® Patentschrift ® DE 2734339 C2

PATENTAMT

Aktenzeichen: Anmeldetag:

P 27 34 339.1-31 29. 7.77

Offenlegungstag:

16. 2.78

Veröffentlichungstag der Patenterteilung:

19.11.87

(5) Int. CL.4: H 04 N 5/782 H 04 N 5/783

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Unionspriorität: (2) (3) (3) 30.07.76 JP P91878-76

30.07.76 JP P91879-76

31.07.76 JP P91551-76

Patentinhaber:

Sony Corp., Tokio/Tokyo, JP

(4) Vertreter:

Mitscherlich, H., Dipl.-Ing.; Gunschmann, K., Dipi.-Ing.; Körber, W., Dipl.-Ing. Dr.rer.nat.; Schmidt-Evers, J., Dipl.-Ing., Pat.-Anw., 8000 München

(72) Erfinder:

Tachi, Katsuichi, Kawasaki, Kanagawa, JP

6 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE-AS 21 30 988

RCA PD 9900 96 AM CITED BY APPLICANT,

(A) Videosignalwiedergabesystem

Patentansprüche

 Videosignalwiedergabesystem mit einem Band, mit einer Einrichtung zur Wiedergabe eines Videosignals aus einer auf dem betreffenden Band vorgesehenen schräg verlaufenden Spur,

wobei das Videosignal ein erstes Adressensignal aufweist, welches in die Vertikal-Austastperiode des betreffenden Videosignals eingefügt ist und welches die Adresse des betreffenden Videosignals 10

und mit einer Einrichtung zur Wiedergabe eines zweiten Adressensignals aus einer auf dem betreffenden Band vorgesehenen Längsspur, wobei das zweite Adressensignal die Adresse des Videosignals angibt,

dadurch gekennzeichnet,

daß eine Geschwindigkeitsdetektoreinrichtung (81) vorgesehen ist, welche die Bewegungsgeschwindig-

keit des Bandes (1) ermittelt,

und daß eine Auswahleinrichtung (9) vorgesehen ist, welche das erste oder das zweite Adressensignal entsprechend der durch die Geschwindigkeitsdetektoreinrichtung (81) ermittelten Bewegungsgeschwindigkeit des Bandes derart auswählt, daß das 25 erste Adressensignal in dem Fall ausgewählt ist, daß die Bewegungsgeschwindigkeit des betreffenden Bandes (1) niedriger ist als ein bestimmter Wert, und daß das zweite Adressensignal in dem Fall ausgewählt ist, daß die Bewegungsgeschwindigkeit des Bandes (1) höher ist als der betreffende bestimmte wert.

2. System nach Anspruch 1, adurch gekennzeichnet, daß eine Anzeigeeinrichtung (z. B. 85) vorgesehen ist, welche die Adresse ritsprechend einem 35 ausgewählten Adressensignal anzeigt.

3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Geschwindigkeitsdetektoreinrichtung (81) die Frequenz des wiedergegebenen zweiten Adressensignals ermittelt.

4. System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei Aufzeichnung eines Steuersignals in einer Längsspur des Bandes die Geschwindigkeitsdetektoreinrichtung (81) die Frequenz dieses Steuersignals ermittelt.

5. System nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das genannte erste Adressensignal wiederholt in ein Teilbild- oder

Vollbild-Videosignal eingefügt ist.

6. System nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß eine wiederholte Wiedergabe des ersten Adressensignals erfolgt und daß auf der Grundlage des Vergleichs der Korrelation der betreffenden Adressensignale ein korrektes erstes Adressensignal ausgewählt wird.

Beschreibung

Die Erfindung bezieht sich auf ein Videosignalwiedergabesystem gemäß dem Oberbegriff des Anspruchs 1.

Es ist bereits ein Videobandrecorder bekannt (DE-AS 21 30 988), bei dem zwei Arten von Adressensignalen auf einem Band aufgezeichnet sind und bei dem in dem Fall, daß das Band mit hoher Geschwindigkeit bewegt wird, ein Blockadressensignal ausgelesen wird und nach 65 Auftreten des Beginns eines gewünschten Blocks während der Bewegung des Bandes mit niedriger Geschwindigkeit ein für eine Position innerhalb des betreffenden

Blockes kennzeichnendes Adressensignal ausgelesen wird, um somit ein gewünschtes Bild zu suchen. Von den beiden dabei benutzten Adressensignalen ist das eine Adressensignal jedoch ein Grob-Adressensignal (welches die Block-Nummer angibt), und das andere Adressensignal ist ein Fein-Adressensignal (welches die Position innerhalb des Blockes angibt). Diese Maßnahmen genügen jedoch nicht, um Videosignalen zugehörige Adressen bei unterschiedlichen Geschwindigke en des die Videosignale enthaltenden Bandes sicher ermitteln zu können.

Es ist ferner in Verbindung mit einem Videobandrecorder, der für eine Standbildwiedergabe geeignet ist, bekannt (JP-OS 42/4 549), das Synchronsignal in der Vertikal-Austastlücke des Fernsehsignals in ein Adressensignal umzusetzen, welches zur Halbbildidentifizierung dient und welches sogar bei einer Standbildwiedergabe wiedergegeben werden kann. Überdies wird dabei ein zweites Adressensignal in einer Längsspur des verwendeten Bandes aufgezeichnet. Wenn die Bewegungsgeschwindigkeit des Bandes niedrig ist, kann das in der Längsspur des Bandes aufgezeichnete zweite Adressensignal nicht gelesen werden, so daß in einem solchen Fall das in einer Schrägspur auf dem Band aufgezeichnete Adressensignal aufgezeichnet wird. Von Nachteil dabei ist jedoch, daß eine spezielle Verarbeitung erforderlich ist, um das jeweils wiedergegebene Adressensignal ermitteln und anderen Videobandrecordern zuführen zu

Der Erfindung liegt nun die Aufgabe zugrunde, ein Videosignalwiedergabesystem zu schaffen, welches bei unterschiedlichen Geschwindigkeiten des das jeweilige Videosignal aufgezeichnet enthaltenden Bandes eine sichere Adressensignalermittlung gewährleistet ist.

Gelöst wird die vorstehend aufgezeigte Aufgabe durch die im Patentanspruch 1 gekennzeichneten Maß-

nahmen.

Die Erfindung bringt den Vorteil mit sich, daß auf relativ einfache Weise eine auch bei unterschiedlichen Bewegungsgeschwindigkeiten des Bandes sichere Adressensignalermittlung gewährleistet ist. Erreicht wird dies im Unterschied zu dem betrachteten Stand der Technik dadurch, daß gemäß der Erfindung die ersten und zweiten Adressensignale zugleich auf dem Band aufgezeichnet sind. Wenn die Bandbewegungsgeschwindigkeit niedriger wird als eine bestimmte Geschwindigkeit), dann wird das erste Adressensignal ausgelesen, während in dem Fall, daß die Bandbewegungsgeschwindigkeit höher ist als die betreffende bestimmte Geschwindigkeit, das zweite Adressensignal ausgelesen wird.

Zweckmäßige Weiterbildungen der Erfindung erge-

ben sich aus den Unteransprüchen.

Anhand von Zeichnungen wird die Erfindung nach-

stehend beispielsweise näher erläutert.

Fig. 1 zeigt eine Draufsicht auf einen Teil eines Magnetbandes, auf welchem ein Videosignal in Schrägspuren und ein Adressensignal nach einem bekannten Verfahren aufgezeichnet sind.

Fig. 2 zeigt eine schematische Darstellung des SMPTE-Zeitcodesignals, welches auf dem Band aufgezeichnet ist.

eichnet ist.

Fig. 3 zeigt eine Draufsicht auf einen Teil eines Magnetbandes, auf welchem ein Videosignal und ein Adressensignal gemäß der Erfindung aufgezeichnet sind.

Fig. 4 zeigt ein auf einem Band gemäß der Erfindung aufgezeichnetes Signalbild bzw.-muster.

Fig. 5 zeigt ein Blockschaltbild einer erfindungsgemä-Ben Schaltungsanordnung zur Erzeugung von VITC-Signalen und zu deren Aufzeichnen auf einem Magnet-

Fig. 6 zeigt ein schematisches Bild zur Veranschaulichung eines praktischen Ausführungsbeispieles des in

Fig. 5 dargestellten Frequenzteilers.

Fig. 7 zeigt ein Blockschaltbild einer erfindungsgemä-Ben Schaltungsanordnung zum Lesen der VITC-Signale von einem Magnetband und zur Adressendecodierung.

Fig. 8 zeigt Impulsverläufe zur Erläuterung der Arbeitsweise der in Fig. 5 gezeigten Schaltungsanordnung.

Fig. 9A bis 9C sowie 16A bis 10D zeigen Impulsverläufe zur Erläuterung der Arbeitsweise der in Fig. 7 gezeigten Schaltungsanordnung.

Fig. 11, 12 und 13 zeigen schematische Ansichten zur Erläuterung eines Schutzbandräuschens.

Fig. 14 zeigt einen Impulsverlauf zur Veranschaulichung eines modifizierten Adressensignals zum Modifi-

zieren eines Teiles des in Fig. 4 gezeigten Musters. Fig. 15 zeigt ein Schaltbild mit einem Ausführungsbeispiel der erfindungsgemäßen Schaltungsanordnung zum Bilden des in Fig. 14 gezeigten Adresse. signals, wobei das Adressensignal in eine Horizontalzeilenperiode eines Videosignals eingesetzt und das Signal auf- 25

gezeichnet worden ist. Fig. 16 zeigt ein Blockschaltbild eines Ausführungsbeispieles der Schaltungsanordnung zum Lesen lediglich des in Fig. 4 gezeigten Adressensignals von der Videospur und zum Anzeigen der Adresse.

Fig. 17A bis 17E zeigen Impulsverläufe zur Erläuterung der in Fig. 16 gezeigten Schaltungsanordnung.

Fig. 18 zeigt ein Blockschaltbild zur Veranschaulichung eines Ausführungsbeispieles der erfindungsgemäßen Schaltungsanordnung zur Ermöglichung einer 35 Darstellung oder einer Anzeige einer Adresse eines Videosignals, und zwar stets korrekt und unabhängig von der Bandgeschwindigkeit.

Fig. 1 veranschaulicht ein Verfahren nach dem Stand der Technik zum Aufzeichnen eines Adressensignals auf 40 einem Magne, band T, auf welchem ein Adressensignal zusätzlich zu einem Videosignal aufgezeichnet ist.

In Fig. 1 stellt Tv eine Anzahl von Videospuren dar, welche auf dem Magnetband Tgebildet sind, wobei jede der Videospuren Tvein Videosignal eines Teilbildes ent- 45 halt. TA bedeutet eine Spur auf dem Band T, welche das Tonsignal tragt. Die Spur T_Q stellt die Spur dar, welche die Regie- bzw. Stichwort- bzw. Studiosignalzeichenbzw. die Kommandosignale (Cue-Signale) trägt, während Tc eine Spur bezeichnet, welche die Steuersignale 50 trägt. In der Kommandospur To ist ein Adressensignal aufgezeichnet. In diesem Falle wird ein SMPTE-Zeitcodesignal als Adressensignal verwendet, wobei die beiden Videospuren Tv. welche ein Halbbild bilden, durch ein SMPTE-Zeitcodesignal identifiziert sind.

Der SMPTE-Zeitcode ist der Zeit- und Steuercode, der nach dem American National Standard für Videound Tonband für 525-Zeilen/60-Teilbilder-Fernsehsysteme am 2.4. 1975 genehmigt und in der Zeitschrift von SMPTE-Band 84 am 9. 7. 1975 veröffentlicht ist.

Wie in Fig. 2 gezeigt, welche das SMPTE-Codesignal schematisch darstellt, entspricht jede Adresse einem Halbbild und besteht aus 80 Bits, welche von 0 bis 79 numeriert sind, wobei die Bitfrequenz mit 2,4 kHz gewählt ist. Wie in Fig. 2 dargestellt, zeigen Zeitadressen- 65 bits, welche aus 26 Bits bestehen, 29 Halbbilder, 59 Sekunden, 59 Minuten und 23 Stunden an. Das Bit 10 ist das Signalausfallhalbbildkennzeichen oder die Ausfall-

halbbildfahne, die Bits 11, 27, 43, 58 und 59 sind nicht zugeteilte Adressenbits, während die Bits 4 bis 7, 12 bis 15, 20 bis 23, 28 bis 31, 36 bis 39, 44 bis 47, 52 bis 55 und 60 bis 63 Benutzerbits sind. Das Synchronisierwort von 5 16 Bits ist derart angeordnet, daß es diskriminiert wird, ob das Band in der Vorwärtsrichtung transportiert wird, wobei somit das SMPTE-Zeitcodesignal, wenn in der Richtung ausgelesen, die durch einen Pfeil F gezeigt ist, oder ob das Band in der Rückwärtsrichtung transpor-10 tiert und somit das SMPTE-Zeitcodesignal in der Richtung ausgelesen wird, welche durch einen Pfeil R gezeigt ist. Somit kann das Zeitcodesignal sogar auch dann richtig gelesen werden, wenn das Band in jeder beliebigen Richtung transportiert wird. In diesem Falle ist das Codesignal derart aufgezeichnet, daß dessen Information "i" und "0" als eine Biphasenmarke gemäß Fig. 2 aufgezeichnet ist.

Wie zuvor beschrieben, kann das Mitschneiden des Bandes sehr rasch und genau erfolgen, falls das Adressensignal für jedes Halbbild des Videosignals in der Spur To aufgezeichnet ist, welche sich - der Längsrich-

tung des Bandes Terstreckt.

lm Falle einer Langsam- oder Stehbildbewegungswiedergabebetriebsart wird jedoch die Geschwindigkeit des Bandes sehr langsam, oder das Band wird eisektiv gestoppt, so daß das in der Spur To aufgezeichnete

Signal nicht gelesen werden kann.

Fig. 3 bis 13 zeigen ein Ausführungsbeispiel zum Bilden eines Adressensignals, welches sogar bei einer Langsamwiedergabebetriebsart oder einer Stillstandswiedergabebetriebsart ausgelesen werden kann, so daß das Mitschneiden eines Bandes wirksam durchgeführt werden kann. Das Videosignal des NTSC-Systems wird als Beispiel verwendet.

Fig. 3 zeigt eine Draufsicht eines Magnetbandes R, auf welchem das Videosignal und die Adressensignale

aufgezeichnet sind.

Dabei wird ein Adressensignal SA, welches ein Videosignal entsprechend jeder Tv-Spur identifiziert, in das Videosignal als ein Digitalsignal eingesetzt, wobei die Videosignale, deren jedes das Adressensignal SA enthält, auf dem Band als Schrägspuren Tv aufgezeichnet sind. Die in den Videospuren-Tvaufgezeichneten Adressensignale SA sind in Fig. 3 schraffiert gezeigt. Die Adressensignale SA sind in die Videosignale ungeradzahliger und geradzahliger Teilbilder eines Vollbildes eingesetzt und dann, wie in Fig. 3 gezeigt, aufgezeichnet.

Wie in Fig. 4 schraffiert gezeigt, welche ein Aufzeichnungsbild oder Aufzeichnungsmuster von Signalen auf dem Band enthält, ist ein Adressensignal in eine Horizontalzeilenperiode in der unterdrückten Zeilenperiode innerhalb der Vertikal-Austastlücke mit Ausnahme jenes Teiles eingesetzt, welcher eine Vertikalsynchronimpulsperiode Tvp und eine Ausgleichsimpulsperiode Tep enthält. Das Adressensignal ist in die Lücke oder Periode nach Farbsynchrossignalen Se eingesetzt, wobei gewünscht wird, daß dieselben Adressensignale wiederholt in drei aufeinanderfolgende Horizontalzeilenperioden eingesetzt werden sollen. Nachfolgend wird dieses Adressensignal einfach als VITC-Signal (VITC = Vertikalintervallzeitcode) genannt. Die obigen unterdrückten Perioden entsprechen den 10. bis 21. Zeilenperioden des NTSC-Systems.

Der Code des VITC-Signals besteht beispielsweise aus 80 Bits ähnlich dem in Fig. 2 dargestellten SMPTE-Zeitcodesignal, wobei seine Bitfrequenz fa als die Farbhilfsträgerfrequenz f_{SC} ausgewählt ist, welche 3,58 MHz, geteilt durch eine ganze Zahl, entspricht, beispielsweise

die Hälfte ($^{1}/_{2}$) der Frequenz f_{SC} . Falls die Horizontalzeilenfrequenz mit f_{H} und die Vertikalbzw. Bildfrequenz mit f_{V} angenommen wird, so gilt die nachfolgende Beziehung:

$$f_{SC} = \frac{455}{2} f_H = \frac{455 \times 525}{4} f_V \tag{1}$$

Falls somit die nachfolgende Beziehung festgelegt wird:

$$f_B = \frac{1}{2} f_{SC} \tag{2}$$

und die nachfolgende Gleichung 3 erhalten wird:

$$f_B = \frac{455}{4} f_H \tag{3}$$

können 80 Bits des V(TC-Signals in eine Horizontalzeile 20

eingesetzt werden.

Von den 80 Bits sind 32 Bits Adressenbits, 32 weitere Bits sind Benutzerbits, und die übrigen 16 Bits bilden Synchronisierwörter. Das festgesetzte Verhältnis zwischen den Adressenbits und den Benutzerbits könnte 25 dasselbe wie jenes des in Fig. 2 gezeigten SMPTE-Zeitcodesignals sein, wobei die Adressenbits, welche in ungerade und gerade Teilbilder desselben Vollbildes eingesetzt sind, so ausgewählt sind, daß sie denselben Code haben. Die Synchronisationswörter oder die Synchron- 30 worte sind am Kopf des VITC-Signals oder unmittelbar nach dem Farbsynchronsignal Ss untergebracht. Wie oben erwähnt, können die Synchronwörter mit demselben Code wie jenem des in Fig. 2 gezeigten SMPTE-Zeitcodesignals ausreichend sein, wobei sie jedoch in 35 der Videospur aufgezeichnet sind und somit die Leserichtung des Codesignals ungeachtet der Bandtransportierungsrichtung konstant ist. Sie könnten daher gänzlich unterschiedliche Codearten sein. So z.B. könnten sie in Startcodes des VITC-Signals und in Teilbildidentifizierungscode geändert werden, um das ungerade Teilbild und das gerade Teilbild zu identifizieren. Die Teilbildidentifizierung könnte auch erfolgen, indem das Bit-11 zu "0" oder "1" gemacht wird. Wie aus der Gleichung (1) ersichtlich und da die Phase des Farbhilfsträgers re- 45 lativ zu dem Vertikalsynchronsignal sich mit vier Teilbildern je Periode ändert, kann der zuvor beschriebene Code in den Farbsynchronphasenidentifizierungscode geändert werden, um die 4 Teilbilder zu identifizieren. Es ist ferner wünschenswert, daß unabhängig davon, ob die Gesamtzahl der Bits, denen das VITC-Signal zugeteilt ist, ungerade oder gerade numeriert ist, ein geeignetes Bit in den Synchronwörtern in "0" oder "1" geändert wird, um somit die Zahl der Bits, welchen "1" zugeteilt ist, beispielsweise ungerade zu machen. Wenn das 55 VITC-Signal ausgelesen wird, falls eine ganze Zahl von "1" gezählt und bestimmt wird, ob die insgesamt gezählte Zahl von "1" ungerade oder gerade ist, kann somit bestimmt werden, ob das korrekte Codesignal ausgelesen worden ist oder nicht. Die Lage des Kopfes des Synchronwortes, mit anderen Worten die Lage des Starts des VITC-Signals, ist stets als eine Konstantzeit T_S von dem Horizontalsynchronimpuls P_H aus gewählt.

In diesem Falle ist es ausreichend, daß die Information "1" und "0" des VITC-Signals als verschiedene Pegel 65 gemäß Fig. 4 ausgedrückt ist. So z. B. ist die Information "0" als der Schwarzabhebungspegel und die Information "1" als 50 IRE-Einheiten oder als ein Signal gewählt,

welches höher als der "0"-Pegel ist, wobei dann die Signale mit engegengesetztem Pegel gegenüber dem Horizontalsynchronimpuls, von dem Schwarzabhebungspegel aus gesehen, aufgezeichnet sind.

Fig. 5 zeigt eine Schaltungsanordnung zur Erzeugung des VITC-Signals und zu dessen Aufzeichnung auf ei-

nem Magnetband.

Gemäß Fig. 5 empfängt eine Eingangsklemme 1 ein Videosignal, welches aufgezeichnet werden soll. Das Videosignal wird einer Addiereinrichtung 2 zugeführt sowie einer Synchronsignaltrennschaltung 3, von welcher ein Vertikalintervallsignal mit einem Ausgleichimpuls abgeleitet wird. Dieses Vertikalintervall-Signal wird einem Vollbildimpulsgeber 4 zugeführt, welcher einen Vollbildimpuls erzeugt und ihn einem Zeitzähler 5 zuführt. Der Zeitzähler 5 wird mit dem Ausgangssignal eines Decoders-6 zum-Voreinstellen in einen vorbestimmten Adressencode gespeist. Wenn kein SMPTE-Zeitcodesignal, welches in Verbindung mit Fig. 2 beschrieben wurde, an eine Eingangsklemme 7 angelegt worden ist, wie z. B. dann, wenn dieses Signal als ein Signal von einem Hauptband abgeleitet worden ist, worauf das SMPTE-Zeitcodesignal aufgezeichnet und auf einem sekundären Band mitgeschnitten ist, so wird ein externes Schaltsignal von einer Eingangsklemme 8 dem Decoder 6 zugeführt, welcher dann ein Voreinstellsignal auf der Basis des SMPTE-Zeitcodesignals erzeugt. Der Zeitzähler 5 wird somit bei dem Zeitcode voreingestellt, welcher derselbe wie der Zeitcode ist, der den Adressenbits des SMPTE-Zeitcodesignals gegeben wird. Da das SMPTE-Zeitcodesignal von dem Hauptband, welches bewegt wird, gelesen wird, und dann, wenn die Adresse, die von dem Hauptband gelesen ist, auf dem sekundären Band aufgezeichnet wird, so wird in diesem Falle die Adresse um eins verschoben werden. Es ist daher erforderlich, daß ein voreingestellter Zeitcode ein Code einer gelesenen Adresse plus ein Vollbild ist Wenn kein SMPTE-Zeitcodesignal der Eingangsklemme 7 zugeführt wird und falls ein Intervallschaltsignal an die Klemme 8 angelegt wird, so erzeugt der Decoder 6 ein-Voreinstellsignal, welches durch einen Signaltasteneingang zum Decoder 6 intern gebildet ist. Der Zeitzähler 5 wird somit auf dem Zeitcode entsprechend dem Tasteneingangssignal voreingestellt. Der Zeitcode von 32 Bits von dem Zeitzähler 5 wird einem Codewähler 9 zugeführt. Bei diesem Beispiel handelt es sich bei dem Zeitcode um einen Code, welcher aus einer Adresse von 32 Bits einschließlich des Ausfallvollbildflags und nichtzugeteilten Adressenbits besteht. Der Benutzerteil von 32 Bits von einem Benutzerbitgeber 10 und die Synchronwörter von 16 Bits von einer. Synchronwortgeber 11 werden auch dem Codewähler 9 zugeführt

Das Vertikalintervallsignal von der Synchronsignalabtrenneinrichtung 3 wird auch einem monostabilen
Multivibrator 12 zugeführt, von welchem das Horizontalsynchronsignal mit Ausnahme des Ausgleichimpulses
abgeleitet wird. Das Signal von einem Oszillator 13 mit
veränderlicher Frequenz wird einem Frequenzteiler 14
zugeführt, welcher es durch 455 teilt. Ein Phasenvergleicher 15 empfängt den Horizontalsynchronimpuls von
dem Multivibrator 12 und das frequenzmäßig geteilte
Signal von dem Frequenzteiler 14, um einen Phasenvergleich durchzuführen. Die phasenmäßig verglichene
Fehlerdifferenzspannung von dem Phasenvergleicher
15 wird dem Oszillator 13 mit veränderlicher Frequenz
zur Steuerung seiner Frequenz zugeführt. Die Ausgangsfrequenz des Oszillators 13 ist mit 455 fn gewählt,

mit anderen Worten 2 Isc und somit erzeugt der Frequenzteiler 14 ein Signal mit der Horizontalfrequenz In. Der Frequenzteiler 14 erzeugt an seiner anderen Ausgangsklemme einen Taktimpuls, welcher mit dem Horizontalsynchronsignal oder mit der Frequenz

$$f_B = \frac{1}{2} f_{SC}$$

synchronisiert ist.

Fig. 6 zeigt eine Ausführungsform des Frequenzteilers 14. Der Frequenzteiler 14 enthält einen 29-Untersetzungszähler 16 und eine NAND-Schaltung 17. Der Impuls mit einer Frequenz von 2 Isc von dem Oszillator wird dem 2°-Zähler 16 zugeführt und dann gemäß Fig. 8 frequenzmäßig geteilt. Das heißt, dann wenn die Ausgangsimpulse der drei letzten Bits und der drei ersten Bits "!" werden oder dann, wenn 455 Impulse mit der Frequenz von 2 Isc gezählt werden, wird das Ausgangssignal der NAND-Schaltung 17 zu "0". Das Ausgangssi- 20 gnal der NAND-Schaltung 17 wird dem Zähler 16 zugeführt, so daß zu diesem Zeitpunkt der Zähler 16 zurückgestellt wird: Als Ergebnis wird das Ausgangssignal von dem Zähler 16 in zweiten von der letzten Stellung zu einem Impuls mit der Frequenz

$$f_B = \frac{1}{2} f_{SC}.$$

Wie in Fig. 5 gezeigt, wird der Impuls mit der Fre- 30 quenz fo von dem Zähler 16 dem Zeitimpulsgeber 18 zugeführt, welcher einen Zeitimpuls erzeugt, der dieselbe Frequenz wie fa hat. Der Zeitimpuls von dem Geber 18 wird dem Codewähler 9 zugeführt, welcher auch den Horizontalsynchronimpuls von dem monostabilen Multivibrator 12 empfängt. Der Codewähler erzeugt somit ein Codesignal, in welchem die Synchronwortbits, die Zeitcodebits und die Benutzerbits in jedem Horizontalzeilenintervall gemäß Fig. 4 angeordnet sind. Das Codesignal von dem Codewähler 9 wird einer Torschaltung 40 19 zugeführt. Das Vertikalintervallsignal von der Synchronsignalabtrenneinrichtung 13 wird ferner einer Vertikalsynchronsignalabtrenneinrichtung – 20 zugeführt, von welcher das Vertikalsynchronsignal abgeleitet wird: Dieses Vertikalsynchronsignal und das Horizontalsynchronsignal von dem monostabilen Multivibrator 12 werden einem Torimpulsgeber 21 zugeführt. Der daraus abgeleitete Torimpuls wird der Torschaltung 19 zugeführt. Das aus 80 Bits bestehende Codesignal könnte somit in drei aufeinanderfolgende Horizontalzeilenperioden innerhalb der Vertikalaustastlücke des Videosignals eingesetzt werden, so daß das VITC-Signal erhalten wird. Das VITC-Signal von der Torschaltung 19 wird der Addierschaltung 2 zugeführt und darin dem Videosignal addiert. Das Videosignal mit dem ... 55 VITC-Signal von der Addierschaltung 2 wird einem drehbaren Magnetkopf (der nicht gezeigt ist) zugeführt und auf einem Magnetband T in Schrägspuren Tv gemāß Fig. 3 aufgezeichnet.

Der Zeitcode mit 32 Bits von dem Zeitzähler 5, die 60 Benutzerbits mit 32 Bits von dem Benutzerbitgeber 10 und die Synchronwörter mit 16 Bits von dem Synchronwortgeber 1 werden auch einem Codierer 22 zugeführt, welcher auch mit dem Vollbildimpuls von dem Vollbildimpulsgeber 4 gespeist wird. Somit erzeugt der Codie- 65 wiedergegebene Videosignal von der Klemmschaltung rer 22 ein SMPTE-Zeitcodesignal bei jedem Vollbild, welches jenem gemäß Fig. 2 ähnlich ist. Dieses SMPTE-Zeitcodesignal von dem Codierer 22 wird einem (nicht

gezeigten) feststehenden Magnetkopf zugeführt und durch diesen auf dem Band Tals Spur To aufgezeichnet, welche sich in der Längsrichtung des Bandes Tentlang einer Kante gemäß Fig. 3 erstreckt.

COLOR DESCRIPTION OF THE PROPERTY OF THE PROPE

Ein Beispiel der Schaltung, welche das VITC-Signal aus dem Videosignal, das auf der Spur Tv aufgezeichnet ist, lesen und die Adressen anzeigen wird, zeigt Fig. 7. Die Eingangsklemme 51 empfängt ein Videosignal, das durch einen (nicht gezeigten) drehbaren Magnetkopf 10 aus der Spur Ty erzeugt ist. Das wiedergegebene Videosignal, welches der Klemme 51 zugeführt ist, wird dann einer Klemmschaltung 52 zugeführt sowie einer Synchronsignalabtrenneinrichtung 53, von welcher das Vertikalintervallsignal oder das Synchronsignalgemisch einschließlich des VITC-Signals abgeleitet werden kann. Dieses Vertikalintervallsignal wird dann einem monostabilen Multivibrator 54 zugeführt, welcher den Horizontalsynchronimpuls mit Ausnahme des Ausgleichsimpulses erzeugt. Dieser Horizontalsynchronimpuls wird einer phasensynchronisierten Schaltung oder einer sog. PLL-Schaltung 55 zugeführt, von welcher ein Impuls, der mit dem Horizontalsynchronimpuls synchronisiert ist, abgeleitet wird. Der Impuls von der phasenstarren Schaltung 55 wird einem Klemmimpulsgeber 56 zugeführt. Der Impulsgeber 56 erzeugt einen Klemmimpuls. welcher das wiedergegebene Videosignal hinsichtlich der Schwarzabhebung sestklemmen wird. Dies ist der Klemmimpuls, welcher einer Torschaltung zugeführt

Das Synchronsignalgemisch von der Synchronsignalabtrenneinrichtung bzw. -abtrennschaltung 53 wird ferner einem retriggerbaren monostabilen Multivibrator 58 zugeführt, dessen Ausgangsimpuls einem weiteren retriggerbaren monostabilen Multivibrator 59 zugeführt wird. Der von dem Multivibrator 59 abgeleitete Impuls wird einer Torschaltung 57 zugeführt. Der Multivibrator 58 ist derart ausgebildet, daß er seinen quasistabilen Zustand für eine Periode hält, welche ein bißchen kürzer als eine Horizontalzeilenperiode ist, wogegen der Multivibrator 59 derart ausgebildet ist, daß er seinen quasi-stabilen Zustand für eine Periode hält, welche etwas länger als eine Horizontalzeilenperiode ist.

Wie-nachfolgend für den Fall einer Wiedergabebetriebsart mit Langsambewegung oder mit Stillstand beschrieben wird, befindet sich ein Schutzbandgeräuschsignal in einem wiedergegebenen Videosignal, so daß ein Schutzbandgeräusch No in dem Synchronsignalgemisch gemäß Fig. 9A vorliegt. Innerhalb der Intervalle mit Ausnahme der Periode Tvp des Vertikalsynchronimpulses, der Perioden TEP der Ausgleichsimpulse vor und nach der Periode Tve und der Periode, in welcher das Schrtzbandgeräusch No vorhanden ist, tritt am Ausgang des monostabilen Multivibrators 58 somit ein Impuls mit der Horizontalfrequenz fu gemäß Fig. 9B auf, wobei das Ausgangssignal des monostabilen Multivibrators 59 gemäß Fig. 9C zu "1" wird. Der Klemmimpuls wird somit durch die Torschaltung 57 nur während der obigen Intervalle abgeleitet und dann der Klemmschaltung 52 zugeführt.

Infolgedessen wird das wiedergegebene Videosignal hinsichtlich der Schwarzabhebung in der Klemmschaltung 52 ohne Störung durch-das-Schutzbandgeräusch N_Ggeklemmt.

Das hinsichtlich der Schwarzabhebung geklemmte 52 wird einer Codesignalabtrennschaltung 60 zugeführt, in welcher das Videosignal mit einem Pegel verglichen wird, welcher höher als der Schwarzabhebungspegel ist, so daß das obige, eingesetzte Codesignal abgeleitet wird. Dieses abgeleitete Codesignal wird einer Tor-

schaltung 61 zugeführt.

Das hinsichtlich der Schwarzabhebung geklemmte, d.h. das wiedergegebene Videosignal von der Klemmschaltung 52, wird ferner einer Synchronsignalabtrennschaltung 52 zugeführt, von welcher das Synchronsignalgemisch abgeleitet wird. Dieses Synchronsignalgemisch wird einer Vertikalsynchronsignalabtrennschaltung 63 zugeführt, von welcher das Vertikalsynchronsignal abgeleitet wird. Die Vertikal- und Synchronsignalgemische werden einem Torimpulsgeber 64 zugeführt, welcher einen Torimpuls erzeugt und den Torimpuls einer Torschaltung 61 zuführt. Von der Torschaltung 61 werden somit aufeinanderfolgend die VITC-Signale ab- 15 geleitet, welche in die obigen aufeinanderfolgenden drei Horizontalzeilenperioden eingesetzt werden. VITC-Signale in den drei auseinandersolgenden Horizontalzeilenperioden werden entsprechend drei Speichern 65, 66 und 67 zugeführt, deren jeder beispielswei- 20 se aus einem 80-Bit-Schieberegister gebildet ist.

Das in Fig. 10A dargestellte Synchronsignalgemisch, weiches am Ausgang der Synchronsignalabtrennschaltung 62 erzeugt wird, wird ferner einem retriggerbaren monostabilen Multivibrator zugeführt, welcher einen 25 Impuls mit einer schmalen Breite gemäß Fig. 10B erzeugt. Dieser Impuls mit einer schmalen Breite wird einer Torschaltung 69 zugeführt, welche mit dem Impuls gemäß Fig. 10C von der phasenstarren Schaltung 55 gespeist wird. Von der Torschaltung 69 wird somit ein Impuls mit einer schmalen Breite und der Horizontalfre-

quenz f_H gemäß Fig. 10D abgeleitet.

Ein Oszillator 7 mit veränderlicher Frequenz liefert sein Ausgangssignal an einen Frequenzteiler 71, welcher durch 455 teilt. Ein Phasenvergleicher 72 wird mit dem 35 Ausgangsimpuls der Horizontalfrequenz fH von der Torschaltung 69 und mit dem frequenzmäßig geteilten Signal von dem Frequenzteiler 71 gespeist und vergleicht die Phasen dieser Signale. Die verglichene Fehlerspannung von dem Phasenvergleicher 72 wird der 40 Frequenzsteuerklemme des Oszillators 70 zugeführt, um dessen Frequenz derart zu steuern, daß die Schwingungsfrequenz 455 x fH ist, mit anderen Worten 2 Isc. Die Frequenz der frequenzgeteilten Signale von dem Frequenzteiler 71 ist somit f. Der Frequenzteiler 71 ist 45 in derselben Art und Weise wie der Frequenzteiler 14 gemäß Fig. 6 gebildet und erzeugt an seiner anderen Ausgangsklemme einen Taktimpuls, welcher mit dem Horizontalsynchronimpuls und mit der Frequenz

$$f_B = \frac{1}{2} f_{SC}$$

The state of the s

清清精度

synchronisiert ist.

Der Taktimpuls mit einer Frequenz f_B wird einem Szeitimpulsgeber 75 zugeführt, welcher auch das Synchronsignalgemisch von der Synchronsignalabtrennschaltung 62 und den Impuls von dem Torimpulsgeber 64 empfängt, wobei dieser Impuls drei Horizontalzeilenperioden darstellt, worin die VTC-Signale liegen. Der Zeitimpulsgeber 75-liefert somit den Zeitimpuls von 80 Bits dem Speicher 65 während der ersten Horizontalzeilenperiode der drei Perioden und dem Speicher 66 während der nächsten Horizontalzeilenperiode sowie dem Speicher 67 während der dritten oder letzten Horizontalzeilenperiode, so daß die VTTC-Signale, deren jedes aus Bits besteht, in den Speichern 65, 65 und 67 auseinanderfolgend eingeschrieben werden.

Ein Oszillator 76 erzeugt einen Taktimpuls mit einer zweckmäßigen Frequenz und gibt seine Ausgangsimpulse an einen Zähler 77 ab, welcher sie in einer Frequenz durch vier teilt. Das frequenzgeteilte Signal von dem Zähler 77 wird einem Zeitimpulsgeber 78 zugeführt, der einen Zeitimpuls mit derselben Frequenz wie jene des Signals erzeugt, welches seinem Eingang zugeführt wird. Dieser Zeitimpuls wird einer Torschaltung 79 zugeführt, welche auch mit dem Impuls von dem Zeitimpulsgeber 75 gespeist wird, wobei dieser Zeitimpuls zeigt, daß die Speicherung in den Speichern 65, 66 und 67 stattgefunden hat. Der Zeitimpuls von dem Zeitimpulsgeber 78 wird somit durch die Torschaltung 79 tormäßig durchgelassen und den Speichern 65, 66 und 67 zugeführt. Auf diese Art und Weise werden die VITC-Signale in drei horizontalen Zeilenperioden in den Speichern 65, 66 und 67 aufeinanderfolgend eingeschrieben und können in 80-Bit-Gruppierungen gleich zeitig und aufeinanderfolgend gelesen werden.

Die VITC-Signale, welche aus den Speichern 65, 66 und 67 gleichzeitig ausgelesen werden, werden einem Codewähler 80 sowie einer Koinzidenzdetektorschaltung 81 zugeführt. Diese Koinzidenzdetektorschaltung 81 ermittelt, ob die entsprechenden Bits der 80 Bits unter den drei VITC-Signalen Koinzidenz haben oder nicht und ob im Falle, in welchem die entsprechenden Bits der drei VITC-Signale infolge von Ausfällen oder aus anderen Gründen nicht koinzident sind, zwei Signale koinzident "1" oder "0" sind. Das ermittelte Ausgangssignal der Detektorschaltung 81 wird dem Codewähler 80 zugeführt, der so gesteuert wird, daß der Codewähler 80 ein korrektes VITC-Signal je nach der Koinzidenz oder der Entscheidung auf der Basis einer Mehrheit der Eingangssignale in den Speichern 65, 66 und 67 liefert.

Das korrekte VITC-Signal von dem Codewähler 80 wird einem 4-Bit-Schieberegister 82 zugeführt. Das Schieberegister 82 wird mit einem Taktimpuls von dem Oszillator 76 für das VITC-Signal gespeist, welches in das Schieberegister 82 eingeschrieben werden soll. Das Ausgangssignal mit vier Bits aus dem Schieberegister 82 wird einem Pufferspeicher 83 zugeführt, welcher Zeitimpulse von dem Zeitimpulsgeber 78 durch die Torschaltung 84 empfängt, so daß das VITC-Signal aus 80 Bits von dem Schieberegister 82 zum Pufferspeicher 83 überführt wird, und zwar jeweils mit vier Bits.

Das Ausgangssignal des Pufferspeichers 83 wird einer Darstellungs- oder Anzeigevorrichtung 85 zugeführt, die dann die Adresse der Spur Tv zeigt, von der ein drehbarer Magnetkopf das Signal wiedergibt, das die Stunde, Minute, Sekunde und die Zahl des Halbbildes

der Spur Tvanzeigt.

Im Falle einer Wiedergabebetriebsart mit Langsambewegung oder mit Stillstand des Bandes wird ein Schutzbandgeräusch in dem wiedergegebenen Videosignal verursacht. In diesem Falle wird die Stellung, in welcher das Schutzbandgeräusch in einem Teilbild erscheint, in Abhängigkeit von der Stellung einer Abtastspur zur Spur Tv geändert. Das heißt dann, wenn die Spurabtastung, wie durch die gestrichelte Linie in Fig. 11 gezeigt, relativ zu den Spuren T_V erfolgt, so wird kein Schutzbandgeräusch in den Adressensignalen SA erzeugt, welche in drei Horizontalzeilenperioden der Vertikalaustastlücke eingesetzt sind, wobei jedoch die Schutzbandgeräusche in dem Adressensignal SA erzeugt werden, wenn die Abtastungsspur die Stellung relativ zu den Spuren Tv hat, die in Fig. 12 durch gestrichelte Linien gezeigt ist.

Ein (nicht gezeigter) Impulsgeber ist in Verbindung

mit der Drehwelle des drehbaren Magnetkopfes vorgesehen, wobei ein Impuls von dem impulsgeber erzeugt wird, wenn der Kopf eine vorbestimmte winklige Drehstellung erreicht, um eine Fortschalt- oder Indexstellung zu liefern. Falls der Kopf synchron mit dem externen Synchronsignal nach der Wiedergabe gedreht wird, so wird auch die Zeitbestimmung oder Zeitsteuerung des externen Synchronsignals ebenso ausgewählt, daß sie sich in der Stellung befindet, in welcher der Kopf in der

vorbestimmten Winkelstellung ankommt.

Angenommen, daß der Impuls von dem Impulsgeber oder das externe Synchronsignal zum Zeitpunkt erhalten wird, zu welchem der Kopf die Stellung erreicht, welche mit der Einpunktstrichlinie 86 in den Fig. 11 und 12 gezeigt ist, so wird eine Zeitperiode & innerhalb welcher der Kopi die Spur Tv von der Stellung 86 bis zum Vertikalsynchronimpulsintervall Tvp abtastet, entsprechend der Stellung der Abtastspur relativ zu den Spuren Tv gemäß Fig. 13 geändert. Zwischen der Stellung, in welcher das Schutzbandgeräusch innerhalb eines Teil- 20 bildes erzeugt ist, und der Zeitperiode t besteht somit eine gegensei ge Beziehung. Unter Bedingungen, bei welchen das Schutzbandgeräusch nicht beim Adressensignal SA erzeugt ist, fällt die Zeitperiode t in einen konstanten Bereich.

