Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection

with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

4 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 100.08

Figure 1: Outline of path 1

2.1.1 Steglich Esterification

 ${\bf Substrates:}$

1. crotonalkohol

2. 5-phenyl-penta-2,4-dienoic acid

Products:

 $1. \ \ CC{=}CCOC(=O)C{=}CC{=}Cc1ccccc1$

Typical conditions: alcohol.DCC.DMAP.DCM or thiol.DCC.DMAP.DCM

Protections: none

Reference: 10.1002/anie.197805221

Retrosynthesis ID: 10171

2.1.2 Wohl-Ziegler Bromination

Substrates:

1. N-Bromosuccinimide - available at Sigma-Aldrich

 $2. \ CC{=}CCOC(=O)C{=}CC{=}Cc1ccccc1$

Products:

 $1. \ O{=}C(C{=}CC{=}Cc1ccccc1)OCC{=}CCBr$

Typical conditions: NBS.AIBN or (BzO)2 or heat

Protections: none

Reference: 10.1016/j.steroids.2018.10.005 (Scheme 1) and 10.1016/j.bmc.2010.06.075 (Scheme 2) and 10.1021/acs.orglett.9b03865 (p. SI 6)

2.1.3 Diels-Alder

Substrates:

 $1. \ O{=}C(C{=}CC{=}Cc1ccccc1)OCC{=}CCBr$

Products:

1. O=C1OCC2C1C=CC(c1cccc1)C2CBr

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z AND <math>10.1021/ja062508t

Retrosynthesis ID: 18116

2.1.4 Wittig-Schlosser olefination

Substrates:

- 1. O=C1OCC2C1C=CC(c1cccc1)C2CBr
- 2. Ethanal available at Sigma-Aldrich

Products:

 $1. \ C/C=C/C1C(c2cccc2)C=CC2C(=O)OCC21$

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde.3.base

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

Retrosynthesis ID: 9546

2.1.5 Claisen Condensation

Substrates:

- $1. \ C/C=C/C1C(c2cccc2)C=CC2C(=O)OCC21$
- 2. Methyl acetate available at Sigma-Aldrich

Products:

 $1. \ C/C = C/C1C(c2cccc2)C = CC2(C(C) = O)C(=O)OCC12$

Typical conditions: Base.Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

2.2 Path 2

Score: 105.08

Figure 2: Outline of path 2

2.2.1 Takai olefination

${\bf Substrates:}$

- 1. butyryloxy-acetaldehyde
- 2. Bromoform available at Sigma-Aldrich

Products:

1. CCCC(=O)OCC=CBr

 $\textbf{Typical conditions:} \ \mathrm{CrCl2.THF}$

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

${\bf 2.2.2} \quad {\bf Condensation \ of \ esters \ with \ aldehydes/ketones}$

Substrates:

1. zimtaldehyd - available at Sigma-Aldrich

 $2. \ CCCC(=O)OCC=CBr$

Products:

1. CCC(=CC=Cc1ccccc1)C(=O)OCC=CBr

Typical conditions: LDA.THF

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104 AND

2.2.3 Allylic Oxidation of Alkenes

Substrates:

 $1. \ CCC(=CC=Cc1ccccc1)C(=O)OCC=CBr$

Products:

1. CC(=O)C(=CC=Cc1ccccc1)C(=O)OCC=CBr

 $\textbf{Typical conditions:} \ tBuOOH.Pd(OH)2/C \ or \ PhI(OAc)2 \ or \ SeO2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.2.4 Pd-catalyzed formylation of vinyl halides

Substrates:

1. tert-Butyl isocyanide - available at Sigma-Aldrich

 $2. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}(=\mathrm{CC}=\mathrm{Cc1cccc1})\mathrm{C}(=\mathrm{O})\mathrm{OCC}=\mathrm{CBr}$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}(=\mathrm{CC}=\mathrm{Cc1ccccc1})\mathrm{C}(=\mathrm{O})\mathrm{OCC}=\mathrm{CC}=\mathrm{O}$

 $\textbf{Typical conditions:} \ Pd(OAc)2. John Phos. Na 2CO 3. H2O. Et 3 SiH. DMF. 65C$

Protections: none

Reference: DOI: 10.1021/ol5014262

2.2.5 Diels-Alder

Substrates:

1.
$$CC(=O)C(=CC=Cc1ccccc1)C(=O)OCC=CC=O$$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C} = \mathrm{CC}(\mathrm{c}3\mathrm{c}\mathrm{c}\mathrm{c}\mathrm{c}\mathrm{c}3)\mathrm{C}(\mathrm{C}=\mathrm{O})\mathrm{C}1\mathrm{C}\mathrm{O}\mathrm{C}2 = \mathrm{O}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z AND <math>10.1021/ja062508t

