Chapter 4 Linear Models for Classification

Yue Yu

4.1 Discriminant Functions

Skipped reading.

4.2 Probabilistic Generative Models

(4.57)

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x})}$$

$$= \frac{p(\mathbf{x}|C_1)p(C_1)}{\sum_{k=1}^{K} p(\mathbf{x}, C_k)}$$

$$= \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$

$$= \frac{1}{1 + \frac{p(\mathbf{x}|C_2)p(C_2)}{p(\mathbf{x}|C_1)p(C_1)}}$$

$$= \frac{1}{1 + \exp(-a)}.$$

$$(4.65) - (4.67)$$

We can readily derive (4.65) by noticing that all terms will be canceled out except for those containing μ_k , provided (4.66) and (4.67).

(4.73)

As given by (4.72), the terms in the log likelihood depending on π are

$$\sum_{n=1}^{N} \{ t_n \ln \pi + (1 - t_n) \ln (1 - \pi) \}.$$

Setting the derivative of the log likelihood function with respect to π to 0, we have

$$\frac{\partial}{\partial \pi} \ell(\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} t_n \frac{1}{\pi} - \sum_{n=1}^{N} (1 - t_n) \frac{1}{1 - \pi}$$
$$= 0.$$

Solving for π while denoting the total number of data points in class C_1 by N_1 , we obtain

$$\pi = \frac{N_1}{N},$$

which is the fraction of points in class C_1 .

This can be generalized to K > 2 classes where \mathbf{t}_n is a one hot vector of length K such that $t_{nj} = I_{jk}$. Then, the likelihood function can be written as

$$p(\mathbf{X}, \mathbf{T} | \pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \prod_{k=1}^{K} (\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}))^{t_{nk}}.$$

The corresponding log likelihood function is

$$\ell(\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} (\ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma})).$$

Here, we are only interested in the terms depending on π_k , namely,

$$\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln \pi_k.$$

To find π_k , we construct the Lagrangian using the constraint $\sum_{k=1}^K \pi_k = 1$, given by

$$\mathcal{L}(\pi_k, \lambda) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln \pi_k + \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right).$$

Setting the derivative with respect to π_k to 0, we have

$$\frac{\partial}{\partial \pi_k} \mathcal{L}(\pi_k, \lambda) = \sum_{n=1}^N t_{nk} \frac{1}{\pi_k} + \lambda$$
$$= 0.$$

Solving for π_k , we obtain

$$\pi_k = -\frac{1}{\lambda} \sum_{n=1}^N t_{nk} = -\frac{1}{\lambda} N_k. \tag{*}$$

Summing over k on both sides, we have

$$\sum_{k=1}^{K} \pi_k = -\frac{N}{\lambda} = 1,$$

which implies that

$$\lambda = -N$$
.

Substituting back into (*), we obtain

$$\pi_k = \frac{N_k}{N},$$

which is the fraction of points in class C_k .

$$(4.75) - (4.76)$$

To find μ_1 , we set the derivative of the log likelihood with respect to μ_1 to 0,

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\mu}_1} \ell(\boldsymbol{\pi}, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) &= \frac{\partial}{\partial \boldsymbol{\mu}_1} \sum_{n=1}^N t_n \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) \\ &= -\frac{1}{2} \frac{\partial}{\partial \boldsymbol{\mu}_1} \sum_{n=1}^N t_n (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_1) \\ &= \sum_{n=1}^N t_n (-\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}^{-1} \mathbf{x}_n) \\ &= \mathbf{0}. \end{split}$$

Solving for μ_1 , we obtain

$$\boldsymbol{\mu}_1 = \frac{1}{N_1} \sum_{n=1}^{N} t_n \mathbf{x}_n,$$

where we denote $N_1 = \sum_{n=1}^{N} t_n$ as the number of data points assigned to class C_1 . Similarly,

$$\mu_2 = \frac{1}{N_2} \sum_{n=1}^{N} (1 - t_n) \mathbf{x}_n,$$

where we denote $N_2 = \sum_{n=1}^{N} (1 - t_n)$ as the number of data points assigned to class C_2 . This can be generalized to K > 2 classes with the same settings as the derivation of (4.73). The log likelihood function is

$$\ell(\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} (\ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma})).$$

Here we are only interested in μ_k . Setting the derivative with respect to μ_k ,

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\mu}_k} \ell(\boldsymbol{\pi}_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) &= -\frac{1}{2} \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n=1}^N \sum_{k=1}^K t_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) \\ &= \sum_{n=1}^N t_{nk} (-\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \boldsymbol{\Sigma}^{-1} \mathbf{x}_n) \\ &= \mathbf{0}. \end{split}$$

Solving for μ_k , we obtain

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^{N} t_{nk} \mathbf{x}_n,$$

where $N_k = \sum_{n=1}^N t_{nk}$, representing the number of data points that are assigned to class \mathcal{C}_k .

$$(4.77) - (4.80)$$

To find Σ , we set the derivative of the log likelihood function with respect to Σ^{-1} to 0. Specifically,

