CODING IN BRAZIL

Ciência de dados

Wellington Silva

Brasil

2021

Sumário

1	Introdução	1
1.1	Material complementar	5
2	Linguagem de Programação	6
2.1	Python	6
2.2	Editor e IDE	6
2.3	Gerenciamento de pacote	7
2.4	Bibliotecas essências	7
2.5	Matemática	7
2.6	Visualização de dados	9
2.7	Web Scraping	10
2.8	Aprendizagem de máquina	10
2.9	Processamento de imagens	11
3	Resenha do livro Introdução a mineração de dados	12
3.1	Principais tarefas da mineração de dados	12
3.2	Pré-processamento de dados	12
3.3	Análise descritiva de dados	14
3.4	Análise de grupos	17
3.4.1	Medidas de similaridade	17
3.4.2	Medidas de dissimilaridade para variáveis contínuas	18
3.4.3	Métodos de agrupamento	18
	REFERÊNCIAS	20

Lista de ilustrações

Figura 1 –	Ilustração das etapas da extração de conhecimento
Figura 2 -	NumPy
Figura 3 -	Pandas
Figura 4 -	Matplotlib
Figura 5 -	Seaborn
Figura 6 –	Tendência Central

1 Introdução

Origem

A mineração de dados surgiu como área de pesquisa e aplicação independente em meados da década de 1990. Entretanto, as suas origens na matemática, estatística e computação são muito anteriores a esse período.

Objetivo

Preparação e análise das grandes massas de dados, tendo a finalidade de encontrar o conhecimento. Portanto, para cumprir tal finalidade, reuni áreas distintas, como estatística; matemática; engenharia; inteligência artificial; banco de dados; sistemas de informação; visualização; antropologia; e o especialista do domínio dos dados, que se complementam e formam a área de ciência de dados.

KDD

Figura 1 – Ilustração das etapas da extração de conhecimento

- 1. <u>Dados:</u> conjunto de dados organizados de forma *qualitativa* ou *quantitativa* sobre determinado tema, no qual possibilidade a extração de informação que pode resultar em conhecimento.
- 2. <u>Pré-processamento dos dados:</u> Selecionar os dados de acordo com a demanda do estudo, descartando assim dados irrelevantes, a fim de tornar a análise dos eficiente e eficaz. As etapas são distribuídas:
 - limpeza: remoção de ruídos de dados inconsistentes e ausentes;
 - integração:combinação dos dados de diferentes fontes;

- seleção: escolha de dados relevantes à análise; e
- transformação: consolidação dos dados em formato apropriado.
- 3. <u>Mineração de dados</u>: Utilização de métricas e medidas estatísticas, para representar o conjunto de dados e a sua distribuição. Tais medidas são análise descritiva, agrupamento, predição, associação e detecção de anomalias.
- 4. underlineAvaliação: Identificar os padrões obtidos pela representação do conhecimento são válidos, ou seja, representativo.

Ferramentas

- Weka (www.cs.waikato.ac.nz/ml/weka)
- Matlab
- R Studio (www.r-project.org)
 - Bioconductor (www.bioconductor.org)
- Wolfram Mathematica (www.wolfram.com/mathematica)
- RapidMiner (rapidminer.com)
- SAS (sas.com)
- SSPS by IBM (www-01.ibm.com/software/analytics/spss)
- Orange (orange.biolab.si)
- Mahout by Apache (mahout.apache.org)
- ELKI (elki.dbs.ifi.lmu.de): aprendizagem não supervisionado
- LIBSVM (www.csie.ntu.edu.tw/ cjlin/libsvm)

Banco de dados relacional

- DB2 ¹
- MariaDB ²
- MySQL³
- PostgreSQL ⁴

www-01.ibm.com/software/data/db2

² https://mariadb.org/

³ https://www.mysql.com/

⁴ www.postgresql.org

R	Redis
Data	warehouses
S	nowflake
Clou	d
•	AWS S3
•	Azure
•	Google Cloud
Clust	er computing fundamentals
•	Apache Hadoop
•	HDFS
•	MapReduce
•	Managed Hadoop
	ww.oracle.com ww.microsoft.com/en-us/server-cloud/products/sql-server
	3

