${\bf Convex\ Optimization:}$

CVX 101

Ian Quah (itq)

November 7, 2017

Week 3: Convex Functions

Basic Properties and Examples

• Defn: $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set, and

$$f(\theta x + (1 - \theta)y \le \theta f(x) + (1 - \theta)f(y)) \ \forall x, y \in \mathbf{dom} f, 0 \le \theta \le 1$$

Aka, if you draw a bowl, with (x, f(x)) on the left side and (y, f(y)) on the right side, the line connecting the two (the chord), is such that the chord is above the graph

- f is concave if -f is convex
- f is strictly convex if dom f is convex and

$$f(\theta x + (1 - \theta)y < \theta f(x) + (1 - \theta)f(y))$$
 for $x, y \in \mathbf{dom} f, x \neq y, 0 < \theta < 1$

- $\bullet\,$ Convex examples on ${\pmb R}$
 - affine: ax + b on $\mathbf{R} \ \forall a, b \in \mathbf{R}$
 - exponential: e^{ax} , for any $a \in \mathbf{R}$
 - powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
 - powers of absolute value: $|x|^p$ on \mathbf{R} , for $p \geq 1$
 - Negative entropy: xlogx on \mathbf{R}_{++}
- ullet Concave examples on R
 - affine: ax + b on $\mathbf{R} \forall a, b \in \mathbf{R}$
 - powers: x^{α} on \mathbf{R}_{++} , for $0 \le \alpha \le 1$
 - logarithm: log x on \mathbf{R}_{++}
- Basically if you plot it you have a non-negative curvature (curves up)
- \bullet Examples on \boldsymbol{R}^n and \boldsymbol{R}^{mxn}

Affine functions are convex and concave; all norms are convex

Examples on \mathbb{R}^n

- affine function: $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ for p ≥ 1 ; $||x||_\infty = \max_k |x_k|$

Examples on \mathbb{R}^{mxn}

- affine function:

$$f(X) = tr(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

- spectral (maximum singular value) norms

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{\frac{1}{2}}$$

- Convexity checking: restricting the convex function to a line
 - f: $\mathbb{R}^n \to \mathbb{R}$ is convex iff the fn g: $\mathbb{R} \to \mathbb{R}$

$$g(t) = f(x+tv)$$
, dom $g = \{t|x+tv \in \text{dom } f\}$

- * is convex (in t) for any $x \in \text{dom } f, v \in \mathbb{R}^n$
- * can check convexity of f by checking convexity of functions of one variable
- * The intuition here is that a function is convex iff when restricted to all lines it is convex
- Example: f: $\mathbf{S}^n \to \mathbf{R}$ with f(X) = logdetX, dom $f = \mathbf{S}_{++}^n$

$$g(t) = logdet(X + tV)$$

$$(X + tV = X^{\frac{1}{2}}(I + X^{-\frac{1}{2}}VX^{-\frac{1}{2}})X^{\frac{1}{2}})$$

$$= logdetX + logdet(I + tX^{-\frac{1}{2}}VX^{-\frac{1}{2}})$$
 (log det X constant, ¬ interesting)
$$= logdetX + \sum_{i=1}^{n} log(1 + t\lambda_i)$$
 (RHS is concave)

where λ_i are the eigenvalues of $X^{-\frac{1}{2}}VX^{-\frac{1}{2}}$ g is concave in t (for any choice of X >0, V); hence f is concave

• Extended-value extension extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), x \in \operatorname{dom} f, \tilde{f}(x) = \infty, x \notin \operatorname{dom} f,$$

often simplifies notation; e.g.

$$0 \leq \theta \leq 1 \to \tilde{f}(\theta x + (1-\theta)y) \leq \theta \tilde{f}(x) + (1-\theta)\tilde{f}(y)$$

(as an inequality in $R \cup \{\infty\}$), means the same as the two conditions

- **dom** f is convex
- $\text{ for } x, y \in \text{ dom } f,$

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Conditions for convexity:

First-Order Condition

• f is differentiable if **dom** f is open and the gradient

$$\nabla f(x) = (\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, ..., \frac{\partial f(x)}{\partial x_n})$$

, a column vector

exists at each $x \in \mathbf{dom} f$

• 1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \forall x, y \in \mathbf{dom} \ f$$

RHS: first order taylor expansion of f at the point x

first-order approximation of f is a global underestimator

Second-Order Condition

• f is twice differentiable if **dom** f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$ gradient

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, i, j = 1, ..., n$$

exists at each $x \in \text{dom } f$

- 2nd-order condition: for twice differentiable f with convex domain is convex iff
 - f is convex iff

