ΑD	,					

Award Number: W81XWH-11-1-0706

TITLE: Novel Magnetic Resonance Detection and Profiling of Ovarian Cancer Across Specimens

PRINCIPAL INVESTIGATOR: Ralph Weissleder, MD, PhD

CONTRACTING ORGANIZATION: Massachusetts General Hospital Boston, MA 02114

REPORT DATE: October 2012

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

R	EPORT DOC	UMENTATIO	N PAGE		Form Approved OMB No. 0704-0188
data needed, and completing a this burden to Department of D 4302. Respondents should be	and reviewing this collection of in refense, Washington Headquart aware that notwithstanding any	nformation. Send comments regarders Services, Directorate for Infor	arding this burden estimate or any mation Operations and Reports (n shall be subject to any penalty f	y other aspect of this col 0704-0188), 1215 Jeffe	ning existing data sources, gathering and maintaining the lection of information, including suggestions for reducing rson Davis Highway, Suite 1204, Arlington, VA 22202-a collection of information if it does not display a currently
1. REPORT DATE 25 October 2012 4. TITLE AND SUBTIT	2	2. REPORT TYPE Annual		30	ATES COVERED September 2011–29 September 2012 CONTRACT NUMBER
		and Profiling of Ov	arian Cancer Across		CONTRACT NUMBER
·				W8	GRANT NUMBER 1XWH-11-1-0706
				5c. I	PROGRAM ELEMENT NUMBER
6. AUTHOR(S) Ralph Weissleder,	Cesar Castro, Van	essa Peterson, Hak	tho Lee	5d.	PROJECT NUMBER
					TASK NUMBER VORK UNIT NUMBER
E-Mail: rweissleder@r	•			31. V	VORK UNIT NUMBER
7. PERFORMING ORG Massachusetts Ge Boston, MA 02114		AND ADDRESS(ES)			ERFORMING ORGANIZATION REPORT UMBER
	Research and Ma	AME(S) AND ADDRESS teriel Command	S(ES)	10. 9	SPONSOR/MONITOR'S ACRONYM(S)
, ,					SPONSOR/MONITOR'S REPORT NUMBER(S)
	VAILABILITY STATEN ic Release; Distribu				
13. SUPPLEMENTAR	Y NOTES				
14. ABSTRACT					
samples. We have sensitivity and robe Collection of all sa and move on to the first time, custo developed a novel While we wait the assay will be supe smaller number of	also made progresustness of the assamples has been coen next stage of que omized micro-nucle method that allows diagnostic performation to the gold stan	es optimizing the property in a manner that is in mpleted and we are rying for pathway mar magnetic resonal for sensitive and reance of the selected	ocessing of ascites as background insense now poised to analodulation and activitate for a specific disobust detection in a markers, it is clear	and peripheral sitive to minimity the diagnosty. This work is sease (in this, of manner that do based on our resistive to manner that do based on our resistive to the sease of the	markers for testing on human blood and even enhanced the ze sample loss during purification. estic performance of our markers important because we have, for ovarian cancer) and have been not rely much on purification. eccently published work that our with minimal purification using
		agnetic Resonance,	Protein, Biomarkers	;	
16. SECURITY CLASS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON USAMRMC
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	UU	15	19b. TELEPHONE NUMBER (include area code)

Table of Contents

	<u>Page</u>
Introduction	3
Body	4
Key Research Accomplishments	5
Reportable Outcomes	5
Conclusion	5
References	6
Appendices	6 - 14

INTRODUCTION

Current clinical practices in ovarian cancer care adopt homogenous screening and treatment algorithms reflecting a "one size fits all" approach. Increased appreciation for the vast heterogeneity in ovarian cancer creates opportunities for personalized treatment strategies. Limitations in detection technologies and longitudinal access to sufficient tumor tissues for surveillance and molecular profiling preclude such individualization. A key research need involves sensitive molecular analyses on alternative clinical specimens obviating the need for repeated biopsies of primary tumors during treatment. Absent an adequately sized biopsy specimen, the limited amount of cancer cells in FNA, ascites, or peripheral blood typically precludes conventional detection methods such as flow cytometry or western blot analysis. Diagnostic Magnetic Resonance (DMR) represents a novel, multiplexed sensing technology that exploits magnetic resonance principles to detect molecular targets in *ex-vivo* biological samples [ref 2-4]. Its promise lies in point of care, molecular and cellular sensing through novel click chemistries, microfluidic chip development, and nanoparticles. The molecular specificity of DMR is achieved through magnetic nanoparticles serving as proximity sensors for the molecular target(s) of interest to investigators.

Specific Aims: I) To address the following related issues: 1) Can we sensitively and specifically detect ovarian cancer cells across diverse clinical samples and 2) how do their detection thresholds and molecular make-up compare? II) To develop and optimize an ovarian cancer DMR-based assay for target modulation within and across clinical specimens following exposure to cytotoxic and/or targeted therapies.

BODY

In this first year of funding, we have completed some of the following tasks first proposed during the initial submission and are on track to realize the remaining tasks by the end of overall funding. For review, the tasks and current status are listed below:

Task 1: Customizing DMR assay to ovarian cancer (9-12 months)

- **1a.** Expedited IRB approval request (3-4 months). **This task has been completed.**
- **1b.** Collect excess or discarded clinical specimens from 60 participants at multiple time points throughout their treatment. (9 months) **This task has recently been completed.**
- 1c. Detection threshold in clinical samples (3-4 months) Ongoing. See Figure 1 and Reference 1.
- 1d. Compare to reference standards (2 months) Ongoing. See Reference 1.
- **1e.** Statistical analyses (1-2 months) **Ongoing.**

Task 2: Pathway inhibition assay development for ovarian cancer specimens (9-12 months)

2a. Testing on diverse ovarian cancer cell lines (6 months) **Ongoing.**

- **2b.** Comparison to reference standards (3 months) **Recently started.**
- **2c.** Testing on all available ovarian human samples collected (6 months) **Soon to be started.**
- 2d. Statistical analyses (1-2 months) Not yet started.

