Project 2: Augmenting functional information about human genes using probabilistic phylogenetic modeling

George G. Vega Yon vegayon@usc.edu

Department of Preventive Medicine
University of Southern California

October 5, 2017

Agenda

Gene Functions

Model

Peeling algorithm

The aphylo R package

The amcmc R package

Bayesian Estimation of the parameters

Concluding Remarks

Agenda

Gene Functions

Mode

Peeling algorithm

The aphylo R package

The amcmc R package

Bayesian Estimation of the parameters

Concluding Remarks

Introduction

- ▶ Manual Curation (GO): Good but infeasible
- ► Sparse gene functional annotation
- ▶ Take advantage of the phylogenetic information to make inference of
- This predicted functional information will serve as prior covariates (and prior gene-gene connections) in the second level of the hierarchical models in Projects 1 and 3. In particular, this project is the first to make predictions at large scale in a probabilistic manner.

Agenda

Gene Functions

Model

Peeling algorithm

The aphylo R package

The amomo R package

Bayesian Estimation of the parameters

Concluding Remarks

Some definitions

Symbol	Description
Ď	Observed Annotated Tree
٨	Partially ordered phylogenetic tree (PO tree)
O(n)	Offspring of node n
$O(n)$ \tilde{D}_n	n-induced Annotated Sub-tree
X	Experimental annotation

Where

$$x_{lp} = \begin{cases} 1 & \text{if the function } p \text{ is believed to be present} \\ 0 & \text{if the function } p \text{ is believed to be absent} \\ 9 & \text{if we don't have information for this node} \end{cases}$$

Formal definitions

A probabilistic model of function propagation

- For any given node, we can write down the probability of observing a functional state as a function of some model parameters and its offspring.
- 2. This version of our model has five parameters (probabilities):
 - 2.1 Root node had a function: π ,
 - 2.2 Gain of function: μ_0 ,
 - 2.3 Loss of function: μ_1 .
 - 2.4 Misclassification of:
 - ▶ A missing function as present, ψ_0 , and
 - lacktriangle A present function as missing, ψ_1

All five parameters are assumed to be equal across functions, this is, $\pi, \mu_0, \mu_1, \psi_0$, and ψ_1 are assumed to be independent of the functions that are analyzed.

3. In this presentation, we will focus on the case that P=1.

Agenda

Gene Functions

Model

Peeling algorithm

The aphylo R package

The amcmc R package

Bayesian Estimation of the parameters

Concluding Remarks

Peeling phylogenies

Given an Experimentally Annotated (PO) Phylogenetic Tree, the likelihood computation on a single function is as follows.

- 1. Create an matrix Pr of size $2 \times |N|$,
- 2. For node $n \in \{|N|, |N| 1, ..., 1, 0\}$ do:
 - **2.1** For $z_n \in \{0, 1\}$ do:

2.1.1 Set
$$Pr_{n,z_n} = \begin{cases} Pr(Z_n = z_n \mid X_n = X_n) & \text{If n is a leaf} \\ Pr(Z_n = z_n \mid \tilde{D}_n) & \text{otherwise} \end{cases}$$
2.1.2 Next z_n

- 2.2 Next n
- 3. At this point the matrix Pr should be completely filled, so following (3), we can compute

$$\mathsf{L}\left(\psi,\mu,\pi\,\middle|\,\,\tilde{D}\right) = \sum_{\mathsf{z}_0 \in \{0,1\}} \mathsf{Pr}\left(\mathsf{Z}_0 = \mathsf{z}_0 \mid \pi\right) \mathsf{Pr}_{0,\mathsf{z}_0}$$

Let's see an example!

