Random Monomial Ideals

Jay Yang

University of Minnesota

October 26, 2020

Random Graphs

Question

What does an average graph look like?

Random Graphs

Question

What does an random graph look like?

Random Graphs

Question

What does an random graph look like?

Models:

- Erdős-Rényi random graph: G(n,p) with parameters $n\in\mathbb{N}$ and $p\in[0,1]$
- Random Regular Graphs
- Random scale-free graphs: Barabási–Albert random graphs and others

Theorem (Erdős, Rényi 1959)

Given $\epsilon > 0$, $n \in \mathbb{N}$ and p a function of n,

$$\mathbb{P}[G(n,p) \text{ is connected}] \to \begin{cases} 1 & \text{if } p > \frac{(1+\epsilon)\log n}{n} \\ 0 & \text{if } p < \frac{(1-\epsilon)\log n}{n} \end{cases}$$

Random Monomial Ideals

Goal: Construct and study useful models of random monomial ideals to better understand the behavior of ideals.

Recent Results:

- Erdős–Rényi-type random monomial ideals (De Loera, Petrović, Silverstein, Stasi, Wilburne 2019).
- Random monomial ideals from random flag complexes (Erman, Y. 2018).
- Free resolutions of ER-type random monomial ideals (De Loera, Hoşten, Krone, Silverstein 2018).
- Regularity of random edge ideals (Banerjee, Yogeshwaran 2020).
- Torsion in syzygies of random monomial ideals (Booms, Erman, Y. 2020).
- Degrees of random monomial ideals (Silverstein, Wilburn, Y. 2020).

Basic Probability

- $\mathbb{P}[A]$: The probability of an event A.
- Asymptotically almost surely: Given a family of events $\{A_n\}_{n\in\mathbb{N}}$, then they occur asymptotically almost surely if $\mathbb{P}[A_n]\to 1$ as $n\to\infty$.
- Convergence in probability: Given a family of random variables $\{X_n\}_{n\in\mathbb{N}}$, and a random variable $Y, X_n \to Y$ in probability if $\mathbb{P}[|X_n Y| \le \epsilon] \to 0$ as $n \to \infty$ for all $\epsilon > 0$.

ER-type Random Monomial Ideals

Definition (De Loera, Petrović, Silverstein, Stasi, Wilburne 2019)

Let $\mathcal{I}(n, D, p)$ be the model of a random monomial ideal in $k[x_1, \dots, x_n]$ given by choosing (possibly redundant) generators from the monomials of degree at most D each with probability p.

Question

What is the behavior of a random ideal in the model $\mathcal{I}(n,D,p)$ as $D\to\infty$?

Theorem (Silverstein-Wilburne-Y. 2020)

Let
$$\mathcal{I} \sim \mathcal{I}(n, D, p)$$
 with $D \to \infty$ and $p = D^{-k}$ for fixed $k \in (0, n)$. Then,

$$\mathbb{P}\left[D^{k-\epsilon} < \prod_{i=1}^n (\alpha_i + 1) < D^{k+\epsilon} \text{ for all } x^\alpha \in G(\mathcal{I})\right] \to 1,$$

and

$$\mathbb{P}\left[x^{\alpha} \in \mathcal{I} \text{ for all } x^{\alpha} \text{ s.t. } D^{k+\epsilon} < \prod_{i=1}^{n} (\alpha_i + 1) \text{ and } |\alpha| \leq D\right] \to 1.$$

Degrees of Random Monomial Ideals

Theorem (Silverstein-Wilburne-Y. 2020)

Let $\mathcal{I} \sim \mathcal{I}(n, D, p)$, and suppose $p = D^{-k}$ for $k \in (0, n)$, not an integer. Let $s = \lfloor k \rfloor$. Then there exist constants $C_1, C_2 > 0$ such that asymptotically almost surely as $D \to \infty$,

$$C_1 D^{k-s-\epsilon} (\log D)^{n-1} < \deg(\mathcal{I}) < C_2 D^{k-s+\epsilon} (\log D)^{n-1}.$$

A flag complexes is a simplicial complex maximal among simplicial complexes with a fixed 1-skeleton.

Definition

Let $\Delta(n, p)$ is the model of a random flag complex given by taking the flag complex associated to a Erdős–Rényi random graph G(n, p).

A flag complexes is a simplicial complex maximal among simplicial complexes with a fixed 1-skeleton.

Definition

Let $\Delta(n,p)$ is the model of a random flag complex given by taking the flag complex associated to a Erdős–Rényi random graph G(n,p).

Example

6 4 3 5

A flag complexes is a simplicial complex maximal among simplicial complexes with a fixed 1-skeleton.

