Математический анализ-2

Лектор: проф. Подольский Владимир Евгеньевич 5 апреля 2025 г.

Конспект: Кирилл Яковлев, Егор Соколов, 108 группа

Telegram: @fourkenz GitHub: yakovlevki

Содержание

1	Hec	определенный интеграл	4		
	1.1	Первообразная и неопреленный интеграл	4		
	1.2	Свойства неопределённого интеграла	4		
	1.3	Таблица неопределенных интегралов	5		
	1.4	Интегрирование рациональных функций	6		
	1.5	Метод Остроградского	8		
2	Интеграл Римана				
	2.1	Интегрируемость по Риману	9		
	2.2	Суммы Дарбу. Критерий Дарбу интегрируемости по Риману	10		
	2.3	Классы интегрируемых функций	13		
	2.4	Критерий Лебега интегрируемости по Риману	13		
	2.5	Свойства интеграла Римана	14		
	2.6	Первая теорема о среднем	18		
	2.7	Интеграл с переменным верхним пределом	18		
	2.8	Формула Ньютона-Лейбница	20		
	2.9	Замена переменной и интегрирование по частям	20		
3	Спрямляемые кривые и квадрируемые фигуры				
	3.1	Кривая в \mathbb{R}^n	22		
	3.2	Спрямляемость гладкой кривой и формула ее длины	23		
	3.3	Квадрируемые фигуры	25		
	3.4	Первый и второй критерии квадрируемости	26		
	3.5	Квадрируемость простой спрямляемой кривой и криволинейной			
		трапеции	29		
4	Интеграл Римана-Стилтьеса 30				
	4.1	Функции ограниченной вариации	30		
	4.2	Свойства функций ограниченной вариации	30		
	4.3	Липшицевы функции	32		
	4.4	Определение интеграла Римана-Стилтьеса	33		
	4.5	Свойства интеграла Римана-Стилтьеса	33		
	4.6	Существование интеграла Римана-Стилтьеса	36		
	4.7	Связь интеграла Римана и интеграла Римана-Стилтьеса	37		
	4.8	Теоремы о среднем	37		

5	Несобственный интеграл		
	5.1	Определение несобственного интеграла	39
	5.2	Критерий Коши сходимости несобственного интеграла	39
	5.3	Свойства несобственного интеграла	40
	5.4	Признаки сходимости несобственных интегралов	43
	5.5	Главное значение интеграла в смысле Коши	45

1 Неопределенный интеграл

1.1 Первообразная и неопреленный интеграл

Определение. Пусть f(x) определена на (a,b). Если существует F(x) определенная на (a,b) такая, что $F(x) \in \mathcal{D}(a,b)$ и F'(x) = f(x), то F(x) называется первообразной функцией для f(x).

Определение. Пусть f(x) определена на (a,b). Совокупность всех первообразных функций для f(x) называется неопределённым интегралом f(x) и обозначается

$$\int f(x)dx$$

Теорема. Пусть F(x) является первообразной для f(x) на (a,b). Тогда

$$\int f(x)dx = \{F(x) + C\}, \ C = const, \ C \in \mathbb{R}$$

Доказательство.

$$(F(x) + C)' = f(x) + 0 = f(x)$$

Пусть $\varphi(x)$ - первообразная f(x). Тогда:

$$(\varphi(x) - F(x))' = f(x) - f(x) = 0$$

т.е. по следствию из теоремы Лагранжа $\varphi(x) - F(x) = const$, ч.т.д.

1.2 Свойства неопределённого интеграла

1. $\forall c \in \mathbb{R}$:

$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$

(При c=0 множества получаются разными: первое - произвольная константа, а второе - ноль; в рассуждениях этот случай будет опускаться)

2.

$$\int (f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx$$

3. (Замена переменной)

Пусть F(x) - первообразная для f(x) на (a,b).

Пусть $\varphi(t) \in \mathcal{D}(\alpha, \beta)$ и $\varphi((\alpha, \beta)) \subset (a, b)$ Тогда $F(\varphi(t))$ является первообразной для $F'(\varphi(t)) \cdot \varphi'(t)$ на (α, β) .

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt,$$
где $x = \varphi(t)$

4. (Интегрирование по частям) Пусть $u, v \in \mathcal{D}(a, b)$.

$$(u \cdot v)' = u \cdot v' + u' \cdot v$$

$$\int (uv)' dx = \int uv' dx + \int u' v dx$$

$$\int uv' dx = uv - \int u' v dx$$

$$\int u dv = uv - \int v du$$

Замечание. Неопределённый интеграл - операция на дифференциалах:

$$\int dF(x) = F(x) + C$$

1.3 Таблица неопределенных интегралов

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1$$

$$\int \frac{dx}{x} = \ln|x| + \begin{cases} C_1, \ x > 0 \\ C_2, \ x < 0 \end{cases}$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int e^x \, dx = e^x + C$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$\int \frac{1}{\cos^2 x} \, dx = \operatorname{tg} x + C$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

$$\int \frac{dx}{1+x^2} = \operatorname{arctg} x + C$$

$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$

Замечание. Все равенства верны только на промежутках.

1.4 Интегрирование рациональных функций

Хотим научиться находить интеграл

$$\int \frac{P(x)}{Q(x)} \, dx$$

где $P(x),\ Q(x)$ - многочлены. Разложим Q(x) на неприводимые многочлены:

$$Q(x) = (x - a_1)^{\alpha_1} \dots (x - a_n)^{\alpha_n} (x^2 + p_1 x + q_1)^{\beta_1} \dots (x^2 + p_k x + q_k)^{\beta_k}$$

Теперь разложим дробь в сумму простейших:

$$\int \frac{P(x)}{Q(x)} dx = \int (\tilde{P} + \sum_{i=1}^{\alpha_1} \frac{\aleph_{1i}}{(x - a_1)^{\alpha_{1i}}} + \dots + \sum_{i=1}^{\alpha_n} \frac{\aleph_{ni}}{(x - a_n)^{\alpha_{ni}}} + \dots + \sum_{j=1}^{\beta_1} \frac{\rho_{1j}x + \omega_{1j}}{(x^2 + p_1x + q_1)^{\beta_{1i}}} + \dots + \sum_{j=1}^{\beta_k} \frac{\rho_{kj}x + \omega_{kj}}{(x^2 + p_1x + q_1)^{\beta_{kj}}}) dx$$

Осталось понять как интегрировать слагаемые вида

$$\int \frac{dx}{(x-a)^n} \quad \text{M} \quad \int \frac{\alpha x + \beta}{(x^2 + px + q)^k} \ dx$$

1.

$$\int \frac{dx}{(x-a)^n} = \begin{cases} \ln|x-a|, & n=1\\ \frac{(x-a)^{1-n}}{1-n}, & n>1 \end{cases}$$

2. Сначала преобразуем знаменатель:

$$x^{2} + px + q = (x + \frac{p}{2})^{2} + (q - \frac{p^{2}}{4})$$

причем $q-\frac{p^2}{4}>0$, поскольку у x^2+px+q нет вещественных корней. Сделаем замену

$$t = x + \frac{p}{2} \Rightarrow x = t - \frac{p}{2}, \ q_1^2 = q - \frac{p^2}{4}$$

$$\int \frac{\alpha x + \beta}{(x^2 + px + q)^k} dx = \int \frac{\alpha t - \frac{\alpha p}{2} + \beta}{(t^2 + q_1^2)^k} d(t - \frac{p}{2}) = \int \frac{\alpha_1 t + \beta_1}{(t^2 + q_1^2)^k} dt$$

где $\alpha_1 = \alpha$, $\beta_1 = \beta - \frac{\alpha p}{2}$. Далее осталось рассмотреть два интеграла:

$$\int rac{t}{(t^2+q_1^2)^k} \; dt$$
 и $I_k = \int rac{dt}{(t^2+q_1^2)^k}$

(i)

$$\int \frac{t}{(t^2 + q_1^2)^k} dt = \frac{1}{2} \int \frac{dt^2}{(t^2 + q_1^2)^k} =$$

$$= \frac{1}{2} \int \frac{d(t^2 + q_1^2)}{(t^2 + q_1^2)^k} = \begin{cases} \frac{1}{2} \ln(t^2 + q_1^2), & k = 1\\ \frac{1}{2} \ln(t^2 + q_1^2), & k = 1\\ \frac{(t^2 + q_1^2)^{1-k}}{2(1 - k)}, & k > 1 \end{cases}$$

(ii)

$$I_{k} = \int \frac{dt}{(t^{2} + q^{2})^{k}} = \frac{t}{(t^{2} + q^{2})^{k}} - \int td(\frac{1}{t^{2} + q^{2}})^{k} =$$

$$= \frac{t}{(t^{2} + q^{2})^{k}} + 2k \int \left(\frac{t^{2} + q^{2} - q^{2}}{(t^{2} + q^{2})^{k+1}}\right) dt =$$

$$= \frac{t}{(t^{2} + q^{2})^{k}} + 2kI_{k} - 2kq^{2}I_{k+1}$$

$$I_{k+1} = \frac{1}{2kq^{2}} \cdot \frac{t}{(t^{2} + q^{2})^{k}} + \frac{2k - 1}{2kq^{2}}I_{k}$$

Замечание.

$$tg^{2}z + 1 = \frac{\sin^{2}z + \cos^{2}z}{\cos^{2}z} = \frac{1}{\cos^{2}z}$$

$$\int \frac{dt}{(t^{2} + q^{2})^{k}} = \begin{vmatrix} t = q \operatorname{tg}z \\ dt = \frac{q}{\cos^{2}z} dz \end{vmatrix} = \int \frac{qdz}{\cos^{2}z(q^{2}\operatorname{tg}^{2}z + q^{2})^{k}} = \int \frac{\cos^{2k-2}z}{q^{2k-1}} dz$$

1.5 Метод Остроградского

$$\int \frac{P(x)}{Q(x)} dx = \int \frac{P(x)}{\prod_{i=1}^{n} (x - a_i)^{\alpha_i} \cdot \prod_{j=1}^{k} (x^2 + b_j x + c_j)^{\beta_j}} dx = \frac{P_1(x)}{\prod_{i=1}^{n} (x - a_i)^{\alpha_i - 1} \cdot \prod_{j=1}^{k} (x^2 + b_j x + c_j)^{\beta_j - 1}} + \int \frac{P_2(x)}{\prod_{i=1}^{n} (x - a_i) \cdot \prod_{i=1}^{k} (x^2 + b_j x + c_j)} dx$$

2 Интеграл Римана

2.1 Интегрируемость по Риману

Определение. $\{x_i\}_{i=0}^n \subset [a,b]$ называется разбиением отрезка, если $a=x_0<\cdots< x_n=b$. Обозначается $T_{[a,b]}^+$. Если $b=x_0>\cdots> x_n=a$, то обозначают $T_{[a,b]}^-$.

