DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Última actualización: $1^{\rm er}$ Cuatrimestre de 2018

Guía de Ejercicios Nº 4: Transistor MOS

Datos generales: $\varepsilon_0 = 8.85 \times 10^{-12} \,\text{F/m}, \ \varepsilon_r(Si) = 11.7, \ \varepsilon_r(SiO_2) = 3.9, \ n_i = 10^{10} / \text{cm}^3, \ \phi(n, p = n_i) = 0 \,\text{V}.$

- 1. En un transistor n-MOSFET,
 - a) ¿La corriente entre Source y Drain es de huecos o de electrones?
 - b) ¿El substrato del transistor está dopado con impurezas donoras o aceptoras?
 - c) ¿Qué diferencia al terminal Drain del terminal Source?
 - d) En un n-MOSFET que forma parte de un circuito electrónico, ¿cómo se determina cual terminal es el Drain y cuál es el Source?
 - e) ¿Qué sucede en un n-MOSFET si se polariza con $V_B > V_S$?
 - f) En un MOSFET en estado de saturación, ¿La corriente I_D se provoca debido al arrastre o a la difusión de portadores?
 - g) En un MOSFET en estado de corte, ¿La corriente I_D es exactamente cero? ¿Qué fenómenos de fuga existen?
 - h) La palabra "tríodo" deriva de "3 nodos", ¿por qué se llama tríodo al estado de polarización $V_{GS} > V_T$, $V_{GS} V_{DS} > V_T$? ¿Cuántos nodos intervienen en el control de I_D en estado tríodo y cuantos en saturación?
- 2. Un transistor n-MOSFET de $V_T=0.8\,\mathrm{V}$ tiene los terminales conectados de forma que $V_D=V_S=V_B=0\,\mathrm{V}$, mientras que el terminal de gate puede tomar uno de los siguientes valores: $V_{G1}=-1\,\mathrm{V}$, $V_{G2}=0.6\,\mathrm{V}$, $V_{G3}=0.8\,\mathrm{V}$, $V_{G4}=2\,\mathrm{V}$.
 - a) Identificar en que régimen se encuentra la juntura MOS para cada uno de los casos.
 - b) Realizar un diagrama de concentración de portadores y de densidad volumétrica de carga de la juntura MOS en función de la posición para V_{G1} , V_{G3} y V_{G4} .
 - c) Graficar el campo en función de la posición para V_{G4} .
 - d) Considere que se aplica V_{G4} y que ahora $V_D \neq 0$. Siendo $t_{ox} = 30 \,\mathrm{nm}$, $W/L = 10 \,\mathrm{y} \,\mu_n = 215 \,\mathrm{cm/Vs}$ calcule $I_{D_{SAT}}$ y encuentre el rango de V_D para el cual se puede suponer que el dispositivo trabaja en saturación.
- 3. Dado un transistor n-MOSFET con $\mu_n=215\,\mathrm{cm^2V^{-1}s^{-1}},\ t_{ox}=150\,\mathrm{\mathring{A}},\ V_{T0}=1\,\mathrm{V},\ L=1,5\,\mu\mathrm{m},\ W=30\,\mu\mathrm{m},$ que tiene aplicadas tensiones $V_{DS}=2\,\mathrm{V}$ y $V_{BS}=0\,\mathrm{V},$
 - a) Calcule el rango de tensiones V_{GS} para los cuales el transistor se encontrará operando en los regímenes de:
 - I. corte (cut-off),
 - II. saturación,
 - III. lineal (o triodo).
 - b) Grafique I_D en función de V_{GS} , e indique en el gráfico las regiones de corte, saturación y lineal.
 - c) Explique cómo a partir de una medición experimental de la curva I_D vs. V_{GS} (para $V_{BS}=0$ V) puede obtenerse los parámetros $k=(W \ \mu_n \ C_{ox})/(2 \ L)$ y V_{T0} del transistor.
- 4. Dado un transistor n-MOSFET con parámetros $\mu_n = 650 \, \mathrm{cm}^2 \, \mathrm{V}^{-1} \, \mathrm{s}^{-1}$, $L = 1.25 \, \mu \mathrm{m}$, $V_{T0} = 0.65 \, \mathrm{V} \, \mathrm{y}$ $C_{ox} = 6.9 \times 10^{-8} \, \mathrm{F/cm}^2$, calcule el valor de W tal que en la condición de saturación se verifique que para $V_{GS} = 5 \, \mathrm{V}$ se obtenga $I_D = 4 \, \mathrm{mA}$.
- 5. Dado un transistor n-MOSFET con parámetros $W=15\,\mu\mathrm{m},\,L=2\,\mathrm{m}$ y $C_{ox}=6.9\times10^{-7}\,\mathrm{F/cm^2},\,\mathrm{y}$ con una tensión aplicada de $V_{DS}=100\,\mathrm{mV}$ y $V_{BS}=0\,\mathrm{V},$
 - a) Sabiendo que para $V_{GS}=1.5\,\mathrm{V},\,V_{DS}=V_{DSsat},\,\mathrm{y}$ se tiene $I_D=35\,\mu\mathrm{A},\,\mathrm{calcule}$ el valor de μ_n .
 - b) Para $V_{GS} = 2.5 \,\mathrm{V}$, ¿en qué región está operando el transistor? ¿Corte, saturación o lineal?

