\times	Y	7	R			
Мо	Tu	We	Th	Fr	Sa	Su

ſ	Memo No.			
[Date	1	1	

1		, ,	
LEC 14	AAO	Non-independent	variables
			1170

225.1.14

Ex:

$$f(P, V, T)$$
 where $PV = nRT$
 $find \quad f(x, y, \ge 1)$ where $g(x, y, \ge 1) = C$

If
$$g(x,y,z)=c$$
, then $z=z(x,y)$
how can we find $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$?

Ex1

$$\frac{\chi^{2}+\chi_{2}+z^{3}=8}{\text{tolog differential}} = 0$$

$$\frac{\lambda^{2}+\chi_{2}+z^{3}=8}{\text{tolog differential}} = 0$$

(2,3,1) substituing => 4dx + dy + 6d == 0

$$dz = -\frac{1}{2}(4dx + dy)$$
 we view $z = \frac{1}{2}(x, y)$

$$\frac{\partial^2}{\partial x} = -\frac{4}{5} = -\frac{1}{3}; \quad \frac{\partial^2}{\partial y} = -\frac{1}{6}$$
y. constant, set dy = 0 set x constant > dx = 0

\text{\text{\$\}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	7	7	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.		
Date	1	1

In general
$$g(x, y, \pm) = c$$

$$dg = g_x dx + g_y dy + g_z dz = 0$$

Example:
$$f(x,y) = x + y$$
 $\frac{\partial f}{\partial x} = 1$

set
$$x=u$$
, $y=u+y=)$ $f(u,v)=2u+yv$
then $\frac{\partial f}{\partial u}=2$

So -
$$X=u$$
, but $\frac{\partial f}{\partial u} + \frac{\partial f}{\partial x}!$
 $keep v constant$
 $keep v constant$

Need clearer notection.

Example: area of triungle 10

A= = ab smo

assume its a to right triangle => a= 3.000

Rate of change of A with respect to 0?

1) treat a,b,0 as independent:
$$\frac{2a}{5a} = \frac{1}{2}(\frac{2a}{5a})ab$$

Mo Tu We Th Fr Sa Su	Memo No/
(b=coso), so that right	we leep right angle
(28)a	
3) beep b constant	
a=a(3,0) (3A)) Ь
Compute (30)a?	
Method 0: solve for B	and substitute
$a=b\cos 0 \Rightarrow b=\frac{a}{\cos 0}$	o = aseco:
$A = \pm a^2 \sin \theta \cdot \sec \theta = 1$	i a' tano
$S_0\left(\frac{\partial A}{\partial o}\right)_{\alpha} = \frac{1}{2}a^2 \sec^2 o$)
2 systematic methods	· · · · · · · · · · · · · · · · · · ·
1) differentials	
keep aflxed da = v	(t-tal differential)
· anstrant a=baso	=) da = cosodb-bsinodo
$\Rightarrow 0 = d\alpha = \cos \theta \cdot db$	-b.smodo
\Rightarrow cosod $b = b s m 0$	$do \Rightarrow db = b \cdot tano \cdot do$
$\Rightarrow cosodb = bsinoc$ $function A = \frac{1}{2}absinoc$	IA = = bsinoda + basinoda
	+ fabouso do
so dA = Iab(tan	
= idbseco.	

$50 \left(\frac{\partial h}{\partial o}\right)_{a} = \frac{1}{2}ab \sec o \frac{\partial h}{\partial o}$	$(a=b coso)$ $= \int a^2 sec^2 o ds$
	= faisecio.de
Summary:	differential
(1) write dA in terms of do	a, db, do
(2) $\alpha = constant \Rightarrow set cla = 0$	
13) differential constraint =) s	
in terms of do	b= C50 \$c0
(41 plug into dA	
Chain Rule 1	0 use constr
$\left \begin{pmatrix} \frac{\partial A}{\partial 0} \end{pmatrix}_{\alpha} = \beta_0 \cdot \begin{pmatrix} \frac{\partial 0}{\partial 0} \end{pmatrix}_{\alpha} + \beta_a$	(30) a + Ab (36)a
= faboso + faismo. se	eco:tano · a
= fab (coso + smo ta	
$\frac{1}{2}\alpha \cdot \alpha \cdot \frac{\sin^{2}\theta}{\cos^{2}\theta} = \frac{1}{2}ab \cdot \tan\theta \cdot \sin\theta$	
	<u> </u>