Niezawodność strukuralna

Tomasz Słabiak Damian Staroń Adrian Stępień Grzegorz Stochel Michał Strzępek

Grupa 21, Automatyka i Robotyka

Niezawodność

 Prawdopodobieństwo, że w danych warunkach i w określonym czasie maszyna będzie spełniała swoją funkcję bez wystąpienia uszkodzeń.

$$R(t) = P\{t \ge \tau\}$$

- R(t) niezawodność
 - t czas pracy bez uszkodzenia
 - τ założony (lub wymagany) czas pracy bez uszkodzenia

Niezawodność strukturalna

 Całkowita niezawodność układu. Do jej wyznaczenia niezbędna jest znajomość niezawodności elementów, które tworzą badany układ.

Źródła zawodności - uszkodzenia

Uszkodzenie

- stopniowe
- nagłe
- usuwalne
- nieusuwalne
- krytyczne
- ważne
- nieistotne

- I. Okres eksploatacji wstępnej (oswajania, dojrzewania)
- II. Okres normalnej (właściwej) eksploatacji
- III. Okres starzenia się obiektu

Źródła zawodności - zużycie

Zużycie

- ścierne
- adhezyjne
- zmęczeniowe
- przez utlenianie
- cierno-korozyjne

Źródła zawodności - starzenie

- Czynniki wpływające na starzenie:
 - Czynniki atmosferyczne
 - Opady atmosferyczne
 - Ruchy powietrza
 - Ciśnienie atmosferyczne
 - Nagrzewanie słoneczne lub przemysłowe
 - Pole magnetyczne
 - Ruch cieczy
 - Aktywność chemiczna

Wartości szczególne niezawodności

R_{t max} – wartość maksymalna niezawodności (uzyskiwania lokalnie)

R_{ts} – ekonomicznie optymalna wartość niezawodności

 R_{tk} – wartość krytyczna niezawodności (nietolerowania przez użytkowników)

 $R_{t\,maxmax}$ – największa wartość niezawodności uzyskiwana w technice światowej

Podstawowe pojęcia teorii niezawodności

- Sprawność
- Czas eksploatacji
- Uszkodzenie
- Stan niesprawności

W opisie niezawodności korzystamy z sześciu charakterystyk:

- Prawdopodobieństwo poprawnej pracy
- Prawdopodobieństwo uszkodzeń,
- Częstotliwość uszkodzeń
- Intensywność uszkodzeń,
- Średnia częstotliwość uszkodzeń,
- Średni czas poprawnej pracy,
- Średni czas pracy między uszkodzeniami.

Prawdopodobieństwo poprawnej pracy

Prawdopodobieństwo nie wystąpienia ani jednego uszkodzenia w ustalonym przedziale czasu przy określonych warunkach eksploatacyjnych

$$R(t)=P(t\geq T); t\geq 0$$

Oraz prawdopodobieństwo uszkodzen F(t) = 1 - R(t)

Częstotliwość uszkodzeń $\propto (t)$

Częstotliwość uszkodzeń

 stosunek liczby uszkodzonych elementów w jednostce czasu do początkowej liczby elementów badanych.

$$\propto (t) = \frac{dF(t)}{dt} = -\frac{dR(t)}{dt}$$

Współczynnik MTBF

MTBF (z ang. Mean Time Between Failure)
- średni czas wyrażony w godzinach, w którym urządzenie może działać bez przerwy (awarii)

MTBF jest stosowany m.in. w informatyce oraz zarządzaniu.

Up

Down off one failure

Time Between Failures = { down time - up time}

down time (unplanned)

one failure

one failure

Współczynnik MTBF

- podstawowa miara niezawodności systemu
- w użyciu od 60 lat
- opracowano ponad 20 metod i procedur do przewidywania cykli życia
- stosowany w projektowaniu obiektów o znaczeniu krytycznym, np. sprzęt IT i telekomunikacyjny

Wpływ MTBF na niezawodność i dostępność

 niezawodność – wartość MTBF zazwyczaj jest wyrażana w godzinach. Im wyższa wartość współczynnika MTBF, tym wyższa niezawodność produktu

Niezawodność = e

MTTR Mean Time to Repair (or Recover)

 średni czas od momentu wystąpienia awarii do naprawy uszkodzonego urządzenia

Mean Time to Repair (MTTR)

Mean Time Between Failure (MTBF)

Measure of availability:

• 5 9s = 99.999% of time working = $5 \frac{1}{2}$ minutes of failure per year.

