ਅਧਿਆਇ – <u>1</u> ਵਾਸਤਵਿਕ ਸੰਖਿਆਵਾਂ <u>DAY 1</u>

9ਵੀਂ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਵਾਸਤਵਿਕ ਸੰਖਿਆਵਾਂ ਬਾਰੇ ਪੜਿਆ ਸੀ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਉਹੀ ਚਰਚਾ ਜਾਰੀ ਕਰਾਂਗੇ। ਇਸ ਵਿੱਚ ਅਸੀਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਮਹੱਤਵਪੂਰਨ ਗੁਣ ਯੁਕਲਿਡ ਵੰਡ ਐਲਗੋਰਿਥਮ ਅਤੇ ਅੰਕਗਣਿਤ ਦੀ ਮੁਲਭੂਤ ਪ੍ਰਮੇਯ।

ਯੁਕਲਿਡ ਵੰਡ ਐਲਗੋਰਿਥਮ : ਜਿਵੇਂ ਕਿ ਨਾਮ ਤੋਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਇਹ ਵੰਡ ਨਾਲ ਕਿਸੇ ਨਾ ਕਿਸੇ ਰੂਪ ਵਿੱਚ ਸੰਬੰਧਿਤ ਹੈ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਜੇ

- ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ 2 ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਬਾਕੀ 0 ਜਾਂ 1 ਹੋਵੇਗ।
- ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ 3 ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਬਾਕੀ 0, 1 ਜਾਂ 2 ਹੋਵੇਗਾ।
- ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ 4 ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਤਾਂ ਬਾਕੀ 0, 1, 2 ਜਾਂ 3 ਹੋਵੇਗਾ।
- ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ 5 ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਤਾਂ ਬਾਕੀ 0, 1, 2, 3 ਜਾਂ 4 ਹੋਵੇਗਾ।

ਭਾਵ ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ ਭਾਜਕ ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਬਾਕੀ 0 ਜਾਂ ਭਾਜਕ ਤੋਂ ਛੋਟਾ ਹੋਵੇਗਾ।

ਭਾਜ = ਭਾਜਕ × ਭਾਜਫਲ + ਬਾਕੀ

ਯੁਕਲਿਡ ਵੰਡ ਪਰਿਮੇਯ

ਕੋਈ ਦੋ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਲਈ ਦੋ ਵਿਲੱਖਣ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ q ਅਤੇ r ਹੁੰਦੀਆਂ ਹਨ ਕਿ a=bq+r; $0 \le r < b$

ਇੱਥੇ a ਨੂੰ ਭਾਜ, b= ਭਾਜਕ, q= ਭਾਜਫਲ ਅਤੇ r=ਬਾਕੀ ਲਿਆ ਗਿਆ ਹੈ। ਆਓ ਕੁੱਝ ਉਦਾਹਰਨਾਂ ਨਾਲ ਹੱਲ ਕਰੀਏ।

1. ਦਿਖਾਓ ਕਿ ਹਰ ਇੱਕ ਧਨਾਤਮਕ ਜਿਸਤ ਸੰਪੂਰਨ ਸੰਖਿਆ 2q ਅਤੇ ਧਨਾਤਮਕ ਟਾਂਕ ਸੰਪੂਰਨ ਸੰਖਿਆ 2q + 1 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ q ਕੋਈ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ। ਹੱਲ: 2q ਜਾਂ 2q + 1 ਵਿੱਚ 2 ਦਾ ਮਤਲਬ, ਸੰਖਿਆ 2 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ,

ਹੁਣ,
$$a=2q+r$$
; $0 \le r < 2$ $r=0$ ਤਾਂ $a=2q$ ਅਤੇ ਜੇ $r=1$ ਤਾਂ $a=2q+1$ $\Rightarrow 2q$ ਇੱਕ ਜਿਸਤ ਸੰਪੂਰਨ ਅਤੇ $2q+1$ ਇੱਕ ਟਾਂਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ।

2. ਦਿਖਾਓ ਕਿ ਹਰ ਇੱਕ ਟਾਂਕ ਸੰਪੂਰਨ ਸੰਖਿਆ 4q+1 ਜਾਂ 4q+3 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਹੱਲ: 4q+1 ਜਾਂ 4q+3 ਦਾ ਮਤਲਬ ਸੰਖਿਆ 4 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ। ਹੁਣ, a=bq+r ; $0 \le r < b$

$$m{b} = m{4}$$
 ਤਾਂ $a = 4q + r$; $0 \le r < 2$ (i.e. $r = 0,1,2$ or3) $r = 0$ ਤਾਂ $a = 4q$ $r = 1$ ਤਾਂ $a = 4q + 1$ $r = 2$ ਤਾਂ $a = 4q + 2$ $r = 3$ ਤਾਂ $a = 4q + 3$ \Rightarrow ਕੋਈ ਵੀ ਟਾਂਕ ਸੰਪਰਨ ਸੰਖਿਆ $4q + 1$ ਜਾਂ $4q + 3$ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

