Арифметика линейных расслоений

15 апреля 2024 года

ОПРЕДЕЛЕНИЕ: Пусть X — многообразие. Тогда линейные расслоения с операцией тензорного умножения образуют абелеву группу, называемую группой Пикара Pic(X).

ОПРЕДЕЛЕНИЕ: Пусть X — многообразие. Тогда линейные расслоения с операцией тензорного умножения образуют абелеву группу, называемую группой Пикара Pic(X).

ПРЕДЛОЖЕНИЕ: Если C — кривая, всякое линейное расслоение на ней имеет вид $\mathfrak{O}_C(D) = \otimes \mathfrak{O}_C(n_i x_i)$ для какого-то дивизора $D = \sum n_i x_i$.

ОПРЕДЕЛЕНИЕ: Пусть X — многообразие. Тогда линейные расслоения с операцией тензорного умножения образуют абелеву группу, называемую группой Пикара Pic(X).

ПРЕДЛОЖЕНИЕ: Если C — кривая, всякое линейное расслоение на ней имеет вид $\mathcal{O}_C(D) = \otimes \mathcal{O}_C(n_i x_i)$ для какого-то дивизора $D = \sum n_i x_i$.

ПРЕДЛОЖЕНИЕ: Группа Пикара гладкой проективной кривой изоморфна группе классов дивизоров. Степень является гомоморфизмом группы Пикара в целые числа.

ОПРЕДЕЛЕНИЕ: Пусть X — многообразие. Тогда линейные расслоения с операцией тензорного умножения образуют абелеву группу, называемую группой Пикара Pic(X).

ПРЕДЛОЖЕНИЕ: Если C — кривая, всякое линейное расслоение на ней имеет вид $\mathfrak{O}_C(D) = \otimes \mathfrak{O}_C(n_i x_i)$ для какого-то дивизора $D = \sum n_i x_i$.

ПРЕДЛОЖЕНИЕ: Группа Пикара гладкой проективной кривой изоморфна группе классов дивизоров. Степень является гомоморфизмом группы Пикара в целые числа.

ОПРЕДЕЛЕНИЕ: Множество линейных расслоений степени d обозначается Pic^d . Pic^0 является подгруппой, и всякое Pic^d как множество **неканонически** изоморфно Pic^0 . Отображение $C \to \mathrm{Pic}^1(C)$, $x \mapsto \mathfrak{O}_C(x)$, называется отображением Абеля — Якоби.

ПРЕДЛОЖЕНИЕ: Рассмотрим гладкую кубику C в вейерштрассовой нормальной форме $y^2 = x^3 + px + q$. Дифференциальная форма $\alpha = dy/x$ в ограничении на нее не имеет нулей и полюсов.

ПРЕДЛОЖЕНИЕ: Рассмотрим гладкую кубику C в вейерштрассовой нормальной форме $y^2 = x^3 + px + q$. Дифференциальная форма $\alpha = dy/x$ в ограничении на нее не имеет нулей и полюсов.

Выберем точку $p\in C$, и введем функцию $f(z)=\int_p^z \alpha$. Она определена с точностью до решетки $\Lambda=\left\{\int_\gamma \alpha:\gamma\in H_1(C,\mathbb{Z})\right\}\subset\mathbb{C}.$

ПРЕДЛОЖЕНИЕ: Рассмотрим гладкую кубику C в вейерштрассовой нормальной форме $y^2 = x^3 + px + q$. Дифференциальная форма $\alpha = dy/x$ в ограничении на нее не имеет нулей и полюсов.

Выберем точку $p\in C$, и введем функцию $f(z)=\int_p^z \alpha.$ Она определена с точностью до решетки $\Lambda=\left\{\int_\gamma \alpha:\gamma\in H_1(C,\mathbb{Z})\right\}\subset\mathbb{C}.$

TEOPEMA: (Абель, ок. 1825) Это отображение — аналитический изоморфизм C с фактором \mathbb{C}/Λ .

ПРЕДЛОЖЕНИЕ: Рассмотрим гладкую кубику C в вейерштрассовой нормальной форме $y^2 = x^3 + px + q$. Дифференциальная форма $\alpha = dy/x$ в ограничении на нее не имеет нулей и полюсов.

Выберем точку $p\in C$, и введем функцию $f(z)=\int_p^z \alpha.$ Она определена с точностью до решетки $\Lambda=\left\{\int_\gamma \alpha:\gamma\in H_1(C,\mathbb{Z})\right\}\subset\mathbb{C}.$

TEOPEMA: (Абель, ок. 1825) Это отображение — аналитический изоморфизм C с фактором \mathbb{C}/Λ .

