

Introduzione al ragionamento scientifico

A.A. 2024/2025 [Lettere A-K] Lezione 15

Prof. Bernardino Sassoli de' Bianchi

Tautologie e contraddizioni

- Una tautologia è una proposizione vera in tutti i mondi possibili (in tutte le righe di una sua tavola di verità c'è il valore «V»)
- Una contraddizione è una proposizione falsa in tutti i mondi possibili (in tutte le righe di una sua tavola di verità c'è il valore «F»)
- Possiamo concepire una tautologia come una proposizione che è vera indipendentemente da qualsiasi premessa (e simmetricamente una contraddizione come una proposizione che è falsa indipendentemente da qualsiasi premessa)

Tautologia - Esempio

```
S \mid ((P \& Q) \& (R \& S)) \rightarrow P
```

Tavole di verità e correttezza

- Posso utilizzare le tavole di verità per decidere se un'inferenza deduttiva sia o meno corretta
- Consideriamo quest'inferenza: "Se non studio logica o passo l'esame con un voto basso oppure vengo bocciato. Per prendere la lode non posso prendere voti bassi. Ho preso la lode. Quindi studio logica." :
 - 1. $\neg L \rightarrow (B \lor F)$ Se non studio logica o passo l'esame con un voto basso o vengo bocciato
 - 2. $B \rightarrow \neg P$ Se prendo un voto basso non ottengo la lode
 - 3. P Prendo la lode
 - 4. Quindi L Studio logica
- Per controllare la correttezza dell'argomentazione costruisco una tavola di verità per tutte le combinazioni possibili dei valori di verità di L, B, F e P, più:
 - una colonna per ognuna delle premesse
 - una colonna per la conclusione
- Se la colonna "Conclusione" è vera per tutte le righe in cui tutte le premesse sono vere, allora l'argomentazione è corretta. Se ci sono righe in cui tutte le premesse sono vere ma la conclusione è falsa, l'argomentazione non è corretta.

Tavole di verità - Esempio

$oxed{L}$	B	F	P		$B o \neg P$	P	$oxed{L}$
V	V	V	V	V	F	V	V
V	V	F	V	V	F	V	V
V	F	V	V	V	V	V	V
V	F	F	V	V	V	V	V
F	V	V	V	V	F	V	F
F	V	F	V	V	F	V	F
F	F	V	V	V	V	V	F
F	F	F	V	F	V	V	F
V	V	V	F	V	V	F	V
V	V	F	F	V	V	F	V
V	F	V	F	V	V	F	V
V	F	F	F	V	V	F	V
F	V	V	F	V	V	F	F
F	V	F	F	V	V	F	F
F	F	V	F	V	V	F	F
F	F	F	F	F	V	F	F

- Dato che ho 4 proposizioni atomiche L, B, F, P, avrò $2^4 = 16$ combinazioni possibili
- Stabilisco per ognuna delle premesse il valore di verità di ogni possibile combinazione
 - 1. $\neg L \rightarrow (B \lor F)$ Se non studio logica o passo l'esame con un voto basso o vengo bocciato
 - 2. $B \rightarrow \neg P$ Se prendo un voto basso non ottengo la lode
 - 3. Prendo la lode
- Riporto la conclusione L
- Considero le righe in cui le premesse sono vere (3,4,7)
- Visto che alla riga 7 la conclusione è falsa,
 l'inferenza non è corretta

Alcune regole di inferenza

- Abbiamo detto che un'inferenza da delle premesse a una conclusione è corretta se preserva la verità, cioè se è impossibile che le premesse siano vere e la conclusione sia falsa
- Ora incominciamo a introdurre delle regole d'inferenza che ci permettono appunto di "passare" da alcune premesse a una conclusione (a inferire la conclusione dalle premesse) garantendo che la verità sia preservata
- Sono regole che possiamo usare per dimostrare che la conclusione segue dalle premesse (e quindi appunto che l'inferenza è corretta)

La congiunzione: eliminazione

Studiamo sia logica che probabilità	Studiamo sia logica che probabilità
Dunque: Studiamo logica	Dunque: Studiamo probabilità
P = Studiamo logica	P = Studiamo logica
Q = Studiamo probabilità	Q = Studiamo probabilità
$P \wedge Q$	$P \wedge Q$
P	\mathbf{O}

Il condizionale: modus ponens

Se studio logica, divento un filosofo migliore

Studio logica

Dunque: divento un filosofo migliore

P = Studio logica

Q = Divento un filosofo migliore

 $P \rightarrow Q$

P

Q

Il condizionale: modus tollens

Se conosco la logica, so cos'è un condizionale

Non so cos'è un condizionale

Dunque: Non conosco la logica

P = Conosco la logica

Q = So cos'è un condizionale

 $P \rightarrow Q$

 $\neg Q$

¬Р

La disgiunzione: sillogismo disgiuntivo

Platone fu allievo di Socrate o di Gorgia Platone fu allievo di Socrate o di Gorgia Platone non fu allievo di Socrate Platone non fu allievo di Gorgia Platone fu allievo di Gorgia Platone fu allievo di Socrate P = Platone fu allievo di Socrate P = Platone fu allievo di Socrate Q = Platone fu allievo di Gorgia Q = Platone fu allievo di Gorgia $P \vee Q$ $P \vee Q$ $\neg Q$

