AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A process for an asymmetric intramolecular [3+2] cycloaddition reaction of a hydrazone characterized by which comprises reacting a hydrazone derivative represented by the following formula (III):

، حق

[[(]]wherein R¹, R², R³, R⁴ and R⁵ are each identical or different and denote a hydrogen atom or a hydrocarbon group which may have a substituent or a hetero atom, R¹ and R², R³ and R⁴ may be linked to form a ring by a hydrocarbon chain which may have a substituent or a hydrocarbon chain which has a hetero atom, and X denotes a hetero atom or a hydrocarbon chain which may have a substituent or a hetero atom[[)]], in the presence of an asymmetric catalyst system obtained by mixing a zirconium alkoxide represented by the following formula (I):

$$Zr(OR)_4$$
 (I)

[[(]]wherein R is a hydrocarbon group which may have a substituent[[)]] with a binaphthol derivative represented by the following formula (II):

$$Y^2$$
 OH
 OH
 Y^2
 Y^1
 Y^2
 OH
 Y^2
 Y^1

<u>and</u>

[[(]]wherein Y^1 and Y^2 are each identical or different and denote a hydrogen atom or a halogen atom, and at least one of Y^1 and Y^2 denotes a halogen atom[[)], to produce a cycloaddition reaction product.

2. (**Original**) The process for an asymmetric intramolecular [3+2] cycloaddition reaction according to claim 1, which is carried out in the coexistence of a primary alcohol.

- 3. (**Original**) The process for an asymmetric intramolecular [3+2] cycloaddition reaction according to claim 2, wherein the primary alcohol is an n-propanol.
- 4. (**Previously Presented**) The process for an asymmetric intramolecular [3+2] cycloaddition reaction according to claim 1, by which an asymmetric cyclic compound represented by the following formula (IV):

$$R^4$$
 H
 H
 N
 R^5
 (IV)

is synthesized.

5. (**Previously Presented**) The process for an asymmetric intramolecular [3+2] cycloaddition reaction according to claim 1, wherein the zirconium alkoxide used in the catalyst system is $Zr(O^tBu)_4$ or $Zr(OPr)_4$.