Глубокое обучение на примере компьютерного зрения

Занятие 2 Метод обратного распространения ошибки. Сверточные нейронные сети.

> Дмитрий Яшунин, к.ф.-м.н IntelliVision

e-mail: yashuninda@yandex.ru

Last time: Классификация изображений

Ключевая задача компьютерного зрения

К какому классу принадлежит изображение? классы: человек, животное, автомобиль ...

KOT

Last time: Сложности классификации изображений

Освещение

Форма

Заслонение

Фон

Вариативность классов

Last time: Линейный классификатор

Image

s – scores

W – weights or

parameters

x – image pixels

b – bias

Array of **32x32x3** numbers (3072 numbers total)

CIFAR-1050,000 training images10,000 testing images10 classes

Last time: Интерпретация линейного классификатора

CIFAR-10

$$f(x,W) = Wx + b$$

Example trained weights of a linear classifier trained on CIFAR-10:

Last time: Функции потерь

Image

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores
$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

Loss over dataset:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

Multiclass SVM (hinge) loss:

$$L_i = \sum_{i \neq y_i} \max(0, s_i - s_{y_i} + 1)$$

Cross-entropy (softmax) loss:

$$L_i = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

Last time: Регуляризация

λ - regularization strength (hyperparameter)

How do we find the best W?

Data loss

Regularization

L2 regularization

L1 regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

Elastic net (L1 + L2)
$$R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$$

Оптимизация


```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

Градиентный спуск

$$\frac{dL(w)}{dw} = \lim_{h \to 0} \frac{L(w+h) - L(w)}{h}$$

Численные градиенты: медленно, не точно, быстро реализовать

Аналитические градиенты: быстро, точно, можно ошибиться

Вычислительный граф

Вычислительный граф: Convolutional Network

Backpropagation

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

 $\frac{\partial f}{\partial y}$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

Обратный градиент при суммировании

Обратный градиент при суммировании

Обратный градиент при переиспользовании переменной

Обратный градиент при переиспользовании переменной

Backpropagation: векторный случай

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

```
class ComputationalGraph(object):
   # . . .
    def forward(inputs):
       # 1. [pass inputs to input gates...]
       # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
   def backward():
        for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Modularized implementation: forward / backward API

(x,y,z are scalars)

Modularized implementation: forward / backward API

(x,y,z are scalars)

```
class MultiplyGate(object):
    def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z
    def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```

Example: Caffe layers

(**Before**) Linear score function: f = Wx

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1 x)$

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1 x)$

hidden layer

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1 x)$

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1 x)$

we can go deeper

3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1 x))$

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
               from numpy random import randn
           3
              N, D_{in}, H, D_{out} = 64, 1000, 100, 10
               x, y = randn(N, D_in), randn(N, D_out)
               w1, w2 = randn(D_in, H), randn(H, D_out)
               for t in range(2000):
                 h = 1 / (1 + np.exp(-x.dot(w1)))
                 y_pred = h.dot(w2)
          10
          11
                 loss = np.square(y_pred - y).sum()
                 print(t, loss)
          12
          13
                 grad_y_pred = 2.0 * (y_pred - y)
          14
                 grad_w2 = h.T.dot(grad_y_pred)
          15
                 grad_h = grad_y_pred.dot(w2.T)
          16
          17
                 grad_w1 = x.T.dot(grad_h * h * (1 - h))
          18
          19
                 w1 -= 1e-4 * grad w1
          20
                 w2 -= 1e-4 * grad w2
Дмитрий Яшунин 29/03/2018
                             Занятие 2 - 44
```

$$\sigma(x) = rac{1}{1+e^{-x}}$$
 sigmoid function

Artificial neuron

Artificial neuron

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout neuron

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neural networks: fully-connected architectures

"Fully-connected" layers

Demo time

Setting the number of layers and their sizes

Setting regularization

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

1 number:

the result of taking a dot product between a row of W and the input (a 3072-dimensional dot product)

