagonal elements only
> d <- Tcrossprod(lxd, diag_only = TRUE)
> chk(d, apply(a, 3, diag))
> chk(d, diagonals(Tcrossprod(lxd)))
   We also add Crossprod, which is a call to Tcrossprod with the transpose switch turned on
\langle crossprod\ ltMatrices\ 33 \rangle \equiv
     Crossprod <- function(x, diag_only = FALSE)</pre>
         .Tcrossprod(x, diag_only = diag_only, transpose = TRUE)
Fragment referenced in 2.
and run some checks
> ## Crossprod
> a <- as.array(Crossprod(lxn))</pre>
> b <- array(apply(as.array(lxn), 3L, function(x) crossprod(x), simplify = TRUE),
              dim = rev(dim(lxn))
> chk(a, b, check.attributes = FALSE)
> # diagonal elements only
> d <- Crossprod(lxn, diag_only = TRUE)</pre>
> chk(d, apply(a, 3, diag))
> chk(d, diagonals(Crossprod(lxn)))
> a <- as.array(Crossprod(lxd))</pre>
> b <- array(apply(as.array(1xd), 3L, function(x) crossprod(x), simplify = TRUE),
              dim = rev(dim(lxd)))
> chk(a, b, check.attributes = FALSE)
> # diagonal elements only
> d <- Crossprod(lxd, diag_only = TRUE)
> chk(d, apply(a, 3, diag))
> chk(d, diagonals(Crossprod(lxd)))
```

2.9 Cholesky Factorisation

One might want to compute the Cholesky factorisations $\Sigma_i = \mathbf{C}_i \mathbf{C}_i^{\top}$ for multiple symmetric matrices Σ_i , stored as a matrix in class syMatrices.

```
\langle chol \ syMatrices \ 34 \rangle \equiv
      chol.syMatrices <- function(x, ...) {</pre>
          byrow_orig <- attr(x, "byrow")</pre>
          dnm <- dimnames(x)</pre>
          stopifnot(attr(x, "diag"))
          d \le dim(x)
          \#\#\# x is of class syMatrices, coerse to ltMatrices first and re-arrange
          ### second
          x <- ltMatrices(unclass(x), diag = TRUE,</pre>
                             byrow = byrow_orig, names = dnm[[2L]])
          x <- ltMatrices(x, byrow = FALSE)</pre>
          class(x) \leftarrow class(x)[-1]
          storage.mode(x) <- "double"</pre>
          ret <- .Call(mvtnorm_R_syMatrices_chol, x,</pre>
                          as.integer(d[1L]), as.integer(d[2L]))
          colnames(ret) <- dnm[[1L]]</pre>
          ret <- ltMatrices(ret, diag = TRUE,</pre>
                               byrow = FALSE, names = dnm[[2L]])
          ret <- ltMatrices(ret, byrow = byrow_orig)</pre>
          return(ret)
      }
      \Diamond
```

Luckily, we already have the data in the correct packed colum-major storage, so we swiftly loop over $i=1,\ldots,N$ in C and hand over to LAPACK

Fragment referenced in 2.

```
\langle chol 35 \rangle \equiv
     SEXP R_syMatrices_chol (SEXP Sigma, SEXP N, SEXP J) {
         SEXP ans;
         double *dans, *dSigma;
         int iJ = INTEGER(J)[0];
         int pJ = iJ * (iJ + 1) / 2;
         int iN = INTEGER(N)[0];
         int i, j, info = 0;
         char lo = 'L';
         PROTECT(ans = allocMatrix(REALSXP, pJ, iN));
         dans = REAL(ans);
         dSigma = REAL(Sigma);
         for (i = 0; i < iN; i++) {
              /* copy data */
              for (j = 0; j < pJ; j++)
                  dans[j] = dSigma[j];
              F77_CALL(dpptrf)(&lo, &iJ, dans, &info FCONE);
              if (info != 0) {
                  if (info > 0)
                      error("the leading minor of order %d is not positive definite",
                  error("argument %d of Lapack routine %s had invalid value",
                         -info, "dpptrf");
              }
              dSigma += pJ;
              dans += pJ;
         UNPROTECT(1);
         return(ans);
     }
     \Diamond
Fragment referenced in 3.
```

This new chol method can be used to revert Tcrossprod for ltMatrices with and without unit diagonals:

```
> Sigma <- Tcrossprod(lxd)
> chk(chol(Sigma), lxd)
> Sigma <- Tcrossprod(lxn)
> ## Sigma and chol(Sigma) always have diagonal, lxn doesn't
> chk(as.array(chol(Sigma)), as.array(lxn))
```

2.10 Kronecker Products

We sometimes need to compute $\text{vec}(\mathbf{S})^{\top}(\mathbf{A}^{\top} \otimes \mathbf{C})$, where \mathbf{S} is a lower triangular or other $J \times J$ matrix and \mathbf{A} and \mathbf{C} are lower triangular $J \times J$ matrices. With the "vec trick", we have $\text{vec}(\mathbf{S})^{\top}(\mathbf{A}^{\top} \otimes \mathbf{C}) = \text{vec}(\mathbf{C}^{\top}\mathbf{S}\mathbf{A}^{\top})^{\top}$. The LAPACK function dtrmm computes products of lower triangular matrices with other matrices, so we simply call this function looping over $i = 1, \dots, N$.

```
\langle t(C) S t(A) 36 \rangle \equiv
     char siR = 'R', siL = 'L', lo = 'L', tr = 'N', trT = 'T', di = 'N', trs;
     double ONE = 1.0;
     int iJ2 = iJ * iJ;
     double tmp[iJ2];
     for (j = 0; j < iJ2; j++) tmp[j] = 0.0;
     ans = PROTECT(allocMatrix(REALSXP, iJ2, iN));
     dans = REAL(ans);
     for (i = 0; i < LENGTH(ans); i++) dans[i] = 0.0;</pre>
     for (i = 0; i < iN; i++) {
         /* A := C */
         for (j = 0; j < iJ; j++) {
             for (k = 0; k \le j; k++)
                  tmp[k * iJ + j] = dC[IDX(j + 1, k + 1, iJ, 1L)];
         /* S was already expanded in R code; B = S */
         for (j = 0; j < iJ2; j++) dans[j] = dS[j];
         /* B := t(A) %*% B */
         trs = (RtC ? trT : tr);
         F77_CALL(dtrmm)(&siL, &lo, &trs, &di, &iJ, &iJ, &ONE, tmp, &iJ,
                          dans, &iJ FCONE FCONE FCONE FCONE);
         /* A */
         for (j = 0; j < iJ; j++) {
             for (k = 0; k \le j; k++)
                  tmp[k * iJ + j] = dA[IDX(j + 1, k + 1, iJ, 1L)];
         /* B := B %*% t(A) */
         trs = (RtA ? trT : tr);
         F77_CALL(dtrmm)(&siR, &lo, &trs, &di, &iJ, &iJ, &ONE, tmp, &iJ,
                          dans, &iJ FCONE FCONE FCONE FCONE);
         dans += iJ2;
         dC += p;
         dS += iJ2;
         dA += p;
     }
```

Fragment referenced in 37a.

```
\langle vec\ trick\ 37a \rangle \equiv
       \langle IDX 30b \rangle
       SEXP R_vectrick(SEXP C, SEXP N, SEXP J, SEXP S, SEXP A, SEXP diag, SEXP trans) {
            int i, j, k;
            SEXP ans;
            double *dS, *dans, *dA;
            /* note: diag is needed by this chunk but has no consequences */
            \langle RC input 21a \rangle
            \langle C length 21b \rangle
            dS = REAL(S);
            dA = REAL(A);
            Rboolean RtC = LOGICAL(trans)[0];
            Rboolean RtA = LOGICAL(trans)[1];
            \langle t(C) S t(A) 36 \rangle
            UNPROTECT(1);
            return(ans);
       }
Fragment referenced in 3.
In R, we compute \mathbf{C}^{\top}\mathbf{S}\mathbf{A}^{\top} by default or \mathbf{C}\mathbf{S}\mathbf{A}^{\top} or \mathbf{C}^{\top}\mathbf{S}\mathbf{A} or \mathbf{C}^{\top}\mathbf{S}\mathbf{A} by using the trans argument
in vectrick. Argument C is an ltMatrices object
\langle\; check \; C \; argument \; 37b \, \rangle \equiv
       stopifnot(inherits(C, "ltMatrices"))
       if (!attr(C, "diag")) diagonals(C) <- 1</pre>
       C_byrow_orig <- attr(C, "byrow")</pre>
       C <- ltMatrices(C, byrow = FALSE)</pre>
       dC <- dim(C)
       nm <- attr(C, "rcnames")</pre>
       N \leftarrow dC[1L]
       J \leftarrow dC[2L]
       class(C) <- class(C)[-1L]</pre>
       storage.mode(C) <- "double"</pre>
Fragment referenced in 39.
```

S can be an ltMatrices object or a $J^2 \times N$ matrix featuring columns of vectorised $J \times J$ matrices

```
\langle check \ S \ argument \ 38a \rangle \equiv
      SltM <- inherits(S, "ltMatrices")</pre>
      if (SltM) {
          if (!attr(S, "diag")) diagonals(S) <- 1</pre>
          S_byrow_orig <- attr(S, "byrow")</pre>
          stopifnot(S_byrow_orig == C_byrow_orig)
          S <- ltMatrices(S, byrow = FALSE)
          dS <- dim(S)
          stopifnot(dC[2L] == dS[2L])
          if (dC[1] != 1L) {
              stopifnot(dC[1L] == dS[1L])
          } else {
              N \leftarrow dS[1L]
          ## argument A in dtrmm is not in packed form, so expand in J x J
          ## matrix
          S <- matrix(as.array(S), ncol = dS[1L])
      } else {
          stopifnot(is.matrix(S))
          stopifnot(nrow(S) == J^2)
          if (dC[1] != 1L) {
               stopifnot(dC[1L] == ncol(S))
          } else {
              N <- ncol(S)
     }
      storage.mode(S) <- "double"</pre>
Fragment referenced in 39.
A is an ltMatrices object
\langle check \ A \ argument \ 38b \rangle \equiv
      if (missing(A)) {
          A <- C
     } else {
          stopifnot(inherits(A, "ltMatrices"))
          if (!attr(A, "diag")) diagonals(A) <- 1</pre>
          A_byrow_orig <- attr(A, "byrow")
          stopifnot(C_byrow_orig == A_byrow_orig)
          A <- ltMatrices(A, byrow = FALSE)
          dA \leftarrow dim(A)
          stopifnot(dC[2L] == dA[2L])
          class(A) <- class(A)[-1L]</pre>
          storage.mode(A) <- "double"</pre>
          if (dC[1L] != dA[1L]) {
               if (dC[1L] == 1L)
                   C \leftarrow C[, rep(1, N), drop = FALSE]
               if (dA[1L] == 1L)
                   A <- A[, rep(1, N), drop = FALSE]
              stopifnot(ncol(A) == ncol(C))
          }
     }
```

Fragment referenced in 39.

```
\langle kronecker \ vec \ trick \ 39 \rangle \equiv
     vectrick <- function(C, S, A, transpose = c(TRUE, TRUE)) {</pre>
         stopifnot(all(is.logical(transpose)))
         stopifnot(length(transpose) == 2L)
         \langle check\ C\ argument\ 37b \rangle
         \langle check \ S \ argument \ 38a \rangle
         ⟨ check A argument 38b ⟩
         ret <- .Call(mvtnorm_R_vectrick, C, as.integer(N), as.integer(J), S, A,</pre>
                       as.logical(TRUE), as.logical(transpose))
         if (!SltM) return(matrix(c(ret), ncol = N))
         L \leftarrow matrix(1:(J^2), nrow = J)
         ret <- ltMatrices(ret[L[lower.tri(L, diag = TRUE)],,drop = FALSE],</pre>
                            diag = TRUE, byrow = FALSE, names = nm)
         ret <- ltMatrices(ret, byrow = C_byrow_orig)</pre>
         return(ret)
     }
Fragment referenced in 2.
Here is a small example
> J <- 10
> d <- TRUE
> L <- diag(J)
> L[lower.tri(L, diag = d)] <- prm <- runif(J * (J + c(-1, 1)[d + 1]) / 2)
> C \leftarrow solve(L)
> D <- -kronecker(t(C), C)
> S \leftarrow diag(J)
> S[lower.tri(S, diag = TRUE)] <- x <- runif(J * (J + 1) / 2)
> SDO \leftarrow matrix(c(S) \%*\% D, ncol = J)
> SD1 <- -crossprod(C, tcrossprod(S, C))</pre>
> a <- ltMatrices(C[lower.tri(C, diag = TRUE)], diag = TRUE, byrow = FALSE)
> b <- ltMatrices(x, diag = TRUE, byrow = FALSE)
> SD2 <- -vectrick(a, b, a)
> SD2a <- -vectrick(a, b)
> chk(SD2, SD2a)
> chk(SD0[lower.tri(SD0, diag = d)],
       SD1[lower.tri(SD1, diag = d)])
> chk(SD0[lower.tri(SD0, diag = d)],
       c(unclass(SD2)))
> ### same; but SD2 is vec(SD0)
> S <- t(matrix(as.array(b), byrow = FALSE, nrow = 1))</pre>
> SD2 <- -vectrick(a, S, a)
> SD2a <- -vectrick(a, S)
> chk(SD2, SD2a)
> chk(c(SD0), c(SD2))
> ### N > 1
```

We put everything together in function vectrick

```
> N <- 4L
> prm <- runif(J * (J - 1) / 2)
> C <- ltMatrices(prm)
> S <- matrix(runif(J^2 * N), ncol = N)
> A <- vectrick(C, S, C)
> Cx <- as.array(C)[,,1]
> B <- apply(S, 2, function(x) t(Cx) %*% matrix(x, ncol = J) %*% t(Cx))
> chk(A, B)
> A <- vectrick(C, S, C, transpose = c(FALSE, FALSE))
> Cx <- as.array(C)[,,1]
> B <- apply(S, 2, function(x) Cx %*% matrix(x, ncol = J) %*% Cx)
> chk(A, B)
```

2.11 Convenience Functions

We add a few convenience functions for computing covariance matrices $\mathbf{\Sigma}_i = \mathbf{C}_i \mathbf{C}_i^{\top}$, precision matrices $\mathbf{P}_i = \mathbf{L}_i^{\top} \mathbf{L}_i$, correlation matrices $\mathbf{R}_i = \tilde{\mathbf{C}}_i \tilde{\mathbf{C}}_i^{\top}$ (where $\tilde{\mathbf{C}}_i = \operatorname{diag}(\mathbf{C}_i \mathbf{C}_i^{\top})^{-\frac{1}{2}} \mathbf{C}_i$), or matrices of partial correlations $\mathbf{A}_i = -\tilde{\mathbf{L}}_i^{\top} \tilde{\mathbf{L}}_i$ with $\tilde{\mathbf{L}}_i = \mathbf{L}_i \operatorname{diag}(\mathbf{L}_i^{\top} \mathbf{L}_i)^{-\frac{1}{2}}$ from \mathbf{L}_i (invchol) or $\mathbf{C}_i = \mathbf{L}_i^{-1}$ (chol) for $i = 1, \ldots, N$.

First, we set-up functions for computing $\tilde{\mathbf{C}}_i$

x <- unclass(x) * D[rep(1:J, 1:J),,drop = FALSE]

ret <- ltMatrices(x, diag = TRUE, byrow = TRUE, names = nm)
ret <- ltMatrices(ret, byrow = byrow_orig)
return(ret)</pre>

}

Fragment referenced in 42.

and
$$\tilde{\mathbf{C}}_i^{-1} = \mathbf{L}_i \operatorname{diag}(\mathbf{L}_i^{-1} \mathbf{L}_i^{-\top})^{\frac{1}{2}}$$

 $J \leftarrow dim(x)[2L]$

nm <- dimnames(x)[[2L]]

```
\langle\,L\ times\ D\ 41\,\rangle \equiv
      ### invcholD = solve(Dchol)
      invcholD <- function(x, D = sqrt(Tcrossprod(solve(x), diag_only = TRUE))) {</pre>
           x <- .adddiag(x)</pre>
           byrow_orig <- attr(x, "byrow")</pre>
           x <- ltMatrices(x, byrow = FALSE)</pre>
           N \leftarrow dim(x)[1L]
           J \leftarrow dim(x)[2L]
           nm <- dimnames(x)[[2L]]
           x <- unclass(x) * D[rep(1:J, J:1),,drop = FALSE]</pre>
           ret <- ltMatrices(x, diag = TRUE, byrow = FALSE, names = nm)</pre>
           ret <- ltMatrices(ret, byrow = byrow_orig)</pre>
           return(ret)
      }
      \Diamond
Fragment referenced in 42.
```

and now the convenience functions are one-liners:

```
\langle \ convenience \ functions \ 42 \ \rangle \equiv
      \langle D \ times \ C \ 40 \rangle
      \langle L \ times \ D \ 41 \rangle
      ### C -> Sigma
      chol2cov <- function(x)</pre>
           Tcrossprod(x)
      ### L -> C
      invchol2chol <- function(x)</pre>
           solve(x)
      ### C -> L
      chol2invchol <- function(x)</pre>
           solve(x)
      ### L -> Sigma
      invchol2cov <- function(x)</pre>
           chol2cov(invchol2chol(x))
      ### L -> Precision
      invchol2pre <- function(x)</pre>
           Crossprod(x)
      ### C -> Precision
      chol2pre <- function(x)</pre>
           Crossprod(chol2invchol(x))
      ### C -> R
      chol2cor <- function(x) {</pre>
           ret <- Tcrossprod(Dchol(x))</pre>
           diagonals(ret) <- NULL</pre>
           return(ret)
      }
      ### L -> R
      invchol2cor <- function(x) {</pre>
           ret <- chol2cor(invchol2chol(x))</pre>
           diagonals(ret) <- NULL</pre>
           return(ret)
      }
      ### L -> A
      invchol2pc <- function(x) {</pre>
           ret <- -Crossprod(invcholD(x, D = 1 / sqrt(Crossprod(x, diag_only = TRUE))))</pre>
           diagonals(ret) <- 0
      }
      ### C -> A
      chol2pc <- function(x)</pre>
           invchol2pc(solve(x))
Fragment referenced in 2.
```

Here are some tests

