ПРАКТИЧЕСКАЯ РАБОТА №5

ТЕМА: «Расчет винтового конвейера» (4 часа)

Цель работы: Изучение теоретических основ работы и методики расчета винтовых конвейеров.

5.1 Основные теоретические сведения

Винтовые конвейеры предназначены для транспортирования на небольшие расстояния пылевидных и зернистых насыпных грузов (цемент, известь, молотая глина, угольный штыб, гипс и т. п.), а также вязких и тестообразных грузов (бетон, мокрая глина и др.) в горизонтальном (реже в наклонном и вертикальном) направлении. Винтовые конвейеры в таких машинах, как растворо- и бетоносмесители непрерывного действия выполняют одновременно технологическую (перемешивание) и транспортную функции. Иногда их используют как питатели, например, в погрузочных и других машинах. По направлению транспортирования грузов винтовые конвейеры бывают горизонтальные и вертикальные.

<u>Преимущества</u> винтовых конвейеров: простота конструкции; несложное обслуживание; надежность в эксплуатации; герметичность — транспортирование грузов происходит в закрытом желобе, что обеспечивает защиту цехов от пылящих, газирующих и горячих материалов; небольшие габаритные размеры; разгрузка может осуществляться в любом месте конвейера.

Недостатки: дополнительное дробление хрупкого груза; повышенный расход энергии вследствие трения транспортируемого груза о желоб и лопасти винта; сравнительно небольшая производительность (до $200 \text{ м}^3/\text{ч}$); малая длина транспортирования на один привод 30--40 м (до 75 м).

Винтовой конвейер (рис. 5.1) состоит из неподвижного желоба 7 с полуцилиндрическим днищем, вала 8 с укрепленным на нем винтом 9 и привода 1. Вал установлен в концевых подшипниках 2, 6. Так как вал большой длины, то его выполняют составным, и в местах соединения он поддерживается промежуточными подшипниками 4, подвешенными к поперечным планкам желоба. В одной из концевых опор винта установлен упорный подшипник, воспринимающий продольные усилия в винте.

Желоб закрыт крышкой 3; в некоторых конструкциях предусмотрен песочный затвор. Насыпной груз подается через люк в крышке 5 и перемещается винтом по желобу к разгрузочным воронкам — промежуточной 10 или концевой 11, перекрытых шиберными затворами.

					МиТОМ.ПТУМЦ.П	D.,	№5.:	2021.C	Этчет
Изм.	Лист	№ докум.	Подпись	Дата	171111 0 1711111 0 1711 <u>1</u> 111p.0 120.2021.01 101				
Выполнил Усиков Б.В.			Практическая работа №5 Лит. Лист Листо				Листов		
Проє	ерил	Астапенко И.В.			1			1	9
					«Расчет винтового кон-	Γ	ГГТУ им. П.О. Сух		•
					вейера»			гр. МЛ	1-41

Желоб состоит из отдельных секций длиной 2 и 4 м, изготовленных из листовой стали толщиной 3...6 мм.

Рисунок 5.1 – Винтовой конвейер

По числу спиралей винты бывают одно-, двух- и трехзаходные с правым и левым направлением навивки. Производительность многозаходных винтов больше, чем однозаходных. Винты **подразделяют** (рис. 5.2) на: *сплошные* (рис. 5.2, a), ленточные (рис. 5.2, b), фасонные (рис. 5.2, b) и лопастные (рис. 5.2, c), и применяются они в зависимости от вида транспортируемого насыпного груза.

Степень заполнения желоба для различных грузов показана на рисунке 5.2, ∂ . Направление движения груза в конвейере (рис. 5.2, e, \mathcal{K}) зависит от направления вращения винта и направления витков винта.