Fig. 1: Identification of robust biomarkers for the detection of ovarian cancers. Several cell lines were screened for expression levels of putative markers to identify combinations with the highest potential diagnostic accuracy. In the ongoing analyses of human specimens, we will employ a combination of the highest yielding markers.

The overall intent of the proposal was to utilize a previously developed novel miniaturized DMR device [ref 2-4] and adapt its use to ovarian cancer detection, differential diagnosis and treat efficacy assessment. Those specimens included biopsy tissue, ascites, and/or peripheral blood. The initial challenge beyond use of ovarian and other cancer-specific markers was optimizing our assays to accommodate the various clinical specimens. First, we conducted extensive cell line related work where we tested the protein expression of various ovarian cancer cell markers across a variety of ovarian cancer cell lines and normal ovarian surface epithelium (see Figure 1) to generate a finalized list of lead biomarkers for use in our diagnostics panels. We had, by the time of grant submission, published work that analyzing biopsies was feasible [ref 2-4]. The goal now extended to ascites and peripheral blood with increasing sensitivity and specificity challenges, respectively. In the interim and in part under the auspices of current funding, we

have developed a novel nanotechnology assay that increases robustness of profiling while also allowing reuse of cells for further profiling. Moreover, we established this method (known as 'cleaving'; see Reference 1) on human ascites as proof-of-principle. This method will inform the approach we will apply to all ovarian cancer ascites and peripheral blood samples collected for this study. This also includes the goals of Task 2 since we will be able to achieve true integrated profiling as opposed to parallel analyses using aliquots from parent samples. The rate limiting step of the proposal, prospective collection, has been completed and as such the project is on track to test all proposed tasks.

KEY RESEARCH ACCOMPLISHMENTS:

- Novel assay for amplifying nanoparticle binding signal [ref 1]
- Novel assay that enables integrated profiling (protein, mRNA, and DNA on <u>same</u> sample) [ref 1]
- Finalization of ovarian cancer marker panel selection using cell line screening

REPORTABLE OUTCOMES:

- Presentations:
 - MIT/Harvard Nanotechnology monthly meeting (10/9/12)
 - MIT/ Dana Farber Harvard Cancer Center Bridge Talk (9/20/12)
 - MGH Ovarian Cancer Survivors Course (7/28/12)
- Degrees supported by award: In progress, MIT PhD in Chemical Engineering (Vanessa Peterson, BSc)
- Funding applied for based on work supported by award: DOD Ovarian Cancer Academy Career Development Award (Cesar M. Castro, MD; under review)

CONCLUSION: During this interim funding period, we have made progress identifying lead ovarian cancer markers for testing on human samples (Fig. 1). We have also made progress optimizing the processing of ascites and peripheral blood and even enhanced the sensitivity and robustness of the assay in a manner that is background insensitive to minimize sample loss during purification. Collection of all 60 clinical samples has been completed under IRB approval and we are now poised to analyze the diagnostic performance of our markers and move on to the next stage of querying for pathway modulation and activity. This work is important because we have, for the first time, customized micro-nuclear magnetic resonance for a specific disease (in this, ovarian cancer) and have developed a novel method that allows for sensitive and robust detection in a manner that does not rely much on purification. While we await the diagnostic

performance of the selected markers, it is clear - based on our recently published work - that our assay will be superior to the gold standard of flow cytometry with respects to profiling cells with minimal purification using smaller number of cells.

REFERENCES:

- 1) Peterson V, Castro CM, Lee H, and Weissleder R. <u>Orthogonal amplification of nanoparticles for improved diagnostic sensing</u> *ACS Nano* 2012 April 24;6(4):3506-13. Epub 2012 Mar 23.
- 2) Ghazani A, Castro CM, Gorbatov R, Lee H, and Weissleder R. <u>Sensitive and direct detection of circulating tumor cells by multi-marker micro-NMR</u> *Neoplasia* 2012 May; 14(5):388-95.
- 3) Haun JB*, Castro CM*, Wang R, Pruzinsky V, Marinelli BS, Lee H, and Weissleder R. <u>MicroNMR For Rapid Molecular Analysis of Human Tumor Samples</u>
 Science Translational Medicine 2011 Feb 23; 3(71):71ra16.
- 4) Lee H, Sun E, Ham D, Weissleder R
 Chip-NMR biosensor for detection and molecular analysis of cells
 Nature Medicine 2008;14(8):869-74.

APPENDIX:

Orthogonal Amplification of Nanoparticles for Improved Diagnostic Sensing

Vanessa M. Peterson, †,§ Cesar M. Castro,† Hakho Lee,† and Ralph Weissleder^{†,‡,*}

†Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States, †Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, United States, and [§]Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 66-350, Massachusetts 02139, United States

anoparticles (NPs) of different sizes. shapes, and compositions have been increasingly employed for in vitro diagnostics.^{1,2} NP-based sensing technologies are often more sensitive than small molecule sensors, due to their multivalency,³ exploitation of novel physical effects, 4,5 simplified purification and analysis, and because assays can be multiplexed. Recently, enormous progress has been made in developing NPs with unique optical or magnetic signatures. For example, advanced gold/silver clusters 1,6 and newer doped ferrites with high magnetization can detect analytes within the femtomolar (fM) range.^{7,8} However, there is still a gap between current detection limits and the abundance of biological targets, which requires either purification and concentration or amplification. This is especially the case in clinical diagnostic settings, such as cancer⁹⁻¹¹ or infectious diseases, 12-14 where detection of rare targets (e.g., cells or bacteria) in clinical samples is necessary.

