INVESTIGACIÓN DE OPERACIONES (TSI-434)

INTRODUCCIÓN

SEMANA 1

Ing. Luis Alfredo Ponce Mgs ESFOT-EPN 2015 B

CONTENIDO DE LA CLASE

- 1. INTRODUCCIÓN PERSONAL
 - 1. Profesor
 - 2. Alumnos
- 2. INDICACIONES GENERALES
- 3. INDICACIONES DEL CURSO
- 4. OTROS
- 5. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
- 6. TAREA

1. INTRODUCCIÓN PERSONAL

- Profesor: Luis Alfredo Ponce
- E-mail: <u>luis.ponce@epn.edu.ec</u>
- Oficina: Profesores #3
- Consultas? Previo acuerdo vía e-mail
- Uso del e-mail:
- Asunto: [código de la materia, apellido nombre, asunto corto]
 - Ejm: TSI-434, Ponce Luis, consulta capítulo 1
- Revisar periodicamente el e-mail, no es justificativo "no haber leído el mail"

1. INTRODUCCIÓN PERSONAL

Perfil académico y profesional:

- Ing. Electrónico en Telecomunicaciones (USFQ)
- Maestría en Gestión de Proyectos de Ingeniería (U. Melbourne-Australia)
- Conocimientos en:
 - Gestión de proyectos
 - Levantamiento de procesos
 - Planificación estratégica
 - Administración de contratos

1. INTRODUCCIÓN PERSONAL

ALUMNOS

CONTENIDO DE LA CLASE

- 1. INTRODUCCIÓN PERSONAL
 - 1. Profesor
 - 2. Alumnos
- 2. INDICACIONES GENERALES
- 3. INDICACIONES DEL CURSO
- 4. OTROS
- 5. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
- 6. TAREA

- Respeto mutuo
- Puntualidad
 - 18h00 se cierra la puerta, se toma lista, se da contenidos de la clase y se empieza la materia.
 - 18h10 se abre la puerta y entran las personas <u>atrasadas</u>, luego de esto no podrá ingresar nadie a la clase.
 - Excepciones con justificación escrita
 - <u>Puntualidad en exámenes</u>: se inicia el examen a los 10 min de iniciada la clase.
- Para aprobar el curso el estudiante deberá cumplir con todos los parámetros de calificación (entregar todas las tareas, rendir todas las pruebas y exámenes, presentarse a la exposición)
- Se recibirán tareas máximo con un día de retraso sobre el 60% de su calificación.

CERO TOLERANCIA A LA COPIA

EN TODO: Pruebas Consultas Tareas

- Solo un supletorio
- 8.9 no aprueba, NO INSISTA
- 13.9 podría considerar trabajo para ayuda
 - asistencias
 - participación
- 13.8 rendirá supletorio, NO INSISTA
- Curso más participativo / profesor es una guía
- ORTOGRAFÍA y GRAMÁTICA muy tomados en cuenta.
 - No es aceptable por ningún motivo acortar palabras (e.g. q', xq, etc)

- Mayor componente de aprendizaje autónomo (falta de lectura en estudiantes)
- Reglamento de Régimen Académico
 - Art. 15
 - 3. Componente de aprendizaje autónomo.- Comprende el trabajo realizado por el estudiante, orientado al desarrollo de capacidades para el aprendizaje independiente e individual del estudiante. Son actividades de aprendizaje autónomo, entre otras: la lectura; el análisis y comprensión de materiales bibliográficos y documentales, tanto analógicos como digitales; la generación de datos y búsqueda de información; la elaboración individual de ensayos, trabajos y exposiciones".

CONTENIDO DE LA CLASE

- 1. INTRODUCCIÓN PERSONAL
 - 1. Profesor
 - 2. Alumnos
- 2. INDICACIONES GENERALES
- 3. INDICACIONES DEL CURSO
- 4. OTROS
- 5. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
- 6. TAREA

Bibliografía

[1] W. Winston, *Investigación de operaciones*, aplicaciones y logaritmos, 4th ed. México D.F: Thomson, 2005.

[2]D. Anderson, D. Sweeney, T. Williams, J. Camm and K. Martin, An introduction to management science, quantitative approaches to decision making, 13th ed. Mason, USA: South-Western CENGAGE Learning, 2012.

