ANALIZA LOGATOMSKE RAZUMLJIVOSTI GOVORA U UČIONICAMA ETF

TEORIJSKI UVOD

Razumljivost govora

 Pojam koji se direktno vezuje za stepen prepoznavanja govornog signala i podrazumeva tačnost s kojom slušalac prima njegov sadržaj

- Cilj je dobiti parametar koji pokazuje koliko jasno i razgovetno se govor čuje na određenom mestu

Uticaj kanala na razumljivost

- Fizički uticaj kanala na razumljivost govora može se odraziti prekrivanjem delova govornog signala nekim istovremeno prisutnim parazitskim signalima
- U električnom domenu aditivni šum, u akustičnom ambijentalna buka

- Prekrivanje tiših delova govornog signala može nastati na dva načina:
 - -Kao vremenski uniformno pokrivanje aditivnim šumom
 - -Kao vremenski ograničeno pokrivanje refleksijama u prostoriji (reverberacijom) koje stižu sa kašnjenjem nakon jačih delova govornog signala (vokala)
- Pojam akustičkog dizajna prostorije inženjerska delatnost u procesu projektovanja u kojoj se osmišljavaju i razrađuju fizičke intervencije kojim se zvučno polje u prostoriji prilagođava zahtevima čovekovog čula sluha
- Kvalitet razumljivosti govora zavisi od toga koliko je akustički obrađena prostorija

Neke od akustičkih mera koje se postavljaju u prostorijama radi podešavanja njihovog impulsnog odziva su apsorpcioni materijali i konstrukcije i reflektori.

Apsorpcioni materijali

Zvučni signal kada pogodi ovakav materijal i prođe kroz njega, izgubi deo svoje energije koji se pretvori u toplotu. Pri proslaku kroz pore troši se energija i zbog toga se dobar deo signala i ne reflektuje.

Reflektori

Ideja je da vratimo energiju koja se reflektuje o plafon iznad govornika, ali da pritom ona bude brzo vraćena ka dole. Na taj način se kašnjenje reflektovane komponente smanjuje, pa će i zvuk biti glasniji i razumljiviji.

my how the first of the second of the second

Mere kvaliteta prenosa govora

Logatomska razumljivost

- Apsolutni pokazatelj kvaliteta koji se dobija neposrednim slušanjem emitovanog govora i pokazuje tačnost primljenog govornog sadržaja
- Posebno sastavljene reči bez smisla **logatomi** (obično se sastoje od tri ili četiri glasa u redosledu konsonant vokal konsonant ili konsonant vokal konsonant vokal)

STI(Speech Transmission Index)

- Objektivne mere razumljivosti izvedene iz merenja impulsnog odziva prenosnog kanala i merenja odnosa signal/šum, među kojima je najznačajniji indeks prenosa govora STI može se koristiti i za predikciju u fazi projektovanja
- Za svaku izmerenu ili izračunatu vrednost STI moguće je sa grafika odrediti vrednost logatomske razumljivosti klasifikovane razumljivosti: (0-0,3)-loša, (0,3-0,45)-nedovoljna, (0,45-0,6) -prihvatljiva, (0,6-0,75) -vrlo dobra, (0,75-1) -odlična

EKSPERIMENTALNO ODREĐIVANJE LOGATOMSKE RAZUMLJIVOSTI U AMFITEATRU 56

Tok eksperimenta

- U amfiteatru 56 okupljen je veliki broj studenata, kojima su potom puštene grupe od po 50 logatoma
- Slušaoci su raspoređeni uniformno prema brojevima po celom amfiteatru, i njihov zadatak bio je da zapišu reči, odnosno logatome koje čuju
- Kao izvor, odnosno za 'izgovor' logatoma, korišćena je veštačka glava, da bi se omogućilo precizno generisanje zvučnih signala, bez varijacije u dikciji
- Sama postavka vežbe je data šemom
- Prvi deo eksperimenta bio je merenje logatomske razumljivosti bez dodatnog pojačanja ambijentalne buke u prostoriji

Prostorni prikaz logatomske razumljivosti za amfiteatar 56

Prostorni prikazi logatomske razumljivosti za amfiteatar 65 i učionicu 62

Amfiteatar 65 Učionica 62

KATEDRA

Tok eksperimenta

- Drugi deo eksperimenta bio je merenje logatomske razumljivosti sa dodatnim pojačanjem ambijentalne buke u prostoriji
- Preko računara pušten je audio snimak buke u formi ljudskog žagora
- Postavka i tok eksperimenta isti su kao u prethodnom delu

Prostorni prikaz logatomske razumljivosti za amfiteatar 56 sa povećanom ambijentalnom bukom

Prostorni prikazi logatomske razumljivosti za amfiteatar 65 sa povećanom ambijentalnom bukom