A variety of amplification methods have been previously described; these include two-step methods (avidin-biotin, click chemistry^{15,16}), DNA-templated amplification, ¹⁷ and supramolecular host chemistry. ¹⁸ On the basis of newer cycloaddition chemistries for rapid conjugation, we hypothesized that multiple steps of alternating orthogonal chemistries could be used as an alternative amplification method with higher sensitivity. Of particular interest are $\{4+2\}$ cycloaddition reactions, which are extremely fast and selective and for which a number of orthogonal reaction partners have already been described. 19,20 Unlike DNA methods, these cycloadditions do not require sample heating (annealing) nor do they require sensitive polymerases or catalysts. Here, we describe the systematic exploration of one such method. Specifically, we investigated the effect of repeated **ABSTRACT**

There remains an ongoing need for fast, highly sensitive, and quantitative technologies that can detect and profile rare cells in freshly harvested samples. Recent developments in nanomaterial-based detection platforms provide advantages over traditional approaches in terms of signal sensitivity, stability, and the possibility for performing multiplexed measurements. Here, we describe a bioorthogonal, nanoparticle amplification technique capable of rapid augmentation of detection sensitivities by up to 1-2 orders of magnitude over current methods. This improvement in sensitivity was achieved by (i) significantly reducing background noise arising from nonspecific nanoparticle binding, (ii) increasing nanomaterial binding through orthogonal rounds of amplification, and (iii) implementing a cleavage step to improve assay robustness. The developed method allowed sensitive detection and molecular profiling of scant tumor cells directly in unpurified human clinical samples such as ascites. With its high sensitivity and simplified assay steps, this technique will likely have broad utility in nanomaterial-based diagnostics.

KEYWORDS: nanoparticles · targeting · orthogonal chemistry · tetrazine · NMR · diagnostics · cancer

rounds of orthogonal NP labeling on amplification (signal over noise) and the implementation of an additional cleavage modification that would confer synergistic improvements to the assay's performance. We show that this optimized labeling method significantly improves detection sensitivities of nuclear magnetic resonance (NMR)-based sensing (diagnostic magnetic resonance, DMR). Unlike conventional methods, such as flow cytometry, whose uses are often limited due to time-consuming sample purification and accompanying cell loss, this new labeling strategy allowed cancer cells to be detected and molecularly

Received for review February 6, 2012 and accepted March 16, 2012.

Published online March 16, 2012 10.1021/nn300536v

© 2012 American Chemical Society

^{*} Address correspondence to rweissleder@mgh.harvard.edu.

Amplification AMP1 AMP2 AMP1 AMP2 AMP1 AMP2 AD-TCO AD-TCO AD-TCO AD-TCO AD-TCO AMP1-PEG-TZ AMP1-C AMP1-C AMP2-C AMP1-C AMP2-C

Figure 1. Schematic of the labeling strategy used to amplify biomarker signals. The labeling step (L) refers to the initial antibody—*trans*-cyclooctene (TCO) conjugate binding to the target followed by the addition of magneto-fluorescent nanoparticles (MFNPs) conjugated to the orthogonal reactant, tetrazine (Tz). The signal can be subsequently amplified through additional rounds of complementary orthogonal MFNP conjugates (AMP1, AMP2) and through cleavage/purification using dithiothreitol (DTT; AMP1-C, AMP2-C).

profiled in unpurified clinical samples. We expect that this new technique will have broad applications in future nanomaterial-based diagnostics.

RESULTS

New Labeling Strategy for High Detection Sensitivity. Figure 1 summarizes the scheme of the developed labeling method. We hypothesized that the cellular loading of nanoagents, specifically magneto-fluorescent nanoparticles (MFNPs), could be maximized via the sequential application of MFNPs conjugated with orthogonal binding partners. Specifically, to form an initial MFNP layer, cellular targets were first labeled with antibodies modified with trans-cyclooctene (TCO) before being coupled with MFNPs derivatized with tetrazine (Tz). 15 This primary labeling can then be amplified through alternating applications of MFNP-TCO (Amplification 1; AMP1) and MFNP-Tz (AMP2) to form multiple MFNP layers. In addition to amplification, bound MFNPs could also be released from cells, collected, and resuspended in buffer prior to performing analytical measurements. In so doing, it is theoretically possible to confer improved detection sensitivity and reliability by (1) eliminating biological contaminants (e.g., cellular debris, components of extracellular matrix, nontargeted cells) and (2) reducing measurement artifacts caused by the sedimentation of labeled cells. In order to provide such functionality, the orthogonal reactants (TCO and Tz) were immobilized onto the MFNP surface through a cleavable linker (e.g., disulfide bond; see Materials and Methods for details).

Our first goal was to optimize both the NPs as well as the labeling protocols. Cancer cells (SK-OV-3, human

ovarian carcinoma) overexpressing HER2 (human epidermal growth factor receptor 2; $\sim 1 \times 10^6$ receptors per cell) were used as a model cell line. Anti-HER2 antibodies (trastuzumab) were first modified with TCO (HER2-TCO; with each antibody bearing \sim 20 TCO¹⁵). Two types of orthogonal MFNPs were then prepared: one with Tz directly conjugated to the particles (MFNP-Tz) and the other with a polyethylene glycol (PEG) spacer between the particle and the orthogonal reactant (MFNP-PEG-Tz). The PEGylation was expected to minimize nonspecific MFNP binding to cells. Indeed, when SK-OV-3 cells (in the absence of the primary antibody labeling step) were incubated with MFNP-PEG-Tz, the background signal from nonspecific binding was significantly smaller (>20-fold) than that of MFNP-Tz (Figure 2A). SK-OV-3 cells targeted with HER2-TCO followed by the application of either MFNP-Tz or MFNP-PEG-Tz showed similar dose-dependent responses (Figure 2B). With MFNP-PEG-Tz, however, the background signal remained significantly low (Figure 2B), which in turn increased the achievable signal-to-noise ratio (SNR; Figure 2C). Note that keeping the background signal low is critical to the amplification strategy, as it prevents SNR degeneration during multiple rounds of MFNP-Tz/MFNP-TCO layering.

