Introduction

Mohammad Hadi

mohammad.hadi@sharif.edu @MohammadHadiDastgerdi

Fall 2021

Mohammad Hadi Circuit Theory Fall 2021 1/18

Overview

- Position
- 2 Coverage
- 3 Requirements
- Resources
- Content
- 6 Assessment
- References

Mohammad Hadi Circuit Theory Fall 2021 2/18

Course Position

Position

Microscopic View

Slow Development

Specific Audience

Figure: Engineering abstraction levels. From left to right, the abstraction level is intended by physicists, device engineers, electronic engineers, digital engineers, hardware engineers, programmers.

Macroscopic View

Fast Development

Generic Audience

Course Coverage

Coverage

Figure: Main items covered in the course.

Mohammad Hadi Circuit Theory Fall 2021 6 / 18

Coverage

- Circuit Laws
 - Kirchhoff's Laws
- Circuit Elements
 - Basic Elements
 - Coupling Elements
 - Two-ports
- Circuit Analysis
 - Sinusoidal Steady State Analysis
 - Nodal and Mesh Analysis
 - Cut-set and Loop Analysis
 - Laplace Analysis
- Circuit Theorems
 - Tellegen's Theorem
 - Thevenin-Norton Theorem
 - Superposition Theorem
 - Substitution Theorem
 - Reciprocity Theorem

Course Requirements

Requirements

- Basic Knowledge
 - Electromagnetic Theory
- Mathematical Tools
 - Differential Equations
 - Graph Theory
 - Laplace Transform
 - Linear Algebra
 - Complex Analysis
 - Fourier Transform
- Simulation Tools
 - PSPICE
 - Proteus
 - CircuitLab
 - PSIM
 - MATLAB

Course Resources

Resources

- Online teaching class on Sundays and Tuesdays, 9:00-10:30 at https://vc.sharif.edu/ch/mohammad.hadi
- Online practicing class on Wednesdays, 18-19:30 at https://vc.sharif.edu/ch/mohammad.hadi
- Ourse website at http://cw.sharif.edu
- Telegram channel at https://t.me/joinchat/dDvge01vDt0zNzQ0
- Telegram group at https://t.me/joinchat/SaVZUEk80d85MDk0
- O Personal email to mohammad.hadi@sharif.edu
- Telegram message to @MohammadHadiDastgerdi

Course Content

Mohammad Hadi

Topics	# of Sessions
Introduction	0.5
Review	2
Coupled Circuits	2
Three-phase Circuits	2
Network Graphs	3
Systematic Analysis	4
State Equations	1.5
Laplace Transforms	3
Natural Frequencies	2
Network Functions	3
Network Theorems	2
Two-ports	3

Table: Topics presented in the course. The specified numbers of sessions are tentative.

Circuit Theory

Fall 2021

13 / 18

Course Assessment

Assessments

Item	Frequency	Contribution	Bonus
Work Assignments	11	25%	✓
Short Quizzes	10	25%	X
Final Exam	1	25%	X
Oral Exam	1	10%	X
Software Project	1	10%	✓
Class Attendance	28	5%	X

Table: Items involved in the course assessment. The specified contribution weights are tentative.

Course References

References

McGraw-Hill Education

William H. Hayt, Jack E. Kemmerly, and Steven M. Durbin (2012) Engineering Circuit Analysis

McGraw-Hill Education

Robert L. Boylestad (2016)

Introductory circuit analysis

Pearson Education

J. David Irwin and Robert M. Nelms (2010)

Basic engineering circuit analysis

John Wiley & Sons

Mohammad Hadi Circuit Theory Fall 2021 17 / 18

The End

Mohammad Hadi Circuit Theory Fall 2021 18 / 18