

Reactions in Aqueous Solution Chapter 4

- Many chemical reactions and virtually all biological precesses take place in water – the so called universal solvent.
- > Three categories of ractions occur in aqueous solutions:
 - precipitations reactions
 - acid-base reactions
 - redox reactions
- We begin with general properties of aqueous solutions.

Solution, Solute & Solvent

A *solution* is a homogenous mixture of 2 or more substances.

The **solute** is the substance present in the **smaller** amount.

The *solvent* is the substance present in the *larger* amount.

<u>Solution</u>	<u>Solvent</u>	<u>Solute</u>
Air (<i>g</i>)	N_2	O ₂ , Ar, CH ₄
Soft drink (1)	H ₂ O	Sugar, CO ₂
Soft Solder (s)	Pb	Sn

aqueous solutions of KMnO₄

Solution, Solute & Solvent

- > So, a solution may be:
 - gaseous (such as air)
 - liquid (such as seawater)
 - solid (such as an alloy)
- > Here we will discuss only aqueous solution
 - in which the solute is a solid or liquid, and the sovent is water
- All solute that dissolve in water fit into two types:
 - Electrolyte and Nonelectrolyte
- > Electrolytes are of *two* categories:
 - Strong electrolyte and Weak electrolyte

An *electrolyte* is a substance that, when dissolved in water, results in a solution that can conduct electricity.

A *nonelectrolyte* is a substance that, when dissolved, results in a solution that does not conduct electricity.

nonelectrolyte

weak electrolyte

strong electrolyte

Conduct electricity in solution?

Cations (+) and Anions (-)

Strong Electrolyte – 100% dissociation

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Weak Electrolyte - not completely dissociated

$$CH_3COOH \longrightarrow CH_3COO^-(aq) + H^+(aq)$$

Ionization of acetic acid

$$CH_3COOH \longrightarrow CH_3COO^- (aq) + H^+ (aq)$$

A **reversible** reaction. The reaction can occur in both directions.

Reaches an equilibrium.

Acetic acid is a *weak electrolyte* because its ionization in water is incomplete.

Nonelectrolyte does not conduct electricity?

No cations (+) and anions (-) in solution

$$C_6H_{12}O_6(s) \xrightarrow{H_2O} C_6H_{12}O_6(aq)$$

TABLE 4.1	Classification	on of Solutes in Aqueous Sol	ution
Strong Elec	ctrolyte	Weak Electrolyte	Nonelectrolyte
HC1		CH₃COOH	(NH ₂) ₂ CO (urea)
HNO_3		HF	CH ₃ OH (methanol)
$HClO_4$		HNO_2	C ₂ H ₅ OH (ethanol)
H_2SO_4*		NH_3	C ₆ H ₁₂ O ₆ (glucose)
NaOH		$ m H_2O^\dagger$	$C_{12}H_{22}O_{11}$ (sucrose)
$Ba(OH)_2$			
Ionic compo	unds		

^{*}H₂SO₄ has two ionizable H⁺ ions.

[†]Pure water is an extremely weak electrolyte.

Solution Process

Hydration is the process in which an ion is surrounded by water molecules arranged in a specific manner.

Precipitation Reactions

Precipitate – insoluble solid that separates from solution

$$Pbl_2$$

$$\begin{array}{c} \text{precipitate} \\ \downarrow \\ \text{Pb(NO}_3)_2 \ (\textit{aq}) + 2 \text{Nal} \ (\textit{aq}) \longrightarrow \text{PbI}_2 \ (\textit{s}) + 2 \text{NaNO}_3 \ (\textit{aq}) \\ \hline \textit{molecular equation} \end{array}$$

$$Pb^{2+} + 2NO_3^- + 2Na^+ + 2I^- \longrightarrow PbI_2(s) + 2Na^+ + 2NO_3^-$$
ionic equation

$$Pb^{2+} + 2I^{-} \longrightarrow PbI_2(s)$$

net ionic equation

Na⁺ and NO₃⁻ are **spectator** ions

Precipitation of Lead Iodide

Predicting Precipitation

How can we predict whether a precipitate will form?

