应用数理统计

Ch5 回归分析

----5.5 逐步回归

2014年6月25日

多元线性回归中的复共线性问题

一、在线性回归方程中,项数是否越多越好?

例如,对于同一批观测值 (x_{i1}, x_{i2}, y_i) , i = 1, 2, ..., n,分别建立了下列两种形式的回归方程:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon \tag{1}$$

$$y = \beta_0^* + \beta_1^* x_1 + \varepsilon \tag{2}$$

问哪一个方程更好?

从残差平方和越小越好的角度来看,回归方程中的项数越多越好

对于上面例子中的回归方程(1)来说,问题相当于要求 β_0 , β_1 , β_2 的估计使得

$$Q = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2})^2$$
 达到最小

对于上面例子中的回归方程(2)来说,问题相当于要求 β_0^* , β_1^* 的估计使得

$$Q^* = \sum_{i=1}^n (y_i - \beta_0^* - \beta_1^* x_{i1})^2$$
 达到最小

如果我们已经求得 $\beta_0^* = \beta_0^*$, $\beta_1^* = \beta_1^*$,使得 Q^* 达到最小值只要令 $\beta_0 = \beta_0^*$, $\beta_1 = \beta_1^*$, $\beta_2 = 0$,就可以使得

$$Q = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2})^2 = \sum_{i=1}^{n} (y_i - \beta_0^* - \beta_1^* x_{i1})^2 = Q_{\min}^*$$

 Q^* 能取到的最小值,Q必定也能取到,而Q能取到的最小值, Q^* 却不一定能取到

回归函数中自变元个数越多,回归的残差平方和SSe越小

(2) 但是,回归方程中的项数也并非越多越好

定义 对回归方程 $y = \beta_0 + \beta_1 x_1 + \dots + \beta_m + \varepsilon$ 进行n次观测,得到观测值($x_{i1}, x_{i2}, \dots, x_{im}, y_i$) $i = 1, 2, \dots, n$ 如果有一组不全为0的常数 $\alpha_0, \alpha_1, \dots, \alpha_m$,使得

$$\alpha_0 \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} + \alpha_1 \begin{bmatrix} x_{11} \\ \vdots \\ x_{n1} \end{bmatrix} + \dots + \alpha_m \begin{bmatrix} x_{1m} \\ \vdots \\ x_{nm} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

则称自变量 x_1, x_2, \dots, x_m 之间存在复共线性(multicollinearity,也称为多重共线性).

即:
$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1m} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nm} \end{bmatrix}$$
 X 的秩 $r(X) < X$ 的列数 $m+1$

自变量 x_1, x_2, \dots, x_m 存在复共线性

X的秩r(X) < X的列数m+1

 $r(X^TX) < m+1$

 X^TX 不可逆

 $\beta = (X^T X)^{-1} X^T Y$ 不能求出

二、在什么情况下,会发生复共线性?

(1) 当观测次数n小于线性回归方程的项数m+1,就一定会产生负复线性

矩阵
$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1m} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nm} \end{bmatrix}$$
 有 n 行, $m+1$ 列,因为矩阵

的秩总是小于它的行数,n < m+1,则显然后r(X) < m+1,这时一定会发生复共线性

这个问题怎样解决?

(1)增加试验次数n; (2)减少方程中的项数m+1

(2) 有时即使观测次数n不小于回归方程的项数m+1, 也会产生复共线性

例 (国际数学建模竞赛1993年A题)加速餐厅堆肥的生成

一家自助餐厅,每天把顾客吃剩下的食物搅拌成浆状,混入厨房里 废弃的碎绿叶菜和少量撕碎的报纸,再加入真菌和细菌。混合原谅在真 菌和细菌的消化作用下生成堆肥。

设 x_1, x_2, x_3 是三种堆肥原料的百分比含量,y 是生成堆肥所需要的时间。题目中给出了 x_1, x_2, x_3 和y的一批观测数据,要求寻找生成堆肥所需时间与原料百分比含量之间的关系。

这显然是一个回归分析问题。如果我们认为y 与 x_1 , x_2 , x_3 之间,只是简单的线性关系: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$,

用这样的方程进行回归分析求 β_1,β_2,β_3 的估计,肯定会发生问题。

因为x₁,x₂,x₃都是百分比含量,堆肥原料就是由着三种成分组成的,所以,对任何一组观测值来说,这3种成分的百分比含量加起来必定等于1,例如有

$$60\% + 30\% + 10\% = 100\% = 1$$

.

