ANALYSIS ON GARMENT WORKER'S PRODUCTIVITY

Presented by:

Group - 3

BHAVANS VIVEKANANDA COLLEGE

group members:

SRAVAN KUMAR / VAMSHI / SRI VANI / NITHIN CHANDRA

ABSTRACT:

This project focuses on analyzing and modeling productivity among garment factory workers using a detailed dataset comprising various production and worker-related metrics.

The study focuses on multiple machine learning algorithms, including: Regression, KNN, SVM, Decision trees, and ensemble algorithms.

OBJECTIVE:

The primary objective of this project is to analyze and predict the productivity of garment factory workers by examining various production and workforce factors

Content:

- >> Introduction 4
- >> Literature review 5
- Data pre-processing 8
- Exploratory Data Analysis 16
- Machine Learning Algorithms 27
- Summary 37
- Appendix 43

INTRODUCTION:

Purpose: Analyze productivity trends, identify influential factors, and use machine learning models to predict productivity.

The garment manufacturing industry is characterized by complex processes and various factors that influence worker productivity.

This project focuses on analyzing a dataset related to garment workers' productivity, which includes variables such as working hours, incentives, idle time, work-in-progress (WIP), and productivity targets.

- Conducted exploratory data analysis (EDA) to understand distributions and correlations.
- Checked and addressed multicollinearity using VIF.
- Evaluated various machine learning models, including regression, KNN, SVM, decision trees, and ensemble techniques (bagging and boosting).
- Compared model performance before and after handling multicollinearity to identify the most effective predictive approach.

LITERATURE REVIEW

Literature review - 1:

Kumar,
Patel
&
Saha

Technological and Incentive Impacts: Studies such as Kumar and Saha (2019) have examined how the use of technology and performance incentives (reflected in your dataset's incentive column) affect productivity.

Patel emphasizes the importance of visual tools like scatter plots, box plots, and histograms for uncovering patterns and relationships between variables before applying predictive models.

Published in International Journal of Commerce and Management Research.

Literature Review - 2

John & Smith

Statistical and Machine Learning Techniques for Analysis: To analyze the factors influencing productivity, Smith and Jones (2020) suggest regression models and machine learning approaches as valuable tools.

he **Journal of Management Studies** published by **Wiley-Blackwell** on behalf of the **Society for the Advancement of Management Studies**

Data Pre -Processing

Dataset Review:

Dataset: The dataset is a regression dataset with 1197 rows and 15 columns

Source Code: https://archive.ics.uci.edu/dataset/597/productivity+prediction+of+garment+employees

Variable:

CATEGORICAL VARIABLES	CONTINUOUS VARIABLES	CONTINOUS VARIABLES
day	team	Idle_time
quarter	targeted_productivity	ldle_men
department	Smv	no_of_workers
	Wip	actual_productivity
	over_time	no_of_style_change
	incentive	

About the dataset:

garment workers' productivity dataset is a detailed collection of production-related data from a garment factory dataset is used for regression analysis because the target variable, actual_productivity, is a continuous numeric variable.

index	date	quarter	department	day	team	targeted_productivity	smv	wip
0	1/1/2015	Quarter1	sweing	Thursday	8	0.8	26.16	1108.0
1	1/1/2015	Quarter1	finishing	Thursday	1	0.75	3.94	NaN
2	1/1/2015	Quarter1	sweing	Thursday	11	0.8	11.41	968.0
3	1/1/2015	Quarter1	sweing	Thursday	12	0.8	11.41	968.0
4	1/1/2015	Quarter1	sweing	Thursday	6	0.8	25.9	1170.0
5	1/1/2015	Quarter1	sweing	Thursday	7	0.8	25.9	984.0
6	1/1/2015	Quarter1	finishing	Thursday	2	0.75	3.94	NaN
7	1/1/2015	Quarter1	sweing	Thursday	3	0.75	28.08	795.0
8	1/1/2015	Quarter1	sweing	Thursday	2	0.75	19.87	733.0
9	1/1/2015	Quarter1	sweing	Thursday	1	0.75	28.08	681.0
10	1/1/2015	Quarter1	sweing	Thursday	9	0.7	28.08	872.0
11	1/1/2015	Quarter1	sweing	Thursday	10	0.75	19.31	578.0
12	1/1/2015	Quarter1	sweing	Thursday	5	0.8	11.41	668.0
13	1/1/2015	Quarter1	finishing	Thursday	10	0.65	3.94	NaN
14	1/1/2015	Quarter1	finishing	Thursday	8	0.75	2.9	NaN
15	1/1/2015	Quarter1	finishing	Thursday	4	0.75	3.94	NaN
16	1/1/2015	Quarter1	finishing	Thursday	7	0.8	2.9	NaN
17	1/1/2015	Quarter1	sweing	Thursday	4	0.65	23.69	861.0
18	1/1/2015	Quarter1	finishing	Thursday	11	0.7	4.15	NaN
19	1/3/2015	Quarter1	finishing	Saturday	4	0.8	4.15	NaN
20	1/3/2015	Quarter1	finishing	Saturday	11	0.75	2.9	NaN
21	1/3/2015	Quarter1	finishing	Saturday	9	0.8	4.15	NaN
22	1/3/2015	Quarter1	finishing	Saturday	3	0.75	3.94	NaN
23	1/3/2015	Quarter1	finishing	Saturday	1	0.8	3.94	NaN
24	1/3/2015	Quarter1	sweing	Saturday	1	0.8	28.08	772.0

