Columbia MA Math Camp

Convexity

Vinayak Iyer

August 2018

Table of Contents

 ${\sf Convexity} \ {\sf and} \ {\sf Quasiconvexity}$

Convex sets

Definition 1.1

Let $S \subseteq \mathbb{R}^n$. We say S is convex if for all $x, y \in S$ and $\lambda \in [0, 1]$:

$$\lambda x + (1 - \lambda)y \in S$$

Yes! Take any 2 points $x, y \in [0,1]$ $\Rightarrow \lambda \in [0,1]$ $\Rightarrow \lambda \times + (-\lambda)y$
 $\in [0,1]$ convex? What about $S = [0,1)$? What about $S = [0,1) \cup [2,3]$?

Is the set S = [0,1] convex? What about S = [0,1)? What about $S = [0,1) \cup [2,3]$? Yes 1

$$S = \{1, 2, 3, \dots\}$$
? No!

Notes:

- In other words, the convex combination of 2 vectors in a set belongs to the same set.
- The intersection of convex sets is convex
- The union of convex sets need not be convex

Convex Sets (cont..)

For finitely many vectors x_1, x_2, \ldots, x_n , a **convex combination** is a vector $\sum_{i=1}^n \lambda_i x_i$ for scalars $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}_+$ such that $\sum_{i=1}^n \lambda_i = 1$

Proposition 1.1

Suppose $S \subseteq \mathbb{R}^n$. The set S is convex iff any convex combination of $x_1, x_2, \ldots, x_n \in S$ is also in S.

Proof:

(\iff) is trivial based on the definition of convex sets.

(\Longrightarrow) If n=1, the statement is trivial.

 $\sum_{i=1}^k \lambda_i x_i \in S$ for all $\lambda_i \geq 0$ such that $\sum \lambda_i = 1$.

If n = 2, the statement is true by the definition of convexity.

Show that it is free (or n=1 22.

Suppose it is true for n = k. This implies that for any set of k vectors x_1, x_2, \ldots, x_k ,

Show Net i

Shan Net

λ, x, + λ2 x2 ... + λκ xκ ∈ S where Σλί=1 , λί>0

4

Proof continued...

Now consider
$$n = k + 1$$
. We need to show that $\sum_{i=1}^{k+1} \lambda_i x_i \in S$.

We can rewrite this as:

Is \(\frac{2}{2} \lambda l = 1 ? \text{No!} \) We can rewrite this as:

We can rewrite this as:
$$\sum_{i=1}^{k+1} \lambda_i x_i = \sum_{i=1}^k \lambda_i x_i + \lambda_{k+1} x_{k+1}$$

$$= \left(\sum_{i=1}^k \lambda_i\right) \left(\sum_{i=1}^k \frac{\lambda_i}{\sum_{i=1}^k \lambda_i} x_i\right) + \lambda_{k+1} x_{k+1}$$

$$= \sum_{i=1}^k \lambda_i x_i = \sum_{i=1}^k \frac{\lambda_i}{\sum_{i=1}^k \lambda_i} x_i$$

> xes x-2 xxx

 $= \left(\sum_{i=1}^{k} \lambda_{i}\right) \bar{x} + \underbrace{\lambda_{k+1} x_{k+1}}_{k+1} \quad \text{(since it is true for } n = k \text{ i.e. } \sum_{i=1}^{k} \frac{\lambda_{i}}{\sum_{i=1}^{k} \lambda_{i}} x_{i} \in S\text{)}$ (Since it is true for n = 2)

Σ λi= (

Convex and Concave Functions

Definition 1.2

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for any $x_1, x_2 \in \mathbb{R}^n$ and any $\lambda \in (0, 1)$:

$$f(\lambda x_1 + (1 - \lambda)x_2) \bigotimes \lambda f(x_1) + (1 - \lambda)f(x_2)$$

function evaluated at convex comb^N of $x_1 \& x_2 \le convex$ comb

- If the inequality is strict, f is **strictly convex**
- If the inequality is reversed, *f* is **concave**

Another characterization: A function f is convex if and only if: $\{(x,y) \in \mathbb{R}^n \times \mathbb{R} | y \geq f(x) \}$ is convex A Straight Like (weakly) $Convex & concave & \lambda \\ \\ \lambda x_1 + (1-\lambda)x_2 \\ \lambda x_2 \\ \lambda x_3 \\ \lambda x_4 + (1-\lambda)x_2 \\ \lambda x_5 \\ \lambda x_6 \\ \lambda x_8 \\ \lambda x$