• ORACLE ⁵

• SQL Server ⁶

Documento

Coluna

Grafo

Neo4j

Chave valor

MongoDB

Apache Cassandra

Banco de dados não relacional

Data processing Batch • Apache Pig • Apache Arrow • data build tool Hybrid • Apache Spark⁷ • Apache Beam • Apache Flink • Apache NiFi⁸ Streaming Apache Kafka⁹ Workflow scheduling Apache Airflow 10: plataforma de gerenciamento de fluxo de trabalho de código aberto Google Compose Infraestrutura

provisioning

Terraform

Containers

• Docker

⁷ https://spark.apache.org/

⁸ https://nifi.apache.org/

⁹ https://kafka.apache.org/

¹⁰ https://airflow.apache.org/

Containers orchestration

- Kubernetes
- Docker Swarm
- Apache Mesos

Visualização de dados

- Looker
- Grafana
- Jupyter Notebook
- Tableau: visualização dinâmica dos dados e dashboard personalizado
- PowerBI: integração com os serviços Microsoft
- <u>Data Studio</u>: integração com os serviços Google
- Qlik: licitação

1.1 Material complementar

Livros:

- Introdução a mineração de dados por Ferrari e Silva (2017)
- Data Science para Negócios por Fawcett e Provost (2018)
- Python para análise de dados por McKinney (2019)
- Introdução à Ciência de Dados Fundamentos e Aplicações ¹¹

Cursos:

• ML4all - UFPR ¹²

Blog:

- DIKW by Towards Data Science ¹³
- Curso R 14

https://www.ime.usp.br/jmsinger/MAE5755/cdados2019ago06.pdf

http://cursos.leg.ufpr.br/ML4all/1parte/

https://towardsdatascience.com/rootstrap-dikw-model-32cef9ae6dfb

¹⁴ https://blog.curso-r.com/

- Tests as linear by Lindeloev ¹⁵
- JTemporal ¹⁶

Base de dados:

- UCI Machine Learning Repository ¹⁷
- KDnuggets ¹⁸
- Governo Brasileiro 19
 - Brasil IO ²⁰
 - Gasto de parlamentar ²¹
- Governo Americano ²²
- Governo do Inglês ²³
- PyData Book ²⁴

2 Linguagem de Programação

2.1 Python

2.2 Editor e IDE

- Vim
- Atom
- Sublime-text
- VSCode
- Spyder3
- PyDev

¹⁵ https://lindeloev.github.io/tests-as-linear/

¹⁶ https://jtemporal.com/

¹⁷ http://archive.ics.uci.edu/ml/index.php

¹⁸ https://www.kdnuggets.com/datasets/index.html

¹⁹ https://dados.gov.br/

²⁰ https://brasil.io/

²¹ https://serenata.ai/

²² https://www.data.gov/

²³ https://data.gov.uk/

²⁴ https://github.com/wesm/pydata-book

- PyCharm da JetBrains
- Komodi IDE
- Kite ²⁵

IPython é um interpretador interativo para várias linguagens de programação, mas especialmente focado em Python.

- JupyterLab
- Jupyter Notebook
- Colab Notebooks
- Kaggle ²⁶

2.3 Gerenciamento de pacote

<u>Python Package Index - PIP</u> ²⁷ Sistema de gerenciamento de pacotes padrão de facto usado para instalar e gerenciar pacotes de software escritos em Python. Muitos pacotes podem ser encontrados na fonte padrão para pacotes e suas dependências.

Anaconda ²⁸ Distribuição gratuita e de código aberto das linguagens de programação Python e R para computação científica, que visa simplificar o gerenciamento e a implantação de pacote.

Conda ²⁹ Gerenciador de pacotes e sistema de gerenciamento de ambiente de código aberto, plataforma cruzada e independente de linguagem.

2.4 Bibliotecas essências

<u>NumPy</u> é um pacote para a linguagem Python que suporta arrays e matrizes multidimensionais, possuindo uma larga coleção de funções matemáticas para trabalhar com estas estruturas.

<u>Pandas</u> é uma biblioteca de software criada para a linguagem Python para manipulação e análise de dados. Em particular, oferece estruturas e operações para manipular tabelas numéricas e séries temporais. O nome é derivado de painel data.

2.5 Matemática

<u>SymPy</u> é uma biblioteca Python para computação simbólica. Ela fornece ferramentas de álgebra computacional tanto como uma aplicação independente como, também, uma biblioteca para outras aplicações.

https://www.kite.com/

²⁶ https://www.kaggle.com/

²⁷ https://pypi.org/project/pip

²⁸ https://www.anaconda.com

²⁹ https://docs.conda.io/en/latest

Figura 2 – NumPy

Figura 3 – Pandas

<u>SciPy</u> é uma biblioteca Open Source em linguagem Python que foi feita para matemáticos, cientistas e engenheiros. Também tem o nome de uma popular conferência de programação científica com Python.

