CSPB 3104 - Park - Algorithms

<u>Dashboard</u> / My courses / <u>2241:CSPB 3104</u> / <u>15 April - 21 April</u> / <u>Quiz 11</u>

Started on	Tuesday, 2 April 2024, 10:02 PM
State	Finished
Completed on	Tuesday, 2 April 2024, 10:03 PM
Time taken	1 min 41 secs
Marks	13.00/13.00
Grade	10.00 out of 10.00 (100 %)

Question 1
Correct
Mark 1.00 out of 1.00
Consider the following optimization problem –
Maximize (2*x + 3*y)
x + y >= 1
y >= 3
$x \ge 0$
Which option below best describes the linear programming solution? Select one:
a. Bounded
b. Unbounded
c. Feasible and bounded
o d. Feasible but unbounded
e. Infeasible
Your answer is correct.
The correct answer is: Feasible but unbounded
Correct
Marks for this submission: 1.00/1.00.

Question Z
Correct
Mark 1.00 out of 1.00
Which of the following is the TRUE statement about P and NP classes?
Select one:
a. P = NP
b. NP can be solved in polynomial time
c. NP cannot be solved in polynomial time
od. P is a subset of NP
Your answer is correct.
The correct answer is: P is a subset of NP
Correct
Marks for this submission: 1.00/1.00.
Question 3 Correct
Mark 1.00 out of 1.00
Which of the following is NOT a known example of an NP complete problem?
Select one:
a. Existence of a Hamiltonian Cycle in a directed graph
b. 3-CNF Satisfiability
c. Finding a shortest simple path in a graph
d. Finding a longest simple path in a graph
Your answer is correct.
The correct answer is: Finding a shortest simple path in a graph

Correct

Marks for this submission: 1.00/1.00.

Question 4

Correct

Mark 3.00 out of 3.00

Select all the facts that follow if we were to prove P = NP.

Select one or more:

- a. 3-CNF-SAT can be solved in polynomial time.
- b. There will be a polynomial time algorithm for solving the travelling salesperson problem.
- c. The problem of finding if a graph G has a cycle will be NP Complete.
- d. Every NP Complete problem will have a polynomial time algorithm.
- e. Internet commerce using RSA public key encryption may become insecure.

Your answer is correct.

The correct answers are: There will be a polynomial time algorithm for solving the travelling salesperson problem., The problem of finding if a graph G has a cycle will be NP Complete., Internet commerce using RSA public key encryption may become insecure., Every NP Complete problem will have a polynomial time algorithm., 3-CNF-SAT can be solved in polynomial time.

Correct

Marks for this submission: 3.00/3.00.

Question **5**

Correct

Mark 3.00 out of 3.00

If P were shown different from NP, select all the valid consequences below.

Select one or more:

- a. All NP Complete problems cannot be solved in polynomial time.
- b. There will be problems in P that are NP Complete.
- c. There will be problems in NP that are not NP Complete.
- d. Some of the NP Complete problems may have polynomial time algorithms while at least one of them will not.

Your answer is correct.

The correct answers are: All NP Complete problems cannot be solved in polynomial time., There will be problems in NP that are not NP Complete.

Correct

Marks for this submission: 3.00/3.00.

^	tion	6
U	uestion	U

Correct

Mark 2.00 out of 2.00

Suppose A can be solved in polynomial time and B is known to be NP and we have a polynomial time reduction from B to A. What can we conclude from these facts?
Select one: a. A is NP Complete
b. B cannot be solved in polynomial time.
c. P is different from NP
d. P = NP
e. B is NP complete
f. B can be solved in polynomial time.
Your answer is correct. The correct answer is: B can be solved in polynomial time. Correct Marks for this submission: 2.00/2.00.
Question 7 Correct Mark 2.00 out of 2.00
The lecture emphasized that to prove a problem X NP complete, we need to find a polynomial time reduction from a known complete problem (eg., 3-SAT) to X.
Prof. Z claims that the requirement for polynomial time reduction is not needed at all. If this were true, which of the following facts will hold.
Select one:
a. P can be proved to be not equal to NP.
b. Every problem in NP can be reduced in exponential time to every other problem in NP
c. Nothing changes, the requirement for polynomial time reductions is unnecessary.
d. The 3-SAT problem can be solved in polynomial time.
Your answer is correct. The correct answer is: Every problem in NP can be reduced in exponential time to every other problem in NP Correct Marks for this submission: 2.00/2.00.