Definition

Let $\Delta(n,p)$ is the model of a random flag complex given by taking the flag complex associated to a Erdős–Rényi random graph G(n,p).

A flag complexes is a simplicial complex maximal among simplicial complexes with a fixed 1-skeleton.

Definition

Let $\Delta(n,p)$ is the model of a random flag complex given by taking the flag complex associated to a Erdős–Rényi random graph G(n,p).

Stanley-Reisner Ideals

Definition

Given a polynomial ring $S=k[x_1,\ldots,x_n]$, and a simplicial complex Δ on the variables. The Stanley–Reisner ideal associated to Δ , denoted I_{Δ} is the squarefree monomial ideal generated by monomials corresponding to the minimal non-faces of Δ

$$I_{\Delta} = \langle x_0 x_1, x_0 x_3, x_1 x_2 x_3 \rangle$$

Definition

A <u>random Stanley–Reisner ideal</u> is the distribution given by taking the Stanley–Reisner ideal associated with a random flag complex.

Definition

A <u>random Stanley–Reisner ideal</u> is the distribution given by taking the Stanley–Reisner ideal associated with a random flag complex.

Definition

A <u>random Stanley–Reisner ideal</u> is the distribution given by taking the Stanley–Reisner ideal associated with a random flag complex.

$$I_{\Delta} = (x_1x_3, x_1x_5, x_1x_6, x_2x_4, x_2x_5, x_2x_6, x_4x_5, x_4x_6)$$

Definition

A <u>random Stanley–Reisner ideal</u> is the distribution given by taking the Stanley–Reisner ideal associated with a random flag complex.

Question

What is the behavior of the Stanley–Reisner ideal associated to $\Delta(n,p)$ as $n \to \infty$.

Syzygies

Definition

Let k be a field and M a module over a ring $S = k[x_1, \dots, x_n]$, then the Betti numbers are

$$\beta_{i,j}(M) = \dim Tor_i(M,k)_j$$

The Betti table is the following arrangement of the Betti numbers:

$$\beta_{0,0}$$
 $\beta_{1,1}$ $\beta_{2,2}$... $\beta_{0,1}$ $\beta_{1,2}$ $\beta_{2,3}$... \vdots \vdots

Asymptotic Syzygies

Question

Given a family of modules $\{M_n\}_{n\in\mathbb{N}}$ with increasing projective dimension, what can be said about the behavior of the Betti numbers $\beta_{i,j}(M_n)$ as $n\to\infty$?

Theorem (Ein, Lazarsfeld 2012)

Let X be a smooth, d-dimensional projective variety and let A be a very ample divisor on X. For any $n \ge 1$, let S_n be the homogeneous coordinate ring of X embedded by nA. For each $1 \le k \le d$, $\rho_k(S_n) \to 1$ as $n \to \infty$.

Where $\rho_k(M)$ is the "density" for the k-th row of the Betti table as given by the formula

$$\rho_k(M) := \frac{\#\{i \in [0, \mathsf{pdim}(M)] \text{ where } \beta_{i,i+k}(M) \neq 0\}}{\mathsf{pdim}(M) + 1}$$

Asymptotic Syzygies of Random Monomial Ideals

Question

Let $S = k[x_1, \dots, x_n]$, and $\Delta \sim \Delta(n, p)$ a random flag complex, what can be said about $\beta_{i,j}(S/I_{\Delta})$ as $n \to \infty$?

Theorem (Erman, Y. 2018)

Fix some
$$r \ge 1$$
. Let $\Delta \sim \Delta(n,p)$ with $\frac{1}{n^{1/r}} \ll p \ll 1$. For each $1 \le k \le r+1$, we have $\rho_k(S/I_{\Delta}) \to 1$

in probability.

Asymptotic Syzygies of Random Monomial Ideals

Theorem (Erman-Y., 2018)

Fix i,j with $1 \le i$ and $i+1 \le j \le 2i$ and let r := j-i-1. Fix some constant $0 < \epsilon \le \frac{1}{2}$ and let $\Delta \sim \Delta(n,p)$.

- 1. If $\frac{1}{n^{1/r}} \ll p \leq \epsilon$ then $\mathbb{P}[\beta_{i,\nu}(S/I_{\Delta}) \neq 0] \to 1$.
- 2. If $p \ll \frac{1}{n^{1/r}}$ then $\mathbb{P}[\beta_{i,\nu}(S/I_{\Delta}) = 0] \to 1$.

A Heuristic and Normal Distribution of the Quadratic Strand

Heuristic

The asymptotic behavior of the Betti table for embeddings of smooth projective varieties resemble that of a random Stanley–Reisner ideal.

