

Calculer l'aire des 3 figures suivantes.

 $6\mathrm{M}11$

6M22-1

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- ${\bf 3.}$ Calculer l'aire du triangle rectangle en ${\rm cm}^2$

Calculer l'aire des disques suivants.

Donner la valeur exacte et une valeur approchée au dixième près.

1.

2.

3.

Calculer l'aire des triangles suivants

6M20

2.

Calculer l'aire des parallélogrammes suivants

5M10

Corrections '

1. $A_{EFGH} = 5 \text{ cm} \times 5 \text{ cm} = 25 \text{ cm}^2$

2. $A_{IJKL} = 2$ cm $\times 3$ cm = 6 cm²

3. $\mathcal{A}_{MNO} = 4 \text{ cm} \times 4 \text{ cm} \div 2 = 8 \text{ cm}^2$

1. $A_1 = 2 \times 2 \times \pi = 4\pi \approx 12.6$ cm²

2. $A_1 = \frac{16}{2} \times \frac{16}{2} \times \pi = 64\pi \approx 201.1 \text{ cm}^2$

3. $A_1 = 5 \times 5 \times \pi = 25\pi \approx 78.5 \text{ cm}^2$

1.

$$\mathcal{A}_{ABC} = \frac{1}{2} \times AB \times DC = \frac{1}{2} \times 5 \text{ cm} \times 3 \text{ cm} = 7.5 \text{ cm}^2$$

2.

$$\mathcal{A}_{EFG} = \frac{1}{2} \times EF \times HG = \frac{1}{2} \times 6 \text{ cm} \times 5 \text{ cm} = 15 \text{ cm}^2$$

3

$$\mathcal{A}_{IJK} = \frac{1}{2} \times IJ \times LK = \frac{1}{2} \times 9 \text{ cm} \times 6 \text{ cm} = 27 \text{ cm}^2$$

$$\mathcal{A}_{MNO} = \frac{1}{2} \times MN \times PO = \frac{1}{2} \times 8 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$$

$$\mathcal{A}_{QRS} = \frac{1}{2} \times QR \times TS = \frac{1}{2} \times 7 \text{ cm} \times 3 \text{ cm} = 10.5 \text{ cm}^2$$

 $\mathcal{A}_{undefinedundefined} = \frac{1}{2} \times undefined \times undefined undefined = \frac{1}{2} \times 5 \text{ cm} \times 5 \text{ cm} = 12.5 \text{ cm}^2$

1. Dans chaque parallélogramme, le segment en pointillés est perpendiculaire à deux côtés opposés, c'est donc une hauteur.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.

 $\mathcal{A}_{DEFG} = 5 \text{ cm} \times 7 \text{ cm} = 35 \text{ cm}^2$

2. Dans chaque parallélogramme, le segment en pointillés est perpendiculaire à deux côtés opposés, c'est donc une hauteur.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante. $\mathcal{A}_{HIJK}=7~\mathrm{cm}\times2~\mathrm{cm}=14~\mathrm{cm}^2$

3. Dans chaque parallélogramme, le segment en pointillés est perpendiculaire à deux côtés opposés, c'est donc une hauteur.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.

 $\mathcal{A}_{LMNO} = 8 \text{ cm} \times 3 \text{ cm} = 24 \text{ cm}^2$