MA262: Introduction to Stochastic Processes

Naman Mishra

January 2024

Contents

The Course
Discrete time Markov Chains
Lecture
01: Thu
04 Jan
'24

Texts:

- Markov Chains, J. R. Norris
- Introduction to Stochastic Processes, Hoel, Port, Stone
- Karlin and Taylor

Grading:

- (20%) 2 quizzes
- (30%) 1 midterm
- (50%) Final

1 Discrete time Markov Chains

Definition 1.1. Let S be a state set (at most countable). A matrix $P=(p_{xy};x,y\in S)$ is called a *stochastic matrix* if $p_{xy}\geq 0$ for all $x,y\in S$ and $\sum_{y\in S}p_{xy}=1$ for all $x\in S$.

Definition 1.2. Let S be a state set, $P = (p_{xy})$ a stochastic matrix, and μ_0 a probability distribution on S, i.e., $\mu_0(x) \ge 0$ for all $x \in S$ and $\sum_{x \in S} \mu_0(x) = 1$.

Suppose X_0, X_1, \ldots are random variables defined on the same probability space taking values in S. Then $(X_n; n \geq 0)$ is called a Markov chain with initial distribution μ_0 and transition matrix P, denoted $MC(\mu_0, P)$, if X_0 has distribution μ_0 and for all $n \geq 0$,

$$P(X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_0 = x_0) = p_{x_n x_{n+1}}$$

whenever
$$P(X_n = x_n, ..., X_0 = x_0) > 0$$
.

Notation. Whenever writing $P(X_n \in A \mid (X_0, \dots, X_{n-1}) \in B)$, it is understood that only $P((X_0, \dots, X_{n-1}) \in B) > 0$ is considered.

Theorem 1.3.
$$(X_n; 0 \le n \le N)$$
 is $MC(\mu_0, P)$ iff

$$P(X_0 = x_0, \dots, X_N = x_N) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-1} x_N}$$

for all $x_0, \ldots, x_N \in S$.

Proof. Both directions are proven by induction.

Suppose $(X_n; 0 \le n \le N)$ is $MC(\mu_0, P)$. $P(X_0 = x_0) = \mu_0(x_0)$. If $P(X_0 = x_0) > 0$, then $P(X_0 = x_0, X_1 = x_1) = \mu_0(x_0)p_{x_0x_1}$. If $P(X_0 = x_0) = 0$, then $P(X_0 = x_0, X_1 = x_1) \le P(X_0 = x_0) = 0$, and so $P(X_0 = x_0, X_1 = x_1) = 0 = \mu_0(x_0)p_{x_0x_1}$.

Induction: Suppose

$$P_j := P(X_0 = x_0, \dots, X_j = x_j) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{j-1} x_j}.$$

If this is zero, so is P_{j+1} , and so it is equal to $\mu_0(x_0)p_{x_0x_1}\dots p_{x_{j-1}x_j}p_{x_jx_{j+1}}$. If not, then

$$P_{j+1} = P_j P(X_{j+1} = x_{j+1} \mid X_0 = x_0, \dots, X_j = x_j)$$

= $P_j p_{x_j x_{j+1}}$
= $\mu_0(x_0) p_{x_0 x_1} \dots p_{x_{j-1} x_j} p_{x_j x_{j+1}},$

closing the induction. In particular,

$$P(X_0 = x_0, \dots, X_N = x_N) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-1} x_N}.$$

Now suppose

$$P(X_0 = x_0, \dots, X_N = x_N) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-1} x_N}$$

for all $x_0, \ldots, x_N \in S$. Then for any $x_0, \ldots, x_{N-1} \in S$,

$$P(X_0 = x_0, \dots, X_{N-1} = x_{N-1}) = \sum_{x_N \in S} P(X_0 = x_0, \dots, X_N = x_N)$$

$$= \sum_{x_N \in S} \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-2} x_{N-1}} p_{x_{N-1} x_N}$$

$$= \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-2} x_{N-1}}.$$

We have by backwards induction that for all $1 \le i \le N$,

$$P(X_0 = x_0, \dots, X_i = x_i) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{i-1} x_i}$$

and $P(X_0 = x_0) = \mu_0(x_0)$. This allows us to deduce that

$$P(X_{i+1} = x_{i+1} \mid X_0 = x_0, \dots, X_i = x_i) = p_{x_i x_{i+1}}$$

by definition of conditional probability.

