

数の表現 ~2進数~

コンピュータの基本は0と1で計算している。電源がOffの場合は0、電源がOnの場合は1となる。この電源On/Offの二つの状態から計算を行う場合、最も簡単な表現方法は2進数となる。

10進数

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13$$

10個の数で表現

11個目は桁上がり

2進数

$$0 \rightarrow 1 \rightarrow 10 \rightarrow 11 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111$$

2個の数で表現

3個目は桁上がり

数の表現 ~2進数~

2進数と10進数の変換、または8進数や16進数といった基数を変換することを基数変換と呼ぶ。

〈2進数→10進数の変換〉

数の表現 ~2進数~

〈10進数→2進数の変換〉

数の表現 ~8進数と16進数~

〈8進数、16進数→10進数の変換〉

8進数: 5 1 2

重み: 8² 8

1 8°←^{基数}

10進数: $5 \times 64 + 1 \times 8 + 2 \times 1 = 330$

16進数: 1 F B

3 16² 16¹

数の表現 ~2進数~

〈10進数→8進数、16進数の変換〉

数の表現 〜2進数の足し算と引き算〜

2進数の桁上がり 1+1=10 、 2進数の桁下がり 10-1=1

+	1011 0101	1 ×	011 101
	10000	1	011
_	1011 0101	101	00 1
	110	110	111

進数対応表

10進数	2進数	8進数	16進数
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

問題:

人の指で最大何個 の数を表現できる か考えてみよう!

16進数を表示する場合の表 示方法

- 1. 右下に小さく"16"と書く (17FA)₁₆
- 2. 冒頭に"0x"を書く 0x17FA

数の表現

■ビットとバイト

一度に最大で32ビットのデータを処理できるCPUを32ビットCPU、64ビットのデータを処理できるCPUを64ビットCPUと呼ぶ。

コンピュータは2進数ですべてのデータが構成される。この時の最小単位「2進数の1桁分」をビット(bit)と呼び、8ビット文をまとめた単位をバイト(byte)と呼ぶ。

■補助単位

大きい値の補助単位		小さい値の補助単位	
k(キロ)	10 ³ =1,000倍	m(ミリ)	$1/10^3 = 1/1,000$
M(メガ)	106=1,000,000倍	μ(マイクロ)	$1/10^6 = 1/1,000,000$
G(ギガ)	10 ⁹ =1,000,000,000倍	n(ナノ)	$1/10^9 = 1/1,000,000,000$
T(テラ)	1012=1,000,000,000,000倍	p(ピコ)	1/10 ¹² =1/1,000,000,000,000

問題

2進数1011と2進数101を乗算した結果の2進数はどれか。

平成28年秋期 問91 4問目/選択範囲の問題数51問

ア 1111 イ 10000 ウ 101111 エ 110111

問題

10進数155を2進数で表したものはどれか。

出典:令和2年秋期 問62

集合論

コンピュータはデータを扱う時、条件で対象を絞り込みする。この絞り込み条件は集合論の概念を用いている。かつ (AND)、または (OR)、などを見ていこう

ある特性をもったデータ(要素)の集まりを集合という。集合を表す図にベン図がある。

全体集合	対象とするデータ すべて で構成される集合。
補集合	ある集合Aに対して「Aでない」要素の集まり。
部分集合	ある集合Aに対して「Aに含まれる」集合Bのこと。

集合論

和集合 AまたはB (A OR B)

積集合 AかつB (A AND B)

集合論

排他集合 AかつBでない (A NOT B)

集合論

■論理演算

論理和 (OR、または)	二つの値がいずれも偽(O)のときのみ結果が偽(O)となり、それ以外は真(1)となる	
論理積(AND、かつ)	二つの値がいずれも真(1)のときのみ結果が真(1)となり、それ以外は偽(0)となる	
否定(NOT、ではない)	値が真(1)のときに結果が偽(0)となり、値が偽(0)のときに結果が真(1)となる	
排他的論理和(XOR)	論理和 (XOR) 二つの値が異なるときに結果が真(1)となり、二つの値が等しいときに結果が偽(0)となる	

真(true)と偽(false):集合において、条件(A)を満たすこと、集合Aに含まれることを「真」といい、条件(A)を満たさない、集合Aに含まれないことを「偽」という。論理演算の場合、真を1で表し、偽を0で表す。

集合論

■論理演算の真理値表

①論理和

А	В	A OR B
1	1	1
1	0	1
0	1	1
0	0	0

②論理積

Α	В	A AND B
1	1	1
1	0	0
0	1	0
0	0	0

③否定

Α	NOT A
1	0
0	1

④排他的論理和

А	В	A XOR B
1	1	0
1	0	1
0	1	1
0	0	0

各論理演算は、記号を用いて、

AORB → A+B

A AND B - A · B

NOT A $\rightarrow \overline{A}$

A XOR B → A⊕B

のように表現することもあります。

集合論

四則演算の交換法則

$$a + b = b + a$$

 $a \times b = b \times a$

四則演算の分配法則

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

四則演算の結合法則

$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$

論理演算の交換法則

a AND b = b AND aa OR b = b OR a

論理演算の分配法則

a AND (b OR c) = (a AND b) OR (a AND c)a OR (b AND c) = (a OR b) AND (a OR c)

論理演算の結合法則

 $\begin{array}{l} a\;AND\;(\;b\;AND\;c\;)\;=\;(\;A\;AND\;b\;)\;AND\;c\\ a\;OR\;(\;b\;OR\;c\;)\;=\;(\;a\;OR\;b\;)\;OR\;c \end{array}$

ド・モルガンの法則

NOT (a AND b) = (NOT a) OR (NOT b)NOT (a OR b) = (NOT a) AND (NOT b)

【問題】2-1

次のベン図の網掛けした部分の検索条件はどれか。

平成29年秋期 問98 40問目/選択範囲の問題数51問

ア (not A) and (B and C)

づ (not A) or (B and C)

エ (not A) or (B or C)

【問題】

二つの集合AとBについて,常に成立する関係を記述したものはどれか。ここで,(X∩Y)は,XとYの両方に属する部分(積集合),(X∪Y)は,X又はYの少なくとも一方に属する部分(和集合)を表す。

平成27年春期 問62 24問目/選択範囲の問題数51問

- ア (A∪B)は, (A∩B)でない集合の部分集合である。
- イ (A∪B)は, Aの部分集合である。
- ウ (A∩B)は, (A∪B)の部分集合である。
- 工 (A∩B)は, Aでない集合の部分集合である。

問題

二つの集合AとBについて、常に成立する関係を記述したものはどれか。ここで、 $(X \cap Y)$ は、XとYの共通部分(積集合)、 $(X \cup Y)$ は、X又はYの少なくとも一方に属する部分(和集合)を表わす。

出典:平成22年春期 問69

- ア (ANB)は、Aでない集合の部分集合である。
- イ (A∩B)は, Aの部分集合である。
- ウ (A∪B)は, (A∩B) の部分集合である。
- エ (A∪B)は, Aの部分集合である。

之前的课堂内容大家有任何疑问吗?

