14₂

인공지능

딥러닝(1)

컴퓨터과학과 이병래교수

학습목

- ② 딥러닝을 위한 학습 방법의 개선
- ③ 합성곱신경망

1. 심층 신경망

- 심층 신경망(deep neural networks)이란?
 - 입력층과 출력층 사이에 많은 수의 은닉층이 연결된 신경망

○ 데이터에 내재하는 복잡한 패턴이나 특징을 잘 파악할 수있어 뛰어난성능을 보임

1. 심층 신경망

- ┛ 심층 신경망 학습의 문제점
 - ☑ 경사 소멸(vanishing gradient)
 - 경사 하강법의 적용: 각각의 연결 가중치에 대한 손실함수의 경사를 구하기 위해 편미분 계산
 - 체인률에 따라 출력층에서 입력층 방향으로 오차 역전파
 - 입력층 방향으로 내려갈수록 경사가 지수함수에 따라 감쇠함

1. 심층 신경망

- ┛ 심층 신경망 학습의 문제점
 - ⚠ 과적합(overfitting): 특정 학습 데이터 집합에 지나치게 의존적으로 학습되는 현상

- 학습에 필요한 충분한 데이터 확보의 어려움
- <u></u> 계산량의 폭발적 증가

2. 딥러닝

- 딥러닝(deep learning, 심층학습)이란?
 - · 심층 신경망 학습 과정에서 발생하는 문제점들을 개선할 수 있는 학습 기술
 - ✓ 과적합 문제의 개선
 - 드롭 아웃(dropout), 규제(regularization)
 - ♂ 경사소멸 문제의 개선
 - ReLU(Rectified Linear Unit)와 같은 활성함수 사용
 - 적절한 연결 가중치 초기화
 - ☑ 계산성능을높이기위한대단위병렬처리활용
 - GPU, TPU 등

2. 딥러닝

- □ 다양한 딥러닝 모델의 개발
 - 합성곱 신경망(CNN)
 - · LSTM, GRU 등의 순환 신경망(RNN)
 - 트랜스포머(transformer)
- □ 딥러닝을 위한 도구
 - · GPU 활용을 위한 프레임워크: CUDA, OpenCL 등
 - · 다양한 딥러닝 프레임워크: 텐서플로(TensorFlow), Keras, 파이토치(PyTorch) 등

1. 경사 소멸 문제의 개선

- 활성함수의 개선
 - 시그모이드 함수의 문제점

1. 경사 소멸 문제의 개선

- 활성함수의 개선
 - · ReLU 또는 이의 다양한 변형 활용

ReLU

$$f(x) = \max(0, x)$$

Leaky ReLU

$$f(x) = \max(ax, x)$$

a: 작은 크기의 양의 상수

GELU

$$f(x) = x\Phi(x)$$

 $\Phi(x)$: 표준 정규분포의 누적분포함수

1. 경사 소멸 문제의 개선

- 연결 가중치의 적절한 초깃값 설정
 - · 심층 신뢰망 학습을 이용한 사전학습(제프리 힌턴 등, 2006)
 - 뉴런의 팬-인과 팬-아웃에 따라 결정되는 값의 범위에 속하는 값으로 초기화(자비에르 글로로트 등, 2010)
 - ReLU 유형의 활성함수를 사용하는 경우 팬-인에 따라 결정되는 값의 범위에 속하는 값으로 초기화(카이밍 허등, 2015)

