Homework 8, additional problems, solution set

1. Lgl(j) evaluates to True if $s1s_2...s_j$ forms a sequence of known words and to False otherwise. It is given by the following recursive expression.

$$Lgl(j) = D(s, 1, j) \bigvee_{1 \le i < j} [Lgl(i) \land D(s, i + 1, j)].$$

This is correct because the recursion considers for each i whether $s_{i+1} \dots s_j$ is a known word and if so recurses on the remaining initial portion of the string, if any.

- b. There are n possible recursive calls. In an efficient implementation, Lgl(j) performs O(j) non-recursive work, yielding a total $O(n^2)$ runtime. We set i=0 to correspond to the choice D(s,1,j)= True.
- c. For each recursive call we need to record which choice of the index i, if any, yields an outcome of True.
- 2.a. Let Win(i,k) output the maximum value of the first player's winnings when the remaining cards are $C_i, C_{i+1}, \ldots, C_k$ and the second player plays optimally; note that this value could be negative. It is helpful to compute $\operatorname{Tot}_{ik} = \sum_{j=i}^k v_j$ for $1 \le i \le k \le n$. Note that if we compute $\operatorname{Init}[k] = \sum_{j=1}^k v_j$ for $0 \le k \le n$, then we have $\operatorname{Tot}_{ik} = \operatorname{Init}[k] \operatorname{Init}[i-1]$ in O(1) additional time.

Win(i, k) is given by the following recurrence.

$$Win(i,j) = \begin{cases} \max\{Tot_{ik} - 2 \cdot Win(i+1,k), Tot_{ik} - 2 \cdot Win(i,k-1)\} & i > k \\ v_i & i = k \end{cases}$$

The reason this is correct is that if the first player takes C_i , the second player can obtain Win(i+1,k) but no more from the remaining cards, and if the first player takes C_k the second player can obtain Win(i,k-1). The first player obtains the remainder of Tot_{ik} , i.e the better of $Tot_{ik} - Win(i+1,k)$ and $Tot_{ik} - Win(i,k-1)$. So the difference in the winnings is as given in the recurrence.

- b. As $1 \le i \le k \le n$, there are $\frac{1}{2}n(n-1) = O(n^2)$ possible recursive calls. In an efficient implementation, each recursive call performs O(1) non-recursive work, yielding an overall $O(n^2)$ runtime.
- c. For each recursive call we need to record which choice is the better play, breaking ties arbitrarily.