

School of Computing

Tutorial 4: Hashing

September 12, 2022

Gu Zhenhao

* Partly adopted from tutorial slides by Wang Zhi Jian.

Map ADT

Why do we need the Map ADT?

Why Map?

Operations	Array	Linked List
getItemAtIndex	0(1)	O(n)
getFirst/getLast	O(1)	$O(1)^*$
addAtIndex/removeAtIndex	O(n)	O(n)
addFront/removeFront	O(n)	0(1)
addBack/removeBack	O(n) ($O(1)$ amortized)	0(1)*
contains	O(n)	O(n)

- Searching for a key in arrays and linked lists is slow.
- The index of a key is unknown, so we have to search one by one.

How to map?

- Purpose: we want to infer the index from the key directly.
- Trivial answer: directly use the key as index?

• Problems:

- 1. What if the key inserted is very large?
- 2. What if the key is not an integer?

How to map?

- Purpose: we want to infer the index from the key directly.
- **Idea**: Use a function h to map a key to a slot.

Problems:

- 1. How to define a good function h?
- 2. What if h maps multiple keys to the same slot?

• Separate Chaining: keep the collided keys in the same slot using linked list.

								Inser	rt(48)	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	h(i) = i%10
0	11				45		27	28	39	
					35			48		

• **Pros**: Inserting a key always cost O(1) time.

• Cons: Need O(n) extra space; searching for a key may be slow.

• Linear Probing: jump to the next slots until we find an empty slot.

$$(+1, +2, +3, ...)$$

- **Pros**: Can always find a slot for a key as long as hash table is not full.
- Cons: may form primary clusters (consecutive filled slots); both inserting and searching may be slow when large clusters form.

• Quadratic Probing: gradually increase the length of jumping.

$$(+1^2, +2^2, +3^2, ...)$$

+2 ² ,+	·3 ² , _.)						Inse	ert(48)	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	h(i) = i%10
0	11	48			45	35	27	28	39	
									ノし	

- Pros: can jump through a cluster faster.
- Cons: May be unable to find a free slot. (guarantee to find one if load factor < 0.5); May form secondary clusters (same hash value, same probe sequence).

Insert(48)

• Double Hashing: different jumping distance for different keys

$$(+g(i), +2g(i), +3g(i) ...).$$

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
0	11			48	45	35	27	28	39
	·	•							

$$h(i) = i\%10$$

 $g(i) = (9 - i)\%9$

- **Pros**: can jump through a cluster faster, harder to form a cluster.
- Cons: May be stuck in one place or unable to find a slot.

• Use *linear probing*, hash function h(key) = key%5.

• **Step 1**: insert(7)

We have 7%5 = 2, so insert at slot 2.

• Use *linear probing*, hash function h(key) = key%5.

[0]	[1]	[2]	[3]	[4]
		7		

• Step 2: insert(12)

We have 12%5 = 2, and we have a collision!

Check (12 + 1)%5 = 3, an empty slot, so insert at slot 3.

• Use *linear probing*, hash function h(key) = key%5.

[0]	[1]	[2]	[3]	[4]
		7	12	

• Step 3: insert(22)

We have 22%5 = 2, and we have a collision!

Check (22 + 1)%5 = 3, again a collision!

Check (22 + 2)%5 = 4, an empty slot, so we insert at slot 4.

• Use *linear probing*, hash function h(key) = key%5.

[0]	[1]	[2]	[3]	[4]
		7	12	22

• **Step 4**: delete(12)

Can we simply set slot 3 as empty slot?

No! In this case we will not be able to find 22.

We mark this slot as deleted instead.

• Use *linear probing*, hash function h(key) = key%5.

[0]	[1]	[2]	[3]	[4]	
		7	8	22	

• **Step 5**: insert(8)

We have 8%5 = 3, and we see a **del** symbol!

We can simply insert into slot 3.

• Use quadratic probing, hash function h(key) = key%5.

• **Step 1**: insert(7)

We have 7%5 = 2, so insert at slot 2.

• Use quadratic probing, hash function h(key) = key%5.

