Apuntes de Probabilidad y Estadística II

Leonardo H. Añez Vladimirovna¹

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

24 de septiembre de 2018

 $^{^{1}\}mathrm{Correo\ Electr\'{o}nico:\ toborochi98@outlook.com}$

Notas del Autor

Estos apuntes fueron realizados durante mis clases en la materia MAT305 (Probabilidad y Estadística II), acompañados de referencias de libros, fuentes y código que use a lo largo del curso, en el período I-2018 en la Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones.

Para cualquier cambio, observación y/o sugerencia pueden enviarme un mensaje al siguiente correo:

toborochi98@outlook.com

Índice general

1.	Var	$ar{q}$ ariables Aleatorias						
	1.1.	Clasific	ación de Variables Aleatorias	5				
	1.2.	Funciór	n de Probabilidad de una Variable Aleatoria	6				
	1.3.	Funciór	n de Distribución Acumulada (FDA)	6				
			Representación Gráfica	6				
			Caso Continuo	6				
		1.3.3.	Propiedades de la FDA	7				
	1.4.		nza Matemática	7				
			Varianza	8				
	1.5.	Funciór	n de Probabilidad Conjunta	8				
			Función de Cuantía Conjunta	8				
			Función de Densidad Conjunta	8				
	1.6.		uciones Marginales	9				
			Independencia Estadística de las v.a. X y Y	9				
			-	ç				
				9				
			Resultado Importantes	9				
2 .	Mod	delos de	e Distribución de Probabilidad	11				
			ución de Bernoulli					
			ución Binomial					
			Características de la Distribución Binomial					
			Manejo de la Tabla Binomial					
	2.3		v ·	12				

ÍNDICE GENERAL

Capítulo 1

Variables Aleatorias

Una variable aleatoria x (desde ahora denotada por $\mathbf{v.a.}$) es una función definida sobre el espacio muestral S con valores en \mathbb{R} que a cada elemento de S (Punto muestral) hace corresponder un número real x = X.

$$x = X(w) \in Rec_X \subseteq \mathbb{R}$$

Gráficamente

Notación Conjuntista

$$X = \{(w, x) \mid w \in S, x = X(w) \in \mathbb{R}\} \subseteq S \times \mathbb{R}$$

Donde:

- S: Conjunto Partida (Espacio Muestral).
- R: Conjunto de llegada.
- w: Elemento de S (Punto Muestral).
- x: Valor de la **v.a.** X.
- Rec_X : Recorrido de X.
- X: Función v.a. (Conjunto de Pares Ordenados).

Notaciones

Las $\mathbf{v.a.}$ se denotan con letras mayúsculas tales como X,Y o Z, y los valores correspondientes con letras minúsculas.

1.1. Clasificación de Variables Aleatorias

• Discreta: Cuyo recorrido es un conjunto finito o infinito numerable de valores:

$$X$$
 es **v.a.** discreta \Rightarrow $\begin{cases} \text{Conjunto Finito de Valores} \\ \text{Conjunto Infinito Numerable de Valores} \end{cases}$

- Contínua: Es aquella cuyo recorrido es conjunto finito no numerable de valores, puede tomar cualquier valor en un intervalo o conjunto.
- ♦ En general las **v.a.** discretas representan datos que provienen del conteo de número de elementos. Pueden ser número de titulados, número de estudiantes, etc. Mientras que las **v.a.** contínuas representan mediciones, como longitud, capacidad, etc.

1.2. Función de Probabilidad de una Variable Aleatoria

También llamada función de cuantía o función de masa de probabilidad de una v.a..

Se denomina función de probabilidad de una **v.a.** discreta X a una función p o f, cuyo valor es p(x) o P(X=x)0 ya que a cada valor distinto de la **v.a.** discreta X hace corresponder en un número entre los valores [0,1] que es su probabilidad, de ahí el nombre de función de cuantía o función de probabilidad. Estos valores satisfacen las siguientes condiciones:

1.
$$P(x) \ge 0$$
 ; $\forall x \in \mathbb{R}$

$$2. \sum_{x_i \in Rec_X} p(x_i) = 1$$

■ Si
$$Rec_X = \{x_1, x_2, \dots, x_n\}$$
 entonces la condición (II) es: $\sum_{i=1}^n p(x_i) = 1$