Отрезки $[x_{i-1}, x_i]$ или $[x_i, x_{i-1}]$ называются отрезками разбиения, их обычно обозначают Δ_i .

Длина отрезка Δ_i обозначается $\Delta x_i := x_i - x_{i-1}$.

Длина наибольшего из отрезков называется диаметром разбиения $d(T) = \max |x_i - x_{i-1}| = \max \Delta x_i$.

Определение. Пусть $T_{[a,b]}$ - разбиение отрезка [a,b]. Разметкой для $T_{[a,b]}$ называется множество точек $\{\xi_i\}_{i=1}^n$ такое, что $\forall i:\xi_i\in\Delta_i$.

Если $\{\xi_i\}_{i=1}^n$ является разметкой для $\{x_i\}_{i=0}^n$, то пара $(\{x_i\}_{i=0}^n, \{\xi_i\}_{i=1}^n)$ называется размеченым разбиением и обозначается $T(\xi)$.

Определение. Сумма

$$\sigma_{[a,b]} = \sum_{i=1}^{N} f(\xi_i)(x_i - x_{i-1})$$

называется интегральной суммой. Иногда ее обозначают $\sigma_T(\xi)$ или $\sigma(T_{[a,b]}(\xi))$

Определение. Пусть f(x) определена на [a,b]. Рассмотрим $T_{[a,b]}(\xi)$. Если

$$\exists I \in \mathbb{R} : \forall \varepsilon > 0 \ \exists \ \delta > 0, \ \forall \ T(\xi) \subset \{T : d(T) < \delta\} : \left| \sum_{i=1}^{N} f(\xi_i)(x_i - x_{i-1}) - I \right| < \varepsilon$$

то говорят, что f(x) интегрируема по Риману на [a,b], а число I называют интегралом Римана на размеченных разбиениях на отрезке [a,b]. Интеграл Римана обозначают

$$I = \int\limits_a^b f(x) \; dx$$
 или $I = \int\limits_b^a f(x) \; dx$

для T^+ и T^- соответственно.

Замечание. Можно считать определение интеграла определением предела интегральных сумм и писать

$$\lim_{d \to 0} \left(\sum_{i=1}^{N} f(\xi_i)(x_i - x_{i-1}) \right) = I$$

где d - диаметр разбиения.

Утверждение.

Если
$$\exists \int_a^b f(x) \ dx$$
, то $\exists \int_b^a f(x) \ dx$ и $\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$

Определение. Класс функций, интегрируемых на [a,b] по Риману, обозначается $\mathcal{R}[a,b]$.

Теорема. Если $f(x) \in \mathcal{R}[a,b]$, то f(x) - ограничена на [a,b].

Доказательство. Предположим, что $\exists \{x_n\}_{n=1}^{\infty} \subset [a,b], \ \exists \lim_{n \to \infty} x_n = \widetilde{x}, \ \text{что} \ |f(x_n)| > n \ \text{и пусть}$

$$\exists \lim_{d \to 0} \left(\sum_{i=0}^{N} f(\xi_i)(x_i - x_{i-1}) \right) = I$$

Возьмем $\varepsilon = 1$. Тогда

$$\left| \sum_{i=0}^{N} f(\xi_i)(x_i - x_{i-1}) - I \right| < 1$$

Возмем Δ_k такой, что $\widetilde{x} \in \Delta_k \Rightarrow f(x)$ - неограничена на Δ_k . Тогда, зафиксировав точки в остальных отрезках разбиения, получим

$$I - \sum_{i=1, i \neq k}^{N} f(\xi_i)(x_i - x_{i-1}) - 1 < f(\xi_k)(x_k - x_{k-1}) < I - \sum_{i=1, i \neq k}^{N} f(\xi_i)(x_i - x_{i-1}) + 1$$

противоречие с тем, что f(x) принимает сколь угодно большие на Δ_k .

2.2 Суммы Дарбу. Критерий Дарбу интегрируемости по Риману

Далее рассматриваем разбиения T^+

Определение. Пусть T_1 и T_2 - разбиения отрезка [a,b] такие, что $T_1\subset T_2$. Тогда T_2 называется измельчением T_1 .

Определение. Пусть f(x) ограничена на $[a,b],\ \{x_i\}_{i=0}^n = T$ - разбиение [a,b]

$$m_i = \inf_{[x_i, x_{i+1}]} f(x), \ M_i = \sup_{[x_i, x_{i+1}]} f(x)$$

$$\overline{\overline{S}}_f(T) = \sum_{i=0}^{n-1} m_i(x_{i+1} - x_i), \ \underline{\underline{S}}_f(T) = \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i)$$

Тогда $\overline{\overline{S}}_f(T)$ называется нижней суммой Дарбу, а $\underline{\underline{S}}_f(T)$ верхней суммой Дарбу.

Лемма 1. Пусть T_1 - измельчение T. Тогда

$$\overline{\overline{S}}(T) \leq \overline{\overline{S}}(T_1)$$
 и $\underline{\underline{S}}(T) \geq \underline{\underline{S}}(T_1)$

Доказательство. Докажем для нижней суммы. Рассмотрим случай, когда $T_1 = T \cup \{x_j'\}, \ x_j' \in [x_j, x_{j+1}].$ Тогда сократятся все отрезки кроме $[x_j, x_{j+1}]$:

$$\overline{\overline{S}}(T_1) - \overline{\overline{S}}(T) = m_{1j}(x'_j - x_j) + m_{2j}(x_{j+1} - x'_j) - m_j(x_{j+1} - x_j) =$$

$$= m_{1j}(x'_j - x_j) + m_{2j}(x_{j+1} - x'_j) - m_j(x'_j - x_j) - m_j(x_{j+1} - x'_j) \ge 0$$

значит, по индукции, это верно для любого измельчения.

Лемма 2.

$$\forall T_1, T_2 : \overline{\overline{S}}(T_1) \leq \underline{\underline{S}}(T_2)$$

 \mathcal{A} оказательство. Рассмотрим объединение любых двух разбиений T_1 и T_2 : $T=T_1\cup T_2$. Тогда T является измельчением и T_1 и T_2 . Тогда по лемме 1 получаем:

$$\overline{\overline{S}}(T_1) \leq \overline{\overline{S}}(T)$$
 if $\underline{\underline{S}}(T) \leq \underline{\underline{S}}(T_2) \Rightarrow \overline{\overline{S}}(T_1) \leq \underline{\underline{S}}(T_2)$

Лемма 3. $\forall T_{[a,b]}$:

$$\overline{\overline{S}}(T) = \inf_{\{\xi_i\}} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$

$$\underline{\underline{S}}(T) = \sup_{\{\xi_i\}} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$

Доказательство. Докажем для верхней суммы, для нижней аналогично. Докажем более общее утверждение - рассмотрим некоторое семейство множеств $\{X_i: X_i \subset \mathbb{R}\}_{i=1}^n$ и множество $\{a_i\}_{i=1}^n$ такие, что $\forall i \ X_i$ ограничено и $a_i \geq 0$. Каждое X_i из принципа полноты Вейерштрасса имеет супремум, и при этом

$$\forall \varepsilon > 0, \ \forall i = \{1, \dots, n\} \ \exists \ x_i \in X_i : x_i > \sup X_i - \varepsilon$$

Домножив каждое из неравенств на число (i-е нер-во на a_i) и сложив, получим

$$\sum_{i=1}^{n} a_i x_i > \sum_{i=1}^{n} a_i \sup X_i - \varepsilon \cdot \sum_{i=1}^{n} a_i$$

Отсюда в силу свойства супремума

$$\sup_{\{x_i\}} \sum_{i=1}^n a_i x_i \ge \sum_{i=1}^n a_i \sup X_i$$

но при этом

$$\sum_{i=1}^{n} a_i x_i \le \sum_{i=1}^{n} a_i \sup X_i$$

Значит,

$$\sup_{\{x_i\}} \sum_{i=1}^n a_i x_i = \sum_{i=1}^n a_i \sup X_i$$

При $X_i = f([x_{i-1}, x_i])$ (ограничены в силу интегрируемости f) и $a_i = x_i - x_{i-1}$ получим

$$\sup_{\{\xi_i\}} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}) = \sum_{i=1}^n \sup_{\{\xi_i\}} f(\xi_i)(x_i - x_{i-1}) = \underline{\underline{S}}(T)$$

Теорема. (Критерий Дарбу интегрируемости по Риману)

 $f(x) \in \mathcal{R}[a,b] \Leftrightarrow f$ - ограничена и

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall \; T_{[a,b]} : d(T) < \delta_{\varepsilon} : \underline{\underline{S_f}}(T) - \overline{\overline{S}}_f(T) < \varepsilon$$

Доказательство.

 (\Rightarrow) :

$$\exists I = \int_{a}^{b} f(x) \ dx \Rightarrow \forall \varepsilon > 0 \ \exists \ \delta_{\varepsilon} > 0, \ \forall T(\xi) : d(T) < \delta_{\varepsilon} :$$

$$I - \frac{\varepsilon}{3} < \sigma_{f}(T(\xi)) < I + \frac{\varepsilon}{3}$$

$$\left| \overline{\overline{S_{f}}}(T) - I \right| \leq \frac{\varepsilon}{3}, \ \left| \underline{\underline{S_{f}}}(T) - I \right| \leq \frac{\varepsilon}{3}$$

$$\Rightarrow \underline{S}(T) - \overline{\overline{S}}(T) < \varepsilon.$$

 (\Leftarrow) :

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall T : d(T) < \delta_{\varepsilon} : \underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon$$
 (1)

из леммы 2 по аксиоме полноты:

$$\exists \ I \in \mathbb{R}, \ \forall \ T : \overline{\overline{S}}(T) \le I \le \underline{S}(T) \tag{2}$$

из (1) следует, что I - единственно, а также известно, что

$$\forall T(\xi) : \overline{\overline{S}}(T) \le \sigma_f(T(\xi)) \le \underline{\underline{S}}(T)$$
 (3)

