## **ENPM 667 Final Project**

# Controller Design for Double Pendulum Crane System



Pooja Kabra 117032444 December 2020

# **Table of Contents**

| System Model                                | 3  |
|---------------------------------------------|----|
| State Space Representation                  |    |
| Linearization of the Non-Linear System      | 10 |
| Controllability of the Linearized System    | 12 |
| Linear Quadratic Regulator Design           | 14 |
| Observability of the Linearized System      | 20 |
| Luenberger Observer Design                  | 22 |
| Linear Quadratic Gaussian Controller Design | 25 |

# **System Model**



### **Kinetic Energy for Mass M**

$$T_C = \frac{1}{2}M\dot{x^2}$$

## Kinetic Energy for Mass $m_1$

Angular velocity of  $m_1$  is given by  $l_1\dot{\theta_1}$  in the tangential direction.

 $\dot{x}$  is the forward velocity of support.



$$v_1 = (\dot{x} - l_1 \dot{\theta_1} \cos \theta_1) \hat{\imath} + (l_1 \dot{\theta_1} \sin \theta_1) \hat{\jmath}$$

$$v_1^2 = (\dot{x} - l_1\dot{\theta}_1\cos\theta_1)^2 + (l_1\dot{\theta}_1\sin\theta_1)^2$$

$$= \dot{x}^2 + l_1^2\dot{\theta}_1^2\cos^2\theta_1 - 2\dot{x}\,l_1\dot{\theta}_1\cos\theta_1 + l_1^2\dot{\theta}_1^2\sin^2\theta_1$$

$$= \dot{x}^2 + l_1^2\dot{\theta}_1^2 - 2\dot{x}\,l_1\dot{\theta}_1\cos\theta_1$$

$$T_{1} = \frac{1}{2}m_{1}v_{1}^{2}$$

$$T_{1} = \frac{1}{2}m_{1}\dot{x}^{2} + \frac{1}{2}m_{1}l_{1}^{2}\dot{\theta}_{1}^{2} - m_{1}\dot{x}l_{1}\dot{\theta}_{1}\cos\theta_{1}$$

#### Kinetic Energy for Mass $m_2$

On the same lines as  $m_1$ , we obtain for  $m_2$ 

$$T_2 = \frac{1}{2}m_2 \dot{x}^2 + \frac{1}{2}m_2 l_2^2 \dot{\theta_2}^2 - m_2 \dot{x} l_2 \dot{\theta_2} \cos \theta_2$$

**Total Kinetic Energy of the System** 

$$T = T_C + T_1 + T_2$$

$$T = \frac{1}{2}(M + m_1 + m_2)\dot{x}^2 + \frac{1}{2}m_1l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2l_2^2\dot{\theta}_2^2 - \dot{x}(m_1 l_1\dot{\theta}_1\cos\theta_1 + m_2 l_2\dot{\theta}_2\cos\theta_2)$$

**Potential Energy for Mass M** 

$$U_C = 0$$

Potential Energy for Mass  $m_1$ 

0.2

0.3

0.4

0.5

We assume the cart height as reference for calculating potential energy.

$$U_1 = -m_1 g \ l_1 \cos \theta_1$$

#### Potential Energy for Mass $m_2$

$$U_2 = -m_2 g \, l_2 \cos \theta_2$$

0.7

#### **Total Potential Energy of the System**

$$U = U_C + U_1 + U_2 = -m_1 g l_1 \cos \theta_1 - m_2 g l_2 \cos \theta_2$$

0.8

#### **Lagrangian Function**

$$L = T - U$$

$$L = \frac{1}{2}\bar{M}\dot{x}^2 + \frac{1}{2}m_1l_1^2\dot{\theta_1}^2 + \frac{1}{2}m_2l_2^2\dot{\theta_2}^2 - \dot{x}(m_1l_1\dot{\theta_1}\cos\theta_1 + m_2l_2\dot{\theta_2}\cos\theta_2) - m_1gl_1\cos\theta_1 - m_2gl_2\cos\theta_2$$

where 
$$\overline{M} = M + m_1 + m_2$$

0.9

The generalized coordinates in our given system are x,  $\theta_1$ ,  $\theta_2$ 

The Euler - Lagrangian equations are given as

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) - \frac{\partial L}{\partial x} = F$$

0.10

$$\frac{\partial L}{\partial \dot{x}} = \overline{M}\ddot{x} - m_1 \, l_1 \dot{\theta_1} \cos \theta_1 - m_2 \, l_2 \dot{\theta_2} \cos \theta_2$$

