COMPLEX MANIFOLDS

YANNIS BÄHNI

Abstract. Goal of this paper is to give an overview of the basic definitions of complex and Kähler manifolds together with the most important properties. The main theorem will be the *Newlander-Nirenberg Theorem* which gives a criterion under which an almost complex manifold is a complex one. The key role will be played by a certain tensor field, the so called *Nijenhuis tensor*.

Contents

1	Complex S	Structures on Vector Spaces	1
2	Almost Co	omplex Structures	2
3	Complex 1	Manifolds	3
4	The Nijen	huis Tensor and the Newlander-Nirenberg Theorem.	6
5	Kähler Ma	anifolds	7
Ap	pendix A	Functions of Several Complex Variables	8
Ap	pendix B	Tensor Characterization Lemma	9
Re	ferences .		14

1. Complex Structures on Vector Spaces

In what follows, let $n \in \mathbb{Z}$, $n \geq 1$. Consider an n-dimensional complex vector space and let $J \in \operatorname{End}_{\mathbb{C}}(V)$ be defined by J(v) := iv. Then clearly $J \circ J = -\operatorname{id}_V$. Since every n-dimensional complex vector space can be seen as a 2n-dimensional real vector space in a natural way, i.e. if (e_{ν}) is a basis for the complex vector space V, then (e_{ν}, ie_{ν}) is a basis for the real vector space V, the mapping J induces an \mathbb{R} -endomorphism \widetilde{J} on the real vector space V simply by defining $\widetilde{J}(e_{\nu}) := J(e_{\nu}) = ie_{\nu}$ and $\widetilde{J}(ie_{\nu}) := J(ie_{\nu}) = -e_{\nu}$ for all $\nu = 1, \ldots, n$.

Conversly, let V be an n-dimensional real vector space with $J \in \operatorname{End}_{\mathbb{R}}(V)$ such that $J \circ J = -\operatorname{id}_{V}$. One can show, that

$$zv := xv + yJ(v) \tag{1}$$

(Yannis Bähni) UNIVERSITY OF ZURICH, RÄMISTRASSE 71, 8006 ZURICH *E-mail address*: yannis.baehni@uzh.ch.

for $z := x + iy \in \mathbb{C}$ and $v \in V$ makes V into a complex vector space. This motivates the following definition.

Definition 1.1. Let $n \in \mathbb{Z}$, $n \ge 1$ and V be an n-dimensional real vector space. A **complex structure on V** is a \mathbb{R} -linear mapping $J: V \to V$ such that $J \circ J = -\operatorname{id}_V$. If J is a complex structure on V, the tuple (V, J) is called a **complex vector space**.

Lemma 1.1. Let (V, J) be a complex vector space. Then dim V is even.

Proof. That $\dim V$ must be even follows directly from

$$\left(\det(J)\right)^2 = \det(J \circ J) = \det(-\operatorname{id}_V) = (-1)^{\dim V} \det(\operatorname{id}_V) = (-1)^{\dim V}$$
 since $\det(J) \in \mathbb{R}$.

2. Almost Complex Structures

If M is a smooth manifold, then T_pM is a finite dimensional real vector space. Hence we can generalize the definitions and results of the previous section to manifolds. The following definition is taken from [Sil08, p. 86].

Definition 2.1. Let M be a smooth manifold. An **almost complex structure on** M is a smooth tensor field $J \in \Gamma\left(T^{(1,1)}TM\right)$ such that $J_p \circ J_p = -\operatorname{id}_{T_pM}$ holds for every $p \in M$. If J is an almost complex structure on M, the tuple (M,J) is called an **almost complex manifold**.

Proposition 2.1. Every almost complex manifold (M, J) is of even dimension and orientable.

Proof. Assume that dim M is odd. Let $p \in M$. Then by [Lee13, p. 57] we have that dim $T_pM = \dim M$. Hence dim T_pM is odd. But by lemma 1.1, dim T_pM must be even since (T_pM, J_p) is a complex vector space. Contradiction.

Since M is a smooth manifold, there exists a Riemannian metric g on M (see [Lee13, p. 329]). Define

$$\widetilde{g}(X,Y) := g(X,Y) + g(JX,JY) \in \Gamma(T^{(0,2)}TM)$$

for all $X, Y \in \mathfrak{X}(M)$. This is possible due to the tensor characterization lemma B.1. Then

$$\widetilde{g}(JX, JY) = g(JX, JY) + g(-X, -Y) = g(JX, JY) + g(X, Y) = \widetilde{g}(X, Y)$$

by the bilinearity of g. Furthermore, clearly \tilde{g} is positive definite and symmetric, thus a Riemannian metric on M. Define

$$\omega(X,Y) := \widetilde{g}(X,JY).$$

Then by

$$\omega(Y, X) = \widetilde{g}(Y, JX) = \widetilde{g}(JX, Y) = \widetilde{g}(-X, JY) = -\omega(X, Y)$$

we see that ω is skew-symmetric. Hence $\omega \in \Omega^2(M)$. Let $p \in M$ and $u \in T_pM \setminus \{0\}$. Then also $-J_p(u) \neq 0$ since J_p is invertible by det $J_p = 1$. Furthermore, by [Lee13, p. 177], there exist $X, Y \in \mathfrak{X}(M)$, such that $X_p = u$ and $Y_p = -J_p(u)$. Hence

$$\omega_p(u, -J_p(u)) = \omega_p(X_p, Y_p)$$

$$= \omega(X, Y)(p)$$

$$= \widetilde{g}(X, JY)(p)$$

$$= \widetilde{g}_p(X_p, (JY)_p)$$

$$= \widetilde{g}_p(u, J_p(Y_p))$$

$$= \widetilde{g}_p(u, -(J_p \circ J_p)(u))$$

$$= \widetilde{g}_p(u, u)$$

$$\neq 0$$

and by [Lee13, p. 565] we get that ω is nondegenrate. Let dim M=2n. By [Lee13, p. 567] this implies that $\omega_p \wedge \cdots \wedge \omega_p$ is nonzero for each $p \in M$. Hence $\omega \wedge \cdots \wedge \omega$ is a nonvanishing top form on M. Since any nonvanishing top form determines an orientation (see [Lee13, p. 381]), we have that M is orientable.

