

THE MODERN PRACTICE OF MIDWIFERY.

A COURSE OF LECTURES

o N

OBSTETRICS:

DELIVERED AT ST. MARY'S HOSPITAL, LONDON,

BY

WM. TYLER SMITH, M.D.,

MEMBER OF THE ROYAL COLLEGE OF PHYSICIANS:

WITH AN INTRODUCTORY LECTURE ON THE

HISTORY OF THE ART OF MIDWIFERY,

AND COPIOUS PRACTICAL ANNOTATIONS,

вч

AUGUSTUS K. GARDNER, A.M., M.D.,

LATE INSTRUCTOR ON OBSTETRICS IN THE N.Y. PREPARATORY SCHOOL OF MEDICINE:
AUTHOR OF THE "CAUSES AND CURATIVE TREATMENT OF STERILITY," ETC.

Illustrated by 212 Engrabings.

SECOND EDITION.

NEW YORK:
ROBERT M. DE WITT, PUBLISHER,
160 & 162 NASSAU STREET.

Film No. 63-8 12

ENTERIND according to Act of Congress, in the year 1868, by ROBERT M. DE WITT,

In the Clerk's Office of the District Court for the Southern District of New York.

WALTER CHANNING, M.D., ETC.,

LATE PROFESSOR OF OBSTETRICS IN THE MEDICAL DEPARTMENT OF HARVARD COLLEGE, BOSTON, MASS., THE EDITOR'S FIRST TEACHER IN THE ART OF MID-WIFERY; THE LAST OF FOUR BROTHERS, TO ALL OF WHOM HE HAS BEEN INDEBTED FOR INSTRUCTION IN ÆSTHETICS, SCIENCE, AND RELIGION,

AND TO

JOHN W. FRANCIS, M.D., L.L.D.,

THE DISTINGUISHED ANNOTATOR OF DENMAN'S MIDWIFERY, AND THE ACKNOWLEDGED HEAD OF THE ACCOUCHEURS OF NEW YORK, WHOSE NAME IS PLACED
IN THE FRONT OF THIS BOOK, NOT WITH THE EXPECTATION OF
ADDING TO HIS NUMEROUS AND WELL-DESERVED HONORS, BUT
TO TESTIFY TO HIS KINDNESS OF HEART, AND ACTIVE
PERSONAL FRIENDSHIP,

This Mork is most respectfully dedicated.

EDITOR'S PREFACE.

As the Lectures which form the basis of this volume approached completion in the London Lancet, where they first appeared, I was convinced of their superiority. and that if collected into a volume, they would constitute the best body of Midwifery extant. Propositions were made for my superintendence of such a work, supplying any deficiencies, and rendering it as complete as possible—to serve at once as a manual for students and a reference for the practitioner. Accordingly, it was prepared for the press in the fall of 1857, but on account of the financial revulsion, it was deemed expedient to defer its publication till the present summer, and numerous editorial additions mark the second revision thus rendered imperative. Finally, when nearly stereotyped, its progress was again arrested by the delayed appearance of the London edition with several new chapters and cuts, requiring the work to be torn in pieces, re-paged, etc., in order to place the additions in their appropriate localities. I have thought it best, however, deviating from the English print, to preserve the form of lectures in which they originally appeared. Further than that, it differs little from the author's revised edition, except in immaterial expressions and expletives.

I have carefully avoided making any subtractions from the work even when elimination might have been of utility. The additions which have been made, are inclosed in brackets [], and will be found mainly to be of a practical nature; the introductory lecture and lecture xxxiv., on the operations upon the os and cervix uteri, being the most extended. I have also endeavored to present some instruments of a less clumsy character than those depicted by the author, the use of which, especially the forceps, would seem, in their own appearance, to indicate the reason why they were so little in favor with English obstetricians. For valuable suggestions from Drs. T. G. Thomas and Charles A. Budd, the fruit of their experience as acceptable teachers of this branch of medicine, I must acknowledge my obligations. This work is here submitted to the profession, in the hope that as now issued, it may not fall under the general obloquy of American editions of foreign works. Certainly the enterprising publisher has spared no expense in presenting the work in a creditable manner, and no little labor and thought have been bestowed upon it by

THE EDITOR.

New York, 141 East Thirteenth Street, September, 1858.

CONTENTS.

												PAGE
PRELIMINARY LECTURE	LECTURE,	•	•	•	•	•	•	٠	٠	•		11
I.—Gen	ERATION.						•	•	•			33
П.—Тне	EXTERNAL	ORGA	NS OF	GENE	RATIO	N,						48
III.—THE	Internal	ORGAN	s of (Gener	ATION	Ι, .						62
IV.—Ovu	LATION,											76
V.—Men	STRUATION,											85
VI.—Coxe	CEPTION, A	ND THE	E EARL	Y DEV	FELOP	MENT	OF T	ие О	гим,			97
VII.—THE	DECIDUA,	Спок	on, P	LACEN	ra, a	ND UM	IBIL I O	CAL C	ORD,			109
VIII.—Sign	s of Prec	FNANCY	, .									127
IX.—Disc	RDERS OF	PREGN	ANCY,			•						149
X.—Diso	RDERS OF	PREGN	ANCY-	-(cont	inued), .					. 1	162
XI.—CAUS	SES OF AB	ORTION	, .			٠	•					177
XII.—TREA	ATMENT OF	ABOR	rion,		•			•				192
XIII.—Dur	ATION OF	Pregn.	ANCY,									210
XIV.—Mor	AR PREGN.	ANCY-	BLIGHT	red O	VA,			٠				223
XV.—Supe	R-FŒTATIO	n—Ex	ra-uti	ERINE	GEST	ATION-	—M18	SSED :	LABO	R,		233
XVI.—Тпе	GRAVID U	TERUS,						٠	. '			249
XVII.—THE	NERVI-Mo	TOR F	JNCTIO	S OF	THE	UTERI	JŞ,					261
XVIII.—THE	FŒTUS IN	UTER), .									270
ХІХ.—Тив	Bones, A	RTICUL	ATIONS,	AND :	Ligay	IENTS	OF TI	E FE	MALE	PELV	ıs,	284
ХХ.—Тие	ANATOMY	OF TH	е Бетл	AL HE	AD,							309
XXI.—Тне	MECHANIS	M OF I	LABOR,									321
XXII.—THE	MECHANIS	M OF I	ABOR-	-(cont	inuea	7),						336

LECTURE												PAGE
	THE STAGES O	F LA	BOR,									346
XXIV.—	THE MANAGEM	ENT (of Na	TURA	L L	ABOR,					•	357
xxv.—	MANAGEMENT (OF TH	е Ри	ERPE	RAL S	State	, .					374
XXVI.—	Presentation	OF T	HE F	ACE,								386
XXVII.—	PELVIC PRESE	NTATI	ons,									4 00
xxvIII.—	Transverse P	RESEN	TATIO	NS,								417
XXIX.—	PLACENTAL PR	ESENT	ATION	ζ,		•						428
XXX.—	Funis Present	COLTA	vs,									458
XXXI.—	Deformities o	F TIIF	PEL	vis,								471
XXXII.—	DEFORMITIES O	F TIII	e Pel	vis-	-(con	tinue	₫),		•	٠		491
XXXIII.—	Obstructed L.	ABOR,								٠.		505
XXXIV.—	OBSTRUCTED L.	ABOR	FROM	Rigi	DITY	OF T	не О	s Ut	ERI,			518
XXXV.—	TARDY AND PR	RECIPI	TATE	LABO	ors,							533
XXXVI.—	DIFFICULT LAB	ors i	EPEN	DING	on T	THE S	TATE	OF T	HE O	vun,		545
XXXVII.—	Post-Partum 1	Iæмо	RRHA	GE,								556
XXXVIII.—	RUPTURE OF T	HE U	rerus	,								575
XXXIX.—	Inversion of	тне Ј	Jteru	s, et	.c.,	•						585
XL.—	PUERPERAL MA	NIA,										596
XLI.—	Puerperal Co	NVULS	sions,									605
XLII.—	Puerperal Fe	VER,										624
XLIII.—	PUERPERAL FE	VER-	(cont	inued	7),							634
XLIV.—	Phlegnasia I	OLEN	s—Pt	JERPI	RAL	ARTI	ERITIS	-Su	DDEN	DEA	TH	
	IN THE	PUERI	PERAL	STA	TE,							648
XLV.—	THE INDUCTION	of]	PREMA	ATURE	E LAI	BOR,						657
XLVI.—	TURNING, .											668
XLVII.—	THE FORCEPS,											684
XLVIII.—	THE CÆSARIAN	Sect	ION,									703
XLIX.—	Емвичотомч,					•						712
L.—	Conclusion,					•						726

A HISTORY OF THE ART OF MIDWIFERY.

(Delivered at the N. Y. College of Physicians and Surgeons, Nov. 11th, 1851.)

BY A. K. GARDNER.

PRELIMINARY LECTURE.

Before commencing this series of Lectures comprising the whole study of Midwifery, written with great clearness and precision and with a fullness unequalled in any treatise upon this important branch of medicine, it may be well to note the gradual advance of the art and science of midwifery (for it has two aspects). Let me therefore beg your attention to a brief epitome of the origin and history of the art and science of obstetrics, from the earliest records down to the present time; and, if in its narration, there be little food for national pride, let us not fail to notice, that in the brief period since America has vied with the nations of the earth in ameliorating human woes, her contributions towards assuaging the pangs of childbirth, equal, if not surpass, all those of the rest of the world—let us not fail in this to see encouragement for the future; and let all strive to rival one another in the double aim of benefiting mankind and exalting the reputation of our beloved country and its medical profession.

From the foundation of the world man has been born of woman; and notwithstanding that his inventive genius has discovered steam, the great Briareus of the nineteenth century, and harnessed him to his chariot, and sends the lightning to do his bidding over the almost boundless extent of the world, yet we cannot hope that any change can be effected in this particular. But, although man's entrance into this world was always in this manner, the art of midwifery was of much more recent origin. That function which it is the aim of the art of midwifery to facilitate, may have been effected in the greater number of cases without the intervention of foreign aid, and the women may at an early period have been confined alone; but childbirth has never, probably, in the most favorable climate, and at any time, been always so easy and prompt. women have been exposed to great pains and perils. Compassion for suffering, a natural pity and a common lot, brought around the sufferers those who had passed through the same trials, ready to assist and counsel. Those who therein showed the most courage and address were sought for at such times, and these were in great demand. Tradition hands down from generation to generation the wisdom of each preceding, and thus, probably, the midwife was created, and a distinct profession arose, devoted to this calling.

The first mention that we have of it is, that the ancient Hebrews employed midwives to assist in the delivery of their children; and the first two whose names have descended to posterity, are Shiprah and Puah, who were exercising their profession at the time when the Hebrews were first in captivity in Egypt, about the period of the birth of Moses. Long preceding that era, however, we have an account of the confinement of Rebecca and the birth of Esau and Jacob. "And the first came out red, all over like an hairy garment, and they called his name Esau; and after that came his brother out, and his hand took hold on Esau's heel." Thus the first recorded presentations were of the head in Esau's case—and of the head and hand in the case of Jacob.

Though I have mentioned that the first midwives whose names are given, were at the time of the first captivity in Egypt, it is evident that a distinct class of persons were set apart for this office anterior to this period. For we read that "Rachel travailed and had hard labor; and it came to pass that when she was in hard labor, that the midwife said unto her, Fear not, thou shalt have this son also:" and again it is recorded of Tamar, the daughter-in-law of Judah, of whom it

is narrated, "that behold twins were in her womb. And it came to pass when she travailed, that the one put out his hand; and the midwife took and bound upon his hand a scarlet thread, saying, this came out first. And it came to pass as he drew back his hand, that behold, his brother came out . . . And afterwards came out his brother that had the scarlet thread upon his hand." May not this be most probably the first recorded case of spontaneous evolution in an arm presentation? Rachel is the first case mentioned that died in labor, although from the above quoted remark of the midwife, it would seem to be not an unfrequent occurrence, or at least that death in labor did sometimes occur. The narration continues to state, "And it came to pass as her soul was in departing (for she died) that she called his name Benoni."

Some idea of the character of the assistance afforded by the midwife may be judged by the remark of Rachel to Jacob, at the time when she was barren: "And she said, behold my maid, Bilhah, go in unto her, and she shall bear upon my knees, that I may also have children by her." Again in Exodus, where the king of Egypt spake to the Hebrew midwives, say ing, "And when ye do the office of midwife to the Hebrew women, and see them upon the stools, if it be a son, then shall ye kill him," etc., but as they failed to do so, and the king asking the reason, they replied, "Because the Hebrew women are not as the Egyptain women; for they are lively, and are delivered ere the midwives come in unto them." It would thus appear that art had endeavored to invent some method for mitigating the sufferings even at this early period, and that the "Portable ladies' solace or Accoucheur's chair," is no new idea. Hippocrates makes no mention of a chair or any particular form of bed in natural confinement, but in a tardy labor he speaks of their being placed upon a chair with a hole in it, or on an inclining bed. In the fifteenth and sixteenth centuries the midwives carried chairs about with them from house to house, and similar ones are still in use in Germany, and are called kreis-

While speaking of the Bible history of the art of midwifery, it may not be amiss to mention an instance of the most rapid propagation mentioned in any work. After Joseph was settled as Governor of Egypt and his father had gone with all his house

to join him, "all the souls of the house of Jacob which came into Egypt were three score and ten," which evidently refers only to the males-the descendants, excepting the tribe of Levi, were numbered by Moses, the second year after leaving Egypt, which is variously considered to be from 210 years to 430 years. The number at this time was 603,350 fighting men above 20 years of age. A calculation is gone into in the Talmud, which has been very much ridiculed by many. Allowing for the early marriages capable of being contracted in a warm climate, and ordinary length of life, it is found that for this increase it is necessary that there should be six children at a birth. Those believing this have been jeered at, because it was stated that there never was an instance recorded of so many human beings being born at once. But, recently, a woman at Sidney, New South Wales, was delivered of this number, which has proved the thing possible, though none the less miraculous.

There is much in the Old Testament upon kindred topics, many laws are laid down to the Pentateuch respecting menstruction and its disabilities, purifications therefrom, etc. Its particular reference to Bathsheba is mentioned in 2d Samuel. Barrenness is called "a closing of the womb" instead of "a stricture of the cervix uteri" of the modern nomenclature. The period of utero-gestation is stated at nine months, yet in the Book of Wisdom the following remark occurs relative to the term of pregnancy; "and in my mother's womb was fashioned to be flesh in the time of ten months." These ten months must of necessity be moons or forty weeks or two-hundred and eighty days: a term deemed most precise of the duration of utero-gestation. The words "untimely birth" are to be found in several places as in Job and in the Psalms. Labor pains are noticed in several passages. The management of new-born children is but alluded to in Ezekiel. Lactation was much prolonged, for in the apocrypha a woman says to her son, "I who gave thee suck three years."

From this period to the birth of Hippocrates, 458 years before the birth of Christ, we have no record of the advance of the art, if any there were. At this period it would appear that nature was but little assisted by art. The practice was in the hands of females without information upon the subject. Yet Plenarete, the mother of Socrates, was a midwife; and Plato speaks of

midwives and explains their functions and regulates their duties. The knowledge of the anatomy of the parts was extremely imperfect, even to the minds of such individuals as Hippocrates and Galen themselves. Conceive, if you can, the books of the world destroyed, schools of medicine abolished, and the practice of midwifery again in the hands of women, even of the intellectual females of the present day, and after the lapse of fifty or a hundred years, imagine its state! Far worse was its condition 458 years before the birth of Christ. The traditions upon which the midwife of those days relied, were founded upon error, while a century hence the learning of the present day

would in some degree be perpetuated.

The writings of Hippocrates upon this subject are three treatises; De Natura Muliebri, De Mulierum Morbis, and De Superfatione, papers far more profound and embracing a far wider reach than we should suppose probable at this period. His theory of conception and generation was acknowledged, till quite a late period, as correct. According to him conception was a fermentation of the male and female semen, which he believed was elaborated in the brain: the sex depended upon the predominant influence of either parent. Like Democritus, Hippocrates maintained a locomotive power in the uterus, yet in his book, De Natura Pueri, he furnishes us with some interesting cases concerning the ovum and the means by which it may be expelled. He has treated at much length on difficult labors, notices various presentations and different attachments of the The singular circumstance that a child of seven month's gestation has, according to some, a greater chance of living than one of eight was noticed by him, and he attempts an unsatisfactory explanation of it. (This question is also moted in the Medrash Rabbah, or the exposition of Rabbah on the book of Exodus, a rabbinical treatise dating from the 3d century. It there states of the mother of Moses, chap. ii. verse 2: And the woman conceived and bore a son, and when she saw him, that he was a goodly child, she hid him three months." It seems that the executioners of Pharaoh had spies, who noted carefully all the pregnant women among the Hebrews, and calculating closely to the date of their delivery, went and took the child away and destroyed it. In order, therefore, that the child could have been concealed three months, it must have been six

months and one day old, says the Medrash, for a child can live at seven months and not at eight.) The writings attributed to Hippocrates treat at some length of difficult labors, and notice various presentations of the child, and gives many general directions.

At the time of Hippocrates the physician and surgeon was called upon by the midwife only when the woman was in extremis, for the purpose of delivering, by forcible means, the fœtus which threatened the life of the mother. If the labor advanced but slowly, Hippocrates advises that the woman be attached to the bed, which should be considerably inclined, and then forcibly shaken; snuff to be given, and the nostrils to be closed when sneezing was excited; fumigations and unctions to the genital organs, and excitants of all kinds. In the teachings of Hippocrates, he advises the breaking up of the cranium and the extraction by the hook. He also counsels turning when practicable.—Celsus, who lived at the commencement of the Christian era, says, "If the head present, and the child is supposed to be dead, that a hook should be placed in the eye, ear, mouth or forehead."

The deliverance of the placenta was in those early times effected by the weight of the child, the cord not being cut until this was achieved. If the cord was broken by any accident, weights were attached to the portion in connection with the placenta, the woman being on a pierced chair or an inclined bed. Hippocrates objects very strongly to drawing upon the cord, and in order to make the traction as gentle and regular as possible, advises that the child, or the weight before mentioned, be placed upon a leathern bottle filled with water, and punctured with a few holes, so that the water slowly escaping, the cord would be gently drawn upon. If this method did not succeed he gave sternutatories, that by the sneezing the placenta be thus detached.

It is supposed that hysterotomy is of very ancient date, as it was called εμβριοελκη and ὑστεροτομοτοκιε by the Greeks; these terms are still used by modern writers, but it is generally considered that it was only after the death of the mother that they had recourse to this operation. Indeed, writers upon this subject give the ten successful cases of Rousset, published by him in 1581, and translated into Latin in 1661, as the first cases

where the operation was performed upon the living woman. He has reported ten successful cases, and one woman who was operated upon six times, and died the seventh, because he could find no one willing to operate. This woman was named Godard, of Milly, in Gatany, and was operated upon by a barber. One of the other women, named Ouinville, was also similarly delivered by a barber, who is reported, perhaps as an excuse for the rashness of the act, to have been drunk at the time.

The first authentic and successful case is reported by Michel Doeren, professor at Giessen, and afterwards at Breslau, and who died in 1664, which he saw in 1610, operated upon by Jeremiah Trautman.

I am, however, convinced that the Cæsarian operation was not confined to cases where the mother had died, but that very long before the period mentioned, it was of not unfrequent occurrence. I have recently been shown in the Jewish Mishnah, a passage on this subject. This very remarkable work is one of the most authentic on record. It was handed down by tradition for several hundred years, as is supposed, before the Christian era; but the various articles of the work, which is now called the Mishnah, were not collected and written in Hebrew till A.D. 180. In this most curious work, upon all sorts of topics having any reference, however remote, to the Jewish religion, in the 5th chapter of the treatise "Niddah," section 1st, is the discussion of a law question. It relates to the purification of women after delivery; and the question is whether a woman is unclean who has had the child cut from her side, "yotza-dophan." This would make it appear that the operation on the living person was of much earlier date than generally supposed, as we would not imagine such a question would be debated, if the fact was not known sometimes to occur.

After this period, almost a thousand years passed away without leaving a trace of the art, and probably without any improvement. Paul of Egineta, who lived in the seventh century, and who was perhaps the first man-midwife, coincides with Philomenus, of a somewhat earlier date, that the whole aim was to extract the fœtus in any way, and without regard to its life, by turning, the crochet in the fontanelles, or by dismembering the child. Albucasis says the same things of Arabian midwifery of the twelfth century, and describes various instruments for compressing and breaking up the head, and others, for

extracting it. Among them is a species of forceps with teeth, which he terms a "misdach," for the purpose of crushing the head and enabling it to pass; he also gives a plate of a single and donble hook, and a knife for cutting off the head. Ambrose Paré's work, dated 1579, gives plates of various modifications of the same instruments.

From this period, these and similar instruments were in general use, and more attention seems to have been given to the general subject. Ignorance is always credulous, and it is not to be wondered at, that a great number of ridiculous cases and extraordinary tales have come down to us. Among those most credible are reports of children born in pieces, by the anus, through the abdomen, and by vomiting, which seemed most wonderful to the reporters of those days, but which we now recognize to have been extra-uterine pregnancies. Massa, a Venetian, reports a woman, aged 60, who was supposed to have had dropsy, that was confined, after fifteen months, with a girl, without eyes or arms, which defects and delay were attributed to her advanced age. Jules Crassus gives several instances of children born after eleven months' pregnancy, but admits that these instances are uncommon.

It is evident that from this date more attention was paid to the subject, from the reports of writers more credible; Diomede Cornarus, physician to the Emperor Maximilian II., speaks of deafness having occurred after labor, etc.

By the following data the gradual growth of the obstetric art

may be seen.

Aristotle first notes the importance of the menstrual flux, and affirms that, with very rare exceptions, women are barren who have never menstruated. He also treats of the signs of pregnancy and divides labors into natural and unnatural. Celsus first recommends "turning" in all cases of unnatural presentation. Pliny considers footling cases unnatural, and thinks that twelve children could be born at a birth. Aristotle's credulity stops at five. Galen seems to have been the first to understand the anatomy of the viscera of the female pelvis. Pliny divides the uterus into the fundus and neck and describes the os tincæ; notices the derangement of the digestive organs attendant upon pregnancy; ascribes to the undue union of the ossa pubis the main cause of difficult parturition.

Among the Arabians, Serapion treats upon the disorders inci-

dent to pregnancy. Rhazes directs how to puncture the membranes with the nail or a sharp-pointed instrument when they retard labor.

Coming down to brighter days, we arrive at the period when, by the discovery of the vectis, the first impulse was given to midwifery, and from whence its subsequent progress commenced. Although claimed by many for Celsus, its real discovery or invention is undoubtedly due to Henry Roonhuysen, of Holland. Although its introduction was of great advantage to the art of that day, this instrument, in its various modified forms, is now scarcely used by practitioners, for, employed as a means of traction, it is far inferior to the forceps, and its original employment as a lever is so dangerous, that it is very properly in a great degree discarded in actual practice. For a considerable time it was in very common use, and till within a few years, there were many who spoke very highly of its utility in changing the positions of the head—an alteration which is now very generally believed to be due, oftener to the powers of nature than to the manipulations of the accoucheur.

In the invention of the vectis the forceps were half discovered; for it is supposed that from this hint, Dr. Hugh Chamberlain, some time before 1647, constructed the original of the various modifications and fashious now in use, each of which is so highly vaunted by its possessor, although a similar instrument is described by Avicenna. Judging of the success of physicians of past days, with those of the present, it may well be suspected, that the result depends more upon the skillfulness of the hands which hold the instrument, than upon any peculiar shape or fashion of the iron.

Since this time but few instruments have been invented for obstetrical operations: one, the cephalotribe, by Baudelocque, Jr.,—a most formidable but exceedingly useful instrument, which I have seen several times used in the cases of the rickety pelves of Europe, with great success by Professor Dubois. It will I trust, be many years before disease shall be so common in this country as to require its assistance. It is an exceedingly useful instrument. Another instrument is of more recent invention, of this country, I think. It is a revival of an ancient attempt to pass a band over the head for the purpose of traction, and is

called a fillet, if I correctly remember. It will probably never be of any great use. Valuable modifications of various instru-

ments are referred to in future pages.

About this period the illustrious Harvey, in England, and contemporaneously the renowned Ambrose Paré, in France, by their genius still farther advanced the art and drew attention to it. Paré wrote largely upon monstrosities both human and comparative, giving thirteen causes for them, including divine wrath. He divided labors into natural and preternatural, classing under the former those cases in which the child presented with the head and was delivered coincidently with the discharge of the waters. The preternatural includes all others, in all which cases he advises turning. Guillimeau, his pupil, records cases of ruptured uteri under his own observation.

Harvey's work De Generatione gives detailed accounts of experiments made under royal patronage with a view to the elucidation of the subject of generation. In it he attempts to detect the nature of conception, and follows the daily change in the hen's egg during incubation. His examinations are minute and original. He discovered that the chick originated from the cicatricula of the ovum, and the punctum saliens to be the heart. These and many other investigations entitle him to be mentioned with high respect among those who have advanced the obstetric science.

About this time, 1663, the ignorant midwife was supplanted by the man of scientific attainments, as will be hereafter mentioned.

In 1640, an essay on feetal life was written by Nymmanus and a treatise on the diseases of women and children by Sennertus. Mauriceau, in 1666, gave to the world his system of midwifery, more ample in its details and richer in practical information than any preceding work. It was translated into Euglish and published by the Chamberlains.

From the general introduction of the forceps into obstetric practice about the year 1700, one very happy result was achieved. Previous to this time physicians, as I have before said, were only called to women in labor to correct the blunders committed by the ignorant women in attendance, and as this was generally after hope itself had almost fled, he was generally considered as the messenger of death. But the pretentions of the possessors of this new instrument to greatly abridge

the duration of labor when it was natural, and to save life when difficult, changed the habits of the people. Every woman almost, was delivered with the forceps. The consequence was, that the theoretical knowledge of the physician soon became practical; what had been for so long mere chance, quickly advanced to the dignity of an art. Vigorous and educated minds began to be interested about it; labors were classified and instruments were used only in cases especially requiring them. Nature was no longer interfered with, but assisted when her powers failed. The mechanism of labor then first began to be understood. Previous to this period it was supposed that the child during utero-gestation retained a sitting position in its mother's womb, and that a short time before confinement, it therein turned a somerset in order to bring the head in the usual position for delivery.

Astrue thus describes this prevalent opinion: "In this state, the infant has his head upwards and his feet towards the orifice of the uterus, with his face towards his mother's abdomen. During the first six months he remains in this situation, his head being towards his mother's navel, for his feet are, during that time, specifically heavier than the head; but this part begins at length to grow faster, in proportion, than any other; wherefore, its superior weight turns the head downwards towards the orifice of the uterus, just as we see a ball of lead joined to a piece of cork, by its specifical weight to sink, whilst the cork floats on the surface, or keeps the superior parts. This change of situation of the infant is owing to the speedy growth of the brain. He is thus turned about fifteen days or three weeks before the delivery, which the midwives, nay, the mothers, perceive at that time, wherefore they say that the belly has then fallen."

It was then supposed to present, with the long diameter of the head to the short diameter of the pelvis, either the occiput or sinciput to the sacrum. Sir Fielding Ould was the first writer who corrected this latter opinion, and stated that the face was turned in the first part of its progress to one side or the other of the pelvis, "so as to have the chin directly on one of the shoulders." Dr. Smellie, in 1752, began to teach in England. It is reported of him that he had at his door a paper lantern placed, upon which was written, "Midwifery taught here for

five shillings." He corrected the error of the twisting of the neck, but generally agreed with Ould.

He also contributed materially to the mechanical improvement of instruments, was the first who accurately determined the shape and size of the pelvis, and the head of the fœtus, and

pointed out the whole progress of parturition.

From this period, general attention was given by the profession to the study of midwifery. The art was regularly introduced as a branch of education in the medical schools. Numerious establishments were devoted to practical instruction of students in surgery and midwives. The illustrious Ruysch of Holland, prepared two cabinets of preserved fœtuses of all ages, sizes and conditions (afterwards sold to Russia) perhaps never equalled. By his writings and labors he greatly advanced the science. Maubray, 1723, was the first teacher of the science in England, and opposed the use of instruments. Dioneis reports cases of ruptured uteri. Gregory the younger, gave a course of instruction in Paris in 1733, he gave the first correct idea of the nature of retroversion of the uterus. Manningham a similar course, and a clinique at his own house in London at the same time, having established the first hospital for lying-in womeн in England. De Lapeyronie, first surgeon to Louis XV., created two chairs for obstetric teaching, one for sagesfemmes and one in the college of surgery. The faculty of medicine instituted a similar chair. In 1697, Van Hoorn, in Sweden, established a similar professorship for inidwives at Stockholm. In 1737, a hospital and practical school was established at Strasbourg, the first institution of the kind created for students. Similar institutions were established all over Europe, and among them in Rome, in 1789, by Pope Pius VI., and in St. Petersburg, in 1797, by the Empress Federowna.

The publication of Dr. William Hunter's great work on the gravid uterus in 1775 forms an era in our science. It is unsurpassed in the accuracy of its drawings and the style of their delineation at the present day. In it he portrays the membrana

decidna and reflexa which are his own discoveries.

Not behindhand in the march of improvement, Dr. Shippen of of Philadelphia, pupil of Dr. W. Hunter, first gave public instruction in midwifery in the New World in the year 1762. His first class of ten pupils increased to two hundred and fifty

before his death. In 1767, the medical school in New York, under the direction of King's, now Columbia College, was founded with Dr. V. B. Tennant, professor of obstetrics.

In 1756, the subject of the induction of premature labor as a substitute for craniotomy, the cæsarian section and other similar subsequent dangerous operations, was first made a matter of discussion. The *usefulness* of the operation was soon allowed, but the *mortality* soon rendered the matter a *questio vexata*, not only for the physicians, but for the D.D.'s of the Sorbonne.

It is curious to see how similar questions were frequent stumbling-blocks in the schools of France, where a very large majority of the children under discussion were generated in immorality, and then to observe with what clearness the great English teachers, Denman, Clarke, Burns, and others, have investigated these apparently similar questions.

Whatever may have been the queries, no objections are now urged against this operation, which is occasionally practised by all the celebrated accoucheurs of the present time.

In the year 1768 the plan of dividing the ossa pubis was proposed by Sigault, of France, for the purpose of increasing the antero-posterior diameter, and thus safely delivering the child. It is astonishing with what enthusiasm this operation, now everywhere reprobated, was received by the profession throughout the world, and more particularly in France. Calm investigation was out of the question, and the operator and inventor were everywhere received with the most distinguished honors. Notwithstanding that the patient, who had previously been delivered by craniotomy, barely escaped with her life, and received a serious injury of the bladder, on the strength of this one case the medical faculty of Paris voted medals to Sigault and his assistant Le Roi, and a pension to the former and his unfortunate patient. In no future case was the success equal to this, the "Every operation had its victim," says Hull, "notwithstanding it was sometimes performed upon women whose pelves were slightly deformed, and had previously been delivered without extraordinary assistance." In England, this plan was first seriously examined by the Hunters and Dr. Denman, who reported against it. Indeed, subsequent examination has proved that the division of the ossa pubis does not sensibly enlarge the antero-posterior diameter, and the whole matter seems to have

been very much like the question once proposed to a learned academy, and long and profoundly debated by them, why a bowl filled to its utmost capacity with water would yet admit a fish to be placed therein without displacing its contents. Symphysiotomy has, however, done one good thing. It has taught the profession to be certain of facts, and to reason upon them, and act, also, afterwards. Has the lesson been received? or is every new theory and medicine—homœopathy or cod liver oil—received as soon as promulgated?

A somewhat similar operation, called not after its inventor, but by its reviver in 1829, is Catolica's operation, which differs from symphysiotomy in not dividing the cartilage, but the body and ramus of the pubes on each side between the two foramina ovales, as was recommended by Aitken in 1785. A more scientific appellation would be bi-publiotomy, were a name desirable for an operation which is not recommended by a single successful result.

While these foolish proceedings were being enacted, there were some attending to the true interests of the art, and by a curious coincidence, Saxtroph, of Copenhagen, and Solayres de Renhac, of Montpelier, in 1771, published each an essay which agreed in the assertion, that the long diameter of the head, contrary to all previous teachings, entered the pelvis parallel to one of its oblique diameters, the sagittal snture running in a line from the sacro-iliae synchondrosis behind to the foramen ovale in front, and generally from the right sacro-iliae synchondrosis to the left foramen ovale.

From this small beginning have proceeded those improvements in midwifery which have rescued it from empiricism, and almost transformed an art into a science.

Baudelocque, in the year 1791, methodically arranged the positions and presentations of the child, making twenty-two presentations and seventy-four positions. This classification, modified as it has been by various subsequent writers, among them and the most conspicuous, Naëgelé of Heidelberg, is at the bottom of the present system of teaching throughout the world. No practitioner who pretends to science at the present day, denies the great importance of a knowledge of the position, as well as the part presenting. All operations are based upon this knowledge, for as formerly the forceps were put on to the head in any man-

ner which was the most convenient, at the present day their application is in accordance with established rules, each depending upon the position of the head.

In 1791, Frederick William Voigtel published a volume, I think the first on the subject, upon the "toucher" and the signs

of pregnancy shown by it.

In 1807, the first addition to the obstetric art from America was made by the discovery of the peculiar virtues of Ergot in exciting uterine contractions, by Doctor John Stearns, late of this city. The general virtues of this very valuable medicine were for a long period but little known to the mass of practitioners, and its use confined to the younger members of the profession, and those of the elder who have sided in its favor. Many and long were the controversies respecting its virtues. Its value as a medicine in various diseases of women is still under investigation. In 1818, Mr. Mayer, of Geneva, first applied auscultation to the diagnosis of pregnancy—a discovery of very great value to the accoucheur, but a branch to which too little attention is paid by the profession generally.

Another operation still, and fully stated in Lecture xxxiv, is the division of the os and cervix uteri in cases of obstinate rigidity, and where the urgency of the case demands the active interference of the attending physician. When this matter shall be fairly brought to the attention of the profession, I venture to predict that it will take its place as one of the rarely required

but possible and justifiable obstetric operations.

Of many recent additions to the appliances of obstetric surgery I can but merely allude, as their exact value cannot be fully estimated till time has stamped them with its seal; they are, however, more fully mentioned in the following pages. They are the colpeurynter, the sponge tent, the douche, wherewith to produce premature delivery; the uterine sound to diagnosticate the interior condition and size of the uterus; the measurement of tumors etc.; the speculum used in connection with obstetrics to facilitate the tamponing of the os uteri and the vagina, in cases of hæmorrhage; and in general the improvement of the forceps, tractor or vectis, craniotomy forceps, and other instruments, in effect almost equally their recreation, and greatly diminishing the mortality of parturient females.

Finally, within the remembrance of all, the application of

anæsthesia to our art has driven away the suffering and the fears from many minds. Early used by Simpson of Edinburgh, and strongly recommended by that distinguished physician, it has been received with much distrust in this country. The wife of Longfellow, our distinguished poet, was the first in America to essay its wondrous virtues under the direction of Dr. Bigelow, Senior, of Boston. Its use in that city is now very general, but exceedingly limited in New York, although not a single unfortunate ease has been reported that I have heard of.

Having been myself among the earliest, if not the first, physician in New York to administer chloroform in labor [see cases reported by me, in the voluminons work published in Boston by Dr. Channing, Professor of Obstetrics in Harvard University, entitled "A Treatise on Ætherization in Child-birth," with reports of 581 eases], and having continued its use until the present time, I feel entitled, from personal experience, to commend its administration in almost every ease of labor, as well in simple and natural as in difficult and instrumental.

The religious objections made against its use, that it nullifies the eurse "I will greatly multiply thy sorrow and thy conception; in sorrow thou shalt bring forth ehildren," reminds one of similar discussions respecting craniotomy in olden time, of which the distinguished Astruc thus speaks: "Reason itself and daily practice affirm that the mother's (life) should be saved at the expense of the child's; wherefore when authority, reason and example concur in the determination of any affair whatsoever, we should always submit thereto. Yet some divines and physicians of no small note maintain that the infant's life should be rather preserved, that he should not die in original sin, which is washed away by baptism. But as the weight of their arguments is chiefly built on a religious eircumstance, the difficulty may be removed in most cases by administering this sacrament to the infant in the mother's womb, whether any part of its body presents itself to our view, or whether it does not, so that the baptismal water may be conveyed immediately on this part by the help of a syringe, breaking its membranes if they intervene; which practice should be put in execution in all difficult births, before the extraction of the infant is attempted. For it is authorized by able divines and daily example: wherefore rejecting the second, we should acquiesce in the decision of the first part."

The great value of anæsthesia in many cases of operative midwifery, few will pretend to deny, and already a large number of medical men throughout the country approve of its moderate use to mitigate the sufferings of this state. This number I think is greatly increasing, and before this generation has passed away, we will probably see labor rendered painless an every day occurrence. Should it be so, the art of midwifery will have advanced more rapidly in this than in the famous eighteenth

century, its golden epoch.

The nineteenth century has been prolific in writings. Not to remention Baudelocque and Naëgelé, the writings of Moreau, Cazeaux, Chailly (Honoré), Colombat, Velpeau, Capuron, Dubois in France; Kiwisch, Bauer and others in Germany; Rigby, Ramsbotham, Gooch, Blundell, Murphy, Churchill, Simpson, Collins, Lee, Hardy, Bennet, Tyler Smith, West, Lever, Oldham and many others in Great Britain; Dewees, Bard, Francis, Meigs, Channing, Trask, Gilman in this country, have added much to the reliableness of obstetric knowledge. Add to this the frequent reports of cases and monographs in the numerous journals, the debates in scientific associations, and it may readily be seen that the science is not at a stand-still, but advancing with a rapidity equal to any branch of the healing art.

During the dark ages, and probably from the beginning of the world, as I have previously said, the care of women in childbed appertained exclusively to their own sex. Even Paul of Ægineta, who is styled the first male practitioner of midwifery, in the 7th century, it is probable, had little if any practice. As late as 1552, Dr. Veit, in Hamburg, was publicly branded for

having attended as a midwife in female garb.

Dr. Atwood was the first physician in New York, who dared advertise himself as a man-midwife before the revolution in 1762.

During all this season the most gross empiricism and the most superstitious practices reigned in this branch of medicine. The nost simple precepts of hygiène were consecrated by religious ceremonies, which greedy priests, in those days of credulity and ignorance, easily multiplied. Every woman among the Grecks and Romans at the time she first noticed her pregnancy, went to the temple of Diana and deposited her girdle, and took axterwards garments suitable to her new condition.

Although Juno and Lucina presided in a general manner over labor and child-bearing, particular divinities were invoked at every stage, and for every accident in the course of this function. Mena, who appears to be the same as Diana, preserved women from floodings during pregnancy and childbirth. Vows were made to Postversa and Prorsa, when the child presented in an unusual and dangerous manner.

During this period we can learn little of the duties of the midwife. This individual seems to have been a remarkable busybody. It is highly probable that she did too much rather than too little. She busied herself about everything which interested women, and was the oracle respecting everything relative to their outward embellishment, the color of the skin, the shape, the breasts, and all sequelæ, probably numerous enough, of confinement. She made marriages, procured abortion, and cured sterility; in short, the Cleopatras, Aspasias and Agnodices of Ancient Greece, were very similar and probably more ignorant than the infamous Restells and Costellos of our day.

At the present time there is a proposition mooted—springing from the same high source which advocates woman's rights, the Bloomer costume, and other similar nonsensical theories—to give again the portion of the healing art of which I am treating, if not the whole domain of medicine, to the females. I have pointed out some of the absurdities of former days, when entirely under the direction of women, and have gradually traced the subsequent ameliorations, most, if not all of which, have been made since the time of Louis XIV., when Julien Clément, first as an accoucheur, attended Mad'lle Lavallière, selected by her, as it is reported, because she wished her confinement kept a secret.

The student of the history of midwifery will in vain seek to find a single instance recorded of any useful practical discovery made by the midwife. They perpetuated the errors of the time—they have not in a single instance, up to the present day, scarcely excepting Mesdames Lachapelle and Boivin, been the authors of a solitary improvement in the art.

In the practice, their success stands in no better light. In 1820 it was stated—and the remark has never been refuted—by the then Professor of Midwifery of the University of New York, Dr. John W. Francis, a gentleman whose deference for the sex is only equalled by the excellence of his judgment and the cer-

tainty of his statements, that "the bills of mortality in London and Dublin attest, that one in seventy of those women perish in childbirth who are in the hands of midwives, whilst from the accounts of the lying-in hospitals in those very cities which are under the care of male attendants, parturition is fatal to less than one half the number—nor indeed is the process of parturition so free from difficulties as is by many imagined. We learn, from the last reports under the authority of Mr. Hey, of the Leeds Infirmary, that of 827 cases of Midwifery, one hundred and fifty were such as required manual aid, either with regard to the expulsion of the placenta or child. I hope it is not irreverent to females to assert, that the acts of resolution and firmness which such occurrences impose, are less fitted to their delicacy than to the hardihood of the other sex."

It is truly not a matter of wonder that it should be generally supposed that any old woman was capable of taking the charge of a lying-in woman, when it is seen how lightly the subject is treated by the profession itself. Many physicians seem to think, that the only utility to be derived from their presence in the puerperal chamber, is the subsequent fee, and I am inclined to think with them. Their practice is an "expectant" practice in more than one particular. They are willing to allow a woman to remain with the head impacted, or retained by the perinæum for scores of hours, practising one only of Blundell's excellent instructions, viz., warr. This fatal delay is not the consequence of a settled conviction of the general inadvisability of operations, or in conformity with any opinions in regard to "meddlesome midwifery," but solely from an utter ignorance of the true state of things, or from an extreme timidity respecting all interference with nature. It is from these causes that we find so many cases of vesico and recto-vaginal fistulas, which are, I will venture to say, rarely, if ever, the result of an injury from the forceps, as proved by statistics on a future page. While the attendant physician is slumbering in his comfortable rockingchair, the impacted head is effecting those disorganizations, the responsibility of which he afterwards endeavors to fling off his shoulders, by ascribing this awful result to the forceps.

Far be it from me to urge or advocate the frequent use of instruments, but I wish to direct the public attention to the cause of the injurious results which are so willingly ascribed to their use. I think that accurate statistics of the two above men-

tioned injuries, as well as rupture of the uterus during labor, will show that these very much preponderate when forceps have not been used. And allowing that where instruments were used these sad results occurred in consequence, were they not preferable to the grave?

So much has been said against instrumental interference, that there is little danger, that in this community unnecessary operations will be performed, and so universal is the antipathy to such a resort, that it seems to me that these resources of art are too little called upon, and thereby much unnecessary suffering permitted, and much injury done to the women, and children's lives unnecessarily sacrificed.

I have been sometimes inclined to think, when seeing the little efforts made to resuscitate the still-born babe in the Parisian hospitals, that they thought a life which, for a long series of years afterwards, was to be at the expense of the state, was scarcely worth the trouble of saving; and it sometimes seems as if physicians here thought it perhaps better humanity, to allow children to perish impacted in the pelvis, or from the effects of ergot wrongly administered, rather than to deliver them by instruments, and allow them to live a life afterwards to be exposed to hunger, cold and filth, finally to be swept away by the yearly recurring cholera infantum or the wasting marasmus.

The aim of the physician is clearly stated by Ramsbotham, to strive, "equally to escape the imputation of haste and indiscretion on the one hand, and of delay and indecision on the other; yet let us ever bear in mind, that more injury may possibly accrue from too long delay than arise from premature assistance."

In similar terms speak the great mass of the teachers of the world. The great want of the profession in this particular, is knowledge of the subject. What if the finger can pass freely around the sides of the head, and the pelvis seems sufficiently spacious? if the long diameter of the head of the fœtus is presenting to the short diameter of the pelvis, human interference is demanded. The diagnosis therefore of the position is equally important as that of the presentation.

The next want of the profession is decision, and here I may again quote from the celebrated preface of the American edition of Denman's Introduction to Midwifery. "Nowhere are promp-

titude and decision more required; in no situation is the man of science more distinguishable from the mere pretender; in no situation is the conduct of the physician more the object of present attention or of subsequent criticism. In the lying-in chamber no opportunity is afforded for qualification or deliberation. The case demands immediate assistance, and it is vain to temporize; vacillation and delay, always dangerous, may here prove fatal. The student's mind must be thoroughly prepared, else the imputation of ignorance will attend his hesitation and confusion. Firmness and decision, founded on accurate and precise knowledge, will alone secure to him present confidence and future approbation."

Two dangers now menace the practice of midwifery in this country, either of which threatens to do it an irreparable injury. The one which particularly concerns us is the carelessness and inefficiency of the profession itself. The students at graduation know little or nothing of the subject. Practically, they are entirely ignorant of its simplest forms. They have no methodized habits, no illustrative reminiscences to throw light upon the obscurities which may occur in their subsequent practice. The student may graduate without ever having attended at the bedside of a parturient woman. After the first few cases, in which he is sufficiently alarmed, but which, fortunately, pass by successfully, he concludes that all the talk of position, presentation, rotation, and such like terms, is all nonsense, or at the best, theoretical, and he joins the "expectant" practitioners, trusts to the vis medicatrix natura, confidently expects that spontaneous evolution will always occur, and by a dull inactivity, resulting from ignorance, loses the child, and not unfrequently the mother also, and injures the reputation of the profession, the capabilities and attainments of which he does not understand.

The next great danger springs from the love of mammon. Ignorance and presumption, which thrive upon ignorance and credulity, when "fools rush in where angels fear to tread."

The dark ages seem to be again reviving. Hand in hand with the infinitesimals and the water wonder-worker, comes the hard-faced midwife, tinctured with both theories (for theory means absurdity now, and professor is a term applied to mountebanks and quacks). We have lecturers and lecturesses, and female colleges, where the very large and highly intelligent classes are taught how to get children, and especially how not to get them. The Woman's Rights Convention cannot see why women should bear children more than men, and while waiting some plan to equalize this matter, they refuse to bear them themselves.

From these fields of literature come the midwives, with reckless rashness, not like our Californian adventurers, themselves to incur any perils for the sake of gold, but to allow the unfortunates who confide in them to run any risk, and to suffer any calamity which their temerity and ignorance might cause. Wet sheets and globules are poor substitutes for science and practical skill.

Quackery, gentlemen, is rife in every branch of the profession, and revolutionary opinions are being expressed in various of its domains—the province of midwifery threatens to secede from the union by which she is bound to medicine and surgery. Shall we allow such an act to be accomplished, to the manifest detriment of all parties concerned? Against such a result we must arm ourselves by fresh acquisitions; we must rub off the rust from our old learning, and by constant study and watchfulness be ever ready to maintain the dignity, integrity and efficiency of the healing art. What the future may be, depends upon us. The present is ours, the past is ours also; for medicine is not a science of yesterday, nor the dream of any wild schemer, but one originating in antiquity, practised by the Redeemer, handed down, enriched and improved, through centuries, to be perfected only in eternity. The greatest minds of the earth have given the admiration of their youth, their manhood has improved, ornamented and simplified, and their old age has relied upon it. The vegetable and mineral kingdoms are closely allied, and kindred sciences give to it their strong support. This is the lofty fabric planned by the Great Architect, founded upon a rock of adamant, which has resisted the storms of time, the floods of persecution and ridicule, the stormy gusts of passion and envy, and remains not only unscathed, but whose fair proportions are daily more colossal and finished. This is the glorious edifice that you would tear down, to build upon its ruins a flimsy structure of ephemeral materials and shapeless construction, "the baseless fabric of a vision, to melt away, leaving not a rack behind."

W. TYLER SMITH

ON THE

THEORY AND PRACTICE

OF

OBSTETRICS.

LECTURE I.

GENERATION.

Gentlemen:—In this, the first Lecture of a Course on the Theory and Practice of Obstetrics, it is proposed to draw attention to some general considerations concerning the reproduction and development of living beings. Beginning with matters relating to the most simple modes by which the propagation of animals can be effected, we may ascend to the study of the higher forms of reproduction, until we arrive at the generation of the human species. It will be found, as we proceed, that there are no races so low in the scale of creation but that the history of their generative phenomena is calculated to throw light upon the same functions in classes of the highest rank in the animal kingdom. This circumstance must plead as my excuse for attempting to deal, at the commencement, with the elements or principles of generation.

At the very threshold of this subject, we are met by the longagitated question of **Spontaneous or Equivocal Generation**. Can any form of animal life be produced upon the globe we inhabit, out of dead inanimate matter, or indeed otherwise than

33

as part of a procession or series of living organisms, every generation of which must depend for its existence upon the generations that have preceded it? In former times, many facts connected with the generation of the humbler forms of living matter seemed altogether inexplicable; and naturalists and physiologists were driven to a belief in the doctrine that, under special circumstances, such as the decomposition of animal and vegetable structures, some of the lower forms of animal existence might be developed spontaneously. The progress of knowledge has, however, steadily diminished the number of these mysteries: and it may be said that, in recent days, the last stronghold of the believers in spontaneous generation has been the conditions under which the Infusoria and Entozoa can be produced.

From any vegetable infusion, under certain regulations as regards light, air, and temperature, myriads of microscopical infusoria are called into existence. The same infusions uniformly produce the same animalcules, and the lowest forms of infusorial life are those which first appear. The results are the same when water, which has been boiled or distilled, is used; and observers of eminence have declared that they have seen the débris of vegetable matter, while undergoing decomposition, transformed into infusoria. Others have believed that animalcules may be produced, by the action of electricity, from silica and similar inorganic matters. It may, however, be said, at the present time, with regard to infusoria, that the difficulties in the way of explaining their almost omnipresence have disappeared, and that their production, except under natural circumstances, can be satisfactorily disproved.

The different modes of propagation in the infusoria have been investigated, and it is known that in their most simple form, the perfect infusoria, and in other cases the germs, are almost innumerable, and of well-nigh unextinguishable vitality. One animalcule, the *Monas crepusculus*, is $\frac{1}{2\sqrt{100}}$ of a line in diameter; and it is remarked by Professor Owen that a single drop of water may contain no less than five hundred millions of these minute beings. The drop evaporated, this vast population, greater in number than the living inhabitants of the world, become dry and preserve their latent life in the air and in the dust of the earth, to be revivified on the occurrence of the conditions necessary to their existence. Not a mote of the sunbeam but is

peopled with these animalcular organisms. Their power of resisting destructive agencies is not one of their least wonderful properties. They live in water under ice, or inclosed in vesicles in the ice itself. Fontana revived some specimens of Rotifera after they had been exposed to the sun for upwards of two years in dry sand; and Spallanzani and Schultze have revived them after four years of desiccation. Other animalcules, in drying, burst, and liberate myriads of germs, which preserve their vitality under almost every conceiveable circumstance. These and similar facts show that no particle of air, dust or water can be taken which does not contain infusoria or their germs, thus rendering it almost certain that the vegetable infusion does nothing more than favor the restoration of dried animalcules, or the development of their invisible germs. the experimentum crucis respecting the spontaneous generation of the infusoria has been applied by Schwann and Schultze. The access of air, which no doubt contains infusoria or their germs, is known to be necessary to the production of animalcules in vegetable infusions. One of these experimenters passed the air employed through caustic potash and through strong sulphuric acid; and the other through iron tubes heated to redness, the infusions used having been previously boiled. Under these conditions no infusoria were produced, though a rapid development of animalcules occurred on the admission of air to similar infusions, when no such precautions were observed.

As regards the Entozoa, the presumptive evidence in favor of their spontaneous generation was still more conclusive than in the case of the infusoria. Entozoa are found in situations to which they could not be supposed to have access by any natural means. The Cysticercus cellulosæ is found in the anterior chamber of the eye, in the choroid plexus, and in the substance of the heart. The Trichina spiralis infests the voluntary muscles, and the Strongylus gigas the parenchyma of the kidney. A diplostomum in the aqueous humor has itself been found to be infested with parasitic animalcules. Entozoa have been detected in the fœtus in utero, in the blood, and in the eggs of oviparous animals. Such facts appear to present insuperable difficulties to the explanation of the existence of entozoa in their special habitats, unless upon the supposition that they are produced spontaneously. It came to be known that many of the higher

36 ENTOZOA.

forms of entozoa possess complicated organs of generation, and produced ova and embryos in abundance, which themselves became the subject of observation. For a time, however, this knowledge only increased the difficulty. How could entozoa reach the fœtus, or enter the eye, when their ova were known to greatly exceed the diameter of the capillary vessels?

It was at last discovered, that the entozoa, particularly in their embryo forms, possess a special boring apparatus, which had been noticed by John Hunter in some species, by means of which they are able to make their way through the solid tissues of the body with extraordinary facility, producing little or no disturbance in their progress, and leaving no traces of their operations behind them. It was also found that a vast variety of special provisions existed for the diffusion and localization of these creatures. The numbers, too, of the ova of some of the entozoa are immense. A single specimen of the Tænia serrate, an entozoon which infests the dog, will produce twenty-five millions of ova! while a mature female of the Ascaris lumbricoidcs will contain upwards of sixty millions! Many of them pass through several phases of existence in different animals before they arrive at the perfect state, provision being made for their transfer from one animal to another. It is believed that in every species of tape worm, two animals, are at least necessary for their complete development, and of these two animals, the one generally stands in the relation of food, or prey to the other. Thus the scolex, er embryo head, of the Tania crassicolis, is found in the mouse, while the perfect tænia infests the intestines of the cat. The mouse is of course the means of introducing the embryo of the tænia into the larger animal. The power of the entozoa in resisting destructive agents is even greater than the infusoria. Some of these worms of complicated structure remain alive after being boiled a considerable time: others are reanimated after being frozen for several weeks. Their ova have still greater powers of self-preservation. These and similar facts respecting their numbers, modes of generation, indestructibility, and powers of penetrating animal tissues, appear sufficient to explain all the seeming mysteries respecting the entozoa. without resorting to the theory of spontaneous generation.

The most simple form of animal life is that met with in the Gregarinæ, a genus of microscopic entozoa found in the inter-

nal organs of worms and insects. The Gregarina consists essentially of a single cell, or of a cell-wall with its contained-fluid, and a central nucleus. (Fig. 1.) It moves by contraction of

its cell-wall, and only differs from a vegetable cell in its contractility, and its solubility in acetic acid. In the simplest infusoria, the polygastrian animalcules, a class below the entozoa in the animal series, the same monadiform organization is found; and throughout the infusoria, although many additions, in the shape of cilia, and internal organs occur, the type of a cell, with a central nucleus, or nuclei, is preserved. This central portion consists of hyaline matter, of an amber colour, which is supposed to be fatty in character, and is believed to bear a resemblance to the spermatic particles of

Fig. L

Gregarina.

higher animals. The Chlamydomonas may be cited as one of the simplest of the infusoria. (Fig. 2.)

The primary and most simple type of reproduction, that which is found in these unicellular, monadiform animalcules, is that of spontaneous fission, or Fissiparous Generation, as it is called. In this mode of reproduction, in the most simple forms of infusoria, a single unicellular animalcule divides into two or more cells, which, after their division,

Frg. 2.

Chlamydomonas. n, hyaline

become similar to the parent cell. The first infusorial animalcule ever known, the Vorticella convallaria, discovered by Leeuwenhoeck nearly two hundred years ago, multiplies itself in this manner. Sometimes the fissure takes place longitudinally, at others transversely (Fig 3,) a notch first appearing at

A, B, C. Longitudinal fissure of elongated infusoria. D, E, F. Transverse fission of oval animalcules.

the point of subsequent division, which enlarges until the separation is nearly completed, when the two cells struggle, by means of their cilia, until they are free from each other, and swim off as independent animalcules. In some infusoria the fission consists in a simple division of one cell into two. In others, they divide, but still remain connected in groups, as a chain or in a spherical mass. The latter is the case with the Volvox globator, a well known animalcule. Instances are met with in which the division of succeeding generations are regular multiples of each other, as two, four, eight, and so on. This occurs for instance, in the Chlamydomonas. (Fig. 4.) In the

A, B, C. Multiple fission of Chlamydomonas. n, Nuclei.

process of fission, the nucleus is always the first part to divide, and it is this cleavage of the nuclear portion which rules the segmentation of the whole cell. In these simple organisms, the sperm and germ-force reside in the nucleus or nuclear particles—every nucleated infusorial cell, multiplying in this way, being from its birth, as it were, impregnated and ready to propagate its kind by fission. No diminution of the reproductive force is caused by successive fissions, each generation of purely fissiparous animalcules having the same powers as its progenitors. Many infusoria multiply by other modes of generation as well as by fission, but the rate of increase by this means alone is very great. The Paramacium aurelia, if well fed, divides every twenty-four hours, its progeny in successive generations continuing to divide in the same ratio. In this way, in the course of four weeks, one animalcule will produce upwards of two hundred and fifty millions of new beings. This fissiparous mode of generation is found not only in Infusoria and Entozoa. but in Polypi, Medusæ, and Annulata. It is in the Infusoria also that the first acts of parturition are observed. In the Loxodes Bursaria, four or five cells are formed in the interior of the animalcule, which are gradually developed into embryos. These embryos make their way slowly through the tissues of the parent and escape externally. No aperture or channel exists previously, and the situation of the parturient escape of the embryo seems entirely to depend upon accident. (Fig. 5.) At whatever part of the parent organism the embryo is developed

A, B. Formation of germs and embryos in Loxodes Bursaria. C. The process of parturition. D, E. Free moving embryos.

there a way is made for its escape. Sometimes two or three embryos are escaping from different parts of the parent at the same time. From this simple beginning, the extrusion of the ova and embryo goes on in the animal series, until it reaches the complexity and difficulty witnessed in the higher mammalia and in the human species.

The next form of reproduction met with in the animal kingdom is **Genmiparous Generation**, in which the offspring arise from the parent in the shape of genmæ, or buds, which acquire a similar organization of the parent animal, and separate to assume an independent existence. In the *Hydra viridis* for instance, a prominence first appears upon the surface of the animal, which gradually assumes the form of a miniature polyp. It contains a cavity, which, in the first instance, communicates with the stomach of the parent Hydra. An oval aperture, surrounded with tentacles, is developed at its free extremity. At

first the food digested in the stomachal cavity of the parent supplies the gemmule, but, after a time, the young polyp begins to catch food, and contributes to the support of itself and parent. At length its connection with the parent polyp becomes slender, and it separates altogether. (Fig. 6.) Another mode of gem-

A, B, C. Polypoid Acalephs, giving off gemmæ or buds.

miparous generation is where, as in the sponges, small free gemmules, or buds, are separated from the body of the parent animal, and become developed into perfect individuals. part of the body from which gemmation takes place in different animals is very various. In some, it may occur at any part of the surface of the body; in others the gemmules are formed in the digestive cavity, and extruded from the oval aperture. the medusæ, the gemmæ arise from the ovaries, stomach, proboscis, and tentacles. In other other cases, as in the Alcyonidium elegans, an Alcyonian zoöphyte, the tubercles which constitute the gemmæ, or buds, are produced in particular strips of tegumentary membrane. In some of the gemmiparous animals, new creatures may be multiplied to almost any extent by mechanical division. The Hydra viridis may be divided longitudinally or transversely into several parts, and each fragment will become a perfect polyp; or if a wound is made in the body of the animal, a new polyp sprouts from the site of injury. The gemmiparous form of generation is met with in a large variety of animals. It exists in the Infusoria, Entozoa, Polypi, Medusæ, Annulata, and Tunicata. In the Nereis, and in some of the myriapoda, gemmation forms an important part of the reproductive process. In the former, a constriction first appears in the tail of the animal, immediately behind which the head of a new nereis is developed, and the posterior division becomes separated from the anterior, or parent nereis, as a perfect animal.

The earliest traces of a diœcious mode of reproduction in animals, in which two individuals are engaged in the production of offspring, is met with in the humble Gregarina already mentioned. These microscopical entozoa propagate not only by fission, but by a process termed conjugation. In the latter mode of generation, two of the elongated cells or animalcules are said by Stein and other observers to approach each other; the two ends which are in opposition become flattened, so that the two conjoined animalcules resemble a single Gregarina in shape. A complete fusion of the granular contents of the two individuals takes place, and from the joint mass a number of small bodies are produced, which are believed to be the embryos of this monadiform entozoön. (Fig. 7.) Other instances of Conju-

Conjugation of Gregarinæ. A, single Gregarina. B, C, D. Two animalcules in a state of conjugation. E, F, G. Formation of embryos. H. Free embryos.

gate Generation have been observed by Kolliker, Siebold, and Cohn. This mode of generation appears to be quite wanting in anything of an ordinary sexual character. The conjugating Gregarinæ appear to be precisely similar to each other, and their reproduction seems to be by a kind of duplicate fission. It is, however, impossible not to be struck with the similarity of the process of conjugation, and the union of the sperm cell and germ cell in the higher animals, to which sex has been added in the scheme of reproduction. In the latter case, the sperm and

germ cells unite to produce, by division and subdivision, the particles forming the germ mass, and out of which the embryo is evolved. As soon as sexual generation commences, two kinds of cells are required in the process of reproduction—one produced in the ovarium, the other in the testes. In the lower classes these two organs are frequently found upon the same individual, constituting complete hermaphrodite generation. In other instances the individuals are hermaphrodite, but the mutual congress of two or more animals is necessary for fertilization. In the higher classes, hermaphrodism disappears, and the ovarium and testes, with the sperm and germ cell, belong to different animals and sexes.

The present seems to be the proper place for making some general remarks on the subjects of Fissiparous and Gemmiparous generation, and the relation of these processes to the acts of reproduction in the higher animals. The principle of fission is not limited to animals in which it constitutes the chief mode of generation. It extends in a certain degree to the higher forms of animal reproduction. In oviparous animals and mammalia it may be said that the dehiscence of the ovule or of the impregnated ovum, from the ovarium, is a kind of fission. A still closer analogy to the phenomena of fission is found in the early changes in the interior of the mammalian ovum after impregnation and indeed of the ovum of all animals multiplying by sexual generation. (Fig. 8.) These changes are similar to those

Development of Ascaris acuminata by repeated fission of the germ cell. Type of development in all animals produced from ova.

which have been referred to as occurring in the unicellular infusoria. That which will hereafter have to be described as the seg-

mentation or cleavage of the yelk, consists in the division and subdivision of the embryo cell, and is almost identical with the multiple fission of the Chlamydomonas an analogy first pointed out by the late Dr. Martin Barry. The only difference is, that in the Chlamydomonas and Gregarina the divisions and subdivisions produce independent and perfect animals; whereas in the mammalian ovum the fission results in a mass of germ cells, intended to pass on to higher developments. In animals, the subjects of sexual generation, the male element is also formed by the rupture of the primary germ cells secreted by the testes, and the conversion of their nuclear matter into spermatozoa, which may in fact be considered as secondary germ cells. may also be said that the human fabric is the result of the fission, an innumerable number of times repeated, of the single fertilized embryo cell; the multitudes of cells produced by the rupture and fission of generation after generation of cells, and by the conversion of their nuclei in turn into parent cells, being converted by plastic morphological forces, into bone, muscle, nerve, blood, and the other elements of which the body is composed. The similarity of the ciliated epithelial cell of the mucous membranes to the ciliated unicellular infusoria is very palpable. It is of myriads of such cells, modified in infinite ways, that the human organism is constructed. In this way we can to a certain extent realize the idea of Buffon, when he said that all animal and vegetable bodies were aggregations of animalcules; or the more positive remark of Oken, that the higher animals and man himself, were agglomerations of infusoria.

Generation by means of buds or gemmæ is still more extensive than reproduction by fission. In gemmiparous animals, reproductive nuclei are scattered throughout the structures and tissues of the parent organisms; it is a fission occurring, not, as it were, in the whole animal, but in particular parts. The mode of reproduction by generation extends higher than fissiparous generation, being found, as we have said, as high as the Tunicata, and it is concerned in Alternate Generation, which is found amongst insects. But the principle is not lost at the point when it ceases to be a mode of generation. It is concerned in the reproduction of lost parts. In genmiparous generation, animals are formed, not from ova, or from the fission of primary reproductive cells, but from secondary or derivative germ cells,

placed in reserve in the tissues of animals. In the triton or the lobster, in which the tail or claw is reproduced, the new formation occurs from derivative germ cells placed in the tail or claw—that is, a reserve of derivative germ cells, not used in the general development, is deposited in different parts of the body. In mammalia, the extremities of the fœtus are always formed by budding or gemmation. It is believed by some observers that in the human fœtus, if a limb be amputated spontaneously in utero, at an early period, there is an attempt at the production of a new limb by germination. In some of the remarkable cases of spontaneous amputation of limbs in utero, first investigated by Dr. Montgomery and Professor Simpson, the amputated limb is found in the uterus, and from the stump small or rudimentary fingers or toes are seen to be growing, which remain visible in after life.

One of the most remarkable phenomena in the history of generation is that first investigated by Bonnet, Reaumur, Steenstrup, and others, and to which great significance has been given by Professor Owen, under the name of Parthogenesis, or **Virgin Procreation**. In many forms of animal life—as, for instance, in the Salpæ amongst mollusca, the Distomata amongst entozoa, and the Aphides amongst insects—it is found that the parent animal gives birth to an embryo different to itself; that this embryo lives as an independent animal, but gives birth, without sexual intercourse, to another, and to a successive series, until at length a progeny is formed bearing the likeness of the original parent.

In the Distoma, the embryos have at first the form of ciliated monads, and these are metamorphosed into Gregariniform worms. In the interior of each of the latter, numbers of Cercariform, or tailed animalcules, are developed, which in turn become true Distomata. In the winged Aphis, the ova are deposited by the parent insect, and in due time produce larval, wingless aphides. Each virgin aphis of this brood will produce other similar broods without contact with the male. This Lucina sine concubitu has been observed to go on to the eleventh generation, the last generation being winged, and male and female. These have intercourse, another fecundation occurs, and in the following summer the phenomena which have been described again occur.

The explanation of these cases is, that in the first instance the coitus fertilizes the ovum, and part of the derivative germ cells produced from the embryo cell, instead of being consumed in the development of the first generation of aphides, are kept as a In the second generation, these derivative germ cells give origin to a new generation of derivative germinal cells, of which a reserve remains as before, and so on until the spermatic force of the germ cell is exhausted. To illustrate this matter, let us look to the early development of the mammalian ovum. The embryo cell divides into two, these two into four, the four into eight, and it is not until the segmentation has affected the whole mass of the germ and yelk that the formation of the new individual begins. But suppose each generation of germ cells occurring in this fission or segmentation, to have the power of going on to the production of new individuals, we should then have the power observed in the virgin aphides, where each generation of germ cells goes on to the production of a larval aphis before a new fission or segmentation of the derivative germ cells takes place. We may see traces of this power of the spermatic element to fertilize or modify more than one generation of ova and germ cells in other animals than those in which perfect parthogenesis occurs. For instance, a single coitus of the cock fertilizes, not only the eggs which are mature in the ovary, but those which are immature, so that eggs which reach maturity a long time after coitus are found to be fertilized. The parthogenetic influence may even be seen in the mammalia and in the human female. In the well-known case of the mare covered by the Quagga, the foals produced afterwards, by intercourse with her ewn kind, still bore the stripes of the quagga. human female, it is found, that a woman having married and borne children by her husband, becomes a widow, marries a second time, and bears children to her second husband which have the lineaments of her first husband. The same occurs in the lower animals, and it is difficult to explain the matter in any other way than by supposing that one coitus must have influenced several generations of ova. The relation of such phenomena to parthogenesis is obvious.

The next step in the process of reproduction brings us to **Oviparous Generation.** This form of generation is very early met with in the animal series. Ehrenberg discovered in many of the Rotiferous animalcules distinct male and female organs,

and generation by means of fecundated ova. In some of the more simple infusoria, ova appear to be formed in the general parenchyma of the body without any sexual operation, and to be extruded in the form of a reticulated mass. In the lower part of the zoölogical scale, oviparous generation is mixed up with fissiparous and genumiparous generation, and there sccms to be hardly any difference between the production of free gemmules to be developed apart from the parent, and the formation and elimination of ova from the infusoria, in whom distinct sex is wanting. It is in Insects, Fishes, Reptiles, and Birds, that oviparous generation reaches its full development. In insects, the ova, which consist of a germinal vesicle, yelk, albuminous and shelly coverings, are very small, and the embryo is early extruded from the shell in a larval state, but fitted to acquire its own nourishment, and passing through numerous metamorphoses before it reaches the perfect condition. All insects are diœcious, or of distinct sex, and the impregnation of the ova occurs within the body of the female. In fishes the sexes are also distinct, and in this class we get the first commencement of the ovarium asit exists in the higher vertebrata and mammalia. In the lower types of fishes the ovarium consists of a mere vascular lamina, in which the ova are formed and thrown off into the abdominal cavity, from which they escape by orifices near the anal aperture. In the higher specimens of this class an oviduct is added for the purpose of conveying the ova from the ovarium. The ova of fishes are generally impregnated out of the body, but in some cases impregnation and development to a certain extent occur within the ovary, the male having a rudimentary intromittent organ, and the embryo is expelled in a living state. In reptiles the oviduct is a permanent condition; the ova are generally fecundated out of the body, in transitu, by the lower genera; but in the more advanced specimens of this class ova are impregnated within the body of the female, and in some of them the young are born alive. In birds, the ova are contained in ovaries, and the egg reaches its highest state of development, consisting of the germinal vesicle and a large yelk; an extensive layer of albumen or white being also added so as to support the development of the young, with various membranes for the protection of the egg, and the maturation of the ovum. Parental affection, of which there are traces in insects and fishes, is present to a very great degree in the case of the bird.

In the mammalia we have, in all cases, viviparous generation, though some are termed ovoviviparous, but the instances of ovoviviparous generation in birds, amphibia, and fishes, in which the eggs are hatched in the body of the parents, are very different from any of the forms of generation met with in the mammalia. In the monotrematous type there is a near approach to the bird; and as the phenomena of generation have not been actually observed, it is only by analogical reasoning that Professor Owen has arrived at the conclusion that the Ornithorhynchus brings forth its young alive. In marsupial reproduction, the impregnated ovum remains a short time in the uterus, and receives nourishment, but at a very early period of development it is transferred from the uterus to the marsupium or pouch, where it hangs by the nipple during the rest of its fætal development. Neither in the monotremata nor the marsupiata has any vascular connection between the parents and the ovum been observed. The uterus enlarges; and it is probably by a secretion found within its cavity, and absorbed by the yelk, that the young embryo is developed.

In the higher mammalia, a true vascular connection is formed between the ovum and the mother by means of the chorion and the mucous membrane of the uterus; and the embryo, after a prolonged term of intra-uterine development, is expelled to pass through another protracted phase of maternal nutrition from the mammæ. In mammalia, except in the lowest types, we have the separation of the generative canal from the urinary and intestinal organs. The generative organs reach their greatest state of development in the human species, and consist of parts adapted to coitus, ovulation, menstruation, impregnation, uterogestation, parturition, and lactation—functions which are placed in relation to the highest affection and parental love. The vascular intra-uterine connection between the mother and fœtus acquires its most perfect development in the placenta of the human species, and it is mainly owing to this intimate vascular relation, the intricacy of the organs of generation, the arrangements of the pelvis in accordance with the upright position, and the development of the human intellect, as evidenced by the comparatively large size of the brain and cranium of the human fœtus, that the pains and perils of childbirth, and the necessity for the cultivation and practice of Obstetrics, are produced.

LECTURE II.

THE EXTERNAL ORGANS OF GENERATION.

Gentlemen:—The **Organs of Generation** in the female are generally divided into the external, or those chiefly concerned in coitus, and the internal, or those employed in the development of the ovum. To the former belong the mons veneris, the labia majora and minora, the clitoris, the hymen or carunculæ myrtiformes, the perinæum, the vagina and the mammæ; the latter includes the uterus and its ligaments, the Fallopian tubes, and the ovaria. Both the internal and external organs have important relations to utero-gestation and parturition.

The Mons Veneris is a cushion-like layer of adipose and cellular tisssue, developed at the time of puberty, situated in front of, and above, the pubes. It is covered by a thick integument studded with hair. Its use is to guard the pubes from mechanical violence during intercourse, and to act like the hair of the axilla in defending this part of the body from the effects of friction and perspiration. In general, the hair of the mons is short and curled; but, in sterile women, I have sometimes observed it to be straight, and longer or shorter than usual—this condition being indicative of a feeble development of the internal organs of generation.

The Labia Majora, or labia pudendi, are two folds extending downwards on each side from the mons veneris to the perinæum. They are thick, and lie in contact, above; but below they become thinner, and are separated from each other. Externally, the labia majora are covered by skin, which has a smaller quantity of hair upon it than the mons; but internally, they are lined with the commencement of the genito-urinary mucous membrane, and are studded with numerous sebaceous follicles, which secrete a fatty and odorous matter. The union of the labia above constitutes the superior commissure; and that below,

the inferior commissure of the pudenda. Within the posterior commissure, a fold of mucous membrane stretches across between the labia, which has been called the fourchette, though the same name is frequently applied to the commissure itself at the commencement of the perinaum. The fold, or frenulum referred to, is almost always lacerated in first labors; but before this laceration has taken place, and particularly during labor, a distinct depression, or fossa, can be felt between the frenulum and the edge of the perinaum, termed the fossa navicularis. (Fig. 9.)

About an inch beneath the anterior commissure and between the labia majora, is found the Clitoris, which resembles a small penis, and is, in fact, the analogue of the penis of the male. is composed of two corpora cavernosa, which are attached by crura to the rami of the ischium and pubes, and meet together in the median line. Each of these bodies is enveloped in a thin, fibrous sheath. The clitoris is imperforate, but at its point there is a small spongy or cavernous mass, called the glans, and covered by a fold of integument, or imperfect prepuce. It has two muscles—the erectores clitoridis, representing the erectores penis, arising from the rami of the pubes and ischium, as low down as the tuberosities, and inserted into the crura clitoridis. A suspensory ligament connects the clitoris with the pubes. It is supplied with blood by the internal pudic artery, and possesses a dorsal vein, similar to the vena dorsalis penis. The clitoris is capable of erection, and when in the erectile state is almost of cartilaginous hardness. It is the chief seat of sexual sensibility, constituting, according to Dr. Meigs, "the organ of touch to the aphrodisiac sense." In hysterical females, it is sometimes subject to a constant erection, almost similar to that observed in priapism in the male. During this condition, it is difficult or impossible to pass urine-a point first noticed, I believe, by Dr. Silvester, of Clapham. These are, in fact, the cases in which, in hysterical subjects, the catheter is often employed. I have observed the clitoris to be subject to a peculiar mechanical displacement, or dislocation, in females who have been the subjects of self-abuse. It becomes loose, probably from relaxation of the suspensory ligament, and is raised higher over the pubes than is natural. When such women marry, they are often deficient in the sexual orgasm during coitus, in consequence of the removal of the clitoris from its proper position. The clitoris is larger, comparatively, and more prominent, in the infant than the adult. It is subject to hypertrophy, but the special sense is not increased in such cases, in proportion to the hypertrophic growth. The clitoris receives large branches from the internal pudic nerves; and in some of the lower animals, Pacinian

bodies have been found in this organ.

The Labia Minora, or nymphæ, are two folds of mucous membrane extending from the prepuce of the clitoris, downwards and outwards, for about an inch and a half or two inches. Externally, there is a furrow betwixt these folds and the labia majora, covered with the commencing mucous membrane, and studded with numerous fat-glands; and, internally, they form the commencement of the vagina. On their inner surface may be seen the openings of numerous mucous follicles, from which mucus is secreted for the lubrication of the ostium vaginæ. The separated nymphæ have been compared to the fissured male urethra from arrest of development in hypospadia, and the analogues of the bulb and corpora spongiosa are found deeply seated behind the nymphæ. These consist of a plexus of veins lying on each side of the clitoris, called the pars intermedia; and of two leech-shaped masses of reticulated veins inclosed The bulbous masses were known to the in a fibrous sheath. older anatomists, De Graaf and Santorini, but they have been described anew by Mr. Guthrie, Kobelt, and others. The bulbs are situated below the pars intermedia, and behind the middle and lower portions of the nymphæ. They have received various names, such as plexus retiformes, bulbi vestibuli, and crura clitoridis interna. The objects both of the labia majora and minora are, no doubt, to defend the genital fissure, to afford an extensive sexual surface, and to facilitate the expansion and dilatation of the pudenda during parturition.

Below the clitoris and between the nymphæ there is a grooved space, about an inch long, pointed above and broader below, termed the **Vestibule**. In the centre, and at the lower portion of the vestibule, is situated the **Meatus Urinarius**, consisting of a raised and irregular rim of mucous membrane, with an opening in the middle. The eminence is caused by a slight puckering of the mucous membrane by the contractile fibres which keep the meatus closed under ordinary circumstances, an arrangement which admits of considerable distension during mic-

turition, or in catheterism. The meatus is generally so prominent as to be readily felt by the experienced finger. (Fig. 9.)

1, Vena Dorsalis ; 2, Glans Clitoridis ; 3, Crus Clitoridis ; 4, Meatus Urinarius ; 5, Bulbus Vestibuli 6, Vulvo-vaginal Gland ; 7, Sphincter Vaginæ.

Catheterism of the female bladder is one of the minor operations at which the accoucheur ought to be expert, and in this place a few remarks may be made on the mode of finding the urethra, and passing the catheter. We have to draw off the urine in the unimpregnated state, during pregnancy and labor, or after delivery, and under other circumstances in which the meatus and urethra may be considerably displaced. The situation of the meatus has already been indicated, and the length of the urethra is about an inch and a quarter. The meatus itself is on a level with the summit of the pubic arch, the bladder being in the natural condition above the pubes, and the direction of the urethra is backwards and upwards, or the same as the lower part of the anterior wall of the vagina, in which it is embedded. The urethra may be felt rolling like a cord under the finger between the vaginal wall and the symphysis pubis.

There are two or three modes of finding the urethra in catheterism, without exposing the patient—a matter which, of course, should always be avoided, if possible. The woman may be placed on her back or on the left side, and the attendant having found the anterior commissure, with the index finger of his left hand, should pass the finger down lightly over the clitoris to the

bottom of the vestibule, when he may feel the borders of the raised meatus, and, with a cultivated sense of touch, the aperture in its centre may be made out. The catheter should be passed over the point of the finger, which may be used both as a director, and to steady the parts into the canal, when it generally passes readily into the bladder, the handle of the instrument being a little depressed while it is passing. It must be remembered that the meatus is an aperture in a mucous surface, and it may be searched for with the point of the catheter, if the canal is not readily found. Occasionally, however, the meatus is in a state of firm contraction, and must be hit exactly in order to pass the catheter. This spasmodic contraction of the meatus, and of the whole canal, is met with in hysterical subjects. In another and better mode of performing the operation, the accoucheur first finds the cord-like urethra in the upper wall of the vagina, and withdrawing it, feels for the meatus with the index finger of one hand, at the angle formed by the lower part of the vagina and the vestibule, and introduces the instrument with the other. In a third mode, the operator knowing the relation of the meatus to the pubic arch, and possessing tact and experience, goes to it at once, the patient being on her left side, with the knees raised. In this way only one hand need be used. It scarcely need be said that the latter is the most perfect method of operating, and one which all should aim at being able to perform.

Various circumstances alter the anatomical relations of the meatus and urethra. The meatus may be so flaccid and relaxed that it is found with difficulty; or after painful and lingering labors, the external parts may become so swollen from inflammation, and the effects of pressure, as to render it no easy matter to find the urethra by the touch alone. In prolapsus, occurring during pregnancy, the direction of the meatus becomes altered so as to point towards the sacrum, or coccyx. In retroversion the meatus in drawn upwards, and the direction of the upper part of the canal is turned backwards and downwards, while in anteversion of the gravid uterus the urethra is dragged upwards; but the upper part of the canal is turned more forwards than usual. In the unimpregnated state, the urethra is displaced by ovarian tumors, fibrous tumors of the uterus, and by the various alterations of position to which the uterus is liable.

Sometimes one of the mucous lacunæ, close to the meatus, may be so enlarged as to admit a small-sized catheter, and the opertor may suppose he has reached the bladder, while the instrument is really in a cul-de-sac. The length of the urethra and the possibility of this mistake should always therefore be borne in mind. An inexperienced hand may pass the instrument along the upper floor of the vagina, but the sides of the urethra, or a slight clasping of the instrument by the canal, will generally assure the operator that he is in the right passage.

The instruments used are, a common number 8 or 10 male catheter, with or without a stilette; a gum-elastic catheter very similar to the male catheter, except that it is somewhat shorter, and a flattened silver catheter. The stop of the silver catheter is perfect, and the urine can be drawn off by it without wetting the patient; but during labor, when this is not of so much consequence, a gum-elastic catheter is to be preferred, and if used without a stilette, it is scarcely possible for any accident to occur. It should be seen that the apertures of the catheter are free, and the point of the instrument should be dipped in oil or glycerine. The catheter should be held gently in the fingers, being lightly poised rather than grasped, and no force should be used, as both bladder and meatus have been perforated accidentally. It should be borne in mind that in case of difficulty it is far better to expose the patient than to use force, or incur the risk of injury.

Immediately below the orifice of the meatus is the Ostium Vaginæ, slightly oval in form, and of variable diameter, according to age, childbearing, etc. In the Virgin this opening is partly closed by a membranous fold, constituting the Hymen, which is commonly crescentic in form, the concave free border being turned upwards. Sometimes the hymen is deficient or wanting altogether, either congenitally or as the result of accident, so that its absence is no absolute proof of intercourse. In other cases it is circular in shape, or possesses several cribriform openings, or it may be thickened and imperforate. During intercourse this membrane is generally ruptured; but cases occur in which it is so strong and resisting, that surgical interference in the shape of a crucial incision is required. In some women, on the other hand, it is so distensible, that it readily yields, instead of tearing, and remains unbroken, even after perfect and habitual intercourse. This may account for the circumstance mentioned by Parent Duchatelet, that in some prostitutes the vagina resembles the virgin state. Rupture of the hymen is by no means necessary to conception, as impregnation is known to occur through the cribriform hymen, or when only a very small aperture exists. Usually, after intercourse, the place of the hymen is occupied by several fleshy eminences, termed the Carunculæ Myrtiformes, which some anatomists believe to be formed by the cicatrization of the ruptured hymen, while others, as M. Rigaud, believe them to consist of reduplications of the mucous membrane, which exist before the loss of the hymen. There is a considerable amount of contractile tissue in the situation of the carunculæ, and in some cases the irritation and spasmodic painful contraction at this point is so great as to render intercourse difficult or impossible long after marriage.

Externally to the carunculæ, on each side, and on the surface of the nymphæ, are two small openings, admitting the point of an Anel's probe, which are the ducts of the Vulvo-Vaginal Glands. These glands, which were known to Bartholine and Duvernay, and called after their names, have recently been described with much accuracy and minuteness by M. Huguier. They are seated on each side of the vulva, outside and below the bulbi vestibuli, and in shape and size have been compared to apricot stones; their ducts are about half an inch long. The vulvo-vaginal glands secrete a clear albuminous mucus, of a penetrating odor during intercourse, which Huguier and Scanzoni believe can be ejaculated by the involuntary contractions of the neighboring muscles. These glands are considered the analogues of Cowper's glands in the male. M. Huguier points out that they may be the seat of abscess, or of encysted tumor, from obliteration of their ducts.

The **Perinaum** is the space between the posterior commissure and the margin of the anus. To the obstetrician the anatomy of this part is matter of great interest; though it must be confessed, that the anatomy of the male perinaum has been cultivated somewhat to the neglect of that of the female. In the ordinary state it is from an inch to an inch and a half in length, but during labor it elongates to twice or four times this size. At the fourchette, the perinaum is comparatively thin, but towards the anus it is of considerable thickness. It is composed chiefly of skin, cellular tissue, muscular fibres, and the

mucous membrane of the vagina. There are certain peculiarities in the arrangements of the muscles of the perinæum which deserve notice. They are all inserted by at least one extremity into tendinous structures and fasciæ. This occurs with the sphincter ani, levatores ani, coccygei, transversales perinæi, erectores clitoridis, and sphincter vaginæ. The fibres of many of these muscles are indistinct as compared with other muscles, and are mixed up with a considerable quantity of elastic dartoid tissue. These circumstances greatly facilitate the dilatation of the perinæum at the time of labor. It must be borne in mind that the perinæum has a two-fold function; one to dilate during the passage of the child; the other to support the pelvic viscera under other conditions. When its structures are rigid and undilatable, we have the danger of laceration; and when its dilatability is excessive, the patient is liable to prolapsus and other displacements of the uterus and vagina. A similar arrangement with regard to insertion holds good in the case of the abdominal muscles, and facilitates their distension by the gravid uterus during pregnancy. (Fig. 10.)

1, Sphincter Ani; 2, Tendinous point of Perinæum; 3, Sphincter Vaginæ; 4, Transversus Perinæi; 5, årector Clitoridis; 6, Aponeurosis: 7, Levator Ani; 8 Gluteus-maximus.

The **Vagina** extends between the internal and external parts of generation; but as it is concerned with the latter in coitus, and bears no share in the development of the ovum, it may be conveniently described with the external organs. This canal is

slightly curved, the concave surface being upwards and forwards, and its direction is nearly that of the outlet, and lower portion of the middle, of the pelvis. The anterior wall of the vagina is about four inches long, the posterior being five or six inches in length. This is partly on account of the greater length of the lower curve, and partly because of the way in which the uterus is inserted into the vagina. The axis of the uterus is nearly the same as the axis of the inlet of the pelvis, so that the uterus is inserted, as it were, into the anterior wall of the vagina, while the posterior wall is prolonged behind the os uteri. This canal is longer in virgins than in women who have borne children, particularly multiparæ. It is also longer in the middle months of pregnancy than in the beginning, or towards the termination of gestation. It is elongated in some cases of fibrous or ovarian tumor, when the tumor is supported above the brim of the pelvis, and raises the uterus with it. The diameter of the vagina varies in different parts of the canal, being smaller at the outlet than in the middle and upper portions. In ordinary cases, the sides of the vagina are in contact; and this acts as a valvular arrangement for preventing the access of air to the uterus. As regards structure, the vagina is composed of an external, middle, and mucous coat or tissue. The external layer consists of cellular tissue, which connects it anteriorly with the bladder and urethra; laterally with the levatores ani, and posteriorly with the rectum and the peritoneum. The connection with the peritoneum is in the upper and posterior fourth of the vagina, where the peritoneal cavity dips down between the vagina and the rectum. The middle coat is dense and fibro-cellular, and is similar in structure to the proper uterine tissue, with which it is continuous at the os and cervix uteri. It has been compared by Cruveilhier and other anatomists to the During pregnancy, it partakes of the growth of the uterine muscular tissue, though in a less degree. The mucous lining of the vagina has upon the mesial line of its anterior and posterior surfaces two ridges, termed the columnæ rugarum. From these two columns folds of mucous membrane project at nearly right angles, the folds being most numerous at the lower part of the passage. The ruge of the vagina are most distinct in virgins, less so in women accustomed to intercourse, and they nearly or altogether disappear in women who have borie children. The vagina also becomes smooth in virgins after the time of childbearing has passed. The objects of the ruge are to yield an extensive surface for sensation, and to provide for the distension of the canal during labor. Examined microscopically, the vaginal mucous surface is found to be studded with vascular papillæ, which have been described and figured by Dr. Franz Kilian, and which are probably the seat of the great sensibility of the organ. The whole surface is covered by a thick layer of tessellated or squamous epithelium. Writers on the subject generally describe the vagina as containing great numbers of mucous follicles, which are supposed to secrete the mucus which lubricates the vagina at ordinary times, and especially at the time of parturition. In my own examinations, I failed to find any large number of glands, except at the outlet of the vagina; and with this exception, the mucus of the vagina is, I believe, produced by the epithelium, and consists of plasma and epithelial particles. The secretion of the vagina, as pointed out by M. Donné, and Dr. Whitehead, of Manchester, is distinctly acid. The acid secretion is believed to be serviceable in preserving the fluidity of the menstrual secretion, and thus of facilitating its escape from the vagina. It has also an antiseptic effect, and tends to prevent the decomposition of coagula. It likewise contributes, with the ruge of the vagina, to stimulate the penis during coitus. Besides the coats of the vagina already described, it is surrounded, particularly near the outlet of the passage, with a plexus of veins, resembling erectile tissue; and it possesses a muscle, the sphincter vaging, arising from the tendinous point of the perinæum, inclosing the bulbi vestibuli, and inserted into the clitoris. A fasciculus of the muscle crosses the vena dorsalis, and aids in promoting the turgescence of the clitoris. The arteries of the vagina are branches of the internal iliac, and the veins empty themselves into the internal vein. It derives its nerves from the hypogastric plexus, and from the third and fourth sacral nerves.

The vagina resembles skin almost as much as mucous membrane, and in cases of procidentia, where it is exposed, it becomes converted into dermoid tissue. The chief functions of the vagina are as an organ of sensation and introception, and as a canal for the passage of the fœtus and the catamenial secretion. It undoubtedly possesses some contractile power, both voluntary

and reflex. This is seen in the expulsion of coagula during menstruction, and after parturition, and on the introduction of the speculum. The vagina also contracts with considerable force during the passage of the child, and it sometimes expels the placenta after labor.

It may be necessary to say a word respecting the physiology of Coitus, as regards the female. The sexual orgasm of the male is well recognized. We know that it begins with excitement of the glans penis, and ends in spasmodic contraction of the vesiculæ seminales and ejaculatores muscles, this contraction being attended by the sensorial orgasm. The female is considered "passive," both by Professor Muller and Dr. Carpenter, during coitus, but this is a great mistake. The sexual "paroxysm" in the female was fully recognized by John Hunter, and is as distinct as that of the male. It begins in the clitoris, and ends in an orgasm or paroxysm of sensation. Whether the sensation produces any spasmodic reflex action is a question. Is the ejaculation of the secretion of the vulvo-vaginal glands described by M. Huguier, the analogue of emission in the male? Whytt and the older anatomists believed in the contractions of the Fallopian tubes during intercourse. Of the existence of the sensorial orgasm there can be no doubt, and its absence constitutes impotence in the female. It should be observed, however, that the orgasm is not at all necessary to conception. Women to whom Heberden applied the term "frigida" conceive as well as those who are perfect in this respect. Impregnation consists in the meeting of the spermatozoa and the ovule, and can never take place at the moment of coitus. The union of the male and female elements of reproduction in the uterus or Fallopian tubes is no more attended by sensation than the conjugation of the Gregarinæ.

An account of the external organs of generation would not be complete without a description of the **Mammæ**, from which the infant derives its nourishment for some time after birth. The mammary glands are placed upon the pectoralis major muscle on each side, extending from the third to the seventh rib. This situation, which is in great measure peculiar to the human female—the mammæ being, in the vast majority of animals, placed upon the abdomen—is evidently adapted to the nursing of the infant while supported in the arms of its mother. These

glands are hemispherical in shape, the external aspect being convex, the posterior, flat or slightly concave. The left breast is generally the larger of the two, and is more used in nursing. Each gland is enveloped in a fibrous or dartoid capsule, which dips down between the various portions of the gland, and is surrounded by a considerable quantity of adipose tissue.

The intimate structure of each gland consists of numerous lobes, which are divisible into smaller and smaller lobuli, until we arrive at the ultimate follicles of which the substance of the gland is composed. The follicles and ducts are covered with a layer of epithelium. It is by the growth and multiplication of the nuclei, and the bursting of the epithelial cells, which have been found by Professor Goodsir to be filled with milky fluid, that the lacteal secretion is produced. These follicles or vesicles, having cæcal extremities, empty themselves into small tubes, which unite with each other, and proceed in a tortuous course towards the centre of the gland, becoming larger and larger, and terminating in from ten to fifteen galactophorous tubes, which are collected together, but without much inosculation, near the base of the nipple. As they approach the nipple, they dilate, to form sinuses or ampullæ, which act as reservoirs for the milk. Underneath the nipple they contract again, and pass by separate ducts to the surface of the mamilla, where their openings are found in depressions of the mucous membrane. The lactiferous tubes are wanting in valves, but are closed at their external apertures.

The surface of the gland is covered by delicate integument, and at its summit is placed the nipple, which in the virgin, or in women who have not borne children, is conoidal in shape, but in nursing women assumes a flattened or cribriform appearance at its extremity. The site of the nipple is on a level with the fourth rib. This, the most vascular part of the breast contains a certain quantity of erectile tissue, which makes the nipple turgid, and tends to dilate the openings of the milk-ducts, under irritation. The turgescence is generally accompanied by pleasurable sensations, the surface of the nipple being covered by numerous nervous papille. The sensation of "the draught," which is excited by emotional causes, the suckling of the child or, as a reflex action, by the ingestion of blood, or drink into the stomach, and is felt in the nipple, and is fol-

lowed by a rapid secretion of milk. The nipple contains a considerable quantity of dartoid contractile tissue, which is probably concerned in the closure and dilatation of the milk ducts. The action of this tissue and the capsule covering the gland contributes to the expulsion of the milk. The base of the nipple is surrounded by an areola of a pinkish hue in the virgin, but in the pregnant woman pigment cells are deposited in it, and the areola becomes darker in color. On the surface of the areola are numerous small tubercles, or sebaceous glands, which secrete a fatty matter, intended to defend the nipple during lactation. Sudoriferous glands are also found upon the areola.

The mammary glands receive their supply of blood from the thoracic intercostal, internal mammary, and epigastric arteries. The veins are those accompanying these arteries. Around the nipple, the veins are arranged in a circular manner, the circulus venosus of Haller. During pregnancy, as Mr. Nunn has pointed out, owing to the interference with the internal circulation by the pressure of the gravid uterus, the circulation through the internal

1, Galactophorous ducts. 2, Lobuli of the Mammary Gland.

mammary and epigastric arteries, and the veins of the surface of the abdomen and thorax, is very much increased—a mechanical condition which probably contributes to the development and supply of the gland during gestation. The nerves are chiefly branches of the intercostals. The lymphatics are very numerous, and maintain connections with the lymphatics of the axilla, anterior and posterior mediastinæ, and other parts. These lymphatics are believed to absorb the watery portions of the milk when first secreted, and it is to these vessels that we address ourselves when we endeavor to diminish the quantity of the milk by frictions.

LECTURE III.

THE INTERNAL ORGANS OF GENERATION.

Gentlemen:—The Uterus is, in an obstetrical sense, by far the most important of all the organs of generation. It is in this viscus that the ovum is received, retained, and nourished until the fœtus becomes fitted for extra-uterine existence, and to the physiological action of this organ its expulsion at the end of utero-gestation is mainly due. The following description will

have reference chiefly to the unimpregnated uterus.

In shape the Virgin or Nulliparous uterus is pyriform. Dubois describes it as a cone compressed from before backwards, and compares it to a flattened calabash, the base of which is directed upwards, and the orifice downwards. The uterus is placed in the middle of the upper part of the pelvis, its direction being the same as that of the pelvic inlet. It is situated above the vagina, and below the ilium, having the bladder in front, and the rectum behind it. Thus the inferior part of uterus has a vaginal, and the upper part a peritoneal aspect. The lower part of the organ consists of the Os uteri, possessing an interior and posterior lip, and constituting the outlet of the uterus as regards the catamenial secretion and the products of impregnation; and its inlet, with respect to coitus, and the fertilization of the ovum. Above the os uteri is situated the Cervix, and the highest part of the uterus is called the Fundus, the upper and middle portion being termed the Body. The cervix and body contain a canal and cavity, but the great bulk of the organ consists of its walls, which are of considerable thickness. The external surface of the uterus is in part covered by mucous membrane, and in part by peritoneum, the rest of its superficies being occupied by attachments to other organs. The uterus is from two and a half to two and three quarters of an inch in length its breadth being, from one Fallopian tube to another, about an

inch and a half, or an inch and three quarters. At the cervix the breadth of the uterus is about an inch. From before backwards its greatest diameter is about an inch, and the greatest thickness of its parietes, which is in the middle of the body, is about half an inch. The anterior surface of the uterus is somewhat flattened, the posterior being convex.

The os uteri is circular or somewhat oval in form, its transverse diameter being generally greater than the antero-posterior. Of the two lips of which it is composed the anterior is the lowest, so that it hides the posterior lip as well as the orifice. The fissure itself is, in the nulliparous uterus, not circular, but transverse, the external angles of the rima being directed backwards, like the mouth of a fish. It is from this peculiarity that it derives its name of os tinca.

The canal of the cervix is fusiform in shape. There is a slight constriction at the os uteri, and a more considerable narrowing of the canal at the os uteri internum, or the point at which the canal of the cervix enters the cavity of the body. The cervical canal is flattened from before backwards, and is about an inch and a half in length. It is lined by the mucous membrane, which is arranged in a peculiar manner. When the cavity of a virgin cervix uteri

1, Cavity of the body; 2, Canal of cervix; 3, Opening of Fallopian tubes; 4, Penniform rugæ: 5, Os uteriinternum; 6, Fundus.

is laid open, the internal surface is generally found to contain four columns of rugæ, arranged more or less in a transverse direction. The reduplications of the cervical mucous membrane may be

compared to an open book, and the names penniform rugæ, palmæ plicatæ, and arbor vitæ internus have been applied to them. These rugæ are separated by four grooves or sulci, two of which divide the anterior from the posterior walls; the other two, which are most marked, being upon the median line in the anterior and posterior walls. There are from ten to fifteen rugæ in each column. These rugæ, and the spaces between them, are everywhere covered by such multitudes of mucous cysts or follicles, that, on a moderate computation under a power of eighteen diameters, ten thousand mucous follicles are visible in a well-devoloped nulliparous organ. The cervix uteri may in effect be considered as an open gland. The rugæ are evidently a provision for the dilatation of the mucous membrane in the latter months of pregnancy, and during parturition. They also provide an extensive secretory surface. The objects of the secretion are to keep the cervix uteri impermeable in the ordinary state, to provide a fit medium for the ascent of the spermatozoa, to furnish the plug which fills the cervix during pregnancy, and to secrete the mucus which lubricates the os uteri and vagina during labor. The secretion consists of mucous corpuscles and plasma, having a distinct alkaline reaction, while the secretion of the external portion of the os is decidedly acid. The limits of the acid and alkaline secretion are determined by the presence of squamous or cylindrical epithelium.

Frg. 13.

View of the glandular cervix uteri laid open.

The cavity of the body of the nulliparous uterus is triangular in shape, the base of the triangle being above and the apex below. At the two superior angles, the Fallopian tubes enter the uterus,

while at the inferior angle the canal of the cervix communicates with the body of the organ. The angles leading to the Fallopian tubes are grooved; and at the middle of the triangular space the anterior and posterior walls of the body of the uterus project internally. The thinnest part of the walls of the uterus is at the entrance of the Fallopian tubes: the thickest is at the middle part of the fundus, and the parietes of the body opposite the middle of its triangular cavity.

Perhaps the most remarkable structure of the uterus is the mucous membrane which lines the cavity of its body. It is, in the healthy condition, pale in color about a line in depth, and forms a thin layer, one aspect of which is free, the other being closely united to the proper tissue of the walls of the uterus. If the surface of the unimpregnated womb be examined with a

A, Uterus laid open; 1, Mucous membrane of uterus; 2, Substance of the uterine walls.

B, A single gland from the mucous membrane of the uterus; 1, Cæcal extremity; 2, Mouth of the gland.

lens, numerous points are visible, which are openings of the glands of the mucous membrane. The openings are given by Kolliker as one-thirtieth of a line in diameter. These glands are tubular, and slightly coiled upon themselves, closely resem-

bling the glands of Lieberkuhn in the intestine. Their general arrangements, and that of the connective tissue around them, is concentric, the open mouth of each gland being upon the surface of the mucous membrane, and its cæcal portion deeply seated in the attached surface. Sometimes the utricular glands are double, or two glands may open upon the mucous surface by the same outlet. These glands are supposed by some to secrete mucus. Dr. West, for instance, supports the view that in leucorrhœa much of the discharge is, in certain cases, derived from these glands. Some believe they secrete the menstrual fluid. Others affirm that they elaborate the material out of which the decidua reflexa is formed. The latter, which is the opinion of Professor Goodsir, Dr. Sharpey, and Kolliker, is probably the correct one.

The mucous surface of the uterus is covered by an epithelium. In the cavity of the body this is cylindrical and ciliated. The cilia vibrate from below upwards, and probably assist the ascent of the spermatozoa. In the cervix, the cilia are not always present, and at the margin of the os, at the lowest part of the canal of the cervix, the cylindrical epithelium ceases, the whole of the vaginal aspect of the os and cervix being covered by squamous epithelium, similar to that of the vagina. Underneath the epithelium, club-shaped papillæ or villi are everywhere found. Each villus consists of one or two looped bloodvessels and a cellular envelope, the whole being covered by epithelium. These villi are larger within the os uteri than upon its external surface, but they are less numerous in the upper part of the cervical canal, and the cavity of the body. At the os uteri these papillæ appear to possess special sensation of a sexual character. It is also probable that they play a part as excitors of reflex and peristaltic action.

According to the recent researches of Kolliker, Kilian, Mr. Rainey, and others, the substance of the uterus is made up of connective tissue and a vast number of fusiform fibre cells, fibre germs, or embryonic nucleated cells, having the power of development into non-striated involuntary muscular fibres. The diameter of these cells is about 4000 th of an inch, and their length is somewhat greater, so that they are slightly elongated in shape. In the unimpregnated uterus, under ordinary circumstances, the fibre cells or germs remain quiescent, and are not the subject of any increase in size. On the occurrence of impregnation, the

growth of a polypus in the uterus, or any continual irritation of the cavity or walls, the embryonic fibre cells commence a career of growth and multiplication. These fibre cells are of great importance, as it is entirely to their development that the gravid uterus owes its contractile properties. They may be compared to the derivative germ cells by which lost parts are reproduced in the lower animals, and which, but for the loss which calls forth their development, would forever remain inactive. In the case of the uterus, unless impregnation or some other stimulus be applied, these germ fibres remain through life in a rudimentary state. In the unimpregnated condition, it is probable that the germ fibres or fibre cells are in a more advanced state in some uteri than others, particularly in multipara. met with in which the uterus expels coagula, or the dysmenorrheal membrane, by contractile efforts, even in the unimpregnated condition. It is probable that, by relaxation of the fibre cells of the os and cervix, and contraction of those of the body, the os uteri may be opened and matters expelled from the

cavity of the virgin uterus.

The difference between the virgin or Nulliparous uterus and the Multiparous organ have been very strongly insisted upon by M. Paul Dubois. The term nulliparous is evidently to be preferred to that of virgin uterus, as intercourse without impregnation exerts no influence upon the anatomical characters of the organ. In the multiparous uterus the anterior and posterior surface of the body is more rounded. The fundus, instead of being flat, is convex, so that there is a considerable protuberance above a line drawn from tube to tube. The vaginal portion of the neck is altered, being more conical and elongated. The os uteri, instead of presenting a transverse fissure, is rounded or puckered in shape. The depression felt by the finger is more evident, and the orifice is considerably larger. These changes in the os uteri are most evident in women who have borne large families. They are imitated to a slight extent in nulliparous women who have been subject to inflammatory conditions of the os uteri, dysmenorrhea, polypus, or any of the conditions which excite the growth of the organ. The uterus which has been fully developed by gestation never returns, unless as a morbid condition, to the size of the nulliparous organ. Meckel gave the weight of the nulliparous organ at seven or eight drachms, and the multiparous at an ounce and a half. The diameters are all increased in the multiparous organ. The interior of the uterus also offers some remarkable differences in the two organs. The cavity of the body of the multiparous womb is considerably enlarged. The os uteri internum is less distinct, and the canal of the cervix is shorter, the penniform rugæ being to some extent obliterated. The cavity of the body, instead of being distinctly triangular, is oval in shape, the angles into which the Fallopian tubes enter having entirely disappeared. These changes are not without practical importance. Their consequence is obvious in a medico-legal point of view. A few years ago a lady of family

Section of the Nulliparous and Multiparous uterus.

and her maid were burnt to death together in a hotel at the West-end. The bodies were so mutilated as to render any recognition by external signs impossible; but the lady had borne a numerous family, and the identity of her body was ascertained from the condition of the uterus. Again, in the return of the uterus to the unimpregnated state after parturition, the involution of the organ may be so excessive as to produce amenorrhæa and sterility, or which is more frequent, it may be incomplete, and give rise to menorrhagia.

The uterus is supplied with blood by four arteries, the two ovarian, or spermatic, and the two uterine. The upper part of organ is supplied by the ovarian, and the lower by the proper uterine vessels. In the substance of the uterus they run a very tortuous course, anastomosing very frequently. The veins correspond to the arteries. Their walls are very thin in the uterus,

, Fig. 16.

External view of the Nulliparous and Multiparous uterus.

and they possess no valves. They communicate with the veins of the bladder and vagina, and empty themselves into the iliac and ovarian veins. The lymphatics are numerous but of small size before impregnation, and chiefly enter the lumbar glands. The uterus is principally supplied with nerves by the hypogastric and sacral nerves, and by branches from the ovarian plexus; but I propose to enter into the question of the nervous supply of the uterus when I come to treat of the increase of the various tissues of the gravid uterus, and of the motor endowments of the parturient organ.

The Fallopian Tubes extend on each side from the upper angles of the uterus towards the brim of the pelvis. Each tube is from four to five inches in length. The first direction is upwards and outwards; it then passes downwards, backwards, and inwards. The tubes can be felt as a cord-like structure in the broad ligament, the uterine half being thicker than the external or ovarian half. They are pervious throughout, the diameter of the canal being smallest at the uterine extremity. At the entrance to the uterus it, however, readily admits a fine whalebone stilette. At the distal extremity, or ostium abdominale,

each tube terminates in the corpus fimbriatum-a fringe-like structure, which may be compared to the tentacles of a polyp. In the centre of the circular fringe is seated the ovarian aperture of the tube, considerably larger in size than the ostium uterinum. One of the fringes, or a separate ligamentous band, generally connects the Fallopian tube with the ovary, but the aperture and the general mass of the corpus fimbriatum floats loosely in the neighborhood of the ovary. The internal surface of the tubes is lined by the mucous membrane of the uterus. It is thrown into longitudinal folds, so as to admit of dilatation, and is covered by ciliated cylindrical epithelium, the movements of the cilia being from the ovarian towards the uterine extremity. The mucous membrane of the tubes is thin, and devoid of villi or glands. The middle coat of the Fallopian tubes is continuous with the middle coat of the uterus, the fibres being more developed, and arranged as an external and longitudinal, and internal and circular layer, fitted for the vermicular or peristaltic movements which the tubes are called upon to perform. These layers are intermixed with connective tissue, similar to that found in the stroma of the ovary and the middle walls of the uterus. The external surface of the tubes consists of the peritoneal folds, constituting the ligamenta lata. (Fig. 17.)

The unimpregnated uterus, ovaria, and Fallopian tubes. * Round Ligaments.

As regards the function of the tubes, the ciliary currents and the muscular contractions combine to convey the impregnated or unimpregnated ovum from the ovarium to the uterine cavity. The tubes are really to be considered as the oviducts of the human economy. When they fail of their office in the impregnated condition, we have extra uterine gestation as the result. There is scarcely

anything more mysterious in the range of physiology than the grasping of the ovary by the fimbriated extremity of the tube where there is an impregnated ovum to be conveyed to the uterine cavity. At the time of impregnation there is not merely a grasping of the ovary but the tube must be applied to precisely the spot upon the ovarium from which the ovulum is about to emerge. How is this selection to be accounted for? It is evidently one of those reflex actions in which excitor and reflex stimuli are in such exact and exquisite relation as to stimulate the perfect effects of volition. Perhaps it is not more wonderful than what occurs in the case of the polyp. When a particle of food is placed on any part of the surface, the filaments of the oral fringes turn with precision to the foreign matter, and grasp it for conveyance to the interior of the animal. It appears either as though the different parts of the ovary were in exact relation with the corpus fimbriatum, or that when the ovarian stimulus has excited the fringes to contractions upon the ovarian surface, only that part of the ovary is firmly grasped which is in a state of irritation, such as that which attends the maturation or escape of an ovulum. During menstruation, the Fallopian tubes have been found firmly grasping the ovaria by Gendrin and other observers. embrace of the ovaria is favored by the turgescence and rigidity which the tubes assume under excitement, as observed by Cruikshank, and which directs them towards the ovaria.

The Ovaria are the analogues of the testes in the male, and constitute the dominant organs of the female generative system. They are two flattened bodies, somewhat oval in form, or tending to a crescentic shape. Their length is considerably greater than their breadth, but the upper surface is slightly convex, and the lower somewhat concave. They are situated in the posterior fold of the broad ligament, and behind the Fallopian tubes. ovaria are about half an inch thick, three-quarters of an inch wide, and from an inch to an inch and a half long. connected, as already mentioned, to the corpora fimbriata, and a ligament attaches them to the uterus, near the insertion of the Fallopian tube. This ligament, the Ligamentum Ovarii, connects the stroma, or parenchyma, of the ovarium with the proper tissue of the uterus. These organs are entirely covered by peritoneum, except at the hilus, where the nerves and vessels enter, but are directly enveloped by a white fibrous tunic, the

tunica albuginea, analogous to the membrane of the same name in the testis. The tunica albuginea incloses the proper structure or stroma, of the ovary, which is reddish-white in color, and similar in constitution to the proper fibrous structure of the uterus. Scattered about in the stroma of the ovary, but particularly towards the external surface, numerous small vesicles are found, varying in size from a pin's head to a small pea. These are the Graafian vesicles, or follicles, as they should more properly be called. There are generally from ten to twenty, or more, in, or near, a state of maturity; but a far greater number of small vesicles are visible by the aid of the microscope, and are constantly passing on to maturity to replace those lost by the periodical rupture of the most advanced follicles. The ovaria must be considered as two follicular glands. Each Graafian follicle represents the ultimate tubule, or follicle, of a secreting gland, from which it differs only in being closed, except at the time when it discharges its contents. This tendency to the formation of closed vesicles, or follicles, extends to other parts of the generative system. It is met with in the Fallopian tubes, in the cavity of the body and cervix, at the os uteri, as in the case of the Nabothean follicles, and even in the vagina. The minute anatomy of the Graafian follicles will be given in a subsequent lecture, in connection with the subjects of ovulation and menstruation. The ovaria are supplied with blood by the spermatic and uterine arteries, which enter at the lower border, and after numerous divisions, take a serpentine course in the stroma, and are distributed to the tunica albuginea, the stroma, and the walls of the Graafian follicles. The veins follow the same course, and empty themselves into the uterine and internal spermatic veins. The lymphatics are few in number. The nerves are fibres derived from the renal and spermatic plexuses.

Section of Human Ovary showing the formation of Graafian follicles. Twice the natural size.

The lower part of the uterus is attached to the bladder and rectum by folds of the peritoneum, which are sometimes called the Anterior and Posterior Uterine Ligaments. The peritoneum, reflected upwards, covers the anterior and posterior surfaces of the uterus, inclosing the organ between two layers of this membrane. These layers meet together at the sides of the uterus, and pass off to the lateral walls of the pelvic cavity, dividing the pelvis transversely. In this way, the peritoneum forms the principal part of the Broad Ligaments of the uterus. fibrous or muscular structure of the uterus itself also extends into these ligaments. They contain besides, the Fallopian tubes, the ovaria, the Round Ligaments, with bloodvessels, nerves and lymphatics. The round ligaments arise from the upper angles of the uterns, in front of the Fallopian tubes. From this origin, each ligament passes to the inguinal ring, descends the inguinal canal, turning round the epigastric artery, and its fibres are inserted into, or united with, the structures of the mons veneris. The length of the round ligament is from four to five inches. The external transverse fibres of the proper substance of the uterus are prolonged into the round ligaments, of which they form a constituent part. Some fibres of the internal oblique muscle also enter the lower part of the canal, and extending upwards, contribute to the formation of the ligament. ovaria have been shown to be connected with the uterus, at the point of insertion of the Fallopian tubes, by a fibro-cellular cord or ligament, prolonged from the proper substance of the uterus. Thus the fibroid embryonic muscular tissue of the uterus is continued from below into the vagina, and above into the ovaria, Fallopian tubes, and the broad and round ligaments. This arrangement probably facilitates the great displacements of the vagina, tubes, ligaments, and ovaria, which occur physiologically during the growth of the gravid uterus. The growth of the muscular tissue in these several parts allows of their elongation without injury or rupture.

[The student will be enabled to get a better idea of the relative position of the organs in the recent pelvis of the virgin, as represented by Dr. Kolrausch. The subject was a young girl of 21 years of age, who committed suicide while menstruating. The specimen was prepared in such a way as to enable Dr. Kolrausch.

rausch to see it while lying in a bath of alcohol, covered with a glass plate; looking downward through a diopter, firmly fixed 24 inches above the glass plate, he used a pen dipped in prin-

ter's ink, softened with oil of turpentine, and drew every one of the lines with the utmost exactness on the intervening plate of glass—seeing them through the diopter; so that they could not, perhaps, be more correctly taken by a photograph. The copper-plate was copied from the drawing.

To the right is the buttock, (1) covered with the bisected sacrum

(2), in front of which is the rectum (3), which has been opened by the incision. In the left, behind the os pubis (4), is the bladder (5) with its urethra (6). Between the bladder and the rectum is the tube of the vagina (7), surmounted by the uterus (8), whose summit or fundus does not rise quite so high as the plane of the superior strait. The womb rests upon the upper end of the vagina, which incloses its cervical or neck portion, and keeps it up in its place by means of its connection with the bladder in front and the rectum behind, and more than all by means of two utero-sacral ligaments, which tie the upper ends of the vagina and womb to a certain place about an inch and a half in front of the apex of the sacrum. I may here say, that as long as the utero-sacral ligaments remain in a healthy state, preserving by their tone a due length, the womb cannot fall downwards or prolapse, because the cervix, being inclosed within the upper end of the canal of the vagina, it cannot move down unless the upper end of the vagina moves down also. Douglas's cul-de-sac (9) is a deep pocket between the gut and the womb, sometimes increased by frequent coition, and especially observable in prostitutes, to double or triple its natural length, as here represented. It is into this place into which the fundus uteri falls when it is quite turned over backward or retroverted. Let the student, therefore, comprehend that the posterior wall of Douglass cul-de-sac is the rectum and sacrum; its anterior is the womb and upper posterior end of the vagina, and its right and left walls, the right and left utero-sacral ligaments. wish him to understand this on account of its importance in retroversio uteri and in prolapsus of the bowels; but also from the danger in passing the blade of a forceps behind the os uteri through this "recto vaginal space," into the cavity of the peritoneum, almost certainly producing the death of his patient. It is through this "space," that Dr. Sims has passed a catheter for the purpose of drawing off the fluids effused and creating irritation after operating for the radical cure of ovarian dropsy.

Most plates intended to represent the inner female genetalia in situ exhibit the fundus uteri on a level with or above the plane of the strait. Kolrausch's drawing is the most beautiful and correct that has yet been produced, and gives to all the internal organs their absolute right place.]

LECTURE IV.

OVULATION.

GENTLEMEN: -The mature Graafian follicle is about the size of a small pea. It is formed of two layers—one internal and fibro-cellular in structure; the other external and vascular, consisting of the condensed ovarian stroma. The external surface of the ripe vesicle is also covered by the indusium of the ovary. It is the internal membrane which forms the proper ovisac. The ovisac is lined by a granular layer of epithelium. Altogether, the envelope of the follicle may be considered as a mucous membrane, and the Graafian follicles constitute the mucous follicles of the ovarian glands. Graafian follicles appear in the ovary at or soon after birth, being at first small, and distributed throughout its structure; but they gradually increase in size, and at puberty the largest follicles are found upon the surface of the organ. From this time to the decline of the catamenia a succession of Graafian follicles ripen and find their way to the surface of the ovarium, when they rupture and discharge their contents, chiefly at the catamenial periods. Each follicle contains a clear fluid, similar to the serum of the blood, in which are granular particles and nuclei derived from the epithelial lining. When De Graaf, of Delft, in Holland, described, in 1673, the follicles, which have since borne his name, they were supposed to be the actual ova of mammalia, though anatomists were at a loss to account for the small size of the impregnated ova occasionally found in the uterus and Fallopian tubes, as compared with the ovarian vesicles themselves. But in 1827, Von Baer, of St. Petersburg, discovered the true Ovule within the Graafian vesicle, and since that time the relations of the ovule to the other contents of the ovisac have been carefully examined by many distinguished anatomists. I may here mention that, in speaking of the unimpregnated state, it will be

more precise to use the word Ovule, or Ovulum, reserving the term Ovum for the ovule after the occurrence of fecundation. It may also be observed that a close analogy exists between the ova of all animals, so that observations made upon one class of animals have a general application, and the history of the human ovule has been made out partly by the study of the ovule in the human female, and partly by the light thrown on the subject by researches in comparative anatomy. At first, and while the Graafian follicle is imbedded in the ovary, the ovule is found in the centre of the vesicle. At this time the semi-transparent and albuminous matter and granules contained in the follicle have the following arrangement. The granules are accumulated in the form of a layer on the internal surface of the ovisac, so as in a great degree to resemble an epithelial lining. This layer has been termed the Membrana Granulosa. Immediately surrounding the ovule, another granular layer is found, which has been called the Tunica Granulosa. Passing between these two layers are certain granular bands constituting the Retinacula which retain the ovum in its place. When the follicles mature and approach the ovarian surface, the ovules also rise towards the free surface of the follicles, as Dr. Martin Barry believed by the contractions of the bands of the retinacula on the superficial aspect of the vesicle; while the membrana granulosa and tunica granulosa now become fused together near the surface of the

Fra. 19.

Section of two Graafian Follicles enlarged about eight diameters. p. Peritoneal covering; $s \, t$, Ovarian Stoma; $o \, v$, the two Layers of the Ovisac; $m \, g$, Membrana Granulosa, or epithelial lining of the Ovisac. Around the ovum this membrane is seen forming the Proligerous Disc.

ovisac. The ovule thus becomes imbedded in an aggregation of granules, which is named the **Cumulus Proligerus**, or proligerous disc. If the Graafian follicle were spread out, we might

consider the ovule as lying upon the surface of a mucous membrane, and enveloped in an accumulation of granular or epithelial matter.

Passing to the description of the ovule itself, it is found to measure about $\frac{1}{200}$ th of an inch in diameter, and to consist of an external membrane, Zona Pellucida, or vitellary membrane, a vitellus or yolk, and a cell, which is termed the Germinal Vesicle or germ cell. As regards size and position, the germinal vesicle bears much the same relation to the ovule as the ovule does to the Graafian follicle. The yolk of the mammiferous ovule is very small, as compared with the yolk of birds and amphibia. In the mammalia, the yolk consists of elementary granules, all or nearly all of which are exhausted in the early germinal processes of the ovum after impregnation has taken place; while in the ovipara the yolk is composed of two kinds of material, the one consisting of granular particles, similar to those of the mammalian ovule, and termed the Germ Yolk; the other, and larger portion, of fat globules, intended for the nutrition of the ovum during incubation or early development, and termed, in contradistinction to the former, the Food Yolk.

The germinal vesicle was first discovered in the ovule of the bird by Purkinje, of Breslau, in 1825, and when the mammalian

Frg. 20.

Human Ovule.
1, Germinal Vesicle;
2, Yolk.

ovule became known, the vesicle of Purkinje was soon sought for, and found by M. Coste. In man and mammalia, the germinal vesicle is about the one-sixtieth of a line in diameter. Within the germinal vesicle itself is contained another important element of the reproductive process. In 1835, Rudolph Wagner, of Göttingen, and Mr. Wharton Jones, in this country, discovered con-

temporaneously, a nucleus or collection of fine granules in the interior of the germinal vesicle, which has been called the Machla Germinativa, or germinal spot. In some animals the macula is nuclear in character, while in others the germinal spot consists of a mass of small granules. This addition to our knowledge of the ovule brought the germinal vesicle within the category of ordinary nucleated cells.

The macula germinativa is the nucleus or centre of the whole of this wonderful organism, and it may be useful to trace the anatomy of the nature of a mature Graafian folliele from within outwards. Surrounding the germinal spot, we have the germinal vesicle. On the outside of the germinal vesicle there is the yolk, inclosed in the vitellary membrane. These structures, taken collectively, constitute the ovule. The ovule itself is contained in the Graafian follicle, but it does not remain in its centre, this being occupied by the liquor folliculi. The ovule is seated in a cumulus, or mamelon of granular epithelial matter, constituting the proligerous disc, and forming part of the lining membrane of the follicle. On the outside of this membrane there are the fibro-cellular and vascular layers of the follicle; and lastly, upon its free surface, the indusium, or ovarian portion of the peritoneum.

When the Graafian follicle is ready to shed the ovule, it pro-

trudes slightly above the surface of the ovary, and the rupture of the follicle is apparently caused by an increase of the liquor folliculi, or fluid secreted by the epithelial lining of the ovisac. The gradual distension of the follicle causes a thinning of its fibrous and vascular walls, and of the indusium, until at length it bursts. The ovulum has at this time approached the apex of the projecting part of the

Fig. 21.

Germinal Vesicle and Macula Germinativa.

follicle, and is discharged with the liquor folliculi, surrounded by the granular matter constituting the proligerous disc. If the Fallopian tube is applied to the ovary, the ovulum at once passes into the oviduct. At this step of the process, we may recognize the glandular structure and function of the ovary. When the peritoneum and membranes of the ovisae are perforated, and the sug-

Fig. 22.

Ruptured Graafian follicle, with the escape of the Ovule.

escent embrace of the ovarium by the Fallopian tube occurs, the channel from the uterus to the ovary is quite as unbroken as that

from the bladder to the kidney. The ovisac is now the cæcal extremity of a glandular follicle, and the tube is its excretory duct.

At this point the question occurs as to the mode in which the ovule is formed in the Graafian follicle. The earliest condition in which the follicles are seen in the embryo is in the shape of a spherical mass of cells, containing the germinal vesicle in its centre. From the external cellular mass is developed the membranes of the follicles, its epithelial lining, and the vitellary membrane. It is a question whether the germinal vesicle is formed or secreted by the cells forming the follicle, or whether its nucleus exists at the time the spherical arrangement of the cells takes place, the follicle being developed around the germinal vesicle and its nucleus. Some believe, with Huschke, that the ova are formed of acini, detached from the substance of the stroma of the ovary; others hold, with Dr. Martin Barry, that they are formed from the nuclei found in great numbers in the ovarian parenchyma. The latter seems most in accordance with the facts know respecting the origin of the ovary. ing to this view, the germinal vesicles and their nuclei exist from the earliest formation of the ovary, and the follicle is developed for the purpose of maturing and sustaining the ovule, and finally of extruding it from the ovarium when it has become fitted for impregnation.

Frg. 23.

Follicle from the ovary of a newly-born child. 1, Structureless thelium, or Membrana Granulosa; 3, Yolk; 4, Germinal Vesicle; 6, Vitellary Mein-

The comprehension of the mode in which the ovule escapes periodically from the Graafian follicle, was arrived at quite as slowly, and occupied as many observers as the anatomy of the ovule itself. Harvey drew a comparison between menstruation and the oviposition of birds. In 1672, Kerkringius advanced the idea that ova, at that time supposed to be identical with the follicles of De Graaf, were thrown off at the time of menstruation. Membrane of Were thrown on at the time of menstruation. The Follicle; 2. Epi- first positive observation of the rupture of a Graafian follicle, during menstruation, appears to have been made by Sir Everard Home. Cruikshank, in 1797, described the case of a woman who had died during menstruation, and in whom the external

membranes of the ovary were ruptured at one point. He supposed that from this opening an ovum had escaped into the Fallopian tube. But these were isolated cases. The first body of

facts bearing upon the matter was supplied by Dr. Robert Lee, whose first dissection was made in 1831. Dr. Power had, ten years previously, published his hypothesis respecting the periodical escape of the ovule, at the catamenial periods. But, as we have seen, the discovery of the ovule, by Baer, was made in 1827. This discovery, which was not recognized by Dr. Lee, soon rendered the rupture of the Graafian follicle an intelligible fact, and the theory of Ovulation in the human female, and in the manmalia, has been completed by the researches of Pouchet, Négrier, Martin, Barry, Gendrin, Raciborski, Coste, Bischoff, and others.

It may now, then, be considered as an established fact in physiology, that during menstruation, or the rut or heat of animals, Graafian follicles are ruptured, and ova discharged. In the human female, it is believed that in ordinary cases the ovule escapes towards or shortly after, the termination of the menstrual flow, through the pore or fissure found in the peritoneal surface of the ovary. Sometimes an ovule escapes frem each ovary, or more than one ovule may escape from the ovary of either side. The observations of Dr. Ritchie and others have shown that ova, probably of immature formation, may escape before the time of puberty, and occasionally Graafian follicles are ruptured in the intervals between the catamenial periods. In some cases, the excitement of the ovary during menstruation may not be sufficient to cause the perforation of the follicle so as to admit of the escape of the ovule. The ovule has been detected in the Fallopian tube in persons who have died during or shortly after menstruation, by Dr. Letheby and by Hyrtl. The time occupied in the descent of the ovule through the Fallopian tube and uterus is not known precisely, and can only be inferred from the number of days after menstruation at which conception may take place. It is evident that several days must elapse before it escapes from the uterus. In the case of virgin or infertile ovulation, it is uncertain whether the ovule becomes decomposed or is discharged externally. Before the advent of puberty, the surface of the ovary is smooth, and the organ comparatively full and large; but at each menstruation, one or more perforations occur, and the organ becomes, in process of time, scarred with numerous cicatrices; so that, in the aged female, it is shrunk and corrugated with the remains of the

numerous follicles which have been ruptured during the whole of the child-bearing epoch.

Certain changes occur in the Graafian follicle, or ovisac, at, and subsequent to, the time of ovulation. These changes are more marked when impregnation has occurred, than in cases of virgin ovulation, and result in the formation of the Corpus Luteum. At the time of the escape of the ovule, there is a greater afflux of blood than usual to the membranes of the ovisac, a clot of blood is effused into its cavity, and, according to the views of M. Pouchet, the epithelial lining, or membrana granulosa, undergoes a remarkable development. This membrane becomes thickened by a cell-formation, the hypertrophied cellular layer being at first of a reddish color, but afterwards becoming yellow. The yellow matter is arranged in the form of plice, which diverge from the cavity towards the circumference of the ovisac. The new formation is gradually thrown into folds, or corrugations, by the contraction of the ovisac, and becoming thicker as the development of the corpus luteum proceeds, its internal surfaces at length are brought into contact. In this way the stellate cicatrix found in the centre of the true corpus luteum is formed. Before this apposition has occurred, the fibrinous clot has been decolorized, or converted into fluid, and in either case absorbed. The substance of the corpus luteum is soft, fleshy, and friable, and is permeated with numerous vessels from the external surface of the ovisac, so that the true corpus luteum admits of being ejected from the vessels of the ovary. It should be said, that although little difference of opinion exists as to the appearances presented by the corpus luteum, numerous hypotheses have been advanced as to the mode in which the yellow layer, constituting its chief bulk, is formed. The latest evidence appears, however, to be in favor of its origin in the membrana granulosa. Dr. Lee contends that it is a deposit external to the lining membrane, and Mr. Wharton Jones joins him in his opinion. Knox, Miller, and Dr. Dalton regard it as a hypertrophy of the outer membrane, while Kolliker considers it to depend partly upon enlargement of the epithelial lining, and partly upon that of the internal or fibro-cellular layer of the ovisac.

In size and shape the true corpus luteum, that which follows upon impregnation, resembles a small bean, and projects from

the surface of the ovary as a mamillary body, occupying from one quarter to one half of the entire superficies of the organ. It is largest in the early weeks of pregnancy, and after the third month it slowly decreases in size until the time of parturition, when it rapidly retrogrades, and at length becomes a mere scar. Its cavity is obliterated, at a variable time, being found in some

Section of the Ovary, showing the Graafian Vesicle at the third month of gestation.

cases after labour. It is at first filled with a clot, or serum, or the remains of the liquor folliculi, and the aperture through which the ovule has escaped sometimes remains pervious for a considerable time after impregnation.

Diagram of the formation of the Corpus Luteum in a Mammifer. a, The cavity of the follicle filled with blood; b, c, The clot diminishing in size, while the epithelial lining becomes thickened and convoluted; d, e, f, Completion of the process.

Upon the escape of an ovule from a Graafian follicle in the virgin, the changes described occur, but to a less extent than

when impregnation has taken place, and a false corpus luteum is formed. The membranous layer is less considerable, and instead of being of a yellow tint, is of a dull-red color. According to Dr. Dalton of New York, who has earefully investigated this subject, it reaches its greatest development about three weeks after ovulation, and from this time rapidly disappears, leaving no vestige of its existence beyond a small sear. In the ease of the virgin corpus luteum, other Graafian follieles are passing on to maturity, pari passu with its development, whereas in the true corpus luteum the occurrence of gestation suspends the maturation of ovules. As a general rule, the virgin corpus luteum is much smaller than the genuine formation, but eases occur in which the spurious equals the true corpus luteum in size. The differences between the corpora lutea of the virgin and of the impregnated female show that in the case of the latter there is at the time of ovulation a greatly increased vascularity, and that during gestation the corpus luteum shares in the excitement incident to the gravid uterus. Other formations besides the corpora lutea of the nulliparous female have been mistaken for the true corpora lutea. Small tubercular masses are sometimes found having a certain resemblance to these bodies, and after the decline of the eatamenia, the follieles which have not reached maturity during the era of child-bearing, collapse, and form cicatrices which have sometimes been thought to resemble the genuine corpora lutea.

LECTURE V.

MENSTRUATION.

GENTLEMEN: - During the whole of the child-bearing era, women are the subjects of a sanguineous discharge every month, except during the times of pregnancy or lactation. The advent of this discharge is the chief external sign of the appearance of puberty, and it occurs in temperate latitudes at about the age of fifteen. In former times, the most exaggerated notions were entertained respecting the influence of climate in determining the early or late appearance of the catamenia. It was supposed that towards the arctic circle the catamenia occurred only in mature womanhood, and were then frequently represented by a colorless discharge, or only appeared during the summer months, while in the torrid zone, children of tender age became wives and mothers. These views have been corrected by modern researches, and especially by the investigations of Mr. Roberton, of Manchester. The results of his inquiries, and those of other observers, show that the difference between the date of the first appearance of the catamenia in the Hindoo female, in whom the influence of heat of climate is strongly marked, and the natives of this country, is about two years; the average age at the first menstruation being about thirteen in Hindostan, and fifteen in England. In Labrador a table of the first appearance of the menses has been obtained by Mr. Roberton, and the mean age, at the first menstruation, is nearly sixteen. Probably this variation of three years between the Hindoo and the Esquimanx female is amongst the greatest that can be obtained, as the result of climatorial influence, in different parts of the world. A variation of three years in the time of the commencement of a function occurring between the ages of thirteen and sixteen, and lasting about thirty years, is, however, a very considerable one; and, while correcting old errors, we must be careful not to

ignore the real effects of climate and temperature in hastening or retarding puberty. Dr. Tilt has made a very extended inquiry into this subject, and the results of his tables show that there is an average difference of nearly three years between the date of the first menstruation in hot and cold climates. Perhaps if any criticism could be ventured upon respecting the valuable work of Mr. Roberton, and those writers who have adopted his views, it would be, that they have somewhat tended to make the influence of climate upon the functions of reproduction seem less than they undoubtedly are.

It is found that other agencies, besides those of climate, affect the age at which menstruation commences. The catamenia appear earlier in the children of the rich than of the poor. influence of a large manufacturing town like Manchester hastens the appearance of puberty. M. Brierre de Boismont ascertained that menstruation begins earlier in Paris than in the smaller towns of France, and in these again at an earlier age than in the wholly rural districts. Raciborski believes that race has an influence upon puberty, apart from climate—as, for instance, that the English child, reared in India, menstruates at the time she would have menstruated in this country; but if a Hindoo child be brought to England, she will menstruate as early as though she had remained in Hindostan. It is also believed that Jewish females menstruate earlier in cold latitudes than the ordinary population. Probably climate, hygiene, temperament, and race all exert an influence in promoting or retarding puberty, but within a narrower range than was formerly supposed. Cases are met with occasionally of children menstruating, and having sexual feeling at a very early age; but these must be considered as irregularities, having but little bearing on the function as ordinarily performed.

The decline of menstruation, termed the **change of life**, or catamenial elimacteric, generally occurs between the ages of forty-five or fifty, consequently the catamenial era spreads over from thirty to thirty-five years. The time of the decline varies in different individuals; sometimes it occurs as early as thirty-five, or even before that age; at others it lasts up to sixty or even beyond. Putting thirty years as the time during which a healthy female should have the menstrual periods, and supposing them to occur every month, their number would be three

hundred and ninety; 30×13-390. But in married and childbearing women, much of this time is occupied in gestation and During pregnancy, as the rule, the catamenia are absent, the cases in which a regular sanguineous discharge occurs during the whole of pregnancy being exceedingly rare. A discharge of blood for one or two periods after the occurrence of impregnation is more common. The great majority of women do not menstruate during lactation, but menstruation during suckling is by no means so unusual as the occurrence of this function in pregnancy. Many women habitually menstruate as regularly during lactation as at other times. It has been remarked by many observers, that the intellect of women does not reach maturity until after the final cessation of the catamenia; and it has been instanced as a sign of the superiority of the human race, that only a limited portion of the life of a female should be devoted to child-bearing.

It is necessary to possess exact ideas respecting the times of the occurrence of a periodical function like that of menstruation. The catamenia, or menses, as the names imply, are said to return once a month in ordinary cases. Some authorities speak of solar, others of lunar months, as the period observed by the catamenia. Strictly speaking, the Solar month—that is, the time occupied in the passing of the sun through one of the signs of the zodiac-is nearly thirty days and a half. The Lunar month, or the time between one new moon and another, is twenty-nine days and a half. The Calendar month varies from twenty-eight to thirty-one days. The catamenial month is different from any of these, and consists of the common month of four weeks, or twenty-eight days, dating from the commencement of one period to the commencement of another. This is the ordinary periodicity observed by the catamenial function, or that which obtains in the great majority of women. Many females become unwell on the same day of the week for a long time, without any irregularity. In women who menstruate two or three days only, the interval between the cessation of one period and the beginning of another, is longer, and in those who are many days unwell, shorter; but the length or brevity of the discharge does not usually affect the time of its return. In some women, the monthly periodicity is so continuous and exact, that the times between successive pregnancies, if reduced to days, are found to be multiples of twenty-eight. Cases are not uncommon, however, in which the catamenia return regularly at longer or shorter intervals than twenty-eight days, some women being unwell every six weeks, and others every two or three weeks, but there is generally a tendency to observe some multiple of a week. In some habits, a leucorrhead discharge constantly occurs, and lasts for three or four days at the fortnightly interval between the regular periods. Although there is a very general tendency to regularity in the performance of this function, it is very common to find occasional variations to the extent of a few days.

Each "Period," as it is now common with educated women to call the monthly discharge, lasts usually in healthy women four or five days. Five days may be taken as the ordinary duration of the catamenial flow; but every woman has her constitutional peculiarity in this respect, some menstruating two or three days only, others always remaining unwell a week or more, such variations in women of different temperament and constitution being quite within the limits of health. The catamenial fluid consists chiefly of the blood, modified to some extent by the ordinary secretions, and matters derived from the uterus and vagina. This is the result both of microscopical and chemical examination. The menstrual fluid has been examined with the microscope by MM. Donné, Pouchet, Dr. Hassal, and others. It has been found to consist of blood globules and the fluid parts of the blood, with mucus from the glands of the cervix, cylinder epithelium, and granular matter from the cavity of the uterus, and scaly epithelium from the vagina. Dr. Whitehead has pointed out that the menstrual fluid as it escapes from the os uteri is alkaline, but that it becomes acid when mixed with the acid vaginal secretion, and this acidity, as formerly mentioned, tends to prevent its coagulation and decomposition in passing through the vagina. The menstrual fluid has been examined chemically by MM. Denis, Franz, Simon. Bouchardat, Rindskopf, and Dr. Letheby, and shown to consist chiefly of the elements of blood and mucus. An estimate of the amount of the discharge has been made by Dr. Meigs, who rates it at from four to six ounces at each period; but this can only be approximative in the case of a loss which, like the number of days through which it continues, varies in different individuals. It was long supposed that menstrual differed from ordinary blood in the absence of fibrine in the former. It is now, however, understood that the cause of the non-coagulability of the catamenial fluid, and the apparent deficiency of fibrine, depend on the acid secretions of the vagina.

[The importance of this physiological distinction in the character of the menstrual secretion, was recently recognized in a legal aspect. During the recent coroner's inquest on the oceasion of the Burdell murder, certain articles of male apparel were found to be bloody, thereby implicating certain individuals to whom they appertained. A scientific examination showed conclusively that they were stained not with the blood of the murdered man, but with the menstrual non-coagulable blood, filled with epithelial scales, etc., of some one of the females of the house.]

When contraction of the os uteri exists, and the menstrual blood does not escape readily, it coagulates in utero, and is expelled with pain in the form of clots; or, if the fluid is in quantity sufficient to neutralize the effects of the vaginal mucus, it coagulates after its escape externally. I use the terms "discharge" "loss" or flow," in preference to that of secretion, because the catamenia are essentially different from the products of any secretory process.

The Influence of Menstruation, and the allied process of ovulation, upon the female economy is very great. The beauty of form incident to womanhood; the marked characteristics of the female sex; and the development of the affections, are intimately connected with, and dependent upon, the healthy appearance and performance of these periodical functions. The periods are commonly preceded by hypogastric and lumbar uneasiness or pain, tumidity of the breasts, a dark appearance round the eyes, and a peculiar smell, especially adverted to by M. Pouchet, and which has been termed the vaccine odor. There is also in many women a tendency to relaxation of the bowels for a day or two before the discharge appears. Women are generally more hysterical and irritable at this than other times. These symptoms are all relieved by the healthy catamenial flow; personal loveliness is improved, and a new stimulus is imparted to all the organs of the body.

The condition of the whole uterus is modified at the eatame-

nial periods. The determination of blood to the organ renders it larger and darker in color than it is at other times. firmer to the touch, and lower in the vagina than usual. The Fallopian tubes partake of the turgescence, and have been observed almost black from engorgement. In ordinary cases, the canal of the cervix and the os uteri are somewhat dilated at, and for a few days subsequent to the menstrual date. This renders it easier to introduce the uterine sound just after the period than at any other time. In other cases there is a sphincteric contraction of the os uteri, similar to tenesmus, which constitutes one of the forms of dysmenorrhea. For a short time after the flow there is a marked increase of sexual feeling, and many women in whom the aphrodisiac tendencies are moderate, state that they have little or no feeling at other times. The intention of this increased sexual sensibility, at the time when the ovule is ready for impregnation, and the uterus to receive the products of fecundation, is sufficiently evident. It is at this time also, in those whose feelings are intense, and unbridled by the higher qualities of the mind, that aberrations in regard to sex, and tendencies to nyphomaniacal excitement, occur. It is indeed difficult to say in many cases of this kind, how much should be attributed to disease, and how much to moral delinquency.

The Cause of Menstruation must be referred to the ovaria. These are the prerogative and ruling organs, a point insisted upon with great force and justice in the writings of MM. Pouchet and Chereau in France, and Dr. Tilt in this country. is found that in women with a proper development of the ovaria, breasts, and external organs of generation, and in whom the sexual feeling is strong, but in whom the uterus is congenitally deficient, a monthly nidus occurs, consisting of pain in the back. and other symptoms which indicate that ovulation occurs regularly, although no sanguineous discharge takes place. In these distressing cases there is occasionally a show from the vulva, or an attack of epistaxis, or bleeding from some other part, at the periods of ovarian excitement, but nothing like the menstrual flow. On the other hand, in cases where the ovaria have been extirpated, menstruation is effectually arrested, although the uterus remains perfect. This happened in a case in which Mr. Pott removed the ovaries in an operation on a patient at St. Bartholomew's Hospital. Dr. Frederick Bird has also informed me.

that in a case in which he removed both ovaria, in double ovarian disease, and where the patient recovered, permanent amenorrhœa was the result. We may look, then, to the ovaria for the exciting cause of menstruation, and this function is evidently subsidiary to that of ovulation.

Symptoms in some degree analogous to those of menstruation occur in the lower animals at the dates of ovulation. A comparison has been made between the menstruation and the determination of blood to the comb of the domestic hen, the genitals of the pigeon, and birds of the parrot tribe. In many of the lower mammalia, discharges from the genitalia take place at the time of the rut or heat, during or immediately after the occurrence of ovulation. In some of the quadrumana, sanguineous discharges have been observed; and it is believed that in the monkeys the cestrum has a monthly periodicity. Dr. Hille, a Dutch physician of Surinam, possessed a female monkey, which was the subject of a sanguineous discharge, lasting three or four days, every month. In others, as the Macacus libidinosus, the callosities near the anus, and the whole of the parts below the tail, become periodically of an intensely vivid red color, and present an appearance, to use the words of M. Coste, of an immense phymosis. The phenomena of cestruation are more marked in wild than in domesticated animals, and in those which only estruate once a year, the date of estruation occurs at such a time as to admit of the completion of gestation and parturition in the spring season. Little is known of the gestation of the quadrumana; but in the lower mammalia, the changes which occur in the lining membrane of the uterus could not well be the same as those belonging to the human female, because in the lower animals that which answers to the decidua of the human female is a permanent organ.

Divers opinions have been held respecting the exact Source of the Menstrual Flow. It has been referred to the ovaria, the Fallopian tubes, the cavity of the body of the uterus, the os and cervix uteri, and the vagina. Very recently, M. Ch. Judee has published the result of three autopsies of women who died near the menstrual period, in which he states that the mucous surface of the os was abraded, and he considers this a proof that the menstrual blood comes from the lips of the os uteri. I have no doubt these were really cases of abrasion, or ulceration, of

the os uteri, and in such cases there is at the menstrual period a discharge of blood from the diseased surface, as well as from the interior of the uterus. In such cases the os uteri becomes, for a time, a menstrual ulcer, and the secretion of pus is converted into a discharge of blood. All the exact evidence we possess points, however, to the cavity of the body of the uterus as the true seat of menstruation, and source of the discharge. The catamenia may often be seen escaping from the os uteri, in examinations with the speculum. In cases of procidentia the whole process may be watched, and in these cases the fluid always comes from within the uterus. In cases of inversion, we have a still more positive proof, as the blood may be seen exuding from the surface of the inverted organ. The commencement of the flow at each period takes place very gradually. In examining patients, I have sometimes seen the first trace of the sanguineous discharge at the os uteri, but it has been twelve hours or more before it has appeared externally. The quantity of discharge being at first small, it passes down the vagina very slowly. Probably the period ceases in the same gradual manner, and has disappeared from the os uteri some time before the discharge is lost at the ostium vaginæ.

Within the last two years I have had opportunities of examining three uteritaken from women who had died during the catamenial flow. In each of them I found the mucous membrane of the body of the uterus either in a state of dissolution or entirely wanting. In one case, that of a woman previously in good health, who died suddenly from a fit of apoplexy while menstruating, and whose uterus was kindly sent to me by Mr. Filliter, of the Marylebone Infirmary, the mucous membrane was altogether gone. At the upper part of the cervix uteri the break in the mucous membrane was very apparent. In the cervical canal the mucous membrane was perfect; but at the os uteri internum, it ceased as abruptly as though it had been dissected away with a knife above this point. Blood was oozing at numerous points from broken vessels in the sub-mucous tissue. I had the assistance of Dr. Handfield Jones in examining this uterus with the microscope, and we could find no traces of the epithelium or of the utricular glands. The surface of the cavity of the body of the uterus was exactly similar to that which may be seen after abortions, in which the decidua, or in other words the developed

mucous membrane, has been discharged. The sub-mucous surface was a pulpy mass, in which epithelium, the ends of vessels,

Uterus of a woman who died from apoplexy during the catamenial flow. The whole of the mucous membrane of the body of the uterus is wanting,

broken tubes, blood globules, and mucous corpuscles were all that could be distinguished. I compared this uterus with that of a woman who had died after an abortion at the third month, and the appearances in the two cases were precisely similar.

[March 11th, 1857. I saw the nulliparous uterus of a young murdered woman, death occurring from loss of blood, exhibited by Dr. Finnell to the New York Pathological Society. This and every organ, was blanched in the extreme. One ovary exhibited the corpus luteum of a menstruation some four weeks anteriorly, containing a clot not yet entirely changed in color. The other ovary showed the Graafian follicle almost ready to burst, the peritoneum over it thin and highly injected. The os uteri was in a perfectly natural condition and with no flow from it or exudation from its lips. On laying open the uterus, the mucous membrane of the body was found highly injected and covered with a glairy, bloody effusion. The cavity of the neck, however, contained not a drop of fluid and did not seem to be

in the least injected. It showed, in short, the uterus prepared for menstruation, which had not however occurred.]

The State of the uterine mucous membrane during menstruction has occupied many observers. It has generally been described as thicker and more swollen during the catamenia than at other times. It should be mentioned, however, that descriptions of the uterus a few days before or after the menstrual flow can have little bearing upon this subject, and it is a rare occurrence to get the uterus of a woman who has died in the middle of healthy menstruation. No safe conclusions can be drawn from the cases in which women suffering from severe disease have a sanguineous discharge from the uterus at the time of death. Professor Simpson, in 1846, in his paper on the expulsion of the entire mucous membrane in certain cases of dysmenorrhea, drew a comparison between ordinary menstruation and the process of digestion, in which the epithelial layer is shed and removed after every meal. M. Pouchet has supposed that a decidual membrane is formed during each catamenial period, and discharged in the shape of an albuminous plug ten or twelve days after the cessation of the flow. . Kolliker states that the mucous membrane becomes thickened during menstruation, the blood escaping from the ruptured superficial capillaries and that the epithelium of the cavity of the body is in great part thrown off; but he considers it as abnormal if the whole or part of the entire mucous membrane should be detached. compares the change in the mucous membrane of the uterus during menstruation to moulting, attended, perhaps, by the formation of a new epithelium. A case recorded by Dr. Janser has been often quoted. It was that of a girl murdered four days after menstruation. He describes the mucous membrane as somewhat thickened, and easily lifted from the surface by the handle of the scalpel. It was composed of the utricular glands, arranged perpendicularly, side by side, and covered by cylinder epithelium. This observer concludes that during menstruation the mucous membrane of the uterus presents the same characters as in the early part of gestation. Such cases, however, really prove nothing with respect to the condition of the mucous membrane during the actual presence of menstruation. In an organ like the uterus, the most important changes may occur in the space of four or five days.

It appears to me to be in accordance with what I have observed in uteri examined during the menstrual period, the facts connected with membranous dysmenorrhæa, and the detachment of the decidua in abortion and parturition, to suppose that the mucous membrane is in great part or entirely broken up, and its débris discharged during each menstruation. The blood is probably exuded during the breaking up of the mucous structure, and the duration of the menstrual period represents the time occupied in this periodical decadence and renewal of the mucous membrane of the body of the uterus.

In cases of Membranous Dysmenorrhæa we have proof of the exfoliation of the mucous membrane in an entire form, or in detached pieces. This may occur every month for many years, a new mucous membrane being developed after each menstruation. After abortions and after parturition we know that the old mucous membrane is thrown off, and a new one formed. According to the view I have stated, a new mucous membrane is formed every month as part of the process of preparation for the reception of a fecundated ovum; not that the aptitude for the reception and implantation of the ovum is limited to the newly-formed mucous membrane, though it is probably greater at this time than at others. The mucous membrane may become the seat of the changes consequent upon impregnation just before a menstrual period, and in cases where menstruation is suspended. According to my view, the mucous membrane of the uterus becomes excrementitious every month, and is discharged from the cavity of the uterus in a state of disintegration, and the uterus forms a new mucous coat, by a process similar to the reproduction of lost parts.

Such a doctrine may at first sight appear startling, but we have always had a similiar condition, during the menstrual period, under our eyes, in cases of vicarious menstruation. In these cases, an ulcer upon any part of the surface of the body may skin over, or assume healthy granulations, during the intervals of menstruation, but on the occurrence of the period, the newly formed skin gives way, or the healthy granulations slough, and blood exudes from the surface for several days; after which the ulcer heals, or puts on a healthy aspect, until the approach of the next catamenial period. I have at the present time a patient with a menstrual ulcer upon the dorsum of the tongue,

in whom the sore heals partially or entirely between the periods, but at the catamenial dates the surface gives way, the sore becoming deepened, and exuding blood, while the catamenia are We have only to consider similiar phenomena as occurring to the mucous membrane of the body of the uterus, and we have a reasonable explanation of the mode in which this peculiar function is performed.

[It may be well to state distinctly that these views are far from being generally accepted by the scientific, and the student should read them cum grano salis. A forthcoming work by an American of great distinction, who I am not at liberty to mention, will probably throw some new light upon this questio vex-

ata as well as upon that of feetal circulation.]

LECTURE VI.

CONCEPTION, AND THE EARLY DEVELOPMENT OF THE OVUM.

In a former lecture we traced the anatomy of the Ovule up to the point of emission from the ovarium, considering it chiefly with reference to ovulation and menstruation in the unimpregnated state. It now becomes necessary to study it in relation to the act of fecundation, and the early changes which occur in the impregnated condition. As the ovule approaches maturity, and makes its exit from the Graafian follicle, a remarkable change occurs in the germinal vesicle. It is believed by almost all observers, either to disappear or to become entirely transformed. Dr. Martin Barry asserts that it does not disappear, but returns again to the centre of the ovule, where it becomes changed by a process of cell-development, and ends in producing two cells in the centre of the yelk, from which cells the embryo is afterwards developed. It appears from the latter researches of Mr. Newport, that there is a partial return of the germinal vesicle towards the centre of the yelk, and that considering the germinal vesicle as a parent cell, its nuclear particles, which form the germinal spot, are developed into secondary cells; these again into cells of tertiary formation, and so on, until the germinal vesicle has been transformed into a mass of cells, which leads to the rupture and diffluence of the parent cell, or germinal vesicle. From some one of these cells it is believed that a larger cell, the future Embryo-cell occupying the site of the macula germinativa, and constituting the true Germinal Point of the future being, is developed. It is, however, as yet uncertain whether the embryo-cell, or vesicle, which replaces the germinal vesicle, is formed just before or just after, the act of fecundation.

