Table 1
 Microeconomic Model Calibration

Calibrated Parameters			
Description	Parameter	Value	Source
Permanent Income Growth Factor	G	1.03	PSID: Carroll (1992)
Interest Factor	R	1.04	Conventional
Time Preference Factor	β	0.96	Conventional
Coefficient of Relative Risk Aversion	γ	2	Conventional
Probability of Zero Income	q	0.005	PSID: Carroll (1992)
Std Dev of Log Permanent Shock	σ_{ψ}	0.1	PSID: Carroll (1992)
Std Dev of Log Transitory Shock	$\sigma_{ heta}$	0.1	PSID: Carroll (1992)

 Table 2
 Model Characteristics Calculated from Parameters

				Approximate
				Calculated
Description	Symbol and Formula		Value	
Finite Human Wealth Factor	\tilde{R}^{-1}	=	G/R	0.990
PF Value of Autarky Factor	コ	=	$\beta G^{1-\gamma}$	0.932
Growth Compensated Permanent Shock	$\underline{\Psi}$	=	$(\mathbb{E}[\mathbf{\Psi}^{-1}])^{-1}$	0.990
Uncertainty-Adjusted Growth	\underline{G}	=	$G\underline{\Psi}$	1.020
Utility Compensated Permanent Shock	$\underline{\underline{\Psi}}$	=	$(\mathbb{E}[\psi^{1-\gamma}])^{1/(1-\gamma)}$	0.990
Utility Compensated Growth	\underline{G}	=	$G\underline{\underline{\Psi}}$	1.020
Absolute Patience Factor	Þ	=	$(R\beta)^{1/\gamma}$	0.999
Return Patience Factor	$\frac{\mathbf{b}}{R}$	=	\mathbf{P}/R	0.961
Growth Patience Factor	$\frac{\mathbf{b}}{G}$	\equiv	\mathbf{P}/G	0.970
Modified Growth Patience Factor	$\frac{\mathbf{b}}{G} \mathbb{E}[\psi^{-1}]$	\equiv	\mathbf{P}/\underline{G}	0.980
Value of Autarky Factor	⊒	\equiv	$eta G^{1-\gamma} \underline{\underline{\Psi}}^{1-\gamma}$	0.941
Weak Return Impatience Factor	$q^{1/\gamma}\mathbf{ar{p}}$	=	$(q\beta R)^{1/\gamma}$	0.071

 ${\bf Table~3}~~{\bf Definitions~and~Comparisons~of~Conditions}$

Uncertainty Versions Condition (FHWC) $G/R < 1$ The model's risks are mean-preserving			
G/R < 1 The model's risks are mean-preserving			
The model's risks are mean-preserving			
1 41 DDW CC 4			
spreads, so the PDV of future income is			
unchanged by their introduction.			
Condition (AIC)			
p < 1			
If wealth is large enough, the expectation			
of consumption next period will be			
smaller than this period's consumption:			
smaner than this period's consumption.			
$\lim_{m_t o \infty} \mathbb{E}_t[oldsymbol{c}_{t+1}] < oldsymbol{c}_t$			
$m_t{ ightarrow}\infty$			
e Conditions			
Weak RIC (WRIC)			
Weak RIC (WRIC) $q^{1/\gamma}\mathbf{p}/R < 1$			
If the probability of the zero-income			
event is $q = 1$ then income is always zero			
and the condition becomes identical to			
the RIC. Otherwise, weaker.			
$c'(m) < 1 - q^{1/\gamma} \mathbf{P}/R < 1$			
e Conditions			
GIC-Mod			
$\mathbf{P} \mathbb{E}[\psi^{-1}]/G < 1$			
1/ 1/			
By Jensen's inequality stronger than GIC.			
Ensures consumers will not expect to			
accumulate m unboundedly.			
ъ			
$\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \frac{\mathbf{b}}{G} \mathbb{E}[\psi^{-1}]$			
$m_t \rightarrow \infty$			
Finite Value of Autarky Conditions			
FVAC			
$\beta G^{1-\gamma} \mathbb{E}[\psi^{1-\gamma}] < 1$			
, [,]			
By Jensen's inequality, stronger than the			
PF-FVAC because for $\gamma > 1$ and			
nondegenerate ψ , $\mathbb{E}[\psi^{1-\gamma}] > 1$.			
nondegenerale 7/1 Mil9/1* /1 > 1			