• Si
$$Rec_X = \{x_1, x_2, \dots, x_n, \dots\}$$
 entonces la condición (II) es: $\sum_{i=1}^{\infty} p(x_i) = 1$

Si A es un evento en el recorrido de la $\mathbf{v.a.}$ discreta X entonces la probabilidad de A es el número:

$$P(A) = \sum P(X = x) = \sum p(x)$$

Nota:

$$P(X = x) \begin{cases} p(x) \ge 0; & \forall x \in \mathbb{R} \\ f(x) \ge 0; & \forall x \in \mathbb{R} \end{cases}$$

La función de probabilidad de una $\mathbf{v.a.}$ discreta X se puede expresar por:

■ Un Conjunto:

$$p = \{(x, P(X))/x \in D_p\}$$

■ Una Tabla:

ĺ	x_i	x_1	x_2	 x_n
	$p(x_i)$	$p(x_1)$	$p(x_2)$	 $p(x_n)$

Una Gráfica:

1.3. Función de Distribución Acumulada (FDA)

El valor de la **FDA** de una **v.a.** discreta X, que es F(x), viene dada por la sumatoria de las probabilidades, desde un valor mínimo t hasta un valor específico x; esto es:

$$F(x) = P(X \le x) = \sum_{t \le x} P(t), \quad \forall x \in \mathbb{R}$$

1.3.1. Representación Gráfica

Valores F(x) aumentan en saltos, presentando entonces la forma de una escalera:

1.3.2. Caso Continuo

Función de Densidad

f es función densidad, si f(x) cumple las siguientes condiciones:

(I)
$$f(x) > 0$$
; $\forall x \in \mathbb{R}$

(II)
$$\int_{-\infty}^{\infty} f(x)dx = 1$$

(III)
$$p(a \le x \le b) = \int_a^b f(x)dx$$

FDA

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx$$

1.3.3. Propiedades de la FDA

Caso Discreto

- 1. $0 \le F(x) \le 1$; $\forall x \in \mathbb{R}$
- 2. $F(-\infty) = 0$
- 3. $F(+\infty) = 1$
- 4. P(X < a) = F(a)
- 5. P(X > a) = 1 P(X < a) = 1 F(a)

6.
$$P(X < a) = \begin{cases} F(a-1), \text{ si } a \in \mathbb{Z} \\ F([a]), \text{ si } a \notin \mathbb{Z} \end{cases}$$

- 7. $P(X \le -a) = 1 P(X \le a) = 1 F(a)$
- 8. $P(a < X \le b) = F(b) F(a)$
- 9. $P(a \le X \le b) = F(b) F(a) + P(X = x)$
- 10. P(a < X < b) = F(b) F(a) P(X = b)
- 11. $P(X = x_i) = F(x_i) F(x_{i-1})$

Caso Continuo

- 1. $0 \le F(x) \le 1$; $\forall x \in \mathbb{R}$
- 2. $F(-\infty) = 0$
- 3. $F(+\infty) = 1$
- 4. P(X < a) = P(X < a) = F(a)
- 5. $P(X > a) = 1 P(X \le a) = 1 F(a)$
- 6. P(X > a) = 1 P(X < a) = 1 F(a)
- 7. P(X < -a) = 1 P(X < a) = 1 F(a)
- 8. $P(a < X \le b) = P(a \le X \le b) = P(a < X < b)$
- 9. $f(x) = \frac{dF(x)}{dx}$

1.4. Esperanza Matemática

Sea X una **v.a.** con función de probabilidad f definida por f(x). La esperanza matemática de X, denotada por E(x), μ ó μ_x ; está dada por:

$$E(x) = \mu = \mu_x = \begin{cases} \sum_x x \cdot p(x), \text{ Si } X \text{ es } \mathbf{v.a.} \text{ Discreta} \\ \int_{-\infty}^{+\infty} x \cdot f(x) dx, \text{ Si } X \text{ es } \mathbf{v.a.} \text{ Continua} \end{cases}$$

Propiedades

- 1. E(a) = a
- 2. $E(x \pm a) = E(x) \pm a$
- 3. E(ax) = aE(x)
- 4. $E(ax \pm b) = aE(x) \pm b$

