NOI2022 省选

DAY1

时间: 2023 年 4 月 1 日 08:30 ~ 2022 年 4 月 1 日 13:00

题目名称	火车站	城市建造	人员调度	
题目类型	传统型	传统型	传统型	
目录	station	cities	transfer	
可执行文件名	station	cities	transfer	
输入文件名	station.in	cities.in	transfer.in	
输出文件名	station.out	cities.out	transfer.out	
每个测试点时限	1.0 秒	1.0 秒	5.0 秒	
内存限制	512 MiB	512 MiB	512 MiB	
测试点数目	10	20	50	
测试点是否等分	是	是	是	

提交源程序文件名

对于 C++ 语言	station.cpp	cities.cpp	transfer.cpp
-----------	-------------	------------	--------------

编译选项

对于 C++ 语言	-O2 -std=c++14 -static
-----------	------------------------

注意事项 (请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @3.70GHz, 内存 32GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

火车站 (station)

【题目描述】

有 n 个火车站排成一条直线,从 1 到 n 编号。一共有 m 条火车轨道,每条轨道覆盖一段火车站区间 $[l_i, r_i]$ 。

对于一个被多条火车轨道覆盖的火车站,火车在经过这里的时候,可以在此处改变轨道。但是火车无法掉头,只能朝着一个方向运行(即只能一直往 1 的方向开或者一直往 n 的方向开)。

小 A 从火车站 x 出发,即搭上了经过 x 的任意一列火车(这列火车也可能是从车站 x 出发)。这列火车可能行驶在火车站 x 所处的任一条轨道上,其运行方向既可能是往 1 的方向开,也可能是往 n 的方向开。小 A 上车后就开始昏睡,直到乘坐的火车到达某条线路的终点站停下,他才醒过来。问小 A 最后可能到达的车站。

注意:火车应运行至少一个车站,且火车切换轨道后不会立刻停下来,而是会继续沿着当前轨道前进。

【输入格式】

从文件 station.in 中读入数据。

输入的第一行包含三个正整数 n, m, x,分别表示火车站的数量,火车轨道的数量以及小 A 初始的起点。

接下来 m 行,每行包含两个正整数 l_i, r_i ,表示一条火车轨道运行的区间。

【输出格式】

输出到文件 station.out 中。

输出一行,包含若干个用单个空格分隔的正整数,表示小 A 最后可能到达的车站,按照车站编号升序排序输出。

【样例1输入】

```
1
7
5
4

2
3
4

3
4
6

4
1
3

5
7

6
4
6
```

【样例1输出】

1 1 3 6 7

【样例1解释】

火车从车站 4 出发,沿着第一条轨道可以运行到终点 3,也可以接着沿第三条轨道运行到终点 1。

火车从车站 4 出发,沿着第二条轨道可以运行到终点 6,也可以在车站 5 换到第四条轨道运行到终点 7。

所以最终按顺序输出 1, 3, 6, 7。

【样例 2】

见选手目录下的 *station/station2.in* 与 *station/station2.ans*。

【样例 3】

见选手目录下的 *station/station3.in* 与 *station/station3.ans*。

【样例 4】

见选手目录下的 *station/station4.in* 与 *station/station4.ans*。

【数据范围】

对于所有的数据,保证 $1 \le n, m \le 2 \times 10^5$; $1 \le x \le n$; $1 \le l_i < r_i \le n$.

测试点	$n, m \leq$	特殊性质	
1	50		
2	50		
3		无	
4	5000		
5			
6	2×10^5	Λ	
7		A	
8			
9		无	
10			

特殊性质 A: 保证 x=1。

城市建造(cities)

【题目描述】

在这个国度里面有 n 座城市,一开始城市之间修有若干条双向道路,导致这些城市形成了 $t \ge 2$ 个连通块,特别的,这些连通块之间两两大小差的绝对值不超过 $0 \le k \le 1$ 。为了方便城市建设与发展,n 座城市中的某 t 座城市在这 t 座城市之间额外修建了至少一条双向道路,使得所有城市连通。

