SUMMARY OF OUR DATA:

Nowadays, shopping malls and Big Marts keep track of individual item sales data in order to forecast future client demand and adjust inventory management. In a data warehouse, these data stores hold a significant amount of consumer information and particular item details.with help of these informations we can find out sales for a perticular item.there are total 8523 observations in this dataset.

Columns Descriptions of dataset:

- 1.Item_Identifier: -> This is the column of Unique product ID with respect to each item.
- 2.Item Weight: -> Weight of product
- 3.Item_Fat_Content: -> Whether the product is low fat or not
- 4.Item Visibility: -> The % of total display area of all products in a store allocated to the particular product
- 5.Item_Type: -> The category to which the product belongs
- 6.Item_MRP: -> Maximum Retail Price (list price) of the product
- 7.Outlet Identifier: -> Unique store ID
- 8.Outlet_Establishment_Year: -> The year in which store was established
- 9.Outlet Size: -> The size of the store in terms of ground area covered
- 10.Outlet_Location_Type: -> The type of city in which the store is located
- 11.0utlet_Type: -> Whether the outlet is just a grocery store or some sort of supermarket
- 12.Item Outlet Sales: -> Sales of the product in the particular store. This is the outcome variable to be predicted

In [2]:

```
# importing required libraries:
import pandas as pd
import numpy as np
import plotly.express as px
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [102]:

```
train_df=pd.read_csv("D:\Project\ineuron_project\Train.csv")
test_df=pd.read_csv("D:\Project\ineuron_project\Test.csv")
```

Basic Information of Dataset:

In [103]:

```
# first 5 rows in train dataset:
train_df.head()
```

Out[103]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	0
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	

In [104]:

```
# first 5 rows in test dataset:
test_df.head()
```

Out[104]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	0
0	FDW58	20.750	Low Fat	0.007565	Snack Foods	107.8622	OUT049	
1	FDW14	8.300	reg	0.038428	Dairy	87.3198	OUT017	
2	NCN55	14.600	Low Fat	0.099575	Others	241.7538	OUT010	
3	FDQ58	7.315	Low Fat	0.015388	Snack Foods	155.0340	OUT017	
4	FDY38	NaN	Regular	0.118599	Dairy	234.2300	OUT027	
4								

In [105]:

```
# shape of the traindataset and test dataset:
print("Shape of the train dataset is ",train_df.shape)
print("Shape of the test dataset is ",test_df.shape)
```

Shape of the train dataset is (8523, 12) Shape of the test dataset is (5681, 11)