It depends on the solubility of the solute.

Solubility is the maximum amount of solute that will dissolve in a given quantity of solvent at a specific temperature.

All ionic compounds are strong electrolytes, but not equally soluble.

Solubility Rules

TABLE 4.2 Solubility Rules for Common Ionic Compounds in Water at 25°C

Soluble Compounds	Insoluble Exceptions
Compounds containing alkali metal ions (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺) and the ammonium ion (NH ₄ ⁺)	
Nitrates (NO ₃ ⁻), bicarbonates (HCO ₃ ⁻), and chlorates (ClO ₃ ⁻)	
Halides (Cl ⁻ , Br ⁻ , I ⁻)	Halides of Ag^+ , Hg_2^{2+} , and Pb^{2+}
Sulfates (SO_4^{2-})	Sulfates of Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺
Insoluble Compounds	Soluble Exceptions
Carbonates (CO_3^{2-}) , phosphates (PO_4^{3-}) , chromates (CrO_4^{2-}) , sulfides (S^{2-})	Compounds containing alkali metal ions and the ammonium ion
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba ²⁺ ion

Identify each of the following species as a soluble or insoluble:

Siver sulfate, Ag₂SO₄ Insoluble

Calcium carbonate, CaCO₃ Insoluble

Sodium phosphate, Na₃PO₄ Soluble

Copper sulfide, CuS Insoluble

Calcium hydroxide, Ca(OH)₂ Insoluble

Zinc nitrate, $Zn(NO_3)_2$ Soluble

Examples of Insoluble Compounds

Writing Net Ionic Equations

- 1. Write the balanced molecular equation.
- 2. Write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
- 3. Cancel the spectator ions on both sides of the ionic equation
- Check that charges and number of atoms are balanced in the net ionic equation

Write the net ionic equation for the reaction of silver nitrate with sodium chloride.

$$AgNO_3(aq) + NaCl(aq) \longrightarrow AgCl(s) + NaNO_3(aq)$$

$$Ag^+ + NO_3^- + Na^+ + Cl^- \longrightarrow AgCl(s) + Na^+ + NO_3^-$$

$$Ag^+ + Cl^- \longrightarrow AgCl(s)$$

Predict what happens when a potassium phosphate K_3PO_4 solution is mixed with a strontium nitrate $Sr(NO_3)_2$ solution. Write the ionic and net ionic equation for the reaction.

$$2K_3PO_4(aq) + 3Sr(NO_3)_2(aq)$$

 $\rightarrow Sr_3(PO_4)_2(s) + 6KNO_3(aq)$

Ionic:

$$6K^{+}(aq) + 2PO_4^{3-}(aq) + 3Sr^{2+}(aq) + 6NO_3^{-}(aq)$$

 $\rightarrow Sr_3(PO_4)_2(s) + 6K^{+}(aq) + 6NO_3^{-}(aq)$

Net ionic:

$$3Sr_2^+(aq) + 2PO_4^{3-}(aq) \rightarrow Sr_3(PO_4)_2(s)$$

Acid-Base Reactions

Properties of Acids

- Have a sour taste. Vinegar owes its taste to acetic acid.
 Citrus fruits contain citric acid.
- Cause color changes in plant dyes.
- React with certain metals to produce hydrogen gas.

$$2HCI(aq) + Mg(s) \longrightarrow MgCI_2(aq) + H_2(g)$$

 React with carbonates and bicarbonates to produce carbon dioxide gas

$$2HCI(aq) + CaCO_3(s) \longrightarrow CaCI_2(aq) + CO_2(g) + H_2O(l)$$

Aqueous acid solutions conduct electricity.

Acid-Base Reactions

Properties of Bases

- Have a bitter taste.
- Feel slippery. Many soaps contain bases.
- Cause color changes in plant dyes.
- Aqueous base solutions conduct electricity.

Examples:

 NH_3

 OH^-

Arrhenius Acid & Base

Arrhenius acid is a substance that produces H⁺ (H₃O⁺) in water.

