Generated on 2015-06-14 11:17:58 by gEcon version 0.9.1 (2015-05-19)

Model name: SW_03

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, K_t, I_t, B_t, z_t} U_t = \beta E_t \left[U_{t+1} \right] + \epsilon_t^{b} \left((1 - \sigma^c)^{-1} \left(C_t - H_t \right)^{1 - \sigma^c} - \omega \epsilon_t^{L} \left(1 + \sigma^l \right)^{-1} L_t^{s1 + \sigma^l} \right)$$
(1.1)

s.t.:

$$C_t + I_t + B_t R_t^{-1} = D \dot{w}_t - T_t + B_{t-1} \pi_t^{-1} + L_t W_t + K_{t-1} r_t^k z_t - \psi^{-1} r_{ss}^k K_{t-1} \left(-1 + e^{\psi(-1+z_t)} \right) \quad (\lambda_t)$$

$$(1.2)$$

$$K_{t} = K_{t-1} (1 - \tau) + I_{t} \left(1 - 0.5 \varphi \left(-1 + I_{t-1}^{-1} \epsilon_{t}^{I} I_{t} \right)^{2} \right) \quad (q_{t})$$

$$(1.3)$$

1.2 Identities

$$H_t = hC_{t-1} \tag{1.4}$$

$$Q_t = \lambda_t^{-1} q_t \tag{1.5}$$

1.3 First order conditions

$$-\lambda_t + \epsilon_t^{\mathrm{b}} (C_t - H_t)^{-\sigma^{\mathrm{c}}} = 0 \quad (C_t)$$

$$\tag{1.6}$$

$$-q_t + \beta \left((1 - \tau) E_t \left[q_{t+1} \right] + E_t \left[\lambda_{t+1} \left(r_{t+1}^k z_{t+1} - \psi^{-1} r_{ss}^k \left(-1 + e^{\psi(-1 + z_{t+1})} \right) \right) \right] \right) = 0 \quad (K_t)$$

$$(1.7)$$

$$-\lambda_{t} + q_{t} \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{-1} \epsilon_{t}^{I} I_{t}\right)^{2} - \varphi I_{t-1}^{-1} \epsilon_{t}^{I} I_{t} \left(-1 + I_{t-1}^{-1} \epsilon_{t}^{I} I_{t}\right)\right) + \beta \varphi I_{t}^{-2} \mathcal{E}_{t} \left[\epsilon_{t+1}^{I} q_{t+1} I_{t+1}^{2} \left(-1 + I_{t}^{-1} \epsilon_{t+1}^{I} I_{t+1}\right)\right] = 0 \quad (I_{t})$$

$$(1.8)$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \quad (B_t)$$
(1.9)

$$\lambda_t \left(K_{t-1} r_t^{k} - r_{ss}^{k} K_{t-1} e^{\psi(-1+z_t)} \right) = 0 \quad (z_t)$$
(1.10)

2 PREFERENCE SHOCKS

2.1 Identities

$$\log \epsilon_t^{\rm b} = \eta_t^{\rm b} + \rho^{\rm b} \log \epsilon_{t-1}^{\rm b} \tag{2.1}$$

$$\log \epsilon_t^{\mathcal{L}} = -\eta_t^{\mathcal{L}} + \rho^{\mathcal{L}} \log \epsilon_{t-1}^{\mathcal{L}} \tag{2.2}$$

3 INVESTMENT COST SHOCKS

3.1 Identities

$$\log \epsilon_t^{\mathrm{I}} = \eta_t^{\mathrm{I}} + \rho^{\mathrm{I}} \log \epsilon_{t-1}^{\mathrm{I}} \tag{3.1}$$

4 WAGE SETTING PROBLEM

4.1 Identities

$$f_t^1 = \beta \xi^{w} E_t \left[f_{t+1}^1 \left(w_t^{\star - 1} w_{t+1}^{\star} \right)^{\lambda^{w-1}} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{w}} \right)^{-\lambda^{w-1}} \right] + \lambda_t w_t^{\star} L_t \left(1 + \lambda^{w} \right)^{-1} \pi_t^{\star^{w} - \lambda^{w-1} (1 + \lambda^{w})}$$

$$(4.1)$$

$$f_t^2 = \beta \xi^{W} E_t \left[f_{t+1}^2 \left(w_t^{\star - 1} w_{t+1}^{\star} \right)^{\lambda^{W-1} (1 + \lambda^{W}) \left(1 + \sigma^1 \right)} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{W}} \right)^{-\lambda^{W-1} (1 + \lambda^{W}) \left(1 + \sigma^1 \right)} \right] + \omega \epsilon_t^b \epsilon_t^L \left(L_t \pi_t^{\star^{W} - \lambda^{W-1} (1 + \lambda^{W})} \right)^{1 + \sigma^1}$$

$$(4.2)$$

$$f_t^1 = \eta_t^{W} + f_t^2 (4.3)$$

$$\pi_t^{\star^{\mathbf{w}}} = w_t^{\star} W_t^{-1} \tag{4.4}$$

5 WAGE EVOLUTION

5.1 Identities

$$1 = (1 - \xi^{\mathbf{w}}) \pi_t^{\star^{\mathbf{w}} - \lambda^{\mathbf{w}} - 1} + \xi^{\mathbf{w}} (W_{t-1} W_t^{-1})^{-\lambda^{\mathbf{w}} - 1} (\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{w}})^{-\lambda^{\mathbf{w}} - 1}$$

$$(5.1)$$

2

6 LABOUR AGGREGATION

6.1 Identities

$$\nu_t^{\mathbf{w}} = (1 - \xi^{\mathbf{w}}) \pi_t^{\star^{\mathbf{w}} - \lambda^{\mathbf{w}} - 1} (1 + \lambda^{\mathbf{w}}) + \xi^{\mathbf{w}} \nu_{t-1}^{\mathbf{w}} \left(W_{t-1} \pi_t^{-1} W_t^{-1} \pi_{t-1} \gamma^{\mathbf{w}} \right)^{-\lambda^{\mathbf{w}} - 1} (1 + \lambda^{\mathbf{w}})$$

$$(6.1)$$

$$L_t = \nu_t^{\mathrm{w}-1} L_t^{\mathrm{s}} \tag{6.2}$$

7 CONSUMER FLEXIBLE

7.1 Optimisation problem

$$\max_{C_t^f, K_t^f, I_t^f, B_t^f, z_t^f, L_t^{s^f}} U_t^f = \beta E_t \left[U_{t+1}^f \right] + \epsilon_t^b \left((1 - \sigma^c)^{-1} \left(C_t^f - H_t^f \right)^{1 - \sigma^c} - \omega \epsilon_t^L \left(1 + \sigma^l \right)^{-1} L_t^{s^f} \right)$$
(7.1)

s.t.:

$$C_t^{f} + I_t^{f} + B_t^{f} R_t^{f-1} = B_{t-1}^{f} + D \dot{w}_t^{f} + \Pi_t^{\text{ws}^f} - T_t^{f} + L_t^{\text{s}^f} W_t^{\text{disutil}^f} + K_{t-1}^{f} r_t^{k^f} z_t^{f} - \psi^{-1} r_{\text{ss}}^{k^f} K_{t-1}^{f} \left(-1 + e^{\psi \left(-1 + z_t^f \right)} \right) \quad \left(\lambda_t^f \right)$$

$$(7.2)$$

$$K_t^{f} = K_{t-1}^{f} (1 - \tau) + I_t^{f} \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{f}^{-1} \epsilon_t^{I} I_t^{f} \right)^2 \right) \quad (q_t^{f})$$

$$(7.3)$$

7.2 Identities

$$H_t^{\mathbf{f}} = hC_{t-1}^{\mathbf{f}} \tag{7.4}$$

$$Q_t^{\mathbf{f}} = \lambda_t^{\mathbf{f}^{-1}} q_t^{\mathbf{f}} \tag{7.5}$$

7.3 First order conditions

$$-\lambda_t^{\mathrm{f}} + \epsilon_t^{\mathrm{b}} \left(C_t^{\mathrm{f}} - H_t^{\mathrm{f}} \right)^{-\sigma^{\mathrm{c}}} = 0 \quad \left(C_t^{\mathrm{f}} \right)$$
 (7.6)

$$-q_t^{f} + \beta \left((1 - \tau) E_t \left[q_{t+1}^{f} \right] + E_t \left[\lambda_{t+1}^{f} \left(r_{t+1}^{k^f} z_{t+1}^{f} - \psi^{-1} r_{ss}^{k^f} \left(-1 + e^{\psi \left(-1 + z_{t+1}^{f} \right)} \right) \right) \right] \right) = 0 \quad (K_t^{f})$$
(7.7)

$$-\lambda_{t}^{\mathrm{f}} + q_{t}^{\mathrm{f}} \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{\mathrm{f}}^{-1} \epsilon_{t}^{\mathrm{I}} I_{t}^{\mathrm{f}} \right)^{2} - \varphi I_{t-1}^{\mathrm{f}}^{-1} \epsilon_{t}^{\mathrm{I}} I_{t}^{\mathrm{f}} \left(-1 + I_{t-1}^{\mathrm{f}}^{-1} \epsilon_{t}^{\mathrm{I}} I_{t}^{\mathrm{f}} \right) \right) + \beta \varphi I_{t}^{\mathrm{f}-2} \mathbf{E}_{t} \left[\epsilon_{t+1}^{\mathrm{I}} q_{t+1}^{\mathrm{f}} I_{t+1}^{\mathrm{f}}^{2} \left(-1 + I_{t}^{\mathrm{f}-1} \epsilon_{t+1}^{\mathrm{I}} I_{t+1}^{\mathrm{f}} \right) \right] = 0 \quad \left(I_{t}^{\mathrm{f}} \right)$$

$$(7.8)$$

$$\beta \mathbf{E}_t \left[\lambda_{t+1}^{\mathbf{f}} \right] - \lambda_t^{\mathbf{f}} R_t^{\mathbf{f}^{-1}} = 0 \quad \left(B_t^{\mathbf{f}} \right) \tag{7.9}$$

ಬ

$$\lambda_t^{f} \left(K_{t-1}^{f} r_t^{k^f} - r_{ss}^{k^f} K_{t-1}^{f} e^{\psi(-1+z_t^f)} \right) = 0 \quad (z_t^f)$$
 (7.10)

$$\lambda_t^{\mathbf{f}} W_t^{\text{disutil}^{\mathbf{f}}} - \omega \epsilon_t^{\mathbf{b}} \epsilon_t^{\mathbf{L}} L_t^{\mathbf{s}^{\mathbf{f}} \sigma^{\mathbf{l}}} = 0 \quad \left(L_t^{\mathbf{s}^{\mathbf{f}}} \right)$$
 (7.11)

