Exercice.

1. Pour tout entier $n \in \mathbb{N}^*$, on note

$$\mathcal{P}_n: \ll \sum_{k=1}^n (-1)^k k^2 = (-1)^n \frac{n(n+1)}{2} \gg.$$

- Initialisation. D'une part, $\sum_{k=1}^{1} (-1)^k k^2 = (-1) \cdot 1^2 = -1$. D'autre part, $(-1)^1 \frac{1(1+1)}{2} = -1$. \mathcal{P}_1 est vraie.
- \bullet Hérédité. Soit $n\in\mathbb{N}^*.$ Supposons que l'égalité \mathcal{P}_n est vraie. Montrons $\mathcal{P}_{n+1}.$

$$\sum_{k=1}^{n+1} (-1)^k k^2 = \sum_{k=1}^n (-1)^k k^2 + (-1)^{n+1} (n+1)^2$$

$$= (-1)^n \frac{n(n+1)}{2} + (-1)^{n+1} (n+1^2) \quad \text{d'après } \mathcal{P}_n$$

$$= (-1)^n (n+1) \left(\frac{n}{2} - (n+1)\right)$$

$$= (-1)^n (n+1) \cdot (-1)(n+2) = (-1)^{n+1} \frac{(n+1)(n+2)}{2},$$

ce qui montre \mathcal{P}_{n+1} .

- Conclusion. D'après le principe de récurrence, l'égalité \mathcal{P}_n est vraie pour tout entier $n \in \mathbb{N}^*$.
- 2. (a) Ici, on reconnaît la forme « $u_{k+1} u_k$ » : le télescopage est immédiat

$$U_n = \sum_{k=0}^{2n} \left(\cos \left((k+1) \frac{\pi}{n} \right) - \cos \left(k \frac{\pi}{n} \right) \right) = \cos \left((2n+1) \frac{\pi}{n} \right) - \cos(0)$$
$$= \cos(2\pi + \frac{\pi}{n}) - \cos(0)$$
$$= \cos(\frac{\pi}{n}) - 1 \xrightarrow[n \to +\infty]{} 1 - 1$$

(b) On commence par séparer la somme en deux sommes « télescopables » :

$$V_n = \sum_{k=2}^n \left(\frac{1}{\sqrt{k-1}} - \frac{2}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \right)$$

$$= \sum_{k=2}^n \left(\frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k}} \right) + \sum_{k=2}^n \left(\frac{1}{\sqrt{k+1}} - \frac{1}{\sqrt{k}} \right)$$

$$= \left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{n}} \right) + \left(\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{2}} \right) \xrightarrow{n \to +\infty} 1 - 0 + 0 - \frac{1}{\sqrt{2}}$$

On a donc

$$\boxed{\lim S_n = 0} \quad \text{et} \quad \boxed{\lim T_n = 1 - \frac{\sqrt{2}}{2}}$$

3. L'écriture en double somme fait apparaître des progressions géométriques de raison 2 et $\frac{1}{2}$.

$$\sum_{0 \le i, j \le n} 2^{i-j} = \sum_{i=0}^{n} \sum_{j=0}^{n} 2^{i} 2^{-j} = \left(\sum_{i=0}^{n} 2^{i}\right) \left(\sum_{j=0}^{n} (2^{-1})^{j}\right) = \dots \boxed{= \frac{(2^{n+1} - 1)^{2}}{2^{n}}}.$$

$$\sum_{0 \le j \le i \le n} 2^{i-j} = \sum_{i=0}^{n} \sum_{j=0}^{i} 2^{i-j} = \sum_{k=i-j}^{n} \sum_{i=0}^{n} \sum_{k=0}^{i} 2^k = \dots = 2 \cdot \frac{2^{n+1}-1}{2-1} - (n+1) \left[= 2^{n+2} - n - 3 \right].$$

4. (a) La formule du binôme permet de calculer

$$A_p + B_p = \sum_{k=0}^{2p+1} {2p+1 \choose k} 1^k 1^{2p+1-k} = (1+1)^{2p+1} = 2^{2p+1}.$$

(b) Pour tout k entier, on a par symétrie des coefficients binomiaux $\binom{2p+1}{k} = \binom{2p+1}{2p+1-k}$. En posant j = 2p+1-k, on calcule

$$B_p = \sum_{k=p+1}^{2p+1} {2p+1 \choose k} = \sum_{k=p+1}^{2p+1} {2p+1 \choose 2p+1-k} = \sum_{j=0}^{p} {2p+1 \choose j} = A_p.$$

(c) D'après (a) et (b), on a
$$A_p+B_p=2F_p=2^{2p+1}$$
, d'où $A_p=2^{2p}$

Problème. Transformation d'Abel.

