3. CHAPTER

THE STATE OF THE ART AND THE INTEGRATION OF PLM AND MES

Unfortunately, there are not many published studies in the matter of integration between PLM and MES systems. But there seems to be a consensus in the most probable effects of said integration. Those being synchronization and tighter tolerances.

As explained by D'Antonio et al. (2015), which focus on a case study involving the manufacturing of precision components for aeronautical applications, the first advantage expected by the deployment of the monitoring and control system is product quality improvement: sensors allow to detect, measure and monitor variables, events and situations that affect process performance or product quality.

One of the central problems regarding integrating PLM with any other system revolves around the ownership of information. A possible solution relies on database integration as well as the use of middleware between systems. As is written in Saaksvuori and Immonen, (2008). A reasonable objective is that information should always be updated in one place. Other systems can read information directly from the PLM databases, and if necessary, the required information can be replicated on the databases of other system, as depicted in Figure 7. Although it points this out mainly from the perspective of PLM-ERP integration, it is still very valuable from the perspective of PLM-MES integration because it is an example of how the better operation can be expected by working around systems in which files of different nature are loaded into a centralized PLM-ERP system.

Figure 7 Diagram of PLM integration (Saaksvuori and Immonen, 2008)

The middleware would therefore be a software framework to organize and connect all the information given to the system database in a user-friendly way. This sort of application is also referred to as integration application and, as specified by Stark (2015), these applications

enable exchange of product information between PLM applications (for example, between a CAD application and a CAE application). They also enable exchange of product information between PLM applications and other enterprise applications such as ERP and CRM.

In a very relevant fashion, this middleware line of thinking is expanded upon by (Ben Khedher et al., 2011). In their work regarding different systems architectures for the implementation of an integrated MES+PLM they describe the use of a mediation system in web service architecture. As depicted in Figure 8, the proposed architecture uses data exchange based on internet technologies to help companies, especially expanded companies, to take advantage of opportunities generated by the Web Services. The concept of "web service" means an application (program or software system) which is designed to support interoperable machine-to-machine interactions over a network, according to the definition of W3C (Ben Khedher et al., 2011).

Figure 8 Diagram of Web service architecture (Adapted from Ben Khedher et al., 2011)

The reason this expansion is so relevant from the perspective of this work is that the Odoo software works in a similar fashion through a similar web service architecture. In theory the Odoo software could act as the middleware working through the local network or hosted in the cloud and enacting the layer of integration that was previously mentioned.

3.1. How would this integration look like in practical terms

As mentioned in CHAPTER 2 the main idea of PLM is to manage change in all processes related to the product, and it does so mainly through the use of virtualization. The word virtualization here denotes representation of item of the real world to the digital space and, as one can imagine, there are several levels of abstraction through which a real object or process can be represented. As consequence there is no exact consensus regarding PLM of how deep and/or detailed the virtual representation must be to serve its purpose.

In an ideal world that would be the lowest form of abstraction which, essentially, would come down to a digital twin as explained in the CHAPTER 2. This is a '1 to 1' digital representation of every aspect of the production cycle where every part involved would have a digital representation that not only carry the physical characteristics of the item but also all its information produced over time. To this end, as explained in CHAPTER 2, MES takes a fundamental role in obtaining the real time information required for the DT even be possible.

For instance, a CNC machine would have a digital 3D model for simulation as well as a fully integrated list of all the pieces it produces, data regarding its current level of production, the current wear of its mechanical pieces, all other machines it relates to, history of all the alterations and improvements by which it was affected and many other aspects, all well packaged in an intuitive graphical user interface (GUI) that allows for maximum interaction.

Outside of fiction, we are yet to achieve such level of virtualization. It takes too much time and money to obtain and organize information to such a level of minutia, specially, the aspects that need to be inserted by hand, not to mention the subjectiveness of how this information can be integrated and interacted with. Regardless of that it is useful to identify, within the ideal, the aspects of most importance for this implementation.