Remark 2.1. The converse of proposition 2.1 is not true in general. One can show using results on fibre bundles and Chern classes, that if \mathbb{S}^n admits an almost complex structure, then $n = 2^k - 2$ for $k \in \mathbb{Z}$, $k \ge 1$ (see [Ste51, p. 219]). So for example \mathbb{S}^4 does not admit an almost complex structure. Actually, it can be shown that \mathbb{S}^2 and \mathbb{S}^6 are the only spheres which admit an almost complex structure (see [BS53, p. 434]).

3. Complex Manifolds

The definition of smooth manifolds adapts smoothly to the complex case.

Definition 3.1. Let $n \in \mathbb{Z}$, $n \geq 1$. An **n-dimensional complex manifold** is a second countable Hausdorff space M equipped with a holomorphic structure, that is a maximal holomorphic atlas of complex charts, such that all the transition maps are holomorphic.

Examples 3.1 (Complex Manifolds).

- 1. The complex n-space \mathbb{C}^n is an n-dimensional complex manifold.
- 2. Let $\{\omega_1, \ldots, \omega_{2n}\}$ be a real basis of \mathbb{C}^n and define

$$G := \mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_{2n}. \tag{2}$$

Then the discrete group G acts freely and properly discontinuously on \mathbb{C}^n by translation. Thus $\mathbb{T}^n := \mathbb{C}^n/G$ is an n-dimensional complex manifold, called a **complex torus** (see [FG10, pp. 206–207]).

3. The quotient $(\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^{\times}$ is an *n*-dimensional complex manifold, called the **complex projective space** (see [FG10, pp. 208–210]).

Lemma 3.1. Let $n, k \in \mathbb{Z}$, $n, k \geq 1$. Let V be an n-dimensional real vector space. Then

$$V \otimes \underbrace{V^* \otimes \cdots \otimes V^*}_{k} \cong L(\underbrace{V, \dots, V}_{k}; V)$$
 (3)

canonically. If (e_{ν}) is a basis of V and (e_{ν}^*) the corresponding basis of V^* , then $f \in \operatorname{End}(V)$ corresponds to

$$\sum_{\nu=1}^{n} f(e_{\nu}) \otimes e_{\nu}^{*}. \tag{4}$$

Proof. It is easily checked that

$$\Psi: \begin{cases} V \times V^* \times \cdots \times V^* \to L(V, \dots, V; V) \\ (v, f_1, \dots, f_k) \mapsto ((v_1, \dots, v_k) \mapsto f_1(v_1) \cdots f_k(v_k)v) \end{cases}$$

is multilinear. Thus by the universal property of the tensor product there exists a unique linear mapping $\widetilde{\Psi} \in \operatorname{Hom}_{\mathbb{R}} \left(T^{(1,k)}(V); \operatorname{L}(V,\ldots,V;V) \right)$ such that $\Psi = \widetilde{\Psi} \circ \otimes$. It is also easily checked that $\widetilde{\Psi}$ is an isomorphism. Let $f \in \operatorname{End}(V)$. Then for any $v \in V$ we have

$$\widetilde{\Psi}\left(\sum_{\nu=1}^{n} f(e_{\nu}) \otimes e_{\nu}^{*}\right)(v) = \sum_{\nu=1}^{n} \widetilde{\Psi}\left(f(e_{\nu}) \otimes e_{\nu}^{*}\right)(v)$$

$$= \sum_{\nu=1}^{n} e_{\nu}^{*}(v)f(e_{\nu})$$

$$= f\left(\sum_{\nu=1}^{n} e_{\nu}^{*}(v)e_{\nu}\right)$$

$$= f(v).$$

Proposition 3.1. Any complex manifold admits a canonical almost complex structure.

Proof. Fix a complex manifold M. We define J in terms of local coordinates. Let $(U,(x^{\nu},y^{\nu}))$ be a chart. By lemma 3.1 it is also enough to construct an endomorphism J_p for every $p \in U$. We define

$$J_p\left(\frac{\partial}{\partial x^{\nu}}\Big|_p\right) := \frac{\partial}{\partial y^{\nu}}\Big|_p \quad \text{and} \quad J_p\left(\frac{\partial}{\partial y^{\nu}}\Big|_p\right) := -\frac{\partial}{\partial x^{\nu}}\Big|_p$$

for all $\nu = 1, ..., n$. As standard linear algebra shows, there is a unique linear mapping associated with J_p (see [HK71, p. 69]). Let $v := a^{\nu} \frac{\partial}{\partial x^{\nu}} \Big|_p + b^{\nu} \frac{\partial}{\partial y^{\nu}} \Big|_p \in T_p M$. Then

$$(J_p \circ J_p)(v) = J_p \left(a^{\nu} J_p \left(\frac{\partial}{\partial x^{\nu}} \Big|_p \right) + b^{\nu} J_p \left(\frac{\partial}{\partial y^{\nu}} \Big|_p \right) \right)$$

$$= J_p \left(a^{\nu} \frac{\partial}{\partial y^{\nu}} \Big|_p - b^{\nu} \frac{\partial}{\partial x^{\nu}} \Big|_p \right)$$

$$= -a^{\nu} \frac{\partial}{\partial x^{\nu}} \Big|_p - b^{\nu} \frac{\partial}{\partial y^{\nu}} \Big|_p$$

$$= -v$$

and thus $J_p \circ J_p = -\operatorname{id}_{T_p M}$.

