Assigment 2

Desirée Gijón Gómez Student id: drf623

January 25, 2021

Problem 1 Let H be an infinite dimensional separable Hilbert space with orthonormal basis $(e_n)_{n\geq 1}$. Set $f_N=N^{-1}\sum_{n=1}^{N^2}e_n$, for all $N\geq 1$.

a) Show that $f_N \to 0$ weakly, as $N \to \infty$, while $||f_N|| = 1$, for all

By HW4 2a) $f_N \to 0$ weakly, as $N \to \infty$, if and only if for any linear functional $\phi \in H^*$, $\phi(f_N) \to 0$ in K. But as H is a Hilbert space, by the Riesz representation theorem any linear functional is given by $\phi_z(x) = \langle x, z \rangle$ for some unique $z \in H$. So we need to show that $\langle f_N, z \rangle \to 0$ in \mathbb{K} as $N \to \infty$:

$$|f_N, z| = \left| \langle N^{-1} \sum_{n=1}^{N^2} e_n, z \rangle \right| =$$

$$= N^{-1} \sum_{n=1}^{N^2} |\langle e_n, z \rangle| \le N^{-1} \sum_{n=1}^{\infty} |\langle e_n, z \rangle| \le$$

$$\le^* N^{-1} ||z||^2 \to 0$$

where in (*) we have used Bessel's inequality: $\sum_{n=1}^{\infty} |\langle e_n, z \rangle| \leq ||z||^2$.

And by orthonormality of $(e_n)_{n\geq 1}$: $||f_n||^2=\frac{\overbrace{1+\cdots+1}}{N^2}=1.$

Let K be the norm closure of $co\{f_N : N \ge 1\}$.

b) Argue that K is weakly compact, and that $0 \in K$.

We know that $co(\{f_N\})$ is convex, so by Theorem 5.7 $\overline{co(\{f_n\})}^{\|\cdot\|} = \overline{co(\{f_N\})}^{\tau_\omega}$ On the other hand, H is reflexive by Proposition 2.10, so by Theorem 5.9 in H

 $\tau_{\omega} = \tau_{\omega^*}$ in H (τ_{ω^*} as H can be seen as the dual of H^*). As $||f_N|| = 1$ and B(0,1) is convex in H, $\operatorname{co}(\{f_N\}) \subset \bar{B}(0,1)$. By Alouglu's theorem, $\bar{B}(0,1)$ is compact in ω^* topology, so K is compact in τ_{ω^*} (cosed subset of a compact subspace), and hence compact in τ_{ω} .

By $HW5\ Pb\ 1$), as $f_N \to 0$ weakly there exists a sequence $(y_n)_{n\geq 1}\subset$ $\operatorname{co}(\{f_N\})$ such that $(y_n) \to 0$ in norm. i.e, $0 \in \overline{\operatorname{co}(\{f_n\})}^{\|\cdot\|} = K$.

c) Show that 0, as well as each $f_N, N \ge 1$, are extreme points in K.

The elements of $\operatorname{co}(\{f_N\})$ are of the form $\sum_{N=1}^M \alpha_N f_N$ with $0 \le \alpha_N$ and $\sum_{N=1}^M \alpha_N = 1$ for some $M \in \mathbb{N}$. Making some computations we can rewrite them as $\sum_{N=0}^{M} (\sum_{j=N+1}^{M^2} \frac{\alpha_j}{j}) (e_{N^2+1} + \cdots e_{(N+1)^2})$. In particular, the elements $\sum_{j=N+1}^{M} \frac{\alpha_j}{j} (e_{N^2+1} + \cdots e_{(N+1)^2})$.

a them explify!

of $co(\{f_N\})$ have non-negative coordinates in the base (e_n) , so the elements of K, being limits of sequences of them, have also non negative coordinates.

