

马达驱动电路 HG7881C Ver: 1.0

概述:

HG7881C 是为控制和驱动直流电机设计的功率放大专用集成电路器件,将分立电路集成在单片 IC 之中,使外围器件成本降低,整机可靠性提高。该芯片具有良好的抗干扰性;两个输出端能直接驱动电机的正反向运动,它具有较大的电流驱动能力,同时它具有较低的输出饱和压降与静态电流;内置的钳位二极管能释放感性负载的反向冲击电流,使它在驱动继电器、直流电机、步进电机或开关功率管的使用上安全可靠。HG7881C被广泛应用于玩具汽车电机驱动、摇控飞机电机驱动、自动阀门电机驱动、电磁门锁驱动、数码相机摄象机马达、精密仪器等电路上。

特点:

- 静态电流小于 2uA。
- 极低的空载工作电流: 15±5 mA。
- 工作电源电压范围宽: 2.4V~10V。
- 内置钳位二极管。
- 内置紧急停止功能(当两个输入端同时为高电位时输出为制动功能,即"11"保护)。

引出端功能及符号:

引出端序号	符号	功能
1	ВО	后退输出端
2	VCC	电源端
3	VCC	电源端
4	FO	前进输出端
5	GND	地
6	BI	后退输入端
7	FI	前进输入端
8	GND	地

7脚 前进输入	6脚 后退输入	知 前进输出	1脚 后退输出	功能
Н	L	Н	L	前进
L	Н	L	Н	后退
Н	Н	L	L	制动
L	L	Open	Open	待机

<u>马达驱动电路</u> HG7881C Ver: 1.0

极限值

参数	符号	数值	单位
自身功耗	P_D	1	W
电源电压	Vcc	15	V
输出电流	Iout	1.5	A
工作温度	Top	-25 ~ +85	${\mathbb C}$
存储温度	Tstg	-55 ~ +125	$^{\circ}$

电特性

$(V_{CC}-Q_V$	Ta-25°C	除特殊说明	,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	14-7.16		

会 水	かた 口	<i>☆</i> /止		सी- मार्ग	日 上.	24 /2·
参数	符号	条件	最小	典型	最大	单位
工作电压	V_{OPR}		2.4		10	V
静态电流	Is	$V_{\rm i} = 0$			2	μΑ
空载工作电流	Icc	$Vcc = 6V V_i = 2V$ 负载开路	10	15	20	mΑ
最高输出高电平	VH_{OUT}	Vcc = 6V $Io = 800mA$	4.5	4.8	5.2	V
最低输出低电平	VL_{OUT}		0.3	0.5	0.9	V
最高输入高电平	V_{iH}		1.8	2	6	V
最低输入低电平	V_{iL}			0.5	0.7	V
低输入电流	I i	Vcc = 6V Vi = 2V		70	100	μΑ
		Vcc = 6V Vi = 3V		100	150	μΑ
工作持续电流	Iout	SOP8 封装		0.6	0.8	A
		DIP8 封装		1.0	1.1	A
峰值输出电流	I_{PEAK}				1.5	A
钳位二极管的漏电流	I_{LEAK}	$V_{CC}=9V$		-	30	μΑ
钳位二极管的压降	V_{D}	$I_{OUT}=0.4A$		-	1.7	V

管脚波形图:

马达驱动电路

功能框图

应用线路

马达驱动电路

HG7881C Ver: 1.0

外型图

8-SOP

