Multi-Task Deep Neural Networks for Natural Language Understanding

QRAFT | AXE
GUIJIN SON

Natural Language Understanding

Excelling in NLU Tasks

Multi-Task Deep Neural Networks for Natural Language Understanding

Language Model Pretraining

= MT-DNN

Multi-Task Learning

Model Architecture

Training Stages

Performance

Model	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX	Score
	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	634		
BiLSTM+ELMo+Attn ¹	36.0	90.4	84.9/77.9	75.1/73.3	64.8/84.7	76.4/76.1	_	56.8	65.1	26.5	70.5
Singletask Pretrain Transformer ²	45.4	91.3	82.3/75.7	82.0/80.0	70.3/88.5	82.1/81.4	-	56.0	53.4	29.8	72.8
GPT on STILTs ³	47.2	93.1	87.7/83.7	85.3/84.8	70.1/88.1	80.8/80.6	-	69.1	65.1	29.4	76.9
$BERT^4_LARGE$	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	92.7	70.1	65.1	39.6	80.5
MT-DNN _{no-fine-tune}	58.9	94.6	90.1/86.4	89.5/88.8	72.7/89.6	86.5/85.8	93.1	79.1	65.1	39.4	81.7
MT-DNN	62.5	95.6	91.1/88.2	89.5/88.8	72.7/89.6	86.7/86.0	93.1	81.4	65.1	40.3	82.7
Human Performance	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	87.1

Model	MNLI-m/mm	QQP	RTE	QNLI (v1/v2)	MRPC	CoLa	SST-2	STS-B
BERT _{LARGE}	86.3/86.2	91.1/88.0	71.1	90.5/92.4	89.5/85.8	61.8	93.5	89.6/89.3
ST-DNN	86.6/86.3	91.3/88.4	72.0	96.1/-	89.7/86.4	-	-	-
MT-DNN	87.1/86.7	91.9/89.2	83.4	97.4/92.9	91.0/87.5	63.5	94.3	90.7/90.6

Performance

Model	0.1%	1%	10%	100%					
SNLI Dataset (Dev Accuracy%)									
#Training Data	549	5,493	54,936	549,367					
BERT	52.5	78.1	86.7	91.0					
MT-DNN	82.1	85.2	88.4	91.5					
SciTail Dataset (Dev Accuracy%)									
#Training Data	23	235	2,359	23,596					
BERT	51.2	82.2	90.5	94.3					
MT-DNN	81.9	88.3	91.1	95.7					

Implications

- Multi-Task Learning provides an effective way of leveraging supervised data from many related tasks
- The use of multi-task learning profits from a regularization effect via al- leviating overfitting to a specific task, thus making the learned representations universal across tasks.