[3]H. Taha, Investigación de operaciones, 9th ed. México: PEARSON, 2012.

[4] J. Heizer and B. Render, *Principios de Administración de Operaciones*, 7th ed. México: PEARSON Prentice Hall, 2008.

· Sistema de calificación

Elementos de Evaluación	Descripción del Elemento de Evaluación	% Nota Bimestre I	% Nota Bimestre II
Evaluaciones parciales	Evaluación escrita sobre temas tratados hasta el momento	35%	30%
Tareas	Consultas sobre diferentes temas y resolución de ejercicios fuera de clase	20%	15%
Examen acumulativo	Examen acumulativo al final de cada bimestre	40%	35%
Aporte en clase	Participaciones durante la clase	5%	5%
Exposiciones	Exposiciones de temas relacionados a la materia	-	15%
		100%	100%

- Fechas importantes
- Examen medio semestre: 19 de noviembre de 2015
- Exposiciones: 28 de enero de 2016
- Examen final: 11 de febrero de 2016

Aula virtual

4. OTROS

- VIDEO
- Secreto éxito japonés
 - https://www.youtube.com/watch?v=NPpK1t2XkqM
- Ortografía
 - https://www.youtube.com/watch?v=4umUriRYbhk

4. OTROS

REGLAS PARA UN BUEN Y MAL ESTUDIO [1]

BUEN ESTUDIO:

- Repetir ideas principales luego de leer una página
- Realizarse propias pruebas
- Repasar un ejercicio luego de realizarlo
- Distribuir el estudio cada día
- Tomarse descansos
- Use ejemplos y analogías (¿Cómo le puedo explicar a alguien de 10 años?)
- Estudiar lo más difícil al inicio

4. OTROS

REGLAS PARA UN BUEN Y MAL ESTUDIO [1]

MAL ESTUDIO:

- No saturar el texto con resaltador
- Repasar brevemente un tema y pensar que ya se entendió
- ESPERAR AL ÚLTIMO MOMENTO
- Repetir la solución de problemas similares a los que ya se entiende
- Convertir reuniones de estudio en sesiones de conversación
- Hacer ejercicios antes de leer el libro
- Distracciones
- No dormir lo suficiente

- ¿Qué es la investigación de operaciones?
- Llamada también ciencia de la administración
- Es un enfoque científico en la toma de decisiones que busca el mejor diseño y operar un sistema, por lo general en condiciones que requieren la asignación de recursos escasos. [2]
- El uso de modelos matemáticos, estadística y algoritmos con el objeto de realizar un proceso de toma de decisiones. [3]

5. INTRODUCCIÓN A LA²⁰ INVESTIGACIÓN DE OPERACIONES

Sistema:

- Una organización de componentes interdependientes, que trabajan juntos para lograr un objetivo del sistema.
 - <u>Ejm:</u> Ford Motor Company, objetivo: maximizar las utilidades que se pueden ganar mediante la producción de vehículos de calidad. [2]
- ¿En dónde se puede aplicar las técnicas de investigación de operaciones?
- Se aplican prácticamente a todas las empresas productivas del mundo.
 - Una oficina, una bodega, un restaurante, una tienda departamental o una fábrica.
- La producción de bienes y servicios necesita de la administración de operaciones

5. INTRODUCCIÓN A LA 21 INVESTIGACIÓN DE OPERACIONES

RESOLUCIÓN DE PROBLEMAS Y TOMA DE DECISIONES [4]

- Resolución de problemas:
 - Se puede definir como el proceso de identificar la diferencia entre la situación actual y la deseada para realizar una acción que resuelva esta diferencia.
 - Para problemas importantes que ameriten invertir tiempo y esfuerzo, se plantea la resolución en los siguientes 7 pasos:

5. INTRODUCCIÓN A LA 22 INVESTIGACIÓN DE OPERACIONES

RESOLUCIÓN DE PROBLEMAS Y TOMA DE DECISIONES [4]

