CS 188: Artificial Intelligence

Markov Decision Processes

Instructor: Stuart Russell and Dawn Song

University of California, Berkeley

Recap: Markov Decision Process (MDP)

What is a Markov Decision Process?

Andrey Markov (1856-1922)

Recap: Markov Decision Process (MDP)

- What is a Markov Decision Process?
 - State transition model is markov
 - Utility function is additive discounted rewards
- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition model *T*(*s*, *a*, *s'*)
 - Probability that α from s leads to s', i.e., $P(s' \mid s, \alpha)$
 - A reward function R(s, a, s') for each transition
 - A start state
 - Possibly a terminal state (or absorbing state)
 - Utility function which is additive discounted rewards

$$U_h([s_0, a_0, s_1, a_1, s_2, \ldots]) = R(s_0, a_0, s_1) + \gamma R(s_1, a_1, s_2) + \gamma^2 R(s_2, a_2, s_3) + \cdots$$

where $\gamma \in [0,1]$ is the *discount factor*

Andrey Markov (1856-1922)

Recap: Policies

What is a policy?

Recap: Policies

• A policy π gives an action for each state, $\pi: S \to A$

• For MDPs, we want an optimal **policy** $\pi^*: S \to A$

An optimal policy maximizes expected utility

Recap: Utilities of Sequences

Recap: Stationary Preferences

Theorem: if we assume stationary preferences:

$$[s_0, a_0, s_1, a_1, s_2, \dots] > [s'_0, a'_0, s'_1, a'_1, s'_2, \dots], s_0 = s'_0, a_0 = a'_0, \text{ and } s_1 = s'_1, s'_2, \dots]$$

$$\iff [s_1, a_1, s_2, \dots] > [s'_1, a'_1, s'_2, \dots].$$

then there is only one way to define utilities:

• Additive discounted utility:

$$U_h([s_0, a_0, s_1, a_1, s_2, \ldots]) = R(s_0, a_0, s_1) + \gamma R(s_1, a_1, s_2) + \gamma^2 R(s_2, a_2, s_3) + \cdots$$

where $\gamma \in [0,1]$ is the *discount factor*

Discounting

Worth V^2r in two steps

- Discounting conveniently solves the problem of infinite reward streams!
 - Geometric series: $1 + \gamma + \gamma^2 + ... = 1/(1 \gamma)$
 - Assume rewards bounded by $\pm R_{\text{max}}$
 - Then $r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$ is bounded by $\pm R_{\text{max}}/(1 \gamma)$
- (Another solution: environment contains a terminal state; and agent reaches it with probability 1)

Quiz: Discounting

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For γ = 0.1, what is the optimal policy?

• Quiz 3: For which γ are West and East equally good when in state d?

The utility of a policy

- Executing a policy π from any state s_0 generates a sequence s_0 , $\pi(s_0)$, s_1 , $\pi(s_1)$, s_2 , ...
- This corresponds to a sequence of rewards $R(s_0, \pi(s_0), s_1), R(s_1, \pi(s_1), s_2), ...$
- This reward sequence happens with probability

$$P(s_1 | s_0, \pi(s_0)) \times P(s_2 | s_1, \pi(s_1)) \times ...$$

- The value (expected utility) of π in s_0 is written $U^{\pi}(s_0)$
 - It's the sum over all possible state sequences of (discounted sum of rewards) x (probability of state sequence)

$$U^{\pi}(s_0) = E\left[\sum_{t=0}^{\infty} \gamma^t R(S_t, \pi(S_t), S_{t+1})\right]$$

Optimal Quantities

- The optimal policy: $\pi^*(s)$ = optimal action from state s
 - Gives highest $U^{\pi}(s)$ for any π
- The value (utility) of a state s:
 U*(s) = Uπ*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility of taking action a in state s and (thereafter) acting optimally
 U*(s) ? Q*(s,a)

Optimal Quantities

- The optimal policy:
 - $\pi^*(s)$ = optimal action from state s Gives highest $U^{\pi}(s)$ for any π
- The value (utility) of a state s:
 U*(s) = Uπ*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility of taking action a in state s and (thereafter) acting optimally
 U*(s) = max_aQ*(s,a)

Bellman equations (Shapley, 1953)

- The value/utility of a state is
 - The expected reward for the next transition plus the discounted value/utility of the next state, assuming the agent chooses the optimal action
- Hence we have a recursive definition of value (Bellman equation):

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$$

Similarly, Bellman equation for Q-functions

$$Q(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma U(s')]$$

= $\sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q(s',a')]$

Solving MDPs

Value iteration

Policy iteration

Value Iteration

Value Iteration

- Start with (say) $U_0(s) = 0$ and some termination parameter ε
- Repeat until convergence (i.e., until all updates smaller than ε)
 - Do a *Bellman update* (essentially one ply of expectimax) from each state:

$$U_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s' \mid a,s) \left[R(s,a,s') + \gamma U_{k}(s') \right]$$

Theorem: will converge to unique optimal values

- Runtime per iteration?
 - Complexity of each iteration: O(S²A)

$$U_{i+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) [R(s, a, s') + \gamma U_i(s')],$$

○ ○ ○ Gridworld Display				
	0.00	0.00	0.00	0.00
	0.00		0.00	0.00
	0.00	0.00	0.00	0.00
VALUES AFTER 0 ITERATIONS				

$$k=1$$

$$U_{i+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) [R(s, a, s') + \gamma U_i(s')],$$

