مدار های الکتریکی ۱

نيم سال اول ۰۰–۹۹

مهلت ارسال: پنج شنبه ۱ آبان ۱۳۹۹

KCL ، KVL و شكل موج ها

تمرین سری سوم

به موارد زیر توجه کنید :

- پاسخ تمرین را حتما در قالب یک فایل PDF و با عنوان (subject) ECI_HW_03 (subject به ایمیل r3zaAdinep0ur@gmail.com
- نام فایل باید شامل اسم خودتان، شماره دانشجویی و شماره تمرین باشد. مثلا :

 Hesam Lashkari 9812345 HW01

 Hesam Lashkari 9812345 HW01
- مهلت ارسال پاسخ تمرین ها تا ساعت ۲۳:۵۹ روز اعلام شده است. توصیه می شود نوشتن تمرین را به روز های نهایی موکول نکنید. ارسال های با تاخیر همه نمره آن تمرین را کسب نخواهند کرد.
- سعی کنید حتما تمرین ها را خودتان حل کنید. طبیعی است که برای پاسخ های مشابه نمره ای در نظر گرفته نمی شود.
 - تمرینات اختیاری دارای نمره اضاف هستند.

۱. در شکل های زیر، ولتاژ های مجهول را به دست آورید.

۲. در شکل های زیر، جریان های مجهول را به دست آورید.

۳. در شکل زیر، ${m V}$ و ${m i}_{{m x}}$ را به دست آورید.

۴. در شکل زیر، مقاومت معادل را به دست آورید.

۵. جریان ها و ولتاژ های مشخص شده در شکل زیر را به دست آورید.

۶. جریان مشخص شده را در شکل زیر به دست آورید.

۷. مدار شکل زیر را تا حد امکان ساده کنید و سپس جریان مشخص شده را به دست آورید.

۸. شکل موج های زیر را رسم کنید.

a)
$$f_a(t) = u(1 - t^2)$$

b)
$$f_b(t) = u(t-2) + 2(t+1)u(t-1)$$

c)
$$f_c(t) = (t-1)u(t+1) + (t+1)u(t-1)$$

$$d) f_d(t) = r(t)\sin(t)$$

e)
$$f_e(t) = u(t)\cos(2t + 30)$$

$$f) f_f(t) = u(1-t) + u(t-1)$$

$$g) f_g(t) = 2u(t) - 4r(t-1) + 4r(t-2)$$

۹. حاصل انتگرال های زیر را حساب کنید.

a)
$$\int_{-5}^{2} (t+4) \times [\delta(t) - \delta(t+4) + \delta(t-3)] dt$$

b)
$$\int_{-2}^{4} (t^3 + 4) \times [\delta(t) + 4\delta(t - 2)] dt$$

c)
$$\int_{-3}^{4} t^2 \times [\delta(t) + \delta(t + 2.5) + \delta(t - 5)] dt$$

۱۰. مشتق هر یک از توابع زیر را حساب کنید.

- $a) (1 te^{-t})u(t)$
- $b)\cos 2t u(t)$
- $c) e^{-t}u(t)$

۱۱. ولتاژ دوسر خازن را برحسب زمان به دست آورید و نمودار آن را رسم کنید.

اختيارى:

For the circuit of Fig. 3.54 (which is a model for the dc operation of a bipolar junction transistor biased in forward active region), I_B is measured to be 100 μ A. Determine I_C and I_E .