With that remark, we notice 0 is an extreme point: if we have $x, y \in K$ and $0 < \alpha < 1$ such that $0 = \alpha x + (1 - \alpha)y$, then coordinate-wise we also have that equality, but $\alpha x, (1 - \alpha)y \ge 0$ implies $x_i = y_i = 0$ for each coordinate, so x = y = 0.

With respect to f_N , we notice that $||f_N|| = 1$ and $K \subset \bar{B}(0,1)$, so if we have $x, y \in K$ and $0 < \alpha < 1$ such that $f_N = \alpha x + (1 - \alpha)y$ then

$$1 = ||f_N|| = ||\alpha x + (1 - \alpha)y|| \le^* \alpha ||x|| + (1 - \alpha)||y|| \le^{**} \alpha 1 + (1 - \alpha)1 = 1$$

so all the inequalities turn to equalities. The equality in (**) proves that ||x|| = ||y|| = 1, and the equality in (*) proves that αx and $(1 - \alpha)y$ are proportional, so you have for some a > 0 (as x and y have non-negative coordinates, a must be also non negative):

$$(1 - \alpha)y = a\alpha x,$$

$$(1 - \alpha)||y|| = a\alpha||x||,$$

$$(1 - \alpha) = a\alpha$$

$$a = \frac{(1 - \alpha)}{\alpha}.$$

Hence,

$$(1 - \alpha)y = \frac{(1 - \alpha)}{\alpha}\alpha x = (1 - \alpha)x$$

so x = y and then f_N is extreme point.

d) Are there any other extreme points in K? Justify your answer. (An answer without justification will not be given any credit.)

By applying Theorem 7.9, as K is weakly compact and $\{f_N\}$ is a subset of K verifying $K = \overline{\operatorname{co}(\{f_N\})}^{\tau_\omega}$ we get $\operatorname{Ext}(K) \subset \overline{(\{f_N\})}^{\tau_\omega}$, and $\overline{(\{f_N\})}^{\tau_\omega} = \{f_N\} \cup \{0\}$ as 0 is the weak limit of (f_N) . So $\{f_N\} \cup \{0\}$ are the only extreme points.

more (weak) accomplation points of Efulnesing?

Problem 2 Let X and Y be infinite dimensional Banach spaces.

a) Let $T \in \mathcal{L}(X,Y)$. For a sequence $(x_n)_{n\geq 1}$ in X and $x \in X$, show that $x_n \to x$ weakly, as $n \to \infty$, implies that $Tx_n \to Tx$ weakly, as $n \to \infty$.

We have $Tx_n \to T_x$ weakly if and only if for all $\phi \in Y^*$ $\phi(Tx_x) \to \phi(Tx)$. So let $\phi \in Y^*$. As $T: X \to Y$ is continuous $\phi T \in X^*$. So by continuity $\phi Tx_n \to \phi Tx$.

Careful, you are not proving this, you are using this fact.

b) Let $T \in \mathcal{K}(X,Y)$. For a sequence $(x_n)_{n\geq 1}$ in X and $x \in X$, show that $x_n \to x$ weakly, as $n \to \infty$, implies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$.

We will prove $Tx_n \to Tx$ in norm if and only if every subsequence of (Tx_n) has a further subsequence which converges to Tx in norm. So let's take a subsequence of Tx_n (we will refer to it as (Tx_n)). This only makes it have to read...

By Proposition 8.2 T is a compact operator if and only if every bounded sequence (z_n) has a subsequence (z_{k_n}) such that Tz_{k_n} converges in Y. So given our subsequence Tx_n let's consider the sequence x_n . As $x_n \to x$ weakly, by HW4 P2b (x_n) is bounded. By compacity of T there exists a further subsequence (x_{k_n}) such that Tx_{k_n} converges to some $y \in Y$ in norm.

