

Программирование в среде R

Шевцов Василий Викторович, директор ДИТ РУДН, shevtsov_vv@rudn.university

Циклы и условия

Логические операторы

Оператор	Описание				
>	Больше				
>=	Больше или равно				
<	Меньше				
<=	Меньше или равно				
==	Равно				
!=	Не равно				
&	Логическое И				
	Логическое ИЛИ				
!	Логическое НЕ				

- Краткий вариант оператора if
 - if(условие) выражение
 - условие любой оператор условия (<, >, >=, <=, ==, ! =), результатом выполнения которого является логический вектор единичный длины. Если значение вектора TRUE, то выполняется выражение.
 - выражение одно или несколько выражений, выполняемых в случае верности условия. Если задано несколько выражений, то они должны быть заключены в фигурные скобки {} и разделяться точкой с запятой (если на одной строке)
 - Оператор возвращает значение выражения в случае верности условия или ничего не возвращает (NULL).

```
> x<-2;y<-3
> if(y>x){z<-x+y;z}
[1] 5
> if(y<x){z<-x+y;z}
> |
```


- Полный вариант оператора if
 - if(условие) выражение1 else выражение2
 - условие любой оператор условия (<, >, >=, <=, ==, ! =), результатом выполнения которого является логический вектор единичный длины. Если значение вектора TRUE, то выполняется выражение.
 - выражение1 одно или несколько выражений, выполняемых в случае верности условия
 - выражение1 одно или несколько выражений, выполняемых в случае ложного условия

```
> if(y<x){z<-x+y;z} else {z<-x*y;z}
[1] 6
```



```
> x <- 2
> y <- 3
> if (x > 4 \& y < 1) {"aa"} else {"het"}
[1] "нет"
> x <- 2
> if (x>0) {"больше нуля"} else if (x==0) {"равно нулю"} else {"меньше нуля"}
[1] "больше нуля"
> x <- 0
> if (x>0) {"больше нуля"} else if (x==0) {"равно нулю"} else {"меньше нуля"}
[1] "равно нулю"
> x <- -0
> if (x>0) {"больше нуля"} else if (x==0) {"равно нулю"} else {"меньше нуля"}
[1] "равно нулю"
> x <- -1
> if (x>0) {"больше нуля"} else if (x==0) {"равно нулю"} else {"меньше нуля"}
[1] "меньше нуля"
```


- оператор ifelse
 - ifelse(условие, yes, no)
 - позволяет переменной в зависимости от выполнения (невыполнения)
 некоторого условия принимать различные значения. Отличие от оператора
 if состоит в том, что здесь условие является логическим вектором любой
 заданной размерности (зависит от размерности сравниваемых объектов).
 Порядковый номер элемента логического вектора и его значение
 определяет какой элемент вектора **yes** или **no** берётся новой переменной.

```
> x <- c(-1,0,1,2)
> ifelse(x>=0,"positive","negative")
[1] "negative" "positive" "positive" "positive"
```

```
> if (x>0) {"больше нуля"} else if (x==0) {"равно нулю"} else {"меньше нуля"} [1] "меньше нуля" Warning messages:
1: In if (x > 0) { :
   the condition has length > 1 and only the first element will be used
2: In if (x == 0) { :
   the condition has length > 1 and only the first element will be used
```

00

```
> x<-c(1,2,3,4,5)
> y<-c(2,2,4,3,5)
> z<-ifelse(x==y,c(11,12,13,14,15),c(-11,-12,-13,-14,-15));z
[1] -11 12 -13 -14 15</pre>
```

```
если x[1]==y[1] то yes[1] иначе no[1] если x[2]==y[2] то yes[2] иначе no[2] ... если x[n]==y[n] то yes[n] иначе no[n]
```


- оператор ifelse
 - Пример. При вычислении sqrt из отрицательных чисел получаем сообщение об ошибке. Используем ifelse для замены отрицательных