3. ਦਿਖਾਓ ਕਿ ਕਿਸੇ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਦਾ ਵਰਗ ਕਿਸੇ ਸੰਪੂਰਨ ਸੰਖਿਆ 3m ਜਾਂ 3m+1 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

ਹੱਲ:
$$a = bq + r$$
 ; $0 \le r < b$
 $b = 3$ ਤਾਂ $a = 3q + r$; $0 \le r < 3$
ਜੇ $r = 0$ ਤਾਂ $a = 3q$
ਵਰਗ ਕਰਨ ਤੇ $a^2 = (3q)^2 = 9q^2 = 3.3q^2 = 3(m)$ {ਜਿੱਥੇ $m = 3q^2$ }
ਜੇ $r = 1$ ਤਾਂ $a = 3q + 1$
ਵਰਗ ਕਰਨ ਤੇ $a^2 = (3q + 1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1$
 $= 3(m) + 1$ {ਜਿੱਥੇ $m = 3q^2 + 2q$ }
ਜੇ $r = 2$ ਤਾਂ $a = 3q + 2$
ਵਰਗ ਕਰਨ ਤੇ $a^2 = (3q + 2)^2 = 9q^2 + 12q + 4 = (9q^2 + 12q + 3) + 1$
 $= 3(3q^2 + 4q) + 1 = 3(m) + 1$
{ਜਿੱਥੇ $m = 3q^2 + 4q$ }
ਕਿਸੇ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਦਾ ਵਰਗ ਕਿਸੇ ਸੰਪੂਰਨ ਸੰਖਿਆ m ਲਈ $3m$ ਜਾਂ $3m + 1$ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

4. ਦਿਖਾਓ ਕਿ ਕਿਸੇ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਦਾ ਘਣ 9m ਜਾਂ 9m+1 or 9m+8 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

ਹੱਲ:
$$a = bq + r$$
 ; $0 \le r < b$ $b = 3$ ਤਾਂ $a = 3q + r$; $0 \le r < 3$ ਜੇ $r = 0$ ਤਾਂ $a = 3q$ ਘਣ ਕਰਨ ਤੇ $a^3 = (3q)^3 = 27q^3 = 9.3q^3 = 9(m)$ {ਜਿੱਥੇ $m = 3q^3$ } ਜੇ $r = 1$ ਤਾਂ $a = 3q + 1$ ਘਣ ਕਰਨ ਤੇ $a^3 = (3q + 1)^3 = 27q^3 + 27q^2 + 9q + 1$ $= 9(3q^3 + 3q^2 + 1) + 1 = 9(m) + 1$ {ਜਿੱਥੇ $m = 3q^3 + 3q^2 + 1$ } ਜੇ $r = 2$ ਤਾਂ $a = 3q + 2$ ਘਣ ਕਰਨ ਤੇ $a^3 = (3q + 2)^3 = 27q^3 + 54q^2 + 36q + 8$

=
$$9(3q^3 + 6q^2 + 4q) + 8 = 9(m) + 8$$

{\text{Height} $m = 3q^3 + 6q^2 + 4q$ }

ਕਿਸੇ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਦਾ ਘਣ $9m\ or\ 9m+1$ ਜਾਂ 9m+8 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

- 1. ਦਿਖਾਓ ਕਿ ਜਿਸਤ ਸੰਖਿਆ 4q ਜਾਂ 4q + 2 ਰੁਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ q ਕੋਈ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ।
- 2. ਦਿਖਾਓ ਕਿ ਕੋਈ ਜਿਸਤ ਸੰਖਿਆ 6q, 6q + 2 ਜਾਂ 6q + 4 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।
- **3.** ਅਭਿ 1.1, ਪ੍ਰਸ਼ਨ 2

DAY 2

ਪਿਛਲੇ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਯੂਕਲਿਡ ਵੰਡ ਪ੍ਰਮੇਯ ਰਾਹੀਂ ਭਾਜਯੋਗਤਾ ਦੇ ਸਵਾਲਾਂ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਸੀ। ਹੁਣ ਇੱਥੇ ਯੂਕਲਿਡ ਵੰਡ ਪ੍ਰਮੇਯ ਰਾਹੀਂ ਮ.ਸ.ਵ. ਦੀ ਚਰਚਾ ਕਰਾਂਗੇ।