```
> prec2pc <- function(x) {</pre>
      ret <- -cov2cor(x)
      diag(ret) <- 0
      ret
+ }
> L <- 1xn
> Sigma <- apply(as.array(L), 3,</pre>
                 function(x) tcrossprod(solve(x)), simplify = FALSE)
> Prec <- lapply(Sigma, solve)</pre>
> Corr <- lapply(Sigma, cov2cor)</pre>
> CP <- lapply(Corr, solve)
> PC <- lapply(Prec, function(x) prec2pc(x))
> chk(unlist(Sigma), c(as.array(invchol2cov(L))),
      check.attributes = FALSE)
> chk(unlist(Prec), c(as.array(invchol2pre(L))),
      check.attributes = FALSE)
> chk(unlist(Corr), c(as.array(invchol2cor(L))),
      check.attributes = FALSE)
> chk(unlist(CP), c(as.array(Crossprod(invcholD(L)))),
      check.attributes = FALSE)
> chk(unlist(PC), c(as.array(invchol2pc(L))),
      check.attributes = FALSE)
> C <- 1xn
> Sigma <- apply(as.array(C), 3,</pre>
                 function(x) tcrossprod(x), simplify = FALSE)
> Prec <- lapply(Sigma, solve)</pre>
> Corr <- lapply(Sigma, cov2cor)</pre>
> CP <- lapply(Corr, solve)
> PC <- lapply(Prec, function(x) prec2pc(x))
> chk(unlist(Sigma), c(as.array(chol2cov(C))),
      check.attributes = FALSE)
> chk(unlist(Prec), c(as.array(chol2pre(C))),
      check.attributes = FALSE)
> chk(unlist(Corr), c(as.array(chol2cor(C))),
      check.attributes = FALSE)
> chk(unlist(CP), c(as.array(Crossprod(solve(Dchol(C))))),
      check.attributes = FALSE)
> chk(unlist(PC), c(as.array(chol2pc(C))),
      check.attributes = FALSE)
> L <- 1xd
> Sigma <- apply(as.array(L), 3,</pre>
                 function(x) tcrossprod(solve(x)), simplify = FALSE)
> Prec <- lapply(Sigma, solve)</pre>
> Corr <- lapply(Sigma, cov2cor)</pre>
> CP <- lapply(Corr, solve)
> PC <- lapply(Prec, function(x) prec2pc(x))</pre>
> chk(unlist(Sigma), c(as.array(invchol2cov(L))),
      check.attributes = FALSE)
> chk(unlist(Prec), c(as.array(invchol2pre(L))),
      check.attributes = FALSE)
> chk(unlist(Corr), c(as.array(invchol2cor(L))),
      check.attributes = FALSE)
```

```
> chk(unlist(CP), c(as.array(Crossprod(invcholD(L)))),
      check.attributes = FALSE)
> chk(unlist(PC), c(as.array(invchol2pc(L))),
      check.attributes = FALSE)
> C <- 1xd
> Sigma <- apply(as.array(C), 3,</pre>
                  function(x) tcrossprod(x), simplify = FALSE)
> Prec <- lapply(Sigma, solve)
> Corr <- lapply(Sigma, cov2cor)</pre>
> CP <- lapply(Corr, solve)
> PC <- lapply(Prec, function(x) prec2pc(x))
> chk(unlist(Sigma), c(as.array(chol2cov(C))),
      check.attributes = FALSE)
> chk(unlist(Prec), c(as.array(chol2pre(C))),
      check.attributes = FALSE)
> chk(unlist(Corr), c(as.array(chol2cor(C))),
      check.attributes = FALSE)
> chk(unlist(CP), c(as.array(Crossprod(solve(Dchol(C))))),
      check.attributes = FALSE)
> chk(unlist(PC), c(as.array(chol2pc(C))),
      check.attributes = FALSE)
   We also add an aperm method for class ltMatrices
\langle aperm 44 \rangle \equiv
     aperm.ltMatrices <- function(a, perm, is_chol = FALSE, ...) {
         if (is_chol) { ### a is Cholesky of covariance
             Sperm <- chol2cov(a)[,perm]</pre>
             return(chol(Sperm))
         }
         Sperm <- invchol2cov(a)[,perm]</pre>
         chol2invchol(chol(Sperm))
     }
Fragment referenced in 2.
> L <- 1xn
> J \leftarrow dim(L)[2L]
> Lp \leftarrow aperm(a = L, perm = p \leftarrow sample(1:J), is\_chol = FALSE)
> chk(invchol2cov(L)[,p], invchol2cov(Lp))
> C <- 1xn
> J <- dim(C)[2L]
> Cp <- aperm(a = C, perm = p <- sample(1:J), is_chol = TRUE)
> chk(chol2cov(C)[,p], chol2cov(Cp))
```

2.12 Marginal and Conditional Normal Distributions

Marginal and conditional distributions from distributions $\mathbf{Y}_i \sim \mathbb{N}_J(\mathbf{0}_J, \mathbf{C}_i \mathbf{C}_i^\top)$ (chol argument for \mathbf{C}_i for $i = 1, \dots, N$) or $\mathbf{Y}_i \sim \mathbb{N}_J(\mathbf{0}_J, \mathbf{L}_i^{-1} \mathbf{L}_i^{-\top})$ (invchol argument for \mathbf{L}_i for $i = 1, \dots, N$) shall be computed.

```
⟨ mc input checks 45a⟩ ≡

stopifnot(xor(missing(chol), missing(invchol)))
x <- if (missing(chol)) invchol else chol

stopifnot(inherits(x, "ltMatrices"))

N <- dim(x)[1L]
J <- dim(x)[2L]
if (is.character(which)) which <- match(which, dimnames(x)[[2L]])
stopifnot(all(which %in% 1:J))

◊</pre>
```

Fragment referenced in 45b, 47b.

The first j marginal distributions can be obtained from subsetting \mathbf{C} or \mathbf{L} directly. Arbitrary marginal distributions are based on the corresponding subset of the covariance matrix for which we compute a corresponding Cholesky factor (such that we can use lpmvnorm later on).

```
\langle marginal 45b \rangle \equiv
      marg_mvnorm <- function(chol, invchol, which = 1L) {</pre>
           \langle mc \ input \ checks \ 45a \rangle
           if (which[1] == 1L && (length(which) == 1L ||
                                        all(diff(which) == 1L))) {
                ### which is 1:j
                tmp <- x[,which]</pre>
           } else {
                if (missing(chol)) x <- solve(x)</pre>
                tmp <- base::chol(Tcrossprod(x)[,which])</pre>
                if (missing(chol)) tmp <- solve(tmp)</pre>
           if (missing(chol))
                ret <- list(invchol = tmp)</pre>
                ret <- list(chol = tmp)</pre>
           ret
      }
```

Fragment referenced in 2.

We compute conditional distributions from the precision matrices $\Sigma_i^{-1} = \mathbf{P}_i = \mathbf{L}_i^{\top} \mathbf{L}_i$ (we omit the *i* index from now on). For an arbitrary subset $\mathbf{j} \subset \{1, \dots, J\}$, the conditional distribution of $\mathbf{Y}_{-\mathbf{j}}$ given $\mathbf{Y}_{\mathbf{j}} = \mathbf{y}_{\mathbf{j}}$ is

$$\mathbf{Y_{-j}} \mid \mathbf{Y_j} = \mathbf{y_j} \sim \mathbb{N}_{|\mathbf{j}|} \left(-\mathbf{P_{-j,-j}^{-1}} \mathbf{P_{-j,j}} \mathbf{y_j}, \mathbf{P_{-j,-j}^{-1}} \right)$$

and we return a Cholesky factor $\tilde{\mathbf{C}}$ such that $\mathbf{P}_{-\mathbf{j},-\mathbf{j}}^{-1} = \tilde{\mathbf{C}}\tilde{\mathbf{C}}^{\top}$ (if chol was given) or $\tilde{\mathbf{L}} = \tilde{\mathbf{C}}^{-1}$ (if invchol was given).

We can implement this as

```
\langle cond \ general \ 46 \rangle \equiv
     stopifnot(!center)
     if (!missing(chol)) ### chol is C = Cholesky of covariance
          P \leftarrow Crossprod(solve(chol)) ### P = t(L) %*% L with L = C^-1
                           ### invcol is L = Cholesky of precision
          P <- Crossprod(invchol)
     Pw <- P[, -which]
     chol <- solve(base::chol(Pw))</pre>
     Pa <- as.array(P)
     Sa <- as.array(S <- Crossprod(chol))
     if (dim(chol)[1L] == 1L) {
         Pa <- Pa[,,1]
         Sa <- Sa[,,1]
        mean <- -Sa %*% Pa[-which, which, drop = FALSE] %*% given
     } else {
         if (ncol(given) == N) {
             mean <- sapply(1:N, function(i)</pre>
                 -Sa[,,i] %*% Pa[-which,which,i] %*% given[,i,drop = FALSE])
         } else {    ### compare to Mult() with ncol(y) !%in% (1, N)
             mean <- sapply(1:N, function(i)</pre>
                 -Sa[,,i] %*% Pa[-which,which,i] %*% given)
         }
     }
```

Fragment referenced in 47b.

If $\mathbf{j} = \{1, \dots, j < J\}$ and \mathbf{L} is given, computations simplify a lot because the conditional precision matrix is

$$\mathbf{P}_{-\mathbf{j},-\mathbf{j}} = (\mathbf{L}^{\top}\mathbf{L})_{-\mathbf{j},-\mathbf{j}} = \mathbf{L}_{-\mathbf{i},-\mathbf{j}}^{\top}\mathbf{L}_{-\mathbf{j},-\mathbf{j}}$$

and thus we return $\tilde{\mathbf{L}} = \mathbf{L}_{-\mathbf{j},-\mathbf{j}}$ (if invchol was given) or $\tilde{\mathbf{C}} = \mathbf{L}_{-\mathbf{j},-\mathbf{j}}^{-1}$ (if chol was given). The conditional mean is

$$\begin{array}{lcl} -\mathbf{P}_{-\mathbf{j},-\mathbf{j}}^{-1}\mathbf{P}_{-\mathbf{j},\mathbf{j}}\mathbf{y}_{\mathbf{j}} & = & -\mathbf{L}_{-\mathbf{j},-\mathbf{j}}^{-1}\mathbf{L}_{-\mathbf{j},-\mathbf{j}}^{\top}\mathbf{L}_{-\mathbf{j},-\mathbf{j}}^{\top}\mathbf{L}_{-\mathbf{j},\mathbf{j}}\mathbf{y}_{\mathbf{j}} \\ & = & -\mathbf{L}_{-\mathbf{j},-\mathbf{j}}^{-1}\mathbf{L}_{-\mathbf{j},\mathbf{j}}\mathbf{y}_{\mathbf{j}}. \end{array}$$

We sometimes, for example when scores with respect to $\mathbf{L}_{-\mathbf{j},-\mathbf{j}}^{-1}$ shall be computed in slpmvnorm, need the negative rescaled mean $\mathbf{L}_{-\mathbf{j},\mathbf{j}}\mathbf{y}_{\mathbf{j}}$ and the center = TRUE argument triggers this values to be returned.

The implementation reads

```
\langle cond simple 47a \rangle \equiv
      if (which[1] == 1L && (length(which) == 1L ||
                               all(diff(which) == 1L))) {
          ### which is 1:j
          L <- if (missing(invchol)) solve(chol) else invchol
          tmp <- matrix(0, ncol = ncol(given), nrow = J - length(which))</pre>
          centerm <- Mult(L, rbind(given, tmp))[-which,,drop = FALSE]</pre>
          L <- L[,-which]</pre>
          if (missing(invchol)) {
              if (center)
                   return(list(center = centerm, chol = solve(L)))
              return(list(mean = -solve(L, centerm), chol = solve(L)))
          }
          if (center)
              return(list(center = centerm, invchol = L))
          return(list(mean = -solve(L, centerm), invchol = L))
     }
Fragment referenced in 47b.
\langle conditional 47b \rangle \equiv
      cond_mvnorm <- function(chol, invchol, which_given = 1L, given, center = FALSE) {</pre>
          which <- which_given
          \langle mc \ input \ checks \ 45a \rangle
          if (N == 1) N <- NCOL(given)</pre>
          stopifnot(is.matrix(given) && nrow(given) == length(which))
          ⟨ cond simple 47a ⟩
          \langle cond general 46 \rangle
          chol <- base::chol(S)</pre>
          if (missing(invchol))
              return(list(mean = mean, chol = chol))
          return(list(mean = mean, invchol = solve(chol)))
     }
     \Diamond
Fragment referenced in 2.
Let's check this against the commonly used formula based on the covariance matrix, first for the
marginal distribution
> Sigma <- Tcrossprod(lxd)</pre>
> j <- 1:3
> chk(Sigma[,j], Tcrossprod(marg_mvnorm(chol = lxd, which = j)$chol))
> j <- 2:4
> chk(Sigma[,j], Tcrossprod(marg_mvnorm(chol = lxd, which = j)$chol))
> Sigma <- Tcrossprod(solve(lxd))</pre>
```

> chk(Sigma[,j], Tcrossprod(solve(marg_mvnorm(invchol = lxd, which = j)\$invchol)))

```
> j <- 2:4
> chk(Sigma[,j], Tcrossprod(solve(marg_mvnorm(invchol = lxd, which = j)$invchol)))
  and then for conditional distributions. The general case is
> Sigma <- as.array(Tcrossprod(lxd))[,,1]</pre>
> j <- 2:4
> y < -matrix(c(-1, 2, 1), nrow = 3)
> cm <- Sigma[-j, j,drop = FALSE] %*% solve(Sigma[j,j]) %*% y
> cS \leftarrow Sigma[-j, -j] - Sigma[-j,j,drop = FALSE] %*%
        solve(Sigma[j,j]) %*% Sigma[j,-j,drop = FALSE]
> cmv <- cond_mvnorm(chol = lxd[1,], which = j, given = y)
> chk(cm, cmv$mean)
> chk(cS, as.array(Tcrossprod(cmv$chol))[,,1])
> Sigma <- as.array(Tcrossprod(solve(lxd)))[,,1]</pre>
> j <- 2:4
> y < -matrix(c(-1, 2, 1), nrow = 3)
> cS <- Sigma[-j, -j] - Sigma[-j,j,drop = FALSE] %*%
        solve(Sigma[j,j]) %*% Sigma[j,-j,drop = FALSE]
> cmv <- cond_mvnorm(invchol = lxd[1,], which = j, given = y)</pre>
> chk(cm, cmv$mean)
> chk(cS, as.array(Tcrossprod(solve(cmv$invchol)))[,,1])
  and the simple case is
> Sigma <- as.array(Tcrossprod(lxd))[,,1]</pre>
> j <- 1:3
> y < -matrix(c(-1, 2, 1), nrow = 3)
> cm <- Sigma[-j, j,drop = FALSE] %*% solve(Sigma[j,j]) %*% y
> cS <- Sigma[-j, -j] - Sigma[-j,j,drop = FALSE] %*%</pre>
        solve(Sigma[j,j]) %*% Sigma[j,-j,drop = FALSE]
> cmv <- cond_mvnorm(chol = lxd[1,], which = j, given = y)
> chk(c(cm), c(cmv$mean))
> chk(cS, as.array(Tcrossprod(cmv$chol))[,,1])
> Sigma <- as.array(Tcrossprod(solve(lxd)))[,,1]</pre>
> j <- 1:3
> y <- matrix(c(-1, 2, 1), nrow = 3)
> cm <- Sigma[-j, j,drop = FALSE] %*% solve(Sigma[j,j]) %*% y
> cS <- Sigma[-j, -j] - Sigma[-j,j,drop = FALSE] %*%
        solve(Sigma[j,j]) %*% Sigma[j,-j,drop = FALSE]
> cmv <- cond_mvnorm(invchol = lxd[1,], which = j, given = y)
> chk(c(cm), c(cmv$mean))
> chk(cS, as.array(Tcrossprod(solve(cmv$invchol)))[,,1])
```

2.13 Continuous Log-likelihoods

With $\mathbf{Z} \sim \mathbb{N}_J(0, \mathbf{I}_J)$ and $\mathbf{Y} = \mathbf{C}_i \mathbf{Z} + \boldsymbol{\mu}_i \sim \mathbb{N}_J(\boldsymbol{\mu}_i, \mathbf{C}_i \mathbf{C}_i^{\top})$ we want to evaluate the log-likelihood contributions for observations $\mathbf{y}_1, \dots, \mathbf{y}_N$ in a function called ldmvnorm