операции с матрицами

```
> x<-rep(c(1,2,3),3);x
[1] 1 2 3 1 2 3 1 2 3
> x<-matrix(x,3,3);x
        [,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3
> z<-ifelse(x>1,"больше","меньше");z
        [,1] [,2] [,3]
[1,] "меньше" "меньше" "меньше"
[2,] "больше" "больше" "больше"
[3,] "больше" "больше" "больше"
> z<-ifelse(x>1,c(1:9),c(11:19));z
        [,1] [,2] [,3]
[1,] 11 14 17
[2,] 2 5 8
[3,] 3 6 9
```


for(переменная іп последовательность) выражение

[1] 2

Оператор цикла. Пока переменная находится в рамках заданной числовой последовательности, выполняется выражение (или блок выражений).

```
> x<-1:10; y<-10:1
> for(i in 1:10){if (x[i]>y[i]) {print("больше")} else {print("меньше, равно")}}
    "меньше, равно"
    "меньше, равно"
    "меньше, равно"
    "меньше, равно" | > z<-integer(10)
    "меньше, равно"
                     > for(i in 1:10){if (x[i]>y[i]) z[i]<-x[i] else z[i]<-y[i]};z</pre>
[1]
    "больше"
    "больше"
    "больше"
                     > for (i in c(-1,0,1,2)){print (i)}
    "больше"
    "больше"
                      [1] -1
                      Γ1 0
                      [1] 1
                      Γ11 2
                     > x < -c(-1,0,1,2)
                     > for (i in x){print (i)}
                      [1] -1
                      [1]
```

```
> for (i in 1:nrow(mtcars)){print(mtcars$mpg[i])}
[1] 21
[1] 21
[1] 22.8
[1] 21.4
[1] 18.7
[1] 18.1
[1] 14.3
[1] 24.4
[1] 22.8
[1] 19.2
               > for (i in 1:nrow(mtcars)){if (mtcars$cyl[i]==4) {print(mtcars$mpg[i])}}
[1] 17.8
               [1] 22.8
[1] 16.4
               [1] 24.4
[1] 17.3
               [1] 22.8
[1] 15.2
               [1] 32.4
[1] 10.4
               [1] 30.4
[1] 10.4
               [1] 33.9
               [1] 21.5
[1] 14.7
               [1] 27.3
               [1] 26
               [1] 30.4
               [1] 21.4
```



```
> View (df)
> df <- mtcars
> for (i in 1:nrow(df)) {
+    if (df$vs[i]==0){df$vs2[i] <- "v"} else {df$vs2[i] <- "s"}
+
+    }
> View (df)
```

^	mpg [‡]	cyl [‡]	disp [‡]	hp [‡]	drat [‡]	wt [‡]	qsec [‡]	vs [‡]	am [‡]	gear [‡]	carb [‡]	vs2 [‡]
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4	v
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4	v
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1	S
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	S
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2	v
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	S
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4	v
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	S
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2	S

- > df\$vs3 <- ifelse(df\$vs==0,"v","s")</pre>
- > View (df)

V · · ································													
^	mpg [‡]	cyl [‡]	disp [‡]	hp [‡]	drat [‡]	wt [‡]	qsec [‡]	vs [‡]	am [‡]	gear [‡]	carb [‡]	vs2 [‡]	vs3 [‡]
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4	v	v
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4	v	V
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1	S	S
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	S	S
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2	v	v
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	S	S
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4	v	V
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	S	s

> df\$vs==0

Операторы цикла. while

while(условие) выражение

Пока выполняется условие вычисляется выражение, как только результатом условия становится FALSE, выходим из цикла.