```
train_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):
                                Non-Null Count Dtype
 #
    Column
---
                                -----
     Item_Identifier
                                              object
 0
                                8523 non-null
 1
    Item_Weight
                                7060 non-null float64
 2
     Item Fat Content
                                8523 non-null object
 3
     Item Visibility
                                8523 non-null float64
 4
    Item Type
                                8523 non-null object
 5
    Item MRP
                                8523 non-null
                                               float64
 6
     Outlet_Identifier
                                8523 non-null
                                               object
 7
     Outlet_Establishment_Year 8523 non-null
                                                int64
 8
     Outlet_Size
                                6113 non-null
                                                object
 9
                                8523 non-null
     Outlet_Location_Type
                                                object
 10
    Outlet_Type
                                8523 non-null
                                                object
                                8523 non-null
 11 Item_Outlet_Sales
                                                float64
dtypes: float64(4), int64(1), object(7)
memory usage: 799.2+ KB
In [107]:
test_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5681 entries, 0 to 5680
Data columns (total 11 columns):
    Column
 #
                                Non-Null Count Dtype
_ _ _
    _____
                                -----
 0
     Item_Identifier
                                5681 non-null
                                                object
 1
     Item Weight
                                4705 non-null
                                                float64
 2
     Item_Fat_Content
                                5681 non-null
                                                object
 3
     Item_Visibility
                                5681 non-null
                                                float64
 4
     Item_Type
                                5681 non-null
                                                object
 5
     Item MRP
                                5681 non-null
                                                float64
 6
     Outlet Identifier
                                5681 non-null
                                                object
 7
     Outlet_Establishment_Year 5681 non-null
                                                int64
 8
     Outlet_Size
                                4075 non-null
                                                object
     Outlet_Location_Type
 9
                                5681 non-null
                                                object
   Outlet_Type
                                5681 non-null
 10
                                                object
dtypes: float64(3), int64(1), object(7)
memory usage: 488.3+ KB
In [108]:
train_df.duplicated().sum()
Out[108]:
In [109]:
test_df.duplicated().sum()
Out[109]:
0
```

No duplicated rows with respect to train and test datasets.

In [106]:

In [110]:

train_df.isnull().sum()

Out[110]:

Item_Identifier 0 Item_Weight 1463 Item_Fat_Content 0 0 Item_Visibility Item_Type 0 Item_MRP 0 Outlet_Identifier 0 Outlet_Establishment_Year 0 Outlet_Size 2410 Outlet_Location_Type 0 Outlet_Type 0 Item_Outlet_Sales 0 dtype: int64

we can see here that in Item_Weight and Outlet_Size columns, there are missing values with respect to train and test dataset.

In [111]:

train_df.describe()

Out[111]:

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
count	7060.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.643456	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	8.773750	0.026989	93.826500	1987.000000	834.247400
50%	12.600000	0.053931	143.012800	1999.000000	1794.331000
75%	16.850000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

In [112]:

test_df.describe()

Out[112]:

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year
count	4705.000000	5681.000000	5681.000000	5681.000000
mean	12.695633	0.065684	141.023273	1997.828903
std	4.664849	0.051252	61.809091	8.372256
min	4.555000	0.000000	31.990000	1985.000000
25%	8.645000	0.027047	94.412000	1987.000000
50%	12.500000	0.054154	141.415400	1999.000000
75%	16.700000	0.093463	186.026600	2004.000000
max	21.350000	0.323637	266.588400	2009.000000

DATA ASSESSMENT:

• DIRTY-DATA:

- Item_Identifier -there is no quality issues.
- Item_Weight -there are missing values. completeness problem
- Item_Fat_Content -In some cell Low fat and regular are written as LF,low fat and reg respectively.
 consistency problem
- Item_Visibility -there is no quality issues.
- Item_Type -All good
- Item_MRP -all good
- Outlet_Identifier -all good
- Outlet_Establishment_Year -Datatype is int64.That's not right.
- Outlet_Size -there are missing values. completeness problem
- Outlet_Location_Type all good
- Outlet_Type all good
- Item_Outlet_Sales -all good

• MESSY DATA:

■ There is no messy data here

• EXTRA INFORMATION:

■ There is no duplicate row in this dataset.

DATA CLEANING:

1.completeness problem:

- · there are two columns having missing values.
 - one is Item_Weight
 - another is Outlet_Size

Experiments, coding and testing:

1.For Item_Weight column:

```
In [113]:
```

```
train_df['Item_Identifier']
```

Out[113]:

```
0
        FDA15
1
        DRC01
        FDN15
2
3
        FDX07
        NCD19
8518
        FDF22
```

DRG01

8519 FDS36 8520 NCJ29 8521 FDN46

Name: Item_Identifier, Length: 8523, dtype: object

In [114]:

```
train_df[train_df['Item_Identifier']=='FDN15']
```

Out[114]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier
2	FDN15	17.5	Low Fat	0.016760	Meat	141.618	OUT049
759	FDN15	17.5	Low Fat	0.028009	Meat	141.718	OUT010
4817	FDN15	17.5	Low Fat	0.016720	Meat	139.918	OUT013
5074	FDN15	17.5	Low Fat	0.016802	Meat	138.518	OUT018
6163	FDN15	17.5	Low Fat	0.016768	Meat	141.418	OUT045
6952	FDN15	NaN	Low Fat	0.029299	Meat	140.318	OUT019
8349	FDN15	NaN	Low Fat	0.016653	Meat	139.518	OUT027
				_			

In []:

In []:

In []:

```
In [ ]:
```

In []:

In [115]:

```
# before imputing distribution of the Item_Weight column :
plt.title("Distribution of Item_Weight Before Imputation")
sns.distplot(train_df['Item_Weight'])
plt.grid()
plt.show()
```


In [116]:

```
item_dic={}
for i in list(train_df['Item_Identifier'].unique()):
    item_dic[i]=round(train_df[train_df['Item_Identifier']==i]['Item_Weight'].mean(),2)
```

In [117]:

