

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC142957 Page: 1 of 41

FCC Radio Test Report FCC ID: 2AAZMHFD-890

Original Grant

Report No. : TB-FCC142958

Applicant : EAST 2 WEST, LLC

Equipment Under Test (EUT)

EUT Name: Bluetooth Home Ringer

Model No. : HFD-890

Brand Name : Renny HOME

Receipt Date : 2014-12-11

Test Date : 2014-12-11 to 2014-12-26

Issue Date : 2014-12-30

Standards: FCC Part 15, Subpart C (15.247:2014)

Test Method : ANSI C63.4:2003

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	<i>6</i>
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	
	1.7 Test Facility	
2.	TEST SUMMARY	8
3.	CONDUCTED EMISSION TEST	9
	3.1 Test Standard and Limit	
	3.2 Test Setup	
	3.3 Test Procedure	
	3.4 Test Equipment Used	
	3.5 EUT Operating Mode	
	3.6 Test Data	10
4.	RADIATED EMISSION TEST	13
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Condition	15
	4.5 Test Equipment	
	4.6 Test Data	16
5.	RESTRICTED BANDS REQUIREMENT	25
	5.1 Test Standard and Limit	25
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Equipment	
	5.6 Test Data	26
6.	BANDWIDTH TEST	32
	6.1 Test Standard and Limit	32
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Equipment	32
	6.6 Test Data	
7.	PEAK OUTPUT POWER TEST	35

Page: 3 of 41

	7.1 Test Standard and Limit	35
	7.2 Test Setup	35
	7.3 Test Procedure	
	7.4 EUT Operating Condition	35
	7.5 Test Equipment	35
	7.6 Test Data	
8.	POWER SPECTRAL DENSITY TEST	38
	8.1 Test Standard and Limit	38
	8.2 Test Setup	38
	8.3 Test Procedure	38
	8.4 EUT Operating Condition	38
	8.5 Test Equipment	
	8.6 Test Data	39
9.	ANTENNA REQUIREMENT	41
	9.1 Standard Requirement	41
	9.2 Antenna Connected Construction	41
	9.3 Result	41

Page: 4 of 41

1. General Information about EUT

1.1 Client Information

Applicant : EAST 2 WEST, LLC

Address : 1432 S SALTAIR AVE LOS ANGELES, CA 90025, UNITED STATES

Manufacturer : OLENS TECHNOLOGY

Address : 679 AVENIDA DE DIAMANTE ARROYO GRANDE, CA93420,

UNITED STATES

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Bluetooth Home Ringer	Bluetooth Home Ringer		
Models No.	:	HFD-890			
Brand Name	:	Renny HOME			
Model Difference	:	N/A			
		Operation Frequency: 2402MHz~2480MHz			
	: .	Number of Channel:	Bluetooth 4.0 (BLE): 40 channels see note(3)		
Product Description		RF Output Power:	-4.008 dBm Conducted Power		
Description		Antenna Gain:	2 dBi Dipole Antenna		
		Modulation Type:	GFSK		
		Bit Rate of Transmitter:	1Mbps(GFSK)		
Power Supply	:	DC power by USB cable	form Host System		
		DC power by Li-ion battery			
Power Rating	:	DC 5V by USB Cable fro	om PC system.		
		DC 3.7V by 800 mAh Li-ion Battery.			
Connecting	:	Please refer to the User'	Please refer to the User's Manual		
I/O Port(S)					

Note:

- (1) This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r02.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.
- (4) Channel List:

Page: 5 of 41

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested USB Charging with TX Mode

TX Mode

Page: 6 of 41

1.4 Description of Support Units

Equipment Information								
Name	Model S/N Manufacturer		Used "√"					
LCD Monitor	E170Sc	DOC	DELL	√				
PC	OPTIPLEX380	DOC	DELL	√				
Keyboard	L100	DOC	DELL	√				
Mouse	M-UARDEL7	DOC	DELL	√				
	Cable Information							
Number	Shielded Type	Ferrite Core	Length	Note				
Cable 1	YES	YES	1.5M					
Cable 2	YES	YES	1.5M					
Cable 3	YES	NO	1.5M					
Cable 4	YES	YES	0.5M					