Операторы цикла. repeat

• repeat выражение

repeat создаёт бесконечный цикл, в котором вычисляется выражение (или блок выражений). Для выхода из этого цикла нужно использовать break, а также условный оператор в качестве одного из выражений.

```
> x<-5
> repeat{print(x); if(x==8){break}; x<-x+1}
[1] 5
[1] 6
[1] 7
[1] 8</pre>
```


- switch(управляющее выражение, альтернативные действия)
- позволяет выполнять одну из нескольких операций в зависимости от результатов управляющего выражения.
 Управляющее выражение возвращает:
 - либо целое число (от 1 до числа альтернатив), которое является номером выполняемого действия;
 - либо символьную переменную (строку), соответствующую имени выполняемой операции.
- Если возвращаемое контрольным выражением значение не соответствует ни номеру выполняемой операции, ни имени, то результатом оператора switch будет NULL.
- Оператор switch не является самостоятельным, используется либо внутри функций, либо внутри других управляющих конструкций


```
> x<-numeric(5)
> for(i in 1:5){x[i]<-switch(i,11,12,13,14,15)};x</pre>
[1] 11 12 13 14 15
> for(i in 1:5){x[i]<-switch(i,"11","12","13","14","15")};x</pre>
[1] "11" "12" "13" "14" "15"
> for(i in 1:5){x[i]<-switch(i,print("11"),print("12"),print("13"),print("14"),print("15"))};x</pre>
[1] "11"
[1] "12"
[1] "13"
[1] "14"
[1] "15"
[1] "11" "12" "13" "14" "15"
> for(i in 1:5){x[i]<-switch(i,{a<-10;print(a)},print("12"),print("13"),print("14"),print("15"))};x</pre>
[1] 10
[1] "12"
[1] "13"
[1] "14"
[1]
    "10" "12" "13" "14" "15"
```



```
> x<-letters[1:5]
> for(i in x){switch(i, "a"=print("A"), "b"=print("B"), "c"=print("C"), print("default"))}
[1] "A"
[1] "B"
[1] "C"
[1] "default"
[1] "default"
```

```
switch (caseSwitch)
{
    case 1:
        Console.WriteLine("Case 1");
        break;
    case 2:
        Console.WriteLine("Case 2");
        break;
    default:
        Console.WriteLine("Default case");
        break;
}
```

```
Simple CASE expression:

CASE input_expression

WHEN when_expression THEN result_expression [ ...n ]

[ ELSE else_result_expression ]

END

Searched CASE expression:

CASE

WHEN Boolean_expression THEN result_expression [ ...n ]

[ ELSE else_result_expression ]

END
```


Описательные статистики

mtcars

mpg	расход топлива (количества миль на галлон топлива)
cyl	кол-во цилиндров
disp	объем двигателя
hp	мощность двигателя (лошадиные силы)
drat	передаточное число заднего моста
wt	вес
qsec	значение времени разгона
vs	тип двигателя (v-образный, рядный)
am	тип коробки передач
gear	кол-во передач
carb	число карбюраторов

Преобразование в факторы

```
> df <- mtcars
> str(df)
'data.frame': 32 obs. of 11 variables:
 $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num 6646868446 ...
 $ disp: num 160 160 108 258 360 ...
 $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num 16.5 17 18.6 19.4 17 ...
 $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
 $ am : num 1110000000...
 $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
                        > df$vs <- factor(df$vs, labels = c("V","S"))</pre>
                        > df$am <- factor(df$am, labels = c("auto", "manual"))</pre>
                        > str(df)
                        'data.frame': 32 obs. of 11 variables:
                         $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
                         $ cyl : num 6646868446 ...
                         $ disp: num 160 160 108 258 360 ...
                         $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
                         $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
                         $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
                         $ qsec: num 16.5 17 18.6 19.4 17 ...
                         $ vs : Factor w/ 2 levels "V", "S": 1 1 2 2 1 2 1 2 2 2 ...
                         $ am : Factor w/ 2 levels "auto", "manual": 2 2 2 1 1 1 1 1 1 1 ...
                         $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
                         $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

Статистики