```
train_df['Item_Weight']=train_df['Item_Weight'].fillna('missing')
```

```
In [118]:
```

```
# coding
weight=[]
for i in range(len(train_df)):
    if train_df['Item_Weight'][i]=='missing':
        val=round(item_dic[train_df['Item_Identifier'][i]],2)
        weight.append(val)
    else:
        weight.append(train_df['Item_Weight'][i])
```

In []:

```
In [119]:
```

```
train_df.drop(columns=['Item_Weight'],inplace=True)
```

In [120]:

```
train_df.insert(1,"Item_Weight",weight)
```

In [121]:

```
# testing:
train_df['Item_Identifier']=='FDN15']
```

Out[121]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier
2	FDN15	17.5	Low Fat	0.016760	Meat	141.618	OUT049
759	FDN15	17.5	Low Fat	0.028009	Meat	141.718	OUT010
4817	FDN15	17.5	Low Fat	0.016720	Meat	139.918	OUT013
5074	FDN15	17.5	Low Fat	0.016802	Meat	138.518	OUT018
6163	FDN15	17.5	Low Fat	0.016768	Meat	141.418	OUT045
6952	FDN15	17.5	Low Fat	0.029299	Meat	140.318	OUT019
8349	FDN15	17.5	Low Fat	0.016653	Meat	139.518	OUT027
4		_					•

In [122]:

```
# After imputing distribution of the Item_Weight column :
plt.title("Distribution of Item_Weight After Imputation")
sns.distplot(train_df['Item_Weight'])
plt.grid()
plt.show()
```


In []:

For test dataset:

In [126]:

```
test_df[test_df['Item_Identifier']=='FDL58']
```

Out[126]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier
58	FDL58	NaN	Regular	0.129825	Snack Foods	263.2568	OUT019
3619	FDL58	NaN	Regular	0.073790	Snack Foods	265.0568	OUT027
4							•

```
In [127]:
```

```
item_dic={}
for i in list(test_df['Item_Identifier'].unique()):
    item_dic[i]=round(test_df[test_df['Item_Identifier']==i]['Item_Weight'].mean(),2)
```

In [128]:

```
test_df['Item_Weight']=test_df['Item_Weight'].fillna('missing')
```

In [129]:

```
test_df[test_df['Item_Identifier']=='FDY38']
```

Out[129]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier
4	FDY38	missing	Regular	0.118599	Dairy	234.23	OUT027
1327	FDY38	13.6	Regular	0.119176	Dairy	233.93	OUT046
3622	FDY38	13.6	reg	0.119154	Dairy	231.23	OUT035
4504	FDY38	13.6	Regular	0.119662	Dairy	233.63	OUT018

In [130]:

```
weight=[]
for i in range(len(test_df)):
    if test_df['Item_Weight'][i]=='missing':
        val=round(item_dic[test_df['Item_Identifier'][i]],2)
        weight.append(val)
    else:
        weight.append(test_df['Item_Weight'][i])
```

In [131]:

```
test_df.drop(columns=['Item_Weight'],inplace=True)
```

In [132]:

```
test_df.insert(1,"Item_Weight",weight)
```

In [133]:

```
test_df[test_df['Item_Identifier']=='FDY38']
```

Out[133]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier
4	FDY38	13.6	Regular	0.118599	Dairy	234.23	OUT027
1327	FDY38	13.6	Regular	0.119176	Dairy	233.93	OUT046
3622	FDY38	13.6	reg	0.119154	Dairy	231.23	OUT035
4504	FDY38	13.6	Regular	0.119662	Dairy	233.63	OUT018
4							•

In []:

2.For Outlet_Size column:

In [134]:

```
missing_no=train_df['Outlet_Size'].isnull().sum()
percentage=missing_no/len(train_df)
print(f"There is almost {round((percentage*100),2)}% missing value in our 'Outlet_Size'column.")
```

There is almost 28.28% missing value in our 'Outlet_Size'column.

We can't fill those missing values with most frquent values(mediumn) as there are more than 28% missing values in this columns.

In [135]:

```
train_df['Outlet_Size'].value_counts()
```

Out[135]:

Medium 2793 Small 2388 High 932

Name: Outlet_Size, dtype: int64

In [136]:

```
plt.title('Before Imputation Countplot of Outlet_Size column')
sns.countplot(train_df['Outlet_Size'])
plt.show()
```

Before Imputation Countplot of Outlet_Size column

In [137]:

```
# coding:
train_df['Outlet_Size']=train_df['Outlet_Size'].fillna('not_mentioned')
```

In [138]:

```
train_df['Outlet_Size'].value_counts()
```

Out[138]:

Medium 2793 not_mentioned 2410 Small 2388 High 932

Name: Outlet_Size, dtype: int64

In [139]:

```
#after filling the missing values with a constant 'not_mentioned',our columns looks like :
plt.title("After filling Missing value")
sns.countplot(train_df['Outlet_Size'])
plt.show()
```


In [140]:

```
# testing:
train_df['Outlet_Size'].isnull().sum()
```

Out[140]:

0

In [141]:

```
train_df.isnull().sum()
```

Out[141]:

```
Item Identifier
Item_Weight
                              4
Item_Fat_Content
                              0
Item_Visibility
                              0
Item_Type
                              0
Item_MRP
                              0
Outlet_Identifier
                              0
                              0
Outlet_Establishment_Year
                              0
Outlet_Size
                              0
Outlet_Location_Type
                              0
Outlet_Type
Item_Outlet_Sales
dtype: int64
```

In [142]:

```
train_df.head()
```

Out[142]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	0
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	
4								

Solutions:

- for Item_Weight column ,an interesting thing has been spotted. Actually this column totally depends on Item_Identifier and Item_Type columns. So in this case , I have done column transformation.
- for Outlet_Size column, we see that there is 28.3% data is missing. So we have created a new category not_mentioned in place of missing values. Basically we have done 'Missing-Category imputation'.

2.Consistency problem:

we have a column Item_Fat_Content where In some cell Low fat and regular are written as LF,low fat and reg respectively.

In [143]:

```
# Experiments:
train_df['Item_Fat_Content'].unique()

Out[143]:
array(['Low Fat', 'Regular', 'low fat', 'LF', 'reg'], dtype=object)

In [144]:
#coding:
train_df['Item_Fat_Content']=train_df['Item_Fat_Content'].map({'Low Fat':'Low Fat', 'Regular':'Regular':'Regular':'LF':'Low Fat', 'reg':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Regular':'Re
```

```
In [145]:
# testing
train_df['Item_Fat_Content'].unique()
Out[145]:
array(['Low Fat', 'Regular'], dtype=object)
For test dataset:
In [146]:
# Experiments:
test_df['Item_Fat_Content'].unique()
Out[146]:
array(['Low Fat', 'reg', 'Regular', 'LF', 'low fat'], dtype=object)
In [147]:
#coding:
test_df['Item_Fat_Content']=test_df['Item_Fat_Content'].map({'Low Fat':'Low Fat','Regular':'Regular'
                                                       'LF':'Low Fat','reg':'Regular'})
In [148]:
# testing
train_df['Item_Fat_Content'].unique()
Out[148]:
array(['Low Fat', 'Regular'], dtype=object)
SOLUTION:

    We have replaced with Low Fat and Regular respectively.

In [149]:
train df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):
                                 Non-Null Count Dtype
 #
     Column
---
 0
     Item_Identifier
                                                 object
                                 8523 non-null
 1
     Item_Weight
                                 8519 non-null
                                                 float64
 2
     Item_Fat_Content
                                 8523 non-null
                                                 object
 3
                                 8523 non-null
                                                 float64
     Item_Visibility
     Item_Type
 4
                                 8523 non-null
                                                 object
 5
     Item_MRP
                                 8523 non-null
                                                 float64
 6
     Outlet_Identifier
                                 8523 non-null
                                                 object
 7
     Outlet_Establishment_Year 8523 non-null
                                                 int64
 8
     Outlet_Size
                                 8523 non-null
                                                 object
     Outlet_Location_Type
 9
                                 8523 non-null
                                                 object
 10
     Outlet_Type
                                 8523 non-null
                                                 object
                                 8523 non-null
    Item_Outlet_Sales
                                                 float64
dtypes: float64(4), int64(1), object(7)
memory usage: 799.2+ KB
```

As we have 4 rows with nan values , we simply drop them from dataset.

In [150]:

train_df=train_df.dropna()

In [151]:

train_df

Out[151]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier
0	FDA15	9.300	Low Fat	0.016047	Dairy	249.8092	OUT049
1	DRC01	5.920	Regular	0.019278	Soft Drinks	48.2692	OUT018
2	FDN15	17.500	Low Fat	0.016760	Meat	141.6180	OUT049
3	FDX07	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010
4	NCD19	8.930	Low Fat	0.000000	Household	53.8614	OUT013
8518	FDF22	6.865	Low Fat	0.056783	Snack Foods	214.5218	OUT013
8519	FDS36	8.380	Regular	0.046982	Baking Goods	108.1570	OUT045
8520	NCJ29	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	OUT035
8521	FDN46	7.210	Regular	0.145221	Snack Foods	103.1332	OUT018
8522	DRG01	14.800	Low Fat	0.044878	Soft Drinks	75.4670	OUT046

8519 rows × 12 columns