1. Linéarité de la somme et changement d'indice sont les deux ingrédients de ce qui va suivre.

$$\sum_{k=1}^{n} u_k (v_{k+1} - v_k) = \sum_{k=1}^{n} u_k v_{k+1} - \sum_{k=1}^{n} u_k v_k$$

$$= \sum_{j=2}^{n+1} u_{j-1} v_j - \sum_{k=1}^{n} u_k v_k \quad (j = k+1)$$

$$= \sum_{k=2}^{n+1} u_{k-1} v_k - \sum_{k=1}^{n} u_k v_k$$

$$= \sum_{k=1}^{n} u_{k-1} v_k - u_{1-1} v_1 + u_n v_{n+1} - \sum_{k=1}^{n} u_k v_k$$

$$= u_n v_{n+1} - u_0 v_1 - \sum_{k=1}^{n} (u_k - u_{k-1}) v_k$$

2. Dans le cas où $u_k = v_k = k$ pour tout $k \in \mathbb{N}$, l'égalité de la question 1 donne

$$\sum_{k=1}^{n} k \cdot (k+1-k) = n(n+1) - 0 \cdot 1 - \sum_{k=1}^{n} (k - (k-1))k.$$

Notons $S_n = \sum_{k=1}^n k$. On a obtenu que $S_n = n(n+1) - S_n$.

Ceci donne $2S_n = n(n+1)$: on retrouve bien la formule $\sum_{k=1}^n k = \frac{n(n+1)}{2}$.

3. Dans le cas où $u_k = k^2$ et $v_k = k$ pour tout $k \in \mathbb{N}$, l'égalité de la question 1 donne

$$\sum_{k=1}^{n} k^2 \cdot (k+1-k) = n^2(n+1) - 0 \cdot 1 - \sum_{k=1}^{n} (k^2 - (k-1)^2)k.$$

Notons $T_n = \sum_{k=1}^n k^2$. On a obtenu ci-dessus que $T_n = n^2(n+1) - \sum_{k=1}^n (2k-1)k$. On obtient donc, en développant

$$T_n = n^2(n+1) - 2\sum_{k=1}^n k^2 + \sum_{k=1}^n k = n^2(n+1) - 2T_n + \frac{n(n+1)}{2}.$$

On peut alors isoler T_n :

$$3T_n = n^2(n+1) + \frac{n(n+1)}{2} = n(n+1)\left(n + \frac{1}{2}\right) = \frac{n(n+1)(2n+1)}{2}.$$

En divisant par 3, on retrouve la factorisation $\sum_{k=1}^{n} k = \frac{n(n+1)(2n+1)}{6}$

4. Suivons l'indication de l'énoncé : cela fait apparaître une forme $u_k(v_{k+1}-v_k)$, et il n'y a plus qu'à utiliser l'identité de la question 1 :

$$(q-1)\sum_{k=1}^{n} kq^{k} = \sum_{k=1}^{n} k \left(q^{k+1} - q^{k}\right)$$

$$= nq^{n+1} - 0 \cdot q - \sum_{k=1}^{n} (k - (k-1))q^{k} \quad (Abel)$$

$$= nq^{n+1} - \sum_{k=1}^{n} q^{k}$$

On connaît $\sum_{k=1}^{n} q^k = q \sum_{k=1}^{n} q^{k-1} = q \sum_{j=0}^{n-1} q^j = q \frac{q^{n-1}}{q-1}$.

Quelques petits calculs supplémentaires et une division par q-1 qui est non nul amènent

$$\sum_{k=1}^{n} kq^{k} = \frac{q}{(q-1)^{2}} \left(nq^{n+1} - (n+1)q^{n} + 1 \right)$$

Dans le TD du cours sur les sommes, une autre approche, à base de dérivation, vous est proposée.