значит из (2) и (3) получаем:

$$|\sigma_f(T(\xi)) - I| < \varepsilon$$

2.3 Классы интегрируемых функций

Теорема. Если $f(x) \in \mathcal{C}[a,b]$, то $f(x) \in \mathcal{R}[a,b]$

Доказательство. $f(x) \in \mathcal{C}[a,b] \Rightarrow f(x)$ - равномерно непрерывна на [a,b], т.е

$$\forall \varepsilon > 0 \ \exists \ \delta_{\varepsilon} > 0, \forall x_1, x_2 \in [a, b] : |x_1 - x_2| < \delta_{\varepsilon} : |f(x_1) - f(x_2)| < \varepsilon$$

Пусть $T:d(T)<\delta$. Тогда:

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) =$$

$$= \sum_{i=1}^{n} (f(x_{i_{max}}) - f(x_{i_{min}}))(x_i - x_{i-1}) < \varepsilon(b - a)$$

 $(x_{i_{min}}$ и $x_{i_{max}}$ существуют по второй теореме Вейерштрасса)

Теорема. Пусть f(x) - монотонна на [a,b]. Тогда $f(x) \in \mathcal{R}[a,b]$

Доказательство. Докажем для неубывающей. Если f(x)=const, то очевидно. Пусть $d(T)<\frac{\varepsilon}{f(b)-f(a)}$

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))(x_i - x_{i-1}) <$$

$$< \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \cdot \frac{\varepsilon}{f(b) - f(a)} =$$

$$= \frac{\varepsilon}{f(b) - f(a)} \cdot (f(b) - f(a)) = \varepsilon$$

Поскольку f(x) неубывает на [a,b], то минимум на этом отрезке достигается в f(a), а максимум в f(b). Значит, при выносе $\frac{\varepsilon}{f(b)-f(a)}$ за скобку, сумма слагаемых вида $f(x_i) - f(x_{i-1})$ схлопнется в f(b) - f(a).

2.4 Критерий Лебега интегрируемости по Риману

Определение. Пусть $A \subset \mathbb{R}$, и если $\forall \varepsilon > 0 \ \exists \ \{(a_i,b_i)\}_{i=1}^{\infty}$ (или конечное) таких, что

$$A \subset \bigcup_{i} (a_i, b_i), \sup_{n} \sum_{i=1}^{N} |b_i - a_i| < \varepsilon$$

Тогда A называется множеством меры 0 по Лебегу. Обозначается $\mu(A) = 0$.

Теорема. (Свойства множеств с мерой 0 по Лебегу)

1.
$$B \subset A, \ \mu(A) = 0 \Rightarrow \mu(B) = 0$$

2.
$$\{A_i\}_{i=1}^{\infty}, \ \mu(A_i) = 0 \Rightarrow \mu(\bigcup_{i=1}^{\infty} A_i) = 0$$

Доказательство.

1. Очевидно

2. $\forall i \; \exists \; \{(a_{i_l}, b_{i_l})\}_{i=1}^{\infty} :$

$$A_i \subset \bigcup_{l=1}^{\infty} (a_{i_l}, b_{i_l}), \sum_{l=1} |b_{i_l} - a_{i_l}| < \frac{\varepsilon}{2^i}$$

$$\bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} \left(\bigcup_{l=1}^{\infty} (a_{i_l}, b_{i_l})\right), \sum_{i=1}^{\infty} \left(\sum_{l=1}^{\infty} |b_{i_l} - a_{i_l}|\right) < \sum_{i=1}^{\infty} \frac{\varepsilon}{2^i} = \varepsilon$$

Теорема. (Критерий Лебега интегрируемости по Риману)

 $f(x) \in \mathcal{R}[a,b] \Leftrightarrow f(x)$ ограничена и для множества P точек разрыва функции f(x) выполнено $\mu(P)=0$.

Доказательство. Без доказательства.

2.5 Свойства интеграла Римана

Теорема 1. (Интегрируемость на подотрезках)

Если $f(x) \in \mathcal{R}[a,b], [c,d] \subset [a,b],$ то $f(x) \in \mathcal{R}[c,d].$

Доказательство. Так как $f(x) \in \mathcal{R}[a,b]$, то $\forall T_{[a,b]}(\xi) : \sigma_f(T_{[a,b]}(\xi)) \to I$. Значит если $\{c,d\} \in T_{[a,b]}$, то $\sigma_f(T_{[a,b] \cup \{c,d\}}(\xi))$:

$$\varepsilon > \underline{\underline{S}}_{[a,b]\cup\{c,d\}} - \overline{\overline{S}}_{[a,b]\cup\{c,d\}} = \sum_{k=1}^{i} (M_k - m_k)(x_k - x_{k-1}) + \sum_{k=i+1}^{j} (M_k - m_k)(x_k - x_{k-1}) + \sum_{k=j+1}^{N} (M_k - m_k)(x_k - x_{k-1}) \ge \sum_{k=i+1}^{j} (M_k - m_k)(x_k - x_{k-1}) = \underline{\underline{S}}_{[c,d]} - \overline{\overline{S}}_{[c,d]}$$

Теорема 2. (Аддитивность)

Если $f(x) \in \mathcal{R}[a,b], c \in [a,b]$, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

 \mathcal{A} оказательство. Пусть $c \in T_{[a,b]}(\xi)$. Тогда

$$\sigma_f(T_{[a,b]}) = \sigma_f(T_{[a,c]}) + \sigma_f(T_{[c,b]})$$

$$\sigma_f(T_{[a,c]}) \to \int_a^c f(x) \ dx, \ \sigma_f(T_{[c,b]}) \to \int_c^b f(x) \ dx$$

а также

$$\sigma_f(T_{[a,b]}) \to \int_a^b f(x) \ dx$$

Теперь пусть $c \not\in T_{[a,b]}$. Рассмотрим $T'_{[a,b]\cup c} = T_{[a,b]} \cup \{c\}$

$$\sigma_f(T_{[a,b]}) - \sigma_f(T'_{[a,b] \cup c}) = f(\xi_j)(x_j - x_{j-1}) - f(\xi'_j)(c - x_{j-1}) - f(\xi''_j)(x_j - c) \to 0$$

Замечание. Если $f(x) \in \mathcal{R}[a,c], \ b < c$, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Теорема 3. (Линейность)

Пусть $f(x),g(x)\in\mathcal{R}[a,b]$. Тогда $\forall \alpha,\beta\in\mathbb{R}:\alpha f(x)+\beta g(x)\in\mathcal{R}[a,b]$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) \ dx = \alpha \cdot \int_{a}^{b} f(x) \ dx + \beta \cdot \int_{a}^{b} g(x) \ dx$$

Доказательство.

$$\sigma_{\alpha f(x) + \beta g(x)}(T) = \alpha \sigma_f(T) + \beta \sigma_g(T)$$

Теорема 4. Пусть $f(x) \in \mathcal{R}[a,b], \ f(x) \geq 0.$ Тогда

$$\int_{a}^{b} f(x) \ dx \ge 0$$

Доказательство.

$$f(x) \ge 0 \Rightarrow \sigma_f(T) \ge 0 \Rightarrow \int_a^b f(x) \ dx \ge 0$$

Следствие. Если $f(x),g(x)\in\mathcal{R}[a,b]$ и $f(x)\geq g(x)$ на [a,b], то

$$\int_{a}^{b} f(x) \ dx \ge \int_{a}^{b} g(x) \ dx$$

Теорема 5. Пусть $f(x) \in \mathcal{R}[a,b], \ f(x) \ge 0, \ \exists \ c \in [a,b], \$ что f(x) непрерывна в точке c и f(c) > 0. Тогда

$$\int_{a}^{b} f(x) \ dx > 0$$

Доказательство. По теореме об отделимости

 $\exists \ \delta > 0 : f(x) > \frac{f(c)}{2} \text{ B } (c - \delta, c + \delta) :$

$$\int_{a}^{b} f(x) \ dx \ge \int_{c-\delta}^{c+\delta} f(x) \ dx > \int_{c-\delta}^{c+\delta} \frac{f(c)}{2} \ dx = \frac{f(c)}{2} \cdot 2\delta = \delta f(c) > 0$$

П

Теорема 6. $f(x), g(x) \in \mathcal{R}[a, b]$. Тогда $f(x) \cdot g(x) \in \mathcal{R}[a, b]$

Доказательство. Пусть

$$M_1 = \sup_{[a,b]} |f(x)|, \ M_2 = \sup_{[a,b]} |g(x)|$$

Ограничим значение $\underline{\underline{S}}_{f \cdot g} - \overline{\overline{S}}_{f \cdot g}$, ограничив разность точных граней на одном отрезке разбиения: (далее супремум рассматривается по всем $x', x'' \in [x_i, x_{i-1}]$)

$$M_{i}(f(x)g(x)) - m_{i}(f(x)g(x)) = \sup(f(x')g(x') - f(x'')g(x'')) =$$

$$= \sup(f(x')g(x') - f(x')g(x'') + f(x')g(x'') - f(x'')g(x'')) =$$

$$= \sup(f(x')(g(x') - g(x'')) + g(x'')(f(x') - f(x''))) \le$$

$$\le \sup|f(x)| \cdot \sup(g(x') - g(x'')) + \sup|g(x)| \cdot \sup(f(x') - f(x'')) \le$$

$$\le M_{1}(M_{ig} - m_{ig}) + M_{2}(M_{if} - m_{if})$$

Отсюда, домножив неравенства на длины соответствующих отрезков и сложив, получим

$$\underline{\underline{S}}_{f \cdot g} - \overline{\overline{S}}_{f \cdot g} \le M_1(\underline{\underline{S}}_g - \overline{\overline{S}}_g) + M_2(\underline{\underline{S}}_f - \overline{\overline{S}}_f)$$

Отсюда из интегрируемости f и g и критерия Дарбу $f(x)g(x) \in \mathcal{R}[a,b].$

Теорема 7. $f(x) \in \mathcal{R}[a,b]$ и $f(x) \geq \delta > 0$. Тогда $\frac{1}{f(x)} \in \mathcal{R}[a,b]$

Доказательство. $\forall x', x'' \in [a, b]$:

$$\left| \frac{1}{f(x')} - \frac{1}{f(x'')} \right| = \left| \frac{f(x'') - f(x')}{f(x')f(x'')} \right| \le \frac{1}{\delta^2} \cdot \left| f(x'') - f(x') \right|$$

Дальнейшее доказательство аналогично предыдущему (на всякий случай приведём аналогичную выкладку, необходимую для доказательства)

$$M_{i}(\frac{1}{f(x)}) - m_{i}(\frac{1}{f(x)}) = \sup(\frac{1}{f(x')} - \frac{1}{f(x'')}) \le$$

$$\le \frac{1}{\delta^{2}} \sup|f(x'') - f(x')| = \frac{1}{\delta^{2}}(M_{if} - m_{if})$$

Следствие. Из пунктов 6 и 7 следует интегрируемость дроби $\frac{f(x)}{g(x)}$.

