

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления»

Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ДЛИННАЯ АРИФМЕТИКА»

по курсу «Типы и структуры данных»

Вариант 4

Студент: Писаренко Дмитрий	я́ Павлович	
Группа: ИУ7-34Б		
Студент		Писаренко Д.П.
	подпись, дата	фамилия, и.о.
Перио морото м		Drygwyy IO A
Преподаватель		<u>Рыбкин Ю.А.</u>

подпись, дата

фамилия, и.о.

Условие задачи

Составить программу умножения или деления двух чисел, где порядок имеет до 5 знаков: от –99999 до +99999, а мантисса – до 30 знаков. Программа должна осуществлять ввод чисел и выдавать либо верный результат в указанном формате (при корректных данных), либо сообщение о невозможности произвести счет.

Смоделировать операцию деления целого числа длиной до 30 десятичных цифр на действительное число в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Техническое задание

Входные данные

Целое число вида ±d. Длина до 30 значащих цифр.

Действительное число вида \pm m.n E \pm K. Суммарная длина строки — до 30 значащих цифр (m + n) + символ точки и знака. Величина порядка K — 5 цифр и символ знака.

```
typedef struct
{
    char mantissa[MANTISSA_LEN + 1];
    size_t mantissa_len;
    int exponent;
    int is_negative;
} big_float_t;

typedef struct
{
    char mantissa[MANTISSA_LEN + 1];
    size_t mantissa_len;
    int is_negative;
} big_int_t;
```

```
char mantissa[MANTISSA_LEN + 1] - массив цифр чисел size_t mantissa_len - длина мантиссы int exponent - порядок действительного числа int is_negative - знак числа
```

Onucaнue полей структур big_float_t u big_int_t

Ограничения на входные данные

- Действительное число не более 30 значащих цифр
- Целое число не более 30 значащих цифр
- Порядок не более 5 значащих цифр
- Нельзя вводить пробелы до/после знаков, нужно вводить пробелы до и после порядка

Выходные данные

Действительное число вида $\pm 0.m1E\pm K1$, m1- до 30 значащих цифр, K1- до 5 значащих цифр.

Алгоритм программы

- 1. Производится ввод целого числа посимвольно через gets(). В функции ввода целого числа на блоки разделены: ввод знака, ввод мантиссы. При некорректном вводе какого-либо блока программа завершается с ненулевым кодом возврата и выводит сообщение об ошибке на экран.
- 2. Производится ввод действительного числа посимвольно через gets(). В функции ввода действительного числа на блоки разделены: ввод знака, ввод мантиссы, ввод Е, ввод знака с порядком. При некорректном вводе какоголибо блока программа завершается с ненулевым кодом возврата и выводит сообщение об ошибке на экран.
- 3. Производится деление целого числа на действительное. Сначала производится нормализация обоих чисел, определяется знак итогового результата, затем уже производится само деление.
- 4. Производится округление, и, соответственно, нормализация результата, если длина мантиссы стала равна 31 знаку.
 - 5. Результат выводится на экран.

Тестирование

Позитивные тесты

#	Входные данные	Выходные данные	
1	+312	-0.2836363636363636363636363636363E+2	
	-11		
2	11	+0.55E-998	
	+0.2 E 999		
3	2	+0.666666666666666666666666666666666666	
	3		
4	2	+0.1E+1	
	2.0 E +0		
5	+5361	+0.628414019458445668737545423E-151	
	+85.31 E +153		
6	0	+0.0E+0	
	-91.32 E -5121		

Негативные тесты

#	Входные данные	Выходные данные	Результат
1	122.123	Целое число введено	Код ошибки 1
		неверно	
2	++12	Целое число введено	Код ошибки 1
		неверно	
3	\n	Целое число введено	Код ошибки 1
		неверно	
4	+13	Деление на 0	Код ошибки 2
	+0		
5	+11	Действительное число	Код ошибки 1
	+11111111111111111111111111111111111111	введено неверно	
	111111111111111111111111111111111111111		
6	+123	Действительное число	Код ошибки 1
	+123.123.123	введено неверно	
7	+1	Произошло	Код ошибки 3
	+123 E +99999	переполнение порядка	
8	0	Деление на 0	Код ошибки 2
	0		

Контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

На это влияет тип чисел, размер выделенной для их хранения памяти и разрядность машины. Если переменная типа unsigned integer занимает 4 байта (32 бита), то диапазон значений будет от 0 до 2³2-1.

2. Какова возможная точность представления чисел?

Это зависит от количества памяти, выделенной для хранения мантиссы. В среднем под хранение выделяют 16-30 разрядов.

3. Какие стандартные операции возможны над числами?

Сложение, вычитание, умножение, деление, взятия остатка, сравнение.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Структура.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Путем последовательного выполнения операций над всеми цифрами, начиная с конца массива.

Вывод

В процессе выполнения лабораторной работы были изучены принципы работы длинной арифметики. Я узнал, как работать с числами, которые выходят за возможный диапазон значений каких-либо типов, представленных в ЯП.