ARCOS Group

uc3m | Universidad Carlos III de Madrid

Lesson 2 (II) Floating point

Computer Structure
Bachelor in Computer Science and Engineering

Contents

Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

More representation necessities...

How to represent?

Very large numbers: 30.556.926.000₍₁₀₎

Very small numbers: 0.000000000529177₍₁₀₎

Fractional numbers: 1.58567

Reminder **Example of failure...**

- ▶ Ariane 5 explosion (first flight)
 - Sent by ESA in June 1996
 - Cost of development:10 years and 7 billion dollars

- Exploded 40 seconds after launch, at 3700 meters altitude.
- ▶ Failure due to total loss of altitude information:
 - ▶ The inertial reference system software performed the conversion of a 64-bit floating point real value to a 16-bit integer value.
 - The number to be stored was greater than 32767 (the largest 16-bit signed integer) and a conversion failure and exception occurred.

Fixed point [racionals]

The position of the binary point is fixed and the weights associated with the decimal places are used.

Example:

$$|00|.|0|0 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$$

Fractional values in binary with fixed point

Example with 6 bits:

- Example: $10,1010_{(2} = 1 \times 2^{1} + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.62510$
- Using this fixed point, the range is:
 □ [0 a 3.9375 (almost 4)]

Fractional powers of 2

i	2-i	
0	1.0	1
1	0.5	1/2
2	0.251/4	
3	0.125	1/8
4	0.0625	1/16
5	0.03125	1/32
6	0.015625	
7	0.0078125	
8	0.00390625	
9	0.001953125	
10	0.0009765625	

Contents

I. Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

Floating-point numbers

- Each number has a mantissa and an exponent
- Scientific notation (in decimal): normalized form
 - Only one digit different to 0 on the left of decimal point
- The number is adapted to the order of magnitude of the value to be represented, by translating the decimal point by using the exponent

Scientific notation in binary

- Normalized form:
 One I (only one digit) in the left of the binary point
 - Normalized: 1.0001×2^{-9} ,
 - Not normalized: 0.0011×2^{-8} , 10.0×2^{-10}

IEEE 754 Floating Point Standard [rationals]

- Floating point standard used in most computers.
- ▶ **Characteristics** (unless special cases):
 - Exponent: excess-k with bias k = 2 num_bits_in_exponent I _ I
 - Mantissa: sign-magnitude, normalized, with implicit bit
- Different formats:
 - Single precision: 32 bits (sign: I, exponent: 8, mantissa: 23 and bias: 127)
 - **Double precision**: 64 bits (sign: I, exponent: II, mantissa: 52 and bias: 1023)
 - Quad-precision: 128 bits (sign: I, exponent: 15, mantissa: 112 and bias: 16383)

Normalization and implicit bit

Normalization

In order to normalize the mantissa, the exponent is adjusted to have a most significant bit of value I

```
Example: 00010000000010101 \times 2^3 (is not) 1000000000101010000 \times 2^0 (now it is)
```

Implicit bit

Once normalized, since the most significant bit is 1, it is **not** stored to leave space for one more bit (increases accuracy).

▶ This makes it possible to represent mantissa with one bit more

IEEE Standard 754 (single precision)

The value is computed (unless special cases) as:

$$N = (-1)^{S} \times 2^{E-127} \times I.M$$

where:

S = 0 for positive numbers, S = I for negative numbers 0 < E < 255 (E=0 y E=255 are special cases)

Special cases:

$$(-1)^s \times 0.$$
mantissa $\times 2^{-126}$

Exponent	Mantissa	Special value
0 (0000 0000)	0	+/- 0 (depends on sign)
0 (0000 0000)	≠ 0	Number NOT normalized
255 (1111 1111)	≠ 0	NaN (0/0, sqrt(-4),)
255 (1111 1111)	0	+/- infinite (depends on sign)
1-254	Any	Normalized number (no special)

$$(-1)^s \times 1.mantissa \times 2^{exponent-127}$$

Examples

S	E	M	N	
I	00000000	000000000000000000000000000000000000000	-0 (Exception 0) E=0 y M=0.	
I	01111111	000000000000000000000000000000000000000	$-2^{0} \times 1.0_{2} = -1$	
0	10000001	111000000000000000000000000000000000000	$+2^2 \times 1.111_2 = +2^2 \times (2^0 + 2^{-1} + 2^{-2} + 2^{-3}) = +7.5$	
0	11111111	000000000000000000000000000000000000000	∞ (Exception $∞$) E=255 y M=0	
0	11111111	100000000000000000000000000000000000000	NaN (Not a Number) E=255 y M≠0.	