actual_productivity	no_of_workers	no_of_style_change	idle_men	idle_time	incentive	over_time
0.940725424	59.0	0	0	0.0	98	7080
0.8865	8.0	0	0	0.0	0	960
0.800570492	30.5	0	0	0.0	50	3660
0.800570492	30.5	• 0	0	0.0	50	3660
0.800381944	56.0	0	0	0.0	50	1920
0.800125	56.0	0	0	0.0	38	6720
0.755166667	8.0	0	0	0.0	0	960
0.753683478	57.5	0	0	0.0	45	6900
0.753097531	55.0	0	0	0.0	34	6000
0.750427826	57.5	0	0	0.0	45	6900
0.721126957	57.5	0	0	0.0	44	6900
0.712205247	54.0	0	0	0.0	45	6480
0.707045902	30.5	0	0	0.0	50	3660
0.705916667	8.0	0	0	0.0	0	960
0.676666667	8.0	0	0	0.0	0	960
0.593055556	18.0	0	0	0.0	0	2160
0.540729167	8.0	0	0	0.0	0	960
0.52118	60.0	0	0	0.0	0	7200
0.436326389	12.0	0	0	0.0	0	1440
0.988024691	20.0	0	0	0.0	0	6600
0.987880435	17.0	0	0	0.0	0	5640
0.956270833	8.0	0	0	0.0	0	960
0.945277778	8.0	0	0	0.0	0	1560
0.902916667	8.0	0	0	0.0	0	960
0.800725314	56.5	0	0	0.0	50	6300

Data Cleaning

1

Converting the 'day' column:

day		day_binary
Thursday		0
Thursday	Here we converted the day column into binary values	0
Thursday	Monday - Friday as O	0
Thursday		0
Thursday	Saturday and Sunday as 1	0
Thursday		0
Thursday	Categorical to Binary	0
Thursday	Categorical to biriary	0
Thursday		0
Saturday		1

Checking For Null Values:

Here we check for any null values in the dataset and replace them using mean, median or mode or remove the column if necessary

0 quarter department team targeted_productivity smv 0 506 wip over time 0 incentive 0 idle time 0 idle_men 0 no_of_style_change no_of_workers 0 actual_productivity day_binary 0

dtype: int64

Here we removed the 'wip' column since the Null values are more

	0
quarter	0
department	0
team	0
targeted_productivity	0
smv	0
over_time	0
incentive	0
idle_time	0
idle_men	0
no_of_style_change	0
no_of_workers	0
actual_productivity	0
day_binary	0

dtype: int64

Assigning Dummy Variables

- -- To perform dummy variable encoding we divided the data into two sets continuous and categorical data
- -- The categorical variables are encoded into continuous variablesusing the dummy variables
- -- Remaining the columns are

Original Variables	Renamed Variables
quarter	quarter_Quarter1
	quarter_Quarter2
	quarter_Quarter3
	quarter_Quarter4
	quarter_Quarter5

Original Variables	Renamed Variables
department	department_finishing
	department_sweing

Converting the 'quarter' and 'department' columns into binary

Here we converted the boolean data which we got after dummy variable encoding, into binary value

Quarter column:

quarter
Quarter1

After dummy variables encoding

quarter_Quarter2	quarter_Quarter3	quarter_Quarter4	quarter_Quarter5
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false
false	false	false	false

Boolean to Binary

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	quarter_Quarter2	quarter_Quarter3	quarter_Quarter4	quarter_Quarter5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0	0	0	0
0 0 0 0 0 <	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
0 0 0 0	0	0	0	0
0 0 0 0	0	0	0	0
	0	0	0	0
0 0 0	0	0	0	0
	0	0	0	0

Department column:

department
sweing
finishing
sweing
sweing
sweing
sweing
finishing
sweing
finishing
finishing
finishing
finishing
sweing
finishing
sweing

After Dummy variables encoding

department_finishing department_sweing true false false true true false true false true false true true false true false true true true true false true true false false false false true false false true false false true false true true false false true

Boolean to binary

•		
	0	1
	1	0
	0	1
	0	1
	0	1
	0	1
	1	0
	0	1
	0	1
	0	1
	0	1
	0	1
	0	1
	1	0
	1	0
	1	0
	1	0
	0	1
	0	0
	1	0
	1	0
	1	0
	1	0
	1	0
	0	1

department_finishing department_sweing

Exploratory Data Analysis

Scatter plot:

Analysis of Standard Minute value(SMV) based on each attribute , SMV as a target variable comparing with each of the columns

Scatter plot:

Checking the productivity based on the no of workers and the overtime

Line Plot:

Comparing Actual productivity and targeted productivity with each of the columns using line plots

Actual vs Targeted Productivity by incentive

Actual vs Targeted Productivity by idle_time

Actual vs Targeted Productivity by no_of_workers

Correlation Matrix:

The correlation gives the overview of the complete dataset, here actual productivity have high positive correlation

Pair plot:

 The scatterplot matrix provides an overview of the relationships between pairs of numerical features in your dataset

It shows potential correlations and patterns among variables, such as targeted_productivity, actual_productivity, smv, over_time, and other factors.

Pie Charts:

Bar plots:

Department Column

Quarter column

Multicollinearity Checking

Checking the multicollinearity of the dataset using variance inflation factor . here the columns with high correlation are removed, the columns are :no_of_workers', 'smv', 'targeted_productivity', 'department_sweing

	variables	VIF
0	team	4.732500
1	targeted_productivity	12.350808
2	smv	18.036447
3	over_time	7.166048
4	incentive	1.103324
5	idle_time	1.492213
6	idle_men	1.563800
7	no_of_style_change	1.566141
8	no_of_workers	48.515423
9	day_binary	1.513058
10	quarter_Quarter2	1.935032
11	quarter_Quarter3	1.610072
12	quarter_Quarter4	1.795143
13	quarter_Quarter5	1.148189
14	department_finishing	2.080977
15	department_sweing	23.559402

no _of_workers column is removed

smv column is removed

	variables	VIF
0	team	4.394002
1	targeted_productivity	9.970066
2	over_time	5.747457
3	incentive	1.099397
4	idle_time	1.492062
5	idle_men	1.554649
6	no_of_style_change	1.449999
7	day_binary	1.511863
8	quarter_Quarter2	1.933154
9	quarter_Quarter3	1.609669
10	quarter_Quarter4	1.793995
11	quarter_Quarter5	1.146136
12	department_finishing	2.080529
13	department_sweing	6.950013

targeted_productivity department_sweing column is removed

	variables	VIF
0	team	3.166119
1	over_time	5.486969
2	incentive	1.084794
3	idle_time	1.491642
4	idle_men	1.553609
5	no_of_style_change	1.439650
6	day_binary	1.456817
7	quarter_Quarter2	1.709498
8	quarter_Quarter3	1.511013
9	quarter_Quarter4	1.678291
10	quarter_Quarter5	1.139899
11	department_finishing	1.679275
12	department_sweing	6.511808

	variables	VIF
0	team	2.824925
1	over_time	2.356929
2	incentive	1.082418
3	idle_time	1.491067
4	idle_men	1.539909
5	no_of_style_change	1.272883
6	day_binary	1.454919
7	quarter_Quarter2	1.708352
8	quarter_Quarter3	1.510918
9	quarter_Quarter4	1.671193
10	quarter_Quarter5	1.127056
11	department_finishing	1.377880

MACHINE LEARNING ALGORITHMS

80 - 20 Train_test_split

Algorithm	model1 (r2 score)	model 2 (r2 score)	model 1 MAE	model 2 MAE
Multipe Regreson	-0.3144	-0.0596	0.1281	0.1662
KNN	0.2676	0.1599	0.1057	0.1117
SVM	0.0255	0.0368	0.1323	0.1228
Decision Tree	0.4478	0.3747	0.0777	0.0846
Random Forest	0.5900	0.4023	0.0689	0.0884
XGBoost	0.5785	0.3928	0.0692	0.0826
ADABoost	0.2815	0.2615	0.1018	0.1020

- r2 score: r_squared is a statistical measure used to evaluate the performance of a regression model
- R² = 1: Indicates that the regression model perfectly fits the data
- R^2 = 0: Suggests that the model does not explain any variability in the dependent variable
- → MAE "Mean Absolute Error" is a metric used to evaluate the accuracy of a regression model

75 - 25 Train_test_Split

Algorithm	model1 (r2 score)	model 2 (r2 score)	model 1 MAE	model 2 MAE
Multiple Regression	-0.4605	-0.0858	0.1595	0.1320
KNN	0.2145	0.1730	0.1089	0.1121
SVM	0.0290	0.02736	0.1228	0.1236
Decision Tree	0.2099	0.3258	0.0955	0.0879
Random Forest	0.5092	0.3210	0.0715	0.0884
XGBoost	0.5019	0.3325	0.0719	0.0872
ADABoost	0.4215	0.2497	0.0928	0.1020