2. 과적합 문제의 개선

- ┛ 심층 신경망을 적절히 규제(regularization)하는 방법
 - 심층 신경망이 지나치게 복잡도가 높은 문제를 개선

- ➡ 적절한 규제를 통해 모델을 단순화
 - 가중치 감쇠, ℓ_1 및 ℓ_2 규제, 드롭아웃 등

2. 과적합 문제의 개선

- 드롭아웃(dropout)
 - · 신경망을 훈련하는 동안 적절한 확률에 따라 뉴런을 무작위로 선택하여 일시적으로 제거하는 것

훈련을 마친 후에는 모든 뉴런을 사용함

1. 합성곱 신경망의 개념

- 합성곱 신경망(Convolutional Neural Nets: CNN)이란?
 - · 동물의 시각 피질(visual cortex)의 원리를 기반으로 설계된 신경망 모델
 - ◎ 시각 피질의 신경세포는 수용야(receptive field)라는 제한된 감각 영역에만 반응함
 - ☑ 서로 다른 신경세포의 수용야가 부분적으로 중첩하면서 전체 시야를 포괄함
 - ☑ 특정 신경세포는 특정한 시각적 패턴에만 반응함
 - ⇒ 영상의 인식이나 비디오 처리 등의 컴퓨터 시각 응용에 적합함

1. 합성곱 신경망의 개념

- CNN의 주요 구성요소
 - 합성곱층, 풀링층, ReLU층, 완전연결층
 - LeCun 등이 제안한 LeNet-5

- 합성곱층(convolutional layer)
 - 합성곱(convolution): 필터 적용에 활용되는 연산

필터 마스크

0.1	0.2	0.7
0.2	0.9	0.2
8.0	0.2	0.1

- 합성곱층(convolutional layer)
 - 합성곱과 관련한 파라미터 스트라이드(stride, 이동 간격)

- 합성곱층(convolutional layer)
 - 합성곱과 관련한 파라미터 스트라이드(stride, 이동 간격)
 - 합성곱의 출력 크기계산

$$S_{out} = \begin{bmatrix} S_{in} - S_f \\ \hline stride \end{bmatrix} + 1, \quad S_{out} : 출력 크기$$
 $S_{in} : 입력 크기$

 S_f : 필터의 크기

예 입력 크기 = 28×28, 필터 크기 = 5, 이동간격 = 2

$$S_{out} = \left| \frac{28 - 5}{2} \right| + 1 = 12$$

- 합성곱층(convolutional layer)
 - 합성곱과 관련한 파라미터 패딩(padding)

스트라이드=1

3×3 필터

입력(14×14)

출력(12×12)

- 합성곱층(convolutional layer)
 - 합성곱과 관련한 파라미터 패딩(padding)

- 합성곱층(convolutional layer)
 - · 합성곱과 관련한 파라미터 패딩(padding)
 - 합성곱의 출력 크기계산

$$S_{out} = \left\lfloor \frac{S_{in} - S_f + 2P}{stride} \right\rfloor + 1$$
, S_{out} : 출력크기, S_{in} : 입력크기 S_f : 필터의크기, P : 패딩크기

에 입력 크기 = 28×28, 필터 크기 = 5, 이동간격 = 2, 패딩 = 2

$$\Rightarrow S_{out} = \left| \frac{28 - 5 + 4}{2} \right| + 1 = 14$$

→ 출력 크기: 14×14

- 합성곱층(convolutional layer)
 - 필터링 과정은 상위 층의 뉴런이 필터 크기에 해당되는 하위층 영역의 각 뉴런과 연결되는 것으로 볼 수 있음
 - 상위층의 각 노드에 대한 연결 가중치 벡터는 모두 동일함
 - 학습해야할 파라미터 수는 필터의 규격에 의해 결정됨

- 합성곱층(convolutional layer)
 - 여러 개의 입력 채널이 있는 경우
 - 예 RGB 컬러 이미지 → 3채널
 - · 1개의 2차원 3×3 필터 □ 채널당 1개씩의 3×3 필터
 - 총 27개(1개의 바이어스를 포함하면 총 28개)의 필터 파라미터(연결가중치)를 학습함

- 합성곱층(convolutional layer)
 - LeNet-5의 첫째 합성곱층: 32×32×1채널 입력, 필터 크기 5×5, 필터 수 6개, 패딩 없음, 스트라이드는 1
 - 출력단: 6개의 28×28 특징 맵(feature map)

- 합성곱층(convolutional layer)
 - Ш LeNet-5의 첫째 합성곱층: 32×32×1채널 입력,필터 크기 5×5, 필터 수 6개, 패딩 없음, 스트라이드는 1
 - 출력단: 6개의 28×28 특징 맵(feature map)
 - 학습할 파라미터 수 = (5×5×1+1)×6 = 156(개)