On the other hand, as $Tx_n \to T_x$ weakly (as T compact implies T bounded), then $Tx_{k_n} \to Tx$ weakly. So for any $\phi \in Y^*$ $\phi Tx_{k_n} \to \phi Tx$, but we also have $\phi Tx_{k_n} \to \phi y$, as Tx_{k_n} converges to y in norm. Then $\phi Tx = \phi y$ for every $\phi \in Y^*$, then y = Tx. So we have proven that any subsequence of Tx_n has a further subsequence which converges to Tx in norm, then $Tx_n \to Tx$ in norm.

c) Let H be a separable infinite dimensional Hilbert space. If $T \in \mathcal{L}(H,Y)$ satisfies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$, whenever $(x_n)_{n\geq 1}$ is a sequence in H converging weakly to $x \in H$. then $T \in \overline{\mathcal{K}}(H,Y)$. [Hint: Suppose that T is not compact. Show that there exists $\delta > 0$ and a sequence $(x_n)_{n\geq 1}$ in the closed unit ball of H such that $||Tx_n - Tx_m|| \geq \delta$, for all $n \neq m$ Show next that $(x_n)_{n\geq 1}$ has a weakly convergent subsequence.]

Let's suppose T is not compact. By Proposition~8.2 then there exists some bounded sequence $(x_n)_{n\geq 1}$ (we may assume $(x_n)\subset \bar{B}(0,1)$) such that no subsequence of (Tx_n) converges in norm in Y. By completeness of Y, that's equivalent to no subsequence of (Tx_n) being Cauchy in Y, i.e., for every subsequence (Tx_k) there exists some $\delta>0$ such that for all N exists some m(N), n(N)>N such that

$$||Tx_{k_m(N)} - Tx_{k_n(N)}|| \ge \delta.$$

Using this property, we can construct a new sequence (Ty_n) out of that one such that $||Ty_n - Ty_m|| \ge \delta$, and consider the sequence $(y_n) \subset X$. As $(x_n) \subset \bar{B}(0,1)$, $(y_n) \subset \bar{B}(0,1)$. However, H is a Hilbert space, so it's reflexive and by Theorem 5.9, $\tau_{\omega} = \tau_{\omega^*}$ in H (it makes sense as H can be seen as de dual of H^*). By Alouglu's theorem $\bar{B}(0,1)$ is ω^* -compact, so is compact in the weak topology.

On the other hand, H is separable (and H^* likewise, as given a countable orthonormal basis of H, we can consider the standard basis in the dual and it's also a countable orthonormal basis), so by *Theorem 5.13* ($\bar{B}(0,1), \tau_{\omega^*}$ is metrizable, hence $\bar{B}(0,1)$ is sequentally compact.

Then $(y_n) \in \bar{B}(0,1)$ has a weakly convergent *subsequence* and that give us our desired contradiction.

3

Typically, we would denote the , Josegue by (Zn) new.

d) Show that each $T \in \mathcal{L}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$ is compact. [Hint: Use (a) and (c) and the characterisation of weak convergence of sequences in $\ell_1(\mathbb{N})$, cf. Remark 5.3, Lecture 5.] A reference to Pitt's Theorem, cf. the note in HW6, is not sufficient.

 $\ell_2(\mathbb{N})$ is a separable ∞ -dimensional Hilbert space, so by 2c) $T \in \mathcal{L}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$ is compact if and only if for all $(x_n) \subset \ell_2(\mathbb{N})$ which converges weakly to x implies $||Tx_n - Tx|| \to 0$ in $\ell_1(\mathbb{N})$.

Let $(x_n) \subset \ell_2(\mathbb{N})$ which converges weakly to x. By 2a, Tx_n converges weakly to Tx. Then, by Remark 5.3, Tx_n converges then to Tx in norm.

e) Show that no $T \in \mathcal{K}(X,Y)$ is onto.

