

人工智能实验

2022年春季

k-近邻算法

- 1 k-近邻 (k-NN) 算法
 - 有监督学习
 - k-NN处理分类问题
 - *k*-NN参数设置
- 2 实验任务与要求

- k-NN是有监督的机器学习模型
- 有监督学习的基本步骤:上课—考试
 - 给出带标签的训练数据
 - 用训练数据训练模型至一定程度
 - 用训练好的模型预测不带标签的数据的标签
- 常见的有监督学习问题:
 - 分类问题: 预测离散值的问题(如预测明天是否会下雨)
 - 回归问题: 预测连续值的问题(如预测明天气温是多少度)

- 1 k-近邻 (k-NN) 算法
 - 有监督学习
 - · k-NN处理分类问题
 - *k*-NN参数设置
- 3 实验任务与要求

k-NN处理分类问题

半径大小 表示 K值大小

• k-nearest neighbours classifier:

$$f(q) = maj\left(g\left(\Phi_{X,k}(q)\right)\right)$$

- 其中:
 - $\Phi_{X,k}(q)$: 返回训练集X中距离q最近的 k个样本
 - $g(\cdot)$: 返回(训练)样本的标签
 - *maj*(·): 返回众数

• 给定文本的情感分类任务:

• 输入: 文本

• 输出: 类标签

• 分类: 多数投票原则

Document number	The sentence words	emotion
train 1	I buy an apple phone	happy
train 2	I eat the big apple	happy
train 3	The apple products are too expensive	sadnesss
test 1	My friend has an apple	?

k-NN处理分类问题:步骤

Document number	The sentence words	emotion
train 1	I buy an apple phone	happy
train 2	I eat the big apple	happy
train 3	The apple products are too expensive	sadnesss
test 1	My friend has an apple	?

1. 处理成one-hot矩阵

Document number	I	buy	an	apple	 friend	has	emotion
train 1	1	1	1	1	 0	0	happy
train 2	1	0	0	1	 0	0	happy
train 3	0	0	0	1	 0	0	sadness
test 1	0	0	1	1	 1	1	?

Document number	I	buy	an	apple	 friend	has	emotion	
train 1	1	1	1	1	 0	0	happy	
train 2	1	0	0	1	 0	0	happy	
train 3	0	0	0	1	 0	0	sadness	
test 1	0	0	1	1	 1	1	?	

- 2. 相似度计算: 计算test1与每个train的距离
- 欧氏距离: $d(train1, test1) = \sqrt{(1-0)^2 + (1-0)^2 + \dots + (0-1)^2} = \sqrt{6}$;

$$d(train2, test1) = \sqrt{(1-0)^2 + (1-0)^2 + \dots + (0-1)^2} = \sqrt{8};$$

$$d(train3, test1) = \sqrt{(0-0)^2 + (0-0)^2 + \dots + (0-1)^2} = \sqrt{9};$$

(也可以使用其他距离度量方式)

- 3. 类别计算: 最相似的k个样本之标签的众数
- 若k=1, test1的标签即为train1的标签happy;
- 若k=3, test1的标签为train1,train2,train3的标签中数量较多的,即为happy。

- 1 k-近邻 (k-NN) 算法
 - 有监督学习
 - k-NN处理分类问题
 - *k*-NN参数设置
- 2 实验任务与要求

- 采用不同的距离度量方式(见下一页)
- 通过验证集对参数(k值)进行调优
 - 如果k值取的过大,学习的参考样本更多,会引入更多的噪音,所以可能 存在欠拟合的情况;
 - 如果k值取的过小,参考样本少,容易出现过拟合的情况
 - 关于k的经验公式:一般取 $k=\sqrt{N}$,N为训练集实例个数,大家可以尝试一下

• 权重归一化

Name	Formula	Explain
Standard score	$X' = \frac{X - \mu}{\sigma}$	μ is the mean and σ is the standard deviation
Feature scaling	$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$	X_{min} is the min value and X_{max} is the max value

• 距离公式:

Lp距离(所有距离的总公式):

•
$$L_p(x_i, x_j) = \left\{ \sum_{l=1}^n \left| x_i^{(l)} - x_j^{(l)} \right|^p \right\}^{\frac{1}{p}}$$

- *p* = 1: 曼哈顿距离;
- *p* = 2: 欧氏距离, 最常见。

例 3.1 已知二维空间的 3 个点 $x_1 = (1,1)^T$, $x_2 = (5,1)^T$, $x_3 = (4,4)^T$, 试求在 p 取不同值时, L_p 距离下 x_1 的最近邻点。

解 因为 x_1 和 x_2 只有第一维的值不同,所以 p 为任何值时, $L_p(x_1,x_2)=4$ 。而

$$L_1(x_1, x_3) = 6$$
, $L_2(x_1, x_3) = 4.24$, $L_3(x_1, x_3) = 3.78$, $L_4(x_1, x_3) = 3.57$

于是得到: p 等于 1 或 2 时, x_2 是 x_1 的最近邻点; p 大于等于 3 时, x_3 是 x_1 的最近邻点。

• 余弦相似度:

$$\cos\left(\frac{1}{A},\frac{1}{B}\right) = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}||_{\overrightarrow{B}}}, 其中_{\overrightarrow{A}} 和_{\overrightarrow{B}} 表示两个文本特征向量;$$

- 余弦值作为衡量两个个体间差异的大小的度量
- 为正且值越大,表示两个文本差距越小,为负代表差距越大,请大家自行脑补两个向量余弦值

• 假设训练集有N个样本,测试集有M个样本,每个样本是一个V维的向量。

• 如果使用线性搜索的话,那么k-NN的时间花销就是O(N*M*V)。

- 1 k-近邻 (k-NN) 算法
 - 有监督学习
 - k-NN处理分类问题
 - k-NN参数设置
- 2 实验任务与要求

- 在给定文本数据集完成文本情感分类训练, 在测试集完成测试, 计算准确率。
- 要求
 - 文本的特征可以使用TF或TF-IDF,对TF均使用拉普拉斯平滑技巧(可以 使用sklearn库提取特征)
 - 利用k-NN完成对测试集的分类,并计算准确率
 - 需要提交简要报告+代码
 - 加分项:
 - 距离度量
 - 算法效率优化