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{x}} \right) = \overline{M} \ddot{x} - m_1 \, l_1 \, \dot{\theta_1} \, \cos \theta_1 + m_1 \, l_1 \dot{\theta_1}^2 \sin \theta_1 - m_2 \, l_2 \dot{\theta_2} \, \cos \theta_2 + m_2 \, l_2 \dot{\theta_2}^2 \sin \theta_2$$

$$\frac{\partial L}{\partial x} = 0$$

$$\bar{M}\ddot{x} - m_1 \, l_1 \, \dot{\theta_1} \, \cos \theta_1 + m_1 \, l_1 \dot{\theta_1}^2 \sin \theta_1 - m_2 \, l_2 \dot{\theta_2} \, \cos \theta_2 + m_2 \, l_2 \dot{\theta_2}^2 \sin \theta_2 = F$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta_1}}\right) - \frac{\partial L}{\partial \theta_1} = 0$$

0.12

$$\frac{\partial L}{\partial \dot{\theta_1}} = m_1 \, l_1^2 \dot{\theta_1} - \dot{x} m_1 l_1 \cos \theta_1$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta_1}}\right) = m_1 l_1^2 \dot{\theta_1} - \ddot{x} m_1 l_1 \dot{\theta_1} \cos \theta_1 + \dot{x} m_1 l_1 \dot{\theta_1} \sin \theta_1$$

$$\frac{\partial L}{\partial \theta_1} = \dot{x} m_1 l_1 \dot{\theta_1} \sin \theta_1 - m_1 g \ l_1 \sin \theta_1$$

$$m_1 l_1^2 \ddot{\theta_1} - \ddot{x} m_1 l_1 \dot{\theta_1} \cos \theta_1 + m_1 g l_1 \sin \theta_1 = 0$$

0.13

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta_2}}\right) - \frac{\partial L}{\partial \theta_2} = 0$$

0.14

$$m_2 l_2^2 \dot{\theta_2} - \ddot{x} m_2 l_2 \dot{\theta_2} \cos \theta_2 + m_2 g l_2 \sin \theta_2 = 0$$

0.15

Solving **1.11** for  $\ddot{x}$ ,

$$\ddot{x} = \frac{F + m_1 l_1 \ddot{\theta_1} \cos \theta_1 - m_1 l_1 \dot{\theta_1}^2 \sin \theta_1 + m_2 l_2 \ddot{\theta_2} \cos \theta_2 - m_2 l_2 \dot{\theta_2}^2 \sin \theta_2}{\overline{M}}$$

0.16

Solving **1.13** for  $\dot{\theta_1}$ 

$$\ddot{\theta_1} = \frac{\ddot{x}\cos\theta_1 - g\sin\theta_1}{l_1}$$

Solving **1.15** for  $\ddot{\theta_2}$ ,

$$\ddot{\theta_2} = \frac{\ddot{x}\cos\theta_2 - g\sin\theta_2}{l_2}$$

## **State Space Representation**

The state vector can be written as

$$X = \begin{bmatrix} x \\ \dot{x} \\ \theta_1 \\ \dot{\theta_1} \\ \theta_2 \\ \dot{\theta_2} \end{bmatrix} \qquad \text{Hence, } \dot{X} = \begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\theta_1} \\ \ddot{\theta_1} \\ \dot{\theta_2} \\ \dot{\theta_2} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \end{bmatrix}$$

 $f_1$ ,  $f_2$ ,  $f_3$  are readily in terms of state variables.

Substituting for  $\ddot{\theta_1}$  and  $\ddot{\theta_2}$  in the equation for  $\ddot{x}$ , we can write  $\ddot{x}$  in terms of state variables.

From **1.16**, **1.17** and **1.18**, we obtain

$$\ddot{x} = \frac{F - m_1 g \sin \theta_1 \cos \theta_1 - m_2 g \sin \theta_2 \cos \theta_2 - m_1 l_1 \dot{\theta_1}^2 \sin \theta_1 - m_2 l_2 \dot{\theta_2}^2 \sin \theta_2}{\overline{M} - m_1 \cos^2 \theta_1 - m_2 \cos^2 \theta_2}$$

$$= f_2$$

0.1

We can compute functions for  $f_4$  and  $f_6$  by substituting  $\ddot{x}$  obtained in **1.19** back in **1.16** and **1.17**.

