PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE CIÊNCIAS EXATAS E DA COMPUTAÇÃO CURSO DE ENGENHARIA DA COMPUTAÇÃO

AED VII - REGRA DE SIMPSON COMPOSTA

Goiânia

2018

LUCAS MACEDO DA SILVA

AED VII - REGRA DE SIMPSON COMPOSTA

Atividade extra disciplinar, apresentada na disciplina CMP1058 Fundamentos de Computação IV, para avaliação parcial dos conceitos extra disciplinares, sob orientação da professora Dr. Clarimar José Coelho.

Goiânia

2018

1 REGRA DE SIMPSON COMPOSTA

A regra de Simpson é uma das formulas de integração de Newton Cotes. Baseando-se em substituir a função original, complexa de se integrar por uma função aproximada e mais simples de se calcular Chapra e Canale (2011). Regra criada por Tomas Simpson, baseia-se em aproximar a integral definida a partir da área das parábolas que interpolam a função Wikipédia (2018).

A regra de Simpson composta consiste na aplicação múltipla da regra de Simpson Simples, esta útlima pode ser expressa, por:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3}(f(x0) + 4f(x1) + f(x2))$$

Sendo a o intervalo inferior, b o intervalo superior, h o passo (h = (b-a)/2) e f(x0), f(x1), f(x2) a função aplicada nos pontos x0, x1 e x2 respectivamente. Consistindo, portanto, na aproximação da função por um polinômio do segundo grau, com isso utiliza-se 3 pontos (JUSTO et al., 2018).

Uma conclusão importante sobre a regra de Simpson simples é a que ela é mais acurada que a regra dos trapézios, já que o erro é proporcional a quarta derivada. Bem como a mesma obtém resultados exatos para polinômios cúbicos Chapra e Canale (2011).

Aplicando a regra de Simpson simples em segmentos de mesmo comprimento obtém a regra composta de Simpson, que pode ser expressa por:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3}(f(x0) + f(xn) + 4\sum_{i=1}^{\frac{n}{2}} f(x2i - 1) + 2\sum_{i=1}^{\frac{n-1}{2}} f(x2i))$$

Sendo a o intervalo inferior, b o intervalo superior, h o passo (h = (a-b)/n), n a quantidade de pontos e f(xi) a função aplicada no ponto xi. A aplicação da técnica gera resultados acurados.

Porém está limitada a casos em que os pontos estão igualmente espaçados. Chapra e Canale (2011).

2 ENUNCIADO DO PROBLEMA

Os conceitos inerentes a regra de Simpson composta se deu na integração da função:

$$f(x) = 2 * sen(2 * \sqrt{x})$$

No intervalo entre 1 e 6. Com isso, em uma notação matemática:

$$\int_{1}^{6} 2 * sen(2 * \sqrt{x}) dx$$

Para integração da função foi desenvolvido um código no *software* octave para cálculo da mesma, utilizando a regra de Simpson composta.

3 CÓDIGO DESENVOLVIDO

A seguir o código denominado "regra_integral", tem como objetivo integrar a função descrita na secção anterior no intervalo compreendido entre 1 e 6, com passo h=0.5.

Os parâmetros são:

a = intervalo inferior de integração.

b = intervalo superior de integração.

h = passo.

Obtendo assim 10 pontos de integração, representados pelo vetor x, sendo eles: {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}. O código realiza a integração com base na regra de Simpson composta. A variável s, contém o valor da integral até o ponto xi. O laço 1, realiza o somatório dos pontos de índice par exceto o primeiro e último ponto que não se encaixam em nenhum laço. Já o laço 2 realiza o somatório dos pontos de índice ímpar.

function [integral] = regra_integral(a, b, m)

$$h = (b - a) / (2*m);$$

x = a:h:b;

$$s = (h/3) * (f(a) + f(b));$$

for k = 1 : m % laço 1

$$s = s + ((2*h)/3)*f(x(2*k));$$

endfor

for k = 2 : m % laço 2

$$s = s + ((4*h)/3)*f(x(2*k - 1));$$

endfor

endfunction

Para cálculo das funções foi utilizado uma função auxiliar denominada "f", tratando-se, da representação da função a ser integrada. A mesma apenas calcula o valor de y baseado no valor de x.

O parâmetro é:

x = valor de x a ser calculado.

function [y] = f(x)

$$y = 2 * \sin(2*sqrt(x))$$

endfunction

4 RESULTADOS OBTIDOS

Ao executar o código com as funções trigonométricas em rad. obtém-se o valor para a integral sendo ele:

$$s = -3.56616438984117$$

O cálculo da integral de forma analítica, calculada a partir da ferramenta *online* WolframAlpha, obtém-se o valor representado na figura a seguir.

Figura 1 – Cálculo da integral na ferramenta WolframAlpha

Fonte: O autor (2018)

A partir dos dados, obtém-se o seguinte erro absoluto:

$$abs = |-3.63304158467455 - (-3.56616438984117)|$$

 $abs = 0.0668771948333799$

Percebe-se a acurácia do código, bem como da regra que gerou resultados satisfatórios aproximando bastante do valor real da integral. Mostrando, portanto, a importância dos métodos de integração numérica que se mostram mais eficientes para um sistema de computação, bem

como podem vir a permitir a integração de funções complexas de uma forma mais simples se comparada com a integração realizada de forma analítica.

5 REFERÊNCIAS BIBLIOGRÁFICAS

CHAPRA, Steven C.; CANALE, Raymond P. **Métodos Numéricos para Engenharia**. 5. ed. São Paulo: AMGH, 2011.

JUSTO, Dagoberto Adriano Rizzotto et al. **Cálculo Numérico Um Livro Colaborativo Versão Python.** Rio Grande do Sul: Ufrgs, 2018. Disponível em: https://www.ufrgs.br/reamat/CalculoNumerico/livro-py/main.html>. Acesso em: 30 set. 2018.

WIKIPÉDIA. **Fórmula de Simpson.** Disponível em: https://pt.wikipedia.org/wiki/F%C3%B3rmula_de_Simpson>. Acesso em: 08 dez. 2018.