现在已经知道额外修建后的所有道路,你需要算出有哪些双向道路集合 E',满足这些道路有可能是后来额外修建的,请输出答案对 998,244,353 取模的结果。

即给定一张 n 个点 m 条边的**无向连通**图 G = (V, E),询问有多少该图的子图 G' = (V', E'),满足 $E' \neq \emptyset$ 且 G - E' 中恰好有 |V'| 个连通块,且任意两个连通块大小之差不超过 k,保证 0 < k < 1,请输出答案对 998,244,353 取模的结果。

【输入格式】

从文件 cities.in 中读入数据。

输入的第一行包含三个正整数 n, m, k,分别表示城市数、修建后的道路数以及任意两个连通块大小之差的上限。

接下来 m 行每行包含两个正整数 u,v,表示城市 u 和 v 之间存在一条双向道路,保证 $u\neq v$ 。

【输出格式】

输出到文件 cities.out 中。

输出一个数表示答案对 998,244,353 取模后的结果。

【样例1输入】

```
1
4
4
1

2
1
2

3
2
3

4
1
3

5
3
4
```

【样例1输出】

1 2

【样例1解释】

有以下两种情况:

- 本来只有(3,4)这一条道路,此时有三个连通块,分别为{1},{2},{3,4};后来城市1,2,3决定在他们三座城市中额外修建了(1,2),(2,3),(1,3)这三条道路,使得所有城市连通。
- 本来没有任何道路,此时有四个连通块,分别为 {1}, {2}, {3}, {4}; 后来城市 1,2,3,4 决定在他们四座城市中额外修建了 (1,2),(2,3),(1,3),(3,4) 这四条道路,使得所有城市连通。

【样例 2】

见选手目录下的 cities/cities2.in 与 cities/cities2.ans。

【样例 3】

见选手目录下的 cities/cities3.in 与 cities/cities3.ans。

【样例 4】

见选手目录下的 cities/cities4.in 与 cities/cities4.ans。

【数据范围】

对于所有的数据, 保证: $3 < n < 10^5$; $n - 1 < m < 2 \times 10^5$; 0 < k < 1.

测试点	n	m	k	
1,2	≤ 15	≤ 20	=0	
$3 \sim 5$	≤ 20	≤ 50	= 1	
6,7	≤ 200	≤ 300	=0	
8,9		= n - 1	= 1	
10, 11	$\leq 2,000$	< 2,000	=0	
12, 13		$\leq 3,000$	1	
14, 15		= n - 1	= 1	
16, 17	$\leq 10^5$	< 9 105	= 0	
$18 \sim 20$		$\leq 2 \times 10^5$	= 1	

人员调度 (transfer)

【题目描述】

众所周知,一个公司的 n 个部门可以组织成一个树形结构。形式化地,假设这些部门依次编号为 1,...,n,那么除了 1 号部门以外,第 $i \in [2,n]$ 个部门**有且仅有**一个上级部门 $p_i \in [1,i-1]$ 。这样,这家公司的 n 个部门可以视为一个以 1 为根的树。如果 i 是i 子树中的点,那么称部门 i 是部门 i 的子部门。

该公司初始时有 k 名优秀员工,编号依次为 $1 \dots k$ 。第 i 名优秀员工初始时在第 x_i 个部门工作,并且其有一个能力值 $v_i > 0$ 。

为了最大化公司的运作效率,公司老板 0///G 决定进行一些人员调动。具体来说,可以将编号为 i 的优秀员工调动到 x_i 的一个子部门,或者不调度(此时该员工在 x_i 部门)。随后,优秀员工们会在其所在的部门竞选部门领导——能力值最高者将担任这一职位,并给公司带来等同于其能力值的贡献。如果一个部门一个优秀员工也没有,那么就无法选出部门领导,从而对公司的贡献将是 0。此时,公司的业绩被定义为公司各部门的贡献之和。

公司老板 0/\/G 自然想知道,该如何进行人员调动,使公司的业绩最大?

这当然难不倒他,然而,公司优秀员工的数量也会发生变化;具体来说,会依次发生 m 个事件,每个事件形如:

1 x v: 先令 k = k + 1,然后新增一位编号为 k、初始部门为 x、能力值为 v 的优秀员工;

2 id: 编号为 id 的优秀员工将被辞退。

公司老板 $0/\/\$ る望你能在最开始和每个事件发生后,告诉他公司的业绩最大可能是多少?