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode Description			
Mode 1 USB Charging with TX Mode			

For Radiated Test			
Final Test Mode Description			
Mode 2 USB Charging with TX Mode			
Mode 3	TX Mode (Channel 00/20/39)		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

Page: 7 of 41

According to ANSI C63.4 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

Bluetooth BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	Bluetooth BLE Graphical User Interface Tool			
Channel	CH 00	CH 20	CH 39	
BLE Mode	DEF	DEF	DEF	

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 41

2. Test Summary

FCC Part 15 Subpart C(15.247)/RSS-210: 2010				
Standaı	rd Section	Test Item	Judgment	Damada
FCC	IC	IC Test item		Remark
15.203	1	Antenna Requirement	PASS	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205	05 RSS-GEN 7.2.2 Restricted Bands		PASS	N/A
15.247(a)(2)	RSS-210 A.8.2(a)	6dB Bandwidth	PASS	N/A
15.247(b) RSS-210 A.8.4(4) Peak Output Power		PASS	N/A	
15.247(e) RSS-210 A.8.2(b)		Power Spectral Density	PASS	N/A
15 247(d) RSS-210		Transmitter Radiated Spurious Emission	PASS	N/A

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 9 of 41

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.207

3.1.2 Test Limit

Conducted Emission Test Limit

Eraguanav	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 10 of 41

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test	ROHDE&		400004	Aug. 08, 2014	Aug. 07, 2015
Receiver	SCHWARZ	ESCI	100321	Aug. 00, 2014	Aug. 07, 2015
50ΩCoaxial	Anritsu	MP59B	X10321	Aug. 08, 2014	Aug. 07, 2015
Switch			X10321	Aug. 08, 2014	Aug. 07, 2015
L.I.S.N	Rohde & Schwarz	ENV216	101131	Aug. 08, 2014	Aug. 07, 2015
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 08, 2014	Aug. 07, 2015

3.5 EUT Operating Mode

Please refer to the description of test mode.

3.6 Test Data

Please see the next page.

