RMarkdown Tables - Data Summary and Presentation

Melinda Higgins

1/24/2022

Why you want Tables

While you can create simple tables with the table() function in base R, most of the time you will want to present your results in some kind of table format. This could be for any of the following:

- viewing your data in a table format
- presenting summary statistics of the variables in your dataset
- presenting your models or analysis results in a table format
- and even more...

Get Inspiration

The underlying formatting for making appealing and well organized tables can be sort of an art-form. Getting the code to work along with the formatting for various final formats (like HTML, PDF, DOC, PPT, etc) can be extremely challenging. However, the good new is that this has recently been a hot area of rapid development in the R/RMarkdown world.

In fact, there in 2020 and 2021 there have been contests on the best tables and associated packages and codes for these projects. See:

- Winners of the 2021 contest
- Winners of the 2020 contest

Let's try a simple table to get started

Here is an example of basic output to view the "top" of the builtin mtcars dataset, using this code: head(mtcars).

head(mtcars)

```
##
                                   hp drat
                                                  qsec vs am gear carb
                      mpg cyl disp
## Mazda RX4
                              160 110 3.90 2.620 16.46
                     21.0
## Mazda RX4 Wag
                     21.0
                               160 110 3.90 2.875 17.02
                                                                      4
## Datsun 710
                            4 108 93 3.85 2.320 18.61
                                                                      1
                     22.8
## Hornet 4 Drive
                              258 110 3.08 3.215 19.44
                     21.4
                                                                      1
## Hornet Sportabout 18.7
                              360 175 3.15 3.440 17.02
                                                                 3
                                                                      2
                            8
## Valiant
                     18.1
                            6 225 105 2.76 3.460 20.22 1
```

OK, so this is just text on the page - not really a nice table.

To make this a table, let's use the kable() function from the knitr package. To set this up, we'll also use the dplyr package to use the %>% pipe coding approach.

library(knitr)
library(dplyr)
mtcars %>%
 head() %>%
 knitr::kable()

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
18.1	6	225	105	2.76	3.460	20.22	1	0	3	1
	21.0 21.0 22.8 21.4 18.7	21.0 6 21.0 6 22.8 4 21.4 6 18.7 8	21.0 6 160 21.0 6 160 22.8 4 108 21.4 6 258 18.7 8 360	21.0 6 160 110 21.0 6 160 110 22.8 4 108 93 21.4 6 258 110 18.7 8 360 175	21.0 6 160 110 3.90 21.0 6 160 110 3.90 22.8 4 108 93 3.85 21.4 6 258 110 3.08 18.7 8 360 175 3.15	21.0 6 160 110 3.90 2.620 21.0 6 160 110 3.90 2.875 22.8 4 108 93 3.85 2.320 21.4 6 258 110 3.08 3.215 18.7 8 360 175 3.15 3.440	21.0 6 160 110 3.90 2.620 16.46 21.0 6 160 110 3.90 2.875 17.02 22.8 4 108 93 3.85 2.320 18.61 21.4 6 258 110 3.08 3.215 19.44 18.7 8 360 175 3.15 3.440 17.02	21.0 6 160 110 3.90 2.620 16.46 0 21.0 6 160 110 3.90 2.875 17.02 0 22.8 4 108 93 3.85 2.320 18.61 1 21.4 6 258 110 3.08 3.215 19.44 1 18.7 8 360 175 3.15 3.440 17.02 0	21.0 6 160 110 3.90 2.620 16.46 0 1 21.0 6 160 110 3.90 2.875 17.02 0 1 22.8 4 108 93 3.85 2.320 18.61 1 1 21.4 6 258 110 3.08 3.215 19.44 1 0 18.7 8 360 175 3.15 3.440 17.02 0 0	21.0 6 160 110 3.90 2.620 16.46 0 1 4 21.0 6 160 110 3.90 2.875 17.02 0 1 4 22.8 4 108 93 3.85 2.320 18.61 1 1 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 18.7 8 360 175 3.15 3.440 17.02 0 0 3

Let's add a caption for our table.

