Formulas:

Normal Distribution Function
$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Message Probability

$$p(m) = \sum_{t \in S} p(m, t)$$

$$\frac{\textbf{Prior Probability}}{p(s) = \sum_{m \in M} p(m, s)}$$

Likelihood
$$p(m|s) = \frac{p(m,s)}{p(s)}$$

 $p(m,s) = p(m|s)p(s)$

Posterior
$$p(s|m) = \frac{p(m,s)}{p(m)}$$

Bayes

$$p(s|m) = \frac{p(m|s)p(s)}{p(m)}$$
$$p(s|m) = \frac{p(m|s)p(s)}{\sum_{t \in s} p(m|t)p(t)}$$

P(m, s)=P(m | s)*P(s)=P(s | m)*P(m)

Absolute Risk Aversion

$$\overline{A(c) = -\frac{u''(c)}{u'(c)}}$$

Relative Risk Aversion

$$R(c) = cA(c) = \frac{-cu''(c)}{u'(c)}$$

Poisson Process

$$p(n|\lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$$
, $\lambda = rate$ $n = number$

Certainty Equivalence

$$u(c(F,u)) = \int u(x)dF(x)$$

$$P * U(a) + (1-P)U(b) = U(c)$$

1st Order Stochastic Dominance

 $\overline{F(s)} \ge G(s) \ \forall s \ (F \text{ and } G \text{ are}$

2nd Order Stochastic Dominance

$$\int_{-\infty}^{3} F(t)dt \ge \int_{-\infty}^{3} G(t)dt \quad \forall s$$

iff F is a mean-preserving spread of G

Gross Value of Information

$$\sum_{m \in M} p(m) \sum_{s \in S} p(s|m)(w(a^*(m), s) - w(\hat{a}, s))$$

$$> 0$$

Best Response

 $s_i \in S_i$ is a best response to $s_{-i} \in S_{-i}$ if $u_{i}(s_{i}, s_{-i}) \ge u_{i}(t_{i}, s_{-i}) \ \forall t_{i} \in S_{i}$

Nash Equilibrium

 $\overline{s^* = (s_1^* \dots s_n^*)}$ is a Nash Equilibrium if s_i^* is a Best Response to s^{*}_{-i} ∀i

Generalized BI

- 1. Find all NE at each minimal terminal sub-
- 2. Write out reduced game with a NE payoff vector replacing sub-game
- 3. Iterate until start, always at least one SPNE

Incomplete info (Harsanyi)

- 1. Specify types and connect with N-move, drawing relevant info sets
- 2. Assume common prior for N-move
- 3. Solve for NE (BNE) and SPNE (PBE) by normal methods.

Repeated Game

- 1 T finite: Only stage game NE are equilibria of the repeated game.
- 2 T infinite: cooperation can be sustained as a NE of the repeated game if d≥d* (discount factor)

FolkThm any of stage game feasible payoff vector that dominates the NE is achievable as average payoff in a SPNE of the infinitely repeated game if players are sufficiently patient.

Evolutionary Games

It includes transitory dynamics and higher payoff strategies become more prevalent over time in a population "survival of the fittest"

One population case

	p	1-p	u(A, p) = 0*p+4*(1-p)=4-4p
Α	0	4	u(B, p) = 1*p + 2*(1-p)=2-p
В	1	2	Δ {row}=2-3p, Δ {row}=0 if
			$p=2/3$. $\Lambda\{row\} > 0$ if $p>2/3$.

p=2/3, $\Delta\{\text{row}\} > 0$ if p>2/3 $\Delta\{\text{row}\} < 0$ if p<2/3 and then draw the basin of attraction graph to find mix equilibrium.

Separate population case

1 2	p	1-p
q	0,0	4,1
1-a	1.4	2.2

Calculate the mix NE for $\Delta(\text{row})=2-3p$, $p^*=$ $2/3[\Delta(row)<0 \text{ if } p*>2/3,$ Δ (row)>0 if p*<2/3] For Δ (col) = 2-3q,

 $q*=2/3 [\Delta(col)<0 \text{ if } q*>2/3, \Delta(col)>0 \text{ if } q*<2/3]$ Then draw phase portrait based on analysis

Cooperative games

Cooperative games are specified by a characteristic function defined on subsets (coalitions) $(K \subset N)$.

Coalition K blocks allocation u if $\sum_{i \in K} u_i < v(K)$. That means they can do better by themselves. Core is all allocations unblocked by any K⊂N

Shapley Value is based on marginal contribution of each player to every k. Method: list all possible player sequences, if n=3 then n!=6 (6 possibilities). Ex: V(i)=0, V(ab)=1V(ac)=2 V(bc)=0 V(abc)=2

	MCa	MCb	MCc
abc	0	1	1
acb	0	0	2
bac	1	0	1
bca	2	0	0
cab	2	0	0
cba	2	0	0
sum	7	1	4
S.V.	7/6	1/6	4/6

Convex Game

 $v(S)+v(T) \leq v(S \cap T)+v(S \cup T)$ SV∈ Core if game is convex.

NBS allocation maximizes the product of players utility gains relative to a threat point. Simple example, max g(u, v)=(u-u))(v-v) if feasible utility fn is u+v=10, (u, v) = (0,0) then g=(u)(10-u)FOC w.r.t u, get u = 5, then v = 5

Monopolistic general problem max qp(q)-c(q). Take derivative w.r.t q and solve.

