Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт космических и информационных технологий			
институт			
Информатика			
кафедра			

ОТЧЁТ О ПРАКТИЧЕСКОЙ РАБОТЕ

Сравнительный анализ эффективности численных методов нулевого порядка тема

Преподаватель			Тынченко В.В.
		подпись, дата	фамилия, инициалы
Студент	КИ20-17/1Б, 032048995		Макаров А. Е.
_	номер группы, зачетной книжки	подпись, дата	фамилия, инициалы

СОДЕРЖАНИЕ

1Задачи	3
2Ход работы	3
r	
3Выводы	4
<i>э</i> э э э э э э э э э э	•• •

1 Задачи

На основании результатов выполнения практических работ модуля "Численные методы нулевого порядка для поиска безусловного экстремума" сравнить реализованные алгоритмы по точности и скорости решения задач оптимизации, варьируя параметры алгоритмов.

Для проведения вычислительных экспериментов самостоятельно выбрать 3 целевые функции и интервалы неопределенности, интересные с точки зрения исследования. Результаты вычислительных экспериментов представить в табличном виде, прокомментировать их и сделать обоснованный вывод об особенностях работы исследуемых алгоритмов и их эффективности на различных целевых функциях.

2 Ход работы

Исследования будут проводиться на трёх выбранных функциях при равных условиях, то есть начальные точки поиска и интервалы неопределённости будут одинаковы.

Для начала было проведено исследование метода одномерной оптимизации на трёх разных функциях, по 4 раза с разными параметрами на функцию. Замеры для метода одномерной типизации можно увидеть на рисунке 1. Интервал неопределённости [-6, 6]

	Функция	Ошибка	Время
0	x ^ 2 - 6 * x + 14	2.002	0.0009
1	x ^ 2 - 6 * x + 14	2.000	0.0010
2	x ^ 2 - 6 * x + 14	2.043	0.0009
3	x ^ 2 - 6 * x + 14	2.210	0.0010
4	x ^ 2 + 6 * x + 12	6.002	0.0009
5	x ^ 2 + 6 * x + 12	6.000	0.0010
6	x ^ 2 + 6 * x + 12	6.043	0.0009
7	x ^ 2 + 6 * x + 12	6.210	0.0010
8	2 * x ^ 2 - 2 * x + 14	13.003	0.0010
9	2 * x ^ 2 - 2 * x + 14	13.000	0.0009
10	2 * x ^ 2 - 2 * x + 14	13.087	0.0009
11	2 * x ^ 2 - 2 * x + 14	13.420	0.0009

Рисунок 1 – Одномерная оптимизация замеры

Средние значения для каждой функции можно увидеть на рисунках 2-4

Среднее время: 0.00095 Средняя ошибка: 2.063749999999998

Рисунок $2 - x ^2 - 6 * x + 14$

Среднее время: 0.00095 Средняя ошибка: 6.06375

Рисунок $3 - x ^2 + 6 * x + 12$

Среднее время: 0.000925

Средняя ошибка: 13.1275000000000001

Рисунок $4 - 2 * x ^ 2 - 2 * x + 14$

Видно, что метод Фибоначчи довольно быстро находит экстремум, однако ошибка достаточно велика, из-за чего можно сделать вывод о том, что данный метод чаще находит локальный минимум и очень чувствителен к подбору параметров.

Результаты исследования метода многомерной оптимизации представлен на рисунках 5-8.

	Функция	Ошибка	Время
0	7 * (x2 - 1) ^ 2 + (x1 - 2) ^ 2	0.062	1.000000e-03
1	7 * (x2 - 1) ^ 2 + (x1 - 2) ^ 2	0.067	9.000000e-04
2	7 * (x2 - 1) ^ 2 + (x1 - 2) ^ 2	0.121	1.000000e-10
3	7 * (x2 - 1) ^ 2 + (x1 - 2) ^ 2	0.062	1.000000e-10
4	(x1 - 2) ^ 2 + (x2 - 5) ^ 2	4.490	1.000000e-03
5	(x1 - 2) ^ 2 + (x2 - 5) ^ 2	4.490	1.000000e-10
6	(x1 - 2) ^ 2 + (x2 - 5) ^ 2	4.570	9.000000e-04
7	(x1 - 2) ^ 2 + (x2 - 5) ^ 2	0.030	1.000000e-03
8	(x1 - 4) ^ 2 + (x2 - 1) ^ 2	1.980	1.000000e-10
9	(x1 - 4) ^ 2 + (x2 - 1) ^ 2	1.980	9.000000e-04
10	(x1 - 4) ^ 2 + (x2 - 1) ^ 2	2.010	1.000000e-10
11	(x1 - 4) ^ 2 + (x2 - 1) ^ 2	1.960	1.000000e-03

Рисунок 5 – Многомерная оптимизация замеры

Среднее время: 0.00047500005 Средняя ошибка: 0.078

Рисунок $6 - 7 * (x2 - 1) ^2 + (x1 - 2) ^2$

Среднее время: 0.0007250000250000001 Средняя ошибка: 3.395

Рисунок 7 – $(x1 - 2) ^2 + (x2 - 5) ^2$

Среднее время: 0.00047500005 Средняя ошибка: 1.9825

Рисунок $8 - (x1 - 4)^2 + (x2 - 1)^2$

Метод Нелдера-Мида работает быстрее метода Фибоначчи и имеет меньшую ошибку, однако всё так же чувствителен к подбору параметров

3 Выводы

Исходя из результатов можно сделать вывод о том, что оба метода являются чувствительными к подбору параметров и склонны к поиску локального минимума.

В ходе исследования были сравнены эффективности методов одномерной и многомерной оптимизации, выделены наиболее эффективные, сделаны выводы об общей тенденции работы алгоритмов, написан скрипт на языке

программирования Python, использующий наработки из предыдущих практических работ, составлен отчёт с отражением результатом исследования.