In the claims:

1-25 (cancelled)

26. (new) An electroluminescent device comprising an anode, a cathode and one or a plurality of organic compound layers sandwiched therebetween, in which said organic compound layers comprise an organic compound wherein the organic compound is a pyrimidine compound of formula

wherein

V, W, Y and X are independently of each other C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, which can be substituted or unsubstituted; H; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl, C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_1 - C_1 -alkoxy; C_1 - C_1 -alkoxy which is substituted by E and/or interrupted by D; $-SR^5$; $-NR^5R^6$, with the proviso that at least two of the groups W, X and Y are C_6 - C_2 -aryl, or C_2 - C_2 -heteroaryl group, which can be unsubstituted or substituted;

wherein

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C=C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COOR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen; R⁵ and R⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-; or R⁵ and R⁶ together form a five or six membered ring;

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; and

 R^8 is H; C_7 - C_{12} alkylaryl; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-.

10/531,780 - 2 - EL/2-22773/A/PCT

27. (new) An electroluminescent device according to claim 26, wherein

V is H, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy or C_1 - C_{18} alkoxy substituted by E and/or interrupted by D;

W , Y and X are independently of each other C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, which can be substituted or unsubstituted; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy; C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; -SR 5 ; -NR 5 R 6 , and

when W is C₆-C₃₀aryl which can be substituted it is

$$W^1$$
 W^2
 W^5

when Y is C₆-C₃₀aryl which can be substituted it is

$$Y^1$$
 Y^2
 Y^3
 Y^5

when X is C₆-C₃₀aryl which can be substituted it is

$$X^1$$
 X^2
 X^3
 X^5

wherein the groups W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_{6^-} C_{24} aryl; C_{6^-} C_{24} aryl substituted by G; C_{1^-} C_{18} alkyl; C_{1^-} C_{18} alkyl substituted by E and/or interrupted by D; C_{7^-} C_{18} alkylaryl; C_{7^-} C_{18} alkylaryl substituted by E and/or interrupted by D; C_{2^-} C_{18} alkenyl

substituted by E and/or interrupted by D; Ar^2 , wherein Ar^1 is C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, H, C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl substituted by E and/or

10/531,780 - 3 - EL/2-22773/A/PCT

interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C_2 - C_{24} heteroaryl; C_2 - C_{24} heteroaryl substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl; C_4 - C_{18} cycloalkenyl substituted by E and/or interrupted by D

G is E; K; heteroaryl; heteroaryl substituted by C₆-C₁₈aryl; C₆-C₁₈aryl substituted by E and/or K;

K is C_1 - C_{18} alkyl; C_1 - C_{18} alkyl substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl; or C_4 - C_{18} cycloalkenyl substituted by E and/or interrupted by D;

L is E; K;C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

or two substituents selected from W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring.

28. (new) An electroluminescent device according to claim 27, wherein V is H;

W is
$$W^2$$
 W^3 Y^1 Y^2 Y^3 X^1 X^2 X^3 Y^4 , X is X^5 X^4 ,

wherein the groups

 W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_6 - C_{24} aryl; C_6 - C_{24} aryl substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_7 - C_{18} alkylaryl substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy substituted by E and/or interrupted by D; -SR 5 ; -NR 5 R 6 ; C_2 - C_2 4heteroaryl; C_2 - C_2 4heteroaryl substituted by E and/or interrupted by C; -SOR 4 ; -COR 8 ; -COOR 7 ; -CONR 5 R 6 ; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkenyl; C_4 - C_{18} cycloalkenyl substituted by E and/or interrupted by D.

EL/2-22773/A/PCT

10/531,780 - 4 -

29. (new) An electroluminescent device according to claim 28, wherein the groups W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_6 - C_{24} aryl; C_6 - C_{24} aryl substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy substituted by E and/or interrupted by D; C_2 - C_2 4heteroaryl; C_2 - C_2 4heteroaryl substituted by L; -COR 8 ; -COOR 7 :or -CONR 5 R 6 .