- 7 pasos para la resolución de problemas:
- 1. Identificar y definir el problema
- 2. Determinar el conjunto de posibles soluciones
- 3. Determinar el/los criterio(s) que van a ser usados para evaluar las alternativas
- 4. Evaluar las alternativas
- 5. Elegir una alternativa
- 6. Implementar la alternativa elegida
- 7. Evaluar el resultado para determinar si la solución obtenida fue satisfactoria

5. INTRODUCCIÓN A LA 23 INVESTIGACIÓN DE OPERACIONES RESOLUCIÓN DE PROBLEMAS Y TOMA DE DECISIONES [4]

- Toma de decisiones:
 - Generalmente asociado con los primeros 5 pasos anteriores, específicamente termina con el paso de "elegir una alternativa" el cual es el acto de tomar la decisión.

5. INTRODUCCIÓN A LA 24 INVESTIGACIÓN DE OPERACIONES RESOLUCIÓN DE PROBLEMAS Y TOMA DE DECISIONES [4]

• Ejemplo toma de decisión

 Considere que actualmente usted no está trabajando y busca un empleo establa con un futuro crecimiento profesional. Asuma que luego de realizar la búsqueda le han realizado cuatro ofertas de diferentes compañias en las ciudades de: Guayaquil, Cuenca, Manta y Ambato.

5. INTRODUCCIÓN A LA 25 INVESTIGACIÓN DE OPERACIONES

RESOLUCIÓN DE PROBLEMAS Y TOMA DE DECISIONES [4]

- 7 pasos para la resolución de problemas:
- 1. Identificar y definir el problema
- 2. Determinar el conjunto de posibles soluciones
- 3. Determinar el/los criterio(s) que van a ser usados para evaluar las alternativas
- 4. Evaluar las alternativas
- 5. Elegir una alternativa
- 6. Implementar la alternativa elegida
- 7. Evaluar el resultado para determinar si la solución obtenida fue satisfactoria

5. INTRODUCCIÓN A LA 26 INVESTIGACIÓN DE OPERACIONES

- 1. <u>Identificar y definir el problema:</u>
 - Desempleado
 - Busca un empleo con crecimiento profesional
- 2. <u>Determinar el conjunto de posibles soluciones</u>
 - Aceptar el empleo en Guayaquil
 - Aceptar el empleo en Cuenca
 - Aceptar el empleo en Manta
 - Aceptar el empleo en Ambato

5. INTRODUCCIÓN A LA 27 INVESTIGACIÓN DE OPERACIONES

- 3. <u>Determinar el/los criterio(s) que van a ser usados para evaluar las alternativas</u>
 - SALARIO
 - Si fuera el único factor se lo llama decisión de problemas con criterio único
 - ¿Qué otros factores?
 - Potencial de crecimiento
 - Ubicación
 - Cuando es más de un criterio de evaluación se los conoce como problemas de decisión multicriterio

5. INTRODUCCIÓN A LA 28 INVESTIGACIÓN DE OPERACIONES

4. Evaluar las alternativas

- ¿Evaluar el potencial de crecimiento y la ubicación?
- Son basadas en evaluaciones subjetivas
- Difíciles de cuantificar
- Para evaluar se decide asignar a cada criterio los siguientes rangos:
 - Pésimo, malo, regular, bueno, excelente

5. INTRODUCCIÓN A LA 29 INVESTIGACIÓN DE OPERACIONES

4. Evaluar las alternativas

Alternativa	Salario inicial	Potencial de crecimiento	Ubicación
Guayaquil	\$1 500	regular	regular
Cuenca	\$1 300	excelente	bueno
Manta	\$1 300	bueno	excelente
Ambato	\$1 200	regular	bueno

5. INTRODUCCIÓN A LA 30 INVESTIGACIÓN DE OPERACIONES

5. Elegir una alternativa

- ¿Por qué es tan dificultosa esta fase?
- Los criterios no son igual de importantes!
- No hay una alternativa que sea la mejor en todos sus criterios
- Luego se presentará métodos para resolver este tipo de inconvenientes
- Por el momento asumimos que se escogió la opción No.3 (Manta)
- Hata este punto se completa el proceso de toma de desición.
- 6. Implementar la alternativa elegida
- 7. Evaluar el resultado para determinar si la solución obtenida fue satisfactoria

