

Service Control		
(2)	Evaluate ((x3-y) dx + (x+y3) dy,	
	where C is the triangle with vertices (0,0), (1,0) and (1,1). [3 Marks]	
	Where C is the filling with the	
	(0,0), (1,0) and (1,1). [3 MOSIPS]	
	Using Green's heaven	
	f(x,y)= x3-y , g(x,y)= x+y3	
	7(10)- 1 - 1 - 1 - 1 - 1	
	f(x,y) = -1 $f(x,y) = 1$	
	((3n-fy))dA = ((1-(-1)))dA	
	R CC - 11	
	$= \int 2 dA \qquad (121)$	
	R	
	Type I.	
	1 2	
	[2 dydx	
	(1.0)	
	6 6 1 (1,0)	
	$= \int [2y]^2 dx = \int 2x dx$	
	$= \left(\chi^2 \right)_0^1 = 1$	
		70.00
C		

(3)	Evaluate Jydx+Zdy+xdZ, C is the	
	C	
	line segment from (2,0,0) to (3,4,5).	
	[4 marks]	
	d.: (2,0,0) , d.: (3,4,5)	
	6(t)= (1-t) ro + tr1 = (1-t) 22,0,07+t<3,4,5	7
	= <2-2t, 0,07+ <3t,4t,5t7	
	= <2-2++3t, Ut, 5t7	
	= <2++, 4+,5+>	
	χ=2+t, y=4+, 2=5t, 0≤+≤1	
	dx=dt, dy=4dt, dz=5dt	
	Jydn+zdy+xdz= J4tdt+5t(4dt)+(2+t)50	(t
	2 1	2.60
	=((4t+20t+10+5t)dt	
	0	
	$= (29t + 10)dt = 29t^{2} + 10t$	A COLUMN
	L 2 10	
	$=\frac{29+10}{3}+10=\frac{49}{3}=24.5$	
	2	
Robert 5		