Test di Calcolo Numerico

Ingegneria Informatica 14/01/2019

COGNOME		NOME		
MA	ATRICOLA			
Risposte				
1)				
2)				
3)				
4)				
5)				

 $\mathbf{N.B.}$ Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 14/01/2019

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = x^2 - y .$$

2) Una matrice $A \in \mathbb{C}^{3 \times 3}$ ha autovalori

$$\lambda_1 = 1$$
, $\lambda_2 = i$, $\lambda_3 = -i$.

Quale è il polinomio caratteristico della matrice A^{-1} ?

3) Determinare intervalli di separazione dei punti fissi della funzione

$$\phi(x) = \frac{2 + \log x}{x} \, .$$

4) È data la tabella di valori

Determinare la retta di equazione y = ax + b che approssima la funzione f(x) nel senso dei minimi quadrati.

5) Per approssimare l'integrale $I(x^2f)=\int_{-1}^1 x^2 f(x)dx$ si utilizza la formula di quadratura

$$J_1(f) = \frac{1}{3} \left(f \left(-\sqrt{\frac{3}{5}} \right) + f \left(\sqrt{\frac{3}{5}} \right) \right) .$$

Supposto che risulti $E_1(f) = Kf^{(s)}$, determinare K e s.

SOLUZIONE

1) Considerando l'algoritmo

$$r_1 = x \cdot x \,, \quad r_2 = r_1 - y \,,$$

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \frac{x^2}{x^2 - y} \epsilon_1 + \epsilon_2 + 2 \frac{x^2}{x^2 - y} \epsilon_x - \frac{y}{x^2 - y} \epsilon_y.$$

2) Gli autovalori della matrice A^{-1} sono i reciproci degli autovalori di A per cui il polinomio caratteristico di A^{-1} è

$$P(\lambda) = -(\lambda - 1)(\lambda - \frac{1}{i})(\lambda + \frac{1}{i}) = -(\lambda - 1)(\lambda + i)(\lambda - i).$$

3) Si devono separare le soluzioni dell'equazione $x=\phi(x)$, cioè le soluzioni dell'equazione $x^2-2-\log x=0$. Si evidenziano due soluzioni α_1,α_2 con

$$\alpha_1 \in]0.01, 1/2[, \quad \alpha_2 \in]1, 2[.$$

4) Ponendo

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ -1 & 1 \\ -2 & 1 \end{pmatrix}, f = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 3 \end{pmatrix}, x = \begin{pmatrix} a \\ b \end{pmatrix}$$

e risolvendo il sistema delle equazioni normali $A^TAx = A^Tf$ si ottiene la retta di equazione y=2.

5) La formula risulta esatta per $f(x) = 1, x, x^2, x^3$ ma non per $f(x) = x^4$ per cui il grado di precisione è m = 3.

Ne segue che s=4 ed essendo $E_1(x^4)=\frac{8}{175}$ si ottiene $K=\frac{1}{525}$.