1. 867 ਅਤੇ 255 ਦਾ ਮ.ਸ.ਵ. ਯੂਕਲਿਡ ਵੰਡ ਐਲਗੋਰਿਥਮ ਰਾਹੀਂ ਪਤਾ ਕਰੋ।

ਹੱਲ: ਭਾਜ = ਭਾਜਕ × ਭਾਜਫਲ + ਬਾਕੀ
$$867 = 255 \times 3 + 102$$
 $255 = 102 \times 2 + 51$ $102 = 51 \times 2 + 0$ ਮ.ਸ.ਵ. $(867,255) = 51$

135 ਅਤੇ 225 ਦਾ ਮ.ਸ.ਵ. ਯੂਕਲਿਡ ਵੰਡ ਐਲਗੋਰਿਥਮ ਰਾਹੀਂ ਪਤਾ ਕਰੋ।

ਹੱਲ: ਭਾਜ = ਭਾਜਕ × ਭਾਜਫਲ + ਬਾਕੀ

$$255 = 135 \times 1 + 90$$

 $135 = 90 \times 1 + 45$
 $90 = 45 \times 2 + 0$
ਮ.ਸ.ਵ. = 45

3. 42 ਅਤੇ 455 ਦਾ ਮ.ਸ.ਵ. ਯੂਕਲਿਡ ਵੰਡ ਐਲਗੋਰਿਥਮ ਰਾਹੀਂ ਪਤਾ ਕਰੋ।

ਹੱਲ: ਭਾਜ = ਭਾਜਕ × ਭਾਜਫਲ + ਬਾਕੀ

$$455 = 42 \times 10 + 35$$

 $42 = 35 \times 1 + 7$
 $35 = 7 \times 5 + 0$
ਮ.ਸ.ਵ. = 7

4. ਇੱਕ ਮਠਿਆਈ ਵਿਕ੍ਰੇਤਾ ਕੋਲ 420 ਕਾਜੂ ਦੀਆਂ ਬਰਫੀਆਂ ਅਤੇ 130 ਬਦਾਮ ਦੀਆਂ ਬਰਫੀਆਂ ਹਨ। ਉਹ ਉਹਨਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਢੇਰੀਆਂ ਬਣਾਉਣਾ ਚਾਹੁੰਦਾ ਹੈ ਕਿ (ਹਰ ਇੱਕ ਢੇਰੀ ਵਿੱਚ ਬਰਫੀਆਂ ਦੀ ਗਿਣਤੀ ਬਰਾਬਰ ਰਹੇ ਅਤੇ ਇਹ ਢੇਰੀਆਂ ਬਰਫੀ ਦੀ ਪਰਾਂਤ ਵਿੱਚ ਘੱਟੋ ਘੱਟ ਸਮਾਨ ਘੇਰਨ) ਇਸ ਕੰਮ ਅਈ ਹਰ ਇੱਕ ਢੇਰੀ ਵਿੱਚ ਕਿੰਨੀਆਂ ਬਰਫੀਆਂ ਰੱਖੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ?

ਹੱਲ: 420 ਅਤੇ 130 ਦਾ ਮ.ਸ.ਵ. ਪਤਾ ਕਰੀਏ।

$$420 = 130 \times 3 + 30$$

 $130 = 30 \times 4 + 10$
 $30 = 10 \times 3 + 0$
ਮ.ਸ.ਵ. = 10

ਹਰ ਇੱਕ ਪ੍ਰਕਾਰ ਦੀ ਬਰਫੀ ਦੇ ਲਈ ਮਠਿਆਇ ਵਿਕ੍ਰੇਤਾ 10-10 ਦੀਆਂ ਢੇਰੀਆਂ ਬਣਾ ਸਕਦਾ ਹੈ।

- 1. ਮ.ਸ.ਵ. ਯੂਕਲਿਡ ਵੰਡ ਐਲਗੋਰਿਥਮ ਰਾਹੀਂ ਪਤਾ ਕਰੋ:
 - i) 231, 396 ii) 196 & 38220 iii) 135 & 255 iv) 234,306