Below is the MATLAB code snippet to find  $f_4 = \ddot{\theta_1}$  and  $f_6 = \ddot{\theta_2}$ 

```
clc

syms M m1 m2 g 11 12 x xd th1 th1d th1dd th2 th2dd F

syms f1 f2 f3 f4 f5 f6

xdd_num = F- m1*g*sin(th1)*cos(th1)- m2*g*sin(th2)*cos(th2)-
    m1*11*(th1d^2)*sin(th1)- m2*12*(th2d^2)*sin(th2);
    xdd_den = (M+m1+m2) - m1*(cos(th1))^2 - m2*(cos(th2))^2;
    xdd = xdd_num/xdd_den;

th1dd= (xdd*cos(th1)-g*sin(th1))/11;
disp('th1dd = ');
pretty(th1dd);

th2dd= (xdd*cos(th2)-g*sin(th2))/12;
disp('th2dd = ');
```

pretty(th2dd);

## **Linearization of the Non-Linear System**

We now compute  $A_f$  matrix for the linearized system by taking the gradient of  $\dot{X}$  with respect to the state variables

Af = 
$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} & \frac{\partial f_1}{\partial x_4} & \frac{\partial f_1}{\partial x_5} & \frac{\partial f_1}{\partial x_6} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} & \frac{\partial f_2}{\partial x_4} & \frac{\partial f_2}{\partial x_5} & \frac{\partial f_2}{\partial x_6} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3} & \frac{\partial f_3}{\partial x_4} & \frac{\partial f_3}{\partial x_5} & \frac{\partial f_3}{\partial x_6} \\ \frac{\partial f_4}{\partial x_1} & \frac{\partial f_4}{\partial x_2} & \frac{\partial f_4}{\partial x_3} & \frac{\partial f_4}{\partial x_4} & \frac{\partial f_4}{\partial x_5} & \frac{\partial f_4}{\partial x_6} \\ \frac{\partial f_5}{\partial x_1} & \frac{\partial f_5}{\partial x_2} & \frac{\partial f_5}{\partial x_3} & \frac{\partial f_5}{\partial x_4} & \frac{\partial f_5}{\partial x_5} & \frac{\partial f_5}{\partial x_6} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_6} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_6} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_6} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_6} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_6} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_6} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_6} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_5} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_5} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_5} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_5} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_5} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial f_6}{\partial x_5} \\ \frac{\partial f_6}{\partial x_1} & \frac{\partial f_6}{\partial x_2} & \frac{\partial f_6}{\partial x_3} & \frac{\partial f_6}{\partial x_4} & \frac{\partial f_6}{\partial x_5} & \frac{\partial$$

and  $\boldsymbol{B_f}$  matrix by taking the gradient of  $\dot{X}$  with respect to input F

$$B_{f} = \begin{bmatrix} \frac{\partial f_{1}}{\partial F} \\ \frac{\partial f_{2}}{\partial F} \\ \frac{\partial f_{3}}{\partial F} \\ \frac{\partial f_{4}}{\partial F} \\ \frac{\partial f_{5}}{\partial F} \\ \frac{\partial f_{6}}{\partial F} \end{bmatrix}_{(\dot{x}=0,\theta_{1}=0,\theta_{2}=0)}$$

Below is the MATLAB code snippet to obtain  $A_f$  and  $B_f$ .

```
f1=xd;
f2 = xdd;
f3 = th1d;
f4= th1dd;
f5= th2d;
f6= th2dd;
f = [f1 \ f2 \ f3 \ f4 \ f5 \ f6];
q = [x xd th1 th1d th2 th2d];
u = [F];
q val = [0 0 0 0 0 0];
A j = jacobian(f, q);
A_f = subs(A_j, q, q_val);
% A f in symbolic form
disp('A f = ');
disp(A f);
B j = jacobian(f, u);
B f = subs(B j, q, q val);
% B f in symbolic form
disp('B f = ');
disp(B f);
```

#### Command Window

```
Af =
[ 0, 1,
                       0, 0,
                                             0, 0]
[ 0, 0,
                -(g*m1)/M, 0,
                                     -(g*m2)/M, 0]
[ 0, 0,
                       0, 1,
                                             0, 0]
[0, 0, -(g + (g*m1)/M)/11, 0, -(g*m2)/(M*11), 0]
[ 0, 0,
                       0, 0,
                                             0, 1]
[ 0, 0,
         -(g*m1)/(M*12), 0, -(g + (g*m2)/M)/12, 0]
Bf =
       0
     1/M
       0
 1/(M*11)
 1/(M*12)
```

## **Controllability of the Linearized System**

$$C = [B AB A^2B \dots A^{n-1}B]$$

A continuous time-invariant linear state-space model is controllable if and only if

$$rank(C) = n$$

where n is the number of state variables.