- 합성곱층(convolutional layer)
 - 메 LeNet-5의 둘째 합성곱층: 14×14×6채널 입력,필터 크기 5×5, 필터 수 16개, 패딩 없음, 스트라이드는 1
 - 출력단: 16개의 10×10 특징 맵(feature map)

- 합성곱층(convolutional layer)
 - Ⅲ LeNet-5의 둘째 합성곱층: 14×14×6채널 입력,필터 크기 5×5, 필터 수 16개, 패딩 없음, 스트라이드는 1
 - 출력단: 16개의 10×10 특징 맵(feature map)
 - 학습할 파라미터 수 = (5×5×6+1)×16 = 2,416 (개)

- 풀링층(pooling layer)
 - · 입력을 서브샘플링(subsampling)하여 축소된 규모의 출력을 만드는 단계
 - ▶ 풀링: 필터의 영역에서하나의 값을 구하는 것
 - · 필터의 크기, 스트라이드, 풀링 방법을 정해야 함
 - 필터의 크기: 하나의 출력을 만들어 내는 영역의 크기
 - ▶ 풀링: 이 영역으로부터 하나의 값을 구하는 것
 - 최댓값을 선택하는 최대 풀링(max pooling)이 많이 사용됨

- ☑ 풀링층(pooling layer)
 - 에 필터크기를 2×2, 스트라이드를 2로 하여 최대 풀링을 한 결과

4	2	5	3	1	3
1	3	2	2	1	2
2	2	4	3	2	1
3	6	3	1	1	2
1	2	3	5	2	4
2	3	1	2	1	3

4	5	3	
6	4	2	
3	5	4	

- 완전연결층(fully connected layer)
 - · 여러 단계의 합성곱층과 최대 풀링층이 반복된 후 완전연결층에 연결되어 고수준 추론을 함
 - 다차원 입력 → 플래튼(flatten)층을 두어 1차원 입력으로 변환한 후 완전연결층에 전달
 - 완전연결층은 일반적인 피드포워드 신경망이 사용됨
 - · 최종 완전연결 층은 분류기의 역할을 담당하게 되며, 각 클래스당 1개의 출력 뉴런이 존재함
 - 예: O부터 9까지의 숫자 인식 → 10개의 출력 뉴런이 필요함
 - 소프트맥스를 이용하여 입력된 패턴이 각 클래스에 속할 확률을 계산할 수 있음

3. 합성곱 신경망 모델 구성 예

■ MNIST 필기숫자 인식을 위한 합성곱 모델 구성 예

정리하기

- ☑ 심층 신경망은 입력층과 출력층 사이에 많은 수의 은닉층이 연결된 신경망을 의미하며, 심층 신경망이 잘 학습될 수 있도록 하기 위한 제반 학습 기술을 딥러닝이라고 한다.
- ◇ 심층 신경망을 학습하기 위해서는 경사 소멸 문제, 과적합 문제, 방대한 계산을 처리해야 하는 문제를 해결해야 한다.
- ♥ 시그모이드 대신 ReLU와 같은 활성함수를 사용함으로써 경사 소멸 문제를 개선할 수 있다.
- 신경망의 연결 가중치를 적절히 초기화하는 것은 훈련 결과가 올바르게 수렴하는데 도움이 되며, 그 결과 경사 소멸 문제를 개선할 수 있다.

정리하기

- ☑ 과적합 문제를 개선하기 위해서는 가중치 감쇠, 드롭아웃 등 심층 신경망이 지나치게 복잡도가 높아지는 것을 방지하기 위한 규제 기법이 사용된다.
- 합성곱 신경망(CNN)은 동물의 시각 피질의 원리를 바탕으로 설계된 신경망 모델로, 영상의 인식이나 비디오 처리 등의 응용에 많이 활용된다.
- CNN 모델은 필터를 적용하는 합성곱층, 입력을 서브샘플링하여 축소된 규모의 출력을 만드는 풀링층, 활성함수를 적용하는 층, 최종적인 인식 등의 처리를 하는 완전연결층 등으로 구성된다.