Figura 1

- 6. En la figura 1 se ilustran algunas curvas de salida de un n-MOSFET para $V_{BS}=0\,\mathrm{V}$, normalizadas por unidad de W. Los parámetros del transistor son $L=1\,\mu\mathrm{m}$ y $t_{ox}=100\mathrm{\mathring{A}}$.
 - a) Estime el valor de la tensión umbral, V_{T0} .
 - b) Estime la movilidad de los electrones de la capa de inversión.
- 7. En la figura 2 se ilustran un par de curvas $-I_D$ vs V_{SD} de un transistor p-MOSFET para $V_{BS}=0$ V.

Figura 2

- a) A partir de estas curvas, ¿cuál es el valor de V_{T0} ?
- b) Estime los parámetros $k_p = W \, \mu_p \, C_{ox}/2 \, L$ y λ del transistor.
- 8. Dado un transistor n-MOSFET con parámetros $V_{T0}=1\,\mathrm{V},~N_A=10^{17}\,\mathrm{cm}^{-3},~\phi_p=0.42\,\mathrm{V},~\mu_n=215\,\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{s}^{-1},~C_{ox}=2.3\mathrm{fF}/\mu\mathrm{m}^2,$ y con una tensión aplicada $V_{DS}=100\,\mathrm{mV},$
 - a) Para $V_{GS}=1\,\mathrm{V}$ y $V_{BS}=0\,\mathrm{V}$, ¿En qué región está operando el transistor? ¿Corte, saturación o lineal?
 - b) A partir de la figura 3 calcule el parámetro γ (backgate parameter) del transistor.

