CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/71 Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014		71

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	71

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	
	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	71

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise < 3 sfs only once in paper.

N(483.2, 537.92) or N(483.2, 23.2 ²)	B1	or $\frac{8.2}{\sqrt{8}}$ or $\frac{8.2^2}{8}$ seen or implied
$\frac{436-483.2}{\sqrt{537.92}}$ or $\frac{436-483.2}{23.2}$ (= -	M1	or $\frac{\frac{436}{8} - 60.4}{8.2/\sqrt{8}}$ standardising (no mixed methods)
2.035) $\Phi(\text{``-2.035''}) = 1 - \Phi(\text{``2.035''})$ = 0.021 or 2.1%	M1 A1 [4]	Correct area consistent with their working
	[Total: 4]	
$\frac{70}{69} \times 2.70 = 2.73913$	M1A1	
$3.61 \pm z \sqrt{\frac{"2.73913"}{70}}$	M1	or $3.61 \pm z \sqrt{\frac{2.70}{69}}$ M2A1(implied)
		without $\frac{70}{69}$: $3.61 \pm z \sqrt{\frac{2.70}{70}}$ M0A0M1
z = 1.96 3.22 to 4.00 (3 sf)	B1 A1 [5]	z = 1.96 B1 3.23 to 3.99(4.00) (3 sf) A1 Answer must be an interval
	[Total: 5]	
$H_0: \mu = 250$ $H_1: \mu > 250$	B1	Both hypotheses M1 for standardising, must have 3/40
$\frac{250.06 - 250}{0.2 \div \sqrt{40}}$	A1	M1 for standardising, must have √40. Accept cv method
= 1.90 comp with $z = 1.645$ Claim is justified or There is evidence that claim is true	M1 A1	For valid comparison "1.90" with 1.645 or area comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0
	[Total: 5]	
B(3500, 0.001) Poisson with mean = 3.5 n > 50 and $np < 5$	B1 B1 B1 [3]	or Po(3.5) Both. Or $n > 50$ and $\lambda < 5$ or $3.5 < 5$
$e^{-3.5}(1+3.5+\frac{3.52}{2}+\frac{3.53}{3!})$ = 0.537 (3 dp)	M1	Allow any λ
υ. <i>σογ (σ αρ)</i>	111 [4]	
	$\frac{436-483.2}{\sqrt{537.92}} \text{ or } \frac{436-483.2}{23.2} (=-\frac{1}{20.035})$ $\Phi(\text{``-2.035''}) = 1 - \Phi(\text{``2.035''})$ $= 0.021 \text{ or } 2.1\%$ $\frac{70}{69} \times 2.70 = 2.73913$ $3.61 \pm z \sqrt{\frac{\text{`'2.73913''}}{70}}$ $z = 1.96$ $3.22 \text{ to } 4.00 \text{ (3 sf)}$ $\frac{250.06-250}{0.2 \div \sqrt{40}}$ $= 1.90$ $\text{comp with } z = 1.645$ $\text{Claim is justified or There is evidence that claim is true}$ $\frac{1}{20.035} = \frac{1.645}{1.645}$ $\frac{1}{20.035} = \frac{1.645}{1$	$\frac{436-483.2}{\sqrt{537.92}} \text{ or } \frac{436-483.2}{23.2} (= -\frac{1}{20.35})$ $\Phi("-2.035") = 1 - \Phi("2.035")$ $= 0.021 \text{ or } 2.1\%$ $\frac{70}{69} \times 2.70 = 2.73913$ $3.61 \pm z \sqrt{\frac{"2.73913"}{70}}$ $M1$ $z = 1.96$ $3.22 \text{ to } 4.00 \text{ (3 sf)}$ $M1$ $\frac{1}{100}$ $\frac{1}{100$

