Activité III.1

Cosinus et Sinus Cercle trigonométrique

△ Exercice 1.

Pour chaque question:

- Faire une figure à main levée;
- Répondre à la question sans utiliser le théorème de Pythagore;
- Arrondir les résultats au centième près.
- 1°) Soit ABC un triangle rectangle en B tel que AB = 5 cm et \widehat{BAC} = 25°. Calculer les longueurs AC et BC.
- 2°) Soit DEF un triangle rectangle en D tel que DF = $8.5 \, \text{cm}$ et $\widehat{\text{DEF}} = 75^{\circ}$. Calculer les longueurs DE et EF.
- 3°) Soit GHI un triangle rectangle en I tel que GH = 5 cm, HI = 12 cm et GI = 13 cm. Calculer la mesure de chacun des angles du triangle.

△ Exercice 2.

On se place dans un repère $(0; \overrightarrow{i}, \overrightarrow{j})$ avec 4 carreaux comme unité de longueur. I est le point de coordonnées (1; 0).

- 1°) Réaliser la figure suivante :
 - (a) Dessiner le repère et le cercle trigonométrique \mathcal{U} ;
 - **(b)** Placer le point M sur \mathscr{U} tel que IOM = 45°;
 - (c) Placer le point H, projeté orthogonal de M sur l'axe des abscisses;
 - (d) Placer le point K, projeté orthogonal de M sur l'axe des ordonnées.
- 2°) (a) Le triangle OMH est-il rectangle? Pourquoi? Quel côté est l'hypoténuse? Quelle est sa longueur?
 - **(b)** Donner l'expression de cos (\widehat{IOM}) en fonction d'un des côtés du triangle OMH.
 - (c) À l'aide de la calculatrice, déterminer alors l'abscisse du point M.
 - (d) Le triangle OMK est-il rectangle? Pourquoi? Quel côté est l'hypoténuse? Quelle est sa longueur?
 - (e) Donner l'expression de sin (KMO) en fonction d'un des côtés du triangle OMK.
 - (f) Expliquer pourquoi $\widehat{\text{KMO}} = \widehat{\text{IOM}}$ et donner alors l'expression de $\sin(\widehat{\text{IOM}})$ en fonction d'un des côtés du triangle OMK.
 - (g) À l'aide de la calculatrice, déterminer alors l'ordonnée du point M.
- **3°)** (a) Placer le point N sur \mathcal{U} tel que ION = $\frac{\pi}{3}$ rad.
 - **(b)** Lire les coordonnées du point N. En déduire alors les valeurs de $\cos\left(\frac{\pi}{3}\right)$ et $\sin\left(\frac{\pi}{3}\right)$.
 - (c) Vérifier à la calculatrice.
- **4°)** (a) Déterminer graphiquement les valeurs exactes de $\cos\left(-\frac{\pi}{3}\right)$ et $\sin\left(-\frac{\pi}{3}\right)$.
 - **(b)** Déterminer graphiquement les valeurs exactes de $\cos\left(\frac{2\pi}{3}\right)$ et $\sin\left(\frac{2\pi}{3}\right)$.
- **5°**) On place un point P sur le cercle \mathscr{U} tel que $\widehat{IOP} = \alpha$ rad.
 - (a) Graphiquement, comment déterminer $cos(\alpha)$ et $sin(\alpha)$?
 - **(b)** Où placer le point P pour avoir $\cos(\alpha) > 0$ et $\sin(\alpha) < 0$?
 - (c) Où placer le point P pour avoir $\cos(\alpha) < 0$ et $\sin(\alpha) < 0$?
 - (d) Où placer le point P pour avoir $cos(\alpha) = 0$?
 - (e) Où placer le point P pour avoir $sin(\alpha) = 0$?