	CODE:
	import random import math
	import math
	det objective function(x):
	return x " 2
	def simulated - arrealing (initial, initial-temp, cooling-rate, max-iterations): coverent_solution = initial
	cooling-rate, max-iterations):
	coverent solution = initial
	current temp = initial - temp
-	
	best solution = current solution
	best-value = Objective function (best-solution
,	
	current value = best - value
1	for i in range (max-iterations):
	n/W-MMMCan = cus +
	random. uniform (-1,1)
	now-value = objective -function (new)
) ——	delta value = new-value - current-value
	Hew-Value - Current-Value
	if delta-value < 0 or vandom, vandor
	math exp (-dolta-value / current to)
	covert-solution = new-solution
	weigent - value = new-value
	it new value < best-value:
	best-solution = new-solution
	CL CL

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	best-value = new-value
	return best-solution, best-value
	best-relation, best-value = simulated - annealing(): print ("The best x: { }, It's corresponding f(x): {best-value}, Temparature: { tup?")
	OUTPUT:
= = = = = = = = = = = = = = = = = = = =	The best x: 0.0024631, It's corresponding $f(x) = 8.780101300 \times 10^{-6}$ Temperature: 1.86375 x 10 ⁻⁶ .
Jed 2	MAM