8 FLEXIBLE MONOPOLISTIC WORKER

8.1 Optimisation problem

$$\max_{W_t^{if}, L_t^{i^{*^f}}} \Pi_t^{\text{ws}^f} = L_t^{i^{*^f}} \left(-W_t^{\text{disutil}^f} + W_t^{i^f} \right)$$
(8.1)

s.t.

$$L_t^{i^{\star^f}} = L_t^f \left(W_t^{i^f} W_t^{f-1} \right)^{\lambda^{w-1} (-1 - \lambda^w)} \quad \left(\lambda_t^{\text{FLEXIBLE}^{\text{MONOPOLISTIC}^{\text{WORKER}^1}}} \right)$$
 (8.2)

8.2 Identities

$$L_t^{i^{\star^f}} = L_t^{i^f} \tag{8.3}$$

8.3 First order conditions

$$L_t^{i^{\star^f}} + \lambda^{w-1} \lambda_t^{\text{FLEXIBLE}^{\text{MONOPOLISTIC}^{\text{WORKER}^1}}} L_t^f W_t^{f-1} \left(-1 - \lambda^w \right) \left(W_t^{i^f} W_t^{f-1} \right)^{-1 + \lambda^{w-1} \left(-1 - \lambda^w \right)} = 0 \quad \left(W_t^{i^f} \right)$$

$$(8.4)$$

$$-\lambda_t^{\text{FLEXIBLE}^{\text{MONOPOLISTIC}^{\text{WORKER}^1}}} - W_t^{\text{disutil}^f} + W_t^{\text{i}^f} = 0 \quad \left(L_t^{\text{i}^{\star^f}}\right)$$
(8.5)

8.4 First order conditions after reduction

$$L_t^{i^{*f}} + \lambda^{w-1} L_t^f W_t^{f-1} \left(-1 - \lambda^w \right) \left(-W_t^{\text{disutil}^f} + W_t^{i^f} \right) \left(W_t^{i^f} W_t^{f-1} \right)^{-1 + \lambda^{w-1} \left(-1 - \lambda^w \right)} = 0 \quad \left(W_t^{i^f} \right)$$
(8.6)

9 LABOUR AGGREGATION FLEXIBLE

$$L_t^{s^f} = L_t^{i^f} \tag{9.1}$$

$$L_t^{\mathbf{f}} = L_t^{\mathbf{s}^{\mathbf{f}}} \tag{9.2}$$

10 FIRM

10.1 Optimisation problem

$$\max_{K_t^{jd}, L_t^{jd}} t_t^{j} = -r_t^{k} K_t^{j^d} - L_t^{j^d} W_t$$
(10.1)

s.t.

$$Y_t^{\mathbf{j}} = -\Phi + \epsilon_t^{\mathbf{a}} K_t^{\mathbf{j}^{\mathbf{d}} \alpha} L_t^{\mathbf{j}^{\mathbf{d}} 1 - \alpha} \qquad (mc_t)$$

$$(10.2)$$

10.2 First order conditions

$$-r_t^{\mathbf{k}} + \alpha \epsilon_t^{\mathbf{a}} m c_t K_t^{\mathbf{j}^{\mathbf{d}} - 1 + \alpha} L_t^{\mathbf{j}^{\mathbf{d}} - 1 - \alpha} = 0 \quad \left(K_t^{\mathbf{j}^{\mathbf{d}}} \right)$$

$$(10.3)$$

$$-W_t + \epsilon_t^{\mathbf{a}} m c_t (1 - \alpha) K_t^{\mathbf{j}^{\mathbf{d}} \alpha} L_t^{\mathbf{j}^{\mathbf{d}} - \alpha} = 0 \quad \left(L_t^{\mathbf{j}^{\mathbf{d}}} \right)$$

$$(10.4)$$

11 TECHNOLOGY

11.1 Identities

ರಾ

$$\log \epsilon_t^{\mathbf{a}} = \eta_t^{\mathbf{a}} + \rho^{\mathbf{a}} \log \epsilon_{t-1}^{\mathbf{a}} \tag{11.1}$$

12 PRICE SETTING PROBLEM

12.1 Identities

$$g_t^1 = \eta_t^P + g_t^2 (1 + \lambda^P)$$
 (12.1)

$$g_t^1 = \lambda_t \pi_t^* Y_t + \beta \xi^{\mathrm{p}} \pi_t^* \mathcal{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathrm{p}}} \right)^{-\lambda^{\mathrm{p}-1}} \right]$$
 (12.2)

$$g_t^2 = \beta \xi^{p} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{p}} \right)^{-\lambda^{p-1} (1+\lambda^{p})} \right] + \lambda_t m c_t Y_t$$
(12.3)

13 PRICE EVOLUTION

$$1 = \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}}$$
(13.1)

14 FACTOR DEMAND AGGREGATION

14.1 Identities

$$K_t^{\mathbf{d}} = K_t^{\mathbf{j}^{\mathbf{d}}} \tag{14.1}$$

$$L_t^{\mathbf{d}} = L_t^{\mathbf{j}^{\mathbf{d}}} \tag{14.2}$$

15 PRODUCT AGGREGATION

15.1 Identities

$$Y_t^{\rm s} = Y_t^{\rm j} \tag{15.1}$$

$$\nu_t^{\rm p} = (1 - \xi^{\rm p}) \, \pi_t^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{t-1}^{\rm p} \left(\pi_t^{-1} \pi_{t-1}^{\gamma^{\rm p}} \right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})}$$
(15.2)

$$\nu_t^{\mathrm{p}} Y_t = Y_t^{\mathrm{s}} \tag{15.3}$$

16 FIRM FLEXIBLE

16.1 Optimisation problem

$$\max_{K_t^{j^{\text{df}}}, L_t^{j^{\text{df}}}} t c_t^{j^{\text{f}}} = -r_t^{k^{\text{f}}} K_t^{j^{\text{df}}} - L_t^{j^{\text{df}}} W_t^{\text{f}}$$
(16.1)

s.t.

$$Y_t^{jf} = -\Phi + \epsilon_t^{a} K_t^{jdf} L_t^{jdf} L_t^{jdf} \qquad (mc_t^f)$$

$$(16.2)$$

16.2 First order conditions

$$-r_t^{\mathbf{k}^{\mathbf{f}}} + \alpha \epsilon_t^{\mathbf{a}} m c_t^{\mathbf{f}} K_t^{\mathbf{j}^{\mathbf{d}^{\mathbf{f}}} - 1 + \alpha} L_t^{\mathbf{j}^{\mathbf{d}^{\mathbf{f}}} 1 - \alpha} = 0 \quad \left(K_t^{\mathbf{j}^{\mathbf{d}^{\mathbf{f}}}} \right)$$

$$(16.3)$$

$$-W_t^{\mathrm{f}} + \epsilon_t^{\mathrm{a}} m c_t^{\mathrm{f}} \left(1 - \alpha\right) K_t^{\mathrm{j}^{\mathrm{df}}} L_t^{\mathrm{j}^{\mathrm{df}}} = 0 \quad \left(L_t^{\mathrm{j}^{\mathrm{df}}}\right)$$

$$(16.4)$$

17 PRICE SETTING PROBLEM FLEXIBLE

17.1 Optimisation problem

$$\max_{Y_t^{\text{f}}, P_t^{\text{j}}} \Pi_t^{\text{ps}^{\text{f}}} = Y_t^{\text{j}^{\text{f}}} \left(-mc_t^{\text{f}} + P_t^{\text{j}^{\text{f}}} \right)$$
(17.1)

s.t.

$$Y_t^{\mathbf{j}^{\mathbf{f}}} = Y_t^{\mathbf{f}} \left(P_t^{\mathbf{f}^{-1}} P_t^{\mathbf{j}^{\mathbf{f}}} \right)^{-\lambda^{\mathbf{p}^{-1}} (1+\lambda^{\mathbf{p}})} \quad \left(\lambda_t^{\text{PRICE}^{\text{SETTING}^{\text{PROBLEM}FLEXIBLE}^1}} \right)$$
(17.2)

17.2 First order conditions

$$-\lambda_t^{\text{PRICE}^{\text{SETTING}^{\text{PROBLEM}^{\text{FLEXIBLE}^1}}} - mc_t^{\text{f}} + P_t^{\text{jf}} = 0 \quad \left(Y_t^{\text{jf}}\right)$$
(17.3)

$$Y_t^{\mathbf{j}^{\mathbf{f}}} - \lambda^{\mathbf{p}-1} \lambda_t^{\mathrm{PRICE}^{\mathrm{SETTING}^{\mathrm{PROBLEM}^{\mathrm{FLEXIBLE}^1}}} P_t^{\mathbf{f}-1} Y_t^{\mathbf{f}} \left(1 + \lambda^{\mathbf{p}}\right) \left(P_t^{\mathbf{f}-1} P_t^{\mathbf{j}^{\mathbf{f}}}\right)^{-1 - \lambda^{\mathbf{p}-1} \left(1 + \lambda^{\mathbf{p}}\right)} = 0 \quad \left(P_t^{\mathbf{j}^{\mathbf{f}}}\right)$$

$$(17.4)$$

17.3 First order conditions after reduction

$$Y_t^{jf} - \lambda^{p-1} P_t^{f-1} Y_t^f (1 + \lambda^p) \left(-mc_t^f + P_t^{jf} \right) \left(P_t^{f-1} P_t^{jf} \right)^{-1 - \lambda^{p-1} (1 + \lambda^p)} = 0 \quad \left(P_t^{jf} \right)$$
(17.5)

18 FACTOR DEMAND AGGREGATION FLEXIBLE

18.1 Identities

$$K_t^{\mathbf{d}^{\mathbf{f}}} = K_t^{\mathbf{j}^{\mathbf{d}^{\mathbf{f}}}} \tag{18.1}$$

$$L_t^{\mathbf{d^f}} = L_t^{\mathbf{j^{\mathbf{d^f}}}} \tag{18.2}$$

19 PRODUCT AGGREGATION FLEXIBLE

$$Y_t^{\rm sf} = Y_t^{\rm jf} \tag{19.1}$$

$$Y_t^{\mathbf{f}} = Y_t^{\mathbf{s}^{\mathbf{f}}} \tag{19.2}$$

20 PRICE EVOLUTION FLEXIBLE

20.1 Identities

$$P_t^{\rm f} = 1 \tag{20.1}$$

21 GOVERNMENT

21.1 Identities

$$G_t = G^{\text{bar}} \epsilon_t^{G} \tag{21.1}$$

$$G_t + B_{t-1}\pi_t^{-1} = T_t + B_t R_t^{-1}$$
(21.2)