[0]	[1]	[2]	[3]	[4]
		7		

• Step 2: insert(12)

We have 12%5 = 2, a collision!

Check $(12 + 1^2)\%5 = 3$, so we insert at slot 3.

• Use quadratic probing, hash function h(key) = key%5.

[0]	[1]	[2]	[3]	[4]
		7	12	

• Step 3: insert(22)

We have 22%5 = 2, a collision!

Check $(22 + 1^2)\%5 = 3$, again a collision!

Check $(22 + 2^2)\%5 = 1$, so we insert at slot 1.

• Use quadratic probing, hash function h(key) = key%5.

[0]	[1]	[2]	[3]	[4]
	22	7	12	

• **Step 4**: insert(2)

We have 2%5 = 2, a collision!

Check $(2 + 1^2)\%5 = 3$, again a collision!

Check $(2 + 2^2)\%5 = 1$, again a collision!

• Use quadratic probing, hash function h(key) = key%5.

[0]	[1]	[2]	[3]	[4]
	22	7	12	

• **Step 4**: insert(2)

$$(2+3^2)\%5 = 1$$
, $(2+4^2)\%5 = 3$, $(2+5^2)\%5 = 2$, $(2+6^2)\%5 = 3$...

Shall we go on forever?

$$(2 + 0^{2})\%5 = 2$$

$$(2 + 1^{2})\%5 = 3$$

$$(2 + 2^{2})\%5 = 1$$

$$(2 + 3^{2})\%5 = 1$$

$$(2 + 4^{2})\%5 = 3$$

$$(2 + 5^{2})\%5 = 2$$

$$(2 + 6^{2})\%5 = 3$$

$$(2 + 7^{2})\%5 = 1$$

$$(2 + 8^{2})\%5 = 1$$

$$(2 + 9^{2})\%5 = 3$$

$$(2 + 10^{2})\%5 = 2$$

Do you notice any pattern?

It seems that the pattern "23113" keeps repeating.

Idea: probably for the values of hash function $h_k(i) = (i + k^2)\%m$ repeats for each m functions?

$$(i + k^2)\%m = (i + (k + m)^2)\%m$$

$$(2 + 0^{2})\%5 = 2$$

$$(2 + 1^{2})\%5 = 3$$

$$(2 + 2^{2})\%5 = 1$$

$$(2 + 3^{2})\%5 = 3$$

$$(2 + 4^{2})\%5 = 3$$

$$(2 + 5^{2})\%5 = 3$$

$$(2 + 6^{2})\%5 = 3$$

$$(2 + 7^{2})\%5 = 1$$

$$(2 + 8^{2})\%5 = 1$$

$$(2 + 9^{2})\%5 = 3$$

$$(2 + 10^{2})\%5 = 2$$

$$(i + (k + m)^{2})\%m$$

$$= (i + k^{2} + 2km + m^{2})\%m$$

$$= (i + k^{2} + 2km\%m + m^{2}\%m)\%m$$

$$= (i + k^{2})\%m$$

Indeed! Therefore we only need to evaluate the first m hash functions.

$$(2 + 0^{2})\%5 = 2$$

$$(2 + 1^{2})\%5 = 3$$

$$(2 + 2^{2})\%5 = 1$$

$$(2 + 3^{2})\%5 = 3$$

$$(2 + 4^{2})\%5 = 3$$

$$(2 + 5^{2})\%5 = 3$$

$$(2 + 6^{2})\%5 = 3$$

$$(2 + 7^{2})\%5 = 1$$

$$(2 + 8^{2})\%5 = 1$$

$$(2 + 9^{2})\%5 = 3$$

$$(2 + 10^{2})\%5 = 2$$

Do you notice any other pattern?

It seems that pattern from 3 to 5 is just the pattern from 0 to 2 reversed.