```
> median(df$mpg)
[1] 19.2
> mean(df$mpg)
[1] 20.09062
> sd(df$mpg)
[1] 6.026948
> range(df$mpg)
[1] 10.4 33.9
```

```
> mean(df$mpg[df$cyl==6])
[1] 19.74286
> mean(df$mpg[df$cyl==6 & df$vs=="v"])
[1] 20.56667
> sd(df$hp[df$cyl!= 3 & df$am=="auto"])
[1] 53.9082
```


Статистики

```
> # Арифметическая средняя:
> mean(mtcars$mpg)
[1] 20.09062
> # Медиана
> median(mtcars$mpg)
[1] 19.2
> # Дисперсия:
> var(mtcars$mpg)
[1] 36.3241
> # Стандартное отклонение:
> sd(mtcars$mpg)
[1] 6.026948
> # Минимальное значение:
> min(mtcars$mpg)
[1] 10.4
> # Максимальное значение:
> max(mtcars$mpg)
[1] 33.9
> # расчет стандартной ошибки среднего
> sd(mtcars$mpg)/sqrt(length(mtcars$mpg))
[1] 1.065424
```

$$S_{\overline{x}} = \frac{S}{\sqrt{n}}$$

Статистики

```
> # Квантили

> quantile(mtcars$mpg)

    0% 25% 50% 75% 100%

10.400 15.425 19.200 22.800 33.900

> quantile(mtcars$mpg,probs = seq(0,1,0.1))

    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10.40 14.34 15.20 15.98 17.92 19.20 21.00 21.47 24.08 30.09 33.90
```

X	numeric vector whose sample quantiles are wanted, or an object of a class for which a method has been defined (see also 'details'). NA and NaN values are not allowed in numeric vectors unless na.rm is TRUE.
probs	numeric vector of probabilities with values in [0,1]. (Values up to 2e-14 outside that range are accepted and moved to the nearby endpoint.)
na.rm	logical; if true, any NA and NaN's are removed from x before the quantiles are computed.
names	logical; if true, the result has a <u>names</u> attribute. Set to FALSE for speedup with many probs.
type	an integer between 1 and 9 selecting one of the nine quantile algorithms detailed below to be used.

aggregate

•	Group.1	x
1	V	189.72222
2	S	91.35714

```
> colnames(res)
[1] "Group.1" "x"
> colnames(res) <- c("VS","am")</pre>
```

^	vs [‡]	am ‡
1	V	189.72222
2	S	91.35714

Группировка

По одной переменной

По двум переменным


```
> aggregate(x = df[,-c(8,9)], by = list(df$am), FUN=median)
Group.1 mpg cyl disp hp drat wt qsec gear carb
1 auto 17.3 8 275.8 175 3.15 3.52 17.82 3 3
2 manual 22.8 4 120.3 109 4.08 2.32 17.02 4 2
```


пакет psych. describe

