О введении бесконечно-малых в курсе матанализа

Щепин Евгений Витальевич Математический институт им. В.А. Стеклова РАН scepin@mi-ras.ru

Секция: Математическое образование и просвещение

В докладе изложен подход к введению и активному использованию актуально бесконечномалых величин в начальном курсе математического анализа, который достаточно строг и хорошо адаптирован к применениям в физике и геометрии. Для описания дифференциалов функций одной переменной используются числа, известные под именем ∂y альных, которые автор предпочитает называть числами ∂ войной точности, мотивируя это название компьютерной аналогией. Числа двойной точности представляют собой минимальное неархимедово расширение действительных чисел. А именно, к полю действительных чисел добавляется один "идеальный" бесконечно-малый элемент, обозначаемый $\sqrt{0}$, который положителен но имеет нулевой квадрат. В результате возникает линейно упорядоченное кольцо чисел вида $a+b\sqrt{0}$ с интуитивно понятными операциями сложения и умножения. Для определения значений трансцендентных функций на числах двойной точности достаточно постулировать, что все известные для них нестрогие неравенства для действительных чисел остаются справедливыми для чисел двойной точности.

Связь с теорией пределов обеспечивается следующей моделью построения чисел двойной точности. Действительные числа интерпретируются как постоянные последовательности. $\sqrt{0}$ интерпретируется как монотонная стремящаяся к нулю последовательность положительных чисел o_n . А числа двойной точности интерпретируются как сходящиеся последовательности x_n , такие что сходятся последовательности отношений $\frac{x_n-\lim x_n}{o_n}$. Число двойной точности $a+b\sqrt{0}$ представляется как совокупность всех последовательностей с описанными условиями сходимости, для которых $\lim x_n=a$, $\lim \frac{x_n-a}{o_n}=b$.