DAY 3

ਅੰਕਗਣਿਤ ਦੀ ਮੂਲਭੂਤ ਪ੍ਰਮੇਯ : ਹਰ ਇੱਕ ਭਾਜ ਸੰਖਿਆ ਨੂੰ ਅਭਾਜ ਸੰਖਿਆਵਾਂ ਦੇ ਇੱਕ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਇਹ ਗੁਣਨਖੰਡਨ ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਦੇ ਆਉਣ ਵਾਲੇ ਤਰਤੀਬ ਤੋਂ ਇਲਾਵਾ ਵਿਲੱਖਣ ਹੈ। ਇਸਨੂੰ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿਧੀ ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਭਾਵ $24 = 2 \times 2 \times 2 \times 3$ ਜਾਂ $2 \times 3 \times 2 \times 2$ ਜਾਂ $3 \times 2 \times 2 \times 2$

(24 ਦੇ ਗੁਣਨਖੰਡ $2^3 imes 3$ ਹੀ ਰਹਿਣਗੇ, ਤਰਤੀਬ ਅੱਗੇ ਪਿੱਛੇ ਹੋ ਸਕਦੀ ਹੈ)

ਮ.ਸ.ਵ. = ਸਾਂਝੇ ਗੁਣਨਖੰਡ ਦੀ ਛੋਟੀ ਘਾਤ ਲ.ਸ.ਵ. = ਸਾਰੇ ਗਣਨਖੰਡਾਂ ਦੀ ਵੱਡੀ ਘਾਤ

1. ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ:

(i) 135 (ii) 144 (iii) 1080

(iv)5005

ਹੱਲ: (i) $135 = 3 \times 3 \times 3 \times 5 = 3^3 \times 5$

(ii) $144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 2^4 \times 3^2$

(iii) $1080 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 = 2^3 \times 3^3 \times 5^1$

(iv) $5005 = 5 \times 7 \times 11 \times 13$

2. ਸੰਖਿਆਵਾਂ 6 ਅਤੇ 20 ਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿਧੀ ਨਾਲ ਮ.ਸ.ਵ. ਅਤੇ ਲ.ਸ.ਵ. ਪਤਾ ਕਰੋ :

ਹੱਲ: $6 = 2 \times 3$ ਅਤੇ $20 = 2^2 \times 5$

ਮ.ਸ.ਵ. = ਸਾਂਝੀ ਸੰਖਿਆ 2 ਦੀ ਛੋਟੀ ਘਾਤ = 2^1 = 2

ਲ.ਸ.ਵ. = ਸਾਂਝੀ ਸੰਖਿਆ 2 ਦੀ ਵੱਡੀ ਘਾਤ ਅਤੇ ਬਚੀਆਂ ਸੰਖਿਆਵਾਂ= $2^2 \times 3 \times 5 = 60$

3. ਅਭਾਜ ਗਣਨਖੰਡ ਵਿਧੀ ਦੁਆਰਾ 96 ਅਤੇ 404 ਦਾ ਲ.ਸ.ਵ. ਅਤੇ ਮ.ਸ.ਵ. ਪਤਾ ਕਰੋ।

ਹੱਲ: $96 = 2^5 \times 3$ ਅਤੇ $404 = 2^2 \times 101$ ਮ ਸ ਵ = $2 = 2^2$

ਲ.ਸ.ਵ. = $2^5 \times 3 \times 101 = 9696$

4. ਸੰਖਿਆਵਾਂ 24 ਅਤੇ 36 ਦਾ ਮ.ਸ.ਵ. ਅਤੇ ਲ.ਸ.ਵ. ਪਤਾ ਕਰੋ। ਜਾਂਚ ਕਰੋ ਮ.ਸ.ਵ. × ਲ.ਸ.ਵ. = ਦੋ ਸੰਖਿਆਵਾਂ ਦਾ ਗਣਨਫਲ

ਹੱਲ: $24 = 2^3 \times 3$ and $36 = 2^2 \times 3^2$

ਮ.ਸ.ਵ. = $2^2 \times 3^1 = 12$

ਲ.ਸ.ਵ. = $2^3 \times 3^2 = 72$

ਜਾਂਚ :

ਹੁਣ, ਮ.ਸ.ਵ. × ਲ.ਸ.ਵ.= 12 × 72 = 864

ਅਤੇ ਦੋ ਸੰਖਿਆਵਾਂ ਦਾ ਗੁਣਨਫਲ = $24 \times 36 = 864$

ਮ.ਸ.ਵ. × ਲ.ਸ.ਵ. = ਦੋ ਸੰਖਿਆਵਾਂ ਦਾ ਗੁਣਨਫਲ

5. ਸੰਖਿਆਵਾਂ 6, 72 ਅਤੇ 120 ਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿਧੀ ਨਾਲ ਮ.ਸ.ਵ. ਅਤੇ ਲ.ਸ.ਵ. ਪਤਾ ਕਰੋ। ਹੱਲ: $6 = 2 \times 3$, $72 = 2^3 \times 3^2$ ਅਤੇ $120 = 2^3 \times 3 \times 5$

