一、计算以下各题:

- 1. 已知信号 f(-2t+1) 的波形如图所示。
 - (1) 画出 f(t) 的波形;
 - (2) 写出 $\frac{df(t)}{dt}$ 的表达式。

本思	5分数	6分
得	分	

2. 计算: (1)
$$\int_{-\infty}^{\infty} 2\delta(t-1) \frac{\sin 2(t-1)}{t-1} dt$$
 (2) $\int_{-\infty}^{\infty} (t-4) \delta(-2t) dt$

本题	分数	6分
得	分	

(2)
$$\int_{-\infty}^{\infty} (t-4)\delta(-2t)dt$$

求图示电路中关于u(t)的冲激响应h(t)和阶跃响应g(t)。 3

6分	
[分数	女
本题	彰

当激励 $f(t)=3\delta(t-2)$ 时,求系统的零状态响应 $y_f(t)$ 。 图示系统, 4

6分	
分数	分
本题	待

己知f(t)的频谱密度函数是 $F(j\omega)$,求 $f(2t-5)e^{-j7t}$ 的频谱密度函数。 5.

6分	
分数	分
本题	彰

6. 求图示信号f(t)的频谱密度函数 $F(j\omega)$ 。

6分	
分数	分
本题	镎

图示系统,已知 $f(t)=Sa^2(\pi t)$,理想低通滤波器的系统函数 $H(j\omega)=G_{2\pi}(\omega)$, 7.

求输出y(t)的频谱密度函数 $Y(j\omega)$ 。

×	
6分	
1分数	女
本题	争

8. 计算下列各信号反变换: (1) 已知信号频谱密度函数 $F_1(j\omega)=\varepsilon(\omega+1)-\varepsilon(\omega-3)$,

已知信号象函数 $F_2(s) = \frac{s^2 e^{-s}}{s^2 + 4}$

6分	
分数	分
本题	領

已知 $f(t) = t\varepsilon(t) + 2e^{-(t-1)}\varepsilon(t) + 3\delta(t-5)$, 求象函数 F(s)。

长9	
(分数	分
本题	得

t < 0时电路处于稳定状态,已知 $u_1(0_{_}) = 12\mathrm{V}$, $u_2(0_{_}) = 0$,t = 0时 开关S闭合, 求t>0时的电路中的电流;[t),并讨论两电容两端电荷发生的变化。 10. 图示电路,

i		
	6分	
	1分数	分
	本題	待

二. 综合计算题

1. 己知描述某连续时间因果系统的微分方程为

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = 2\frac{df(t)}{dt} + 4f(t) , \quad \text{iff} \quad \text{if$$

求: (1) 传输算子H(p); (2) 零输入响应 $y_x(t)$ 、零状态响应 $y_f(t)$ 以及全响应y(t)。

10 分	
[分数	女
本題	钞

抽样序列 已知f(t)的频谱密度函数 $F(j\omega)$ 如图(b), 2. 图(a)所示系统,

$$\delta_{T_S}(t) = \sum_{n=-\infty}^{n=\infty} \delta(t - nT_S)$$
, $H(j\omega) = G_{12}(\omega)$.

- (1) 若使 $f_s(t)$ 包含f(t)的全部信息, δ_{r_s} 的最大间隔 T_s 应为多少?
- (2) 若 $T_s = \frac{\pi}{3}$ 求出输出信号y(t)的频谱密度函数 $Y(j\omega)$ 。

 $F(j\omega)$

(1) 画出 S 域模型; 图示电路在换路前已达稳态, 求:

10分	
1分数	分
本题	領

(t)
(t) ((t)
宋
0时
0
※ 1×
12
17
换法
強
変
TT I
斯
拉
丰
用拉
田
(2)

K=0 时对系统稳定性的影响。 试分别分析 K=3、 求系统函数 H(s), 图示系统,

10分	
5分数	分
本题	钞

般计算题

(2)
$$\frac{d[f(t)]}{dt} = 2\delta(t+3) + G_2(t+2) + 2\delta'(t-3)$$

2.
$$\#$$
: (1) 4; (2) -2
3. (1) $h(t) = (e^{-t} - 2e^{-2t})\varepsilon(t)$; (2) $g(t) = (-e^{-t} + e^{-2t})\varepsilon(t)$

3分+3分3分+3分3分+3分

3 分十3 分

4.
$$\mathbf{M}$$
: $H(p) = \frac{3p+1}{p^2+3p+2} = \frac{5}{p+2} + \frac{-2}{p+1}$;

$$h(t) = (5e^{-2t} - 2e^{-t})\varepsilon(t)$$
, $y_f(t) = (15e^{-2(t-2)} - 6e^{-(t-2)})\varepsilon(t-2)$ $3 + 3 + 3$

5.
$$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{A}}}}}}}}}}_{2}^{1}F(j\frac{\omega+7}{2})e^{-j2.5(\omega+7)}$$
 29+29+29

#:
$$(e^{j2\omega} - 2e^{-j2\omega}) + Sa(\omega)(2e^{-j\omega} - e^{j\omega})$$

7. 解:

3 分十3 分

3 分十3 分

解: $(1) f_1(t) = \frac{2}{\pi} Sa(2t) \cdot e^{jt}$ (2) $f_2(t) = \delta(t-1) - 2\sin(2t-2)\varepsilon(t-1)$ 3分+3分 8

9.
$$R$$
: $F(s) = \frac{1}{s^2} + \frac{2e}{s+1} + 3e^{-5s}$

2分十2分十2分

10. #:
$$i_1(t) = 8\delta(t) + \frac{2}{3}e^{-\frac{1}{6}t}$$

两电容电压发生跃变

3 分十3 分

1. 解: (1)
$$H(p) = \frac{2p+4}{5p}$$
课程表共享收集网站 $nuaa.store_{3 + 3 + 4 + 4 + 4}$

(3)
$$y_x(t) = 2e^{-t} - e^{-3t} \left(t \ge 0 \right), \quad y_f(t) = 2\left(\frac{4}{3} - e^{-t} - \frac{1}{3} e^{-3t} \right) \mathcal{E}(t),$$

$$y(t) = \frac{8}{3} - \frac{5}{3}e^{-3t} (t \ge 0)$$

2.
$$\Re$$
: (1) $T_S = \frac{\pi}{2}$;

4.
$$\vec{\mathbf{H}}$$
: (1) $H(s) = \frac{10(s+1)}{s^3 + s^2 + 10(K+1)s + 10}$