Digital Stereo 10-Band Graphic Equalizer Using the DSP56001

Digital Stereo 10-Band Graphic Equalizer Using The DSP56001

INTRODUCTION

A stereo 10-band graphic equalizer implemented with the DSP56001 is discussed in this application note. The theory behind the infinite impulse response (IIR) algorithm used to perform the bandpass filtering is examined briefly. The connection between the analog passive filter and the digital IIR filter is presented. Similar analytical techniques are employed to characterize the filter response in both the analog and digital domains. Exact algebraic expressions are derived relating center frequency (f_0), quality factor (Q), gain (G), and phase angle (Φ) to the IIR coefficients. For frequencies much lower than one-half of the sample frequency, the gain and phase equations reduce to a simple form (symmetric over the logarithm of frequency), which is equivalent to those describing the resistor-capacitor-inductor (RCL) network of Figure 1(a). The IIR coefficients are easily obtained by evaluating these formulas based on a quality factor, center frequency, and center frequency (resonant frequency) gain (G_0). A graphic equalizer is composed of parallel filters with identical quality factor and center frequencies based on equal intervals of the log of frequency. Intervals differing by a factor of two (octaves) and ranging from 31 Hz to 16 kHz were chosen, thus covering most of the audio spectrum.

Figure 1(a). Analog Passive RCL Bandpass Network

The effect of coefficient quantization is shown to be severe for word size less than 24 bits. An approximate formula is derived to calculate the allowed quantized frequency bands as a function of the coefficient word length. The lowest allowed band for 16-bit coefficient word length is 54.8 Hz (using the transfer function of Equation (4)); whereas, it is 3.4 Hz for 24-bit cofficient word length. These results agree with those predicted by the "Filter Design & Analysis System" filter design software.¹

A hardware interface to a SONY 650ESD compact disk player utilizing the DSP56000/1's synchronous serial interface (SSI) port is described, thus yielding an all-digital graphic-equalizer system (i.e., analog-to-digital converter (ADC) and digital-to-analog converter (DAC) are not needed). This project demonstrates the use of the SSI port for receiving and transmitting data, the implementation of a set of parallel second-order IIR filters, and an example of a low-cost, memory-port bootstrap EPROM/DSP56001 system.

©MOTOROLA INC., 1988 APR2

FILTER ANALYSIS

The fundamental filter used is a bandpass, single-response pole, second-order IIR filter. (Even though two poles appear inside the unit circle in the z-plane, only one pole lies between 0 and π , the region of valid operation.) The filter center frequency, f_0 , and the bandwidth, Δf , can be adjusted through software control. The primary advantage of this second-order digital filter is the minimal number of instructions (a total of four adds and multiplies) needed to implement the algorithm.

THE PASSIVE SERIES RESONANT NETWORK

To describe the characteristics of the digital filter, the equivalent analog passive RCL bandpass network (Figure 1(a)) will be examined. By straightforward voltage divider analysis, the transfer function can be written as follows:²

$$\frac{V_o}{V_i} = \frac{R}{R + j(\Omega L - 1/\Omega C)}$$
 (1a)

where $\Omega = 2\pi f$. The gain is the magnitude of Equation (1a):

$$G(\Omega) = \left[1 + \Omega^2 \left(\frac{\Omega^2 - \Omega_0^2}{\Omega\Omega_0}\right)^2\right]^{-\frac{1}{2}}$$
 (1b)

where $\Omega_0 = (LC)^{-1/2}$ and $\Omega = \Omega_0$ L/R. The phase angle, ϕ , is found by taking the ratio of the imaginary to real parts of the transfer function of Equation (1a):

$$\phi = \tan^{-1} \left[\Omega \left(\frac{\Omega_0^2 - \Omega^2}{\Omega \Omega_0} \right) \right]$$
 (1c)

The equivalent s-plane expression is calculated by substituting $s = j\Omega$:

$$H(s) = \frac{Rs}{Rs + Ls^2 + 1/C}$$
 (2)

An op-amp active-filter circuit with essentially the same response as the passive RCL network is shown in Figure 1(b).³ This active filter has several advantages over the passive network in that it eliminates the inductor; it is essentially isolated from input and output loading and can provide signal gain to the system.

Figure 1(b). Op-Amp Active Bandpass Filter

A digital-transfer-function representation of Equation (2) may be obtained by applying the bilinear transformation:^{4,5}

$$s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \tag{3a}$$

where $z = e^{j\theta}$, $\theta = \omega T$, and T is the sample period (see Figure 2). Equation (3a) can also be expressed as follows:

$$\Omega = \frac{2}{T} \tan(\theta/2) \tag{3b}$$

using the definitions of s and z. Substituting Equation (3a) into Equation (2) yields the z-plane transfer function:

$$H(z) = \frac{\alpha(1-z^{-2})}{\frac{1}{2}-\gamma z^{-1}+\beta z^{-2}}$$
 (4)

where the coefficients, α , β , and γ , are related to R, C, and L by

$$\alpha = \frac{RT/2}{T^2/2C + RT + 2L} \tag{5a}$$

$$\gamma = \frac{2L - T^2/2C}{T^2/2C + RT + 2L}$$
 (5b)

$$\beta = \frac{T^2/4C - RT/2 + L}{T^2/2C + RT + 2L}$$
 (5c)

The nonlinear relationship between the analog domain frequency, Ω , and the digital domain frequency, ω , as shown by Equation (3b), is often referred to as the frequency warp.⁶ As the frequency starts from zero, both Ω and ω are approximately equal, since the $\tan\theta \approx \theta$ for small angles. However, as Ω approaches infinity, ω approaches $2\pi f_s/2$. In this particular

Figure 2. Standard Sampled Data, x(n)

application, most of the interesting and useful frequencies satisfy the small angle approximation (SAA) where $\theta < \pi/4$. Thus, using the SAA simplifies the digital analysis, and a direct correspondance to the analog RCL network of Figure 1(a) is established. Although the SAA indeed simplifies the analysis, it must be used very carefully in derivations because the nature of this IIR filter depends on very small differences of numbers. If not used correctly, the SAA can mask out these differences and give totally erroneous results.

THE DIFFERENCE EQUATION

To implement the transfer function from Equation (4) as an IIR filter, it is first necessary to transform it to a difference equation in the discrete time domain. In this form, the filter can be directly implemented in software. Applying the inverse z-transform operator, Z^{-1} , to Equation (4), yields the following:⁷

$$Z^{-1}\{H(z)\} = Z^{-1}\{Y(z)/X(z)\}$$
 (6a)

$$Z^{-1}\{Y(z)[\frac{1}{2}-\gamma z^{-1}+\beta z^{-2}]\} = Z^{-1}\{X(z)[\alpha(1-z^{-2})]\}$$
 (6b)

The time-delay property of the z-transform can be stated as follows:

$$X(z)z^{-m} = Z\{[x(n-m)]\}$$
 (7)

where n is the discrete time index variable associated with continuous time sampling at a rate T (see Figure 2). Evaluating Equation (6b), using the property of Equation (7), gives the final IIR difference equation:

$$y(n) = 2\{\alpha[x(n) - x(n-2)] + \gamma y(n-1) - \beta y(n-2)\}$$
(8)

The coefficients, α , β , and γ , in the difference equation (Equation (8)) are used to adjust the filter response (gain and phase as a function of frequency). The representation of the time-varying data is based on standard notation used in digital filter theory. 8,9,10 Thus, x(n) is the current sampled data represented as an N-bit signed fraction; x(n-1) is the previous data word; and x(n-2) is the data word previous to x(n-1). The n is the time index where it is assumed that the sample period, T, is constant and is related to the sample frequency, f_s , by $T=1/f_s$. For example, the time between x(n) and x(n-2) is 2T. Sampled values of the input signal are only collected at integral multiples of T (i.e., the x(n)'s are standard sampled/digitized data).

The y(n) is similar to the input data, x(n), but is instead the output data from the difference equation algorithm. As before, y(n) is the current output value; y(n-1) is the previous value; and y(n-2) is the value previous to y(n-1). Even though it is assumed that the input data is a signed fraction (a number between one and minus one), the y(n)'s can be greater than one (or less than minus one) unless scaling is performed to prevent this overflow condition. The choice of fractional values is not essential to proper behavior of the IIR algorithm, but it is a great convenience to both the analysis and the software implementation on the DSP56001.

The coefficients, α , β , and γ , in the difference equation (Equation (8)) are also fractional values (i.e., between one and minus one). As it will later be shown (Equation 15 with $G_0 = 1$), scaling at the output can be controlled by imposing the following condition on two of these three coefficients:

$$\alpha = \frac{1}{4} - \beta/2 \tag{9}$$

MOTOROLA

This formula guarantees that, at the center frequency, the gain is one and the phase difference is zero. In this case, the bandpass filter acts as an attenuation filter (and phase shifter) for all frequencies other than the center frequency. Limiting the gain to one and the input to a fraction scaled to a maximum of one does not always prevent overflow at the output. For example, a square wave with an amplitude excursion from -1 to 1 has a fundamental sine component with an amplitude of $4/\pi$, which is greater than one by about 30 percent. Therefore, care must exercised when specifying gain and dynamic range for filters to prevent distortion.

RESPONSE OF THE DIGITAL FILTER

The gain and phase response can be calculated solely from Equation (4). (The advantage of complex numbers is demonstrated in that both gain and phase information are present in the transfer function.) By definition, the gain is the absolute magnitude of H(z). In the RCL circuit, the gain is simply the ratio of the resistance to the magnitude of the total complex impedance. The ratio of the real to imaginary components of impedance is equal to the tangent of the phase. Likewise, the ratio of real to imaginary components of H(z) is equal to the tangent of the phase for the digital case.

Euler's identity is implemented to ease the calculation of gain, $G(\omega)$, and phase, $\theta(\omega)$:

$$e^{j\theta} = \cos\theta + j\sin\theta \tag{10}$$

The transfer function (Equation (4)) then becomes:

$$H(e^{j\theta}) = \frac{\alpha(e^{j2\theta} - 1)}{\frac{1}{2}e^{j2\theta} - \gamma e^{j\theta} + \beta} = \frac{\alpha(\cos 2\theta - 1) + j\sin 2\theta}{(\frac{1}{2}\cos 2\theta - \gamma\cos \theta + \beta) + j(\frac{1}{2}\sin 2\theta - \gamma\sin \theta)}$$
(11)

where $\theta = \omega T$. For example, $\theta = \pi/2$ would correspond to $f = f_s/4$ (since $\omega = 2\pi f$ and $T = 1/f_s$). If $f_s = 44.1$ kHz (the standard for compact disc digital audio), then $\theta = \pi/2$ would be a frequency of 11.025 kHz.

The filter gain is found by evaluating the following expression:

$$G(\omega) = \left[H(e^{j\theta})H^*(e^{j\theta})\right]^{1/2}$$
(12)

and, after some algebraic and trigonometric manipulations, becomes:

$$G(\omega) = \frac{2\alpha \sin\theta}{\{[(\frac{1}{2} - \beta)\sin\theta]^2 + [(\frac{1}{2} + \beta)(\cos\theta - \cos\theta_0)]^2\}^{\frac{1}{2}}}$$
(13)

where

$$\cos\theta_0 = \gamma/(1/2 + \beta) \tag{14}$$

is the filter center frequency.

Examination of the gain in Equation (13) shows several important features:

- The gain, $G(\omega)$, is proportional to α .
- The gain at the center frequency, ω_0 , is

$$G_0 = 2\alpha/(1/2 - \beta) \tag{15}$$

as previously noted in Equation (9).

MOTOROLA

- The bandwidth is adjusted by β (that also effects the center frequency as shown by Equation (14)).
- Equation (13) is symmetric (neglecting the zero at $\theta = \pi$) on a logarithmic scale. This characteristic of the gain can be seen more easily by taking the SAA of Equation (13) where

$$\sin\theta \approx \theta$$
. (16)

and

$$\cos\theta \approx 1 - \theta^2/2 \tag{17}$$

so that

$$G_{a}(\omega) = \frac{G_{0}}{\left[1 + \left(\frac{\frac{1}{2} + \beta}{\frac{1}{2} - \beta}\right)^{2} \left(\frac{\theta_{0}^{2} - \theta^{2}}{2\theta}\right)^{2}\right]^{\frac{1}{2}}}$$
(18)

Substitution of $\theta=k\theta_0$ or $\theta=\theta_0/k$ yields equivalent values of gain, thus proving the gain is symmetric over the log of frequency. The subscript "a" denotes that the SAA was used in that expression.

The phase shift, $\phi(\omega)$, is found from the ratio of the imaginary to real part of H(z) from Equation (11):

$$\tan \phi = \frac{\text{Im}[H(e^{j\theta})]}{\text{Re}[H(e^{j\theta})]}$$
(19)

After same algebraic and trigonometric manipulations, Equation (19) can be written as

$$\tan \phi = \frac{(\frac{1}{2} + \beta)(\cos\theta - \cos\theta_0)}{(\frac{1}{2} - \beta)\sin\theta}$$
 (20)

Applying the SAA simplifies the previous result:

$$\tan \phi_{a} = \frac{(1/2 + \beta)(\theta_{0}^{2} - \theta^{2})}{(1/2 - \beta)2\theta}$$
 (21)

The SAA can be used to approximate the filter center frequency, θ_0 , from Equation (14):

$$\theta_{0_{a}} = \left[\frac{1 + 2\beta - 2\gamma}{\frac{1}{2} + \beta} \right]^{\frac{1}{2}}$$
 (22)

The SAA is accurate within a few precent for angles up to $\pi/4$. (This SAA corresponds to a filter frequency of f<f_s/8.)

The bandwidth of the filter is most easily determined from Equation (18). Generally, two frequencies are considered, one on each side of the center frequency, θ_0 . The gain at each of the frequencies, θ_1 and θ_2 , is equivalent and is commonly chosen so that the value of gain is $G_0/\sqrt{2}$. Since $20log(1/\sqrt{2})=-3$, the bandwidth can be defined as $\Delta\theta=\theta_2-\theta_1$, where $G(\theta_1)=G(\theta_2)=G_0/\sqrt{2}=-3$ dB of the center frequency gain. As previously noted, $\theta_1=\theta_0/k$ and $\theta_2=k\theta_0$ for a filter symmetric about the center frequency over the log of frequency.

The Q of the filter in such a case is as follows:

$$Q = \frac{\theta_0}{\Delta \theta} = \frac{\theta_0}{k\theta_0 - \theta_0/k} = \frac{k}{k^2 - 1}$$
 (23)

where k>1. Since, by definition, the bandwidth is determined at the frequencies corresponding to a gain of $G_0/\sqrt{2}$, using Equation (18), the following term is equal to one:

$$\left(\frac{\frac{1}{2} + \beta_{a}}{\frac{1}{2} - \beta_{a}}\right)^{2} \quad \left(\frac{\theta_{1}^{2} - \theta_{0}^{2}}{2\theta_{1}}\right)^{2} = 1 \tag{24}$$

and using Equation (23) to solve for β_a in terms of Q yields

$$\frac{\frac{1}{2} + \beta_{a}}{\frac{1}{2} - \beta_{a}} = \frac{2}{\theta_{0}} \left(\frac{k}{k^{2} - 1} \right) = 2Q/\theta_{0}$$
 (25)

Rearranging terms results in the final form:

$$\beta_{a} = \frac{Q - \theta_0/2}{2Q + \theta_0} \tag{26}$$

where $\theta_0 = 2\pi f_0/f_s$. The subscript "a" is used to denote that the SAA was used in this derivation (i.e., by definition of Q from Equation (18)).

Solving for γ in Equation (14) gives

$$\gamma = (\frac{1}{2} + \beta)\cos\theta_0 \tag{27}$$

For unity gain at the center frequency, α (Equation (15)) becomes

$$\alpha = (\frac{1}{2} - \beta)/2 \tag{28}$$

Equation (18) now simplifies to the following equation for gain:

$$G_{a}(\omega) = \left[1 + Q^{2} \left(\frac{\theta_{0}^{2} - \theta^{2}}{\theta_{0}\theta}\right)^{2}\right]^{-\frac{1}{2}}$$
(29)

Equation (21) becomes

$$\phi_{\mathbf{a}}(\omega) = \tan^{-1} \left[Q \left(\frac{\theta_0^2 - \theta^2}{\theta_0 \theta} \right) \right]$$
 (30)

Equations (13), (14), (15), and (20) provide a complete, theoretically accurate, concise description of the digital filter response described by the difference equation (Equation (8)). The coefficients, α and γ , can be found from β , θ_0 , and G_0 . β must be determined from the gain (Equation (13)) by picking $G(\theta_1)$ and θ_1 , then finding the value of β from the equality. These four equations are exact and can be used over the entire frequency range from 0 to π .

Equations (26) through (30) provide a simplified set of formulas that are reasonably accurate for $f < f_s/8$ and for unity gain at the center frequency.

APR2 MOTOROLA

ANALYSIS CONSTRAINTS OF THE BILINEAR TRANSFORMATION

THE PASSIVE SERIES RESONANT NETWORK shows how to determine the IIR coefficients from the RCL values of a passive network filter based on the bilinear transformation. This technique is very powerful, especially if the frequencies of interest are much lower than the sample frequency (as is often true in digital audio applications) so that the SAA can be used. The resonant and cutoff frequency and quality factor, Q, of most RCL networks are known or can be easily determined. THE DIFFERENCE EQUATION discusses how to convert the transfer function to a difference equation, which is the final form (for software implementation) of the digital IIR filter. The relationship connecting the R, L, and C values of the analog filter to the coefficients α , β , and γ of the digital filter (from Equations 5a thru 5c) holds true only for frequencies where the SAA is valid. This frequency range makes up the linear region of the bilinear transformation where (from Equation 3b) $\tan \theta \approx \theta$. In this case, a direct correspondence between the response of almost any RCL network and an IIR filter's coefficients can be established, as previously demonstrated for the bandpass filter network. This technique lends itself to audio applications because the response of a network is usually described over the log of frequency. The audio range is basically logarithmic, thus the SAA applies to most of the range of interest since f_s/8 is very close to $f_s/2$ on a log scale (see Figures 11 and 12).

COEFFICIENT QUANTIZATION

Coefficient quantization is an effect that depends solely on the word length of the filter coefficients. Equations (13), (14), and (15) yield values for α , β , and γ for given values of center frequency and bandwidth. These formulas are exact. However, the word size of the variables used to represent the coefficients in the filter algorithm are of finite length. Therefore, only certain discrete values of center frequency, bandwidth, and resonant frequency gain are obtainable.

To analyze the effects of coefficient quantization in this particular digital filter, let N be the number of bits used to represent data in the algorithm. Assuming that the coefficients are fractions, the smallest number that can be represented is therefore (see reference 2):

$$\delta = 2^{-(N-1)} \tag{31}$$

Using Equation (31), β and γ can be represented as follows:

$$\gamma = 1 - n\delta \tag{32a}$$

$$\beta = \frac{1}{2} - m\delta \tag{32b}$$

since $\beta < \frac{1}{2}$ and $|\gamma K|$. This can be easily seen by evaluating the zeros of the transfer function (Equation 4) and then calculating the magnitude of that complex number. The resulting value is the distance from the origin to the pole in the complex plane and is equal to 2β . Now, since the poles must lie within the unit circle $|\gamma| < 1$. Using Equation (14), it can be seen that $|\gamma| < 1$. The integers n and n take on values from 1 to 2^{N-1} . Equation (22) can be written as

$$\theta_0 = \left[\frac{1 + 2(\frac{1}{2} - m\delta) - 2(1 - n\delta)}{\frac{1}{2} + (\frac{1}{2} - m\delta)} \right]^{\frac{1}{2}} = \left[\frac{2(n - m)\delta}{1 - m\delta} \right]^{\frac{1}{2}}$$
(33)

By inspection, the lowest nonzero value of θ_0 is with n=2 and m=1. The lowest obtainable frequency is then

$$f_0 = \theta_0 f_s / 2\pi = \frac{1}{2\pi} \left[2 \left(\frac{\delta}{1 - \delta} \right) \right]^{\frac{1}{2}} = f_s 2^{-N/2} / \pi$$
 (34)

Assuming f_s =44.1 kHz, the lowest obtainable frequency for 16 bits is 54.8 Hz; for 24 bits, it is 3.4 Hz. Clearly, 16 bits does not yield the coefficient accuracy needed to implement filter responses in the low-frequency bands (i.e., 20 to 200 Hz) for audio applications. The 24-bit word length of the DSP56001 is more than enough to ignore coefficient-quantization errors.

HARDWARE DESCRIPTION

The basic hardware description of the SSI and compact disk player interface and a layout of the system are presented in the following paragraphs.

SSI AND COMPACT DISK PLAYER INTERFACE

Figure 3(a) shows the data signals tapped from the compact disk player (CDP). Three of the four signals are clocks. The data line is cut to form two data signals, DATOUT and DATIN. The format of the data is stereo multiplexed (i.e., left-right-left-right. . .). The data length for each channel is 24 bits: 16 of which are significant; the upper eight are sign extended. Since the audio sample frequency used on the CDPs is 44.1 kHz, the bit clock (BITCLK) runs at 48×44.1 kHz=2.1168 MHz. The word clock (WRDCLK) runs at 1/24 of the BITCLK, which is 88.2 kHz; the left-right clock (LRCLK) runs at 44.1 kHz. These signals are tapped from the CDP before the up-samplig section. The format of these signals varies among manufacturers and models; therefore, this particular application should only be used as an example.

The SSI consists of six pins, which are the upper bits of port C (PC3 through PC8):

PC3	SC0	Serial Control 0
PC4	SC1	Serial Control 1
PC5	SC2	Serial Control 2
PC6	SCK	SSI Serial Clock
PC7	SRD	SSI Receive Data
PC8	STD	SSI Transmit Data

Figure 3(a). Signals Tapped from CDP

Four memory-mapped hardware registers control the configuration and operation of the SSI port:

Port C Control Register [X:\$FFE1]
Control Register A [X:\$FFEC]
Control Register B [X:\$FFED]
SSI Status Register [X:\$FFEE]

The port C control register (PCC) is used to select port C pins as SSI or general-purpose input/output (I/O). If all of the SSI pins are to be used, bits 3 through 8 are set (i.e., PCC=\$1F8). The DPS56000/1 code for setting the PCC is as follows:

MOVEP #\$1F8,X:FFE1

where X:\$FFE1 is the memory address of the PCC register. In this particular example, shown in Figure 3(b), the CDP's WRDCLK is connected to SC2, which is configured as a frame sync. A frame then consists of one 24-bit word. The LRCLK is connected to SC0 as a serial input flag whose status can be determined by polling the SSI status register, bit 0 (IF0), shown in Figure 4.

The immediate value of #\$6000 is loaded into control register A for this particular implementation. This sets the word length to 24, ignores the clock prescaler (because an external clock is used), and selects the normal mode.

Control register B is loaded with #\$B200, which chooses synchronous mode, enables the receive and transmit shift registers, arms the receive interrupt, and sets the serial pins to inputs (SC0, SC1, SC2, and SCK). Note that the frame sync length is set to a word frame, which may at first appear to violate the SSI operation. However, since the frame sync is external, the actual sampling of the frame occurs during the first SSI clock cycle of the frame sync clock.

Figure 3(b). CDP to SSI Interface

Figure 4. Read-Only SSI Status Register (X:\$FFEE)

Figure 5. SSI Control Register A (X:\$FFEC)

Figure 6. SSI Control Register B (X:\$FFED)

BLOCK DIAGRAM

The block diagram of Figure 7 shows the basic hardware layout of the system. The EPROM's data is loaded into the DSP56001 P:RAM upon powerup (or reset). Slide potentiometers, one for each frequency band, are multiplexed into an 8-bit ADC. The value of the voltage from each slide potentiometer is proportional to the gain used to multiply the particular bandpass filter response. Figure 8 is a complete schematic diagram of the system. The analog multiplexers used are three 4051, 8:1 MUXs. The address is generated by latching a 7-bit address with a 74LS374 octal D-type latch off the DSP56001's data bus. The ADC read enable is generated by ANDing the read (\overline{RD}) and data strobe (\overline{DS}) from the DSP56001; the MUX select enable is generated by ANDing write (\overline{WR}) and data strobe (\overline{DS}) . With this particular system, only 20 slide potentiometers are used for setting frequency response; one is used for master volume. Therefore, a total of 21 channels of the MUX are used, resulting in only three of the four 4051s being used.

Data received at the SSI port initiates an interrupt every 11.3 ms (the inverse of 88.2 kHz). This is the rate at which 24 bits are read, corresponding to a complete word of data from the left or the right channels. SCO (the LRCLK) is then polled to determine which channel

Figure 7. Block Diagram of DPS56001 Graphic Equalizer

needs processing. (In an optimized configuration, the LRCLK can also be used as the frame sync, using the network mode, where a frame consists of two 24-bit words, thus eliminating the need for the WRDCLK.) The received word is processed by the 10 parallel IIR filters, corresponding to the 10 left slide potentiometers or the 10 right slide potentiometers, and then transmitted back to the CDP. The CDP's DAC receives the data a total of two words later; thus, a latency of two sample periods has been introduced. This latency does not cause any undesirable effects since everything becomes delayed by the same amount. Jumpering the DATIN to DATOUT will completely bypass the DSP56001 system and eliminate the delay (useful as the standard bypass mode of an audio equalizer). Equivalently,

Figure 8. Schematic Diagram of DSP56001 Graphic Equalizer

later; thus, a latency of two sample periods has been introduced. This latency does not cause any undesirable effects since everything becomes delayed by the same amount. Jumpering the DATIN to DATOUT will completely bypass the DSP56001 system and eliminate the delay (useful as the standard bypass mode of an audio equalizer). Equivalently, the bypass mode can be achieved by receiving the data at the SSI and then transmitting the same data without processing (also a useful technique for debugging).

