Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > AC Current Source: ACCS

<u>Prev</u> <u>Next</u>

AC Current Source: ACCS

Symbol

Summary

This signal source is superseded and should be replaced with one of the following: <u>AC_V</u> for voltage sources, <u>AC_I</u> for current sources, or <u>PORT_SRC</u> for ports, with the Signal parameter set to this signal type.

The period for tone 1 sources is the inverse of the specified simulation frequency; see <u>"Frequency</u> Sweep Control" for details.

Parameters

Name	Description	Unit Type	Default
ID	Current source ID	Text	V1
Mag	AC current magnitude	Current	1 mA
Ang	AC current angle	Angle	0 Deg
Offset	Waveform offset (does not affect DC)	Current	0
DCVal	DC Value (Used for DC analysis)	Current	0

Implementation Details

Produces an alternating current with a frequency defined by the project frequency set up for the schematic containing this element.

NOTE: AWR® simulators add some series resistance to this element during simulation. This may affect results if injecting current into a large resistance. To change the value of the resistance, choose **Options > Default Circuit Options** to display the Circuit Options dialog box, then click the **AWR Sim** tab and under **Convergence Aids** specify the **Series source resistance**.

NOTE: If a sinusoidal nonlinear source like this one has the parameter Ang=0 and is ideally terminated, then a nonlinear measurement (for example, Pcomp or Vcomp) made at the fundamental output of that source will have an angle of -90deg. This discrepancy is consistent with the definition of the sine wave sources (as in SPICE), and the Fourier based harmonic component measurements. To avoid confusion, always measure or calculate the gain, and plot its angle.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

<u>Up</u> <u>Next</u>

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > AC Voltage Source: ACVS

<u>Prev</u> <u>Next</u>

AC Voltage Source: ACVS

Symbol

Summary

This signal source is superseded and should be replaced with one of the following: <u>AC_V</u> for voltage sources, <u>AC_I</u> for current sources, or <u>PORT_SRC</u> for ports, with the Signal parameter set to this signal type.

The period for tone 1 sources is the inverse of the specified simulation frequency; see <u>"Frequency</u> Sweep Control" for details.

Parameters

Name	Description	Unit Type	Default
ID	Voltage source ID	Text	V1
Mag	AC voltage magnitude	Voltage	1 V
Ang	AC voltage angle	Angle	0 Deg
Offset	Waveform offset (does not affect DC)	Voltage	0
DCVal	DC value (Used for DC analysis)	Voltage	0

Implementation Details

Produces an alternating voltage with a frequency defined by the project frequency set up for the schematic containing this element.

NOTE: If a sinusoidal nonlinear source like this one has the parameter Ang=0 and is ideally terminated, then a nonlinear measurement (e.g. Pcomp or Vcomp) made at the fundamental output of that source will have an angle of -90deg. This discrepancy is consistent with the definition of the sine wave sources (as in SPICE), and the Fourier based harmonic component measurements. To avoid confusion, always measure or calculate the gain, and plot its angle.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Prev Up Next

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

AWR Microwave Office Element Catalog > General > Bessel Lowpass Filter: LPFD

<u>Prev</u> <u>Next</u>

Bessel Lowpass Filter: LPFD

Symbol

Summary

LPFD models represent lumped-element Bessel-Thomson lowpass filters. They offer simplicity and maximally flat group delay, but suffer from poor selectivity.

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	LPFD1
N	Number of reactive elements in the filter		3
FP	Passband corner frequency (when Qu is infinite).	Frequency	1 GHz
AP	Passband corner attenuation (when Qu is infinite).	DB	3.0103 dB
*RS	Expected source resistance.	Resistance	50 ohm
*RL	Expected Load resistance	Resistance	50 ohm
*QU	Average unloaded Q of reactive elements in the filter.		1e12

^{*} indicates a secondary parameter

Parameter Restrictions and Recommendations

1. 0 < N < 34

2. 0 < FP

- 3. 0 < AP Recommend AP greater than or equal to 0.001 dB.
- 4. 0 < RS
- 5. 0 < RL
- 6. 0 < QU. Recommend QU less than or equal to 1e12.

Implementation Details

The model is implemented as a short-circuit admittance matrix,

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$

, whose equivalent transfer function squared magnitude is that of a Bessel-Thomson filter:

$$|S_{21}(s)|^2 = \frac{b_0^2}{|g(s)|^2} = \frac{b_0^2}{1 + |h(s)|^2}$$

where

$$g(s) = \sum_{i=0}^{N} b_i s^i$$

$$b_i = \frac{(2N-i)!}{2^{N-i}(i)!(N-i)!}$$
 for $i = 0, ..., N$

Where $b_0 = (2N-1)!!$, i.e, the product of all odd integers less than 2N.

$$s = \frac{1}{\mathrm{QU}} + j\omega$$

$$j = \sqrt{-1}$$

and a lowpass-to-lowpass frequency transformation has been applied:

$$\omega = \frac{FREQ}{FP}$$

_FREQ is the variable containing the project frequency, and the admittances are:

$$y_{11} = \left(\frac{1}{RS}\right) \frac{g(s) + g(-s) - h(s) - h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$y_{22} = \left(\frac{1}{RL}\right) \frac{g(s) + g(-s) + h(s) + h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$y_{12} = y_{21} = \left(\frac{1}{\sqrt{RS \times RL}}\right) \frac{(-2)b_0}{g(s) - g(-s) + h(s) - h(-s)}$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Recommendations for Use

Note that this model behaves as if it has ideal impedance transformers at its ports, so there is no attenuation due to mismatched source and load impedances. The model expects that the source impedance equals RS and that the load impedance equals RL, but RS need not equal RL for ideal transmission (as would normally be the case).

References

[1] Rolf Schaumann, Mohammed S. Ghausi, and Kenneth R. Laker, Design of Analog Filters: Passive, Active RC, and Switched Capacitor, (Prentice-Hall, 1990), pp. 51-56.

[2] Louis Weinberg, Network Analysis and Synthesis, (Robert E. Krieger Publishing, 1975), pp. 499-506.

[3] Herman J. Blinchikoff and Anatol I. Zverev, Filtering in the Time and Frequency Domains, (Robert E. Krieger Publishing Co., 1987), pp. 124-127.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>General</u> > Butterworth Lowpass Filter: LPFB

<u>Prev</u> <u>Next</u>

Butterworth Lowpass Filter: LPFB

Symbol

Summary

LPFB models represent lumped-element Butterworth lowpass filters. They offer simplicity and a compromise between high selectivity and flat group delay. The insertion loss is maximally flat at zero frequency and the stopband attenuation increases monotonically with increasing frequency at an asymptotic rate of 6N dB per octave.

Parameters

Name	Description	Unit Type	Default
ID	Filter ID	Text	LPFB1
N	Number of reactances in the filter		3
FP	Passband corner frequency (when Qu is infinite).	Frequency	1 GHz
*AP	Passband corner attenuation (when Qu is infinite).	DB	3.0103 dB
*RS	Expected source resistance.	Resistance	50 ohm
*RL	Expected load resistance	Resistance	50 ohm
*QU	Uniform unloaded Q of lowpass reactances		1e12

^{*} indicates a secondary parameter

Parameter Restrictions and Recommendations

1. 0 < N < 29

- 2. 0 < FP
- 3. 0 < AP Recommend AP greater than or equal to 0.001 dB.
- 4. 0 < RS
- 5. 0 < RL
- 6. 0 < QU. Recommend QU less than or equal to 1e12.

Implementation Details

The model is implemented as a short-circuit admittance matrix, whose equivalent transfer function squared magnitude is that of a Butterworth filter:

$$|S_{21}(s)|^2 = \frac{1}{1 + (-1)^N \varepsilon^2 S^{2N}} = \frac{1}{|g(s)|^2} = \frac{1}{1 + |h(s)|^2}$$

where

$$\varepsilon^2 = 10^{AP/10} - 1$$

$$s = \frac{1}{OU} + j\omega$$

$$j = \sqrt{-1}$$

and a lowpass-to-lowpass frequency transformation has been applied:

$$\omega = -\frac{FREQ}{FP}$$

_FREQ is the variable containing the project frequency, and the admittances are:

$$y_{11} = \left(\frac{1}{RS}\right) \frac{g(s) + g(-s) - h(s) - h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$y_{22} = \left(\frac{1}{RL}\right) \frac{g(s) + g(-s) + h(s) + h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$y_{12} = y_{21} = \left(\frac{1}{\sqrt{RS \times RL}}\right) \frac{2}{g(s) - g(-s) + h(s) - h(-s)}$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

Note that this model behaves as if it has ideal impedance transformers at its ports, so there is no attenuation due to mismatched source and load impedances. The model expects that the source impedance equals RS and that the load impedance equals RL, but RS need not equal RL for ideal transmission (as would normally be the case).

References

- [1] Rolf Schaumann, Mohammed S. Ghausi, and Kenneth R. Laker, Design of Analog Filters: Passive, Active RC, and Switched Capacitor, (Prentice-Hall, 1990), pp. 40-44.
- [2] Louis Weinberg, Network Analysis and Synthesis, (Robert E. Krieger Publishing, 1975), pp. 493-498.
- [3] Adel S. Sedra and Peter O. Brackett, Filter Theory and Design: Active and Passive, (Matrix Publishers, 1978), pp. 105-111.

<u>Up</u>

Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>General</u> > Chebyshev Lowpass Filter (Closed Form): LPFC <u>Prev</u>

Chebyshev Lowpass Filter (Closed Form): LPFC

Symbol

Summary

LPFC models represent lumped-element Chebyshev lowpass filters. The insertion loss ripples between zero and a specified maximum in the passband. The stopband attenuation increases rapidly beyond the passband edge, is monotonic, and is maximally flat at infinite frequency. This filter type offers simplicity and good selectivity.

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	LPFC1
N	Number of reactive elements in the filter		3
FP	Passband corner frequency (when Qu is infinite).	Frequency	1 GHz
AP	Passband corner attenuation (when Qu is infinite).	DB	0.1 dB
*RS	Source resistance.	Resistance	50 ohm
*RL	Load resistance	Resistance	50 ohm
*QU	Average unloaded Q of reactive elements in the filter		1e12

^{*} indicates a secondary parameter

Parameter Restrictions and Recommendations

1. 0 < N < 27

- 2. 0 < FP
- 3. 0 < AP Recommend AP greater than or equal to 0.001 dB.
- 4. 0 < RS
- 5. 0 < RL
- 6. 0 < QU. Recommend QU less than or equal to 1e12.

Implementation Details

The model is implemented as a short-circuit admittance matrix, whose equivalent transfer function squared magnitude is that of a Chebyshev filter:

$$|S_{21}(s)|^2 = \frac{1}{1 + \varepsilon^2 C_n^2(\frac{s}{j})} = \frac{1}{|g(s)|^2} = \frac{1}{1 + |h(s)|^2}$$

where Cn is the Chebyshev polynomial of the first kind, and

$$\varepsilon^{2} = 10^{\text{AP}/10} - 1$$

$$C_{n}(\omega) = \cos(N * a\cos(\omega)) \quad \text{for } 0 \le |\omega| \le 1$$

$$C_{n}(\omega) = \cosh(N * a\cosh(\omega)) \quad \text{for } 1 < |\omega|$$

$$s = \frac{1}{\text{QU}} + j\omega$$

$$j = \sqrt{-1}$$

and a lowpass-to-lowpass frequency transformation has been applied:

$$\omega = -\frac{_FREQ}{FP}$$

_FREQ is the variable containing the project frequency, and the admittances are:

$$y_{11} = \left(\frac{1}{RS}\right) \frac{g(s) + g(-s) - h(s) - h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$y_{22} = \left(\frac{1}{RL}\right) \frac{g(s) + g(-s) + h(s) + h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$y_{12} = y_{21} = \left(\frac{1}{\sqrt{RS \times RL}}\right) \frac{2}{g(s) - g(-s) + h(s) - h(-s)}$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

Note that this model behaves as if it has ideal impedance transformers at its ports, so there is no attenuation due to mismatched source and load impedances. The model expects that the source impedance equals RS and that the load impedance equals RL, but RS need not have any special relationship to RL for ideal transmission (as would normally be the case).

References

[1] Rolf Schaumann, Mohammed S. Ghausi, and Kenneth R. Laker, Design of Analog Filters: Passive, Active RC, and Switched Capacitor, (Prentice-Hall, 1990), pp. 44-48.

[2] Louis Weinberg, Network Analysis and Synthesis, (Robert E. Krieger Publishing, 1975), pp. 507-529.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Ports</u> > Circuit Port: PORT

<u>Prev</u> <u>Next</u>

Circuit Port: PORT

Symbol

Parameters

Name	Description	Unit Type	Default
Р	Port number		0
Z	Termination impedance	Resistance	50 ohm
PIN_ID	Name identifier for pin	Text	

Implementation Details

This is a passive circuit termination that applies a load specified by Z. The port number P is set automatically. If PIN_ID is not empty, text is displayed on the pin when it is instantiated as a subcircuit.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

<u>Prev</u> <u>Up</u> <u>Next</u>

Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > Current Noise Source: INOISE

<u>Prev</u> <u>Next</u>

Current Noise Source: INOISE

Symbol

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	IN1
I	Noise current in pA/sqrt(Hz)		17.9

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Implementation Details

INOISE implements a white noise source having the stated noise spectral density. For I=17.897294, T=290K in 50Ω .

<u>Up</u>
Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

AWR Microwave Office Element Catalog > Sources > DC Current Source: DCCS

<u>Prev</u> <u>Next</u>

DC Current Source: DCCS

Symbol

Parameters

Name	Description	Unit Type	Default
ID	Current source ID	Text	I 1
I	DC current	Current	10 mA

Implementation Details

Produces a DC current.

NOTE: AWR® simulators add some series resistance to this element during simulation. This may affect results if injecting current into a large resistance. To change the value of the resistance, choose **Options > Default Circuit Options** to display the Circuit Options dialog box, then click the **AWR Sim** tab and under **Convergence Aids** specify the **Series source resistance**.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

<u>Up</u>

Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > DC Voltage Source: DCVS

<u>Prev</u> <u>Next</u>

DC Voltage Source: DCVS

Symbol

Parameters

Name	Description	Unit Type	Default
ID	Voltage source ID	Text	V1
V	DC voltage	Voltage	1 V

Implementation Details

Produces a DC voltage.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

<u>Prev</u> <u>Up</u> <u>Next</u>

<u>Home</u>

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>General</u> > Elliptic-Function Lowpass Filter (Closed Form):

LPFE

<u>Prev</u> <u>Next</u>

Elliptic-Function Lowpass Filter (Closed Form): LPFE

Symbol

Summary

LPFE models represent lumped-element elliptic-function (Cauer) lowpass filters. The insertion loss ripples between zero and a specified maximum in the passband. The stopband attenuation increases rapidly between the passband edge and the stopband edge, and ripples between a specified minimum stopband attenuation and infinite attenuation. This type of filter offers optimum selectivity at the expense of increased complexity and poor group delay flatness.

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	LPFE1
N	Order of the filter.		3
FP	Passband corner frequency (when Qu is infinite).	Frequency	1 GHz
AP	Maximum Passband Insertion Loss (when Qu is infinite).	DB	0.1 dB
AS	Minimum Stopband Attenuation(when Qu is infinite).	DB	20 dB
*FS	Stopband corner frequency (when Qu is infinite).	Frequency	0 GHz
*DM	Where to put design margin:0=AP, 1=AS, 2=FP, 3=FS.		1
*RS	Source resistance.	Resistance	50 ohm

Name	Description	Unit Type	Default
*RL	Load resistance	Resistance	50 ohm
*QU	Average unloaded Q of reactive elements in the filter.		1e12

^{*} indicates a secondary parameter

Parameter Details

An elliptic function lowpass prototype filter is completely specified by any four of the five parameters: N, FP, FS, AP, and AS. That is, the value of any parameter is dependent on the value of the other four parameters.

- If zero is specified for any one of these five parameters, then the model computes its value from the value of the other four parameters.
- If a value is specified for all five parameters, then the specified value of the last parameter (AS) is ignored and is computed by the model from the values of the other four parameters.
- It is an error to specify zero for more than one of these five parameters.

N. In mathematical terms, N is defined as the highest exponent of the complex frequency variable s in the transfer function, S21(s0), of the filter's normalized lowpass prototype, or, equivalently, the highest exponent of s in the transfer function of the lowpass filter. And, in terms of a measurable electrical characteristic, the number of positive-frequency passband reflection (|S11|) zeros corresponds to N/2 for N even and (N+1)/2 for N odd.

DM. If zero is specified for N, the model will determine N. But, since N must be an integer, there will typically be some design margin available, and this margin must be assigned to some parameter other than N. The value of DM determines where the model will assign this design margin.

- DM=0. After determining N, the model will recompute AP, such that 0 < new AP ≤ AP
- DM=1. After determining N, the model will recompute AS, such that AS ≤ new AS < ∞
- DM=2. After determining N, the model will recompute FP, such that FS < new FP ≤ FP
- DM=3. After determining N, the model will recompute FS, such that FS ≤ new FS < FP

Parameter Restrictions and Recommendations

- 1. N can be zero if FP, FS, AP, and AS are not, otherwise 0 < N < 27.
- 2. FP can be zero if N, FS, AP, and AS are not, otherwise 0 < FP, and, if FS is not zero, then FS < FP.
 - FS can be zero if N, FP, AP, and AS are not, otherwise 0 < FS, and, if FP is not zero, then FS < FP.
- 3. AP can be zero if N, FP, FS, and AS are not, otherwise 0 < AP, and, if AS is not zero, then AP < AS.
 - Recommend AP greater than or equal to 0.001 dB.
- 4. AS can be zero if N, FP, FS, and AP are not, otherwise AP < AS.
- 5. If N is set to 0, then $0 \le DM < 4$
- 6. 0 < RS.

0 < RL

7. QU > 0 specifies a finite unloaded Q (recommend $QU \le 1e12$).

QU = 0 specifies an infinite unloaded Q.

8. $0 \le DM < 4$

Implementation Details

The model is implemented as a short-circuit admittance matrix,

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$

, whose equivalent normalized lowpass prototype transfer function, S21(s), is:

$$|S_{21}(s)|^2 = \frac{1}{1 + \varepsilon^2 R_n^2 (\frac{s}{i})} = \frac{f(s)^2}{|g(s)|^2} = \frac{f(s)^2}{1 + |h(s)|^2}$$

where Rn is the Elliptic Rational Function, and

$$|S_{21}(s)|^2 = \frac{1}{1 + \varepsilon^2 R_n^2 (\frac{s}{i})} = \frac{f(s)^2}{|g(s)|^2} = \frac{f(s)^2}{1 + |h(s)|^2}$$

where Rn is the Elliptic Rational Function, and

$$\varepsilon^2 = 10^{AP/10} - 1$$

$$R_n(\omega) = C \times \omega^{\Pi} \times \underbrace{\frac{N-\Pi}{2}}_{i=1} \left(\frac{\omega^2 - \omega_i^2}{\omega^2 - \frac{\omega_s^2}{\omega_i^2}} \right)$$

$$C = \frac{N-\Pi}{2} \left(\frac{1 - \frac{\omega_s^2}{\omega_i^2}}{1 - \omega_i^2} \right)$$

$$\omega_i = \operatorname{cd}\left(\frac{2i-1}{N}K\left(\frac{1}{\omega_s^2}\right), \frac{1}{\omega_s^2}\right)$$

$$s = 1 / \left(\frac{\sqrt{\text{FP2} \times \text{FP1}}}{\text{QU} \times ||\text{FP2} - \text{FP1}||} + j \left(\frac{-1}{\omega} \right) \right)$$

$$s = \frac{1}{\mathrm{QU}} + j\omega$$

$$j = \sqrt{-1}$$

where cd is a Jacobian elliptic function, K is Legendre's complete elliptic integral of the first kind, and a lowpass-to-lowpass frequency transformation has been applied:

$$\omega = \frac{-FREQ}{FP}$$

and

$$\omega_s = \frac{FS}{FP}$$

_FREQ is the variable containing the project frequency. The parameters of the elliptic-function filter (N, FP, FS, AP, AS) are related by "the degree equation":

$$N = \left(\frac{K(m)}{K(1-m)}\right) \left(\frac{K(1-m_o)}{K(m_o)}\right)$$

where

$$m_o = \frac{10^{\text{AP/10}} - 1}{10^{\text{AS/10}} - 1}$$

and

$$m = \left(\frac{\text{FP}}{\text{FS}}\right)^2$$

The admittances are given by:

$$y_{11} = \left(\frac{1}{RS}\right) \frac{g(s) + g(-s) - h(s) - h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$y_{22} = \left(\frac{1}{RL}\right) \frac{g(s) + g(-s) + h(s) + h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$m = \left(\frac{\text{FS}}{\text{FP}}\right)^2$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

Note that this model behaves as if it has ideal impedance transformers at its ports, so there is no attenuation due to mismatched source and load impedances. The model expects that the source impedance equals RS and that the load impedance equals RL, but RS need not have any special relationship to RL for ideal transmission (as would normally be the case).

References

- [1] Miroslav D. Lutovac, Dejan V. Tosic, and Brian L. Evans, Filter Design For Signal Processing Using MATLAB and Mathematica, (Prentice Hall, 2001), Chapters 6, 12, and 13.
- [2] Alexander J. Grossman, "Synthesis of Tchebycheff parameter symmetrical filters," Proceedings of the IRE, pp. 545-473, April 1957.

- [3] Dante Youla, "A tutorial exposition of some key network-theoretic ideas underlying classical insertion-loss filter design," Proc. IEEE, vol. 59, no. 5, pp. 760-799, May 1971.
- [4] Miroslav Vleck and Rolf Unbehauen, "Degree, ripple, and transition width of elliptic filters," IEEE Trans. Circuits Syst., vol. 36, no. 3, pp. 469-472, March 1989.
- [5] H. J. Orchard and Alan N. Willson, Jr., "Elliptic functions for filter design," IEEE Trans. Circuits Syst., I, vol. 44, no. 4, pp. 273-287, April 1997.
- [6] Rolf Schaumann, Mohammed S. Ghausi, and Kenneth R. Laker, Design of Analog Filters: Passive, Active RC, and Switched Capacitor, (Prentice-Hall, 1990), pp. 49-51.
- [7] Kendall L. Su, Handbook of Tables for Elliptic-Function Filters, (Kluwer Academic, 1990).
- [8] Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, edited by Milton Abramowitz and Irene A. Stegun, (U. S. National Bureau of Standards, 1964), Chapters 16 and 17 by L. M. Milne-Thomson.

<u>Prev</u> <u>Up</u> <u>Next</u> Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>General</u> > Four-Port S-Parameter Block: S4P_BLK

<u>Prev</u> <u>Next</u>

Four-Port S-Parameter Block: S4P_BLK

Symbol

Summary

S4P_BLK models a generalized four-port, S-parameter network. The full four-port S-parameters are specified.

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	X1
S11	S(1,1)	Scalar (Complex)	0.0 + j*0.0
S21	S(2,1)	Scalar (Complex)	0.0 + j*0.0
S31	S(3,1)	Scalar (Complex)	0.0 + j*0.0
S41	S(4,1)	Scalar (Complex)	0.0 + j*0.0
S12	S(1,2)	Scalar (Complex)	0.0 + j*0.0
S22	S(2,2)	Scalar (Complex)	0.0 + j*0.0

Name	Description	Unit Type	Default
S32	S(3,2)	Scalar (Complex)	0.0 + j*0.0
S42	S(4,2)	Scalar (Complex)	0.0 + j*0.0
S13	S(1,3)	Scalar (Complex)	0.0 + j*0.0
S23	S(2,3)	Scalar (Complex)	0.0 + j*0.0
S33	S(3,3)	Scalar (Complex)	0.0 + j*0.0
S43	S(4,3)	Scalar (Complex)	0.0 + j*0.0
S14	S(1,4)	Scalar (Complex)	0.0 + j*0.0
S24	S(2,4)	Scalar (Complex)	0.0 + j*0.0
S34	S(3,4)	Scalar (Complex)	0.0 + j*0.0
S44	S(4,4)	Scalar (Complex)	0.0 + j*0.0
*Z1	Port 1 impedance	Scalar (Complex)	50.0 ohm
*Z2	Port 2 impedance	Scalar (Complex)	50.0 ohm
*Z3	Port 3 impedance	Scalar (Complex)	50.0 ohm
*Z4	Port 4 impedance	Scalar (Complex)	50.0 ohm
*ChkPassv	Switch "Do not Check passivity/Check passivity"		No

^{*} indicates a secondary parameter

Parameter Details

ChkPassv. If set to Yes, tests S4P_BLK for passivity and displays a warning if there is a passivity violation. The default setting is No (Do not check passivity).

Parameter Restrictions and Recommendations

Z1, Z2, Z3, and Z4 must not be equal to zero.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Recommendations for Use

The S4P_BLK model can be used to model any general four-port network (passive or active) by specifying the S-parameters.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>General</u> > Generalized Chebyshev Lowpass Filter (Closed Form): LPFCG

<u>Prev</u> <u>Next</u>

Generalized Chebyshev Lowpass Filter (Closed Form): LPFCG

Symbol

Summary

LPFCG models represent lumped-element Generalized Chebyshev (or "Quasi-Elliptic") lowpass filters. The insertion loss ripples between zero and a specified maximum in the passband. The stopband attenuation is defined by arbitrarily specified transmission zeros. Real-frequency finite transmission zeros can be specified to improve selectivity at the expense of ultimate stopband attenuation and passband group delay, while complex-plane finite transmission zeros can be specified to provide passband group delay equalization at the expense of selectivity and ultimate stopband attenuation. Generalized Chebyshev filters represents a compromise between the simplicity of Chebyshev filters, the optimum amplitude response of more complicated Elliptic filters, and the phase linearity of Bessel and Gaussian filters. Because this type of filter allows one to make explicit design trade-offs between complexity, selectivity, and group delay equalization, it is often used to meet the demanding requirements of modern communications systems.

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	LPFCG1
N	Order of the filter		3
FP	Passband corner frequency (when Qu is infinite).	Frequency	1 GHz
*PPD	Passband parameter description:- Maximum Insertion Loss,- Minimum Return Loss, or-VSWR.	Enumerated	Maximum Insertion Loss
PPV	Passband parameter value (when Qu is infinite)	dB or Scalar	0.1 dB
TZF	Real frequency, finite transmission zeros	(Real) Frequency	{2} GHz

Name	Description	Unit Type	Default
*TZR	Real parts of complex finite transmission zeros	(Imaginary) Frequency	{0} GHz
*RS	Source resistance	Resistance	50 ohm
*RL	Load resistance	Resistance	50 ohm
*QU	Average unloaded Q of reactive element in the filter.		0

^{*} indicates a secondary parameter

Parameter Details

N. In mathematical terms, N is defined as the highest exponent of the complex frequency variable s in the transfer function, $S_{21}(s)$, of the filter's normalized lowpass prototype, or, equivalently, the highest exponent of s in the transfer function of the lowpass filter. And, in terms of a measurable electrical characteristic, the number of positive-frequency passband reflection $(S|_{11}|)$ zeros corresponds to N/2 for N even and (N+1)/2 for N odd.

PPD & PPV. Parameters PPD and PPV work together to specify the characteristic of the filter's passband. PPD is used to indicate what the value of PPV represents. The flexibility these parameters provide eliminates the need to manually convert from the passband specification parameter of one's preference into whatever specific parameter the software was written to accept.

PTZF & TZR. List parameters TZF and TZR are used to specify the complex transmission zeros, Z, of the highpass filter response. Up to (N-1)/2 complex transmission zeros, $Z_i = TZR_i + jTZF_i$, can be specified. Each consists of a real part, TZR_i , and an imaginary part, the real frequency TZF_i . If TZR_i is not specified, it is assumed to be zero. And, each unspecified transmission zero is mapped to a normalized lowpass prototype frequency of infinity.

Parameter Restrictions and Recommendations

```
1. 32 > N > 1.
```

- 2. FP > 0.
- 3. If PPD = "Maximum Insertion Loss", then PPV > 0.

If PPD = "Minimum Return Loss", then PPV > 0.

If PPD = "Maximum VSWR", then PPV > 1.

4. $TZF_{i} > 0$.

If TZR_i is specified, then TZF_i must be specified.

If TZR; is zero, then FP <TZF; .

If $TZR_i \neq 0$, there must be a $TZR_k = -TZR_i$ and a $TZF_k = TZF_i$.

5. RS > 0.

RL > 0.

6. QU > 0 specifies a finite unloaded Q (recommend QU<1e¹²).

QU = 0 specifies an infinite unloaded Q.

Implementation Details

The model is implemented as a short-circuit admittance matrix,

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$

, whose equivalent normalized lowpass prototype transfer function, $S_{21}(s)$, is[1, 2]:

$$s_{21}^{2}(s) = \frac{P_{N}^{2}(s)}{P_{N}^{2}(s) + \varepsilon^{2} F_{N}^{2}(s)} = \frac{P_{N}^{2}(s)}{P_{N}(s) + j\varepsilon F_{N}(s)(P_{N}(s) - j\varepsilon F_{N}(s))} = \frac{P_{N}^{2}(s)}{\varepsilon^{2} E_{N}^{2}(s)}$$

where F_N and E_N are polynomials of order N, and

$$\exp(-s^2) \approx \sum_{i=0}^{N} \frac{(-1)^i s^{2i}}{i!} = |g(s)|^2 = 1 + |h(s)|^2$$

$$\varepsilon^2 = \frac{1}{10^{PPV/10} - 1}$$
 when PPD = " Minimum Return Loss"

$$\varepsilon^2 = \frac{0.25(PPV - 1)^2}{PPV}$$
 when PPD="Maximum VSWR"

$$P_N(s) = \prod_{i=1}^{N} \left(1 - \frac{s}{Z_i}\right)$$

$$s = \frac{1}{q_u} + j\omega$$

$$j = \sqrt{-1}$$

A specified lowpass transmission zero, Z[i] = TZR[i] + jTZF[i] is mapped to a normalized lowpass prototype transmission zero, z[i], using [5]:

$$z[i] = \frac{Z[i]}{\text{FP}}$$

And, _FREQ (the variable that represents the project frequency) is mapped to the normalized lowpass prototype radian frequency, ω , using [5]:

$$\omega = \frac{-FREQ}{FP}$$

Polynomial

$$F_N(s) = F_i|_{i=N}$$

is constructed using a doubly recursive algorithm [1][3]:

$$G_0 = b_1$$

$$F_1 = a_1$$

$$G_{(i-1)} = a_i G_{(i-2)} + b_i F_{(i-1)}$$

$$F_i = a_i F_{(i-1)} + c_i G_{(i-2)}$$

where i = 2 to N and, employing the normalized lowpass prototype transmission zero, z_k , for k = 1 to N:

$$a_k = -j\left(s + \frac{1}{z_k}\right)$$

$$b_k = \sqrt{1 + \left(\frac{1}{z_k}\right)^2}$$

$$c_k = -b_k(s^2 + 1)$$

Polynomial $E_s(s)$ is found by applying the "alternating singularity principle" [1][2][4] to the roots of

$$\left(\frac{P_N(s)}{\varepsilon} + jF_N(s)\right)$$

. Then, E_N and F_N are split into complex-even and complex-odd polynomials [2] such that E_N = E_e + E_0 and F_N = F_e + F_0 , where

$$\begin{split} E_e &= \operatorname{Re}(e_0) + j \quad \operatorname{Im}(e_1)s + \operatorname{Re}(e_2)s^2 + \cdots, E_o = j \quad \operatorname{Im}(e_o) + \operatorname{Re}(e_1) + j \quad \operatorname{Im}(e_2)s^2 + \cdots \\ F_e &= \operatorname{Re}(f_0) + j \operatorname{Im}(f_1)s + \operatorname{Re}(f_2)s^2 + \cdots, F_o = j \operatorname{Im}(f_o) + \operatorname{Re}(f_1) + j \operatorname{Im}(f_2)s^2 \cdots \\ \text{and and } e_1 \text{ and } f_1 \text{ (i = 0 to N) are the complex coefficients of } \operatorname{E}_{\operatorname{N}} \text{ and } \operatorname{F}_{\operatorname{N}}. \text{ Finally [3]:} \end{split}$$

$$\begin{split} y_{11} &= \Big(\frac{1}{\text{RS}}\Big) \Big(\frac{E_e - F_e}{E_o + F_o}\Big) \\ y_{22} &= \Big(\frac{1}{\text{RL}}\Big) \Big(\frac{E_e + F_e}{E_o + F_o}\Big) \\ y_{12} &= y_{21} = \Big(\frac{1}{\sqrt{\text{RS} \times \text{RL}}}\Big) \Big(\frac{-P_N/\varepsilon}{E_o + F_o}\Big) \end{split}$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

The transmission zeros can be tuned or optimized by assigning variables to the elements of the TZF and/or TZR lists and then tuning or optimizing these variables.

Note that this model behaves as if it has ideal impedance transformers at its ports, so there is no attenuation due to mismatched source and load impedances. The model expects that the source impedance equals RS and that the load impedance equals RL, but RS need not have any special relationship to RL for ideal transmission (as would normally be the case).

References

- [1] Richard J. Cameron, "Fast generation of Chebyshev filter prototypes with asymmetrically-prescribed transmission zeros," ESA J., vol. 6, pp. 83-95, 1982.
- [2] Richard J. Cameron, "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Trans. Microwave Theory Tech., vol. 47, no. 4, pp. 433-442, April 1999.
- [3] Douglas R. Jachowski, unpublished notes, 1995 and 2002.

[4] J. D. Rhodes and A. S. Alseyab, "The generalized Chebyshev low pass prototype filter," Int. J. Circuit Theory Applicat., vol. 8, pp. 113-125, 1980.

[5] H. J. Blinchikoff and A. I. Zverev, Filtering in the Time and Frequency Domains, (Robert E. Krieger Publishing Co., 1987), pp. 154-155

Prev Up Next

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>General</u> > Gaussian Lowpass Filter (Closed Form): LPFG

<u>Prev</u>

<u>Next</u>

Gaussian Lowpass Filter (Closed Form): LPFG

Symbol

Summary

LPFG models represent lumped-element Gaussian lowpass filters. They approximate the ideal Gaussian magnitude response and offer simplicity, relatively flat group delay, and good time domain performance, but suffer from poor frequency selectivity. Although similar to Bessel-Thomson filters, Gaussian filters offer faster rise times and lower transient overshoots, but have slightly less stopband attenuation and less group delay flatness.

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	LPFG1
N	Number of reactive elements in the filter		3
FP	Passband corner frequency (when Qu is infinite).	Frequency	1 GHz
AP	Passband corner attenuation (when Qu is infinite).	DB	3.0103 dB
*RS	Expected source resistance.	Resistance	50 ohm
*RL	Expected Load resistance	Resistance	50 ohm
*QU	Average unloaded Q of reactive elements in the filter.		1e12

^{*} indicates a secondary parameter

Parameter Restrictions and Recommendations

- 1. 0 < N < 51
- 2. 0 < FP
- 3. 0 < AP Recommend AP greater than or equal to 0.001 dB.
- 4. 0 < RS
- 5. 0 < RL
- 6. 0 < QU. Recommend QU less than or equal to 1e12.

Implementation Details

This model is implemented as a short-circuit admittance matrix,

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$

, whose equivalent transfer function squared magnitude approximates that of an ideal Gaussian filter. The ideal Gaussian squared magnitude characteristic is:

$$|S_{21}|^2 = \frac{1}{\exp(-s^2)}$$

In the model, the denominator of this ideal Gaussian characteristic is approximated by a truncated Maclaurin series:

$$\exp(-s^2) \approx \sum_{i=0}^{N} \frac{(-1)^i s^{2i}}{i!} = |g(s)|^2 = 1 + |h(s)|^2$$

where

$$s = \frac{1}{\mathrm{QU}} + j\omega$$

$$j = \sqrt{-1}$$

and a lowpass-to-lowpass frequency transformation has been applied:

$$\omega = \frac{-FREQ}{FP}$$

_FREQ is the variable containing the project frequency, and the admittances are:

$$y_{11} = \left(\frac{1}{RS}\right) \frac{g(s) + g(-s) - h(s) - h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$y_{22} = \left(\frac{1}{\text{RL}}\right) \frac{g(s) + g(-s) + h(s) + h(-s)}{g(s) - g(-s) + h(s) - h(-s)}$$

$$y_{12} = y_{21} = \left(\frac{1}{\sqrt{RS \times RL}}\right) \frac{(-2)}{g(s) - g(-s) + h(s) - h(-s)}$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

This model behaves as if it has ideal impedance transformers at its ports, so there is no attenuation due to mismatched source and load impedances. The model expects that the source impedance equals RS and that the load impedance equals RL, but RS need not equal RL for ideal transmission (as would normally be the case).

References

- [1] Milton Dishal, "Gaussian-Response Filter Design," Electrical Communication, vol. 36, March 1959, pp. 3-26.
- [2] Anatol I. Zverev, Handbook of Filter Synthesis, (John Wiley & Sons, 1967), pp. 67, 70, 71, 73, 74, 90, 91.
- [3] DeVerl. S. Humpherys, The Analysis, Design, and Synthesis of Electrical Filters, (Prentice-Hall, 1970), pp. 413-417.
- [4] Herman J. Blinchikoff and Anatol I. Zverev, Filtering in the Time and Frequency Domains, (Robert E. Krieger Publishing Co., 1987), pp. 130-132.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Grounded Resistor (Closed Form): LOAD <u>Prev</u>

Grounded Resistor (Closed Form): LOAD

Symbol

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	Z1
Z	Load impedance	Resistance	50 ohm

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Inductor with Frequency-dependent Inductance, Parasitic and Loss: INDQP

<u>Prev</u> <u>Next</u>

Inductor with Frequency-dependent Inductance, Parasitic and Loss: INDQP

Symbol

Summary

INDQP models an inductor with user-specified frequency-dependence of inductance and loss. Frequency dependencies are specified as lookup tables (vectors) in model parameters. This model uses interpolation to obtain parameter values at each project evaluation frequency.

Equivalent Circuit

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	IND#

Name	Description	Unit Type	Default
F	Vector of frequencies at which L, Q, and R are specified	Frequency	{1}
L	Inductance (vector)	Inductance	Li ^[1]
Q	Quality factor (vector)	Scalar	{1000}
С	Capacitance	Parasitic capacitance	C ^[1]
R	Series resistance (vector)	Resistance	{0}

User-modifiable default. Modify by editing under \$DEFAULT_VALUES in the default.lpf file in the root installation directory. See the AWR Microwave Office Layout Guide for details.