Última actualización: 1^{er} Cuatrimestre de 2018

Figura 3

- 9. Considere un transistor n-MOSFET de silicio a 300 °K. Asuma que el substrato está dopado con $N_A = 3 \times 10^{16} \,\mathrm{cm}^{-3}$, que la capa de óxido de silicio tiene un espesor $t_{ox} = 500 \,\mathrm{\mathring{A}}$, y que $V_{SB} = 1 \,\mathrm{V}$.
 - a) Calcule ϕ_p y C_{ox} .
 - b) Calcule la variación en el valor de V_T respecto a V_{T0} .
- 10. Dado un transistor n-MOSFET con parámetros $W = 30 \,\mu\text{m}$, $L = 1 \,\mu\text{m}$, $C_{ox} = 6 \times 10^{-7} \,\text{F/cm}^2$, $N_a = 10^{17} \,\text{cm}^{-3}$, $V_{T0} = 1 \,\text{V}$ y $V_{BS} = 0 \,\text{V}$,
 - a) Sabiendo que para $V_{GS}=1.5\,\mathrm{V},\,V_{DS}=V_{DSsat},\,\mathrm{se}$ tiene $I_D=0.9\,\mathrm{mA},\,\mathrm{calcule}$ el valor de $\mu_n.$
 - b) Para $V_{GS}=2.5\,\mathrm{V}$ y $V_{DS}=0.1\,\mathrm{V}$ ¿en qué región está operando el transistor? ¿Corte, saturación o lineal?
 - c) Realice un diagrama cualitativo de $Q_n(y)$ en el canal para el caso $V_{GS}=2.5$ V, $V_{DS}=0.1$ V ¿Cuánto vale $Q_n(y=L)$?
 - d) Explique cómo se modifica este diagrama si para $V_{GS}=2.5\,\mathrm{V}$ se tiene ahora $V_{DS}=1.5\,\mathrm{V}$. ¿Puede decir cuánto vale exactamente la concentración de electrones $Q_n(y=L)$?
 - e) Para las mismas condiciones que en el ítem anterior, ¿puede decir cuanto vale la concentración de de electrones del canal en el extremo del drain?
- 11. En la figura 4 se representan dos estados de operación de un transistor MOSFET con V_T conocido.

Figura 4

- a) Represente las curvas I_D vs. V_{GS} e I_D vs. V_{DS} e indique en las mismas donde se ubica, para cada caso, los puntos de trabajo representados en las figuras.
- b) Indique rango de valores posibles para V_G , V_D y V_S en cada caso (considerar siempre $V_{BS} = 0$).
- c) Seleccione una polarización adecuada para que el dispositivo funcione en zona de saturación sabiendo que $\mu_n=215\,\mathrm{cm/V}\,\mathrm{s},\ t_{ox}=150\,\mathrm{\mathring{A}},\ V_T=1\,\mathrm{V},\ L=1,5\,\mu\mathrm{m},\ W=30\,\mu\mathrm{m}$ y $\lambda=0.$

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Última actualización: 1^{er} Cuatrimestre de 2018

12. Suponga un transistor n-MOSFET conectado tal como se muestra en la figura 5, siendo W, L, C_{ox} , μ_n y V_T parámetros conocidos (asumir $\lambda = 0$). Se pide representar las siguientes curvas identificando el modo de operación del dispositivo:

Figura 5

- a) I_D vs. V_D ($V_D \ge 0$) para $V_B = V_T/2$.
- b) I_D vs. V_D ($V_D \ge 0$) para $V_B = 2 \times V_T$.
- c) I_D vs. V_D ($V_D \ge 0$) para $V_B = 0$.
- d) ¿Cuáles serían las condiciones equivalentes (en tensiones aplicadas) de los puntos anteriores para un p-MOSFET?
- 13. Para el circuito de la figura 12b, donde $V_{DD}=5\,\mathrm{V},\,V_{GG}=1\,\mathrm{V},\,R_G=47\,\mathrm{k}\Omega,\,R_D=10\,\mathrm{k}\Omega,\,\mathrm{y}$ el transistor un n-MOSFET con $V_T=0.8\,\mathrm{V},\,\mu_n\,C_{ox}=110\,\mu\mathrm{A}/\mathrm{V}^2,\,L=5\,\mu\mathrm{m}$ y $W=500\,\mu\mathrm{m}$, encuentre todas las tensiones y todas las corrientes que definen el estado del circuito. ¿En qué régimen se encuentra polarizado el transistor?
- 14. Repita el ejercicio 13 para el circuito de la figura 6b donde $V_{DD}=3,3\,\mathrm{V},\,R_{G1}=130\,\mathrm{k}\Omega,\,R_{G2}=200\,\mathrm{k}\Omega,\,R_{S}=5,6\,\mathrm{k}\Omega,\,\mathrm{y}$ la geometría del transistor cambia a $W=50\,\mu\mathrm{m}.$
- 15. Repita el ejercicio 13 para el circuito de la figura 6c donde $V_{DD}=5\,\mathrm{V},~R_{G1}=200\,\mathrm{k}\Omega,~R_{G2}=300\,\mathrm{k}\Omega,~R_{D}=3,3\,\mathrm{k}\Omega,~\mathrm{y}$ los parámetros del transistor son $V_{T}=-0,9\,\mathrm{V},~\mu_{p}\,C_{ox}=36\,\mu\mathrm{A/V^{2}},~L=5\,\mu\mathrm{m}$ y $W=150\,\mu\mathrm{m}$
- 16. Repita el ejercicio 13 para el circuito de la figura 6d donde $V_{DD}=5\,\mathrm{V},~R_{G1}=300\,\mathrm{k}\Omega,~R_{G2}=200\,\mathrm{k}\Omega,~R_{D}=1,5\,\mathrm{k}\Omega,~\mathrm{y}$ los parámetros del transistor son $V_{T}=-0,9\,\mathrm{V},~\mu_{p}\,C_{ox}=36\,\mu\mathrm{A/V^{2}},~L=5\,\mu\mathrm{m}$ y $W=150\,\mu\mathrm{m}$
- 17. Para el circuito de la figura 7, siendo $\mu_n C_{ox} = 80 \,\mu\text{A/V}^2, \ V_T = 0.8 \,\text{V}, \ L = 4 \,\mu\text{m}, \ \lambda = 0.02/\text{V}$ y $R_{G1} = 370 \,\text{k}\Omega, \ R_{G2} = 130 \,\text{k}\Omega, \ R_D = 18 \,\text{k}\Omega$ y $V_{DD} = 5 \,\text{V}$, se pide:
 - a) Hallar el ancho del transistor W tal que $I_D = 100 \,\mu\text{A}$.
 - b) Calcule todas las corrientes y tensiones del circuito para las condiciones del ítem anterior.
 - c) Hallar el rango posible de valores de R_D para el cual el transistor opera en saturación.
- 18. El circuito de la figura 8 consta de un transistor que impone una corriente constante de 35 mA en una resistencia variable. Se desea averiguar el rango de tensiones V_{DS} para el cual el transistor va a funcionar correctamente. El transistor es un MOSFET de canal P con $\mu_n C_{OX} = 70 \,\mu\text{A}/\text{V}^2$, $V_T = -0.5 \,\text{V}$, $W/L = 2000 \,\text{y} \,\lambda = 0.01/\text{V}$.
 - a) ¿En qué régimen de operación deberá estar el transistor para que este comportamiento sea posible?
 - b) ¿Cuál es el rango de variación que presentará dicha corriente?
 - c) ¿Cuál es el rango de tensiones admisible para que el transistor no salga de régimen de operación?

Figura 6

Figura 7

- d) ¿Cuál es el rango de R_L admisible?
- 19. La Fig. 9 muestra un circuito con un transistor MOSFET. Para este circuito y considerando $k=1/2~\mu~C_{OX}~W/L=4~\rm mA/V^2,~V_T=1~V,~\lambda=0~V^{-1},~V_{DD}=5~V,~I_0=4~\rm mA,~R_0=1~k\Omega$ y $R_{G2}=1/2~R_{G1}=10~k\Omega$:
 - a) Encontrar el punto de polarización.
 - b) Hallar la ecuación de la recta de carga y dibujarla en un gráfico de i_D vs. v_{DS} junto con las curvas

Figura 8

de salida del transistor MOS tal que corten a la recta de carga en:

- el punto de *pinch-off*.
- el punto donde $I_D = 1$ mA.