22 GOVERNMENT SPENDING SHOCK

22.1 Identities

 ∞

$$\log \epsilon_t^{\mathrm{G}} = \eta_t^{\mathrm{G}} + \rho^{\mathrm{G}} \log \epsilon_{t-1}^{\mathrm{G}} \tag{22.1}$$

23 GOVERNMENT FLEXIBLE

23.1 Identities

$$G_t^{\rm f} = G^{\rm bar} \epsilon_t^{\rm G} \tag{23.1}$$

$$B_{t-1}^{f} + G_{t}^{f} = T_{t}^{f} + B_{t}^{f} R_{t}^{f-1}$$
(23.2)

24 MONETARY POLICY AUTHORITY

$$abbr^{\pi} + \log\left(R_{ss}^{-1}R_{t}\right) = \eta_{t}^{R} + r^{\Delta^{\pi}}\left(-\log\left(\pi_{ss}^{-1}\pi_{t-1}\right) + \log\left(\pi_{ss}^{-1}\pi_{t}\right)\right) + r^{\Delta^{y}}\left(-\log\left(Y_{ss}^{-1}Y_{t-1}\right) + \log\left(Y_{ss}^{-1}Y_{t}\right)\right) + \log\left(Y_{ss}^{-1}Y_{t-1}\right) - \log\left(Y_{ss}^{-1}Y_{t-1}\right)\right) + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + \rho\log\left(R_$$

$$\log \pi_t^{\text{obj}} = \eta_t^{\pi} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \alpha k h r^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right)$$

$$(24.2)$$

25 EQUILIBRIUM

25.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1} z_t \tag{25.1}$$

$$L_t = L_t^{\mathrm{d}} \tag{25.2}$$

$$B_t = 0 (25.3)$$

$$D\dot{w}_t = Y_t - L_t^{\mathrm{d}} W_t - r_t^{\mathrm{k}} K_t^{\mathrm{d}} \tag{25.4}$$

26 EQUILIBRIUM FLEXIBLE

26.1 Identities

$$K_t^{\mathsf{d}^{\mathsf{f}}} = K_{t-1}^{\mathsf{f}} z_t^{\mathsf{f}} \tag{26.1}$$

$$L_t^{\rm f} = L_t^{\rm d^f} \tag{26.2}$$

$$B_t^{\mathbf{f}} = 0 \tag{26.3}$$

$$D\dot{w}_{t}^{f} = Y_{t}^{f} - L_{t}^{d^{f}} W_{t}^{f} - r_{t}^{k^{f}} K_{t}^{d^{f}}$$
(26.4)

27 Equilibrium relationships (after reduction)

$$-q_{t} + \beta \left((1 - \tau) \operatorname{E}_{t} \left[q_{t+1} \right] + \operatorname{E}_{t} \left[\epsilon_{t+1}^{b} \left(r_{t+1}^{k} z_{t+1} - \psi^{-1} r_{ss}^{k} \left(-1 + e^{\psi(-1 + z_{t+1})} \right) \right) \left(C_{t+1} - hC_{t} \right)^{-\sigma^{c}} \right] \right) = 0$$

$$(27.1)$$

$$-q_{t}^{f} + \beta \left((1 - \tau) E_{t} \left[q_{t+1}^{f} \right] + E_{t} \left[e_{t+1}^{b} \left(r_{t+1}^{k^{f}} z_{t+1}^{f} - \psi^{-1} r_{ss}^{k^{f}} \left(-1 + e^{\psi \left(-1 + z_{t+1}^{f} \right)} \right) \right) \left(C_{t+1}^{f} - h C_{t}^{f} \right)^{-\sigma^{c}} \right] \right) = 0$$

$$(27.2)$$

$$-r_t^{k} + \alpha \epsilon_t^{a} m c_t L_t^{1-\alpha} (K_{t-1} z_t)^{-1+\alpha} = 0$$
(27.3)

$$-r_t^{k^f} + \alpha \epsilon_t^a m_t^f L_t^{f^{1-\alpha}} (K_{t-1}^f z_t^f)^{-1+\alpha} = 0$$
 (27.4)

$$-G_t + T_t = 0 (27.5)$$

9

$$-G_t + G^{\text{bar}} \epsilon_t^{G} = 0 \tag{27.6}$$

$$-G_t^{\mathbf{f}} + T_t^{\mathbf{f}} = 0 \tag{27.7}$$

$$-G_t^{f} + G^{bar} \epsilon_t^{G} = 0 \tag{27.8}$$

$$-L_t + \nu_t^{\text{w}-1} L_t^{\text{s}} = 0 (27.9)$$

$$-L_t^{s^f} + L_t^f \left(W_t^{i^f} W_t^{f-1} \right)^{\lambda^{w-1} (-1 - \lambda^w)} = 0$$
(27.10)

$$L_t^{\rm sf} - L_t^{\rm f} = 0 (27.11)$$

$$L_t^{s^f} + \lambda^{w-1} L_t^f W_t^{f-1} \left(-1 - \lambda^w \right) \left(-W_t^{disutil^f} + W_t^{i^f} \right) \left(W_t^{i^f} W_t^{f-1} \right)^{-1 + \lambda^{w-1} \left(-1 - \lambda^w \right)} = 0$$
(27.12)

$$\Pi_t^{\text{ws}^f} - L_t^{\text{s}^f} \left(-W_t^{\text{disutil}^f} + W_t^{\text{i}^f} \right) = 0 \tag{27.13}$$

$$\Pi_t^{\text{ps}^f} - Y_t^f \left(-mc_t^f + P_t^{j^f} \right) P_t^{j^f - \lambda^{p-1}(1+\lambda^p)} = 0$$
(27.14)

$$-Q_t + \epsilon_t^{b^{-1}} q_t (C_t - hC_{t-1})^{\sigma^c} = 0$$
(27.15)

$$-Q_t^f + \epsilon_t^{b^{-1}} q_t^f \left(C_t^f - h C_{t-1}^f \right)^{\sigma^c} = 0$$
 (27.16)

$$-W_t + \epsilon_t^{a} mc_t (1 - \alpha) L_t^{-\alpha} (K_{t-1} z_t)^{\alpha} = 0$$
(27.17)

$$-W_t^{f} + \epsilon_t^{a} m c_t^{f} (1 - \alpha) L_t^{f-\alpha} (K_{t-1}^{f} z_t^{f})^{\alpha} = 0$$
(27.18)

$$Y_t^{\rm s} - \nu_t^{\rm p} Y_t = 0 (27.19)$$

$$-Y_t^{f} + Y_t^{s^f} = 0 (27.20)$$

$$-Y_t^{sf} + Y_t^f P_t^{j^{f-\lambda^{p-1}}(1+\lambda^p)} = 0 (27.21)$$

$$\beta E_t \left[\epsilon_{t+1}^{\rm b} \left(C_{t+1}^{\rm f} - h C_t^{\rm f} \right)^{-\sigma^{\rm c}} \right] - \epsilon_t^{\rm b} R_t^{\rm f-1} \left(C_t^{\rm f} - h C_{t-1}^{\rm f} \right)^{-\sigma^{\rm c}} = 0$$
 (27.22)

$$\beta E_t \left[\epsilon_{t+1}^b \pi_{t+1}^{-1} (C_{t+1} - hC_t)^{-\sigma^c} \right] - \epsilon_t^b R_t^{-1} (C_t - hC_{t-1})^{-\sigma^c} = 0$$
(27.23)

$$Y_t^{f} P_t^{j^f - \lambda^{p-1}(1+\lambda^p)} - \lambda^{p-1} Y_t^{f} (1+\lambda^p) \left(-mc_t^f + P_t^{j^f} \right) P_t^{j^f - 1 - \lambda^{p-1}(1+\lambda^p)} = 0$$
(27.24)

$$\epsilon_t^{\mathrm{b}} W_t^{\mathrm{disutil}^{\mathrm{f}}} \left(C_t^{\mathrm{f}} - h C_{t-1}^{\mathrm{f}} \right)^{-\sigma^{\mathrm{c}}} - \omega \epsilon_t^{\mathrm{b}} \epsilon_t^{\mathrm{L}} L_t^{\mathrm{s}^{\mathrm{f}} \sigma^{\mathrm{l}}} = 0$$

$$(27.25)$$

$$-1 + \xi^{\mathbf{p}} \left(\pi_t^{-1} \pi_{t-1}^{\gamma^{\mathbf{p}}} \right)^{-\lambda^{\mathbf{p}-1}} + (1 - \xi^{\mathbf{p}}) \pi_t^{\star - \lambda^{\mathbf{p}-1}} = 0$$
 (27.26)

$$-1 + (1 - \xi^{\mathbf{w}}) \left(w_t^{\star} W_t^{-1} \right)^{-\lambda^{\mathbf{w}-1}} + \xi^{\mathbf{w}} \left(W_{t-1} W_t^{-1} \right)^{-\lambda^{\mathbf{w}-1}} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{w}} \right)^{-\lambda^{\mathbf{w}-1}} = 0$$
 (27.27)

$$-\Phi - Y_t^{s} + \epsilon_t^{a} L_t^{1-\alpha} (K_{t-1} z_t)^{\alpha} = 0$$
 (27.28)

$$-\Phi - Y_t^{f} P_t^{f^{-\lambda^{P-1}(1+\lambda^{P})}} + \epsilon_t^{a} L_t^{f^{1-\alpha}} (K_{t-1}^{f} z_t^{f})^{\alpha} = 0$$
(27.29)

$$\eta_t^{\mathbf{b}} - \log \epsilon_t^{\mathbf{b}} + \rho^{\mathbf{b}} \log \epsilon_{t-1}^{\mathbf{b}} = 0 \tag{27.30}$$

$$-\eta_t^{\mathcal{L}} - \log \epsilon_t^{\mathcal{L}} + \rho^{\mathcal{L}} \log \epsilon_{t-1}^{\mathcal{L}} = 0 \tag{27.31}$$

$$\eta_t^{\mathcal{I}} - \log \epsilon_t^{\mathcal{I}} + \rho^{\mathcal{I}} \log \epsilon_{t-1}^{\mathcal{I}} = 0 \tag{27.32}$$