Bertrand Duopoly (symmetric case)

 $\max (p_1 - c) q_1 (p_1, p_2)$ $q_1(p_1, p_2)=x(p_1),$ if $p_1 < p_2$ $q_1(p_1, p_2)=0.5 \times (p_1)$, if $p_1=p_2$ $q_1(p_1, p_2)=0,$ if $p_1>p_2$ NE: $p_1 = p_2 = MC$, $\pi_1 = \pi_2 = 0$

Cournot Duopoly (symmetric case)

 $\max p (q_1 + q_2)q_1 - cq_1 \text{ w.r.t } q_1$ NE: $q_1 = q_2 \& \pi_1 = \pi_2$ (Asymmetric case): max $(p - c_i) q_i$

Stack. Duopoly

Calculate firm 2's max profit. w.r.t q₂ and then plug into firm 1's max profit to

$$q^m < q^c < q^s < q^b = < q^{CE}$$

Entry game: Stage 1: [in with cost K, out]. Stage 2: K is sunk, J entrants. Stage 2: $get\pi_j^{NE} - K$ if in, 0 if out.

Formula:
$$K \approx \frac{(a-c)^2}{b(J+1)^2}$$
 if price = a-bq and cost = cq

Asymmetric Info: BNE is (σ, ρ) s.t. $\forall i, \sigma_i$ maximizes $E_\rho u_i(\sigma_i, \sigma_{-i})$ and ρ_i is consistent with priors, σ , and Bayesian Theorem. In PBE, the same is true in every subgame.

Adverse Selection: Ex: Seller knows quality θ = value to buyer. Seller values at $r(\theta)$. $\Theta(p) = \{\theta : r(p) \le p\}$ is the subset of sellers willing to sell at price p.

Then a competitive eqm. in a market with asymmetric info is $(P^*, \Theta(p^*) \text{ s.t. } p^* = E(\theta | \theta \in \Theta^*) \text{ and } \Theta(P^*) = \{\theta : r(p) \le P^*\}$ (i.e expected quality among those that are selling is the price). Used car example: $\theta = [2, 3]$. $r(\theta) = \theta - 0.1$ and $\theta = [2, 2.2]$. Then $\theta = \frac{2 + (p + 0.1)}{2}$ solving for p gives $\theta = 2.1$, and $\theta = [2, 2.2]$. Only 20% of market sold.

Signaling: N-move first, θ ; Informed (sender) player send message m(θ) and Uninformed (receiver) player picks action a(m) after forming beliefs $\mu(\theta|m)$. PBE is $[m^*(\theta), a^*(\theta), \mu(\theta|m)]$ s.t. 1. $m^* \in \operatorname{argmax} u_s(m, a^*(m), \theta) \forall \theta$ (for every possible state, send m that max u given U's BR to m). 2. $a^*(m) \in \operatorname{argmax} E_{\mu} U_r(a)$ (pick a max Expected payoff) 3. $\mu(\theta|m)$ is consistent with Bayes given N-move (given priors) and $m^*(\theta)$ (likelihood).

Types of PBE in Signaling: 1. Separating (each state θ a different m* beware the offer or bid's interval has to be different) 2. Pooling (m* constant) 3. partial pooling (not 1:1) 4. hybrid (mixed).

Screening: U-N-I, usually uninformed players offered menu to informed players. For example, buyers offer deferred contingent payment; self-selection of insurance customers to reveal more personal information to get premium reduction.

P/A: $\max_{e^*} \text{E profit } (e^*) = \text{E}([\pi | e^*] - \text{cost}(e^*))$ where $\text{cost } (e^*) = \min \text{E(w)} \text{ s.t. PC & IC}$

Case 0: If e is observable, P: $min_{w(\pi)} \boldsymbol{E}(\boldsymbol{w}) = \int_{\underline{\pi}}^{\overline{\pi}} w(\pi) f(\pi|e^*) d\pi$ s.t. PC = $\int_{\underline{\pi}}^{\overline{\pi}} v(w(\pi)) f(\pi|e^*) d\pi - g(e) \ge \overline{u}$ A: U(e, w) =v(w) - g(e); v (w*) = \overline{u} + g (e) then w*= $v^{-1}(\overline{u} + g(e^*))$

Case 1: If e is unobservable and agent is the risk neural, P: $min_{w(\pi)} E(w) = \int_{\underline{\pi}}^{\overline{\pi}} w(\pi) f(\pi|e^*) d\pi$ s.t. PC = $\int_{\underline{\pi}}^{\overline{\pi}} v(\pi - B) f(\pi|e^*) d\pi - g(e) \ge \overline{u}$ Note: the owner's payoff under the optimal compensation scheme is exactly B (the agent gets w(π) = π -B; the principal gets B); B is franchisee fee.

Case 2: If e is unobservable and agent is risk averse,

P:
$$min_{w(\pi)} E(w) = \int_{\pi}^{\overline{\pi}} w(\pi) f(\pi|e^*) d\pi$$
 s.t. PC = $\int_{\pi}^{\overline{\pi}} v(w(\pi)) f(\pi|e^*) d\pi - g(e) \ge \overline{u}$ & s.t.

$$IC = \int_{\underline{\pi}}^{\overline{\pi}} v(w(\pi)) f(\pi|e^*) d\pi - g(e^*) \ge \int_{\underline{\pi}}^{\overline{\pi}} v(w(\pi)) f(\pi|e) d\pi - g(e)$$

FOC w.r.t w (
$$\pi$$
) we get $\frac{1}{v^{'}(w(\pi))} = \gamma + \mu \left[1 - \frac{f(\pi|e)}{f(\pi|e^*)}\right], e^* \in \{e_H, e_L\}$