EX.NO:07

<u>•</u>

INTRODUCTION TO PROLOG

<u>AIM</u>

To learn PROLOG terminologies and write basic programs.

TERMINOLOGIES

1. Atomic Terms: -

Atomic terms are usually strings made up of lower- and uppercase letters, digits, and the underscore, starting with a lowercase letter.

Ex:

dog ab_c_321

2. Variables: -

Variables are strings of letters, digits, and the underscore, starting with a capital letter or an underscore.

Ex:

Dog Apple_420

3. Compound Terms: -

Compound terms are made up of a PROLOG atom and a number of arguments (PROLOG terms, i.e., atoms, numbers, variables, or other compound terms) enclosed in parentheses and separated by commas.

Ex:

is_bigger(elephant,X)
f(g(X,_),7)

4. Facts: -

A fact is a predicate followed by a dot.

Ex:

bigger_animal(whale). life_is_beautiful.

5. Rules: -

A rule consists of a head (a predicate) and a body (a sequence of predicates separated by commas).

Ex:

is_smaller(X,Y):-is_bigger(Y,X). aunt(Aunt,Child):-sister(Aunt,Parent),parent(Parent,Child).

```
SOURCE CODE:
KB1:
woman(mia).
woman(jody).
woman(yolanda).
playsAirGuitar(jody).
party.
Query 1: ?-woman(mia).
Query 2: ?-playsAirGuitar(mia).
Query 3: ?-party.
Query 4: ?-concert.
OUTPUT: -
 ?- woman(mia).
 true.
 ?- playsAirGuitar(mia).
 false.
 ?- party.
 true.
 ?- concert.
 ERROR: Unknown procedure: concert/0 (DWIM could not correct goal)
KB2:
happy(yolanda).
listens2music(mia).
Listens2music(yolanda):-happy(yolanda).
playsAirGuitar(mia):-listens2music(mia).
playsAirGuitar(Yolanda):-listens2music(yolanda).
OUTPUT: -
?- playsAirGuitar(mia).
?- playsAirGuitar(yolanda).
true.
?-
KB3:
likes(dan, sally).
likes(sally,dan).
likes(john,brittney).
married(X,Y) := likes(X,Y), likes(Y,X).
friends(X,Y):- likes(X,Y); likes(Y,X).
```

OUTPUT: - Thus the above execution of the algorithm has been successfully executed.

* SEENUVASAN S

```
?- likes(dan, X).
X = sally.
?- married(dan, sally).
true.
?- married(john, brittney).
false.

KB4:
food(burger).
food(sandwich).
food(pizza).
lunch(sandwich).
dinner(pizza).
```

OUTPUT:

meal(X):-food(X).

```
?-
| food(pizza).
true.
?- meal(X).lunch(X).
X = sandwich .
?- dinner(sandwich).
false.
?-
```

KB5:

owns(jack,car(bmw)). owns(john,car(chevy)). owns(olivia,car(civic)). owns(jane,car(chevy)). sedan(car(bmw)). sedan(car(civic)). truck(car(chevy)).

OUTPUT:

* SEENUVASAN S

```
?-
| owns(john,X).
X = car(chevy).
?- owns(john,_).
true.
?- owns(Who,car(chevy)).
Who = john ,
?- owns(jane,X),sedan(X).
false.
?- owns(jane,X),truck(X).
X = car(chevy).
```

RESULT: Thus the above execution of the algorithm has been successfully executed.

EX.NO:08

•

UNIFICATION AND RESOLUTION

AIM:

To execute programs based on Unification and Resolution.

Deduction in prolog is based on the Unification and Instantiation. Let's understand these

terminologies by examples rather than by definitions. Remember one thing, matching terms are unified and variables get instantiated. In other words, "Unification leads to Instantiation".

Example 1: Let's see for below prolog program - how unification and instantiation take place

after querying.

Facts:

likes(john, jane). likes(jane, john).

Query:

?- likes(john, X).

Answer : X = jane.

Here upon asking the query first prolog start to search matching terms in 'Facts' in top-down

manner for 'likes' predicate with two arguments and it can match likes(john, ...) i.e.

* SEENUVASAN S