It is necessary in this place to glance briefly at the male element of impregnation. The part of the seminal fluid actually

97

required for conception is the Spermatozoa. For a long time the spermatozoa were thought to be distinct animalcules, but they are now known to be particles, sui generis, developed within the seminal cells found in the secretion of the testis before it leaves the gland. While they remain within the cells, these filaments are arranged in bundles, but in the passage of the fluid from the gland through the efferent apparatus, the cells rupture and set free the spermatozoa. Each spermatozoon consists of an oval and flattened body, and a filamentous portion, or tail. The width of the body is about $\frac{1}{6000}$ part of an inch, and the length of the entire particle is from $\frac{1}{400}$ to $\frac{1}{600}$ of an inch. Kolliker believes the spermatozoa to be allied to ciliated cells, and they move in the fluid semen or traverse the mucous membrane of the genital passages, by a succession of smart lashing movements. It has been proved by direct experiments, such as filtering the semen, and using the spermatozoa, and the pure liquor seminis, the impregnation of the ova of amphibia, that it is the spermatic particles and not the liquor seminis which are the real agents of fecundation.

Thus, then, on the part of the female, we have the ovule produced in the ovarium, the essential part of which is the germinal vesicle or germ cell. On the part of the male, we have the spermatic fluid, the essential part of which is the seminal vesicle, or sperm cell, produced in the testis. The bundle of spermatic particles, or spermatozoa, formed in the germ cell, correspond

a,b, Sperm cells, containing nuclei, each nucleus having within it a spermatic filament. c, A nucleus with nucleoli. d, Nucleus, with spermatic filament. e, A cell, with a bundle of spermatic filaments. f, g, h, Spermatic filaments.

with the nuclear particles forming the macula germinativa, or germinal spot, of the germ cell. The spermatozoa may be con-

sidered, in fact, as the nuclear particles of the germ cell. The bursting of the sperm cell and formation of the spermatozoa, on the one hand, and the development of the nuclear particles of the germ cell into the cellular mass which occupies the place of the germinal vesicle after its rupture, is the highest point of development to which the male and female elements can reach, if fecundation does not occur. It will be observed that several generations of cells have followed upon the germinal vesicle and its nucleus, before the ovule has been rendered ripe for impregnation; and the spermatozoa are also the secondary or tertiary products of the cells found in the secretion of the testis.

We now approach the act of Fecundation or Impregnation, and recent researches have gone far to solve this, one of the most mysterious processes in the arcana of Nature. In the fecundation of the vegetable ovum, it has long been known that the moving spermatic particles of the pollen cell penetrate the ovum, and unite with the contents of the germ cell. Prevost and Dumas believed that the spermatozoa penetrated the ovum bodily, and became metamorphosed into parts of the future embryo. In 1843, Dr. Martin Barry published, in the "Philosophical Transactions," an account of the actual penetration of the ovum of the rabbit by the spermatozoa, and he demonstrated the fact to the satisfaction of Dr. Sharpey, Mr. Owen, and Mr. Grainger. He believed that the spermatozoa penetrated the volk, and there became divided into many parts. The following figure from Dr. Barry's paper represents the spermatozoa after they have entered the ovum:

An ovum of the rabbit, taken from the Fallopian tube, twenty-four hours after leaving the ovary.

1. Zona pellucida.

2. The germ, consisting of two large cells. Several smaller cells, and numeruos spermatozoa, are visible.

This view of Dr. Martin Barry was combated by many observers, particularly by Bischoff. Mr. Newport, in his first investigations into the impregnation of the ovule of the frog, published in 1851, did not agree with Dr. Barry. He believed that the moving spermatozoa approached the ovule, became applied to the surface, and disappeared in that situation by a process of diffluence or disintegration. He subsequently modified this opinion, and became convinced that the spermatic particles are imbedded in the walls of the ovule and perforate the vitellary membrane in large numbers. Keber discovered that in the fresh-water muscle the spermatozoa pass into the interior of the ovum by a canal or opening in the walls of the ovum. The researches of Keber have been verified by Dr. Martin Barry and Dr. Webb, of Lowestoft, and confirmed by Meissner and others. Müller has described a funnel-shaped canal in the ova of every species of Holothuria, having probably the same function. Lastly, Dr. Nelson has investigated the reproduction of the Ascaris Mystax, an entozoon found in the intestine of the cat, and demonstrated the penetration of the ovule by the spermatic particles in the clearest manner. These observations of Dr. Nelson have also the high authority of Dr. Allen Thompson in their favor. It may be considered, then, as proved that the spermatozoa penetrate the ovum, and come into positive contact with the contents of the germ cell. Impregnation does not, however, depend on the penetration of the ovule by one spermatozoön, but by considerable numbers of spermatozoa. Mr. Newport found that the greater the number of spermatozoa in apposition with an ovule the more certain its fecundation became. Dr. Nelson observed that in the ascaris mystax a sufficient number penetrated the chorion and vitellary membrane, to form a ring around the germinal vesicle. It is not by the influence of particle upon particle, but of mass upon mass, that the phenomena of impregnation are accomplished. After the penetration of the ovule, the spermatozoa lose their motor power, become disintegrated or dissolved, and disappear; not, however, until they have communicated to the ovum that wonderful force which leads to the formation of a future being, but without which the ovule dies like any other simple animal cell.

The ovule having thus been converted into the Ovum by the process of fecundation, we have now to speak of the earliest

phenomena observed in the development of the new organization. The first change which is known to occur is the cleavage or segmentation of the yelk. The embryo cell first elongates, then becomes violin-shaped, and afterwards separates into two cells by spontaneous fission—an observation first made by Swammerdam. With this division of the embryo cell the yelk divides into two masses, and the two cells are now in the centres of the two portions of the yelk. By a similar process, the two cells divide into four, and these again into eight, and so on, the yelk combining with the individual cells, until the process of segmentation is completed, and the product of the embryo cell and the yelk form together a homogeneous mass of cells, termed from its endowments the Germ-mass, and which, from the appearance it presents, has been called by some authors the mulberry mass. In the formation of the germ-mass, the cells have evidently multiplied by the assimilation and conversion of the yelk. This germ-mass is the plastic material out of which the whole organization of the fœtus is gradually evolved.

A Ovum, with the first embryo cell. B, Division of embryo cell, and cléavage of the yelk round it. C, Second division, and segmentation. D, Farther division. E, Germ-mass or Blastoderm forming.

Professor Owen is of opinion that not all these germinal cells are consumed in the formation of the individual fabric, but that, in the mammalia, for instance, a certain portion is reserved, and that this reserve becomes the ovarium or testis of the future animal. In the amphibia, and still lower in the scale, the remnants of the germinal cells not only go to form the sexual organs, but are

located in different parts of the body, and become the agents in the reproduction of lost limbs or organs. This philosophical view of Mr. Owen is combated by Dr. Allen Thompson, one of the ablest embryologists in this country, on the ground that at an early period of development no difference can be seen between the blastema or commencing structure of the ovaria or testes and any other organ. Still the opinion of Mr. Owen upon this point cannot but carry great weight. It is probable that the blastema of all organs contain, in the first instance, germinal cells, which are gradually exhausted in the development of the tissues, but which in the ovaria and testes are reserved for the evolution of new individuals. If we believed, with Mr. Owcn, that in each female a part of the residual germ-mass goes to the formation of the ovaria, and the evolution of germs in a new generation, we might infer that the human race is still in its infancy. The changes in these germ-cells, occurring but once in every generation, if multiplied by the generations of men which have lived upon the earth, are infinitely less in number than the changes which occur in particular cells in the lifetime of an individual. The epithelial cells of the digestive tube may be cited as an example, in which new progenies of cells are produced and destroyed after every ingestion of food.

After the formation of the germ-mass by the process of segmentation, those cells which are nearest the surface, and immediately under the zona pellucida or vitcliary membrane, become aggregated together at one part of the ovum, so as to form a layer, which constitutes the blastoderm, or Germinal Membrane. This membrane, in the first instance, divides into two layers-the external or Serous Layer, and the internal or Mucous Layer, for a knowledge of which we are indebted to Pander, of Wurzburg. Subsequently, other cells of the germ-mass collect between the serous and mucous layers, and arrange themselves into a third layer, which is termed the Vascular Layer. The serous layer gives origin to the vertebral column, the brain and spinal marrow, the extremities, and the general skelcton. In the mucous layer arise the mucous structures and the glands; while in the vascular layer, the heart and vascular system originate. In forming a proper idea of these layers, the student must bear in mind that they are not flat layers, but are three spherical membranes contained within the external membrane of the ovum—that is, the vitellary membrane, or zona pellucida. On one aspect of the sphere, these membranes become thickened by the accumulation of cells, and in this thickened portion of the membrane the rudiments of the fœtus are formed. Attention must now be given to this thickened part of the several layers, and the student should consider himself as looking at a circumscribed portion of their spherical surfaces. The dense area referred to constitutes the Area Germinativa, which is first round, then oval, and subsequently pyriform in shape. In the centre of the area germinativa, the cells of the serous and mucous layers become fewer in number, so as to render them comparatively transparent, thus forming a space called the Area Pellucida. Around this pellucid space a boundary is formed by an accumulation of cells in the vascular layer, and this circle is called the Area Vasculosa. In the centre of the area pellucida, and in the

Diagram of Area Germinativa. In the centre, the Primitive Trace. Immediately surrounding it is the Area Pellucida, bounded by the dark Area Vasculosa.

serous lamina, the first sign of the fœtus appears in the form of a transparent groove. This groove, which is the Primitive Trace, is surrounded by two elevated ridges, called the Laminæ Dorsales. The primitive trace may be said to represent the future cerebro-spinal nervous centres, the dorsal laminæ, the cranium, and vertebral column. The ridges or elevations of the serous layer, constituting the laminæ dorsales, approach each other, as the process of development goes on, and unite above, in this way closing over the groove already described. Thus the vertebral canal is formed by the fusion of two processes of the

serous layer at their apices. This method of forming separate cavities, from the layers out of which the fœtus originates, deserves attention, as it is repeated again and again as the development of the ovum proceeds.

1, Area Pellucida, 2, Laminæ dorsales. 3, Primitive trace or groove.

1, 2, 3, Commencement of Cerebrum, Cerebellum, and Spinal marrow. 4, Commencement of Vertebral column.

While the upper portions of the dorsal laminæ are thus closing over to form the vertebral canal, the under portions, which constitute the Laminæ Ventales of Baer, elongate to form the ribs and abdominal walls, and they have the same tendency to meet and unite in the medial line. In this way the abdominal and thoracic cavities are formed, and the mesial raphé indicates in after life the place of union. Thus the vertebral and cranial cavities, and the cavities of the thorax, abdomen and pelvis, all lined with serous membranes, are inclosures separated off from the general cavity of the primordial serous layer of the ovum. The limbs with the joints and their fibro-serous linings are also derived from the same membrane, and possibly their sympathies in disease with the larger fibro-serous membrane, as in articular rheumatism and pericarditis, may be referred to their common origin. It is easy to understand, that if the closing in of the

spinal canal by the laminæ dorsales should be incomplete, we have spina bifida or hernia cerebri as the result; or that, if the lower laminæ do not meet in the median line, we have cleft palate, hare-lip, deficiency in the walls of the thorax and abdomen, and other malformations depending on insufficient development at this early period. At this epoch of development it is, that various monstrosities, arising out of the union of twin fœtuses, occur. If two impregnated ova join anteriorly, before the closing in of the abdominal and thoracic cavities, or posteriorly before the arching in of the vertebral and cranial canals, we may have an abdominal or spinal canal common to both. It is upon this principle, applied to the serous, vascular, and mucous layers, that all the varieties of double monster are to be explained. In the case of the African twin, recently exhibited in this country, the junction was at the sacral bones, and the ova must have united together at the sacrum, before the arching in of the sacral portion of the vertebral canals, so that the posterior aspects of the two sacral bones became fused together, the vertebral columns being separated on every other point.

In the vascular layer, and in that part of it which has been referred to as the area vasculosa, surrounding the area pellucida, the first blood channels are formed, by the unions of files of cells, and the obliteration of the cell-walls at the points of union; the first blood discs being formed, according to Dr. Carpenter, from the nuclei of the cells which have united to form the vessels. These vessels increase and enlarge, and are destined at first to carry to the embryo the nutriment absorbed from the yelk and from the chorion, the formation of which will hereafter be adverted to. The heart is formed in the same manner as the first bloodvessels, from cells, and retains for some time its cellular character. The vessels are, however, first formed, and the flow of the earliest blood globules is not from, but towards, the Punctum Saliens, or commencing heart. From this beginning the circulating apparatus is gradually developed, passing through the phases which are permanent in fishes and amphibia, to reach at the time of birth, the mammalian type.

Early in the formation of the embryo, the **Annion**, the envelope belonging essentially to the ovum, begins to appear. It is formed in the following manner: Beyond the two extremities of the ovum, and on the outside of the area pellucida, the serous

lamina projects in the form of two hollow processes, which gradually arch over the whole of the fœtus, so that the dorsal aspect of the embryo is entirely covered by two layers of the series lamina. These processes meet in the centre, and unite together. At first the processes are, at their origin, separated to a considerable extant on the ventral surface of the embryo, but they gradually approach each other at the umbilicus, and ultimately surround the elements forming the umbilical cord. Of the two layers of which the amnion is formed, one surrounds the embryo, and constitutes its proper envelope; the other becomes adherent to the external or maternal membranes. The cavity of the amnion becomes filled with a watery secretion, and the embryo is thus suspended in a fluid medium, which affords many advantages during the progress of utero-gestation. From the time when the amnion is first formed to the date of parturition, this membrane and the bulk of the fluid it contains continues to increase. The outward pressure of the amniotic fluid seems to be the chief agent in promoting the extension of the external membranes of the ovum. It is worthy of remark that the secretion of a large quantity of fluid by a serous membrane, which secretion is closely allied to the dropsies of the serous cavities, should in the ovum be a purely physiological process. Sometimes the amniotic fluid is in excess, when we have what is termed dropsy of the amnion. It will not be forgotten that the amnion, like the serous lining of the vertebral and cranial cavities, and the serous membranes of the chest and abdomen, are developed from the serous layer of the early ovum, and these membranes, like the amnion, have in the feetal state a tendency to excessive secretion, leading to congenital hydrocephalus and ascites. We may perhaps find an explanation of the sympathies between the skin and the serous membranes, as in the production of peritonitis or pleuritis, by the influence of cold upon the skin, in their common origin from the serous or cutaneous layer of the ovum. The amnion is a reflexion from that part of the layer which forms the skin, and at birth the skin and amnion are continuous at the umbilicus, the amnion being reflected on the umbilical cord so as to form its external covering. The subject of the evolution of the perfect individual from a triple membranous sac would admit of an extensive development in human physiology and pathology. Man in his greatest pride does but consist of

the involutions and devolutions of these membranes. Upon the vital energy possessed by these layers depends his health, his tendencies to the diseases of the systems evolved from them, and the duration of his existence.

Fig. 33.—Diagram of early Ovum. 1, Serous lamina. 2, The yelk. 3, Embryo.

Fig. 34.—Diagram showing the commencement of the Amnion. 1, Chorion. 2, Yelk sac. The folds of serous membrane are rising at two extremities of the embryo, to form the amnion.

The mucous layer has been described as the most internal of the membranous layers within the vitellary membrane. It is therefore in immediate contact with the central portion of the yelk, or that part of the mulberry mass not used up in the formation of the three primary layers themselves. The first commencement of the mucous canals is made by a constriction of the mucous layer on the under surface of the commencing fœtus. The constriction is formed by two processes of the mucous layer, which gradually approach each other. This constriction increases, until the smaller mucous cavity, from which the mucous membranes and glands are developed by a process of reduplication, is nearly cut of from the larger mucous cavity, containing the remains of the germ-cells. This larger cavity it is which constitutes the Umbilical Vesicle, and the point of division between the two cavities is subsequently the umbilicus. It is from the umbilical vesicle that the embryo at this early period derives the greater part of its nutriment. At this time, the umbilical vesicle is continuous with the abdominal mucous cavity, by means of the vitelline duct at the umbilicus, the material of the yelk is conveyed to the embryo, not only by the duct, but by means of vessels developed in the part of the mucous layer composing the walls of the umbilical vesicle, and which vessels are called the vasa-omphalo-meseraica. The omphalomeseraic vessels consist of an artery and vein, which extend from the umbilical vesicle to the superior mesenteric artery and vein, in which they terminate. This state of things continues until the whole material of the yelk process has been converted to the uses of the embryo, when the umbilical vesicle, with the omphalo-mesenteric vessels, shrinks up, and their remains constitute the **Vesicula Alba**, the white spot frequently seen, with great distinctness, in the abortion of early ova.

1, The Chorion. 2, Yelk mass and commencing Umbilical Vesicle. 3, Embryo. 4, 5, 6, Folds of serous layer forming Amnion. 7, Commencement of Allantois.

The Allantois is another temporary structure which, with its mode of origin, it is necessary to describe. It is formed at the lower and anterior part of the embryo, not apparently from any reduplication of either of the primary layers, but from a mass of cells, in the same way as the heart and bloodvesels are formed. The cellular cavity is at first elongated in shape, but by the usual process of constriction it becomes divided into two, a larger and a smaller portion, communicating with each other, and of which the smaller is the urinary bladder. The urachus, the cord leading from the bladder to the umbilious, is the remains of the duct which originally connected the bladder and the allantois. The allantois is partly intended as an excrementitious organ, receiving the earliest secretion of the kidneys, but chiefly, in the mammiferous ovum, as a means of conveying a loop of the bloodvessels of the embryo to the maternal surface of the ovum, and thus providing the permanent feetal provision for nutrition and excrementation. This will be again adverted to when describing the maternal portions of the membranes of the ovum.

LECTURE VII.

THE DECIDUA, CHORION, PLACENTA, AND UMBILICAL CORD.

Gentlemen:—While the changes which have been described in the previous Lecture as the results of fecundation, are proceeding in the embryo, other phenomena, equally necessary to the development of the ovum, are occurring in the uterus. The formation of the Amnion on the part of the embryo has been already referred to, and there remain for consideration two other membranes, the **Decidua** and the **Chorion**, both of which are formed on the side of the mother; and the **Placenta**, which is developed from the bloodvessels of the feetus, and from certain portions of the chorion, and decidua. The clearest information respecting these structures will probably be conveyed by an account of the mode in which they are developed.

On the occurrence of impregnation, a remarkable stimulus is imparted to the uterus, before the ovum has entered this organ, and certain changes are produced which fit it for the reception and retention of the embryo. The Membrana Decidua, so called from its destruction at the time of parturition, is entirely the production of the uterus, and has been the subject of many discussions since the time of its first accurate description by William Hunter. In the early part of pregnancy, the decidua consists of two principal portions, the Decidua Vera, lining the cavity of the uterus, and the Decidua Reflexa, which immediately surrounds the embryo. At this time, owing to the small size of the ovum, as compared with the cavity of the uterus, these two portions are in contact only at the point where the ovum rest upon the uterus, this being generally at the upper part of cavity of the fundus, near the opening of one of the Fallopian tubes. Up to a comparatively recent period, the opinion which chiefly prevailed respecting the formation of the decidua was, that, immediately after fecundation, the uterus developed upon

its internal surface a membranous sac, constituting the decidua vera, and that the ovum, descending the Fallopian tube, entered the uterus by pushing before it a reflexion of this new membrane. It was supposed that the fold originating in this way, enveloped the embryo, and constituted the decidua reflexa. The ovum thus appeared to become involved in a duplicate membrane, which has often been compared to the double envelope of the heart formed by the reflexion of the pericardium, Dr. Sharpey was first to call into question the common belief respecting the nature and formation of the decidua, and his investigations led him to the conclusion that the decidua vera was not a membrane formed upon the uterine mucous surface, but that it consisted of the actual mucous membrane of the uterus itself, altered by a process of development, under the stimulus of impregnation. Dr. Sharpey was followed by E. II. Weber and others, whose researches have all tended to confirm this view; and we now possess a large body of facts, which appear satisfactorily to explain the origin of the decidua vera and reflexa, and the relation of the decidua to the chorion and to the formation of the placenta.

The earliest changes which occur in the cavity of the uterus, after the impregnation of the ovule, consist of a swelling of the tubular glands of the mucous membrane, and of the capillary vessels distributed in the interspaces between these glands. In the uterus examined a short time after the occurrence of fecundation, the glands are distinctly visible to the naked eye. Their length at this time is from one and a half to two Paris lines. The tubes become lined with epithelium of a whitish color, and a profuse secretion of celloid particles and albuminous matter takes place from the surface of the mucous membrane in the inter-follicular spaces.

This cellular secretion is so profuse that it not only forms a layer upon the surface, but a considerable quantity is poured into the cavity of the uterus. The enlargement of the tubular glands already referred to, and of the capillaries of the intergland-ular spaces, together with the plastic secretion poured out upon them—in other words, the altered mucous membrane of the uterus—constitute the decidua vera. With respect to the mode in which the decidua reflexa is formed, the latest views are those of Professor Goodsir and M. Coste. Mr. Goodsir, in his

paper "On the Structure of the Human Placenta," published in 1845, explained the formation of the decidua in the following

Fig. 36. Section of the lining membrane of the uterus at the beginning of prognancy, twice the natural size. 1, opening of the glands on the surface of the cavity; 2, The utricular glands. Fig. 37. A portion of glandular structure twice magnified. 1, 1, Orifices of the glands; 4, Cæcal extremities of glands; 5, Tubular portion of glands.

manner. He considered the celloid matter secreted from the uterine follicles and the inter-follicular spaces, to belong to what he terms the third order of secretions—that is, the cells have the power of accomplishing further changes, and of developing other cells from their nuclei, after they have left the mucous membrane which originally produced them. The small ovum, on entering the uterus, becomes, according to Mr. Goodsir, imbedded in the cellular matter of the cavity of the uterus, which combines with its outer envelope, the chorion, hereafter to be described, and ultimately forms the decidua reflexa. The decidua vera, then—in the opinion of Mr. Goodsir—consists of the uterine mucous membrane, altered in the manner described; while the decidua reflexa is a membranous, or plastic, structure formed out of the cellular secretion derived from the mucous surface, or decidua vera. According to the views of

M. Coste, published two years later, the decidua vera and decidua reflexa, are both produced by the metamorphosis of the mucous membrane of the uterus itself. He believes that the ovum, on entering the uterus, is embedded in the soft and turgid mucous membrane, which becomes specially increased in thickness at the point which receives the ovum, and rising around it like the florid granulations of an issue around a pea ultimately meets, and is united, so as entirely to surround the ovum. The view of M. Coste was founded upon the dissection of two uteri at the twentieth and twenty-fifth days after fecundation. The difference betwen the opinions of M. Coste and Mr. Goodsir is that the one considers the decidua reflexa to be formed directly from the decidua vera, while the other believes it to be produced from a plastic layer exuded upon the surface of the decidua vera.

Fig. 38. First stage of the formation of decidua reflexa. Fig. 39. More advanced stage of decidua reflexa.

When first formed, the decidua reflexa appears to differ from the decidua vera in being composed chiefly of cells, while the decidua vera is characterized by the presence of the tubular glands of the uterus. The portion of the cavity of the uterus—or, rather, of the cavity of the decidua—not occupied by the ovum, contains a fluid secretion, exuded from the hypertrophied mucous membrane, or decidua vera, of an albuminous character, which, in the early part of gestation, ministers to the nourish-

ment of the ovum. This is the hydroperione of Breschet. Dr. Robert Lee believes that blood passes through minute openings in the decidua reflexa from the placental cells and the cells of the chorion, to be taken back into the maternal vascular system, through openings on the internal surface of the decidua vera, without being followed by the escape of blood. surface of the decidua vera is smooth, but the external surface, or that in contact with the fibrous structure of the uterus, has been examined and described by Dr. Montgomery, who found it to consist of a number of cup-like elevations, or little bags, containing a whitish fluid, and which present open mouths on the side of the uterus. Dr. Montgomery terms these processes uterine cotyledons. They are best seen at the second or third months, and disappear with advancing pregnancy. Possibly these appearances may be the utricular glands of more recent observers. In cases of double uterus, in which only one is impregnated, a decidual membrane is sometimes found in the empty cavity, and it is occasionally, though not always, found in the uterus in cases of extra-uterine gestation. Considerable difference of opinion obtains as to whether the decidua lines the Fallopian tubes or not, but the weight of authority is against its doing so. The decidua vera increases with the development of the uterus, but after the adhesion of the ovum to the site of the future placenta, its chief development is at this part, and the Decidua Serotina, as the portion of the decidua vera entering into the formation of the placenta is called, becomes the most important part of the decidual membranes. The rest of the decidua vera becomes a comparatively thin layer lining the whole surface of the uterus, except at the cervix uteri, and the angles at which the Fallopian tubes enter the cavity of the fundus. In the early months, the space between the decidua vera and decidua reflexa forms a cavity which has been already referred to, and which is called the decidual cavity. As the uterus is, up to a late period of pregnancy, considerably larger than the contained ovum, the cavity between the decidual membranes continues to exist beyond the middle of gestation. In cases of doubtful prognancy, or where pregnancy has not been suspected, the uterine sound has been passed into the uterus nearly to the fundus without inducing labor or causing hæmorrhage. The instrument, of course, passed through the mucous plug of the os

uteri into the decidual cavity without producing any laceration. I know of a case in which the walls of the uterus and abdomen were so thin that the limbs of the child could be felt with great distinctness, and extra-uterine pregnancy was suspected. One ground for this diagnosis was, that the sound had been repeatedly passed into the uterus without causing mischief. Of course, it would be very wrong, in any case in which pregnancy was suspected, to pass an instrument into the decidual cavity, as there would be great risk of detaching the placenta. The external surface of the decidua reflexa and the internal surface of the decidua vera become at length so smooth that they have been compared to serous membranes. In the latter months, the ovum entirely fills the uterus, so that the whole aspect of the decidual surfaces is brought into contact, and it is often difficult to divide the two, in the attempt to induce premature labor by separating the membranes from the cervix uteri. At the time of parturition, the amnion, chorion, and decidna reflexa are expelled with the placenta, but the decidua vera is subsequently broken down, and escapes, in the form of detritus, with the lochial discharge.

The other envelope which the fœtus derives from the mother is the Chorion, which is internal to the decidna and is formed before the ovum enters the uterus. When the ovule escapes from the ovisac, it is surrounded by part of the granular matter forming the proligerous disc. After fecundation, and as the ovum is passing down the Fallopian tubes, it acquires, according to Valentin, Mr. Wharton Jones, and other observers, an albuminous layer, which becomes adherent to the vitellary membrane, or the outer covering proper to the ovule. The albuminous layer thus formed, which is the commencement of the chorion, is considered by many authorities to be the analogue of the white of the egg, which is formed round the yelk in the egg of the bird, during its passage through the ovidnet. It is uncertain whether the chorion is formed, in whole, or in part, before or after the act of fecundation. It is probable, however, that in the case of ova which never become impregnated, the vitellary membrane becomes coated with a layer of albumen. The chorion is also found in cases of extra-uterine gestation, when the ovum becomes attached to the intestines or the ovarium. Mr. Goodsir is of opinion that the decidua reflexa also contributes, with the chorion, to form the counterpart of the white of the egg. In the first instance, the albuminous chorion is itself a supply of nutritive material for the ovum; but it soon becomes converted into an absorbent organ, and obtains nutriment from the decidua and the decidual cavity. When first formed the external surface of the chorion is smooth; but in the earliest state, at which this membrane has been seen in the uterus, it has been found covered with villi, which present a shaggy appearance, and are devoted to the absorption and assimilation of material for the support of the embryo. Each chorionic villus is bulbons in shape, and consists of an external membrane, including within it a number of cells, which are the principal agents in effecting absorption. At first these villi present no blood-vessels, but draw nutriment from the elements with which they are in contact by endosmosis, like the spongioles of a plant. Afterwards, when the allantois, with the umbilical artery and vein has approached the chorion, the villi contain vessels which become largely concerned in the nutrition and growth of the fœtus. In the second month the villi of the chorion are of considerable size, and their cellular cavities communicate freely with each other over the whole surface of the chorion. After the end of the second month, they diminish in size except at the site of the placenta, the diminution proceeding from below upwards, until the whole of the unattached surface of the decidua reflexa and chorion become smooth. By the end of the fourth month, the villi of the chorion on the side opposite to the placenta have quite disappeared. Dr. Robert Lee believes that before the fifth month the cells of the chorion contain blood, which is poured into them from the cavernous structure of the placenta. The villi of the chorion do not become developed into the villi of the placenta, hereafter to be described, but form the most internal portion of these villi.

With respect to the formation of the **Placenta**, it will be remembered, that in the preceding lecture we had described the Allantois arising from the caudal extremity of the fœtus, and conveying the bloodvessels, constituting the future umbilical vein and arteries, towards the surface of the ovum. At the same time that this occurs, the decidua vera and decidna reflexa are acquiring considerable thickness at the point towards which the allantois is bearing the vessels, and a correspond-

ing development of the villi of the chorion occurs in the same situation. From these elements the future placenta is developed. In obedience to the wonderful formative force which presides over all the operations of the embryo, the thickening of the decidua vera, and chorion, occurs upon the same aspect of the ovum, and towards this locality the allantois also directs itself, conveying thither the umbilical vessels. This occurs with almost unerring regularity, and in the fully formed placenta the umbilieal cord is generally implanted in or near the middle of the placentary mass. Sometimes, however, the umbilical vessels are inserted towards the edge of the placenta, and rare instances are met with, in which the allantois projects the vessels towards the wrong part of the chorion, when the ovum perishes from a dislocation, so to speak, between the umbilical, chorionic, and decidual portions of the placenta. It is to Mr. Goodsir that we are indebted for the latest and best account of the arrangement of the chorion, decidua, and maternal and fœtal vessels in the placenta, and in describing them I shall chiefly follow that able anatomist.

If the uterine arteries and veins are examined in the gravid uterus while in connection with the placenta, it is found that the uterine arteries pass from the walls of the uterus, into and through the thickened decidua serotina. While passing through the decidual layer, the arteries make a serpentine twist, and hence are called the curling arteries of the uterus. They convey the maternal blood into large cellular chambers, which, as described by William Hunter, communicate with each other throughout the whole of the middle portion of the placenta. The blood is returned from this, which Dr. Robert Lee has called the cavernous structure of the placenta, by the uterine veins, which, as they enter the uterine walls, are dilated into sinuses of considerable size. These vascular cells, situated between the uterine arteries and veins, form in the aggregate, an extensive placental eavity, or eavernous arrangement. Such is the entire circuit of the maternal portion of the blood in the placenta. The arteries, cellular chambers, veins, and sinuses are lined throughout with a membrane continuous with the lining membrane of the vascular system of the mother. The large placental cells which have been spoken of as receiving the arterial blood from the uterus, and returning it by the veins, may be said to stand in the place of the capillaries in other parts of the body. The placenta itself is nourished by special capillary vessels, which enter it from the nterus. In immediate contact with the uterine surface, cellular bands are found crossing the sinuses, and threads of a similar character cross the cells or cavities of the placenta, and are attached to the placental villi, hereafter to be described. These bands and threads, which consist of files of cells, similar with the cells exuded from the surface of the decidua at the commencement of gestation, will have to be reverted to presently. The whole of the placental vascular apparatus, on the side of the mother, may be said to be developed in the hypertrophied and metamorphosed mucous membrane, or decidua; and, in fact, the vascular apparatus and decidua form together, the whole of the maternal portion of the placenta.

The feetal half of the placenta is found to consist of tufts arranged in an arborescent form; of villi, which are attached to the branches of the tufts; and of the ramifications of the umbilical arteries and veins. The vessels of the tufts consist of a branch of the umbilical artery, and of a radicle of the umbilical vein. The feetal blood enters by the arterial channel, passing out by the veins; but between each branch of the artery and vein there runs, not an ordinary capillary, but a capillary vessel of large diameter, capable of carrying five or six blood globules abreast of each other. These peculiar vessels enter the villi, sometimes dividing and uniting again in the substance of the villi; at other times, one vessel passes into a single villus, or into two or three villi, and returns to the vein without dividing. These large capillaries present, in their course, dilatations and contractions similar with those found in an intestine. The feetal blood, coming to the placenta by the umbilical arteries, which carry the venous blood of the fœtus, passes through the intermediate vessels which have been described, and is returned by the umbilical veins, after having undergone, in the placental tufts and villi, the changes necessary to fit it for the support of the fœtus; but there is no co-mingling of the two streams of feetal and maternal blood. The two sets of vessels are entirely separate, as was first demonstrated by William and John Hunter. As the uterine arteries and veins have developed themselves in the decidna, so the umbilical arteries and veins have ramified in

the chorion and its villi, by a process similar with the formation of the first bloodvessels in the area vasculosa.

Thus, to resume briefly, the placenta is formed by the fusion of the chorion and decidua at the site of the attachment of the ovum to the uterus. The villi of the chorion, capped with a layer derived from the decidua, form the villi of the placenta. On the side of the mother, the vessels of the placenta consist of arteries and veins, with a series of cavernous eells between them. These cells in the aggregate, form what has been termed the placental sac or eavity. On the side of the fœtus, the vessels consist of branches of the umbilical arteries and vein, with the large capillary vessels of the villi of the placenta between the two. The maternal portion of the placenta is formed by the decidua serotina, or developed mucous membrane of the uterus, the arteries and veins which enter the decidua from the uterus, the cavernous structure of the placenta, the blood eirculating in these vessels, and the external layer of microscopie eells covering the placental villi. The feetal portion of the placenta is formed of the chorion and its villi, the latter forming the internal portion of the placental villi, and of ramifications of the umbilical arteries and veins. In the process of the formation of the placenta, the chorion and decidua first become applied to each other. On the maternal side, at the site of the placenta, the uterine vascular system is developed in the way which has been pointed out. On the feetal side, the allantois projects the vessels which afterwards become the umbilical arteries and veins

1, Substance of the uterus; 2, Cavity of a sinus; 3, 3, Vital tufts dipping into sinuses; 4, Decidual lining of the uterus; 5, Curling artery of the uterus.

to the chorion; and in the chorion a vascular system becomes developed in connection with the umbilical vessels, which

together constitute the feetal portion of the vessels of the placenta.

To understand the intimate connection with, and yet perfect separation from, the maternal and fœtal circulations in the placenta, and the mode in which the fœtus is nourished after the formation of the placenta, it will be necessary to describe a separate tuft of placental villi, or a single villus itself, the tuft being made up of an assemblage of villi.

Each villus consists of its bloodvessel, a double-series of cells, and its envelopes. The capillary is the central portion of the villus. Immediately around the vessel of the villus a layer of cells, derived from the chorion, is found. These cells are bounded by a fine membrane, which, in the early development of the embryo, constituted the external membrane of the villi of the chorion, but which, at a later period, forms the internal membrane of the placental villi. This part of the placenta villi—that is the internal layer of cells, and the internal membrane—is, in fact, the remains of the original villi of the chorion.

1, Decidua serotina; 2, A venous sinus passing obliquely through it; 8, A curling artery passing through the decidua from the uterus; 4, Lining membrane of maternal vascular system; 5, Tuft of fextal portion of placenta; 6, and 7, Connection of tufts with each other and with the decidua serotina.

On the outside of this inner membrane a cavity, or interspace, is met with, and, surrounding the space, there is a second layer of cells. The bands and threads found traversing the venous sinuses and the cavernous structure of the placenta, have already been mentioned. Mr. Goodsir ascertained that these bands or threads are composed chiefly of cells, and are connected with

the external cellular layer of the placental villi. He describes them as being, together with the external layer of cells belonging to the villi, the remains of the most internal portion of the decidua; and the external layer of cells represents, in his opinion, the remains of the secreting mucous membrane of the uterus, as it existed before the descent of the ovum through the Fallopian tube. Still more externally, each tuft of villi, or every single villus, is covered by the membrane lining the cavernous structure of the placenta, and which has been described as continuous with the lining membrane of the vascular system of the mother. Each tuft or villus projects into some part of the extended vascular cavity which exists between the uterine arteries and veins; and Dr. John Reid found that in some instances small tufts of villi entered the uterine sinuses, and could be drawn out from them without laceration.

1, External membrane of placental villus; 2, External cells of villus; 3 3, Germinal centres of external layers of cells; 4, Space between the maternal and feetal portions of villus; 5, Internal membrane villus, or external membrane of chorion; 6, The internal cells of the villus, the cells of of the chorion; 7, Loop of umbilical vessels.

Thus, each villus is composed of a bloodvessel, a layer of cells, and a fine membrane, derived from the chorion; of a second layer of cells, and a second membrane, derived from the decidua; with a small cavity between the two; the whole of these structures being inclosed in the blood membrane of the mother. Thus formed, the villi lie in, and are bathed by, the maternal blood passing from the curling arteries of the uterus to the uterine sinuses, through the great placental cells. Considering the placenta with reference to its lung function, the stream of maternal blood represents the atmospheric air, and the vessels of the villi take the place of the pulmonary capillaries. The blood is presented to the villi in the maternal channels in a perfectly arterial form, since there are no capillaries on

the maternal side of the placenta, except those of the small nutrient vessels of the placenta itself; and the changes usually occurring in the passage of blood from the left to the right side of the heart arc here effected by the capillaries of the villi and tufts, or the feetal portions of the placenta. It may be said that the feetal portion of the placenta is an apparatus for projecting a set of fœtal capillary vessels into a portion of the maternal circulation, which contains no capillaries, and where the capillaries of the villi become interposed between the maternal arteries and veins, in such a manner as, without any actual vascular continuity, to convert to the uses of the fœtus those changes which, in the systemic capillaries, are made subservient to the nutrition and renewal of the tissues of the different parts of the body. The capillaries of the fœtus become, in effect, in the placenta, a portion of the capillary system of the mother. In another sense, the fine blood membrane covering the villi, and the vessels of the villi, represent the lining membrane of the air vesicles and the pulmonary capillaries, and, by the processes of endosmosis and exosmosis, oxygen passes into, and carbonic acid and other excrementitious matters escape from, the fætal circulation. Though the placenta is commonly spoken of as the lung of the fœtus, the changes effected in it, as far as the oxygenation of the blood is concerned, is more closely allied with the action of the gills of the fish, the blood of the mother representing the water passing through the branchiæ, but being more highly oxygenated.

The pulmonic or bronchial function is not the only one performed by the placenta in fœtal nutrition and excretion. The layers of cells derived from the decidua and chorion, and the vessels of the villi, are also analogous in function with the cells and lactcals of the villi of the intestinal tube. The external or maternal layer of cells is believed to grow continually by the assimilation of material from the blood of the mother. As these cells arrive at maturity, they burst, and their contents, which are of a milky appearance, are passed into the space between the two layers of cells, new generations of cells being formed to succeed them, from the germinal spots found in the villi. Thus the ruptured cells are replaced by others, and, in microscopical examinations of the villi, cells of different sizes, from mere nuclei up to fully-formed cells, are constantly found. The chy-

mous fluid, thus elaborated by the first layer of cells, and passed into the space between the two layers of cells, is next

Section of fully-formed placenta, with part of the uterus. a, Umbilical cord; b, b, Section of uterus; c, c, c, c, Branches of the umbilical vessels; d, d, Curling arteries of the uterus.

assimilated to a further and higher degree, by the internal and fœtal, or chorionic layer of cells, as in the former case, by the growth and rupture of the cells, and the chylous material produced is absorbed and carried into the fœtal circulation by the vessels of the villi. The placenta may be said, therefore, to perform in the fœtus the functions of the lungs and the intestinal canal. In some of the lower animals, the connection between the parent and the ovum is much less complicated than has here been described. In the bitch, for instance, Dr. Sharpey found that the glands of the mucous membranes enlarged, and that into their cup-like cavities, processes of the chorion, or large single villi, were received and became adherent during gestation.

The human **Placenta** is, at the full term, round or slightly oval in shape, its average diameter being from six to eight inches, and its circumference from eighteen to twenty-four inches; in thickness it varies from one inch to two inches, according as it may be full or empty of blood. The internal surface of

the placenta is smooth, and covered by a layer of the amnion and chorion. Through these membranes the branches of the umbilical arteries and vein are seen ramifying and dividing in every direction towards the eircumference of the placenta before they disturb the substance of the organ. The umbilieal cord is generally inserted into, or near, the middle of this aspect of the placenta, but sometimes it is attached near the edge, forming what is ealled battledoor placenta. The external placentary surface, that, namely, in contact with the uterus, is covered with a thick layer of decidua, the decidua scrotina. This surface is divided irregularly into a number of lobes, between which processes of the decidua slip down. When the placenta is expelled after labor, the divisions between these lobes are sometimes distinetly seen, owing to the laceration of the decidua which occurs on the separation and expulsion of the placenta from the uterus; but when gently peeled from the uterine surface, it is eovered by an unbroken layer of the decidua serotina, marked by the openings of the decidual arteries and veins. The openings of the arteries are circular, some of them being as large as a goosequill; while the openings of the veins are oval, and of eonsiderably larger size. At the end of the second month of pregnancy the placenta occupies about one-half of the entire surface of the ovum. As gestation advances, the placenta increases in size, particularly in thickness, but the increase is not in the same ratio with that of the uterus or the other parts of the ovum. At the time of labor it extends over about one-fourth of the entire cavity of the uterus. It must be said, however, that the placenta varies very much in size. As the rule, children with whom there is a large placenta are strong and well nourished, while the contrary obtains in the ease of thin and small placentæ. Large placentæ increase the risk and danger of hæmorrhage after parturition, which rarely occurs when the placenta is considerably below the average size. It is doubtful if the placenta possesses nerves or lymphaties. Its nervous matter, if any, is probably diffused throughout its structure, as in the ease of the lower classes of animal life, in which nervous functions are performed without the existence of any special nervous system.

The placenta, at the full period, frequently bears upon its surface and structure evidence of its caducous character. This has been made known more especially by the original researches of Dr. Robert Barnes, followed by those of Dr. Druitt. The cir-

cumference of the placenta is often marked by a rim of yellowish material, consisting partly of fibrine and partly of fatty matter, and indicating the diminution of the area of the placenta in the latter months by a process of fatty degeneration. The uterine surface of the organ is frequently rough and gritty to the touch, from the deposit of earthy matter, chiefly carbonate and phosphate of lime. Patches of a lighter colour than the rest of the placenta are often seen upon its surface: these spots consisting of fatty matter, and single villi and vessels in the interior, give unmistakable evidence of commencing degeneration.

In the case of plural births, it generally happens that each child possesses its own involucra, and a separate placenta. Sometimes the placentæ are attached to different parts of the uterus, but most frequently the twin placentæ are side by side, the one apparently fused into the other to some extent, but without any vascular inosculation between them. In rare cases there is but one placenta, or the umbilical vessels of the twin or triplet children anastomose before their distribution to the placentæ; and cases have been met with in which there has been but one cord at the placental surface, and one placenta, the cord dividing to pass to the separate children.

The Umbilical Cord, or Funis, furnishes the channels of communication between the placenta and the fœtus. At the end of gestation, the cord varies very much in length. In some cases it does not exceed six or seven inches, while in others it has been known to measure five or even six feet. It contains the two umbilical arteries and the umbilical vein. The vein is much larger in diameter than the two arteries together, but the arteries are much longer than the vein. No doubt the blood impelled by the fœtal heart, moves faster in the arteries than in the veins, so that the same quantity of blood passes through both. The vein in the umbilical cord and in its ramifications in the placenta is without valves, and conveys the purified blood and nutritive material from the placenta to the fœtus. The arteries convey the impure blood of the fœtus to the placenta. In these particulars the umbilical arteries and veins resemble the pulmonary arteries and veins of the adult. Both arteries and vein are arranged in the cord in a spiral manner, the arteries being much more twisted than the vein, and coiling round it. The direction of the spiral turns made by the vessels is almost constantly from left to right. Sometimes a single or double knot is tied upon the cord, at others it is twisted once or twice round the neck, or it is coiled round the body and extremities, so as almost to resemble the Laocoön. The fœtal pulse is readily felt in the cord when the child is alive and before the funis has been separated. It occasionally happens that only one artery is met with instead of two, and cases have been observed in which the cord has contained two veins. The arteries do not communicate except by a branch near the surface of the placenta. Usually, the vessels divide on entering the placenta, but sometimes division commences before they reach that organ, a circumstance which commonly diminishes the strength of the cord.

The bulk of the funis is made up of gelatinous matter inclosed in cells which do not communicate freely with each other. The contents of these cells surround the vessels, and are means of defence against pressure. The quantity of gelatinous material varies much in different embryos, and to this is chiefly due the thickness or thinness of the cord. The funis is also covered by a layer of chorion, and externally by a layer derived from the ainnion. It is doubtful whether the cord contains lymphatics or nerves, or, at all events, if the nervous matter assumes a separate form. In this place a word may be said about the transmission of impressions from the mother to the fœtus. The absence of nerves in the placenta and funis would be no disproof of a communication between the nervous system of the fœtus and the mother. When the ovum consists of the blastodermic vesicle, and before the beginnings of the nervous system have been evolved in the course of development, it manifests properties which afterwards belong to the nervous system. In the unicellular animalcula, the same functions are performed which in higher animals, where the nervous system has assumed a separate type, are executed by the nerves. In these peculiar organisms, the nervous system, though not collected into tubes, or surrounded by neurilemma, pervades the whole animal. This may be the case with the umbilical cord and the placenta, or future research may demonstrate the existence of nerves in these temporary structures.

No explanation has been given of the spiral arrangement of the vessels of the umbilical cord. When the cord is first formed, the vessels take a straight direction from the fœtus to the decidua, and the arteries and vein are not close together. After a

time they become coiled round each other, and the cord diminishes in size, but increases in length. This increase is greater in the early and middle months of pregnancy than subsequently, so that at the middle of gestation the relative length of the cord is greater than it is at the time of parturition. The same remark may be made respecting the quantity of the liquor amnii. When the cord is long, and the amount of liquor amnii considerable, it is easy to conceive that the feetus may, by it own movements, or the changing positions of the mother, pass through a loop in the cord, and thus form a knot. In the same way the passing of the cord round the neck or body has been explained. It appears to me that this explanation may be extended to the curious spiral arrangement of the vessels, and of the whole cord. The cord is originally straight, and can only have been twisted by the movements of the fœtus, the placenta being a fixed point. It would seem that the fœtus, when it moves, always tends to move in a certain direction, and that the number of spiral turns

The umbilical cord and external surface of the placenta. The amnion and chorion raised from one portion of the placenta.

in the cord must represent the number of times which the fœtus has slowly rotated in the uterus during the course of gestation. In no other way can we explain the alteration of the vessels from the straight to the spiral form. I shall have to revert to this subject when treating of the movements of the fœtus in utero.

LECTURE VIII.

SIGNS OF PREGNANCY.

GENTLEMEN:-The changes induced in the female economy by pregnancy are very various and extended. From the initial steps in the act of reproduction to its final close, a great number of phenomena occur in different and remote organs. The evidences manifested in the generative system are, no doubt, the most important; but the vascular system and its contained fluid, the different portions of the nervous system, the digestive apparatus, the skin, and the glands and their secretions, all contribute to the sum of those organic and functional conditions which we group together as the Signs of Pregnancy. The difficulties attending the diagnosis in particular cases are manifold. We are frequently asked for a positive opinion at an early period of gestation, when the signs are not pronounced with distinctness. The symptoms vary in different women, or in the same women at different times. Some of the more obvious signs may be wanting altogether, or they may be simulated by disease. Difficulties often arise from the mental condition of the patient. We have at one time to deal with women extremely desirous of having children, or, again, with women who hold pregnancy in horror. In another class of cases our dictum is required when the most violent protestations of chastity are made. Under these various circumstances, women magnify certain symptoms, and suppress others, as far as possible, in accordance with their own wishes, or in order to deceive the attendant. We should, to use a legal phrase, "dismiss from our minds," in any case of doubtful pregnancy coming before us, all considerations except those of a physical character. Gooch expressed this when he said, with more force than elegance, that not "women's words, but their bellies" should be believed in suspected cases. 127

It is of importance, not only that accoucheurs, but all medical men, should pay attention to the signs of pregnancy; otherwise the practitioner may be confounded by the birth of a child, when no increase of the population had been expected; abortion may be produced unwittingly by emmenagogues or examinations; or, under the false impression that pregnancy exists, serious disease may remain for months untreated and unchecked. In all cases which admit of doubt, the medical attendant will do well to suspend any positive judgment until the evidence one way or the other becomes certain, and, in the meantime, to be cautious in all that relates to the treatment and management of the patient.

The most convenient method of relating all that pertains to the signs of pregnancy is to consider them very nearly in the order in which they arise, by which means a double advantage will be gained; the symptoms of commencing and advanced utero-gestation will be grouped separately, and a method of examination will be fixed upon the mind.

The first indications of pregnancy are to be found in the reproductive organs. No sooner has a fruitful congress taken place than a change in the condition of the Uterus occurs-from a state of comparative quiescence, in which, apart from menstruction, the decay and repair common to all other tissues is its only function, it emerges into energetic activity, constructs a nidus for the reception of the expected ovum, and commences those intimate changes which result in the transformation of a fibroid mass into a muscle of immense energy. The greater the functional activity of an organ, the greater the amount of blood which passes through it in any given time. The uterus is no exception to this general law, and hence, when an examination is made per vaginam but a few days after conception, the organ is found hot, turgid, and almost erect, as if endowed with the properties of erectile tissue. This state of the uterus is by no means persistent; before any great length of time it gives way to softness and increased bulk; the uterine vessels increase in size from day to day; small twigs of artery become developed into vessels of considerable calibre; there are capillaries where none apparently existed before; the cellular tissue of the organ is in a manner unravelled by the dilated and dilating vessels, as well as by certain histological changes, and the parenchyma is moistened by interstitially-effused serum. The body of the impregnated uterus is, in all ordinary cases, slightly anteverted during early pregnancy, and the enlarged body of the organ may be felt by the experienced finger in the anterior vaginal cul de sac. A soft and cushiony state of the os uteri, with the detection of the dense body of the uterus between the anterior lip and the pubes, are amongst the earliest signs which lead us to believe in pregnancy. The unimpregnated uterus may be anteverted, but this condition is not attended by a soft condition of the os uteri.

Examined with the speculum, the os and cervix uteri are somewhat increased in size, the tissues appear less dense than in the impregnated state, and the white plug of mucus is distinctly visible in the lower parts of the cervical canal. Owing to the permanent condition of the plug during gestation, and the increased acidity of the vaginal secretion, the mucous plug is more firmly coagulated, and is of a more intensely white color than usual.

Suspension of the Catamenia is commonly the first symptom of pregnancy which arrests the attention of an intelligent female, who has exposed herself to the possibility of impregnation, and is perhaps the one in which women most firmly rely, especially if any abdominal enlargement coincides with the absent function. Its value as evidence of utero-gestation is modified by the fact, that the suspension of the menses, although tolerably constant, is liable to many aberrations, and is indicative of other conditions than pregnancy. Menstruation may continue through a part of, or the whole term of, utero-gestation. Cases in which it has appeared once after impregnation are recorded by Johnson, Puzos, Desormeaux, Dewees, Stein, and Burton, Maunsell, Campbell, and others, mention cases in which it appeared three, four, and six times, and similar instances have fallen under my own observation. There is a case detailed in Hebernden's Commentaries, in which the function persisted during the whole term of pregnancy, and Deventer, Hosack, and Haller, testified to the occasional appearance of the phenomena. Deventer and Baudelocque speak of females in whom the catamenia appeared only during pregnancy, and a still more remarkable abnormality has been witnessed in some women, who have performed this function for the first time subsequent to impregnation. The necessity of preserving the outward appearance of virtue has instigated women to feign themselves "regular" by smearing their persons and staining their linen periodically. Belloc mentions such an instance, and suggests that if the vulva is washed, and the discharge does not reappear, the case should be suspected.

An exactly opposed series of cases to those we have been considering is constituted by instances in which the catamenia are suspended, and pregnancy does not exist. Cold, shocks of any kind, exhausting discharges, incipient phthisis, the worst forms of ovarian disease, and several other circumstances, frequently suppress this function. Women who are nursing, as a general rule, do not menstruate, and, as the catamenial climacteric approaches, intermissions, even of several months, are frequent. There are cases again in which the history of the menstrual function is of no use whatever in determining the question of pregnancy. Some women prove pregnant before menstruation has ever occurred; some after it has apparently ceased altogether; and others at a time when the function has been suspended for several periods by known causes, such as lactation. The best rule, perhaps, for applying the catamenial test to cases of suspected pregnancy, is that if the suspension has persisted for several months, if, at the same time, the health has not suffered, and if the person is not giving suck, the probability that she is pregnant has reached the highest point to which it can be brought by evidence from this source alone.

Various derangements of the Digestive Organs usher in pregnancy. The exact period at which they occur is various and uncertain. In some women nausea follows close upon the heels of conception; in others, no gastric sympathies appear until two or three months have elapsed; but from the second to the fifth or sixth week is the general period at which they are established. They usually decline about the fourth month; but their disappearance is liable to the same uncertainty as their invasion. Nausea, vomiting, eructations, heartburn, a peculiar sense of sinking at the epigastrium, cravings for peculiar or particular articles of diet, and antipathies to other comestibles, are the ordinary manifestations of gastro-uterine irritation observed. In general, the nausea, vomiting, and sinking occur upon the first rising, or assuming the erect posture, and persist only for a

short time. The comparative universality of this rule has caused these symptoms to be expressed by the term morning sickness, a phrase which has become almost vernacular. It is obvious that the causes of gastric derangement, similar with those alluded to, must be numerous; and hence, except as corroborative proof, we can throw little light upon the diagnosis of a case of doubtful pregnancy by discovering that sickness has occurred in the morning, or that an affection has been shown for chalk, slate pencil, or some previously abhorred article of diet. The value of this, as of several other signs of pregnancy, rests upon its coincidence with other recognized signs. synergic action between the stomach and the uterus, both as regards secretion, sensation, and motor action, are amongst the most remarkable phenomena of reflex nervous action. In the case of the gastric irritation of pregnancy, it is worthy of remark, that it is during the early months that the affection is most common and constant. It is probably caused by the distension and evolution of the dense structure of the uterus after impregnation, or by the pelvic irritation caused by the gravid uterus before it emerges from the brim, or from both these

Certain Glandular Sympathies are excited during pregnancy, of which one of the most remarkable results is Salivation. This form of salivation is, of course, quite distinct from mercurial or other metallic affections of the salivary glands, differing in the absence of fætid breath, of sore gums, or the prostration observed in such cases. It is probable that the watery vomitings of pregnant women partly depend on increased pancreatic secretion—a supposition which is favored by the analogy between the structure and secretion of the pancreas and the salivary glands and the frequent excitation of the latter during pregnancy. It has been said that the pancreas is a supplementary salivary gland. Cases illustrating utero-gestative salivation are mentioned by Dewees, Van Swieten, Dr. Blundell and others. In a slighter degree, such cases are not uncommon.

When pregnancy is but a few weeks advanced, the **Mamma** begin to take on certain new actions, preparatory to their perfection as secretors of a nutritive fluid. The changes which take place in the breasts at puberty may be called the primary evolution of the mammæ. This is parallel to, and synchronous with,

that evolution of the uterus and ovaries which produces the capacity to conceive; and the changes which take place in the mammæ after conception constitute their secondary evolution, and are parallel to, and synchronous with, those uterine changes which give the capacity to nourish. The first indications of pregnancy given by the mammæ, consist of a certain sense of fullness and weight, with shooting pains, these latter being sometimes confined to the gland itself, but at other times extending to the mammilla, where they may be almost constant, producing what is technically called "mastodynia." The afflux of blood to the breast which now takes place, speedily replaces the merc sense of fullness by actual increase of volume; the gland becomes hard, knotty, and tender to the touch, and large blue veins may be seen meandering over its surface, just below the integument. A very cursory examination will suffice to distinguish this condition from the mere increment in bulk attained by persons who are growing corpulent. A deposit of fat does not give the same knotty feel to the breasts; the vascular supply is not sensibly altered, and a great volume may be acquired without any of those peculiar white, shining streaks appearing on the surface of the integument which are the result of distension by growth of the gland. The most probable embarrassment is likely to occur in women who, having previously borne children, and having reached the threshold of the sexual climacteric, have their menses temporarily suspended, their breasts painful, and their stomachs irritable. Almost any utcrine irritation will produce enlargement of the breasts and sympathetic pains. Retention of the menses from an imperforate hymen, fibrous tumours of the uterus, and ulceration of the os and cervix uteri, are frequently concerned in these mammary changes; and habitual and excessive copulation sometimes has the same effect. These possible causes will, however, remembered and sought for where any doubt exists. The most characteristic changes are to be found in the nipples and the surrounding areolæ. The nipples become turgid and more prominent, and the discs around them assume a darker hue, more marked in persons of a dark than of a light complexion. Ingleby observes that the cuticle of the areola becomes scaly, and that the general surface of the breast presents a mottled appearance. As pregnancy advances, especially if it be a first

pregnancy, the deposit of pigment in the areolæ increases, the areolæ themselves become moister, and the follicles studding their surface are prominent, distended, and bedewed with transuded fluid. In women with dark hair and eyes the outer part of the circle surrounding the mammilla presents an appearance of small white patches, as if the color had been discharged by a shower of rain. Dr. Montgomery trusts more to the appearance of the follicles, the moisture on the areolæ, and the turgescence of the parts, than to the deposit of pigment, which results occasionally from uterine irritation, and not unfrequently is persistent after the first pregnancy. The mammillæ are sometimes so effectually compressed by tight corsets as never to rise above the level of the mammary surface until artificially drawn out. About the sixth or seventh month numerous white, silvery streaks make their appearance on the surface of the breast; they are exactly similar to those found on the abdomen, and are called linear albicantes. They are in reality the exposed floors of furrows which naturally exist in the skin, and they are unfolded in consequence of the distension of the subjacent gland. Once formed, they do not entirely disappear, and are therefore of little value as a sign of pregnancy, except in primiparous women. In common with the altered nervous and vascular condition of the mammæ, their secretive endowments are called into play at a variable period, ranging from the fourth or fifth month to immediately before labor. It may be said, as a general rule, that no secretion of milk takes place until eightand-forty hours after labor; and on the other hand, there are so many irregularities regarding the secretion of milk, that neither its absence nor presence can be rated at any considerable value, as proof or disproof of utero-gestation. Suppression of the milk in persons who are nursing and liable to impregnation is a more valuable sign of pregnancy than the converse condition. Lastly, it must be remembered that recent abortion and lactation produce the same conditions of the mammæ as obtain in pregnancy.

The Size and Form of the Abdomen next arrest our attention in relation to pregnancy. During the first two months, no enlargement is visible, or, if visible, can be trusted, as flatulent distension and other evanescent conditions of the abdominal contents produce variations in dimension beyond the possible limits

of any size that may be attained at such an early period. At first, indeed, the belly becomes flatter, and the navel is deeper, as if dragged down by the increased weight of theuterus; there is a French proverb, "en ventre plat, enfant il y a," and in this, as in many other instances, popular belief coincides with scientific observation. The traction at the navel is said to be painful occasionally, and the navel itself tender to the touch. About the third month abdominal enlargement becomes obvious in the nude figure, and from this period steadily increases until nearly the end of pregnancy. By the fifth month the navel has become shallower, and the uterus may be distinguished through the abdominal walls; at the sixth month, it is flattened out; and in another month protrudes beyond the level of the general surface of the abdomen. Numerous other circumstances give rise to enlargement of the abdomen. Ovarian dropsy, ascites, certain discases of the spleen and liver, flatus in the bowels, accumulated fæces, tumors of the omentum, and unusual deposition of fat in the omentum and abdominal walls, as well as hydrometa, hydatids in the uterus, physometra, fibroid and other tumors of the uterus, and intra-uterine polypi, all produce an increase in bulk, which may to a certain extent simulate pregnancy. It is necessary to observe, that some of these conditions may co-exist with pregnancy. A little care will, however, suffice to distinguish between the above-mentioned forms of enlarged abdomen and an abdomen distended by the gravid uterus. Such a mistake as that quoted by Gooch from Lowder's MS. lectures, where a practitioner mistook pregnancy with distended bladder, for ovarian dropsy, and thrust a trocar through both sides of the bladder, and through the walls of the uterus, into the child's head, would be unpardonable at the present day. The history of the enlargement, its form, and the evidence procurable by means of auscultation, palpation, and percussion, ought to preclude the possibility of any grave error in practice. Inquiry will almost always clicit the fact, that in ovarian dropsy the enlargement has at first been on one side, and fluctuation is easily distinguished. In ascites, there is a previous history of disease, and the form of the abdomen, in the recumbent posture, is widely different from the ovoid belly of a pregnant woman; the contained fluid, in a case of ascites, from its obedience to the law of gravitation, produces a bulging

between the crest of the ilium and the false ribs, the anterior and middle aspect of the abdomen being its flattest part. Enlargement of the liver and spleen increases from above downwards, and tympanitis is extremely easy of detection. The only real embarrassment arises from those cases in which the uterus itself is distended, and then other symptoms must be referred to, in order to determine the question. The elastic nature of the uterine tumor is simulated by no other abdominal enlargement, and is so far valuable as evidence of pregnancy; but fluctuation may be obtained where the liquor amnii is very superabundant; or an ovarian cyst may intervene between the gravid uterns and the surface of the body, so that the absence of the peculiar impression conveyed by palpation is not so negative as the converse is positive. When a blighted fœtus is retained in utero, no further increase in size takes place; and this contingency must not be forgotten in forming an opinion as to the condition of a woman who has had progressive abdominal enlargement, with other signs of pregnancy up to a certain date, followed by recession of her uterine sympathies, etc., and arrest of increase in bulk. Silvery streaks appear on the surface of the abdomen when it becomes much distended; once formed they are permanent, but they do not by any means occur in all cases. They are only of use as a sign of pregnancy in first cases, or where long intervals have passed between successive pregnancies. Dr. Cormack has drawn attention to the dark line which occurs during pregnancy in the median line of the abdomen. It is constant in the latter part of gestation, but being the result of distension, it is present in the case of other abdominal tumors.

Reference has already been made to the condition of the uterus immediately after impregnation. During the first three months of pregnancy the lower part of the uterus feels soft and almost ædematous; the os, which had before been firm and with well-defined lips, becomes of a more rounded form, and the tip of the finger can be inserted between them. In first pregnancies such changes are more marked than in multipara, especially if the parts have been at all ruptured during labor. The whole body of the uterus sinks lower down in the pelvic cavity, and the os can be felt, not only lower down, but somewhat displaced towards the hollow of the sacrum; the fundus of the organ is anteverted to a corresponding extent, and it is

partly to this circumstance, as well as to the intimate sympathy between the uterus and the other pelvic organs, that the frequent micturition and sense of weight in the rectum, which accompanies early gestation, is attributable. Approaching menstruction or the engorged condition of the womb, sometimes met with in menorrhagia, simulate these earlier changes of pregnancy to some extent. The body of the uterus can be distinguished more readily in the anterior vaginal cul-de-sac as pregnancy advances, and about the fourth month the fundus may occasionally be felt just above the pubis. With its gradual increase in bulk the womb has gradually risen to the pelvis. Many authors state that the uterus rises suddenly out of the basin of the pelvis into the general abdominal cavity. There is, however, no real proof that the uterus at once emerges from the pelvis, and there are many circumstances which render it extremely improbable. The idea of the sudden escape of the uterus from the pelvis involves a notion of some great and sudden increase in the contents of the cavity, or the sudden removal of some impediment. In cases where there is much antero-posterior contraction of the brim, a malformation which involves less contraction of the cavity than most other distortions, permanent incarceration should result at or about the fourth month, if the uterus really remains entirely in the true pelvis until that period; and cases of extreme contraction of the brim or pelvis generally, should have a history of difficulty at the time of the supposed emancipation of the womb. No such histories are on record. The real state of the case appears to be, that the uterus rises slowly out of the pelvis, partly because its increase in bulk is from above, the fundus being the first part developed, and the cervix the last; partly because it is in reality a wedge with the apex below; partly because the bladder pushes the uterus upwards every time it is distended, directly, by means of the fluid contained in it, and indirectly, by elevating the vesical layer of the pelvic fascia, to which circumstances may be added the obliquity of the pelvis, and frequent changes of position on the part of the mother. About the fifth month the uterus is found to have risen half way to the umbilicus. It is now that the cervix nteri begins to shorten its cavity, being taken up into the general uterine cavity by a process of development commencing at the junction of the cervix with the body of the organ, and terminating at the os itself. The finger may be inserted between the lips of the mouth of the uterus with greater facility as each month passes, and the follicular glands of the cervix may be felt just within. At the same time the orifice of the womb moves upwards and backwards towards the sacral promontory, and by the time it has reached its most posterior and superior position, the cervix has completely disappeared, the os uteri being a mere rim. Externally, the uterus reaches as high as the umbilicus at the sixth month, half way between the umbilicus and the ensiform cartilage at the seventh, and as high as the latter structure at the eighth; after the eighth month the increase in size is more observable in the way of increased tension, and indeed, shortly before labor sets in, it would appear as if an actual diminution in size

Fig. 45.

Os and cervix uteri at the third month of gestation.

FIG. 46.

Os and cervix at the sixth month.

took place. The head, on presenting part of the child, may now be felt through the os uteri.

Os and cervix uteri at the eighth month.

Fig. 48.

Os and cervix at the full term.

[Dr. Smith here gives the prevailing opinion which has been thoughtlessly adopted by writers since it was first promulgated by Smellie, of the manner in which the cervix uteri becomes absorbed and merged in the ovoid form of the womb. I prefer, however, to accept the description given and demonstrated by M. Stolz in 1826, which has received the sanction of the most eminent modern physiologists and pathologists. According to the description of M. Stolz, which is now fully confirmed, instead of this internal opening of the neck expanding and the superior part spreading out downwards during gestation, the reverse takes place. Early in pregnancy, the os and lower part of the neck begin to soften. This softening gradually extends upward, though less rapidly, in primiparæ cases. As the ramollissement extends from the os upwards, the os and neck expand in multiparæ cases, though in primiparæ cases the cavity of the neck expands without a corresponding patulence of the os, which gives the neck a spindle shape. The cervix loses but little, if any of its length. By the seventh month, the intra-vaginal portion of the neck has undergone this change, being softened, and the os so dilated in women who have been mothers, as to admit readily the first phalanx of the index finger.

ramollissement and expansion of the cervix progress upwards, so that a few days before full time in its proper course, the circular fibres, closing the internal opening of the neck, become softened, and it dilates. This is shown by the following figures, which we place in antithesis to those of the author.]

Quickening generally occurs when pregnancy is advanced about half way; Denman gave the sixteenth week as the period at which it most commonly occurs, and Dr. Fleetwood Churchill gives nearly the same average; Dr. Ramsbotham places it between the sixteenth and eighteenth week; Puzos had known it to occur at the end of two months, and it has not unfrequently been postponed till the sixth, seventh, and eighth months; it is in truth, very variable, Levret having recorded an instance in which it did not occur at all. By some authors it is believed that quickening is the first sensation by the mother of the movements of the fœtus; others have supposed it to be a sudden ascent of the uterus from the cavity of the pelvis. The nature of the sensation will be differently described by different women. The child of Elizabeth is said by St. Luke to have "leaped in her womb," when she heard the salutation of Mary; in some women it is described as a pulsation, and others speak of it as a fluttering or an occasional shock, attended by a sense of faintness, sickness, and sometimes a slight sanguineous discharge. The physical cause of the symptom is doubtless motion of the fætus, and the period at which it occurs is most probably due to the increased size and activity of the child, which permit it to come into occasional contact with the walls of the uterus, through the liquor amnii. Accidental circumstances may perhaps give rise to the particular motions first perceived, and it may occasionally happen, that these accidental stimuli being wanting, no perceptible motion occurs. The value of the symptom as a sign of pregnancy depends partly upon whether

the patient has experienced these sensations before, and partly upon the amount of credence to be attached to her statements and opinions. The motions of the fœtus having been once established, they may continue to be felt at intervals of variable duration by the mother or by another person. Dr. Montgomery thought he could determine the motions of the fœtus before the mother was conscious of them; it must, however, take a very prolonged examination to elicit any information at so early a date, and even then some doubts may be entertained as to whether the observation can be trusted. At a later period, it becomes very easy to perceive the movements of the living fœtus. As the points by which it comes into contact with the uterine walls gradually multiply, more trifling circumstances suffice to set up excito-motor actions; the mere pressure of the hand upon the abdomen will sometimes produce palpable kicks. It is not always easy to distinguish between the movements of the fœtus and some other movements which occur in the pregnant woman. The uterus and abdominal walls have special actions of their own. The uterus is subject to peristaltic contractions, which, starting from one end of the organ, traverse its whole extent like a wave. They may be discriminated from the feetal kicks or plunges, by the travelling ridge which they produce, and which may be felt under the hand. At other times, the uterus contracts at certain portions. These contractions shift from one place to another, and convey the impression to the mother that the child's head is moving about. It is the peristaltic actions of the uterus, and not the movements of the fœtus, which are produced when the hand is cold or dipped in iced water. The abdominal muscles are subject to involuntary contractions, arising from the irritation which the contact and pressure of the uterus produces, but it is voluntary contraction of the abdominal muscles which most usually stimulates the motions of the child.

In the year 1818, a great advance was made in the diagnostics of pregnancy. Mayor, of Geneva, published a memoir in the Bibliothèque Universelle, on the detection of pregnancy by the pulsations of the fœtal heart. This discovery attracted very little attention until four years afterwards, when Kergaradee published a systematic work on Auscultation as applied to pregnancy; he added a knowledge of the so-called bruit placentaire

to M. Mayor's discovery. At a later period, Dr. Kennedy discovered the funicular pulsations, and Naëgele described what may be called "sounds of the displacement of the fœtus." Other sounds may be heard on applying the stethoscope to the abdomen of the pregnant woman; they are the products of muscular action. The value of these auscultatory phenomena is very different, but there are no other signs of pregnancy so unequivocal, or upon which we may so safely rely. The subject of **utero-fœtal auscultation** in this country has received its chief development from the writings of Dr. Kennedy, and the translation of Naëgele's work on Auscultation by Dr. West.

The uterine souffle, bruit placentaire, or placental murmur, as it is called by different authors, is distinguishable before any of the other intra-uterine sounds. Great difference of opinion has existed as to the earliest period at which it may be heard; a similar variety of opinions has prevailed as to the exact seat of the murmur. Dr. Kennedy averred that he had heard it at the tenth week, while Velpeau states that the mere fact of its having been discovered even at the third month is sufficient proof that, whatever the sound observed may have been, it could not have been produced by the utero-placental circulation. may be said as a general rule, that until the fourth or fifth month, that is, until the uterus has risen out of the pelvic cavity, the uterine souffle is inaudible; after that period it may generally be heard on any one point of the region of the uterus which is accessible to the ear. The situation of the sound will vary as pregnancy advances; in the earlier part of the second moiety of utero-gestation, it is heard nearer the pubes, and it gradually ascends from week to week. It is seldom heard quite at the fundus uteri or in the lumbar regions. The character of the sound is very different in different persons, and varies in the same individual; sometimes it is a hoarse and sometimes a soft blowing murmur, at others it is a cooing sound, and again, it is sibilant or musical. Now it is immediately beneath the ear, and again it is distant. It is synchronous with the radial pulse. It is modified by the pressure of the stethoscope and may disappear and recur again under the instrument. On some days, in the early part of its appearance, it is absent, and on others it is present. Whatever may be the exact physical cause of this sound, there can be little doubt now that it is produced in the walls of the uterus, and not, as Hohl supposed, in the placenta, or as Kiwisch believed, in the epigastric, and others, in the iliac arteries. It may be well to state the foundations for this opinion; the same sound has been heard in cases of fibrous tumor and vascular sarcoma of the uterus, and in moles; it is often heard over the whole surface of the uterus, accessible to the stethoscope; it persists for a short time after delivery; it has been heard in cases where putrid feetuses have been born, and the placenta found with its vessels full of thickened and coagulated blood. These reasons appear to be conclusive against the placental theory, and others exist which eliminate the iliac arteries or aorta from the question. If the sound were produced by pressure on the iliac arteries or aorta, it should disappear when that pressure is removed by the assumption of the prone posture, whereas it persists in every position; pressure should intensify the sound if this hypothesis were correct; the contrary frequently obtains, and indeed the murmur not unfrequently disappears under pressure, even when it is made on the anterior aspect of the uterus, directly towards the spine. And finally, the metroscope of M. Nauche, applied to the cervix uteri, in the vagina, transmits the sound when abdominal examination has failed to distinguish it. The sound is heard most distinctly at the usual site of the attachment of the placenta, and this circumstance appears to have misled Hohl and others; it is, however, only in accordance with the fact that the uterine vessels are largest where the placenta is attached. As a sign of pregnancy, the uterine souffle is extremely valuable; it can be distinguished from any possible arterial imitation by the absence of impulse, or by changing the position of the patient; and a very simple device will distinguish between it and the vesicular murmur, if the latter should happen to be audible lower than usual; for if the stethoscope be moved gradually upwards, any lung sound will of course become intensified, whereas the uterine souffle would diminish. The uterine souffle is no proof of the life of the fœtus, nor can it be made use of to determine the position of the child, or whether the uterus contains a double fœtus.

Widely different from the foregoing acoustic phenomena is the **double pulsation** discovered by Mayor. The ticking of a watch heard through a pillow has been aptly compared with the rapid pulsations of the fœtal heart, as heard through the uterus and abdominal walls. There is a distinct rhythm in these sounds, consisting, as in the perfectly developed individual, of two sounds of unequal length, followed by a pause. The number of pulsations varies, according to M. Jecquemier, from 108 to 160 per minute, but 130 will represent the average frequency of the embryonic pulse. It, however, subsides to a certain extent, during the last month of pregnancy, a change which is continuous with that well-known declension in the frequency of the pulse which advances pari passu with increasing age. Dr. Hope gives 150 as the feetal pulse at the fifth month, and 120 as that of the ninth The beating of the feetal heart may generally be distinguished, for the first time, during some part of the fifth month. At first the sound is very feeble and distant, but by degrees it acquires strength, and the diminution of the liquor amnii, by allowing the fœtus to come into contact with the uterine walls, facilitates the conduction of the sounds to the ear of the observer. Nothing can be more shifting and variable than the sounds of the feetal heart—now they may be heard on one side of the abdomen, and now on another; their position even changes during the same examination, and sometimes they suddenly cease, or rather escape observation, for days together. like change in their intensity occurs, but frequent observation detects steady increase in their force. Occasionally, they are never heard during the whole of pregnancy, and the absence of these sounds is not conclusive of the death of the fœtus, unless they have undergone a gradual declension in intensity previous to their cessation, and even then it is perhaps safer to look for corroborative proof elsewhere before coming to a decision. They are accelerated temporarily by the motions of the fœtus. The area over which the sounds of the fætal heart may be distinguished varies according to the force of the heart's action, the amount of liquor amnii, and the position of the child. There is only one possible circumstance which can at all imitate the sound of the feetal heart, and that is, when the sound of the maternal heart, from emotional or other causes, are increased in frequency and force, and conducted through the diaphragm and liver to the uterus; the same device which has been recommended for distinguishing between the vesicular murmur and the uterine soufflet will establish the differential diagnosis in this case.

Dr. E. Kennedy states, that, "in some cases, where the parietes of the abdomen and uterus were extremely thin he has been able to distinguish the funis by the touch externally, and has felt it rolling under his finger, and then applying the stethoscope, its pulsations have been discoverable, remarkably strong." Dr. Churchill and Naëgele support Dr. Kennedy against Haus and Hohl, who deny the fact. The observation, however, although it reflects much credit upon the acumen of Dr. Kennedy, can hardly be of practical use; because, where the abdominal and uterine walls are so thin as to permit us to feel the pulsation of the funis through them, the other auscultatory signs of pregnancy, and the evidence obtained by palpation, must already have set the question at rest, and except under such circumstances it must be very difficult to discover the funicular soufflet. The sounds of the displacement of the feetus consist of shocks, sometimes quick, like a light tap, and at other times more like a heavy plunge; and there are also friction-sounds, which are evidently produced by the gliding of the surface of the fœtus over the inner uterine surface. Naëgele avers that these sounds may be heard before quickening has taken place.

Ballottement is a means of acquiring information as to the circumstances of pregnancy, first made use of in France. There are two kinds of ballottement, the internal and the external; the first of which is practised by one or two fingers introduced into the vagina; and the latter, by manipulations applied to the surface of the abdomen. "Ballotter" signifies "to toss a ball, as at tennis; and the manœuvre in question is a kind of tossing up

of the fœtus in the waters of the amnios. The method of performing the internal ballottement is as follows: The woman is

placed in bed, with the trunk in a semi-recumbent position, so as to make the axis of the uterus coincide with a line passing perpendicularly from the fundus uteri to the ground, and to bring the uterus as low down into the pelvis as possible. The bladder and rectum should have been previously emptied. The first or two first fingers of one hand must now be introduced into the vagina, and applied to that part of the cervix uteri, or uterus, which is situated between the anterior lip of the os and the pubis. The experimenter must be careful not strike the os uteri, as the sensation might be deadened by the length of the neck; and in cases of uterine displacement, where the body was bent upon the neck, percussion upon the neck by jerking the body upon the neck might cause a serious error in the diagnosis. The other hand, or the hand of an assistant, should then exercise steady pressure on the abdomen; and a deep inspiration on the part of the patient will finally bring the uterus into the most favorable position for the experiment. Immediate advantage must be taken of the temporary cessation of breathing to make a rapid jerking push against the uterus with the tips of these fingers which are applied to it in the vagina; if there is a feetus in the uterus, and if the proper period of pregnancy has been selected, a hard body will be felt to recede from the fingers as if rising in the intra-uterine fluid, and in a second or two it will fall again on the tips of the fingers. This is the internal ballottement. at which it is applicable is from the end of the fourth to the end of the sixth month, as a general rule; but it must vary according to circumstances, such as the bulk of the fœtus, the quantity of the liquor amnii, and the width of the pelvis. When once discovered, it is a tolerably conclusive proof of pregnancy. The external ballottement is best performed by placing the woman on her side, on the extreme edge of the bed, so as to have her abdomen projecting beyond it. One hand should then be applied to the undermost side of the belly, and another to the opposite surface, in order to steady the uterus. If a feetus is present a similar manœuvre may now be practised, as in the internal operation; a sudden impulse from the lower hand propelling the fœtus towards the upper part of the amniotic sac, from whence it will gently descend again upon the same hand. If the fœtus is very small, no sensation will be imparted to the hand by its descent; and if the liquor amnii be scanty and insufficient to float the child, the experiment will entirely fail. Regarded as evidence of pregnancy, the external is very inferior to the internal ballottement. It is not applicable in so early a stage of pregnancy, a much larger bulk being necessarily obtained before the uterus is brought into sufficiently extensive contact with the abdominal parietes for such a delicate manipulation. After the six months of utero-gestation, the quantity of liquor amnii becomes relatively decreased, and the fœtus is not so well floated, except in some few cases in which the fluid is preternaturally abundant. A kind of spurious ballottement may be sometimes found in cases of ovarian dropsy, where a pedunculated cyst floats within a larger cyst. The ballottement is no proof of the life of the fœtus. It should be mentioned, that great length of the cervix uteri, or a footling position of the fœtus, will make the internal process difficult, and sometimes impossible.

A substance called Kiestein, which occurs in the urine, is one of the minor signs of pregnancy. So far back as 1486, Savonarola gave an account of a urinary deposit which was evidently this material; he compared it to carded wool, but did not pursue its history beyond this point. MM. Nauche and Eguisier, in publishing their supposed original discovery of this matter, made use of Savonarola's simile, speaking of it as a cotton-like cloud, and they gave a further detail of the transformations it goes through, which are as follows: The cotton-like cloud, in the course of from two to six days, becomes resolved into a number of minute opaque bodies, which rise to the surface, forming a fat-like scum; this persists for three or four days; the urine then becomes very turbid, and minute flocculi detach themselves from the crust and sink to the bottom of the vessel, until the whole pellicle disappears. This crust never becomes mouldy, and never lasts more than three or four days. The pellicle contains crystals of triple phosphate, fat, and a peculiar nitrogenous body allied to casein. It is supposed that during pregnancy the mammæ secrete a certain quantity of abortive milk, if the expression may be allowed, which is again taken up into the circulation, and excreted by the kidneys. Analogous facts exist regarding other secretions. Casein has been found in the blood by MM. Grullot and Leblance during lactation, and thus an additional probability has been given to the truth of this hypothesis. When kiestein is present in the urine, it persists, from the end of the first month to delivery. A minute investigation of the exact nature of the body, and the opinions of all writers on the subject, is unnecessary; but the following considerations will point out how far it is really valuable as affirmative or negative of pregnancy. It has been found in the urine of women not pregnant. It is found, for instance, in the urine of women taking cod-liver oil; it is not always to be found in women who are with child.

There are a great variety of miscellaneous evidences of pregnancy, many of which are not constant enough to be of any great value, unless they have occurred in former pregnancies; such are the different intellectual and moral peculiarities which affect certain women. The countenance becomes much altered from the absorption of fat, the eyes look somewhat sunken, and surrounded with a dark areola, the alæ of the nose are pinched, and the corner of the mouth dragged down, and the mouth hence looks larger. The blood is said to be buffy; but Dr. Montgomery suggests that this may be, because those women who have been bled whilst pregnant, have been so bled on account of some inflammatory disease; and he altogether denies that any indications of pregnancy can be derived from the blood. Dr. Garrod has stated that the proportion of fibrin is not increased in the blood of pregnant woman. Lecat mentions a woman, whose face became black in three successive pregnancies, and Gardien relates other instances. Burns mentions discoloration of the skin as not infrequent, and some women always have some cutaneous eruption during utero-gestation; others have dark spots developed upon the face.

I have had two patients who had a marked change in the color of the hair during each pregnancy; it becoming two or three shades lighter so as to be very noticeable both by herself and friends. One of these ladies supposed herself a second time pregnant from this alteration coming on when suffering from a severe ulceration of the cervix uteri, accompanid by hypertrophy of the whole organ, gastric disturbance, pain in the mamme, and all the usual symptoms of pregnancy except the suppression of the menses, which were, however, only diminished in quantity. With returning health the natural color was restored.]

Intense pulsating occipital headache has been considered a sign of pregnancy by Dr. Beccaria, and hence called Beccaria's

test. Pruritus is with some women a very constant indication of the commencement of pregnancy.

Jacquemin and Kluge called attention to a violet color of the vagina and inner surface of the vulva as an indication that the uterus was tenanted. Parent Duchatelet corroborates these statements, and says the color is never absent in pregnancy. Pressure from any other cause, obstructing venous return from the parts, would have the same effect; hepatic disease, or pelvic tumours, or obstructed respiration, may be attended by a similar discoloration. Osiander attached some importance to the vaginal pulse, which may be felt somewhat increased in volume and force as pregnancy advances. The vaginal artery, he says, can be felt pulsating more rapidly than the radial when abortion is threatening.

LECTURE IX.

DISORDERS OF PREGNANCY.

Gentlemen: -The special disorders of the pregnant state chiefly arise from sympathetic irritation of other organs by the uterus and its contents; from morbid conditions of the gravid uterus itself; from the effects of mechanical pressure and displacement; and from the influence of these causes, combined with the modifications of nutrition and excretion incidental to the development of the fœtus and the suspension of the catamenial function, upon the maternal vascular and nervous systems. the production of many of the affections of pregnancy, all these causes more or less occur; and some of the prominent disorders are but the signs of pregnancy in an exaggerated form. Too much attention cannot be given by the student and practitioner to the diseases of the pregnant state, and to the prudent management of pregnancy. It is during gestation that the foundations are laid for some of the most dangerous affections of labor and the puerperal state. Pregnancy is the time for prophylactic measures, having reference to the safety of the mother and child in parturition. Conjunctures frequently occur, in which no amount of care and skill at the time of labor can make up for apparently trivial neglects during the course of gestation. This is the especial period when difficulties may be foreseen, and prevented or avoided. Nothing will contribute more to the reduction of the dangers and mortality of obstetric practice than a careful attention to the disorders of pregnancy.

Of the disorders depending upon sympathetic irritation, excessive Nausea and Vomiting are amongst the most troublesome to which the pregnant woman is liable. Sometimes the affection is bearable, the stomach returning certain kinds of food, or being irritable only at particular times of the day, especially in the morning. In other cases, it continues to such an

extent that constant nausea distresses the patient, and vomiting invariably follows upon every attempt to take nourishment, whether in the liquid or solid form. The epigastrium becomes tender, and there is general fever, with great prostration and debility as in idiopathic gastritis. An almost poisonous influence seems to be exerted by the gravid uterus in some constitutions. Such a state of things may go on for weeks or even months, and it is difficult to account for the continuance of life in some of these cases, except upon the supposition that a small quantity of food remains in the stomach after each vomiting. occasionally happens that other circumstances besides the uterine irritation increase the tendency to vomiting: women, for instance, who have undertaken voyages during pregnancy, have died from the combined effects of sea-sickness and the vomiting of pregnancy. A friend of my own lost a sister from this kind of vomiting, during a voyage to Australia. I have known of two other similar instances, and such cases are not very uncommon. I have seen the gastric irritation much aggravated by the concurrence of hooping cough during the gravid state. In the worst cases, women who are not relieved, or who do not abort, perish slowly from starvation, or they die from the rupture of a bloodvessel, convulsions, or exhaustion, after violent and continued fits of vomiting. The matters vomited from the stomach consist of the food and drink swallowed, an acid, glairy, or watery mucus, secreted by the stomach and pancreas, and, when the sickness is excessive, of bile which has ascended into the stomach by an anti-peristaltic action, or of blood from rupture of vessels during paroxysms of vomiting.

The first thing to be attended to, as regards treatment in the vomiting of pregnancy, is to attempt to get the secretions, particularly those of the stomach and bowels, in as healthy a state as possible. One of the most old-fashioned and serviceable remedies is the infusion of calumbo with soda. The calumbo and soda, with from three to five drop doses of the dilute hydrocyanic acid, three times a day, is a very useful combination. A grateful and sedative tonic is also made by giving citric acid with the calumbo and soda, so as to form an effervescing draught. Cases are met with in which vomiting affords great relief, by getting rid of vicious gastric secretions, and contributing to restore the stomach to a healthy state; such patients should be

puked occasionally with warm water, camomile tea, or a mustard emetie. In some patients, the stomach retains food after taking moderate doses of opium and morphia, and perhaps the solution of the bimeconate of morphia is one of the best forms in which an opiate can be given. Salicine, in doses of three to five grains, three times a day, is a valuable medicine, which was first mentioned to me by a medical practitioner. It allays sickness, and promotes appetite and digestion. Kreasote, in one or two drop doses, made in pills, with crumbs of bread, is well known as an efficient remedy in this affection. Professor Simpson strongly recommends the salts of cerium, particularly the nitrate of cerium, in doses of one to two grains in water. Dr. Simpson has also used the vapor of laudanum as an inhalation with good effect.

[Chloroform, ten drops in mueilage or syrup taken every two or three hours, or by inhalation, is sometimes effectual in arresting it; also Hydroeyanie acid in some form. The infusion of the bark of the wild cherry frequently gives speedy relief. Water without syrup, impregnated with carbonic acid gas, known as plain soda water, taken by the wine-glass full, champagne and brisk bottled cider are very grateful and not unfrequently entirely relieve this very distressing and often danger-

ous symptom.]

Where there is tenderness of the epigastrium, with fever, and an active state of the circulation, a few leeches may be applied to the pit of the stomach, or a small bleeding from the arm may be practised with good effect. Counter-irritation, in the shape of sinapisms, the turpentine stupe, or blistering, will sometimes afford great relief. In some eases, the stomach is soothed by the application of warm poultices sprinkled with laudanum, or a pledget of lint dipped in laudanum, the epigastrium having first been stimulated by a mustard plaster. The reeumbent position, and perfect quiet, is of great use in the worst of eases. is sometimes necessary to treat not only the siekness, but also the Marasmus which is the result of excessive vomiting. A daily warm bath is a great comfort to such patients, and in cases of exeessive prostration, gelatinous matter may be added to the bath, with a view to the endermie absorption of nutriment. Beef-tea injections, and the inunction of cod-liver oil, or sperm or salad oil, are very useful. I have seen a patient suffering from

incessant vomiting, in a state of great anæmia, with ædema of the lower extremities from pure debility, kept up in the latter part of pregnancy, mainly, as I believe, by the daily inunction of cod-liver oil over the abdominal surface. When all other means fail, and when the exhaustion of the patient cannot be arrested, the remedy is the emptying of the uterus, and this should never be delayed so long as to put the patient in a state of imminent peril. Nature herself often terminates the distress by spontaneous abortion. It has happened to me to have been twice consulted within a recent period in cases in which the induction of premature labor artificially was so long delayed, that the patient died before abortion could be induced. Paul Dubois has stated that he met with twenty fatal cases in thirteen years. It is a reproach to our art that such cases should occur. The means of inducing abortion and premature labor will be discussed hereafter.

Anorexia, Indigestion, Heartburn, Gastralgia, and Variable Appetite, are caused in certain patients by the reflected irritation of the gravid uterus upon the stomach. Some women never feed so well as when they are pregnant, but in general, the appetite fails somewhat, and particular articles of food are regarded with aversion. A morbid desire for salted matters, acids, or alkalies, is not uncommon. Sometimes there is great loathing of every kind of food, or there is an extravagant desire to eat particular things, amounting to pica. These longings, as they are termed, should be gratified as far as they reasonably can be. The common tendency of the appetite in pregnancy is to prefer fresh vegetables, fruits, and cooling drinks, and to avoid stimuli of all kinds. In this, the taste of pregnancy accords very well with its requirements. When the appetite is unnatural, the state of the bowels should be carefully regulated, and the patient kept as far as possible from taking things likely to be absolutely hurtful, as convulsions before and during labor are sometimes caused by the habit of indulging in improper and indigestible kinds of food. The remedies serviceable in excessive vomiting are also useful in the gastric disturbances now under consideration. Soda and magnesia are the best antacids in heartburn. In the neuralgic state of the stomach, which occasionally obtains, bismuth, hydrocyanic acid, kreasote, or an opiate plaster to the epigastrium, are useful. Sometimes small

doses of acetic acid, or the mineral acids, will relieve the stomach in a re narkable manner; and when the neuralgia recurs at a particular hour of the day, it is generally relieved by quinine. In certain cases, uterine irritation excites the bowels to increased action, and tenesmus and diarrhea are the results. In such cases, astringents should be given sparingly, unless the diarrhea should be so considerable as to produce debility or lead to the risk of abortion. Care should, in the first instance, be taken to render the secretions as healthy as possible, and to avoid articles of diet likely to irritate the bowels. If necessary, the purging should be arrested by an opiate, with compound chalk mixture, bismuth, or gallic acid. When the diarrhea depends, as it sometimes does, upon fæcal accumulation, or vicious secretions, a brisk purgative is the best remedy.

Facial Neuralgia from uterine irritation is a very common affection of pregnancy. It generally affects the dental nerves, particularly those of the upper jaw. In many subjects, acute caries of the teeth occurs; and in some child-bearing women, a tooth or two is lost in each pregnancy. In neuralgia of the face, with or without disease of the teeth, a generous diet is called for, with wine and porter. Quinine and the lighter preparations of iron are very useful in such eases. Cold and damp, and residence near a river, or the neighborhood of any large body of water, should be avoided as much as possible. Teeth ought only to be extracted with caution during pregnancy under such circumstances. The local application of chloroform, kreasote, camphorated spirit, nitric acid saturated with camphor, and other anodynes, scarification, or the application of a leech to the gum, are the best means of alleviating the pain.

A painful state of the Mammæ sometimes occurs during pregnancy, but seldom requires anything more than frictions, with an anodyne liniment or warm fomentations. Oceasionally, however, acute **Mammitis** occurs from the irritation of pregnancy, requiring leeching and other active treatment. One of the most remarkable sympathetic disorders of pregnancy is the occurrence of Goître to a slight extent. The treatment of this enlargement of the thyroid is not of much avail during gestation, and the goître generally disappears after parturition. Allied to this affection is the excessive Salivation which occasionally happens in pregnant women, leading to no serious results, and gen-

erally requiring no further treatment than the use of an astringent wash to the mouth.

We shall have presently to consider the ædematous states of the lower extremities, depending upon pressure and debility; but there is another form of dropsy incidental to pregnancy, affecting not only the limbs, but the cellular tissue of the body generally: this is the Œdema Gravidarum of the older authors. No other cause than pressure on the vessels was, I believe, known for such a state of things until Dr. Lever pointed out its connection with albuminuria. Other observers have added to this valuable advance in pathology, and it is now a well recognized fact that pregnant women, especially primipara, are often the subjects of Albuminuria, resulting in local and general dropsy, and involving, unless relieved, very grave dangers at the time of parturition. Albuminuria was first pointed out by Dr. Lever and Professor Simpson in 1843, in connection with puerperal convulsions, but since that date more attention has been paid to this condition at the time of labor than during its early stages in pregnancy. This is a misfortune, inasmuch as little can be done in such cases at the time of parturition, while if detected early, the disorder can be relieved in the great majority of cases. has been said that this disorder cannot be arrested during pregnancy; but I have never met with a case that resisted treatment, unless it had been neglected until towards the close of gestation. The cause of albuminuria of pregnancy has been considered to be the pressure of the gravid uterus. It has been found that ligatures applied to the renal veins will produce albuminaria artificially. Its prevalence in first pregnancies, when the abdominal walls are more tense than in multipara; in twin cases; and in subjects affected with dropsy of the amnion; and its rapid disappearance after labor, in most cases, seem to favor this view. Probably pressure on the kidneys is one cause of albuminuria; but I have seen it occur in primiparous women of relaxed habits as early as the fourth or fifth month, where the abdominal walls were flaccid, and no apparent pressure or tension existed. The disease appears to me in such cases to depend upon sympathetic irritation of the kidneys by the gravid uterus, similar with the irritation of the salivary glands, the mamme, thyroid, etc., and not upon mere pressure. It certainly has not the same tendency to occur in ovarian dropsy, or in large fibrous tumors of the uterus, in which the pressure may be quite as great, and sometimes as rapidly induced, as in pregnancy. According to the researches of M. Blot and Professor Litzmann, albuminuria is not a very uncommom affection in pregnancy. M. Blot found it in about twenty per cent. of the women he examined, and Dr. Litzmann in a somewhat larger proportion. It is found, as already stated, more frequently in primipara than in multipara. Probably when the albumen is in small quantity no special symptoms result. When the amount of albumen is excessive, and the disorder has proceeded without check, we have the legs enormously swollen, and the vulva and vagina become so tumid as to render an examination very difficult. There is puffiness of the face and hands, cedema of the abdominal walls, and almost every part of the body pits deeply upon pressure. The patient complains of headache, and sometimes dimness of sight and amaurosis. Lumbar pain is frequently present, and there is general pyrexia. The urine is small in quantity, and nearly solidifies upon the application of heat and nitric acid. It is generally of high specific gravity, loaded with phosphates, frequently alkaline in character, and containing epithelium or fibrinous casts of the tubuli uriniferi. Besides the loss of albumen, nrea is retained in the blood, and appears to have been detected in this fluid as such by Dr. Lever. Other observers have failed to find urea. According to the view of Frerichs and Litzmann, nrea becomes converted into ammonia, which has been found in the blood and in the secretions of the skin and lungs of albuminurious patients. As the poisoning of the circulation by nrea and the loss of the albuminous portion of the blood proceeds, an intense degree of anæmia is induced. It is of great importance to relieve such a state of things before the coming on of labor, as albuminuria predisposes powerfully to convulsions and phrenitis, and according to my experience, to dangerous hæmorrhage during and after labor. The treatment consists in small bleedings where there is distinct lumbar pain and general and febrile excitement, or cupping upon the loins, or counter-irritation by sinapism, in the same situation. Warm baths and vapor baths are often very useful in restoring the function of the skin, removing the effused fluid, and disposing the kidneys to act. I have also found the use of diuretics, as the acetate of potash, oil of juniper, and infusion of broom, most useful. Frerichs and Litzmann have given benzoic and citric acids, with a view to remove the ammonia from the blood, and it is said with good effect. When there are no signs of renal inflammation or congestion, and the quantity of albumen has diminished, and that of the urine increased, a generous diet and the administration of iron and tonics should be resorted to, in order to repair, as far as possible, the weak condition of the blood which has been produced. The detection and treatment of albuminuria in pregnancy is one of the points of progress deserving the special notice of all engaged in the practice of midwifery. I have no doubt the rate of obstetric mortality may be sensibly diminished by attention to this subject. The urine should invariably be tested for albumen in all cases of cedema of the extremities.

I am not aware that the matter has been observed by obstetric authors, but in some pregnant women the urine, without being albuminous, contains habitually a large quantity of triple phosphates, is of high specific gravity, and has an alkaline reaction during the greater part of pregnancy. The nervous and vascular erethism attendant upon, or produced by, the state of pregnancy, is followed by the same results as other and more marked causes of exhaustion. I have known this Phosphatic Diathesis to exist in cases in which fatty degeneration of the placenta has occurred in successive pregnancies. In one lady who had given birth to eight dead children at or near the full time, this state of the urine was very marked. The death of the children occurred before the end of gestation from placental disease, and was caused by the separation of the placenta before the occurrence of uterine action; or its attachment was so slight that it was scparated by the first contractions of the uterus; or the children were born in such a weak condition that they died soon after birth, leaving the fœtus to die of asphyxia. The treatment in such cases should be that employed in the phosphatic diathesis occurring under other circumstances than pregnancy—namely, the mineral acids, opiates, rest, and a nutritious regimen. Such patients also require, either during or after the completion of pregnancy, preparations of steel, as a marked degree of anæmia is produced by the persistence of the dis-

Some gravid women experience great distress during preg-

nancy from the sympathetic irritation of the Heart, palpitation occurring upon the slightest exertion or emotional disturbance; in others, the respiration is similarly affected, and attacks of dyspnœa, approaching to asthma, harass the patient. These affections are aggravated as pregnancy proceeds; and the effects of mechanical pressure upon the heart and lungs by the ascent of the diaphragm, and upon the great vessels in the abdomen, become added to those of sympathetic irritation. In such cases an opium or belladona plaster over the heart, and use of antispasmodics, such as sulphuric or chloric ether, valerian, musk, and similar remedies, are useful. Every means should also be taken to diminish, as far as possible, the effects of mechanical pressure. Cough is very troublesome in some cases. At the commencement of pregnancy, the cough may be spasmodic, and caused by sympathetic irritation of the throat and glottis; and, in the later months, by the upward pressure of the gravid uterus upon the diaphragm and lungs, a condition often accompanied by pleurodynia. In the former case, the cough is soothed by opiates and a good diet; in the latter, nothing can be done beyond obviating the effects of pressure as much as possible, by attention to the bowels, and the position of the patient. Such patients, for instance, require to sleep with their heads raised, and very great comfort is often obtained by the use of small air-pillows. which can be shifted about with ease by the patient.

Cephalalgia and Cerebral Irritation are sometimes produced by the irritation of the gravid uterus. They are, however, more frequently the secondary result of some other disorder incident to pregnancy. Thus, headache occurs as a symptom of albuminuria, constipation, anamia, indigestion, etc. When it is caused directly by the condition of the uterus, it should be relieved by cooling applications, as ice or a spirit lotion, to the head, and a few leeches to the temples, small blisters behind the ears, aperients, etc. When headache is only a symptom of some other condition arising out of pregnancy, the treatment must be modified according to the particular disorder upon which it depends—as, for instance, a purgative in constipation; quinine or iron in anæmia; albuminuria, the troatment adapted for the relief of this condition, and so forth. Severe headache is a symptom which should always attract the attention of the

acconcheur, since we know that it may be the possible forerunner of puerperal convulsions or mania. It occasionally happens that actual mania has been caused by the irritation of pregnancy, and apoplexy, epilepsy, and chorea have been met with. In these severe complications, the only efficient treatment consists in the artificial evacuation of the contents of the uterus.

Having referred to the principal forms of disorders dependent upon sympathetic nervous irritation, we come to the consideration of those caused chiefly by the pressure of the gravid Amongst the most obvious results of pressure are the impediments to the circulation in the lower extremities. The weight upon the external iliac veins, particularly in the upright position, very commonly causes a varicose state of the veins of the legs. This condition is most aggravated towards the end of pregnancy, and in women who have borne large families, or who have been obliged to exert themselves during gestation, the varicose veins sometimes inflame at particular points, or throughout a considerable extent, and the walls of the veins may become thin and burst, giving rise to dangerous hæmorrhage. In other cases, varicose ulcers are formed by the inflammation and suppuration of a patch of varicose veins. Certain inconveniences also arise as the result of pressure on the internal iliac veins. In the latter months of pregnancy, the distension of the internal iliac veins is caused by the pressure of the gravid uterus upon the common iliacs; but in the early months the pressure is exerted directly upon the internal iliac vessels by the expanding uterus before it has yet emerged from the pelvis. In this way, hemorrhoids, congestion, and varicosity of the vagina, and a varicose state of the vulva, are caused. In the latter condition, effusion of blood may take place from the veins into the cellular tissue, constituting thrombus, which sometimes attains a considerable size, and proves an impediment at the time of labor. Hæmorrhoidal discharges are not uncommon in the early months of pregnancy from this cause, and, in some habits, blood is lost from the hæmorrhoidal vessels for the first monthly period or two after the commencement of pregnancy. Similar disordered conditions of the pelvic veins may afterwards be caused by pressure upon the common iliac. Probably the effects of pressure have some influence in causing a plethoric state of the uterus itself; but as the uterine veins empty themselves partly into the internal iliac, and partly into the inferior cava and renal veins, the early gravid uterus is to a considerable extent defended against the consequences of pres-

In the management of these conditions, as in all the disorders of pregnancy, it must be remembered that except in the last resort, the cause of disorder cannot be removed, and that we can only deal in palliative measures. The varicose state of the veins of the lower extremities may be relieved by rest in the recumbent position, and by wearing a roller, or an elastic stocking. In the event of a varicose vein bursting, the patient ought to be laid down, and placed, with her legs raised above the level of the head, until the bleeding has ceased, and pressure should be applied to the ruptured vein. The distension of the hæmorrhoidal and vaginal veins may be relieved by rest, and the avoidance of constipation; and if the veins of the vulva are varicosed, by the pressure of an elastic bandage applied to the

part.

The pressure of the gravid uterus upon the lymphatics in the pelvis sometimes gives rise to simple Œdema of the lower extremities, in cases where no disturbance is caused by venous At others there is edematous enlargement of the feet and ankles, combined with a varicose state of the veins. The ædema is aggravated by standing or walking, and becomes worse every evening, particularly as pregnancy advances. It is generally relieved by rest in the horizontal position, or, if painful, by an opiate embrocation. It disappears very soon after the occurrence of parturition. Cramp in the leg is a very troublesome affection to some pregnant women, and in subjects in whom it occurs during gestation the disorder occasionally amounts to intense and continued agony during labor, affecting the muscles of the abdomen as well as those of the lower extremities. It depends partly on the pressure upon the lumbosacral nerves in the pelvis, and partly on the irritation of the gravid uterus, or constipated bowel, reflected upon the nerves of the lower extremities, apart from mere pressure. The tendency to cramp is increased by unusual exercise, long standing in the upright position, or by the omission of accustomed exercise. The treatment consists in friction and extension of the

limbs during the paroxysm, and the avoidance, as far as possible, of the causes of this painful affection—that is, the bowels should be kept regular, and rest and exercise should be attended to in due moderation. Constipation is prone to occur in pregnancy, partly because of the mechanical pressure exerted on the rectum, and partly because the state of the gravid uterus acts as a contra-stimulant to the intestinal canal. Sulphur, bitartrate of potash, manna, or the lenitive electuary, should be given in cases of constipation, when the bowels are readily moved. In more obstinate cases, castor oil, or the compound rhubarb pill, or an injection of soap-and-water, are useful. There is a very common prejudice in favor of aloes, and this medicine is well suited to cases in which the derivative influence of the gravid uterus has reduced the rectum to a state of torpor. Its effects, however, should be kept within certain limits, otherwise it is apt to excite the uterus. Magnesia should be avoided as a purgative during pregnancy, and it should not be used to any great extent as a means of relieving heartburn, on account of its tendency to accumulate in the rectum. Serious complications may occur at the time of labor, or subsequently, from neglect of the bowels, or from habitual constipation during the pregnant state. This is particularly the case with women who have required opiates during pregnancy, in whom accumulations of fæcal matter in the colon are very apt to occur. There may be a daily partial action of the bowels in such cases, but the bowels may become so loaded notwithstanding, as to complicate, favor, and tend to the production of fever or convulsions after parturition.

Strangury and incontinence of urine are often met with in pregnancy; in the early months, from irritation of the bladder, the irritation being partly caused by pressure, and partly reflected from the gravid uterus; and in the latter months, chiefly as the result of pressure. Little can be done in such cases beyond enjoining rest, giving an opiate—particularly when the affection occurs in the early months—and taking care that the urinary secretion is kept in as healthy a state as possible. The distension of the diaphragm and abdominal muscles by the gravid uterus is occasionally the source of severe pain in these muscles. This muscular pain may be felt especially in the diaphragm, in the situation of its insertion into the ribs, in the

course of the rectus, or in the bellies of the oblique muscles. It is relieved by an occasional warm bath, the use of frictions with olive oil to the abdominal surface, an anodyne embrocation, and especially by wearing a suitable bandage, so as to support the strained muscles. I have sometimes seen these pains, after bleeding and leeching had been tried in vain, relieved at once by the use of a well adjusted bandage. Occasionally the skin is the seat of great uneasiness from the distension of the abdomen becoming cracked, and oozing out a watery secretion. The best relief for this state is the use of oleaginous frictions, an occasional warm bath, and the support of the abdominal bandage.

[Hernia sometimes accompanies pregnancy, the intestine coming down by the side of the vagina and filling the labiumso as to greatly enlarge it. It is rarely a very serious complication, but it is sometimes a cause of much anxiety to the patient. Occasion should be taken to restore it by making gentle pressure while the woman lies upon her back. If kept up for a few days or weeks it will rarely reappear. It is generally the result of a strain in lifting.]

LECTURE X.

DISORDERS OF PREGNANCY.

GENTLEMEN:—In the last lecture, reference was made to the disorders of pregnancy depending upon sympathetic Irritation and Mechanical Pressure; and we now come to the consideration of displacements of the Gravid Uterus, and their effects.

Conception may, and does occur in women suffering from Prolapsus or Proeidentia, as in cases where the uterus is oceasionally reposited, or returns of itself when the patient is in the recumbent position. Under such circumstances, there may be prolapsus or proeidentia of the pregnant uterus in the early months. Harvey mentions a case of this kind. Unless abortion should happen while the uterus hangs externally, no other evils but the discomfort of such a state of things and the risk of abortion are After a while, the uterus no longer usually experienced. descends, the ovum acting as a very efficient intra-uterine pessary. All that is required in the way of treatment is the return of the uterus within the vagina by gentle pressure, and the continuance in the recumbent position for a time. Oecasionally, however, where the uterus has formed adhesions, abortion is eaused, or inflammation and pelvie abscess is the result.

In women who have borne many children, or who are of relaxed habits, or in whom large umbilical hernia exists, the uterus in the latter months of pregnancy hangs over the pubes constituting **Anteversion** of the gravid uterus. Oceasionally, in these eases, eonsiderable disturbance of the bladder is experienced in consequence of the dragging and pressure exerted upon the neek of the organ. When the anteversion is considerable, the bladder is drawn upwards to a considerable extent; the unwieldy condition of the patient interferes very much with progression; and the loss of the proper axis of the uterus, and the impeded action of the abdominal muscles, become impedi-

ments to parturition. In the first month or two of pregnancy, the natural position of the uterus is, as already mentioned, a slight anteversion of the organ, as compared with the axis preserved in the ungravid state, and the body of the organ can be felt in front of the os uteri, and between the os and the pubes. This generally produces no other inconvenience save that of pressure on the bladder; but when the anteversion is very marked, as when a womb already anteverted becomes impregnated, or when large accumulations in the rectum takes place, the vesical irritation and disturbance becomes more distressing. In the early months, the patient should be a good deal on her back, and the rectum should be emptied daily by an enema or some mild aperient. The treatment of anteversion in the latter months consists of rest in the supine position, and the use of a

proper bandage.

By far the most formidable displacement to which the gravid uterus is liable is Retroversion—an affection noticed by Daventer and some of the early obstetricians, but first observed distinctly by Grégoire, and fully described by William Hunter and This affection occurs in its most decided form at about the third or fourth month, when the uterus is entirely within the pelvis, and when it is of such large size that any alteration from the natural position occasions great inconvenience to the neighboring organs. It is usually described as arising from excessive distension of the bladder, through neglect, reserve, or restraint on the part of the patient. It is believed that the full bladder, rising in the abdomen, drags the neck of the uterus upwards, while the bulk of the distended organ presses the fundus uteri backwards. The displaced uterus, by the pressure it exerts upon the neck of the bladder, in turn increases the distension of this viscus, and the retroverted uterus at length becomes fixed across the pelvis, the fundus lying in the hollow of the sacrum, and the os being tilted against the pubes, so as, in the worst cases, to render the evacuation of the rectum difficult, and the bladder impossible. This explanation of the matter, which has been implicitly followed by almost all writers on midwifery, was current, it should be observed, long before the subject of retroversion of the unimpregnated uterus came to be understood. My own observation inclines me to give a different view of the mode in which retroversion of the

gravid uterus may occur—a view illustrated by a case which recently fell under my care. A lady in whom the symptoms of retroversion of the uterus had existed for some years before her marriage, became pregnant, and the inconveniences from which she had suffered immediately became aggravated. I examined her when she had been pregnant about ten weeks, and found the uterus completely retroverted. The fundus was almost pressing upon the perinæum, and the os uteri could be felt high up in front, behind the pubes. At this period there was no sensible pressure on the bladder; the organ could be readily emptied, and the urine was retained the ordinary time. It was upon the rectum that the pressure was chiefly felt. The uterus did not lie horizontally in the pelvis in the usual way described, but the organ was bent upon itself at the cervix, just as a retort is bent at its neck. As the case went on, and the uterus occupied the greater part of the pelvis, pressure on the bladder became painful, and I have little doubt the worst symptoms of retroversion would have occurred, had not care been taken to keep the bladder and rectum comparatively empty. The leverage of increased growth, aided by attention to the bladder and rectum, gradually raised the fundus uteri, and as the organ emerged from the pelvis it assumed the proper position. Without question, retroversion of the gravid uterus may be caused by an over-distended bladder, but I suspect that many cases of retroversion occur in the way I have described—from impregnation of the uterus already retroverted. At first, no great inconvenience is felt, but there comes a time when the os uteri presses on the bladder and prevents its evacuation. Then ensue the symptoms of retroversion, and that which has occurred slowly is looked upon as a sudden displacement. I have seen other cases in which pregnancy happened in patients suffering from retroversion, and sometimes retroversion has occurred in successive pregnancies in the same subject. It is believed that a pelvis above or below the average size, or narrower at the brim than at the outlet, may predispose to this affection.

The symptoms of retroversion, when the uterus is of such dimensions as to exert mechanical pressure upon the antero-posterior walls of the pelvis, are, in the first instance, partial or complete retention of the urine, pain in the pelvic region, and a sense of pressure on the rectum, giving rise to the constant

desire for defecation, even when the bowels are empty. Should these symptoms pass unrelieved, the bladder becomes enormously distended, and it is sometimes ruptured mechanically, or its coats inflame and ulcerate, allowing the urine to escape into the peritoneal cavity, and the patient sinks or dies of peritonitis. If the uterus cannot be replaced, and the water is occasionally and with difficulty drawn off, the bladder gradually enlarges and elongates, and its mucous membrane diseased: muco-purulent, ammoniacal, and bloody urine is passed, and the kidneys may become diseased by the effects of the backward pressure of the urine. The structures between the bladder and the uterus may become inflamed, and the patient be destroyed by irritative fever. In some cases all these mischiefs are averted or modified by the occurrence of spontaneous abortion. In others the displacement continues to the fifth or sixth month, without destroying the patient, and it has been known to go on to the full term without causing a fatal result.

As regards treatment, the first thing to be done is to obviate as far as possible the effects of pressure, by catheterizing the bladder and emptying the bowels by aperients or enemata. In some cases, these means, and directing the patient to empty the bladder frequently, and the bowels daily, are so efficient that no further inconvenience is felt, and the uterns rises into the abdomen as pregnancy advances. When the pressure cannot be relieved by these means, an attempt should be made to raise the fundus uteri mechanically. This should be done by introducing the fore-finger of one hand into the vagina, and the fore-finger of the other into the rectum, when the os should be drawn down with one finger on the uterine sound, and the fundus elevated with the other. The most convenient position for the patient during these manipulations is on her knees in bed, with her head lowered. M. Gariel has proposed that one of his vulcanized india-rubber pessaries should be introduced into the rectum, or into the vagina, and that the fundus uteri should be raised in inflating the pessary. I do not know if this plan has been tried in practice, but it would probably be effective in a case admitting of the mechanical re-adjustment of the nterus. When the uterus was firmly wedged in, it might, however, unless great caution were observed, lacerate the soft parts. If the symptoms are so serious as to threaten the safety of the

mother, and the reduction of the retroversion cannot be affected, the uterus should, if possible, be emptied of its contents, by passing the uterine sound or a curved bougie into its cavity, and either rupturing the membranes, or detaching the ovum. We have seen that Nature itself sometimes gets rid of the difficulty by abortion. If the uterus cannot be emptied in this way, it should be punctured from the vagina or the rectum. These operations have been successfully performed, but they should of course, only be resorted to in dangerous cases, and when there is no time for the induction of abortion.

Fig. 49.

The action of M. Gariel's instrument for replacing the retroverted uterus, is shown in Figs. 49 and 50. The instrument itself consists of a dilatable air pessary terminating in a tube, and an air reservoir, with small taps affixed to each. After immersion in warm water, the collapsed pessary is passed into the rectum, behind the uterus, by means of a probe. The air reservoir is then fitted to the tube of the pessary, the taps are opened, and by the pressure of the hand, the air contained in the reservoir is transferred to the pessary, so as to lift the uterus out of

the hollow of the sacrum. This instrument is made by Mr. Huxley, of Old Cavendish street.

Dr. Henry Bond, of Philadelphia, has invented an instrument for the relief of retroversion, which Dr. Meigs states was successful in a difficult case which had resisted other means. The following is the description of this instrument, as given by Dr. Meigs (see Fig. 51):

"The instrument eonsists of two arcs of circles of different radii; the inner one is terminated by a small oval piece of ivory; the outer terminates in a small ivory ball. The exterior are is formed at its lower extremity into a plate-piece, in which is a mortise; to the end of the plate-piece is attached an ivory handle, by which it may be conveniently held. The inner or smaller piece is attached to a sliding piece, also mortised, and overlapping by its edges the mortised plate-piece, and secured by a elamp or pinch traversing the mortises, and fastened or loosened by turning the thumb-piece. If the thumb-piece be unscrewed, the elamp may be turned lengthwise, and the ares are then easily separated. In order to use the instrument, the ares should first be separated, and the ivory ball on the largest are introduced into the rectum, while the oval one on the smaller

arc should be introduced into the vagina. By sliding the smaller arc upwards, the two balls can be placed opposite to

each other; or the vaginal arc can be set a quarter of an inch, a half inch, or an inch lower down than the one that is in the rectum. Upon being adjusted and firmly secured by turning the thumb-piece, it is manifest that the two balls cannot be separated from each other, and that if they be moved upwards, parallel with the curve of the sacrum to the height of the promontorium, they must carry the retroverted uterus before them, and thus serve very effectually and easily to reposit the dislocated organ."

The disorders of pregnancy depending upon the uterus and vagina are, Uterine Plethora, Hysteralgia, a painful condition of the Round Ligaments, Pruritus, Sanguineous Discharges, and Leucorrhea.

Uterine Plethora in the early part of pregnancy, as the joint result of pressure and the determination of blood to the uterus in the processes of nutrition, may exist to such an extent as to cause bearing-down, heat and pain in the back, and a sense of pelvic fullness, with inability to walk—symptoms which, if not relieved, are pretty sure to produce abortion. On examination per vaginam, the canal is found hot and dry; the uterus is

swollen, low down in the vagina, and rigid and painful to the touch. This condition should be treated by the avoidance of intercourse, absolute rest, aperients of the gentlest kind, or mild enemata, the application of leeches to the perinæum, or the inside of the thighs, cooling saline medicines, and a light, unstimulating diet. When the uterine pain is considerable, an opiate, or hyoscyamus with camphor, should be given, or an opiate suppository should be introduced into the rectum.

Occasionally in the middle and latter months of gestation, the uterus itself becomes the seat of severe pain. If the organ be pressed upon with the hand it is found to be painful, and the movements of the child and the contractions of the uterus itself are accompanied by much suffering. This kind of pain is accompanied by fever, a coated tongue and high colored urine. It is generally considered to be of a rheumatic character, and admits of relief by a light diet, saline aperients, warm baths, Dover's powder, anoydyne embrocations, and liquor potassæ, with or without colchicum, according as the rheumatic element may appear to prevail. Some women feel this pain very distinctly in the direction of one or both round ligaments, and I have certainly seen several instances in which rheumatism has appeared to seize upon these ligaments during pregnancy—a circumstance very well explained by their fibrous structure. The treatment would be the same as in rheumatism of the uterus. In both cases every care should be taken to relieve the organ from all strain or pressure as far as possible by rest and recumbency.

Pruritus is often met with in pregnancy, and in some women it is so constant as to be a source of much annoyance. It commonly depends on follicular irritation of the vulva, which, if unchecked, passes on to aphthous ulceration. Sometimes the vulva is quite free from irritation, and the itching is referred to the surface of the os uteri itself. In either situation, the pruritus is frequently accompanied by sexual excitement. In pruritus of the vulva the secretion from the surface is highly acid. The affection may sometimes be relieved by washing the part with common yellow soap on account of the alkali it contains. Dilute hydrocyanic acid, Battley's solution, and carbonate of soda, make an excellent wash, in the proportion of one drachm of each of the two former to two drachms of the latter, in six ounces of water. Of this wash, the patient should be directed not to use more

than a tablespoonful at a time. A lotion of borax is often very useful. Occasionally, when alkaline applications fail, relief is obtained from an acidulated wash. Sometimes a lotion of tar-water is very soothing in this affection. If the disorder resists these measures, painting the vulva, with a solution of the nitrate of silver, in the proportions of ten grains to an ounce of water, every day or every other day, or with the tincture of iodine mixed with an equal quantity of water, is an excellent remedy. In pruritic irritation of the os uteri, the solution of borax, or of the nitrate of silver, should be used as an injection; tepid or cold bathing, a cooling diet and occasional aperients are necessary in such cases. It sometimes happens that the pruritus has a periodic character, coming on or becoming aggravated at particular times of the day. In these cases I have seen great benefit from the administration of quinine.

Leucorrhæa is a very common affection of pregnancy. The glands of the canal of the cervix share in the increased development of the uterus, and the secretion which forms the thick plug of mucous closing the cervix uteri is frequently in such excess as to cause a constant discharge. The secretion is thick and perfectly white in color, as it escapes from the os uteri. It is composed entirely of plasma and mucous particles, but in passing through the vagina it becomes mixed with the scaly epithelium of the vaginal surface. In some cases, the epithelial covering of the os uteri is abraded to a considerable extent, when muco-purulent or purulent matter is secreted from the abraded surface, and is discharged from the vagina with the mucous of the cervix. Sometimes this abrasion exists before the occurrence of pregnancy, and is only aggravated by the afflux of blood and increased action natural to the gravid uterus. other times, it originates during pregnancy itself. This subject of the abrasion of the os uteri in pregnancy has been investigated in France by MM. Boys de Loury and Costilhes, and by Dr. Henry Bennet and Dr. Whitehead in this country. The symptoms consist of purulent or muco-purulent vaginal discharge, pain and weight in the lumbar and hypogastric regions, all of which are increased by walking or sustained exertion of any kind. Examined by the speculum, the os uteri is seen denuded of epithelium to a greater or less extent, and secreting puriform matter

I have ascertained that it is in these cases that the supposed menstruation of pregnancy sometimes occurs. Occasionally large quantities of blood are lost from the abraded surface at each catamenial date. If allowed to pass without treatment, besides the debility induced by the constant puriform discharge, and the occasional loss of blood, there is some danger of abortion, or of painful and laborious labor at the full term. In cases

of simple mucous leucorrhea, little is required beyond the use of an astringent injection. [I have given from 3 to 5 grains

of the Potasii Ferrocyanuretum dissolved in water three times a

day, with much benefit.]

In the severer forms of disorder, the treatment should consist of rest, keeping the bowels in a lax state, the use of injections of tannin, alum, the sulphate of zinc, or diacetate of lead, and the occasional local application of the solid nitrate of silver. The application of the nitrate should never be severe, and the employment of the more powerful escharotics should be avoided, lest they should cause abortion. As an astringent, the dilute sulphutic acid, with the compound infusion of roses, or the dilute muriatic acid, may be given. By these means, severe cases of this kind are often cured. It must be confessed that abortion may, and does sometimes occur, from the treatment; and if the use of the nitrate of silver or astringent injections should cause much pain, they ought immediately to be disused.

[In the position which the os uteri frequently takes in the early stages of pregnancy it is not unfrequently a matter of no little difficulty to bring the os and cervix into view with any of the ordinary specula. The instrument invented by our distinquished countryman, Dr. J. Marion Sims—for the purpose of exposing the whole of the vaginal walls, as well as the os uteri, will be found in the hypertrophied uterus of pregnancy with the os thrown back into the hollow of the sacrum, to be of great avail. It might perhaps be properly called a levator perinei, for the patient placing herself in the position delineated in the cut annexed, as nearly as possible lying upon her breast and stomach, the left arm thrown behind and the chest rotated forwards, bringing the sternum quite in contact with the table or bed, the feet drawn up, one extremity of the instrument is to be inserted into the vulva, and by the other the perineum is to be forcibly lifted up, allowing the pressure of the atmosphere to dilate the vagina, thus giving a full view of the entire vaginal cavity; after a little experience with this instrument, the practitioner will rarely be induced to use the ordinary cone-shaped or even the many valved instruments.]

The source of the blood in menstruation, or menorrhagia, during pregnancy, has often been the subject of discussion. Before the modern views respecting the formation of the decidua, it was difficult or impossible to account for the occurrence of a discharge having a menstrual character from the gravid uterus.

How could a sanguineous flow issue from the cavity of the uterus when the whole of the internal surface of the organ was occupied by the decidua? Obstetricians were driven to suppose that the discharge must in such cases be poured out from the

cervix, the os uteri, or the vagina. In accordance with the modern ideas respecting the development of the mucous membrane of the uterus into the decidua vera, Dr. Matthews Duncan has suggested that the menstrual discharge may be secreted from the decidual lining of the gravid uterus in the early months, before the decidua reflexa comes to be in apposition with the

decidua vera in its whole extent. According to the view I have advanced respecting the loss and renovation of the mucous membrane at the menstrual periods, it is not difficult to conceive that in the first part of pregnancy the lower portion of the decidua vera may become broken down and thrown off with a sanguineous discharge. Probably, in cases of threatened abortion, in which there is a colored discharge for several days or a more considerable period, without the loss of the ovum, the lower portion of the decidua vera is destroyed and formed anew. In several cases which have occurred to me, of menstruation during pregnancy, I have, however, found them, on examining with the speculum, to be cases of abrasion of the os uteri. In the intervals between the periods the abrasions have secreted pus; but, under the influence of the vascular congestion which occurs at the menstrual dates throughout part or the whole of pregnancy, they exude blood after the manner of a menstrual ulcer. I met in the course of last year with two cases of this kind. One case I saw with Dr. Sibson and Mr. Johnson, of Kilburn, and in this the periodical hemorrhage was very violent, but it ceased as the abraded surface became healed; the other case, in which a molar pregnancy went on for several months with regular menstruation, the os uteri being abraded, I saw with Mr. Napper, of Cranley, Snrrey.

Pregnant women are occasionally affected with symptoms similar to those met with in cases of amenorrhea. In certain constitutions, even while the physiological processes of gestation and lactation are going on, the absence of the stimulus of the catamenial function is felt, and general pallor, ædema of the lower extremities, and other signs of chlorotic anæmia, are the results. I have seen many well-marked cases of this kind. The subject has been slightly adverted to by M. Chailly, and more positively by M. Cazeaux. The same thing may happen, to some extent, during lactation; and it is my opinion that in many cases of anæmia from undue suckling, the milder preparations of iron, as the ammonio-citrate, are called for, and should be given with a view to remedy the condition of anæmia. It is necessary to bear this tendency of the pregnant woman to anæmia in mind, as it forms a part of many of the other disorders of gestation. This state of anæmia is increased by the vomiting of pregnancy, and by several other disorders of the gravid state. In ordinary

cases, the last thing we should do would be to give any preparation of iron, from the fear of inducing abortion; but when the anæmia is marked, the administration of steel tends to the prevention of the premature expulsion of the ovum.

The influence of pregnancy upon other diseases is an interesting subject. It is well known that blood drawn from healthy women during pregnancy generally shows the buffy coat, and it is found that all inflammatory diseases have a tendency to a more acute course than usual, and require a more prompt and active treatment than under any other circumstances. This is particularly the case in inflammatory disease of the chest. tain diseases are more dangerous during pregnancy than at other times. Small-pox and Scarlatina (also Cholera and Dysenteries) are very fatal, especially the former, from the almost inevitable occurrence of abortion, and the unfavorable condition under which the patient is thus placed. Syphilis is not especially modified by pregnancy; but there is the twofold risk of abortion -from syphilis itself, and from the anti-syphilitic treatment required. There is this peculiarity in the relations of syphilis to pregnancy, that it offers, I believe, an instance in which secondary syphilis may be transmitted from one constitution to another without the intervention of a primary sore—that is to say, the germ cell receives from the sperm cell of a man laboring under secondary syphilis a dose of the poison, which is, in the first instance, developed in the ovum, and imparted to the mother through the medium of the placenta. Some patients suffering from spasmodic asthma are entirely free from the disorder during pregnancy. All affections of the heart are aggravated by the pregnant state. The progress of phthisis is often remarkably stayed by gestation; but, after labor, the disease generally goes on at an accelerated pace, and it is not uncommon for women in consumption to die within a few days after parturition. [See on this point the Fiske Prize Fund Essay for 1856, by Ed Warren, M.D. (published by request of the R. I. Med. Soc.) in the Am. Journal of the Med. Science for July, 1857.] Cancer, when affecting the uterus, acquires a considerable impulse from the afflux of blood to the organ, and the development of the os and cervix uteri, in the latter months of gestation. Epilepsy is, in some cases, entirely arrested by pregnancy, and no puerperal convulsions occur at the time of delivery; in others, the character of the fits is not altered by pregnancy, or they become more violent and frequent, and there is a marked increase in their number at the time of parturition. These points I made out by a pretty extensive investigation a few years since, the results of which were published in The Lancet. The influence of gestation upon mollities osseum is very marked. This disease, which we shall have to refer to when treating of pelvic deformities, commonly increases with every pregnancy.

LECTURE XI.

CAUSES OF ABORTION.

Gentlemen:—In the last two lectures, certain special disorders of pregnancy have been considered. We now come to treat the particular malady to which the gravid woman is liable -namely, the premature loss of the Ovum. It will be seen that many of the other disorders of the pregnant state tend to this catastrophe, and require to be borne in mind in connection with Abortion consists in the separation and expulsion of the immature ovum from the uterus. The real adhesion between the ovum and the mother is at the points of connection between the chorion and decidua. At first, this connection is slight. William Hunter stated that in the earlier part of gestation, the chorion and decidua may, by delicate manipulation, be separated from each other without laceration. Afterwards, the intimate eonnection between the chorion and decidua, and the fusion of the two parts, and of the feetal and maternal vessels in the pla centa, renders the separation more difficult, and the risk of abortion is eonsequently diminished.

The older accoucheurs paid much attention to the real or supposed loss of the ovum very shortly after impregnation. Married women who passed over a monthly period by a few days, and then menstruated profusely, were believed to have lost the ovum. This was ealled an Effluxion, if it occurred before the tenth day, "because," as Smellie observes, "the embryo and secundines are not then formed, and nothing but the liquid conception, or genitura, is discharged." In all probability, such cases are not uncommon, and the ovum is unobserved, not from its liquid condition, but because it is so little above the size of the unimpregnated ovum as not to be visible in the discharges. An ovum of fourteen days has been described by Velpeau, and its size did not exceed the following diagram. In the expulsion

17

of an ovum of an earlier date than this, the symptoms hardly differ from those of profuse menstruation.

For practical purposes, Abortion may be defined as the premature expulsion of the ovum at any time after the ovum becomes visible, and before the twenty-eighth week of pregnancy. Up to the latter date, the feetus is not viable, but after the sixth month, it may with care be reared. There are certain differences requiring notice in

abortions occurring before and after the end of the second month, dependent on the different size of the uterus, and the altered development of the vascular connection between the uterus and the ovum, before and after the formation of the placenta. The discharge of the ovum between the end of the second month and the twenty-eighth week, has, in consequence, been termed Miscarriage; but bearing in mind the peculiarities mentioned, it will be convenient in practice to consider all expulsions of the ovum, previous to the time at which the fœtus becomes viable, under the head of Abortion.

This termination of pregnancy is exceedingly frequent. two thousand pregnant women who applied to the Manchester Lying-in Hospital, Dr. Whitehead ascertained that the collective number of their abortions had amounted to one thousand two hundred and twenty-two. Many of these were young women in their first pregnancies, or women who had not completed the child-bearing epoch. As regards the individual results, Dr. Whitehead found that of these two thousand women, thirty-seven out of every one hundred mothers had aborted before they had reached the age of thirty years. The proportion of women who have lived in wedlock until the menstrual decline, to whom abortion occurred, approached ninety per cent. There are, in fact, few women who have passed through the child-bearing epoch, and actually borne children, who have not aborted once or oftener. This is probably one of the subjects open to the greatest improvement in obstetric practice. Considering that at the last census the married female population of England and Wales, between the ages of fifteen and fifty-five, amounted to 2,563,894, the loss of fætal life must be enormous. The date at which the majority of abortions occur, is from the second to the fourth month of pregnancy. Taking the particular pregnancies in which abortion is most likely to happen, there seems to be greater danger of the accident in the first pregnancy, particularly among the upper classes, and in those later pregnancies which occur before the cessation of the menses.

We have seen, while considering the signs and disorders of pregnancy, that the uterus is in reflex relation with many important organs. These organs react upon the uterus, and prove in many cases the predisposing or active causes of abortion. In my work on "Parturition," I stated that I had seen abortion caused by irritation of the Mammary nerves, as when abortions occur during lactation from the irritation of constant suckling. it is not mere weakness or exhaustion in some of these cases is proved by the fact that the mammary secretion may cease upon the occurrence of impregnation, but that a plentiful supply of milk returns after the occurrence of abortion. The contraction of the uterus after delivery from the irritation of the mammæ is well known. When I first suggested this cause of abortion in some cases, the idea was roughly criticised, but it has been adopted in the recent work of Dr. Gunning S. Bedford, of New York, and Professor Scanzoni has founded upon it a method of inducing premature labor by irritation of the mamme.

Irritation of the Gastric nerves will sometimes produce abortion. It is astonishing what an amount of nausea and vomiting the uterus will bear without being excited to expel its contents, and there is a belief, generally well founded, that sickness prevents the occurrence of abortion from rigidity of fibre or imperfect uterine devolution. But cases do occur in which abortion is apparently brought on, as a reflex pathological phenomenon, produced through the medium of gastric irritation. Irritation of the Trifacial nerves may also produce abortion. This happens sometimes from the irritation of cutting the wisdom teeth, the extraction of a decayed tooth, or the irritation of constant odon-Vesical or Renal irritation, as from the presence of a stone in the bladder, or irritation of the kidneys in albuminuria, is sometimes the cause of abortion. Ovarian irritation has a like effect, as shown by the tendency to abortion at the catanrenial dates, particularly in women who have been the subjects of dysmenorrhea. The production of abortion by the irritation of the Rectal nerves is a well recognized occurrence. It may happen from hæmorrhoidal inflammation, the irritation of ascarides, the action of violent purgatives, diarrhea, or dysentery, or the

opposite condition of excessive constipation. The mechanical efforts of vomiting, coughing, sneezing, or straining of any kind, will occasionally cause abortion in delicate subjects.

Irritation of the Uterus and Vagina may excite abortion. Plugging the vagina is sometimes practised as a means of inducing abortion artificially.

[This is effected by colpeurysis. The instrument used to effect this purpose is a simple bag of vulcanized india-rubber, which is to be introduced into the vagina and then dilated with air, warm or cold water, as may be deemed expedient. After being more or less fully expanded (and it may be advisable at first to but gradually inflate it, and increase as the pressure is less and less inconvenient) the aperture is closed by a stop cock, and the bag allowed to remain in the vagina. In Figs. 49 and 50, this instrument may be seen, it is there applied in the same manner, but for the purpose of overcoming a retroversion of the uterus, and is there introduced into the rectum. The meaning of the Greek words from which the name of this instrument is derived, is vagina-dilator, and expresses the idea of the effect it produces, dilating the vagina and even pulling open the os uteri, and by its forcible presence, exciting by sympathy, action of the uterus.

The colpeurynter makes a superior tampon, and as the bag may be filled with cold water and frequently changed by merely opening the stop-cock, emptying it and refilling, the advantage of this instrument may be perceived in cases of placenta-prævia and uterine haemorrhage when tamponing is sometimes judged expedient.]

In abortion excited by violent horse or carriage exercise, the accident depends upon the irritation of the uterus, and especially the os and cervix uteri, by the head of the child, during the succussion which occurs. Coitus, plugging the os uteri, disease of the os and cervix, procidentia, anteversion, and retroversion, the implantation of the placenta over the os uteri, cancer, fibrous tumors of the uterus, mechanical injuries and metritis, may all cause abortion. In abortion depending upon the disease or death of the ovum, it is the irritation of the uterus by its abnormal contents, which directly excites the act of abortion. In the case of abortion from the irritation of the uterus by the state of the rectum, stomach, mammae, etc., the action of the

uterus is, in the first instance, purely excito-motor and reflex. When, however, the reflex action of the uterus is established, the peristaltic action of the organ combines with the reflex uterine action. In the case of abortion from local uterine irritation, or from the irritation of the uterus by a dead or diseased ovum, the reflex and peristaltic actions of the uterus are induced simultaneously.

We may consider abortion from reflex action, as being in some points of view comparable with spasmodic asthma, or any other excito-motor disease. From certain irritating causes, an excitable condition of the excito-motor arcs concerned in parturition is induced. This state of excitability once produced, slight causes, which in healthy subjects would produce no disturbance whatever, are sufficient to produce morbid or spasmodic parturition. This excitability is not suddenly reached. It requires that the nervous arcs, whether mammary, rectal, or other, should be irritated for a considerable time, when an excitable, charged, or polar state of the uterine nervous system is produced. The period preceding a case of reflex abortion may be likened to the time preceding an epilectic attack.

Certain agents have the power of exciting the uterus to contract, and are hence called Oxytoxics. The oxytoxic effects of the ergot of rye, cannabis Indica, savin, borax, galvanism, and the inhalation of carbonic acid, or its retention in the blood in asphyxia, are very generally believed in. Abortion has been often caused by the ergot of rye. [?] During accidental or intentional poisoning by carbonic acid, the ovum has been found to be expelled. In the celebrated razzia in Algeria, conducted by the present Marshal Pelissier, in which a number of Arab women were suffocated in the caverns of Dahra, many of those pregnant were found to have aborted. The same thing occurred in a similar exploit by the celebrated Chevalier Bayard. In other forms of death from asphyxia, as in drowning, sudden abortion has been known to occur. Many of the poisons, when taken by pregnant women in fatal doses, have caused, in the first instance, the loss of the ovum. Certain pathological states excite contraction of the uterus, and are frequently the cause of abortion. Loss of blood; exhaustion, from whatever cause arising; the syphilitic poison; mercurialization; zymotic diseases, as smallpox, scarlatina, and fever; chorea; visceral inflammation; albuminuria; and according to Lugol, the strumous diathesis, may excite the uterus to the premature expulsion of its contents. Emotion is another important cause of abortion. It may be produced by the emotions of fear, anger, grief, or any other violent mental disturbance. Under the influence of terror and pain, martyred women have aborted at the stake. Of these oxytoxic agencies, some affect the nervous centres, and are in this respect to be distinguished from the ex-centric or reflex causes of abortion. The ergot of ryc, for instance, passes into the blood, and affects the spinal centre, being specially directed to the lower portion of the spinal marrow, and to that part of it in relation with the uterus. In the case of emotion, the influence is distinct from other causes of abortion, in being dynamic or psychical. Others, amongst the causes of abortion now enumerated, probably affect the nutrition and life of the ovum, and in this way lead to abortion.

The amount of disturbance to which some women may be exposed without inducing abortion is extraordinary. Mauriceau relates the case of a woman, in the seventh month of pregnancy, who fell from the window of a house, and, besides extensive bruises, broke one of the bones of the fore-arm and dislocated the wrist, without aborting. Dr. Henry Davies once told me of the case of a woman, who, throwing some water from a window, lost her balance, and fell into the street, breaking both her thighs, but recovered without abortion. Dr. Marshall Hall rendered a frog tetanic by strychnia at the time the oviduct was full of ova, and the ova were not expelled during the tetanoid symptoms, but some days afterwards, when the spasms had nearly disappeared. Dupuytren relates the case of a woman who had become the subject of traumatic tetanus during pregnancy, but who, neverthcless, recovered and went her full time. Other women abort upon the slightest occasion. A habit of abortion appears to be acquired in some cases, and abortions are repeated many times in succession, without our being able to detect any very obvious cause. I have known a woman abort ten times in five years; and another who in eight years had fourteen abortions, and gave birth to one still-born child. Madame Boivin mentions that she had ascertained by dissection that, in women who abort regularly, the uterus has sometimes contracted adhesions to other organs. I have several times known abortions to occur in women who had been the subjects of sloughing and cicatrization of the vagina, after previous labors, or who had been affected with pelvic cellulitis and pelvic abscess. In some women it appears as if the uterus could not be developed beyond a certain point. But these points do not account for all the cases of habitual abortion.

[The reason why the uterus appears incapable of being developed beyond a certain point seems to me to be owing to fissure of the os and cervix uteri. If we accept the view of Stolz relative to the symptom of the neck, vide page 138, and recognize that the change in the os uteri commences at the external os, and not at the internal os, the explanation is easy.

[Mr. Whitehead, in his able work on Abortion and Sterility, recognizes this cause of abortion, but without giving its rationale. He states "that it is found to exist in twenty to twentyfour out of every hundred cases of abortion not resulting from accidental causes. It is always accompanied by a degree of inflammatory induration, which extends more or less deeply on each side of the fissure; this is readily detected by the touch, the circumference of the orifice being uneven and lobulated. Sometimes only one fissure exists; this generally occupies one of the commissures, or it may divide one of the labia into two portions, and in this case the hardness may not extend beyond the boundaries of the ulcerated chink." These fissures may sometimes amount to actual rents, entirely dividing the os uteri, several cases of which I have spoken of in my work on the Causes and Curative Treatment of Sterility. I borrow from it a representation of an instrument made for the purpose of

exposing the interior cavity of the os uteri, by means of which the fissure may be observed throughout its whole extent. Dr. Henry Bennett, in a recent article, recognizes this cause of frequent abortions. This point is farther enlarged upon on a subsequent page (205).]

There is one other cause of abortion on the maternal side, which I believe to be of very great importance. In treating of menstruation, and the formation of the decidua, we have seen that the mucous membrane of the uterus is concerned in the menstrual discharge, and that the decidna consists of the altered mucous membrane itself. Now, if this doctrine of the formation of the decidua be correct, -and there is hardly any matter within the limits of modern research, upon the subject of generation, which seems better established; if this be true, I say, we must push the matter into the domain of pathology. Dr. Simpson has done this in a very able manner in relation to membranous dysmenorrhea. Denman and others saw that the mass discharged in these cases resembled the decidua, and made the comparison between the two substances. But Dr. Simpson, after the true nature of the decidua had been made out, was able to carry the comparison further, and he has proved that the membrane discharged in membranous dysmenorrhæa is, like the decidua, the mucous membrane of the uterus itself hypertrophied, and exfoliated or thrown off at a catamenial period. years ago I drew a comparison between menstruation and abortion and parturition. As regards the decidua, there is no great difference between an abortion a few weeks after conception and membranous dysmenorrhoa, except that in abortion the decidua is loaded with the fruit of the womb, and may be discharged more or less in a state of disintegration. Every abortion really consists in the throwing off of the mucous membrane of the uterus and the ovum which has been developed upon its surface. I believe that in many cases of abortion, as in menstruation of healthy and morbid type, the disintegration and exfoliation of the mucous membrane or decidua is the first step in the process, and the direct cause of the loss of the ovum. From this point of view we must consider the show in cases of abortion, and the continuous sanguineous discharge, as similar to the discharge in menstruation. In many cases it happens that abortion is threatened, and there is a colored discharge for many days without the loss or injury of the ovum. In these cases the discharge probably takes place from the surface of the decidual mucous membrane, as suggested by Dr. Matthews Duncan, in reference to menstruation during pregnancy. Abortion does not take place in such cases, probably because the disintegration of the decidua does not occur at the part at which the ovum or the placenta is implanted upon it, or not to a sufficient extent to injure it. In abortion in the latter periods of pregnancy, the comparison between the loss of the ovum and menstruation holds good; only at this time the decidua serotina has become by far the most important part of the uterine mucous surface. In all cases of abortion, this menstrual condition of the developed mucous membrane of pregnancy plays an important part, and is the chief cause of the sanguineous discharge; but in many cases it is probably the actual cause of abortion. The tendency of abortion to occur at the catamenial dates has long been a matter of observation. In abortions occurring at the menstrual dates of pregnancy, the periodical influence of the ovaria, as well as of the uterine mucous membrane, must be considered.

We have now considered the principal causes of abortion referable to the mother: others remain, in which disordered conditions of the chorion and decidua, or of the maternal and fœtal portions of the placenta, are concerned. There is also another class of causes, in which the fœtus and its diseased conditions tend to the production of abortion.

A new cause of abortion, of great importance, affecting the maternal and feetal structures of the ovum, has been made out within the last few years, chiefly by the original researches of Dr. Robert Barnes: I allude to Fatty Degeneration of the chorion and placenta. Kilian had noticed a solitary case, but the first systematic account of the disease we owe to Dr. Barnes, who was assisted in his microscopical investigation of the subject by Dr. Hassall. This form of degeneration may affect the secundines at any time between the early weeks of pregnancy and the termination of gestation. Fatty degeneration may exist in the placenta as a post-mortem change—that is, it may occur in utero after the death of the fœtus. It may happen also as the result of the transformation of effused fibrin in inflammatory disease of the placenta, or of a clot of blood in hæmorrhagic effusion. Lastly, it may consist of the metamorphosis of portions of the maternal and fætal structures of the placenta during the life of the fœtus. The latter pathological phenomenon is that which is of the chief importance in relation to abortion.

In a placenta affected with fatty degeneration, the lobes of

the placenta are altered in appearance, some of them being of a yellow, fatty color, brittle, and exsanguine; the rest presenting their ordinary characters. Examined more minutely, the tufts are found to be glistening, hard, and tallowy, and not expanding when placed under water, as is the case with the villi of healthy placente. Under the microscope, the villi are seen to be studded with spherules and droplets of fatty matter and oil. The fatty material is found principally in the cells of the villi, and in the coats of the blood-vessels of the villi. When the fatty degeneration of the vessels exists to any extent, the vessels do not carry red globules. The villi and the vascular loops affected with degeneration are knobbed and misshapen in appearance. Dr. Barnes believes the degeneration, or retrogressive metamorphosis, to commence mostly in the villi and decidual cells of the placenta. He has pointed out that this state of things must materially interfere with the nutritive and circulatory functions of the placenta, and that if it proceed to

Cells of the decidua as they appear in the healthy placenta. 420 diameters.

any great extent, it must inevitably destroy the fœtus by cutting off the connection between the maternal and fœtal circulations.

Dr. Barnes supposes that, from the friable, non-resilient condition of the degenerated lobes of the placenta, partial separations must occur, leading to hæmorrhage and abortion. He suggests also that partially degenerated blood-vessels may burst, and sometimes lead to intra-placental hæmorrhage, or placental apoplexy. Sometimes the dead ovum is at once expelled; at

Cells of the decidua in a state of fatty degeneration. 420 diameters.

other times the chorion or placenta remains in connection with the uterus, and undergoes a further metamorphosis, so as to consist very largely of fatty matter, before it is expelled. In all probability, many of those cases in which pregnancy repeatedly goes on in the same woman to the full time, and the fœtus is found to have died shortly before the time of birth, the cause of death will be found to be fatty degeneration.

The metamorphosis of portions of the placenta explains many of the descriptions of the placenta in a morbid state found in obstetric authors before the subject of degeneration was understood. Dr. Druitt has contended, that in the normal placenta, at the full time, the signs of commencing fatty degeneration are present, and this is no doubt true; but, under healthy conditions the fatty metamorphosis cannot be extensive, otherwise the

health of the fœtus could not be preserved. Dr. Druitt points out, that in the placenta, as a caducous organ, the signs of deca-

1, Vessel with its investing chorion: 2, The same deprived of its chorion; 3, Chorion detached, showing its cellular function. 420 diameters.

dence begin to be present at the time of its maturity. As regards the cause or origin of the fatty degeneration of the placenta, chorion, or decidua, Dr. Barnes refers it chiefly to an imperfect germinal or fermative force on the side of the ovum. He is also of opinion that, dependent as the ovum is upon the vascular system of the mother for support, any imperfection in the nutriment supplied to it must contribute to the diseased state of the placenta. It is only upon this hypothesis that we can hope to control this malady, by rendering the system of the mother as healthy as possible during gestation. The later researches of Dr Barnes lead him to believe that constitutional syphilis, maternal or paternal in origin, is a frequent cause of fatty placenta.

The placenta is subject to congestion and inflammation and their results, and these affections are not unfrequently the causes

1 and 2, Branches partially deprived of chorion, and showing much fatty matter; 3, Blood-vessel entirely deprived of its chorion, and in a state of degeneration. 420 diameters.

of abortion. Congestion of the placenta leads to what is termed apoplectic effusion. Blood may be poured out either on the fœtal or external surface of the placenta; it may escape into the parenchyma of the organ; or it may be poured out on the maternal surface. The loss of blood may lead to the death of the fœtus, and in this way produce abortion, or it may excite the separation of the ovum, and contraction of the uterus. In other cases, the blood effused coagulates, its fluid portions are removed, and a fibrinous mass remains without doing any great injury. In inflammation of the placenta, or placentitis, effusion of lymph may occur, or the disease may pass on to hepatization, suppuration, or gangrene. Sometimes, when the inflammation affects the internal surface of the placenta, adhesions form between the placenta and the external surface of the ovum.

In this way, the placenta has been found adherent to the forehead or body of the fœtus. This disease has been investigated by Brachet and Wilde, and one of the earliest and most elaborate memoirs of Professor Simpson was chiefly devoted to this subject. Its symptoms are obscure, consisting of pain in the uterus, near the site of the placenta, pains in the back and thighs, and general fever. In cases where I have suspected placentitis, I have examined with the stethoscope, but have not found any modification of the uterine sounds. The causes of placentitis are not very obvious, beyond mechanical injuries, and the great afflux of blood to the organ, which occurs during pregnancy. Congestion and its results are probably common causes of abortion, though it is by no means certain that in all cases of abortion, in which effused blood is found in the placenta, or the membranes, the effusion has been the cause of abortion. In many cases, the effusion occurs, without doubt.

An apoplectic ovum; blood being effused in masses under the feetal surface of the membranes.

during the progress of abortion from other causes. The treatment of placentitis and placental congestion consists in local or general blood-letting, according to the amount of pain and the

constitution of the patient, counter-irritation over the uterus, and other means for equalizing the circulation. Dr. Simpson is of opinion, that many of the cases of repeated abortion in the same person depend upon placental congestion. The placenta is liable to other diseases, which have a tendency to repetition, such as calcareous degeneration, tubercular deposits, and atrophy or hypertrophy. In the case of a syphilitic ovum leading to abortion, the placenta is very commonly diseased.

When from any cause the fœtus dies, the circulation in the feetal portion of the placenta is suspended; this in turn affects the circulation on the maternal side; the ovum becomes a foreign body, and abortion generally takes place. Sometimes, however, the placenta is still nourished imperfectly, and the dead ovum is retained in utero for a variable time. The feetus is liable to many diseases which may tend to the death of the ovum, such as inflammation of its serous membranes, dropsies of the serous cavitics, or the amnion, disease of the liver or kidneys, tubercular diseases, diseases of the umbilical cord, knots upon the cord, twisting of the cord tightly round the neck of the child, and various other affections which are sufficient to destroy its vitality. I have seen a case, in which the head was nearly amputated by the twisting of the cord round the neck. Probably a diseased ovum excites the uterus to expulsive contractions in many cases, before actual death of the ovum has occurred.