Сплошным винтом транспортируют сыпучие грузы (цемент, мел, сухой песок, гранулированный шлак), а ленточным винтом — мелкокусковые грузы (гравий, шлак негранулированный). Производительность здесь на 20...30 % меньше, чем со сплошным винтом. Тестообразные и мокрые грузы транспортируют фасонным или лопастным винтом. Винт состоит из отдельных секций длиной 1,5... 3,0 м и устанавливается с одной стороны в упорный подшипник, а для реверсируемых конвейеров — с двух сторон. Стыки секций и винтов не должны совпадать. Диаметр конвейерного винта находится в пределах 100...800 мм. Привод редукторный и состоит из двигателя, редуктора, муфт.

Загрузка осуществляется через люк в крышке желоба. Разгрузка может производиться в различных точках по длине конвейера через шиберные затворы.

Редуктор привода соединен с валом винта уравнительной муфтой, а вал двигателя с редуктором — упругой муфтой. Желоб конвейера изготовлен из листовой стали толщиной 3...6 мм; для транспортирования абразивных и горячих (до $200~^{\circ}$ C) грузов применяют чугунные желоба.

Лист

					МиТОМ.ПТУМЦ.Пр.№5.2021.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	, 1

Рисунок 5.2 — Конструкция лопастных винтов: a) — сплошные; b0 — ленточные; b0 — фасонные; b0 — лопастные; b0 — степень заполнения желоба; b0 — направление движения груза

Для транспортирования некоторых сыпучих грузов (например, цемент) могут применять также вертикальные винтовые конвейеры (рис. 5.3) высотой до 15 м. Движение происходит за счет сил трения между грузом и кожухом, возникающих из-за центробежной силы. Для питания и подпора материала вертикального конвейера внизу устанавливают винтовой горизонтальный конвейер.

Производительность винтового конвейера определяется

$$Q = 3.6F \cdot \upsilon \cdot p \cdot k \tag{5.1}$$

где F — поперечное сечение потока материала, ${\rm M}^3, v$ — скорость движения материала, ${\rm M/c}; p$ — плотность материалов, ${\rm Kr/M}^3; k$ — коэффициент снижения производительности.

						Лист
					МиТОМ.ПТУМЦ.Пр.№5.2021.Отчет	2
Изм.	Лист	№ докум.	Подпись	Дата	, ·	3

Рисунок 5.3 – Горизонтально-вертикальный винтовой конвейер

Для винтовых конвейеров площадь поперечного сечения потока материала, \mathbf{m}^2 :

$$F = n \cdot D^2 \cdot k_3 / 4 \tag{5.2}$$

где D — диаметр винта, м (по ГОСТ 2037—75 D = 150; 200; 250; 300; 400; 500; 600 мм); k_3 — коэффициент заполнения желоба материалом (k_3 = 0,25...0,4; причем меньшие значения принимаются для более абразивных материалов); v = Sn/60 — скорость движения материала вдоль желоба, м/с; S — шаг винта, м (S = (0,8..1)D, м); n — частота вращения винта за 1 мин (n = 40... 120 мин⁻¹; большие значения принимаются для хорошо сыпучих материалов; при транспортировании материалов в крутонаклонном направлении, т. е. при a = 65...75°, n = 256...300 мин⁻¹).

Производительность наклонного винтового конвейера снижается с увеличением угла наклона. Коэффициент снижения производительности наклонного шнека k=1 при $a=0^\circ;\ k=0,9$ при $a=5^\circ;\ k=0,8$ при $a=10^\circ;\ k=0,7$ при $a=15^\circ;\ k=0,65$ при $a=20^\circ.$

Диаметр винта проверяется по крупности транспортируемого материала: $D \ge (4 \dots 6) d_{\text{макс}}$ для рядового материала; $D \ge (8 \dots 10) d_{\text{макс}}$ для сортированного материала.

					МиТОМ
Изм.	Лист	№ докум.	Подпись	Дата	

4.2 Пример рачета

Спроектировать винтовой горизонтальный конвейер со следующими параметрами:

- Производительность Q = 4 т/ч;
- Длина конвейера L = 15 м;

Транспортируемый материал – зола сухая.