Arrhenius base is a substance that produces OH- in water.

21

Hydronium ion, hydrated proton, H₃O⁺

Brønsted Acid & Base

A **Brønsted acid** is a proton donor.

A Brønsted base is a proton acceptor.

A Brønsted acid must contain at least one ionizable proton!

Identify each of the following as a Brønsted acid, base, or both. (a) HI, (b) CH₃COO⁻, (c) H₂PO₄⁻, (d) HSO₄⁻

$$HI(aq) \longrightarrow H^+(aq) + I^-(aq)$$

Brønsted acid

$$CH_3COO^-(aq) + H^+(aq) \rightleftharpoons CH_3COOH(aq)$$

Brønsted base

$$H_2PO_4^{-1}(aq) \Longrightarrow H^+(aq) + HPO_4^{2-1}(aq)$$

Brønsted acid

$$H_2PO_4^-(aq) + H^+(aq) \Longrightarrow H_3PO_4(aq)$$

Brønsted base

$$HSO_4^-(aq) \rightleftharpoons H^+(aq) + SO_4^{2-}(aq)$$

Brønsted acid

$$HSO_4^-(aq) + H^+(aq) \rightleftharpoons H_2SO_4(aq)$$

Brønsted base

Mono-, Di- & Triprotic Acids

Monoprotic acids

$$HCI \longrightarrow H^+ + CI^-$$

$$HNO_3 \longrightarrow H^+ + NO_3^-$$

$$CH_3COOH \longrightarrow H^+ + CH_3COO^-$$

Strong electrolyte, strong acid

Strong electrolyte, strong acid

Weak electrolyte, weak acid

Diprotic acids

$$H_2SO_4 \longrightarrow H^+ + HSO_4^-$$

$$HSO_4$$
 \longrightarrow $H^+ + SO_4^{2-}$

Strong electrolyte, strong acid

Weak electrolyte, weak acid

Triprotic acids

$$H_3PO_4 \implies H^+ + H_2PO_4^-$$

$$H_2PO_4^- \longrightarrow H^+ + HPO_4^{2-}$$

$$HPO_{4}^{2-} \longrightarrow H^{+} + PO_{4}^{3-}$$

Weak electrolyte, weak acid

Weak electrolyte, weak acid

Weak electrolyte, weak acid

TABLE 4.3

Some Common Strong and Weak Acids

Strong Acids

Hydrochloric HCl

acid

Hydrobromic HBr

acid

Hydroiodic HI

acid

Nitric acid HNO₃

Sulfuric acid H₂SO₄

Perchloric acid HClO₄

Weak Acids

Hydrofluoric HF

acid

Nitrous acid HNO₂

Phosphoric acid H₃PO₄

Acetic acid CH₃COOH

Neutralization Reaction

$$HCI(aq) + NaOH(aq) \longrightarrow NaCI(aq) + H2O$$
 $H^{+} + QI^{-} + Na^{+} + OH^{-} \longrightarrow Na^{+} + QI^{-} + H2O$
 $H^{+} + OH^{-} \longrightarrow H2O$

Neutralization Reaction Involving a Weak Electrolyte

$$HCN(aq) + NaOH(aq) \longrightarrow NaCN(aq) + H2O$$
 $HCN + Na^{+} + OH^{-} \longrightarrow Na^{+} + CN^{-} + H2O$
 $HCN + OH^{-} \longrightarrow CN^{-} + H2O$

Neutralization Reaction Producing a Gas

$$acid + base \longrightarrow salt + water + CO_2$$

$$2HCI(aq) + Na2CO3(aq) \longrightarrow 2NaCI(aq) + H2O + CO2$$

$$2H^{+} + 2CI^{-} + 2Na^{+} + CO_{3}^{2-} \longrightarrow 2Na^{+} + 2CI^{-} + H_{2}O + CO_{2}$$

$$2H^+ + CO_3^2 \longrightarrow H_2O + CO_2$$

Oxidation-Reduction Reactions

(electron transfer reactions)

$$2Mg \longrightarrow 2Mg^{2+} + 4e^{-}$$
 Oxidation half-reaction (lose e^{-})

$$O_2 + 4e^- \longrightarrow 2O^{2-}$$
 Reduction half-reaction (gain e^-)

$$2Mg + O2 + 4e2 \longrightarrow 2Mg2+ + 2O2- + 4e2$$
$$2Mg + O2 \longrightarrow 2MgO$$