Report No.: TB-FCC142957 Page: 11 of 41

7		D	77
		IK	Υ
<u> </u>	. •	_	-

	Bluetooth Home Ring	er Model:	HFD-890						
Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz							
Terminal:	Line	Line							
Test Mode:	USB Charging with Bl	JSB Charging with BLE TX 2402 MHz							
Remark:	Only worse case is re	ported							
90.0 dBuV									
			QP: — AVG: —						
XX									
40	AND MANY	× , , , , ,							
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Mary Mary Mary Mary Mary Mary Mary Mary	M						
1.14		V V V V V V V V V V V V V V V V V V V	peak						
	, ,,	and the state of t	AVG						
			1 11/1						
-10									
0.150	0.5	(MHz) 5	30.000						
		rrect Measure-							
	<u> </u>	actor ment Limi							
		IB dBuV dBu\							
		.97 48.54 64.7							
2 * 0.17	740 37.98 9	.97 47.95 54.7	6 -6.81 AVG						
2 * 0.17 3 0.2	740 37.98 9 140 37.76 10	.97 47.95 54.7 .02 47.78 63.0	6 -6.81 AVG 4 -15.26 QP						
2 * 0.17	740 37.98 9 140 37.76 10	.97 47.95 54.7	6 -6.81 AVG 4 -15.26 QP						
2 * 0.17 3 0.2° 4 0.2°	740 37.98 9 140 37.76 10 140 34.10 10	.97 47.95 54.7 .02 47.78 63.0 .02 44.12 53.0	6 -6.81 AVG 4 -15.26 QP						
2 * 0.17 3 0.2° 4 0.2° 5 0.58	740 37.98 9 140 37.76 10 140 34.10 10 540 35.90 10	.97 47.95 54.7 .02 47.78 63.0 .02 44.12 53.0 .05 45.95 56.0	6 -6.81 AVG 4 -15.26 QP 4 -8.92 AVG						
2 * 0.17 3 0.2° 4 0.2° 5 0.58 6 0.58	740 37.98 9 140 37.76 10 140 34.10 10 540 35.90 10 540 28.25 10	.97 47.95 54.7 .02 47.78 63.0 .02 44.12 53.0 .05 45.95 56.0 .05 38.30 46.0	6 -6.81 AVG 4 -15.26 QP 4 -8.92 AVG 0 -10.05 QP						
2 * 0.17 3 0.2° 4 0.2° 5 0.58 6 0.58	740 37.98 9 140 37.76 10 140 34.10 10 540 35.90 10 540 28.25 10 220 29.30 10	.97 47.95 54.7 .02 47.78 63.0 .02 44.12 53.0 .05 45.95 56.0 .05 38.30 46.0 .06 39.36 56.0	6 -6.81 AVG 4 -15.26 QP 4 -8.92 AVG 0 -10.05 QP 0 -7.70 AVG						
2 * 0.17 3 0.27 4 0.27 5 0.58 6 0.58 7 1.62	740 37.98 9 140 37.76 10 140 34.10 10 540 35.90 10 540 28.25 10 220 29.30 10 220 22.59 10	.97 47.95 54.7 .02 47.78 63.0 .02 44.12 53.0 .05 45.95 56.0 .05 38.30 46.0 .06 39.36 56.0 .06 32.65 46.0	6 -6.81 AVG 4 -15.26 QP 4 -8.92 AVG 0 -10.05 QP 0 -7.70 AVG 0 -16.64 QP						
2 * 0.17 3 0.2° 4 0.2° 5 0.58 6 0.58 7 1.62 8 1.62	740 37.98 9 140 37.76 10 140 34.10 10 540 35.90 10 540 28.25 10 220 29.30 10 220 22.59 10 860 28.90 10	.97 47.95 54.7 .02 47.78 63.0 .02 44.12 53.0 .05 45.95 56.0 .05 38.30 46.0 .06 39.36 56.0 .06 32.65 46.0 .05 38.95 56.0	6 -6.81 AVG 4 -15.26 QP 4 -8.92 AVG 0 -10.05 QP 0 -7.70 AVG 0 -16.64 QP 0 -13.35 AVG						
2 * 0.17 3 0.27 4 0.27 5 0.58 6 0.58 7 1.62 8 1.62 9 2.18	740 37.98 9 140 37.76 10 140 34.10 10 540 35.90 10 540 28.25 10 220 29.30 10 220 22.59 10 860 28.90 10 860 23.10 10	.97 47.95 54.7 .02 47.78 63.0 .02 44.12 53.0 .05 45.95 56.0 .05 38.30 46.0 .06 39.36 56.0 .06 32.65 46.0 .05 38.95 56.0 .05 33.15 46.0	6 -6.81 AVG 4 -15.26 QP 4 -8.92 AVG 0 -10.05 QP 0 -7.70 AVG 0 -16.64 QP 0 -13.35 AVG 0 -17.05 QP						

EUT:	Bluetooth Home Ringer	Model:	HFD-890
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 Hz		

Terminal: Neutral

Test Mode: USB Charging with BLE TX 2402 MHz

Only worse case is reported Remark:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBuV	dBu∀	dB	Detector
1	0.1740	38.43	10.12	48.55	64.76	-16.21	QP
2 *	0.1740	37.83	10.12	47.95	54.76	-6.81	AVG
3	0.2140	37.65	10.12	47.77	63.04	-15.27	QP
4	0.2140	34.02	10.12	44.14	53.04	-8.90	AVG
5	0.5540	35.93	10.02	45.95	56.00	-10.05	QP
6	0.5540	28.27	10.02	38.29	46.00	-7.71	AVG
7	0.8340	30.57	10.08	40.65	56.00	-15.35	QP
8	0.8340	21.29	10.08	31.37	46.00	-14.63	AVG
9	1.5700	29.69	10.10	39.79	56.00	-16.21	QP
10	1.5700	23.89	10.10	33.99	46.00	-12.01	AVG
11	4.6220	24.44	10.06	34.50	56.00	-21.50	QP
12	4.6220	20.06	10.06	30.12	46.00	-15.88	AVG

^{*:}Maximum data x:Over limit !:over margin

Page: 13 of 41

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.209

4.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)				
0.009~0.490	2400/F(KHz)	300				
0.490~1.705	24000/F(KHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

Radiated Emission Limit (Above 1000MHz)

