Criptografia

CRIPTOGRAFIA e SEGURANÇA DE REDES

 Nas redes locais ou Internet é muito fácil enganar uma pessoa com quem se comunica; resolver este problema é muito importante para efetuar uma comunicação confiável.

CRIPTOGRAFIA e SEGURANÇA DE REDES

CRIPTOGRAFIA e SEGURANÇA DE REDES

Objetivo

Garantir que uma mensagem ou informação só será lida e compreendida pelos destinatários autorizados

Princípios

- A criptografia é sobre a troca de mensagens
- A chave do sucesso é que todas as partes envolvidas numa troca confiem que o sistema irá protegê-los de ameaças e transmitir com precisão a sua mensagem
- CONFIANÇA é essencial
- Algoritmos devem ser públicos e verificáveis
- Temos de ser capazes de estimar o risco de compromisso
- A solução deve ser prático para os utilizadores e impraticável para um invasor quebrar

Princípios

- Criptografia é sempre baseada em algoritmos em que é muito mais fácil de calcular o frente (normal) do que no sentido inverso (ataque).
- O problema do invasor nunca é mais difícil do que tentar todas as chaves possíveis
- Quanto mais material, o atacante tem mais fácil a sua tarefa se torna

Algoritmos: Diffie – Hellman

Alice	<i>Concordam em</i> p,g	Bernardo
Escolhe um valor		Escolhe um valor
aleatório A	$T_A = g^A \mod p$	aleatório B
		_
	$T_B = g^B \mod p$	
Coloulo (T.)A		Coloulo /T \B
Calcula (T _B) ^A		Calcula (T _A) ^B

A chave secreta é: g^{AB} mod p

Algoritmos: Diffie – Hellman (problemas)

- Não é um método de encriptação
- Têm que se continuar a utilizar um método de encriptação
- Sujeito ao ataque "man in the middle"
 (Alice pensa que está a falar com o Bernardo mas realmente está a falar com a Teresa)

Algoritmos: RSA (Ronald Rivest, Adi Shamir e Leonard Adleman)

Chave #1 Pode ser uma chave pública ou privada. Chave #2 É a chave correspondente privada ou pública.

Algoritmos: RSA (Ronald Rivest, Adi Shamir e Leonard Adleman)

- Rivest, Shamir and Adelman (1978)
- Posso enviar mensagens que só você pode ler
- Posso verificar que você e só você enviou uma mensagem
- Posso usar uma autoridade confiável para distribuir minha chave pública
 - A autoridade confiável é para seu benefício!

Algoritmos: RSA (Ronald Rivest, Adi Shamir e Leonard Adleman)

- Utiliza a mesma operação para encriptar e desencriptar uma mensagem
- Para encriptar utilizamos a chave "a" e para desencriptar utilizamos a chave "b"
- a e b são inversas relativamente ao algoritmo escolhido

Vantagens e desvantagens da criptografia de chave pública

Vantagens:

- Aumento da conveniência e segurança;
- Fornece assinaturas digitais que não podem ser repudiadas;

• Desvantagens:

- Mais lento do que o método de chave secreta, mas pode ser usado em conjunto com a chave secreta para o tornar mais eficaz;
- Pode ser vulnerável à personificação se hackeado.

MDx (4,5,6) - Message digests

- Um "message digest" resumo de mensagem é um algoritmo não-reversível, que reduz uma mensagem a um "hash" resumo de comprimento-fixo;
- Uma alteração no original implica uma mudança no resumo;
- A probabilidade de um sumário novo ser igual ao antigo é de 1/(tamanho da mensagem)

Criptografia de chave privada

- A criptografia tradicional de chave privada/secreta/única utiliza uma chave só
- Partilhada pelo emissor e recetor
- Se a chave é divulgada as comunicações ficam comprometidas
- Simétrico, as duas partes são iguais
- Não protege o recetor do remetente forjar uma mensagem e reivindicar que é enviada pelo remetente

- Utiliza duas chaves (uma chave pública e uma chave privada)
- Assimétrico uma vez que as duas partes não são iguais
- Complementa em vez de substituir a criptografia de chaves privadas

- Desenvolvida para resolver dois problemas:
 - Distribuição de chaves como conseguir ter comunicações seguras sem ter que confiar em terceiros
 - Assinaturas digitais como verificar se uma mensagem chega intacta e de um remetente que afirma a ter enviada
- Descoberta devida a Diffie & Hellman da Universidade de Stanford em 1976

- A criptografia chave-pública (public-key) envolve a utilização de duas chaves:
 - Uma chave pública, que pode ser conhecida por todas as pessoas e pode ser utilizada para encriptar mensagens e verificar assinaturas
 - Uma chave privada conhecida apenas pelo recetor e é utilizada para desencriptar mensagens e criar assinaturas
- É assimétrica porque:
 - Aqueles que encriptam as mensagens ou assinaturas não podem desencriptar as mensagens nem criar assinaturas.

- Algoritmos de chave pública dependem de duas chaves onde:
 - é impraticável encontrar a chave de desencriptação sabendo apenas o algoritmo e a chave de encriptação
 - é computacionalmente fácil encriptar/desencriptar mensagens quando as chaves relevantes são conhecidas

Software

http://gpg4win.org/download.html