Those are:

- The means of virtualization What sort of information is used to build the virtual items. This includes the metadata and files that are directly attached to the item. In an ideal fashion this would contain all possible information available about the item.
- The means of data input How this information is being loaded and organized. Ideally this information would be loaded into the system as automatically as possible, be it by means of MES during quality control or through the use of automated input tools like bar code scanners.

- The means of access How this information is presented to the users. Although more subjective than the previous aspects this is incredibly important to the way the system is interacted with. How intuitive it is the information availability plays right into the core strengths of PLM. Afterall, everything would be for nothing (even if all else would be perfect) if the only way to interact with the system were a command line interface that would make difficult for the end users to access the information.
- The means of integration How items and their contained information can interact and benefit from one another, i.e., the integration with other systems and key softwares. E.g., if an item has access to a cad file, there should be no need to fill in the metadata fields by hand. Hoe items can automatically affect other items also plays into this aspect.

4. CHAPTER

INTRODUCTION TO THE COMPANY AND PRODUCT

As one can imagine, one of the unique aspects of this work is its focus in one specific software solution that tend to be quite flexible in terms of ease of implementation to different sorts of business. This is contrary to most use cases regarding PLM implementation where the business case is the constant and the system is built around it. Nonetheless, in order to evaluate Odoo as a PLM+MES tool, it is important to consider an example. The advantage here is that a fictional company can be picked for this end maximizing the perceived effect of the software during a simulation.

It is considering all those previously mentioned systems that, for the sake of exemplification, the theoretical company was organized in the molds of Industry 4.0. This company is a recently founded small case manufacturing company that uses plastic injection molding as their primary mean of production and uses additive manufacturing and fast prototyping as part of their business strategy. As explained in chapter 2 those are great examples of the path that industry is taking regarding innovation where mass production is becoming slowly less important than product variety and time to market.

In order to maximize the tracking of change, most of its business are based on lower production batches on mainly automated machinery. This company focus in the production of injected plastic products and rely heavily in flexible machinery for setting production and prototyping. Having that in mind, it should be simple enough to simulate continuous improvement of both product and process to the extent of the evaluated software. Since this sort of everchanging production is extremely dependent on information management of all kinds, it must prove to be a perfect base for applied PLM+MES.

In this example the company has already implemented, since its recent foundation, the Odoo software and has taken all the necessary training and steps to its proper use. This allow the removal of the boundaries and limitations that are so common regarding implementation of the PLM+MES system to an already existing business, i.e., dependences on legacy systems administrative resistance to change or integration to old procedures. These are obviously important, but it is not within the scope of this work.

The company aims to produce a completely new product by the end of the year. After doing so, the company improved the process of production for said product. Once there is the need for product improvement, said improvement was performed as well.

The following diagram (Figure 9) will be taken into consideration as the path of product development and improvement:

Figure 9 Development diagram

This path aims to transmit to the reader an iterative approach towards development and improvement. The idea is followed by a product design for which a cycle of prototyping and redesign takes effect until satisfactory result is achieved. Then a similar cycle takes place regarding the production process. At the end of this stage initial development is done and the actual production can begin.

It is at this point that ways of stablishing the continuous improvement is important. In the case of this company, we are only considering two main types of upgrade paths, those being, product upgrade and process upgrade respectively.

4.1. The products and processes

Change and effect are the focus of the PLM+MES implementation as such the subject of said change would ideally be something that could afford a reasonable amount of freedom of design. Although the effects of a well implemented PLM+MES should be substantial even in rigid manufacturing environments, where the change is extremely limited, the system will produce much more perceivable change in an enterprise that thrives in innovation because there will be more opportunities to improve the system and gain feedback.

From the perspective of improvement, if you compare a product that is a result from sheet metal stamping (Figure 10) to an equivalent product that is the result of a CNC milling procedure (Figure 11) it is easy to perceive that the CNC milled product is more welcoming

to upgrades. While the stamping is low cost (by comparison) it depends on heavy high precision metal dyes that are extremely expensive to produce. This means that the cost of enacting change to it is much higher and thus the effect of a system that thrives on tracking change becomes limited.

