## FONCTIONS ZÊTA SUR GLn

## 1. Fonctions zêta sur $GL_n(\mathbb{Q}_p)$

Dans la suite, on notera  $G=GL_n(\mathbb{Q}_p)$ , dg une mesure de Haar sur G et  $(\pi,V)$  une représentation admissible irréductible de G. On pose  $K=GL_n(\mathbb{Z}_p)$ , c'est un sous-groupe compact maximal de G.

**Définition 1.** Une représentation  $\pi: G \to GL(V)$  sur un  $\mathbb{C}$ -espace vectoriel V est dite admissible si elle vérifie :

- Pour tout  $\nu \in V$ , le stabilisateur de  $\nu$  dans G,  $\{g \in G, \pi(g)\nu = \nu\}$ , est un sous-groupe ouvert de G,
- Pour tout sous-groupe ouvert H de G, le sous-espace

$$V^H = \{ \nu \in V, \pi(h)\nu = \nu, \forall h \in H \}$$

des vecteurs stable par H est de dimension fini.

Les coefficients de  $\pi$  sont les fonctions de la forme  $g \in G \mapsto \langle \pi(g)\nu, \tilde{\nu} \rangle$ , où  $\nu \in V$  et  $\tilde{\nu} \in \tilde{V}$ . Alors  $\check{f}(g) = f(g^{-1}) = \langle \nu, \tilde{\pi}(g)\tilde{\nu} \rangle$  est un coefficient de  $\tilde{\pi}$ .

On note  $M_n$  l'ensemble des matrices  $n \times n$  à coefficients dans  $\mathbb{Q}_p$  et 8 l'ensemble des fonctions  $\phi: M_n \to \mathbb{C}$  localement constantes à support compact.

Si f est un coefficient de  $\pi$ ,  $\phi \in S$  et  $s \in \mathbb{C}$ , on pose

(1) 
$$\zeta(f, \phi, s) = \int_{G} \phi(g) f(g) |\det g|_{p}^{s} dg.$$

On fixe un caractère non trivial  $\psi$  de  $\mathbb{Q}_p$  et on pose

(2) 
$$\hat{\phi}(y) = \int_{M_n} \phi(x) \psi(\mathsf{Tr}(xy)) dx,$$

où dx est une mesure de Haar sur  $M_n$ , normalisée telle que  $\hat{\hat{\varphi}}(x) = \varphi(-x)$ . L'objectif de cette section est de montrer le

**Théorème 1.** (1) Il existe  $s_0 \in \mathbb{R}$  tel que pour tout  $s \in \mathbb{C}$  vérifiant  $Re(s) > s_0$ ,  $\varphi \in S$  et f un coefficient de  $\pi$ , les intégrales

(3) 
$$\zeta(f,\varphi,s) = \int_G \varphi(g)f(g)|\det g|_p^s dg$$

(4) 
$$\zeta(\check{f}, \varphi, s) = \int_{G} \varphi(g)\check{f}(g) |\det g|_{p}^{s} dg$$

convergent absolument.

(2) Ces intégrales sont des fonctions rationnelles en  $\mathfrak{p}^{-s}$ . Plus précisément, il existe des polynômes Q et  $\tilde{Q}$  indépendant de f et  $\varphi$  avec  $Q(0) \neq 0$  (respectivement  $\tilde{Q}(0) \neq 0$ ) et des polynômes  $\Xi(f, \varphi, s)$ ,  $\tilde{\Xi}(\check{f}, \varphi, s)$  en  $\mathfrak{p}^s$  et  $\mathfrak{p}^{-s}$  tel

que

(5) 
$$\zeta(f, \phi, s + \frac{1}{2}(n-1)) = \frac{\Xi(f, \phi, s)}{Q(p^{-s})},$$

$$\zeta(\check{\mathsf{f}},\varphi,s+\frac{1}{2}(\mathfrak{n}-1))=\frac{\tilde{\Xi}(\check{\mathsf{f}},\varphi,s)}{\tilde{Q}(\mathfrak{p}^{-s})},$$

pour tout  $s \in \mathbb{C}$ ,  $\phi \in S$  et f coefficient de  $\pi$ .

- (3) On peut choisir un nombre fini, de coefficients  $f_i$  de  $\pi$  (respectivement  $\tilde{\pi}$ ) et de fonctions  $\varphi_i \in S$ , telles que  $\sum_i \Xi(f_i, \varphi_i, s)$  (respectivement  $\sum_i \tilde{\Xi}(f_i, \varphi_i, s)$  soit une constante non nulle.
- (4) Il existe une fonction  $\varepsilon(s,\pi,\psi)$ , qui est à une constante prés une puissance de  $\mathfrak{p}^{-s}$ , telle que

(7) 
$$\tilde{\Xi}(\check{\mathsf{f}},\hat{\varphi},1-s) = \varepsilon(s,\pi,\psi)\Xi(\mathsf{f},\varphi,s),$$

pour tout  $s \in \mathbb{C}$ ,  $\phi \in S$  et f coefficient de  $\pi$ .

On normalise Q et  $\tilde{Q}$  tel que  $Q(0) = \tilde{Q}(0) = 1$ , on pose alors

(8) 
$$L(s,\pi) = \frac{1}{Q(p^{-s})}, \quad L(s,\tilde{\pi}) = \frac{1}{\tilde{Q}(p^{-s})}.$$

L'existence de la fonction  $\epsilon(s,\pi,\psi)$  est équivalente à l'existence d'une fonction méromorphe  $\gamma(s,\pi,\psi)$  telle que

(9) 
$$\zeta(\check{\mathbf{f}},\hat{\boldsymbol{\varphi}},1-\mathbf{s}+\frac{1}{2}(\mathbf{n}-1))=\gamma(\mathbf{s},\pi,\psi)\zeta(\mathbf{f},\boldsymbol{\varphi},\mathbf{s}),$$

pour tout  $\phi \in S$  et f coefficient de  $\pi$ . Ces deux fonctions étant reliées par la relation

(10) 
$$\varepsilon(s,\pi,\psi) = \gamma(s,\pi,\psi) \frac{\mathsf{L}(s,\pi)}{\mathsf{L}(1-s,\tilde{\pi})}$$

En effet, supposons l'existence de  $\gamma(s, \pi, \psi)$  alors  $\varepsilon(s, \pi, \psi)$  vérifie

(11) 
$$\tilde{\Xi}(\check{f},\hat{\phi},1-s) = \epsilon(s,\pi,\psi)\Xi(f,\phi,s).$$

On a de plus une égalité similaire avec  $\epsilon(s, \tilde{\pi}, \psi)$ .