ALGORITHM AND SOFTWARE

The following paragraphs discuss the filter algorithm and the final implementation of the DSP56000/1 code.

FILTER ALGORITHM

Figure 9(a) shows a high-level implementation of the difference formula of Equation (8). The array indexes I, J, and K are modulo 3 (i.e., they will only contain the values 0, 1, and 2). The current value and previous two values of data are stored in a cyclic buffer (arrays X and Y). Figure 9(b) shows the input array, X, for the first four sample times. The output array, Y, is treated in a similar fashion.

```
I = 0
     A = ALPHA
                                    \begin{array}{l} Y(0) = 0 \\ Y(2) = 0 \end{array}
                     X(1) = 0
     B = BETA
     C = GAMMA
100 READ ADC
     X(I) = ADC
                     IF J < 0 THEN J = J+3
     J = I - 2
                     IF K < 0 THEN K = K+3
     K = I-1
     Y(I) = 2 * (A * (X(I) - X(J)) + C * Y(K) - B * Y(J))
     OUTPUT Y(I) TO DAC
     I = I + 1
                     IF I > 2 THEN I = 0
     GOTO 100
```

Figure 9(a). IIR Filter Algorithm (Equation (8))
Coded in a High-Level Language

t = 1	t = 2
I = 0 x(n) = ADC1	K = 0 x(n-1) = ADC1
J = 1 x(n-2) = 0	$I = 1 \times (n) = ADC2$
K = 2 x(n-1) = 0	$J = 2 \times (n-2) = 0$
t = 3	t = 4
J = 0 x(n-2) = ADC1	I = 0 x(n) = ADC4
K = 1 x(n-1) = ADC2	J = 1 x(n-2) = ADC2
$I = 2 \times (n) = ADC3$	K = 2 x(n-1) = ADC3

Figure 9(b). IIR Data Arrays During First Four Iterations

The equivalent DSP56000 code to perform the IIR filter difference equation is shown as follows:

MOVE	X:ADC,B			;Read external ADC.
MOVE	B,Y:(R5)			;Store ADC value in
				; cyclic buffer as x(n).
CLR	В	X:(R0) + X0	Y:(R4)+,Y0	;Get β and $y(n-2)$.
MAC	– X0,Y0,B	X:(R0) + X0	Y:(R5)+,Y0	$; B = B - \beta y (n - 2).$
MAC	X0,Y0,B		Y:(R5),Y0	$;B=B+\alpha x(n).$
MAC	- X0,Y0,B	X:(R0)+,X0	Y:(R4) + ,Y0	$;B=B-\alpha x(n-2).$
MACR	X0,Y0,B			$;B=B+\gamma y(n-1).$
MOVE	B,Y:(R4) -			Store result in cyclic
				; buffer as y(n).
MOVE	B,X:DAC			;Write y(n) to external
	•			: DAC.

The code would often be an interrupt routine where the interrupt is activated by an external sample rate clock (such as a CDP). The first two instructions read the data from a memory-mapped ADC and store the data in the x(n) array. The next five instructions perform the four multiply/accumulates necessary to implement the difference equation. The last two instructions store the result in y(n) and the memory-mapped DAC. The index registers, R0, R4, and R5, point to the coefficient table, y(n), and x(n), respectively (see Figure 10). Index registers, R0, R4, and R5, are modulo 3 as are the indexes I, J, and K in the high-level language example.

Figure 10. IIR Filter Data Structures

The theoretically minimum execution time is determined by the number of terms in the difference equation (four in this case), which equate to the number of multiply/accumulates necessary to calculate y(n). The actual execution time depends how the data is stored, indexed, and manipulated, which is largely application dependent. The following code demonstrates the same filter done in four instructions (neglecting I/O). The tradeoff is in the number of data ALU registers used (see reference 5).

MOVE	X:ADC,Y1			
MPY MAC MAC MACR	- X0,Y0,B X0,Y0,B X0,Y1,B - X0,Y1,B	X:(R0) - ,X0 X:(R0) - ,X0 X:(R0) - ,X0	B,Y0 Y1,Y:(R5) + Y:(R5),Y1	; $B = -\beta y(n-2)$; $B = B + \gamma y(n-1)$; $B = B + \alpha x(n)$; $B = B - \alpha x(n-2)$
MOVE	B,X:DAC			

Register Y1 is now used in addition to X0 and Y0. Also, X0, Y0, and B must not be modified before the next call to this routine. Numerous ways exist to code the difference equation; it cannot be done in fewer instructions then the number of terms. The details are then up to tradeoff considerations for the remainder of the software system.

FINAL IMPLEMENTATION OF THE DSP56000/1 CODE

To construct a graphic equalizer, a set of 10 IIR bandpass filters are used in parallel for each of the stereo audio channels. Using 1 kHz as a starting point, successively dividing down by two to 31 Hz, and successively multiplying by two up to 16 kHz, a 10-band octave response is generated. The coefficients for the lower eight bands are easily determined by means of Equations (26) through (30). Equations (13), (14), (15), and (20) are used for the highest two bands. Unity gain at the center frequency is chosen, and a quality factor, Q, is arbitrarily selected to be 1.4. Table 1 lists the 10 sets of coefficients used to generate the response curves shown in Figure 11. The pole/zero plot of Figure 12 shows the location of the poles for all 10 bands. The response curve is not the final response of the system, but shows the response of each individual filter superimposed on the same graph. The total audio response would be the summation of each filter, where the gain of each can independently vary from g_{LO} to g_{HI} (where g<0 represents a phase change of π).

Table 1. 10-Band Bandpass IIR Coefficients

Center	IIR Coefficients								
Frequency	α	β	γ						
31	0.000787462865	0.498425074	0.998415336						
62	0.00157244917	0.496855102	0.996816209						
125	0.00316016172	0.493679677	0.993522095						
250	0.00628062774	0.487438745	0.986812425						
500	0.0124054279	0.475189144	0.972715729						
1000	0.0242101804	0.451579639	0.941937749						
2000	0.0461841095	0.407631781	0.871031797						
4000	0.0845577687	0.330884463	0.699565951						
8000	0.1199464	0.2601072	0.3176087						
16000	0.159603	0.1800994	-0.4435172						

The primary difference between the analog filter versus the digital response is the zero at $f_s/2$. Anything above this frequency is not allowed, because it would violate the basic sampling theorem that says all frequencies must be lower than half of f_s to prevent aliasing. This zero causes the higher frequency bands to be asymmetric over the logarithm of frequency. The SAA formulas derived previously must be used cautiously, or not at all, at these higher frequencies ($\theta > \pi/4$ or $f > f_s/8$). The exact formulas (Equations (13), (14), (15), and (20)) should be used at the high frequencies. Mathematically, this zero is the consequence of mapping $s = j\Omega$, the infinite axis, into the finite unit circle of the z-plane (Equation (3)). This zero at $\theta = \pi$ is the same zero found at $\Omega = \inf \inf t$ with the analog filter. As evidenced by the frequency warping (Equation (3b)), both the analog frequency, Ω , and the digital frequency, ω , start at zero, but as Ω approaches infinity, f approaches $f_s/2$. However, with the SAA, both the analog and digital frequencies are equal, since $tan\theta \approx \theta$ for θ small.

Figure 11. 10-Band Bandpass IIR Filter Response

Figure 13 shows the total algorithmic system for the graphic equalizer. Each block labeled F_i is one IIR filter; g_i is the gain coefficient set by the i^{th} potentiometer that scales F_i . Because of the direct through-path, the condition of all g_i 's equal to zero produces a flat response (the output is due only to the direct path from the input). The passthrough gain at 2^{-2} is required to scale the g_i 's so that g_i 's a fraction. All g_i 's equal to one will essentially produce a gain of five ($\sim +$ 14 dB). However, this gain will not be exactly flat since ripple is produced in the response curve due to the finite number and quality factor, Q_i of each band (also true of analog equalizers). All g_i 's set to -0.2 will produce an overall gain of 0.2 (~ -14 dB); again there will be ripple in the response.

The scaling of the data, shown in Figure 13, is done for several reasons. First, the multiplication of the input data by 2^8 normalizes the data (the input is 16-bit data sign-extended to 24 bits). This technique will minimize word-length and roundoff error effects in the IIR blocks. Second, the left shift by two (2^2) after volume scaling compensates for the pass-through gain of 2^{-2} (normalizes the data) so that anything above 24 bits will be limited rather than truncated. The final multiplication by 1/256 (2^{-8}) shifts the data back to its original 16-bit (sign-extended to 24-bit) format.