$$\eta_t^{\mathbf{w}} - f_t^1 + f_t^2 = 0 (27.33)$$

$$\eta_t^{\mathbf{a}} - \log \epsilon_t^{\mathbf{a}} + \rho^{\mathbf{a}} \log \epsilon_{t-1}^{\mathbf{a}} = 0 \tag{27.34}$$

$$\eta_t^{\rm p} - g_t^1 + g_t^2 (1 + \lambda^{\rm p}) = 0 \tag{27.35}$$

$$\eta_t^{\mathcal{G}} - \log \epsilon_t^{\mathcal{G}} + \rho^{\mathcal{G}} \log \epsilon_{t-1}^{\mathcal{G}} = 0 \tag{27.36}$$

$$-f_t^1 + \beta \xi^{\mathbf{w}} \mathbf{E}_t \left[f_{t+1}^1 \left(w_t^{\star - 1} w_{t+1}^{\star} \right)^{\lambda^{\mathbf{w} - 1}} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathbf{w}}} \right)^{-\lambda^{\mathbf{w} - 1}} \right] + \epsilon_t^{\mathbf{b}} w_t^{\star} L_t \left(1 + \lambda^{\mathbf{w}} \right)^{-1} \left(C_t - h C_{t-1} \right)^{-\sigma^{\mathbf{c}}} \left(w_t^{\star} W_t^{-1} \right)^{-\lambda^{\mathbf{w} - 1} (1 + \lambda^{\mathbf{w}})} = 0$$
 (27.37)

$$-f_t^2 + \beta \xi^{\mathbf{w}} \mathbf{E}_t \left[f_{t+1}^2 \left(w_t^{\star - 1} w_{t+1}^{\star} \right)^{\lambda^{\mathbf{w} - 1} (1 + \lambda^{\mathbf{w}}) \left(1 + \sigma^{\mathbf{l}} \right)} \left(\pi_{t+1}^{- 1} \pi_t^{\gamma^{\mathbf{w}}} \right)^{-\lambda^{\mathbf{w} - 1} (1 + \lambda^{\mathbf{w}}) \left(1 + \sigma^{\mathbf{l}} \right)} \right] + \omega \epsilon_t^{\mathbf{b}} \epsilon_t^{\mathbf{L}} \left(L_t \left(w_t^{\star} W_t^{- 1} \right)^{-\lambda^{\mathbf{w} - 1} (1 + \lambda^{\mathbf{w}})} \right)^{1 + \sigma^{\mathbf{l}}} = 0$$
 (27.38)

$$-g_t^1 + \beta \xi^{\mathbf{p}} \pi_t^* \mathbf{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathbf{p}}} \right)^{-\lambda^{\mathbf{p}-1}} \right] + \epsilon_t^{\mathbf{b}} \pi_t^* Y_t (C_t - hC_{t-1})^{-\sigma^c} = 0$$
(27.39)

$$-g_t^2 + \beta \xi^{\mathrm{p}} \mathbf{E}_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathrm{p}}} \right)^{-\lambda^{\mathrm{p}-1}(1+\lambda^{\mathrm{p}})} \right] + \epsilon_t^{\mathrm{b}} m c_t Y_t (C_t - h C_{t-1})^{-\sigma^{\mathrm{c}}} = 0$$
 (27.40)

$$-\nu_t^{\mathbf{w}} + (1 - \xi^{\mathbf{w}}) \left(w_t^{\star} W_t^{-1} \right)^{-\lambda^{\mathbf{w}-1} (1 + \lambda^{\mathbf{w}})} + \xi^{\mathbf{w}} \nu_{t-1}^{\mathbf{w}} \left(W_{t-1} \pi_t^{-1} W_t^{-1} \pi_{t-1}^{\gamma^{\mathbf{w}}} \right)^{-\lambda^{\mathbf{w}-1} (1 + \lambda^{\mathbf{w}})} = 0$$
 (27.41)

$$-\nu_t^{\mathbf{p}} + (1 - \xi^{\mathbf{p}}) \pi_t^{\star - \lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} + \xi^{\mathbf{p}} \nu_{t-1}^{\mathbf{p}} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{p}} \right)^{-\lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} = 0$$
 (27.42)

$$-K_t + K_{t-1}(1-\tau) + I_t \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{-1} \epsilon_t^{\mathrm{I}} I_t\right)^2\right) = 0$$
(27.43)

$$-K_t^{f} + K_{t-1}^{f} (1 - \tau) + I_t^{f} \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{f} {}^{-1}\epsilon_t^{I} I_t^{f} \right)^2 \right) = 0$$
 (27.44)

$$U_{t} - \beta E_{t} \left[U_{t+1} \right] - \epsilon_{t}^{b} \left((1 - \sigma^{c})^{-1} \left(C_{t} - h C_{t-1} \right)^{1 - \sigma^{c}} - \omega \epsilon_{t}^{L} \left(1 + \sigma^{l} \right)^{-1} L_{t}^{s + \sigma^{l}} \right) = 0$$
(27.45)

$$U_t^{f} - \beta E_t \left[U_{t+1}^{f} \right] - \epsilon_t^{b} \left((1 - \sigma^{c})^{-1} \left(C_t^{f} - h C_{t-1}^{f} \right)^{1 - \sigma^{c}} - \omega \epsilon_t^{L} \left(1 + \sigma^{l} \right)^{-1} L_t^{s^{f} 1 + \sigma^{l}} \right) = 0$$
(27.46)

$$-\epsilon_{t}^{b}(C_{t} - hC_{t-1})^{-\sigma^{c}} + q_{t}\left(1 - 0.5\varphi\left(-1 + I_{t-1}^{-1}\epsilon_{t}^{I}I_{t}\right)^{2} - \varphi I_{t-1}^{-1}\epsilon_{t}^{I}I_{t}\left(-1 + I_{t-1}^{-1}\epsilon_{t}^{I}I_{t}\right)\right) + \beta\varphi I_{t}^{-2}E_{t}\left[\epsilon_{t+1}^{I}q_{t+1}I_{t+1}^{2}\left(-1 + I_{t}^{-1}\epsilon_{t+1}^{I}I_{t+1}\right)\right] = 0$$

$$(27.47)$$

$$-\epsilon_{t}^{\mathrm{b}}\left(C_{t}^{\mathrm{f}}-hC_{t-1}^{\mathrm{f}}\right)^{-\sigma^{\mathrm{c}}}+q_{t}^{\mathrm{f}}\left(1-0.5\varphi\left(-1+I_{t-1}^{\mathrm{f}}^{-1}\epsilon_{t}^{\mathrm{I}}I_{t}^{\mathrm{f}}\right)^{2}-\varphi I_{t-1}^{\mathrm{f}}^{-1}\epsilon_{t}^{\mathrm{I}}I_{t}^{\mathrm{f}}\left(-1+I_{t-1}^{\mathrm{f}}^{-1}\epsilon_{t}^{\mathrm{I}}I_{t}^{\mathrm{f}}\right)\right)+\beta\varphi I_{t}^{\mathrm{f}}^{-2}\mathrm{E}_{t}\left[\epsilon_{t+1}^{\mathrm{I}}q_{t+1}^{\mathrm{f}}I_{t+1}^{\mathrm{f}}^{2}\left(-1+I_{t}^{\mathrm{f}}^{-1}\epsilon_{t+1}^{\mathrm{I}}I_{t+1}^{\mathrm{f}}\right)\right]=0\tag{27.48}$$

$$\eta_t^{\pi} - \log \pi_t^{\text{obj}} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \omega k r^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right) = 0 \tag{27.49}$$

$$-C_t - I_t - T_t + Y_t - \psi^{-1} r_{ss}^k K_{t-1} \left(-1 + e^{\psi(-1+z_t)} \right) = 0$$
(27.50)

$$-abbr^{\pi} + \eta_{t}^{R} - \log\left(R_{ss}^{-1}R_{t}\right) + r^{\Delta^{\pi}}\left(-\log\left(\pi_{ss}^{-1}\pi_{t-1}\right) + \log\left(\pi_{ss}^{-1}\pi_{t}\right)\right) + r^{\Delta^{y}}\left(-\log\left(Y_{ss}^{-1}Y_{t-1}\right) + \log\left(Y_{ss}^{-1}Y_{t}\right)\right) + \log\left(Y_{ss}^{-1}Y_{t-1}\right) - \log\left(Y_{ss}^{-1}Y_{t}\right)\right) + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\left(X_{ss}^{-1}X_{t-1}\right) + \log\left(X_{ss}^{-1}X_{t-1}\right)\right)\right) + \rho\log\left(X_{ss}^{-1}X_{t-1}\right) + \log\left(X_{ss}^{-1}X_{t-1}\right) + \log\left(X_{ss}$$

$$-C_t^{f} - I_t^{f} + \Pi_t^{ws^f} - T_t^{f} + Y_t^{f} + L_t^{s^f} W_t^{disutil^f} - L_t^{f} W_t^{f} - \psi^{-1} r_{ss}^{k^f} K_{t-1}^{f} \left(-1 + e^{\psi(-1 + z_t^f)} \right) = 0$$
(27.52)

$$\epsilon_t^{\rm b} \left(K_{t-1} r_t^{\rm k} - r_{\rm ss}^{\rm k} K_{t-1} e^{\psi(-1+z_t)} \right) \left(C_t - h C_{t-1} \right)^{-\sigma^{\rm c}} = 0 \tag{27.53}$$

$$\epsilon_{t}^{b} \left(K_{t-1}^{f} r_{t}^{k^{f}} - r_{ss}^{k^{f}} K_{t-1}^{f} e^{\psi \left(-1 + z_{t}^{f} \right)} \right) \left(C_{t}^{f} - h C_{t-1}^{f} \right)^{-\sigma^{c}} = 0 \tag{27.54}$$