Theorem 1.4 (Strong Law of Large Numbers). Suppose Z_1, Z_2, \ldots are iid \mathbb{R} -valued random variables and $E[Z_1]$ exists. Then

$$\frac{Z_1 + \dots + Z_n}{n} \to E[Z_1]$$

as $n \to \infty$, that is,

$$P\left\{\omega \in \Omega : \lim_{n \to \infty} \frac{Z_1(\omega) + \dots + Z_n(\omega)}{n} = E[Z_1]\right\} = 1.$$

Theorem 1.5 (Weak Law of Large Numbers).

Theorem 1.6 (Central Limit Theorem). Suppose Z_1, Z_2, \ldots are iid \mathbb{R} -valued random variables and $E[Z_1^2]$ exists. Then

$$\frac{\sqrt{n}}{\sqrt{V(Z_1)}} \left(\frac{Z_1 + \dots + Z_n}{n} - E[Z_1] \right) \stackrel{d}{\to} N(0, 1).$$

Examples.

• A two-state Markov chain.

This corresponds to the matrix

$$P = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}.$$

• A three-state Markov chain.

This has transition matrix

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/4 & 1/4 \\ 1/4 & 3/4 & 0 \end{pmatrix}.$$

• Simple random walk on \mathbb{Z} . Staring from 0, at each step, move right with probability p and left with probability q = 1 - p. $P(X_{n+1} = x + 1 \mid X_n = x) = p$ and $P(X_{n+1} = x - 1 \mid X_n = x) = q$. All other probabilities are 0.

Such a simple random walk is called symmetric if $p = q = \frac{1}{2}$. A special case is where $\mu_0 = \delta_x$ for some $x \in \mathbb{Z}$, where δ_x is the Krönecker delta.

Aside: Suppose Z_1, \ldots, Z_k are random variables taking values in a state set S defined on a probability space (Ω, \mathcal{F}, P) . and $\tilde{Z}_1, \ldots, \tilde{Z}_k$ are rvs taking values in a state set S defined on a probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$. Then (Z_1, \ldots, Z_k) and $(\tilde{Z}_1, \ldots, \tilde{Z}_k)$ are said to be identically distributed if

$$P(Z_1 = x_1, \dots, Z_k = x_k) = P(\tilde{Z}_1 = x_1, \dots, \tilde{Z}_k = x_k).$$

This is notated as

$$(Z_1,\ldots,Z_k)\stackrel{d}{=} (\tilde{Z}_1,\ldots,\tilde{Z}_k).$$

Suppose that Y_1, Y_2, \ldots are iid with distribution $\begin{pmatrix} 1 & -1 \\ p & 1-p \end{pmatrix}$. We

have that $(X_n; n \ge 0) \stackrel{d}{=} (\sum_{j=1}^n Y_j; n \ge 0)$. Then from the weak law of large numbers,

$$\frac{X_n}{n} \to E[Y_1] = 2p - 1.$$

From the central limit theorem,

$$\frac{X_n - n(p - q)}{\sqrt{n}\sqrt{1 - (p - q)^2}} \stackrel{d}{\to} N(0, 1).$$

On a graph, a simple symmetric random walk is a random walk on a graph where each

$$p_{xy} = \begin{cases} \frac{1}{\deg(x)} & \text{if } y \sim x, \\ 0 & \text{otherwise.} \end{cases}$$

On \mathbb{Z}^2 , a simple random walk is given by p_N , p_E , p_S , p_W , where $p_N + p_E + p_S + p_W = 1$. At each step, move up with probability p_N , right with probability p_E , down with probability p_S , and left with probability p_W .

• Consider a shooting game with 4 modes: N (normal), D (distance), W (windy) and DW (distance and windy). The game changes mode randomly to a mode different from the current mode with directed graph K_4 with some edge weights.