30

Oxidation-Reduction Reactions

(electron transfer reactions)

OILRIG

Oxidation

S

Loss of e

Reduction

S

Gain of e

The Zn bar is in aqueous solution of CuSO₄

 Cu^{2+} ions are converted to Cu atoms. Zn atoms enter the solution as Zn^{2+} ions.

When a piece of copper wire is placed in an aqueous AgNO₃ solution Cu atoms enter the solution as Cu²⁺ ions, and Ag⁺ ions are converted to solid Ag.

Zinc bar reacts with copper(II) sulfate to form copper metal. Write the redox reaction, half-reactions & identify the oxidizing agent, reducing agent.

$$Zn(s) + CuSO_4(aq) \longrightarrow ZnSO_4(aq) + Cu(s)$$

$$Zn \longrightarrow Zn^{2+} + 2e^-$$
 Zn is oxidized Zn is the *reducing agent* $Cu^{2+} + 2e^- \longrightarrow Cu$ Cu^{2+} is reduced Cu^{2+} is the *oxidizing agent*

➤ Copper wire reacts with silver nitrate to form silver metal. Write the redox reaction, half-reactions & identify the oxidizing agent, reducing agent.

$$Cu(s) + 2AgNO_3(aq) \longrightarrow Cu(NO_3)_2(aq) + 2Ag(s)$$

$$Cu \longrightarrow Cu^{2+} + 2e^{-}$$
 Cu is oxidized Cu is the *reducing agent*
 $Ag^{+} + e^{-} \longrightarrow Ag$ Ag^{+} is reduced Ag^{+} is the *oxidizing agent*

Oxidation number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , $P_4 = 0$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

3. The oxidation number of oxygen is **usually** -2. In H_2O_2 and O_2^{2-} it is -1.

- 4. The oxidation number of hydrogen is +1 *except* when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1.
- 5. Group IA metals are +1, IIA metals are +2 and fluorine is always -1.
- 6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion.
- 7. Oxidation numbers do not have to be integers. Oxidation number of oxygen in the superoxide ion, O_2^- , is $-\frac{1}{2}$.

What are the oxidation numbers of all the elements in HCO_3^- ?

$$HCO_3^ O = -2$$
 $H = +1$
 $3x(-2) + 1 + ? = -1$
 $C = +4$

The Oxidation Numbers of Elements in their Compounds

1 1A																1	18 8A
1 H +1 -1																	2 He
	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	
3 Li +1	4 Be +2											5 B +3	6 C +4 +2 -4	7 N +5 +4 +3 +2 +1 -3	8 O +2 -1/2 -1 -2	9 F -1	10 Ne
11 Na +1	12 Mg +2	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B-	10	11 1B	12 2B	13 Al +3	14 Si +4 -4	15 P +5 +3 -3	16 S +6 +4 +2 -2	17 CI +7 +6 +5 +4 +3 +1 -1	18 Ar
19 K +1	20 Ca +2	21 Sc +3	22 Ti +4 +3 +2	23 V +5 +4 +3 +2	24 Cr +6 +5 +4 +3 +2	25 Mn +7 +6 +4 +3 +2	26 Fe +3 +2	27 Co +3 +2	28 Ni +2	29 Cu +2 +1	30 Zn +2	31 Ga +3	32 Ge +4 -4	33 As +5 +3 -3	34 Se +6 +4 -2	35 Br +5 +3 +1 -1	36 Kr +4 +2
			ΤΔ	+3 +2	+4 +3 +2	+4 +3 +2				Ψ1			-4	+3 -3	-2	+1 -1	
37 Rb +1	38 Sr +2	39 Y +3	40 Zr +4	41 Nb +5 +4	+4 +3 +2 Mo +6 +4 +3	+4 +3 +2 43 Tc +7 +6 +4	44 Ru +8 +6 +4 +3	45 Rh +4 +3 +2	46 Pd +4 +2	47 Ag +1	48 Cd +2	49 In +3	50 Sn +4 +2	51 Sb +5 +3 -3	52 Te +6 +4 -2	53 I +7 +5 +1 -1	54 Xe +6 +4 +2