Improved Robustness and Sensitivity through Cleavage. We next quantitated the effects of MFNP cleavage on detection sensitivity. Following primary cell labeling with HER2-TCO and MFNP-PEG-Tz, SK-OV-3 cells were further treated with MFNP-PEG-TCO (AMP1). Cell-bound MFNPs were then released by cleaving disulfide linkers (AMP1-C) and separated from cellular contents *via*

Figure 2. Effect of nanoparticle (NP) PEGylation on signal-to-noise ratio (SNR). (A) Flow cytometry experiments comparing SK-OV-3 cells (in the absence of the primary antibody labeling step) incubated with either MFNP-PEG-Tz (green) or MFNP-Tz (orange) for 15 min to determine nonspecific cellular binding. PEGylated particles displayed significantly reduced nonspecific cellular binding. (B) Dose response graphs of specific (*i.e.*, HER2 targeting) *versus* nonspecific cellular binding with different NPs. With PEGylated MFNPs (left panel), nonspecific binding is kept at a minimum level, whereas the nonspecific binding increases in a dose-dependent manner with non-PEGylated MFNPs (right panel). (C) Overall signal-to-noise ratio (SNR) with PEGylated (green) and non-PEGylated (orange) MFNPs.

Figure 3. Comparison of the cleavage method to whole cell detection. (A) Comparative NMR signals for HER2-targeted SK-OV-3 cells using the cleave (blue) versus the noncleave (yellow) method (\sim 3500 cells); control samples were incubated with NPs alone. (B) Detection sensitivity of SK-OV-3 cancer cells using the AMP1 and AMP1-C methods (see Figure 1). Note the \sim 10-fold increase in detection sensitivity following the cleavage method. Data are expressed as a mean \pm standard deviation. (C) Comparative detection between the NMR-based cleavage method and flow cytometry demonstrated an excellent correlation ($R^2 = 0.99$). Each data point represents different target expression levels (EGFR, EpCAM, HER2, MUC1) across two model cell lines (SK-OV-3, SK-BR-3). NMR and flow cytometry detection volumes contained 3500 and 35 000 cells, respectively. MFI: mean fluorescent intensity.

centrifugation. The transverse relaxation rate (R_2) of samples was subsequently measured by DMR. The cell number matched comparison showed a significantly higher R_2 following the cleaving method (Figure 3A; >200% enhancement in SNR). The observed high R_2 is presumably due to an increase in particle size, as a result of interparticle clustering between MFNP-PEG-Tz and MFNP-PEG-TCO. It has previously been shown that clusters of small magnetic NPs are more efficient at accelerating NMR signal decay and thereby result in higher R_2 . $^{5,21-23}$ Further measurement of particle size by dynamic light scattering supported this hypothesis. The cleaved materials (AMP1-C) had a monodisperse hydrodynamic diameter of \sim 100 nm, whereas the size of the original particle was \sim 30 nm. Note that the

effect of clustering is more pronounced in the AMP1-C stage as particles are free in suspension and thus able to further interact with surrounding water molecules. The higher R_2 and homogeneous dispersion of MFNPs in solution rendered the cleaving method more sensitive (>10 times) and robust than direct cellular detection (Figure 3B). When subsequently compared with conventional flow cytometry, the gold standard for cellular detection, the cleave-based DMR technique showed an excellent correlation ($R^2 = 0.99$), a finding that validated its analytical capacity (Figure 3C).

Multiple Amplification Rounds Yield Higher SNRs. We next characterized the signal amplification strategy through multiple applications of MFNPs. Cancer cells (SK-BR-3),

Figure 4. Comparison of successive amplification rounds. (A) Fluorescent signals detected from the initial labeling step and for each subsequent amplification step showed excellent colocalization, confirming that multiple MFNP layers can be applied to cellular targets for signal amplification. The MFNP-cleaved cells displayed a negligible fluorescent signal, suggesting maximal MFNP release into suspension. The scale bar represents 30 μ m. (B) Comparative NMR signal for HER2-targeted SK-OV-3 cells (3500 cells). AMP2-C had the highest overall signal, but AMP1-C conferred the largest increase in signal between consecutive steps. (C) Cellular detection threshold for different cleavage methods (labeling, AMP1, and AMP2; see Figure 1) based on HER2 targeting of SK-OV-3 cells.

primarily labeled with HER2-TCO and MFNP-PEG-Tz, were incubated with alternating applications of MFNPs and their orthogonal binding partners: MFNP-PEG-TCO (AMP1), MFNP-PEG-Tz (AMP2). Figure 4A shows fluorescent micrographs of labeled cells, where the labeling and amplification steps were made distinguishable by conjugating different fluorescent dyes to the MFNPs. The images show excellent colocalization between these steps and thereby confirm that the layering indeed amplifies the primary target and not other cellular structures/processes. Equally important was the finding that the MFNP-cleaved cells display negligible fluorescent signals, suggesting that there is maximal MFNP release into suspension. The DMR assays were performed using MFNP samples that had been cleaved from SK-OV-3 cells after each labeling and amplification step. Successive increases in R_2 were observed with each round of amplification (Figure 4B); there was likewise a corresponding improvement in detection sensitivities (Figure 4C).