Next we have to show that above locally defined mapping is well-defined, i.e. does not depend on the choice of coordinates. Assume that $p \in U \cap V$ for another chart $(V, (u^i, v^i))$. By the change of coordinates formula [Lee13, p. 64] we get that

$$\left. \frac{\partial}{\partial x^{\nu}} \right|_{p} = \left. \frac{\partial u^{\mu}}{\partial x^{\nu}} (\widehat{p}) \frac{\partial}{\partial u^{\mu}} \right|_{p} + \left. \frac{\partial v^{\mu}}{\partial x^{\nu}} (\widehat{p}) \frac{\partial}{\partial v^{\mu}} \right|_{p}$$

and

$$\left. \frac{\partial}{\partial y^{\nu}} \right|_{p} = \left. \frac{\partial u^{\mu}}{\partial y^{\nu}} (\widehat{p}) \frac{\partial}{\partial u^{\mu}} \right|_{p} + \left. \frac{\partial v^{\mu}}{\partial y^{\nu}} (\widehat{p}) \frac{\partial}{\partial v^{\mu}} \right|_{p}$$

where \widehat{p} denotes the coordinate representation of p with respect to the coordinates (x^{ν}, y^{ν}) . Corollary A.1 implies

$$\begin{split} J_{p}\left(\frac{\partial}{\partial x^{\nu}}\bigg|_{p}\right) &= \frac{\partial u^{\mu}}{\partial x^{\nu}}(\widehat{p})J_{p}\left(\frac{\partial}{\partial u^{\mu}}\bigg|_{p}\right) + \frac{\partial v^{\mu}}{\partial x^{\nu}}(\widehat{p})J_{p}\left(\frac{\partial}{\partial v^{\mu}}\bigg|_{p}\right) \\ &= \frac{\partial u^{\mu}}{\partial x^{\nu}}(\widehat{p})\frac{\partial}{\partial v^{\mu}}\bigg|_{p} - \frac{\partial v^{\mu}}{\partial x^{\nu}}(\widehat{p})\frac{\partial}{\partial u^{\mu}}\bigg|_{p} \\ &= \frac{\partial v^{\mu}}{\partial y^{\nu}}(\widehat{p})\frac{\partial}{\partial v^{\mu}}\bigg|_{p} + \frac{\partial u^{\mu}}{\partial y^{\nu}}(\widehat{p})\frac{\partial}{\partial u^{\mu}}\bigg|_{p} \\ &= \frac{\partial}{\partial y^{\nu}}\bigg|_{p} \end{split}$$

and

$$\begin{split} J_{p}\left(\frac{\partial}{\partial y^{\nu}}\bigg|_{p}\right) &= \frac{\partial u^{\mu}}{\partial y^{\nu}}(\widehat{p})J_{p}\left(\frac{\partial}{\partial u^{\mu}}\bigg|_{p}\right) + \frac{\partial v^{\mu}}{\partial y^{\nu}}(\widehat{p})J_{p}\left(\frac{\partial}{\partial v^{\mu}}\bigg|_{p}\right) \\ &= \frac{\partial u^{\mu}}{\partial y^{\nu}}(\widehat{p})\frac{\partial}{\partial v^{\mu}}\bigg|_{p} - \frac{\partial v^{\mu}}{\partial y^{\nu}}(\widehat{p})\frac{\partial}{\partial u^{\mu}}\bigg|_{p} \\ &= -\frac{\partial v^{\mu}}{\partial x^{\nu}}(\widehat{p})\frac{\partial}{\partial v^{\mu}}\bigg|_{p} - \frac{\partial u^{\mu}}{\partial x^{\nu}}(\widehat{p})\frac{\partial}{\partial u^{\mu}}\bigg|_{p} \\ &= -\frac{\partial}{\partial x^{\nu}}\bigg|_{p}. \end{split}$$

Left to check is smoothness. According to lemma 3.1 the corresponding rough tensor field is given by

$$J_p\left(\frac{\partial}{\partial x^{\nu}}\bigg|_p\right) \otimes \mathrm{d}x^{\nu}|_p + J_p\left(\frac{\partial}{\partial y^{\nu}}\bigg|_p\right) \otimes \mathrm{d}y^{\nu}|_p = \frac{\partial}{\partial y^{\nu}}\bigg|_p \otimes \mathrm{d}x^{\nu}|_p - \frac{\partial}{\partial x^{\nu}}\bigg|_p \otimes \mathrm{d}y^{\nu}|_p$$

for any $p \in U$. Thus the smoothness criteria for tensor fields B.2 together with [Lee13, p. 36] yields that $J \in \Gamma(T^{(1,1)}TM)$.