Peeling algorithm

► Let's calculate the likelihood of observing this tree with the following parameters:

$$\psi_0 = 0.1$$
 $\psi_1 = 0.05$
 $\mu_0 = 0.04$
 $\mu_1 = 0.01$
 $\pi = 0.5$

Peeling algorithm (cont. 1)

	State 0	State 1
0		
1		
2	0.9000	0.0500
3		
4	0.1000	0.9500
5	0.9000	0.0500

$$\Pr(Z_2 = 0 \mid X_2 = 0) = 1 - \psi_0 = 0.9$$

 $\Pr(Z_2 = 1 \mid X_2 = 0) = \psi_1 = 0.05$

$$\Pr(Z_4 = 0 \mid X_4 = 1) = \psi_0 = 0.1$$

 $\Pr(Z_4 = 1 \mid X_4 = 1) = 1 - \psi_1 = 0.95$

$$Pr(Z_5 = 0 \mid X_5 = 0) = 1 - \psi_0 = 0.9$$

 $Pr(Z_5 = 1 \mid X_5 = 0) = \psi_1 = 0.05$

Peeling algorithm (cont. 2)

State 1
0.0585
0.0500
0.9500
0.0500

Pr
$$(Z_1 = 0 \mid \tilde{D}_1)$$
 = Pr $(Z_2 = 0 \mid X_2 = 0)$ Pr $(Z_2 = 0 \mid Z_1 = 0)$ +

Pr $(Z_2 = 1 \mid X_2 = 0)$ Pr $(Z_2 = 1 \mid Z_1 = 0)$ +

= $0.9000 \times 0.96 + 0.0500 \times 0.04 = 0.866$

Pr $(Z_1 = 1 \mid \tilde{D}_1)$ = Pr $(Z_2 = 0 \mid X_2 = 0)$ Pr $(Z_2 = 0 \mid Z_1 = 1)$ +

Pr $(Z_2 = 1 \mid X_2 = 0)$ Pr $(Z_2 = 1 \mid Z_1 = 1)$
= $0.9000 \times 0.01 + 0.0500 \times 0.99 = 0.0585$

Peeling algorithm (cont. 3)

	State 0	State 1
0	0.0947	0.0037
1	0.8660	0.0585
2	0.9000	0.0500
3	0.1160	0.0551
4	0.1000	0.9500
5	0.9000	0.0500

$$\begin{split} \Pr\left(Z_3 = 0 \ | \ \bar{D}_3\right) &= \prod_{m \in \{4,5\}} \sum_{z_m \in \{0,1\}} \Pr\left(Z_m = z_m \ | \ \bar{D}_m\right) \Pr\left(Z_m = z_m \ | \ Z_3 = 0\right) \\ &= \left(0.1(1 - \mu_0) + 0.95 \times \mu_0\right) \times \left(0.9(1 - \mu_0) + 0.05 \times \mu_0\right) \\ &= (0.1(1 - 0.04) + 0.95 \times 0.04) \times (0.9(1 - 0.04) + 0.05 \times 0.04) \\ &= 0.116 \end{split}$$

Finally, the likelihood of this tree is:

$$\mathsf{L} \left(\psi, \, \mu, \, \Pi \, \big| \, \, \tilde{D} \right) = (1 \, - \, \pi) \mathsf{Pr} \left(Z_0 \, = \, 0 \, \big| \, \, \tilde{D}_0 \right) + \pi \mathsf{Pr} \left(Z_0 \, = \, 1 \, \big| \, \, \tilde{D}_0 \right)$$

$$= (1 \, - \, 0.5) \, \times \, 0.0947 + 0.5 \, \times \, 0.0037 \, = 0.0492$$

Agenda

Gene Functions

Mode

Peeling algorithm

The aphylo R package

The amomo R package

Bayesian Estimation of the parameters

Concluding Remarks

aphylo in a nutshell

With C++ (RcppArmadillo) under-the-hood, aphylo:

- Defines an S3 class for representing partially ordered trees, including validation of it.
- Includes from the basic methods: print, plot, and summary; to more advanced such as prune.
- 3. Defines an S3 class for representing *annotated* partially ordered trees.
- Includes functions for converting from and to phylo class objects from the ape package (most used/cited package in Phylogenetics in R with ~25K downloads/month)
- 5. Implements the loglikelihood calculation of our model.

We'll talk about estimation later...