Parameter Details

- **F.** Vector of frequencies at which L, Q, and R parameters are specified. Frequencies must be sequential and specified in ascending order.
- **L.** Vector of series inductance L(f) (see the "Equivalent Circuit" section) specified in inductance project units. You must specify each vector entry at the corresponding frequency entry from frequency vector F.
- **Q.** Vector of quality factor; specifies series resistance Rq (f) (see the "Equivalent Circuit" section). You must specify each vector entry at the corresponding frequency entry from frequency vector F.
- C. Parasitic capacitance (see the "Equivalent Circuit" section).
- **R.** Vector of series resistance R(f) (see the "Equivalent Circuit" section) specified in resistance project units. You must specify each vector entry at the corresponding frequency entry from frequency vector F.

Parameter Restrictions and Recommendations

- 1. The size of vector parameters L, Q, and R must be equal to the size of frequency vector F.
- 2. If the project evaluation frequency is out of range of frequencies in F, then L, Q, and R parameters are extrapolated as constant values equal to the first/last entries of corresponding vectors. No warning is issued.
- 3. You can specify the vector in three ways: First, by entering it as a right side value of the model parameter, for example R={100,102,110,113,120}; second, by specifying the vector elsewhere in the equation; and third, by specifying the vector in a column or row of a text file. The third way provides a convenient and flexible method of specifying L, Q, and R parameters at a single location. For example, you can create the file indqp.txt containing space separated columns of L, Q, and R. The first column must represent frequency in project units (note that changing project default frequency units demands manual scaling of frequencies in this file). Import or link this file to your project and name it, for example, INDQP_1. Now you can specify, for example, parameter R as R = Col(datafile("INDQP_1"),4) so that values of vector R are copied to the model from column 4 of file indqp.txt imported under the name indqp_1. If you prefer to deploy your data rowwise use R = Row(datafile("INDQP_1"),2).
- 4. If your project uses a text file input to feed data to this model be aware what frequency, resistance, inductance or conductance units this file implies. Your project default units may differ from those in your data file. If this happens, you must scale input values, multiplying the call of function Col or Row by a scaling coefficient. For example, if your project uses

inductance in nanohenries and the data file contains data in microhenries you may get inductance data from column 2 of the data file INDQP_1 such as: L= 1e+3*Col(datafile("INDQP_1"),2).

Implementation Details

This model is implemented as a series connection of lossy inductor and frequency-dependent resistor. A parasitic capacitor shunts a lossy inductor.

Model implementation is based on linear interpolation of L, Q, and R parameters at each project evaluation frequency. Interpolation uses user-supplied lookup tables via parameters. If the project evaluation frequency is out of range of frequencies in F, then L, Q, and R parameters are extrapolated as constant values equal to the first/last entries of corresponding vectors.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

Time transient analysis is sensitive to the number of frequency points. Also, time domain measurements may be inaccurate due to non-causal behavior of the model at specified parameter values.

<u>Prev</u> <u>Up</u> <u>Next</u> Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Inductor with Series Resistive Loss and Optional Coupling (Closed Form): INDRK

<u>Prev</u> <u>Next</u>

Inductor with Series Resistive Loss and Optional Coupling (Closed Form): INDRK

Symbol

Summary

INDRK implements an ideal inductor in series with a resistor with an option to include coupling to other INDRK and/or INDK elements. The coupling is modeled by other elements (INDM, INDK, or INDRM) connected between the "K" ports of two INDRK (or INDK) elements.

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	L1
R	Resistor	Resistance	0 ohm
L	Inductance	Inductance	1 nH

Implementation Details

The INDRK element implements an ideal inductor in series with the resistor and with the option to be mutually coupled to other INDRK/INDK elements. The coupling between two INDRK/INDK elements can be represented by using one of three elements: the INDM element, which represents the mutual inductance between the two INDRK/INDK elements, the INDRM element, which represents the mutual inductance with resistive loss between the two INDRK/INDK elements, or the K element, which represents the coupling coefficient. If nothing is connected to the "K" port of the INDK element, the inductor L is considered ideal (in series with the resistor R.)

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Recommendations for Use

See "Recommendations for Use" for the **INDK** model.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Inductor With Q (Closed Form): INDQ <u>Prev</u>

Inductor With Q (Closed Form): INDQ

Symbol

Topology

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	L1
L	Inductance	Inductance	1 nH
Q	Q		0
FQ	Frequency at which Q is evaluated	Frequency	0 GHz
ALPH	Scaling factor for Q		1
DCMod	DC modeling	Vector text (pull-down)	Lossless

Parameter Details

DCMod. Specifies the DC behavior of the model. **Lossless** indicates that the model is modeled as an ideal inductor at DC. **Lossy** indicates that loss is taken into account at DC.

Implementation Details

Implements an inductor with frequency-dependent Q.

$$Q(f) = Q(\frac{f}{\text{FQ}})^{\text{ALPH}}$$

The impedance of the inductor is given by:

$$Z = R + jX = 2\pi f L(\frac{1}{Q(f)} + j)$$

$$\left(Q_L = \frac{X}{R} = \frac{2\pi f L}{R} \text{ or } R = \frac{2\pi f L}{Q_L}\right)$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Restrictions

FQ must be greater than or equal to zero.

<u>Prev</u> <u>Up</u> <u>Next</u> Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Inductor With Q (Closed Form): INDQ2

<u>Prev</u>

<u>Next</u>

Inductor With Q (Closed Form): INDQ2

Symbol

Topology

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	L1
L	Inductance	Inductance	1 nH
Q	Q		50
FQ	Frequency at which Q is evaluated	Frequency	0 .1 GHz
*MODE	Loss mode		Constant
RDC	DC resistance		0

^{*} indicates a secondary parameter

Parameter Details

MODE. Defines how R behaves as a function of frequency. Choose "Constant", "Proportional to sqrt(freq)", "Proportional to freq", or "Proportional to sqrt(freq), constant L".

RDC. The DC resistance (the value of R at 0 Hz). It is used only for the three frequency-dependent modes, not for "Constant" mode.

Implementation Details

Implements an inductor with frequency-dependent Q.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Restrictions

FQ must be greater than or equal to zero.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Inductor Coupling Coefficient (Closed

Form): K

<u>Prev</u> <u>Next</u>

Inductor Coupling Coefficient (Closed Form): K

Symbol

$$\times$$
 0
 K
 $L2$
 X

Summary

K is used to represent the mutual coupling between inductors (INDK elements).

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	K2
K	Coupling Coefficienct		0
*L1	Inductor 1 Value		L@1 nH
*L2	Inductor 2 Value		L@2 nH

^{*} indicates a secondary parameter

Implementation Details

K represents the mutual coupling between inductors. This element is for use between two INDK elements and should be connected to the "K" ports of those elements. The mutual inductance is calculated as:

$$M = K \cdot \sqrt{L1 \cdot L2}$$

where M is the mutual inductance, K is the coupling coefficient, L1 is the inductance connected at port 1, and L2 is the inductance connected at port 2.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

Figure 1 shows how this element is typically used.

Figure 1. Typical use of the INDK and K elements to model mutual coupling between two inductors. The K element is used to model the mutual coupling between the two INDK elements by specifying the coupling coefficient, K, and the inductances of the two coupled inductors.

<u>Prev</u> <u>Up</u> <u>Next</u>

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Mutual Inductance with Resistive Loss (Closed Form): INDRM

<u>Prev</u> <u>Next</u>

Mutual Inductance with Resistive Loss (Closed Form): INDRM

Symbol

Summary

INDRM is used to represent the mutual coupling between inductors if resistive coupling loss is present (INDK elements).

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	L1
R	Mutual resistance	Resistance	0 ohm
М	Mutual inductance	Inductance	0 nH

Implementation Details

The INDRM element represents the mutual coupling between inductors. Parameter R represents the optional lossy coupling that exists, for example, in coupled Tx lines (R is in series with M). This element is meant to be used between two INDK elements and should be connected to the "K" ports of those elements.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

The following figure shows the typical use of INDK and INDM elements to model mutual coupling between two inductors.

The INDRM element is used to model the mutual coupling between the two INDK elements by specifying an actual mutual inductance and resistance.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Measurement Devices</u> > Measurement Probe: M_PROBE Prev

<u>Next</u>

Measurement Probe: M_PROBE

Symbol

Summary

M_PROBE identifies an element terminal for voltage and current measurements of all kinds. You must place it on an element terminal-- it does not measure voltage in the middle of a wire. The advantage of using M_PROBE is that after simulation, you can drag it around a schematic to display the same measurement at different element terminals, without editing a measurement or requiring a new simulation. To move the M_PROBE without dragging, right-click it and choose **Dynamic Probe**, then click any node or terminal to move it there, or double-click on a SUBCKT block to open the lower-level circuit and click to place the probe there. Press the **Esc** key to exit dynamic mode.

Some measurements such as VTimeD can use two M_PROBEs. To make both of the probes dynamic at the same time, select one probe, **Shift**-click the next one, right-click and choose **Dynamic Probe**. The first probe moves to the position of the mouse click and the second probe moves to the same relative location. If the second probe is not placed where you want it, **Shift**-click at the desired location.

Parameters

Name	Description	Unit Type	Default
ID	Measurement Probe name	Text	VP1

Implementation Details

In the following schematic, the M PROBE is at the input voltage source.

Click and drag the M PROBE to move it to a new location to update graphs.

In current measurements, current flowing into the selected element terminal is positive, unless the element is a voltage or current source.