Для произвольной кривой C выберем базис $\alpha_1, \dots, \alpha_g$ в пространстве дифференциальных форм. Он определяет решетку

$$\Lambda = \left\{ \left(\int_{\gamma} \alpha_1, \dots, \int_{\gamma} \alpha_g \right) : \gamma \in H_1(C, \mathbb{Z}) \right\} \subset \mathbb{C}^g.$$

Рассмотрим отображение $z\mapsto \left(\int_p^z \alpha_1,\dots,\int_p^z \alpha_g\right)\mod \Lambda.$

ПРЕДЛОЖЕНИЕ: Рассмотрим гладкую кубику C в вейерштрассовой нормальной форме $y^2 = x^3 + px + q$. Дифференциальная форма $\alpha = dy/x$ в ограничении на нее не имеет нулей и полюсов.

Выберем точку $p\in C$, и введем функцию $f(z)=\int_p^z \alpha.$ Она определена с точностью до решетки $\Lambda=\left\{\int_\gamma \alpha:\gamma\in H_1(C,\mathbb{Z})\right\}\subset\mathbb{C}.$

TEOPEMA: (Абель, ок. 1825) Это отображение — аналитический изоморфизм C с фактором \mathbb{C}/Λ .

Для произвольной кривой C выберем базис $\alpha_1, \dots, \alpha_g$ в пространстве дифференциальных форм. Он определяет решетку

$$\Lambda = \left\{ \left(\int_{\gamma} \alpha_1, \dots, \int_{\gamma} \alpha_g \right) : \gamma \in H_1(C, \mathbb{Z}) \right\} \subset \mathbb{C}^g.$$

Рассмотрим отображение $z\mapsto \left(\int_p^z \alpha_1,\dots,\int_p^z \alpha_g\right)\mod \Lambda.$

ТЕОРЕМА: (Абеля — Якоби) Многообразие \mathbb{C}^g/Λ (якобиан кривой C) аналитически изоморфно ${\rm Pic}^0(C)$. Отображение выше при этом переводится в отображение Абеля — Якоби $z\mapsto \mathfrak{O}_C(p-z)\in {\rm Pic}^0(C)$. Выбор точки $p\in C$ соответствует выбору изоморфизма ${\rm Pic}^0(C)\stackrel{\sim}{\to} {\rm Pic}^1(C)$.

Аналогично отображению Абеля — Якоби $C \to \operatorname{Pic}^1(C)$ можно рассмотреть отображения $C \times C \to \operatorname{Pic}^2(C)$ и т. д. Поскольку размерность $\operatorname{Pic}^d(C)$ одна и та же, а размерность C^d растет, можно ожидать, что рано или поздно она покроет весь Pic^d .

Аналогично отображению Абеля — Якоби $C \to \operatorname{Pic}^1(C)$ можно рассмотреть отображения $C \times C \to \operatorname{Pic}^2(C)$ и т. д. Поскольку размерность $\operatorname{Pic}^d(C)$ одна и та же, а размерность C^d растет, можно ожидать, что рано или поздно она покроет весь Pic^d .

ОПРЕДЕЛЕНИЕ: Симметрической степенью кривой S^dC называется фактор C^d по действию симметрической группы. Отображение Абеля — Якоби пропускается через нее.

Аналогично отображению Абеля — Якоби $C \to \operatorname{Pic}^1(C)$ можно рассмотреть отображения $C \times C \to \operatorname{Pic}^2(C)$ и т. д. Поскольку размерность $\operatorname{Pic}^d(C)$ одна и та же, а размерность C^d растет, можно ожидать, что рано или поздно она покроет весь Pic^d .

ОПРЕДЕЛЕНИЕ: Симметрической степенью кривой S^dC называется фактор C^d по действию симметрической группы. Отображение Абеля — Якоби пропускается через нее.

TEOPEMA: (Якоби об обращении) Если $d \geqslant g$, то отображение $S^dC \to {\rm Pic}^d(C)$ сюръективно, а слои его — проективные пространства. \blacksquare

Аналогично отображению Абеля — Якоби $C \to \operatorname{Pic}^1(C)$ можно рассмотреть отображения $C \times C \to \operatorname{Pic}^2(C)$ и т. д. Поскольку размерность $\operatorname{Pic}^d(C)$ одна и та же, а размерность C^d растет, можно ожидать, что рано или поздно она покроет весь Pic^d .