(12) 
$$\Xi(\mathbf{f}, \mathbf{s}, \hat{\boldsymbol{\varphi}}, \mathbf{s}) = \boldsymbol{\varepsilon}(1 - \mathbf{s}, \tilde{\boldsymbol{\pi}}, \boldsymbol{\psi}) \tilde{\Xi}(\check{\mathbf{f}}, \hat{\boldsymbol{\varphi}}, 1 - \mathbf{s}).$$

Il ne nous reste plus qu'à utiliser la formule  $\hat{\phi}(x) = \phi(-x)$  pour obtenir la relation

(13) 
$$\varepsilon(s, \pi, \psi) \varepsilon(1 - s, \tilde{\pi}, \psi) = \omega(-1),$$

où  $\omega$  est le caractère de  $\mathbb{Q}_p^{\times}$  tel que  $\pi(z) = \omega(z)1$  pour  $z \in \mathbb{Q}_p^{\times}$ . D'après (2) et (3) du théorème,  $\varepsilon(s,\pi,\psi)$  est alors un polynôme en  $p^s$  et  $p^{-s}$ , on en déduit que  $\varepsilon(s,\pi,\psi)$  est une puissance de  $p^{-s}$  à constante prés.

1.1. Réduction au cas supercuspidal. Si  $\pi$  est une représentation admissible (non nécessairement irréductible) de G, les assertions du théorème font sens pour  $\pi$  et  $\tilde{\pi}$ , mais peuvent être fausse si  $\pi$  n'est pas irréductible.

Supposons le théorème vrai pour  $\pi$  et  $\tilde{\pi}$ . Soit  $\sigma$  une sous-représentation irréductible de  $\pi$ . Alors les coefficients de  $\sigma$  sont de la forme  $<\pi(g)\nu,\tilde{\nu}>$  avec  $\nu\in V$  et  $\tilde{\nu}\in \tilde{V}$ . Cependant, toutes ces fonctions ne sont pas des coefficients de  $\sigma$ . On en déduit la

**Proposition 1.** Il existe des polynômes R et  $\tilde{R}$  en  $p^{-s}$  tel que

(14) 
$$L(s,\sigma) = R(p^{-s})L(s,\pi),$$

(15) 
$$L(s, \tilde{\sigma}) = \tilde{p}^{-s}L(s, \tilde{\pi}).$$

De plus,

(16) 
$$\gamma(s, \sigma, \psi) = \gamma(s, \pi, \psi).$$

Soit P un sous-groupe parabolique propre maximal de G et U son radical unipotent alors  $P/U \simeq G' \times G''$ , où l'on note  $G' = GL_{n'}(\mathbb{Q}_p)$  et  $G'' = GL_{n''}(\mathbb{Q}_p)$ .

Soit  $\sigma'$  (respectivement  $\sigma''$ ) une représentation admissible de G' (respectivement G''). On ne les suppose pas irréductible, on suppose cependant qu'ils admettent des caractères centraux  $\omega'$  et  $\omega''$ . Alors  $\sigma' \boxtimes \sigma''$  est naturellement une représentation de P/U, donc une représentation de P triviale sur U.

**Proposition 2.** Notons  $\pi = Ind_P^G(\sigma' \boxtimes \sigma'')$ . Supposons le théorème vrai pour  $\sigma'$  et  $\sigma''$ . Alors le théorème est vrai pour  $\pi$ . De plus, on a

(17) 
$$L(s, \pi) = L(s, \sigma')L(s, \sigma''),$$

(18) 
$$L(s, \tilde{\pi}) = L(s, \tilde{\sigma}')L(s, \tilde{\sigma}''),$$

(19) 
$$\epsilon(s, \pi, \psi) = \epsilon(s, \sigma', \psi) \epsilon(s, \sigma'', \psi).$$

Démonstration. On notera  $M'=M_{\mathfrak{n}'}(\mathbb{Q}_{\mathfrak{p}})$  et  $M''=M_{\mathfrak{n}''}(\mathbb{Q}_{\mathfrak{p}})$ . Soit f un coefficient de  $\pi$ ,  $\phi \in \mathcal{S}$  et  $s \in \mathbb{C}$ .

L'espace vectoriel V sur lequel  $\pi$  agit est l'espace des fonctions  $\nu:G\to W$  localement constante qui vérifient

(20) 
$$\nu(pg) = \delta_p^{\frac{1}{2}}(p)(\sigma' \boxtimes \sigma'')(p)\nu(g),$$

où  $\delta_P$  est le caractère modulaire de P et W est l'espace vectoriel sur lequel  $\sigma'\boxtimes\sigma''$  agit.

Le coefficient f est alors de la forme

(21) 
$$f(g) = \langle \pi(g)\nu, \tilde{\nu} \rangle$$

$$= \int_{K} \langle \nu(kg), \tilde{\nu}(k) \rangle_{W} dk.$$

Posons  $t=s+\frac{1}{2}(\mathfrak{n}-1),\ t'=s+\frac{1}{2}(\mathfrak{n}'-1)$  et  $t''=s+\frac{1}{2}(\mathfrak{n}''-1).$  L'intégrale zêta est donc

(23) 
$$\zeta(f,\varphi,s) = \int_G \varphi(g) |\det g|_p^t \int_K \langle \nu(kg), \tilde{\nu}(k) \rangle dk dg.$$

On échange l'ordre d'intégration et on fait le changement de variables  $g\mapsto k^{-1}g$ , on obtient

$$(24) \qquad \qquad \int_K \int_G \varphi(k^{-1}g) |\det g|^t < \nu(g), \tilde{\nu}(k) > dg dk.$$

On utilise la décomposition de Cartan pour écrire  $g \in G$  sous la forme  $g = \begin{pmatrix} g' & u \\ 0 & g'' \end{pmatrix} k'$ , où  $g' \in G'$ ,  $g'' \in G''$ ,  $u \in U$  et  $k' \in K$ . On peut alors décomposer la mesure de Haar de G en fonction des mesures de Haar de G', G'', U et K. En effet,

(25) 
$$dg = |\det g'|^{-\mathfrak{n}''} dg' dg'' du dk'.$$

L'expression (24) devient

Le facteur  $<(\sigma'(g')\boxtimes\sigma''(g''))\nu(k'),\tilde{\nu}(k)>$  est un coefficient de  $\sigma'\boxtimes\sigma'',$  donc est une combinaison linéaire de produits de coefficients de  $\sigma'$  et de coefficients de  $\sigma''$ :

(27) 
$$<(\sigma'(g')\boxtimes\sigma''(g''))\nu(k'), \tilde{\nu}(k)> = \sum_{i=1}^{l} \lambda_{i}(k,k')f'_{i}(g')f''_{i}(g''),$$

où les fonctions  $\lambda_i : K \times K \to \mathbb{C}$  sont localement constante et les  $f_i'$  (respectivement  $f_i''$ ) sont des coefficients de  $\sigma'$  (respectivement  $\sigma''$ ).