Examples: Simulating Trees

```
set.seed(80)
tree <- sim tree(5)
tree
##
  A PARTIALLY ORDERED PHYLOGENETIC TREE
##
##
     # Internal nodes: 4
     # Leaf nodes : 5
##
##
##
     Leaf nodes labels:
##
     4, 5, 6, 7, 8.
##
```

Internal nodes labels:

0, 1, 2, 3.

```
atree <- sim_annotated_tree(
    tree = tree, P = 2,
    psi = c(.05, .05),
    mu = c(.2, .1),
    Pi = .01)
atree</pre>
```

```
##
## A PARTIALLY ORDERED PHYLOGENETIC TREE
##
##
     # Internal nodes: 4
     # Leaf nodes : 5
##
     Leaf nodes labels:
##
       4. 5. 6. 7. 8.
##
##
##
     Internal nodes labels:
       0, 1, 2, 3,
##
##
## ANNOTATIONS:
##
        fun0000 fun0001
```

##

##

Examples: Visualizing annotated data

Figure 1: Visualization of annotations and tree structure.

Figure 2: LogLikelihood surface of the simulated data

Example: Interaction with ape

as.apephylo(atree)

```
##
## Phylogenetic tree with 5 tips and 4 internal nodes.
##
## Tip labels:
## [1] "6" "7" "8" "4" "5"
## Node labels:
## [1] "0" "3" "2" "1"
##
## Rooted; includes branch lengths.
```

```
# we can go back using:
# as.po_tree(as.apephylo(atree))
```

Example: Tree pruning

Figure 3: Pruning trees

Example: Tree pruning (cont.)

Figure 4: Pruning trees recursively

Agenda

Gene Functions

Mode

Peeling algorithm

The aphylo R package

The amcmc R package

Bayesian Estimation of the parameters

Concluding Remarks

Yet another MCMC package

You may be wondering why, well:

- 1. Allows running multiple chains simultaneously (parallel)
- 2. Overall faster than other Metrop MCMC algorithms (from our experience)
- 3. Planning to include other types of kernels (the Handbook of MCMC)
- 4. Implements reflective boundaries random-walk kernel

Example: MCMC

```
# Loading the packages
library(amcmc)
library(coda)
# Defining the 11 function (data was already defined)
11 <- function(x, D) {</pre>
 x \leftarrow log(dnorm(D, x[1], x[2]))
 sum(x)
ans <- MCMC(
  # Ll function and the starting parameters
  11, c(mu=1, sigma=1),
  # How many steps, thinning, and burn-in
  nbatch = 1e5, thin=10, burnin = 1e4,
 # Kernel parameters
  scale = .1, ub = 10, lb = c(-10, 0),
  # How many parallel chains
 nchains = 4,
  # Further arguments passed to 11
  D=D
```

Example: MCMC (cont. 1)

ans is of class mcmc from the coda package

summary(ans)

```
##
## Iterations = 10010:1e+05
## Thinning interval = 10
## Number of chains = 4
## Sample size per chain = 9000
##
## 1. Empirical mean and standard deviation for each variable,
##
     plus standard error of the mean:
##
                  SD Naive SE Time-series SE
##
        Mean
## m11
        2.51 0.0935 0.000493
                                   0.000579
## sigma 2.96 0.0668 0.000352
                                   0.000373
##
## 2. Quantiles for each variable:
##
##
        2.5% 25% 50% 75% 97.5%
## m11
        2.33 2.45 2.51 2.58 2.70
## sigma 2.83 2.91 2.96 3.00 3.09
```

Example: MCMC (cont. 2)

Figure 5: Gelman diagnostic for convergence

Example: MCMC (cont. 3)

Figure 6: Posterior distribution

Agenda

Gene Functions

Mode

Peeling algorithn

The aphylo R package

The amomo R package

Bayesian Estimation of the parameters

Concluding Pomark

Putting all together

Reading the data

Let's start by reading some data

path <- system.file("tree.tree", package="aphylo")</pre>

ANO, AN1, AN2, AN3, AN4, AN6, ...