If you set transient simulation options to save results only at meters, the M_PROBE is NOT included in this list since you can change its location without requiring a new simulation.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Recommendations for Use

In circuit schematics, do not use "pin-to-pin" connections at element terminals where current is measured. In the previous example, you should space the elements apart and connect them by wires

for current measurements. The M_PROBE current measurement are ambiguous if the desired element terminal is at the same location as one or more others.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Mutually Coupled Coils 2 Inductors (Closed Form): MUC2

<u>Prev</u> <u>Next</u>

Mutually Coupled Coils 2 Inductors (Closed Form): MUC2

Symbol

$$\begin{array}{c|c}
\times & 1 & 3 \\
\hline
0 & 1 & 4 \\
\times & 2 & 4 \\
\end{array}$$

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	M1
L1	Self-inductance of coil 1	Inductance	1 nH
R1	Resistance of coil 1	Resistance	0 ohm
L2	Self-inductance of coil 2	Inductance	1 nH
R2	Resistance of coil 2	Resistance	0 ohm
K1_2	Coupling coefficient between coils 1 and 2		0

Implementation Details

 \boldsymbol{V}_{ci} is the voltage across coil I, I=1, ...,N:

$$V_{ci} = (R_i + j\omega L_i) \cdot I_i + \sum_{j=1}^{N} j\omega M_{ij} I_j$$

$$M_{ij} = K_{ij} \cdot \sqrt{L_i \cdot L_j}$$

$$L_i > 0$$

$$R_i > 0$$

$$-1 \le K_{ij} \le 1$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Prev Up Next

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Mutually Coupled Coils 3 Inductors

(Closed Form): MUC3

<u>Prev</u> <u>Next</u>

Mutually Coupled Coils 3 Inductors (Closed Form): MUC3

Symbol

$$\begin{array}{c|c}
\times & 1 & 4 \\
\times & 0 & 1 & 5 \\
\times & 0 & 3 & 6 \\
\end{array}$$

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	M1
L1	Self-inductance of coil 1	Inductance	1 nH
R1	Resistance of coil 1	Resistance	0 ohm
L2	Self-inductance of coil 2	Inductance	1 nH
R2	Resistance of coil 2	Resistance	0 ohm
L3	Self-inductance of coil 3	Inductance	1 nH
R3	Resistance of coil 3	Resistance	0 ohm
K1_2	Coupling coefficient between coils 1 and 2		0
K1_3	Coupling coefficient between coils 1 and 3		0
K2_3	Coupling coefficient between coils 2 and 3		0

Implementation Details

 V_{ci} is the voltage across coil I, I=1, ...,N:

$$V_{ci} = (R_i + j\omega L_i) \cdot I_i + \sum_{j=1}^{N} j\omega M_{ij} I_j$$

$$M_{ij} = K_{ij} \cdot \sqrt{L_i \cdot L_j}$$

$$L_i > 0$$

$$R_i > 0$$

$$-1 \le K_{ij} \le 1$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Mutual Inductance (Closed Form): INDM

<u>Prev</u>

<u>Next</u>

Mutual Inductance (Closed Form): INDM

Symbol

Summary

INDM is used to represent the mutual coupling between inductors (INDK elements).

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	L1
М	Mutual inductance	Inductance	1 nH

Implementation Details

The INDM element represents the mutual coupling between inductors. This element is meant to be used between two INDK elements and should be connected to the "K" ports of those elements.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

The following figure shows a typical use of INDM.

Use of the INDK and INDM elements to model mutual coupling between two inductors. The INDM element is used to model the mutual coupling between the two INDK elements by specifying an actual mutual inductance.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Parallel LC (Closed Form): PLC <u>Prev</u>

Next

Parallel LC (Closed Form): PLC

Symbol

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	LC1
L	Inductance	Inductance	1 nH
С	Capacitance	Capacitance	1 pF

Implementation Details

Parallel inductance and capacitance for use in high Q circuits.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Parallel LC with Q (Closed Form): PLCQ <u>Prev</u>

Parallel LC with Q (Closed Form): PLCQ

Symbol

Topology

Parameters

Name Description	Unit Type	Default
------------------	-----------	---------

Name	Description	Unit Type	Default
ID	Element ID	Text	LC1
С	Capacitance	Capacitance	1 pF
QC	Quality factor for capacitor		0
FQC	Reference frequency for QC	Frequency	0 GHz
ALPHC	Scaling factor for Qc		1
L	Inductance	Inductance	1 nH
QL	Quality factor for inductor		0
FQL	Reference frequency for QL	Frequency	0 GHz
ALPHL	Scaling factor for QL		1
DCMod	DC modeling	Vector text (pull-down)	Lossless

Parameter Details

DCMod. Specifies the DC behavior of the model. **Lossless** indicates that the model is modeled as an ideal capacitor in parallel with an ideal inductor at DC. **Lossy** indicates that loss is taken into account at DC.

Implementation Details

$$QL(f) = Q(\frac{f}{FQL})^{ALPHL}$$

$$QC(f) = Q(\frac{f}{FQC})^{ALPHC}$$

The admittance of the resonant circuit is given by:

$$Y = 2\pi f C(\frac{1}{QC(f)} + j) + \frac{1}{2\pi f L(\frac{1}{QL(f)} + j)}$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

<u>Prev</u> <u>Up</u> <u>Next</u> Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Parallel RC (Closed Form): PRC

<u>Prev</u>

Next

Parallel RC (Closed Form): PRC

Symbol

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	RC1
R	Resistance	Resistance	1000 ohm
С	Capacitance	Capacitance	1 pF

Implementation Details

Parallel ideal resistor and capacitor.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

<u>Prev</u> <u>Up</u> <u>Next</u>

<u>Home</u>

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Parallel RL (Closed Form): PRL <u>Prev</u>

Next

Parallel RL (Closed Form): PRL

Symbol

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	RL1
R	Resistance	Resistance	1000 ohm
L	Inductance	Inductance	1 nH

Implementation Details

Parallel inductance and resistance for use in high Q circuits.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

<u>Prev</u> <u>Up</u> <u>Next</u>

Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Parallel RLC (Closed Form): PRLC

<u>Prev</u> <u>Next</u>

Parallel RLC (Closed Form): PRLC

Symbol

Parameters

Name	Description	Unit Type	Default
ID	Name	Text	RLC1
R	Resistance	Resistance	1000 ohm
L	Inductance	Inductance	1 nH
С	Capacitance	Capacitance	1 pF

Implementation Details

Parallel resistance, inductance and capacitance for use in high Q circuits.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

<u>Prev</u> <u>Up</u> <u>Next</u>

<u>Home</u>

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Waveguide</u> > Rectangular Waveguide Termination (TEmn): RWGT TEmn

<u>Prev</u> <u>Next</u>

Rectangular Waveguide Termination (TEmn): RWGT_TEmn

Symbol

Summary

RWG_TEmn models an input of a transmission line of infinite length. This line represents an equivalent of a transverse electric waveguide mode of the order mn (TEmn) existing in a rectangular waveguide. The mode may be either propagating or evanescent (non-propagating); waveguide metal has a final conductivity and is filled with lossy dielectric.

Parameters

Name	Description	Unit Type	Default
Wa	Width of rectangular waveguide	Length	22860 um
Wb	Height of rectangular waveguide t	Length	10160 um
М	Mode order (along Wa)		1
N	Mode order (along Wb		0
Er	Relative dielectric constant of dielectric filling the waveguide		1
Rho	Metal bulk resistivity of waveguide metal normalized to copper		1
Tand	Loss tangent of dielectric filling the waveguide		0
*Mur	Relative permeability of dielectric filling the waveguide		1

Name	Description	Unit Type	Default
*Tanm	Magnetic loss tangent of dielectric filling the waveguide		0
*Sigma	Conductivity of dielectric filling the waveguide	Siemens/m	0
*ZCalc	Switch - selector of TE10 characteristic impedance definition ("Power-Voltage"/"Voltage-Current"/"Normalized")		Power- Voltage

^{*} indicates a secondary parameter

Parameter Details

M, **N**. Parameters M and N make a pair of indices that define the TEmn mode selected for modeling. M represents the number of field variation along the dimension Wa; N provides the same relative to Wb.

Rho. The bulk resistivity of the waveguide metal. Note that this parameter is dimensionless because it represents the resistivity normalized to that of copper (i.e. to 1.7E-8 ohm/m.)

Er, Tand, Mur, Tanm, Sigma. The material properties of media filling the waveguide.

Zcalc. Allows you to select a definition of characteristic impedance of the TE10 mode propagating in a rectangular waveguide with dimensions Wa*Wb. Options include "Power-Voltage", "Voltage-Current", and "Normalized." This model uses the value of characteristic impedance to denormalize the computed normalized y-matrix of modeled discontinuity. Note that this selection must match the selection of the same parameter in the RWG_TEMN elements used around the same schematic.

The following characteristic impedance definitions are used [1]:

$$Z_{\text{power-voltage}} = Z \frac{2W_b}{W_a}$$

$$Z_{\text{voltage-current}} = Z\pi \frac{W_b}{2W_a}$$

$$Z = \frac{\eta}{\sqrt{1 - (\frac{f_c}{f})^2}}$$

Here, f_c is the cutoff frequency for TE10 and f is the operational frequency; η is the wave impedance of the open space filled with the waveguide dielectric.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

This model may be used as a subcircuit referenced in the PORT_TN port. This usage provides a port with a frequency-depended termination.

NOTE: Results depend on the selected definition of waveguide characteristic impedance.

Normalized characteristic impedance implies that waveguide mode is propagating. **Never set ZCalc to "Normalized" if your operational frequency gets into below-cutoff region.**

Ensure that the bulk resistivity of waveguide metal is normalized to the correct value of **copper** resistivity (**not gold**).

References

[1] K. C. Gupta, Ramesh Garg, Rakesh Chadha, Computer Aided Design of Microwave Circuits, Artech House, Mass., 1981.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>General</u> > Raised-Cosine Lowpass Filter (Closed Form): LPFRC

<u>Prev</u>

Raised-Cosine Lowpass Filter (Closed Form): LPFRC

Symbol

Summary

LPFRC models represent Raised-Cosine lowpass filters. Raised-Cosine filters are applied in digital transmission system theory to represent ideal (intersymbol interference free) Nyquist filtering of impulse and pulse data transmissions. Hardware designers attempt to design channel filters which approximate these characteristics and have the smallest possible bandwidth.