Amfiteatar 65

Računar Audio interfejs Izlaz Pojačavač snage Pojačavač snage 1 1 2 3 5 6 7

Tok eksperimenta

- U poslednjem delu eksperimenta trebalo je izmeriti vrednosti parametra STI u prostoriji
- Za realizaciju vežbe koristi se sledeća oprema: 1. Računar sa odgovarajućim softverom za snimanje impulsnog odziva 2. Audio interfejs (AD/DA konvertor) 3. Pojačavač snage 4. Bežični prijemnik 5. Zvučnik 6. Bežični predajnik 7. Mikrofon
 - Zvučnik se nalazi kod katedre, a mikrofon se pozicionira na mesta na kojima sede studenti. Na računaru je instaliran softver za snimanje impulsnog odziva sistema i izračunavanje STI parametra, koji istovremeno generiše signal, koji se šalje preko pojačavača na zvučnik, i snima signal iz mikrofona, koji je preko bežičnog para predajnik–prijemnik povezan sa audio interfejsom
 - Na osnovu generisanog i snimljenog signala softver određuje impulsni odziv prostorije, za definisanu lokaciju zvučnika i mikrofona, i izračunava parametar STI.

Prostorni prikaz parametra STI za amfiteatar 56

Prostorni prikazi parametera STI za amfiteatar 65 i učionicu 62

Amfiteatar 65 Učionica 62

- Kada govorimo o STI parametru i njegovoj povezanosti za logatomskom razumljivosti govora, dobijeni rezulatati koji su prethodno anilizirani mogu se prikazati grafički
-Grafici korelacije za slučaj kada u prostoriji nije bila pojačana ambijentalna buka i slučaj kada smo je pojačali u amfiteatru 56

Podela vokala

VOKALI	PREDNJI	SREDNJI	ZADNJI
VISOKI	1		U
SREDNJI	Е		0
NISKI		А	

Podela suglasnika prema zvučnosti

- U zvučne glasove spadaju vokali i zvučni konsonanti, i to sonanti (M, N, NJ, J, L, LJ, R, V) i konsonanti koji imaju svoje bezvučne parnjake.

zvučni	В	D	G	Đ	DŽ	Ž	Z	/	/	/
bezvučni	Р	Т	K	Ć	Č	Š	S	F	Н	С

Podela suglasnika prema mestu nastanka

Podela suglasnika prema načinu izgovora

- EKSPLOZIVNI (PRASKAVI): B, P, D, T, G, K
- NOSNI (NAZALNI): M, N, NJ
- STRUJNI (FRIKATIVI): Z, S, Ž, Š, F, H
- SLIVENI (AFRIKATI): Č(TŠ), Ć(TJ), C(TS), Đ(DJ), DŽ
- BOČNI (LATERALNI): L, LJ
- POLUVOKALI: V, J
- TREPERAVI (VIBRANT): R

-Na osnovu podele glasova u srpskom jeziku, detaljna analiza rezultata eksperimenata pokazuje da je najviše grešaka napravljeno u percepciji suglasnika koji imaju isto mesto nastanka ili isti način izgovora

Bez ambijentalne buke

- Najviše grešaka napravljeno je u percepciji glasova "u", "m", i "r"
- Logatom "leju" pogrešno je čulo 30 osoba, dok je logatom "njonju" pogrešno čulo 27 osoba.

- Najčešće greške su

tačno	netačno	Broj slušalaca
lej <mark>u</mark>	leji	21
faši	p aši	20
njonj <mark>u</mark>	njonj <mark>o</mark>	14
ljare	lja <mark>v</mark> e	11

Sa ambijentalnom bukom

- Najviše grešaka napravljeno je u percepciji praskavih glasova i sonanata. Praskavi glasovi najviše su se mešali sa svojim zvučnim/bezvučnim parnjacima, dok su se međusobno najviše mešali sonanti
- Logatome "nenje" i "lelji" pogrešilo je 36 osoba.

- Najčešće greške su

tačno	netačno	Broj slušalaca
nenje	<mark>nj</mark> enje	16
ću <mark>dž</mark> i	ćuči	15
hivu	hiru	13
dugi	duki	13
zoš <mark>o</mark>	zoš <mark>u</mark>	12
žož <mark>o</mark>	žož <mark>u</mark>	12
vahe	vahi	12
đo <mark>č</mark> o	đo <mark>dž</mark> o	12

-Iz priložene obrade vidimo da, u proseku, bolje čuju muški slušaoci i u slučaju kada nema pojačane ambijentalne buke, i u slušaju kada je ona prisutna

88,33

Srednja vrednost razumljivosti u slučaju bez buke

62,52

Srednja vrednost razumljivosti u slučaju sa ambijentalnom buke

Zaključak

Akustička obrada prostorije

- -Reflektori postavljeni iznad katedre u amfiteatrima gde se obično nalazi govornik
- -Apsorpcioni materijali postavljeni na površinama prednjeg i zadnjeg zida amfiteatra, koji imaju ulogu da smanje reverberaciju
- Asorpciona konstrukcije postavljene na zid učionice 62

 Koncentracija slušaoca pri slušanju govora

- Kvalitet čula sluha

Postavka eksperimenta

- Veštačka glava okrenuta blago u levu stranu

HVALA NA PAŽNJI

Minja Milovanović

2020/0126

Analiza razumljivosti na osnovu glasova logatoma

Jovana Marić

2020/0144

Kod (analiza i grafički prikaz podataka)

Milica Kukanjac

2020/0405

Izveštaj i prezentacija