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\Sigma}^{-1}} \ell(\boldsymbol{\pi}, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) &= \frac{\partial}{\partial \boldsymbol{\Sigma}^{-1}} \bigg(-\frac{1}{2} \sum_{n=1}^{N} t_n \ln |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} t_n (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_1) \\ &- \frac{1}{2} \sum_{n=1}^{N} (1 - t_n) \ln |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} (1 - t_n) (\mathbf{x}_n - \boldsymbol{\mu}_2)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_2) \bigg) \\ &= \frac{\partial}{\partial \boldsymbol{\Sigma}^{-1}} \bigg(-\frac{N}{2} \ln |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} t_n \mathrm{Tr} \big\{ (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_1) \big\} \\ &- \frac{1}{2} \sum_{n=1}^{N} (1 - t_n) \mathrm{Tr} \big\{ (\mathbf{x}_n - \boldsymbol{\mu}_2)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_2) \big\} \bigg) \\ &= \frac{\partial}{\partial \boldsymbol{\Sigma}^{-1}} \bigg(\frac{N}{2} \ln |\boldsymbol{\Sigma}^{-1}| - \frac{1}{2} \sum_{n=1}^{N} t_n \mathrm{Tr} \big\{ \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_1) (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathrm{T}} \big\} \\ &- \frac{1}{2} \sum_{n=1}^{N} (1 - t_n) \mathrm{Tr} \big\{ \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_2) (\mathbf{x}_n - \boldsymbol{\mu}_2)^{\mathrm{T}} \big\} \bigg) \\ &= \frac{N}{2} \boldsymbol{\Sigma} - \frac{1}{2} \sum_{n=1}^{N} t_n (\mathbf{x}_n - \boldsymbol{\mu}_1) (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathrm{T}} - \frac{1}{2} \sum_{n=1}^{N} (1 - t_n) (\mathbf{x}_n - \boldsymbol{\mu}_2) (\mathbf{x}_n - \boldsymbol{\mu}_2)^{\mathrm{T}} \\ &= \mathbf{0}, \end{split}$$

where we used the following properties

$$\begin{aligned} &\operatorname{Tr}(\mathbf{A}\mathbf{B}\mathbf{C}) = \operatorname{Tr}(\mathbf{B}\mathbf{C}\mathbf{A}) \\ &\frac{\partial}{\partial \mathbf{X}}\operatorname{Tr}(\mathbf{X}\mathbf{A}) = \mathbf{A}^{\mathrm{T}} \\ &\frac{\partial}{\partial \mathbf{X}}\ln|\mathbf{X}| = \mathbf{X}^{-\mathrm{T}}. \end{aligned}$$

Solving for Σ , we obtain

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} \left\{ t_n (\mathbf{x}_n - \boldsymbol{\mu}_1) (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathrm{T}} + (1 - t_n) (\mathbf{x}_n - \boldsymbol{\mu}_2) (\mathbf{x}_n - \boldsymbol{\mu}_2)^{\mathrm{T}} \right\},$$

which is equivalent to (4.78) to (4.80).

A generalization to K > 2 classes can be derived using the same techniques. Consider the log likelihood function

$$\ell(\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} (\ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma})).$$

Setting the derivative with respect to Σ^{-1} to 0 while taking advantage of the above properties, that is

$$\frac{\partial}{\partial \boldsymbol{\Sigma}^{-1}} \ell(\boldsymbol{\pi}_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}) = \frac{\partial}{\partial \boldsymbol{\Sigma}^{-1}} \left(-\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) \right)
= \frac{\partial}{\partial \boldsymbol{\Sigma}^{-1}} \left(\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln |\boldsymbol{\Sigma}^{-1}| - \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \mathrm{Tr} \left\{ \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\mathrm{T}} \right\} \right)
= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \boldsymbol{\Sigma} - \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\mathrm{T}}
= \frac{N}{2} \boldsymbol{\Sigma} - \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\mathrm{T}}
= \mathbf{0},$$

where in the second last step we used the fact

$$\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} = N.$$

Hence, we obtain

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}},$$

which is a weighted average of the covariances of the data points assigned to each class.

4.3 Probabilistic Discriminative Models

(4.88)

This is easy to be verified using the chain rule.

$$\frac{d\sigma}{da} = \frac{d}{da} \frac{1}{1 + \exp(-a)}$$

$$= -\frac{1}{(1 + \exp(-a))^2} \cdot 1 \cdot \exp(-a) \cdot (-1)$$

$$= \frac{1}{1 + \exp(-a)} \left(1 - \frac{1}{1 + \exp(-a)}\right)$$

$$= \sigma(1 - \sigma).$$

(4.89)

This can be interpreted as under the assumption that the probability of ϕ_n belonging to class C_1 is y_n , what is the chance of the given dataset coming into existence.

(4.91)

$$\frac{\partial}{\partial \mathbf{w}} y_n = \frac{\partial}{\partial \mathbf{w}} \sigma(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}_n)$$
$$= y_n (1 - y_n) \boldsymbol{\phi}_n.$$

Using this conclusion, we can compute the gradient of the error function with respect to w, giving

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = -\nabla_{\mathbf{w}} \sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \}$$

$$= -\sum_{n=1}^{N} \left\{ t_n \frac{1}{y_n} y_n (1 - y_n) \phi_n - (1 - t_n) \frac{1}{1 - y_n} y_n (1 - y_n) \phi_n \right\}$$

$$= \sum_{n=1}^{N} (y_n - t_n) \phi_n.$$

(4.97)

For any vector **u** that is not perpendicular to all the feature vectors, since $0 < y_n < 1$, we have

$$\mathbf{u}^{\mathrm{T}}\mathbf{H}\mathbf{u} = \mathbf{u}^{\mathrm{T}} \left(\sum_{n=1}^{N} y_n (1 - y_n) \boldsymbol{\phi}_n \boldsymbol{\phi}_n^{\mathrm{T}} \right) \mathbf{u}$$

$$= \sum_{n=1}^{N} y_n (1 - y_n) (\mathbf{u}^{\mathrm{T}} \boldsymbol{\phi}_n \boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{u})$$

$$= \sum_{n=1}^{N} y_n (1 - y_n) (\boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{u})^2$$

$$> 0.$$

Hence, the Hessian is positive definite, which implies that the error function is convex and has a unique minimum.