高温超导实验 - 实验报告

トレセン学園高等部二年生 アドマイヤベガ 1

1 摘要

本实验的原理是超导体温度特性的相关知识,意图使我们熟悉小电阻值测量、实验数据处理和 不确定度评估方法. 实验通过测量液氮冷却高温超导体的温度 - 电阻特性, 探究超导体的温度特性.

2 实验原理

1. 四引线法测量微小电阻:

四引线法是一种用于测量微小电阻的方法,其原理是通过两对引线,一对用于通电,一对用于测量电压,使得电流引线和电压引线分离,从而消除引线电阻对测量结果的影响.

2. 铂电阻的温度特性:

铂电阻的工作电流约为 1 mA,0 °C 时的电阻值约为 $R_{t=0 \text{ °C}} \approx 100.00 \Omega$. 测温范围为 -200 to 0 °C 时,铂电阻的温度特性可以用以下公式描述:

$$R_t = R_0 \left[1 + At + Bt^2 + Ct^3(t - 100) \right]$$
(2.1)

$$t = \frac{-A + \sqrt{A^2 - 40B(0.1 - 0.001R_t)}}{2B}$$
 (2.2)

其中:

$$A = 3.9083 \times 10^{-3} / ^{\circ} \text{C}$$

$$B = -5.775 \times 10^{-7} / ^{\circ} \text{C}^{2}$$

$$C = -4.183 \times 10^{-12} / ^{\circ} \text{C}^{3}$$
(2.3)

可以通过电阻值计算温度.

3. 超导体的温度特性:

超导体在转变温度以下进入超导状态. 超导状态下,超导体的电阻为零,同时出现完全抗磁性,即超导体内部的磁场为零 (Meissner Effect). Meissner Effect 使得我们能通过测量感应线圈感应电压值突变所对应的温度来确定超导体的转变温度.

3 实验仪器及实验步骤

本实验使用的仪器和材料有:信号发生器一台、三路稳压稳流直流电源一台、5位半数字万用表一台、4位半数字万用表一台、手持数字万用表一台、测试探头、测试探头接线盒、电阻板、双刀双掷开关一个、导线若干、BNC-香蕉头导线一根、液氮.

实验步骤如下:

(1) 用四引线法测量常温下超导样品电阻:

先使用 5 位半万用表的电阻模式,测量导线的电阻数量级,之后连接导线,测量接触电阻,最后按照实验讲义上的图示连接电路,用四引线法测量超导样品在常温下的电阻.

(2) 用电流换向法消除乱真电势的影响:

用双刀双掷开关将电流换向,消除乱真电势的影响,并计算理论公式.

(3) 用铂电阻温度计测量温度:

连接电路,使用限流电阻控制电流约为铂电阻的工作电流,用 4 位半万用表和四引线法测量铂电阻的电阻值,计算温度.

(4) 用电磁感应法测超导样品对感应电压的影响:

连接主线圈和次级线圈,连接电路,用手持万用电表测量次级线圈的感应电压.

(5) 降温实验:

将超导样品放入液氮中, 手机录像记录转变过程中超导样品的电压、次级线圈感应电压、铂电阻电压, 测量超导样品的转变温度. 对升温过程做同样操作.

(6) 处理数据.

4 实验数据处理

4.1 测量超导样品常温电阻

连接在 5 位半万用表上的两根测试导线电阻测量值为: 0.022 Ω.

从超导探头接线盒至超导样品之间的引线电阻 $R_{\rm wire}$ 的测量值为: $0.497\Omega-0.022\Omega=0.475\Omega$. 四引线法测量室温下超导样品的电阻,调节电源 CH3 为恒流模式,输出电流为 $1\,{\rm A}$,测得超导样品上的电压为 $U_{\rm super}=0.164\,{\rm mV}$,因此得到超导样品的电阻为: $R_{\rm super}=0.164\,{\rm m}\Omega$.

在此过程中, CH3 输出电压为 527 mV, 这与接触电阻、导线电阻和常温超导样品电阻的总和 所给出的理论值接近, 为同一数量级.

4.2 电流换向法消除乱真电势的影响

换向得到两种电流方向的电压分别为: $U_{\text{Meas1}} = 0.164 \,\text{mV}$, $U_{\text{Meas2}} = 0.163 \,\text{mV}$, 得到乱真电势:

$$U_{\text{spur}} = \frac{U_{\text{Meas}1} - U_{\text{Meas}2}}{2} = 0.0005 \,\text{mV} \ll U_{\text{super}} = \frac{U_{\text{Meas}1} + U_{\text{Meas}2}}{2} = 0.1635 \,\text{mV}$$
 (4.1)

乱真电势远小于电压表所示电势,可以忽略不计. 最终得到超导样品的电阻为: $R_{\text{super}} = 0.164 \, \text{m}\Omega$.

