Examples: Recursive-descent predictive-parsing

Task: Determine if grammar is suitable for LL(1) parsing. If so write PDA parser code.

Recall: LL(1) is shorthand for

- consuming tokens "L"eft-to-right (the first L)
- making a "L"eftmost derivation (the second L), and
- Looking at the next "1" input token to make decisions.

Simulating PDA stack to match string to CFG is LL(1).

Suitable?

For LL(1) parsing, a grammar must be:

- Unambiguous
- Not left-recursive
- No conflicting prediction tokens

For example, the following are not LL(1)...

Ambiguous: $S \to SS \mid (S) \mid \lambda$

Left-Recursive: $S \rightarrow Sa \mid \lambda$

Prediction conflict: $S \rightarrow aaS \mid abS \mid \lambda$

Example: a*b*c*

$$egin{aligned} S &
ightarrow aS \,|\, T \ T &
ightarrow bT \,|\, R \ R &
ightarrow cR \,|\, \lambda \end{aligned}$$

Not ambiguous

No left recursion

Conflicting prediction tokens? Let's calculate them to see.

Step 1: Find Nullable

Often can tell if production is nullable by inspection. Can also use fixed-point algorithm.

Use prior column information to fill next column.

Prod	Init	Iter 1	Iter 2	Iter 3
S o aS	false	false	false	false
S o T	false	${f false}$	true	true
T o b T	false	${f false}$	${f false}$	${f false}$
T o R	false	true	true	true
R o c R	false	${f false}$	${f false}$	${f false}$
$R o \lambda$	true	true	true	true

All non-terminals are nullable.

From $S \rightarrow aS$:

$$a \in \mathit{First}(S)$$
 $Follow(S) \subseteq Follow(S) <==$ Does nothing; can ignore

From $S \rightarrow T$:

$$First(T) \subseteq First(S)$$

 $Follow(S) \subseteq Follow(T)$

From $T \rightarrow bT$:

$$b \in \mathit{First}(T)$$
 $Follow(T) \subseteq Follow(T)$

From $T \rightarrow R$:

$$First(R) \subseteq First(T)$$
 $Follow(T) \subseteq Follow(R)$

From $R \rightarrow cR$:

$$c \in \mathit{First}(R)$$
 $Follow(R) \subseteq Follow(R)$

From $R \rightarrow \lambda$: *Nothing*

From $S' \to S$ \$: $\$ \in Follow(S)$

All the relations (excluding ones that do nothing):

$$a \in First(S)$$
 $b \in First(T)$
 $c \in First(R)$
 $First(T) \subseteq First(S)$
 $First(R) \subseteq First(T)$
 $\$ \in Follow(S)$
 $Follow(S) \subseteq Follow(T)$
 $Follow(T) \subseteq Follow(R)$

Init sets with \in relations.

Set	Init
$\overline{\mathit{First}(S)}$	$\{a\}$
$\mathit{First}(T)$	$\{b\}$
$\mathit{First}(R)$	$\{c\}$
Follow(S)	{\$ }
Follow(T)	{}
Follow(R)	{}

Use prior column and to update next column

Set	Init	Iter 1
$\overline{\mathit{First}(S)}$	<i>{a}</i>	$\{a,b\}$
$\mathit{First}(T)$	$\{b\}$	$\{b,c\}$
$\mathit{First}(R)$	$\{c\}$	$\{c\}$
Follow(S)	{\$ }	{\$ }
Follow(T)	{}	$\{\$\}$
Follow(R)	{}	{}

Use prior column and to update next column

Set	Init	Iter 1	Iter 2
$\overline{\mathit{First}(S)}$	$\{a\}$	$\{a,b\}$	$\{a,b,c\}$
$\mathit{First}(T)$	$\{b\}$	$\{b,c\}$	$\{b,c\}$
$\mathit{First}(R)$	$\{c\}$	$\{c\}$	$\{c\}$
Follow(S)	{\$ }	{\$ }	{\$ }
Follow(T)	{}	{\$ }	{\$ }
Follow(R)	{}	{}	{\$ }

Use prior column and to update next column. Because nothing changes, we're done.

Set	Init	Iter 1	Iter 2	Iter 3
$\overline{\mathit{First}(S)}$	$\{a\}$	$\{a,b\}$	$\{a,b,c\}$	$\{a,b,c\}$
$\mathit{First}(T)$	$\{b\}$	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$
$\mathit{First}(R)$	$\{c\}$	$\{c\}$	$\{c\}$	$\{c\}$
Follow(S)	{\$ }	{\$ }	{\$ }	{\$ }
Follow(T)	{}	{\$ }	{\$ }	{\$ }
Follow(R)	{}	{}	{\$ }	{\$ }

Step 4: Determine predictors for each non-terminal

Prod	First RHS	RHS Nullable?	If so, Follow LHS	Predictor
S o aS	$\{a\}$	No		a
S o T	$\{b,c\}$	Yes	{\$ }	b,c,\$
T o b T	$\{b\}$	No		\boldsymbol{b}
T o R	$\{c\}$	Yes	{\$ }	c,\$
R o c R	$\{c\}$	No		\boldsymbol{c}
$R o \lambda$	{}	Yes	{\$ }	\$

Step 4: Determine predictors for each non-terminal

Predictors for the two S productions do not conflict.

Predictors for the two T productions do not conflict.

Predictors for the two R productions do not conflict.

We have non-conflicting prediction tokens!

Grammar is suitable for LL(1) parsing.

Handling stack top and next token

```
if top in ('a', 'b', 'c'): # try input/stack match
   toks.match(top)
elif top == 'S' and tok == 'a':
   stack.append('S')
    stack.append('a')
elif top == 'S' and (tok == None or tok in ('b', 'c')):
    stack.append('T')
elif top == 'T' and tok == 'b':
    stack.append('T')
    stack.append('b')
elif top == 'T' and (tok == None or tok == 'c'):
    stack.append('R')
elif top == 'R' and tok == 'c':
    stack.append('R')
    stack.append('c')
elif top == 'R' and tok == None:
   pass # Push nothing
else:
    raise Exception # Unrecognized top/tok combination
```

Prod	First RHS	RHS Nullable?	If so, Follow LHS	Predictor
S o aS	$\{a\}$	No		a
S o T	$\{b,c\}$	Yes	{\$}	b,c,\$

```
def parseS(toks):
    tok = toks.next()
    if tok == 'a':
        toks.match('a')
        parseS(toks)
    elif tok == None or tok in ('b', 'c'):
        parseT(toks)
    else:
        raise Exception
```

Prod	First RHS	RHS Nullable?	If so, Follow LHS	Predictor
T o bT	$\{b\}$	No		b
T o R	$\{c\}$	Yes	{\$}	c,\$

```
def parseT(toks):
    tok = toks.next()
    if tok == 'b':
        toks.match('b')
        parseT(toks)
    elif tok == None or tok == 'c':
        parseR(toks)
    else:
        raise Exception
```

Prod	First RHS	RHS Nullable?	If so, Follow LHS	Predictor
R o cR	$\{c\}$	No	_	c
$R o \lambda$	{}	Yes	{\$}	\$

```
def parseR(toks):
    tok = toks.next()
    if tok == 'c':
        toks.match('c')
        parseR(toks)
    elif tok == None:
        pass
    else:
        raise Exception
```

Call parses and check that input all consumed

```
def recursive_parse(input):
    toks = scanner(input)
    parseS(toks)
    if toks.next() != None:
        raise Exception
```