

DUNLAP INSTITUTEfor ASTRONOMY & ASTROPHYSICS

Single Dish Radio Astronomy

ATCA Radio Summer School

September 25, 2017 Jennifer West

Outline

- What is a single dish radio telescope?
- Challenges of single dish astronomy
- Science with single dish telescopes
- Is there still a place for it single dish astronomy an era of big arrays?

300 EHz 30 EHz 3 EHz 300 PHz 30 PHz 3 PHz 300 THz 30 THz 3 THz 300 GHz 30 GHz 3 GHz 300 MHz 30 MHz 3 MHz 300 kHz

Frequency

http://abyss.uoregon.edu/~js/glossary/radio_telescope.html

Upcoming: multi-beam receivers

Beam size for Green Bank 100 m

NGC3198Palomar Digital Sky Survey

0.25°

Beam size for Green Bank 100 m

Mapping

- On-the-fly mapping
- Drift scanning

Challenge: Resolution

 $\theta \sim \lambda/D$

Optical Resolution $\theta \sim 1''$

Whirlpool Galaxy, M51Palomar Digital Sky Survey

How Big?

Wavelength	Frequency	Diameter required for 1" resolution
500 nm	600 THz	10 cm
1 µm	300 THz	0.2 m
1 mm	300 GHz	200 m
1 cm	30 GHz	2 km
10 cm	3 GHz	20 km
1 m	300 MHz	200 km
10 m	30 MHz	2000 km

How Big?

Wavelength	Frequency	Diameter required for 1" resolution
500 nm	600 THz	10 cm
1 μm	300 THz A bit	of an 0.2 m
1 mm		eering 200 m enge!
1 cm	30 GHz	2 km
10 cm	3 GHz	20 km
1 m	300 MHz	200 km
10 m	30 MHz	2000 km

Steerable dishes

Green Bank 100 m

Telescopes go large

@NewScientist

Radio astronomy will get a big boost with FAST, the world's most sensitive radio telescope

Arecibo Sky

How Big?

Wavelength	Frequency	Diameter required for 1" resolution
500 nm	600 THz	10 cm
1 µm	300 THz	0.2 m
1 mm	300 GHz	200 m
1 cm	30 GHz	2 km
10 cm	3 GHz	20 km
1 m	300 MHz	200 km
10 m	30 MHz	2000 km

Low frequency spatial scales: short baselines

Mid frequency spatial scales: intermediate baselines

Mid frequency spatial scales: intermediate baselines

High frequency spatial scales: long baselines

It is possible to approximate the image by using only some of the information.

Interferometers: each baseline detects only a particular spatial scale - image is not necessarily (usually) complete.

It is possible to approximate the image by using only some of the information.

Interferometers: each baseline detects only a particular spatial scale - image is not necessarily (usually) complete.

Interferometer measures Fourier transform of an image

Stanimirovic 2002

Gap at the centre of the uv-domain: the diameter of the single dish in the interferometer is smaller than the minimum baseline

Single dish: Resolution (smallest spatial scale) determined by diameter.

Use a single dish to fill in the missing information for an interferometer.

Use a single dish to fill in the missing information for an interferometer.

Single dish: Sensitivity is determined by the collecting area Interferometer: Sensitivity is determined by the sum of the collecting areas of the dishes

Single dish: Sensitivity is determined by the collecting area Interferometer: Sensitivity is determined by the sum of the collecting areas of the dishes

Noise Characteristics

- Interferometer uses many dishes
 - Signal in each dish is correlated but
 - Noise in each dish is uncorrelated -> averages out
- Single dishes do not have this benefit
 - single-dishes can be severely affected by instrumental fluctuations

What do we measure?

- How bright?
 - Sensitivity
 - Polarization?
- Where?
 - Astrometric calibration
 - Angular resolution

Important considerations: How long will it take?
How much computing power?

- Do they change?
 - With time
 - Time resolution
 - Duration
 - With frequency
 - Spectral resolution
 - Frequency range
 - All of the above?!

Pulsars

High time resolution, sensitivity, and frequency resolution

Extra-galactic

Dozens of maps with interferometers vs thousands of integrated spectra with single dishes

Diffuse Galactic Emission

High sensitivity spectral-polarization

Diffuse Galactic Emission

Solar system studies - Radar

Asteroid 2014 HQ124, Arecibo (+Goldstone transmitter)

Solar observations

SETI/Breakthrough Listen

- searching stars and galaxies for radio signals
- needs sensitivity to detect "Earth-leakage" levels of radio transmission from stars within 5 parsecs
 - can detect a transmitter of the same power as a common aircraft radar from the 1,000 nearest stars
- began in January 2016
- \$100 million in funding

Single dish science - strengths

- Studying point-like sources
- Mapping large scale structures quickly
- High time and frequency resolution (pulsars)
- Radar mapping

Single Dishes: pros and cons

- Higher sensitivity to extended structure
- Higher mapping speed
- More telescopes
- Only need one receiver for each frequency and simpler electronics
- Easier to upgrade, install other instruments (e.g., transmitter)
- Needed to supplement arrays (zero spacings)

- Poorer angular resolution
- More affected by instrumental variations of gain and noise
- Complex and costly physical structure
- Not as scalable (can't add more antennas)