Application to Clinical Samples. The overall goal of the study was to improve assay sensitivity and robustness

in native clinical samples (e.g., fine needle aspirates, biopsies, ascites, blood, sputum), which are inherently complex in composition, as well as heterogeneous and variable in cell number.²⁴ We therefore tested our new method for cancer cell detection in malignant human ascites from patients with pancreatic cancer. Samples were split in two and underwent noncleaving (AMP1) and cleaving (AMP1-C) steps, respectively. For each set, samples were screened for EGFR (epidermal growth factor receptor), EpCAM (epithelial cell adhesion molecule), HER2, and MUC1 (mucin-1) biomarkers. The cleaving approach was found to produce superior results, revealing otherwise barely or undetectable markers (e.g., MUC1 and EpCAM; Figure 5A). Integral to this method's successful detection of low levels of biomarkers is the preferential amplification of signals emanating from target rather than from background, which effectively maximizes the SNRs.

For this study, we tested both purified and non-purified samples to reflect the clinical reality and clinical need, respectively. Purification in our study was achieved by negatively selecting CD45+ cells, which

Figure 5. Processing of primary clinical samples. (A) Human clinical ascites from pancreatic cancer were profiled for four different biomarkers: EGFR, EpCAM, HER2, and MUC1. The AMP1 labeling method was then assessed with and without the subsequent cleavage step. The cleavage step generated higher signal levels. (B) Comparison of different analytical methods (flow cytometry, diagnostic magnetic resonance) for MUC1 detection in clinical samples. Error bars represent the standard error from at least three NMR measurements.

comprise \sim 90% of the total cell concentration in the samples. Due to significant and inevitable cell losses (often >40% of the initial cell number), it is always advantageous to avoid or minimize sample purification steps, especially when dealing with complex clinical samples. In both purified and nonpurified specimens, MUC1 was labeled using noncleaving (AMP1) and cleaving (AMP1-C) techniques. DMR measurements of AMP1-C generated the least signal variation between the nonpurified and purified sets. Importantly, the nonpurified signal was \sim 90% of the purified signal. Eliminating the cleaving steps (AMP1) reduced the nonpurified signal to 16% of the purified signal, as measured by DMR, and to 3% of the purified signal, as measured by flow cytometry (Figure 5B). In summary, the cleaving method enhanced detection in unaltered samples and thus obviated the need for purification steps. Flow cytometry, however, clearly benefits from the inclusion of a purification step when detecting and profiling scarce cells in heterogeneous biological samples such as human-derived specimens.

DISCUSSION

Utilizing the cycloaddition chemistry for signal amplification, we have developed a new NP-based diagnostic strategy for higher detection sensitivity and robustness. The method relies on (i) increasing the number of NPs bound to the target for signal amplification and (ii) cleavage of the NP from its target prior to measurement. Amplification is achieved by labeling with successive rounds of complementary TCO and Tz NPs. However, we found that this strategy only works well when background noise remains low. We achieved this by using PEG spacers on the NP surface to minimize nonspecific binding of the NP. The cleavage of NPs from labeled cells further increased the

detection sensitivity by over an order of magnitude. This was likely as a result of (a) the MFNPs being surrounded by large numbers of water molecules, which could increase the R_2 ; and (b) cleaved MFNP-Tz and MFNP-TCO forming clusters, which could also increase the R_2 . In addition to enhancing sensitivity, the cleavage method also improves the detection reliability; the measurement is free from artifacts caused either by cell sedimentation or by the presence of clumps/extraneous matter often found in clinical samples. Finally, the cleavage method simplifies operation. Results are highly reproducible, and longitudinal samples do not have to be analyzed in real time (unless desired). Rather, measurements can be done at the investigator's convenience since, unlike labeled cells where variations can occur due to dissociation of the MFNPs from cells, cleaved MFNPs are stable and do not vary over time. Lastly, because the analytical measurement does not require the cells after the cleavage step, it is possible that rare cells could be relabeled for other biomarkers. For instance, samples could be first profiled for a less abundant marker (MFNP labeling and amplification followed by cleavage); the same sample then can be screened for more abundant markers using the same MFNP labeling and cleavage strategy. 17

CONCLUSION

We envision a variety of applications for this technology. While originally developed and optimized for robust cellular analyses and measurements in ascitic fluid, we anticipate that this method could similarly be applied to fine needle aspirates, blood, biopsy specimens, sputum, and other biological sources. A particularly interesting application is the possibility of performing multiplexed measurements of rare cells such as circulating cancer cells, immune cell subpopulations, or

stem cells. Finally, we envision that this novel method could be applied to other profiling methods and nanomaterials. For example, the method could be adapted to ELISA-based MFNP approaches to enable detection of soluble markers in blood or urine. In such assays, the soluble marker would be first captured on micrometer

sized polystyrene beads or microtiter plates before undergoing an AMP2-C procedure to augment sensitivities. It is also possible that this method could be adapted to nonmagnetic NPs, that is, using particles detectable by light sensing²⁵ or by plasmon resonance techniques.^{26–28}

MATERIALS AND METHODS

Preparation of Cleavable PEGylated Tz and TCO Nanoparticles (NPs). Magneto-fluorescent nanoparticles (MFNPs) were synthesized by reacting cross-linked iron oxide (CLIO) NPs with amine-reactive cyanine dyes (VT-680xl, Perkin-Elmer), as previously described. The amino-MFNP contained approximately 62 primary amine groups and \sim 7 VT-680 molecules conjugated to the surface. The hydrodynamic diameter was 27 nm, as determined by dynamic light scattering (Zetasizer 1000HS; Malvern Instruments), and the r_1 and r_2 relaxivities were 26.3 and 52.3 mM $^{-1}\ s^{-1}$, respectively, at 40 °C and 0.47 T (Minispec MQ20; Bruker). MFNP molar concentration was determined based on an estimated molecular mass of 447 000 Da (8000 Fe atoms per core crystal, 55.85 Da per Fe atom 29,30).