<u>StatsModels</u> é um pacote Python que permite aos usuários explorar dados, estimar modelos estatísticos e executar testes estatísticos

2.6 Visualização de dados

<u>Matplotlib</u> ³⁰ é uma biblioteca para geração de gráficos e visualizações de dados em geral, feita para e da linguagem de programação Python e sua extensão de matemática NumPy.

Figura 4 – Matplotlib

Seaborn 31

<u>Plotly Dash</u> ³² é uma ferramenta que atual em diversas linguagens de modo interativo em um servidor local. Além disso, utiliza Flask ³³, React.js ³⁴ e CSS para definir o design dos gráficos. Exemplo do funcionamento do Plotly Dash é ministrado pelo Eduardo Mendes ³⁵

Moving Pandas ³⁶ Geo Pandas ³⁷

³⁰ https://matplotlib.org/

³¹ https://seaborn.pydata.org/

³² https://plotly.com/

³³ https://flask.palletsprojects.com

³⁴ https://reactjs.org

https://www.youtube.com/watch?v=fKgPXUUsg1M

³⁶ https://anitagraser.github.io/movingpandas/

³⁷ https://geopandas.org/

Figura 5 – Seaborn

2.7 Web Scraping

- LXML ³⁸
- HTLM5LIB ³⁹
- Beautiful Soup ⁴⁰

2.8 Aprendizagem de máquina

Scikit-learn ⁴¹ Biblioteca de aprendizado de máquina de código aberto para modelagem preditiva pela linguagem de programação Python. A maioria dos modelos do scikit-learn exige que nossos atributos sejam numéricos (inteiros ou números de ponto flutuante). Além disso, muitos modelos falham caso recebam valores ausentes (NaN no pandas ou no numpy). Alguns modelos terão melhor desempenho se os dados estiverem padronizados

<u>TensorFlow</u> ⁴² Biblioteca de código aberto para aprendizado de máquina aplicável a uma ampla variedade de tarefas. É um sistema para criação e treinamento de redes neurais para detectar e decifrar padrões e correlações.

³⁸ https://lxml.de

³⁹ https://html5lib.readthedocs.io/en/latest

⁴⁰ https://www.crummy.com/software/BeautifulSoup/bs4/doc

⁴¹ https://scikit-learn.org

⁴² https://www.tensorflow.org

<u>Keras</u> ⁴³ Biblioteca de rede neural de código aberto escrita em Python. Ele é capaz de rodar em cima de TensorFlow, Microsoft Cognitive Toolkit, R, Theano, ou PlaidML. Projetado para permitir experimentação rápida com redes neurais profundas, ele se concentra em ser fácil de usar, modular e extensível Izbicki e Santos (2020)

<u>Yellowbrick: Machine Learning Visualization</u> ⁴⁴ biblioteca de visualização para avaliação de modelos

<u>PyTorch</u>

Terminology

2.9 Processamento de imagens

<u>Python Imaging Library</u> é uma biblioteca da linguagem de programação Python que adiciona suporte à abertura e gravação de muitos formatos de imagem diferentes.

OpenCV é uma biblioteca multiplataforma, totalmente livre ao uso acadêmico e comercial, para o desenvolvimento de aplicativos na área de Visão computacional

<u>Scikit-image</u> é uma biblioteca de processamento de imagens de código aberto para a linguagem de programação Python. Inclui algoritmos para segmentação, transformações geométricas, manipulação do espaço de cores, análise, filtragem, morfologia, detecção de recursos e muito mais.

<u>PyTorch</u> é uma biblioteca de aprendizado de máquina de código aberto baseada na biblioteca Torch, usada para aplicativos como visão computacional e processamento de linguagem natural

⁴³ https://keras.io

⁴⁴ https://www.scikit-yb.org/

3 Resenha do livro Introdução a mineração de dados

3.1 Principais tarefas da mineração de dados

Objetivo em especificar os tipos de informação a serem obtidas por intermédio das tarefas de mineração, sendo classificada em *descritivas* e *preditivas*, respectivamente, caracterizem as propriedades gerais dos dados; e fazem inferência a partir dos dados analisados.

<u>Análise descritiva dos dados</u> As análises descritivas permitem uma sumarização e compreensão dos objetos da base e seus atributos.

