AIM:-

Pandas program which will highlight the nan values..

CODE:-

```
\Users\ankal\Downloads\DSA0511-Query Processing\11.py (3.12.1)
Format Run Options Window
                           Help
andas as pd
umpy as np
n.seed(24)
DataFrame({'A': np.linspace(1, 10, 10)})
concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BC
       axis=1)
[0, 2] = np.nan
3, 3] = np.nan
4, 1] = np.nan
9, 4] = np.nan
riginal array:")
r negative red(val):
r = 'red' if val < 0 else 'black'
m 'color: %s' % color
nNegative numbers red and positive numbers black:")
.highlight null(null color='red')
```

INPUT:-

	A	В	С	D	E
0	1	1.32921	nan	-0.31628	-0.99081
	2	-1.07082	-1.43871	0.564417	0.295722
	3	-1.6264	0.219565	0.678805	1.88927
	4	0.961538	0.104011	nan	0.850229
	5	nan	1.05774	0.165562	0.515018
	6	-1.33694	0.562861	1.39285	-0.063328
	7	0.121668	1.2076	-0.00204021	1.6278
	8	0.354493	1.03753	-0.385684	0.519818
	9	1.68658	-1.32596	1.42898	-2.08935
	10	-0.12982	0.631523	-0.586538	nan

OUTPUT:-

```
Original array:

A B C D E

0 1.0 1.329212 NaN -0.316280 -0.990810
1 2.0 -1.070816 -1.438713 0.564417 0.295722
2 3.0 -1.626404 0.219565 0.678805 1.889273
3 4.0 0.961538 0.104011 NaN 0.850229
4 5.0 NaN 1.057737 0.165562 0.515018
5 6.0 -1.336936 0.562861 1.392855 -0.063328
6 7.0 0.121668 1.207603 -0.002040 1.627796
7 8.0 0.354493 1.037528 -0.385684 0.519818
8 9.0 1.686583 -1.325963 1.428984 -2.089354
9 10.0 -0.129820 0.631523 -0.586538 NaN
```

AIM:-

Pandas program to set dataframe background Color black and font color yellow

CODE:-

```
    C:\Users\ankal\Downloads\DSA0511-Query Processing\11.py (3.12.1)

t Format Run Options Window
                             Help
pandas as pd
numpy as np
dom.seed(24)
i.DataFrame({'A': np.linspace(1, 10, 10)})
i.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE
         axis=1)
c[0, 2] = np.nan
c[3, 3] = np.nan
[4, 1] = np.nan
c[9, 4] = np.nan
"Original array:")
if)
lor_negative_red(val):
lor = 'red' if val < 0 else 'black'
turn 'color: %s' % color
"\nNegative numbers red and positive numbers black:")
le.highlight null(null color='red')
```

INPUT:-

	A	В	C	D	E
0	1	1.32921	nan	-0.31628	-0.99081
1	2	-1.07082	-1.43871	0.564417	0.295722
2	3	-1.6264	0.219565	0.678805	1.88927
3	4	0.961538	0.104011	nan	0.850229
4	5	nan	1.05774	0.165562	0.515018
5	6	-1.33694	0.562861	1.39285	-0.063328
6	7	0.121668	1.2076	-0.00204021	1.6278
7	8	0.354493	1.03753	-0.385684	0.519818
8	9	1.68658	-1.32596	1.42898	-2.08935
9	10	-0.12982	0.631523	-0.586538	nan

OUTPUT:-

```
Original
                                   D
    1.0
        1.329212
                        NaN -0.316280 -0.990810
    2.0 -1.070816 -1.438713 0.564417 0.295722
    3.0 -1.626404 0.219565 0.678805
         0.961538
                                      0.850229
3
                   0.104011
                                 NaN
                  1.057737 0.165562
                                      0.515018
              NaN
5
                   0.562861
                           1.392855 -0.063328
   6.0 -1.336936
        0.121668 1.207603 -0.002040 1.627796
   7.0
6
         0.354493 1.037528 -0.385684 0.519818
7 8.0
B
        1.686583 -1.325963 1.428984 -2.089354
   10.0 -0.129820 0.631523 -0.586538
                                           NaN
Negative numbers red and positive numbers black:
```