A question which naturally arises by considering proposition 3.1 is, if the converse is also true, i.e. if every almost complex manifold is a complex manifold. This is in general not the case. Let \mathbb{P} denote the naturally oriented underlying smooth manifold of the complex projective plane. Again using results about Chern numbers it can be shown that

$$\mathbb{P}\#(\mathbb{S}^1 \times \mathbb{S}^3) \#(\mathbb{S}^1 \times \mathbb{S}^3) \quad \text{and} \quad (\mathbb{S}^1 \times \mathbb{S}^3) \#(\mathbb{S}^1 \times \mathbb{S}^3) \#(\mathbb{S}^2 \times \mathbb{S}^2) \quad (5)$$

have almost complex structures but no complex structure (see [Ven66, p. 1627]).

4. The Nijenhuis Tensor and the Newlander-Nirenberg Theorem

As we have seen in the last section, not every almost complex manifold is a complex manifold. Under which condition is this possible?

Definition 4.1. Let (M, J) be an almost complex manifold. For $X, Y \in \mathfrak{X}(M)$ we define the **Nijenhuis tensor N** as

$$N(X,Y) := [JX, JY] - J[X, JY] - J[JX, Y] - [X, Y]$$
(6)

where [X,Y] denotes the usual Lie-bracket of vector fields.

Proposition 4.1. Let (M, J) be an almost complex manifold and N be the Nijenhuis tensor. Then $N \in \Gamma(T^{(1,2)}TM)$.

Proof. First of all, $N(X,Y) \in \mathfrak{X}(M)$ for all $X,Y \in \mathfrak{X}(M)$. This follows immediately by considering J as a mapping $J:\mathfrak{X}(M) \to \mathfrak{X}(M)$ using the tensor characterization lemma B.1, the fact that the Lie Bracket of two smooth vector fields is again a smooth vector field (see [Lee13, p. 186]) and that $\mathfrak{X}(M)$ is a $\mathscr{C}^{\infty}(M)$ -module (see [Lee13, p. 177]). Let $f \in \mathscr{C}^{\infty}(M)$ and $X,Y,Z \in \mathfrak{X}(M)$. Then

$$\begin{split} N(fX+Y,Z) &= [J(fX+Y),JZ] - J\left[fX+Y,JZ\right] - J\left[J(fX+Y),Z\right] \\ &- [fX+Y,Z] \\ &= [fJX+JY,JZ] - J\left[fX+Y,JZ\right] - J\left[fJX+JY,Z\right] \\ &- [fX+Y,Z] \\ &= [fJX,JZ] + [JY,JZ] - J\left[fX,JZ\right] - J\left[Y,JZ\right] - J\left[fJX,Z\right] \\ &- J\left[JY,Z\right] - [fX,Z] - [Y,Z] \\ &= f\left[JX,JZ\right] - (JZf)JX + [JY,JZ] - fJ\left[X,JZ\right] + (JZf)JX \\ &- [Y,JZ] - fJ\left[JX,Z\right] + (Zf)JJX - J\left[JY,Z\right] - f\left[X,Z\right] \\ &+ (Zf)X - [Y,Z] \\ &= fN(X,Z) + N(Y,Z). \end{split}$$

by [Lee13, pp. 187–188]. Linearity in the second argument is shown similarly. Hence $N: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ is bilinear over $\mathscr{C}^{\infty}(M)$. Again by the tensor characterization lemma B.1 we have that $N \in \Gamma(T^{(1,2)}TM)$.

Theorem 4.1 (Newlander-Nirenberg). Let (M, J) be an almost complex manifold. Then M is a complex manifold, where the complex structure is so that the canonically induced almost complex structure is J, if and only if the Nijenhuis tensor N vanishes identically.

Proof. Assume M is a complex manifold. Let $(U, (x^{\nu}, y^{\nu}))$ be a chart. From proposition 4.1 it is enough to consider the coordinate vector fields $\frac{\partial}{\partial x^{\nu}}$ and $\frac{\partial}{\partial y^{\nu}}$. But from the explicit definition of J in proposition 3.1 and the property, that the Lie-Bracket of coordinate vector fields vanishes, together with the $\mathscr{C}^{\infty}(M)$ -linearity of J we get that N vanishes identically on each chart, and thus on M.

The other direction however is far more technical and uses results on partial differential equations. A complete proof can either be found in the original paper [NN57] or in [Sil08, p. 106], where references to more recent proofs are given.

5. Kähler Manifolds

The following is inspired by [KN96, pp. 146–149] and introduces the concepts from a complex viewpoint. This is in contrast to the symplectic approach provided for example in [Sil08].

Definition 5.1. Let (M, J) be an almost complex manifold. A **Hermitian metric** on M is a Riemannian metric g such that

$$g(JX, JY) = g(X, Y) \tag{7}$$

holds for all $X, Y \in \mathfrak{X}(M)$. If g is a Hermitian metric on M, the triple (M, J, g) is called an **almost Hermitian manifold**.

Lemma 5.1. Every almost complex manifold admits a Hermitian metric.

Proof. The existence was shown in the proof of proposition 2.1.

Definition 5.2. Let (M, J, g) be an almost Hermitian manifold. The **fundamental 2-form** Ω is defined to be

$$\Omega(X,Y) := g(X,JY) \tag{8}$$

for all $X, Y \in \mathfrak{X}(M)$.