Теорема 8. $f(x) \in \mathcal{R}[a,b]$. Тогда $|f(x)| \in \mathcal{R}[a,b]$

Доказательство. $\forall x', x'' \in [a, b]$:

$$||f(x')| - |f(x'')|| \le |f(x') - f(x'')|$$

Далее совпадает с предыдущим доказательством.

Замечание. Обратное утверждение неверно:

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \subset [0, 1] \\ -1, & x \notin \mathbb{Q} \end{cases}$$

 $\Rightarrow |f(x)| \equiv 1$ на отрезке [0,1].

Теорема 9. $f(x) \in \mathcal{R}[a,b]$. Тогда

$$\left| \int_{a}^{b} f(x) \ dx \right| \leq \int_{a}^{b} |f(x)| \ dx$$

Доказательство.

$$|\sigma_f| \le \sigma_{|f|}$$

Замечание.

$$\int_{a}^{b} |f(x)| dx \le \sup_{[a,b]} |f(x)| \cdot \int_{a}^{b} 1 dx$$

2.6 Первая теорема о среднем

Теорема. (Первая теорема о среднем)

Пусть $f(x), g(x) \in \mathcal{R}[a, b], \ g(x) \ge 0, \ M = \sup f(x), \ m = \inf f(x)$. Тогда $\exists \ \mu \in [m, M]$:

$$\int_{a}^{b} f(x) \cdot g(x) \ dx = \mu \cdot \int_{a}^{b} g(x) \ dx$$

Доказательство.

$$m \cdot \sigma_g(T) \le \sigma_{f \cdot g}(T) \le M \cdot \sigma_g(T)$$

Тогда

$$m \cdot \int_{a}^{b} g(x) dx \le \int_{a}^{b} f(x) \cdot g(x) dx \le M \cdot \int_{a}^{b} g(x) dx$$

Рассмотрим случаи:

1.

$$\int_{a}^{b} g(x) \ dx = 0 \Rightarrow \int_{a}^{b} f(x) \cdot g(x) \ dx = 0$$

В этом случае равенство верно для любого μ .

2.

$$\int_{a}^{b} g(x) \ dx \neq 0 \Rightarrow m \leq \frac{\int_{a}^{b} f(x) \cdot g(x) \ dx}{\int_{a}^{b} g(x) \ dx} \leq M$$

Значит, подойдет μ , равное значению этой дроби

2.7 Интеграл с переменным верхним пределом

Определение. Интегралом с переменным верхним пределом называется интеграл вида:

$$\int_{a}^{x} f(t) dt$$

Теорема. Пусть $f(t) \in \mathcal{R}[a,b]$. Тогда функция

$$\varphi(x) = \int_{a}^{x} f(t) \ dt$$

непрерывна на [a, b].

Доказательство. $\forall x_0 \in [a,b]$ и $\Delta x \to 0$:

$$|\varphi(x_0 + \Delta x) - \varphi(x_0)| = \left| \int_{x_0}^{x_0 + \Delta x} f(t) dt \right| \le M_{f([a,b])} \cdot |\Delta x| \to 0$$

Теорема. Пусть $f(x) \in \mathcal{R}[a,b]$ и f непрерывна в $x_0 \in [a,b]$. Тогда функция

$$\varphi(x) = \int_{a}^{x} f(t) \ dt$$

имеет производную в x_0 и $\varphi'(x_0) = f(x_0)$.

Доказательство.

$$\left| \frac{\varphi(x_0 + \Delta x) - \varphi(x_0)}{\Delta x} - f(x_0) \right| =$$

$$= \left| \frac{1}{\Delta x} \cdot \int_{x_0}^{x_0 + \Delta x} f(x) \, dx - \frac{f(x_0)}{\Delta x} \cdot \int_{x_0}^{x_0 + \Delta x} 1 \, dx \right| =$$

$$= \left| \frac{1}{\Delta x} \cdot \int_{x_0}^{x_0 + \Delta x} (f(x) - f(x_0)) \, dx \right| \le \sup_{[x_0, x_0 + \Delta x]} |f(x) - f(x_0)| \cdot 1 \longrightarrow 0.$$

Следствие. Пусть $f(x) \in \mathcal{C}(a,b)$. Тогда $\forall c \in (a,b)$:

$$\exists \left(\int\limits_{c}^{x}f(t)dt\right)'=f(x), \ \text{то есть}\ \int\limits_{c}^{x}f(t)dt$$
 - первообразная $f(x)$

Доказательство. Очевидно.

Замечание. Интервал в формулировке следствия взят для применимости теоремы к неограниченным на интервале функциям (например tg(x) на $[0,\pi]$), для которых тем не менее применима предыдущая теорема по аналогичным рассуждениям.

2.8 Формула Ньютона-Лейбница

Теорема. (Формула Ньютона-Лейбница)

Пусть $f(x) \in \mathcal{R}[a,b], f(x) \in \mathcal{C}([a,b] \setminus \{x_i\}_{i=1}^n).$

$$\exists F(x): F(x) \in \mathcal{D}([a,b] \setminus \{x_i\}_{i=1}^n), F'(x) = f(x), F(x) \in \mathcal{C}[a,b]$$

Тогда:

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

Доказательство. Пусть сначала $f(x) \in \mathcal{C}(a,b), \ F'(x) = f(x)$ на (a,b). Но интеграл

$$\int_{a}^{x} f(t) dt$$

тоже первообразная f(x) на $(a,b) \Rightarrow \exists C$:

$$F(x) + C = \int_{a}^{x} f(t) dt$$

 $\Rightarrow F(a) + C = 0$. Тогда

$$F(b) - F(a) = \int_{a}^{b} f(t) dt$$

Общий случай:

$$F(b) - F(a) = \sum_{i=1}^{n-1} (F(x_{i+1}) - F(x_i)) = \sum_{i=1}^{n-1} \int_{x_{i+1}}^{x_i} f(t) dt = \int_a^b f(t) dt$$

2.9 Замена переменной и интегрирование по частям

Теорема. Пусть $f(x) \in \mathcal{C}(a,b), \ \varphi(t) \in \mathcal{C}^1(\alpha,\beta), \ \varphi((\alpha,\beta)) \subset (a,b).$ $\forall \alpha_0, \beta_0 \in (\alpha,\beta) \ \text{и} \ a_0 = \varphi(\alpha_0), \ b_0 = \varphi(\beta_0).$ Тогда

$$\int_{a_0}^{b_0} f(x) \ dx = \int_{\alpha_0}^{\beta_0} f(\varphi(t)) \cdot \varphi'(t) \ dt$$

Доказательство. $f \in \mathcal{C}(a,b) \Rightarrow \exists \ F'(x) = f(x)$

$$\int_{a_0}^{b_0} f(x) \ dx = F(b_0) - F(a_0)$$

Но $(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t)$, а значит

$$\int_{\alpha_0}^{\beta_0} f(\varphi(t)) \cdot \varphi'(t) \ dt = F(\varphi(\beta_0)) - F(\varphi(\alpha_0))$$

Теорема. (Интегрирование по частям)

Пусть $f(x), g(x) \in \mathcal{C}^1[a,b]$

$$\int_{a}^{b} f(x) \cdot g'(x) \, dx = f(x) \cdot g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$

Доказательство.

$$f(x) \cdot g(x)|_a^b = \int_a^b (f(x) \cdot g(x))' \, dx = \int_a^b f'(x)g(x) \, dx + \int_a^b f(x) \cdot g'(x) \, dx$$

3 Спрямляемые кривые и квадрируемые фигуры

3.1 Кривая в \mathbb{R}^n

Определение. Кривой в \mathbb{R}^n называется непрерывное отображение:

$$\bar{\gamma}: [a,b] \to \mathbb{R}^n$$

Замечание.

$$\bar{\gamma} = \begin{pmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{pmatrix}$$

Определение. Рассмотрим $\bar{\gamma}:[a,b]\to\mathbb{R}^n$. Если $\exists t_1\neq t_2:\bar{\gamma}(t_1)=\bar{\gamma}(t_2)$, то $\bar{\gamma}(t_1)$ называется точкой самопересечения. Мощность подмножеста [a,b], точки которого переходят в $\bar{\gamma}(t_1)$ называется кратностью точки самопересечения. Если кривая не имеет точек самопересечения, то она называется простой.

Определение. Если $\bar{\gamma}(t)$ имеет единственную точку самопересечения $\bar{\gamma}(a) = \bar{\gamma}(b)$, то кривая называется простой замкнутой.

Определение. Множество точек $\{\bar{\gamma}(t_i)\}_{i=0}^N$ называется разбиением кривой, если $\{t_i\}_{i=0}^N$ является разбиением отрезка [a,b]. Обозначается T_{γ} .

Определение. $L(T_{\bar{\gamma}})$ - множество отрезков $\{[\bar{\gamma}(t_{i-1}), \bar{\gamma}(t_i)]\}_{i=1}^N$ называется вписанной в $\bar{\gamma}(t)$ ломаной, а число $|L(T_{\bar{\gamma}})|$ - длиной ломаной.

Утверждение. Если $T'_{\bar{\gamma}}$ - измельчение $T_{\bar{\gamma}}$, то

$$|L(T_{\bar{\gamma}})| \leq |L(T'_{\bar{\gamma}})|$$

Доказательство. Очевидно.

Определение. Если множество $\{|L(T_{\bar{\gamma}})|\}_{T_{\bar{\gamma}}}$ ограничено, то кривая $\bar{\gamma}(t)$ называется спрямляемой, а

$$\sup_{T_{\bar{\gamma}}}\{|L(T_{\bar{\gamma}})|\}=|\bar{\gamma}|$$

называется длиной кривой.