What are the oxidation numbers of all the elements in each of these compounds?

$$NalO_3$$
 IF_7 $K_2Cr_2O_7$

NalO₃

$$Na = +1 O = -2$$

$$3x(-2) + 1 + ? = 0$$

$$I = +5$$

$$F = -1$$

$$7x(-1) + ? = 0$$

$$I = +7$$

$$O = -2$$
 $K = +1$

$$7x(-2) + 2x(+1) + 2x(?) = 0$$

$$Cr = +6$$

Combination Reaction

$$A + B \longrightarrow C$$

0
 0 0 $^{+3}$ $^{-1}$ 2 1

Decomposition Reaction

$$C \longrightarrow A + B$$

$${}^{+1+5} {}^{-2} \longrightarrow {}^{+1-1} {}^{0} \times {}^{0}$$

$$2KCIO_3 \longrightarrow 2KCI + 3O_2$$

Combustion Reaction

$$A + O_2 \longrightarrow B$$

$$\overset{0}{\mathsf{S}} + \overset{0}{\mathsf{O}_2} \longrightarrow \overset{+4}{\mathsf{S}} \overset{-2}{\mathsf{O}_2}$$

$$0 0 +2 -2$$

 $2Mg + O_2 \longrightarrow 2MgO$

Displacement Reaction

$$A + BC \longrightarrow AC + B$$

$$\overset{0}{\text{Sr}} + \overset{+1}{2}\text{H}_{2}O \longrightarrow \overset{+2}{\text{Sr}}(OH)_{2} + \overset{0}{\text{H}_{2}} \text{ Hydrogen Displacement}$$

$$\overset{+4}{\text{TiCl}_{4}} + 2\overset{0}{\text{Mg}} \longrightarrow \overset{0}{\text{Ti}} + 2\overset{+2}{\text{MgCl}_{2}} \text{ Metal Displacement}$$

The Activity Series for Metals

$Li \rightarrow Li^{+} + e^{-}$ $K \rightarrow K^{+} + e^{-}$ $Ba \rightarrow Ba^{2+} + 2e^{-}$ $Ca \rightarrow Ca^{2+} + 2e^{-}$ $Na \rightarrow Na^{+} + e^{-}$	React with cold water to produce H ₂
$Mg \rightarrow Mg^{2+} + 2e^{-}$ $Al \rightarrow Al^{3+} + 3e^{-}$ $Zn \rightarrow Zn^{2+} + 2e^{-}$ $Cr \rightarrow Cr^{3+} + 3e^{-}$ $Fe \rightarrow Fe^{2+} + 2e^{-}$ $Cd \rightarrow Cd^{2+} + 2e^{-}$	React with steam to produce H_2
$Co \rightarrow Co^{2+} + 2e^{-}$ $Ni \rightarrow Ni^{2+} + 2e^{-}$ $Sn \rightarrow Sn^{2+} + 2e^{-}$ $Pb \rightarrow Pb^{2+} + 2e^{-}$ $H_2 \rightarrow 2H^{+} + 2e^{-}$	React with acids to produce H ₂
$Cu \rightarrow Cu^{2+} + 2e^{-}$ $Ag \rightarrow Ag^{+} + e^{-}$ $Hg \rightarrow Hg^{2+} + 2e^{-}$ $Pt \rightarrow Pt^{2+} + 2e^{-}$ $Au \rightarrow Au^{3+} + 3e^{-}$	Do not react with water or acids to produce H ₂

Hydrogen Displacement Reaction

$$M + BC \longrightarrow MC + B$$

M is metal BC is acid or H₂O B is H₂

$$Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2$$

$$Pb + 2H_2O \longrightarrow Pb(OH)_2 + H_2$$

The Activity Series for Halogens

$$F_2 > Cl_2 > Br_2 > l_2$$

Halogen Displacement Reaction

$$\overset{0}{\text{Cl}_2} + 2\overset{-1}{\text{KBr}} \xrightarrow{-1} 2\overset{0}{\text{KCl}} + \overset{0}{\text{Br}_2}$$

$$I_2 + 2KBr \longrightarrow 2KI + Br_2$$

Disproportionation Reaction

The same element is simultaneously oxidized and reduced.

