```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [2]:
    df = pd.read_csv("student.csv")
    # .dropna(axis="columns")
    df
```

Out[2]:		Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_11	T
	0	22000	78	87	91	91	88	98	94	100	100	100	100	_
	1	22001	79	71	81	72	73	68	59	69	59	60	61	
	2	22002	66	65	70	74	78	86	87	96	88	82	90	
	3	22003	60	58	54	61	54	57	64	62	72	63	72	
	4	22004	99	95	96	93	97	89	92	98	91	98	95	
	5	22005	41	36	35	28	35	36	27	26	19	22	27	
	6	22006	47	50	47	57	62	64	71	75	85	87	85	
	7	22007	84	74	70	68	58	59	56	56	64	70	67	
	8	22008	74	64	58	57	53	51	47	45	42	43	34	
	9	22009	87	81	73	74	71	63	53	45	39	43	46	
	10	22010	40	34	37	33	31	35	39	38	40	48	44	
	11	22011	91	84	78	74	76	80	80	73	75	71	79	
	12	22012	81	83	93	88	89	90	99	99	95	85	75	
	13	22013	52	50	42	38	33	30	28	22	12	20	19	
	14	22014	63	67	65	74	80	86	95	96	92	83	75	
	15	22015	76	82	88	94	85	76	70	60	50	58	49	
	16	22016	83	78	71	71	77	72	66	75	66	61	61	
	17	22017	55	45	43	38	43	35	44	37	45	37	45	
	18	22018	71	67	76	74	64	61	57	64	61	51	51	
	19	22019	62	61	53	49	54	59	68	74	65	55	60	
	20	22020	44	38	36	34	26	34	39	44	36	45	35	
	21	22021	50	56	53	46	41	38	47	39	44	36	43	
	22	22022	57	48	40	45	43	36	26	19	9	12	22	
	23	22023	59	56	52	44	50	40	45	46	54	57	52	
	24	22024	84	92	89	80	90	80	84	74	68	73	81	

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_11
25	22025	74	80	86	87	90	100	95	87	85	79	85
26	22026	92	84	74	83	93	83	75	82	81	73	70
27	22027	63	70	74	65	64	55	61	58	48	46	46
28	22028	78	77	69	76	78	74	67	69	78	68	65
29	22029	55	58	59	67	71	62	53	61	67	76	75
30	22030	54	54	48	38	35	45	46	47	41	37	30
31	22031	84	93	97	89	86	95	100	100	100	99	100
32	22032	95	100	94	100	98	99	100	90	80	84	75
33	22033	64	61	63	73	63	68	64	58	50	51	56
34	22034	76	79	73	77	83	86	95	89	90	95	100
35	22035	78	71	61	55	54	48	41	32	41	40	48
36	22036	95	89	91	84	89	94	85	91	100	100	100
37	22037	99	89	79	87	87	81	82	74	64	54	51
38	22038	82	83	85	86	89	80	88	95	87	93	90
39	22039	65	56	64	62	58	51	61	68	70	70	63
40	22040	100	93	92	86	84	76	82	74	79	72	79
41	22041	78	72	73	79	81	73	71	77	83	92	97
42	22042	98	100	100	93	94	92	100	100	98	94	97
43	22043	58	62	67	77	71	63	64	73	83	76	86
44	22044	96	92	94	100	99	95	98	92	84	84	84
45	22045	86	87	85	84	85	91	86	82	85	87	84
46	22046	48	55	46	40	34	29	37	34	39	41	31
47	22047	56	52	54	47	40	35	43	44	40	39	47
48	22048	42	44	46	53	62	59	57	53	43	35	37
49	22049	64	54	49	59	54	55	57	59	63	73	78
50	22050	50	44	37	29	37	46	53	57	55	61	64
51	22051	70	60	70	62	67	67	68	67	72	69	64
52	22052	63	73	70	63	60	67	61	59	52	58	56
53	22053	92	100	100	100	100	100	92	87	94	100	94
54	22054	64	55	54	61	63	57	47	37	44	48	54
55	22055	60	66	68	58	49	47	39	29	39	44	39