Theorem 1.7. If $(X_n; n \ge 0)$ is a DTMC with transition matrix P, then

$$P_{\mu_0}(X_n = y) = (\mu_0 P^n)_y.$$
 In particular, $P_x(X_n = y) = (P^n)_{x,y} = p_{xy}^{(n)}$.

Here, μ_0 is viewed as a row vector, and P_{μ_0} is the distribution under the assumption that $X_0 \sim \mu_0$. Also, P_x is under the assumption that $\mu_0 = \delta_x$.

Proof.

$$P_{\mu_0}(X_n = y) = \sum_{\substack{x_j \in S \\ 0 \le j < n}} P(X_0 = x_0, \dots, X_{n-1} = x_{n-1}, X_n = y)$$

$$= \sum_{\substack{x_j \in S \\ 0 \le j < n}} (\mu_0)_{x_0} p_{x_0 x_1} \dots p_{x_{n-1} y}$$

$$= (\mu_0 P^n)_y$$

Theorem 1.8. Let
$$(X_n; n \ge 0)$$
 be $MC(\mu_0, P)$. Then for any $n \ge 0$, $l \ge 1, x_n, \dots, x_{n+l} \in S$ and $A \subseteq S^n$,
$$P_{\mu_0}(X_i = x_i, n < i \le n + l \mid X_n = x_n, (X_0, \dots, X_{n-1}) \in A)$$
$$= P_{x_n}(X_1 = x_{n+1}, \dots, X_l = x_{n+l})$$

In other words, conditioning on $X_n = x_n$ and $(X_0, \ldots, X_{n-1}) \in A$, the process (X_n, X_{n+1}, \dots) is $MC(\delta_{x_n}, P)$.

Proof.

$$P(X_{n+l} = x_{n+l}, \dots, X_n = x_n, (X_0, \dots, X_{n-1}) \in A)$$

$$= p_{x_n x_{n+1}} \dots p_{x_{n+l-1} x_{n+l}} \sum_{(x_0, \dots, x_{n-1}) \in A} \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{n-1} x_n}$$

$$= P_{\mu_0}(X_n = x_n, (X_0, \dots, X_{n-1}) \in A) p_{x_n x_{n+1}} \dots p_{x_{n+l-1} x_{n+l}}$$

Theorem 1.9 (Schur's Lemma).

Lecture **03:** Thu 11 Jan

'24

Lecture **02:** Tue

9 Jan '24

Proof. First consider the case where |S| = 2. Let $S = \{s_1, s_2\}$. We know that $g_S = as_1 + bs_2$ where $a, b \in \mathbb{Z}$. Now

$$mg_S = (ma - ks_2)s_1 + (mb + ks_1)s_2$$

Choose $k \in \mathbb{N}$ such that $0 \leq ma - ks_2 < s_2$. We can write $mg_S = \tilde{a}s_1 + \tilde{b}s_2$ where $0 \leq \tilde{a} < s_2$.

If $m_S = \frac{s_1 s_2}{g_S} + 1$, then for all $m \ge m_S$, $s_1 s_2 < mg_S = \tilde{a} s_1 + \tilde{b} s_2 < s_1 s_2 + \tilde{b} s_2$ and so $\tilde{b} > 0$.

Now let $S = \{s_1, s_2, \dots, s_{l+1}\}$ and $F = \{s_1, s_2, \dots, s_l\}$.

Claim: $\tilde{g}_S = \gcd(g_F, s_{l+1})$ is equal to g_S .

Proof of claim: Huh?

If
$$m \ge m_{g_F,s_{l+1}} + \frac{m_F g_F}{g_S}$$
, then
$$mg_S - m_F g_F = \left(m - \frac{m_F g_F}{g_S}\right) g_S$$
$$= ag_F + bs_{l+1} \text{ for some } a,b \in \mathbb{Z}_{\ge 0}$$
$$mg_S = (a+m_F)g_F + bs_{l+1}$$
$$= \sum_{i=1}^l a_i s_i + bs_{l+1}$$

where all coefficients are non-negative integers. This closes the induction.

Definition 1.10 (Extended reals). We define

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

to be the extended reals.

