Heap, min-heap

≡ Materia	Algoritmi
Anno	Secondo Anno
■ Data	@October 11, 2024

Definizione

Si tratta di una versione più avanzata di una struttura FIFO. La differenza, tuttavia, risiede nel fatto che gli elementi si dispongono in maniera più strutturata. L'obiettivo è avere una struttura di altezza minore e che si distribuisca in larghezza.

L'heap viene utilizzato per implementare una **coda con priorità**, ossia una coda di tipo FIFO in cui gli elementi vanno insieme ad una informazione detta **priorità dell'elemento**. Verranno prima estratti, quindi, gli elementi con maggiore priorità.

Dal punto di vista strutturale la coda con priorità può essere strutturata con un albero binario **posizionale**.

Un albero binario si dice **posizionale** quando possiamo distinguere il figlio destro dal figlio sinistro, ossia entrambi i figli hanno la stessa caratteristica.

Le configurazioni di un nodo in un albero non posizionale sono tre:

- nodo senza figli;
- nodo con un figlio;
- nodo con due figli.

In un albero posizionale, invece, le configurazioni sono seguenti:

- nodo senza figli;
- nodo con figlio destro;
- nodo con figlio sinistro;
- nodo con entrambi i figli.

La struttura heap è un albero binario posizionale completo.

Un albero binario si dice **completo** se in ogni livello ogni nodo ha due figli, oppure se ogni nodo ha due figli e tutte le foglie sono allo stesso livello.

In un albero binario completo, il numero di nodi $\dot{\mathbf{e}}$ sempre dispari. Se n $\dot{\mathbf{e}}$ il numero di nodi di un albero binario completo, il numero di foglie $\dot{\mathbf{e}}$:

$$\frac{n}{2} + 1$$

Se ogni nodo contiene una chiave e la struttura dati è sempre un albero binario completo, per aggiungere una chiave devo aggiungere molte chiavi. Quindi ammetteremo che l'ultimo livello può non essere completo; tuttavia, tutti gli elementi dell'ultimo livello sono allineati a sinistra (o inseriti da sinistra a destra).

Quindi:

Un heap è un **albero binario posizionale completo** a meno dell'ultimo livello, a patto che tutti i suoi elementi sono allineati a sinistra.

Disposizione delle chiavi

Nell'albero binario di ricerca l'ordinamento delle chiavi prende il nome di **ordinamento totale**. Durante l'inserimento delle chiavi, vi è **un solo modo per inserire gli elementi nell'albero**. L'unico modo per inserire le chiavi nell'albero è la visita **in-order**.

Nell'heap vale la proprietà di ordinamento parziale.

Dato un nodo x con due figli y, z, la **priorità di** x **dev'essere maggiore o uguale della priorità di** y **e di** z.

Per ogni nodo, quindi, la priorità del nodo padre dev'essere superiore rispetto a quelli dei nodi figli, ma tra i figli **non vi è un ordine**.

Min-Heap e Max-heap

Il Min-heap è una struttura dati heap in cui vale:

$$P(x) \le P(y)$$

 $P(x) \le P(z)$

Quindi la priorità viene data agli elementi più piccoli.

Nel Max-heap, invece, vale:

$$P(x) \ge P(y)$$

 $P(x) \ge P(z)$

In entrambi i casi possiamo dire sicuramente che l'altezza è data da:

$$h \in (O \log n)$$

Procedure in un min-heap

Potremmo eseguire queste operazioni:

- find-minimum;
- extract-minimum;
- insertion;
- decrease-key;
- delete-key.

Nel caso in cui implementiamo la coda con priorità, la prima operazione può essere eseguita in tempo costante, perché la radice dell'albero è il nodo con chiave minore. Per il resto, le altre operazioni richiedono più operazioni.

Heapify

La procedura di **heapify** rende un heap qualcosa. In particolare, sia x un nodo con due sottoalberi y,z con al di sotto heap. Chiamando heapify su x, rendiamo l'albero con radice x un heap.