Bezugnehmend auf Fig. 7 wird das Vertikalsynchronsignal von der Vertikalsynchronsignalabtrennschaltung 63 einer Detektorschaltung 87 zugeführt, welche auch mit dem Impuls von dem obenerwähnten Impulsgeber oder dem externen Synchronsignal gespeist wird, wel- 30 ches an eine Klemme 88 angelegt ist, die mit der Detektorschaltung 87 verbunden ist. Die Detektorschaltung 87 ermittelt somit, ob das Schutzbandgeräusch während der Zeitperiode t in dem Adressensignal S_A erzeugt ist oder nicht und liefert die ermittelte Information dem 35 Zeitimpulsgeber 75. Der Zeitimpuls von dem Zeitimpulsgeber 75 wird somit durch das Ausgangssignal von der Detektorschaltung 87 gestoppt, wenn das Schutzbandgeräusch im Ausgangssignal SA erzeugt ist, mit dem Ergebnis, daß kein VITC-Signal in die Speicher 65, 66 40 und 67 eingeschrieben wird, wobei die Torschaltung 84 durch das Ausgangssignal der Detektorschaltung 87 gesperrt wird, um somit eine Signalüberführung aus dem Schieberegister 82 zum Pufferspeicher 83 zu stoppen. Dies verhindert, daß ein fehlerhaftes Signal VITC-Signal während des Schutzbandgeräusches gelesen und dargestellt wird.

Infolge des Aufbaus des Aufzeichnungsgerätes und mit Rücksicht darauf, daß ein Adressensignal, das ein Videosignal angibt, als Digitalsignal in der Spur des Vi- 50 deosignals aufgezeichnet ist, können das Digitalsignal entsprechend der Adresse sogar bei einer Wiedergabebetriebsart mit Langsambewegung oder mit Stillstand positiv gelesen werden und somit das Mitschneiden des Videobandes wirksam durchgeführt werden.

Die Synchronimpulse und die anderen Impulse werden auch nicht verarbeitet oder aufbereitet, wobei jedoch das Adressensignal in die Horizontalzeilenperiode zwischen den Horizontalsynchronimpulsen innerhalb der Vertikalaustastlücke eingesetzt wird, so daß keine 60 unerwünschten Einflüsse auf die Signalaufbereitung oder Signalverarbeitung ausgeübt werden, wie z. B. ein Festklemmen des Videosignals,-Trennen des Synchronsignals usw., wobei auch die Wiedergabe in keiner Weise beeinträchtigt wird.

Die Bitfrequenz fa des eingesetzten VITC-Signals wird so gewählt, daß sie einem ganzzahligen Bruchteil der Hilfsträgerfrequenz fsc ist, so daß dann, falls das

Videosignal mit dem VITC-Signal durch die Zeitbasiskorrektureinrichtung hindurchgeleitet wird, das wiedergegebene Videosignal in den Speicher durch den Taktimpuls eingeschrieben wird, dessen Frequenz höher als die Farbhilfsträgerfrequenz, und zwar um eine ganze Zahl höher ist, worauf das eingeschriebene Signal in dem Speicher zur Korrektur seiner Zeitbasis ausgelesen wird. Die Taktbezugsgrößen sind somit in ihrer Zahl in jedem Bit des Adressensignals gleich, so daß der Zustand des Adressencodes durch die Zeitbasiskorrektur nicht beeinträchtigt wird.

Im Falle, daß dieselben Adressensignale in eine Vielzahl von Horizontalzeilenperioden gemäß den Zeichnungsfiguren eingesetzt sind und daß die Entscheidung auf der Basis der Analyse der Mehrheit der Ausgangssignale der Speicher zur Wiedergabe verwendet wird, ist die Möglichkeit, daß ein fehlerhaftes Auslesen durch Ausfälle oder andere Faktoren verursacht wird, wesent-

lich reduziert

Bei dem obigen Reispiel wird ein Signal, welcher dieselbe Zusammensetzung hat, wie jene des SMPTE-Zeitcodes, als VITC-Signal verwendet. In einem derartigen Signal und dann, wenn das Signal aus dem Band während der Langsambewegung oder in der Betriebsart mit Stillstand wiedergegeben wird, ändert sich die Bitfrequenz fr. durch Synchronisationsstörungen bzw. durch Zittern. Daher kann es von Bedeutung sein, daß sämtliche Bits nicht korrekt ausgelesen werden können, wenn die Frequenz des Taktimpulses konstant aufrechterhal-

Nun wird ein anderes Ausführungsbeispiel beschrieben, bei welchem das VITC-Signal von dem SMPTE-Signal modifiziert ist. Bei diesem Beispiel wird ein Signal verwendet, welches erhalten wird, indem die Synchronwörter aus dem SMPTE-Zeitcode beseitigt und Synchronimpulse addiert werden, umd das Signal genau und

präzise auszulesen.

Fig. 14 zeigt ein Beispiel der Impulsverläufe eines modifizierten VITC-Signals. In diesem modifizierten VITC-Signal sind an der Vorderseite bzw. der Rückseite jedes der 8 Zeitcodes, wovon jeder aus 4 Bits besteht, Synchronimpulse Ps angeordnet, welche einen Pegel haben, der höher als jener des VITC-Signals gemäß Fig. 14 ist. Die Breite des Synchronsignals Ps ist so ausgewählt, daß sie 1 Bit des Zeitcodes und der Benutzercode gieich ist. Da 16 Synchronimpulse Ps insgesamt verwendet werden, ist dementsprechend die Gesamtzahl der Bits des VITC-Signals einschließlich der Synchronimpulse Ps 80. Bei diesem Beispiel ist der erste Synchronimpuls Ps derart angeordnet, daß ein konstanter Wert Ps zwischen dem Horizontalsynchronimpuls PH und dem ersten Synchronimpuls Ps vorgesehen ist.

Bei dieser Modifikation ist es möglich, daß dann, wenn das Signal gelesen wird, der Taktimpulsgeber durch dieses Synchronimpulssignal Ps gesteuert werden kann, um somit die Schwingungsphase des Taktimpulses mit dem Synchronsignal Ps alle 5 Bits zu synchronisieren. Falls somit die Distanz zwischen den Bits schwankt, wird dennoch die Abweichung zwischen der Stellung jedes Bits und des entsprechenden Taktimpulses unter einen-konstanten-Bereich-fallen,-so daß-sämtliche Bits

genau gelesen werden können.

Fig. 15 zeigt ein Gerät oder eine Vorrichtung zur Erzeugung des VITC-Signals einschließlich der Synchronsignale Ps. wobei sie das VITC-Signal in ein Videosignal einsetzt und das Videosignal einschließlich des VITC-Signals aufzeichnet. Gemäß Fig. 15 empfängt eine Eingangsklemme 101 ein Videosignal, welches aufzuzeichnen ist. Das Videosignal, welches an die Eingangsklemme 101 angelegt wird, wird einer Addierschaltung 102 sowie einer Synchronsignalabtrennschaltung 103 zugeführt, von welcher das den Ausgleichsimpuls enthaltende Synchronsignalgemisch abgeleitet wird. Das Synchronsignalgemisch wird dann einem Vollbildimpulsgeber 104 zugeführt, welcher den Vollbildimpuls erzeugt und ihn einem Zeitzähler 105 zuführt. Das Ausgangssignal des Zeitzählers 105 wird einem Pufferspeicher 106 als Zeitcode zugeführt. Die Benutzerbits vom Benutzerbitgeber 110 werden dem Pufferspeicher 106 zugeführt.

Das Synchronsignalgemisch von der Synchronsignalabtrennschaltung 103 wird ferner einem monostabilen Multivibrator 112 zugeführt, welcher den Horizontalsynchronimpuls mit Ausnahme des Ausgleichsimpulses 15 erzeugt und ihn einem Phasenvergleicher 115 zuführt. Ein Osziliator 113 mit veränderlicher Frequenz führt sein Ausgangssignal einem Frequenzteiler 114 zu, welcher das angelegte Signal durch 455 teilt und das frequenzgeteilte Signal dem Phasenvergleicher 115 zu- 20 führt. Der Phasenvergleicher 115 vergleicht somit den Horizontalsynchronimpuls von dem monostabilen Multivibrator 113 mit der Phase des frequenzgeteilten Signals von dem Frequenzteiler 114 und führt die Fehlerspannung auf der Basis dieses Vergleiches dem Oszilla- 25 tor 113 mit veränderlicher Frequenz zur Steuerung der Ausgangsfrequenz des Oszillators zu. Die Schwingungsfrequenz des Oszillators 113 wird somit 455mal fH oder 2 Isc, während die Frequenz des frequenzgeteilten Signals von dem Frequenzteiler 114 fH sein wird. Der Fre- 30 quenzteiler 114 erzeugt an einer zweiten Ausgangsklemme einen Taktimpuls, welcher mit dem Horizontal. impuls synchronisiert ist und eine Frequenz hat, welche

$$f_B = \frac{1}{2} f_{SC}.$$

Da der Frequenzteiler 114 derselbe wie der in Fig. 6 gezeigte sein kann, wird seine Beschreibung jetzt nicht mehr wiederholt.

