Devoir à la maison nº 14 : corrigé

Problème 1 — Dérivation et polynômes

Partie I -

- 1. On a $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$. Par suite, en prenant $\ell = 1$, f est continue en 0.
- **2.** Les fonctions $x \mapsto \sin x$ et $x \mapsto x$ sont \mathcal{C}^1 sur \mathbb{R} et $x \mapsto x$ ne s'annule pas sur \mathbb{R}_+^* donc f est \mathcal{C}^1 sur \mathbb{R}_+^* .

De plus, pour tout x > 0, $f'(x) = \frac{x \cos x - \sin x}{x^2}$. Puisque $\cos x = 1 + o(x)$ et $\sin x = x + o(x^2)$, $x \cos x - \sin x = o(x^2)$. Par conséquent, f est continue sur \mathbb{R}_+ , de classe \mathcal{C}^1 sur \mathbb{R}_+^* et $\lim_{x \to 0^+} f'(x) = 0$. D'après le théorème de prolongement \mathcal{C}^1 , f est de classe \mathcal{C}^1 sur \mathbb{R}_+ .

REMARQUE. Si on n'a pas encore vu le théorème de prolongement \mathcal{C}^1 , on montre d'abord que f est dérivable

$$\frac{f(x) - f(0)}{x - 0} = \frac{\sin x - x}{x^2} \underset{x \to 0}{\sim} -\frac{x}{6}$$

En particulier, $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$ de sorte que f est dérivable en 0 et que f'(0) = 0. Puisque $\lim_{x\to 0^+} f'(x) = 0$ 0 = f'(0), f' est bien continue en 0. Finalement, on retrouve le fait que f est C^1 sur \mathbb{R}_+ .

- 3. Soit $\varphi: x \mapsto x \cos x \sin x$. φ est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $\varphi'(x) = -x \sin x$. Ainsi φ' est de signe constant sur I_n et ne s'annule qu'aux bornes de I_n . Il s'ensuit que φ est strictement monotone sur I_n . Sur I_n , ϕ est continue et strictement monotone donc établit une bijection de I_n dans $\phi(I_n)$ qui est un intervalle. $\mathrm{Or}\ \phi(n\pi)\phi((n+1)\pi) = -n(n+1)\pi^2 < 0.\ \mathrm{Donc}\ 0 \in \phi(I_n)\ \mathrm{et\ il\ existe\ un\ unique\ r\'eel\ } x_n\ \mathrm{dans\ } I_n\ \mathrm{tel\ que\ } \phi(x_n) = 0.$
- **4.** Pour tout $n \in \mathbb{N}^*$, on a $n\pi \leqslant x_n \leqslant n\pi + \pi$ d'où $1 \leqslant \frac{x_n}{n\pi} \leqslant 1 + \frac{1}{n}$. Le théorème des gendarmes prouve alors que $\lim_{n\to +\infty}\frac{x_n}{n\pi}=1 \ {\rm ce} \ {\rm qui} \ {\rm donne} \ x_n \underset{n\to +\infty}{\sim} n\pi.$
- **5.** Pour tout $x \in \mathbb{R}$, f'(x) est du signe de $\varphi(x)$.

Or φ est strictement décroissante sur I_0 et $\varphi(0) = 0$. Donc f' est négative sur I_0 et ne s'annule qu'en 0. Donc f est strictement décroissante sur I₀.

Soit maintenant $n \in \mathbb{N}^*$. Sur I_{2n} , φ est strictement décroissante et s'annule en x_{2n} . Donc f est strictement croissante sur $[2n\pi, x_{2n}]$ et strictement décroissante sur $[x_{2n}, (2n+1)\pi]$.

De même, sur I_{2n-1} , φ est strictement croissante et s'annule en x_{2n-1} . Donc f est strictement décroissante sur $[(2n-1)\pi, x_{2n-1}]$ et strictement croissante sur $[x_{2n-1}, 2n\pi]$.