3.2 Спрямляемость гладкой кривой и формула ее длины

Теорема. Пусть

$$\bar{\gamma}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix} \in C^1[a, b]$$

Тогда $\bar{\gamma}(t)$ спрямляема и

$$|\bar{\gamma}| = \int_a^b \sqrt{\sum_{j=1}^n x_j'^2(t)} dt$$

Доказательство.

$$|L(T_{\bar{\gamma}})| = \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} (x_j(t_i) - x_j(t_{i-1}))^2} = (1)$$

$$= \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} x_j'^2(\xi_{ij}) \cdot (t_i - t_{i-1})^2} =$$

$$= \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} x_j'^2(\xi_{ij})(t_i - t_{i-1})} \leqslant M \cdot \sqrt{n} \cdot (b - a)$$

Переход (1) по формуле Лагранжа, а последняя оценка устроена так: каждое из x_j' - непрерывно на каждом отрезке разбиения, значит, по второй теореме Вейерштрасса, у нее есть максимум. Возьмем M - максимум из этих максимальных значений на отрезке разбиения, тогда

$$\sqrt{\sum_{j=1}^{n} x_j'^2} \le M \cdot \sqrt{n}$$

остается вынести это за скобку и сумма длин отрезков разбиения схлопнется в $b-a.\Rightarrow \bar{\gamma}$ спрямляема.

$$\begin{aligned} \left| |L(T_{\bar{\gamma}})| - \sigma_{\sqrt{\sum_{j=1}^{n} x_{j}^{'2}}} \right| &= \\ &= \left| \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} x_{j}^{'2}(\xi_{ij})} (t_{i} - t_{i-1}) - \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} x_{j}^{'2}(\nu_{i})} (t_{i} - t_{i-1}) \right| &= \\ &= \left| \sum_{i=1}^{N} \left(\left(\sqrt{\sum_{j=1}^{n} x_{j}^{'2}(\xi_{ij})} - \sqrt{\sum_{j=1}^{n} x_{j}^{'2}(\nu_{i})} \right) (t_{i} - t_{i-1}) \right) \right| \leqslant \\ &\sum_{i=1}^{N} \sum_{j=1}^{n} |x_{j}^{'}(\xi_{ij}) - x_{j}^{'}(\nu_{i})| \cdot (t_{i} - t_{i-1}) < \varepsilon \cdot n \cdot (b - a) \end{aligned}$$

Последняя оценка сделана с применением леммы, которая доказана чуть ниже.

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; d(T) < \delta_{\varepsilon}$$

$$\Rightarrow \left| |L(T_{\bar{\gamma}})| - \int_{a}^{b} \sqrt{\sum_{j=1}^{n} x_{j}^{2}(t)} dt \right| < 2\varepsilon n(b-a)$$

 $\forall \varepsilon>0\ \exists\ L(T^*_{\bar{\gamma}}),\ \mathrm{что}\ |L(T^*_{\bar{\gamma}})|>|\bar{\gamma}|-\varepsilon\ (\mathrm{cвойство}\ \mathrm{точной}\ \mathrm{верхней}\ \mathrm{грани}).$ Измельчаем $T^*_{\bar{\gamma}}$ до тех пор, пока $d(T^*_{\bar{\gamma}})<\delta_{\varepsilon}.$

Лемма.

$$\left| \sqrt{\sum_{i=1}^{k} a_i^2} - \sqrt{\sum_{i=1}^{k} b_i^2} \right| \le \sum_{i=1}^{k} |a_i - b_i|$$

Доказательство.

$$\left| \sqrt{\sum_{i=1}^{k} a_i^2} - \sqrt{\sum_{i=1}^{k} b_i^2} \right| = \left| \frac{\sum_{i=1}^{k} ((a_i - b_i)(a_i + b_i))}{\sqrt{\sum_{i=1}^{k} a_i^2} + \sqrt{\sum_{i=1}^{k} b_i^2}} \right| =$$

$$= \left| \sum_{i=1}^{k} \left((a_i - b_i) \cdot \frac{(a_i + b_i)}{\sqrt{\sum_{i=1}^{k} a_i^2} + \sqrt{\sum_{i=1}^{k} b_i^2}} \right) \right| \le (*)$$

$$\leq \left| \sum_{i=1}^{n} 1 \cdot (a_i - b_i) \right| \le \sum_{i=1}^{k} |a_i - b_i|$$

(*):
$$a_i \le \sqrt{\sum_{i=1}^k a_i^2}, \ b_i \le \sqrt{\sum_{i=1}^k b_i^2} \implies \frac{(a_i + b_i)}{\sqrt{\sum_{i=1}^k a_i^2} + \sqrt{\sum_{i=1}^k b_i^2}} \le 1$$

3.3 Квадрируемые фигуры

Далее работаем в \mathbb{R}^2 .

Определение. Множество $\{(x,y): (x-x_0)^2+(y-y_0)^2<\varepsilon^2\}\subset \mathbb{R}^2$ называется ε -окрестностью точки (x_0,y_0) .

Определение. Множество $A \in \mathbb{R}^2$ называется ограниченным, если $\exists R > 0$: $A \subset \{(x,y): x^2 + y^2 \leq R^2\}.$

Определение. Ограниченное множество $A \subset \mathbb{R}^2$ называется фигурой.

Определение. Пусть $A = \{A_{\alpha}\}_{\alpha}$. Функция $\mu : A \to \mathbb{R}$ называется площадью, если

- 1. $\mu(A) \geq 0$
- 2. Если $\exists \ \mu(A_1), \ \mu(A_2)$ и $A_1 \cap A_2 = \emptyset$, то $\exists \ \mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$.
- 3. Если $\exists \ \mu(A_1)$ и A_2 конгруэнтна A_1 , то $\exists \ \mu(A_2) = \mu(A_1)$.
- 4. Если $\exists \ \mu(A_1), \ \mu(A_2)$ и $A_1 \subset A_2$, то $\mu(A_1) \leq \mu(A_2)$.
- 5. Площадь прямоугольника со сторонами a и b равна ab.

Замечание. Существует площадь отрезка и площадь точки, и они равны нулю. По определению считаем, что $\mu(\varnothing) = 0$

Утверждение. Существует площадь треугольника, равная половине произведения основания на высоту.

Доказательство. Рассмотрим произвольный треугольник. Проведем в нем высоту, тогда он разобьется на два прямоугольных треугольника, которые можно достроить до прямоугольников. Тогда площадь искомого треугольника равна сумме половин площадей достроенных прямоугольников.

Определение. Фигура, полученная конечным объединением непересекающихся треугольников, называется многоугольником.

Теорема. Площадь многоугольной фигуры не зависит от разбиения на треугольники.

Доказательство. Без доказательства.

Определение. Для любой фигуры A, замкнутая многоугольная фигура $P \supset A$ называется описанной. Открытая многоугольная фигура $Q \subset A$ называется вписанной.

Замечание. Далее, если фигура обозначена P, то считаем ее замкнутой описанной, а если Q то открытой вписанной.

Замечание. Для любой фигуры существует описанная (поскольку любая фигура ограничена) и вписанная (пустое множество).

Определение. Число $\mu^*(A) = \inf_{A \subset P} \mu(P)$ называется верхней площадью A. Число $\mu_*(A) = \sup_{Q \subset A} \mu(Q)$ называется нижней площадью A.

Определение. Если $\mu^*(A) = \mu_*(A)$, то $\exists \ \mu(A) = \mu^*(A) = \mu_*(A)$. Такая фигура A называется квадрируемой.

3.4 Первый и второй критерии квадрируемости

Теорема. (Первый критерий квадрируемости) Фигура A квадрируема $\Leftrightarrow \forall \varepsilon > 0 \; \exists \; P_{\varepsilon}, \; Q_{\varepsilon}, \; \mu(P_{\varepsilon}) - \mu(Q_{\varepsilon}) < \varepsilon$

Доказательство.

$$(\Rightarrow): A$$
 - квадрируема $\Rightarrow \mu^*(A) = \mu_*(A)$, но
$$\forall \varepsilon > 0 \; \exists \; P_\varepsilon : \mu(P_\varepsilon) - \mu^*(A) < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \; \exists \; Q_\varepsilon : \mu_*(A) - \mu(Q_\varepsilon) < \frac{\varepsilon}{2}$$
 $\Rightarrow \mu(P_\varepsilon) - \mu(Q_\varepsilon) < \varepsilon$

 (\Leftarrow) :

$$\forall \varepsilon > 0 \; \exists \; P_{\varepsilon}, \; Q_{\varepsilon}, \; \mu(P_{\varepsilon}) - \mu(Q_{\varepsilon}) < \varepsilon \Rightarrow \mu^*(A) - \mu_*(A) < \varepsilon \Rightarrow \mu^*(A) = \mu_*(A)$$

Теорема. (Второй критерий квадрируемости) Фигура A квадрируема $\Leftrightarrow \mu(\partial A) = 0$.

Доказательство.

 $(\Rightarrow): A$ - квадрируема \Rightarrow по первому критерию квадрируемости:

$$\forall \varepsilon > 0 \; \exists \; P_{\varepsilon}, \; Q_{\varepsilon} : \mu(P_{\varepsilon}) - \mu(Q_{\varepsilon}) < \varepsilon$$

 $\partial A \subset P \setminus Q$, Q - внутренние точки A, $\mathbb{R}^2 \setminus P$ - внешние точки A. В частности, $\partial A \subset P_{\varepsilon} \setminus Q_{\varepsilon} \Rightarrow \mu^*(\partial A) < \varepsilon \Rightarrow \mu(\partial A) = 0$.

$$(\Leftarrow): \mu(\partial A) = 0 \Rightarrow \forall \varepsilon > 0 \; \exists \; P_{\varepsilon} \supset \partial A, \; \mu(P_{\varepsilon}) < \varepsilon \Rightarrow \exists \; h > 0,$$
 $\partial A \subset \cup ($ кв. сетка с шагом $h) = A_2: \mu(A_2) < 72\varepsilon \; ($ по лемме ниже $)$. $A_1 = \cup ($ квадраты сетки, целиком состоящие из внутренних точек A) $\Rightarrow A \subset A_1 \cup A_2 \Rightarrow A_1 \cup A_2 = P, \; A_1 = Q, \; \mu(P) - \mu(Q) = \mu(A_2) < 72\varepsilon$

Лемма. Пусть P - многоугольная фигура, $B \subset P$ и $\mu(P) < \varepsilon \Rightarrow \exists h > 0$ такое, что $B \subset M, \ \mu(M) < 72\varepsilon$, где M - квадратная сетка со сторонами квадратов параллельными осям координат и шагом h.

Доказательство. Пусть $\mu(P) < \varepsilon$

- 1. P многоугольная фигура $\Rightarrow P$ это объединение треугольников $\Rightarrow P$ можно представить в виде объединения прямоугольных треугольников. Достроим прямоугольные треугольники до прямоугольников, их объединение обозначим M_1 . Тогда $P \subset M_1$ и $\mu(M_1) < 2\varepsilon$.
- 2. Теперь накроем M_1 объединением квадратов M_2 . Будем накрывать прямоугольник квадратами со стороной, равной меньшей из сторон прямоугольника, начиная от одной из меньших сторон, пока не заложим весь прямоугольник. Тогда либо прямоугольник накрылся, либо последний квадрат вылез за границу, а так как площадь прямоугольника не меньше квадрата с его меньшей стороной, то площадь увеличилась не более чем вдвое (на самом деле строго меньше, но нам это не особо нужно). Итак, $M_1 \subset M_2$ и $\mu(M_2) < 4\varepsilon$.