Parameters

Name	Description	Unit Type	Default
ID	Filter ID	Text	LPFRC1
FP	Passband corner frequency	Frequency	1 GHz
А	Roll-off factor (between 0 and 1)		0.5
TYP	Transmission type	Vector Text(pull- down)	Impulse
E	Exponent of the raised-cosine response		1.
*RS	Expected source resistance	Resistance	50 ohm
*RL	Expected load resistance	Resistance	50 ohm

^{*} indicates a secondary parameter

Parameter Restrictions and Recommendations

1. 0 < FP

2. 0 ≤A≤1.

A minimum bandwidth (A=0) filter would require an infinite number of filter sections. Approximations of a 30% excess Nyquist bandwidth (A=0.3) raised-cosine filter are considered feasible with present-day technology.

3. TYP is either {0,1}.

TYP = 0 (Impulse) specifies the ideal raised-cosine response, the theoretical filter model for infinitesimally narrow impulses. TYP = 1 (Pulse) specifies a sinc-normalized raised-cosine response, the filter model for rectangular pulse transmission.

4. 0<E≤1.

The ideal raised-cosine response is raised to the exponent, E. For cascaded identical transmit and receive filters, you would typically specify E=0.5 for each filter. The composite channel response of the cascaded filters would be represented by specifying E=1.

5. 0 < RS.

By definition, the model matches RS at its input port.

6. 0 < RL.

By definition, the model matches RL at its output port.

Implementation Details

The model is implemented as a short-circuit admittance matrix,

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$

, whose equivalent amplitude functions S21 and S12 implement the raised-cosine response for impulse or pulse data transmission, while S11 and S22 are, by definition, constant and matched to the filter port termination resistances (i.e., equal to 1). For impulses,

$$S_{21}(j\omega) = 1 \text{ for } [0 \le \omega \le (1 - A)]$$

$$S_{21}(j\omega) = \left(\cos^2\left(\left(\frac{\pi}{4}\right)\left(\frac{\omega + A - 1}{A}\right)\right)\right)^E \text{ for } [(1 - A) \le \omega \le (1 + A)]$$

$$S_{21}(j\omega) = 0 \text{ for } [(1 + A) \le \omega]$$

For pulses,

$$S_{21}(j\omega) = 1$$
 for $[0 \le \omega \le (1 - A)]$

$$S_{21}(j\omega) = \frac{\left(\cos^2\left(\left(\frac{\pi}{4}\right)\left(\frac{\omega + A - 1}{A}\right)\right)\right)^E}{\operatorname{sinc}\left(\frac{\pi}{2}\omega\right)} \text{ for } \left[(1 - A) \le \omega \le (1 + A)\right]$$

$$S_{21}(j\omega) = 0$$
 for $[(1+A) \le \omega]$

where

$$\operatorname{sinc}(x) = \frac{\sin(x)}{x}$$
$$j = \sqrt{-1}$$

and a lowpass-to-lowpass frequency transformation has been applied:

$$\omega = \frac{-\text{FREQ}}{\text{FP}}$$

_FREQ is the variable containing the project frequency, and the admittances are:

$$y_{11} = \left(\frac{1}{RS}\right) \left(\frac{-S_{21}^{2}(j\omega)}{S_{21}^{2}(j\omega) - 4}\right)$$

$$y_{22} = \left(\frac{1}{RL}\right) \left(\frac{-S_{21}^{2}(j\omega)}{S_{21}^{2}(j\omega) - 4}\right)$$

$$y_{22} = \left(\frac{1}{\sqrt{RS \times RL}}\right) \left(\frac{2S_{21}(j\omega)}{S_{21}^{2}(j\omega) - 4}\right)$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Recommendations for Use

This model expects that the source impedance equals RS and that the load impedance equals RL, but RS need not equal RL for ideal transmission.

References

- [1] Kamilo Feher, Digital Communications: Microwave Applications, (Prentice-Hall, 1981), pp. 46-51.
- [2] John G. Proakis, Digital Communications, 2nd Ed., (McGraw-Hill, 1989), pp. 532-536.
- [3] John Bellamy, Digital Telephony, 2nd Ed., (John Wiley & Sons, 1991), pp. 523-528.
- [4] E. A. Lee and D. G. Messerschmitt, Digital Communications, 2nd Ed., (Kluwer Academic Publishers, 1994), pp. 188-191, 226-228.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Waveguide</u> > Rectangular Waveguide (TEmn): RWG_TEmn

<u>Prev</u>

<u>Next</u>

Rectangular Waveguide (TEmn): RWG_TEmn

Symbol

Summary

RWG_TEmn models a transmission line equivalent to a transverse electric waveguide mode of the order mn (TEmn) existing in a section of rectangular waveguide. The mode may be either propagating or evanescent (non-propagating); waveguide metal has a final conductivity and is filled with lossy dielectric.

Parameters

Name	Description	Unit Type	Default
Wa	Width of rectangular waveguide	Length	22860 um
Wb	Height of rectangular waveguide t	Length	10160 um
L	Length of rectangular waveguide I	Length	10000 um
М	Mode order (along Wa)		1
N	Mode order (along Wb		0
Er	Relative dielectric constant filling the waveguide		1
Rho	Metal bulk resistivity of waveguide metal normalized to copper		1
Tand	Loss tangent of dielectric filling the waveguide		0
*Mur	Relative permeability of dielectric filling the waveguide		1

Name	Description	Unit Type	Default
*Tanm	Magnetic loss tangent of dielectric filling the waveguide		0
*Sigma	Dielectric conductivity of dielectric filling the waveguide	Siemens/m	0
*ZCalc	Switch - selector of TE10 characteristic impedance definition ("Power-Voltage"/"Voltage-Current"/"Normalized")		Power- Voltage

^{*} indicates a secondary parameter

Parameter Details

M, **N**. Parameters M and N make a pair of indices that define the TEmn mode selected for modeling. M represents the number of field variation along the Wa dimension; N provides the same relative to Wb.

Rho. The bulk resistivity of the waveguide metal. Note that this parameter is dimensionless because it represents the resistivity normalized to that of copper (i.e. to 1.7E-8 ohm/m.)

Er, Tand, Mur, Tanm, Sigma. The material properties of media filling the waveguide.

Zcalc. Allows you to select a definition of characteristic impedance of the TE10 mode propagating in a rectangular waveguide with dimensions Wa*Wb. Options include "Power-Voltage", "Voltage-Current", and "Normalized." The default option is "Power-Voltage." This model uses the value of characteristic impedance to denormalize the computed normalized y-matrix of modeled discontinuity. Note that this selection must match the selection of the same parameter in the RWGIRIS TE10 and RWGT TEmn elements used around the same schematic.

The following characteristic impedance definitions are used [1]:

$$Z_{\text{power-voltage}} = Z \frac{2W_b}{W_a}$$

$$Z_{\text{voltage-current}} = Z\pi \frac{W_b}{2W_a}$$

$$Z = \frac{\eta}{\sqrt{1 - (\frac{f_c}{f})^2}}$$

Here, f_c is the cutoff frequency for TE10 and f is the operational frequency; η is the wave impedance of the open space filled with the waveguide dielectric.

Implementation Details

Circuit Model Synthesis

RWG_TEmn supports synthesis of physical parameters based on electrical specifications using the <u>Transmission Line Calculator</u>. To open the Transmission Line Calculator, right-click a transmission line element in a schematic and choose **Synthesize**.

To perform transmission line synthesis:

- 1. In the Electrical property grid, select **Target** check boxes for desired electrical parameters and enter a corresponding value.
- 2. In the Physical property grid, update frequency and substrate parameters if needed, then select **Synthesize** check boxes for transmission line physical parameters to synthesize based on the targets.
- 3. Click the **Synthesize** left arrow to run the synthesis program. The values in both property grids update with the synthesized results. An analysis is also performed with the final physical values. If synthesis cannot achieve the target values, it shows how close it came.
- 4. Click **OK** to update the selected transmission line element with the synthesized physical parameters. Expressions are overwritten with the new, evaluated values. You can click the **Undo** button on the program toolbar to revert all parameters in the schematic document to their pre-synthesized state. Parameters from substrate elements are never updated since typically substrate elements are used by more than one transmission line element. Click **Cancel** to close the dialog box without setting the parameters into the element.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Recommendations for Use

NOTE: Results depend on the selected definition of waveguide characteristic impedance.

Normalized characteristic impedance implies that waveguide mode is propagating. **This means:**Never set **ZCalc** to "Normalized" if your operational frequency gets into below-cutoff region.

Ensure that the bulk resistivity of waveguide metal is normalized to correct the value of **copper** resistivity (**not gold**).

References

[1] K. C. Gupta, Ramesh Garg, Rakesh Chadha, Computer Aided Design of Microwave Circuits, Artech House, Mass., 1981.

<u>Up</u> <u>Next</u>

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > Saw Wave Current Source: I_SAW

<u>Prev</u> <u>Next</u>

Saw Wave Current Source: I_SAW

Symbol

Summary

This signal source is superseded and should be replaced with one of the following: <u>AC_V</u> for voltage sources, <u>AC_I</u> for current sources, or <u>PORT_SRC</u> for ports, with the Signal parameter set to this signal type.

The period for tone 1 sources is the inverse of the specified simulation frequency; see <u>"Frequency</u> Sweep Control" for details.