Here because we have only one input, our C matrix will be a square matrix of  $n \times n$  dimension. A square matrix is full rank if and only if its determinant is nonzero

```
CO = [B_f A_f*B_f (A_f^2)*B_f (A_f^3)*B_f (A_f^4)*B_f (A_f^5)*B_f];
disp('det(CO) = ');
pretty(det(CO))
```

#### **Command Window**

It is easy to observe that

$$l_1^2 - 2l_1l_2 + l_2^2 \neq 0$$
  
 $(l_1 - l_2)^2 \neq 0$   
 $\therefore l_1 \neq l_2$ 

Thus, for the system to be controllable lengths of cables should not be same for the two masses.

Below is the MATLAB code snippet to check controllability. As we have 6 state variables, Rank = 6 implies our system is controllable.

```
p = [M m1 m2 l1 l2 g];
p_val = [1000 100 100 20 10 10];
% A_f in double form
A_f = double(subs(A_f, p, p_val));
% B_f in double form
B_f = double(subs(B_f, p, p_val));

Co = ctrb(A_f,B_f);
disp('Co = ');
disp(Co);
disp('rank(Co) = ');
disp(rank(Co));
```

#### Command Window

```
Co =
 1.0e-03 *
        1.0000 0 -0.1500 0 0.1475
     0
        0 -0.1500 0 0.1475
  1.0000
       0.0500
              0 -0.0325
                          0 0.0236
  0.0500
        0 -0.0325 0
                          0.0236
        0.1000 0 -0.1150 0 0.1298
     0
  0.1000
        0 -0.1150
                    0 0.1298
rank(Co) =
   6
```

## Linear Quadratic Regulator Design

The objective of LQR control design is to minimize the quadratic cost function given as

$$J = \int_0^\infty x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) d\tau$$

where x and u are the state and control of the LTI system.

$$Q \succeq 0$$
,  $R \succ 0$ ;

(A, B) are stabilizable

Regardless of the values of Q and R

matrices *J* has a unique minimum that can be obtained by solving the Algebraic Riccati Equation:

$$A^{T}X + XA - XBR^{-1}B^{T}X + Q = 0.$$
  
 $for u(t) = -kx(t),$   
 $K = R^{-1}B^{T}P$ 

Q and R are our design parameters that we adjust depending on whether we want to penalize state variables or control variables. A large value of Q implies we want the system to stabilize with minimum changes in state variables. On the other hand, a small R means our input is inexpensive and we can afford to spend large(weighted) energy to stabilize our system.[1]

The eigen values of the linearized system matrix  $\boldsymbol{A_f}$  before applying LQR are:

```
poles = eigs(A_f);
disp(poles);
```

```
0.0000 + 1.0531i

0.0000 - 1.0531i

0.0000 + 0.7356i

0.0000 - 0.7356i

0.0000 + 0.0000i

0.0000 + 0.0000i
```

All eigen values are on the imaginary axis. Thus, the system will produce sustained oscillations on the output.

MATLAB Code snippet and Simulation For Linearized System:

```
% Q matrix
Q = zeros(6);
Q(1,1) = 100; % moderate penalty on x
Q(2,2) = 1;
Q(3,3) = 10000000; % high penalty on th1
Q(4,4) = 1;
Q(5,5) = 1000000; % high penalty on th2
Q(6,6) = 1;
% R matrix
R = 0.01; % inexpensive F
% full state feedback gain
K = lqr(A f, B f, Q, R);
% closed loop system gain
Ac = (A_f - B_f*K);
% output variables: x,th1,th2
C = [1 \ 0 \ 0 \ 0 \ 0; \ 0 \ 0 \ 1 \ 0 \ 0; \ 0 \ 0 \ 0 \ 1 \ 0];
D = [0];
% Plant + LQR
LQR sys = ss(Ac, B f, C, D);
```

The eigen values of the linearized system matrix  $A_f$  before applying LQR are:

```
% initial conditions
X0 = [10 0 pi/2 0 pi/6 0]

time= 0:0.1:100
[y,t,x]=initial(LQR_sys,X0,time);
plot(t,y);

% Lyapunov's indirect method after LQR
poles_c = eigs(Ac);
disp(poles_c);
```

The eigen values of the linearized system matrix  $A_f - B_f K$  after applying LQR are:

```
Command Window

-0.4762 + 1.1385i
-0.4762 - 1.1385i
-0.1233 + 0.7700i
-0.1233 - 0.7700i
-0.1599 + 0.1686i
-0.1599 - 0.1686i
```