```
\langle ldmvnorm 49a \rangle \equiv
      ldmvnorm <- function(obs, mean = 0, chol, invchol, logLik = TRUE) {</pre>
          stopifnot(xor(missing(chol), missing(invchol)))
          if (!is.matrix(obs)) obs <- matrix(obs, ncol = 1L)</pre>
          p <- ncol(obs)
          if (!missing(chol)) {
                \langle ldmvnorm\ chol\ 50a \rangle
          } else {
                ⟨ ldmvnorm invchol 50b ⟩
          names(logretval) <- colnames(obs)</pre>
          if (logLik) return(sum(logretval))
          return(logretval)
      }
Fragment referenced in 2.
We first check if the observations \mathbf{y}_1, \dots, \mathbf{y}_N are given in an J \times N matrix obs with corresponding
means \mu_1, \ldots, \mu_N in means.
\langle check \ obs \ 49b \rangle \equiv
      .check_obs <- function(obs, mean, J, N) {</pre>
          nr <- nrow(obs)</pre>
          nc <- ncol(obs)</pre>
          if (nc != N)
               stop("obs and (inv)chol have non-conforming size")
               stop("obs and (inv)chol have non-conforming size")
          if (identical(unique(mean), 0)) return(obs)
          if (length(mean) == J)
               return(obs - c(mean))
          if (!is.matrix(mean))
               stop("obs and mean have non-conforming size")
          if (nrow(mean) != nr)
               stop("obs and mean have non-conforming size")
```

Fragment referenced in 2.

}

With $\Sigma_i = \mathbf{C}_i \mathbf{C}_i^{\top}$ the log-likelihood function for $\mathbf{Y}_i = \mathbf{y}_i$ is

stop("obs and mean have non-conforming size")

if (ncol(mean) != nc)

return(obs - mean)

$$\ell_i(\boldsymbol{\mu}_i, \mathbf{C}_i) = -\frac{k}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Sigma}_i| - \frac{1}{2}(\mathbf{y}_i - \boldsymbol{\mu}_i)^{\top}\boldsymbol{\Sigma}_i^{-1}(\mathbf{y}_i - \boldsymbol{\mu}_i)$$

Because $\log |\Sigma_i| = \log |C_iC_i^{\top}| = 2\log |C_i| = 2\sum_{i=1}^{J} \log \operatorname{diag}(C_i)_j$ we get the simpler expression

$$\ell_i(\boldsymbol{\mu}_i, \mathbf{C}_i) = -\frac{k}{2} \log(2\pi) - \sum_{i=1}^{J} \log \operatorname{diag}(\mathbf{C}_i)_j - \frac{1}{2} (\mathbf{y}_i - \boldsymbol{\mu}_i)^{\top} \mathbf{C}^{-\top} \mathbf{C}^{-1} (\mathbf{y} - \boldsymbol{\mu}_i).$$
 (2.1)

 $\langle ldmvnorm \ chol \ 50a \rangle \equiv$

```
if (missing(chol))
    stop("either chol or invchol must be given")
## chol is given
if (!inherits(chol, "ltMatrices"))
    stop("chol is not an object of class ltMatrices")
N <- dim(chol)[1L]
N <- ifelse(N == 1, p, N)
J <- dim(chol)[2L]
obs <- .check_obs(obs = obs, mean = mean, J = J, N = N)
logretval <- colSums(dnorm(solve(chol, obs), log = TRUE))
if (attr(chol, "diag"))
    logretval <- logretval - colSums(log(diagonals(chol)))</pre>
```

Fragment referenced in 49a.

If $\mathbf{L}_i = \mathbf{C}_i^{-1}$ is given, we obtain

$$\ell_i(\boldsymbol{\mu}_i, \mathbf{L}_i) = -\frac{k}{2}\log(2\pi) + \sum_{i=1}^{J}\log\operatorname{diag}(\mathbf{L}_i)_j - \frac{1}{2}(\mathbf{y}_i - \boldsymbol{\mu}_i)^{\top}\mathbf{L}^{\top}\mathbf{L}(\mathbf{y} - \boldsymbol{\mu}_i).$$

 $\langle ldmvnorm\ invchol\ 50b\ \rangle \equiv$

```
## invchol is given
if (!inherits(invchol, "ltMatrices"))
    stop("invchol is not an object of class ltMatrices")
N <- dim(invchol)[1L]
N <- ifelse(N == 1, p, N)
J <- dim(invchol)[2L]
obs <- .check_obs(obs = obs, mean = mean, J = J, N = N)
## use dnorm (gets the normalizing factors right)
## NOTE: obs is (J x N)
logretval <- colSums(dnorm(Mult(invchol, obs), log = TRUE))
## note that the second summand gets recycled the correct number
## of times in case dim(invchol)[1L] == 1 but ncol(obs) > 1
if (attr(invchol, "diag"))
    logretval <- logretval + colSums(log(diagonals(invchol))))</pre>
```

Fragment referenced in 49a.

The score function with respect to obs is

$$\frac{\partial \ell_i(\boldsymbol{\mu}_i, \mathbf{L}_i)}{\partial \mathbf{y}_i} = -\mathbf{L}_i^{\top} \mathbf{L}_i \mathbf{y}_i$$

and with respect to invchol we have

$$\frac{\partial \ell_i(\boldsymbol{\mu}_i, \mathbf{L}_i)}{\partial \mathbf{L}_i} = -2\mathbf{L}_i \mathbf{y}_i \mathbf{y}_i^\top + \mathrm{diag}(\mathbf{L}_i)^{-1}.$$

The score function with respect to chol post-processes the above score using the vec trick (Section 2.10). For the log-likelihood (2.1), the score with respect to \mathbf{C}_i is the sum of the score functions of the two terms. We start with the simpler first term

$$\frac{\partial - \sum_{j=1}^{J} \log \operatorname{diag}(\mathbf{C}_{i})_{j}}{\partial \mathbf{C}_{i}} = -\operatorname{diag}(\mathbf{C}_{i})^{-1}$$

The second term gives (we omit the mean for the sake of simplicity)

$$\frac{\partial -\mathbf{y}_{i}^{\top} \mathbf{C}_{i}^{-\top} \mathbf{C}_{i}^{-1} \mathbf{y}_{i}}{\partial \mathbf{C}_{i}} = -\frac{\partial \mathbf{y}_{i}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{y}_{i}}{\partial \mathbf{A}} \Big|_{\mathbf{A} = \mathbf{C}_{i}^{-1}} \frac{\partial \mathbf{A}^{-1}}{\partial \mathbf{A}} \Big|_{\mathbf{A} = \mathbf{C}_{i}}$$

$$= -2 \text{vec}(\mathbf{C}_{i}^{-1} \mathbf{y}_{i} \mathbf{y}_{i}^{\top})^{\top} (-1)(\mathbf{C}_{i}^{-\top} \otimes \mathbf{C}_{i}^{-1})$$

$$= 2 \text{vec}(\mathbf{C}_{i}^{-\top} \mathbf{C}_{i}^{-1} \mathbf{y}_{i} \mathbf{y}_{i}^{\top} \mathbf{C}_{i}^{-\top})^{\top}$$

In sldmvnorm, we compute the score with respect to \mathbf{L}_i and use the above relationship to compute the score with respect to \mathbf{C}_i .

```
\langle sldmvnorm 52 \rangle \equiv
     sldmvnorm <- function(obs, mean = 0, chol, invchol, logLik = TRUE) {</pre>
          stopifnot(xor(missing(chol), missing(invchol)))
          if (!is.matrix(obs)) obs <- matrix(obs, ncol = 1L)</pre>
          if (!missing(invchol)) {
              N <- dim(invchol)[1L]
              N <- ifelse(N == 1, ncol(obs), N)
              J <- dim(invchol)[2L]</pre>
              obs <- .check_obs(obs = obs, mean = mean, J = J, N = N)
              Mix <- Mult(invchol, obs)</pre>
              sobs <- - Mult(invchol, Mix, transpose = TRUE)</pre>
              Y \leftarrow matrix(obs, byrow = TRUE, nrow = J, ncol = N * J)
              ret <- - matrix(Mix[, rep(1:N, each = J)] * Y, ncol = N)</pre>
              M \leftarrow matrix(1:(J^2), nrow = J, byrow = FALSE)
              ret <- ltMatrices(ret[M[lower.tri(M, diag = attr(invchol, "diag"))],,drop = FALSE],</pre>
                                  diag = attr(invchol, "diag"), byrow = FALSE)
              ret <- ltMatrices(ret,</pre>
                                  diag = attr(invchol, "diag"), byrow = attr(invchol, "byrow"))
              if (attr(invchol, "diag")) {
                  ### recycle properly
                  diagonals(ret) <- diagonals(ret) + c(1 / diagonals(invchol))</pre>
              } else {
                  diagonals(ret) <- 0
              ret <- list(obs = sobs, invchol = ret)</pre>
              if (logLik)
                  ret$logLik <- ldmvnorm(obs = obs, mean = mean, invchol = invchol, logLik = FALSE)
              return(ret)
          }
          invchol <- solve(chol)</pre>
          ret <- sldmvnorm(obs = obs, mean = mean, invchol = invchol)</pre>
          ### this means: ret$chol <- - vectrick(invchol, ret$invchol, invchol)</pre>
          ret$chol <- - vectrick(invchol, ret$invchol)</pre>
          ret$invchol <- NULL
          return(ret)
     }
```

Fragment referenced in 2.

2.14 Application Example

Let's say we have $\mathbf{Y}_i \sim \mathbb{N}_J(\mathbf{0}_J, \mathbf{C}_i \mathbf{C}_i^{\top})$ for i = 1, ..., N and we know the Cholesky factors $\mathbf{L}_i = \mathbf{C}_i^{-1}$ of the N precision matrices $\Sigma^{-1} = \mathbf{L}_i \mathbf{L}_i^{\top}$. We generate $\mathbf{Y}_i = \mathbf{L}_i^{-1} \mathbf{Z}_i$ from $\mathbf{Z}_i \sim \mathbb{N}_J(\mathbf{0}_J, \mathbf{I}_J)$. Evaluating the corresponding log-likelihood is now straightforward and fast, compared to repeated calls to dmvnorm

```
> N <- 1000L
> J <- 50L
```

The ldmvnorm function now also has chol and invchol arguments such that we can use

```
> 113 <- ldmvnorm(obs = Y, invchol = lt)
> chk(111, 113)
```

Note that argument obs in ldmvnorm is an $J \times N$ matrix whereas the traditional interface in dmvnorm expects an $N \times J$ matrix x. The reason is that Mult or solve work with $J \times N$ matrices and we want to avoid matrix transposes.

Sometimes it is preferable to split the joint distribution into a marginal distribution of some elements and the conditional distribution given these elements. The joint density is, of course, the product of the marginal and conditional densities and we can check if this works for our example by

Chapter 3

Multivariate Normal Log-likelihoods

We now discuss code for evaluating the log-likelihood

$$\sum_{i=1}^{N} \log(p_i(\mathbf{C}_i \mid \mathbf{a}_i, \mathbf{b}_i))$$

This is relatively simple to achieve using the existing pmvnorm function, so a prototype might look like

```
\langle lpmvnormR 54 \rangle \equiv
      lpmvnormR <- function(lower, upper, mean = 0, center = NULL, chol, logLik = TRUE, ...) {</pre>
          ⟨ input checks 56a ⟩
          sigma <- Tcrossprod(chol)</pre>
          S <- as.array(sigma)</pre>
          idx <- 1
          ret <- error <- numeric(N)</pre>
          for (i in 1:N) {
               if (dim(sigma)[[1L]] > 1) idx <- i</pre>
               tmp <- pmvnorm(lower = lower[,i], upper = upper[,i], sigma = S[,,idx], ...)</pre>
               ret[i] <- tmp
               error[i] <- attr(tmp, "error")</pre>
          attr(ret, "error") <- error
          if (logLik)
               return(sum(log(pmax(ret, .Machine$double.eps))))
          ret
     }
```

Fragment never referenced.

However, the underlying FORTRAN code first computes the Cholesky factor based on the covariance matrix, which is clearly a waste of time. Repeated calls to FORTRAN also cost some time. The code (based on and evaluated in Genz and Bretz, 2002) implements a specific form of quasi-Monte-Carlo integration without allowing the user to change the scheme (or to fall-back to simple Monte-Carlo). We therefore implement our own simplified version, with the aim to speed-things up such that maximum-likelihood estimation becomes a bit faster.

Let's look at an example first. This code estimates p_1, \ldots, p_{10} for a 5-dimensional normal

```
> J <- 5L
> N <- 10L
> x <- matrix(runif(N * J * (J + 1) / 2), ncol = N)
> lx <- ltMatrices(x, byrow = TRUE, diag = TRUE)
> a <- matrix(runif(N * J), nrow = J) - 2
> a[sample(J * N)[1:2]] <- -Inf
> b <- a + 2 + matrix(runif(N * J), nrow = J)
> b[sample(J * N)[1:2]] <- Inf
> (phat <- c(lpmvnormR(a, b, chol = lx, logLik = FALSE)))

[1] 0.2369329 0.2337179 0.2842052 0.3915213 0.4662496 0.0000000 0.5900784
[8] 0.4618524 0.4872819 0.0000000</pre>
```

We want to achieve the same result a bit more general and a bit faster, by making the code more modular and, most importantly, by providing score functions for all arguments \mathbf{a}_i , \mathbf{b}_i , and \mathbf{C}_i .

3.1 Algorithm

```
"lpmvnorm.R" 55a\equiv
       \langle R \; Header \; 100 \rangle
       \langle lpmvnorm 65 \rangle
       \langle slpmvnorm 78 \rangle
"lpmvnorm.c" 55b\equiv
       \langle C Header 101 \rangle
       #include <R.h>
       #include <Rmath.h>
       #include <Rinternals.h>
       #include <Rdefines.h>
       #include <Rconfig.h>
       #include <R_ext/BLAS.h> /* for dtrmm */
       ⟨ pnorm fast 60a ⟩
       ⟨ pnorm slow 60b ⟩
       \langle R \ lpmvnorm \ 63 \rangle
       \langle R \ slpmvnorm \ 75 \rangle
```

We implement the algorithm described by Genz (1992). The key point here is that the original J-dimensional problem (1.1) is transformed into an integral over $[0,1]^{J-1}$.

```
For each i = 1, ..., N, do
```

1. Input C_i (chol), a_i (lower), b_i (upper), and control parameters α , ϵ , and M_{max} (M).

```
\langle input \ checks \ 56a \rangle \equiv
         if (!is.matrix(lower)) lower <- matrix(lower, ncol = 1)</pre>
         if (!is.matrix(upper)) upper <- matrix(upper, ncol = 1)</pre>
         stopifnot(isTRUE(all.equal(dim(lower), dim(upper))))
         stopifnot(inherits(chol, "ltMatrices"))
         byrow_orig <- attr(chol, "byrow")</pre>
         chol <- ltMatrices(chol, byrow = TRUE)</pre>
         d <- dim(chol)
         ### allow single matrix C
         N <- ifelse(d[1L] == 1, ncol(lower), d[1L])
         J \leftarrow d[2L]
         stopifnot(nrow(lower) == J && ncol(lower) == N)
         stopifnot(nrow(upper) == J && ncol(upper) == N)
         if (is.matrix(mean))
              stopifnot(nrow(mean) == J && ncol(mean) == N)
         lower <- lower - mean</pre>
         upper <- upper - mean
         if (!is.null(center)) {
              if (!is.matrix(center)) center <- matrix(center, ncol = 1)</pre>
              stopifnot(nrow(center) == J && ncol(center == N))
         }
   Fragment referenced in 54, 65, 78.
2. Standardise integration limits a_j^{(i)}/c_{jj}^{(i)}, b_j^{(i)}/c_{jj}^{(i)}, and rows c_{jj}^{(i)}/c_{jj}^{(i)} for 1 \le j < j < J.
   \langle standardise 56b \rangle \equiv
         if (attr(chol, "diag")) {
              ### diagonals returns J x N and lower/upper are J x N, so
              ### elementwise standardisation is simple
              dchol <- diagonals(chol)</pre>
              ### zero diagonals not allowed
              stopifnot(all(abs(dchol) > (.Machine$double.eps)))
              ac <- lower / c(dchol)
              bc <- upper / c(dchol)</pre>
              C <- Dchol(chol, D = 1 / dchol)
              uC <- unclass(C)
              if (J > 1) ### else: univariate problem; C is no longer used
                 uC <- Lower_tri(C)</pre>
              } else {
                  ac <- lower
                  bc <- upper
                  uC <- Lower_tri(chol)</pre>
              }
   Fragment referenced in 65, 78.
```

3. Initialise intsum = varsum = 0, M = 0, $d_1 = \Phi\left(a_1^{(i)}\right)$, $e_1 = \Phi\left(b_1^{(i)}\right)$ and $f_1 = e_1 - d_1$.

```
x0 = 0.0;
if (LENGTH(center))
    x0 = -dcenter[0];
d0 = pnorm_ptr(da[0], x0);
e0 = pnorm_ptr(db[0], x0);
emd0 = e0 - d0;
f0 = emd0;
intsum = (iJ > 1 ? 0.0 : f0);
```

Fragment referenced in 63, 75.

4. Repeat

```
\langle init \ logLik \ loop \ 57b \rangle \equiv
d = d0;
f = f0;
emd = emd0;
start = 0;
```

Fragment referenced in 63, 69a.

- (a) Generate uniform $w_1, \ldots, w_{J-1} \in [0, 1]$.
- (b) For $j = 2, \ldots, J$ set

$$y_{j-1} = \Phi^{-1} (d_{j-1} + w_{j-1}(e_{j-1} - d_{j-1}))$$

We either generate w_{j-1} on the fly or use pre-computed weights (w).

 $\langle \ compute \ y \ 57c \rangle \equiv$

```
Wtmp = (W == R_NilValue ? unif_rand() : dW[j - 1]);
tmp = d + Wtmp * emd;
if (tmp < dtol) {
    y[j - 1] = q0;
} else {
    if (tmp > mdtol)
        y[j - 1] = -q0;
    else
        y[j - 1] = qnorm(tmp, 0.0, 1.0, 1L, 0L);
}
```

Fragment referenced in $58d,\,73a.$

$$x_{j-1} = \sum_{j=1}^{j-1} c_{jj}^{(i)} y_j$$

Fragment referenced in 58d, 73a.

$$d_j = \Phi\left(a_j^{(i)} - x_{j-1}\right)$$

$$e_j = \Phi\left(b_j^{(i)} - x_{j-1}\right)$$

```
⟨ update d, e 58b ⟩ ≡

d = pnorm_ptr(da[j], x);
e = pnorm_ptr(db[j], x);
emd = e - d;
```

Fragment referenced in 58d, 73a.

$$f_{j} = (e_{j} - d_{j})f_{j-1}. \label{eq:fj}$$
 \langle update f 58c \rangle \equiv

start += j;
f *= emd;

Fragment referenced in $58d,\,73a.$

We put everything together in a loop starting with the second dimension

 $\langle\:inner\:logLik\:loop\:58d\:\rangle\equiv$

```
for (j = 1; j < iJ; j++) {
          ⟨ compute y 57c ⟩
          ⟨ compute x 58a ⟩
          ⟨ update d, e 58b ⟩
          ⟨ update f 58c ⟩
}</pre>
```

Fragment referenced in 63.

