DISTRIBUIÇÃO UNIFORME

- Teórica
 - Definição da v.a.
 - Notação
 - Parâmetros:
 - Função de probabilidade
 - Média
 - Variância
 - Função de distribuição acumulada
- Código Python
 - Biblioteca
 - Calcular X = x
 - Calcular X <= x
 - Calcular X > x
 - Calcular z < X <= x
- Exercícios

Teórica

Definição da v.a.

X v.a. tal que a sua probabilidade de tomar um valor num subintervalo de [a,b] é proporcional ao comprimento desse subintervalo.

Notação

 $X \sim U(a,b)$

a -> Limite Inferior

b -> Limite Superior

Parâmetros:

$$a,b => a \leq b$$

Função de probabilidade

$$f(x) = egin{cases} rac{1}{b-a}, x \in [a,b] \ 0, \quad, x
otin [a,b] \end{cases}$$

Média

$$E(X)=\mu_X=rac{a+b}{2}$$

Variância

$$VAR(X) = \sigma_X^2 = rac{(b-a)^2}{12}$$

Função de distribuição acumulada

$$f(x) = egin{cases} 0, & X < a \ rac{x-a}{b-a}, X \in [a,b] \ 1, & X > b \end{cases}$$

Código Python

Biblioteca

from scipy import stats

Calcular X = x

stats.uniform.pmf(x, a, b)

Calcular X <= x

stats.uniform.cdf(x, a, b)

Calcular X > x

1 - stats.uniform.cdf(x, a, b)

Calcular z < X <= x

stats.uniform.cdf(x, a, b) - stats.uniform.cdf(z, a, b)

Exercícios