ਮ.ਸ.ਵ. =
$$2^1 \times 3^1 = 6$$

ਲ.ਸ.ਵ. =
$$2^5 \times 3^2 \times 5 = 360$$

6. ਸੰਖਿਆਵਾਂ 12, 18 ਅਤੇ 24 ਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿਧੀ ਨਾਲ ਮ.ਸ.ਵ. ਅਤੇ ਲ.ਸ.ਵ. ਪਤਾ ਕਰੋ।

ਹੱਲ:
$$12 = 2^2 \times 3$$
 ; $18 = 2 \times 3^2$; $24 = 2^3 \times 3$

ਮ.ਸ.ਵ. =
$$2^1 \times 3^1 = 6$$

ਲ.ਸ.ਵ. =
$$2^3 \times 3^2 = 72$$

- 1. ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਫਲਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ :
 - (i) 140 (ii) 156(iii) 3825 (iv) 196 (v) 225
- 2. ਮੌ.ਸ.ਵ. ਅਤੇ ਲ.ਸ.ਵ. ਪਤਾ ਕਰੋ :
 - i) 510 ਅਤੇ 92 ii) 336 ਅਤੇ 54 iii) 17 ਅਤੇ 25

DAY 4

1. ਜੇ HCF(306,657)=9 ਤਾਂ LCM(306,657) ਪਤਾ ਕਰੋ।

ਹੱਲ: HCF = 9.

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ LCM×HCF = ਦੋ ਸੰਖਿਆਵਾਂ ਦੀ ਗੁਣਾ

$$LCM \times 9 = 306 \times 657$$

 $LCM = \frac{306 \times 657}{1} = 22338$

2. ਜਾਂਚ ਕਰੋ ਕਿ n ਦਾ ਕੋਈ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਮੁੱਲ ਹੈ ਜਿਸ ਨਾਲ 6^n ਅੰਕ ਸਿਫਰ ਤੇ ਸਮਾਪਤ ਹੁੰਦਾ ਹੈ। ਹੱਲ: ਜੇ 6^n ਸੰਖਿਆ ਸਿਫਰ ਤੇ ਸਮਾਪਤ ਹੁੰਦੀ ਹੈ ਤਾਂ ਇਹ ਸੰਖਿਆ 5 ਨਾਲ ਵੰਡੀ ਜਾਵੇਗੀ।

 $\therefore 6^n$ ਦੇ ਗੁਣਨਖੰਡ ਵਿੱਚ ਸੰਖਿਆ 5 ਆਉਣੀ ਚਾਹੀਦੀ ਹੈ, ਪਰ $6^n = (2 \times 3)^n$, ਵਿੱਚ 5 ਨਹੀਂ ਆਉਂਦੀ।

 6^n ਸੰਖਿਆ ਸਿਫਰ ਤੇ ਸਮਾਪੰਤ ਨਹੀਂ ਹੁੰਦੀ।

3. ਜਾਂਚ ਕਰੋ ਕਿ n ਦਾ ਕੋਈ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਮੁੱਲ ਹੈ ਜਿਸ ਨਾਲ 4^n ਅੰਕ ਸਿਫਰ ਤੇ ਸਮਾਪਤ ਹੁੰਦਾ ਹੈ। ਹੱਲ: ਜੇ 4^n ਸੰਖਿਆ ਸਿਫਰ ਤੇ ਸਮਾਪਤ ਹੁੰਦੀ ਹੈ ਤਾਂ ਇਹ ਸੰਖਿਆ 5 ਨਾਲ ਵੰਡੀ ਜਾਵੇਗੀ।

