Homework 11: Complex Projective Space

The complex projective space \mathbb{CP}^n is the space of complex lines in \mathbb{C}^{n+1} :

 \mathbb{CP}^n is obtained from $\mathbb{C}^{n+1}\setminus\{0\}$ by making the identifications $(z_0,\ldots,z_n)\sim(\lambda z_0,\ldots,\lambda z_n)$ for all $\lambda\in\mathbb{C}\setminus\{0\}$. One denotes by $[z_0,\ldots,z_n]$ the equivalence class of (z_0,\ldots,z_n) , and calls z_0,\ldots,z_n the homogeneous coordinates of the point $p=[z_0,\ldots,z_n]$. (The homogeneous coordinates are, of course, only determined up to multiplication by a non-zero complex number λ .)

Let \mathcal{U}_i be the subset of \mathbb{CP}^n consisting of all points $p=[z_0,\ldots,z_n]$ for which $z_i\neq 0$. Let $\varphi_i:\mathcal{U}_i\to\mathbb{C}^n$ be the map

$$\varphi_i([z_0,\ldots,z_n]) = \left(\frac{z_0}{z_i},\ldots,\frac{z_{i-1}}{z_i},\frac{z_{i+1}}{z_i},\ldots,\frac{z_n}{z_i}\right).$$

1. Show that the collection

$$\{(\mathcal{U}_i, \mathbb{C}^n, \varphi_i), i = 0, \dots, n\}$$

is an atlas in the *complex* sense, i.e., the transition maps are biholomorphic. Conclude that \mathbb{CP}^n is a complex manifold.

Hint: Work out the transition maps associated with $(\mathcal{U}_0, \mathbb{C}^n, \varphi_0)$ and $(\mathcal{U}_1, \mathbb{C}^n, \varphi_1)$. Show that the transition diagram has the form

2. Show that the 1-dimensional complex manifold \mathbb{CP}^1 is diffeomorphic, as a real 2-dimensional manifold, to S^2 .

Hint: Stereographic projection.