```
> df <- mtcars
> df$vs <- factor(df$vs, labels = c("V", "S"))</pre>
> df$am <- factor(df$am, labels = c("auto","manual"))</pre>
> describe(x = df)
     vars n
                         sd median trimmed
                                               mad
                                                     min
                                                             max
                                                                  range
                                                                         skew kurtosis
                mean
                                                                                            se
        1 32
              20.09
                       6.03
                             19.20
                                      19.70
                                              5.41 10.40
                                                           33.90
                                                                  23.50
                                                                          0.61
                                                                                  -0.37
mpg
                                                                                          1.07
cyl
        2 32
               6.19
                       1.79
                              6.00
                                       6.23
                                              2.97 4.00
                                                            8.00
                                                                   4.00 - 0.17
                                                                                  -1.76
                                                                                         0.32
disp
        3 32 230.72 123.94 196.30
                                     222.52 140.48 71.10 472.00 400.90
                                                                         0.38
                                                                                  -1.21 21.91
                      68.56 123.00
                                             77.10 52.00 335.00 283.00
                                                                         0.73
hp
        4 32 146.69
                                     141.19
                                                                                  -0.1412.12
                                                            4.93
        5 32
                3.60
                       0.53
                              3.70
                                       3.58
                                              0.70
                                                    2.76
                                                                   2.17
                                                                         0.27
                                                                                  -0.71
                                                                                        0.09
drat
                3.22
                              3.33
                                              0.77
                                                                         0.42
wt
        6 32
                       0.98
                                       3.15
                                                    1.51
                                                            5.42
                                                                   3.91
                                                                                  -0.02
                                                                                         0.17
        7 32
              17.85
                       1.79
                             17.71
                                      17.83
                                              1.42 14.50
                                                           22.90
                                                                   8.40
                                                                         0.37
                                                                                   0.34
                                                                                         0.32
gsec
vs*
        8 32
               1.44
                       0.50
                              1.00
                                       1.42
                                              0.00
                                                    1.00
                                                            2.00
                                                                   1.00
                                                                         0.24
                                                                                  -2.00
                                                                                          0.09
am*
        9 32
               1.41
                       0.50
                              1.00
                                       1.38
                                              0.00
                                                    1.00
                                                            2.00
                                                                   1.00
                                                                         0.36
                                                                                  -1.92
                                                                                          0.09
                       0.74
                                                            5.00
gear
       10 32
               3.69
                              4.00
                                       3.62
                                              1.48
                                                     3.00
                                                                   2.00
                                                                         0.53
                                                                                  -1.07
                                                                                         0.13
carb
       11 32
                2.81
                       1.62
                              2.00
                                       2.65
                                              1.48
                                                    1.00
                                                            8.00
                                                                   7.00
                                                                          1.05
                                                                                   1.26
                                                                                         0.29
> describe(x = df[,-c(8,9)])
                         sd median trimmed
                                                      min
                                                                          skew kurtosis
               mean
                                                mad
                                                             max
                                                                   range
                                                                                             se
     vars n
        1 32
              20.09
                       6.03
                             19.20
                                      19.70
                                               5.41 10.40
                                                           33.90
                                                                   23.50
                                                                          0.61
                                                                                   -0.37
                                                                                          1.07
mpg
cyl
        2 32
               6.19
                       1.79
                              6.00
                                       6.23
                                              2.97
                                                     4.00
                                                            8.00
                                                                    4.00 - 0.17
                                                                                   -1.76
                                                                                          0.32
        3 32 230.72 123.94 196.30
                                     222.52 140.48 71.10 472.00 400.90
disp
                                                                          0.38
                                                                                   -1.21 21.91
        4 32 146.69
                      68.56 123.00
                                     141.19
                                             77.10 52.00 335.00 283.00
hp
                                                                          0.73
                                                                                   -0.1412.12
        5 32
                3.60
                       0.53
                               3.70
                                       3.58
                                               0.70
                                                     2.76
                                                            4.93
                                                                    2.17
                                                                          0.27
                                                                                   -0.71
                                                                                         0.09
drat
        6 32
                                                                    3.91
wt
               3.22
                       0.98
                               3.33
                                       3.15
                                               0.77
                                                     1.51
                                                            5.42
                                                                          0.42
                                                                                   -0.02
                                                                                         0.17
        7 32
              17.85
                       1.79
                             17.71
                                      17.83
                                              1.42 14.50
                                                           22.90
                                                                    8.40
                                                                          0.37
                                                                                    0.34
                                                                                         0.32
gsec
                       0.74
                                                    3.00
        8 32
                3.69
                              4.00
                                       3.62
                                              1.48
                                                            5.00
                                                                    2.00
                                                                          0.53
                                                                                   -1.07
                                                                                         0.13
gear
                       1.62
                                       2.65
                                                     1.00
                                                                                    1.26
carb
        9 32
               2.81
                              2.00
                                               1.48
                                                            8.00
                                                                    7.00
                                                                          1.05
                                                                                          0.29
```


пакет psych. describeBy

