1 Clustering: Mixture of Multinomials(2 points)

1.1 MLE for multinomial(1 point)

Derive the maximum-likelihood estimator for the parameter $\mu=(\mu_i)_{i=1}^d$ of a multinomial distribution:

$$P(x|\mu) = \frac{n!}{\prod_{i} x_{i}!} \prod_{i} \mu_{i}^{x_{i}}, \quad i = 1, \cdots, d$$
 (1)

where $x_i \in \mathbb{N}$, $\sum_i x_i = n$ and $0 < \mu_i < 1$, $\sum_i \mu_i = 1$.

<u>~</u>	Date.		
1.1 MCE			
		·	
$=\frac{n!}{\prod_i x_i} \prod_i u_i^{x_i}$			
$= \log \left(\frac{\alpha!}{\Pi_i x_i!} \Pi_i u_i^{x_i} \right)$			
= log(nb) - log(Tixi) + log(uixi)			
= log(n!)- 2; log(xi)+ 2; x; log(u;)			
$S, t \to X; \in N, \leq X; = 0$			
$ = \log(n!) - \sum_{i} \log(x_{i}) + n \log(u_{i}) $			

Lagrange	Medhod S.T→ \(\xi\): = = \(\xi\): = 0	
$\angle(u_i,x_i,\lambda)$	= log(nb)- 5; log(xi)+nlog(ui)-1 (5)	ui-1)
de - 0	,	
do;		

$$=$$
 0 + 0 + $\frac{0}{4}$ + $1.1 = 0$

$$\frac{1}{\sqrt{1 - \frac{1}{2}}} = i\lambda = \frac{1}{2}$$

$$\frac{n}{\lambda} = 1 \Leftrightarrow n = \lambda$$

1.2 EM for mixture of multinomials(1 point)

	No.
EM Algorithm	Date.
E-Step	
For every document (d), use hy	= p (cd) It (+) (+)
PlCd=k T(+), (+) TE TUK,	m(x4)
M-Step Cluster label distri	: noitud,
(1+1) = \(\lambda d=1 \lambda d_1 k \in \mu(\tal)	
E Adik M(xd)	
d=1	
Cluster Proposition:	
D	
T(+1) = } Adik	
D	

2 PCA(2 points)

2.1 Minimum Error Formulation(2 points)

	NO.
the first process of the state	DSIS.
2.1 PCA	·····································
$J = \frac{1}{N} \sum_{n=1}^{N} 11 \times_{n} - \sum_{i=1}^{N} 2_{ni} u_{i} + \sum_{i=d+1}^{N} b_{i}$	
$\frac{dJ}{dz_{ni}} = 0 \Leftrightarrow \frac{1}{N} (X_{n}^{T}; v_{i} - Z_{ni}) = 0$	
Result	
$Z_{ni} = x_n^T u_i$	
$\frac{d_5}{db_i} = 0 \Leftrightarrow \frac{1}{N} \sum_{n=1}^{N} (x_n^7 u_i - b_i)$)=0 = x u;-b;=0
Result	
bi= ギリ:)	

3 Reinforcement Learning(1 point)

3.1 Value Iteration(1 point)

R(s,a)	non	light	heavy	Q Table	non	light	heavy
non-send	\$0	\$ 20	\$ 100	non-send	-1	10	50
send	\$ (-1)	\$ 15	\$ 80	send	-2	35	40
				(A	After 1 Iteratio	on)	
P(s' s, a_no-send)	non	light	heavy	Q Table	non	light	heavy
non	0.95	0.05	0	non-send	0.72	45.695	137.71
light	0.2	0.75	0.05	send	27.935	52.72	120.68
heavy	0.1	0.2	0.7				
P(s' s, a_send)	non	light	heavy	Calculation = $0 + 0.9 \times (0.95 \times (-1) + 0.05 \times (35) + 0 \times (50)$			
non	0.1	0.85	0.05				
light	0.1	0.2	0.7				
heavy	0.05	0.15	0.8				

R(s,a)	non	light	heavy	Q Table	non	light	heavy
non-send	\$0	\$ 20	\$ 100	non-send	-1	10	50
send	\$ (-1)	\$ 15	\$ 80	send	-2	35	40
				(/	After 1 Iteratio	on)	
P(s' s, a_no-send)	non	light	heavy	Q Table	non	light	heavy
non	0.95	0.05	0	non-send	0.72	45.695	137.71
light	0.2	0.75	0.05	send	27.935	52.72	120.68
heavy	0.1	0.2	0.7				
P(s' s, a_send)	non	light	heavy	Calculation = 20 + 0.9	x (0.2 x (-1) +	0.75 x (<mark>35</mark>) + 0	.05 x (50))
non	0.1	0.85	0.05				
light	0.1	0.2	0.7				
heavy	0.05	0.15	0.8				