```
In [152]:
train_df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 8519 entries, 0 to 8522
Data columns (total 12 columns):
 #
    Column
                               Non-Null Count Dtype
---
                                -----
     Item_Identifier
 0
                               8519 non-null
                                              object
    Item_Weight
                               8519 non-null
                                              float64
 1
 2
     Item Fat Content
                               8519 non-null
                                              object
 3
    Item_Visibility
                               8519 non-null
                                              float64
 4
                               8519 non-null
                                              obiect
    Item Type
 5
    Item_MRP
                               8519 non-null
                                              float64
    Outlet_Identifier
                               8519 non-null
                                               object
 6
 7
     Outlet_Establishment_Year 8519 non-null
                                               int64
 8
     Outlet_Size
                               8519 non-null
                                               object
 9
     Outlet_Location_Type
                               8519 non-null
                                               object
                               8519 non-null
 10 Outlet_Type
                                               object
 11 Item_Outlet_Sales
                               8519 non-null
                                               float64
dtypes: float64(4), int64(1), object(7)
memory usage: 865.2+ KB
In [4]:
train_df.isnull().sum()
Out[4]:
Item_Identifier
Item Weight
                             0
Item_Fat_Content
                             0
                             0
Item_Visibility
                             0
Item_Type
Item_MRP
Outlet Identifier
Outlet_Establishment_Year
                            0
```

In [154]:

Outlet_Size

Outlet_Type

dtype: int64

Outlet_Location_Type

Item Outlet Sales

```
## saving the dataset in folder:
#train_df.to_csv('cleantrain.csv',index=False)
#test_df.to_csv('cleantest.csv',index=False)
```

0

0

0

0

In [54]:

train_df=pd.read_csv(r"D:\Project\ineuron_project\process_dataset\cleantrain.csv")
train_df

Out[54]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier		
0	FDA15	9.300	Low Fat	0.016047	Dairy	249.8092	OUT049		
1	DRC01	5.920	Regular	0.019278	Soft Drinks	48.2692	OUT018		
2	FDN15	17.500	Low Fat	0.016760	Meat	141.6180	OUT049		
3	FDX07	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010		
4	NCD19	8.930	Low Fat	0.000000	Household	53.8614	OUT013		
8514	FDF22	6.865	Low Fat	0.056783	Snack Foods	214.5218	OUT013		
8515	FDS36	8.380	Regular	0.046982	Baking Goods	108.1570	OUT045		
8516	NCJ29	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	OUT035		
8517	FDN46	7.210	Regular	0.145221	Snack Foods	103.1332	OUT018		
8518	DRG01	14.800	Low Fat	0.044878	Soft Drinks	75.4670	OUT046		
8519 rows × 12 columns									
4							•		

Data cleaning part is done . Now we are ready for EDA on top of train dataset.

EXPLORATORY DATA ANALYSIS and FEATURE ENGINEERING:

We are going to devide columnns as numerical and categorical.

In [55]:

```
#for numerical columns:
num_cols=[col for col in train_df.columns if train_df[col].dtypes!='0']
num_cols
```

Out[55]:

```
['Item_Weight',
  'Item_Visibility',
  'Item_MRP',
  'Outlet_Establishment_Year',
  'Item_Outlet_Sales']
```

