| L BP           |  |  |      |  |  |  |  |  |  |  |  |
|----------------|--|--|------|--|--|--|--|--|--|--|--|
| 2020年11月4日 水曜日 |  |  | 1:54 |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |
|                |  |  |      |  |  |  |  |  |  |  |  |

#### **Transfer Orbits: Lambert Arcs**

Two approaches to mission planning:

- (a) Given the transfer orbit → initial and final positions are specified; relate to the time of flight
- (b) Given the initial (departure) and final (target) points  $\rightarrow$  determine the orbit that passes through the points  $\rightarrow$  chaffenging Create opportunities

Transfer Orbit Design (special class of boundary value problem)

▶ 1. Geometrical relationships

Conic paths connecting 2 points that are fixed in space (with focus at attracting center)

- 2. Analytical Relationships
- 3. Lambert's Theorem

## Geometrical Relationships: Ellipse

Given two fixed points  $P_1$ ,  $P_2$ ; center of force at point O

Find: ellipse with focus at point O that connects  $P_1, P_2$   $\leftarrow$  O some instance

departing P, B arrival

• attracting focus

○ ● ○ → ...

what ellipse connect these two faccitions?



Example

2 ellipses => 4 options

If F is not specified  $\Longrightarrow$   $\infty$  number of solutions exist

Thus, find the locus of all possible F locations  $\leftarrow$  the real problem. Pick one of the F sites and the ellipse is determined

why? How to get F?



Since  $\frac{P_1}{P_2}$  and  $\frac{P_2}{P_2}$  must both lie on the same ellipse, F must be selected such that



For ellipse with major axis 2a, point F determined as the intersection of two circles centered at  $P_1$  and  $P_2$  with radii  $2a - r_1$  and  $2a - r_2$ 

$$P_1F = 2a - r_1$$
 | F lies on Circle about P.  
 $P_2F = 2a - r_2$  | F lies on irrele about P.  
 $r_1 < r_2$ 



For a given "a" two possible intersection points

Given "a"  $\longrightarrow$  distance between foci O and F = 2ae



:.  $\tilde{F}$  associated with larger distance +0 0 larger e Smaller  $p = a(1-e^2)$ 

Choose 3 different values of "a"

$$\Rightarrow$$
 as "a" gets smatter, circles shrink  $a_1 \rightarrow a_1 \rightarrow a_n$ 

Note: there is a smallest value of "a" ( $a_m$ ) below which there is no ellipse that connects  $P_1$  and  $P_2$  because the circles do not intersect





$$(2a_m - r_1) + (2a_m - r_2) = c$$
  
 $4a_m = r_1 + r_2 + c$  OR

2anin= = (111121C)

Semi-perimeter
given space triangle

smolles t semi-mofor axis

 $F_m$  defines minimum energy elliptic path from  $P_1$  to  $P_2$ 

$$\left(\mathbf{\mathcal{E}} = -\frac{\mu}{2a_m} \quad \text{when } a_m \text{ small as possible, } \mathbf{\mathcal{E}} \text{ is min}\right)$$

anin swoller value } & is hear | - M | Lorgest | Smallest layer

Note: choosing different values of "a", produces pairs of vacant foci (  $F, \tilde{F}$ )

Sketch curve through all vacant foci *F*'s What does curve look like?



Equations for circles  $\begin{cases} P_1F = 2a - r_1 \\ P_2F = 2a - r_2 \end{cases}$ 

Subtract equations

$$P_1F - P_2F = V_2 - V_1$$
 and whenover is minus const.

Equation of a hyperbola: F is point on hyperbola  $P_1, P_2$  are foci

constant on right side:  $2|a_F|$ 

$$|a_{p}| = \frac{r_{1} - r_{1}}{2}$$

$$e_{f} = \frac{C}{2|a_{f}|} = \frac{c}{r_{2} - r_{1}}$$

$$= \frac{c}{r_{2} - r_{1}}$$



L 8

# <u>Geometrical Relationships</u>: Hyperbola

Given two fixed points  $P_1$ ,  $P_2$ ; center of force at point OFind: hyperbola with focus at point O that connects  $P_1$ ,  $P_2$ 

dep point

P1

P3

attracting
focus
what hyp connects these 2 prs?



Since  $P_1$  and  $P_2$  must both lie on the same hyperbola, F must be selected such that

ected such that

use this hap for

transfer

$$P_1F - \overrightarrow{OP_1} = 2|a| = P_2F - \overrightarrow{OP_2}$$

always true for hyperbola

OR

$$P_1F = 2|a| + r_1$$
  
 $P_2F = 2|a| + r_2$ 



For hyperbola, with major axis 2|a|, point F determined as the intersection of two circles centered at  $P_1$  and  $P_2$  with radii  $2|a|+r_1$  and  $2|a|+r_2$ 

$$P_1F = 2|a| + r_1$$
  
 $P_2F = 2|a| + r_2$  | F must be on circle about P1



For a given |a|, two possible intersection points  $\rightarrow$  2 possible hyperbolic paths between  $P_1$  and  $P_2$   $F, \quad \tilde{F}$ 

Given |a|  $\longrightarrow$  distance between foci O and F = 2|a|e



:. F associated with  $\begin{cases} larger & e \\ larger & p \end{cases}$ |P = |a|(e-1)

Choose 3 different values of |a| $\Rightarrow$  as |a| gets smaller, circles shrink

Note: smallest value of |a| that is possible is (then circles have radii  $r_1$  and  $r_2$ )



Note: Now sketch a curve through all vacant *F*'s What does the curve look like?



Locus of vacant foci is branch of a hyperbola

Equations for circles  $\begin{cases} P_1F = 2a + r_1 \\ P_2F = 2a + r_2 \end{cases}$ 

Subtract equations  $P_2F - P_1F = r_2 - r_1$  unknown is F again!

Equation of a hyperbola: other branch of **same** hyperbola  $P_1, P_2$  are foci constant on right side:  $2|a_F|$ 

All possible F gorabola aliptical transfer

### **Geometrical Relationships: Parabola**

Only two possible parabolas  $\leftarrow$   $a = \infty$ ; F at  $\infty$ 



Definition of parabola:

OP = distance to perpendicular intersection with directrix

must be on circle about ?.

of radius r.

Pi/P2 on same parabola

so point on directrix

on circle about P2 of

radius r2



To construct parabolas: requires normals N and vertices V



### **Geometrical Relationships: Summary**

Once F is selected or otherwise identified, particular conic section is known

Necessary to define a method to categorize or classify transfers

Legend: A - Ellipse (F NOT between chord and arc)

B – Ellipse (F between chord and arc)

H - Hyperbola

1 - Transfer Angle < 180°

2 - Transfer Angle > 180°















TA = 4 < (60°

111

f opposite side of chord from O

TrA=4 F is on same side > 1800 of C as 0

Various Orbits Between Two Points  $P_1$ ,  $P_2$ 

#### Locus of Vacant Focus F



Legend: A - Ellipse ( F not between chord and focus)

B - Ellipse ( F between chord and focus)

H - Hyperbola

1 - Transfer Angle < 180°

2 - Transfer Angle > 180°

We may suppose  $r_2 \ge r_1$ .