4.3 用铂电阻温度计测量温度

估算工作电流偏差: 在 77K ~ 室温 (用 300K 估计) 范围内, 铂电阻工作电流偏差为

$$\Delta I = \frac{U_{\text{CH1}}}{R + R_{t=77K}} - \frac{U_{\text{CH1}}}{R + R_{t=300K}} = 8.9 \times 10^{-4} \,\text{mA}$$
 (4.2)

这与工作电流 1 mA 相比偏差较小, 可以忽略不计.

计算室温 (认为是 23 °C) 下铂电阻上的电压值: $U_{t-\text{calc}} = 108.96 \,\text{mV}$.

测量实际情况下铂电阻的电压值为: $U_{t-\text{real}} = 109.31 \,\text{mV}$, 与计算值非常接近, 可以认为室温在 $23 \sim 24 \,^{\circ}\text{C}$ 之间.

4.4 用电磁感应法测超导样品对感应电压的影响

信号源设置: 输出正弦波形, $V_{pp}=200\,\mathrm{mV}$, $f=700\,\mathrm{Hz}$, 测试常温下感应线圈电压为 $16.31\,\mathrm{mV}$.

4.5 降温实验

测量降温过程中的铂电阻电压 U_t ,超导样品电压 U_{super} ,感应电压 U_m ,数据如下表所示:

表 1: 降温过程数据

序号	$U_t \text{ (mV)}$	$U_{\text{super}} \text{ (mV)}$	$U_m \text{ (mV)}$	t (°C)	$R_{\mathrm{super}} (\mathrm{m}\Omega)$
1	41	0.076	18.63	-1.48E+02	0.076
2	40.1	0.075	18.69	-1.50E+02	0.075
3	39.2	0.074	18.76	-1.52E+02	0.074
4	38.4	0.073	18.77	-1.54E+02	0.073
5	37.6	0.073	18.81	-1.56E+02	0.073
6	36.8	0.072	18.83	-1.58E+02	0.072
7	36	0.071	18.88	-1.60E+02	0.071
8	35.9	0.07	18.91	-1.60E+02	0.07
9	35.8	0.068	18.92	-1.60E+02	0.068
10	35.7	0.064	18.9	-1.61E+02	0.064
11	35.6	0.06	18.93	-1.61E+02	0.06
12	35.5	0.05	18.89	-1.61E+02	0.05
13	35.4	0.041	18.92	-1.61E+02	0.041
14	35.3	0.037	18.94	-1.62E+02	0.037
15	35.2	0.027	18.9	-1.62E+02	0.027
16	35.1	0.023	18.91	-1.62E+02	0.023
17	35	0.021	18.94	-1.62E+02	0.021
18	34.9	0.02	18.93	-1.63E+02	0.02
19	34.8	0.02	18.95	-1.63E+02	0.02
20	33.9	0.019	18.95	-1.65E+02	0.019
21	33.1	0.019	19.03	-1.67E+02	0.019
22	32.3	0.019	19.03	-1.69E+02	0.019
23	31.5	0.018	19.1	-1.71E+02	0.018
24	30.6	0.018	19.09	-1.73E+02	0.018
25	29.8	0.018	19.12	-1.75E+02	0.018
26	29	0.019	19.11	-1.77E+02	0.019
27	28	0.019	19.12	-1.79E+02	0.019
28	27.4	0.02	19.12	-1.81E+02	0.02
29	26.4	0.02	19.11	-1.83E+02	0.02
30	26.2	0.02	19.08	-1.84E+02	0.02
31	26.1	0.02	19.03	-1.84E+02	0.02
32	26	0.02	18.98	-1.84E+02	0.02

