Angle Chasing Problem Set

Focus Learning

July 25, 2020

Abstract

These handout contains various problems using the techniques from the Angle Chasing lecture. The problems will generally increase in difficulty.

1 Problems

Remark. Remember that angle chasing usually isn't much help on its own, use other techniques to finish the problems.

Exercise 1.1 (2007 AMC 12). Triangles ABC and ADC are isosceles with AB = BC and AD = DC. Point D is inside $\triangle ABC$, $\angle ABC = 40^{\circ}$, and $\angle ADC = 140^{\circ}$. What is the degree measure of $\angle BAD$?

Exercise 1.2. In quadrilateral ABCD, the diagonals meet at E. If $\angle ABD = 20^{\circ}, \angle AED = 70^{\circ}$, and $\angle BDC = 50^{\circ}$, prove or disprove that ABCD is cyclic.

Exercise 1.3 (1986 MATHCOUNTS). ABC is an isosceles triangle such that AC = BC. CBD is an isosceles triangle such that CB = DB. BD meets AC at a right triangle. If $\angle A = 57^{\circ}$, what is $\angle D$?

Exercise 1.4. Let ABCD be a cyclic quadrilateral inscribed in circle ω . Let ℓ be a line tangent to ω at A. Prove that the angle formed by ℓ and AB is equal to $\angle ACB$.

Exercise 1.5 (1990 AHSME). An acute isosceles triangle, ABC is inscribed in a circle. Through B and C, tangents to the circle are drawn, meeting at point D. If $\angle ABC = \angle ACB = 2\angle D$, find the measure of $\angle A$.

Exercise 1.6 (Reflecting the Orthocenter Lemma). Let O be the orthocenter (intersection of the three altitudes) of $\triangle ABC$. Prove that the reflections of O across AB, BC, and AC all lie on the circumcircle of $\triangle ABC$.

Exercise 1.7 (1999 BAMO). Let O = (0,0), A = (0,a), and B = (0,b), where 0 < b < a are reals. Let Γ be a circle with diameter \overline{AB} and let P be any other point on Γ . Line PA meets the x-axis again at Q. Prove that angle $\angle BQP = \angle BOP$.

Exercise 1.8 (2011 USAJMO). Points A, B, C, D, E lie on a circle ω and point P lies outside the circle. The given points are such that (i) lines PB and PD are tangent to ω , (ii) P, A, C are collinear, and (iii) $DE \parallel AC$. Prove that BE bisects AC.

Exercise 1.9 (2014 Sharygin MO). Let ABC be an isosceles triangle with base AB. Line ℓ touches its circumcircle at point B. Let CD be a perpendicular from C to ℓ , and AE, BF be the altitudes of ABC. Prove that D, E, and F are collinear.