$$50\% + 35\% + 15\% = 100\% = 1$$

这时,显然可以找到一组不全为0的常数

$$\alpha_0 = -1$$
, $\alpha_1 = 1$, $\alpha_2 = 1$, $\alpha_3 = 1$

使得

$$\alpha_{0} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} + \alpha_{1} \begin{bmatrix} x_{11} \\ \vdots \\ x_{n1} \end{bmatrix} + \alpha_{2} \begin{bmatrix} x_{12} \\ \vdots \\ x_{n2} \end{bmatrix} + \alpha_{3} \begin{bmatrix} x_{13} \\ \vdots \\ x_{n3} \end{bmatrix}$$

$$= -1 \times \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} + 1 \times \begin{bmatrix} 60\% \\ \vdots \\ 50\% \end{bmatrix} + 1 \times \begin{bmatrix} 30\% \\ \vdots \\ 15\% \end{bmatrix} + 1 \times \begin{bmatrix} 10\% \\ \vdots \\ 35\% \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

可见,矩阵X中的各列线性相关,用这样的回归方程作回归分析, 必定会发生复共线性。这个问题的发生,与观测次数的多少无关,观 测次数再多,也还是会出现复共线性。

2逐步回归——克服复共线性的一种方法

一、逐步回归的基本思想

从一个只含常数项的回归方程出发,通过逐步引入和删除一些项的方法,选取一部分对回归贡献最大的项进入回归方程,使残差平方和尽可能小,而又不发生复共线性的现象

二、怎样衡量线性回归方程中各项贡献的大小

回归函数中自变元个数越多,回归的残差平方和SSe越小

设在一个线性回归方程中,除了常数项以外,有m个非常数项,残差平方和为 SS_e ,设删除第j项后的残差平方和为 SS_j $SS_j \geq SS_e$

 $SS_i - SS_e$ 越大,说明第j项的贡献越大

用统计理论可以证明,如果第j项对回归方程实际上没有任何贡献

$$F_{j} = \frac{SS_{j} - SS_{e}}{SS_{e}/(n-m-1)} \sim F(1, n-m-1)$$

三、逐步回归的具体步骤

事先给定两个非负常数

 F_{in} 一引入水平界限, F_{out} 一一删除水平界限。

从一个只含常数项的线性回归方程 $y = \beta_0 + \varepsilon$ 出发。首先,在所有未引入回归方程的项中,找出一个 F_j 最大的项,如果它的 $F_j > F_{in}$,就引入这一项。然后,在所有已经引入回归方程的项中,找出一个 F_j 最小的项,如果它的 $F_j \leq F_{out}$,就删除这一项,……。就这样一步一步做下去,引入,删除,引入,删除,……,直到方程内所有项都满足 $F_i > F_{out}$,方程外所有项都满足 $F_i \leq F_{out}$ 为止。

为了避免出现"死循环",事先给定的常数 F_{in} 和 F_{out} 必须满足 $F_{in} \geq F_{out}$ 。

为什么?因为,如果 $F_{in} < F_{out}$,就有可能出现某一项的 F_{j} 值正好有 $F_{in} < F_{j} \le F_{out}$,从 $F_{j} > F_{in}$ 来看,应该引入这一项,但是引入后,从 $F_{j} \le F_{out}$ 来看,又应该删除这一项,这样一会儿引入,一会儿删除,一会儿引入,一会儿删除,……,就会陷入无休无止的循环反复中,永远也得不到结果。所以,要避免这样的情况,就要规定 $F_{in} \ge F_{out} \ge 0$ 。

四、容许值和容许值水平界限

逐步回归的目的,是要避免出现复共线性,但是,仅仅依靠上面的步骤,还不足以保证不出现复共线性。

在回归分析的计算过程中,关键的一步,是要计算矩阵 X^TX 的逆矩阵。如果存在复共线性。就会出现矩阵 X^TX 不可逆或近似不可逆的现象。当 X^TX 不可逆或近似不可逆时,按公式计算逆阵,就会遇到分母为0或分母近似为0的情况。这时,或者计算会溢出,或者会产生很大的计算误差,使计算结果非常不可靠。

为了避免这种情况,我们事先给定一个值,称为<mark>容许值水平界限(Tolerance Level),</mark>记为Tol,通常取 $Tol=10^{-2}\sim10^{-7}$,在逐步回归过程中,每当我们要引入一项,都要看一下求你矩阵时用到的分母的绝对值的最小值,这个值称为<mark>容许值(Tolerance),</mark>如果容许值小于事先给定的容许值水平界限,即使其它条件满足,我们也不引入这一项。这样,就可以完全避免出现复共线性。