1.4.1. Varianza

Notaciones: $V(x), \sigma^2, \sigma_x^2$

$$V(x) = \sigma^2 = \begin{cases} E[x-\mu]^2 = \sum_x (x-\mu)^2 f(x); \text{ Si } X \text{ es } \mathbf{v.a.} \text{ Discreta} \\ \\ E[x-\mu]^2 = \int_{-\infty}^{+\infty} (x-\mu)^2 f(x) dx; \text{ Si } X \text{ es } \mathbf{v.a.} \text{ Continua} \end{cases}$$

Propiedades

- 1. $V(x) \ge 0$
- 2. V(a) = 0
- 3. V(ax) = aV(x)
- 4. $V(ax \pm b) = a^2V(x)$
- 5. $V(x) = E(x^2) [E(x)]^2$

1.5. Función de Probabilidad Conjunta

1.5.1. Función de Cuantía Conjunta

$$P(X = x, Y = y) = f(x, y) = p(x, y)$$

es el valor de una función de cuantía conjunta de la $\mathbf{v.a.'s}\ X$ y Y si:

(I) $f(x,y) = p(x,y) \ge 0$ Para cualquier (x,y) de su dominio.

(II)
$$\sum_{x} \sum_{y} f(x,y) = 1$$

(III)
$$P((x,y) \in A) = \sum_{A} \sum_{A} f(x,y)$$
 Para cualquier región A del plano XY .

1.5.2. Función de Densidad Conjunta

$$P(X = x, Y = y) = f(x, y) = p(x, y)$$

es el valor de una función de cuantía conjunta de la ${\bf v.a.'s}~X$ y Y si:

(I) $f(x,y) = p(x,y) \ge 0$ Para cualquier (x,y) de su dominio.

(II)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

(III) $P((x,y) \in A) = \iint_A f(x,y) dx dy$ Para cualquier región A del plano XY.

1.6. Distribuciones Marginales

Sean X y Y **v.a.** con función de probabilidad conjunta definida por f(x,y). La distribución marginal está dada por:

Caso Discreto:
$$\begin{cases} \text{Distribuci\'on Marginal X: } g(x) = \sum_y f(x,y) \\ \text{Distribuci\'on Marginal Y: } h(y) = \sum_x f(x,y) \end{cases}$$
 Caso Continuo:
$$\begin{cases} \text{Distribuci\'on Marginal X: } g(x) = \int_{-\infty}^{+\infty} f(x,y) \, dy \\ \text{Distribuci\'on Marginal Y: } h(y) = \int_{-\infty}^{+\infty} f(x,y) \, dx \end{cases}$$

1.6.1. Independencia Estadística de las v.a. X y Y

Sean X y Y **v.a.** discretas o contínuas con función de probabilidad conjunta definida por f(x,y) y distribuciones marginales g(x) y h(y), respectivamente. Se dice que las **v.a.** X y Y serán estadísticamente independientes ssi:

$$f(x,y) = g(x)h(y)$$

Para cualquier (x, y) dentro de sus recorridos.

1.6.2. Esperanza Matemática

Sean X y Y **v.a.** con función de probabilidad definida por f(x,y). La media o esperanza matemática de g(x,y) está dada por:

Caso Discreto:
$$E(g(x,y)) = \mu_{g(x,y)} = \sum_{x} \sum_{y} g(x,y) \cdot f(x,y)$$

Caso Contínuo:
$$E(g(x,y))=\mu_{g(x,y)}=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)\cdot f(x,y)\,dx\,dy$$

1.6.3. Covarianza

Mide el grado de relación o asociación de dos variables.

1.6.4. Resultado Importantes

- 1. $E(x \pm y) = E(x) \pm E(y)$
- 2. $Cov(x, y) = E(x \cdot y) E(x)E(y)$
- 3. $V(x \pm y) = V(x) + V(y) \pm 2Cov(x, y)$
- 4. $V(ax \pm by) = a^2V(x) + b^2V(y) \pm 2abCov(x, y)$
- 5. Si X y Y son estadísticamente independientes entonces:
 - a) E(x,y) = E(x)E(y)
 - b) Cov(x, y) = 0
 - c) $V(x \pm y) = V(x) + V(y)$
 - d) $V(ax \pm by) = a^2V(x) + b^2V(y)$

Capítulo 2

Modelos de Distribución de Probabilidad

2.1. Distribución de Bernoulli

Si la probabilidad de que ocurra un evento p y la probabilidad de que no ocurra es q(q = 1 - p), entonces se dice que la **v.a.** discreta X se distribuye según Bernoulli, cuya función de cuantía está dada por:

$$p(x) = f(x) = P(X = x) = \begin{cases} p^x \cdot (1-p)^{1-x} & ; x = 0; 1\\ 0 & ; \text{otro caso} \end{cases}$$