La negazione

Legge della doppia negazione:

Non è vero che Wittgenstein non minacciò Popper con un attizzatoio

Quindi Wittgenstein minacciò Popper con un attizzatoio

P = Wittgenstein minacciò Popper con un attizzatoio

```
¬¬ P
```

- •La negazione ¬ P è vera se P è falsa ed è falsa se P è vera
- •¬¬P equivale logicamente a P

La congiunzione: sillogismo congiuntivo

Non è vero che studiamo sia logica che filosofia Studiamo logica Non studiamo filosofia P = Studiamo logica Q = Studiamo filosofia $\neg (P \land Q)$

```
Non è vero che studiamo sia logica che
filosofia
Studiamo filosofia
Non studiamo logica
P = Studiamo logica
Q = Studiamo filosofia
\neg (P \land Q)
```

Il ragionamento per assurdo

- Per dimostrare che la conclusione B segue dalle premesse A_1,A_2,\ldots,A_n posso usare il ragionamento per assurdo
 - 1. Assumo per ipotesi $\neg B$ (la negazione della conclusione)
 - 2. Cerco di dimostrare che questo nuovo insieme di premesse $A_1, A_2, \ldots, A_n, \neg B$ porta a una contraddizione, cioè cerco di trovare una proposizione P tale che riesco a dimostrare sia P che $\neg P$ a partire da $A_1, A_2, \ldots, A_n, \neg B$
 - 3. A questo punto ho dimostrato per assurdo che le premesse implicano la conclusione

L'espressività di un linguaggio formale

- Considerate: «Oggi nevica, ma non è inverno». Si tratta di una congiunzione, quindi sarebbe naturale tradurlo come P ^¬ Q
- Ora considerate: «Giorgio ama Anna, ma Anna non ama Giorgio»
- Ha la stessa forma del precedente, quindi dovremmo tradurlo come P A¬ Q ???
- Sembra abbiamo trascurato un contenuto informativo importante, la relazione tra Giorgio e Anna
- Dobbiamo aggiungere risorse espressive al nostro linguaggio L

Predicati e relazioni

- Traduciamo enunciati che asseriscono che un oggetto x ha una proprietà P con P(x)
- Possiamo usare questa nuova risorsa espressiva, i predicati, per tradurre per esempio:

n è un numero pari	P(n)	oppure Pari(n)
Socrate è un uomo	U(Socrate)	oppure P(Socrate),
Pluto non è un papero	¬P(Pluto)	oppure ¬R(Pluto), ¬Papero(Pluto)
Se Pluto abbaia allora Pluto è un cane	$P(Pluto) \supset Q(Pluto)$	oppure $P(A) \supset Q(A)$

- Possiamo ora anche esprimere relazioni, se pensiamo a una relazione come a un predicato «a più posti»
- Per esempio, possiamo esprimere «Giorgio ama Anna» come P(Giorgio, Anna) e «Anna non ama Giorgio» come ¬P(Anna, Giorgio)

Il linguaggio logico \mathcal{L}'

- Alfabeto:
 - Costanti: a, b, c, \dots
 - Variabili: x, y, z, ...
 - Relazioni: R, Q, S, \dots (possono avere 1 o più posti)
- P è una proposizione atomica di \mathcal{L}' se ha la forma RELAZIONE(variabile) o RELAZIONE(costante)
- Proposizioni:
 - ullet se P è una proposizione atomica di \mathscr{Z}' allora P è una proposizione di \mathscr{Z}'
 - se P è una proposizione di \mathscr{L}' allora $\neg P$ è una proposizione di \mathscr{L}'
 - se P e Q sono proposizioni di \mathscr{Z}' allora $P \lor Q, P \land Q, P \to Q, P \leftrightarrow Q$ sono proposizioni di \mathscr{Z}'

Un linguaggio logico: \mathcal{LAF}

- Un po' per gioco introduciamo il linguaggio delle asserzioni filosofiche \mathscr{ZAF} :
 - Predicati:
 - A(x): x è un'asserzione filosofica
 - E(x): x è un'asserzione basata sull'esperienza (empirica)
 - N(x): x è un'asserzione normativa
 - T(x): x è una teoria filosofica
 - Relazioni
 - S(x, y): x supporta y
 - O(x, y): x e y sono incompatbili
 - P(x, y): x appartiene alla teoria y

Un linguaggio logico: \mathcal{LAF}

- Sia b la costante che si riferisce all'asserzione: "Gli esseri umani sono dotati di libero arbitrio" [Libero arbitrio]
- Sia d la costante che si riferisce all'asserzione: "Lo stato dell'universo al tempo t_n e le leggi della fisica determinano completamente lo stato dell'universo al tempo t_{n+1} " [Determinismo]
 - $A(b) \land A(d) \land O(d,b)$ = "il libero arbitrio e il determinismo sono asserzioni filosofiche incompatibili"