序号	$U_t \text{ (mV)}$	$U_{\text{super}} \text{ (mV)}$	$U_m \text{ (mV)}$	t (°C)	$R_{\mathrm{super}} (\mathrm{m}\Omega)$
33	25.9	0.02	18.94	-1.85E+02	0.02
34	25.8	0.02	18.88	-1.85E+02	0.02
35	25.7	0.02	18.66	-1.85E+02	0.02
36	25.6	0.02	18.5	-1.85E+02	0.02
37	25.5	0.02	18.38	-1.86E+02	0.02
38	25.4	0.019	18.05	-1.86E+02	0.019
39	25.3	0.019	17.89	-1.86E+02	0.019
40	25.2	0.02	17.57	-1.86E+02	0.02
41	25.1	0.02	17.37	-1.87E+02	0.02
42	25	0.02	17.07	-1.87E+02	0.02
43	24.9	0.02	16.83	-1.87E+02	0.02
44	24.8	0.02	16.56	-1.87E+02	0.02
45	24.7	0.02	16.35	-1.87E+02	0.02
46	24.6	0.02	16.07	-1.88E+02	0.02
47	24.5	0.019	15.89	-1.88E+02	0.019
48	24.4	0.019	15.52	-1.88E+02	0.019
49	24.3	0.019	15.43	-1.88E+02	0.019
50	24.2	0.019	15.09	-1.89E+02	0.019
51	24.1	0.019	14.98	-1.89E+02	0.019
52	24	0.019	14.7	-1.89E+02	0.019
53	23.9	0.019	14.45	-1.89E+02	0.019
54	23.8	0.02	14.31	-1.90E+02	0.02
55	23.7	0.02	14.08	-1.90E+02	0.02
56	23.6	0.02	13.99	-1.90E+02	0.02

计算铂电阻电压所对应的温度和超导样品电阻,填入上表中,最终可以作出超导电阻 - 温度 $(R_{\text{super}}$ - t) 关系图和感应电压 - 温度 $(U_m$ - t) 关系图,如下:

(a) R_{super} - t 关系

(b) U_m - t 关系

图 1: 降温过程数据图

其中, R-T 关系图只用到了前 30 组数据, 因为在 30 组数据之后, 超导电阻上的电压并没有特别大的变化. 同时, 图上的连线使用的是 Origin Pro 软件中的样条连接图.

由图,得到两种转变温度 T_c 的测量结果: $T_{cR}=-163\,^{\circ}\mathrm{C}$, $T_{cV}=-187\,^{\circ}\mathrm{C}$.

转变温度宽度: $\Delta T_{cR} = 2.5$ °C, $\Delta T_{cV} = 4.5$ °C.

升温数据如下:

表 2: 升温过程数据

序号	$U_t \text{ (mV)}$	U_{super} (mV)	$U_m \text{ (mV)}$	t (°C)	$R_{\mathrm{super}} (\mathrm{m}\Omega)$
1	23.6	0.021	12.55	-1.90E+02	-0.001
2	24.5	0.021	12.58	-1.88E+02	-0.001
3	25.3	0.021	12.62	-1.86E+02	-0.001
4	26.1	0.021	12.69	-1.84E+02	-0.001
5	27	0.02	12.86	-1.82E+02	0
6	27.8	0.02	13.09	-1.80E+02	0
7	28.6	0.02	13.52	-1.78E+02	0
8	28.7	0.019	13.58	-1.78E+02	0.001
9	28.8	0.02	13.66	-1.78E+02	0
10	28.9	0.019	13.77	-1.77E+02	0.001
11	29	0.019	13.86	-1.77E+02	0.001
12	29.1	0.019	13.93	-1.77E+02	0.001
13	29.2	0.019	14.03	-1.77E+02	0.001
14	29.5	0.019	14.17	-1.76E+02	0.001
15	29.6	0.019	14.39	-1.76E+02	0.001
16	29.7	0.019	14.51	-1.75E+02	0.001
17	29.8	0.018	14.63	-1.75E+02	0.002
18	29.9	0.018	14.74	-1.75E+02	0.002
19	30	0.019	14.94	-1.75E+02	0.001
20	30.1	0.019	15.04	-1.74E+02	0.001
21	30.2	0.018	15.36	-1.74E+02	0.002
22	30.3	0.018	15.51	-1.74E+02	0.002
23	30.4	0.018	15.69	-1.74E+02	0.002
24	30.5	0.018	15.94	-1.73E+02	0.002
25	30.6	0.018	16.22	-1.73E+02	0.002
26	30.7	0.018	16.4	-1.73E+02	0.002
27	30.8	0.018	16.59	-1.73E+02	0.002
28	30.9	0.017	16.76	-1.72E+02	0.003
29	31	0.017	17.04	-1.72E+02	0.003
30	31.1	0.017	17.34	-1.72E+02	0.003
31	31.2	0.017	17.72	-1.72E+02	0.003
32	31.3	0.017	17.95	-1.71E+02	0.003
33	31.4	0.016	18.22	-1.71E+02	0.004