28 Steady state relationships (after reduction)

$$-q_{\rm ss} + \beta \left(q_{\rm ss} \left(1 - \tau \right) + \epsilon_{\rm ss}^{\rm b} \left(r_{\rm ss}^{\rm k} z_{\rm ss} - \psi^{-1} r_{\rm ss}^{\rm k} \left(-1 + e^{\psi(-1 + z_{\rm ss})} \right) \right) \left(C_{\rm ss} - h C_{\rm ss} \right)^{-\sigma^c} \right) = 0$$
 (28.1)

$$-q_{\rm ss}^{\rm f} + \beta \left(q_{\rm ss}^{\rm f} \left(1 - \tau \right) + \epsilon_{\rm ss}^{\rm b} \left(r_{\rm ss}^{\rm k^{\rm f}} z_{\rm ss}^{\rm f} - \psi^{-1} r_{\rm ss}^{\rm k^{\rm f}} \left(-1 + e^{\psi \left(-1 + z_{\rm ss}^{\rm f} \right)} \right) \right) \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f} \right)^{-\sigma^{\rm c}} \right) = 0 \tag{28.2}$$

$$-r_{\rm ss}^{\rm k} + \alpha \epsilon_{\rm ss}^{\rm a} m c_{\rm ss} L_{\rm ss}^{1-\alpha} (z_{\rm ss} K_{\rm ss})^{-1+\alpha} = 0$$
(28.3)

$$-r_{\rm ss}^{\rm kf} + \alpha \epsilon_{\rm ss}^{\rm a} m c_{\rm ss}^{\rm f} L_{\rm ss}^{\rm f}^{1-\alpha} \left(z_{\rm ss}^{\rm f} K_{\rm ss}^{\rm f} \right)^{-1+\alpha} = 0 \tag{28.4}$$

$$-G_{\rm ss} + T_{\rm ss} = 0 (28.5)$$

$$-G_{\rm ss} + G^{\rm bar} \epsilon_{\rm ss}^{\rm G} = 0 \tag{28.6}$$

$$-G_{\rm ss}^{\rm f} + T_{\rm ss}^{\rm f} = 0 (28.7)$$

$$-G_{\rm ss}^{\rm f} + G^{\rm bar} \epsilon_{\rm ss}^{\rm G} = 0 \tag{28.8}$$

$$-L_{\rm ss} + \nu_{\rm ss}^{\rm w-1} L_{\rm ss}^{\rm s} = 0 \tag{28.9}$$

$$-L_{\rm ss}^{\rm f} + L_{\rm ss}^{\rm f} \left(W_{\rm ss}^{\rm i^f} W_{\rm ss}^{\rm f^{-1}}\right)^{\lambda^{\rm w^{-1}}(-1-\lambda^{\rm w})} = 0$$
(28.10)

$$L_{\rm ss}^{\rm sf} - L_{\rm ss}^{\rm f} = 0$$
 (28.11)

$$L_{\rm ss}^{\rm sf} + \lambda^{\rm w-1} L_{\rm ss}^{\rm f} W_{\rm ss}^{\rm f-1} \left(-1 - \lambda^{\rm w}\right) \left(-W_{\rm ss}^{\rm disutil^{\rm f}} + W_{\rm ss}^{\rm if}\right) \left(W_{\rm ss}^{\rm if} W_{\rm ss}^{\rm f-1}\right)^{-1 + \lambda^{\rm w-1} \left(-1 - \lambda^{\rm w}\right)} = 0 \tag{28.12}$$

$$\Pi_{\rm ss}^{\rm ws^f} - L_{\rm ss}^{\rm sf} \left(-W_{\rm ss}^{\rm disutil^f} + W_{\rm ss}^{\rm if} \right) = 0$$
 (28.13)

$$\Pi_{\rm ss}^{\rm psf} - Y_{\rm ss}^{\rm f} \left(-mc_{\rm ss}^{\rm f} + P_{\rm ss}^{\rm jf} \right) P_{\rm ss}^{\rm jf} = 0 \tag{28.14}$$

$$-Q_{\rm ss} + \epsilon_{\rm ss}^{\rm b}^{-1} q_{\rm ss} (C_{\rm ss} - hC_{\rm ss})^{\sigma^{c}} = 0$$
 (28.15)

$$-Q_{\rm ss}^{\rm f} + \epsilon_{\rm ss}^{\rm b}^{-1} q_{\rm ss}^{\rm f} \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f}\right)^{\sigma^{\rm c}} = 0 \tag{28.16}$$

$$-W_{\rm ss} + \epsilon_{\rm ss}^{\rm a} m c_{\rm ss} \left(1 - \alpha\right) L_{\rm ss}^{-\alpha} \left(z_{\rm ss} K_{\rm ss}\right)^{\alpha} = 0 \tag{28.17}$$

$$-W_{\rm ss}^{\rm f} + \epsilon_{\rm ss}^{\rm a} m c_{\rm ss}^{\rm f} (1 - \alpha) L_{\rm ss}^{\rm f}^{-\alpha} (z_{\rm ss}^{\rm f} K_{\rm ss}^{\rm f})^{\alpha} = 0$$
 (28.18)

$$Y_{\rm ss}^{\rm s} - \nu_{\rm ss}^{\rm p} Y_{\rm ss} = 0 \tag{28.19}$$

$$-Y_{\rm ss}^{\rm f} + Y_{\rm ss}^{\rm s^{\rm f}} = 0 ag{28.20}$$

$$-Y_{\rm ss}^{\rm sf} + Y_{\rm ss}^{\rm f} P_{\rm ss}^{\rm jf}^{-\lambda^{\rm p-1}(1+\lambda^{\rm p})} = 0 \tag{28.21}$$

$$\beta \epsilon_{\rm ss}^{\rm b} \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f} \right)^{-\sigma^{\rm c}} - \epsilon_{\rm ss}^{\rm b} R_{\rm ss}^{\rm f}^{-1} \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f} \right)^{-\sigma^{\rm c}} = 0 \tag{28.22}$$

$$-\epsilon_{\rm ss}^{\rm b} R_{\rm ss}^{-1} (C_{\rm ss} - hC_{\rm ss})^{-\sigma^{\rm c}} + \beta \epsilon_{\rm ss}^{\rm b} \pi_{\rm ss}^{-1} (C_{\rm ss} - hC_{\rm ss})^{-\sigma^{\rm c}} = 0$$
(28.23)

$$Y_{\rm ss}^{\rm f} P_{\rm ss}^{\rm j^{\rm f} - \lambda^{\rm p-1}(1+\lambda^{\rm p})} - \lambda^{\rm p-1} Y_{\rm ss}^{\rm f} (1+\lambda^{\rm p}) \left(-mc_{\rm ss}^{\rm f} + P_{\rm ss}^{\rm j^{\rm f}} \right) P_{\rm ss}^{\rm j^{\rm f} - 1 - \lambda^{\rm p-1}(1+\lambda^{\rm p})} = 0 \tag{28.24}$$

$$\epsilon_{\rm ss}^{\rm b} W_{\rm ss}^{\rm disutil^f} \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f} \right)^{-\sigma^c} - \omega \epsilon_{\rm ss}^{\rm b} \epsilon_{\rm ss}^{\rm L} L_{\rm ss}^{\rm f}^{\sigma^l} = 0 \tag{28.25}$$

$$-1 + \xi^{p} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{ss}^{\star - \lambda^{p-1}} = 0$$
(28.26)

$$-1 + (1 - \xi^{\mathbf{w}}) \left(w_{ss}^{\star} W_{ss}^{-1} \right)^{-\lambda^{\mathbf{w}-1}} + \xi^{\mathbf{w}} 1^{-\lambda^{\mathbf{w}-1}} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{\mathbf{w}}} \right)^{-\lambda^{\mathbf{w}-1}} = 0$$
 (28.27)

$$-\Phi - Y_{\rm ss}^{\rm s} + \epsilon_{\rm ss}^{\rm a} L_{\rm ss}^{1-\alpha} (z_{\rm ss} K_{\rm ss})^{\alpha} = 0 \tag{28.28}$$

$$-\Phi - Y_{\rm ss}^{\rm f} P_{\rm ss}^{\rm i^{\rm f}} - \lambda^{\rm p-1} (1+\lambda^{\rm p}) + \epsilon_{\rm ss}^{\rm a} L_{\rm ss}^{\rm f} {}^{1-\alpha} (z_{\rm ss}^{\rm f} K_{\rm ss}^{\rm f})^{\alpha} = 0$$
 (28.29)

$$-\log \epsilon_{\rm ss}^{\rm b} + \rho^{\rm b} \log \epsilon_{\rm ss}^{\rm b} = 0 \tag{28.30}$$

$$-\log \epsilon_{\rm ss}^{\rm L} + \rho^{\rm L} \log \epsilon_{\rm ss}^{\rm L} = 0 \tag{28.31}$$

$$-\log \epsilon_{\rm ss}^{\rm I} + \rho^{\rm I} \log \epsilon_{\rm ss}^{\rm I} = 0 \tag{28.32}$$

$$-f_{\rm ss}^1 + f_{\rm ss}^2 = 0 (28.33)$$

$$-\log \epsilon_{\rm ss}^{\rm a} + \rho^{\rm a} \log \epsilon_{\rm ss}^{\rm a} = 0 \tag{28.34}$$

$$-g_{\rm ss}^1 + g_{\rm ss}^2 (1 + \lambda^{\rm p}) = 0 \tag{28.35}$$

$$-\log \epsilon_{\rm ss}^{\rm G} + \rho^{\rm G} \log \epsilon_{\rm ss}^{\rm G} = 0 \tag{28.36}$$

$$-f_{ss}^{1} + \beta \xi^{w} f_{ss}^{1} 1^{\lambda^{w-1}} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{w}} \right)^{-\lambda^{w-1}} + \epsilon_{ss}^{b} w_{ss}^{\star} L_{ss} \left(1 + \lambda^{w} \right)^{-1} \left(C_{ss} - h C_{ss} \right)^{-\sigma^{c}} \left(w_{ss}^{\star} W_{ss}^{-1} \right)^{-\lambda^{w-1} (1 + \lambda^{w})} = 0$$
(28.37)

$$-f_{\rm ss}^2 + \omega \epsilon_{\rm ss}^b \epsilon_{\rm ss}^L \left(L_{\rm ss} \left(w_{\rm ss}^{\star} W_{\rm ss}^{-1} \right)^{-\lambda^{\rm w}^{-1} (1+\lambda^{\rm w})} \right)^{1+\sigma^{\rm l}} + \beta \xi^{\rm w} f_{\rm ss}^2 1^{\lambda^{\rm w}^{-1} (1+\lambda^{\rm w}) \left(1+\sigma^{\rm l} \right)} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm w}} \right)^{-\lambda^{\rm w}^{-1} (1+\lambda^{\rm w}) \left(1+\sigma^{\rm l} \right)} = 0$$
(28.38)

$$-g_{ss}^{1} + \beta \xi^{p} g_{ss}^{1} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}}\right)^{-\lambda^{p-1}} + \epsilon_{ss}^{b} \pi_{ss}^{\star} Y_{ss} \left(C_{ss} - hC_{ss}\right)^{-\sigma^{c}} = 0$$
(28.39)

