9.19/9.190: Computational Psycholinguistics, Pset 1 due 22 September 2023

8 September 2023

Incremental inference about possessor animacy

English has two CONSTRUCTIONS for grammatically expressing possession within a noun phrase, as exemplified in (1)–(2) below:

- (1) the queen's crown (Prenominal or 's genitive: possessor comes before the possessed noun)
- (2) the crown of the queen (Postnominal or of Genitive: possessor comes after the possessed noun)

There is a correlation between the ANIMACY of the possessor and the preferred construction: animate possessors, as above, tend to be preferred prenominally relative to inanimate possessors, as in (3)– (4) below (Futrell & Levy, 2019; Rosenbach, 2005):

- (3) the book's cover (Prenominal)
- (4) the cover of the book (Postnominal)

Here is a pair of conditional probabilities that reflects this correlation:

```
P(\text{Possessor is prenominal}|\text{Possessor is animate}) = 0.9
P(\text{Possessor is prenominal}|\text{Possessor is inanimate}) = 0.25
```

Now consider the cognitive state of language comprehender mid-sentence who have heard each of the three respective example sentence fragments, where the nouns that have been uttered are unfamiliar words to the comprehender:

- 1) the sneg of...
- 2) a...
- 3) a tufa's dax...

Task: Based on the knowledge encoded in the probabilities above, plot the probability in each of these three cases that the comprehender should assign to the possessor being animate, as a function of the prior probability P(Possessor is animate). Show your work in setting up the computations.

Phoneme categorization

The questions in this section relate to ideal probabilistic categorization of instances of the sound categories /b/ and /p/, as covered in Lecture 1 (related readings include Clayards et al., 2008, Feldman et al., 2009).

Assume that a single informative cue (VOT) distinguishes between these categories, and that the distributions of VOT values for these categories can be approximated by Gaussian distributions with means of $\mu_b = 0$ and $\mu_p = 50$. Imagine a context in which the prior probabilities of the two categories differ, p(/b/) = 0.75 and p(/p/) = 0.25.

For a given VOT value x, we can calculate the posterior distribution on the category c that token came from p(c|x) using Bayes rule:

$$p(c|x) = \frac{p(x|c)p(c)}{p(x)} \tag{1}$$

$$= \frac{p(x|c)p(c)}{\sum_{c'}p(x|c')p(c')} \tag{2}$$

where the prior p(c) is as given above, the likelihood p(x|c) is given by the Gaussian probability density function

$$p(x|c) = \frac{1}{\sigma_c \sqrt{2\pi}} \exp\left[-\frac{(x-\mu_c)^2}{2\sigma_c^2}\right]$$
 (3)

and the normalizing constant in the denominator is evaluated by summing across all possible hypotheses $c' \in \{/b/, /p/\}$:

$$p(c|x) = \frac{p(x|c)p(c)}{p(x|/b/)p(/b/) + p(x|/p/)p(/p/)}$$
(4)

- 1. Imagine that both categories had equal variances $\sigma_b^2 = \sigma_p^2 = 144$. Under this assumption, the posterior probability of the category /p/ for a VOT value of 25 ms, i.e., p(c=/p/|x=25ms), is easy to calculate. Why is the posterior probability easy to calculate, and what is it? Now, plot the posterior for VOT values ranging from -25ms to 75 ms.
- 2. In fact, VOTs for voiceless stops such as /p/ are more variable than those for voiced stops such as /b/. This means that the Gaussian approximations of these categories should have different variances, such as $\sigma_b^2 = 64$ and $\sigma_p^2 = 144$. Assuming these values, plot the posterior for the range you used in part (1). For a VOT value of 25 ms, how has the categorization preference changed, and why?
- 3. Continuing to assume the unequal-variance parameters as in (2), guess the posterior for the very low VOT of -200ms, and then calculate it. There is some counter-intuitive behavior: what is it? What does this counter-intuitive behavior tell us about the limitations of the model we've been using? Optionally, extend your continuous plots down to a VOT of -200 ms to see how this counter-intuitive effect develops.

References

- Clayards, M., Tanenhaus, M. K., Aslin, R. N., & Jacobs, R. A. (2008). Perception of speech reflects optimal use of probabilistic speech cues. *Cognition*, 108, 804–809.
- Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The influence of categories on perception: Explaining the perceptual magnet effect as optimal statistical inference. *Psychological Review*, 116(4), 752–782.
- Futrell, R., & Levy, R. P. (2019). Do RNNs learn human-like abstract word order preferences? In Proceedings of the Society for Computation in Linguistics (SCiL) 2019.
- Rosenbach, A. (2005). Animacy versus weight as determinants of grammatical variation in English. *Language*, 81(3), 613–644.