Cours DQN – Section 5.1

5.1 – Applications concrètes de DQN

L'algorithme DQN a marqué une étape importante dans l'histoire de l'apprentissage par renforcement. Il a démontré pour la première fois qu'un agent pouvait apprendre à prendre des décisions complexes directement à partir d'images brutes, sans aucune connaissance préalable des règles du jeu ou de l'environnement.

1. Jeux Atari (Arcade Learning Environment)

L'application la plus célèbre de DQN est son succès dans l'environnement des jeux Atari développé par DeepMind.

- **Environnement** : les entrées sont des captures d'écran (images 84x84 pixels, 4 frames empilées).
- **Actions**: joystick (haut, bas, gauche, droite, tirer, etc.).
- **Exploitation** : l'agent apprend à surpasser les scores humains sur plusieurs jeux sans être programmé pour ceux-ci.
- **Jeux concernés**: Breakout, Pong, Space Invaders, Enduro, Seaquest, etc.

Résultat : DQN a battu les humains sur plus de 30 jeux Atari en apprenant uniquement via les pixels et les récompenses.

2. Robotique

Le DQN est aussi appliqué à des problèmes robotiques, où l'environnement est continu et les données sont parfois sensorielles (images, positions, etc.).

— Exemples:

- Contrôle de bras robotiques pour saisir des objets.
- Navigation dans des labyrinthes ou environnements domestiques.
- Apprentissage de comportements complexes comme marcher ou grimper.
- Approche : utilisation d'images ou de données de capteurs comme entrées.

Avantage : la capacité de généraliser à des situations visuellement différentes.

3. Réseaux et Cloud computing

Le DQN est utilisé pour prendre des décisions dynamiques dans des environnements où la charge varie constamment.

— Exemples:

- Répartition dynamique de la charge dans les datacenters.
- Optimisation de la consommation énergétique dans le cloud.
- Orchestration intelligente de conteneurs (Docker/Kubernetes).

4. Transport intelligent et conduite autonome

— Scénarios :

- Contrôle de feux de circulation pour fluidifier le trafic.
- Navigation autonome d'un véhicule dans un environnement 3D.
- Optimisation de la consommation d'énergie selon les conditions de route.
- Approche : perception visuelle + actions continues ou discrètes.

5. Finance et Trading Algorithmique

- **Objectif** : apprendre à prendre des décisions d'achat/vente à partir de données de marché.
- **Données**: historiques de prix, indicateurs techniques.
- **Difficultés**: environnement hautement stochastique et bruité.
- Avantage du DQN : adaptation en temps réel à des tendances changeantes.

Conclusion

Le DQN est une approche générique, applicable à tout problème de prise de décision séquentielle :

- où l'environnement est partiellement ou entièrement observable,
- où les actions ont un effet différé,
- et où l'on souhaite maximiser des récompenses à long terme.

Grâce à sa flexibilité et sa capacité à traiter des entrées complexes (comme des images), DQN constitue une base solide pour aborder des domaines très variés de l'IA.