30. (new) An electroluminescent device according to claim 26, wherein V is H; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy or C_1 - C_{18} alkoxy substituted by E and/or interrupted by D;

at least one of the groups W, X and Y is a group of formula:

R¹⁷ R¹⁸ R¹⁸ R¹⁸ R¹⁸ , and any other groups W, X and Y are independently of each other an aryl group or a heteroaryl group, wherein R¹¹, R¹¹, R¹², R¹², R¹³, R¹³, R¹⁵, R¹⁵, R¹⁶, R¹⁶, R¹⁷ and R¹⁷ are independently of each other H, E, C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by E; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈aralkyl; or C₇-C₁₈aralkyl which is substituted by E; or any of R¹¹ and R¹², R¹² and R¹³, R¹⁵ and R¹⁶, and R¹⁶ and R¹⁷ are each a divalent

group L¹ selected from an oxygen atom, sulfur atom, >CR¹¹⁸R¹¹⁹ >SiR¹¹⁸R¹¹⁹, or , wherein R¹¹⁸ and R¹¹⁹ are independently of each other C₁-C₁₈alkyl; C₁-C₁₈alkoxy, C₆-C₁₈aryl; C₇-C₁₈aralkyl; or any of R¹¹ and R¹¹, R¹² and R¹², R¹³ and R¹³, R¹³ and R¹⁴, R¹⁴ and R¹⁵, R¹⁵ and R¹⁵, R¹⁶ and R¹⁶,

$$R^{32}$$
 R^{31} R^{30}

and R17 and R17 are each a divalent group

, whereir

 R^{30} , R^{31} , R^{32} , R^{33} , R^{49} and R^{50} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl, which is substituted by E and/or interrupted by D; E; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by E; R^{14} is H, C_2 - C_{30} heteroaryl, C_6 - C_{30} aryl, or C_6 - C_{30} aryl which is substituted by E, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D;

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; SiR⁵R⁶-; -POR⁵-; -CR⁹=CR¹⁰-; or -C \equiv C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COR⁸; -COR⁸; -COR⁸; -COR⁸; -CN; or halogen;

10/531,780 - 5 - EL/2-22773/A/PCT

wherein R^5 and R^6 are independently of each other C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; or

 R^5 and R^6 together form a five or six membered ring, R^7 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is C_7 - C_{12} alkylaryl; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; and

 R^9 and R^{10} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-.

31. (new) An electroluminescent device according to claim 26, comprising a pyrimidine compound of formula I, wherein V is hydrogen, W and Y are independently of each other a group of formula

X is a group of formula

wherein

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} and R^{17} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E; E; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E;

 R^{18} and R^{19} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E;

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C=C-; ...

10/531,780 - 6 - EL/2-22773/A/PCT

E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-.

32. (new) An electroluminescent device according to claim 28, comprising a pyrimidine compound of formula

R¹¹⁰

wherein W³ and Y³ are a group of formula

R¹¹⁰

 X^3 is H, C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy, Ph, or

and R^{110} is C_6 - C_{10} -aryl, C_6 - C_{10} -aryl which is substituted by C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy or C_4 - C_{10} heteroaryl.

33. (new): An electroluminescent device according to claim 32, wherein R¹¹⁰ is

- 7 -

EL/2-22773/A/PCT

34. (new) A pyrimidine compound according to claim 26, wherein

V is hydrogen,

W and Y are a group of formula

X is a group of formula

35. (new) An electroluminescent device according to claim 26, wherein W and Y are groups of the formula

10/531,780 - 8 - EL/2-22773/A/PCT

36. (new) An electroluminescent device according to claim 26, wherein the pyrimidine compound has the following formula

$$W^3$$
 X^3
 X^5
 Y^5
 Y^5

wherein

V is H, or C₁-C₈-alkyl,

 X^3 and X^4 are independently of each other H, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 thioalkyl, or phenyl, X^5 is H, or C_1 - C_8 alkoxy,

 W^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

 Y^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

or the following formula

wherein

V is H, or C₁-C₈alkyl,

W³ is H, C₁-C₈alkyl, or C₁-C₈alkoxy,

 X^3 is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

X⁵ is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

 Y^3 is H, C₁-C₈alkyl, or C₁-C₈alkoxy, wherein n1 is an integer of 1 to 4 and X is -O-(CH₂)_{m1}CH₃, -O-(O)-(CH₂)_{m1}CH₃, -O-(O)-O-C₁-C₈alkyl, wherein m1 is an integer of 0 to 5.