```
(c) Set intsum = intsum + f_J, varsum = varsum + f_J^2, M = M + 1, and error =
         \sqrt{(\text{varsum}/M - (\text{intsum}/M)^2)/M}.
         \langle increment 59a \rangle \equiv
                intsum += f;
         Fragment referenced in 63.
         We refrain from early stopping and error estimation.
  Until error < \epsilon or M = M_{\text{max}}
5. Output \hat{p}_i = \text{intsum}/M.
   We return \log \hat{p}_i for each i, or we immediately sum-up over i.
   \langle output 59b \rangle \equiv
          dans[0] += (intsum < dtol ? 10 : log(intsum)) - lM;</pre>
          if (!RlogLik)
               dans += 1L;
   Fragment referenced in 63.
   and move on to the next observation (note that p might be 0 in case C_i \equiv C).
   \langle \; move \; on \; 59c \, \rangle \equiv
         da += iJ;
          db += iJ;
          dC += p;
          if (LENGTH(center)) dcenter += iJ;
   Fragment referenced in 63, 75.
```

It turned out that calls to pnorm are expensive, so a slightly faster alternative (suggested by Matić et al., 2018) can be used (fast = TRUE in the calls to lpmvnorm and slpmvnorm):

```
\langle pnorm fast 60a \rangle \equiv
     /* see https://doi.org/10.2139/ssrn.2842681 */
     const double g2 = -0.0150234471495426236132;
     const double g4 = 0.000666098511701018747289;
     const double g6 = 5.07937324518981103694e-06;
     const double g8 = -2.92345273673194627762e-06;
     const double g10 = 1.34797733516989204361e-07;
     const double m2dpi = -2.0 / M_PI; //3.141592653589793115998;
     double C_pnorm_fast (double x, double m) {
          double tmp, ret;
          double x2, x4, x6, x8, x10;
          if (R_FINITE(x)) {
              x = x - m;
              x2 = x * x;
              x4 = x2 * x2;
              x6 = x4 * x2;
              x8 = x6 * x2;
              x10 = x8 * x2;
              tmp = 1 + g2 * x2 + g4 * x4 + g6 * x6 + g8 * x8 + g10 * x10;
              tmp = m2dpi * x2 * tmp;
              ret = .5 + ((x > 0) - (x < 0)) * sqrt(1 - exp(tmp)) / 2.0;
              ret = (x > 0 ? 1.0 : 0.0);
          }
          return(ret);
     }
Fragment referenced in 55b.
\langle pnorm \ slow \ 60b \rangle \equiv
     double C_pnorm_slow (double x, double m) {
          return(pnorm(x, m, 1.0, 1L, 0L));
     }
     \Diamond
Fragment referenced in 55b.
The fast argument can be used to switch on the faster but less accurate version of pnorm
\langle pnorm 60c \rangle \equiv
     Rboolean Rfast = asLogical(fast);
     double (*pnorm_ptr)(double, double) = C_pnorm_slow;
     if (Rfast)
         pnorm_ptr = C_pnorm_fast;
Fragment referenced in 63, 75.
```

We allow a new set of weights for each observation or one set for all observations. In the former case, the number of columns is $M \times N$ and in the latter just M.

```
\langle W length 61a \rangle \equiv
      int pW = 0;
      if (W != R_NilValue) {
          if (LENGTH(W) == (iJ - 1) * iM) {
              pW = 0;
          } else {
               if (LENGTH(W) != (iJ - 1) * iN * iM)
                    error("Length of W incorrect");
               pW = 1;
          }
          dW = REAL(W);
      }
Fragment referenced in 63, 75.
\langle \ dimensions \ 61b \ \rangle \equiv
      int iM = INTEGER(M)[0];
      int iN = INTEGER(N)[0];
      int iJ = INTEGER(J)[0];
      da = REAL(a);
      db = REAL(b);
      dC = REAL(C);
      dW = REAL(C); // make -Wmaybe-uninitialized happy
      if (LENGTH(C) == iJ * (iJ - 1) / 2)
          p = 0;
      else
          p = LENGTH(C) / iN;
Fragment referenced in 63, 75.
\langle setup \ return \ object \ 61c \rangle \equiv
      len = (RlogLik ? 1 : iN);
      PROTECT(ans = allocVector(REALSXP, len));
      dans = REAL(ans);
      for (int i = 0; i < len; i++)
          dans[i] = 0.0;
Fragment referenced in 63.
```

The case J=1 does not loop over M

```
\langle \, univariate \, problem \, 62a \, \rangle \equiv
      if (iJ == 1) \{
           iM = 0;
           1M = 0.0;
      } else {
           lM = log((double) iM);
      }
Fragment referenced in 63.
\langle init \ center \ 62b \rangle \equiv
      dcenter = REAL(center);
      if (LENGTH(center)) {
           if (LENGTH(center) != iN * iJ)
                error("incorrect dimensions of center");
      }
Fragment referenced in 63, 75.
We put the code together in a dedicated {\sf C} function
\langle \, R \, \, slpmvnorm \, \, variables \, 62c \, \rangle \equiv
      SEXP ans;
      double *da, *db, *dC, *dW, *dans, dtol = REAL(tol)[0];
      double *dcenter;
      double mdtol = 1.0 - dtol;
      double d0, e0, emd0, f0, q0;
```

Fragment referenced in 63, 75.

```
\langle R \ lpmvnorm \ 63 \rangle \equiv
      SEXP R_lpmvnorm(SEXP a, SEXP b, SEXP C, SEXP center, SEXP N, SEXP J,
                          SEXP W, SEXP M, SEXP tol, SEXP logLik, SEXP fast) {
           \langle R \ slpmvnorm \ variables \ 62c \rangle
           double 10, 1M, x0, intsum;
           int p, len;
           Rboolean RlogLik = asLogical(logLik);
           ⟨ pnorm 60c ⟩
           \langle dimensions 61b \rangle
           ⟨ W length 61a⟩
           ⟨ init center 62b ⟩
           int start, j, k;
           double tmp, Wtmp, e, d, f, emd, x, y[(iJ > 1 ? iJ - 1 : 1)];
           \langle setup \ return \ object \ 61c \rangle
           q0 = qnorm(dtol, 0.0, 1.0, 1L, 0L);
           10 = \log(dtol);
           ⟨ univariate problem 62a ⟩
           if (W == R_NilValue)
                GetRNGstate();
           for (int i = 0; i < iN; i++) {
                x0 = 0;
                \langle initialisation 57a \rangle
                if (W != R_NilValue && pW == 0)
                     dW = REAL(W);
                for (int m = 0; m < iM; m++) {
                     \langle\;init\;logLik\;loop\;57b\;\rangle
                      \langle inner logLik loop 58d \rangle
                     \langle\:increment\:59a\:\rangle
                     if (W != R_NilValue)
                          dW += iJ - 1;
                }
                 ⟨output 59b⟩
                \langle move \ on \ 59c \rangle
           }
           if (W == R_NilValue)
                PutRNGstate();
           UNPROTECT(1);
           return(ans);
      }
```

Fragment referenced in 55b.

The R user interface consists of some checks and a call to C. Note that we need to specify both w and M in case we want a new set of weights for each observation.

```
\langle init \ random \ seed, \ reset \ on \ exit \ 64a \rangle \equiv
      ### from stats:::simulate.lm
      if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
          runif(1)
      if (is.null(seed))
          RNGstate <- get(".Random.seed", envir = .GlobalEnv)</pre>
      else {
          R.seed <- get(".Random.seed", envir = .GlobalEnv)</pre>
          set.seed(seed)
          RNGstate <- structure(seed, kind = as.list(RNGkind()))</pre>
          on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
     }
Fragment referenced in 65, 78.
\langle check \ and \ / \ or \ set \ integration \ weights \ 64b \rangle \equiv
      if (!is.null(w) && J > 1) {
          stopifnot(is.matrix(w))
          stopifnot(nrow(w) == J - 1)
          if (is.null(M))
               M <- ncol(w)
          stopifnot(ncol(w) %in% c(M, M * N))
          storage.mode(w) <- "double"</pre>
      } else {
          if (J > 1) {
               if (is.null(M)) stop("either w or M must be specified")
               M <- 1L
          }
      }
Fragment referenced in 65, 78.
are lower triangular, so this is fast).
```

Sometimes we want to evaluate the log-likelihood based on $L = C^{-1}$, the Cholesky factor of the precision (not the covariance) matrix. In this case, we explicitly invert L to give C (both matrices

```
\langle Cholesky \ of \ precision \ 64c \rangle \equiv
       stopifnot(xor(missing(chol), missing(invchol)))
      if (missing(chol)) chol <- solve(invchol)</pre>
Fragment referenced in 65, 78.
```

```
\langle lpmvnorm 65 \rangle \equiv
     lpmvnorm <- function(lower, upper, mean = 0, center = NULL, chol, invchol,</pre>
                           logLik = TRUE, M = NULL, w = NULL, seed = NULL,
                           tol = .Machine$double.eps, fast = FALSE) {
         ⟨ init random seed, reset on exit 64a ⟩
          Cholesky of precision 64c >
          ⟨ input checks 56a ⟩
          \langle standardise 56b \rangle
         ⟨ check and / or set integration weights 64b ⟩
         ret <- .Call(mvtnorm_R_lpmvnorm, ac, bc, uC, as.double(center),</pre>
                       as.integer(N), as.integer(J), w, as.integer(M), as.double(tol),
                       as.logical(logLik), as.logical(fast));
         return(ret)
     }
     \rightarrow
Fragment referenced in 55a.
Coming back to our simple example, we get (with 25000 simple Monte-Carlo iterations)
> phat
 [1] 0.2369329 0.2337179 0.2842052 0.3915213 0.4662496 0.0000000 0.5900784
 [8] 0.4618524 0.4872819 0.0000000
> exp(lpmvnorm(a, b, chol = lx, M = 25000, logLik = FALSE, fast = TRUE))
 [1] 2.366926e-01 2.341369e-01 2.834803e-01 3.938926e-01 4.658150e-01
 [6] 8.881784e-21 5.911462e-01 4.597514e-01 4.879485e-01 8.881784e-21
> exp(lpmvnorm(a, b, chol = lx, M = 25000, logLik = FALSE, fast = FALSE))
 [1] 2.377131e-01 2.372235e-01 2.831741e-01 3.875320e-01 4.659937e-01
 [6] 8.881784e-21 5.895400e-01 4.624243e-01 4.871073e-01 8.881784e-21
```

Next we generate some data and compare our implementation to pmvnorm using quasi-Monte-Carlo integration. The pmvnorm function uses randomised Korobov rules. The experiment here applies generalised Halton sequences. Plain Monte-Carlo ($\mathbf{w} = \mathtt{NULL}$) will also work but produces more variable results. Results will depend a lot on appropriate choices and it is the users responsibility to make sure things work as intended. If you are unsure, you should use pmvnorm which provides a well-tested configuration.

```
fast = TRUE))
> ### Genz 1992, original Monte-Carlo, fast pnorm
> pGf <- exp(lpmvnorm(a, b, chol = lx, w = NULL, M = M, logLik = FALSE,
                      fast = TRUE))
> ### Genz 1992 with quasi-Monte-Carlo, R::pnorm
> pGqs < -exp(lpmvnorm(a, b, chol = lx, w = W, M = M, logLik = FALSE,
                       fast = FALSE)
> ### Genz 1992, original Monte-Carlo, R::pnorm
> pGs <- exp(lpmvnorm(a, b, chol = lx, w = NULL, M = M, logLik = FALSE,
                      fast = FALSE))
> cbind(pGB, pGqf, pGf, pGqs, pGs)
            pGB
                        pGqf
                                      pGf
                                                  pGqs
                                                                 pGs
 [1,] 0.2368918 2.369290e-01 2.344954e-01 2.369297e-01 2.360153e-01
 [2,] 0.2341507 2.340099e-01 2.319416e-01 2.340103e-01 2.347435e-01
 [3,] 0.2841044 2.841303e-01 2.850959e-01 2.841316e-01 2.870079e-01
 [4,] 0.3918357 3.921465e-01 3.931626e-01 3.921469e-01 3.904457e-01
 [5,] 0.4671062 4.668249e-01 4.678817e-01 4.668242e-01 4.690837e-01
 [6,] 0.0000000 2.220446e-20 2.220446e-20 2.220446e-20 2.220446e-20
 [7,] 0.5901670 5.902059e-01 5.907621e-01 5.902056e-01 5.929013e-01
 [8,] 0.4613023 4.619428e-01 4.611888e-01 4.619434e-01 4.630231e-01
 [9,] 0.4872195 4.870317e-01 4.863298e-01 4.870324e-01 4.820740e-01
[10,] 0.0000000 2.220446e-20 2.220446e-20 2.220446e-20 2.220446e-20
  The three versions agree nicely. We now check if the code also works for univariate problems
> ### test univariate problem
> ### call pmvnorm
> pGB < -1pmvnormR(a[1,drop = FALSE], b[1,drop = FALSE], chol = lx[,1],
                  logLik = FALSE,
                  algorithm = GenzBretz(maxpts = M, abseps = 0, releps = 0))
> ### call lpmvnorm
> pGq < -exp(lpmvnorm(a[1,,drop = FALSE], b[1,,drop = FALSE], chol = lx[,1],
                     logLik = FALSE))
> ### ground truth
> ptr <- pnorm(b[1,] / c(unclass(lx[,1]))) - pnorm(a[1,] / c(unclass(lx[,1])))
> cbind(c(ptr), pGB, pGq)
                      рGВ
 [1,] 0.9999758 0.9999758 0.9999758
 [2,] 0.6108928 0.6108928 0.6108928
 [3,] 0.9076043 0.9076043 0.9076043
 [4,] 0.8979932 0.8979932 0.8979932
 [5,] 0.9589363 0.9589363 0.9589363
 [6,] 0.7863435 0.7863435 0.7863435
 [7,] 0.9982537 0.9982537 0.9982537
 [8,] 0.8745388 0.8745388 0.8745388
 [9,] 0.9386051 0.9386051 0.9386051
[10,] 0.9119778 0.9119778 0.9119778
```

> pGqf <- exp(lpmvnorm(a, b, chol = lx, w = W, M = M, logLik = FALSE,

Because the default fast = FALSE was used here, all results are identical.

3.2 Score Function

In addition to the log-likelihood, we would also like to have access to the scores with respect to C_i . Because every element of C_i only enters once, the chain rule rules, so to speak.

We need the derivatives of d, e, y, and f with respect to the c parameters

```
double dp_c[Jp], ep_c[Jp], fp_c[Jp], yp_c[(iJ > 1 ? iJ - 1 : 1) * Jp];

Fragment referenced in 68a.

and the derivates with respect to the mean
⟨mean scores 67b⟩ ≡
double dp_m[Jp], ep_m[Jp], fp_m[Jp], yp_m[(iJ > 1 ? iJ - 1 : 1) * Jp];

Fragment referenced in 68a.

and the derivates with respect to lower (a)
⟨lower scores 67c⟩ ≡
double dp_l[Jp], ep_l[Jp], fp_l[Jp], yp_l[(iJ > 1 ? iJ - 1 : 1) * Jp];

Fragment referenced in 68a.

and the derivates with respect to upper (b)
⟨upper scores 67d⟩ ≡
double dp_u[Jp], ep_u[Jp], fp_u[Jp], yp_u[(iJ > 1 ? iJ - 1 : 1) * Jp];

Fragment referenced in 68a.
```

and we start allocating the necessary memory. The output object contains the likelihood contributions (first row), the scores with respect to the mean (next J rows), with respect to the lower integration limits (next J rows), with respect to the upper integration limits (next J rows) and finally with respect to the off-diagonal elements of the Cholesky factor (last J(J-1)/2 rows).

