$$a_{11}x + a_{12}y = b_1$$
$$a_{12}x + a_{22}y = b_2$$

Решение:

"+" понимается как сложение по модулю 2. По условию параметры таковы, что система имеет решения.

1.
$$a_{11} = a_{12} = 1$$

Тогда $x = b_1 + y$ и из второго уравнения $(a_{21} + a_{22})y = b_2 + a_{21}b_1$. По условию это уравнение обязано иметь решения, а значит, $y = b_2 + a_{21}b_1$, $x = b_1 + b_2 + a_{21}b_1 = \bar{a}_{21}b_1 + b_2$.

$$2. \ a_{11} = 0, \ a_{12} = 1$$

Тогда $y = b_1$. Подставляя это в уравнение 2, получим $x = b_2 + a_{22}b_1$.

3.
$$a_{11} = 1$$
, $a_{12} = 0$

Аналогично предыдущему пункту $x = b_1$, $y = b_2 + a_{21}b_1$.

4.
$$a_{11} = a_{12} = 0$$

Здесь два уравнения вырождаются в одно, а значит, надо еще перебрать значения a_{21} и a_{22} . Напишем решение системы для каждой пары возможных значений a_{21} и a_{22} :

Получаем:

$$x = a_{11}a_{12}(\bar{a}_{21}b_1 + b_2) \vee \bar{a}_{11}a_{12}(b_2 + a_{22}b_1) \vee a_{11}\bar{a}_{12}b_1 \vee \bar{a}_{11}\bar{a}_{12}a_{21}b_2;$$

$$y = a_{11}a_{12}(b_2 + a_{21}b_1) \vee \bar{a}_{11}a_{12}b_1 \vee a_{11}\bar{a}_{12}(b_2 + a_{21}b_1) \vee \bar{a}_{11}\bar{a}_{12}\bar{a}_{21}a_{22}b_2 = a_{11}(b_2 + a_{21}b_1) \vee \bar{a}_{11}\bar{a}_{12}\bar{a}_{21}a_{22}b_2$$

$$\vee \bar{a}_{11}a_{12}b_1 \vee \bar{a}_{11}\bar{a}_{12}\bar{a}_{21}a_{22}b_2$$