Frequency	Class A (dBuV	/m)(at 3 M)	Class B (dBuV/m)(at 3 M)	
(MHz)	Peak	Average	Peak	Average
Above 1000	80	60	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 14 of 41

4.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Turntable

EUT

0.8 m lm to 4m

Coaxial Cable

Above 1GHz Test Setup

4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 16 of 41

4.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug. 07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug. 07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNE R	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

4.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

EUT: Bluetooth Home Ringer Model: HFD-890 Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** DC 5V Ant. Pol. Horizontal **Test Mode:** BLE TX 2402 Mode Remark: Only worse case is reported 80.0 dBuV/m (RF)FCC 15C 3M Radiation Margin -6 dB 30 (MHz) 30.000 50 60 70 80 300 400 500 600 700 1000.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV MHz dBuV/m dBuV/m dΒ Detector dB/m 1 45.3755 48.21 -22.4425.77 -14.2340.00 peak 2 35.76 187.0958 56.57 -20.81 43.50 -7.74 peak 3 235.8164 47.43 -18.80 28.63 46.00 -17.37peak 4 268.4853 48.77 -17.71 31.06 46.00 -14.94 peak 5 375.9385 49.45 -14.40 35.05 46.00 -10.95 peak 6 896.9965 39.95 -5.17 34.78 46.00 -11.22peak *:Maximum data x:Over limit !:over margin

EUT:	Bluetooth	Home Ringe	r Model:		HFD-890	
Temperature:	25 ℃		Relative	Humidity:	55%	
Test Voltage:	DC 5V					
Ant. Pol.	Vertical					
Test Mode:	BLE TX 2	402 Mode				
Remark:	Only wors	se case is rep	orted			
80.0 dBuV/m						
				(RF)	FCC 15C 3M Radiati	on
					Margin	-6 dB
			3 X 4			
30 1 2			/\. X	6 4		
www.wik) W	₩	.Auron	John Ween you Workson
The way of	MANA MANAGEMENTER	PART I	all Mark	Marked phoppy graph to the register of	Any my designed and hard and and	
144	140	Shan ARCANINAM	,			
20						
30.000 40 50	60 70 80	(I	MHz)	300 400	500 600 700	0 1000.00
	Re	ading Cori	rect Meas	sure-		
No. Mk. Fre		evel Fac	ctor me	nt Limi	t Over	
MH	z d	BuV dB/	m dBu	V/m dBuV	//m dB	Detector
1 36.50	92 43	3.70 -17.	99 25.	71 40.0	00 -14.29	peak
2 45.37	755 49	9.15 -22.	44 26.	71 40.0	00 -13.29	peak
3 * 192.4	186 59	9.51 -20.	78 38.	73 43.5	50 -4.77	peak
4 220.44	904 53	3.66 -19.	15 34.	51 46.0	00 -11.49	peak
4 228.49		204 47	98 35	26 46.0	00 -10.74	peak
5 256.52	211 5	3.24 -17.				
		3.24 -17. 3.05 -14.		65 46.0	00 -12.35	peak

EUT:	Bluetooth Home Ringer	Model:	HFD-890				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 5V	DC 5V					
Ant. Pol.	Horizontal						
Test Mode:	BLE Mode TX 2402 MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
	l ·						

N	lo.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4803.544	45.32	13.44	58.76	74.00	-15.24	peak
2		*	4804.090	36.67	13.44	50.11	54.00	-3.89	AVG

EUT:	Bluetooth Home Ringer	Model:	HFD-890				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 5V	DC 5V					
Ant. Pol.	Vertical						
Test Mode:	BLE Mode TX 2402 MHz	BLE Mode TX 2402 MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.865	45.05	13.44	58.49	74.00	-15.51	peak
2	*	4804.051	38.20	13.44	51.64	54.00	-2.36	AVG

Page: 21 of 41

EUT:	Bluetooth Home Ringer	Model:	HFD-890			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 5V					
Ant. Pol.	Horizontal					
Test Mode:	BLE Mode TX 2442 MHz	BLE Mode TX 2442 MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

	No. Mk. Freq.		Reading Level		Measure- ment	Limit	Over		
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4883.628	44.51	13.92	58.43	74.00	-15.57	peak
2		*	4884.111	36.95	13.92	50.87	54.00	-3.13	AVG