NOTE: The way the caption shows up will vary depending on whether you "knit" to HTML, DOCX, PDF or other formats. . .

```
mtcars %>%
head() %>%
knitr::kable(caption = "Top 6 rows of the mtcars dataset")
```

Table 2: Top 6 rows of the mtcars dataset

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
18.1	6	225	105	2.76	3.460	20.22	1	0	3	1
	21.0 21.0 22.8 21.4 18.7	21.0 6 21.0 6 22.8 4 21.4 6 18.7 8	21.0 6 160 21.0 6 160 22.8 4 108 21.4 6 258 18.7 8 360	21.0 6 160 110 21.0 6 160 110 22.8 4 108 93 21.4 6 258 110 18.7 8 360 175	21.0 6 160 110 3.90 21.0 6 160 110 3.90 22.8 4 108 93 3.85 21.4 6 258 110 3.08 18.7 8 360 175 3.15	21.0 6 160 110 3.90 2.620 21.0 6 160 110 3.90 2.875 22.8 4 108 93 3.85 2.320 21.4 6 258 110 3.08 3.215 18.7 8 360 175 3.15 3.440	21.0 6 160 110 3.90 2.620 16.46 21.0 6 160 110 3.90 2.875 17.02 22.8 4 108 93 3.85 2.320 18.61 21.4 6 258 110 3.08 3.215 19.44 18.7 8 360 175 3.15 3.440 17.02	21.0 6 160 110 3.90 2.620 16.46 0 21.0 6 160 110 3.90 2.875 17.02 0 22.8 4 108 93 3.85 2.320 18.61 1 21.4 6 258 110 3.08 3.215 19.44 1 18.7 8 360 175 3.15 3.440 17.02 0	21.0 6 160 110 3.90 2.620 16.46 0 1 21.0 6 160 110 3.90 2.875 17.02 0 1 22.8 4 108 93 3.85 2.320 18.61 1 1 21.4 6 258 110 3.08 3.215 19.44 1 0 18.7 8 360 175 3.15 3.440 17.02 0 0	21.0 6 160 110 3.90 2.620 16.46 0 1 4 21.0 6 160 110 3.90 2.875 17.02 0 1 4 22.8 4 108 93 3.85 2.320 18.61 1 1 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 18.7 8 360 175 3.15 3.440 17.02 0 0 3

Try customization with the gt package

You can add headers, footers and more with the gt package. See https://gt.rstudio.com/index.html.

```
library(gt)
mtcars %>%
  head() %>%
  gt()
```

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb

21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Add a header.

```
mtcars %>%
  head() %>%
  gt() %>%
  tab_header(
    title = "The mtcars dataset",
    subtitle = "The top 6 rows are presented"
)
```

The mtcars dataset
The top 6 rows are presented

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Add a footer.

```
mtcars %>%
  head() %>%
  gt() %>%
  gt() %>%
  tab_header(
    title = "The mtcars dataset",
    subtitle = "The top 6 rows are presented"
  ) %>%
  tab_source_note(
    source_note = "The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel con
)
```

The mtcars dataset
The top 6 rows are presented

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
18.7	8	360	175	3.15	3.440	17.02	0	0	3	2

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

What about summary statistics?

A really simple approach is to use the summary() function in case R. But the results, while useful, is less than inspiring.

mtcars %>%
 summary() %>%
 knitr::kable()

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Min.	Min.	Min.:	Min.:	Min.	Min.	Min.	Min.	Min.	Min.	Min.
:10.40	:4.000	71.1	52.0	:2.760	:1.513	:14.50	:0.0000	:0.0000	:3.000	:1.000
1st	1st	1st	1st	1st	1st	1st	1st	1st	1st	1st
Qu.:15.4	3 Qu.:4.00	0 Qu.:120.	8 Qu.:	Qu.:3.08	0 Qu.:2.58	1 Qu.:16.8	9 Qu.:0.00	0 Q u.:0.00	0 Q u.:3.00	0 Qu.:2.0
			96.5							
Median	Median	Median	Median	Median	Median	Median	Median	Median	Median	Media
:19.20	:6.000	:196.3	:123.0	:3.695	:3.325	:17.71	:0.0000	:0.0000	:4.000	:2.000
Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
:20.09	:6.188	:230.7	:146.7	:3.597	:3.217	:17.85	:0.4375	:0.4062	:3.688	:2.812
3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd
Qu.:22.8	0 Qu.:8.00	0 Qu.:326.	0 Qu.:180.	0 Qu.:3.92	0 Qu.:3.61	0 Qu.:18.9	0 Qu.:1.00	0 Q u.:1.00	0 Q u.:4.00	0 Qu.:4.
Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.
:33.90	:8.000	:472.0	:335.0	:4.930	:5.424	:22.90	:1.0000	:1.0000	:5.000	:8.000

Try the gtsummary package

- Learn more about the gtsummary package at: https://www.danieldsjoberg.com/gtsummary/index.html
- Inspiration Gallery, https://www.danieldsjoberg.com/gtsummary/articles/gallery.html.