Figura 9

- 20. Para el transistor de la figura 1 con $V_{BS} = 0 \,\mathrm{V}$.
 - a) Estime la trasconductancia g_m para $V_{GS}=3\,\mathrm{V},\,V_{DS}=3\,\mathrm{V},\,\mathrm{y}\,\,W=10\,\mu\mathrm{m}.$
 - b) Estime la capacidad C_{gs} para $V_{GS}=3\,\mathrm{V},\,V_{DS}=3\,\mathrm{V},\,\mathrm{y}\,W=10\,\mu\mathrm{m}.$
- 21. Para el transistor p-MOSFET de la figura 2 con $V_{BS}=0\,\mathrm{V}.$
 - a) Estime el parámetro $k_p = W \mu_p C_{ox}/2 L$ del transistor, y el valor de r_o del modelo de pequeña señal.
 - b) Calcule el valor de g_m en función de I_D , y para el transistor en saturación grafique la curva g_m vs. I_D para valores de I_D entre 0 y 500 μ A.
 - c) Grafique la curva r_o vs. I_D .
- 22. Dado un transistor n-MOSFET con parámetros $\mu_n = 215\,\mathrm{cm^2V^{-1}s^{-1}},\ t_{ox} = 150\,\mathrm{\mathring{A}},\ L = 2\,\mu\mathrm{m},\ W = 30\,\mu\mathrm{m},\ L_{diff} = 6\,\mu\mathrm{m},\ C_{ov} = 0.5\,\mathrm{fF}/\mu\mathrm{m},\ \lambda = 0.05\,\mathrm{V^{-1}},\ N_A = 10^{17}\,\mathrm{cm^{-3}},\ V_{T0} = 1\,\mathrm{V},\ \mathrm{considerando}$ $C_{jsw} \approx 0\,\mathrm{y}\ C_{gb} \approx 0$, en la condición de operación $V_{GS} = 1.5\,\mathrm{V},\ V_{DS} = 1.5\,\mathrm{V},\ V_{BS} = 0\,\mathrm{V},$
 - a) ¿El transistor está operando en la región de corte, saturación o lineal?
 - b) Calcule el valor de V_T y de la corriente de polarización I_D .
 - c) Estime el rango de variación admisible en v_{gs} si se admite un 10 % de error en la linealización de $i_D = k_n (v_{GS} V_T)^2$.

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Última actualización: 1^{er} Cuatrimestre de 2018

- d) Calcule los parámetros del modelo de pequeña señal: g_m , g_{mb} , r_o , C_{gs} , C_{gd} , C_{sb} , C_{db} .
- e) Dibuje el modelo de pequeña señal del transistor.
- 23. En un n-MOSFET en régimen de saturación,
 - a) ¿Cómo es la relación g_m vs. V_{GS} ?
 - b) ¿La capacidad C_i de las junturas Source-Bulk y Drain-Bulk son iguales?
- 24. Sea un transistor n-MOSFET con parámetros μ_n $C_{ox}=50\,\mu\text{A}/\text{V}^2,~V_T=1\,\text{V},~\lambda=0.01\,\text{V}^{-1},~W/L=4,$
 - a) Para $V_{DS} = 1 \, \text{V}$, realice el gráfico en forma exacta de g_m en función de V_{GS} para $0 < V_{GS} < 3 \, \text{V}$. Explique la forma de la curva y los puntos característicos de la misma.
 - b) Para $V_{GS} = 2 \, \text{V}$, realice el gráfico en forma exacta de r_o en función de V_{DS} para $0 < V_{DS} < 3 \, \text{V}$. Explique la forma de la curva y los puntos característicos de la misma.
- 25. Para el circuito de la figura 6c, siendo $\mu_p \, C_{ox} = -70 \, \mu \text{A/V}^2, \, V_T = -1.2 \, \text{V}, \, W = 30 \, \mu \text{m}, \, L = 5 \, \mu \text{m}, \, \lambda = 0.05 \, \text{V}^{-1}, \, R_{G2} = 470 \, \text{k}\Omega$ y $V_{dd} = 5 \, \text{V}$ se pide:
 - a) Hallar R_{G1} y R_D tal que $I_D = -80 \,\mu\text{A}$ y $V_{out} = V_D = 2.4 \,\text{V}$.
 - b) Hallar el rango posible de valores de R_D para el cual el transistor opera en saturación. Representar esta respuesta en el plano $(-I_D, V_{SD})$.
 - c) Hallar el modelo circuital equivalente de pequeña señal (bajas frecuencias) para el circuito de la figura 6c. Calcular los parámetros correspondientes para el caso a).
 - d) Explique qué representa g_m y cómo se obtiene su expresión.
- 26. Sólo dos de los parámetros que intervienen en el cálculo de la corriente I_D de saturación del MOSFET varían con la temperatura ambiente: $\mu_n(T) = \mu_n(T_o) \times (T_o/T)^{1,5}$ y $V_T = V_{T,T_o} + \alpha(T T_o)$, con $\alpha > 0$. Al variar la temperatura con V_{GS} constante, ¿Las variaciones de μ_n y V_T influyen en I_D en el mismo sentido o en sentido opuesto?
- 27. Para el circuito de la figura 10, donde $\mu C_{ox}W/L=1\,\mathrm{mA/V^2},\ V_T=1\,\mathrm{V},\ \lambda=0,\ R_{G1}=1\,\mathrm{k}\Omega,\ R_{G2}=2\,\mathrm{k}\Omega,\ R_D=8,6\,\mathrm{k}\Omega,\ V_{DD}=3\,\mathrm{V},$ indique en qué régimen está polarizado el transistor.