37. (new) A pyrimidine compound of formula

wherein

V, W, Y and X are independently of each other C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, which can be substituted or unsubstituted; H; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl, C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_1 -alkoxy; C_1 - C_1 -alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶, with the proviso that at least two of the groups W, X and Y are C_6 - C_2 -aryl, or C_2 - C_2 -heteroaryl group, which can be unsubstituted or substituted:

wherein

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C=C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COOR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen; R⁵ and R⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-; or R⁵ and R⁶ together form a five or six membered ring;

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; and

 R^8 is H; C_7 - C_{12} alkylaryl; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-.

10/531,780 - 10 - EL/2-22773/A/PCT

38. (new) A compound according to claim 37, wherein

V is H, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy or C_1 - C_{18} alkoxy substituted by E and/or interrupted by D;

W , Y and X are independently of each other C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, which can be substituted or unsubstituted; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy; C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; -SR 5 ; -NR 5 R 6 , and

when W is C6-C30aryl which can be substituted it is

$$W^1$$
 W^2
 W^3
 W^4

when Y is C₆-C₃₀aryl which can be substituted it is

$$Y^1$$
 Y^2
 Y^3

when X is C₆-C₃₀aryl which can be substituted it is

$$X^1$$
 X^2
 X^3
 X^4

wherein the groups W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_{6^-} C_{24} aryl; C_{6^-} C_{24} aryl substituted by G; C_{1^-} C_{18} alkyl; C_{1^-} C_{18} alkyl substituted by E and/or interrupted by D; C_{7^-} C_{18} alkylaryl; C_{7^-} C_{18} alkylaryl substituted by E and/or interrupted by D; C_{2^-} C_{18} alkenyl; C_{2^-} C_{18} alkenyl

substituted by E and/or interrupted by D; Ar^2 , wherein Ar^1 is C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl and Ar^2 is C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, H, C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl substituted by E and/or

10/531,780 - 11 - EL/2-22773/A/PCT

interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C_2 - C_{24} heteroaryl; C_2 - C_{24} heteroaryl substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl; C_4 - C_{18} cycloalkenyl substituted by E and/or interrupted by D

G is E; K; heteroaryl; heteroaryl substituted by C₆-C₁₈aryl; C₆-C₁₈aryl substituted by E and/or K;

K is C_1 - C_{18} alkyl; C_1 - C_{18} alkyl substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl substituted by E and/or interrupted by D; C_1 - C_1 -alkoxy, C_1 - C_1 -alkoxy substituted by E and/or interrupted by D; C_4 - C_1 -cycloalkyl; C_4 - C_1 -cycloalkyl substituted by E and/or interrupted by D; C_4 - C_1 -cycloalkenyl; or C_4 - C_1 -cycloalkenyl substituted by E and/or interrupted by D;

L is E; K;C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

or two substituents selected from W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring.

39. (new) A compound according to claim 38, wherein V is H;

W is
$$W^2$$
 W^3 Y^1 Y^2 Y^3 X^4 , wherein the groups

 W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_6 - C_{24} aryl; C_6 - C_{24} aryl substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl substituted by E and/or interrupted by D; C_1 - C_1 8alkoxy, C_1 - C_1 8alkoxy substituted by E and/or interrupted by D; C_2 - C_2 4heteroaryl; C_2 - C_2 4heteroaryl substituted by L; $-SOR^4$; $-SO_2R^4$; $-COR^8$; $-COOR^7$; $-CONR^5R^6$; C_4 - C_1 8cycloalkyl; C_4 - C_1 8cycloalkyl substituted by E and/or interrupted by D; C_4 - C_1 8cycloalkenyl substituted by E and/or interrupted by D.

10/531,780 - 12 - EL/2-22773/A/PCT

40. (new) A compound according to claim 37, wherein V is H; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy or C_1 - C_{18} alkoxy substituted by E and/or interrupted by D; at least one of the groups W, X and Y is a group of formula

an aryl group or a heteroaryl group, wherein R^{11} , $R^{11'}$, $R^{12'}$, $R^{12'}$, $R^{13'}$, $R^{15'}$, $R^{15'}$, $R^{16'}$, $R^{16'}$, $R^{17'}$ and $R^{17'}$ are independently of each other H, E, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} aralkyl; or C_7 - C_{18} aralkyl which is substituted by E; or any of $R^{11'}$ and $R^{12'}$, $R^{12'}$ and $R^{13'}$, $R^{15'}$ and $R^{16'}$ and $R^{16'}$ and $R^{17'}$ are each a divalent