 $\therefore 4^n$ ਦੇ ਗੁਣਨਖੰਡ ਵਿੱਚ ਸੰਖਿਆ 5 ਆਉਣੀ ਚਾਹੀਦੀ ਹੈ,

ਪਰ $4^n = (2 \times 2)^n$, ਵਿੱਚ 5 ਨਹੀਂ ਆਉਂਦੀ।

 4^n ਸੰਖਿਆ ਸਿਫਰ ਤੇ ਸਮਾਪਤ ਨਹੀਂ ਹੁੰਦੀ।

- 1. ਜੇ HCF(44,72)=4 ਤਾਂ LCM(44,72) ਪਤਾ ਕਰੋ।
- 2. ਜੇ HCF(196,343)=49 ਤਾਂ LCM(196,343) ਪਤਾ ਕਰੋ।
- 3. ਜੇ LCM(120,144)=720 ਤਾਂ HCF(120,144) ਪਤਾ ਕਰੋ।
- 4. ਜਾਚ ਕਰੋ ਕਿ n ਦਾ ਕੋਈ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਮੁੱਲ ਹੈ ਜਿਸ ਨਾਲ 12^n ਅੰਕ ਸਿਫਰ ਤੇ ਸਮਾਪਤ ਹੁੰਦਾ ਹੈ।
- 5. ਜਾਚ ਕਰੋ ਕਿ n ਦਾ ਕੋਈ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਮੁੱਲ ਹੈ ਜਿਸ ਨਾਲ 8^n ਅੰਕ ਸਿਫਰ ਤੇ ਸਮਾਪਤ ਹੁੰਦਾ ਹੈ।

ਅਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ : 9ਵੀਂ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਅਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਬਾਰੇ ਪੜਿਆ ਸੀ, ਉਹਨਾਂ ਨੂੰ ਸੰਖਿਆ ਰੇਖਾ ਤੇ ਕਿਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਇਹ ਸਿੱਧ ਕਰਾਂਗੇ ਕਿ $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, ਅਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ। ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਇੱਕ ਪ੍ਰਮੇਯ ਬਾਰੇ ਚਰਚਾ ਕਰਾਂਗੇ।

- ਜੇ p ਇੱਕ ਅਭਾਜ ਸੰਖਿਆ ਹੈ ਅਤੇ p,a^2 ਨੂੰ ਵੰਡਦੀ ਹੈ ਤਾਂ p,a ਨੂੰ ਵੀ ਵੰਡਦੀ ਹੋਵੇਗੀ। ਭਾਵ ਜੇ ਕੋਈ ਸੰਖਿਆ 3, a^2 ਨੂੰ ਵੰਡਦੀ ਹੈ ਤਾਂ 3 a ਨੂੰ ਵੀ ਵੰਡੇਗੀ।
- 1. ਸਿੱਧ ਕਰੋ $\sqrt{2}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਹੱਲ: ਮੰਨ ਲਓ, $\sqrt{2}$ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

$$2 = \frac{p^2}{q^2}$$
 i.e $p^2 = 2q^2$ (ii)

 p^2 ਸੰਖਿਆਂ 2 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ,

p ਸੰਖਿਆ 2 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ।

p = 2m (ii) ਵਿੱਚ ਭਰਨ 'ਤੇ

ii)
$$\Rightarrow (2m)^2 = 2q^2 \Rightarrow 2q^2 = 4m^2 \Rightarrow q^2 = 2m^2$$

ਭਾਵ, q^2 ਸੰਖਿਆ 2 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ।

- ਪਰ (i) ਅਨੁਸਾਰ ਅਸੀਂ ਇਹ ਮੰਨਿਆ ਹੈ ਕਿ ਇਹਨਾਂ ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ। ਅਸੀਂ ਜੋ ਮੰਨ ਕੇ ਚੱਲੇ ਸੀ, ਉਹ ਗਲਤ ਹੈ। ∴√2 ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।
- 2. ਸਿੱਧ ਕਰੋ $\sqrt{3}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਹੱਲ: ਮੰਨ ਲਓ, $\sqrt{3}$ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

$$\therefore \sqrt{3} = \frac{p}{q}$$
 , $q \neq 0$ ਅਤੇ p,q ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ। (i) ਦੋਵਾਂ ਪਾਸੇ ਵਰਗ ਕਰਨ 'ਤੇ

$$3 = \frac{p^2}{q^2}$$
 i.e $p^2 = 3q^2$ (ii)

 p^2 ਸੰਖਿਆ 3 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ,

p ਸੰਖਿਆ 3 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ।

p = 3m (ii) ਵਿੱਚ ਭਰਨ 'ਤੇ

ii)
$$\Rightarrow$$
 $(3m)^2 = 3q^2$ \Rightarrow $3q^2 = 9m^2$ \Rightarrow $q^2 = 3m^2$ ਭਾਵ, q^2 ਸੰਖਿਆ 3 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ।

ਪਰ (i) ਅਨੁਸਾਰ ਅਸੀਂ ਇਹ ਮੰਨਿਆ ਹੈ ਕਿ ਇਹਨਾਂ ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ।

