Moral Approach-Avoidance Tendencies as a Measure of Implicit Moral Attitudes and Motivation

Sanskriti Purohit, Natalie Smith, Kristi Van Meter, Paul McKee

MAAT: Do humans exhibit moral approach-avoidance tendencies (and can they serve as proxies for implicit attitudes)?

R-MAAT: To what extent does race interact with moral approach-avoidance tendencies?

What we know so far: It is unclear

What have we done so far: MAAT Study 1

MAAT

- Stimuli are either: 3-word **Phrases** or **Images**.
- Stimuli are two of three **Moral Valence** categories:
 - Good and Bad, Good and Neutral, or Neutral and Bad
- Stimuli **Background Color** are either:
 - Yellow or Blue
- Stimuli are **Evaluated** by either:
 - Implicit (responding to Background Color) or Explicit (responding to Moral Valence)

Moral Valence Examples

Example: Saving a life

Morally Neutral

Example: Eating a pizza, Stubbing a toe

Morally Bad

Example: Robbing a store

The Approach Avoidance Task (AAT)

Participant is shown a stimulus (**Phrase or Image**)

Participant
determines
stimulus
background
color/moral valence
(Implicit or
Explicit
Evaluation)

Participant pushes stimulus away (**Avoid**)

Participant pulls stimulus closer (**Approach**)

The Approach Avoidance Task (AAT)

Participant determines stimulus Participant is shown a stimulus (Phrase or background color/moral valence Image) (Implicit or Where reaction time is measured

Participant pushes stimulus away (Avoid)

Participant pulls stimulus closer (**Approach**)

Appendix

LINEAR MODELS

Outcome = E(Outcome) + AX + BY + Error

LINEAR MIXED EFFECTS MODELS

Outcome; = E(Outcome); + AX + BY + Error

LINEAR MODELS

Outcome; = E(Outcome); + AX + BY + Error

MODEL RESULTS

Linear Mixed Effects Models: Implicit (Phrases)

Linear Mixed Effects Models: Explicit (Phrases)

On average, compared to Neutral-rated phrases, responses to Immoral-rated phrases are faster by 8.6%. American Indian -Race: Prefer not to answer -Immoral Valence -HOH Moral Valence -HOH Race: Other -White -Asian -Affect Rating -Age -Female -Pacific Islander --0.25 0.25 0.50 0.00 **Estimated Effect**

On average, compared to Neutral-rated phrases, responses to Moral-rated phrases are faster by 7.6%. American Indian -Race: Prefer not to answer -Immoral Valence -HOH Moral Valence -HOH Race: Other -White -Asian -Affect Rating -Age -Female -Pacific Islander --0.25 0.25 0.50 0.00 **Estimated Effect**

Linear Mixed Effects Models: Implicit (Images)

Linear Mixed Effects Models: Explicit (Images)

There might be a relationship, but is it predictive?: Supervised ML Prediction of Response Time

Performance is Poor (particularly for images) and Moral Rating Does Little to Nothing in Predicting Response Time

	R2	MAE
Ridge	0.069	383.15
RF	0.072	340.67
SVR	0.143	292.59
XGBoost	-0.034	335.63

Are these the 'right' stimuli?: Unsupervised ML Validation

Morally Good = the most pleasant and medium complex

Morally Bad = the least pleasant and least complex

Next Steps: MAAT Study 1

Optimize machine learning approaches

• Supervised: Predict specific stimuli, moral category of stimuli

• Unsupervised: More models to improve clustering

Develop a simulation-based power analysis

Examine asymmetries/differences in inferential and predictive relationships

Compare participant-assigned moral valence to our assigned moral valence

Thank you for your time and interest. Any questions?