6. La courbe représentative de f coupe l'axe des abscisses aux points d'abscisse $n\pi$, avec $n \in \mathbb{N}^*$.

Partie II -

1. Le calcul donne
$$g''(x) = \frac{-(x^2-2)\sin x - 2x\cos x}{x^3}$$
 pour tout $x>0.$

2.

n	0	1	2
P _n	1	X	$X^2 - 2$
Qn	0	1	2X

3. En dérivant la relation donnée par l'énoncé, on a pour tout x>0 :

$$\begin{split} g^{(n+1)}(x) &= \frac{P_n'(x) \sin^{(n)}(x) + P_n(x) \sin^{(n+1)}(x) + Q_n'(x) \sin^{(n+1)}(x) + Q_n(x) \sin^{(n+2)}(x)}{x^{n+1}} \\ &- (n+1) \frac{P_n(x) \sin^{(n)}(x) + Q_n(x) \sin^{(n+1)}(x)}{x^{n+2}} \end{split}$$

comme $\sin^{(n)}(x) = -\sin^{(n+2)}(x)$, on obtient :

$$g^{(n+1)}(x) = \frac{P_{n+1}(x)\sin^{(n+1)}(x) + Q_{n+1}(x)\sin^{(n+2)}(x)}{x^{n+2}}$$

avec

$$P_{n+1} = XP_n + XQ'_n - (n+1)Q_n$$

$$Q_{n+1} = XQ_n - XP'_n + (n+1)P_n$$

4. On isole le cas n=0. $P_0=1$ donc P_0 est à coefficients entiers, de degré 0, de coefficient dominant 1 et pair. $Q_0=0$ donc Q_0 à coefficients entiers, de degré $-\infty$. Cela n'a pas de sens de parler de son coefficient dominant et il est aussi bien pair qu'impair.

Traitons maintenant le cas $n \ge 1$. Soit \mathcal{H}_n la propriété :

 P_n est de degré n de coefficient dominant 1, Q_n est de degré n-1 et de coefficient dominant n, P_n et Q_n sont à coefficients entiers, P_n a la parité de n, Q_n a la parité opposée de celle de n.

 \mathcal{H}_1 est vraie. Supposons \mathcal{H}_n vraie pour un certain $n \in \mathbb{N}^*$.

Alors P_n , Q_n , P'_n et Q'_n sont à coefficients entiers donc P_{n+1} et Q_{n+1} aussi.

De plus, XP_n est de degré n+1 de coefficient dominant 1 et XQ'_n et Q_n sont de degré strictement inférieur à n+1 donc P_{n+1} est de degré n+1 de coefficient dominant 1.

Par ailleurs, XQ_n , XP'_n et $(n+1)P_n$ sont de degré n de coefficients dominants respectifs n, n et n+1 donc Q_{n+1} est degré n de coefficient dominant n+1.

Enfin, P_n a la parité de n et Q_n a la parité opposée à celle de n donc XP_n , XQ_n' sont de la parité opposée à celle de n donc de la parité de n+1 tandis que XQ_n et XP_n' sont de la parité de n donc de la parité opposée à celle de n+1. On en déduit que P_{n+1} a la parité de n+1 tandis que Q_{n+1} a la parité opposée à celle de n+1.

Donc \mathcal{H}_{n+1} est vraie. Ainsi \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}^*$.

- $\textbf{5.} \ \, \mathrm{On} \, \, \mathrm{a} \, \, P_3 = X P_2 + X Q_2' 3 Q_2 = X^3 6 X \, \, \mathrm{et} \, \, Q_3 = X Q_2 X P_2' + 3 P_2 = 3 X^2 6.$
- 6. Soit $\alpha_k = \frac{\pi}{2} + 2k\pi$ et $\beta_k = 2k\pi$. Comme pour tout x > 0, on a $U(x)\sin(x) + V(x)\cos(x) = 0$, pour tout entier $k \in \mathbb{N}^*$, $U(\alpha_k) = 0$ et $V(\beta_k) = 0$. U et V admettent une infinité de racines donc sont égaux au polynôme nul.
- 7. En dérivant n+1 fois l'égalité, $xg(x) = \sin x$, on obtient pour tout x > 0,

