Partie A

Soit f la fonction définie sur]0; $+\infty[$ par

$$f(x) = \frac{1 + 2\ln x}{x^2}.$$

Soit (\mathscr{C}) la courbe représentative de f et soit (\mathscr{C}') celle de la fonction h définie sur]0; $+\infty[$ par $h(x) = \frac{1}{x}.$

1. Calculons les limites de f en 0 et en $+\infty$:

$$\begin{vmatrix}
\lim_{\substack{x \to 0 \\ x > 0}} 1 + 2\ln(x) = -\infty \\
\lim_{\substack{x \to 0 \\ x > 0}} 1 + 2\ln(x) = -\infty
\end{vmatrix}$$

$$\begin{vmatrix}
\lim_{\substack{x \to 0 \\ x > 0}} x^2 = 0 \quad \text{avec} \quad x^2 > 0
\end{vmatrix}$$

$$\begin{vmatrix}
\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty.$$

Pour tout réel x > 0 on a $f(x) = \frac{1}{x^2} + \frac{2}{x} \times \frac{\ln x}{x}$.

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{1}{x^2} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{2}{x} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{1}{x} = 0$$
 d'après le cours
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = 0.$$

- $\lim_{x\to 0} f(x) = -\infty$ donc la droite d'équation x = 0 est asymptote verticale à (\mathcal{C}) .
- $\lim_{\substack{x \to +\infty \\ 1 \to \infty}} f(x) = 0 \text{ donc la droite d'équation } y = 0 \text{ est asymptote horizontale à } (\mathscr{C}) \text{ au voisinage de }$
- 2. Pour tout réel x > 0 on a $f'(x) = \frac{\frac{2}{x} \times x^2 (1 + 2\ln x) \times 2x}{x^4}$ soit $f'(x) = \frac{-4\ln x}{x^3}$. Or $x^3 > 0$ donc f'(x) est du signe de $-4 \ln x$. Or $-4 \ln x \geqslant 0 \iff \ln x \leqslant 0 \Leftrightarrow 0 < x \leqslant 1$. On en déduit

le tableau de signes de f'(x) et de variation de f avec f(1) = 1:

x	0	1	+∞
Signe de $f'(x)$		+ 0 -	
Variations de f		1 	`` 0

3. Soit I le point d'intersection de (\mathcal{C}) avec l'axe des abscisses. On résout l'équation f(x)=0. Or $f(x) = 0 \iff \frac{1 + 2\ln x}{x^2} = 0 \iff 1 + 2\ln x = 0 \iff \ln x = -\frac{1}{2} \iff x = e^{-\frac{1}{2}}$ donc le point I a pour coordonnées $(e^{-\frac{1}{2}}; 0)$.

- **4.** Pour tout x de]0; $+\infty[$, on pose $g(x) = 1 x + 2\ln x$.
 - **a.** Pour tout réel x > 0 on a $g'(x) = -1 + \frac{2}{x}$ donc $g'(x) = \frac{-x+2}{x}$.

Or x > 0 donc g'(x) a le même signe que 2 - x sur]0; $+\infty[$. 2 - x est une expression affine dont la valeur charnière est x = 2.

$$\begin{vmatrix}
\lim_{\substack{x \to 0 \\ x > 0}} 1 - x = 1 \\
\lim_{\substack{x \to 0 \\ x > 0}} 2 \ln x = -\infty
\end{vmatrix}
\Rightarrow
\begin{vmatrix}
\lim_{\substack{x \to 0 \\ x > 0}} g(x) = -\infty.$$

On peut donc faire le tableau de variations de g sur]0; $+\infty[$ avec le fait que $g(2) = -1 + 2\ln 2$:

x	0	2 +∞
Signe de $g'(x)$		+ 0 -
Variations de		1+2ln2 -∞

b. Je ne la corrige que sur]0 ; 2[. La fonction g y est continue, strictement croissante. $0 \in]-\infty$; $1+2\ln 2[$ intervalle image de]0 ; 2[par la fonction g donc l'équation g(x)=0 a une solution unique β dans l'intervalle]0 ; 2[.

Sur]2 ; 4[faire de même et on trouve $\alpha \simeq 1.22$.

5. a. Pour tout réel x > 0, on a $f(x) - \frac{1}{x} = \frac{1 + 2\ln x}{x^2} - \frac{1}{x}$ donc $f(x) - \frac{1}{x} = \frac{1 + 2\ln x - x}{x^2}$ soit $f(x) - \frac{1}{x} = \frac{g(x)}{x^2}$.

