GLOBAL SOLUTION - CYBERSECURITY

Integrantes:

Henrico Nardelli Bela - RM: 95985

Sara Leal - RM: 96302 Emilly Santos - RM: 94437

Architecture review date	7 de jun de 2022
Project lead	@ Henrico Bela
On this page	 Overview/Problema Problemas de Arquitetura Stakeholders Atributos Importantes Objetivo Base de dados Bibliotecas Modelagem Algoritmos utilizados Métricas Avaliação Próximos passos Referencias

Overview/Problema

#1 - Resolução de desafio do Kaggle

Vocês deverão resolver o seguinte desafio do Kaggle: https://www.kaggle.com/ealaxi/paysim1 . Trata-se de uma base de dados sintéticos que foi produzida, baseada num cenário real, para predizer uma fraude no setor financeiro.

A entrega será o notebook no Google Colab, devidamente comentado. IMPORTANTE: por ser um desafio do Kaggle, certamente vocês encontrarão resoluções. Faça bom uso, mas também faça as devidas referências e citações! A ideia é que vocês utilizem os códigos da minha e de outras matérias para resolver este exercício, mas fiquem à vontade para buscar outras referências.

Problemas de Arquitetura

Problema de Arquitetura	Impacto no Negocio	Prioridade	Notas
Identificar quais colunas e dados estavam recebendo as possíveis Fraudes, e onde elas se concentravam	Perda de dinheiro para a empresa.	HIGH	Conseguimos identificar quais colunas e dados estavam concentrados com Fraudes e aplicamos filtros nas colunas para fazer tal analise.

Nome	
@ Henrico Bela	Desenvolvedor
@EmillyGabrielly	Desenvolvedor
@SaraLeal	Desenvolvedor

Atributos Importantes

Atributos categóricos e numéricos

Definição	Atributo é importante? Porque?	Notas
-----------	--------------------------------	-------

Sim, os atributos type, amount, oldBalanceOrig e newBalanceOrig são as principais variáveis para se definir se uma transação foi Fraudulenta ou não.

Conseguimos identificar que essas variáveis são importantes de acordo com os gráficos produzidos e mostrados abaixo.

Objetivo

Resolver o desafio do Kaggle, utilizando inteligência artificial, para identificar transações fraudulentas.

Base de dados

https://www.kaggle.com/ealaxi/paysim1

A base de dados do Kaggle, foi criada para a realização de um desafio, que solicita uma analise de dados descritiva, e seguindo o ciclo de vida de machine learning.

1. Pandas

- 2. Seaborn
- 3. Matplotlib
- 4. Sklearn
 - a. Preprocessing Standard Scaler
 - b. Model Selection Train Test Split
 c. Linear Model Logistic Regression
 d. Neighbors K Neighborns Classifier

 - e. Metrics Confusion Matrix, Classification Report, Average Precision Score
- 5. Warnings

Para a modelagem, utilizamos o ciclo de vida de Machine Learning:

Começando com:

- 1. Business Understanding
- 2. Data Mining
- 3. Data Cleaning
- 4. Data Exploration
- 5. Feature Engineering
- 6. Preditive Modeling
- 7. Data Visualization

Algoritmos utilizados

Segue o link para o google colab!

https://colab.research.google.com/drive/1wYpScvUYQPvAwapQ4lZNkPq9T4fmmY2S?usp=sharing

Métricas

Metricas -	Metricas - Logistic Regression - Sem dados Padronizados						
	prec	ision	recall	f1-score	support		
	0	1.00	1.00	1.00	1270904		
	1	0.36	0.41	0.38	1620		
accurac	cy			1.00	1272524		
macro av	vg	0.68	0.71	0.69	1272524		
weighted av	vg	1.00	1.00	1.00	1272524		

Metricas - Logistic Regression - Com dados Padronizados						
	precision recall f1-score support					
0	1.00	1.00	1.00	1270904		
1	0.90	0.42	0.57	1620		
accuracy			1.00	1272524		
macro avg	0.95	0.71	0.79	1272524		
weighted avg	1.00	1.00	1.00	1272524		

Metricas - KNeighborsClassifier						
Score: 0.9995						
	precision	recall	f1-score	support		
0	1.00	1.00	1.00	1270904		
1	0.90	0.42	0.57	1620		
accuracy	2.25	0.74	1.00	1272524		
macro avg	0.95	0.71	0.79	1272524		
weighted avg	1.00	1.00	1.00	1272524		

Ao avaliar as métricas apresentadas acima, podemos identificar que a melhor métrica a ser utilizada é **Precisão**. Pois com a Precisão podemos avaliar exatamente quais as transações Fraudulentas, e quais não são.

Por exemplo, ao classificar uma ação como um bom investimento, é necessário que o modelo esteja correto, mesmo que acabe classificando bons investimentos como maus investimentos (situação de Falso Negativo) no processo. Ou seja, o modelo deve ser preciso em suas classificações, pois a partir do momento que consideramos um investimento bom quando na verdade ele não é, uma grande perda de dinheiro pode acontecer.

Próximos passos

	Objetivo	Descrição	Estimativa	Documentação
1	Melhor entendimento das Features do Dataset	Mais estudos em cima de Feature Engineering	Colocaremos uma estimativa de 6 meses para melhor avaliação do modelo e aumentar a assertividade do modelo.	Comentar os progressos obtidos.

Referencias

- Sklearn documentation
- Pandas documentation
- Seaborn documentation
- Matplotlib documentation
- Para melhor entendimento do data set: https://www.kaggle.com/code/jmbebon/predicting-fraud-in-financial-payment-ser-c2f5e8