EUT:	Bluetooth Home Ringer	Model:	HFD-890				
Temperature:	25 °C Relative Humidity: 55%						
Test Voltage:	DC 5V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	BLE Mode TX 2442 MHz						
Remark:	No report for the emissio prescribed limit.	n which more than 10 o	dB below the				

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4884.090	37.29	13.92	51.21	54.00	-2.79	AVG
2		4884.432	42.94	13.92	56.86	74.00	-17.14	peak

Report No.: TB-FCC142957
Page: 23 of 41

EUT:	Bluetooth Home Ringer	Model:	HFD-890				
Temperature:	25 °C Relative Humidity: 55%						
Test Voltage:	DC 5V	OC 5V					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	BLE Mode TX 2480 MHz						
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						

No. Mk. Freq.		Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.415	43.00	14.36	57.36	74.00	-16.64	peak
2	*	4960.096	36.01	14.36	50.37	54.00	-3.63	AVG

EUT:	Bluetooth Home Ringer	Model:	HFD-890					
Temperature:	25 ℃	Relative Humidity: 55%						
Test Voltage:	DC 5V	OC 5V						
Ant. Pol.	Vertical							
Test Mode:	BLE Mode TX 2480 MHz							
Remark:	No report for the emissio	No report for the emission which more than 10 dB below the						
	prescribed limit.							

١	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4959.460	42.21	14.36	56.57	74.00	-17.43	peak
2		*	4960.147	36.28	14.36	50.64	54.00	-3.36	AVG

Page: 25 of 41

5. Restricted Bands Requirement

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

5.1.2 Test Limit

Restricted Frequency	Class B (dBuV/m)(at 3 M)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

5.2 Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit

Page: 26 of 41

Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug. 07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug. 07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

5.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

(1) Radiation Test

EUT:	Bluetooth Home Ringer	Model:	HFD-890				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 5V	DC 5V					
Ant. Pol.	Horizontal						
Test Mode:	e: BLE Mode TX 2402 MHz						
Remark:	N/A						

No.	. Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	48.70	0.77	49.47	74.00	-24.53	peak
2		2390.000	32.57	0.77	33.34	54.00	-20.66	AVG
3	*	2402.100	85.34	0.82	86.16	Fundamental F	Frequency	AVG
4	Χ	2402.400	89.32	0.82	90.14	Fundamental I	Frequency	peak

Page: 28 of 41

Temper Test Vo Ant. Po Test Mo Remark	oltage: ole: cccccccccccccccccccccccccccccccccccc	25 ℃ DC 5V Vertical BLE Mod N/A	de TX 24		Rel	lative l	lumidity:	55%	ı			
Ant. Po Test Mo Remark	ol. ode: c:	Vertical BLE Mod	de TX 24						-			
Test Mo Remark	ode:	BLE Mod	de TX 24			C 5V						
Remark	c :		de TX 24		nt. Pol. Vertical							
		Ν/Δ		80 MHz								
100.0 dB												
	SUY/M											
								4 34				
								Ž				
							(RF) FCC I	PART 15C (PEA	ıK)			
								+				
							(RF) FCC	PART 15C (AV	/G)			
50							1 X					
							2	/				
							×	/ \				
0.0												
	00 2326.00 2	336.00 234	6.00 2356	6.00 2366.00	2376.	.00 238	36.00 2396.	.00	2416.00 MHz			
No.	Mk. Fre		eading .evel	Correct Factor	Mea: me	sure- ent	Limit	Over				
	MH	lz (dBuV	dB/m	dBu	ıV/m	dBuV/m	dB	Detector			
1	2390.	000 4	7.45	0.77	48	.22	74.00	-25.78	peak			
2	2390.	000 3	2.77	0.77	33	.54	54.00	-20.46	AVG			
3	* 2402.	100 8	7.69	0.82	88	.51	Fundamenta	l Frequency	AVG			
4	X 2402.	400 9	1.85	0.82	92	.67	Fundamenta	l Frequency	peak			

