B.Tech. DEGREE EXAMINATION, JUNE 2019 1st to 7th Semester						
BY - 4	15CS401 - ARTIFICI (For the candidates admitted during the ac		·			
Note: (i) (ii)	Part - A should be answered in OMR sheet within first 45 minutes and OMR sheet should be hand over to hall invigilator at the end of 45 th minute.					
Time: Tl	hree Hours		Max. Marks: 100			
PART – A $(20 \times 1 = 20 \text{ Marks})$ Answer ALL Questions						
1.	deal with the computer knowledge- (A) Cognitive models (C) Platform models	(B)	models for AI Computational models Task models			
2.	The strategic computing is a project of the (A) National science foundation (C) Jet foundation		Defense advanced research projects agent Propulsion foundation			
3.	The main task of a problem solving agent if (A) Goal based agents (C) Improving	(B)	Task problem solving Completeness			
4.	Which is not the commonly used programs (A) Javascript (C) Lisp	(B)	anguage for AI? Java Perl			
5.	A search algorithm takes as an input (A) Input, output (C) Problem, solution	(B)	turns as an output. Solution, state Sequence of actions, parameters			
6.	A problem in a search space is defined by (A) Goal state (C) Intermediate state	(B)	these state. Initial state Agent state			
7.	Which search strategy is also called as blir (A) Uninformed search (C) Simple reflex search	(B)	ch? Informed search Search method			
8.	 A* algorithm is based on (A) BFS (Breadth-First Search) (C) Best-First Search 	` ,	Depth-First Search Hill Climbing			
9. Page 1 of 3	Knowledge and reasoning also play a cruc (A) Completely observable (C) Test observable	(B)	e in dealing with Aptitude observable Partially observable 12JA1-7/15CS401			

12JA1-7/ 15CS401

10.	Inference algorithm is complete only if (A) It can derive any sentence	(B)	Rean any word		
	(C) It can derive any sentence that is an				
	entailed version and truth preserving	` '			
11.	Graph used to represent semantic network		_ ,,		
	(A) Directed graph		Undirected graph		
	(C) Dag	(D)	Directed complete graph		
12.	First order logic is also known as	-	•		
	(A) Quantification theory	(B)	Many sorted logic		
	(C) Evaluated logic		Order calculus		
12	is required to convert chicatives into	. ooti	Ong		
13.	is required to convert objectives into (A) Intelligent systems		Planning		
	(C) Goal based systems	` '	Factors based systems		
	(c) com oused systems	(2)	1 decorp caped by scening		
14.	States are represented as	(m.)			
	(A) Formulation	` '	Actions		
	(C) Conjunction	(D)	Sub goals		
15.	is one of the important concepts that	is us	ed for problem solving and planning.		
,			Means ends analysis		
	(C) Forward chaining	(D)	Backward chaining		
1.0	· · · · · · · · · · · · · · · · · · ·		ort the information to sleet		
16.	involves use of multiple agents to ca (A) Multi agent planning		Sub global state		
	(A) Multi agent planning(C) Avoid conflicts	• •	Availability resources		
	(C) Trota common		Transcript Tobe Sizes		
17.	Zero sum game has to be a game.				
	(A) Single player		Two player		
	(C) Multi player	(D)	Agent		
18.	18. is capable of capturing different aspects of the game.				
	(A) High level		Acquire game		
•	(C) B scores	(D)	Knowledge structure		
1.0		-, -			
.19.			decrease the number of count of the nodes.		
	(A) Alpha-beta(C) Minmax pruning	` '	Beta-gamma Leaf node		
	(C) Willing	(D)	Lear node		
20.	Adversarial search problems use				
	(A) Neither competitive nor co-operative	(B)	Competitive environment		
	environment	(T)			
	(C) Co-operative environment	(D)	Process environment		
	$PART - B (5 \times 6)$	4 = 20) Marks)		
Answer ANY FIVE Questions					
21.	Write short notes on history of artificial int	ellige	nce.		
	of an investment in				
22.	Construct an algorithm for solving tic-tac-t	oe pro	oblem by applying AI technique.		

12JA1-7/15CS401

- 23. Differentiate knowledge representation and knowledge based agents.
- 24. Write short notes on means-ends analysis.
- 25. Define game playing and concepts of game playing.
- 26. Write short notes on reactive planning.
- 27. Explain problem reduction methods.

PART - C (5 × 12 = 60 Marks) Answer ALL Questions

28. a. Describe about the characteristics to be analyzed for solving problems in AI.

(OR)

- b. Solve the given problem by explaining the operations involved in it. Problem: We are given two jugs, a 4-gallon one and 3-gallon one. Neither has any measuring marker on it. There is a pump that can be used to fill the jugs with water. How can we get exactly 2 gallons of water into the 4-gallon jug?
- 29. a. With suitable examples, explain uninformed search methods.

(OR

- b. Explain informed search with suitable examples.
- 30. a. Explain unification and lifting with the inference in First Order Logic (FOL).

(OR)

- b. Discuss semantic networks, partitioned semantic networks and frames.
- 31. a. Discuss planning problem with suitable example.

(OR)

- b. Explain syntactic and semantic analysis in NLP with an example.
- 32. a. Illustrate expert system architecture and with its types.

(UK)

b. Explain alpha-beta pruning, game theory problem with example.

* * * *

Page 3 of 3 12JA1-7/ 15CS401