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \text{dom } f$, the resulting matrix is PSD

- if $\nabla^2 f(x) \succeq 0$ for all $x \in \text{dom } f$, then f is strictly convex

Examples

• quadratic functions: $f(x) = \frac{1}{2}x^T P x + q^T x + r$ with $P \in S^n$

$$\nabla f(x) = Px + q, \nabla^2 f(x) = P$$

convex if P $\succeq 0$

• Least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T(Ax - b), \nabla^2 f(x) = 2A^TA$$

convex (for any A)

• Quadratic-over-linear: $f(x, y) = \frac{x^2}{y}$

$$\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y & -x \end{bmatrix}^T \begin{bmatrix} y & -x \end{bmatrix} \succeq 0$$

convex for y > 0

- if you plot this and rotate it you get the lorentz cone. It also looks like the front of a ship
- Is rank 1, and this tells us that at any point it is curving in one direction but not in the other.
- log-sum-exp: $f(x) = \log \sum_{k=1}^{n} exp(x_k)$ is convex (This is the softmax function)

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} diag(z) - \frac{zz^T}{(\mathbf{1}^T z)^2}, (z_k = expx_k)$$

note: LHS is PSD

to show $\nabla^2 f(x) \succeq 0$, must verify that $v^T \nabla^2 f(x) v \ge 0 \forall v$:

since
$$(\sum_k v_k z_k)^2 \le (\sum_k z_k v_k^2)(\sum_k z_k)$$

(from Cauchy-Schwarz inequality)

- geometric mean: $f(x) = (\prod_{k=1}^n x_k)^{\frac{1}{n}}$ on \mathbb{R}_{++}^n is concave and follows a similar proof as log-sum-exp
- α -sublevel set of f: $\mathbb{R}^n \to \mathbb{R}$

$$C_{\alpha} = \{ x \in \mathbf{dom} \ f | f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false)

• Epigraph of f: $\mathbb{R}^n \to \mathbb{R}$

epi
$$f = \{(x, y) \in \mathbb{R}^{n+1} | x \in \text{dom } f, f(x) \le t\}$$

- function f is convex IFF **epi** f is a convex set
- Describes the connection between a convex function and a convex set

- ullet Jensen's inequality
 - Basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- Extension: if f is convex, then

$$f(\mathbf{E}z) \le \mathbf{E}f(z)$$

for any random variable z

 $\,-\,$ basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x)=\theta,\,\operatorname{prob}(z=y)=1$$
 - θ

Operations that preserve Convexity

Practical methods for establishing convexity

- verify defn': often simplified by restricting to a line
- for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- Show that f is obtained from simple convex fns' by operations that themselves preserve convexity
 - -1) non-negative weighted sum, and composition with affine functions
 - * nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$
 - * sum: $f_1 + f_2$ convex, if f_1 and f_2 convex (extends to infinite sums, integrals)
 - * f(Ax + b) is convex if f is convex
 - * log barrier for linear inequalities:

$$f(x) = -\sum_{i=1}^{m} log(b_i - a_i^T x), \text{ dom } f = \{x | a_i^T x < b_i, i = 1, ..., m\}$$

- * (any) norm of affine function: f(x) = ||Ax + b||
- 2) Pointwise Max
 - * if $f_1,...,f_m$ are convex, then $f(x) = \max(f_1(x), ..., f_m(x))$ is convex

Intuition: draw multiple bowls and take the intersection

- * piecewise-linear function: $f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$ is convex
- * sum of r largest components of $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[1]})$ is the ith largest component of x) proof:

$$f(x) = \max\{x_{i1} + x_{i2} + \dots + x_{ir} | 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

- 3) Pointwise supremum
 - * if f(x,y) is convex in x for each $y \in A$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

- * examples
 - · support function of a set C: $S_c(x) = \sup_{y \in C} y^T x$ is convex $y^T x$ is linear, and the supremum of a set of functions is itself convex
 - · distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} ||x - y||$$

· max eigenvalue of symmetric matrix: for $X \in S^n$,

$$\lambda_{max}(X) = \sup_{||y||_2 = 1} y^T X y$$

Practical methods for establishing convexity

- Show that f is obtained from simple convex fns' by operations that themselves preserve convexity
 - 4) Composition with scalar functions
 - * Composition of g: $\mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$

$$f(x) = h(g(x))$$

f is convex if
$$\begin{cases} g \text{ convex, h convex, } \tilde{h} \text{ nondecreasing} \\ g \text{ concave, h convex, } \tilde{h} \text{ nonincreasing} \end{cases}$$

* proof