Ovum showing morbid enlargement of the umbilical cord

LECTURE XII.

TREATMENT OF ABORTION.

Gentlemen:—The first Symptoms of Abortion are a sanguineous discharge, and the occurrence of lumbar, hypogastric and coxal pain. The pains which precede abortion are very much like those which precede or accompany a catamenial period. Some women abort, however, without having suffered much, if any pain. It frequently happens that a distinct rigor, or frequent shiverings, usher in abortion. There is sometimes diarrhœa, and still oftener, an irritable condition of the bladder. Coldness of the breast and abdomen is sometimes complained of, and there is often a cessation of sickness, where this has been troublesome. On being called to a case of supposed abortion, an examination should always be proposed, and made, if possible. It may happen that in cases of supposed abortion there may be no pregnancy at all. Great care should be taken, on introducing the finger, not to give pain or use any violence, lest the tendency to expulsion should be increased. In threatened abortion, the os and cervix uteri will generally be found open to some extent, and the body of the uterus may be felt in front of the os, lower in the pelvis than natural, and hard, as if firmly contracted. When abortion is actively proceeding, the ovum, or part of the ovum, may sometimes be felt high up in the cervical canal, or it may be partly extruded from the os uteri.

The first consideration, in a case in which the symptoms of threatened abortion have occurred, is whether or not the ovum can be preserved. With this end in view, all irritations of a reflex kind should be avoided or removed, as much as possible. General, local, or vascular excitement should be treated by a soothing regimen and diet. It is rare that cases are met with requiring general blood-letting; but leeching is sometimes useful in cases of uterine plethora, particularly when the symptoms occur

at what would, in the absence of pregnancy, have been a catamenial date. The leeches should be applied to the inside of the thighs, or the perinæum. When nervous excitement predominates, a full opiate is of great service. Opiates, in full doses, are also especially called for when there is intermittent uterine pain, or the continued pain of the back and lower part of the body similar to painful menstruation. Dr. Fleetwood Churchill has given the cannabis Indica with good effect as an anodyne, and with a view to its restraining sanguineous discharge. the earliest abortions, astringents are very valuable, the loss of blood in such cases very much resembling menorrhagia. acetate of lead, in combination with opium, the mineral acids, the oxide of silver, alum, gallic acid, are the best remedies of this kind. If the discharge is profuse, iced drinks should be given. Otherwise, the beverages of the patient should be cool, without being absolutely cold, in order to avoid uterine contraction. In the treatment of abortion, it must always be borne in mind, that in diet and medicine any agents which excite contraction of the uterus may arrest hæmorrhage for the moment, but with danger of exciting further separation of the ovum. We must be careful, therefore, not to excite any powerful uterine action. The local application of cold to the vulva, and the introduction of sponge, or pieces of lint dipped in water, into the vagina, are very useful, within certain limits; but it must be remembered that excessive cold excites uterine contractions, and so, also, does the sponge or linen plug, if it should be large enough to irritate the vagina mechanically. Perhaps the most important of all the means at our disposal for the relief of abortion is rest in the horizontal position. The patient should be kept in bed in a cool apartment, lightly covered with clothes, as long as any colored discharge continues, and for some days afterwards she should be kept upon a couch, and not allowed to assume the upright position or to walk. When the uterus is in the irritable and congested condition which accompanies abortion, the standing posture, or considerable movement of any kind, greatly adds to the probabilities of abortion. The mind of the patient should be kept as quiet as possible, and all exciting or alarming intelligence withheld from her. The bowels should be kept open, if necessary, with the mildest laxatives. I prefer the senna confection, with a little bitartrate of potash,

as an aperient. Castor oil, as I believe, irritates the nterus and mamme, and should not be given. When the threatening of abortion has occurred at a catamenial date, every precaution should be taken, as the next monthly period comes round, in the way of avoiding irritation, and prescrying quiet of body and mind. Every pregnant woman should be told to take note of the catamenial dates throughout pregnancy, and observe greater care than usual at these times, particularly if she has been the subject of abortion. The attempts to prevent abortion should be carried out perseveringly, as it sometimes happens that women suffer from the symptoms of abortion for a considerable time, slight sanguineous discharges lasting for weeks, and yet, with continual care, they go on to the full term. It sometimes happens that the bleeding is very profuse, and the os uteri so closed that the finger could not possibly be introduced into the uterus. All the more powerful astringents may have been tried in vain. In such cases the vagina must be plugged firmly with lint or sponge. This arrests the bleeding almost invariably, and tends to the promote coagulation at the mouths of bleeding vessels. If, however, it is necessary to continue the plugging for any length of time, the uterus becomes excited by the mechanical irritation, and throws off its contents. Sometimes the loss of blood is so great as to require the free administration of brandy, ammonia, and other stimulants. As abortions frequently spread over a considerable time, every care should be taken to support the strength of the patient. In abortions at the fourth or fifth month, the hæmorrhage may be so profuse and sudden as to be alarming from the first. This is particularly the case in abortions occurring about the time of the cessation of the catamonia. In such cases, if the hæmorrhage cannot at once be arrested by astringents, cold and the tampon, the membranes should be ruptured with a view to stop the hæmorrhage, and to excite expulsive action of the uterus.

When an abortion is threatened, the accoucheur should order all the discharges to be saved for his examination. Every clot and every portion of solid matter should be carefully inspected. Otherwise it may happen that the patient or her nurse shall tell you she has aborted when she has not done so, coagula having been mistaken for the ovum. Or it may occur that the ovum having passed unnoticed, and slight or profuse hæmorrhage con-

tinuing, as it sometimes does, for a considerable time, the accoucheur is puzzled by expecting an abortion long after it has been accomplished. In connection with these points, it must be borne in mind that cases occur in which the ovum appears to be dissolved, and slowly discharged with sanguineous matters, just as the decidua is discharged in the lochia after parturition. A delicate ovum of a few weeks may disappear within the uterus, as occurs in certain cases of molar gestation, and the membranes may be broken down and discharged as detritus. Either of these three cases may prove very embarrassing to the practitioner. Whatever care may be observed, cases will occasionally occur in which women who have passed two or three menstrual periods, and exhibited the signs of early pregnancy, will be seized with the symptoms of abortion, and suffer from a sanguineous discharge for a considerable time, without passing any detectible portions of an ovum. After this the patients may menstruate regularly, and it becomes exceedingly difficult, or impossible, to decide whether they have aborted or suffered from a temporary suppression only.

The indications which should make us abandon all hope or intention of saving the ovum are, sudden losses of blood to such an extent as to imperil the life of the mother, or such a continuous drain as seriously to endanger her health; it being also certain, or nearly so, that in such cases the ovum is diseased or already dead. If, on examination, we can feel the ovum at the os uteri, or in the cervix uteri within reach of the finger, we may be certain that its expulsion is only a question of time. As a rule, there is little hope of saving the ovum after the rupture of the membranes and the discharge of the liquor amnii. I have, however, seen at least one case in which gestation went on to the full term after the discharge of the liquor amnii at the fifth month. Fætid discharges, particularly in early abortions,

are a pretty sure sign of the death of the ovum.

When all expectation of saving the ovum has been abaudoned, means must be taken to obtain its removal from the uterus. If the bag of the early ovum can be felt with the finger in the cervix uteri, it can generally, by careful manipulation, be separated from the uterus, and got away by the finger alone. Sometimes it is necessary to introduce the hand into the vagina, in order to get the finger into the uterus; and if the hæmor-

rhage is alarming, the case urgent, and the os uteri sufficiently dilated to admit the finger, there need be no hesitation in adopting this measure. I have never seen any ill effects arise from such an introduction of the hand and finger. When the os uteri is undilated, and the hæmorrhage is great, Dr. Simpson recommends the introduction of one of his sponge pessaries, with a view to the mechanical dilatation of the os and cervix. The only precaution necessary in such cases, as in all instances in which sponge is used in the vagina, is not to allow the sponge to remain long enough to become fætid. The ergot of ryc and the cannabis Indica may be given for their oxytoxic effects in cases where it is thought unadvisable to remove the ovum, or portions of the ovum, mechanically. Galvanism has been suggested by Dr. Robert Barnes, and from what I have seen of its action in cases of intra-uterine polypi, I have no doubt it would contribute to expel an ovum in a difficult case of abortion. We may turn the reflex connection between the rectum and the uterus to great account in the treatment of abortion when there is no hope of saving the ovum. A drastic cathartic cnema will often complete the expulsion of an ovum in the most rapid manner. Various instruments have been proposed and recommended for the mechanical extraction of a partially-detached ovum. There is, however, no instrument equal to one or two fingers when they can be introduced. The last invention of this kind is an instrument proposed by Dr. Fleetwood Churchill, on the principle of the familar apparatus for getting a cork from the inside of a bottle. In France, a small forceps, somewhat resembling the lithotomy forceps, is used for the same purpose. Dewces invented a wire crochet for the extraction of the ovum.

[A far better instrument is the polypus forceps with rachet

handle, invented by Mr. Luer of Paris. By its broad edges a large portion of the ovum or placenta is seized, which is firmly

held by the grooved edge, and is not easily tearing away, as is the case with other instruments apparently more convenient.]

It must be said, however, that, with all instrumental devices for the removal of the embryo, there is danger of injuring the uterus, and with the hand in the vagina, a case can hardly occur in which the embryo, membranes, or portions of the latter, when retained, cannot be detached and brought away by the finger. Time and patience are sometimes necessary for this manipulation, but I have never known it to fail.

[Any one who has had much experience has discovered the difficulties which not unfrequently occur in the attempt to remove the whole or the remaining detached head of an embryo. When the finger is introduced into the cavity of the uterus, the further attempt to pass it around the embryo, will, not unfrequently, push away the uterus, so that almost insensibly the finger is out of the organ, the hand upon the abdomen not sufficing to hold the uterus down into the cavity of the pelvis. Then the diameter of the head is greater than the diameter of the undilated and rigid os.

To obviate these difficulties I have invented the instrument represented on p. 198. The end A is moved by a screw B in the handle. Being introduced straight, by the side of the finger into the cavity of the uterus, the screw is turned by an assistant or by the unemployed hand of the operator. This bends the end A, till it is almost perpendicular to the staff, and is then to be directed externally and catching upon the internal os the uterus may be held firmly down while the finger can be moved freely in the cavity. When the ovum, embryo, detached head, or placenta, is surrounded by the finger, the end A, can be so turned as to oppose the finger, catching what may be between them, retaining the neck of the embryo (or polypus) in the notch a; crushing the head; or assisting in the traction necessary for delivery.

Advantage has been taken of the mobility of this instrument to attach to it several other instruments which may be seen in the cut, so that by unscrewing the spatula α , Simpson's sound X, probe pointed bistoury W, scarificator, portecaustique Y, and instruments may be easily substituted as desired.]

I have seen cases where it was necessary to give chloroform

before introducing the hand. In a case I saw with Mr. Ballard,

of a retained placenta in an abortion at the fifth or sixth month, no other means would have enabled us to extract the remains of

the ovum. The ordinary modes of procuring its removal had been tried in vain. The patient was in such a state of frenzied excitement that any introduction of the hand would have been impossible while she remained conscious. The cord had broken and the placenta had been retained thirty-six hours, and there was no choice but that of leaving the placenta or giving chloroform. There was no difficulty in introducing the hand, but the placenta had to be peeled from the surface of the uterus. The dangers of retained placenta are well known, and in a case of difficulty I should not hesitate to advise the use of chloroform in similar cases.

The condition in which the ovum is expelled varies greatly in The most favorable way in which an early different cases. abortion can occur is, where the detachment of the entire ovum takes place before the act of expulsion occurs. The perfect ovum is then expelled at once, and the uterus contracts without much hæmorrhage. In other cases the membranes are ruptured, and the small fœtus comes out alone or enveloped in the amnion, or the membranes may be discharged piecemeal, leaving the ovum to escape afterwards. As a general rule, the membranes remain after the expulsion of the fœtus; and the earlier the abortion, the longer the membranes or placenta have a tendency to remain. This is probably owing to the extended adhesion of the ovum to the internal superfices of the uterus, and the feeble power of the uterus to contract on its contents. Sometimes the membranes of an early ovum will remain for weeks, but in such circumstances there is not the same tendency to decomposition and its dangers, as there is in the case of placenta at the full

The mechanism of abortion varies considerably, according to the time between conception and the term of naturallabor at which the accident happens. No doubt the abortion may occur in cases where conception has taken place just before a period, when the motor act of expulsion would probably be limited to the Fallopian tubes, the ovum being carried out of the uterus with the menstrual discharge. In cases occurring in the early months, the canal of the cervix and the os uteri have to be dilated before the ovum can pass, and this process of dilatation occupies a considerable time, and frequently causes much suffering. When the dilatation has occurred, the ovum is expelled

by the contractions of the imperfectly-developed uterus. The contractions of the uterus occur periodically, and are accompanied by periodical pains, as in labor at the full term. The nearer the time at which the abortion takes place is to the time of labor, the more closely do the pains and the motor action and mechanism resemble those of natural parturition. In abortions occurring after the formation of the placenta, the tendency, as regards the expulsion of the ovum, is to imitate labor at the full term. The cervix uteri is slowly dilated, the membranes ruptured, and the fœtus expelled, to be followed, at a longer or shorter interval, by the membranes and placenta. In the early months, the difficulty occurs, not in the passage of the fœtus through the pelvis, but in the dilatation of the undeveloped cervical canal. As gestation advances, and the cervix uteri becomes developed, the difficulty of passing through the cervix becomes diminished, while that of passing the pelvis is increased. When the ovum is small, the contractions of the uterus are chiefly or solely concerned in its expulsion; but when it is large enough to distend the vagina, the abdominal and respiratory efforts are called into play.

Usually, an abortion is not attended by any great danger. Women recover rapidly from the loss of an ovum, and there is a remarkable aptitude for conception afterwards. They do, however, sometimes perish from loss of blood, convulsions, or rupture of the uterus. They are also liable to the dangerous and fatal affections which attend the puerperal state. Tetanus. resembling the traumatic disease in character, has been known to occur after miscarriage, and in rare cases blood has passed through the Fallopian tubes into the peritoneum, causing death by peritonitis. Abortion occurring from small pox and scarlatina is especially dangerous to the mother. When women abort frequently, great damage is done to the general health; a profound anæmia is caused; and patients may die of secondary diseases arising out of the debility induced by the recurrent miscarriages. When the whole of the ovum has been expelled, it is rare to meet with any profuse post-partum hæmorrhage. The uterus is at once so diminished in size as to prevent the risk of bleeding. It happens, however, that occasionally small portions of the membranes are left in utero and are a source of irritation and bleeding for weeks after the loss of the ovum. When the entire

ovum is extruded, or brought away completely in detached portions, the woman is at once in a state of ease. A discharge, generally similar to the lochia, continues for some days. As regards rest and other management, a patient, after a severe abortion, should be cared for in the same way as a woman who has been delivered at the full term—that is, she should be kept in bed and ordered a light, unstimulating diet, until she has regained her strength. The breasts are sometimes stiff and painful, but rarely give much trouble after an abortion.

We must take cognizance of diseased states of the placenta in the treatment and prevention of abortion. When the fœtus is threatened with death because the placenta cannot perform its nutritive and respiratory functions, we may, through the mother, act upon the placenta, and assist it in the performance of its Dr. Power prescribed the inhalation of air containing an increased quantity of oxygen, or the use of medicines containing a large proportion of oxygen in a loose state of combination. as nitric acid, in cases where the child has been lost repeatedly in the latter months of pregnancy. Dr. Simpson states that he has found chlorate of potash useful in cases where the fœtal respiration is imperfect. Every care should be taken in such cases to keep the blood of the mother in a healthy state. It is evident that the sanitary condition of the fœtus must mainly depend on the condition of the arterial blood of the mother. this being the medium in which the embryo respires. It has been recommended that, in cases of repeated peritonitis or cerebral disease in the fœtuses of the same mother, mercurialization and other means should be employed with the view of reaching the ovum through the maternal circulation; but, in the present state of our knowledge, our means of diagnosis in diseases of the fœtus are too obscure to render therapeutics of much value. In syphilis affecting the mother, or when the father is syphilitic, there can be no question of the propriety of mild mercurialization as a means of warding off the dangers of abortion, regard being had to the fact, that the careless use of mercury may itself be the cause of abortion. In the prevention of abortion from fatty generation of the placenta, the strength of the mother should be supported in every way. The chlorate of potash, nitric acid, mild preparations of iron, and, above all, fresh air, should be recommended. The treatment of fatty placenta should be the same as fatty heart, or fatty degeneration of any other organ.

The prevention of abortion is an important subject. The whole of the treatment of the disorders of pregnancy has a direct bearing upon this subject. In women who abort from habit, when the nervous system is chiefly concerned in the production of the accident, all emotional disturbance and reflex sources of irritation should be avoided as far as possible. The pregnant woman should not suckle, or be subjected to any mammary irritation. Mr. Lloyd has related a case in which a small tumor having been removed from the breast of a pregnant woman, she aborted, and died of metritis. Irritation of the dental nerves should be guarded against. The rectum should be remembered, not merely as a neighbor to the uterus, but as possessing an excitor surface in reflex relation with the uterus. Ovario-uterine and vaginal irritation should be soothed, and excitement avoided, particularly at the catamenial dates. It is a useful point in the Periodoscope I constructed some years ago, and some thousands of which have been used by the profession, that it points out, at a glance, the catamenial dates of any pregnancy. The late Dr. Griffin, of Limerick, recommended large doses of quinine in the case of women who abort repeatedly at the same date of pregnancy. [I would especially caution practitioners in this country from prescribing quinine to pregnant women generally, and particularly where there is much uterine susceptibility. In my experience quinine will more surely produce abortion than ergot, which does not seem to have the power to excite uterine action in a womb in a healthy state, but acts as a stimulus when there is a diseased condition, or with unusual susceptibility, as where labor pains have commenced.] Mr. White, of Manchester, recommended cold or tepid bathing, with success, as a preventive of abortion. Some accoucheurs advise a daily enema of cold water, in women of weak, irritable habit. When the tendency to abort is very strong, nothing is so likely to prolong gestation to the full term as absolute rest in the horizontal position. When all other means fail, an attempt should be made to eradicate the abortive diathesis by a year's marital separation, and a tonic treatment in the meantime.

[Except in rare instances, the hæmorrhage before full time is always preceding the delivery, while that at full time is posterior to it. Hæmorrhage not unfrequently occurs at the next menstrual period following conception. The woman, especially

she who has never borne children, after half suspecting from various signs that she was pregnant, at her usual period is not only "regular," but profusely so, with more than usual pain, and with numerous clots which have not previously characterized her periodic secretion. A careful examination of these clots would discover imbedded in them a rudimentary fœtus. The long formed habit of nature, conjoined perhaps to too vigorous exercise, too stimulant food, or even mental emotions, caused the secretion to be continued as usual, and the ovum to be expelled.

These cases are generally considered to be simple menorrhagia, and are treated accordingly. They rarely, if ever, result in

farther difficulty.

At a somewhat later period in gestation, when the ovum is from two to five or six months, abortion is very frequent, when the hæmorrhage is alarming. These occur from various causes, and never without a cause which should be discovered by the physician, and the difficulty obviated afterward. This I wish most especially to have noted, that wherever there is a miscar-RIAGE, THERE IS ALWAYS PRESENT SOME ACTUAL PERCEPTIBLE AND OFTEN TANGIBLE CAUSE. In many cases this is easily known. Some injury, sudden fright, the effort of vomiting, has been sufficient to destroy the integrity of the ovum, and as a dead substance, as a foreign body, it has been expelled. This may occur as the effect of mercury, quinine, or other medicines, or the action of the uterus sympathetically stimulated by cathartics. Great fatigue may be the existing cause of the expulsive uterine action. But there are many abortions which have been considered to be without cause. Females have aborted without any particular reason, every few months during many years, and the physician, in his ignorance of any cause, has stated that it was from the force of habit; that there was a tendency, from habit, of the uterus to throw off its contents upon the least irritation or excitement, when the ovum arrived at a certain maturity. Females have been made to believe, what the physician himself, once equally credulous, believed, that there was a "tendency to abort;" and have been made to lie in bed for weeks and months, made sick by want of air and exercise, to prevent a senseless organ, devoid even of the nerves of sensation, from yielding to the temptation or tendency to abort.

Thanks to the added wisdom of the nineteenth century, we now know better than this. The new lights of science have added ocular evidence to the vain theories invented to conceal our ignorance,

At the given period, or thereabout, the woman with the uterus having these bad habits, perceives that the usual vaginal secretion is slightly tinged with red, which by degrees deepens in color, till a decided hæmorrhage, accompanied by pains in back, thighs, etc., with involuntary expulsive efforts, is the result; and sooner or later the fœtus is expelled. If one examine the uterus, as far as may be done by means of the speculum, either before these symptoms commence, or after the abortion is completed, he will find that there is local disease of the os uteri, which is the *fons et origo* of all the trouble; that there is uterine congestion, ulceration, or lesion of the epithelium, and enlargement of the mucous follicles, or fissure of the os.

Uterine congestion, as a cause of abortion, not unfrequently depends upon high-feeding—not too much in quantity, but too stimulating in its character upon the circulation. This is noticed in animals. Lewis S. Hopkins, M. D., says:

"In the August number of the Farmer, complaints are made of abortion in cows.

"High feeding has a direct tendency to produce this; if a eow has done so once,

"High feeding has a direct tendency to produce this; it a cow has done so once, meal should be kept from her a mouth or two before the anticipated period of abortion, or during the greater portion of the period of gestation. Many a female of the human species has only avoided the same "mishap," by strict attention to diet.

"Too high feeding, with no hard work, often produces an irritability not only of the nervous, but of the circulating system, in its minutest subdivisions, as spread over secreting surfaces. There is a greater tendency to this in the female system than in the male. The mare fed on oats, and but little used, will often become excessively snappish, and intensely cross. Withdraw her oats, and she loses this irritability; or give her hard work, and the effect will be the same. If in the cow this irritability of the secreting surfaces, induced by continued high feeding, is fed and fanned by meal and grain, a tendency to inflammation is produced in the uterus, which, during gestation, is the most irritable point in the system. Nature has no other way to relieve herself of this danger to the life of the mother, when the meal and grain continue to flow in, than to prevent inflammation of the womb, and death, by evacuating the contents of the uterus. The increasing irritability of that organ, excites its repeated contractions, as at the full period; and abortion results, and the mother is saved at the expense of the young. If the young is carried to maturity, it survives, and the mother dies of inflammation of the womb,"

Ulceration or lesion of the epithelium and the enlargement of the mucous follicles, as the second cause of abortion, depends somewhat upon the situation of the placenta. If high up at the fundus of the uterus, unless the abortion be effected early, the current of blood is remote from the abraded surface, which is either healed by this derivative or remains in statu quo. Should the placenta be inserted lower down, the tendency to bleed is much greater and abortion more probable.

In the greater majority of cases of abortion at the completion

of a certain period, there is fissure of the os uteri.

If we take the description of the changes of the os uteri during gestation, as formerly believed and as still described in the books, we shall not be so well able to account for the fact that a fissure of the os produces abortion. But we take that given and demonstrated by M. Stolz, already stated on page 13S, proving that the change in the os uteri commences at the external os, and not at the internal os.

Now we know that the vast majority of cases where fissure of the os exists, not only does it commence at the inferior extremity of the cervix uteri, but that in far the greater number it is con-

fined to that portion.

With this fact before us, and the knowledge that this same portion of the cervix, in the progress of gestation, first commences to soften and contract, we may easily see the heretofore unaccountable cause for numerous abortions. The softening renders the already irritated portion, to the vessels of which an unusual activity has been imparted, still more vascular. subsequent contraction draws apart the sides of the fissure, exposes the orifices of the various vessels, a slight hæmorrhage ensues, which gradually increases, till the life of the germ is destroyed, or the bleeding becomes so profuse as to stimulate the uterus to the expulsion of its contents, or to endanger the life of the mother. An abundance of such cases are given by Gooch, Dewees, and other writers, styled by them "irritable uterus," but in which the pathological changes were most undoubtedly such as have been here described. This is not a fanciful theory, for which we seek for facts to substantiate, but, on the contrary, it is one deduced from facts. Numerous cases have occurred in my own practice, and in those of my friends, which I have been called to see in consultation.

A few marked cases only will I relate, in a very brief manner, as illustrative. A lady, about thirty years of age, was con-

·fined with her first child at full time, after a very severe labor of some days' duration. I saw her two years after, when she stated that she had never enjoyed a well day subsequently to this confinement. That she had nursed her infant about a year, constantly troubled by pain and weakness in the back and loins, accompanied by a more or less profuse, leucorrhea. That latterly she had been much debilitated by repeated abortions, occurring from about the second or third month of pregnancy. They commenced by slight bleedings, increasing to a profusc hæmorrhage, threatening her life. Vaginal digital examination discovered a marked prolapsus of the uterus when erect, but which subsided when in the recumbent position: the cervix immensely hypertrophied and ragged. A better investigation with the speculum disclosed the os, so immense as to be scarcely admitted between the fully distended blades of a four-bladed Ricord, divided into three irregular-sized lobes, the edges of which were covered with profuse, unhealthy granulatious, the whole surface denuded of epithelium, and the cutire organ bathed in a profusion of the muco-purulent sccretion usually accompanying these lesions. The case was a plain one. The os had been torn in those places at the first labor, and these lacerations, never healed, were a constant source of irritation, and, when pregnant, the undoubted cause of all the abortions, subsequently.

I will mention but one more case further to substantiate the view which I have taken of this form of abortion. I lay more stress upon it, because these cases have been one of the opprobria of medicine; and having, as I think, given a conclusive proof of the theoretical cause of these affections, I wish now, by some cases plainly showing the facts, as sustaining the theory, and from which I have deduced the theory, to convince all of the correctness of this view, and to lead to a reformation in the past and present palliative and temporizing method of treatment. In the vast majority of these cases of irritable uterus, in nine out of ten, where there exists this periodical tendency to abortion, cure is not only possible, but if the treatment proper for the affection be employed, the cure is as certain as may be predicted in any disease that exists. If, however, the eyes are to be closed and the car shut to the facts which the advance of science has revealed, -if, supinc in our conservatism, we join with the blind old fogy-ism in its empty denunciation of the speculum uteri, and its immense utility in these affections,—dogs in the manger, we neither use it ourselves, nor permit others so to do,—worse than the most arrant quackery, which always proposes something new, and thereby sometimes ignorantly benefits, we are coutent with the ashes of the past, instead of seeking for living fire in the present; if thus contented in our partial acquirement, there is henceforth no advance in science, and the unnecessary sufferings of millions remain unmitigated, unassuaged.

But my object is not to attempt to convince those "who seeing see not, and hearing hear not, neither do they understand," but merely to state my own views, in all simplicity, and some of the facts upon which they are founded.

A most instructive case, to which I refer in consideration of several views here presented, is the last reported by myself in the American Medical Monthly for October, 1854, entitled "Fifteen Selected Cases of Operative Midwifery." After two confinements at full time, the lady experienced a slight jar in stepping from her carriage. She was daily expecting her third confinement. Pains soon came on. She was speedily confined with a dead child. Two years subsequently she aborted at about the third month. This commenced with a slight discharge of bloody mucus, which was supposed by her medical attendant, and myself, to arise from fissures of the os, and the next day was appointed for making an examination, but before that time arrived she had aborted, and her life was in great jeopardy. When sufficiently recovered, some weeks after. from the excessive hæmorrhage, to which reference will be subsequently made, her physician found, upon examination by the speculum, not only the local congestion to be expected after so recent a confinement, but induration, and fissures apparently of long standing, and quite sufficient to account for all the difficulty she had experienced.

I might quote scores of similar cases from experience in the Northern Dispensary, in the class of Diseases of Females, and I am entirely convinced in my opinion of the origin of the hitherto unknown or unsuspected causes of numerous abortions as proceeding from local disease of the womb, and not to be described under the name of "irritable uterus," or any other vague and unsatisfactory appellation.

The treatment of these cases is of two characters, viz.: the immediate hæmorrhage; and secondly, for the cure of the causes of the hæmorrhage.

When called early to a case of threatened miscarriage, when the hæmorrhage is slight, and the symptoms indicate its local character, from ulceration or fissure of the os, a speculum examination should be immediately instituted, and the parts, if found in this condition, cauterized by nitras argenti, thus temporarily arresting the hæmorrhage, and the uterine plethora allayed by general bleeding, and the excitement quieted by an anodyne. Should this treatment be effectual, the disease of the os should be subsequently treated by local applications, until the parts are restored to their normal condition.

If, however, the hæmorrhage was not the primary symptom, or if the abortion was threatened in consequence of some fatigue, great exertion, or excitement, where there may be a debilitated condition of the uterus, which, in its relaxed state, opens the os, or in some way diminishes the circulation, and impairs its vital functions, I have found great benefit from the tonic effects produced by small doses of secale cornutum. The slight contraction consequent upon its action, closing the bleeding orifices, and frequently entirely arresting all further discharge and difficulty. This point I have already fully stated with cases illustrative, in an article entitled, An Essay on Ergot, with New Views of its Therapeutic Action; published in the New York Journal of Medicine for September, 1853.

The cause of abortion will probably be allowed to be sometimes from a debilitated condition of the organ containing the feetus. The relaxed state opens the os, or in some way diminishes the circulation and impairs its vital functions; the judicious administration of ergot improves its tone, invigorates it and prevents the threatening miscarriage. Ergot is not a medicine of the cumulative order, neither is it confined to single action. In small doses it does not produce the convulsive, evanescent contractions which accompany labor, but a slow molecular character, permanent and prolonged. If this local tonic is too freely administered, it passes on still further and then a too high stimulation produces, from an opposite cause, exactly the same result that was threatened by the previous debility.

The bleeding in the cases I have mentioned, will rarely, if ever, be so great as to endanger life. If however, in a case

where the origin of the flow is doubtful, it amount to any considerable quantity, the result will be to dilate the os, so that the finger may determine whether there be placenta prævia. If so, we should temporize, by resorting to perfect rest, external and internal applications of ice, alum internally,—a large piece passed into the vagina, and placed near the os uteri. These means will sometimes arrest the flow, to be repeated again at some future time. If, however, the patient be at the full time, or the miscarriage cannot be prevented, the next duty is to rupture the membranes, either through the presenting placenta by a small puncture, or, what is preferable when the placenta but partially covers the os, through the membranes at one side. Ergot should then be given in sufficient quantities to keep up a continued contraction of the uterus, and to thus force the presenting portion of the child firmly down upon the bleeding surface, and thus to dam up the flowing stream. In this manner the head forms a natural tampon. If this be not successful, manual interference must be had recourse to, and the hand passed through or by the side of the placenta, and the child turned and delivered as speedily as may be. In some cases the vaginal tampon may be found advantageous, but rarely in this form of trouble, when the child be à terme! and in general it will be found but a temporizing method of doubtful utility.

When, by any accident, we have a detached placenta, the case is indeed a grave and startling one, calling for great decision and promptness of action. It resembles rupture of the uterus, in many of its symptoms, and is often extremely hard to diagnosticate. The fluttering pulse, anxiety of countenance, restlessness, retrocession of the presenting portion, exist, as in rupture. general, however, the pear shape of the uterus is retained. Fortunately, the duty of the accoucheur is alike in each case. mediate delivery is imperative. From the prostration from the loss of blood, there is no rigidity of the os to interfere with the introduction of the hand, and the immediate delivery by turning may be effected, if the head has so far retreated as to prevent the delivery by the forceps. I have seen but a few cases of this form of difficulty, and speak, therefore from a limited experience. There seems, however, to be no other feasible manner of operating when these appalling accidents occur.]

LECTURE XIII.

DURATION OF PREGNANCY.

GENTLEMEN: -The question of the Duration of Pregnancy, involving, as it does, the Cause of the Coming-on of Labor, is one of the most interesting amongst the yet unsettled problems of Obstetrics. It is impossible to rest satisfied with the pious saying of Avicena, that, "at the appointed time labor comes on by the command of God," and we are impelled to attempt the penetration of a mystery, which has been the subject of numberless theories and speculations, but which has hitherto baffled all attempts at its satisfactory solution. It may be said that at the present time obstetricians and physiologists are pretty nearly divided between two opinions, as to the time of the duration of gestation and the circumstances which influence its termina-According to one view the uterus is excited to expel its contents by the maturity of the fœtus and its membranes. Upon the second hypothesis, the gravid uterus, like the unimpregnated organ, is ruled by the catamenial periodicity, and labor comes at what would have been a catamenial period, had the woman remained unimpregnated. Both these ideas, in a more or less perfect form, are of a very ancient date. Harvey, for instance, taught that parturition came on at the tenth menstrual period after conception. Harvey's master, Fabricius, and still earlier authorities, held that labor came on in consequence of the maturity of the fœtus. In my work on "Parturition," I have adhered to the former view, and attempted to show that the ovaria are the organs which excite the uterus to the act of parturition. While doing this, I have dwelt upon the maturity of the embryo at the time of labor, and urged it as a manifest instance of the harmony of Nature, that the fœtus should be perfectly developed, and the placenta and membranes showing signs of unfitness for their functions, when the ovaria excite the uterus to expel its contents. I shall, however, on the present occasion state as impartially as I can the facts which support, or tell against, either theory.

The first thing which merits our attention in this inquiry is the statistical tables constructed by those who have kept registers of large numbers of cases. The late Dr. Merriman made a very careful investigation into the duration of pregnancy, which has been quoted by almost all subsequent writers on the subject. He reckoned from, but without including, the last day of the last catamenial period, and he gives a table of 150 mature births calculated in this manner. Of these—

5	were	deliver	ed in th	e 37th	week
16		66	66	38th	66
21		66	66	39th	66
46		6.6	4.6	40th	66
28		66	"	41st	66
18		66	66	42d	44
11		44	44	43d	66

This variation is very considerable, and the question suggests itself—In the case of the fifty-seven women who carried the ovum beyond the fortieth week from the last menstruation, was the gestation protracted beyond the usual time, or was it that conception occurred one, two, or three weeks after the last catamenial appearance? To these questions we shall have to revert hereafter. Dr. Murphy has given a table of 182 cases, in which the results were somewhat different from those obtained by Dr. Merriman. In Dr. Murphy's cases, the numbers delivered in the 40th and 42nd week were equal, twenty-five in each week; while in the 41st week, thirty-two labors occurred. The late Dr. James Reid, in an elaborate essay on the Duration of Human Pregnancy, begun in 1850, and completed in The Lancet in 1853, gives a table of the duration of pregnancy in 500 cases calculating from the last day of menstruation. Of these—

```
23 were delivered in the 37th week.
         66
                       38th "
48
                 66
81
         66
                       39th
         66
                66
                       40th "
131
         66
                6.6
112
                       41st
         66
                 66
                       42d
63
                66
28
                       43d
         6.6
                46
                       44th "
                66
         66
                       45th "
```

These results prove, as in Dr. Merriman's table, that, calculating from the last day of the last catamenial period, considerable variations in the duration of pregnancy occur. Is there more regularity in cases where the duration of gestation, or the date of the occurrence of labor, is calculated from the time of a single coitus? Before entering upon this topic, it must be premised, that in the case of the catamenia frequent mistakes are made by the most careful women respecting the time of its last appearance. Errors, intentional or unintentional, are still more likely to occur in fixing the time of the coitus which has resulted in impregnation. Many of these cases occur in unmarried women, in whom there is a very constant tendency to declare that the fruitful coitus has been a solitary one. Dr. Reid, in the paper referred to, collects forty-three instances of conception after single coitus, all of them resting upon testimony as credible as can be obtained in these cases.

960 days	often cincle	ooitus	delivery occurred in	1
	arter single	contus,	"	
263				1
264	"	"	"	2
265	"	"	"	1
266	"	66	"	2
270	"	44	"	1
271	66	66	"	2
272	66	66	"	
	66	66	"	3
273				1
274	"	"	"	7
275	"		"	2
276	"	"	"	5
278	"	66	66	1
280	"	"	(6	3
283	"	"	66	2
284	66	"	"	1
286	"	"	"	1
287	44	66	"	2
291	"	46	"	1
293	"	"	"	2
296	44	"	"	1
300	66	66	"	
				1
				43
				TU

Thus it will be seen from this table that the average duration of gestation, reckoning from a single coitus, is about 275 days. But in this mode of calculating the term of gestation, variations quite as great as those which occur in calculating from the catamenial periods are met with. Dr. Reid, who wrote with a

desire to show that the duration of pregnancy should be calculated from the time of impregnation, rather than from the last menstruation, was obliged to conclude as follows: "If we allow of a range from two to six days after menstruation as elapsing probably before conception takes place, it will then appear that about the thirty-ninth week after impregnation is more probably the ordinary duration of pregnancy, and this will coincide with the results of the table taken from cases of single coitus." This means that we can calculate as well from the date of the last catamenia, as from the date of conception, but that in one case we must reckon thirty-nine, in the other forty weeks. Upon whichever basis we make the calculation, it is proved that the duration of gestation varies considerably, within certain limits, and we must look to other evidence than that derivable from such tables, to show the real cause of the termination of pregnancy, and the occurrence of parturition. In animals, where the date of coitus can be ascertained with greater accuracy than in the human female, the same variations in the time between impregnation and parturition in different females of the same species are found to exist. Thus the chief facts educed from these statistical data, are, that, in a large proportion of cases, gestation terminates at a certain time, within the limits of a few days, and that this time bears pretty nearly the same relation to the catamenial dates, as the dates of fruitful coition. Dr. Reid's is the largest cases of conception from single coitus which has been made, and the result yields the 275th day as the average time for the occurrence of labor. In the calculations from the catamenial dates, Dr. Reid's cases give the same result as those of Dr. Merriman, the average time of the coming on of labor being the 40th week from the termination of the catamenia. If we get two cases of pregnancy in women in whom the catamenia appeared at the same time, the date of parturition may vary within certain limits. The same variation occurs in the cases of two females to whom impregnation occurred at the same time. If we look to the results obtained from the observations made upon comparative gestation, the same variation of the duration of pregnancy, as calculated from the date of intercourse, is found; and in animals the utmost accuracy as regards dates can be procured. Baron Tessier found that the average duration of pregnancy in 160 cows was nine months

and ten days; but of this number 68 went beyond the 280 days, in 20 gestation lasted 300 days, and in 5 instances it was protracted to 305 days. The late Earl Spencer had the duration of gestation accurately noted in 764 cows. Pregnancy lasted on the average 285 days. In 8 cases only was this period exceeded by more than 12 days, and only one went 18 days beyond this time. These results differ somewhat from those of Tessier, but there are no grounds for questioning the accuracy of the observations in either case. Other observers have found the same variations in the gestation of the cow. Similar variations have been observed in the gestation of mares, and in elephants; and in the smaller animals, where gestation lasts a shorter time, notable variations in the time of coming on of parturition are found to occur. The last hypothesis respecting the variable duration of pregnancy is that advanced by Dr. Clay, of Manchester, who argues from cases which have occurred in his own practice, and the facts known respecting the duration of gestation in animals, that the younger the parent the shorter is the term of gestation. Dr. Clay believes that the ages of both parents influence the duration of pregnancy; but dwells particularly upon the influence of the mother.

There is a class of cases not hitherto noticed, by which the duration of pregnancy from the time of coitus may be ascertained with considerable certainty. In 1851, Mr. Coleman, of Surbiton, drew my attention to the following circumstance: Two ladies, patients of his, were married on the same day, and both were delivered within ten hours of each other. riage took place on the 7th of May, 1850, and one was confined on the afternoon of February 8th, 1851, and the other at two A.M., on the 9th, or 276 days from the date of marriage. Both had menstruated a few days before marriage. I have collected a good many cases of this kind, and they show that in the majority of those in whom labor occurs within the forty-first or forty-second week from marriage, the deliveries occur before, rather than after, the 280th day from marriage. It is usual for marriages to take place shortly after a catamenial period, and the inference is, that in these cases impregnation must have occurred within a few days after marriage. Such cases tend to confirm the table of Dr. Reid, in which the average duration of labor was 275 days from the date of coitus. They do not, however, bear distinctly upon the determining cause of labor, and probably no mere statistics will ever settle the question. I now proceed to state the arguments in favor of the maturity of the ovum as the exciting cause of parturition.

Those who consider the maturity of the fætus to be the cause of labor, point to the periodicity observed in the growth or flowering of plants, the separation of ripe fruit from the stalk, the leaf from the stem, the regularity with which the young birds are hatched from the shell, the regular appearance and shedding of the teeth, and similar phenomena of growth and development, as favoring the idea that the fœtus separates from the womb, and excites the phenomena of parturition, in consequence of an inherent periodicity occurring as part of the development of the embryo. Dr. Carpenter refers to the placenta as the organ upon which the contraction of the uterus depends. He draws an argument in favor of this opinion from the phenomena of superfectation, in which one child is detached from the uterus, a second remaining undetached, apparently in consequence of the immaturity of the placenta. Dr. Simpson has advanced the opinion, that "the loosening or decadence of membranes and placenta from the interior of the uterus constitutes the determining cause of parturition; and that this loosening or decadence is itself the result of the effete degeneration of the structure of the decidua towards the full term of pregnancy." In the observations of Lord Spencer, it was found that gestation with males had a tendency to continue a few days longer than gestation with females. There is a popular belief that this occurs in the case of males in the human subject. our fishing towns, where the dates of the absence of the husband are known, it is said that when gestation is prolonged beyond the usual term, a boy is expected, and that this expectation is generally fulfilled. Lord Spencer also found that cows in calf by a particular bull had a tendency to go a few days longer than those impregnated by other bulls in the herd. Those who oppose the view that the catamenial dates rule the duration of pregnancy, ask why parturition should occur at the tenth rather than at the eleventh or any other menstrual period? But this may be replied to by other questions-why, for instance, should the catamenial period, as the rule, consist of twenty-eight days? or why should puberty come on at a particular age? The only

answer is, the fact that these particular periodicities do occur. In animals the periodicities of cestruation are little known, particularly in the wild state, but it is asserted that the larger animals do not cestruate sufficiently often to render it posble that in their case the duration of gestation can be a multiple of an cestrual period.

There is one point which has already been adverted to in connection with menstruation, and which is supposed to militate against the ovarian theory of the cause of labor. As the rule, we have seen that the menstrual periodicity recurs every twenty-eight days; but in some women the period returns a day or two earlier or later than this with considerable regularity. Others are regular every fortnight, or every three weeks; or the period returns only every five or six weeks. What multiple of the catamenial periodicity is observed in such cases? I have carefully noted all the cases I have met with of this kind, and I find that in such women the duration of pregnancy is more irregular than usual. The future collection of such cases will be very valuable in elucidating the true cause of labor, far more so than cases in which the last date of menstruation and the occurrence of a single coitus are recorded. It is said by some who oppose the ovarian theory, that if the ovarian or catamenial periodicity ruled the coming on of labor, the date of parturition should always be exactly 280 days from the last menstruation. This is hardly a valid objection, inasmuch as in the most regular females, the catamenia often appear a few days before, or a few days after, the expected time, yet no one on this account refuses to accept the ordinary monthly periodicity as the rule amongst women. The irregularities in the duration of gestation are certainly not greater than the irregularities observed in menstruation.

The argument in favor of the ovarian influence, as a determining cause of labor and as regulating the duration of pregnancy, has now to be stated. It is allowed by all observers, that labor has a tendency to occur, and does occur in a great proportion of cases, in the fortieth week from the last menstruation; and it is equally allowed, that impregnation has the tendency to happen just after the catamenial period. It is also made out by the record of a considerable number of cases, in which a single coitus occurred, that gestation lasts, on an average, about 275 days from the actual date of impregnation. These data make the average duration of preg-

nancy approach 280 days from the last catamenial period, so that the time between the last catamenial period and the occurrence of parturition is on the average, very nearly a multiple of a single catamenial period. This is a curious coincidence, even if it were proved that the uterine function of parturition was quite independent of the ovarian influence.

But we know that the uterus performs some of its most important functions under the influence and control of the ovaries. It is allowed, even by those who deny the influence of the ovaria upon parturition, that the catamenial function is ruled by the ovaria, that the ovarian phenomena may occur without menstruation, but that menstruation never occurs without the influence of the ovaria. It is admitted by almost, I think I may say all, practical accoucheurs, that the influence of the ovaria are felt during pregnancy, that women feel uneasiness at the catamenial dates, and are more liable to abort at these times than at others. This is particularly the case with women who have suffered from dysmenorrhoa previously to pregnancy. In certain cases of extra-uterine gestation, as, for instance, in abdominal pregnancy, the development of the fœtus has frequently gone on to the usual limit of pregnancy, when violent pains, as of labor, and contractions of the enlarged uterus, have come on. Dr. Ramsbotham observes on this point: "It is a curious circumstance in the history of these cases, that if the child should live till the term of gestation is completed, as soon as that time has expired, the uterus takes on itself expulsive action, which is attended with pain similar to the throes of labor; and, during these pains, the deciduous membrane is expelled from the cavity with more or less sanguineous discharge." Cases have been not unfrequently met with in which the ovum has been blighted in the middle part of pregnancy, and in which the decidua and chorion have been diseased; but the mother has carried the diseased ovum for a considerable time, or to the natural limit of gestation, when the molar or degenerated ovum has been expelled. There is another class of cases in which twin gestation is proceeding; but one ovum dies, yet the uterus is not excited to contract, but the dead and living ovum go on to the full term. In cases of superfectation, when one living child has been born and birth has been given to the second some time subsequently to that of the first, I have found that there is a tendency to some multiple of the catamenial period in the interval between the birth of the two children. Dr. Fleetwood Churchill has given an account of the three most remarkable cases of superfectation on record; and I proceed to an analysis

of these cases, quoting the words of Dr. Churchill:

"In the 'Recueil de la Société d'Emulation,' there is the case of M. A. Bigaud, of Strasbourg, aged thirty-seven, who was delivered of a living child on the 30th of April. The lochia and milk were soon suppressed. On the 17th of September of the same year (i. e. about four months and a half after the first delivery) she brought forth a second apparently mature and healthy child." The first labor occurred on the last day of April, so that we have the thirty-one days of May, thirty days of June, thirty-one days each of July and August, and seventeen days in September—in all, one hundred and forty days from the first to the second birth, or exactly five catamenial periods, $5 \times 28 = 140$. In a case related by Desgranges, of Lyons, to continue the account of Dr. Churchill, "the woman was delivered on the 20th of January, 1780, of a seven months' child, and on July 6th, 1780, five months and sixteen days after the former birth, she gave birth to a second, which had apparently reached its full time." In this case we have eleven days in January, twenty-nine in February (it being leap-year), thirty-one in March, thirty in April, thirty-one in May, thirty in June, and six in July, between the two births, in all one hundred and sixty-eight days, or precisely six catamenial periods, 6 x 28 = 168. The third case noted by Dr. Churchill is as follows, from the account of the late Dr. Maton, in the fourth volume of the "Transactions of the College of Physicians":-" Mrs. T-, an Italian lady, but married to an Englishman, was delivered of a male child at Palermo, November 12, 1807. On the 2nd of February, 1808, not quite three calendar months after the preceding accouchment, she was delivered of a second male infant. Dr. Maton assured Dr. Paris that 'both the children were born perfect;' the first therefore could not have been a six-months' child." we include the day on which the first child was born, the time between the births amounts to eighty-three days, or within one day of three periods of twenty-eight days. In these cases it is impossible not to recognize the close adherence to the ovarian periodicity, and it is difficult to imagine that this could be a mere coincidence. All such facts militate against the supposition that the irritation of the uterus by the mature fœtus and its membranes induces labor; and support the view that it is excited by extra-uterine and ovarian influence. There is also another class of facts which tells against the hypothesis that labor depends solely upon the maturity of the fœtus and the placenta and membranes, and, as a consequence, in favor of the ovarian periodicity. Instances are frequently met with in which the placenta becomes prematurely mature and caducous, or affected with degeneration, and the child dies in utero shortly before birth. It is well known that in certain women this happens many times in succession, the placenta becoming ripe, and positively unfit for the performance of its functions, without exciting the uterns to expel its contents. It is difficult or impossible to account for such cases on the supposition that the mature ovum excites the uterus to the efforts of labor. It is not that there is any special adhesion of the placenta and membranes to the uterus in these cases; for if the fœtus lives in a feeble condition up to the time of labor, it separates from the uterus with the first pains, and causes the death of the child. On the other hand, labor comes on just as regularly in cases in which the placenta has adhered so firmly to the uterus, in consequence of inflammation, as to require mechanical detachment after labor.

In 1850 I performed some experiments, with a view to determine the possibility of exciting the uterus to contraction by irritating the ovaria. In these experiments I had the valuable aid of the late Mr. Henry Smith, who assisted Dr. Marshall Hall in his great course of experimental inquiry. We found that in the gravid rabbits chloroformed, and with the abdomen laid open, irritation of the ovaria by galvanism, a heated needle, or pinching with the forceps, excited distinct contractions of the uterus and vagina. In the rabbit at the middle period of gestation, after a few contractions of the parturient canal had been excited artificially by irritation of the ovaria, the intermittent contractions of ordinary parturition went on until the fœtuses were expelled, artificial parturition being thus excited by ovarian irritation. Berthold experimented upon animals during gestation by extirpating the ovaria, and found that this operation invariably led to abortion. I have heard that Dr. Simpson a

few years ago performed some experiments with a different result from those of Berthold, but I believe these experiments have not been published. In my work already referred to, I have shown that in many of the lower animals, ovulation and contraction are going on at the time of parturition, and that many of them admit the male, and conceive again on the same

day that the uterus has been emptied.

I have thus advanced, and I trust impartially, the arguments and facts for and against the theory of the ovarian cause of labor, which I believe I was the first to propound. I have for many years taught that the ovaria, acting at, or near the tenth period from the time of the ovulation which has ended in impregnation, excite in the uterus those changes which lead to the expulsion of the ovum. I have also compared the show which accompanies parturition, and the lochial discharge which follows it, to the menstrual discharge. It has appeared to me, that the changes in the uterine portion of the membranes are similar to the changes which occur in menstruation, and that the contractions of the uterus resemble those more imperfect contractions which occur in many women at the catamenial periods, and which we do not hesitate to refer to the ovaria. I believe there are some facts which do not admit of explanation upon the supposition that the cause of labor depends on the maturity of the ovum; as, for instance, the occurrence of uterine contractions at the end of gestation in cases of extra-uterine feetation. I believe, on the contrary, that as to the facts which appear to militate against the ovarian theory, most of them admit of explanation.

In a practical point of view, we may consider that the average duration of pregnancy is about 280 days from the date of the last catamenia, or about 274 or 275 days from the time of coitus, when this can be ascertained. As the date of fruitful intercourse can only be known in rare and exceptional cases, we are compelled to date from the last catamenia,—the point which, from time immemorial, has been the foundation of the calculations of women and their attendants. I constructed the **periodoscope** upon the data that conception generally occurs a few days after the completion of a catamenial period, and that labor may be expected on some day of what would have been the tenth period, had pregnancy not intervened. I have now

for some years used this instrument in practice, and found the results generally correct. It is at the same time a mode of calculation and a diagram of pregnancy.

Those who calculate from the last menstruation and those who date from conception, may equally use the periodoscope. The cases in which the date of fruitful coitus can be known are rare, and for practical purposes the few days succeeding the last menstruation may be taken as the date of that event. Five days after the last menstrual date are marked in the following diagram as the time within which conception generally takes place:—

[The following table is much in use in the United States.:-

TABLE FOR CALCULATING THE PERIOD OF UTERO-GESTATION.

NINE CALENDAR MONTHS.			TEN LUNAR MONTHS.	
From	То	Days.	То	Days.
Jan'y 1	Sept. 30	273	Oct. 7	280
Feb'y 1	Oct. 31	273	Nov. 7	280
March 1	Nov. 30	275	Dec. 5	280
April 1	Dec. 31	275	Jan'y 5	280
May 1	Jan'y 31	276	Feb'y 4	280
June 1	Feb'y 28	273	March 7	280
July 1	March 31	274	April 6	280
August 1	April 30	273	May 7	280
Sept. 1	May 31	273	June 7	280
Oct. 1	June 30	273	July 7	280
Nov. 1	July 31	273	August 7	280
Dec. 1	August 31	274	Sept. 6.	280

The above Obstetric "Ready Reckoner" consists of two columns, one of Calendar, the other of Lunar months, and may be read as follows:—a Patient has ceased to menstruate on the 1st of July; her confinement may be expected at soonest about 31st of March, (the end of nine Calendar months); or at latest, on the 6th of April, (the end of ten Lunar months.) Another has ceased to menstruate on the 20th January; her confinement may be expected on the 30th September, plus 20 days, (the end of nine Calendar months) at soonest; or on the 7th October, plus 20 days, (the end of ten Lunar months) at latest.]

LECTURE XIV.

MOLAR PREGNANCY-BLIGHTED OVA.

Gentlemen: - Certain matters are occasionally discharged from the virgin or impregnated female, which it becomes necessary to distinguish from the results of fecundation. These consist of masses of squamous epithelium from the vagina, fibrinous collections from the cavity of the uterus, and the membranous product expelled in some cases of dysmenorrhæa. can be no difficulty in deciding on the flakes or tubular pieces of squamous epithelium, exfoliated from the vagina. The fibrinous masses expelled from the uterus resemble an almond in size and shape, being to some extent casts of the uterus; they are smooth externally, and possess a very imperfect central cavity. dysmenorrheal product consists of the uterine mucous membrane, exfoliated in a more or less perfect form. When entire, it has the shape of the cavity of the body of the uterus, is rough externally, and smooth within, having a distinct triangular cavity, with two openings above, and one below, at the sites of the Fallopian tubes and the canal of the cervix uteri. There are of course, no traces of funis, membrane, or fœtus. Examined microscopically, the squamous epithelial masses consist of quantities of epithelial scales; the fibrinous masses are composed of filaments of fibroid material arranged in bands, and myriads of grandular corpuscles, similar to exudation corpuscles; in the true dysmenorrheal membrane, the convoluted utricular glands are found with their openings on the smooth internal lining of the cavity, and cocal extremities of the glands upon the rough or external surface. The older writers included polypi and fibrous tumors in the list of moles; but the above constitute what are now considered False or Spurious Moles.

The Genuine Moles, which are the result of impregnation, are of various kinds, consisting of different forms of degenera-

tion of the membranes of the ovum. We can readily distinmish the varieties of mole depending on the carneous or fleshy, hydatiginous, and the fatty and other degenerations of the anes. None of these cases can occur without conception. great confusion prevailed upon this subject. Many ved that fleshy moles might occur in nuns and others virgins, without the occurrence of intercourse. hat hydatids were independent animals, and that was compatible with the purest chastity.

Denma. sometimes originated in the uterus as independe.

'nd Sir Charles Clark was of opinion that uterir

'nt exist apart from pregnancy. Cases are recc

'n uterine hydatids have been retained long be

'al period of gestation. Madame Boivin,

Pendel Baude¹, Desormeaux, and Velpeau, are quoted by Dr. M as being in favor of the belief that this form of do ovum may be retained for many months or eve : the ordinary date of labor. I am not aware the transfer of this kind has been observed. The tende modern research, however, has been to demone genuine mole cannot occur except as the result of n, and as the degeneration of a true ovum. In some i twin conception, one fætus has disappeared under ace of hydatiginous degeneration, while the other has I healthy up to the full term. It is related of the ed Beclard, that he was born under these circum-

en an ovum is rendered unfit for continuing the development of the embryo in the early weeks of gestation, by the effusion of blood between the membranes, or into the substance of the chorion, or by other disease of the membranes, it may not be expelled at the time, but remain in utero, and undergo the changes which constitute carneous degeneration; or there may be a partial separation of the ovum from the uterus, followed by an attempt to repair the mischief by the reunion of the separated portions. The fibrin of the effused blood becomes pale and semi-organized, and a perverted nutrition of the membranes goes on. The diseased membranes increase in bulk, but become dense, and quite unfitted for the development of the fœtus, which remains of the same bulk as when the effusion or

separation commenced, or it may become atrophied. This may continue for three or four months, until at length the degenerated ovum is expelled, consisting of the nest-like membranes and a small embryo of two or three weeks' growth, or in some cases the fœtus may have disappeared, and traces only of the umbilical cord remain. Such are the main points connected with carneous degeneration of the ovum. It has often been pointed out that such cases are of considerable importance in a medico-legal point of view. A husband, for instance, may have believed his wife pregnant, and after his absence from home for several months she may abort on his return, of a fœtus so minute as to give rise to a suspicion of her fidelity, unless such a matter could be explained by the death, retention, and degeneration of the ovum.

Blighted Ovum with Carneous Degeneration of the Membranes.

The next form of embryonic degeneration to be considered, is the hydatiginous variety. The latest and best account of hydatiginous degeneration of the ovum is that by Dr. Barnes, in the British and Foreign Medico-Chirurgical Review, contained in the volume for 1855. In this article, the origin of the disease from the perverted growth of the villi of the shaggy chorion is

very clearly traced. When treating of the chorion and placenta, we have described the clavate villi of the chorion, and the layers of cells which they contain. These villi increase by a process of genmation or budding, very similar to the growth of the roots of a tree. From the sides of one villus, other villi, by a process of cell-growth, sprout out, and from these, in turn others arise. Under normal plastic influences, a due proportion is preserved between the increase of the nutrient and depurative powers of the chorion and decidua, and the requirements of the enlarging embryo. But it sometimes happens that this growth of the villi is abnormal, and the cells they contain increase in size, and become dropsical, constituting the hydatiginous degeneration of the ovum. tids themselves, in the recent state, are full of transparent fluid, and are either round, pyriform, or oblong in shape, the size of the vesicles varying greatly. Some of them are borne upon pedicles, others are growing from the walls of larger hydatids. Mr. Paget, following Mettenheimer, has pointed out that, on the walls of the primary vesicles, buds appear and develop into separate hydatids, just as the buds protrude from the healthy villi, to produce, by normal growth, new villosities. pedicles of those hydatids, which appear stalked, are formed of the remains of the base of the villus at the expense of which the hydatid has been formed. As a rule, the activity of the growth and the increase of the villi are, Dr. Barnes observes, greatest in early pregnancy, and it is at this time that the hydatiginous degeneration is most prone to occur. Drs. Ramsbotham and Montgomery believe that small portions of placenta, retained in utero after parturition at the full term, may become the nucleus of hydatiginous formations; but Dr. Barnes combats this view, from the general history of hydatiginous formations, and the destruction of the feetal vessel of the placenta, which occurs at the time of birth. This question is a very interesting one, and must be considered as unsolved. No doubt, the tendencies to the formation of hydatids diminish with advancing pregnancy, but it is not clear that there is any difference between a portion of placenta adherent to the uterus after labor at the full term, and the whole placenta adhering to the uterus after the death of the fœtus, but without exciting the expulsion of the ovum. This form of degeneration frequently commences

at a very early date of gestation, and the destruction of the embryo is much more complete than in the fleshy variety of mole. Growth is limited to the chorion and the diseased villi, so that all traces of the fœtus generally disappear, the uterus being filled with a mass of hydatids, of various sizes.

The uterine hydatids were compared by Gooch to currants, and by Cruveilhier to a bunch of grapes. Dr. Barnes quotes the objections of Mettenheimer to the comparison of Cruveilhier, and gives the description of Mettenheimer himself. This accurate observer considers the chorion, which is itself a large vesicle or bladder, as the centre of the whole growth. On the walls of this great vesicle, a new generation of cysts is formed, and each of these cysts has the power of producing one or many daughter cysts; or, to use his precise words, "Berry grows out of berry, and the stalks do not unite berries with the principal stems, but berries with berries, and, lastly, with a central mother

Portion of an hydatid Mass.

cyst." This arrangement of the vesicles is very well shown in the above engraving of a portion of a mass of hydatids, from a preparation of Mr. North, in St. Mary's Hospital. In the patient furnishing this preparation, enormous quantities of hydatids were expelled at the fifth month, the symptoms being alternate hæmorrhage and watery discharge.

In the third form of degeneration, occurring at a later period of gestation, the placenta may become so diseased as to be unfitted to carry on the nutrition of the fætus, or the fætus may die, or be destroyed by disease of the cord without in either ease inducing separation of the placenta from the uterus. The nutrition of the placenta may go on more or less imperfectly, and the fætus under these circumstances, becomes slirunken and attenuated to an extraordinary degree. It sometimes occurs that this is the case in twin gestation. Indeed, it seems more prone to happen in twin than in other eases. It may then occur that the shrivelled fætus may be expelled at some period of pregnancy, the uterus retaining the other to the full term, or the shrivelled and the living embryos may be retained together, and the woman delivered of a full-grown fætus and one of two or three months at the full term. Such eases are often confounded with cases of superfectation. I once attended a patient in a delivery at full term, who, four months before, had aborted while return-

Blighted Ovum, with Carneous Degeneration of the Membranes.

ing from the West Indies. Dr. Simpson has pointed out, that when the dead fœtus is retained with a living twin, it becomes flattened by pressure between the living ovum and the uterus of

the mother. Dr. Barnes is of opinion that in fatty degeneration, of the placenta to such an extent as to destroy the embryo, two or three weeks from the death of the fœtus is the usual time within which the uterus is excited to expel its contents; but I have seen one well-marked eause of fatty degeneration, in which the fœtus died at the fourth or fifth month, but was not expelled until the full term. It is in the highest degree probable that in all eases of death and retention of the ovum, after the formation of the placenta, the retained membranes become the subject of fatty degeneration, and that this also occurs to a considerable extent in what are are called fleshy moles.

The symptoms of molar pregnancy vary considerably in the different forms of this disease. In the carneous moles there is an arrest of the breeding symptoms, and the patient remains out of health. The ovum, from the time of its death, becomes to a great extent a foreign body, and is a source of irritation to the system generally. No increase of size takes place, so that, at the fourth or fifth month, the uterus may not be larger than it should be in the fifth or sixth week of normal pregnancy. The eomplexion is muddy, and the breath fætid, with loss of appetite and digestion. Hemorrhage frequently occurs as the degeneration of the membranes proceeds, but not to any great extent, on account of the small size of the nterus. There is sometimes a constant sanious discharge, in which case the health suffers more than usual. But in many of these cases, the symptoms, it must be confessed, are very obscure. This is because the death of the ovum occurs before the symptoms of pregnancy assume a positive form, and while the nterus is comparatively undeveloped, so that there is a considerable resemblance between these early moles, and the mixed cases of amenorrhoea and menorrhagia met with in practice.

In the hydatid mole, the symptoms are more strongly marked than in the fleshy variety. When the ovum has taken on the hydatiginous form of degeneration, the increase is often enormously rapid, so that at the fifth or sixth month the abdomen is as large as it should be at the end of pregnancy, or even larger. The shape of the uterus is frequently altered from the usual pyriform outline, its growth extending laterally on both sides; or it becomes irregular in form. With the marked increase in size, there is the absence of all fætal movements, and of the sounds of

the fætal heart, combined with a dense uterine tumour. There is frequently also, after the three or four months of suspension of the catamenia which attends pregnancy, a copious discharge of water and blood, or of water slightly tinged with blood, resembling red currant juice. This occurs at irregular intervals, and in variable quatities. The watery discharge is accompanied by pains, and appears to be caused by the breaking down of numbers of the larger hydatids. These symptoms are sufficient, in most cases, to make the nature of the affection plain. In a suspected case, the discharges should be carefully examined, and, of course, the detection of a single hydatid, or of a portion of an hydatid, renders the diagnosis certain. Little information is acquired by digital examination in cases of hydatid mole, when the degenerated mass remains altogether within the nterns. But the other cases in which a discharge similar to that commonly met with in hydatids occurs, are cauliflower excrescence, and certain cases of polypus, in which the disease can readily be made out by examination. The loss of health caused by hydatids is often of the gravest character, from the quantity of watery and sanguineous discharge. Owing to the extensive attachment of the hydatid mass, its separation is sometimes attended by flooding equal to that met with in placenta-prævia. Profound anæmia, failure of the heart's action, dropsical swellings, and even paralysis, have occurred in the course of this disease. Sometimes masses of hydatids are discharged from time to time; but portions of the diseased structure being left behind, the growth goes on afresh, and reduces the patient to the greatest extremity of weakness. Two or three wash-hand-basinfuls of hydatids have been expelled from the uterus at once in some cases.

The moles occurring later in pregnancy, or in which simple shrinking of the fœtus and degeneration of the placenta occur, have their special symptoms, and may, with care, be recognized by the attendant during their progress. As in the other form of mole, there is a recession of the ordinary signs of pregnancy. There is also an arrest of increase, and a positive diminution of size in the abdomen. The auscultatory signs of the living fœtus are altogether wanting. Either quickening does not occur, or after having been felt, the movements of the child cease. Peristaltic actions of the uterus may occur, but these can readily be

distinguished from the movements of the fœtus. Hæmorrhage generally occurs as the degeneration of the placenta, and its partial separation from the uterus, goes on. The loss of blood may be constant and slight; or it may occur occasionally, and to a considerable extent. This depends on the successive separation of portions of the placenta in consequence of disease, and the irregular contractions of the uterus. In this form of a retained ovum, as well as in the fleshy mole, there is frequently a disagreeable discharge, and the health of the patient becomes greatly deteriorated by the irritation of the dead mass, the loss of blood, and the poisoning of the circulation by the absorption of feetid material.

The treatment of molar pregnancy consists in emptying the uterus of its diseased burden, and in supporting the strength of the patient, and warding off accidents while the mass remains in the uterus. In the carneous moles of small or moderate size active treatment is very much impeded by uncertainty of diagnosis. If in a ease of suspected molar pregnancy the life of the mother should be threatened, the ovum should be detached by a catheter or the uterine sound, without hesitation. The ergot of rye may be given, with a view to the arrest of bleeding and the excitement of uterine contractions; but in ordinary eases we are obliged to wait, as in abortion, until the ovum presents at the os uteri, or ean be reached with the finger, before we attempt to remove it. If the diagnosis of this form of molar pregnancy should become, as we may hope it will, more perfect and certain than it now is, we might separate the ovum by the sound, dilate the os and eervix by sponge tents, or excite the uterus by galvanism. In the case of hydatid degeneration the treatment is more positive. It is usual in such cases to give the ergot of rye to induce uterine contraction. If the os uteri is dilatable, we may introduce the hand, and detach the hydatid mass. Dr. Gunning S. Bedford relates the case of a woman in extreme danger from loss of blood, in which he successfully broke down the hydatids with a female eatheter. The hydatids are sometimes attached very firmly, and I once saw a case in which the nterus had been ruptured by the violence of its contractions in expelling an hydatid mole. In the ease of a retained ovum with degeneration of the placenta, the membranes should be ruptured,

and the expulsion of the diseased ovum brought on, as soon as the mother's health suffers seriously, or the nature of the case becomes unmistakable. The after-treatment of such cases is much the same as after ordinary abortion; but it must be said that the health is more broken after molar pregnancy than by the results of simple abortion.

LECTURE XV.

SUPER-FŒTATION-EXTRA UTERINE GESTATION-MISSED LABOR.

GENTLEMEN:—The term Super-fætation is applied to cases in which one gestation having commenced, a second supervenes upon it during the continuation of the first. We must, before approaching this curious subject, separate certain cases which simulate super-fætation to a certain extent, but are altogether distinct from it. For instance, we referred in the last lecture to cases in which a woman may be delivered of a blighted ovum, and carry on a second fœtus to the full term; or in which a gravid woman may produce a full-grown fœtus and a shrivelled ovum at the natural time of parturition. Cases are also met with, in which a patient is delivered of two children at the same time, one of which is considerably more developed than the other. Such cases are termed retarded twins, and it is doubtful whether in the case of twins, conceived at the same time, the retarded ovum may be retained in the utero beyond the natural term. The instances here severally referred to, are altogether different in principle from cases of super-fætation, inasmuch as they depend not upon a variation in the time of conception, but upon a difference in the time of development or expulsion, apart from any variation in the time of fecundation.

There are several conditions under which super-feetation may take place; and as the fecundation in twin cases has an interesting relation to this subject, I may mention the chief circumstances under which twin impregnation occurs. It is probable that in many cases of twin pregnancy the second ovum has been fecundated by a coitus occurring subsequently to the first impregnation, and such cases form the most simple instances of super-feetation. But this is not always the case. In rare instances, in twins, the placenta is found to be single, and I would

suggest that these are cases in which one ovule has contained two yolks and two germinal vesicles, just as we sometimes see in birds, one egg with a double yolk, producing two individuals. In these cases the twin impregnation must occur at the same time. More frequently the placente and membranes are double, but the placentæ are placed side by side, and in these cases two separate ovules have probably descended from the same ovary, and have been impregnated either at the same or at different times. In some cases the placentæ are attached to opposite sides of the fundus uteri, the inference being that the ova have descended from the two ovaria, but they may have been impregnated by a single coitus or otherwise. In all these cases, impregnation occurs within a short space of time, and the same preparation of the uterus serves for the twin fecundation. We have the positive proof that twin ova may be impregnated at different times, in the history of cases in which a white woman is delivered of a white and of a black child, or in which a black woman produces a black and a mulatto, at one birth. In the slave states of America, cases of the latter kind are so common, as to place the matter beyond doubt. Numerous authorities, including Buffon, Dewees, Dunglison, Beck, and others, testify to the facts, that a white woman married to a white man, and admitting a negro to her embraces after intercourse with her husband, may give birth to a white and a mulatto child at the same time, or that a negress receiving a white man under similar circumstances, may produce a black and a mulatto infant. In animals which produce many offspring at a birth, it is not at all unfrequent for the young to be the product of intercourse with different males. Dr. Henry, in his excellent essay on Super-fætation, quotes a case which occurred in the Brazils where the indigenous race is copper-colored, but where there are negroes and whites, in which a Creole woman had three children at a birth, of three different colors, white, brown, and black, with all the features of their respective races.

Cases are on record, in which women, the subjects of extrauterine gestation, have conceived anew, and borne children, while the extra-uterine fœtus has remained in the abdomen. M. Cliét, of Lyons, relates a case which had fallen under his own observation, in which a woman died suddenly, and upon dissection, an extra-uterine fœtus of five months was found in the abdomen, while a fœtus of three months occupied the uterus. Cases of abdominal gestation, in which the fœtus becomes enclosed in a cyst, and the woman bears other children, are less uncommon than the above. Dr. Montgomery details the particulars of an interesting case, in which, two years after an extra-uterine gestation, a woman conceived, and bore three children in succession, while the extra-uterine fœtus remained encysted. Many other writers have recorded similar cases.

In another variety of super-fectation, the uterus preserves the form met with in the lower animals, being bi-cornual or bi-corporcal, and a conception occurs first in one side of the organ, and after a time in the other. It has been observed that in cases of this kind, when one uterus has received an ovum, the other cavity develops a deciduous membrane, a circumstance which has been urged by Dr. Lee and others against the probability of the occurrence of pregnancy in a double organ at two Numerous apparently unexceptionable cases different times. are, however, on record. The museum of the University of Modena contains the uterus of a woman who died of apoplexy in 1847. This woman had borne many children, and on one occasion she became pregnant, and was delivered on the 15th of February, 1817, of a child apparently at the full term. The abdomen diminished on one side only, after her labor, and on the 14th of March, she gave birth to a second mature child. This case was regarded at the time, by Professor Bignardi, as one of super-fætation, with double uterus, and this diagnosis was confirmed on a post-mortem examination, thirty years afterwards, by Dr. Generali. Of the authenticity of this case there can be no doubt. It may be urged that it was only a case of retained and retarded twin; but the probabilities are against such a supposition, and numerous confirmatory cases have been observed by Cassan, Voigtel, and Boivin, in which a considerably longer time occurred between the birth of the two children. is worthy of remark, that in cases of double or divided utcrus. the two portions of the organ show signs of imperfection. Abortions are very frequent in such cases, and delivery is difficult from the imperfectation of the uterus. The term double nterus is not strictly correct, because the organ is single, but divided into two cornua. In the early condition of the human embryo. the uterus is always divided, and the so called double uterus

is merely the more or less perfect persistence of the embryo type. Occasionally the vagina is also doubled or divided.

Fig. 63.

Uterus in which the cavity is divided by a septum, the vagina being single.

FIG. 64.

Bifid condition of the uterus and vagina.

But in addition to these forms of super-fætation, other cases are on record, in which the uterus was proved to possess a single cavity. In one related by Professor Eisenmann, of Strasbourg, a woman was delivered of a second child 140 days after the birth of the first, both having been mature. She subsequently bore many other children, and after her death the uterus proved to be single. Unless we discredit this and similar cases

recorded upon good authority, we must conclude that in addition to the fecundation of two ova at short intervals by two male parents, the occurrence of intra-uterine pregnancy after the commencement of extra-uterine gestation, and conception in a second uterus during the course of gestation in a first, pure and simple cases occur, in which, while a single uterus is occupied by one ovum, a second fecundation takes place in the same cavity, sometimes within the limits of the third, fourth, or fifth months of gestation. A little more than a year ago, I saw with Mr. Eardley of Westbourne-terrace, the following case: - A young married woman, pregnant for the first time, miscarried at the end of the fifth mouth, and some hours afterwards a small clot was discharged, inclosing a perfectly fresh and healthy ovum of about one month. There were no signs of a double uterus in this case. The patient had menstruated regularly during the time she had been pregnant, and was unwell three weeks before she aborted. She has since been delivered at the full term.

Many obstetric writers have combated the occurrence of genuine super-fectation from the difficulty of explaining the occurrence of a second pregnancy while the development of an ovum is going on in utero, so that it may be well to say a few

words upon the subject.

Dr. Fleetwood Churchill is of opinion that the difficulties in the way of receiving the theory of super-fectation are almost insurmountable. He considers the deciduous membrane to be a shut sac covering the orifices of the os uteri and Fallopian tubes, and that the plug of tenacious mucus secreted by the cervical canal, as well as the mechanical arrangement of the decidua, apparently render it physically impossible, that the spermatozoa and the ovule can come in contact. Dr. Ramsbotham considers it impossible to suppose that a second impregnation can occur while the uterus is occupied with another ovum, and that the mucous plug of the cervix, and the decidual lining of the uterus, "would prevent the possibility of a fresh conception taking place." Many other obstetricians agree with these excellent authorities.

It can, however, be shown that there is no positive physical obstacle to the occurrence of super-fectation in the mechanical closure of the canal of the cervix uteri, or the uterine apertures of the Fallopian tubes by mucus and decidua. I have,

I think, demonstrated, by numerons microscopical examinations, that the mucous plug of pregnancy is in no respect different, except in quality, from the mucus found in the cervix in the unimpregnated state, and through which the active spermatozoa unust make their way in ordinary fecundation. I have pointed out that it is, in fact, similar to the secretion formed by the prostate, as the medium for containing the spermatic particles. As regards the difficulty presented by the decidna at the os uteri internum and the uterine apertures of the Fallopian tubes, William Hunter taught that the decidna was perforated at these points—namely, the upper part of the cervix and the tubal orifices, and no one has ever shown to the contrary. I have seen numerous preparations which prove that in early pregnancy the decidua stops short at the upper part of the cervix, leaving an opening into the canal of the cervix, and that the two apertures of the Fallopian tubes are distinctly pervious from the uterus. In the first three months the ovum consists of a bag which is only attached to one portion of the parietes of the uterus, leaving the cavity between the decidua vera and reflexa perfectly Professor Simpson and Dr. Matthews Duncan have pointed ont that in this way the communication between the vagina and the ovary may be free for a certain time after the commencement of gestation. Thus, with the exception of the mucous plug, there is no mechanical impediment between the os uteri and the ovaria, and we have seen that the cervical mucus forms no insuperable obstacle to the ascent of spermatozoa. Super-fætation, then, cannot be denied from the presumed impossibility of its occurrence. As the bag of the ovum increases in size, so as to occupy the whole of the fundus uteri, the months of the tubes are pressed upon by the ovum, but the cervical orifice remains open, with the exception of the mucons plug, until the end of gestation, except in placenta prævia. The infrequency of super-fectation probably depends more upon the absence of perfect ovulation during pregnancy, than upon any positive mechanical impediment to the ascent of the spermatozoa, or the incapacity of the decidua vera to receive a second

The ovum may be impregnated, or become attached and developed, at any period between the upper part of the cervix uteri and the Graafian follicle, or it may fall into the abdominal

cavity. Whenever the impregnated ovum does not enter the cavity of the body of the uterus, it is called Extra-Uterine Gestation. The several situations in which this grave error, so to speak, of the generative functions may occur, constitute the different forms of extra-nterine pregnancy. These varieties are, the ovarian, ovario-tubal, tubal, ventral, and interstitial or parietal. In Ovarian gestation, the ovum is impregnated in, and attached to, the Graafian follicle or the external surface of the ovary. In Ovario-tubal gestation, the ovum is attached both to the ovarian and fimbriated extremity of the Fallopian tubes; but it is probable that in the first instance the ovum adheres to one of these organs only, and becomes attached to the other during its development. In tubal gestation, the ovum lodges in the Fallopian tube. In Ventral pregnancy, the ovum appears to miss the tube, and becomes attached to the peritoneal surface, generally amongst the convolutions of the small intestines. There is one other form of misplaced ovum, which is usually called a variety of extra-uterine gestation, although, strictly speaking, it is not extra-uterine. This, which has been made out by Breschet, is termed Insterstitial or Parietal gestation. The ovum lodges near the point at which the Fallopian tube enters the uterus, and forms a nidus in the walls of the uterus itself. The ovum in these cases becomes surrounded by a layer of the muscular coat of the uterus, similar to the layer which surrounds the majority of fibrous tumors developed in the walls of the uterus. The ovum, in this form of gestation, is developed in a kind of sub-cavity, formed in the upper part of the uterus, or between the uterine layers at one of the Fallopian angles. We may compare this form of gestation in some respects to placenta prævia, in which the attachment of the ovum takes place at the os uteri internum. One or two rare cases have been observed, in which the ovum must have been developed at the very point of junction between the tube and uterus, where the placenta has occupied the uterus, while the rest of the ovum has been contained in a cyst formed by the dilated Fallopian tube.

The tubal is the most common form of extra-uterine gestation. The ovum becomes enveloped in the chorion, a decidua is formed, as indeed is the case in all the varieties of extra-uterine pregnancy, and a pouch is developed in the tube, the muscular fibres of the tube being increased to a considerable extent.

There is, however, a briefer limit to this than to any of the other forms of extra-uterine gestation. It is seldom prolonged beyond the second or third month, at which time, either from thinning, distension, or erosion, the cystic portion of the tube is rent, and the embryo escapes. In very rare cases the tube continues to enlarge, and the embryo remains in its cyst to the end of the natural term of gestation, or even beyond this. If the ovum remains in the tube long enough, an attempt at the formation of the placenta is made, this organ being very thin and vascular, and it is at the part opposite the attachment of the placental tissue that the rupture of the tube usually takes place. Contemporaneously with the development of the embryo in the tube, a decidual membrane is developed in the uterus in many cases, though this does not occur invariably.

The symptoms of tubal pregnancy are in a great measure the symptoms of all the varieties of extra-uterine gestation. The nterus is felt to be somewhat developed, but not to the extent which obtains in intra-uterine gestation. It is high up in the pelvis, so as often to be beyond the reach of the finger, though it is sometimes lower than natural. Menstruation generally ceases, but there is an occasional sanguineous discharge from the uterns in some cases, and there is sometimes an absence of nausea and vomiting. The ordinary changes occur in the breasts. The tumor of pregnancy is felt high up, and chiefly on one side of the abdomen. Altogether the uneasiness experienced in these cases in every variety of extra-ntero gestation is greater than in ordinary pregnancies, and often gives the patient the idea of some unnatural condition. When the tube bursts, the patient, generally without any premonition, is seized with agonizing pain, followed by ghastly pallor, fainting, hurried breathing, and fatal collapse. Cases have, however, been met with, in which little pain has attended the rupture of the tube, the symptoms being those of pure collapse. On dissection, the ovum is found in the abdomen, with a rent in the tube, and a large quantity of blood in the peritoneal cavity. At the time of the bursting of the tube, there are indications of uterine excitement, and an attempt at detaching the decidua where this structure exists. Death is evidently caused by the loss of blood, and by the shock incident to the effusion into the peritoneum. The treatment is unhappily almost nil. Pressure and cold have

been recommended. Restoratives and opiates have been given to allay pain and support the patient, but very rarely with anything beyond the most transient good effects. As, with a rare exception or two, all these cases have proved fatal, if the diagnosis were perfect, it might afford a bare chance of safety, in such a desperate conjuncture, to open the abdomen, and attempt to arrest the flow of blood by deligation of the tube.

Case of tubal gestation.

Some years since, Dr. Oldham wrote to ask my opinion upon a curious circumstance which he had observed in a case of tubal gestation. It was, that the corpus luteum was found in the ovary opposite to the side on which the ovum was lodged. Three explanations suggested themselves. The unimpregnated ovule might have been swept by the cilia of the peritoneum from the right ovary to the fimbriated extremity of the left tube. This would be similar to that which occurs in the amphibia, in which the ova always traverse the abdomen to reach the oviduct. Or the left tube may have reached over to the right ovary, and have taken up the ovule. This was the opinion to which I believe Dr. Oldham and Mr. Wharton Jones inclined. According to the third explanation, it might be, that the ovule had descended the right tube, entered the uterus, and then ascended through part of the left tube, by an antiperistaltic action, or the ciliated currents, which move from below upwards. My own opinion was in favor of the ovule having entered the uterus by one tube and ascended by the other. Such cases are very interesting in relation to the causes of extra-uterine feetation. Dr. Oldham has now collected three cases of this kind,

so that they cannot be very uncommon. The following woodcut is taken from a drawing of one of Dr. Oldham's cases.

Tubal pregnancy, with the corpus luteum on the opposite side. The decidua is in process of detachment from the uterine cavity.

As regards the causes of extra-uterine fætation, many hypotheses have been advanced. It is believed that there is a greater tendency to this accident in the unmarried than in the married, and some curious cases are on record, in which it has happened in women who were the subject of fright or terror at the time of coitus. In these cases emotion would seem to be a cause. In the ovarian and ovario-tubal varieties, it is suggested that inflammation of the mucous lining of the follicles, or of the indusium, or the extremities of the tubes, may have caused adhesions of the ovum, and it has been said that these forms are prone to occur in courtezans, in whom ovario-tubal inflammation and adhesion are common. In tubal gestation, there may have been large size of the ovum, feeble peristaltic action of the tube, or inflammation of the tubal mucous membrane. In vental pregnancy, the cause would seem to be the faulty action of the tube in grasping the ovary. In the interstitial cases the ovum has been supposed to lodge in some fold or depression upon the surface of the uterus.

In ovarian pregnancy, the early symptoms are the same as in the tubal variety, but the catastrophe does not occur so early, nor does death take place with the same rapidity. The ovum is in some cases attached to the interior of the Graafian vesicle, the placenta combining with the corpus luteum, or it is seated upon

the internal surface of the ovary. In the former cases, impregnation occurs within the mucous follicle, and the ovule probably never leaves its primary nidus. There is, as in the tubal variety, a thin placenta, and the decidua, chorion, and amnion are formed within the sac. Sometimes death happens as suddenly as in tubal gestation, from the shock and loss of blood attending the rupture of the ovary; in others, the ovarium increases in size, and the fœtus goes on to the full term, when it dies, and may be retained for a considerable period. When this happens, the ease follows the course to be presently described, when treating of the termination of ventral pregnancy. In this form of extrauterine pregnancy, a more or less perfect decidua is formed in the uterus, and there are constant and violent attacks of uterine pain, accompanied by sanguineous discharges. Of the oecasional occurrence of ovarian pregnancy there can be no doubt, though it has been questioned, chiefly upon theoretical grounds, by Velpeau and others. I believe, however, that cases have been ranked in this variety in which no pregnancy of any kind existed. Even in the eelebrated essay of Dr. Campbell, cases are admitted which are open to doubt. In the case of Louise Adelaide, for instance, on a post-mortem examination, a pouched tumor, occupying the situation of the left ovary, was found, containing hair, teeth, bones, and greasy matter. This may, however, have . been a case of ovarian disease without impregnation, in which such structures are sometimes found. The changes in the ovary consequent upon the discharge of an ovule and the formation of a spurious eorpus luteum have also, before the function of ovulation was understood, been mistaken for commencing ovarian gestation. In the undoubted eases, the entire fœtus has been found within the sac, or escaped from a perforation of the ova-The rupture of the ovarian eyst in extra-uterine cases is generally preceded by uneasiness and pain in the tumour, and seems to be effected by an inflammatory process. In the interstitial form of gestation, the development of the fœtus usually goes on to the full term.

In ovaria-tubal and ventral pregnancy, the ovum draws its nourishment more easily than in other cases, and the structures surrounding it yield, so that the tendency is to go on to the full term of pregnancy. The auseultatory sounds are the same as in natural pregnancy, but the limbs of the fœtus are felt

with great distinctness; hardly more so, however, than in some cases of intra-uterine gestation, where the parietes of the uterus are of unusual thinness. If the cyst containing the ovum bursts, the symptoms are similar to those which occur in ovarian or tubal cases, but less severe. The accident generally happens at a later period, when the pressure of the surrounding organs appears to restrain the hæmorrhage. When rupture does not occur, the fœtus has a tendency to perish at what would be the time of parturition; uterine contractions with the expulsion of the decidua generally occur; there is a local discharge, and milk is secreted. The death of the fœtus is sometimes attended by violent movements and convulsions, of which the mother is sensible. These phenomena are probably the result of asphyxia, induced by the unfitness of the placenta to continue its functions. In some cases the child has been considerably larger than at the full term, and it has been supposed that it has lived one or even two months beyond the usual time. After the death of the fœtus, a process of disorganization slowly commences, the bones separate, and the soft parts become converted into adipo-

Fig. 67.

Case of abdominal pregnancy.

cerous material. It may become smaller and smaller, the cyst contracting upon it, and remain for a great number of years

without causing any considerable inconvenience. More frequently, however, it causes great irritation and inflanmation, the residual mass attempting to make its way to the surface, or to the rectum and bladder, to be discharged. This process is attended by suppuration, heetic, colliquative sweating and diarrhæa, great suffering, and deterioration of the general health, which, spreading over a long period, very commonly destroys the life of the patient. Cases, however, occur in which perfect recovery ensues.

The treatment of such cases must be considered in relation to the time preceding and subsequent to the death of the fœtus. Dr. Campbell records nine cases of ventral pregnancy, in which gastrotomy was performed before the death of the fœtus, or shortly afterwards, and all died, probably because of the vascular connection of the placenta with the abdominal viscera Nature appears to be more happy in her mode of proceeding, and when the remains of the fœtus point either upon the surface of the abdomen, the vagina, bladder, or rectum, Art may step in and assist the process very efficiently. When the fœtal abscess has burst, the opening may be enlarged to allow of the extraction of the extraneous matter, which consists of a mixture of bones, fatty matter, and the remains of the placenta, which is generally converted into a soft purulent mass. Of thirty cases in which, according to Dr. Campbell, gastrotomy, or the dilatation of the breach already effected by suppuration, was practised, twenty-eight recovered. During this process, which may occupy months or even years, the strength of the patient has to be supported, abscesses dealt with, and inflammatory attacks treated as they arise. In the rare cases in which, in ventral pregnancy, the cyst presents low down in the pelvis, and the parts of the child such as the head, hands, or feet, can be felt through the vagina, an incision through the vaginal walls into the cyst is a much more favorable operation than simple gastrotomy. Dr. Campbell states that of nine cases in which incision of the vagina was performed, in three both mothers and infants were saved; in two the mothers only recovered; in one the child alone was preserved; while in three, both mothers and children perished.

The present may be a proper time for mentioning a very curious and extraordinary obstetric and physiological phenomenon,

far more rare than either super-foctation or extra-uterine gestation, nd having some relationship with both these abnormal conditions. I allude to what has been called Missed Labor, in which the fœtus being in utero, parturition from some unascertained cause does not come on at the usual time, but the fœtus dies, and remains included in the uterus without causing the immediate death of the mother. Dr. Oldham exhibited the uterus and remains of a fœtus, from a most interesting case of this kind at the first meeting of the Pathological Society in 1846. In this case the child was felt in utero, the fact having been ascertained by Dr. Oldham himself, so that no error can be imagined: but parturition did not occur, nor any attempt at parturition. The child died, and became disorganized, portions of the fœtus discharging themselves or being removed through the os uteri for the course of three months from the date of the parturient nisus. At the end of this time the woman died; and on making a postmortem examination, Dr. Oldham found the remains of the fœtus, consisting of a moulded mass of bones and adipocerous This mass had apparently worn through the interior wall of the uterus, apparently as an aneurism makes its way through the tissues with which it is in contact, and was in an imperfect cyst composed of the posterior wall of the uterus and the abdominal parietes. There had been no sign of rupture of the anterior wall of the uterus at any time. The fundus of the bladder was nearly eaten through, so that if the woman had lived, portions of the fœtus would probably have escaped from the urethra. Dr. Simpson states that similar cases of missed labor are sometimes met with in cows and other animals, and that, as in the above case, the bones of the fætus became moulded into a compact mass, which may remain a long time in utero. The following wood-cut represents the residual mass removed from the cyst after death, by Dr. Oldham, who has kindly allowed me to have a drawing taken :-

From the similarity of symptoms in this case to those cases of abdominal extra-uterine gestation in which the fœtus is retained, becomes encysted, and is discharged by the bladder or rectum, it is quite possible that cases of missed labor have been sometimes mistaken for ventral pregnancy. The treatment in cases of missed labor should evidently be to excite the uterus to contraction, if possible, by galvanism or other means, when

the time of labor has passed and the child has been ascertained to be dead, or to combine those means with attempts to break up

Contents of cyst in Dr. Oldham's Case of Missed Labor.

the fœtus and extract it through the os uteri. When this time has passed by, such cases resemble ventral pregnancy, and require similar treatment. They are, however, perhaps the rarest obstetric complication that can be met with.

[Some years since I saw at the New York Pathological Society, a specimen brought from Virginia, with the history that it was removed from a female negro slave some seventy or eighty years of age, who some forty years previously supposing herself pregnant went into the lying-in department, having all the signs of immediate labor. After several days of severe pains, they subsided without anything coming away—she was "good for nothing" for several months or years, but finally got about and resumed her place in her master's kitchen. The tumor in the abdomen, perhaps somewhat diminished, still remained. Some thirty or forty years after, she died of dysentery; the post-mortem

showed a bony tumor in the median line, apparently the uterus. When this was sawed in two it was evident that it contained a coiled up fœtus, apparently perfect and entirely ossified. A similar case was recorded about the same time as having occurred in a different locality.]

LECTURE XVI.

THE GRAVID UTERUS.

GENTLEMEN: - The unimpregnated, virgin, or nulliparous uterus, is from two inches and a half to two inches and threequarters in length, its breadth being, from tube to tube, from an inch and a half to an inch and three-quarters. At the end of gestation, the uterus is about thirteen inches long by eight or nine in breadth; its greatest antero-posterior diameter being eight or nine inches. Levret made some calculations, according to which the superficies of the virgin uterus may be taken at sixteen inches, while at the time of the coming on of labor, its superficies may be estimated at about three hundred and thirty-nine inches! The cavity of the unimpregnated virgin is equivalent to about three fourths of a cubic inch; while, when fully developed, it exceeds four hundred cubic inches! The uterus in the virgin state, weighs about an ounce; and that of a woman, who has borne children about an ounce and a half. Immediately after labor, the uterus weighs about twenty-four ounces; but this weight is considerably exceeded when it is distended by the feetus, and its vessels are full of blood. facts show the wonderful manner in which the uterus increases under the stimulus of impregnation—an increase having no physiological parallel in any other organ in the human body. This increase is divided between the mucous membrane or decidua. the lymphatics, the veins and arteries, the muscular structure, and the nerves of the organ.

The measurement already given represents the general size of the gravid uterus at the full term; but the capacity of the uterus varies much in individual cases, chiefly from the greater or smaller quantity of the liquor amnii, or the occurrence of twins. In some cases, there is only a very small quantity of liquor amnii; and in others, there may be dropsy, and great dis-

tension of the amnion. The shape of the uterus is ovoid, but its figure somewhat shorter, and the smaller extremity is less pointed than in the egg. The organ is more developed anteriorly than posteriorly; and it is somewhat flattened behind. It is moderately filled, but not distended, by its contents. William Hunter, whose descriptions of the gravid nterns are almost as graphic as his beautiful plates, compares it to a bladder partially filled with fluid, in consequence of which it yields to the pressure of the surrounding parts, and is, to some extent, moulded by them in shape. The gravid uterns, when filled with its contents, feels much thinner to the touch than it actually is. Its parietes are from one-third to two thirds of an inch in thickness; but it exceeds this considerably at the site of the placenta. Occasionally, in twins, the two lateral valves of the uterus are developed in such a way as to leave a division or cleft between them; and cases are met with in which, with one fœtus, the right or left side of the organ is chiefly developed. It sometimes occurs that a particular part of the uterus does not perfeetly take on the growth of normal pregnancy, so that a ridge or contracted portion remains in the interior of the organ. ligaments of the uterus are considerably altered by the gravid state. As the organ increases in size, it expands between the folds of the broad ligaments, so that in their unfolded state these ligaments form the peritoneal covering of the sides of the uterus. As a consequence, the broad ligaments and the ovaria, though they ascend during pregnancy, are lower down in their attachment to the uterus, than in the ungravid state. The Fallopian tubes and the ovaria are close to the sides of the uterus, the fimbriated extremities pointing downwards, and the broad ligaments are shortened to the greatest possible extent. The ovarian ligaments lie upon the sides of the uterus, and the round ligaments extend almost perpendicularly downwards from the fundus uteri to the inguinal rings.

The development of the decidual mucous membrane has already been described. The lymphatics of the uterus and its appendages, which were first described by Cruikshank, increase from the minute size, and almost invisible, found in the virgin uterus, to the size of a goose-quill, or even larger, in the principal trunks. The lymphatic vessels pervade every part of the gravid uterus, but are especially abundant underneath the peri-

toneal covering. They follow the course of the hypogastric and spermatic bloodvessels, and reach the central lymphatic trunks by entering the glands of the sides of the vagina, and the iliac, sacral, and lumbar plexuses of glands. The lymphatics are, no doubt, largely concerned in the processes of the nutrition of the uterine tissues during their enormous growth, and in that removal of effete material after labor, which, in the course of five or six weeks, reduces the uterus from a pound and a half in weight, to something less than two ounces. The nterine arteries, both the hypogastrics and spermatics, greatly increase in size, particularly the hypogastrics. increase is greater at the part of the uterus to which the placenta is attached. The uterine arteries, in ramifying in the structure of the organ, have a tendency to anastomose to such an extent as to form an arterial net-work; and as they plunge deeper into the substance of the uterns, they take a convoluted or spiral course. This spiral arrangement especially occurs before the vessels enter the placenta, the spirals running parallel with the decidua serotina, and immediately beneath it, for the space or half an inch or more, before perforating the decidna to pass into the placental mass. The veins, which, in reverse, accompany the hypogastric and spermatic arteries, are still more enlarged, and form plexuses especially in the neighborhood of the placenta, and towards the internal surface of the uterus, of a larger extent than are found in any other veins of the body. The nterine veins do not possess valves, and some of the largest are of sufficient size to admit the point of the finger. Altogether, the mass of blood contained by the arteries and veins of the nterns, in the healthy gravid organ, at full term, must be very great, and forms a considerable portion of its entire bulk. The serons or peritoneal covering of the uterns increases in thickness and extent, and but for the increased strength of the serous coat, it is probable that lacerations of the peritoneum would occur during the contractions of the uterus in labor.

Formerly, everything was vague respecting the existence and arrangement of the **muscular fibres of the uterus**. The possession, even, of muscular fibres by the human uterns was argued because they could be seen in the lower animals, and because from the functions of the uterus, they were necessarily believed to exist in this organ, rather than because they could

be satisfactorily made out in dissections. In the magnificent plates of William Hunter, the external surface of the uterus presents no definite muscular arrangement. This great anatomist could find nothing but "irregularity and confusion," except upon the inner surface of the organ, where he observed the fasciculi to have in some degree the regular arrangement observed in other muscular structures. His description of the internal layer of muscular fibres is perfect even at the present day. He gives an account of the circular fasciculi surrounding the body of the uterus, and the two concentric circular planes of fibres which surround the orifices of the Fallopian tubes, and gradually blend with the circular fibres of the body of the organ. William Hunter saw the analogy between these concentric rings-the orbiculares muscles, as he terms them, of the fundus uteriand Fallopian tubes, and the circular muscles found in the two horns of the uterus in animals possessing the uterus bicornua. His words are, "The better to conceive this arrangement of the internal muscular fibres, we may suppose each corner of the fundus uteri, where the tube is inserted, to be stretched or drawn out, so as to make two horns, or a bifid uterus, as in the quadruped; then, if we understand the inner fibres to be circular in every part of the uterns, we clearly understand how they will be circular in the human uterus upon its body, and likewise circular and concentric at each corner of the fundus." Before this time Ruysch had described the fundus of the uterns as possessing a single circular muscle only. Sir Charles Bell carried our knowledge of this subject a step further, and described the muscular fibres diverging from the round ligaments to spread over the whole of the organ, and he considered these ligaments as in some respects the tendons of the external fibres of the uterns. His conclusion was, that the circular fibres prevailed towards the fundus, and that the longitudinal fibres were most apparent towards the os and cervix.

According to the recent descriptions of Kolliker and other minute anatomists, who have combined the use of the scalpel and the microscope in their investigations, the gravid uterus possesses three layers of muscular fibres, all of them being of a paler color than is found generally in other muscles. These three layers can be made out with tolerable distinctness, but not so clearly as we can make out the circular and longitudinal layers

of the Fallopian tube or intestine. The internal stratum, or the inner layer of William Hunter, is thin, and composed of delicate circular and transverse fibres, the circular fibres being found chiefly in the middle of the body of the uterus, around the Fallopian tubes, and at the os uteri, in which latter position they form an imperfect sphincter. The middle layer is thick and strong, consisting of flat bundles of fibres, running in different directions, interlacing with each other, and surrounding the vessels of the uterus. These bundles of fibres are more loosely arranged than those of the internal layer, giving the middle portion of the uterine parietes a spongy appearance. This stratum is strongest at the fundus of the uterus, where it seems to consist of several layers. The external layers consist of transverse and longitudinal fibres forming a thin stratum, immediately beneath and intimately connected with the peritoneal covering of the uterus. The longitudinal fibres are arranged chiefly upon the anterior and posterior surfaces of the organ, and extend from the fundus to the lower part of the cervix. The transverse fibres of this layer surround, or nearly so, the organ, and fibres derived from it are continued, not only into the round ligaments but into the broad and ovarian ligaments, so as, in effect, to connect the fibrous structure of the uterus with the fibrous stroma of the ovaria.

Internal layer of uterine muscular fibres.

Sir Charles Bell pointed out a fact which has been confirmed by subsequent observers—namely, that in all parts of the uterus muscular fibres are found to surround the blood vessels, and that this is especially the case with the open vessels upon the

Middle layer of uterine muscular fibres.

External layer of uterine muscular fibres.

surface from which the placenta has been detached. William Hunter had observed that at the site of the placental attachment the inner layer of muscular fibres lost its regularity, and was found to be interlacing amongst the bloodvessels. The bearing of this arrangement upon the arrest of hæmorrhage after the placenta has been detached is obvious. Sir Charles Bell found that when the muscular fibres were contracted the mouths of the vessels were closed, and *vice versâ*.

As regards the intimate structure of these museular layers, upon which the great increase in the mass of the uterus depends, much has been made out by recent inquirers, especially by Virchow, Franz Kilian, Hesehl, and by Mr. Rainey in this eountry. The mode of Involution and Devolution of the uterus during pregnancy and after parturition is now tolerably well understood. When describing the unimpregnated uterus, we have seen that the chief bulk of the organ is made up of fusiform embryonic cells, possessing a central nucleus. embryo fibre eells are described by Kolliker as about 4000 of an inch in diameter, their length being somewhat greater than their diameter. As soon as fecundation and the deposition of the ovum has occurred, these fibre cells begin to elongate by growth at each extremity, the nucleus remaining in the middle portion of the filament. The nucleus itself elongates, but the great increase in length is in the portion of the eell surrounding the nucleus. At the time of parturition, the fibre cells have so increased, they measure in length from seven to eleven times greater than in the embryonic state. Their width is also increased from two to five times. There is not only an increase in the fibre cells already existing in the uterus at the time of conception, but new generations of fibre cells are produced during the course of gestation. This new development of cells takes place chiefly in the internal and middle muscular layers though it also occurs in the outer layer. The new formation is especially active during the first half of pregnancy. After the sixth month it is believed to cease, and from this time the embryonic cells are all developed, so that at the time of parturition nothing but the colossal fibre cells are met with. It is those fibre cells which eollectively give the uterus its enormous eontractile power at the time of parturition. The ligaments of the uterus increase in size chiefly from the development of the museular fibres which they contain. This is particularly the case with the round ligaments, and Kolliker supposes that the enlargement may depend upon the growth of the fibres derived from the uterus, and also upon the increase of the bundles from the internal oblique, which contribute to form the ligamenta rotunda. (Fig. 72.)

After the occurrence of labor, these gigantic fibre cells are no longer needed, and the uterus has to return in a comparatively short space of time from a weight of twenty-four ounces to one

ounce and a half. The necessary involution of the uterus is effected chiefly by the atrophy and fatty degeneration of the

1 and 2, Embryonic nucleated fibre cells of the unimpregnated uterus; 3, 4, 5, Muscular fibre cells of the gravid uterus in different stages of development.

colossal muscular fibres, and the absorption and removal of the fatty matter of the kidneys, the mammary glands, and the internal surface of the uterus itself. The whole uterus becomes soft: it is difficult to insulate individual fibre cells, from their excessive friability, and they are found to be studded with oily particles in their interior. The disintegrated muscular fibre of the uterus, taken into the system by absorption, probably contributes to the formation of the caseous matter of the milk first secreted, and fatty elements are found in the urine at this time, and abundantly in the lochial discharge. A brief, but very excellent account of the post-partum changes occurring in the uterus has been given by Dr. West, in the thirty-fourth volume of the "Medico-Chirurgical Transactions." During the involu-

tion of the uterus after labor, chiefly as we have seen, by the fatty degeneration of the muscular fibres, a new series of nucleated fibre cells, having the shape and size of the fibre cells of the virgin, or nulliparous uterus, is formed. Kolliker states that three weeks ofter parturition the embryonic fibre cells again appear, though a longer time than this expires before the complete fatty disintegration and absorption or discharge of the developed fibres is accomplished. Probably two or three months have elapsed before the involution of the uterus after delivery is completed; frequently the involution, as pointed out by Dr. Simpson, is not complete, when menorrhagia is the result. In other cases the involution is excessive, the uterus becomes smaller than before the occurrence of impregnation, leads to amenorrhea, and subsequent infertility. observed by Franz Kilian and Mr. Rainey, the highly developed muscular structure is removed, and a more lowly organized structure formed in its place for each labor, so that the gravid uterus in each successive pregnancy is to a great extent, a new organ. Fig 73.

The uterus receives its supply of nerves from the hypogastric, sacral, and spermatic nerves. Below the bifurcation of the aorta, we have the aortic plexus dividing into the two hypogastric nerves. The hypogastric nerve on each side forms, in its descent to the cervix uteri, the hypogastric plexus. The hypogastric plexus, when it reaches the cervix, terminates according to the dissections of Dr. Lee, in the hypogastric ganglion. Into the outer and lower portion of the hypogastric ganglion branches enter from the third, and sometimes from the second and fourth, sacral nerves. From this ganglion nervous fibres are distributed to the muscular structure and the internal surface of the os, cervix, and the body of the uterus. Dr. Lee describes sub-peritoneal ganglia and plexuses upon the external surface of the uterus, which maintain connection with the hypogastric ganglion below, and the spermatic ganglion and plexus above. The nerves of the virgin uterus are arranged in a serpentine form, and are always accompanied by a branch of an artery and vein.

Fig. 73.

Muscular fibre cells a fortnight after delivery, in a state of fatty degeneration.

We now approach the much-vexed question of whether the nerves of the uterus increase during pregnancy or not, than which nothing has more agitated or perplexed the anatomical and obstetric world in modern times. William Hunter, arguing from analogy, suspected that the uterine nerves enlarged in the same proportion as the bloodvessels. John Hunter thought the gravid uterus independent of nervous agency, and capable of motion "within itself," and he denied that the nerves were in the slightest degree increased during pregnancy. Tiedemann was the first to publish figures of the nerves of the gravid uterus, copied from actual dissections; but his two plates, taken from a woman who died six days after delivery, represent a very sparing supply of nerves. Since this time, it has been generally assumed that the nerves of the uterus are thicker at the time of parturition, than in the unimpregnated state, though some anatomists, as Lobstein, Osiander, and Longet, have either denied the existence of uterine nerves, or have limited this organ to a very scanty supply, both in the unimpregnated and gravid states. Dr. Lee, many years ago, threw himself into the investigation of this subject, and he has pursued it ever since with characteristic ardor. He has made numerous dissections, which in his own opinion, and in that of a host of authorities who have examined his preparations, prove to demonstration that the nerves of the uterus increase to a very great extent during pregnancy. All analogy and reasoning are in favor of the truth and fidelity of Dr. Lee's dissections; and the most recent investigations, by those aloof from all personal feeling, are chiefly in his favor. Remak states, as the result of his investigations, that the nerves enlarge during gestation. Kilian has made numerous researches in the lower animals, which prove that the nervous fibres, in a medullated condition, can, during pregnancy, be traced further into the substance of the uterus than at other times; while, in the unimpregnated uterus, the nervous fibres are found, even upon the surface of the uterus, in an embryonic, non-medullated state. can see no impossibility in the multiplication of ganglion cells and fibres, and in the addition of newly-formed nerve fibres, as branches to other nervous fibres, or that the nerves, by a multiplication of their ultimate divisions, may ramify over larger spaces during pregnancy than at other times. That the preexisting nervous fibres increase in width and length, and may be traced further into the interior of the uterus in the gravid organ than at other times, Kolliker entertains no doubt. Dr. Lee believes that very shortly after labor the uterine nerves diminish in size, and return to the condition which obtains in

the unimpregnated state.

Dr. Snow Beck has executed some dissections of the gravid uterus, which appear to contradict those of Dr. Lee. Dr. Snow Beck believes that the nerves of the uterus are not by any means so large or so numerous as they appear in Dr. Lee's dissections. He considers that the nervous arrangement at the neck of the uterus should be called the pelvic plexus, instead of the hypogastric ganglion; and that the sacral nerves do not enter into that portion of the cervical plexus which supplies the uterus, but that they are distributed to the vagina and other parts. Dr. Snow Beck further believes that there is no increase in the size of the nerves during pregnancy, but simply that the nerves which, in the virgin uterus, have a sinuous arrangement, become straitened during gestation. There are, it must be said, certain anatomists, having great authority, who hold with Dr. Snow Beck that the nervous supply of the uterus is very restricted, having little relation, as regards size, with the importance of the functions it is called upon to perform. It should be said, that Dr. Lee and Dr. Snow Beck have executed their dissections upon a different principle, which may go somewhat towards accounting for the different results at which they have Dr. Snow Beck has, by very minute dissections, cleared the nerves of the neurilemma; while in most of his disdissections, Dr. Lee has preserved the neurilemma, as a constituent part of the nerves. But for this difference, the results of the two dissections could scarcely have been so antagonistic as they now are. With every anxiety to form a correct opinion, I think it must be said, that during the last few years, the new evidence which has been brought to bear upon this important subject has been very greatly in Dr. Lee's favor.

According to the recent investigations of M. Robin, P. Heschel and others, it is the neurilemma of the nerves which chiefly enlarges during pregnancy. Dr. Lee has contended for this, and it is a point which bears directly upon the dissection of the nerves of the gravid uterus by Dr. Snow Beck, in which the

neurilemma was as far as possible removed. [It is now considered that Dr. Beck has satisfactorily refuted the opinions set forth by Dr. Lee.]

Fig. 75.

The left hypogastric and sacral nerves entering the hypogastric ganglion, with the blood-vessels, nerves, and ganglia of the Virgin Uterus, a portion of the neurilemma being removed, and the size of the ganglia and nerves being thereby reduced below the natural size.—(From Dr. Lee.)

LECTURE XVII.

THE NERVI-MOTOR FUNCTIONS OF THE UTERUS.

Gentlemen: - Uterine muscular and nerve fibre have been considered in the last Lecture, and we come now to the study of the motor functions performed by the gravid uterus. developed organ is as strictly a muscle as the heart or diaphragm, and it is the chief agent by which the expulsion of the fœtus is effected. It is of immense importance that the nature. of uterine muscular action should be understood, since we are obliged to take it into account in all cases of natural labor, and still more so in cases of preternatural parturition. One class of accidents during labor, of which rupture of the uterus is in the type, arises from excessive uterine action; while another class of scarcely less importance, of which hæmorrhage may be regarded as an instance, depends upon deficient uterine action. The older writers thought much of this subject, though the data upon which they reasoned were slender and imperfect. however, remarkable, that considering the interest of the subject, it has not been satisfactorily discussed in any modern work upon obstetrics. The little that we know upon the subject has been almost entirely confined to works on physiology. This has arisen, in great part, from the idea that the uterus was so unlike the general muscular system, that it could not be reduced to physiological rule. But the muscular structure of the uterus, and its dependence upon the nervous system, having been made out in recent times, it becomes necessary to study accurately the nervi-motor endowments of the gravid organ, which is certainly the largest, and as regards the perpetuation of the race, the most important muscle in the human economy.

The uterus is in relation with the Cerebral, Spinal, and Ganglionic divisions of the nervous system, and possesses properties

derived from each of these sources of motor power.

In the first place, let us consider the relation of the Cerebral system to uterine motor action.

The uterus is withdrawn from the direct influence of Volition. The will has no direct power either to contract or to dilate this organ. Labor may take place when cerebral paralysis exists, the will being entirely in abeyance, but the uterine movements dependent on reflex action and peristaltic action remaining perfect. But though not exerting any direct influence, volition may affect the uterus indirectly. In certain cases of uterine inertia, when the contractions of the uterus have entirely ceased, voluntary efforts are sometimes sufficient to reproduce uterine contractions. Efforts at expiration, with the glottis closed, cause the abdominal muscles to compress the uterus mechanically, and this compression stimulates the uterus in the same way as manual irritation of the organ. What is called in other organs consensual action, may also probably be excited in the uterus, to some degree, by volition. Violent voluntary action quickens the action of the heart, and the voluntary contraction of the internal rectus muscle contracts the iris, though both the heart and the iris are removed from the direct action of volition. In a similar manner, the uterus during parturition, is probably affected during the intense efforts at expiration and bearing-down, which accompany the pains of labor.

A very powerful influence may be exerted upon the uterus by Emotion. A fright, or any violent mental disturbance may bring on labor prematurely, or produce abortion. During labor, any sudden emotion of the mind may increase or arrest uterinc action. The different effects of hope or despair on the commencement, progress, and termination of labor have frequently been remarked. Emotion often plays the part of Tantalus to the accoucheur. His entrance into the lying-in room may arrest the pains of labor for a time, through the influence of emotion, but if he should leave the house, they as often return with increased vigor, and terminate the labor abruptly in his absence. After delivery, the maternal emotion exerted by the sight of the infant causes the uterus to contract in a remarkable manner. Emotional, like voluntary action, is psychical in its nature, and originates in the cerebrum; but it acts upon the uterus and other parts through the spinal marrow, this great organ of physical motion. This is evident from the fact that emotional movements may occur in parts which are entirely paralyzed to cerebral voluntary motion.

Let us now refer to the forms of uterine action depending upon the Spinal Marrow, a subject which did not admit of comprehension, before the brilliant discovery of the spinal system by Dr. Marshall Hall.

The Reflex, Spinal, or Diastaltic action of the uterus is excited in various modes; and it is upon this form of contraction, aided by peristaltic action, and the extra-uterine reflex actions excited during the process, that natural parturition essentially depends. Contraction of the uterus, of a reflex or diastaltic kind, may be excited by irritation of the mammæ, as in the act of suckling the infant; by the impression of cold upon the vulva or abdominal surface; by irritation of the rectum, as by a stimulating enema; by gastric irritation, as in drinking a gulp of cold water, or swallowing a piece of ice; by ovarian excitement, as in occurrence of abortion from the menstrual nidus; by irritation of the vagina or pressure on the perinæum, and by irritation of the os and cervix uteri. These facts supply the proof that the uterus is endowed with reflex action, and that the motor nerves of the uterus are in relation with the mammary, pubic, rectal, pneumogastric, ovarian and vaginal nerves, and the nerves of the os and cervix uteri, as incident excitor nerves. There can be no doubt that in an organ thus subject to reflex action, its own nerves are excitors, and that in all contractions of the uterns, excited by irritation of the internal surface of the uterus, or of the os and cervix during the passage of the fœtus, the uterine actions are both reflex and peristaltic. That the internal surface of the uterus possesses incident spinal nerves is proved by the occurrence of vomiting, etc., from uterine irrita-There is, indeed, no instance of a mucous surface wanting the power of exciting reflex action in other parts of the body. It is a question if any pure spinal fibres reach or proceed from the uterus, unmixed with fibres from the ganglionic. admixture produces a curious effect upon the reflex contractions of the organ. If we irritate the conjunctiva with a feather, the orbicularis muscle contracts instantly. If we tickle the fauces, efforts at vomiting are immediately produced. But in the case of the uterus, contraction does not follow upon the irritation in so sudden a manner. I have sometimes, in cases of alarming hæmorrhage, had my hand in the uterus for a considerable time, and have carefully watched the influence of reflex stimuli upon the uterus. If, while the uterus remains flaccid, cold water is sprinkled upon the face, the uterus does not contract at once, but after an interval of half a minute to a minute, or even longer, the organ slowly begins to contract, reaches its acme by degrees, and as slowly relaxes. The same thing happens if, while the hand remains in utero, cold or iced water be injected into the cavity of the organ.

As a motor organ, the uterus stands alone in many respects. Unlike the rectum and bladder, it is not directly influenced by volition; and unlike the heart, it is extremely prone to reflex action. It more nearly resembles the œsophagus, which is uninfluenced by the will, but endowed with the reflex motion and peristaltic action. It differs, however, from the œsophagus in the number of excitor surfaces with which the spinal system places it in relation. There is no other organ, not even the stomach, which can be excited by so many distinct organs, or which acts as such an extensive excitor of motor action in other parts, both in the impregnated and unimpregnated states, as the uterus.

Besides the reflex action of the spinal marrow, and its system of excitor and motor nerves, there is the Direct action of the spinal centre to be considered, though this form of spinal action does not play the important part assigned to it by Serres, Brachet, and Segalas. In what is termed Direct or Centric spinal action, the spinal centre with its motor nerves are concerned, to the exclusion of the incident or excitor nerves. Various instances of Centric spinal action may be given. Thus, ergotine passing into the blood, affects the spinal centre, and its effects reach the uterus by its motor nerves. Other oxytoxic agents, such strychnia, carbonic acid, savin, aloes, alcohol, the biborate of soda, and probably ipecacuanha, act in a similar manner. The state of the circulation affects the spinal centre in a very distinct manner. It is well known that there is one form of puerperal convulsion depending upon hæmorrhage, where the heart and great vessels have been nearly emptied of blood, and another caused by fullness of circulation. The convulsion probably depends greatly upon the influence of deficiency or excess of blood in the vessels of the nervous centres. Want or excess of blood, or materies morbi in the circulation, act, then as direct stimuli to the spinal centre, and in this way the state of the circulation affects the uterus during labor. The uterus acts with increased force when the circulation is either plethoric or anæmic; though in the latter case, exhaustion of its nervous energy quickly ensues.

We now come to the consideration of Peristaltic action,

Ganglionic motor action.

When any part of a muscular organ supplied in whole or in part by the ganglionic system of nerves is irritated, the contraction which ensues generally spreads in a vermicular manner to a distance from the point of irritation, and continues for some time after the exciting cause is removed. This is called Peristaltic motion or action. The uterus is eminently endowed with this peristaltic form of contraction. When one point of the uterus is stimulated, through the abdominal parietes, or by the introduction of the hand into the uterus, the contraction excited extends to the whole organ. Harvey described this peristaltic action of the uterus in the doe. William Hunter saw it in the cat and rabbit. Müller observed it in the uterus of the rat and the oviduct of the turtle, and I have seen it in the uterus of the guinea-pig and other animals. The heart, esophagus, and intestine may be excited to contraction after death; and I have seen the uterus and vagina of the rabbit contract rhythmically, when irritated, for several hours after the cessation of respiration. Many cases are on record in which women have died undelivered, but the child has been expelled spontaneously after death. In one case a woman dying during labor was placed in a coffin, and the feetus was found the next day perfectly expelled. This post-mortem parturition must generally depend upon peristaltic action, commencing after the occurrence of somatic death, or upon the rigor mortis affecting the uterus. It is well known that the rigor mortis affects the other involuntary muscles, and especially the heart, which is contracted by this influence to such an extent as to empty the ventricles, and even to stimulate concentric hypertrophy. Cases are related in which the fœtus has apparently been expelled some days after the death of the mother by gaseous distension of the abdomen; but these are different from cases occurring shortly after death, and before decomposition has set in. In the living subject, the peristaltic action of the uterus is the basis of the other uterine actions.

natural labor it is combined with reflex uterine action, and with various forms of extra-uterine action; but, under certain circumstances, it seems able to effect the expulsion of the child without other aid. In paraplegia from disease of the lower part of the spinal marrow, or in animals reduced to the same state by experiment, the peristaltic action is the chief power remaining to the uterus. In such cases, delivery has been effected in an imperfect manner by the peristaltic action of the uterus or the application of galvanism to the organ. It is not, however, known how much of the spinal marrow must be destroyed before the reflex or diastaltic actions of the uterus cease.

Certain experiments have been performed by various physiologists, with a view to determine the nature of uterine action. M. Serres found that on dividing the spinal cord in gravid animals before the time of parturition, death ensued at variable intervals, but abortion did not necessarily occur. He then divided the cord in animals after the commencement of parturition, and the process was arrested. In other experiments, he excited abortion in animals by irritating the spinal marrow in the lumbar region. M. Brachet divided the cord in guinea-pigs between the twelfth and thirteenth dorsal vertebræ, after the commencement of labor, and everything but feeble contractions of the uterus were arrested, the animals dying in a few days undelivered. M. Segalas made a section of the cord high up, without influencing the uterus; but the organ was paralysed when the division was practised low down. Cases are detailed by MM. Brachet and Ollivier, as occurring in the human subject, in which, in paralysis depending upon disease high up in the spinal marrow, uterine action was not interfered with, but was diminished or suspended altogether in cases of paraplegia, the result of injury or disease, low down in the cord. Dr. Simpson has, I have understood, performed some experiments upon pigs which go to negative the experiments of MM. Serres, Brachet, and Segalas. In Dr. Simpson's experiments, which have not been published, I believe parturition occurred notwithstanding the destruction of the lower portion of the spinal marrow. If Dr. Simpson's results are as I have stated, they will not prove the independence of the uterus of reflex action, since from the connections of the greater and lesser splanchnic nerves and the thoracic, abdominal, and pelvic plexuses and ganglia, it is quite

possible that the uterus may receive spinal fibres from the upper part of the spinal marrow.

The direction taken by the peristaltic action is of considerable Professor Müller, Michaelis, and Wigand teach that uterine contraction commences at the cervix, and travels towards the fundus; returning thence towards the os uteri. This is thought by Michaelis to prevent prolapsus of the umbilical cord and the descent of the arms of the fœtus before the head; the cord and the arm, when lying low in the uterus being swept upwards beyond the risk of danger, at the commencement of every pain. Wigand considers the direction of the contraction to be proved by the phenomena attending a labor-pain. At first the os uteri grows tense, the head or presenting part recedes from the touch, and the bladder of membranes protrudes; after this the fundus uteri becomes hard, and the presenting part of the child begins to advance. I believe this view of Wigand, which has been particularly insisted upon by Dr. Rigby, to be a very accurate description of the direction in which the uterus contracts during a labor-pain.

If, as is most probable, the peristaltic action of the utcrus does take this course, it is not singular, for, according to the observations of Magendie, the contents of the stomach are, during digestion, passed through the pylorus, by a peristaltic movement, which begins at the pylorus, proceeds to the cardia, and then sweeps back again from left to right. Müller also describes the contraction of the heart of the frog as commencing in the venous trunks; then descending, in succession, to the auricles and ventricles; and then affecting the bulbous aortæ. The peristaltic action commences at the auricle, travels to the apex, and then returns towards the base of the ventricle. There seem good reasons for the commencement of the peristaltic action at the cervix in the human subject, in the necessity which exists for some provision against prolapsus of the cord, and arm-presentations; and still more, from the great probability that, if contractions commenced at the fundus uteri, inversion of the organ would be a frequent accident.

In addition to the divers forms of uterine contraction, the **Dilatation of the os and cervix uteri** remains to be considered. The dilatation of the os uteri is, in part, mechanical or passive, depending on the contraction of the longitudinal

fibres of the uterus, which tend to pull the os uteri open, and on the fluid pressure of the liquor amnii on the advancing head of the fœtus. But, in addition to the mechanical distension, the os uteri is in part opened by an active mechanical dilatation. The presence of a power for dilatation in the os uteri is not more remarkable that its power of contraction after the completion of labor. We have seen that the os uteri contains numerous fibres arranged in a circular form. But the muscular fibres of the uterus, though of considerable length, do not at any point surround the organ, either in the body or at the os or cervix. This circular arrangement of the fibres, without the existence of single fibres sufficiently long to surround the os uteri, accounts for its power of contraction and dilatation. Before the commencement of labor in primipara, the os uteri is quite closed; while in parturition it is dilated to such an extent as to permit the passage of the child's head-a mass whose shortest diameter is three inches and a half, making the line of the circle necessary for its passage, nearly eleven inches. This is a dilatation far exceeding that required in the action of the recognized sphincters, and we cannot but believe that if complete circular fibres existed at the os uteri, laceration would be inevitable.

Some of the physiological proofs of the possession of dilatile and contractile powers by the os and cervix uteri may be enumerated, and these proofs are not less convincing than the most certain anatomical evidence. In the first place, if the fibres of the cervix contracted with the same force as the fibres of the rest of the uterus, this organ could scarcely be emptied of its contents. Doubtless the contractions of the body and fundus uteri are strong, their bearing upon the cervix powerful, and the amniotic bag admirably adapted for mechanical distension; but it must be remembered that the short fibres of the cervix act at a great mechanical advantage, as compared with the fibres in any other district of the uterus. Let any one who supposes the body and the fundus may forcibly overcome a contracted state of the os and cervix, consider that the united power of all the respiratory muscles is insufficient to force the small muscles which close the glottis. The nature of the hæmorrhage in placenta prævia, as compared with hemorrhage from the fundus, affords the strongest argument in favor of a positive dilatation of the os uteri. In hæmorrhage from the fundus, the loss of blood is arrested during a pain, because the fundus is in a state of contraction; in hæmorrhage from the os and cervix, the flow is increased at each return of the pains, because the cervix is in a state of dilatation. If the dilatation were merely a mechanical distention, the pressure which dilated the os uteri would arrest the hæmorrhage at the same time.

Owing to the mixed mechanical and muscular dilatation of the os uteri, it generally opens slowly; cases, however, occur, in which, after long-continued rigidity, it dilates so suddenly, that even from this fact alone it is difficult to consider it a mere mechanical distension, the resiliency of the part affecting its subsequent contraction. But the strongest physiological proof of the existence of muscular power in the os and cervix uteri is the forcible contraction which sometimes occurs after full dilatation-as, for instance, in cases of encysted placenta, in which the fingers can only be introduced with the greatest difficulty; and again, in inversio uteri, where the speedy and powerful contraction of the cervix is one of the elements of the accidents most opposed to the re-position of the organs.

LECTURE XVIII.

THE FETUS IN UTERO.

Gentlemen:—It was an antiquated and fanciful notion, that the factus sat upright in utero, rubbing its head against the maternal stomach, so as to cause heartburn; and it was supposed that the larger quantity of hair in boys caused a greater amount of heartburn than occurred with female children. Even as late as the time of Sir Fielding Oulde, in the middle of the last century, it was believed that the head of the fætus was uppermost until the time of the coming on of labor. Although modern

Attitude of the mature fœtus in utero.

researches have shown, that in the latter part of pregnancy, in the great majority of cases, the head of the fœtus is found over the

os uteri, obstetricians are not yet agreed as to the precise causes which produce this result. The mature fœtus in utero and the gravid uterus have commonly, since the time of William Hunter, been described as two ovals, the one accurately adapted to the other. Strictly speaking, the fœtus and uterus are pyriform rather than oval; but the fœtus and uterus are each composed of two oval, rather than circular, figures. In the fœtus, one oval is formed by the head, and the other by the body and limbs of the child. These parts correspond with the two ovals, into

Fig. 77.

which the developed cervix and developed body of the uterus may be divided. The lower oval of the fœtus—that is to say, the head—is little compressible, while the upper and larger oval is greatly so, during the progress of labor; and thus, having in view their different degrees of compressibility, the cranial oval may be considered as the larger and more permanent of the two. Bearing these circumstances in mind, it will, however, be convenient to speak in general terms of the fœtus and uterus as ovoid. The lower end of the fœtal ovoid is formed by the vertex, the upper end by the nates. The outline of one side of the oval is formed by the occiput, the back of the neck, and the incurvated spine; the other, by the forehead and the mass of contracted limbs gathered up together. The chin is close to the sternum,

the arms are crossed upon the breast, and the thighs are bent upon the trunk, so that the knees approach the elbows in front

Ovoid form of fœtus at full term.

of the abdomen; the legs are bent upon the thighs and decussate each other, the feet approaching the nates. The position of the extremities, particularly of the upper limbs, varies, however in different cases.

FIG. 79.

Adaption of fœtus to uterus.

We possess satisfactory proof that the child assumes the position with the head presenting, in the latter months of gestation, and that dead children do not assume this position with the same frequency as the living. The statistics of Dr. Collins extend to upwards of 16,000 children. In the living children, which exceeded 15,000, only 1 in 57 presented preternaturally, or otherwise than the head; while of upwards of 500 children born in a putrid state, 1 in 5 presented preternaturally. Dubois found that in births occurring before the sixth month, only 52 per cent. were head presentations; of those born during the seventh month, the head presentations increased to 68 per cent.; during the eight and ninth months, to 76, and at the full term, to 96 per cent. From an extended table made by Dr. Simpson, from the report of La Chapelle, Boivin, Clarke, and Collins, amounting in the aggregate, to upwards of 48,000 cases, the proportion of cephalic presentations amounted to 96 per cent. Dubois obtained another important result similar to that deducible from the tables of Dr. Collins, by comparing the comparative frequency of cephalic presentations in dead and living children. Of children born living in the seventh month, the head presentations were in the proportion of 82 per cent.; but in dead children born during the seventh month, the proportions were reversed, no less than 55 per cent. being preternatural presentations.

The chief causes to which the general presentation of the head in living children at the full term has been referred in modern times are Physical Gravitation, Instinctive and Voluntary movements of the fœtus, and Reflex fœtal movements.

No opinion respecting the cause of cephalic presentation has prevailed so extensively as that which referred it to **Physical Gravitation**. It was supposed that the weight of the head, as compared with the rest of the body, contributed to its subsidence in the waters of the amnion, and it was further believed that this tendency was increased by the insertion of the umbilical cord in such a manner as to leave the upper part of the body heavier than the lower, when suspended from the umbilicus. Dubois found, however, that in experiments in which the fœtus was suspended in a bath, or in a receptacle having the shape of the uterus, it was not the head, but the scapula or the back which first touched the bottom. This was the result in dead new-born fœtuses of various ages between the fourth and ninth month.

Any argument drawn from the supposed suspension of the fœtus by the cord is evidently worthless. The length of the cord is so great as to render any suspension of the fœtus by the cord in the liquor amnii impossible. Moreover, if the cord were short, it is generally implanted not into the fundus, but into the side of the uterus. It is also found that twisting of the cord round the limbs or neck of the fœtus exerts no influence upon the presentation, which it should do, if suspension by the cord contributed to the descent of the head. The drift of all fact and argument seemed, then, against gravitation as a cause of cephalic presentation in the fœtus.

Recently, however, Dr. Matthews Duncan has advanced some interesting facts which claim for gravitation a considerable share in determining the intra-uterine feetal attitudes. Dr. Duncan has pointed out that when the mother is in the upright position the fœtus lies in utero, at an angle of thirty degrees with the horizon, This plane of support is formed by the glabrous internal surface of the anterior wall of the uterus, and the abdominal parietes. When the woman is lying on her back, the child is still upon an inclined plane, having nearly a similar angle. The plane is now, however, formed by the vertebral column, the abdominal viscera, and the posterior wall of the uterus. It is only when the woman lies upon either side, that the fœtus assumes the horizontal position. The greater part of the twenty-four hours is passed with the fætus lying upon one of these planes. In the upright position, and when the woman is in constant motion, the influence of gravitation, as far as it extends, must have greater scope than during the horizontal position. The mechanical tendency of the fœtus is to slide down the plane, but this is resisted to some extent by the plane itself, and by the pelvis. This resistance, thus divided, forms the support of the fœtus and of the gravid uterus. The fœtus must be considered not as subsiding simply in water, but as sliding down a plane in an ovoid cavity surrounded by fluid. Under such circumstances, it is contended that the fœtus must have a tendency to obey the laws of gravity, and, with the restrictions mentioned, to slide down the plane. The objection to this is, that in women who preserve the horizontal position during the whole of the latter part of pregnancy, the head presents; but cases of this kind are not sufficiently numerous to found a positive argument upon them.

One argument used against fœtal gravitation is, that the head does not present with the same frequency in cases of hydrocephalus, as in the case of the healthy fœtus. Dr. Simpson dwells upon the increased weight of the bones of the head and its contents, and shows, by a collection of such cases by Dr. Keith, as many as 1 in 6 present preternaturally—the proportion in ordinary cases, it will be remembered, being only 1 in 57. Dr. Duncan points out that it is the relative weight of the head in hydrocephalus, as compared with the density of the liquor amnii, which must be considered. Though heavier in air, it is probably more buoyant in water, than the normal fœtal head. To this may be added that the size of the fœtal hydrocephalic head is frequently such as to render its descent into the pelvis, and its presentation at the os uteri, impossible.

But the strongest evidence against the theory of gravitation was that derived from the greater frequency of preternatural presentations in dead, as compared with living children. was argued that the dead child ought to obey the laws of gravity as readily and accurately as the living. But it seem to have been forgotten that death may possibly alter the specific gravity of the fœtus. Dr. Duncan found, as the result of fourteen experiments, that when the healthy still-born fœtus is placed in fluid of its own specific gravity, it floats obliquely with the head lowest, in a position corresponding to that which it maintains in He further observed, that in cases where the child has died in utero, before the time of birth, changes occur which make it float with its head highest, in a fluid of its own specific gravity. This circumstance, he suggests, may have some influence in determining the frequency of malpresentations in the case of dead children; but he admits that a more extended course of experiments will be necessary before full confidence can be claimed for such results. The ingenious observations and experiments of Dr. Duncan, and the way in which he has met and controverted the objections to the recognition of feetal gravitation as a cause of position in utero, must carry considerable weight. It is quite evident that gravitation cannot be omitted from the several influences which determine the natural presentations of the fœtus.

The latest exponent of the theory which refers the natural presentation of the fœtus to Instinctive and Voluntary move-

ments on the part of the fætus itself, is M. Paul Dubois, who wrote a very able essay upon this subject in 1832. Dubois, excluding the influence of gravitation, compared the power which leads to the assumption of the position of the fœtus with the head opposite to the os uteri, to the instinct which leads the bird to build its nest. He supposed that the fœtus, moved by an irresistible impulse, effects the descent of the head, so as to render it the presenting part, by a series of small volitions or spontaneous determinations, occurring during the latter part of pregnancy. The chief argument in favor of the possession by the fœtus of sensation, and possibly of volition, urged by this able obstetrician, is drawn from the harmony which he believed to exist between the movements of the fœtus and the objects which they were presumed to effect. Had he written after the reception of Dr. Marshall Hall's great discovery of the spinal or physical movements, as distinct from the cerebral or physical motor actions of the animal economy, he would probably have referred the motor powers of the fœtus to reflex action, instead of to instinct or volition. Dr. Simpson, coming after Dubois, has taken reflex action as the clue to the feetal movements, and has shown that we have no evidence whatever that the feetus possesses any manifestations which may not be attributed to purely physical causes.

Dr. Simpson, in a series of elaborate and original papers in the London and Edinburgh Monthly Journal for 1849, maintains that the fœtus in utero is subject to a constant succession of Reflex Motor actions, which are the chief cause of cephalic presentations. Dr. Simpson recognizes the ovoid outline of the uterus, and the ovoid shape of the fœtus, as greatly tending to maintain the fœtus in the uterus with the smaller end of the ovoid downwards; but he does not consider that the relations between the form of the fœtus and the form of the uterus would of themselves be sufficient to produce the position, with the head over the os uteri. He believes, on the contrary, that "the regulating vital power guiding it to the assumption of that normal position in which its figure corresponds as exactly as possible to the figure of the uterine cavity, consists of a succession of reflex or excito-motory movements of an adaptive kind on the part of the fœtus, excited by impressions made on its external surface." The physical stimuli causing these movements are referred to temporary irritations of the cutaneous surface of the fœtus by contact with the uterine walls, when the fœtus is thrown out of position by any movements or change of position on the part of the mother, such as rising or lying down, stooping, and other motions of the body. Dr. Simpson points out, that the soles of the feet, the knees and sides, parts which in the adult are marked excitors of reflex action, and which in the young child yield the sensation of tickling, are precisely the parts exposed to irritation in the fœtus. Arguing from these considerations respecting the cause of the normal presentation of the head, Dr. Simpson contends that the causes of mal-presentation are the occurrence of labor before the reflex actions have established the natural position; the death of the fœtus—in other words, the loss of its adaptive reflex actions; the causes altering the shape of the fœtus or uterus, or physical

Position of twins in utero.

sources of displacement, such as by hydrocephalus, montrosities, dropsy of the amnion, uterine spasm, tumors of the uterine walls, placenta prævia, distortions of the pelvis, and accidents occurring to the mother. Finally, Dr. Simpson indicates that in the reflex movements of the fœtus lie the reasons of the rarity of positions of the fœtal head in the direct diameters of the brim of the pelvis, and their great frequency in the oblique

diameters, particularly the right oblique diameter, and the greater relative frequency of occipito-anterior to that of occipitoposterior presentations. In these papers, Dr. Simpson refers to

Fig. 82.

Adaptations of foetus and uterus in breech presentation.

the influence of tone as moulding the form and figure of the fœtus, but he takes no account of the uterine movements in the latter part of pregnancy, and repudiates gravitation as a cause of

feetal position. Dr. Simpson illustrates his views by a series of admirable engravings, showing the outline of the uterus and the feetus under different conditions.

In my lecture "On Parturition," published in 1848, before the appearance of Dr. Simpson's papers, while discussing the abdominal movements of pregnancy, I endeavored to draw a distinction between the movements of the fœtus and those of the uterus. I pointed out that many of the movements commonly attributed to the fœtus really belonged to the uterus. I admitted that the fœtus moved in obedience to reflex stimuli, but I supposed these reflex movements to be faint and obscure, because of the provisions which shield the fœtus from reflex excitation. I believe I underrated the extent and influence of the fœtal movements; but after the best consideration I have been able to give the subject, I think Dr. Simpson has attributed to the reflex movements of the fœtus results, in the production of which other agencies play a very considerable part.

The ovoid shape of the fœtus, towards the end of gestation, depends in part upon the form of the uterus, and in part upon the muscular condition of the fœtus itself. As I pointed out, in 1848, the fœtus in utero, is, when unexcited and at rest, under the spinal influence of what Dr. Marshall Hall calls "Tone." or the continuous influence of the vis nervosa; that principle by which the sphincters are kept closed in after life, and which causes the contractions in limbs which are deprived of the influence of volition in cerebral paralysis. Under this influence, the stronger flexor muscles having more power than the extensors, the body of the child is slightly bent as it is in the adult, in the recumbent position when volition is at rest, as in sleep, and the arms and legs are contracted. This contracted state of the arms and legs, in the fœtus, depends upon an active condition of rigidity; and we see that, after birth, it is often difficult to straighten the limbs—their natural position—until the influence of volition has gradually acquired power, being an approach to that which obtains in utero. In the lower animals, the limbs, under the same influence, are straight instead of curved, the fore-limbs especially being stretched out rigidly on each side of This is as necessary to healthy parturition in the lower animals, as the contraction of the limbs in the human fœtus. The principle of tone, then, in the human fœtus, tends to preserve the ovoid shape of the fœtus, and it also tends to keep the child perfectly still and motionless. This continued influence of tone tends to maintain the fœtus in a passive state, and under the influence and control of the containing uterus. It is quite as important in maintaining the position of the uterus as the reflex actions are in restoring it, when this has been disturbed by a change of position, etc.

In 1850, I performed some experiments with a view to determine the particular reflex movements manifested by the fœtus in utero under irritation. I took a rabbit nearly ready to kindle, and having placed it under chloroform, and fastened it to a table, opened the abdomen so as to expose the uterus. I now made an incision into the uterus opposite the situation of a fœtus, so as not to wound the amnion, or to interfere with the placental attachment. In this way the fœtus was exposed in the transparent amnion without being injured in any way, the circulation in the cord not being at all interfered with. I found that when any part of the fœtus was irritated through the amnion, the fœtus would draw up its limbs, and shortly afterwards returned to the ordinary quiescent state. The one movement which constantly occurred, whether the ears, extremities, or tail were pinched, was a movement of the head, as in respiration. The mouth was opened and shut again once or twice, in a way somewhat similar to the movements of the mouth and head of a kitten while drowning. No liquor amnii appeared to be swallowed, and no movements of deglutition were attempted. I repeated the experiment several times with the same result. The respiratory movement affected the whole of the upper part of the body, but no inspiration or expiration occurred. It appeared to me that these imperfect respiratory movements must occur with every movement of the fætus, and that movements of respiration do not occur, as is supposed, for the first time, after birth. This would account for the curious phenomena of Vagitus, in which, when air reaches the mouth of the fœtus, a cry is produced before the expulsion of the head of the child.

The supposed reflex feetal movements of pregnancy have been felt in cases of amyelitic feetuses, when the spinal marrow, and as a consequence, all reflex movements, are absent. I quoted in my former Lectures a case of this kind from Lallemand, in

which the spinal marrow was entirely wanting, but in which the supposed feetal movements were present. Since that time two cases have been supplied to me, one by Mr. Hoadley Gabb, of Hastings, and the other by Professor Zaviziano, of Corfu, in which there was congenital absence of the brain and spinal marrow, but the intra-abdominal movements of pregnancy were profuse in both cases. I pointed out that in the state in which the fœtus exists in utero, constant excitation and motion would exhaust the fœtus. Professor Simpson compares the fœtus in utero to a decapitated frog, but the frog in this condition is speedily destroyed by excitation. I mentioned that in the common experiment of placing the hand in cold water, and then applying it to the uterus, the resulting movements must necessarily be reflex movements of the uterus, excited by the irritation of the excitor nerves of the skin, which we know happens very readily after labor. It is impossible that the influence of this cold hand could be transmitted to the fœtus through the abdominal walls, the uterus, and the liquor amnii. The same explanation applies to the movements caused by taking food or drink into the stomach, or the sensation of hunger. The movements excited by touching the feet, in footling cases, are feeble. The motions produced by lightly irritating the feet of a sleeping infant are inconsiderable, and the soles of the feet are well known to be the most excitable part of the cutaneous surface. We may observe after death evidence that in some cases the fœtus has been quiet for some time before birth. The legs of the fœtus may indent each other when they have lain across, or the mark of the hand is left on the side of the head. If the movements of the fœtus were so considerable as have been supposed, we should expect incessant movements during labor.

No experiments can imitate, even to a tolerable degree, the conditions of the fœtus in utero. Suspending the mature dead fœtus in a similar fluid with the liquor amnii, when placed within a vessel having the shape of the gravid uterus, fails in many of the essential conditions belonging to the living fœtus in utero. In the early development of the embryo, the limbs are deficient in muscular power, and do not assume any definite form. The nervous system has hardly commenced its control over the as yet feeble muscles. The quantity of liquor amnii is very large in proportion to the size of the uterus, and the uterus is

circular rather than ovoid in shape. We have to consider these elements as slowly altering from day to day in an almost in-

Fœtus and uterus at fifth month.

appreciable manner, during the middle and latter months of pregnancy, and while the fœtus is gradually taking up its ultimate position. The limbs of the feetus enlarge, becoming subject to the influence of the vis nervosa, and under the influence of tone, the arms and legs, particularly the latter, become contracted, so as to form the fætal ovoid. During this time, the relative quantity of the liquor amnii diminishes, so that at the full term the liquor amnii scarcely does more than fill up the interstices left between the fœtus and the uterus. Synchronously with these events, the uterus itself, by the development of the cervix, changes from the circular to the pyriform or ovoid shape. With this change of shape, the uterus acquires more power of muscular contraction, and becomes the subject of reflex and peristaltic actions. The contractions of the uterus necessarily exert a moulding or adaptive influence upon the fœtus, poised lightly as it is in the liquor amnii, and moved within the limits of its prison by the slightest impetus. These causes are probably aided by the reflex movements of the fœtus itself. Under irritation, the limbs of the fœtus strike out, but only to rcturn more closely to its ovoid shape, and to accommodate itself as accurately and casily as possible to the uterine cavity. All these influences, combined with the effects of gravitation and of the inclined planes upon which the fœtus rests in the upright and recumbent positions of the mother, arrange and preserve the fœtus in the normal position with the head at the

Form of uterus in deformed pelvis.

os uteri. No single power, however, gives its attitude or position to the fœtus, and it is difficult, amidst such a number of adaptations, all contributing to the same end, to single out the most important. If we give the predominance to any one of them, I think the spinal principle of Tone must be considered as the most influential, and it is to the absence of this, more than of any quality, that we must attribute the irregular presentation of dead children.

LECTURE XIX.

THE BONES, ARTICULATIONS, AND LIGAMENTS OF THE FEMALE PELVIS.

Gentlemen,—The **Pelvis** consists of four bones, the two Ossa Innominata, the Sacrum, and the Coccyx. In the female pelvis the last lumbar vertebra also requires to be considered in connection with the above, as contributing to form the framework of the theatre in which the principal events of natural and morbid parturition are performed.

Up to the age of puberty each **Os Innominatum** consists of three distinct bones, the Ilium, Ischium, and Pubis, which are separated from each other at the acetabulum by cartilaginous divisions (Fig. p. 285). After this time the bones become united through the medium of a Y-shaped bony deposit. Epiphyses are also slowly formed upon the crest of the ilium, the anterior and inferior spine of the ilium, the tuberosity of the ischium, and the pubis at the symphysis. These additions increase the size of the bones which form the pelvis, and strengthen the principal points for the attachment of muscles. When the two innominate bones are placed together, they form the anterior and lateral portions of the pelvis.

The obstetric points in the anatomy of the os innominatum are numerous and important, but these are of course chiefly confined to the internal surface of the bone. To the crista of the ilium the chief of the abdominal muscles concerned in labor, the internal oblique, external oblique, and transversalis are attached. Other muscles concerned in parturition are attached, the pyramidalis and the rectus abdominis to the tuberosity of the pubis; the levator ani to the pelvic portion of the pubis; and the muscles which contribute to form the perinæum to the tuberosity of the

ischium. The iliac fossa, covered by the iliacus internus muscle, contributes to the support of the lower segment of the gravid uterus in the latter part of pregnancy, before the head of the fœtus has descended into the pelvis. A line running from the promontory of the sacrum to the tuberosity of the pubis, the

Division between the ischium, ilium, and pubis.

linea ilio-pectinea, forms the boundary between the true and false pelvis, or between the cavities of the pelvis and abdomen. This line also marks the greater part of the pelvic brim. At the junction of the ilium with the pubis, a prominence is met with upon the ilio-pectineal line, which is called the ilio-pectineal eminence.

The inferior and slightly everted border of the descending ramus of the pubis, forms, with its fellow of the opposite side the arch of the pubis. Between the body and ramus of the ischium and the ascending and horizontal portions of the pubis an oval opening, the obturator foramen, is seen. The smooth inner surface of this ramus, and the smooth portion of the internal surface of the ischium are the surfaces over which the presenting part of the feetal head glides in parturition, and which give it its direction as it emerges under the pubic arch. The tuberosity of the ischium and the spinous process of this por-

286 SACRUM.

tion of the os innominatum contribute to form the outlet of the pelvis. Behind the spine of the ischium are seen the anterior and superior spinous processes of the ilium, between which the two sciatic foramina are formed. The whole of the three bones entering into the composition of the os innominatum contribute to form about three-fourths of the pelvic brim.

The internal surface of the **Sacrum** is of great obstetric significance. It forms the posterior part of the pelvic walls, being articulated on either side with the ossa innominata. Above, it is united with the fifth lumbar vertebra, and below with the coccyx. Its upper portion forms, with the last lumbar vertebra and the inter-articular cartilage, the promontory of the sacrum, or sacro-vertebral angle, the angle being formed by the deviations of the line of the lumbar vertebræ, and the line of the upper part of the sacrum. The anterior aspect of the sacrum is smooth and concave from above downwards. The depth of the sacral curve is shown by two lines, one drawn from the promontory to the point of the sacrum, and the other at right angles from this line to the middle of the third sacral vertebra.

Innominatum.

From side to side, the pelvic surface is less concave, particularly at its extremities, where it is slightly convex. It is marked by four transverse lines, indicating its original division into five

coccyx. 287

rudimentary vertebræ. These divisions exist, the bones being divided by cartilage and inter-vertebral matter, until after the age of puberty, when ossification begins between the lowest portions, and ascending upwards, the bones become one osseous mass about the age of thirty. It presents on each side four intervertebral foramina, for the passage of the anterior branches of the sacral nerves. Besides the great angle or promontory of the sacrum, a lesser angle is formed at the union of the sacrum and the coccyx, when the coccyx is bent backwards at the time of parturition.

The Coccyx generally consists of four pieces of bone articulated together until a late period of life, when they become ossified into one mass. These bones continue in the direction of the lower part of the sacral curve, so that they project downwards and forwards, their internal surface being smooth and concave. During the child-bearing era the bones of the coccyx move

Section of sacrum and coccyx.

slightly upon each other, and considerably upon the sacrum, with which the first bone is articulated. The first piece of the coccyx is the only one presenting any marked characters. It presents above a smooth surface, which is in apposition with the last bone of the sacrum. From the posterior and lateral sides of this surface small cornua project, which rest upon the sacral cornua. Beneath this process a small nodule, sometimes con-

tracted into a foramen, transmits the last sacral nerve. The bones of the coccyx diminish in size from above downwards, so that the last piece is a mere nodule. Attachments exist between the coccyx and the coccygeus muscle, the levator ani, the gluteus maximus, and the sciatic ligaments on each side, and the sphincter ani at its extremity. The coccyx has the power of movement backwards or forwards to the extent of an inch. When moved forward or elevated, it decreases the pelvic outlet; but when depressed and drawn backwards, it increases its area. This bone is moved forwards by the contraction of the levator and sphincter ani; and backwards by the contraction of the lower fibres of the gluteus maximus, when the thighs are fixed, the coccygeus, and the dilatation of the sphincter ani. The depression of the coccyx is carried, however to its utmost point by the mechanical pressure of the feetus as it passes the pelvic outlet.

The Fifth Lumbar Vertebra articulates with the upper surface of the sacrum, and contributes, as already mentioned, to form its angle or promontory. This is effected by the lower surface of the last lumber vertebra being oblique instead of flat,

the anterior portion of the body being thus rendered much deeper than the posterior. In cases of deformed pelvis

this bone may become of great importance, and the other lumbar vertebræ also may have an immediate bearing upon the pelvis. Through the medium of the lumbar fascia, the lumbar vertebræ give attachment to the transversalis and the internal oblique muscles. Some anatomists consider that the fourth lumbar vertebra also forms part of the false pelvis, in ligamentous preparations, and in the living subject, because of the ligamentous connection which exists between the transverse process and the crest of the ilium.

Fifth lumbar vertebra.

The Articulations and Ligaments which unite the bones of the pelvis, not only give the necessary strength to this part of the body, with reference to the support of the trunk and the movements of the lower extremities, but they contribute largely to render the pelvis a cavity fitted to contain and preserve the pelvic viscera, and a canal for the passage of the feetus in par-The joints and articulations arc so arranged that the internal surface of the pelvis is rendered smooth; but externally everything is subsidiary to strength, and numerous prominences are observed. Bony processes, ligaments, and the attachments of muscles are all made to contribute to this object. The whole pelvis may be compared to a nest, in which the rough materials are accumulated on the outside, the cavity being rendered as smooth and even as possible. The joints to be considered are the Lumbo-Sacral, Sacro-Iliac, Sacro-Coccygean, and Pubic articulations: they all belong to that class of joints termed amphi-The ligaments are very numerous, and connect the bones of the pelvis at other points beside those at which the bones are in articular opposition.

The vertebral surface of the sacrum articulates with the last lumbar vertebra, by means of a wedged-shaped mass of fibro-

cartilage, the thickest part of the wedge being in front, and increasing the effect of the peculiar slope of the body of the last lumbar vertebra. This cartilage, which resembles in structure the inter-vertebral cartilages, really constitutes the most prominent point of the promontory of the sacrum, as it is termed. That is to say, if the finger be introduced into the vagina for the purpose of examining the capacity of the pelvis, the projecting point of the upper and posterior part of the brim is felt at the anterior part of this cartilage. The common anterior vertebral ligament passes in front of the lowest lumbar vertebræ, and extends downwards over the front of the sacrum and coccygeal bones. The transverse process of the last, and, according to some authorities, the fourth, lumbar vertebræ, are connected with the upper and external portion of the sacrum by a thick, short, and strong ligament, called the lumbo-sacral, or sacro-vertetebral ligament. With the exception of this ligament, and the shape of the cartilage above described, the ligaments uniting the sacrum to the vertebral column are the same as those connecting the several vertebræ with each other.

The Sacro-iliac Symphysis unites the articular surfaces of the sacrum and ilium, both of which are covered by a layer of cartilage presenting numerous inequalities when not in apposition. The sacral layer of cartilage is somewhat thicker than that belonging to the ilium. The union of these bones is strengthened and rendered complete by the ilio-lumbar and the anterior and posterior sacro-iliac ligaments. The ilio-lumbar extends from the transverse process of the fifth lumbar vertebra, and the back of the sacrum, to the crest of the ilium, near the posterio-superior spinous process. The anterior sacro-iliac ligament extends between the anterior surfaces of the ilium and sacrum, in the form of a thin irregular layer. The posterior sacro-iliac is stronger, consisting of several sets of fibres, extending obliquely and transversely from the rough surface of the sacrum to the posterior surface of the ilium.

The coccyx is united to the sacrum by a thin fibro-cartilaginous layer interposed between the articular surfaces of the two bones, and by an anterior and posterior ligament—the latter being of considerable thickness. The small bones of the coccyx are also joined to each other by thin plates of cartilage, and anterior and posterior ligamentous bands. Some anatomists describe the

existence of small synovial sacs in cases in which these bones move more freely than usual upon each other and upon the sacrum.

The two **Sacro-sciatic Ligaments**, great and small, require notice in this place. These unite the ilium, the sacrum, and the coccyx to the ischium, and contribute to strengthen the posterior articulations of the pelvis; but they are of more importance as a portion of the canal and outlet of the pelvis itself, than as forming part of the pelvic articulations.

The greater or posterior sacro-sciatic ligament extends from the posterior and inferior surfaces of the ilium and the posterior part of the sacrum and coccyx, to the tuberosity and ramus of the ischium. This ligament is expanded at its extremities, particularly at its posterior attachments. The small or anterior sacro-sciatic ligament extends from the side of the sacrum and coccyx to the spinous process of the ischium. At the sacro-coccygean attachment the fibres of the ligament are in apposition with the middle part of the posterior ligament; but in passing the spinous processes, the direction of the anterior ligament crosses that of the posterior. The attachment of the anterior ligament to the sacrum and coccyx is broad, but its attachment to the spinous process is smaller, so that the whole ligament is triangular in shape. The space between the anterior and posterior ligaments and the spine and tuberosity of the ischium constitutes the

Sacro-sciatic ligaments and ilio lumbar.

small sacro-sciatic foramen; while the large sacro-sciatic foramen is formed by the sacrum and ilium, and the sacro-sciatic ligaments. The obturator-fascia ligament may be mentioned here, as being concerned in the formation of the pelvis, without any reference to its articulations. It is a fibrous membrane filling up the obturator foramen, except at the upper part, where the obturator nerves and vessels make their exit. The obturator fascia is connected with the great sacro-sciatic ligament by the process sent up from the tuberosity of the ischium.

The Symphysis Pubis consists of the articular surfaces of the pubic bones, an inter-articular cartilage, anterior and posterior ligaments, and the superior, and sub-pubic, or triangular, ligaments. The inter-articular fibro-cartilage is composed of concentric lamellæ. This cartilage itself is imperfectly divided into two parts, one for each osseous surface, frequently containing a viscid pulp in the central space between them. posterior ligament is the most indistinct; the anterior consists of numerous thick decussating fibres, which cover the symphysis. The superior pubic ligament consists of ligamentous fasciculi, which fill up the small space between the bones above the interarticular cartilage at the upper part of the symphysis. The subpubic or triangular ligament is the most important. It is thick and crescent-shaped, attached to the descending rami of the pubis and the lower part of the inter-articular cartilage. Its inferior border is smooth and arched, contributing to form the angle or arch of the pubis, one of the great obstetric points of the pelvis.

With the exception of the coccyx, the Movements of the Bones of the Pelvis upon each other in the unimpregnated state are extremely limited. Some authorities have maintained that during labor all the pelvic symphyses are relaxed to a slight extent, while others have believed that the joints remain entirely unaltered at this time. This supposition led to the now abandoned operation of Sigault, for the division of the symphysis pubis in cases of contracted pelvis. Some have even believed that during gestation osseous matter is absorbed from the pelvis and carried into the circulation to supply the wants of the fœtus. Others contend that no change whatever occurs in the bones or joints of the pelvis in the course of pregnancy and parturition. We know, however, as Denman pointed out, that in rare cases the sacro-iliac and pubic articulations become so relaxed as to

cripple the subjects of this affection for a considerable time after labor. It is also known from dissections of women dying during or immediately after labor, that the cartilages of the joints of the pelvis are found to be softer and more vascular than usual at this time. Many of the lower animals are unable to support themselves firmly in the standing position previous to and during parturition, in consequence of a relaxation of the joints of the pelvis; and Mr. Robertson has pointed out that in the guinea-pig, the pubic symphysis is widely separated at the time of labor, to admit of the passage of the young. These facts afford good reasons for believing that in many cases a slight amount of relaxation of the pelvic articulations does take place in the human female during delivery. The attachments and action of the abdominal muscles are such, that during the expulsive stage of labor the outlet of the pelvis becomes slightly enlarged.

Perhaps no part of the human skeleton, rife as the whole is with adaptations, evinces more evidences of design than the bones of the female pelvis. The progress of ossification shows this in an eminent degree. Up to the time of puberty the cartilaginous division between the ilium, ischium, and pubis is complete. Under the stimulus of the ovaria, the pelvis enlarges considerably at, and previously to, the occurrence of the catemenia, and the separation of the bones which compose the pelvis greatly facilitates those operations of growth, by which its cavity is expanded to the mature standard. In the other parts of the body there is no instance of any such sudden change after the time of birth, not even in dentition, as that which occurs in the pelvis and its contained organs during the two or three years in which puberty is prepared for and completed. The development of the sterile girl into the fruitful woman is almost as striking as the metamorphoses which occur in the lower orders of creation. All the changes of this epoch have for their great object the preparation of the organism for the functions of impregnation and childbearing. Of these, the expansion of the bones of the pelvis, before the union of the three parts which compose the os innominatum, the bony deposit between the pubic bones at the symphysis pubis, the slow union of the bones of the sacram, the formation of the numerous epiphyses which enlarge the pelvis and contribute to its strength

at and before the era of puberty; and the ossific union of the different parts of the coccyx and of the whole bone with the sacrum, only after the function of childbearing has altogether ceased, are amongst the most remarkable.

The individual bones and ligaments which enter into the composition of the pelvis having received a detailed notice, attention will now be directed to the interior of the pelvis, and to the normal relations of the salient osseous points of its exterior anatomy. Under the first head will be included the Pelvic Planes, Axes, Angles, Diameters, and Canal, while the second will refer to certain external measurements, a knowledge of which is necessary to a ready diagnosis of special internal malformations, or general alterations of dimension and configuration. I have reserved the consideration of the **Normal Pelvis** to the present time, instead of introducing it into the early part of the work, in order to connect it with the anatomy of the Fætal Head, and the Mechanism of Labor, which will form the subjects of the two next Lectures.

As already stated, the pelvis is divided into two parts, a false and a trne pelvis, the first situated above, and the second below, the linea-ileo-pectinea. The relations of these divisions of the whole pelvis to utero-gestation and parturition are very unequal, and in cases where the false pelvis is malformed, the distortion of the true pelvis co-exists to such an extent as to render the deviations above the brim comparatively unimportant. We must look for the interest of the false pelvis, not in its immediate relations to the passage of the fætus through the pelvic canal, but in its functions as the supporter of certain viscera, as a fixed point for the action of numerous muscles concerned in parturition, and as a tolerably correct indicator of the condition of the true pelvis.

The true pelvis, or bassin petit, as it is termed by French obstetricians, is situated below the linea-ileo-pectinea, which

circumscribes its superior orifice or inlet, and has its inferior opening or outlet, bounded in part by osseous, and in part by

ligamentous structures. In the middle line posteriorly the outlet is formed by the coccyx, and by the great sacro-sciatic ligaments laterally and behind; the tuberosities of the ischia are its extreme lateral boundaries, and the conterminous rami of the ischia and pubes form its anterior-lateral confines. The pelvic

Brim of pelvis. Transverse and oblique diameters marked.

canal lies between the above limits, and within this canal are situated the rectum, bladder, and ureters; the internal iliac arteries and veins, with their subdivisions; the lymphatics; the sacral plexus in whole, and the lumbar plexus in part; and cer-

tain muscles visceral and femoral. In the unimpregnated female, it also contains the uterus and ovaries, and during uterogestation, a varying portion of the lower portion of the gravid uterus and its contents.

The Diameters of the pelvis are measurements taken in the three planes which have been described. The other dimensions necessary to be known are the depths of the pelvis at different points, and the distances between several of its spines and tube-Beginning with the diameters of the superior plane or inlet, we have the long or transverse diameter, the antero-posterior or conjugate diameters, and the right and left oblique diameters. In the mid-plane we have the same diameters to consider, but the oblique is now the longest diameter. In the inferior plane, the longest of the diameters is the antero-posterior. In referring to the statements of the most eminent authorities, an immense variety of measurements will be found, but the range of variation, with few exceptions, is not very great; and with regard to the greatest extremes, nothing is met with that does not probably result from the accidental omission or admission of very large or very small pelves into the calculation.

The Depth of the pelvic cavity or canal varies greatly in different parts of the pelvis. Behind, it measures from five to six inches from the sacro-vertebral angle to the point of the coccyx; from the linea ilio-pectinea to the tuberosity of the ischium, three inches and three-quarters; and from the crest of the pubis to the pubic arch, from an inch and a half to two inches.

At the brim of the pelvis, the antero-posterior diameter, from the sacro-vertebral angle or promontory, to the crest of the pubis, measures four inches in the dried state. The transverse diameter measures from about four inches to five inches and a quarter. The measurement of the oblique diameter from the sacro-iliac symphysis to the ilio-pectineal eminence, is from four and a half to five inches. In the cavity of the pelvis, from the middle of the sacrum to the pubic symphysis, the antero-posterior diameter is as nearly as possible four inches and a half. The oblique diameter, from the middle of the great sacro-sciatic foramen to the obturator ligament is five inches. The transverse diameter on the same plane, between the two ischii, is about four inches and three-quarters. At the outlet or inferior strait of the pelvis, the diameters are as follows:

From the arch of the pubis to the extremity of the coccyx, antero-posterior, four inches and a half—but the mobility of the coccyx increases this by nearly an inch; between the sacro-sciatic ligament and the ascending ramus of the ischium, oblique, about five inches; between the tuberosities of the ischii, transverse, four inches. Thus, at the brim the longest diameter is the transverse, the shortest is the antero-posterior. In the middle of the pelvis, the oblique diameter is the longest, and the shortest is the antero-posterior is the longest, and the transverse the shortest diameter. When the soft parts are in apposition with the bones, the oblique diameter of the brim is somewhat longer than the transverse. A line carried round the brim of the pelvis measures about fourteen inches.

An average struck from the combined observations of Duncan, Burns, Monro, Meckel, Watt, Velpeau, Moreau, Boivin, Baudelocque, Ramsbotham, Rigby, and Wood, gives us the following results:—

	Transverse.	Oblique.	Ant. posterio	or.
Superior Plane Middle Plane Inferior Plane	5.2	5.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Inches.

It is this change in the longest diameter of the pelvis, from the transverse to the oblique, and from the oblique to the antero-posterior, which gives to the pelvis the principle of the **Screw**—an idea we shall have to develop more at length when we come to the mechanism of labor.

The Planes of the Pelvis are imaginary levels extended between some of its corresponding points, the inclination of which to each other and to the horizon it is important to know. Only two of these planes have been generally deemed worthy of particular attention—namely, a superior and inferior plane, or plane of the inlet and outlet; but it is necessary to consider a third plane, situated between the other two, and which may be termed the mid-plane. To this plane especial study should

be directed, because it is here that the rotations of the fœtal head are impressed upon it, and here, under slight deviations

Outlet of pelvis. Antero-posterior and transverse diameters marked.

from the normal condition, serious obstacles to parturition are encountered.

The plane of the inlet, or superior plane, is bounded by the linea-ileo-pectinea, and is inclined to the horizon at an angle of about 60° in the female (Naëgele), 65° in the male (Weber). That is to say, in the erect posture, and in the unimpregnated condition, these are the inclinations of the pelvic brim, inlet, or superior plane. During pregnancy, and more particularly towards the end of utero-gestation, when the weight of the gravid uterus and enlarged breasts upon the anterior arms of the levers represented by the ossa innominata, the obliquity of the pelvis is diminished by the involuntary assumption of a position similiar to that taken by persons in walking down a hill. The amount of diminution cannot be stated with precise accuracy, as it varies according to the length and flexibility of the spine, as well as the mobility of the sacro-iliac articulations, but it frequently amounts to several degrees. There is an evident adaptation of means to an end in the greater obliquity of the female as compared with the male pelvis, the approach of the internal surface of the symphisis pubis to the horizontal position being manifestly conducive to the support and retention of the comparatively heavy pelvic viscera of the female, and fitted to counteract the tendency to prolapse caused by the greater area of

the pelvic eanal. This might seem to be contradicted by the diminished obliquity which obtains during pregnancy. The

A, Plane of the inlet. B, Mid-plane. C, Plane of the outlet.

gravid uterus rises, however, out of the pelvic cavity before the obliquity is materially altered, and prolapse thus becomes mechanically impossible, from the increased size and elevation of the uterus, when the ordinary provisions for support cease to be in operation. The elevation of the sacral promontory above the upper margin of the symphisis pubis, in the unimpregnated female, will of course depend partly on the obliquity of the pelvis, and partly on its dimensions. In the well-formed female pelvis, it is usually from three inches nine lines to three inches ten lines; and in the upright position, the sacral portion of the brim is a little below the autero-superior iliae spine. It is necessary to study the relations of the superior plane of the pelvis to the spinal column. The pelvi-vertebral angle-that is, the angle subtended by the superior plane of the pelvis, and the lumbar portion of the spine, forms an angle of about 150°. This angle varies slightly in different individuals, but is diminished somewhat by the anteflexion of the spine, and drawing up of the inferior extremities, which obtains in the obstetric position. The study of the above particulars may be facilitated by means of a diagram. (Fig. 89.)

The mid-plane, or strait, of the pelvis, unlike the superior plane, is not bounded by a line, all the points of which lie in the

A B, Horizon. C D, Vertical.

A B I, Angle of inclination of pelvis to horizon, equal to 60 deg. B I C, Angle of inclination of pelvis to spinal column, equal to 150 deg.

C I J, Angle of inclination of sacrum to spinal column, equal to 130 deg.

EF, Axis of the inlet.

L M, Mid-plane of the middle line.

N, Lowest point of the mid-plane at the spine of the ischium.

same plane, and the term plane must not be taken therefore in an exact and mathematical, but in an obstetric and conventional sense. Its boundaries may be stated as follows: Commencing at the symphisis pubis anteriorly, at about the level of the upper margin of the obturator foramen, it crosses the obturator membrane immediately below the point of the exit of the obturator nerve and artery; from thence it descends the spine of the ischium along the oblique ridge on the inner surface of that bone. It then traverses the lesser sacro-sciatic ligament, and ascends to the level of the lower portion of the third piece of the sacrum. The straight line, L M, in the diagram represents its level in the mesial line; its lowest point is indicated by the letter N, situated at the lowest part of the curved line, and this

corresponds to the apex of the ischial spines. The general inclination of this plane to the horizon is considerably greater than that of the superior plane-in other words it makes a less angle with the horizon, the difference being about 20°. The importance of the study of this plane will be more particularly dwelt on when speaking of the canal of the pelvis. (Fig. 90.)

A, Axis of Superior plane. C, Axis of Inferior plane. E, Horizon.

B, Axis of Mid-plane.

The inferior plane, plane of the outlet, or inferior strait, is commonly described as extending between the lower margin of the symphisis pubis anteriorly, and to the tip of the coccyx posteriorly. There are, however, valid reasons for dismissing the coccyx from our calculations on this head; for being movable, and potentially endowed with elasticity through the medium of its connection with the perinæum, any influence it exerts upon the progress of labor partakes of the nature of a force applied from without, and differs toto calo from the rigid resistance of all other parts of the pelvis. The motion enjoyed by the coccyx is so great, that before it has reached its limit it ceases to influence the antero-posterior diameter of the outlet, and the mechanical conditions under which the fœtal head escapes from the pelvis are then imposed by the apex of the sacrum. This is proved by the following measurements: In a large female pelvis, the antero posterior diameter of the outlet, measuring from the tip of the sacrum, is 4.5 inches, and from the tip of the coccyx, 3.625. The amount of motion enjoyed by the coccyx equals one inch—that is to say, the coccyx can be pushed back one inch from its ordinary situation by the pressure of the fœtal head and the action of the muscles in connection with the coccyx. If we add this inch to the ordinary diameter, 3.625, we have 4.625 as the distance from the tip of the coccyx to the lower border of the symphisis pubis.

As this is greater than 4.5 inches, the distance from the last mentioned point to the extremity of the sacrum, it is clear that the sacrum, and not the coccyx, bounds the outlet of the pelvis, and determines how large a body shall pass out of it. The inclination of the plane of the outlet to the horizon, if the measurement to the tip of the coccyx be taken, is, according to Naëgele, from 10° to 11°. If the tip of the sacrum is taken as the osseous limit posteriorly, the inclination will not of course be so great, the angle being in this from 15° to 16°. The planes of the pelvis meet, if projected anteriorly, about 1.5 inch in front of and below the symphisis pubis. These several planes, it must be borne in mind, vary in their relation to the horizon and to the spinal column, but constantly preserve the same relations between themselves. The sacro-iliac articulations are not free enough to allow of any variation in the pelvic planes. As a corollary to this, it follows that the axes of the planes of the pelvis must be fixed and determinate, and the course of the feetal head under normal conditions must be fixed and determinate also.

The axes of the pelvis are certain imaginary lines, drawn at right angles to the several planes of the pelvis. The axis of the superior plane or axis of the inlet, if prolonged and produced superiorly, will emerge from the umbilicus, and, inferiorly, will impinge upon the anterior surface of the coccyx, near its point. This line makes with the horizon an angle of about 30°. The axis of the mid-plane, if produced inferiorly, will fall upon a point rather nearer to the anus than half the distance between the anus and the tip of the coccyx; and superiorly, will issue some inches above the umbilicus. The angle made with the

horizon by this line is about 50°. The axis of the outlet, when the point of the coccyx is not displaced by the egress of the fœtus, falls from the promontory of the sacrum to midway between the tuberosities of the ischia, or to the anus if continued through the soft parts. The angle made by this axis with the horizon is about 80°. But, as already stated, it is better to consider the axis of the outlet as the axis of a plane extended between the inner margin of the symphisis pubis and the apex of the sacrum. Such a line would emerge superiorly, a little in front of the sacral promontory, and, below, would fall a little behind the anus. There would also be a small diminution of the angle made by the axis of the outlet with the horizon. This represents the actual state of things during labor, when the coccyx is moved back, and the differences just enumerated necessarily follow. (Fig. 90.)

These axes are all of them of importance chiefly as they bear upon the true axis of the pelvic canal which represents the path traversed by the fœtus in its passage from the maternal nidus to the external world. The axis of the canal is a subject upon which very diverse opinions have been held, and most of them evidence a wish for diagrammatic perfection rather than a patient observation of Nature. The study of the axes of the pelvic planes of the inlet and outlet has led to much incorrect opinion. the axis of the canal being held to be identical with the axis of these two or three planes; whereas, the axis of the canal is identical with every imaginary intermediate plane from the inlet to the outlet, at the point where the axis cuts the plane. One observation will show the fallacy of representing the axis of the canal by the axes of isolated planes. The axis of the outlet of the pelvis, and the direction of the axis of the lower part of the pelvic canal, are usually confounded together, whereas they are totally distinct. The axis of the outlet is downwards and backwards, being at right angles with the inferior pelvic plane, while the produced inferior extremity of the axis of the canal, being the axis not of one plane but of many, looks downwards and forwards. It is difficult to conceive how such men as Muller and Roderer should have fallen into the error of making the pelvic axis a right line. Baug, Choulant, Carus, and Camper represent it by means of an arc de cercle; and the circle of Carus finds favor at the present time with many obstetricians. Camper is, perhaps, the model of a mind addicted to diagrams; and, as is well known, he fell into diagrammatic vagaries about other things than obstetrics.

A rougher idea, again, of the direction of the pelvic axis could hardly be given than by endeavoring to express it by the meeting of the inlet and outlet; yet this is held by some. Levret caught a glimpse of the truth when he proposed to represent the value of the pelvic curve by perpendiculars drawn from three planes. Had he said thirty or three hundred planes, he would have been nearer the fact, the axis of the pelvis being in reality, as already stated, a curved line, passing through the centre of every linear plane between the plane of the inlet and the plane of the outlet. Of all recent authors, Dubois leaves least to be

a b, Axis of the path of the fætus through the pelvis. c, Coccyx. dd, Distended perinæum.

wished for in his description of the pelvic curve. We must be careful not to dislocate the curve of the pelvis from its connection with other parts through which the fœtus passes. This curve is only complete when we have added to it the axis of the

uterus above and of the distensible soft parts below. Collectively, the parturient line is expressed by an irregular parabolic curve, fixed from the brim of the pelvis to a line drawn from the inferior margin of the symphisis pubis to the apex of the sacrum, and variable from the fundus uteri to the pelvic brim, and from the outlet to the margin of the perinæum, according to the position of the uterus, and the facility with which the coceyx is pushed back or the perinæum distended.

The study of the axis of the inlet and of the outlet of the canal has important practical bearings. In order that the uterus may act with the greatest efficiency in the first stage of the labor, where the motor force is required in the direction of the axis of the inlet, it is necessary that the axis of the uterus should correspond with the axis of the inlet. If the gravid uterus be anteflected or retroflected from the true position, the progress of labor is impeded. If the axis of the uterus approaches the horizon, the feetal head is impelled against the promontory of the sacrum; if it approaches the perpendicular, it is urged against the pubes. The derangements of the axes of the uterus and pelvis have the same effect as distortion of the brim, only the difficulty is easily remediable. By bending the spine upon the pelvis as in the usual obstetric position, we may depress the axis of the uterus; and, on the other hand, if it requires to be raised, it is necessary to support the uterus with a bandage or place the patient on her back. It is necessary that we should recognize the direction of the axis of the outlet in examinations; in introducing the hand into the uterus; in assisting the birth of the head; and in all traction in midwiferv operations of every kind.

The canal of the pelvis is the most important matter in relation to this assemblage of osseous structures, and it is especially necessary to consider the walls of this canal, and the direction taken by the different portions of the pelvic parietes. It may be observed that the inner surface is made up of a number of smooth inclined planes, and that the inclination of these planes is so arranged as to accomplish two principal objects; one, a gradual alteration of the direction of the longest diameter of the canal: the other, a more sudden change in the direction of the planes themselves. Between the superior and middle planes of the area of the pelvis, we may observe in the pelvic walls of the inlet four inclined planes: of these, one is formed by the

n

whole of the internal surface of the body of the pubic bones; and a second, by the upper half of the sacrum. The direction of both these inclines is downwards and backwards. The two other inclined planes are placed laterally, and are composed of the ilia and ischia, terminating in the spinous processes of the The direction of these lateral spines is downwards, backwards, and inwards, so that at the spines of the ischia the walls of the pelvis approximate to each other more closely than they do at the commencement of the superior lateral planes, below the linea-ileo-pectina. The inclined planes of the outlet, as far as the bony pelvis is concerned, may be said to be five in number; one posterior and four lateral. direction of the posterior, consisting of the lower half of the sacrum and the adjacent portions of the sacro-sciatic ligaments, is also downwards and forwards. Of the lateral inclined planes of the outlet, two, consisting of the internal surfaces of the ischia, below the level of the spinous processes, terminate in the tuberosities, and are directed downwards and forwards, and slightly inwards. The other two lateral planes of the outlet are formed by the descending rami of the pubic bones, and the ascending rami of the ischia; they extend from the middle of the arch of the pubes to the tuberosities of the ischia, their direction being upwards, forwards, and inwards. If we considered the bony pelvis as a complete canal, it would be pinched inwards at the points of the ischial spines and tuberosities of the ischia, and bulged outwards at the sites of the great sacro-sciatic foramina. These circumstances, together with the shallowness of the anterior or pubic portion, contribute to alter the diameters of the superior, middle, and inferior planes. key to the pelvic mechanism, in an obstetric sense, may be said to be the spinous processes of the ischia. Here it is that the fœtal head makes its most decided change of position. The changes of position and direction which bring the feetal head to occupy, at the outlet of the pelvis, the right oblique position as the most common presentation, are effected mainly by the anatomical adaptations of the pelvis, aided by the mechanism of the fœtus, and the position of the rectum in the notch by the side of the sacrum on the left side. (Fig. 92.)

The normal depth of the female pelvis, is, according to Burns, as follows: From the promontory of the sacrum to the tip of

coccyx, from 5 to 6 inches; from the brim to the tuberosity of the ischium, 3.75 inches; anteriorly, from 1.5 to 2 inches. The variations which obtain in this respect exercise a considerable influence upon the progress of labor. Deep pelves are often somewhat funnel-shaped, and shallow pelves are not merely wide in appearance, but wide in relation to the size of the body. If a pelvis be very much shallower than usual, the points of resistance to the passage of the fœtal head are of course diminished in number, and the track of the fœtus is materially shortened also: labor, under these conditions, is unusually rapid, unless there is coëxistent distortion. It is well to bear in mind, that the shortest pelvic diameter is that between the two ischial spines (3.5 inches) and the longest is an oblique diameter, extending between the sacro-iliac synchondrosis of either side to the tuberosity of the ischium opposite. This line is six inches

Side view of the pelvis.

in length, and corresponds very nearly in position with the long axis of the fœtal head in an ordinary occipito-anterior presentation, when the head is fairly lodged in the cavity of the pelvis.

With regard to the External Measurements of the pelvis, it may be stated that the same method of ascertaining the anteroposterior, lateral, and oblique diameters, which helps us so much to understand the cavity, will assist us in understanding them. The antero-posterior diameter of the pelvis, externally, is about eight inches; the external transverse—i.e., from crest to crest of the ilia—about 14 inches; the oblique i.e., from the antero-

superior spine of one ilium to the postero-superior of the otherabout eight inches. These diameters are all in the same plane. There are other diameters in various planes, a knowledge of which is useful. For instance, from the spine of the last lumbar vertebra to the antero-superior spine of either ilium, 6 inches 7 or 8 lines; from the symphisis pubis to the infero-anterior spinous process, about 4 inches; from the tuberosity of either ischium to the postero-superior spine of the ilium of the opposite side, 6 inches 6 lines; from the great trochanter of either side to the postero-superior spine of the ilium of the opposite side, about 8 inches. These measurements are valuable, not because we can determine from them the internal pelvic diameters, but because, unless the proportionate dimensions stated above are maintained, there must necessarily be an alteration in the size of the pelvis, or serious distortion. When speaking of deformed pelves, it will be pointed out how the diminution of each of these diameters is indicative of certain mal-relations between the pelvic bones.

LECTURE XX.

THE ANATOMY OF THE FŒTAL HEAD.

GENTLEMEN:-The anatomy of the fætal head, and the anatomy of the pelvis, are the elements of obstetric mechanics; and the behavior of the former in the cavity of the latter will, of course, depend upon the mutual relations of each. It is to the cranium of the fœtus, however, that our attention is now directed. Speaking, in general terms, the head of the fully developed fœtus is au irregular ovoid mass of very various diameters, and various compressibility, according to the diameters in which the compressing force is applied. It is attached to the neck in such a manner as to project posteriorly more than anteriorly; and it rotates upon this point of attachment to the extent of a quarter turn without any harm accruing to the infant. The bones of the head may be arranged into two systems: one, the bones of the cranium; and the other, those which compose the face and base of the skull. The bones of the face and base of the skull differ from those of the calvarium in being far more highly ossified; they are, in fact, so advanced in development as to be practically unyielding; and the adaptations, therefore, which exist between the configuration of this part of the fœtus and the maternal skeleton are obtained either by the slight compressibility of the soft parts of the fætal face, or by special morphological conditions of the bones themselves. The bones of the face and base of the skull are early developed, and unyielding in their texture, in order to protect the delicate organs of special sensation and important ganglia at the base of the brain from the injurious effects of mechanical violence during labor. The hemispheres of the brain perform functions the integrity of which is less necessary to life, require no such protection, and submit to considerable compression within their movable case. It is interesting to remark, that the immovable portion of the bones of the head occupies such a position that a moderate force of compression applied to the opposite aspect of the cranium tends rather to increase than to diminish its capacity; according to the well-known law which provides that a spherical vessel contains greater bulk in proportion to its superficies than any other form or receptacle. The lower jaw in the fœtus is widely different from an adult maxilla, as may be seen by reference to the accompanying engraving; the ramus is short and oblique, and the empty alveoli of each jaw are thus per-

1, 2. Occipito-frontal diameter. 3, 4. Occipito-mental. 5, 6. Cervico-bregmatic. 7, 8, Fronto-mental.

mitted to come into actual contact, whilst the body of the bone is shallow; and thus by a combination of provisions, the frontomental diameter is kept within convenient limits. Were the chin pronounced, and the fronto-mental diameter consequently much increased, it would, in ordinary presentations, almost inevitably strike against the right side of the promontory of the sacrum, and prove an insuperable obstacle to the movement of rotation taken by the head in its descent through the pelvis. The diameters of the facial portion of the head are its smallest diameters, and adapt themselves to the smallest diameters of the pelvis. Thus the bi-temporal diameter, which is variable to a very slight extent, is little more than two inches and a half, the bi-malar diameter is barely three inches, and the bi-mastoid is not much over two inches. These diameters all pass through the cavity of the pelvis, between the spines of the ischia, in ordinary occipito-anterior presentations, as well as in those cases where the occipito-posterior presentations have passed into the former. The unvielding portion of the head might be represented by an oval plane, having one end at the back of the neck, and the other somewhat above the brow, whilst its conjugate diameter would nearly correspond with a line passing through the skull from ear to ear. It is evident that whatever error an obstetrician might fall into as regards the actual position of the head, from failing to take into account the moulding the calvarium undergoes in transitu, none can arise from this source as far as the face and ears are concerned. In cases of distortion or contraction, then, it follows that a recognized ear, or cheek-bone, will be a better index to the actual position of the head than any point in its more movable part. Dr. Hamilton was of opinion that the compression of the cerebral hemispheres during labor produced a paralyzing effect upon the limbs of the fœtus, and tended to keep them motionless under the action of the uterus—an opinion shared in by Dr. Ramsbotham.

That part of the head which is called the skullcap consists of the occiput, the parietal bones, and the frontal bones; the temporal bones scarcely require to be noticed. In the vast majority of cases, these bones are soft and semi-cartilaginous, and connected to each other only by the dura mater and scalp; their contiguous edges are bevelled off, and they may be made to overlap each other to a very considerable extent. Between the edges of contiguous bones are grooves called sutures; and where three or more sutures meet, there is a deficiency of bone, called a fontanelle. The arrangements for solidity in the face and base of the skull are not more conspicuous than the provisions made for plasticity here; in whatever direction compression is applied, it results in a modification of the contour of the head, partly because the bones bend, and partly because they overlap in various directions. As a general rule, it may be laid down, that in ordinary presentations the longer the head remains in the pelvis, the more ovoid will it become, always provided that the pelvis is not absolutely deformed. There is a considerable discrepancy between the estimates of dimensions given by various writers. Dr. Meigs is very positive in affirming that the estimate usually given of the occipito-frontal and occipito mental diameters is far too low. It is not unlikely that much may depend upon the period when the measurements are taken, for certainly the cranium of a fœtus, immediately after what is vulgarly called a "hard labor," is materially longer

than twenty-four hours later, and, it may be presumed, than before it has been subjected to the modelling process by which it attains its adaptation to the maternal passages. Confining ourselves, however, to average figures, which shall represent rather the relative diameters of the fœtal head, than an exact estimate of each individual measurement, the following table may be relied upon as sufficiently accurate for all practical purposes. The really important consideration is not the absolute, but the relative, admeasurements of the skull; we are utterly unable, in any given case, to determine the magnitude of the body about to pass, and are therefore compelled to frame our mechanical appliances upon considerations of proportion.

- 1. The occipito-frontal diameter 4.5 inches to 4.75
- 2. The occipito-mental 5.0 " 5.25
- 3. The trachelo-bregmatic . . . 3.75 "
- 4. The sub-occipito-bregmatic 3.25 "
- 5. The transverse or bi-parietal 3.5 "6. The trachelo-frontal 3.25 "

It will be observed that the two first of these measurements are particularly noticed as varying, and they do, in fact, vary as labor advances, being the direction in which the greatest range of alteration is admissible. The circumference of the head varies, of course, according to the direction in which it is taken. Thus the ordinary presenting circumference, which passes under the occiput, and round the parietal bones, to a little behind the bregma, is about 11.5 inches, and the occipito-mental is rather more than 14 inches, and the occipito-mental is nearly sixteen inches. It is unnecessary to burden the memory with any further details on this head.

The sutures with which we are mainly concerned are the coronal, the sagittal, and the lambdoidal; the temporal sutures between the temporal bones and the inferior concave border of the parietal bones are comparatively uninteresting, because the ear is quite as easy, if not easier, to recognize in all cases where it is desirable to know the position of that part of the head. The coronal suture—so called because the ancients wore their triumphal crowns in that position—is the line of demarcation between the frontal and parietal bones; it extends transversely, and almost vertically, over the head, from the summit of the squamous portion of the temporal bone on one side, to a corres-

ponding point on the other side; its line is broken by the great or anterior fontanelle. The sagittal suture projects directly backwards from the coronal in the middle line, and lies between the opposed superior borders of the two parietal bones; posteriorly it abuts upon the apex of the lambdoidal suture. The lambdoidal suture—so called from its resemblance to a Greek A—is formed by the opposed borders of the occipital and parietal bones: if two parietal bones are placed in situ, it will be seen that, owing to the obliquity of their posterior borders, an angular recess is formed where they meet; into this recess the occipital angle fits, and just between the superior angle of the bone and the angular recess alluded to, is the small or posterior fontanelle. There is a suture between the two divisions of the frontal bone which varies in width, but is always recognizable where it abuts upon the great fontanelle; the sagittal, coronal, and lambdoidal, are however the important sutures, and of these the sagittal is paramount.

The fontanelles are spaces between some of the cranial bones, into which the sutures debouch. British obstetricians generally take cognizance only of two; an anterior or greater, and a posterior or lesser. Continental writers speak of two others—the temporal; but as the finger could hardly impinge upon them unless the orbit were within reach also, it appears unwise to

Anterior and posterior fontanelles.

divert attention from the more to the less valuable aid to diagnosis. The anterior or greater fontanelle, or bregma, is a rhom-

boidal space into which two fingers may be easily laid; its long diameter is from before backwards, and the greater half of the rhomboid is in front of its lateral angles. The sagittal suture joins its posterior angle, the inter-frontal enters its anterior angle, and the two halves of the coronal suture debouch into its lateral angles. The posterior or lesser fontanelle is small and triangular; it receives the sagittal suture into its anterior angle, and the two limbs of the lambdoidal suture into its lateral angles. The posterior fontanelle is the one with which it is most necessary to be familiar.

However easy it may seem at first sight to determine which suture or which fontanelle is touched in any given examination, beginners are very often mistaken, and there are some circumstances which may embarrass others than tyros. It may be as well to point out a few distinctions between each suture and each fontanelle. The sagittal suture may be recognized by its debouching into two fontanelles; the coronal by its joining a large fontanelle at one end, and leading to a more unvielding part of the cranium at the other; the lambdoidal by its joining only a small fontanelle. The anterior and posterior fontanelle, if they should happen to approximate in size to each other, may yet be distinguished by the anterior having four angles, and its four sides bounded by bony margins, which do not project into the space; while the posterior has but three angles, and the bones around it are the three acute apices of the occipital and two parietal bones. There is occasionally a false fontanelle in the course of the sagittal suture, the result of defective ossification in the opposed edges of the two parietal bones; if it is borne in mind, however, that only two lines of suture can be traced from such a space, it cannot be a source of any great difficulty. Before the membranes are ruptured, it may be somewhat difficult, when they are tough, to appreciate all the points of difference between the sutures and fontanelles; sometimes ossification is so abnormally advanced or delayed as in a measure to destroy the characteristics of the fontanelles; and when the bones of the head overlap each other very much during its passage through the pelvis, it may be a matter of great difficulty to recognize anything very distinctly. The greatest difficulty in the way of accurate diagnosis is presented perhaps in those cases in which the membranes have been ruptured early, and the head has been long in the pelvis, tightly girt by a rigid cervix uteri. Under these cirumstances, the scalp becomes swollen, puffy, and infiltrated with serum and sometimes blood, and nothing can be felt distinctly through it; it may be almost impossible to pass the finger beyond the puffy tumor, so as to reach a part of the head covered by natural scalp, and such cases have been mistaken ere now for breech presentations.

Bi-parietal diameter; sagittal and lambdoidal sutures with posterior fontanelle.

There are some general considerations connected with the size of the feetal head which are worthy of attention. In the first place, it must be remembered that the average dimensions of the male feetal head are considerably greater than those of the female; the excess in the circumference which most commonly presents is about half an inch, and this is quite sufficient to make a scrious difference both in the chances of danger accruing to the infant and the mother. The question of safety to mother and child is very much a matter of time; whether the delay results from rigidity of the passages as in primiparæ, or from greater size of the head as when the fœtus is masculine, the result is pretty nearly the same. The late Dr. Joseph Clarke, of Dublin, a very distinguished accoucheur, investigated very minutely the question of the difference of the size of the brain of the two sexes at the time of birth. He ascertained by the admeasurement of a large number of cases, that the circumference of the male head is greater by half an inch, or about the twenty-eighth part of the entire circumference, than the female head, at the time of birth. The fact that the male fœtal head is actually larger than the female having once been established, all the disastrous consequences of which Prof. Simpson has given statistical proof

follow as inevitable. In cases of tedious labor-convulsions, puerperal convulsions, puerperal fever, ruptured uterus, hæmorrhage, and instrumental delivery, by far the greater number of children are males. In cases of pelvic abscesses, ruptured perinæum, and vesico-vaginal fistula, the same undesirable prëeminence attaches. to male children. The following are the principal conclusions of Prof. Simpson:

- 1. Of the mothers that die under parturition and its immediate consequences, a much greater portion have given birth to male than to female children.
- 2. Of still-born children, a larger proportion are male than female.
- 3. Of children born alive, more males than females suffer from the morbid states and injuries which result from parturition.
- 4. More males than females die in the early period of infancy, and the disproportion diminishes from birth to some time afterwards.
- 5. More dangers occur, both to mother and infant, in first than in subsequent labors.
- 6. Of children which die in utero before labor as many are females as males.
- 7. Of the accidents which happen after the birth of the fœtus itself, as many occur with female as with male children.

There are other aphorisms on this question, laid down by the same authority, but they are only corollaries of the foregoing

propositions, and need not, therefore, be stated.

Besides the effect of sex in modifying the size of the feetal head and increasing the pain and danger of parturition to the mother and child, we have to consider the effects of race and civilization upon the head of the feetus at the time of birth. All enthological researches tend to show, that, with the advance of civilization, the human head has increased in size. The oldest crania in existence, much older than the mummies of Egypt, are the skulls found in various parts of the world in diluvial caves, with the fossil remains of extinct animals. These skulls apparently belong to other races than those which now inhabit the countries in which they are found; they have a small development of the brain, and resemble the skull of the Carib in flatness of the frontal bone. The heads of Peruvian and Egyptian mummies are considerably below the size of the European cranium. Nothing

within the range of human anatomy stands in a stronger contrast than the cerebral size and development of the New Hollander, or the Bushman, and the Caucasian races. The different condition of education amongst different classes of the same race also has its effect on the size of the brain and cranium. Hatters state that the size of the head is greater in the same classes in towns, than in agricultural districts, in the educated than the uneducated. Tiedemann gives from 3lbs. 2oz. to 4lbs. 6oz. troy weight, as the average weight of the adult male European brain; but he found that of Cuvier weighed upwards of 4lbs. 11oz., and that of Dupuytren 4lbs. 10oz. [Authorities differ in respect to the weight of the brain of various distinguished persons. The following is extracted from the post mortem of Daniel Webster in the American Journal of Medical Science, which will give an idea of their relative size: Cuvicr, 4lbs. 5drs. 10grs.; Webster, 3lbs. 15oz. 12drs.; Dupuytren, 3lbs. 10drs. 27grs.—avoirdupois.] The same authority gives the average weight of the female brain as from 4 to 8oz. less than the male; and he found the different size of the male and female brain was perceptible at birth, in this according with the views of Dr. Joseph Clarke and Dr. Simpson. The increase is not confined to the head alone. Dr. Clarke found that, on the average, taking the whole body, males weigh 9oz., or nearly onetwelfth of the entire weight more than females. It seems a clear inference, that the brain and head of the uncivilized and the uneducated must be, on the average, smaller than those of the educated and civilized; and we have seen in the comparison of the male and female head at the time of birth, how small a difference in the size of the feetal head is sufficient to increase the dangers and, necessarily, the sufferings of parturition. Dr. Simpson is of opinion that the comparative difficulty of parturition with male and female children extends to the fœtus of civilized races, and he refers the increased suffering of the civilized woman in childbirth to the size of the feetal head. Some writers have expressed the opinion, that savage women do suffer as much or nearly so, as the women of civilized races.

[Dr. Livingston, in his recent researches in S. Africa, says negro women generally suffer less than Europeans, principally, as it appears, because they consider parturition to be an act of nature, and less a disease than do the latter.]

But the general bearing of all the knowledge we possess on this subject, supports the view, that barbarian women suffer far less than women in a state of civilization. The size of the feetal head must be considered the most important element in this matter, though at the same time, there is the greatest sensibility induced by the habits and social condition of the civilized and highly cultivated female to be taken into account.

Civilization not only influences the size, but the relative size of the different parts of the fœtal head. In uncivilized races the tendency is to increase the occipito-mental diameter, by the protuberance of the occipit, and the greater development of the lower part of the face, and to diminish the occipito-frontal diameter by the flattening of the frontal bone and the low development of the anterior cerebral lobes. The diminution of this diameter must lessen the difficulty in the passage of the fœtal head. In the case of a negress, whose labor I had the opportunity of witnessing, the great mass of the fœtal brain was behind the auditory foramen, the fœtal head having the shape represented in Fig. 96.

Other influences, besides civilization and education, have an influence upon the size of the head. The Caribs flattened the foreheads of their children, and the continuance of this practice through succeeding generations produced a natural flattening of the anterior part of the head, until the Carib infants were born with flat heads. The practice of flattening the head prevailed in Mexico, and, at an early date, in the eastern parts of Europe. Hippocrates gives an account of the Macrocephali, a Scythian race believed to have inhabited the Crimea, of whom the Father of Physic says: "There is no other race of men which have their heads in the least resembling theirs. At first, usage was the principal cause of the length of their head, but now nature cooperates with usage. They think those the most noble who have the longest heads. It is thus with regard to the usage: immediately after the child is born, and while its head is still tender, they fashion the head with their hands, and constrain it to assume a lengthened shape, by applying bandages and other suitable contrivances, whereby the spherical form of the head is destroyed, and it is made to increase in length. Thus at first usage operated, so that this constitution was the result of force; but in the course of time it was formed naturally, so that usage

had nothing to do with it." Mr. Adams, the learned translator of Hippocrates, cites some researches of Dr. Rathke, as affording a remarkable corroboration of the preceding observations. Certain tumuli have been excavated in recent years at Kertch, and there were found in them several skeletons, in which the form of the head was greatly elongated, so as to resemble the shape described by Hippocrates in the Macrocephali. It has been suggested that one object had in view by the races accustomed to flatten the head was, that of producing a shape favorable to easy parturition. Binding the heads of children upon a board is practised in some parts of Europe at the present day. I have seen Polish infants arranged in this manner apparently as a mere fashion or habit. The round head of the Greek and Turk are believed to have been in part produced by the effect of the national cap and turban, continued through successive centuries.

["As we went round the long galleries (of the Royal Lunatic Hospital at Charenton, France), Dr. Foville pointed out to us several persons whose heads were of a very peculiar form, more or less perfectly approaching the pyramidal; the face might represent the base and the occiput the apex. Their foreheads were peculiarly flat and narrow. In reference to them he remarked, that this species of head was peculiar to a particular department of France, in the same manner as the Flat-head Indians are peculiar to one tribe. In this district more children die at an early age than in any other; the diseases bring principally convulsions and other maladies, which depend upon the health of the brain. More insane come from this than from any other quarter of the kingdom, in proportion to the population; and finally more cases of idiocy, epilepsy and the like than elsewhere. What is the cause? Evidently the peculiar shape of the head, which pervades the people of that whole region, who all participate in this deformity, in a greater or less degree, without a single exception. So universal is it, indeed, that some painters and sculptors regarding it as the natural head of man, have drawn from this source their beau-ideal of beauty; and fixed upon the sloping shoulders of their Venuses and Apollos, heads gracefully rising in tapering pyramids.

An investigation of this extraordinary phenomenon has been made, and the cause discovered, the Flat-head Indians are

known to alter the form of their infants' heads by pressure on the skull, when its bones are in a more or less cartilaginous state and not yet firmly united. From this fact it was suspected that some such prank was practised on these children of France, and sure enough, it has been found, that mothers and nurses have been employed for centuries in the wholesale business of driving mad, maiming, and murdering the children of a particular district. This enormity has been committed by putting a peculiar cap upon the heads of their offspring, and fastening it tightly there by means of a strong band; and this simple cord has killed its hundreds and diseased an entire region! With the Flat-head Indians the pressure is in another direction, and may affect the intellect while the nutritive organs are unimpaired. Dr. Foville mentions an autopsy made upon one of their countrywomen, who had the venous circulation so impeded that a large plexus was formed, for the accommodation of which a deep cavity was sunk in one of the lobes of the brain.," etc.--G.-Old Wine in New Bottles; or, the Spare Hours of a Student in Paris. New York, 1849.]

LECTURE XXI.

THE MECHANISM OF LABOR.

Movements of the Fatal Head during its Passage through the Pelvis: Obliquity—Flexion—Rotation—Extension—Restitution.

Gentlemen: -Great improvements in any department are commonly of slow growth. This may be said emphatically of our knowledge of the Mechanism of Labor, which with the motor forces engaged in parturition, stand at the very foundations of the science and art of Obstetrics. More than a century ago, to the honor of the Dublin school of midwifery be it said, Sir Fielding Oulde called in question the opinion which had previously prevailed universally, that the head entered and passed through the pelvis in the direction in which it emergesnamely, the antero-posterior diameter. In his little work, published in 1741, he taught that the face of the child did not lie upon the sacrum of the mother, but was always, in natural cases, turned to one side or the other. He believed, however, that the chin of the child was turned towards one of the shoulders, the neck of the fœtus being partly rotated upon its body. This error respecting the different position of the feetal head and trunk, was corrected by Smellie, and the belief in the oblique position of the head in the pelvis gained ground amongst accoucheurs in different countries. In 1771, Saxtorph, of Cophenhagen, and Solayres de Renhac, of Montpellier, published almost simultaneously the discovery that the head not only enters the pelvis with the long diameter in one of the oblique diameters of the pelvis, but that the long axis of the head, in the great majority of cases, occupied the right oblique diameter; the occiput being directed towards the left foramen ovale, and the forehead towards the right sacro-iliac symphisis. Solayres de Renhac went, however, beyond his contemporary, Saxtorph, in describing the mode in which the head passed through the outlet under various circumstances, to which we shall have hereafter to revert. These advances were realized by practical

accoucheurs, especially by Baudelocque and his disciples; but it was not until 1818 that Naëgelé gave a full account of the behavior of the head in the pelvis under the various circumstances under which it may be placed in natural labor. Discarding all theory, and looking closely to the operations of Nature, he obtained an amount of knowledge which enabled him to systematize the facts of previous authors, and give us an account of the mechanism of labor, which subsequent observations have all tended to confirm. No other work, of equally small size, ever exerted greater influence upon any branch of medicine than that of Naëgelé upon midwifery. It may be termed, indeed, the Euclid of Obstetrics, but it will not have executed its mission until every accoucheur, in each individual case coming before him, entirely masters the position of the feetal head. Nothing less than this should be aimed at by every obstetric practitioner. We must not be content with knowing that the head presents, but we must know the exact mode and direction in which the head passes through the pelvis; otherwise we scarcely attain beyond the knowledge of the midwife. "Judgment," to use the words of Hippocrates, can never be otherwise than "difficult," in this subject. In estimating relations of position, we always naturally refer to the position of our own body as the standard of comparison. But in case of labor, the accoucheur stands in the upright position, and has to deal with the mother and the child in the horizontal position; the fœtus and the mother being themselves reversed, the child standing, as it were, on its head within the system of the mother. These complicated positions are so difficult to master, that I have heard men who have attended thousands of cases, confess themselves as only beginning to be certain of the presentations in particular instances. It is only by a careful study of the pelvis and the fœtal head in the dried state, and a pains-taking observation of the relations of the head and the pelvis in every case of labor, that will enable you to master this difficult problem. Naëgelé tells us that he kept his finger on the head during the whole course of labor, when he wished to ascertain any particular point. There is still enough to be made out respecting the function of parturition to reward every diligent student who may devote his energies to the prosecution of this subject. In every direction we must analyze and synthesize the movements of the

fætal head, and the motor forces and the mechanisms which urge and direct it in its course through the pelvis and parturient canal.

The largest movement of the fœtal head in parturition is that through the canal of the pelvis, and the passage formed by the vagina and soft parts. This movement is common to all the positions in which the head passes through the pelvis. In its performance, the centre of the head corresponds pretty nearly with the axes of the hard and soft portions of the parturient canal. To this common movement are superadded various movements of the head upon its bilateral axis, its antero-posterior axis, and its vertical axis, all of which vary in character and extent according to the position in which the head first engages in the pelvis. These movements and differences, considered in relation with the pelvis, constitute the mechanism of labor and the several "positions" as they are called, in which the head presents and passes through the pelvis and soft parts. The head lies at very various depths at the commencement of labor. Sometimes the developed cervical portion of the uterus, and the contained feetal head, lie entirely in the pelvis, before the commencement of any uterine action. At others the head is high up in the pelvis, and has scarcely, if at all, entered the brim. As Dr. Rigby points out, the head is more frequently low in the pelvis in primipara, and high up in multiparous women. cause of this is probably the greater rigidity of the abdominal walls in primiparæ as compared with multiparæ. In many multiparous cases, the head is, however, wholly within the pelvis for sometime before the commencement of labor. For the description of labor it is convenient to take those cases in which the head is high up as the standard, this gives us an opportunity of tracing the steps by which the head descends through the pelvic canal.

The mechanism of labor is necessarily somewhat complicated, and it should be the aim of all teachers to render it simple as possible, by describing as few varities as may be consistent with nature, and requisite to be understood in practice. It is easy to multiply varieties in the position of the head, by insisting upon trivial differences; but dis-service rather than service is done in this way to the advance of obstetric knowledge. It is to be hoped that each successive describer of the

process, having the aid of those who have gone over the same subject before him, may do something towards rendering the steps of this progress more and more intelligible, and more decidedly linked with practice. There are four principal positions in which the fœtal head presents in the pelvis, and these positions we shall now proceed to consider. The two first positions are termed Occipito-Anterior, because in them the occiput is placed towards the pubis. The other two are called Occipito-Posterior, because in them the occiput is turned towards the sacrum.

In the **First Position**, the head, as already mentioned, enters the pelvis in the right oblique diameter, or in a line between the transverse and oblique diameters. The occiput is placed towards the left acetabulum, and the forehead towards the right sacro-iliae synchondrosis. At first, the long diameter of the head is parallel, or nearly so, with the superior plane of the pelvis, the occiput and sinciput being about on the same level. There is, however, a considerable lateral obliquity of the head. The right side of the eranium is considerably lower than the left, so that the most depending part of the eranial surface is the protuberance of the right parietal bone. As the head descends, there is a slight rotation upon the bilateral axis, and the occiput generally becomes lower in the pelvis than the forehead. This descent of the occiput is called the *Flexion of the Head*.

Brim of the Pelvis and Base of the Fœtal Cranium in the First Division.

The above engraving shows the entrance of the fœtal head into the pelvis in the right oblique diameter after it has com-

menced its descent. The mastoid process of the left temporal bone and the chin are at this time the highest portions of the feetal head; the right half of the occipital bone, and the adjoin-

ing portion of the temporal bone, being depressed.

If we examine per vaginam when the head is in the upper part of the pelvis in this position, the right tuber parietale is felt through the walls of the anterior portion of the cervix uteri. This is the point with which the finger comes in contact at the most depending part of the head. The right ear of the child can be felt behind the pubes, if the os uteri is sufficiently open to allow of its being reached. At this time the os uteri does not occupy the axis of the pelvic canal, but is more posterior and directed towards the upper part of the sacrum. If the finger is passed into the os uteri, the sagittal suture is felt crossing the field of the os, in an oblique direction. The patient lying on the left side, the acconcheur standing or sitting behind, and bending over her to make the examination, feels the sagittal suture running forwards and downwards in one direction, and upwards and backwards in the other. The sagittal suture divides the os uteri unequally, a larger portion of the middle and upper part of the right than the left parietal bone being included within the ring of the os. It is this middle and upper portion of the right parietal bone which is felt in making an examination at this period, and it is here that the tumor of the scalp is formed, when this arises from the pressure of the head against the partially dilated os uteri. If the os uteri is sufficiently dilated to allow the finger to be passed along the sagittal suture, it reaches in front, and to the left side of the mother, the triangular posterior fontanelle, and the diverging lambdoidal suture, while behind and to the right side of the mother, it comes in contact with the lozenge-shaped anterior fontanelle, and the coronal and frontal sutures. The earlier the examination is made, the more decidedly oblique, or approaching the transverse direction, will the sagittal suture be found.

While the fœtal head is passing through the brim of the pelvis so as to enter the pelvic cavity, it has been shown to occupy the right oblique diameter. It has already been mentioned, that the first movement of the head consists of a partial revolution upon its occipito-frontal axis, so as to effect the depression of the right parietal bone. This movement is termed the

Obliquity of the Head. In the next movement the feetal cranium oscillates to a slight extent upon its bi-lateral axis, so as to cause a dip of the vertex. This movement which brings the chin into contact with the sternum, is called the Flexion of the Feetal Head. The lateral obliquity, the dip of the occipital bone, and the position of the long diameter of the feetal head in the right oblique diameter of the pelvis in the First Position, are shown in Fig. 97.

As the feetal head descends in the pelvis, it performs what is termed, par excellence, its "Rotation." The long diameter of the head changes from the oblique to the antero-posterior diameter, or nearly so. The most prominent portion of the occipital bone glides downwards and forwards upon the inclined planes formed by the descending ramus of the pubis and the internal surface of the ilium, so that the middle portion of the superior and posterior quarter of the right parietal bone, and its posterior and upper angle, become successively the most prominent points of the descending head. It is in this latter position the tumor of the scalp or caput succedaneum is formed, by the pressure of the soft parts of the outlet upon the head. In this position, also, the head emerges underneath the arch of the pubis. In the rotatory movement from the oblique to the antero-posterior diameter, the head describes about one eighth of the circle. In emerging from the pelvis, the head is placed almost as obliquely as at its entrance, the right tuber parietale being still lower than the left. The head does not emerge either with the occipital or parietal protuberance foremost, the part which escapes first being a point between the two, namely (as already mentioned), the upper and posterior part of the right parietal bone. The following engraving represents the feetal head low down in the pelvis, in the first position. The pelvis is placed upon its left side, so as to imitate as far as possible a resemblance of what is felt by the finger of the accouchenr, in making an examination at this part of the process, as far as the bones are concerned.

[The young reader who has probably been taught to practise the toucher with the woman on her back in confinement, as now taught in most of the American schools, may reverse this and following similarly placed cuts, noting that P indicates the pubis under which the occiput presents.]

I believe this is the first time such a representation has been

made, and it appears to me to convey more information than any figure of the base of the fœtal skull and brim of the pelvis—the method hitherto followed in illustrating the mechanism of labor.

Outlet of the pelvis, and the Feetal Head passing through it in the First Position. The asterisk marks the presenting portion.—P, the Pubis.

Another movement of the fætal head now demands our attention. We have referred to the flexion of the head, by which the chin is brought towards the sternum, and the occiput depressed. When the occiput has passed under the arch of the pubis, this portion of the head becomes to a great extent a fixed point, and the frontal bone and face of the child come down, describing an arc in their progress. This is called the *Extension of the Head*, the chin being now separated from the sternum, and the forehead appearing at the lowest part of the cranium.

Immediately after its emergence from beneath the pubic arch, the head usually rotates back again to the aspect it held in the upper part of the pelvis, the face being now turned towards the right thigh of the mother. This re-rotation, which is termed the Restitution of the Head, is effected in the following manner: It generally happens, that as the head escapes, the right shoulder of the fœtus is lowest in the pelvis, and impinges upon the

anterior surface of the right ischial spine. From this point it rotates forwards towards the arch of the pubis under which it passes out, the left shoulder resting upon the perinæum, and generally escaping first. Thus the body of the fœtus rotates in an exactly opposite direction to the previous rotation of the head. The left side of the head glides down the left ischial plane, and the right shoulder glides down the plane of the right ischium.

If it should happen, which is occasionally the case, that the left shoulder be lowest in the pelvis, it glides down the left ischial plane, the shoulders rotate in the same direction as the head, and the face of the child is then turned downwards and towards the left thigh of the mother. When the pelvis is large and the delivery effected suddenly, the shoulders are sometimes expelled in the transverse diameter of the pelvic outlet without any rotation. In the emergence of the head and trunk from beneath the pubis, the direction impressed by the perinæum, and the expulsive efforts is such that the head turns upwards between the thighs of the mother, in front of the symphisis pubis, as represented in the preceding engraving.

In the Second Position, the occiput is turned towards the right acetabulum, and the forehead towards the left sacro-iliac synchondrosis, as the head passes through the brim. The left

part of the base of the skull is lowest, the occipital dip, or flexion, being the same as in the first position.

The left side of the head is the lowest, in the second position, as the head descends, the same portions of the left parietal bone being prominent, instead of the right. The left ear is felt behind the pubis. The sagittal suture is now found nearly parallel to the left oblique diameter. In an examination, the finger passes upwards and forwards to reach the posterior fontanelle, and downwards and backwards to reach the anterior. The occiput glides down the right ischial planes. The rotation is precisely

Brim of the Pelvis and base of the Fætal Cranium in the Second Position.

the same as in the first position, except that it is in the reverse direction. The rotatory movements of the shoulders are also reversed, the face of the child generally turning downwards, and to the left thigh of the mother. Figure 101, page 319, represents the head passing through the pelvis in the second position.

Let us now proceed to recapitulate the different evolutions performed by the fœtal head in its passage from the pelvic brim to the external world in the first and second positions.

I.—The movement in the parabolic curve formed by the axis

of the pelvic canal and of the vagina.

The different parts of the fœtal head change their position in this progress, but the centre of the fœtal head may be considered as traversing the axis of the pelvis and of the soft parts of the parturient canal.

II.—The movement of the fætal head upon its occipito-frontal

axis.

This movement causes one side of the fœtal head to become lower than the other during the whole progress of labor after the head has entered the brim.

Outlet of the Pelvis, and the Fœtal Head passing through it in the second position. The asterisk marks the presenting portion.—P, the Pubis.

III.—The movements of the feetal head upon its bi-parietal axis.

These movements consist—first, of the depression of the occiput, and second, of the depression of the sinciput. In the descent of the head through the pelvis, the occipital pole is depressed, but as it emerges under the pubic arch, the frontal pole becomes the lowest point. This oscillation of the forehead downwards upon the bi-lateral axis, constitutes what is termed the extension of the head.

IV.—The rotatory movements of the fætal head upon its perpendicular axis.

These movements constitute the rotation of the head in the pelvis, and subsequent to the delivery of the head, the latter movements being called the restitution of the head. If the head should be placed transversely at the brim of the pelvis, since it emerges in the antero-posterior diameter nearly so, it makes about one-fourth of a complete rotation, but if it be placed in

the oblique diameter at the commencement of labor, the rotation is only one-eighth of a circle.

In the **Third Position**, the forehead is, at the commencement of the passage through the pelvis, placed opposite the left acetabulum, and the vertex towards the right sacro-iliac synchondrosis. The fœtal head occupies the right oblique diameter, as in the first position, only the long diameter of the head is exactly reversed, the sinciput being directed forwards, and the occiput backwards.

Brim of the Pelvis, and Base of the Cranium in the Third Position.

The anterior and posterior fontanelles are at this time generally on a level, or nearly so. The saggital suture, as the patient lies on the left side, runs obliquely forwards and downwards, and upwards and backwards, just as in the first position. Passed downwards and forwards, the finger comes to the anterior fontanelle, and upwards and backwards it reaches the posterior bregma. Instead of the right tuber parietale, it is the left parietal bone which is felt lowest in the pelvis. Generally in these cases, as labor proceeds, the vertex descends more than the forehead, so that it is easier to reach the posterior than the anterior fontanelle. When the head is thus placed in the third position, it may take two paths in its exit from the pelvis. In one, the vertex may continue to descend, and approach towards the antero-posterior diameter of the outlet, the head being expelled with the forehead towards the pubis, and the occiput towards the sacrum. The head in this case is expelled just as it is in the oblique position, except that the positions of the forehead and vertex, and the anterior and posterior fontanelles, are reversed. If the head takes the second route, the vertex, instead of descending in its original position, or inclining towards the sacrum, rotates upon its perpendicular axis, and the long diameter of the head passes first into the transverse diameter of the pelvis, and then into the left oblique diameter. At the completion of this change, the head exactly occupies the second position, with the posterior fontanelle towards the foramen ovale, and the anterior fontanelle towards the left sacro-iliac synchondrosis. The modes in which these two different terminations of the third position are effected are as as follows:

The spinous process of the ischium appears to be the determining cause of the ultimate direction of the head in the third position. If the occiput is driven below and behind this point, the head emerges from the pelvis in the position it held at the

Outlet of the Pelvis, and the Fætal Head in the Third Position. The asterisk marks the presenting portion .-- P, the Pubis.

commencement of its passage through the pelvis, or nearly so. The forehead is in apposition with the left part of the pubic arch, and the occiput with the right sacro-iliac synchondrosis. The prominence of the occiput is in this case a serious impediment to the passage of the head over the sacral surface and through

the perinæum. When the pelvis and the head are of average size, the fœtal head cannot pass in this position until it has been moulded by the pressure of the sacrum and the uterine pains. Before the head is expelled, the occiput is compressed and the cerebral mass is thrown forwards, so that when the child is born, the forehead is prominent and the occiput depressed. Some authors say that the fœtal head seldom or never passes in this direction, except when the pelvis is small and the fætal head large; but I have several times met with examples of the third position in which the head had descended to the perinæum, in the third position, in cases where the head had been of large size, and in which it was necessary to apply the forceps to effect delivery. When the child is born in the occipito-posterior position, the forehead, eyes, nose, mouth, and chin successively emerge from under the pubis, and the occiput is forced down the sacral and coccygeal planes, and over the perinæum. This is represented in the following figure, which may be contrasted with Fig. 99.

Expulsion of the Head in the Occipito-posterior Position.

More frequently, the head, on entering in the third position, passes downwards, until the occiput meets the spine of the right ischium, when, instead of passing behind this prominence, it glides in front of it, and, directed by the ischiatic planes, passes downwards and forwards until it occupies the second position. The vertex in this movement travels from the right sacro-iliac

symphisis to the right foramen ovale. The head is then borne in precisely the same way as though it had originally presented in the second position, or the left oblique diameter of the pelvis.

In the **Fourth Position**, the head enters the pelvis in the left oblique diameter, but the forehead is directed towards the right acetabulum and the occiput towards the left sacro-iliac synchondrosis. Just as the third position is the reverse of the first, so is this the reverse of the second. As the head enters the brim, the occiput and the right side of the base of the fætal head are depressed, and the right parietal bone is the lowest point. This is represented in the following figure.

Brim of the Pelvis, and Base of the Fætal Cranium in the Fourth Position.

Inferiorly, the sagittal suture runs in the same direction as in the second position; but the anterior fontanelle is divided towards the right foramen ovale, and the posterior towards the left sacro-iliac synchondrosis. The right parietal bone is the presenting portion of the head, and the part reached in examination by the finger is the anterior and upper part of the right parietal surface. As in the third position, the vertex may either pass into the hollow of the sacrum, and the head be delivered in the left occipito-posterior position, or it may advance in front of the spine of the left ischium, and be converted into the first position. The latter is the usual termination of presentations in the fourth position, just as delivery in the second position is the usual sequence of presentations in the third position.

These are the chief positions in which the head presents and passes through the pelvis in natural cases. Other varieties are

enumerated by some obstetric teachers, such as the descent of the head through the upper part of the pelvis, in the transverse

Outlet of the Pelvis and Fostal Head in the Fourth Position. The asterisk marks the presenting portion .- P, the Pubis.

or in the antero-posterior diameters. This would make four other positions, since the occiput may be either on the right or left side in such cases, or placed anteriorly or posteriorly. These varieties need only be mentioned, in regard to the mechanism of natural labor, as they rarely, if ever, occur, except when the head of the fœtus is very small in comparison with the size of the pelvis, or when the pelvis is deformed, and its transverse or antero-posterior diameters considerably increased.

LECTURE XXII.

THE MECHANISM OF LABOR.

GENTLEMEN: -The Mechanism of Parturition, in the several positions in which the feetal head passes through the pelvis, occupied our attention in the last lecture. It would be difficult to exhaust this subject in the course of several lectures. Mechanism, Position, and Motor power, in their various relations, are the Elements or Grammar, of the Obstetric Art. It is absolutely necessary that they should be mastered in order to practise midwifery with anything like satisfaction. I need not dwell on the difference between the state of mind of a student or young practitioner who, with a case of labor under his hands, knows the exact position of the head, and one who merely knows that the head presents, without being in the least degree aware of the position in which it may be expected to make its exit. The one will wait the result with the confidence which knowledge alone imparts; the other will be disturbed with fears of something wrong, and anticipations of occipito-posterior births, when nothing of the kind is likely or possible, or with apprehensions of other complications or causes of difficulty and delay.

The positions in which the head presents are not most frequent in the order in which they are numbered in describing the positions themselves. The presentations in the First Position are more numerous than all the other positions put together. Naëgelé found the first position to occur in 69 per cent. of the head presentations which came under his observation. M. Halmagrand gives 74 per cent., Madame Lachapelle 77 per cent., and Madame Boivin 80 per cent., as the proportion of the first position in head cases. Dr. Simpson found the first position in 256 cases out of 335 cranial cases. The variation between 69 and 80 per cent. is not very great, and as the statistics of these authors extended to 60.000 cases, we may be sure that the fre-

quency of the presentation of the head is pretty accurately given in these results. Since the time of Naëgele's observations, the Third Position has been shown to be the next in frequency to the first. In Naëgelé's own practice, he diagnosed the third position in 29 per cent, out of 1210 cases. Other authors describe the Second Position as being met with in a greater proportion than that given by Naëgelé, and they place the second position as being the next in frequency to the first. Naëgelé explains this by supposing that the occurrence of the third position is frequently not ascertained until it has changed into the second position, and it has then been considered to have been the second position originally. This is in all probability the truth. Madame Boivin describes the second position as occurring in 19 per cent., and Madame Lachapelle in 21 per cent.; while Naëgelé, out of more than 1200, cases found it only in .07 per cent. Dr. Simpson remarks that Naëgelé's observations were made by himself, while those of Madame Boivin and Madame Lachapelle were made by females attached to the Maternité Hospital of Paris. We may, then, conclude that Naëgele's proportions are the most correct, and the observations made subsequently to his own tend strongly to confirm them. Naëgelé found the Fourth Position to occur only in the small proportion of .03 per cent. Thus we may consider the first position as the most frequent; the third comes next in order; and the second and fourth are the most rare. In this enumeration, cases occurring originally in the third and changing in the second, are considered as belonging to the third position. While I have no doubt that Naëgelé was, in the main, correct in his estimate of the great frequency with which the third position changes into the second, I believe a larger number than he supposes are delivered as occipito-posterior cases. Naëgelé states, that out of 96 cases in which the head presented originally in the third position, he only observed it to be delivered in the occipito-posterior direction in 3 cases, and in all of these the pelvis was larger than usual, or the head was small and compressible. Out of a smaller number of vertex cases in the third position, I have met with two instances in which the labors were very severe, and in which the head passed with the occiput towards the rectum.

In the first and third, or the most common positions of the head at the commencement of labor, it will be observed that the

head occupies the left oblique diameter; in the first the occiput being the most anterior part of the head, and in the third the sinciput. In both, the right side of the head is lowest in the pelvis. As far as I am aware, no other reason can be given for the greater frequency of presentations in the left oblique position with the right side of the fœtal head downwards, than the greater strength of the right limbs, and the occupation of the right oblique diameter by the rectum.

It is necessary that what is meant by the presenting part of the fetal head should be clearly defined. good deal of confusion has prevailed upon this subject. Is it the part found most prominent within the ring formed by the soft parts of the parturient canal in the different stages of labor—namely, the os uteri, the vagina, and the ostium vaginæ? Is it the part of the head found lowest in the pelvis during the progress of labor? Is it the part first met with on introducing the finger into the pelvis, in the direction of its axis? It will be found that all these points of view are mixed up together, in some of the best and most recent works on obstetrics, with the effect of causing considerable confusion. For instance, the right tuber parietale is very commonly said to be the presenting part in the first and fourth positions, as the head passes through the brim and upper part of the pelvis, because it is the lowest point met with on introducing the finger into the vagina. It is, however, more frequently, indeed almost invariably, felt through the anterior wall of the cervix, and not within the ring of the os uteri, unless after the full dilatation of the latter. I would suggest that it would be best to define the presenting part in every kind of cranial position or presentation, as that portion of the fætal head felt most prominently within the circle of the os uteri, the vagina, and the ostium vaginæ, in the successive stages of labor.

We may consider the right and left tuberosities of the parietal bones as points common to the positions in which the occiput is found either on the right or the left side of the pelvis respectively. That is, in the first and fourth positions, the occiput is in one case in the early part of labor in the neighborhood of the left acetabulum, and in the other near the left sacro-iliac synchondrosis. In both, the right tuber parietale is the lowest point of the fætal head, in the early part of labor. In the

second and third positions, the occiput is turned towards either the right acetabulum or the right sacro-iliac synchondrosis. In both, the left tuber parietale is lowest in the pelvis.

In the first position, when the os uteri is open to the extent of, say an inch in diameter, the part felt within the circle of the os is the upper and nearly the middle portion of the right parietal bone. As labor advances, the part of the head in the centre of the dilated os uteri is the middle portion of the posterior and upper quarter of the same bone. When the os is sufficiently open, the right tuber and the right ear may be felt. As the head advances through the vagina and presents at the outlet, it is the upper and posterior angle of the bone which is most prominent. It is upon these parts in succession that the tumor of the scalp or caput succedaneum is formed by the pressure of the os uteri and the other portions of the parturient canal upon the fetal head. The tumor of the scalp formed upon the middle of the upper half of the right parietal bone by the os uteri, may be called the primary capit succedaneum. When the os uteri is rigid, the swelling marks the fætal head very distinctly, and if the subsequent part of the labor should be easy and rapid, there may be no other tumor. If the latter part of labor should be difficult, a swelling of the scalp is formed over the posterior and superior angle of the right parietal bone. This may be called the secondary tumor. Sometimes the dilatation of the os uteri is so easy, and the compression of the scalp so slight, that no primary tumor is formed. In other cases a tumid ridge extends from the middle of the upper border of the right parietal bone to its posterior and superior angle, or even to the upper portion of the occipital bone.

In the fourth position, the part first felt within the os uteri, as the head lies in the left oblique diameter, with the occiput towards the left sacro-iliac synchondrosis, is the middle of the upper portion of the right parietal bone, very nearly, in fact, the same point as is felt in the first position. It is here that the primary tumor of the scalp is formed. The sagittal suture is, however, nearly in the direction of the left oblique diameter, the anterior fontanelle is directed towards the right acetabulum, and the posterior fontanelle towards the left sacro-iliac synchondrosis. In the first position the sagittal suture, it will be borne in mind, runs nearly in the direction of the right oblique diameter.

It has been shown that the head, when presenting in the fourth position, may descend through, and emerge from, the pelvis, in two modes. The occiput may turn towards the hollow of the sacrum, in which case the frontal bone approaches the left side of the pubic arch; or, as we have seen, the occiput may turn forwards and make a quarter, or rather more than a quarter turn, so as to approach the left portion of the pubic arch.

In the first termination, the anterior and upper portion of the right parietal bone passes first through the vagina, and emerges underneath the arch of the pubis. It is upon this point that the secondary caput succedaneum is formed. Sometimes this overlaps the posterior part of the right frontal bone, and some portion

of the anterior fontanelle.

In the second termination of the fourth position, the parts of the head present in almost precisely the same order as in the first position, and the tumor of the scalp is formed in the same sites. The change is from the middle and upper portion of the right parietal bone to the posterior and upper angle of the same bone.

In the second and third positions, the presenting parts of the fætal head and the tumors of the scalp are the same as in the first and fourth, only it is the several parts of the left parietal bone, instead of the right. In the second position, the middle of the upper portion of the left parietal bone presents in the first instance, and movements of rotation and advance gradually bring the posterior and upper portion of the parietal bone to be the site of presentation under the left portion of the upper part of the pubic arch. In the third position, it is the middle and upper portion of the left parietal bone which presents within the area of the dilating os uteri. In the first and common termination of this position, the head, in making its quarter turn, so as to bring the occiput to the right foramen ovale, brings the same parts of the left parietal bone into presentation, as in the second position. In the second termination of the third position, the turn to the extent of one-eight of the circumference of the pelvis brings the anterior and upper part of the left parietal bone to be the presenting part, and this is the first portion of the head to emerge under the pubis in such cases.

As the vertex is not the first part to be delivered in occipitoanterior cases, but the posterior and upper part of the right and

The moulding of the fætal head during a severe labor is peculiar in the different positions. In the occipito-posterior positions, the mass of the brain and the cranium are so moulded that the anterior or frontal end of the cranial ovoid becomes larger than the occipital. In the fourth occipito-anterior position, the right, and in the third, the left, side of the frontal region is the most prominent. In the first, and the occipito-anterior terminations of the fourth positions, the head is moulded so as to make the right side of the head, and especially the right side of the occipital and posterior parietal regions the most prominent. In the second, and the occipito-anterior terminations of the third, the same prominence is impressed upon the left and posterior portion of the fætal head. Dr. Swayne, of Bristol, has pointed out that in occipito-posterior positions, a vacant space may be felt under the pubic arch, owing to the small size of the frontal part of the head before it has been moulded by the pressure of parturition.

On former occasions I have referred to the principle of the Screw, which obtains in the pelvis, and to the screw-like, spiral, or rotatory movement of the fœtal head in passing through the pelvis in the different cranial positions. It has not hitherto been made out, but I believe the mechanism of the pelvis and the fœtal head to be precisely that of a body moving down a spiral inclined plane or screw. A screw is an inclined plane, arranged in a spiral form, either round a solid cylinder, or upon the internal surface of a hollow cylinder. When the one is fitted into

the other, the spiral arranged round the solid cylinder is called the male, and that around the hollow cylinder, the female screw.

Fra. 107.

R. Right parietal bone. L. Left parietal bone.

1. 1. 1. The different points of the right parietal bone which present successively in the first posi-

4. The part of the parietal bone which presents at the cs uteri, in the fourth position at the commencement of labor.

4 a. The part of the parietal bone which presents at the ostium vaginæ, in the fourth position, when the head is delivered in the occipito-posterior position.

 $4\ b, 4\ b$, The points of the right parietal bone which present successively when the head, presenting in the fourth position, makes the quarter turn, and is delivered in the occipito-anterior position.

The figures 2, 3, 3 σ , and 3 b, 3 b, mark in the same way, the presenting points in the second and third positions of the head, on the left parietal bone,

The two diagonal lines across the head mark the intersection of the head by the vulva and perinæum, as the head passes out, so that only one tuber parietale occupies the ostium vaginæ at the same time.

In the mechanics of parturition, the pelvis plays the part of the female, and the fætal head the part of the male screw; and it is by the movement of the one within the other, in a spiral direction, that the head passes, so as to meet with the least possible mechanical resistance from the pelvis and soft parts.

The transverse, oblique, and antero-posterior diameters are successively the longest diameters, in passing from the brim of the pelvis to the outlet. The fætal head, being of oblong shape, can only pass by entering the brim in a position approaching to the transverse, and descending with the long diameter of the head in relation, first with the oblique diameter, and then with

the antero-posterior diameter of the pelvis, or very nearly so. Such is, in reality, the direction in which the head moves. If we were to place a number of pelves one above another, we should represent pretty correctly the chamber of a female screw; and a line drawn through the long diameters of the various planes would form a spiral, and mark the path of the groove, or thread, as it is termed, of the screw. In the single pelvis, a line drawn from the transverse, through the oblique, and towards the antero-posterior diameters, would mark the path of the portion of the spiral through which the fætal head moves in parturition. This, in the case of the first position, is somewhat more than one-eighth of a circle. The arrangement of the fœtal head with reference to the trunk favors this rotation. The spiral incline of the pelvis impresses itself upon the feetal cranium as the head of the male screw, and this rotation is facilitated by the ease with which the head of the fœtus moves upon the neck.

The pelvis represents a portion of a female screw, admitting a male screw (the fœtal head), of an oblong shape. But the male and female screws in the case of the pelvis and fetal head, are not accurately adjusted at all points. There is, however, a general adjustment in the shape of the feetal head and the arrangement of the pelvic diameters. It is only at the points where the posterior part of the parietal bone, or of the occiput, comes in contact with the planes of the ischium and pubis, that the thread of the male screw bites, as it were, the thread of the female. It is here that the spiral direction is impressed upon the feetal cranium. The line of this portion of the spiral or screw may be made out by chalking the salient point of the feetal head, and moving it through the pelvis in the direction it takes in parturition. The chalk line marked upon the pelvis by this proceeding will show, accurately, the track of the segment of the thread or groove of the female screw, through which the prominent portion of the head passes.

The two halves of the pelvis also represent portions of two screws, the inclined planes of which are arranged in opposite directions. Thus, if the head be placed in the second position, the spiral movement is reversed from that which obtains in the first position, and the long diameter of the feetal cranium moves from the transverse, or the left oblique, to the antero-posterior diameter. In the case of labor occurring in the first, the right

shoulder moves upon the right portion of the spiral or screw formed by the right ischium and pubis, and glides down it, just as the head does in the second position. In the second position, on the contrary, after the delivery of the head, the left shoulder rotates upon the planes of the screw or spiral of the left side of the pelvis, and passes out with a movement similar to that which belongs to the head in the first position.

Perhaps the screw or spiral motion is seen still more distinctly in the common terminations of the third and fourth positions. Here, rather more than one-fourth of a circle is completed in the movement which brings the occiput from the right or left sacroiliac synchondrosis, to the right or left ramus of the pubic arch. The movement is distinctly spiral, only that when the head presents in the occipito-posterior position, it has to pass through a spiral having a larger diameter than when the head presents in the occipito-anterior position. The two lines marked upon the following diagram mark the different paths through which the head glides when it presents in the first and fourth position, and passes towards the antero-posterior diameters. In both it is distinctly screw-like, or spiral. A similar diagram of the right side of the pelvis would give the lines of the spirals traversed

Fig. 108.

Outline of the internal surface of the left half of the pelvis. The two curved lines mark the path of the head in the first, and in the occipito-anterior termination of the fourth positions.

by the head in the second and in the third positions, when the head is born in the occipito-anterior position.

The contractions of the uterus and abdominal muscles constitute the vis à tergo which moves the fœtal head down the planes of the ischium and pubis. No rotatory movement appears to be given to the fœtal head by the pains. The spiral direction depends entirely upon the portion of the spiral inclined plane formed by the osseous surfaces. If any weight or pressure be placed upon a male screw, adjusted in the chamber or box of the female, it has the tendency to descend the spiral plane. We see this familiarly exemplified in the press for stamping letters, in which a weight at the top of the screw causes it to descend. In practice, these considerations are important with reference to the direction in which traction can be used to the greatest advantage in delivery by the long or short forceps; rectifying the positions of the head in the case of presentations in the third or fourth positions; and in other operative proceedings.

LECTURE XXIII.

THE STAGES OF LABOR.

Gentlemen:—I have been accustomed to divide Labor into a Preliminary and a Supplemental Stage, and the three principal stages of Dilatation, Propulsion, and Expulsion.

In the Preliminary or preparatory Stage, the uterus and other organs become fitted for the commencement of actual labor.

For two or three weeks before the date of parturition there is a subsidence of the abdominal tumor, the womb sinks into the pelvis; the waist, in consequence, becomes smaller, and the respiration and general mobility are less oppressed. A few days before the accession of labor, the subsidence of the uterus is still more remarkable, and it now begins to contract in an equable and continuous manner, as though gathering itself up for the coming effort. The contraction of the uterus is moderate, but it is not always paroxysmal, or attended by uterine pain.

In the preliminary stage of labor there is the persistent contraction of the whole of the uterus, which has just been referred to; the uterus becomes firm and ovoid, and is more readily distinguishable from the rest of the abdominal contents than before. The abdominal tumor now becomes distinctly uterine. Owing to the persistent contraction of the uterus, the mother sometimes misses the rolling movements of the uterus, and imagines the child to be dead.

Besides the persistent uterine contraction, there is usually an irritable state of the sphineters of the rectum and bladder. The bowels are generally opened two or three times, and there is a frequent desire to evacuate the bladder. The effect of these actions of the bladder and the intestines is to free the pelvis and the lower part of the abdomen from all unnecessary incumbrance, and thus to give room to the parturient canal. As the

pains commence there is usually a sanguineous discharge, termed the "show," but this is not invariably present.

In the Stage of Dilatation, the os uteri is opened, so as to admit the passage of the feetal head.

In this process of expansion, the os and cervix uteri are to a certain extent obliterated, and the uterus and vagina become one continuous canal. In a preceding lecture I have dwelt on the mode in which this dilatation is effected, partly by the influence of the contraction of the body and fundus upon the os uteri, partly by the fluid pressure of the amniotic bag and partly by the active dilatation and relaxation of the circular fibres or imperfect sphincter of the os itself.

The direction in which the motor force of the uterus is at

The cavity of the Uterus, with the Parturient Canal in a state of full dilatation.

first exerted is downwards and backwards, in the direction of the axis of the uterus, and the axis of the inlet of the pelvis. The dilatation of the os uteri tends, by reflex action, to dilate the cardia, and it often goes to produce actual vomiting. When the stomach is emptied of its contents, the freedom of the respiratory movements is increased, and the dilatation of the parturient canal is promoted. Sickness is sometimes present during the whole of this stage, but, if not, it frequently appears at the time of the complete dilatation of the os uteri.

It is not a little remarkable, that in the early part of dilatation the excitor nerves affected by the pressure of the membranes and fœtal head should be chiefly in relation with the lower medulla and the uterus, while those which come to be excited at the time of full dilatation of the os uteri should affect the incdulla oblongata, and the muscles engaged in the act of vomiting, including a considerable number of the muscles of respiration. Another singular affection of the muscular system now occurs. A very distinct shivering, or rigor of the muscles, is often observed at the time when the os uteri is completely dilated. This rigor is very similar to the shuddering produced by the dilatation of other sphincteric muscles. Many persons experience this when the first morsel of food at a meal is passing the cardia, when the urine first passes in micturition, or when a catheter is passed, or when the sphincter ani first dilates. These rigors, accompanying the full dilatation of the os uteri, are sometimes so severe and continued as to excite alarm, lest they should pass into general convulsions; and this is, in fact, one of the modes in which the invasion of the puerperal convulsion occurs.

The last act of the stage of dilatation is the rupture of the membranes, and the entire or partial discharge of the liquor amnii. The membranes having acted as an efficient dilator of the os uteri, as far as it dilates by mechanical distension, suddenly give way, and the uterus becomes smaller in compass, contracting more closely and powerfully upon the fœtus. As long as the membranes are unbroken, the circulation in the uterus is not materially interfered with, and the contractions are not so powerful as they afterwards become, on account of the disadvantages under which the uterine fibres act. But as soon as the waters are discharged or diminished, the uterus contracts more closely upon the fœtus, and prepares itself for the stage of propulsion, which we shall next have to consider. The circulation in the uterus, and consequently the changes going on in the placenta, are then considerably interfered with; so that the stage

of propulsion is of much greater moment to the life of the fœtus than the stage of dilatation, which is now brought to a conclusion.

In the **Stage of Propulsion**, the presenting part of the child is passed on from the middle portion of the pelvis to the ostium vaginæ.

At the time when this stage of labor commences—namely the point at which the liquor amnii is discharged, and the os uteri becomes fully dilated, the motor force of parturition is applied in quite a new direction. The direction in which the fœtus has now to pass is in that of the axis of the outlet of the pelvis, which is forwards and downwards. It is at this point that the expiratory muscles come into play, particularly the abdominal muscles, and thus the new direction is provided for. Before the dilatation of the os uteri, we had to consider the fœtus as an ovoid mass, and the axis of this ovoid was the same as the axis of the uterus, and as the axis of the inlet of the pelvis. After the dilatation, we may speak of two axes of the fœtus-one, the axis of the head, in its long or occipito-mental diameter; the other, the axis of the body of the fœtus. Now, this axis of the head, in a natural presentation, becomes nearly the same as the axis of the outlet of the pelvis, through which it has to traverse; and the fætal body being flexible, readily passes, as it descends, from the direction of the superior to that of the inferior pelvic axis. All these correspondences cannot fail to strike the attention, but they are only a few of those which accompany this stage of parturition.

I have already mentioned the advantage given to the uterus by the rupture of the membranes. The same circumstance is equally favorable to the action of the abdominal muscles. A further adaptation, therefore, becomes visible in the precise time at which the liquor amnii is discharged. When the bulk of the uterus is increased by the liquor amnii in addition to the fœtus, the abdominal muscles are so distended that they could only act with difficulty. But after the diminution of the size of the uterus by the discharge of the waters, the abdominal muscles are more free to act, and it is now that they are called upon to aid in the expiratory actions which propel the head of the child through the vagina. When voluntary movements of expiration are unadvisedly made during the

stage of dilatation, they are always awkward and fatiguing to the patient; but during the stage of propulsion, the contractions of the abdominal muscles are so powerful as to be no inconsiderable stimulus to the uterus itself. I mean, that besides their direct expulsive power, the pressure they exert upon the uterus excites this organ to more powerful action. Thus, in this stage of labor, when the uterine contractions flag, they can sometimes be renewed by voluntary contractions of the expiratory muscles.

But there is a cause for the intervention of the respiratory system as well as the sign of its utility. In the stage of dilatation the ovarian and uterine nerves were the chief amongst the excitor nerves of the motor actions which then occurred. As soon, however, as the fætal head, protruding through the os uteri, begins to press upon the vaginal surface, a new set of excitor nerves becomes implicated. These nerves are the excitors of the expiratory actions of parturition. As long as the internal surface of the uterus alone is irritated, whether by the fœtus, a polypus, or other bodies, the uterus contracts by itself; but as soon as the vagina is impinged upon, the expiratory force is brought to bear. Another point worthy of observation is that the excitor nerves of the uterus, except at the extreme dilatation of the os uteri, when the stomach was disturbed, were in connection with the lower portion of the true spinal marrow only; but the vaginal excitor nerves are in relation both with the lower medulla and the medulla oblongata. By the lower medulla, and the excitor and motor nerves in relation with it, reflex actions of the uterus are produced by excitation of these nerves; while all the reflex actions of the respiratory system depend upon the medulla oblongata. If the spinal marrow were divided in the middle, there would probably be no respiratory action in parturition, unless the pneumogastric can act as an excitor during labor. Voluntary efforts, and the forcible efforts of emotion, are often mixed up with the pains; but the respiratory acts of this stage of labor are truly reflex in their nature. The expiratory actions occur during the insensibility of puerperal convulsions, when emotion and volition are both suspended. If they were not reflex and physical in their nature, the exhaustion following a strong labor would be far greater than it is. It is a principle of reflex action that it induces no fatigue. Hence we see even weakly women making powerful efforts, but perfectly refreshed between the pains, and easy and composed after several hours of severe labor, complaining of nothing beyond the mere soreness of the muscles consequent upon their energetic contractions.

It may be well to describe minutely the motor phenomena of the contractile part of a pain in this stage. At the coming on of each pain, the patient takes a deep inspiration, as a preliminary. Expiration then takes place slowly and forcibly, in a succession of gasps, and when the air in the thorax is diminished, it is suddenly renewed by hasty inspirations. Each pain consists, as far as the respiratory muscles are concerned, of several sudden and deep inspirations, followed by prolonged and laborious expiratory efforts, with the glottis partially or entirely closed. At the acme of a pain in this stage of labor, the glottis and cardia are entirely closed, the glottis only opening partially at intervals, and the abdominal and all the other ordinary and extraordinary muscles of expiration being forcibly contracted. The diaphragm remains inert, as in vomiting, with the actions of which, except that the cardia is closed instead of opened, the efforts of the expiratory muscles in labor may be compared. Obstetric writers have taught that the diaphragm contracts in this stage; but if it be considered for a moment that the diaphragm is a muscle of inspiration, while the actions of parturition are expiratory, the fallacy of such a view of the action of the diaphragm must at once appear. Of the contraction of the abdominal muscles during this stage of labor there can be no doubt; and the actions of the diaphragm and abdominal muscles are antagonistic. It is true that the floor of the diaphragm, instead of being arched as in an ordinary state of relaxation, remains plane during the efforts of inspiration, with the glottis closed: but this is from the mechanical distension of the chest by the contained air, not from an active contraction of the muscle itself. Besides these actions which are involuntary and reflex, the patient voluntarily aids in fixing the thorax, by holding some fixed body with her hands, or planting her feet firmly.

More than this, she increases all the expiratory actions by strong efforts of the will, and by that emotion of labor which impels her to brave every suffering to effect the birth of the child. At length, when the pain can no longer be borne, the short gasp or groan is exchanged for a cry which dilates the

glottis, and the pain and contractions subside. This cry is a motor action, excited by the emotion of pain, and instantly relieves the uterus of all extra-uterine pressure. Thus, the glottis may be compared to a safety-valve, which is thrown open by emotion whenever the pressure becomes more than can be borne with safety. By the influence of volition we have this valve entirely under our control, to open or close it as may be necessary. When the expiratory actions are weak, we can enjoin the patient to hold her breath, and when they are too intense and too long continued, we can encourage her to cry out, which is of course equivalent to dilating the glottis, and expiring the contents of the thorax. During all this time the uterus contracts powerfully. The dilatation of the perinæum is an important part of this stage of labor. In a former lecture I pointed out the provisions which exist for the dilatation of this part of the parturient canal in the arrangement and attachments of the perineal muscles. The dilatation, thus favored, is effected by the wedge-like action of the head. Throughout the whole of labor the passages are plentifully lubricated by the bland alkaline mucus secreted by the glands of the canal of the cervix.

In the **Stage of Expulsion**, the different parts of the fœtus are successively expelled through the ostium vaginæ, the outlet formed by the vulva, the pubic arch, and the perinæum.

This stage of labor is the shortest of the whole progress, but it is the most important and decisive of all. The actions of the propulsive stage continue with unabated vigor. The uterus contracts with full power, and the respiratory muscles act with immense force. The intervals between the pains diminish as the close of the struggle approaches; and there is often a perfect storm of uterine contractions, without sufficient intermission to enable us to say distinctly where one pain ends and its successor begins. When the fœtal head is actually passing the ostium vaginæ, a new set of actions make their appearance. The perinæum, after being distended to the utmost, is now retracted over the head by the action of the levatores ani; the sphincter ani and sphincter vesicæ dilate suddenly, the vagina contracts upon the advancing mass, and the head glides rapidly into the world. The dilatation of the two sphincters, between which the vagina is placed, compensates admirably for the absence of a

perfect sphincteric muscle at the outlet of the parturient canal. The effect of this double dilatation is, that at the precise moment when there is the most imminent danger of laceration, there is a sudden and considerable removal of tension from the parts en-, dangered. The dilatation of the sphincters is partly dependent on the sensation and emotion of severe pain, and partly on the reflex dilatation peculiar to the sphincteric muscles. This view of the subject gives importance to the defecation, which frequently occurs at this time, and which has been looked upon only as a disagreeable contretemps. Physiology here, as in many other instances, transmutes the meanest actions of the economy, and renders them noble by virtue of their uses. At the same moment that the orifices of the rectum and bladder are thrown widely open, there is generally a dilatation of the glottis. Even from women who restrain the expression of their emotions during the rest of labor, a cry of pain escapes at this juncture; this cry is necessarily accompanied by an open state of the glottis. The opening of the glottis is not at all accidental or voluntary, but is as regular and involuntary as its closure during the propulsive pains. Its effect is suddenly to take away the expiratory pressure from the expulsive action. Without this combined action of the glottis, and the sphincters of the rectum and bladder, for the defence of the ostium vaginæ, recto-vaginal laceration must be a more common accident of parturition. Such would inevitably be the frequent result of closure of the abdominal and thoracic cavities at all points, except that of the point of exit for the fœtus, in the final throes of labor.

Altogether, it must be conceded that parturition is the most voluminous of all the motor functions. The human uterus contracts sometimes sufficiently to render the hand of a strong man powerless. In order to illustrate the wonderful muscular power of the heart, the circulation in the whale or the elephant is often referred to by physiologists; but enormous as is the power of the heart, in these animals, the parturient actions by which they bring forth their enormous young, give us the most colossal idea we can entertain of any single muscular action. In the human subject, too, there is a certain grandeur in the combined efforts brought into play in parturition. In women, even of moderate strength and stature, every voluntary muscle of the body is in strong action; the excito-motor force is in a state of the greatest

activity; the uterus, unseen, and without any participation with the will, is making its immense contractions; and emotion imparts strength to both voluntary and reflex actions.

A temporary calm follows the energetic actions which issued in the delivery of the mother. After the excessive action, in which nerve and muscle seemed strained to the utmost pitch, there comes a sudden and profound repose; there is perfect freedom from pain; every fibre is relaxed; only the uterus now contracts, of all the muscles which were so lately struggling. Like some ship which turns from a tempestuous sea into a safe and quiet harbor, the new mother passes from the storm of childbirth into the tranquil haven of maternity. In the pathetic words of Scripture, "A woman when she is in travail hath sorrow, because her hour is come: but as soon as she is delivered of the child, she remembereth no more the anguish, for joy that a man is born into the world."

In the **Supplemental stage**, the placenta is detached and thrown off, and the uterus contracted, so as to prevent the occurrence of hæmorrhage.

While the body of the child is born by the motor actions I have been describing, the contracting uterus follows closely upon it in its descent, and the action of the uterns, excited at this time from the immense irritation of the vagina by the advancing fœtus, is frequently sufficient to throw off the placenta, and lodge it in the upper part of the vagina. When the placenta is not separated in this way by the last expulsive pain, it remains quietly in the uterus until the appearance of the first after-pain. During this interval the uterus contracts with tolerable firmness, under the influence of the excitement of the act of expulsion. If the placenta has been expelled into the vagina, its presence in this situation excites, after awhile, bearing-down pains and contraction of the vagina, similar to those of propulsion and expulsion, only far more inconsiderable, generally requiring slight traction of the cord to complete its removal. When the placenta remains in utero, it becomes separated from the uterine surface by the contractions of the uterus, and by the arrest of the circulation in the umbilical cord. It is then removed by a miniature copy of labor itself; there is a dilatation of the os uteri, and there are the propulsive and expulsive actions of the uterus and the expiratory muscles on a small scale.

After the expulsion of the fœtus, the first act of the uterus is to contract, so as to prevent the occurrence of hæmorrhage. This contraction is induced, in the first instance, by the concluding irritation of the vagina and perinæum on the exit of the fœtus. It is subsequently insured by a succession of stimuli. Of these some are uterine, others are extra-uterine. The bulk of the placenta and membranes irritate, in the first place, the now contracted uterine surface. When placental separation has occurred, the abraded surface of the uterus is intensely excitor; and as the placental mass passes through the vaginal passage and ostium vaginæ, excitation, which insures full uterine contraction, is supplied. It is a peculiarity of the utero-vaginal canal that at the termination of labor all the surfaces are more instantly excitor, and the answering motor contractions become rapid and more easily provoked. During severe labor, irritation of the os utcri, or of the vaginæ, will often increase the pains only in a moderate degree; but now the introduction of the hand into the vagina, and irritation of the os uteri, will excite instant and forcible contraction of the uterus. The extra-uterine excitors of uterine action also come into play in a remarkable manner. As soon as the child is put to the breast, the slight irritation of the mammary excitor nerves excites distinct contractions of the uterus. This reflex relation from the breast to the uterus continues for several days after parturition, until, in fact, the uterus has returned to the natural state. As soon as the secretion of milk is established, there is, at every afflux of blood to the breasts causing the sensation termed by women "the draughts," an answering contraction of the uterus. reflex relation between the stomach and the uterus is also now set up every time the patient drinks her gruel, or takes her tea, sharp contractions of the uterus, after-pains, in fact, are excited. Emotion is another aid to the permanent contraction of the uterus. Any emotion of the mind will generally produce an after-pain, but the maternal emotion especially. The emotion produced in the mind of the mother by suckling her infant induces contraction. A day or two after labor, merely presenting the infant to the mother without its actual application to the breasts, will excite the sensation of the draught in the mamme, accompanied by a sudden secretion of milk and also by contraction of the uterus. Thus the close of labor, the return of the uterine system to the quiet of the unimpregnated condition, is as plentifully provided for as the commencement, or any of the various stages of the process. For some days after labor the contraction of the uterus is of an active sphincteric kind, but its vascular and other tissues rapidly diminish in size, and it soon becomes, to a great extent, a non-motor organ, as it was before the time of conception.

.

LECTURE XXIV.

THE MANAGEMENT OF NATURAL LABOR.

Gentlemen:—The first summons to a lying-in woman should always be promptly obeyed. Some women alarm themselves before labor has really commenced, or when their labors are going on slowly; others defer sending for the accoucheur until the labor is far advanced, or parturition may take place so rapidly, that the medical man, even when using the greatest promptitude, may be too late, or arrive only just in time to afford his assistance. We should always act in practice as though our cases were those of the latter kind, on the ground that it is much better to be many times too soon than once too late. If we are called unnecessarily early, we can leave the patient confidently for a time; but the attendant is sure to obtain blame should anything go wrong before his arrival. Another rule for the accoucheur should be, that of never leaving one case for another, after he has commenced his attendance upon the first, as he is legally and morally responsible, in the event of accident, for the conduct of any case the actual attendance upon which he has undertaken.

The matters required by the accoucheur during the conduct of a labor are, a case containing a blunt-pointed scissors, a silver or gum-elastic female catheter, laudanum, sal volatile, and ergot of rye. The nurse should provide thread for tying the funis, an abdominal bandage, and a supply of napkins and towels, and hot and cold water.

At the first visit to a patient in whom labor has apparently commenced, an examination should, if possible, be made. This should not be proposed abruptly, particularly when the accoucheur is not well known to his patient. Inquiries may be made about the state of the bowels and bladder, the nature of former labors in multiparous cases, and other points upon which

it may be well to have information. The accoucheur should not, however, on any account, leave the patient without ascertaining the nature of the case under his management. It may happen that no pregnancy exists; or the case may be one of arm or funis presentation, requiring early interference, with a view to the safety of the mother or the fœtus. But in the most natural cases, it is always a comfort and ground of confidence to the patient, and a satisfaction to the accoucheur, to know that everything is "Right," as the phrase is, when the head presents.

The usual **obstetric position** in this country is that in which the lying-in woman is placed on her left side, with her head upon a pillow, and the thighs and legs flexed. She should be placed with her back towards the edge of the right side of the bed.

[The older practitioners of this country, whose teaching and habits came from English sources exclusively, are in the habit of thus placing their patients; but the teaching in perhaps all our schools at the present day, in conformity with French and German customs, directs the student to place the woman upon the back with the knees drawn up, and any accoucheur who has made a fair trial of this position will not willingly return to the The advantages to the accoucheur are convenience in making the examination, and its efficiency, inasmuch as the pulp of the finger instead of the back of the nail, meets the presenting portion; the comparatively little change of position required in case of an operation becoming necessary, and finally the greater ease found by the patient herself. The attendant should not. however, insist upon any position being rigidly maintained, but should allow such movement as may be desired by the poor Too often the attending physician seems to forget the awful suffering of his patient while thinking of some petty twist of his own back or inconvenient position of his own arm. A change of position during the labor is not unfrequently followed by a renewal of suspended or flagging pains. Occasionally, as if some obstacle had been removed by the change of posture, a delayed rotation is effected, and the child is speedily delivered.]

In the stage of dilatation, before the os uteri has opened, and when the pains are not immoderate, the patient may be allowed to choose her own posture, except during an examination. She

may walk about, and occupy herself with the preparations for the coming infant, or other casual matters. The pains may be borne in a sitting or standing position, as may seem most easy. No voluntary efforts or straining at this time should be permitted. The more freedom we allow, of course in moderation, to the patient during this stage, the less fatigue she will feel during the succeeding stages of labor. When the stages of propulsion are proceeding, she should be advised to lie upon her left side in the manner already pointed out. This seems to be the most convenient position, and the one assumed by women in a state of nature, or in cases where women are delivered without assistance. But, even after the stage of dilatation has passed, no great constraint should be exercised. If the labor be long, women become cramped and sore from continuing several hours in the same position, and the pressure exerted by the fœtus is more distressing than when occasional change of posture is allowed. Amongst poor women in this country, the usual dress is worn until the completion of labor. With the rich, the custom is either to wear a dressing-gown during the stage of dilatation, or to remain in bed during the whole of labor. The bed should be prepared by the nurse with a drawn sheet, and a leather or piece of india-rubber sheeting, to defend it from the discharges.

In "Taking a pain," as it is termed, the acconcheur sits or stands by the side of the bed, the patient's back being towards him. This is one advantage in the position on the left side, as it enables the attendant to make the necessary manipulations while her face is turned away from him. With an expert and careful nurse, the patient will be placed on her side, and the clothes so arranged that a little fold of the chemise or nightdress will be brought to the edge of the bed, along which the accoucheur can introduce his hand without impediment until it reaches the vulva. In other cases, the dress may be wrapped round the legs, and the attendant has to disentangle it before he can make the necessary examination. The position of the hips are obvious, and the better plan for the student is to introduce the right hand between or at the back of the heels, and pass it up towards the nates. The posterior fourchette should be felt for, the vulva separated by the two forefingers or the finger and thumb, and the forefinger introduced along the vagina in the direction of the axis of the pelvic outlet. The experienced

accoucheur will have little difficulty in passing his hand straight to the vulva without any such precautions. Guiding the finger along the vagina, the os uteri is felt, in the early part of labor, pointing towards the upper part of the sacrum, and the presentation can be made out as described when treating of the mechanism of labor.

If the os uteri cannot be reached with the forefinger of the right hand, the two forefingers of the left hand should be introduced, as they can be passed higher than the forefinger of the right hand. Some distinguished obstetricians always use the second finger of the right hand, because of its length; others, the two first fingers of the same hand, with a view to trying the dilatability of the os uteri and vagina. As a rule, no opinion respecting the presentation should be given unless the finger can be passed within the os uteri, and the presenting part felt, either by itself or through the membranes. If the young acconcheur contents himself with feeling the presenting part through the anterior wall of the cervix uteri, without getting within the os, he may sometimes mistake the back or shoulder for the head, and have to make some awkward explanations to the patient or those around in case of such an error. Besides ascertaining the exact presentation, we acquire by the first examination a knowledge of the state of the os uteri, the extent of its dilatation, its dilatability, the condition of the vagina and perinæum as regards sensibility and distensibility, the amount of lubricating secretion in the passages, the state of the rectum as regards fullness or emptiness, the capacity of the pelvis, and some general idea of the size and state of ossification of the foetal head, the tumor of the scalp, the rupture or integrity of the membranes, the quantity of liquor amnii, the height of the presenting part in the pelvis, etc. In all examinations, the fingers used should be smeared with cold cream, olive oil, or glycerine. As a general rule, the forefinger is the one most conveniently used by the accoucheur, but no representation which I have seen accurately portrays the mode in which it is used in an examination. In an examination in the early part of labor, when the os uteri is high in the pelvis, the arm and wrist are rotated so that the palmar surface of the base of the finger comes almost in contact with the pubis, and the os uteri is explored with the radial and middle surface of the pulp of the finger. This is, I believe. accurately represented in the accompanying engraving. In examinations in the latter part of labor, when the os is dilated and the head low down, the finger may be used in almost any direction with equal ease.

When the student examines in his first case of labor, he commences an education of the sense of touch, such as is neither

Examination in the Stage of Dilatation...

necessary nor acquired in any other department of practice. In tactile examinations of other parts of the body, sight and touch, or sight, touch, and hearing, are combined; but in the examinations of the accoucheur, touch is exercised without any assistance from the other senses. The obstetrician who has by long practice acquired the tactus eruditus in perfection may almost be said to have the end of his finger armed with an eye, and he reads the varied conditions of the internal parts which are within reach as accurately as the blind scholar reads the raised type in which books for the blind are printed. Although the forefinger of the right hand is that generally used, and which seems capable of acquiring the highest tactile education, it is well to accustom ourselves to all the other fingers, in case of being dis-

abled in the right hand by any accident, or in case of some unusual shape of the pelvis or soft parts.

We are commonly told to introduce the finger during a pain, and indeed the phrase, "Taking a pain," implies that we can at this time afford some assistance to the patient. Hence women more readily submit to examination when a pain is coming on than during the intervals. Formerly, when the principal object in making an examination was to ascertain the strength and efficiency of the uterine contractions, it was better to examine during a pain than at any other time. But since the mechanism of labor has been better understood, and we require to ascertain the exact position of the head during its progress, it is necessary to examine in the intervals as well as during the presence of pains. If we introduce the finger while the uterns is contracting, we should be careful not to rupture the membranes prematurely, as they are tense and thin at this time. The presence of the amniotic bag, and, after the escape of the liquor amnii, the corrugation of the scalp, or increase in the caput succedaneum during the pains, prevent us from making out the relative position of the sutures as well as in the intervals between them. An examination, therefore, should always occupy a pain and part of an interval. Having ascertained the nature of the presentation, and the state of the parts within the vaginal canal, no other manual interference is required in natural cases, during the stage of dilatation, beyond an occasional examination, to ascertain the rate at which the labor is proceeding. We shall, however, be expected to give some idea as to the time when the delivery may be completed.

A labor is considered natural as regards time when it does not exceed twenty-four hours from the commencement of the dilatation of the os uteri to the completion of delivery. Primiparous women frequently, however, exceed this period, and multiparous women are commonly delivered in a much shorter space of time. The full dilatation of the os uteri is considered to occupy five or six hours, but in many cases it takes less, and in others more than this. The bony pelvis being normal and the pains natural, labor is quick in proportion as the os uteri and perinæum are dilatable, and the vagina short and capacious; and tedious according to the rigidity of the os uteri and perinæum and the length and contraction of the vagina. Sometimes one portion of the parturient canal is relaxed, and another con-

tracted; under these circumstances, one part of the labor will be rapid and the other slow and tedious. It is only by experience, tact, and an appreciation of all the circumstances which modify the progress of labor, that anything like certainty of prognosis of its duration can be acquired. In parts previously rigid, the disposition to dilate may be suddenly manifested; or the os uteri, after dilating favorably to a certain extent, may become immovable. As regards uterine contractions, we may have a sudden failure of active pains, or pains in cases which had been sluggish may become as suddenly energetic. It behooves, then, that the young practitioner should, as the rule, be guarded as an oracle in his vaticinations respecting the time of the termination of labor in any given case.

During the stage of propulsion, we may moderate and guide the pains by inducing the patient to cry out if the pains are excessively violent during the expiratory efforts, or to hold her breath, and add voluntary straining to the reflex actions of the respiratory muscles if the pains are feeble. In thus managing the open or closed state of the glottis, we can always increase or diminish at will the force of the uterine and respiratory contractions. As a rule, the membranes are ruptured spontaneously at the commencement of this stage. We should be especially careful not to rupture them before full dilatation of the os, if we can avoid it. When the stage of propulsion is fully formed, we may generally rupture the bag with advantage, if it has not occurred. This may be done with the nail of the forefinger during the height of a pain. When the membranes are tough, several efforts during successive pains are necessary before the membranes can be broken, but no violence should be used. Sometimes cases are met with in primipara in which the quantity of liquor amnii is so small, that it does not, from its bulk, interfere with the uterine action, and in which the labor goes on so satisfactorily, that it is advisable not to rupture the membranes until the perinæum is dilated and the head presents at the ostium vaginæ. When the amount of fluid is large, it very much facilitates the progress of labor to evacuate it as soon as the os uteri is fully dilated. If the membranes are punctured, accidentally or intentionally, before the stage of dilatation is completed, it frequently happens that the os uteri, which had been dilating most favorably, becomes rigid and contracted, and labor is impeded for several

hours. On the other hand, cases are occasionally met with in which the os is dilatable but the uterus inactive, and in which dilatation may be promoted by the evacuation of the liquor amnii; but these are exceptions to the general rule. There is another point in the management of the liquor amnii worthy of notice. It sometimes happens that the head is well engaged in the pelvis before the liquor amnii begins to escape, and the proportions between the head and the parturient canal are so exact, that no water flows away in the intervals between the pains, or during the greater part of the pains themselves. The head and canal act exactly as a ball-valve, and no fluid can pass except at the acme of a pain, when the force which should advance the head is expended in a slight dribbling of the waters. Much time is often lost in this way, and the best mode of obviating the difficulty is to drain off the liquor amnii through a small gum-elastic catheter passed up by the side of the head. Nausea and vomiting are always beneficial during the progress of labor. In the stage of dilatation they aid in dilating the os uteri by the mechanical straining which occurs, the reflex sympathy between the cardia and the os uteri, and the general relaxing effects of sickness. In the stages of propulsion and expulsion, also, they increase the expulsive efforts, and relax the vagina and perinæum.

When the dilatation of the os uteri is very difficult, the margin of the os being hard, thin, and painful, nauseating doses of tartar emetic are very useful. Sometimes, when the tenderness and spasmodic rigidity of the os uteri are very great, an opiate will be of great service; or a moderate bleeding may be practised when the patient is of plethoric habit. I have tried belladonna, and a solution of atropine, in such cases, but without any good effects. During the stage of dilatation, and in the early part of the propulsive stage, the direction of the axis of the uterus should receive our attention. It should be as far as possible kept from anteversion, retroversion, or obliquity on either side, as these departures from its proper axis are certain to impede labor.

From time to time, during every labor, the condition of the fætal heart should be ascertained. This can easily be done by means of a flexible stethoscope, and the knowledge thus acquired may become of great use in labors apparently the most uncom-

plicated. The accoucheur should never forget that in a case of labor two lives are under his care, and that both require his attention. In no point is the excellence of the Dublin school of midwifery more shown than in the care with which its best teachers advise that **auscultation** of the feetal heart should be practised during the progress of labor.

The spirits of a lying-in woman should be kept up as much as possible, and this is best insured by cheerfulness and composure in those around her—The lying-in room should not be crowded, and from time to time the accoucheur should retire, so that no constraint may be placed upon the bowels or bladder of the patient. She should be allowed very nearly her usual diet, if

her stomach can bear it.

In the stage of expulsion, the chief points are, the regulation of the expulsive forces, the direction of the head, and the preservation of the perinæum. In the latter part of labor, the glottis is to the parturient function almost what the safety-valve is to the steam-engine. By opening the glottis, as by directing the patient to cry out; or by closing it, as by directing her to hold her breath, we can, to a very great extent, regulate the

expulsive efforts of the last and greatest stage of labor.

Many conflicting opinions prevail as to the propriety of supporting the perinæum. Some years ago I pointed out that pressure on the perinæum excited reflex contractions of the uterus—a point which is, I believe, now pretty generally recognized; and I grounded upon this circumstance, and upon the facts that, in cases where pressure or support is most assiduously rendered, laceration sometimes occurs, while it rarely happens when women are delivered by themselves, an objection to the constant and sustained support to the perinæum during the later part of labor. I believe that long-continued pressure tends to produce the accident, by increasing the expulsive pains and by damaging the perinæum itself. We read of cases in which the perinæum was supported for many hours in succession, which must always be unnecessary, since, if the pains are strong enough to threaten laceration, the expulsive stage could not last the time described. My advice with regard to the perinæum is, that the forefinger of the left hand should be kept upon the anterior margin of the perinæum during the last pains, and the right upon the head, with a view to ascertain the moment when the perinæum is distended to a dangerous extent with one hand, and at the same moment to retard the advance of the head with the other. The head should be pressed, in passing, close to the pubis, so as to strain the perinæum as little as possible. If we prevent the rapid passage of the head, we do more to prevent laceration than can be accomplished by the most careful pressure.

[When the woman lies upon the back, the support to the perinæum is made with ease to the attendant, and most advantageously to the patient, the palm of the right hand is placed on the perinæum, the thumb being upon the right side of the vulva and the fingers upon the other. The pressure is made most naturally by the portion of the hand nearest the anus, and the head resting thus most conveniently upon the palm acting as an inclined plane, passes between the thumb and forefinger, being thus guided, not restrained, by the support given. While many think lightly of the importance of support to the perinæum, and perhaps overestimate the dangers from its being illy performed, my practice and counsel is never to neglect it during the presence of pain, both for the actual benefit which may be afforded, and for assuaging the sufferings of the mother. A noticeable relief from the extreme agony caused by the rapid dilatation of the perinæum, is felt as the result of well directed support. The only cases of rupture of the perinæum that have been brought to my notice, have occurred either when no physician was present at the birth, V or in conjunction with the use of instruments; in one case where the double-curved forceps were introduced in a reversed position by an inebriated attendant.]

The knowledge of the mechanism of labor is of importance, not only with reference to diagnosis and the use of instruments, but in the management of natural labor. Sometimes, the descent of the head through the pelvis is retarded by the imperfect flexion of the head, or dip of the occiput. When the two fontanelles are on the same level, or nearly so, the occiput may be brought down by traction exerted with the finger on the ridge formed by the lambdoidal suture; by the use of the vectis or by upward pressure on the frontal or anterior portion of the parietal bones. Rotation of the head may be assisted by gentle pressure upon the occiput, or the portion of the parietal bone, next to the ischial planes upon which the head is descending. At the time of the exit of the head, its extension, or the separa-

tion of the chin from the sternum, and the descent of the forehead and face over the sacral and perineal surfaces, may be aided by exerting slight pressure upwards upon the vertex, and traction downwards upon the frontal bone. As soon as the head is liberated, it should be ascertained if the cord be twisted round the neck, and the loop should as gently as possible be passed over the head in order to free the funis from pressure. [If this cannot be done and evident delay results from the tightly drawn cord, it may be cut by passing a probe-pointed scissors under it, care being taken not to wound the child, and the severed ends should be tied as speedily as possible. This frequently ends the labor and saves the child from the danger of death by asphyxia.] The rotation of the shoulders in the reverse direction to that taken by the face so as to bring the shoulders into the opposite oblique direction to that occupied by the head, may be aided by placing one hand upon the back of the neck, and the other upon the sternum as the shoulders are passing. As the body of the child passes, it should be turned somewhat over the pubis. Those aids can only be afforded after a perfect knowledge of the mechanism of labor has been acquired, but they may then be made very considerably to facilitate the progress of delivery.

The old axiom, "Meddlesome midwifery is bad," has had great force in obstetric practice, but it is, perhaps, better adapted to ignorance or partial knowledge, than to perfect comprehension of the mechanical and motor phenomena of natural labor. I have no doubt the time will come when these will be so well understood that the finger of the accoucheur will be in accordance with every change in the passage of the child during parturition. Proverbs are always one-sided. The phrase quoted has, no doubt, been useful in preventing improper interference, but it has also a tendency to the prevention of interference when

this is both useful and necessary.

During the propulsive and expulsive stages it is usual for the patient to aid the respiratory efforts, by fixing her feet and pulling at a towel with the hands, or holding the hands of the nurse. And this exertion must be encouraged or discouraged, according to the power of the pains. [The advantage of the position upon the back is especially manifest in its convenience for bracing the feet and making voluntary exertion. Its inefficacy during the earlier stages of labor, before the os uteri is dilated,

should be remembered, and the patient not unnecessarily wearied by this inutile voluntary muscular effort.] When the head is passing through the vulva, the right knee should be raised so as to facilitate its passage. Throughout the whole of labor the woman derives comfort from pressure exerted by the hand of an attendant when the sacrum during the pains. I have not, on the sacrum during respecting the use of chlorofolmous the pains and tabor, as I propose to devote a special lecture to the sacrum during the sacrum during the use of chlorofolmous days to be sacrum during the sacrum during the use of chlorofolmous days to be sacrum during the sacrum during the sacrum during the sacrum during the pains.

A the child, the umbilical cord requires to be tied the should be formed of thread, doubled several t _____p-wicking, bobbin, or tape.] It should be tied firmly about two inches and a half or three inches from the umbilicus, and a second ligature should be applied at a little distance from the first, towards the placenta. [It is the practice of the French hospitals, so far as I observed, and taught by Cazeaux, to cut the cord before applying the ligature. This is done about six or twelve inches from the child, and as soon as the section is made, holding the feetal extremity between the thumb and finger to allow it to bleed a little, which has the double effect of relieving the turgid vessels of their superabundant blood and giving the child a whiter appearance, more in accordance with the prevailing ideas of propriety and beauty. The second ligature is rarely applied. It is supposed that there is more danger of the child's being asphyxiated, than injured by hemorrhage.] Considerable force must be used in tying the cord, in cases of a large funis, from the deposition of an unusual quantity of the gelatinous matter constituting the bulk of the cord. Otherwise, the vessels may not be compressed, and bleeding may occur. cases of large cord, it is always well to look at the funis a short time after the application of the ligatures and division of the funis, to see that no hæmorrhage is going on. The second ligature is intended to prevent hæmorrhage from the divided cord in cases where there are twins with a single placenta, or where the vessels of two cords inosculate, as they sometimes do. dividing the cord, a pair of blunt-pointed seissors should be used, and the division should never take place under the bedclothes, as the penis, or fingers, or toes have been sometimes injured during the separation of the funis. The hand of the accoucheur should now be placed upon the abdomen to ascertain

the existence or non-existence of twin-pregnancy. After the expulsion of the placenta, the abdomen should be again examined, to learn whether the uterus is contracted. It ought to be felt above the pubis, or at the pelvic brim, of the shape, and almost the hardness, of a cricket-ball.

As soon as the child is born, the first attempts at respiration usually occur immediately, the first inspiratory movements being excited as a reflex action by the influence of cold upon the surface. The diaphragm is the special muscle of inspiration, and this is the first to act in the establishment of respiration in the new-born infant, as it is the last to relinquish its functions in a case of death from asphyxia.

A short period of repose follows upon the birth of the child, but in the course of a few minutes uterine contractions are again felt. The placenta may have been detached by the pains which effected the delivery of the head and trunk, or it may now be separated from the uterus. When the pains recur at the time mentioned, gentle traction should be exerted upon the cord, the hand of the nurse being placed upon the abdomen, and exerting gentle downward pressure. If there should be no pain, the finger should be introduced into the vagina, and the stringy insertion of the cord into the placenta will generally be felt; or, if not, the fundus uteri should be irritated by the hand externally, so as to cause contraction. In extracting the placenta, slow and gentle traction only should be used, as by this means the whole of the membranes, and any coagula which may have formed, are likely to come away with the placenta. The cord should be drawn downwards by the left hand, the fore-finger of the right being placed upon the insertion of the cord, as it is here that laceration occurs, when it gives way. Of course, if the cord is breaking, the traction should cease, and the placenta ought to be drawn forth by the fingers.

[As soon as any resistance is felt, he ought to slip up two or three fingers of the other hand, along the upper surface of the cord, as far as the os uteri; the points of these fingers which are intended to press the cord backwards, are brought together so as to receive the latter in the entering angle thereby formed, around which it plays like a pulley. To understand the advantage of this manœuvre it is only necessary to bear in mind that the tractions made by one hand alone would correspond to the axis of the vagina, which forms an angle with that of the uterus; whence it happens that the placenta, instead of being drawn

towards the centre of the orifice it has to traverse, would abut against its anterior border, and the corresponding parts of the cervix, upon which all the tractive efforts are spent. The patient should be directed to bear down while the tractions are made. As the placenta closes the orifice, and gets into the excavation, the operator changes the line of traction and gradually carries the cord forward, so as to make it always correspond with the axis of the pelvic canal. Under this joint influence, the placenta soon reaches the vulva, where it is seized by the thumb and fingers and twisted round several times, so as to complete the detachment of the membranes and form them into a solid cord, for the double purpose of preventing their laceration and of securing their entire removal.—Cazeaux.]

As a rule, the placenta should be examined, to be sure that no portion of it remains in utero. After the delivery of the placenta, a bandage should be applied to the abdomen, with a view to gentle compression of the uterus and the support of the vascular system of the mother, after the tension of the abdomen during pregnancy. No doubt, by forcible compression after parturition, injury may be done to the uterus; but I have known cases of mortal fainting occur in cases where no other cause of death could be assigned than the neglect of bandaging. I therefore recommend it.

[The bandage, or roller, applied generally after labor, is very often productive of more injury than benefit. In cases of severe flooding, it is generally inadmissible, and for the simple reason that it is in the way. Its presence prevents the manipulation

of the abdomen, the application of ice, the douche, etc., and prevents the attendant from obtaining the very important information of the presence or absence of uterine contractions. There are some who hasten to put on the bandage after delivery, as if the life of the patient depended upon it. Nature puts no bandage upon the cow, or the sheep, and in the Lying-in Hospitals of Paris, the midwives put none on the women. The cows and sheep have no hæmorrhage, and out of some seven hundred women that I saw confined at l'Hôpital des Cliniques, under the charge of Dubois, I did not see one solitary case of flooding.

A woman after confinement needs a bandage just as much as, or rather upon the same principles that guide its use, in case of tapping for ascites. After all danger of hæmorrhage is passed, a bandage may be applied for support to the abdomen.

When properly done, it should be about half a yard wide, and applied much lower down than usual; the first pin should be placed at the lowest border, near the commencement of the upper third of the thigh. Over the uterus the pressure should not be great, but tighter above it, so that the result is, that the uterus is rather pressed down than upon.

Sometimes it is desirable to place a pad under the bandage (and nothing is better than a rolled up pair of long woollen stockings), but this should not be upon the uterns, but above it, so as to prevent the uterus from expanding, while at the same time it affords some pressure upon the descending aorta, immediately before its bifurcation.]

When the bandage has been applied, the mother is allowed to rest while the child is being dressed, when she is made comfortable by the nurse. The child should be put to the breast within a few hours after delivery, but should not suck frequently until the secretion of milk is established, otherwise the mother suffers more than is necessary from after-pains, particularly in multiparons cases.

The child may, from a variety of causes, be born in a state of **Congenital Asphyxia**, in which instant and energetic efforts become necessary for its restoration. The chief causes of this condition are such a continuous contraction of the uterus during labor as to interfere with the due supply of blood to the maternal side of the placenta, partial or entire placental detach-

ment before the time of birth, and continued pressure upon the umbilical cord. The child may also be asphyxiated by being born, in the absence of the attendants, enveloped in the membranes, or "Caul," so as to render respiration impossible.

The signs of congenital asphyxia are failure of the fœtal pulse, and spasmodic movements of the presenting part of the child occurring for some time before death at tolerably regular intervals. When the child is born asphyxiated, the surface is very dark, from the injection of the capillaries with venous blood. It becomes necessary to understand the nature of the intermittent spasmodic movements just mentioned, with a view to treatment. When the blood of the fœtus becomes entirely venous, it stimulates the medulla oblongata, as proved by the experiments of Schneider, Volkman, and others, so as to produce gasping efforts of a respiratory character. These movements are termed Centric, to distinguish them from the Eccentric or Reflex movements, dependent on external stimuli. They occur in utero, in precisely the same way as when the fœtus is exposed to the external air.

The first movements of children who are born in a state of asphyxia, and who are recoverable, are of this kind, and these centric movements will sometimes of themselves slowly establish healthy respiration, the intervals between the gasping efforts becoming smaller, and the movements themselves becoming changed into the ordinary reflex respiratory movements. It is seldom that a child can be restored after the cessation of these centric movements, notwithstanding that the heart will frequently beat for some time after they have ceased. The younger the fœtus, the longer is the time occupied in the act of dying, and the greater the chance of resuscitation.

The ordinary means of establishing Respiration in cases of partial asphyxia consist of sprinkling cold water on the face or chest of the new-born child; slapping it on the sides or breech; pinching the ears, or irritating the eyelids or anus; rubbing the nares and mouth with a little brandy or sal volatile. If the child is very black, a small quantity of blood should be allowed to flow from the umbilicus before tying the cord. In more serious cases, or when the above means are not sufficient, the child is generally put in a bath of about the temperature of the blood, or wrapt in warm flannel and kept near a fire. Alter-

nating with this raised temperature, the child should be sprinkled with cold water, and the limbs and body of the child rubbed assiduously with brandy or spirit. Great care should be taken, in all cases of asphyxia in new-born infants, to cleanse the mouth, narcs, and fauces. Artificial respiration may be practised, either from mouth to mouth, or by means of a tube inserted into the mouth or nostril. During these operations the thorax should be alternately squeezed by the hand, and allowed to relax. Artificial respiration is not, however, of so much value in congenital as in other forms of asphyxia, from the fact that the fætal lung has never been distended with air. The plan suggested by Dr. Marshall Hall has excited much attention of late, and is said to have been successful in a great number of instances. If it should prove efficacious in cases otherwise irrccoverable it will become an invaluable boon. Dr. Hall's method consists in placing the fœtus on its face, with the forehead raised, and rotating it from side to side, so as to induce movements similar to those of natural respiration, and to favor the escape of mucus from the air-passages. These movements should be combined with continuous frictions of the limbs, so as to keep up the circulation as well as possible in the absence of respiration. In cases of congenital asphyxia, when the child has been recovered, the child should be watched carefully during the first twenty-four hours of life, as there is a tendency to the occurrence of what has been termed secondary asphyxia; and the child will frequently be observed to change color from imperfect oxygenation of the blood. Frictions, and the free exposure of the child to the air, are the best means of preventing this accident. Dr. Hall is opposed to the use of the warm bath in resuscitation from asphyxia, on the ground that it produces faintness and exhausts the remaining powers of life.

LECTURE XXV.

MANAGEMENT OF THE PUERPERAL STATE.

Gentlemen:—In the puerperal state, the patient has to recover from the shock of labor itself, and to pass through the disordered conditions incident to the state of the uterine cavity and the walls of the uterus after parturition, and to the establishment of mammary secretion.

The influence of the shock of labor is visible in the lowered state of the pulse which obtains some hours after labor, the debility felt by the patient, and the intolerance of light, noise, and other stimuli previously borne with ease. The shock itself depends on the exhaustion of the nervous system by the prolonged muscular efforts, the physical pain, the loss of blood during the separation and expulsion of the placenta, and the removal of the pressure exerted by the gravid uterus during the latter months upon the organs of the body. The influence of the shock of parturition is best relieved by an opiate when the labor has been severe, or natural sleep, quiet, a darkened room, and the prevention of all excitement as far as possible. patient be greatly exhausted by labor, a little stimulus may be administered after delivery; but with this exception, nothing but gruel, tea [panada], and similar matters should be allowed during the first twelve hours.

After the completion of labor, the most important considerations respecting the child-bed patient, are those which relate to the internal surface of the uterus. When describing the gravid uterus, I dwelt upon the involution of the muscular structure of the organ after parturition, by the degeneration, disintegration, and removal of the large muscular fibres, and the substitution in their place of the rudimentary cell-fibres proper to the uterus in the unimpregnated state, so that it is not in this place necessary to refer further to the post-partum changes in the parietes of the organ.

If the portion of the internal surface of the uterus be examined within a few days after labor, it is found to be raised somewhat above the other parts of the uterus, because of the increased thickness of the organ in this situation, and the remains of the decidua serotina. The open mouths of the veins are still visible, and small pieces of coagula are hanging from them into the cavity of the uterus. Since the time of Harvey, who was one of the earliest to make the comparison, the state of this part of the uterus after parturition has often been likened to a stump after amputation, or a new-made wound. The comparison is only correct to a limited extent. The small, curling arteries and the veins of the uterns have certainly been divided in the separation of the placenta, but, except at these points, no structural lesion occurs. The portions of the internal surface between the arteries and veins are occupied by the remains of the decidua serotina, or that part of the developed uterine mucous membrane lying between the uterine parietes and the placenta. no formation of pus upon the surface from which the placenta has been removed, as in the healing of an ordinary wound. The portions of coagula hanging from the venous openings separate and are discharged, or remain to plug up the vessels, and the veins and arteries close by a process of gradual contraction and obliteration, under the influence of the contracted uterus and the diminished supply of blood to the organ. What I mean to say is, that there is no evidence in healthy cases of any inflammatory action or suppuration at the placental site during the return of the uterus to the size of the unimpregnated state. Besides the coagula hanging from the mouths of the veins, coagula probably exist to some extent, in almost all cases, within the cavity of the uterus, as the remains of the blood poured out during the act of the separation of the placenta or immediately afterwards. Having thus described the condition of that part of the internal surface of the uterus from which the placenta has been separated, we are now in a position to speak of the Lochia—a sanguinolent discharge from the vagina, which continues after labor for a time, varying from three or four days to a month, but which generally diminishes or disappears about ten or fifteen days after delivery.

The lochial discharge consists of sanguineous matter derived from the surface of the uterus at that portion to which the pla-

centa has been attached, and of sanguineous débris formed in the breaking down and discharge of the whole of the uterine decidua. The breaking down of the small coagula from the mouths of the uterine veins, and coagula found in the cavity of the uterus, furnish some of the discharge, but the greatest part is furnished from the decidual lining of the cavity of the body of the uterus. From the evidence of numerous preparations and specimens which I have examined, I am convinced that the whole of the decidua which does not come away with the placenta, loses its vitality, becomes broken down, and is discharged during the first week or two of the puerperal period. I have seen the whole of the internal surface of the uterus covered with the bloody exudation thus formed, and the uterus may be found in every stage of progress of throwing off the decidua, from the perfectly smooth internal uterus, from which the whole of the decidua has been detached, and the organ studded with patches of decidua, or completely covered with this membrane. I look upon this exfoliative shedding of the mucous membrane or uterine decidua, as in many respects analogous to the change which takes place in the uterine mucous membrane at the catamenial periods, and the lochial and menstrual discharges appear to be essentially the same, except that the lochial flow is more profuse than the menstrual. In animals, there is no lochial discharge, because the placental cotyledons, or that portion of the placenta which fulfills the function of the decidua in the human subject, are permanent. No doubt the basement or germinal portion of the uterine mucous membrane remains both after the catamenia and the lochia, and gives size to the formation of the new mucous membrane found after menstruation and parturition. The lochial discharge is found to possess a peculiar smell. At first it is of the color of pure blood, mixed occasionally with coagula. It is discharged with the greatest readiness during the time of micturition and defecation, or while the uterus is contracting, as in after-pains. After a few days, the sanguineous character of the discharge diminishes, the flow becoming greenish and frequently having a disagreeable smell. It is now called the "green waters," and the next change is to a whitish secretion, which gradually ceases. The green color is caused by the chemical action of the utero-vaginal secretions upon the diminished amount of blood globules now present in the discharge.

It is of importance that the lochial discharge should be free. In the event of deficiency, friction of the abdomen should be practised, with a view to excite contraction of the uterus and the expulsion of any collections in its cavity. Warm water, or infusion of camomile flowers, should be injected into the vagina two or three times daily, and in cases where any mischief is apprehended, the cavity of the uterns itself may be washed out. After delivery, a warm napkin should be applied to the vulva. Napkins are worn during the whole continuance of the lochial flow, and the nurse should change them frequently. The change of the napkin promotes the lochial flow, besides being necessary to cleanliness, as the uterine discharges very speedily decompose, and become intensely disagreeable. I have sometimes been obliged to order a bag of animal charcoal, or a piece of prepared charcoal sheeting, to be placed in the bed to neutralize the lochial effluyium.

The After-Pains are the natural attendants upon the uterine contractions which occur after parturition. The uterus is usually felt in a state of persistent contraction; but from time to time this contraction is increased, and is attended by pain. After-pains increase in severity with every labor; so that primiparous women suffer little from this cause, while multiparous women are troubled with them in proportion to the number of children they have borne. They commence soon after labor, and in the worst cases last three or four days, being produced spontaneously, or by any reflex irritation, such as the draught in the mammæ, the sucking of the child, taking food or drink into the stomach, and the action of the bowels or bladder. Within certain limits, these pains are very salutary, tending to the expulsion of irritating materials from the uterus and the perfect involution of the organ, as the reduction of the organ to its proper size is called. Sometimes they occur violently immediately after the completion of delivery, when the finger should be passed into the vagina, and the os uteri examined, with a view to the removal of any coagula which may remain in the uterus and vagina. When no retention exists, but the pains are neuralgic in character, an opiate, and a warm linseed-meal poultice upon which a little laudanum has been sprinkled, applied to the abdomen, afford great relief. I have sometimes found that an anodyne embrocation applied to the breasts is of service in relieving distressing after-pains. The sources of uterine irritation should be avoided at much as possible. When slow and long-continued, after-pains can never be neglected with impunity, as they sometimes run on to inflammatory disorder.

In most women there is some appearance of Milk in the breasts before the coming on of labor. The areola acquires its deepest shade during and immediately after parturition, and at this time, in women of dark hair and complexion, an almost black zone surrounds the nipple. There is sometimes a pretty free secretion of milk from the beginning, but it is generally the third day before the secretion is fully established. The mammary secretion is, probably, dependent upon the internal condition of the uterus already described, being excited as a reflex phenomenon by uterine irritation. The breasts in turn excite the uterus, and these organs mutually contribute to the return of the uterus to the unimpregnated condition, and to the establishment of the mammary secretion. When the milk is first secreted in quantity, there is a great determination of blood to the glands, producing considerable heat, pain, and swelling, which last for two or three days in favorable cases. The mammæ often become greatly distended, not only from the secretion and retention of milk, but from tumefaction of the gland itself. The milk

first secreted, termed the colostrum, is more irritating than that subsequently formed, and acts as a natural aperient, clearing the bowels of the child from the remains of the meconium, or the secretions accumulated in the intestines during feetal life. Sometimes women suffer considerable pain from the mere weight of their breasts, in which case they require to be supported by a bandage placed round the neck. As soon as the milk is secreted plentifully, the child should be often put to the breasts, and they should besides, be drawn, if necessary, by the nurse, so as to prevent accumulations of milk in the ampullæ, or the galactopherous ducts. Frequent frictions with olive oil [still better castor oil] or a mild camphorated liniment, are also very useful, as favoring the flow of milk through the tubes, and diminishing the tunnefaction of the glandular lobules. If the breasts are very hot and painful, an evaporating lotion should be applied constantly. [The difficulty which many experience in making applications to the breast which will not be displaced, by turning, induce me to add here the figures on this and the

preceding page.] The nipple should always be wiped carefully after each drawing of the breast, or the sucking of the infant. As regards the frequency of application of the child to the breasts, a certain amount of caution should be observed. If there be a profuse secretion, and the glands are not relieved, inflammation and suppuration occur; if the child should be applied too frequently, the secretion is greatly increased, as each act of sucking is at once a relief and a stimulus to the gland, and the patient may be weakened by galactorrhæa. Again, if the glands are swollen, but without any

great secretion of milk, and the child is constantly applied, great pain is produced, and the tubes and glandules may become actually inflamed, and suppurate from this cause. Mammary abscess during the puerperal month may arise from three causes:-1, the irritation of sore nipples; 2, the distension of the gland, or some portion of its substance and tubes; or 3, the irritation of a feebly secreting gland, by constant attempts at suckling the child. When we desire to diminish the quantity of milk, I generally give sulphate of magnesia, with or without dilute sulphuric acid, so as to keep up a moderately free action of the bowels, and have the breast relieved by frequent frictions, resorting to drawing or suckling as little as possible. These means, with in some cases a diuretic, and restrictions as regards diet and drink, I have never known to fail. When we desire to increase the secretion of milk, warm fomentations, and the application of the leaves of the castor-oil plant, with fomentations by the water in which they have been boiled: or the use of a castor-oil embrocation, after fomentations with plain water, are very efficacious.

[I have found painful affections of the nipple to be the most frequent cause of broken breast, the mother feeling it almost impossible to nurse the child, thus allowing an accumulation of milk, which ultimately produces abscess. The nipple should be hardened by daily frictions for many weeks before the expected time of parturition, using borax and brandy, Epsom salts dissolved in water and other astringent washes. If the nipple be cracked and fissured, I have noted more benefit than from any other source, by washing them with a weak lead wash, followed by a poultice. The recently much vaunted collodion, which forms a pellicle over the crack, being drawn off by every nursing greatly aggravates the ill. When there is no fissure or abrasion there is sometimes excessive sensibility of the nipple, which is much benefited by bathing with tincture of myrrh and rose water in equal parts. Sometimes a piece of cotton, moistened in wine of opium, applied a half hour before nursing-the nipple afterwards, in this as after all applications, being carefully washed with castile soap and water-much mitigates the suffering. The tincture of benzoin hardens the nipple and will be found occasionally of great service. If the end of the nipple is cracked (seemingly filled with proud flesh, resembling papilla,

scarcely noticeable until drawn out by the sucking of the infant, and excessively sensitive), touching them down to the bottom with a sharpened point of nitrate of silver, will often be followed by a change of action and speedy recovery.

The state of the breasts incident to the establishment of the milk, and the condition of the internal surface of the uterus, often produce a considerable amount of constitutional irritation and fever, known as Milk Fever, Ephemera, or Weed. This is attended by slight shivering, followed by a quick pulse, and is generally relieved by the full secretion of milk and free perspiration. It seldom requires any other treatment than careful management of the breasts, attention to the lochial secretion, and the use of saline aperients and diurcties. It seldom or never lasts more than two or three days, unless it runs on to more serious disorders of mammary abseess, which we shall have hereafter to consider.

The Diet of the puerperal woman is an element of much importance. Up to the time of the establishment of the full secretion of milk, the tolerably free action of the bowels, and the subsidence of the febrile reaction which commonly occurs at the laeteal crisis, the diet should be moderate in quantity and unstimulating. No animal food should be taken, as the rule, up to this period. Cases sometimes occur in which the exhaustion is so great that animal food and stimulus are required from the After this time, feeding may begin, and a generous diet gradually introduced. It must be remembered, that the patient has to recover from the long drain which pregnancy is in itself, and to prepare for the drain of laetation. The secretions and exerctions being carefully regulated, women may live well after the first few days from the date of labor. The eonstitution has to get rid of old material, and to repair losses. indications are best fulfilled by excretion and nutrition. women make bad nurses, suffer unduly from lactation, and become nervous and irritable, from being under-fed during the puerperal period. Most of the cases of puerperal mania which I have seen, have resulted from exhaustion produced during the first two or three weeks after labor.

Rest, especially in the early part of the puerperal state, is of great moment. Those who get up too early, suffer from hæmorrhage and prolonged lochial discharge, owing to the absence of

valves in the uterine veins [the presence of valves in the uterine sinuses, resembling in shape the ileo-cœcal valves, was demonstrated to the New York Academy of Medicine April 15, 1857, by Prof. Alonzo Clark, and the reason of this subsequent hæmorrhage was attributed to their being dragged open after closure by the subsequent enlargement of the uterus], and the momentum of the blood downwards. They are also liable to prolapsus from the weight of the uterus, and the relaxation of the uterine ligaments, and the soft parts of the pelvis generally. With respect to the poor, no absolute limit can be placed because of their urgent necessities; but, when it can be done, the patient should remain ten days in the horizontal position, and, after that time, should rest during a portion of the day, until the end of the month.

After parturition, it is natural for the **Bowels** to be constipated. This, in part, arises from the exhaustion induced by labor in all the organs under the influence of the spinal cord, and, in part, from the small quantity of food usually taken within the first two or three days of the puerperal period. Left to themselves, the bowels would probably pass a week or ten days in a state of inactivity. It is usual and proper to give a mild aperient dose on the third day after the labor, and the medicine in most common use for this purpose is castor oil; a seidlitz powder, or a draught of sulphate and carbonate of magnesia, in mint-water, will generally suit when castor oil cannot be taken. The idiosyncrasy of the patient should be consulted upon this point, and any aperient avoided which is likely to cause gastro-intestinal irritation.

On paying our first visit to a lying in patient, which should always, if possible, be within twelve hours of her delivery, one of our questions should be with respect the **State of the Bladder.** In long and painful labors, especially in primipara, it not unfrequently occurs that the bladder is quite paralyzed to the influence of volition, and the patient finds herself unable to pass urine. The paralysis appears to depend on the pressure exerted upon the neck of the bladder by the fœtal head, and to affect the sphincter vesicæ chiefly. The effects of pressure are probably aided by the influence of the shock of labor upon the lower part of the spinal marrow. The difficulty generally disappears spontaneously after a few days, the bladder recovering its tone and irritability. Sometimes a little urine is passed, but

the bladder is unable to empty itself thoroughly. Besides asking the question, it is proper, if there should be any doubt upon the subject, to place the hand upon the hypogastrium, when, if the bladder be distended, its elongated oval outline is readily felt above the pubis. The remedy is the use of the catheter for a few days. It is of great importance to diagnose this affection, as a distended bladder may be mistaken for other diseases, and the patient put through a course of inapplicable treatment; or the organ may be ruptured, and lead to a fatal result. The quantity of feetid ammoniacal urine drawn off in some of these cases is quite astonishing.

[The self-retaining catheter of Dr. Sims will be found of great utility where there is temporary paralysis of the bladder, particularly if the patient, as often in thinly populated places, cannot be visited frequently by the physician. Especially if there be cause to suspect any injury of the bladder from pressure, the use of the instrument here delineated, will cause it to be constantly contracted, and may thus avert a threatening fistula which might occur if the bladder was allowed to remain distended.]

It is necessary to say a few words respecting the management of the Infant during the purperal period.

After delivery, it is expected that the acconchenr should make such an examination of the child as will enable him to say that the infant is perfect and well-formed. The state of the genital organs, the hands and feet, and the mouth and oral cavity, should be observed. At our first visit, we should inquire whether the child's bowels have been relieved or not, and whether it has passed urine. The bowels are generally purged by the

irritation of the meconium and the effects of cold upon the surface. If the bowels have not been moved, or the evacuations are insufficient, a teaspoonful of castor oil should be given. In cases of retention of urine, the bladder can generally be made to act by sprinkling a little cold water upon the hypogastrium, by applying a hot sponge to the genitals, or by the use of a warm bath. Sometimes the phymosis natural to the male infant is so great as to interfere with the flow of urine, or micturition is always attended by pain. In these cases, relief is obtained by dilating the aperture of the prepuce by a probe. The child is generally kept in the same room as its mother, and the subdued light proper to the lying-in woman is well suited to the delicate eyes of the child.

The management of the Funis is usually very simple. is wrapped in a piece of singed linen by the nurse, and the projecting portion dies and falls from the umbilions within a week after delivery. The stump heals spontaneously: and after a time the navel is drawn in by the action of the urachus, and the remains of the vessels passing from the umbilicus to the liver. Sometimes the site of separation becomes sore, large granulations sprouting from its surface, requiring the application of sulphate of copper, or some other astringent. In some cases these florid growths have required removal by the scissors. Hæmorrhage has in rare instances occurred from the stump of the funis, requiring ice, astringents, and pressure for its relief; and it has happened that children have been lost from this form of bleeding. An elaborate and interesting paper on this subject is in course of preparation by my friend Dr. J. Foster Jenkins, now of Yonkers, N. Y., by the appointment of the American Medical Association.] Tranmatic tetanus from the division of the funis is rare in this country, but it is a disease of not infrequent occurrence in hot climates, as the East and West Indies; and it occurs in other localities, as in the Faro Islands, where ventilation and cleanliness are greatly neglected.

A few days after labor, it is very common for the child to be affected with **Jaundice**. This arises from the great change effected in the circulation of the liver by the establishment of respiration and the arrest of the current of blood between the funis and the liver. This form of jaundice disappears as the liver becomes accustomed to the conditions of extra-uterine life,

and the flow of bile is established. When it does not pass off readily, a dose or two of grey powder, and a little castor oil, are sufficient to cure it.

It is hardly necessary to insist upon the Breast Milk as the natural food of the infant, yet an enormous number of children die anually, within a few weeks after birth, of marasmus caused by want of breast-milk. The medical attendant should invariably contend for the suckling of the child, or the engagement of a healthy wet-nurse. This should be arranged as early as convenient, as much injury is sometimes done in a short time to the tender stomach of the child by attempts at artificial feeding. Pathological inquiries show that the gastric mucous membrane has a tendency to soften under a deprivation of proper nourishment, and this softening is attended by marasmus and fever, ending in death. When artificial feeding is inevitable, the child will have the best chance of life from the use of fluid food only. Asses' milk or cows' milk, diluted at first with an equal quantity of water and sweetened with sugar, the quantity of water being diminished as the child becomes older, form the best infantile nourishment under these circumstances. milk should always be fresh, and some experienced nurses greatly prefer boiled milk for children.

Many of the matters treated of in the present and the preceding Lecture may be thought to pertain to the nature of "common things;" but attention is not the less necessary to them, if we would conduct patients safely through parturition, and the purperal state in natural cases. It should always be borne in mind, that at any stage of the processes through which the patient passes between the commencement of labor and puerperal convalescence, the most simple case may be converted into one of

difficulty and danger.

LECTURE XXVI.

PRESENTATION OF THE FACE.

Gentlemen:—In the preceding Lectures we have treated of the mechanism and management of cases in which the head presents in its different positions. We have now to pass from cranial presentations to those of the face. The transition from vertex to face presentations is easy and natural, because of the identity of the parts concerned. It will be found convenient to direct attention to the following considerations in connection with presentations of the face—namely, the mechanism, the diagnosis, and the management.

There is a very close analogy between the mechanism of face and vertex presentations. Let the fronto-mental diameter of the feetal head be substituted for the occipito-frontal at the brim of the pelvis, and the similarity as well as the difference will be readily appreciated. It will be fresh in your memories that three kinds of obliquity were spoken of in the passage of the head through the pelvis in vertex cases: 1. An obliquity consisting of the position of the long axis of the feetal head in one of the oblique diameters of the brim. 2. An obliquity, consisting of a dip of the posterior extremity of this axis in the cavity of the pelvis. 3. An obliquity, consisting of a dip of one or other extremity of the bi-parietal diameter of the cranium in the pelvic basin. A similar triple bias, or obliquity, obtains in face presentations. Thus the fronto-mental diameter of the face. which represents the occipito-frontal of the head, in vertex cases, is oblique as regards the diameters of the brim, and oblique as regards the superior plane of the pelvis, while there is a dip of the anterior extremity of the bi-temporal diameter of the face, in the pelvis, corresponding to the dip of the biparietal diameter of the head in vertex cases. The chief defect in the analogy of face and vertex presentations is, that while in

the latter the posterior extremity of the long diameter of the head is from first to last lowest in the pelvis, in the former there is a change effected, the frontal end of the fronto-mental diameter being lowest at the commencement, and the mental extremity lowest at the end of labor. This defect is, however, more apparent than real, because the face rotates so much in the pelvis as to make the chin represent the occiput in the act of the disengagement of the head. In addition to the parallelism already mentioned, there are certain linear guides to the position of the face which in a manner represent the sutures of the cranium. Thus the mouth may be said to replace the anterior fontanelle at the commencement of labor. The bridge of the nose corresponds to the sagittal suture; and the ridges of the orbits to the coronal or lambdoidal sutures, as the case may be. The grand difference between vertex and face cases is, that in the former the head is flexed—that is to say, the chin is bent down upon the breast, the occipital extremity of the head thus becoming the most advanced or depending portion of the cranium; while, in face presentations, the head is extended, the chin being separated from the chest as far as possible, and the head thrown back on the nape of the neck. Now, it is obvious that there may be many intermediate positions between extreme flexion and extreme extension; but, as a general rule, one or other of these extremes does actually obtain, and semi-extension is of rare occurrence. When it does exist, brow presentations are produced, and they are amongst the most difficult of cranial labors. Extension of the head increases as labor advances, so that when the head is in the act of disengagement, the chin is further separated from the breast than at any other period of labor. The manner in which such a decided irregularity as the extension which produces face presentations is brought about, is somewhat obscure; but we are in possession of some physiological facts and principles which will account, to a certain extent, for a portion of these, as well as of other forms of mal-presentation. Before, however, going on to state these, it is interesting to remark, that flexion is the normal condition of the feetus every limb, every fluger, the trunk, and, in fact, every movable member is flexed, and the extension of the head, in face cases, must, therefore, clearly be the result either of unusual mechanical or vital conditions, intrinsic or extrinsic to the fœtus. The application of the foregoing and following considerations extends, it should be said, not merely to face presentations, but to malpositions in general. Dr. Fleetwood Churchill and Dr. Simpson arrange the causes of mal-presentations pretty nearly as follows:

- 1. Face presentations and mal-positions generally, are the result occasionally of premature labor, in which the moulding influence of the shape and contractions of the immature uterus and the reflex contraction of the limbs of the fœtus, are not effective.
- 2. They are the result of death of the fœtus in utero; or, in other words, of loss of muscular tone and the adaptive reflex movements, and an alteration of the specific gravity of the fœtal head.
- 3. They are the consequences of the application of unusual excito-motor stimuli to the fœtus and uterus.
- 4. They are the result of causes mechanically displacing the whole fœtus, or the presenting part, at the commencement of labor.

With regard to these statements it may be remarked, that in cases of premature labor it is doubtful whether the excito-motor functions are so well-developed as to determine the position of the fœtus in utero, while the small size of the fœtus must to a certain extent abrogate those mechanical relations upon which the application of normal stimuli depend. With regard to death of the fœtus in utero, it is right to state, that although the absence of reflex motions may have a share in producing abnormal presentations, yet there is reason to doubt whether a mere physical explanation may not suffice for a certain portion of them. I have on a former occasion referred to some very interesting papers, by Dr. Matthews Duncan, of Edinburgh, on this subject. If normal stimuli determine the natural presentation, abnormal stimuli must of course be admitted as the efficient causes of some errors of presentation; but to analyze the exact nature of such cases, and to determine how and when they are produced, is out of our power; their history must, in fact, be a matter of pure conjecture. The fourth series of causes mentioned are more within the scope of actual observation, and may sometimes be traced with considerable accuracy: thus, a vertex presentation may obtain before the fætal head has become engaged

in the inlet of the pelvis, and it may be altered by premature and sudden rupture of the membranes, especially if the quantity of liquor amnii be unusually great. Thus much in relation to face presentations generally; let us now trace the mechanism, in each variety, from the commencement to the termination of labor.

There are four presentations of the face, as of the vertex, and they are similarly numbered. In the first, the forehead is towards the left acetabulum; in the second, towards the right acetabulum; in the third, towards the right sacro-iliac synchondrosis; and in the fourth, towards the left sacro-iliac synchondrosis. These positions are the exact analogues of the four vertex presentations respectively, and may be looked upon as vertex cases in which the head has become accidentally extended. In practice, it will be found that the third and fourth face presentations are so extremely rare as hardly to be worth enumerating, and consequently our attention may be confined to the first and second only. The first is the most frequent, being to the second, according to Naëgelé, as twenty-two to seventeen. As regards the frequency of face-presentations, Dr. Fleetwood Churchill has collated the proportion in nearly a quarter of a million of cases, and he finds that this mal-presentation occurs once in about 2312 cases.

In the First Facial Position, if the finger be introduced into the os uteri at the commencement of labor, it will impinge upon the bridge of the nose; carrying the finger forwards and to the left, it arrives at the forehead, which is found opposite the left acetabulum; and just beyond the root of the nose the frontal suture may be traced upwards and forwards, widening in its course towards the great fontanelle. This opening can, however, seldom be reached; and, indeed, the farther out of reach it is, the more favorable is the position of the head. Tracing the nose backwards and to the right, the mouth is reached, and the alveolar ridges may be distinguished. further backwards, the chin may be found in relation with the right sacro-iliac synchondrosis. The line represented by the bridge of the nose does not, however, cut the os uteri equally, it is more posterior than anterior, and consequently the right side of the face occupies the anterior and greater segment of the mouth of the uterus. The primary caput succedaneum will in

this presentation be found upon the upper half of the right side of the face, and will include a surface corresponding to the

Presentation of the face at the pelvic brim.

right eye, malar bone, and adjoining parts. Thus the upper and right aspect of the face is lowest in the pelvis. As labor advances, and the head descends in the pelvis, the head gradually turns, so as to bring the chin forwards from the right sacroiliac synchondrosis to the right obturator foramen; and in accomplishing this rotation from right to left, the chin is brought lower in the pelvis. The spine of the ischium in face, as in the ordinary vertex presentations, is the directing agent, and the chin of the fœtus is the part acted upon in the latter. In the first cranial position, it will be remembered that the left side of the posterior extremity of the head glides down the inclined plane formed by the anterior surface of the left ischial spine, and that the head has thus a rotation imparted to it from left to right. In the facial presentation under consideration, it is in the left side of the chin which comes in contact with the anterior surface of the spine of the right ischium, and thus the rotation. although of an exactly similar nature, is in the reversed direction, i.e., from right to left. In both cases, however, the same general statement applies—namely, that the opposing surface of the fœtus is thrown downwards and forwards under the arch of the pubis. As the chin advances and turns forwards, the arch of the cranium is directed backwards towards the hollow of the sacrum, and thus the head is completely lodged in the cavity of the pelvis. The right cheek and angle of the mouth are now the presenting parts, and the chin is just about to emerge from

Emergence of the head from the pelvis in face presentation.

under the arch of the pubis. The next step is emergence of the chin, not exactly in the middle line, but still directed somewhat to the right, as in vertex presentations, where the antero-posterior diameter of the head is never exactly in relation with the antero-posterior diameter of the outlet of the pelvis. By the liberation of the chin, room is gained; and now a process of flexion takes place analogous to the extension of vertex presentations: the chin becomes temporarily almost fixed, and the head rotates upon its transverse axis, so as to bring the vault of the cranium out with a sweep over the perinæum, the occiput being the last part expelled. During the flexion described, there is an advance of the head *en masse*, but it is not so conspicuous as the flexion. If the face remains long in apposition

with the os externum, a secondary tumor forms on the cheek; but instead of being on the upper, it is on the lower half of the face, and involves more of the opposite side of the face than the primary tumor does. This is evidently in consequence of the depression of the chin, and the change from an oblique to an almost antero-posterior position of the long diameter of the face. The head having been expelled, the rest of the body behaves as in first vertex presentations. The right shoulder, being lowest in the pelvis, is propelled against the anterior surface of the spine of the right ischium, and rotated from right to left, so as to place the shoulders nearly in the antero-posterior diameter of the outlet of the pelvis. The right shoulder is thus born first, and the left sweeps over the perinæum. The hips are born in the same manner. The engravings, No. 111, 112, and 113, represent the presentation of the face at the brim of the pelvis, at the outlet, and passing through the external parts.

Passage of the head through the external parts in face presentation.

In the **Second Facial Position**, the details of the mechanism are exactly similar, only that the forehead is directed towards the right acetabulum, and the chin towards the left sacro-iliac synchondrosis, and all the rotations of the first position are

exactly reversed. In fact, by using the word "right" for "left," and "left" for "right," the description of the mechanism of a first facial position applies with the utmost precision to the second also.

In the first position of the face, we may, while it passes through the pelvis, compare the situation of the chin to the situation of the vertex in the third position of the head. The same rotation of the part first to emerge through the pelvis, from the right sacro-iliac synchondrosis to the right side of the pubic arch, is usually effected in both. We may also compare the second facial position to the ordinary termination of the fourth vertex presentation, the chin in this case rotating from the left sacro-iliac synchondrosis to the left side of the pubic arch. In face cases, the mental protuberance is the thread of the screw which is in contact with the ischial planes, and the rotation amounts to about one-fourth of a circle. As the chin passes out of the pelvis in the first facial position, it is in the same position as the vertex in the second cranial position; while in the second facial position, the chin emerges in the same path as the vertex in the first cranial position.

Certain varieties of face presentations have been described. in one of which the chin has been spoken of as sweeping over the perinæum. Smellie and Hamilton both include such cases in their systematic account of face labor; but with a normal pelvis and fætal head of the ordinary size, such a mode of termination is utterly impossible without the aid of instruments. There is an intermediate presentation in which the head is neither completely flexed, as in vertex cases, nor completely extended, as in face presentations: this was alluded to before, and is the brow presentation. On examining these cases at the commencement of labor, the frontal protuberance of the right or left side will be found to be as nearly as possible the presenting part. The diameter of the feetal head which enters the right or left oblique diameter of the pelvis, is that between the clin and the great fontanelle; the chin may be towards the right or left ilium. In the first, the presentation will be the analogue of a first vertex or face case, and the latter of a second vertex or face position. As labor advances, the head sinks down in the pelvis, and the right or left side of the face becomes most anterior and lowest in the pelvis, according to whether the

case represents a first or second face case. The finger now easily arrives at the great fontanelle, which is anterior, and to the left or right, as the case may be, and in the opposite direction the chin may be found. Both the anterior fontanelle and the chin are higher in the cavity of the pelvis than the forehead. Unless the pelvis is very large, or the head of the fœtus very small and yielding, the case now comes to a stand-still, the arch of the cranium being forced down upon the pubis, and the chin hooked against the upper border of the great sacro-sciatic ligaments. These cases require the aid of the forceps, and are difficult to manage, on account of the fact that these instruments can only be applied in this position to the face, over which they slip very easily.

The diagnosis of face presentations may be considered to rest upon the absence of certain signs peculiar to other presentations, and upon the recognition of parts actually belonging to the face. The face may be distinguished through the membranes as a very uneven surface, totally dissimilar to the hard, smooth, globular mass of the vertex. If the head is very high, and the membranes tense and tough, it is not so easy to recognize the parts. It is still more difficult to determine the position through the walls of the cervix uteri. In a latter stage of labor, continued pressure may so modify the contour of the face, and induce such swelling of the features, as to simulate very much the general aspect of a breech presentation. In this case, the malar bones, with their soft coverings, may be mistaken for the ischia and buttocks, the mouth may be so swollen as to be easily confounded with the anus, or the eyes may be confounded with the vulva of a female child. When no peculiarly untoward circumstances are present to obscure the real nature of the presentation, it is tolerably easy to recognize, the frontal suture narrowing towards the root of the nose, the ridge of the nose, the orbits on each side, with their bony circumferences, and, beyond the nose, the large cavity of the mouth and the firm edges of the alveolar processes. If any doubt exists as to whether the face or breech presents, the difficulty may be cleared up in certain cases by an appeal to the surface of the abdomen: thus, in thin women, the parietes of whose abdomens are lax, and in whose uteri there may happen to be but a small quantity of liquor amnii, the head may occasionally be recognized externally as a spheroidal mass at the fundus of the womb, and this, of course, negatives the possibility of a face presentation. On the other hand, the character of the meconium may become diagnostic; for although it may be met with both in pelvic and cephalic presentations, yet, in the latter, it is in a diluted state, and is very different from the tenacious meconium of a breech case, which has not been mixed with the amniotic waters.

We now arrive at the management of face presentations. In former times a great variety of contrivances were in favor amongst obstetricans for facilitating delivery in face cases. The foundation of this love of interference was evidently the strong conviction, which anciently prevailed, of the preternatural nature of the presentation, and this scientific prejudice found its practical development in procedures essentially meddlesome and bad. The first of these unphilosophical procedures was that of turning; it was of course only recommended when the head was high in the pelvis and the liquor amnii as yet undischarged. Almost in the present generation turning has been recommended in face cases by high authorities. It is a well ascertained fact now that, even putting out of the question the danger which may accrue to the mother from the operation of turning, the result to the child is that the chances of death are more than doubled. The greater control which the accoucheur has over the progress of labor is certainly an attractive feature in the mode of practice; but as very rapid delivery is by no means the great desideratum of obstetrics, it is as well to relinquish the control for the sake of additional safety. It should never be forgotten, too, that in all cases of version, however skillfully performed, there are certain risks to the mother, arising out of mechanical violence, inflicted either by the operator, or by the uterus upon itself; while shock and irritation, perhaps running on into inflammation, are but too frequently the results of manual interferences, in which no mechanical violence whatever has been applied to the parts. Turning can only be admissible when there is such a complication as necessitates our putting the safety of the child out of the question, and balancing the operation of version against some more violent natural or artificial termination to the labor. Dr. J. Clarke adopted another plan, which was to wait until the head had

descended into the cavity of the pelvis, and then to exert steady pressure, in a direction upwards and backwards, upon the presenting cheek during each pain; by this means he averred that he succeeded in lodging the face in the hollow of the sacrum, and that the labor then terminated as in vertex cases. Whatever may have been the results of this practice in the hands of Dr. Clarke, it is obviously attended with considerable risk; in the first place, success is very doubtful, and it is far more probable that a brow presentation will be brought about than that a rectification will be produced; and in the next place, the procedure is a violent one as regards the child. A moment's consideration of the mechanical relations of the parts concerned will show that, as soon as any elevation of the chin is obtained, the arch of the cranium will be brought down upon the pubis; and should the uterus act with any vigor, he will be a dexterous operator who terminates the case without the forceps or some graver procedure still. A more pernicious mode of practice than either of the above was first recommended by Baudelocque, and received the sanction of Lachapelle, as well as some British obstetricians. The operation was founded upon a misconception of the mechanism of labor in face cases of the following nature. It was supposed that whenever the chin was towards the sacro-iliac synchondrosis of either side, the head must necessarily pass out of the pubis with the chin directed posteriorly. Whenever such cases had been actually observed, they had certainly been seen to be attended with a great risk to the fœtus and suffering to the mother; but the grand error was, that not only are mento-posterior presentations, as a general rule, changed into mento-anterior ones, but that, instead of mentoposterior positions being exceptional and peculiar, they are the most frequent of face presentations. The fact that the chin was generally towards one or other sacro-iliac synchondrosis was not known, and the rotation of the chin forwards in nearly all cases was equally undiscovered. It was thought that an original anterior position of the chin was the only favorable position in face cases, and knowing as we now do as to the infrequency of this presentation, it can hardly be a matter of surprise to us that such frequent manual interference was resorted to, and that such an unfavorable prognostic was applied to face presentations in general. The operation was performed quite in the early stage of labor, and before the membranes were ruptured. It was recommended to introduce the hand into the vagina, through the os uteri, and into the space between the brim of the pelvis and the forehead of the fœtus; the palmar surface of the fingers being kept towards the head of the child. The next step was to rupture the membranes and hook the fingers over the arch of the head, and drag down the occiput if possible-indeed this is the object of the procedure—and thus convert the face presentation into an ordinary vertex one. The objections to this method are numerous. Since Naëgelé wrote his celebrated treatise on the mechanism of labor, it has been generally known that not only is the chin at first generally directed backwards, but that, in nearly all cases, it turns forwards under the arch of the pubis as a necessary result of normal relations between the pelvis, the feetal head and the expulsive powers. Having thus eliminated a large proportion of cases from the category of those requiring artificial assistance, let us inquire, What are the dangers of Baudelocque's operation? It must be granted that the introduction of the whole hand at the commencement of labor, before the external organs of generation are dilated and softened, must be an extremely painful procedure for the mother, and the efforts used for the introduction of the hand into the uterus can hardly fail not only to be painful but to give rise to serious accidents. M. Moreau saw a case in which rupture of the uterus, followed by immediate death, was the result of this operation, and the circumstance is the more worthy of notice, because the operator was a person well used to obstetric manipulations.

In the next place, the sudden escape of the liquor amnii before the head has become engaged in the superior strait of the pelvis is very likely to result in descent of the funis, a circumstance which places the fœtus in extreme peril. Again, an arm may descend, or even two may come down, and create additional difficulty in the further progress of the case; and, finally, it is an inseparable result of these tentative efforts, that when they fail to produce a vertex presentation, recourse must be had to the forceps or pelvic version. It may be added, that the early evacuation of the liquor amnii is a circumstance extremely objectionable in itself, as subjecting the fœtus to the immediate pressure of the uterine walls, and abrogating all

those arrangements which conduce to easy delivery in a spontaneous vertex presentation. If the operation were easy and inoffensive, and if it placed both mother and fætus, after its accomplishment (always supposing it to have been accomplished), in the same condition which would have obtained in a spontaneous vertex position; if, in a word, the least analogy existed between a labor where the vertex presents spontaneously and one in which it had been dragged down, it would be proper to resort to Baudeloeque's method; but inasmuch as failure is probable, the condition produced not identical, the danger to mother and child from the operation itself not small, and the alternative after failure another and still graver operation, the whole proceeding is totally inadmissible.

In actual practice, it will be found that the treatment of face cases is extremely simple. We may assist the chin in making its rotation forwards and downwards, by introducing the finger into the child's mouth, making traction upon the lower jaw, and bringing it under the arch of the pubis. Meigs lays it down as the great rule of practice in face cases, that the chin should be brought towards the pubis as the face emerges from the pelvis. This is an analogous procedure to that of bringing the occiput down in vertex eases, either directly, by the fingers applied to the back of the head, or indirectly, by pressure exerted upon the forehead. The principle is the same in both cases—viz., to favor the birth of that part which tends to be born first. Should the head fail to rotate in the pelvis the foreeps will generally be neeessary, or the head must be dislodged, and the ehild delivered by turning. Where delay arises, not from faulty position, but from disproportion in bulk between the head of the fœtus and the pelvis of the mother, or from inadequate uterine contraction, the same rules of treatment apply as in eases of impactment or inertia uteri, where the vertex presents with this modification, that as the parts engaged in the pelvis are more solid, less advantage will be gained by delay in so far as moulding of the head is concerned, and more danger will accrue to the mother from pressure upon the rectum and bladder. The fœtus itself is more endangered, too, by long engagement in the pelvis, in face than in vertex positions, the vessels of the neek being often injuriously pressed upon. During the progress of a face case eare should be taken to keep

the pelvic viscera empty, and to preserve the membranes entire as long as possible. In making examinations, the delicate structure of the organs within reach should be remembered, as cases not unfrequently happen in which the eyes have been seriously injured by careless manipulations. Examinations should not be more frequent than necessary to determine the exact presentation at first, and the subsequent rate of progress. The apartment should be kept cool, and the patient's courage supported by a cheerful and confident demeanor on the part of the accoucheur. The perinæum should be carefully guarded, but not pressed upon. After birth, the features of the child will generally be found hideously distorted, the mouth dragged to one side, and one or both eyes occluded. Fomentation with warm water, decoction of poppy-heads or marsh-mallow, will be all that is necessary, as the parts will gradually return to their normal condition. The parts of generation of the mother require similar application and great cleanliness.

LECTURE XXVII.

PELVIC PRESENTATIONS.

Gentlemen: - Having considered those presentations in which the cephalic extremity of the fœtus is situated inferiorly, we may naturally pass to those in which the pelvic extremity of the child holds the same position. It has been a matter of controversy whether pelvic presentations should be considered natural or preternatural. Whatever arguments have been urged on either side, however, the same detriment has not accrued to practice as from erroneous theoretical opinions with regard to the nature of face presentations, inasmuch as all have been agreed pretty nearly as to the time and manner of rendering assistance in these cases. Practical conclusions not having been deduced from the one or other view of the question, all interest in it vanishes, and we are left free to consider only that which is useful. It is by no means necessary to enter into detailed separate descriptions of the various forms of pelvic presentation; they are in reality, but trifling varieties of the same order of labors. and differ very little except in some particulars of management: their mechanism is essentially the same, and the fundamental rules of treatment which apply to the one variety apply with equal force to the other. We may look upon the pelvic extremity of the fœtus as composed of certain elements, which may present alone, or in certain combinations. The most complete variety is where the breech engages itself in the pelvis first; then the knees may present, or the feet, or a single foot or knee. A needless subdivision of breech presentations has been made by some authors, and the pelvis of the fœtus has been described as occupying almost every conceivable position at the brim of the maternal pelvis. The complexity thus given to the subject of the mechanism of pelvic labors was, however, first cleared away by the same careful observer to whom we are indebted for nearly all that we know, exactly, of the intra-pelvic movements of the fœtus. Naëgelé reduced all pelvic presentations into two orders; in the first, the back of the child is towards the abdomen of the mother; in the second, the abdomen of the child is towards the mother's abdomen. These may be called respectively the dorso-anterior and the abdomino-anterior positions. In neither case, however, is the back of the fœtus situated quite anteriorly or posteriorly, but rather obliquely, so that one hip is more anterior than another. The dorso-anterior position is, according to the same authority, more frequent than the reverse presentation, in the proportion of three to one. Let us now examine the mechanism of pelvic labors, first premising that they ensue according to the fixed laws, as cranial labors do, with only this difference, that deviations from the usual course are perhaps rather more frequent, and attended with less risk than when the head presents.

Pelvic presentation in the first dorso-anterior position.

In dorso-anterior pelvic presentations, the relation of the fœtus to the maternal pelvis, is, generally speaking, as follows: the transverse diameter of the child's hips occupies the left oblique

diameter of the pelvis, its sacrum is directed towards the left acetabulum, its left trochanter towards the right acetabulum, and its right trochanter towards the left sacro-iliac synchondrosis. Upon examining per vaginam, as the breech is entering the superior strait of the pelvis, it will be found that the os uteri is occupied by a double tumor, soft, but elastic during the intermission of a pain, the several parts to which reference will be made, when speaking of the diagnosis, may be readily distinguished, and it will be found that the sulcus between each segment of the tumor is oblique, and situated more posteriorly than anteriorly; or, in other words, one buttock, the left, occupies the anterior and greater half of the mouth of the uterus. It will be observed, also, that this buttock, which is most anterior, also stands lowest in the pelvis, and is, in fact, the presenting part. As labor advances, and the hips descend, the left hip is still lowest in the pelvis, and steadily directed somewhat to the right: what now takes place is a matter of dispute. The great majority of obstetricians contend that a rotation analogous to the rotation of cranial labors takes place, that the left hip turns more and more forwards, until it comes to be nearly under the pubic arch, and that the hips and shoulders thus emerge from the pelvis, nearly in the antero-posterior diameter of its outlet. This statement is made confidently by persons of great and deserved repute, but M. Naëgelé, nevertheless, flatly contradicts it, and makes it the subject of some pleasantry; his words are nearly as follows: "In its farther advance (the breech) into the pelvis, it is always found in an oblique direction, the hip directed forwards standing lowest. In this oblique position, with reference to its transverse and perpendicular diameters, it is forced through the inlet, the cavity, and the outlet of the pelvis; and in general none of these rotations occur, erroneously described in many manuals and compendia as appertaining to this species of labors. There are some, certainly, who, compass and skull in hand, measure the diameters of the bony pelvis, and then on the writing desk so turn and extract a mannikin, that the transverse diameter of the hips always passes in that direction, which, according to calculation on the bony pelvis, they account the largest." The truth, as usual, would appear to lie between the contending parties. That there is a slight rotation can hardly be doubted, but it is

not so constant nor so well marked as the rotation of the There is not the same difference between the diameters of the breech of the fœtus as between the diameters of its head, and consequently there is not the same necessity for a movement of adaptation; we shall find, however, that the head obeys the same mechanical necessities in its transit, in pelvic labors, as when it presents at first. Supposing the breech now to have become entirely engaged in the cavity of the pelvis, the left hip will be found just within the vulva, and the right hip beginning to press down on the floor of the pelvis posteriorly, and somewhat to the left side. The left hip then becomes nearly fixed under the pubic arch, and a movement of flexion takes place analogous to the flexion of face and the extension of vertex labors; the right hip sweeps over the perinæum, the pelvis of the fœtus rotating, as it were, upon its antero-posterior diameter. As soon as the right hip has escaped from the tight embrace of the perinæum, a movement onwards en masse takes place, the

Passage of the shoulders, and partial rotation of the thorax.

feet usually slip out, and presently the knees become disengaged; and the inferior half of the child's body is thus born. The abdo-

men of the fœtus is now turned towards the inner side of the right thigh, or, supposing the woman to be in the ordinary obstetric position, upwards. The rest of the body follows in the same manner, the shoulders entering the left and oblique diameter of the inlet. The manner in which the arms are born depends upon whether they remain folded upon the chest of the fœtus, or are displaced during the progress of labor. In the first instance they slip out as the thorax is expelled; in the latter they are extended upwards on each side of the head, or one may even become locked behind the head, and between it and the pubis; and serious inconvenience may arise from such an accident. If the arms remain extended by the side of the head as the latter passes through the pelvis, the difficulty of the case is of course enhanced. The left shoulder of the fœtus, like the first hip, becomes first engaged in the outlet of the pelvis, and the right shoulder distends and sweeps over the perinæum. During the whole progress of labor, the fætal head will in most cases remain flexed upon the chest. As the shoulders are about to emerge, the head enters the opposite oblique diameter of the pelvis to that which the hips and shoulders have occupied; thus the forehead is towards the right sacro-iliac synchondrosis, and the occiput is directed towards the left acetabulum. The occipito-frontal diameter of the fœtal head is not, however, exactly that which comes into relation with the right oblique diameter of the pelvis, for the chin is depressed and the occiput is the highest point of the fœtus; it is the sub-occipito-frontal diameter which presents, and thus sufficient room is gained to allow the head to become easily engaged in the cavity of the pelvis, and to permit the face to be rotated into the hollow of the sacrum. The under surface of the occiput now rests against the inner surface of the symphysis pubis, the mass of the face occupies the sacral concavity, and the chin may be felt some little way within the perinæum. In the further expulsion of the head the occiput is almost a fixed point, and the head rotates upon its transverse axis in such a manner that first the chin sweeps over the perinæum, then the face, the forehead, and the arch of the cranium; and finally, the bulkiest part of the head having been expelled, the rest is pushed out by the elasticity of the perinæum and the action of the vaginal muscular fibres. In the second variety of dorso-anterior positions, the hips of the child occupy the right oblique diameter of the brim of the pelvis; the right buttock presents, if it is a breech case, and

Descent of the head,

occupies the greater and anterior segment of the os uteri; and the left buttock sweeps the perinæum. The right side of the fœtus is directed steadily somewhat to the left acetabulum, and its abdomen turns downwards, or towards the left thigh of the mother. The head enters the left oblique diameter of the pelvic inlet, the forehead being towards the left sacro-iliac synchondrosis; the face turns into the hollow of the sacrum, as in the first instance, and the whole progress of the case is, in fact, the converse of what happens in the first position; just as the second is the converse of the first vertex or face presentation.

Abdomino-anterior positions of the fætus, with the breech or lower extremities presenting, are of two kinds. In the first and most frequent variety, the hips of the child occupy the right oblique diameter of the inlet, the left trochanter is towards the left acetabulum of the mother, the left hip presents and stands lowest in the pelvis from first to last, and the whole body, as far as the shoulders, is expelled, looking forwards to the right.

The head enters the left oblique diameter of the inlet of the pelvis, the occiput being towards the left sacro-iliac synchondrosis. As the head descends, in the pelvis, the occiput rotates forwards from left to right until at last the face is lodged in the hollow of the sacrum, just as it rotates in fourth vertex positions. Those parts of the fœtus which were already born may now be seen to rotate in a corresponding direction and degree to the intra-pelvic rotation of the head; thus the anterior surface of the child's body, which at first looked forwards and to the right, now looks backwards and to the right, and the case then terminates exactly as the first sub-order of dorsal anterior positions.

The second variety of abdominal anterior positions is where the hips of the feetus lie in the left oblique diameter of the inlet, the right trochanter being towards the right acetabulum. The right buttock is here the presenting part, and stands lowest in the pelvis. The head enters in the right oblique diameter of the inlet, with the occiput towards the right sacro-iliac synchondrosis, and undergoes the same kind of rotation as the preceding variety—that is to say, the occiput turns forwards and from right to left, and the face is thus thrown into the concavity of the sacrum. The anterior surface of the child's body, which was at first turned forwards and to the left, is at the same time rotated so as to look backwards and to the left. The mechanism of this variety is in fact the exact converse of the preceding.

There remain two anomalies in the mechanism of pelvic labors, which are very interesting; one of these relates to an unusual termination of cases in which the abdomen of the infant is anterior, and the other relates to the position and rotation of the fœtal head. It sometimes happens, says Naëgelé, in abdominal anterior positions where the fætus is premature, small, or a twin, that the abdomen, which was at first directed forwards and to the left, or forwards and to the right, is suddenly, and during a single pain, turned so completely round that the abdomen looks backwards and to the right, or backwards and to the left. It is difficult to account for such a singular revolution of the feetal body. The other anomaly alluded to is where the head, instead of being fixed upon the chest, is extended, the occiput being pressed down upon the nape of the neck. In such cases the vertex rotates backwards into the hollow of the sacrum, the under surface of the lower jaw is brought into relation with the symphisis

pubis and the head emerges in such a manner, that, first, the occipital protuberance sweeps over the perinæum, then the arch of the cranium, and then the forehead and face. The foregoing account of the mechanism of pelvic labors applies in-every essential particular to each variety. There are, however, one or two subsidiary differences depending upon whether the nates, knees, or feet present. When the breech presents, the birth of the body is slower, but the head follows more readily; when the knees descend, they sometimes create delay by becoming fixed against some point of the bony pelvis, more especially against the lower part of the sacrum; and when the feet present, the birth of the lower half of the body is comparatively rapid, while delay ensues in the passage of the shoulders and head. In labors where the breech or knees present, reliance may be placed upon the position of the presenting part, as an index of the actual position of the fœtus; but when the feet present, it must be borne in mind that they are very mobile, and only affect a determinate position when the nates enter the brim of the pelvis. In some cases of pelvic presentation, it has been remarked by Drs. Hardy and M'Clintock, that the anterior-superior spinous process of the ilium presents, in the first instance, and may cause some confusion.

The diagnosis of pelvic presentations rests upon signs, some of which are common to each variety, while there are particular signs by which each special presentation may be determined. The first thing to which the attention is directed in pelvic presentations is the absence of those familiar conditions which obtain when the head of the fætus is at the brim of the pelvis; and, failing to recognize these, the accoucheur naturally looks for data upon which to found a positive diagnosis in lieu of his negative one. Popular opinion, amongst females at least, attaches much importance to the external configuration of the abdomen, and hence the slightest deviation from the usual form . or size excites in women strong apprehensions of mal-position of the child. As long, however, as the long axis of the ovoid mass formed by the fœtus corresponds to the long axis of the uterine cavity, it will make but little difference in the external appearances whether the cephalic or pelvic extremity of the fœtus is directed downwards. Even in transverse presentations it is surprising how little affected is the figure by the position of the

contained infant, and to expect therefore any guidance in the minute difference in form and size between the upper and lower extremity of the fœtus is chimerical in the extreme; it is only in very exceptional cases that an external examination throws any light upon the subject, and even then it is not from the general appearance we judge, but because we can occasionally, under favorable but peculiar circumstances, recognize the rounded mass of the feetal head, through the walls of the abdomen, lying at the fundus uteri. It has been said that when the breech presents, the lower end of the utero-fætal tumor sinks further down into the pelvis at the commencement of labor than when the head presents, and this has been said to occur whether the case is a primiparous one or not. The fact, however, if it be one, will not assist us very materially; for the depth to which the presenting part sinks in the pelvis, independently of uterine contraction, is principally the result of circumstances unconnected with the fœtus, such as the size of the pelvis and the tension of the abdominal walls. In knee and footling cases, the presentation is certainly further out of reach at the commencement of labor than when the head is at the brim of the pelvis, and indeed it not unfrequently happens in footling cases that it is extremely difficult to find any presentation at all, unless the whole hand is introduced into the vagina. The form of the bag of membranes is an item better worth attention; it will be found not to have that rounded form which obtains under ordinary circumstances, and it projects more into the vagina. In footling cases the bag is quite long, and shaped like the finger of a glove, and in all pelvic presentations it is not so tense as when the head presents. Another circumstance worth attending to is the mobility of the presenting part, which in pelvic presentations is generally more resilient, and bounds up in the waters of the amnion more readily than the head does. The sensations of the mother have also been spoken of, as furnishing an indication of the position of the fœtus, not to be neglected. In vertex presentations, the feet of the infant are of course directed towards the fundus uteri, and the sensations of struggling felt by the mother are generally referred to the upper portion of the uterus, and more especially to where it is in contact with the abdominal parietes. When the pelvic extremity of the fœtus is its depending portion, these sensations are said to be in a great measure

absent, or if perceived, to be referred to a much lower situation. Very little reliance can be placed upon auscultation in determining pelvic presentations. The feetal heart beats so nearly midway between the one extremity of its body and the other, that but little alteration in the distance from the pubis, at which it is best heard, is effected, whether the cranial or pelvic extremity of the fœtus depends. When it is remembered that considerable variation in this respect obtains in cranial presentations, it must be conceded that, however useful auscultation may be in other circumstances, we can expect but little assistance from it here. In the first dorsal anterior position the feetal heart may be heard loudest a little to the right of the mesial line, and somewhat below the level of the umbilicus; in other positions the sounds of the heart are somewhat obscure, and, in short, auscultation is not to be relied upon. The manner in which the liquor amnii is discharged is peculiar, though not so characteristic in breech as in knee and footling cases. When the head presents, the membranes rupture, and a sudden gush of water follows, which as suddenly stops; this is because the head is forced down upon the os uteri, and acts as a ball-valve.

In pelvic presentations, the gush is not so sudden, and the waters of the amnion continues to flow until the uterus is emptied of all its contained fluid. As might be naturally expected, the character of the pains alters as soon as the membranes have burst, and from this time until the whole body is expelled, and nothing remains but the head in the cavity of the pelvis, the uterine contractions are more clonic, continuous, and closer together than in cranial labors; the absence of fluid from the uterus multiplies the points of contact between the fœtus and uterus, and increased excitation results in increased motor action. The chief and conclusive evidence of pelvic presentation is, of course, the recognition of the individual parts which offer themselves to the touch per vaginam. In breech cases, very little can be accurately distinguished before the membranes are ruptured, beyond the movable coccyx and rugosities of the sacrum; these can generally be felt behind one or the other acetabulum. As soon as the liquor amnii has escaped, however, the finger of the accoucheur comes into direct contact with the parts of the fœtus. The os uteri will be found occupied by two smooth elastic tumors, divided by a cleft, which extends in one direction towards the coccyx and sacrum, and in the other, is continuous as far as the finger can reach. In the track of this cleft, the anus may be distinguished; it differs from the mouth in being smaller, in not containing alveoli and a tongue, and in contracting upon the finger if any attempt is made at introduction. In dead fætuses, the anus is relaxed, but the distinction may be easily made by reference to the other differences. The vulva of a female child may be distinguished from the mouth in the same manner. Further from the coccyx than the anus, the genitals may be recognized; and in the case of a male child, the scrotum, which sometimes hangs down much tumefied, is a very distinctive feature. The meconium which comes away upon the finger in breech cases is tenacious and adhesive. If the breech remains long in the passages considerable tumefaction takes place, and the diagnosis is to a certain extent obscured; but prolonged and careful examination will generally suffice to overcome this difficulty. knee may be recognized by its presenting for examination two rounded tuberosities, with a depression between them and the flexure of the leg and thigh, which can easily be reached. The knee is liable to be confounded with the heel, the elbow, and the shoulder; it differs from the heel in having two tuberosities; from the elbow in having a depression, instead of the sharp point of the olecranon, between its tuberosities; and from the shoulder in having two tuberosities in the place of one, from which the bony ridges of the clavicle and scapular spine may be traced. The foot is liable to be mistaken for the hand, but it may be identified by the following peculiarities: In the first place, the line of the toes is regular and even, while the fingers are of various lengths, and form an irregular line. The great toe lies close to the other toes; the thumb, on the contrary, divaricates, and is opposed to the other digits. The foot is thicker than the hand, and its inner border is much rounder than its outer border. The rounded instep of the foot has no analogue in the hand. The heel projects in the opposite direction to the toes. The foot is at a certain angle with the leg, while the hand is continuous in the same direction with the arm; and finally, the foot is weightier, and not so mobile as the hand. In breech cases, it is easy to determine the exact position of the fœtus, and there is no great difficulty in doing so when the knee presents; but in footling cases it is not so easy. If only one foot comes

down, it is as well not to be positive until the hips enter the brim of the pelvis; but if both descend, and cross each other, the anterior surface of the body must be in the direction of the toes. When one foot comes down, it should always be identified as right or left.

Having fully satisfied ourselves of the exact position of the fœtus, we have little to do until towards the conclusion of labor. The accoucheur should be an observant spectator of the operations of Nature, thoroughly eognizant of what those operations are, and capable of appreciating at once the slightest departure from their normal eourse. The first care should be, not to rupture the membranes. In knee and footling cases this eaution is even more necessary than when the breech presents. The bag of membranes is required to the last moment, as a dilating agent; no part of the fœtus in pelvic presentations will dilate the passages so equitably or so efficiently as the waters of the amnion. A solid body, not possessed of the globular form of the cranium, will exercise pressure in certain directions, according to its specifie form: water presses equally in every direction, and the waters therefore we should endeavor to retain within the membranes as long as possible. This is a cardinal point in the management of pelvic labors. Ancient practice in this particular was very different from modern, and opposed so obviously even to à priori considerations, that it is difficult to conceive the necessity of the hard teachings of experience to show its defects. Dr. William Hunter, at one time, used to convert all breech eases into footling ones; subsequently he was less disposed to interfere with nature, and he then found his proportion of deaths in pelvic labors very much diminished. Smellie's advice sounds somewhat singular in modern ears; he says, "If the knees or feet of the child present to the os internum, which is not yet sufficiently dilated to let them and the body come down, let the operator introduce his hand into the vagina, push up and stretch the os uteri, and bring along the feet." Supposing the membranes to be ruptured, the best rule is to let Nature take its own course until the body is born as far as the umbilicus; only guarding the perinæum, and relieving it of tension by favoring the flexion of the trunk. The less we interfere the less rapid will the descent of the fœtus be; and it is very important to secure, if possible, a slow passage of the pelvis and trunk, and consequent complete

dilatation of the passages. If the knees descend and accidentally get locked in the cavity of the pelvis, they must of course be liberated; but this is an accident, and not the usual course of events. The laissez faire system does nor apply, of course, to cases of inertia uteri; if the breech or hips of the child do not advance, from defect of uterine contraction, either the uterus must be excited, or traction must be made upon the fœtus. methods of applying tractile force have been adopted: the finger may be hooked in the groin, or a silk handkerchief passed round the flexure of each thigh, or the blunt hook may be used. A dexterous obstetrician will generally succeed with the unaided hand, and, indeed, the blunt hook is an unnecessary formidable instrument for such purposes; it braises soft parts, and is very likely to fracture the thighs of the fœtus. When the umbilious clears the perinæmm, the dangerous part of the labor begins; an abnormal element-viz., compression of the funis-is introduced into a process otherwise normal; and now our art must be exercised and imposed between the fætus and impending death. The first interference necessary is to draw down a loop of the cord; this is done with a view to obviating any compression which may arise from straightening out of the spirally-coiled umbilical vessels, in the further descent of the trunk. An effort should then be made to draw the cord into one of the recesses on either side of the promontory of the sacrum, as this position is one in which there is less risk of pressure than in any other. The strength of the funicular pulsations should now be narrowly watched, as it bears a direct ratio to the chances of live birth; as long as the cord beats steadily, no interference is necessary, and indeed should be avoided. It is very tempting to see the legs dangling out ready to be grasped, and to know that the fætus may be seized and dragged forth without much delay, and the bystanders will generally applaud the zeal of the accoucheur who endeavors to hasten the birth under these circumstances; but it sometimes happens that premature efforts at traction dislodge the arms from their position on the child's breast, and throw them up on each side of, or even behind, the head; and it again results, at other times, that the head becomes extended, that the arch of the cranium is rotated into the hollow of the sacrum, and that the child is lost from consequent delay in the passage of the head. Until there is a valid reason, then, for

interference, arising out of the condition of the fœtus or the mother, nothing should be done. As the chest is being forced out, it is necessary to be observant of the position of the arms; if they are in their natural position they will slip out of themselves, but if they are extended on each side of the head it will be proper to bring them down. It is best to bring down the arm nearest the perinæum first, as there is more room for manipulation in that direction. One of the two fingers should be hooked round the humerus, near the elbow-joint, and the arm should then be drawn gently over the face and chest, not dragged directly downwards. Inattention to this precaution may procure the disagreeable accident of fracture of the humerus. This is not a very uncommon accident in midwives' midwifery, and indeed it was of old a rule of practice amongst them to break the arms, as an expeditious and simple method of meeting this difficulty of pelvic labors. The other arm should be dealt with in the same manner. As the shoulders are born the perinæum again requires care, and as soon as they are liberated the face will generally rotate into the hollow of the sacrum. The largest and most unvielding part of the fœtus has now to be expelled, at a great mechanical disadvantage. The uterus is so far empty as to have lost much of its power over what remains behind, and the birth of the head is, in fact, principally effected by the diaphragm, abdominal muscles, and muscular structures within the pelvis. Danger accrues to the fœtus more than ever now, from pressure on the cord; and the placenta is so jammed down upon the head of the child as in a great measure to destroy its function as a respiratory organ. This is the stage of labor in which life is generally lost, in which the natural powers avail least, and in which the intervention of art is therefore most needed. It is necessary still, however, to be guided by the actual condition of the child; if the cord beats steadily it is better to wait for a time than to interfere hurriedly. The signs of danger to the child are increased quickness and feebleness of the umbilical pulse, and occasional gasping respiratory movements. Whenever it happens that, once or twice in the course of a minute, inspiratory movements of the muscles of the chest and abdomen are observed, the head of the child remaining as yet in the pelvis, we may be sure that the child is dying of asphyxia. These movements are caused, as is proved by the experiments

of Volkmann and Schneider, and the observations of Dr. Marshall Hall, by the centric irritation of the medulla oblongata by the carbonized blood of the fœtus, in cases of pressure upon the placenta or funis. No other sign of danger to the fœtus is so trustworthy as the occurrence of these jerking spasmodic attempts

at respiration.

The necessity of interference being clear, there is no great difficulty in rendering it. A finger or two of the left hand should be introduced into the child's mouth, or laid one on each superior maxilla, and the face should be drawn steadily down towards the fourchette of the perinæum; at the same time, the occiput should be pushed up by a finger or two of the right hand introduced behind the symphysis pubis. This manœuvre will bring the shortest possible diameter of the feetal head into relation with the antero-posterior diameter of the outlet of the pelvis. The head will emerge now, with the aid of gentle traction, towards the knees of the mother, and the birth is complete. the position of the fœtus is a dorso-anterior one, or an abdominoanterior, the management varies hardly at all. The occiput rotates forwards from its posterior position just as in third and fourth vertex cases; and nature will generally adapt the head to the pelvis much better than the accoucheur. No force should be used in the extraction of the head. Above all, traction should never be exerted upon the shoulders, as very slight extension of the neck is sufficient to destroy the child. The stretching of the upper part of the spinal marrow is very dangerous to the life of the infant. Where the head in breech cases is impacted at the outlet of the pelvis, it is sometimes possible to pass up two fingers to the month of the child, and to admit a sufficient quantity of air to allow of respiration before the delivery of the head. This was first recommended by Pugh, and Dr. Bigelow, acting upon the same principle, recommended the use of a flat flexible tube for the same purpose. The forceps should always be had in readiness in breech and footling cases. When the head cannot be delivered, or respiration set up by the processes described, and when the danger of the child is imminent, the forceps should invariably be used. A delay of a minute or even a few moments may sacrifice the life of the fœtus. The forceps is still more likely to be required in footling than in breech cases. When the child is dead or premature, particularly in the former case, less precaution is of course necessary in extracting the head.

Manual extraction of the head.

Delay and difficulty may occur at various stages in the progress of pelvic labors; thus, there may be ascites, or accumulation of urine in the feetal bladder; or the child may be tympanitic; or there may be hydrothorax, or hydrocephalus. Any of these accidents may render evisceration necessary. Anchylosis of the coccyx with the sacrum, or a flat or too incurvated condition of the latter bone, will sometimes prove a serious source of delay and danger to the fœtus. Sometimes the os nteri seizes the neck or head of the child, and retards delivery. It is proper, in eases where the breech or lower extremitics present, to be prepared with the necessary means of restoring suspended animation. An abundant supply of hot water for baths, and a gum-clastic eatheter for inflating the lungs, should be at hand. If there is much cerebral congestion, it will be advisable to allow two or three drachms of blood to escape from the funis. Friction of the surface of the body, aspersion with cold water, [alternating with the warm bath, to produce the nervous shock, as recommended by Marshall Hall], and galvanism, may be had

recourse to with benefit. [The "ready method" should not be forgotten in the asphyxia neonatorum.]

It is always interesting to note the Influence of mal-presentations upon the life and subsequent condition of the mother and fœtus. As far as mother is concerned, it can hardly be said that there is any appreciable difference in the risk of cephalic and pelvic labors. Non-expulsion of the head is the circumstance most likely to prove detrimental to the mother; and bruising of the parts within the pelvis from impactment, or the supervention of inertia uteri followed by flooding, are the forms of danger to which she is exposed. The danger which accrues to the child is, however, very considerable. In breech cases the deaths are as 1 to $3\frac{1}{5}$, and in footling cases as 1 to $2\frac{1}{2}$. The gross proportion of deaths in all presentations of the pelvic extremity of the fœtus is about 1 to 3. Death takes place from asphyxia, either produced by compression of the cord or of the placenta, or from early detachment of the placenta, or coma is produced by obstruction of the veins of the neck, and, lastly, the infant may perish from shock or exhaustion. Instrumental interference is based, of course, upon the same general principles which apply to other forms of parturition. Spontaneous pelvic presentations are less dangerous both to mother and child than the artificial pelvic presentation procured by the operation of version. According to Dr. Fleetwood Churchill's collection of nearly 200,000 cases, the breech presented in the proportion of about 1 in 59\frac{1}{3}; footling or knee presentations were about 1 in 105 cases.

LECTURE XXVIII.

TRANSVERSE PRESENTATIONS.

Gentlemen:—In the preceding lectures we have considered those presentations in which the cephalic or pelvic extremities of the feetal ovoid are found at the os uteri. We have now to treat of those presentations in which the long diameter of the feetus is opposed to the short or transverse diameter of the uterus. These cases are termed **Transverse or Cross births**, and include the presentation of the shoulder or some other part of the superior extremity, and the presentation of any part of the dorsal or abdominal surfaces of the child. The most important, and at the same time the most frequent, are those in which the shoulder, elbow, or hand present, all of which are spoken of as arm presentations. To these cases we may chiefly direct our attention, as the cases in which some portion of the body presents are treated according to the same principles as arm cases.

In arm presentations, two principal positions are recognized, depending on the relations which exist between the abdomen and dorsum of the fœtus, and the back and abdomen of the mother. In the majority of transverse births, the back of the child is directed towards the abdomen of the mother; in a small proportion, the back of the fœtus is towards the maternal spine. These varieties may be termed the Dorso-anterior, and Abdomino-anterior positions. They occur in the proportion of two of the former to one of the latter. Besides the abdomino-anterior and abdomino-posterior positions, there are four subsidiary varieties in the position of the child in arm cases, depending on the situation of the fœtal head on the right or left side of the mother. In the dorso-anterior position, the head may be on the left side of the mother, in which case the right shoulder or arm is the presenting part; or it may be towards the right iliac fossa, when

27 417

the left upper extremity is the presenting part. In the abdomino-anterior positions, the head may be directed to the

Fig. 118.

Arm Presentation in the Dorso-anterior Position.

right or left side of the mother. When it is to the left, the left arm, and when it is to the right, the right arm of the fœtus

Fig. 119.

Arm Presentation in the Abdomiro-anterior Position.

presents. As far as I am aware, no observations have been made to determine the relative frequency with which the child's head lies to the right or left side in arm cases. But this is probably a point of little importance, as the management is the same in all these variations of position. Numerous complications are met with in transverse presentations. Besides the presentation of any part of the body, the arm and head, both arms, the funis and arm, or an arm and foot, may descend together. Perhaps we scarcely ought to consider the descent of the arm and head, or of the hand and foot, as strictly transverse presentations, since it is a mixture of the transverse and the cephalic or pelvic, and may terminate in the case of the hand and head, in cephalic, or in that of the hand and foot, in pelvic delivery.

There are no distinct signs of the occurrence of transverse presentation before the commencement of labor which can be depended on, though we know that in many of these cases the preternatural position is assumed some time before the date of labor. In some cases, the width of the uterus and abdomen is noticeable; but when this is the case, it is difficult to form a diagnosis between the child lying in the transverse diameter of the uterus and twin pregnancy. In many cases there is no deformity in the shape of the uterus. In some women, the subjects of cross-births, uterine cramps and spasms are complained of; but in others nothing of this kind occurs, and labor comes on slowly, and, one may almost say, more insidiously than in other cases. Owing to the absence of the head from the os uteri, the dilatation goes on more slowly and painlessly than usual. This is a disadvantage, inasmuch as labor is hardly suspected, and the accoucheur may not be sent for until considerable progress has been made. It often happens in transverse, still more than in pelvic, presentations, that no part of the child can be felt in an examination in the early part of labor. In arm cases, it is generally the shoulder which is the primary presentation, the arm and hand coming down as the labor progresses. When the shoulder presents, the transverse position of the long diameter of the child frequently keeps it above the brim of the pelvis for a considerable time after the commencement of the dilatation of the os uteri. When the arm or hand is felt, much care should be taken to complete the examination, so as to ascertain whether the hand is descending with the head, or whether the shoulder engages the pelvic canal. The diagnosis of arm cases is frequently difficult, and we should not give a positive opinion until we can examine satisfactorily through the os uteri. We may sometimes suspect the nature of the case by examining through the anterior wall of the cervix, before the dilatation of the os, but it is better under such circumstances never to give a positive opinion. The diagnosis between the breech and shoulder, the knee and elbow, and the hand and foot, has been given in the last lecture, so that it is unnecessary to repeat it here; the chief difficulty is in the diagnosis between the elbow and the knee, when both the leg and forearm are bent upon the thigh or arm. In cases of doubt, it is best to bring the hand or foot gently down, when the difference between the upper and lower extremities can easily be made out. No harm is done by this manipulation, either in knee or elbow cases. When there is a suspicion of arm or pelvic presentation, the patient should never be left until the nature of the case is clear; but this is particularly the case when the arm is the presenting part. It is, as we shall see, of the highest importance that arm presentations should be recognized as early as possible. Perplexing cases do however occur, in which the head presents, in the first instance, but is afterwards converted into a presentation of the arm, in a manner to be referred to presently. These are cases of deformity of the brim of the pelvis.

The causes of transverse presentations have been mentioned when treating of the natural attitude and position of the fœtus in utero, and the causes of pelvic presentations. [Also by Dr. Barnes, page 435.] The arm may present because of the death of the fœtus; obliquity of the gravid uterus; contraction of the pelvic brim; violent uterine contractions; twins; and excessive movements of the fœtus itself. These are the principal sources of transverse presentations. In the case of a dead fœtus, the loss of the adaptive movements of the child and the alteration in the specific gravity of the head are evidently the sources of the frequent pelvic and transverse presentations met with in such cases. In obliquity of the gravid uterus, we can easily understand that the corresponding oblique position of the feetns may lead to the lodgment of the head above the brim, and its protrusion into the right or left iliac fossa, while the shoulder descends. We have direct evidence that contraction

of the pelvic brim is a cause of arm presentation in cases in which, with slight pelvic deformity, the head presents in the first instance, but the shoulder and arm subsequently descend. Cases of this kind have often been met with several times successively in the same patient. In these cases the head cannot easily enter the brim; the force of the uterine contractions doubles the neck of the child, and the shoulder, as a smaller part than the cranium, is urged into the pelvis. It is highly probable that irregular or violent contractions of the uterus before or at the commencement of labor may cause shoulder presentations. This explanation is the only one apparently applicable to cases which are met with in which, without pelvic deformity, the same woman suffers in successive labors from the presentation of the child's arm. In these cases excessive and painful movements, which are evidently those of the uterus, are complained of. No doubt in different women different degrees of uterine excitability exists, and we are obliged to look to the mother for the cause, in cases of repeated mal-presentation. Excessive movements of the fœtus, and great distension of the uterus with liquor amnii, so as to deprive the fœtus of the moulding influence of the normal ovoid uterus, are other causes of arm as of pelvic presentations. In twin cases, it frequently happens that one child is delivered with cephalic presentation, and the other with the breech or arm. It sometimes occurs in twin cases that both children descend with arm presentations.

The following is a history of what generally occurs in arm cases, when the pelvis is of average capacity, the child living, and of ordinary size, and when no assistance is given: The first stage of labor, as already mentioned, is slow, and the pains are inefficient until the shoulder fully engages the os uteri. After the rupture of the membranes, which may occur at any time, there is usually a pause in the progress of labor. The liquor amnii is quickly discharged, but some time elapses before the presenting part of the child comes to exert full pressure on the os and cervix uteri. When the shoulder and upper part of the body of the child is low in the pelvis before the escape of the liquor amnii, the pains are at once increased in severity, and the fruitless efforts at the expulsion of the fœtus soon become dangerous both to the child and the mother. The shoulder is the point, as it were, of a large wedge, one side of which is

formed by the neck and head, and the other by the arm and pelvis of the child. Its passage through the pelvis in this position is impossible. If the case proceeds, the pressure on the fœtus becomes immense, and its long continuance frequently destroys the child by arrest of the circulation in the placenta and funis, or mechanical compression of the body. The danger to the mother is very great. Either the vaginal discharges become offensive, and inflammation and sloughing of the parturient canal occurs; the woman dies of exhaustion, worn out by the long-continued struggle; or the uterus is ruptured, and she perishes in this manner. Probably, at the present time, a case hardly occurs in which a patient suffering from arm-presentation passes on to the extreme catastrophe without some assistance; but, when rupture of the uterus does not occur, cases are sometimes seen which have spread over several days. It may be said, that when the fœtus is mature, and the pelvis of ordinary size, death, both to the mother and fœtus, is well-nigh inevitable, in cases of arm-presentation, when no assistance is given. In protracted arm cases, it frequently happens that the uterus is exhausted by its exertions before the time of delivery, and that frightful post partum hæmorrhage occurs from atony of the uterus.

But there are natural modes of delivery in certain cases, and under certain conditions, in arm cases. Denman found that in cases of this kind, when the pelvis was large and the child dead or premature, the long-continued efforts of the uterus were sometimes equal to delivery without danger to the mother. He observed that in some cases the arm and shoulder passed above the pelvic brim during the continuance of the pains, and the body and the pelvis came down, the child being delivered by the breech. This mode of delivery was termed by Denman "Spontaneous Evolution," version, or turning, and the explanation of this great obstetrician was received by his contemporaries. After a time, however, the explanation of Denman was called in question by an accurate observer, Dr. Douglas, of Dublin. This physician observed cases in which, the fœtus being immature or dead, and capable of doubling upon itself, the arm and shoulder remained down, but became fixed against the arch of the pubis. The shoulder being fixed against the pubis, he observed the body and spine of the child to become bent, the nates to descend to the perinæum, and the lower half of the child to sweep down the sacrum and soft parts of the

Commencement of Spontaneous Expulsion.

parturient canal, until the breech and inferior extremities were expelled. The other arm then came down, and the head was

Further progress of Spontaneous Expulsion.

delivered as in breech cases. Dr. Douglas termed this maneuvre "Spontaneous Expulsion," in contradistinction to the

"Spontaneous Evolution" of Denman. Other observers corroborated the explanation offered by Douglas, and Denman was

Termination of Spontaneous Expulsion.

supposed to have been in error when he said that the arm receded before the descent of the body and breech. Later authors have, however, ascertained that both Denman and Douglas were right, and that in one class of cases the child is born in the manner described without recession of the arm, while in another the arm does not recede, but the shoulders become fixed to the pubic arch, forming a ginglimus or hinge in this direction, while the breech and body sweep down the sacrum and perinæum. These terminations form, however, the rare exceptions in breech cases, and though it is necessary to understand them, they must never be expected or waited for in the management of breech cases. The preceding engravings illustrate the process of spontaneous expulsion, which occurs more frequently than spontaneous version.

The treatment of arm and shoulder presentations is one of the most important within the range of obstetrics. The conduct of these cases calls for all the knowledge and judgment of the accoucheur, as his proceedings must vary considerably,

according to the stage of labor and the particular complication of each individual case. It may be said of all cases of arm and shoulder presentation made out at the commencement of labor, that every care should be taken to preserve the liquor amnii from discharge. With this view, the necessary examinations should be made as gently as possible, taking care to exert no pressure upon the membranes when they are made tense by The patient should be kept in the horizontal position, and cautioned against making efforts at bearing down, either during the pains, or in evacuating the rectum or bladder. In cases where the shoulder presents alone, or where the arm hangs in the vagina and the shoulder engages the os uteri, the only remedy when the child is alive and at the full period, is the operation of turning. The earlier this operation is performed the better, unless in cases where the child is so fully engaged in the pelvis, or the uterine actions are so powerful, that means are necessary to relax the uterus, in order to make the operation practicable, and to avert as far as possible the danger of rupture of the uterus, or inflammation of the parturient canal. When the hand and head present together, no great effort at putting up the arm or hand should be made, if the head has not fairly entered the pelvis, as by so doing the head may be pushed aside above the brim, and the case converted into one of purely arm and shoulder presentation. The arm and head form a less formidable complication than the conversion of such cases into the descent of the shoulder, as the hand and head may be delivered together with safety to mother and child. When the hand and head have entered the pelvis, and present at the os uteri, the hand may sometimes be passed up by the side of the head, in an interval between two pains, and if kept above the head until the pain comes on, it is swept above the brim, and the head descends alone. When the fœtus is unmistakably dead, and the shoulder or arm and shoulder present, the operation of turning should be avoided, if possible, on account of the danger the mother incurs by its performance. When the fœtus is premature and putrid, it may be brought down, as Dr. Joseph Clarke first suggested, by hooking the crotchet upon the pelvis. When the child is dead, but at the full term, and firmly wedged in the pelvis, the best practice is to eviscerate the chest and abdomen, and then to bring down the pelvis of the fætus by the crotchet.

In the case of dead children at the full term, when the case is made out early in labor, turning is an easier operation, and less troublesome and dangerous to the mother, than protraction of the case, and evisceration and extraction. In rare cases, when the pelvis is very capacious, and the action of the uterus powerful, and the fœtus small, or dead, or premature, the accoucheur may sometimes be called, when, the shoulder and arm being felt at the pubis, the ribs and body of the child occupying the lower part of the pelvis and pressing upon the perinæum, and some advance of this part of the child occurring at each pain, it is evident that the spontaneous expulsion of Douglas will terminate the delivery. Sometimes this spontaneous expulsion of the child takes place with great rapidity. I was once summoned to turn a child, at no great distance from my own house, but before I arrived the woman had been delivered spontaneously. In rarer cases the arm and shoulder will ascend, and the nates come down, under the influence of the pains, as in the spontaneous version or evolution of Denman. As regards the great and most common procedure necessary in transverse presentations—namely, turning, the circumstances of the operation are very much varied, according as the amnion is ruptured or not; or the presenting part high or low in the pelvis; and the length of time which has elapsed in these cases between the commencement of labor and the performance of the operation. In transverse cases, auscultation of the fœtal heart is imperative. as upon the life or death of the child may depend the alternative of evisceration or turning. In many arm and shoulder cases, the child has been dead for some time before the commencement of labor, and the cuticle is falling off or the limb is putrid. In others, a loop of funis is down with the arm, and its pulseless and flaccid state informs us of the death of the fœtus. The peculiarities incident to turning in transverse cases under every variety of circumstance will have to be considered when we come to the operative part of the present course. It may be mentioned, that when the arm presents in the case of the second child in twin cases, the same treatment is to be followed as though a single child had presented with the arm. The operation of turning is generally easy in such cases from the smallness of the child and the dilatation of the passages. No doubt in arm cases the easiest and the most difficult conditions for the

operation of turning are met with. In a case where the liquor amnii remains undischarged, and the arm is found at the os uteri, the fœtus is moved as easily as a boat in water, the hand of the accoucheur can be introduced with comparative ease, and turning is a simple operation. But when the patient has been in labor, and the liquor amnii discharged, it may be for twentyfour, forty-eight, or more hours, the shoulder is jammed into the pelvis, and held as if in a vice. It is most difficult either to introduce the hand, or to move the child, and turning is one of the most difficult, if not the most difficult, operation in The mortality to the mother and the child, but obstetrics. particularly the child, under these circumstances, is very great. Dr. Lee, in his "Clinical Midwifery," relates fifty-nine cases, and records the death of the mother in eleven, and the death of the child in thirty-two cases. These cases were amongst the most severe that could be met with in consultation practice; and such results should imprint upon accoucheurs the necessity of an early diagnosis, and prompt action in this form of dystocia. Dr. Fleetwood Churchill has collected the statistics of 112,140 cases. in which the superior extremities presented 484 times, or, taking the average, once in 2313 cases. In 242 cases of presentation in which the results to the mother and child were recorded, 127 children were lost, or rather more than 1 in 2, and 26 mothers died, or about 1 in 9. All statistics tend to show that in this complication, more than in any other, danger both to the mother and child increases with the prolonged duration of labor.

LECTURE XXIX.

PLACENTAL PRESENTATION.

GENTLEMEN: -In the present Course of Lectures I have not attempted to make any rigorous classification of the varieties of difficult or complicated parturition. The subject does not, indeed, admit of arbitrary arrangement. My object has been not to abandon method entirely, but to group similar conditions of labor together, so that mutual light may extend from one subject to another, by successively treating of those normal and morbid states which possess certain points of resemblance. Nothing can be more natural than to group together the different modes in which the fœtus presents and passes through the pelvis. But we now come to the subject of Placenta Prævia, which is related both to the varieties of presentation, and in its most dangerous symptom, to the different forms of hæmorrhage. Still, as it is undoubtedly one of the forms of presentation, and as its attendant hæmorrhage is peculiar and in many respects distinct from ordinary flooding before or after delivery, I have preferred to consider it at the present time, after having treated of the different forms of presentation belonging to the head, trunk and extremities of the fœtus.

The placenta may be attached over the whole of the os and cervix uteri, or it may be implanted over some part of the margin of the os, so as only partially to occupy the aperture. The causes of placenta prævia have not been determined. It is probably produced by the impregnation of the ovum after it has descended to the upper part of the cervix uteri, this being the last point at which the ovum retains its capability of impregnation and attachment to the uterine surface. The placenta may be attached to any part of the body of the uterus between the cervix and the fundus, but unless it encroaches upon that part of the cervix concerned in the development of the lower seg-

ment of the uterus, or the dilatation of the uterine aperture at parturition, no ill consequences ensue.

Up to the fifth month, the development of the ovum proceeds in the ordinary manner in placenta prævia, and if abortion occurs before this time there is nothing which indicates the site of the placenta. After this date the development of the cervix proceeds, and, in its expansion, partial separation of the placenta from its attachment is prone to occur. This separation is attended by the frightful and sudden hæmorrhages which characterize placental presentations. The irritation of the uterus by the placental attachment to the cervix, and the separation which occur, often lead to abortion or to delivery before the natural term in these cases. Sometimes patients go on to the full term when suffering from this complication, without the occurrence of hæmorrhage before the commencement of labor.

The symptoms of placenta prævia are sufficiently distinc-Occasional hæmorrhage occurs, generally between the seventh month and the end of gestation. The discharge commonly takes place suddenly, without pain, and ceases after a while, or the drain may continue for a considerable time. The nearer the patient is to the full term, the more violent is the loss of blood. The gush may take place after some exertion, or when the patient is following her usual avocations, or when she is asleep. The loss is sometimes so sudden and so enormous, that the woman is dead before the medical attendant can be summoned. Generally, there are several sudden losses to a less extent, before the advent of labor. Flooding may recur at variable intervals, of a few days, a week, a fortnight, or it may break out at the dates of the catamenial periods. Placental presentation should always be suspected, whenever hæmorrhage occurs in the latter part of pregnancy. Sometimes labor comes after the discharge; at others, there are no traces of uterine action until after several attacks of flooding. There are no sensations belonging to the patient herself which indicate malposition of the placenta, but the uterine soufflet is heard in these cases with most distinctness in one of the iliac regions, or the hypogastrium. When we examine internally, if the os nteri has dilated, the soft mass of the placenta can be felt between the finger and the presenting part of the child. The soft placentary layer may be felt in the entire field of the os uteri, or

occupying only one margin of the os. If the flooding has been very severe, a portion of the placenta, or the greater part of the organ may be felt protruding through the os uteri. When the os is quite closed, the placenta can sometimes be distinguished through the walls of the expanded cervix, particularly if the head presents, and the placenta lies between the finger and the fætal cranium. In the case of breech or shoulder presentation, the detection of the placenta is more difficult. If the os uteri should be so high up in a case of suspected placental presentation, as to be beyond the reach of the finger, the whole hand should be carefully passed into the vagina, so as to enable us to reach the os and make the necessary examination. results have often happened from inattention to this point. There is hardly any other critical emergency in midwifery in which an early diagnosis and prompt treatment are of such importance. The separation of the placenta may be small in extent, or the whole or nearly the whole of the organ may be detached. What usually happens is, that at each recurrence of hæmorrhage, small portions of the placenta are detached, up to the time of labor. Before the commencement of labor, and when no symptoms of abortion are present, the cause of detachment is the developmental expansion of the cervix uteri; but when labor has set in, the active dilatation of the os and cervix effects the placental separation. The most violent and dangerous cases are those in which little or no hæmorrhage occurs unto the full term, when sudden and extensive detachment takes place, the uteroplacental vessels having reached their full development. The woman may, under these circumstances, be deluged with blood, and reduced to the utmost extremity of danger in a few minutes. Where partial and repeated separations occur, the uterine vessels which have been laid open contract, and the blood coagulates in that part of the placenta which has been separated. This process may be repeated several times before the coming-on of labor, and while the placenta is only partially attached over the os uteri. In rare cases it happens that the whole of the cervical portion of the placenta is detached in this manner, and little or no hæmorrhage occurs at the time of labor. cases of partial placental presentation the cervical portion of the placenta is completely detached at the time of labor, and no serious hæmorrhage occurs after the first outbreak. Still more

rarely, when the uterine action is very powerful, the pelvis capacious, the fœtus small or of moderate size, and the patient mul-

Entire placenta prævia.

tiparous, the whole of the placenta is detached, and the fœtus and membranes expelled with such rapidity that no dangerous These cases have led some to imagine that in loss occurs. entire placenta prævia, Nature may be trusted more than she is. But the conditions are so unfavorable to the safety of the patient, that such reliance is worse than on a broken reed. This conjuncture offers no place for a Fabian plan of treatment. To wait, is generally to kill. In case of placenta prævia we have the circumference of the os and cervix studded with large vessels, the mouths of which gape widely open as the placenta separates and the os and cervix dilate. And this separation and dilatation must occur. There is no escape from them and the slow and gradual way in which the preparation for the exit of the fœtus is generally made, and which in ordinary cases tends so much to the safety of mother and child, is here their destruction. The hæmorrhage in cases of placenta prævia has been called "unavoidable" hæmorrhage, by way of distinguishing it from

hæmorrhage from the fundus uteri occurring before labor, which has been termed "accidental." In the one case separation and hæmorrhage may, in the other they must, occur before the completion of delivery.

The chief methods of treatment followed in cases of placenta prævia are—1. The use of the plug, or tampon.

2. Puncturing the membranes. 3. Turning the child. 4. The partial or the entire separation and extraction of the placenta. I propose to point out in detail the cases and conditions in which these several modes of practice are applicable.

Plugging the vagina is adapted to cases in which, after the first loss, a continuous drain, varied by slight eruptions of blood, is going on, particularly when this occurs at the sixth or seventh month. By plugging the vagina with moderate force, the lower segment of the uterus is compressed between the plug and the contents of the uterus, and an impediment is offered to the escape of blood, and coagulation of the blood effused is promoted. Care must be taken that the plugging be not too forcible, otherwise uterine contraction and further separation may be excited by the irritation of the plug. The best methods of plugging the vagina are by introducing strips of lint, pieces of sponge, or a silk handkerchief, dipped in vinegar and water, or iced water. Pieces of ice, wrapped in lint may be introduced. There is a great advantage in the sponge-plugnamely, in its expansion from absorbing the blood, or the secretions of the vagina. But this is, to a great extent, counterbalanced by the rapidity with which sponge, from the animal matter it contains, becomes fætid in the vagina. It cannot, on this account, be allowed to remain in the passage more than a few hours. It is, therefore, the best temporary plug, but it is not adapted to cases in which continuous plugging is required. The colpeurynter, already alluded to on page 180, should not be forgotten as affording speedier and more efficient relief than any other form of plug, and moreover, may be easily withdrawn and replaced as required.] As an ordinary plug, nothing exceeds in utility strips of lint, introduced one after another until the vagina is filled up. Even in plugging with lint, or a silk handkerchief, the plug requires to be changed from time to time, as, whatever the plug, the retained blood and discharges, to which air is necessarily admitted, have a tendency to become

rapidly fætid. Whatever the treatment adopted in placenta prævia, one precaution should always be adopted—namely to keep the patient in the horizontal position, with the pelvis somewhat raised. The temperature of the room should be cool and equable, and the diet light and unstimulating, except when the patient is suffering from the direct effects of loss of blood. Under these circumstances, brandy, ammonia, and beef-tea may be administered freely. I do not believe that in unavoidable hæmorrhage, internal astringents, such as gallic acid or the acetate of lead, are of more than the slightest use, and they tend to divert the attention of the practitioner from more important With this exception, the treatment of placenta prævia in the fifth or sixth month, when the os uteri is undilated, and the flooding not dangerous in extent, is hardly distinguishable from flooding in ordinary abortions. When hæmorrhage has once occurred, the patient should be kept as quiet as possible, lest a further separation should be produced.

Puncturing the membranes and evacuating the liquor amnii in placenta prævia is a practice of very ancient datc. It is occasionally useful, and is adapted for cases in which the hæmorrhage is not of the most alarming character, where the os uteri is either closed or only dilated to a slight extent, where the pains of labor have already commenced, or where it is considered advisable to induce premature labor in this manner, where the liquor amnii is in large quantity, where turning is impossible, and where the child being alive, it is judged best not to attempt the separation of the placenta. This operation is preferred in cases of partial attachment of the placenta over the os, where the membranes can be ruptured either by the finger, or a probe or trocar at the part free from placenta; but it has sometimes been performed with the effect of arresting the hæmorrhage, through the placental mass in cases of complete attachment over the os uteri. Puncturing the membranes in placenta prævia does not arrest flooding simply from diminishing the size of the uterus and exciting contraction, but by lessening its size and vascular supply, and bringing down the head or presenting part of the child, so as to act as a plug to the placental site. The disadvantages of puncturing the membranes are, that turning is thereby rendered difficult, and the risk of sacrificing the child is increased. In cases where the labor is premature, and the child non-viable, these objections do not apply at all; nor in cases where the child is dead, as craniotomy could then be performed. It is, however, questionable whether in these cases the extraction of the placenta should not be preferred.

In my opinion, turning is the great operation in placenta prævia, when the child is living and viable—that which, if performed at the proper time, affords the greatest chances of safety both to the mother and the child. But there are circumstances in which turning is the best practice when the safety of the mother alone is concerned, the child being already dead. The conditions favorable to turning are, a dilated or dilatable state of the os uteri, the retention of the liquor amnii or a moderately relaxed state of the uterus, a pelvis of average capacity, the absence of dangerous exhaustion, or a temporary cessation of the hæmorrhage. If the placenta be attached to one side of the uterus, the hand should be introduced on the side opposite to the placental site; or if it extends over the whole os, the hand should be passed in the direction in which the attachment is least considerable, or when the separation has already taken place. The advantages of turning are, that without materially increasing the danger of the patient, and in a very short space of time, the feet and body of the child may be brought down so as to act as a tolerably efficient plug to the os and cervix uteri. During the early part of the operation, the hand and arm of the accoucheur form a tampon. Turning is generally easy in placenta prævia, at the full term, as compared with other cases in which it is required, because the contractions of the uterus are commonly less powerful than usual. The flooding itself tends to dilate the os uteri, and to weaken uterine action. It is, therefore, a less severe operation to the mother than in many other cases in which it is called for. This is particularly the case in multiparous women. As regards the state of the uterus, primiparous women, as in other cases requiring turning, offer greater difficulties than women who have borne children. When the operation of turning is performed early, the proportion of mothers saved is large, and a considerable number of children are born alive. Turning should always be performed in placenta prævia, when it is considered advisable, the instant the operation is rendered practicable by the condition of the os and cervix uteri. In cases where the os uteri has been dilated for many hours, sufficiently to admit of turning, and blood or strength has been lost in the interim, we should blame, not the operation, but the delay, for a great proportion of the fatality to the mother and child. In some cases of partial placental presentation, the head may be so low that the use of the forceps will be preferable to turning; or this operation may become necessary after the spontaneous or artificial expulsion of the placenta. In other cases, as when the head is low, and the child dead, or when the pelvis is deformed, craniotomy may be called for. Dr. Radford has advised the use of electricity, in connection with the other methods of treatment in these cases.

[Perhaps the greatest element requisite for an accoucheur is decision. He should be able to recognize what is possible and what impracticable, particularly in the form of trouble here under consideration, he should early know what he can do, and what he cannot effect. In a case to which I was recently called in consultation, the woman had hemorrhage for some twenty hours continuously, beside hæmorrhages a month, two weeks, and a week previously. She was reduced to so low an ebb that I questioned if she could survive the loss of a single wine-glass full more of blood. I dared not venture the dangers from delay, and fresh hæmorrhage consequent upon turning, but the os not being dilated so as to use forceps, being two inches in diameter, I perforated the head and delivered with great rapidity, without the loss of a drop of blood, and saved a beautiful young lady from the grave, whither it was supposed by her attending physicians she was inevitably doomed. In a similar case, in the care of a gentleman who found fault with this operation, by attempting too much to save an already ex-sangnine child, after thrice failing to deliver with the forceps, then turning, and finally opening the head of the child to effect its delivery, operations lasting more than half an hour with still continuing hæmorrhage, the mother died in ten minutes after.]

I have now to refer to the artificial extraction of the placenta before the birth of the child, which has certainly been one of the most prominent points in obstetric practice during the last ten or twelve years. It is one the settlement of which is of great interest, as nothing can be more unsafe than

halting between two opinions upon such a subject. From an early period, it had been remarked by accoucheurs that cases of unavoidable hæmorrhage were occasionally met with, in which the placenta was expelled spontaneously before the birth of the child, and that the hemorrhage was arrested by the separation of the placenta. The first person who seemed to have pointed out the deduction of a rule of practice from such cases was Mr. Chapman, of Ampthill. The placenta was removed in some cases of placenta prævia, by Mr. Kinder Wood, of Manchester, and subsequently by Dr. Radford. Probably, cases have always occurred in which accoucheurs, finding the placenta loose in the vagina, or almost entirely detached, have removed it. Simpson took up this subject in 1844, and, with his usual ability and force, pointed out what he considers the advantages of this operation, the principles upon which it is and the cases to which it is applicable. The tenor of Dr. Simpson's earlier writings was such as to lead to the belief that he wished to supersede in great measure the operation of turning, by the separation and extraction of the placenta. This impression has continued to a great extent up to the present time, and it is upon this impression chiefly that its opponents have attacked and denounced the operation. In one of his latest publications on the subject, in The Lancer, 1847, vol. i., he has corrected this, and insists upon the limitation of the extraction of the placenta to cases "when the other recognized modes of management were insufficient or unsafe, or altogether impossible of application," or when the old methods of practice "were attended by extreme hazard or extreme difficulty." Dr. Simpson combined with his advocacy of this practice an exposition of his views as to the source of the hæmorrhage in placenta prævia, which met with great opposition. Dr. Hamilton advocated the doctrine that the hæmorrhage in placenta prævia "proceeds from the separated portion of the placenta more than from the ruptured uterine vessels." Dr. Simpson indorses this view to the full extent, and I suspect it is this, as much as the rule of practice itself, which has excited the opposition which has been manifested. According to this hypothesis, the blood lost in separation of the placenta flows from the placental cells, the supply to these cells being kept up by vessels supplying the undetached portion of placenta. It is supposed that as the

separation proceeds, the veins of the uterine surface from which the placenta is detached, are closed so as to prevent any retrogressive hæmorrhage from the uterus.

Dr. Simpson's theory of the source of the hæmorrhage, upon which he to some extent rests his practice of separating the placenta, is, I believe, altogether untenable. No proofs of the escape of the great quantities of blood lost in these cases, from the placental surface, can be given. The theory mainly rests upon the anatomical arrangement of the uterine arteries, the placental cells, and the openings upon the placental surface. No doubt there is an unobstructed channel for the flow of blood from the curling arteries, through the placental cells and the openings found upon the placental surface, when this has been separated from the uterus. But there are, as it appears to me, valid reasons why we should believe that the sudden and great gushes of blood poured out in placenta prævia do not escape in this way. The uterine arteries are of comparatively small calibre, and the openings upon the placental surface are neither large nor numerous. Supposing one-half of the placenta to be detached, it is highly improbable, I should almost say impossible, that the profuse loss frequently met with in these cases could come from the uterine arteries entering the undetached portion of the placenta, even if they were all discharging blood simultaneously. In the cases of profuse loss which sometimes occur, when only a small portion of the placenta is detached, it is equally difficult to suppose that the blood could escape from the openings met with on a square inch of placental surface. There are, on the other hand, valid reasons for believing that the uterine veins are the real sources of hæmorrhage in placenta prævia. The size of the venous openings, the valveless state of the uterine veins, the channel being unimpeded from the right auricle to the open mouths of the sinuses, furnish anatomical arguments in favor of this source for the flow of blood which are stronger than those derived from the anatomical arrangement of the uterine arteries, and the placental sinuses, in favor of the opposite view. Then we have the facts connected with postpartum hæmorrhages. The only hæmorrhages comparable for suddenness and extent to the losses in placenta prævia are those which occur after labor, and the expulsion of the placenta, in cases where it has been attached to the fundus uteri. Here

there can be no question but that the hæmorrhage takes place from the open mouths of the uterine veins. I have not observed any difference in the color or character of the blood in post-partum hæmorrhages and those caused by placental presentation, and the weight of evidence is in favor of the venous character of the blood lost in placenta prævia. It is noticed that in this form of flooding the loss is increased during the pains, as it is believed, by the enlargement of the uterine openings by the dilatation of the os and cervix uteri, whereas, in hæmorrhage from the fundus, the flow of blood is arrested during the continuance of pain and contraction. When the separated portions of placenta have been examined, it has been found that the sinuses and cells have been filled with coagulated blood. In some cases, in which the placenta has been detached and expelled artificially or spontaneously, flooding has occurred after the expulsion of the placenta. Here the blood must have been in great part from the uterine veins, yet the flooding presents no difference to that occurring from the partial separation of the placenta. The inference from all these facts appears to be, that in the hæmorrhage from placenta prævia the blood escapes in great part from the uterine surface, and not from the maternal surface of the placenta. There can be little doubt that some blood must exude from the surface of the placenta in cases of partial separation, whether the placenta be attached to the fundus or cervix; but I contend that this is not the chief source of flooding in placenta prævia.

While I thus take exception to Dr. Simpson's theory of the nature of hæmorrhage in placenta prævia, I do not question the correctness of the fact upon which he lays so much stress—namely, the frequent, and indeed common, arrest of the hæmorrhage on the entire detachment of the placenta. Dr. Simpson's theory does not appear to me to be necessary to the explanation of this matter. In my work "On Parturition," I pointed out that the separation of the placenta furnishes a source of irritation which excites the uterus generally, and the muscular structure at the site of the placenta especially, to contraction, and that in this way hæmorrhage was prevented. This is probably the reason why, in twins with separate placentæ, there is frequently no hæmorrhage between the expulsion of the first placenta and the birth of the second child. It is reasonable to

suppose that the same thing occurs in placenta prævia, after the separation and extraction of the placenta, in the intervals which occur between the pains. The tendency to hæmorrhage from dilatation of the orifices of the veins during the pains is corrected by the descent of the head or presenting part, and mechanical compression of the uterine walls.

Dr. Simpson unequivocally demonstrates that in a great number of cases recorded by various authors, both before and since the publication of his views, the placenta has been detached and the hæmorrhage arrested. There can, indeed, be no question upon this point. Those most opposed to Dr. Simpson, Dr. Robert Lee, for instance, record cases in which the hæmorrhage ceased after the spontaneous expulsion of the placenta. cases to which, in his most recent writings, Dr. Simpson would advise separation and extraction, are those in which the evacuation of the liquor amnii is of no avail, when the state of the patient is such as to call for interference, but where turning, or other measures of delivery, are impracticable, from rigidity, or non-development of the os and cervix uteri, or distortion of the pelvis. He would also employ it in the case of dead, premature, or non-viable children, particularly when the uterus has contracted, or is so imperfectly developed as not to admit of turning. It is questionable if rigidity can be a valid plea for this operation, except in very rare cases. When the os uteri is sufficiently open to allow of the admission of the fingers for the purpose of separating the entire placenta, there will generally be room enough for the admission of the hand. I believe the separation and extraction of the entire placenta the best practice in those cases in which it is attached all round the os uteri, and in which the exhaustion is so great as to render some more rapid attempt at assistance than the operation of turning imperative. In some of these cases the patients would be killed by turning, if the hæmorrhage were going on simultaneously with the operation.

The extraction of the placenta offers a means of arresting hamorrhage, and after a short rest the patient may be sufficiently rallied to bear turning; for it must be remembered, that in many of the cases in which the placenta has been extracted artificially, turning has been necessary to complete the delivery. In all cases where the child is alive and viable, delivery should be effected, by turning or the forceps, as soon as possible after

the extraction of the placenta, if the state of the patient is such as to bear the operation. Extraction may be sometimes useful in cases where turning is impossible, as in cases of contraction of the uterus or pelvic deformity, and when the removal of the placenta may arrest hemorrhage and facilitate the operations of turning, craniotomy, or evisceration. It may also be practised in some cases of dead or premature children, when the hemorrhage is going on, and turning is difficult from any cause. When the flooding is not profuse, and when the uterus is roomy and the waters undischarged, the extraction of the placenta before the child offers no great advantage. The whole subject has been ably handled by Dr. Chowne, and Dr. Fleetwood Churchhill gives a very candid exposition of the disadvantages of the operation.

It is necessary to refer to the statistical arguments which have been advanced in favor of the operation. Dr. Simpson has given a table of 654 cases, collated from various authors, from Mauriceau to the present day, in which the treatment consisted of turning, etc., the child being extracted before the placenta. This he contrasts with another table of 141 cases, in which the placenta was removed or expelled before the child. In the 654 cases, 180 mothers, or 1 in $3\frac{6}{10}$, were lost. In the 141 cases, the maternal mortality was 10, or only one in 14, which apparently gives a very large balance in favor of the extraction of the placenta before the child. But it has been argued by Dr. Barnes that we cannot fairly suppose cases in which the placenta is extracted artificially will prove as favorable as those in which it has been detached and expelled without assistance. The cases in which the placenta is expelled by the natural efforts are those in which the pains are powerful, the placenta being expelled suddenly and the child speedily born. In the case of artificial detachment and extraction, no assistance from the uterus can be reckoned on. The difference is very great between the spontaneous separation and expulsion and the artificial detachment and extraction of the placenta. The published cases of extraction of the placenta are too few to found upon them any precise conclusions; and it must also be remembered that the advocates of any novel mode of practice are more prone to publish successful than unsuccessful cases. The statistics of Dr. Radford, of cases in which the placenta was removed by the hand, are not so favorable, as regards the mother, as those of Dr. Simpson.

By the ordinary methods of practice, rather more than half the children are lost; and Dr. Simpson attempts to show that the mortality is scarcely more than this when the placenta was extracted before the child. He gives a table of 141 cases: of these the child was saved in 33 cases; in 79 cases it was born dead; in 1 the child was anencephalous, and died shortly after birth; in 28 cases, the result, as regards the child, was not stated. But such a state of mortality cannot be hoped for from artificial extraction. In many of the cases of spontaneous expulsion, the fœtus, membranes, and placenta are expelled by the same pain. Dr. Simpson, as Dr. Fleetwood Churchill observes, has only recorded one case of the child being born alive when the interval after the removal of the placenta was more than ten minutes. Dr. West collected 17 cases; but in 16 of them the children were lost. If this frightful rate of fætal mortality should be preserved, it must go far to prevent the adoption of extraction in any but the most unpromising cases.

In 1847, Dr. Barnes enunciated the principle, that a partial separation of the placenta might, in certain cases, be sufficient to arrest the hæmorrhage, and at the same time afford a chance of safety to the child. In a recent paper on this important subject, an abstract of which was published in The Lancet in January 1858, Dr. Barnes recommends a partial detachment of the placenta in cases where it is partially attached to the cervix, or where it is implanted in its whole circumference. His method is to detach that portion of the placenta attached to the cervix, after which he believes that no further separation is produced by the uterine pains, and the hæmorrhage entirely ceases. The portion of the placenta attached above the cervix is left, and remains as a medium for the supply of the fœtus. Dr. Barnes has collected a large amount of clinical facts and experience bearing upon this subject, [which he has published since these lectures were delivered, and may be found in extenso in the London Lancer reprint for Sept., Oct., Nov. and Dec. 1857.] Nothing could be more valuable than the establishment of a mode of practice which should diminish the danger to the mother, and increase the chance of safety to the child. In Germany, several physicians have done Dr. Barnes the honor to

claim and contend for originality in advancing the doctrine of the partial separation of the placenta; but there can be no

Varieties of placental attachment. E, E, Fundal Placenta. D, D, Lateral Placenta. F, F, C, B, Latero-cervical Placenta. A, B, B, F, Seat of cervico-orificial, or central Placenta. A, E, Line of boundary between normal and prævial placental attachment, and consequently of spontaneous placental detachment, during expansion of cervix.

doubt the principle was clearly expressed by him nearly ten years ago. The preceding engraving, executed from a drawing by Dr. Barnes, indicates the various positions in which the

placenta may be attached. (Fig. 124.)

The danger as regards the mother, in placenta prævia, arises chiefly from the direct or secondary effects of loss of blood, and from injuries done to the passages by operative proceedings. Dr. Tyler, of Dublin, has related a case, in which traumatic tetanus followed upon placenta prævia. Uterine phlebitis is frequently met with after placenta prævia in cases where the patient survives delivery. Out of sixty-four cases, Dr. Lee records that phlebitis occurred in six cases. As phlebitis

occurs in cases where turning has not been performed, or where the operation gave little or no pain, it is probable that the disease of the veins may be caused by their being bathed in the uterine discharges as they pass the os and cervix uteri. The special dangers to the child arise from asphyxia, the result of the flooding, or pressure on the cord in turning, etc.

[The opinions of Dr. Barnes, which are in the papers already alluded to, fully enunciated and fortified by cases which tend to sustain his position, are substantially as follows. As they are so important in their claims, they are here given quite in extenso, and as nearly as possible in his own words:

If we watch attentively a case of labor in which the placenta presents-I mean of course such a case as admits of simple watching, that does not call for obstetric interference—we shall observe that as soon as the longitudinal muscular fibres of the womb have begun to contract so as to pull back the lower segment from the central point represented by the os uteri internum, a certain amount of detachment of the placenta from the part nearest to the os takes place; owing to the periodical and sudden nature of the uterine contraction, this detachment is also sudden; the sudden detachment is attended by a sudden escape of florid blood; the contraction ceasing, the flow of blood also, for the most part, ceases entirely, or subsides greatly; with the returning contraction, there is a fresh detachment of placenta, and another gush of florid blood; the contraction at an end, the flow of blood again subsides. This order of events recurs in the same succession, perhaps several times. But, at last, if the child be not first extruded, a stage of labor arrives when the recurrent contractions of the womb do not entail any further flooding; the pains return in their usual course with their usual strength, and with their usual effect of further dilating the os uteri, and forwarding the labor; but there is no more hæmorrhage. The labor is resolved into a natural labor, and may be safely concluded by the natural powers.

Now this history, true to nature, is diametrically at variance with the still received dogmas, that the hæmorrhage is the necessary result of the expansion of the os uteri, and that there is no safety but in delivery.

It is not, then, the separation of the placenta which secures immunity from flooding, but the contraction of the womb.

This figure is a diagrammatic view of the progress of detachment of placenta. It is cast off in zones or rings, if the case is one of placenta centralis; and in segments of rings, if one of cervico-orificial placenta. At A, A, the dilatation of the os involves no further detachment of placenta.

There is, then, an anatomical, a physiological limit to the extent of placenta liable to detachment during the expansion of the womb. This is why, after a certain stage of the labor, no fresh bleeding surface is exposed. But how is the bleeding stopped from that part of the uterus already bared of placenta? By precisely the same mechanism as that which stops the flooding after normal detachment of the placenta from its normal seat at the fundus. The longitudinal muscular fibres of the lower segment must contract to pull open the mouth. Expansion, dilatation of the mouth, is contraction of the cervix. This contraction, by shortening the cervical portion of the womb, casts off the placenta, and exposes the ruptured mouths of the utero-placental vessels. The first effect is, bleeding. The second is, to stop the bleeding. The contraction goes on either actively, or passively and tonically, in most cases; and this further contraction constricts the orifices of the vessels-closes them; it is hæmostatic. If hæmorrhage be renewed, it does not proceed, except under circumstances of excessive muscular relaxationthe "passive hæmorrhage" of Dr. Chowne-from the surface bared by the preceding active contraction: it proceeds from a

fresh zone or arc further from the os, bared of placenta by another contraction. This zone or arc is, in its turn, in like manner sealed; and there is another pause in the flooding. Zone after zone is thus bared by recurring contractions, and successively sealed up until that physiological limit, that line of demarcation between normal and abnormal placental implantation, the boundary-line of placental detachment, which I claim to have discovered, has been reached. This zone attained, the labor is a natural labor!

At this point of our inquiry we may usefully enumerate the the varieties of seat of placental attachment. To illustrate this point, I have constructed a diagram. (Fig. 124.) The placenta may be attached to the fundus or upper zones of the uterus—fundal placenta; it may be seated on the middle zones -lateral placenta; it may encroach downwards upon the cervical zones—latero-cervical placenta; or it may grow entirely over the inferior pole, rising on all sides so as to occupy the cervical zones—the cervico-orificial or central placenta. (Fig. 123.) The fundal and lateral placentas are not, unless under very exceptional circumstances, liable to detachment, or to lead to flooding, before the birth of the child. The latero-cervical and the central placentas are, however, so liable. The extent to which this liability goes is greatly affected by the extent to which the encroachment takes place withing the cervical zones. In this case there may be little or no hamorrhage; but should the encroachment proceed further down, the danger of hæmorrhage would much increase. There are cases of flooding before the birth of the child, in which no placenta can be felt, and which are yet strictly cases of placenta prævia. How, it may be asked, do we get evidence of this? Nothing is more simple.

The following case shows one kind of proof:

On the 13th of May, 1852, my assistance was required by one of the midwives of the Western General Dispensary. A poor woman, weakened by poverty and hard work, having had two children at full term and of full size, was in labor at nine A.M. For two days previously she had had hæmorrhage, which was still going on. The head was low in the pelvis and lying in the first position, and there appeared to be sufficient room; it had, according to the midwife, been in

the same position for four hours without any advance. The pains had ceased altogether. Pulse feeble; face pale; great exhaustion, anxiety, and depression of mind. Fearing that further hæmorrhage might be fatal, I determined on delivering by forceps. Whilst waiting for the instrument, I directed the midwife to give an enema. I comforted the patient by assurance that she would do well. Almost immediately after, effective pains returned, and the head was expelled in an hour. No further hæmorrhage. Child still-born.

It appeared to me that the uterine contractions were arrested in the first instance under the influence of anxiety and terror. The midwife, before sending for me had sent for Mr. Cholmeley and Dr. Babington (she was a patient of Queen Charlotte's Hospital), and more than two hours had been thus lost. My arrival and assurances restored her confidence; and under the beneficial influence of that feeling the uterine contractions returned. The decidual surface of the placenta presented numerous specks of osseous deposit; the margin of the placenta presented large fresh coagula of dark color in the substance, and very large fresh coagula were attached to the very edge, and had evidently proceeded from a rupture of the circular venous channel which courses round the placenta,

It is this presence of coagula in the margin of the placenta which proves that it had been detached during labor, and that it had encroached upon the cervical region of the womb. In cases of this kind it is often remarkably well seen how dependent the hæmorrhage is upon the inactivity of the womb, and how completely contraction checks it.

Another proof is very interesting. I believe it was first explained by Levret:

"Lorsque le placenta est attaché dans le fond de la matrice, centre sur centre, non seulement le cordon ombilical est au centre du placenta, mais même les membranes se déchirent dans leur milieu à une égale distance, pour ainsi dire, de tous ses bords; et lorsque le placenta se trouve dévié vers les parois de la matrice, outre que le cordon suit et marque le degré de cette déviation, les membranes se déchirent en même raison—c'est-àdire, d'autant plus près de l'un des bords du placenta que cette déviation est grand. Si donc le placenta est attaché assez bas dans un endroit des parois de la matrice pour que le cordon se

trouve implanté sur le bord, ce sera sur ce même bord et dans ce même point que les membrancs se déchireront."

I have made the following sketch to illustrate this position. Recently this subject has been experimentally examined by Dr. Von Ritgen. He found that the bag of membranes burst at the edge of the placenta in 22 cases; it burst at one inch from the edge in 8 cases; between one and two inches in 12 cases; between two and three inches in 16 cases; three inches in 5 cases; between three and four inches in 4 cases; at four inches in 6 cases; between four and five inches in 8 cases; at five inches in 3 cases. It follows, that since the distance of the edge of the placenta from the rent is absolutely decisive as to the distance of the edge of the placenta from the placenta from the os uteri, that the edge of the

Drawing showing how the seat of rent in the membranes indicates the seat of attachment of the placenta to the uterus.

placenta rested on the os uteri in 22 cases, and was within one inch in 32 cases, and so on. This proves that the placenta

has commonly a much lower seat than has hitherto been believed.

This frequent latero-cervical attachment of the placenta has other important bearings in obstetric practice. It was pointed out by Levret that it was a frequent cause of laborious labor and of post-partum hæmorrhage. The attachment of the placenta to the lower segment of the uterus so modifies its thickness, vascularity, and capacity for contracting equally with the other portions of the uterus situated in the same zone, that the labor is rendered painful, and lingering; and, when the child is born, the faulty position of the uterns, added to previous exhaustion, disposes to a renewal of hæmorrhage.

There is another fact of practical interest. The frequent complication of cross-presentation of the child with placenta prævia has often been observed. The explanation of Levret satisfactorily ranges the two facts in the relation of cause and effect.

In describing a case where the head was thrown on one side, which he delivered by the forceps, he says: "Il n'est pas difficile de décider que le placenta s'étant fortuitement attaché du côté droit près de l'orifice; il a dû empêcher la matrice de se dilater suffisamment de ce côté, conséquemment il l'a obligé à prendre une figure oblique. Mais ce qui a totalement déterminé cette mauvaise situation a été l'inflexibilité de l'orifice de cet organe en cet endroit, lequel j'ai reconnu dur et comme calleux, pendant que son côté opposé était totalement effacé. Il fallait donc, par ces raisons, que l'enfant, se présentant par la tête, elle s'engageât dans ce détroit suivant une ligne oblique à la rectitude du corps." And at page 125: "La difficulté de l'enfantement ne vient pas seulement de l'obliquité de la matrice, mais encore de la difficulté que l'orifice a à se dilater dans le lieu prochain de l'attache du placenta, par la raison que la paroi de ce viscère est plus épaisse dans cet endroit."

The following diagram will serve to impress this fact.

I believe these considerations present a rational explanation of a multitude of cases of præ-partum hæmorrhage, lingering labor, cross-births, and post-partum hæmorrhage, the cause of which has been altogether overlooked.

Having considered the varieties of seat of the placenta, we are naturally led to examine the relation of the several parts of

the muscular structure of the uterus to the placenta in its different positions. The general disposition of the muscular fibres of

A, The rigid inclined plane formed by the placenta, and hypertrophied placental seat of uterus, throwing feetal head over to B, The thin yielding portion of uterus.

C. Thin yielding portion of uterus distended by hydrostatic pressure.

the uterus may be taken to be pretty accurately determined. There is a general accordance amongst anatomists concerning the leading points. The dissections of the Hunters confirmed, correcting somewhat, the description of Ruysch, and these in their turn have been confirmed by the dissections of Sir Charles Bell, Professor Owen, and others. Preparations may be seen in most museums which exhibit clearly the disposition of the muscular fibres in the different regions. I must, however, recite to you the description of Sir Charles Bell, not only on account of its graphic beauty, but also because he has laid the anatomical foundation of those physiological views concerning prævial placenta to which I was led by clinical observation.

"It has been proved by the sections of the uterus made in

different states of its contraction, that the order of the muscular fibres is calculated so as to close the vessels; that where Nature has provided for the attachment of the placenta, there the broken vessels are guarded by the provision of the surrounding muscular texture; but we know also that during this contraction of the superior part of the womb, the lower part dilates and relaxes. Now if the contraction of the womb be essential to the safety of the mother, what will be the effect of the attachment of the placenta to a part of the womb which must relax during the labor! Every one knows the peculiar danger of placenta prævia, that each labor-pain as it returns increases the violence of the flooding instead of checking it.

"I have been led to conclude that the placenta cannot be partially separated if it be attached in a regular circle to the fundus of the uterus: it cannot be partially separated, and cannot be separated bodily until the uterus is permitted to have a great degree of contraction by the delivery of the child; the circular muscles of the fundus being agents in a double capacity, that is, both in expelling the child, and in constringing the uterine vessels, by the time the child is expelled, the vessels of the fundus are greatly diminished in diameter. Further, the place and strength of the muscles being perfectly regular and uniform, their action must have the effect of equally drawing the surface of the uterus, which is in correspondence with the margin of the placenta; but no one part of it will be separated until the general restriction is nearly completed. This will not be the case when the margin of the placenta extends irregularly, or when the placenta is attached to the side of the uterus. After the delivery of the child in cases of flooding, it is not uncommon to find a portion of the placenta low down in the uterus, and separated, while the greater portion remains attached to the fundus. In examining the inner surface of the uterus by dissection, I have seen the part corresponding with the placenta irregular in its form and extending towards the side and neck of v In such circumstances of the attachment of the placenta, the retraction on the lower part of the womb being to a greater extent than the fundus, will account for the too early separation of that margin of the placenta which stretches towards the orifice and also for the hæmorrhage which is a consequence of this partial separation; but, in progress of the labor,

and after the discharge of the waters, the more powerful efforts of the uterus draw the muscular fibres more closely around the bloodvessels, and then the flooding ceases."

The chief points in the physiology of placental attachment

are expressed in the following diagram:

Diagram illustrating the various sites of the placenta, and the relation of these sites to hæmorrhage.

The inner surface of the womb may be divided into three zones or regions by two latitudinal circles. The upper circle may be called the Upper Polar Circle. Above it is the fundus of the uterus. This is the seat of fundal placenta: the most natural position. It is the zone or region of Safe Attachment. The lower circle is the Lower Polar Circle. It divides the cervical zone or region from the meridional zone. The space comprised between the two circles is the region of lateral placenta. When attached in this region, the placenta is not liable to previous detachment. It may, however, cause obliquity of the uterus, transverse position of the child, lingering labor, and dispose to retention of the placenta and post-partum hæmorrhage.

Below this circle is the cervical zone: the region of dangerous placental attachment. All placenta fixed here, whether it

consist in a flap encroaching downwards from the meridional zone, or whether it be the entire placenta, is liable to previous detachment. The mouth of the womb must be pulled open to give passage to the head. This enormous contraction or retraction of the longitudinal cervical fibres is incompatible with the preservation of the adhesion of the placenta which is within its scope. In every other part of the womb, there is an easy relation between the contractile limits of the muscular structure and that of the cohering placenta. Within the cervical region this relation is lost. The contraction of the uterine tissue is in excess.

The lower Polar Circle is, then, the physiological line of demarcation between prævial and lateral placenta: it is the boundary-line below which you have spontaneous placental detachment and hæmorrhage; above which, spontaneous placental detachment and hæmorrhage cease. If, through the successive active contractions of the longitudinal muscle, all that part of the placenta which had been originally adherent within the cervical zone, be detached; and if, as is the constant tendency of Nature, these intermitting active contractions, and the continuous tonic contraction going on in the intervals, arrest the hæmorrhage, a stage is reached when the labor is free from all prævial placental complication; the cervical placenta has become changed into a lateral placenta; the labor is, in all respects, a natural labor.

It is important to determine the exact position of this lower Polar Circle or boundary-line between hæmorrhage and safety. The means exist of defining this with tolerable accuracy.

In the first place, if we reflect that the lower segment of the womb must open to an extent corresponding to the circumference of the child's head in order to permit its extrusion, we shall, by noting the amount of necessary recession or shortening of the neck of the womb, in order to reach this extent of expansion, obtain a measure of the original depth of the cervical zone, the region of pravial placental attachment. The following diagram will serve to illustrate this position:

There is another evidence distinct from, but confirming the preceding. If, after its expulsion, we examine a placenta, the edge of which, at the beginning of labor at the full term, had been felt reaching to the edge of the os uteri internum, we find that part which had been adherent within the cervical zone, and

which had been consequently detached, infiltrated with coagulated blood, its substance perhaps indurated, and altogether presenting an appearance quite different from that of the mass of the organ which had adhered within the meridional zone, and

Diagram showing a lateral placenta descending to (AA) the boundary line between the meridional and cervical zones. In this case the placenta descends to the very point of fullest expansion of the os, and therefore remains just within the limit of safe attachment. The space between AA and BB is the necessary range of orificial expansion.

which had only become detached after the expulsion of the child, through the general contraction of the womb. This part is usually so well defined as to admit of being measured. It is usually found to vary from three to four inches in length. This distance from the os will bring us again to the lower Polar Circle.

I believe, however, that the boundary-line of safety is often practically reached before the expansion of the mouth of the womb has reached the full diameter of the child's head. I have observed that the hæmorrhage has completely stopped when the os uteri had opened to the size of the rim of a wine glass, or even to a lesser size. In ordinary labor, when the bag of membranes or the child's head is driven down upon the os by the pressure from behind—that is, when expulsive pains succeed to the preliminary dilating pains, the presenting part becomes a mechanical distending or stretching power. The os, partly opened by the active shortening of the longitudinal muscular fibres, is fully opened by the distending cone driven through it, as an india-rubber band is expanded. Thus it is that a part of the opening of the os uteri is gained by a process that does not involve detachment of placenta.

These cases and arguments demonstratively exclude the operation of artificial total detachment of the placenta as a principle of treatment of placenta prævia. These cases in reality furnish strong presumptive evidence to corroborate the positive evidence I have adduced, that partial detachment of the placenta—i. e., detachment of the portion implanted within the cervical zone of the uterus, may be enough—certain favorable conditions concurring—to control the hæmorrhage.

Now this partial detachment is an operation that admits of being accomplished by the introduction of one or two fingers, and is therefore feasible under the precise circumstances which preclude turning or total detachment.

We have, then, here a new remedy, one applicable at the very juncture where ordinary means are impossible or dangerous. As contrasted with the operation of totally detaching the placenta, it has the further advantage of not endangering the life of the child.

As contrasted with forced delivery, it has also the advantage of being less hazardous to the child.

The operation which I propose is, to carry the detachment further, so as to separate all that part of the placenta which adheres within the cervical zone or region of dangerous placental seat.

It remains to endeavor to generalize the varieties of cases of placenta prævia; and to endeavor to define the methods of treatment more particularly applicable to each variety.

1. We have those terrible cases to which we have just adverted, where the os uteri is rigid and undilated, the flooding profuse, the powers of life ebbing fast; where to wait for spon-

taneous arrest of flooding, or the natural dilatation of the os, is to wait for death. These are preëminently the eases for resort to the operation referred to. It must, however, be first stated, that this class admits of being further subdivided. There are eases in which contraction of the uterus is going on; there are eases—more dangerous still—in which contraction is absent. Labor with relaxation is dangerous under almost every condition: it is eminently so when complicated with placenta prævia.

Where contraction is present, we possess one necessary element of safety; we may be satisfied with the artificial separation of the placenta from its attachment to the cervical zone. Where contraction is absent, we must at the same time use every available means of rousing the contractile energy of the womb. Sometimes the stimulus imparted to the reflex system by the necessary manipulation is itself enough to excite contraction. But not always. We must then give stimulants internally; apply warmth to the surface if the skin is cold and there is great depression; rub the abdominal muscles and the body of the uterus firmly. This is a case where the ergot of rye is especially indicated. If it fail, then we have galvanism, which rarely or never fails—an agent perfectly under control, which we can apply and intermit at pleasure, and whose force we can graduate as we like.

If the hæmorrhage should continue, or be renewed with urgency, I propose as the next step, the total cervical detachment of the placenta. The detachment must be carried further, by sweeping the finger round between the placenta and uterus on that side to which the main bulk of the organ adheres. In this manner the whole of that part which had been seated within the eervical zone will have been detached. We shall have imitated the operation represented in the diagram fig. 124, as being oecasionally—I believe often—effected by the spontaneous efforts of Nature. Now this detachment will not of itself stop the hæmorrhage. We may, I think, tranquillize our minds as to the effect on the mother of that small portion that will escape from the detached placental surface. But the uterine vessels may pour forth blood until the hæmostatic resources of Nature or Art come in to play. Those I have before described: eontinued contraction of the muscular structure of the

womb, the contractile action of the coats of the uterine arteries, and the formation of coagula in their mouths. In the majority of cases, these resources are sufficient; the hæmostatic process may, however, be further assisted by plugging again. A method of plugging is recommended by high authority, which appears deserving of attention. Moreau advises the application of a lemon, the end of which has been cut off, to the os uteri, and to retain this in situ by firm pressure through rags or sponge. The acid juice favors coagulation as well as the pressure, and retention of blood. The soaking of the sponges or rags used for plugging in vinegar is a common practice; but it seems to me reasonable that more powerful styptics should be used. I suggested some time ago, the injection of the sesquichloride of iron. Dr. Schreier, of Hamburg, has related some instances in which this agent was employed with success. M. Dupierris, of Havana, advises the use of tincture of iodine. He says that he has injected a mixture of one-third tincture of iodine with two-thirds water, in one hundred cases of uterine hæmorrhage of various kinds with uniform success. He relates three cases of hæmorrhage attending labor. The sesquichloride of iron, however, appears to me the preferable agent.

By the proceedings I have described, we may reasonably hope that in the vast majority of cases the hæmorrhage will cease. If it should not, time will have been gained; the os uteri may have become soft and dilated; and, in the event of its being felt necessary to resort to forced delivery, this operation may be performed with comparative ease and safety.

2. There is another class of cases, happily more frequent than the preceding, where there is less urgency, more scope for temporizing. We have seen that the expansion of the os may be effected without necessary loss of blood to such an extent as to constitute flooding. In the conduct of such cases we have, in the physiology which I have enunciated, a guiding principle that carries a rational faith in the resources of Nature. It is in these cases that the natural tendency to restrain the floodings caused by the successive detachments of zonular portions of placenta is most strikingly marked. A knowledge of this principle will give an intelligent confidence in all those measures, such as the plug, ergot, rupturing the membranes, which has been recommended on various physiological or empirical

grounds. Even in these cases the operation of freeing the smaller segment of the placenta, so as to allow it to be carried over to the side of the uterus which holds the main body, will be of essential service.

3. There is a third class of cases in which the principle is all-important. I mean those cases where, after even alarming losses, the hæmorrhage has ceased spontaneously. Under the prevailing dogmas the arrest of hæmorrhage inspires no hope in the breast of the accoucheur. He is taught to believe that it will "unavoidably" return; he hastens to deliver; and the poor woman who had reached the haven of safety is destroyed by the operation, a victim of the "nimia diligentia medici."]

LECTURE XXX.

FUNIS PRESENTATIONS.

Gentlemen:—The Funis may present alone at the beginning of labor, or it may descend with the head, arm, nates, and any other presentation of the fœtus. Its positive frequency is greatest in head cases, but relatively it is more frequent in arm and shoulder presentations than in other varieties. This serious complication may occur at any time during labor. It may happen before the evacuation of the liquor amnii, when the head or presenting part is passing the os uteri, or when it is emerging from the perinæum.

The Causes of funis presentations are various. In arm cases, where the body of the child lies transversely, the anatomical position of the umbilicus and the funis favors the descent of the cord, and this descent is still further promoted by the fact, that in shoulder cases the circular os uteri does not at all points closely embrace the presenting part, on account of its irregularities. In its contractions, the uterus cannot sweep equably over the shoulder as it does in cranial presentations during the pains, so as to carry up the funis when there is any tendency to prolapse. Presentations of the feet and breech, or of the hands and feet, are frequently complicated with the funis, and from the same causes. In the case of head presentations, length of the cord, small size of the head, the descent of the hand with the head, a large quantity of liquor amnii, and its sudden evacuation, or a pelvis above the average size, may cause prolapsus of the cord. It happens in twin cases, particularly in the delivery of the second child. The position of the placenta is also influential as a cause of funis presentations. The cord is prone to descend when the placenta is partially attached to the os uteri, or when the placenta is fixed to the lateral walls of the placenta instead of to the fundus, or when the placenta being seated near the fundus, the cord is inserted into the edge instead of the centre of its diameter. Mr. Roberton, of Manchester, points out that, in cases of contraction of the brim of the pelvis, where, on the rupture of the membranes, the head does not descend upon the os uteri, but remains suspended at the brim, the funis is very apt to float down with the liquor amnii and pass through the os. An interesting series of cases has been reported by Mr. Roberton, which fully bears out this view. When the head of the fœtus remains above the os uteri, the relations of the os to the presentation very much resemble those which obtain in shoulder or nates cases. There is a want of that apposition between the os uteri and the presenting part which prevents prolapsus of the cord in perfectly natural cases.

As regards the frequency of this complication, Dr. Fleetwood Churchill has collected 128,224 cases of all presentations, which yielded 579 funis cases, or about 1 in 221½. As regards the mother, labor is not in the least degree rendered more uniavor-

Presentation of the Funis, with the head in the first position.

able than usual, but the mortality to the fœtus is very great. Considerably more than 1 in 2 of the children die in cases where the cord presents. In arm presentations the mortality is rather

more than 1 in 2. It will be remembered that in breech cases the mortality was 1 in $3\frac{1}{2}$, and in footling cases, 1 in $2\frac{1}{2}$. In turning, the feetal mortality is rather more than 1 in 3. Thus the presentation of the funis is more dangerous to the child than any other variety of labor.

The symptoms of funis presentations are sufficiently

Presentation of the Funis, with a hand and foot.

well marked to make their diagnosis easy. Sometimes a loop of cord, several inches in length, hangs from the vagina. It may be pulsating, or it may be cold and flaccid. But in one case the umbilical pulse, and in the other the twisted arrangement of the cord, or an ocular inspection, will remove all doubt. In cases where the cord comes down with the advancing part of the child, or presents with it at the os uteri, the only part of the full-grown fœtus which can be mistaken for it is the closed hand or the toes. The knuckles, when only part of the hand is felt, or the row of toes, may feel somewhat like the end of a loop of cord. But the presence or absence of pulsation, and the examination of a few inches of the cord, or enough of the extremities to reach the wrist or the ankle, will make the matter clear. There is one complication of labor which it is necessary to mention, in which a mistake respecting the cord may lead to the most serious results. In cases of ruptured uterus, a coil of the small intestine may pass through the laceration, and present in the os uteri or the passage. This has, in rare instances, been mistaken for the cord of a dead child, and pulled down or even cut off by ignorant or incautious persons. A case of this kind occurred in London, and another in Ireland, incredible as it may appear, within the last ten or twelve years. In cases of this kind happening to a midwife, in which a medical man might be called after the rupture of the uterus and prolapse of the intestine, some little caution would be necessary to avoid mischief. An inexperienced accoucheur might pull at the supposed cord, and do the gravest injury, particularly if the previous history of the case had been kept from him.

Of course, the cause of the Mortality in funis cases is the pressure exerted upon the cord, between the presenting parts of the child and the hard and soft parts of the mother. The child dies of asphyxia, the feetal circulation being, in severe cases, entirely cut off from the respiratory functions of the placenta. We may compare the child under the circumstances of funis presentation, to cases of turning, to cases in which the placenta is separated, or the contractions of the uterus are so intense and continuous as to prevent the circulation of the blood in the maternal side of the placenta. The comparison between the presentation of the funis, and the descent of the nates or feet foremost, is very obvious. Wherever the order of labor is such that the funis, or any portion of it, precedes the descent of the more bulky portions of the fœtus, the case is essentially one of funis presentation. Thus, in footling, breech, and turning cases, as soon as the umbilicus engages in the pelvis, pressure is exerted on the cord, and the cases are identical with funis presentation. The mortality depends on the length of time to which the funis is subject to pressure, and the degree of the pressure during the exit of the fœtus. Thus it is greatest in funis cases proper, in which the cord comes before or with the presenting part, and is thus subjected to pressure during the whole of labor. Next to this, footling cases are the most fatal to the child, as here the pressure on the cord commences as the umbilicus descends through the soft parts, and these have been but little distended by the descent of the feet and breech in succession. In breech cases, the mortality is less than in footling cases, because the soft parts have been distended by the passage of the

nates with the feet doubled up towards the abdomen. In cases of the descent of the cord with the head, in cranial or face presentations, the pressure exerted on the cord is greater than under any other circumstances; but it is of short duration, since as soon as air can reach the mouth of the fœtus, pressure on the cord becomes of little consequence. No comparison can be made between the mortality in cases of turning and funis presentations, because the great mortality to the fœtus in turning depends on other causes as well as upon the pressure upon the cord. Certain circumstances besides the presentation exert an influence upon the mortality in funis cases. The younger the fœtus, for instance, the more safely pressure is borne, and the longer it may be continued without a fatal result. The risks of a fatal result to the child, when the funis presents in a first labor, are very great, whatever the part presenting with the cord. They are much less in the case of patients who have had many and easy labors. The danger is greater when the fœtus is male than female. The least dangerous cases of cord presentation are those in which it happens to the second child in twin cases, especially when, as is frequently the case, the second child is smaller than the first. The danger is increased when the pains are very frequent and prolonged, but when the pains are moderate, and with a fair interval, the child recovers from the effects of the pressure of one pain before another comes on. Care should always be taken to inform the friends of the patient of the danger in which the child is placed by the descent of the funis.

The principle of **Treatment in funis presentation** is the removal of the cord from pressure, or subjecting it to compression for as short a time as possible. These objects may be carried out by the Reposition of the Cord within the uterus; by placing it in such a situation in the pelvis as to escape pressure as far as is practicable; or by artificial delivery, as by turning, or the use of the forceps. No one method can be advised for the treatment of such cases. The principle of management being held in view, the means adopted in individual cases must depend upon the exigencies which attend them. As the mother is not in danger from this casualty, no steps should be taken to secure the child which are likely to bring the mother into danger, as this would be substituting a greater for a lesser evil.

A primary rule in the management of these cases is, the preservation of the liquor annii. As long as the membranes remain unbroken, it is hardly possible for the child to be destroyed by compression of the cord, and not until they are broken should any attempt be made to replace the funis. It cannot be done effectually; the child is as yet in little or no danger; and attempts at manipulation must hazard the rupture of the membranes. The more labor progresses before the evacuation of the amnion, the shorter will be the time of serious compression, and the less the amount of compression will be from the gradual dilatation of the soft parts under fluid pressure.

The Reposition of the cord within the uterus is the most satisfactory method of treatment we can adopt, but unfortunately it is not always practicable, or else the pains cause the renewed descent of the cord after its temporary replacement. The degree to which the cord should be returned is a Sir Richard Croft matter of some difference of opinion. recommended that the cord should be carried up into the uterus so as to hang it upon the limbs of the child. Others, as Arneth of Vienna, advise that it should be returned above the head, and allowed to remain in the hollow formed by the neck. No doubt, the latter answers every purpose, if the cord will keep there, since children are frequently born with the cord coiled once or twice round the neck without injury, and the introduction of the hand into the uterus during labor is necessarily attended with some risk to the mother, except in the most favorable cases. Various methods of procedure have been advised for the reposition of the cord. The most simple instrumental method is by the use of a whalebone needle, or bodkin, and a loop of tape. This, as Dr. Ramsbotham remarks, has the advantage of being made extemporaneously in a few minutes in the lying-in room. A flat piece of moderately flexible whalebone, about half an inch in breadth and a foot in length, and a vard of tape, are all that is necessary for its construction. An eye or hole should be made near one extremity of the whalebone, large enough to allow the tape to run in it readily. using it, a loop of the tape should be passed through the eye, and the end of the loop of funis should be included in the loop of the tape, when the ends of the tape should be drawn so as to

bring the loop of funis towards the eye of the instrument, and to retain it there without exerting pressure enough on the cord to interfere with the placenta-feetal circulation. The whalebone should now be passed into the uterus by the side of the presenting part, in an interval between the pains, and after having been kept there during a pain, the tape may be brought away by drawing at one of the strings, and the slip of whalebone afterwards removed. If this noose be relaxed a little, so as to avoid strangulation of the cord, there can be no harm in leaving the instrument in the utero-vaginal canal, as it offers no impediment to the progress of labor. Michælis, of Kiel, recommended that a large sized, male, gum-elastic, stiletted catheter should be used for the same purpose. He advised that the ligature should be passed through the loop of funis, when, being drawn loosely to the eye of the catheter, and the stilette being introduced only so as to avoid the possibility of doing injury, the instrument is to be passed above the head or presenting part, and left there, the stilette being withdrawn, until the completion of labor. But at the present time, Michælis has, I believe, abandoned his ingenious instrument for the use of the fingers.

[A very ingenious instrument called a *portecordon* is made by Luer from whalebone or hard rubber, as shown in the annexed cut. It is made in two portions, one sliding over the other. In

a sharp bend at one extremity the cord is seized and may then be pushed up to the fundus uteri if desired when the passage is not blocked. Then, by withdrawing the slide, the cord may be disengaged and the instrument withdrawn; or, if desired, the instrument may remain, its smallness preventing its causing any obstruction or being in the way, while its retention may more effectually prevent the subsequent descent of the cord.]

I see no reason why the cord should not, when it is sufficiently low to admit of manipulation, and when it returns after reposition, be pierced with a needle and thread or worsted, in such a way as to escape the vessels, and be tied to the end of a slip of whalebone, which might then be returned, and kept in situ until the completion of labor. But in ordinary cases, the accoucheur can do more with the hand and fingers than with the most ingenious instruments. In returning the cord with the hand, two or three fingers of the right or left hand, as may be most convenient, should be introduced by the side of the head or presenting part, and with the tips of the fingers the prolapsed portion of the cord, being gathered together, should be pressed upwards, during an interval of freedom from pain, and retained above the presenting part until the next pain comes on. When the uterine contraction of the uterus reaches the fingers, they should be withdrawn, so as, if possible, to leave the funis within the grasp of the uterus. The contraction of the uterus will, if the operation be successful, sweep the cord upwards, instead of expelling it. It may, however, come down again when the uterus is relaxed, or it may be extruded by the succeeding pains, and require other attempts of the same kind to keep it above the presenting part. Drs. M'Clintock and Hardy, whose directions for the reposition of the cord are very excellent, advise that in attempting its reduction by the hand, the woman should lie upon the side opposite to that on which the cord protrudes; that is, if the cord be felt on the right side of the pelvis, the woman should lie on her left side, and vice versa. They also recommend that before its return it should be drawn, if possible, towards the pubes, as the shallowness of the pelvis in this situation renders the return of the procident cord more easy than when it lies towards the sacrum. As long as the pulsation of the cord is vigorous, we should not be deterred by difficulties in attempting its reposition, as this is sometimes effected only after repeated trials.

When, in spite of our endeavors, the cord slips down again at every pain, means are recommended for keeping the funis above the presenting part. This may sometimes be done by passing a wedge of sponge up after the cord, as recommended by Dr. Collins, so that when the pains come on, the sponge is compressed between the presentation and the walls of the canal, and the further descent of the funis prevented. Sometimes, where the extent of funis prolapsed is considerable, and the cord thin, so as easily to slip down, some authorities have recommended

that it should be gathered together, and put in a soft leather pouch or bag, the mouth of which should be drawn together sufficiently to keep the mass in the bag, but not to constrict the co.d. The bag is then to be passed up within the os uteri by the fingers. This manœuvre substitutes a considerable mass for the thin lubricious cord, and is less likely to be protruded after its reposition. The bag remains, when the proceeding is successful, until the child is expelled. This operation is, however, difficult, and one now rarely, if ever, attempted.

When the cord cannot be returned or retained within the uterus, it becomes necessary to place the prolapsed cord in such a position in the pelvis that it may be compressed as little as possible during the passage of the child. It should be brought, as recommended by Dr. S. Merriman, into the oblique diameter of the pelvis, opposite to that which is occupied by the child. In a vertex case in the first position, with the head in the right oblique diameter, the funis should be kept as closely as possible to the left sacro-iliac synchondrosis, in the second position, with the head in the left oblique diameter, and in both cases the rectum should be emptied, but particularly in the first, as the cord then lies between the side of the child's head and the rectum of the mother. In other presentations, when no other assistance can be rendered or seems necessary, the cord should be shifted as far as possible into that part of the pelvis which is least occupied by the child. It should rarely, if ever, be brought towards the pubic arch, as in this position the effects of pressure are generally very great. In cases of large pelvis in multiparous women, when the pains are moderately strong, and occurring at proper intervals, the passages being well relaxed, and labor completed in a short time, the arrangement of the position of the cord will often be sufficient to secure the safety of the fœtus. In primiparous women, or where there is rigidity of the soft parts and a small pelvis, such measures are of little or no avail in arresting the long effects of pressure.

The propriety of **Turning in cases of funis presentation**, combined with any other part of the child than its pelvic extremity, is one of the vexed questions of obstetrics. Many eminent authorities have commended, and others condemned, this practice. The truth is, that the fitness of turning for any particular case requires great tact and judgment, and admits of no reduc-

tion to rule. Mauriceau performed it in a number of cases with great success in saving the child. So did Boivin and Lachapelle, and so have many contemporary accoucheurs. The strong point in the operation is, that it enables us to complete delivery in a shorter time than would otherwise be the case, and in this way the chances of safety to the child are increased. The weak points are, that the operation is not perfect, considered in relation to the object we have in view. It does not deliver the child from danger, but substitutes the risk of pressure from the shoulders and head upon the cord after the passages have been distended by the breech, for the primary pressure of the cord by the head without any previous distension of the parturient canal. Of course, in arm cases in which the funis presents, version is performed, but with reference rather to the arm than the funis complication. It would be very interesting to have a statistical comparison between the results to the child in those cases in which the funis presents in combination with the pelvic extremity and those in which it presents with the cephalic end of the fœtus. But I believe no such statistics exist, and, in their absence, we must consider the question of turning upon other grounds. In this country, the tendency, in recent years, has been to consider, with Dr. Robert Lee, that turning should rarely be practised. I believe the cases in which version is in proper operation, simply on account of funis presentation, are rare; but there are other contingencies, such as moderate contraction of the pelvis, cases where the pelvis is capacious, where other means have been tried in vain, and where turning can be easily performed, but there is evidence that the child is passing into a dangerous state, in which the operation of turning will save fætal life without more than very slight hazard to the mother.

In cases where the labor has sufficiently advanced, the use of the forceps or the vectis, the administration of the ergot of rye or a stimulating enema, are of great value in completing delivery. These means are to be reserved for those cases in which prolapsus occurs, or continues, when the head is low in the pelvis, and the os uteri is fully dilated. In cases where the funis is complicated with breech or footling presentation, the means described when speaking of breech cases, for hastening delivery and preserving the child, should be practised.

When the cord remains pulseless and flaccid for a considera-

ble time, the child is already dead, and we may save ourselves from anxiety or attempts at delivery. We must not, however, be in too great a hurry to consider the child beyond hope. Cases are on record in which the cord being pressed upon from above, the loop hanging down is pulseless from pressure on the arteries, but the heart may beat for a considerable time, and the child ultimately be born alive. Sometimes in the conduct of these cases, the cord will cease to pulsate and the heart of the child will fail, but nevertheless, from some alteration of position, the heart rallies and the pulsation of the cord is restored. Those cases in which the cord comes down with the head, most easily admit of the reposition of the cord, where, as in breech cases, the cord has a great tendency to come down after its replacement. Although when the cord comes down before the rupture of the liquor amnii, the child is in no danger as long as the membranes remain intact, such cases are very dangerous to the child from the length of time during which it is generally subjected to pressure. On the contrary, when the cord descends towards the completion of labor, the risks of the child are less, because we generally have it in our power to complete delivery within a given time in such cases. The length of time the cord may prolapse in some cases without destroying the child, is extraordinary. I once knew a case where it was prolapsed three whole days, but was afterwards reposited, and the child was born alive.

[In a recent paper read by Dr. T. Gaillard Thomas, to the N. Y. Academy of Medicine, a new and very ingenious method was proposed, which he calls **postural treatment**, by which to return the cord into the cavity of the abdomen. The causes of prolapsus of the funis he enumerated are, 1st, the slippery nature of the cord itself, and 2d, the inclined direction of the uterine axis, which being a line running from the umbilicus, or a little above it, to the coccyx, favors very much the tendency of the slippery part to roll outwards.

These conditions can be overcome, and also are themselves rendered serviceable in effecting reduction, by inverting the uterine axis, to be effected by placing the woman upon her hands and knees.

Dr. Thomas's rules of treatment are thus given by him— 1st. If the cord is detected before the waters have broken,

let no manual assistance be offered, but place the woman at once in position and trust to this for its return to the uterus.

2d. Should the waters have flowed away, and left the cord

below the head, place the woman in position, and push it up with the hand if practicable, or with a portecordon, if not so.

Sd. Let no manipulations be commenced until the woman be

placed in position.

4th. In returning the cord into the uterus, the whole hand should be introduced into the vagina—this is essential to success—the fingers alone will fail.]

LECTURE XXXI.

DEFORMITIES OF THE PELVIS.

Gentlemen: - Distortions of the Pelvis are amongst the most serious dangers which await the parturient female and her unborn offspring. The severer forms of deformity are comparatively rare, but slighter deviations come under our observation pretty frequently, especially in highly-civilized, over-crowded, and ill-fed populations. In the case of minor deformities, or alterations of dimension, it is, in most instances, the child only which suffers. As obstetricians have gradually perfected themselves in the diagnosis of pelvic deviations, it has become customary to resort to operative procedures at an earlier stage of labor than formerly, and thus much unnecessary pain and risk have been saved to mothers. Graver forms of distortion of course involve operations attended with much risk to the parent. Hysterotomy, in this country at least, has had a very fatal history; and when the pelvis is greatly contracted, evisceration and piecemeal extraction of the fœtus is a protracted and extremely dangerous operation. The best safeguard against errors of practice, whether they consist of premature efforts to deliver; or of timorous delays, is to be found in an exact knowledge of what deviations may present themselves; how they may be recognized; how their extent may be determined approximately; and what influence they are likely to exert upon the progress of labor.

The conventional phrase, "deformities of the pelvis," must be held to imply something more than its etymology contains. By it we understand all deviations from the standard size and form, of whatever nature they may be, and however they may have been effected. Many attempts have been made to treat the subject of pelvic deviations systematically. Some writers have classified them according to the degree of distortion, and others

according to the kind of distortion; but it is impossible to arrange them together in the same satisfactory manner as a naturalist groups plants and animals. It is better to dispose of the different deformities met with one by one, to indicate their pathological and mechanical relations, to point out how they may be recognized, and afterwards to subjoin such practical conclusions as may seem most warranted by the accumulated experience of the past. An immense variety of deviations from the natural size and form of the pelvis have been met with: contractions of the brim, cavity, and outlet, in various directions, caused either by disease, tumors, or fractures; arrest of development, which gives us a pelvis of the infantile type; equable enlargement and equable contraction; the masculine type of pelvis; funnel-shaped pelvis; flatness of the sacrum;

and oblique distortion of the pelvis.

The most important pelvic deformities, perhaps, with which we are acquainted, are those which arise from rachitis, or from Malacosteon. In the first of these diseases, distortion is produced during infancy, or at least some period anterior to puberty; malacosteon, or osteo-malakia, on the contrary, is a disease of adult life. The effects produced by each of these diseases are, of course, somewhat different, although in both cases there is softening and distortion of bone. The mechanical relations of the adult and infantile pelvis are somewhat different —the width of the infantile pelvis is less in proportion to the height of the individual than after puberty; the obliquity of the pelvis is much greater, and the heads of the thigh bones are thus in every way brought nearer to the line of gravity. softening which takes place in malacosteon is more equable than that of rachitis—that is to say, the whole structure of a bone is similarly invaded by it, while in rickets the alteration of intimate structure affects particular portions of a bone; and, except in extreme cases, leaves comparatively solid osseous districts, which take little or no share in the torsion produced. accordance with these facts, it will be found that rickety pelves affect one kind of distortion, and malacosteon pelves another. In the first case, the deformity produced is generally of the elliptical variety, the sacro-pubic diameter being decreased, and the lateral very much increased, relatively, and sometimes absolutely. In malacosteon, on the other hand, a reverse con-

dition obtains—the deformity is angular, the pelvis is rostrated or beaked, the sacro-pubic diameter is increased relatively to the transverse, and the transverse diameter diminished absolutely. This statement, however, must only be taken as a general one; for there are several cases on record, which show incontestably that the angular variety of distortion may take place as a result of rickets. A most remarkable case is recorded by Naëgelé, in which all the characters of the osteo-malacious pelvis obtained; but there was not the slightest doubt that the disease which produced the deformity was rickets. The same authority had observed two other cases, which contradicted the established belief that rachitis was not productive of angular deformity of the pelvis; and he refers to several other cases collected by competent observers. Stoltz communicated to him the case of two children, of the ages of one and eight years respectively, in whom, although rickets had been undoubtedly the disease, yet the pelves were alogether of the form generally supposed to be peculiar to osteo-malakia. Otto, Wallach, and Von Krumbholz, mention exactly similar cases; and Burns admits the existence of angular deformity in connection with rickets. An oblong deformity of the pelvis is sometimes met with where there is a backward curvature of the spine. In this case, the sacro-pubic diameter of the brim is very much increased; the antero-posterior diameter of the outlet is proportionately decreased, but not always.

The accompanying engravings are illustrations of characteristic specimens of rickety and malacosteon pelves respectively:

Fig. 127 is a representation of a rickety pelvis affected with

the usual ovate deformity. The sacrum in such cases is placed more horizontally than natural; the promontory projects forwards and sinks, as it were, into the cavity of the pelvis, so as to bring the fourth or fifth lumbar vertebra into the position naturally occupied by itself. The sacrum is somewhat diminished in depth, though not so much so as in the case of malacosteon distortion; its vertical and lateral curvatures are both diminished, and the bone is consequently very much flattened. The apex of the sacrum and the coccyx are bent acutely forwards and inwards. The wings of the iliac bones are somewhat flattened and everted, and carried bodily forwards towards the anterior part of the pelvis. The symphysis pubis is sometimes projected inwards, so as to give the inlet of the pelvis an hourglass shape. The tuberosities of the ischia are separated so as to increase both the transverse diameter of the outlet and the width of the sub-pubic arch.

Rostrated variety of Malacosteon Pelvis, seen from the brim.

Figs. 128—31 are malacosteon pelves. They are specimens of the oblong rostrated variety. Figs. 130 and 131, are representations of the pelvis of Isabella Redman, seen from above and below. The general effects produced in malacosteon are, narrowing of all the diameters of the pelvis, but especially of the transverse, whether of the brim, cavity, or outlet. The anteroposterior diameter of the brim, or rather the distance from the

promontory of the sacrum to the symphysis pubis, is relatively to the transverse diameter, very much increased; absolutely, it

Rostrated Malacosteon Pelvis, as seen from the outlet.

is somewhat less than natural. The pubic arch is very much narrowed. The tuberosities of the ischia are approximated. The

Fig. 130.

Malacosteon Polvis in extreme deformity, seen from the brim.

sacrum is very much incurvated, and the acetabula are much closer together than in the normal pelvis. The ilia, instead of being carried bodily forwards as in the rickety pelvis, are

folded up, and the iliac fossa is made to resemble an oblique furrow running from above downwards.

The same Malacosteon Pelvis, seen from the outlet.

Dr. Matthews Duncan, of Edinburgh, has elucidated the difference between rickety and malacosteon pelves, most admirably, in a brief but very able paper in the Edinburgh Medical Journal for April of the present year. Numerous diagrams are given by him, which convey more distinctly to the mind the nature of the deformities they are intended to illustrate than can be done by any mere written description. Some of these diagrams are copied below, and others are modified with a view to their simplification. In the first place, Dr. Duncan gives profile sections of the pelvis, or rather of that part of the true pelvis which is above the middle of the third piece of the sacrum. The superior plane of the pelvis is considered as divisible into two parts, one posterior and another anterior, separated from each other by a line drawn across the pelvis from one ileo-pectineal eminence to another.

The same letters apply to each figure, except that N is a section of the normal pelvis, R of the rickety pelvis, and M of the malacosteon pelvis. K is a line drawn from the promontory of the sacrum (P) to the middle of the third piece of the sacrum (W). C is the sacro-pubic diameter of the brim; S is the upper part of the symphysis pubis; D is a diagonal diameter joining S and W; T is the point in the vertical plane $(P \ W \ S)$, traversed by the horizontal line, which joins the ileo-pectineal eminences: in the malacosteon pelvis, this point is, however,

without the plane. The dotted lines, TP, TS, show the rela-

Profile Section of Natural Pelvis.

tions of the two halves of the plane of the brim to each other; and the line T W shows the relation of the middle of the ileo-

pectineal line to third piece of the sacrum. The distance between T and C in each case helps to illustrate the nature of the

ilio-pubic angle. The following table will show the measurements in each case, and develop their essential differences:

				DEMAL PELVIS. Millimetres.					ETY PI		MALACOSTEON PELVIS, millimetres.					
Length of	the	line	C	118					74			٠		104		
	66		K	68					66				٠	38		
	44		D	112					104				٠	134		
	66	T	P	78					50		٠			49		
	6.6	T	S						28							
	66	T	W						each							
The distance	e of	T be	elow	C 3	٠.				11.5				٠	0		
The distance	e of	T at	ove	C 0					. 0					18		

"From these measurements," Dr. Matthews Duncan observes, "it is evident that the two halves of the plane of the brim, which, in the normal pelvis, are almost directly continuous, form with one another, in the rickety pelvis, an angle open above, and in the malacosteon pelvis, an angle open below—in both cases of about 141°."

The three varieties of pelvis are still further compared by studying transverse or horizontal sections. The two halves of the plane of the brim are now regarded as continuous. As before, N is the normal, R the rickety, and M the malacosteon

pelvis; P is the promontory of the sacrum in each case; S is the symphysis pubis; I I are the ileo-pectineal eminences, joined

by the line which cuts the vertical plane (P W S) in the first series of figures, at the point T; and P I I are triangles, constructed upon this line. Comparing these triangles, it will be

Transverse Sections of Rachitic Pelvis.

seen at once that the base is very much the same, whether the pelvis be normal or rickety, but that in the latter the apex has

Transverse Section of Malacosteon Pelvis.

approached the base to a considerable extent. In the malacosteon pelvis, the points $P\ I\ I$ have all approached each other

very much, and the triangle included by the lines which join these points is much smaller than in either of the other pelves. These sections illustrate also the rostrated form of the anterior half of the pelvis, and the folding of the iliac wings in malacosteon; they also indicate the sinking forward, en masse, of the ilia, which was spoken of before as taking place in rickets. It is almost unnecessary to add anything more in the way of illustration; the diagrams almost explain themselves.

The pathology of the diseases which result in the two foregoing species of deformity is of considerable interest. There are many points of analogy between the intimate conditions of the bones in each case, but there are variations in the details which affect the progress, terminations, and alliances of the morbid conditions. As a general statement, however, it may be said, that both in the case of rachitis and osteo-malakia the morbid processes partake very much of the nature of inflammation.

Rachitis may be divided into three distinct periods. The first is one of rarefaction, as it is called by French pathologists; or in other words, the structure of the bone opens up. In the second period, there is something deposited, and hence this has been called the period of organization. If the disease tends towards recovery, the third stage, or period of consolidation, is established; if, on the other hand, the morbid processes are pushed on to their final developments, destruction of osseous tissue is in a great measure consummated, and the subject of the disease perishes either by hectic fever, marasmus, or some intercurrent disease, such as pneumonia or diarrhea; there is generally tubercular deposit in the organ affected. In the first stage of the disease, the bones preserve their normal form and direction, but their consistence is somewhat diminished, and they are more elastic. The periosteum becomes much more vascular, is thickened, and adheres to the bone more closely than natural. On stripping off the periosteum, the bone will be found moist, uneven, and destitute of its usual smooth aspect. Between the surface of the bone and the periosteum, there is a deposit of gelatinous, pinkish matter. Upon examining the exterior of the bone with a glass of small magnifying power, after this matter has been washed off, the Haversian canals will be seen to be much more distinct and of greater calibre than

natural, and they are filled with the gelatinous material. When first effused, this is more fluid, and it only assumes the gelatinous condition after a certain time. M. Guerin has examined this deposit microscopically, and says that after the exudation in question has become gelatinized, organization takes place, somewhat after the manner of false membranes, and that myriads of small vessels may be distinguished crossing each other, and forming an inextricable web. The changes which occur in the bones are more pronounced in long than in flat bones, and are still more remarkable in the epiphyses than in the shafts. In all bones, however, and throughout the whole structure of each bone, the areoles are widened, the structure is loosened, and a slight increase of volume takes place. medullary canal, as well as the interspaces between the solid elements of the bones, are filled with the sanguinolent, greasy matter referred to above; the color has been compared to that of currant-jelly. The precise spot at which the histological changes referred to are most prominently developed is, however, just where the shaft and epiphysis of the bones join, or in that portion of cartilage which is undergoing osseous transformation. The flat bones become somewhat swol-

Thus the phenomena of this period are—first, vascularization of the bone and periosteum; secondly, slight swelling of the epiphyses and flat bones; thirdly, opening up of the osseous tissue, due to effusion of the sanguinolent matter, and absorption of the calcareous particles of the bones; and fourthly, softening of the bone, diminution of specific gravity, acquisition of unnatural elasticity, and the first indications of yielding to pressure. The second stage of the disease is marked by a still greater increase of volume, especially towards the extremities in long bones; this is more apparent than real, but nevertheless it will not do to attribute the whole of the apparent increment of the epiphyses to atrophy of the muscles, above and below the articulations. The bones now begin to curve and yield to pressure in a very marked manner. Some of the curvatures are the result of the weight of the body itself; others are the result of muscular action, and the habitual posture of the child will materially affect the character of the distortions, especially about the pelvis. The vascularity and softening of the bones,

21

and the opening up of the lamellæ, keep pace with the continued effusion which obtains as the disease advances. The effused matter, wherever it is poured out, becomes adherent to the surfaces with which it is in contact, and is transformed, especially towards the extremities of the bones, into a reticular, elastic, reddish tissue, like a fine sponge. It is curious to observe that the convex aspect of the bones differs very much from the concave; and that it is somewhat granulated, and is sonorous when struck. The concave surface, on the contrary, is of the consistence of cartilage, or of a bone softened in acid. The touch, as well as inspection, reveals a totally different composition, and a dense but soft and elastic tissue may be recognized adhering intimately to the under surface of the periosteum; this tissue is thick on the concave surface of the bone, but is insensibly lost on the lateral aspects. The calibre of the medullary canal is considerably diminished. If the disease tends towards recovery, absorption of the calcareous portions of the bones is reduced within natural limits, and solidification takes place. The reticular tissue becomes dense, and spiculæ of bone are found in it; the lamellæ thicken, and ossification is carried on with great vigor. Towards the extremities of long bones the adventitious reticular tissue is in a great measure re-absorbed. Now, the curvatures of the bones diminish to a certain extent. but this depends upon their degree, intensity, and the development of the subject of the disease; if the curves have not been very great, and reparation occurs early, very little trace may be left of the disease, but opposite conditions can hardly fail to result in permanent deformity. Should the disease pass on to its most untoward termination, osseous structure is almost entirely destroyed, and the intimate condition of the skeleton is very similar to that which obtains in osteo-malakia. M. Guerin has named this condition "rachitic consumption." A most elaborate account of the pathology both of rickets and osteo-malakia is to be found in M. Beylard's work on these subjects, recently published, of some parts of which the foregoing details are an abridgment.

The following rough analysis of the constituents of bones in rachitis, as compared with the normal state, will indicate as clearly as possible the nature of the organic defect which results in torsion and fracture:

			Organic matter.								Inorganic matter.							Total.		
Rachitis-Rokitansky						81						19						100		
Davy .																				
Bostock .						80						20						100		
Normal bone in the child—																				
Schreger						50						50						100		

Osteo-malakia would appear to occur in two forms. In one, fragility of the bones is most apparent; in the other softening. In the first variety numerous and repeated fractures occur in nearly all the long bones; in the second, distortion is the characteristic result. Syphilis, cancer, and a rheumatic diathesis, have each and all been claimed by various writers as allied diseases to the one in question. There is no doubt that great fragility of the bones occurs in the advanced stages of cancer, and sometimes also in syphilis when it has become constitutional, but it can hardly be said that mollities ossium, properly so called, has any special relations with other constitutional diseases; if any one condition is more constantly related to it than another, it is perhaps that of utero-gestation frequently repeated. In every gestation the system of the mother has to part with a large quantity of osseous matter for the development of the fœtus. The simple mollities ossium appears to be more like advanced infantile rickets, and fragilitas ossium is, according to Mr. Paget, a true fatty degeneration of bone. The worst cases of the disease are ushered in by acute pains all over the body; the urine is loaded with a whitish deposit (phosphatic), and a general cachexia appears to have invaded and taken possession of the system. As a general rule, the disease is fatal after repeated fractures of the bones have taken place, or the skeleton has become strangely distorted. The familiar engraving of Madame Supiot illustrates the extent to which the bones will yield in extreme cases. The rule as to fatality, however, is not an absolute one; for Naëgelé relates a most remarkable case of a woman who had six healthy living children at the full period; between her sixth and seventh labors she became the subject of malacosteon, and such distortion of the pelvis took place that delivery had to be effected by the Cæsarian operation; the patient died. The most remarkable point in the case was that the pelvis had regained its natural density. Thus death was the result of the operation for delivery, and there is no reason to

doubt that the woman would have entirely recovered had pregnancy not taken place, or the operation been rendered necessary by the previous distortion. When the disease occurs in women who are breeding, it is frequently progressive, increasing with each pregnancy. In a case reported by Dr. Cooper in the fifth volume of "Medical Observations and Enquiries," the deformity increased in such a manner as to reduce the sacro-pubic diameter of the pelvis to an inch and a quarter in the last pregnancy; the Cæsarian operation was performed, and the patient died. Barlow reports eight analogous cases in his Essays. The effects produced upon the bones in the form of disease under consideration are, alterations of form, weight, and consistence, and to these may be added fractures and alterations of the intimate structure of the bone. A brief sketch of these particulars must suffice. The alterations in form are infinitely various according to the intensity of the malady, the action of the various muscles attached to the bones, the use made of the limbs by the sufferer, the positions habitually assumed, and sometimes modifications are produced by their supporting apparatuses. Long bones curve at first in the direction of the normal flexures and at their weakest points; in a more advanced stage they assume S- or Zshaped irregularities of form. Flat bones fold up, as it were, and are also compressed by superincumbent weight. Fractures take place generally in a transverse direction in long bones, and, as the force applied is comparatively feeble, the periosteum does not necessarily rupture. M. Buisson met with a case in which there was an immense number of fractures, sixty-three; nearly all were more or less undergoing reunion. Wilson has observed that in the same subject fractures unite, while others take on hardly any reparative action; false joints sometimes result from these ununited fractures. The specific gravity of bone is very much diminished in this disease, not only by the removal of a large quantity of earthy matter, but by the superaddition of a quantity of fat, amongst which are the ordinary fat of the human body and crystals of margarine separately aggregated together. Healthy adult bone has a specific gravity of from 1.97 to 1.87. Rokitansky gives .721 as the specific gravity of bone in a case of mollities. Chemical analysis shows an enormous diminution of earthy matter. The two following analyses are by Berzelius and Rokitansky respectively:

	An	imal matter.		Ino	Total.				
Healthy adult bone		33.30 .			66.70			. 1	.00
Rone affected with mollities		76.20			23.80			. 1	00

In Mr. Wood's articles on the Pelvis, in the "Cyclopædia of Anatomy and Physiology," there is a table of the respective amounts of earthy matter in various parts of the skeleton; and he has pointed out a fact which is very interesting—viz. that of the bones of the pelvis, the pubes is that which loses most of its earthy constituents in malacosteon. This accounts, he says, for the rostrated form of the pelvis in certain cases. mate changes which take place are very analogous to the more advanced stages of infantile rachitis. Some variation occurs according to the kind of mollities. In general, it may be stated, that the periosteum is preternaturally vascular, thickened, and easily detached; it draws its prolongations into the Haversian canals along with it when detached, and sometimes spiculæ, or granules of bone, adhere to it. At other times, the periosteum is very adherent; and, again, it is incrusted, as it were, on its inner surface, with a thin lamina of bone, and constitutes all that remains of a skeleton. In the celebrated case of Madame Supiot it was quite natural, notwithstanding the extremity to which the disease had advanced. The variable accounts given of the state of the periosteum may perhaps depend upon the different stages of the disease attained in the different specimens reported upon. The bone itself undergoes various changes, which consist of an effusion of gelatinous matter, like that poured out in rachitis. This occupies the Haversian canals, and the medullary canal also; and as the lamellar structure is opened up, occupies the spaces between the laminæ. The areoles of cancellated tissue are also filled with this matter; and the partitions between them are absorbed as the disease advances. A large quantity of fat is to be found in the grumous contents of the bony cylinder; and Mr. Paget is of opinion, that in a great majority of cases this quasi-gelatinous matter is indeed only disguised fat. Before the bones are reduced to this extreme point of degeneration, they may be cut with a knife, and may be even indented by the finger nail. The laminæ, or bone corpuscles, would appear to be generally enlarged and the canaliculi either shortened or altogether absent. Thus there is a general opening up of the structure of the bone, a vascularization and thickening of periosteum, and an effusion of adventitious matter, as in rachitis. The differences would appear to be in the occasional absence of anything abnormal in the periosteum, in the extremely fatty nature of the effusion, the absence of that fibroid organization by which the bone is supplemented, as it were, in rachitis, in the disease attacking all parts of a bone at once, and, finally, in there being, in a great many cases, some constitutional cachexia, or cause of debilitation.

A most interesting and important variety of pelvic deformity, is the "obliquely distorted pelvis," first described by Naëgelé.

Pelvis obliquely distorted to a moderate degree.

This eminent observer published a most laborious memoir upon the obliquely distorted pelvis, in which he described most accurately and minutely no less than thirty-seven pelves affected with this malformation. Those who desire to study the deformity will find an excellent translation of the original work by Dr. Christie of Aberdeen. It will of course be impossible to follow Naëgelé throughout his laborious dissertation. We must be contented with reviewing the general characters of the obliquely distorted pelvis, pointing out the diagnosis of it in the living subject, and considering what influence it may have upon labor, and what are the pathological or other conditions out of which it arises. The following characters, then, are general: 1. Anchylosis, or rather fusion, of the sacrum, with one or other of the iliac bones. 2. Imperfect development of that lateral half of the sacrum which is fused with the adjoining iliac bone. 3. Narrowing of the os innominatum, and diminished width of the great sacro-sciatic notch on that side

on which the anchylosis of fusion exists. 4. Deflexion of the whole sacrum towards the anchylosed side, and turning of the anterior surface of this bone in the same direction. 5. Displacement of the symphysis pubis towards the opposite side to that on which the sacro-iliac fusion obtains. 6. Diminished excavation, or greater planeness, of the inner surface of that lateral half of the pelvis which is on the same side as the anchylosis. 7. Diminished curvature of the posterior half of the linea ileo-pectinea on the side opposite to the anchylosis, and increased curvature of its anterior half. 8. Increase of that oblique diameter which extends from the anchylosis to the acetabulum of the other side, and diminution of the remaining oblique diameter. 9. The distance of the promontory of the sacrum from the acetabulum, on the anchylosed side, is much less than the same measurement on the opposite side; and the same is true of lines drawn from the promontory of the sacrum to either ischial spine. 10. Convergence of the walls of the pelvis inferiorly, approximation of the spines of the ischia, and narrowing of the sub-pubic arch. 11. A vertical plane, coinciding with the sacro-pubic diameter of the pelvis, does not correspond with the mesial plane of the body, but is deflected so as to make an angle, with a vertical transverse joining it posteriorly, greater than a right angle on the anchylosed side, and less than a right angle on the opposite side.

Pelvis obliquely distorted to a great extent.

The diagnosis of an obliquely distorted pelvis is not par-

ticularly difficult, now that we are in possession of such exact information as to the nature of the deviation. Notwithstanding this circumstance, such a distortion, unless very much exaggerated, is extremely liable to be overlooked. The subjects of this deformity are, generally speaking, well shaped in other respects; there is no very striking diminution of their breadth across the pelvis; they are as active as other people; and there is, in fact, nothing to call attention to them, until obstructed labor reveals the condition of their pelves; always provided, as before mentioned, that the deformity is not extreme. The gait is affected when much distortion obtains. Should any suspicion of this distortion arise, we may seek for information in three ways: first, by vaginal examination; secondly, by external measurements with Baudelocque's "compas d'épaisseur;" and thirdly, by letting fall certain vertical lines from points of the surface of the body, whilst it is in an erect posture. Vaginal examination will, perhaps, yield less information than either of the other means of exploration. The promontory of the sacrum is generally pretty well out of reach; the cavity appears roomy enough; and the narrowing of the sub-pubic arch and convergence of the parietes of the pelvis inferiorly, are not sufficiently pronounced to be readily appreciated by the toucher. More reliance may be placed on external measurements, taken from certain easily recognized osseous points, to other similar ones, generally on the other side of the pelvis. From the description given before of the general characters of the kind of pelvis under consideration, it will be seen at once that the following rules are merely corollaries of the statements made them.

