פתרון תרגיל מספר 1 - פתרון בעיות באלגוריתמים

שם: מיכאל גרינבאום, ת.ז: 211747639

10 בנובמבר 2020

יותר טוב או $O\left(n^3\right)$ או ביעילות לבעיה פתרון פתרון 1.

נסתכל על האלגוריתם הבא:

הבא לפי לפי לפערך למערך את נמיין את $\{p_1,\ldots,p_n\}$ לפי היחס הבא נקבל רצף אל נקבל רצף אל נקבל ו

$$p_1 < p_2 \iff (p_1.x < p_2.x) \lor (p_1.x = p_2.x \land p_1.y < p_2.y)$$

 $s_1 \ldots, s_n$ נסמן את התוצאה של

- $i \in [n]$ לכל $p_i = s_{M[i]}$ כך ש־ $m_i = s_{M[i]}$ לכל (ב)
 - n בגודל C בגודל מערך תוצאות (ג)
 - (ד) עתה לכל $i \in [n]$ לפי סדר עולה:
- הבאים המשיך לשלבים הבאה, אחרת למיטרציה (סומנה כבר) אז (סומנה $p_i.val < 0$ אם אחרת לפני וחלק .i .i בלולאה
 - p_i את שמכילה רק את הקושרת עיצור השימה ניצור עיצור , $p_i.val = -1$.ii
 - ילה: עולה: לכל $j \in [M[i]+1,n]$ לפי סדר עולה:
 - א'. אם $0 \geq s_i.val \geq 0$ געדכן

$$s_j.val = \max\{0, s_j.val - |\{p \in D \mid p.x < s_j.x \land p.y < s_j.y\}|\}$$

 s_i את נוסיף את $s_i.val = -1$, נוסיף את $s_i.val = 0$ ב'. אם

 $p \in D$ לכל C[p] = i נעדכן.iv

.C את נחזיר (ה)

. נשאר להסביר מדוע האלגוריתם עובד ומדוע זמן הריצה הוא $O\left(n^3\right)$ או טוב יותר

מדוע נכון?

. באלגוריתם באלגור לפי מיון שלהן s_1,\ldots,s_n נקודות וי p_1,\ldots,p_n יהיו

תחילה יהיו p,q נקודות כך שסימון של p אמור לעדכן את ה־ l של l היו l יהיו l אינדקסים כך שך l אזי l אזי l במקור, אמור לעדכן את ה־ l אמור לעדכן את ה־ l אזי l אזי l אזי l אזי l אומהיות המערך ממוין לפי ה־ l אמור לעדכן את ה־ l אזי l אזי אומריה במערך הממוין! l כלומר כל נקודה משפיעה אך ורק על הנקודות שאחריה במערך הממוין! l נקודה משפיעה אך ורק על הנקודות שאחריה במערך הממוין!

 $t_{i,j}$ = number of marked points required from iterations [i+1:n] to mark s_i

עתה נרצה שבכל איטרציה $j\in[n]$ לכל ל $t_{i,j}$ את גרצה את תחילה את תחילה את צריך לעדכן שבה צריך לעדכן שבה גריך לעדכן וגם ני וגם לכל ל $t_{i,j}=t_{i-1,j}$

 $t_{i,j} = t_{i-1,j} - |\{s_l \mid k \leq l < j \land s_l \text{ was marked in the i'th iteration } \land s_l.x < s_j.x \land s_l.y < s_j.y\}|$

j>k לכל

כלומר בשביל לדעת את $j \in [k+1,n]$ בכל איטרציה לעבור מספיק בכל רגע, מספיק בכל לדעת את לדעת את לדעת אווע ל

 $s_j.val = t_{i,j} - |\{s_l \mid k \leq l < j \land s_l \text{ was marked in the i'th iteration} \land s_l.x < s_j.x \land s_l.y < s_j.y\}|$

מהנחת (מהנחת שביא אינדוקציה ש־ $S_l \mid k \leq l < j \wedge s_l$ was marked in the i'th iteration (שריים שריארתי מתקיים ש־ $S_l \mid k \leq l < j \wedge s_l$ עודכן לפי כלל זה עד האיטרציה ה־ $S_l \mid k \leq l < j \wedge s_l$ וכאשר זהו ל- וכאשר ווכא עד האיטרציה ל- ווכאשר זהו ל- ווכאשר שקול ל- ווכאשר אינדוקציה ש־ $S_l \mid k \leq l < j \wedge s_l$ עודכן לפי כלל זה עד האיטרציה ה־ ווכאשר זהו ל- ווכאשר אינדוקציה ש־ $S_l \mid k \leq l < j \wedge s_l$ (שהנחת שריים שריי

$$t_{i,j} = t_{i-1,j} - |\{s_l \in D \mid s_l \cdot x < s_j \cdot x \land s_l \cdot y < s_j \cdot y\}|$$