Page: 29 of 41

		Blue	tooth Ho	me Ringer	Mode	el:		HF	D-890	
ratu	re:	25 °C	C		Rela	tive H	umidity:	nidity: 55%		
oltag	e:	DC 5V								
ol.		Horizontal								
ode:		BLE	Mode TX	(2480 MH	Z					
k:		N/A								
BuV/m										
000 247	73.00 2	2483.00	2493.00	2503.00 25	13.00 2	2523.00	2533.00	2543.00		2563.00 MH
Mk.	Fre	eq.		-			1	t	Over	
	MH	Ηz	dBu∀	dB/n	1	dBuV/n	n dBu\	//m	dB	Detecto
Χ	2479.	.800	87.28	1.1	5	88.43	Fundam	ental F	requency	peak
*	2480.	100	83.39	1.1	5	84.54	Fundame	ental F	requency	AVG
	2483.	500	51.91	1.17	7	53.08	74.0	00	-20.92	peak
	2483.	500	45.27	1.1	7	46.44	54.0	00	-7.56	AVG
	oltag ol. ode: k: BuV/m Mk.	ode: k: BuV/m Mk. Free MH X 2479. * 2480.	plage: DC 8 plage:	### 25 °C DC 5V DC	DC 5V ol. Horizontal ode: BLE Mode TX 2480 MH: k: N/A BBuV/m Reading Corre Mk. Freq. Level Fact MHz dBuV dB/m X 2479.800 87.28 1.15 * 2480.100 83.39 1.15	Relative: 25 °C Relative: DC 5V ol. Horizontal ode: BLE Mode TX 2480 MHz k: N/A Buv/m Reading Correct M Mk. Freq. Level Factor MHz dBuV dB/m X 2479.800 87.28 1.15 * 2480.100 83.39 1.15	### Prediction of the control of the	Relative Humidity: Ditage: DC 5V	Relative Humidity:	Relative Humidity:

Page: 30 of 41

UT:			Bluetooth Home Ringer Mod			Model:		HFD-890	
empe	ratur	e:	25 ℃			Relative Humidity: 55%			
est Vo	oltag	e:	DC 5	DC 5V					
nt. Po	ol.		Verti	cal					
est M	ode:		BLE	Mode TX 24	80 MHz				
emar	k:		N/A						
00.0 dl	BuV/m								
50		¥	3 X					FCC PART 15C (PEA	
0.0 2463.0	00 2473	3.00 2	483.00	2493.00 2503	3.00 2513.0	0 2523.00	2533.00 2	543.00	2563.00 MH
	Mk.	Fr	eq.	Reading Level	Correct Factor		- Limit	t Over	
No.				dBuV	dB/m	dBuV/m	dBuV	/m dB	Detecto
No.		M	ΗZ	ubuv	ub/III				
No.	X	2479		95.12	1.15	96.27	Fundame	ntal Frequency	peak
	X *		.800			96.27 92.05		ntal Frequency	
1		2479	.800	95.12	1.15			ntal Frequency	AVG peak

(2) Conducted Test

EUT:	Bluetooth Home Ringer	Model:	HFD-890				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Test Mode:	BLE Mode TX 2402MHz / B	BLE Mode TX 2402MHz / BLE Mode TX 2480MHz					
Remark:	The EUT is programed in co	ntinuously transmitting n	node				

Page: 32 of 41

6. Bandwidth Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(2)

6.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210						
Test Item	Test Item Limit Frequency Range(MHz)					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

