Wydział:	Dzień:Poniedziałek 14-17		Zespół:
Fizyki	Data: 08.05.2017		8
Imiona i nazwiska:	Ocena z przygotowania:	Ocena ze sprawozdania:	Ocena końcowa:
Marta Pogorzelska			
Paulina Marikin			
Prowadzący:		Podpis:	

Ćwiczenie 34:

Wyznaczanie dyspersji optycznej pryzmatu metodą kąta najmniejszego odchylenia

1 Cel badań

Celem doświadczenia było wyznaczenie krzywej dyspersji danego pryzmatu prostego.

2 Wstęp teoretyczny

Dyspersja jest własnością optyczną materiałów zgodnie z którą, prędkość fali elektromagnetycznej poruszającej się przez dany materiał jest zależna od jej częstotliwości. Ponieważ współczynnik załamania danego ośrodka jest zależny od tejże prędkości, on także będzie się zmieniał w zależności od częstotliwości fali.

$$n(\nu) = \frac{c}{v(\nu)} \tag{1}$$

, gdzie n
 - współczynnik załamania światła, c
 - prędkość światła w próżni, v - prędkość światła w danym ośrodku,
 ν - częstotliwość fali

W przypadku światła białego, zawierającego fale o różnych częstotliwościach, zostanie ono rozszczepione na pojedyńcze wiązki, załamujące się pod innym kątem.

Wiązka światła monochromatycznego przy przechodzeniu przez pryzmat odchyla się o kąt ε , zawarty między pierwotnym jej biegiem a wiązką załamaną.

Rysunek 1: Kąt odchylenia ε wiązki światła przy przechodzeniu przez pryzmat.

Kąt odchylenia ε zależy m.in. on od kąta padania α i jest najmniejszy w sytuacji, gdy kąt padania α_1 i kąt wyjścia α_2 są równe. Jest to tzw. "przebieg symetryczny", dla którego, w oparciu o prawo Snelliusa, zachodzi równość:

$$n = \frac{\sin\frac{\varepsilon_{min} + \varphi}{2}}{\sin\frac{\varphi}{2}} \tag{2}$$

Rysunek 2: Kąt najmniejszego odchylenia ε_{min} dla tzw. przebiegu symetrycznego.

3 Opis układu i metody pomiarowej

Aparatura pomiarowa

- lampa sodowa
- lampa neonowa
- spektrometr

3.1 Kąt łamiący pryzmatu

Najpierw należało wyznaczyć kąt łamiący danego pryzmatu. W tym celu włączono lampę sodową i postawiono ją tak, by światło padało bezpośrednio przez kolimator spektrometru. Pryzmat ustawiono na stoliku tak, by kąt łamiący znajdował się naprzeciw kolimatora.

Rysunek 3: Kąt łamiący pryzmatu

Następnie, obserwując przez lunetę, należało wyregulować jego ostrość oraz szerokość obrazu szczeliny tak, by była możliwe jak najwęższa. Następnie odszukujemy wiązkę odbitą od jednej i drugiej ścianki

pryzmatu i odczytujemy przy pomocy kątomierza ich położenie kątowe. Kąt łamiący φ wyznaczamy ze wzoru:

$$\varphi = \frac{a_L - a_P}{2} \tag{3}$$

, gdzie a_L, a_P - położenie kątowe lunety dla każdej z odbitych wiązek

3.2 Kąt najmniejszego odchylenia

Kolejnym pomiarem potrzebnym w doświadczeniu był pomiar kąta najmniejszego odchylenia. Ustawiamy pryzmat tak, by wiązka światła padała na jedną ze ścianek i wyszukujemy lunetą wiązki załamanej barwy żółtej. Następnie manipulując stolikiem zmieniamy kąt padania, jednocześnie śledząc położenie wiązki przy pomocy lunety. Wiązka przesuwa się w prawo, by w pewnym momencie zatrzymać się i przy dalszym obrocie stolika zawrócić. Punkt zwrotny wyznacza kąt najmniejszego odchylenia ε_{min} , który zawarty jest pomiędzy położeniem kątowym punktu zerowego oraz położeniem kątowym lunety. (patrz rys.2)

$$\varepsilon_{min} = |a_0 - a_{lun}| \tag{4}$$

Położenie kątowe punktu zerowego jest wyznaczone na końcu doświadczenia. Po wykonaniu pomiarów pryzmat zostaje zdjęty ze stolika i odczytane zostaje położenie kątowe wiązki, dajac położenie kątowe punktu zerowego.

3.3 Pomiary właściwe

Nie zmieniając ustawienia stolika z pryzmatem wyznaczamy położenie kątowe wiązki zielonej. Następnie, przy niezmienianiu położenia stolika, wyłączamy lampę sodową, odstawiwamy ją, włączamy lampę neonową i podstawiamy ją tak, by światło padało przez kolimator. Wykonujemy analogicznie pomiary dla lampy neonowej dla kilku najjaśniejszych linii barw i spisujemy ich położenie kątowe.

4 Wyniki i analiza pomiarów

Kąt łamiący pryzmatu: 60°00′

Kąt zerowy: $45^{\circ}30'$

4.1 Pomiary dla sodu

- \bullet żółty 346°50′ dla $\lambda=589nm$
- zielony 345°30′ dla $\lambda = 568nm$

4.2 Pomiary dla neonu

	$\lambda[nm]$	$\alpha[^{\circ}]$	$\alpha[']$
0	654	348	18
1	651	348	10
2	641	348	0
3	614	347	46
4	610	347	40
5	603	347	26
6	591	347	10
7	588	347	0
8	540	346	20
9	534	346	10
10	470	345	48
11	454	344	44

Rysunek 4: Wykres wartości wyliczonych ze wzoru 2 z dopasowaną krzywą

5 Analiza niepewności

Za niepewność pomiaru wartości kątowej wzięto:

$$\Delta \alpha = \sqrt{\left(\frac{\Delta_k}{3}\right)^2 + \left(\frac{\Delta_o}{3}\right)^2} \tag{5}$$

gdzie Δ_k - podziałka kątomierza: 2′, a Δ_o - niepewność eksperymentatora: 2′. Wyjątek stanowi kąt najmniejszego odchylenia gdzie, ze względu na martwy przedział niepewność wynosi 30′. Niepewność długości fali oszacowano na 3nm

Dalsze niepewności wyliczano metodą propagacji niepewności:

• Kąt łamiący pryzmatu

$$\Delta\varphi = \sqrt{\left(\frac{\Delta\alpha_L}{2}\right)^2 + \left(\frac{\Delta\alpha_P}{2}\right)^2} \tag{6}$$

 $\bullet~$ Kąt najmniejszego odchylenia

$$\Delta \varepsilon_{min} = \sqrt{(\Delta \alpha)^2 + (\Delta \alpha_0)^2} \tag{7}$$

• Wspołczynnik załamania

$$\Delta n = \sqrt{\left(\Delta \varphi \frac{\sin\left(\frac{\varepsilon_{min}}{2}\right)}{\cos\left(\varphi\right) - 1}\right)^2 + \left(\Delta \varepsilon \frac{\cos\left(\frac{\varepsilon_{min}}{2} + \frac{\varphi}{2}\right)}{2\sin\left(\frac{\varphi}{2}\right)}\right)^2}$$
 (8)

Pochodne cząstkowe potrzebne do wyliczenia niepewności współczynnika załamania wyliczono i uproszczono przy użyciu funkcji diff oraz simplify pakietu sympy w pythonie.

6 Wnioski