Retrosynthesis ID: 18116

2.2.6 Takai olefination

Substrates:

1. 1,1-Diiodoethane - available at Sigma-Aldrich

 $2. \ CC(=O)C12C=CC(c3ccccc3)C(C=O)C1COC2=O$

Products:

 $1. \ C/C = C/C1C(c2cccc2)C = CC2(C(C) = O)C(=O)OCC12$

 $\textbf{Typical conditions:} \ \mathrm{CrCl2.THF.DMF}$

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10942

2.3 Path 3

Score: 120.37

Figure 3: Outline of path 3

2.3.1 Brown Hydroboration of Alkenes

Substrates:

1. Allyl butyrate - available at Sigma-Aldrich

Products:

1. butyric acid 3-hydroxy-propyl ester

Typical conditions: B2H6.H2O2.THF.NaOH

Protections: none

Reference: 10.1002/9780470638859.conrr118

Retrosynthesis ID: 4772

2.3.2 Oxidation of primary alcohols with DMP

Substrates:

1. butyric acid 3-hydroxy-propyl ester

Products:

1. CCCC(=O)OCCC=O

Typical conditions: DMP.DCM.0-25 C

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and 10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.3.3 Tebbe Olefination

Substrates:

1. CCCC(=O)OCCC=O

Products:

1. 3-butenyl butyrate

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

${\bf 2.3.4}\quad {\bf Condensation\ of\ esters\ with\ aldehydes/ketones}$

Substrates:

1. 3-butenyl butyrate

2. zimtaldehyd - available at Sigma-Aldrich

Products:

1. C=CCCOC(=O)C(=CC=Cc1ccccc1)CC

Typical conditions: LDA.THF

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104 AND

Retrosynthesis ID: 14983

2.3.5 Tsuji-Wacker Oxidation of alkenes

Substrates:

1. C=CCCOC(=O)C(=CC=Cc1ccccc1)CC

Products:

 $1. \ \ CCC(=CC=Cc1ccccc1)C(=O)OCCCC=O$

 $\textbf{Typical conditions:}\ PdCl2(PhCn)2.CuCl2.AgNO2.O2.tBuOH.MeNO2.rt$

Protections: none

Reference: 10.1021/jacs.6b08788 and 10.1021/ja411749k and 10.1002/anie.201306756 and 10.1016/S0040-4039(03)01709-X and 10.1021/acs.orglett.6b01165

Retrosynthesis ID: 28273

2.3.6 Enol esters and ethers synthesis

Substrates:

- 1. CCC(=CC=Cc1ccccc1)C(=O)OCCCC=O
- 2. TMSCl available at Sigma-Aldrich

Products:

 $1. \ \ CCC(=CC=Cc1ccccc1)C(=O)OCCC=CO[Si](C)(C)C$

Typical conditions: 1.LDA.2.Electrophile

Protections: none

Reference: US2467095A AND WO2014169833a1 AND 10.1016/j.steroids.2011.03.014 AND 10.1021/ol200875m (SI) AND 10.1021/ja00531a034

2.3.7 Dehydrogenation of silyl enol ethers

Substrates:

 $1. \ \ CCC(=CC=Cc1ccccc1)C(=O)OCCC=CO[Si](C)(C)C$

Products:

1. CCC(=CC=Cc1ccccc1)C(=O)OCC=CC=O

 $\textbf{Typical conditions:} \ \mathrm{Pd}(\mathrm{OAc})2.\mathrm{Cu}(\mathrm{OAc})2.\mathrm{O2.MeCN}$

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

Retrosynthesis ID: 9999877

2.3.8 Reformatsky Reaction

Substrates:

1. Methyl 2-bromopropionate - available at Sigma-Aldrich

 $2. \ CCC(=CC=Cc1ccccc1)C(=O)OCC=CC=O$

Products:

 $1. \ \ CCC(=CC=Cc1ccccc1)C(=O)OCC=CC(O)C(C)C(=O)OC$

Typical conditions: Me2Zn.B(OMe)3.toluene.Et2O

Protections: none

Reference: 10.1021/jo200774e p. 6373 and 10.1021/jo00163a019 p. 2522, 2525

Retrosynthesis ID: 11164

2.3.9 Allylic Oxidation of Alkenes

Substrates:

 $1. \ \ CCC(=CC=Cc1ccccc1)C(=O)OCC=CC(O)C(C)C(=O)OC$

Products:

 $1. \ \ COC(=O)C(C)C(O)C=CCOC(=O)C(=CC=Cc1ccccc1)C(C)=O$

Typical conditions: ${\rm tBuOOH.Pd}({\rm OH})2/{\rm C}$ or ${\rm PhI}({\rm OAc})2$ or ${\rm SeO}2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.3.10 Diels-Alder

Substrates:

 $1. \ \ COC(=O)C(C)C(O)C=CCOC(=O)C(=CC=Cc1ccccc1)C(C)=O$

Products:

 $1. \ COC(=O)C(C)C(O)C1C(c2cccc2)C=CC2(C(C)=O)C(=O)OCC12$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z AND <math>10.1021/ja062508t

Retrosynthesis ID: 18116

2.3.11 Tandem Krapcho decarboxylation and elimination

Substrates:

- 1. glacial available at Sigma-Aldrich
- $2. \ COC(=O)C(C)C(O)C1C(c2cccc2)C=CC2(C(C)=O)C(=O)OCC12$

Products:

$1. \ C/C=C/C1C(c2cccc2)C=CC2(C(C)=O)C(=O)OCC12$

Typical conditions: 1. Ac2O.py 2. DMSO.H2O.NaCl.170C

Protections: none

Reference: DOI: 10.1021/jo00263a005 and 10.1021/jo00386a011 and

10.1021/ol006085q

Retrosynthesis ID: 9605

2.4 Path 4

Score: 129.38

Figure 4: Outline of path 4

2.4.1 Enol esters and ethers synthesis

Substrates:

- 1. TMSCl available at Sigma-Aldrich
- 2. hex-4t-enal

Products:

1. C/C=C/CC=CO[Si](C)(C)C

Typical conditions: 1.LDA.2.Electrophile

Protections: none

Reference: US2467095A AND WO2014169833a1 AND 10.1016/j.steroids.2011.03.014 AND 10.1021/ol200875m (SI) AND 10.1021/ja00531a034

Retrosynthesis ID: 7797

2.4.2 Dehydrogenation of silyl enol ethers

Substrates:

1. C/C=C/CC=CO[Si](C)(C)C

Products:

1. 2,4-hexadienal

Typical conditions: Pd(OAc)2.Cu(OAc)2.O2.MeCN

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

2.4.3 Synthesis of alkyl chlorides from aldehydes

Substrates:

1. 2,4-hexadienal

Products:

 $1. \ \mathrm{C/C}{=}\mathrm{C/C}{=}\mathrm{CCCl}$

 ${\bf Typical\ conditions:}\ {\rm InO3.chloroform.SiMe2Cl}$

Protections: none

Reference: DOI: 10.1021/ja0283246

Retrosynthesis ID: 11621

2.4.4 Aldol Condensation

Substrates:

1. 4-Hydroxy-2-butanone - available at Sigma-Aldrich

2. zimtaldehyd - available at Sigma-Aldrich

Products:

1. CC(=O)C(=CC=Cc1cccc1)CO

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

Retrosynthesis ID: 10049

2.4.5 Diels-Alder

Substrates:

 $1. \ C/C{=}C/C{=}CCCl$

 $2. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}(=\mathrm{Cc}=\mathrm{Cc}1\mathrm{cccc}1)\mathrm{CO}$

Products:

1. C/C=C/C1C(c2cccc2)C=CC(CO)(C(C)=O)C1CCl

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

2.4.6 Jones Oxidation

Substrates:

 $1. \ C/C = C/C1C(c2cccc2)C = CC(CO)(C(C) = O)C1CCl$

Products:

 $1. \ C/C = C/C1C(c2cccc2)C = CC(C(C) = O)(C(=O)O)C1CCl$

Typical conditions: cromate.sulfate.H2O.acetone

Protections: none

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

Retrosynthesis ID: 11160

2.4.7 Synthesis of esters from alkyl chlorides and carboxylic acids or thioacids

Substrates:

 $1. \ C/C = C/C1C(c2cccc2)C = CC(C(C) = O)(C(=O)O)C1CCl$

Products:

 $1. \ \mathrm{C/C}{=}\mathrm{C/C1C(c2cccc2)C}{=}\mathrm{CC2(C(C)}{=}\mathrm{O)C(=O)OCC12}$

Typical conditions: K2CO3.DMF

Protections: none

Reference: 10.1016/j.bmcl.2005.08.026 AND 10.1021/ol034655r (SI) AND

10.1039/C3RA41967C AND 10.1016/j.bmcl.2012.03.093