#### MATLAB Code snippet and Simulation For Non-Linear System:



```
MATLAB Function × +
     2
 3 -
        M = 1000; % mass of cart
 4 - 5 -
       m1 = 100; % mass 1
        m2 = 100; % mass 2
 6 -
       11 = 20; % cable length of first pendulum 20
 7 –
8 –
       12 = 10; % cable length of second pendulum 10
        g = 10; % acceleration due to gravity
9
10
11 -
12 -
13 -
         \text{xdd num} = \text{F-} \ \text{m1*g*sin(th1)*cos(th1)} - \ \text{m2*g*sin(th2)*cos(th2)} - \ \text{m1*11*(th1d^2)} \\ \text{*sin(th1)} - \ \text{m2*12*(th2d^2)*sin(th2)}; 
        xdd_{den} = (M+m1+m2) - m1*(cos(th1))^2 - m2*(cos(th2))^2;
        xdd = xdd_num/xdd_den;
14
15 -
16
17 -
18
        th1dd= (xdd*cos(th1)-g*sin(th1))/l1;
        th2dd= (xdd*cos(th2)-g*sin(th2))/12;
19
20 -
        f1= xd;
21 -
        f2= xdd;
22 -
        f3= th1d;
23 -
        f4= th1dd;
24 -
        f5= th2d;
25 -
      f6= th2dd;
```



## **Observability of the Linearized System**

For time-invariant linear systems, if the row rank of the observability matrix, defined as

is equal to  $\boldsymbol{n}$  , then the system is observable.

$$rank(0) = n$$

where n is the number of state variables.

We have four cases of the output variables.

Case 1: *x* 

$$C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Case 2:  $\theta_1$ ,  $\theta_2$ 

$$C_2 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Case 3: x,  $\theta_2$ 

$$C_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Case 4: x,  $\theta_1$ ,  $\theta_2$ 

$$C_4 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

```
C1 = [1 0 0 0 0 0];
C2 = [0 \ 0 \ 1 \ 0 \ 0 \ 0; \ 0 \ 0 \ 0 \ 1 \ 0];
C3 = [1 \ 0 \ 0 \ 0 \ 0; \ 0 \ 0 \ 0 \ 1 \ 0];
C4 = [1 \ 0 \ 0 \ 0 \ 0; \ 0 \ 0 \ 1 \ 0 \ 0; \ 0 \ 0 \ 0 \ 1 \ 0];
O1 = obsv(A f,C1);
disp('rank(O1) = ');
disp(rank(01));
O2 = obsv(A_f,C2);
disp('rank(O2) = ');
disp(rank(02));
O3 = obsv(A f,C3);
disp('rank(O3) = ');
disp(rank(03));
O4 = obsv(A f,C4);
disp('rank(O4) = ');
disp(rank(04));
```

```
Command Window

rank(O1) = 6

rank(O2) = 4

rank(O3) = 6

rank(O4) = 6
```

Thus, the system is not observable for output vector [  $oldsymbol{ heta}_1$  ,  $oldsymbol{ heta}_2$ ].

# **Luenberger Observer Design**

MATLAB Code snippet and Simulation For Linearized System:

```
Poles_Luen = [-200 -300 -100 -60 -20 -4]';

% Output variables: x
C1 = [1 0 0 0 0 0];
L = place(A_f',C1',Poles_Luen)';
Luen_sys = ss(A_f-L*C1,B_f,C1,D);
% initial conditions
X0 = [10 0 pi/2 0 pi/6 0];

time= 0:0.1:100;
[y,~,x]=initial(Luen_sys,X0,time);
step(Luen_sys);
title('Luenberger Observer on Linearized System: y=[x]')
```



```
% Output variables: x, th2
C3 = [1 0 0 0 0 0; 0 0 0 0 1 0];
L = place(A_f',C3',Poles_Luen)';
Luen_sys = ss(A_f-L*C3,B_f,C3,D);
% initial conditions
X0 = [10 0 pi/2 0 pi/6 0];

time= 0:0.1:100;
[y,~,x]=initial(Luen_sys,X0,time);
step(Luen_sys);
title('Luenberger Observer on Linearized System: y=[x th2]')
```



```
% Output variables: x, th1, th2
C4 = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];
L = place(A_f',C4',Poles_Luen)';
Luen_sys = ss(A_f-L*C4,B_f,C4,D);
% initial conditions
X0 = [10 0 pi/2 0 pi/6 0];
time= 0:0.1:100;
[y,~,x]=initial(Luen_sys,X0,time);
step(Luen_sys);
title('Luenberger Observer on Linearized System: y=[x th1 th2]')
```



# Linear Quadratic Gaussian Controller Design



## Inside the subsystem:



## References

 $[1] https://www.researchgate.net/post/how_to_determine_the_values_of_the_control_matrices_Q_and_R_for_the_LQR_strategy_when_numerically_simulating_the_semi-active_TLCD#:~:text=The%20parameters%20Q%20and%20R,with%20less%20(weighted)%20energy$