- r2 score: r_squared is a statistical measure used to evaluate the performance of a regression model
- R² = 1: Indicates that the regression model perfectly fits the data
- $Arr R^2$ = 0: Suggests that the model does not explain any variability in the dependent variable
- → MAE "Mean Absolute Error" is a metric used to evaluate the accuracy of a regression model

70 - 30 Train_test_split

Algorithm	model1 (r2 score)	model 2 (r2 score)	model 1 MAE	model 2 MAE
Multiple Regression	-0.2538	-0.0201	0.1628	0.1312
KNN	0.2123	0.1353	0.112	0.1175
SVM	0.0354	0.0213	0.1300	0.1277
Decision Tree	0.2320	0.1315	0.1010	0.1077
Random Forest	0.4885	0.3546	0.0746	0.0879
XGBoost	0.4470	0.3654	0.0824	0.0872
ADABoost	0.3394	0.2670	0.1018	0.1068

- r2 score: r_squared is a statistical measure used to evaluate the performance of a regression model
- $ightharpoonup R^2 = 1$: Indicates that the regression model perfectly fits the data
- R^2 = 0: Suggests that the model does not explain any variability in the dependent variable
- MAE "Mean Absolute Error" is a metric used to evaluate the accuracy of a regression model

60 - 40 Train_test_split

Algorithm	model1 (r2 score)	model 2 (r2 score)	model 1 MAE	model 2 MAE
Multiple Regression	-0.2161	-0.8512	0.1518	0.1578
KNN	0.1595	0.1162	0.1264	0.1171
SVM	0.0195	0.0097	0.1415	0.1288
Decision Tree	0.2749	0.2784	0.0899	0.0896
Random Forest	0.5094	0.3180	0.0773	0.0891
XGBoost	0.4276	0.3215	0.0796	0.0891
ADABoost	0.4215	0.2092	0.1073	0.1102

- r2 score: r_squared is a statistical measure used to evaluate the performance of a regression model
- R² = 1: Indicates that the regression model perfectly fits the data
- R^2 = 0: Suggests that the model does not explain any variability in the dependent variable
- → MAE "Mean Absolute Error" is a metric used to evaluate the accuracy of a regression model

Algorithms Comparison

60 - 40 Train_test_split before vif

60 - 40 Train_test_split after vi	if
-----------------------------------	----

Algorithm	model1 (r2 score)	model 1 MAE
Multiple Regression	-0.2161	0.1518
KNN	0.1595	0.1264
SVM	0.0195	0.1415
Decision Tree	0.2749	0.0899
Random Forest	0.5094	0.0773
XGBoost	0.4276	0.0796
ADABoost	0.4215	0.1073

Before Multicollinearity Checking

Train_test	Architecture	Optimizer	Epochs	MAE	loss	Precision	Red
80 - 20	30-20-18-8-1	Adam	150	0.1241	0.1241	0.1250	0.17
75 - 25	30-20-18-8-1	Adam	150	0.1231	0.1231	0.1255	0.1
70 - 30	30-20-18-8-1	Adam	150	0.1258	0.1258	0.13101	0.13
60 - 40	30-20-18-8-1	Adam	150	0.1293	0.1293	0.1321	0.1

After Multicollinearity Checking

Train_test	Architecture	Optimizer	Epochs	MAE	loss	Precision	Recall
80 - 20	30-20-18-8-1	Adam	150	0.1231	0.1231	0.12472	0.12472
75 - 25	30-20-18-8-1	Adam	150	0.1747	0.1747	0.1753	0.1753
70 - 30	30-20-18-8-1	Adam	150	0.1672	0.1672	0.1709	0.17093
60 - 40	30-20-18-8-1	Adam	150	0.1493	0.1493	0.1522	0.1522

Neural Network plot for observation

Train_test_split	75 - 25
Architecture	30-20-18-8-1
Optimizer	Adam
Epochs	150

- This project aimed to analyze and predict the productivity of garment workers by using a comprehensive dataset containing various features related to worker output and operational conditions.
- So for the actual data we have the Random Forest showing the best result with a r2 score of 0.5094 and MAE of 0.0773
- As for the data after multicollinearity checking , XGBoost algorithm shows the best result with r2 score of 0.3115 , MAE of 0.0891 and the Random Forest is showing the next best result
- key stages included examining multicollinearity using the variance inflation factor (VIF) to ensure the reliability of the features selected for modelling

- Analysis revealed that number of workers, overtime, targeted productivity, and incentives are significant drivers of actual productivity.
- Checking multicollinearity using VIF helped identify highly correlated features, ensuring that only reliable features were used for predictive modeling.
- The analysis suggested that adjusting workforce size and strategically applying incentives can positively impact productivity.
- These insights provide a foundation for data driven decision-making to optimize labor management and improve productivity outcomes in the garment industry.