R(s,a)	non	light	heavy		Q Table	non	light	heavy	
non-send	\$0	\$ 20	\$ 100		non-send	-1	10	50	
send	\$ (-1)	\$ 15	\$ 80		send	-2	35	40	
					(A	fter 1 Iteratio	n)		
P(s' s, a_no-send)	non	light	heavy		Q Table	non	light	heavy	
non	0.95	0.05	0		non-send	0.72	45.695	137.71	
light	0.2	0.75	0.05		send	27.935	52.72	120.68	
heavy	0.1	0.2	0.7						
				Calcula	Calculation = $15 + 0.9 \times (0.1 \times (-1) + 0.2 \times (35) + 0.7 \times (50))$				
P(s' s, a_send)	non	light	heavy						
non	0.1	0.85	0.05						
light	0.1	0.2	0.7						
heavy	0.05	0.15	0.8						

R(s,a)	non	light	heavy	Q Table	non	light	heavy
non-send	\$0	\$ 20	\$ 100	non-send	-1	10	50
send	\$ (-1)	\$ 15	\$ 80	send	-2	35	40
				(After 1 Iteratio	on)	
P(s' s, a_no-send)	non	light	heavy	Q Table	non	light	heavy
non	0.95	0.05	0	non-send	0.72	45.695	137.71
light	0.2	0.75	0.05	send	27.935	52.72	120.68
heavy	0.1	0.2	0.7				
				Calculation = 100 + 0.9	9 x (0.1 x (-1) +	+ 0.2 x (35) + 0).7 x (50))
P(s' s, a_send)	non	light	heavy				
non	0.1	0.85	0.05				
light	0.1	0.2	0.7				
heavy	0.05	0.15	0.8				

R(s,a)	non	light	heavy	Q Ta	able non	light	heavy		
non-send	\$0	\$ 20	\$ 100	non-	send -1	10	50		
send	\$ (-1)	\$ 15	\$ 80	sei	nd -2	35	40		
					(After 1 Iterati	on)			
P(s' s, a_no-send)	non	light	heavy	Q Ta	able non	light	heavy		
non	0.95	0.05	0	non-	send 0.72	45.695	137.71		
light	0.2	0.75	0.05	ser	nd 27.935	52.72	120.68		
heavy	0.1	0.2	0.7						
				Calculation	Calculation = 80 + 0.9 x (0.05 x (-1) + 0.15 x (35) + 0.8 x (5				
P(s' s, a_send)	non	light	heavy						
non	0.1	0.85	0.05						
light	0.1	0.2	0.7						
heavy	0.05	0.15	0.8						

4 Deep Generative Models: Class-conditioned VAE(5 points)

Findings

I have found that after comparing 10 and 20 epochs. 20 was clearer on the edges and more understandable.

Here are the comparison photos:

output of test lower bound and Log Likelihood:

```
Epoch 1 (14.2s): Lower bound = -173.15237426757812
Epoch 2 (13.1s): Lower bound = -125.95645904541016
Epoch 3 (13.1s): Lower bound = -115.4300537109375
Epoch 4 (13.3s): Lower bound = -111.14623260498047
Epoch 5 (17.0s): Lower bound = -108.410400390625
Epoch 6 (18.3s): Lower bound = -106.51114654541016
Epoch 7 (18.1s): Lower bound = -105.159423828125
Epoch 8 (13.0s): Lower bound = -104.07119750976562
Epoch 9 (13.5s): Lower bound = -103.14167022705078
Epoch 10 (13.5s): Lower bound = -102.26787567138672
>>> TEST (379.8s)
>> Test lower bound = -101.43687438964844
>> Test log likelihood (IS) = -96.09476470947266
Epoch 11 (14.1s): Lower bound = -101.62956237792969
Epoch 12 (13.1s): Lower bound = -100.99659729003906
Epoch 13 (12.9s): Lower bound = -100.55213165283203
Epoch 14 (13.1s): Lower bound = -100.00975036621094
Epoch 15 (12.9s): Lower bound = -99.74927520751953
Epoch 16 (12.9s): Lower bound = -99.3624267578125
Epoch 17 (12.8s): Lower bound = -99.09620666503906
Epoch 18 (12.9s): Lower bound = -98.78494262695312
Epoch 19 (13.0s): Lower bound = -98.54756164550781
Epoch 20 (13.2s): Lower bound = -98.28917694091797
>>> TEST (402.6s)
>> Test lower bound = -98.56088256835938
>> Test log likelihood (IS) = -93.06107330322266
```

```
Appendix Code
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from future import print function
from __future__ import division
import os
import time
import tensorflow as tf
from six.moves import range
import numpy as np
import zhusuan as zs
from examples import conf
from examples.utils import dataset, save image collections
@zs.meta bayesian net(scope="gen", reuse variables=True)
def build gen(x dim, z dim, n, n particles=1):
  bn = zs.BayesianNet()
  z mean = tf.zeros([n, z dim])
  z = bn.normal("z", z_mean, std=1., group_ndims=1, n_samples=n_particles)
  h = tf.layers.dense(z, 500, activation=tf.nn.relu)
  h = tf.layers.dense(h, 500, activation=tf.nn.relu)
  x_logits = tf.layers.dense(h, x_dim)
  bn.deterministic("x mean", tf.sigmoid(x logits))
  bn.bernoulli("x", x logits, group ndims=1)
  return bn
@zs.reuse variables(scope="q net")
def build q net(x, z dim, n z per x):
  bn = zs.BayesianNet()
  h = tf.layers.dense(tf.cast(x, tf.float32), 500, activation=tf.nn.relu)
  h = tf.layers.dense(h, 500, activation=tf.nn.relu)
  z mean = tf.layers.dense(h, z dim)
  z logstd = tf.layers.dense(h, z dim)
  bn.normal("z", z mean, logstd=z logstd, group ndims=1, n samples=n z per x)
  return bn
def main():
  # Load MNIST
  data path = os.path.join(conf.data dir, "mnist.pkl.gz")
```