```
> describeBy(x = df[,-c(8,9)], group = df$vs)
Descriptive statistics by group
group: V
    vars n
                      sd median trimmed
                                         mad
                                               min
                                                      max range skew kurtosis
              mean
            16.62
                         15.65
                                                    26.00
       1 18
                    3.86
                                 16.42
                                        2.97
                                             10.40
                                                           15.60 0.48
                                                                         -0.05 0.91
mpg
                                                            4.00 -1.74 1.94 0.27
cyl
       2 18
            7.44
                    1.15
                           8.00
                               7.62
                                        0.00
                                              4.00
                                                     8.00
       3 18 307.15 106.77 311.00 308.52 72.65 120.30 472.00 351.70 -0.26
disp
                                                                         -1.0625.16
                                            91.00 335.00 244.00 0.45
       4 18 189.72
                   60.28 180.00
                                186.81 48.18
                                                                        -0.15 14.21
hp
                                                            1.67 0.74
drat
       5 18
              3.39
                    0.47
                           3.18
                                  3.37 0.32
                                              2.76
                                                     4.43
                                                                         -0.73 0.11
             3.69
                    0.90
                           3.57 3.68 0.50
                                             2.14
                                                     5.42
                                                            3.28 0.54
                                                                         -0.43 0.21
       6 18
wt
     7 18
             16.69
                    1.09
                         17.02
                                 16.75 0.85
                                             14.50
                                                    18.00
                                                            3.50 -0.71
                                                                         -0.80 0.26
qsec
       8 18
            3.56
                    0.86
                           3.00 3.50 0.00
                                             3.00
                                                     5.00
                                                           2.00 0.90
                                                                         -1.07 0.20
gear
                                                     8.00
carb
       9 18
              3.61
                    1.54
                           4.00
                                  3.44
                                        1.48
                                              2.00
                                                            6.00 1.17
                                                                          1.33 0.36
aroup: S
                     sd median trimmed
                                                         range skew kurtosis
                                        mad
                                             min
    vars n
              mean
                                                    max
                                                                               se
       1 14
             24.56 5.38
                         22.80
                                24.34 6.00 17.80 33.90 16.10
                                                               0.41
                                                                       -1.40 1.44
mpg
cyl
       2 14
              4.57
                   0.94
                          4.00
                                 4.50
                                       0.00 4.00
                                                   6.00
                                                          2.00
                                                               0.85
                                                                       -1.36 0.25
disp
       3 14 132.46 56.89 120.55
                              127.11 61.82 71.10 258.00 186.90