- 1.) Incorporating External Data: Integrating external data like weather conditions, fabric types, or economic indicators could provide additional insights that might influence worker productivity.
- 2.)Scalability and Deployment: Transforming the model into a deployable tool that can be scaled across multiple manufacturing plants could help in real-world decision-making.
- 3.)Predictive Maintenance: Leveraging predictive analytics for equipment and workflow management could help minimize idle time and improve operational efficiency.

Work Distribution

Vamshi	Collecting information about the garment worker's productivity					
Nithin Chandra	Data Pre-Processing					
Sri Vani	Exploratory Data Analysis					
Sravan Kumar	Implement Machine Learning Algorithms					

Colob Notebook

Thank You

SRAVAN KUMAR - 107222546009 VAMSHI - 107222546010 SRI VANI - 107222546011 NITHIN CHANDRA - 107222546012

Appendix


```
import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
```

importing libraries

uploading files to colab notebook

uploading the dataset

loading the dataset

data=pd.read_csv('/content/garments_worker_productivity.csv')
data

₹	date	quarter	department	day	team	targeted_productivity	SMV	wip	over_time	incentive	idle_time	idle_men	no_of_style_change	no_of_workers	actual_productivity
	/1/2015	Quarter1	sweing	Thursday	8	0.80	26.16	1108.0	7080	98	0.0	0	0	59.0	0.940725
ı	/1/2015	Quarter1	finishing	Thursday	1	0.75	3.94	NaN	960	0	0.0	0	0	8.0	0.886500
	/1/2015	Quarter1	sweing	Thursday	11	0.80	11.41	968.0	3660	50	0.0	0	0	30.5	0.800570
ı	/1/2015	Quarter1	sweing	Thursday	12	0.80	11.41	968.0	3660	50	0.0	0	0	30.5	0.800570
	/1/2015	Quarter1	sweing	Thursday	6	0.80	25.90	1170.0	1920	50	0.0	0	0	56.0	0.800382
	11/2015	Quarter2	finishing	Wednesday	10	0.75	2.90	NaN	960	0	0.0	0	0	8.0	0.628333
	11/2015	Quarter2	finishing	Wednesday	8	0.70	3.90	NaN	960	0	0.0	0	0	8.0	0.625625
	11/2015	Quarter2	finishing	Wednesday	7	0.65	3.90	NaN	960	0	0.0	0	0	8.0	0.625625
	11/2015	Quarter2	finishing	Wednesday	9	0.75	2.90	NaN	1800	0	0.0	0	0	15.0	0.505889
	11/2015	Quarter2	finishing	Wednesday	6	0.70	2.90	NaN	720	0	0.0	0	0	6.0	0.394722
			_												

× 15 columns

4

```
[63] data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1197 entries, 0 to 1196
Data columns (total 15 columns):

```
Non-Null Count Dtype
     Column
     date
                             1197 non-null object
                             1197 non-null object
     guarter
                            1197 non-null object
     department
                            1197 non-null object
    day
    team
                             1197 non-null int64
   targeted_productivity 1197 non-null float64
                             1197 non-null float64
7 wip 691 non-null float6
8 over_time 1197 non-null int64
                             691 non-null float64
9 incentive 1197 non-null int64
10 idle_time 1197 non-null float64
11 idle_men 1197 non-null int64
12 no_of_style_change 1197 non-null int64
13 no_of_workers 1197 non-null float64
14 actual_productivity 1197 non-null float64
dtypes: float64(6), int64(5), object(4)
```

memory usage: 140.4+ KB

data types of the data

converting day column to binary

```
def convert_day_to_binary(day):
    if day in ['Saturday', 'Sunday']:
        return 1
    else:
        return 0

data['day_binary'] = data['day'].apply(convert_day_to_binary)

data.drop('day', axis=1, inplace=True)

data.drop('date', axis=1, inplace=True)
```

```
[ [74] data.isna().sum()
   ₹
               quarter
             department
                team
         targeted_productivity
                 smv
                               506
                 wip
              over_time
              incentive
              idle_time
              idle_men
         no_of_style_change
            no_of_workers
          actual_productivity
             day_binary
       dtype: int64
```

checking for null values

removing the null values column

```
data.drop('wip', axis=1, inplace=True)
data.isna().sum()
                      0
       quarter
                      0
                      0
     department
                      0
        team
 targeted_productivity
         smv
      over time
                      0
      incentive
                       0
      idle time
                       0
                      0
      idle men
  no_of_style_change
    no_of_workers
  actual_productivity
     day_binary
dtype: int64
```

46.

