Таблица значений тригонометрических функций:

			Аргумент α															
Функция	0	$\frac{\pi}{6}$ 30°	$\frac{\pi}{4}$ 45°	$\frac{\pi}{3}$ 60°	$\frac{\pi}{2}$ 90°	$\begin{array}{c c} 2\pi \\ \hline 3 \\ 120^{\circ} \end{array}$	$\frac{3\pi}{4}$ 135°	$\frac{5\pi}{6}$ 150°	π 180°	$\frac{7\pi}{6}$ 210°	$\frac{5\pi}{4}$ 225°	$\frac{4\pi}{3}$ 240°	$\frac{3\pi}{2}$ 270°	$\frac{5\pi}{3}$ 300°	$\frac{7\pi}{4}$ 315°	$\frac{11\pi}{6}$ 330°	2π 360°	
sin	α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos	sα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tg	α	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Ι	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0
ctg	$g\alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_

Прочерк «-» означает, что такого значения функции не существует.

Запоминать эти значения без необходимости не нужно, но полезно знать, что:

$$\sin 0 = 0$$
, $\sin \frac{\pi}{2} = 1$, $\cos 0 = 1$, $\cos \frac{\pi}{2} = 0$

Это ускорит решение заданий.

Также время от времени требуются формулы по переводу градусов в радианы, и наоборот:

- 1) Радианы переводятся в градусы по формуле: $\alpha_{\it град} = \alpha_{\it рад} \cdot \frac{180}{\pi}$. Например, переведём в градусы $\alpha_{\it рад} = \frac{\pi}{6}$: $\alpha_{\it град} = \frac{\pi}{6} \cdot \frac{180}{\pi} = 30^\circ$
- 2) Градусы переводятся в радианы по формуле: $\alpha_{pa\delta} = \frac{\alpha_{zpa\delta} \cdot \pi}{180}$. Например, переведём в радианы $\alpha_{zpa\delta} = 60^{\circ}$: $\alpha_{pa\delta} = \frac{60 \cdot \pi}{180} = \frac{\pi}{3} \ pa\delta$.

Таблица значений обратных тригонометрических функций:

	Аргумент α												
Функция	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\sqrt{3}$
$\arcsin \alpha$	I	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	####	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	####	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	_
$\arccos \alpha$	I	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	####	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	####	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0	_
$arctg\alpha$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	####	####	$-\frac{\pi}{6}$	####	0	####	$\frac{\pi}{6}$	####	####	$\frac{\pi}{4}$	$\frac{\pi}{3}$
arcctg α	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	####	####	$\frac{2\pi}{3}$	####	$\frac{\pi}{2}$	####	$\frac{\pi}{3}$	####	####	$\frac{\pi}{4}$	$\frac{\pi}{6}$

Hапример:
$$\arcsin 1 = \frac{\pi}{2}$$
, $\arccos\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4}$, $\arctan(-1) = -\frac{\pi}{4}$, $\arctan\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{3}$

Значком «####» обозначены «плохие» углы, которые можно вычислить приближённо с помощью калькулятора, например:

$$\arctan\left(-\frac{\sqrt{3}}{2}\right) \approx -0.71$$
 радиан.

Полезно ознакомиться с графиками и основными свойствами тригонометрических функций и обратных тригонометрических функций. Читайте последние параграфы методического материала http://mathprofi.ru/grafiki_i_svoistva_funkcij.html

Формулы приведения:

	Аргумент $\beta =$												
Функция	$\frac{\pi}{2}$ – α	$\frac{\pi}{2} + \alpha$	π – α	$\pi + \alpha$	$\frac{3\pi}{2}$ – α	$\frac{3\pi}{2} + \alpha$	$2\pi - \alpha$	$2\pi + \alpha$					
$\sin \beta =$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin \alpha$	$\sin \alpha$					
$\cos \beta =$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin \alpha$	$\sin \alpha$	$\cos \alpha$	$\cos \alpha$					
$tg\beta =$	$ctg \alpha$	$-ctg\alpha$	$-tg\alpha$	$tg\alpha$	$ctg \alpha$	$-ctg\alpha$	$-tg\alpha$	tgα					
$ctg\beta =$	tgα	$-tg\alpha$	$-ctg\alpha$	ctg α	tgα	$-tg\alpha$	$-ctg\alpha$	ctgα					

Примеры использования таблицы:

$$\sin\!\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\cos(\pi + \alpha) = -\cos\alpha$$

$$tg\left(\frac{3\pi}{2} - \alpha\right) = ctg\alpha$$

$$\operatorname{ctg}(2\pi + \alpha) = \operatorname{ctg}\alpha$$

Разумеется, формулы работают и справа налево.