ОПРЕДЕЛЕНИЕ: Симметрической степенью кривой S^dC называется фактор C^d по действию симметрической группы. Отображение Абеля — Якоби пропускается через нее.

TEOPEMA: (Якоби об обращении) Если $d \geqslant g$, то отображение $S^dC \to \operatorname{Pic}^d(C)$ сюръективно, а слои его — проективные пространства.

ПРИМЕР: Пусть C — плоская кубика. Отображение Абеля — Якоби $S^2C \to \operatorname{Pic}^2(C) \cong C$ можно описать так: (x,y) отправляется в третью точку пересечения xy с C. Его слои — проективные прямые.

Аналогично отображению Абеля — Якоби $C \to \operatorname{Pic}^1(C)$ можно рассмотреть отображения $C \times C \to \operatorname{Pic}^2(C)$ и т. д. Поскольку размерность $\operatorname{Pic}^d(C)$ одна и та же, а размерность C^d растет, можно ожидать, что рано или поздно она покроет весь Pic^d .

ОПРЕДЕЛЕНИЕ: Симметрической степенью кривой S^dC называется фактор C^d по действию симметрической группы. Отображение Абеля — Якоби пропускается через нее.

TEOPEMA: (Якоби об обращении) Если $d \geqslant g$, то отображение $S^dC \to \operatorname{Pic}^d(C)$ сюръективно, а слои его — проективные пространства.

ПРИМЕР: Пусть C — плоская кубика. Отображение Абеля — Якоби $S^2C \to \operatorname{Pic}^2(C) \cong C$ можно описать так: (x,y) отправляется в третью точку пересечения xy с C. Его слои — проективные прямые.

ПРИМЕР: Пусть C — кривая рода два. Известно, что она обладает инволюцией $\iota\colon C\to C$ с шестью неподвижными точками, фактор по которой — P^1 . Тогда отображение $S^2C\to \mathsf{Pic}^2(C)$ — изоморфизм вне локуса пар $(p,\iota(p))$, который она стягивает в точку. Иначе говоря, якобиан кривой рода два получается из S^2C сдутием одной рациональной кривой.

Слои отображения Абеля — Якоби

ЗАМЕЧАНИЕ: Если $\mathfrak{O}(p_1+p_2+\cdots+p_d)\cong L$, то в $\Gamma(L)$ есть сечение s с $(s)=p_1+p_2+\cdots+p_d$, и оно единственно с точностью до пропорциональности.

Слои отображения Абеля — Якоби

ЗАМЕЧАНИЕ: Если $\mathfrak{O}(p_1+p_2+\cdots+p_d)\cong L$, то в $\Gamma(L)$ есть сечение s с $(s)=p_1+p_2+\cdots+p_d$, и оно единственно с точностью до пропорциональности.

ПРЕДЛОЖЕНИЕ: Слой отображения $S^dC \to {\sf Pic}^d(C)$ над точкой L изоморфен ${\sf P}\Gamma(L,C)$.

Слои отображения Абеля — Якоби

ЗАМЕЧАНИЕ: Если $\mathcal{O}(p_1+p_2+\cdots+p_d)\cong L$, то в $\Gamma(L)$ есть сечение s с $(s)=p_1+p_2+\cdots+p_d$, и оно единственно с точностью до пропорциональности.

ПРЕДЛОЖЕНИЕ: Слой отображения $S^dC \to {\sf Pic}^d(C)$ над точкой L изоморфен ${\sf P}\Gamma(L,C)$.

ЗАМЕЧАНИЕ: Таким образом, если доказать, что отображение $S^dC o {\sf Pic}^d(C)$ сюръективно, то получим $\dim \Gamma(L,C) \geqslant d-g+1$. Это и есть неравенство Римана.

Якобиан Р. Д.

Почему размерности сходятся

ЗАМЕЧАНИЕ: Чтобы якобиан кривой был компактным, необходимо, чтобы решетка Λ имела ранг 2g. Он равен рангу группы первых гомологий C, рассматриваемой топологически как сфера с ручками.

Якобиан Р. Д.

Почему размерности сходятся

ЗАМЕЧАНИЕ: Чтобы якобиан кривой был компактным, необходимо, чтобы решетка Λ имела ранг 2g. Он равен рангу группы первых гомологий C, рассматриваемой топологически как сфера с ручками.