Definition 1.11 (Filtration). Let (Ω, \mathcal{F}, P) be a probability space. A collection $(\mathcal{F}_n)_{n\in\mathbb{N}}$ of σ -algebras is called a *filitration* if $\mathcal{F}_n\subseteq \mathcal{F}_{n+1}\subseteq \mathcal{F}$ for all $n\in\mathbb{N}$.

Definition 1.12 (Natural filtration). Let $(X_n)_{n\geq 0}$ be a sequence of S-values random variables defined on (Ω, \mathcal{F}, P) . For $n \geq 0$, define

$$\mathcal{F}_n = \{ (X_0, X_1, \dots, X_n)^{-1}(A) \mid A \in S^{n+1} \}$$

= $\sigma(X_0, X_1, \dots, X_n)$

Here, $(X_0, \ldots, X_n)^{-1}(A) = \{\omega \in \Omega \mid (X_0(\omega), \ldots, X_n(\omega)) \in A\}$. This sequence of σ -algebras is called the *natural filtration* of $(X_n)_{n\geq 0}$.

Why is this a σ -algebra? The empty set is in \mathcal{F}_n because $\emptyset \in S^{n+1}$. The complement of any set in \mathcal{F}_n is in \mathcal{F}_n because $(X_0, \ldots, X_n)^{-1}(A^c) = (X_0, \ldots, X_n)^{-1}(A)^c$.

Why is $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$? For any $A \in S^{n+1}$, we have

$$(X_0,\ldots,X_n)^{-1}(A)=(X_0,\ldots,X_n,X_{n+1})^{-1}(A\times S).$$

Definition 1.13 (Stopping time). Suppose $(X_n)_{n\geq 0}$ is a sequence of S-valued random variables on (Ω, \mathcal{F}, P) with natural filtration

 $(\mathcal{F}_n)_{n\geq 0}$.

Then $\tau\colon\Omega\to\mathbb{N}\cup\{\infty\}$ is called a *stopping time* with respect to $(\mathcal{F}_n)_{n\geq 0}$ if for all $n\in\mathbb{N}$,

$$\{\tau \leq n\} \in \mathcal{F}_n.$$

This is equivalent to saying that for all $n \in \mathbb{N}$,

$$\mathbf{1}_{\{\tau \le n\}} = \mathbf{1}_{\{(X_0, \dots, X_n) \in A\}}$$
 for some $A \in S^{n+1}$.

Consider the simple randow walk $(X_n)_{n\geq 0}$ on \mathbb{Z} . Then the event that the hitting time of 10 is at most n is

$${T_{10} \le n} = \bigcup_{i=1}^{n} {X_i = 10}.$$

Examples.

• Let $(X_n)_{n>0}$ be an S-valued stochastic process and let $A\subseteq S$. Let $T_A := \inf\{n \geq 1 \mid X_n \in A\}$, where we take $\inf \emptyset$ to be $+\infty$ by convention. Then T_A is a stopping time with respect to the natural filtration associated with $(X_n)_{n\geq 0}$. That is, for all $n\in\mathbb{N}$,

$$\{T_A \le n\} = \bigcup_{i=1}^n \{X_i \in A\} \in \mathcal{F}_n.$$

• SRW(p) started at the origin. Then $L = \sup\{n \ge 1 \mid X_n < 7\}$ is NOT a stopping time.

Now if τ is a stepping time, then $\{\tau = n\} \in \mathcal{F}_n$ for all $n \in \mathbb{N}$. This is because

$$\{\tau = n\} = \{\tau \le n\} \cap \{\tau \le n - 1\}^c$$

where both sets are in \mathcal{F}_n .

Proposition 1.14. If τ_1 and τ_2 are stopping times, then so are $\tau_1 \wedge \tau_2$, $\tau_1 \vee \tau_2$ and $\tau_1 + \tau_2$.

Proof. We have

$$\{\tau_1 \wedge \tau_2 \le n\} = \{\tau_1 \le n\} \cup \{\tau_2 \le n\}$$
$$\{\tau_1 \vee \tau_2 \le n\} = \{\tau_1 \le n\} \cap \{\tau_2 \le n\}$$
$$\{\tau_1 + \tau_2 \le n\} = \bigcup_{i=0}^{n} \{\tau_1 \le i\} \cap \{\tau_2 \le n - i\}$$

Problem 1.1. Give an example of two stopping times τ_1 and τ_2 such that $\Pr(\tau_1 \leq \tau_2) = 1$ but $\tau_2 - \tau_1$ is not a stopping time.