$$-g_{\rm ss}^2 + \beta \xi^{\rm p} g_{\rm ss}^2 \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm p}}\right)^{-\lambda^{\rm p-1}(1+\lambda^{\rm p})} + \epsilon_{\rm ss}^{\rm b} m c_{\rm ss} Y_{\rm ss} (C_{\rm ss} - h C_{\rm ss})^{-\sigma^{\rm c}} = 0$$
(28.40)

$$-\nu_{\rm ss}^{\rm w} + (1 - \xi^{\rm w}) \left(w_{\rm ss}^{\star} W_{\rm ss}^{-1}\right)^{-\lambda^{\rm w}-1} (1 + \lambda^{\rm w}) + \xi^{\rm w} \nu_{\rm ss}^{\rm w} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm w}}\right)^{-\lambda^{\rm w}-1} (1 + \lambda^{\rm w}) = 0 \tag{28.41}$$

$$-\nu_{\rm ss}^{\rm p} + (1 - \xi^{\rm p}) \,\pi_{\rm ss}^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{\rm ss}^{\rm p} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm p}}\right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})} = 0 \tag{28.42}$$

$$-K_{\rm ss} + I_{\rm ss} \left(1 - 0.5\varphi \left(-1 + \epsilon_{\rm ss}^{\rm I} \right)^2 \right) + K_{\rm ss} \left(1 - \tau \right) = 0 \tag{28.43}$$

$$-K_{\rm ss}^{\rm f} + I_{\rm ss}^{\rm f} \left(1 - 0.5\varphi \left(-1 + \epsilon_{\rm ss}^{\rm I}\right)^{2}\right) + K_{\rm ss}^{\rm f} \left(1 - \tau\right) = 0 \tag{28.44}$$

$$U_{\rm ss} - \beta U_{\rm ss} - \epsilon_{\rm ss}^{\rm b} \left((1 - \sigma^{\rm c})^{-1} \left(C_{\rm ss} - h C_{\rm ss} \right)^{1 - \sigma^{\rm c}} - \omega \epsilon_{\rm ss}^{\rm L} \left(1 + \sigma^{\rm l} \right)^{-1} L_{\rm ss}^{\rm s}^{1 + \sigma^{\rm l}} \right) = 0$$
 (28.45)

$$U_{\rm ss}^{\rm f} - \beta U_{\rm ss}^{\rm f} - \epsilon_{\rm ss}^{\rm b} \left((1 - \sigma^{\rm c})^{-1} \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f} \right)^{1 - \sigma^{\rm c}} - \omega \epsilon_{\rm ss}^{\rm L} \left(1 + \sigma^{\rm l} \right)^{-1} L_{\rm ss}^{\rm f}^{1 + \sigma^{\rm l}} \right) = 0 \tag{28.46}$$

$$-\epsilon_{\rm ss}^{\rm b}(C_{\rm ss} - hC_{\rm ss})^{-\sigma^{\rm c}} + q_{\rm ss}\left(1 - 0.5\varphi\left(-1 + \epsilon_{\rm ss}^{\rm I}\right)^2 - \varphi\epsilon_{\rm ss}^{\rm I}\left(-1 + \epsilon_{\rm ss}^{\rm I}\right)\right) + \beta\varphi\epsilon_{\rm ss}^{\rm I}q_{\rm ss}\left(-1 + \epsilon_{\rm ss}^{\rm I}\right) = 0 \tag{28.47}$$

$$-\epsilon_{\rm ss}^{\rm b} \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f}\right)^{-\sigma^{\rm c}} + q_{\rm ss}^{\rm f} \left(1 - 0.5\varphi \left(-1 + \epsilon_{\rm ss}^{\rm I}\right)^2 - \varphi \epsilon_{\rm ss}^{\rm I} \left(-1 + \epsilon_{\rm ss}^{\rm I}\right)\right) + \beta \varphi \epsilon_{\rm ss}^{\rm I} q_{\rm ss}^{\rm f} \left(-1 + \epsilon_{\rm ss}^{\rm I}\right) = 0 \tag{28.48}$$

$$-\log \pi_{\rm ss}^{\rm obj} + \rho^{\pi^{\rm bar}} \log \pi_{\rm ss}^{\rm obj} + \log \operatorname{addr}^{\pi^{\rm obj}} \left(1 - \rho^{\pi^{\rm bar}} \right) = 0 \tag{28.49}$$

$$-C_{ss} - I_{ss} - T_{ss} + Y_{ss} - \psi^{-1} r_{ss}^{k} K_{ss} \left(-1 + e^{\psi(-1 + z_{ss})} \right) = 0$$
(28.50)

$$-abbr^{\pi} + (1 - \rho) \left(\log \pi_{ss}^{obj} - r^{\pi} \log \pi_{ss}^{obj} \right) = 0$$

$$(28.51)$$

$$-C_{\rm ss}^{\rm f} - I_{\rm ss}^{\rm f} + \Pi_{\rm ss}^{\rm ws^{\rm f}} - T_{\rm ss}^{\rm f} + Y_{\rm ss}^{\rm f} + L_{\rm ss}^{\rm f} W_{\rm ss}^{\rm disutil^{\rm f}} - L_{\rm ss}^{\rm f} W_{\rm ss}^{\rm f} - \psi^{-1} r_{\rm ss}^{\rm k^{\rm f}} K_{\rm ss}^{\rm f} \left(-1 + e^{\psi \left(-1 + z_{\rm ss}^{\rm f} \right)} \right) = 0 \tag{28.52}$$

$$\epsilon_{\rm ss}^{\rm b} \left(r_{\rm ss}^{\rm k} K_{\rm ss} - r_{\rm ss}^{\rm k} K_{\rm ss} e^{\psi(-1+z_{\rm ss})} \right) \left(C_{\rm ss} - h C_{\rm ss} \right)^{-\sigma^{\rm c}} = 0$$
(28.53)

$$\epsilon_{\rm ss}^{\rm b} \left(r_{\rm ss}^{\rm f} K_{\rm ss}^{\rm f} - r_{\rm ss}^{\rm f} K_{\rm ss}^{\rm f} e^{\psi \left(-1 + z_{\rm ss}^{\rm f} \right)} \right) \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f} \right)^{-\sigma^{\rm c}} = 0$$
 (28.54)

29 Calibrating equations

$$-1.408 + Y_{ss}^{s-1} \left(\Phi + Y_{ss}^{s}\right) = 0 \tag{29.1}$$

$$-1 + \pi_{\rm ss}^{\rm obj} = 0$$
 (29.2)

$$-0.6 + C_{\rm ss}^{\rm f} Y_{\rm ss}^{\rm f^{-1}} = 0 (29.3)$$

$$-0.18 + G_{\rm ss}Y_{\rm ss}^{-1} = 0 (29.4)$$

$$\pi_{\rm ss} - \pi_{\rm ss}^{\rm obj} = 0 \tag{29.5}$$

30 Parameter settings

$$\alpha = 0.3 \tag{30.1}$$

$$\beta = 0.99 \tag{30.2}$$

$$\gamma^{\mathrm{w}} = 0.763 \tag{30.3}$$

$$\gamma^{\mathbf{p}} = 0.469 \tag{30.4}$$

$$h = 0.573 (30.5)$$

$$\lambda^{\mathbf{w}} = 0.5 \tag{30.6}$$

$$\omega = 1 \tag{30.7}$$

$$\psi = 0.169 \tag{30.8}$$

$$r^{\pi} = 1.684 \tag{30.9}$$

$$r^{Y} = 0.099 (30.10)$$

$$r^{\Delta^{\pi}} = 0.14 \tag{30.11}$$

$$r^{\Delta^{y}} = 0.159 \tag{30.12}$$

$$\rho^{\rm b} = 0.855 \tag{30.13}$$

$$\rho^{\rm L} = 0.889 \tag{30.14}$$

$$\rho^{\rm I} = 0.927 \tag{30.15}$$

$$\rho^{a} = 0.823 \tag{30.16}$$

$$\rho^{G} = 0.949 \tag{30.17}$$

$$\rho = 0.961 \tag{30.18}$$

$$\rho^{\pi^{\text{bar}}} = 0.924 \tag{30.19}$$

$$\sigma^{c} = 1.353$$
 (30.20)