Supose $T \in \mathcal{K}(X,Y)$ and it's onto. Then, by the open mapping theorem (as X,Y are Banach and $T \in \mathcal{L}(X,Y)$), T is open. Hence $T(B_X(0,1))$ is open in Y and $Y \in T(B_X(0,1))$, so there exists some open ball centered at 0 contained in $T(B_X(0,1))$, i.e., for some C > 0:

$$cB_Y(0,1) \subset T(B_X(0,1))$$

and taking closures (in norm):

$$c\overline{B_Y(0,1)} \subset \overline{T(B_X(0,1))}$$

T is a compact, so $\overline{T(B_X(0,1)}$ is compact by definition. Then $c\overline{B_Y(0,1)}$ is a closed subspace of a compact set, so it's compact, therefore $\overline{B_Y(0,1)}$ is compact (in norm). However, in the *Mandatory Assignment 1* we saw that that's incompatibe with an infinite dimensional vector space. So we have our contradiction.

why?

f) Let $H = L_2([0,1], m)$, and consider the operator $M \in \mathcal{L}(H, H)$ given by Mf(t) = tf(t), for $f \in H$ and $t \in [0,1]$. Justify that M is self-adjoint, but not compact.

We have to check $\langle f, Mg \rangle = \langle Mf, g \rangle$ for $f, g \in L_2([0,1], m)$. Indeed:

$$\begin{split} \langle f, Mg \rangle &= \int_{[0,1]} \overline{f(t)} t g(t) dm(t) = \\ &= \int_{[0,1]} \overline{t f(t)} g(t) dm(t) = \langle Mf, g \rangle \end{split}$$

However, M can't be compact, as by the Spectral Theorem for self-adjoint compact operators <u>Theorem 10.1</u>, we would have that there exists an ONB for $\ell_2(\mathbb{N})$ consisting of eigenvectors, but we checked on HW6 P3 that M doesn't have any eigenvalues.

Ts([0,1], ~)

Remember to note L2(10,12,m) is separable and inhinite-dimension, so you can apply than 10.1

Problem 3 Consider the Hilbert space $H = L_2([0,1], m)$, where m is the Lebesgue measure. Define $K: [0,1] \times [0,1] \to \mathbb{R}$ by

$$K(s,t) = \left\{ \begin{array}{ll} (1-s)t, & \text{if } 0 \leq t \leq s \leq 1\\ (1-t)s, & \text{if } 0 \leq s < t \leq 1 \end{array} \right.$$

and consider $T \in \mathcal{L}(H, H)$ defined by

$$(Tf)(s) = \int_{[0,1]} K(s,t)f(t)dm(t), \quad s \in [0,1], \quad f \in H$$

a) Justify that T is compact.

We see we are on the conditions of Theorem 9.6, as X = Y = [0,1] are to show $T = T_k$ for some compact Haussdorf topological spaces, m is a finite measure on them and $K \in \mathcal{K}$ satisfying compact Haussdorf topological spaces, m is a line of $C([0,1] \times [0,1])$: it's clearly continuous on the interior of $U_1 = \{(t,s) \in [0,1] \times [0,1] \}$ and its both expressions $[0,1];t < s\}$ and $U_2 = \{(t,s) \in [0,1] \times [0,1]; s \le t\}$, and its both expressions coincide in $U_1 \cap U_2 = \{(t, s) \in [0, 1] \times [0, 1]; t = s\}.$

- Thur you need

b) Show that $T = T^*$.

We have to check that $\langle f, Tg \rangle = \langle Tf, g \rangle$ for $f, g \in H$.

$$\begin{split} \langle f, Tg \rangle &= \int_{[0,1]} \overline{f(s)} Tg(s) dm(s) = \\ &= \int_{[0,1]} \overline{f(s)} \int_{[0,1]} K(s,t) g(t) dm(t) dm(s) =^* \\ &= \int_{[0,1]} \int_{[0,1]} \overline{f(s)} K(s,t) g(t) dm(s) dm(t) = \\ &= \int_{[0,1]} g(t) (\int_{[0,1]} \overline{f(s)} \overline{K(s,t)} dm(s)) dm(t) = \\ &= \int_{[0,1]} g(t) \overline{Tf(t)} dm(t) = \langle Tf, g \rangle. \end{split}$$