The execution time for each IIR block (as implemented in this example) is 0.7 μ s. For all 10 filters of one channel, the total time is 7 μ s. Adding in approximately 4 μ s for volume scaling, limiting, receiving and transmitting to the SSI, etc. gives a total execution time of 11 μ s. Since the interrupt period is ($\frac{1}{f_s} \times \frac{1}{2}$) = 11.3 μ s, the control-panel polling portion of the software is executed for 0.3 μ s for every 11.3 μ s. The ratio represents a duty cycle of two percent for slide potentiometer input and 98 percent for audio processing. However, this data cycle poses no problem in that the front panel settings are changed slowly with respect to the 44.1-kHz sample rate of the digital audio.

As discussed previously, the minimum number of instructions (thus, the minimum execution time) is four since the filters have only four coefficients (i.e., terms). Although the example described in this application note is not the minimum design, it was chosen for its simplicity. There are numerous ways to optimize the algorithm (at the expense of simplicity, memory, etc.) to approach the theoretical limit of 0.4 µs per IIR filter. The difference equation (Equation (8)), which is a direct form 1 representation, can be expressed in other forms such as direct form 2 (or the canonical direct). Other forms have advantages, such as better stability due to roundoff or overflow, or may use less memory due

Figure 12. 10-Band Pole/Zero Plot

Figure 13. Data-Flow Diagram Showing Implementation of IIR Graphic Equalizer with the DSP56001

to storing filter states rather than storing input and output states. Regardless of the method used to implement the transfer function, the optimized execution time is simply the number of multiply/adds needed to calculate the difference equation. In practice, it may not be possible to approach this minimum because of addressing and data manipulation constraints. Because of the parallel moves allowed with the DSP56000/1, it is much easier to solve these indexing and data-move tasks. Generally, a good IIR design is one in which the total number of instructions is one plus the number of terms in the difference equation. This design allows one instruction cycle to set up data before beginning the MAC operations.

Flowcharts of the basic software algorithm that comprises the graphic equalizer are shown in Figure 14. The software is composed of two independent routines: the slide potentiometer scan routine and the sample/processing interrupt routine. The scan routine (Figure 14(a)) scans 21 slide potentiometers, reduces the 8-bit value to 5 bits (to reduce the size of the lookup table), and uses that value as an index into a gain table. The value from the gain table is stored as the gi's for use by the sample/process routine. The slide potentiometer scan routine executes for approximately two percent of the total time.

Figure 14(b) shows the sample/process routine, which is executed via the SSI receive interrupt every 11.3 µs. This routine consists of two nearly identical sections, one for leftchannel and one for right-channel servicing. The channel requested is determined by the SC0 flag on the SSI port, which is tied directly to the CDP's LRCLK. Data is received from the SSI port, processed by the filter algorithm (previously shown in Figure 13), scaled by the volume control, and transmitted back to the CDP, all in less than the sample time window of 11.3 µs. This routine is executed for 98 percent of the time.

MOTOROLA

Figure 14(a). Algorithm Flowchart for Slide Potentiometer Scan Routine (Main Program)

Figure 14(b). Algorithm Flowchart for CDP Interface and IIR Filter Processing (Interrupt Routine)

FOOTNOTES

- 1"Filter Design & Analysis System," chp. 2, p. 15.
- ²Brophy, *Basic Electronics*, pp. 88-92.
- ³Lancaster, Active Filter Cookbook, pp. 10-18.
- ⁴Oppenheim and Schafer, *Digital Signal Processing*, pp. 206-211.
- ⁵Rabiner and Gold, *Theory and Application*, pp. 219-224.
- ⁶Oppenheim and Schafer, *Digital Signal Processing*, p. 210.
- ⁷Strawn, *Digital Audio Signal Processing*, pp. 117-126.
- ⁸Oppenheim and Schafer, *Digital Signal Processing*, pp. 8-15.
- ⁹Rabiner and Gold, *Theory and Application*, pp. 9-16.
- ¹⁰Strawn, Digital Audio Signal Processing, pp. 33-35.
- ¹¹/bid., p. 116.
- ¹²Rabiner and Gold, *Theory and Application*, pp. 41-43.

REFERENCES

- 1. Brophy, J. J. Basic Electronics for Scientists. New York: McGraw-Hill, 1966.
- 2. Chrysafis, A. "Fractional and Integer Arithmetic." Motorola Application Note, forthcoming.
- 3. "Filter Design & Analysis System." Version 1.3, Momentum Data Systems, 1985.
- 4. Lancaster, D. Active Filter Cookbook. Indianapolis: Howard W. Sams & Co., Inc., 1975.
- 5. Lindsley, B. "Digital Filters on DSP56000/1." Motorola Application Note, forthcoming.
- 6. Oppenheim, A. V., and Schafer, R.W. *Digital Signal Processing*. New Jersey: Prentice-Hall, 1975.
- 7. Rabiner, L. R., and Gold, B. *Theory and Application of Digital Signal Processing*. New Jersey: Prentice-Hall, 1975.
- 8. Strawn, J., et al. *Digital Audio Signal Processing An Anthology*. William Kaufmann, 1985.

APR2

1			page	132	
2					
3		*****	****	****	********
4		*****	*****	****	********
5		;*			*
6		;*		DUAL 10-BAND I	ID RAND- *
7		.*		FILTER GRAPHI	•
8		; *		Tractale districts	*
9		•	*****	******	******
10		•			******
11		•			
. 12					
13			*****	*****	e reducedo
14	•	•		*****	•
		-		· I/O EQUATES	-
15		; *******	****	****	(A.K.
16	00000010				
17	00000040	START	EQU	\$0040	
18	0000FFFF	M_IPR	EQU	\$FFFF	
19	0000FFFE	M_BCR	EQU	\$FFFE	
20	0000FFEC	H_CRA	EQU	\$FFEC	
21	0000FFED	M_CRB	EQU	\$FFED	
22	0000FFE1	M_PCC	EQU	\$FFE1	
23	0000FFEE	M_SR	EQU	\$FFEE	
24	0000FFEF	M_TX	EQU	\$FFEF	
25	0000FFEF	M_RX	EQU	\$FFEF	
26					
27					
28		;******	*****	*****	**
29		* RESET	VECTOR		*
30		;******	******	******	**
31					
32	P:0000		ORG	P:\$0000	
33	P:0000 0C0040		JMP	START	
34					
35					
36		*****	****	******	**
37		•		RUPT VECTOR	*
38		•		*****	**
39		,			
40	P:000C		ORG	P:\$000C	
41	P:000C 0BF080		JSR	LRTEST	
	0000F1		JSR	LRIESI	
42					
43					
44		;******	*****	******	**
45		;* MAIN	PROGRAM		· *
46		;******	*****	*******	**
47					
48	P:0040		ORG	P:START	
49					

50		·			
50 51		; Mask Inter			
52		, mask tillers			
53	P:0040 0003F8	ORI	#\$03,MR		
54					
- 55		;			
56		; Initialize	SSI Port		
57		;			
58	P:0041 08F4BE			#\$3300,X:M_BCR	;3 wait states for ADC and MUX.
59	P:0043 08F4BF	MOVEP		#\$3000,X:N_IPR	;SSI RCV INT priority level.
40	003000			#E4000 V.M CDA	Set SSI word length - 2/
60	P:0045 08F4A0 006000			#\$6000,X:M_CRA	;Set SSI word length = 24.
61	P:0047 08F4AL 003200			#\$3200,X:M_CRB	;Set SSI to synchronous,
62				###### 11 ii ===	;and enable RE and TE.
63	P:0049 08F4A1			#\$01FF,X:M_PCC	;Turn on SSI Port.
64					
65		· · · · · · · · · · · · · · · · · · ·			•
66		; Move constar	ts from P:	mem to X:mem and Y:me	m
67		· · · · · · · · · · · · · · · · · · ·			•
68					
69	P:004B 62F400 000180			#\$18D,R2	;** Filter Coefficients.
70	P:004D 332000) MOVE		#\$20,R3	
71					;Table located at X:\$20.
72	P:004E 061E80		#30,COLO	OP ·	;Length of table = 30.
73	P:0050 07DA84	MOVE		P:(R2)+,X0	;Order is beta, alpha,
74.	P:0051 445B00) MOVE		X0,X:(R3)+	;gamma for each band.
75		COLOOP			
76					
77	P:0052 62F400 0001A			#\$1AB,R2	;** Filter Gain Look-up.
78	P:0054 334000) MOVE		#\$40,R3	
79					;Table located at X:\$40.
80	P:0055 062080 000058		#32,FGL0	10P	;Length of table = 32 (5 bits).
81	P:0057 07DA8	MOVE		P:(R2)+,X0	;Minimum value is2, maximum
82	P:0058 445B0) MOVE		X0,X:(R3)+	;value is 0.999, center value is 0.
83		FGLOOP			
84					
85	P:0059 62F40			#\$1CB,R2	;** Volume Gain Look-up.
	0001CI			//a/a ==	
86	P:005B 33600) MOVE		#\$60,R3	. Table 1 V. #40
87	P:005C 06208) DO	#32,VGL0		;Table located at X:\$60. ;Length of table = 32 (5 bits).
88	00005		nue, talu	·	, Langell of Laure - 32 (3 Dits).
89	P:005E 07DA8	MOVE		P:(R2)+,X0	;Minimum value is 0, maximum
90	P:005F 445B0			X0,X:(R3)+	;value is 0.9999.
91		VGLOOP			
92				Hedra an	** W * 1 * 1 !
93	P:0060 62F40			#\$1EB,R2	;** Mux Sel Address.
	0001E				

