Université Sultan Moulay Slimane Ecole Supérieure de Technologie - Beni Mellal -

SYSTEMES D'INFORMATION

Pr. M. OUTANOUTE

Chapitre 1 Systèmes d'Information

Notion de système:

Un **système** est un ensemble d'éléments rassemblés pour réaliser un même objectif :

produire des sorties par transformation d'un ensemble d'entrées.

Une entreprise par exemple est un système (composé d'Hommes, de matériel, de méthodes ... etc.) qui transforme de la matière première en produits finis.

Un système peut être représenté par le schéma suivant :

3

Systèmes d'une organisation:

Une organisation est composée de trois systèmes :

- Le système opérant qui constitue la machine proprement dite de production et de transformation des entrées en produits finis,
- Le système de pilotage appelé aussi système de gestion qui pilote l'organisation et constitue son cerveau pensant.
- Le système d'information est la mémoire de l'organisation :
 - il est responsable de la collecte, la mémorisation, le traitement et la diffusion de l'information.
 - Il transmet au système de pilotage l'information nécessaire à la prise de décision.

Systèmes d'une organisation:

5

Système automatisé d'information:

Un système d'information peut être manuel ou automatisé:

- Lorsque le traitement de l'information se fait par l'Homme,
 on dit que le système d'information est manuel.
- Quand le traitement est réalisé par ordinateur, on parle de système d'information automatisé ou informatisé.

Fonctions d'un SI automatisé:

Un système d'information automatisé remplit les fonctions suivantes :

- Fonction de communication : permet au système de saisir les données en entrées et produire des résultats en sortie.
- Fonction mémorisation : stockage des programmes et des données sur support d'information.
- Fonction de traitement : regroupe toutes les opérations de transformation qui s'appliquent aux données pour l'aboutissement aux résultats.

Ces fonctions sont réalisées grâce aux différents constituants d'un système d'information : les ordinateurs et toute autre machine de traitement de l'information, les logiciels, le personnel, les méthodes ... etc.

7

Fonction de communication:

La saisie:

■ Faire entrer au système d'information automatisé les données de base (càd les entrées) pour tous les traitements qui suivront.

L'accès:

- Les utilisateurs du système d'information peuvent accéder aux données et aux résultats.
- Il est possible de communiquer et de diffuser l'information aux différents utilisateurs internes ou externes.
- L'information est diffusées sous plusieurs formes. Le support privilégié pour l'Homme est le papier.

Fonction de mémorisation:

- L'information saisie a besoin d'être enregistrée sur un support d'information pour permettre sa réutilisation.
- Il est même nécessaire dans beaucoup de cas de stocker l'information avant de la traiter.
- La mémorisation permet de stocker les programmes, les structures des données et les données elles mêmes sur mémoires externes, telle que disque, disquette, bande magnétique ou autre.

9

Fonction de traitement automatique:

L'information peut être traitée pour produire des résultats directement ou indirectement exploitables par les utilisateurs.

- Le contrôle de validité des données : par élimination des erreurs de saisie.
- La mise à jour des données : *ajout* d'un nouvel enregistrement, suppression d'un enregistrement existant ou *modification* d'un enregistrement qui existe déjà.
- La recherche d'informations : positionner et retrouver une information préalablement enregistrée sur support magnétique ou tout autre support d'information.
- Le calcul : permet toutes les transformation arithmétiques et logiques qui produiront des résultats à partir de données brutes.

Fonctions d'un SI automatisé:

11

Conception d'un Système d'Information

- > La conception d'un SI se compose de :
 - une **modélisation** de **l'entreprise** (pour une **vision globale** : modèle systémique),
 - une **modélisation** de ses **aspects statiques** (données : entités et association inter-entités);
 - une modélisation de ses aspects dynamiques (traitements : opérations déclenchées par des événements).
- > Cette conception nécessite une approche progressive (niveaux d'abstraction).

Modélisation

☐ Qu'est ce que la Modélisation ?

Une **technique** d'ingénierie permettant de **représenter** un système; elle s'appuie sur l**'établissement de modèles.**

☐ Qu'est ce qu'un Modèle?

Une **abstraction** simpliste de la réalité, centrée sur la représentation conceptuelle et physique d'un système.

□ Pourquoi Modéliser?

Nous modélisons des **systèmes complexes** parce que nous sommes incapables de les **comprendre** dans leur totalité.

13

Qu'apportent les modèles

- Les modèles apportent un support de raisonnements et de simulations, ainsi qu'un vecteur de communication entre personnes différentes.
- Les modèles permettent de :
 - Simplifier la réalité
 - Comprendre un problème complexe
 - Communiquer les connaissances
- Un modèle doit être :
 - Standard
 - Précis
 - Simple
 - Cohérent

Modèles : outils et types

Outils

- Langage naturel
- Représentation graphique
- Mathématiques

Types de modèles

- De communication, des traitements ou de données
- Statique ou dynamique

15

Implémentation d'un SI

- Le développement rapide de l'informatique a donné aux entreprises la possibilité d'utiliser des moyens avancés et puissants pour gérer et exploiter de très grands volumes de données.
- ❖ Les données d'un système d'information peuvent être stockées et manipulées à l'aide d'un outil informatique spécialisé dans ce domaine.
- ❖ Les Systèmes de Gestion de Bases de Données (SGBD) constituent le type de logiciel le mieux adapté pour implémenter la plupart des systèmes d'information.