ਅਸੀਂ ਜੋ ਮੰਨ ਕੇ ਚੱਲੇ ਸੀ, ਉਹ ਗਲਤ ਹੈ। $∴ \sqrt{3}$ ਇੱਕ ਅਪਰਿਮੇਯ਼ ਸੰਖਿਆ ਹੈ।

3. ਸਿੱਧ ਕਰੋ $5 + \sqrt{6}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਹੱਲ: ਮੰਨ ਲਓ. $5 + \sqrt{6}$ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

$$r-5 = \sqrt{6}$$

r ਇੱਕ ਪ੍ਰਿਮੇਯੂ ਸੰਖਿਆ ਹੈ ਤਾਂ r-5 ਵੀ ਪ੍ਰਿਮੇਯੂ ਸੰਖਿਆ ਹੈ।

ਪਰੰਤੁ $\sqrt{6}$ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਪਰਿਮੇਯ = ਅਪਰਿਮੇਯ, ਜੋ ਸੰਭਵ ਨਹੀਂ ਹੈ।

 \therefore 5 ± √6 ਅਪਰਿਮੇਸ਼ ਸੰਖਿਆ ਹੈ।

4 ਸਿੱਧ ਕਰੋ $3\sqrt{2}$ ਅਪਰਿਮੇਸ਼ ਸੰਖਿਆ ਹੈ।

ਹੱਲ: ਮੰਨ ਲਓ, $3\sqrt{2}$ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

$$\frac{r}{3} = \sqrt{2}$$

r ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ਤਾਂ $\frac{r}{3}$ ਵੀ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਪਰੰਤੂ $\sqrt{2}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ। ਪਰਿਮੇਯ = ਅਪਰਿਮੇਯ, ਜੋ ਸੰਭਵ ਨਹੀਂ ਹੈ।

 $\therefore 3\sqrt{2}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

- 1. ਸਿੱਧ ਕਰੋ $\sqrt{5}$. $\sqrt{7}$ ਅਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ।
- 2. ਸਿੱਧ ਕਰੋ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਸੰਖਿਆਵਾਂ ਅਪਰਿਮੇਯ ਹਨ:

(i)
$$4 + \sqrt{2}$$
 (ii) $5 - \sqrt{3}$ (iii) $2 + 5\sqrt{3}$ (iv) $5\sqrt{3}$ (v) $\frac{1}{\sqrt{2}}$

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਦਸ਼ਮਲਵ ਰੂਪ ਦੀ ਦੂਹਰਾਈ

9ਵੀਂ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਸ਼ਾਂਤ ਅਤੇ ਅਸ਼ਾਂਤ ਆਵਰਤੀ ਦਸ਼ਮਲਵ ਪ੍ਰਸਾਰ ਬਾਰੇ ਪੜ੍ਹਿਆ ਹੈ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਬਿਨਾਂ ਵੰਡ ਕੀਤੇ ਕਿਸੇ ਵੀ ਪਰਿਮੇਯ ਸੰਖਿਆ ਦੇ ਸ਼ਾਂਤ ਅਤੇ ਅਸਾਂਤ ਆਵਰਤੀ ਹੋਣ ਦੀ ਸਰਤ ਬਾਰੇ ਚਰਚਾ ਕਰਾਂਗੇ।

ਭਾਵ ਦਸ਼ਮਲਵ ਸਮੇਂ ਹਰ ਵਿੱਚ 10 ਦੇ ਗੁਣਜ 100, 100, 1000 ਹੋਵੇ ਚਾਹੀਦੇ ਹਨ ਅਤੇ 10 ਦੀਆਂ ਘਾਤਾਂ ਕੇਵਲ 2 ਅਤੇ 5 ਦੇ ਗੁਣਨਫਲਾਂ ਵਿੱਚ ਹੀ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਜੇ ਕੇਵਲ 2 ਜਾਂ 5 ਦੀਆਂ ਘਾਤਾਂ ਵੀ ਹੋਣ ਤਾਂ ਵੀ 10 ਦੀ ਘਾਤਾਂ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਸ਼ਾਂਤ ਦਸ਼ਮਲਵ ਦੀ ਸ਼ਰਤ

ਕੋਈ ਵੀ ਪਰਿਮੇਯ ਸੰਖਿਆ $\frac{p}{q}$ ਹੈ :