```
[81] for i in range(data.shape[1]):
       print(data.iloc[:,i].unique())
       print(data.iloc[:,i].value_counts())
      0./1441049 0./0058841 0.61836111 0.6000/051 0.541/5
     0.50790323 1.10048392 1.09663333 0.83866667 0.75548611 0.75079944
      0.68801768 0.664875 0.65666667 0.63771186 0.60194444 0.58
      0.53567797 0.50012336 0.49788506 0.46340395 0.441392
                                                          0.92927778
      0.80088889 0.80037492 0.79620833 0.75039216 0.725625
                0.60044751 0.55725245 0.48333333 0.23804167 1.1204375
     1.108125 0.87644444 0.80080631 0.76083333 0.72256863 0.71533333
     0.70063277 0.7005731 0.68159804 0.65022372 0.60520833 0.60416667
     0.59862745 0.47571839 0.4321229 0.28704167 0.28305449 0.96043333
      0.80224332 0.80098039 0.80031237 0.72233333 0.70045989 0.62941667
      0.62197175 0.56597222 0.35542803 0.32996488 0.258
                          0.7866
                                     0.75062135 0.74916667 0.7008882
      0.70061403 0.70060345 0.65343137 0.650134
                                               0.60098291 0.58604167
                0.36107143 0.30211735 0.9918
               0.80027969 0.75053268 0.73464583 0.70009573 0.671875
                0.54979167 0.32813158 0.30357447 0.2565
     0.81640625 0.80071149 0.80047051 0.80009402 0.79998285 0.7858642
     0.73327778 0.710125 0.70054044 0.7
                                                0.68402778 0.67213542
      0.63861438 0.63135417 0.61114054 0.60958333 0.58531579 0.24941667
                0.8319375  0.8300625  0.80555556  0.80000295  0.78375
                0.72734954 0.70060526 0.6721408 0.62701118 0.62657778
                0.38579167 0.30750146 0.28395833 0.95579167 0.93041667
     0.87115
                0.80013725 0.75077012 0.75029394 0.700623
                0.41791667 0.3715625 0.36871875 0.35645833 0.81138889
     0.80007184 0.79145833 0.75072733 0.75043727 0.75017699 0.72693333
     0.70051852 0.7002568 0.5046875 0.47110849 0.325
      0.97081667 0.90296296 0.90083333 0.89955556 0.80080864 0.80011582
      0.75050357 0.7502069 0.70006981 0.70005833 0.65854167 0.59879234
      0.58113095 0.440375 0.41083333 0.9217037 0.92160494 0.80051667
     0.76884722 0.75047368 0.7503719 0.70025177 0.66237931 0.59061728
      0.80077902 0.80026082 0.75071698 0.75042593 0.75039551
```

finding unique values

dummy variable encoding

assaigning dummies

X= pd.get_dummies(data, drop_first=True)
X

₹ :ea	m targeted_product	ivity	smv	over_time	incentive	idle_time	idle_men	no_of_style_change	no_of_workers	${\tt actual_productivity}$	day_binary	quarter_Quarter2	quarter_Quarter3	qua
	8	0.80	26.16	7080	98	0.0	0	0	59.0	0.940725	0	False	False	
	1	0.75	3.94	960	0	0.0	0	0	8.0	0.886500	0	False	False	
1	1	0.80	11.41	3660	50	0.0	0	0	30.5	0.800570	0	False	False	
1	2	0.80	11.41	3660	50	0.0	0	0	30.5	0.800570	0	False	False	
	6	0.80	25.90	1920	50	0.0	0	0	56.0	0.800382	0	False	False	
1	0	0.75	2.90	960	0	0.0	0	0	8.0	0.628333	0	True	False	
	8	0.70	3.90	960	0	0.0	0	0	8.0	0.625625	0	True	False	
	7	0.65	3.90	960	0	0.0	0	0	8.0	0.625625	0	True	False	
	9	0.75	2.90	1800	0	0.0	0	0	15.0	0.505889	0	True	False	
	6	0.70	2.90	720	0	0.0	0	0	6.0	0.394722	0	True	False	

s x 17 columns

pie chart

```
[90] teams = data['team']
    sizes = teams.value_counts()

# Custom function to display counts instead of percentages
def autopct_format(pct, all_vals):
    absolute = int(round(pct/100.*sum(all_vals)))
    return f'{absolute}'

plt.pie(sizes, labels=["Team-1", "Team-2", "Team-3", "Team-4", "Team-5", "Team-6", "Team-7", "Team-8", "Team-9", "Team-10", "Team-11", "Team-12"],
    autopct=lambda pct: autopct_format(pct, sizes))
plt.title('Teams')
plt.show()
```


Team-3 Team-4 Team-2 Team-5 104 Team-1 109 Team-6 100 88 Team-12 Team-7 Team-11 Team-8 Team-10 Team-9

Teams

```
attributes = ['over_time', 'incentive', 'idle_time', 'no_of_workers']

for column in attributes:
    plt.figure(figsize=(4,2))

    sns.lineplot(x=column, y='actual_productivity', data=data, label='Actual Productivity', marker='o')

    sns.lineplot(x=column, y='targeted_productivity', data=data, label='Targeted Productivity', marker='x')

    plt.title(f'Actual vs Targeted Productivity by {column}')
    plt.xlabel(column.capitalize().replace('_', ''))
    plt.ylabel('Productivity')
    plt.legend()

    plt.show()
```

Line plot

Correlation heatmap

Analysis of Standard Minute value(SMV) based on each attribute