Der Taktimpuls mit einer Frequenz f_B von dem Frequenzteiler 114 wird einer Torschaltung 118 zugeführt. Das Synchronsignalgemisch von der Synchronsignalabtrennschaltung 103 wird ebenso einer Vertikalsynchronsignalabtrennschaltung 120 zugeführt, welche das Vertikalsynchronsignal erzeugt. Das Vertikalsynchronsignal und der Horizontalsynchronimpuls von dem monostabilen Multivibrator 112 werden einem Torimpulsgeber 121 zugeführt, welcher einen Torimpuls erzeugt und ihnder Torschaltung 118 zuführt. Der Impuls mit einer Frequenz von f_B wird somit durch die Torschaltung 118 in einer Videoperiode einer vorbestimmten Horizontalzeitenperiode-innerhalb der Vertikalaustastlücke abgeleitet.

Der von der Torschaltung 118 abgeleitete Impuls swird einer Torschaltung 122 zugeführt. Der Impuls von dem Torimpulsgeber 121 mit einer Horizontalzeilenperiode, in welche das VITC-Signal eingesetzt ist, sowie das Ausgangssignal aus geeigneten Bits von dem Frequenzteiler 114 werden einem Synchronsignalgeber 123 60 zugeführt, welcher das Synchronsignal-P_S alle 4 Bits erzeugt. Dieses Synchronsignal P_S wird der Torschaltung 122 zugeführt, welche dann den Impuls mit der Frequenz von P_S während einer Periode durchläßt, welche anders als jene ist, wenn kein Synchronsignal P_S vorliegt. 65 Der Impuls von der Torschaltung 122 wird dem Pufferspeicher. 106 zugeführt, während der Zeiteode und die Benutzerbits in der Anordnung gemäß Fig. 14 abgelei-

tet werden. Der abgeleitete Zeitcode und die Benutzerbits werden einer Addierschaltung 124 zugeführt, welche auch das Synchronsignal P_S von dem Synchronsignalgeber 123 empfängt, wobei dann die Signale beim Zweifachen des Pegels des Pegels "1" des Zeitcodes miteinander addiert werden.

Das VITC-Signal von der Addierschaltung 124 mit den Synchronsignalen Ps gemäß Fig. 14 wird der Addierschaltung 102 zugeführt und dort mit dem Videosignal addiert. Das Videosignalgemisch von der Addierschaltung 102 wird einem (nicht gezeigten) drehbaren Magnetkopf zugeführt und durch ihn als Videospuren Tyauf einem Magnetband aufgezeichnet.

Fig. 16 zeigt ein schematisches Blockschaltbild zur Veranschaulichung eines Beispieles der erfindungsgemäßen Schaltungsanordnung zum Auslesen des VITC-Signals, das in das Videosignal eingesetzt ist, welches in der Spur Tv aufgezeichnet ist. Diese Schaltungsanordnung liest dieses Signal und zeigt die Adresse der Videospur Tvan.

Eine Eingangsklemme 151 empfängt das wiedergegebene Videosignal von einem drehbaren Magnetkopf, der ein (nicht gezeigtes) Band abtastet, auf welchem die Videospur aufgezeichnet ist. Das wiedergegebene Videosignal wird einer Klemmschaltung 152 zugeführt, welche ein Vertikalintervallsignal oder ein Synchronsignalgemisch einschließlich des VITC-Signals erzeugt und es einem monostabilen Multivibrator 154 zuführt. Der monostabile Multivibrator 154 leitet den Horizontalsynchronimpuls mit Ausnahme des Ausgleichsimpulses ab, welcher einer phasenmäßig synchronisierten Schaltung oder einer sog. PLL-Schaltung 155 zugeführt wird.

Die phasenstarre Schaltung 155 erzeugt somit einen Klemmimpuls, der mit dem Horizontalsynchronimpuls synchronisiert ist, welcher der Klemmschaltung 152 zugeführt wird, um das wiedergegebene Videosignal in bezug auf Schwarzwertabhebung festzuklemmen.

Das wiedergegebene Videosignal, welches an dem Schwarzwertabhebungspegel von der Festklemmschaltung 152 festgeklemmt ist, wird einer Torschaltung 158 zugeführt. Das Synchronsignalgemisch von der Synchronsignalabtrennschaltung 153 wird dann einer Vertikalsynchronsignalabtrennschaltung 156 zugeführt, von welcher das Vertikalsynchronsignal abgeleitet wird. Dieses Vertikalsynchronsignal und der Horizontalsynchronimpuls von dem monostabilen Multivibrator 154 werden einem Torimpulsgeber 157 zugeführt. Der von diesem-Torimpulsgeber 157 abgeleitete Torimpuls wird einer Torschaltung 158 zugeführt, von welcher das VITC-Signal oder das Adressensignal SA gemäß Fig. 17A einschließlich des Synchronsignals Ps. das in die oben bestimmte Horizontalzeilenlücke eingesetzt wurde, abgeleitet wird Dieses VITC-Signal SA wird einem Pegelvergleicher 161 zugeführt und mit einer Spannung Vi verglichen, welche höher als der Schwarzwertabhebungspegel, jedoch niedriger als der Pegel "1' des Zeitcodes und des Benutzerbits ist. Dieser Pegelvergleicher 161 erzeugt einen Impuls PE welcher an der Stellung, an welcher der Zeitcode und die Benutzerbits "1" gemäß-Fig. 17E sind, "1" ist. Der Pegelvergleicher 161 führt den Impuls PE einem 5-Bit-Schieberegister 162

Das VITC-Signal S_A von der Torschaltung 158 wird auch einem weiteren Pegelvergleicher 163 zugeführt und darin mit einer Spannung V₂ verglichen, welche höher als der Pegel "1" des Zeitcodes und des Benutzerbits ist, jedoch niedriger als der Pegel des Synchronsi-

gnals Ps. Der Pegelvergleicher 163 erzeugt dann einen Impuls Pa welcher nur beim Synchronsignal Ps gemäß Fig. 17B zu "1" wird. Der Impuls Ps wird einem monostabilen Multivibrator 164 zugeführt, der einen Impuls Pc erzeugt. Der Impuls Pc steigt in der Richtung zu einem Zeitpunkt später als die Anstiegszeit des Impulses PB um eine konstante Periode an, wie aus Fig. 17C ersichtlich. Der Impuls P_C wird einem Taktimpulsgeber 165 zugeführt, welcher von einem Oszillator, beispielsweise einem Oszillator, der ein Schwingungssignal mit 10 der Grundfrequenz erzeugt, sowie einem Zähler besteht, der die Frequenz des Oszillatorsignals des Oszillators des Gebers 165 teilt und einen Taktimpuls Po mit der Frequenz der obigen Bitfrequenz fa gemäß Fig. 17D erzeugt. Der Taktimpuls Pc wird dem Zähler als sein Rückstellimpuls zugeführt, um somit eine Steuerung zu erzielen, so daß der ansteigende Abschnitt des Impulses Pc mit einem ansteigenden Impuls des Taktimpulses Po zusammenfällt. Der Taktimpuls Po wird einem Schieberegister 162 zugeführt, so daß der Impuls P_E von dem 20 Pegelvergleicher 161 zum Zeitpunkt abgetastet wird, zu welchem der Impuls Po nach oben steigt und zu welchen der Impuls P_E in das Schieberegister 162 eingeschrieben

Der Impuls P_B von dem Pegelvergleicher 163 wird 25 ferner einem Pufferspeicher 166 sowie einem Hexadezimalzāhler 167 zugeführt, welcher durch den Horizontalsynschronimpuls von dem monostabilen Multivibrator 154 zurückgestellt wird. Das Zählerausgangssignal des Hexadezimalzählers 167 wird einem Zeitimpulsgeber 30 168 zugeführt, welcher dann einen Zeitimpuls erzeugt und ihn einem Pufferspeicher 166 zuführt: Die 5-Bit-Ausgangssignale des Schieberegisters 162 mit Ausnahme des Ausgangssignals entsprechend dem Synchronsignal Ps oder die 4-Bit-Ausgangssignale von dem Schieheregister 162 werden somit dem Speicher 166 unter verschiedenen Adressen bei jedem Synchronsignal Ps zugeführt und in den Speicher eingeschrieben. Wenn sämtliche Ausgangssignale von dem Schieberegister 162 in den Pufferspeicher 166 eingeschrieben worden 40 sind, wird das Ausgangssignal des Speichers 166 einer Anzeigevorrichtung 169 zugeführt. Die Anzeigevorrichtung 169 zeigt die Adresse der Spur Ty an, welche durch den drehbaren Magnetkopf wiedergegeben wird, um ihre Vollbildzahl und ihre Stunde, Minute und Sekunde 45 in bezug auf die Identifizierung anzuzeigen.