PRZYKŁADOWE PARAMETRY URZĄDZEŃ

	Urządzenie	Jednostka j	Częstość uszkodzeń d _{s.} [1/a 100 j]	Czas przestoju t _s [h]	Współczynnik zawodności q x 10 ⁻⁵
L	inia 110 kV	km	1,5	6	1
	ransformator 10/15 kV	szt	6	12	8
	Vyłącznik 10kV	szt	3	6	2
L	Linia 30 kV	km	6,5	13,2	9,8
S	Szyny 30 kV	pole	0,32	9,8	0,36
V	Vyłącznik SN	szt	13,2	5,5	8,3

Struktury niezawodnościowe

Struktura niezawodnościowa systemu jest to struktura przedstawiająca sposób wzajemnych powiązań elementów określających zależność uszkodzeń systemu od uszkodzeń jego elementów

Struktury proste:

- Struktura szeregowa
- Struktura równoległa
- Struktura szeregowo-równoległa
- Struktura równoległo-szeregowa

Stuktury złożone

- Struktura typu mostek
- Struktura typu siatka
- Stuktura typu siec

Struktury progowe

Struktura szeregowa

$$R_{s} = R_{1}R_{2}...R_{n} = \prod_{i=1}^{n} R_{i}$$

Przykłady obiektów o strukturze szeregowej :

Struktura równoległa

$$R_{r} = 1 - \prod_{i=1}^{n} (1 - R_{i})$$

Przykład obiektu o strukturze równoległej:

Struktura szeregowo - równoległa

Obiekt o strukturze szerogowo – równoległej to obiekt złożony z n zespołów o m równolegle połączonych elementach.

Niezawodnośc takiego obiektu wyraża się wzorem:

$$R_{sr} = \prod_{j=1}^{n} [1 - \prod_{i=1}^{m} (1 - R_{ij})]$$

Struktura równoległo-szeregowa

Obiekt o strukturze równoległo – szeregowej to obiekt złożony z n zespołów o m szeregowo połączonych elementach.

Niezawodnośc takiego obiektu wyraża się wzorem:

$$R_{rs} = 1 - \prod_{j=1}^{n} (1 - \prod_{i=1}^{m} R_{ij})$$

Struktury złożone

Aby wyliczyć niezawodność obiektów o strukturze złożonej trzeba skorzystac z tzn. metody dekompozycji prostej polegającej na sprowadzeniu obiektów złożonych do obiektów o strukturze prostej.

Struktury progowe

Obiekt o strukturze progowej jest zdatny wtedy gdy co najmniej k spośród n jego elementow jest w stanie zdatności

Układy redundantne

Układy, które mają zwiększoną niezawodność przez zwielokrotnienie ich najważniejszych elementów lub funkcji.

Statyczna redundancja sprzętowa

Założenia:

- niezależne uszkodzenia modułów,
- większa ilość modułów działających od niedziałających,
- sprawny układ głosujący

Dynamiczna redundancja sprzętowa

Założenia:

- idealne mechanizmy wykrywania uszkodzeń,
- sprawny układ przełączający,
- niezależne uszkodzenia modułów

Dynamiczna redundancja sprzętowa

Redundancja cold	Redundancja warm	Redundancja hot
Czas reakcji ma	Bardzo krótki czas	- Niedopuszczalna
minimalne znaczenie, Może bazować na	reakcji, Dopuszczalne małe	nawet najmniejsza
czynniku ludzkim	przerwy w procesie	przerwa w procesie

Hybrydowa redundancja sprzętowa

Połączenie statycznej i dynamicznej redundancji sprzętowej.

Założenia:

- niezależne uszkodzenia modułów,
- sprawny układ przełączający,
- sprawny układ głosujący,
- sprawny detektor niezgodności.

Tworzenie schematu niezawodnościowego

- Analiza schematu topologicznego funkcjonowania systemu,
- Wyróżnienie w systemie elementów, których niezawodność ma wpływ na niezawodność systemu,
- Odwzorowanie wyróżnionych elementów w postaci bloków,
- Graficznie odwzorowanie zależności między stanami niezawodnościowymi elementów, a stanem niezawodnościowym systemu.

Metody zwiększania niezawodności

Przedeksploatacyjne

Konstrukcyjne

Technologiczne

Eksploatacyjne

- Stabilizacja warunków użytkowania
- · Stabilizacja cieplna
- Optymalizacja obciążeń
- Badania kontrolne
- Prognozowane uszkodzeń (nadzorowanie)
- Regeneracja
- Wprowadzenie nadmiaru eksploatacyjnego

Metody zwiększania niezawodności

Zwiększenie niezawodności słabych ogniw uzyskuje się dzięki rozpoznaniu procesów niszczących i zwiększeniu odporności elementów na te uszkodzenia.