Definition 5.3. Let (M, J, g) be an almost Hermitian manifold with fundamental 2-form Ω . The Hermitian metric is said to be a **Kähler metric**, if $d\Omega = 0$. An almost complex manifold with a Kähler metric is called an **almost Kähler manifold** and a complex manifold with a Kähler metric is called a **Kähler manifold**.

Appendix A. Functions of Several Complex Variables

This section summarizes the fundamental properties of functions of several complex variables needed later. The results are inspired by [FG10, pp. 14–30].

Definition A.1. Let $n \in \mathbb{Z}$, $n \geq 1$, $U \subseteq \mathbb{C}^n$ open and $a \in U$. A mapping $f : U \to \mathbb{C}$ is said to be **complex differentiable at a** if there exists $g : U \to \mathbb{C}^n$ such that g is continuous at a and

$$f(z) = f(a) + \sum_{\nu=1}^{n} (z_{\nu} - a_{\nu}) g_{\nu}(z)$$
(9)

holds for all $z \in D$. f is said to be **holomorphic in D** if it is complex differentiable at every point $a \in D$. For $m \in \mathbb{Z}$, $m \geq 1$, a mapping $f : U \to \mathbb{C}^m$ is said to be holomorphic in D if each component function f_{ν} , $\nu = 1, \ldots, n$, is holomorphic in D.

Proposition A.1. Let $n \in \mathbb{Z}$, $n \geq 1$, $D \subseteq \mathbb{C}^n$ open, $a \in U$ and $f : D \to \mathbb{C}$ real differentiable at a. Then

$$\frac{\partial f}{\partial z_{\nu}}(a) = \frac{1}{2} \left(\frac{\partial f}{\partial x_{\nu}}(a) - i \frac{\partial f}{\partial y_{\nu}}(a) \right) \tag{10}$$

and

$$\frac{\partial f}{\partial \overline{z}_{\nu}}(a) = \frac{1}{2} \left(\frac{\partial f}{\partial x_{\nu}}(a) + i \frac{\partial f}{\partial y_{\nu}}(a) \right) \tag{11}$$

holds for all $\nu = 1, \ldots, n$.

Theorem A.1 (The Cauchy-Riemann Equations). Let $n \in \mathbb{Z}$, $n \geq 1$ and $D \subseteq \mathbb{C}^n$ open. A mapping $f: D \to \mathbb{C}$ is holomorphic in D if and only if it is real differentiable at every $a \in D$ and the **Cauchy-Riemann equations**

$$\frac{\partial f}{\partial \overline{z}_{\nu}}(a) = 0 \tag{12}$$

holds for all $a \in D$ and $\nu = 1, ..., n$.

Corollary A.1. Let $m, n \in \mathbb{Z}$, $m, n \geq 1$, $D \subseteq \mathbb{C}^n$ open and $f : D \to \mathbb{C}^m$ holomorphic in D. If f = g + ih, $g, h : D \to \mathbb{R}^m$, then

$$\frac{\partial g_{\mu}}{\partial x_{\nu}}(a) = \frac{\partial h_{\mu}}{\partial y_{\nu}}(a) \quad and \quad \frac{\partial h_{\mu}}{\partial x_{\nu}}(a) = -\frac{\partial g_{\mu}}{\partial y_{\nu}}(a)$$
(13)

holds for any $a \in D$, $\nu = 1, \ldots, n$ and $\mu = 1, \ldots, m$.

Proof. Fix $\mu = 1, ..., m$. By definition A.1 f_{μ} is holomorphic in D. Hence f_{μ} is real differentiable in D (see [FG10, p. 27]) and theorem A.1 implies

$$\frac{\partial f_{\mu}}{\partial \overline{z}_{\nu}}(a) = 0$$

for all $a \in D$ and $\nu = 1, \dots, n$. By proposition A.1, this is equivalent to

$$\frac{\partial f}{\partial x_{t}}(a) + i \frac{\partial f}{\partial y_{t}}(a) = 0.$$

Using $f_{\mu} = g_{\mu} + ih_{\mu}$ and the C-linearity of the operators $\frac{\partial}{\partial x_{\nu}}$ and $\frac{\partial}{\partial y_{\nu}}$ yields

$$\frac{\partial g_{\mu}}{\partial x_{\nu}}(a) - \frac{\partial h_{\mu}}{\partial y_{\nu}}(a) + i\left(\frac{\partial h_{\mu}}{\partial x_{\nu}}(a) + \frac{\partial g_{\mu}}{\partial y_{\nu}}(a)\right) = 0.$$

Appendix B. Tensor Characterization Lemma

Definition B.1. Let $k, l \in \mathbb{Z}$, $k, l \geq 0$ and M a smooth manifold. Then the **bundle** of mixed tensors of type (k, l) is defined by

$$T^{(k,l)}TM := \prod_{p \in M} T^{(k,l)}(T_p M). \tag{14}$$

Proposition B.1. The bundle of mixed tensors of type (k, l) has a unique natural structure as a smooth vector bundle of rank n^{k+l} over M.