5. INTRODUCCIÓN A LA 31 INVESTIGACIÓN DE OPERACIONES RESOLUCIÓN DE PROBLEMAS Y TOMA DE DECISIONES [4]

5. INTRODUCCIÓN A LA 32 INVESTIGACIÓN DE OPERACIONES RESOLUCIÓN DE PROBLEMAS Y TOMA DE DECISIONES [4]

Imagen obtenida de [4]

5. INTRODUCCIÓN A LA 33 INVESTIGACIÓN DE OPERACIONES

- Un análisis cualitativo depende de las habilidades y experiencia del reponsable de tomar la decisión (por lo general gerente, director, jefe)
- El resultado de esta decisión puede incrementarse al implementar un análisis cuantitativo.
- ¿Razones para aplicar un análisis cuantitativo:
 - El problema es complejo,
 - El problema es de especial importancia (presupuesto de por medio)
 - El problema es nuevo y no se cuenta con experiencia previa para poder tomar una decisión.
 - El problema es repetitivo y se ahorra tiempo al tener un procedimiento cuantitativo para la recomendación de la decisión

5. INTRODUCCIÓN A LA 34 INVESTIGACIÓN DE OPERACIONES

- Los modelos matemáticos son base fundamental para los análisis cuantitativos.
- **Ej.** Ingreso total de las ventas de un producto:

$$P=10x$$

- Se multiplica el ingreso por unidad (\$10) por la cantidad vendida (x)
- Otro ejemplo de modelo:
 - Avión a escala para probar su funcionamiento en la realidad
- En el avión mientras más real es su modelo a escala, más precisas serán las conclusiones y predicciones obtenidas.
- De igual manera en los modelos matemáticos.

5. INTRODUCCIÓN A LA 35 INVESTIGACIÓN DE OPERACIONES

- Ejemplos muy comunes son los de <u>maximización</u> de ganancias y <u>minimización/reducción</u> de costos, atados a un conjunto de <u>limitaciones o restricciones</u>.
- La expresión matemática que describe el objetivo del problema se llama *función objetivo*.
 - P=10 x (ecuación de la ganancia) es la función objetivo.
- Se intenta maximizar la ganancia.
- · Se tiene una restricción en la capacidad de producción.
- Por ejemplo que se requiere 5 horas para producir una unidad y solo se dispone de 40 horas a la semana de producción.

5. INTRODUCCIÓN A LA 36 INVESTIGACIÓN DE OPERACIONES

- x representa el número de unidades producidas cada semana:
- La ecuación de la restricción viene dada por:

$$5 x \leq 40$$

- El valor de 5x es el tiempo total requerido para producir x unidades.
- El signo ≤ indica que el tiempo de producción requerido debe ser menor a 40 horas disponibles.

5. INTRODUCCIÓN A LA 37 INVESTIGACIÓN DE OPERACIONES

ANÁLISIS CUANTITATIVO [4]

- La pregunta o problema a resolver es el siguiente:
- ¿Cuántas unidades del producto deben ser programadas a realizarse cada semana para maximizar la ganancia?
- El modelo matemático de este sencillo problema se puede definir de la siguiente manera:

Maximizar: P = 10 x (función objeto)

sujeto a: $5x \le 40$

 $x \geq 0$

*No se puede producir un número negativo de unidades.

5. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

VIDEO

¿Qué es la investigación de operaciones?

https://www.youtube.com/watch?v=pMjOy9catNl

6. TAREA

- Aula virtual
- Estilo de referenciación IEEE

REFERENCIAS

- [1] How to excel in math and science (Even if You Flunked Algebra), Barbara Oakley, Penguin, July, 2014.
- [2] W. Winston, Investigación de operaciones, aplicaciones y logaritmos, 4th ed. México D.F: Thomson, 2005.
- [3] Colaboradores de Wikipedia, "Investigación de operaciones," Wikipedia, La enciclopedia libre, https://es.wikipedia.org/w/index.php?title=Investigaci%C3%B3n de operaciones&oldid=85052119
- [4]D. Anderson, D. Sweeney, T. Williams, J. Camm and K. Martin, An introduction to management science, quantitative approaches to decision making, 13th ed. Mason, USA: South-Western CENGAGE Learning, 2012.