The following distances should be taken and compared:

- 1. From the tuberosity of the ischium on one side, to the posterior superior spinous process of the ilium on the other side.
- 2. From the anterior superior spinous process of one side, to the posterior superior spinous process of the other side.
- 3. From the spinous process of the last lumbar vertebra, to the anterior superior spinous process of each ilium.
- 4. From the trochanter major of one side, to the superior posterior spinous process of the ilium on the other side.
- 5. From the symphysis pubis, to the superior posterior spinous process of each ilium.

It is quite unnecessary to state what are the normal measure-

ments of each of these distances; the significant fact is their relative length. If there is any very marked difference between the corresponding measurements—say, on an average, half an inch to an inch—there is reason to suspect oblique distortion; and the side on which the anchylosis is may be determined by bearing in mind the following short rule-viz., that in measurements 1, 2, 4, and 5, the posterior extremity of that measurement which exceeds its fellow is on the side of the anchylosis; and in measurement 3, the anterior extremity of the shorter measurement is on the same side as the anchylosis. The last method of examination is, to let a plummet line fall from the symphysis pubis in front, and another from the spinous process of the last lumbar vertebra behind, the body being erect. If the pelvis be obliquely distorted, these lines will not both fall in the mesial plane of the body, and the anchylosis will be found on the opposite side to that towards which the anterior line tends.

The causes of oblique distortion have been stated to be, arrest of development, and fusion of the sacrum with the ilium, and anchylosis, in consequence of inflammation of the sacro-iliac joint. Naëgelé leans to that view of the case which considers the deformity as the result of an original anomaly of development, and for the following reasons: 1. Because the fusion of the sacrum with the ilium is complete, as well in reference to the internal structure of the bones as to their external condition. 2. The breadth of the "os innominatum" of the affected side is affected, as well as its length. 3. Synostoses of other bones occur, as original anomalies of development, and are usually accompanied by deformity. 4. The obliquely distorted pelves are all very much like each other; and 5. Because no history of disease has ever yet been traced in a case of oblique distortion. Dr. Rigby rather inclines to the inflammatory theory; but anchylosis has occurred without producing the deformity; so that it is obvious that whether anchylosis from disorganization, etc., of the sacro-iliac joint plays a part in bringing about the deformity in question or not, it must at any rate be supplemented by some other hitherto undiscovered condition.

The influence exerted by oblique distortion on the progress of labor will depend upon its degree, and in part also upon the presentation of the fœtus. The most favorable presentation will be the apposition of the long diameter of the presenting part to

the longest oblique diameter of the brim. Supposing the head, in a vertex case, to have entered the cavity of the pelvis, an obstacle will now be opposed both to its descent and rotation, by the approximation of the spines of the ischia to each other; and the want of space anteriorly, in that direction towards which the occiput rotates, would be a still further impediment. Emergence of the head would be opposed by the narrowing of the transverse diameter of the outlet, and by diminution of the sub-pubic arch. Naëgelé considers this distortion as important as any other, because there are no circumstances indicative of deformity sufficient to arouse suspicion beforehand, because it is frequent, occurs, in healthy, well-formed women, has never yet been recognized in a living female, and so far as is known, has always proved fatal to both mother and child.

LECTURE XXXII.

DEFORMITIES OF THE PELVIS.—(Continued.)

Gentlemen:—We were engaged in the last Lecture with the study of the three most important abnormalities of the pelvis, whether considered from a mechanical or a pathological point of view. In passing on to the more subordinate deviations from the "standard pelvis," it must be borne in mind, that though they may be possessed of less theoretical interest, they are equally important in relation to the practice of the obstetric art; that the same questions will be raised as to operative procedures as in the case of the deformities already described, and that they will have to be decided upon the same principles.

Exostoses and Osteo-Sarcomatous tumors, arising generally from the internal surface of the pelvis, occasionally present an insuperable obstacle to delivery per vias naturales. The frequency of these growths, according to some, would appear to have been very much overrated. Many cases have been put upon record as exostoses, which have not been proved to be so by a sectio cadaveris; and the histories of others have contained particulars which mark them out as being in reality something very different to what they were conceived to be by their authors. Amongst the cases of doubtful authenticity may be mentioned one which was reported as an exostosis of the upper part of the sacrum: and, in order to effect delivery, a red-hot iron was passed up to the quasi tumor, through an earthen tube introduced into the vagina. Delivery was effected in this case, but the diagnosis was probably as incorrect as the treatment was barbarous. Projection forwards of the promontory of the sacrum has usually been the condition, without doubt, mistaken for osseous tumor of the bone. In order to establish the diagnosis of an exostosis, or other growth from the internal surface of the pelvis, it is necessary not merely to explore the

cavity of the pelvis, but to compare the results of such exploration with external admeasurements, and at the same time to inquire into the previous history and collateral circumstances of the patient. The consistence of bony growths in this situation is not so markedly different from that of the bone itself, as to furnish discriminatory evidence of any value. With regard to the nature of these growths, it may be stated that they are for the most part cancellated internally, communicating with the cancellated structure of the bone from whence they spring; and externally they have a laminar wall more or less dense. Some exostoses of a denser nature, more like the ivory exostoses found on the cranial bones, have been mentioned as occurring especially in connection with the anterior walls of the pelvis. Spiculæ of bone, too, would appear to be occasionally developed in some of those modifications of the fasciæ which constitute the ligaments of the various pelvic viscera. A connection would appear to exist between osseous growths about the pelvis and the gouty or rheumatic diathesis. In some cases a blow has apparently been the origin of the tumor. The sacro-sciatic ligaments are sometimes partially ossified, and fibro-sarcomatous tumors at other times spring from them; the first of these abnormalities produces a pelvis like that of the Ai, or the Mylodon Robustus. The sacro-sciatic joints are the seats of some osseous projections, and, in fact, almost any joint of the inner aspect of

Bony growth from the Sacrum.

the pelvis may be occupied by tumors of various kinds; but the upper half of the sacrum is the locus in quo of the great majority. The influence exerted upon labor by these tumors is of course proportionate to the diminution they produce of the various diameters of the inlet, cavity, and outlet of the pelvis. Being in most cases incompressible, any operative procedures instituted for delivery will be the same as in the case of diminution of the bony passages arising from distortion. In some few instances, tumors may be, and indeed have been, removed from the pelvis in the course of labor, and with perfect success; but these have been fibroid growths, situated near the outlet. calculating the probable effect of a tumor within the pelvis upon labor, regard must be had not merely to the degree in which it encroaches upon the cavity, but upon the impediment it may offer to the rotation of the feetal head. Occasionally it happens, in some cases of genuine exostosis, that the bony structure is so loose as to admit of being broken down during labor, either by the fœtal head or the manipulations of the accoucheur.

Sacral exostosis filling the Pelvis.

The Pelvis Æquibiliter Justo Minor is the next deviation from the normal standard which we have to investigate. As its name implies, this is a symmetrical pelvis smaller than natural. Three distinct varieties are met with: first, where the subject is rickety and affected with distortion of the spinal

column or limbs, the pelvis being unaffected, except as regards diminution of size; secondly, the true dwarf has generally a pelvis small even in proportion to the rest of the skeleton; and, thirdly, there are numerous cases of ever-varying degrees of symmetrical contraction, which are wholly disconnected with any deformity or constitutional vice whatever. The last category of cases must be looked upon simply as parallel to those freaks of development which produce small heads, small hands, or small feet; probably such deviations are all hereditary. When this departure from the normal standard coexists with rachitic distortion in other parts of the body, the diminution in the diameter of the pelvis is generally about one-fourth; thus the conjugate diameter of the brim would measure three instead of four inches, and other diameters would be reduced in the same ratio. Various opinions have been pronounced as to the frequency of equable contraction of the pelvis. Dr. Fleetwood Churchill believes equable enlargement to be more common. However this may be, it is pretty certain that diminished size of the pelvis is much oftener met with than systematic writers would have us believe. Dr. Robert Lee says, "About one-sixth of all the cases of difficult parturition which I have observed in London, depended upon narrowness of the pelvis, from arrest of development and distortion." If we eliminate from this estimate the comparatively rare cases of actual distortion, how large a number will remain to be accounted for as mere arrests of development? The experience of every practical obstetrician who is not determined to find a special distortion in every case of impactment of the feetal head, must point to this conclusion—namely, that of those cases which require the use of the forceps for the remedy of impaction within the cavity of the pelvis, a large majority are simply instances of pelves rather smaller than natural. Many serious considerations attach to the subject of "equably contracted pelves;" the chances are very much in favor of its not being recognized until labor has come on, or, indeed, has made considerable progress; and even when recognized, it is extremely difficult to determine the degree of diminution, or predicate the nature of the assistance likely to be necessary. When there is an obvious distortion, these difficulties are eliminated from the question, and the special deviation stands out in bold relief, as something not to be overlooked.

The nature of the impediment to delivery offered by the reduction of the size of the pelvis, is of a double character: there is an obstacle to descent, and an obstacle to rotation. Bearing in mind what has been said upon former occasions as to the resemblance of the internal surface of the pelvis to a female screw, it will readily be understood that a comparatively slight contrac-

Skeleton of a rachitic Dwarf with equably-contracted pelvis.

tion is sufficient to derange the intra-pelvic rotations of the feetal head; and a slight impediment to rotation is tantamount

to a vastly greater impediment to direct descent, upon obvious mechanical principles.

Allied to the Pelvis Æquabiliter Justo Minor, are certain other forms of diminution, such as the "Infantile Pelvis" and the "Masculine Pelvis." These abnormalities differ from the one just considered in possessing a special character. The infantile form of pelvis, besides being decreased as regards size, is more oblique in position; the antero-posterior diameter of the outlet is as great, if not greater, than the transverse; the arch of the pubes is narrower, the tuberosities of the ischia are approximated, and the whole pelvis is shallow. Such pelves as these are not always completely ossified; thus the several pieces of which the innominate bone is composed may still remain discrete, and the segments of the sacrum may not have coalesced. It occasionally happens that this type of abnormality co-exists with size equal to the adult pelvis. Dr. Murphy has described a pelvis of the infantile type, which was absolutely larger than the normal adult pelvis; the antero-posterior diameter in this case was five inches and a half, and the whole pelvis was perfectly ossified. The "masculine pelvis" is, as its name implies, one which approximates very much in dimensions and character to the pelvis of the male. Such conformations are met with in the persons of robust laboring women, in whom there is a general resemblance to the opposite sex, not only in this one particular, but in nearly all those marks which pertain to sex. It is not uncommon to see women of the lower orders, whose bones are very large, voice harsh and loud, and face coarse and hairy. The pelvis which affects the masculine type of development is rounder and smaller at the brim; the cavity is deeper, and is convergent inferiorly or funnel-shaped; the spines of the ischia project into the cavity of the pelvis; the tuberosities of the same bones are approximated: and all the eminences, processes, and ridges, are more pronounced than in the standard female pelvis. An hypothesis has been put forward to the effect that this variety of formation is a hyper-ossified infantile pelvis. I am, however, rather inclined to accept it simply as one of those occasional instances of convergence of the sexes with which every observing person must be familiar. Parturition will be affected much in the same way as in the infantile pelvis; if there is anchylosis of the coccyx with the sacrum or any other

pelvic joints, as is sometimes the case, additional difficulty will be encountered.

The Pelvis Æquabiliter Justo Major is one in which the measurements are absolutely increased, their relative proportions being observed. Recorded instances are not very numerous, and this is obviously because women affected with this deviation are not generally the subjects of protracted or dangerous labors. It must not, however, be assumed that a very roomy pelvis is necessarily associated with very rapid or easy delivery, for it would appear that the effect upon the mechanism of labor of a too large pelvis is, to a certain extent, It may happen that, from a want of approximation between certain correlated diameters of the pelvis and feetal head, those rotatory movements which conduce to natural delivery do not take place; and this applies to cases in which the pelvis is too large, as well as to cases in which it is too small. The idea of the screw may be made subservient here to a correct appreciation of what would appear, at first sight, paradoxical, if it is remembered, that unless those points of the feetal head and the pelvis of the mother which represent respectively the flange and worm of a male and female screw, are brought into apposition, the movement of the head through the pelvis will be one of advance simply, without any rotation; and this movement of advance may very well take place in such a manner as to bring the longest diameter of the fætal head into relation with the shortest diameter of the outlet of the pelvis. The mechanism, then, of labor, where the pelvis is wider than natural, must be looked upon as something indeterminate and fortuitous. Should the fœtal head have the proper rotations accidently impressed upon it, or should it gravitate into the proper position, labor will be easy and rapid, but it may in some cases be otherwise. It is very probable that those cases of unconscious or sudden delivery which are quoted in works on medical jurisprudence were, to a certain extent, connected with abnormal width of the pelvis. Narcotism arising from drugs or disease may abrogate consciousness during labor; but where neither of these circumstances obtains, diminished resistance on the part of the soft or bony passages must be looked to in explanation of the phenomena in question. The works of Dr. Taylor and Dr. Beck abound in cases of sudden and almost painless delivery, which can hardly be accounted for, except upon the supposition of there having been an enormously wide pelvis. Amongst the other effects of increased capacity of the pelvis upon the process of labor is, descent of the uterus while the feetal head is still within the os uteri. Instances of this have been recorded, in which the fœtus has passed the external genital opening as far as the shoulders, the head being still closely invested by the uterus. Such a condition as this is obviously favorable to the occurrence of inversion of the uterus; and this latter may, in fact, be enumerated as one of the untoward circumstances to be apprehended in connection with enlarged pelvis. Prolapse of the various viscera within the pelvis, and retroversion of the uterus, are conditions favored, or likely to be induced, by the abnormality under consideration. largest pelvis of this kind, whose dimensions have been recorded, is one described by Giles de la Tournette. The most important diameters were—

							Total.
Antero-posterior of brim							5.5
Transverse of brim							6.5
Antero-posterior of outlet		,					5.5
Transverse of outlet		,					5.5

Dr. Barnes and Dr. Murphy have described pelves of nearly equal size. As regards the relation of increased capacity of the pelvis to the general conformation and stature of the individual, it may be stated as a general rule, that tall women are by no means likely to be the subjects of such increment; it has rather been observed that women of low stature, and with large heads, have the most capacious pelves. Some persons profess to discover a relation between the length of the phalanges of the fingers and the capacity of the pelvis, maintaining that women with curb fingers have small pelves, and vice versâ.

Flatness of the sacrum, with or without an alteration of the angle made by the sacrum with the vertebral column, is occasionally met with. The obvious consequences of this abnormality are, diminution of the antero-posterior diameter of the cavity of the pelvis, and obstruction to the intra-pelvic rotation of the fætal head. Increased curvature of the sacrum is generally connected with some morbid condition of the bones, but as a deformity, per se, it is not of great interest. In some rare

cases of spinal deformity, the curve of the spine is so considerable that the lower lumbar vertebræ descend into the pelvis, and occasion a deformity equal in extent to a large exostosis, or the deformity of osteo-malacia. At the present time, these cases are attracting considerable attention in Germany.

Fractures and dislocations of the pelvis occasionally result in a diminution of its diameters. Such cases, however, must be very rare, as women are not generally exposed to those violent mechanical injuries which produce displacements, of any kind, of the various segments of the pelvis. Mr. Barlow, however, performed one of his successful cases of Cæsarian section in consequence of distortion, resulting from the fracture of an innominate bone. The rarity of fractures of the pelvis in women is compensated for, if the expression may be allowed, by the fact that they are generally attended with permanent displacement, or other results which tend to diminish the capacity of the pelvis. The deposit of callus which takes place would appear to be very erratic, and to have a tendency to encroach upon the cavity of the pelvis. Dr. Lever met with a case where there was a bony projection of more than an inch into the pelvic cavity, in consequence of a fracture of the acetabulum; and Burns relates a case where a similar ossific formation resulted from a similar injury, the projection being two inches long.

Miscellaneous deviations from a normal condition of the pelvis will include, in addition to those already mentioned, projections of various points of its osseous anatomy inwards, without any general vice of conformation; and the results of dislocations of the hip-joint, arising from morbus coxarius.

The study of the causes of those pelvic deformities which depend on irregularity of development or growth, is a subject of great interest, and one which has occupied the attention of many great obstetric authorities. These deformities have been explained in various ways, all having relation to the real or supposed laws under which the normal pelvis is developed. The latest hypotheses have been those advanced by MM. Dubois and Gavarret in France, and Dr. Matthews Duncan in this country. Dubois and Gavarret suppose the development of the sides of the pelvis to depend on the wedge-like pressure of the sacrum between the innominata. When anchylosis exists in one or both of the sacro-iliac synchondroses, they suppose the

wedge-like pressure to be destroyed, and in place of the natural curve of the sides of the pelvis, the line becomes straightened. When the anchylosis affects one side only, the development of the affected side is interfered with, while the other half of the pelvis is developed in a normal manner, and oblique distortion is the result. When there is a double anchylosis, both sides of the pelvis are straightened, and the deformity, instead of being oblique, is symmetrical. Dr. Matthews Duncan controverts these views very forcibly. He believes that the lateral curve of the pelvis is produced by the pressure of the trunk above, and inferior extremities below, upon the sacral and cotyloid ends of the beams formed by the ilia. I believe the mechanical relations pointed out by Dubois and by Dr. Matthews Duncan really exist; that the sacrum acts as a wedge, and that the ilia acquire a tendency to curve from the pressure excrted by the sacrum from above, and the femora from below; but other considerations besides those of mere mechanical weight and pressure enter into the problem.

At the time of puberty we have the three permanent articulations of the true pelvis-namely, the two sacro-iliac synchondroses and the symphysis pubis. We have also the Y-shaped triple articulation between the ilium, ischium, and pubes on each side. These make in all nine articulations, and seven separate bones for the true pelvis. These bones all grow from the centre to the circumference; and it is to their circumferential increase, taken collectively, that the expansion of the pelvis at puberty is attributable. It is not a little remarkable, that the division between the ischium, ilium, and pubes, should remain until after the completion of the development of puberty. The capacity of the pelvis must very much depend on the period at which the junction of these bones takes place. When anchylosis takes place between the sacrum and ilium, before the period of puberty, the circumferential increase of the aspects of the sacrum and ilium engaged in the articulation is impossible. Hence the arrest of growth on the anchylosed side of the pelvis upon which oblique deformity depends. This appears to me to be the chief element in the rationale of the oblique pelvis of Naëgelé. The medium of union between the sacrum and ilia, and the pubic bones at the symphysis, is very much more consolidated after than before the development of puberty. It is probable that when this consolidation and the obliteration of the Y-shaped articulation takes place early, we have, in some cases, the infantile, or equably-contracted pelvis. When it occurs late, we have, I would suggest, equably-enlarged pelvis.

In the case of early anchylosis of some of the cranial bones, we have flattening and diminution of the size of the head in the vicinity of the anchylosis. It appears to me, then, that the simpler explanation of the dependence of certain pelvic deformities upon the conditions of growth and development is much to be preferred to the recondite influence of mechanical and mathematical causes. Passing from the circumferential increase of the pelvic bones themselves at puberty to the cause of this increase, we come to the action of the ovaria. It is to the development and activity of the ovaria at puberty that the development of the pelvis at this epoch is due. Where the ovaria are wanting, the pelvis is not developed, just as in the case of the removal or absence of the testes the bones of the larynx do not undergo their usual development at puberty in the male.

Instruments for obtaining the internal and external admeasurements of the pelvis were formerly much used in the diagnosis of pelvic deformities, and in forming an estimate of the proper treatment to be pursued. They have, however ingenious, gradually given way, particularly in this country, to the use of the educated finger as the best of all pelvimeters. Before the coming on of labor, deformities of the pelvic brim may sometimes be measured by introducing the two first fingers and separating them so as to touch the promontory of the sacrum and of the symphysis pubis, and then altering their position so as to measure the transverse diameter. Where the deformity is high up, this manipulation fails, and it becomes necessary to introduce the whole hand into the vagina, when a satisfactory exploration can be made. Deformities of the outlet may be diagnosed by the finger alone, with sufficient readiness by the practised accoucheur. Before the coming on of labor, we have, in cases of deformity, to compare the diminished pelvis with the pelvis of average size. In actual parturition, we have to compare the deformed canal with the size of the fætal head which has to descend through it. A given amount of deformity may of course be very formidable or of little import, according as the child is mature or premature, living or dead, or according as the head is large and ossification more or less perfect. In labor, it is more difficult to introduce the whole hand, but this is sometimes necessary and proper when the head, or presenting part, is arrested high up in the pelvis. The single finger passed in to its utmost length and rotated within the pelvis will seldom fail to inform us of the existence of deformity or diseased growths in the pelvis. This information having been acquired, we can introduce two or three fingers, or the whole hand, as may be necessary, to make out the special condition of the pelvis.

The Treatment of Labor, complicated with Deformed Pelvis, varies according to the amount of impediment presented, and according to the risk in which the mother is placed by the energetic action of the expelling powers when the fœtus cannot pass through the pelvis in the ordinary manner. The aids to delivery, under these circumstances, are the Vectis, the short or long Forceps, according as the head may be arrested at the outlet or brim of the pelvis; Turning, in cases of shoulder presention, and also in certain cases where the deformity is such as to warrant the belief that the head may be extracted, but where the forceps are inapplicable; Craniotomy, in cases where the head of the living child cannot pass, or where the continuance ' of labor, without assistance, endangers the life of the mother; and lastly, the Cæsarian Section, in cases where the delivery of the child by perforation and the crotchet is impossible. before and beyond all these means, except in cases where the action of the Lever, or the compression and extraction exerted by the Forceps, is sufficient to give birth to the child alive, the remedy, or rather the preventive of danger is to be found in the Induction of Premature Labor. A great and beneficent extension of the operation for the induction of premature labor may be made in these cases, and it is questionable-nay, almost certain, that the fatal operation of hysterotomy would rarely, if ever, be called for, if this operation were always performed in cases of distortion, and at the proper time.

The cases and circumstances under which these several procedures become necessary, in the management of labor complicated with deformity, will be entered into fully when treating of these operations themselves in a subsequent part of the present course.

Addenda.—Dr. H. F. Kilian, of Bonn, has with great ability and minuteness investigated the deformity produced by the development of spiculæ and crests of bone on the edges of the

Cancerous growths from the bones of the pelvis, causing deformity.

Pelvic deformity, from anchylosis of the hip-joint.

different symphyses, the superior margin of the pubis, along the linea-ilio-pectinea. These thorns or crests are simply a hypertrophy of the natural condition of the bones, but by projecting

Minor degree of deformity from exostosis of the pubis.

inwards they interfere with the progress of labor, and lead to rupture of the uterus by pressing upon and wounding the organ during the course of labor. Cancerous disease of the bones of the pelvis sometimes produces serious pelvic deformity. [I have especially seen cases where the edge of a bone, as the promontory of the sacrum—in a case similar to that referred to by me on page 515-or the symphysis pubis, being pushed out of its normal position, by distortion remote from this point, and accidentally happening to be sharper than usual, had cut through, as with a knife, the uterine walls pressed upon it.]

Dr. H. F. Kilian describes very minutely a form of pelvic deformity depending on disease and displacement of the lumbar vertebræ to such an extent as to encroach on the pelvic area. He believes that by a disease of the cartilages of the lower lumbar vertebræ occurring after puberty, the cartilaginous structures are so softened as to allow the vertebræ to sink together, one upon the other, and thus produce a high degree of deformity at the brim.

LECTURE XXXIII.

OBSTRUCTED LABOR.

GENTLEMEN: - Having considered the subject of Pelvic Deformities in the two preceding lectures, I wish, before directing your attention to impediments connected with the Soft Parts, to say a few words respecting those morbid states of the Coccyx which interfere with labor. The joint between the first bone of the coccyx and the extremity of the sacrum may become anchylosed, or the mobility of the separate bones upon each other may be destroyed by bony deposit. Anchylosis of the coccyx may depend on inflammation, the result of blows or violence; scrofulous disease of the sacrum and coccyx; injuries occurring during difficult labors; or it may exist in women who become pregnant for the first time late in life. The coccyx may from these causes become fixed in its natural position, it may be curved forwards, or it may be bent at right angles with the extremity of the sacrum. In either case it may interfere with the progress of labor, but particularly when the bone is bent forwards to a considerable extent. Sometimes, as in a case which recently fell under my observation, the coccyx is not only incurvated forwards, but it is considerably enlarged by scrofulous disease. Encroachment of the coccyx upon the diameter of the pelvis to such an extent as to interfere with labor, is not a very common event, but in the accumulated records of obstetric practice many cases are met with in which an anchylosed coccyx has interfered with the course of labor to such an extent as to destroy the child. In other cases, fracture of the coccyx has occurred from pressure of the head, and in some instances this operation has been performed by the accoucheur. The diagnosis of coccygeal anchylosis is not very difficult. The immovable bone can be felt by the finger in making an examination, and the extent of the impediment to the escape of the fœtus readily appreciated. The treatment in such cases must be

either the application of the forceps, fracture of the anchylosed bone, or the induction of premature labor, in cases where the amount of impediment is great, and particularly where it has in previous labors led to the loss of the child. No serious injury has resulted from the breaking down of the anchylosis, either artificially or when this has occurred in the course of labor; but in some cases the bony union is so firm as to render this impossible, under the disadvantages at which the accoucheur is obliged to act. In many cases of otherwise natural labor, the coccyx is bent back to such a degree as to leave a painful condition of the bone for months, or even years, after the occurrence of labor. This state is generally relieved by counter-irritation over the sacrum.

Mechanical obstructions to the progress of labor, depending on the state of the Soft Parts of the Mother, may occur at any point of the parturient canal, between the uterus itself, and the external parts of generation. In managing such cases, we have to remove or diminish the obstructions to such an extent as to admit of the passage of the child; or we have to evade them by inducing premature labor, at a time when the size of the fectus is such as to allow of its transit. In many of these cases, other considerations besides those relating to the mechanical obstruction to labor have to be taken into account. The obstructions themselves may depend upon constitutional states, or they may excite other disturbances apart from the impediments to labor.

When speaking of the management of ordinary labor, I have referred to those cases of rigidity of the uterus which admit of relief without operative means. Occasionally, cases are met with where the rigidity is excessively unyielding, or in which the matter passes beyond rigidity, and there is agglutination, occlusion, or entire obliteration of the os. This may exist to such an extent that labor becomes impossible, unless rupture of the cervix takes place, or artificial assistance can be rendered. In cases of this kind it has been known for the whole of the lower segment of the uterus to be separated in the form of a muscular ring, and detached from the rest of the uterus by the strength of the pains acting against an occluded os. Other patients have died undelivered, where rupture has not occurred, and where no operation has been performed.

Excessive rigidity can be readily understood, but entire occlusion of the os uteri is difficult of comprehension. The causes of this extraordinary state of things are, it must be confessed, involved in obscurity. It has been supposed by some authorities that the marginal surfaces of the os uteri adhere together as a consequence of inflammation or ulceration. Others believe that a false membrane is thrown out, which entirely seals the cavity of the uterus. Naëgelé, the younger, describes a thin membrane as being the medium of occlusion in certain cases. Many observers have declared their disbelief in the possibility of entire obliteration of the os, and have believed that in cases where it has been supposed to exist, the os uteri was only raised so high towards the sacrum by anteversion as to render it impossible to reach the aperture. So much concurrent testimony exists, however, in proof of the real occurrence of what appears to be entire obliteration, that the reality of its existence cannot be doubted. Dr. Ashwell relates a case in which incision was required in four successive labors in the same woman, attended by different practitioners. The os uteri could not be detected. Smellie, Hamilton, Naëgelé, Gooch, Dubois, and others, have also related cases in which there was entire or partial obliteration at the time of labor.

It is evident that even in the worst cases there must have been an os uteri to render conception possible. But in some women the os and cervix are very imperfectly developed in the unimpregnated state, the aperture remaining so small as not to admit a probe without difficulty. The degree to which the os and cervix develop during pregnancy is very different in different individuals, and I suspect that some at least of the cases of supposed occlusion of the os are in reality cases in which the fundus uteri has become developed to a normal extent under the influence of gestation; but the os, originally small, has remained altogether undeveloped, or nearly so. This explanation seems to me more in accordance with the known physiological history of the uterus than adhesion of the sides of the os, or the organization of a false membrane in the aperture. It can readily be understood that when the os has remained throughout pregnancy of the small size natural to some women in the unimpregnated state, it cannot be detected by the finger in the large surface presented by the expanded inferior segment of the uterus. In some of the cases in which incision has been practised, the os uteri has been examined a considerable time after labor, and the os and cervix have been found small and imperfect. Some cases of simple rigidity, no doubt depend on the undeveloped state of the os uteri, the unyielding os of the unimpregnated state being, as it were, affixed to the gravid uterus. No doubt, in other cases the rigidity depends on morbid conditions of the os uteri existing before the commencement of gestation, or the result of injuries inflicted in former labors. It is now known that slight laceration of the os uteri very frequently occurs during the passage of the head, and the cicatrizations resulting from such injuries may well give rise to subsequent rigidity of the os during labor. Adhesion of the openings of any of the orifices of the mucous canals of the body are, it is well known, exceedingly rare. In the most perfect cases of occluded os, it is found, moreover, that no signs of inflammation have existed during pregnancy. It is quite possible and probable that some of the cases of occlusion have been cases in which the os uteri was too high and directed too much backwards to be reached in an ordinary examination. In a supposed case of this kind, it is very important to arrive at a correct diagnosis. Anteversion should be suspected, and the position of the uterus rectified when this state exists, before arriving at a positive conclusion. In making an examination in such a case, the finger should not be trusted to alone, since it cannot reach the os uteri, but the whole hand should be introduced into the vagina, and the posterior part of the lower segment of the uterus carefully explored. It has been found that, however small the os, if it can be detected, and the disposition to dilate imparted to it, the full dilatation is frequently expected. When other means fail, therefore, the lower segment of the uterus should be explored by the aid of the speculum, as an aperture so small as to escape the finger may become visible to the eye.

The treatment of such cases is a matter of very great importance. When the continuance of the pains of labor for some hours, and the use of venesection, opium, emetic tartar, or chloroform, have failed to cause dilatation, and when the patient is threatened with serious symptoms, it is necessary to use mechanical means for the dilatation of the os uteri. The choice lies between dilatation of the os with the finger, or with sponge tents,

or the incision of the uterus at its thinnest portion. Of course, dilatation is only applicable to those cases in which the os can

be found, but is so minute as to render delivery impossible without assistance. When dilatation can be effected without violence, no doubt it is to be preferred to the making of an artificial Hitherto, the finger or the bougie has been used for the purpose of dilating the os uteri, but I have no doubt the sponge tent will prove a more efficacious means of dilatation. dilatation cannot be effected, and labor makes no progress whatever, incisions should be practised, the proper time for the operation being at that period when natural or artificial dilatation is shown to be impossible, and when the woman has, nevertheless, not as yet passed into a state of danger. The fatal cases which have occurred after incision are generally cases in which the operation has been too long delayed. As to the mode of operating, some have recommended numerous incisions round the real or supposed site of the os; others have recommended one incision, from before backwards, with a blunt-pointed bistoury. The reason for making an antero-posterior incision is, that the uterine arteries may not be wounded; but the bladder in front, and the rectum behind, must be carefully avoided. The incision need not be of any considerable length, as it is enlarged subsequently to a sufficient extent by the pains. This operation, although never to be performed but on just grounds, is not so formidable as it would appear to be. I have already referred to the case of a woman in whom it was necessary, in four consecutive labors, after all of which she recovered favorably.

[Sponge tents, as represented in the preceding cut, are easily made. Select firm pieces of elastic fine sponge, soak them in a solution of gum Acaciæ, then commencing at one extremity

wind them as tightly as possible with a strong cord. After drying for a week, remove the cord and smear them with wax or mutton suet—they are then fit for use. When wound upon a wire, they are introduced with much ease by a stylet as seen in the following cut.]

In cases of **Fibrous Tumor** growing from or on the walls of the uterus, near the os and cervix, the tumor or tumors may descend in the pelvis before the head or presenting part of the child, and cause a very serious obstacle to the progress of labor. The diagnosis of such tumors from ovarian tumors is very difficult, unless made before the coming on of labor. The fibrous tumor is commonly more dense and irregular in shape than the ovarian. Wedged into the pelvis, these tumors not only obstruct labor, but are themselves injured and contused by long-continued compression between the fætal head and the pelvis. In some of the fatal cases of this kind, the tumors have been found in a state of pulpy softening and disorganization.

[Fibrous polypi connected with the uterus are very apt to degenerate after labor. In the case of a woman that I delivered, in which the Cæsarian operation was advised as giving the patient the only chance for life, where two immense tumors existed—one arising from the fundus of the uterus and the other developed from the uterine walls inferiorly and filling up the vagina so as to push the os uteri entirely out of reach and so obstructing the passage as to compel instrumental delivery—both tumors broke down and softened. The lower one had been injured by the delivery, and a grumous, fetid substance flowed from it; the other, uninjured by the labor, was found after the patient's death to be filled with the same fluid, showing that the want of nutriment, cut off by the cessation of blood going to the uterus, was the cause of its death and disorganization, and not the violence offered by the difficulties of the delivery.]

The secondary disease of the tumors has evidently, in such cases, contributed largely to the death of the patient. Cases

have occurred in which, during labor, these tumors have been pushed by the hand of the accoucheur above the brim of the pelvis, so as to be removed from danger and the possibility of acting as an obstruction. In others, it has been necessary to use the forceps, or, in the worst cases, to perform craniotomy. Dr. Montgomery relates one in which the obstruction was so great that the Cæsarian section had to be performed. These serious results show very conclusively, that in all cases of fibrous tumors encroaching largely upon the pelvic brim, the induction of premature labor, as recommended by Dr. Ashwell, should be resorted to.

Carcinoma of the Os and Cervix Uteri, when the os is diseased to a great extent, sometimes presents an insuperable obstacle to the completion of delivery. Cases of this kind have occurred in which labor apparently did not come on at the usual time, but the fœtus remained for months after the full term in the uterus. When allowed to proceed without interruption, mangling of the os uteri, excessive hæmorrhage, and death, are almost inevitable. When the disease is detected early in pregnancy, premature labor should be induced. When pregnancy has passed to the full term, Professor Simpson has recommended vaginal hysterotomy, or the lateral incision of the os and cervix so as to admit of delivery with the aid of the forceps. In some cases of this kind, craniotomy is required. In one celebrated case, Dr. Oldham performed the Cæsarian section, the mother and child living for some time afterwards. In the worst cases of this kind, when the mother has but a short time to live, and when the child is healthy, the reasons for the performance of craniotomy and the Cæsarian section are more evenly balanced than in most others; but I incline to the former, since, in my opinion, the value of a brief space of existence to an adult mother, whose immortal interests are at stake, should outweigh the precarious life of the unconscious fætus.

Contraction and Rigidity of the Vagina may depend upon the age of the patient, the former existence of abscess, cancerous induration, cicatrizations following injuries occurring during instrumental or difficult delivery in former labors, the cicatrizations of pelvic abscess, recto-vaginal fistula, etc., and may consist of simple diminution of the calibre of the canal, puckering of its walls, the existence of bands or septa, and almost complete

closure of the vagina, or Atresia. These contractions, which often become of cartilaginous hardness, are readily distinguished by the finger from any other form of impediment. It is remarkable what an amount of contraction may be reduced or drawn out by the pressure of the membranes and the advancing head, or presenting part, when the secretions are abundant, the progress of the labor moderate, and no inflammatory action is set up. There is in the vagina not merely the power of distension under pressure, but an active tendency to dilatation, similar to that possessed by the os uteri. In the management of these cases, it is important that the labor, particularly in the propulsive or expulsive stages, should be gradual; with this view, as well as the supply of fluid pressure, the membranes should be preserved as long as possible. Venesection, nauseating doses of tartar emetic, warm bathing, vaginal fomentations, and the relaxing effects of chloroform are useful in severe cases; and in those that do not yield to these measures, careful division of the constricted portions with the knife are necessary. When the deformity of the vagina is excessive, and cannot be remedied by these means, and when the life of the mother is threatened by the continuance of labor, craniotomy may become necessary. After delivery, these cases require careful management by fomentations and the use of antiphlogistic means to prevent inflammation and further contraction. When the patient is convalescent, bougies should be used with a view to prevent the interference of contraction with succeeding labors. Unless these precautions are used, it may happen that complete atresia, with retention of the catamenia, may follow. Dr. Meigs has related such an instance, and not long since a similar case was seen in this hospital. Besides contraction of the passage, the vagina is, in rare cases, blocked up by Polypoid tumors growing from its walls. Several cases of vaginal polypi are figured by M. Huguier. In labor occurring under such circumstances, it would be necessary to puncture these tumors when they contain fluid, or to remove them, when of a fibrous structure, by the scissors or polypus hook.

The area of the vagina may be intruded on by other tumors foreign to the vagina itself. Of these, Ovarian tumors, Polypoid tumors springing from the os or cervix uteri, Rectocele or Vesico-

cele, Fæcal collections, and Stone in the bladder are the most important.

The existence of Uterine Polypi commonly prevents impregnation, but cases occasionally occur in which gestation proceeds, notwithstanding their presence, or they are developed during pregnancy, and at the commencement of labor they emerge from the uterus, and prevent the progress of the fœtus. growths arise from the labia uteri, the interior of the cervix, or the cavity of the uterus. When they arise from the lips of the uterus, they are frequently, as observed by Dr. Heming, hollow and contain fluid; but when attached to the neck or body of the organ, are of fibrous character and of larger size. Their attachment to the os uteri, or emergence from within the orifice, can be made out without great difficulty. Polypi have sometimes been detached from the uterus by the force of the pains. Where they are of such large size as to interfere with labor, the fluid tumors should be punctured, when they at once collapse; and the solid polypi should be removed either by ligature, torsion, or excision. (Fig. 143.)

In cases of **Ovarian Tumor**, the important point is to distinguish between cysts containing fluid and solid tumors. The former have been safely punctured, as advised by Merriman and others. In the case of solid tumors, so large as to impede delivery, nothing can be done with the tumors themselves beyond attempting to lift the mass above the pelvic brim. [It may be well to puncture a tumor, the character of which is doubtful, with a fine trochar. If it be fibrous, this puncture will do little injury, and that of little moment compared with the injuries effected by the pressure upon them, if left to themselves; if the contents are fluid, the advantage of the operation is

Labor impeded by uterine polypus.

evident.] When this is impracticable, it only remains to be

Labor impeded by ovarian tumor.

considered whether the child can be delivered by the forceps, or whether craniotomy may become necessary. (Fig. 144.)

In the case of **Cystocele**, the bladder, as described by the late Mr. Crosse, is prolapsed, and descends behind the pubes and before the head of the child. When full of urine, it offers considerable resistance to delivery, and may itself become ruptured. This state does not, as is commonly supposed, depend on any neglect of the patient or accoucheur in evacuating the bladder, but arises from prolapsus of the bladder existing before and independent of pregnancy. It is remedied by catheterism, but is is necessary to pass the catheter downwards and backwards in such a case. Care is required in the diagnosis of this affection, as it has happened that the distended bladder has been mistaken for the amnion, and punctured under such misapprehension.

Impaction of Faces in the Rectum may offer considerable impediment to labor. This may depend on simple constipation, or on the accumulation of magnesian deposits in patients accustomed to take this alkali freely for the relief of heartburn, or as an aperient. At first, some of these cases give one the impression of exostosis, but a careful examination detects the real nature of such tumors. The remedy of course consists in the removal of the indurated mass by enemata, or, in the worst cases, by a process of excavation. It sometimes happens that the posterior wall of the vagina is prolapsed, giving rise to rectocele. In the bag thus formed, fæcal accumulations may take place and encroach upon the vagina, but this state of things is readily removed by enemata.

Cases have been recorded by Guillimeau, Smellie, Dubois, and others, in which pregnancy has occurred coincidently with Calculus in the Bladder. When the stone is large, and descends before the fætal head, delivery is sometimes rendered impossible. When it is small, the bladder may be lacerated, and vesico-vaginal fistula be the result. Some time ago, a patient was under the care of Mr. Brown in this hospital, whose bladder had been lacerated some years previously by a stone during labor, which had remained undetected in the bladder. The presence of stone cannot well be mistaken for any other contingency of labor, from its situation and movable character. When the stone is detected early, it can generally be passed above the pubes, and little or no mischief results. When, on the other hand, the descent of the head and the size of the stone renders this impossible, the rule is to perform the operation of lithotomy through the vagina. Probably lithotrity would be the preferable operation in some of these cases; but I am not aware that it has ever been tried.

Labor may be obstructed, as pointed out by Hamilton and others, by diffuse swelling of the soft parts of the parturient canal. This is very apt to complicate labor depending upon obstruction of any special kind. In cases of deformed pelvis, for instance, there is commonly considerable swelling of the soft parts, the result of pressure. In other cases, the tumefaction depends upon plethora, or excitement of the passage under the influence of the normal pressure incidental to labor. The treatment of such cases, as far as the tumefaction is concerned, depends on antimonials, venesection, and careful evacuation of the bladder and rectum.

Numerous cases are on record, and I have myself met with instances, in which women with a cribriform Hymen, or with the hymen in a state of almost cartilaginous hardness, and an aperture of small size, have become pregnant, and the structure has remained undisturbed until it came to be an impediment to labor. The pains of expulsion would, no doubt, in all such cases tear through this obstruction, but it is much less painful to make a crucial incision before the parts have become distended; still better, this operation should be performed, when the nature of the case is known, during pregnancy, and such cases generally are known, because women in whom intercourse has been imperfect, mistake the signs of pregnancy for a tumor or suppression of some kind, and apply for advice.

The obstructions limited to the Vulva consist of a Varicose state of the labia, Œdema of the labia or nymphæ, and Encysted or Fibrous tumors of the labia. The enlargements mentioned are generally connected with hyperæsthesia of these sensitive parts, and the suffering they occasion is usually of greater consequence than their mechanical interference with parturition. In the case of extensive ædema from the pressure of the gravid uterus in the latter part of labor, or from the existence of albuminuria, it may be necessary to puncture the skin in several places with a fine needle, as recommended by the late Mr. Ingledue, in order to let off the effused fluid, particularly when this state of things occurs in a primiparous woman. Occasionally the swelling in these cases is enormous, and it is

difficult or impossible to make an examination. Sometimes fomentations will relieve the pain, and promote the relaxation of the skin to such a degree, that, with patience the fætal head passes. The ergot of rye is useful in some of these cases, and is to be preferred to the forceps, as causing less risk of laceration. It is only with great difficulty that the forceps can be used in considerable swellings of the external parts, and the risk of lacerating the vulva or perineum with the instrument is When ædematous swellings of the vulva are neglected, serious consequences may ensue. Cases are recorded in which sloughing has occurred from this condition, to such an extent as to destroy the patient. In Thrombus or in varicose states of the vulva, pressure should be exerted on the parts, or cold applied during the pains, so as, if possible, to prevent excessive dilatation and bursting and effusion into the cellular structure of the labia. It is generally at the moment when the head passes that the varicose tumor bursts from excessive distension. In cases where the effusion takes place before the termination of labor, little can be done beyond the use of pressure and cold, as the blood rapidly coagulates in the cellular tissue, and cannot be evacuated by puncture. Obstruction of the vulva from large encysted tumors (unless the contents are fluid), or fibrous tumors of the vagina, the latter of which sometimes grow to an immense size, can only be dealt with efficiently before the coming on of labor, or before the advent of pregnancy itself. When the encysted tumors contain fluid, as in the case described by M. Huguier, puncture by a fine trocar will produce immediate relief. In rare cases, the perinæum is so rigid and unyielding as to offer an obstacle to the advance of the head. Under these circumstances, when fomentations, tartar emetic, venesection, and chloroform, have been inefficient, it has been recommended that the perinæum should be incised. Incision is believed to prevent extensive laceration, and the incised wound heals readily after labor. The force of the uterus would, in almost all cases, overcome or break through the impediment offered by a rigid perinæum, so that we must look on incision of the perinæum as a preventive of laceration rather than a means of removing obstruction.

[LECTURE XXXIV.

OBSTRUCTED LABOR FROM RIGIDITY OF THE OS UTERI.

[The following was read before the N. Y. Academy of Medicine, March 3d, 1858, and is published by the permission of that body. It is here inserted in full, omitting only the introductory portion, the facts of which may be found at the close of Lecture XVI. of this work. I have thought it best to preserve the integrity of the paper, although it may somewhat repeat what elsewhere is probably better stated by the author.]

Gentlemen:—Scientific research has now, as it appears to me, demonstrated incontestably, the anatomical division of the hollow organ so long known as the uterus, into two portions, the neck and the body. Henceforth, we must recognize two distinct organs—the one the cervix, composed of firm but elastic structure, scantily provided with blood-vessels and in which but a small trace of nerve tissue is found. The body of the uterus is composed of a coarser fibre, a muscular tissue capable of much hypertrophy, abundantly supplied with both arteries and veins, also with nerves, concerning which no little research has been undertaken and some controversy has resulted, especially between Drs. Lee and Snow Beck.

Without this anatomical demonstration, the nervous sympathies between the cervix and the body of the uterus, especially when the sensibility is exalted by the chronic inflammation to which the former is subject, is evident to accoucheurs and uterine pathologists, whose daily observations evince the fact.

This anatomical distinction of one apparent organ into two bodies, is not without its correspondences in the human economy. The brain is divided into the cerebrum and cerebellum; the testis into the testis proper and the epididymis: the kidney, according to the research of our learned Isaacs, has been demonstrated in this Academy, as divisible into the true kidney and the supra-renal capsules.

These anatomical distinctions have led to pathological divisions and correlative treatment. I purpose now to make similar distinctions and to ask your attention to some practical suggestions respecting the treatment of various forms of difficult parturition, arising from morbid conditions of the os and cervix uteri.

Rigidity of the os uteri is probably the most frequent cause of dystochia, perhaps more common, if not so serious in its nature and results, than all other causes combined. One need attend but a few labors to find instances where everything seems to encourage the hope of a speedy and favorable termination, but a firm and unyielding os resists severe and prolonged pains, wears down the strength of the patient, the spirits of attending and anxious friends, and the patience of the physician. For such cases I offer no new relief. The benefits of tartar emetic, opium, venesection are familiar to all; injections per anum of antispasmodics, as assafætida, etc., and inunction of the os uteri with the extract of belladonna, have been fruitlessly tried by others; but there are some other methods of treatment less common, which I will venture to enlarge upon.

The case is before us of a healthy woman of abundant muscularity, young and vigorous, or old and inelastic, perhaps feeble and suffering from organic disease, such as to make the repeated efforts of straining not only exhausting but dangerous to life from the rupture in a tuberculous lung or of a diseased heart. The waters have long since flowed away, the os is dry and hot, hard and unyielding to the head, pressing strongly upon it, even while the general strength seems giving way, chloroform is the great remedy, given not niggardly, although gradually and with great care, watching both pulse and respiration, even to full anæsthesia. In such cases, I have seen, and many around me I know have also, the heat depart from the os; the dryness disappear with the recurrence of the natural mucous exhalations, the rigidity vanish and dilatation result, and with the renewed pains upon "letting up" the anæsthesia, a speedy delivery crowning the work. It is in these cases where chloroform is indeed a boon from heaven, of which too much can scarcely be said.

But there are instances where the rigidity does not appear to be of this apparently spasmodic description, but where perhaps, from a chronic inflammation, there seems to be an infusion of fibrinous matter into the tissue of the cervix, and which is not amenable to the passive powers of anæsthetics. These require more potent remedies, and not unfrequently I have found rigidities relieved by the employment of the douche as first recommended by Kiwisch and adopted by many others. This is simply the throwing of pure water with any ordinary self-injecting india-rubber (Mattson's or Davidson's) syringe against the os uteri and base of the bladder and uterus. This in itself will, either by its nervous shock or by destroying the integrity of the ovum, produce premature delivery, where we are compelled to do this serious operation for the preservation of the life of the mother. Warm water seems to have the best relaxing effect when labor has fairly commenced and where only relaxation of the os uteri seems requisite to complete the delivery. Cold water seems to act more efficiently in stimulating the tardy uterus to action, where labor has commenced but has halted or delayed in its progress. Sometimes the alternation of the douche at different temperatures will effect the relaxation of the os, and at the same time by the shock, stimulate the perhaps flagging uterine action. A gallon or two of water should be thrown against the os in dystochia from rigidity, every half hour or hour, till relief is attained if possible. As an incentive to uterine action in the case of attempted miscarriage, the douche need not be repeated more than three or four times a day, and in a day or two labor pains will gradually commence and increase in strength. To effect this purpose, the douche, although not always effectual, is the safest and pleasantest operation, the labor ensuing is more natural, and no possible injury can be done to the organs by the operation.

But sometimes the nature of the os uteri is so changed by disease or inflammation from friction, etc., that it is cartilaginous in its consistence and in the character of its internal or external tissues. Some positive force must take the place of the passive treatment just recommended. If the pains are not violent, or if they can be temporarily suspended by an opiate, or in conjunction with anæsthetics, especially if it be an abortion or premature delivery, accompanied by hæmorrhage, then plugging the os uteri with a sponge tent will, with some efficiency, if there be time for this delay, dilate the mouth of

the uterus, and in the latter cases act as a tampon and prevent hæmorrhage, save in the cases of abortion (to produce which it

was first recommended by Kluge) or miscarriage. I cannot say that I place much reliance upon this surgical appliance.

But there are cases that resist all such moderate attempts at overcoming the rigidity; the os seems to be converted into cartilage; it has stretched out till it is an inch or two in diameter, and then, firm, thick, hard, dry, hot perhaps, it does not, possibly cannot, dilate. With the extreme violence of the pain the head has descended into the cavity of the pelvis, bringing its surrounding os with it. Sometimes the os, by a violent pain, is torn off and forms a perfect ring, as lately shown at the Pathological Society in this city. What is to be done? There is no alternative. Incision of the os, is imperative, and it is a perfectly safe operation. I have done it three times with perfect success. We all know, too, that the os tears; we have felt it give way under our finger, we have felt it after the labor; we often see, with the aid of the speculum, the os torn and ragged and ulcerated on these torn edges, the sequelæ of difficult labors. Cut it then with long scissors or with probe-pointed bistoury—cut it anywhere. Writers theoretically advise who have never done this operation, and one cautions against dividing on the sides lest it tear up and so divide the uterine sinuses; and another, not to divide anteriorly and posteriorly, lest the bladder or rectum be injured. I have divided the os both anteriorly and laterally, and always without any hæmorrhage, subsequent inflammation or apparent ill consequences. It is unattended with pain, the patient noticing only a sudden feeling of power to assist the uterine action by voluntary muscular effort. There is no difficulty in the operation, the bistoury being guided upon the finger and the incision being made outward, and the edge guarded by the finger, lest it wound the vagina after having divided the os and cervix.

Division of the os uteri has really little danger, although occasionally followed by some bad results. August 11th, 1846, I attended a woman in her fourth confinement, who previous to this had a prolapsus of the uterus to such an extent as to protrude from the vulva to the length of two or three inches, and impregnation had taken place by the insertion of the penis into the os uteri! She had strong labor pains when I arrived, and on making an examination, I found a large mass, the os uteri, projecting some inches from the centre of the vulva, which I supposed were ædematous labia, with edges hard, swollen and everted, bearing a strong similarity to the nose of a demijohn. The orifice easily admitted two fingers, above which the head was presenting in the position of the vertex. After delaying till symptoms of convulsions appeared, the os remaining undilated, hard and dry, I applied the short forceps through this os. Traction but brought down the head with the enveloping os, to the full extent of the everted vagina. At this period the parts were in a most extraordinary state. The projecting tumor, which exteriorly the vagina and interiorly the uterus, was a cone, eight inches in length, five inches in diameter at the base, where it united with the body, and three inches at its apex. In the apex was the opening, two and a half inches in diameter, through which the hairy scalp of the fœtus, in rugæ with the pressure, was slightly projecting. Dr. Cheeseman was now called; I proposed dividing the os, and, with his assent, I made an incision superiorly, to the length of 2½ inches; the uterine pains tore up this incision 1½ inches further, and a healthy girl was speedily delivered. The hæmorrhage was very slight and arose principally from its congested state. The os, along its whole border for the width of an inch, was indurated, and the integument thickened, and on its inner surface was changed in its character, so that it resembled cartilage. The uterus never returned to its normal position, notwithstanding that pessaries, astringent injections, etc, were used, but came down when she walked. After a few weeks I lost sight of her. The cut surface speedily cicatrized, but did not unite. Case reported in full in American Journal of Medical Sciences, Oct. 1846, in which are quoted two or three corroborative cases, all that exist upon the records of obstetric surgery.

In the same journal for July, 1852, I report the first case on record, on this side of the Atlantic certainly, of division of the os uteri when internal, for rigidity. The patient was a large, muscular woman, thirty years of age, in labor with her first child. She had been in active labor, when I first saw her, twenty-four hours. The os was rigid, notwithstanding she had been bled a pint and had taken tartar emetic in nauseating doses and several grains of opium. On examination, I found the vertex presenting in first position, pressing hard upon the os, dilated to the size of a tea-cup top, exceedingly firm and hard. At my suggestion, venesection was again resorted to, and 3xvj further taken, producing some dizziness but no more dilatation. Twenty-four hours elapsed without the slightest change. She took eight grains of opium in divided doses before receiving any relief, and slept some, and the pains soon resumed with full force, but now diminished, the os not perceptibly dilated, vulva dry and hotter than yesterday. The friends urge some measures for The only reason apparently why the labor does not advance is the rigidity of the os, and if that could be overcome, it appears that the labor would go on to a speedy termination. But how to effect this desired result? All the usual modes had been fruitlessly exhausted, mechanical dilatation by the fingers was impossible. A vigorous pain may perhaps lacerate the os. Lacerations of the os uteri are frequent. May it not then, be cut? The attending physicians advise craniotomy. She had felt no life during the day. Remembering the former case, I determined to divide the os: with a pair of curved uterine scissors, I made an incision upon one side three quarters of an inch, and on the other a quarter inch in length. The pains were revived by an infusion of ergot and a large putrid child was delivered. The labor was delayed after the operation, by the head remaining nearly an hour on the perinæum, after passing through the divided os, and the body not being delivered without

strenuous assistance. The occiput was to the right iliac anterior. Operations subsequently upon the os uteri have but strengthened my belief in the utility of division of the os for protracted rigidity. Instead of using the scissors I would prefer a long probepointed bistoury, as more convenient and less objectionable from the character of the wound made.

The patient speedily recovered, but for a prolonged period subsequently had profuse leucorrhea, and was for a long time after childless. Had she been of a less impracticable character and had submitted to the treatment appropriate to the lacerations and fissures of the cervix uteri, she might have so far recovered as to have again become impregnated.

While I counsel this operation in all appropriate cases where other means have failed, I am aware of its contradiction to the teachings of others, some of whose opinions I will quote.

"I believe we shall rarely, if ever, fail in softening the cervix by some of the remedies I have recommended, and I must beg leave to enter my protest against more active interference."

—Churchill's Theory and Practice of Midwifery, page 397.

"Under all circumstances, if you must have recourse to instruments at all, you had better at once have recourse to the perforator."—Blundell.

Baudelocque says: "After a convenient delay, to ascertain that the efforts of nature cannot overcome the resistance, and the administration of proper methods to relax it, it must be cut in several places, as some practitioners have done. These incisions are preferable to rents, which might take place in it, and have never been attended with the same consequences."

Dr. Dewees, quoting the above, thus remarks: "The success of this plan has been verified, in this country, as the case of Dr. Thomas Archer most satisfactorily proves, where the uterus, loaded with its contents, was pushed through the os externum... he accordingly made three cuts in the uterine circle, ... each about two inches long; ... no unpleasant symptom followed." The case is evidently very similar to the one reported by me above.

Dr. Dewees also quotes Moschati, who made several incisions in the circle of the os uteri with success, in 1827.

Dr. Murphy says: "If these means fail, it becomes a question whether we should wait for the death of the child, in order to remove it by the crotchet, or incise the unvielding cervix. The former practice involves a sacrifice of life, but generally secures the mother from the injurious effects which may follow. The latter may be the means of preserving the child, but if the incision lead to a laceration of the uterus, the mother is at once placed in the most imminent danger of her life. The fear of such a consequence, it appears to me has prevented any attempt being made thus to cut though this Gordian knot of difficult labor in its first stage: but whether this, like other operations, is only surrounded by chimeras of the imagination, which some bold spirit will dissipate, remains yet to be proved. Incision has been performed without accident; the same may happen again; and I confess, in a case such as I have described to you, I should be more disposed to adopt the shorter course, in the hope of saving the child, than to wait until its death enabled me to remove it. This, however, is but an individual opinion and needs support."

My old instructors, Chailly and Cazeaux have written with more fullness upon this subject. Chailly says: "Aussi si cet état a résisté aux bains, à la saignée, à la belladonne, ce qui arrivera le plus ordinairement, on devra pratiquer des incisions sur les parties latérales de l'orifice, à l'aide du bistouri en croissant ou du bistouri droit boutonné, et mieux encore à l'aide des ciseaux, courbés sur leur tranchant, et conduit sur le doigt jusque dans le col utérin. Il est utile, dans ce cas, de multiplier les incisions, pour qu'elles fournissent une assez grande dilatation, sans qu'on ait à craindre qu'elles ne se prolongent trop haut. C'est aussi pour éviter les conséquences de ce prolongement, qu'il ne faut pas les faire à la partie antérieure et postérieure de l'orifice. En effet, prolongées dans cette direction, ces incisions pourraient intéresser la vessie ou le rectum.

"J'ai vu ce débridement de l'orifice suivi du meilleur effet, soit sur des femmes où la rigidité pure et simple du col était le seul obstacle, soit sur d'autres chez lesquelles les parties étaient plus ou moins altérées.

"Chez une jeune fille âgée de dix-sept ans qui vint accoucher

a la clinique, le col à l'état sain d'ailleurs, était tellement rigide, qu'il ne céda qu'aux incisions. L'enfant fut expulsé en position occipito-postérieure non réduite.

"Les incisions furent encore le seul moyen de rendre l'accouchement possible, chez une femme âgée, mère de dix enfans; le col était tellement dégénéré que, de prime abord, il fut pris pour le placenta implanté sur l'orifice."

Cazeaux writes from less experience: "Si l'orifice externe rétracté est seule cause de la difficulté, on aura recours aux inci-

sions multiples pratiquées sur le pourtour du col."

Dr. Lever (*Guy's Hospital Reports*) says such an incision is unattended with danger, unaccompanied by pain and free from copious or dangerous hæmorrhages.

Rigby says, where the structure of the os uteri has been much injured the resistance will probably be so great as to require

artificial dilatation with the knife.

Professor Braun of Vienna thus writes respecting the treatment exclusively of eclampsia: "Scarification of the cervix uteri, at a more or less advanced period of the stage of dilatation, for the purpose of facilitating labor, has been recommended by Paré, Mesnard, Contouly, Lauveriat, Dubois, Kiwisch, Killian, Credé and others, and it is done either with a probe-pointed bisteury, a utero-stomatome (two scarificator blades) or long, bent scissors. In the hands of a practised operator, the making of these incisions, under the above-mentioned conditions, does not involve any danger and contributes greatly to rapid dilatation when the cervix is peculiarly rigid and undilatable. But when we consider the question of the necessity of this proceeding, it is, indeed in very rare cases only to be justified, inasmuch as in the literature of the subject only very few observations are recorded in which the performance of hysterostomatomia was found to be indispensable, and that more on theoretical than practical grounds." And again:

"The dilatation of the soft parts by incision which has been recommended by Baudelocque, is without danger only when merely the external os uteri or the vaginal portion of the cervix are incised a few lines deep; it is very dangerous if the os uteri be very thick, or if the undilated part of the cervix still form a canal from ½ to 1 inch (Paris) long, because then the incisions can no longer be exactly controlled, but penetrate too deeply;

and the subsequent introduction of the hand or extraction of the fœtus may produce uterine lesions dangerous to life, and under which the patient may sink, after she has recovered from the eclampsia.

"Our opinion therefore, is, that forced delivery, with bloody or bloodless dilatation of the cervix, is never to be resorted to when any injury from it is to be feared; and we think the wise consideration of the success, from the above described methods of increasing the pains (colpeurysis, the introduction and retention of an elastic catheter between the chorion and the walls of the body and fundus uteri, tepid uterine douche, rupturing the membranes, secale cornutum, etc.) affords sufficient reason to induce us to abstain from doing harm either by rash officiousness or irresolute passiveness."

It is a question worth considering and deciding, of how much Importance is it to preserve the Integrity of the Os Uteri, or rather should the danger of lacerating it be considered as an objection of any serious moment to an obstetric operation, having for its end the preservation of the life of the child?

I am free to confess that, after much thought and some experience upon these questions, my mind is made up. The first duty of an accoucheur is to save the life of the mother, the second to save the life of the child; the mother is to be saved at any cost, the child may be mutilated, destroyed, to effect this end. The child must be saved at any cost short of the life of the mother.

The mother's safety being secured, the child's must be sought for with the least possible injury to the mother. The physician who delays delivering a child till it dies from pressure, or asphyxiated, rather than risk injury—not danger to the life of the mother—errs greatly. It is a poor parent that would not hazard even life to save a child in danger; the physician in a conscientious discharge of his duty should hazard not the life, but any injury to the mother, be it immediate pain or subsequent disease or imperfection.

The older writers have taught that for all obstetric operations we should wait for the dilatation of the os uteri, and English

obstetricans have even insisted that, in addition to this, the head should have so far descended as that the ear may be felt before the forceps may be applied. Itill, in cases of arm presentation, it was allowed that turning might be performed as soon as the os was sufficiently dilated to admit the hand through it.

When death was considered to be the invariable result of rupture of the uterus, and the body of the uterus and the cervix uteri were supposed to be but parts of the same organ, such teaching was proper, but the anatomical discoveries of the nineteenth century makes such teachings effect and new directions proper to be substituted. Injuries to the uterus may be followed by metritis, while injuries to the os and cervix rarely if ever. We see this organ shockingly mangled by unprincipled abortionists, but unless the body of the uterus is injured, death never following; inflammation of the os and cervix rarely if ever spreading to the uterus proper.

If, therefore, there be immediate necessity for any obstetric operation, do it irrespective of the local condition; apply the Forceps through an undilated Os; perform craniotomy through a but partially dilated os; and even, if necessary, incise

the os, in order to render an operation practicable.

Not to occupy too much time, I will quote but two cases from my own practice to substantiate the feasibility, of the position laid down.

June 15th, 1855.—Mrs. G-, East Eighteenth street, was taken in labor with her second child. For several weeks she had experienced severe uterine hæmorrhages under the care of a homœopathic. With the commencement of uterine action, Dr. J. W. Francis was called, and noting the profuse flow, sent for Dr. R. S. Kissam. The existence of placenta prævia was recognized, and they remained with her all night and gave such relief as was possible. At their request, I saw her at 4 A.M.; she was blanched, covered with a cold sweat, complaining of ringing in her ears, swimming in head, etc. She then tolok the aqueous extract of ergot 3j. every quarter of an hour. She was tamponed, waters not evacuated. I recommended they removal of the tampon, and rupturing the membranes, which was done and the os found to be dilated to the size of a tea-cup to Ep, the placenta torn from the anterior lip and the border loose,e the vertex presenting high up in first position, little or no expulsoive pains,

some flowing with each pain. The ergot had little effect, and after a half-hour's delay, when it was supposed that she could scarcely survive an hour longer, I suggested diminishing the head and delivering by crochet and craniotomy forceps, as the speediest method of arresting the hamorrhage, and offering the only hope of saving her life; as, independent of the uncertainties of the length of time required for the use of forceps, the danger of recommencing the flow of blood by further disturbance of the placenta, probable in these operations, would be avoided by this operation. I performed this operation with some difficulty, owing to the small opening of the os, scarcely two inches in diameter, and the mobility of the head in the superior strait, and delivered a male child weighing ten pounds. The patient got up without experiencing any unpleasant symptoms referring to the uterus, and 16 months subsequently was again confined without difficulty.

January 18th, 1858. At the request of Dr. John Bishop, at 6 A.M., I saw Mrs. J.—, Allen street, in labor with her first child. She had been taken in labor three days previously, but the day before, at 4 P.M., the membranes had ruptured. I found her a short, muscular young woman, much exhausted, the pains excessively strong, and occurring every ten minutes, the os, no more dilated than when first seen by Dr. Bishop, now about 2½ inches in diameter, firm but not rigid, and the head in the superior strait, movable, and not pressing upon the os uteri or base of the uterus; even with the extreme pain the os was not pressed upon, the head evidently resting upon the promontory of the sacrum and the os pubis. I advised delay and morphine. She took a grain and a half in three hours, but at 12 M. there was no more dilatation, no rest or cessation of the tremendous pains.

More morphine was advised, and at $4\frac{1}{2}$ o'clock she had taken two grains more with no evident effect, the head only being now immovable, the os still undilated; craniotomy was thought of, but as the child was evidently living I was inclined to apply the long forceps upon the head, still above the brim of the pelvis, although immovable. This through the still undilated os was done without great difficulty, and by strong traction the head was brought down into the pelvic cavity and so as to press upon the os. Chloroform was now given as a relaxant of the

firm os, and by continued traction a large but asphyxiated male child was delivered, which after a half hour's labor breathed with some regularity and lived till 9 P.M. Upon the prominence of the left frontal bone was a spoon-shaped depression, where the pressure upon the promontory of the sacrum had been exerted. The mother made a speedy "getting up." Present—Drs. Bishop, Tuthill, Wilson, and Saunders.

I am fully aware that the opinions here expressed are opposed to the teachings of the authorities. Velpeau says it is not allowable to introduce the forceps into the womb, until the orifice is sufficiently dilated and the head ceases to be movable and loose above the superior strait.

Rainsbotham, like all the older English practitioners who prefer craniotomy to the long forceps, says: "When the head is placed in any one of these situations and the symptoms require it, we feel ourselves warranted in attempting to deliver by the short forceps-provided the os uteri be fully dilated-if we can feel an ear distinctly—if there is sufficient space in the bony passages for the head to emerge—and if the soft parts are sufficiently dilated to admit of its exit without suffering serious injury." And again: "If there exists a well-grounded fear that the uterus may injure itself by the violence of its own expulsive efforts, in such a case, provided the os uteri is completely, or almost fully opened, with the vagina and perinæum sufficiently distensible, delivery may often be accomplished by the long forceps." Dr. Keating, the editor of the Am. edition, says: "Under no circumstances should the forceps be inserted within the os uteri; their application should be delayed until the circle of the os has risen above the parietal protuberances." Churchill says: "I do not speak of the difficulty of the forceps when the os is rigid, because it should never be attempted."

Blundell, enumerating a horrible catalogue of errors to guard against, says: "You may try to use it when the parts are rigid, and the os not fully expanded."

Rigby fairly gives reasons for his opinions, insufficient as they seem to be. He says: "In applying the forceps there are two indications which, cæteris paribus, are requisite in every case; first, that the os uteri shall be fully dilated; . . . as it will be very difficult and frequently quite impossible to pass the blades between the head and os uteri when only partly dilated; it will

be very difficult to avoid injuring its edge more or less, and if we do succeed in applying and locking the forceps, on making an extractive effort we shall find that the uterus descends with the head as we draw it down."

I dare to oppose these teachings because they are theoretical, established upon no successful practice; secondly, because the theory is founded upon the belief that the corpus uteri and the cervix uteri are the same organ; thirdly, I know from actual, personal, practical experience that the rules laid down by the magnates are not without exceptions. I therefore, while asserting that the occasions for operations within an undilated os uteri are rarely—very rarely required, yet claim that they be considered as feasible and worthy of confident resort in times of great emergency.

In the hæmorrhages of abortion, operations have been considered proper, Dewees having proposed a hook for the removal of the embryo and placenta. I have several times removed a three or four months' placenta by twisting it off with polypus forceps (See cut, page 196) from its uterine attachment and delivering it through a rigid os, which had barely allowed, with great pressure, the small embryo to pass through it. No injury has ever resulted from this operation, and I am confident that life has been saved by thus stopping an apparently fatal hæmorrhage.

When the head has descended into the pelvic cavity, so that the finger may pass into the os, it may be somewhat dilated by sweeping the finger around and within with some steady pressure upon it. This irritation will also excite flagging uterine pains, particularly if the finger be passed as high up as possible, so as to reach beyond the cervix, where the nerves are sparsely distributed, to the base of the uterus proper. This mode of procedure I have practised for many years, and supposed it a personal experience of my own, as it is not generally counselled in the writings of obstetricians, although recommended by Puzos and indorsed by Velpeau, Burns, Hamilton of Edinburgh, etc. Within the last few months, Professor Miller of Louisville, in his recent work, advises such procedure.

This is of more evident value in those cases characterized by a long anterior lip, where the head has come well down into the sacral cavity, but its flexion and further progress is impeded by this extended anterior lip, which is so thin as not unfrequently to be supposed to be the membranes applied closely over the head, or even the scalp itself, when I have known propositions for the application of forceps to have been made by practitioners of forty years' experience.

Irritation of the os and cervix uteri as a provocative of uterine action, I therefore would strongly urge upon practitioners of midwifery as a proper and feasible operation, and particularly upon those who are in the habit of giving ergot under such circumstances. I am confident that I cannot recommend a practice so deleterious as ergot giving.

Gentlemen, I thank you for the attention which you have given to me. The practice of midwifery has so long been considered merely as an art, that its scientific aspects have been overlooked. May I trust that a learned Academy will not pass, without careful examination, any conscientiously made statement, although it may conflict with the prejudices or even carefully-formed opinions of the learned and the wise.]

LECTURE XXXV.

TARDY AND PRECIPITATE LABORS.

Gentlemen:—In a great number of the difficult cases of midwifery, we have to deal either with **Excessive or Deficient action of the Uterus** and of those organs which are associated with the womb in childbirth. Sometimes this excess or deficiency depends upon other causes than the uterus itself; but in a great number of cases, inertia or excessive activity of the organ play important parts, and it will be very useful, in a practical point of view, to consider the nature and tendencies of the two great and opposite classes of difficult labor thus produced. They throw mutual light upon each other, when we study attentively their nature and causes, and the several accidents and complications they tend to produce.

Twenty-four hours is the time which has been accepted with nearly common consent amongst accoucheurs, as the limit beyond which a strictly natural labor should not pass. It is, however, equally agreed that little or no mischief can be caused by any ordinary extension of time in the early stage of labor, before the os uteri has dilated widely, and before the membranes have broken. The vast majority of labors are finished much within the time mentioned, especially in multiparous women, but individual cases are met with in which labor extends beyond twenty-four hours without any other morbid element saving that of simple protraction. Still, the statistical inquiries of Dr. Simpson and others have proved to a demonstration that the great proportion of fatal and dangerous results, both to mother and child, is met with in cases in which labor is prolonged over the natural time, and the extent of this mortality increases according to the time to which the protraction of the labor extends. On the other hand, excessively rapid labors have their peculiar risks to the mother and child, though this class of dangerous

labors is much less numerous than that depending upon protracted labor. In both protracted and precipitate labors, other matters play important parts, besides the activity and excessive action of the uterus; but the state of the uterus and expelling powers, in these cases, is sufficiently important to merit our

special study.

In the lecture on the Nervi-Motor Actions of the Uterus, I have entered pretty fully upon the nature of the expelling powers which accomplish the act of parturition. The causes which interfere with these powers, so as to produce parturient inertia or excess, are very numerous and varied. Upon their proper comprehension, our means of relieving the inactivity or violence of the organ will very much depend. Let us, then, in the first instance consider the subject Tardy Labor, from Inertia of the Uterus and other parturient powers.

In some constitutions, particularly those of lymphatic habit, the action and development of the uterus is naturally feeble. General debility during pregnancy, or at the time of labor, from whatever cause arising, produces inactivity of the uterus and the abdominal muscles. The uterus acts more feebly in hot than in cold climates, in the heat of summer than in winter; and some of the most distinct cases of uterine inertia to be met with in this country occur in women who have been enervated by long residence in the tropics. Age is another source of deficient uterine action. When a woman becomes pregnant for the first time towards the close of the child-bearing epoch, the pains of labor are less powerful than in the case of a younger female. In the cases I have seen of precocious pregnancy, when very young girls have become mothers, the labors have been tardy, and the pains less powerful than natural. It is also found, that in women who have borne many children in rapid succession, the powers of the uterus decline during the later labors. is contrary to what occurs in the history of any other muscle of the human economy, and many observers of the fact have been puzzled to explain it. If, however, we take into account the gradual development of the nuclear muscular structure in the virgin, its gradual decline towards and after the end of the child-bearing epoch, and the circumstance that a new set of fibres have to be produced in the gravid uterus in each successive pregnancy, we shall readily understand why the organ of

the very young gravid woman, of the patient becoming pregnant for the first time late in life, or of the multiparous woman, whose uterus has been developed and redeveloped a great many times in the space of a few years, should not be according to the most perfect type. The state of the mind in controlling uterine action is also very remarkable. The Protean influence of emotion may act as a powerful oxytocic, or it may entirely suspend the uterine action. The unexpected entrance of the accoucheur, the receipt of some sudden intelligence, a thunder-storm, or, in fact, any emotional disturbance whatever, may arrest labor in mid-career, and it may be some hours before the action of the uterus is resumed. I have seen, on more than one occasion, chloroform produce tardy labor, by weakening, or for the time arresting, the action of the uterus.

Various matters relating to the position of the uterus, and the condition of the parts which are indirectly concerned in the uterine efforts, have a tendency to prevent their full development. The effects of the position of the womb are so remarkable as to have attracted the attention of the best obstetricians. In the ordinary uterine position, at the commencement and during the progress of labor, the axis of the uterus coincides with the axis of the inlet of the pelvis. In anteversion from a pendulous state of the abdomen, this correspondence between the axis of the uterus and the upper part of the canal is destroyed, and the organ acts at a great disadvantage. The force exercised by the uterus is in the direction of its own axis, and, in anteversion, this urges the presenting part of the child, not into and through the pelvis, but against the promontory of the sacrum or last lumbar vertebra. Under these circumstances, the action of the uterus is inefficient, and it is, moreover, less powerful than ordinary. In those rare cases of partial retroversion which continue up to the time of childbirth, the uterus also acts at a great mechanical disadvantage. Such is also the case when, from rigidity of the abdominal parietes, the use of tight stays or bandages, or other causes, the position of the gravid uterus is more vertical than it ought to be. retroversion and in the more common vertical derangement of the uterine axis, the imperfect pains urge the head or presenting part of the child, not into the pelvis, but against the pubic arch. Wigand has beautifully described and figured these displacements as a cause of tardy labor. He shows that part of the difficulty in the case of dwarfs arises from anteversion of the gravid uterus. These results are also increased or diminished by the position assumed by the patient during labor.

In the erect position, or when the patient lies on her back, any tendency to retroversion or a vertical position is increased. When the axis of the uterus approaches the vertical direction, the woman will often instinctively lie on her side, and bend her body forwards; or, if in the upright position, she will stoop, so as to bring the axis of the uterus into correspondence with the axis of the pelvic inlet. It is the province of the accoucheur, in all cases, to bear these facts in mind, and to act upon them, so as to produce the proper physiological coincidence between the axis of the expelling organ and the bony canal which the fœtus has to enter and pass. That common form of obstructed labor in which the anterior lip of the uterus descends before the head and is squeezed for hours between the pubes and the head of the child, is, in the majority of cases, connected with anteversion, and the direction of the aperture of the os towards the upper part of the sacrum. The remedy for this state of things consists more in rectifying the anteversion in the early part of labor than in any pressure or manipulation of the os uteri itself. cases of anteversion, when the head or presenting part is driving against the upper part of the sacrum, placing the patient on her back, or supporting the uterus with an abdominal bandage, will bring the uterus and pelvis into harmony with each other, and a feetus which no power could move onwards, while the mal-position of the uterus continued, now enters the pelvis with ease. The anteversion of the uterus is sometimes caused, not by a mere relaxation of the abdominal muscles, but by a positive breach in their structure, as in cases of large umbilical hernia. in which condition the inertia of anteversion, and the want of the normal support of the uterus by the abdominal muscles, should always be foreseen.

Labor is observed to be slow and tardy in cases of double or bicorned uterus. This, as formerly shown, is an approach to that which obtains in the lower animals as the normal condition of the organ. In this anatomical state of the womb, it is found to be thinner than in the perfect uterus of the human female. With the lower animals, the thin, bicorned uterus has

no powerful action during parturition. Its function is to bring the fectuses to the os uteri, where they are successively grasped by the powerful muscular structure of the vagina, and delivery is gradually effected. When the human female has the uterus after the imperfect duplex type, the vagina being with her an organ of little parturient value, and the obstructions incident to the human pelvis being in full force, labor is performed under great disadvantages; the action of the uterus especially is liable to be imperfect, and easily exhausted.

Inflanmation of the uterus, rheumatism, gout and neuralgia affecting the organ, sometimes retard labor to a considerable extent. The excessive suffering produced by the pains prevents their full development. Besides the positive feebleness or inertia of the uterus produced by the various causes which have been enumerated, labor is often retarded by partial contractions of the uterus. The uterus contracts under such circumstances in a spasmodic and irregular manner, or, instead of the uterus, the abdominal muscles, or the muscles of the inferior extremities, are thrown into a state of spasmodic or cramp-like contraction at each pain. The great cause of this state of things, as formerly shown by Dr. Power and other obstetricians, is intestinal irritation.

The course of labor should run in a certain definite and regular manner. At first the actions are simple, and the uterus alone is concerned. As it proceeds it becomes more complicated, and the nervi-motor actions are more intense. The uterus, under the stimulus of labor, becomes more and more powerful until it accomplishes delivery. But if baulked in its natural course, the uterus and associated organs are very apt to fall into a state of partial inertia. Thus, a dose of opium, or too early rupture of the membranes, occurring either spontaneously or by the act of the acconcheur, will often impede labor for many hours. The same thing happens when the membranes remain too long unruptured. The uterns now refuses, as it were, to go beyond the stage of dilatation, while the liquor amnii is retained. Although, as a general rule, the early rupture of the membranes retards labor, cases occur in which the evacuation of the waters increases the uterine efforts. These cases occur in women when the quantity of liquor annii is very small, and when the puncture of the membranes at once brings the solid parts of the

child in full contact with the uterine parietes; or in cases of distension of the uterus by excess of the amniotic fluid, where the action of the uterus is simply impeded by over-distension.

In some patients, labor is retarded in the propulsive and expulsive stages, not only by the withdrawal of any effort of volition which could aid the process, but by a perverted voluntary interference with the natural course of the pains. It, in the stage of dilatation, women are permitted to make voluntary efforts, they become fatigued when the voluntary efforts are really required. In the stages of dilatation, the reflex and voluntary efforts should partially or entirely close the glottis, so that the distended thorax may act as a fixed point for the efforts of the voluntary muscles; but some women delay labor by excessive timidity, opening the glottis during the whole of the pains, refusing all voluntary effort, and causing lingering, or comparatively powerless labors.

Uterine inertia may supervene in the course of a labor which has commenced in a natural manner, and proceeded to a certain extent in the ordinary course. The uterus is apparently not strong enough to continue its contractions, grows more and and more feeble, and at length comes, as it were, to a dead stop. After an interval of rest, it acquires a new supply of nervimotor power, and the pains return in some cases, but in others they are not resuscitated, and the patient, if left to herself, would pass through the symptoms of arrested labor, and die undelivered. Entire and persistent failure of uterine action is always a sign of a state of considerable danger to the lying-in woman. The pains have acted in the nature of shocks to the system, and when labor is uncompleted, the fœtus remains in the passages, pressing on the hard and soft parts of the mother, and constituting a grave source of irritation and peril. Although the child no longer irritates the nervi-motor apparatus of the uterus and the rest of the parturient canal, it is a powerful irritant to the vascular and other tissues with which it is in contact. The natural secretions are arrested, the parts become hot and dry, tumefaction of the soft structures occurs, sanious and fætid discharges are set up, sloughing occurs, and, unless rescued from this state, the woman perishes from the combined effect of the shock to the nervous system incident to labor, and the irritation and exhaustion produced by the presence of the fœtus in the parturient

canal. In these cases, shock is felt more than in cases of healthy labor, and there is something peculiarly noxious to the system in the presence of the fœtus in the passages in a half-delivered state. This state of things belongs to the past, and to the age of the ignorant midwife, rather than to the present day, and we may congratulate ourselves that such cases are now only seen as rare exceptions. We may hope and expect that, in the progress of obstetric knowledge, the death of women from exhaustion consequent upon lingering labor, where the muscular powers are at fault, but where no insurmountable mechanical difficulty exists, will become impossible.

One class of tardy labors depends on faulty action of the expelling powers which act in harmony with the uterus. A variety of causes interfere with the voluntary and reflex action of the respiratory muscles. In cases of labor occurring in phthisical patients, and the various diseases of the lungs, such as bronchitis, pneumonia, and pleuritis, the distension of the chest, closure of the glottis, and powerful expiratory actions of respiratory muscles, are all impeded. Sometimes labor comes on at the natural term in chronic pulmonary disease; in others, the lungs are the subject of acute disorder, and labor is excited by the local disease. In both, particularly the latter, labor is impeded, painful, and most distressing to the patient. In paraplegia, the parturient woman is cut off from the aid of voluntary and reflex respiratory action. In the various forms of cardiac disease, and in abdominal maladies, the auxiliary powers which aid the uterus in the propulsive or expulsive stages, can only be brought into operation in a very imperfect manner. In a former lecture I have spoken of ovarian and fibrous tumors as offering mechanical impediments to the passage of the child. In cases where these tumors are above the pelvic brim, the action of the uterus and of the abdominal muscles are interfered with by the pressure and bulk of the tumors. The respiratory actions of labor are necessarily imperfect in ascites and in ovarian dropsy. General plethora, and in particular a fatty state of the omentum and abdominal parietes, frequently interfere with uterine and respiratory action.

The prevention of tardy labor will be best insured by preserving the course of parturition in as natural a track as possible. With this end, we should attend to the time at which the liquor amnii escapes, aim at a proper harmony between the axes of the uterus and the pelvic inlet, encourage the voluntary efforts at the proper stages, and discourage them before the full dilatation of the os uteri; avoid opiates or sedatives of uterine action when there is any apprehension of feeble labor; remove intestinal or gastric irritation by an aperient or enemata, and encouraging vomiting; preserve the confidence and mental tone of the patient; and give moderate and sustained support and stimulus during labor, particularly in the early stages.

In tardy labor, the pains are more powerful in the upright than in the recumbent position, and the patient may be encouraged to walk about and to stand up, leaning on a chair or supported by the nurse, during the pains. An abdominal bandage will often have the best effect, apart from any influence in correcting anteversion, by supporting the abdominal muscles and exerting the stimulus of pressure upon the uterus. Vomiting, sneezing, coughing, the action of the bowels, all tend to excite the uterus; and the administration of a brisk purgative enema is often most effective in rousing the uterus from a state of atony or torpor. I have formerly mentioned that the examimations of the accoucheur have a tendency to excite uterine contraction. In powerless labors, digitation should be more freely resorted to than in other cases, and when making examinations firm pressure should be made on the perinæum, this being the seat of a considerable number of excito-motor nerves in relation with the uterus.

When labor is arrested in mid-course, or towards its termination, the uterus and its associated muscles often begin to act again after a short interval of rest. In cases of this kind great good is frequently done by a full opiate, particularly in cases where the preliminary part of labor has been tedious, and the patient has long been without sleep. After a few hours' rest, the uterus will resume its work with energy, and the patient, refreshed by repose, will go on favorably to the termination of labor. Such cases must, however, be carefully distinguished from those in which exhaustion of the body generally, and of the uterus in particular, has been induced to such an extent as to be beyond the power of restoration by temporary rest, and which rest from the pains, before the completion of delivery, is

a deceitful truce, and in itself an exhausting and dangerous condition of the patient.

Cases of retarded labor from the disease of other organs, particularly the lungs and heart, require to be treated with reference to the extra-uterine disorder. I shall have to discuss, when treating of the induction of premature labor, the propriety of artificial delivery in cases of the occurrence of acute pulmonary disease in the latter part of pregnancy, and also in cases of chronic heart disease. During the occurrence of actual labor, under these circumstances, all we can do is to avoid every unnecessary exertion or excitement. I have already mentioned, that in cases of inflammatory disease occurring to the gravid woman, the symptoms are preternaturally acute, and generally require decisive treatment. When the uterus is inactive from inflammatory, rheumatic, or gouty disorder, bleeding and antimonials are required.

In entire arrest of labor from failure of uterine action, when nothing is hoped from rest, we have to resort to oxytoxic remedies, and to instrumental delivery. Ergot of rye, galvanism, borax, and cinnamon, are the chief agents by which we can act upon the uterus, and I propose hereafter to devote a lecture to the special properties of oxytoxic remedies. The ergot is, of all, the most powerful and certain, and in half drachin doses of the powder infused in boiling water, and taken every ten minutes, to the extent of three or four doses, it will generally excite the uterus, unless the tone of the organ is entirely On account of the spastic contractions of the uterus, caused by this medicine, which interferes with the uteroplacental and perhaps also from some specific influence upon the circulation of the fœtus, the state of the child should always be watched while the mother is under the influence of ergot, and delivery completed by the forceps, if the action of the fœtal heart is quickened to any great extent. In uterine inertia, as in all other cases, the os uteri must be dilated, or readily dilatable, before the ergot can be given with safety, and there should be no extra-uterine impediment to delivery. The ergot is especially suited for those cases of uterine inertia in which rapid delivery is not called for, and when the head of the child is not low down enough to render the application of the forceps easy. Dr. Vernon, the very able obstetric resident of

this hospital, has recently given small doses of strychnia in cases of labor marked by pure uterine atony with good effect.

Where the symptoms are urgent, as regards either the mother or the child, particularly the former, the long forceps, when the head is at the brim, or the short forceps or vectis, when the head is sufficiently low, are called for, and in extreme cases of danger to the mother, craniotomy becomes necessary. In cases where the child is already dead, and cannot be delivered immediately by the forceps, the operation of craniotomy and extraction by the crochet should be performed. A train of serious symptoms often follows upon deliveries marked by uterine inertia. These will have to be considered separately, the most important of them being non-detachment, or non-expulsion, of the placenta and post-partum hæmorrhage.

We have next to consider the opposite state of things, or precipitate labor, from violent or excessive action of the uterus and its associated muscles.

The great majority of precipitate labors depend upon the constitution and temperament of the mother. As some women and some families always have slow and lingering labors, so others invariably complete the process in a rapid and powerful manner. Nothing can be more in contrast than the strong parturient action of the well-fed, hard-worked, and exposed woman in agricultural districts, and the more feeble powers of the denizen of large towns of the same rank. Fortunately, with the diminished power, there is also diminished resistance, from relaxation of the tissues, otherwise difficult labor would be far more frequent than it is in such cases. In the robust countrywoman the resistance to be overcome increases, to some degree, in proportion to the strength and excitability of the nerve and muscular fibre. In women of powerful nervous and muscular endowment, under any circumstances, labor sometimes becomes almost tetanoid in character.

It is observed that women who have been the subjects of dysmenorrhea, suffer from painful and violent labors probably from the persistence of ovarian excitement up to and during the process of parturition. Some women, particularly hysterical subjects, increase the pains of labor to a dangerous extent by passionate and uncontrollable voluntary efforts during the stages of propulsion and expulsion. Dystocia of this kind may depend on

a small quantity of liquor amnii, when the uterus is well developed, and the nervi-motor powers of the mother active. This is because the body and limbs of the fœtus are from the first in contact with the uterus, and because solid, rather than fluid pressure is directed against the os uteri during the stage of dilatation. The early rupture of the membranes, occasionally instead of retarding labor, brings on a perfect storm of uterine action. Fear, terror, and mental emotion of any kind will sometimes render labor acute to an extraordinary degree. The most rapid action of the uterus, we can conceive, is that in which the child is expelled partly through the influence of terror, in cases of sudden death, as in drowning or suffocation. Under such circumstances, the whole process of delivery, at. the full term, has been completed in a few minutes. Here the oxytocic effects of the carbonic acid retained in the blood concur with mortal anguish and the act of dissolution itself, in evacuating the womb. In the febrile condition, and blood-poisoning, which obtains in small-pox, and scarlet fever, and albuminuria, labor is usually rapid from excessive uterine action. It is scarcely necessary to refer to the injudicious administration of the ergot of rye as a cause of precipitate labor. Cases of rapid labor from the great size of the pelvis belong altogether to a different category from that we have now been considering.

The management of precipitate labor consists in the avoidance and removal of its causes, and the employment of palliatives of uterine action.

The position of the patient in cases of acute and violent labor should be the recumbent from the first. Mental and physical stimulus of all kinds should be avoided as much as possible. No examinations beyond those actually necessary to ascertain the presentation of the course of labor and to aid the passage of the fœtus through the external parts, should be made. In cases of constipation and fæcal accumulation in the rectum, the bowels should be cleared by mild enemata. When the uterine action is increased, and aided by the uncontrollable volition of the patient, the remedy consists in encouraging her to cry ont lustily, during which all voluntary action is impossible. It was a pious fraud recommended by Denman, to tell the woman in the latter part of labor, the child was already born, when she

was in danger of laceration, and thus to make her cease from the expulsion. Venesection, nauseating doses of tartar emetic, a full opiate, or chloroform, are the most powerful sedatives of uterine action which we possess.

The train of evils produced by precipitate labor is scarcely less dangerous than that following in the wake of tardy labor. Amongst the accidents produced by excessive uterine action, we have rupture of the uterus, laceration of the perinæum, retention of the placenta from closure of the os uteri, hour-glass contraction, inversion of the uterus, and prolapsus, and procidentia. In rare cases, when the pelvis is large or the child small, the violent uterine and abdominal action brings down the uterus, and we have procidentia, during the act of labor. Such cases require careful support of the uterus by the hand or a bandage, to keep the mischief as limited as possible. It has also been observed that puerperal mania has a tendency to follow precipitate labors. In some cases, apoplexy or convulsions are caused during the violence of the pains. In precipitate labor, the state of the child must be attended to. The incessant uterine action sometimes destroys it by asphyxia, from arrest of the utero-placental circulation. The fœtus is occasionally extruded with such violence as to snap the umbilical cord; this is particularly the case when the mother is allowed to be delivered in the upright position. Under the same circumstances, the child may be seriously injured by being shot out with violence upon the floor. I once knew a case of precipitate labor in which the patient, not supposing delivery to be near, insisted upon going to the water-closet, and the child being suddenly discharged into the pan, had to be rescued from the peril of death from drowning, as well as mechanical injury. On a former occasion this patient had dropped or expelled the child upon the floor, while standing at the bottom of the bed. Cases of this kind have a medico-legal bearing. It is, of course, of the highest importance to distinguish between cases of accidental birth of the child while the mother is at the closet, and premeditated infanticide.

LECTURE XXXVI.

DIFFICULT LABORS DEPENDING ON THE STATE OF THE OVUM.

Gentlemen:—This form of Dystocia may depend upon dropsy of the different serous cavities of the fœtus; tumors or distensions of other parts of the body: colossal size of the fœtus, without relative disproportion; morbid ossification of the joints of the body generally, and especially of the cranium; the various teratological monsters and errors of development; twins; shortness of the funis umbilicalis, and excessive rigidity of the membranes. Of all these impediments to natural delivery Hydrocephalus occurring in the fœtus is the most important, and to this complication I shall first direct your attention.

Hydrocephalus may occur to the fœtus in utero to such an extent as to interfere with labor, or render it altogether impossible. The size which the head sometimes attains in these cases is enormous. Several pints of fluid have been known to escape after perforation, and Merriman mentions a case in which the head, the circumference of which measured twenty-two inches, was born alive by the natural efforts, the average circumference of the head measuring about fourteen inches. In these cases, the bones are generally thin, the fontanelles large, and the sutures membraneous and gaping. Hydrocephalic children may present with the head; but, as formerly mentioned, there is in these cases a great tendency to the presentation of the pelvic extremity of the child. When the head presents in hydrocephalic cases, the symptoms are, arrest of the head above the brim of the pelvis, there being no deficiency of the expulsory action, and no pelvic or other impediment to the descent of the head on the part of the mother. When examined, the area of the cranial surface, which may be reached by the finger, is flatter than usual, conveying the impression of belonging to a larger spheroid than the natural feetal head. The bones are usually thin,

35 545

and the fontanelles, when they can be explored, are beyond the natural size. Under the influence of strong pains, and when labor has been of long duration, the rounded shape of the head is altered, the edges of the cranial bones can be felt through the fontanelles or sutures; fluid can be detected, somewhat like the fluid when the amnion is unruptured and the membranes are more dense than usual. In the irregularity and projection of the edges of the bones, the hydrocephalic head resembles the head of the premature fœtus, or of the fœtus at the full time with the head imperfectly ossified, only that in the case of hydrocephalus the size is greatly increased. When the fœtus is dead, the flaccidity of the hydrocephalic head is commonly greater than usual. When the pains relax, this sense of fluid disappears. In breech or footling cases complicated with hydrocephalus the diagnosis is more difficult. There is in such cases a natural descent of the pelvic extremity of the body of the child until the head comes to engage in the pelvis, when a sudden arrest takes place, notwithstanding the continuance of strong and regular pains, and the portion of the head of the child which can be reached gives the impression of a large, loosely ossified cranium. The limbs of the child are generally shrunken or wasted.

It might be supposed that in a case of hydrocephalic head, when the bones are thin, and readily compressible, labor would take place easily and without bad results. Such is not, however, the case. As just mentioned, cases do occur in which hydrocephalic heads considerably above the average circumference pass through the pelvis without assistance, but these are exceptions, and a favorable result by the natural powers should not be depended on when the amount of fluid is large. The cause of the difficulty depends not only on the large size of the head, and in some cases upon its extensive ossification, but on the loss of the proper cranial shape under pressure, and the consequent want of due mechanical relation between the head and the screw-like arrangement of the pelvis. The head passes through as a matter of brute force, instead of in the rotatory manner natural to the well-formed feetal head. There is not only difficulty as regards the actual passage of the head, but danger to the mother, in these cases. Left to themselves, such cases are almost sure to be attended by serious results. The uterus may be ruptured, or the vagina lacerated, by the force of the pains; or exhaustion may be produced. The head of the child, instead of preserving any definite relation to the pelvis, is jammed into the cavity, as insisted upon by Dr. Ramsbotham, so as to fill it equally in all directions. The irregular edges of the bones are liable to damage the soft parts, and numerous cases are on record in which inflammatory action, sloughing, and death have been thus caused. Occasionally, a spontaneous resolution of the difficulty occurs by the rupture of the head, and escape of the contained fluid, under the pressure of the pains. This happens more frequently when the fœtus is dead, and partially decomposed, than under other circumstances. Dr. Robert Lee, Dr. Simpson, and others have pointed out that in some cases there is not merely expansion of the head, but the cranial bones are greatly developed, and the sutures comparatively closed. Of course, under these circumstances the difficulties of delivery are greatly increased. Out of seventy cases collected

by Dr. Thomas Keith, he remarks the significant fact that the uterus was ruptured in sixteen. The mixture of solid and fluid pressure brought to bear on the os uteri and the vagina in case of hydrocephalic births, is perhaps greater than under any other

circumstances whatever. In five cases to which Dr. Lee was called in consultation, and which are related in his "Clinical Midwifery," the mothers all died, either from inflammation or rupture of the uterus; but he observes that, had perforation been performed sufficiently early, some or all of them might have been saved. In hardly any of the emergencies of midwifery is an early diagnosis and prompt action more imperatively called for.

The treatment of these cases is sufficiently simple, when an accurate diagnosis has once been made. We must evacuate the fluid when the size of the head is so great and the progress of the labor so slow, notwithstanding effective pains, as to lead to the conclusion that the case cannot be safely left to a natural termination. In many of these cases, the child is already dead, or dies during labor, in which case all scruple respecting craniotomy will of course disappear. When the life of the mother is in imminent danger, the perforation of the head may be more cheerfully performed than in almost any other cases, as the chances of living after birth are so slight, even when most favorable, that we cannot compare them with the life of the mother, to the extent we are sometimes warranted in doing when the fœtus is strong and healthy. Every care should be taken to make out such cases with accuracy, as it would be a grievous mistake to perforate the head of a healthy feetus, instead of a hydrocephalic child. Time should also be given to make the case clear, but without waiting so long as to endanger the serious injury of the mother. After the perforation of the head, the escape of fluid generally diminishes the size of the head to a greater extent than occurs in craniotomy under any other circumstances, and delivery is generally easy. Sometimes, the head is perforated for arrest, when hydrocephalus has not been suspected, when the sudden escape of the fluid gives the first indication of the nature of the case. Dr. Simpson suggests that the perforation of the head by a small trocar may be preferable to the use of the perforator and scissors, as by this means the fluid can be evacuated and the head diminished so as to render delivery possible, without necessarily destroying the child. also throws out the lint, that in pelvic presentations, in hydrocephalic cases, the fluid may be drawn off by opening the vertebral canal in any part of the spine.

Ascites is another form of dropsy to which the fœtus is liable, and which sometimes exists to such an extent as to interfere with labor. This may be confounded with tympanitis occurring in a dead child; but, as Dr. Fleetwood Churchill remarks, in tympanitic distension there is generally crepitation from the presence of air in the cellular tissue of the face and chest, when the head presents and has been delivered first, in such cases. Ascites may also be mistaken for excessive secretion of urine, and its retention in the feetal bladder, as pointed out by Depaul. The proper treatment in cases of ascites is, to puncture the abdomen of the fœtus and evacuate the liquid. This paracentesis should be performed by means of a long fine trocar. While speaking of ascites, it may be mentioned that, from adhesion or stricture of the urethra, the fœtal bladder may be distended to such an extent as to reach the scrobiculus cordis. Such a case could hardly be distinguished from ascites; and if this were possible, the treatment—that of puncture of the accumulation by the trocar, when it interferes with labor—is the same.

In connection with these forms of dropsy, we must discuss those cases of accumulation of serum in the serous cavities, particularly of the brain and spinal marrow, attended by deficiency of the bones, muscles, and integuments, forming Spina Bifida and which are sometimes so large as to interfere with the progress of labor. Dr. Meigs describes a case of dropsy of the head, combined with fissure in the posterior walls of the cranium, where the extra-cranial tumor was in its greatest length nine inches long. Ruysch relates one in which the tumor was as large as the head itself. I have seen a case in which the tumor was considerably larger than the head, and the subject of it lived until after the time of puberty, the cerebral development being very small. The head was carried forward, and the tumor rested on the shoulders in standing or walking. tumors may form at any part of the spinal column, but they are more frequent in the cranial and sacral regions than in other parts. When not of large size, they impede labor but little. In the case referred to by Dr. Meigs (Fig. 146), the head was born first, when, the tumor remaining above the pubes, the rest of the body was born by spontaneous evolution. After this, Dr. Rohner, the attendant, was able, by powerful traction, to bring down the watery tumor without injury.

When speaking of the development of the serous amnion, and of the serous cavities of the body generally, by the processes of

inclusion and separation of the various parts of the serous layer of the early ovum, I have mentioned that, in some cases, the same secretion of serum which is physiological in the amnion is apt to take place in the serous membranes of the young fœtus, when it becomes pathological, constituting the first forms of dropsy in the animal economy. All the serous accumulations we have now been discussing, in the brain, spinal marrow, and peritonæum, arise in this way, as the result of inflammation or erratic development, and are frequently found to exist in combination with dropsy of the amnion itself. In the case of serous tumors of the head and spine and other tumors in which the serous membranes are protruded externally, there is, in addition to excessive serous secretion, deficiency of the development of the bones, muscles, and integuments, all of which are developed from the primary serous layer. When there is malformation as well as serous tumor, the case is probably dependent on an error of development; where there is no malformation, inflammation of the serous membranes has generally existed, and the evidence of this is frequently found in post-mortem examination. [The attending physician should give a very guarded prognosis to the anxious friends as to the future condition of the child, as it is extremely rare for children with these malformations, either with or without any operation, to survive more than a year or ighteen months, fatal inflammation sooner or later ensuing.]

Teratology presents us with a number of monstrous combinations of twin children in which either two fætuses are fused together to a greater or less extent, or in which they are joined together without any great extent of organic union. There may be two heads with only two arms and two legs, the bodies being fused from the neck to the sacrum, or there may be the same extent of union with four arms and four legs; there may be one head and a large trunk composed of the fusion of two bodies, possessing four legs and four arms. In the case of two children perfectly formed or nearly so, but united at one point, the union may occur at different parts of the body. The foreliead or vertex of two children may be united. The union may be at the side, or at the sternum, or by means of the intestine only, at the umbilicus. The sacrum is another point at which union takes place in these cases. The union or fusion is always symmetrical. In accordance with that plan of development in twin cases, alluded to in the embryological portion of the present Course, it is only the same parts in opposite children that admit of union—that is, it is head to head, side to side, sacrum to sacrum, and never any heterogeneous union which occurs.

These cases are happily rare, and they present unusual difficulties to the completion of labor. It might seem impossible that, in such as that figured on page 537, natural delivery should be effected, did we not know that these monsters are not only born, but, as in the case of the Siamese twin, the African twin recently exhibited, and a number of other well-known cases, the double monsters have lived, and have even reached maturity. able circumstances must concur to enable double monsters to be born alive. The children must be small or premature, and the pelvis full-sized. But little is known of the mechanism of parturition in monsters. In the case figured, which is related by Dr. Meigs, spontaneous evolution occured. One head came down first; this was delivered, and became fixed against the pubic arch, when the body came down in the manner described when speaking of the process of evolution in arm cases, the second head being delivered last. Dr. Meigs points out that it can only be by this method that double monsters are generally delivered. Even when the feet present, and the union is at the sacrum or any part of the trunk after the delivery of the buttocks, the upper part of the body and head must descend by a

process of evolution. We do, however, know that, in twin cases, it happens at rare conjunctures, that the two heads, or the head

Fig. 147.

of one child and the pelvis of another, engages in the pelvis simultaneously. In such a case as the Siamese twin, it is impossible to conceive but that if a head presented in the first instance, one child must have been delivered down the point of union, when the rest of the same fœtus must have been delivered by a method similar to that of spontaneous evolution. Such cases afford the proof that, in some instances, both children may be born living, and viable. But in many cases on record, it has been necessary to diminish the child by amputation of the head and evisceration. Such cases are puzzling to the accoucheur in the first instance, and no rule of diagnosis can be given for them. The obstetrican must depend upon his general knowledge and resources for the detection and management of such cases. At first they must prove exceedingly perplexing, but they gradually reveal their true nature as the course of labor proceeds. The same principle must be followed in these as in other cases where, from disproportion, the living child cannot pass with safety—namely, delivery, destruction, evisceration, and mechanical delivery of the remnants of the twin monster. The law takes the same cognizance of monsters as of normal children. In destroying the fœtus we must not at all take the fact of the monstrous birth into consideration, save in so far that it becomes an additional difficulty in delivery, and a greater probability than usual that natural delivery cannot possibly be effected. When women have been delivered naturally in such cases, great suffering, and subsequent inflammatory disorder, have been recorded. The possibility of using the forceps, as an aid to delivery in such cases, can only be decided on by individual peculiarities; certainly no rule can be laid down.

The different forms of Ectopy, in which, from faulty development of the parietes of the body at the mesial line, organs that should be internal are external, in the rare cases in which they occur, sometimes complicate labor. In cases of Exomphalos, when the liver or intestines have protruded through the umbilicus, the tumors have been met with of very large size. Large bulk of the child, without disproportion, is a common cause of difficulty. The average weight of the mature fœtus is, as remarked by Dr. Rigby, from six to seven pounds; but he refers to cases occurring in the practice of Dr. Merriman, Sir Richard Croft, and others, in which the fœtus weighed fourteen, fifteen, and nearly eighteen pounds at the time of delivery. When, in these cases, the bones of the head are ossified as much as usual, the difficulty is often very great. The largest children I have met with in practice have been in cases where, from pendulous abdomen, the fœtus had been retained beyond the full term, and where the difficulty of labor had been increased by weakness of the abdominal action during labor. The obstruction produced by increased bulk may be in some degree estimated by the fact that the slight difference between the size of the male and female at the time of birth greatly increases the rate of mortality, in the case of males, both to the mother and child. In extremely rare cases, the whole of the articulations have been ossified to such an extent as to interfere with the passage of the child. Sometimes the cranial bones are prematurely ossified, so that the bones are as firm and the sutures as consolidated at the time of birth, as they should be at four or five years of age. From cases of this kind which have fallen under my

observation, I suspect that this may be one cause of idiocy, by mechanically preventing the development of the brain.

In twins there is generally considerable difficulty and delay in the birth of the first child. The presence of the second fœtus causes the uterus to act upon the first at a great mechanical disadvantage. Labor in twins and triplets in the human female, is somewhat similar to delivery in cases in which animals bring forth several young at a birth; but, as I have formerly remarked, there is not in the uterus and vagina of the human subject the same facilities for the descent and expulsion of successive children. In some cases, shortness of the funis, or twisting of the cord round the fœtus, forms an impediment to labor. Naëgelé and some other authorities have doubted that shortness of the cord can act in this way. Plenty of cases are on record, however, in which difficult labor occurred in connection with shortness of the funis. If the cord, as is sometimes the case, is only so long as to suspend the fœtus in utero, there must be a difficulty in expelling the feetns, even if the fundus uteri follows the child, since the fætus is curved and bent in utero, but is extended during its way through the maternal passages. Dr. Rigby relates a case in which the cord was little more than two inches long, and in which it was ruptured during the birth of the child. Probably shortness of the cord is a predisposing cause of inversion of the uterus. Rigidity of the membranes is a common but easily remediable source of delay in labor. They are, however, sometimes so tough, that no efforts of the uterus can rupture them, and they require artificial puncture. We are in want of some efficient instrument for puncturing the membranes, as the finger-nail is a very clumsy and sometimes embarrassing method, besides that the scalp of the child sometimes gets damaged by its use. Probably an instrument constructed on the principle of that used for puncturing the membrana tympani would be the best that could be devised for this purpose.

Dr. Simpson mentions a condition of the child depending on accidental misplacement of the arm, which offers a considerable impediment to labor, and which he supposes may not be an uncommon cause of obstructed labor. In the displacement referred to, the arm of the child, instead of resting on the ster-

num, is turned round the back of the neck. It would be well if accoucheurs meeting with such cases should put them on record.

Accidental displacement of the arm.

LECTURE XXXVII.

POST-PARTUM HÆMORRHAGE.

GENTLEMEN:—There is scarcely an occurrence in the whole range of obstetric practice more alarming or dangerons than Flooding after the Birth of the Child. This tragic complication of labor often happens, too, when the patient is supposed to be free from danger, and when the accoucheur, fatigued by a long attendance, is congratulating himself upon the completion of his duties. There can be no contingency in which the life of the patient depends so completely on the coolness, decision, and promptitude of the attendant. Nothing, indeed can more thoroughly tax his highest skill, and the whole of his resources, than the spectacle of a woman in imminent danger of death from this form of hæmorrhage.

Let us, in the first instance, consider the circumstances under which patients are predisposed to this accident. The Chief Sources of Flooding-namely, the open mouths of the veins on the internal surface of the uterus, from which the placenta has been separated, have already been pointed out. It has also been shown that the great natural defence against hæmorrhage lies in the efficient contraction of the uterus after delivery. Whatever tends to enlarge the venous openings or to prevent the contraction of the whole organ, necessarily tends to the production of hæmorrhage. Thus, a large placenta, from the greater size of the intero-placental vessels, gives the tendency to flooding. For the same reason, post-partum flooding, after delivery at the full term, is far more dangerous than hæmorrhage occurring after premature labor. The circumstances which interfere with efficient uterine contraction after delivery, or produce inertia, are many of them the same as those which lead to powerless labor. Post-partum hæmorrhage is, in fact, one of the sequelæ of uterine inertia. Amongst these circumstances are, a general relaxed

habit of body, weakness of the abdominial muscles, and umbilical hernia. Such conditions are frequently found in the greatest degree, in women who have resided in tropical climates. They occur also in women who have borne large families, as explained when treating of uterine inertia. The uterus often flags when labor has been long delayed from any cause, whether the womb be simply inert, or worn out by prolonged action. Thus the organ frequently refuses to contract after labors in which the forceps or craniotomy have been required. The same result may spring from exactly opposite causes. After a very rapid labor, or after the extraction of the body immediately upon the birth of the head, the uterus may suddenly fall. has not been fully and gradually roused to that powerful state of contraction which insures the safety of the mother after delivery; or, too suddenly becoming empty, it refuses to contract, just as we sometimes witness to be the case after the sudden evacuation of the liquor amnii. I have pointed out that in labors occurring in women suffering from albuminuria the womb often remains flaccid after delivery to such an extent as to cause dangerous hæmorrhage.

The Symptoms of Post-partum Hamorrhage are those which belong to the uterus itself, and those arising from the effects of loss of blood. The hæmorrhage may occur before the expulsion of the placenta, and immediately after the birth of the child, the placenta being detached, but remaining in utero, or in the vagina; or it may take place only when the after-birth has been expelled. The most sudden and profuse losses are those which occur when the placenta, having separated without being expelled, distends the uterus, and enlarges the area from which the blood escapes. The first sign we have of hemorrhage may be a gush from the uterus, and the accoucheur first learns the contingency he has to deal with, by hearing the plashing of the blood upon the floor. I may here mention a circumstance which sometimes alarms us unnecessarily. In cases where the head of the child has so accurately fitted the passage as to act as a ball-valve, the principal part of the liquor amnii remains, and gushes out after delivery, mixed with the blood effused from the separation of the placenta by the pains which have expelled the child. When the hot stream comes upon his hand the accoucheur may suppose it to be hæmorrhage, but the eye soon distinguishes the real state of things. Where the gush of blood is enormous, and occurs immediately after delivery, the uterus and vagina are dilated, and there being no impediment to the free escape of blood externally, the clothes of the patient and the bed are drenched with blood. Sometimes the mischief is hidden, and an immense quantity of blood may escape from the uterine vessels without any discharge externally. The body of the uterus is dilated, but the os is contracted, or plugged with coagula, and the blood accumulates in the uterine cavity. Under these circumstances, the organ remains in a state of persistent atony, not the slightest effort at contraction is made, and as a muscular organ it is in a perfect state of paralysis or death. When the abdomen is examined by the hand, the womb is felt to be large, soft, and flaccid, and altogether unlike the dense organ in a state of normal contraction. In other cases, the hæmorrhage may be intermittent. There is marked relaxation of the uterus, followed by intervals of contraction. During the state of dilatation, little or no blood appears externally, but gushes of blood or coagula take place every time the uterus contracts. In such cases, the uterns is felt externally to be in a state of alternate relaxation and contraction, the contractions, especially, being attended by severe pain. Sometimes great agony, without efficient muscular contractions, is felt while the uterus is being distended by coagula. There are yet other cases in which the uterus contracts moderately, but in which there is a constant and dangerous oozing of blood. It has been said by some authorities, paticularly by Gooch, that hæmorrhage may coexist with powerful contraction of the uterus. But this is not to be received without reservation. In such cases there is generally a retention of some portion of the placenta. With the cavity of the uterus free and uninjured, and continuous contraction present, dangerous hæmorrhage from the venous sinuses is a mechanical impossibility; and it weakens our faith in the great means of arresting hæmorrhage, to believe that contraction and hæmorrhage may occur together, save under exceptional circumstances. Fullness of the circulation was supposed to be a cause of hæmorrhage, the blood escaping in large quantities from the exposed extremities of the uterine arteries, after the entire or partial separation of the placenta; and bleeding from the arm was advised and practised as a remedy, under the idea of

diminishing the momentum of the current from the heart. Such cases rarely, if ever, happen to such an extent as to cause uneasiness, at the present day, and few persons would now dream of venesection in post-partum flooding. If such a remedy could be necessary, it is too surely in operation, from the hæmorrhage itself. Minor hæmorrhages may occur from limited lacerations of the os uteri, the vagina, and the perinæum, but these are seldom, if ever, attended by danger. Occasionally, flooding occurs to a considerable extent some hours of several days after the completion of delivery. When this occurs, it is probably similar to the losses which occur in menorrhagia. After labor, as formerly shown, the whole of the decidua is thrown off from the internal surface of the uterus, leaving a large surface from which the blood constituting the lochial discharge exudes. We can easily understand that profuse lochial flooding may occur, when we consider the larger superficies of the uterus after parturition, and that its internal surface is in much the same state as that which obtains during menstruation. The tendency to loss of this kind is necessarily increased by flaccidity, or large size of the uterus. This condition, or the detachment of portions of placenta which have remained in utero, gives rise to the floodings under consideration. In the cases where the lochial discharge has continued for several weeks after delivery, I have found the loss to depend ou laceration or abrasion of the os uteri. and the blood exudes chiefly from the surface of the os and cervix, as in the majority of cases where the spurious menstruation of pregnancy exists.

The Effects of Loss of Blood are most appalling to witness, and would require a dramatic pen to do full justice to their portraiture. In the most formidable cases, the great mass of the blood may be withdrawn from the body in the space of a few minutes. The woman may suddenly fall into a mortal syncope, from which she never recovers. When the effects are more gradually induced, the pulse fails, or is not to be detected in the limbs; the respiration becomes gasping and diaphragmatic, the patient crying wildly for air; she loses her sight, and complains that everything about her is dark. Sometimes jactitation is present, and she tosses her arms and limbs about wildly, and with such violence, as to exhaust her remaining strength; at others, she manifests an almost irrepressible desire to sleep, when, if per-

mitted, her repose would be the sleep of death. Vomiting frequently occurs; sometimes convulsions are produced; the surface of the body, especially the extremities, are cold, and bedewed with sweat, and a pallor which exceeds all others, and which may be termed the Puerperal Pallor, almost represents death itself. The symptoms I have mentioned, if permitted to continue, are the sure evidences of a state of the utmost peril, or the harbingers of dissolution itself. When the patient perishes, it is either from successive syncopes during the course or after the arrest of the hæmorrhage, or she dies by the process of gradual sinking some hours after labor. The danger of the patient must be estimated from the symptoms as much as from the amount of blood actually lost. Some women die after a very moderate loss, while others bear an immense flooding, and recover with great rapidity.

The first point in the management of post-partum hæmorrhage relates to its Prevention. Where there have been any circumstances connected with the labor, which leads us to fear hæmorrhage, one or two doses of ergot should be given during the last pains which expel the child, or immediately after its expulsion, and before the extraction of the placenta. This plan should always be followed in cases where women have suffered from flooding in several successive labors. Immediately after delivery in suspicious cases, the hand should be placed upon the abdomen, and kept there until efficient contraction is felt to have taken place. An abdominal bandage should be placed lightly round the body, before the completion of labor, so as to have it ready if necessary without disturbing the patient. tal position should of course be strictly preserved. Sleep immediately after labor, should not be permitted, and the vulva should from time to time be examined, to learn the amount of discharge. As soon as the uterus is found to have contracted, the abdominal bandage, with a compress of two or three folded napkins. should be applied. I have known cases where I have been obliged to attribute a fatal result from hæmorrhage to the neglect of bandaging after delivery.

In the **Treatment of Post-partum Floodings**, we have two things requiring instant attention, one being the arrest of hæmorrhage by uterine contraction—the other, the sustentation of the patient under the immediate effects of loss of blood. As I

have pointed out in my work on Parturition, we have a good many powers to appeal to for inducing uterine contraction. There is the reflex contraction of the uterus, as when we dash cold water upon the vulva or abdomen. There is the direct spinal excitation of the uterus, when we act not upon the excitor nerves of the surface of the body, but upon the spinal marrow itself—as when we give ergot. There is the peristaltic action of the uterus and the contraction depending on muscular irritability of the uterus itself which we call into operation when we manipulate the uterus, or excite it by galvanism. We can also imitate contraction of the uterus, to some extent, by mechanical compression; and we can exert pressure upon the great vessels through which the blood is poured into the uterus before it escapes from this organ.

In practice, and in the worst cases, the uterus should be grasped and held firmly by the hands, through the abdominal parietes. This excites the peristaltic and reflex action of the uterus, and compresses the organ mechanically. When the uterus is got well under control in this manner, flooding to any extent is impossible. Several doses of the ergot should be administered in quick succession, and cold-or, if in summer, iced water should be dashed upon the vulva and abdomen. Douching with a wet towel, or a stream of water from a height, upon these parts, is very effectual in rousing the nterus to contraction. The time during which it is necessary to grasp the uterus is often very considerable. When these means fail of entirely arresting the hæmorrhage, the hand should be introduced into the uterus, and the internal surface excited by the knuckles of the closed hand. I have not the same dread as many accoucheurs have of introducing the hand into the uterus, and, as I have once or twice insisted on in these lectures, I believe, in the present day, more mischief is caused from a kind of fear of the uterus, and of interfering with it, than from bold and intelligent efforts to control it. The hand should always, if possible, be washed before its introduction. With the hand in the uterus, it becomes more easy to grasp and compress the organ. As an addition to the introduction of the hand, where the uterus is felt to be in a state of atony or paralysis, I have injected cold or iced water, in a full stream, into the cavity of the organ, and in this way I have several times rescued women from an apparently hopeless

condition. I have had no experience of the effects of galvanism in post-partum flooding, but where there was time to bring it into operation, I should have no doubt of its power. With respect to the modes of using reflex action for the arrest of hæmorrhage, it should be mentioned that cold and heat, alternately, are more efficacious than cold continuously used, even when we inject into the uterus itself. It should also be borne in mind that cold is a powerfully depressing agent, and should not be used to such an extent as to weaken the patient. When one reflex surface is exhausted, we may often appeal to another with great effect. Thus, when cold to the vulva and abdomen has been used so long as to lose its effect, cold sprinkled on the face, swallowing a gulp of cold water, giving the patient a piece of ice to hold in her hands, an enema to the rectum, will excite reflex uterine contraction. Whenever coagula collect in the vagina or in the uterus, they should be turned out by the hand. Clots are a source of great irritation, and their presence tends to keep up hæmorrhage. Their removal alone often suddenly relieves the patient of severe spasmodic pain, and stops all loss of blood. In cases of hæmorrhage, where the placenta is only partially separated, or where it is detached from the uterus, but retained in its cavity, the placenta should always be separated and removed, as early as possible. practitioners have recommended, under such circumstances, that we should wait a little when the patient is much exhausted before removing the placenta, on the ground that the operation itself, and the removal of the mass of the placenta, tend to produce syncope. We may wait an instant, while we pour some brandy down the patient's throat, but I have seen much mischief from delay beyond this, and never any harm from immediate action. We can make up for the removal of mere mass by external pressure, and every inch by which we reduce the size of the womb increases the patient's safety. Pressure upon the aorta and inferior cava has been recommended by many authors. In extreme cases, transfusion has been advised, and, when other means fail, I should have no hesitation in recommending and performing it. Some time ago, a lady was under my care in whom transfusion was performed successfully by Mr. Soden of Bath, and from the nature of the case, I have no hesitation in stating my belief that the operation saved her life. This measure seems particularly suited to cases in which

patients are slowly dying by the process of syncope, some hours after hemorrhage has ceased.

[Hæmorrhage occurring after the Birth of the Child, I divide into two classes, the first ending with the delivery of the placenta, and the second embracing the floodings after the placenta has been expelled. In these two classes are included the hæmorrhages most commonly found in practice.

There are a small number of females who are peculiarly liable to uterine hæmorrhage, and who always commence to flood as soon as the child is born. There seems to be with them some peculiar nervous distribution to the uterus, which prevents this organ from immediately responding to its new condition. The pains have been powerful and effectual, for a longer or a shorter time, till the child has been expelled. Up to this period there seems to be no want of contractibility in the organ, and as the head advances, and the child is expelled from the cavity of the womb, the womb contracts upon it, and is gradually diminished How is the case usually conducted in practice? As soon as the head is expelled, the anxious attendant begins to fear that every moment the hæmorrhage will commence, and impetuously seizes upon the expelled portion and pulls away for dear life, although without much regard for the life of the child, from the danger of rupturing the ligaments of the cervical vertebræ and the spinal cord. In great haste, therefore, the child is extracted, and sure enough the hæmorrhage commences just as was expected, and the physician congratulates himself that the child is out of the way. But the placenta is still there, and this he also forcibly delivers. Still the hemorrhage continues, and the case soon becomes one of great peril to the mother, anxiety to the physician, and horror to the surrounding friends.

The cause of all this, is the bad practice of the attending phy:

sician, in very many cases.

The labor went on well enough as long as it was left to itself. Then why not continue? "Meddlesome midwifery" does not mean solely in applying forceps, using the vectis and Smellie's scissors. On the contrary, there is more "meddlesome midwifery" in the practice of many gentlemen who never touch an instrument. It is especially illustrated in the case just narrated, not solely from imagination; for such practice I have myself seen and heard of.

The contractions of the uterus and its diminution in volume, as I have before stated, goes on regularly so long as the child advances towards birth, and as the head passes through the superior, middle, and inferior straits. While it rests upon the perinaum, and even when entirely expelled, we have no flooding. How then shall we proceed to continue this desirable state of things? And this is the great point to be especially noted in the treatment of these cases. IMITATE NATURE, as she has already manifested herself, or rather LET NATURE ALONE. Instead of frantically scizing hold of the head and pulling like a madman, sit down quietly and wait for nature to finish a work she is abundantly able to perform, and which she has so far ably and effectually accomplished. From some idiosyncrasy the uterus is unable to effect a speedy contraction, and time is necessary. Let it take its own time, and yours likewise. Patiently wait, not only till nature has expelled the shoulders, but the hips also, and do not think of lending a finger's strength towards completing the delivery, so long as any portion of the child remains within the uterus. Every onc knows that it has long been recommended to introduce the hand into the uterus to arrest flooding, by the stimulus of its presence. Does not the body or legs of the child do this work as effectually as the hand of the accoucheur?

In this method I have treated very many cases: one, a lady several times confined in England, and once by the late Dr. J. Kearney Rodgers. In every confinement she had bled profusely. At this labor everything was prepared for a similar scene of doubt and danger. I administered a half ounce of the tinet. of ergot as soon as the head pressed upon the perinaum. It was soon expelled. I then repeated the dose, and in from ten to fifteen minutes the uterus itself, by repeated contractions, expelled the child in safety, and not a gill of blood was lost.

A case very similar to this occurred, where in several previous labors the hæmorrhage had been profuse, the attending physician was arrested in his desire to deliver the child immediately, and forty minutes suffered to elapse after the head was delivered before the child was wholly taken away from the mother. The child was purple in color from the influx of blood into the head producing temporary asphyxia, but subsequently did well, while the mother had no flooding of any account—the perineum only showing a slight flow, not amounting to a hæmorrhage.

Sometimes, however, the energetic, spasmodic action of the nterus does not permit the delay, giving no time for the uterus to contract firmly upon itself. In the case of the wife of a member of the Academy, who flooded after every labor to a really frightful extent, the uterus violently contracted until the child was completely expelled, and then relapsed into a state of inertia, accompanied by most profuse hæmorrhage.

It is the duty, therefore, in all such cases, to do as little as possible to assist the delivery in this last stage, and particularly

when subsequent flooding is to be expected.

In cases of Abortion, when the means already proposed in such cases do not arrest the abortive action, if the flow of blood be great, it is advisable to give large and repeated doses of the secale cornutum, in order not only to stimulate the uterus to a more speedy discharge of its contents, but also to press the fœtal head, or presenting portion, strongly against the opening os uteri, and thus to act as an internal plug. Should, however, the flow be excessive, in addition to this treatment it may be advisable to tampou the vagina. The best means of doing this, is by the colpeurynter as described on page 180. This may the more appropriately be done early in the flow, when the firm and slightly dilated os uteri evinces that some time must elapse before the contents can be expelled. In these cases it may frequently be well to pass a piece of alum into the vagina before using the tampon, to assist in the coagulation.

It should be remembered that the bleeding in these cases is especially efficient in relaxing the cervix, often a tedious and painful process, and that the hæmorrhage to be particularly dreaded, arises in an after period from the retained placenta, of

which I shall speak in its proper connection.

I, not unfrequently, as the head passes the vulva, and particularly when there is any fear of flooding, give a half ounce of the tinet. secale cornutum, as a precaution against flooding, and not as an adjuvant to the labor. The alcohol acts as a general stimulant, and the ergot tends to insure a permanent contraction of the uterus.

When the child is delivered, then, not unfrequently, a flow commences from the uterine surface to which the placenta was attached. The first aim is to secure uterine contractions. It is worse than useless to deliver the placenta, if this is not effected; for if this is done, instead of a few sinuses left open and bleeding, there remain those of the whole placental surface, and the flow is thereby very much increased.

The uterine action should be excited by the administration of ergot in full doses; (I have, not unfrequently, given zvj. of the tincture in the course of an hour, and from which no injurious effect can be expected); by firmly grasping the uterus through the parietes of the abdomen; abdominal frictions; ice to the abdomen, alternated with cloths wrung out of hot water or the cold and hot douche alternated: these, one or all, will soon produce a temporary, if not permanent, contraction. During this period the placenta should be delivered. If requisite, the hand should be introduced, and the placenta seized, and, with as little force as possible, removed. The uterus should be suffered to do this action by its own expulsive force.

There is much said about Placentas being Attached to the Uterus, adherent placentas, etc. While I am far from doubting this condition of things to sometimes occur (as in the case of a woman kicked in the side, by name Conretty, which came under my personal knowledge at the Boston poor-house, in 1844), I am inclined to think it a rare occurrence. Every placenta is adhesive, and I defy any one, in a uterus at its full distension, to peel one off from the uterine walls. The placenta is always adherent until the uterine contraction slides the uterus away from its surface, leaving it free. When, therefore, the hand is introduced and an "adherent placenta" is discovered, it is but another method of stating that the uterus is found but partially, or not sufficiently, contracted to have detached the placenta.

The texture of the placenta is of various characters. Sometimes we have one firm and tough. These can be torn off, with sufficient force, provided a border or an edge be found detached upon which to lay hold, or the uterns may be excited. Sometimes they are soft and pliable, when they are easily torn in pieces. Occasionally a small portion remains attached to the sinuses of the uterns, too small for the uterus to act upon as a foreign body. Great injury has, not unfrequently, been done, by attempting to detach this insignificant portion, under the idea of present hæmorrhage and future inflammation to ensue from its presence. The fact is, that in such a case no blood flows through the placenta, for the character is so changed as not to be able to

perform this office. Indeed, I do not think there are many except Dr. Simpson, who imagine that a hæmorrhage from the placenta ever occurs but from the uterine walls, from which the placenta has been removed: no blood can flow from the uterine sinuses, for they are firmly plugged by this remaining piece of placenta, so firmly that the plug cannot be easily removed; no hemorrhage can, therefore, ensue, unless it be from the neighboring sinuses left patulous by the removed portions of the placenta. But if the remaining piece is small, it cannot interfere with the contraction, which will close up the open mouthed vessels, and thus there will no bleeding ensue from the presence of this small portion remaining.

The only ill result that can therefore occur will be the subsequent inflammation. In general this small portion will speedily be detached and discharged by the after-pains—at any rate it cannot be considered to be so fruitful a cause of subsequent

inflammation as the forcible attempts to remove it.

It is frequently very difficult to know whether or not the whole placenta is delivered. From the irregular contraction of the uterus there frequently appears to be a portion remaining, when in reality the suspected part is the internal surface of the uterus, somewhat rough where the placenta had been attached. In the case of a lady, to whom I was called at the request of the attending physician, a few months since, confined with a premature five months child, the os was rigid five minutes before the child was expelled. It suddenly opened, expelled the fœtus, and as suddenly closed, retaining the placenta within. When I saw her, the after-birth was partially delivered, in a mangled state, and when I removed the remainder (with much difficulty passing my hand within the cavity of the uterus), it was impossible to say whether it was all delivered or not. Interiorly the sensation to the hand indicated that a portion remained, but concluding that it was but a part of the uterine surface, I let it alone; the hæmorrhage ceased, and no inflammation occurred, as undoubtedly there would, had I attempted to remove this real or supposed portion.

This state of things is of not unfrequent occurrence in abortion and miscarriages. The uterine efforts force through the firm and imperfectly dilated os, the yielding fœtus, adapted by its shape to make an easy exit. When this occurs, the placenta

is very generally left behind. Its broad, flaccid mass, resists the attempts of nature, not only to dislodge it, but to force it through the rigid and narrow opening. It, however, not unfrequently succeeds, so far as to separate a portion from its uterine surface, and thus to cause a continued hæmorrhage. The feeble cord is, in the vain attempt to remove it, broken off, and the protruding membranes offer but a feeble hold by which to extract the bulky placenta.

In these cases, it is generally recommended to securely tampon the vagina, and to trust to time for the result. The action is the formation of a clot, thus arresting further hæmorrhage, and the leaving the placenta, either to be expelled from the uterus by the further softening and enlargement of the os uteri, assisted by the normal contractions of the uterus, or stimulated by ergot; or to be decomposed, and thus flow away, or be absorbed.

It may readily be seen that there are many risks to which the patient is exposed, from this treatment. First, the clot intended to restrain further flow, will not be formed until the cavity of the vagina (which is always, no matter how thoroughly plugged, capable of containing more or less blood, perhaps an ounce or two only, but still enough to be often worthy of serious consideration), is filled. Next, the cavity of the uterus will not unfrequently, continue to receive blood, and often to a very great amount—the uterus may be considered capable of expanding to the size to which it had attained when the labor commenced. In an abortion at two or three months, this quantity will not be very large; but if the patient has previously lost any considerable amount, this is deserving of special attention.

The tampon, therefore, is to be considered a very valuable means of arresting hæmorrhage, in cases of abortion when the patient has not previously flooded, but one of doubtful utility if the hæmorrhage has been profuse, and rarely if ever to be used in any form of hæmorrhage at or near the full time, after the child has been delivered. From the very fact of the tampon shutting the vagina, we are prevented from ascertaining the actual condition of things from time to time, and the result is an entire ignorance whether the continued prostration, the occasional faint feelings, dizziness in the head, tinnitus aurium, etc., be

caused by a continued hæmorrhage, or be but the results of the derangement of the circulation, from the previous great loss of blood, or nervous irritability.

The subsequent ill results from the use of the tampon need not here be enlarged upon. It is only necessary to allude to the uncertainty attending its final removal, and the fear of irritation or inflammation attending its too long use; the danger of renewed hæmorrhage from its too speedy removal; the liability of uterine inflammation from the presence of a foreign body, the placenta and clot in the uterus; the chance of phlebitis from the absorption of pus, etc.

It is on this account that writers and practical men of late years have urged the immediate removal of the placenta. In abortions and miscarriages at an early period, generally there is little fear of a want of uterine contraction following. It is not the danger arising from this plan, but the difficulty of effecting

it, that has prevented its general adoption.

How shall the small and fragile placenta be seized hold of and withdrawn? Some have recommended the introduction of one finger into the uterus, and bringing down one edge of the placenta, and twisting it round and round, not only thus to detach the entire mass, but to also so shape it that it may the more easily pass through the os. Where this can be done, by all means do it! But it should be remembered that in the great mass of cases, it is impossible to reach the os so as to pass one finger into its cavity, far less to effect any good result, if it arrive there, to say nothing of the utter impossibility of aiding the finger with the thumb of the same hand.

I have, however, effected the desired result, as already reported (American Medical Monthly, September, 1854), in one case, by passing a small pair of polypus forceps (cut, page 196) through the os, and thus seizing the placenta, twisting it round, and by one or more operations of this sort completely detaching it and bringing it away. This operation I conceive to be the true method of treating these cases, particularly those in which a few more ounces of blood are to be feared as liable to be fatal. The tampon may be used if early applied, and where the pregnancy had not advanced more than three or four months, but never afterwards, unless as a temporary resort, while fitting instruments were obtained.

In cases of **Flooding at or near full time**, when the afterbirth is retained, I have said that after uterine contractions are obtained, the placenta should be speedily delivered, and if necessary, by introducing the hand. When the hand is introduced, especially if cold, uterine action will take place, very generally. But it should be especially remembered that the placenta is not to be violently torn from the uterus, and removed, unless there be uterine action sufficient to indicate to the operator that the uterus does and will fully contract, lest by so doing new sinuses be laid open, and fresh and increased bleeding be the result. Neither should the hand be removed until the uterus contracts down upon it as it recedes.

Some operators have recommended that a fresh lemon be introduced with the hand, and crushed within the cavity of the uterus, that its acid might act as a local stimulant. Others advise the injection of a large quantity of cold water. I have never personally used either of them, but while I may allow them merit as adjuvants, they cannot be used to the neglect of the plans and treatment I have already stated. I give it with the more confidence, from the fact that, although having had some experience in troubles of this character, I have never had a patient die, either from the immediate or subsequent effects of hæmorrhage from the uterus, accompanying labor.

Whether, therefore, the hæmorrhage proceeds from the placenta—as a very few state—or from the uterine walls, from which it has been torn—as is the general opinion—the facts observed by Dr. Mackenzie and others, in their experience, and in experimentation upon the lower animals, all unite in the propriety, aye, the absolute necessity, of removing the placenta. To this I have added some important points, as they seem to me, to guide in performing this serious operation.

But the hæmorrhage is not always arrested by this delivery of the placenta, and sometimes, when this is effected naturally, the hæmorrhage commences for the first time—how is this to occur, and how shall we meet its exigencies?

It occurs either from a want of or an irregularity in the character of, the uterine contraction, in the first place, and secondly, from a mechanical impediment to the closing of the uterus and a consequent hæmorrhage from the patent mouths of the uterine vessels.

The uterus, not unfrequently, seems to have lost its power and is unable at once to contract persistently and effectually. Its nervous energy is wanting. One seizes it with the hand through the abdominal walls, and it is hard and like a ball under the grasp, but in a few moments it is felt getting softer and softer, and finally the firm mass is not to be found. It seems to have eluded the grasp, but it has only dilated again, again by more external irritation to recontract. But with every dilatation its cavity is filled with blood, and with every contraction the gush is perceptible externally! Whence is this? And what is to be done?

Sometimes a firm contraction is felt, and yet the hæmorrhage continues. This may arise from the hourglass contraction, which occurs alike after the placenta is delivered as before.

This irregularity of contraction is developed in different localities; more frequently, indeed, does it occur from the abnormal action of the circular fibres of the utcrus, which, by their exclusive operation, cause that form known as the hourglass; but this same irregularity is manifested also upon the portion below and upon the neck, and thus causing a concealed internal hæmorrhage, by the flow of blood being thus prevented from escaping externally and being perceptible. This form is particularly dangerous, on account of its subtile progress—not unfrequently the patient is dead before anything is known of it.

In December, 1852, I delivered Mrs. Mason with forceps of a living child, and she was safely put to bed, and I remained with her about an hour. Happening to pass by about an hour afterwards, I found that she was complaining of a disturbance of vision, and of hearing water boiling. I was informed that she had not had the least bloody discharge, and that these symptoms had come on after a slight vomiting. On examining the abdomen, the uterus was found much distended, as was afterwards known, with clots of blood. This was properly attended to, and she subsequently had no further hæmorrhage. Many similar cases might be mentioned, for they are sufficiently common to have been noted by every practitioner.

It remains now for me to mention the remaining species of uterine hæmorrhage, and that is where it is kept up from the presence of a mechanical impediment to the contraction of the uterus. This occurs in the following manner:

When the placenta is expelled from the uterus, some small clots remain, and the uterus, not being immediately contracted, the flow continues until a considerable clot fills the cavity of the uterus. When once this occurs, it is almost impossible for any amount of uterine contraction to expel it. It is not a plain, round, smooth mass, but its surface is closely adherent to the nterine parietes. Every one has seen with how much force the blood drawn into a bowl adheres to it, so that the vessel may be everted without disturbing its contents. This adherence is equally strong to the uterine parietes, and far more extensive. In addition to this, upon the surface to which the placenta was attached, the clot is prolonged into the nterine sinuses, constituting so many firm bonds of adhesion. The strength of these clots is only fully appreciated by those who have attempted to remove them.

Now in all these forms of hæmorrhage, occurring after the delivery of the placenta, but one course of **treatment** is called for. The hand should be passed into the uterus. In the first place its introduction will overcome any irregular contraction, for it should be passed through the hourglass, or any other irregular contraction, until it arrives at the fundus. Next, its presence as a foreign body will stimulate the uterus to expel it, and by so doing effect the desired result. Finally, with the hand we should break up the clots, and sweep them all out of the uterus and vagina. The uterus will then contract down to its proper size. It is then to be retained in that position, by the hand external to the abdomen, by the administration of ergot, etc.

The importance of this method of treatment is not generally acknowledged by practitioners, especially in the last form of hæmorrhage mentioned. Many hesitate upon breaking up these clots, which must be done again and again, as fast as they may form. It appears to many that a clot always serves to arrest a hæmorrhage, and so it does in perhaps every instance except in the hæmorrhage from the uterus after the delivery of the placenta. In this case, as I have attempted already to show, the bulk distends the uterus, and thereby forces open the uterine vessels which are closed, by withdrawing the clot, and the consequent contraction. It should be remembered, and it is generally lost sight of by the physician in his anxiety, that the patient is as thoroughly bled, whether the blood be drawn into

a bowl, is received into the bed-clothes around her, or is clotted in the cavity of the uterus.

A most marked instance of the great importance of this method of treatment, occurred in a case in which I had been called in consultation, in consequence of some difficulty occurring in a breech presentation at a first delivery. The patient, a young woman, had been long ill, with intermittent fever, had an enlarged spleen, etc., and was delivered of twins, both breech presentations. Some ten minutes after the labor was finished, and she had been carefully bandaged, etc., our attention was particularly drawn by a sudden vomiting, almost coincident with which a gush of blood from the vagina was heard. Ergot was given, cold applied to the abdomen, and contractions brought on to such a degree that the uterus was hard and firm under the hand, but larger than when it had contained the placenta. The contraction continued persistent; still she was faint, almost pulseless, covered with a cold sweat, and at intervals much worse. It was evident that the hæmorrhage was continuing internally, although none escaped. But one duty remained. Introducing the hand, I swept out every clot, the uterus contracted to a proper size, no further hæmorrhage ensued, and the patient was saved, who, by any other mode of treatment, would have been lost.

Compression of the Aorta, as a means of arresting uterine hamorrhage, is a form of treatment often more theoretical than practical, and where, from the thin habit of body, it is practical, it is of less value than would be supposed. In the cases where I attempted to put this suggestion in practice, I have found little benefit from it.]

During the continuance of uterine hæmorrhage of any kind, no stimulus is so useful as brandy. In post-partum floodings, especially, immense quantities may be taken with the utmost benefit. It is a misfortune that in some cases there is such an amount of gastric irritability that all stimulus and support is rejected by vomiting. This sometimes happens in hysterical subjects, the hysterical element persisting even in the act of death itself. In such cases, small quantities of brandy or beeftea should be given. The patient should be kept with the pelvis raised and the head depressed, the object being to retard flooding, and supply the circulation of the brain. I have found

from experience, that less tendency to syncope is present when the patient lies on her left side than in other positions. Fresh air should be supplied, as by fanning and open windows, and the patient kept with as little movement of the limbs as possible. After the cessation of hæmorrhage, when the effects have been severe, the patient should not be moved at all for some hours after labor, and she should not be allowed to stand or to sit up during defecation or micturition, for many days, or even two or three weeks, after labor. Many patients have died suddenly from exertion of this kind taken before they had sufficiently recovered from the loss of blood. When patients have been very much reduced by hæmorrhage, considerable discretion is called for in the introduction of food and support into the system. We must not, on the one hand, push too much nourishment rapidly, otherwise we distend the weakened vessels, and may incur the risk of apoplexy; or, on the other hand, starve the patient, or we perpetuate the state of anemia.

There is an after-train of symptoms arising from loss of blood, consisting of reaction, particularly affecting the heart and brain, which to some extent imitates active disease. There is violent palpitation, acute pain in the head, violent throbbing of the carotids, and intolerance of light and sound. Great care must be taken not to treat such symptoms by local or general blood-letting, as has sometimes happened. A good diet, stimulants,

steel and tonics, are required in such cases.

LECTURE XXXVIII.

RUPTURE OF THE UTERUS.

Gentlemen:—This is the most fatal of all the accidents which attend the processes of gestation or delivery, but fortunately it is of rare occurrence. Dr. Fleetwood Churchill has collated 113,138 cases of labor, out of which number it occurred in 85, or about 1 in 1,331.

Any part of the uterus may be the seat of laceration. It occurs far more frequently at the junction of the os and cervix with the vagina than at any other part, and it is more common at the anterior or posterior surfaces of the lower segment of the uterus than at the sides of the organ. It may occur at any part of the fundus or body of the uterus, or extend throughout its whole length. Sometimes a rent is made in the cervix without extending to the rim of the os. In rare instances, the laceration extends to the bladder. Several cases are on record, in which the laceration has been circular in form, and has completely separated the os and a discous portion of the cervix from the rest of the organ. Occasionally, the lacerations are incisiform and numerous, being found immediately under the peritonæal surface; and it has occurred that all the symptoms of ruptured uterus have been caused by separation of the peritonæum from the uterus, and sub-peritonæal effusion of blood, without actual laceration of the fibres of the uterus. In other cases the muscular structure has been torn, the peritonæum remaining uninjured. The reason of the great comparative frequency of the lacerations at the os and cervix is readily understood. It is in this situation that the great amount of the extending forces of the uterus, and the distending forces of the fœtus, are brought to bear in parturition. The reason of the sub-peritoneal lacerations will also be understood, if we bear in mind the anatomical insertion of the fibres of the external layer

of the uterus into its peritonæal coat. The shape and the exact direction of the laceration may vary almost infinitely. The edges of the rupture are generally ragged and uneven, and in some cases softened, or even putrid.

Rupture of the Uterus occurs in cases where labor has been rapid, and also in cases where it has been protracted. The majority of cases occur, however, in labors which have been under twenty-four hours, and which could not, on account of their length, be classed as preternatural labors. It may happen at any age, but in the majority of cases on record, women who were the subjects of it have been upwards of thirty years of age. It may, I think, be doubted whether this circumstance arises from increased power, or diminished development, of the uterus in women who are advanced in the childbearing epoch. The presentation of the child has a considerable influence upon the occurrence of the rupture. Out of 303 cases of all presentations collated by Dr. Trask, of White Plains, N. Y., 16 were arm presentations, or about 1 in 16. the proportional frequency of arm presentations, compared with other presentations, is only about 1 in 230, we must consider that rupture of the uterus occurs relatively, in a much larger proportion of arm than of other presentations. On the other hand, 2 of the 303 cases, or 1 in 151, were breech presentations. As breech cases occur in about the proportion of 1 to 59 of all presentations, we must conclude that the tendency to rupture of the uterus is less in breech than in other presentations.

It has been stated again and again by obstetric authors that women are less liable to rupture of the uterus in first than in subsequent labors; and by many it is accepted as a proved position in obstetrics, that this accident seldom occurs to primiparous women. Thus, two of the latest and best authorities, Dr. Fleetwood Churchill and Dr. M'Clintock, state that "it rarely occurs with first children," and "it is a well-established fact, that women in their first pregnancies are very rarely the subjects of ruptured uterus." An appeal to statistics will modify this opinion very considerably. Dr. Churchill gives 75 cases, ranging from the first to the eleventh pregnancies, 9 of which were in primiparous women. The particular distribution of these cases was as follows: As already mentioned, 9 were cases of first pregnancy, 14 occurred in the second, 13 in the

third, 11 in the fourth, 2 in the fifth, 9 in the sixth, and 8 in the seventh, the remaining 9 cases being divided in smaller numbers amongst other pregnancies. Dr. Trask has collected 303 cases ranging from the first to the seventeenth pregnancies, in which 24 occurred in the first pregnancy and labor, 18 in the second, 17 in the third, 21 in the fourth, 18 in the fifth, 16 in the sixth, and a smaller proportional number in successive gestations. Thus, out of 75 cases given by Dr. Churchill, it occurred in first pregnancies in 9 cases; and out of 303 collected by Dr. Trask, 24 happened in primiparous women. If, on the one hand, we take first labors, and compare them with subsequent labors, all grouped together, no doubt the primiparous is less liable to the accident than the multiparous woman. But if, as is the fair way of putting the case, we compare first labors with second, third, fourth labors, etc., separately, we shall find that the primiparous woman is hardly, if at all, more exempt than women in second or third labors, etc. Instead, therefore, of saying there is anything like an exemption in favor of the primiparous woman, all which the facts warrant us in stating is, that the uterus developed for the first time is not more likely to become ruptured than in subsequent pregnancies.

The causes of uterine rupture are, some of them, those cir cumstances which produce precipitate labor, while others are connected with tardy labor, or depend upon particular conditions of the uterus. Violent uterine action alone, after the rupture of the membranes, when the pelvis and fœtus are of the normal size, may rupture the organ. Before the evacuation of the liquor amnii there is seldom any risk of laceration. The danger of this accident is very much increased where the fœtus is of large size, or where the pelvis is below the natural dimensions. It is liable to happen in quick labors, where the uterine contractions are very powerful, where the child is a little above the usual size, and where the pelvis is only slightly contracted, or where both these conditions meet together. In such cases, the violent contractions tend to tear the os and cervix uteri; the fætal head contributes to its laceration by distension, and the walls of the organ are at the same time weakened by compression between the feetal head and the pelvic walls. The sex of the child has a material influence as a cause of rupture. Of 54

cases described by Dr. Collins and Dr. M'Keever, the births were 38 boys and 16 girls. The accident also occurs in tardy labors, when the uterus acts strongly, and when the head is large, as in hydrocephalus, or when the pelvis is deformed to a great extent. In these cases, the most violent and long-continned contractions of the uterus are exerted to overcome the difficulty, and the organ is necessarily bruised by the distorted pelvis and the head of the child. Very much the same state of things is produced by certain malpresentations, as, for instance, when an arm case is left to nature, and the child gets jammed into the pelvis without hope of escape, with a powerfully contracting uterus behind it. The same kind of danger of rupture as that which arises from deformed pelvis is sometimes met with in cases of anteversion, when the head is driven against the promontory of the sacrum. Numerous circumstances predispose the uterus to rupture, such as the occurrence of inflammation in any part of the organ, either during pregnancy or at the time of labor. In the unhappy cases in which pregnancy happens during the existence of cancer uteri, and where the patients go to the full term, lacerations almost inevitably occur during labor. It is also caused by excessive rigidity or occlusion of the os uteri, unconnected with malignant disease. Long continued compressions of the organ between the head and the pelvis, in difficult labors, tend to this catastrophe, by producing softening of the muscular structure. A considerable number of the lacerations met with in practice depend, in all probability, to some extent, upon feeble development of the uterus generally, or upon some local weakness of the organ. We must not think of the gravid uterus as an organ which is pretty much the same in all women. The uterus of every woman, and it may almost be said of every pregnancy, differs to a considerable extent. Nothing can be more dissimilar than the thin parietes met with in one organ, and the strong development found in another. Cases are also met with in which some particular part of the uterus is thinner than in others, or in which the os and cervix have not been properly developed. I give here a representation of a very interesting specimen from the Museum of Guy's Hospital, in which the cervix was not developed to a normal extent, and in which a hole was torn in the neck during labor. These cases of preternatural thinness, or of local deficiency, account for those instances of rupture which occur from the contractions or movements of pregnancy alone, or in which

laceration takes place in labors not at all remarkable for the violence of the pains, and where the head and pelvis are of normal size. There can be no doubt that in cases where the uterus is feebly developed, or weakened by disease and exhausted action, the contractions of the abdominal muscles must contribute to the rupture of the organ, by urging the head or presenting part of the child through the os uteri. The incautious use of instruments, or their most careful application when the uterus is predisposed to the accident, may cause rupture. Wherever the ergot of rye is given incantiously or improperly, the risk of ruptured uterus is incurred. When given in too large quantities, or when the os uteri is not well dilated, or

when the head is larger or the pelvis smaller than natural, there is always danger of laceration. It may even be produced by improper digitation, during the course of precipitate labors. Numerous cases are on record in which the uterus has been lacerated during an examination made at the acme of a strong pain. There can be no doubt that such irritation of the vagina and os uteri, and the consequent increase in the force of the pains excited in the form of reflex action, have contributed in such cases to the disaster. The attempt to turn, when the uterus is in a state of violent contraction, and when the waters have been long discharged, or the attempt to introduce the blades of the forceps before the proper dilatation of the os uteri, [?] have been known to rupture the organ. Various conformations of the pelvis, apart from mere diminution of size, may lead to rupture, such as exostoses presenting rugged or sharp outlines to the uterus, a keen linea-ilio-pectinea, or an acutely pointed ischial spine. Lastly, external mechanical injuries may produce sudden laceration of the gravid uterus, particularly in the latter months of pregnancy. It has happened from falls, kicks, wounds made with sharp instruments, the goring of bulls, etc. Any form of mechanical violence, apart from labor, may either puncture or incise the organ, or rend its walls asunder. pregnancy, rupture of the uterus may be caused by mechanical injuries, by spasmodic contractions of the uterns (referred by the older authors to movements of the fœtus), and inflammatory disease or imperfect development of the organ. It may also occur from interstitial gestation, when the ovum is lodged in the uterine parietes. All cases of rupture of the Fallopian tube, or of the cyst containing the fœtus, in extra-uterine gestation may be compared, to some extent, to rupture of the uterus during normal gestation or parturition.