Idea: probably for the values of hash function $h_k(i) = (i + k^2)\%m$ are symmetric w.r.t. k = m/2?

$$(i + k^2)\%m = (i + (m - k)^2)\%m$$

$$(2 + 0^{2})\%5 = 2$$

$$(2 + 1^{2})\%5 = 3$$

$$(2 + 2^{2})\%5 = 1$$

$$(2 + 3^{2})\%5 = 3$$

$$(2 + 4^{2})\%5 = 3$$

$$(2 + 5^{2})\%5 = 3$$

$$(2 + 6^{2})\%5 = 1$$

$$(2 + 8^{2})\%5 = 1$$

$$(2 + 9^{2})\%5 = 3$$

$$(2 + 10^{2})\%5 = 2$$

$$(i + (m - k)^{2})\%m$$

$$= (i + m^{2} - 2km + k^{2})\%m$$

$$= (i + \underbrace{m^{2}\%m}_{=0} - \underbrace{2km\%m}_{=0} + k^{2})\%m$$

$$= (i + k^{2})\%m$$

Indeed! Therefore we only need to investigate the first $\lceil m/2 \rceil$ hash functions.

• Use double hashing, hash functions h(key) = key%5, g(key) = key%3.

• **Step 1**: insert(7)

We have 7%5 = 2, so insert at slot 2.

• Use double hashing, hash functions h(key) = key%5, g(key) = key%3.

[0]	[1]	[2]	[3]	[4]
		7		

• Step 2: insert(22)

We have 22%5 = 2, a collision!

Check (22 + g(22))%5 = (22 + 1)%5 = 3, so we insert in slot 3.

• Use double hashing, hash functions h(key) = key%5, g(key) = key%3.

[0]	[1]	[2]	[3]	[4]
		7	22	

• Step 3: insert(12)

We have 12%5 = 2, a collision!

Better set the second hash function so that it doesn't evaluate to 0!

Check (12 + g(12))%5 = (12 + 0)%5 = 2, still a collision!

This goes on infinitely as g(12) = 0.

• Use double hashing, hash functions h(key) = key%5, g(key) = 7 - (key%7).

• **Step 1**: insert(7)

We have 7%5 = 2, so insert at slot 2.

• Use double hashing, hash functions h(key) = key%5, g(key) = 7 - (key%7).

[0]	[1]	[2]	[3]	[4]	
		7			

• Step 2: insert(12)

We have 12%5 = 2, a collision!

Check (12 + g(12))%5 = (12 + 2)%5 = 4, so we insert at slot 4.

• Use double hashing, hash functions h(key) = key%5, g(key) = 7 - (key%7).

[0]	[1]	[2]	[3]	[4]	
		7		12	

• Step 3: insert(22)

We have 22%5 = 2, a collision!

Check (22 + g(22))%5 = (22 + 1)%5 = 3, so we insert at slot 3.

• Use double hashing, hash functions h(key) = key%5, g(key) = 7 - (key%7).

[0]	[1]	[2]	[3]	[4]
		7	22	12

• **Step 4**: insert(2)

We have 2%5 = 2, a collision!

Better set the second hash function so that it doesn't evaluate to multiples of m!

Check (2 + g(2))%5 = (2 + 5)%5 = 2, still a collision!

This goes on infinitely as g(2)%5 = 0.

Hash Function

What makes a good hash function?

What makes a hash function good?

1. Deterministic.

Same key always maps to the same slot.

2. Fast.

Time should not depend on size of hash table/total items. Usually O(1) or depends on size of key.

3. Uniformly distributed.

Key should be distributed to *all slots* with equal probability, even if they share some simple characteristics.

Problem 2.a

Good or bad: The hash table has size 100 with positive even integer keys. The hash function is h(key) = key % 100.

Deterministic? Yes!

Fast? Yes!

Uniformly distributed?

No! our keys are positive even integers, odd numbered slots will never be used!

Good or bad: The hash table has size 49 with positive integer keys. The hash function is h(key) = (key * 7) % 49.

Deterministic? Yes!

Fast? Yes!

Uniformly distributed?

No! We can only map to slot 0, 7, 14, 21, 28, 35, 42!