6.2 Test Setup

6.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

6.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

6.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

Report No.: TB-FCC142957
Page: 33 of 41

UT:		Bluetooth	Home Ringer	Model:	HFD-890
empera	ture:	25 ℃		Relative Humidity:	55%
est Volt	age:	DC 3.7V			
est Mod	de:	BLE TX M	lode		
	frequend (Mz)	cy 6dB	Bandwidth (kHz)	99% Bandwidth (kHz)	Limit (kHz)
2	402	-	743.979	1071.80	
2	442	-	723.326	1048.60	>=500
2	480	-	722.896	1053.10	
		1	BLE	Mode	
			2402	2 MHz	
Pof 15	dPm		Atton 25 dB		
Ref 15 #Peak			Atten 25 dB		
#Peak Log					
#Peak			Atten 25 dB		
#Peak Log 10	Center		•		lo p.
#Peak Log 10	Center	000000 G	•	the design of the second secon	hum
#Peak Log 10	Center		•		hum
#Peak Log 10	Center		•		hum
#Peak Log 10 dB/	Center 2.4020	00000 G	•		Span 2 MUz
#Peak Log 10 dB/	Center	00000 G	iMz	300 kHz \$	Span 3 MHz Sweep 5 ms (401 pts)
#Peak Log 10 dB/	Center 2.4020 r 2.402 GHz BW 100 kHz	00000 G	altiz #VBW		
#Peak Log 10 dB/	Center 2.4020 r 2.402 GHz BW 100 kHz	00000 G	#VBW		Sweep 5 ms (401 pts)
#Peak Log 10 dB/	Center 2.4020 r 2.402 GHz BW 100 kHz	000000 G	#VBW		Sweep 5 ms (401 pts) V % Pwr 99.00 %
#Peak Log 10 dB/ Center #Res E	Center 2.4020 r 2.402 GHz BW 100 kHz	00000 G Bandwidt 1.0718	#VBW		Sweep 5 ms (401 pts) V % Pwr 99.00 %

Page: 34 of 41

Agilent Ref 15 dBm #Peak Atten 25 dB Log 10 dB/ Center 2.480000000 GHz Center 2.48 GHz Span 3 MHz #Res BW 100 kHz **#VBW 300 kHz** Sweep 5 ms (401 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % -6.00 dB x dB 1.0531 MHz Transmit Freq Error 55.690 kHz x dB Bandwidth 722.896 kHz

Page: 35 of 41

7. Peak Output Power Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (b)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210						
Test Item	Test Item Limit Frequency Range(MHz)					
Peak Output Power	1 Watt or 30 dBm	2400~2483.5				

7.2 Test Setup

7.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v03r02.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

7.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

Report No.: TB-FCC142957
Page: 36 of 41

JT:		Bluetooth Home Ringer		Model:		HFD-890
mperat	ture:	25 ℃	Relative Humi		midity:	55%
st Volta	age:	DC 3.7V				
st Mod	e:	BLE TX N	Mode			
hannel	frequen	cy (MHz)	Test Res	ult (dBm)	l	Limit (dBm)
	2402		-5.	140		
	2442		-4.7	709		30
	2480		-4.0	800		
			BLE	Mode		
			2402	MHz		
	ilent		_	_		_
- Oy	nicit	_	_	_	Mk	kr1 2.4023450 GHz
Ref 10 Peak	dBm		Atten 20 dB			-5.14 dBm
Log						
10 dB/				•		
	www					
	Marke					
	2.4023	345000 C	GHz			
		345000 C	GHz			
M1 S2 S3 FC	2.4023 -5.14	345000 C	GHz			
M1 S2 S3 FC AA	2.4023 -5.14	345000 C	GHz			
S3 FC	2.4023 -5.14	345000 C	GHz			
S3 FC	2.4023 -5.14	345000 C	GHz			
S3 FC AA	2.4023 -5.14	345000 (dBm	GHz			Span 3 MH:

Page: 37 of 41

Page: 38 of 41

8. Power Spectral Density Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (e)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)						
Test Item	Test Item Limit Frequency Range(MHz)					
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5				

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v03r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequenyc.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Midle and high channel for the test.

Report No.: TB-FCC142957
Page: 39 of 41

8.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

8.6 Test Data

EUT:	Bluetooth Home Ringer Model:				HFD-890	
EUI.	Bluetooth Home Kinger		woder.		HFD-690	
Temperature:	25 ℃		Relative Humidity:		55%	
Test Voltage:	DC 3.7V		_			
Test Mode:	BLE TX M	BLE TX Mode				
Channel Frequency Powe		Power	ower Density		Limit (dBm)	
(MHz)		(3 kHz	/dBm)			
2402		-20	.45			
2442		-19	9.77		8	
2480		-19.19				
	BLE Mode					
	2402 MHz					

Page: 40 of 41

Page: 41 of 41

9. Antenna Requirement

9.1 Standard Requirement

9.1.1 Standard FCC Part 15.203

9.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 2 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

9.3 Result

The EUT antenna is a Dipole Antenna with a reverse SMA connector. It complies with the standard requirement.

Antenna Type	
☐ Permanent attached antenna	
✓ Unique connector antenna	
☐ Professional installation antenna	