Rooted; includes branch lengths.

```
### ## Phylogenetic tree with 145 tips and 107 internal nodes.
##
## Tip labels:
## AN5:MONBE|Gene=28576|UniProtKB=A9V8K6. AN7:SCHPO|PomBase=SPAC25B8.12c|UniProtKB=09UTA6
```

Node labels:

##

Putting all together (cont.)

Extra annotations head(dat\$internal_nodes_annotations)

##		branch_length	type	ancestor	duplication
##	ANO	NA	S	LUCA	FALSE
##	AN1	0.057	S	Archaea-Eukaryota	FALSE
##	AN2	0.244	S	Eukaryota	FALSE
##	AN3	0.436	S	Unikonts	FALSE
##	AN4	0.417	S	Opisthokonts	FALSE
##	AN6	0.684	D	<na></na>	TRUE

Putting all together: MCMC of the model

In this example, using data from PANTHERDB, we will simulate a single function and use the aphylo_mcmc function for obtaining parameter estimates

```
tree <- dat$tree
# Simulating a function
set.seed(123)
atree <- sim annotated tree(
 tree= as_po_tree(tree),
 Pi = .05, mu = c(.1, .05), psi = c(.01, .02)
# Estimation
ans <- aphylo_mcmc(
 params = rep(.05, 5),
 dat
          = atree,
  # Passing a Beta prior
 priors = function(p) dbeta(p, 2, 20),
 # Parameters for the MCMC
  control = list(nchain=4, nbatch=1e4, thin=20, burnin=1e3)
```

Putting all together: MCMC of the model (cont. 1)

ans

```
##
## ESTIMATION OF ANNOTATED PHYLOGENETIC TREE
## 11: -57.0072.
## Method used: mcmc (10000 iterations)
## Leafs
    # of Functions 1
    # of 0:
               99 (68%)
    # of 1:
               46 (32%)
##
##
            Estimate
                       Std. Error
##
    psi[0]
              0.0527
                           0.0289
    psi[1]
              0.0502
##
                           0.0312
    mu[0]
##
              0.0777
                           0.0226
##
   mu[1]
              0.0397
                           0.0266
##
    Ρi
              0.0907
                           0.0620
```

How good is our prediction

```
# Looking at the posterior probabilities
head(predict(ans, what="leafs"))
```

```
## AN87:STAA8|EnsemblGenome=SAUHSC_01375|UniProtKB=Q2FYR0 0.06121
## AN88:DETRA|EnsemblGenome=DR_2147|UniProtKB=Q9RSH7 0.06033
## AN219:LEPIN|EnsemblGenome=LB_007|UniProtKB=Q8EY50 0.06032
## AN223:CHLTR|EnsemblGenome=CT_103|UniProtKB=084105 0.06032
## AN29:CHLTR|EnsemblGenome=CHLREDRAFT_196269|UniProtKB=A8HYJ4 0.10564
## AN65:PYRAE|EnsemblGenome=PAE3495|UniProtKB=Q8ZT04 0.10611
```

And to the prediction score prediction_score(ans)

How good is our prediction (cont.)

plot(prediction_score(ans), main="")

	Probability	of Function	nal Annotation	
No function				Function
0	0.25	0.5	0.75	1

Figure 7: Predicted versus Observed values. Each slice of the pie represents a gene, the outer half of a slice is the predicted value, while the inner half is the observed value. Good predictions will coincide in color and show the slice closer to the center of the plot.

Concluding Remarks

- ▶ A parsimonious model of gene functions: easy to apply on a large scale (we already ran some simulations using all 14,000 trees from the Panther DB).
- Already implemented, we are currently in the stage of writing the paper and setting up the simulation study.
- Unfortunately, since annotation data is so sparse, we lack of a significant number of useful datasets on which we can test our method.
- For the next steps, we are evaluating ways of solving the sparseness issue: either by imposing correlation structures accross functions, or jumping into another model.

Thank you!