Proof. For each $p \in M$ let $E_p := T^{(k,l)}(T_pM)$. By [Lee13, p. 57] and [Lee13, p. 313] dim $E_p = n^{k+l}$. Furthermore, let $E := T^{(k,l)}TM$ and $\pi : E \to M$ be defined by $\pi(p,A) := p$. Let $\{(U_\alpha, \varphi_\alpha) : \alpha \in A\}$ be an atlas for M. For each $\alpha \in A$ define

$$\Phi_{\alpha}: \begin{cases} \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n^{k+l}} \\ (p, A) \mapsto \left(p, (A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}})\right) \end{cases}$$

Clearly, the inverse is given by

$$\Phi_{\alpha}^{-1}: \begin{cases} U_{\alpha} \times \mathbb{R}^{n^{k+l}} \to \pi^{-1}(U_{\alpha}) \\ \left(p, (A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}})\right) \mapsto (p, A) \end{cases}$$

Hence each Φ_{α} is bijective. Now we have to check, that $\Phi_{\alpha}|_{E_p}$ is an isomorphism. So let $\lambda \in \mathbb{R}$ and $B \in E_p$. Then

$$\Phi_{\alpha}|_{E_{p}}(p, \lambda A + B) = (p, (\lambda A + B)_{j_{1}...j_{l}}^{i_{1}...i_{k}}))$$

$$= (p, \lambda(A_{j_{1}...j_{l}}^{i_{1}...i_{k}}) + (B_{j_{1}...j_{l}}^{i_{1}...i_{k}}))$$

$$= \lambda \Phi_{\alpha}|_{E_{p}}(p, A) + \Phi_{\alpha}|_{E_{p}}(p, B).$$

Now let $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$. We consider the mapping

$$\Phi_{\alpha} \circ \Phi_{\beta}^{-1} : (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n^{k+l}} \to (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n^{k+l}}.$$

Define $\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(n^{k+l}, \mathbb{R})$ by

$$\tau_{\alpha\beta} := (\delta^i_j).$$

Then we have that

$$(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}) \left(p, (A_{j_1 \dots j_l}^{i_1 \dots i_k}) \right) = \left(p, (A_{j_1 \dots j_l}^{i_1 \dots i_k}) \right) = \left(p, \tau_{\alpha\beta}(p) (A_{j_1 \dots j_l}^{i_1 \dots i_k}) \right).$$

Since $\tau_{\alpha\beta}$ is constant, it is smooth (see [Lee13, p. 36]). Hence we can apply the vector bundle chart lemma [Lee13, p. 253] and the result follows.

What follows is a reformulation of the smoothness criteria for tensor fields ([Lee13, pp. 317–318]) for tensor fields of type (1, k).

Proposition B.2 (Smoothness Criteria for Tensor Fields). Let M be smooth manifold and let $A: M \to T^{(1,k)}TM$ be a rough section. Then the following are equivalent:

- (a) $A \in \Gamma(T^{(1,k)}TM)$.
- (b) In every smooth coordinate chart, the component functions of A are smooth.
- (c) For all $X_1, \ldots, X_k \in \mathfrak{X}(M)$, the rough section $A(X_1, \ldots, X_k) : M \to TM$ defined by

$$A(X_1, \dots, X_k)(p) := A_p(X_1|_p, \dots, X_k|_p)$$
 (15)

is a smooth vector field.

(d) If X_1, \ldots, X_k are smooth vector fields on some open subset $U \subseteq M$, then also $A(X_1, \ldots, X_k)$ is a smooth vector field on U.

Proof. We prove (a) \Leftrightarrow (b) and (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (b).

To prove (a) \Leftrightarrow (b), let $(U,(x^i))$ be a smooth chart. Actually, we can prove this for general tensor fields of type (k,l). Proposition B.1 together with the proof of the vector bundle chart lemma [Lee13, pp. 253–254] implies, that the corresponding chart on $T^{(k,l)}TM$ is given by $(\pi^{-1}(U),\widetilde{\varphi})$, where $\widetilde{\varphi}:\pi^{-1}(U)\to\varphi(U)\times\mathbb{R}^{n^{k+l}}$ is defined by

$$\widetilde{\varphi} := (\varphi \times \mathrm{id}_{\mathbb{R}^{n^{k+l}}}) \circ \Phi$$

where $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^{n^{k+l}}$ is given as in the proof of proposition B.1. Now we consider the coordinate representation \widehat{A} in the given charts (see [Lee13, p. 35]). Since A is a rough section, we have that

$$A^{-1}(\pi^{-1}(U)) = (\pi \circ A)^{-1}(U) = \mathrm{id}_M^{-1}(U) = U.$$

Hence $\varphi\left(U\cap A^{-1}(\pi^{-1}(U))\right)=\varphi(U)$, which is open, and $\widehat{A}:\varphi(U)\to\widetilde{\varphi}\left(\pi^{-1}(U)\right)$ is given by

$$\widehat{A}(x) = (\widehat{\varphi} \circ A \circ \varphi^{-1})(x)$$

$$= (\varphi \times \mathrm{id}_{\mathbb{R}^{n^{k+l}}}) \left(\Phi(\varphi^{-1}(x), A_{\varphi^{-1}(x)}) \right)$$

$$= (\varphi \times \mathrm{id}_{\mathbb{R}^{n^{k+l}}}) \left(\varphi^{-1}(x), \left(A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}} (\varphi^{-1}(x)) \right) \right)$$

$$= \left(x, \left(\widehat{A}_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}} (x) \right) \right).$$

By [Lee13, p. 35] A is smooth if and only if in any chart \widehat{A} is smooth. This is furthermore equivalent to that each $\widehat{A}_{j_1...j_l}^{i_1...i_k}$ is smooth and thus equivalent to that $A_{j_1...j_l}^{i_1...i_k}$ is smooth (see [Lee13, p. 33]).

