NuSTEC Neutrino Generator School

Weak coherent meson production

Luis Alvarez Ruso

Outline

- Weak coherent reactions
- Coherent pion production
 - PCAC models
 - Microscopic models

- Coherent = final nucleus remains in the ground state
 - Neutral Current elastic scattering

$$\nu A \rightarrow \nu A$$

$$\bar{\nu} A \rightarrow \bar{\nu} A$$

Charged Current coherent particle production

$$\nu_l A \rightarrow l^- m^+ A$$
 $\bar{\nu}_l A \rightarrow l^+ m^- A$

$$m^{\pm} = \pi^{\pm} \,, K^{\pm} \,, \rho^{\pm} \,, \dots$$

Neutral Current coherent particle production

$$\nu A \rightarrow \nu m^0 A$$

$$\bar{\nu} A \rightarrow \bar{\nu} m^0 A$$

$$m^0=\gamma\,,\pi^0\,,
ho^0\,,\dots$$

 $d\sigma \sim F^2(t) \leftarrow \text{nuclear form factor: } F_{\mathcal{A}}(t) = \int d^3\vec{r} \ e^{\mathrm{i}(\vec{q} - \vec{p}_\pi) \cdot \vec{r}} \left\{ \rho_p(\vec{r}) + \rho_n(\vec{r}) \right\}$

$$t = (p'-p)^2 = 2M_A^2 - 2M_A\sqrt{M_A^2 + \vec{p}^2} \approx -2M_AT_A$$

ρ(r)	$ F(q^2) $	Example
pointlike	constant	Electron
exponential	dipole	Proton
gauss	gauss	⁶ Li
homogeneous	oscillating	_
sphere with a diffuse surface	oscillating	⁴⁰ Ca
r → q →		

- Coherent = final nucleus remains in the ground state
 - Neutral Current elastic scattering

$$\nu A \rightarrow \nu A$$

$$\bar{\nu} A \rightarrow \bar{\nu} A$$

$$t = (p'-p)^2 = 2M_A^2 - 2M_A\sqrt{M_A^2 + \vec{p}'^2} \approx -2M_AT_A = q^2$$

$$\frac{d\sigma}{dT_A} = \frac{G_F^2}{4\pi} \left[F_n(Q^2) - (1 - 4\sin^2\theta_W) F_p^2(Q^2) \right]^2 M_A \left(1 - \frac{M_A T_A}{2E_\nu^2} \right)$$

- Experimental problem: small recoil energies
- Similar detection techniques than in dark matter exps.

CC/NC coherent particle production

$$q_0 + M_A = p_m^0 + \sqrt{M_A^2 + \vec{p}'^2}$$
 $q_0 = p_m^0 + T_A \approx p_m^0$
 $t = (q - q_m)^2 \approx -(\vec{q} - \vec{p}_m)^2$
 $|\vec{p}_m| = \sqrt{q_0^2 - m^2}$

- Favored kinematics:
 - Parallel \vec{q} , \vec{p}_m
 - Forward: $q_0 \approx |\vec{q}| \Rightarrow q^2 \approx 0$
 - Small m

Coherent pion production

 $\mathbf{m} = \pi$

$$\nu A \rightarrow \nu \pi^0 A$$
 $\bar{\nu} A \rightarrow \bar{\nu} \pi^0 A$

 \Leftrightarrow background for ν_e appearance

- Very small cross section but relatively larger than in coherent π production with photons or electrons
- At $q^2 \sim 0$ the axial current is not suppressed while the vector is

