Нейросетевой поиск центральной линии аневризмы брюшной аорты

Студент: К.О. Мелихов

Научный руководитель: Р.Ю. Епифанов, младший научный сотрудник ММЦ НГУ

Цель:

Разработать нейросетевой алгоритм для поиска центральной линии брюшной аорты в области бифуркации

Задачи:

- 1. ознакомиться с объектом исследования;
- 2. исследовать существующие нейросетевые методы построения центральной линии;
- 3. разработать и реализовать алгоритм для построения центральной линии

Как измеряется диаметр?

Алгоритм vmtk

Есть детерминированный алгоритм vmtk для поиска центральной линии аорты, но он работает не для всех данных

Наша гипотеза состоит в том, что если обучить нейросеть на данных, где алгоритм работает, то мы сможем находить линии и для сложных данных, например в области бифуркации

бифуркация

Attraction Field (поле смещений)

Как строить поле смещений?

Необходимо для каждого элемента трёхмерного тензора найти ближайшую точку центральной линии. Использовалась структура **K-d-дерево**, что позволило найти точки за **O(log n)**. Затем из найденной точки нужно вычесть исходную.

Данные

90 КТ, соответствующие им маски и сгенерированные алгоритмом VMTK центральные линии

Архитектура

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$Regularization = \frac{1}{n} \sum_{i=1}^{n} |y_i| - |\hat{y}_i|$$

3D U-Net

$$Dice = 1 - \frac{2\sum_{i=1}^{n} y_i \hat{y}_i}{\sum_{i=1}^{n} y_i + \sum_{i=1}^{n} \hat{y}_i}$$

размер входа: размер_батча×1×16×256×256

размер выхода: размер_батча×3×16×256×256

размер выхода: размер_батча×2×16×256×256 ⁸

Регуляризация

Без регуляризации

С регуляризацией

Heatmap - чем ярче, тем больше значение

Валидация

Есть три метода для отбора точек центральной линии:

- 1. Метод с векторами
- 2. Метод с модулями
- 3. Метод с модулями и векторами

Точки после метода векторов поля смещений

Модули векторов поля смещений

Валидация

Для того чтобы получить метрику качества модели необходимо сравнить несколько предсказанных линий с истинными. Все линии было решено разделить на 3 части. На часть, где сосуд является одиночным, на левую и правую часть бифуркации. Для сравнения кривых использовались метрики Фреше на плоскости и Чамфер в пространстве:

$$Chamfer(A,B) = \sum_{\alpha \in A} \min_{\beta \in B} ||\alpha - \beta||_2^2 + \sum_{\beta \in B} \min_{\alpha \in A} ||\alpha - \beta||_2^2$$

$$Frechet(A, B) = \inf_{\alpha, \beta} \max_{t \in [0, 1]} \{ d(A(\alpha(t)), B(\beta(t))) \}$$

A, B - истинная и предсказанная линии, α , β , - точки линий, $\alpha(t)$, $\beta(t)$ - параметризованные точки, d - функция расстояния.

Результаты валидации

В тренировке участвовали 40 образцов, в валидации - 20, сэмплирование - расстояние между точками в алгоритме VMTK. Без регуляризации:

Метрика	Сэмплирование 0.5 мм	Сэмплирование 1 мм	Метод с векторами	Метод с модулем	Метод с модулем и векторами
Чамфер	0.18	0.23	4.89	5.03	5.08
Фреше	1.12	1.5	6.51	20.43	20.23

С регуляризацией:

Метрика	Сэмплирование 0.5 мм	Сэмплирование 1 мм	Метод с векторами	Метод с модулем	Метод с модулем и векторами
Чамфер	0.18	0.23	3.04	2.53	2.5
Фреше	1.12	1.5	7.18	7.55	7.39

Результаты теста

В тестировании участвовали 30 независимых образцов

Сравнение предсказания модели (синее) с истинной центральной линией (красное)

Метрика	Сэмплирование 0.5 мм	Сэмплирование 1 мм	Метод с векторами	Метод с модулем	Метод с модулем и векторами
Чамфер	0.18	0.26	3.92	3.53	3.61
Фреше	1.33	1.57	17.4	19.54	19.27

Сравнение предсказания модели (синее) с истинной центральной линией (красное)

Предсказание центральной линии для данных, на которых алгоритм VMTK не работает (красное - предсказанная центральная линия)

Заключение

- Исследованы различные методы генерации точек центральных линий брюшной аорты с использованием нейронных сетей.
- Предложена модификация обучения, улучшившая точность генерации по рассматриваемым метрикам.

В дальнейшем планируется:

- Переход от слайсов к 3D в процессе выбора точек центральной линии.
- Использование вещественных координат для повышения точности генерации.
- Добавление аугментации данных для увеличения размера тренировочной выборки и улучшения устойчивости модели.

Спасибо за внимание