Problem 2.c

Good or bad: The hash table has size 100 with non-negative integer keys in the range [0, 10000]. The hash function is $h(\text{key}) = \lfloor \sqrt{\text{key}} \rfloor \% 100$.

Deterministic? Yes!

Fast? Yes!

Uniformly distributed?

No! We are more likely to map to higher numbered slots.

Good or bad: The hash table has size 1009, and keys are valid email addresses. The hash function is h(key) = (sum of ASCII values of each of the last 10 characters) % 1009.

Deterministic? Yes!

Fast? Yes!

Uniformly distributed?

No! All addresses with same long domain name, e.g. @comp.nus.edu.sg are mapped to the same slot!

Problem 2.e

Good or bad: The hash table has size 101 with integer keys in the range of [0, 1000]. The hash function is $h(\text{key}) = [\text{key} \times \text{random}]\% 101$, where $0.0 \le \text{random} \le 1.0$.

Deterministic? No! We generate a random number each time... so multiple evaluation of same h(key) will give different result!

Good or bad: The hash table has size 54 with String keys, with the hash function:

```
int hash(String key) {
    h = 0
    for (int i = 0; i <= key.length() - 1; i++)
        h += 9 * (int) key.charAt(i)
    h = (h mod 54)
    return h
}</pre>
```

Deterministic? Yes!

Fast? Yes!

Uniformly distributed? No! *h* will be multiples of 9, so *h* can only be among 0, 9, 18, 27, 36, 45.

How to set a good hash function?

1. Deterministic.

Never use random numbers in hash function.

2. Fast.

Infer slot index only from the key itself.

3. Uniformly distributed.

Use prime numbers in hash functions to ensure even distribution!

How to set good hash function(s)? *

Many standard ways to set hash functions... e.g.

- 1. Tabulation Hashing.
- 2. Binary Matrix Technique.
- 3. Prime Field: choose a prime number p > m, two random integers $1 \le a \le p-1$, $0 \le b \le p-1$, and define $h(x) = (ax + b) \mod p \mod m$.

A Way to choose a good prime number (for hash table size):

1. Table Lookup. (a <u>table</u> used by standard C++ library)

Application of Map

How to use the fast searching of Map ADT properly?

- **Goal**: Find the time each k-letter words appear in the text.
- **Trivial Answer**: for the given k-letter word, traverse through the text and count it appearance. Each query takes O(nk) time.

Redundant work: no need to go through the text again and again if we store the count!

^{*} This is a classic problem in Computational Biology: <u>k-mer</u> counting in Genome.

- **Goal**: Find the time each k-letter words appear in the text.
- Idea: pre-process the text and store all the counts.

key	value
miss	1
issi	2
ssis	1
siss	1
ssip	1
sipp	1
ippi	1

Idea: Store (key, value) pair in a hash table.

- 1. Pre-processing: for each of the (n k + 1) k-letter words,
 - If it exists in hash table, increment the value.
 - Otherwise set the value as 1.
- 2. Query: for the given word, search if it is in the table. If yes, return the value.

key	value
miss	1
issi	2
ssis	1
siss	1
ssip	1
sipp	1
ippi	1

^{*} This technique is commonly used in Computational Biology, for $\underline{k\text{-mer}}$ counting algorithms.

Each search takes in average O(k) time and in worst case O(nk) time (when can it happen?).

- 1. Pre-processing: O(nk) time in average.
- **2.** Query: O(k) time in average.

key	value
miss	1
issi	2
ssis	1
siss	1
ssip	1
sipp	1
ippi	1

^{*} This technique is commonly used in Computational Biology, for <u>k-mer</u> counting algorithms.

• Goal: choose one item from each category such that they sum to \$100.

Appetizers	A \$40 B \$20 C \$50
Soups	D \$10 E \$60
Mains	F \$30 H \$70
Desserts	J \$20 K \$30

• **Simplified Goal**: choose one item from each of the 2 categories such that they sum to \$100.

Trivial answer: Try out all $O(n^2)$ combinations.

A D	AE	B D	BE	C D	CE
\$50	\$100	\$30	\$80	\$60	\$110

Trivial answer: Try out all $O(n^2)$ combinations.