A Heuristic and Normal Distribution of the Quadratic Strand

Heuristic

The asymptotic behavior of the Betti table for embeddings of smooth projective varieties resemble that of a random Stanley–Reisner ideal.

Theorem

Fix a constant 0 < c < 1 and let $\Delta \sim \Delta(n, \frac{c}{n})$ be a random flag complex. If $\{i_n\}$ is an integer sequence satisfying $i_n = n/2 + o(n)$, and if $C := \frac{1-c}{2}$,

$$\frac{\beta_{i_n,i_n+1}(S/I_{\Delta})}{nC\binom{n}{i_n}} \longrightarrow 1$$

in probability.

This is a random analog to a normal distribution result by Ein, Erman, and Lazarsfeld in 2015.

Torsion in Syzygies

Question

Given a module M over $T = \mathbb{Z}[x_1, \ldots, x_n]$, and let $S = k[x_1, \ldots, x_n]$, does $\beta_{i,j}(M \otimes S)$ depend on the characteristic of k? In that case we say $\beta(M)$ has torsion.

For the Veronese module of \mathbb{P}^r embedded by degree d, this is occurs for $r \geq 6$ and d = 2 (Andersen 1992, Reiner–Roberts 2000, Jonnson 2010) but not for \mathbb{P}^1 and any d.

Torsion in Random Syzygies

Question

Let Δ be a random flag complex chosen from $\Delta(n,p)$. For a field k, when does $\beta(k[x_1,\ldots,x_n]/I_{\Delta})$ depend on the characteristic of k?

Theorem (Booms, Erman, Y. 2020)

Fix $\ell \geq 2$, and let $\Delta \sim \Delta(n,p)$ be a random flag complex with $n^{-1/6} \ll p \leq 1 - \epsilon$ for some $\epsilon > 0$. Asymptotically almost surely as $n \to \infty$, the Betti table of the Stanley–Reisner ideal of Δ has ℓ -torsion.

Hochster's Formula

Theorem (Hochster's Formula)

For Δ a simplicial complex and I_{Δ} the associated Stanley–Reisner Ideal

$$\beta_{i,j}(S/I_{\Delta}) = \sum_{|\alpha|=i} \dim \widetilde{H}_{i-j-1}(\Delta|_{\alpha})$$

Example of Hochster's Formula

$$I_{\Delta} = (x_1x_3, x_1x_5, x_1x_6, x_2x_4, x_2x_5, x_2x_6, x_4x_5, x_4x_6)$$

Outline of Proof

Induced subgraphs control the Betti table thus we wish to:

- 1. Find a "small" graph with the desired homology.
- 2. Show that that subgraph occurs in a random graph.

Outline of Proof

Induced subgraphs control the Betti table thus we wish to:

- 1. Find a "small" graph with the desired homology.
- 2. Show that that subgraph occurs in a random graph.

Definition

The **essential density** of a graph G is

$$m(G) := \max \left\{ \frac{|E(H)|}{|V(H)|} : H \subset G, |V(H)| > 0 \right\},$$

and G is **strictly balanced** if m(H) < m(G) for all proper subgraphs $H \subset G$.

Thresholds for Subgraphs

Proposition

Let G' be a fixed graph, and let G(n,p) be a random graph. Suppose $p=p(n)\leq 1-\epsilon$ for some $\epsilon>0$. Then as $n\to\infty$, we have

$$\mathbb{P}\left[G' \overset{ind}{\subset} G(n,p)\right] \to \begin{cases} 0 & \text{if } p \ll n^{-1/m(G')} \\ 1 & \text{if } p \gg n^{-1/m(G')} \end{cases}.$$

Remark

This proposition and its proof are based on a very similar theorem proven by Bollobás in 1981 for subgraphs.

Finding 2-torsion

Recall
$$H_1(\mathbb{RP}^2) = \mathbb{Z}/2\mathbb{Z}$$

The underlying graph G, is strictly balanced and m(G) = 30/11

Finding 2-torsion

Proposition

Let $\Delta \sim \Delta(n,p)$ be a random flag complex with $n^{-11/30} \ll p \leq 1-\epsilon$ for some $\epsilon > 0$. Asymptotically almost surely as $n \to \infty$, the Betti table of the Stanley–Reisner ideal of Δ has 2-torsion.

Finding *ℓ*-torsion

Goal: Construct a simplicial complex X_m such that $\mathbb{Z}/m\mathbb{Z} \subset H_1(X_m)$. This techniques is based on a technique in a paper by Andrew Newman in 2018 for constructing (non-flag) simplicial complexes with prescribed homology.