94 05	P:0062	330000		MOVE		#0,R3		-11 1
95 96	P:0063	061580		DO	#21,MSLO)P		;Table located at Y:\$00. ;Length of table = 21.
		000066						
97		07DA84		MOVE		P:(R2)+,X0		;These are the MUX select addresses
98	P:0066	4C5B00		MOVE			X0,Y:(R3)+	; for each of the 21 slide pots.
99			MSLOOP					
100								
101								
102			;					
103			; Set	runtim	e variables			
104		//=/00	;			# ** **********************************		
105		44F400 200000		MOVE		#\$200000,X0		;Constants used for data scaling.
106	P:0069	447000 00001D		MOVE		X0,X:>\$1D		
107	P:006B	44F400 000080		MOVE		#>\$80,X0		·
108	P:006D	447000		MOVE		X0,X:>\$1E		
		00001E				•		
109								
110								
111			;					
112			; Clea	r x(n)	and y(n) ta	ble arrays		
113			;					
114	P:006F	200013		CLR	A			;Clear Y:\$20 to Y:\$BF.
115	P:0070	322000		MOVE		#\$20,R2		
116								;This area is used for runtime
117	P:0071	06A080 000073		DO	#\$AO,XYNO	ELR		;tables, x(n) and y(n).
118	P:0073	5E5A00	•	MOVE			A,Y:(R2)+	;X:\$20\$22 - x(n) left chan.
119			XYNCLR					;X:\$40\$42 - y(n) teft chan. 31 Hz.
120								;X:\$44\$46 - y(n) left chan. 62 Hz.
121								<i>i</i>
122								;X:\$60\$62 - y(n) left chan. 16 kHz.
123								
124								;X:\$30\$32 - x(n) right chan.
125								;X:\$80\$82 - y(n) right chan. 31 Hz.
126								;X:\$84\$86 - y(n) right chan. 62 Hz.
127								;
128						•		;X:\$A0\$A2 - y(n) right chan. 16 kHz.
129								
130								
131			;	• • • • • •				
132			; Clea	r g(n)	and SP(n) a	rrays		
133	D 007/	200047	; ······					
134	P:0074			CLR	A,			;Clear X:\$00 to X:\$14.
135 136	P:0075	320000		MOVE		#0,R2		This is gain array which contains
	D-007/	0/4500		••	# # 4			;fractional gain value from look-up
137		061580		DO	#21,GNCLR			;table used to scale filtered band.
138	P:0078	565A00		MOVE		A,X:(R2)+		
139			GNCLR					
140	P:0079	328000		MOVE	•	#\$80,R2		;Clear X:\$80 to X:\$94.
141								;This is 8-bit value read from
142	P:007A			DO	#21,SWNCL			

		00007C						
143	P:007C	565A00		MOVE -		A,X:(R2)+		reduced to 5 bits is used as an
144			SWNCLR			• , ,		;index into gain lookup table at
145								;X:\$40. The value from lookup table
146								; is a 24-bit fraction which is stored
147								;at X:\$00\$X:\$14.
148								
149								
150			;·····		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•
151							upt Routines	
152			;	••••		•••••	•••••	
153	D 0070	7//000						
154 155	P:0070			MOVE		#\$40,R4		;** Yi(n):L-ch
156	P:007E			MOVE		#4,84		
157	P:007F P:0080			MOVE		#\$80,R6		;** Yi(n):R-ch
158	P:0081			MOVE		#4,N6		white seams a sile
159	P:0082			MOVE		#\$20,R5		;** X(n):L-ch
160	P:0083			MOVE		#2,M5		add Manach
161	P:0084			MOVE		#\$30,R7 #2,M7		;** X(n):R-ch
162		03021		HOTE		#£,MI		
163	P:0085	302000		MOVE		#\$20,R0		:** IIR Coeff
164	P:0086			MOVE		#29,M0		in the coeff
165	P:0087			MOVE		#0,R3		;** Gain Coeff
166	P:0088			MOVE		#20,M3		, dam over
167	P:0089	3B8000		MOVE		#\$80,N3		
168								
169								
170			;	• • • • • • • •	•••••			
171			; Init	SSI Int	terrupt			
172			;					
173	P:008A	08F4AD 00B200		MOVEP		#\$B200,X:M	CRB	;Enable SSI (RIE) interrupt.
174	P:008C	00FCB8		ANDI	#SFC,MR			;Unmask all interrupts.
175								
176								
177			;	*				
178				•	Monitor S			
179			;			•••••		
180	0.0000	72/000	1.000.4					•
181 182	P:0080	324000	LOUPT	MOVE		#\$40,R2		;R2 points to gain lookup table.
183	D-009E	041590		00	#24 ppou	.,		
103	P:008E			DO	#21,BPCHA	N		;Scan all 21 pots.
184	P:0090	0000AF		MONT			W 4571 W4	
185	P:0090	475300		MOVE			Y:(R3),Y1	;MUX select address of pot.
186	P:0091	4F7000		MOVE	•		V4 V-89000	acal and MRV abancel
100		008000		HOTE			Y1,Y:\$8000	;Select MUX channel.
187	P:0093			DO	#200,ADC	Pn1		;Wait for analog MUX to stabilize.
		000095		-	#EOO, FADO_	NO 1		, wait for analog hox to stabilize.
188	P:0095			NOP				
189			ADC_RD1					
190								
191	P:0096	5FF000		MOVE			Y:\$1000,B	;WR strobe to ADC (starts data
	1	001000					, ,	
192	P:0098	000000		NOP				;conversion).

193	P:0099 000000		NOP				;Note: A15 tied to WR of ADC.
194	₽:009A 5FF000		MOVE		Y:5	8000,B	
***	008000				.		
195	P:009C 06F481 00009E		90	#500,AD0	C_RDZ		;Wait for conversion ADC conversion.
196	P:009E 000000		NOP				
197	7.007E 000000	ADC_RD2	NOP				
198		ADC_RDZ					
199	P:009F 20001B		CLR	В .			-
200	P:00A0 5FF000		MOVE	9	٧.	\$8000,B	;Read slide pot data from ADC.
200	008000		PICYC			30000, 6	, kead strue pot data iron Apc.
201	000000						
202	P:00A2 45F400		HOVE		#>\$FF,X1		;Mask off upper 16 bits.
	0000FF		*****		n-43 : \$6.		finance of appearing piess
203	P:00A4 20006E		AND	X1,B			
204	P:00A5 21A500	•	MOVE	,	B1,X1		;X1 now contains 8-bit pot value.
205	, , , , , , , , , , , , , , , , , , , ,		*****		2.,		gree from wateresting to are pure enemal
206	P:00A6 47EB00		MOVE		X:(R3+N3),Y1		:Previous pot value.
207	P:00A7 20007C		SUB	Y1,B			, rottom por racau
208	P:00A8 20002E		ABS	B			;If absolute value of difference
209	P:00A9 47F400		MOVE	_	#>9,Y1		; is less than 9, then skip.
	000009						, , , , , , , , , , , , , , , , , , , ,
210							
211	P:00AB 20007D		CMP	Y1,B			;Note: 9 is rather arbitrary.
212	P:00AC OAFOAB		JMI	SKIP			•
	0000AF						
213							·
214	P:00AE 456B00		MOVE		X1,X:(R3+N3)		;If greater than 9, than update
215	P:00AF 205B00	SKIP	MOVE		(R3)+		;X:(\$80+pot_index).
216		BPCHAN					;This comparsion eliminates jitter
217	P:00B0 000000		NOP				;about a point.
218							;End of 21 pot scan.
219							
220							
221	P:00B1 061480 0000b0		DO	#20,8PCH	IAN2		;For all pots except volume control.
222							
223	P:0083 45E800		MOVE		X:(R3+N3),X1		;Load X1 with slide pot value.
224	P:0084 20AF00		MOVE		X1,8		;
225							•
226	P:0085 20002A		ASR	В			;Reduce to 5-bit value for gain
227	P:0086 20002A		ASR -	В			;table lookup.
228	P:00B7 20002A		ASR	8			
229							
230	P:0088 21BA00		MOVE		B1,N2		
231	P:0089 000000		NOP				
232	P:008A 45EA00		MOVE		X:(R2+W2),X1		;Load X1 with fractional value
233							;from table lookup.
234	P:00BB 57E300		MOVE		X:(R3),B		;Compare gain fraction to previous
235	P:00BC 20006D		CMP	X1,B			;value in X:(R3).
236	P:00BD OAFOAA 0000CF		JEQ	NOCHNG			;Skip if no change.
237	P:00BF 0AF0A7		JGT	NSLOPE			;If new value is greater than
	0000009						•
238							;previous value, go to negative
239							;slope routine.

