有限元方法 2025 秋冬作业一

曾申昊 3220100701 *

电子科学与技术 2202, 浙江大学

更新时间: 2025 年 9 月 24 日

1. 验证恒等式

(a) $\nabla \cdot (u\vec{v}) = \partial_i \cdot (uv_i) = (\partial_i u)v_i + u(\partial_i v_i) = (\nabla u) \cdot v + u\nabla \cdot \vec{v}$ (1)

(b)
$$[\nabla \times (u\vec{v})]_i = \varepsilon_{ijk}\partial_j(uv_k) = \varepsilon_{ijk}(\partial_j u)v_k + u\varepsilon_{ijk}\partial_j v_k$$

$$\Rightarrow \nabla \times (u\vec{v}) = (\nabla u) \times \vec{v} + u\nabla \times \vec{v}$$
(2)

(c) $[\nabla \times (\nabla \times \vec{u})]_i = \varepsilon_{ijk} \partial_j \varepsilon_{kmn} \partial_m u_n = \varepsilon_{ijk} \varepsilon_{kmn} \partial_j \partial_m u_n$ $= (\delta_{im} \delta_{jn} - \delta_{in} \delta_{jm}) \partial_j \partial_m u_n = \partial_j \partial_i u_j - \partial_j \partial_j u_i$ $\Rightarrow \nabla \times (\nabla \times \vec{u}) = \nabla (\nabla \times \vec{u}) - \Delta \vec{u}$ (3)

2. 二维区域中的格林公式和散度定理

(a) 若函数 P(x,y), Q(x,y) 在区域 Ω 上连续, 且具有连续的一阶偏导数, 则有

$$\int_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dS = \int_{\partial \Omega} P dx + Q dy$$
(4)

(b) 若 $\vec{F}(x,y)$ 是定义在 Ω 中和 $\partial\Omega$ 上连续可微的向量场,则有

$$\int_{\Omega} \nabla \cdot \vec{F} dS = \int_{\partial \Omega} \vec{F} \cdot \vec{n} dl \tag{5}$$

(c) 令 $\vec{F}(x,y) = (Q(x,y), -P(x,y))$, 易知二者等价

$$\begin{cases}
\int_{\Omega} \nabla \cdot \vec{F} dS = \int_{\Omega} (\partial_{x}, \partial_{y}) \cdot (Q, -P) dS = \int_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dS \\
\int_{\partial \Omega} \vec{F} \cdot \vec{n} dl = \int_{\partial \Omega} (Q, -P) \cdot (\sin \theta, -\cos \theta) dl = \int_{\partial \Omega} P \cos \theta dl + Q \sin \theta dl = \int_{\partial \Omega} P dx + Q dy
\end{cases} \tag{6}$$

^{*}邮箱: 3097714673@qq.com 或 3220100701@zju.edu.cn

3. 三维区域中旋度的分部积分公式

$$\int_{\partial\Omega} (\vec{n} \times \vec{u}) \cdot \vec{v} dS = \int_{\partial\Omega} \varepsilon_{ijk} n_j u_k v_i dS
= \int_{\Omega} \partial_j (\varepsilon_{ijk} u_k v_i) d\Omega
= \int_{\Omega} \varepsilon_{ijk} (\partial_j u_k) v_i d\Omega + \int_{\Omega} \varepsilon_{ijk} u_k (\partial_j v_i) d\Omega
= \int_{\Omega} (\nabla \times \vec{u}) \cdot \vec{v} d\Omega - \int_{\Omega} \vec{u} \cdot (\nabla \times \vec{v}) d\Omega$$
(7)

4. 二维区域中 Neumann 边界条件的 Poisson 方程

$$-\Delta u = f \quad \text{in } \Omega \tag{8}$$

$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial\Omega \tag{9}$$

(a) 对式 (8) 两边积分,应用散度定理,带入边界条件可得

$$\int_{\Omega} f dS = -\int_{\Omega} \Delta u dS = -\int_{\Omega} \nabla \cdot \nabla u dS = -\int_{\partial \Omega} \frac{\partial u}{\partial n} dl = 0$$
 (10)

- (b) 若 u_0 为该方程的一个解,那么对于任意 $C \in R$, $u_0 + C$ 同样是方程的解。
- (c) 该问题的有限元方法可以由以下推导得到

$$-\int_{\Omega} (\Delta u) v dS = \int_{\Omega} f v dS$$

$$-\int_{\partial \Omega} (\nabla u \cdot \vec{n}) v dl + \int_{\Omega} \nabla u \cdot \nabla v dS = \int_{\Omega} f v dS$$

$$-\int_{\partial \Omega} \frac{\partial u}{\partial n} v dl + \int_{\Omega} \nabla u \cdot \nabla v dS = \int_{\Omega} f v dS$$

$$\int_{\Omega} \nabla u \cdot \nabla v dS = \int_{\Omega} f v dS$$
(11)

用分片线性函数空间 V_h 近似,则有限元问题为:

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h dS = \int_{\Omega} f v_h dS \tag{12}$$

代人 $u_h = u_1\phi_1 + \cdots + u_{NV}\phi_{NV}$ 并令 $v_h = \phi_j$ 可得线性方程组

$$\sum_{i=1}^{NV} u_i \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j dS = \int_{\Omega} f \phi_j dS \qquad j = 1, 2, \dots, NV$$
(13)

(d) 参照讲义中用于生成矩阵 A 的算法,考虑其局部刚度矩阵 A_k

$$A_{k} = \begin{pmatrix} \int_{T_{k}} \nabla \phi_{k1} \cdot \nabla \phi_{k1} dx & \int_{T_{k}} \nabla \phi_{k1} \cdot \nabla \phi_{k2} dx & \int_{T_{k}} \nabla \phi_{k1} \cdot \nabla \phi_{k3} dx \\ \int_{T_{k}} \nabla \phi_{k2} \cdot \nabla \phi_{k1} dx & \int_{T_{k}} \nabla \phi_{k2} \cdot \nabla \phi_{k2} dx & \int_{T_{k}} \nabla \phi_{k2} \cdot \nabla \phi_{k3} dx \\ \int_{T_{k}} \nabla \phi_{k3} \cdot \nabla \phi_{k1} dx & \int_{T_{k}} \nabla \phi_{k3} \cdot \nabla \phi_{k2} dx & \int_{T_{k}} \nabla \phi_{k3} \cdot \nabla \phi_{k3} dx \end{pmatrix}$$

$$(14)$$

考虑式 (14) 与列向量 $(1,1,1)^T$ 的乘积

$$A_{k} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \int_{T_{k}} \nabla \phi_{k1} \cdot (\nabla \phi_{k1} + \nabla \phi_{k2} + \nabla \phi_{k3}) dx \\ \int_{T_{k}} \nabla \phi_{k2} \cdot (\nabla \phi_{k1} + \nabla \phi_{k2} + \nabla \phi_{k3}) dx \\ \int_{T_{k}} \nabla \phi_{k3} \cdot (\nabla \phi_{k1} + \nabla \phi_{k2} + \nabla \phi_{k3}) dx \end{pmatrix}$$
(15)

易知 $\nabla \phi_{k1} + \nabla \phi_{k2} + \nabla \phi_{k3} = 0$,故 $(1,1,1)^T \in \ker(A_k)$,矩阵 A_k 是奇异的。因为矩阵 A 是由 A_k 组装而成的,故矩阵 A 也是奇异的。