```
In [56]:
# for categorical columns:
cat_cols=[col for col in train_df.columns if train_df[col].dtypes=='0']
cat_cols
Out[56]:
['Item_Identifier',
 'Item_Fat_Content',
 'Item_Type',
 'Outlet_Identifier',
 'Outlet_Size',
 'Outlet_Location_Type',
 'Outlet_Type']
FOR NUMERICAL COLUMNS:
In [57]:
num_cols
Out[57]:
['Item_Weight',
 'Item_Visibility',
 'Item_MRP',
 'Outlet_Establishment_Year',
 'Item_Outlet_Sales']
In [9]:
In [47]:
train_df.corr()
Out[47]:
```

	item_weight	item_visibility	Item_MRP	Outlet_Establishment_Year	item_Outlet_t
Item_Weight	1.000000	-0.009168	0.025978	-0.013430	0.33
Item_Visibility	-0.009168	1.000000	-0.001155	-0.074325	-0.22
Item_MRP	0.025978	-0.001155	1.000000	0.004599	0.66
Outlet_Establishment_Year	-0.013430	-0.074325	0.004599	1.000000	-0.04
Item_Outlet_Sales	0.331650	-0.228297	0.667803	-0.049083	1.00

In [48]:

```
sns.heatmap(train_df.corr(),annot=True)
plt.show()
```


converting the Outlet_Establishment_Year column into outlet_Age column:

In [58]:

```
train_df['Outlet_Establishment_Year']=2023-train_df['Outlet_Establishment_Year']
```

In [59]:

```
train_df.rename(columns={'Outlet_Establishment_Year':'Outlet_Age'},inplace=True)
```

In [60]:

train_df.head(4)

Out[60]:

_ldentifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Age
FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	24
DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	14
FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	24
FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	25
4							•

After Converting correlation and heatmap:

In [63]:

train_df.corr()

Out[63]:

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Age	Item_Outlet_Sales
Item_Weight	1.000000	-0.009168	0.025978	0.013430	0.331650
Item_Visibility	-0.009168	1.000000	-0.001155	0.074325	-0.228297
Item_MRP	0.025978	-0.001155	1.000000	-0.004599	0.667803
Outlet_Age	0.013430	0.074325	-0.004599	1.000000	0.159083
Item_Outlet_Sales	0.331650	-0.228297	0.667803	0.159083	1.000000

In [64]:

```
sns.heatmap(train_df.corr(),annot=True)
plt.show()
```


In [67]:

```
num_cols=[col for col in train_df.columns if train_df[col].dtypes!='0']
num_cols
```

Out[67]:

```
['Item_Weight',
  'Item_Visibility',
  'Item_MRP',
  'Outlet_Age',
  'Item_Outlet_Sales']
```

In []:

In [169]:

In []:

In [68]:

```
plt.figure(figsize=(12,8))
plt.suptitle('BOXPLOT OF FOUR NUMERICAL COLUMNS :',fontweight='bold')
ax1=plt.subplot(2,2,1)
sns.boxplot(train_df['Item_Weight'],ax=ax1)

ax2=plt.subplot(2,2,2)
sns.boxplot(train_df['Item_Visibility'],ax=ax2)

ax3=plt.subplot(2,2,3)
sns.boxplot(train_df['Item_MRP'],ax=ax3)
ax4=plt.subplot(2,2,4)
sns.boxplot(train_df['Outlet_Age'],ax=ax4)
plt.show()
```

BOXPLOT OF FOUR NUMERICAL COLUMNS:

In [69]:

```
plt.figure(figsize=(12,8))
plt.suptitle('DISTRIBUTION OF FOUR NUMERICAL COLUMNS :',fontweight='bold')
ax1=plt.subplot(2,2,1)
sns.distplot(train_df['Item_Weight'],ax=ax1,color='green')
ax1.grid()

ax2=plt.subplot(2,2,2)
sns.distplot(train_df['Item_Visibility'],ax=ax2,color='green')
ax2.grid()
ax3=plt.subplot(2,2,3)
sns.distplot(train_df['Item_MRP'],ax=ax3,color='green')
ax3.grid()
ax4=plt.subplot(2,2,4)
sns.distplot(train_df['Outlet_Age'],ax=ax4,color='green')
ax3.grid()
plt.show()
```

DISTRIBUTION OF FOUR NUMERICAL COLUMNS:

In [70]:

```
sns.pairplot(train_df)
plt.show()
```


In []:

OBSERVATION FOR NUMERICAL COLUMNS:

- 1.ln Item_Visibility ,there are outliers.
- 2. These four columns are not normally distributed. Need to do power transformation.
- 3.Except Item_MRP column, there is no such relationship between other numerical columns and our label column.

FOR CATEGORICAL COLUMNS:

```
In [175]:
cat_cols
Out[175]:
['Item_Identifier',
 'Item_Fat_Content',
 'Item_Type',
 'Outlet_Identifier',
 'Outlet_Size',
 'Outlet_Location_Type',
 'Outlet_Type']
In [176]:
train_df[cat_cols].describe().T
```

Out[176]:

	count	unique	top	freq
Item_Identifier	8519	1555	FDG33	10
Item_Fat_Content	8519	2	Low Fat	5516
Item_Type	8519	16	Fruits and Vegetables	1232
Outlet_Identifier	8519	10	OUT013	932
Outlet_Size	8519	4	Medium	2790
Outlet_Location_Type	8519	3	Tier 3	3347
Outlet_Type	8519	4	Supermarket Type1	5577

Item_Identifier -column:

return x[:2]

```
In [177]:
```

```
train_df['Item_Identifier']
Out[177]:
0
        FDA15
1
        DRC01
        FDN15
2
3
        FDX07
4
        NCD19
8514
        FDF22
8515
        FDS36
        NCJ29
8516
8517
        FDN46
Name: Item_Identifier, Length: 8519, dtype: object
In [178]:
def code(x):
```

In [179]:

```
train_df['Item_Identifier']=train_df['Item_Identifier'].apply(code)
```

In [188]:

COUNT PLOT AND PIE CHART OF THE "Item_Identifier" COLUMN:

Item_Fat_Content -column :

In [99]:

```
dfc['Item_Fat_Content'].value_counts()
```

Out[99]:

Low Fat 5516 Regular 3003

Name: Item_Fat_Content, dtype: int64

In [189]:

COUNT PLOT AND PIE CHART OF THE "Item_Fat_Content" COLUMN:

Item_Type -column:

In [71]:

```
plt.figure(figsize=(12,5))
plt.suptitle('COUNT PLOT AND PIE CHART OF THE "Item_Type" COLUMN :',fontweight='bold')

categories=train_df['Item_Type'].unique()
ax1=plt.subplot(1,2,1)
ax1.set_title('Count-Plot')
ax1.set_title('Count-Plot')
ax1.set_xticklabels(categories,rotation=45, ha='right')

sns.countplot(train_df['Item_Type'],palette='cool')

ax2=plt.subplot(1,2,2)
ax2.set_title('Pie-Chart')
train_df['Item_Type'].value_counts().plot(kind='pie',autopct='%0.1f%')
plt.show()
```

COUNT PLOT AND PIE CHART OF THE "Item_Type" COLUMN:

In [196]:

cat_cols

Out[196]:

```
['Item_Identifier',
  'Item_Fat_Content',
  'Item_Type',
  'Outlet_Identifier',
  'Outlet_Size',
  'Outlet_Location_Type',
  'Outlet_Type']
```

In [72]:

```
plt.figure(figsize=(12,5))
plt.suptitle('COUNT PLOT AND PIE CHART OF THE "Outlet_Identifier" COLUMN :',fontweight='bold')

categories=train_df['Outlet_Identifier'].unique()
ax1=plt.subplot(1,2,1)
ax1.set_title('Count-Plot')
sns.countplot(train_df['Outlet_Identifier'],palette='cool')
ax1.set_xticklabels(categories,rotation=45, ha='right')

ax2=plt.subplot(1,2,2)
ax2.set_title('Pie-Chart')
train_df['Outlet_Identifier'].value_counts().plot(kind='pie',autopct='%0.1f%%')
plt.show()
```

COUNT PLOT AND PIE CHART OF THE "Outlet_Identifier" COLUMN :

In [73]:

```
train_df['Outlet_Identifier'].value_counts()
```

Out[73]:

```
OUT013
          932
OUT027
          932
0UT049
          930
0UT046
          930
0UT035
          930
0UT045
          929
OUT018
          928
0UT017
          926
OUT010
          555
OUT019
          527
Name: Outlet_Identifier, dtype: int64
```

In []:

In [202]:

```
plt.figure(figsize=(12,5))
plt.suptitle('COUNT PLOT AND PIE CHART OF THE "Outlet_Size" COLUMN :',fontweight='bold')
ax1=plt.subplot(1,2,1)
ax1.set_title('Count-Plot')
sns.countplot(train_df['Outlet_Size'],palette='cool')
ax2=plt.subplot(1,2,2)
ax2.set_title('Pie-Chart')
train_df['Outlet_Size'].value_counts().plot(kind='pie',autopct='%0.1f%%')
plt.show()
```

COUNT PLOT AND PIE CHART OF THE "Outlet_Size" COLUMN:

In [203]:

```
plt.figure(figsize=(12,5))
plt.suptitle('COUNT PLOT AND PIE CHART OF THE "Outlet_Location_Type" COLUMN :',fontweight='bold')
ax1=plt.subplot(1,2,1)
ax1.set_title('Count-Plot')
sns.countplot(train_df['Outlet_Location_Type'],palette='cool')
ax2=plt.subplot(1,2,2)
ax2.set_title('Pie-Chart')
train_df['Outlet_Location_Type'].value_counts().plot(kind='pie',autopct='%0.1f%%')
plt.show()
```

COUNT PLOT AND PIE CHART OF THE "Outlet_Location_Type" COLUMN:

In [74]:

```
plt.figure(figsize=(12,5))
plt.suptitle('COUNT PLOT AND PIE CHART OF THE "Outlet_Type" COLUMN :',fontweight='bold')

categories=train_df['Outlet_Type'].unique()
ax1=plt.subplot(1,2,1)
ax1.set_title('Count-Plot')
sns.countplot(train_df['Outlet_Type'],palette='cool')
ax1.set_xticklabels(categories,rotation=45, ha='right')

ax2=plt.subplot(1,2,2)
ax2.set_title('Pie-Chart')
train_df['Outlet_Type'].value_counts().plot(kind='pie',autopct='%0.1f%%')
plt.show()
```

COUNT PLOT AND PIE CHART OF THE "Outlet_Type" COLUMN:

In []:

In [75]:

train_df.head(3)

Out[75]:

n_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Age	Outlet_Size
9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	24	Medium
5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	14	Medium
17.50	Low Fat	0.016760	Meat	141.6180	OUT049	24	Medium
4							

In [103]:

```
plt.title("Total sales for each Outlet_Type :",fontweight='bold')
train_df.groupby(['Outlet_Type']).sum()['Item_Outlet_Sales'].plot(kind='bar',color='black')
plt.show()
```


In [85]:

```
train_df.groupby(['Outlet_Type']).sum()['Item_Outlet_Sales'].round(2)
```

Out[85]:

Outlet_Type

Grocery Store 367913.76 Supermarket Type1 12917342.26 Supermarket Type2 1851822.83 Supermarket Type3 3444468.36

Name: Item_Outlet_Sales, dtype: float64

In [102]:

```
plt.title("Total sales for each Item_Fat_Content :",fontweight='bold')
train_df.groupby(['Item_Fat_Content']).sum()['Item_Outlet_Sales'].plot(kind='bar',color='black')
plt.show()
```


In [88]:

```
train_df.groupby(['Item_Fat_Content']).sum()['Item_Outlet_Sales'].round(2)
```

Out[88]:

Item_Fat_Content
Low Fat 11899660.30
Regular 6681886.91

Name: Item_Outlet_Sales, dtype: float64

In [101]:

```
plt.title("Total sales for each Item_Type :",fontweight='bold')
train_df.groupby(['Item_Type']).sum()['Item_Outlet_Sales'].plot(kind='bar',color='black')
plt.show()
```


In [93]:

```
train_df.groupby(['Item_Type']).sum()['Item_Outlet_Sales'].round(2)
```

Out[93]:

In [100]:

```
plt.title("Total sales for each Outlet_Size :",fontweight='bold')
train_df.groupby(['Outlet_Size']).sum()['Item_Outlet_Sales'].plot(kind='bar',color='black')
plt.show()
```


In [96]:

```
train_df.groupby(['Outlet_Size']).sum()['Item_Outlet_Sales'].round(2)
```

Out[96]:

Outlet_Size

High 2142663.58 Medium 7480261.00 Small 4566091.69 not_mentioned 4392530.94

Name: Item_Outlet_Sales, dtype: float64

In [99]:

```
plt.title("Total sales for each Outlet_Location_Type :",fontweight='bold')
train_df.groupby(['Outlet_Location_Type']).sum()['Item_Outlet_Sales'].plot(kind='bar',color='black'
plt.show()
```


In [98]:

```
train_df.groupby(['Outlet_Location_Type']).sum()['Item_Outlet_Sales'].round(2)
```

Out[98]:

Name: Item_Outlet_Sales, dtype: float64

In []:

In [208]:

#train_df.to_csv('train_cleaned.csv',index=False)