Programme de khôlle de maths no 5

Semaine du 17 Octobre

Cours

Chapitre 5 : Suites numériques

- Suites arithmétiques, suites géométriques, suites arithmético-géométrique
- Suite récurrente linéaire d'ordre 2 (cas $\Delta > 0$ et $\Delta = 0$, le cas $\Delta < 0$ sera travaillé au moment où on fera les nombres complexes).
- Limite finie et infinie d'une suite, définitions avec les quantificateurs à connaitre
- Limites de référence n^{α} , $\frac{1}{n^{\alpha}}$, \sqrt{n} , e^{n} , $e^{-n} \ln(n)$, q^{n}
- Unicité de la limite, passage à la limite dans une égalité ou une inégalité
- Opérations sur les limites
- Suites extraites (u_{n+1}) , (u_{2n}) et (u_{2n+1}) : si (u_n) converge alors ces trois suites convergent (admis).
- Si f est continue en ℓ et que $\lim_{n \to +\infty} u_n = \ell$ alors $\lim_{n \to +\infty} f(u_n) = \ell$. (la définition de la continuité n'est pas à connaitre mais il faut connaitre les fonctions continues de référence et les opérations qui préservent la continuité).
- Suites récurrentes de la forme $u_{n+1} = f(u_n)$: aucune théorie à connaître mais il faut savoir retrouver les résultats suivants:
 - \triangleright Si f est définie sur I et que I est stable par f (c'est à dire $f(I) \subset I$) et que $u_0 \in I$, alors (u_n) est bien définie.
 - \triangleright Si de plus f est croissante sur I, alors $u_0 \le u_1 \Rightarrow (u_n)$ croissante et $u_0 \ge u_1 \Rightarrow (u_n)$ décroissante
 - \triangleright Si (u_n) converge vers un réel ℓ et que f est continue en ℓ alors $\ell = f(\ell)$.

Questions de cours et exercice

• Questions de cours

- Montrer que si $\lim_{n \to +\infty} u_n = \ell$ et si $\lim_{n \to +\infty} u_n = \ell'$ alors $\ell = \ell'$ (unicité de la limite).
- Montrer que si $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$ alors $\lim_{n \to +\infty} (u_n + v_n) = \ell + \ell'$
- Montrer que si $u_n \leq v_n$ à partir d'un certain rang et que $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$, alors $\ell \leq \ell'$
- Montrer que si (u_n) est croissante et non majorée alors $\lim_{n\to+\infty}u_n=+\infty$

• Exercices vus en classe

- Montrer uniquement à l'aide de la définition de la limite que $u_n = \sqrt{n+3}$ tend vers $+\infty$
- Limite de $\frac{n^2 + n}{3n + 5}$
- On considère la suite (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{2u_n + 1}{u_n + 1}$.
 - a) Montrer que $f: x \longmapsto \frac{2x+1}{x+1}$ est définie et dérivable sur $[1; +\infty[$ et étudier ses variations.
 - b) Montrer que $\forall n \in \mathbb{N}, \ 1 \le u_n \le u_{n+1} \le 2$
 - c) En déduire que (u_n) converge et déterminer sa limite.
- Étude des suites $\left\{ \begin{array}{c} u_0=9 \\ \forall n\in\mathbb{N},\ u_{n+1}=\frac{u_n-3}{2} \end{array} \right. \text{ et } \left\{ \begin{array}{c} u_0=2 \\ \forall n\in\mathbb{N}\ u_{n+1}=-2u_n+5 \end{array} \right.$
- (u_n) définie par $u_1 = a \in]0; +\infty[$ et pour tout $n \in \mathbb{N}^*$ $u_{n+1} = \sum_{k=1}^n \frac{3^k u_k}{k}.$
 - 1. Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $3^n \ge n+2$
 - 2. Montrer par récurrence forte que pour tout $n \in \mathbb{N}^*$, $u_n \geq an$
 - 3. En déduire la limite de (u_n) .