```
\langle score \ output \ object \ 68a \rangle \equiv
      int Jp = iJ * (iJ + 1) / 2;
      ⟨ chol scores 67a ⟩
       ⟨ mean scores 67b ⟩
      ⟨ lower scores 67c ⟩
      ⟨ upper scores 67d ⟩
      double dtmp, etmp, Wtmp, ytmp, xx;
      PROTECT(ans = allocMatrix(REALSXP, Jp + 1 + 3 * iJ, iN));
      dans = REAL(ans);
      for (j = 0; j < LENGTH(ans); j++) dans[j] = 0.0;
Fragment referenced in 75.
For each i = 1, \ldots, N, do
   1. Input C_i (chol), a_i (lower), b_i (upper), and control parameters \alpha, \epsilon, and M_{\text{max}} (M).
   2. Standardise integration limits a_i^{(i)}/c_{ij}^{(i)}, b_i^{(i)}/c_{ij}^{(i)}, and rows c_{ij}^{(i)}/c_{ij}^{(i)} for 1 \le j < j < J.
      Note: We later need derivatives wrt c_{jj}^{(i)}, so we compute derivates wrt a_j^{(i)} and b_j^{(i)} and
      post-differentiate later.
   3. Initialise intsum = varsum = 0, M = 0, d_1 = \Phi\left(a_1^{(i)}\right), e_1 = \Phi\left(b_1^{(i)}\right) and f_1 = e_1 - d_1.
      We start initialised the score wrt to c_{11}^{(i)} (the parameter is non-existent here due to standard-
      isation)
      \langle score \ c11 \ 68b \rangle \equiv
             dp_c[0] = (R_FINITE(da[0]) ? dnorm(da[0], x0, 1.0, 0L) * (da[0] - x0 - dcenter[0]) : 0);
             ep_c[0] = (R_FINITE(db[0]) ? dnorm(db[0], x0, 1.0, 0L) * (db[0] - x0 - dcenter[0]) : 0);
             fp_c[0] = ep_c[0] - dp_c[0];
      Fragment referenced in 69a, 75.
      \langle score \ a, \ b \ 68c \rangle \equiv
             dp_m[0] = (R_FINITE(da[0]) ? dnorm(da[0], x0, 1.0, 0L) : 0);
             ep_m[0] = (R_FINITE(db[0]) ? dnorm(db[0], x0, 1.0, 0L) : 0);
             dp_1[0] = dp_m[0];
             ep_u[0] = ep_m[0];
```

Fragment referenced in 69a, 75.

fp_1[0] = -dp_m[0];
fp_u[0] = ep_m[0];

 $dp_u[0] = 0;$ $ep_1[0] = 0;$

 $fp_m[0] = ep_m[0] - dp_m[0];$

4. Repeat

```
\langle init \ score \ loop \ 69a \rangle \equiv
\langle init \ logLik \ loop \ 57b \rangle
\langle \ score \ c11 \ 68b \rangle
\langle \ score \ a, \ b \ 68c \rangle
\Leftrightarrow
```

Fragment referenced in 75.

- (a) Generate uniform $w_1, \ldots, w_{J-1} \in [0, 1]$.
- (b) For $j = 2, \ldots, J$ set

$$y_{j-1} = \Phi^{-1} (d_{j-1} + w_{j-1} (e_{j-1} - d_{j-1}))$$

We again either generate w_{j-1} on the fly or use pre-computed weights (w). We first compute the scores with respect to the already existing parameters.

 $\langle update\ yp\ for\ chol\ 69b\, \rangle \equiv$

```
ytmp = exp(- dnorm(y[j - 1], 0.0, 1.0, 1L)); // = 1 / dnorm(y[j - 1], 0.0, 1.0, 0L)
for (k = 0; k < Jp; k++) yp_c[k * (iJ - 1) + (j - 1)] = 0.0;

for (idx = 0; idx < (j + 1) * j / 2; idx++) {
    yp_c[idx * (iJ - 1) + (j - 1)] = ytmp;
    yp_c[idx * (iJ - 1) + (j - 1)] *= (dp_c[idx] + Wtmp * (ep_c[idx] - dp_c[idx]));
}</pre>
```

Fragment referenced in 73a.

 $\langle update\ yp\ for\ means,\ lower\ and\ upper\ 70 \rangle \equiv$

```
for (k = 0; k < iJ; k++)
    yp_m[k * (iJ - 1) + (j - 1)] = 0.0;
for (idx = 0; idx < j; idx++) {
    yp_m[idx * (iJ - 1) + (j - 1)] = ytmp;
    yp_m[idx * (iJ - 1) + (j - 1)] *= (dp_m[idx] + Wtmp * (ep_m[idx] - dp_m[idx]));
}
for (k = 0; k < iJ; k++)
    yp_1[k * (iJ - 1) + (j - 1)] = 0.0;
for (idx = 0; idx < j; idx++) {
    yp_1[idx * (iJ - 1) + (j - 1)] = ytmp;
    yp_1[idx * (iJ - 1) + (j - 1)] *= (dp_1[idx] + Wtmp * (dp_u[idx] - dp_1[idx]));
}
for (k = 0; k < iJ; k++)
    yp_u[k * (iJ - 1) + (j - 1)] = 0.0;
for (idx = 0; idx < j; idx++) {
    yp_u[idx * (iJ - 1) + (j - 1)] = ytmp;
    yp_u[idx * (iJ - 1) + (j - 1)] *= (ep_l[idx] + Wtmp * (ep_u[idx] - ep_l[idx]));
}
```

Fragment referenced in 73a.

$$x_{j-1} = \sum_{j=1}^{j-1} c_{jj}^{(i)} y_j$$

$$d_j = \Phi\left(a_j^{(i)} - x_{j-1}\right)$$

$$e_j = \Phi\left(b_j^{(i)} - x_{j-1}\right)$$

$$f_j = (e_j - d_j)f_{j-1}.$$

The scores with respect to $c_{jj}^{(i)}, j=1,\ldots,j-1$ are

 $\langle \ score \ wrt \ new \ chol \ of$ f-diagonals 71a $\rangle \equiv$

```
dtmp = dnorm(da[j], x, 1.0, 0L);
etmp = dnorm(db[j], x, 1.0, 0L);

for (k = 0; k < j; k++) {
   idx = start + j + k;
   if (LENGTH(center)) {
      dp_c[idx] = dtmp * (-1.0) * (y[k] - dcenter[k]);
      ep_c[idx] = etmp * (-1.0) * (y[k] - dcenter[k]);
   } else {
      dp_c[idx] = dtmp * (-1.0) * y[k];
      ep_c[idx] = etmp * (-1.0) * y[k];
   }
   fp_c[idx] = (ep_c[idx] - dp_c[idx]) * f;
}</pre>
```

Fragment referenced in 73a.

and the score with respect to (the here non-existing) $c_{jj}^{(i)}$ is

 $\langle score \ wrt \ new \ chol \ diagonal \ 71b \rangle \equiv$

```
idx = (j + 1) * (j + 2) / 2 - 1;
dp_c[idx] = (R_FINITE(da[j]) ? dtmp * (da[j] - x - dcenter[j]) : 0);
ep_c[idx] = (R_FINITE(db[j]) ? etmp * (db[j] - x - dcenter[j]) : 0);
fp_c[idx] = (ep_c[idx] - dp_c[idx]) * f;
```

Fragment referenced in 73a.

 \langle new score means, lower and upper 71c $\rangle \equiv$ $dp_m[j] = (R_FINITE(da[j]) ? dtmp : 0);$ $ep_m[j] = (R_FINITE(db[j]) ? etmp : 0);$ $dp_1[j] = dp_m[j];$ $ep_u[j] = ep_m[j];$ $dp_u[j] = 0;$ $ep_1[j] = 0;$ fp_1[j] = - dp_m[j] * f; $fp_u[j] = ep_m[j] * f;$ fp_m[j] = fp_u[j] + fp_1[j]; Fragment referenced in 73a. We next update scores for parameters introduced for smaller j $\langle\,\mathit{update\ score\ for\ chol\ 72a}\,\rangle \equiv$ for (idx = 0; idx < j * (j + 1) / 2; idx++) { xx = 0.0;for (k = 0; k < j; k++) $xx += dC[start + k] * yp_c[idx * (iJ - 1) + k];$ $dp_c[idx] = dtmp * (-1.0) * xx;$ $ep_c[idx] = etmp * (-1.0) * xx;$ $fp_c[idx] = (ep_c[idx] - dp_c[idx]) * f + emd * fp_c[idx];$

Fragment referenced in 73a.

}

```
\langle update \ score \ means, \ lower \ and \ upper \ 72b \rangle \equiv
      for (idx = 0; idx < j; idx++) {
          xx = 0.0;
          for (k = 0; k < j; k++)
               xx += dC[start + k] * yp_m[idx * (iJ - 1) + k];
          dp_m[idx] = dtmp * (-1.0) * xx;
          ep_m[idx] = etmp * (-1.0) * xx;
          fp_m[idx] = (ep_m[idx] - dp_m[idx]) * f + emd * fp_m[idx];
      for (idx = 0; idx < j; idx++) {
          xx = 0.0;
          for (k = 0; k < j; k++)
               xx += dC[start + k] * yp_l[idx * (iJ - 1) + k];
          dp_1[idx] = dtmp * (-1.0) * xx;
          dp_u[idx] = etmp * (-1.0) * xx;
          fp_1[idx] = (dp_u[idx] - dp_1[idx]) * f + emd * fp_1[idx];
      }
      for (idx = 0; idx < j; idx++) {
          xx = 0.0;
          for (k = 0; k < j; k++)
               xx += dC[start + k] * yp_u[idx * (iJ - 1) + k];
          ep_1[idx] = dtmp * (-1.0) * xx;
          ep_u[idx] = etmp * (-1.0) * xx;
          fp_u[idx] = (ep_u[idx] - ep_l[idx]) * f + emd * fp_u[idx];
      }
      \rightarrow
Fragment referenced in 73a.
We put everything together in a loop starting with the second dimension
\langle inner\ score\ loop\ 73a \rangle \equiv
      for (j = 1; j < iJ; j++) {
           \langle compute \ y \ 57c \rangle
           \langle compute \ x \ 58a \rangle
           \langle update d, e 58b \rangle
           ⟨ update yp for chol 69b⟩
           ⟨ update yp for means, lower and upper 70 ⟩
           ⟨ score wrt new chol off-diagonals 71a ⟩
           ⟨ score wrt new chol diagonal 71b ⟩
           ⟨ new score means, lower and upper 71c ⟩
           ⟨ update score for chol 72a⟩
           ⟨ update score means, lower and upper 72b⟩
           \langle update f 58c \rangle
      }
Fragment referenced in 75.
```

(c) Set intsum = intsum + f_J , varsum = varsum + f_J^2 , M = M + 1, and error = $\sqrt{(\text{varsum}/M - (\text{intsum}/M)^2)/M}$. We refrain from early stopping and error estimation.

Until error $< \epsilon$ or $M = M_{\text{max}}$

5. Output $\hat{p}_i = \text{intsum}/M$.

We return $\log \hat{p}_i$ for each i, or we immediately sum-up over i.

```
dans[0] += f;
for (j = 0; j < Jp; j++)
    dans[j + 1] += fp_c[j];
for (j = 0; j < iJ; j++) {
    idx = Jp + j + 1;
    dans[idx] += fp_m[j];
    dans[idx + iJ] += fp_1[j];
    dans[idx + 2 * iJ] += fp_u[j];
}</pre>
```

Fragment referenced in 75.

```
\( init dans 73c \) \( \) \( \) \( \text{if (iM == 0) {} \) \( \text{dans [0] = intsum;} \) \( \text{dans [1] = fp_c[0];} \) \( \text{dans [2] = fp_m[0];} \) \( \text{dans [3] = fp_1[0];} \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \
```

Fragment referenced in 75.

We put everything together in C

```
\langle R \ slpmvnorm \ 75 \rangle \equiv
       SEXP R_slpmvnorm(SEXP a, SEXP b, SEXP C, SEXP center, SEXP N, SEXP J, SEXP W,
                            SEXP M, SEXP tol, SEXP fast) {
             \langle R \ slpmvnorm \ variables \ 62c \rangle
            double intsum;
            int p, idx;
             \langle \ dimensions \ 61b \ \rangle
             ⟨ pnorm 60c ⟩
             \langle W length 61a \rangle
             \langle init \ center \ 62b \rangle
            int start, j, k;
            double tmp, e, d, f, emd, x, x0, y[(iJ > 1 ? iJ - 1 : 1)];
            \langle score \ output \ object \ 68a \rangle
            q0 = qnorm(dtol, 0.0, 1.0, 1L, 0L);
            /* univariate problem */
            if (iJ == 1) iM = 0;
            if (W == R_NilValue)
                  GetRNGstate();
            for (int i = 0; i < iN; i++) {
                  \langle \ initialisation \ 57a \, \rangle
                  \langle score \ c11 \ 68b \rangle
                  \langle score \ a, \ b \ 68c \rangle
                  ⟨ init dans 73c ⟩
                  if (W != R_NilValue && pW == 0)
                        dW = REAL(W);
                  for (int m = 0; m < iM; m++) {
                        \langle init \ score \ loop \ 69a \rangle
                        \langle inner\ score\ loop\ 73a \rangle
                        \langle \, score \, \, output \, \, \mathsf{73b} \, \rangle
                        if (W != R_NilValue)
                             dW += iJ - 1;
                  }
                  \langle move \ on \ 59c \rangle
                  dans += Jp + 1 + 3 * iJ;
            }
            if (W == R_NilValue)
                  PutRNGstate();
            UNPROTECT(1);
            return(ans);
       }
       \quad
```

Fragment referenced in 55b.

The R code is now essentially identical to lpmvnorm, however, we need to undo the effect of standardisation once the scores have been computed

```
\langle post \ differentiate \ mean \ score \ 76a \rangle \equiv
       Jp <- J * (J + 1) / 2;
       smean <- - ret[Jp + 1:J, , drop = FALSE]</pre>
      if (attr(chol, "diag"))
            smean <- smean / c(dchol)</pre>
Fragment referenced in 78.
\langle post \ differentiate \ lower \ score \ 76b \rangle \equiv
       slower <- ret[Jp + J + 1:J, , drop = FALSE]</pre>
      if (attr(chol, "diag"))
            slower <- slower / c(dchol)</pre>
Fragment referenced in 78.
\langle post \ differentiate \ upper \ score \ 76c \rangle \equiv
       supper <- ret[Jp + 2 * J + 1:J, , drop = FALSE]</pre>
       if (attr(chol, "diag"))
            supper <- supper / c(dchol)</pre>
Fragment referenced in 78.
\langle \; post \; differentiate \; chol \; score \; 76d \, \rangle \equiv
      if (J == 1) {
            idx <- 1L
      } else {
            idx <- cumsum(c(1, 2:J))
      if (attr(chol, "diag")) {
            ret <- ret / c(dchol[rep(1:J, 1:J),]) ### because 1 / dchol already there
            ret[idx,] <- -ret[idx,]</pre>
      }
      \quad
```

We sometimes parameterise models in terms of $\mathbf{L} = \mathbf{C}^{-1}$, the Cholesky factor of the precision matrix. The log-likelihood operates on \mathbf{C} , so we need to post-differentiate the score function. We have

$$\mathbf{A} = \frac{\partial \mathbf{L}^{-1}}{\partial \mathbf{L}} = -\mathbf{L}^{-\top} \otimes \mathbf{L}^{-1}$$

Fragment referenced in 78.

and computing \mathbf{sA} for a score vector \mathbf{s} with respect to \mathbf{L} can be implemented by the "vec trick" (Section 2.10)

$$\mathbf{s}\mathbf{A} = \mathbf{L}^{-\top}\mathbf{S}\mathbf{L}^{-\top}$$

```
where \mathbf{s} = \mathrm{vec}(\mathbf{S}). 
 \langle \textit{post differentiate invchol score } 77a \rangle \equiv 
 if (!missing(invchol)) { 
    ret <- ltMatrices(ret, diag = TRUE, byrow = TRUE) 
    ### this means vectrick(chol, ret, chol) 
    ret <- - unclass(vectrick(chol, ret)) 
 } 
 \diamond 
 Fragment referenced in 78.
```

If the diagonal elements are constants, we set them to zero. The function always returns an object of class ltMatrices with explicit diagonal elements (use Lower_tri(, diag = FALSE) to extract the lower triangular elements such that the scores match the input)

```
⟨ post process score 77b⟩ ≡

if (!attr(chol, "diag"))
    ### remove scores for constant diagonal elements
    ret[idx,] <- 0
    ret <- ltMatrices(ret, diag = TRUE, byrow = TRUE)
    ◊</pre>
Fragment referenced in 78.
```

We can now finally put everything together in a single score function.

```
\langle slpmvnorm 78 \rangle \equiv
      slpmvnorm <- function(lower, upper, mean = 0, center = NULL, chol, invchol, logLik = TRUE, M = NULL,
                            w = NULL, seed = NULL, tol = .Machine$double.eps, fast = FALSE) {
           (init random seed, reset on exit 64a)
           Cholesky of precision 64c \
           ⟨ input checks 56a ⟩
           \langle standardise 56b \rangle
           \langle check and / or set integration weights 64b \rangle
          ret <- .Call(mvtnorm_R_slpmvnorm, ac, bc, uC, as.double(center), as.integer(N),</pre>
                         as.integer(J), w, as.integer(M), as.double(tol), as.logical(fast));
          11 <- log(pmax(ret[1L,], tol)) - log(M)</pre>
          intsum <- ret[1L,]</pre>
          m <- matrix(intsum, nrow = nrow(ret) - 1, ncol = ncol(ret), byrow = TRUE)</pre>
          ret <- ret[-1L,,drop = FALSE] / m ### NOTE: division by zero MAY happen,</pre>
                                                 ### catch outside
          \langle \ post \ differentiate \ mean \ score \ 76a \ \rangle
          ⟨ post differentiate lower score 76b⟩
          ⟨ post differentiate upper score 76c ⟩
          ret <- ret[1:Jp, , drop = FALSE]</pre>
          ⟨ post differentiate chol score 76d ⟩
           ⟨ post differentiate invchol score 77a⟩
          ⟨ post process score 77b⟩
          ret <- ltMatrices(ret, byrow = byrow_orig)</pre>
          if (logLik) {
               ret <- list(logLik = 11,</pre>
                            mean = smean,
                            lower = slower,
                            upper = supper,
                            chol = ret)
               if (!missing(invchol)) names(ret)[names(ret) == "chol"] <- "invchol"</pre>
               return(ret)
          }
          return(ret)
      }
Fragment referenced in 55a.
Let's look at an example, where we use numDeriv::grad to check the results
> J <- 5L
> N <- 4L
> S <- crossprod(matrix(runif(J^2), nrow = J))
> prm <- t(chol(S))[lower.tri(S, diag = TRUE)]
> ### define C
> mC <- ltMatrices(matrix(prm, ncol = 1), diag = TRUE)
> a <- matrix(runif(N * J), nrow = J) - 2
> b <- a + 4
```