D'autre part, la fonction

(28) 
$$(x' \in M', x'' \in M'') \mapsto \int_{U} \phi(k^{-1} \begin{pmatrix} x' & u \\ 0 & x'' \end{pmatrix} k') du$$

est un élément de l'espace de Schwartz  $\mathcal{S}(M' \times M'')$ . On peut donc l'écrire sous la forme

(29) 
$$\int_{\mathcal{U}} \phi(k^{-1} \begin{pmatrix} x' & u \\ 0 & x'' \end{pmatrix} k') du = \sum_{j=1}^{l'} \mu_j(k, k') \phi_j'(x') \phi_j''(x''),$$

où les  $\mu_j$  sont localement constantes et  $\varphi_j' \in \mathcal{S}(M')$  (respectivement  $\varphi_j'' \in \mathcal{S}(M'')$ ). En remplaçant ces expressions dans l'intégrale (26), on trouve

$$(30) \qquad \zeta(f,\varphi,t)=\sum_{i,j=1}^{l,l'}\int_{K\times K}\lambda_i(k,k')\mu_j(k,k')dkdk'\zeta(f_i',\varphi_j',t')\zeta(f_i'',\varphi_j'',t'').$$

D'après les hypothèses faites sur  $\sigma'$  et  $\sigma''$ , les intégrales définissant les  $\zeta(f_i', \varphi_j', t')$  (respectivement  $\zeta(f_i'', \varphi_j'', t'')$ ) sont absolument convergentes pour Re(s) assez grande. Ce qui justifie à posteriori les calculs que l'on vient de faire et prouve la partie (1) du théorème pour  $\pi$ .

D'après (30) et les hypothèses faites sur  $\sigma'$  et  $\sigma''$ , on obtient la relation

(31) 
$$\zeta(f, \varphi, s) = \sum_{i,j=1}^{l,l'} c_{i,j} \Xi(f'_i, \varphi'_j, s) L(s, \sigma') \Xi(f''_i, \varphi''_j, s) L(s, \sigma'').$$

Ce qui prouve la partie (2) du théorème pour  $\pi$ .

Passons à la partie (4) du théorème. La valeur  $\zeta(\check{f}, \hat{\varphi}, t)$  s'obtient en remplaçant f par  $\check{f}$ , ce qui remplace les  $f'_i$  et  $f''_i$  en  $\check{f}'_i$  et  $\check{f}''_i$ , et  $\varphi$  en  $\hat{\varphi}$ . Voyons maintenant comment ce dernier changement affecte l'intégrale. Montrons que l'équation (29) se transforme en

$$(32) \qquad \qquad \int_{\mathfrak{U}} \hat{\varphi}(k'^{-1} \begin{pmatrix} x' & \mathfrak{u} \\ 0 & x'' \end{pmatrix} k) d\mathfrak{u} = \sum_{j=1}^{l'} \mu_{j}(k,k') \hat{\varphi}_{j}'(x') \hat{\varphi}_{j}''(x'').$$

En effet,

(33)

$$\begin{split} \int_{U} \hat{\varphi}(k'^{-1} \begin{pmatrix} x' & u \\ 0 & x'' \end{pmatrix} k) du &= \int_{U} \int_{M_{\pi}} \varphi(k^{-1}xk') \psi(\text{Tr}(\begin{pmatrix} x_{1} & x_{2} \\ x_{3} & x_{4} \end{pmatrix} \begin{pmatrix} x' & u \\ 0 & x'' \end{pmatrix}) dx du \\ &= \int \varphi(k^{-1} \begin{pmatrix} x_{1} & x_{2} \\ 0 & x_{4} \end{pmatrix} k') \psi(x_{1}x' + x_{4}x'') dx_{1} dx_{2} dx_{4} \end{split}$$

$$= \sum_{i=1}^{l'} \mu_j(k,k') \hat{\varphi}_j'(x') \hat{\varphi}_j''(x'').$$

La première égalité s'obtient en considérant la transformée de Fourier en les variables  $(x_3, u)$ . La dernière s'obtient en appliquant la transformée de Fourier sur  $M' \times M''$  à l'équation (29).

Ces considérations nous donnent une égalité similaire à (30), (36)

$$\zeta(\check{f}, \varphi, 1 - s + \frac{1}{2}(n - 1)) = \sum_{i,j=1}^{l,l'} c_{i,j} \Xi(\check{f}'_i, \hat{\varphi}'_j, 1 - s) L(1 - s, \tilde{\sigma}') \Xi(\check{f}''_i, \hat{\varphi}''_j, 1 - s) L(1 - s, \tilde{\sigma}'').$$

On obtient ainsi l'équation fonctionnelle

(37) 
$$\tilde{\Xi}(\check{f}, \hat{\phi}, 1 - s) = \epsilon(s, \sigma', \psi) \epsilon(s, \sigma'', \psi) \Xi(f, \phi, s),$$

on en déduit que  $\epsilon(s,\pi,\psi)=\epsilon(s,\sigma',\psi)\epsilon(s,\sigma'',\psi)$  et la partie (4) du théorème pour  $\pi$ .

Il ne reste plus qu'à prouver la partie (3). Il suffit de montrer que si l'on fixe  $\varphi' \in S(M')$ ,  $\varphi'' \in S(M'')$  et f (respectivement f') coefficient de  $\sigma'$  (respectivement  $\sigma''$ ) alors il existe  $\varphi \in S(M)$  et f coefficient de  $\pi$  tel que

(38) 
$$\zeta(f, \phi, t) = \zeta(f', \phi', t')\zeta(f'', \phi'', t'').$$

En effet, le calcul du produit des fonctions zêta  $\zeta(f', \varphi', t')\zeta(f'', \varphi'', t'')$  donne

(39) 
$$\int_{G' \times G''} \Phi'(g') \Phi''(g'') f'(g') f''(g'') |\det g'|_p^{t'} |\det g''|_p^{t''} dg' dg''.$$

On choisit alors  $\varphi \in \mathcal{S}(M)$  de la forme  $\begin{pmatrix} x' & u \\ v & x'' \end{pmatrix} \mapsto \varphi'(x') \varphi''(x'') \varphi_0(u) \varphi_1(v)$ , où  $\varphi_1 \in \mathcal{S}(M_{\mathbf{n}'',\mathbf{n}''})$  vérifie  $\varphi_1(0) = 1$  et  $\varphi_0 \in \mathcal{S}(M_{\mathbf{n}',\mathbf{n}''})$  est d'intégrale 1. Avec ce choix, on a

De plus, il existe une fonction localement constante  $\eta: K \to \mathbb{C}$  telle que

(41) 
$$\int_{\mathbf{U}\times\mathbf{K}} \Phi(\begin{pmatrix} \mathbf{g}' & \mathbf{u} \\ 0 & \mathbf{g}'' \end{pmatrix} \mathbf{k}) \eta(\mathbf{k}) d\mathbf{u} d\mathbf{k} = \Phi(\mathbf{g}') \Phi(\mathbf{g}'').$$

On pose aussi  $f(g) = \delta_P^{\frac{1}{2}}(\begin{pmatrix} g' & u \\ 0 & g'' \end{pmatrix})\eta(k)f(g')f(g'')$ , alors f est bien un coefficient de  $\pi$ . De plus, en intégrant sur  $U \times K$  l'expression (39) devient

(42) 
$$\int_{G} \phi(\begin{pmatrix} g' & \mathfrak{u} \\ 0 & g'' \end{pmatrix} k) f(g) |\deg g|_{p}^{t} \delta_{P}(\begin{pmatrix} g' & \mathfrak{u} \\ 0 & g'' \end{pmatrix}) dg' dg'' d\mathfrak{u} dk,$$

qui est bien  $\zeta(f, \phi, t)$ . Ce qui termine la preuve de la proposition.