五、逐步回归计算实例

例 1932年,H. Woods,H. H. Steinour和H. R. Starke为了研究波特兰水泥的成分与水泥固话时放出的热量之间的关系,收集了13个水泥样品的数据,进行回归分析。 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$

其中, 自变量是4种成分在水泥总重量中所占的百分比:

 $x_1 = -3CaO \cdot Al_2O_3$ 在水泥总重量中所占的百分比;

 x_2 — —3CaO·SiO₂在水泥总重量中所占的百分比;

 $x_3 = -4CaO \cdot Al_2O_3 \cdot Fe_2O_3$ 在水泥总重量中所占的百分比;

 x_4 — —2 $CaO \cdot SiO_2$ 在水泥总重量中所占的百分比;

因变量是

y——单位质量的水泥固化时放出的热量(单位:卡/克)。

由于水泥主要是由这**4**种成分构成的,所以,这**4**种成分的百分比含量加起来近似等于**100%**,即有 $x_1 + x_2 + x_3 + x_4 \approx 100\%$

在这个回归方程中,存在着复共线性。为了避免复共线性可能会带来的不良结果,考虑采用逐步回归。事先给定:引入水平界限Fin=4.0,删除水平界限Fout=3.9,容许值水平界限Tol=0.00001.

初始状态: 回归方程中没有变量, 只有常数项

方程内的项	\hat{eta}_{j}	F_{j}	方程外的项	容许值	F_{i}
常数项	95. 423	·			J
			x1	1.000	12.60
			x2	1.000	21.96
			х3	1.000	4.40
			x4	1.000	22.80

第一步: 在方程外的项中, x4的Fj最大, 而且F4=22.80>4.0=Fin, 它的容许值为1.0000>0.0001=Tol, 引入x4.

方程内的项	\hat{eta}_{j}	F_{j}	方程外的项	容许值	F_{j}
常数项	117. 57				
			x1	0.940	108. 22
			x2	0.053	0. 17
			x 3	0.999	40. 29
x 4	-0. 7382	22.80			

第二步: 在方程内的项中, x_4 的 F_j 最小,但是 F_4 =22.80>3.9= F_{out} ,不删除。在方程外的项中, x_1 的 F_j 最大,而且 F_4 =108.22>4.0= F_{in} ,它的容许值为0.940>0.0001= T_{ol} ,引入 x_1 .

方程内的项	$\hat{oldsymbol{eta}}_{j}$	F_{j}	方程外的项	容许值	F_{j}
常数项	103. 10				
x 1	1.440	108. 22			
			x 2	0.053	5.03
			x 3	0.289	4. 24
x4	-0.6140	159.30			

第三步: 在方程内的项中, x_1 的 F_j 最小,但是 F_1 =108.22>3.9= F_{out} ,不删除。在方程外的项中, x_2 的 F_j 最大,而且 F_2 =5.03>4.0= F_{in} ,它的容许值为0.053>0.0001= T_{ol} 0,引入 x_2 .

方程内的项	$\hat{oldsymbol{eta}}_{j}$	F_{j}	方程外的项	容许值	F_{j}
常数项	71.648				
x 1	1. 452	154.01			
x 2	0.4161	5. 03			
			х3	0.021	0.02
x 4	-0. 2365	1.86			

第四步:在方程内的项中, x4的Fj最小,而且F4=1.86<3.9=Fout,删除x4。在方程外的项中, x3的Fj最大,但是F3=0.02<4.0=Fin,不引入。

方程内的项	\hat{eta}_{j}	F_{j}	方程外的项	容许值	F_{j}
常数项	52. 577				
x 1	1. 4683	146. 52			
x 2	0.66225	208. 58			
			x 3	0.318	1.83
			x 4	-0.053	1.86

第五步:在方程内的项中, x1的Fj最小,但是F1=146.52>3.9=Fout,不删除。

在方程外的项中, x4的Fj最大, 但是F4=0.02<4.0=Fin, 不引入。

这时, 既没有可删除的项, 也没有可引入的项, 逐步回归结束。

得到回归方程:

$$\hat{y} = 52.277 + 1.4683x_1 + 0.66225x_2$$

它的残差平方和为 $SS_{\rho} = 57.90$

估计的标准差为 $\hat{\sigma} = 2.406$

多重相关系数为 r = 0.9893