

Leveraging true heterogeneous compute for autonomous systems

Peter van der Perk

Introduction

Peter van der Perk - NXP Semiconductors, CTO Systems Innovations Mobile Robotics team

Multinational team: Netherlands, Germany, USA, Canada Reference designs and development platforms for autonomous rovers and drones

- i.MXRT
- IMX95
- MCXN
- S32K344

From Real-Time to ROS 2: Streamlining Control on a Single SoC

- How can we integrate:
 - Low-level real-time control
 - High-level ROS 2-based control
 - Safety-critical ready features
- On a single System-on-Chip (SoC)?
 - What are the benefits?
 - How to deal with complexity?
 - How to deal with real-time and non-real-time tasks?

Scope - Present situation

Companion computer High level control Compute intense functions Linux i.MX 8M+ NavQ+

i.MX RT 1170

MR-CANHUBK344

Scope - Targeted situation

Companion computer

High level control Compute intense functions Trajectory calculation Linux ROS2 Cognipilot

Vehicle Management Unit

Vehicle control Motor control Trajectory execution Zephyr / Nuttx

Diagnostics Zephyr

Target application

AMR

Rovers

Drones

Data exchange On chip - RpMsg

i.MX OpenAMP/RPMsg implementation

- Linux already has RPMsg implemented on top VIRTIO exposing:
 - RPMsg communication channels
 - Virtual TTY over shared memory
 - Netdevice: IP networking to RPMsg
- Zephyr also implements RPMsg albeit "a bit basic"
 - Our goal is to improve the Zephyr implementation to simplify heterogeneous compute and ease ROS2 integration.

NavQ95 Heterogenous Software Stack

NavQ95 Distributed Networking

- i.MX95 has 3 NETC Ethernet Controllers
- NETC Ethernet controller has 3 interfaces to the SoC
 - 1 Physical
 - 2 Virtual
- Each interfaces can be either
 - Cortex-A Core
 - Virtualized Domain inside
 - Cortex-M Core
- External/Internal routing
 - External packets from a single port can be routed to different cores
 - Different cores can also communicate with each-other over ethernet

MR-B3RB-M "Buggy3 RevB"

Small Robotic Rover for developers. Used in HoverGames, RoverGames, AIM, NXP-CUP

B3RB NavQ95 Heterogenous demo

Current results and Future Goals

Create a combination of low-level real-time control with high-level vehicle control and safety functions.

Results

- Prototype hardware based on i.MX 95
- Nuttx + RpMsg on M7 core contributed to open source
- Zephyr + RpMsg on M7 core contributed to open source

Current software goals

- Streamline software deployment on different cores (bootloader enablement)
- Improve shared message bus
 - ideally first-class Zenoh shared memory transport integration
 - Alternative means for serialization ROS2 / DDS / CDR is quite inefficient
- Virtual NETC implemention for Zephyr

01

Hardware

NavQ95v1 2024 PoC Board

NavQ95

i.MX 95 EVK

NavQ95v1 2024 - Drone test

NavQ95 V2 2026+

Network Expansion board

Camera/Display expansion boards

IO Expansion boards

Option 1: Vehicle controller IO

NavQ95 Distributed Networking Architecture

Questions

Peter van der Perk

Peter.vanderperk@nxp.com

nxp.com

i.MX95 Shared Memory architecture