וזה בדיוק מה שהאלגוריתם שתואר מלעיל עושה, הוא קודם ממיין כדי שהאבחנה הראשונה תתקיים. לאחר מכן הוא מוצא מיפויים כדי למצוא את s_k לכל p_i ולבסוף מבצע את העדכון שתואר פה עם שמירת התוצאות במערך עזר שמוחזר בסוף. זמן ריצה:

עתה נשים לב ששלב 1 לוקח $O(n\log(n))$, שלב 2 לוקח $O(n^2)$ (אפשר בפחות אבל לא חשוב לתרגיל), שלב 3 לוקח $O(n\log(n))$ (אפשר בפחות אבל לא חשוב לתרגיל), שלב 3 לוקח $O(n\log(n))$ נקודה אחרת ולכן כל נקודה p בדיוק פעם אחת ובמקרה הכי גרוע תבדק מול כל נקודה אחרת ולכן כל נקודה p נקודות ולאחר מכן מהיות וסומנה לא תבדק שוב ולכן שלב זה לוקח $O(n^2)$, ושלב p לוקח $O(n^2)$ שזה יותר טוב מהנדרש, לצערי לא הצלחתי את הבונוס על אף שחשבתי עליו הרבה.

מ.ש.ל.©

 $\left(O\left(n^{2}\right),O\left(1\right),O\left(n^{2}\right)\right)$ ביעילות בעיית לבעיית בעיית ביעילות ביעילות פתרון בעיית 2

הוכחה:

נגדיר את האלגוריתם לפי שלב עיבוד מוקדם, שלה השאילתה ושטח.

שלב עיבוד מוקדם:

- v_1,\dots,v_n בין את המיון את ונסמן טופולוגי מיון את המערך מיון את (א
 - $\left| \left| V \right|^2$ בגודל A בערך (ב)
 - $i\in [n]$ לכל $A\left[v_{i},v_{i}
 ight]=v_{i}$ נמלא (ג)
 - $i \in [n]$ לכל (ד)

 $j \in [i+1:n]$ לפי סדר עולה:

$$A[v_i, v_j] = A[v_i, v_j.parent]$$
$$A[v_j, v_i] = A[v_i, v_j]$$

A את (ה) נשמור את

|E|=|V|-1 ובעץ $O\left(|V|+|E|+|V|^2
ight)$ ובעץ הריצה של האלגוריתם הוא $O\left(|V|+|E|+|V|^2
ight)$ ובעץ הריצה של העיבוד המוקדם: $O\left(|V|^2
ight)=O\left(n^2
ight)$ ובעץ הריצה הוא ולכן זמן הריצה הוא

נכונות שלב העיבוד המוקדם: עתה נסביר ברעיון כללי מדוע בסוף הריצה $A\left[v_i,v_j\right]$ שומר את ה־ LCA של על סדר הריצה בשלב 4).

 $v_i = v_j$ שהוא v_i, v_j של הרב את ה־ $A\left[v_i, v_j\right]$ שומר אכן מקיים שמילאנו, אכן מקיים אכן מקיים אכן מקיים אכן מקיים אכן מוגדר היטב. איז מקשירות הגרף מתקיים ש־ v_j הוא לא השורש ולכן $v_j.parent$ אכן מוגדר היטב. נחלק ל2 מקרים:

- והוא $A\left[v_i,v_j\right]$ לפני $A\left[v_i,v_j.parent\right]$ אם את התא להד לים נמלא אז מסדר הריצה אז מסדר לפני $v_j.parent$ לפני לפני יכיל את התוצאה הנכונה מהנחת האינדוקציה.
- (ב) אם v_i מופיע אחרי $A\left[v_j.parent,v_i\right]$ את התא על ה־ נמלא מסדר הריצה על הי $v_j.parent$ לפני שנמלא את התא אם מופיע אחרי אז גם $A\left[v_i,v_j.parent\right]$ ימולא לפני $A\left[v_i,v_j\right]$ ווכיל את התוצאה הנכונה מהנחת האינדוקציה.

שלב השאילתה:

בהינתן u,v של u,v של u,v מוסברת בשלב העיבוד הסיבה לכך ש $A\left[u,v\right]$ יכיל את ה־ $A\left[u,v\right]$ של היקח איר היקח (1), כנדרש. הסיבה לכך ש $A\left[u,v\right]$ יכיל את ה־ $A\left[u,v\right]$ של היקח המוקדם.

שטח:

 $O\left(n^2+n
ight)=M$ שטח ואת המערך $O\left(n^2
ight)$ ולכן כמות השטח בכללי היא אנחנו שומרים את העץ שלוקח אנחנו $O\left(n^2+n
ight)$ שטח ואת המערך אנחנו $O\left(n^2
ight)$

. כנדרש, $\left(O\left(n^2\right),O\left(1\right),O\left(n^2\right)\right)$ ביעילות ביעילות לבעיית בערון לבעיית בערון לבעיית ביעילות כלומר הראנו פתרון לבעיית

מ.ש.ל.©