Hiraide@NuInt09

Coherent pion production

- Models:
 - PCAC
 - Microscopic

- Rein-Sehgal NPB 223 (83) 29
 - In the q^2 =0 limit, PCAC is used to relate ν induced coherent pion production to πA elastic scattering

$$\left. \frac{d\sigma}{dq^2 dy dt} \right|_{q^2 = 0} = \left. \frac{G_F^2 f_\pi^2}{2\pi^2} \frac{(1 - y)}{y} \frac{d\sigma}{dt} (\pi^0 A \to \pi^0 A) \right|_{q^2 = 0, E_\pi = q^0}$$

$$y=q^{O}/E_{\nu}$$

- Continuation to $q^2 \neq 0$: $\times (1 q^2/1 \text{GeV}^2)^{-2}$
- \blacksquare πA in terms of πN scattering:

$$\times |F_{\mathcal{A}}(t)|^2 F_{\mathrm{abs}} \left(\frac{d\sigma}{dt} (\pi^0 N \to \pi^0 N) \right)_{t=0, E_{\pi}=q^0}$$

$$F_{\mathcal{A}}(t) = \int d^3 \vec{r} \; e^{\mathrm{i}(\vec{q} - \vec{p}_\pi) \cdot \vec{r}} \left\{ \rho_p(\vec{r}) + \rho_n(\vec{r}) \right\} \; \leftarrow ext{nuclear form factor}$$

 $F_{
m abs} \leftarrow$ removes from the flux outgoing π that undergo inelastic collisions

- Rein-Sehgal NPB 223 (83) 29
 - Problems: Hernandez et al., PRD 80 (2009) 013003
 - q²=0 approximation neglects important angular dependence at low energies and for light nuclei
 - The πA elastic description is not realistic

- Rein-Sehgal NPB 223 (83) 29
 - Problems: Hernandez et al., PRD 80 (2009) 013003
 - Predicts larger cross sections and wider q² distributions than microscopic models

- Kartavtsev et al., PRD 74 (2006), Berger & Sehgal, PRD 79 (2009),Paschos & Schalla, PRD 80 (2009)
 - Some $q^2 \neq 0$ kinematical corrections introduced
 - Use experimental πA cross section
 - Problem: PCAC relates Coh_{π} with off-shell πA : $q^2 \le 0 \ne m_{\pi}^2$
 - Incoming π do not penetrate inside A (absorption & rescattering) but ν do
 - **Spurious** π distortion is introduced

Smaller σ than R&S:

- Kartavtsev et al., PRD 74 (2006), Berger & Sehgal, PRD 79 (2009),Paschos & Schalla, PRD 80 (2009)
 - Problems of PCAC models: less relevant at high energies and for heavy nuclei
 - NOMAD: σ =72.6 ± 8.1(stat) ± 6.9(syst) × 10⁻⁴⁰ cm²
 - Energy range: $2.5 \le E_{\nu} \le 300 \text{ GeV}$
 - Consistent with R&S: $\sigma \approx 78 \times 10^{-40}$ cm²

Kullenberg et al., PLB 682 (2009) 177

■ Which R&S?

■ Different implementations in Monte Carlo generators

■ Which R&S?

■ Different implementations in Monte Carlo generators

Boyd et al., AIP Conf. Proc. 1189

- Which R&S?
 - Different implementations in Monte Carlo generators
 - Different πN cross sections
 - Different F_{abs}
 - $\blacksquare \pi$ FSI? π distortion: a π that rescatters should be removed (coherence broken)
 - Instead, πA data could be directly used

- Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007);
 Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010);
 Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010);
 Zhang et al. PRC 86 (2012)
 - Model for the elementary ν N → l N π amplitude
 - Coherent sum over all nucleons
 - Medium effects
 - Distortion of the outgoing pion
 - Nonlocalities
 - Same hadronic/nuclear input as for the incoherent(resonant) channel
 - $\$ Can be applied/validated in other reactions $(\gamma, e, \pi, ...)$
 - Limited to low energies

- Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007);
 Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010);
 Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010);
 Zhang et al. PRC 86 (2012)
 - Model for the elementary ν N \rightarrow l N π amplitude

- Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007);
 Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010);
 Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010);
 Zhang et al. PRC 86 (2012)
 - Model for the elementary ν N \rightarrow l N π amplitude

Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007);
 Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010);
 Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010);
 Zhang et al. PRC 86 (2012)

- Medium effects
 - △ properties change in the nuclear medium

$$M_{\Delta} \to M_{\Delta} + \mathrm{Re}\Sigma_{\Delta}$$

 $\Gamma_{\Delta}/2 \to \Gamma_{\Delta}^{\mathrm{Pauli}}/2 - \mathrm{Im}\Sigma_{\Delta}$