The Symptoms which sometimes warn us of Impending Execution, are incessant and tetanic contractions of the uterus, under circumstances where the organ cannot be relieved by the descent of the head or presenting part. Whenever obstruction and violent uterine efforts concur, we must be on our guard against this form of danger. Cramp-like pain in the uterus, especially opposite the promontory of the sacrum or the symphysis pubis, or distressing cramps in the lower extremities, occasionally precede rupture. A constant pain in some region

of the uterus during the progress of labor, or in the latter part of pregnancy, is indicative of danger. This kind of pain during gestation, may be indicative of partial metritis, and during labor, of a similar affection, or of severe local pressure. In the majority of cases, however, there are no premonitory signs of the accident which can be depended upon. We must rely for warnings, not so much upon symptoms, as upon a knowledge of the causes which lead to this accident.

The Symptoms which denote the actual Occurrence of Rupture of the Uterus, are generally very marked, though cases sometimes occur in which the evidences of the accident are so uncertain that it cannot be positively known until after death. There is usually a sudden, sharp, and excruciating pain, sometimes accompanied by a snap, audible to the patient, and even to the bystanders. With this there is recession of the head or presenting part of the child, and a sudden arrest of the pains. If the laceration be extensive, the child commonly passes through it into the abdominal cavity, and can be felt distinctly through the abdominal walls. A coil of intestine sometimes passes through the fissure, and is felt in the vagina. There quickly ensues upon the rupture, the symtoms of collapse, and the matter ejected from the stomach is of coffee-ground color, consisting of epithelinm and blood exuded from the gastric lining membrane, or bile which has been acted on by the acids of the stomach. There is a sudden gush of blood from the vagina, and blood escapes in considerable quantity into the peritonæal cavity. Another sign of very great significance, pointed out by Dr. M'Clintock, is the sudden death of the fœtus. The action of the feetal heart ceases suddenly, almost immediately, after the accident; so that, in suspicious cases, the stethoscope should always be used. There are various circumstances, it must be mentioned, which complicate the diagnosis. In some cases, there is no immediate pain of a violent character, but the dangerous symptoms come on some hours, or even days, after the accident. Occasionally, and particularly when the lacerations are sub-peritonæal only, the pains do not cease. Sometimes, when the rent is considerable, the pains are not arrested, and the fætus does not pass into the perinæum; but cases occur when the rupture only takes place as the fœtus is passing through the external parts. Sometimes the recession of the head is caused

by a sudden discharge of liquor amnii, or the head of the first child may suddenly recede in twin cases. As already mentioned, the great majority of cases end fatally. Patients may die of shock, or hæmorrhage, a few minutes after the accident, or they may die after days, or even weeks, of suffering. When the result is protracted, death ensues from peritonitis, or from pelvic or uterine abcess. In some cases, the loop of intestine protruding through the vagina has been strangulated by the contracting uterus, and sloughing of the intestine, or the symptoms of strangulated hernia, ensue. In rare cases, women have recovered, and have borne children subsequently; and one or two instances are on record, in which women have lived with the fœtus in the abdomen, as occasionally occurs in the abdominal variety of extra-uterine gestation.

The most important part of the Treatment is that which may be termed the Preventive. This consists in the subdual, as far as possible, of local metritis during gestation or parturition; the induction of premature labor in cases of pelvic deformity; the moderation of excessive uterine action; the promotion of the dilatation of the os uteri; and the relief of the patient by craniotomy when the pains cannot be moderated, and the proportions between the head and the pelvis are such as to render the delivery of a living child impossible, before the risk of rupture has been incurred by protracted labor. As regards the means of diminishing excessive uterine action and rigidity of the os uteri, the effects of venesection, tartar emetic, and chloroform, have already been remarked upon.

The **Treatment of Rupture** of the uterus when it has positively occurred, demands every attention, both on account of the child, and because occasionally women recover, under such circumstances, from the utmost extremity of danger. The greatest chance of safety is given to the woman by immediate delivery. If the child has passed entirely or partially into the abdomen, the hand should be introduced, and the feet drawn down, and delivery effected as promptly as possible, care being taken not to injure any of the abdominal viscera, or to draw them down through the opening. When the disproportion of size is such as to render the extraction of the head difficult, it should be perforated behind the ear, particularly if the child be already dead. When the head has not receded after rupture, and when

the pelvis is full-sized, the forceps may be used; but cases admitting of their application in this contingency are very seldom met with. The general rule is to deliver, under such circumstances, by the perforator and crotchet. This operation requires, however, greater care than usual, on account of the tendency of the head to recede under the use of the instrument. When the child can be delivered promptly by any of these means, the amount of shock and subsequent peritonitis is to some extent moderated. Cases, however, occur in which delivery per vias naturales is impossible, either from rigidity of the os uteri, or from contraction of the uterus, and especially of the aperture through which the child has escaped into the abdomen. Under such circumstances, if the woman is in a state to admit of it, and especially if the suffering be great, it is probable that chloroform may be of great use in these cases, by relaxing the uterus, and thus averting the alternatives of abandoning all attempts at relief, or performing gastrotomy. Incisions into the os uteri have been recommended with a similar intention. Under these desperate circumstances, when chance, or gastrotomy, alone remain, what is to be done? Some have said the best practice is to leave the case entirely to Nature, pointing to the extraordinarily rare cases in which the child has been discharged by abscess through the abdominal walls, and the mother has recovered. Others advise the performance of gastrotomy, and the removal of the child, especially if the fœtus be alive. This is, of course, a desperate remedy. It is very questionable which of these two modes of procedure is to be preferred. In cases of great collapse, and when death is imminent, the performance of gastrotomy is not to be commended; but when the patient is strong, and delivery by other means is found to be utterly impossible, without even greater danger than this operation holds out, I think it should be performed. We must, however, be sure of our diagnosis before venturing on so grave a step, particularly as not long since, gastrotomy was performed with this intention in this metropolis, in a case where, on opening the abdomen, no rupture of the uterus was found!

Immediately after the extraction of the child, full doses of opium are required. During the state of collapse, stimuli should be administered, bearing in mind, however, the peritoni-

tis which ensues if the patient recovers. With respect to the general plan of treatment, it may be said that it should be very nearly the same as that recommended in cases of extra-uterine gestation after the rupture of the cyst. Particular points of difference in individual cases will have to be met as they arise.

LECTURE XXXIX.

INVERSION OF THE UTERUS, ETC.

This accident has sometimes been attributed to irregular action of the uterus, but more generally to mechanical traction of the cord, and to injudicious attempts at removing the retained or adherent placenta. When Inversion of the Uterus is referred to traction of the umbilical cord, whether in consequence of a short funis, the sudden birth of the fœtus while the mother is in the upright position, or the attempts of the obstetrician to remove the placenta, it is always believed to depend on the merely mechanical force which is in operation. It is considered that the fundus uteri is dragged down mechanically through the os uteri and vagina, the uterus being supposed to be passive during the occurrence of the inversion. I have always been of opinion that, in the great majority of cases, the accident happens in consequence of irregular but active contractions of the uterus itself. No doubt, cases may occur in which inversion is produced by great tension upon the cord, while the placenta is firmly adherent to the fundus, and that all violent traction of the cord while the placenta is attached to the fundus is reprehensible. But when inversion is thus produced, there must be a The accident has sometimes consenting action of the uterus. happened when the hand has been introduced to peel off the placenta from the fundus, when the hand, placenta, and uterus have all been forced out by the violence of the abnormal uterine All the facts connected with this catastrophe show that it generally depends, not upon a passive, but an active, condition of the organ. There are numerous points which prove that it may happen spontaneously, and apart from all interference on the part of the accoucheur. It may occur after the death of the mother, as the result of post-mortem contraction of the uterus. Numerous cases are on record in which the uterus was found inverted before any attempt whatever had been made to remove the placenta, and while the patient was lying quietly in bed. It has even been known to occur in the unimpregnated uterus. I have elsewhere insisted that the unimpregnated and virgin uterus, particularly under irritation, possesses more motor power than is generally attributed to it. The nulliparous organ has been known to invert itself, as the result of spasmodic action, in long-continued menorrhagia, or as the result of a small polypus or fibrous tumor in the cavity, or upon the peritoneal surface, of the fundus. The more this subject is studied, the less will it be referred to merely mechanical derangements.

Let us observe the steps by which complete inversion is produced. There is, first, cup-like depression of the fundus uteri; coincident with, or immediately following upon, this depression, there is hour-glass contraction of the body or lower portion of the uterus. The annular contraction of the body of the uterus grasps the introcedent fundus as it would a foreign body, and carries it downwards for expulsion through the os uteri, the os uteri being at this time either in a state of inertia, or actively dilated, just as at the end of the second stage of labor. After the inverted uterus has passed through the dilated os uteri, this part of the organ becomes contracted, preventing re-inversion from taking place. Thus, there is, first, depression of the fundus uteri, with annular or hour-glass contraction of the body of the uterus, and dilatation of the os uteri. Next, there is intussusception of the fundus by the body of the uterus. Lastly, complete inversion occurs, with contraction of the os uteri upon the inverted organ. If we wished to describe this accident in three words, they would be-introcession-intussusception-inver-The displacement may not be complete; it may in some cases stop at introcession; in others, at intussusception, and then return to the natural state; or it may remain intussuscepted, or in a state of partial inversion. We may compare perfect inversion of the uterus to intussusception of the intestinal canal, only that the intussuscepted portion of intestine is not protruded externally.

Inversion produces violent disturbance of the nervous system, and is frequently attended by alarming hæmorrhage. But the symptoms of the intussuscepted uterus are equally violent. The strangulation of the fundus is almost as severe a shock to the

system as actual rupture. In inversion, the hæmorrhage is somewhat arrested by the os uteri acting as a tourniquet to the

Commencing inversion of the uterus, from a preparation in the Museum of Guy's Hospital.

uterus. In either case the shock to the system may be so great as to cause death within a short time after the accident. The shock is so severe that a fatal result has ensued, when little blood was lost, and when, after a short time, the re-inversion of the uterus was effected. The diagnosis of this affection is sufficiently easy when the placenta is adherent to the inverted uterus, but there are circumstances which complicate the diagnosis, when a tumor appears in the vagina after the separation and expulsion of the placenta. In true inversion, the globular ball of the uterus is entirely absent from the hypogastrium, and a bleeding mass is found in the vagina, or protruding externally This mass may, however, be stimulated to some extent by a

prolapsus or procidentia, occurring immediately after labor, or by the extrusion of a polypoid tumor after the expulsion of the placenta. In the case of the prolapsed or procident uterus, the diagnosis is easy, from the presence of the os uteri in the most depending part of the tumor. The distinction between polypus and inversion is not so easy, particularly when the polypus is of a fibrons character, and of the same density and structure as the walls of the uterus itself. In the case of polypus, there is the sensation of a solid mass; and in inversion, that of a hollow organ is conveyed to the finger. When punctured or pricked, the utcrus is said to be much more sensitive to pain than the polypoid tumor. In complete inversion the fossa round the basc of the tumor is limited in extent, while in polypus the finger may be passed into the cavity of the organ, the pedicle can generally be felt, and there is the uterine tumor in the lower part of the abdomen. Great care is required in the diagnosis, as cases have occurred in which a polypus has been mistaken for an inverted uterus, and, in some instances, inversion has occurred without the accident having been recognized at all, until long after the time of labor.

Inversion generally occurs quickly after the delivery of the fætus, between the expulsion of the child and the expulsion of the placenta. I have known it to take place after the death of the mother, and after rupture of the uterus had occurred. In the latter case, the fætus was passed into the peritonæal cavity, while the uterus became inverted, and protruded through the vagina. The predisposing causes of the accident are the causes of acute labor, and excessive or irregular action of the uterus. It is of very great importance to understand clearly the real nature of inversion, as it is one of those accidents which is most confidently referred to mal-practice. The less it is considered a mechanical displacement, the less disposition will there be to attribute its occurrence to the accoucheur; owing to the prevalence of the mechanical idea, obstetricians have sometimes been blamed most unjustly in cases of post-partum inversion.

The treatment of inversion consists in the mechanical reposition of the uterus. Immediate steps should be taken to reduce the inversion, because of the rapidly-increasing contraction of the os uteri, which, by impeding the circulation, causes an increase in the size of the tumor. The size of the uterus

should be reduced as far as possible by pressure, and by detaching the placenta in cases where it still adheres. By moderate but sustained force the uterus is then to be passed up through the vagina and os uteri. After the organ has been partly passed through the os uteri, the muscular action of the uterus itself assists in restoring it to the proper position. It is reinstated with a sudden jerk, causing a considerable report at the moment of its restoration. In cases where intussusception exists, the hand must be passed through the os uteri, so as to overcome the annular contraction, and to restore the intussuscepted portion to its proper position. Cases of intussusception and inversion require careful watching until the uterus has permanently contracted. Although it may justly be said that inversion may occur when the accoucheur is entirely blameless, I do not think the same can be said when the case is allowed to remain unreduced, and the patient lives on in a state of extreme misery and danger. It would be extremely culpable if such an accident either passed unrecognized, or if the first few hours after labor were allowed to pass without the re-inversion of the uterus. I cannot suppose that with proper and prompt management any case could be considered irreducible, within a reasonable time after the accident. Suppose the os uteri to be in a state of spasmodic contraction, we have in chloroform a powerful means of rendering it dilatable, and of allaying pain when the tender state of the uterus is such as to prevent the necessary manipulations. In these cases promptitude in action is of the greatest consequence. Every hour that elapses after the accident before the reduction of the inversion is effected increases the difficulties in the way of its accomplishment. Very rare cases are met with, in which menstruation has been normally performed with an inverted uterus, and when the presence of a tumor in the vagina and a considerable leucorrheal discharge have been the only symptoms; and cases are recorded in which the uterus has spontaneously re-inverted itself a considerable time after delivery. Usually, however, the patient is subject to an almost constant drain of blood and muco-purulent discharge from the inverted mucous surface, and she perishes after a longer or shorter interval. The alternative, when reposition is considered impossible, is the extirpation of the inverted organ by the dangerous operations of the ligature or excision.

There are some other abnormal actions of the uterus, allied in some respects to inversion, to which I must now direct your attention.

Encysted Placenta is a term sometimes applied to cases in which a sphincteric contraction of the os uteri comes on rapidly after parturition, before the placenta has been expelled. The

Frg. 150.

Hour-glass contraction.

placenta, in these cases, may either be attached to the uterus, or it may have been thrown off, and be lying close within the contracted os uteri. This complication is most common after acute labors, or in prolonged labors, where the pains have been excessive, up to the time of delivery. Excepting that it occurs after delivery, instead of in the early stage of parturition, it is comparable to that form of rigidity, in which sphincteric contraction of the os uteri is predominant. Owing to the increased mobility which the os uteri acquires during the progress of labor, its post-partum contractions are sometimes more forcible than any active contraction which occurs before delivery; and the rigidity is never mechanical, because of the great dilatation which has occurred during the progress of the labor.

In treatment, it is of considerable importance to deal promptly with these cases. The longer the os uteri remains contracted, the more difficult will its dilatation, so as to admit of the extraction of the placenta, become. If the placenta can be felt

close to the os uteri, gentle but firm traction of the cord, held as near as possible to its root in the placenta, should be used, so as to convert the placental mass into a dilator. We can often beneficially assist the effects of traction of the umbilical cord in dilating the os uteri, by gentle pressure exerted externally upon the abdominal surface, at each recurrence of the uterine contractions, sweeping the placenta, as it were, into the pelvis and towards the os uteri, by the hand, while steady traction of the cord is being kept up. If these methods should not be successful, the os uteri must be slowly dilated by the fingers, so as to admit the hand or fingers, according as the placenta may be required to be detached from the uterus, or merely withdrawn from the cavity. The utmost gentleness consistent with the

necessary force should be employed; and, if necessary, any threatening of convulsion or laceration should be prepared for by bloodletting. If the patient's mind should be excitable, or the dilatation of the os uteri should be painful, an opiate is of great use; but it acts rather by soothing mental emotion and allaying pain, than by reducing the spasm of the os uteri. When the case is misunderstood or neglected, and the woman survives the shock and the effect of loss of blood, her life is generally one of danger and misery. I have met with several cases of encysted placenta, where the secundines had been allowed to remain a considerable time, and where the os uteri was in a state of the most perfect contraction, where chloroform was of the greatest use in relaxing the os uteri, and allowing the accoucheur to perform the manipulations necessary for the removal of the placental mass.

The foregoing remarks apply to cases in which the placenta is either wholly adherent to the uterus, or the whole uterus is so firmly contracted upon the separated placenta, as to prevent internal uterine hæmorrhage. Cases, however, occur in which spasmodic closure of the os uteri is attended with separation of the retained placenta, and inertia of the body and fundus. In such cases, dangerous internal hæmorrhage is inevitable, and the removal of the contraction of the os uteri becomes quite secondary in importance to the arrest of the hæmorrhage. Our first object here must be to excite such an amount of uterine contraction as to stay the loss of blood. In all cases where the first steps taken for the dilatation of the os uteri, which of themselves tend to produce uterine contraction, are ineffectual, the uterine inertia should be treated most energetically, without any reference to the state of the os uteri.

In some cases of retained placenta the uterine spasm is not situated at the os uteri, but at the junction of the cervix uteri with the body of the organ; in the same situation, in fact, as the narrow portion of the organ in the unimpregnated state, and at which the greatest resistance is met with in the introduction of the uterine sound. This state of the uterus is called

Hour-Glass Contraction.

[According to this view, Fig. 152 represents hour-glass contrction, as first described by Guillemot, but such I do not think is the generally received opinion. Such contractions of the os uteri do exist and may be mistaken by the careless or ignorant for hour-glass contraction, but this is in or near the middle of the uterus, dividing into two portions from whence comes its name, represented by cut 150, and referred to in the following sections as "simple hour-glass contractions."]

In other cases the constriction is still higher up, involving the body of the uterus, being similar in its nature to those band-like spasmodic contractions, which are sometimes observed in the large intestine. In the lower animals, where the uterus in its anatomy resembles an intestine, there can be no difficulty in understanding this form of annular contraction.

In other cases the hour-glass contraction occurs after the separation of the placenta, when it may be the cause of internal hæmorrhage, because of the inertia of that portion of the uterus which is above the stricture. After the expulsion of the fœtus,

the contractions of the uterus ought to be uniform in the entire organ, so that in hour-glass contraction there is always a double

Contraction of the upper portion of the uterus.

departure from the physiological condition of the uterus; there is both spasm and inertia. The treatment of these cases must be conducted on the same principles as cases of sphineteric contraction of the os uteri; but we have an additional remedy, of considerable efficiency, in frictions applied to the abdomen over the uterus. True and complete hour-glass contraction is a rare affection; but in very many cases of post-partum hæmorrhage, portions of the uterus are spasmodically contracted, while others are so relaxed as to admit of the flow of blood from the mouths of the vessels on its internal surface. Occasionally it happens that one lateral half of the uterus will be contracted while the other half is relaxed. In cases of hæmorrhage, with hour-glass contraction, there may be no escape of blood per vaginam, the effused fluid being confined in the upper chamber of the uterus by the stricture.

The causes of hour-glass contraction may be any of the causes of acute, irregular, or tardy labor; but it most generally occurs after rapid parturition, particularly the rapid transit of the child through the external parts. Coagula in the uterus, the retained placenta, or improper traction of the cord, and mental emotion, are all exciting causes of the accident

[An elaborate paper upon this subject was recently read to the New York Academy of Medicine by Dr. Martin. It declared that hour-glass contraction *never* occurred without an adherent placenta, although there was frequently adherent placenta without this form of uterine contraction].

It will be useful to compare the different forms of irregular action of the uterus with each other. The resemblance between the spasmodic form of Rigidity of the os uteri during labor, and the most simple form of Encysted Placenta—namely, sphincteric closure of the os uteri with retention of the placenta—is at once obvious. The same contracted state of the os uteri is present in Inversion, after the uterus has descended through the os uteri. In the form of encysted placenta, or irregular action of the uterus, constituting Hour-glass Contraction, we have precisely the same condition of the middle portion of the uterns as that which obtains in the second stage of inversio-uteri. In simple hour-glass contraction, the cavity of the uterus is divided into two parts by the contraction of the middle portion of the organ; but when, owing to irregular action of the fundus, this part of the organ descends into the cavity of the uterus, and the hour-glass contraction then occurs, the fundus uteri is seized by the contracting ring of the uterus, borne down through the os uteri and

Fig. 152.

Contraction of the os uteri and the whole of the uterine cavity.

vagina, and inversion is thus rendered complete. After the inversion, the os uteri, which dilates to allow the inverted uterus to pass, becomes firmly contracted. Again: all these abnormal actions, occurring after delivery, are but modifications of exces-

sive After-Pains. In severe after-pains, it is easy to feel with the hand that the uterus becomes hard and prominent at particular points, and soft and depressed at others. From these irregular contractions the more serious irregularities of the uterine action arise. Sphincteric and premature closure of the os uteri is the most simple derangement; next comes the annular contraction of the upper part of the cervix, or the body of the uterus, in hour-glass contraction; and lastly, the phenomena of inversion, which is the most compound of all these disordered actions. Thus rigidity of the os uteri, encysted placenta, inversion of the uterus, hour-glass contractions, and excessive after-pains, are merely modifications of irregular uterine action, and they are all convertible one into the other. These views materially simplify our comprehension of these post-partum accidents. It may be said, however, that hitherto they have generally been treated of in an isolated manner, and with little reference to uterine physiology, or to their evident relationship with each other.

LECTURE XL.

PUERPERAL MANIA.

Gentlemen:—The specific forms of mania incidental to child-bearing, may occur either during pregnancy, at the time of labor, in the puerperal period, or in the course of lactation. Of these, the **Puerperal Mania** is the most frequent and formidable.

In pregnancy, we sometimes have the nervous phenomena of gestation in such an aggravated form, that the balance of the patient's mind is lost, and her reason and moral faculties totter and fall for a time. This state of things is brought about by the hysterical temperament, when in a state of intense development; by improper moral management on the part of friends and relations, or depending on the patient herself, by neglect of the excretory functions; by hereditary predisposition to insanity, and by sudden shocks, etc. Its treatment has already been referred to, when speaking of the diseases of pregnancy, and in the last resort, the only remedy we can depend upon is the induction of premature labor.

In the course of Labor, a nervous, excitable subject may, at any time, suffer a transient loss of reason during the height of a powerful pain attended by almost unbearable anguish. This happens most frequently, however, and for a longer time, at the moment when the head passes through the os uteri, or the os externum, and particularly the latter. I have known it to occur at the moment of birth, when the forceps has been used. It is more apt to take place in first labors than in multiparæ, and when the head of the child is of larger size than usual. Women sometimes lose their self-consciousness, or self-control, and commit, if allowed, extravagant acts, in these brief intervals of insanity. When the attack occurs at the time of the passage of the head through the external parts, patients will attempt to

injure the attendants or the infant; and there can be no doubt that in some cases of Infanticide, where the child is destroyed immediately after labor, the crime is committed while the mother is in a state of temporary and irresponsible frenzy. Such cases should, however, only be received with great caution. This form of mania is so transient that it generally only requires the necessary amount of restraint, and the removal of means of mischief, for a very short period. I have no doubt whatever, that this form of insanity might be prevented by the usc of chloroform during the pains of labor, before the suffering has reached such a height as to make the patient frantic.

Genuine Puerperal Mania, or that which occurs shortly after parturition, appears to me to depend, in the great majority of cases, upon the shock of labor; the general and local irritation incident to delivery, and its immediate consequences; and upon the exhaustion produced by the accumulated effects of gestation and parturition. Except in the few cases in which inflammation of the brain occurs, when it is removed from ordinary insanity, the disease is, I believe, always attended by constitutional

exhaustion.

Various circumstances predispose to the occurrence of insanity in puerperal women. It sometimes occurs in combination with uterine inflammation, or suppression of the lochia, the metritic irritation exciting the cerebrum in a reflex form. Occasionally, mania alternates with inflammatory disorder of the uterine organs or the peritonæum, the one disease completely receding as the other becomes prominent. The existence of puerperal mania will sometimes completely mask inflammation of the pelvic organs, and even phthisis. In other cases, intestinal irritation, or the use of improper and unwholesome food, is the exciting cause of the disease, as proved by its sudden disappearance when the stomach and bowels have been efficiently relieved. Cases are met with, in which the retention of viscid and morbid secretions in the breasts has excited the brain to the pitch of mania. This disease is often met with in women in whom hysteria has been very pronounced during pregnancy. Hereditary predisposition to insanity, morbid fear of labor and its results during pregnancy, frights in the course of pregnancy, or labor, or in the pucrperal period, are important predisposing elements. The hereditary tendencies of puerperal insanity have

been made out by Gooch, Burrows, Esquirol, and others. Women belonging to families in which insanity manifests itself are liable to puerperal attacks. Several women in the same family, or two or three generations, have been known to suffer from puerperal mania, and the same woman is sometimes attacked in successive pregnancies. It is found that in times of great public excitement or calamity, puerperal mania is rendered more common. I saw a case during the late war, in which puerperal mania was caused by the intelligence of the sudden death of a near relative. It has a tendency to occur in women who have children very rapidly, and who nurse one child during pregnancy with another; or in women who have twins or triplets, as sometimes happens, several times in succession. I had, some time ago, a maniacal case in this Hospital, in which the patient had had twins three times out of seven deliveries. I have seen cases where it had apparently depended on the use of large quantities of chloroform during labor. It has been caused by profuse hæmorrhage, occurring during delivery or after labor; or as the result of profuse bleedings in puerperal convulsions or post-partum inflammations. It also sometimes appears as the sequelæ of convulsions, in albuminuria, and the other forms of convulsive disorder met with during labor. In some cases, sleeplessness, prolonged through several days and nights, appears to be a powerful exciting cause of the disease, but the insomnia is both a cause, and a symptom, of the disorder, and it is difficult to say to which category the pervigilium frequently preceding insanity should be most distinctly assigned.

Puerperal mania must be distinguished, not only from phrenitis, but from pure delirium occurring at the fever incident in some cases to the first secretion of milk, or met with in the course of phlebitis or puerperal fever. The pathological lesions found after death from puerperal mania do not throw any great light upon the essential nature of the disease. No constant morbid changes are found within the head, and most frequently the only condition found in the brain is that of unusual paleness and exsanguinity. Many pathologists have also remarked upon the extremely empty condition of the bloodvessels, particularly

the veins.

The attack generally comes on within a week or tendays after delivery. Sometimes it is sudden, the patient at once start-

ing off from a state of coherence into the realm of mama; but more frequently there are some days of premonitory warning. In the latter cases, the patients are either unnaturally loquacious or taciturn; talking incessantly, and upon the most trivial and irrelevant subjects; or refusing to speak even when spoken to. There is a tendency to complain of the husband, the nurse, or to express dislike of the child, and a wish to injure it, with other signs of moral perversion. The pulse is not much accelerated; the face pale, or occasionally flushed; the eyes are preternaturally bright; there is intolerance, of light, noise, or of movement in the room. There is either unbroken sleeplessness, or, if the patient sleeps, she is troubled with dreams, which render sleep unrefreshing. The bowels are often confined. When this state of things passes on to actual mania, there is the same uncontrollable and incoherent loquacity. If an attempt be made to take down the words uttered by a patient suffering from puerperal mania, they yield, in the worst cases, not the slightest thread of coherent thought. The words or subjects of rambling talk are suggested by the objects coming before the senses, but the mind does not dwell more than an instant upon the same subject, or the words uttered by the patient herself start successively the subjects of raving; but the prevenient words and their suggestions are as irregular as the changing figures of a kaleidoscope, and at times the raving is an unmeaning jabber of fragments of words, or of sounds which hardly represent syllables. Sometimes anidst an amount of incongruous raving, certain ideas are constantly recurred to, such as the birth of the child. Very frequently the language of such patients is most obscenc, and constantly turns upon sexual matters, the movements of the body and actions being such as to indicate a nymphomaniacal condition. Delicate ladies will use language which it would be thought impossible they could ever have had the opportunity of hearing. Sometimes events long forgotten, and even language learned in childhood, will be remembered, which the patient would have no knowledge of subsequently. There is almost always the inclination to commit violence upon herself or others, and particularly upon the infant. patients are at times conscious of the suicidal or homicidal tendency, and implore those around them to defend them against their evil inclinations. When the disease becomes chronic, the tendency is generally to melancholic, rather than to other forms of derangement.

Sometimes patients refuse food altogether, or accuse those about them of administering poison, or they declare they are being starved even while they are eating ravenously. These symptoms, or groups of them, in various modes of combination, may exist for a few days, or they may continue for weeks or even months, the patient being reduced, in protracted cases, to the utmost degree of weakness and debility. Nothing can exceed the marasmus of some of the cases of puerperal mania which spread over a long time. The state of the nervous system interferes in the gravest manner with the functions of nutrition, and the patient is worn out by incessant talking, locomotion, or such movement as is permitted, and want of sleep. In the early stages of puerperal insanity, the pulse is often quick, the skin dry and hot, the head throbbing and heated, and the tongue dry; the milk and lochia are commonly suppressed. As the disease becomes chronic, the tongue becomes comparatively clean and the pulse natural. There is a peculiar sour smell about the breath, and the odor of the skin is very disagreeable. The bowels continue constipated. I am not aware that the urine has been examined, but it is probably loaded with phosphates, from the rapid disintegration or metamorphosis of the material of the brain.

The indications of Treatment in Puerperal Mania are the subdual of cerebral excitement, the removal of remote irritation, the repair of exhaustion, and the management of local disorders complicating the maniacal attack. The removal of the hair, the application of ice or cooling lotions to the head, blistering behind the ears, or upon the back of the neck or the scalp, and, in rare cases, a few leeches to the temples, are all that we should dare to venture upon in the way of local applications. Subsidiary to these means, but scarcely of less importance in calming nervous excitement, are the avoidance of light, of noise, of conversation and the sight of persons and things having an irritating effect upon the patient. Every excitement of the senses and of the emotions should be suspended as far as possible. Local irritation should be removed, by drawing the breasts when these are loaded, and by the exhibition of purgatives. Cases are sometimes met with where the irritation of

the brain has depended on fæcal accumulations, when a smart purge has at once and completely recovered the patient. But the cases requiring active purgatives need a nice discrimination, otherwise injury is done by weakening the patient. General bloodletting is never called for, it is hardly too much to say, in ordinary puerperal mania. There are few conditions of the economy in which bleeding is so ill borne, and in which such disastrous results ensue upon its performance. Many cases are on record in which venesection has destroyed the patient with great rapidity. Within a comparatively short space of time, I saw two maniacal cases after delivery in the same district, one of which exemplified the danger of bleeding, and the other the origin of the disease from exhaustion. In the first, symptoms of mania came on a few days after delivery, and while her medical attendant was shut up as a witness in a court of law, another practitioner was called in, who, seeing the patient in a state of raving excitement, bled her profusely, when she sank rapidly, dying in spite of all attempts to rally her. In the other case, the patient, partly from principle and partly from poverty, had been a teetotaller, and had had children at the rate of about one a year, suckling them upon water and a scanty diet. When I saw her, a week after her confinement, her mind was wandering; she had scarcely, if at all, fallen asleep, even for a moment, during the time mentioned, and she had been harassed by the constant application of the child to breasts which refused to secrete their nourishment. The anæmia in this case was extreme. Her maniacal disorder increased, and she died, no support or stimulus making any impression upon her exhausted system.

Due attention being paid to the cerebral excitement, the patient should have a full amount of support and stimulus. It often happens that digestion and absorption are remarkably rapid in these cases, and the patient suffers from an exacerbation whenever the stomach is empty, or she is kept long without food. In many cases, wine, porter, or brandy, can be given freely, at stated intervals, with the best effect. Ether, ammonia, hyoscyamus, and camphor, are very useful as supporting and soothing the nervous system, particularly hyoscyamus in combination with ether or ammonia. Opium is exceedingly useful, especially in cases attended by protracted insonnia. In cases most strongly marked by excitement, chloroform has been

inhaled with the best effects. When the disease becomes chronic, the preparations of iron, quinine, and other tonics are necessary. In long-continued cases there is special evidence of the exhaustion of the reproductive system. Amenorrhæa generally exists until the mental disorder gives way. Generally, the mammary secretion is arrested from an early period; but, beyond relieving the breasts when they are full, no attempt at suckling should be made in these cases.

Are there any essential differences between the Puerperal and other forms of Mania? Some authorities of eminence have believed that no such differences exist, while others have considered the varieties of insanity connected with the reproductive functions, and particularly the puerperal disorder, so peculiar as to constitute a distinct class. The answer to the preceding question will'very much depend upon whether we take a large or a circumscribed view of such cases. If we look at the patient during the attack alone, the symptoms, it is true, vary little, if at all, from some other cases of insanity. If, however, we consider the previous and subsequent histories of cases of this kind we shall come to the conclusion that there are special features arising out of the facts that the functions whose disordered conditions produce the insanity are not permanent but temporary; that patients the subjects of puerperal attacks are not so liable as others to renewed invasions of derangement, particularly after the child-bearing epoch has passed, and that they are not so likely to transmit a hereditary taint to their offspring.

These points bear practically upon the management of puerperal cases. Those who suppose the puerperal and other forms of insanity to be identical, naturally advocate a similarity of treatment as regards restraint and seclusion. I believe, however, that great mischief is frequently done by placing puerperal patients in public and private lunatic asylums. In my opinion, such cases should rarely, if ever, be placed in asylums. After their recovery, they frequently retain a life-long sense of the stigma of being so treated, the suspicion of hereditary mania is raised against families, and no good is obtained which could not be derived from a private seclusion of such patients from their immediate families and friends. In no cases do the blessings of the modern treatment of the insane stand out more prominently. I remember, when a student, seeing a patient suf-

fering from puerperal mania kept for months in a dark pen, with only straw to lie upon, and a rug for a covering. No patients require more careful watching lest they should do themselves or others mischief. Every means of injury should be removed or prevented, as far as possible, and the patient should never be left for a moment alone, or especially with her infant. It is necessary to gain, by firmness, a mastery over such patients. They recover more quickly when not allowed to see their husbands, infants or immediate relatives, and they are most easily managed by nurses whom they have not previously known; but they often retain for years the keenest sense of any unkindness, done to them during the continuance of their disorder. In some other and more happy cases, nothing is remembered of the birth of the child or the subsequent illness. These are, however, exceptions, and puerperal patients should always be treated as though they were destined to a perfect recovery, and to remain without any necessary tendency to subsequent mental disease. Dr. Hood dwells with great humanity upon the unhappy position of some of the patients confined for life in Bethlehem as criminal lunatics, who have killed their children during attacks of puerperal mania. Some of these poor creatures having passed the childbearing age, are perfectly clear in intellect, conscious of what they have done, and suffer intense misery therefrom, while they have their desolation enhanced by mixing constantly with confirmed lunatics. Surely philanthropy should find some remedy for such a state of things.

The cases of insanity which occur as the result of **Undue Lactation** are very similar to cases of puerperal insanity, only that their symptoms come on in a more gradual manner. When nursing women complain of loss of sight or hearing, and headache, either their nourishment and stimulus should be increased, or suckling should be at once discontinued. Where there is any predisposition to insanity, mothers should not, if possible, be allowed to suckle their children. In all cases of this kind the dependence of the mania upon exhaustion is abundantly evident. It is especially likely to happen when pregnancy and lactation are allowed to proceed simultaneously.

There are in the subjects of this form of disease the same suicidal and homicidal tendencies as in puerperal insanity. I once met with a case in which a mother delivered of twins

became affected in her mind from suckling, and a wet-nurse was procured in the person of a young girl who had given birth to an illegitimate child. She had nursed her own infant for some time, and then, while being drained by the twins, again became pregnant. Signs of insanity manifested themselves, and she was one day found dead, hanging behind the door of her room. This form of insanity sometimes comes on weeks or months after the close of lactation. I have no doubt that the woman Brough, who killed, two or three years since, several of her children at Esher, and who is now a confirmed lunatic in Bethlehem, had suffered from over-lactation. She had weaned a child not long before the dreadful tragedy, had complained of loss of sight, and severe nervous disorder, and had suffered in her head in previous lactations. The preventive treatment of this form of insanity consists, of course, in weaning as soon as any marked signs of nervous disorder are perceived. In the management of such cases, great care in guarding the patient is necessary, and the treatment of this disease must be a supporting and stimulating one, combined with perfect rest, and the avoidance, as far as possible, of all moral and physical excitement.

LECTURE XLI.

PHERPERAL CONVULSIONS.

Gentlemen:—Convulsions, like the other disorders of parturition arising from excessive nervi-motor action, may be divided into those of Centric and those of Eccentric origin. This division is the most convenient for an investigation of the causes of this formidable disease.

The Centric eauses of Convulsion may be either intracranial or intra-vertebral, or both. I proceed to speak first of the intra-cerebral causes.

Any mechanical or emotional stimulus applied in excess to the spinal centre itself, may excite convulsions during the puerperal state. In all women, the excitement of the nervous system inseparable from parturition is a predisposing cause of the attack, which is provoked whenever any other sufficient exciting cause supervenes upon this parturient excitability.

A clot of blood, or serous effusion, occurring in any part of the brain, may cause convulsion by mechanical counter-pressure upon the medulla oblongata. In full states of the circulation, convulsion may be caused by cerebral distension alone. Here it must be the counter-pressure on the medulla oblongata which, in part at least, produces the disease. Any disease of the brain, of the membranes, or of the skull, capable of exerting internal pressure, may cause convulsion in this manner.

The intra-vertebral causes of convulsion consist chiefly of disorders of the spinal meninges, and upon conditions affecting the substance of the spinal centre itself. Probably excessive distension of this organ with blood excites convulsions; it is certain that the opposite condition, spinal anemia, becomes a powerful exciting cause. In cases of irremediable uterine hæmorrhage, convulsion is the common form by which death

occurs; or a convulsion may occur from loss of blood before the patient is *in extremis*. I shall, moreover, endeavor to show hereafter that in some cases of convulsion arising from other causes, excessive blood-letting comes in at length as a cause of the fits, the therapeutics of the disease trenching distinctly upon its pathology. In animals killed by blood-letting, either by experiments or at the shambles, convulsion always occurs during the act of dying.

The state of the blood circulating in the spinal marrow, as regards its constitution, is an important cause of centric convulsion. All agencies which interfere with the proper depuration of this fluid during pregnancy, or on the approach of parturition, contribute to render the blood a morbid stimulant to the spinal system. Such are the constipation and insufficient secretion from the bowels caused by the mechanical pressure of the gravid uterus upon the intestines. The albuminuria, sometimes present, and which also appears to be caused by pressure on the kidneys, and the renal vessels and nerves, accumulates noxious elements in the blood. This condition requires our special notice, as the most important and general of all the centric causes of puerperal convulsion. The encroachment of the abdomen upon the thorax must also render the due oxygenation of the blood difficult. Asphyxia invariably produces convulsions, and when it occurs during parturition, must necessarily produce this disease. The act of abortion from asphyxia seems to be almost a part of the general convulsion excited by the deprivation of oxygen. There are various other sources of sanguineous impurity, all of which contribute their quota towards rendering the blood morbidly irritating to the nervous centres. It deserves to be borne in mind, that the depuratory functions ought, in order to preserve health, to be increased during gestation, as the débris of the fœtal, as well as the maternal system have to be eliminated by the organs of the mother. Besides these forms of toxemia, the state of the blood which obtains in fevers or during the excitement of the first secretion of milk, may excite convulsive disorder. In all these cases the affection of the nervous system is centric, and not reflex.

These are the *Physical* causes of disease; but there is another and very effective cause of puerperal convulsion which is *Psychical* in its character. I refer to the influence of emotion.

Emotion, then, is a very important cause of centric convulsion in the puerperal state; important both on account of the severity of the attack when thus induced, the greater absence of premonitory signs, and the obstinacy of the disease as regards treatment. It is a very old and true observation, that convulsion is often met with in single women whose minds have been depressed by the sense of shame and misery inseparable from their condition during gestation. But any violent emotion of the mind, whether of joy or sorrow, the agreeable or disagreeable, may excite a convulsive attack. The return of a husband, the first sight of the infant after the hours of intense expectation, the pain and dread of parturition, or any intelligence whatever, suddenly communicated, may harl the patient into convulsion. I myself saw a case in which a husband, returning from a distant and perilous journey a day or two after his wife's delivery, in the very act of greeting him she fell into convulsion; and instead of embracing a conscious mother, he held in his arms the rigid form of an epileptic. The fit is sometimes produced by emotional causes of a trivial character. Mauriceau relates a very singular case, in which puerperal convulsion was excited by the disgust caused in the mind of the patient by the entrance into her apartment of a coxcombical friend, whose dress was powerfully scented.

Such being the principal *Centric* causes of puerperal convulsions, let us now consider the *Eccentric*, or those caused by irritation of incident, excitor nerves, acting through them upon the true spinal marrow, and its motor nerves.

First in importance is, Convulsion from Irritation of the Uterus itself and the Uterine Passages.

The statistics of labor demonstrate that puerperal convulsions occur with greater relative frequency when the head presents, than in other presentations. From this it has been inferred that its pressure on the os nteri was a principal cause; but the acute mind of Dr. Collins saw that this coincidence could not be considered as cause and effect, for convulsions frequently come on when the os nteri is entirely dilated, before the dilatation has commenced, or after delivery. Neither this eminent obstetrician nor any other has taken the pressure of the head on the vagina sufficiently into consideration, in connection with the fact, that irritation of the vagina excites more extensive reflex muscular

actions than irritation of the uterus itself. This gives a physiological explanation to the fact respecting the frequency of convulsions in head-presentations with first children, the irritation of the excitor nerves of the os uteri and the vagina being undoubtedly greater under such circumstances than any other. I might adduce numbers of cases in support of this view; in fact, any case in which all remedies have been tried in vain, but in which the convulsions cease immediately after delivery, contains its proof. It must always be borne in mind, when considering the causes of excito-motor diseases, that irritation of the peripheral incident nerves is not dependent on, or to be measured by, the mere intensity of pain. It has been shown again and again that the most powerful reflex action of the vis nervosa may be caused without any sensation whatever; indeed, in puerperal convulsions the causes operate sometimes during a state of perfect coma, or they may commence while the patient is in a profound syncope. The term irritation, when applied to spinal action, must therefore, as I have often observed, be received with its peculiar signification.

Convulsions may be brought on by the mere presence of the fœtus in utero, there being no other exciting cause; or they may occur from the causes of spinal irritation depending on the first changes which take place in the uterine system preparatory to labor, before the os uteri has commenced its dilatation. They are sometimes caused by the irritation of a dead fœtus. The mere distension of the uterus by the liquor amnii, particularly in cases where there is a large quantity of this fluid, has appeared to give rise to convulsions.

When a convulsion has once happened, the fit may be repeated from causes of uterine irritation apparently trivial Irritation of the os uteri is one of these. Denman relates the following of a case which occurred to him: "When the os internum began to dilate, I gently assisted during every pain; but being soon convinced that this endeavor brought on, continued, or increased the convulsions, I desisted and left the work to Nature." A similar case was once related to me by Dr. Heming. In other cases, fits have been produced by the hand of the accoucheur in the operation of turning, or by the irritation caused by the use of instruments. Irritation of the os externum is also a powerful excitor of spasmodic action. Many

women die from the violence of the convulsion caused by the passage of the child through the external parts. It has even happened that successive fits have been caused by irritation of the uterus from injudicious attempts to apply an abdominal bandage.

The following are two interesting cases of puerperal convulsions from irritation or excitation of the excitor nerves of the uterus and uterine passages, the irritation being conveyed to the spinal marrow, and reflected back on the motor nerves of the whole spinal system so as to cause the convulsions. The first

is related by Dr. Ingleby:—

"A highly esteemed friend of mine once found it necessary to pass his hand into the uterus, for the purpose of removing an adherent placenta, the ergot of rye having been previously administered. The introduction was carefully performed. The straining and opposition to his efforts on the part of the woman were exceedingly great; and at the moment when the operator's hand had reached the organ, my own hand making counter-pressure on the abdomen, the patient became violently convulsed, and died in less than a minute."

The second is from Dr. F. H. Ramsbotham, who relates a case of convulsions in which the fits were relieved by bleeding, and the woman remained fifty hours after the attack before labor came on. In less than five hours she was delivered without any recurrence of the fits; but as the placenta did not come away, Dr. Ramsbotham was summoned, two hours after the expulsion of the child. He remarks that, "Under no greater anxiety than usual when the placenta is retained, I proceeded in the ordinary way to remove it. The moment I had passed my hand completely into the uterine cavity, the patient turned upon her abdomen, and without uttering any expression of pain, went into a convulsion."

Puerperal Convulsions may arise from Irritation of Intracranial Excitor Nerves. It may appear a nice distinction to classify convulsions arising from cerebral pressure on the medulla oblongata, and convulsions caused by irritation of the membranes, under different heads. Yet the one is Centric, the other Eccentric. Cerebral pressure affects the medulla oblongata directly, meningeal irritation reaches it reflexly, so that some distinction is really demanded. The known intracranial causes of puerperal convulsion of a reflex character are, bony projections and exostoses, inflammation of the meninges, the extension of red softening of the brain to the membranes, or the extension of irritation from a coagulum in the substance of the brain. Thus, in puerperal convulsion, we have to study the brain and its envelopes under many and very important points of view; 1, as the seat of some of the most important changes which occur during the fit; 2, as the seat of an important class of centric causes of convulsion; and, 3, as the source of irritation acting upon the spinal centre in reflex forms. As the reflex cause of convulsion, we must study the brain as we would the uterus, the stomach, the intestines, etc.

Irritation of the bowels, especially of the lower part of the intestinal canal, is well known to cause convulsions under other circumstances besides those connected with the puerperal state. Thus worms, the severe action of purgative medicines, the collection of indurated fæces in the bowel, have all been known to cause epilepsy, and the convulsions of children. It cannot therefore be wondered at, that when the excito-motor system is under the additional stimulus of either pregnancy, labor, or the puerperal state, these and similar sources of excitation should cause puerperal convulsions. Gastric irritation has long been looked on as a cause of puerperal convulsions, though the true rationale has never been given by obstetric writers. Irritation of the Bladder is a less frequent, though undoubted, cause of puerperal convulsions. Other causes than those which have been given, occasionally operate on the spinal system, but all act in accordance with the principles already advanced. Mr. Ingleby suspected that irritation of the Mammæ might cause convulsions. Not long since, I saw a case of puerperal convulsion for which no other cause could be assigned than excessive soreness of the nipple, with mammary induration. The Skin, too, as an important excito-motor organ, must be studied in relation to puerperal convulsions. The same may be said of the Liver, and other organs supplied by the pneumogastric nerve.

Such are the principal causes of puerperal convulsions to the modus agendi of all of which the physiology of the true spinal marrow goes far towards supplying a perfect explanation; and it must be remembered that, wanting this mode of solution, the disease formed, confessedly, one of the enigmas of modern

pathology. To give a summary of the whole subject, the true puerperal convulsion can only occur when the central organ of this system—the spinal marrow, has been acted on by an excited condition of an important class of its incident nervesnamely those passing from the uterine organs to the spinal centre, such excitement depending on pregnancy, labor or the puerperal state. While the spinal marrow remains under the influence of either of these stimuli, convulsions may arise from two series of causes: those acting primarily on the spinal marrow, or centric causes; and, secondly those affecting the extremities of its incident nerves, or causes of eccentric or peripheral origin. Though the subject admits of this division, several causes may act together, and centric and eccentric causes may be in operation at the same time. I have made no attempt at a division into predisposing and exciting, proximate and remote causes, because it is evident that a cause which in one case is the exciting or proximate, may in another be the predisposing or remote cause. Thus, irritation of the uterus may be the predisposing, and irritation of the stomach the exciting, cause, in one instance; while in another, irritation of the uterus is both the predisposing and the exciting cause; hence, any such division must be, to a great extent, arbitrary and devoid of precise mean-

In the **Treatment of Puerperal Convulsions**, we have to consider remedies which act on the central organ, the spinal marrow, and those which affect the extremities of incident spinal nerves. I propose, in the first instance, to consider the remedies of direct or centric action. Of these, **Bloodletting** is the most important.

The action of bloodletting on the spinal marrow is greatly modified by the condition of the circulation. In fullness of the vascular system, it is the most powerful sedative of spinal action we possess. Hence, venesection is the great remedy in the simpler form of puerperal convulsion, where the disease chiefly depends on stimulation of the spinal marrow by excess of blood, or on the mechanical pressure exerted by the blood on that organ, together with the counter-pressure of the distended brain on the medulla oblongata. In such cases, bleeding should be performed, with a view to its sedative action on the spinal marrow, and to avert the mechanical effects of vascular pressure

from this organ. Alone, it will frequently be sufficient to subdue the disease, particularly when the fits come on before the beginning of labor or after delivery. But another most important intention of bloodletting should never be lost sight ofnamely, that of preserving the brain from injury during the convulsion. Besides the primary cerebral congestion, which may have been the cause of the attack by its counter-pressure on the medulla, the convulsive actions themselves, exerting great muscular pressure on the whole vascular system, and causing, as they must, the greatest turgidity of the vessels of the head, are dangerous sources of fatal cerebral congestion, or of serous or sauguineous effusion. As in the case of epileptics, women in puerperal convulsions frequently die of apoplexy, produced by the immense pressure exerted on the cerebral column of blood during the fits. It is in great measure from the effects of bloodletting in warding off accident from the brain that bleeding is so general in this disease. The due recognition of the distinct operation of bloodletting on the cerebral and spinal systems is of the utmost consequence. In plethoric states of the circulation, it is in this disease curative in its action on the spinal marrow, preventive in its action on the brain.

In the absence of definite ideas regarding the effects of bloodletting in this malady, it has been sometimes pushed to excess, or practised where it should have been altogether avoided. In the numerous cases where, besides vascular excitement of the spinal marrow, some irritation of spiual excitor nerves exists as a conjoined cause of convulsion, repeated bleedings will often fail to subdue the disease, unless the eccentric irritation be at the same time removed. When irritation of the uterus, the rectum, or the stomach, is in part excitor of the convulsion, bleeding alone cannot be relied on. It may at first diminish the impressibility of the central organ, rendering it less susceptible of the incident irritation; but if persisted in to a large extent without the removal of the eccentric irritation, it becomes in the end positively injurious, by increasing instead of diminishing the excitability of the spinal marrow.

In vascular plethora, depletion is undoubtedly a sedative to the spinal system; but when the circulation is reduced considerably below par, loss of blood becomes an actual excitant to this organ. Hence it is that the reports of those who have most pertinaciously followed bloodletting, exhibit the loss of a greater number of patients than those who have been more cautious in this respect. The propriety and extent of venesection must be estimated, then, not by the violence of the disease, but by the state of the circulation in the interval of the fits, and with especial reference to the different effects of the vascular plethora, and vacuity upon the spinal centre. Patients rightly bled in the first instance, may be subjected to successive depletion until loss of blood itself becomes the cause of the final seizures.

Similar remarks would apply with almost equal force to the other parts of the common antiphlogistic regimen. Nearly allied to the modus operandi of bleeding are the effects of Nauscating Doses of Emetic Tartar, which have been found so serviceable in the treatment of puerperal convulsions by Dr. Collins. It is more than probable that this remedy acts as a sedative on the spinal system through the medium of its effects on the circulation. In the convulsion occurring in delicate anamic women, bleeding is generally inadmissible, becoming in fact, under such circumstances, an exciting cause of the disease. Still, in cases approaching to this state, cautious bleeding may be sometimes necessary to preserve the brain from injury, but here venesection requires to be followed promptly by stimulants: such cases are, however, rare in comparison with those in which fullness of the circulation exists at the onset of the disease.

During the attack of convulsion the glottis is partially or entirely closed. The greatest authority on this point, Dr. Marshall Hall, questions if true convulsion could ever occur without this state of the glottis, and the cerebral and spinal congestion which it occasions. We know that the epileptic attack is sometimes worked off by the dash of cold water on the face or chest, so as to excite a sudden inspiration and the dilatation of the glottis. It is on the same principle, that of exciting a strong inspiratory act, that we stimulate the nostrils or sprinkle the face with cold water in syncope. Excitation of the incident nerves of inspiration has in the same way been known to prevent the puerperal convulsion. It is probable that in extreme cases, tracheotomy may afford relief, and I should not hesitate about resorting to this operation when the patient was in danger of dying during the fit.

Harvey gives an instance in which stimulation of the trifacial

nerve within the nostrils recovered a woman who became comatose during labor. Denman also relates an interesting case, in which a convulsion was excited during every labor-pain, but in which he kept off the attacks, until delivery was completed, simply by throwing water on the face with a bunch of feathers at each accession of pain. It was found that this mode of proceeding, from which he angured so favorably from its effects in this and other cases, did not prove equally efficacious on all occasions. He observes, that this is "a safe remedy," which cannot be said of all measures resorted to in this disease. It must certainly be productive of benefit in cases where the glottis is not so firmly locked as to render its dilatation by this means impossible. Even if it does nothing to prevent the accession of the fit, every time we can dilate the glottis, and cause a full inspiration, we take off a considerable amount of vascular pressure from the nervous centres, and lessen the proportion of venous blood in the system.

The application of Cold is a therapentic of some importance in this disorder. Cold, applied to the head in the form of napkins, lightly wrung out of cold or iced water, ice itself, or a full stream of cold water poured from a height, has become an approved remedy in puerperal convulsions. It therefore becomes an interesting question, How does cold water thus used act on the nervous system? It may act as a sedative on the cerebral portion of the spinal marrow, or it may lessen the distended state of the cerebral circulation, and thus relieve the counter-pressure of the brain on the intra-cranial portions of the spinal system. Probably it acts in both of these modes. When used in the form of the continuous donche, as sometimes recommended, it would, in addition, tend to excite acts of inspiration, and thus dilate the glottis. The primary sedative action of cold on the spinal centre would seem to be shown satisfactorily by the good effects of cold applied to the whole length of the spinal column in tetanus.

The application of cold to the spine as well as to the head may hereafter be found beneficial in puerperal convulsions. Whenever cold in any form is resorted to, its use, except for the purpose of exciting the respiration, must be continuous, as the intermittent application of cold, locally or generally, would excite, instead of allay, the spinal system. The benefit deriv-

able from cold appears to arise from its local action on the nervous centres, because in tetanus, the purest form of increased morbid spinal action, cold applied to the spine is serviceable, whereas, when applied to the whole surface of the body, it is extremely dangerous, and even fatal.

Some striking distinctions must be made respecting the administration of Opium in Puerperal Convulsions. dose of opium be given in this disease in a full state of the circulation, before bleeding, there is a dangerous aggravation of the disorder; while if it be given in puerperal convulsions in an anæmic subject, or after excessive depletion, it is of great service. If, in a case of convulsions, opium be given at the commencement, it is dangerous in its effects; but the same medicine is frequently valuable in the advanced stage of the same case, when the vascular system has been powerfully depleted. it would appear evident that in convulsions with a full state of the circulation, opium is a stimulant to the spinal marrow, while in convulsions with anemia, it is distinctly sedative. It is certainly an important point in practice, that the effects of opinin in puerperal convulsion depend on the state of the circulation; that in plethoric or inflammatory conditions it is always dangerous, while in anæmia and debility it may always be given beneficially.

[Chloroform is an agent of the highest importance in the relief of puerperal convulsions when they are dependent upon spinal irritability. The indications for and against its use are thus summed up by Dr. Barker; "Where the convulsion is the result of direct pressure on the medulla oblongata, or where the convulsion produces serous or sanguineous effusion, the chloroform can have no influence in controlling the fits. Where then, there is complete coma, and especially when there is partial paralysis, no good effect can be anticipated from the use of chloroform. No judicious man would think of using chloroform in anemic convulsions; as in allaying the spinal excitability, there would be great danger of overwhelming the nerves of organic life, and thus destroying the life of the patient. In hysterical convulsions, the chloroform is the sole therapeutic agent required."

The regulation of **Emotion** is of considerable importance in preventing the accession of convulsions when they are threat-

ened, and in averting the return of the attacks, in the intervals where consciousness is retained. Mental excitement of every kind should be soothed, and avoided as much as possible. The sight of the infant, of alarmed friends or relatives, unpleasant intelligence, noises in the sick chamber, or still more trifling matters, have caused or renewed convulsions. Perfect quiet and repose within the sick-room, and the absence of all signs of excitement on the part of the attendants, are of the utmost consequence; the calm or timid look of the professional man may either excite or prevent a fit.

During ordinary labors care should be taken to avoid increasing the tendency to contractions of the muscles of the neck; this is still more important in labors with symptoms of spinal erethismus, or threatening convulsion. Care should be taken that during the propulsive and expulsive stages of labor, the reflex contractions about the neck should not be increased by excessive voluntary efforts, or by violent emotional disturbance. When the neck becomes tunid at each returning pain, the reflex cervical contractions should be moderated by directing the patient, not only to withhold voluntary action of this kind, but to cry out during the pains, so as to keep the larvnx open. this way sphagiasmus and laryngismus may both be prevented by volition, in some cases. If the cervical symptoms are severe, venesection should be practised before the accession of convulsion, as a preventive measure. Whenever fullness of the neck occurs, either before or after labor, so as to create an apprehension of convulsion, blood should be taken from the head by leeches or by cupping. There is no point of greater importance to the prophylaxis of puerperal convulsion than an attention to the state of the cervical region; it is to convulsion what the pulse is to inflammation.

On more than one occasion in the present lectures, I have spoken of the great importance of treating **Albuminuria** during pregnancy. By the removal of the poisoned state of the blood, we may prevent convulsions; but, unfortunately, when this state continues up to the time of labor, and causes the fits, we can do little towards the depuration of the blood, or removing the renal disorder. We have no sudden means of relieving a patient in such a condition, except perhaps, to a slight extent, by puncturing the skin in situations where the local cedema is

excessive. In cases complicated with albuminuria, labor should be completed as early as possible, due regard being had to the effects of the irritation which may be necessary to effect delivery. It often happens that very shortly after the expulsion of the child, the kidneys secrete an immense quantity of urine, and relieve the patient from the state of blood-poisoning.

In threatened convulsion, or after the invasion of the disease, it is of the utmost importance to seek out and remove all sources of reflex irritation. Remote causes of irritation should be sought for, and removed with the greatest care. The state of the Stomach, the Intestines, the Breasts, the Bladder, and other organs in reflex relation with the uterus, should be examined. If the fit should have occurred for the first time after a full meal, or after indigestible food, an emetic of the sulphate of zinc should be administered. If there should be vascular fullness, venesection ought to be performed. The bleeding should precede the emetic, to diminish the danger to the cerebrum from the action of vomiting, for emetics given incautiously have occasionally produced sudden death in puerperal convulsion. However, when the gastric irritation is undoubted, no patient should be suffered to continue in the fits with the stomach unrelieved. It may seem superfluous to urge this, but I have known cases of convulsion from gastric irritation, in which the most sedulous attention has been shown to almost every other organ in the body, except the right one. Still more important than the stomach is the state of the bowels. In convulsions the intestines are very commonly loaded; it immediately becomes a question how to relieve them without producing greater irritation by the operation than already exists from their loaded condition. most violent drastics have been given in such cases without any ceremony, as though the more rudely the materies morbi were grasped, the more effective the remedy. But it is of great importance to avoid irritating the intestinal canal unnecessarily. I have known puerperal convulsions produced by giving a brisk cathartic too soon after delivery. In fact, there is little difference between irritant drugs and irritant fæcal matter. Therefore, whenever the bowels can be opened without purgatives administered by the mouth, but by aperient enemata, the latter are greatly to be preferred. When we give a cathartic, we never know how long it may remain to fret the bowels, but an enema

is sure to return almost immediately. Washing out the bowel is less irritating than drastic cathartics, and often effective in removing fæcal accumulations. A copious enema of warm water, repeated until free evacuation has been produced, has sometimes relieved convulsion. If the warm water injection should be insufficient, castor oil or turpentine may be added. Sometimes the constination is so obstinate as to refuse to yield either to enemata or cathartics, and the contents of the bowels positively require to be dug out. I have seen a case of this kind in which their excavation was followed by the almost instant relief of violent convulsions. The state of the bladder should always be attended to in puerperal convulsion, particularly as, during the insensibility of the intervals, the patient is unable to inform the attendant of its distended condition. This may be a slight thing to mention, but the catheter has sometimes relieved convulsion when the lancet has failed.

But the great seat of reflex irritation in puerperal convulsion is in the parturient canal. There is only one direct mode in which uterine irritation can be allayed during puerperal convulsion, except by the removal of the fætus. This is by removal of the liquor amnii. In cases of puerperal convulsion, puncturing the membranes takes off a considerable amount of distension from the uterus; diminishing the size of the organ, and the quantity of blood circulating through it. Hence, though it renders the uterus more active, by bringing its parietes into contact with the fœtus, it renders the organ itself less irritating to the general spinal system. The evacuation of the liquor amnii is to the uterus what the partial action of an emetic or an enema is to the stomach and intestines. In convulsion from uterine irritation, much may be done by the avoidance of all unnecessary dilatation and interference with the vagina and os uteri. During convulsions, all operations upon the parturient canal, whether they consist of examinations, dilatation of the os uteri and the vagina, the artificial removal of the fœtus, or the extraction of the placenta, should be performed with the greatest care, and with the remembrance of the ease with which renewed fits may be excited by any irritation of the uterine passages.

The relation of **Artificial Delivery** to puerperal convulsion is a matter of deep interest. Some obstetricians have recommended that it should always be performed by turning, crani-

otomy, or the forceps, when the fits are obstinate and severe. In deciding this point, the particular characters of individual cases must be considered. The general principle which we may deduce is, that whenever artificial delivery can be effected with less irritation than would be produced by the continuance of the child in the parturient canal, and its expulsion by the natural process, it is advisable that it should be performed, if the situation of the mother be perilous. It must be with reference to this principle—namely, to the irritation of any particular operation, and the irritation of labor itself—that turning, craniotomy, or the forceps, must be decided upon. All these operations have destroyed patients; and, on the other hand, numbers have died undelivered, from uterine irritation. The question of interference is one for which no arbitrary rule can be laid down, but which must be decided in each individual case by the particular circumstance, due reference being had to the excitability of the uterus under the stimulus of the fœtus, and under artificial interference. The point to aim at should be, never to produce more irritation than we remove, and not to destroy the patient by an excessive temporary irritation instituted for her permanent relief, by the entire evacuation of the parturient canal. Of course, the greater the operation necessary for delivery, the greater is the deliberation necessary before it is commenced. In manipulating upon the uterus under such circumstances, we must never for a moment lose sight of its reflex connection with the spinal marrow. Such appear to me to be the principles upon which we must attack the uterus in puerperal convulsion.

I now proceed to the consideration of the form of **Puerperal Convulsion depending on Albuminuria.** Since the present work has been in the press, an obstetric text-book has been published by Dr. Carl Braun, of Vienna, which contains the fullest account hitherto given of puerperal convulsions dependent on uramia. An excellent translation of this part of Dr. Braun's work has been published by Dr. Matthews Duncan, and to this I am much indebted.

The subject of albuminuria, in connection with child-bearing, has already been adverted to in this Lecture and in that on the disorders of pregnancy. Puerperal convulsions depending on uramia and albuminuria are, without doubt, the most important and frequent convulsive disease of parturition, and require special

notice, as the treatment of such cases is distinct in some respects from that of puerperal convulsions occurring in the absence of albuminuria. Uremic convulsions, as they are called, may happen during pregnancy, in the course of labor, or after delivery has taken place, but the greatest number of cases occur during the act of parturition itself. As already mentioned, this form of convulsions is centric in its origin, as regards the spinal marrow, and depends on the circulation of vitiated blood in the vessels supplying the nervous centres. The blood-poisoning consists chiefly in the retention of urea in the blood, and the loss of large quantities of its albuminous portion. The symptoms of albuminuria during parturition are the same as those of the disease in the course of pregnancy, but the ædema and general pallor is more marked, and towards the end of gestation, the quantity of albumen in the urine is increased. During labor, also, and especially during anæmic convulsions, there is an excessive amount of albumen in the urine. As women affected with albuminuria frequently pass through labor without convulsions, it is believed by many authorities that something akin to fermentation must occur in the blood, loaded with urea, and other excrementitious matters, and deteriorated by the loss of albumen, before convulsions can occur. In this fermentation, the area is supposed to be transformed into carbonate of ammonia, and to this the convulsions are attributed as their immediate cause. It is found that the breath, sweat, and the blood itself, reveal the presence of ammonia. In the height of the disease, the urine is generally acid and small in quantity, or entirely suppressed. Its specific gravity ranges from 1010° to 1030°. Before the occurrence of convulsions, the reflex sensibility is increased; but during the fits it is observed to be diminished, and the eye may be irritated without causing contraction of the lid, while other parts of the body are observed to lose much of their susceptibility to reflex stimuli and impressions. The actions of the uterus are sluggish, but continue to a great extent independently of the fits.

The Causes of albuminuria have been adverted to when treating of the disorder as it occurs in pregnancy. Pathological evidence tends to show that the condition of the kidney which is present, closely resembles an acute attack of Bright's disease. The urine is dark-colored from the presence of blood corpuscles;

and, examined by the microscope, cylindrical clots and cylindrical masses of epithelium from the tubuli uriniferi are found. In fatal cases, the structure of the kidney is discovered to be seriously altered from the normal condition by the presence of diffuse inflammation leading to degeneration of the renal structures. It is, however, remarkable, as separating this form of albuminuria from others of similar intensity, that shortly after labor, the urine becomes normal, and in a few days, or at most weeks, all traces of albumen and of renal disease disappear. It is remarkable that in some women, the albuminuria reappears in successive pregnancies.

The attack of convulsions is generally preceded by imperfect vision, sometimes amounting to total blindness, tinnitus aurium, irregular action of the heart, intense cephalalgia, and confusion of intellect. The phenomena of the convulsions themselves consist of spasmodic jerking movements of all the voluntary muscles, attended by complete insensibility. There is trismus with protrusion of the tongue, so that this organ is frequently bitten. Laryngismus and spasmodic contraction of the muscles of respiration, exist to such an extent as to entirely suspend respiration for some seconds at a time, and sometimes cause death from asphyxia. There is great congestion of the neck, face, and brain, with strong pulsation of the carotids and lividity of the surface. The pulse is sometimes frequent, at others slow. After the fit passes off, there is a state of torpor, and then consciousness, more or less complete, generally returns after the first fits. In the worst cases there is no return of consciousness, and as the fits increase in number, the state of torpor or coma be tween the convulsions becomes more continuous and profound.

As regards the Treatment of the form of puerperal convulsions depending on uramia, the latest experience is against excessive blood-letting, and, indeed, against bleeding at all, except in the form of a single venesection at the outset of the disease, in patients of full habit. Chloroform has been found of great service in moderating the violence of the fits, and in rendering operations, such as the use of the forceps in turning, comparatively easy of performance. It is also believed that a transient diabetes mellitus is caused by the inhalation of chloroform, and that this condition neutralizes to some extent the saturation of

the blood with urea or carbonate of ammonia, and that chloroform has thus a curative effect in addition to its anæsthetic influence. The remaining indication is to complete the labor, when the convulsions occur during the course of parturition, as early and with as little irritation as possible. As the rule, craniotomy should not be performed, on account of convulsions alone, unless there be evidence of the death of the child. The forceps should be used when the head is within reach, and the os uteri sufficiently dilated. It has been recommended in those cases where the head is high in the pelvis, to use the forceps after Hatin's method-namely, by introducing one hand entirely into the vagina while the blades of the forceps are being passed up, so as to direct them to the head. In cases of rigidity of the os nteri, labor should be promoted by the means used for the induction of premature labor. No means are probably superior to the injection of two or three quarts of warm water into the uterus itself, by passing a tube up between the membranes without rupturing them. Professor Braun recommends the introduction of a caoutchouc bag into the vagina, and its distension with water, as a means of dilating the os uteri, and also advises incision and cauterization of the os. Incision should, however, only be practised in cases in which it would be necessary if the labor was not complicated with convulsions; and the author referred to, gives no sound reason for the employment of cauterization. In this country it is sometimes the practice to perform craniotomy when the head is low in the pelvis, to avoid injury and sloughing of the perinæum; but the propriety of this may very well be questioned. It would be better to lacerate the perinænm by the use of the forceps, or even to incise it if necessary, than to destroy a living child. When the patient is sensible between the fits, she should drink copiously of diluent and diuretic drinks containing citric, tartaric, or benzoic acid. Cold should be applied to the head in the form of an ice-bag or a cold donche. Blisters to the nape of the neck are useful in preventing cerebral effusion. The bowels should be moved freely with compound jalap powder or purgative injections. The bladder should be watched, and the urine drawn off by the catheter, if necessary. These points of treatment apply especially to cases in which the convulsions occur either before or after delivery.

The fatal effects of convulsion upon the child have long been known. A large proportion of the children in such cases are born dead. This result is attributed in part to the influence of the continuous contraction of the uterus in such cases, in interfering with the placental circulation, but chiefly to the poisonous effects of the blood of the mother upon the child. It is found that children born alive after convulsions are affected with uramia or albuminuria, and that this condition lasts in some cases for a considerable time after birth. Sometimes children born alive under such circumstances have themselves died subsequently of uramic convulsions.

This fact of the blood of the fœtus in utero becoming diseased through the circulation of the mother, and producing albuminuria in the child, would render it probable that uræmia may sometimes exist primarily as a disease of the blood, and that the renal disorder may be a secondary affection.

It was also known to the older authors that inflammations of the serous membranes, as the pleura and peritonæum, were frequent after convulsions; and these affections are no doubt due to the poisoned state of the blood, as is also the tendency to mania observed in such cases. Although the renal disorder disappears so soon after the completion of labor, the anæmia, hydæmia, and general depravation of the blood which accompanies it, remains for months or even years before it is entirely removed. A tonic regimen, with the liberal administration of steel, will best promote recovery. Care must be taken not to confound the symptoms of excitement frequently attending this form of debility, with inflammatory disorder.

LECTURE XLII.

PUERPERAL FEVER.

About three thousand mothers die in childbed, annually, in England and Wales. This is an average of nearly eight deaths every day from this cause. The proportion of maternal deaths to the births, registered in several years, was found to be 1 in 171. This mortality, it must be remembered, occurs for the most part to women in the prime of life, and previously in the enjoyment of full and vigorous health. Amongst the causes of death during the puerperal period, the disease we are now considering is, of all others, the most important and fatal. The fatality from **child-bed fever** is, however, in the present day, moderate, when compared with the epidemics of former times, in which, of those attacked, positively none recovered; but though it is still little amenable to treatment, when it exists, there is reason to hope that Preventive Medicine may hereafter almost, if not entirely, eradicate this formidable disease.

The histories of puerperal epidemics and outbreaks show great diversity in the symptoms and progress of the disorder at different times. This disease evidently varies with the constitution of disease at the time it prevails, being at one time intensely inflammatory, at another time putrid, in its form. In some seasons and places the liver, in others the peritonæum, in others the uterus, in others the intestinal canal, have been attacked; and in some of the worst examples, pathology has found no other change after death than fluidity and altered color of the blood. It may be said, in fact, upon a review of the numerous descriptions of puerperal fever, that there is hardly a form of fever or inflammatory disease which it does not, to some extent, resemble in character. The great diversities witnessed in this disease have led modern observers to assert that under the term "puerperal fever" many different and separate diseases had been described,

such as phlebitis, peritonitis, hysterics, enteritis, typhus fever, remittent fever, erysipelas, toxæmia, and other forms of disease. The tendency has been, in modern times, to dwell upon the special manifestation of the disease, and to consider that all the various phases of the disease depend on some local disorder, or upon some specific combination of morbid phenomena. One after another, various morbid conditions have been thought to form the chief part of the disease. At the present day, the doctrine of uterine phlebitis may be said to hold this kind of preëminence, and there is a general tendency to consider that all the local and constitutional symptoms and pathological changes arise from this source.

The more puerperal fever is investigated and tracked, as it were, to its elements or origin, the less satisfactory does any partial or local explanation of its nature become. In the progress of such examination, it appears more and more evident that there is a puerperal Poison to which the lying-in woman is liable, and which produces all the varied phenomena of puerperal fever met with in different epidemics, localities, seasons, and constitutions. In one time or person, peritonitis is produced; in another, metritis; in another, phlebitis; in another, mammary or other abscesses; in another, low fever; in another, intestinal irritation; in another, dissolution of the blood, without a trace of local inflammatory disorder; and so on throughout the list of local or special disorders which have been described by authors in puerperal fever. It may be questioned, even, if phlebitis ever occurs without a poisoned condition of the blood, produced either as the result of contagion, epidemic influence, or the absorption of putrid matter from the uterus.

Thus, in the earliest pathological arrangements, a great number of disordered states were grouped together as **Puerperal Fever**, without attempt at discrimination or analysis; next came a laborious separation of the different forms and manifestations of the disease; and the subject seems at the present time ripe for allying the numerous affections met with in puerperal fever together, in their origin from a common cause—namely, some Animal Poison, or Zymotic Influence.

Of the occasional **Sporadic appearance of Puerperal Fever**, and its allied disorders, there can be no doubt. In all seasons, taking large communities, or large areas, isolated cases

are met with in different localities, and in the practices of different medical men, where single patients are attacked, and where the disorder is not so severe as to extend itself by contagion or infection. In these cases, when the poisonous element is produced by the patient attacked, it probably originates from the state of the blood incidental to delivery, or depends upon the absorption of irritating or putrid lochial discharges, decomposed coagula, or portions of retained placenta. A single case produced in this way, may become contagious, and cause the disease in other patients, through the medium of nurses or attendants. It seems to be clearly made out, that in cases of this kind, and, indeed, in all cases in which contagion or infection is concerned in the propagation of puerperal disease, the risk of the spread of the disorder is greater in proportion to the advnamic type of the cases which first occur. In inflammatory cases, the risk of the communication of the disease is less than in the purer forms of fever. The most convincing proof of the sporadic origin of some cases of puerperal fever is found in those instances in which single cases occur, and no other cases happen either in the neighborhood or at about the same

As distinct from the sporadic appearance of puerperal disease, we have Epidemic Puerperal Fever, or puerperal inflammation, in which the disease, in its various complications, rages in certain hospitals or districts, being very dangerous at the onset, attacking the patients of different medical men simultaneously, prevailing for a certain time, and then becoming weaker and more manageable in type, until it at length disappears altogether. Epidemics of puerperal fever originate in the crowding of pucrperal women together; and in the cpidemic prevalence of erysipelas, hospital fever, typhus, or other disorders allied in their nature to the puerperal disease. In cpidemics of this as well as other disorders, it is exceedingly difficult in any given case to prove whether it arises from epidemic or contagious influence. The best proof we have of the existence of puerperal fever in an epidemic form, is drawn from those examples in which the disease appears in certain towns or districts and affects the patients of all the medical men alike, but is certainly not confined to the practice of one or two accoucheurs. It is observed that when puerperal fever prevails epidemically in the human subject, the lower animals die in large numbers of diseases connected with parturition.

Besides the sporadic and epidemic appearance of this disease, we have, in my opinion, evidence as irrefragable as that which can be advanced in the case of any other malady whatever, that it sometimes rages as the result of **Contagion and Infection**. Those who deny the influence of contagion, magnify the facts relating to the sporadic and epidemic prevalence of this disorder, and seek to apply them to the universal explanation of cases in which contagiousness appears most manifest. It is natural, observes Dr. Farr, for any man to shrink with horror from the supposition that he has communicated so fatal a disease to his patients, and to be disposed to receive any other explanation than that which refers it to contagion. Nevertheless, the interests of truth and humanity demand that the evidence of the contagiousness of puerperal fever should be put prominently forward.

The following are examples of the kind of evidence which exists in proof of the contagiousness of puerperal fever, and it may be necessary to state that facts of a similar kind to those now advanced might be multiplied to almost any extent:

A practitioner, for instance, had been attending cases of typhus fever. Within the space of four days he delivered five All these women were attacked with puerperal fever, and all of them died. This was in a country practice, and the cases were remote from each other. Different practices intersected the practice of this medical man at various points, but no other eases were known to have occurred in the neighborhood. Again, a patient suffering from typhus fever was admitted into a lying-in hospital, where she remained for a few hours only. In the beds on the right hand and the left of this patient were two lying-in women; both were attacked almost immediately with puerperal fever, and both died. Take another case: a medical man was in constant attendance upon a patient suffering from gangrenous erysipelas, and between the 8th of January and the 22d of March he attended the labors of ten women; all had puerperal fever, and eight of the patients died. This was in a town of moderate size, and no other patients in the place were known to have had puerperal fever. In another recorded instance, two medical men, brothers and partners, attended in

the space of five months twenty cases of midwifery. Of these, fourteen were affected with puerperal fever, a fatal result ensuing in eight cases. The only other known death from puerperal fever, in the same town, within the period named, occurred in the case of a patient attended by a medical man who had assisted at the post-mortem of one of the puerperal patients. During this disastrous period, the two brothers relinquished all their midwifery engagements for one month, in which time five of their cases were attended by other practitioners, and no instance of fever occurred in the course of that month. They then returned, and several fatal cases again happened. It is difficult to imagine anything more conclusive as regards the doctrine of contagion. A curious history in point is related by Dr. Ingleby. Two practitioners attended a post-mortem where the patient died from this disease. One was summoned in one direction to a midwifery patient, who was attacked with puerperal fever; the other attended two cases in succession, both of whom were seized with the same disease. Dr. Robertson relates perhaps one of the most cogent instances of contagion and fatality on record. In the space of one calendar month, a certain midwife attended twenty cases belonging to a lying in charity; of these, sixteen had puerperal fever and all died. The other midwives of the same charity, working in the same districts, attended in the same time 380 cases, none of whom were affected with puerperal fever. In a large town containing many thousands of inhabitants, and numerous medical men, fifty-three cases of puerperal fever occurred. Of these, no less than forty happened in the practice of one medical man and his assistant.

In the face of such facts as these, it does not become us to hesitate, or give out an uncertain sound respecting the contagiousness of puerperal fever. It is better to know the worst, fear the worst, and guard against the worst, than to harbor undecided opinions. I have known several instances where medical men, believing in the non-contagiousness of the disease, or hesitating between the two opinions, had gone on attending patient after patient with fatal results, until convinced of the mistake they had fallen into by successive deaths. No doubt sporadic and epidemic seizures are sometimes mixed up with those of a contagious origin, in such a manner as to require much clearsightedness to penetrate the confusion; but the facts

of contagion are, as it appears to me, placed beyond all question, and should never be lost sight of by practical accoucheurs.

Those who oppose the view of the contagious nature of the puerperal fever, argue that the cases which seem most conclusively to demonstrate the communicability of the disease from one patient to another by the attendants, really depend on epidemic influences. They point also to the occasional sporadic appearance of single cases in different parts of the same city or district, in the practice of different medical men. It is also insisted upon that in some cases lying-in women have been exposed to the influence of surgical fever, or have been present in wards containing patients ill of peritonitis, without contracting puerperal fever. The very intensity of the contagious principle has been used as an argument against the existence of contagion. It has been said-How could any poison cling to an accoucheur for several weeks, as in those instances where medical men meeting with puerperal cases have relinquished practice for awhile, but on returning have brought the disease back with them? Great stress has been laid upon personal experience, as in the case of Dr. Meigs, who attended as the consulting physician upon numerous cases in an outbreak of the disease which occurred to another practitioner, but Dr. Meigs himself never took the disease to any of his own patients. It appears to me that these difficulties are much more easy of explanation than the difficulties attending those cases in which contagion seems to be most convincingly proved. Some persons may be more liable to convey infection than others, just as one individual is more prone to infection than another. At certain times, from reasons which we cannot understand, but which we know must exist, the human organism is in such a state that exposure to infection and contagion does not affect it. Perhaps one of the strongest arguments in favor of infection or contagion is drawn from the preventive treatment of the disease. great reductions in the mortality have arisen from measures calculated to remove infection and contagion. In the course of a few years the mortality in the great hospital of Vienna was reduced from 1 in 10 to 1 in 74 of the mothers delivered, by the precautions taken to prevent the inoculation and infection of lying-in women. In this country the disease is much less formidable than it formerly was—a eireumstance which is greatly owing to the eare taken in preventing the spread of the disease

by eontagion and infection.

It is further necessary to insist upon the fact, that the contagious principle in the ease of puerperal fever, is not limited to the transmission of puerperal fever, nor to the communication of infection from one puerperal patient to another, either directly to the lying-in woman or by attendants or nurses, but that it may be conveyed in the shape of several other Animal Poisons. One of the most remarkable points connected with the puerperal poison is the fact, that setting aside its sporadic and epidemic appearances, it may, in the first instance, originate from a variety of causes external to the patient herself. When onee produced in this manner in single cases, it may be propagated amongst puerperal women by infection and contagion. The exposure of puerperal patients to the influence of Hospital Gangrene will produce the disease. Medical men in attendance upon cases of Erysipelas have given their patients puerperal It has been made out very conclusively by Semelweiss and others, that the miasms derived from the Disseeting-room will excite puerperal disease. Exposure of the puerperal woman to the poison of Scarlatina will give rise to puerperal disease in patients proof against the reception of searlet fever itself. mortality amongst child-bed women seized with Small-pox is well known, and such patients die with the symptoms of puerperal disease, in addition to the variola. With respect to the disorders named, and probably others also, such as putrid sorethroat and sloughs or abseesses, some law evidently exists by which they may all be respectively converted into the puerperal poison. In some cases, puerperal fever and erysipelas have been observed together at the same time, and in the same patient.

A eurious eircumstance connected with the poison of puerperal fever is, that it may be communicated in other forms to the nurses, or attendants, and even to males. The husbands of puerperal women may be attacked by sore-throat, erysipelas, or typhus fever. Within the last few years an accomplished physician-accoucheur of this metropolis was cut off suddenly by putrid fever, after examining a woman suffering from puerperal disease. In some of the eases where the same medical man has lost numerous cases in succession, as many men and women have died from fever or erysipelas, as those who have perished from the puerperal disease. Thus, we have evidence that erysipelas, gangrene, fever, etc., in males, or unimpregnated women, may produce child-bed fever, and we have the converse proof that this fever may excite other dangerous disorders, as the result of contagion, in non-puerperal persons.

How is this subtle poison conveyed from person to person? In what media of communication can it lurk? Through what channels can it reach the puerperal woman? The clothes, hair, and touch of the person exposed to the poisonous influence have been supposed to be the chief means of infection and contagion; but very remarkable cases are on record, such, for instances, as when the accoucheur has shaved his head, changed the whole of his clothes, cleaned himself by hot baths and vapor baths, and soaked his hands in disinfecting solutions, and yet he has taken the malady about with him. I believe that in such cases the blood of the person acting as the medium of infection is affected, and that by the breath a certain halitus or infectious influence is given out, which acts upon the blood of the puerperal woman through her lungs, and thus conveys to her system the germs of the disease. As this point has a practical bearing of some importance, I desire in this place to make a few observations which may explain the position I have assumed.

If we attend a post-mortem when the smell is peculiar, if we spend some time in a lying-in room where the odor of the lochia is very strong, or if we go into any very powerful smell, the taint evidently enters the body by means of the lungs, and can be perceived subjectively by the taste or smell, or its odor can be distinctly perceived in the saliva, in eructations from the stomach, or in the urinary, cutaneous, and other secretions. Although the party thus affected may have been exposed to the miasma or smell but for a short time, his blood gives evidence of infection for many hours, or in some cases for several days afterwards. Some habits are more prone to receive and retain this kind of infection than others. It remains so long in some cases that the odor would seem to have a power of sustentation or reproduction, otherwise it is difficult to suppose that an odor to which the lungs have been exposed, it may be for a few minutes, can infect the blood and all the secretions for twenty-four

or forty-eight hours. If we can trace in this way the influence of a bad odor, surely we may admit that the same thing may happen with reference to the wonderfully subtle poison or germ in puerperal fever, or those influences which are evidently convertible into the puerperal poison, and manifest similar results in the lying in woman. I believe that the blood of the accoucheur may take up a dose of puerperal poison without manifesting any special results in his own system, and that he may communicate it through the medium of the lungs to his patient. In the case of a poison so subtle, the air we breathe unites the circulations of the accoucheur and patient, and renders them, as it were, one. This is probably one great mode in which animal poisons generally are diffused. We know that the blood of persons attending patients in scarlatina, measles, and small-pox is infected, although they are proof against the disease; and in one remarkable instance we have the positive proof that the blood is the medium of infection. I refer to cases in which pregnant women who have had small pox in childhood, and are proof against infection, but who, on being exposed to the poison, convey the disease to the fœtus in utero. Here the blood of the mother must be the medium of communication between the patient suffering from small-pox and the ovum hidden in the womb, and the lungs of the mother must be the channel by which the poison enters the circulation. This illustrates very well what I mean by saying that the blood of the acconcheur, or attendants, is one great medium which conveys the poison of puerperal fever. The saturation of the blood of the accoucheur, nurse, or midwife, may remain for a considerable time; for cases are on record in which every case attended by certain individuals for weeks or months has been affected by the diaease. A practical point deducible from these remarks is, that in attending lying-in patients, after the slightest exposure to the puerperal poison, or to any miasma which can be converted into this poison, or its equivalent, in the lying-in woman, we should be especially careful not to go so near as to establish any communication between the lungs of the practitioner and patient. In saying this, I do not mean that other means of conveying the poison, as by clothes, hair, and the surface of the body, should not also be guarded against.

The fiercest outbreaks of this disorder have occurred in

lying-in hospitals, or in hospitals where lying-in women are received with surgical and medical cases, and where erysipelas, gangrene, or fever have prevailed. On this account many have doubted whether lying-in hospitals are not mischievous rather than otherwise, in the present limited state of our knowledge of the means of preventing puerperal fever. Women confined even in misery and squalor in their own homes are less liable to this disease than patients collected together in hospitals, even when the greatest care as regards cleanliness and ventilation is observed. All lying-in women should, as far as possible, be removed from the neighborhood of any contagious epidemic or infectious disease. It should be a rule of the practical acconcheur to have as little as possible to do with any of the animal poisons which give rise to puerperal fever. He should avoid autopsies, especially in cases of death from childbed fever, or ordinary inflammation. The student should not attend midwifery cases while he is dissecting. After an attendance upon any suspicious case, the practitioner should change his clothes, or have them hung up in a room exposed to the fumes of chlorine; I have no doubt it would be useful for him to inhale the diluted fumes of chlorine several times a day, and after touching anything connected with any source of danger, to rinse his hands in a solution of chloride of lime or chloride of zinc. It is impossible to be too scrupulous, in a matter of such moment, and I have known some accoucheurs who, on entering a lying-in room, always wash their hands before making an examination.

In the next lecture I propose to consider the special characters of puerperal fever in its various manifestations, and the rules of treatment.

LECTURE XLIII.

PUERPERAL FEVER.

Gentlemen:—In the last Lecture I stated briefly the evidence and facts which favor the view that all the different forms and manifestations of puerperal fever depend on a specific poison, arising in some instances sporadically; in others prevailing epidemically; sometimes due to the zymotic influence present in erysipelas, typhus, gangrene, surgical fever, and some other diseases; communicable from patient to patient by the attendants; and whose earliest known effect is a disordered state of the blood of the child-bed woman. I now proceed to describe the different secondary disorders traceable to the puerperal poison.

In the Adynamic form of Puerperal Fever, the effects of the poison are seen in their most terrible and virulent form. This type of the puerperal disease has prevailed in the most ravaging epidemics, and also in those outbreaks in which the contagious spread of the disorder has been most demonstrable. Occasionally, patients have been struck by the disease during the course of labor, or within a few hours after parturition. In other cases, two or three days have elapsed before the invasion of the disease. In the worst cases, patients become at once delirious or lethargic, the pulse being very rapid, from 120 to 140 in the minute, and feeble. Occasionally, acute pain is complained of, but more frequently there is in the worst cases little suffering beyond a feeling of indescribable anxiety and depression; sickness and vomiting of coffee-ground matter sometimes distresses the patient. The countenance is commonly sunken and dusky, or deeply pallid, with the dark circle round the eyes strongly marked. The skin is not above the usual temperature, but covered with clammy perspiration. Tympanitic distension of the abdomen rapidly supervenes. Rigors or shiverings may or may not be present. There is little or no sign of reaction, and in the worst cases the patients die in a state of collapse within a short time from the first seizure. Of 88 cases recorded by Dr. Collins, death occurred in 2 cases in 24 hours, in 1 in 27 hours, in 1 in 36 hours; 9 died on the second day, and 15 on the third, so that 24 perished in less than 72 hours. Dr. Ramsbotham states, in the worst cases this disease is more rapidly fatal than any other disease met with in this country, except cholera. Mr. Hey mentions a case in which death followed in less than eighteen hours.

When, from the less virulent action of the poison, or the strength of the patient, the disease is more protracted, the same symptoms are present, but in a milder form and degree. The invasion of the disease generally begins on the second or third day, and is commonly ushered in by shivering. There is in the earlier stages increased heat of skin. The tongue is sometimes coated, at others red; but as happens with every variety of puerperal fever, cases are sometimes met with in which from the commencement to the termination, the tongue remains tolerably clean. The prostration is less profound, and there is pain in the abdomen. Profuse sweating is a very common and distressing accompaniment of the disorder. In some cases this is so strongly marked, and constitutes so large a part of the disease, that Dr. Blundell described it as a distinct form of puerperal fever, under the name of Hydrosis. The sweat and the breath are very often accompanied by a sweetish pus-like odor. The sweating of puerperal fever does not diminish the secretion of urine, nor does it abate the quickness of the pulse. intolerable thirst prevails, and the patient, drinks immense quantities of whatever fluid she may be allowed. Dark spots or ecchymoses appear upon the wrists or other parts of the body. After two or three days, profuse diarrhea occurs, but though it often appears to be critical in its nature, it brings little or no relief, and the patient is harassed by frequent dejections and vomiting. The lochia are commonly but not invariably suppressed. More frequently, the breasts become flaccid and without secretion; but this is not always the case. The pain is often intermittent, even in cases where it is most severe, sometimes giving the attendants and the medical practitioner the hope that it may be of the nature of after-pain. In some of these

cases the mind is remarkably clear, until towards the termination of the disorder. One of the most constant and distressing symptoms is tympanitis. This comes on more rapidly, the more acute the disease may be, and soon rises to such a height as to interfere with the action of the diaphragm and heart. patient may in a few hours become larger than she was before delivery. Considerable quantities of flatus may be discharged, but no diminution of size is perceptible, the distension appearing to depend on an immense secretion of air by the mucous membrane, with paralysis of the muscular coat. In the course of the disease, obscure symptoms of uterine inflammation with enlargement of the organ, or of peritonitis, pleuritis, or pneumonia, are met with. When the disease proceeds to a fatal termination, the patient succumbs to exhaustion, the action of the heart becoming more frequent and feeble, congestion of the lungs or effusion into the pleural or pericardial cavities takes place, and low delirium or coma is present for some time before dissolution. In the rare eases, which terminate favorably, the sweating purging, or diuresis, appears to relieve the patient, and she slowly recovers from a state of great debility, remaining long afterwards in a condition of extreme debility both of mind and body. In comparatively rare cases, the chief symptoms of the disease are gastric, bilious, and enteritic irritation, but these are amongst the more favorable forms of puerperal disease.

The morbid changes met with after death are very various. In the most rapidly fatal cases, nothing has been met with beyond non-coagulability, thinness, and blackness of the blood. The blood in these cases resembles that of persons killed by lightning or hydrocyanic acid. There may be no signs whatever of any local inflammation, or disease of the uterus or other organs. In the less virulent and more protracted cases, purulent infection of the blood has been detected, and pus has been found in the veins, and other structures of the uterus. Congestion of the lungs, gangrenous abcess of their organs, or effusions of mixed pus, serum, and lymph into the pleuræ, have been observed. In some cases, spots of ulceration in the stomach and intestines, or purulent collections in the liver and kidneys, are recorded. Abscesses in the omentum have been frequently found, so have effusions of sanious pus and feebly organized lymph in the peritoneal cavity, particularly about the uterus and its appendages. The internal surface of the uterus and the muscular structure have been found softened and in a state approaching to gangrene, particularly the posterior part of the organ.

In the discussions of the New York Academy of Medicine, in the spring of 1857, Professor Alonzo Clark, in denying that puerperal fever is a fever without lesion, demonstrated that at the extremity of the uterine sinuses are two valves, lapping one over the other, like the ileo-cæcal valve, and around each of these valves runs a layer of muscular tissue, a part of the muscular tissue of the uterus. When the uterus is flaccid or large, these valves are open; but when it is contracted or reduced in size, the muscular fibre running through these valves draws them together, and thus closing the sinus, arrests any hæmorrhage. In the cases of simple fever so called, there is inflammation of these uterine sinuses, an exudation lines the interior surface of the uterus, which the microscope evinces to be pus mingled with blood, and corpuscles ready to be formed into fibres. Cruveilhier calls it "vascular and spongy vegetation." But, says Dr. C., I have examined it and find it to be fibre formation, and it is endo-metritis. Now I think that this soft, creamy, brick-dust colored exudation is to be found in every case where death has occurred as supposed without inflammation. Behind the valves in the sinuses, there is an ampulla, a little sack-like cavity, where, in these cases, pus may be always found. There is also pus in the veins of the liver coexistent—little greyish spots, easily overlooked, which the microscope plainly determines to be pus.

It has been mentioned that sporadic cases of puerperal disease are sometimes caused by the absorption of sanious lochial discharges, or the decomposition of coagula or portions of retained placenta within the uterus. There is also another mode in which sporadic puerperal fever may occur. There is some peculiarity about the state of constitution which obtains in pregnancy and parturition, tending to assimilate numerous other affections to the puerperal type. It may be seen, that in the case of a healthy pregnant woman attacked with small-pox or scarlatina, before abortion or premature labor is produced, the disease begins to assume the puerperal type. At any other time than after parturition, the presence of putrid matter in the uterus does not excite any great constitutional disturbance, as

witnessed in the case of polypi removed by ligature. Any inflammation of the os or cervix excited by a difficult labor, or peritonitis caused in the first instance by the violent contractions of the uterus, has a strong tendency to run into puerperal fever.

[I am obliged to enter my dissent to this assertion, inasmuch as I have never seen puerperal fever, in but a solitary case, where I have operated, and in that with forceps, and then the woman had tumidity and tenderness of the abdomen for some hours before I saw her. Even in those cases where I have divided the os and cervix, not the least symptom of puerperal fever in any of its phases was evident. Vide page 528.]

After the Cæsarian section the patient suffers from an almost exact likeness of puerperal fever. Dr. Simpson very ably draws a comparison between puerperal and surgical inflammations and fevers, and refers this similarity to the resemblance which exists between the uterus after labor and a wound after a surgical operation. No doubt this is true to a great extent, particularly as regards the occurrence of phlebitis. But there is in the pregnant and parturient woman a state of constitution which predisposes her to the formation of some virus or poison, capable of producing the puerperal type even before delivery, or even before the commencement of labor. This is the case after mechanical injuries of the gravid uterus. It is observed in cases of peritonitis, pleuritis, or any other visceral inflammation occurring during pregnancy. Before the uterus has been excited to expel its contents, there is an approach to the peculiar puerperal type of disease. If a gravid woman be attacked with erysipelas, she suffers from the symptoms of puerperal fever or inflammation before the birth of the child, and the infant may, when born, be affected with erysipelas, and die within a few hours after birth. Thus, then, it seems capable of demonstration that, apart from the state of the internal surface of the uterus after parturition, and especially that part of it from which the placenta has been separated, there is in the habit and constitution of the gravid woman, some peculiarity which, under numerous circumstances, produces the virus or poison which gives their characteristics to the multiform varieties of puerperal inflammatory and febrile disease. Amongst the predisposing causes of puerperal fever in any of its forms, anxiety of mind and depressing emotions during pregnancy or at the time of labor hold a very prominent place. This is strongly insisted on by Dr. Fleetwood Churchill and many other writers. Undoubtedly this cause is a main agent in the production of some of the sporadic cases of this disease. Dr. Churchill observes, "Several of the worst cases I have seen were mainly attributable to this cause."

In many cases of pnerperal fever, **Peritonitis** of a more or less acute form, constitutes the chief part of the disease. In some epidemics, inflammation of the peritoneum has been so universal as to give rise to the opinion that peritonitis formed the essence of puerperal fever, and puerperal peritonitis and pnerperal fever came to be used as almost synonymous terms. This was very much the state of medical opinion up to the time when Guthrie, Bouillard and Dr. David Davis initiated the doctrine of phlebitis and purulent infection of the blood, so ably and laboriously worked out by Dr. Robert Lee. Recent outbreaks of the disease have not manifested the peritonitic type so strongly as previous epidemics, but cases not unfrequently occur, in which the peritonæal disorder is the chief local manifestation of disease.

In puerperal peritonitis or puerperal fever with peritoneal inflamination, the disease usually commences within two or three days after parturition, and seldom longer than a week after labor. Cases are on record, in which it has commenced before the beginning of labor, or during the course of parturition. I have already referred to the influence of contagion and infection in producing this form of disease. Patients with easy labors, and without a sign of inflammatory disorder may have puerperal peritonitis as the result of contagion or infection, when exposed to erysipelas, gangrene, or any of the disorders mentioned in connection with the production of puerperal fever. It may also arise from injury of the peritoneum during the course of violent labors, or from exposure to cold. caused in these modes, it is almost universally converted into the febrile puerperal type. In some cases it is an extension of disease from the parietes or internal surface of the nterus, and in others it is a result of uterine phlebitis. The disease may involve the whole peritoneal membrane, or it may be localized in the neighborhood of the uterus, Fallopian tubes, and ovaria.

The symptoms of puerperal peritonitis are generally in stronger relief than the symptoms of any other form of puerperal fever. Tenderness, pain, and exquisite sensibility of the abdomen to the touch, particularly in the neighborhood of the uterus, is generally observed. Yet pain is not always present. On the contrary, it is entirely wanting in some of the most rapidly fatal cases, and where post-mortem examinations have proved peritonitis to exist. Dr. Ferguson found that out of 173 cases, this symptom was absent in 19. The pulse is invariably rapid, remaining throughout the course of the disease at from 120 to 140. This is the symptom which in every variety of puerperal fever never fails of expressing truly the condition of danger. It has often been remarked, that whatever the other indications may be, the puerperal woman is never safe whose pulse rises steadily above 100. In puerperal peritonitis, the pulse is quick from the termination of labor, and it has been observed that where the disease is threatened, the subsidence of the circulation which is natural after labor does not take place. This rising of the pulse is the earliest symptom of peritoneal inflammation. Before the commencement of pain, rigor or shivering almost invariably occurs. Sometimes it does not amount to more than a prolonged creeping over the surface of the body; at others, it is so marked that the teeth chatter, and the patient asks to be held in bed, so violent is the muscular shuddering. While the rigor is most distressing, the surface of the body is little if at all below the natural standard. The state of the tongue is variable—sometimes red at the edges, with a white streak in the centre, at others coated or red, and sometimes without much decided alteration from the natural state. When the other tissues of the uterus are involved, this organ is swollen, and can be felt distinctly and painfully, until the rising tympanitis disguises it. There are cases in which the uterus attains a very large size, after having contracted subsequent to labor. The tympanitic distension which ensues is often very great, and the swelling of the abdomen is further increased by effusion of sero-pus into the cavity of the peritoneum, when the surface acquires a peculiar doughy or boggy feel. Sickness is very constantly present in this disease, and adds greatly to the suffering of the patient, from the compression of the abdomen by the efforts at vomiting. Dysuria is complained of, and the urine is scanty and high-colored. As the disease progresses, purging commonly supervenes, the motions becoming dark and offensive towards the last. Throughout, the breathing is short and painful, and cephalalgia is often present. Beyond this, the brain is frequently unaffected until the close of the disease approaches. The physiognomy is from the first distressing and pinched, so as to be almost of itself characteristic of the disease. No one who has ever seen the disease can mistake the indications afforded by the countenance and the pulse. The dark areola surrounding the eyes, the dilated pupil, the glassy surface and bloodless conjunctiva, give a lustrous and unearthly appearance to the eyes in all cases of puerperal fever, whatever the special complication, when the disease is fully formed. Occasionally in this disease there is an appearance of the sudden transferrence of disease to the pleura, and, more rarely, to the serous membranes of the brain. When the peritoneal inflammation is chiefly limited to the uterus and its appendages, the symptoms are somewhat less severe, and the pain more local, than in general peritonitis, being felt most distinctly in the iliac regions, and sometimes on one side only. With the local peritonitis, there is generally inflammation of the broad ligaments, the sub-peritoneal cellular tissue, the Fallopian tubes, and the Suppuration and abscesses sometimes form in these structures, and in the most favorable cases either burst spontaneously on the surface of the lower part of the abdomen or into the vagina or rectum, or they sometimes admit of puncture and artificial evacuation. A fatal result is almost invariable when pus is formed in any considerable quantity upon the peritonæal surface.

The pathological changes consist of effusions of pus or of lymph, rarely so highly organized as after ordinary peritonitis, sero-purulent effusions and abscesses of the surface of the uterus or its appendages, or of the omentum. In many cases, the uterus is found diseased, the inflammatory disorder having extended from the uterus to the peritoneum, or, in some cases, from the peritoneum to the uterus. Softening of the parietes, patches of gangrene, abscesses in the walls, and collections of pus in the veins of the uterus, are met with.

One of the greatest, if not the greatest, advances ever made in the pathology of puerperal fever consists in the knowledge we have obtained, in recent years, of the existence of Uterine Phlebitis as a very common and destructive form of puerperal disease. The occurrence of uterine phlebitis and suppuration of the veins in isolated cases had long been known, but no other inquiries, as far as I am aware, have at all equalled the researches of Dr. Robert Lee in this particular department, and it is to his extended investigations that we chiefly owe the establishment of the doctrine of uterine phlebitis as it occurs after parturition. Others have, as I believe, with truth, controverted Dr. Lee's views of the entire dependence of puerperal fever upon uterine inflammation and phlebitis, and it may, I think, be shown, that where phlebitis exists, it is, in almost all cases, an expression of constitutional disorder, and especially of a poisoned or diseased state of the blood, rather than an idiopathic disease. The researches of Dr. Ferguson and others prove that puerperal fever may destroy patients before there has been sufficient time for the occurrence of phlebitic inflammation, and that in such cases no pathological changes beyond a diseased state of the blood are met with. Many facts in the history of puerperal fever prove that before the purulent infection of the blood, believed by Scanzoni and others to constitute the essence of the disease, has taken place, changes have occurred in the circulating fluid, which may in some cases destroy the patient long before the suppurating stage has been reached. experiments of Dr. Mackenzie, and the cases he has collected, show that healthy obstructive inflammation of the veins, the result of simple traumatic injury, does not result in purulent infection of the blood, but that a morbid state of the circulating fluid is necessary to the production of pyæmia.

Uterine phlebitis generally commences on the second, third, or fourth day after labor, with shivering or rigor, and a marked increase in the thickness of the pulse, which ranges throughout from 110 to 140 and 150. There is usually pain in the hypogastric, or one of the iliac regions, the pain becoming more evident upon deep pressure. There is also pain in the back, or in one or both hips, extending downwards to the thighs. The pain is generally intermittent, and is sometimes absent for many hours. The patient is usually anxious to be quiet, every movement of the body greatly increasing the pain when this symptom is present. But in a considerable number of cases the pain alone is

not so considerable as to indicate the dangerous state of the patient, and in some instances it is absent altogether. The lochia may become offensive at the commencement of the disorder: they may be scanty, or they may remain in normal quantity and quality. The mammary secretion is usually suspended; but in some cases it continues until the patient is exhausted by the progress of the disease. The perspiration is very distressing and constant, and after three or four days from the commencement of the attack, diarrhea is generally present. At intervals throughout the course of the disease, violent rigors are felt, which may be supposed to mark successive formations of pus, or the commencement of inflammation in other organs beside the uterus. The state of the tongue is very variable, and it may be red and glazed, covered by a creamy fur, or scarcely altered from the natural state. The complexion of the patient is at first little altered, except by the presence of a hectic spot on each check. The mind is clear, but the speech and movements of the patient are tremulous. The patient often sleeps tolerably well, and frequently expresses herself as feeling better; but her manner is anxious and trembling, thanking those about her so nervously for the slightest attention, that her state in this respect has often been compared to the incipient stage of puerperal mania. The tympanitic distension of the abdomen is not the least distressing symptom, giving rise to hiccup, vomiting, and greatly interfering with the respiration and the action of the heart.

As the disease progresses, the secondary phenomena of uterine phlebitis and the formation of pus within the veins become evident. The patient complains of pains in some joint or joints; swellings appear in the neighborhood of the articulations, and erysipelatous blushes appear on the skin in different parts of the body. The hips, knees, shoulders and elbows are the joints most commonly attacked. Large suppurations in the vicinity of the joints occur, or patches of slough or gangrene form at the sites of the erysipelatous blushes. Sometimes the secondary inflammation attacks the cye, especially the left, leading to rapid destruction of the cornea. These external suppurations, however painful and exhausting, are considered somewhat in the nature of crises, and as giving some faint hopes of recovery. Up to this point, up to the time, in fact, when exter-

nal suppuration begins, it is acknowledged by the best authorities that we have no positive signs by which we may be sure of the existence of phlebitis. This is stated with great candor by one of the latest and best writers on the subject, Dr. McClintock, of Dublin. In other cases, the secondary inflammations and suppurations are internal, and attack the lungs, liver, kidneys, omentum, or other organs. These complications are more dangerous than the external secondary abscesses. These phenomena cannot exist without the pyæmia of which they are the results, indicating its constitutional effects. When pus is present in the veins, the inflammatory symptoms subside to a considerable extent, and adynamic or typhoid symptoms manifest themselves. It is necessary, however, to distinguish between the low state of system thus produced and the somewhat similar condition which exists in the first instance, when the puerperal virus is very potent, and before any inflammation or suppuration has progressed in the veins. When patients recover, they slowly struggle through the exhaustion produced by the extensive suppurations, and may remain blind or with anchylosed joints to bear witness to the terrible ordeal through which they have passed. When a fatal result ensues, the patient dies with symptoms very similar to those described when speaking of the advnamic form of puerperal fever, or exhausted by the discharges consequent on the external suppurations.

The tendency of the puerperal and other forms of pyæmia to attack the joints, is a very remarkable feature of this affection. Large effusions of pus and sero-purulent fluid are poured out in the joints affected, and the cartilages are often eroded and destroyed to a remarkable extent. No explanation has been given of the reasons why the joints, the eyes, or the serous membranes should be especially selected. I would suggest the probability, that this selection may depend on the nourishment of parts of the eye, cartilages, and serons membranes, by the nonvascular permeation of the tissues by the liquor sanguinis, as explained by the researches of Mr. Toynbnee. The diseased liquor sanguinis, or the liquor puris, in purulent infection of the blood, may easily be supposed to affect especially those tissues of the body in which special provisions exist for their permeation by the colorless parts of the blood. One of the earliest, as well as one of the most graphic descriptions of puerperal affections of the joints we owe to Mr. Coulson, who has described the dissection of numerous cases of this kind.

Besides uterine phlebitis, other forms of puerperal inflammation of the uterus occur. That which affects the Lymphatic vessels does not materially differ in symptoms, progress, and termination from phlebitis. Inflammation of the Museular tissue and lining membrane of the uterus is characterized by great disturbance of the nervous system, distressing eephalalgia; and is attended by fever of low type. Occasionally the cerebral symptoms are so intense as to entirely mask the uterine disease. It is ushered in by the same symptoms as regards rigors, acceleration of the pulse, and state of tongue as those which attend the other varieties of puerperal inflammation. Its tendency is to produce softening, suppuration, and gangrene of the substance of the uterus, and it is one of the most fatal of all the puerperal inflammations.

Before speaking of the **Treatment of Puerperal Fever** in its varied forms, it cannot be too much insisted on that it is a disease, almost above all others, open to *Prevention* rather than *Cure*. The avoidance of injuries of the uterus or vagina in difficult or instrumental labors, the entire removal of the placenta, and the promotion of a free lochial discharge, with the avoidance of the possibility of inoculating or infecting the puerperal woman with any of the poisons which admit of conversion into the puerperal poison, are of the greatest importance in preventing the appearance or extension of this terrible disease. As regards the actual treatment, nothing can be more different than that which has been most successful, or best borne in different epidemics, and at different places and times.

The opposite extremes of puerperal fever—namely, the peritoneal and inflammatory, and the adynamic, are those which most distinctly admit of positive rules of treatment. In puerperal peritonitis, copious venesection, the free use of leeches, mercurials, opium, fomentations and stupes, or warm poultices to the abdomen, counter-irritation, and mild aperients, are the means upon which we must depend. The bleeding must, however, be prompt to be of service, and its extent must be measured by the powers of the patient and the intensity of the disease. A full bleeding to twenty or thirty ounces at the onset of the disease will do more to relieve the patient than any sub-

sequent treatment. She should be bled in the upright position to incipient syncope, and the bleeding should be repeated in a few hours, or the abdomen covered with three or four dozen leeches. At the same time, calomel with opium or Dover's powder, should be given in repeated doses at small intervals, with a view to the production of ptyalism, or mercurial innuction should be resorted to. When general and local bloodletting have been carried as far as the patient will bear, and when the disease continues, a large blister over the abdomen is of great service. In all cases of puerperal peritonitis, there comes a time, unless the patient has been rapidly destroyed, in which stimulants are required, and this time comes much earlier in puerperal than in ordinary peritonitis. It is only in the most acute forms of puerperal peritonitis that such an active plan of treatment as that now indicated is admissible. In peritoneal disorders of a lower type, depletion must be more sparingly employed, and a tonic plan earlier resorted to.

In the most adynamic cases of puerperal fever, a stimulating treatment must be adopted from the first, and wine, brandy, ammonia, and quinine are required. The only antiphlogistic remedy that can be resorted to in such cases, is blistering. In milder or more mixed cases, a small bleeding at the very commencement is sometimes called for, or the application of a few leeches, but as the patient passes rapidly into the low stage of the disease, support and stimulus become necessary. The treatment is little different from that required in marked cases of

typhus.

In phlebitis, the employment of bleeding is a vexed question. Some authorities have strongly recommended early bleeding, and others have opposed it, advocating a tonic regimen, and directing all their efforts to the preservation of as healthy a state of the blood as possible. In one instance in this metropolis bleeding was tried on a large scale in a lying-in hospital, where venesection was performed on the very first approach of the disease, and the mortality was greater than when an opposite plan was adopted. In the present state of our experience in this disease, bleeding appears to be called for at its commencement, when the pain is acute, and the pulse rapid. But this disease is often so insidious, and its progress attended by such remissions, that it is difficult, if not impossible, to decide on bleeding until

distinct evidences of pyæmia have appeared, when bleeding becomes injurious rather than otherwise. As soon as this becomes evident, cinchoua, nitric acid, chlorate of potash, ether, ammonia, strong animal broths, and wine, are agreed on by all authorities as the best line of treatment. Pain must be allayed by opiates, and the painful joints bathed with opiate embrocations or a chloroform liniment. When collections of matter are evident upon the surface, they should be opened, and it is believed that the external discharge of pus adds somewhat to the chance of recovery. Congestion of the lungs or brain must be met by sinapisms or blisters, and the meteorismus relieved, as far as possible, by carminatives, turpentine enemata, or the introduction of a tube into the intestinal canal. It is impossible to do more than lay down general principles, and indicate the points of treatment, within the scope of a lecture. A patient suffering from the disease now under consideration will tax all the resources and all the vigilance of the most able and pains-

taking practitioner.

The treatment by opium in heroic doses, as recommended by Dr. Alonzo Clark, has perhaps been the practice of the physicians in and around New York for several years past; and this without much other general treatment. The object being to subdue the pulse till its beatings are reduced to or below the natural number and the respiration to 10 or 15 in a minute. The quantity of this drug requisite to subdue the arterial action is very various. Given in the form of morphia, a quarter of a grain may be taken every hour till narcotism, and, by the consequent diminution of the arterial excitement, the pulse is reduced to the point desired. In this condition the patient is kept till the disease gradually vanishes away. Professor Barker, with the same intent, has substituted the Veratrum Viride for the opium, and commencing with five or ten drops, gives it in larger or smaller quantities every hour until the pulse and respiration are brought down to the desired point. With it no narcotism is obtained. An improvement in the percentage of cures is claimed for this treatment.

LECTURE XLIV.

PHLEGMASIA DOLENS—PUERPERAL ARTERITIS—SUDDEN DEATH IN THE PUERPERAL STATE,

Gentlemen:—Phlegmasia Dolens, though generally a disease of the puerperal state, is not limited to this period. It sometimes occurs during the course of pregnancy, or towards the end of lactation. It may also happen independently of child-bearing, in dysmenorrheal patients; in women suffering from carcinoma, or the subjects of metritis; or after the operation of tying a polypus. In still more rare cases, it has been met with in the male subject, as the result of cold or local irritation.

Pathological researches show that the disease essentially depends on obstruction of the veins of the lower extremity. This is proved by the dissections of Dr. D. Davis, Dr. Lee, M. Bouillard, Virchow, and numerous other investigators. The veins affected are, the crural, iliac, uterine, vaginal, the saphena, and sometimes the vena cava. The obstruction, in some cases, consists of fibrinous coagula, and in others of coagulated lymph, or pus. The whole of the affected limb, and frequently the vulva, is, as the disease progresses, gorged with serous effusion, and in some cases the lymphatic vessels and nerves of the extremity show the existence of inflammation in their structures.

The mode in which the obstruction of the veins is caused is not at the present time a settled matter. Dr. Lee believes it to depend on inflammation, extending from the uterine to the iliac and crural veins. But cases are met with in which the obstruction is limited to the veins of the lower part of the leg, or in which it appears in the upper extremities, without symptoms of local uterine phlebitis. The most recent doctrine—that founded by Virchow upon his numerous dissections—is that the first pathological condition consists of the formation of a coagulum in the vein; and that the inflammation of the vein, effusion of

lymph and pus, and the breaking-down of the coagulum and formation of pus in its substance, are phenomena which result from the plugging of the veins. It appears, however, that the evidence of the extension of irritation or inflammation from the aterus to the veins, in many eases cannot be rejected. This inflammation of the internal coat of the vein appears to cause coagulation of the blood circulating within the vessels. In other cases, the presence of vitiated blood in the veins seems to cause coagulation and plugging, without the intervention of inflammation. When a firm plug is formed from any cause, patients go through the phenomena of pure phlegmasia dolens. When it is loose, or breaks off, the circulation generally becomes vitiated, and other symptoms besides those of phlegmasia dolens are manifested.

The inflammation of the lymphaties and nerves occasionally met with is probably of a secondary nature, and dependent on the profuse infiltration of the tissue of the limb with serum of a highly acid and irritating character. The whole subject is one, however, in which pathological investigations are not as yet definitely agreed.

The affinity between phlegmasia dolens and ordinary puerperal phlebitis and fever is strongly marked. In some eases of phlegmasia dolens, the inflammation is not limited to the veins of the lower extremities, and suppuration occurs in other parts of the body, and in the eyes, as in ordinary puerperal phlebitis. In other cases, inflammations of the serous membranes, as the pleura or peritonæum, are found in combination with the inflammation of the erural vessels, and the patients die of precisely the same symptoms as those met with in ordinary puerperal phlebitis, or puerperal fever. I have also seen cases which tend strongly to prove that phlegmasia dolens may be produced as the result of infection. For instance, a short time ago, a friend of mine had been in close attendance upon a patient dying of erysipelatous sore-throat with sloughing, and was himself affected with sore-throat. Under these circumstances he attended, within the space of twenty-four hours, three ladies in their confinements, all of whom were attacked with phlegmasia dolens.

The common period for the invasion of the disease is between the end of the first and third week after partnrition. For a day or two before the presence of any local symptoms in the extremities, there is great depression, restlessness, irritability, and fever, with or without pain in the uterine region. During this time there is frequently chilliness, or a distinct rigor. The first pain in the leg is usually in the calf, and is very intense and distressing; sometimes the pain is first felt in the ankle, knee, groin, or hips. In some eases, the part first complained of is red, but it is often perfectly pale. Within twenty-four hours from the onset of pain, the part affected generally swells and becomes white, tense, and shining. It generally pits on pressure, particularly at the beginning. When the swelling commences in the groin or hips, it commonly extends downwards, but, if the ankle be the first part affected, the swelling ascends, so that in either case the whole limb usually becomes affected. Sometimes it is, however, limited to the parts below the knee. The femoral vein is always, when the disease involves the whole limb, hard and painful, and rolls under the finger. The pain is most intense in the course of the inflamed and obstructed vessels. Sometimes the track of the vein is marked by slight redness, but in other cases, the color of the skin is not affected. When the lower part of the limb is the chief seat of disease, the inflamed and indurated vessels are found in the popliteal space and on the inner side of the leg and heel. The lymphatics, as well as the veins, are sometimes painful, and the inguinal glands are in such eases swollen and tender. The limb becomes of large size from effusion into the cellular tissue, and at the height of the disease, the tension is such as not to admit of pitting on pressure. The constitutional symptoms are severe. The pulse is from 100 to 150, the tongue generally glazed, the stomach irritable, and the patient is distressed by profuse sweating. The debility is very great, and the pain often prevents sleep almost entirely. After a week or ten days, or a longer period, according to the severity of the attack, the disease begins to decline. The pain becomes less acute, the tension of the limb less marked, and the effusion slowly disappears. In other eases, vesication occurs in certain parts, or over the entire limb. Sometimes the inguinal and femoral glands, or the vulva, suppurate; abscesses occur in the cellular tissue, or the knee and ankle joints inflame and suppurate. Generally the left leg is the limb affected, but in a certain proportion of eases, the disease appears in the right leg as soon as it begins to decline in the left, and in very rare instances a transferrence occurs to the upper extremities. Even in the most favorable cases, it is some time before the limb or limbs affected become of the natural size, or acquire their usual strength and freedom from tenderness, and it is remarkable that patients having once suffered from this malady are more liable than others to the disease, after subsequent labors. In the worst cases, death may occur suddenly, or as the result of exhaustion during the progress of the disease, and the patient may be worn out by diarrhea or by the suppurations which occur in the joints or in other parts of the affected limb. When diffuse phlebitis occurs, in combination with phlegmasia dolens, or when metritis or inflammation of the serous membranes of the pleura or peritonæum accompanies it, the course of the disease and its dangers are little different from the other forms of puerperal fever.

As regards the Causes of the disease, it appears, apart from the influences of contagion or infection, to be brought on by early exertion after parturition, by exposure to cold, and by unusually severe after-pains. I believe, however, that contagion and infection play a very important part in the production of the disease. I look on a woman attacked with phlegmasia dolens as having made a fortunate escape from the greater dangers of diffuse phlebitis or puerperal fever. The plug formed in the vein is generally effective in cutting off the affected extremity from the rest of the circulation, and is so far sanative in its influence. Multiparous women appear to be more prone

to the disease than primipara.

In the **Treatment of Phlegmasia Dolens**, it is necessary, at the onset of the disease, to apply leeches freely over the course of the inflamed vein. This should be followed by poultices to encourage the bleeding, and warm fomentations, which generally relieve the pain more than cold applications. If necessary, the leeches should be repeated a second or even a third time, but general blood-letting will rarely be required. Some practitioners prefer blisters to leeches, and in the milder cases of the disease, they are frequently efficacious. They should be applied over the seat of pain or the inflamed vessel. The bowels should be relieved by mercurial purgatives, and the administration of mercury so as to affect the mouth, is often useful in the beginning of the disorder. Opiates require to be given freely to obtain relief from pain and to procure sleep. They are neces-

sary at the commencement of the disease, when the vein is acutely inflamed and painful; and subsequently, when the tension of the limb from effusion is at its height, or when local suppurations occur. After the first inflammatory invasion, there soon comes a time when the weakness and depression are so great, that there is no place for an antiphlogistic treatment. Patients require strong beef-tea, sonp, broths, milk, arrowroot, etc., frequently, according as the stomach will bear them, and a liberal allowance of wine or brandy. Quinine or bark, with or without the chlorate of potash or the mineral acids, should at the same time be given. Much care is required in the local management of the painful parts of the limb. The whole extremity should be defended by a cradle from the touch of the bedclothes. Sometimes the greatest comfort is derived from wrapping the whole limb in a linseed poultice. When the local pain is intense, great relief is afforded by smearing the extract of belladonna, mixed with a little water, on lint, and putting it on the painful part as a plaster. When the skin is not broken, equal parts of chloroform and olive oil will sometimes allay pain. When vesications occur, poultices, or dredging the limb with flour, should be tried alternately, so as to ascertain which is most suitable to the individual case. Abscesses require to be treated as in other parts of the body. In cases where resolution occurs, the disappearance of the swelling may be favored by a flaunel bandage, the application of an iodine liniment, or ointment, or a camphor and mercurial liniment. Frequent frictions of the limb should be persevered in. Change of air, and seabathing, if the time of the year suits, tend greatly to aid recovery.

The subjects of Arterial Obstruction and Arteritis, occurring in connection with child-bearing and under other conditions, have only recently been investigated, but they already explain some very curious phenomena which had previously been observed without being understood. The principal contributions to our knowledge of this subject have been made by Dr. Kirkes, Prof. Simpson, Dr. Lever, Dr. Burrows, Dr. R. Virchow, and others. Under a variety of circumstances solid matters may pass into the circulation, and become arrested at various points, according to the size of the morbid material, and the vessels in which it circulates. In cases of rheumatic or other

disease of the heart, in which vegetations or excrescences have formed upon the valves, these bodies may be detached from their habitats during the struggles of labor, or in the accelerated circulation incident to gestation, or the puerperal state, or during suckling. Polypi formed in the cavities of the heart may also be propelled into the pulmonary arteries or the aorta. In diseased states of the blood, and in arteritis, or laceration of the arterial coats, it also appears that coagula or effused lymph, may form impediments in the arterial vessels. In the case of coagula detached from the veins, these bodies may reach the heart by the inferior cava, pass through the right side of the heart, and enter the pulmonary arteries; or pus may enter the general circulation in the same manner in cases of phlebitis, and form the nucleus of obstructing masses.

The symptoms of arterial obstruction vary according to the situation in which the obstruction takes place. When the obstruction occurs in the upper or lower extremities, the symptoms bear some resemblance to those observed in the obstructions of the arteries in aged persons caused by ossification of the vessels. The limb affected becomes pulseless; sometimes, but not invariably, the temperature falls, the limb is perfectly useless and more or less paralyzed, and acute or chronic gangrene supervenes. The pain is intense, and neuralgic in character, and the constitutional disturbance great. In one case described by Dr. Oke, of Southampton, the gangrene was limited to the thumb and part of the hand, and the patient recovered. When the obstruction involves the vessels of the neck, or the arteries of the brain, abscesses and softening of the brain, with paralysis, have been observed on dissection. In cases involving the pulmonary artery, abscesses of the lungs, or sudden arrest of the circulation in these organs, have taken place.

As regards Treatment, many of the cases terminate too suddenly to admit of any attempt at remedy. In others, where the head, lungs, or liver are the organs affected, the local disease caused by mechanical obstruction can only be treated on general principles. In some cases, general arteritis has been proved to exist by post-mortem examination, the arterial system generally being implicated to a great extent, and obstructed by coagulable lymph. The symptoms of such cases are only obscurely known, but if the disease could be detected during

life, it is probable that the same treatment as that followed in phlebitis would be advisable. When the obstruction falls upon the extremities, the distressing pain should be relieved by opiates, the temperature of the limb preserved by external warmth, and the patient supported by a generous diet and regimen. In a well-marked case under my care at St. Mary's Hospital, the patient very slowly recovered the use of the leg, without the occurrence of gangrene, though this condition was threatened for a considerable time.

The consideration of the Causes of Sudden Death occurring in the puerperal state is included in the present Lecture, because some of the most marked cases of this kind depend on cardiac, venous, or arterial obstruction, and upon phlebitis and arteritis. In some cases of sudden death in connection with gestation, childbirth, or lactation, but especially during the puerperal period, the only post-mortem sign has been the presence of firm coagula in the cavities of the heart, as pointed out by Dr. Meigs. Others depend on apoplexy, the result of obstruction of the carotids, or the cerebral vessels. In some cases, obstruction of the pulmonary arteries, which have depended on the transfer of coagula from the veins, have caused sudden dissolution. This was apparently the cause in the case of the lamented Duchess De Nemours, as made out by the careful autopsy performed by Dr. Gueneau de Mussy. The death in these cases generally occurs during some sudden emotion, or upon slight exertion. In the cases of death from coagula formed in the heart itself during life, the coagulation generally appears to have occurred during fainting.

Another cause of sudden death after labor, consists in the presence of air in the veins. This subject has been carefully elucidated by the researches of Drs. Cormack and McClintock and others, and appears to explain some of the lamentable accidents met with after labor. Numerous cases of sudden death are on record in which, upon post-mortem examination, no other cause of death than the presence of air in the heart could be made out. Such cases are also illustrated by those instances in which death has been caused by the entrance of air into the veins of the neck, during operations on this part of the body. In both classes of cases the symptoms have been found to be

closely identical. The mcchanism of this accident in the puerperal state seems to be as follows. The occurrence of physometra in the ungravid uterus, and in the uterus after delivery, have frequently been noticed. After labor, it may be caused by the secretion of gas from the uterinc cavity, or by the decomposition of intra-uterine matters, such as coagula or a dead child. If, in such cases, the air does not escape from the os uteri, but is shut up in the uterus, the mechanical arrangements of the uterine veins favor the entrance of air into the circulation by this route, and as soon as it reaches the heart the most serious symptoms are observable. All the phenomena of sudden asphyxia are present; but the chief diagnostic mark, according to Dr. Cormack, is the presence of a "churning" sound in the heart.

To the list of causes of sudden death occurring in the puerperal state must be added Fatty Degeneration of the Heart. I have known several instances in which no other cause of death than a fatty state of the heart could be assigned. In these cases death most commonly occurred after the patient had taken a full meal. In one case, in which Dr. Arthur Farre showed me a preparation of the heart, the substance of the ventricle was, in at least one-half of its thickness, converted into fat, and at some points the muscular element was scarcely perceptible. The arcus senilis was, I believe, observed in this patient during life. Other causes of sudden death, such as Syncope shortly after hæmorrhage, or following upon the assumption of the upright position some time after extensive loss of blood, have already been referred to, and need not be dwelt upon further in this place.

The management of these distressing cases is chiefly limited to the means of prevention, and unfortunately little can be effected even in this manner. When we have said that in cases of valvular or other disease of the heart, or in cases of diffuse phlebitis or phlegmasia dolens—in which at any moment a fatal plug may be detached and pass into the circulation—the ntmost quiet of body, and the absence of emotional disturbance, should be preserved, we have pretty well exhausted all that the history of such cases teaches us. In the case of mere syncope, every effort should be made by stimuli to prevent the long continuance of this state, so as to avert the formation of coagula in the ventricles. When the presence of air in the veins is known or

suspected, diffusible stimuli and the cold douche have been found to be most efficacious modes of procedure. In fatty heart, or other cardiac disease, great care should be taken in guarding the patient against early muscular exertion, and especially against taking indigestive, flatulent, or large quantities of any kind of food, during the first few days after the completion of delivery.

LECTURE XLV.

THE INDUCTION OF PREMATURE LABOR.

Gentlemen:—Under a variety of circumstances of present or threatened danger, it becomes right and necessary to induce the premature expulsion of the ovum, by artificial means, with a view to the safety of the Mother or Child, or both.

Cases in which the operation of inducing premature Labor

may be required, admit of division into three classes:-

I. In which the operation is called for before the date of the viability of the fœtus, in consequence of diseased states of the mother, and in which the ovum has to be sacrificed in order to preserve the life of the Mother from great risk.

II. In which the operation is required for the preservation of

both Mother and Child.

III. In which it is performed to save the life of the Child, in conditions which do not involve any question of danger to the mother.

As one of the most important principles in obstetrics, it may be stated, that all conditions which render the death of the mother imminent, unless the contents of the uterus are evacuated, call for the performance of this operation. At the present time, the operation under these circumstances has been extended to cases of excessive exhaustion from continued and irrepressible vomiting; to cases of distortion of pelvis from exostosis, rickets, or mollities ossium, where the deformity is so excessive as to render the birth of a living child impossible. It has been resorted to in cases of ovarian and fibrous tumors within the pelvis, when labor at a later period would hazard inflammation and softening of the tumors; it has been performed in cases of cancer of the uterus; it has been practised in cases of disease of the heart in which urgent and dangerous dyspnæa, or irregularity of the circulation, has supervened; it has been performed

in cases of albuminuria with general anasarca, which has refused to yield to treatment, and brought the patient into a state of dangerous anemia and debility; and in cases of hemorrhage from the bowels threatening death. It has been employed in chorea arising from pregnancy, and also in mania occurring during gestation; and it has been used in cases of dropsy of the amnion, when the fluid has increased to such an extent as to seriously interfere with the circulation and respiration of the mother. In any other contingency besides those named, in which danger exists, and in which the peril is materially increased by the continuance of pregnancy, the induction of premature labor is justifiable; but, it should be borne in mind, that it ought not to be performed in any case before the time at which the child becomes viable, unless there is the certainty of present or future danger to the mother from the further continuance of gestation. But in the cases above mentioned, in which the life of the mother is in positive danger, or will be placed in inevitable danger, by the continuance of preguancy up to the time at which the child becomes viable, it is held right to sacrifice the fœtus by inducing premature labor, and, as a necessary converse, wrong to neglect the performance of this operation. Many of the cases of the Cæsarian operation in which the lives of the mothers have been sacrificed, have been cases in which abortion or premature labor might have been induced, and the hazard of almost certain death avoided.

Some have maintained that a certain limit should be placed to the number of times in which the operation for the induction of premature labor should be performed on the same woman, in cases where pelvic deformity exists to such an extent as to render the birth of a living child per vias naturales impossible. It has been affirmed that women have no right to go on placing themselves in the position to require the sacrifice of many living children in succession, but that they ought rather themselves to submit to the Cæsarian section. Denman had scruples on this point, and in the present day Dr. Radford has distinguished himself for his able advocacy of the right of the fœtus, as opposed to that of the mother, in such cases. My own strong impression, I may say conviction, is, however, that we must deal with the woman pregnant for the twentieth time as we would in her first pregnancy, and that in all cases our clear and

paramount duty is to save the woman. No doubt every rightminded professional man would urge upon such women the propricty of living apart from their husbands, or of not marrying at all; but when pregnancy actually exists, considering that the mother is the life-giver; and that in the case of the married woman pregnancy may be forced upon her by her husband; remembering, too, the immortal interests of the mother, as compared with the unborn fœtus; and having in view the enormous danger to the mother from the Cæsarian section, and the large proportion even of children lost by this operation-I am of opinion that the mind of the accoucheur should never hesitate between the induction of premature labor and the Cæsarian section whenever the former operation is practicable, and that the question of whether the patient is primiparous or multiparous should not enter into his consideration. This I believe to be the general opinion amongst medical men, and it is that of every English divine I have conversed with on the subiect.

It is an important element, in reference to this operation, to decide the Age at which a Fotus becomes Viable, or in a condition to live after its expulsion from the uterus. The fœtus is not viable—that is, cannot maintain an independent existence, until towards the end of the seventh mouth; and any eircumstances calling for the induction of premature labor before this time, must necessarily involve great risk of sacrificing the life of the ovum. Cases occur in which children, born at an earlier time than this survive; but these are rare exceptions. John W. Francis reports a fœtus, born with membranes intact in the twenty-third week of pregnancy that lived to maturity.] Even at the seventh month they are kept alive with difficulty. The state of the heart, as regards development, the feebleness with which the feetus sucks before this time, the ready failure of animal heat, and the inability to bear the movements necessary to cleansing and nursing, render it almost impossible to rear the fœtus born at an earlier period.

In the second class of cases, the induction of premature labor is called for between the seventh month and the end of gestation, and the operation is performed with a view to the safety of both mother and child. The chief condition under which this occurs is such an amount of pelvic distortion as would admit of the passage of a child at the end of the seventh or eighth month, but which at the full term would call for craniotomy, or, if labor were allowed to go on without assistance, would endanger the life of the mother as well as the child. Some of the morbid states already referred to, as calling in certain cases for delivery before the end of the seventh month, may not in others reach a dangerous extent until after the time when the child becomes viable. This is particularly the case with respect to mania, chorea, fibrous and ovarian tumors, disease of the heart and lungs, albuminuria, dropsy of the amnion, hæmorrhages, and other causes of dangerous debility, which may admit of waiting until after the viability of the child, but if allowed to proceed after that time would place the woman in great danger in labor at the full term. In this second class of cases, it sometimes happens that either the mother or the child may be in the greatest danger of the two, but generally both parent and offspring are delivered from risk by the induction of artificial delivery.

In the third class of cases, the operation is called for entirely on account of the fœtus, under circumstances attended by danger to the ovum, but which involve no unusual risk to the mother. In these cases, of course, the operation should only be resorted to after the commencement of viability to the child, and as late in pregnancy as is compatible with the safety of the It is found in practice that some women are delivered at or near the full term many times in succession of still-born children, there being every evidence that the children have died during or shortly before parturition. Such children are frequently thin, and below the average weight of the fœtus at the time of birth, but in other cases they are plump and well formed. In some cases of this kind, the child is born alive, but is so feeble as to survive only a short time. The cause of this state of things depends upon various diseased conditions of the placenta, such as inflammation, fatty degeneration, syphilitic disease, or calcareous In these circumstances, the changes which naturally take place in the placenta as a deciduous organ seem to occur more early, and to a greater extent than is natural. As consequences, the nutrition and respiration of the fœtus is interfered with, and the child either dies in utero, or survives its birth but a short time. In other cases, the connection between

the uterus and the placenta is so slight, that the first pains of labor separate the two organs, and hæmorrhage during labor, with the speedy death of the fœtus, ensues. The remedy for such conditions is the induction of premature labor, at a time prior to that at which the death of the fœtus has usually occurred. Frequently, the mother is aware, by the gradual diminution of the movement of the fætus, or by the occasional occurrence of convulsive movements, of the approaching death of the child. The diagnosis of such cases is greatly aided by auscultation. The heart of the child either exceeds or falls below the normal standard of frequency in the latter part of pregnancy, and auscultation should be resorted to daily in such cases to ascertain the condition of the feetal circulation. When premature delivery is effected, the child is born alive, and survives in many cases in which its preservation could be effected in no other manner. The intra-uterine marasmus dependent upon disease of the placenta generally commences at the latter part of pregnancy. In cases in which children are still-born, without any difficulties connected with the labor itself, the placenta and membranes ought carefully to be examined, as affording data for treatment in subsequent pregnancies, and for the performance of this operation. The placenta will, in these cases, frequently be found the subject of fatty degeneration, or the result of inflammation, or the decidual surface will be studded with calcareous matter.

It is in cases like this where assistance is desired from the **Diagnosis by Palpation**, as few would willingly attempt to bring on premature delivery with the hope of saving the life of the child if they knew that it presented in any dangerous position. It is unquestionable that the different members may be distinctly felt through the abdominal parietes, and by induction the presentation and position of the child may be clearly established. To attain to any great certainty in the diagnosis by this method, the touch must be educated by frequent manipulations upon the maternal abdomen. The opportunity is easily attained, for all women are more or less anxious in regard to the approaching event of maternity, and when engaged to attend a woman, an intimation thrown out that by an external manipulation of the abdomen, light might be obtained of the position of the child which would be of importance to both herself and her physician,

will easily gain her consent to the examination. There are a few requisitions important to be observed. In the first place, pregnancy must be advanced to at least the seventh mouth. Secondly, the mother must not be excited or unwilling, as in either of these conditions the abdominal walls will be so tense or the muscles so spasmodically and irregularly contracted as to seriously interfere with the exploration. The difficulties are greatly increased of obtaining a satisfactory result by the extreme firmness or rigidity of the abdominal walls, as often obtains in first pregnancies, or by the opposite condition, which oftener occurs in primiparæ when the abdomen is excessively pendulous or filled and distended by fat.

The patient to be examined should lie upon a bed, the abdomen covered only by a single thickness of linen, as a sheet, her legs flexed upon the thigh and the thighs somewhat upon the abdomen, so that being entirely passive there may be no strain upon the abdominal walls. As may be seen, the position upon the back will be found the most convenient to attain these results.

The size and shape of the uterine tumor being obtained by percussion, the stethoscope will point out the locality of the placenta and the fœtal heart. Thus one point is determined.

As the head is generally the presenting part, we first look for it in the region of the symphisis pubis. With the fingers of one or both hands, pressure is to be made just above the symphisis, inwards and slightly downwards. The globe of the fœtal head may thus generally be easily recognized. Running the fingers upwards and laterally, other portions of the fœtus may be felt. If the back of the child should be anteriorly, the spinous processes of the vertebræ may be discovered and numbered. Then beyond a slight depression may be felt the projecting nates. If the belly of the child be anteriorly, its broad and flat surface covered by the folded arms and legs will be perceptible and their various points, hands, feet, elbows and knees, easily made out.

If the head is not in the pelvis it is generally still more easily found, and a spheroid mass in the fundus uteri or laterally will be discovered.

We may thus, even without the stethoscope, determine a vertex presentation if in the first, second, third or fourth positions; for if the fœtal spine is to the left of the mesial line or navel of

the mother, it is a *first* position; if to the right, it is a *second* position; if the prominent knee and elbow be to the right of the maternal umbilicus and the sounds of the fœtal heart be most distinct near the mesial line, it is a *third* position; and if the contrary, it is a *fourth* position. Twin pregnancies are diagnosticated in the human female as easily as the number of pups in the uterus of a pregnant bitch are counted by the dog fancier.

A uterine tumor, impacted rectum or distended bladder should not be mistaken for the fœtal head. Peculiar symptoms which generally accompany such an abnormal condition of things are generally present, but as they may be overlooked, it is best to remember that they are liable to be misunderstood.

Many Methods of Inducing Premature Labor have been practised. The earliest plan adopted—that which followed the great consultation of acconcheurs in 1756, about a century ago—was that of puncturing the membranes with a quill, sharpened at the point. Afterwards, a stilette, or stiletted catheter was used. The objections to this form of operation are, that by the evacuation of the waters at the commencement of labor the chances of saving the fœtus are considerably diminished. It is also dangerous to perform it in the early months of pregnancy, particularly in primiparæ, owing to the undeveloped state of the os and cervix uteri, and fatal results have followed its adoption when performed in this way in the latter months. The dilaation of the os uteri is effected by tents, the separation of the membranes from the os and cervix uteri by a catheter, a large bougie, or the uterine sound, the administration of the ergot of rye, preferred by Dr. Ramsbotham, the use of electricity, the application of cupping-glasses to the mammæ, as practised by Scanzoni, and by other means. But in all these applications, a considerable time often elapses before effective uterine contractions can be excited, and in some cases the uterus refuses to obey the calls of such stimuli.

A method superior to all others, where the safety of the child especially is an object, is that of the **Water-douche**, said to have been practised in Holland, but introduced in a systematic manner into practice, and methodized, by the late Professor Kiwisch, of Wurzburg, a man of rare obstetric genius. If a stream of hot or cold water be directed against, or still better, within the os uteri, at intervals of three or four hours, for the

space of ten minutes or a quarter of an hour at each application, labor is certainly and speedily brought on. The water may be made, by means of a syphon and reservoir, to descend upon the uterus from a height, or it may be forced into the os uteri by a common injecting apparatus or an O'Beirne's tube. Kiwisch explained the modus operandi of the douche on the supposition that it caused swelling of the parts by the imbibition of fluid, and separation of the decidua from the uterus. Probably the reflex and peristaltic actions of the uterus are also excited, and I have found the douche more efficacious when warm and cold water have been injected alternately, than when either warm or cold has been applied alone. The great superiority of this method consists in the fact that premature expulsion, excited through its means, is more certain, and it is a closer resemblance to natural labor than can be obtained in any other mode. There is no risk of any injury to the os uteri and the membranes remain unruptured, during the stage of dilatation, just as in ordinary labor. Hence it happens that the os uteri is dilated by the influence of fluid pressure, and the fœtus escapes compression in the early part of labor. These circumstances are attended by such obvious advantages, that in my opinion no one would be justified in puncturing the membranes in a case in which labor was brought on to save the mother and the child, or in circumstances where the child alone was in danger. The membranes certainly cannot be ruptured as a preliminary to the induction of labor without diminishing the chances of saving the child. I repeat, the use of the douche possesses great advantages in all cases in which the safety of the child is an object. [For other particulars see page 520.] cases where there is no possibility of giving birth to a viable child, the stiletted catheter or other means may be resorted to, but even then the douche promises the greatest safety to the mother, except under certain circumstances presently to be mentioned.

It remains to say a few words as to the *Time* at which the operation has to be performed, and as to the methods of operating to be preferred in the earlier and later stages of gestation. When the premature expulsion of the ovum is requisite in the middle months of pregnancy, or at any time between the fourth and seventh month, purely with reference to the safety of the

mother, the use of the douche is, I believe, the best method. In the early months, while the cervix uteri is as yet undeveloped, and the ovum is contained in the cavity of the fundus uteri, the douche cannot be relied on. I have been consulted in one case of marasmus from excessive vomiting during early pregnancy, in which death occurred before the douche could be brought to bear. In these cases, the plan I have adopted is, to introduce the uterine sound into the uterus, and turn it round once or twice, an operation which, according to my experience, never fails to induce the expulsion of the ovum; and is, I believe, attended by little risk, when carefully performed. After the third or fourth month, and before the end of the seventh, the membranes may be punctured with the stiletted catheter. At this time there is no expectation of saving the child, and the size of the head is not such as to render the retention of the liquor amnii of any consequence. Before the fifth month it is dangerous to use this instrument.

For a considerable time, the operation was not considered justifiable in primiparous women. It was considered that at least the experience of one labor was necessary in order to judge of the propriety of inducing premature labor in any given case. At present, however, if a woman pregnant for the first time passes from any cause into imminent peril of death, and this peril is increased or caused by the existence of pregnancy, it is considered perfectly justifiable to obtain the expulsion of the contents of the uterus. Again, if a woman in her first pregnancy is found to be so deformed as to render the birth of a living child impossible, it is held to be quite right to induce premature labor in the early or middle months of pregnancy, and not to wait for the danger of her first delivery, and the performance of craniotomy. In cases of doubtful capacity of the pelvis, or when the state of the pelvis has not been ascertained before the time of the first labor, but in which craniotomy has been necessary, or in which children have been stillborn, and the mother placed in danger from decided disproportion between the head and the pelvis, the practitioner should always insist upon the necessity of inducing premature labor in future pregnancies. In this way the lives of multitudes of children and of many mothers might doubtless be saved. A great

responsibility is incurred by allowing women with moderate contraction of the pelvis to go on to the full time in successive pregnancies and thus sacrifice successive children. It is probable that the practice of the induction of premature labor will be extended from a greater knowledge or increasing appreciation of its importance, and also from a real increase in the cascs calling for it. Amongst the manufacturing population deformities of the pelvis are probably on the increase, and amongst the educated classes, the size of the feetal head, and delicacy of constitution, will form impediments to labor in an increased number of cases. It is amongst the educated classes that the greatest number of still births occur, and that the greater suffering and danger to both mother and child are met with. the present time there is no point of progress in the obstetric art of equal importance with the extension of the induction of premature labor, in cases calling for the operation.

The extension of the induction of premature labor in cases where mothers have, in successive births, produced still-born children, is one of the great means to which we must look for the diminution of the mortality amongst children at birth. Every man engaged in the special or general practice of midwifery must have met with cases in which healthy well-formed women have produced a considerable number of still-born children in successive births, or in which out of large families, only one or two have survived the birth. It is to such cases that the induction of premature labor is peculiarly applicable, and in which it is at the present time but little practised. In cases of this kind the chances of saving the child may be greatly increased by the operation, without risk to the mother. A vast amount of prejudice has, however, to be got over, before this subject will be placed on its proper footing. I saw, a year or two ago, a case with Dr. Trouncer, in which premature labor was brought on after the mother had given birth to several dead children in succession; on this occasion a live child was born, but in the next pregnancy the patient declined the operation, and another still-birth occurred. Similar instances must constantly happen. In a matter of this kind, it is only slowly that a great improvement can be carried out. It is computed, in a letter by Dr. Farr to the Registrar-general, on the "Causes of Death in England in 1854," that the proportion of still-born

to live-born children is about three dead to every one hundred born living. The total number of births in England and Wales in 1852 was computed to be 646,134. Of these 624,012 were born alive, and 22,122 were estimated to have been still-born. In France, in the same year, the number of children still-born, or dying before the registration of birth, was 68,267. This is an immense number of children, the great proportion of whom are lost during, or immediately before, the act of parturition. There can be no doubt that the number might be greatly diminished by the extension of the practice of the induction of premature delivery in proper cases. Carrying the mind from England and France to the other countries of the civilized world, the mass of infant life, to the saving of which obstetric science must address itself by these and other means, is enormous in amount. Every man must regret the necessity which sometimes occurs for sacrificing the ovum before it has become viable; but no operation can be performed with greater pleasure than that which rescues the infant, or the mother and the infant, from the risk of death.

LECTURE XLVI.

TURNING.

GENTLEMEN: -The operation of Turning is called for under a variety of circumstances, some of which arise out of the nature of the presentation or the state of the fœtus, and others from the condition of the mother. In some cases the operation is performed with a view to the safety of the mother alone; in others, it is the safety of the child which chiefly calls for the operation; and in a third class of cases it is resorted to both on account of the mother and the child. It is necessary to consider the several conditions calling for the operation, as the method of executing it varies considerably, according to the state of the mother and the child. There are two chief kinds of turning or version—one termed Podalic Version, in which the feet or a single foot has to be brought down; the other, Cephalic Version, in which the head is brought into the pelvis, some other part having presented previously. But this latter is only practicable or attempted in rare cases; and by turning, the operation of bringing down the feet, or a foot, is understood. In some cases, what is termed Pelvic version is recommended. in which the case is converted into a breech presentation. Cephalic and Pelvic version will be adverted to hereafter.

Turning, or podalic version, is required in cases of hand, arm, or shoulder presentation, when, except in the rare occurrence of spontaneous evolution, labor can never be allowed to proceed without great danger to the mother and child. It is also sometimes resorted to in prolapsus of the umbilical cord. It is called for in cases of placenta prævia, as offering a much better chance of life to the child than the detachment and removal of the placenta, and, except in extreme cases, being quite as safe for the mother. It has to be resorted to in a considerable number of circumstances in which the patient is in danger from the con-

tinuance of labor, but in which craniotomy cannot or ought not to be performed; such as hæmorrhage occurring during the course of labor, and irrepressible by rupture of the membranes or other means; convulsions; rupture of the uterus and escape of the child into the abdomen; excessive debility; fainting; and dangerous vomiting. The balance of evidence would also appear to be in favor of the performance of this operation in some cases of moderately contracted pelvis, in which craniotomy would be required in delivery by the hand. But the application of turning to such conditions is one of the agitated questions of the day, which requires the sober and dispassionate consideration of all who are interested in the establishment and advance of obstetrics. In some cases of twins, in which the second child presents with the head, but where no progress is made, and where the head is too high to admit of the application of the forceps, turning becomes necessary and proper. Turning has been also recommended in cases where the mother has died during labor; but the mortality of children after turning, in such cases, is much greater than in the Cæsarian section.

Turning is a serious operation, both as regards the contingengencies in which it is required, and as regards the direct consequences of the procedure to the mother and child. Some of the conditions in which it is called for, as convulsions, rupture of the uterus, and placenta prævia, are themselves highly dangerous. In the performance of the operation also, uterine inflammation may be excited, the uterus may be ruptured or perforated, and the shock of the operation is fatal in some cases. The danger to the child arises from the compression of the funis during the passage of the thorax and head, and the extension of the neck of the child in passing through the pelvis or the ostium vaginæ. According to the statistical researches of Dr. Fleetwood Churchill, in 419 cases in which the result to the mother was noted, 29 deaths occurred, or 1 in 141; in 792 cases in which the result to the child is stated, 294 children were born dead, or rather more than 1 in 3. This mortality, especially as regards the mother, must, however, be divided between the operation itself, and the dangerous contingencies in which it is sometimes required.

The hand to be used in turning is a matter worthy of consideration. Two things weigh here; first, the hand which most easily adapts itself to the different conditions in which turning

is required; the second, the hand with which the operator possesses most skill and power of manipulation. It is best, as far as possible, to accustom ourselves to the use of both hands in obstetric practice, so as to acquire a readiness in the use of the left hand as well as the right; but for persons who are awkward or unpractised with the left hand, the greater mechanical facilities for its introduction, in some cases, will not at all compensate for the greater power and freedom possessed by the right hand and arm. One thing should be especially borne in mind—namely, to use at the commencement that hand with which we shall be able to complete the operation, so as not to fall upon the course of being obliged to withdraw one hand in order to substitute the other, after the operation has been in part performed.

