FIT 3080: Intelligent Systems

Expectimax and Reinforcement Learning

Gholamreza Haffari – Monash University

Many slides over the course adapted from Stuart Russell, Andrew Moore, or Dan Klein

Announcements

Online Reading:

- Reinforcement Learning: An Introduction, by Richard Sutton and Andrew Barto, MIT Press
- Chapter 3 and Chapter 4
- Accessible from: http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
- Different treatment and notation than the R&N book, beware!
- Lecture version is the standard for this class.

R&N book:

- Section 5.5
- Sections 17.1-3

Outline

- Expectimax Search
- Reinforcement Learning (RL)
- Passive Learning in RL
 - Model-based
 - Model-free
 - Direct Estimation
 - Temporal Difference
- Active Learning in RL
 - Q-Learning

Outline

- Expectimax Search
- Reinforcement Learning (RL)
- Passive Learning in RL
 - Model-based
 - Model-free
 - Direct Estimation
 - Temporal Difference
- Active Learning in RL
 - Q-Learning

Deterministic Games

- Deterministic, zero-sum two-player games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Each node has a minimax
 value: best achievable utility
 against a rational adversary

Minimax values: computed recursively

Terminal values: part of the game

Stochastic/Non-Deterministic Games

- Stochastic games:
 - Backgammon, Solitaire, Minesweeper, ...
- Result of an action can be uncertain
 - eg in Backgammon, before rolling the dice, we don't know what's the outcome
- Can we approach it as search in a state space?
 - What's the utility of an action with uncertain outcomes?

Utility of an Uncertain Action?

For uncertain actions, consider the expected utility:

Utility(action) = Σ P(state|action) * Utility(state)

Example:

- I want to go from home to the airport
- I can take the freeway (action)
- Outcome of take freeway is uncertain:
 - State Arrive Early: (.6, +50)
 - State Arrive Late: (.4, -200)
 - Expected Utility = .6 * 50 + .4 * (-200) = -50

Expectimax Search Trees

(vs mini-max search trees)

- Can do expectimax search
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children
- More formally, we have seen how to formalize the underlying problem as a Markov Decision Process

Expectimax Pseudocode

```
def value(s)
  if s is a max node return maxValue(s)
  if s is an exp node return expValue(s)
  if s is a terminal node return evaluation(s)

def maxValue(s)
  values = [value(s') for s' in successors(s)]
  return max(values)
```


def expValue(s)

values = [value(s') for s' in successors(s)]
weights = [probability(s, s') for s' in successors(s)]
return expectation(values, weights)

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax


```
if state is a MAX node then
    return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
    return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
```

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Outline

- Expectimax Search
- Reinforcement Learning (RL)
- Passive Learning in RL
 - Model-based
 - Model-free
 - Direct Estimation
 - Temporal Difference
- Active Learning in RL
 - Q-Learning

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state s₀ (or distribution P₀)

• Quantities:

- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state
- Q-Values: expected future utility from a q-state

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must learn to act so as to maximize expected rewards

Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
 - Still looking for a policy $\pi(s)$
 - New twist: don't know T or R
 - I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistications debated
- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to V(s) using a neural network
- Combined with depth 3 search, one of the top 3 players in the world

- You could imagine training Pacman this way ...
- But it's tricky!

Key Ideas for Learning

Online vs. Batch

 Learn while exploring the world, or learn from fixed batch of data

Active vs. Passive

Does the learner actively choose actions to gather experience? Or, is a fixed policy provided?

Model learning vs. Model free

 Do we estimate T(s,a,s') and R(s,a,s'), or just learn values/policy directly

Outline

- Expectimax Search
- Reinforcement Learning (RL)
- Passive Learning in RL
 - Model-based
 - Model-free
 - Direct Estimation
 - Temporal Difference
- Active Learning in RL
 - Q-Learning

Passive Learning

Simplified task

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You are given a policy π(s)
- Goal: learn the state values
- ... what value iteration did!

