Teoria da Computação

Expressões Regulares e Autômatos Finitos

Thiago Alves

Introdução

- Expressões Regulares e Autômatos
 Finitos são bem diferentes
- Será que são equivalentes com relação as linguagens que geram e aceitam?
- O que temos que provar?

Introdução

- ◆Temos que mostrar que qualquer Expressão Regular pode ser convertida em um Autômato Finito que aceita a mesma linguagem que ela descreve e vice-versa
- Dessa forma, também provamos que uma linguagem é regular se e somente se é gerada por um ER

◆Como converter Expressões Regulares em Autômatos Finitos?

- Como converter Expressões Regulares em Autômatos Finitos?
- ◆Como converter a Expressão Regular **0** em um Autômato Finito?
- Como converter a Expressão Regular 1 em um Autômato Finito?
- Como converter a Expressão Regular ε em um Autômato Finito?

- ◆Como converter a Expressão Regular **0+1** em um Autômato Finito?
- ◆Como converter a Expressão Regular (0+1)0 em um Autômato Finito?
- ◆Como converter a Expressão Regular ((0+1)0)* em um Autômato Finito?

- Como converter expressões regulares em autômatos finitos?
- Qual tipo de autômato é mais adequado?
- ◆Podemos usar a definição indutiva de expressões regulares para construir um procedimento recursivo

- Se uma linguagem é gerada por uma expressão regular então a linguagem é regular
- ◆Indução na definição de ER
 - ▶ Base: E = a
 - L(a) = {a}
 - Qual seria um AFN equivalente?

- ◆Indução na definição de ER
 - ▶ Base: E = a
 - $L(a) = \{a\}$
 - Qual seria um AFN equivalente?

- ◆Indução na definição de ER
 - Base: E = ε
 - $L(\varepsilon) = \{\varepsilon\}$
 - Qual seria um AFN equivalente?

- ◆Indução na definição de ER
 - Base: E = ε
 - $L(\epsilon) = \{\epsilon\}$
 - Qual seria um AFN equivalente?

- ◆Indução na definição de ER
 - **•** Base: $E = \emptyset$
 - $L(\emptyset) = \emptyset$
 - Qual seria um AFN equivalente?

- ◆Indução na definição de ER
 - ▶ Base: E = Ø
 - $L(\emptyset) = \emptyset$
 - Qual seria um AFN equivalente?

- ◆Indução na definição de ER
- ♦HI:
 - Se E_1 é uma ER então existe um AFN A_1 tal que $L(E_1) = L(A_1)$
 - Se E_2 é uma ER então existe um AFN A_2 tal que $L(E_2) = L(A_2)$

- ◆Indução na definição de ER
- ♦PI:
 - Seja $E = (E_1 + E_2)$
 - $L(E) = L(E_1) \cup L(E_2)$
 - E_1 é ER. Pela HI, existe A_1 tal que $L(E_1) = L(A_1)$
 - E_2 é ER. Pela HI, existe A_2 tal que $L(E_2) = L(A_2)$

- $L(E) = L(A_1) U L(A_2)$
- Como fazer um AFN A tal que $L(A) = L(A_1) U L(A_2)$?

- ♦PI:
 - Seja $E = (E_1E_2)$
 - $L(E) = L(E_1)L(E_2)$
 - E_1 é ER. Pela HI, existe A_1 tal que $L(E_1) = L(A_1)$
 - E_2 é ER. Pela HI, existe A_2 tal que $L(E_2) = L(A_2)$

- $L(E) = L(A_1)L(A_2)$
- Como fazer um AFN A tal que $L(A) = L(A_1)L(A_2)$?

- ♦PI:
 - Seja E = (E_1^*)
 - $L(E) = L(E_1)^*$
 - E_1 é ER. Pela HI, existe A_1 tal que $L(E_1) = L(A_1)$
 - $L(E) = L(A_1)^*$
 - Como fazer um AFN A tal que $L(A) = L(A_1)*$?

- ◆Temos que mostrar que qualquer autômato finito A pode ser convertido em uma expressão regular E tal que L(A) = L(E)
- Qual tipo de autômato finito vamos escolher?

- ◆Temos que mostrar que qualquer autômato finito A pode ser convertido em uma expressão regular E tal que L(A) = L(E)
- Qual tipo de autômato finito vamos escolher?
 - Determinístico é mais simples

 Como converter autômatos finitos determinísticos em expressões

regulares?

- Os rótulos das transições nos caminhos entre o estado inicial e os estados finais representam as strings aceitas pelo autômato finito determinístico
 - Vamos remover estados e trocar as transições por expressões regulares

- 1) Criar um novo inicial para ter apenas transições saindo dele e tirar os laços dele
- 2) Criar um novo estado final para ser único e ter apenas transições chegando nele
- ◆3) Incluir transições com Ø onde não tiver transição

◆Transições com múltiplos rótulos podem ser convertidas para expressões regulares usando a operação + de união

Não mostramos as transições com Ø para não poluir a figura

- ◆Tirar um estado e adaptar as transições com expressões regulares até sobrar apenas o inicial e o final
 - A transição entre eles é a expressão regular equivalente ao autômato finito determinístico original

- ◆Tirar um estado e adaptar as transições com expressões regulares até sobrar apenas o inicial e o final
 - Como adaptar as transições com expressões regulares?

- Como adaptar as transições com expressões regulares?
 - Concatenar a expressão regular chegando no estado com a do laço e com com a saindo do estado
 - Fazer a união com a expressão regular da transição já existente entre os estados

- Definição da nova transição
 - p q é o estado removido
 - p q_i, q_i são os outros pares de estados
 - $\delta'(q_i, q_j) = \delta(q_i, q_r)(\delta(q_r, q_r)) * \delta(q_r, q_j) + \delta(q_i, q_j)$

Algoritmo

CONVERT(G):

- **1.** Let k be the number of states of G.
- 2. If k = 2, then G must consist of a start state, an accept state, and a single arrow connecting them and labeled with a regular expression R. Return the expression R.
- **3.** If k > 2, we select any state $q_{\text{rip}} \in Q$ different from q_{start} and q_{accept} and let G' be the GNFA $(Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$, where

$$Q' = Q - \{q_{\rm rip}\},\,$$

and for any $q_i \in Q' - \{q_{\text{accept}}\}\$ and any $q_j \in Q' - \{q_{\text{start}}\}\$ let

$$\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4),$$

for $R_1 = \delta(q_i, q_{rip}), R_2 = \delta(q_{rip}, q_{rip}), R_3 = \delta(q_{rip}, q_j), \text{ and } R_4 = \delta(q_i, q_j).$

4. Compute CONVERT(G') and return this value.

- Converta o AFD abaixo em uma ER
 - Criar novo estado inicial e final

Remover o estado 1

Remover o estado 2

Remover o estado 3

