1 Arc step contuation method

Our goal is to find points on the curve $\mathcal{C} \in \mathbb{R}^{n+1}$, defined implicitely by the n equtions,

$$F(z) = 0,$$

with $F: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^n$ a smooth function. Let us assume that $z^j \in \mathbb{R}^{n+1}$, are a regular point of the curve and an unitary vector tangent to the curve at that point respectively. Hence, on the one hand

$$F\left(z^{j}\right) = 0 \ (z^{j} \in \mathcal{C}), \text{ and } \operatorname{rank} DF\left(z^{j}\right) = n \ (z^{j} \text{ is a regular point of the curve } \mathcal{C})$$

and, on the other hand

$$||v^j|| = 1$$
 (v^j is unitary), and $DF(v^j)v^j = 0$ (v^j is tangent to the curve \mathcal{C} at z^j).

To find a next point on the curve, $z^{j+1} \in \mathcal{C}$, we shall implement the so called *pseudo-arc step* method (vegeu [1], cap. 10, sec. 2), that can be summarised in the following two stages:

1. Prediction: we shall take $\hat{z}^{j+1} = z^j + h_j v^j$ as an approximation of the new point of z^{j+1} , where $h_j \in \mathbb{R}$ is the pseudo-arc step (the arc in what follows), and $v^j \in \mathbb{R}^{n+1}$, $||v^j|| = 1$, is the tangent vector to the \mathcal{C} at point z^j , that will be find as the solution of és el vector tangent a la corba \mathcal{C} al punt z^j , el qual determinarem resolent el sistema ampliat,

$$DF(z^{j}) v = 0,$$

$$\langle v^{j-1}, v \rangle = 1,$$
(1)

on $v^{j-1} \in \mathbb{R}^{n+1}$, $||v^{j-1}|| = 1$, és el vector tangent a la corba \mathcal{C} al punt z^{j-1} , tots dos $(v^{j-1} i z^{j-1})$ prèviament calculats. Com s'observa a [1]:

- (i) El sistema lineal (1) és no singular si \mathcal{C} és una corba regular (i.e., si rang $DF(z) = n, z \in \mathcal{C}$) i els punts z^{j-1} i z^j estan suficientment a prop.
- (ii) La solució $v^* \in \mathbb{R}^{n+1}$ satisfà la condició $\langle v^{j-1}, v^* \rangle = 1$, per tant es preserva la direcció al llarg de la corba

Per últim, normalitzem per tenir $v^j = v^* / \|v^*\|$. Nota: a l'inici, quan j = 0, no podrem escriure el sistema (1), sinó que resoldrem el sistema $n \times n$ que s'obté de seleccionar n columnes linealment independents (siguin les columnes $1, 2, \ldots, i-1, i+1, \ldots, n, n+1$) de $DF(z^j)$ a la primera equació de (1) i fixar $v_i = 1$. D'aquesta manera trobarem un vector $v^* \in \mathbb{R}^n$, $v_i^* = 1$, t.q. $DF(z^0)v^* = 0$. Llavors $v^0 = \pm v^* / \|v^*\|$, on la tria del signe determinarà la direcció en què es continua la corba.

Figure 1

2. Correcció. Per a "refinar" el valor aproximat $\hat{z}^{j+1} = z^j + h_j v^j$ del pas predictiu pel mètode de Newton i determinar el nou punt sobre la corba, $z^{j+1} \in \mathcal{C}$, s'ha d'afegir alguna equació addicional al sistema F(z) = 0. Al mètode del pesudo-arc, s'imposa que $z^{j+1} \in \hat{z}^{j+1} + \langle v^j \rangle^{\perp}$; això és, que el punt z^{j+1} pertanyi també al hiperplà perpendicular al vector v^j que conté \hat{z}^{j+1} . Usant el producte escalar aquesta condició geomètrica s'escriu com,

$$\langle z^{j+1} - \hat{z}^{j+1}, v^j \rangle = \langle z^{j+1} - z^j - h_j v^j, v^j \rangle = \langle z^{j+1} - z^j, v^j \rangle - h_j = 0$$

(vegeu la figura 1). Aleshores aplicarem el mètode de Newton al sistema no lineal

$$F(z) = 0,$$
$$\left\langle z - z^j, v^j \right\rangle = h_j,$$

prenent $z^{(0)} = \hat{z}^{j+1}$ com a aproximació inicial.

2 References

[1] Yuri A. Kuznetsov. Elements of Applied Bifurcation Theory, volume 112 of Applied Mathematical Sciences. Springer-Verlag, New York, third edition, 2004. 1