地下核天体物理实验研究

连钢

2010.9.16

天体物理

核天体物理

1,000,000,000,000,000,000,000 x smaller!

Atomic nucleus ~1 x 10⁻¹⁵ m

The everyday star ~1 x 109 m

- ▶ 恒星中核燃烧产生的能量及其对恒星结构 和 演化的影响
- ▶ 宇宙中各种元素和同位素合成的过程、时间、 物理环境、天体 场所及丰度分布

核天体物理关键科学问题

- ▶恒星平稳演化阶段最重要的热核反应在天体物理 能区的直接测量;
- ▶高能区带电粒子反应截面向天体物理能区的合理 外推;
- ▶若干关键的平稳核燃烧阶段和爆发性rp及r过程核 反应截面的间接测量;
- ▶rp和r过程涉及核素衰变性质、质量、反应和共振 态性质的测量;
- ▶核天体物理反应和衰变性质的理论研究、数据库 和网络方程的建立;
- >通过元素丰度的观测研究天体核合成的场所。

热核反应天体物理能区直接测量

Laboratory Underground Nuclear Astrophysics

LUNA Laboratory for Underground Nuclear Astrophysics

热核反应天体物理能区直接测量

 σ (E)=S(E)E⁻¹exp(-2πη)

恒星平稳核燃烧阶段的带电粒子热核反应的Gamow窗口能量甚低, 直接测量十分困难,通常要利用较高能区的实验数据向下外推。由 于电子屏蔽效应和可能存在的共振的影响,外推导致很大的不确定性。

热核反应天体物理能区直接测量

LUNA用4πBGO探测器 +14N无窗气体靶测量的14N(p,γ)15O反应能谱(E=70 keV). 测量耗时49天,入射质子束的电荷累计达到 928库仑. 蓝线表示天然本底,绿线是束流引起的本底,蓝色点线为地面实验室本底(有铅屏蔽).

LUNA Laboratory for Underground Nuclear Astrophysics

LUNA Laboratory for Underground Nuclear Astrophysics

LUNA有50 kV, 400 kV两台低能加速器,可提供4-400 keV, ≤1mA 的 p和α 束流。实验室在1400米厚的山岩(等效3800米厚水体)下面,宇宙射线本底降为地面实验室的≈10-4以下。

50 kV加速器的离子源,加速管及周围实验设备,其特点是非常精巧,紧凑和稳定。

LUNA 核天体物理实验

Laboratory
Underground
Nuclear
Astrophysics

H. Costantini et al.,

Rep. Prog. Phys., 72(2009)086301

LUNA 核天体物理实验

CNO循环: ¹⁴N(p,γ)¹⁵O ¹⁵N(p,γ)¹⁶O

Rolfs C E, Rodney W S, Cauldrons in the Cosmos University of Chicago Press, 1988

Laboratory Underground Nuclear Astrophysics

$$^{18}O$$
 (p, γ) ^{19}F

LUNA 核天体物理实验

NeNa-MgAI循环: ²⁵Mg(p,γ)²⁶AI

J. Jose, A. Coc and M. Hernanz, *Astrophys.J., 520 (1999) 347-360*

Laboratory Underground Nuclear Astrophysics

LUNA 实验计划

Laboratory
Underground
Nuclear
Astrophysics

What else can be done with LUNA2 400kV accelerator?

Ongoing experiment	reaction	Q- value (MeV)	Gamow energy (keV)	Lowest meas. Energy (keV)	LUNA limit
	(5N(p,γ) ¹⁶ O)	12.13	10-300	130	50
CNO cycle	¹⁷ O(p,γ) ¹⁸ F	5.6	35-260	300	65
	¹⁸ O(p,γ) ¹⁹ F	8.0	50-200	143	89
Ne-Na cycle	23 Na(p, γ) 24 Mg	11.7	100-200	240	138
	22 Ne(p, γ) 23 Na	8.8	50-300	250	68
BBN - {	D(α,γ) ⁶ Li	1.47	50-300	700(direct) 50(indirect)	50
In preparati	on	1-51		A PARTIE TO A	en this in the

Proposal Approved by INFN (2008-2013)

LUNA: D(α,γ)⁶Li 反应直接测量

Laboratory
Underground
Nuclear
Astrophysics

标准模型计算的 6Li丰度比贫金 属恒星的天文观 测值低了3个量 级,而7Li的丰 度却是天文观测 值的3倍左右。 Li原初丰度难题

R. N. Boyd et al., arXiv:1008. 0848(2010)

LUNA: D(α,γ)⁶Li 反应直接测量

Laboratory Underground Nuclear Astrophysics

LUNA: D(α,γ)⁶Li 反应直接测量

Laboratory Underground Nuclear Astrophysics

实验设置示意图

A.Caciolli et al., Eur. Phys. J. A 39, 179 - 186 (2009)

LUNA 合作基础

2002-2003: Bochum d(d,p)t 电子屏蔽效应

Claus Rolfs: Co-founder of LUNA

预期目标:

- ☑ D(α,γ)⁶Li 反应直接测量(实验测量、数据分析)
- ☑ 其他核天体物理关键反应的直接测量 ²²Ne(p,γ)²³Na ²³Na(p,γ)²⁴Mg ¹⁷O (p,γ) ¹⁸F ¹⁸O (p,γ) ¹⁹F
- ☑ 为争取在我国建立核天体物理地下实

验室做准备工作

Diana at DUSEL USA

Boulby in the UK

Canfranc in Spain

Thank you!