$$\sigma^{l} = 2.4 \tag{30.21}$$

$$\tau = 0.025 \tag{30.22}$$

$$\varphi = 6.771 \tag{30.23}$$

$$\xi^{W} = 0.737 \tag{30.24}$$

$$\xi^{\rm p} = 0.908 \tag{30.25}$$

31 Statistics of the model

31.1 Moments

91.1 1	Steady-state value	Std. dev.	Variance	Loglinear
$\epsilon^{ m b}$	Steady-state value	0.4207	0.177	Y
$\frac{\epsilon}{\epsilon^{\mathrm{L}}}$	1	4.4929	20.1864	Y
$\frac{\epsilon}{\epsilon^{\mathrm{I}}}$	1	0.1103	0.0122	Y
$\frac{\epsilon}{\epsilon^{\mathrm{a}}}$	1	0.1103	0.0122	Y
ϵ^{G}	1	0.7336		Y
			0.1794	Y
$\frac{f^1}{f^2}$	8.7708	0.8265	0.6831	Y
	8.7708	0.8314	0.6913	
$\frac{g^1}{2}$	48.8253	1.8874	3.5624	Y
g^2	35.7045	1.8874	3.5622	Y
mc f	0.7313	0.8206	0.6733	Y
mc^{f}	0.7313	0	0	Y
$ u^{\mathrm{w}}$	1	0	0	Y
$ u^{\mathrm{p}}$	1	0	0	Y
π	1	0.1145	0.0131	Y
π^*	1	0.7093	0.503	Y
$\pi^{ m obj}$	1	0.022	5e-04	Y
q	2.4577	0.3662	0.1341	Y
q^{f}	2.4577	0.4179	0.1746	Y
$r^{ m k}$	0.0351	0.152	0.0231	Y
$r^{\mathrm{k^f}}$	0.0351	0.1934	0.0374	Y
w^{\star}	1.1227	0.6559	0.4302	Y
z	1	0.8992	0.8086	Y
$z^{ m f}$	1	1.1442	1.3093	Y
C	1.2049	0.7154	0.5118	Y
C^{f}	1.2049	1.4816	2.1951	Y
G	0.3615	0.4236	0.1794	Y
G^{f}	0.3615	0.4236	0.1794	Y
I	0.4418	1.8279	3.3412	Y
I^{f}	0.4418	2.6127	6.8262	Y
K	17.6712	0.2275	0.0518	Y
K^{f}	17.6712	0.2981	0.0888	Y
L	1.2891	0.9894	0.9788	Y
$L^{\rm s}$	1.2891	0.9894	0.9788	Y
$L^{\mathrm{s}^{\mathrm{f}}}$	1.2891	1.1104	1.233	Y
$\frac{L}{L^{\mathrm{f}}}$	1.2891	1.1104	1.233	Y
$\frac{L}{P^{j^{\mathrm{f}}}}$				
P^{J}	1	0	0	Y
$\Pi^{\mathrm{ws^f}}$	0.4824	1.1952	1.4285	Y
$\Pi^{\mathrm{ps^f}}$	0.5396	1.6828	2.8319	Y
Q	1	0.9374	0.8786	Y
Q^{f}	1	2.7021	7.3013	Y
R	1.0101	0.2153	0.0464	Y
R^{f}	1.0101	1.1384	1.2959	Y
T	0.3615	0.4236	0.1794	Y
T^{f}	0.3615	0.4236	0.1794	Y
U	-427.937	0.0694	0.0048	Y
U^{f}	-427.937	0.0685	0.0047	Y
\overline{W}	1.1227	0.3847	0.148	Y
$W^{ ext{disutil}^{ ext{f}}}$	0.7485	1.0047	1.0094	Y
$W^{i^{\mathrm{f}}}$	1.1227	1.0047	1.0094	Y
$\frac{W}{W^{\mathrm{f}}}$	1.1227	1.0047	1.0094	Y
$\frac{W^{2}}{Y}$	2.0081	0.9158	0.8387	Y
$\frac{Y}{Y^{\mathrm{s}}}$				Y
$\frac{Y^{\mathrm{f}}}{Y^{\mathrm{f}}}$	2.0081	0.9158	0.8387	Y
	2.0081	1.6828	2.8319	
$Y^{\mathrm{s}^{\mathrm{f}}}$	2.0081	1.6828	2.8319 2	0 Y

31.2 Correlation matrix

	$\epsilon^{ m b}$	$\epsilon^{ m L}$	ϵ^{I}	ϵ^{a}	ϵ^{G}	f^1	f^2	g^1	g^2	mc	mc^{f}	ν^{w}	ι
$\epsilon^{ m b}$	1	0	0	0	0	0.1385	0.1377	0.1	0.1	0.0234	0	0	
$\epsilon^{ m L}$	0	1	0	0	0	0.0322	0.032	0.2679	0.2679	0.1233	0	0	
ϵ^{I}	0	0	1	0	0	-0.0388	-0.0385	-0.029	-0.029	-0.001	0	0	
ϵ^{a}	0	0	0	1	0	-0.803	-0.7983	-0.3195	-0.3195	-0.9392	0	0	
$\epsilon^{ m G}$	0	0	0	0	1	0.088	0.0875	0.0496	0.0496	0.0076	0	0	
f^1	0.1385	0.0322	-0.0388	-0.803	0.088	1	0.9959	0.1768	0.1768	0.8682	0	0	
f^2	0.1377	0.032	-0.0385	-0.7983	0.0875	0.9959	1	0.1757	0.1757	0.8629	0	0	
g^1	0.1	0.2679	-0.029	-0.3195	0.0496	0.1768	0.1757	1	1	0.4829	0	0	
$\frac{g^2}{g^2}$	0.1	0.2679	-0.029	-0.3195	0.0496	0.1768	0.1757	1	1	0.4829	0	0	
mc	0.0234	0.1233	-0.001	-0.9392	0.0076	0.8682	0.8629	0.4829	0.4829	1	0	0	
mc^{f}	0	0	0	0	0	0	0	0	0	0	0	0	
$ u^{\mathrm{w}}$	Inf	Inf	Inf	-Inf	-Inf	Inf	Inf	Inf	Inf	Inf	0	0	
$ u^{\mathrm{p}}$	Inf	-Inf	-Inf	Inf	Inf	-Inf	-Inf	-Inf	-Inf	-Inf	0	0	
π	0.0483	0.283	-0.011	-0.4354	0.0147	0.405	0.4026	0.8971	0.8971	0.6528	0	0	
π^{\star}	0.056	0.3192	-0.0123	-0.4865	0.0158	0.3178	0.3158	0.9723	0.9721	0.647	0	0	
$\pi^{ m obj}$	0	0	0	0	0	-0.0118	-0.0117	0.0667	0.0667	0.0048	0	0	
\overline{q}	0.1222	0.7544	-0.0017	-0.3744	0.0768	0.4535	0.4508	-0.0877	-0.0877	0.399	0	0	
q^{f}	0.1459	0.8703	-0.0082	-0.4123	0.0753	0.3844	0.3821	0.3755	0.3755	0.5041	0	0	
r^{k}	0.0605	-0.2846	-0.0145	-0.6424	0.0504	0.621	0.6172	0.6773	0.6773	0.7117	0	0	
$r^{\mathrm{k^f}}$	-0.0375	-0.7517	-0.0091	0.5539	0.0204	-0.4657	-0.4629	-0.3616	-0.3616	-0.641	0	0	
w^{\star}	0.1032	0.6391	-0.0075	-0.1008	0.0204	0.12	0.1179	0.8724	0.8724	0.3468	0	0	
z	0.0605	-0.2846	-0.0145	-0.6424	0.0504	0.621	0.6172	0.6773	0.6773	0.7117	0	0	
z^{f}	-0.0375	-0.7517	-0.0091	0.5539	0.0204	-0.4657	-0.4629	-0.3616	-0.3616	-0.641	0	0	
C	0.1911	-0.5798	0.0119	0.3995	-0.0318	-0.373	-0.3708	0.2451	0.2451	-0.3887	0	0	
C^{f}	0.0224	-0.7576	0.0057	0.6075	-0.0297	-0.5097	-0.5067	-0.3909	-0.3909	-0.6679	0	0	
G	0.0221	0	0.0001	0	1	0.088	0.0875	0.0496	0.0496	0.0076	0	0	
G^{f}	0	0	0	0	1	0.088	0.0875	0.0496	0.0496	0.0076	0	0	
I	-0.044	-0.3	-0.0298	0.1771	-0.0133	0.0313	0.0311	0.3135	0.3135	-0.1073	0	0	
I^{f}	-0.0819	-0.5367	-0.0199	0.3543	-0.0209	-0.2949	-0.2931	-0.1984	-0.1985	-0.4831	0	0	
K	0.0479	0.2901	0.0227	-0.1775	0.0138	0.3581	0.356	-0.002	-0.002	0.2531	0	0	
K^{f}	0.0523	0.2727	0.0132	-0.1635	0.0109	0.1599	0.1589	0.1781	0.1781	0.1495	0	0	
L	0.0539	-0.3846	-0.0084	-0.7218	0.0518	0.6058	0.6022	0.5153	0.5153	0.6781	0	0	
$L^{\rm s}$	0.0539	-0.3846	-0.0084	-0.7218	0.0518	0.6058	0.6022	0.5153	0.5153	0.6781	0	0	
$L^{\mathrm{s}^{\mathrm{f}}}$	-0.0287	-0.8541	-0.0068	-0.3018	0.0303	0.2241	0.2228	-0.0999	-0.0999	0.1369	0	0	
L^{f}	-0.0287	-0.8541	-0.0068	-0.3018	0.0303	0.2241	0.2228	-0.0999	-0.0999	0.1369	0	0	
$P^{j^{f}}$	0	0.0341	0	0	0.0303	0.2241	0.2220	0	0	0.1303	0	0	
								_			_		
$\Pi^{\mathrm{ws^f}}$	-0.0241	-0.7414	-0.0057	0.5583	0.0267	-0.4638	-0.461	-0.348	-0.348	-0.6521	0	0	
$\Pi^{\mathrm{ps^f}}$	-0.0241	-0.7414	-0.0057	0.5583	0.0267	-0.4638	-0.461	-0.348	-0.348	-0.6521	0	0	
Q	-0.1014	-0.6021	0.0186	0.5021	-0.0178	-0.6609	-0.657	0.1382	0.1382	-0.5088	0	0	
Q^{f}	-0.1037	-0.6627	0.0057	0.6048	-0.0189	-0.5339	-0.5308	-0.4172	-0.4172	-0.6105	0	0	
R	0.0943	0.6156	-0.0016	-0.6906	0.0206	0.7595	0.7549	0.3796	0.3796	0.8033	0	0	
R^{f}	0.0677	0.5957	0.0036	-0.6185	0.0163	0.5386	0.5354	0.4033	0.4033	0.6103	0	0	
T	0	0	0	0	1	0.088	0.0875	0.0496	0.0496	0.0076	0	0	
T^{f}	0	0	0	0	1	0.088	0.0875	0.0496	0.0496	0.0076	0	0	
U	0.3933	0.8153	3e-04	-0.3868	0.0911	0.3854	0.3831	0.3688	0.3688	0.4577	0	0	
U^{f}	0.3939	0.8014	-1e-04	-0.3886	0.0922	0.3997	0.3973	0.3779	0.3779	0.476	0	0	
W	0.061	0.424	-6e-04	-0.0284	0.0145	0.3524	0.3498	0.4861	0.4861	0.3674	0	0	
$W^{ ext{disutil}^{ ext{f}}}$	0.0031	0.062	8e-04	0.9976	-0.0017	-0.7994	-0.7947	-0.3035	-0.3035	-0.927	0	0	
$W^{\mathrm{i}^{\mathrm{f}}}$	0.0031	0.062	8e-04	0.9976	-0.0017	-0.7994	-0.7947	-0.3035	-0.3035	-0.927	0	0	
W^{f}	0.0031	0.062	8e-04	0.9976	-0.0017	-0.7994	-0.7947	-0.3035	-0.3035	-0.927	0	0	
Y	0.0886	-0.4898	-0.0119	0.0702	0.0778	0.0346	0.0343	0.4621	0.4622	-0.0128	0	0	
Y^{s}	0.0886	-0.4898	-0.0119	0.0702	0.0778	0.0346	0.0343	0.4621	0.4622	-0.0128	0	0	
Y^{f}	-0.0241	-0.7414	-0.0057	0.5583	0.0267	-0.4638	-0.461	-0.348	-0.348	-0.6521	0	0	
$Y^{ m s^f}$	-0.0241	-0.7414	-0.0057	0.5583	0.0267	-0.4638	-0.461	-0.348	-0.348	-0.6521	0	0	
													_

