

Outil de prédimensionnement en C.A.O.

Pourquoi ???

Pour dimensionner les pièces!

Et éviter ça...

TACOMA NARROWS BRIDGE COLLAPSE

Length of center span 2800 ft
Width
Depth of stiffening girders 8 ft

Start of construction Nov. 23, 1938
Opened for traffic July 1, 1940
Collapse of bridge Nov. 7, 1940

Plan du cours

- ▶ 1. Quelques exemples de recherche en calcul des structures
- ▶ 2. Intégration CAO-Calculs dans l'entreprise
- ▶ 3. La calcul par éléments-finis : quelques idées et concepts
- ▶ 4. Les étapes à suivre dans un code de calcul
- ▶ 5. Analyse des résultats et dangers

I. Quelques exemples de recherche en calcul des structures

Séparation des étages du lanceur Ariane 5

Séparation des étages du lanceur Ariane 5

Découpe par choc pyrotechnique

Découpe par choc pyrotechnique

- Utilisation d'un ordinateur parallèle
- ▶ 64 processeurs MIPS 32 bits 450 MHz
- ▶ 24 Go de mémoire
- ▶ 400 Go de disque dur

Découpe par choc pyrotechnique

- Nouvelle génération TX7
- ▶ 32 processeurs Itanium 64 bits 1,2 GHz
- ▶ 128 Go de mémoire
- ▶ 2 To de disque dur

Essais bi et tri-axiaux

Essais bi et tri-axiaux

Essais bi et tri-axiaux

Étude d'un accouplement élastique

- ▶ Joint ROBA®-DS de la société Mayr
- ▶ Problème à 130 000 ddls
- Etude paramétrique : 99 configurations étudiées

Étude d'un accouplement élastique

► Résultats (exemple)		
Temps horloge	S	h
Approche classique	451 440	125,7
Approche spécifique séq.	130 500	36
Approche spécifique //	14 500	4

Calcul de suivi de fissure

- ► Remaillage à chaque pas de calcul
- ► Transfert des données d'un maillage à l'autre...

▶ Réalisable en 2D : encore inaccessible en 3D !

2. Intégration CAO-Calculs dans l'entreprise

Intégration CAO/Calcul

- Quatre exemples tirés du monde industriel
 - ► SONY : Téléphone Cellulaire
 - ▶ BRITISH AEROSPACE : Améliorer l'interface Design/Calcul
 - ► BOEING : Avions & Sous-Structures
 - ► ECIA : Support de sièges

- ► SONY : Division PMC
 - ▶ Téléphone Portable
 - Faces avant/arrières
 - Analyse de σ (circuit imprimé)
 - Analyse du moulage (écoulement)
 - Composant ext.

► Simulation numérique

- ► EF2000/TYPHOON
- ► NIMROD
- ► TORNADO
- ▶ GRIPEN
- ► HAWK
- ► HARRIER
- ► JAGUAR

- But de l'intégration :
 - Développer des « ingénieurs concepteurs »
 - Rapprocher Conception/Structures
 - ► Optimiser les parties non critiques !
 - ▶ Utiliser au mieux les technologies existantes

▶ Quand utiliser un outil de dimensionnement ?

Exemple sur une gouverne : dimensionnement du pédalier

Exemple sur une gouverne : dimensionnement du pédalier

Exemple sur une gouverne : dimensionnement du pédalier

- Exemple sur une gouverne : dimensionnement du pédalier
 - ► Comparaison Catia-GPS / Nastran
 - Flèche maxi: 1,47 mm / 1,45 mm
 - Contrainte maxi: 226 MPa / 226.9 Mpa
 - ▶ Même résultats mais :
 - ► Pas d'interface
 - ► Gain de temps

Intégration chez BOEING

Intégration chez BOEING

► Complexité des structures

175,000 elements

275,000 degrees of freedom

Modèles complexes

Exemple de dimensionnement par E.F.: BULKHEAD

Exemple de dimensionnement par E.F.: BULKHEAD

- Exemple de dimensionnement par E.F.: BULKHEAD
- ► Réduction du temps de 75 %
 - ▶ 2 semaines avec CATIA FEM & Abaqus
 - ▶ 8 semaines avec d'autres outils
- Analyse rapide autorisant des modifications de la conception
- Validation de l'interface CATIA/Abaqus

Méthode de dimensionnement standard

CAD: CATIA

Data translation

PRE - PROCESSING : IMS

Meshing, B.C.

PROCESSING: ABAQUS, NASTRAN

Computation

POST - PROCESSING : IMS

- **Exemple**:
 - ▶ 711 éléments, 411 Nœuds, NASTRAN

- ► Manipulation de fichiers : 14 % temps
- ► Réalisation du maillage : 68 % temps
- ► Calcul proprement dit: 18 % temps

- ► Comparaison anciennne / nouvelle méthodologie :
- Ancienne méthodologie :
 - Avantages :
 - ► Calculs sur station performante
 - Applications validées
 - Experts
 - ► Inconvénients :
 - ► Manipulation de fichiers (UNIX)
 - Maillage indépendant de la géométrie
 - ► Travail de spécialistes

- Comparaison anciennne / nouvelle méthodologie :
- **Buts**:
 - Utilisation de la MEF par les designers
 - ► Intégration dans CATIA
 - Calculs statiques linéaires
 - Maillage associé à la géométrie
- ► Test comparatif :
 - ▶ Validation de l'outil GPS
 - ► Comparaison en terme de :
 - ► Entrée des données
 - Résultats de calculs

► Comparaison : mécanisme de la Xsara Picasso

► GPS/Catia:5 mn

► Catia/Nastran: 35 mn

	Element type	σ1 Mpa	σ2 Мра	dmax mm
GPS	TRIA	2953	2190	1,29
GPS	TRIA parabolic	3037		1,42
NASTRAN	TRIA	3140	1620	1,29
NASTRAN	TRIA parabolic	3090	2420	1,47

3. Le calcul par éléments finis : quelques idées et concepts

4. Les étapes à suivre dans un code de calcul

- Cas d'une bielle dont on dispose de la géométrie
 - N.B.: compte tenu des symétries... utilité de mailler toute la bielle ??

- ► On démarre GPS (Generative Part Stress Analysis)
 - ► Plusieurs études possibles...

Mise en place des conditions aux limites en déplacement

Mise en place des conditions aux limites en effort

► Visualisation du maillage

- ▶ Vue du modèle
 - ▶ arbre de construction

► Évaluation d'une "erreur"

Remaillage pour amélioration

► Processus automatique d'adaptation (long!)

5. Analyse des résultats et dangers