- 1. Let X_1, X_2, \ldots be i.i.d. random variables and Y be a discrete random variable taking positive integer values. Assume that Y and X_i 's are independent. Let $Z = \sum_{i=1}^{Y} X_i$.
 - (a) Obtain the moment generating function of Z. What is the condition that it exits?
 - (b) Use part (a) to derive the distribution of Z when X is Exponential(λ) and Y is Geometric(p).
 - (c) Show that $E[Z] = E[Y]E[X_1]$.
 - (d) Show that $Var(Z) = E[Y]Var(X_1) + Var(Y)(E[X_1])^2$
- 2. Let X_1 and X_2 be independent random variables having the standard normal distribution. Obtain the joint pdf of (Y_1, Y_2) , where $Y_1 = \sqrt{X_1^2 + X_2^2}$ and $Y_2 = X_1/X_2$. Are Y_i 's independent?
- 3. Let's verify $(n-1)S_n^2 \sim \chi_{n-1}^2$ directly. Consider the standard normal random vector $X = (X_1, \ldots, X_n)$. Its covariance matrix is the identity matrix $\Sigma = I_n$. This means that X_i and X_j are independent and $\mathrm{Var}(X_i) = 1$.
 - (a) Show that for a matrix $A \in \mathbb{R}^n$, if A is orthonormal (i.e., $AA^T = I_n$), then Y = AX (it is a linear transformed random vector) is also a standard normal vector.
 - (b) Let A be an orthonormal matrix and its first row be $(n^{-1/2},\ldots,n^{-1/2}).^1$ So $Y_1=\sqrt{n}\bar{X},Y_2,\ldots,Y_n$ is a standard normal random vector. Then by the orthonormality of A, show that $\sum_{i=2}^n Y_i^2 = \sum_{i=1}^n X_i^2 n\bar{X}^2$. Therefore, $(n-1)S^2$ is χ_{n-1}^2 . (Hint: use the fact that $\sum_{i=1}^n Y_i^2 = (AX)^T AX = X^T A^T AX = \sum_{i=1}^n X_i^2$.)
- 4. Let Y be a Exponential(1) random variable with PDF $f_Y(y) = e^{-y}$. The τ th quantile of Y is defined as

$$Q_Y(\tau) = F_Y^{-1}(\tau) := \inf\{y : F_Y(y) \ge \tau\}, \tau \in (0, 1).$$

- (a) Find the the τ th quantile $Q_Y(\tau)$ of Y for $\tau \in (0,1)$.
- (b) Define the loss function as

$$\rho_{\tau}(y) := y(\tau - \mathbb{I}_{\{y < 0\}}) = \begin{cases} (\tau - 1)y, & y < 0, \\ \tau y, & y \ge 0. \end{cases}$$

Calculate the expected loss $L(u) := \mathsf{E}[\rho_{\tau}(Y-u)]$ as a function of $u \ge 0$.

- (c) Show that the τ th quantile minimizes L(u).
- 5. Let U_1, U_2, \ldots be independent random variables having the uniform distribution on [0,1] and $Y_n = (\prod_{i=1}^n U_i)^{-1/n}$. Show that

$$\sqrt{n}(Y_n - e) \Rightarrow N(0, e^2).$$

[Hint: Use delta method.]

6. Let (X_1, \ldots, X_n) be a random sample from the uniform distribution on the interval [0,1] and let $R = X_{(n)} - X_{(1)}$, where $X_{(i)}$ is the *i*th order statistic. Derive the density of R and find the limiting distribution of 2n(1-R) as $n \to \infty$.

¹Why this is always possible? Think of each row of A as an orthornormal basis in \mathbb{R}^n . We fix one of them, we can always find the remaining n-1 bases in the subspace. Mathematically, we can use orthonormal decomposition to find rows of A sequentially.