In [3]:

df.head()

Out[3]:		Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_11	Те
	0	22000	78	87	91	91	88	98	94	100	100	100	100	
	1	22001	79	71	81	72	73	68	59	69	59	60	61	
	2	22002	66	65	70	74	78	86	87	96	88	82	90	
	3	22003	60	58	54	61	54	57	64	62	72	63	72	
	4	22004	99	95	96	93	97	89	92	98	91	98	95	
	4													>

Data cleaning and pre processing

```
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 56 entries, 0 to 55
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Student_ID	56 non-null	int64
1	Test_1	56 non-null	int64
2	Test_2	56 non-null	int64
3	Test_3	56 non-null	int64
4	Test_4	56 non-null	int64
5	Test_5	56 non-null	int64
6	Test_6	56 non-null	int64
7	Test_7	56 non-null	int64
8	Test_8	56 non-null	int64
9	Test_9	56 non-null	int64
10	Test_10	56 non-null	int64
11	Test_11	56 non-null	int64
12	Test_12	56 non-null	int64
1.4		`	

dtypes: int64(13) memory usage: 5.8 KB

In [5]: df.describe()

Student_ID Out[5]: Test_1 Test_2 Test_3 Test_4 Test_5 Test_6 Test_7 56.000000 56.000000 56.000000 56.000000 56.000000 56.000000 56.000000 56.000000 count mean 22027.500000 70.750000 69.196429 68.089286 67.446429 67.303571 66.000000 66.160714 std 16.309506 17.009356 17.712266 18.838333 19.807179 20.746890 21.054043 21.427914 min 22000.000000 40.000000 34.000000 35.000000 28.000000 26.000000 29.000000 26.000000 22013.750000 57.750000 55.750000 53.000000 54.500000 53.750000 50.250000 47.000000 22027.500000 70.500000 68.500000 70.000000 71.500000 69.000000 65.500000 64.000000 22041.250000 84.000000 83.250000 85.000000 84.000000 85.250000 83.750000 85.250000 100.000000 22055.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000

EDA and VISUALIZATION

```
In [7]: sns.pairplot(df)
```

Out[7]: <seaborn.axisgrid.PairGrid at 0x1e746298850>

In [8]: sns.distplot(df['Student_ID'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
 distplot` is a deprecated function and will be removed in a future version. Please adap
 t your code to use either `displot` (a figure-level function with similar flexibility) o
 r `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Student_ID', ylabel='Density'>


```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>

split the data into training and test data

```
In [12]:
           x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
In [13]:
           lr = LinearRegression()
           lr.fit(x_train, y_train)
Out[13]: LinearRegression()
In [14]:
           lr.intercept_
          22012.25446577524
Out[14]:
In [15]:
           coeff = pd.DataFrame(lr.coef , x.columns, columns =['Co-efficient'])
           coeff
                  Co-efficient
Out[15]:
                    -0.201501
           Test_1
           Test_2
                     0.010025
           Test_3
                     0.588116
           Test_4
                    -0.991007
           Test_5
                     0.776631
           Test_6
                     0.359542
           Test_7
                    0.303972
           Test_8
                    -1.096396
           Test_9
                     0.355357
          Test_10
                     0.351294
          Test_11
                    -1.160296
          Test_12
                     0.889868
In [16]:
           prediction = lr.predict(x_test)
           plt.scatter(y_test, prediction)
Out[16]: <matplotlib.collections.PathCollection at 0x1e74ea65a30>
```



```
In [17]: lr.score(x_test,y_test)
```

Out[17]: -0.5078725918198401

ACURACY

```
In [18]:
          from sklearn.linear_model import Ridge,Lasso
In [19]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
          rr.score(x_train,y_train)
Out[19]:
         0.22523498702184497
In [20]:
          rr.score(x_test,y_test)
Out[20]:
         -0.4868084245981634
In [21]:
          la = Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[21]: Lasso(alpha=10)
In [22]:
          la.score(x_test,y_test)
Out[22]:
         -0.026444523525051
```