Sogar dann, wenn die Breite eines Bits des VITC-Signals, wie oben beschrieben, schwankt, wird in diesem Falle die Phase des Taktimpulses P_D alle 5 Bits mit dem Impuls P_C auf der Basis des Synchronsignals P_S synchronisiert. Schwankungen der Stellung der Bits von der Phase des Taktimpulses P_D müssen daher nicht festgehalten und integriert werden. Die Anstiege, welche die Zeit des Taktimpulses P_D anzeigen, fallen stets unter die Breite des entsprechenden Bits, so daß kein fehlerhaftes

Auslesen stattfindet.

Bei dem obigen Beispiel wird als Synchronsignal P_S ein Signal verwendet, dessen Pegel höher als die Pegel der anderen Signale ist, wobei jedoch anstelle des Synchronsignals Synchronbits verwendet werden können, 60 deren Gesamtbitzahl größer als 80 ist und welche aus einer Anzahl von zwei Bits besteht, die jeweils eine "1" und eine nachfolgende "0" aufweisen.

Entsprechend dem obigen Beispiel kann das Synchronsignal des Pegels, welches von VITC-Signal getrennt werden kann, in das VITC-Signal bei jedem vorbestimmten Bit eingesetzt und dann aufgezeichnet werden, so daß durch die Korrektur der Phase des Taktsi-

gnals bei jedem vorbestimmten Bit durch Verwendung des Synchronsignals nach dem Lesen des VITC-Signals das Adressensignal sogar dann genau ausgelesen werden kann, wenn die Bitfrequenz des VITC-Signals durch Synchronisationsstörungen oder Zittern oder andere Geräuschfaktoren oder durch die Schwankung der Horizontalfrequenz bei einer Wiedergabe mit Langsambewegung oder mit Stillstand variiert.

Falls das Videosignal mit dem obigen VITC-Signal auf einem Magnetband aufgezeichnet ist, können sogar bei einer Wiedergabebetriebsart mit Langsambewegung oder mit Stillstand die Adressen eines wiedergegebenen Bildes identifiziert werden. Wenn jedoch die Bandgeschwindigkeit höher als die Normalgeschwindigkeit wird, beispielsweise höher als die zweifache Normalgeschwindigkeit, so ist es in der Tat an und für sich schwierig, das VITC-Signal zu lesen, obwohl es möglich ist, das SMPTE-Zeitcodesignal zu lesen, das in der Längsspur auf dem Band bei hohen Bandgeschwindigkeiten aufgezeichnet ist. Falls das VITC-Signal bzw. die SMPTE-Zeitcodesignale in Abhängigkeit von der Bandgeschwindigkeit selbsttätig ausgewählt sind, wird es daher unmöglich, durch die Wahl des entsprechenden Signals als Funktion der Bandgeschwindigkeit die Adresse wiedergegebenen Bildes genau zu decodieren und anzuzeigen. Fig. 18 zeigt ein erfindungsgemäßes Beispiel, bei welchem das VITC-Signal oder das SMPTE-Zeitcodesignal je nach der Bandgeschwindigkeit wahlweise wie-

Auf einem Magnetband 200 sind ein Videosignal, in welchem das VITC-Signal eingesetzt und das SMPTE-Zeitcodesignal angelegt ist bzw. Steuerspursignale als Schrägspuren bzw. Längsspuren aufgezeichnet. Das Videosignal wird durch die Magnetköpfe HA bzw. HB wiedergegeben, während das SMPTE-Zeitcodesignal durch den Magnetkopf Ho von der Längsspur wiedergegeben und ein Steuerspursignal durch einen Magnetkopf Hc von einer Längsspur wiedergegeben wird. Das wiedergegebene Videosignal von den Köpfen H_A und H_B wird einer Demodulatorschaltung 201 zugeführt, in ein Videosignal umgesetzt und einer Ausgangsklemme 202 zugeführt. Das wiedergegebene Videosignal von den Köpfen HA und HB wird ferner einer Schaltung 203 zum Lesen des VITC-Signals zugeführt, die dann das Adressensignal liest und einem seststehenden Kontakt S des Schaltkreises 204 zuführt. Das wiedergegebene SMPTE-Zeitcodesignal, das durch den Kopf Ho ausgelesen wird, wird einer SMPTE-Zeitcodesignalleseschaltung 205 zugeführt, welche auch das Adressensignal liest und dem anderen feststehenden Kontakt N des

Schaltkreises 204 zuführt. Das Steuerspursignal, welches durch den Magnetkopf Hc wiedergegeben wird, wird einem Bandgeschwindigkeitsdetektor 206 zugeführt, welcher die Frequenz des wiedergegebenen Steuerspursignals ermittelt. Wenn die ermittelte Bandgeschwindigkeit höher als eine vorbestimmte Geschwindigkeit ist, beispielsweise 1/4 der normalen Geschwindigkeit, so erzeugt der Bandgeschwindigkeitsdetektor 206 ein Ausgangssignal, welches dem Schaltkreis 204 zugeführt wird, um somit zu bewirken, daß sein beweglicher Kontakt sich bewegt und in Anlage mit dem feststehenden Kontakt N kommt, wobei der bewegliche Kontakt eine Stellung einnimmt, welche jener gemäß Fig. 18 entgegengesetzt ist. Das Ausgangssignal des Schaltkreises 204 wird einer Adressenanzeigevorrichtung 207 zugeführt.

Wenn die tatsächliche Bandgeschwindigkeit bei der in Fig. 17 gezeigten Schaltungsanordnung niedriger als die

vorbestimmte Geschwindigkeit ist, wird die Adressendarstellung oder Adressenanzeige von dem VITC-Signal abgeleitet, während dann, wenn die Bandgeschwindigkeit höher als die vorbestimmte Geschwindigkeit ist, die Adressenanzeige aus dem SMPTE-Zeitcodesignal 5 erhalten wird.

Bei dem in Fig. 18 gezeigten Beispiel wird die tatsächliche Bandgeschwindigkeit durch Auslesen des Steuerspursignals ermittelt, das durch den Magnetkopf Hc wiedergegeben worden ist, wobei es selbstverständlich 10 auch möglich ist, daß anstelle des Steuerspursignals, das durch den Magnetkopf Hc abgeleitet ist, das SMPTE-Zeitcodesignal, das durch den Kopf Ho wiedergegeben ist, einem Bandgeschwindigkeitsdetektor 206 zugeführt wird, wie dies durch gestrichelte Linien in Fig. 18 ge- 15 zeigt ist, wobei dann die Veränderung der Bitfrequenz des SMPTE-Zeitcodesignals durch den Detektor 206 ermittelt-werden kann, um die tatsächliche Bandgeschwindigkeit zu ermitteln.

Auch bei einem Videobandrecorder, bei welchem die 20 Bandgeschwindigkeit durch ein Befehlssignal gesteuert wird, kann das Befehlssignal verwendet werden, um den Schaltkreis 204 zu schalten.

Die obigen Beispiele entsprechen den Fällen, in welchen_das Videosignal des NTSC-Systems verwendet 25 werden, so daß die Bitfrequenz des VITC-Signals mit $1/n f_{SC}$ (worin n eine ganze Zahl ist) gewählt ist. Wenn Videosignale von anderen Systemen, wie z. B. den PAL-Systemen oder Systemen anderer Arten verwendet werden, ist es jedoch notwendig, die Bitfrequenz des 30 VITC-Signals angesichts der vorbestimmten Beziehung zur Horizontalfrequenz so zu wählen, daß sämtliche Bits des VITC-Signals in eine Horizontalzeilenperiode eingesetzt werden können, wie z. B. 455/4 fH.

Hierzu 10 Blatt Zeichnungen

Nummer: Int. Cl.4:

Z7 34 339

H 04 N 5/782

ZEICHNUNGEN BLATT 3

Nummer:

27 34 339

Int. Cl.4:

H 04 N 5/782

27 34 339 -Nummer: ZEICHNUNGEN BLATT 4 H 04 N 5/782 Int. Cl.4: Veröffentlichungstag: 19. November 1987

Nummer:

27 34 339 H 04 N 5/782

Int. Cl.4:

GEN BLATT 6

Nummer: Int. Cl.4:

27 34 339

H 04 N 5/782

Nummer:

27 34 339

int. Cl.4:

H 04 N 5/782

ZEICHNUNGEN BLATT 8

Nummer:

27 34 339

Int. CL4:

H 04 N 5/782

ZEICHNUNGEN BLATT 9

Nummer:

27 34 339

Int. CL4:

H 04 N 5/782

UNGEN BLATT 10

Nummer:

27 34 339

Int. CL4:

H 04 N 5/782