library(gtsummary)
mtcars %>%
 tbl_summary()

Characteristic	N = 32
mpg	19.2 (15.4, 22.8)
cyl	
4	11 (34%)
6	7 (22%)
8	14 (44%)
disp	196 (121, 326)
hp	123 (96, 180)
drat	$3.70 \ (3.08, \ 3.92)$

Characteristic	N = 32
wt	3.33 (2.58, 3.61)
qsec	17.71 (16.89, 18.90)
vs	14 (44%)
am	13 (41%)
gear	
3	15 (47%)
4	12 (38%)
5	5 (16%)
carb	
1	7(22%)
2	10 (31%)
3	3(9.4%)
4	10 (31%)
6	1(3.1%)
8	1 (3.1%)

Look at statistics by group.

```
mtcars %>%
  tbl_summary(by = cyl)
```

Characteristic	4 , N = 11	6 , N = 7	8, N = 14
mpg	26.0 (22.8, 30.4)	19.7 (18.6, 21.0)	15.2 (14.4, 16.2)
disp	108 (79, 121)	168 (160, 196)	350 (302, 390)
hp	91 (66, 96)	110 (110, 123)	192 (176, 241)
drat	4.08 (3.81, 4.16)	3.90 (3.35, 3.91)	3.12 (3.07, 3.22)
wt	$2.20\ (1.89,\ 2.62)$	$3.21\ (2.82,\ 3.44)$	3.76 (3.53, 4.01)
qsec	18.90 (18.56, 19.95)	$18.30\ (16.74,\ 19.17)$	17.18 (16.10, 17.56)
VS	10 (91%)	4 (57%)	0 (0%)
am	8 (73%)	3(43%)	2(14%)
gear			
3	1 (9.1%)	2(29%)	12~(86%)
4	8 (73%)	4 (57%)	0 (0%)
5	2 (18%)	1 (14%)	2(14%)
carb			
1	5 (45%)	2(29%)	0 (0%)
2	6 (55%)	0 (0%)	4 (29%)
3	0 (0%)	0 (0%)	3 (21%)
4	0 (0%)	4(57%)	6 (43%)
6	0 (0%)	1 (14%)	0 (0%)
8	0 (0%)	0 (0%)	1 (7.1%)

Add statistical comparison tests.

```
mtcars %>%
  tbl_summary(by = cyl) %>%
  add_p()
```

Characteristic	4 , N = 11	6, N = 7	8, N = 14	p-value
mpg	26.0 (22.8, 30.4)	19.7 (18.6, 21.0)	15.2 (14.4, 16.2)	< 0.001
disp	108 (79, 121)	168 (160, 196)	350 (302, 390)	< 0.001
hp	91 (66, 96)	110 (110, 123)	192 (176, 241)	< 0.001
drat	4.08 (3.81, 4.16)	3.90 (3.35, 3.91)	3.12 (3.07, 3.22)	< 0.001
wt	2.20 (1.89, 2.62)	3.21 (2.82, 3.44)	3.76(3.53, 4.01)	< 0.001
qsec	18.90 (18.56, 19.95)	18.30 (16.74, 19.17)	17.18 (16.10, 17.56)	0.006
VS	10 (91%)	4 (57%)	0 (0%)	< 0.001
am	8 (73%)	3 (43%)	2 (14%)	0.009
gear				< 0.001
3	1 (9.1%)	2(29%)	12 (86%)	
4	8 (73%)	4 (57%)	0 (0%)	
5	2 (18%)	1 (14%)	2 (14%)	
carb	,	,	,	< 0.001
1	5 (45%)	2(29%)	0 (0%)	
2	6 (55%)	0 (0%)	4(29%)	
3	0 (0%)	0 (0%)	3 (21%)	
4	0 (0%)	4 (57%)	6 (43%)	
6	0 (0%)	1 (14%)	0 (0%)	
8	0 (0%)	0 (0%)	1 (7.1%)	

Also try the arsenal package

Learn more about the arsenal package:

- https://mayoverse.github.io/arsenal/
- and the tableby() function https://mayoverse.github.io/arsenal/articles/tableby.html

This time, let's look at the penguins dataset from the palmerpenguins package.

We'll use the tableby() function from the arsenal package to get some summary stats.

NOTE: IMPORTANT - when using the arsenal package, you need to add results = "asis" in your r-chunk options so that the table looks correct when you "knit" your Rmarkdown file.