```
> a[2,] <- -Inf
> b[3,] <- Inf
> M <- 10000L
> W \leftarrow matrix(runif(M * (J - 1)), ncol = M)
> lli <- c(lpmvnorm(a, b, chol = mC, w = W, M = M, logLik = FALSE))
> fC <- function(prm) {</pre>
      C <- ltMatrices(matrix(prm, ncol = 1), diag = TRUE)</pre>
      lpmvnorm(a, b, chol = C, w = W, M = M)
+ }
> sC \leftarrow slpmvnorm(a, b, chol = mC, w = W, M = M)
> chk(lli, sC$logLik)
> if (require("numDeriv", quietly = TRUE))
      chk(grad(fC, unclass(mC)), rowSums(unclass(sC$chol)), check.attributes = FALSE)
   We can do the same when L (and not C) is given
> mL <- solve(mC)
> lliL <- c(lpmvnorm(a, b, invchol = mL, w = W, M = M, logLik = FALSE))
> chk(lli, lliL)
> fL <- function(prm) {</pre>
      L <- ltMatrices(matrix(prm, ncol = 1), diag = TRUE)
      lpmvnorm(a, b, invchol = L, w = W, M = M)
+ }
> sL <- slpmvnorm(a, b, invchol = mL, w = W, M = M)
> chk(lliL, sL$logLik)
> if (require("numDeriv", quietly = TRUE))
      chk(grad(fL, unclass(mL)), rowSums(unclass(sL$invchol)),
          check.attributes = FALSE)
  The score function also works for univariate problems
> ptr <- pnorm(b[1,] / c(unclass(mC[,1]))) - pnorm(a[1,] / c(unclass(mC[,1])))</pre>
> log(ptr)
[1] -0.01165889 -0.08617272 -0.01240094 -0.03105050
> lpmvnorm(a[1,,drop = FALSE], b[1,,drop = FALSE], chol = mC[,1], logLik = FALSE)
[1] -0.01165889 -0.08617272 -0.01240094 -0.03105050
> lapply(slpmvnorm(a[1,,drop = FALSE], b[1,,drop = FALSE], chol = mC[,1], logLik =
+ TRUE), unclass)
[1] -0.01165889 -0.08617272 -0.01240094 -0.03105050
$mean
                      [,2]
                                 [,3]
           [,1]
[1,] 0.02222249 0.2140162 0.02641782 0.08861162
$lower
            [,1]
                       [,2]
                                   [,3]
                                                [,4]
[1,] -0.03221736 -0.214453 -0.03536199 -0.09096213
$upper
           [,1]
                         [,2]
                                     [,3]
                                                  [, 4]
```

```
[1,] 0.00999487 0.0004368597 0.008944164 0.002350511
$chol
         [,1]
                 [,2]
                         [,3]
                                          [,4]
1.1 \ -0.104149 \ -0.2994286 \ -0.1075726 \ -0.1787174
attr(,"J")
[1] 1
attr(,"diag")
[1] TRUE
attr(,"byrow")
[1] FALSE
attr(,"rcnames")
[1] "1"
> sd1 <- c(unclass(mC[,1]))
> (dnorm(b[1,] / sd1) * b[1,] - dnorm(a[1,] / sd1) * a[1,]) * (-1) / sd1^2 / ptr
[1] -0.1041490 -0.2994286 -0.1075726 -0.1787174
```

Chapter 4

Maximum-likelihood Example

We now discuss how this infrastructure can be used to estimate the Cholesky factor of a multivariate normal in the presence of interval-censored observations.

We first generate a covariance matrix $\Sigma = \mathbf{C}\mathbf{C}^{\top}$ and extract the Cholesky factor \mathbf{C}

```
> J <- 4
> R \leftarrow diag(J)
> R[1,2] <- R[2,1] <- .25
> R[1,3] <- R[3,1] <- .5
> R[2,4] <- R[4,2] <- .75
> (Sigma <- diag(sqrt(1:J / 2)) %*% R %*% diag(sqrt(1:J / 2)))</pre>
                       [,2]
                                   [,3]
[1,] 0.5000000 0.1767767 0.4330127 0.00000
[2,] 0.1767767 1.0000000 0.0000000 1.06066
[3,] 0.4330127 0.0000000 1.5000000 0.00000
[4,] 0.0000000 1.0606602 0.0000000 2.00000
> (C <- t(chol(Sigma)))
                        [,2]
                                    [,3]
           [,1]
                                                [,4]
[1,] 0.7071068 0.0000000 0.0000000 0.0000000
[2,] 0.2500000 0.9682458 0.0000000 0.0000000
[3,] 0.6123724 -0.1581139 1.0488088 0.0000000
[4,] 0.0000000 1.0954451 0.1651446 0.8790491
   We now represent this matrix as ltMatrices object
> prm <- C[lower.tri(C, diag = TRUE)]</pre>
> lt <- ltMatrices(matrix(prm, ncol = 1L),</pre>
                      diag = TRUE,
                                       ### has diagonal elements
                      byrow = FALSE) ### prm is column-major
> BYROW <- FALSE
                      ### later checks
> lt <- ltMatrices(lt,
                      byrow = BYROW)
                                          ### convert to row-major
> chk(C, as.array(lt)[,,1], check.attributes = FALSE)
> chk(Sigma, as.array(Tcrossprod(lt))[,,1], check.attributes = FALSE)
   We generate some data from \mathbb{N}_J(\mathbf{0}_J, \Sigma) by first sampling from \mathbf{Z} \sim \mathbb{N}_J(\mathbf{0}_J, \mathbf{I}_J) and then
computing \mathbf{Y} = \mathbf{CZ} + \boldsymbol{\mu} \sim \mathbb{N}_J(\boldsymbol{\mu}, \mathbf{CC}^{\top})
> N <- 100L
> Z \leftarrow matrix(rnorm(N * J), nrow = J)
> Y <- Mult(lt, Z) + (mn <- 1:J)
```

Before we add some interval-censoring to the data, let's estimate the Cholesky factor C (here called 1t) from the raw continuous data. The true mean μ and the true covariance matrix Σ can be estimated from the uncensored data via maximum likelihood as

We first check if we can obtain the same results by numerial optimisation using ${\tt dmvnorm}$ and the score ${\tt sldmvnorm}$. The log-likelihood and the score function (for the centered means) in terms of ${\bf C}$ are

The diagonal elements of C are positive, so we need box constraints

```
> llim \leftarrow rep(-Inf, J * (J + 1) / 2)
> llim[which(rownames(unclass(lt)) %in% paste(1:J, 1:J, sep = "."))] \leftarrow 1e-4
```

The ML-estimate of \mathbf{CC}^{\top} is now used to obtain an estimate of \mathbf{C} and we check the score function for some random starting values

```
> if (BYROW) {
+ cML <- chol(Shat)[upper.tri(Shat, diag = TRUE)]
+ } else {
+ cML <- t(chol(Shat))[lower.tri(Shat, diag = TRUE)]
+ }
> ll(cML)

[1] 517.8685

> start <- runif(length(cML))
> if (require("numDeriv", quietly = TRUE))
+ chk(grad(ll, start), sc(start), check.attributes = FALSE)
```

Finally, we hand over to optim and compare the results of the analytically and numerically obtained ML estimates

```
> op <- optim(start, fn = 11, gr = sc, method = "L-BFGS-B",
+ lower = llim, control = list(trace = TRUE))</pre>
```

```
iter
     10 value 518.092239
iter
     20 value 517.868548
final value 517.868548
converged
> ## ML numerically
> ltMatrices(op$par, diag = TRUE, byrow = BYROW)
, , 1
1 0.68305690  0.00000000 0.0000000 0.0000000
3 0.50102358 -0.04586658 1.0523442 0.0000000
> 11(op$par)
[1] 517.8685
> ## ML analytically
> t(chol(Shat))
3 0.50102134 -0.04587167 1.052341 0.0000000
4 0.02355875  0.89534773  0.104822  0.9054419
> 11(cML)
[1] 517.8685
> ## true C matrix
> 1t
, , 1
                2
                        3
        1
1 0.7071068  0.0000000 0.0000000 0.0000000
2 0.2500000 0.9682458 0.0000000 0.0000000
3 0.6123724 -0.1581139 1.0488088 0.0000000
4 0.0000000 1.0954451 0.1651446 0.8790491
```

Under interval-censoring, the mean and **C** are no longer orthogonal and there is no analytic solution to the ML estimation problem. So, we add some interval-censoring represented by lwr and upr and try to estimate the model parameters via lpmvnorm and corresponding scores slpmvnorm.

```
> prb <- 1:9 / 10
> sds <- sqrt(diag(Sigma))
> ct <- sapply(1:J, function(j) qnorm(prb, mean = mn[j], sd = sds[j]))
> lwr <- upr <- Y
> for (j in 1:J) {
+    f <- cut(Y[j,], breaks = c(-Inf, ct[,j], Inf))
+    lwr[j,] <- c(-Inf, ct[,j])[f]
+    upr[j,] <- c(ct[,j], Inf)[f]
+ }</pre>
```

Let's do some sanity and performance checks first. For different values of M, we evaluate the log-likelihood using pmvnorm (called in lpmvnormR) and the simplified implementation (fast and slow). The comparion is a bit unfair, because we do not add the time needed to setup Halton sequences, but we would do this only once and use the stored values for repeated evaluations of a log-likelihood (because the optimiser expects a deterministic function to be optimised)

```
> M \leftarrow floor(exp(0:25/10) * 1000)
> 1GB <- sapply(M, function(m) {</pre>
      st <- system.time(ret <-
          lpmvnormR(lwr, upr, mean = mn, chol = lt, algorithm =
                     GenzBretz(maxpts = m, abseps = 0, releps = 0)))
      return(c(st["user.self"], 11 = ret))
  })
+
>
  1H <- sapply(M, function(m) {</pre>
      W <- NULL
      if (require("qrng", quietly = TRUE))
+
          W \leftarrow t(ghalton(m, d = J - 1))
      st <- system.time(ret <- lpmvnorm(lwr, upr, mean = mn,</pre>
                                           chol = lt, w = W, M = m)
      return(c(st["user.self"], 11 = ret))
+
 })
+
  1Hf <- sapply(M, function(m) {</pre>
      W <- NULL
      if (require("qrng", quietly = TRUE))
+
           W \leftarrow t(ghalton(m, d = J - 1))
      st <- system.time(ret <- lpmvnorm(lwr, upr, mean = mn, chol = lt,
                                           w = W, M = m, fast = TRUE))
      return(c(st["user.self"], 11 = ret))
+ })
```

The evaluated log-likelihoods and corresponding timings are given in Figure 4.1. It seems that for $M \ge 3000$, results are reasonably stable.

We now define the log-likelihood function. It is important to use weights via the w argument (or to set the seed) such that only the candidate parameters parm change with repeated calls to 11. We use an extremely low number of integration points M, let's see if this still works out.

```
> M <- 500
> if (require("qrng", quietly = TRUE)) {
      ### quasi-Monte-Carlo
      W \leftarrow t(ghalton(M, d = J - 1))
+ } else {
      ### Monte-Carlo
      W \leftarrow matrix(runif(M * (J - 1)), nrow = J - 1)
+ }
> 11 <- function(parm, J) {</pre>
       m <- parm[1:J]</pre>
                                         ### mean parameters
       parm <- parm[-(1:J)]</pre>
                                       ### chol parameters
       C <- matrix(c(parm), ncol = 1L)</pre>
       C <- ltMatrices(C, diag = TRUE, byrow = BYROW)</pre>
        -lpmvnorm(lower = lwr, upper = upr, mean = m, chol = C,
                   W = W, M = M, logLik = TRUE)
+ }
```

We can check the correctness of our log-likelihood function

Figure 4.1: Evaluated log-likelihoods (left) and timings (right).

```
> prm <- c(mn, unclass(lt))</pre>
> 11(prm, J = J)
[1] 880.4956
> lpmvnormR(lwr, upr, mean = mn, chol = lt,
           algorithm = GenzBretz(maxpts = M, abseps = 0, releps = 0))
[1] -880.491
> (11prm < -1pmvnorm(1wr, upr, mean = mn, chol = 1t, w = W, M = M))
[1] -880.4956
> chk(llprm, sum(lpmvnorm(lwr, upr, mean = mn, chol = lt, w = W,
                            M = M, logLik = FALSE)))
  Before we hand over to the optimiser, we define the score function with respect to \mu and C
> sc <- function(parm, J) {</pre>
      m <- parm[1:J]</pre>
                                   ### mean parameters
      parm <- parm[-(1:J)]</pre>
                                   ### chol parameters
      C <- matrix(c(parm), ncol = 1L)</pre>
      C <- ltMatrices(C, diag = TRUE, byrow = BYROW)</pre>
      ret <- slpmvnorm(lower = lwr, upper = upr, mean = m, chol = C,
                        w = W, M = M, logLik = TRUE)
      return(-c(rowSums(ret$mean), rowSums(unclass(ret$chol))))
+ }
  and check the correctness numerically
> if (require("numDeriv", quietly = TRUE))
      chk(grad(11, prm, J = J), sc(prm, J = J), check.attributes = FALSE)
```

Finally, we can hand-over to optim. Because we need $diag(\mathbf{C}) > 0$, we use box constraints and method = "L-BFGS-B". We start with the estimates obtained from the original continuous data.

```
> 11im < -rep(-Inf, J + J * (J + 1) / 2)
> 11im[J + which(rownames(unclass(lt)) %in% paste(1:J, 1:J, sep = "."))] <- 1e-4
> if (BYROW) {
   start <- c(rowMeans(Y), chol(Shat)[upper.tri(Shat, diag = TRUE)])</pre>
+ } else {
    start <- c(rowMeans(Y), t(chol(Shat))[lower.tri(Shat, diag = TRUE)])</pre>
> 11(start, J = J)
[1] 875.4005
> op <- optim(start, fn = 11, gr = sc, J = J, method = "L-BFGS-B",
              lower = llim, control = list(trace = TRUE))
       10 value 874.158309
final value 874.158301
converged
> op$value ## compare with
[1] 874.1583
> 11(prm, J = J)
[1] 880.4956
   We can now compare the true and estimated Cholesky factor C of our covariance matrix
\Sigma = \mathbf{C}\mathbf{C}^{\mathsf{T}}
> (C <- ltMatrices(matrix(op$par[-(1:J)], ncol = 1),</pre>
                    diag = TRUE, byrow = BYROW))
, , 1
                        2
1 0.67049567 0.00000000 0.00000000 0.0000000
2 0.26764384 1.02232159 0.00000000 0.0000000
3 0.54267774 -0.05007103 1.11347760 0.0000000
4 0.05223456 0.98429745 0.08473411 0.9613685
> 1t
, , 1
          1
                      2
1 0.7071068  0.0000000 0.0000000 0.0000000
2 0.2500000 0.9682458 0.0000000 0.0000000
3 0.6123724 -0.1581139 1.0488088 0.0000000
4 0.0000000 1.0954451 0.1651446 0.8790491
and the estimated means
> op$par[1:J]
```

[1] 1 2 3 4

We can also compare the results on the scale of the covariance matrix

```
> Tcrossprod(lt)
                                ### true Sigma
 , 1
1 0.5000000 0.1767767 0.4330127 0.00000
2 0.1767767 1.0000000 0.0000000 1.06066
3 0.4330127 0.0000000 1.5000000 0.00000
4 0.0000000 1.0606602 0.0000000 2.00000
> Tcrossprod(C)
                          ### interval-censored obs
                      2
                                 3
                                             4
           1
1 0.44956444 0.17945404 0.36386307 0.03502305
2 0.17945404 1.11677466 0.09405566 1.02024880
3 0.36386307 0.09405566 1.53683860 0.07341127
4 0.03502305 1.02024880 0.07341127 1.90297912
> Shat
                          ### "exact" obs
1 0.46655660 0.18104431 0.34222237 0.01609179
2 0.18104431 0.94385339 0.08992252 0.84309528
3 0.34222237 0.08992252 1.36054915 0.08104091
```

This looks reasonably close.

4 0.01609179 0.84309528 0.08104091 1.63301525

Warning: Do NOT assume the choices made here (especially M and W) to be universally applicable. Make sure to investigate the accuracy depending on these parameters of the log-likelihood and score function in your application.

One could ask what this whole exercise was about statistically. We estimated a multivariate normal distribution from interval-censored data, so what? Maybe we were primarily interested in fitting a linear regression

$$\mathbb{E}(Y_1 \mid Y_j = y_j, j = 2, \dots, J) = \alpha + \sum_{j=2}^{J} \beta_j y_j.$$

Interval-censoring in the response could have been handled by some Tobit model, but what about interval-censoring in the explanatory variables? Based on the multivariate distribution just estimated, we can obtain the regression coefficients β_i as

$$> c(cond_mvnorm(chol = C, which = 2:J, given = diag(J - 1))$$
\$mean)
[1] 0.2602003 0.2270392 -0.1298560

We can compare these estimated regression coefficients with those obtained from a linear model fitted to the exact observations

The estimates are quite close, but what about standard errors? Interval-censoring means loss of information, so we should see larger standard errors for the interval-censored data.

Let's obtain the Hessian for all parameters first

```
> H <- optim(op$par, fn = 11, gr = sc, J = J, method = "L-BFGS-B", + lower = 11im, hessian = TRUE)$hessian
```

and next we sample from the distribution of the maximum-likelihood estimators

```
> L <- t(chol(H))
> L <- ltMatrices(L[lower.tri(L, diag = TRUE)], diag = TRUE)
> Nsim <- 50000
> Z <- matrix(rnorm(Nsim * nrow(H)), ncol = Nsim)
> rC <- solve(L, Z)[-(1:J),] + op$par[-(1:J)] ### remove mean parameters</pre>
```

The standard error in this sample should be close to the ones obtained from the inverse Fisher information

```
> c(sqrt(rowMeans((rC - rowMeans(rC))^2)))
```

```
5 6 7 8 9 10 11
0.05129646 0.07989618 0.12445698 0.16089554 0.07609088 0.11566519 0.14020346
12 13 14
0.09622312 0.10415427 0.08278985
```

> c(sqrt(diagonals(Crossprod(solve(L)))))

```
[1] 0.06825507 0.10816499 0.12670329 0.14073702 0.05498052 0.10839260 [7] 0.12441885 0.14311786 0.08812684 0.11638318 0.13340466 0.09586564 [13] 0.10450821 0.08154249
```

We now coerse the matrix rC to an object of class ltMatrices

```
> rC <- ltMatrices(rC, diag = TRUE)
```

The object rC contains all sampled Cholesky factors of the covariance matrix. From each of these matrices, we compute the regression coefficient, giving us a sample we can use to compute standard errors from

```
> rbeta <- cond_mvnorm(chol = rC, which = 2:J, given = diag(J - 1))$mean > sqrt(rowMeans((rbeta - rowMeans(rbeta))^2))
```

```
[1] 0.08792945 0.04869062 0.07752184
```

which are, as expected, slightly different from the ones obtained from the more informative exact observations

```
> sqrt(diag(vcov(m1)))[-1L]
```

```
Y2 Y3 Y4
0.08229627 0.05039009 0.06246094
```

Chapter 5

Continuous-discrete Likelihoods

We sometimes are faced with outcomes measured at different levels of precision. Some variables might have been observed very exactly, and therefore we might want to use the log-Lebesque density for defining the log-likelihood. Other variables might be available as relatively wide intervals only, and thus the log-likelihood is a log-probability. We can use the infrastructure developed so far to compute a joint likelihood. Let's assume we have are interested in the joint distribution of $(\mathbf{Y}_i, \mathbf{X}_i)$ and we observed $\mathbf{Y}_i = \mathbf{y}_i$ (that is, exact observations of \mathbf{Y}) and $\mathbf{a}_i < \mathbf{X}_i \leq \mathbf{b}_i$ (that is, interval-censored observations for \mathbf{X}_i). We define the log-likelihood based on the joint normal distribution $(\mathbf{Y}_i, \mathbf{X}_i) \sim \mathbb{N}_J((\boldsymbol{\mu}_i, \boldsymbol{\eta}_i)^{\top}, \mathbf{C}_i \mathbf{C}_i^{\top})$ as

$$\ell_i(\boldsymbol{\mu}_i, \boldsymbol{\eta}_i, \mathbf{C}_i) = \ell_i(\boldsymbol{\mu}_i, \mathbf{C}_i) + \log(\mathbb{P}(\mathbf{a}_i < \mathbf{X}_i \le \mathbf{b}_i \mid \mathbf{C}_i, \boldsymbol{\eta}_i, \mathbf{Y}_i = \mathbf{y}_i)).$$

The trick here is to decompose the joint likelihood into a product of the marginal Lebesque density of \mathbf{Y}_i and the conditional probability of \mathbf{X}_i given $\mathbf{Y}_i = \mathbf{y}_i$.

We first check the data

Fragment referenced in 90, 92.