Name	Description	Unit Type	Default
ID	Current source ID	Text	V1
AMP	Signal magnitude	Current	0 mA
TF	Fall time	Time	0 ns
TD	Time delay	Time	0 ns
WINDOW	Window type		DEFAULT ^[1]
Offset	Waveform offset (does not affect DC)	Current	0
DCVal	DC value (used for DC analysis)	Current	0

Name	Description	Unit Type	Default	
	[1].Window type options are none (NONE), Lanczos (DEFAULT, ref [1]), Triangular (TRIANG), Hanning (HANN), Hamming (HAMM), Blackman (BLACK). See <u>LPLS</u> for additional details on the WINDOW parameter.			

NOTE: AWR® simulators add some series resistance to this element during simulation. This may affect results if injecting current into a large resistance. To change the value of the resistance, choose **Options > Default Circuit Options** to display the Circuit Options dialog box, then click the **AWR Sim** tab and under **Convergence Aids** specify the **Series source resistance**.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

<u>Prev</u> <u>Up</u> <u>Next</u>

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > Saw Wave Voltage Source: V_SAW

<u>Prev</u> <u>Next</u>

Saw Wave Voltage Source: V_SAW

Symbol

Summary

This signal source is superseded and should be replaced with one of the following: <u>AC_V</u> for voltage sources, <u>AC_I</u> for current sources, or <u>PORT_SRC</u> for ports, with the Signal parameter set to this signal type.

The period for tone 1 sources is the inverse of the specified simulation frequency; see <u>"Frequency</u> Sweep Control" for details.

Name	Description	Unit Type	Default
ID	Voltage source ID	Text	V1
AMP	Open circuit signal magnitude	Voltage	1 V
TF	Fall time	Time	0 ns
TD	Time delay	Time	0 ns
WINDOW	Window type		DEFAULT ^[1]
Offset	Waveform offset (does not affect DC)	Voltage	0
DCVal	DC value (used for DC analysis)	Voltage	0

Name	Description	Unit Type	Default
	tions are none (NONE), Lanczos (DEFAULT, ref [1]), Triangu), Blackman (BLACK). See <u>LPLS</u> for additional details on the		

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Prev Up Next

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > Square Wave Current Source: I_SQR

<u>Prev</u> <u>Next</u>

Square Wave Current Source: I_SQR

Symbol

Summary

This signal source is superseded and should be replaced with one of the following: <u>AC_V</u> for voltage sources, <u>AC_I</u> for current sources, or <u>PORT_SRC</u> for ports, with the Signal parameter set to this signal type.

The period for tone 1 sources is the inverse of the specified simulation frequency; see <u>"Frequency</u> Sweep Control" for details.

Name	Description	Unit Type	Default
ID	Current source ID	Text	V1
AMP	Signal magnitude	Current	0 mA
TR	Rise time	Time	0 ns
TF	Fall time	Time	0 ns
TD	Time delay	Time	0 ns
WINDOW	Window type		DEFAULT ^[1]
Offset	Waveform offset (does not affect DC)	Current	0
DCVal	DC value (used for DC analysis)	Current	0

Name	Description	Unit Type	Default	
	[1].Window type options are none (NONE), Lanczos (DEFAULT, ref [1]), Triangular (TRIANG), Hanning (HANN), Hamming (HAMM), Blackman (BLACK). See <u>I_PLS</u> for additional details on the WINDOW parameter.			

NOTE: AWR® simulators add some series resistance to this element during simulation. This may affect results if injecting current into a large resistance. To change the value of the resistance, choose **Options > Default Circuit Options** to display the Circuit Options dialog box, then click the **AWR Sim** tab and under **Convergence Aids** specify the **Series source resistance**.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

<u>Prev</u> <u>Up</u> <u>Next</u> Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > Square Wave Voltage Source: V_SQR

<u>Prev</u> <u>Next</u>

Square Wave Voltage Source: V_SQR

Symbol

Summary

This signal source is superseded and should be replaced with one of the following: <u>AC_V</u> for voltage sources, <u>AC_I</u> for current sources, or <u>PORT_SRC</u> for ports, with the Signal parameter set to this signal type.

The period for tone 1 sources is the inverse of the specified simulation frequency; see <u>"Frequency</u> Sweep Control" for details.

Name	Description	Unit Type	Default
ID	Voltage source ID	Text	V1
AMP	Open circuit signal magnitude	Voltage	1 V
TR	Rise time	Time	0 ns
TF	Fall time	Time	0 ns
TD	Time delay	Time	0 ns
WINDOW	Window type		DEFAULT ^[1]
Offset	Waveform offset (does not affect DC)	Voltage	0
DCVal	DC value (used for DC analysis)	Voltage	0

Name	Description	Unit Type	Default
	[1].Window type options are none (NONE), Lanczos (DEFAULT, ref [1]), Triangular (TRIANG), Hanning (HANN), Hamming (HAMM), Blackman (BLACK). See <u>LPLS</u> for additional details on the WINDOW parameter.		

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Prev Up Next

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > Triangle Wave Current Source: I_TRI

<u>Prev</u> <u>Next</u>

Triangle Wave Current Source: I_TRI

Symbol

Summary

This signal source is superseded and should be replaced with one of the following: <u>AC_V</u> for voltage sources, <u>AC_I</u> for current sources, or <u>PORT_SRC</u> for ports, with the Signal parameter set to this signal type.

The period for tone 1 sources is the inverse of the specified simulation frequency; see <u>"Frequency</u> Sweep Control" for details.

Parameters

Name	Description	Unit Type	Default
ID	Current source ID	Text	V1
AMP	Signal magnitude	Current	0 mA
TD	Time delay	Time	0 ns
WINDOW	Window type		DEFAULT ^[1]
Offset	Waveform offset (does not affect DC)	Current	0
DCVal	DC value (used for DC analysis)	Current	0

[1].Window type options are none (NONE), Lanczos (DEFAULT, ref [1]), Triangular (TRIANG), Hanning (HANN), Hamming (HAMM), Blackman (BLACK). See LPLS for additional details on the WINDOW parameter.

NOTE: AWR® simulators add some series resistance to this element during simulation. This may affect results if injecting current into a large resistance. To change the value of the resistance, choose **Options > Default Circuit Options** to display the Circuit Options dialog box, then click the **AWR Sim** tab and under **Convergence Aids** specify the **Series source resistance**.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

<u>Up</u>

Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > Triangle Wave Voltage Source: V_TRI <u>Prev</u>

Next

Triangle Wave Voltage Source: V_TRI

Symbol

Summary

This signal source is superseded and should be replaced with one of the following: <u>AC_V</u> for voltage sources, <u>AC_I</u> for current sources, or <u>PORT_SRC</u> for ports, with the Signal parameter set to this signal type.

The period for tone 1 sources is the inverse of the specified simulation frequency; see <u>"Frequency</u> Sweep Control" for details.

Parameters

Name	Description	Unit Type	Default
ID	Voltage source ID	Text	V1
AMP	Open circuit signal magnitude	Voltage	1 V
TD	Time delay	Time	0 ns
WINDOW	Window type		DEFAULT ^[1]
Offset	Waveform offset (does not affect DC)	Voltage	0
DCVal	DC value (used for DC analysis)	Voltage	0

[1].Window type options are none (NONE), Lanczos (DEFAULT, ref [1]), Triangular (TRIANG), Hanning (HANN), Hamming (HAMM), Blackman (BLACK). See <u>I_PLS</u> for additional details on the WINDOW parameter.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>General</u> > Two-Port S-Parameter Block: S2P_BLK <u>Prev</u>

Next

Two-Port S-Parameter Block: S2P_BLK

Symbol

Summary

S2P_BLK models a generalized two-port, S-parameter network. The full two-port S-parameters are specified. Noise is also included.

Name	Description	Unit Type	Default
ID	Element ID	Text	X1
S11	S(1,1)	Scalar (Complex)	0.0 + j*0.0
S21	S(2,1)	Scalar (Complex)	0.0 + j*0.0
S12	S(1,2)	Scalar (Complex)	0.0 + j*0.0
S22	S(2,2)	Scalar (Complex)	0.0 + j*0.0
*Z1	Port 1 impedance	Scalar (Complex)	50.0 ohm
*Z2	Port 2 impedance	Scalar (Complex)	50.0 ohm
*NFMIN	Minimum noise figure in dB	dB	0.0
*GOPT	Optimum noise match	Scalar (Complex)	0.0 + j*0.0

Name	Description	Unit Type	Default
*RN	Noise resistance	Resistance	0.0 ohm
*ChkPassv	Switch "Do not Check passivity/Check passivity"		No

^{*} indicates a secondary parameter

Parameter Details

ChkPassv. If set to Yes, tests S2P_BLK for passivity and displays a warning if there is a passivity violation. The default setting is No (Do not check passivity).

Parameter Restrictions and Recommendations

- 1. Z1 and Z2 must be greater than zero.
- 2. RN must be greater than the minimum noise resistance, which is calculated from the NFMIN and GOPT parameters using the following formula:

$$RN_{min} = \frac{10^{NF_{min}/10} - 1}{4.0 * Re(Y_{OPT})}$$

where YOPT is the optimum noise match admittance calculated from GOPT. If RN is less than RNmin, RN is set equal to RNmin and a warning message is displayed to the user.

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

Recommendations for Use

The S2P_BLK model can be used to model any general two-port network (passive or active) by specifying the S-parameters and the noise parameters.

Prev Up Next Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Sources</u> > Voltage Noise Source: VNOISE <u>Prev</u>

Next

Voltage Noise Source: VNOISE

Symbol

Parameters

Name	Description	Unit Type	Default
ID	Element ID	Text	VN1
V	Noise voltage in nV/sqrt(Hz)		0.8949

Implementation Details

VNOISE implements a white noise source having the stated noise spectral density. For V=0.8949, T=290K in 50Ω .

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See <u>"Assigning Artwork Cells to Layout of Schematic Elements"</u> for details.

<u>Prev</u> <u>Up</u> <u>Next</u>

<u>Home</u>

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.