Courbure

Tenseur de Riemann ${\cal R}^i_{jkl}$

$$R_{kji}^l = \partial_i \Gamma_{ki}^l - \partial_{i\Gamma_k j}^l + \Gamma_{ki}^m \Gamma_{mj}^l - \Gamma_{kj}^m \Gamma_{mi}^l$$

(1) Non commutativité des dérivées covarientes

$$\partial_i \partial_i Y = \partial_j \partial_i Y$$

$$\nabla_i \nabla_j A_k - \nabla_j \nabla_i A_k = R_{kji}^l A_l$$

(2) holonomie

$$\Delta A^i = R^i_{kjl} A^k \mathrm{d} x^l \mathrm{d} x'^j$$

(voir figure 1)

 $Figure \ 1-holonomie$

(3) déviation géodésique

dérivé intrinsèque

$$\mathbf{A}() = A^{i}(lambda)\mathbf{e}_{i}(\lambda)$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\mathbf{A} = \frac{\mathrm{d}A^{i}}{\mathrm{d}\lambda}\mathbf{e}_{i} + A^{i}\frac{\mathrm{d}\mathbf{e}_{i}}{\mathrm{d}\lambda} = \dot{A}^{i}\mathbf{e}_{i} + A^{i}\partial_{j}\mathbf{e}_{i}\frac{\mathrm{d}x^{i}}{\mathrm{d}\lambda} = \left(\dot{A}^{k} + \Gamma\right)ji^{k}A^{i}\dot{x}^{j}\right)\mathbf{e}_{k}$$

$$\nabla_{k}A^{k} = \dot{A}^{k} + \Gamma_{ji}^{k}A^{i}\dot{x}^{j}$$

$$\nabla^2_{lamda}\xi^i = R^i_{jkm}\xi^m \dot{x}^j \dot{x}^k$$

FIGURE 2 – déviation géodésique

<u>Tenseur de Rixxi</u>

$$R_{ik} = R_{ijk}^j$$

 $\underline{\text{Tenseur scalaire}}$

$$R = r_i^i = g^{ik} R_{ik}$$

$$\nabla_j A_k = \partial_j A_k - \Gamma_{jk}^m A_m$$

Propriétés

A)

$$\begin{split} R_{lkji} &= \frac{1}{2} \left({}_{i}\partial_{j}g_{ki} + del_{k}\partial_{j}g_{li} - \partial_{l}\partial_{j}g_{ki} - \partial_{k}\partial_{i}g_{lj} \right) + g^{mn} \left(\Gamma_{mil}\Gamma_{nkj} - \Gamma_{mjl}\Gamma_{nki} \right) \\ R_{lkji} &= R_{klji} \\ R_{lkji} &= R_{lkij} \\ R_{lkji} &= R_{jilk} \\ R_{lkji} + R_{ljik} + R_{likj} &= 0 \end{split}$$

En d dimensions il y a $\frac{1}{12}d^2(d^2-1)$ (20 pour d=4)

B) Indentité de Bianchi

$$\nabla_m R_{ijkl} + \nabla_k R_{ijlm} + \nabla_l R_{ijmk} = 0$$

Exemple 1 : sphère de rayon a

$$ds = a^2 d\theta^2 + a^2 \sin^2 \theta d\varphi^2$$

$$[g_{ij}] = a^2 \begin{bmatrix} 1 & 0 \\ 0 & \sin^2 \theta \end{bmatrix}$$

$$[g^{ij}] = \frac{1}{a^2} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{\sin \theta} \end{bmatrix}$$

$$\Gamma_{22}^1 = -\sin\theta\cos\theta \qquad \gamma_{12}^2 = \Gamma_{21}^2 = \cot\theta$$

$$R_{1212} = a^2 \sin \theta$$

$$R_{22} = \sin \theta$$

$$R_{11} = 1$$

$$R = g^{ij}R_{ij} = \frac{2}{a^2}$$

Exemple 2 : le cylindre de rayon a

$$\mathrm{d}s = \mathrm{d}z^2 + a^2 \mathrm{d}\varphi^2$$

$$[g_{ij}] = \begin{bmatrix} 1 & 0 \\ 0 & a^2 \end{bmatrix}$$

Le cylindre est plat!

Exemple 3 : le cône

Le cône est plat **sauf** à l'apex, qui possède un courbure infini

Exemple 4 : tore plongé dans \mathbb{R}^3

. . .