Гапанюк Ю.Е.		Демонстрация: Фень Н.Т.
""2	023 г.	""2023
	о лабораторной работе конструкции языков 1	
Тема раб	боты: '' Модульное тести	прование в Python. ''
	5 (количество листов) <u>Вариант № 1</u>	
	ИСПОЛНИТЕЛЬ:	
	студент группы ИУ5-52Б	(подпись)
	Фень Н.Т.	" " 2023

СОДЕРЖАНИЕ

1.	. Описание задания	.3
2.	. Текст программы	.3
3.	. Экранные формы с примерами выполнения программы Error! Bookmark not defin	ed.

1. Описание задания

Разработайте бота для Telegram. Бот должен реализовывать конечный автомат из трех состояний.

Разработайте простого бота для Telegram. Бот должен использовать функциональность создания кнопок.

2. Текст программы

lab1module.py:

```
import sys
def get coefficient(prompt, coef name):
       root4 = -root3
def findTrueRoots(roots):
           trueRoots.append(root.real)
```

```
print(f"Уравнение имеет один действительный корень: (trueRoots[0])")
else:
    print("Уравнение не имеет действительных корней.")

def main():
    # Проверка ввода из консоли и получение аргументов
    if len(sys.argv) == 4:
        try:
            a = float(sys.argv[1])
            b = float(sys.argv[2])
            c = float(sys.argv[3])
        except ValueError:
        print("Heкорректные коэффициенты в командной строке. Пожалуйста, введите
их с клавиатуры.")
            a = get_coefficient("Введите коэффициент А: ", "A")
            b = get_coefficient("Введите коэффициент В: ", "B")
            c = get_coefficient("Введите коэффициент С: ", "C")
# Получение корней
roots = solve_biquadratic(a, b, c)
# Вывод ответа
trueRoots = findTrueRoots(roots)
printTrueRoots(trueRoots)

if __name__ == "__main__":
    main()
```

lab3.py:

```
# Tectm TDD
from lab1Module import findTrueRoots, solve_biquadratic
import math

def test_solve_biquadratic_real_roots():
    # Test case with real roots
    roots = solve_biquadratic(1, -3, 2)

    expected_roots = [math.sqrt(2), -math.sqrt(2), 1.0, -1.0] # roots are (1, 2)

and their negatives
    assert findTrueRoots(roots) == expected_roots

def test_solve_biquadratic_complex_roots():
    # Test case with complex roots
    roots = solve_biquadratic(1, 1, 1)
    expected_roots = () # no real roots
    assert roots == expected_roots

def test_find_true_roots():
    # Test case for find_true_roots function
    roots = [1 + 0j, 2 + 0j, 0 + 1j, -1 - 1j] # mix of real and complex roots
    true_roots = findTrueRoots(roots)
    expected_true_roots = [1, 2]
    assert true roots == expected true roots
```

BDD.txt:

#Tесты BDD

Функция: Решение биквадратных уравнений

Сценарий: допустимый ввод коэффициента. Учитывая, что у меня запущена программа Когда я ввожу действительный коэффициент А Тогда программа должна принять ввод

Сценарий: решить уравнение с положительным дискриминантом. Учитывая, что у меня есть коэффициенты A, B и C Когда я ввожу эти коэффициенты Тогда программа должна вывести правильные корни