Project 2: Augmenting functional information about human genes using probabilistic phylogenetic modeling

George G. Vega Yon vegayon@usc.edu

Department of Preventive Medicine
University of Southern California

October 5, 2017

Formal definitions

1. Phylogenetic tree: In our case, we talk about partially ordered phylogenetic tree, in particular, $\Lambda \equiv (N, E)$ is a tuple of nodes N, and edges

$$E \equiv \{(n, m) \in N \times N : n \mapsto m, n < m\}$$

- 2. Offspring of $n: O(n) \equiv \{m \in N : (n, m) \in E, n \in N\}$
- 3. Parent node of m: $r(m) \equiv \{n \in N : (n, m) \in E, m \in N\}$
- **4**. Leaf nodes: $L(\Lambda) \equiv \{m \in N : O(m) = \{\emptyset\}\}$
- **5.** Annotations: Given *P* functions, $Z \equiv \{z_n \in \{0,1\}^P : n \in L(\Lambda)\}$
- **6**. Annotated Phylogenetic Tree $D \equiv (\Lambda, Z)$
- 7. Observed Annotated Annotations $X = \{x_i\}_{i \in L(\Lambda)}$,
- 8. Experimentally Annotated Phylogenetic Tree $\tilde{D} \equiv (\Lambda, X)$

Leaf node probabilities

The probability of the leaf nodes having annotations z₁ conditional on the observed annotation is

$$\Pr(Z_l = z_l \mid X_l = x_l) = \begin{cases} \psi & \text{if } x_l \neq z_l \\ 1 - \psi & \text{otherwise} \end{cases}$$
 (1)

Where ψ can be either ψ_0 (mislabelling a zero), or ψ_1 (mislabelling a one).

Internal node probabilities

 In the case of the internal nodes, the probability of a given state is defined in terms of the gain/loss probabilities

$$\Pr\left(\boldsymbol{Z}_{\textit{n}} = \boldsymbol{z}_{\textit{lp}} \;\middle|\; \boldsymbol{Z}_{\textit{r(n)}} = \boldsymbol{z}_{\textit{r(n)}}\right) = \left\{\begin{array}{ll} \mu & \text{if } \boldsymbol{z}_{\textit{n}} \neq \boldsymbol{z}_{\textit{r(n)}} \\ 1 - \mu & \text{otherwise} \end{array}\right.$$

Where μ can be either μ_0 (gain), or μ_1 (loss).

Assuming independence accross offspring, we can write

$$\Pr\left(Z_{n}=z_{n}\mid \tilde{D}\right)=\prod_{m\in O(n)}\sum_{z_{m}\in\{0,1\}}\Pr\left(Z_{m}=z_{m}\mid \tilde{D}\right)$$

$$\Pr\left(Z_{m}=z_{m}\mid Z_{n}=z_{n}\right) \quad (2)$$

Notice that if m is a leaf node, then

$$\Pr\left(Z_m = z_m \mid \tilde{D}\right) = \Pr\left(X_m = x_m \mid Z_m = z_m\right).$$

Likelihood of the tree

▶ Once the computation reaches the root node, n = 0, equations (1) and (2):

$$\Pr\left(Z_{I} = z_{I} \mid \tilde{D}\right) = \Pr\left(Z_{I} = z_{Ip} \mid X_{I} = x_{I}\right) \tag{1}$$

$$\Pr\left(Z_n = z_n \mid \tilde{D}\right) = \prod_{m \in \mathcal{O}(n)} \sum_{z_m \in \{0,1\}} \Pr\left(Z_m = z_m \mid \tilde{D}\right) \Pr\left(Z_m = z_{mp} \mid Z_n = z_n\right) \tag{2}$$

Allow us writing the likelihood of the entire tree

$$L\left(\psi,\mu,\pi\,\middle|\,\tilde{D}\right) = \sum_{z_0 \in \{0,1\}} \Pr\left(Z_0 = z_0 \mid \pi\right) \Pr\left(Z_0 = z_0 \mid \tilde{D}\right) \tag{3}$$

Where
$$\Pr(Z_0 = z_0 \mid \pi) = \pi^{z_0} (1 - \pi)^{1 - z_0}$$