- △-h RPA resummation
- Distortion of the outgoing pion $e^{-i\vec{p}_\pi\cdot\vec{r}}$ \rightarrow $\phi^*_{out}(\vec{p}_\pi,\vec{r})$

$$\left(-\vec{\nabla}^2 - \vec{p}_{\pi}^2 + 2\omega_{\pi}\hat{V}_{\text{opt}}\right)\phi_{out}^* = 0$$

 $\hat{V}_{\mathrm{opt}}(r) \leftarrow$ Nonlocal optical potential in the Δ -hole model

Nonlocalities in the π momentum $\vec{p}_{\pi}e^{-i\vec{p}_{\pi}\cdot\vec{r}} \rightarrow i\vec{\nabla}\phi_{out}^{*}(\vec{p}_{\pi},\vec{r})$

Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007);
 Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010);
 Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010);
 Zhang et al. PRC 86 (2012)

- Medium effects reduce considerably de cross section
- Pion distortion shifts down the peak

Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007); Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010);

Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010); Zhang et al. PRC 86 (2012)

Eikonal: not accurate at low π momentum... but good enough, and simpler!

- Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007);
 Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010);
 Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010)
 - Medium effects
 - △ properties change in the nuclear medium

$$M_{\Delta} \to M_{\Delta} + \text{Re}\Sigma_{\Delta}$$

 $\Gamma_{\Delta}/2 \to \Gamma_{\Delta}^{\text{Pauli}}/2 - \text{Im}\Sigma_{\Delta}$

- **■** p-h, **△**-h RPA
- Local
- No distortion of the outgoing pion
- Good description of πA elastic with the same input

Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007);
 Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010);
 Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010)

- No distortion of the outgoing pion
- Good description of πA elastic with the same input

- Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007);
 Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010);
 Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010)
 - Dynamical model in coupled channels for $\nu N \rightarrow l N \pi$ (Sato & Lee)
 - Bare △N renormalized by meson clouds (30 %)
 - In-medium modification of △ properties
 - \blacksquare π distortion based on the \triangle -h model
 - Non-local treatment of \triangle propagation
 - Good description of πA elastic and γ A \rightarrow A π
 - Significant contribution of unitarized non-resonant amplitudes at $E_{\nu} \leq 0.5 \text{ GeV}$

All together now

CC/NC ratio

Ratio of CC to NC total Boyd et al., AIP Conf. Proc. 1189

- SciBooNE: PRD 81 (2010)
- NC π^{o} σ compatible with R&S
- $CC\pi^+/NC\pi^0 = 0.14^{+0.30}_{-0.28}$
- Theoretical models predict $CC\pi^+/NC\pi^o \sim 1-2$!

Bibliography

- J. A. Formaggio, G. P. Zeller, From eV to EeV: Neutrino cross sections across energy scales, Rev. Mod. Phys. 84 (2012)1307
- LAR, Review of weak coherent pion production, AIP Conf Proc. 1382 (2011) 161
- LAR, Y. Hayato, J. Nieves, Progress and open questions in the physics of neutrino cross sections, arXiv:1403.2673, New J. Phys.
- Hernandez et al., PRD 80 (2009) 013003

NuSTEC Training in Neutrino Nucleus Scattering Physics

- Where: Fermilab When: October 17-27, 2014
- Topics:
- 1. Electroweak interactions on the nucleon (3 hours)
- 2. Strong and electroweak interactions in nuclei (4 hours)
- 3. The nuclear physics of electron and neutrino scattering in nuclei in the quasi-elastic regime and beyond
- 3.1 Approximate methods for nuclei (I) (3 hours)
- 3.2 Approximate methods for nuclei (II) (3 hours)
- 3.3 Ab initio methods for nuclei (3 hours)
- 4. Pion production (3 hours)
- 5. Description of exclusive channels and final state interactions (3 hours)
- 6. Inclusive electron and neutrino scattering in the deep inelastic regime (3 hours)
- 7. Impact of uncertainties in neutrino cross sections (3 hours)
- 8. Selected experimental illustrations (4 hours)