AIM:-

Pandas program to detect missing values of a given DataFrame. Display True or False

CODE:-

File Edit Format Run Options Window Help

```
import pandas as pd
import numpy as np

data = {'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4], 'C': [1, np.nan, 3, 4]}

df = pd.DataFrame(data)

missing_values = df.isnull()
print(missing_values)
```

	ord_no	purch_amt	ord_date	customer_id	salesman_id
0	70001.0	150.50	2012-10-05	3002	5002.0
1	NaN	270.65	2012-09-10	3001	5003.0
2	70002.0	65.26	NaN	3001	5001.0
3	70004.0	110.50	2012-08-17	3003	NaN
4	NaN	948.50	2012-09-10	3002	5002.0
5	70005.0	2400.60	2012-07-27	3001	5001.0
6	NaN	5760.00	2012-09-10	3001	5001.0
7	70010.0	1983.43	2012-10-10	3004	NaN
8	70003.0	2480.40	2012-10-10	3003	5003.0
9	70012.0	250.45	2012-06-27	3002	5002.0
10	NaN	75.29	2012-08-17	3001	5003.0
11	70013.0	3045.60	2012-04-25	3001	NaN

```
File Edit Shell Jebug Options Window Help

Python 3.11.0 (main, Oct 24 2022, 18:26:48) [MSC v.1933 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

>>>

===== RESTART: C:/Users/Vishnu/Desktop/DSA0511-Query processing lab/13.py =====

A B C

0 False True False
1 False False True
2 True False False
3 False False False
```

AIM

Pandas program to find and replace the missing values in a given DataFrame which do not have any valuable information

```
int ide in the import of the import pandas as pd
import numpy as np

data = {'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4], 'C': [1, np.nan, 3, 4]}

df = pd.DataFrame(data)

df_filled = df.fillna(0)
print(df_filled)
```

	ord_no	purch_amt	ord_date	customer_id	salesman_id
0	70001	150.5	?	3002	5002
1	NaN	270.65	2012-09-10	3001	5003
2	70002	65.26	NaN	3001	?
3	70004	110.5	2012-08-17	3003	5001
4	NaN	948.5	2012-09-10	3002	NaN
5	70005	2400.6	2012-07-27	3001	5002
6		5760	2012-09-10	3001	5001
7	70010	3	2012-10-10	3004	?
8	70003	12.43	2012-10-10		5003
9	70012	2480.4	2012-06-27	3002	5002
10	NaN	250.45	2012-08-17	3001	5003
11	70013	3045.6	2012-04-25	3001	

AIM

Pandas program to keep the rows with at least 2 NaN values in a given DataFrame

CODE

```
15.py - C:/Users/Vishnu/Desktop/DSA0511-Query processing lab/15.py (3.11.0)
```

File Edit Format Run Options Window Help

```
import pandas as pd
import numpy as np

data = {'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4], 'C': [1, np.nan, 3, 4]}

df = pd.DataFrame(data)

rows_with_nans = df[df.isnull().sum(axis=1) >= 2]

print(rows_with_nans)
```

	ord_no	purch_amt	ord_date	customer_id
0	NaN	NaN	NaN	NaN
1	NaN	270.65	2012-09-10	3001.0
2	70002.0	65.26	NaN	3001.0
3	NaN	NaN	NaN	NaN
4	NaN	948.50	2012-09-10	3002.0
5	70005.0	2400.60	2012-07-27	3001.0
6	NaN	5760.00	2012-09-10	3001.0
7	70010.0	1983.43	2012-10-10	3004.0
8	70003.0	2480.40	2012-10-10	3003.0
9	70012.0	250.45	2012-06-27	3002.0
10	NaN	75.29	2012-08-17	3001.0
11	NaN	NaN	NaN	NaN

```
File Edit Shell Debug Options Window Help

Python 3.11.0 (main, Oct 24 2022, 18:26:48) [MSC v.1933 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

>>>

====== RESTART: C:/Users/Vishnu/Desktop/DSA0511-Query processing lab/15.py =====
Empty DataFrame
Columns: [A, B, C]
Index: []

>>>
```

