

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL MAR DEL PLATA

ARQUITECTURA Y SISTEMAS OPERATIVOS

1er Año – 2do Cuatrimestre

Trabajo Práctico Nº 1

- ¿Cuál es la definición de Sistemas Operativos? ¿Cuáles son sus funciones principales?
 Explique cada una de ellas.
- ¿Cuáles fueron las características que tomaron los sistemas Operativos a través del desarrollo histórico?
- ¿Qué son los procesos? ¿Qué son los archivos? ¿Qué son las llamadas al sistema?
 De un ejemplo que explique cada termino.
- 4. ¿Qué es el Shell? ¿Qué es el Kernel? De un ejemplo que explique cada termino.
- 5. ¿Cuáles fueron las características que tomaron los sistemas Operativos a través del desarrollo histórico?
- 6. ¿Qué clasificaciones, según su estructura, existen de los Sistemas operativos? Explique cada uno.
- 7. ¿Qué clasificaciones según sus servicios existen? Explique y de un ejemplo de cada uno.
- 8. Defina el termino Interrupción. ¿Cuáles son las clases que existen? De un ejemplo de cada una.
- 9. Explique los dos modos de ejecución de un Proceso.
- 10. ¿Que es el Bloque de Control de Proceso? Cuál es la razón por la que el estado de un proceso y el evento que espera se almacenan en el BCP y no en la memoria asignada al proceso?
- 11. ¿Que es el cambio de contexto (Context Switch)?
- 12. ¿Puede pasar un proceso del estado **listo** al estado **suspendido**? Razone (brevemente) la respuesta.
- 13. ¿Puede un proceso bloqueado despertarse a sí mismo?
- 14. Determine las diferencias entre el modelo de 5 estados y 7 estados.
- 15. Dada una serie de trabajos a realizarse utilizando los métodos FCFS y SJF se pide:

米

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL MAR DEL PLATA

ARQUITECTURA Y SISTEMAS OPERATIVOS

- 1er Año 2do Cuatrimestre
- a) Calcular el tiempo medio de espera de los procesos según ambos métodos.
- b) Calcular desde un tiempo x=0, el tiempo de finalización de todos los procesos.

Procesos	Tiempo de Ejecución
А	40
В	5
С	25
D	30
E	12

16. Un sistema tiene los siguientes recursos: una CPU, dos discos (DISC1, DISC2) y una impresora (IMP). Existen dos tipos de trabajos, según las necesidades de utilización de los recursos:

Procesos	Tiempos de Ejecución
P1	1 CPU - 3 DISCO1 - 2 CPU - 6 IMPRESORA - 1 CPU
P2	6 CPU - 1 DISCO1 - 3 CPU - 2 DISCO2 - 1 CPU - 1 IMPRESORA – 2 CPU

Suponiendo que en el sistema hay un trabajo de cada tipo, calcular el porcentaje de utilización de CPU, el tiempo medio de retorno, el de espera y el de respuesta con los siguientes algoritmos de planificación de la CPU:

- a) FCFS
- b) Prioridad apropiativo (mayor prioridad el proceso 1).
- c) Round-Robin con q=1.

Suponga que el resto de las colas se gestionan con un algoritmo FCFS y que el primer proceso en el sistema es P1.

17. Dada la siguiente situación en un sistema con planificación de prioridades (apropiativo):

Procesos	Instante de llegada	Tiempo de cpu	Prioridad
A	0	8	5
В	3	4	7

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL MAR DEL PLATA

ARQUITECTURA Y SISTEMAS OPERATIVOS

1er Año – 2do Cuatrimestre

С	6	2	9
D	10	3	8
Е	15	6	1
F	24	4	5

Suponiendo que las prioridades son crecientes con su valor, obtener:

- a) Diagrama de ocupación de la CPU (tiempo- cola de listos cpu o en ejec.).
- b) Tiempo medio de retorno (o ejecución).
- c) Tiempo medio de espera.

18. Suponiendo un Sistema con el modelo de 7 estados y los siguientes procesos:

Procesos	Secuencia de ejecución	Instante de llegada
А	5 CPU – 8 E/S – 2 CPU	0
В	3 CPU - 10 E/S - 3 CPU	1
С	4 CPU – 4 E/S – 1 CPU	4
D	4 CPU – 4 E/S – 3 CPU	9
Е	3 CPU - 2 E/S - 2 CPU	11

Resolver el sistema utilizando Round Robin con q=3, teniendo en cuenta que en el instante 13 se produce una interrupción (IRQ) debido a un fallo generalizado del sistema, esta IRQ tarda 2 unidades de tiempo en resolverse. Luego el sistema continúa con su trabajo normal.

Tener en cuenta que los procesos que salen de CPU siempre se colocan al final de la cola de Listos.

Se pide calcular los tiempos de retorno para cada proceso y los tiempos medios de espera y respuesta.

NOTA: considere que el sistema cuenta con 2 dispositivos de E/S, por lo tanto, puede haber más de un proceso en estado bloqueado.

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL MAR DEL PLATA

ARQUITECTURA Y SISTEMAS OPERATIVOS

1er Año – 2do Cuatrimestre

13. El siguiente método de planificación es una versión modificada del RR tradicional, el cual da mejor servicio a los procesos que ya se han ejecutado durante un cierto periodo de tiempo que a los recién llegados. La cola de listos se divide en 2: una de procesos NUEVOS y una de ACEPTADOS.

Se toma siempre para ejecución un proceso de la cola de ACEPTADOS mediante RR y los procesos que llegan al sistema esperan en la cola de NUEVOS hasta pasar a la de ACEPTADOS.

Cuando un proceso llega al sistema su prioridad es 0 y en cada unidad de tiempo el método calcula las prioridades para todos los procesos de la siguiente forma:

- i. Si un proceso está en NUEVOS, se incrementa su prioridad en un factor a.
- ii. Si un proceso está en ACEPTADOS, se incrementa su prioridad en un factor b.
- iii. Cuando la prioridad de un proceso NUEVO, se hace >= a la de cualquier proceso de ACEPTADOS, este proceso se inserta en ella. En caso de que se vacíe la cola de ACEPTADOS, se introduce en ella el proceso + prioritario de la de NUEVOS.
- iv. A la cola de ACEPTADOS llegan a 1er lugar los procesos de la cola de NUEVOS y a continuación el que abandona la CPU.
- a. Suponiendo que a=2, b=1 y q=1, y la siguiente situación:

Procesos	Instante de llegada	Tiempo de CPU
А	0	5
В	1	4
С	3	2
D	9	6
E	11	3

Obtener:

- Diagrama de ocupación de la CPU.
- Calcule los tiempos medios de espera y de retorno.
- b. Analice qué pasaría con un valor de b > a.