1.2. **Équation fonctionnelle par dévissage.** On veut montrer l'équation fonctionnelle suivante

(43) 
$$\zeta(f, \phi, s) = \gamma(s)\zeta(\check{f}, \hat{\phi}, n - s),$$

où  $\gamma$  est une fonction rationnelle en  $\mathfrak{p}^s$  et  $\check{f}(g) = f(g^{-1})$ .

Pour montrer cette équation fonctionnelle, on va utiliser la

**Propriété 1.** Les opérateurs  $\zeta(.,.,s)$  et  $\zeta(\tilde{,},n-s)$  sont des opérateurs d'entrelacements, éléments de  $\text{Hom}_{G\times G}((\tilde{\pi}\boxtimes\pi)\otimes S,|\det|_p^s\boxtimes|\det|_p^{-s}).$ 

On précise que l'action de  $G \times G$  sur S est  $(g_1, g_2).\varphi(x) = \varphi(g_1^{-1}xg_2)$ . De plus, on identifie l'ensemble des coefficients de  $\pi$  avec l'espace  $\tilde{V} \otimes V$ ; l'action de  $G \times G$  sur  $\tilde{\pi} \boxtimes \pi$  est  $(g_1, g_2).f(g) = f(g_1^{-1}gg_2)$ .

 $\textit{D\'{e}monstration}.$  L'action de  $G\times G$  sur  $\zeta(f,\varphi,s)$  donne

(44) 
$$\int_{G} \phi(g_{1}^{-1}gg_{2})f(g_{1}^{-1}gg_{2})|\det g|_{p}^{s} dg.$$

On effectue le changement de variable  $g\mapsto g_1gg_2^{-1}$ , le groupe G étant unimodulaire l'intégrale devient

(45) 
$$|\det g_1 g_2^{-1}|^s \int_{G} \phi(g) f(g) |\det g|_p^s dg.$$

D'autre part, l'action de  $G \times G$  sur  $\zeta(\check{f}, \hat{\varphi}, n-s)$  donne

(46) 
$$\int_{G} \hat{\phi}_{g_{1},g_{2}}(g) \check{f}_{g_{1},g_{2}}(g) |\det g|_{p}^{n-s} dg,$$

où l'on a noté  $\phi_{g_1,g_2}(x) = \phi(g_1^{-1}xg_2)$  et  $f_{g_1,g_2}(g) = f(g_1^{-1}gg_2)$ . Un calcul immédiat, montre que  $\check{f}_{g_1,g_2}(g) = \check{f}(g_2^{-1}gg_1)$ . De plus,

(47) 
$$\hat{\phi}_{g_1,g_2}(g) = \int_{M_n} \phi(g_1^{-1} x g_2) \psi(\mathsf{Tr}(xg)) dx.$$

Après le changement de variable  $x\mapsto g_1xg_2^{-1}$  l'intégrale devient

(48) 
$$|\det g_1^{-1}g_2|_p^n \int_{M_n} \phi(x) \psi(\text{Tr}(xg_2^{-1}gg_1)) dx,$$

qui n'est autre que  $|\det g_1g_2^{-1}|_p^n\hat{\varphi}(g_2^{-1}gg_1)$ . L'intégrale (46) devient donc, après le changement de variable  $g\mapsto g_2gg_1^{-1}$ ,

(49) 
$$|\det g_1^{-1}g_2|_p^n |\det g_2g_1^{-1}|_p^{n-s} \int_G \hat{\phi}(g)\check{f}(g) |\det g|_p^{n-s} dg.$$

Dans le but de comprendre l'espace  $\operatorname{\mathsf{Hom}}_{G\times G}((\tilde{\pi}\boxtimes\pi)\otimes \mathcal{S},|\det|_p^s\boxtimes|\det|_p^{-s}),$  on va décomposer  $\mathcal{S}$  selon le rang des matrices. Soit r un entier compris entier 1 et n, on note  $S_r$  l'espace des matrices  $n\times n$  de rang r et  $S^{(r)}$  l'espace des matrices  $n\times n$  de rang r et r.

Si X est un espace localement compact totalement discontinu, on note  $C_c^\infty(X)$  l'espace des fonctions  $f:X\to\mathbb{C}$  localement constantes à support compact. L'espace S est donc égal à  $C_c^\infty(M_n)$ .

Le groupe G est un ouvert de  $M_n$  et  $M_n \setminus G = S^{(n)}$ . Cette décomposition donne la suite exacte

$$(50) 0 \to C_c^{\infty}(\mathsf{G}) \to C_c^{\infty}(\mathsf{M}_n) \to C_c^{\infty}(\mathsf{S}^{(n)}) \to 0,$$

où l'inclusion de  $C_c^\infty(G)$  dans  $C_c^\infty(M_n)$  se fait par extension par 0 et l'application  $C_c^\infty(M_n) \to C_c^\infty(S^{(n)})$  est l'application de restriction.

Cette suite exacte commute avec l'action de  $G \times G$ , on la voit donc comme une suite exacte de représentations de  $G \times G$ . On applique le foncteur  $\text{Hom}_{G \times G}(., (\pi \boxtimes \tilde{\pi}) \otimes (|\det|_p^s \boxtimes |\det|_p^{-s}))$ , qui est exact à gauche, on en déduit alors l'inégalité suivante :

(51) 
$$\dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes\mathcal{S},|.|_{\mathsf{p}}^{\mathsf{s}})\leqslant \dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes C_{\mathsf{c}}^{\infty}(\mathsf{G}),|.|_{\mathsf{p}}^{\mathsf{s}}) \\ +\dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes C_{\mathsf{c}}^{\infty}(\mathsf{S}^{(n)}),|.|_{\mathsf{p}}^{\mathsf{s}}),$$

où l'on a abrégé  $|.|_p^s = |\det|_p^s \boxtimes |\det|_p^{-s}$ .

On décompose ensuite  $S^{(n)}$  selon le rang r, ce qui donne, en utilisant le même raisonnement, que

$$(52) \quad \dim \mathsf{Hom}_{\mathsf{G} \times \mathsf{G}}((\tilde{\pi} \boxtimes \pi) \otimes \mathcal{S}, |.|_{p}^{s}) \leqslant \sum_{r=0}^{n} \dim \mathsf{Hom}_{\mathsf{G} \times \mathsf{G}}((\tilde{\pi} \boxtimes \pi) \otimes C_{c}^{\infty}(S_{r}), |.|_{p}^{s}).$$

Il ne nous reste plus qu'à calculer la dimension de ces différents espaces, pour cela on dispose de la

**Proposition 3.** Pour r = n  $(S_r = G)$ , on a

(53) 
$$\dim \operatorname{\mathsf{Hom}}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes\mathsf{C}_{\mathsf{c}}^{\infty}(\mathsf{G}),|.|_{\mathsf{p}}^{\mathsf{s}})=1;$$

et pour r < n, on a

(54) 
$$\operatorname{\mathsf{Hom}}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes\mathsf{C}_{\mathsf{c}}^{\infty}(\mathsf{S}_{\mathsf{r}}),|.|_{\mathfrak{p}}^{\mathsf{s}})=0$$

sauf pour un nombre fini de valeurs de s modulo  $\frac{2i\pi}{(n-r)\log p}\mathbb{Z}$ .

