

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 21-08-2003		2. REPORT TYPE Technical Viewgraph Presentation		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Isolation of Boron and Carbon Atoms in Cryogenic Solids				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) C.W. Larson (AFRL/PRSP)				5d. PROJECT NUMBER 2303	
				5e. TASK NUMBER M2C8	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				8. PERFORMING ORGANIZATION REPORT NUMBER	
				AFRL-PR-ED-VG-2003-212	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-VG-2003-212	
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES For presentation at the 9 th International Workshop of Combustion & Propulsion – Energetic Materials in La Spezia, Italy, taking place 14-19 September 2003.					
14. ABSTRACT					
20030929 082					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
Unclassified			A	14	Leilani Richardson
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified			19b. TELEPHONE NUMBER (include area code) (661) 275-5015

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Best Available Copy

Isolation of Boron and Carbon Atoms in Cryogenic Solids

**C. William Larson
Propulsion Directorate
Air Force Research Laboratory
Edwards AFB, CA 93524-7680**

**9th International Workshop on Combustion and Propulsion
NOVEL ENERGETIC MATERIALS AND APPLICATIONS
14-18 September 2003
Lerici, La Spezia, Italy**

Approved for public release; distribution unlimited.

Outline

Theoretical Isp of cryogenic solid propellants composed of the atomis, dimers and trimers of lightweight elements isolated in solid para hydrogen. Consequences of condensation.

Spectroscopic studies of Boron/Carbon clusters by matrix isolation spectroscopy.

Development of stable, hi-flux boron atom source for preparation of cryogenic solid HEDM (under auspices of Small Business Innovative Research (SBIR) program.

First optical spectrum of B₃ (under auspices of International Research Initiative of the Air Force Office of Scientific Research).

Video of exploding B/C and C HEDM.

Approved for public release; distribution unlimited.

Cryosolid Propellants Approach (Make)

- * Rapid vapor deposition of metal atom vapor and pre-cooled parahydrogen gas onto a liquid helium cooled substrate in vacuum.

Approved for public release; distribution unlimited.

Optimization of boron HEDM propellant combustion with liquid oxygen.

The propellant formulation is H₁₉₀B₅, or 5 equivalent mole percent boron atoms isolated in 95 mole percent solid parahydrogen. The four panels show the optimization for each of four levels of atom condensation: (1) B atoms, (2) B₂ molecules, (3) B₃ molecules, and (4) B₄ molecules. The I_{sp} and T_c were calculated for the Standard Rocket Condition: 1000 psi chamber pressure and expansion to sea level, which for LOX/LH₂ produces an I_{sp} of 389 s and a chamber temperature of 2984 K. The heats of formation for B₂H₁₉₀ listed in each panel are derived from -2.20 kcal/mol for solid parahydrogen at 4.4 K, and 135.0 for B, 203.4 for B₂, 192.8 for B₃, and 225 kcal/mol for B₄. The I_{sp} and T_c for no oxidizer are listed together with the optimum (maximum) I_{sp} obtainable for the specified O/F ratio (by mass) and the value of T_c. In all cases the chamber temperature with boron HEDM is very much less than the T_c of the LOX/LH₂ Standard Rocket, which produces I_{sp} = 389 s with T_c = 2984. The uncondensed boron HEDM I_{sp} of 474 s runs at 1832 K. With no oxidizer, the uncondensed boron HEDM rocket runs at 965 K and produces I_{sp} = 402 s.

Preparation

Annealing

- a0 10 K a3 32.5 K, 60 s a6 40.0 K, 20 s
a1 27.5 K, 120 s a4 35.0 K, 45 s sublimation
a2 30.0 K, 90 s a5 37.5 K, 20 s rate ~ 1 $\mu\text{m/s}$

Precision matched pair of matrices

Green Matrix

$$^{11}\text{B}/^{10}\text{B} = 80/20$$

Red Matrix

$$^{11}\text{B}/^{10}\text{B} = 27/73$$

enhanced $^{11}\text{B}_1\text{C}_{n-1}$

enhanced $^{10}\text{B}_\text{I}\text{C}_{\text{n}-\text{I}}$

Approved for public release; distribution unlimited

GOAL - 5% atoms in matrix

Infrared Intensities km mol⁻¹

B3LYP/cc-pVDZ

Approved for public release; distribution unlimited.