                                                              0.80
                                                                       -0.49 15.21
       4 14
            91.36 24.42
                         96.00
                                92.00 32.62 52.00 123.00
                                                        71.00 -0.24
                                                                       -1.61 6.53
hp
drat
       5 14
              3.86
                  0.51
                          3.92
                                3.86
                                      0.26 2.76
                                                   4.93
                                                          2.17 - 0.28
                                                                        0.46 0.14
       6 14
             2.61
                   0.72
                          2.62
                                2.63
                                       0.95 1.51
                                                   3.46
                                                          1.95 -0.17
                                                                       -1.68 0.19
wt
             19.33
                  1.35 19.17
                                19.24
                                      1.02 16.90 22.90
                                                                       1.25 0.36
qsec
      7 14
                                                          6.00 0.86
       8 14
             3.86
                  0.53 4.00
                                 3.83
                                      0.00 3.00
                                                   5.00
                                                          2.00 - 0.17
                                                                       -0.09 0.14
gear
carb
       9 14
             1.79
                   1.05
                          1.50
                                 1.67
                                       0.74 1.00
                                                   4.00
                                                          3.00 1.13
                                                                       -0.03 0.28
```


list > data.frame

- > desr1 <- describeBy(x = df[,-c(8,9)], group = df\$vs, mat=TRUE)
- > View(desr1)

^	item [‡]	group1 [‡]	vars [‡]	n [‡]	mean [‡]	sd [‡]	median [‡]	trimmed [‡]	mad [‡]	min [‡]	max [‡]	range [‡]	skew [‡]	kurtosis [‡]	se
mpg1	1	V	1	18	16.616667	3.8606994	15.6500	16.418750	2.9652000	10.400	26.000	15.600	0.4848484	-0.04617697	0.9099756
mpg2	2	S	1	14	24.557143	5.3789782	22.8000	24.341667	6.0045300	17.800	33.900	16.100	0.4055612	-1.40081941	1.4375924
cyl1	3	V	2	18	7.44444	1.1490263	8.0000	7.625000	0.0000000	4.000	8.000	4.000	-1.7397531	1.94499359	0.2708281
cyl2	4	S	2	14	4.571429	0.9376145	4.0000	4.500000	0.0000000	4.000	6.000	2.000	0.8488760	-1.36173469	0.2505880
disp1	5	V	3	18	307.150000	106.7652193	311.0000	308.525000	72.6474000	120.300	472.000	351.700	-0.2554760	-1.05725636	25.1648035
disp2	6	S	3	14	132.457143	56.8932430	120.5500	127.108333	61.8244200	71.100	258.000	186.900	0.8026718	-0.48933244	15.2053588
hp1	7	V	4	18	189.722222	60.2815019	180.0000	186.812500	48.1845000	91.000	335.000	244.000	0.4528693	-0.14510499	14.2084863
hp2	8	S	4	14	91.357143	24.4244743	96.0000	92.000000	32.6172000	52.000	123.000	71.000	-0.2399009	-1.60915113	6.5277153
drat1	9	V	5	18	3.392222	0.4739515	3.1800	3.366875	0.3187590	2.760	4.430	1.670	0.7404542	-0.73394358	0.1117115
drat2	10	S	5	14	3.859286	0.5057890	3.9200	3.861667	0.2594550	2.760	4.930	2.170	-0.2754065	0.46046904	0.1351778
wt1	11	V	6	18	3.688556	0.9040308	3.5700	3.676875	0.5003775	2.140	5.424	3.284	0.5425973	-0.43390250	0.2130821

пакет psych. describeBy

> desr1 <- describeBy(x = df[,-c(8,9)], group = df\$vs, mat=TRUE, digits = 2, fast=TRUE)

> View(desr1)

^	item [‡]	group1 [‡]	vars [‡]	n [‡]	mean [‡]	sd [‡]	min [‡]	max [‡]	range [‡]	se [‡]
mpg1	1	V	1	18	16.62	3.86	10.40	26.00	15.60	0.91
mpg2	2	S	1	14	24.56	5.38	17.80	33.90	16.10	1.44
cyl1	3	V	2	18	7.44	1.15	4.00	8.00	4.00	0.27
cyl2	4	S	2	14	4.57	0.94	4.00	6.00	2.00	0.25
disp1	5	V	3	18	307.15	106.77	120.30	472.00	351.70	25.16
disp2	6	S	3	14	132.46	56.89	71.10	258.00	186.90	15.21
hp1	7	V	4	18	189.72	60.28	91.00	335.00	244.00	14.21
hp2	8	S	4	14	91.36	24.42	52.00	123.00	71.00	6.53
drat1	9	V	5	18	3.39	0.47	2.76	4.43	1.67	0.11
drat2	10	S	5	14	3.86	0.51	2.76	4.93	2.17	0.14
wt1	11	V	6	18	3.69	0.90	2.14	5.42	3.28	0.21
wt2	12	S	6	14	2.61	0.72	1.51	3.46	1.95	0.19

Группировка по двум переменным

Спасибо за внимание!

Шевцов Василий Викторович

shevtsov_vv@rudn.university +7(903)144-53-57