31.3 Autocorrelations

01.0	i di				
	t-1	t-2	t-3	t-4	t-5
$\epsilon^{ m b}$	0.6654	0.3986	0.1908	0.0335	-0.081
$\epsilon^{ m L}$	0.6859	0.429	0.2235	0.0636	-0.0567
ϵ^{I}	0.7048	0.4578	0.2558	0.0946	-0.03
ϵ^{a}	0.6438	0.3678	0.159	0.0058	-0.1018
$\epsilon^{ m G}$	0.713	0.4706	0.2705	0.1093	-0.0169
f^1	0.6675	0.4014	0.195	0.0393	-0.0743
f^2	0.6586	0.3958	0.1919	0.0381	-0.0741
g^1	0.7473	0.5206	0.3235	0.1571	0.021
g^2	0.7474	0.5206	0.3235	0.1571	0.0211
mc	0.6822	0.4261	0.2228	0.0649	-0.0539
mc^{f}	NaN	NaN	NaN	NaN	NaN
$ u^{\mathrm{w}} $	NaN	NaN	NaN	NaN	NaN
$ u^{\mathrm{p}}$	NaN	NaN	NaN	NaN	NaN
π	0.8807	0.6745	0.4521	0.2453	0.0675
π^{\star}	0.7338	0.5023	0.305	0.141	0.0086
π^{obj}	0.7035	0.4558	0.2535	0.0923	-0.032
q	0.6699	0.4077	0.2038	0.0493	-0.0638
q^{f}	0.6225	0.3535	0.1589	0.0192	-0.0783
r^{k}	0.7406	0.5165	0.3259	0.1668	0.0369
$r^{\mathrm{k^f}}$	0.8613	0.6402	0.413	0.209	0.0384
w^*	0.8613	0.6402	0.413 0.3802	0.209	0.0384
	0.7406	0.5165	0.3259	0.2144	0.072
$\frac{z}{z^{\mathrm{f}}}$	0.7400	0.6402		0.1008	0.0384
C		0.6402	0.413		
C^{f}	0.871		0.3843	0.1546	-0.0336
	0.7933	0.4997	0.2319	0.0218	-0.1283
G G^{f}	0.713	0.4706	0.2705	0.1093	-0.0169
I	0.713	0.4706	0.2705	0.1093	-0.0169
I I^{f}	0.945	0.8182	0.6499	0.4634	0.276
K	0.9221	0.7637	0.5697	0.3679	0.1763
K^{f}	0.9796	0.9208	0.8287	0.7102	0.573
	0.9757	0.9066	0.8005	0.6668	0.5154
$L^{\rm s}$	0.7052	0.4567	0.2534	0.0919	-0.0325
	0.7052	0.4567	0.2534	0.0919	-0.0325
$L^{\mathrm{s}^{\mathrm{f}}}$	0.7696	0.5284	0.3112	0.1295	-0.0152
L^{f}	0.7696	0.5284	0.3112	0.1295	-0.0152
$P^{\mathrm{j^f}}$	NaN	NaN	NaN	NaN	NaN
$\Pi^{\mathrm{ws^f}}$	0.8404	0.5961	0.355	0.1476	-0.0182
$\Pi^{\mathrm{ps^f}}$	0.8404	0.5961	0.355	0.1476	-0.0182
\overline{Q}	0.6716	0.395	0.1791	0.0185	-0.0958
Q^{f}	0.4558	0.1749	0.0181	-0.0731	-0.1257
R	0.7709	0.4956	0.2532	0.0622	-0.0789
R^{f}	0.3765	0.0994	-0.0306	-0.0936	-0.1232
T	0.713	0.4706	0.2705	0.1093	-0.0169
T^{f}	0.713	0.4706	0.2705	0.1093	-0.0169
\overline{U}	0.6354	0.3595	0.1548	0.0068	-0.0961
U^{f}	0.6013	0.3324	0.1441	0.0112	-0.0806
\overline{W}	0.9502	0.8308	0.6685	0.4852	0.2981
$W^{ ext{disutil}^{ ext{f}}}$	0.6333	0.3561	0.1496	-3e-04	-0.1046
$W^{\mathrm{i}^{\mathrm{f}}}$	0.6333	0.3561	0.1496	-3e-04	-0.1046
W^{f}	0.6333	0.3561	0.1496	-3e-04	-0.1046
Y	0.9049	0.7264	0.5191	0.3142	0.1286
Y^{s}	0.9049	0.7264	0.5191	0.3142	0.1286
Y^{f}	0.9049	0.7204	0.355	0.3142	-0.0182
$Y^{\mathrm{s}^{\mathrm{f}}}$	0.8404	0.5961	0.355	0.1476	-0.0182
1	0.0404	0.0001	0.000	0.1410	-0.0102

31.4 Variance decomposition

	$\eta^{ m b}$	$\eta^{ m L}$	η^{I}	η^{w}	η^{a}	η^{p}	$\eta^{ m G}$	$\eta^{ m R}$	η^{π}
$\epsilon^{ m b}$	1	0	0	0	0	0	0	0	0
$\epsilon^{ m L}$	0	1	0	0	0	0	0	0	0
ϵ^{I}	0	0	1	0	0	0	0	0	0
ϵ^{a}	0	0	0	0	1	0	0	0	0
ϵ^{G}	0	0	0	0	0	0	1	0	0
f^1	0.0204	0.003	0.0018	4e-04	0.6589	0	0.0078	0.307	8e-04
f^2	0.0201	0.0029	0.0018	0.0122	0.6511	0	0.0077	0.3034	8e-04
g^1	0.0101	0.0734	9e-04	0	0.1131	1e-04	0.0025	0.7953	0.0047
g^2	0.0101	0.0734	9e-04	0	0.1131	0	0.0025	0.7953	0.0047
mc	0.0015	0.0369	0	0	0.8838	0	1e-04	0.0775	2e-04
mc^{f}	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
$ u^{\mathrm{w}} $	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
$ u^{\mathrm{p}}$	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
π	0.0034	0.1088	2e-04	0	0.2145	2e-04	3e-04	0.6691	0.0036
π^{\star}	0.0033	0.1058	2e-04	0	0.2407	4e-04	3e-04	0.6457	0.0035
π^{obj}	0	0	0	0	0	0	0	0	1
q	0.0159	0.5993	1e-04	0	0.149	0	0.006	0.2288	0.001
q^{f}	0.0222	0.7897	1e-04	0	0.1822	0	0.0057	0	0
r^{k}	0.005	0.1087	4e-04	0	0.4632	0	0.0026	0.4189	0.0011
$r^{\mathrm{k^f}}$	0.0022	0.6459	1e-04	0	0.3512	0	5e-04	0	0
w^{\star}	0.0112	0.4129	1e-04	3e-04	0.0245	0	4e-04	0.5487	0.0018
z	0.005	0.1087	4e-04	0	0.4632	0	0.0026	0.4189	0.0011
z^{f}	0.0022	0.6459	1e-04	0	0.3512	0	5e-04	0	0
C	0.0462	0.4269	3e-04	0	0.2144	0	0.0013	0.3102	7e-04
C^{f}	0.002	0.605	1e-04	0	0.3919	0	9e-04	0	0
G	0	0	0	0	0	0	1	0	0
G^{f}	0	0	0	0	0	0	1	0	0
I	0.0116	0.4314	0.0032	0	0.1782	0	8e-04	0.3737	0.001
$I^{ m f}$	0.0204	0.6815	0.0011	0	0.296	0	0.001	0	0
K	0.0113	0.4397	0.0034	0	0.1643	0	0.001	0.3793	0.0011
K^{f}	0.0206	0.7097	0.0013	0	0.2672	0	0.0012	0	0
L	0.0034	0.2564	2e-04	0	0.5695	0	0.0029	0.1672	4e-04
$L^{\rm s}$	0.0034	0.2564	2e-04	0	0.5695	0	0.0029	0.1672	4e-04
$L^{\mathrm{s^f}}$	0.0014	0.8413	1e-04	0	0.1561	0	0.0011	0	0
L^{f}	0.0014	0.8413	1e-04	0	0.1561	0	0.0011	0	0
$P^{\mathrm{j^f}}$	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
$\Pi^{\mathrm{ws^f}}$	0.001	0.6362	1e-04	0	0.3618	0	8e-04	0	0
$\Pi^{\mathrm{ps^f}}$	0.001	0.6362	1e-04	0	0.3618	0	8e-04	0	0
Q	0.001	0.0302	5e-04	0	0.3018 0.2537	0	3e-04	0.3633	6e-04
Q^{f}	0.0104	0.5554	1e-04	0	0.4325	0	5e-04	0.3033	00-04
R	0.0114	0.3976	1e-04	0	0.4912	0	4e-04	0.0994	5e-04
R^{f}	0.0048	0.5135	0	0	0.4812	0	5e-04	0.0354	0
T	0.0040	0.5155	0	0	0.4012	0	1	0	0
T^{f}	0	0	0	0	0	0	1	0	0
U	0.155	0.6742	1e-04	0	0.1533	0	0.0083	0.0091	0
U^{f}	0.156	0.6723	1e-04	0	0.1631	0	0.0085	0.0031	0
\overline{W}	0.100	0.401	2e-04	1e-04	0.012	0	4e-04	0.5731	0.0018
$W^{ ext{disutil}^{ ext{f}}}$	0	0.0044	0	0	0.9956	0	0	0	0.0010
$W^{i^{\mathrm{f}}}$	0	0.0044	0	0	0.9956	0	0	0	0
W^{f}	0	0.0044	0	0	0.9956	0	0	0	0
$\frac{vv}{Y}$	0.009	0.4081	5e-04	0	0.9950 0.1125	0	0.0065	0.4624	0.0011
$Y^{\rm s}$	0.009	0.4081	5e-04 5e-04	0	0.1125 0.1125	0	0.0065	0.4624 0.4624	0.0011
Y^{f}	0.009	0.4081 0.6362		0	0.1125	0	8e-04	0.4624	0.0011
Y^{r}			1e-04			_		_	-
Y s	0.001	0.6362	1e-04	0	0.3618	0	8e-04	0	0

32 Impulse response functions

32.1 Shock $\eta^{\rm a}$

Figure 1: Impulse response function for η^a shock

32.2 Shock η^{R}

Figure 2: Impulse response function for $\eta^{\rm R}$ shock