In this case:

- Learner has no choice about what actions to take
- Just execute the policy and learn from experience
- We'll get to the active case soon

Detour: Sampling Expectations

- What is the average height of people in Monash?
- Method: measure their heights, add them up, and divide by N

Detour: Sampling Expectations

Want to compute an expectation weighted by P(x):

$$E[f(x)] = \sum_{x} P(x)f(x)$$

Model-based: estimate P(x) from samples, compute expectation

$$x_i \sim P(x)$$

$$\hat{P}(x) = \operatorname{count}(x)/k$$

$$E[f(x)] \approx \sum_x \hat{P}(x)f(x)$$

Model-free: estimate expectation directly from samples

$$x_i \sim P(x)$$
 $E[f(x)] \approx \frac{1}{k} \sum_i f(x_i)$

Why does this work? Because samples appear with the right frequencies!

Model-based Learning

Idea:

- Learn the model empirically (rather than the "values")
- Solve the MDP as if the learned model were correct
- Better than direct estimation?

Empirical model learning:

- Count outcomes for each (s,a)
- Normalize to give estimate of T(s,a,s')
- Discover R(s,a,s') the first time we experience (s,a,s')

Example: Model-Based Learning

Episodes:

- (2,3) right -1
- (3,3) right -1
- (3,2) up -1
- (3,3) right -1)
- (4,3) exit +100

(done)

- (1,3) right -1
- (2,3) right -1
- (3,3) right -1
- (3,2) up -1
- (4,2) exit -100
- (done)

$$T(<3,3>, right, <4,3>) = 1/3$$

$$T(<2,3>, right, <3,3>) = 2/2$$

Outline

- Expectimax Search
- Reinforcement Learning (RL)
- Passive Learning in RL
 - Model-based
 - Model-free
 - Direct Estimation
 - Temporal Difference
- Active Learning in RL
 - Q-Learning

Model-free Learning

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Big idea: Why bother learning T?
- Question: How can we compute V if we don't know T?
 - Use direct estimation to sample complete trials
 - Compute "values" for each trial based on the sequence of rewards
 - Average "values" across trials at the end
 - i.e. sampling!

Simple Case: Direct Estimation

Episodes:

$$(4,3)$$
 exit +100

(done)

$$\gamma = 1, R = -1$$

$$V(2,3) \sim (96 + -103) / 2 = -3.5$$

$$V(3,3) \sim (99 + 97 + -102) / 3 = 31.3$$

Outline

- Expectimax Search
- Reinforcement Learning (RL)
- Passive Learning in RL
 - Model-based
 - Model-free
 - Direct Estimation
 - Temporal Difference
- Active Learning in RL
 - Q-Learning

Towards Better Model-free Learning

Review: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-lookahead using current V
 - Unfortunately, need T and R

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

Sample-Based Policy Evaluation?

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Who needs T and R? Approximate the expectation with samples (drawn from T!)

$$V_{i+1}^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} sample_{i}$$

Model-Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often

- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs!

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Example: TD Policy Evaluation

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

$$(3,2)$$
 up -1

2

Take $\gamma = 1$, $\alpha = 0.5$, $V_0(<4,3>)=100$, $V_0(<4,2>)=-100$, $V_0 = 0$ otherwise

+100

-100

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

Outline

- Expectimax Search
- Reinforcement Learning (RL)
- Passive Learning in RL
 - Model-based
 - Model-free
 - Direct Estimation
 - Temporal Difference
- Active Learning in RL
 - Q-Learning

Active Learning

Full reinforcement learning

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You can choose any actions you like
- Goal: learn the optimal policy
- ... what value iteration did!

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Q-Learning Update

Q-Learning: sample-based Q-value iteration

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]$$

- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$$

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Basically doesn't matter how you select actions (!)
- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)

RL for Helicopter Controller