Classify each of the following reactions.

$$Ca^{2+} + CO_3^{2-} \longrightarrow CaCO_3$$
 Precipitation

$$NH_3 + H^+ \longrightarrow NH_4^+$$
 Acid-Base

$$Zn + 2HCI \longrightarrow ZnCl_2 + H_2$$
 Redox (H₂ Displacement)

$$Ca + F_2 \longrightarrow CaF_2$$
 Redox (Combination)

Chemistry in Action: Breath Analyzer

$$^{+6}$$
 3CH₂CH₂OH + 2 K₂Cr₂O₇ + 8H₂SO₄ \longrightarrow

$$^{+3}$$
 3CH₃COOH + 2 Cr₂(SO₄)₃ + 2K₂SO₄ + 11H₂O

Solution Stoichiometry

The *concentration* of a solution is the amount of solute present in a given quantity of solvent or solution.

$$M = molarity = \frac{moles \text{ of solute}}{\text{liters of solution}}$$

What mass of KI is required to make 500.0 mL of a 2.80 *M* KI solution?

volume of KI solution
$$\xrightarrow{M \text{ KI}}$$
 moles KI $\xrightarrow{\mathcal{M} \text{ KI}}$ grams KI

500.0 mL x
$$\frac{1 \text{ L}}{1000 \text{ mL}}$$
 x $\frac{2.80 \text{ mol KI}}{1 \text{ Lsoln}}$ x $\frac{166 \text{ g KI}}{1 \text{ mol KI}}$ = 232 g KI

Preparing a Solution of Known Concentration

Dilution is the procedure for preparing a less concentrated solution from a more concentrated solution.

How would you prepare 60.0 mL of 0.200 M HNO₃ from a stock solution of 4.00 M HNO₃?

$$M_i V_i = M_f V_f$$

$$M_i = 4.00 \ M$$
 $M_f = 0.200 \ M$ $V_f = 0.0600 \ L$ $V_i = ? \ L$

$$V_i = \frac{M_f V_f}{M_i} = \frac{0.200 \ M \times 0.0600 \ L}{4.00 \ M} = 0.00300 \ L = 3.00 \ mL$$

Dilute 3.00 mL of acid with water to a total volume of 60.0 mL.

Titrations

In a *titration* a solution of accurately known concentration is added gradually to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

Equivalence point – the point at which the reaction is complete

Indicator – substance that changes color at (or near) the equivalence point

Slowly add base to unknown acid UNTIL

the indicator changes color

What volume of a 1.420 M NaOH solution is required to titrate 25.00 mL of a 4.50 M H₂SO₄ solution?

WRITE THE CHEMICAL EQUATION!

$$\begin{array}{c} \text{H}_2\text{SO}_4 + 2\text{NaOH} & \longrightarrow 2\text{H}_2\text{O} + \text{Na}_2\text{SO}_4 \\ \\ \text{volume acid} & \xrightarrow{M} \text{moles reqd} \xrightarrow{\text{rxn}} \text{moles base} \xrightarrow{M} \text{volume base} \end{array}$$

$$25.00 \text{ mL x} \frac{4.50 \text{ mol H}_2\text{SO}_4}{1000 \text{ mL soln}} \text{ x} \frac{2 \text{ mol NaOH}}{1 \text{ mol H}_2\text{SO}_4} \text{ x} \frac{1000 \text{ ml soln}}{1.420 \text{ mol NaOH}} = 158 \text{ mL}$$