Preditição: classificação e estimação terminologia usada para se referir à construção e ao uso de um modelo para avaliar a classe de um objeto não rotulado ou para estimar o valor de um ou mais atributos de dado objeto. No primeiro caso, denominamos a tarefa de classificação e, no segundo, denominamos de regressão (em estatística) ou simplesmente estimação. Sob essa perspectiva, classificação e estimação constituem os dois principais tipos de problemas de predição, sendo que a classificação é usado para predizer *valores discretos*, ao passo que a estimação é usado para predizer *valores contínuos*.

Agrupamento

Análise de Associação Existem dois aspectos centrais na mineração de regras de associação: a proposição ou *construção* eficiente das regras de associação e a quantificação da *significância* das regras propostas. Ou seja, um bom algoritmo de mineração de regras de associação precisa ser capaz de propor associações entre itens que sejam estatisticamente relevantes para o universo representado pela base de dados.

3.2 Pré-processamento de dados

O processo de preparação da base de dados:

- <u>Limpeza de dados:</u> Imputação de valores ausentes, remoção de ruídos e correção de inconsistências;
- <u>Integração dos dados</u>: <u>Unir dados de múltiplas fontes em um único local, como um armazém de dados (data warehouse);</u>
- Redução dos dados: Reduzir a dimensão da base de dados, por exemplo, agrupando ou eliminando atributos redundantes, ou para reduzir a quantidade de objetos da base, sumarizando os dados;
- Transformação dos dados: Padronizar e deixar os dados em um formato passível de aplicação das diferentes técnicas de mineração;
- Discretização dos dados: Permitir que métodos que trabalham apenas com atributos nominais possam ser empregados a um conjunto maior de problemas. Também faz com que a quantidade de valores para um dado atributo (contínuo) seja reduzida.

Limpeza de dados: A baixa qualidade dos dados é um problema que afeta a maior parte das bases de dados reais. Assim, as ferramentas para a limpeza de dados atuam no sentido de imputar valores ausentes, suavizar ruídos, identificar valores discrepantes (outliers) e corrigir inconsistências.

Métodos tradicionais de imputação de valores ausentes:

- Avestruz: descarta o objeto que possui atributo ausente.
- Manual: escolher manual de forma empírica um valor a ser imputado para cada valor ausente.
- Constante: substitui todo valor ausente por uma constante.
- Hot-deck: substitui o valor ausente por um valor mais similar a ele.
- <u>Last observation carried forward:</u> considera que a representação é uma medida contínua, para isto ordena todos os atributos, substituindo os valores ausentes por seus antecessores.
- Medidas centrais: usar a média ou a moda para substituir valores ausentes.
- Medidas centrais para classe: usar a média ou a moda da classe para substituir valores ausentes da mesma.
- Modelo preditivos: utiliza modelo preditivos para imputar os valores ausentes. Nesse
 caso, o atributo com valores ausentes é utilizado como atributo dependente, ao passo
 que os outros atributos são usados como independentes para se criar o modelo preditivo.
 Portanto, o modelo preditivo é usado para estimar os valores ausentes.

Métodos de Redução de dados

- Redução de dimensionalidade: seleção de atributos
- Compressão de atributos: também efetua uma redução da dimensionalidade, mas empregando algoritmos de codificação ou transformação de dados (atributos), em vez de seleção. Exemplo é a Análise de Componentes Principais (Principal Component Analysis PCA), que é um procedimento estatístico que converte um conjunto de objetos com atributos possivelmente correlacionados em um conjunto de objetos com atributos linearmente descorrelacionados, chamados de componentes principais. O número de componentes principais é menor ou igual ao número de atributos da base, e a transformação é definida de forma que o primeiro componente principal possua a maior variância (ou seja, represente a maior variabilidade dos dados), o segundo componente principal
- Redução de número de dados: realiza um corte temporal das instância, podendo ser combinada com a redução de dimensionalidade.

• <u>Discretização</u>: os valores de atributos são substituídos por intervalos ou níveis conceituais mais elevados, reduzindo a quantidade final de atributos.

Transformação dos dados

Padronização: escala e unidades em bases compatíveis.

