

Software Design Assignment 2

Performance Engineering

Author: Yetnayet Belachew (yb222ce)

supervisor: Mauro Caporuscio
subject: Software Design

subject: Software Design Course code: 2DV608

Date: 2022-02-27

Sweder

A) Running system = 3 days

Time = 3 day = 4320 minutes = 259200 second

Completed $(C_k) = 129600$

Throughout $(X_k) = C_k/T = 129600 / 259200 = 0.5$

WebServer

 $S_k = 75 \text{ms} = 0.075 \text{ second}$

conver it to second

Throughout $(X_k) = C_k/T = 129600 / 259200 = 0.5$

 U_k = Throughout (X_k) * Average service time (S_k) = 0.5 * 0.075 = 0.0375

SofwareSearchEngine

 $C_j = C_x * U_k$

 $C_{j} = 129600 * 85\% = 110160$

Throughout $(X_j) = C_j/T = 110160 / 259200 = 0.425$

 $U_i = 0.085$

 $S_j = 8.5 \% = 0.085 / 0.425 = 0.2$

conver it

SoftwareUploadManager the

arrival rate:

 $\lambda_k = C_k/T = 129600 * 0.15 = 19440$

0.1754 jobs in SoftwareUploadManager, Waiting for service = 0.4677 s, During =38900 s

Throughout $(X_i) = C_i/T = 0.1754 / 0.4677 s = 0.37$ **0.3750267265**

 $U_i = 38900 \text{ s} / 259200 = 0.15$

 $S_i = 0.15 / 0.37 = 0.40$

0.4054054054

 $(C_i) = 0.38900 / 0.4 s = 97250$

Database

c = 2

 $(C_d) = 129600 / 8 = 1036800$

Sweden

$$\begin{split} & \text{Throughout } (\boldsymbol{X_d}) = C_d/T = 1036800 \: / \: \: 259200 = 4 \\ & \boldsymbol{S_d} = 8 \: / \: \: 2 = 4 \\ & \boldsymbol{U_d} = (\boldsymbol{X_d} \boldsymbol{S_d}) \: / \: \: \: \: \: \: \boldsymbol{U_d} * \: c/(\boldsymbol{X_k} * \: 4) = \: \boldsymbol{S_d} \\ & \boldsymbol{D} = \boldsymbol{U_d} * 0.5 \quad >>> \: \boldsymbol{U_d} = \boldsymbol{D} * \boldsymbol{X_d} = \: 1 \: >>>> \: \boldsymbol{U_d} * c \: / \: 4 = \boldsymbol{S_d} \: >>> \: 1 * \: 2 \: / = 0.5 \\ & \boldsymbol{S_d} = 0.5 \end{split}$$

ContributorRewardService

$$(C_x) = 19440$$

Throughout $(X_x) = \lambda_k / T = 19440 / 259200 = 0.075 $S_x = 0.5$
 $U_x = (X_x * S_x) = 0.0375$$

WebServer	<u>SofwareSearchEngin</u>	<u>SoftwareUploadManager</u>	<u>Database</u>	<u>ContributorRewardService</u>
	<u>e</u>			
$X_k = 0.5$	$X_{\rm J} = 0.425$	$X_i = 0.37$	$X_d = 4$	$X_x = 0.075$
$S_k = 0.075$	$S_k = 0.2$	$\mathbf{S}_i = 0.40$	$S_d = 0.5$	$\mathbf{S}_{\mathrm{x}} = 0.5$
$U_k = 0.0375$	$U_k = 0.085$	$U_i = 0.15$	$U_d = 0.15$	$U_x = 0.0375$
C = 129600	C = 110160	Ci = 97250	Cd = 1036800	$C_{x} = 19440$
			C=2	

B) Model

Linnæus University
Sweden the System using Queueing Networks

(in JMT or your preferred Queueing Network simulation engine).

Sweder

Response Time

Sweder

Utilization

Sweden

Throughput

response time -webserver

System Throughput

Exponential

webserver Routing section

SoftwareUploadManager Exponential

SofwareSearchEngine Ecponential

Exponential

Database Routing

Linnæus University Sweden

ContributorRewardService Exponential

C)

V1 = C2/C = 1 D1 = V1 * S1 = 0.075 U1 = D1*X = 0.675 1 server V2 = C2/C = 1749600/2332800 = 0.75 D2 = V2 * S2 = 0.15 U2 = D2*X = 1.35 2 servers

V3 = C3/C = 291600/2332800 = 1.25 D3 = V3 * S2 = 0.5 U3 = D3*X = 4.5 5 servers server V4 = C4/C = 8 D4 = V4 * S4 = 2 U4 = D4*X = 18 19 servers V5 = C5/C = 0.35 D5 = V5 * S5 = 0.125 U5 = D5*X = 1.125 2 servers