32x32x3 image -> preserve spatial structure

Дмитрий Яшунин 29/03/2018

Занятие 2 - 52

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

example: image 5x5, filter 3x3

consider a second, green filter

32x32x3 image

5x5x3 filter

convolve (slide) over all spatial locations

activation maps

example: image 5x5, filter 3x3

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Дмитрий Яшунин 29/03/2018

ConvNet is a sequence of Convolution Layers, interspersed with activation functions

ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Визуализация признаков нейронной сети

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Сверточная нейронная сеть

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter applied with stride 2

Дмитрий Яшунин 29/03/2018

7

7x7 input (spatially) assume 3x3 filter applied with stride 2

7

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7x7 input (spatially) assume 3x3 filter applied with stride 3?

7

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3. N

	F		
F			

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride $1 \Rightarrow (7 - 3)/1 + 1 = 5$

stride $2 \Rightarrow (7 - 3)/2 + 1 = 3$

stride $3 \Rightarrow (7 - 3)/3 + 1 = 2.33 : \$

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g.
$$F = 3 \Rightarrow zero pad with 1$$

$$F = 5 \Rightarrow zero pad with 2$$

$$F = 7 \Rightarrow zero pad with 3$$

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias)

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

$$-F = 3, S = 1, P = 1$$

$$-F = 5, S = 1, P = 2$$

$$-F = 5$$
, $S = 2$, $P = ?$ (whatever fits)

$$-F = 1, S = 1, P = 0$$

- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

1x1 convolution layers make perfect sense

Example: CONV layer in Caffe

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

```
layer {
 name: "convl"
 type: "Convolution"
 bottom: "data"
 top: "convl"
 # learning rate and decay multipliers for the filters
 param { lr mult: 1 decay mult: 1 }
 # learning rate and decay multipliers for the biases
 param { lr mult: 2 decay mult: 0 }
 convolution param {
   num output: 96
                      # learn 96 filters
   kernel size: 11 # each filter is 11x11
                      # step 4 pixels between each filter application
   stride: 4
   weight filler {
      type: "gaussian" # initialize the filters from a Gaussian
     std: 0.01
                      # distribution with stdev 0.01 (default mean: 0)
   bias filler {
      type: "constant" # initialize the biases to zero (0)
     value: 0
```

Example: CONV layer in TensorFlow

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - \circ the stride S,
 - the amount of zero padding P.

```
conv2d(
    inputs,
    filters,
    kernel_size,
    strides=(1, 1),
    padding='valid',
    data_format='channels_last',
    dilation_rate=(1, 1),
    activation=None.
    use_bias=True.
    kernel_initializer=None,
    bias_initializer=tf.zeros_initializer(),
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    trainable=True.
    name=None,
    reuse=None
```

```
# Input Layer
input_layer = tf.reshape(features, [-1, 28, 28, 1])

# Convolutional Layer #1
conv1 = tf.layers.conv2d(
    inputs=input_layer,
    filters=32,
    kernel_size=[5, 5],
    padding="same",
    activation=tf.nn.relu)
```

Сверточная нейронная сеть: Pooling

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

У

Pooling

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S,
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$\circ D_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Pooling

• Accepts a volume of size $W_1 imes H_1 imes D_1$

- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$\circ D_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- · Note that it is not common to use zero-padding for Pooling layers

Common settings:

$$F = 2, S = 2$$

$$F = 3, S = 2$$

Сверточная нейронная сеть: Fully Connected Layer (FC layer)

Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Заключение

- Нейронная сеть:
 линейные классификаторы + нелинейные активационные функции
- Backpropagation метод вычисления градиентов
- Сверточная нейронная сеть: **CONV + POOL + FC** слои
- Типичная архитектура классической сверточной сети [(CONV-RELU)*N-POOL]*M-(FC-RELU)*K,SOFTMAX где N до ≈5, M большое до ≈15, 0 <= K <= 2.

современные нейронные сети ResNet, DenseNet имеют более сложные архитектуры

В следующий раз

- Активационные функции
- Стратегии изменения весов нейронной сети
- Инициализация весов
- Knowledge transfer перенос знаний из одной нейронной сети в другую