	Overall (N=344)
bill_length_mm	
N-Miss	2
Mean (SD)	43.922(5.460)
Range	32.100 - 59.600
bill_depth_mm	
N-Miss	2
Mean (SD)	$17.151\ (1.975)$

	Overall (N=344)
Range	13.100 - 21.500
flipper_length_mm	
N-Miss	2
Mean (SD)	200.915 (14.062)
Range	172.000 - 231.000
$body_mass_g$	
N-Miss	2
Mean (SD)	4201.754 (801.955)
Range	2700.000 - 6300.000

We can also get comparison statistics by group with associated statistical tests. Let's look at these summary stats by the 3 species of penguins.

	Adelie (N=152)	Chinstrap (N=68)	Gentoo (N=124)	Total (N=344)	p value
bill_length_mm					<
					0.001
N-Miss	1	0	1	2	
Mean (SD)	38.791 (2.663)	48.834(3.339)	47.505(3.082)	43.922(5.460)	
Range	32.100 - 46.000	40.900 - 58.000	40.900 - 59.600	32.100 - 59.600	
$bill_depth_mm$					<
					0.001
N-Miss	1	0	1	2	
Mean (SD)	$18.346 \ (1.217)$	$18.421\ (1.135)$	$14.982 \ (0.981)$	$17.151\ (1.975)$	
Range	15.500 - 21.500	16.400 - 20.800	13.100 - 17.300	13.100 - 21.500	
$flipper_length_mm$					<
					0.001
N-Miss	1	0	1	2	
Mean (SD)	189.954 (6.539)	195.824 (7.132)	217.187 (6.485)	200.915 (14.062)	
Range	172.000 - 210.000	178.000 - 212.000	203.000 - 231.000	172.000 - 231.000	
$body_mass_g$					<
					0.001
N-Miss	1	0	1	2	
Mean (SD)	3700.662	3733.088	5076.016	4201.754	
	(458.566)	(384.335)	(504.116)	(801.955)	
Range	2850.000 -	2700.000 -	3950.000 -	2700.000 -	
	4775.000	4800.000	6300.000	6300.000	

Another COOL package, summarytools

Another really cool package that is useful for getting a quick summary of what is in your dataset along with some quick summary stats and tiny charts.

Learn more at:

- https://cran.r-project.org/web/packages/summarytools/
- $\bullet \ \ https://cran.r-project.org/web/packages/summarytools/vignettes/introduction.html$

Let's look at the penguins dataset again.

And like the arsenal package, when we use the summarytools package, you need to add results = "asis" to the r-chunk options.

```
library(summarytools)
dfSummary(penguins,
    plain.ascii = FALSE,
    style = "grid",
    graph.magnif = 0.75,
    valid.col = FALSE,
    tmp.img.dir = "/tmp")
```

Data Frame Summary

penguins $\,$ Dimensions: 344×8

Duplicates: 0

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
1	species	1. Adelie	152 (44.2%)		0
	[factor]	2. Chinstrap	68 (19.8%)		(0.0%)
		3. Gentoo	124 (36.0%)		
2	island [factor]	 Biscoe Dream Torgersen 	168 (48.8%) 124 (36.0%) 52 (15.1%)		0 (0.0%)
3	bill_length_mm [numeric]	Mean (sd): 43.9 (5.5) min < med < max: 32.1 < 44.5 < 59.6 IQR (CV): 9.3 (0.1)	164 distinct values		2 (0.6%)

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
4	bill_depth_mm [numeric]	Mean (sd): 17.2 (2) min < med < max: 13.1 < 17.3 < 21.5 IQR (CV): 3.1 (0.1)	80 distinct values		2 (0.6%)
5	flipper_length_mm [integer]	n Mean (sd): 200.9 (14.1) min < med < max: 172 < 197 < 231 IQR (CV): 23 (0.1)	55 distinct values		2 (0.6%)
6	body_mass_g [integer]	Mean (sd): 4201.8 (802) min < med < max: 2700 < 4050 < 6300 IQR (CV): 1200 (0.2)	94 distinct values		2 (0.6%)
7	sex [factor]	 female male 	165 (49.5%) 168 (50.5%)		11 (3.2%)
8	year [integer]	Mean (sd): 2008 (0.8) min < med < max: 2007 < 2008 < 2009 IQR (CV): 2 (0)	2007: 110 (32.0%) 2008: 114 (33.1%) 2009: 120 (34.9%)		0 (0.0%)

Get a nice crosstable for 2 categorical variables. Let's look at species and sex in the penguins dataset.

More fun packages to try out

 $\bullet \ \ \texttt{reactablefmtr} \ https://kcuilla.github.io/reactablefmtr/index.html$