Figure 10 Example of stamped AK74 pattern rifle receiver (Brownnells.com)

Figure 11 Example of milled AK74 pattern rifle receiver (sharpsbros.com)

In the case of this fictional company, it has been determined that the best way to exemplify the PLM+MES effects would be to have products designed around plastic injection molding. It might seem unintuitive at first to consider this manufacturing procedure, like the stamping procedure previously described, since it too depends on high precision molds during production. However, the main differences between the two is regarding ease of prototyping and the cost of upgrading.

Injection molding is a broad and complex field of engineering that involves a huge variety of materials and methods, little of which is of the concern of this work. It is however relevant to point out that for the most part, the pressures involved in the injection molding are one order of magnitude lower than the when we are dealing with steel; softer materials can be

used on their molds like CNC milled aluminum. At the same time, new advancements in the field of additive manufacturing have made possible to prototype plastic parts with much closer physical characteristics to the end result of a injected piece. Sometimes even prototype molds (Figure 12) can be used for a lower volume test runs during process upgrades.

Figure 12 Example of injection mold made using a 3D printer (thefabricator.com)

Additive manufacturing has become an incredible tool for ultra-flexible production. This mindset of continuous improvement, especially when regarding prototyping and iterative design, is a hallmark of the lean mentality that is so relevant in the modern industry.

As mentioned in the previous section, in this case study it is considered the creation of a new product and its production process by the fictional company. This product consists in a plastic small form factor computer case, composed of 3 different parts (Figure 13) that are expected to be designed and prototyped considering combination of additive manufacturing and CNC milling towards a plastic injection molding production.

Figure 13 3D exploded view of the theoretical product

4.1.1. Part A

PART-A (Figure 14) is the core structure of the computer case. It is expected to comport all the pieces necessary for the proper function of the small form factor computer in question. To this end a raw material A was selected to be Acrylonitrile Butadiene Styrene (ABS) this is an opaque thermoplastic polymer and an engineering grade plastic. It is commonly used to produce electronic parts such as phone adaptors, keyboard keys and wall socket plastic guards.

Figure 14 Isometric view of Part A

The main reasons for choosing this material specifically are its toughness, its good dimensional stability (resistance to change dimensions after cooling), its high impact resistance and surface hardness. Finally, it is also commonly available in the form of 3D printing filament for extrusion 3D printers which should prove to be quite useful during prototyping.

4.1.2. Parts B and C

Parts B and C are lids that should snap into place, closing the system. These are very simple pieces and require a certain level of elasticity so it can deform to assure a screwless assembly. These two identical parts are going to be made with Thermoplastic Polyurethane (TPU), because of its elastic nature and great tensile and tear strength. This sort of polymer is often used to produce parts that demand a rubber-like elasticity. TPU performs well at high temperatures and is commonly used in power tools, cable insulations and sporting goods. Finally, TPU is also available in the form of filament for 3D printers which, for the simulation, will be used for prototyping.

Figure 15 Parts B and C

4.1.3. Molds

Ideally all molds should be made of steel, for longevity of the mold and product quality. That being said, the injected plastics that are being selected for all parts are not so pressure dependent and their forms are not so complex, so it is assumed that aluminum molds made with a precision CNC machining should suffice to produce said parts.

It is also assumed that all molds are simple enough to be prototyped using 3D printing. Although this is not always true, it was determined representative enough for this simulation. The type of material used in those prototypes is high temperature resign cured using an SLA 3DPrinter. Additionally, the mold will be considered the main physical aspect to be developed when regarding the production process because it something that directly affects the production as well as something that can be produced in house and tracked as a product would.

4.2. What is analized during the simulation

Taking into consideration the diagram, shown in Figure 9, as well as the main aspects of a successful integration of PLM and MES as described in the section 3.1, this experiment aims to produce commentary regarding the following relevant questions in Table 1.