 $D\acute{e}monstration$ . Commençons par le cas r = n,

$$(55) \qquad \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes C_{\mathsf{c}}^{\infty}(\mathsf{G}),|.|_{\mathfrak{p}}^{s})\simeq \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes|.|_{\mathfrak{p}}^{-s},C^{\infty}(\mathsf{G}))$$

$$(56) \simeq \operatorname{Hom}_{H}((\tilde{\pi} \boxtimes \pi) \otimes |.|_{\mathfrak{p}}^{-s}, \mathbb{C})$$

$$\simeq \operatorname{Hom}_{G}(\tilde{\pi}, \tilde{\pi});$$

où le groupe H désigne la diagonale de  $G \times G$ . Ce dernier espace est bien de dimension 1 d'après le lemme de Schur.

Le premier isomorphisme provient de la dualité entre  $C_c^\infty(G)$  et  $C^\infty(G)$ . Le deuxième isomorphisme est une application de la réciprocité de Frobenius avec l'identification  $C^\infty(G) = \operatorname{Ind}_H^{G \times G}(1)$ . Pour finir, le dernier isomorphisme provient du fait que l'action diagonale de H sur  $\tilde{\pi} \boxtimes \pi$  correspond à l'action de G sur  $\tilde{\pi} \otimes \pi$  et que  $|.|_p^{-s}$  est trivial sur H.

Passons au cas r < n,  $S_r$  est l'orbite de  $\begin{pmatrix} 1_r & 0 \\ 0 & 0 \end{pmatrix}$  sous l'action de  $G \times G$  par translation à gauche du premier facteur et translation à droite de l'inverse sur le second facteur. On calcule le stabilisateur,

$$(58) \hspace{1cm} \mathsf{H} = \mathsf{Stab}_{\mathsf{G} \times \mathsf{G}} \begin{pmatrix} \mathbf{1}_{\mathsf{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \left\{ \begin{pmatrix} \begin{pmatrix} \mathfrak{a} & \mathfrak{b} \\ \mathbf{0} & \mathfrak{c} \end{pmatrix}, \begin{pmatrix} \mathfrak{a} & \mathbf{0} \\ \mathfrak{d} & \mathfrak{e} \end{pmatrix} \right\} \right\} \subset \mathsf{G} \times \mathsf{G},$$

où a décrit  $GL_r(\mathbb{Q}_p)$ ; c,e décrivent  $GL_{n-r}(\mathbb{Q}_p)$ ; b décrit  $M_{r,n-r}(\mathbb{Q}_p)$  et d décrit  $M_{n-r,r}(\mathbb{Q}_p)$ .

On note P=MN le sous-groupe parabolique de G des matrices de la forme  $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$  et  $\bar{P}=M\bar{N}$  le groupe parabolique opposé, alors  $H\subset P\times \bar{P}$ .

(59)

$$\text{Hom}((\tilde{\pi}\boxtimes\pi)\otimes C_c^\infty(S_r),|.|_\mathfrak{p}^s)\simeq \text{Hom}_{G\times G}((\tilde{\pi}\boxtimes\pi)\otimes|.|_\mathfrak{p}^{-s},\text{Ind}_H^{G\times G}(\delta_H))$$

$$(60) \qquad \qquad \simeq \operatorname{Hom}_{\mathsf{M}\times\mathsf{M}}((\tilde{\pi}\boxtimes\pi)_{\mathsf{N}\times\bar{\mathsf{N}}}\otimes|.|_{\mathsf{p}}^{-s},\operatorname{Ind}_{(\mathsf{M}\times\mathsf{M})\cap\mathsf{H}}^{\mathsf{M}\times\mathsf{M}}(\delta_{\mathsf{H}}))$$

$$(61) \qquad \simeq \operatorname{Hom}_{(M \times M) \cap H} ((\tilde{\pi} \boxtimes \pi)_{N \times \bar{N}}, \delta_{H} \otimes |.|_{\mathfrak{p}}^{\mathfrak{s}}),$$

où  $\delta_H$  est le caractère modulaire de H.

Le premier isomorphisme provient de l'identification de  $C_c^{\infty}(S_r) = c - Ind_H^{G \times G}(1)$  et de la dualité entre  $c - Ind_H^{G \times G}(1)$  et  $Ind_H^{G \times G}(\delta_H)$ . Pour le deuxième isomorphisme, on utilise la transitivité de l'induction,  $H \subset P \times \bar{P} \subset G \times G$ , et l'adjonction entre  $Ind_{P \times \bar{P}}^{G \times G}$  et le foncteur de Jacquet ; en remarquant, que  $N \times \bar{N}$  agit trivialement sur  $|.|_p^{-s}$ . Le dernier isomorphisme n'est autre que la réciprocité de Frobenius.

On utilise le fait que  $(\tilde{\pi} \boxtimes \pi)_{N \times \tilde{N}}$  est de longueur finie; en effet le foncteur de Jacquet préserve la longueur finie. Il existe donc des représentations admissibles  $V_i$  de  $M \times M$  telles que

$$(62) 0 = V_0 \subset V_1 \subset ... \subset V_l = (\tilde{\pi} \boxtimes \pi)_{N \times \bar{N}},$$

avec  $V_i/V_{i-1}$  irréductibles.

En reprenant un raisonnement que l'on a déjà fait, la suite exacte de représentations de  $M\times M$ 

$$(63) 0 \rightarrow V_{i-1} \rightarrow V_i \rightarrow V_i / V_{i-1} \rightarrow 0$$

permet d'obtenir l'inégalité suivante :

(64)

$$\dim \mathsf{Hom}_{(M\times M)\cap H}((\tilde{\pi}\boxtimes \pi)_{N\times \bar{N}},|.|_p^s\delta_H)\leqslant \sum_{i=1}^l \dim \mathsf{Hom}_{(M\times M)\cap H}(V_i/V_{i-1},|.|_p^s\delta_H).$$

Il nous suffit donc de montrer que ces derniers espaces sont nuls sauf pour au plus une valeur de s modulo  $\frac{2i\pi}{(n-r)\log p}\mathbb{Z}$ .

En tant que représentation irréductible de  $M \times M \simeq GL^2_r(\mathbb{Q}_p) \times GL^2_{n-r}(\mathbb{Q}_p)$ , on peut décomposer  $V_i/V_{i-1} \otimes \delta_H^{-1}$  sous la forme  $\sigma^{(i)} \boxtimes (\tau_1^{(i)} \boxtimes \tau_2^{(i)})$ , où  $\sigma^{(i)}$  est une représentation irréductible de  $GL^2_r(\mathbb{Q}_p)$  et  $\tau_1^{(i)}, \tau_2^{(i)}$  sont des représentations irréductibles de  $GL_{n-r}(\mathbb{Q}_p)$ .