Approved for public release; distribution unlimited.

Approved for public release; distribution unlimited.

Survey spectra showing BC_2 , B_2C , C_4 , BC_3 , B_2C_2

Doublet peaks belonging to $^{10}BC_{n-1}$ and $^{11}BC_{n-1}$ and triplets belonging to $^{10}B_2C_{n-2}$, $^{10,11}B_2C_{n-2}$, and $^{11}B_2C_{n-2}$ are seen with inverted intensity ratios. Note red shift of BC_3 from C_4 . BC , B_3C , and B_3C were not observed.

5

Figure 2. Annealing behaviors of BC_x species in matrix (1). Spectra labeled '1' to '6' were obtained from the originally deposited matrix, and spectra labeled '1'' to '6'' were obtained after successive annealing as detailed in the Fig. 1 caption. Absorbance scales, $A_{max} = 1$ - left, are often no force coincidence of the peak maximum. Barren isotopomer of BC_3 , BC_4 , and BC_6 are unobserved. The weaker of two bands of BC_4 (faint = 1034 cm^{-1} mol⁻¹ at 1850 cm^{-1}) is shown here. Spectral resolution is limited to $\sim 1 \text{ cm}^{-1}$ by matrix broadening.

Approved for public release; distribution unlimited.

Approved for public release; distribution unlimited.

Approved for public release; distribution unlimited.

Electronic absorption spectra recorded in a 6 K matrix after 4 hours of mass-selected co-deposition of B₃⁻ with neon. The bottom trace shows the ¹E' - X ¹A₁' electronic transition of B₃⁻ overlapped by the ²E' - X ²A₁' system of B₃, produced from partial neutralization of the anions impinging on the matrix during deposition. The top trace reveals the ²E' - X ²A₁ electronic transition of B₃ measured after exposure to UV radiation: Absorption belonging to the anion disappears.

M. Wyss, E. Riaplov, A. Batalov, J. P. Maiér, T. Weber, W. Meyer, P. Rosmus, *J. Chem. Phys.* (2003, in press). University of Basel, University of Kaiserslautern, Université de Marne la Vallée

Approved for public release; distribution unlimited.

Electronic absorption spectrum of the $1^3E' - X^2A_1'$ electronic transition of B_3 recorded after 4 hours of mass-selected co-deposition with neon followed by UV irradiation of the 6 K matrix.

M. Wyss, E. Riaplov, A. Batalov, J. P. Maier, T. Weber, W. Meyer, P. Rosmus, *J. Chem. Phys.* (2003, in press).
University of Basel, University of Kaiserslautern, Université de Marne la Vallée

Approved for public release; distribution unlimited.

AFRL-PR-ED-TR-2003-0030

AFRL-PR-ED-TR-2003-0030

Advanced Rocket Propulsion Technologies Boron Vapor Source for HEDM

Paul C. Nordine

Contractorless Research Inc.
906 University Place
Evanston IL 60201-3149

June 2003

SBIR Phase I Final Report

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

AIR FORCE RESEARCH LABORATORY
AIR FORCE MATTERIEL COMMAND
EDWARDS AIR FORCE BASE CA 93524-7048

Approved for public release; distribution unlimited.

Approved for public release; distribution unlimited.

Conclusions

Large Isp improvements are produced by cryogenic solid propellants with atoms, dimers, trimers, and tetramers isolated in solid hydrogen, but condensation leads to loss of benefit.

5 mole percent B atoms produces Isp of 474 seconds compared to 389 s for LOX/sH₂. The HEDM combustion temperature is 1832 K, compared to 2984 K for LOX/sH₂.

Annealing kinetics of disappearance of C₃ and BC₂, and of appearance of B₂C, C₄, BC₃, B₂C₂, C₅, BC₄, and B₂C₃ unequivocally establishes the presence of atoms and dimers in the originally deposited matrix.

~80% or more of the initially deposited HEDM existed as atoms, dimers and trimers.

B₂C_n molecules are linear, with boron atoms attached to each end, and are immune to radical attack and condensation during annealing.

Theory predicts that a 12 kcal/mol barrier exists for B atom insertion into H₂, so isolation by co-condensation may be possible.

A stable, high-flux B-atom source has been developed under the Small Business Innovative Research Program capable of production of 100 mg of Boron HEDM in a few hours.