Solution. Consider the SSRW(p) started at the origin, with

$$\tau_1 = \inf\{n \ge 1 \mid X_n = 10\}$$

 $\tau_2 = \inf\{n \ge \tau_1 \mid X_n = 0\}.$

Theorem 1.15 (Strong Markov property). Let $(X_n)_{n\geq 0}$ be in $MC(\mu_0, p)$, and let τ be a stopping time. Let $A = [0, \infty)$. Then

$$\Pr_{\mu_0}(X_{\tau+1} = x_1, \dots, X_{\tau+n} = x_n \mid \tau \in A, X_{\tau} = x)$$

= $\Pr_x(X_1 = x_1, \dots, X_n = x_n)$

Proof. The SMP is equivalent to

$$E_{\mu_0}[f((X_{\tau+j})_{j\geq 0}) \mid \tau \in A, X_{\tau} = x] = E_x[f((X_j)_{j\geq 0})]$$

for any bounded function $f: S^{\infty} \to \mathbb{R}$. Now

$$P_{\mu_0}(X_{\tau+1} = x_1, \dots, X_{\tau+n} = x_n, \tau \in A, X_{\tau} = x)$$

$$= \sum_{m \in A} P_{\mu_0}(X_{m+1} = x_1, \dots, X_{m+n} = x_n, \tau = m, X_m = x)$$

$$= \sum_{m \in A} P_{\mu_0}(\tau = m, X_m = x) P_x(X_1 = x_1, \dots, X_n = x_n)$$

$$= P_x(X_1 = x_1, \dots, X_n = x_n) P_{\mu_0}(\tau \in A, X_{\tau} = x)$$

Definition 1.16. Suppose X takes values in $\mathbb{N} \cup \{\infty\}$, and let $p_k := \Pr(X = k), k \in \mathbb{N} \cup \{\infty\}$. Then the probability generating function of X is defined as

$$G_X(s) = p_0 + p_1 s + p_2 s^2 + \dots, \quad s \in (-1, 1)$$

= $E[s^X]$

where we take $s^{\infty} = 0$ for |s| < 1.

Remarks. The left limit $G_X(1^-) = \lim_{s \uparrow 1} G_X(s) = 1 - p_{\infty}$.

If
$$p_{\infty} > 0$$
, then $EX = \infty$. Otherwise, $EX = \sum_{k=0}^{\infty} k p_k = G'_X(1^-)$.

Let X, Y be two random variables taking values in $\mathbb{N} \cup \infty$ and $G_X(s) = G_Y(s) \forall s \in (-1, 1)$, then $X \stackrel{d}{=} Y$.

Problem 1.2. Suppose $(X_n)_{n\geq 0}$ is an SRW(p) on \mathbb{Z} started at the origin. Find $\mathcal{G}=G_{T_{-1}}$.

Solution.

$$G(s) = E_0[s^{T-1}]$$

$$= pE_0[s^{T-1} \mid X_1 = 1] + qE_0[s^{T-1} \mid X_1 = -1]$$

$$= pE_1[s^{T-1}] + qs$$

$$= pE_1[s^{1+T-1}] + qs$$

$$= psE_0[s^{T-2}] + qs$$

Since $s^{\infty} = 0$ by our convention, we have

$$E_0[s^{T-2}] = E_0[s^{T-2}\mathbf{1}_{T-1} < \infty] = \sum_m E_0[s^{T-2}\mathbf{1}_{T-1} = m]$$

$$= \sum_m \Pr_0(T_{-1} = m)E_{-1}[s^{m+T-2}]$$

$$= \sum_m \Pr_0(T_{-1} = m)s^m E_0[s^{T-1}]$$

$$= G(s)^2$$

Thus

$$G(s) = psG(s)^{2} + qs$$

$$G(s) = \frac{1 \pm \sqrt{1 - 4pqs}}{2ps}$$

Claim: $G(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2ps}$ for all $s \in (-1, 1) \setminus \{0\}$.