Table 4 Sufficient Conditions for Nondegenerate[‡] Solution

Consumption Model(s)	Conditions	Comments
$\bar{\mathbf{c}}(m)$: PF Unconstrained	RIC, FHWC°	$RIC \Rightarrow v(m) < \infty; FHWC \Rightarrow 0 < v(m) $
$\underline{c}(m) = \underline{\kappa}m$		PF model with no human wealth $(h = 0)$
Section 2.3.1:		RIC prevents $\bar{\mathbf{c}}(m) = \underline{\mathbf{c}}(m) = 0$
Section 2.3.1:		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
Eq (47):		$PF-FVAC+FHWC \Rightarrow RIC$
Eq (46):		$GIC+FHWC \Rightarrow PF-FVAC$
$\grave{\mathrm{c}}(m)$: PF Constrained	GIC, RIC	FHWC holds $(G < \mathbf{P} < R \Rightarrow G < R)$
Section 5.1.1:		$\grave{\mathbf{c}}(m) = \bar{\mathbf{c}}(m) \text{ for } m > m_{\#} < 1$
		(RHC would yield $m_{\#} = 0$ so $\grave{c}(m) = 0$)
Appendix C:	GIC,RIC	$\lim_{m\to\infty} \dot{c}(m) = \bar{c}(m), \lim_{m\to\infty} \dot{\kappa}(m) = \underline{\kappa}$
		kinks where horizon to $b = 0$ changes*
Appendix C:	GIC,RIC	$\lim_{k \to \infty} k(m) = 0$
		$\lim_{m\to\infty}$ kinks where horizon to $b=0$ changes*
c(m): Friedman/Muth	Section 2.4.1 & 2.4.2,	$\underline{\mathbf{c}}(m) < \mathbf{c}(m) < \bar{\mathbf{c}}(m)$
	Section ??	$\underline{\mathbf{v}}(m) < \mathbf{v}(m) < \overline{\mathbf{v}}(m)$
Section ??:	FVAC, WRIC	Sufficient for Contraction
Section ??:		WRIC is weaker than RIC
Figure 7:		FVAC is stronger than PF-FVAC
Section ??: Case 3		EHWC+RIC \Rightarrow GIC, $\lim_{m \to \infty} \kappa(m) = \underline{\kappa}$
Section ??: Case 1		RHC \Rightarrow EHWC, $\lim_{m \to \infty} \kappa(m) = 0$
Section 3.1:		"Buffer Stock Saving" Conditions
Theorem 6:		GIC $\Rightarrow \exists \ \check{m} \text{ s.t. } 0 < \check{m} < \infty$
Theorem 7:		GIC-Mod $\Rightarrow \exists \hat{m} \text{ s.t. } 0 < \hat{m} < \infty$

[‡]For feasible m satisfying $0 < m < \infty$, a nondegenerate limiting consumption function defines a unique optimal value of c satisfying $0 < c(m) < \infty$; a nondegenerate limiting value function defines a corresponding unique value of $-\infty < \mathrm{v}(m) < 0$.

[°]RIC, FHWC are necessary as well as sufficient for the perfect foresight case. *That is, the first kink point in c(m) is $m_{\#}$ s.t. for $m < m_{\#}$ the constraint will bind now, while for $m > m_{\#}$ the constraint will bind one period in the future. The second kink point corresponds to the m where the constraint will bind two periods in the future, etc.

^{**}In the Friedman/Muth model, the RIC+FHWC are sufficient, but not necessary for nondegeneracy

Table 5 Appendix: Perfect Foresight Liquidity Constrained Taxonomy For constrained \hat{c} and unconstrained \bar{c} consumption functions

Main Condition				
Subcondition		Math		Outcome, Comments or Results
SIC		1 <	\mathbf{P}/G	Constraint never binds for $m \geq 1$
and RIC	\mathbf{P}/R	< 1		FHWC holds $(R > G)$;
				$\grave{\mathbf{c}}(m) = \bar{\mathbf{c}}(m) \text{ for } m \ge 1$
and RHC		1 <	\mathbf{P}/R	$\grave{c}(m)$ is degenerate: $\grave{c}(m) = 0$
GIC	\mathbf{P}/G	< 1		Constraint binds in finite time $\forall m$
and RIC	\mathbf{P}/R	< 1		FHWC may or may not hold
				$\lim_{m\uparrow\infty} \bar{\mathbf{c}}(m) - \dot{\mathbf{c}}(m) = 0$
				$\lim_{m\uparrow\infty} \dot{\kappa}(m) = \underline{\kappa}$
and RHC		1 <	\mathbf{b}/R	EHWC
				$\lim_{m\uparrow\infty} \dot{\kappa}(m) = 0$

Conditions are applied from left to right; for example, the second row indicates conclusions in the case where GIC and RIC both hold, while the third row indicates that when the GIC and the RIC both fail, the consumption function is degenerate; the next row indicates that whenever the GICholds, the constraint will bind in finite time.