x_train, t_train, x_valid, t_valid, x_test, t_test = \

```
dataset.load_mnist_realval(data_path)
x_train = np.vstack([x_train, x_valid])
x_test = np.random.binomial(1, x_test, size=x_test.shape)
x dim = x train.shape[1]
# Define model parameters
z dim = 40
# Build the computation graph
n particles = tf.placeholder(tf.int32, shape=[], name="n particles")
x input = tf.placeholder(tf.float32, shape=[None, x dim], name="x")
x = tf.cast(tf.less(tf.random_uniform(tf.shape(x_input)), x_input),
      tf.int32)
n = tf.placeholder(tf.int32, shape=[], name="n")
model = build_gen(x_dim, z_dim, n, n_particles)
variational = build q net(x, z dim, n particles)
lower bound = zs.variational.elbo(
  model, {"x": x}, variational=variational, axis=0)
cost = tf.reduce mean(lower bound.sgvb())
lower_bound = tf.reduce_mean(lower_bound)
## Importance sampling estimates of marginal log likelihood
is log likelihood = tf.reduce mean(
  zs.is_loglikelihood(model, {"x": x}, proposal=variational, axis=0))
optimizer = tf.train.AdamOptimizer(learning rate=0.001)
infer op = optimizer.minimize(cost)
# Random generation
x gen = tf.reshape(model.observe()["x mean"], [-1, 28, 28, 1])
# Define training/evaluation parameters
epochs = 20
batch size = 128
iters = x train.shape[0] // batch size
save_freq = 10
test freq = 10
test batch size = 400
test iters = x test.shape[0] // test batch size
result_path = "results/vae"
# Run the inference
with tf.Session() as sess:
  sess.run(tf.global variables initializer())
```

```
for epoch in range(1, epochs + 1):
      time epoch = -time.time()
      np.random.shuffle(x train)
      lbs = []
      for t in range(iters):
         x batch = x train[t * batch size:(t + 1) * batch size]
         _, lb = sess.run([infer_op, lower_bound],
                  feed dict={x input: x batch,
                        n_particles: 1,
                        n: batch size})
         lbs.append(lb)
      time epoch += time.time()
      print("Epoch {} ({:.1f}s): Lower bound = {}".format(
         epoch, time epoch, np.mean(lbs)))
      if epoch % test freq == 0:
         time_test = -time.time()
         test_lbs, test_lls = [], []
         for t in range(test_iters):
           test x batch = x test[t * test batch size:
                       (t + 1) * test batch size]
           test_lb = sess.run(lower_bound,
                     feed dict={x: test x batch,
                            n_particles: 1,
                            n: test batch size})
           test_ll = sess.run(is_log_likelihood,
                     feed_dict={x: test_x_batch,
                            n particles: 1000,
                            n: test batch size})
           test lbs.append(test lb)
           test_lls.append(test_ll)
         time test += time.time()
         print(">>> TEST ({:.1f}s)".format(time test))
         print(">> Test lower bound = {}".format(np.mean(test lbs)))
         print('>> Test log likelihood (IS) = {}'.format(
           np.mean(test lls)))
      if epoch % save freq == 0:
         images = sess.run(x gen, feed dict={n: 100, n particles: 1})
         name = os.path.join(result path,
                    "vae.epoch.{}.png".format(epoch))
         save_image_collections(images, name)
if __name__ == "__main__":
  main()
```