In placenta prævia, the hand to be introduced should depend in part upon the situation of the separation of the placenta from the os and cervix uteri, or, in cases of partial placental presentation, upon the portion of the os and cervix uteri to which the placenta is attached. When the placenta is separated from the anterior or left border of the os and cervix uteri, or when it is attached only to the posterior or right margin of the uterine aperture, the right hand is most convenient. When the opposite state of things is met with—that is, when the placenta is detached or wanting, posteriorly, or on the right side of the os and cervix, the left hand is most readily introduced into the uterine cavity. A chief object, in such cases, is to pass the hand through the os with as little detachment of the placenta as possible. When the operation is called for by some condition of the mother, and the head presents, the mechanical facilities of passing the hand and reaching the feet are modified by the situation of the vertex. It is easier to pass the hand over the face than the vertex, and the feet of the child are usually found on the same side as the face. Thus, in the first and fourth positions, the left, and in the second and third positions, the right hand would be most convenient. When the head is known to present, but the special presentation cannot be made out, it must be taken for granted that the head presents in the first position, that presentation occurring in from 70 to 80 per cent. of all head presentations. But when the head is so high as not to be reached for diagnosis, it matters comparatively little which hand may be

used. In turning in presentations of the upper extremity, the hand to be used should depend on the circumstance of whether the anterior part of the child be towards the abdomen or the spine of the mother. In the first position, in arm cases, when the abdomen of the child is towards the spine of the mother, the left hand is most convenient. In the second position, in arm cases, the abdomen of the child is towards the abdomen of the mother, and the right hand of the accoucheur should be employed. Turning, when the right hand can be most readily employed—that is, when the abdomen of the child and the extremities are directed towards the abdomen of the mother, is more easy than when the fœtal abdomen is turned towards the spine, on account

Fig. 153.

Introduction of the hand into the uterus, and grasping the feet of the child in vertex pre-

of the greater depth of the pelvis posteriorly as compared with the anterior, and the less distance the hand has to traverse to reach the uterus in front. In all cases of doubt, therefore, or when the facilities of passing the hand in any direction are equal, the right should be preferred, both on account of the greater ease with which it reaches the uterus, and the greater skill in manipulation possessed by almost all persons with the right hand.

Withdrawa of the hand, and bringing down the foot, in vertex presentation.

As a preliminary to Turning, and to all operations within the pelvis, the bladder and the bowels should be emptied. The position of the patient varies in different schools and with different teachers. In France and America, many of the best authorities prefer to have the woman placed on her back. In this country, the ordinary obstetric position on the left side is generally preferred; but the nates of the patient are brought to the edge of the bed. The accoucheur should not only bare his arm, but take off his coat, and having introduced some lard into the vagina, and well greased the arm and the back of the hand which it is intended to use, the operation may be commenced. The first difficulty is at the ostium vaginæ, and the introduction of the hand into the vagina is sometimes the most painful part of the whole process. The fingers and thumb should be put together in a conoidal shape, and gently introduced during a

recession between the pains, in the direction of the axis of the outlet of the pelvis. When the thickest part of the hand is passing the sphincter vaginæ, the patient, if sensible, generally cries out, and this cry facilitates the passing of the hand by relaxing the sphincter. When the hand is fairly in the vagina, and the os externum embraces the wrist, there is little suffering; and, at this stage of the procedure, a short pause is advisable, during which the accoucheur may make a more complete examination than he could with the finger alone, and decide as to the particular direction in which the hand should be carried forward through the pelvis. When the arm or a shoulder presents, there is a difficulty in introducing the hand into the vagina, not only from the state of the os externum, but from the shortness of the unoccupied portion of the vagina, and it requires some management to pass the hand into the vagina in such a manner as to retain the fingers in a position admitting of effective manipulation upon the os uteri. While one hand is passing through the os uteri, the other should be laid upon the abdomen, so as to steady the uterus, and prevent its being pushed upwards. Cases have occurred in which the posterior wall has been lacerated, or the posterior lips of the os separated from the vagina by awkward and forcible attempts under these circumstances. direction of the hand should, on entering the os uteri, be altered so as to follow as nearly as possible the axis of the middle strait, and subsequently the inlet, of the pelvis.

The further steps of the operation must greatly depend on the state of the os uteri. When the os is fully dilated, and the membranes unruptured, turning is easily effected. The hand should be passed into the uterus between the membranes and the uterine parietes, the palm of the hand being directed towards the abdomen of the fectus. No attempts at pushing the hand forward are to be made during the presence of the pain; but if pains come on at the time of the passage of the hand, it is to be held perfectly still, and slightly hollowed, so as to adapt itself to the walls of the uterus. Care must, however, be taken not to exert pressure upon the umbilical cord by the hand, and particularly at its insertion into the abdomen. This point should be defended, at the same time that as little pressure as possible is exerted upon the uterine parietes. With the os uteri dilated, the waters undischarged, and the uterus in that comparatively

quiescent state which obtains before the commencement of the expulsive stage, the whole operation up to this point is comparatively easy, and need not occupy more than a few minutes. The membranes have now to be ruptured by pinching them between the fingers; but little water is discharged owing to the engagement of the os uteri by the wrist or arm. Sometimes, the knce or foot of the fætus can be felt through the membranes before their rupture; at others, these parts are best made out after the hand of the accoucheur has passed through the membranes. If we could choose the time at which turning should be performed, we should select the moment at which the os uteri had fully dilated, but the membranes had been unruptured, or we should seek the time at which the membranes had broken, but before the violent contractions of the second stage of labor had commenced. Most frequently, however, we have no choice in the matter, but are obliged to act after the membranes have been ruptured, and the uterus has contracted upon the fœtus.

In some rare instances of transverse presentation, it is possible to raise the arm or shoulder and bring down the head, effecting what is called Cephalic version. In this operation we have to retrace the steps by which the presentation of the head is commonly converted into transverse presentations. The head of the child has to be manipulated by the hand engaged in utero, so as to bring it to the pelvic brim, with the vertex directed towards one of the sacro-iliac articulations. After this, the case is left to Nature. Cephalic version is very much aided by external manipulation, particularly when the uterus and abdominal walls are sufficiently thin to allow of the different parts of the fœtus being readily felt. Cases are even recorded, by Martin of Jena and others, in which rectification and alteration of mal-presentations have been effected by external manipulation alone. pelvic version the nates are brought down, but this is a very difficult procedure on account of the lubricity of the parts; and it is not of very much greater value, when effected, than Podalic version, when one foot only is brought down.

When the os uteri is only partially dilated, the passage of the hand into the uterus is a more difficult procedure. It is held that when the os is dilated to the extent of a crown-piece, or two or three fingers can be introduced, either with or without the rupture of the inembranes, the hand may, with care, be passed in, so as to turn. The os must be very gently and slowly

dilated by separating the fingers, and urging them on in the conc shape used in passing the ostium vaginæ, the pressure being exerted in the direction of the inlet of the pelvis. Care must be taken to support the uterus externally, and not to push the uterus upwards to such an extent as to separate it from the vagina. When the os has been fairly passed by the hand, the anterior surface of the feetus must be reached in the way already described. [This subject is treated upon in Lecture XXXIV.]

The most difficult of all cases are those cases of transverse presentation in which the diagnosis has not been made out early in labor, or in which the case, from some circumstance or other, has gone on a long time unrelieved. Here the arm or shoulder is found low down in the pelvis, occupying the vagina; the presenting part is firmly embraced or grasped by the os uteri; the waters have long flowed away; the uterus has closed with great energy on the fœtus, and is reduced to the smallest possible compass consistent with the retention of the placenta and the non-presenting portions of the fœtus. Thus, every step is a laborious matter. It is difficult to introduce the hand into the vagina, and still more so to pass the hand, or part of the hand, into the uterus and raise the presenting parts of the child. only by slow degrees that the difficulties can be surmounted so far as to allow the lower extremities of the child to be reached. There are, however, some circumstances which, to a certain extent, counterbalance these unfavorable conditions. In transverse cases the shape of the uterus is considerably modified. Its greatest diameter is the transverse instead of the perpendicular, and consequently the lower extremities of the child are much nearer the os uteri than in vertex cases, or in arm cases where the waters have not escaped. It is therefore unnecessary, and indeed impossible, to pass the hand far into the uterus, and frequently a foot or arm can be brought down by the introduction of one or two fingers only within the os uteri, the bulk of the hand remaining in the vagina. I learnt this manipulation from Dr. Robert Lee, and I have several times been able to turn with only two or three fingers in the uterus. This is a great advantage, as the introduction of the whole hand under such circumstances increases the risk of lacerating or bruising the uterus, or causing the organ to rend itself by the violence of its own contractions.

Formerly the dilatation of the os uteri in cases of constriction,

or the relaxation of the uterine spasm in cases where the waters had been long expelled, and the pain produced by the operation were difficult and anxious matters. Bleeding to syncope, the hot bath, emetic tartar, and opiates, were relied on for these purposes. Chloroform is, I believe, preferable to any of these means, unless, indeed, bleeding should be required by some constitutional condition of the patient. The inhalation of chloroform relaxes contraction of the os uteri, the ostium vaginæ, and body of the uterus, in addition to the immunity from pain which it produces. I am confident I have delivered, by turning, under chloroform, in cases of arm presentation, where it would have been impossible to have turned without its use.

The mode of seizing the fœtus, and completing the process of version, varies in the different circumstances in which turning is required. When we turn to save the mother from imminent danger, the operation should be performed as quickly as possible, due regard being had to the fact that a too rapid extraction of the child increases the shock of the operation. Under these circumstances, the two feet of the child should, if possible, be brought down, and gentle traction should be exerted, particularly during the pains, until delivery is effected in the manner described when speaking of footling presentations. When the waters are retained, it is astonishing what a small amount of traction will effect the version of the child. Simply holding one foot, or both feet, in the lower part of the uterus, while the organ is exerting its moulding and contractile efforts on the rest of the child, will often cause the head or shoulder to rise, and the feet to descend. Holding on upon the feet or foot is all that should be attempted during the pains. Any traction that may be required should be exerted while the uterus remains passive, until the foot or feet descend through the os uteri. When the object in turning is not the dangerous state of the mother, but the condition of the child, the operation should be performed as leisurely as possible until pressure comes to be exerted on the umbilical cord. With this view, one foot, rather than two. should be brought down. We have seen that in cases where the breech presents the mortality is 1 in 3½, while in cases in which the feet present the mortality is 1 in 21. In bringing down one foot, we assimilate the ease to breech presentation. In a case in which one foot is brought down, and the other extremity remains flexed upon the abdomen, the circumference of the presenting part is from 11 to 12½ inches; when both feet come down, the circumference of the breech is from 10 to 11¼ inches. It is therefore safer to bring down one foot in turning when the operation is performed with reference to the fœtus, as the greater dilatation of the soft parts by the pelvic portion of the child favors the descent of the head and the defence of the umbilical cord from pressure. When it can be reached before the foot, there is an advantage in bringing down the knee, as the axis of the trunk and thigh is less than the axis of the trunk and the whole extremities of the child.

In Arm Presentations, the knee or foot of the side opposite to the extremity presenting should, if possible, be brought down, as, when this is the case, version is more easily performed than when the foot or knee of the same side is grasped. To effect this, the hand of the accoucheur should be passed up along the inner side of the arm presenting, which will guide it to the

Frg. 155.

Turning in transverse presentation, in the abdomino-anterior position, wth the right hand.

anterior surface of the child. If the foot is below the knee, it should be brought down. The rules for distinguishing between

the foot and hand, or knee and elbow, have already been dwelt on, when the various presentations of these parts were under consideration. In the case of turning on account of pelvic deformity, the object being to bring the head through the pelvis as quickly as is consistent with the safety of the child, both feet

Turning in transverse presentation, in the abdomino-posterior position, with the left hand.

should be brought down if possible. When one foot is perceived, and can be brought through the os externum, a tape or handkerchief should be put round it to enable the accoucheur to hold it more securely. The foot is slippery, particularly if the child is covered with caseous matter, and the fœtus has a tendency to be drawn upwards on the subsidence of every pain. In delivery, the same treatment is to be adopted as that directed in knee or footling cases, only that greater expedition in effecting delivery must be followed according to the special exigencies of the child or the mother. The forceps ought always to be in readiness to complete, if necessary, the delivery of the head. [The tractor referred to in a following lecture will often be found of service to deliver a retained head; the time required

for its introduction being half that of the forceps, and the power nearly equal. I have used it with success.] After all cases of turning, the patient should be carefully watched, with a view to the prevention of local inflammation.

I have already referred to the question of the performance of Turning, in the Place of Craniotomy, in cases of contracted pelvis; and the subject is of so much importance that I shall endeavor to give as succinctly as possible an outline of Dr. Simpson's theory and practice upon this point. I would premise, that seventy or eighty years ago, turning in cases of deformed pelvis was a recognized practice, and is treated of at considerable length by Denman and other writers of that period, as a recognized mode of procedure; so that Dr. Simpson's proposal to turn in the present day, is a revival of the practice which had fallen into disuse rather than an innovation. Numerous cases of deformed pelvis are on record in which turning has been practised from choice, or in which the feet or nates have presented, and delivery has been accomplished without material injury to the mother; and these cases naturally suggest the establishment of the operation as a rule of practice under certain conditions. The following points in the anatomy of the feetal head with reference to difficult parturition, are strongly insisted upon by Dr. Simpson. The bi-parietal diameter exceeds the bi-mastoid diameters by from half an inch to three-quarters of an inch. In delivering by turning, the bi-mas-

Section of feetal skull. a, a, Bi-parietal; b, b, Bi-mastoid diameter.

toid, and, in vertex cases, the bi-parietal diameter first engages in the pelvis. The great question is, can the fœtal head, under

all the circumstances of pelvic deformity, pass through most readily with the bi-parietal, or the bi-mastoid diameter first?

The bi-mastoid diameter is comparatively incompressible, in order to defend the medulla oblongata, the nodus vitalis of fœtal as well as of adult life; but the bi-parietal diameter may be compressed to a great extent without destroying the fœtus. In children born alive, it has been found considerably flattened, indented, or even fractured, in cases of deformed pelvis with a diminution of the conjugate diameter. The bi-parietal diameter varies in the natural feetal cranium from 3\frac{1}{2} to 4 inches, but it may be compressed to 24 or 3 inches, for the short time during which the head may be drawn through the pelvis, without necessarily destroying the child. Denman was of opinion that the living feetal head would bear a greater amount of compression than this. In delivery by turning, the child is drawn through the pelvic opening; in vertex delivery, it is pushed through from behind; and there are many instances in mechanics, in which bodies can be drawn through the openings which no amount of force applied from behind would make them pass. In the case of the feetal head and the deformed pelvis, Dr. Simpson believes that in vertex labor, when the vertex does not readily enter the pelvis, it is bulged or squeezed out laterally, and the bi-parietal diameter increased, by the pressure of the body of the child under the influence of uterine contraction. This is illustrated by the following figure:

Section of feetal skull. The dotted line a a, b, c c, represents the normal outline. 1, 2 2, represents the alteration produced by the compression described.

When the bi-mastoid diameter first comes into the pelvis, a different form of compression occurs. When the vertex des-

cends first, it is the base of the cone formed by the fœtal head which first attempts to pass through. When the bi-mastoid diameter presents at the pelvic brim, it is the apex of the cone represented by a transverse section which passes first. The tendency of the bi-parietal diameter is to increase in vertex cases, when the vertex does not readily enter the brim; but when the bi-mastoid diameter enters the pelvis first, and is drawn through it by traction applied to the fœtal extremities, the larger or bi-parietal diameter is readily compressed to a considerable extent. This point has already been referred to, and admits of easy demonstration.

Other mechanical arrangements facilitate the descent of the head face foremost, as compared with the descent of the vertex. The bi-temporal diameter is usually from three to five-eighths of an inch less than the bi-parietal. In vertex presentations, the chin of the child is bent upon the sternum; the result is that the vertex and the bi parietal portion of the head enters the pelvic strait, first, and with the bi-parietal or larger diameter opposed to the conjugate diameter. In delivery by turning, the chin is extended, and the bi-temporal diameter descends first and nearer to the conjugate diameter, the bi-parietal being received in the lateral and widest part of the pelvis. The subjoined diagram exhibits the passage of the head through a deformed pelvis in turning.

These are the chief anatomical considerations relative to the

Section of feetal skull. $a \ a, b \ b$, normal outline, 11, 2, outline of skull, as compressed in turning.

proposed mode of practice. Dr. Simpson insists greatly upon the fact that it can be performed early, and is in this respect

favorably contrasted with craniotomy, which must be performed late, and after the woman has been subjected to the perils of protracted labor. The patient also escapes the risk of injuries to the vagina and soft parts by instruments. The fœtus, it is

Deformed pelvis and compressed fætal head. A, promontory of sacrum; B, symphisis pubis; C, space between forehead and ilium; D, depression in fætal head; E F, anterior and posterior fortanelles.

well known, is in the state of an amphibious animal, and bears a short interruption to the utero-placental circulation without a necessarily fatal result; and Dr. Simpson believes that the cord may generally be guarded to some extent by being placed at the sides of the pelvis, in the position affording most room. It is in deformed pelvis with diminished antero-posterior diameter, or oblique deformity, that turning promises the greatest chance of safety to the mother and child, and not in the contractions of the transverse diameter. The limits of the deformity within which a living child may pass in turning have yet to be determined. Dr. Fleetwood Churchill puts it at two inches and sixeighths; but as the limit for the passage by the vertex is three inches and a quarter, a considerable latitude for the operation of turning exists. The objections to the measure are—the injuries which may be done to the mother; the difficulty of diagnosing the proper amount of deformity and the difficulty of performing craniotomy when turning has been tried, in cases where the head cannot be delivered without reduction. regards the injuries done to the mother, the cases on record do not show them; and it was the opinion of Denman that craniotomy in such cases was almost as easy as in cervix presentations, so that there is every reason to hope that with the knowledge we now possess of the condition of the fœtus by auscultation. and the advantages afforded by chloroform in such cases, turning will be performed, and a chance of safety afforded to the child, where craniotomy was considered the only resource. It is probable that the practice will hereafter be combined with the induction of premature labor in cases of pelvic deformity, where the conjugate diameter is even below two inches and sixeighths.

Introduction of the first blade of the short forceps, with the mother lying on the side.

LECTURE XLVII.

THE FORCEPS.

Gentlemen:—Chapman, who first published to the world an account of the Forceps, calls it a "noble instrument;" and well might he do so, since it has probably saved more lives than any mechanical invention ever discovered. We owe the production of the forceps to Dr. Paul Chamberlen, who, with his three sons, kept the matter a secret for their own benefit during sixty or seventy years. It has now been in use upwards of two centuries, and though all agree as to its incalculable utility, there are some points respecting its formation and application upon which obstetricians are not yet entirely agreed. The first intimation of the discovery of the forceps was in 1647, by Dr. Peter Chamberlen, who gives the merit of the discovery to his father, Dr. Paul Chamberlen. In 1762, another son, Dr. Hugh Chamberlen, refers to the discovery as one to which his father and brothers had, "by God's blessing, and their own industry, attained to." The invention gradually became known, but it was not until 1733 that Chapman published a description and plate of the instrument. Measureless censure has been heaped upon the Chamberlens for their conduct in keeping the discovery of the forceps a secret. It is a great principle that no invention and discovery in an art like medicine should be withheld from the common good; but in condemning the Chamberlens, we must remember the age and fashion of the time in which they lived, when monopolies in various branches of trade and manufacture were held by the nobility, and even by royalty itself. We have evidence that at least one of the Chamberlens, Dr. Hugh, could suffer for conscience' sake, in the fact of his flight into Holland on account of espousing the cause of James II.

The short straight Forceps, termed Denman's forceps, chiefly in use in this country at the present day, is essentially

the same instrument as that devised by the Chamberlens. (Cut 161.) The chief alterations and improvements made in it were

the work of Smellie. The most perfect Chamberlen forceps had the handles bent in the form of hooks; for these Smellie substituted handles of wood. As Chamberlen left the joint, it resembled that of the common scissors, but without the pivot, the joint being made secure by a piece of tape or cord passed through a hole in each blade, and wound round them after they were put in apposition. In another specimen of the Chamberlen forceps, one blade is provided with a fixed pivot, to receive upon it the other blade and secure it. This is called in the present day the German lock, and has been improved upon in the instrument called Naëgelé's forceps. In lieu of these somewhat clumsy arrangements, Chapman invented the lock now in use.

This forceps, known as the straight forceps, consists of two separate blades, which are introduced separately and which, by locking, are converted into one instrument. These are called the left hand or male blade, and the right hand or female blade. Each blade consists of a handle, a shank, and the curved portion or clam, which adapts itself to the side of the head of the child. The ordinary straight forceps now described has but this one curve, which may be called the Cranial curve, as its special relation is to the head of the child. The length of the curved portion of the blade is about eight inches. The curved portion of each clam contains a fenestrum or opening fitted to receive the parietal protuberance, and when both blades are in apposition, to allow the fætal head to protrude somewhat through the sides of the instrument. The length of the whole instrument is about twelve inches. The distance between the most curved portions of the clam is about three inches. When the handles are in perfect apposition, the extremities of the two clams are about an inch apart. The length of each fenestrum is about three inches. When the instrument is in action upon the head, the extremities of the handles are about one inch asunder, and not close together as when the instrument is held in the hand. whole weight should not exceed twelve ounces. Of course it is necessary that the steel should be of the finest temper, to resist the force which has to be exerted in some cases of extraction of the head. The edges are bevelled off in every direction, to prevent injury either to the child or the mother. It was formerly the fashion to cover the forceps with wash-leather, this being done with a view to make the appearance of the instrument less martial, and to present a soft surface to the maternal passages and the feetal head. Some advocate this proceeding at the present day, but the great majority avoid it, on account of the increased bulk and difficulty of passing the blades, and also the risk of carrying the infection of gonorrhea or syphilis. The infectious principle of contagious fever ought, perhaps, still more to be held in dread. Some instruments are now sold covered with gutta percha, but nothing is so perfectly clean or so easy of introduction as the naked metal, anointed with oil, lard, or glycerine.

This instrument is calculated for the delivery of the head from the lower and also from the middle strait of the pelvis, or when it has in great part emerged from the pelvic canal, and is

resting on the perinæum. The circumstances which all admit to call for the use of the forceps, are the arrest of the head in the pelvis or at its outlet, from entire failure of the pains, or such a condition of the mother or the child as would place either or both in a state of risk in the event of delivery not being completed. Its most common use is in cases of suspended labor from inactivity or exhaustion of the uterus. The forceps should never be used when the child is known to be dead, so that auscultation will require to be carefully practised in all cases where the necessity for the use of the forceps is anticipated. As compared with craniotomy is may be said to be a child's operation; but the forceps is not entirely, as Dr. Meigs would teach, a child's instrument, since it is sometimes used quite as much for the safety of the mother as of the child. Besides failure of uterine action, it is sometimes called for in consequence of moderate deformity of the pelvic outlet. In cases of twins it is occasionally necessary to use the forceps to deliver the first child, when the head presents, It is used in face cases, particularly when the head of the child is large, and the pelvis of only moderate dimensions. occipito-posterior presentations, when the head is large, and especially in first labors, the forceps may become necessary. In cases of arm-presentation with the head, the forceps may also be required. The instrument is used in some cases of funis presentations; in cases of turning, or breech-presentation, in which there is difficulty in delivering the head; in rupture of the uterus, when the head is low down, and is not retracted to any great extent; and in cases of convulsion, flooding, or any other accident of labor, which may render immediate delivery necessary to save mother and child from peril. The forceps is more often called for in primiparæ than multiparæ.

The Conditions necessary to the use of the Short Straight Forceps are, that the os uteri should be well dilated, and partly or entirely retracted over the head of the child. Dr. Meigs says that "a man shall hardly be justified who inserts his forceps within the os uteri. He must wait until the neck has risen above the parietal protuberance, and can no longer be felt." Dr. Ramsbotham states that it may be used in some cases where as much as a third part of the circular margin of the os uteri can be felt. I have no doubt whatever that its use is often perfectly justifiable, when the upper

part of the blades must enter the os uteri to extract the child. Dr. Lee insists greatly upon the full dilatation of the uterus, and says that the "greater part" of the head must have escaped from the uterus before the forceps can be safely used. Cases. however, occur in which the anterior lip can be felt in front of the head, when it rests on the perinæum; and others are met with, in which, though the os uteri is fully dilated, it is not retracted above the head. With many distinguished accoucheurs it is laid down as a rule never to apply the forceps unless an ear can be felt. The late Dr. Merriman especially affirmed that no case can be "esteemed eligible for the application of the long forceps until the ear of the child can be distinctly felt." There can be no doubt of the correctness of these dicta, as far as the short forceps commonly is concerned. [See Lecture XXXIV. on this subject.] Another rule is, that the head should have rested on the perinæum six hours, and the pains ceased for this length of time; but numerous cases in which the forceps is required entirely contravene this dogma. The use of the forceps should never be attempted when the os uteri is undilated, when the soft parts are in a state of inflammation, when the pains are violent, or when any considerable pelvic deformity exists.

Very numerous have been the minor modifications of the forceps, but some of the improvements of the instrument appear destined to last as long as the forceps itself shall be necessary. I have spoken of the single or Cranial curve of the original instrument. To this, Smellie and Levret added another curve, the convexity of which looks towards the sacrum, and the concavity towards the pubes. This may be called the Pelvic curve. to distinguish it from the curve already referred to. One curve has reference purely to the head of the child and the safety of the fœtus; the other relates entirely to the pelvic cavity, and is solely intended to shield the parturient canal from injury. Besides this, Smellie increased the length of the shank or space between the handles and clams, in connection with the pelvic curve, with a view to the extraction of the head from the pelvic brim. This was the forerunner of the long forceps of the present day.

As regards the addition of the pelvic curve to the short forceps, authorities differ very considerably; but I believe that

eventually the double, or the cranial and pelvic curve will be universally adopted. By the pelvic curve, less danger of those

horrible accidents leading to vesico-vaginal fistula by pressace on the pubes, and to laceration of the whole of the perinæum and fusion of the vagina and rectum by posterior pressure will be incurred. The short forceps with the double curve is commonly used [Davis's, and Simpson's modified], we are informed by Dr. Meigs, in America. Professor Siebold of Berlin, and many others in Germany, have adopted the improved instrument, and its use is common in France. In this country, to which the forceps belongs par excellence, the double curve has found comparatively little favor, notwithstanding the excellent instrument and example of Dr. D. Davis, chiefly as I

believe because the matter has not yet seized professional attention.

The Long Forceps is a most important alteration of the original instrument. It is not merely a variation of form, but it is applied to an order of cases altogether different from those in which the short forceps is useful. The short forceps is adapted for the delivery of the head from the perinæum, or the middle strait, or outlet of the pelvis. The long instrument is suited to its extraction from the brim of the pelvis, or even from above the brim. For this reason, the shank is lengthened, and the best instruments possess the double curve, to adapt them to the axes of the pelvis and the parturient canal. For extraction when the head is at the brim, the short forceps is altogether inadequate without risking the laceration of the soft parts of the mother. One of the earliest anecdotes connected with the forceps, is that of Mauriceau, who relates that Dr. Hugh Chamberlen, coming to Paris, rashly undertook to deliver a dwarf with deformed pelvis, who had been left to die by the French obstetrician, and after several hours of severe exertion was obliged to desist without completing the delivery. It is to relieve such cases, when the deformity is not too great that the long forceps is peculiarly applicable, and with the long instrument, Chamberlen might have been spared his own mortification and the censures of the great French accoucheur. Dr. Radford has devised a long forceps in which the blades are of unequal length, the short blade being intended to go over the occiput, and the long blade over the anterior part of the head.

As a **Preliminary to the use of the Forceps**, the bladder and rectum should be emptied, and the patient brought to the edge of the bed in the ordinary obstetric position [upon the back]. It is necessary that the nates should be brought to the edge, so as to project somewhat over it, particularly when the patient is stout, to allow of the necessary movements of the handles. If we do not arrange the position of the patient accurately in the first instance, we may have to withdraw one or both blades after the operation has been commenced, and begin again *de novo*. In the use of the straight forceps, our object must be to pass the blades of the instrument over the sides of the head of the child, so as to bring the parietal protuberances within the fenestra. We are at the same time obliged

to consider the capacity of the pelvis in its different diameters, and it is found that the blades will pass in one direction when they will not pass in another. But our chief consideration, as regards the direction in which the blades are passed, is to be given to the feetal head. The forceps may require to be passed over the head in any of the directions described when treating of the mechanism of labor. We may have to grasp the head in any of the four cranial positions described. The most common position in which the forceps is required is the first, in which the vertex is directed against the left branch of the pubes, and it is to this position that almost all the ordinary descriptions of the application of the forceps refer. In this position, the bilateral diameter of the child's head corresponds pretty accurately to the right oblique diameter of the pelvis, and it is in this diameter that the head is generally grasped with most facility. In the second position, the vertex is turned towards the right portion of the pubic arch. The third and fourth positions are merely the reverse of the first and second. Practically, we have, in ordinary cases of head presentation, in which the forceps may be required, to deal with the fætal head lying with its longest diameter in the right or left oblique diameters of the pelvis. When the head lies in the right oblique diameter, we have to pass the blades of the forceps in the direction of the two extremities of the left oblique diameter, and vice versa. When the long diameter of the head occupies the transverse diameter, or nearly so, the blades of the instrument must approach the antero-posterior diameter. When the head rests on the perinæum, its long diameter approaches to the antero-posterior diameter, and we have to manipulate with the forceps almost in the transverse diameter of the pelvis. It has always been insisted on as a condition absolutely necessary to the proper use of the forceps, that we should know the exact position of the head. For this purpose we are told by many authors of the present day, to pass two or three fingers, or the whole hand, between the fœtal head and the pubes, to find out the position of the ear. But such manipulations are quite unnecessary, if we are familiar with the methods of diagnosing the position of the feetal head by the examination of the sutures and fontanelles by the index-finger, as detailed when the different presentations of the head were under consideration. This ought to give us all the

information we require as regards the position of the fœtal head.

Taking the first position for our description, the following is the mode of proceeding with the short forceps: The first blade

Fig. 165.

Delivery by short forceps in first position.

should be held lightly in the left hand, the first one or two fingers of the right hand being passed a short distance over the head, behind the right portion of the pubic arch. The end of the blade should now be introduced through the ostium vaginæ, and passed upwards between the finger and the head. In this procedure the handle of the instrument requires to be depressed considerably. The end of the blade should be kept lightly but pretty closely in apposition with the head as it glides onwards. With the finger we should aim, if possible, to pass the instrument over the ear of the child, and under the rim presented by the os uteri. When these cannot be felt, or when the blade cannot be passed, while the finger is at all deep in the pelvis, we shall find these obstacles are best perceived and avoided, by holding the

instrument lightly in the hand as a probe. After the blade has first come in contact with the head, we must go on depressing the handle until we have reached the summit of the cranial vault. After this point, the handle has to be raised until it has passed over the side of the head, in the direction of the right foramen ovale. Care must be taken not to damage the ear, or the margin of the os; and in case of any difficulty, it is always right to withdraw the blade partially or entirely, in order to detect the impediment. The highest skill in the use of the instrument is to pass it with the utmost gentleness. We should, of course, know the position of the head in all cases. But it is not, after all, hair-breadth knowledge we require. The instrument is so admirable and perfect in its relations to the pelvis and the fœtal head, that blade, and head, and pelvis, concur in aiding the operator, and in depositing the instrument in the right place. The genius of Chamberlen assists, as it were, at every proper case in which his instrument is employed. When the upper and anterior blade has been passed, the handle is brought towards the pelvis,* and held there by an assistant, and the spare fingers of the operator during the introduction of the posterior or inferior blade. It is more difficult to pass the second blade than the first, owing chiefly to the occupation of the vagina by the anterior blade. The first finger, or two first fingers of the left hand have now to be passed over the head in the direction of the left sacro-iliac synchondrosis; and the second blade, held in the right hand, is to be passed, with the precautions already described, over the opposite side of the head. The handles should now be drawn together, and if the blades have been properly applied the handles lock readily, and the position of the blades is rendered perfect and fixed by a moderate compression of the handles. Great care must be taken to guard the ostium vaginæ during the process of locking, so as not to pinch or lacerate the soft parts of the mother. The inner smooth surface of the handles should always be parallel with each other when the instrument is rightly applied. If they are not even, the instrument is pretty sure to slip or unlock when traction is applied. handles should not be brought close together, but it is sometimes advisable to tie them, so as to prevent their unlocking in the interval between the pains, and also to exert gentle compression on the feetal head. During a pain, -when the pains have not disappeared,—the first effort at traction should be

made in the direction of the polvic axis, due regard being had to the position in which the child's head has descended. The traction should be gentle at first, but gradually increased to the extent that may be necessary, intervals of rest being allowed when the pains are off, or in imitation of pains. Besides the efforts of traction, the handles should be moved a little from side to side in extracting, so as to use each blade in succession as a lever. As the head descends, the handles should be brought forwards between the thighs of the mother, and as the head is expelled, they should, if the instrument remains on, sweep over the abdomen in the direction which the head itself would take if its movement were prolonged. When the head is in the pelvis, we must be careful not to direct the handles too much backwards, as this endangers the bladder and the anterior vaginal wall from the anterior blade. When the head is coming into the world, the hand should not be pressed too far forwards, otherwise the perinæum is ploughed up by the posterior bladc. When the head is passing through the ostium vaginæ, care must be taken not to lacerate the perinæum. It is best at this moment to unlock the instrument, just as rowers unship their oars to avoid collision, or the posterior blade may be withdrawn altogether, and expulsion allowed to take place by the After the operation an opiate is generally natural efforts. administered, the vulva should be formented carefully from time to time, and symptoms of inflammation or sloughing carefully attended to. I am of opinion that in cases where the patient does not prefer to remain conscious, or when the head is very low on the perinæum, chloroform should be used in delivery by the forceps. In the first case in which I used chloroform in a forceps case, the instrument was applied to the head without it by the medical man who asked my assistance; but the patient was of nervous temperament, and on the slightest attempt at traction her movements were so violent as to render it impossible to proceed, and the alternative was between chloroform or craniotomy. The advantages of having the patient quiet and free from pain are very great. The forceps acts as an extractor, a double lever, and a compressor. The limits of its action as a compressor must depend on the difficulties to be overcome, due regard being had to the safety of the child.

In the other positions of the head, or in face cases requiring

assistance, the same general principles are to be followed in applying the short forceps as those already laid down. To operate perfectly the blades of the forceps should always be applied to the sides of the head; they will thus, as the rule, occupy the diameters of the pelvis opposite to those occupied by the long diameter of the head. One of the most difficult is the occipito-posterior position, which is not very common, but it has happened to me to meet with two primiparous cases of this kind in which the forceps was necessary. One of them I saw with Dr. Guneau de Mussy, and the other with Mr. Jonson, of Eaton Place.

The Long Forceps is adapted for the completion of delivery in cases of moderate contraction of the pelvis, especially in the conjugate diameter, where the head will not enter the brim, or descend below it, by the unaided force of the uterus, or where the head lodges at the brim from any other cause. When the head presents at the brim, it will be remembered that the long diameter lies in the transverse, as in one of the oblique diame-

Delivery by short forceps in antero-posterior position of head.

ters, or more commonly in a position between the transverse and one of the oblique diameters. The head of the child is also in

the state of Flexion—that is, with its chin bent upon the ster num. As a consequence, the vertex, and not the apex, of the vault of the cranium, is the most depending part. Under these circumstances, the blades of the forceps cannot be applied on each side of the child's head, because these sides are in apposition with the pubes and the sacral promontory, between which points the constriction exists. The forceps are in such cases introduced with reference to the anatomy of the pelvis chiefly, and not to the anatomy of the feetal head. The two blades are passed up, one on each side of the pelvis, and they then fall mechanically into, or approach towards that oblique diameter, opposite to the diameter which is occupied by the head itself. The parts of the feetal head actually grasped by the blades are the occiput and the forehead. The grasp does not, however, seize the long diameter of the head exactly, but a diameter between the longitudinal and the transverse or biparietal. The ends of the blades reach, on one side to the nape of the neck, and on the other to the base of the brow, but they do not pass over the face. Greater care is necessary in extracting with the long than with the short forceps, because the direction in which extractive power has to be exerted is more complicated, and because the instrument is more powerful than the short forceps. Care should be taken not to use such force as may injure the mother; and if, after endeavoring within this limit, to effect delivery, we are obliged to resort to craniotomy, we shall perform this operation with less hesitation or misgiving when we know that there is no alternative.

No doubt, the use of the long forceps is a weighty matter, and not to be undertaken without due and serious consideration. But the alternative must be remembered—namely, the performance of craniotomy, and the inevitable destruction of the child. By craniotomy, too, a considerable amount of danger to the mother is incurred. In cases of pelvic contraction, to such an extent as not utterly to preclude the possibility of the passage of a living child, the long forceps should always, unless some great peculiarity exists, be tried. After attempting delivery in this way, we shall, as already said, certainly resort to craniotomy with a clearer conscience, than would otherwise be the case. In London the use of the long forceps has been a subject of grave dispute. Dr. Lee, one of the most experienced obstetricians of

this or any other age, may be said to represent those who oppose its use; but Dr. Ramsbotham and others defend it. It has long been used in Edinburgh by Dr. Hamilton and Dr. Simpson. In Dublin it has found little favor, particularly at the great Lyingin Hospital, the different masters having opposed its employment. Dr. McClintock, the present master, a most accomplished and unprejudiced obstetrician, who was recently in London, informed me that he had, within a short time, used the long forceps on two occasions with success, and he expressed himself a convert to its use. Dr. Fleetwood Churchill also recommends its employment. Its utility is fully recognized in America, and also in France and Germany. The chief objection urged against the use of the long forceps is, the injury done to the

Delivery by Dr. Simpson's long forceps in contraction of the brim.

mother by operations above the brim. [According to Dr. Sims, in 70 cases of vesico-vaginal fistula, 41 only were delivered by instruments. Dr. Bozeman says, in 19 cases of the same difficulty, instruments were used in but 9.] But most of these injuries have been owing to the use of the short forceps in this

situation, for which they are not at all adapted. The impossibility of introducing the forceps in distortions of the brim has been dwelt upon, but this difficulty chiefly applies to attempts to introduce the blades in the antero-posterior diameter. In the transverse diameter, or in the oblique diameter opposite to that in which the head engages, there is often as much room in contraction of the conjugate diameter as in the normal pelvis. It has also been urged that the action of the forceps, as a compressor, acting from the sides of the pelvis, must bulge the biparietal diameter, or that part of the head opposed to the conjugate diameter of the pelvis, and thus increase the difficulty of the passage of the head. But, as already stated, the forceps seizes the head obliquely, and not in the antero-posterior diameter, so that any retardation caused by the bulging of the head is more than compensated for by the extractile action of the forceps. The supposed injuries done to the face of the child have been dwelt on, but it can be shown anatomically, and as the result of practice, that the anterior blade of the forceps does not extend beyond the root of the nose. The objections to the use of the long forceps are, in my opinion, either prejudiced or invalid, and such as, on the introduction of the short forceps, might have been nrged with almost equal weight against that instrument.

[The great distinction to be made in the selection of forceps, should arise from the necessity of the case. In most instances the great object is to assist flagging pains or add a little force to insufficient uterine efforts. *Traction* is, therefore, the employment for which we wish to use this instrument. This is the only purpose required where the short forceps is the appropriate instrument save that of effecting rotation of the head so as to change the position. Where the long forceps are to be used, traction is sometimes the result desired, and to effect this, a light, springy instrument is sufficient. Davis's forceps, as seen in various slightly modified forms, and especially where known as the Hodge forceps, which is represented in the cut annexed,

much used in some parts of the United States, is well adapted to this purpose.

The great pelvic curvature of the lower edge of the blade makes more than ordinary caution requisite when passing the

perinæum to avoid any injury to it.

An instrument recently devised by Dr. George T. Elliot, of New York, is especially noteworthy in this connection, and it is not an untried instrument having been used repeatedly by Dr. E. and the staff of Bellevue Hospital. Especially it has

1, Elliot's forceps closed, showing comparative length of blade, shank, and handle.

2, Elliot's forceps, blades separated, by a sliding pin between the handles.

3, Elliot's forceps, blades separated, showing the location of the pin, and the points into which it is inserted—pelvic curve.

been successfully used in rotating the occiput anteriorly, when offering towards the sacrum, in accomplishing which its slight pelvic curve gives unusual facility. There are three especial points in this gracefully beautiful as well as practically seful instrument, deserving notice, and may be observed in the its annexed, which show it in three positions. First, the

uunsually long handle, which gives a firm grasp to the operator, and enables him to exercise any possible traction required. It is evident that such a length of handle gives so great leverage that it would make dangerous compression upon the head of the child inclosed between the blades. This is effectually guarded against by a pin sliding between the handles, and thus graduating the pressure to any desired degree. That this may be done without disuniting the blades at their articulation, a great breadth of shoulder is given, which makes the lock firm, even when the blades are widely separated. In the New York Journal of Medicine for 1858, an article upon this modified forceps gives a full description of its peculiarities and various cases in which it has been successfully used.

In thus using the forceps as a tractor, we have assisted nature, but nature does more than forcibly to expel the child. She moulds the soft and easily yielding head, till it becomes coneshaped, and is enabled, thus elongated, to pass through a cavity too small to allow its transit in its original diameter. Where nature is thus moulding a large head so as to adapt it to pass through a small passage, we should assist nature, and by means of forceps, compress the head—so flatten it as to diminish the diameter to a size corresponding to the size of the strait it is to pass. For this purpose, it is evident to any one that will examine the instruments, the forceps already described are unsuitable. I therefore have used for this purpose the stout, little elastic forceps invented by Professor Ritgen, which allows very considerable pressure to be made. It has also three points of articulation, which enable it to be locked, even when one blade does not pass fully up by the side of the head. See cut adjoining, in which may be noted an ordinary forceps with even blades, or with either lengthened at will.

That nature moulds the head is undoubted. How much man can modify the shape of the fœtal head is a matter of some dispute; Dubois and his school, utterly repudiating the forceps as a compressing instrument, not from the belief that such compression is injurious to the child, but because any perceptible diminution of the diameters is declared not feasible with the ordinary French (Baudelocques') instrument. On the contrary, Velpeau believes that the diminution is often marked, having observed

with Siebold and Thouret a diminution made by them of six lines, and Osiander almost an inch. I have repeatedly effected a sensible and important reduction in the size of the head,

easily enabling me to deliver a live child where the utmost traction had been previously made by other gentlemen with non-compressing instruments.

Care should be taken in using these powerful instruments not to make this pressure too suddenly, or to keep it up too persistently; time should be taken, the aim not being a speedy, but a safe delivery. During the intervals of traction the pressure should be relaxed to allow free circulation in the head. To effectually insure this end, make it a rule never to tie the handles of the blades together; such a proceeding produces frequent accidental injuries to the child.]

Introduction of the second blade of the short forceps, with the mother lying on the side.

LECTURE XLVIII.

THE CESARIAN SECTION.

GENTLEMEN: -The Induction of Premature Labor, Turning, and the use of the Forceps, are the great operations of what may be termed Conservative Midwifery. There remain to be considered two capital operations never to be resorted to save in the last necessity-namely the Cæsarian Section or Hysterotomy, and Craniotomy. In the one the mother is almost surely, in the other the child is certainly sacrificed. Premature Labor, Turning, and the Forceps are in distinct opposition to Embryotomy and Hysterotomy, and the tendency of all obstetric improvements has been to substitute the conservative for the destructive operations, and to circumscribe more and more the ground which the latter occupy. The Cæsarian Section was probably suggested by cases in which gravid women had the mature feetus forced through the uterus and abdominal walls by accidents, such as falls or the goring of bulls; or by those rare instances in which, in cases of impassable deformity of the pelvis, the uterus and abdominal parietes have been ruptured by the force of the pains and the child extruded. The operation is of very ancient date, like most of the capital operations performed on the human body. Esculapius himself, and a number of other ancient and middle aged celebrities, are said to have entered the world in this manner. Art does not appear to have diminished the dangers or the mortality of the operation. With one or two exceptions it is, and probably will ever remain the most formidable operation which can be performed upon the living body.

Dr. Fleetwood Churchill has carefully collected the statistics of abdominal hysterotomy. He collected from foreign authorities the particulars of 371 cases in which the operation was performed. Of these, 217 mothers are reported to have recov-

ered, and 154 to have died, the deaths being 1 in $2\frac{1}{3}$. Some of these cases are, however, so old, as to be traditional rather than historic; but the records of 321 operations, which have occurred since the year 1750, show that only 149 mothers recovered, to 172 deaths. Kayser collected 339 cases, in which a fatal result occurred to the mother in 210 cases, 129 mothers being saved. Dr. West has noted 409 authentic cases; in 251 the mother died, and the recoveries were 158. The largest statistic of this operation is that of Figueiria, who gives 790 cases, in which the deaths were 424, leaving 366 recoveries. Many of the cases are of course repeated in these several collections, but they give, no doubt, a tolerably correct account of the mortality of the operation. In Great Britain, the operation has been considerably more fatal than on the Continent, the difference probably arising from the fact, that here the operation is commonly resorted to only after labor has continued for some time, and after other means of delivery have failed, while abroad, the operation has been performed on healthy women, the subjects of deformity, at the commencement of labor. Merriman collected the results of 26 cases occurring in this country; of these only 2 mothers were saved, and 24 lost. Dr. Churchill has analyzed 63 British and American cases, out of which 18 mothers recovered to 45 deaths. In the great capitals, London, Paris, and Vienna, the mortality is far greater than in other places, and with the single exception of Dr. Oldham's case, where the patient suffered from carcinoma uteri, and died a considerable time after the operation, I believe abdominal hysterotomy has never been performed successfully in this metropolis. Within the last few years it has been performed in London under every circumstance which could be devised to procure a favorable result, five times, with a fatal result in four cases. Dr. Oldham's case was probably an exemplification of the law, that the abdominal and pelvic organs while in a state of disease bear operations well. The most favorable of these results are sufficiently discouraging, when viewed in a tabular form. The matter is still more tragic when we come to the individual case, and have to estimate the chances of recovery from such a formidable operation. It must be borne in mind that the known statistics of the Cæsarian section are sure to be more favorable than the real results. Successful

cases are certain to be blazoned abroad, and those which are unsuccessful mentioned as little as possible. Kayser observes that the recorded mortality from this operation in lying-in hospitals, where all the cases are reported, is considerably greater than the recorded mortality in private cases, where suppressions are possible. The hospital mortality reaches to 79 per cent. Dr. West places the mortality in this country, at the lowest estimate, at 83.6 per cent.; but even this is probably lower than the real mortality, could every case be collected. Of the five operations performed in London within the last few years, one of the fatal cases has never, as far as I am aware, been reported.

Dr. West has made a very careful analysis of the cause of death and the date of its occurrence in 147 cases of death from the Cæsarian section. His table shows that death is distributed between shock, hæmorrhage, and inflammation. Fifty-five cases died of inflammation, between the 2d and 20th day, and 1 after that time. The number of deaths from shock to the nervous system was 33, the period of death varying from 1 hour to 6 days after the operation. Fourteen cases died of hæmorrhage, between the time of the operation and the sixth day. The deaths in the remaining 44 cases took place from the combined results of hemorrhage, shock, and inflammation, or from causes independent of the operation itself. The fatal result takes place with great rapidity in the majority of cases, as shown by the fact that out of the 147 cases tabulated by Dr. West, death occurred in 108, within 96 hours after the operation. Dr. West summed up the peculiar dangers of the operation under four heads: 1. Hæmorrhage, not only from the wound but from the placental site. 2. The shock to the nervous system from the violent interference with labor, and the injury inflicted on the uterus. 3. The exposure and incision of the healthy peritoneum. 4. The infliction of an extensive wound upon the uterus at a time when the processes of nature are prepared, not to carry on reparation, but to effect the degradation, disintegration, and absorption of the uterine tissue. Attention has been especially directed to the state of the uterine wound after the operation, by Dr. West. In many cases no attempt at repair or the formation of new tissue takes place; in others, actual sloughing and loss of substance occurs, the wound gaping widely, when death has occurred many days after the operation.

The Cæsarian section has been resorted to for the safety of the child more frequently than for that of the mother, but the statistics of the operation demonstrate beyond question that the amount of fœtal is almost equal to that of the maternal mortality. In Dr. Churchill's list of 371 cases, the results to the child are given in 189 cases, 139 being saved, and 50 lost. But we may fairly infer, that of the 182 cases where the result is not given, the child was lost in all or nearly all, which would, omitting twins, increase the feetal mortality to 232. Of the 63 occurring in British practice, 26 children were lost or still-born, and the result is not stated in three cases, making the probable mortality 29. In Dr. Merriman's collection of 26 cases, 11 children were saved and 15 lost. In the 409 cases mentioned by Dr. West, the result to the child is stated in 347 instances. In 227 the child was born alive; in 110 it was still-born. If we add the unrecorded cases to the deaths, the number becomes 172, exclusive of twins.

In a considerable number of cases it is a remarkable fact that the operation has been performed more than once upon the same subject. In 28 women whose cases are collected by Dr. Churchill, the operation was performed 74 times. Some of these cases have been doubted, on account of their antiquity, but within our own generation, Professor Kilian, of Bonn, performed the operation four times on the same woman. Between the years 1826 and 1836 it was also performed four times on a Danish woman. It would appear that in women who survive the first operation, a certain immunity from the dangers of the procedure is acquired. These cases, subtracted from the tables of the successful performance of the operation, or reckoned only once, increase the tabular mortality in women operated on for the first time.

We now approach one of the most momentous questions in obstetrics. Fortunately it is one not often presented to us for solution in practice. What are the circumstances under which Abdominal Hysterotomy may become justifiable or even necessary? No point has been more keenly debated, and perhaps no point of importance in midwifery is less definitely settled at the present time. It may be stated that the operation is less held in dread upon the Continent than in Great Britain. This is owing in some degree to the more favorable

results of the operation, and to the greater value attached to fœtal life, in foreign countries. According to Busch and Moser the Cæsarian section is the only practical mode of delivery when the diameter of the pelvis is two inches and a quarter or less, and the Cæsarian section is indicated if the diameter is from two and a quarter to under three inches, when the child is alive. Jacquemier is of opinion that hysterotomy is the only justifiable operation when the child is dead, and the pelvis is below two inches in diameter; or when, in the case of a live child, it varies from two inches to two and a half. These are amongst the latest authorities in Germany and France. Velpeau gives the diameter of the pelvis in 62 cases. In 30 of these, the pelvic diameter was from two inches to two and three-quarters, the variation in the remaining 32 being from one inch to two inches. Dr. Simpson truly observes, that in this country the operation would not have been performed in the 30 cases in which the diameter extended from two inches to two inches and threequarters. These measurements, it should be stated, refer to the antero-posterior diameter, and it seldom happens but that, on one side or the other of the pelvis, the diameter exceeds the diameter from the promontory of the sacrum to the symphisis pubis. In such cases, craniotomy would certainly be attempted in British practice. Dr. Lee, the most strenuous opponent of the Cæsarian section, does not give any positive admeasurement limiting the operation, but he states that the operation should be reserved for cases in which the pelvic contraction is so great that the os uteri and the presenting part of the child are entirely out of reach. He speaks, however, of a case of Sir Charles Bell's in which the antero-posterior diameter did not exceed an inch, and when the space on either side did not allow the performance of craniotomy, in which in labor at the full term, the Cæsarian section was necessarily performed. Dr. Fleetwood Churchill gives it as his conclusion, after reviewing all the points relating to the subject, that when the antero-posterior diameter of the brim is not more than an inch and a half, there is no resource but the Cæsarian section. Dr. Rigby considers the operation unavoidable when the child cannot be extracted piecemeal through the natural passages, but does not give any positive measurements which would justify the operation. Dr. Meigs teaches that the operation may be imperative in different diameters in different cases; and he considers it impossible to fix a minimum diameter through which a woman may be delivered. He states that if we go to diameters of an inch or an inch and a half, the Cæsarian section is inevitable, but that he should not hesitate in one case to recommend it in a pelvis the diameter of which ranged from two to two and a half inches, when a patient was in imminent danger; while in another, and less pressing case, he would as certainly, with the same diameters, advise craniotomy. Singularly enough, Dr. Meigs relates a case where the diameter was not beyond two inches, in which he delivered by embryotomy on two occasions, but in which the Cæsarian section was afterwards performed twice successfully, and once under the sanction of Dr. Meigs. No alteration had occurred in the state of the pelvis between the dates of the operations for embryotomy and hysterotomy. Dr. Ramsbotham considers the Cæsarian section the only alternative in labor at the full term, when the antero-posterior diameter is one inch and three-eighths, and a space of three inches and a half at the brim laterally, or with an antero-posterior diameter of an inch and a half by three inches. In two of the cases occurring in London within the last few years, the pelvic diameters have been published. In one case the anteroposterior diameter was three inches, but out of this the rami of the pubis projected forwards, with a beak more than an inch in length, and about an inch in breadth. The distance between the tuberosities of the ischia was 1.2, and from the point of the coccyx to the symphisis pubis 2.8 inches. The child was saved. In the other case, the principal deformity was at the brim. The anteroposterior diameter measured two inches. From the sacral promontory to the right pectineal eminence there was also a space of two inches, and from the same point to the left pectineal eminence, two inches and a half. The diameters of the cavity and the outlet were not seriously contracted. The child was dead before the commencement of the operation. It is impossible to give too much credit to the distinguished practitioners concerned in these cases for their candor and skill, but it may be questioned whether in both cases delivery might not have been effected by piecemeal delivery. At this point of the argument, we must inquire what are the smallest diameters through which a child at the full term has passed, either alone or with instrumental assistance. We have seen that Dr. Meigs delivered twice in a

case where the antero-posterior diameter did not exceed two inches, and he distinctly states that he should not hesitate to undertake delivery in any pelvis of two inches in the antero-posterior diameter. I believe Dr. Lee entirely indorses this opinion, even if he does not go somewhat beyond it. celebrated case of Eliza Sherwood, in whom delivery was effected by Dr. Osborn, the antero-posterior diameter was only three-quarters of an inch, but there was a space on the right side an inch and three-quarters broad and three inches long. In the case related by Dr. Simpson, a fœtus, eighteen inches and a half long, passed through a cordate pelvis, so contracted at the outlet as to measure three inches from the coccyx to the symphisis, but only half an inch from the tuberosity of one ischium to the other. In a succeeding labor, hysterotomy was performed with a fatal result to the mother and child. In these and other cases of the passage or extraction of a child through a pelvis affected with high distortion, the child has been dead and in a softened condition, with complete separation or dislocation of the bones of the head. It may be said, then, that the limits for the performance of the Cæsarian section only range between a two-inch diameter of the pelvis from deformity, and its entire occlusion by exostosis. If cases ever occur in which the operation is necessary above two inches, they are instances in which death is threatened or certain, before the lengthened operation of embryotomy could be completed. Much discussion has taken place as to the relative value of the life of the mother or child in cases supposed to call for hysterotomy, particularly when the child has been sacrificed again and again in the same subject. But apart from the fact of the great danger to the child in cases of the Cæsarian section, I think the judgment of Dr. Meigs to be in accordance with the dictates of reason and humanity, when he says that this operation should never be performed upon the living subject, save for the preservation of the mother herself, and that it should be considered essentially as a mother's operation, only to be resorted to when the life of the mother is in greater danger from the continuance of labor, than from the hazardous and almost certainly fatal procedure under consideration. The life of the child may be a great consideration after the operation has been decided on, but it should hardly enter into our calculations before that time.

When a patient has died suddenly, or in any other way, during labor, or in the latter part of pregnancy, there can be no hesitation about the performance of hysterotomy, where the child is suspected or known to be alive. Under such circumstances, the operation should take place as quickly as possible after the death of the mother. It was probably in such cases that the operation was in the first instance performed. I have elsewhere spoken of the performance of gastrotomy in cases of ruptured uterus, where the child has escaped into the peritonæum, and cannot be delivered per vias naturales. This operation is also necessary in some cases of extra uterine fœtation, when death is threatened from the irritation of the fœtus.

Hysterotomy is not a difficult operation. The temperature of the room should be raised, with a view to the prevention of peritonitis, and chloroform administered, unless some special contraindication exists. The abdominal incision may be made in the direction of the linea alba, or it may be oblique or horizontal, according as the configuration of the abdomen is altered by defor-The situation of the placental attachment should be avoided, if this organ be attached anteriorly. This may be learnt by auscultation before the operation is commenced. Great care is required in opening the peritonæum, so as to avoid wounding the intestines. The abdominal incision should be from eight to ten inches in length; and the uterine incision should be of nearly the same length. Some have advised that the liquor amnii should be evacuated before the commencement of the operation. When the amnion is punctured through by the uterine incision, carc must be taken to let as little of the fluid as possible enter the peritoneal cavity. It is recommended to be removed carefully with pieces of sponge or a syringe. When this has been evacuated, the fœtus is to be taken out cautiously, as in some cases the utcrus has grasped the body or neck of the child at the wound and rendered its extraction a matter of difficulty. The placenta is to be separated by the hand, and hæmorrhage arrested by mechanical pressure, or the application of cold, the risk of peritoneal inflammation being the only objection to the latter. After the removal of the placenta, and the cessation of hæmorrhage, all blood and fluid arc to be carefully removed from the peritonæum, and the edges of the uterine and abdominal incisions brought together and maintained

by sutures. The external wound is further to be dressed lightly with strapping and wet lint, and the whole supported by a many tailed bandage, space being left for the exit of discharge. After the operation, large and continued doses of opium, with nutriment and stimulus in good quantity, appear to offer the best chances of recovery. Throughout, every care should be given to the avoidance of periton eal irritation as far as possible; the escape of the bowels through the wound; and the suppression of hæmorrhage. Dr. Aitken has recommended that the operation should be peformed under water, with a view to defend the peritonæum and other structures from contact with the external air, but I am not aware that his suggestion has been carried out in practice. As already mentioned, art and the most careful modes of operating, can do little towards insuring the safety of the patient under hysterotomy. There is one point worthy of consideration—namely, that patients operated upon in the country have done better than those operated on in great cities; and it is probable that a good air does more than the most skillful surgeon in such cases.

LECTURE XLIX.

EMBRYOTOMY.

Gentlemen:—This is the most positive of all the operations of midwifery. The only other procedure with which it bears comparison, is the induction of premature labor before the viability of the child has been reached. In the induction of Premature Labor after the seventh month; in Turning; in the use of the Forceps, and even in the Cæsarian section, a chance of safety is afforded to both mother and child; but in Embryotomy, the child, if alive before the commencement of the operation, is inevitably sacrificed.

The operation is considered necessary in certain cases of deformed pelvis, obstruction from tumors, etc., when the induction of premature labor has been neglected or omitted; in cases of arm presentations, hydrocephalus, convulsions, hæmorrhage, exhaustion, etc., when the preservation of the mother imperatively calls for delivery, and when the child cannot be extracted by the long or short forceps, or by turning. Under these circumstances, there is no question amongst the great majority of British accoucheurs as to the propriety and fitness of the performance of craniotomy. As Denman justly observes. in deciding in favor of this operation, we are only following the dictates of Nature, who, in difficult labours, commonly sacrifices the child before the mother is destroyed. It is equally a canon in obstetrics, that the operation should never be performed except after consultation, and in the face of the most urgent necessity; and it may be said that, apart from all question of the Cæsarian section, there is a general belief on the Continent, and in America, that the operation has always been performed too frequently by obstetricians in this country.

It is of the greatest importance, with reference to the most common condition of instrumental labor—namely, slight or

excessive deformity of the pelvis, that the limits should be decided, as far as possible, within which the induction of premature labor by the forceps may, or craniotomy should be, performed. As regards the induction of premature labor, it may be said that it applies to all cases of pelvic deformity, it being the province of art to decide at what time this operation should be performed in each particular case, and whether it should be resorted to before or after the viability of the child. There is, probably, no case of deformity or exostosis, where menstruation and fecundation can occur, so profound but that the detachment and expulsion of the ovum might be procured within the first two or three months after impregnation, by the uterine sound, or an elastic tube and douche. When this has not been accomplished, and pregnancy has gone on to the full term, we have to consider the alternative operations of the forceps, turning, embryotomy, or the Cæsarian section. The use of the forceps is generally inadmissible in cases where the distortion exists to such an extent that the antero-posterior diameter is below 34 inches. When the application of the long or short forceps is impossible, turning may be practicable between the limits of 3½ inches and 2½ inches. The Cæsarian section comes into the field in cases of high distortion, where the antero-posterior diameter is 13 or 2 inches or less. Between the point at which turning becomes impracticable, and at which there is no resource but the Cæsarian section, lies the domain of craniotomy. It is the proper resource in cases where the antero-posterior diameter is from 2½ inches to 1½ to 2 inches. In cases where some condition other than mechanical disproportion comes into operation, as in cases requiring immediate delivery, and complicated with hæmorrhage, convulsions, etc., craniotomy may be sometimes necessary, but it ought in every case, as far as possible, to be superseded by the forceps or turning where these operations are practicable.

The statistics relating to embryotomy are of great importance as throwing light on the proportion in which the operation is fatal to the mother. Dr. Fleetwood Churchill has collected 342,495 cases of labor in German practice, in which embryotomy was performed 243 times, or in 1 in every 1,409½ cases. In 129,321 cases in British practice, embryotomy was resorted to 378 times, or one in every 342½ cases. In France and Italy,

out of 38,908 eases, this operation was performed 69 times, or in 1 in every 563\frac{3}{4} eases. Thus the proportionate frequency of the operation stands as 1 in every 342 cases in this country, 1 in every 5633 in France and Italy, and only 1 in 1,4093 in Germany. In 371 cases in which the result to the mother is stated. deaths ensued in 69, a fatality equal to 1 in $5\frac{1}{3}$ of all the eases. Thus eraniotomy, though a comparatively easy operation, is far more fatal to the mother than the forceps or turning. In this eountry, 1 in every 203 amongst the mothers is lost by the use of the forceps; and in France and Germany, 1 in 143. In cases of turning, the loss is 1 in every 14½ eases, including deaths from the complications in which turning is required, such as convulsions, accidental hæmorrhage, placenta prævia, etc. Some further light is thrown upon the comparative mortality of the several midwifery operations by a comparison of the results of artificial delivery in this country and on the Continent. Dr. Simpson gives the comparison of the maternal mortality after artificial delivery in the great hospitals of Vienna and Dublin as follows: Under Boer, 1 in 55 was delivered artificially-that is, by the forceps, lever, version, or craniotomy. Under Arneth, artificial delivery was resorted to in 1 out of every 69 eases. In Dublin, under Dr. Collins, 1 out of every 86 women was delivered artificially; and under Dr. Johnson, as reported by Drs. Hardy and M'Clintock, 1 in 52. Of the cases above mentioned, Boer lost 1 out of every 17 mothers; Arneth, 1 out of every 9; Dr. Johnson, 1 out of every 5; and Dr. Collins, 1 out of every 4. These figures would give Dr. Collins a mortality more than four times greater than that of Boer, and twice that of Arneth. Dr. Collins, it may be observed, resorted to artificial delivery less frequently than the Vienna obstetricians; but Dr. Johnson's proportion of artificial deliveries was greater than either that of Boer or Arneth. On the Continent, the forceps is more frequently used than in this country. The French use this instrument in 1 out of 140 cases; the Germans in 1 out of every 159; while in Great Britain it is only used in 1 out of every 342 1 cases. The same may be said of turning. The French turn in 1 out of every 892 cases; the Germans in 1 out of every 971; while in Great Britain we turn only in one out of every 23S cases. The maternal mortality from forceps cases in this country is 1 in 203; in France and Germany, 1 in 143. The

gross mortality to the mother from turning is 1 in every 141 cases. Thus on the Continent, a considerable gain of maternal life is obtained by resorting to turning and the forceps, instead of craniotomy. When the child is dead, turning is performed, or the forceps used, in preference to craniotomy; and turning is resorted to in cases of dystochia, when the head of the child is above the brim, and when the pelvis admits of delivery without diminution of the head. Artificial delivery is also resorted to at an earlier period on the Continent and in America, when it is considered necessary, than in this country, and Dr. Simpson has shown that no other circumstance exerts so prejudicial an effect, as the prolonged duration of labor. While it must be allowed that in the matter of artificial deliveries more mothers are lost in this country than on the Continent, the gross maternal mortality in this country is more favorable than in foreign countries. It is not only as regards the mother that our own statistics of artificial delivery are unfavorable. Out of every 100 cases, Boivin lost 28 children; Arneth, 34; Lachapelle, 36; Boer, about 47; Dr. Johnson, 76; and Dr. Collins, 77. If we can rely on these statistics, which there is little reason to doubt, the feetal mortality in this country in artificial deliveries is nearly double that which obtains upon the Continent. The result of these statistics is to show very clearly that craniotomy is an operation to be avoided upon every possible occasion, and that in no case should it be undertaken, whether the child be alive or dead, when turning or the short or long forceps can be substituted in its stead. It is only less horrible than the only alternative which remains to us, when it is absolutely unavoidable-namely, the Cæsarian section, and in the following proportions: Embryotomy is fatal to the mother in about 20 per cent., while the Cæsarian section destroys from 60 to 70 per cent. on the Continent, and between 80 and 90 per cent. of the mothers in cases operated on in this country.

When the deformity is not excessive, the operation is a comparatively easy one. It is only in cases of high distortion, where what is called piecemeal extraction is required, that great difficulties are met with in its performance. The instruments used consist of the Perforator, the Crotchet, the Embryotomy Forceps, the Cephalotribe, and several kinds of blunt and cutting Hooks.

Various forms of Perforators are used. The most common

is the scissors-like instrument of Smellie, modified to some extent by later obstetricians. It consists of two blades with shoulder-stops, and cutting edges between the stops and the points. In using the instrument, it is inserted as far as the stops, and the handles are then separated by the fingers. The most modern and perfect instrument is a modification of Naëgelé's perforator, which is used by bringing the handles together, and gives the operator considerable more power than the instrument of Smellie.

[The frequent injuries to both mother and the operator from the use of the Smellie's perforator being recognized, I am ac-

customed to use the instrument modified by Charrière with great benefit. It is made sharper than Smellie's, and all danger in its use is effectually prevented by an easily removed shield. Thus guarded, it can be passed up to the required position without an accompanying finger and without the possibility of cutting or piercing the mother, and then the sliding guard being removed, it can be used more efficiently than the ordinary instrument.

But a far better instrument still, which wants but to be seen to be approved is that recently invented by M. Blot, of Paris, and called by him a craniotome. As seen in the annexed representation, it differs materially from all previous perforators. In its ordinary position it is retained shut by a spring. It is composed of two blades, which cover each other, so that when the instrument is closed, the blunt edge of one extends slightly beyond the

cutting edge of the other, and reciprocally. When used, it is

to be taken by the handle with the right hand and passed by the side of the fingers to the head of the fœtus, and there being no sharp surfaces exposed, but little care is required to avoid injuring either the mother or the operator. It is then to be passed through the cranial bones by a rotatory motion. It will there be retained in situ by the notches which I have added to M. Blot's instrument, and then by pressure upon the lever B, the blades will be divided and thus effect as large an opening as may be desired. The advantages claimed for this instrument are solidity and simplicity; its safety to mother and operator even in the most inexperienced or careless hands; its requiring but one hand, leaving the other free to observe its effects; that it does not slip out of the cranium; power of perforation; finally, its cheapness as compared with the sheathed scissors described above.]

The common **crotchet** is a modification of the earliest modern instrument of the kind, devised by Mesnard. It is simply a

Fre. 100

blade, having the forceps curve, with a short hook at the extremity, having a broad cutting edge of moderate sharpness, for insertion into the inner or outer surfaces of the bones of the fœtal cranium. Its construction was probably suggested by the use of the hooked finger and the finger-nail. Various forms of craniotomy forceps are used, some of them with sharp teeth, and others with serrated blades, the latter being in most cases the preferable instruments. In some, the scissors-joint, and in others the forceps-lock, is used. The cutting-hook, invented by Dr. Ramsbotham, for cases requiring decollation or the amputation of limbs, and a blunt hook, complete the embryotomy instruments in general use in this country. In the **Cephalotribe**, a mechanism altogether different is relied upon. Immense strength in the

In the **Cephalotribe**, a mechanism altogether different is relied upon. Immense strength in the blades, and great power of compression is obtained, and the fœtal head, including its base, is crushed by the grasp of the instrument. The cephalotribe of Baudelocque is two feet in length, and weighs about four pounds, being altogether a most repulsive-looking instrument. The crushing-blades are brought

together by a screw movement. A more modern French cephalotribe, consisting of an immensely strong pair of forceps, having

narrow blades without fenestra, was exhibited at the Crystal Palace of 1851. It was several pounds in weight, and its use must have required great strength on the part of the operator. Recently, considerable attention has been given to the construction of cephalotribes of as light a weight as is consistent with the requisite strength, and the ratchet and pinion have been substituted for the screw in approximating the handles. The latest instrument I have seen measures 18 inches in length; its blades are 13/4 inches in width, and it weighs three pounds. The lock of the blades is the same as that of the French forceps. It is used by Paul Dubois and the leading French obstetricians, in preference to the perforator and crotchet, in cases where the child is

dead, or where the pelvis is too contracted to admit of the use of the forceps. The advantages claimed for this instrument are, that it avoids the dangers of the crotchet, and that it is far less fatiguing to the accoucheur than the ordinary mode of extraction. It is not, of course, applicable to cases of high pelvic distortion. It is impossible to examine the instruments used in embryotomy, and to deal with cases requiring its performance, without feeling that instrumentation has by no means reached perfection in this department of the obstetric art. craniotomy will, in all probability, be restricted, almost, if not entirely, in the case of living children, to cases requiring piecemeal extraction. We require instruments for this purpose better than any which have hitherto been constructed, and it seems likely that modifications of the lithotrity and bone-cutting instruments used in surgery may be found very useful in breaking up and extracting the feetal head.

In using the **perforator**, the first two fingers of the left hand arc introduced into the vagina so as to reach the parts of the head selected for puncture. Along these fingers, the instrument is passed as on a director, and with the right hand, forced gently but firmly, by a semi-rotatory movement, into the head as far as the shoulder-stops. The blades are then opened widely, and the part of the head into which they are introduced is thus divided. The instrument is now withdrawn a little and reinserted in a direction at right angles to the first incision, when the blades are dilated as before. This proceeding leaves a crucial opening in the feetal cranium. The point of the head at which the perforation should be made has been a subject of considerable dispute. Some advocate perforation at the sutures or fontanelles; but it is an objection to this procedure, that when the bones become compressed, the opening is obliterated, and the discharge of cerebral matter interfered with. The best point for perforation is the middle or posterior portion of the parietal bone, because an opening in this situation enables the operator to apply extractive force with the head in the most natural and advantageous position for its passage through the pelvis. When the crucial incision has been made, the perforator is passed into the opening, and moved about in various directions, so as to break up the brain. If the child is alive, the perforator should, if possible, be made to pass into the foramen magnum in order to destroy the medulla oblongata; otherwise the child may be born living, notwithstanding the pro-

Craniotomy Forceps.

cesses of perforation and decerebration. Sometimes the crotchet is preferred for breaking up the brain. Nothing but piercing the medulla destroys the child, which before birth possesses, to a certain extent, the low and tenacious vitality of the amphibia. After these steps of the operation have been completed, it is best, in all cases where immediate delivery is not a matter of great urgency, to wait for some time before proceeding to extraction. The bulk of the fœtus is diminished by loss of blood, and as the brain escapes, the spastic influence of the pains moulds the bones of the cranium into a smaller and more convenient shape. Decomposition also sets in with great rapidity, and soon softens the whole mass.

For extracting the child, especially when the fœtus is dead before the commencement of the operation, it is sometimes sufficient to pass the finger into the opening made by the perforator, and in this way extract the child. More frequently the crotchet

Perforation of the head.

or craniotomy forceps are required; and some cases tax the strength, ingenuity, and patience of the accoucheur to the very utmost.

Considerable difference of opinion has prevailed at times as to the mode of using the Crotchet. Some have fixed the instrument on the outside, others on the inside of the cranial cavity; and occasionally two crotchets, one applied externally, and the other internally, have been employed. At the present day, obstetricans are pretty well agreed as to the propriety of passing the crotchet through the opening made by the perforator, and fixing it upon the cranial bones on their inner surface. It is still a disputed question whether the crotchet should be

fixed upon the anterior or posterior part of the head. Supposing the head to be in either of the occipito-anterior positions,

Employment of craniotomy forceps.

in applying the crotchet to the anterior part of the head, we can pass the fingers of the left hand up over the frontal bone, to the part opposite to that upon which the crotchet is fixed, and in this way steady the instrument, assist its extractive force and guard against the injury of the soft part in case of the slipping of the instrument. But these advantages are more than counterbalanced by the circumstance that we in this way bring down the anterior part of the head, and force the cranium through the pelvis in its largest and most unfavorable diameter.

[The simplicity and effectiveness of the crotchet is unequalled by any other instrument used in extraction after perforation of the head. Many attempts have been made, therefore, to so construct a guard to the sharp hook as to render its use less dangerous, for when it slips from the bone, or tears out from the scalp, it sometimes causes dangerous wounds either upon the hand of the operator, or if he has neglected thus to guard the point, upon the soft parts of the mother, lacerating the vagina or rectum, producing a nucleus from which subsequent irritative or puerperal fever may arise. The guard crotchet of the late Dr. Gordon, of Charleston, S. C., has been much used, but being

in two parts, and it being necessary to fasten one portion before the other is applied, renders its use difficult, tedious and ineffectual. That of Dr. Bedford is ingenious, but liable to the objection that when the guard is slid up to the point, it pushes against the vaginal walls, and is not only thus obstructed in its free movement, but may irritate or lacerate the mucous membrane, and thus make a *nidus*, from whence inflammation may spring. This instrument is also ponderous and expensive.

I present above cuts of a guard-crotchet which I have designed, and which has been made by Tiemann & Co., the well known instrument makers of New York. The point A, which enters

the head, is made tapering and cone-like-all previous instruments being made broad and with an entering point nearly a half inch in width. When the guard is not in use, it lies close upon the shank of the instrument, which may thus be used as if no guard was affixed, as it in no manner incommodes the operator or endangers the patient. When the hook is fastened, the guard is raised by the handle B, to the desired extent, and then slid forward upon the slot c, by the spring seen under the handle, as far as allowed by the thickness of the portion between it and the point of the hook—the guard is withdrawn with the greatest facility by means of the thumb resting upon the roughened portion of the handles of the guard. A projecting portion of the main handle D, assists in making such traction as is desired. The instrument thus made adds no material complication to it, it being complete without the guard and not burdened, nor its use impaired by it. One hand only is required in all the manipulations with it—it is compact, neat, and not expensive.]

In fixing the crotchet on the thickest portions of the occipital, parietal, or temporal bones, we, on the contrary, bring the head down with its smallest diameter opposed to the pelvic straits, and in this way expedite delivery, and avoid the danger of bruising and lacerating the soft parts of the mother. Cases may occur in which we have little choice, and in which the head must be extracted or broken down as it lies; but when we can select any part of the head, or are able to alter its position, undoubtedly the greatest chances of safety are given by following as closely as possible the natural order of labor, and bringing the posterior and superior angle of one of the occipital bones first through the pelvis. Sometimes the Craniotomy Forceps, the blunt hook, or even the ordinary forceps, are used after the collapse of the head, to effect delivery; and in the worst cases, the craniotomy forceps is more serviceable and less dangerous than the crotchet. With any of these instruments the greatest care is necessary in guarding the soft parts of the mother from injury and avoiding lacerations of the vagina and perinæum by the instrument or by spiculæ of bone. Great force is sometimes required with the crotchet and craniotomy forceps, and the completion of delivery may occupy many hours. As far as possible, it is a rule in craniotomy to save the scalp and integument, so as to cover and guard the bones from injuring the mother.

The craniotomy forceps in general use as represented in figures 171 and 172, is a very uncouth, unwieldy, heavy and inconvenient instrument. Some years ago, Mr. Tiemann made at my instance the instrument represented in the cut annexed. It is much lighter, yet very strong, easy of use, with a curved handle to facilitate in traction, and a joint opening as the jaws close. By its use the danger to the mother from the sharp crotchet is avoided, and by it more force may be safely applied than by the latter instrument. Bone after bone of the cranium can be torn away and removed and the necessity of the cephalotribe avoided. This instrument is not intended, as in cut 174, to embrace the head, but one blade is to pass into the opening made by the crotchet and the other externally. One adapted to this purpose is the recent invention of Dr. Thomas of this city, representations of which are inserted on page 726. It consists of two similarly shaped blades, of the length of an ordinary long forceps, locking also in the same manner and provided with similar handles.

blades are about half an inch in thickness and something more in breadth. These blades, are to be passed over the child's head securely fastened together and then the screws seen in the handles are to be turned. The effect is to slowly protrude a series of sharp teeth, which imbed themselves in the sides of the head. Traction may then be made with any

required degree of force. In case the instrument is desired to be removed, the teeth may be again extracted, by turning the screws in an opposite direction. The instrument is a highly ingenious one and recommends itself by its apparent simplicity.]

In embryulcia, when some other parts than the head present, the abdomen and thorax require to be perforated, and the child extracted as in breech cases. Occasionally, it is necessary to effect decapitation. In some cases, when craniotomy has been per-

formed, and the head extracted, it is difficult or impossible to deliver the trunk, and the thorax and abdomen require evisceration. Dr. Oldham has for such cases invented a vertebral hook, considerably longer in the shaft than the ordinary blunt hook, and calculated to be of very great service.

In cases of high distortion, such, for instance, as those described by Dr. Osborn and Dr. Meigs, extraction by any instruments would be impossible without the assistance afforded by the decomposition of the fœtus. These cases sometimes spread over two or three days, in

which time the soft parts of the fœtus are reduced almost to a diffluent pulp, and the loose bones are contained within the skin somewhat as in a bladder. The fœtor in these cases is intense, and the uterus may be distended with gases resulting from decomposition; but less mischief arises from these sources, or from the delay and pressure, when the cranium has been decerebrated, than from forcible attempts at extraction. It is very common with those obstetricians who have most distinguished themselves in such cases, to express a regret, at the termination of their cases, that they did not wait more

patiently, and trust more to the aid afforded by putrefaction. It is almost incredible how small an aperture a fœtus in a state

Embryulcia.

of decomposition will pass through. Dr. Simpson, in a case occurring at Cupar, was able to draw a child 18½ inches long, in a state of considerable decomposition, through an opening in a piece of iron only 2½ inches long by ½ of an inch wide. When we have to deal with a dead fœtus, the circumstances under which craniotomy can be performed in high distortion, are the most favorable which can exist; but when the fœtus is destroyed early in labor, a few hours will do much towards promoting decomposition, while if extraction can be delayed twenty-four or thirty-six hours, the fœtus becomes greatly disorganized. Death, the admission of air, and the high temperature kept up by the uterus and liquor amnii, afford very

favorable conditions for putrefaction in the comparatively soft structures of the fœtus. It were to be wished that art could

Decapitation.

supply some means of making feetal decomposition still more rapid in such cases. But even in cases of decomposed feetus, the crantum has, in the worst cases, to be picked out bit by bit and bone by bone, or the large bones have to be broken up. In his case of pelvis of two inches in the antero-posterior diameter, Dr. Meigs relates that he was several hours getting away as much osseous matter as would go to make up a parietal bone.

Considerable difference of opinion has existed as to the **Time** at which Craniotomy should be performed. Dr. Collins has especially laid it down, with almost the distinctness and positiveness of a law, that in difficult labor the child is always

dead before the mother is placed in such a position of danger as to require immediate delivery. Drs. Hardy and M'Clintock have followed Dr. Collins to a considerable extent in this par-The wisdom of the rule thus sought to be enforced by these eminent accoucheurs may, however, be questioned. When there is distinct evidence that the child cannot be born alive, when turning is impracticable, and when delivery by the forceps has been vainly attempted, there is no object to be gained by delay. There is little difference, in a moral point of view, between standing by while the fœtus dies, and the actual performance of craniotomy; but it may make every difference to the chances of safety to the mother to have a dead fœtus, upon whom perforation has been performed, and in whom the processes of putrefaction and softening are going on, and with the solid head of a living child, pressing under the force of uterine action upon the soft contents of the pelvis. No doubt it must always be a satisfaction to know, when the certainty arises that craniotomy is inevitable, that the child is already dead; but this event cannot be waited for except with risk to the mother. It would probably be better to be without auscultation altogether, in such cases, than to make it the ally of timidity and procrastination. In every case where the least promise of such a solution of the difficulty exists, turning or the application of the long or short forceps should be attempted; but the moment we are positively certain that the head cannot pass naturally or artificially without perforation, but that with perforation it may pass, we should prepare for craniotomy, with little reference to the question of whether the mother can bear an hour or two of additional suffering, or whether the child may linger a few hours more before it expires from compression.

[No mention of the **Vectis** is made by the author of this treatise, which is indeed an obsolete and little used instrument, although holding a place, made for it by the instrument makers, in every obstetric case. The ordinary vectis is about a foot in length, and is intended to act as a lever to move the head into any desired position. To effect this a point d'appui is required. If this point is the bony pelvis, certain injury is done to the soft parts of the mother, if upon one hand of the operator, sufficient power cannot be applied with the other to effect the result. I have, therefore, contrived an instrument,

represented in the cut annexed to which I have given the name of a tractor. It is of about double the length of the ordinary

vectis, and for convenience is capable of being folded upon itself, but firmly fastened when intended for use by a screw button or a wooden movable handle in the centre, A. At both ends are fenestras of unequal sizes and curvatures, for different applications.

In its application it is to be seized with the right hand at or near a, while fenestra b is to be placed upon the elbow or outside of the fore-arm as convenient. The fenestra c is to be

passed over the head of the child, and fixed as desired. Thus we have a the power, b the fulcrum, and c the resistance, and the instrument, a lever of the third kind. One hand only is now employed with the instrument while the other may manipulate internally or externally. Used as a lever, no pressure is made upon the hard or soft parts of the mother. As a tractor its power is wonderful. The pressure of b upon the elbow, holds c fast to the side of the head, allowing no slipping and permitting any possible amount of tractile force to be made in a straight line. It almost equals the forceps in power and has the advantage of but one blade, a valuable feature in some cases, where the introduction and locking of the second blade is found to be impossible.

The vectis or tractor is to be introduced in the same manner as the forceps, and is to be slipped over the portion of the head upon which it is desired to act—over the occiput, when the

object is to flex the head, or upon the parietal regions in the lateral inclined positions—especially in some of the posterior positions of the face, treated of in Lecture XXVI., when too far engaged to admit of version. Where it is used for flexing the head and depressing the occiput, it is passed like a blade of the forceps directly upon the vertex and as much as possible upon the occi-

The mode of using the vectis or tractor to pull down the occiput or flex the head.

put. When the occiput is to the right, as in the cut, the *point d'oppui* is not, as in the previous representation, upon the outside of the fore-arm but along its inner surface. In this position the hand seizing the instrument is not twisted, as when the occiput is to the left. Those who may be ambi-dexter, may for convenience, when the occiput is to the left, use the left hand.

This instrument I have found of service in delivering a

retained head in breech cases, or where I have turned. It may either be applied over the head in the hollow of the sacrum or under the pubis. As but one blade is to be passed, and no time is spent in locking, its superiority to the forceps as a time-saver in those cases will be recognized.

That this modified instrument is one of value, and worthy of more respect than the old vectis, is attested by a recent report of the obstetric section of the New York Academy of Medicine, to which I beg leave to refer all interested in it.

Chloroform has been incidentally alluded to as an adjuvant to obstetric operations in various parts of these lectures, but not with that fullness which its merits so eminently entitle it to receive. At the present day, few would willingly enter upon general practice without the use of anæsthetics of some kind, be it any of the various ethers, amylene or chloroform-which I prefer for its general agreeability, less irritating qualities to the throat and fauces, the small quantity required, and its more speedy and certain results. Any person sufficiently educated in medicine to take charge of a case of labor will have learnt the proper method of its administration, the care to be exercised and the dangers to be met and avoided. I shall not, therefore, here enter upon the method of its administration further than to state that, for my own practice, I keep a large cup-shaped, fine sponge for this purpose; the chloroform is placed in its internal apex, and then the face buried in its cavity, thus a full supply of ordinary air is inhaled with the vapor. I do not expect by anæsthesia to facilitate any operation except that of turning: but for this, its service is all-important. The difficulties of this operation are enlarged upon in previous pages; and it is recognized as perhaps equalling in difficulty to the operator, in shock to the patient, and danger to the offspring any obstetric appliance. Chloroform relieves the operator from the benumbing effects of the powerful uterine contractions, mitigates if not annihilates the shock to the mother, and adds greatly to the chance of the child's life; rendering the operation not only often desirable, but feasible, where without it, some more destructive procedure would otherwise necessarily be requisite. applications of the forceps I would advise against its use, especially if there be any supposed difficulty in their application.

The sensations of the mother are very valuable to guide the operator, lest by some accident or *maladresse* the soft parts be injured, by inclosing a portion of the mucous membrane in the lock, passing the blades external to the os uteri, using too much force in an improper direction, and the like. After the instrument has been applied, then the use of anæsthesia is justifiable, although it is desirable not to give it to full anæsthesia, so as to overcome the involuntary uterine action. It is of no practicable importance in embryulcia; but so far as it interferes with the uterine efforts, it retards the delivery.

As a simple assuager of pain, both by diminishing the length of the labor and deadening the sensibilities, its use is valuable, and to be recommended. Particularly in those cases where the straining of the patient is dangerous by reason of diseases of the heart, lesions of the lungs, aneurisms, etc., which may be ruptured and cause death by the effort; less danger is frequently to be apprehended from the anæsthetic than from the efforts of expulsion. Its use relaxes the os uteri, softens the rigidity of the vaginal muscles and perinæum, induces a flow of mucus, Inbricating the passage, cooling the heat and lessening the sensibilities; thus, although arresting the voluntary efforts of expulsion and diminishing the strength of the uterine contractions, frequently converting a lingering labor into a speedy one. is evident, it may be given in the first stage, to effect the dilation of the os; in the second, to overcome vaginal contractions; and finally, to relax the perineum. It may commence with the labor, continue through its course and mitigate the closing pang; then the satisfactory contraction of the uterus being attended to, a teaspoonful may be put into a vial and inhaled as each afterpain approaches, thereby mitigating or destroying its annoyance.

In the event of puerperal convulsions and puerperal mania, it is not unfrequently called for. The peculiarity of the cases where it is serviceable, where innocuous and where injurious, are noted in the lecture upon that subject. In cases where the placenta is retained on account of hourglass contractions, by the use of anæsthetics the hand can be more easily passed through the ring and the delivery thus effected with more ease to both mother and operator.

Finally, in the sensitive condition of the nipples at nursing,

without fissure or abrasion, the nipple may, immediately before applying the child to the breast, be put into the large neck of a bottle containing chloroform, not being wet by it, but bathed in its fumes for five or ten minutes, thus not unfrequently giving great relief in this most annoying affection. Great care should be taken to have pure medicaments, Squibbs' tests of chloroform being applied to all specimens used, if not manufactured by him, Duncan and Flockhart of Edinburgh, or equally careful chemists.

There are two or three points which, even in this brief notice, should not be passed by without a word: and first, the subsequent effects upon the mother's health. In my own experience, not the slightest ill result has occurred which could by any possibility be traced to anæsthesia. The uterine contractions have been as prompt and as efficient, and never any subsequent hæmorrhage has ensued. No cephalic disturbance nor even a headache, although, according to some, insanity is ascribed to its use. Indeed, those patients with whom I have used chloroform, having been saved the nervous shock, have invariably "got up" better, and with less fatigue, muscular soreness, etc., than those not using it.

Whatever doubts there may be expressed as regards the effects of anæsthetics upon the mother, I think no one ascribes any bad results to the child from their use. Certainly, in my experience, children born while the parents had been several hours entirely unconscious, have struggled and cried as lustily at the moment of birth, and remained as free from subsequent stupor, as children born without the use of anæsthetics.]

Addenda.—I have already intimated that Chloroform is of very great value in all the more important Obstetric Operations, when no contra-indication to its employment exists. I believe especially, that it enables the accoucheur, under many circumstances, to turn or deliver by the forceps where, but for its use, he would have to resort to craniotomy. Anæsthesia must, it appears to me, be recognized as being quite as important in operative midwifery as it is in operative surgery.

As regards the employment of Chloroform in Ordinary Labor, the current of all experience, since the invaluable discovery of its anæsthetic properties by Prof. Simpson, has been to show

its general safety and utility. At its first introduction, I had scruples as to its use, but I have now no hesitation in employing it whenever the pains of labor are severe, and when the patient and her friends desire it. There are, however, certain circumstances which I have seen reason to bear in mind in its administration. Although it is often of very great value in producing sleep and quiet in puerperal mania, I believe I have seen insanity caused after delivery by its liberal employment in some cases. I have also seen it suspend uterine action, and I would therefore be cautious as to its use in cases of uterine inertia or in patients subject to hæmorrhage after labor. Some of the worst cases of laceration of the perinæum which I have seen have occurred in patients delivered under the influence of chloroform. This agent is without doubt useful in relaxing the os uteri and the perinæum. But in cases of rigidity of the perinæum, the existence of pain and full consciousness causes the patient to exert, by the controlling influence of volition, a power over the peristaltic and reflex actions of the uterus and respiratory muscles, which retards the passage of the head to such an extent as to preserve the perineum when patients are insensible to pain, but retain some amount of consciousness. They will often make greater efforts than usual at the time the head presses on the perinæum, and urge it through the ostium vaginæ with such force as to tear up the perinæum. Greater care, therefore, than usual should be taken when using chloroform, to prevent the too rapid birth of the head.

In the employment of anæsthesia in ordinary labor, the same objections to its use in cases of fatty heart or diseases of the respiratory organs obtain, as those which apply to the general operations of surgery. The anæsthesia need not, however, in the practice of ordinary midwifery, be so profound as in surgical operations or in the operations of midwifery. I believe the best method of administering it is that which is employed by the discoverer of its anæsthetic powers—namely, to pour a little chloroform on a towel or napkin, and suffer the patient to inhale it at the commencement of every pain.

LECTURE L.

CONCLUSION.

Gentlemen:—Having considered the principal subjects which relate to the Anatomy, Physiology, and Pathology of the Reproductive Processes, I propose to devote the present Lecture—the last of the course—to the Causes of the Mortality which attends Parturition and the puerperal period, and to the modes by which the amount of this mortality may be diminished. The latter forms the end and aim of all improvements in the Theory and Practice of this department of Medicine.

The seventeenth annual report of the Registrar-general of births, deaths, and marriages in England, published during the present year, contains a letter on the causes of death in 1854, by Dr. Farr, the eminent vital statistician, in which the mortality of women in child-bearing is very ably handled. From this document it appears that during the eight years from 1847 to 1854, inclusive, to every 10,000 children born alive in England and Wales, 54 mothers died. This makes a maternal mortality of nearly 1 in every 189 deliveries. In the seven years no less than 3,232 mothers died, on the average, annually. It is a gratifying fact, that in the seven years the mortality decreased from 60 in 10,000, in 1847, and 61 in 1848, to 47 in 10,000 in 1854. Since 1848 the declension has been progressive, the numbers per 10,000 being 58, 55, 53, 52, 50, and 47. Still, in the most favorable year, 1854, 3,009 died either during childbirth, or in the puerperal period—an enormous fatality to attend the performance of a natural function. The most minute particulars in his report relate to the year 1852. In that year there occurred in this country 618,902 child-bearings, and the number of women who perished was 3,247. We may at the present time consider 3,000 per annum as the number of women des-

tined to perish from childbirth in England and Wales. This mortality, it must be remembered, refers to women in the prime of life, who, up to the time of labor, enjoy excellent health. From the numbers given in the seven years, out of every 100,000 child-bearings, 530 women died from causes incident to labor. In the year 1848, 61 mothers died to every 10,000 children born alive. For the year 1852, we have the exact number of child-bearings given. In this year, 617,902 women were delivered. Of these, 3,247 died in childbirth, or in the puerperal period. The estimated number of still-born children was 22,122. The deaths from child-bearing bear a considerable proportion to the entire mortality during the child-bearing period -viz., from the ages of 15 to 55. Amongst women of the age 15-25, the annual mortality per cent. from all causes was .861, of which the 11st part, or .41, is by childbirth. At the ages 25-35, and 35-45, the annual mortality per cent. from all causes was 1.090, and 1.296, of which .098 resulted from childbirth. Thus, between the ages 25-35, 1 in every 11 deaths from all causes is from childbirth. At the age 35-45, 1 out of every 13 deaths is from childbirth; and in the case of women of the age 15-25, the mortality is increased by childbirth in the ratio of 5 to 9. It is difficult to put the mortality from parturition in a stronger light than this. In the English schedule there is as yet no column for the ages of the parents of the children registered. In the Swedish returns this defect does not exist, and Dr. Farr has determined the deaths from childbirth, at the respective ages as they occur in this country, by applying the data drawn from the Swedish tables to our own. results show that a mathematical law governs the calamitous deaths of childbirth. Between the ages of 15 and 25, the maternal mortality, as already stated, amounts to 668 in every 100,000, in childbirth. In the second child-bearing decenniad, from 25 to 35, the mortality from parturition is only 425 in 100,000 labors. It rises to 633 per 100,000, between the ages of 35 and 45, and to 883 in the last decenniad, namely, from 45 to 55. It is in the first decenniad that the largest proportion of first births occur; but more than one-half of the deliveries which take place at all ages, occur between the years 25 and 35. This is, in fact, the great child-bearing epoch, and the age at which

parturition is most safely performed. At the age of 15 to 25, one woman out of every sixteen bears a child in the year. At the age of 45 and upwards, the number bearing children is inconsiderable, but from the age of 25 to 35, one woman in every four bears during the year in this country The most fatal decenniad is the last, between the ages of 45 and 55, when the deaths are more than double the proportion of the deaths occurring in childbirth between 25 and 35. The female population between the ages of 45 and 55 is estimated at 782,010; of these, 7,545 are computed to bear children in the year, and a fatal result occurs in 66 cases, or at the rate of .883 per cent. The comparative mortality in the four decenniads may be represented by the figures, 3, 2, 3, and 4. This increase in the mortality from parturition at the two extremes of the child-bearing epoch is in accordance with the results of common observation. All radical defects and deformities in the child-bearing organs are tested in first pregnancies, and it is in the first and last periods that rigidities of the soft parts are most marked. Towards the end of the child-bearing period, women then becoming pregnant for the first time have their peculiar dangers; while in women who have borne numerous children, and in whom the reproductive organs are worn out, as it were, the results of uterine inertia, and the occurrence of rupture of the uterus, from its imperfect development in later pregnancies, increase the mortality. Other affections, such as fibrous tumors and mollities ossium, also increase in importance as impediments to labor, towards the close of the child-bearing epoch. It may be observed that in all returns relating to obstetrics, the amount of mortality from causes connected with child-bearing is rather under than over stated, from the natural repugnance of practitioners to refer to this condition as a cause of death.

If we come to inquire into the special causes of death from parturition, we find Metria or Puerperal Fever to be the monster source of childbirth mortality, when compared with any other single disease or accident attending labor. In the eight years 1847-55, 25,868 mothers died in childbirth; of these, 8,154 perished from puerperal fever. More than 1,000 women die annually in England from this cause alone. The particulars of this are set forth in the following table:

DEATHS OF WO	MEN IN	CHILDBIRTH	IN	THE	EIGHT	YEARS	1847	-54.
--------------	--------	------------	----	-----	-------	-------	------	------

	N	Deaths of Mothers to			
YEARS.	Metria and other causes.	Metria or Puerperal Fever.	All other Accidents of Childbirth.	10,000 Children born alive.	
1847	3326	784	2442	60	
1848	3445	1365	2080	61	
1849	3339	1165	2174	58	
1850	3252	1113	2139	55	
1851	3290	1009	2281	53	
1852	3247	972	2275	52	
1853	3060	792	2268	50	
1854	3009	954	2055	47	
8 yrs., 1847-54	25868	8154	17714	54	

After puerperal fever, hæmorrhage and exhaustion, the operations of midwifery, rupture of the uterus, puerperal mania, and convulsions, are the principal causes of death, Certain diseases quite distinct from parturition, such as small pox or scarlatina; and visceral inflammations, such as idiopathic peritonitis, cardiac, pulmonic, and cerebral inflammations, are vastly increased in danger by the concurrence of pregnancy or parturition. Statistics yield some interesting and important facts respecting the ages at which metria and the other disorders and accidents of childbirth are fatal in different proportions. These facts are exhibited in the following table:

COMPARATIVE MORTALITY OF WOMEN BEARING CHILDREN AT DIFFERENT AGES, FROM METRIA AND ALL OTHER CAUSES, IN THE SEVEN YEARS 1848-54.

Age of Mother.	Deaths by Metria.	Deaths by other Accidents of Childbirth.	
15-25	2085	2939	
25-35	3401	6378	
35-45	1791	5536	
45-55	86	380	
15-55	7363	15265	

Thus it appears that during the first child-bearing decenniad, 15-25, somewhat more than two-fifths of the childbed mortality is from metria or puerperal fever, but under this head all inflammatory disorders of the uterus are probably included. In

the second decenniad, 25-35, rather more than one-half of the deaths of women in childbirth are attributable to metria. In the third decenniad, 35-45, rather less than one-fourth of the deaths take place from metria, the proportion being 1,791 from fever, to 5,568 from the other accidents of childbirth. In the limited number of cases occurring in the fifth decenniad, a still smaller proportion of deaths from metria is observed. It results that, between the ages 15-35, women are greatly more susceptible of puerperal fever than between the ages 35-55. On the other hand, between the ages 35-45, and 45-55, while the chances of death from puerperal fever are diminished, those of death from the other accidents of childbirth are increased in a still greater proportion. The great era of puerperal fever is before the age of 35, when it exceeds one-third of the total deaths from childbirth. After the age of 35, the other accidents and disorders of childbirth largely exceed puerperal fever in importance, the proportion in the seven years being 5,998 from the ordinary accidents and disorders of childbirth, and only 1877 from metria. I am not aware that the attention of obstetricians has ever before been drawn to these remarkable facts in connection with death from child-bearing. That they have a practical bearing of the first importance, is at once obvious.

We have seen that the great single cause of death amongst childbed women is Metria, or Puerperal Fever. There can scarcely be any hesitation in declaring that this disease ought hereafter to be as absolutely extinguished in this country as the plague of former times. It stands in the same category as typhus, and the rest of the zymotic diseases, which we may reasonably hope are in gradual process of extinction by preventive medicine. This extinction, if possible, cannot but be hastened by the earnest direction of the professional mind to the subject, since it is one which is very much within the control of medical men. As regards cure, or effective treatment, the disease in its various forms is utterly beyond all the known resources of our art; and there is no reason to imagine that we shall ever deal with it effectually, save in the way of prevention. In this point of view, everything in the history of the disease leads us to the conclusion that its virulence and frequency may be moderated to almost any extent, or that it may even, in process of time, be entirely annihilated.

And first, as regards the Sporadic origin of this disorder. The state of the lying-in woman is one in which, as we have seen again and again in the present Lectures, the blood and secretions are necessarily vitiated to a certain extent. Pnerperal fever may almost be produced at will, by crowding a number of lying-in women together in the wards of a lying-in hospital. It is generated in individual cases, by inattention to the lochial and other secretions, the absence or neglect of ventilation, in the small rooms of the poor, where the lying-in chamber is often the abode of the rest of the family, and is used for all domestic purposes. In fact, where there is risk of typhus to the non-gravid woman, there is more than an equal amount of danger of

metria to the puerperal woman.

In the way of Infection and Contagion, it may, I think, be demonstrated, that puerperal fever may be carried from one patient to another by the proximity of lying-in patients, and by attendants and nurses conveying the infectious principle from one patient to another. There can be no doubt whatever that the exposure of a lying-in woman to the influence of the fomites or other impalpable or material agencies, derived from erysipelas, typhus, hospital gangrene, scarlet fever, small pox, decomposing animal bodies, especially of persons who have died from any form of fever or inflammatory disorder, and other conditions, conveyed to the lying-in woman by the breath of those about her, or the hands and clothes of her attendants, will produce the disease. When the disease prevails in lying-in hospitals, and acquires a certain virulence, it is apt to prevail epidemically, all the lying-in women exposed to the danger becoming affected; and it is believed to prevail in certain districts and seasons, as an epidemic, apart from all influences of contagion and infection.

The prevention of Sporadic cases belongs in part to the general sanitary questions of dwellings for the poor, draining, ventilation, water-supply, and other matters bearing upon the physical condition of the poorer classes of society; and in part to the attention given to cleanliness, the removal of morbid secretious, and other removable causes of disease, in individual cases. As regards lying-in hospitals, it may be questioned whether they have not proved in many respects an injury, instead of a blessing, to those classes they are intended to relieve, and cer-

tainly, I believe, the feeling of the profession is against any extension of the system of lying-in hospitals. They have demonstrated more emphatically than the facts derived from any other source, that puerperal fever is a contagious and preventible disease. A large amount of the mortality from puerperal fever in large cities has occurred within their walls, and from these institutions it necessarily spreads by medical attendants, nurses, patients, and wet-nurses, to other lying-in women. It is evidently unsafe to congregate lying-in women, in any numbers, in the same building. This is the opinion of Dr. Robert Lee. Dr. Simpson has suggested that lying-in charities should consist of detached buildings rather than of hospitals. Ramsbotham declares himself very emphatically against such institutions, and relates that he once refused a valuable appointment in a proposed new charity of this kind. Drs. Lever and Oldham, when the managers of the splendid income of Guy's proposed to erect a new lying-in hospital, exerted their influence against the origination of such a building. Dr. Copland, who for a long time held an appointment as consulting physician to a lying-in hospital, has given a very emphatic opinion respecting the dangers arising from such institutions. There can be little doubt that the suppression of such hospitals would effect a great saving of human life. No care that ever yet has been devoted, can render the mortality in lying-in hospitals in this country, as favorable as the mortality amongst women confined under the most miserable circumstances at their own homes. Meantime, while lying-in hospitals exist, every care should be given to the ventilation of the wards, the allotment of sufficient space to each patient, and the removal of infected patients to separate wards. It has always been the laudable practice, when puerperal fever has prevailed in lying in hospitals, to shut up infected wards, or to close the institutions altogether. What applies to lying-in hospitals, holds good also with respect to the admission of lying-in patients into the wards of general hospitals.

As regards the care of individual childbed women with reference to the sporadic development of metria, much depends upon the nurse. It is in this respect of the highest importance to have trained and educated nurses, understanding the subjects of diet and ventilation, and made well aware of the importance of cleanliness in all that relates to the management of the

lochial and lacteal secretions. I have already referred to the relation of questions of drainage, the construction of dwellings, and other sanitary matters, to the sporadic production of puerperal fever. In this particular concern our profession is at present very much at the mercy of the public. We are not responsible for the great causes of zymotic disease which exist. With the improvements in our sanitary arrangements, puerperal fever will diminish like other diseases of the same class, or become far more easy of prevention.

When epidemic puerperal fever, or the conditions which give rise to it, exist, what can be done to prevent its development or extension? It has been proposed to keep lying-in women in suspicious circumstances, constantly under the influence of quinine, iron, or some other tonic or antiseptic remedy. But the extent of the powers of such medicines are matters rather of reasonable supposition or belief than of actual proof. I should be disposed to place great confidence from what I have seen of its use, in the chlorate of potash as a prophylactic against puerperal fever, in doses of from five to ten grains three times a day. This drug appears to act by liberating in the economy, the oxygen and chlorine it contains.

In considering the spread of purperal fever by Infection and Contagion, the different circumstances under which the poisonous element is circulated must be borne in mind.

It is obvious that women who are in the latter months of pregnancy, and in whom delivery may be expected from day to day, should be secluded as far as possible from proximity to patients suffering from the exanthemata, erysipelas, hospital gangrene, searlet fever, putrid sore-throat, or any other disorder the miasma of which admits of conversion into the puerperal poison, and that any indirect communication by third parties or in any other way should be prevented to the greatest practicable extent. The relations of Medical Men, Students, Midwives. and Monthly Nurses, to the propagation of Puerperal Fever, require separate notice.

According to the present arrangements of our profession, there is no class of medical men exempt from the risk of conveying to pnerperal patients, infectious or contagious matters from disorders capable of producing metria. Those who practice midwifery as a specialty, may meet with sporadic cases of

puerperal fever capable of furnishing infectious matter, or they may be called to see cases of puerperal fever in consultation. Men holding hospital or dispensary appointments are also obliged to see the puerperal patients of such institutions. Surgeons in general practice, necessarily attend cases of infectious disease, convertable into metria, when conveyed to the lying-in woman. Surgeons holding hospital appointments, who perform operations and practice midwifery, as Dr. Simpson has forcibly pointed out, have to deal with lying-in women, and also with cases of an infectious and contagious nature, such as philebitis or erysipelas. If students attend midwifery cases while their anatomical and surgical education is going on-and it is difficult to seclude themselves entirely from such subjects-they unavoidably expose patients to the risks arising from their dissections; from their attendance upon medical and surgical hospital practice; and also their pathological studies. Midwives frequently convey the disease from one patient to another, and the same may be said of Monthly Nurscs.

Since it is impossible, or next to impossible, considering the frequency of infectious or contagious diseases, for any man in practice to escape entirely from the risks of infecting or inoculating lying-in women, especially when such patients are under circumstances favorable to infection or inoculation, the question arises as to the best mode of rendering these risks nugatory or of destroying them altogether. In the Lecture on Puerperal Fever I have given the evidences which appear to me to prove that the blood and the breath of the practitioner is a very common medium of infection. This would point to the propriety of neither going nearer to, nor remaining longer in, the vicinity of a patient suffering from puerperal fever, or any convertible infectious disease, than is necessary; and of not approaching so near to a recently delivered woman as to expose her to danger from the breath. Where the presence of infection is very evident, the propriety of changing the clothes is obvious, and generally practised; and many expose their clothes to the fumes of chlorine after exposure to risk. After touching any wound or purulent surface, the hands should be not merely washed, but washed in a solution of chloride of lime, or some other disinfecting fluid. It would only result in good and in confidence on the part of the patient and practitioner, were the practice common, if the hands were habitually washed in a solution of chloride of lime, before attending a labor, and, in suspicious circumstances, before and after every vaginal examination. The fingers of the practitioner are evidently a fertile source of contagion. Dr. Simpson compares the fingers of an acconcheur who has been touching wounds or pathological specimens to the armed points used in vaccination. The small amount of matter conveyed by the hand, which is capable of producing disease, is almost ineredible. A practitioner has been known to have an outbreak of puerperal fever in his practice—to have freed himself by absence from home so as to have attended cases without risk-and then to have had a second outbreak after wearing a pair of gloves which he had worn during the first attack. It has been recommended that gloves should not be worn at all by acconelieurs, and certainly, considering the interests at stake, no preeautions can be too minute under eirenmstances of suspicion. Keeping the nails closely cut is another point worthy of attention. The condition of the utero-vaginal canal is, it must be remembered, the most favorable which can be conceived, for inoculation. The mucous surfaces are in a state of high excitement; abrasions and slight lacerations of the vagina and perinæum are extremely common. The removal of epithelium from the surface of the os uteri, at the time of labor, is almost universal, and it is to this part, of course, that the finger of the aeeoucheur is necessarily directed during his examinations. With respect to the attendance of students on cases of midwifery, some time ought to be set apart for their attendance upon midwifery cases, during which they should neither dissect nor attend the wards of the hospital, or the deadhouse. The dangers arising from the attendance of students upon lying in women, when they are dissecting and attending autopsies, is exhibited in the most startling form by the statistics of the Great Vienna Lying-in Hospital. In this institution, in the six years from 1840 to 1846, 22,120 women were delivered. Of these, 2,260 died; the mortality being in the enormous ratio of 1 in every 10. The mortality has since been reduced to 1 in 74, and the reduction has dated from the time when Dr. Semelweiss enforced the regulation, that every student should, before and after each vaginal examination, wash his hands in a solution of chloride of lime and also interdieted the students from touching dead bodies.

As regards the deaths arising from accidents and other disorders during childbirth, there is also much hope of diminishing the amount of mortality. Everything points to the importance of only allowing qualified persons or advanced students to attend women in parturition. In no other circumstance or operation whatever, where the mortality was 1 in 189, would ignorant women or unqualified persons be allowed to practise. The common feeling has been, that any one might safely attend a woman in middle life who had already borne children; but the tables I have given show that rather more than 800 women perish in England yearly from the various accidents and diseases of childbirth, between the ages of thirty-five and forty-five. The attention and anxiety of practitioners are commonly given to first labors; but statistics show unerringly that the greatest and most fatal risks from accidents, etc., attend the delivery of women who are mothers of families, and above the age of thirty-five. is in these women that death occurs most frequently from hæmorrhages, puerperal mania, rupture of the uterus, exhaustion, etc., while they are comparatively exempt from the dangers of puerperal fever. On the other hand, our care in guarding young lying-in women from their greater risk of taking metria should be most unceasing. The proportion of deaths from hæmorrhage are very large. As far as the statistics from which I have quoted are available, the deaths from flooding alone are more than 10 per cent. of the total deaths from childbirth. Now, there can be no doubt that, with the appliances and means we at present possess, this large item of childbed mortality might, in the hands of educated obstetricians, be greatly diminished, and that death from flooding ought rarely to occur. Another large reduction might be made by substituting the induction of premature labor, or turning, or the forceps, but especially premature labor, for craniotomy. By the employment of turning or the forceps, the mortality is considerably diminished; but by the induction of premature labor the risk of death to the mother from the performance of craniotomy becomes very slight indeed. We have seen that in almost all cases the induction of abortion or premature labor might, by the exercise of foresight, be substituted for craniotomy. Taking the annual number of deliveries-the proportion of craniotomy cases—and the scale of mortality from this operation, we have the data for an approximative estimate of the maternal mortality caused by craniotomy in England. This would amount to nearly 400 deaths per annum from this cause alone, all or nearly all of which might undoubtedly be averted.

[Still another accident of childbirth, which has till lately been a frequent cause of a prolonged life of suffering, alike disgusting

to self and friends, and finally ending in a miserable death from its wasting and irritating influences, is vesico and recto-vaginal fistulas. These are sometimes complicated with ruptures of the uterus and perinæum.

In one case that came under my care, the child, with a breech position, was nearly delivered, when it suddenly retreated, and was found out of the uterus in the peritoneal cavity. On subsequent recovery, she was found to have had a rupture extending through the neck of the uterus in a longitudinal direction, tearing through the vesico-vaginal septum and leaving a permanent

fistula there, which was subsequently entirely cured by Dr. Sims, at the Women's Hospital, N. Y.

By his permission, I am enabled to present here several engravings showing various forms of this disease; according to the belief of most of the accomplished accoucheurs of the present day, these accidents might in very many cases be avoided by the timely use of instruments, by the induction of premature labor in cases of deformity, and thus another reduction in the mortality and miseries attending childbirth may be here also effected. They are mostly the effects of sloughs, resulting from prolonged pressure of the head upon the soft parts. Examination of the cuts here annexed will show most incontestably, how impossible it is for forceps to effect any laceration such as here delineated; for unless used with the intent to bruise or lacerate the soft parts, they could not be made to touch the locality where the injury us seen to be effected.]

In concluding the present course of Lectures, I cannot but look forward to the time when the present mortality from child-bear-

ing will be greatly lessened. This is a subject in which we of the present day must bear our part, and it is consolatory to know that every succeeding generation of students and practitioners will come to the work with added means of science and experience, until at length we may hope that no unnecessary mortality shall take place in parturition. Women, it has been remarked, were ordained to bring forth children "in sorrow," but certainly not in death.

INDEX.

Abortion, 177; frequency of, 178; causes of, 179; methods of producing, 180; by oxytoxies, 181; caused by syphilis, 181, 188; by albuminuria, 182; by fissures of the cervix uteri, 183, 204; an exfoliation, 184; from fatty degeneration of the placenta, 185; from apoplexy of placenta, 187; congestion of placenta, 189; disease of cord, 191; symptoms of, 192; treatment of, 193; periodie, 194; instruments to assist in, 196; condition of ovum in, 199; me-ehanism of, 199; dangers of, 200; hæ-morrhages from, treated by avulsion of the placenta, 531; recovery from, 200; tetanus in, 200; prevention of, 202; cause of, when repeated, 205.

Abdomen, size and form of, 133; dark streak on median line of, 135; pendulous, bandage for, 161; cause of fœtus being retained in the uterus over the

term, 164.

Abdominal pregnancy, 244. Abrasion of os uteri, 174. Abscess, mammary, 380.

Acetaliulum, 284.

Accoucheur, first male, 27; in New York, 27; first duty of, 527.

Anæmia of pregnancy, 174.

After-pains, 355, 595; how relieved, 377; by chloroform, 733.

Albuminuria, 154; effects of, 155; treatment of, 156; cause of abortion, 182; a cause of ædema of labia, 516: cause of convulsions, 616, 619; treatment of, 621.

Allantois, 108. Amnion, 105.

Anatomy of the pelvis, ante Christum, 15, 294; of fætal head, 309.

Anæsthetics, 26; first used in America, 26; religious objections to, 26; in abortion, 198. See Chloroform, 732. Anchylosis of hip joint, 503.

Animalcules, 35. Annulata, 40.

Anteversion of gravid uterus, 162, 535. Apoplexy of placenta, 187; ovum, 190; cord, 191; mother, 654.

Area germinativa, 103. " pellucida, 103. vasculosa, 103.

Areola, 60; change in, a sign of pregnancy, 132; pigment in, 133.

Arms, delivery of in breech eases, 404; treatment of, 411; presentation of, 417; diagnosis of, 419; turning for, 426; statisties of, 427; misplacement of in labor, 554.

Arteritis, 652.

Arterial obstruction the cause of phlegmasia dolens, 652; symptoms of, 653; treatment of, 653; a cause of sudden death, 654.

Articulations of pelvis, 289.

Artificial delivery for convulsions, 618. Ascaris lumbricoides, 36; a cause of abortion, 179.

Ascites of fœtus, 549; of mother, 134, 154.

Asphyxia, eongenital, 371. Atresia of vagina, 512.

Avulsion of placenta, 531.

Axes of pelvis, 302; inlet and outlet, 305.

Auscultation, utero-fætal, 141; first applied to diagnosis of pregnancy, 25; during labor, 140, 365; little value in determining breech presentations, 409.

Ballottement, 144; method of, 145; difficulties of, 146; spurious, 146.

Bandage, abdominal in pregnancy, 161; after labor, 359.
Barrenness, biblical history, 14.

Bassin petit, 294.

Births, plural, number of 18; eross, 417. Bladder, affected by displacements of the uterus, 162; distended, eausing retroversion of the uterus, 164; after labor, 382; fistulas of, 697, 748.

Blastoderm, 102.

Blisters in convulsions, 622. Blood, its character in pregnant women, 147.

Bloodvessels of uterus, 69.

Bloodletting in convulsions, 611; puerperal fever, 646.

Rody of uterus, 62.

Bones of pelvis, 284; analysis of diseased and healthy, 484.

Bowels, constipation of, after labor, 382. Breasts, treatment of, 379.

Breech presentations, 400; statistics of, 416. See Pelvis presentations.

Bruit placentaire, 140.

Brow, presentation of, 383.

Bulk, a sign of pregnancy, 134; of child a cause of its death, 317.

C.

Cæsariah section, date of, 17; morality of, debated, 23; the operation, 703; statistics of, 704; dangers of, 705; repetition of, 706; when justifiable, 706; when necessary, 708; method of, 710; after dressing of wound, 711; safer in country than in cities, 711.

Calculus in the bladder, 515.

Cancer of os and cervix uteri, 511; of bones of pelvis, 504.

Caput succedaneum, 326.

Carunculæ myrtiformes, 54.

Catamenia, 85; its character, 89; causes, 90; source, 90; state of the utcrus during, 94; abnormal, 95; suspension of, 129.

Catheter, 382; Sim's self-retaining, 383; use of, 51; difficulties in using, 52.

Caul, 372.

Cephalalgia in pregnancy, 157. Cephalotribe invented, 19; use, 77.

Cerebral irritation in pregnancy, 15%.

Cervix uteri, 62; changes of, in pregnancy, 137; Stolz's view of, 138; fissures of, the cause of abortion, 183, 205; mucous plug of, 237; dilatation of, 267; operations on, sec Os uteri,

Chair, accoucheur's, 13.

Change of life, 86.

Child, care of, after birth, 383; care of, after face presentations, 399; after breech do., 415.

Chloroform, anæsthetics discovered, 26; first used in U.S., 26; use of, for disorders of pregnancy, 151; in abortion, 198; in rigidity of os uteri, 519; in puerperal mania, 601; in convulsions, 615, 621; in turning, 676; with forceps, 694; after pains, 733; tests 734; in ordinary labor, 734; peri-

næum relaxed by, 733; suspending utcrine pains, 735.

Cholera in pregnancy, 175.

Chorion, 114; villi of, 115. Chlamydomonas, 37, 38.

Clitoris, 49; dislocated, 49.

Coccyx, mobility of, affecting diameters of pelvis, 297; morbid states of, 505. Coitus, 56, 58; time of labor from a sin-

gle one, 211; influencing several generations, 45.

Cold in convulsions, 614, 622.

Colostrum, 378.

Colpeurynter, 25.

Colpeurysis, for retroversion of uterus, 166; for producing abortion, 180; for hæmorrhage of placenta prævia, 432; in rigidity of os utcri, 527; for convulsions, 622.

Commissure, superior, 48; inferior, 49. Conception, 97; date of, after coitus, 212. Congestion of placenta, 189; uterine, the

cause of abortion, 204.

Convulsions, puerperal, 605; centric, 605; excentric, 607; physical, 606; uræmic, 620; physical, 606; from irritation of uterine passages, 607; irritation of os uteri, 608; from dead fœtus, 608; irritation of vagina, 609; of intra cranial excitor nerves, 609; of viscera, 610; of mammæ, 610; from albuminuria, 616, 619; treatment of, 611; by bloodletting, 611; by tartar emetic, 611; by tracheotomy, 613; by sprinkling with water, 614; by cold, 614; by opium, 615; by chloroform, 615, 621; regulation of emotion, 615; by cupping the head, 616; by cathartics, 617; by enemas, 618; by artificial delivery, 618; treatment of uræmic convulsions. 621; blisters, 622; effects on child, 623.

Cord, umbilical, 124; cause of convolutions in, 126; morbid enlargement of, 191; diseases of, and knots upon, 191; hæmorrhage from, 384; apoplexy of, 191; how to tie, and when divide, 368; management of, 384; in brecch cases, 413.

Corpus luteum, 82. Crania bifida, 549.

Craniotomy first taught, 16; when necessary, 712; limitations of, 713; statistics of, 713; difficulties of, 715; instruments for, 715; how to perforate, 719; forceps made, 25, 720; time to operate, 729; monthline, for the constant of the contract of the operate, 729; mortality of, 747.

Crochet, date of, 17, 717; new guarded, 722; how to use, 721.

Cross-births, frequency of, 417; with placenta prævia, 448.

Cul-de-Sac, Douglass', 75. Cumulus proligerus, 77. Cysticercus, 35. Cystocele impeding labor, 515.

Deafness from labor, 18. Death in labor, first recorded, 13; from hæmorrhage during, or after labor, 560; sudden cause of, 654; from fatty degeneration of the heart, 655; from air in the veins, 654; coagula in the heart, 654; apoplexy, 654; statistics, Decapitation, 728.

Decidua, when discovered, 22; vera, reflexa, 109; Goodsir's views, 111; Coste's views, 112; Lee's views, 113; serotina, 113.

Decision of attendant imperative, 30, 435.

Decomposition, effects of, 727.

Delivery, artificial, for convulsions, 618; premature, 657.

Diet of the puerperal woman, 381. Digestive organs, derangement of, 130. Disorders of pregnancy, 162.

Displacements of the gravid uterus, 162. Distortion of pelvis, 471. See Pelvis. Douche, 25; in rigidity of os, 520, 663; in flooding, 561; in convulsions, 622;

in premature labor, 520.

Draught, 355.

Dropsy, ovarian, simulating pregnancy, 134; in pregnancy, 154. Dysenteries in pregnancy, 175. Dysmenorrhaa, membranous, 95, 223. Dystocia, 545.

E.

Ectopy, 553. See Craniotomy. Embriotomy. Embryo, removal of, 197. Embryulcia, 727. Emotion, 262. Entozoa, 34; spontaneous generation of, Entozoon, 36.

 $E\rho ilepsy$ in pregnancy, 175.

Ergot, virtues of, discovered, 25; in abortion, 181, 196, 208; in funis presentations, 467; in tardy labor, 541. Eructations indicative of pregnancy, 130. Evolution, spontaneous, first records,

13; how effected, 422.

Examination digital per vaginam, when to be made, 357; method of, 360; in face presentations care required, 399; with speculum, 172. Exomphalos, 553.

Exostosis, 491. Expulsion, spontaneous, 423. Extra-uterine gestation, 234, 239.

Face presentations, 386; peculiarities of, 387; cause of, 388; frequency of, 389; first position of, 389; mechanism of, 390; flexion in, 391; termination of, 392; second position of, 392; varieties of, 393; diagnosis of, 394; management of, 395; Baudelocque's operation in, 397; treatment of, 398; care of child after, 399.

Faces, accumulated, resembling pregnancy, 134; impeding labor, 515.

Fallopian tubes, 69.

Fatty degeneration of placenta, 661; cause of abortion, 185; of heart, 655; of uterus after labor, 256.

Fecundation, male elements of, 98; methods of, 99; twin, 234.
Fenestra of forceps, 686.

Fever, milk, 381; puerperal, childbed, 624; preventive medicine, 624; a distinct poison, 625; sporadic, 625; epidemic, endemic, 626; contagious or infectious, 627; identical with other puerperal diseases, 630; communicated by breath, 631; by nurses and physicians, 631, 743; from dissections, 633, 745; secondary symptoms of, 634; symptoms, 635; hydrosis in, 635; morbid changes of, 636; a fever with-out lesion, 637; Dr. Clark's views, 637; arising from injury, 638; from pus in uterine sinuses, 637; peritonitis in, 639; pulse in, 640; suppuration in, 641; pyæmic abscesses, 641; uterine phlebitis, 642; lochia in, 643; prevention of, 645; treatment of, 645; prophylactic treatment of, 646; 744; by calomel, 646; by antiphlogistics, 646; by venesection, 646; by opium, 647; by veratrum viride, 647.

Fibre, muscular, of uterus, 252. Fillet, 20.

Fibrous tumors in connexion with labor, 513, 516. Fistulas, vessico-vaginal and recto-vagi-

nal, caused by forceps, 697; sequelæ of labor, 748. Flexion of head, 324; the normal condi-

tion of the fœtus, 387. Flooding. See Hæmorrhage. Fætal head, 309. Sce Head.

Fætation-super, 233.

Fætus, first motions of, 139; pulsation of heart, 140; maturity of, the car of labor, 215; flattened by pre228; position of, in utero, 21, 270; cause of position, 274; statistics of, 273; ovoid shape of, in utero, 272; voluntary movements of, in utero, 275; hydrocephalic, 278, 545; change of its position, 282; spiral motion of, 344; position dependent on bony surfaces, 345; at what age viable, 659.

Follicles Graafian, 72, 76; development of, 97.

Fontanelle, 311, 313; characteristics of, 314.

Food, yolk, 78; for child, 385; for parturient women, 374.

Footling, 18; presentations, 411.

Foreeps invented, 20; improved, 25; craniotomy, 25; with rigidity of os uteri, 528; through an undilated os, 528: use of, 684; shape, 686; when to be used, 687; conditions for short and straight, 687; rules for use, 688; pelvic curve, 688; cranial curve, 686; double-curved, 689; long, 690, 695; care required, 696; preliminaries to use of, 690; position of woman, 690; position of feetal head, 691; method of introduction, 692; care in locking, 693; delivery with, 694; chloroform with, 694; in occipito posterior positions, 695; selection of, 698; Rad-ford's, 689; Smellie's, 685; Hodge's, Davis', 698; Elliot's, 699; Ritzen's, 701; for traction, 698; for compression, 700; results, not rapidity, desired, 702; for craniotomy, 720; new, 725; Dr. Thomas', 726.

Fossa navicularis, 49.

Fourchette, 49. Frenulum, 49.

Fumigations in difficult labor, 16.

Fundus utcri, 62.

Funis umbilicalis, 124; convolutions of, 126; disease of, the cause of abortion, 191; knots upon, 191; management of, 384; hæmorrhage from, 384; in breech cases, 413; presentations of, 458; causes of, 458; statistics of, 459; symptoms of, 460; mortality of, 461; dangers of, 462; treatment of, 462; reposition of cord, 463; instruments for, 464; safety in, while pulsation lasts, 463; operations for, 466; turning for, 466; ergot for, 467; vectis and forceps in, 467; stimulating measures, 467; postural treatment, 468; Dr. Thomas' rules, 469.

G.

inglion, hypogastric, 259. iralgia in pregnancy, 152.

Generation, spontaneous, 33; cquivocal, 33; fissiparous, 37; by segmentation, 37; genmiparous, 39; conjugate, 41; hermaphrodite, 42; alternate, 43; sexual, 43; virgin, 44; oviparous, 45; ovo-viviparous, 47; organs of, 48.

Germ-cells, 43.

Germ-yolk, 78; mass, 101.

Germinal vesicle, 78; spot, 78; membrane, 102.

Gestation, length of, 210; comparative, 213; extra-uterine, 234, 239; prolonged, 18, 215.

Gland, vulvo-vaginal, 54; Huguier's, 54.

Goitre in pregnancy, 153.

Graafian vesicles, 72, 76.

Graafian follicle, development of, in human female, 97.

Gravitation, physical, of child, 273.

Gregarinæ, 36.

Hæmorrhage before labor, 208; in abortion, 208, 565; from detached placenta, 209; character of, when from fundus uteri, 269; from hydatids, 229; from placenta prævia, 209, 430; from moles, 229; after the birth of child, 556, 563; source of, 556; symptoms of, 557; with uterine contractions, 558; from loss of decidua, 559; effects of, 559; treatment of, 560; puerperal pallor from, 560; prevention of, 560; cold douche in, 561; transfusion in, 562; nature in, 564; with adherent placenta, 566; tampon in, 568; at full term, 570; from irregular contraction, 571; hand in uterus for, 572; compression of the aorta, 573; stimulants in, 573; after symptoms of, 574. Hæmorrhoids. 158.

Hemorrhoids, 158.

Head, feetal, 309; diameters of, 310, 312; measurements of, 311; diversity of size in males and females, 315; size of, dependent upon civilization; deformed by bandages, 319; presentation of occiput, 321; positions of, 323; first position, 324; mechanism of, 325; flexion of, 324; obliquity of, 326; rotation of, 326; re-rotation of, 327; what is meant by the presenting part, 327; extension of, 327; restitution of, 327; second position of, 328; third position, 331; first and third positions contrasted, 333; fourth position, 334; variations of the four positions, 335; possibility of its compression in different parts, 680.

Head, size of, of Webster, Cuvier, and Dupuytren, 317.

Headache in pregnancy, 147, 157.

Heart, pulsations of feetal, 140; double, 142; imitative sound, 143; diseases of mothers aggravated by pregnancy, 175; fatty degeneration of, 655; clot in, cause of sudden death, 654. Heart-burn indicative of pregnancy, 130.

Hernia in labia, 161.

Hippocrates' obstetrical writings, 15.

Horns of uterus, 252.

Hourglass contraction, 544; cause of,

Hospitals, lying-in, propriety of, 742. Hydatids resembling pregnancy, 18, 134; character of, 224; symptoms of,

230. Hydrocyanic acid in pregnancy, 151. Hydrocephalus of fœtus, 278; producing rupture of uterus, 547.

Hydrosis, 635. Hymen, 53; cartilaginous impeding labor, 516.

Hysterotomy, date of, 16. See Casarian section.

Icterus of newly born child, 384. Ilium, 284. Impregnation, methods of, 46, 99. Infant, management of new-born, 383; food of, 385. Infanticide, alleged, 544. Infusoria, 34; spontaneous generation of, 35. Innominatum os, 284. Insane, puerperally, case of, 603. Insanity, pucrperal, 596.

K.

Kiestien, 146. Kreasote in disorders of pregnancy, 151.

L.

Labia majora, pudendi, 48; minora, 50; ædema of, impeding labor, 516; varicose, 516; tumors of, 516.

Labor, early views of its mechanism, 21, 24; cause of, 210; ovarian theory, 216; missed, 246; mechanism of, 321; stages of, 346; preliminary stage, 346; stage of dilatation, 347; duties during, 360; stage of propulsion, 348; duties during, 363; expiratory-reflex, actions of, 350; expiratory, voluntary actions of, 311; stage of expulsion, 352; close of, 356; management of, natural, 357; matters required by accoucheur, 357; length of, 362; shock of, 374; obstructed, 505; from rigidity of os, 506, 518;

tardy, 533; precipitate, 533; from fibrous tumors, 510; from carcinoma of os and cervix, 511; from contraction and rigidity of vagina, 511; from contraction and rigidity of perinæum, 517; from vaginal polypi, 512; ovarian tumors, 513; recto and vesicoccle, 515; fœcal collections, 515; stone in the bladder, 515; swelling of soft parts, 516; cartilaginous hymen, 516; by œdema, or tumors of labia, 516; thrombus, 517; misplacement of arm,

Turdy, from general debility, 534; from position of the uterus, 535; from double uterus, 536; from uterine disease, 537; from hydroce-phalus, 547; from ascites of child, 549; from rheumatism, gout, and neuralgia of uterus, 537; from short cord, 554; from rigidity of the membranes, 554; from uterine inertia, 538; from plural births, 554; from pulmonary, cardiac, or dropsi-cal affection of mother, 539; treat-ment of, 541; oxytoxics in, 541. Precipitate, 542; causes of, 543; treat-

ment of, 544; effects of, 544.

Difficult, from hydrocephalus, 555; mechanism of, 546; treatment of, 549; from twin monsters, 551.

Premature, 23; treatment of, 231, 657; induction of, 657; dangers of, 658; at what age of fœtus, 659, 664; morality of, 659; when necessary for mother's safety, 660; for child's preservation, 661; how produced, 663; by puncturing membranes, 663; by electricity, 663; cupping glasses to mammæ, 663; by sponge tent, 520; by water douche, 520; statistics of, 666; instrumental.

Lactation prolonged, 14; excessive, 381, 603.

Laminæ dorsales, 103.

Laminæ ventrales, 104.

Leucorrhæa in pregnancy, 170. Lever, 19. See Vectis.

Ligaments of ovaries, 71; of uterus, 73; of pelvis, 289.

Linea Albicantes, 133; ilio-pectinea,

Liquor amnii, 106; draining off, 364. Lochia, 375; resemblance to menstrual flux, 376; offensive in puerperal fever,

 $Longings,\ 152.$ Loxodes Bursaria, 38. Lymphatics of the breast, 61; of ut

69; inflammation, 651.

Macula germinativa, 78.

Malaeosteon, 472.

Males the result of long gestation, 215; parturient aceident more frequent than with females, 317.

Malpresentations, influence of, on mother

and child, 416.

Mammæ, 58; anatomy of, 59; arterics of, 60; lymphatics of, 61; swelling and pain of, indicating pregnancy, 131; after labor, 378; abscess of, 380; irritation of producing abortion, 179, 663.

Mammitis in early prognancy, 154.

Man, what he is, 106; first midwife, 27. Mania, puerperal, a cause of, 381, 596; eauses of, 597; predisposition to, 598; symptoms of, 600; leeches and venesection in treatment of, 600; ehloroform in, 601; hospitals, 602; difference from other forms of insanity, 502; produced by undue lactation, 603.

Marasmus in pregnancy, 151.

Mastodynia, 132.

Meatus urinarius, 59.

Meconium in face presentations, 395; in brecch, 410.

Medusce, 40.

Mechanism of labor, 21, 24.

Membrana granulosa, 77; decidua, 109. Membranes, 108, 120; double, 124; dysmenorrhœal, 95, 123; earneous degeneration of, 225; rupture of, 348; how and when, 363, 544; rigidity of. 544; remaining after delivery, 199; puneturing in placenta prævia, 433; puncturing in convulsions, 618.

Menstruation, 81, 85; influence of, 89; cause of, 90; physiology of, 91; vicarious, 96; state of uterus during, 94; post-mortem appearances during, 94; in pregnancy, 171; with an inverted

uterus, 583.

Micturition, to be attended to, of mother, 583; in convulsion, 618; of child, 383.

Midwifery, history of, 11.
Midwives instituted, 12; character of their services, 13, 28; first taught, 22. Milk, "the draught" of, 59; a sign of pregnancy, 133; after delivery, 378;

fever, 381.

Misdach, 18.

Mishnah, on Cæsarean section, 17.

Missed labor, 246.

Molar pregnancy, symptoms of, 229; hydatid, 229; hæmorrhage from, 229; ratment of, 231.

223.

Mollities ossium in pregnancy, 176; eharacter of, 483.

Monas erepusculus, 34.

Monstrosities, cause of, 105; in pregnaney, 171; cause of difficult labor, 551; instrumental assistance, 552.

Mons veneris, 48.

Morning sickness, 131. Movement of child, 139; peristaltic uterine, 140.

Muscles of uterus, 252.

N.

Nature in brecch cases, 411; in placenta prævia, 431; in hæmorrhage, 564.

Nausea indicative of pregnancy, 130.

Negro fœtal seull, 320.

Nerves, hypogastrie, ganglion and plexus, 257; uterine, direct action of, 264; peristaltic, 265.

Neuralgia, facial, of pregnancy, 153; of utcrus, tardy labor from, 537.

Nipple, 59; tenderness, a sign of pregnancy, 132; abraded and cracked, treatment of, 380; relieved by ehloroform, 734.

Nymphæ, 50.

0.

Occiput, 311; presentation of, 321. Œdema gravidarum, 154, 159; of labia from albuminuria, 516.

Offspring of different colors, 234.

Os innominatum, 284. Osteo sarcoma, 491.

Os uteri, tincæ, 62; papillæ of, 66; division in rigidity of, 25; tamponing, 25; abrasions of, in pregnancy, 170; fissures of, the cause of abortion, 183; dilatation of, 267; time required for, 362; when difficult, 353; obstructed labor from rigidity of, 518; spasmodic rigidity of, 518; obstinate, 529; fibrous, 529; cartilaginous, 529; treated by douche, 520; by chloro-form, 519, 733; sponge tent, 509, 520; incision of, 507, 521; authorities upon, 524; scarification of for rigidity, 526; value of its integrity, 527; use of forceps through, when undilated, 528; irritation, 531; delivery of placenta through when rigid, 531; dilated by colpeurysis, 527; laceration of, 508, 523; entire occlusion of, 507; adhesion of, 508; carcinoma of, 511; turning through when undilated, 674. Ova, 35; impregnated at different periods, 234.

Ovaria, 71; experiments on, 219.

757 INDEX.

Ovarian disease, simulating pregnancy, 134; pregnancy, 239, 242. Ovorio-tubal pregnancy, 239.

Ovisac, 79. Oviposition, 80.

Ovule, 77; dehiscence of, 42.

Ovum, early development of, 97, 104; microscopieal anatomy of, 102; carneous degeneration of, 225; hydatiginous, 221; blighted, 228.

Oxytoxics, causing abortion, 181; in

tardy labor, 541.

P.

Pains of labor, Bible history of, 14; "taking a pain," 359; pulling, 367; after labor, 355, 595; how relieved, 377; by chloroform, 733; in mammæ, 147. Pallor of pregnancy, 174; from rupture of fallopian tube, 240; puerperal,

from hæmorrhage, 560; danger from,

Palpation, diagnosis by, 661. Paramæcium aurelia, 38.

Parthogenesis, 44.

Parturition difficult with males, 316; comparatively with civilized races, 317; mechanism of, 336; a volumin-

ous motor function, 353.

Pelvis, 284; separate bones of, 284; false and true, 294; diameters, 296; depth of cavity, 296, 306; planes of, 297; brim of, 298; boundaries of, 300; deep and shallow, 307; axis of, 302; direction of, 304; canal of, 305; external measurements of, 307; distortions of, 471; from rachitis, 472; from malacostea, 472; character of, 474; Dr. Duncan's views of, 476; mollities ossium, 483; Naegelé's views, 486; obliquely distorted, 486; diagnosis of, 487; cause of, 489; from exostosis, 491; bony growths within the pelvis, 592, 503; osseous deposits within, 493; æquabiliter justo minor, 493; æquabiliter justo major, 497; abnormally small, 481; abnormally large, 497; equally contracted, 495; infantile, 496; masculine, 496; distorted from increased curvature of the sacrum, 498; from flatness of the sacrum, 498; from fractures, 499; oblique, 590; diagnosis of, 501; aids to labor with distortion of, 502; abnormal sharpness to edge of bone, 504.

Perinaum, 54; how to support, 365; care of, in face presentations, 399; dilatation of, 352; incision of, for rigidity, 517; laceration from preci-

pitate labor, 544; relaxed by chloroform, 733.

Placenta, relative size of muscular fibres 449; action of the arteries, 450; line of safety in, 453; cervical detachment of the placenta, 455; removed by avulsion, 531; through an undilated os, 531; retained, 544; attached, 566; hæmorrhage with, 560; danger from, 507; how removed, 569; encysted, 590; results of, 591; adherent, 566; cause of hour-glass contraction, 594; fatty degeneration of, 661.

Placental delivery, mechanism of, 370.

Placentitis, 189.

Planes of pelvis, 297; of inlet, 298; of

outlet, 301; of strait, 300.

Poison of puerperal fever, 625; conveyed by infection, 626; contagion, 627; by breath, 631; identical with other puerperal diseases, 630; arising from erysipelas, 632; dissecting,

Polyps, 38; reproduction of, 40.

Polypi of uterus, 134; fibrous degene-

ration of after labor, 510.

Positions of feetal head, 323; first, 324; mechanism of, 325; second, 328; third, 331; first and second contrasted, 333; fourth, 334; variations from the four, 335; frequency of, 336; Naegélé's statistics of, 337; left oblique, frequency of, 338; analysis of terminations, 329; diagnosticated by palpation, 661; of woman in labor, 347.

Pregnancy, term of, 14; extra-uterine first recorded, 18; molar, symptoms of, 229; treatment of, 231; signs of, 127; first indications of, 128; local signs of, 129; physical signs of, 130; doubtful signs of, 133; silver streaks in skin, 135; milk a sign of, 133; tubal, 240; bulk a sign of, 134; extra uterine, 18; change of cervix uteri in, 187; Stoltz's view of, 138; fœtal heart in, 143; ballottement in, 145; ovarian, 239, 242; various signs, 147; ovario-tubal, 239; occasional signs, 148; abdominal, 244; headache of, 147, 157; varicose veins of, in, 158; ven-157; varicose veins of, in, 158; ventral, 239; œdema of limbs in, 159, 174; interstitial, 239; incontinence of urine in, 160; hernia into the labia, 161; kiestein in, 146; change of color of hair in, 147; pruritus in, 148; pruritus in, treatment of, 170 color of vagina in, 148; cutans eruption in, 147; disorders of, 149; nausea, 149; vomiting parassums of, 151; longic marasmus of, 151; longi

mammitis of, 153; facial neuralgia of, 153; goitre in, 153; salivation in, 154; dropsics in, 154; albuminuria in, 154; urca retained in, 155; phosphatic diathesis in, 156; cephalalgia in, 157; central irritation in, 157; hæmorrhoids in, 158; strangury in, 160; veins ruptured in, 159; rheumatism of, 169; leucorrhœa in, 170; menstruation in, 171; speculum in, 172; general pallor in, 174; anæmia chlorotic in, 174; abrasion of os uteri in, 174; small-pox in, 175; scarlatina in, 175; cholera in, 175; dysenteries in, 175; syphilis in, 175; phthisis in, 175; epilcpsy in, 175; puerperal convulsions in, 176; mollities ossium in, 176; abdominal bandage in, 161; diagnosis of by auscultation, 143; diagnosis by auscultation first applied, 25; diagnosis of by toucher, 25, 143; duration of, 210; length of, 210; length of influenced by age of parents, 214.

Perforators, 715; Blot's modified, 716.

Periods, monthly, 88. Periodoscope, 220.

Phlebitis uterine, 642.

Phlegmasia dolens, 648; symptoms, 650; causes, 651; treatment, 651; from arterial obstruction, 652; from inflammation of lymphatics, 652; treatment, 653.

Phosphatic diatheses, 156. Phthisis in pregnancy, 175.

Physometra, 134.

Placenta, 109; its formation, 115; anatomy of, 118, 122; maternal and fœtal divisions, 117; pulmonary capillaries, 120; size, 123; of plural births, 124; auscultation of sounds, 141; ancient method of delivery, 16; fatty degeneration, 185; apoplexy of, 187; congestion of, 189; detached, 209; prævia, 209, 428; how detached, 354; extraction of, 369; presentation of, 428; symptoms of, 429; hæmorrhage from, 430; dangers from, 442; nature in, 431; treatment of, 432, 454; ergot in, 455; galvanism in, 455; plugging vagina for, 432; styptics, 457; colpeurysis in, 432; puncturing membranes, 433; turning in, 434; artificial extraction of, 435; source of hæmorrhage in, 436; detaching, Simpson's views of, 436; extraction advised, 439; statistics of, 440; spontaneous xpulsion of, 431, 441; Barnes' theory, it time when hæmorrhage ceases,

limit of placental detachment, r. Barnes' zones, 445, 451; evidences of, 446; location of the rent of membranes, 447; frequency of with cross-births, 448.

Premature delivery. See Labor.

Presentation, first recorded, 12; first classified, 24; of occiput, 321; of face, 386; of pelvis, 400; mechanism of, 401; pelvis, second variety, 404; anomalies of, 406; diagnostics of, 407; peculiarities of, 410; treatment of, 411; funis in, 413; terminations of, 414; statistics of, 416; mal-influence on mother and child, 416; transverse, 417; of arm, 417; of arm, varieties of, 418; of arm, diagnosis of, 419; of arm, cause of, 420; of arm, importance of early diagnosis, 421; of arm, with twins, 421; of arm, aid in, 425; of shoulder, 424; of arm turning in, 426; of arm, statistics of, 427; of funis, 458; of placenta, 428.

Presentation and Position of child diagnosticated by palpation and ausculta-

tion, 661.

Primitive trace, 102.
Prolapsus of uterus during labor, 523.

Proligerous disk, 77.

Promontory of sacrum, 286.

Propagation rapid, 13.

Pruritus vaginæ, 148; treatment of,

169.

Pubis, 284. Puberty, 86.

Puerperal insanity, 596; convulsions, 175, 605; fever, 624; prevention of, 741.

Punctum saliens, 20, 105.
Purkinge, vesicle of, 78.
Purgatives causing abortion, 80.
Pus in veins, 643; in joints, 644.

0

Quackery, 32. Quickening, 139.

Pyæmia, 644.

R.

Rabbinical traditions on obstetrics, 15.
Races, parturient accidents among the civilized and savage, 317.

Rachitis, 472; pathology of, 480; constituent of bones in 483; progress of, 481.

Rachitic consumption, 482. Ready Reckoner, obstetric, 222. Rectocele impeding labor, 515.

Reproduction, diecious, 41; marsupial, 47.

Respiration, fœtal, how established, 372; Dr. Hall's method, 373. Rest after labor, 381.

Rigidity of os uteri, 518; of perinæum, 517; 733. Rotation of head, 326; of breech, 402; of body of fœtus, 403. Rut, 81. Retinacula, 77.

Rheumatism of pregnancy, 169.

Sacrum, 286; promontory of, 285; increased curve of, 498; flatness of 498.

Sage-femmes taught, 22.

Salacine for disorders of pregnancy,

Salivation indicative of pregnancy, 131.

Scarlatina in pregnancy, 175. Screw, the fœtal head a male, 342; the pelvis of mother the female, 343; in deformed pelvis manifested, 484; action of pelvis, 297.

Segmentation, 101.

Semen, 15, 98.

Seven months' child living, 17.

Shoulder presentation, treatment of, 424. Silver streaks in abdomen, 133.

Skeleton, earthy matter of, 485.

Small-pox in pregnancy, 175. Souffle uterine, 141; changes in, 141; value of, 142.

Speculum in pregnancy, 25, 172.

Spermatozoa, 43, 98.

Spermatic filaments, 98.

Spina bifida, 549; prognostics of, 550. Sponge tent, 25; how made, 494; dilatation of os uteri, 494.

Spontaneous evolution, 422. Statistics of breech presentations, 416; of arm presentations, 427; of placenta prævia, 440; of funis presentations, 459; of rupture of uterus, 576; of puerperal fever, 624, 738; of the induction of premature labor, 666; of still-born children, 667; of turning, 669; Cæsarian section, 704; of craniotomy, 713; of the mortality of parturition, 736; of death in labor, 746. Still-born, statistics of causes, sex most

subject to, 316. Stone in bladder impeding labor, 515.

Strangury, 160.

Strongylus gigas, 35.

Suckling undue, 174. Superfætation, 218, 233; theories of,

Sutures, 312; characteristics of, 314; situation in labor, 325, 331,

Symphysis pubis, 292; bony growth on, 492; sacro-iliac, 290; movement of, 292.

Symphysiotomy proposed, 23, 292. Syphilis in pregnancy, 175; the cause of abortion, 181, 188.

Tænia serrata, 36; erassicolis, 36. Tampon, 25. Teratology, 551. Tetanus in abortion, 200.

Thrombus of vulva, 517.

Thyroid gland enlarged in pregnancy,

Tone in fœtus, 279. Toucher proposed, 25, 361.

Tractor, 25, 730; mode of using, 731; in breech eases, 732.

Transverse presentations, 417; causes of, 420; transfusion in flooding, 562.

Trichina spiralis, 35. Triplets causing tardy labor, 554.

Tubes, fallopian, 69.

Tubal pregnancy, 240. Tumors of omentum resembling preg-nancy, 134; fibroid, 134; osteo-sarcomatous, 491; fibrous, 510; of ovary,

513; encysted, puncture of, 517. Turning in arm presentations, 426, 677; in face presentations, 395; in placenta prævia, 434; in prolapse of cord, 466; a serious operation, 669; podalic, 668; with which hand, 670; matters preliminary to, 672; method of introducing hand, 673; cephalic, 674; through undilated os, 674; without the whole hand in uterus, 675; chloroform, with, 676; assisted by instru-ments, 678; tractor with, 732; a form, with, 670, according to the ments, 678; tractor with, 732; a ments, 679; anatomical considerations in, 681; safety in, 683.

Twins, first recorded case of, 13; feeundation, 234; of different colors, 234; position of, in the uterus, 277; arm presentation with, 421; eausing tardy labor, 554.

Umbilicus, 124. See Cord. Umbilical vesicle, 107. Uramia, 619; treatment of, 621. Urea retained in pregnancy, 155. Utcrine plethora, 168. Uterus, 62; nulliparous, 62; multiparous, 67; os, 62, (see Os uteri); appearance of, in pregnancy, 129; cervix, 62; cer vix, fissures of, cause of abortion, 19 fundus, 62, 18; body, 62, 18; cv arteries of, 116; mucous memb

eavity, 65; bieorporeal, 23

pi of, resembling pregnancy, 134; rise of, cause, 136; change in neck in pregnancy, 137; gravid, anteversion of, 162; displacement of, 162; displacement a cause of tardy labor, 535; prolapsus of, 162; procidentia of, 162; retroversion of, 168; retroversion first taught, 22; retroversion, symptoms of, 164; retroversion, treatment of, 165; retroversion, Gariel's instrument for, 166; double, 235; ossified with its contents, 247; rupture from precipitate labor, 344; in pregnancy, 155; gravid, 249; virgin, superficies of, 249; form of, 250; arteries of, 251; lymphatics of, 251; nerves of, 257; muscular structure of, 252; involution and devolution of, 255; fatty degeneration of, 256; whether the nerves increase, 258; motor functions, 261; action of, reflex and peristaltic, 263; action after death, 265; character of muscular action, 267; ovoid shape of, 271; position of twins in, 277; adaptions of shape to its contents, 278; form of, in deformed pelvis, 283; irritability of, after labor, 344; condition of, after labor, 375; deficient action of, 533; double cause of tardy labor, 536; gout, rheumatism, and neuralgia of, a cause of retarded labor, 537; incrtia of, 538; hourglass contraction, 544; inversion, 555; rupture of, 575; rupture of, statistics of, 576; rupture of, with first labors, 577; rupture of, with boys and girls, 578; rupture of, from thinness of walls, 759; rupture of, from injuries, 580; rupture of, from ergot, 579; rupture of, forewarning symptoms of, 580; rupture of, symptoms of its having occurred, 581; rupture of, prevention, 582; rupture of, treatment, 582; inversion of, 585; symptoms of, 586; diagnosis of, 587; from malpractice, 588; treatment of, 588; treatment by reposition, 589; excision of, 589; hour-glass contraction, 592; hour-glass contraction, treatment of, 593; hour-glass contraction, from adherent placenta, 594; irregular contractions, causing after-pains, 595.

V.

Vagina, 55; ostium, 53; functions of, 57; secretions of, 57; tamponing of, 25, 432; color in pregnancy, 148; materials for plugging, 432; cicatrizations of, 511; contraction and rigidity of, 511.

Vagitus, 280. Value of mother and child, relatively,

527.

Vasa omphalo-meseraica, 107. Vectis invented, 19; improved 25, 729. Veins, varicose, 158; ruptured, 161; valves in, 382; inflammation of, 651;

air in, 654. Venesection in convulsions, 611; in puerperal fever, 646; in puerperal mania,

601.

Ventral-pregnancy, 239.

Version, podalic, cephalic, pelvic. Sce Turning, 668.

Vertebra, fifth lumbar, part of false pelvis, 288.

Vesicles, Graafian, 72, 76; germinal, 78; of Purkinge, 78; umbilical, 107. Vesicocele impeding labor, 515.

Vesicula alba, 108.

Vestibule, 50.

Villi, placental anatomy, 119; of chorion, 115.

Volvox globator, 38.

Vomiting, indicative of pregnancy, 130; treatment of, 149.

Vorticella convallaria, 37. Vulva, 55; thrombus of, 517.

w

Weed, 381.

Y.

Yolk, germ, 78; food, 78.

Z.

Zona pellucida, 78, 103.