- p ਅਤੇ q ਕੋਈ ਵੀ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ।
- q ਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡ $2^m \times 5^n$ ਦੇ ਰੂਪ ਵਿੱਚ ਹੋਵੇ, ਜਿੱਥੇ m ਅਤੇ n ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਹਨ ਤਾਂ ਇਸਦਾ ਦਸ਼ਮਲਵ ਸ਼ਾਂਤ ਹੋਵੇਗਾ। ਜੇ ਹਰ $2^m \times 5^n$ ਦੇ ਗਣਨਖੰਡ ਰਪ ਵਿੱਚ ਨਹੀਂ ਹੈ ਤਾਂ ਇਸਦਾ ਦਸਮਲਵ ਅਸਾਂਤ ਆਵਰਤੀ ਹੋਵੇਗਾ।
- 1. ਬਿਨਾਂ ਵੰਡ ਕੀਤੇ ਦੱਸੋ ਕਿ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਦਸ਼ਮਲਵ ਪ੍ਰਸਾਰ ਸ਼ਾਂਤ ਹਨ ਜਾਂ ਅਸ਼ਾਂਤ ਆਵਰਤੀ :
 - i) $\frac{17}{8}$
- ii) $\frac{33}{60}$
- iii) $\frac{11}{28}$

ਹੱਲ: i) $\frac{17}{8}$ ਇੱਥੇ ਅੰਸ਼ ਅਤੇ ਹਰ ਵਿੱਚ ਇੱਕ ਸਾਂਝਾ ਗੁਣਲਖੰਡ ਨਹੀਂ ਹੈ। ਹੁਣ, ਹਰ = $8 = 2^3$ \therefore ਇਹ ਸ਼ਾਂਤ ਦਸ਼ਮਲਵ ਹੈ।

- ii) $\frac{33}{60} = \frac{11}{20}$ (3 ਨਾਲ ਅੰਸ਼ ਅਤੇ ਹਰ ਨੂੰ ਵੰਡਣ 'ਤੇ) ਹੁਣ ਹਰ = 20 = 2×2×5 = 2² × 5 ਇੱਥੇ ਹਰ 2 ਅਤੇ 5 ਦੀ ਘਾਤ ਵਿੱਚ ਹੈ। ∴ ਇਹ ਸਾਂਤ ਦਸਮਲਵ ਹੈ।
- iii) $\frac{11}{28}$ ਇੱਥੇ ਅੰਸ਼ ਅਤੇ ਹਰ ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ। ਹੁਣ, $28 = 2^2 \times 7$ ਇੱਥੇ ਹਰ ਵਿੱਚ 2 ਤੋਂ ਬਿਨਾਂ 7 ਹੈ। ਇਹ ਅਸ਼ਾਂਤ ਆਵਰਤੀ ਹੈ।
- 2. ਹੇਠਾਂ ਲਿਖੇ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਦਸਮਲਵ ਵਿਸਤਾਰ ਲਿਖੋ :
 - i) $\frac{17}{8}$
- ii) $\frac{33}{60}$
- iii) $\frac{11}{50}$

ਹੱਲ:- i)
$$\frac{17}{8} = \frac{17}{2^3} = \frac{17}{2^3} \times \frac{5^3}{5^3} = \frac{2125}{10^3} = 2.125$$

ਹੱਲ:-i) $\frac{17}{8} = \frac{17}{2^3} = \frac{17}{2^3} \times \frac{5^3}{5^3} = \frac{2125}{10^3} = 2.125$ {ਦਸ਼ਮਲਵ ਵਿਸਤਾਰ ਲਈ ਹਰ ਵਿੱਚ 10 ਦੀ ਘਾਤ ਹੋਣੀ ਜ਼ਰੂਰੀ ਹੈ। ਇੱਥੇ ਹਰ ਵਿੱਚ 2^3 ਹੈ ਅਤੇ 10^3 ਲਈ 5^3 ਨਾਲ ਗੁਣਾ ਕਰਨੀ ਪਵੇਗੀ)

ii)
$$\frac{33}{60} = \frac{11}{20} = \frac{11}{2^2 \times 5} = \frac{11}{2^2 \times 5} \times \frac{5}{5} = \frac{55}{10^2} = 0.55$$
 {ਹਰ ਵਿੱਚ 10 ਦੀ ਘਾਤ ਕਰਨ ਲਈ ਇਸਨੂੰ 5 ਨਾਲ ਗੁਣਾ ਕਰਨਾ ਪਵੇਗਾ।

iii)
$$\frac{11}{50} = \frac{11}{2 \times 5^2} = \frac{11}{2 \times 5^2} \times \frac{2}{2} = \frac{222}{10^2} = 2.22$$

ਅਭਿਆਸ

ਅਭਿਆਸ 1.4