Normalização

• <u>Máximo pelo minímo</u>: A normalização Max-Min realiza uma transformação linear nos dados originais. Assuma que *max_a* e *min_a* são,respectivamente, os valores máximo e mínimo de determinado atributo a. A normalização max-min mapeia um valor a em um valor a' no domínio [novo_min'_a, novo_max'_a], de acordo com a Equação abaixo. A aplicação mais frequente dessa normalização é colocar todos os atributos de uma base de dados sob um mesmo intervalo de valores, por exemplo no intervalo [0,1].

$$a' = \frac{a - \min_a}{\max_a - \min_a} \tag{1}$$

• Escore-Z (Escore Padronizado): Útil quando se desconhece a amplitude dos dados ou há outliers, faz parte das medidas de posição relativa

$$a' = \frac{a - \bar{a}}{\delta_a} \tag{2}$$

Escalonamento decimal: Estabelecido pelo escalonamento decimal move a casa decimal
dos valores do atributo a. O número de casas decimais movidas depende do valor máximo
absoluto do atributo a. A Equação abaixo, na qual j é o menor inteiro tal que max(|a'|) <
1, ilustra o cálculo do valor normalizado.

$$a' = \frac{a}{10^j} \tag{3}$$

• Range interquatil: Participa das medidas de posição relativa.

$$IQR = Q_3 - Q_1 \tag{4}$$

• Trivial:

$$a' = \frac{a}{max_a} \tag{5}$$

3.3 Análise descritiva de dados

O processo de análise descritiva de dados, incluindo distribuições de frequência, técnicas de visualização de dados e medidas resumo

Descrever e encontrar o que há nos dados. Ao passo que no futuro pode ser implementar algoritmos de mineração que buscam conclusões que extrapolam os dados e permitem inferir

predições. Portanto, analise descritiva descreve as características dos dado e a mineração geralmente usada em análise mais abrangentes visando a predição. Entretanto, precisa ficar atento com falsas correlações e predições dos dados.

Análise descritiva permite descrever a distribuição e a correlação dos atributos, utilzando medidas estatísticas, como distribuição de frequência, tendência central e visualização gráfica, sendo para atributos univariada e para bivariada relações entre atributos.

Processo

Distribução de frequência

Técnica de visualização

- Histograma
- Polígonos de frequências
- Ogiva
- Gráfico de Pareto
- Gráfico de setores
- Gráfico de dispersão scatterplots

Medidas de tendência central, variação e associação

Medida de centro	Definição	Existência	Considera todos os valores?	Afetada por valores extremos?	Vantagens e desvantagens
Média	Σx/N	Sempre	Sim	Sim	Mais comum
Mediana	Valor do meio	Sempre	Sim	Não	Quando há valores extremos
Ponto médio	(maior+menor)/2	Sempre	Não	Sim	Sensível a extremos
Moda	Valor mais frequente	Pode não existir ou pode haver múltiplos	Não	Não	Dados nominais

Figura 6 – Tendência Central

- Moda
- Mediana
- Ponto Médio

$$\frac{maior - menor}{2} \tag{6}$$

• Média amostral

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{7}$$

Média populacional

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Média de distribuição de frequências

$$\bar{x} = \frac{\sum_{i=n}^{n} f_i * x_i}{\sum_{i=n}^{n} f_i} \tag{9}$$

Média ponderada

$$\bar{x} = \frac{\sum_{i=n}^{n} (w_i * x_i)}{\sum_{i=n}^{n} w_i}$$
 (10)

• Média geométrica

$$\bar{x} = (\prod_{i=1}^{n} x_i)^{\frac{1}{n}} \tag{11}$$

• Média harmônica

$$\bar{x} = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \tag{12}$$

- Medidas de dispersão
- Amplitude

$$amplitude = maior - menor$$
 (13)

• Desvio Padrão

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(14)

• Coeficiente de variação (CV)

$$CV = \frac{\sigma}{\mu} * 100\% \tag{15}$$

 Medidas de forma: a assimetria (Skewness) distribuição dos dados, pode ser nula(No Skewness) conhecido pela nomeclatura de curva sino, podendo receber descolamento positivo da assimetria (Positive Skewness) ou negativa (Negative Skewness). Assimetria é calculada da seguinte forma:

$$\gamma = \frac{E(x - \bar{x})^3}{\sigma^3} \tag{16}$$

 <u>Curtose Kurtosis</u> é uma medida de dispersão que caracteriza o pico ou achatamento da curva da função de distribuição normal.