B₂ or B₃ may be the ultimate sinks (islands of stability) for atoms in the low temperature environment.

Studies of the spectroscopy and reactivity of B atoms and small clusters with hydrogen are underway at the University of Basel, supported by the Air Force Office of Scientific Research through the International Research Initiative program.

Approved for public release; distribution unlimited.

BACKUP CHARTS

Approved for public release; distribution unlimited.

Species	% H ₂	% O ₂	% LOX	% CH ₄	% N ₂	% LOX	% sH ₂
H ₂ (s)	2.21			389	0	20.6	79.4
H	52.1	367	19.0	358	100.0	0	0
LiH	34.2	359	13.1	376	20.4	5.1	79.6
BeH	82.4	358	2.8	351	15.2	7.6	84.8
BH	109.3	350	3.8	358	28.3	0	71.7
CH	143.2	359	2.2	369	24.8	0	75.2
MgH	55.7	368	14.9	368	14.0	7.0	86.0
AlH	61.2	355	10.1	346	11.1	8.4	88.9
Li	38.1	357	12.2	351	19.9	5.0	80.1
Li ₂	53.6	357	5.8	351	11.6	5.8	88.4
LiBe	109.6	352	3.9	352	15.0	7.6	85.0
LiB	159.6	354	5.0	327	29.0	0	71.0
LiC	159.9	355	1.3	353	30.0	0	70.0
LiMg	69.3	351	5.8	352	8.3	6.2	91.7
LiAl	97.1	358	5.0	358	7.3	7.4	92.7
Be	77.4	350	2.5	341	14.4	7.2	85.6
Be ₂	153.1	355	5.0	315	7.8	7.8	92.2
BeAl	147.4	353	6.3	355	6.2	7.7	93.8
B	135.0	372	3.8	307	23.0	0	77.0
B ₂	207.2	352	7.4	350	14.3	0	85.7
BC	201.6	352	3.7	342	14.2	0	85.8
C	171.3	359	0.0	343	20.0	0	80.0
C ₂	199.3	352	0.0	359	15.3	0	84.7
CAI	174.5	353	3.8	354	6.8	5.1	93.2
N	113.0	354	15.0	351	34.2	0	65.8
Mg	35.2	358	16.8	317	13.8	7.1	86.2
Mg ₂	68.8	308	8.9	316	7.4	7.6	82.6
Al	78.9	325	7.5	355	10.2	7.7	89.0
Al ₂	125.1	355	7.5	345	5.6	8.4	94.4
Si	107.6	342	5.1	455	8.2	8.2	91.6
Ti	113.2	340	11.5	414	9.0	7.9	91.0

Conditions: Chamber Pressure = 1000 psi, Exhaust Pressure = 14.7 psi

Approved for public release; distribution unlimited.

Theoretical Infrared Intensities Linear C_n, DFT/B3LYP

Approved for public release; distribution unlimited.

TCnInte3.aug

Approved for public release; distribution unlimited.

0.35 Survey spectra of precision matched matrices showing larger clusters
 $B_J C_{n-J}$, $n > 4$, $J = 0, 1, 2$ in original matrices and after three annealings.

Green ($^{11}\text{B}/^{10}\text{B} = 80/20$) and Red ($^{11}\text{B}/^{10}\text{B} = 27/73$) Matrices. All peaks except C_3 grow upon annealing. Fundamentals of BC_{n-1} for $n = 5, 6, 7$, and 9 are similarly red-shifted from fundamentals of linear C_n , and their experimental absorbances are all slightly greater. Two fundamentals of BC_6 are observed at 2112 and 1866 cm^{-1} , red-shifted from the two fundamentals of linear C_7 .

Identification of 9 of the 16 isotopomers of linear BCCC in 5 matrices.

Approved for public release; distribution unlimited.

Identification of 7 isotopomers of the 10 isotopomers of BCCB in 5 matrices.

Approved for public release; distribution unlimited.

Four minimum energy geometries of B₂C₂ produce similar isotopomer fingerprints. Scale factor ($S_F = \text{measured frequency/theoretical frequency}$) of linear BCCB = 0.97250.

Approved for public release; distribution unlimited.

Figure 2 Phase 1 boron vapor source apparatus.

Approved for public release; distribution unlimited.

14