

BAHRI

Bio Autonomous Hull Robot for Innovation

Problem:

- **Biofouling increases ship** drag, leading to 30-40% higher fuel consumption.
- Traditional hull cleaning methods are invasive, chemical-based, and harm marine life.
- Dry docking is expensive and time-consuming.

Objective:

To design an ecofriendly, autonomous underwater robot that cleans submerged parts of ships using non-invasive tools and renewable energy.

Economic Impact due to biofouling on a marine vessel

Maintenace in Afloat condtion (Hull Cleaning, Hull Painting, **Hull Inspection**, **Diver Charges**)

Maintenace in Drydock (Hull Cleaning, **Hull Painting**, Hull Inspection, Labour Charges, Drydocking Charges)

Effect on Vessel Operational Characteristics (Lesser Smoother Hydrodynamics, More Resistance, More Fuel Consumption)

leatures:

Eco-Cleaning System:

Soft brushes, water jets, ultrasonic scrubbers.

Al Navigation:

Obstacle detection and optimized cleaning paths.

Robotic Arms:

Interchangeable tools for cleaning

Marine-Safe Operation:

Quiet motors and debris

Sustainable Materials:

Recycled plastic + marine-grade

Powered by floating solar stations.

Solar Charging Dock:

Working Mechanism:

- Sensors scan the hull surface.
- Al identifies fouled areas.
- Robotic arms clean the surface.
- Debris collected in internal compartment.
- Returns to solar dock when low on power.

Impact & Benefits:

- Reduces ship fuel consumption.
- Minimizes dry docking.
- Avoids harmful chemicals.
- Boosts operational efficiency.
- Promotes cleaner seas and biodiversity.

ENGINEERED BY: SOWMIK NARAYANAN