group L¹ selected from an oxygen atom, sulfur atom, >CR¹¹⁸R¹¹⁹ >SiR¹¹⁸R¹¹⁹, or , wherein R¹¹⁸ and R¹¹⁹ are independently of each other C₁-C₁₈alkyl; C₁-C₁₈alkoxy, C₆-C₁₈aryl; C₇-C₁₈aralkyl; or any of R¹¹ and R¹¹, R¹² and R¹², R¹³ and R¹³, R¹³ and R¹⁴, R¹⁴ and R¹⁵, R¹⁵ and R¹⁵, R¹⁶ and R¹⁶,

$$R^{32}$$
 R^{31} R^{30}

and R¹⁷ and R¹⁷ are each a divalent group

wherein

 R^{30} , R^{31} , R^{32} , R^{33} , R^{49} and R^{50} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl, which is substituted by E and/or interrupted by D; E; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by E; R^{14} is H, C_2 - C_{30} heteroaryl, C_6 - C_{30} aryl, or C_6 - C_{30} aryl which is substituted by E, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D;

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; SiR⁵R⁶-; -POR⁵-; -CR⁹=CR¹⁰-; or -C \equiv C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COR⁸; -COR⁷; -CONR⁵R⁶; -CN; or halogen;

wherein R^5 and R^6 are independently of each other C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; or

 R^5 and R^6 together form a five or six membered ring, R^7 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

R⁸ is C₇-C₁₂alkylaryl; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by –O-; and

 R^9 and R^{10} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-.

10/531,780

41. (new) A compound according to claim 37, comprising a pyrimidine compound of formula I, wherein V is hydrogen, W and Y are independently of each other a group of formula

. - 70

X is a group of formula

wherein

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} and R^{17} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E; E; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E;

 R^{18} and R^{19} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E;

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C \equiv C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COR⁸; -COR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-.

10/531,780 - 14 - EL/2-22773/A/PCT

42. (new) A compound according to claim 39, comprising a pyrimidine compound of formula

wherein W³ and Y³ are a group of formula

 X^3 is H, C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy, Ph, or

and R¹¹⁰ is C₆-C₁₀-aryl, C₆-C₁₀-aryl which is substituted by C₁-C₆-alkyl, C₁-C₄-alkoxy or C₄-C₁₀ heteroaryl.

43. (new) A compound according to claim 37, wherein

V is hydrogen,

W and Y are a group of formula

and

X is a group of formula

44. (new) A compound according to claim 37, wherein W and Y are groups of the formula

45. (new) An electroluminescent device according to claim 37, wherein the pyrimidine compound has the following formula

$$W^3$$
 X^3
 X^4
 X^5
 X^5

wherein

V is H, or C₁-C₈-alkyl,

 X^3 and X^4 are independently of each other H, C₁-C₈alkyl, C₁-C₈alkoxy, C₁-C₈thioalkyl, or phenyl, X^5 is H, or C₁-C₈alkoxy,

 W^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

 Y^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

 Y^3 , Y^4 , W^3 and W^4 are independently of each other C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 thioalkyl, halogen, phenyl, or $O(CH_2)_{n1}$ -X, wherein n1 is an integer of 1 to 5 and X is -O- $(CH_2)_{m1}CH_3$, -O- $(CH_2)_{m1}CH_3$, -O-(CO)- $(CH_2)_{m1}CH_3$, -O-(CO)- $(CH_2)_{m1}CH_3$, -O-(CO)-

14.0%

10/531,780 - 16 - EL/2-22773/A/PCT

 R^{104} are independently of each other H, or C_1 - C_8 -alkyl, or R^{103} and R^{104} together form a five or six membered heterocyclic ring;

or the following formula

wherein

V is H, or C₁-C₈alkyl,

W³ is H, C₁-C₈alkyl, or C₁-C₈alkoxy,

 X^3 is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

 X^5 is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

 Y^3 is H, C₁-C₈alkyl, or C₁-C₈alkoxy, wherein n1 is an integer of 1 to 4 and X is -O-(CH₂)_{m1}CH₃, -OC(O)-(CH₂)_{m1}CH₃, -C(O)-O-C₁-C₈alkyl, wherein m1 is an integer of 0 to 5.

1,5

10/531,780 - 17 - EL/2-22773/A/PCT