AD	AE	B D	BE	CD	CE
\$50	\$100	\$30	\$80	\$60	\$110

No need to consider B or C as there's no \$80 or \$50 soup.

Idea:

Checking still costs O(n)!

- For each k appetizer check whether there is a 100 k soup.
- Use price as keys, put $\langle 10, D \rangle$, $\langle 60, E \rangle$ into a **Hash Map** to make checking O(1)! In total we need just O(n) time.

What if we have 4 categories? Can we transfer them into 2 categories?

Appetizers	A \$40 B \$20 C \$50
Soups	D \$10 E \$60
Mains	F \$30 H \$70
Desserts	J \$20 K \$30

Idea: Merge each two categories together and use the original algorithm! Both merging and searching cost $O(n^2)$ time.

Appetizer +	AD \$50	BD \$30	CD \$60
Soup Set	AE \$100	BE \$80	CE \$110
Main +	FI \$40	FJ \$50	FK \$60
Dessert Set	HI \$80	HJ \$20	HK \$100

How does it work?

- Purpose: save space while allowing us to check if a key was inserted or not.
- Idea:
 - 1. Maintain a sequence of bits.
 - 2. Use multiple hash functions, e.g. h_1, h_2, h_3 .

- Purpose: save space while allowing us to check if a key was inserted or not.
- Idea:
 - 1. Maintain a sequence of bits.
 - 2. Use multiple hash functions, e.g. h_1, h_2, h_3 .
 - 3. When inserting a key x, set bits at $h_1(x)$, $h_2(x)$, $h_3(x)$ to 1.

- Purpose: save space while allowing us to check if a key was inserted or not.
- Idea:
 - 1. Maintain a sequence of bits.
 - 2. Use multiple hash functions, e.g. h_1, h_2, h_3 .
 - 3. When inserting a key x, set bits at $h_1(x)$, $h_2(x)$, $h_3(x)$ to 1.

- Purpose: save space while allowing us to check if a key was inserted or not.
- Idea:
 - 1. Maintain a sequence of bits.
 - 2. Use multiple hash functions, e.g. h_1, h_2, h_3 .
 - 3. When inserting a key x, set bits at $h_1(x)$, $h_2(x)$, $h_3(x)$ to 1.
 - 4. When checking if a key x is inserted, check if $h_1(x), h_2(x), h_3(x)$ are <u>all</u> 1.

If we enable remove/delete:

If we enable remove/delete:

- We can remove some or all of those set bits.
- Check if 48 is in the bloom filter? No, which is correct!

If we enable remove/delete:

- We can remove some or all of those set bits.
- Check if 48 is in the bloom filter? No, which is correct!
- Check if 32 is in the bloom filter? No, $h_3(32)$ is not set.
- We will have false negative results!

Appendix

Tips on Midterm Exam

In general:

- Skip problems you are unsure of, finish easiest ones first.
- If you don't understand a question:
 - Step 1. Cry.
 - Step 2: Hand in the paper to us. Ask us to clarify!
 - Step 3: Cry louder outside.

Analysis Questions

Some statements may be stating some general rules, in that case...

- Unless you can easily see that a statement is true, first try to prove that it is false by **finding a counter-example**!
 - e.g. try some boundary cases & special cases.
- If you can't find such counter-examples, then consider why it might be true.

Structured Questions

- If you do not modify the data structures/algorithms in the lecture, you can simply say the names of them without implementing them again.
 - e.g. Write "we use Merge Sort on array A" instead of writing out the whole Merge Sort algorithm.
- Define your variables clearly.
 - e.g. write "Let S be a stack of integers" before using S.
- Pseudocode is OK unless Java is explicitly required.
- Be clear!

Structured Questions

- If you cannot come up with a solution that meets the time complexity requirement. Just write down the best solution you can think of.
- You can start from some **trivial answers**, and see whether you can improve them.
- A slow but correct solution is always better than a fast but wrong solution.

End of File

Enjoy(?) the recess week and good luck with the exam :-)