Assignment 1

Pavan R Hebbar - 130010046

August 28, 2016

1 Question1:

1.1 2D case

1.1.1 Velocity Distribution

$$f(\vec{v}) = n \frac{m}{2\pi kT} e^{-\frac{m\vec{v}\cdot\vec{v}}{2kT}} \tag{1}$$

1.1.2 Speed Distribution

$$f(v) = n \frac{m}{2\pi kT} v e^{-\frac{mv^2}{2kT}} \tag{2}$$

1.1.3 Energy Distribution

$$f(\epsilon) = \frac{n}{2\pi kT} e^{-\frac{\epsilon}{kT}} \tag{3}$$

Mean velocity:

$$V_{mean} = \sqrt{\frac{kT}{8\pi m}} \tag{4}$$

Rms velocity:

$$V_{rms} = \frac{kT}{\pi m} \tag{5}$$

1.2 1D case

1.2.1 Speed Distribution:

$$f(v) = n\sqrt{\frac{m}{2\pi kT}}e^{-\frac{mv^2}{2kT}} \tag{6}$$

1.2.2 Energy Distribution

$$f(\epsilon) = n \frac{1}{2\sqrt{\pi kT}} \frac{1}{\sqrt{\epsilon}} e^{-\frac{\epsilon}{kT}} \tag{7}$$

Mean velocity:

$$V_{mean} = \sqrt{\frac{2kT}{\pi m}} \tag{8}$$

RMS velocity:

$$V_{rms} = \frac{kT}{4m} \tag{9}$$

2 Question 2:

(Refer code)

3 Question 3:

Figure 1: Velocity Distribution Function

Figure 2: Speed Distribution Function

Figure 3: Energy Distribution Function

4 Question 4:

(Done in the above plots)

5 Question 5:

(Refer code) The values given below are for 20000 grids in velocity and energy

Pressure = $1.087 \times 10^5 Pa$

Energy = $8.150 \times 10^4 J$

Vmean = 475.321 m/s

Entropy = 1.36×10^27

6 Question 6:

(Refer code) We see that the mean velocity and the pressure are almost independent of grid size. The error in Pressure and the Mean velocity was of the order of 10^-9 and 10^-11 respectively. So the pattern of the graph isn't of much relevence as the values of Boltzmann constant and the Avagadro number are taken only till 2 decimal places

Figure 4: Error in energy calculation

Figure 5: Error in pressure calculation

Figure 6: Error in mean velocity

7 Question 7:

Following functions were chosen

• Exponential function Entropy = -4.57×10^30 $p(x) = e^{-x}$ (10)

$$p(x, p, \beta) = \frac{-1}{\ln(p)} \frac{\beta(1-p)e^{-\beta x}}{1 - (1-p)e^{-\beta x}}$$
(11)

• Levy Distribution: $\mu = 0$, c = 2Entropy = 4.52×10^27

$$p(x;\mu,c) = \sqrt{\frac{c}{2 * np.pi}} \frac{e^{\frac{c}{x-\mu}}}{(x-\mu)^{3/2}}$$
(12)

(Results are weird, not able to justify/find the bug)

8 Question 8:

V has been plotted in logarithmic scale

Figure 7: Velocity PDF of electrons and ions

Figure 8: Speed pdf of electrons and ions

Figure 9: Energy PDF of electrons and ions