Figure 1

Figure 2

Figure 3

Figure 4

Fermentation Process of Original Strain

Fermentation Process of Transformant

Figure 5

	MetSerIlePheSerLysTyrGluGlyLeu	AlaSerAlaLeuSerAlaValThrAlaAsp	20
	GlyGlyArgAsnProPheAsnValValIle	GluLysProIleSerSerThrValGlyLeu	. 40
	IleGluGlyArgGluThrLeuLeuPheGly	ThrAsnAsnTyrLeuGlyLeuSerGlnSer	60
	ProAlaAlaIleGluAlaAlaValGluAla	AlaArgAlaTyrGlyValGlyThrThrGly	80
	${\tt SerArgIleAlaAsnGlyThrGlnGlyLeu}$	HisArgGlnLeuGluGluArgLeuCysThr	100
	Phe Phe Arg Arg Arg His Cys Met Val Phe	SerThrGlyTyrGlnAlaAsnLeuGlyThr	120
	Ile Ser Ala Leu Ala Gly Lys Asp Asp Tyr	LeuLeuLeuAspAlaAspSerHisAlaSer	140
	Ile Tyr Asp Gly Ser Arg Leu Gly His Ala	GlnValIleArgPheArgHisAsnAspAla	160
	AspAspLeuHisLysArgLeuArgArgLeu	AspGlyThrProGlyAlaLysLeuValVal	180
	ValGluGlyIleTyrSerMetMetGlyAsp	ValValProMetAlaGluPheAlaAlaVal	200
	Lys Arg Glu Thr Gly Ala Trp Leu Leu Ala	${\tt AspGluAlaHisSerValGlyValMetGly}$	220
	${\tt GluHisGlyArgGlyValAlaGluSerAsp}$	GlyValGluAspAspValAspPheValVal	240
	${\tt GlyThrPheSerLysSerLeuGlyThrVal}$	GlyGlyTyrCysValSerAsnHisAlaGly	260
	LeuAspLeuIleArgLeuCysSerArgPro	${\tt TyrMetPheThrAlaSerLeuProProGlu}$	280
	VallleAlaAlaThrMetAlaAlaLeuThr	${\tt GluLeuGluAsnArgProGluLeuArgVal}$	300
•	ArgLeuMetAspAsnAlaArgArgLeuHis	AspGlyLeuGlnAlaAlaGlyLeuArgThr	320
	GlyProGlnAlaSerProValValSerVal	IleLeuAspAspValAlaValAlaValAla	340
	PheTrpAsnArgLeuLeuAspLeuGlyVal	TyrValAsnLeuSerLeuProProAlaThr	360
	ProAspGlnHisProLeuLeuArgThrSer	$Val {\tt MetAlaThrHisThrProGluGlnIle}$	380
	AspArgAlaValGluIlePheAlaValVal	AlaGlyGluMetGlyIleAsnArgAlaAla	400

Figure 6

MetThrSerLeuPheSerLysPheGluGly Th	hrAlaGlyAlaLeuGlySerValValAla	20
ValGlyGlyArgAsnProPheAlaValVal II	leGluLysProValSerSerThrValGly	40
IleIleGluGlyArgGluThrLeuLeuPhe Gl	lyThrAsnAsnTyrLeuGlyLeuSerGln	60
SerLysAsnAlaIleGlnAlaAlaGlnGln Al	laAlaAlaAlaCysGlyValGlyThrThr	80
GlySerArgIleAlaAsnGlyThrGlnSer Le	euHisArgGlnLeuGluLysAspIleAla	100
AlaPhePheGlyArgArgAspAlaMetVal Ph	heSerThrGlyTyrGlnAlaAsnLeuGly	120
IleIleSerThrLeuAlaGlyLysAspAsp Hi	isLeuPheLeuAspAlaAspSerHisAla	140
SerIleTyrAspGlySerArgLeuSerAla Al	laGluValIleArgPheArgHisAsnAsp	160
ProAspAsnLeuTyrLysArgLeuLysArg Me	etAspGlyThrProGlyAlaLysLeuIle	180
ValValGluGlyIleTyrSerMetThrGly As	snValAlaProIleAlaGluPheValAla	200
ValLysLysGluThrGlyAlaTyrLeuLeu Va	alAspGluAlaHisSerPheGlyValLeu	220
GlyGlnAsnGlyArgGlyAlaAlaGluAla As	spGlyValGluAlaAspValAspPheVal	240
ValGlyThrPheSerLysSerLeuGlyThr Va	alGlyGlyTyrCysValSerAspHisPro	260
GluLeuGluPheValArgLeuAsnCysArg Pr	roTyrMetPheThrAlaSerLeuProPro	Ż80
GluVallleAlaAlaThrThrAlaAlaLeu Ly	ysAspMetGlnAlaHisProGluLeuArg	300
LysGlnLeuMetAlaAsnAlaGlnGlnLeu Hi	isAlaGlyPheValAspIleGlyLeuAsn	320
AlaSerLysHisAlaThrProVallleAla Va	alThrLeuGluThrAlaGluGluAlaIle	340
ProMetTrpAsnArgLeuLeuGluLeuGly Va	alTyrValAsnLeuSerLeuProProAla	360
ThrProAspSerArgProLeuLeuArgCys Se	erValMetAlaThrHisThrProGluGln	380
IleAlaGlnAlaIleAlaIlePheArgGln Al	laAlaAlaGluValGlyValThrIleThr	400
ProSerAlaAla		

Figure 7

5'-CTGGCTGCCTGTATCGTCTCTCAAGCAG-3'

Figure 8

5 '-ACGGCTGCAGCTGGTCTTGCCGTATCT-3'

Figure 9

5'-GGCAAACCTCGGCATTATTCCACGCTGGC-3'

Figure 10

5.'-GCGAATCTGGTGTAGCCGGAGGAAGGCTG-3'

Figure 11

5'-GCCAGCGTGGAAATAATGCCGAGGTTTGCC-3'

Figure 12

5 '-CAGCCTTCCTCCGGCTACACCAGATTCGC-3'