Etienne Debacq*

Exercice (Mines-Ponts MP 2022). Pour $n \in \mathbb{N}$, soit P(n) l'ensemble des triplets (x,y,z) de \mathbb{N}^3 tels que x+2y+3z=n et $p(n)=\operatorname{Card} P(n)$. On pose $G\colon t\mapsto \sum_{n=0}^{+\infty} p(n)t^n$.

1. Montrer que G(t) est défini pour |t| < 1, puis que

$$G(t) = \frac{1}{(1-t)(1-t^2)(1-t^3)}$$

- 2. En déduire p(n) et un équivalent lorsque $n \to +\infty$.
- 3. Généraliser avec le nombre de m-uplets (x_1,\ldots,x_m) tels que $\sum_{i=1}^m \alpha_i x_i = n$ où les α_i sont des entiers naturels deux à deux premiers entre eux.

Éléments de réponse.

1. On sait que pour k = 1, 2, 3, pour |t| < 1, on a

$$\frac{1}{1-t^k} = \sum_{n \in k \, \mathbb{N}} t^n$$

Autrement dit, comme les séries convergent absolument, pour |t| < 1

$$\begin{split} \frac{1}{(1-t)(1-t^2)(1-t^3)} &= \left(\sum_{n\in\mathbb{N}} t^n\right) \left(\sum_{n\in2\,\mathbb{N}} t^n\right) \left(\sum_{n\in3\,\mathbb{N}} t^n\right) \\ &= \sum_{n=0}^{+\infty} \left(\sum_{\substack{(x,y,z)\in\mathbb{N}^3\\x+2y+3z=n}} 1\right) t^n = \sum_{n=0}^{+\infty} p(n)t^n \end{split}$$

2. On effectue une décomposition en éléments simples de la fraction rationnelle $\frac{1}{(X-1)(X^2-1)(X^3-1)}=\frac{1}{(X-1)^2(X+1)(X^2+X+1)}$. Il existe des coefficients ... tels que

$$\frac{1}{(X-1)^2(X+1)(X^2+X+1)} = \frac{\alpha}{X-1} + \frac{\beta}{(X-1)^2} + \frac{\gamma}{X+1} + \frac{\delta X + \varepsilon}{X^2 + X + 1}$$

Exercice. Calculer $\sum_{n=1}^{+\infty} \frac{(-1)^n}{3n+1}$.

Florian Laffont*

Exercice (X MP* 2001). Soit D le disque unité ouvert de $\mathbb{C},$ D_f son adhérence.

1. Soit $\varphi(z)=\sum_{n=0}^\infty a_n z^n$ une série entière de rayon $R\geq 1$ et $r\in]0,1[$. Montrer que

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} \varphi(re^{i\theta}) e^{-in\theta} \,\mathrm{d}\theta$$

- 2. On considère E l'espace des fonctions de D_f dans $\mathbb C$ continues et F le sous-espace de E constitué des fonctions dont la restriction à D est somme d'une série entière. Vérifier que $\|f\| = \sup_{z \in D_f} |f(z)|$ est une norme sur E et que F est un fermé dans $(E, \|\cdot\|)$.
- 3. Montrer que l'ensemble des polynômes à coefficients complexes est d'adhérence égale à F dans $(E, \|\cdot\|)$.

Exercice. Rayon de convergence de $\sum R_n x^n$ où R_n est le reste de $\sum \frac{1}{1+n^2}$.

Ronan Kaing

Exercice CCP. Soit (a_n) une suite de complexes telle que $(|a_{n+1}/a_n|)$ admet une limite.

- Démontrer que les séries entières ∑ a_nxⁿ et ∑(n+1)a_{n+1}xⁿ ont même rayon de convergence, que l'on note R.
 Démontrer que x → ∑_{n=0}[∞] a_nxⁿ est C¹ sur]-R, R[.

Exercice. On note $H_n = \sum_{k=1}^n \frac{1}{k}$. Déterminer le rayon de convergence et la somme de $\sum H_n x^n$.

Morgan Laurent*

Question de cours. Justifier que $x \mapsto \frac{e^x - 1}{x}$ et $x \mapsto \frac{x - \sinh(x)}{x^3}$ sont de classe \mathcal{C}^{∞} en 0.

Exercice. Soient $\alpha \in \mathbb{R} \setminus \mathbb{N}$ et, pour |x| < 1, $f(x) = (1+x)^{\alpha}$.

- 1. Donner une suite réelle (a_n) telle que $\forall x\in \]-1,1[,\ f(x)=\sum_{n=1}^\infty a_nx^n.$
- 2. Montrer qu'il existe C>0 tel que $|a_n|\sim \frac{C}{n^{1+\alpha}}$.
- 3. La série $\sum a_n$ converge-t-elle? Si oui, quelle est sa somme?

Leo Monge

Exercice CCP.

- 1. Définition du rayon de convergence.
- 2. Rayon de $\sum \frac{z^{2n+1}}{\binom{n}{2n}}$, $\sum n^{(-1)^n} z^n$ et $\sum \cos nz^n$.

Exercice. Soit $a_n = 2^{-n} \int_0^1 (1+t^2)^n dt$.

- 1. Montrer que (a_n) converge.
- 2. Étudier la série $\sum (-1)^n a_n$.
- 3. On considère la série entière $\sum a_n x^n$. On note R son rayon de convergence et f sa somme.
 - a) Montrer que pour tout entier $n \ge$, $a_n \ge 1/(n+1)$.
 - b) En déduire R.
 - c) Montrer que

$$\forall n \in \mathbb{N}, \ (2n+3)a_{n+1} = (n+1)a_n + 1$$

d) Montrer que f vérifie une équation différentielle d'ordre 1 à déterminer.

Jaufret Patou-Stefaniak

Exercice CCP.

Soit (a_n) une suite de complexes telle que $(|a_{n+1}/a_n|)$ admet une limite.

- 1. Démontrer que les séries entières $\sum a_n x^n$ et $\sum (n+1)a_{n+1}x^n$ ont même rayon de convergence, que l'on note R.
- 2. Démontrer que $x\mapsto \sum_{n=0}^\infty a_n x^n$ est \mathcal{C}^1 sur]-R,R[.

Exercice. On note $H_n=\sum_{k=1}^n \frac{1}{k}.$ Déterminer le rayon de convergence et la somme de $\sum H_n x^n.$