序号	$U_t \text{ (mV)}$	$U_{\text{super}} \text{ (mV)}$	$U_m \text{ (mV)}$	t (°C)	$R_{\mathrm{super}} (\mathrm{m}\Omega)$
34	31.5	0.016	18.72	-1.71E+02	0.004
35	31.6	0.015	18.95	-1.71E+02	0.005
36	31.7	0.008	19.04	-1.70E+02	0.012
37	31.9	0.004	19.11	-1.70E+02	0.016
38	32	-0.003	19.13	-1.70E+02	0.023
39	32.1	-0.018	19.19	-1.69E+02	0.038
40	32.2	-0.022	19.21	-1.69E+02	0.042
41	32.3	-0.026	19.19	-1.69E+02	0.046
42	32.4	-0.03	19.17	-1.69E+02	0.05
43	32.5	-0.034	19.12	-1.69E+02	0.054
44	32.6	-0.037	19.15	-1.68E+02	0.057
45	33.6	-0.038	19.1	-1.66E+02	0.058
46	34.4	-0.04	19.04	-1.64E+02	0.06
47	35.2	-0.041	19.06	-1.62E+02	0.061
48	36	-0.043	19.01	-1.60E+02	0.063
49	36.8	-0.044	18.99	-1.58E+02	0.064
50	37.6	-0.045	18.97	-1.56E+02	0.065
51	38.4	-0.046	18.92	-1.54E+02	0.066
52	39.2	-0.048	18.91	-1.52E+02	0.068
53	40.1	-0.05	18.87	-1.50E+02	0.07
54	40.8	-0.051	18.83	-1.48E+02	0.071
55	41.7	-0.052	18.77	-1.46E+02	0.072
56	42.5	-0.054	18.73	-1.44E+02	0.074
57	43.3	-0.055	18.71	-1.42E+02	0.075

其中 R_{super} 已经扣除了乱真电势的影响,并且这一次的样品电压测量数据反向了 (因为在超导状态时为了测试是否真正达到超导反接了电压表). 同样画出图像:

图 2: 升温过程数据图

得到两种转变温度测量数据: $T'_{cR} = -167\,^{\circ}\mathrm{C}$, $T'_{cV} = -175\,^{\circ}\mathrm{C}$.

转变温度宽度: $\Delta T'_{cR} = 2.5$ °C, $\Delta T'_{cV} = 7.5$ °C.

因为升温过程中铂电阻和超导样品的导热较好,所以采用升温过程中的数据,得到最终结果为: $T_c=-171\,^{\circ}\mathrm{C},\ \Delta T_c=5.5\,^{\circ}\mathrm{C}.$

5 分析与讨论

在实验过程中明显发现一个问题: 感应电压和超导电阻的转变温度不一致.

我认为,原因如下:实验中使用的超导样品不是完美的,其中的缺陷导致即使某一处已经电阻为零(这导致总电阻为零,因为相当于并联),超导体本身也不是完全抗磁性的,磁力线仍然能穿过部分超导体,所以整个超导体变为完全抗磁的情况需要的温度更低、时间更长.

同时实验中不只有这一种误差,误差还有可能来自于铂电阻和超导样品之间的导热性不够良好, 导致铂电阻的温度和超导样品的温度不一致.