TEOPEMA: Размерность пространства регулярных алгебраических 1- форм на гладкой проективной комплексной кривой C равна числу ручек у C как топологической поверхности.

Удобно рассматривать двойственное пространство когомологий.

Почему размерности сходятся

ЗАМЕЧАНИЕ: Чтобы якобиан кривой был компактным, необходимо, чтобы решетка Λ имела ранг 2g. Он равен рангу группы первых гомологий C, рассматриваемой топологически как сфера с ручками.

TEOPEMA: Размерность пространства регулярных алгебраических 1- форм на гладкой проективной комплексной кривой C равна числу ручек у C как топологической поверхности.

Удобно рассматривать двойственное пространство когомологий.

ОПРЕДЕЛЕНИЕ: Структурой Ходжа веса 1 называется пара $V_{\mathbb{Z}}\cong \mathbb{Z}^{2g}$ и подпространства $V^{1,0}\subset V_{\mathbb{Z}}\otimes \mathbb{C}$ такого, что $V^{0,1}=\overline{V^{1,0}}$ пересекает $V^{1,0}$ только по нулевому вектору.

Почему размерности сходятся

ЗАМЕЧАНИЕ: Чтобы якобиан кривой был компактным, необходимо, чтобы решетка Λ имела ранг 2g. Он равен рангу группы первых гомологий C, рассматриваемой топологически как сфера с ручками.

TEOPEMA: Размерность пространства регулярных алгебраических 1-форм на гладкой проективной комплексной кривой C равна числу ручек у C как топологической поверхности.

Удобно рассматривать двойственное пространство когомологий.

ОПРЕДЕЛЕНИЕ: Структурой Ходжа веса 1 называется пара $V_{\mathbb{Z}}\cong \mathbb{Z}^{2g}$ и подпространства $V^{1,0}\subset V_{\mathbb{Z}}\otimes \mathbb{C}$ такого, что $V^{0,1}=\overline{V^{1,0}}$ пересекает $V^{1,0}$ только по нулевому вектору. Якобианом структуры Ходжа называется фактор $V^{1,0}/\Lambda$, где Λ — образ $V_{\mathbb{Z}}$ при проекции вдоль $V^{0,1}$. Это комплексный тор, и любой комплексный тор получается таким образом.

Почему размерности сходятся

ЗАМЕЧАНИЕ: Чтобы якобиан кривой был компактным, необходимо, чтобы решетка Λ имела ранг 2g. Он равен рангу группы первых гомологий C, рассматриваемой топологически как сфера с ручками.

TEOPEMA: Размерность пространства регулярных алгебраических 1-форм на гладкой проективной комплексной кривой C равна числу ручек у C как топологической поверхности.

Удобно рассматривать двойственное пространство когомологий.

ОПРЕДЕЛЕНИЕ: Структурой Ходжа веса 1 называется пара $V_{\mathbb{Z}}\cong \mathbb{Z}^{2g}$ и подпространства $V^{1,0}\subset V_{\mathbb{Z}}\otimes \mathbb{C}$ такого, что $V^{0,1}=\overline{V^{1,0}}$ пересекает $V^{1,0}$ только по нулевому вектору. Якобианом структуры Ходжа называется фактор $V^{1,0}/\Lambda$, где Λ — образ $V_{\mathbb{Z}}$ при проекции вдоль $V^{0,1}$. Это комплексный тор, и любой комплексный тор получается таким образом.

ЗАМЕЧАНИЕ: Если первые когомологии **сферы с ручками** — это просто **решетка**, то первые когомологии **комплексной кривой** — **структура Ходжа**.

ЗАМЕЧАНИЕ: Первые когомологии сферы с ручками — это не просто решетка, а решетка с симплектической формой: $\omega(\alpha,\beta) = \int \alpha \wedge \beta$. Она двойствена форме пересечения на циклах в H_1 .

ЗАМЕЧАНИЕ: Первые когомологии сферы с ручками — это не просто решетка, а решетка с симплектической формой: $\omega(\alpha, \beta) = \int \alpha \wedge \beta$. Она двойствена форме пересечения на циклах в H_1 .

ПРЕДЛОЖЕНИЕ: Если C — кривая, то $\omega(\alpha,\beta)=0$ для любых $\alpha,\beta\in H^{1,0}$, и $\omega(\alpha,\bar{\alpha})>0$ для любого ненулевого $\alpha\in H^{1,0}$. Это нетривиальные условия на то, какое положение может принимать пространство $H^{1,0}$. Они называются соотношениями Ходжа — Римана.