Figura 10

- 28. Dado un transistor p-MOSFET de parámetros $V_T = 0.9 \, \text{V}$, $\mu_p C_{ox} = 40 \, \mu \text{A/V}^2 \, \text{y} \, W/L = 50$. Calcular la corriente de drain cuando las tensiones en el dispositivo son $V_G = 1 \, \text{V}$, $V_S = V_B = 4 \, \text{V} \, \text{y} \, V_D = 2.5 \, \text{V}$.
- 29. Se tiene un transistor MOSFET canal N del cual se sabe que $W = 100 \,\mu\text{m}$, $L = 5 \,\mu\text{m}$ y que el dopaje de sustrato es $5 \times 10^{16} / \text{cm}^3$ aproximadamente. Al medir el transistor en el laboratorio y realizando el ajuste de la curva de transferencia se obtiene $|k| = 1 \,\text{mA/V}^2$. Utilizando los datos y ayudándose con el gráfico de movilidades indique cuánto vale aproximadamente la capacidad del óxido.

Figura 11

- 30. Dado el circuito de la figura 11 donde $V_{GG}=1\,\mathrm{V},\ V_{DD}=5\,\mathrm{V},\ \mu_n C_{OX}=116\,\mathrm{mA/V^2},\ \lambda=0.8/\mathrm{V},\ V_T=0.8\,\mathrm{V},\ W/L=2\,\mathrm{y}\ R_G=50\,\Omega,$ determinar R_D para que la corriente de drain sea 5 mA.
- 31. Dada la curva de I_D vs. V_{DS} de la figura 12a y el circuito de la figura 12b, con $V_{dd}=5\,\mathrm{V},~V_T=1\,\mathrm{V},~\mu_n\,C_{ox}=50\,\mu\mathrm{A/V}$ y $R_D=10\,\mathrm{k}\Omega$:
 - a) Dibuje la recta estática de carga de este circuito.
 - b) Determine gráficamente el valor de V_{GG} tal que $V_{OUT}=2.5\,\mathrm{V},\,\mathrm{y}$ halle gráficamente el valor de I_D resultante.
 - $c)\,$ A partir de la figura 12a halle la relación W/L del transistor.
 - d) Determine analíticamente el valor de V_{GG} tal que $V_{OUT}=2.5\,\mathrm{V}$, y halle analíticamente el valor de I_D resultante.

