

VE 320 – Summer 2012 Introduction to Semiconductor Device

Recombination and Generation

Instructor: Professor Hua Bao

NANO ENERGY LAB

Bao Ve320 S12

1

Generation and Recombination

Generation : creation of conducting electrons and holes

Recombination: elimination of conducting electrons and holes

There are several physical processes where G-R may occur

Bao Ve320 S12

A Little More Details **Direct and Indirect Band Gap** (100) X L (111) T (100) L (111) Γ L (111) r University of Michigan – Shanghai Jiao Tong University Joint Institute Center of Optics and Optoelectronics

Photon Energy and Wave Vector

$$E_{\nu} + E_{photon} = E_{C}$$

$$\hbar k_{\nu} + \hbar k_{photon} = \hbar k_{C}$$

Bao Ve320 S12

$$k_{photon} = \frac{2\pi}{\lambda \text{ in } \mu\text{m}} = \frac{2\pi}{1.21/E_{photon} \text{ in eV}}$$

$$<<\frac{2\pi}{a} = \frac{2\pi}{5 \times 10^{-4} \ \mu \text{m}}$$

Photon has large energy for excitation through bandgap, but its wavevector is negligible compared to size of BZ

Bao Ve320 S12

6

Phonon Energy and Wave Vector

$$\begin{split} E_V + E_{phonon} &= E_C \\ \hbar k_V + \hbar k_{phonon} &= \hbar k_C \end{split}$$

$$k_{phonon} = \frac{2\pi}{\lambda} = \frac{2\pi}{\hbar v_{sound} / E_{phonon}} \approx \frac{2\pi}{a} = \frac{2\pi}{5 \times 10^{-4} \ \mu \text{m}}$$

Phonon has large wavevector comparable to BZ, but negligible energy compared to bandgap

Bao Ve320 S12

7

Optical Generation

Both energy and momentum conservation needs to be satisfied.

The momentum of a photon is small

Direct Bandgap (e.g. GaAs)

Indirect Bandgap (e.g. Si)

University of Michigan – Shanghai Jiao Tong University Joint Institut

Center of Optics and Optoelectronics

Bao Ve320 S12

8

Direct gap

(K conserved)

Indirect gap E_g

R-G Rate

Typically, one mechanism occurs at a much faster rate and is dominant

$$\frac{1}{\tau} = \sum_{i} \frac{1}{\tau_{i}}$$

For Si, typically only needs to consider two R-G processes:

- •R-G via R-G centers (also called indirect thermal R-G).
- •Photongeneration (if light is shined on the sample).

Bao Ve320 S12

15

Equilibrium, Transient, Steady-State

At equilibrium, detailed balance must be satisfied.

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Photo Generation

- Intensity of Light in the Semiconductor: $I = I_0 e^{-\alpha(\lambda)x}$
- · Generation is one-to-one with Light Absorption
- Generation Rate: $G_L(x,\lambda) = G_{L0}e^{-\alpha x}$

$$\frac{\partial n}{\partial t}|_{light} = \frac{\partial n}{\partial t}|_{light} = G_L(x,\lambda)$$

University of Michigan – Shanghai Jiao Tong University Joint Institute Center of Optics and Optoelectronics

Bao Ve320 S12

17

Low-level Injection

carrier concentrations in the material under analysis when equilibrium conditions prevail.

carrier concentrations in the material under arbitrary conditions.

deviations in the carrier concentrations from their equilibrium values. Δn and Δp can be both positive and negative, where a positive deviation corresponds to a carrier excess and a negative deviation corre-

sponds to a carrier deficit.

 $n= \Delta n+n_0$ and $p=\Delta p+p_0$

Δn=Δp ← electrons/holes created/annihilated in pairs

In non-equilibrium, np may not equal n;2

Low-level Injection:

- Δp << n₀ n≈n₀ n-type material

- Δ n << p_0 $p≈p_0$ p-type material

Bao Ve320 S12

Indirect Thermal R-G

NT ~ Number of traps

Recombination Process

$$\frac{\partial p}{\partial t}|_{R} = -c_{p}N_{T}p$$

At equilibrium, R and G processes must be balanced:

$$\frac{\partial p}{\partial t}|_{G} = -c_{p}N_{T}p_{0}$$

Net R-G process:

$$\frac{\partial p}{\partial t}|_{G} = -c_{p}N_{T}(p - p_{0}) = -c_{p}N_{T}\Delta p$$

Bao Ve320 S12

19

Indirect Thermal R-G

Define $au_p = \frac{1}{c_p N_T}$

$$\frac{\partial p}{\partial t}|_{\substack{i-thermal \\ R-G}} = -\frac{\Delta p}{\tau_p}$$

Similarly

$$\frac{\partial n}{\partial t}|_{\substack{i-thermal \\ R-G}} = -\frac{\Delta n}{\tau_n}$$

Applicable only to **minority carriers and low-level injection** condition must be satisfied!

Bao Ve320 S12

Carrier Behavior

We have determined carrier processes

- Drift
- Diffusion
- •Generation and Recombination

The development of relationships between these processes will provide a basis to solve device problems.

Bao Ve320 S12