Approche «Bases de données»

Modélisation des données

- ✓ Eliminer la redondance de données
- ✓ Centraliser et organiser correctement les données
- ✓ Plusieurs niveaux de modélisation
- ✓ Outils de conception

Implémentation à l'aide d'un SGBD :

- ✓ Factorisation des modules de contrôle des applications
- ✓ Interrogation, cohérence, Partage de données entre plusieurs traitements, gestion de pannes, etc....
- ✓ Administration facilitée des données et Contrôle immédiat de la validité des données
- ✓ Uniformisation de la saisie et standardisation des traitements (ex. tous les résultats de consultation sous forme de listes et de tableaux)

17

Méthode de modélisation: MERISE

<u>M</u>éthode d'<u>E</u>tude et de <u>R</u>éalisation <u>I</u>nformatique de <u>S</u>ystèmes d'<u>E</u>ntreprise est une méthodologie d'analyse et de conception qui s'intéresse à l'organisation des systèmes d'entreprises.

- ✓ MERISE est une méthode d'analyse (étude de problèmes):
 - Etudier le système existant;
 - Comprendre les besoins;
 - o En déduire le niveau conceptuel: une vision fonctionnelle du système.
- ✓ MERISE est une méthode de conception (étude de la solution):
 - Proposer de nouvelles solutions organisationnelles;
 - o **Etablir** un dialogue entre l'utilisateur et l'informaticien.
- ✓ MERISE est basée sur la séparation des données et des traitements à effectuer en plusieurs modèles conceptuels, logiques/organisationnels et physiques.

Les trois niveaux d'abstraction

Dans le processus de conception et de développement d'un système d'information, la méthode merise distingue trois niveaux d'abstraction :

❖ Le niveau conceptuel :

- On s'interroge sur l'essence même du système d'information. Il s'agit de répondre aux questions :
 - Quoi ? Que veut-on faire ? Avec quelles données ?
- On développe à ce niveau le modèle conceptuel des données (MCD) et le modèle conceptuel des traitements (MCT).

19

Les trois niveaux d'abstraction

❖ Le niveau logique/organisationnel :

- Permet de tenir en compte les problèmes organisationnels : à partir des modèles conceptuels de données et de traitements et en faisant intervenir les contraintes d'organisation,
- On élabore le modèle logique de données (MLD) et le modèle organisationnel des traitements (MOT).

❖ Le niveau physique :

 est caractérisé par la prise en compte des contraintes technologiques : matériel, logiciel, humain ... etc.

Les trois niveaux d'abstraction

Niveau	Données	Traitements
Conceptuel	MCD Modèle Conceptuel des Données	MCT Modèle Conceptuel des Traitements
Logique/Organisationnel	MLD Modèle Logique des Données	MOT Modèle Organisationnel des Traitements
Physique	MPD Modèle Physique des Données	MOpT Modèle Opérationnel des Traitements

21

Les étapes de MERISE

- > MERISE est une démarche de construction de systèmes d'information.
- > Elle propose 6 étapes de conception et de réalisation:
 - 1) SCHEMA DIRECTEUR
 - 2) L'ETUDE PREALABLE
 - 3) L'ETUDE DETAILLE
 - 4) L'ETUDE TECHNIQUE
 - 5) LA REALISATION
 - 6) LA MAINTENANCE

Les étapes de MERISE

Etape 1: SCHEMA DIRECTEUR:

- Le système d'information est étudié dans sa globalité et de manière très générale.
- Il est ensuite découpé en DOMAINES.
- Les priorités sont définies et un plan de développement est dressé.
- Le système d'information est par exemple découpés en : un domaine de comptabilité, un domaine de paie, un domaine de gestion de stock ... etc.

23

Les étapes de MERISE

Etape 2: L'ETUDE PREALABLE :

- Chaque domaine fait l'objet d'une étude préalable.
- On commence par analyser l'existant pour construire le MOT et le MLD actuels.
- On en déduit le modèle conceptuel des données et le modèle conceptuel des traitements.
- Ces modèles sont ensuite modifiés et corrigés pour prendre en compte les objectifs fixés par la direction générale.
- On doit proposer plusieurs scénarios pour la nouvelle solution et les présenter dans un dossier de choix à la direction générale, laquelle doit décider de la solution à retenir.

Les étapes de MERISE

Etape 3: L'ETUDE DETAILLE :

- La solution choisie est étudiée en détail,
- On procède notamment à l'étude du MOT, la validation du MCD et à l'étude du MLD.
- Lorsque le domaine est jugé important, il peut être découpé en PROJETS.
- Chaque projet est découpé lui aussi en APPLICATIONS.

25

Les étapes de MERISE

Etape 4: L'ETUDE TECHNIQUE :

Elle comporte l'optimisation du MLD, l'élaboration du MPD et du MOpT.

Etape 5: LA REALISATION:

Elle comporte pour chaque application : la programmation, les tests et le lancement progressif du nouveau système.

Etape 6: LA MAINTENANCE:

Mise à jour des programmes suite à des erreurs constatées ou suite à des modification qui se sont opérées dans l'organisation.

Cycles de MERISE

Pour mettre en oeuvre efficacement la méthode merise, il faut la faire évoluer en trois axes qui constituent ce qu'on appelle les trois cycles :

- Le cycle d'abstraction : permet de hiérarchiser l'étude en trois niveaux d'abstraction : CONCEPTUEL, LOGIQUE / ORGANISATIONNEL et PHYSIQUE.
- Le cycle de vie : comporte trois périodes : la conception,
 la réalisation et la maintenance.
- Le cycle de decision : permet de préciser les points où les décisions doivent être prises.

27