criterion performance measurements

overview

want to understand this report?

Monitor/Parsing rules

Outlying measurements have moderate (11.2%) effect on estimated standard deviation.

get/cost

250

OLS regression R² goodness-of-fit Mean execution time 1.10 ms 1.11 ms 1.11 ms Standard deviation 18.7 µs 21.3 μs 24.6 μs

Outlying measurements have slight (8.4%) effect on estimated standard deviation.

get/auto-scaling

438 μs OLS regression 440 μs 441 μs 1.000 1.000 R² goodness-of-fit 1.000 Mean execution time 425 μs $428~\mu s$ $431~\mu s$ **8.63 μs** 10.1 μs Standard deviation 7.58 µs

Outlying measurements have moderate (12.1%) effect on estimated standard deviation.

get/redundancy

 $255~\mu s - 257~\mu s$ OLS regression 254 µs R² goodness-of-fit 1.000 1.000 1.000 $250~\mu s - 251~\mu s$ Mean execution time 249 μs Standard deviation 3.45 µs $4.14~\mu s - 4.88~\mu s$

Outlying measurements have slight (8.8%) effect on estimated standard deviation.

get/firewall

Outlying measurements have slight (7.5%) effect on estimated standard deviation.

Synchronizer/Determine order Safety

Outlying measurements have slight (7.1%) effect on estimated standard deviation.

Synchronizer/Determine order Last

OLS regression $41.0 \,\mu s$ $41.1 \,\mu s$ 4

150 100 50 ms 0 s 1×10³ iters 2 3 4 5

regression

Synchronizer/Determine order Last times

250

200

Synchronizer/Order Safety

 OLS regression
 347 ns
 348 ns
 348 ns

 R² goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 339 ns
 340 ns
 341 ns

 Standard deviation
 3.39 ns
 4.06 ns
 5.04 ns

Outlying measurements have moderate (10.7%) effect on estimated standard deviation.

Synchronizer/Order Last

 OLS regression
 346 ns
 347 ns
 347 ns

 R² goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 338 ns
 339 ns
 341 ns

 Standard deviation
 3.02 ns
 3.67 ns
 4.61 ns

Outlying measurements have slight (9.1%) effect on estimated standard deviation.

Analysis and Planning http/All (determine order, ordering and analysis & plan)

Mean execution time 75.8 ms 76.6 ms 77.6 ms Standard deviation 1.08 ms 1.44 ms 2.04 ms

Outlying measurements have slight (9.0%) effect on estimated standard deviation.

Analysis and Planning http/Cost

OLS regression 14.9 ms 15.2 ms 15.6 ms R^2 goodness-of-fit 0.997 0.998 0.999 Mean execution time 14.7 ms 14.9 ms 15.0 ms Standard deviation 331 μ s 381 μ s 462 μ s

Outlying measurements have slight (4.8%) effect on estimated standard deviation.

Analysis and Planning http/Firewall

Outlying measurements have moderate (18.0%) effect on estimated standard deviation.

Analysis and Planning http/Redundancy

18.5 18.8 19 19.3 19.5 19.8 5 iters 10 15 20 lower bound estimate upper bound

Outlying measurements have slight (4.3%) effect on estimated standard deviation.

Analysis and Planning http/AutoScaling

OLS regression 24.7 ms 25.2 ms 25.9 ms R^2 goodness-of-fit 0.993 0.997 1.000 Mean execution time 25.0 ms 25.2 ms 25.6 ms Standard deviation 348 μ s 578 μ s 1.02 ms

Outlying measurements have slight (5.0%) effect on estimated standard deviation.

Analysis and Planning local/All (determine order, ordering and analysis & plan)

OLS regression 10.8 ms 10.8 ms 10.9 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 10.5 ms 10.6 ms 10.6 ms Standard deviation 134 μ s 201 μ s 316 μ s

Outlying measurements have slight (3.3%) effect on estimated standard deviation.

Analysis and Planning local/Cost

lower bound estimate upper bound

Outlying measurements have moderate (11.6%) effect on estimated standard deviation.

Analysis and Planning local/Firewall

Outlying measurements have slight (7.1%) effect on estimated standard deviation.

Analysis and Planning local/Redundancy

OLS regression 3.14 ms 3.16 ms 3.17 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 3.01 ms 3.04 ms 3.06 ms Standard deviation 66.4 μ s 77.0 μ s 94.7 μ s

Outlying measurements have moderate (11.5%) effect on estimated standard deviation.

Analysis and Planning local/AutoScaling

150 100 50 ms 0 s 5 iters 10 15 20 25 30 35 40 45

OLS regression 6.23 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 6.10 ms Standard deviation 69.1 μ s 89.5 μ s 115 μ s

Outlying measurements have slight (2.6%) effect on estimated standard deviation.

put/cost

OLS regression $166~\mu s$ $167~\mu s$ $167~\mu s$ $167~\mu s$ R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time $163~\mu s$ $164~\mu s$ $165~\mu s$ Standard deviation $2.03~\mu s$ $2.35~\mu s$ $2.77~\mu s$

Outlying measurements have slight (7.2%) effect on estimated standard deviation.

put/auto-scaling

Standard deviation $21.3~\mu s$ $25.7~\mu s$ $30.5~\mu s$

1.000

Outlying measurements have slight (1.7%) effect on estimated standard deviation.

1.000 1.000

1.75 ms 1.75 ms

put/redundancy

Mean execution time 1.74 ms

R² goodness-of-fit

 OLS regression
 943 μs
 945 μs
 949 μs

 R^2 goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 923 μs
 927 μs
 930 μs

 Standard deviation
 9.85 μs
 12.0 μs
 16.5 μs

Outlying measurements have slight (1.4%) effect on estimated standard deviation.

put/firewall

OLS regression 141 μ s 141 μ s 142 μ s R² goodness-of-fit 1.000 1.000 1.000 Mean execution time 138 μ s 139 μ s 139 μ s Standard deviation 1.32 μ s 1.75 μ s 2.30 μ s

Outlying measurements have slight (6.1%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

- OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the mean estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
- R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

colophon

This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.