Increasing functions

Let f be a function defined on an interval I.

f is *increasing* on I if $u > v \Rightarrow f(u) > f(v)$.

Bigger x value, bigger f(x) value

y increases as x increases

Decreasing functions

Let f be a function defined on an interval I.

f is **decreasing** on I if $u > v \Rightarrow f(u) < f(v)$.

Bigger x value, smaller f(x) value

y decreases as x increases

Question:

How to check a function f(x) is increasing / decreasing ??

Pause and Think !!!

For both graphs, y is increasing.

For both graphs, $\frac{dy}{dx} > 0$.

$$\therefore$$
 y increases if $\frac{dy}{dx} > 0$.

$$\therefore f(x)$$
 increases if $f'(x) > 0$.

What does the sign of $\frac{dy}{dx}$ tell you?

For both graphs, y is decreasing.

For both graphs, $\frac{dy}{dx} < 0$.

- \therefore y decreases if $\frac{dy}{dx} < 0$.
- $\therefore f(x)$ decreases if f'(x) < 0.

Test for Increasing / Decreasing function

f'(x) > 0 for all values of x in I, then f is *increasing* on I.

f'(x) < 0 for all values of x in I, then f is *decreasing* on I.

then f is *increasing* on I.

f'(x) > 0 for all values of x in I, f'(x) < 0 for all values of x in I, then f is **decreasing** on I.

For
$$x > 0$$
, $f'(x) = 2x > 0$, $f(x)$ is increasing

For x < 0, f'(x) = 2x < 0, f(x) is decreasing

then f is *increasing* on I.

f'(x) > 0 for all values of x in I, f'(x) < 0 for all values of x in I, then f is **decreasing** on I.

$$f(x) = \frac{2}{3}x^3 + x^2 + 2x + 1$$

$$f'(x) = 2x^2 + 2x + 2$$

= $2((x + \frac{1}{2})^2 + \frac{3}{4})$ (Completing square)

For all x, f'(x) > 0, f(x) is increasing

Example Let
$$f(x) = x^3(x-1)^2$$
.

Then
$$f'(x) = x^3(2)(x-1) + 3x^2(x-1)^2$$

= $x^2(x-1)(5x-3)$

Set f'(x) = 0, we have x = 0, 1 or $\frac{3}{5}$.

 f'(x)	(+)(-)(-)	(+)(-)(-)	(+)(-)(+)	(+)(+)(+)
f(x)				
	0		$\frac{3}{5}$	

Show that ln(1+x) < x for all x > 0.

It is the same as showing ln(1+x)-x<0 for all x>0.

$$Let f(x) = \ln(1+x) - x.$$

Then
$$f'(x) = \frac{1}{1+x} - 1$$
.

Note that : Since x > 0, we have 1 + x > 1.

Thus,
$$f'(x) = \frac{1}{1+x} - 1 < 0$$
 for all $x > 0$.

Hence, f(x) is decreasing on $[0, \infty)$.

Show that ln(1+x) < x for all x > 0.

It is the same as showing ln(1+x)-x<0 for all x>0.

$$Let f(x) = \ln(1+x) - x.$$

Note :
$$f(0) = \ln(1+0) - 0$$

= 0

f(x) is decreasing on $[0, \infty)$.

When
$$x = 0$$
, $f(0) = 0$.

Thus, for x < 0, f(x) < 0.

Hence, ln(1+x)-x<0 for all x>0.

Derivative Test

First Derivative Test for Local Extremes

$$a$$
 c b

Suppose that $c \in (a,b)$ is a *critical point* of f. If

- (i) f'(x) > 0 for $x \in (a,c)$ and f'(x) < 0 for $x \in (c,b)$, then f(c) is a **local maximum**.
- (ii) f'(x) < 0 for $x \in (a,c)$ and f'(x) > 0 for $x \in (c,b)$, then f(c) is a **local minimum**.

Note: f'(x) changes sign

The test is applicable whether f'(c) exists or not.

First Derivative Test for Local Extremes

Suppose that $c \in (a,b)$ is a *critical point* of f. If

(i) f'(x) > 0 for $x \in (a,c)$ and f'(x) < 0 for $x \in (c,b)$, then f(c) is a *local maximum*.

The test is applicable whether f'(c) exists or not.

First Derivative Test for Local Extremes

Suppose that $c \in (a,b)$ is a *critical point* of f. If

(ii)
$$f'(x) < 0$$
 for $x \in (a,c)$ and $f'(x) > 0$ for $x \in (c,b)$, then $f(c)$ is a **local minimum**.

The test is applicable whether f'(c) exists or not.

First Derivative Test

f has a local maxmium at $x = c_1$ and a local minimum at $x = c_2$.

Example

$$f(x) = \begin{cases} x^2 - 4x + 9, & x \le 3 \\ 6 - \sqrt{x - 3}, & x > 3 \end{cases}$$

$$f(x) = \begin{cases} x^2 - 4x + 9, & x \le 3 \\ 6 - \sqrt{x - 3}, & x > 3 \end{cases} \qquad f'(x) = \begin{cases} 2(x - 2), & x < 3 \\ -\frac{1}{2\sqrt{x - 3}}, & x > 3 \end{cases}$$

For
$$f'(3) = \lim_{x \to 3} \left(\frac{f(x) - f(3)}{x - 3} \right)$$
 to exist,

$$\lim_{x \to 3^{-}} \left(\frac{f(x) - f(3)}{x - 3} \right) = \lim_{x \to 3^{+}} \left(\frac{f(x) - f(3)}{x - 3} \right)$$

It can be checked that f'(3) does not exist.

Note that f'(2) = 0

Thus, x = 2 and x = 3 are two *critical points*.

$$f(x) = \begin{cases} x^2 - 4x + 9, & x \le 3 \\ 6 - \sqrt{x - 3}, & x > 3 \end{cases}$$

By *First Derivative Test*, f has a *local minimum* at x = 2 & a *local maximum* at x = 3.

X	2-	2+
f'(x)	negative	positive
curve		

local min at x = 2

X	3-	3 ⁺	
f'(x)	positive	negative	
curve			

local max at x = 3

Concavity

straight line

Concavity

Concave Up

Concave Down

Increasing / Decreasing

f'(x) tells you how f(x) changes with x.

If f'(x) > 0, then f(x) increases.

If f'(x) < 0, then f(x) decreases.

Similarly, f''(x) tells you how f'(x) changes with x.

If f''(x) > 0, then f'(x) increases.

If f''(x) < 0, then f'(x) decreases.

If
$$f''(x) > 0$$
, then $f'(x)$ increases.
If $f''(x) < 0$, then $f'(x)$ decreases.

Concavity - Concave Up

Note that we have increasing gradient, i.e., increasing f'(x).

Thus,
$$f''(x) > 0$$

If
$$f''(x) > 0$$
, then $f'(x)$ increases.
If $f''(x) < 0$, then $f'(x)$ decreases.

Concavity - Concave Down

Note that we have decreasing gradient, i.e., decreasing f'(x).

Thus,
$$f''(x) < 0$$

Concavity

f'(x) determines if f is increasing or decreasing. f''(x) determines if f is concave up or down.

Concavity

Concavity Test

concave up

$$f''(x) < 0$$

concave down

Concavity - Example

Let
$$y = f(x) = x^3$$

Then $f'(x) = 3x^2 \ge 0$ for all values of x

$$f''(x) = 6x$$

$$f''(x) = 6x > 0 \text{ for } x > 0$$

(Concave up)

$$f''(x) = 6x < 0 \text{ for } x < 0$$
(Concave down)