Se c'è una violazione tra x,y,z allora basta che scambiamo la chiave x con y o con z. Avremo che la violazione è rimossa tra x,y,z e richiamiamo la funzione sul nodo in cui abbiamo scambiato il valore: questo perché **non è detto che questo sottoalbero abbia mantenuto la proprietà della struttura heap**.

```
heapify(H, x):
y = left(x)
z = right(x)
min = x
if(y != null and key(y) < min) then
    min = y
if(z != null and key(z) < min) then
    min = z
if min != x then
    swap(x, min)
    heapify(H, min)</pre>
```

Tale procedura ha complessità, nel caso peggiore, pari a $O(\log n)$. La sua equazione di ricorrenza è:

$$T(n) = T(\frac{n}{2}) + O(1)$$

perché la funzione heapify viene chiamata solamente o a destra o a sinistra. Tuttavia, questa analisi è parzialmente corretta, perché stiamo supponendo che il numero di foglie sia uguale a destra o a sinistra. Nel caso peggiore, in realtà, tutte le foglie sono nel sottoalbero sinistro. Inoltre, il numero di foglie di un albero di dimensione n è $\frac{n}{2}+1$, quindi se n è la dimensione dell'albero, allora avremo che il sottoalbero destro, l'ultimo livello del sottoalbero destro e il sottoalbero sinistro hanno lo stesso numero di nodi, ossia $\frac{n}{3}$. Quindi sarebbe più corretto considerare:

$$T(n) = T(\frac{2n}{3}) + O(1)$$

Extract-min

Nel min-heap per rimuovere il minimo, che risiede nella radice, è necessario mantenere la struttura generale dell'albero. Un modo facile per farlo è prendere un nodo dall'ultimo livello, dato che esso può anche non essere bilanciato e quindi la sua rimozione non provoca alcun problema. Una volta rimosso, mettiamo il valore del nodo rimosso nella radice. Quindi chiamiamo heapify.

Tale procedura ha complessità $O(\log n)$.

Insert

Nel momento in cui inserisco una chiave k nella struttura heap, creiamo intanto il nuovo nodo in cui inserire la chiave k ed eseguiamo ciò. Successivamente, controllo se la chiave inserita è più piccola della chiave contenuta nel nodo padre. In tal caso, scambio i valori tra nodo figlio e nodo padre. Continuo così fino ad arrivare alla radice.

```
insert(H,k):
x = newNode(H) // identifico nuovo nodo x che contiene la
key(x) = k
p = parent(x)
while(p != NULL and key(p) > key(x)) do
    swap(x, p)
    x = p
    p = parent(x)
```

Tale procedura ha una complessità $O(\log n)$.

Decrease-key

Il decrease key prevede che io prenda un noto qualsiasi e diminuisca il valore della sua priorità, ad esempio 7 diventa 3.

Notiamo che se diminuisco una chiave, il problema non si pone con i suoi figli, ma solo con il genitore. Ma come abbiamo fatto nell'inserimento, scambiare un figlio con il padre non porta a problemi verso il basso.

Delete-key

Nel momento in cui devo eliminare un nodo, prendo una foglia e scambio i valori con il nodo target. Rimuovo il nodo foglia, e richiamo heapify.

Procedure per il max-heap

Per il max-heap le procedure sono le medesime, basta invertire i segni delle diseguaglianze.

Differenze tra albero binario di ricerca e heap

A meno dell'operazione di minimo o massimo, l'albero binario di ricerca non ha complessità differenti rispetto alla struttura heap. Possiamo facilmente, tuttavia, **implementare la struttura heap come un array**. Gli elementi verranno inseriti sequenzialmente per livello, ossia avremo che il primo elemento dell'array è la radice, i due successivi sono i suoi figli, i quattro successivi a questi ultimi

saranno quelli che costituiscono il livello 2 e così via.

La domanda che ci poniamo è la seguente:

come possiamo ricostruire la struttura heap a partire dall'array? Possiamo dedurre facilmente che l'indice del figlio sinistro di un elemento di posizione i si trova in posizione 2i, mentre il figlio destro in posizione 2i+1.