Lecture 1 Graph Course: Discrete Mathematics

A graph G = (V, E) is a pair of vertices (or nodes) V and a set of edges E, assumed finite i.e. |V| = n and |E| = m.

An edge $e_k = (v_i, v_j)$ is incident with the vertices v_i and v_j .

A simple graph has no self-loops or multiple edges like below

Here
$$V(G) = \{v_1, v_2, \dots, v_5\}$$
 and $E(G) = \{e_1, e_2, \dots, e_6\}$.

An edge $e_k = (v_i, v_j)$ is incident with the vertices v_i and v_j .

A simple graph has no self-loops or multiple edges like below

The degree d(v) of a vertex V is its number of incident edges

A self-loop counts for 2 in the degree function.

An isolated vertex has degree 0.

Proposition The sum of the degrees of a graph G = (V, E) equals 2|E| = 2m (trivial)

A complete graph K_n is a simple graph with all $B(n,2) := \frac{n(n-1)}{2}$ possible edges, like the matrices below for n = 2, 3, 4, 5.

A bipartite graph is one where $V = V_1 \cup V_2$ such that there are no edges between V_1 and V_2 (the black and white nodes below)

A complete bipartite graph is one where all edges between V_1 and V_2 are present (i.e. $|E| = |V_1| . |V_2|$). It is noted as K_{n_1,n_2} .

Graph Colouring

Problems related to the colouring of maps of regions, such as maps of parts of the world, have generated many results in graph theory.

When a map is coloured, two regions with a common borders are customarily assigned different colours.

One way to ensure that two adjacent regions never have the same colour is to use a different colour for each region.

But this is inefficient, and on maps with many regions it would be hard to distinguish similar colours. Besides, a small number of colours should be used whenever possible.

Graph coloring is arguably the most popular subject in graph theory.

Noga Alon (1993)

Definition

A colouring of a simple graph is the assignment of a colour to each vertex of the graph so that no two adjacent vertices are assigned the same colour.

Example

Example

Definition

The chromatic number of a graph is the least number of colours needed for a colouring of this graph.

The chromatic number of a graph G is denoted by $\chi(G)$.

A graph G is k-colourable if there exists a colouring of G from a set of k colours.

In other words, G is k-colourable if there exists a k-colouring of G.

The minimum positive integer k for which G is kcolourable is the chromatic number of *G*. A graph G with chromatic number k is a k-chromatic graph.

Therefore, if $\chi(G) = k$, then there exists a k-colouring of G but not a (k-1)-colouring.

Find chromatic number of the following graph.

Solution:

So chromatic number is 3.

Find chromatic number of the following graph.

Solution:

So chromatic number is 4.

Find chromatic number of the following graph.

Solution:

So chromatic number is 4.

Find chromatic number of the following graph.

Solution:

So chromatic number is 3.

What is the chromatic number of K_n ?

Solution:

In K_n , no two vertices can be assigned the same colour, because every two vertices of this graph are adjacent.

Hence, the chromatic number of K_n is n.

That is $\chi(K_n) = n$.

Example

So chromatic number is 5.

What is the chromatic number of the complete bipartite graph $K_{m,n}$, where m and n are positive integers?

Solution:

Only two colours are needed, because $K_{m,n}$ is a bipartite graph.

Hence, $\chi(K_{m,n}) = 2$.

Example

What is the chromatic number of the graph C_n , where $n \geq 3$?

Solution:

 $\chi(C_n) = 2$ if *n* is an even positive integer

 $\chi(C_n) = 3$ if *n* is an odd positive integer

Example

Find the chromatic number of a circuit with 100 vertices.

Ans. 2

Find the chromatic number of a circuit with 111 vertices.

Ans. 3

Definition

A tree is a connected undirected graph with no simple circuits.

What is the chromatic number of a tree?

Solution:

Determining upper and/or lower bounds for the chromatic number of a graph.

Certainly, for every graph G of order n, $1 \le \chi(G) \le n$.

And a useful, lower bound for the chromatic number of a graph involves the chromatic numbers of its subgraphs.

Theorem

If H is a subgraph of a graph G, then $\chi(H) \leq \chi(G)$.

Definition

For a graph G, we define the clique number of G, $\omega(G)$, to be the largest value of k for which K_k is an induced subgraph of G.

Proposition

If G is a graph, $\chi(G) \geq \omega(G)$.

Example

Here $\omega(G) = 3$ as K_3 is a subgraph of it.

Also
$$\chi(G) = 3 = \omega(G)$$
.

Let's talk about upper bounds

Definition

For a graph G, let $\Delta(G)$ denote the maximum degree of any of G's vertices, and $\delta(G)$ denote the minimum degree of any of G's vertices.

Proposition

For any graph G, $\chi(G) \leq \Delta(G)+1$.

Example

Here $\Delta(G) = 4$ and $\chi(G) = 3$. So $\chi(G) \le \Delta(G) + 1$ is satisfied.

Brooks Theorem

Let G be a connected graph with $\Delta(G) \geq 3$. If G is not complete then $\chi(G) \leq \Delta(G)$.

Example

Here $\Delta(G) = 4$ and G is not complete.

and
$$\chi(G) = 3 \le \Delta(G)$$
.

To be continued.....

Thanks for watching Have a nice day