Рисунок 5.4 – Схема винтового конвейера

1 — двигатель; 2 — муфта; 3 — редуктор; 4 — подшипник упорный головной; 5 — вал с винтом; 6 — опора промежуточная; 7 — загрузочный патрубок; 8 — задний подшипник; 9 — разгрузочное устройство

Решение

Производительность винтового конвейера рассчитывается по формуле:

$$Q = 60 \frac{\pi \cdot D^2}{4} t \cdot n \cdot \psi \cdot \rho \cdot C, \qquad (1)$$

где D — диаметр винта, м; t — шаг винта, м; n — частота вращения винта, об/мин; ρ — плотность транспортируемого материала, т/м³; С — поправочный коэффициент, зависящий от угла наклона конвейера β , при β = 0° принимаем C = 1; ψ — коэффициент наполнения поперечного сечения винта, для абразивных материалов ψ = 0,125 (табл. 5.1).

Таблица 5.1 – Расчетные коэффициенты

Грузы		Расчетные коэффициенты			
· · · · · · · · · · · · · · · · · · ·	ψ	A	N;		
Легкие и неабразивные (зерновые продукты, мука, древесные опил- ки)	0,4	65	1,2		
Легкие и малоабразивные (мел, угольная пыль, асбест, торф, сода)	0,32	50	1,6		
Тяжелые и малоабразивные (соль, кусковой уголь, глина сухая)	0,25	45	2,5		
Тяжелые и абразивные (цемент, зола, песок, глина сырая, дробленая руда, шлак)	0,125	30	4,0		

						Ли
					МиТОМ.ПТУМЦ.Пр.№5.2021.Отчет	_
Изм.	Лист	№ докум.	Подпись	Дата	, .	-

В нормальных условиях работы рекомендуется шаг винта t принимать равным диаметру винта D. Плотность золы выбираем таблицы $5.2 - \rho = 600 \text{ kг/m}^3$. Рекомендуемое число оборотов винта выбираем по ГОСТ $2037-65 \ n = 50 \text{ об/мин}$.

Таблица 45.2 – Плотность материалов (по номеру варианта задания)

В-нт	Материал	Плотность, кг/м ³		
1	Глина сухая	1070		
2	Глина сырая	1850		
3	Песок	1450		
4	Шлак	2960		
5	Мел	1120		
6	Цемент портланд	1510		
7	Зола сухая	570-760		
8	Опилки	280		
9	Асбест	815		
10	Торф сухой	411		
11	Угольная пыль	750		
12	Прокатная окалина	2250-2550		
14	Дробленая руда	3440		
15	Кусковой уголь	1150-1250		

Из формулы (1) получим формулу для расчета диаметра винта:

$$D = \sqrt[3]{\frac{4Q}{60\pi \cdot \mathbf{n} \cdot \psi \cdot \rho \cdot C}}$$
 (2)

Лист

$$D = \sqrt[3]{\frac{4 \cdot 4}{60 \cdot 3,14 \cdot 50 \cdot 0,125 \cdot 0,6 \cdot 1}} = 0,283 = 283 \text{ mm}$$

Полученное значение округляем до ближайшего стандартного D=300 мм.

Рисунок 5.6 – Эскиз сплошного винта

					МиТОМ.ПТУМЦ.Пр.№5.2021.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	, ·

Определяем шаг винта по соотношению:

$$t=0.8 D$$

Мощность на валу винта определяют по формуле

$$N = \frac{Q}{367} L_{\Gamma} \cdot W + 0.02 \cdot k \cdot q_{K} \cdot L_{\Gamma} \cdot v \cdot \omega_{B}, \tag{3}$$

Где: L_{Γ} – горизонтальная проекция длины конвейера, м; W – опытный коэффициент сопротивления при движении груза по желобу [табл. 5.1], W = 4; k – коэффициент, учитывающий характер перемещения винта, k = 0,2; q_{K} – погонная масса вращающихся частей конвейера, кг/м; υ – осевая скорость движения груза, м/с; ω_{B} – коэффициент сопротивления движению вращающихся частей конвейера, при подшипниках качения ω_{B} = 0,08.

