Problem Set 7

D. Zack Garza

November 12, 2019

Contents

1	Problem 1	1
	1.1 Part a	1
	1.2 Part b	2
2	Problem 2	3
	2.1 Part a:	3
	2.2 Part b:	9

1 Problem 1

1.1 Part a

We want to show that $\ell^2(\mathbb{N})$ is complete, so let $\{x_n\} \subseteq \ell^2(\mathbb{N})$ be a Cauchy sequence, so $\|x^j - x^k\|_{\ell^2} \to 0$. We want to produce some $\mathbf{x} := \lim_{n \to \infty} x^n$ such that $x \in \ell^2$.

To this end, for each fixed index i, define

$$\mathbf{x}_i \coloneqq \lim_{n \to \infty} x_i^n.$$

This is well-defined since $\|x^j - x^k\|_{\ell^2} = \sum_i \left|x_i^j - x_i^k\right|^2 \to 0$, and since this is a sum of positive real numbers that approaches zero, each term must approach zero. But then for a fixed i, the sequence $\left|x_i^j - x_i^k\right|^2$ is a Cauchy sequence of real numbers which necessarily converges in \mathbb{R} .

We also have $\|\mathbf{x} - x^j\|_{\ell^2} \to 0$ since

$$\|\mathbf{x} - x^j\|_{\ell^2} = \|\lim_{k \to \infty} x^k - x^j\|_{\ell^2} = \lim_{k \to \infty} \|x^k - x^j\|_{\ell^2} \to 0$$

where the limit can be passed through the norm because the map $t \mapsto ||t||_{\ell^2}$ is continuous. So $x^j \to \mathbf{x}$ in ℓ^2 as well.

It remains to show that $\mathbf{x} \in \ell^2(\mathbb{N})$, i.e. that $\sum_i |\mathbf{x}_i|^2 < \infty$. To this end, we write

$$\|\mathbf{x}\|_{\ell^{2}} = \|\mathbf{x} - x^{j} + x^{j}\|_{\ell^{2}}$$

$$\leq \|\mathbf{x} - x^{j}\|_{\ell^{2}} + \|x^{j}\|_{\ell^{2}}$$

$$\to M < \infty,$$

where $\|\mathbf{x}_i - x^j\|_{\ell^2} \to 0$ and the second sum is finite because $x^j \in \ell^2 \iff \|x^j\|_{\ell^2} \coloneqq M < \infty$.

1.2 Part b

Let H be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$.

Lemma: For any complex number z, we have

$$\Im(z) = \Re(-iz),$$

and as a corollary, we have

$$\Re(\langle x, iy \rangle) = \Re(-i\langle x, y \rangle) = \Im(\langle x, y \rangle).$$

We can compute the following:

$$||x + y||^{2} = ||x||^{2} + ||y||^{2} + 2 \Re(\langle x, y \rangle)$$

$$||x - y||^{2} = ||x||^{2} + ||y||^{2} - 2 \Re(\langle x, y \rangle)$$

$$||x + iy||^{2} = ||x||^{2} + ||y||^{2} + 2 \Re(\langle x, iy \rangle)$$

$$= ||x||^{2} + ||y||^{2} + \Im(\langle x, y \rangle)$$

$$||x - iy||^{2} = ||x||^{2} + ||y||^{2} - 2 \Re(\langle x, iy \rangle)$$

$$= ||x||^{2} + ||y||^{2} + \Im(\langle x, y \rangle)$$

and summing these all

$$||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x + iy|| = 4 \Re(\langle x, y \rangle) + 4i \Im(\langle x, y \rangle)$$

$$= 4\langle x, y \rangle$$

To conclude that a linear map U is an isometry iff U is unitary, if we assume U is unitary then we can write

$$||x||^2 := \langle x, x \rangle = \langle Ux, Ux \rangle := ||Ux||^2.$$

Assuming now that U is an isometry, by the polarization identity we can write

$$\langle Ux, \ Uy \rangle = \frac{1}{4} \left(\|Ux + Uy\|^2 + \|Ux - Uy\|^2 + i\|Ux + Uy\|^2 - i\|Ux + Uy\|^2 \right)$$

$$= \frac{1}{4} \left(\|U(x+y)\|^2 + \|U(x-y)\|^2 + i\|U(x+y)\|^2 - i\|U(x+y)\|^2 \right)$$

$$= \frac{1}{4} \left(\|x + y\|^2 + \|x - y\|^2 + i\|x + y\|^2 - i\|x + y\|^2 \right)$$

$$= \langle x, \ y \rangle.$$

2 Problem 2

Lemma: The map $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$ is continuous.

Proof:

Let $x_n \to x$ and $y_n \to y$, then

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x, y_n \rangle + \langle x, y_n \rangle - \langle x, y \rangle| \\ &= |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle| \\ &\leq ||x_n - x|| ||y_n|| + ||x|| ||y_n - y|| \\ &\to 0 \cdot M + C \cdot 0 < \infty, \end{aligned}$$

where $||y_n|| \to M$ since $y_n \to y$ implies that $||y_n||$ is bounded.

2.1 Part a:

Using the lemma, letting $\{e_n\}$ be a sequence in E^{\perp} , so $y \in E \implies \langle e_n, y \rangle = 0$. Since H is complete, $e_n \to e \in H$; we can show that $e \in E^{\perp}$ by letting $y \in E$ be arbitrary and computing

$$\langle e, y \rangle = \left\langle \lim_{n} e_n, y \right\rangle = \lim_{n} \left\langle e_n, y \right\rangle = \lim_{n} 0 = 0,$$

so $e \in E^{\perp}$.

2.2 Part b: