Обучение на основе наблюдений. Линейная регрессия как задача контролируемого (индуктивного) обучения.

Лекция 4

Рычагов М.Н., профессор, д.ф.-м.н.

Регрессия с одной переменной

> Задача о стоимости квартиры

Площадь (м²)	Цена (млн. руб)
x	y
45	4,5
63	6,7
52	7,2
48	5,8
•••	•••

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Управляемое обучение

Стоимость квартиры

Цена (в 10⁶ руб.)

Управляемое обучение

Для каждого входного элемента (примера) существует известное значение на выходе

Задача линейной регрессии

Предсказание выходного сигнала в пространстве вещественных чисел

Формирование обучающего набора

	Площадь, м² (x)	Цена в 10 ⁶ рублей (у)
Обучающий набор	44	3,8
по оценке стоимости	48	4,3
квартир	54	6,5 $-m = 52$
	74	8,2
	•••	

Определение:

m - количество обучающих примеров (например, 52)

x's - входные значения / переменные

y's - выходные значения / "target" переменные

(x, y) — один пример из обучающего набора

 $(x^{(i)}, y^{(i)}) - i$ -ый пример из обучающего набора

Представление гипотезы

Как представляется гипотеза h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Линейная регрессия с одной переменной (на примере Лабораторной работы 1)

Постановка задачи

Обучающий
набор

Площадь, м² (x)	Цена в 10 ⁶ рублей (у)
44	3,8
48	4,3
54	6,5 $-m = 52$
74	8,2
•••	•••

Гипотеза:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $heta_i$'s: Параметры

Как выбрать θ_i ?

Гипотеза при различных значениях параметров

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Вопрос: случай независимых переменных, если гипотеза верна?

Функция стоимости

- > Минимизировать по всем m относительно θ_0, θ_1
- > Функция стоимости

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

У Идея: выбрать θ_0, θ_1 : $h_{\theta}(x)$ является наиболее близкой к у для каждого из обучающих примеров (x, y)

Сведение к однопараметрической задаче

Гипотеза:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Параметры:

 θ_0, θ_1

Функция стоимости:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Цель: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Упрощенный случай

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1 \Longrightarrow \begin{pmatrix} h_{\theta}(x) \\ h_{\theta}(x) \end{pmatrix}$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

Распределение y = x и гипотеза $\Theta = (0, 1)$

(для фиксированного θ_1 , это функция х)

$$J(heta_1)$$
 (функция параметра $heta_1$)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 = \frac{1}{2m} (0^2 + 0^2 + 0^2) = 0$$

Распределение y=x и гипотеза $\Theta = (0, 0.5)$

Распределение y=x и гипотеза $\Theta = (0, 0.0)$

Постановка задачи для градиентного спуска

Гипотеза: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Параметры: θ_0, θ_1

Ф-я стоимости: $J(\theta_0,\theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Цель: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

Стратегия градиентного спуска

Имеем некоторую ф-ю стоимости $J(heta_0, heta_1)$

Обобщение: $J(\theta_0, \theta_1, \theta_2, ..., \theta_n)$

Намерение: $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$ или $J(\theta_0,\theta_1,\theta_2,...,\theta_n)$

Метод:

- Начинаем с произвольных $\, heta_0, heta_1 \,$
- Итерируем значения $\, heta_0, heta_1\,$, чтобы $\downarrow J(heta_0, heta_1)$

до достижения минимума

Алгоритм градиентного спуска

Повторять итерации до сходимости

{
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }

Верно: одновременное присвоение

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Неверно:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

Графическое представление функции стоимости

Выпуклая (чашеообразная) функция стоимости

Представление гипотезы и функции стоимости. І

Представление гипотезы и функции стоимости. И

Сходимость алгоритма (1/2)

Сходимость алгоритма от начального значения $heta_k$

Сходимость алгоритма (2/2)

Сходимость алгоритма от начального значения $heta_{k+1}$

Алгоритм градиентного спуска. Анализ (1/2)

Итерационный процесс

Повторение до сходимости

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Скорость обучения

Указание:

Одновременное присвоение

$$j = 0 \text{ and } j = 1$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Алгоритм градиентного спуска. Анализ (1/2)

Итерационный процесс

Повторение до сходимости

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Скорость обучения

Указание:

Одновременное присвоение

$$j = 0 \text{ and } j = 1$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Скорость «спуска» (итерационного процесса)

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Если α слишком малая величина, градиентный спуск может быть очень медленным.

Если α выбрана достаточно большой, градиентный спуск может пропускать минимум. Возможны проблемы со сходимостью.

Градиентный спуск в задаче линейной регрессии

Повторение до сходимости
$$\{\theta_j:=\theta_j-lpharac{\partial}{\partial heta_j}J(heta_0, heta_1)$$

Указание:

Одновременное присвоение

$$j = 0 \text{ and } j = 1$$

Модель линейной регрессии

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Градиентный спуск в задаче линейной регрессии

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)^{2}$$

$$\int j = 0: \frac{\partial}{\partial \theta_0} J(\theta_{0,\theta_1}) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_{0,\theta_1}) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

Итерационный процесс (1/9)

Итерационный процесс (2/9)

Итерационный процесс (3/9)

Итерационный процесс (4/9)

Итерационный процесс (5/9)

Итерационный процесс (6/9)

Итерационный процесс (7/9)

Итерационный процесс (8/9)

Итерационный процесс (9/9)

Материал лекции составлен на основании аналогичного курса «Машинное обучение» на портале он-лайн обучения Coursera.org (профессор Эндрю Ын, Стэнфордский университет - https://ru.wikipedia.org/wiki/Ын,_Эндрю)