

Machine Intelligence II Online-PCA (Hebbian Learning)

Tutorial

Neural Information Processing Group (Prof. Dr. Klaus Obermayer)

19.05.2016

Projection Methods

- Principal Component Analysis (PCA)
- Online-PCA ⇒ Hebbian Learning
- Nonlinear Structure ⇒ Kernel PCA
- Source Separation
 - Model based ⇒ Independent Component Analysis (ICA)
 - Cost Function Based ⇒ Projection Pursuit

Principal Components (PCs): "interesting" directions

Eigenvalue problem yields direction in feature space with max. variance

$$\underline{\mathbf{Ce}}_{i} = \lambda_{i}\underline{\mathbf{e}}_{i}, \qquad i = 1, \dots, N$$

Principal Components (PCs): "interesting" directions

Eigenvalue problem yields direction in feature space with max. variance

$$\underline{\mathbf{Ce}}_i = \lambda_i \underline{\mathbf{e}}_i, \qquad i = 1, \dots, N$$

- \Rightarrow Principal Components: normalized eigenvector $\underline{\mathbf{e}}_i$ of $\underline{\mathbf{C}}$
- ⇒ Variance along a PC is given by the corresponding Eigenvalue

$$\sigma_i^2 = \underline{\mathbf{e}}_i^T \underline{\mathbf{C}} \underline{\mathbf{e}}_i = \lambda \underline{\mathbf{e}}_i^2 = \lambda_i$$

Principal Components (PCs): "interesting" directions

Eigenvalue problem yields direction in feature space with max. variance

$$\underline{\mathbf{Ce}}_i = \lambda_i \underline{\mathbf{e}}_i, \qquad i = 1, \dots, N$$

- ⇒ Principal Components: normalized eigenvector e; of C
- ⇒ Variance along a PC is given by the corresponding Eigenvalue

$$\sigma_i^2 = \underline{\mathbf{e}}_i^T \underline{\mathbf{C}} \underline{\mathbf{e}}_i = \lambda \underline{\mathbf{e}}_i^2 = \lambda_i$$

⇒ ordering of principal components w.r.t. variance:

 $\underline{\mathbf{e}}_i$: direction of largest variance in the subspace $\mathrm{span}\{\underline{\mathbf{e}}_i,\underline{\mathbf{e}}_{i+1},\ldots,\underline{\mathbf{e}}_N\}$

Online-PCA

Biologically plausible implementation online learning

Linear connectionist neurons

$$y = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$$

observations: $\underline{\mathbf{x}}^{(\alpha)}, \alpha = 1, \dots, p, \underline{\mathbf{x}}^{(\alpha)} \in \mathbb{R}^N$

The Organization of Behavior (Donald Hebb,1949): fire together-wire together

The Organization of Behavior (Donald Hebb, 1949): fire together-wire together

initialization of weights $\underline{\mathbf{w}}$ (e.g. sample small random numbers) choose (small) learning rate ε

begin loop

Choose an observation $\underline{\mathbf{x}}^{(\alpha)}$

Change weights according to:

$$\Delta \mathbf{w}_{j} = \varepsilon y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} x_{j}^{(\alpha)} = \varepsilon \left(\underline{\mathbf{w}}^{T} \underline{\mathbf{x}}^{(\alpha)}\right) x_{j}^{(\alpha)}, \qquad j = 1, \dots, N$$

end

The Organization of Behavior (Donald Hebb, 1949): fire together-wire together

initialization of weights $\underline{\mathbf{w}}$ (e.g. sample small random numbers) choose (small) learning rate ε

begin loop

Choose an observation $\underline{\mathbf{x}}^{(\alpha)}$

Change weights according to:

$$\Delta \mathbf{w}_{j} = \varepsilon y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} \mathbf{x}_{j}^{(\alpha)} = \varepsilon \left(\underline{\mathbf{w}}^{T} \underline{\mathbf{x}}^{(\alpha)}\right) \mathbf{x}_{j}^{(\alpha)}, \qquad j = 1, \dots, N$$

end

 \Rightarrow weights increase (decrease) if input and output are correlated (anticorrelated)

The Organization of Behavior (Donald Hebb, 1949): fire together-wire together

initialization of weights $\underline{\mathbf{w}}$ (e.g. sample small random numbers) choose (small) learning rate ε

begin loop

Choose an observation $\underline{\mathbf{x}}^{(\alpha)}$

Change weights according to:

$$\Delta \mathbf{w}_{j} = \varepsilon y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} x_{j}^{(\alpha)} = \varepsilon \left(\underline{\mathbf{w}}^{T} \underline{\mathbf{x}}^{(\alpha)}\right) x_{j}^{(\alpha)}, \qquad j = 1, \dots, N$$

end

 \Rightarrow weights increase (decrease) if input and output are correlated (anticorrelated)

Proposition

Hebb's rule extracts the PC with the largest eigenvalue: $\underline{\mathbf{w}} \propto \underline{\mathbf{e}}_1$

Proofs: deterministic version \rightarrow lecture notes; stochastic version \rightarrow Haykin book

Tutorial (Augustin) MI2 SS16 19.05.2016

6 / 7

Tutorial (Augustin) MI2 SS16 19.05.2016 7 / 7

■ model for learning of receptive fields and the resulting *neural code*

- model for learning of receptive fields and the resulting *neural code*
- adaptive tracking of the direction of largest variance: "on-line" PCA

- model for learning of receptive fields and the resulting *neural code*
- adaptive tracking of the direction of largest variance: "on-line" PCA

Problem: $\|w\| \to \infty \Rightarrow$ requires some form of ("biological"?) normalization

- model for learning of receptive fields and the resulting *neural code*
- adaptive tracking of the direction of largest variance: "on-line" PCA

Problem: $\|w\| \to \infty \Rightarrow$ requires some form of ("biological"?) normalization

Solution: Normalization via Oja's rule

- model for learning of receptive fields and the resulting *neural code*
- adaptive tracking of the direction of largest variance: "on-line" PCA

Problem: $\|w\| \to \infty \Rightarrow$ requires some form of ("biological"?) normalization

Solution: Normalization via Oja's rule

$$\Delta \mathbf{w}_{j} = \varepsilon y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} \left\{ \underbrace{\mathbf{x}_{j}^{(\alpha)}}_{\substack{\text{Hebbian} \\ \text{learning}}} - \underbrace{y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)}}_{\substack{\text{decay term}}} \right\}$$

- model for learning of receptive fields and the resulting *neural code*
- adaptive tracking of the direction of largest variance: "on-line" PCA

Problem: $\|w\| \to \infty \Rightarrow$ requires some form of ("biological"?) normalization

Solution: Normalization via Oja's rule

$$\Delta \mathbf{w}_{j} = \varepsilon y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} \left\{ \underbrace{\mathbf{x}_{j}^{(\alpha)}}_{\substack{\text{Hebbian} \\ \text{learning}}} - \underbrace{y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} \mathbf{w}_{j}}_{\substack{\text{decay term}}} \right\}$$

Proposition

Oja's rule converges to the unit vector which points into the direction of the largest variance: $\underline{\mathbf{w}} \to \underline{\mathbf{e}}_1$ (proof: \sim group presentation)