ЗАМЕЧАНИЕ: Первые когомологии сферы с ручками — это не просто решетка, а решетка с симплектической формой: $\omega(\alpha,\beta) = \int \alpha \wedge \beta$. Она двойствена форме пересечения на циклах в H_1 .

ПРЕДЛОЖЕНИЕ: Если C — кривая, то $\omega(\alpha,\beta)=0$ для любых $\alpha,\beta\in H^{1,0}$, и $\omega(\alpha,\bar{\alpha})>0$ для любого ненулевого $\alpha\in H^{1,0}$. Это нетривиальные условия на то, какое положение может принимать пространство $H^{1,0}$. Они называются соотношениями Ходжа — Римана.

ПРИМЕР: Пусть E — эллиптическая кривая. Тогда $H^1(E,\mathbb{Z})$ — стандартная решетка с образующими $e_1,e_2,\;\omega(e_1,e_2)=1.$ Если $\alpha=a_1e_1+a_2e_2$ — класс алгебраической 1-формы, то $\omega(\alpha,\bar{\alpha})=a_1\bar{a_2}+a_2\bar{a_1}>0.$ Значит, возможные $H^{1,0}$ образуют комплексный диск в $P(H^1\otimes\mathbb{C})$, что соответствует параметризации эллиптических кривых точками верхней полуплоскости.

ЗАМЕЧАНИЕ: Первые когомологии сферы с ручками — это не просто решетка, а решетка с симплектической формой: $\omega(\alpha,\beta) = \int \alpha \wedge \beta$. Она двойствена форме пересечения на циклах в H_1 .

ПРЕДЛОЖЕНИЕ: Если C — кривая, то $\omega(\alpha,\beta)=0$ для любых $\alpha,\beta\in H^{1,0}$, и $\omega(\alpha,\bar{\alpha})>0$ для любого ненулевого $\alpha\in H^{1,0}$. Это нетривиальные условия на то, какое положение может принимать пространство $H^{1,0}$. Они называются соотношениями Ходжа — Римана.

ПРИМЕР: Пусть E — эллиптическая кривая. Тогда $H^1(E,\mathbb{Z})$ — стандартная решетка с образующими $e_1,e_2,\;\omega(e_1,e_2)=1.$ Если $\alpha=a_1e_1+a_2e_2$ — класс алгебраической 1-формы, то $\omega(\alpha,\bar{\alpha})=a_1\bar{a_2}+a_2\bar{a_1}>0.$ Значит, возможные $H^{1,0}$ образуют комплексный диск в $P(H^1\otimes\mathbb{C})$, что соответствует параметризации эллиптических кривых точками верхней полуплоскости.

ПРИМЕР: Для кривой рода два условие $\omega|_{H^{1,0}}=0$ задает гиперповерхность в грассманиане ${\rm Gr}(2,H^1)\cong {\rm Gr}(2,4)$. Действительно, кривые рода два образуют трехпараметрическое семейство: они получаются как двойные накрытия ${\sf P}^1$ с ветвлением в шести точках, из которых три можно считать фиксированными.

ЗАМЕЧАНИЕ: Рассмотрим комплексный тор \mathbb{C}^g/Λ , и пусть $f: \mathbb{C}^g/\Lambda \to \mathbb{C} \, \mathsf{P}^n$ — какое-то вложение. Пересекая его с плоскостью подходящей размерности, имеем кривую C. Определим форму ψ на $V_{\mathbb{Z}}$ как $\psi(\alpha,\beta) = \int_C \alpha \wedge \beta$. Она удовлетворяет соотношениям Ходжа — Римана.

ЗАМЕЧАНИЕ: Рассмотрим комплексный тор \mathbb{C}^g/Λ , и пусть $f: \mathbb{C}^g/\Lambda \to \mathbb{C} \, \mathsf{P}^n$ — какое-то вложение. Пересекая его с плоскостью подходящей размерности, имеем кривую C. Определим форму ψ на $V_{\mathbb{Z}}$ как $\psi(\alpha,\beta) = \int_C \alpha \wedge \beta$. Она удовлетворяет соотношениям Ходжа — Римана.

TEOPEMA: Такая целочисленная форма ψ на структуре Ходжа веса один называется поляризацией.

Якобиан Р. Д.