$$\beta = \frac{E(x - \bar{x})^4}{\sigma^4} - 3 \tag{17}$$

Tabela 1 – Coeficiente de correlação de Pearson

Size of Correlation	Interpretation
0.90 – 1.00	Very high positive (negative) correlation
0.70 – 0.90	High positive (negative) correlation
0.50 – 0.70	Moderate positive (negative) correlation
0.30 – 0.50	Low positive (negative) correlation
0.00 – 0.30	Negligible correlation

- Medidas de posição relativa
- Quartils e boxplot
 - Medida de associação
 - Covariância

$$cov(x,y) = \frac{1}{N} \sum_{i=1}^{N} (x - \bar{x})(y - \bar{y})$$
 (18)

• Coeficiente de correlação de Pearson: mede a dependência linear entre os atributos de forma linear ⁴⁵.

$$\rho(x,y) = \frac{cov(x,y)}{\sigma(x) * \sigma(y)}$$
(19)

Visualização dos dados

- Medidas de resumo
- Medidas de tendência central
- Medida de dispersão
- Medida de forma distribuição

3.4 Análise de grupos

Grupos naturais descrito por Carmichael que grupos são aqueles que satisfazem duas condições particulares:

- 1. Existência de regiões contínuas do espaço, relativamente densamente populadas por objetos;
- 2. Tais regiões estão rodeadas por regiões relativamente vazias.

3.4.1 Medidas de similaridade

Matriz de confusão (contingência)

⁴⁵ https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php

Tabela 2 – Medidas de dissimilaridade para variáveis contínuas

Medida	Fórmula
S1: Coeficiente de Matching	$S_{ij} = \frac{a+d}{a+b+c+d}$
S2: Coeficiente de Jaccard	$S_{ij} = \frac{a}{a+b+c}$
S3: Rogers & Tanimoto	$S_{ij} = \frac{a+d}{a+2(b+c)+d}$
S4: Sokal & Sneath	$S_{ij} = \frac{a}{a+2(b+c)}$
S5: Gower & Legendre	$S_{ij} = \frac{a+d}{a+0.5(b+c)+d}$
S6: Gower & Legendre 2	$S_{ij} = \frac{a}{a + 0.5(b + c)}$

Dados binários

Distância Hamming

3.4.2 Medidas de dissimilaridade para variáveis contínuas

Medidade distância

Família de distância Minkowski

Distância de Canberra

Medidas tipos de correlação

Correlação de Pearson [-1,1]

Medidda do Cosseno [-1,1]

- 3.4.3 Métodos de agrupamento
 - Hierárquicos
 - Particionais

Avaliação

- Compactação
- Separação

Medidas internas, seguindo o índice de (p. 241):

- Dunn (DUNN, 1973)
- Davies-Bouldi [0; infinito] (DAVIES; BOULDIN, 1979)

- Bezdek-Pal (BEZDEK; PAL, 1998)
- Silhueta (ROUSSEEUW, 1987)

Medidas externas

- Entropia: define homogeneidade dos grupos encontrados. Portanto, o valor de baixa entropia indica mais homogeneidade
- Pureza
- índice FBCubed (AMIGÓ et al., 2009)

Referências

AMIGÓ, E. et al. A comparison of extrinsic clustering evaluation metrics based on formal constraints. *Information retrieval*, Springer, v. 12, n. 4, p. 461–486, 2009.

BEZDEK, J. C.; PAL, N. R. Some new indexes of cluster validity. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, IEEE, v. 28, n. 3, p. 301–315, 1998. Disponível em: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.850.9929&rep=rep1&type=pdf.

DAVIES, D. L.; BOULDIN, D. W. A cluster separation measure. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-1, n. 2, p. 224–227, 1979.

DUNN, J. C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. Taylor & Francis, 1973.

FAWCETT, T.; PROVOST, F. Data Science para Negócios: O que você precisa saber sobre mineração de dados e pensamento analítico de dados. [S.l.]: Alta Books Editora, 2018.

FERRARI, D. G.; SILVA, L. N. D. C. *Introdução a mineração de dados*. [S.l.]: Saraiva Educação SA, 2017.

IZBICKI, R.; SANTOS, T. M. dos. *Aprendizado de máquina: uma abordagem estatística*. Rafael Izbicki, 2020. Disponível em: http://www.rizbicki.ufscar.br/ame/>.

MCKINNEY, W. Python para análise de dados: Tratamento de dados com Pandas, NumPy e IPython. [S.l.]: Novatec Editora, 2019.

ROUSSEEUW, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. *Journal of computational and applied mathematics*, Elsevier, v. 20, p. 53–65, 1987.