```
\langle dp \ input \ checks \ 89 \rangle \equiv
      stopifnot(xor(missing(chol), missing(invchol)))
      cJ <- nrow(obs)
     dJ <- nrow(lower)
     N <- ncol(obs)
      stopifnot(N == ncol(lower))
      stopifnot(N == ncol(upper))
      if (all(mean == 0)) {
          cmean <- 0
          dmean <- 0
     } else {
          if (!is.matrix(mean))
              mean <- matrix(mean, nrow = cJ + dJ, ncol = N)</pre>
          stopifnot(nrow(mean) == cJ + dJ)
          stopifnot(ncol(mean) == N)
          cmean <- mean[1:cJ,, drop = FALSE]</pre>
          dmean <- mean[-(1:cJ),, drop = FALSE]</pre>
     }
```

We can use marg_mvnorm and cond_mvnorm to compute the marginal and the conditional normal distributions and the joint log-likelihood is simply the sum of the two corresponding log-likelihoods.

```
\langle ldpmvnorm 90 \rangle \equiv
     ldpmvnorm <- function(obs, lower, upper, mean = 0, chol, invchol,</pre>
                              logLik = TRUE, ...) {
          if (missing(obs) || is.null(obs))
              return(lpmvnorm(lower = lower, upper = upper, mean = mean,
                                chol = chol, invchol = invchol, logLik = logLik, ...))
          if (missing(lower) && missing(upper) || is.null(lower) && is.null(upper))
              return(ldmvnorm(obs = obs, mean = mean,
                                chol = chol, invchol = invchol, logLik = logLik))
          \langle dp input checks 89 \rangle
          if (!missing(invchol)) {
              J <- dim(invchol)[2L]</pre>
              stopifnot(cJ + dJ == J)
              md <- marg_mvnorm(invchol = invchol, which = 1:cJ)</pre>
              ret <- ldmvnorm(obs = obs, mean = cmean, invchol = md$invchol,</pre>
                                logLik = logLik)
              cd <- cond_mvnorm(invchol = invchol, which_given = 1:cJ,</pre>
                                  given = obs - cmean, center = TRUE)
              ret <- ret + lpmvnorm(lower = lower, upper = upper, mean = dmean,</pre>
                                      invchol = cd$invchol, center = cd$center,
                                      logLik = logLik, ...)
              return(ret)
          }
          J \leftarrow dim(chol)[2L]
          stopifnot(cJ + dJ == J)
          md <- marg_mvnorm(chol = chol, which = 1:cJ)</pre>
          ret <- ldmvnorm(obs = obs, mean = cmean, chol = md$chol, logLik = logLik)</pre>
          cd <- cond_mvnorm(chol = chol, which_given = 1:cJ,</pre>
                              given = obs - cmean, center = TRUE)
          ret <- ret + lpmvnorm(lower = lower, upper = upper, mean = dmean,</pre>
                                  chol = cd$chol, center = cd$center,
                                  logLik = logLik, ...)
          return(ret)
     }
     \Diamond
Fragment referenced in 2.
```

The score function requires a little extra work. We start with the case when invchol is given

```
\langle sldpmvnorm invchol 91 \rangle \equiv
     byrow_orig <- attr(invchol, "byrow")</pre>
      invchol <- ltMatrices(invchol, byrow = TRUE)</pre>
      J <- dim(invchol)[2L]
      stopifnot(cJ + dJ == J)
     md <- marg_mvnorm(invchol = invchol, which = 1:cJ)</pre>
     cs <- sldmvnorm(obs = obs, mean = cmean, invchol = md$invchol)</pre>
     obs_cmean <- obs - cmean
     cd <- cond_mvnorm(invchol = invchol, which_given = 1:cJ,</pre>
                         given = obs_cmean, center = TRUE)
     ds <- slpmvnorm(lower = lower, upper = upper, mean = dmean,</pre>
                       center = cd$center, invchol = cd$invchol,
                       logLik = logLik, ...)
      tmp0 <- solve(cd$invchol, ds$mean, transpose = TRUE)</pre>
      tmp <- - tmp0[rep(1:dJ, each = cJ),,drop = FALSE] *</pre>
                obs_cmean[rep(1:cJ, dJ),,drop = FALSE]
      Jp <- nrow(unclass(invchol))</pre>
     diag <- attr(invchol, "diag")</pre>
     M <- as.array(ltMatrices(1:Jp, diag = diag, byrow = TRUE))[,,1]
     ret <- matrix(0, nrow = Jp, ncol = ncol(obs))</pre>
     M1 <- M[1:cJ, 1:cJ]
     idx <- t(M1)[upper.tri(M1, diag = diag)]</pre>
     ret[idx,] <- Lower_tri(cs$invchol, diag = diag)</pre>
     idx <- c(t(M[-(1:cJ), 1:cJ]))
     ret[idx,] <- tmp</pre>
     M3 \leftarrow M[-(1:cJ), -(1:cJ)]
     idx <- t(M3)[upper.tri(M3, diag = diag)]</pre>
     ret[idx,] <- Lower_tri(ds$invchol, diag = diag)</pre>
     ret <- ltMatrices(ret, diag = diag, byrow = TRUE)</pre>
     if (!diag) diagonals(ret) <- 0</pre>
     ret <- ltMatrices(ret, byrow = byrow_orig)</pre>
     ### post differentiate mean
      aL <- as.array(invchol)[-(1:cJ), 1:cJ,,drop = FALSE]
     lst <- tmp0[rep(1:dJ, cJ),,drop = FALSE]</pre>
     if (\dim(aL)[3] == 1)
            aL <- aL[,,rep(1, ncol(lst)), drop = FALSE]
      dim <- dim(aL)
     dobs <- -margin.table(aL * array(lst, dim = dim), 2:3)</pre>
     ret <- c(list(invchol = ret, obs = cs$obs + dobs),</pre>
               ds[c("lower", "upper")])
     ret$mean <- rbind(-ret$obs, ds$mean)</pre>
     return(ret)
Fragment referenced in 92.
```

For cho1, we compute the above code for its inverse and post-differentiate using the vec-trick

```
\langle sldpmvnorm 92 \rangle \equiv
      sldpmvnorm <- function(obs, lower, upper, mean = 0, chol, invchol, logLik = TRUE, ...) {</pre>
          if (missing(obs) || is.null(obs))
              return(slpmvnorm(lower = lower, upper = upper, mean = mean,
                                 chol = chol, invchol = invchol, logLik = logLik, ...))
          if (missing(lower) && missing(upper) || is.null(lower) && is.null(upper))
              return(sldmvnorm(obs = obs, mean = mean,
                                 chol = chol, invchol = invchol, logLik = logLik))
          ⟨ dp input checks 89⟩
          if (!missing(invchol)) {
               \langle sldpmvnorm invchol 91 \rangle
          invchol <- solve(chol)</pre>
          ret <- sldpmvnorm(obs = obs, lower = lower, upper = upper,</pre>
                             mean = mean, invchol = invchol, logLik = logLik, ...)
          ### this means: ret$chol <- - vectrick(invchol, ret$invchol, invchol)</pre>
          ret$chol <- - vectrick(invchol, ret$invchol)</pre>
          ret$invchol <- NULL
          return(ret)
      }
Fragment referenced in 2.
```

Let's assume we observed the first two dimensions exactly in our small example, and the remaining two dimensions are only known in intervals. The log-likelihood and score function for μ and C are

```
> 11_cd <- function(parm, J) {</pre>
       m <- parm[1:J]</pre>
                                     ### mean parameters
       parm <- parm[-(1:J)]</pre>
                                     ### chol parameters
       C <- matrix(c(parm), ncol = 1L)</pre>
       C <- ltMatrices(C, diag = TRUE, byrow = BYROW)</pre>
       -ldpmvnorm(obs = Y[1:2,], lower = lwr[-(1:2),],
                    upper = upr[-(1:2),], mean = m, chol = C,
                    W = W[-(1:2), drop = FALSE], M = M)
> sc_cd <- function(parm, J) {</pre>
      m <- parm[1:J]</pre>
                                    ### mean parameters
      parm <- parm[-(1:J)]</pre>
                                    ### chol parameters
      C \leftarrow matrix(c(parm), ncol = 1L)
      C <- ltMatrices(C, diag = TRUE, byrow = BYROW)</pre>
      ret <- sldpmvnorm(obs = Y[1:2,], lower = lwr[-(1:2),],
                          upper = upr[-(1:2),], mean = m, chol = C,
                          w = W[-(1:2), drop = FALSE], M = M)
      return(-c(rowSums(ret$mean), rowSums(unclass(ret$chol))))
+ }
and the score function seems to be correct
> if (require("numDeriv", quietly = TRUE))
```

```
chk(grad(ll\_cd, start, J = J), sc\_cd(start, J = J),
        check.attributes = FALSE, tol = 1e-6)
  We can now jointly estimate all model parameters via
> op <- optim(start, fn = ll_cd, gr = sc_cd, J = J,
           method = "L-BFGS-B", lower = llim,
            control = list(trace = TRUE))
     10 value 655.707790
iter
final value 655.707779
converged
> ## estimated C
> ltMatrices(matrix(op$par[-(1:J)], ncol = 1),
         diag = TRUE, byrow = BYROW)
, , 1
                   2
                             3
3 0.53508534 -0.05736364 1.11260547 0.0000000
4 0.06748574 0.95887388 0.07774847 0.9669178
> ## compare with true C
> 1t
, , 1
                  2
                          3
2 0.2500000 0.9682458 0.0000000 0.0000000
3 0.6123724 -0.1581139 1.0488088 0.0000000
4 0.0000000 1.0954451 0.1651446 0.8790491
> ## estimated means
> op$par[1:J]
             2
                     3
0.968533 2.126882 2.944105 3.989790
> ## compare with true means
> mn
```

[1] 1 2 3 4

Chapter 6

Unstructured Gaussian Copula Estimation

With $\mathbf{Z} \sim \mathbb{N}_J(0, \mathbf{I}_J)$ and $\mathbf{Y} = \tilde{\mathbf{C}}\mathbf{Z} \sim \mathbb{N}_J(0, \tilde{\mathbf{C}}\tilde{\mathbf{C}}^{\top})$ we want to estimate the off-diagonal elements of the lower triangular unit-diagonal matrix \mathbf{C} . We have $\tilde{\mathbf{C}}(\mathbf{C}) := \operatorname{diag}(\mathbf{C}\mathbf{C}^{\top})^{-1/2}\mathbf{C}$ such that $\mathbf{\Sigma} = \tilde{\mathbf{C}}\tilde{\mathbf{C}}^{\top}$ is a correlation matrix $(\operatorname{diag}(\mathbf{\Sigma}) = \mathbf{I}_J)$. Note that directly estimating $\tilde{\mathbf{C}}$ requires J(J+1)/2 parameters under constraints $\operatorname{diag}(\mathbf{\Sigma}) = 1$ whereas only J(J-1)/2 parameters are necessary when estimating the lower triangular part of \mathbf{C} . The standardisation by $\operatorname{diag}(\mathbf{C}\mathbf{C}^{\top})^{-1/2}$ ensures that $\operatorname{diag}(\mathbf{\Sigma}) \equiv 1$, that is, unconstained optimisation can be applied.

```
\langle standardize 94 \rangle \equiv
     standardize <- function(chol, invchol) {</pre>
         stopifnot(xor(missing(chol), missing(invchol)))
         if (!missing(invchol)) {
             stopifnot(!attr(invchol, "diag"))
             return(invcholD(invchol))
         stopifnot(!attr(chol, "diag"))
         return(Dchol(chol))
     }
Fragment referenced in 2.
> C <- ltMatrices(runif(10))</pre>
> all.equal(as.array(chol2cov(standardize(chol = C))),
             as.array(chol2cor(standardize(chol = C))))
[1] TRUE
> L <- solve(C)
> all.equal(as.array(invchol2cov(standardize(invchol = L))),
             as.array(invchol2cor(standardize(invchol = L))))
[1] TRUE
```

The log-likelihood function is $\ell_i(\mathbf{C}_i)$ (we omit i in the following) and we assume the score

$$\frac{\partial \ell(\mathbf{C})}{\partial \mathbf{C}}$$

is already available. We want to compute the score

$$\frac{\partial \ell(\tilde{\mathbf{C}})}{\partial \mathbf{C}}$$

which gives

$$\frac{\partial \ell(\tilde{\mathbf{C}})}{\partial \mathbf{C}} = \underbrace{\frac{\partial \ell(\tilde{\mathbf{C}})}{\partial \tilde{\mathbf{C}}}}_{=:\mathbf{T}} \times \frac{\partial \tilde{\mathbf{C}}(\mathbf{C})}{\partial \mathbf{C}}$$

We further have

$$\frac{\partial \tilde{\mathbf{C}}(\mathbf{C})}{\partial \mathbf{C}} = (\mathbf{C}^{\top} \otimes \mathbf{I}_{J}) \frac{\partial \mathrm{diag}(\mathbf{C}\mathbf{C}^{\top})^{-1/2}}{\partial \mathbf{C}} + (\mathbf{I}_{J} \otimes \mathrm{diag}(\mathbf{C}\mathbf{C}^{\top})^{-1/2})$$

and thus

$$\frac{\partial \ell(\tilde{\mathbf{C}})}{\partial \mathbf{C}} = \operatorname{vec}(\mathbf{I}_J \mathbf{T} \mathbf{C}^\top)^\top \frac{\partial \operatorname{diag}(\mathbf{C} \mathbf{C}^\top)^{-1/2}}{\partial \mathbf{C}} + \operatorname{vec}(\operatorname{diag}(\mathbf{C} \mathbf{C}^\top)^{-1/2} \mathbf{T} \mathbf{I}_J)^\top$$

and with

$$\frac{\partial \operatorname{diag}(\mathbf{C}\mathbf{C}^{\top})^{-1/2}}{\partial \mathbf{C}} = \frac{\partial \operatorname{diag}(\mathbf{A})^{-1/2}}{\partial \mathbf{A}} \Big|_{\mathbf{A} = \mathbf{C}\mathbf{C}^{\top}} \frac{\partial \mathbf{C}\mathbf{C}^{\top}}{\partial \mathbf{C}}$$

$$= -\frac{1}{2} \operatorname{diag}(\operatorname{vec}(\operatorname{diag}(\mathbf{C}\mathbf{C}^{\top})^{-3/2})) \left[(\mathbf{C} \otimes \mathbf{I}_{J}) \frac{\partial \mathbf{C}}{\partial \mathbf{C}} + (\mathbf{I}_{J} \otimes \mathbf{C}) \frac{\partial \mathbf{C}^{\top}}{\partial \mathbf{C}} \right]$$

we can write

$$\mathrm{vec}(\mathbf{I}_J\mathbf{T}\mathbf{C}^\top)^\top(-\frac{1}{2})\mathrm{diag}(\mathrm{vec}(\mathrm{diag}(\mathbf{C}\mathbf{C}^\top)^{-3/2})) \quad = \quad -\frac{1}{2}\times\mathrm{vec}(\mathbf{I}_J\mathbf{T}\mathbf{C}^\top)^\top\times\mathrm{vec}(\mathrm{diag}(\mathbf{C}\mathbf{C}^\top)^{-3/2})^\top =: \mathbf{b}^\top$$

thus

$$\frac{\partial \ell(\tilde{\mathbf{C}})}{\partial \mathbf{C}} = \mathbf{b}^{\top} \left[(\mathbf{C} \otimes \mathbf{I}_J) \frac{\partial \mathbf{C}}{\partial \mathbf{C}} + (\mathbf{I}_J \otimes \mathbf{C}) \frac{\partial \mathbf{C}^{\top}}{\partial \mathbf{C}} \right] + \text{vec}(\text{diag}(\mathbf{C}\mathbf{C}^{\top})^{-1/2}\mathbf{T}\mathbf{I}_J)^{\top} \\
= \text{vec}(\mathbf{I}_J \mathbf{B}\mathbf{C})^{\top} + \text{vec}(\mathbf{C}^{\top} \mathbf{B}\mathbf{I}_J)^{\top} \frac{\partial \mathbf{C}^{\top}}{\partial \mathbf{C}} + \text{vec}(\text{diag}(\mathbf{C}\mathbf{C}^{\top})^{-1/2}\mathbf{T}\mathbf{I}_J)^{\top}$$

when $\mathbf{b} = \text{vec}(\mathbf{B})$. These scores are implemented in destandardize with $\text{chol} = \mathbf{C}$ and $\text{score_schol} = \mathbf{T}$. If the model was parameterised in $\mathbf{L} = \mathbf{C}^{-1}$, we have $\text{invchol} = \mathbf{L}$, however, we would still need to compute \mathbf{T} (the score with respect to \mathbf{C}).