Поляризации

ЗАМЕЧАНИЕ: Рассмотрим комплексный тор \mathbb{C}^g/Λ , и пусть $f: \mathbb{C}^g/\Lambda \to \mathbb{C} \, \mathsf{P}^n$ — какое-то вложение. Пересекая его с плоскостью подходящей размерности, имеем кривую C. Определим форму ψ на $V_{\mathbb{Z}}$ как $\psi(\alpha,\beta) = \int_C \alpha \wedge \beta$. Она удовлетворяет соотношениям Ходжа — Римана.

TEOPEMA: Такая целочисленная форма ψ на структуре Ходжа веса один называется поляризацией. Комплексный тор допускает вложение в проективное пространство тогда и только тогда, когда на нем существует поляризация. В этом случае он называется абелевым многообразием.

ЗАМЕЧАНИЕ: Рассмотрим комплексный тор \mathbb{C}^g/Λ , и пусть $f: \mathbb{C}^g/\Lambda \to \mathbb{C} \, \mathsf{P}^n$ — какое-то вложение. Пересекая его с плоскостью подходящей размерности, имеем кривую C. Определим форму ψ на $V_{\mathbb{Z}}$ как $\psi(\alpha,\beta) = \int_C \alpha \wedge \beta$. Она удовлетворяет соотношениям Ходжа — Римана.

TEOPEMA: Такая целочисленная форма ψ на структуре Ходжа веса один называется поляризацией. Комплексный тор допускает вложение в проективное пространство тогда и только тогда, когда на нем существует поляризация. В этом случае он называется абелевым многообразием.

ЗАМЕЧАНИЕ: Поскольку ψ может рассматриваться как отображение $V_{\mathbb{Z}} \to V_{\mathbb{Z}}^*$, поляризация задает отображение из комплексного тора в **двой-ственный**. Поляризация называется **главной**, если это отображение — изоморфизм.

ЗАМЕЧАНИЕ: Рассмотрим комплексный тор \mathbb{C}^g/Λ , и пусть $f: \mathbb{C}^g/\Lambda \to \mathbb{C} \, \mathsf{P}^n$ — какое-то вложение. Пересекая его с плоскостью подходящей размерности, имеем кривую C. Определим форму ψ на $V_{\mathbb{Z}}$ как $\psi(\alpha,\beta) = \int_C \alpha \wedge \beta$. Она удовлетворяет соотношениям Ходжа — Римана.

TEOPEMA: Такая целочисленная форма ψ на структуре Ходжа веса один называется поляризацией. Комплексный тор допускает вложение в проективное пространство тогда и только тогда, когда на нем существует поляризация. В этом случае он называется абелевым многообразием.

ЗАМЕЧАНИЕ: Поскольку ψ может рассматриваться как отображение $V_{\mathbb{Z}} \to V_{\mathbb{Z}}^*$, поляризация задает отображение из комплексного тора в **двой-ственный**. Поляризация называется **главной**, если это отображение — изоморфизм.

ЗАМЕЧАНИЕ: Гиперплоское сечение якобиана легко описать: в Pic^{g-1} он представляется как образ $S^{g-1}C$. Он называется Θ -дивизором.

ЗАМЕЧАНИЕ: Рассмотрим комплексный тор \mathbb{C}^g/Λ , и пусть $f: \mathbb{C}^g/\Lambda \to \mathbb{C} \, \mathsf{P}^n$ — какое-то вложение. Пересекая его с плоскостью подходящей размерности, имеем кривую C. Определим форму ψ на $V_{\mathbb{Z}}$ как $\psi(\alpha,\beta) = \int_C \alpha \wedge \beta$. Она удовлетворяет соотношениям Ходжа — Римана.

TEOPEMA: Такая целочисленная форма ψ на структуре Ходжа веса один называется поляризацией. Комплексный тор допускает вложение в проективное пространство тогда и только тогда, когда на нем существует поляризация. В этом случае он называется абелевым многообразием.

ЗАМЕЧАНИЕ: Поскольку ψ может рассматриваться как отображение $V_{\mathbb{Z}} \to V_{\mathbb{Z}}^*$, поляризация задает отображение из комплексного тора в **двой-ственный**. Поляризация называется **главной**, если это отображение — изоморфизм.

ЗАМЕЧАНИЕ: Гиперплоское сечение якобиана легко описать: в Pic^{g-1} он представляется как образ $S^{g-1}C$. Он называется Θ -дивизором. Любой якобиан — главно поляризованное абелево многообразие, но обратное далеко не верно. Описание якобианов среди главно поляризованных абелевых многообразий составляет проблему Шоттки; алгебраического решения она не имеет.