D'après le lemme de Schur, la représentation  $\tau_2^{(i)}$  admet un caractère central  $\omega^{(i)}$ . On en déduit que

(65) 
$$\operatorname{Hom}_{(M\times M)\cap H}(V_i/V_{i-1},|.|_{\mathfrak{p}}^{\mathfrak{s}}\delta_H)=0,$$

sauf si  $\omega^{(i)} = |.|_p^{-(n-r)s}$  sur  $\mathbb{Q}_p^{\times}$ . Cette dernière équation ne peut être vérifiée que pour au plus une valeur de s modulo  $\frac{2i\pi}{(n-r)\log p}\mathbb{Z}$ .

Terminons la preuve de l'équation fonctionnelle. Rappelons que les opérateurs  $\zeta(.,.,s)$  et  $\zeta(\check{\cdot},\hat{\cdot},n-s)$  sont des éléments de  $\text{Hom}_{G\times G}((\check{\pi}\boxtimes\pi)\otimes \mathcal{S},|\det|_p^s\boxtimes|\det|_p^{-s}),$  qui est de dimension 1 sauf pour un nombre fini de valeurs de s modulo  $\sum_{r=0}^{n-1}\frac{2i\pi}{(n-r)\log p}\mathbb{Z}$ .

Autrement dit, pour s en dehors de cet ensemble de valeurs exceptionnelles, il existe  $\gamma(s) \in \mathbb{C}$  tel que

(66) 
$$\zeta(.,.,s) = \gamma(s)\zeta(\check{\cdot},\hat{\cdot},n-s).$$

Les fonctions zêta étant des fonctions rationnelles en  $p^s$  et l'ensemble des valeurs de s pour lesquelles  $\gamma$  est ainsi défini est dense pour la topologie de Zariski, on en déduit que l'on peut étendre  $\gamma$  en une fonction rationnelle en  $p^s$  pour laquelle l'équation (66) est vérifiée en tant qu'égalité de fonctions rationnelles en  $p^s$ .

## 2. Fonctions zêta sur $GL_n(\mathbb{A})$

Dans cette partie, on note  $G=GL_n(\mathbb{Q}),\ G_\mathbb{A}=GL_n(\mathbb{A}).$  On pose  $K=O_n(\mathbb{R})\times\prod_p GL_n(\mathbb{Z}_p),$  c'est un sous-groupe compact maximal de  $G_\mathbb{A}.$ 

2.1. Formes cuspidales. On commence par donner la définition des formes automorphes (et cuspidales), on renvoie à [1] et [2] pour plus de détails.

On fixe un caractère unitaire  $\omega : \mathbb{A}^{\times}/\mathbb{Q}^{\times} \to \mathbb{S}^{1}$ .

**Définition 2.** Une forme automorphe de caractère central  $\omega$  est une fonction  $\phi$ :  $G_{\mathbb{A}} \to \mathbb{C}$  lisse et G-invariante qui vérifie de plus :

- φ est K-finie à droite,
- $\phi$  est  $Z(U(\mathfrak{g}))$ -finie,

---

(67) 
$$\varphi(zg) = \omega(z)\varphi(g) \quad \forall g \in G_{\mathbb{A}}, z \in \mathbb{A}^{\times},$$

— φ est à croissance modérée.

On note  $\mathcal{A}(G_{\mathbb{A}}, \omega)$  l'espace des formes automorphes de caractère central  $\omega$ .

On rajoute aussi une condition d'annulation dont on aura besoin pour la preuve de l'équation fonctionnelle. Ce qui donne la

**Définition 3.** Une forme cuspidale  $\phi$  de caractère central  $\omega$  est une forme automorphe de caractère central  $\omega$  qui vérifie de plus les conditions :

$$\int_{\mathsf{U}\setminus\mathsf{U}_{\mathbb{A}}} \varphi(\mathsf{u}\mathsf{g})\mathsf{d}\mathsf{u} = 0$$

pour tout radical unipotent U d'un sous-groupe parabolique propre de  $G_{\mathbb{A}}$  et tout  $g \in G_{\mathbb{A}}$ .

On note  $A_0(G_A, \omega)$  l'espace des formes cuspidales de caractère central  $\omega$ .

L'espace de Schwartz de  $M_n(\mathbb{A})$  est, par définition,  $S(M_n(\mathbb{A})) = \bigotimes_{\nu}' S(M_n(\mathbb{Q}_{\nu})) = \{ \phi = \otimes \phi_{\nu}, \phi_{\nu} \in S(M_n(\mathbb{Q}_{\nu})), \phi_{\nu} = \mathbb{1}_{\mathbb{Z}_{\nu}} \text{ sauf pour un nombre fini de } \nu \}.$ 

Pour  $\phi \in \mathcal{A}_0(G_{\mathbb{A}}, \omega)$ ,  $\phi \in \mathcal{S}(M_{\mathbb{A}})$  et  $s \in \mathbb{C}$ , on pose

$$\zeta(\phi,\varphi,s) = \int_{G_{\mathbb{A}}} \varphi(g) \phi(g) |\det g|_{\mathbb{A}}^s dg,$$

où  $dg = \bigotimes_{\nu} dg_{\nu}$  est une mesure de Haar sur  $GL_n(\mathbb{A})$  et  $|.|_{\mathbb{A}} = \prod_{\nu} |.|_{\nu}$  est la valeur absolue adélique.

Notons  $G_{\mathbb{A}}^{0} = \{g \in G_{\mathbb{A}}, |\det g|_{\mathbb{A}} = 1\}$ . Comme  $\mathbb{R}_{>0} \subset \mathbb{A}^{\times} = \mathsf{Z}(G_{\mathbb{A}})$ , l'application  $|\det|_{\mathbb{A}} : G_{\mathbb{A}} \to \mathbb{R}_{>0}$  est surjective de noyau  $G_{\mathbb{A}}^{0}$ .

La factorisation  $G_{\mathbb{A}} = \mathbb{R}_{>0} G^0_{\mathbb{A}}$  permet d'obtenir que

(70) 
$$\zeta(\varphi, \varphi, s) = \int_0^\infty \int_{G^0} \varphi(tg) \omega(t) \varphi(g) t^{ns} dg \frac{dt}{t}$$

(71) 
$$= \int_0^\infty \int_{G \setminus G_A^0} \sum_{x \in G} \phi(txg) \varphi(g) \omega(t) t^{ns} dg \frac{dt}{t}.$$

Comme dans la preuve de l'équation fonctionnelle de la fonction zêta de Riemann, on scinde l'intégrale en 1 dans le but de faire apparaître une symétrie. Autrement dit.

