INTERNSHIP - DATA ANALYTICS

PROJECT 4 LOAN APPLICATION DATA ANALYSIS

SUBMITTED BY

HRISHIKESH KALITA (EI0123)

COLLEGE NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA

GOAL

Checking the Customer's eligibility to get approval for the loan applied.

DATA STATS

- o Shape of the Train Data: (614, 20)
- Columns of the Data:
 'Loanapp_ID', 'Sex', 'Marital_Status', 'first_name', 'last_name', 'email', 'address', 'Dependents', 'Qual_var', 'SE', 'App_Income_1', 'App_Income_2', 'CPL_Amount', 'CPL_Term', 'Credit_His', 'Prop_Area', 'INT_ID', 'Prev_ID', 'AGT_ID', 'CPL_Status'
- o Data info:

	App_Income_1	App_Income_2	CPL_Amount	CPL_Term	Credit_His	INT_ID
count	614.000000	614.000000	612.000000	600.00000	564.000000	6.140000e+02
mean	6484.151140	1945.494958	175.805882	342.00000	0.842199	5.055666e+09
std	7330.850008	3511.498043	102.606123	65.12041	0.364878	2.890445e+09
min	180.000000	0.000000	10.800000	12.00000	0.000000	1.788664e+07
25%	3453.000000	0.000000	120.000000	360.00000	1.000000	2.561243e+09
50%	4575.000000	1426.200000	153.600000	360.00000	1.000000	5.244783e+09
75%	6954.000000	2756.700000	200.700000	360.00000	1.000000	7.495052e+09
max	97200.000000	50000.400000	840.000000	480.00000	1.000000	9.989158e+09

COMMENTS

- o The discrepancies in the 'count' row suggest the presence of null/Nan values in the respective columns.
- o The 'Dependents' column should have been a numerical column but it is not present in the above table because of several '3+' entries in it which eventually makes it an 'object' type column. This was fixed by considering all '3+' as '3' and converting the column into a 'float' type.

DEALING WITH NULL/NAN VALUES

	Columns	Filling_Method	Difference
0	Loanapp_ID	equal	0
1	Sex	ffill	1
2	Marital_Status	ffill	1
3	first_name	equal	0
4	last_name	equal	0
5	email	equal	0
6	address	equal	0
7	Dependents	equal	0
8	Qual_var	equal	0
9	SE	equal	0
10	App_Income_1	equal	0
11	App_Income_2	bfill	1
12	CPL_Amount	equal	0
13	CPL_Term	equal	0
14	Credit_His	ffill	1
15	Prop_Area	equal	0
16	INT_ID	equal	0
17	Prev_ID	equal	0
18	AGT_ID	equal	0
19	CPL_Status	equal	0

o A user-based function was used to find the trend in the data regarding the 'fill' method. It was coded with the intention of getting an overview of the fact that whether 'ffill' or 'bfill' should be used in Pandas 'fillna' function.

COMMENTS

However, the table obtained shows almost similar patterns for all the columns. Only 3 out of all columns had 'ffill' majority with a difference of 1, which could be ignored. However, eventually 'ffill' was used to some extent on the training data and the remaining rows with NaN values were removed. (Train Data Shape: (605, 20) after dealing with missing values.)

EXPLORATORY DATA ANALYSIS (EDA)

> CATEGORICAL

PLOTS FOR CATEGORICAL DATA

COMMENTS

- o A general trend of lesser 'Female' applicants was observed.
- o A significant number of approvals can be observed in Semi-Urban areas.
- o In most of the cases the number of **rejected** loan applications is lesser than that of the **approved**. However, in case of applicants **without Credit History**, it is the **opposite**. There is a **greater** number of **rejections**.
- o From the data observed above, it may be assumed that a **married**, **graduated** and **non-self-employed male** with a valid **credit history**, residing in a **semi-urban** area **without any dependents** stand a **higher chance** of being **approved** for a loan.

> CONTINUOUS

> OVERALL

COMMENTS

- o From the figures above, relationship among various entities can be studied in detail.
- o Presence of probable outliers can be seen in almost all the diagrams.
- o From the visualizations, one can suggest that the dataset **doesn't contain many** people with **very high income** or **high loan amount**.
- o Most 'swarms' were crowded in the **lower income and lower loan amount** regions.

FEATURE IMPORTANCE

	Scores
Columns	
Credit_His	28.162521
Qual_var	3.740024
Marital_Status	1.980991
Prop_Area	0.301681
Sex	0.035887
SE	0.014844
Dependents	0.000290

Obtained by using **SelectKBest** feature from **Scikit-Learn**. **Chi2** method was used to draw out the feature importance in deciding the output in the model.

	Importance_Score	
Columns		
App_Income_1	0.408858	
CPL_Amount	0.318965	
App_Income_2	0.202613	
CPL_Term	0.069564	

Obtained using **feature importanc**e method in **Random Forest Classifier**.

MODELLING

MODELS USED:

- RANDOM FOREST CLASSIFIER
- DECISION TREE CLASSIFIER
- SUPPORT VECTOR MACHINES
- LOGISTIC REGRESSION
- ADABOOST CLASSIFIER

CROSS-VALIDATION was used with **cv** = **10** and the **Standard Deviations** among the scores were very low implying the **stability** of the models.

PREDICTION OF TEST DATA

- The missing values were first imputed using Pandas fillna function ('ffill').
- For getting a better judgement, a user-defined function was used to get the predictions from the models and decide the final prediction according to the majority rule.
 - For example, if 3 of the models used gives the prediction as "Y" (Approved), and other two as "N" (Rejected), then "Y" (Approved) has a 60% majority and hence the respective application is predicted to be *approved*.
- The final predictions were attached to the test data csv file as a new column and saved as Test_Data_Predictions.csv