And the equality in * in justified as we can apply Fubini. Indeed, as $K \in$ $C([0,1]\times[0,1])$, it's bounded for some M>0. Then, by Tonelli:

$$\begin{split} &\int_{[0,1]\times[0,1]} |K(s,t)f(t)g(s)|\,dm(t)dm(s) \leq \\ &\leq M \int_{[0,1]\times[0,1]} |f(t)|\,|g(s)|\,dm(t)dm(s) = \\ &= M \int_{[0,1]} |f(t)|\,dm(t) \int_{[0,1]} |g(s)|\,dm(s) = \\ &= M \|f\|_1 \|g\|_1 < \infty \end{split}$$

c) Show that

$$(Tf)(s) = (1-s) \int_{[0,s]} tf(t)dm(t) + s \int_{[s,1]} (1-t)f(t)dm(t), \quad s \in [0,1], \quad f \in H.$$

Use this to show that Tf is continuous on [0,1], and that (Tf)(0) = (Tf)(1) = 0.

$$\begin{split} Tf(s) &= \int_{[0,1]} K(s,t) f(t) dm(t) = \\ &= \int_{[0,s]} K(s,t) f(t) dm(t) + \int_{[s,1]} K(s,t) f(t) dm(t) = \\ &= \int_{[0,s]} (1-s) t f(t) dm(t) + \int_{[s,1]} (1-t) s f(t) dm(t) = \\ &= (1-s) \int_{[0,s]} t f(t) dm(t) + s \int_{[s,1]} (1-t) f(t) dm(t). \end{split}$$

This expression of Tf allows us to show that it's continuous. First, we will need to prove the general fact that if $g \in L_1([0,1],m)$ then the indefinite integral G defined as:

$$G(s) = \int_{[0,s]} g(t)dm(t),$$

is continuous, i.e, for any $s_0 \in [0, 1]$:

$$\lim_{s \to s_0} \int_{[0,s]} g(t) dm(t) = \int_{[0,s_0]} g(t) dm(t).$$

If we write $\int_{[0,s]} g(t) dm(t) = \int_{[0,1]} g(t) \chi_{[0,s]} dm(t)$, (notice $\lim_{s \to s_0} \chi_{[0,s]} = \chi_{[0,s_0]}$) then we will have to show:

$$\lim_{s \to s_0} \int_{[0,1]} g(t) \chi_{[0,s]} dm(t) = \int_{[0,1]} (\lim_{s \to s_0} g(t) \chi_{[0,s]}) dm(t).$$

For that, we will only need to prove that the Lebesgue dominated convergence theorem holds. Indeed:

$$\left|g(t)\chi_{[0,s]}\right| \leq \left|g(t)\right|;$$

and $\int_{[0,1]} |g(t)| dm(t) < \infty$ as $g \in L_1([0,1], m)$.

With that fact, we then notice that the function $s \to \int_{[0,s]} t f(t) dm(t)$ is continuous as $\phi(t) = t f(t)$ is integrable (as t is bounded in [0,1]). Likewise

 $s \to \int_{[s,1]} (1-t)f(t)dm(t) = -\int_{[1,s]} (1-t)f(t)dm(t)$. Then now Tf is clearly continuous as is the sum of continuous functions.