```
corr_matrix = data.corr(numeric_only=True)

[86] plt.figure(figsize=(10, 8))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
    plt.title("Correlation Heatmap of Numerical Features")
    plt.show()
```

Scatter plot

Multicollinearity Checking

```
[ ] from statsmodels.stats.outliers_influence import variance_inflation_factor
[ ] def calc_vif(X):
         vif = pd.DataFrame()
         vif["variables"] = X.columns
         vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
         return(vif)
     calc_vif(X)
[ ] calc_vif(X.drop('no_of_workers', axis=1))
[ ] calc_vif(X.drop(['no_of_workers','smv'], axis=1))
[ ] calc_vif(X.drop(['no_of_workers','smv','targeted_productivity'], axis=1))
[ ] calc_vif(X.drop(['no_of_workers','smv','targeted_productivity','department_sweing'], axis=1))
[ ] import statsmodels.api as sm
[ ] X_train_nomulti = X.drop(['no_of_workers','smv','targeted_productivity','department_sweing'], axis=1)
```

Multiple regression

```
Loading...
1m2 = LinearRegression()
    lm2.fit(X_train2, y_train2)
    y_pred = lm2.predict(X_test)
    print(np.sqrt(metrics.mean_squared_error(y_test2, y_pred)))
[ ] r2_score(y_test2,y_pred2)
[ ] metrics.mean_absolute_error(y_test2,y_pred2)
[ ] lm2 = LinearRegression()
     lm2.fit(X_train2, y_train2)
     y_pred = lm2.predict(X_test)
     print(np.sqrt(metrics.mean_squared_error(y_test2, y_pred)))
[ ] r2_score(y_test2,y_pred2)
[ ] metrics.mean_absolute_error(y_test2,y_pred2)
```

```
[ ] lm2 = LinearRegression()
   lm2.fit(X_train4, y_train4)
   y_pred = lm2.predict(X_test4)
   print(np.sqrt(metrics.mean_squared_error(y_test4, y_pred)))

[ ] r2_score(y_test4,y_pred4)

[ ] metrics.mean_absolute_error(y_test4,y_pred4)
```

X_train1,X_test1,y_train1,y_test1=train_test_split(X,y,test_size=0.20,train_size=0.80)
X_train2,X_test2,y_train2,y_test2=train_test_split(X,y,test_size=0.25,train_size=0.75)
X_train3,X_test3,y_train3,y_test3=train_test_split(X,y,test_size=0.30,train_size=0.70)
X_train4,X_test4,y_train4,y_test4=train_test_split(X,y,test_size=0.40,train_size=0.60)

OU JU GDI IT

```
[ ] from sklearn.neighbors import KNeighborsRegressor
    from sklearn.metrics import r2_score
    from sklearn import metrics
    from sklearn.metrics import mean_squared_error

[ ] model=KNeighborsRegressor(n_neighbors=20)

80-20 SPLIT
[ ] model.fit(X_train1,y_train1)

[ ] y_pred1=model.predict(X_test1)
    y_pred1
```

KNN alogorithm

SVM algorithm

```
[ ] from sklearn.svm import SVR
    from sklearn import metrics
    from sklearn.metrics import mean_squared_error
    from sklearn.metrics import mean_absolute_error
    from sklearn.metrics import mean_absolute_percentage_error
    from sklearn.metrics import r2_score

[ ] model = SVR(kernel='rbf')

80-20 SPLIT

[ ] model.fit(X_train1, y_train1)

[ ] y_pred1= model.predict(X_test1)
    y_pred1

[ ] svm = pd.DataFrame({'Predicted':y_pred1,'Actual':y_test1})
    svm
```

```
53
```

```
[ ] from sklearn.tree import DecisionTreeRegressor
     from sklearn.tree import plot_tree
[ ] clf = DecisionTreeRegressor()
80 - 20 SPLIT
[ ] clf = clf.fit(X_train1,y_train1)
[ ] y_pred1 = clf.predict(X_test1)
     y_pred1
[ ] print("R-squared:", metrics.r2_score(y_test1, y_pred1))
     print("Mean Absolute Error:", metrics.mean_absolute_error(y_test1, y_pred1))
     print("Mean Squared Error:", metrics.mean_squared_error(y_test1, y_pred1))
[ ] clf = DecisionTreeRegressor(criterion="absolute_error", max_depth=3)
     clf = clf.fit(X_train1,y_train1)
     y_pred1 = clf.predict(X_test1)
     print("R-squared:", metrics.r2_score(y_test1, y_pred1))
     print("Mean Absolute Error:", metrics.mean_absolute_error(y_test1, y_pred1))
     print("Mean Squared Error:", metrics.mean_squared_error(y_test1, y_pred1))
```

Decision Tree

Random Forest

75 - 25 SPLIT

XGBoost

[] mse2 = mean_squared_error(y_test1, pred2)

mae2 = mean_absolute_error(y_test1, pred2)

r2_2 = r2_score(y_test1, pred2)

ADABoost

