MATH 2574	(Calculus	III)
Spring 2017		

Name:		
	Fri 10 Feb 2	017

Exam 1: Intro to Multidimensional Calculus (§11.1-11.7, 12.1-12.2)

Exam Instructions: You have 50 minutes to complete this exam. Justification is required for all problems. No electronic devices (phones, iDevices, computers, etc) except for a **basic scientific calculator**. On story problems, round to one decimal place. If you finish early then you may leave, UNLESS there are less than 5 minutes of class left. To prevent disruption, if you finish with less than 5 minutes of class remaining then please stay seated and quiet.

In addition, please provide the following data
Drill Instructor:
Drill Time:

Your signature below indicates that you have read this page and agree to follow the Academic Honesty Policies of the University of Arkansas.

Signature: (1 pt)	
· · · ·	

- 1. Determine whether the following statements are true or false. You must justify your answer.
 - (a) (5 pts) The domain of the function u = f(w, x, y, z) is a region in \mathbb{R}^4 .

(b) (5 pts) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = \mathbf{0}$

(c) **(5 pts)** The domain of the function f(x,y) = 1 - |x - y| is $\{(x,y) \mid x \ge y\}$.

(d) (5 pts) All level curves of the plane z = 2x - 3y are lines, except for when z = 0.

2. (18 pts) Determine an equation of the line that is perpendicular to the lines

$$\mathbf{r}(t) = \langle -1 + 3t, 3t, 2t \rangle$$

$$\mathbf{R}(s) = \langle -6 + 3s, -8 + 2s, -12 + s \rangle$$

and passes through the point of intersection of the lines \mathbf{r} and \mathbf{R} .

3. Suppose **u** and **v** are differentiable functions at t = 0 with $\mathbf{u}(0) = \langle 1, 0, 1 \rangle$, $\mathbf{u}'(0) = \langle 7, 0, 1 \rangle$, $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$, $\mathbf{v}'(0) = \langle 1, 3, 2 \rangle$. Evaluate the following expressions:

(a) **(6 pts)**
$$\frac{d}{dt}(\sin(t)\mathbf{u}(t))\Big|_{t=0}$$

(b) **(6 pts)** $\left. \frac{d}{dt} (\mathbf{u} \cdot \mathbf{v}) \right|_{t=0}$

4. A golfer stands 400 ft horizontally from the hole and 40 ft below the hole (see figure).

Suppose the ball is hit with an initial speed of 150 ft/s, at an angle of θ from the ground.

(a) (12 pts) Find the acceleration $\mathbf{a}(t)$, velocity $\mathbf{v}(t)$, and position $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ vectors for the trajectory of the ball. The gravitational constant is $g = 32 \text{ ft/s}^2$.

(b) (6 pts) Write down a system of two equations to find the two unknowns: (1) time of flight and (2) θ . Do not solve the system.

5. **(16 pts)** A 100 kg box rests on a ramp with an incline of 30° to the floor (see figure). Find the components of the force perpendicular to and parallel to the ramp. (The vertical component of the force exerted by an object of mass m is its weight, which is mg, where $g = 9.8 \text{ m/s}^2$ is the acceleration due to gravity.)

6. (15 pts) Match equations (a)-(f) with the surfaces (A)=(F).

(a)
$$y = |x|$$

(b)
$$3x - 4y - z = 5$$

(c) $y - z^2 = 0$

(c)
$$y - z^2 = 0$$

(d)
$$4x^2 + \frac{y^2}{4} + z^2 = 1$$

(e)
$$x^2 + \frac{y^2}{9} = z^2$$

(f)
$$x^2 + \frac{y^2}{9} - z^2 = 1$$