3. Теперь накроем M_2 объединением квадратов M_3 таким, что стороны квадратов из M_3 параллельны осям координат. Для этого впишем каждый квадрат в квадрат со сторонами, параллельными осям (проведем параллели через вершины квадрата), тогда квадрат дополняется до нужного нам четырьмя треугольниками, причём квадрат разбивается на 4 равных треугольника, дополняющих изначальные до прямоугольников, плюс квадратный кусочек в центре, которого не будет только в случае поворота на 45 градусов - опять же площадь увеличится не больше чем вдвое. Значит, $M_2 \subset M_3$ и $\mu(M_3) < 8\varepsilon$.

- 4. Теперь возьмем h, равное стороне наименьшего квадрата, и построим квадратную сетку M с шагом h. Рассмотрим квдарат L, возможны два случая:
 - (i) Если внутри квадрата L ни один из квадратов сетки не лежит целиком $\Rightarrow L$ лежит внутри квадрата 2×2 , составленного из квадратов сетки. Поскольку площадь L не не меньше площади квадрата сетки, то площадь увелисится не более чем вчетверо.
 - (ii) Если существуют квадраты сетки, лежащие внутри L, то их объединение образует большой квадрат, лежащий внутри L, а значит весь L покрывается девятью копиями этого квадрата.

В итоге получим, что $B \subset P \subset M_1 \subset M_2 \subset M_3 \subset M$, причем $\mu(M) < 72\varepsilon$.

3.5 Квадрируемость простой спрямляемой кривой и криволинейной трапеции

Теорема. Если $\bar{\gamma}(t)$ - простая спрямляемая кривая, то $\mu(\bar{\gamma}(t)) = 0$.

Доказательство. Делим $\bar{\gamma}(t)$ на n одинаковых по длине кусков. $\{\bar{\gamma}(t_k)\}_{k=1}^{n+1}$. $\bar{\gamma}(t) \subset \cup ($ квадратов с центрами в $\bar{\gamma}(t_k)$ и стороной $|\frac{2\bar{\gamma}(t)|}{n}|)$.

$$\mu(\cup(\text{kb...})) < \frac{4|\bar{\gamma}(t)|^2}{n^2} \cdot (n+1) \to 0$$

Теорема. Пусть $f(x) \in \mathcal{R}[a,b], \ f(x) \ge 0$, тогда фигура A:

$$A = \{(x, y) : x \in [a, b], \ 0 \le y \le f(x)\}$$

квадрируема и

$$\mu(A) = \int_{a}^{b} f(x) \ dx$$

Доказательство.

$$f(x) \in \mathcal{R}[a,b] \Rightarrow \forall \varepsilon > 0 \; \exists \; \delta > 0, \; \forall T : d(T) < \delta : \underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon$$

Значит выполнено: $\mu(P_{\varepsilon}) - \mu(Q_{\varepsilon}) < \varepsilon$ и A - квадрируема по первому критерию квадрируемости. При этом

$$\mu^*(A) = \mu_*(a) = \mu(A) \to \int_a^b f(x) \ dx$$

4 Интеграл Римана-Стилтьеса

4.1 Функции ограниченной вариации

Определение. Пусть f(x) определена на [a,b], $T_{[a,b]}$ - разбиение отрезка [a,b]. Сумма вида

$$V(f,t) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$$

называется вариацией функции на данном разбиении T

Определение. Если $\exists M > 0$ такое, что $\forall T_{[a,b]} : V(f,T) \leq M$, то функция называется функцией ограниченной вариации на [a,b], а величина

$$\sup_{T} V(f,T) = \bigvee_{a}^{b} f(x) = \operatorname{var}_{[a,b]} f(x)$$

называется полной вариацией функции на отрезке [a,b]

4.2 Свойства функций ограниченной вариации

Теорема 1. Если $f \in \mathcal{V}[a,b]$, то f - ограничена на [a,b].

Доказательство. Временно очев.

Теорема 2. Пусть $T'_{[a,b]}$ - измельчение $T_{[a,b]}$. Тогда $V(f,T) \leq V(f,T')$

 \mathcal{A} оказательство. Временно очев (модуль суммы меньше или равен суммы модулей).

Теорема 3. Если $f \in \mathcal{V}[a,b]$, то $\forall \alpha \in \mathbb{R}$:

$$\bigvee_{a}^{b} (\alpha \cdot f(x)) = |\alpha| \cdot \bigvee_{a}^{b} f(x)$$

Теорема 4. Если $f,g\in\mathcal{V}[a,b]$, то $f+g\in\mathcal{V}[a,b]$

Доказательство.

$$\bigvee_{a}^{b} (f(x) + g(x)) \le \bigvee_{a}^{b} f(x) + \bigvee_{a}^{b} g(x)$$

Теорема 5. Если $f,g\in\mathcal{V}[a,b]$, то $f(x)\cdot g(x)\in\mathcal{V}[a,b]$

Доказательство.

$$|f(x_i)g(x_i) - f(x_{i-1})g(x_i) + f(x_{i-1})g(x_i) - f(x_{i-1})g(x_{i-1}) \le$$

$$< M_1 \cdot |f(x_i) - f(x_{i-1})| + M_2 \cdot |g(x_i) - g(x_{i-1})|$$

Теорема 6. Если $f,g\in\mathcal{V}[a,b],\ g\geq\varepsilon>0$, то $\frac{f}{g}\in\mathcal{V}[a,b]$

Теорема 7. Если f(x) монотонна на [a,b], то

$$\bigvee_{a}^{b} f(x) = f(b) \cdot f(a)$$

Теорема 8. (Аддитивность)

Если $c\in(a,b),\ f\in\mathcal{V}[a,c]$ и $f\in\mathcal{V}[b,c],$ то $f\in\mathcal{V}[a,b]$ и

$$\bigvee_{a}^{b} f(x) = \bigvee_{a}^{c} f(x) + \bigvee_{b}^{c} f(x)$$

Доказательство. Рассмотрим

$$V(f, T_{[a,b]}) \le V(f, T_{[a,b] \cup \{c\}}) = V(f, T_{[a,c]}) + V(f, T_{[c,b]})$$

значит

$$\bigvee_{a}^{b} f(x) \le \bigvee_{a}^{c} f(x) + \bigvee_{c}^{b} f(x)$$

С другой стороны, рассмотрим

$$V(f, T_{[a,c]}) + V(f, T_{[c,b]}) = V(f, T_{a,b} \ni c)$$

отсюда получим

$$\bigvee_{a}^{c} f(x) + \bigvee_{c}^{b} f(x) = \sup V(f, T_{[a,b]} \ni c) \le \bigvee_{a}^{b} f(x)$$

Теорема. Если $f(x) \in \mathcal{V}[a,b]$, то $\exists \ h(x), \ v(x)$ - монотонно неубывющие на [a,b] такие, что f(x) = v(x) - h(x).

Доказательство. Пусть

$$v(x) = \bigvee_{a}^{x} f(x)$$

Рассмотрим функцию h(x) = v(x) - f(x). Пусть $x_1, x_2 \in [a, b], x_2 > x_1$:

$$h(x_2) - h(x_1) = \bigvee_{x_1}^{x_2} f(x) - (f(x_2) - f(x_1)) \ge 0$$

так как

$$V_{x_1}^{x_2} \ge |f(x_2) - f(x_1)|$$

 $\Rightarrow h(x)$ - неубывает.

4.3 Липшицевы функции

Определение. Функция f(x), опеределенная на (a,b), называется липшицевой, если $\exists M>0$ такое, что $\forall x_1,x_2\in [a,b]$:

$$|f(x_2) - f(x_1)| \le M \cdot |x_2 - x_1|$$

Часто обозначают $f(x) \in \text{Lip}[a,b]$ или $f \in \text{Lip}_1[a,b]$

Теорема. Если $f(x) \in \text{Lip}_1[a,b]$, то $f \in \mathcal{V}[a,b]$

Доказательство.

$$V(f,T) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \le \sum_{i=1}^{n} |x_i - x_{i-1}| = M \cdot (b-a)$$

Теорема. Если $f(x) \in C^1[a,b]$, то $f(x) \in \mathcal{V}[a,b]$ и

$$\bigvee_{a}^{b} f(x) = \int_{a}^{b} |f'(x)| dx$$

Доказательство. Если $f \in C^1[a,b]$, то $f \in \mathrm{Lip}_1[a,b]$, так как по формуле Лагранжа:

$$|f(x_2) - f(x_1)| = |f'(\xi)(x_2 - x_1)| \le \max_{x \in [a,b]} |f'(x)| \cdot |(x_2 - x_1)|$$

$$V(f,T) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| = \sum_{i=1}^{n} |f'(\xi)(x_i - x_{i-1})| =$$

$$= \sum_{i=1}^{n} |f'(\xi)|(x_i - x_{i-1}) \to \int_{a}^{b} |f'(x)| dx$$

 $\Rightarrow \forall \varepsilon > 0 \; \exists \; \delta > 0, \; \forall T, \; d(T) < \delta$:

$$\left| V(f,T) - \int_{a}^{b} |f'(x)| \, dx \right| < \varepsilon$$

По определению точной верхней грани: $\forall \varepsilon > 0 \; \exists \; V(f, T_{\varepsilon})$ такое, что

$$\bigvee_{a}^{b} f(x) - V(f, T_{\varepsilon}) < \varepsilon$$

измельчаем T_{ε} , значит T_{ε}^* с $d(T_{\varepsilon}^*) < \delta$:

$$\begin{vmatrix} b \\ V \\ a \end{vmatrix} f(x) - \int_{a}^{b} |f'(x)| dx \end{vmatrix} =$$

$$= \begin{vmatrix} b \\ V \\ a \end{vmatrix} f(x) - \int_{a}^{b} |f'(x)| dx + V(f, T_{\varepsilon}^{*}) - V(f, T_{\varepsilon}^{*}) \end{vmatrix} \le$$

$$\le \begin{vmatrix} b \\ V \\ a \end{vmatrix} f(x) - V(f, T_{\varepsilon}^{*}) + \begin{vmatrix} b \\ J \\ a \end{vmatrix} |f(x)| dx - V(f, T_{\varepsilon}^{*}) \end{vmatrix} < 2\varepsilon$$

4.4 Определение интеграла Римана-Стилтьеса

Определение. Пусть $f(x),\ g(x)$ определены на $[a,b].\ \forall T(\xi)$ сумма

$$\sum_{i=1}^{n} f(\xi_i)(g(x_i) - g(x_{i-1})) = \sigma_g(f, T)$$

называется интегральной суммой Римана-Стилтьеса.