```
[ ] from sklearn.ensemble import AdaBoostRegressor
[ ] estimator = DecisionTreeRegressor(max_depth=3, random_state=0)
     adaboost = AdaBoostRegressor(estimator=estimator, n_estimators=3, random_state=0)
80 - 20 SPLIT
[ ] adaboost.fit(X_train1, y_train1)
[ ] y_pred1 = adaboost.predict(X_test1)
     y_pred1
[ ] mse = mean_squared_error(y_test1, y_pred1)
     print("MSE:", mse)
     r2 = r2_score(y_test1, y_pred1)
     print("R-squared:", r2)
     mae = mean_absolute_error(y_test1, y_pred1)
     print("MAE:", mae)
75 - 25 SPLIT
[ ] adaboost.fit(X_train2, y_train2)
```

NEURAL NETWORKS

75-25 TRAIN_TEST_SPLIT BEFORE MULTICOLLINEARITY CHECKING

```
Epochs=300
# STEP 1: Data Preprocessing - Normalize the input data
     scaler = StandardScaler()
     X_train2_nomulti_scaled = scaler.fit_transform(X_train2_nomulti) # Assuming X_train2 is a NumPy array
     # STEP 2: Updated Model Architecture
     model = tf.keras.Sequential([
        tf.keras.layers.Dense(40, activation="relu", input_shape=(X_train2_nomulti_scaled.shape[1],)),
        tf.keras.layers.Dense(35, activation="relu"),
        tf.keras.layers.Dense(22, activation="relu"),
        tf.keras.layers.Dense(16, activation="tanh"),
        tf.keras.layers.Dense(8, activation="tanh"),
        tf.keras.layers.Dense(4, activation="tanh"),
        tf.keras.layers.Dense(1, activation="linear") # No activation for regression
     # STEP 3: Compile the model with a lower learning rate and optimizer tuning
     model.compile(loss=tf.keras.losses.MeanAbsoluteError(),
                  optimizer=tf.keras.optimizers.Adam(learning_rate=0.01), # Decreased learning_rate
    # STEP 4: Callbacks for Early Stopping and ReduceLROnPlateau
    early_stopping = EarlyStopping(monitor="val_loss", patience=50, restore_best_weights=True, verbose=1)
    reduce_lr = ReduceLROnPlateau(monitor="val_loss", factor=0.5, patience=30, verbose=1)
     # STEP 5: Fit the model with callbacks
    history = model.fit(X_train2_nomulti_scaled, y_train2, epochs=300, batch_size=68, verbose=1,
                        validation_split=0.2, callbacks=[early_stopping, reduce_lr])

→ Epoch 1/300

     /usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
      super().__init__(activity_regularizer=activity_regularizer, **kwargs)
                              - 2s 25ms/step - loss: 0.3070 - mae: 0.3070 - val_loss: 0.1741 - val_mae: 0.1741 - learning_rate: 0.0100
     Epoch 2/300
    11/11 -
                               0s 7ms/step - loss: 0.1528 - mae: 0.1528 - val_loss: 0.1419 - val_mae: 0.1419 - learning_rate: 0.0100
    Epoch 3/300
                              - 0s 6ms/step - loss: 0.1347 - mae: 0.1347 - val_loss: 0.1384 - val_mae: 0.1384 - learning_rate: 0.0100
    11/11 -
    Epoch 4/300
                              – 0s 6ms/step - loss: 0.1296 - mae: 0.1296 - val_loss: 0.1326 - val_mae: 0.1326 - learning_rate: 0.0100
    11/11 ---
     Epoch 5/300
    11/11 ----
                              — 0s 7ms/step - loss: 0.1242 - mae: 0.1242 - val_loss: 0.1225 - val_mae: 0.1225 - learning_rate: 0.0100
     Epoch 6/300
                               0s 7ms/step - loss: 0.1154 - mae: 0.1154 - val_loss: 0.1164 - val_mae: 0.1164 - learning_rate: 0.0100
     Epoch 7/300
    11/11 ---
                               0s 8ms/step - loss: 0.1116 - mae: 0.1116 - val_loss: 0.1133 - val_mae: 0.1133 - learning_rate: 0.0100
     Epoch 8/300
    11/11 ---
                               0s 5ms/step - loss: 0.1073 - mae: 0.1073 - val_loss: 0.1129 - val_mae: 0.1129 - learning_rate: 0.0100
     Epoch 9/300
    11/11 ---
                              - 0s 5ms/step - loss: 0.1021 - mae: 0.1021 - val_loss: 0.1091 - val_mae: 0.1091 - learning_rate: 0.0100
     Epoch 10/300
```