To prove (b) \Rightarrow (c), let $(U,(x^i))$ be a smooth chart. Then write $X_1,\ldots,X_k\in\mathfrak{X}(M)$ as

$$X_{\nu} = X_{\nu}^{\mu_{\nu}} \frac{\partial}{\partial x^{\mu_{\nu}}}.$$

for $\nu = 1, \dots, k$. For $p \in U$ lemma 3.1 implies

$$A(X_1, \dots, X_n)(p) = A_p(X_1|_p, \dots, X_k|_p)$$

$$= A_p \left(X_1^{\mu_1}(p) \frac{\partial}{\partial x^{\mu_1}} \Big|_p, \dots, X_1^{\mu_k}(p) \frac{\partial}{\partial x^{\mu_k}} \Big|_p \right)$$

$$= X_1^{\mu_1}(p) \cdots X_k^{\mu_k}(p) A_p \left(\frac{\partial}{\partial x^{\mu_1}} \Big|_p, \dots, \frac{\partial}{\partial x^{\mu_k}} \Big|_p \right)$$

$$= X_1^{\mu_1}(p) \cdots X_k^{\mu_k}(p) A_{\mu_1 \dots \mu_k}^i(p) \frac{\partial}{\partial x^i} \Big|_p.$$

By the smoothness criterion for vector fields [Lee13, p. 175] we have that each component function $X^{\mu_n}_{\nu}$ is smooth. Thus if A is smooth, we have by that each $A^i_{j_1...j_k}$ is smooth and since $\mathscr{C}^{\infty}(M)$ is an \mathbb{R} -algebra (see [Lee13, p. 33]), we have that

$$X_1^{\mu_1} \cdots X_k^{\mu_k} A_{\mu_1 \dots \mu_k}^i$$

is smooth for i = 1, ..., n. Thus again by the smoothness criterion together with the localness of smoothness [Lee13, p. 35] we get that $A(X_1, ..., X_k) \in \mathfrak{X}(M)$. To prove $(c)\Rightarrow(d)$, we use that smoothness is a local property (see [Lee13, p. 35]). Let $p \in U$. Then by [Cat17, p. 14] we find a smooth bump function ψ supported in U and identically equal to 1 on some neighbourhood V of p. Set

$$\widetilde{X}_{\nu}|_{p} := \begin{cases} \psi(p)X_{\nu}|_{p} & p \in \operatorname{supp} \psi \\ 0 & p \in M \setminus \operatorname{supp} \psi \end{cases}.$$

Then the gluing lemma for smooth maps [Lee13, p. 35] implies $\widetilde{X}_1, \ldots, \widetilde{X}_k \in \mathfrak{X}(M)$. Hence by (c) we get that $A(\widetilde{X}_1, \ldots, \widetilde{X}_k) \in \mathfrak{X}(M)$ and so the restriction $A(\widetilde{X}_1, \ldots, \widetilde{X}_k)|_V$ is smooth. But $A(\widetilde{X}_1, \ldots, \widetilde{X}_k)|_V = A(X_1, \ldots, X_k)$ and so we are done. Lasty to prove (d) \Rightarrow (b), each vector field locally defined by

$$X_{j_{\nu}} = \delta_{j_{\nu}}^{\mu_{\nu}} \frac{\partial}{\partial x^{\mu_{\nu}}}.$$

is smooth. Thus by

$$A(X_1, \dots, X_n)(p) = \delta_{j_1}^{\mu_1} \cdots \delta_{j_k}^{\mu_k} A_{\mu_1 \dots \mu_k}^i(p) \frac{\partial}{\partial x^i} \bigg|_p = A_{j_1 \dots j_k}^i(p) \frac{\partial}{\partial x^i} \bigg|_p$$

we get that $A^i_{j_1...j_k}$ is smooth and hence by (b) also A.

Theorem B.1 (Tensor Characterization Lemma). A mapping

$$\underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{k} \to \mathscr{C}^{\infty}(M) \qquad or \qquad \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{k} \to \mathfrak{X}(M)$$

is induced by an element of $\Gamma(T^{(0,k)}TM)$ or $\Gamma(T^{(1,k)}TM)$, respectively, if and only if they are multilinear over $\mathscr{C}^{\infty}(M)$.

Proof. We are proving only the second statement. Any element in $\Gamma(T^{(1,k)}TM)$ induces a mapping $\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ by part (c) of the smoothness criteria for tensor fields B.2. Thus we have to show that \mathscr{A} is multilinear over $\mathscr{C}^{\infty}(M)$. Let $f \in \mathscr{C}^{\infty}(M)$ and $X_{\nu}, \widetilde{X}_{\nu} \in \mathfrak{X}(M), \nu = 1, \ldots, k$. Then for any $p \in M$ we have that

$$\mathcal{A}(X_1, \dots, fX_{\nu} + \widetilde{X}_{\nu}, \dots, X_k)_p = A_p(X_1|_p, \dots, (fX_{\nu} + \widetilde{X}_{\nu})_p, \dots, X_k|_p)$$