MFNPs with a polyethylene glycol (PEG) spacer between the particle and the orthogonal reactant were prepared in a threestep process. First, the MFNPs were reacted with 2000 molar equiv (relative to the MFNPs) of sulfosuccinimidyl 6-[3'(2pyridyldithio)propionamido]hexanoate (sulfo-LC-SPDP, Thermo Scientific) in phosphate buffered saline (PBS) for 1.5 h at room temperature. Excess sulfo-LC-SPDP was removed using a 100 kDa ultracentrifugation unit (Amicon) and washed three times with PBS at 1800 rcf for 15 min. In the second step, 2000 molar equiv of thiol-PEG-amine (3.4 kDA, Creative Pegworks) relative to the MFNPs was reacted in PBS and aged overnight at 4 °C on a shaker. Excess thiol-PEG-amine was removed using a 100 kDa ultracentrifugation unit (Amicon) and washed three times with PBS at 1800 rcf for 15 min. In the third step, amine-PEGterminated MFNPs were modified with either 2,5-dioxopyrrolidin-1-yl 5-(4-(1,2,4,5-tetrazin-3-yl)benzylamino)-5-oxopentanoate (Tz-NHS) or (E)-cyclooct-4-enyl 2,5-dioxopyrrolidin-1-yl carbonate (trans-cyclooctene N-hydroxysuccinimidyl ester; TCO-NHS), synthesized as previously reported.³¹ This reaction was performed using 250 molar equiv of Tz-NHS or 2000 molar equiv of TCO-NHS (relative to the MFNPs) and proceeded in PBS containing 10% dimethylformamide (DMF) and 10 mM of sodium bicarbonate at room temperature for 4 h. Excess orthogonal reactant was first removed using a 100 kDA ultracentrifugation unit (Amicon), which concentrated the sample down to \sim 0.25 mL for the final purification step using gel filtration (Sephadex G-50, GE Healthcare). For MFNPs conjugated to Tz without the PEG spacer, the first two steps were omitted (Figure 2).

Preparation of TCO-Modified Antibodies. Monoclonal antibodies, trastuzumab (Genentech), Cetuximab (Bristo Myers Squibb), anti-EpCAM (clone 158206, R&D systems), and anti-MUC1 (clone M01102909, Fitzgerald Industries), were modified with TCO-NHS. If sodium azide was present, it was removed using a 2 mL Zeba desalting column (Thermo Fisher). The reaction was performed using 1000 molar equiv of TCO-NHS and 0.5 mg of antibody in PBS containing 10% (v/v) DMF and 10 mM sodium bicarbonate for 4 h at room temperature. Samples were then purified using Zeba columns, and the antibody concentration was determined by absorbance measurement (NanoDrop 1000 spectrophotometer, Thermo Scientific). On average, antibodies bore \sim 15 TCO molecules. The TCO-modified antibodies retained their affinity as previously confirmed. 15 In addition, this conjugation can be further improved by directing the chemical modification to the FC portion of antibody (e.g., via oxidation of its glycosidic chains).

Nanoparticle Labeling. The human cancer cell lines SK-OV-3 and SK-BR-3 were obtained from ATCC and maintained in McCoy's 5A with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, 3% sodium bicarbonate, and 1% L-glutamine.

Prior to experiments, cells were grown to \sim 90% confluency, released using 0.05% trypsin/0.53 mM ethylenediaminetetraacetic acid (EDTA), and washed once with PBS containing 2% bovine serum albumin (PBS+). Cells were then fixed with Lyse/Fix buffer (BD Biosciences 558049) for 10 min at 37 °C and washed twice with PBS+. The fixed cells were then either analyzed real-time or frozen down at $-20\ ^{\circ}\text{C}$ for subsequent labeling. In the next step, cells were labeled with TCO-modified monoclonal antibodies (10 μ g mL⁻¹) in 0.15 mL of PBS+ for 30 min at room temperature; antibodies were omitted in control samples. Cells were washed once with PBS to remove the excess antibody. For the initial labeling with MFNPs, cells were resuspended in 0.4 mL of MFNP-PEG-Tz (40 μg Fe/mL) for 15 min at room temperature. The NP concentration was then determined by measuring the iron (Fe) content through absorbance, at a characteristic wavelength of 400 nm (NanoDrop 1000 spectrophotometer, Thermo Scientific) and with a known standard for calibration. For the initial amplification (AMP1), cells were washed once and resuspended in 0.4 mL of 40 μ g Fe/mL MFNP-PEG-TCO (15 min, room temperature). Likewise, cells from the AMP1 step were washed once and resuspended in 0.4 mL of 40 μg Fe/mL of MFNP-PEG-Tz (15 min, room temperature) for the second amplification (AMP2). After the last round of labeling, cells were washed once with PBS+ and this was followed by a final wash with PBS. For the cleaving step, samples were mixed with dithiothreitol (DTT; 100 mM) and kept at 37 °C for 15 min. Finally, cells were centrifuged down and the supernatant (containing the MFNPs) was removed for magnetic resonance measurements. The cleaved MFNPs in DTT (AMP1-C) had a monodisperse mean diameter of \sim 100 nm (Malvern).

