physik411 | Zusammenfassung

Jonas Wortmann
July 12, 2024

1 CONTENTS

Contents

1	Qua	antenmechanik	2
	1.1	Quantenzahlen	2
	1.2	Gyromagnetische Konstante	2
	1.3	Entartung	2
	1.4	Normaler Zeeman–Effekt	2
	1.5	Spin-Orbit-Kopplung / Feinstruktur	2
	1.6	Hyperfeinstruktur	2
	1.7	Hybridisierung	3
2	Experimente		4
	2.1	Stern-Gerlach	4
	2.2	Zeeman	4
3	Fest	tkörperphysik	5
	3.1	Miller–Indizes	5
	3.2	Bloch-Funktion	5
	3.3	Elementarzellen	5
4	For	melsammlung	6
	4.1	Operatoren	6

1 Quantenmechanik

1.1 Quantenzahlen

- $-n \in \mathbb{N}$ Hauptquantenzahl (Energie: $E_n = -\frac{13.6}{n^2} \, \text{eV}$)
- $l \in [0,n-1]$ Drehimpulsquantenzahl () (Summe: L)
- $m_l \in [-l, l]$ magnetische Quantenzahl (Energie: Magnetfeld)
- $-\ s = \frac{1}{2}$ Spin Elektron (Energie) (Summe: S)
- $m_s = \pm \frac{1}{2}$ magnetische Spinquantenzahl ()
- $j=l\pm s$ Gesamtdrehimpulsquantenzahl (Energie: Feinstruktur)
- $-J \in [|L-S|, L+S]$ Summe der Gesamtdrehimpulsquantenzahlen ()
- $m_j \in [-j, j]$ magnetische Quantenzahl (Energie)
- $I=1 \vee \frac{1}{2}$ Kernspin für ganzzahlige oder halbzahlige Nukleonen ()
- $-F\in [|J-I|,J+I]$ Gesamtdrehimpulsquantenzahl des Atoms (Energie: Hyperfeinstruktur)

1.2 Gyromagnetische Konstante

1.3 Entartung

Ein Energieeigenwert ist entartet, wenn mehrere Zustände existieren, die den selben Energieeigenwert besitzen.

1.4 Normaler Zeeman–Effekt

Der Normale Zeeman-Effekt beschreibt die Aufspaltung der n Energieniveaus durch ein externes Magnetfeld für ein System mit Gesamtspin gleich null.

1.5 Spin-Orbit-Kopplung / Feinstruktur

Durch die Spin-Orbit-Kopplung entsteht ein magnetisches Moment, welches die n Energieniveaus weiter in m_l Energieniveaus aufteilt.

1.6 Hyperfeinstruktur

Durch die WW der Elektronen mit dem elektrischen Dipol- und magnetischen Quadrupolmoment des Kerns werden die m_l Energieniveaus weiter in F Energieniveaus aufgeteilt.

1.7 Hybridisierung

- 2 Experimente
- 2.1 Stern–Gerlach
- 2.2 Zeeman

3 Festkörperphysik

- 3.1 Miller-Indizes
- 3.2 Bloch–Funktion
- 3.3 Elementarzellen

4 Formelsammlung

$$\lambda = \frac{h}{p} \tag{4.1}$$

4.1 Operatoren

$$\hat{p} = -i\hbar\partial \tag{4.2}$$

$$\hat{L} = \hat{x} \times \hat{p} = -i\hbar x \times \partial \tag{4.3}$$

$$\hat{L}_z = -i\hbar \partial_{\varphi} \left(\text{Kugelkoordinaten} \right) \tag{4.4}$$

$$\left[\hat{L}_i, \hat{L}_j\right] = \sum_k i\hbar \varepsilon_{ijk} \hat{L}_k \tag{4.5}$$

$$\hat{H} = \frac{\hat{p}}{2m} + \hat{V}(\hat{x}) \tag{4.6}$$

$$\Delta \hat{A} \Delta \hat{B} = \frac{1}{2} \left\langle \left[\hat{A}, \hat{B} \right] \right\rangle \tag{4.7}$$

$$\hat{L}_z |\psi\rangle = m\hbar |\psi\rangle \tag{4.8}$$