

Електротехнички факултет у Београду Катедра за рачунарску технику и информатику

Основи рачунарске технике - 13E111OPT -

Индекс:		/	
	ГГГГ	66	<u>ібб</u>
Ступонт			

Студент:

16.07.2020.

4.	5.	6.	7.	Укупно

Напомене за попуњавање свих задатака:

- 1. Коначне одговоре уписати у означена поља
- 2. Не морају бити искоришћене све Карноове карте нити сви редови и колоне у таблицама
- 3. Неискоришћене Карноове карте и поља у таблицама прецртати

4. [10]

Шема (асинхрони RS флип-флоп):

Закон функционисања RS флип-флопа:

R	S	Q(t+1)
0	0	Q
0	1	1
1	0	0
1	1	b

$$Q(t+1) = S + \overline{R}Q, \qquad SR=0$$

Закон функционисања ЈК флип-флопа:

J	K	Q(t+1)
0	0	Q
0	1	0
1	0	1
1	1	Q

$$Q(t+1) = \overline{JQ} + \overline{KQ}$$

Закон побуде RS флип-флопа:

Q(t)	Q(t+1)	R	S
0	0	b	0
0	1	0	1
1	0	1	0
1	1	0	b

Одређивање побуде master RS флип-флопа:

С	J	K	Q(t)	Q(t+1)	R	S	
0	0	0	0	0	b	0	
0	0	0	1	1	0	b	
0	0	1	0	0	b	0	
0	0	1	1	0	1	0	
0	1	0	0	1	0	1	
0	1	0	1	1	0	b	
0	1	1	0	1	0	1	
0	1	1	1	0	1	0	
1	0	0	0	0	b	0	
1	0	0	1	1	0	b	
1	0	1	0	0	b	0	
1	0	1	1	1	0	b	
1	1	0	0	0	b	0	
1	1	0	1	1	0	b	
1	1	1	0	0	b	0	
1	1	1	1	1	0	b	

	00	01	11	10
00				
01				
11				
10				

	00	01	11	10
0				
1				

 $R = \overline{C}KQ = \overline{C + \overline{K} + \overline{Q}}$

	00	01	11	10
00				
01				
11				
10				

	00	01	11	10
0				
1				

$$S = \overline{C} J \overline{Q} = \overline{C + \overline{J} + Q}$$

a)

Модул:

Излазни сигнали (формуле):

$$D_0 = E \overline{S_1} \overline{S_0}$$

$$D_1 = E \overline{S_1} S_0$$

$$D_2 = E S_1 \overline{S_0}$$

$$D_3 = E S_1 S_0$$

б)

Ai	Ci	Fi+1	Ci+1	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

$F_i = \overline{A}_i C_i + A_i \overline{C}_i$	
---	--

$$C_{i+1} = A_i C_i$$

в)

Структурна шема:

6. [15]

Операција декрементирања

Таблица прелаза/излаза и побуда:

DEC	Ai	Ei	Ai(t+1)	Т	Ei+1	
0	0	0	0	0	b	
0	0	1	0	0	b	
0	1	0	1	0	b	
0	1	1	1	0	b	
1	0	0	0	0	0	
1	0	1	1	1	1	
1	1	0	1	0	0	
1	1	1	0	1	0	

Помоћне таблице — закон функционисања Т и побуде (не оцењују се):

Т	Q(t+1)
0	Q
1	Q

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

	00	01	11	10
00				
01				
11				
10				

 $T_{DEC} = DEC * Ei$

	00	01	11	10
00				
01				
11				
10				

DEC Ai						
Ei	00	01	11	10		
0	b	b	0	0		
1	b	b	0	1		

 $E_{i+1} \!\!= \overline{Ai} \, * \, Ei$

Операција серијског уписа улево

Таблица прелаза/излаза и побуда:

SL	Ai-1	Ai	Ai(t+1)	Т		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	1	1	0		
1	0	0	0	0		
1	0	1	0	1		
1	1	0	1	1		
1	1	1	1	0		

Операција синхроног брисања

Таблица прелаза/излаза и побуда:

CL	Ai	Ai(t+1)	Т
0	0	0	0
0	1	1	0
1	0	0	0
1	1	0	1

	00	01	11	10
00				
01				
11				
10				

SL Ai-1						
Ai	00	01	11	10		
0	0	0	1	0		
1	0	0	0	1		

$$T_{SL} = SL * \overline{Ai\text{-}1} * Ai + SL * Ai\text{-}1 * \overline{Ai} = SL (\overline{Ai\text{-}1} * Ai + Ai\text{-}1 * \overline{Ai})$$

	00	01	11	10
00				
01				
11				
10				

	00	01	11	10
0				
1				

$$T_{CL} = CL * Ai$$

Обједнињени сигнали побуда:

$$T = DEC * Ei + SL (\overline{Ai-1} * Ai + Ai-1 * \overline{Ai}) + CL * Ai$$

7. [20]

а) Дијаграм тока микрооперација

Дијаграм тока управљачких сигнала