```
\langle destandardize 96 \rangle \equiv
      destandardize <- function(chol = solve(invchol), invchol, score_schol)</pre>
          stopifnot(inherits(chol, "ltMatrices"))
          J \leftarrow dim(chol)[2L]
          stopifnot(!attr(chol, "diag"))
          byrow_orig <- attr(chol, "byrow")</pre>
          chol <- ltMatrices(chol, byrow = FALSE)</pre>
          if (inherits(score_schol, "ltMatrices"))
               score_schol <- matrix(as.array(score_schol),</pre>
                                       nrow = dim(score_schol)[2L]^2)
          stopifnot(is.matrix(score_schol))
          N <- ncol(score_schol)
          stopifnot(J^2 == nrow(score_schol))
          CCt <- Tcrossprod(chol, diag_only = TRUE)</pre>
          DC <- Dchol(chol, D = Dinv <- 1 / sqrt(CCt))</pre>
          SDC <- solve(DC)</pre>
          IDX <- t(M \leftarrow matrix(1:J^2, nrow = J, ncol = J))
          i \leftarrow cumsum(c(1, rep(J + 1, J - 1)))
          ID <- diagonals(as.integer(J), byrow = FALSE)</pre>
          if (dim(ID)[1L] != dim(chol)[1L])
               ID <- ID[rep(1, dim(chol)[1L]),]</pre>
          B <- vectrick(ID, score_schol, chol)</pre>
          B[i,] \leftarrow B[i,] * (-.5) * c(CCt)^(-3/2)
          B[-i,] <- 0
          Dtmp <- Dchol(ID, D = Dinv)</pre>
          ret <- vectrick(ID, B, chol, transpose = c(TRUE, FALSE)) +
                  vectrick(chol, B, ID)[IDX,] +
                  vectrick(Dtmp, score_schol, ID)
          if (!missing(invchol)) {
               ### this means: ret <- - vectrick(chol, ret, chol)</pre>
              ret <- - vectrick(chol, ret)</pre>
          }
          ret <- ltMatrices(ret[M[lower.tri(M)],,drop = FALSE],</pre>
                              diag = FALSE, byrow = FALSE)
          ret <- ltMatrices(ret, byrow = byrow_orig)</pre>
          diagonals(ret) <- 0
          return(ret)
      }
Fragment referenced in 2.
```

We can now set-up the log-likelihood and score functions for a Gaussian copula model. We start with the classical approach of generating the marginal observations \mathbf{Y} from the ECDF with denominator N+1 and subsequent use of the Lebesque density as likelihood.

```
> data("iris")
> J <- 4</pre>
```

```
> Z <- t(qnorm(do.call("cbind", lapply(iris[1:J], rank)) / (nrow(iris) + 1)))</pre>
> (CR <- cor(t(Z)))
             Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length
               1.00000000 -0.09887012
                                          0.8695177
                                                        0.7819059
              -0.09887012 1.00000000
Sepal.Width
                                          -0.2709859 -0.2414218
Petal.Length
              0.86951767 -0.27098589 1.0000000 0.8713759
Petal.Width
               0.78190591 -0.24142185
                                           0.8713759
                                                       1.0000000
> 11 <- function(parm) {</pre>
      C <- ltMatrices(parm)</pre>
      Cs <- standardize(C)</pre>
      -1dmvnorm(obs = Z, chol = Cs)
+ }
> sc <- function(parm) {</pre>
      C <- ltMatrices(parm)</pre>
      Cs <- standardize(C)</pre>
      -rowSums(Lower_tri(destandardize(chol = C,
          score_schol = sldmvnorm(obs = Z, chol = Cs)$chol)))
+ }
> start <- t(chol(CR))</pre>
> start <- start[lower.tri(start)]
> if (require("numDeriv", quietly = TRUE))
      chk(grad(ll, start), sc(start), check.attributes = FALSE)
> op <- optim(start, fn = 11, gr = sc, method = "BFGS", hessian = TRUE)
> op$value
[1] 602.5055
> S_ML <- chol2cov(standardize(ltMatrices(op$par)))</pre>
```

This approach is of course a bit strange, because we estimate the marginal distributions by nonparametric maximum likelihood whereas the joint distribution is estimated by plain maximum likelihood. For the latter, we can define the likelihood by boxes given by intervals obtained from the marginale ECDFs and estimate the Copula parameters by maximisation of this nonparametric likelihood.

```
> lwr <- do.call("cbind", lapply(iris[1:J], rank, ties.method = "min")) - 1L
> upr <- do.call("cbind", lapply(iris[1:J], rank, ties.method = "max"))</pre>
> lwr <- t(qnorm(lwr / nrow(iris)))</pre>
> upr <- t(qnorm(upr / nrow(iris)))</pre>
> M <- 500
> if (require("qrng", quietly = TRUE)) {
      ### quasi-Monte-Carlo
      W \leftarrow t(ghalton(M, d = J - 1))
+ } else {
      ### Monte-Carlo
      W \leftarrow matrix(runif(M * (J - 1)), nrow = J - 1)
+ }
> 11 <- function(parm) {</pre>
      C <- ltMatrices(parm)</pre>
      Cs <- standardize(C)</pre>
      -lpmvnorm(lower = lwr, upper = upr, chol = Cs, M = M, w = W)
+ }
> sc <- function(parm) {</pre>
```

```
C <- ltMatrices(parm)</pre>
      Cs <- standardize(C)</pre>
      -rowSums(Lower_tri(destandardize(chol = C,
          score_schol = slpmvnorm(lower = lwr, upper = upr, chol = Cs,
                                  M = M, w = W)$chol)))
+ }
> if (require("numDeriv", quietly = TRUE))
      chk(grad(ll, start), sc(start), check.attributes = FALSE)
> op2 <- optim(start, fn = 11, gr = sc, method = "BFGS", hessian = TRUE)
> S_NPML <- chol2cov(standardize(ltMatrices(op2$par)))</pre>
  For N = 150, the difference is (as expected) marginal:
> S_ML
, , 1
                      2
                                  3
1 1.0000000 -0.1139030 0.8768269 0.7962466
2 -0.1139030 1.0000000 -0.2856045 -0.2574850
3 0.8768269 -0.2856045 1.0000000 0.8816944
4 0.7962466 -0.2574850 0.8816944 1.0000000
> S_NPML
, , 1
                        2
1 1.00000000 -0.09785513 0.8734599 0.7832830
2 -0.09785513 1.00000000 -0.2725997 -0.2482241
3 0.87345993 -0.27259973 1.0000000 0.8849489
4 0.78328300 -0.24822413 0.8849489 1.0000000
with relatively close standard errors
> sd_ML <- ltMatrices(sqrt(diag(solve(op$hessian))))</pre>
> diagonals(sd_ML) <- 0</pre>
> sd_NPML <- try(ltMatrices(sqrt(diag(solve(op2$hessian)))))
> if (!inherits(sd_NPML, "try-error")) {
      diagonals(sd_NPML) <- 0</pre>
      print(sd_ML)
      print(sd_NPML)
+ }
, , 1
           1
1 0.00000000 0.00000000 0.0000000 0
2 0.08122393 0.00000000 0.0000000 0
3 0.13679345 0.08761945 0.0000000 0
4 0.12621115 0.10787495 0.1010173 0
, , 1
1 0.00000000 0.00000000 0.0000000 0
```

- 2 0.07731078 0.00000000 0.0000000 0
- 3 0.13999691 0.08694828 0.0000000 0
- 4 0.13691328 0.11037843 0.1161017 0

Chapter 7

Package Infrastructure

```
\langle R \; Header \, 100 \rangle \equiv
      ###
             Copyright (C) 2022- Torsten Hothorn
      ###
      ###
             This file is part of the 'mvtnorm' R add-on package.
      ###
      ###
             'mvtnorm' is free software: you can redistribute it and/or modify
      ###
             it under the terms of the GNU General Public License as published by
             the Free Software Foundation, version 2.
     ###
      ###
             'mvtnorm' is distributed in the hope that it will be useful,
      ###
             but WITHOUT ANY WARRANTY; without even the implied warranty of
      ###
             MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
      ###
             GNU General Public License for more details.
      ###
      ###
      ###
             You should have received a copy of the GNU General Public License
      ###
             along with 'mvtnorm'. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
      ###
      ###
             DO NOT EDIT THIS FILE
      ###
      ###
     ###
             Edit 'lmvnorm_src.w' and run 'nuweb -r lmvnorm_src.w'
```

```
/*

Copyright (C) 2022- Torsten Hothorn

This file is part of the 'mvtnorm' R add-on package.

'mvtnorm' is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.

'mvtnorm' is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with 'mvtnorm'. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>>.

DO NOT EDIT THIS FILE

Edit 'lmvnorm_src.w' and run 'nuweb -r lmvnorm_src.w'

*/
```

Fragment referenced in 3, 55b.

Appendix

This document uses the following matrix derivatives

$$\frac{\partial \mathbf{y}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{y}}{\partial \mathbf{A}} = 2\mathbf{A} \mathbf{y} \mathbf{y}^{\top}
\frac{\partial \mathbf{A}^{-1}}{\partial \mathbf{A}} = -(\mathbf{A}^{-\top} \otimes \mathbf{A}^{-1})
\frac{\partial \mathbf{A} \mathbf{A}^{\top}}{\partial \mathbf{A}} = (\mathbf{A} \otimes \mathbf{I}_{J}) \frac{\partial \mathbf{A}}{\partial \mathbf{A}} + (\mathbf{I}_{J} \otimes \mathbf{A}) \frac{\partial \mathbf{A}^{\top}}{\partial \mathbf{A}}
= (\mathbf{A} \otimes \mathbf{I}_{J}) + (\mathbf{I}_{J} \otimes \mathbf{A}) \frac{\partial \mathbf{A}^{\top}}{\partial \mathbf{A}}
\frac{\partial \operatorname{diag}(\mathbf{A})}{\partial \mathbf{A}} = \operatorname{diag}(\operatorname{vec}(\mathbf{I}_{J}))
\frac{\partial \mathbf{A}}{\partial \mathbf{A}} = \operatorname{diag}(I_{J^{2}})
\frac{\mathbf{y}^{\top} \mathbf{A} \mathbf{y}}{\partial \mathbf{y}} = \mathbf{y}^{\top} (\mathbf{A} + \mathbf{A}^{\top})$$

and the "vec trick" $\operatorname{vec}(\mathbf{X})^{\top}(\mathbf{B}\otimes\mathbf{A}^{\top}) = \operatorname{vec}(\mathbf{A}\mathbf{X}\mathbf{B})^{\top}.$

Index

Files

```
"lpmvnorm.c" Defined by 55b.
"lpmvnorm.R" Defined by 55a.
"ltMatrices.c" Defined by 3.
"ltMatrices.R" Defined by 2.
```

Fragments

```
(.subset ltMatrices 11) Referenced in 12.
\langle add diagonal elements 17\rangle Referenced in 2.
\langle \text{ aperm 44} \rangle Referenced in 2.
(assign diagonal elements 18) Referenced in 2.
 C Header 101 > Referenced in 3, 55b.
 C length 21b \rangle Referenced in 22, 26, 37a.
 call Lapack 25a Referenced in 26.
 check A argument 38b \rangle Referenced in 39.
 check and / or set integration weights 64b Referenced in 65, 78.
check C argument 37b Referenced in 39.
\langle \text{check obs 49b} \rangle Referenced in 2.
(check S argument 38a) Referenced in 39.
\langle \text{ chol } 35 \rangle \text{ Referenced in } 3.
\langle chol scores 67a\rangle Referenced in 68a.
(chol syMatrices 34) Referenced in 2.
(Cholesky of precision 64c) Referenced in 65, 78.
(compute x 58a) Referenced in 58d, 73a.
(compute y 57c) Referenced in 58d, 73a.
(cond general 46) Referenced in 47b.
\langle \text{ cond simple 47a} \rangle Referenced in 47b.
\langle \text{ conditional 47b} \rangle Referenced in 2.
\langle \text{ convenience functions } 42 \rangle \text{ Referenced in 2.}
(copy elements 24b) Referenced in 26.
(crossprod ltMatrices 33) Referenced in 2.
 D times C 40 Referenced in 42.
 destandardize 96 > Referenced in 2.
 diagonal matrix 19 Referenced in 2.
 diagonals ltMatrices 16 \rangle Referenced in 2.
 dim ltMatrices 5b \rangle Referenced in 2.
 dimensions 61b Referenced in 63, 75.
 dimnames ltMatrices 5c > Referenced in 2.
 dp input checks 89 \rangle Referenced in 90, 92.
(extract slots 8) Referenced in 9, 10, 11, 14, 16, 18, 20b.
(first element 28) Referenced in 29, 30a.
(IDX 30b) Referenced in 31, 37a.
(increment 59a) Referenced in 63.
```

```
(init center 62b) Referenced in 63, 75.
(init dans 73c) Referenced in 75.
(init logLik loop 57b) Referenced in 63, 69a.
(init random seed, reset on exit 64a) Referenced in 65, 78.
(init score loop 69a) Referenced in 75.
(initialisation 57a) Referenced in 63, 75.
(inner logLik loop 58d) Referenced in 63.
(inner score loop 73a) Referenced in 75.
(input checks 56a) Referenced in 54, 65, 78.
kronecker vec trick 39 Referenced in 2.
(L times D 41) Referenced in 42.
\langle ldmvnorm 49a \rangle Referenced in 2.
(ldmvnorm chol 50a) Referenced in 49a.
 ldmvnorm invchol 50b \rangle Referenced in 49a.
(ldpmvnorm 90) Referenced in 2.
 lower scores 67c \rangle Referenced in 68a.
 lower triangular elements 14 \rangle Referenced in 2.
(lpmvnorm 65) Referenced in 55a.
(lpmvnormR 54) Not referenced.
(ltMatrices 5a) Referenced in 2.
\langle ltMatrices dim 4a \rangle Referenced in 5a.
(ltMatrices input 4c) Referenced in 5a.
(ltMatrices names 4b) Referenced in 5a.
(marginal 45b) Referenced in 2.
(mc input checks 45a) Referenced in 45b, 47b.
(mean scores 67b) Referenced in 68a.
\langle \text{ move on } 59c \rangle \text{ Referenced in } 63, 75.
(mult 22) Referenced in 3.
(mult ltMatrices 20b) Referenced in 2.
(mult ltMatrices transpose 20a) Referenced in 20b.
(names ltMatrices 5d) Referenced in 2.
(new score means, lower and upper 71c) Referenced in 73a.
(output 59b) Referenced in 63.
 pnorm 60c \range Referenced in 63, 75.
 pnorm fast 60a \rangle Referenced in 55b.
 pnorm slow 60b \rangle Referenced in 55b.
 post differentiate chol score 76d \rangle Referenced in 78.
 post differentiate invchol score 77a Referenced in 78.
 post differentiate lower score 76b Referenced in 78.
post differentiate mean score 76a Referenced in 78.
(post differentiate upper score 76c) Referenced in 78.
(post process score 77b) Referenced in 78.
(print ltMatrices 9) Referenced in 2.
(R Header 100) Referenced in 2, 55a.
(R lpmvnorm 63) Referenced in 55b.
(R slpmvnorm 75) Referenced in 55b.
(R slpmvnorm variables 62c) Referenced in 63, 75.
(RC input 21a) Referenced in 22, 26, 31, 37a.
(reorder ltMatrices 10) Referenced in 2.
(return objects 25b) Referenced in 26.
(score a, b 68c) Referenced in 69a, 75.
(score c11 68b) Referenced in 69a, 75.
\langle \text{ score output 73b} \rangle \text{ Referenced in 75.}
score output object 68a Referenced in 75.
 score wrt new chol diagonal 71b Referenced in 73a.
 score wrt new chol off-diagonals 71a Referenced in 73a.
 setup memory 24a > Referenced in 26.
(setup return object 61c) Referenced in 63.
```

```
\langle sldmvnorm 52\rangle Referenced in 2.
\langle sldpmvnorm 92\rangle Referenced in 2.
(sldpmvnorm invchol 91) Referenced in 92.
⟨slpmvnorm 78⟩ Referenced in 55a.
(solve 26) Referenced in 3.
(solve ltMatrices 27) Referenced in 2.
(standardise 56b) Referenced in 65, 78.
(standardize 94) Referenced in 2.
(subset ltMatrices 12) Referenced in 2.
\langle t(C) S t(A) 36 \rangle Referenced in 37a.
⟨tcrossprod 31⟩ Referenced in 3.
(tcrossprod diagonal only 29) Referenced in 31.
(tcrossprod full 30a) Referenced in 31.
(tcrossprod ltMatrices 32) Referenced in 2.
(univariate problem 62a) Referenced in 63.
(update d, e 58b) Referenced in 58d, 73a.
 update f 58c \rangle Referenced in 58d, 73a.
 (update score for chol 72a) Referenced in 73a.
(update score means, lower and upper 72b) Referenced in 73a.
(update yp for chol 69b) Referenced in 73a.
(update yp for means, lower and upper 70) Referenced in 73a.
(upper scores 67d) Referenced in 68a.
(vec trick 37a) Referenced in 3.
(W length 61a) Referenced in 63, 75.
```

Bibliography

Alan Genz. Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1:141-149, 1992. doi: 10.1080/10618600.1992.10477010. 1, 55

Alan Genz and Frank Bretz. Methods for the computation of multivariate t-probabilities. Journal of Computational and Graphical Statistics, 11:950–971, 2002. doi: 10.1198/106186002394. 1, 54

Ivan Matić, Radoš Radoičić, and Dan Stefanica. A sharp Pólya-based approximation to the normal CDF. Applied Mathematics and Computation, 322:111–122, 2018. doi: 10.2139/ssrn.2842681. 59