45

3-4 中垂線與角平分線性質

如圖, \overrightarrow{AD} 為 $\angle BAC$ 的角平分線,且 $\overrightarrow{DF} \perp \overrightarrow{AB}$, $\overrightarrow{DE} \perp \overrightarrow{AC}$,若 $\overrightarrow{AB} + \overrightarrow{AC} = 20$ 公分, $\overrightarrow{DE} = 5$ 公分,則 $\triangle ABC$ 的面積為多少平方公分?

$$= \frac{1}{2} \times \overline{AB} \times \overline{DF} + \frac{1}{2} \times \overline{AC} \times \overline{DE}$$

$$= \frac{1}{2} \times \overline{AB} \times \overline{DE} + \frac{1}{2} \overline{AC} \times \overline{DE}$$

$$= \frac{1}{2} \times \overline{DE} \times (\overline{AB} + \overline{AC})$$

$$= \frac{1}{2} \times 5 \times 20 = 50 (平方公分)$$

例題2

右圖 $\triangle ABC$ 中, $\angle C = 90^{\circ}$, $\overline{AC} = 4$, $\overline{BC} = 3$, \overline{AD} 平 分 $\angle BAC$,則 $\overline{CD} = ?$

 $\triangle ABC$ 面積 = $\triangle ACD$ 面積 + $\triangle ABD$ 面積

$$\therefore \frac{1}{2} \times 3 \times 4 = \frac{1}{2} \times 4 \times x + \frac{1}{2} \times 5 \times x$$

$$\Rightarrow 12=9x \cdot x=\frac{4}{3}$$

例題3

如圖, $\overline{AB} \perp \overline{AC}$, $\overline{DE} \perp \overline{BC}$, $\overline{BE} = \overline{EC}$,若 $\overline{BE} = 4\sqrt{5}$ 公分, $\overline{DE} = 2\sqrt{5}$ 公分, $\overline{AB} = 8$ 公分,則 $\triangle ABC$ 面積為多少平方公分?

解:
$$\overline{AC} = \overline{AD} + \overline{DC} = 6 + 10 = 16$$

$$\triangle ABC$$
 面積 = $\frac{1}{2} \times \overline{AB} \times \overline{AC}$
= $\frac{1}{2} \times 8 \times 16$
= 64

例題 4

如右圖, $\triangle ABC$ 中, \overline{AB} 之中垂線 M 交 \overline{AB} 於 E , 交 \overline{BC} 於 D 。 若 \overline{BE} = 12 , \overline{DE} = 5 , \overline{CD} = 10 , \overline{AC} = 8 ,求 $\triangle ADC$ 的周長。

解 ∵ *M* 為 *AB* 的中垂線

$$\therefore \overline{BD} = \overline{AD}$$

 $\triangle ADC$ 周長 $= \overline{AC} + \overline{CD} + \overline{AD}$ $= \overline{AC} + \overline{CD} + \overline{BD}$ $= 8 + 10 + \sqrt{12^2 + 5^2}$ = 8 + 10 + 13 = 31

答:31

如圖,等腰 $\triangle ABC$ 中, $\overline{AB} = \overline{AC}$,D在 \overline{BC}

上,若 $\overline{BD} = \overline{BE}$, $\overline{CF} = \overline{CD}$,且 $\angle B = 50^{\circ}$, 則 $\angle EDF = ?$

解: $\angle EDF = 180^{\circ} - \angle EDB - \angle FDC$ = $180^{\circ} - 130^{\circ} = 50^{\circ}$

例題 6

如右圖,等腰 $\triangle ABC$ 中,E 為 \overline{BC} 的中點,若 $D \cdot C \cdot E$ 三點 共線,又 $\overline{CD} = \overline{CA}$,則:

 $(1) \angle AEB = ?$

 $(2) \angle B = ?$ $(3) \angle DAB = ?$

解:(1) $:: \triangle ABC$ 為等腰三角形,

又E為 \overline{BC} 的中點,

∴ \overline{AE} 垂直平分 \overline{BC} ,即 $\angle AEB = 90^{\circ}$ 。

(2) $\therefore \overline{CD} = \overline{CA}$, $\therefore \angle CAD = \angle D = 20^{\circ}$,

得到 $\angle ACE = 40^{\circ}$ (外角定理),

 $(3) \angle DAB = 180^{\circ} - \angle D - \angle B$ = $180^{\circ} - 20^{\circ} - 40^{\circ} = 120^{\circ}$

 $\therefore \angle B = \angle ACE = 40^{\circ} \circ$

例題 7

如圖, $\angle BCA = 90^{\circ}$, $\overline{AC} = \overline{AE}$, $\overline{BC} = \overline{BD}$,且 $A \cdot D \cdot E \cdot B$ 在同一直線上,則 $\angle DCE = ?$

解: $\angle DCE = 180^{\circ} - \angle CDE - \angle AEC$ = $180^{\circ} - (\frac{180^{\circ} - \angle B}{2} + \frac{180^{\circ} - \angle A}{2})$ = $(\frac{\angle A + \angle B}{2}) = 45^{\circ}$

例題 ❸

如圖,已知 $\triangle ABC$ 為正三角形, $\overline{AD} \perp \overline{BC}$,且 $\overline{AD} = \overline{AE}$,則 $\angle 1 = ?$