Let $m = 2^{n_1} + \cdots + 2^{n_k}$ then

$$\mathbb{Z}/m\mathbb{Z} = \langle \gamma_0, \gamma_1, \dots, \gamma_{n_k} \mid 2\gamma_i = \gamma_{i+1}, \gamma_{n_1} + \dots + \gamma_{n_k} = 0 \rangle.$$

- 1. Construct a sphere with n_k punctures.
- 2. Glue the punctures in order.
- 3. Give a flag triangulation.

Creating a Sphere (with Holes)

Making Holes

Telescopes

Degrees of vertices

In the worst case, the largest degree vertices have degrees 12,14. If used as is, it would give the following theorem

Theorem (Booms, Erman, Y. 2020)

Fix $\ell \geq 2$, and let $\Delta \sim \Delta(n,p)$ be a random flag complex with $n^{-1/7} \ll p \leq 1 - \epsilon$ for some $\epsilon > 0$. Asymptotically almost surely as $n \to \infty$, the Betti table of the Stanley–Reisner ideal of Δ has ℓ -torsion.

Removing Degree 14 Vertices

Main Result

Theorem (Booms, Erman, Y. 2020)

Fix $\ell \geq 2$, and let $\Delta \sim \Delta(n,p)$ be a random flag complex with $n^{-1/6} \ll p \leq 1 - \epsilon$ for some $\epsilon > 0$. Asymptotically almost surely as $n \to \infty$, the Betti table of the Stanley–Reisner ideal of Δ has ℓ -torsion.

Main Result

Theorem (Booms, Erman, Y. 2020)

Fix $\ell \geq 2$, and let $\Delta \sim \Delta(n,p)$ be a random flag complex with $n^{-1/6} \ll p \leq 1 - \epsilon$ for some $\epsilon > 0$. Asymptotically almost surely as $n \to \infty$, the Betti table of the Stanley–Reisner ideal of Δ has ℓ -torsion.

Heuristic (Booms, Erman, Y. 2020)

For a reasonable class of families of modules $\{M_n\}_{n\in\mathbb{N}}$, As $n\to\infty$, the number of primes ℓ such that $\beta(M_n)$ has ℓ -torsion is unbounded.

Thank You

Thank You

- Janet Lynn Andersen, Determinantal rings associated with symmetric matrices: A counterexample, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)—University of Minnesota.
- [2] Arindam Banerjee and D Yogeshwaran, Edge ideals of Erdös-Rényi random graphs: Linear resolution, unmixedness and regularity, ArXiv (2020), available at arXiv:2007.08869.
- [3] Béla Bollobás, Threshold functions for small subgraphs, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 197–206.
- [4] Caitlyn Booms, Daniel Erman, and Jay Yang, Heuristics for ℓ-torsion in Veronese Syzygies, ArXiv (2020), available at arXiv:2007.13914.
- [5] Jesús A. De Loera, Sonja Petrović, Lily Silverstein, Despina Stasi, and Dane Wilburne, *Random Monomial Ideals*. arXiv:1701.07130.
- [6] Lawrence Ein and Robert Lazarsfeld, Asymptotic syzygies of algebraic varieties, Invent. Math. 190 (2012), no. 3, 603–646.
- [7] Daniel Erman and Jay Yang, Random Flag Complexes and Asymptotic Syzygies, Algebra Number Theory 12 (2018), no. 9, 2151–2166.
- [8] P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297.
- [9] Jakob Jonsson, More torsion in the homology of the matching complex, Experiment. Math. 19 (2010), no. 3, 363–383, DOI 10.1080/10586458.2010.10390629.

- [10] Matthew Kahle, Sharp vanishing thresholds for cohomology of random flag complexes, Ann. of Math. (2) 179 (2014), no. 3, 1085–1107.
- [11] Andrew Newman, Small Simplicial Complexes with Prescribed Torsion in Homology, Discrete & Computational Geometry, posted on 2018, 1–28, DOI 10.1007/s00454-018-9987-y.
 [12] Viscos Discrete & Discrete & Complexes with Prescribed Torsion in Homology, Discrete & Computational Geometry, posted on 2018, 1–28, DOI 10.1007/s00454-018-9987-y.
- [12] Victor Reiner and Joel Roberts, Minimal resolutions and the homology of matching and chessboard complexes, J. Algebraic Combin. 11 (2000), no. 2, 135–154, DOI 10.1023/A:1008728115910. MR1761911
- [13] Lily Silverstein, Dane Wilburne, and Jay Yang, *Degrees of Random Monomial Ideals*, In Progress (2020).