Convex Functions: Properties

Convex functions have a whole host of nice properties - people write books on convex analysis. Some include:

- If f and g are convex (concave), f + g is convex (concave)
- If \underline{f} is convex (concave) and \underline{g} is convex (concave) and increasing, then $f \circ \underline{g}$ is convex (concave)

Some properties are a little surprising at first glance :

- Convex functions are continuous
- Convex functions are differentiable almost everywhere

Characterization for Differentiable Functions

Definition 1.3

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then

• f is convex iff for all $x_1, x_2 \in \mathbb{R}^n$:

Approximation
Approximation

• f is strictly convex iff for all
$$x_1 \neq x_2$$
:

$$f(x_2) > f(x_1) + f'(x_1)(x_2 - x_1)$$

 $f(x_2) \ge f(x_1) + f'(x_1)(x_2 - x_1)$

Convex functions sit above their tangent lines. The analogous result holds for concave functions (just flip the inequality)

Concave for sit below their tangent lines!

Characterization for Twice Differentiable Functions

Definition 1.4

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 function. Then

- f is convex (concave) iff its Hessian is positive (negative) semi-definite for all x
- If the Hessian is positive (negative) definite for all x, then f is strictly convex (concave)

(Proof intuition): Use a second-order Taylor series expansion

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{1}{2}(x-a)^T H(a)(x-a)$$

If H(a) is positive definite, f will sit above its tangent approximation.

Quasiconcavity

- In micro, we think of preferences that are represented by a utility function: x is preferred to y if $u(x) \ge u(y)$
- This is an *ordinal notion*: if $f(\cdot)$ is an **increasing** function, then f(u(x)) > f(u(y)), so $f \circ g$ represents the same preferences
- However, convexity is not an ordinal notion. Let $u(x) = x^2$ and $f(x) = \log x$. Then u is convex and f an increasing transformation, but $f(u(x)) = 2 \log x$ is concave, not convex
- We will develop a notion of **quasiconcavity (quasiconvexity)** that will be preserved by increasing transformations

Quasiconcave functions

Quasiconcave functions - Alternate Characterization

Definition 1.6

A function $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex iff for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}$$

If the inequality is strict for $x \neq y$ and $\lambda \in (0,1)$, f is strictly quasiconvex

For quasiconcavity, we have $f(\lambda x + (1 - \lambda)y) \ge \min\{f(x), f(y)\}$

In: Prone that if J: R-JR and is an increasing function, then f is quasiconcered AND quasiconvex

Quasiconcave funtions: Properties

• Convexity \Longrightarrow Quasiconvexity : Suppose f is convex. Then for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

$$\leq \max\{f(x), f(y)\}$$

so f is quasiconvex. (Similar argument for Quasiconcavity)

Increasing transformation of quasiconvex function is quasiconvex :

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex and $g: \mathbb{R} \to \mathbb{R}$ is an increasing function. Then for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$:

$$\begin{split} g(f(\lambda x + (1 - \lambda)y)) & \leq & g(\max\{f(x), f(y)\}) \\ & = & \max\{g(f(x)), g(f(y))\} \end{split}$$

So $g \circ f$ is **quasiconvex**. Similarly, an increasing transformation of a quasiconcave function is quasiconcave.

Quasiconcave functions (cont.)

Proposition 1.2

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 function. Then f is quasiconcave iff $f(y) \geq f(x) \Rightarrow f'(x)(y-x) \geq 0$.

Proof.

(⇒) Suppose f is quasiconcave. Let $x, y \in \mathbb{R}^n$ such that $f(y) \ge f(x)$, and $\lambda \in (0,1)$.

$$f((1-\lambda)x + \lambda y) \ge f(x)$$

Rearranging gives

$$\frac{f(x+\lambda(y-x))-f(x)}{\lambda}\geq 0$$

Taking $\lambda \to 0$ gives $f'_{y-x}(x) \ge 0$. So $f'(x)(y-x) \ge 0$.

Quasiconcave functions: Uniqueness of Maximizer

Proposition 1.3

A strictly quasiconcave function can have at most one global maximum.

Proof: Suppose there are 2 maximizers x and y. If $x \neq y$ are both maximizers, then f(x) = f(y).

However, $f(\lambda x + (1 - \lambda)y) > f(x) = f(y)$ by the definition of strict quasiconcavity which contradicts that x and y are maximizers.