2/0						
240 241	D-0001 /7E/00	DEL ODE	1404/E	÷	#0 0004 V4	A
241	P:00C1 47F400 000347		MOVE		#0.0001,Y1	;Positive slope routine.
242	P:00C3 200078	PRAMP	ADD	Y1,B		;Increment previous gain value
243	P:00C4 576300		MOVE		B,X:(R3)	;by 0.0001 towards latest value
244						;read from slide pot.
245	P:00C5 200060		CMP	X1,B		;Continue updating this value
246	P:00C6 0E90C3		JLT	PRAMP		;until previous value exceeds
247						;new value.
248	P:00C7 0AF080 0000CF		JMP	NOCHNG		Exit positive slope routine.
249						;Note: In the course of this loop,
250						the SSI interrupt will occur many
251						; times, so that the band-pass
252						;filter response gain will be ramped
253						;smoothly to its new value. Thus,
254						;clicking noises generated from a
255						;coarse 5-bit gain table will be
256						;eliminated.
257						
258	P:00C9 47F400 FFFCB9	NSLOPE	MOVE		#-0.0001,Y1	;Negative slope routine.
259	P:00C8 200078	NRAMP	ADD	Y1,B		;Same as above but negative ramp
260	P:00CC 576300		MOVE		B,X:(R3)	;to new gain value.
261	P:00CD 20006D		CMP	X1,B		
262	P:00CE 0E70CB		JGT	NRAMP		
263						
264	P:00CF 456300	NOCHNG	MOVE		X1,X:(R3)	;Update gain table with latest value
265	P:0000 205B00		MOVE		(R3)+	read from slide pot.
266	•	BPCHAN2				
267						;Continue for the all 20 of the
268						;band-pass slide pots.
269					•	
270	P:0001 326000	VOLUME	MOVE		#\$60,R2	;Pot 21 (volume) is treated
271	P:00D2 57F000 000094		MOVE		X: \$9 4,B	;seperately since it uses a different
272	P:00D4 20002A		ASR	B		;gain lookup table.
273	P:0005 20002A		ASR	В		;Reduce 8-bit value from ADC volume
274	P:0006 20002A		ASR	В		;slide pot to 5-bits.
275						
276	P:0007 21BA00		MOVE		B1,N2	;Use this value for index into
277	P:0008 000000		NOP			;lookup table.
278	P:00D9 45EA00		MOVE		X:(R2+N2),X1	;X1 now contains volume gain
279						;fraction.
280	P:00DA 5F9E00		MOVE		Y:\$1E,B	, , , , , , , , , , , , , , , , , , , ,
281	P:00DB 20006D		CMP	Х1,В		;gain.
282	P:00DC OAFOAA		JEQ	NOCHNG2		;If it has not changed, jump.
207	0000EE					
283	P:00DE 0AF0A7 0000E8		JGT	NSLOPE2		;If it is different, decide whether
284						;to ramp negative or positive.
285	P:00E0 47F400 0001A3	PSLOPE2	MOVE		#0.00005,Y1	;Positive slope routine for volume.
286	P:00E2 200078	PRAMP2	ADD	Y1,B		;Increment previous value by 0.00005
287	P:00E3 5F1E00		MOVE		B,Y:\$1E	•
288	P:00E4 20006D		CMP	X1,B		;passed new value. Then exit loop.

289	P:00E5 0E90E2		JLT	PRAMP2			;Note: As before, this loop will be
290							;interrupted many times by the SSI
291							;receive flag full. The volume gain
292		•					;stored at Y:\$1E will ramp smoothly
293							;towards its new value.
294	P:00E6 0AF080 0000EE		JMP	NOCHNG2			
295							
296	P:00E8 47F400	NSLOPE2	HOVE		#-0.00005,	Y1	;Negative slope routine for volume.
	FFFE5D						
297	P:00EA 200078	NRAMP2	ADD	Y1,8			;Same as before, but ramps in the
298	P:00EB 5F1E00		MOVE			B,Y:\$1E	;opposite direction.
299	P:00EC 20006D		CMP	X1,B			
300	P:00ED DE70EA	•	JGT	NRAMP2			
301							
302							
303	P:00EE 401E00	NOCHNG2	MOVE			X1,Y:\$1E	;Update volume gain value with
304	P:00EF 205B00		MOVE		(R3)+	•	;newest value read from slide pot.
305					•		
306	P:00F0 0C008D		JMP	LOOP1			;Do everything all over again
307			••••			*	;continuing slide pot scan loop.
308				-			, and the part was tooks
309							
310		****	*****	*****	****		
311		•		T ROUTINE	*		
312		•		*****	***		
313		•					•
314	P:00F1 0AAEA0	LRTEST	JSET	#0,X:M_S	R,RIGHT		;Check SCO (LRCLK from CDP) to
315	000114						edetamine chick channel to account
316							determine which channel to process.
317		. *******	****	****	****		
		•			•		
318				SERVICE	-		
319		;	*****		~~~~		
320							
321		;Save reg	isters				
322							
323	P:00F3 491F00	LEFT	MOVE		B,L:\$1F		;Save register B.
324							
325		;Recieve					
326	P:00F4 084F2F		MOVEP		X:M_RX,B		;Read SSI data.
327							
328	P:00F5 21E600		MOVE		B,YO		;Copy SSI data to YO.
329	P:00F6 0502A4		MOVE		#2, # 4	•	;Set y(n) modulo for 3 words.
330	P:00F7 310A00		MOVE		#10,R1		;Set R1 index to filter gain values
331							;for the left channel.
332							
333	P:00F8 449E13		CLR	A	X:\$1E,X0		;X:\$1E = \$000080
334	P:00F9 205CD8		MPY	X0,Y0,B	(R4)+		;Scale input data
335	P:00FA 596500		MOVE			BO,Y:(R5)	;by 2^16.
336	P:00FB 0008F8		ORI	#\$08,MR			;Set scale mode to
337		,					;scale up (left
338							;shift) when data is
339						٠	;moved from B to XO.

340			;	 				
341			; ALL	10 Filte	rs			
342						_		
343	P:00FC	060A80 000104		DO	#10,LFBAN	D		;For all 10 bands of
344								;left channel.
345	P:00FE	F0981B		CLR	В	X:(R0)+,X0	Y:(R4)+,Y0	;X0=beta;Y0=y(n-2).
346	P:00FF	FOB8DE		MAC	-X0,Y0,B	X:(R0)+,X0	Y:(R5)+,Y0	;X0=alphe;Y0=x(n).
347	P:0100	4ED5DA		MAC	X0,Y0,B		Y:(R5)-,Y0	;X0=alpha;Y0=x(n-2).
348	P:0101	F098DE		MAC	-X0,Y0,B	X:(RO)+,XO	Y:(R4)+,Y0	;X0=gamma;Y0=y(n-1).
349	P:0102	46D9DB		MACR	X0,Y0,B	X:(R1)+,Y0		;YO=gain for scaling.
350	P:0103	185C00		MOVE		B,X0	B,Y:(R4)+	;XO=filter reponse.
351	P:0104	204CD2		MAC	XO,YO,A	(R4)+N4		;A=scaled response.
352			LFBAND		• •			;Continue for all
353								;10 left chan bands.
354								•
355	P:0105	00F7B8		ANDI	#\$F7,MR			;Turn off scale mode.
356	P:0106	052BA4		MOVE		#43,M4		;Set Yi(n) modulo to wrap around to
357								;start of entire y(n) buffer.
358			*******					your or antito you, parter
359			: Volu	me Scali	na			
360			******					
361	P:0107	449000	•	MOVE		X:\$1D,X0		;X:\$1D=\$200000.
362	P:0108			MOVE		W. C. I. D. J. NO.	Y:(R5)+,Y0	•
363	P:0109			MAC	X0,Y0,A			
364	P:010A			MOVE	vatioty	á vo	Y:\$1E,Y0	;scale x(n) down
365	FIUTOR	210400		HOVE		A,X0		;by 2^-2. Add this
366								;in to the total
367	0.0100	200008		Unv	V0 V0 8			filter response.
	P:010B	200000		MPA	X0,Y0,B			;YO=volume gain.
368								;Scale total left
369	- 0400	20/074		***	_	4545 114		;data by volume.
370	P:010C			ASL	В	(R4)+N4		
371	P:010D	ZUUUSA		ASL.	8			;Scale result by
372	- 0400	40=/00						;2^2.
373	P:010E	008000		HOVE		B,X0	#>\$8000,Y0	;Now, move B to XO
374	P:0110	200008		MPY	X0,Y0,B			;to force limiting.
375								;Scale result down
376			;					;by 2^-8.
377			; Output Data to CD Player			er er		
378			;	:		••		
379								
380	P:0111	08CF2F	LXNIT	HOVEP		B,X:M_TX		;Write result to SSI.
381								
382	P:0112	499F00		MOVE		L:\$1F,B		;Retrieve B register and return.
383	P:0113	000004		RTI				
384								
385								
386			;******	****	****	****		
387			; RIGHT	CHANNEL	SERVICE	*		
388		:	******	*****	******	*****		
389			•					
390	P:0114	491F00	RIGHT	NOVE		B,L:\$1F		;Right channel process
391			•			•		;identical to Left channel,
392	P:0115	084F2F		HOVEP		X:M_RX,B		;except right channel index
***				•				A

