

Introduction to NLP

Text Classification

Classification

- Assigning documents to predefined categories
 - topics, languages, users
- A given set of classes C
 - Given x, determine its class in C
- Hierarchical vs. flat
- Overlapping (soft) vs non-overlapping (hard)

Classification

- Ideas: manual classification using rules
 - e.g., Columbia AND University → Education
 Columbia AND "South Carolina" → Geography
- Popular techniques
 - generative (k-nn, Naïve Bayes) vs. discriminative (SVM, regression)
- Generative
 - model joint prob p(x,y) and use Bayesian prediction to compute p(y|x)
- Discriminative
 - model p(y|x) directly.

Representations For Document Classification (And Clustering)

- Typically: vector-based
 - Words: "cat", "dog", etc.
 - Features: document length, author name, etc.
- Each document is represented as a vector in an n-dimensional space
- Similar documents appear nearby in the vector space (distance measures are needed)

Naïve Bayesian classifiers

Naïve Bayesian classifier

$$P(d \in C \mid F_1, F_2, ...F_k) = \frac{P(F_1, F_2, ...F_k \mid d \in C)P(d \in C)}{P(F_1, F_2, ...F_k)}$$

Assuming statistical independence

$$P(d \in C \mid F_1, F_2, ... F_k) = \frac{\prod_{j=1}^k P(F_j \mid d \in C) P(d \in C)}{\prod_{j=1}^k P(F_j)}$$

Features = words (or phrases) typically

Issues with Naïve Bayes

- Where do we get the values $P(d \in C)$
 - use maximum likelihood estimation (N_i/N)
- Same for the conditionals
 - these are based on a multinomial generator and the MLE estimator is $(\mathsf{T}_{ii}/\Sigma\mathsf{T}_{ii})$
- Smoothing is needed
 - why
 - Laplace smoothing $((T_{ii}+1)/\Sigma(T_{ii}+1))$
- Implementation
 - how to avoid floating point underflow

Spam Recognition

Return-Path: <ig_esq@rediffmail.com>

X-Sieve: CMU Sieve 2.2

From: "Ibrahim Galadima" <ig_esq@rediffmail.com>

Reply-To: galadima_esq@netpiper.com

To: webmaster@aclweb.org

Subject: Gooday

DEAR SIR

FUNDS FOR INVESTMENTS

THIS LETTER MAY COME TO YOU AS A SURPRISE SINCE I HAD NO PREVIOUS CORRESPONDENCE WITH YOU

I AM THE CHAIRMAN TENDER BOARD OF INDEPENDENT NATIONAL ELECTORAL COMMISSION INEC I GOT YOUR CONTACT IN THE COURSE OF MY SEARCH FOR A RELIABLE PERSON WITH WHOM TO HANDLE A VERY CONFIDENTIAL TRANSACTION INVOLVING THE! TRANSFER OF FUND VALUED AT TWENTY ONE MILLION SIX HUNDRED THOUSAND UNITED STATES DOLLARS US\$20M TO A SAFE FOREIGN ACCOUNT

SpamAssassin

- http://spamassassin.apache.org/
- http://spamassassin.apache.org/tests_3_3_x.html
- Examples:
 - body
 Incorporates a tracking ID number
 - body
 HTML and text parts are different
 - header Date: is 3 to 6 hours before Received: date
 - body
 HTML font size is huge
 - header Attempt to obfuscate words in Subject:
 - header Subject =~ /^urgent(?:[\s\W]*(dollar) | .{1,40} (?:alert| response| assistance| proposal| reply| warning| noti(?:ce| fication)| greeting| matter))/i

Feature Selection: The X² Test

- C=class, i_t = feature
- Testing for independence: $P(C=0,I_t=0)$ should be equal to P(C=0) $P(I_t=0)$
 - $P(C=0) = (k_{00} + k_{01})/n$
 - $P(C=1) = 1-P(C=0) = (k_{10}+k_{11})/n$
 - $P(I_t=0) = (k_{00}+K_{10})/n$
 - $P(I_t=1) = 1-P(I_t=0) = (k_{01}+k_{11})/n$

Feature Selection: The X² Test

$$X^{2} = \frac{n(k_{11}k_{00} - k_{10}k_{01})^{2}}{(k_{11} + k_{10})(k_{01} + k_{00})(k_{11} + k_{01})(k_{10} + k_{00})}$$

- High values of X^2 indicate lower belief in independence.
- In practice, compute X^2 for all words and pick the top k among them.

Feature Selection: Mutual Information

- · No document length scaling is needed
- Documents are assumed to be generated according to the multinomial model
- Measures amount of information: if the distribution is the same as the background distribution, then MI=0
- X = word; Y = class

$$MI(X,Y) = \sum_{x} \sum_{y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

Well-known Datasets

- 20 newsgroups
 - http://qwone.com/~jason/20Newsgroups/
- Reuters-21578
 - http://www.daviddlewis.com/resources/testcollections/ reuters21578/
 - Cats: grain, acquisitions, corn, crude, wheat, trade...
- WebKB
 - http://www-2.cs.cmu.edu/~webkb/
 - course, student, faculty, staff, project, dept, other
- RCV1
 - http://www.daviddlewis.com/resources/testcollections/rcv1/
 - Larger Reuters corpus

Evaluation Of Text Classification

- Microaveraging
 - average over classes
- Macroaveraging
 - uses pooled table

Vector Space Classification

Decision Surfaces

Decision Trees

Linear Boundary

Vector Space Classifiers

- Using centroids
- Boundary
 - line that is equidistant from two centroids

Linear Separators

Two-dimensional line:

 $w_1x_1+w_2x_2=b$ is the linear separator $w_1x_1+w_2x_2>b$ for the positive class

In n-dimensional spaces:

$$\vec{w}^T \vec{x} = b$$

Decision Boundary

Example

- Bias b=0
- Document is "A D E H"
- Its score will be

$$0.6*1+0.4*1+0.4*1+(-0.5)*1$$

= $0.9>0$

Wi	Xi	W _i	X _i
0.6	Α	-0.7	G
0.5	В	-0.5	Н
0.5	С	-0.3	I
0.4	D	-0.2	J
0.4	Е	-0.2	K
0.3	F	-0.2	L

Perceptron Algorithm

```
S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \vec{x}_1 \in \Re^N, y_i \in \{-1,1\}
 Input:
                     \eta \in \mathfrak{R}
Algorithm:
                       \vec{w}_0 = \vec{0}, k = 0
                       FOR i = 1 TO n
                           IF y_i(\vec{w}_i \bullet \vec{x}_i) \leq 0
                                   \vec{w}_{k+1} = \vec{w}_k + \eta y_i \vec{x}_i
                                     k = k + 1
                            END
                       END
 Output:
                   \vec{\mathcal{W}}_k
```


Generative Models: knn

- Assign each element to the closest cluster
- K-nearest neighbors

$$score(c, d_q) = b_c + \sum_{d \in kNN(d_q)} s(d_q, d)$$

- Very easy to program
- Issues:
 - choosing k, b?
- Demo:
 - http://www-2.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

