Opgaver om lysets brydning og refleksion

I dette opgavesæt skal du blandt andet bruge brydningsformlen med mere:

$$(1) \frac{\sin(i)}{\sin(b)} = \frac{n_2}{n_1}$$

(2)
$$n_1 = \frac{c}{v_1}$$
 og $n_2 = \frac{c}{v_2}$

(1)
$$\frac{\sin(i)}{\sin(b)} = \frac{n_2}{n_1}$$
 (2) $n_1 = \frac{c}{v_1}$ og $n_2 = \frac{c}{v_2}$ (3) $\frac{\sin(i)}{\sin(b)} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$

Hvor vi har følgende betegnelser:

- indfaldsvinklen i
- brydningsvinklen
- lysets hastighed
- n_1 brydningsindekset i medium 1
- n_2 brydningsindekset i medium 2
- v_1 lysets hastighed i medium 1
- v_2 lysets hastighed i medium 2
- λ₁ lysets bølgelængde i medium 1
- λ₂ lysets bølgelængde i medium 2

Opgave 1

En tynd lysstråle rammer fra luft ind mod en glasklods med brydningsindekset 1,56. Indfaldsvinklen er 61°. Bestem brydningsvinklen b.

Opgave 2

En tynd lysstråle rammer fra luft ind mod et glasprisme med brydningsindekset 1,54. Brydningsvinklen er 28°. Bestem indfaldsvinklen i.

Opgave 3

Bestem lysets hastighed i et glasprisme med brydningsindeks 1,48.

Opgave 4

Lysets hastighed i et glasprisme er 1,95·10⁸ m/s. Hvad er glassets brydningsindeks?

Opgave 5

En tynd lysstråle kommer fra luft og rammer en vandoverflade med en indfaldsvinkel på 54°. Vands brydningsindeks er 1,33. Bestem brydningsvinklen.

Opgave 6

Diamant er karakteristisk ved at have et meget stort brydningsindeks: 2,417. Bestem grænsevinklen for totalrefleksion ved overgang fra diamant til luft. *Hjælp*: Husk at brydningsvinklen her er 90°. En diamant kan i øvrigt slibes efter en *Brillant* form. Denne form er karakteriseret ved at få diamanten til at funkle. Den er matematisk udregnet, så der forekommer de helt rigtige refleksioner og brydninger i diamanten.