DMR Measurements. Magnetic resonance measurements were performed using the miniature NMR system developed for point-of-care diagnostics.³³ The system measures the transverse relaxation rate on 1–2 μ L sample volumes, using Carr-Purcell-Meiboom-Gill pulse sequences with the following parameters: echo time, 3 ms; repetition time, 4 s; number of 180° pulses per scan, 900; number of scans, 7. A detection threshold of $\Delta T_2 \geq 2.5\%$ was used to rule out instrumental errors.33 All measurements were performed in triplicate, and the data are presented as the mean \pm standard error of the mean. The measured T_2 values were then converted to ΔR_2^+ ($R_2 = 1/T_2$, $\Delta R_2^+ = R_2^{\text{sig}} - R_2^{\theta}$), where R_2^{sig} and R_2^{θ} are the transverse relaxation rates for targeted and control samples, respectively. For the same cell concentration, the measured ΔR_2^+ value is proportional to the amount of MFNP loaded onto each cancer cell.^{17,24} A negative or zero signal signifies that there is no significant difference in DMR signal between biomarker labeled cells and nonspecific binding of MNP to cells within the detection limit. To determine the absolute number of biomarkers, polymer microspheres (Bangs Laboratories) with a known amount of binding sites can be used to create calibration curves to translate DMR levels to the number of biomarkers present.

Flow Cytometry. At the conclusion of the MFNP amplification step, but before the cleavage step, samples were measured for VT-680 fluorescence using an LSRII flow cytometer (Becton Dickinson). Mean fluorescence intensity (MFI) was determined using FlowJo software to quantitate the amount of NP present. Two standard deviations above the nonlabeled cell measurement was used as the lower limit of detection.

Microscopy. SK-BR-3 cells were magnetically labeled using the method described above. MFNPs with different fluorophores were employed: VT-680-MNP-PEG-Tz for labeling, FITC-MNP-PEG-TCO for AMP1, and RITC-MNP-PEG-Tz for AMP2.

Samples were transferred to a 96-well plate at the end of labeling and again after the cleavage step. Images were acquired at 20× with a DeltaVision screening system (Applied Precision Instruments), and images were analyzed using FIJI software

Clinical Samples. Human clinical ascites from pancreatic cancer was profiled. To compare the cleaving and noncleaving methods, nonpurified samples were divided and screened for EGFR, EpCAM, HER2, and MUC1. For each marker, both AMP1 and AMP1-C were employed as described above. Marker expression levels were determined based on the ratio of positive marker (ΔR_2^+) and control ($\Delta R_2^\theta = R_2^\theta - R_2^{PBS}$). Purified clinical samples were prepared through CD45 negative selection using CD45 magnetic beads and LS columns (Miltenyi Biotec). Both purified and nonpurified samples were then targeted for MUC1, and their magnetic labeling was amplified via AMP1 and AMP1-C. Samples were analyzed using either DMR or flow cytometry, and the percent ratio of the nonpurified signal to the purified signal was determined (Figure 5B).

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. The authors thank T. Reiner and J. Klubnik for synthesizing the TCO precursor, S. Hilderbrand, M. Karver, and S. Agasti for synthesizing the tetrazine precursor, N. Sergeyev for synthesizing cross-linked dextran iron oxide nanoparticles, J. Dunham with imaging, and C. Min, B. Marinelli, and R. Gorbatov for help with NMR measurements. We especially thank J. Haun, G. Thurber, M. Liong, K. Prather, and R. Langer for many helpful discussions, and Y. Fisher-Jeffes for review of the manuscript. V.P. was supported in part by a Merck Educational Assistance Fellowship. This work was funded in part by U54CA151884, R01EB010011, 2R01EB004626, HHSN268201000044C, 2-P50-CA86355, K12CA087723, and DOD W81XWH-11-1-0706

REFERENCES AND NOTES

- 1. Giljohann, D. A.; Mirkin, C. A. Drivers of Biodiagnostic Development. Nature 2009, 462, 461-464.
- 2. Haun, J. B.; Yoon, T. J.; Lee, H.; Weissleder, R. Molecular Detection of Biomarkers and Cells Using Magnetic Nanoparticles and Diagnostic Magnetic Resonance. Methods Mol. Biol. 2011, 726, 33-49.
- 3. Lees, W. J.; Spaltenstein, A.; Kingery-Wood, J. E.; Whitesides, G. M. Polyacrylamides Bearing Pendant α -Sialoside Groups Strongly Inhibit Agglutination of Erythrocytes by Influenza a Virus: Multivalency and Steric Stabilization of Particulate Biological Systems. J. Med. Chem. 1994, 37, 3419-3433.
- 4. Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem. Rev. 2011, 111, 3736-3827.
- 5. Perez, J. M.; Josephson, L.; O'Loughlin, T.; Hogemann, D.; Weissleder, R. Magnetic Relaxation Switches Capable of Sensing Molecular Interactions. Nat. Biotechnol. 2002, 20, 816-820.
- 6. Kim, D.; Daniel, W. L.; Mirkin, C. A. Microarray-Based Multiplexed Scanometric Immunoassay for Protein Cancer Markers Using Gold Nanoparticle Probes. Anal. Chem. 2009, 81, 9183-9187.
- 7. Yoon, T. J.; Lee, H.; Shao, H.; Weissleder, R. Highly Magnetic Core-Shell Nanoparticles with a Unique Magnetization Mechanism. Angew. Chem., Int. Ed. 2011, 50, 4663-4666.
- 8. Yoon, T. J.; Lee, H.; Shao, H.; Hilderbrand, S. A.; Weissleder, R. Multicore Assemblies Potentiate Magnetic Properties of Biomagnetic Nanoparticles. Adv. Mater. 2011, 23, 4793-
- 9. Aktas, B.; Kasimir-Bauer, S.; Heubner, M.; Kimmig, R.; Wimberger, P. Molecular Profiling and Prognostic Relevance of Circulating Tumor Cells in the Blood of Ovarian Cancer Patients at Primary Diagnosis and after Platinum-Based Chemotherapy. Int. J. Gynecol. Cancer 2011, 21, 822–830.
- 10. Armstrong, A. J.; Marengo, M. S.; Oltean, S.; Kemeny, G.; Bitting, R. L.; Turnbull, J. D.; Herold, C. I.; Marcom, P. K.;