$$= A_p(X_1|_p, \dots, f(p)X_{\nu}|_p + \widetilde{X}_{\nu}|_p, \dots, X_k|_p)$$

$$= f(p)A_{p}(X_{1}|_{p}, \dots, X_{\nu}|_{p}, \dots, X_{k}|_{p})$$

$$+ A_{p}(X_{1}|_{p}, \dots, \widetilde{X}_{\nu}|_{p}, \dots, X_{k}|_{p})$$

$$= f(p)\mathscr{A}(X_{1}, \dots, X_{\nu}, \dots, X_{k})_{p}$$

$$+ \mathscr{A}(X_{1}, \dots, \widetilde{X}_{\nu}, \dots, X_{k})_{p}$$

$$= (f\mathscr{A}(X_{1}, \dots, X_{\nu}, \dots, X_{k}))_{p}$$

$$+ \mathscr{A}(X_{1}, \dots, \widetilde{X}_{\nu}, \dots, X_{k})_{p}.$$

Conversly, suppose that $\mathscr{A}:\mathfrak{X}(M)\times\cdots\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ is multilinear over $\mathscr{C}^{\infty}(M)$. Let $p\in M$. First we show that \mathscr{A} acts locally, i.e. if $X_{\nu}=\widetilde{X}_{\nu}$ in some neighbourhood U of p implies that also

$$\mathscr{A}(X_1,\ldots,X_{\nu},\ldots,X_k)=\mathscr{A}(X_1,\ldots,\widetilde{X}_{\nu},\ldots,X_k)$$

on U. By the multilinearity of \mathscr{A} it is enough to show that if X_{ν} vanishes on U then so does \mathscr{A} . There exists a smooth bump function ψ for $\{p\}$ supported in U (see [Lee13, p. 44]). Hence $\psi X_{\nu} = 0$ on M and $\psi(p) = 1$. Thus

$$0 = \mathscr{A}(X_1, \dots, \psi X_{\nu}, \dots, X_k)_p = \psi(p) \mathscr{A}(X_1, \dots, X_{\nu}, \dots, X_k)_p.$$

and since $\psi(p) = 1$ we have that

$$\mathscr{A}(X_1,\ldots,X_{\nu},\ldots,X_k)_p=0$$

for any $p \in U$.

Next we show that \mathscr{A} actually acts pointwise, i.e. if $X_{\nu}|_{p}$ vanishes so does \mathscr{A} . Let $(U,(x^{i}))$ be a chart containing p and $X_{\nu} = X_{\nu}^{i} \frac{\partial}{\partial x^{i}}$ on U. The same construction as used showing the implication $(c)\Rightarrow(d)$ in the proof of proposition B.2 yields the existence of $f^{1},\ldots,f^{n}\in\mathscr{C}^{\infty}(M)$ and $\widetilde{X}_{1},\ldots,\widetilde{X}_{n}\in\mathfrak{X}(M)$ such that $f^{i}=X_{\nu}^{i}$ and $\widetilde{X}_{i}=\frac{\partial}{\partial x^{i}}$ on a neighbourhood $V\subseteq U$ of p. Thus by the previous localization, we get that

$$\mathscr{A}(X_1,\ldots,X_{\nu},\ldots,X_k)=\mathscr{A}(X_1,\ldots,f^i\widetilde{X}_i,\ldots,X_k)=f^i\mathscr{A}(X_1,\ldots,\widetilde{X}_i,\ldots,X_k)$$

in U. Since $0 = X_{\nu}^{i}(p) = f^{i}(p)$, \mathscr{A} vanishes at p. Hence \mathscr{A} depends only on the value of X_{ν} at p. Thus define a rough section $A: M \to T^{(1,k)}TM$ by

$$A_p(v_1,\ldots,v_k) := \mathscr{A}(V_1,\ldots,V_k)(p)$$

where $V_1, \ldots, V_k \in \mathfrak{X}(M)$ are any extensions of $v_1, \ldots, v_k \in T_pM$ (see [Lee13, p. 177]). By the above, the choice of the extensions does not matter and the resulting rough section is smooth by proposition B.2 part (c), hence $A \in \Gamma(T^{(1,k)}TM)$.

References

- [BS53] A. Borel and J.-P. Serre. "Groupes de Lie et Puissances Reduites de Steenrod". In: *American Journal of Mathematics* 75.3 (1953), pp. 409–448. ISSN: 00029327, 10806377. URL: http://www.jstor.org/stable/2372495.
- [Cat17] Alberto S. Cattaneo. "Notes on Manifolds". 2017. URL: http://user.math.uzh.ch/cattaneo/manifoldsFS15.pdf.
- [FG10] Klaus Fritzsche and Hans Grauert. From Holomorphic Functions to Complex Manifolds. Graduate Texts in Mathematics. Springer-Verlag New York, Inc., 2010.
- [HK71] Kenneth Hoffman and Ray Kunze. *Linear Algebra*. Second Edition. Prentice Hall, 1971.
- [KN96] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry. Vol. II. Wiley Classics Library. John Wiley & Sons, Inc., 1996.
- [Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Second Edition. Graduate Texts in Mathematics. Springer, 2013.
- [NN57] A. Newlander and L. Nirenberg. "Complex Analytic Coordinates in Almost Complex Manifolds". In: *Annals of Mathematics* 65.3 (1957), pp. 391–404. ISSN: 0003486X. URL: http://www.jstor.org/stable/1970051.
- [Sil08] Ana Cannas da Silva. Lectures on Symplectic Geometry. Corrected 2nd printing. Lecture Notes in Mathematics 1764. Springer Verlag Berlin Heidelberg, 2008.
- [Ste51] Norman Steenrod. The Topology of Fibre Bundles. Princeton University Press, 1951.
- [Ven66] A. Van De Ven. "On the Chern Numbers of Certain Complex and Almost Complex Manifolds". In: Proceedings of the National Academy of Sciences of the United States of America 55.6 (1966), pp. 1624–1627. ISSN: 00278424. URL: http://www.jstor.org/stable/57245.