Figura 12

- 32. En la figura 13 se muestra un circuito elemental muy utilizado en diseños CMOS analógicos para generar una tensión de referencia. Asumiendo $I_{REF}=40\,\mu\text{A},\ V_{dd}=3,3\,\text{V},\ \mu_n C_{ox}=116\,\mu\text{A}/\text{V}^2,\ V_T=0,8\,\text{V},\ \lambda=0,04/\text{V},\ W/L=2,$
 - a) Calcular el punto de trabajo del transistor. ¿En qué región de operación se encuentra? ¿Depende de I_{REF} ?
 - b) Hallar el modelo de pequeña señal del circuito. Explique qué efecto representa cada uno de los componentes. Grafique de forma cualitativa g_m y r_o en función de I_{REF} .
 - c) Suponer que ahora se reemplaza la fuente I_{REF} por una resistencia $R=10\,\mathrm{k}\Omega$. Diseñar el transistor, es decir hallar W/L, para que $V_{out}=1,5\,\mathrm{V}$.

Última actualización: 1^{er} Cuatrimestre de 2018

Figura 13

- 33. Dado el circuito de la figura 14 y sabiendo que $V_T=0.6\,\mathrm{V},\ V_{DD}=3.3\,\mathrm{V},\ (W/L)_1=10,\ \mu_n C_{ox}=80\,\mu\mathrm{A/V^2}$ y asumiendo $\lambda=0,$
 - a) ¿Puede M_1 estar polarizado en régimen de triodo?
 - $b)\,$ Describa el funcionamiento del circuito y explique para qué sirve.
 - c) Hallar R_{REF} tal que $I_{OUT} = 100 \,\mu\text{A}$.
 - d) Si $(W/L)_2 = 50$, encuentre el rango de valores de R_L para los cuales el circuito funciona correctamente.
 - e) Suponiendo que $\lambda \neq 0$, realice un gráfico de I_{OUT} vs. V_{OUT} . Explique cómo afecta la modulación del largo del canal a la corriente de salida.
 - f) ¿Qué criterio de diseño aplicaría a M_2 para reducir este efecto?

Figura 14

- 34. En la figura 15 se muestra una fuente de corriente donde $V_{T0}=-0.9\,\mathrm{V},\,\mu_p C_{ox}=25\,\mu\mathrm{A/V^2},\,\lambda_p=0.02/\mathrm{V},\,V_{DD}=5\,\mathrm{V}\,\mathrm{y}\,\,R_{REF}=36\,\mathrm{k}\Omega.$
 - a) Explique por qué M_1 nunca puede estar en régimen de triodo.
 - b) Halle $(W/L)_1$ para que $I_{REF} = 100$ μA. ¿Cuánto vale V_{REF} en ese caso?
 - c) ¿Cuánto debe valer $(W/L)_2$ para que $I_{OUT} = 500 \,\mu\text{A}$?
 - d) Realice el gráfico exacto de $I_{OUT} = f(V_{OUT})$ para $0 < V_{OUT} < 5 \text{ V}$.
 - e) ¿A qué valores debe acotarse R_L para que el circuito funcione correctamente?
- 35. Para el circuito de la figura 16, siendo para ambos transistores $V_T=0.7\,\mathrm{V},~\mu_n C_{ox}=75\,\mu\mathrm{A/V^2},~L_1=L_2=2\,\mu\mathrm{m}$ y $V_{DD}=5\,\mathrm{V},$ calcule:
 - a) El valor de R_{D1} para que $I_{D1_{sat}}=150\,\mu\mathrm{A}$ siendo $W_1=20\,\mu\mathrm{m}.$
 - b) El valor de W_2 para obtener $I_{D2_{sat}}=50\,\mu\mathrm{A}$ siendo $R_{D2}=10\,\mathrm{k}\Omega.$
- 36. Para el circuito de la figura 17, siendo $V_T=-0.9\,\mathrm{V},~\mu_p C_{ox}=57\,\mu\mathrm{A/V^2},~W_1=20\,\mu\mathrm{m}$ y $L_1=2\,\mu\mathrm{m},~V_{DD}=5\,\mathrm{V},$ hallar el valor de R_{D1} para que la corriente I_{D1} sea $-100\,\mu\mathrm{A}.$

Figura 15

Figura 16

Figura 17