393	P:0116 21E600	МО	VE	B,YO -		;registers (R6 and R7), and
394	P:0117 0502A6	MO	VE	#2,M6	*	;first 10 gain table values
395	P:0118 310000	MO	VE	#0,R1		;are used instead.
3 96						
397	P:0119 449E13	CL	R A	X:\$1E,X0		
398	P:011A 205ED8	MP'	Y X0,Y0,B	(R6)+		
399	P:011B 596700	MO ¹	VE .		BO,Y:(R7)	
400	P:011C 0008F8	OR	I #\$08,MR			
401						
402		;				
403		; ALL 10	Filters			
404		;				
405	P:011D 060A80	DO	#10,RFBAN	ID		
	000125					
406	P:011F F0081B	CL	R B	X:(R0)+,X0	Y:(R6)+,Y0	
407	P:0120 F0F8DE	MA	C -X0,Y0,B	X:(R0)+,X0	Y:(R7)+,Y0	
408	P:0121 4ED7DA	MA			Y:(R7)-,Y0	
409	P:0122 F008DE	MA	C -X0,Y0,B	X:(R0)+,X0		
410	P:0123 46D9DB	MA		X:(R1)+,Y0	• •	
411	P:0124 185E00	MO		в, хо	B,Y:(R6)+	
412	P:0125 204ED2	MA	C X0,Y0,A	(R6)+N6	-,,	
413		RFBAND	· · ·			
414	4					
415	P:0126 00F7B8	AN	DI #\$F7,MR			
416	P:0127 0528A6	MO	-	#43,M6		
47						
418		;				
419		; Volume	Scaling			
420		;				
421	P:0128 449000	MO	VE	X:\$1D,X0	•	
422	P:0129 4EDF00	MO	VE	•	Y:(R7)+,Y0	
423	P:012A 4E9ED2	MA	C X0,Y0,A		Y:\$1E,Y0	
424	P:0128 21C400	MC	- •	A,XO		
425	P:012C 2000D8	MP'	Y X0,Y0,B	•		
426			•			
427	P:012D 204E3A	AS	L B	(R6)+N6		
428	P:012E 20003A	AS	L B			
429						
430	P:012F 18F400	MO	VE	B,X0	#>\$8000,Y0	
	000800			•		
431	P:0131 200008	MP'	Y X0,Y0,B			
432			,			
433		;				
434		: Output (Data to CD Play	er		
435			• • • • • • • • • • • • • • • • • • • •			
436		•				
437	P:0132 08CF2F	RXMIT MOV	/EP	B,X:M TX		
438			· - ·	-140-17		
439	P:0133 499F00	MO ¹	Æ	L:\$1F,B		
440	P:0134 000004	RT:				
441		KI.	•			
442						

```
443
                         ************************
444
                         ;* DATA VARIABLES and CONSTANTS *
445
446
447
         P:0180
                                   ORG
                                           P:$18D
448
449
450
                             IIR Coefficients
451
                         ;------
452
453
                         ; 31 Hz
454
                                   DC
                                           .4984587
                                                                             ;beta
455
                                   DC
                                           .0007706594
                                                                             ;alpha
456
                                           .9984491
                                   DC
                                                                             ; gamma
457
                         ; 62 Hz
                                           .496876
458
                                   DC
459
                                  DC
                                           .001562013
460
                                   DC
                                           .9968368
                         ; 125 Hz
461
462
                                   DC
                                           .4937405
463
                                   DC
                                           .003129769
464
                                   DC
                                           .9935817
465
                         ; 250 Hz
466
                                  DC
                                           .4876357
467
                                  DC
                                           .006182143
468
                                           .9870087
                                  DC
469
                         ; 500 Hz
                                           .4757282
470
                                  DC
471
                                  DC
                                           .01213592
472
                                  DC
                                           .9732514
                         ; 1000 Hz
473
474
                                  DC
                                           .4531951
475
                                           .02340247
476
                                  DC
                                           .9435273
477
                         ; 2000 Hz
478
                                  DC
                                           .4128511
479
                                  DC
                                           .04357446
480
                                  DC
                                           .8760584
481
                         ; 4000 Hz
                                           .3474929
482
                                  DC
483
                                           .07625358
                                  DC
484
                                  DC
                                           .7136286
485
                         ; 8000 Hz
486
                                  DC
                                           .2601072
487
                                  DC
                                           .1199464
488
                                   DC
                                           .3176087
489
                         ; 16000 Hz
490
                                           .180994
                                   DC
491
                                           .159503
                                   DC
492
                                           - .4435172
                                   DC
493
494
```

495	;				
496	; Filter Ga	in (G) Coefficients			
497	;				
498					
499	DC	-0.200			
500	DC	-0.187			
501	DC	-0.171			
502	DC	-0.160			
503	. DC	-0.150			
504	DC	-0.137			
505	DC.	-0.114			
506	DC	-0.103			
507					
508	DC	-0.092			
509	DC	-0.080			
510	DC	-0.067			
511	DC	-0.051			
512	DC	-0.039			
513	DC	-0.027			
514	DC	-0.015			
515	DC	0.000			
516					
517	DC	0.000			
518	DC	0.030			
519	DC	0.060			
520	DC	0.090			
521	DC	0.120			
522	DC	0.150			
523	DC	0.180			
524	DC	0.210			
525	•				
526	DC	0.250			
527	DC	0.290			
528	DC	0.340			
52 9	DC	0.380			
530	DC	0.460			
531	DC	0.540			
532	DC	0.750			
533	DC	0.999			
534					
535	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
536		; Volume Gain (V) Coefficients			
537	;				
538					
539	DC	0.0000			
540	DC	0.0000			
541	DC	0.0002			
542	DC	0.0005			
543	DC	0.0010			
544	DC	0.0030			
545	DC	0.0100			
546	DC	0.0150			
547		0.0000			
548 540	DC	0.0200			
549	DC	0.0300			
550	DC	0.0400			

551		DC	0.0600
552		DC	0.0800
553		DC	0.1000
554		DC	0.1200
555		DC	0.1500
556			
557		DC	0.2000
558		ÐC	0.2500
559		DC	0.3000
560		DC	0.3500
561		DC	0.4000
562		DC	0.4500
563		DC	0.5000
564		DC '	0,6000
565		•	******
566		DC	0.7000
567		DC	0.8000
568		DC	0.9000
569		DC	0.9999
		DC DC	0.9999
570		DC	0.9999
571			
572		DC	0.9999
573		DC	0.9999
574			
575			
576		* ************************************	· · · · · · · · ·
577		; Slide Pot Ad	aresses
578		;	474
579		DC	\$70
580		DC	\$71
581		DC	\$72
582		DC	\$73
583		DC	\$74
584		DC	\$75
585		DC	\$76
586		DC	\$77
587		DC	\$68
588		DC	\$69
589		DC	\$6A
590		DC	\$6B
591		DC	\$6C
592		DC	\$6D
593		DC	\$6E
594		DC	\$6F
595		DC	\$58
596		DC	\$59
597		DC	\$5A
598		DC	\$58
599		DC	\$5C
600		· •	•
601		END	
0	Fanana		
-	Errors		
0	Errors Warnings		

APR2

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, afflitates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MOTOROLA APR2

Literature Distribution Centers:

USA: Motorola Literature Distribution. P.O. Box 20912. Phoenix. Arizona 85036
EUROPE: Motorola Ltd.; European Literature Centre: 88 Tanners Drive, Blakelands, Militon Keynes, MK14 5BP, England,
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC, Motorola Semiconductors H.K. 11d.; Silicon Harbour Center. No. 2 Dai King Street, Tai Po industrial Estate
Tai Po, N.T., Hong Kong

MOTOROLA