- George, D. J.; Garcia-Blanco, M. A. Circulating Tumor Cells from Patients with Advanced Prostate and Breast Cancer Display Both Epithelial and Mesenchymal Markers. Mol. Cancer Res. 2011, 9, 997-1007.
- 11. Attard, G.; de Bono, J. S. Utilizing Circulating Tumor Cells: Challenges and Pitfalls. Curr. Opin. Genet. Dev. 2011, 21,
- 12. Chin, C. D.; Linder, V.; Sia, S. K. Lab-on-a-Chip Devices for Global Health: Past Studies and Future Opportunities. Lab Chip 2007, 7, 41-57.
- Struelens, M. J.; Denis, O.; Rodriguez-Villalobos, H. Microbiology of Nosocomial Infections: Progress and Challenges. Microbes Infect. 2004, 6, 1043-1048.
- 14. Urdea, M.; Penny, L. A.; Olmsted, S. S.; Giovanni, M. Y.; Kaspar, P.; Shepherd, A.; Wilson, P.; Dahl, C. A.; Buchsbaum, S.; Moeller, G.; et al. Requirements for High Impact Diagnostics in the Developing World. Nature 2006, 444, 73-79.
- 15. Haun, J. B.; Devaraj, N. K.; Hilderbrand, S. A.; Lee, H.; Weissleder, R. Bioorthogonal Chemistry Amplifies Nanoparticle Binding and Enhances the Sensitivity of Cell Detection. Nat. Nanotechnol. 2010, 5, 660-665.
- 16. Haun, J. B.; Devaraj, N. K.; Marinelli, B. S.; Lee, H.; Weissleder, R. Probing Intracellular Biomarkers and Mediators of Cell Activation Using Nanosensors and Bioorthogonal Chemistry. ACS Nano 2011, 5, 3204-3213.
- 17. Liong, M.; Tassa, C.; Shaw, S. Y.; Lee, H.; Weissleder, R. Multiplexed Magnetic Labeling Amplification Using Oligonucleotide Hybridization. Adv. Mater. 2011, 23, H254-7.
- 18. Agasti, S. S.; Liong, M.; Tassa, C.; Chung, H. J.; Shaw, S. Y.; Lee, H.; Weissleder, R. Supramolecular Host-Guest Interaction for Labeling and Detection of Cellular Biomarkers. Angew. Chem., Int. Ed. 2011, 51, 450-454.
- 19. Karver, M. R.; Weissleder, R.; Hilderbrand, S. A. Bioorthogonal Reaction Pairs Enable Simultaneous, Selective, Multi-Target Imaging. Angew. Chem., Int. Ed. 2011, 51, 920-922.
- 20. Karver, M. R.; Weissleder, R.; Hilderbrand, S. A. Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation. Bioconjugate Chem. 2011, 22, 2263-2270.
- 21. Brooks, R. A. T(2)-Shortening by Strongly Magnetized Spheres: A Chemical Exchange Model. Magn. Reson. Med. 2002, 47, 388-391.
- 22. Haun, J. B.; Yoon, T. J.; Lee, H.; Weissleder, R. Magnetic Nanoparticle Biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. **2010**, 2, 291–304.
- 23. Shao, H.; Yoon, T. J.; Liong, M.; Weissleder, R.; Lee, H. Magnetic Nanoparticles for Biomedical NMR-Based Diagnostics. Beilstein J. Nanotechnol. 2010, 1, 142-154.
- 24. Lee, H.; Yoon, T. J.; Figueiredo, J. L.; Swirski, F. K.; Weissleder, R. Rapid Detection and Profiling of Cancer Cells in Fine-Needle Aspirates. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 12459-12464.
- 25. Han, H. S.; Devaraj, N. K.; Lee, J.; Hilderbrand, S. A.; Weissleder, R.; Bawendi, M. G. Development of a Bioorthogonal and Highly Efficient Conjugation Method for Quantum Dots Using Tetrazine-Norbornene Cycloaddition. J. Am. Chem. Soc. 2010, 132, 7838-7839.
- 26. Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462-493.
- 27. Sendroiu, I. E.; Gifford, L. K.; Luptak, A.; Corn, R. M. Ultrasensitive DNA Microarray Biosensing via In Situ RNA Transcription-Based Amplification and Nanoparticle-Enhanced SPR Imaging. J. Am. Chem. Soc. 2011, 133, 4271-4273.
- 28. Lee, K.; Drachev, V. P.; Irudayaraj, J. DNA-Gold Nanoparticle Reversible Networks Grown on Cell Surface Marker Sites: Application in Diagnostics. ACS Nano 2011, 5, 2109–2117.
- 29. Haun, J. B.; Castro, C. M.; Wang, R.; Peterson, V. M.; Marinelli, B. S.; Lee, H.; Weissleder, R. Micro-NMR for Rapid Molecular Analysis of Human Tumor Samples. Sci. Transl. Med. 2011, 3.71ra16.
- 30. Reynolds, F.; O'loughlin, T.; Weissleder, R.; Josephson, L. Method of Determining Nanoparticle Core Weight. Anal. Chem. 2005, 77, 814-817.

- Devaraj, N. K.; Upadhyay, R.; Haun, J. B.; Hilderbrand, S. A.; Weissleder, R. Fast and Sensitive Pretargeted Labeling of Cancer Cells through a Tetrazine/trans-Cyclooctene Cycloaddition. Angew. Chem., Int. Ed. 2009, 48, 7013–7016.
- 32. Hermanson, G. T. *Bioconjugate Techniques*, 2nd ed.; Academic Press: San Diego, CA, 2008; pp 784–804.
- 33. Issadore, D.; Min, C.; Liong, M.; Chung, J.; Weissleder, R.; Lee, H. Miniature Magnetic Resonance System for Point-of-Care Diagnostics. *Lab Chip* **2011**, *11*, 2282–2287.