解: $:: \overline{AD} \perp \overline{BC}$

∴ AD 平分∠BAC

 $\angle EAD = 30^{\circ}$

 $\angle 1 = \frac{1}{2} (180^{\circ} - 30^{\circ}) = 75^{\circ}$

一、選擇題: (南進階)

- (B) 1. 分別以 $A \cdot B$ 兩點為圓心,AB 為半徑畫弧交於 $C \cdot D$ 兩點,則下列敘述何者錯誤?
 - (A) 四邊形 ACBD 為菱形 (B) $\overline{AB} = \overline{CD}$ (C) $\overline{AC} = \overline{BC}$

- (D) $\overline{AC} = \overline{AD}$
- (B) 2. 兩等腰三角形中,若有一腰長及頂角對應相等,則可依據何種全等性質說明兩三角形 全等?
 - (A) SSS

- (B) SAS (C) ASA (D) 兩三角形不全等
- (A) 3. 已知 $\triangle ABC$ 中, \overline{CD} 為 \overline{AB} 的中垂線且交 \overline{AB} 於 D 點,P 在 \overline{CD} 上。若 \overline{AB} = 48, $\overline{AP} = 26$, $\overline{PC} = 8$,則 $\triangle BCP$ 的周長為何?
 - (A) 64
- (B) 56
- (C)45
- (D) 32
- (C) 4. $\triangle ABC$ 中, \overline{AB} 和 \overline{BC} 不等長,直線 L 為 \overline{AB} 之中垂線, 直線 $M \triangle \angle BAC$ 之角平分線,且 L 和 M 相交於 P 點, $L \, \overline{\chi} \, \overline{AC} \, \, \mathbb{R} \, \, \mathcal{O} \, \mathbb{H} \, , \, \mathbb{H} \, \mathbb{T} \, \mathbb{H} \,$

- (A) $\overline{OA} = \overline{OC}$ (B) $\overline{PA} = \overline{PC}$ (C) $\overline{OA} = \overline{OB}$ (D) $\overline{OB} = \overline{OC}$
- (D) 5. 如右圖,若想在平面上找一點 P,使 P 點到 \overline{AB} 、 \overline{BC} 、 \overline{CD} 的距離都相等,則 P 點要用下列哪種方法求得?

- (A) 作 \overline{AB} 、 \overline{BC} 的中垂線交點
- (B) 作 \overline{BC} 、 \overline{CD} 的中垂線交點
- (C) 作 AB 、 CD 的中垂線交點
- (D) 作 $\angle B$ 、 $\angle C$ 的角平分線交點

、填充題:

- 1. $\triangle ABC$ 中, $\overline{AB} = \overline{AC}$, \overline{DE} 是 \overline{AC} 的中垂線且交 \overline{AB} 於 \overline{D} ,交 \overline{AC} 於 \overline{E} 。若 \overline{AB} = 12 公
 - 分, $\overline{BD} = 3$ 公分,則 $\overline{DE} = 3\sqrt{5}$ 公分。
- 2. 如右圖(一), 梯形 ABCD 中, $\angle C = \angle D = 90^{\circ}$, $\overline{AD} = 7$,

3. 如右圖(二), \overline{BD} 為 $\angle ABC$ 的角平分線,且 \overline{AB} $< \overline{BC}$,

$$\overline{AD} = \overline{CD}$$
。若 $\angle ABC = 80^{\circ}$,則 $\angle A + \angle C = 180$ 度。

- 4. 在等腰 $\triangle ABC$ 中, $\overline{AB}=\overline{AC}=8$,已知 L 為 \overline{AB} 的中垂線且交 \overline{AC} 、 \overline{AB} 於 D 、 E 兩點。若 $\overline{AD}=5$,則四邊形 BCDE 面積為 $\frac{66}{5}$ 。
- 5. 如右圖,直線 L 為 \overline{AC} 的中垂線。若 \overline{PB} = 2 公分, \overline{AB} = 4.5 公分, \overline{AP} = 4 公分, \overline{AQ} = 3 公分,則 $\triangle ABC$ 問長為____ 公分。

6. $\triangle ABC$ 中, $\angle B$ 的角平分線交 \overline{AC} 於 D,E 點在 \overline{AB} 上且 \overline{DE} \bot \overline{AB} 。 若 \overline{AB} = 12, \overline{BC} = 10, \overline{DE} = 5,則 $\triangle ABC$ 面積為 55 。

三、計算題:

1. 如右圖, $\triangle ABC$ 為等腰三角形, $\overline{AB} = \overline{AC}$, $P \cdot Q \cdot R$ 分別 為 \overline{AB} 和 \overline{AC} 上的點,且 $\overline{AP} = \overline{PQ} = \overline{QR} = \overline{RC} = \overline{CB}$, 則 $\angle A = ?$ 【中區】

 \mathbf{M} :設 $\angle A = x^{\circ}$,則其他角的角度分別如圖所示。

因為三角形內角和為 180°,

所求
$$4x+(x+3x)+x=180 \Rightarrow 9x=180 \Rightarrow x=20$$

故 $\angle A=20^{\circ}$

答: 20°

2. 如右圖, $\triangle ABC$ 中, $\angle A=90^\circ$,L 為 \overline{BC} 的中垂線,交 \overline{AB} 於 D 點。若 $\overline{AC}=12$, $\overline{AB}=16$,則 $\overline{BD}=?$ (康進階)

設
$$\overline{BD} = \overline{CD} = x$$
,則 $\overline{AD} = 16 - x$

 $\Rightarrow (16-x^2)+12^2=x^2$