AIM

Pandas program to split the following dataframe into groups based on school code. Also check the type of GroupBy object.

	school	class	name	date_Of_Birth	age	height	weight	address
S 1	s001	V	Alberto Franco	15/05/2002	12	173	35	street1
S2	s002	V	Gino Mcneill	17/05/2002	12	192	32	street2
S 3	s003	VI	Ryan Parkes	16/02/1999	13	186	33	street3
S 4	s001	VI	Eesha Hinton	25/09/1998	13	167	30	street1
S5	s002	V	Gino Mcneill	11/05/2002	14	151	31	street2
S 6	s004	VI	David Parkes	15/09/1997	12	159	32	street4

AIM

Pandas program to split the following dataframe by school code and get mean, min, and max value of age for each school

	school	class	name	date_Of_Birth	age	height	weight	address
S1	s001	V	Alberto Franco	15/05/2002	12	173	35	street1
52	s002	V	Gino Mcneill	17/05/2002	12	192	32	street2
S 3	s003	VI	Ryan Parkes	16/02/1999	13	186	33	street3
54	s001	VI	Eesha Hinton	25/09/1998	13	167	30	street1
S 5	s002	V	Gino Mcneill	11/05/2002	14	151	31	street2
56	s004	VI	David Parkes	15/09/1997	12	159	32	street4

AIM

Pandas program to split the following given dataframe into groups based on school code and class.

	school	class	name	date_Of_Birth	age	height	weight	address
51	5001	V	Alberto Franco	15/05/2002	12	173	35	street1
52	5002	V	Gino Mcneill	17/05/2002	12	192	32	street2
53	s003	VI	Ryan Parkes	16/02/1999	13	186	33	street3
54	s001	VI	Eesha Hinton	25/09/1998	13	167	30	street1
55	s002	V	Gino Mcneill	11/05/2002	14	151	31	street2
56	5004	VI	David Parkes	15/09/1997	12	159	32	street4

OUTPUT

File Edit Shell Debug Options Window Help

AIM

Pandas program to display the dimensions or shape of the World alcohol consumption dataset. Also extract the column names from the dataset

```
File Edit Format Run Options Window Help

import pandas as pd

data = {
    'Country': ['USA', 'Canada', 'Germany', 'UK', 'France'],
    'Year': [1985, 1986, 1987, 1988, 1989],
    'Alcohol_Type': ['Beer', 'Wine', 'Spirits', 'Beer', 'Wine'],
    'Consumption': [100, 200, 150, 300, 250],
    'WHO_Region': ['Americas', 'Americas', 'Europe', 'Europe', 'Europe']
}

df = pd.DataFrame(data)

print("Shape of dataset:", df.shape)

print("Column names:", df.columns.tolist())
```

	Year	WHO region	Country	Beverage Types	Display Value
3	1986	Western Pacific	Viet Nam	Wine	0.00
1	1986	Americas	Uruguay	Other	0.50
2	1985	Africa	Cte d'Ivoire	Wine	1.62
3	1986	Americas	Colombia	Beer	4.27
4	1987	Americas	Saint Kitts and Nevis	Beer	1.98

```
File Edit Shell Debug Options Window Help

Python 3.11.0 (main, Oct 24 2022, 18:26:48) [MSC v.1933 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

>>>

====== RESTART: C:/Users/Vishnu/Desktop/DSA0511-Query processing lab/19.py =====
Shape of dataset: (5, 5)
Column names: ['Country', 'Year', 'Alcohol_Type', 'Consumption', 'WHO_Region']
>>>>
```

AIM

Pandas program to find the index of a given substring of a DataFrame column

CODE

```
20.py - C:/Users/Vishnu/Desktop/DSA0511-Query processing lab/20.py (3.11.0)
```

File Edit Format Run Options Window Help

```
import pandas as pd

data = {'text': ['Hello world', 'Pandas is great', 'Hello Pandas']}

df = pd.DataFrame(data)

df['substring_index'] = df['text'].str.find('Pandas')

print(df)
```

DATA= [HELLO WORLD, PANDAS IS GREAT, HELLO PANDAS]