6 原始数据截图

电源输出设置。CHI:	
 数字万用表两条测试号效电阻: Rosense[™]027Ω 超号盒与样品间的引致电阻: Rosense[™]0175_Ω 四引线法测量室窗下超号样品电阻 Rosense[™] 	U/mV 25.6 35.5 35.4 35.2 35.1 35.0 34.9 34.9 33.9 Userwinv 0.000 0.050 0.041 0.027 0.027 0.02 0.02 0.02 0.02 0.02 0.
电源 CH3,工作模式 15元素 相互或相能)。 输出电压 U _{GB} 5亿 mV。 输出电流 I _{GB} 50 mA 超导样品上的电压 U _{GB} 71 μmV。 样品电阻 R _{SG} 20 11 μmV。 4. 思考,测试导致电阻、引致电阻、超导样品电阻量级比较;	Un/mv 1873 1839 1872 1874 1879 1871 1874 1873 1875 1875 U/mv 33.1 32.3 31.5 30 6 27.8 27.0 28.0 27.4 264 262
B. 电液换向法测除乱真电势的影响 1.测量电压 (Δ _{kmax} = Ω_1 Ω Δ mV , thán = Ω Ω 2 mV , thán Ω Ω Ω Ω Ω Ω Ω Ω Ω	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2.世考、是真电势与容易上电压的数量级批校!	3. 进入银导态后的乱单电势 电压 $U_{Short} = 0.020$ mV. 电流 $I = 13$ mA (电源屏幕显示值) 乱其电势 $U_{Sur} = 0.520$ mV. 样晶电压 $U_{Sur} = 152$ mV. 样晶电压 $U_{Sur} = 152$ mV. 样晶电压 $U_{Sur} = 152$ mV.
3.産温下的电視荷端的电压测量值, U _{rmd} <u>1.9 7, 3</u> mV 4.电源 CH1, 工作模式 <u>いたで</u> 恒压或恒流、輸出电压 U _{cm} <u>1.9 W</u> A、輸出电流 I _{cm} <u> </u> mA	4. 升級機量 Comv 23.b 24.5 25.3 24.1 27.0 27.3 28.6 28.7 25.8 28.9
D、电磁感应注频值导样品对感应电压的影响 信号源设置:输出波形上飞五板。频率 /=Hz, 模皮 V _W = 200mV 线图感应电压:U==+_3mV	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
 E. 样品超导转变温度测量 1. 查别表:预估: 帕电阻电压 U_{tribec} = △o a mV, U_{tribec} = 2 1 2 mV 2. 降温测量 参考: 在 U_{tribec} 附近开始记录数据: 在 U_{tribec} 和V U 变化较缓慢的阶段记录数据间隔取 Δ=2°C、在 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
受化物快的阶段记录数据间隔取 A=D.1℃ U/maV 41.0 40.1 39.2 78.4 37.6 31.8 31.0 35.9 25.8 75.7 U/maV U/maV 0.775 0.775 0.774 0.775 0.7	U, mv 3 o . 2 3 o 3 3 o . 4 3 o . 5 3 o . 6 3 o . 7 3 o . 8 3 o . 9 3 o . 7 3 o . 8 3 o . 9 3 o . 0 1 3 o . 0 1 8 o . 0 1 8 o . 0 1 8 o . 0 1 8 o . 0 1 8 o . 0 1 8 o . 0 1 8 o . 0 1 8 o . 0 1 8 o . 0 1 7 o
War 18 67 18 69 18 76 18 77 18 21 18 83 18 83 18 83 18 97 18 97 18 70	

(a) 图片 1

(b) 图片 2

图 3: 实验原始数据截图 1

降温数据补充: 感应电压突变点, 随电阻突变点, 较远, 网比只好补充记函数据.

IN DE NOT TIT IL VOIN 200 AIR.								
Ut/mV	26.1	26.0	25.9	25-8	25-7	X.1	25.5	25.4
Us/mV	0.020	0.020	0.070	0.070	0.920	0.20	0.020	0.019
Um/mV	19.03	18.98	18-94	18.81	18.46	18.50	18-38	18.5
Ut/mV	25-3	25.2	25.1	25.0	24.9	24.8	24.7	24,6
Us/mV	0.019	0.020	0.020	0.070	0020	1.020	0.020	0.028
Um/mV	17.89	17.57	17.37	17.07	16.83	16.56	18-35	16.07
Ut/mV	24.5	24.4	24.3	24.2	24.1	240	23.9	23.8
Us/mV	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.020
Um/mV	15-89	15-52	15.43	15.09	14.98	14.70	14.45	14.31
Ut/mV	23.7	23.6	22.5					
Us/mV	0.020	0.620	0.020					
Um/mV	14.08	13.99	1282					

升温数据补充:理由同点.

Ut/mV	31.2	31.3	31.4	31.5	31.6	31.7	31.9	32.0	32.1
U_S/mV									
Um/mV	17.72	17.95	18.22	18-72	18.95	17.04	19.11	19.13	19.19
Ut /mV	32.2	32.3	37.4	32-5	32.b	33.6	34.4	35.2	360
Ut /mV Us/mV	-0.92	-6.026	-0.030	-0.634	-0.03	-0.038	-0.04	0 -0.04	-0.043
Um/mV	19.21	19.19	19.17	19.12	19.15	19.10	19.04	17.06	17.01
Ut /mV	36.8	37.6	38.Y	39.2	40.	40.8	41.7	425	43.3
Ut /mV Us/mV	-0.044	-0.045	-10.046	-0.048	-0.050	70.05	-11.052	-6.054	-0.05
Um/mV	18.99	18.97	18.92	18.91	18.87	18-83	18-7	18.73	18:71

(a) 图片 3

(b) 图片 4

图 4: 实验原始数据截图 2