Лекция по МЛиТА

11 сентября 2019

Напоминание:

Форма имеет ДНФ если она = дзъюнкция конъюнктов.

$$xy \lor \neg x \neg z \lor xz \neg y$$

Здесь х,у, г это литералы, а произведения ху, ¬х¬г,хг¬у это конъюнкты.

Замечание:

По ДНФ легко считать значение выражения. Выражение истинно \leftrightarrow есть хотябы один конъюнкт,который истинен. Конъюнкт истинен \leftrightarrow все литералы истинны.

Пример:

Конъюнкт $x\neg yz$ истинен $\leftrightarrow x=1$, y=0, z=1.

Замечание:

Задача поиска значений переменных,
при которых формула в ДНФ ложнаэто вычислительно сложная задача.

Не известно алгоритмов, которые в общем случае быстрее полного перебора знчений переменных.

Напоминание:

Задача:

Дана логическая формула,получить эквивалентную, но в ДНФ.

1. Метод алгебраических преобразований.

Преобразования:

-см. все преобразования, которые были.

-ДН Φ всех логических связок:

ху -ДНФ

 $x \lor y$ -ДНФ

 $x \Longrightarrow y = \neg x \lor y$ -ДНФ

$$x \leftrightarrow y = (x \Longrightarrow y)(y \Longrightarrow x) = (\neg x \lor y)(\neg y \lor x) = \neg x \neg y \lor \neg xx \lor \neg yy \lor yx = \neg x \neg y \lor yx$$

Осталось только х+у

$$x+y = \neg(x \leftrightarrow y) = (*)$$

ху	x+y	$x \leftrightarrow y$
00	0	1
01	1	0
10	1	0
11	0	1

(*) = \neg ((\neg x \lor y)(\neg y \lor x)) = Де Морган = \neg (\neg x \lor y) \lor \neg (\neg y \lor x) = Де Морган $= x \neg y \lor y \neg x$

Запомним:

 $x{+}y = x \neg y \vee y \neg x$

Пример преобразований:

 $(x \leftrightarrow yz) \Longrightarrow x = \neg(x \leftrightarrow yz) \lor x = (x+yz) \lor x = (x \neg (yz) \lor yz\neg x) \lor x = (x \leftrightarrow yz)$ $x(\neg y \lor \neg z) \lor yz \neg x \lor x =$ дистрибутивность $= x \neg y \lor x \neg z \lor yz \neg x \lor x$ - ДНФ 2. Получение ДНФ по таблице истинности.

Пусть дана таблица истинности: п переменных

x1x2x3 xn	логическая формула
000 0	0
	1
	0
	0
111 1	1

Рассмотрим строки с 1 в столюце значений это строки

 $x1^1 \ x2^1 \ \dots \ xn^1 \ 1$ $x1^2 \ x2^2 \ \dots \ xn^2 \ 1$

 $x1^k \ x2^k \dots xn^k \ 1$

Таких строк к штук

Составим ДНФ:

k конъюнктов, конъюнкт номер i имеет вид:

 $\neg x1 \neg x2... \neg xn$

где отрицание, если $x1^i=0$

Пример:

	1
xyz	$(x \leftrightarrow yz) \Longrightarrow x$
000	0
001	0
010	0
011	1
100	1
101	1
110	1
111	1

Kогда \Longrightarrow равно 0?

Когда $x \leftrightarrow yz = 1$ и x = 0, т.е. x = 0 и yz = 0.

ДНФ:

¬хуz(4 строка) \vee х¬у¬z(5 строка) \vee хх¬у(6 строка) \vee ху¬z(7 строка) \vee хуz(8 строка)

Теорема:

ДНФ, построенная этим методом, эквивалентна исходной формуле.

Д-во:

Проверим,
что ее ТИ так же конъюнктивна для строки і: $x1^i\ x2^i\ ...\ xn^i$ равен 1 только если:

 $x1 = x1^i$

 $x2 = x2^{i}$

. . .

 $xn = xn^i$

т.е. его таблица истинности:

x1xn	$(\neg x1)^? (\neg x2)^? \dots (\neg xn)^?$
	0
	0
	0
$x1^i x2^i \dots xn^i$	1
	0
	0

Все 0,кроме 1 в строке номер і.

Дизъюнкция всех конъюнктов дает ТИ,совпадающую с исходной.

Минимальная ДНФ.

Замечание: Может быть много эквивалентных ДНФ.

Пример: ¬х у х \lor х ¬у ¬z \lor х у ¬z \lor х ¬у z \lor х у х = х ¬у \lor х ¬z \lor ¬х у z \lor х

Можно ли найти самую короткую? (считаем литералы и дизъюнкции, 19 против 11)

Поиск самой короткой - вычислительно сложная задача. Если бы мы умели её решать эффективно, мы бы могли эффективно решить задачу проверки на возможность нуля: x у z \lor x \neg y z \lor ... - иногда 0, иногда 1.

 $x \, \vee \, \neg x$

у $\vee \neg$ у соответствуют 1.

Другой ответ: соответствует 0 или 1.

Поэтому поиск min ДНФ - перебор. Как его оптимизировать?

В примере можно сделать короче:

х \lor х \neg у \lor х \neg z \lor \neg х у z = x(1 \lor у \lor z) \lor \neg х у z = x \lor \neg х \lor у z - 5 литералов.

Можно ли короче?

Вспомним

$$a \lor b c = (a \lor b)(a \lor c)$$

$$x \vee \neg x y z = (x \vee \neg x)(x \vee y z) = x \vee y z.$$

Получили 4 символа: $x \lor y z$.

Замечание: Идеи упрощений ДНФ

1)
$$\neg x$$
 (...) $\vee x$ (x...) = (...)

Если 2 кон. отличаются только одной переменной.

2)
$$x y (...) \lor x \neg y (...) \lor \neg x y (...) \lor \neg x \neg y (...) = (...)$$

Два схлопывания

3) Повторение Конъюнктов:

$$\neg x$$
 ня \lor x y z \lor x $\neg y$ z

лучше:

¬х у z \lor х у z \lor х у z \lor х у z \lor х ¬у z = у z \lor х z - Это min ДНФ.

Метод поиска тіп ДНФ.

У нас: метод кубика.

Каждая вершина - конъюнкт.

Оси х у z. Каждая Вершина - координата из 0 и 1.

1 - нет отрицания в литерале

0 - есть отрацание.

Как выглядит схлопывание?

$$\neg x y z \lor x y z = y z$$

Ребро - конъюнкт из двух переменных.

у z - это ребра
$$y = 1, z = 1$$

$$\neg x$$
 $\neg z$ - это ребро $x=0,\,z=0.$

Грань - это конъюнкт из 1 литерала.

Грань z - это грань z=1.

Пример:

1) $\neg x y z \lor x y z \lor x y \neg z \lor x \neg y z \lor x \neg y \neg z$.

2)
$$x \neg y \lor x \neg z \lor \neg x y z \lor x$$
.

3) x $\vee \neg$ x y z.

4) x \vee y z.