Finally:

$$Tf(0) = (1-0) \int_{[0,0]} tf(t)dm(t) + 0 \int_{[0,1]} (1-t)f(t)dm(t) = 0;$$

$$Tf(1) = (1-1) \int_{[0,1]} tf(t)dm(t) + 1 \int_{[1,1]} (1-t)f(t)dm(t) = 0.$$

Problem 4 Consider the Schwartz space $S(\mathbb{R})$ and view the Fourier transform as a linear map $\mathcal{F}: S(\mathbb{R}) \to S(\mathbb{R})$.

a) For each integer $k \geq 0$, set $g_k(x) = x^k e^{-x^2/2}$, for $x \in \mathbb{R}$. Justify that $g_k \in \mathcal{S}(\mathbb{R})$, for all integers $k \geq 0$. Compute $\mathcal{F}(g_k)$, for k = 0, 1, 2, 3

By HW7 Pb1, $g_0 \in S(\mathbb{R})$, as $e^{-x^2} \in S(\mathbb{R})$ and $g_0 = S_{\sqrt{2}}(e^{-x^2})$. By Example 11.3, $\mathcal{F}(g_0) = g_0$.

By HW7 Pb1, $g_i \in \mathcal{S}(R)$ because is the product of g_0 with a power of x. Then, by Proposition 11.13 ii):

$$\mathcal{F}(g_1)(\xi) = \mathcal{F}(xg_0(x))(\xi) = i\frac{\partial \mathcal{F}(g_0)}{\partial x}(\xi) = -i\xi e^{\frac{-\xi^2}{2}}.$$

Analogously:

$$\mathcal{F}(g_2)(\xi) = \mathcal{F}(xg_1(x))(\xi) = i\frac{\partial \mathcal{F}(g_1)}{\partial x}(\xi) = -1(-e^{\frac{-\xi^2}{2}} + \xi^2 e^{\frac{-\xi^2}{2}}) =$$

$$= e^{\frac{-\xi^2}{2}}(1 - \xi^2).$$

$$\mathcal{F}(g_3)(\xi) = \mathcal{F}(xg_2(x))(\xi) = i\frac{\partial \mathcal{F}(g_2)}{\partial x}(\xi) = i((-\xi)e^{\frac{-\xi^2}{2}}(1 - \xi^2) + e^{\frac{-\xi^2}{2}}(-2\xi)) =$$

$$= ie^{\frac{-\xi^2}{2}}(\xi^3 - 3\xi).$$

b) Find non-zero functions $h_k \in S(\mathbb{R})$ such that $\mathcal{F}(h_k) = i^k h_k$, for k = 0, 1, 2, 3. [Hint: Try suitable linear combinations of the functions g_0, g_1, g_2, g_3 from (a).

We first notice that we can rewrite the results in a) as:

$$\mathcal{F}(g_0) = g_0,$$

 $\mathcal{F}(g_1) = -ig_1,$
 $\mathcal{F}(g_2) = g_0 - g_2,$
 $\mathcal{F}(g_3) = i(g_3 - 3g_1),$

Then for $\mathbf{h_0}$ and $\mathbf{h_3}$ we can set $h_0 = g_0$ and $h_3 = g_1$. For $\mathbf{h_1}$ we set the system of equations:

$$\mathcal{F}(ag_0 + bg_1 + cg_2 + dg_3) = i(ag_0 + bg_1 + cg_2 + dg_3)$$

$$ag_0 - ibg_1 + cg_0 - cg_2 + idg_3 - i3dg_1 = i(ag_0 + bg_1 + cg_2 + dg_3)$$

$$(a+c)g_0 + (-ib-i3d)g_1 - cg_2 + idg_3 = iag_0 + ibg_1 + icg_2 + idg_3.$$

and making equal the coefficients for each g_i we get:

$$a+c=ia,$$

$$-ib-i3d=ib,$$

$$-c=ic,$$

$$id=id;$$

which has as solution a = 0, b = 3, c = 0, d = -2, so we can set $h_1 = 3g_1 - 2g_3$. Analogously with $\mathbf{h_2}$:

$$\mathcal{F}(ag_0 + bg_1 + cg_2 + dg_3) = -1(ag_0 + bg_1 + cg_2 + dg_3)$$

$$ag_0 - ibg_1 + cg_0 - cg_2 + idg_3 - i3dg_1 = -(ag_0 + bg_1 + cg_2 + dg_3)$$

$$(a+c)g_0 + (-ib-i3d)g_1 - cg_2 + idg_3 = -ag_0 - bg_1 - cg_2 - idg_3.$$

and making equal the coefficients for each g_i we get:

$$a+c=-a,$$

$$-ib-i3d=-b,$$

$$-c=-c,$$

$$id=-d;$$

which has as solution a = -1, b = 0, c = 2, d = 0, so we can set $h_2 = -g_0 + 2g_2$.

c) Show that $\mathcal{F}^4(f) = f$, for all $f \in \mathcal{S}(\mathbb{R})$. [Hint: First compute $\mathcal{F}^2(f)$, which by definition is equal to $\mathcal{F}(\mathcal{F}(f))$, and then compute $\mathcal{F}^4(f)$ which is equal to $(\mathcal{F}^2(\mathcal{F}^2(f)))$.

By Corolary 12.12 ii) we know $\mathcal{F}^*(\mathcal{F}(f)) = f, f \in \mathcal{S}(F)$. Then:

$$\begin{split} \mathcal{F}^2(f)(x) &= \mathcal{F}(\mathcal{F}(f))(x) = \int_{\mathbb{R}} e^{-ix\xi} \mathcal{F}(f)(\xi) dm(\xi) = \\ &= \int_{\mathbb{R}} e^{i(-x)\xi} \mathcal{F}(f)(\xi) dm(\xi) = \mathcal{F}^*(\mathcal{F}(f))(-x) = f(-x), \end{split}$$

so
$$\mathcal{F}^{2}(f)(x) = f(-x)$$
, then $\mathcal{F}^{4}(f)(x) = \mathcal{F}^{2}(\mathcal{F}^{2}(x)) = \mathcal{F}^{2}(f(-x)) = f(x)$.

d) Use (c) to show that if $f \in \mathcal{S}(\mathbb{R})$ is non-zero and $\mathcal{F}(f) = \lambda f$, for some $\lambda \in \mathbb{C}$, then $\lambda \in \{1, i, -1, -i\}$. Conclude that the eigenvalues of \mathcal{F} precisely are $\{1, i, -1, -i\}$.

Suppose $\mathcal{F}(f) = \lambda f$, then $f = \mathcal{F}^4(f) = \lambda^4 f$ and $f \not\equiv 0$ implies $1 = \lambda^4$. Then $\lambda \in \{1, i, -1, -i\}$, and the conclusion holds, as $\mathcal{F}(f) = \lambda f$ is the eigenvalue equation and in b) we found eigenvectors for each $\{1, i, -1, -i\}$.

Problem 5 Let $(x_n)_{n\geq 1}$ be a dense subset of [0,1] and consider the Radon measure $\mu = \sum_{n=1}^{\infty} 2^{-n} \delta_{x_n}$ on [0,1]. Show that $\operatorname{supp}(\mu) = [0,1]$. [Hint: See Problem 3 HW8].

By $HW8\ P3b)$ we know that $x\in \operatorname{supp}(\mu)$ if and only if $\int fd\mu>0$ for any $f:[0,1]\to [0,1]$ continuous with compact support such that f(x)>0. So we show that each $x_n\in\operatorname{supp}(\mu)$. As $\mu(\{x_n\})=2^{-n}>0$, then, for any $f:[0,1]\to [0,1]$ continuous with compact support such that $f(x_n)>0$:

$$\int_{[0,1]} f d\mu \ge \int_{\{x_n\}} f d\mu = f(x_n)\mu(\{x_n\}) > 0.$$

Then $(x_n) \subset \operatorname{supp}(\mu)$. Taking closures and using that $\operatorname{supp}(\mu)$ is closed we get to $[0,1] = \operatorname{supp}(\mu)$.