$$v = \frac{t \cdot n}{60}$$

$$v = \frac{0.3 \cdot 50}{60} = 0.25 \text{ m/c}$$

$$q_{K} \approx 80 \cdot D$$

$$q_{K} \approx 80 \cdot 0.3 = 24 \text{ kg/m}$$

$$N = \frac{4}{367} 15 \cdot 4 + 0.02 \cdot 0.2 \cdot 24 \cdot 15 \cdot 0.25 \cdot 0.08 = 0.683 \text{ kBt}$$
(4)

Определяем частоту вращения двигателя с учетом передаточного отношения редуктора и мощность двигателя с учетом КПД привода.

Определение максимальной частоты вращения вала

Максимальную частоту вращения винта можно определить по формуле:

$$n_{\text{max}} = \frac{A}{\sqrt{D}}, \tag{6}$$

где A– расчетный коэффициент, для абразивного материала A=30 (табл. 4.1).

$$n_{\text{max}} = \frac{30}{\sqrt{0.3}} = 54,77$$
 об/мин

Номинальную частоту вращения винта при заданной производительности и выбранном диаметре винта определяем по формуле:

$$n_{\text{HOM}} = \frac{4Q}{60\pi \cdot D^2 \cdot t \cdot \psi \cdot \rho \cdot C}$$

$$n_{\text{HOM}} = \frac{4 \cdot 4}{60 \cdot 3.14 \cdot 0.3^2 \cdot 0.3 \cdot 0.125 \cdot 0.6 \cdot 1} = 41,94 \text{ об/мин}$$

Должно соблюдаться условие:

						Лис
					МиТОМ.ПТУМЦ.Пр.№5.2021.Отчет	7
Изм.	Лист	№ докум.	Подпись	Дата	, .	/

 $n_{\text{max}} > n_{\text{ном}}$ 54,77>41,94 об/мин **Вывод.**

5.3 Задания для выполнения работы

Задание: Используя табличные данные, определить основные параметры винтового конвейера.

Таблица 5.3 – Темы заданий

Вариант	Длина конвейера L, м	Производительность Q, т/ч							
1	12	6							
2	14	8							
3	16	4							
4	18	5							
5	20	7							
6	22	9							
7	14	11							
8	18	14							
9	10	3							
10	11	9							
11	13	4,5							
12	17	6,5							
14	19	8,5							
15	21	7,5							

5.4 Структура отчета

- 1. Название работы;
- 2. Цель работы;
- 3. Краткие теоретические сведения;
- 4. Порядок выполнения работы;
- 5. Расчет согласно индивидуального задания по вариантам из таблиц 5.2-3.

Объем отчета 4-7 стр. Отчет подписывается студентом.

Типы и основные параметры электродвигателей

Тип двигателя	N _{ДВ} , Квт	n _{дв} , об/мин	Тип двигателя	N _{дв} , Квт	n _{дв} , об/мин
4AA50A2Y3	0,9	3000	4А118М2У3	7,5	3000
4АА56А4У3	0,12	1500	4A160M8У3	11,0	750
4АА63А6У3	0,18	1000	4А160М6У3	15,	1000
4АА63В6У3	0,35	1000	4A160M4У3	18,5	1500
4АА63В4У3	0,37	1500	4A180S2У3	22,0	3000
4АА63В2У3	0,55	3000	4A225M8У3	30,0	750
4A90LA8У3	0,75	750	4А225М6У3	37,0	1000
4А80В6У3	1,1	1000	4A200L4У3	45,0	1500
4А80В4У3	1,5	1500	4A225M2У3	55,0	3000
4А80В2У3	2,8	3000	4A280M8У3	75,0	750
4A112MB8У3	3,0	750	4А280М6У3	90,0	1000
4А112МВ6У3	4,0	1000	4А280М4У3	110,0	1500
4A112MAУ3	5,0	1500	4А280М2У3	132,0	3000

					МиТОМ.ПТУМЦ.Пр.№5.2021.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	, .