注意,每次人员调动都是独立的,也就是每次计算公司的最大可能业绩时,每个优秀员工都会回到其所在的初始部门。

【输入格式】

从文件 transfer.in 中读入数据。

输入的第一行包含一个正整数 *sid*,表示该测试点对应的数据范围以及特殊性质,详见后表:

输入的第二行包含三个整数 n, k, m,分别表示部门数,初始优秀员工数和事件数。输入的第三行包含 n-1 个正整数 $p_2, ..., p_n$,表示每个部门的上级部门。

接下来 k 行,每行包含两个正整数 x_i, v_i ,表示优秀员工的初始部门和能力值。接下来 m 行,每行形如 1 x v 或 2 id 表示一次事件。

【输出格式】

输出到文件 transfer.out 中。

输出一行包含 m+1 个由单个空格隔开的非负整数,依次表示最开始和每个事件发生后,公司的业绩可能的最大值。

【样例1输入】

```
1
1

2
3
2
1

3
1
1

4
2
1

5
1
3

6
1
2
```

【样例1输出】

1 4 5

【样例 2】

见选手目录下的 transfer/transfer2.in 与 transfer/transfer2.ans。

【样例 3】

见选手目录下的 *transfer/transfer3.in* 与 *transfer/transfer3.ans*。

【样例 4】

见选手目录下的 *transfer/transfer4.in* 与 *transfer/transfer4.ans*。

【样例 5】

见选手目录下的 transfer/transfer5.in 与 transfer/transfer5.ans。

【样例 6】

见选手目录下的 *transfer/transfer6.in* 与 *transfer/transfer6.ans*。

【样例 7】

见选手目录下的 *transfer/transfer7.in* 与 *transfer/transfer7.ans*。

【样例 8】

见选手目录下的 *transfer/transfer8.in* 与 *transfer/transfer8.ans*。

【样例 9】

见选手目录下的 transfer/transfer9.in 与 transfer/transfer9.ans。

【样例 10】

见选手目录下的 transfer/transfer10.in 与 transfer/transfer10.ans。

【样例 11】

见选手目录下的 transfer/transfer11.in 与 transfer/transfer11.ans。

【样例 12】

见选手目录下的 transfer/transfer12.in 与 transfer/transfer12.ans。

【样例 13】

见选手目录下的 *transfer/transfer13.in* 与 *transfer/transfer13.ans*。

【样例 14】

见选手目录下的 *transfer/transfer14.in* 与 *transfer/transfer14.ans*。

【样例 15】

见选手目录下的 transfer/transfer15.in 与 transfer/transfer15.ans。

【数据范围】

对于所有的数据,保证: $1 \le sid \le 15$; $1 \le n, k \le 10^5$; $0 \le m \le 10^5$; $1 \le p_i < i$; $1 \le x_i, x \le n$; $1 \le v_i, v \le 10^5$;

对于事件 2, 保证: $1 \le id \le k$ 且编号为 id 的员工在此事件发生仍在工作。

测试点编号	sid	$n \leq$	$k \leq$	$m \leq$	特殊性质
1	1	6	6	6	无
2,3	2	9			
4,5	3	16	CC	66	
$6 \sim 8$	4	66	66		
$9 \sim 11$	5	2,333	2,333		
$12 \sim 14$	6	10^{5}	10^{5}		В
$15 \sim 18$	7				无
$19 \sim 21$	8	2,333	2,333	2,333	A
$22 \sim 24$	9	10^{5}	10^{5}	10^{5}	AB
$25 \sim 28$	10	10			A
$29 \sim 31$	11	2,333	2,333	2,333	无
$32 \sim 34$	12	10^{5}	10^{5}	10^{5}	С
$35 \sim 38$	13	10			В
$39 \sim 44$	14	66,666	66,666	66,666	无
$45 \sim 50$	15	10^{5}	10^{5}	10^{5}	

特殊性质 A: 无事件 2;

特殊性质 B: $p_i = i - 1$;

特殊性质 C: $v_i = v = 1$;