$$xg^{(n+1)}(x) + (n+1)g^{(n)}(x) = \sin^{(n+1)}(x)$$

d'où en reportant les formules donnant $q^{(n)}(x)$ et $q^{(n+1)}(x)$:

$$(P_{n+1}(x) + (n+1)Q_n(x) - x^n)\sin^{(n+1)}(x) + ((n+1)P_n(x) - Q_{n+1}(x))\sin^{(n)}(x) = 0$$

Puisque à n fixé, l'une des expressions $\sin^{(n+1)}(x)$ ou $\sin^{(n)}(x)$ vaut $\pm \sin(x)$ tandis que l'autre vaut $\pm \cos x$, on peut appliquer le résultat de la question précédente et on a donc :

$$P_{n+1} + (n+1)Q_n - X^{n+1} = 0 (n+1)P_n - Q_{n+1} = 0$$

8. En reportant $Q_{n+1}=(n+1)P_n$ dans la définition de Q_{n+1} , on a $X(Q_n-P_n')=0$ ce qui donne $Q_n=P_n'$ par intégrité de $\mathbb{R}[X]$.

On a donc $P_{n+1} = X^{n+1} - (n+1)Q_n = XP_n + XP''_n - (n+1)Q_n$ ce qui donne $P_n + P''_n = X^n$ à nouveau par intégrité de $\mathbb{R}[X]$.

 P_n est donc solution de l'équation différentielle $\mathcal{E}_n: y'' + y = x^n$.

9. Si T est un polynôme non nul de degré \mathfrak{p} , T+T'' est aussi de degré \mathfrak{p} et non nul (car le degré de T'' est strictement inférieur à celui de T). Cela montre que Ψ est injectif et que si T appartient à $\mathbb{R}_n[X]$, $\Psi(T)$ aussi.

Donc Ψ_n est un endomorphisme injectif de $\mathbb{R}_n[X]$. Comme $\mathbb{R}_n[X]$ est de dimension finie, cela implique que Ψ_n est bijectif.

Si Q est un polynôme quelconque, il existe un entier p tel que Q appartienne à $\mathbb{R}_p[X]$. Comme Ψ_p est bijectif, il existe P tel que $\Psi_p(P) = Q$. Donc P est un antécédent de Q par $\Psi : \Psi$ est surjectif et comme Ψ est injectif, Ψ est bijectif.

10. Notons $P_n = \sum_{k=0}^n b_k X^k$. On a

$$\begin{split} P_n + P_n'' &= \sum_{k=0}^n b_k X^k + \sum_{k=0}^n k(k-1)b_k X^k \\ &= b_n X^n + b_{n-1} X^{n-1} + \sum_{k=0}^{n-2} (b_k + (k+2)(k+1)b_{k+2}) X^k = X^n \end{split}$$

 $\mathrm{Par} \ \mathrm{suite} \ b_n = 1, \ b_{n-1} = 0 \ \mathrm{et} \ \mathrm{pour} \ \mathrm{tout} \ k \in [\![0,n-2]\!], \ b_k = -(k+2)(k+1)b_{k+2}.$

Cela donne pour tout $k \in [1,p]$, $b_{n-2k} = (-1)^k \frac{n!}{(n-2k)!}$ et $b_{n-2k+1} = 0$.

 $\mathrm{Finalement}\ P = \sum_{k=0}^p \alpha_k X^{n-2k}\ \mathrm{avec}\ \alpha_k = (-1)^k \frac{n!}{(n-2k)!}.$

11. Les solutions de $y'' + y = x^n$ sont la somme d'une solution particulière de cette équation et de la solution générale de y'' + y = 0.

 P_n étant solution particulière, les solutions sont donc les fonctions du type : $x \mapsto P_n(x) + \lambda \cos x + \mu \sin x$, λ et μ étant deux réels.