La seconde intégrale converge absolument pour tout  $s \in \mathbb{C}$ , c'est une fonction entière. Pour la première intégrale, on fait le changement de variable  $t \mapsto t^{-1}$ , ce qui donne

(73) 
$$\int_{1}^{\infty} \int_{G \setminus G_{\delta}^{0}} \sum_{x \in G} \phi(t^{-1}xg) \varphi(g) \omega^{-1}(t) t^{-ns} dg \frac{dt}{t}.$$

On va maintenant utiliser la formule de Poisson sur  $M_n(\mathbb{A})$ , ce qui donne pour la fonction  $x \mapsto \varphi(t^{-1}xg)$ :

$$(74) \qquad \qquad \sum_{x \in M_{\mathfrak{n}}(\mathbb{Q})} \varphi(t^{-1}xg) = t^{\mathfrak{n}^2} \sum_{x \in M_{\mathfrak{n}}(\mathbb{Q})} \hat{\varphi}(txg^{-1}),$$

on se rappelle que  $g \in G^0_{\mathbb{A}}$ , donc  $|\det g|_{\mathbb{A}} = 1$ . On scinde la somme selon le rang de la matrice et on obtient :

(75) 
$$\sum_{x \in G} \phi(t^{-1}xg) = t^{n^2} \sum_{x \in G} \hat{\phi}(txg^{-1}) + \sum_{r < n, rg(x) = r} \left( t^{n^2} \hat{\phi}(txg^{-1}) - \phi(t^{-1}xg) \right).$$

La contribution de la dernière somme s'avèrera nulle. Ce qui nous permet d'en déduire la

**Proposition 4.** Si  $\phi \in \mathcal{A}_0(G_\mathbb{A}, \omega)$  et  $\phi \in \mathcal{S}(M_n(\mathbb{A}), \text{ la fonction } \zeta(\phi, \phi, .) \text{ peut être prolongée en une fonction entière et vérifie l'équation fonctionnelle$ 

(76) 
$$\zeta(\phi,\varphi,s)=\zeta(\check{\phi},\hat{\varphi},n-s),$$
 où  $\check{\phi}(g)=\phi(g^{-1}).$ 

Démonstration. Il suffit de prouver que la contribution dans la formule de Poisson des matrices de rang r < n est effectivement nulle. On considère l'action de G par translation à droite sur l'ensemble des matrices de rang r. Chaque orbite contient un représentant de la forme  $\begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$ , on note X l'ensemble des matrices de cette

forme. On pose P le sous-groupe parabolique de G des matrices de la forme  $\begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$  et U son radical unipotent.

On réécrit la somme sur les matrices de rang r grâce au système de représentant X,

(77) 
$$\sum_{rg(x)=r} \phi(xg) = \sum_{\gamma \in P \setminus G} \sum_{x \in X} \phi(x\gamma g).$$

On en déduit que la contribution des matrices de rang  ${\bf r}$  dans la seconde intégrale est

(78) 
$$\int_{P \setminus G_A^0} \sum_{x \in X} \phi(t^{-1}xg) \varphi(g) dg.$$

De plus, on remarque que, xu=x, pour tout  $x\in X$  et  $u\in U_{\mathbb{A}}$ . Ce qui nous permet de réécrire cette intégrale sous la forme

(79) 
$$\int_{PU_{\mathbb{A}} \setminus G_{\mathbb{A}}^{0}} \sum_{x \in X} \phi(t^{-1}xg) \int_{U \setminus U_{\mathbb{A}}} \phi(ug) dudg.$$

Cette dernière intégrale s'annule, car f est cuspidale. On montre de même de l'intégrale correspondant au terme en  $\hat{\varphi}$  sur les matrices de rang r < n s'annule aussi. Ce qui nous donne, grâce à la formule de Poisson et le raisonnement précédent, la formule

$$\zeta(\varphi, \varphi, s) = \int_{1}^{\infty} \int_{G \setminus G_{\mathbb{A}}^{0}} \sum_{x \in G} \hat{\varphi}(txg^{-1}) \varphi(g) \omega^{-1}(t) t^{\mathfrak{n}(\mathfrak{n}-s)} dg \frac{dt}{t}$$

$$+ \int_{1}^{\infty} \int_{G \setminus G_{\mathbb{A}}^{0}} \sum_{x \in G} \varphi(txg) \varphi(g) \omega(t) t^{\mathfrak{n}s} dg \frac{dt}{t},$$

$$(80)$$

ce qui démontre l'équation fonctionnelle en effectuant le changement de variable  $g\mapsto g^{-1}$  dans la première intégrale.  $\square$ 

2.2. Représentations automorphes. L'espace des formes cuspidales  $\mathcal{A}_0(G_\mathbb{A},\omega)$  est stable par l'action de  $U(\mathfrak{g})$  par opérateurs différentiels et par translation à droite de  $O_n(\mathbb{R})$  et  $GL_n(\mathbb{A}_f)$ , c'est un  $(\mathfrak{g},O_n(\mathbb{R}))\times GL_n(\mathbb{A}_f)$ -module.

Un coefficient f de  $A_0(G_A, \omega)$  est de la forme

(81) 
$$f(g) = \langle \pi(g)\varphi, \tilde{\varphi} \rangle = \int_{\mathbb{A}^{\times} G \backslash G_{\mathbb{A}}} \varphi(hg)\tilde{\varphi}(h)dh,$$

où  $\varphi \in \mathcal{A}_0(\mathsf{G}_{\mathbb{A}}, \omega)$  et  $\tilde{\varphi} \in \mathcal{A}_0(\mathsf{G}_{\mathbb{A}}, \omega^{-1})$ .

Pour un coefficient f de  $\mathcal{A}_0(G_{\mathbb{A}}, \omega)$ ,  $\phi \in \mathcal{S}(M_{\mathbb{A}})$  et  $s \in \mathbb{C}$ , on pose

$$\zeta(f,\varphi,s) = \int_{G_{\mathbb{A}}} \varphi(g)f(g)|\det g|_{\mathbb{A}}^{s} dg.$$

On peut déduire les propriétés de cette fonction zêta grâce à ce que l'on vient de faire pour les formes cuspidales. Plus précisément, on a

$$(83) \qquad \zeta(f,\varphi,s)=\int_{G_{\mathbb{A}}}\varphi(g)\int_{\mathbb{A}^{\times}G\backslash G_{\mathbb{A}}}\phi(hg)\tilde{\phi}(h)dh|\det g|_{\mathbb{A}}^{s}dg$$

$$= \int_{\mathbb{A}^\times G \setminus G_{\mathbb{A}}} \tilde{\phi}(h) \int_{G_{\mathbb{A}}} \varphi(h^{-1}g) \phi(g) |\det g|_{\mathbb{A}}^s dg |\det h|_{\mathbb{A}}^{-s} dh$$

(85) 
$$= \int_{\mathbb{A}^{\times} G \backslash G_{A}} \tilde{\varphi}(h) \zeta(\varphi, \varphi(h^{-1}.), s) |\det h|_{\mathbb{A}}^{-s} dh,$$

où la deuxième égalité s'obtient grâce au changement de variable  $g\mapsto h^{-1}g$ . Ceci nous permet de démontrer la

**Proposition 5.** Si f est un coefficient de  $\mathcal{A}_0(G_\mathbb{A},\omega)$  et  $\varphi \in \mathcal{S}(M_\mathbb{A})$ , la fonction  $\zeta(f,\varphi,.)$  peut être prolongée en une fonction entière et vérifie l'équation fonctionnelle