Or l'équation g(x) = 0 a deux solutions qui sont α et β donc l'équation $f(x) - \frac{1}{x} = 0$ a ses deux mêmes solutions α et β ce qui prouve que (\mathscr{C}) et (\mathscr{C}') se coupent en deux points d'abscisse α et β .

b. D'après le tableau de variation de f, on constate que f est strictement positive sur $[1; +\infty[$ donc si x > 4 on a f(x) < 0. De plus, d'après la question précédente g est strictement négative à partir de 4, on en déduit donc que $f(x) - \frac{1}{x} < 0$ soit $f(x) < \frac{1}{x}$ ce qui prouve donc finalement que pour tout réel x supérieur ou égal à 4,

$$0 < f(x) \leqslant \frac{1}{x}.$$

Partie B

1. a. Facile pour tout réel x > 0 on a F'(x) = f(x) ce qui montre que F est une primitive de f sur $]0; +\infty[$.

b.
$$\mathscr{A}(\alpha) = \int_{1}^{\alpha} f(x) \, dx$$
. Or F est une primitive de f sur $]0$; $+\infty[$ donc $\mathscr{A}(\alpha) = \left[\frac{-2\ln x - 3}{x}\right]_{1}^{\alpha}$. Ainsi $\mathscr{A}(\alpha) = \frac{-2\ln(\alpha) - 3}{\alpha} + 3$. Or α est solution de l'équation $g(x) = 0$ donc $1 - \alpha + 2\ln \alpha = 0$ soit $-2\ln \alpha = 1 - \alpha$ donc $\mathscr{A}(\alpha) = \frac{1 - \alpha - 3}{\alpha} + 3$ c'est-à-dire $\mathscr{A}(\alpha) = \frac{-2}{\alpha} + 2$.

2. Soit la suite (I_n) définie pour n supérieur ou égal à 1 par :

$$I_n = \int_n^{n+1} f(x) \, \mathrm{d}x.$$

a. On utilise pour tout *n* supérieur ou égal à 4, la double inégalité : $0 < f(x) < \frac{1}{r}$. Comme l'intégrale conserve l'ordre dans $\mathbb R$ on en déduit que :

grade conserve Fortife dails in on en deduct que.
$$0 < \int_{n}^{n+1} f(x) \, dx < \int_{n}^{n+1} \frac{1}{x} \, dx \text{ soit } 0 < \int_{n}^{n+1} f(x) \, dx < [\ln x]_{n}^{n+1}$$
 ou encore $0 < \int_{n}^{n+1} f(x) \, dx < \ln(n+1) - \ln(n) \, \text{donc } 0 < \int_{n}^{n+1} f(x) \, dx < \ln\left(\frac{n+1}{n}\right)$.

b. Pour tout entier *n* supérieur ou égal à 4 on a $\frac{n+1}{n} = 1 + \frac{1}{n}$.

$$\begin{cases}
\lim_{n \to +\infty} 1 + \frac{1}{n} = 1 \\
\lim_{N \to 1} \ln(N) = 0
\end{cases}
\xrightarrow{\text{par composition des limites}} \lim_{n \to +\infty} \ln\left(\frac{n+1}{n}\right) = 0. \text{ On en déduit, par le théorème}$$

d'encadrement des limites, que la suite (I_n) converge vers 0.

c. Soit $S_n = I_1 + I_2 + I_3 + \dots + I_n$ donc $S_n = \int_1^2 f(x) dx + \int_2^3 f(x) dx + \int_3^4 f(x) dx + \dots + \int_n^{n+1} f(x) dx$ c'est-à-dire grâce à la relation de Chasles : $S_n = \int_1^{n+1} f(x) dx$.

$$S_n = \left[\frac{-2\ln x - 3}{x} \right]_1^{n+1} \text{ soit } S_n = \frac{-2\ln(n+1) - 3}{n+1} + 3.$$

$$S_n = -2 \times \frac{\ln(n+1)}{n+1} - \frac{3}{n+1} + 3.$$
Or $\lim_{n \to +\infty} \frac{-3}{n+1} + 3 = 3$. Posons $N = n+1$. $\lim_{n \to +\infty} n+1 = 3$

n + 3 = 3. Posons N = n + 1. $\lim_{n \to +\infty} n + 1 = +\infty$.

Ainsi $\frac{\ln(n+1)}{n+1} = \frac{\ln(N)}{N}$. Or $\lim_{N \to +\infty} \frac{\ln(N)}{N} = 0$ d'après le cours donc $\lim_{n \to +\infty} \frac{\ln(n+1)}{n+1} = 0$ et par somme des limites $\lim_{n \to +\infty} S_n = 3$.