CHAPITRE 15: INTÉGRALES À PARAMÈTRE

Plan du chapitre

1	Domaine de définition	1
	Continuité sous le signe intégral 2.A Théorème de continuité	
3	Dérivabilité sous le signe intégral	3

Dans ce chapitre, on s'intéresse aux intégrales du type $\int_I f(x,t)dt$ où $f:I\times J\to\mathbb{R}$.

On appelle une telle intégrale, une intégrale à paramètres et on notera $g(x) = \int_J f(x,t) dt$ pour $x \in I$.

1 - Domaine de définition

On note \mathscr{D}_g l'ensemble de définition de la fonction $g: x \longmapsto \int_{\mathbb{T}} f(x,t) dt.$

 \mathscr{D}_g est l'ensemble des réels $x \in I$ tels que l'intégrale $\int_I f(x,t) dt$ existe.

Exercice 1

Déterminer les ensembles de définition des fonctions :

$$g_1: x \longmapsto \int_0^{+\infty} \frac{e^{-t}}{t+x} dt \quad ; \quad g_2: x \longmapsto \int_0^1 \frac{dt}{t^2+x^2}$$

2 - Continuité sous le signe intégral

Exercice 2

Pour $x\geqslant 0$, on pose $g(x)=\int_0^{+\infty}xe^{-xt}dt.$

- 1. Calculer g(0) puis calculer g(x) pour x > 0.
- 2. Étudier la continuité de g en 0.

2.A - Théorème de continuité

Soit $x \in I \longrightarrow g(x) = \int_I f(x,y)dt$ où I,J sont des intervalles réels.

Théorème 3: Continuité sous le signe intégral

Soient I, J des intervalles réels et f une fonction réelle ou complexe définie sur $I \times J$ tels que :

- Pour tout $t \in J$, $x \mapsto f(x, t)$ est continue sur I.
- Pour tout $x \in I$, $t \mapsto f(x,t)$ est continue sur J.
- Il existe une fonction $\varphi: J \longrightarrow \mathbb{R}_+$ positive, continue et intégrable sur J telle que :

$$\forall (x,t) \in I \times J, |f(x,t)| \leq \varphi(t)$$
 (hypothèse de domination).

Alors la fonction $g: x \longmapsto \int_J f(x,t)dt$ est continue sur I.

Remarques

- La fonction φ ne dépend pas de x.
- L'hypothèse de domination assure l'existence de l'intégrale $\int_I f(x,t)dt$ pour tout $x \in I$.

Exercice 4

Soit $g: x \longmapsto \int_0^{+\infty} e^{-t} \sin(xt) dt$. Montrer que g est continue sur $\mathbb R$ et calculer $\lim_{x \to 0} g(x)$.

Exercice 5

Montrer que la fonction $g: x \longmapsto \int_{-1}^{1} \arctan(xt)dt$ est continue sur \mathbb{R} .

Exercice 6

- 1. Montrer que la fonction $g: x \longmapsto \int_0^1 \frac{\cos(xt)}{1+t^2} dt$ est continue sur $\mathbb R$.
- 2. En déduire $\lim_{n\to+\infty} \int_0^{\frac{1}{n}} \frac{n\cos u}{1+n^2u^2} du$.

2.B - Passage par une domination locale

Il n'est pas toujours possible de vérifier l'hypothèse de domination sur tout l'intervalle I.

On passe alors par une **domination locale**, guidée dans chaque exercice.

La domination est parfois effectuée sur un segment $K = [c, d] \subset I$ ou un intervalle $K = [a; +\infty[\subset I \text{ etc.}]$

On conclut alors que $g: x \longmapsto \int_J f(x,t)dt$ est continue sur toute partie $K \subset I$ de la forme précédente.

Si $x_0 \in I$, on peut trouver un intervalle $K \subset I$ contenant x_0 .

Conclusion : g est alors continue en tout x_0 de I i.e. g est continue sur I.

Exercice 7

On pose $I=\mathbb{R}_+^*.$ Pour tout $x\in I,$ on pose $g(x)=\int_0^{+\infty}\frac{e^{-t}}{t+x}dt.$

- 1. Montrer que g est continue sur tout intervalle du type $[a; +\infty[\subset I \text{ avec } a > 0.$
- 2. Que peut-on en déduire?

Exercice 8

- 1. On pose $F(x) = \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt$. Montrer que F est continue sur tout intervalle $[a; +\infty[$ avec a>0.
- 2. Que peut-on en conclure?

Exercice 9

Montrer que la fonction $x\mapsto g(x)=\int_0^{+\infty}\frac{\ln t}{(1+t^2)(x^2+t^2)}dt$ est continue sur tout intervalle du type $[a,+\infty[$ avec a>0. Que peut-on en déduire ?

Exercice 10

Pour x réel, on pose :

$$F(x) = \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt.$$

Montrer que F est continue sur tout intervalle du type [-a; a] avec a > 0. Conclusion?

Dérivabilité sous le signe intégral **3** -

Théorème 11: Dérivabilité sous le signe intégral

Soient I et J des intervalles réels et f une fonction réelle ou complexe définie sur $I \times J$ tels que :

- Pour tout $t \in J$ fixé, $x \mapsto f(x,t)$ est de classe \mathscr{C}^1 sur I.

$$\forall (x,t) \in I \times J, \left| rac{\partial f}{\partial x}(x,t)
ight| \leqslant arphi(t)$$
 (hypothèse de domination).

Alors la fonction $g: x \longmapsto \int_I f(x,t)dt$ est de classe \mathscr{C}^1 sur I et :

$$\forall x \in I, g'(x) = \int_{J} \frac{\partial f}{\partial x}(x, t) dt.$$

Exercice 12

- 1. Soit $g: x \longmapsto \int_{a}^{+\infty} e^{-t} \sin(xt) dt$. Montrer que g est définie et continue sur \mathbb{R} .
- 2. Montrer que g est dérivable et calculer g'(x) pour tout $x \in \mathbb{R}$. On laissera le résultat sous forme d'une
- 3. Montrer que la fonction $g: x \longmapsto \int_0^{+\infty} e^{-t} \sin(xt) dt$ est de classe \mathscr{C}^{∞} sur \mathbb{R} .

Remarques

Comme pour le théorème de continuité, on appliquera parfois le théorème sur un segment $[c,d] \subset I$ ou un intervalle $[a; +\infty[$ (etc.) avant de conclure.

Exercice 13

- 1. On pose $F(x) = \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt$. Montrer que F est de classe \mathscr{C}^1 sur tout intervalle $[a; +\infty[$ avec a > 0.
- 2. Que peut-on en conclure?

Exercice 14

Pour x réel, on pose :

$$F(x) = \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt.$$

- 1. Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R} .
- 2. En déduire une expression de F(x) à l'aide des fonctions usuelles.