Y cuya función de distribución acumulada es:

$$F(X) = P(X = x) = \begin{cases} 0 & ; x < 0 \\ q = 1 - p & ; 0 \le x < 1 \\ 1 & ; x \ge 1 \end{cases}$$

$$X \sim Ber(x; p) \Rightarrow \begin{cases} E(x) = \mu = p \\ V(x) = \sigma^2 = p \cdot q \\ D(x) = \sigma = \sqrt{p \cdot q} \end{cases}$$

Conocida como prueba o ensayo de Bernoulli, es un experimento que solo tiene 2 resultados posibles, a los cuales se los llama:

- **■** Éxito (*p*)
- Fracaso (q)

2.2. Distribución Binomial

Una $\mathbf{v.a.}$ discreta X tiene distribución lineal si su función de cuantía está dada por:

$$f(x) = \begin{cases} \binom{n}{x} p^x \cdot q^{n-x} & ; x = 0, 1, 2, \dots, n \\ 0 & ; \text{otro caso} \end{cases}$$

Donde:

- p : Probabilidad de éxito.
- \blacksquare n: Número de ensayo.
- x : Número de éxitos.

Las Funciones de Distribución Acumulada Binomialmente está definida por:

$$F(x) = P(X \le x) = \begin{cases} 0 & ; x < 0 \\ \sum_{k=0}^{[\![x]\!]} \binom{n}{k} p^k q^{n-k} & ; 0 \le x < n \\ 1 & ; x \ge n \end{cases}$$

$$X \sim b(x; n, p) \Rightarrow \begin{cases} E(x) = \mu = n \cdot p \\ V(x) = \sigma^2 = n \cdot p \cdot q \\ D(x) = \sigma = \sqrt{n \cdot p \cdot q} \end{cases}$$

2.2.1. Características de la Distribución Binomial

- 1. Se realiza n pruebas , cada una independiente.
- 2. p es la probabilidad de éxito en cada prueba que ocurra en un evento y se mantiene constante a travez de las n pruebas.
- 3. El experimento es con reposición (sustitución por reemplazo).
- 4. Se da el valor de la $\mathbf{v.a.}$ X. La variación de x es desde 0 hasta n.

Observaciones

$$f(x) = b(x; n, p)$$
 $n y p \text{ son parameters}.$

2.2.2. Manejo de la Tabla Binomial

1.
$$\binom{p \le 0.50}{n \le 20} \Rightarrow b(x; n, p) = B(x; n, p) - B(x - 1; n, p)$$

2.
$$\binom{p > 0.50}{n \ge 20}$$
 \Rightarrow $\begin{cases} \textbf{(i.)} \ b(x; n, p) = B(n - x; n, 1 - p) - B(n - x - 1; n, 1 - p) \\ \textbf{(ii.)} \ b(x; n, p) = b(n - x; n, 1 - p) \text{ luego de usar (i.)} \\ \textbf{(iii.)} \ B(x; n, p) = 1 - B(n - x - 1; n, 1 - p) \end{cases}$

2.3. Distribución de Poisson

Una $\mathbf{v.a.}$ discreta X tiene distribución de Poisson, si su función de cuantía está dada por:

$$p(x) = f(x) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^x}{x!}; & x = 0, 1, 2, \dots \\ 0; & \text{otro caso} \end{cases}$$

Parámetro: $\lambda > 0$

La distribución de Poisson se obtiene de 2 maneras:

1.
$$\lim_{\substack{n \to \infty \\ p \to 0}} \binom{n}{x} \cdot p^x \cdot q^{n-x} \cong \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$
 $x = 0, 1, 2, \dots$

2.
$$p(x) = f(x) = \frac{e^{-\lambda \cdot t} (\lambda \cdot t)^x}{x!}$$
 $x = 0, 1, 2, ...$

donde t es la cantidad de medida (intervalo de tiempo, longitud, área, etc...) La **F.D.A.** de Poisson está dada por:

$$F(x) = \begin{cases} 0 & ; x < 0 \\ \sum_{k=0}^{\llbracket x \rrbracket} \frac{e^{-\lambda} \cdot \lambda^x}{x!} & ; x \ge 0 \end{cases}$$