(86) 
$$\zeta(f, \phi, s) = \zeta(\check{f}, \hat{\phi}, n - s),$$
 
$$o\check{u} \ \check{f}(g) = f(g^{-1}).$$

 $D\acute{e}monstration$ . On utilise l'équation fonctionnelle (76) et le fait que la transformée de Fourier de  $\phi(h^{-1})$  est  $|\det h|_{\mathbb{A}}^{n}\hat{\phi}(.h)$ ,

$$(87) \qquad \zeta(f,\varphi,s)=\int_{\mathbb{A}^{\times}G\backslash G_{\mathbb{A}}}\tilde{\phi}(h)\zeta(\check{\phi},\hat{\varphi}(.h),n-s)|\det h|_{\mathbb{A}}^{n-s}dh$$

$$= \int_{\mathbb{A}^\times G \backslash G_{\mathbb{A}}} \tilde{\phi}(h) \int_{G_{\mathbb{A}}} \hat{\varphi}(gh) \phi(g^{-1}) |\det g|_{\mathbb{A}}^{n-s} dg |\det h|_{\mathbb{A}}^{n-s} dh.$$

On effectue maintenant le changement de variable  $g \mapsto gh^{-1}$ , ce qui donne

(89) 
$$\int_{\mathbb{A}^{\times} G \setminus G_{\mathbb{A}}} \tilde{\varphi}(h) \int_{G_{\mathbb{A}}} \hat{\varphi}(g) \varphi(hg^{-1}) |\det g|_{\mathbb{A}}^{n-s} dg dh,$$

qui est bien 
$$\zeta(\check{f},\hat{\varphi},n-s)$$
.

Si l'on combine cette proposition avec les résultats locaux, on peut construire la fonction L attachée à une représentation cuspidale irréductible.

**Définition 4.** Une représentation cuspidale est un  $(\mathfrak{g}, O_n(\mathbb{R})) \times GL_n(\mathbb{A}_f)$ -module qui est isomorphe à un sous-quotient de  $\mathcal{A}_0(G_{\mathbb{A}}, \omega)$ .

Plus précisément, on montre le

Théorème 2. Soit  $\pi$  une représentation cuspidale irréductible.

Le produit  $L(s,\pi) = \prod_{\nu} L(s,\pi_{\nu})$ , qui est défini pour Re(s) > n, se prolonge en une fonction entière. De plus,  $L(s,\pi)$  vérifie l'équation fonctionnelle

(90) 
$$\mathsf{L}(\mathsf{s},\pi) = \varepsilon(\mathsf{s},\pi)\mathsf{L}(1-\mathsf{s},\tilde{\pi}),$$

$$o\dot{u} \ \epsilon(s,\pi) = \prod_{\nu} \epsilon(s,\pi_{\nu}).$$

Démonstration. La représentation  $\pi$  se décompose en facteurs locaux,  $\pi \simeq \otimes_{\nu}' \pi_{\nu}$ , où  $\pi_{\nu}$  est une représentation admissible irréductible de  $GL_n(\mathbb{Q}_{\nu})$  (un  $(\mathfrak{g}, O_n(\mathbb{R}))$ -module irréductible pour la place archimédienne) et pour presque toutes les places  $\pi_{\nu}$  est sphérique (contient la représentation unité de  $GL_n(\mathbb{Z}_{\nu})$ ).

D'après les résultats locaux, pour chaque place  $\nu$ , il existe un nombre fini  $(\phi_{\alpha_{\nu}})_{\alpha_{\nu} \in I_{\nu}}$  d'éléments de  $S(M_{\nu})$  et de coefficient  $(f_{\alpha_{\nu}})_{\alpha_{\nu} \in I_{\nu}}$  de  $\pi_{\nu}$  tel que

(91) 
$$\sum_{\alpha_{\nu} \in I_{\nu}} \zeta(f_{\alpha_{\nu}}, \varphi_{\alpha_{\nu}}, s + \frac{1}{2}(n-1)) = L(s, \pi_{\nu}).$$

De plus, d'après l'équation fonctionnelle locale

(92) 
$$\sum_{\alpha_{\nu} \in I_{\nu}} \zeta(\check{\mathsf{f}}_{\alpha_{\nu}}, \hat{\varphi}_{\alpha_{\nu}}, 1 - s + \frac{1}{2}(n-1)) = \varepsilon(s, \pi_{\nu}) \mathsf{L}(1 - s, \tilde{\pi}_{\nu}).$$

Notons  $I = \prod_{\nu} I_{\nu}$ . Pour presque toutes les places  $\nu$ ,  $\pi_{\nu}$  est sphérique,  $I_{\nu}$  est un singleton; donc I est fini.

Pour  $\alpha = (\alpha_{\nu}) \in I$ , on pose

(93) 
$$\varphi_{\alpha} = \prod_{\nu} \varphi_{\alpha_{\nu}}, \quad f_{\alpha} = \prod_{\nu} f_{\alpha_{\nu}}.$$

Alors  $\varphi_{\alpha} \in S(M_{\mathbb{A}})$  et  $f_{\alpha}$  est un coefficient de  $\pi$  qui est un sous-quotient de  $\mathcal{A}_0(\mathsf{G}_\mathbb{A},\omega)$ . De plus,

(94) 
$$\zeta(f_{\alpha}, \varphi_{\alpha}, s) = \prod_{\nu} \zeta(f_{\alpha_{\nu}}, \varphi_{\alpha_{\nu}}, s).$$

On en déduit que

(95) 
$$L(s,\pi) = \prod_{\nu} L(s,\pi_{\nu}) = \prod_{\nu} \sum_{\alpha_{\nu} \in I_{\nu}} \zeta(f_{\alpha_{\nu}}, \phi_{\alpha_{\nu}}, s + \frac{1}{2}(n-1))$$

(96) 
$$= \sum_{\alpha \in I} \zeta(f_{\alpha}, \varphi_{\alpha}, s + \frac{1}{2}(n-1))$$

est une somme finie de fonction zêta, qui chacune se prolonge en une fonction entière. De plus,

(97) 
$$L(s,\pi) = \sum_{\alpha \in I} \zeta(f_{\alpha}, \phi_{\alpha}, s + \frac{1}{2}(n-1))$$

$$=\sum_{\alpha\in I}\zeta(\check{\mathsf{f}}_{\alpha},\hat{\varphi}_{\alpha},1-s+\frac{1}{2}(\mathfrak{n}-1))$$

$$= \prod_{\nu} \sum_{\alpha_{\nu} \in I_{\nu}} \zeta(\check{f}_{\alpha_{\nu}}, \hat{\varphi}_{\alpha_{\nu}}, 1 - s + \frac{1}{2}(n-1))$$

(100) 
$$= \prod_{\nu} \varepsilon(s, \pi_{\nu}) L(1 - s, \tilde{\pi}_{\nu})$$

$$= \varepsilon(s, \pi) L(1 - s, \tilde{\pi}).$$

(101) 
$$= \epsilon(s, \pi) L(1 - s, \tilde{\pi})$$

## Références

- [1] D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1997.
- [2] D. Goldfeld and J. Hundley, Automorphic Representations and L-Functions for the General Linear Group:, no. vol. 1 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2011.