Massive MIMO CSI prediction -- a ML approach

Yaning Hu (Helena) -- Tarence (mentor) -- Robert Chen (co-intern) August 2020

What is Massive MIMO?

Massive multiple-input, multiple-output, is an extension of MIMO, which essentially groups together antennas at the transmitter and receiver to provide better throughput and better spectrum efficiency.

Abstract

★ Research Objectives:

Finding the relationship between the Channel State Information (CSI matrix) and the drone's location from a Machine Learning Approach.

★ Methodology:

- 1st Approach: Time Series Forecasting on CSI (without location labels)
- 2nd Approach: Deep Learning Neural
 Network (with location labels)

Time Series Forecasting

STEP 1: Investigating the dataset

amplitude & phase

Time Series Forecasting

STEP 2:

Apply VAR model (Vector Autoregression) on phase

Why VAR:

Multivariable Forecasting Method

(consider influences between variables)

Relationship between CSI and Location

STEP 1: Literature Review

Channel Charting Algorithms (3)

Overall Idea:

 $CSI \rightarrow distill properties \rightarrow reduce$ dimension \rightarrow Channel Chart that preserves spatial information \rightarrow approximation of location data

Next Step: View the problem from pure Machine Learning Angle

Data Setup:

Download Data Set:

Indoor Spatially Labelled Massive MIMO CSI Measurements (~25000 location labels)

(https://homes.esat.kuleuven.be/~sdebast/measurements/measurements_boar droom.html)

The Base Station (BS) is equipped with 64 antennas, each receiving a predefined pilot signal from each position. Using these pilot signals, the CSI is estimated for 100 subcarriers, evenly spaced in frequency. Uniform Rectangular ·········· ULA Array DIS 1300 1500 124

How much data do we have?

3 Array Types

-- each has 64 antennas

--each antenna has 100 subcarriers (frequencies)

--at each frequency, we have ~250,000 corresponding location data & CSI data

Make use of this data set

Step to a classification Task: Fitting Grids

Select data for our model

Desired feature: including all labels

```
#taking data that covers all labeled locations:
data_points = [[1000,2000],[50000,51000],[75000,76000],[100000,101000],[140000,141000],[160000,161000],[200000,201000],
data_loc = label[1000:2000]+label[50000:51000]+label[75000:76000]+label[100000:101000]+label[140000:141000]+label[16000]
plt.plot(data_loc)
```


data points

Total: 8000 data points

A different way to look at CSI

For each location, we have: 64 antennas, each having 100 frequencies

- 1) Fix the frequency for all antennas \rightarrow select the 10th subcarrier
- 2) CSI datashape: $64*2*1 \rightarrow \text{view this as an IMAGE!}$

Figure: "CSI image" of the 1st selected datapoint

Channel State Information (a complex number a+b*j)

2-D vector: (a,b)

0: real part
1: imaginary part

10 -

20

30

40

50 -

60

Why image? -- Convolutional Neural Network

8000 data points

Train: 5360(70%)

Test:

2640(30%)

print(X_train.shape,X_test.shape)
print(y_train.shape,y_test.shape)

(5360, 64, 2, 1) (2640, 64, 2, 1) (5360, 16) (2640, 16) Set Parameters and build up CNN model

(following the MNIST dataset tutorial) -- need some changes

```
training iters = 10
learning rate = 0.001
batch size = 64
#MNIST data input (img shape:64*2)
n_input = 64
#MNIST total classes
n classes = 16
#both placeholders are of type float
x = tf.placeholder("float", [None, 64, 2, 1])
y = tf.placeholder("float", [None, n classes])
def conv2d(x, W, b, strides=1):
    # Conv2D wrapper, with bias and relu activation
   x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
   x = tf.nn.bias add(x, b)
   return tf.nn.relu(x)
def maxpool2d(x, k=2):
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],padding='SAME')
```

Result interpretation:

Potential Problems:

- 1) Not fully making use of the subcarriers properly
- 2) Model is used for a 28*28 image in the original problem, and utilizes max_pooling algorithm which downsized the image to 4*4.
- 3) In our situation, the CSI image has the 2nd dimension as small as 2, so downsizing might not yield desirable results

```
Iter 0, Loss= 2.416927, Training Accuracy= 0.09375
Optimization Finished!
Testing Accuracy: 0.06705
Iter 1, Loss= 12.204795, Training Accuracy= 0.03125
Optimization Finished!
Testing Accuracy: 0.05227
Iter 2, Loss= 27.742737, Training Accuracy= 0.06250
Optimization Finished!
Testing Accuracy: 0.07348
Iter 3, Loss= 74.773407, Training Accuracy= 0.01562
Optimization Finished!
Testing Accuracy: 0.05492
Iter 4, Loss= 100.262283, Training Accuracy= 0.04688
Optimization Finished!
Testing Accuracy: 0.07083
Iter 5, Loss= 108.614357, Training Accuracy= 0.03125
Optimization Finished!
Testing Accuracy: 0.05606
Iter 6, Loss= 482.886902, Training Accuracy= 0.04688
Optimization Finished!
Testing Accuracy: 0.07083
Iter 7, Loss= 995.252747, Training Accuracy= 0.07812
Optimization Finished!
Testing Accuracy: 0.05038
Iter 8, Loss= 1490.359253, Training Accuracy= 0.09375
Optimization Finished!
Testing Accuracy: 0.10076
Iter 9, Loss= 5262.278320, Training Accuracy= 0.03125
Optimization Finished!
Testing Accuracy: 0.04735
```

Future investigations

- 1) Find another classification model that is more suitable for our data feature
- 2) Divide the location into smaller grids for more intricate classification
- 3) Utilize prediction models to predict from 64 2-D vectors (CSI) to get its most likely corresponding2-D vector (location).
- 4) Our wish from the super high level: reverse the above prediction -- from a 2-D vector to predict all these 64 2-D vectors!

Acknowledgement

Dr. Knightly

Robert Chen

Tarence

Major References:

- [1] Christoph Studer, Sa, Id Medjkouh, Emre Gon, ultas, Tom Goldstein, and Olav Tirkkonen, "Channel Charting: Locating Users within the Radio Environment using Channel State Information"
- [2] Sibren De Bast, Andrea P. Guevara, and Sofie Pollin, "CSI-based Positioning in Massive MIMO systems using Convolutional Neural Networks" accepted at IEEE 91st Vehicular Technology Conference: VTC2020-Spring, Antwerp, May 2020
- [3] Convolutional Neural Networks with TensorFlow --DataCamp Tutorial https://www.datacamp.com/community/tutorials/cnn-tensorflow-python

Thank you for listening!