Определение. Если существует предел

$$\lim_{d \to 0} \sigma_g(f, T(\xi)) = \int_a^b f(x) \ d(g(x))$$

то он называется интегралом Римана-Стилтьеса.

4.5 Свойства интеграла Римана-Стилтьеса

Теорема 1. $\forall \alpha, \beta \in \mathbb{R}$:

$$\int_{a}^{b} (\alpha \cdot f(x)) \ d(\beta \cdot g(x)) = \alpha \cdot \beta \int_{a}^{b} f(x) \ d(g(x))$$

Теорема 2. Если существуют интегралы

$$\int_{a}^{b} f_{1}(x) \ d(g(x)), \ \int_{a}^{b} f_{2}(x) \ d(g(x))$$

то существует интеграл

$$\int_{a}^{b} (f_1 + f_2) \ d(g(x)) = \int_{a}^{b} f_1(x) \ d(g(x)) + \int_{a}^{b} f_2(x) \ d(g(x))$$

Теорема 3. Если существуют интегралы

$$\int_{a}^{b} f(x) \ d(g_{1}(x)), \ \int_{a}^{b} f(x) \ d(g_{2}(x))$$

то существует интегал

$$\int_{a}^{b} f(x) \ d(g_1(x) + g_2(x)) = \int_{a}^{b} f(x) \ d(g_1) + \int_{a}^{b} f(x) \ d(g_2)$$

Теорема 4. (Аддитивность)

Если существуют

$$\int_{a}^{b} f(x) \ d(g(x)), \ \int_{a}^{c} f(x) \ d(g(x)), \ \int_{c}^{b} f(x) \ d(g(x))$$

TO

$$\int_{a}^{b} f(x) \ d(g(x)) = \int_{a}^{c} f(x) \ d(g(x)) + \int_{c}^{b} f(x) \ d(g(x))$$

Доказательство.

$$\int_{a}^{b} f(x) \ d(g(x)) = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_{i})(g(x_{i}) - g(x_{i-1})) =
= \lim_{d \to 0, c \in T} \sum_{i=1}^{n} f(\xi_{i})(g(x_{i}) - g(x_{i-1})) =
= \lim_{d \to 0} \sum_{i=1}^{n_{1}} f(\xi_{i})(g(x_{i}) - g(x_{i-1})) +
+ \lim_{d \to 0} \sum_{i=n+1}^{n} f(\xi_{i})(g(x_{i}) - g(x_{i-1})) =
= \int_{a}^{c} f(x) \ d(g(x)) + \int_{a}^{b} f(x) \ d(g(x))$$

Замечание. Если существует интеграл

$$\int_{a}^{b} f(x) \ d(g(x))$$

то существуют интегралы

$$\int_{a}^{c} f(x) \ d(g(x)), \int_{b}^{c} f(x) \ d(g(x))$$

Замечание. Если существуют интегралы

$$\int_{a}^{c} f(x) \ d(g(x)), \int_{c}^{b} f(x) \ d(g(x))$$

то интеграл

$$\int_{a}^{b} f(x) \ d(g(x))$$

не обязательно существует.

Пример.

$$f(x) = \begin{cases} 0, & x \in [-1, 0], \\ 1, & x \in (0, 1]. \end{cases} \qquad g(x) = \begin{cases} 0, & x \in [-1, 0), \\ 1, & x \in [0, 1]. \end{cases}$$
$$\int_{-1}^{0} f(x) \ d(g(x)) = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_{i})(g(x_{i}) - g(x_{i-1})) = 0$$
$$\int_{0}^{1} f(x) \ d(g(x)) = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_{i})(g(x_{i}) - g(x_{i-1})) = 0$$
$$\int_{-1}^{1} f(x) \ d(g(x)) = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_{i})(g(x_{i}) - g(x_{i-1})) = \lim_{d \to 0} f(\xi_{j})(g(x_{j}) - g(x_{j-1}))$$

При разной разметке будет получаться 1 или 0, значит, предела не существует.

Теорема 5. (Интегрирование по частям)

Если существут интеграл

$$\int_{a}^{b} f(x) \ d(g(x))$$

то существует интеграл

$$\int_{a}^{b} g(x) \ d(f(x))$$

причем

$$\int_{a}^{b} f(x) \ d(g(x)) = f(x) \cdot g(x)|_{a}^{b} - \int_{a}^{b} g(x) \ d(f(x))$$

Доказательство.

$$\sum_{i=1}^{n} g(\xi_{i})(f(x_{i}) - f(x_{i-1})) =$$

$$= g(\xi_{1})(f(x_{1}) - f(a)) + g(\xi_{2})(f(x_{2}) - f(x_{1})) + \dots +$$

$$+ g(\xi_{n-1})(f(x_{n-1}) - f(x_{n-2})) + g(\xi_{n})(f(b) - f(x_{n-1})) =$$

$$= -g(\xi_{1})f(a) - f(x_{1})(g(\xi_{2}) - g(\xi_{1})) - \dots - f(x_{n-1})(g(\xi_{n}) - g(\xi_{n-1})) +$$

$$+ g(\xi_{n})f(b) + f(b)g(b) - f(b)g(b) - f(a)g(a) + f(a)g(a) =$$

$$= -f(a)(g(\xi_{1}) - g(a)) - \dots - f(b)(g(b) - g(\xi_{n})) + f(b)g(b) - f(a)g(a)$$

Устремим диаметр разбиения к нулю, и получим утверждение теоремы.

4.6 Существование интеграла Римана-Стилтьеса

В дальнейших рассуждениях будут использоваться обозначения

$$\underline{\underline{S}}(T) = \sum_{i=1}^{n} M_i(g(x_i) - g(x_{i-1})), \ \overline{\overline{S}}(T) = \sum_{i=1}^{n} m_i(g(x_i) - g(x_{i-1}))$$

Теорема. Если $f(x) \in \mathcal{C}[a,b], \ g(x) \in \mathcal{V}[a,b],$ то существует интеграл

$$\int_{a}^{b} f(x) \ d(g(x))$$

Доказательство. Пусть g(x) монотонно возрастает. $f(x) \in \mathcal{C}[a,b]$ значит f(x) - равномерно непрерывна, на $[a,b] \Rightarrow \forall \varepsilon > 0 \; \exists \; \delta > 0, \; d(T) < \delta : M_i - m_i < \varepsilon$ а значит

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon \cdot (g(b) - g(a)) \Rightarrow \inf_{T} \underline{\underline{S}}(T) = \sup_{T} \overline{\overline{S}}(T) = I$$
$$|\sigma_{f}(g, T) - I| < \varepsilon \cdot (g(b) - g(a))$$

значит существует предел

$$\lim_{d\to 0} \sigma_f(g,T) = I$$

Замечание. В условиях теоремы существует интеграл

$$\int_{a}^{b} g(x) \ d(f(x))$$

по теореме об интегрировании по частям.

4.7 Связь интеграла Римана и интеграла Римана-Стилтьеса

Знаки (R) и (S) обозначают что рассматривается интеграл по Риману и Риману-Стилтьесу соответственно.

Теорема. Если $f(x) \in \mathcal{V}[a,b], g(x) \in \mathcal{D}[a,b], g'(x) \in \mathcal{R}[a,b],$ то

$$(S) \int_{a}^{b} f(x) \ d(g(x)) = (R) \int_{a}^{b} f(x)g'(x) \ dx$$

Доказательство. Оба интеграла существуют по условиям теоремы, значит достаточно будет доказать для какой-то выбраной разметки. По формуле Лагранжа:

$$\sum_{i=1}^{n} f(\xi_i)(g(x_i) - g(x_{i-1})) = \sum_{i=1}^{n} f(\xi_i)g'(\zeta)(x_i - x_{i-1})$$

Теперь возьмем в качестве разметки игтеграла Римана-Стилтьеса разметку ζ_i , и получаем равенство

$$\sum_{i=1}^{n} f(\zeta_i)(g(x_i) - g(x_{i-1})) = \sum_{i=1}^{n} f(\zeta_i)g'(\zeta)(x_i - x_{i-1})$$

4.8 Теоремы о среднем

Теорема. (Первая теорема о среднем)

Пусть $f(x) \in \mathcal{C}[a,b], g(x)$ монотонно возрастает. Тогда $\exists \ c \in [a,b]$ такая, что

$$\int_{a}^{b} f(x) \ d(g(x)) = f(c)(g(b) - g(a))$$

Доказательство. Если g(b)=g(a) то равенство верно. Пусть g(b)>g(a), $m=\min_{[a,b]}f(x), M=\max_{[a,b]}f(x)$

$$m \cdot (g(b) - g(a)) \le \overline{\overline{S}}(T) \le \int_a^b f(x) \ d(g(x)) \le \underline{\underline{S}}(T) \le M \cdot (g(b) - g(a))$$

отсюда

$$m \le \frac{\int\limits_a^b f(x) \ d(g(x))}{g(b) - g(a)} \le M$$

Теорема. (Вторая теорема о среднем)

Пусть $f(x) \in \mathcal{C}[a,b], g(x)$ монотонно возрастает. Тогда $\exists c \in [a,b]$ такая, что

$$\int_{a}^{b} g(x) \ d(f(x)) = g(a) \cdot (f(c) - f(a)) + g(b) \cdot (f(b) - f(c))$$

Доказательство.

$$\int_{a}^{b} g(x) \ d(f(x)) = g(b)f(b) - g(a)f(a) - f(c)(g(b) - g(a)) =$$

$$= g(a)(f(c) - f(a)) + g(b)(f(b) - f(c))$$

Следствие. (Вторая теорема о среднем для интеграла Римана) Пусть $f(x) \in \mathcal{C}[a,b], g(x)$ монотонно возрастает. Тогда

$$(R) \int_a^b f(x)g(x) \ dx = g(a) \cdot \int_a^c f(x) \ dx + g(b) \cdot \int_a^b f(x) \ dx$$

Доказательство.

$$(R) \int_{a}^{b} f(x)g(x) dx = (S) \int_{a}^{b} g(x) d\left(\int_{a}^{x} f(t) dt\right) =$$

$$= g(a) \cdot \int_{a}^{c} f(t) dt + g(b) \cdot \int_{c}^{b} f(t) dt$$

П

5 Несобственный интеграл

5.1 Определение несобственного интеграла

Определение. Если $f(x) \in \mathcal{R}[a, a_1], \ \forall a_1 \in [a, b), \ \text{то}$

$$\lim_{a_1 \to b-0} \int_{a}^{a_1} f(x) \ dx = \int_{a}^{b} f(x) \ dx$$

называется несобственным интегралом первого рода. Если этот предел существует, то интеграл называется сходящимся, если не существует - расходящимся.