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	71

5 (i	$0.25(1+4+9)-1.5^{2}$ (=1.25 AG)	B1	[1]	
(ii	$\frac{1.4 - 1.5}{\sqrt{\frac{5}{4} \div 300}} \qquad (= -1.549)$	M1		$\frac{1.4 - \frac{1}{600} - 1.5}{\sqrt{\frac{5}{4} \div 300}} \tag{= -1.523}$
	$\Phi(\text{``-1.549''}) = 1 - \Phi(\text{``1.549''})$ = 0.0607 (3 sf)	M1 A1	[3]	$\Phi(\text{``-1.523''}) = 1 - \Phi(\text{``1.523''})$ = 0.0639 (3 sf)
(iii	Large sample or large n $(\overline{X} \text{ (approx) normally distr)}$ or Central Limit Theorem	B1	[1]	
		[Tota	d: 5]	
6 (i	H ₀ : Rate = 0.9 H ₁ : Rate < 0.9 1 - P(17, 18, 19, 20) $1 - {}^{20}C_{17} \times 0.1^{3} \times 0.9^{17} + {}^{20}C_{18} \times 0.1^{2}$ $\times 0.9^{18} + 20 \times 0.1 \times 0.9^{19} + 0.9^{20})$ = 0.133 (3 sf)	B1 M1 M1	[4]	p = 0.9 p < 0.9 Use of B(20,0.1) Allow 1–P(18,19,20) or 1–P(16,17,18,19,20)
(ii	Type II H ₀ will not be rejected	B1 B1	[2]	or Stephan will conclude standard not fallen No contradictions
		[Tota	ıl: 6]	

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	71

7 (i)	$\int_{1}^{a} \frac{k}{x} dx = 1$	M1		Int $f(x)$ & equate to 1. Ignore limits
	$\int_{1}^{a} \frac{k}{x} dx = 1$ $k[\ln x]_{1}^{a} = 1$	A1		Correct integration and limits and = 1
	$ \begin{array}{ccc} & 1 & \\ & k \ln a = 1 & k = 1/\ln a \end{array} $		Г 2 1	AG
		A1	[3]	
(ii)	$\frac{1}{\ln a} \int_{1}^{a} 1 dx \qquad \text{or } k \int_{1}^{a} 1 dx$	M1		Int $xf(x)$. Ignore limits
	$= \frac{1}{\ln a} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix} \text{or } k[x] \begin{bmatrix} a \\ 1 \end{bmatrix}$	A1		Correct integration and limits (condone missing <i>k</i>)
	$=\frac{1}{\ln a}(a-1)$	A1	[3]	
(iii)	$\frac{1}{\ln a} \int_{1}^{m} \frac{1}{x} \mathrm{d}x = 0.5$	M1		Int $f(x)$ and equate to 0.5. Ignore limits
	$\frac{1}{\ln a} \left[\ln x \right]_{1}^{m} = 0.5$ $\frac{1}{\ln a} \ln m = 0.5$	A1		Correct integration and limits (1 to m or m to a) (condone missing k)
	$\ln a$ $\ln m = 0.5 \ln a$ $m = \sqrt{a}$	A1 A1	[4]	or $\ln m = \ln a^{0.5}$
		[Total	l: 10]	
8 (i)	V: cannot have neg value W: cannot have non-integer value	B1 B1	[2]	
(ii)	(a) $e^{-\lambda} = p$ and $\lambda e^{-\lambda} = 2.5p$ (Hence $\lambda = 2.5$ AG)	B1	[1]	or equiv explanation
(ii)	(b) $1 - e^{-2.5}(1 + 2.5 + \frac{2.52}{2})$ = 0.456 (3 sf)	M1 A1	[2]	Allow one end error
(iii)	$\Phi^{-1}(0.5793) = -0.2$	B1		
(111)	$N(\mu, \mu)$ seen or implied	M1		
	$\frac{40.5 - \mu}{\sqrt{\mu}} = \text{``-0.2''}$	M1		Allow no cc or incorrect cc
	$\mu + \text{``}-0.2\text{''}\sqrt{\mu} - 40.5 = 0$			
	$\sqrt{\mu} = \frac{"0.2" \pm \sqrt{"0.2"^2 + 4 \times 40.5}}{2}$	M1		For solving quadratic in $\sqrt{\mu}$ (or μ)
	(= 6.4647)			Ignore other answer for $\sqrt{\mu}$, but not for μ
	$\mu = 41.8 (3 \text{ sf})$	A1	[5]	
		[Total	l: 10]	

[Total for paper 50]