Определение. Если $f(x) \in \mathcal{R}[a, a_1], \forall a_1 \in (a, +\infty)$, то

$$\lim_{a \to +\infty} \int_{a}^{a_1} f(x) \ dx = \int_{a}^{b} f(x) \ dx$$

называется несобственным интегралом второго рода. Если этот предел существует, то интеграл называется сходящимся, если не существует - расходящимся.

Замечание. В дальнейшем будем обозначать несобственные интегралы

$$\int_{a}^{\omega} f(x) \ dx$$

где ω - число или знак $+\infty~(-\infty)$.

Замечание. Если на отрезке интегрирования несобственного интеграла есть несколько особых точек, то интеграл сходится, если он сходится во всех своих особых точках. Такие интегралы также могут рассматриваться в дальнейших рассуждениях.

5.2 Критерий Коши сходимости несобственного интеграла

Теорема. Несобственный интеграл

$$\int_{a}^{\omega} f(x) \ dx$$

сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \; \delta \in [a, \omega), \; \forall x_1, x_2 \in [\delta, \omega) : \left| \int_{x_1}^{x_2} f(t) \; dt \right| < \varepsilon$$

Доказательство. Рассмотрим функцию

$$F(x) = \int_{a}^{x} f(t) dt$$

и запишем критерий Коши существования предела f(x) при $x \to \omega$.

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 \; \forall x_1, x_2 \in [\delta, \omega) : |F(x_2) - F(x_1)| < \varepsilon$$

значит

$$\left| \int_{x_1}^{x_2} f(t) \ dt \right| = \left| \int_{a}^{x_2} f(t) \ dt - \int_{a}^{x_1} f(t) \ dt \right| = |F(x_2) - F(x_1)| < \varepsilon$$

5.3 Свойства несобственного интеграла

Теорема 1. (Линейность)

 $\forall \alpha, \beta \in \mathbb{R}$ если существуют интегралы

$$\int_{a}^{\omega} f(x) \ dx, \int_{a}^{\omega} g(x) \ dx$$

то существует интеграл

$$\int_{a}^{\omega} (\alpha f(x) + \beta g(x)) = \alpha \cdot \int_{a}^{\omega} f(x) \, dx + \beta \cdot \int_{a}^{\omega} g(x) \, dx$$

Теорема 2. (Интегрирование по частям)

Пусть $f(x), g(x) \in \mathcal{C}^1[a,b]$. Если существуют два объекта из трех:

$$\int_{a}^{\omega} f(x)g'(x) \ dx, \ \int_{a}^{\omega} f'(x)g(x) \ dx, \ \lim_{x \to \omega} f(x)g(x)$$

то существует и третий и верна формула

$$\int_{a}^{\omega} f(x)g'(x) \ dx = f(x)g(x)|_{a}^{\omega} - \int_{a}^{\omega} f'(x)g(x) \ dx$$

Теорема 3. (Замена переменной)

Рассмотрим несобственный интеграл

$$\int_{a}^{\omega} f(x) \ dx$$

и пусть $\varphi(t) \in \mathcal{C}^1[a,b), \ a \leq \varphi(t) \leq \omega, \ \varphi(\alpha) = a, \ \lim_{t \to \beta} \varphi(t) = \omega$

$$\int_{a}^{\omega} f(x) \ dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) \ dt$$

Теорема 4. Пусть существуют несобственные интегралы

$$\int_{a}^{\omega} f(x) \ dx, \int_{a}^{\omega} g(x) \ dx$$

Если $f(x) \leq g(x)$, то

$$\int_{a}^{\omega} f(x) \ dx \le \int_{a}^{\omega} g(x) \ dx$$

Теорема 5. Если $\forall a' \in [a, \omega)$ существует

$$\int_{a}^{a'} f(x) \ dx$$

и если существует несобственный интеграл

$$\left| \int_{a}^{\omega} f(x) \ dx \right| \le \int_{a}^{\omega} |f(x)| \ dx$$

Определение. Если существует интеграл

$$\int_{a}^{\omega} |f(x)| \ dx$$

то интеграл

$$\int_{-\infty}^{\omega} f(x) \ dx$$

называется абсолютно сходящимся.

Утверждение. Если $\forall a' \in [a,\omega]$ существует интеграл

$$\int_{a}^{a'} f(x) \ dx$$

и интеграл

$$\int_{a}^{\omega} |f(x)| \ dx$$

сходится, то интеграл

$$\int_{a}^{\omega} f(x) \ dx$$

сходится

Доказательство. По критерию Коши и неравентсву

$$\left| \int_{a_1}^{a_2} f(x) \ dx \right| \le \int_{a_1}^{a_2} |f(x)| \ dx < \varepsilon$$

Определение. Сходяшийся интеграл

$$\int_{a}^{\omega} f(x) \ dx$$

называется условно сходящимся, если интеграл

$$\int_{-\infty}^{\omega} |f(x)| \ dx$$

расходится.

Пример. Рассмотрим функцию f(x), которая задается последовательностью треугольников, у которых основание лежит на оси абсцисс, причем центрами оснований являются точки $1, 2, 3, \ldots$, вершиной k-го треугольника является точка (k, k), а также площади треугольников составляют бесконечно убывающую геометрическую прогрессию $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ Построенная функция неограничена на $[0, +\infty)$, но интерал от нее сходится.

$$\int_{0}^{+\infty} f(x) \ dx = \sum_{i=1}^{\infty} \frac{1}{2^{i}} = 1$$

5.4 Признаки сходимости несобственных интегралов

Теорема. (Признак Вейерштрасса)

Пусть $0 \leq f(x) \leq g(x)$ на $[a,\omega)$

1. Если существует интеграл

$$\int_{a}^{\omega} g(x) \ dx$$

то существует интеграл

$$\int_{a}^{\omega} f(x) \ dx$$

2. Если не существует интеграла

$$\int_{a}^{\omega} f(x) \ dx$$

то не существует интеграла

$$\int_{a}^{\omega} g(x) \ dx$$

Доказательство. Рассмотрим функции

$$F(x) = \int_{a}^{x} f(t) dt, G(x) = \int_{a}^{x} g(t) dt$$

заметим, что они неубывающие, а также

$$f(x) \leq g(x) \Rightarrow F(x) \leq G(x)$$

- 1. Пусть $G(x) \to C \Rightarrow F(x) \le C \Rightarrow$ по теореме Вейерштрасса существует предел F(x).
- 2. Поскольку F(x) неубывает и у нее не существует предела, то $F(x) \to +\infty$, но так как $F(x) \leq G(x)$, то и $G(x) \to +\infty$.

Теорема. Пусть $0 \le f(x) \le g(x)$ и существует передел

$$\lim_{x \to \omega} \frac{f(x)}{g(x)} = 1$$

Тогда интегралы

$$\int_{a}^{\omega} f(x) \ dx, \int_{a}^{\omega} g(x) \ dx$$

сходятся или расходятся одновременно.

Доказательство. $\forall \varepsilon > 0 \; \exists \; A, \; \forall x \in [A, \omega)$:

$$\left| \frac{f(x)}{g(x)} - 1 \right| < \varepsilon \Rightarrow 1 - \varepsilon < \frac{f(x)}{g(x)} < 1 + \varepsilon$$

значит

$$(1 - \varepsilon) \cdot g(x) < f(x) < (1 + \varepsilon) \cdot g(x)$$

далее воспользуемся признаком Вейерштрасса.

Теорема. (Признаки Абеля и Дирихле)

Пусть $f(x) \in \mathcal{C}[a,\omega), \ g(x)$ монотонна на $[a,\omega),$ а также $|f(x)| \leq C, \ |g(x)| \leq C.$ Тогда

 (\mathcal{A}) : Если существует интеграл

$$\int_{a}^{\omega} f(x) \ dx$$

то существует интеграл

$$\int_{a}^{\omega} f(x)g(x) \ dx$$

 (\mathcal{D}) : Если $g(x) \to 0$ при $x \to \omega$ и

$$\left| \int_{a}^{a'} f(x) \ dx \right| \le C, \ \forall a' \in [a, \omega]$$

то существует интеграл

$$\int_{a}^{\omega} f(x)g(x) \ dx$$

Доказательство.

$$\left| \int_{x_1}^{x_2} f(x)g(x) \ dx \right| = \left| g(x_1) \cdot \int_{x_1}^{c} f(x) \ dx + g(x_2) \cdot \int_{c}^{x_2} f(x) \ dx \right| \le$$

$$\le |g(x_1)| \cdot \left| \int_{x_1}^{c} f(x) \ dx \right| + |g(x_2)| \cdot \left| \int_{c}^{x_2} f(x) \ dx \right| \le$$

$$(\mathcal{A}): \leq C \cdot 2\varepsilon$$

$$(\mathcal{D}): \leq \varepsilon \cdot 4C$$

Пример. Интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{x} \ dx$$

сходится, но интеграл

$$\int_{1}^{+\infty} \left| \frac{\sin x}{x} \right| dx$$

расходится, так как

$$\frac{1}{2x} - \frac{\cos 2x}{2x} = \frac{1 - \cos 2x}{2x} = \frac{\sin^2 x}{x} \le \frac{|\sin x|}{x}$$

5.5 Главное значение интеграла в смысле Коши

Определение. Пусть f(x) определена на \mathbb{R} и $f(x) \in \mathcal{R}[a,b], \ \forall a,b.$ Величина

$$\lim_{A \to +\infty} \int_{-A}^{A} f(x) \ dx = \text{v.p.} \int_{-\infty}^{+\infty} f(x) \ dx$$

называется главным значением интеграла в смысле Коши.

Замечание. Главное значение интеграла в смысле коши не является неопеределенным интегралом.

Теорема. Главное значение интеграла в смысле Коши существует, если сходится несобственный интеграл

$$\int_{0}^{+\infty} (f(x) + f(-x)) dx$$

Доказательство.

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

Возьмем интеграл от -A до A, второе слагаемое всегда ноль.

Замечание. Аналогично определяется главное значение с особенностью в точке $c \in (a,b)$:

v.p.
$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0+0} \left(\int_{a}^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^{b} f(x) dx \right)$$