Example

Example (solution)

Calculate the value in decimal associated to this number 0 10000011 110000000000000000000000 represented in IEEE 754 single precision

- Sign bit: $0 \Rightarrow (-1)^0 = +1$
- Exponent: $10000011_2 = 131_{10} \Rightarrow E 127 = 131 127 = 4$

The decimal value is $+1 \times 2^4 \times 1.75 = +28$

Exercise

Represent the number -9 using IEEE 754 single precision

Exercise (Solution)

b) Represent the number -9 using IEEE 754 single precision

$$-9_{10} = -1001_2 = -1001_2 \times 2^0 = -1.001_2 \times 2^3$$
 (normalized mantissa)

- a) Sign: negative ⇒ S=1
- Exponent: 3+127 (bias) = $130 \implies 10000010$

- Range of representable magnitudes (regardless of sign):
 - Smallest normalized:
 - Largest normalized:

- Smallest not normalized :
- Largest not normalized :

 $(-1)^s * 0.mantisa * 2^{-126}$

Exponent	Mantissa	Special value
0	≠ 0	Not normalized
1-254	any	Normalized

(-I)^s * I.mantisa * 2^{exponente-127}

- Range of representable magnitudes (regardless of sign):
 - Smallest normalized:

Largest normalized:

- Smallest not normalized :
- Largest not normalized :

Tip:

$$X = 2 - 2^{-23}$$

- Range of representable magnitudes (regardless of sign):
 - Smallest normalized:

Largest normalized:

- Smallest not normalized :
- Largest not normalized :

Exercise

How many floats (single precision floating point numbers) are between I and 2 (not included)?

How many float (single precision floating point numbers) are between 2 and 3 (not included)?

Exercise (Solution)

- How many floats (single precision floating point numbers) are between I and 2 (not included)?

 - Between I and 2 there are 2²³ numbers
- How many float (single precision floating point numbers) are between 2 and 3 (not included)?

 - ▶ Between 2 and 3 there are 2²² numbers

Discrete representation

Variable resolution:
 denser near zero, less towards infinity

Representable numbers

(b) Floating point numbers

Example 1 inaccuracy

Example 2 inaccuracy

▶ How does C performs a division?

```
t2.c
#include <stdio.h>
int main ()
 float a;
 a = 3.0/7.0;
 if (a == 3.0/7.0)
      printf("Equal\n");
 else printf("Not equal\n");
 return (0);
```

Example 2 inaccuracy

▶ How does C performs a division?

```
t2.c
#include <stdio.h>
int main ()
 float a;
 a = 3.0/7.0;
 if (a == 3.0/7.0)
      printf("Equal\n");
 else printf("Not equal\n");
 return (0);
```

```
$ gcc -o t2 t2.c
$ ./t2
Not equal
```

Example 2 inaccuracy

How does C performs a division?

```
t2.c
         #include <stdio.h>
         int main ()
          float a:
                             double
float
          a = 3.0/7.0;
          if (a == 3.0/7.0)
               printf("Equal\n");
          else printf("Not equal\n");
          return (0);
```

```
$ gcc -o t2 t2.c
$ ./t2
Not equal
```

Example 3 inaccuracy

The associative property is not always satisfied a + (b + c) = (a + b) + c?

```
#include <stdio.h>

int main ()
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

Example 3 inaccuracy

The associative property is not always satisfied (a + (b + c) = (a + b) + c)?

```
#include <stdio.h>

int main ()
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

```
$gcc - o t1 t1.c

$./t1

(x+y)+z = 1.000000

x+(y+z) = 0.000000
```

Floating-point is not associative

Floating-point is not associative

$$x = -1.5 \times 10^{38}, y = 1.5 \times 10^{38}, z = 1.0$$

$$(x + y) + z = (-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0 = (0.0) + 1.0 = 1.0$$

▶ Floating point operations are not associatives

- Results are approximated
- ▶ 1.5×10^{38} is so much larger than 1.0
- ▶ $1.5 \times 10^{38} + 1.0$ in floating point representation is still 1.5×10^{38}

Example $int \rightarrow float \rightarrow int$

```
if (i == (int)((float) i)) {
    printf("true");
}
```

- Not always prints "true"
- Most integer values (specially larger ones) don't have an exact floating point representation
- What about double?

Example

- ▶ The number 133000405 in binary is:
- \blacktriangleright 1111110110110110110011010101 \times 2⁰
- When is normalized:

 - > S = 0 (positive)
 - \rightarrow e = 26 \rightarrow E = 26 + 127 = 153
- ▶ The normalized number stored is:

Example float \rightarrow int \rightarrow float

```
if (f == (float)((int) f)) {
    printf("true");
}
```

- ▶ Not always true
- Numbers with decimals do not have integer representation

Rounding

- Rounding removes less significant digits from a number to obtain an approximate value.
- Types of rounding:
 - ▶ Round to + ∞
 - ▶ Round it "up": $2.001 \rightarrow 3$, $-2.001 \rightarrow -2$
 - ▶ Round to ∞
 - ▶ Round it "down": $1.999 \rightarrow 1, -1.999 \rightarrow -2$
 - Truncate
 - ▶ Discard last bits: $1.299 \rightarrow 1.2$
 - Round to nearest (ties to even)
 - ightharpoonup 2.4 ightharpoonup 2.6 ightharpoonup 3, -1.4 ightharpoonup -1
 - If number falls midway then it is rounded to the nearest value with an even least significant digit (+23.5 \rightarrow +24 \leftarrow +24.5; -23.5 \rightarrow -24 \leftarrow -24.5)

Rounding

- Rounding means losing accuracy.
- Rounding occurs:
 - ▶ When moving to a representation with fewer representables:
 - E.g.: A value from double to single precision
 - ▶ E.g.: A floating point value to integer
 - When performing arithmetic operations:
 - ▶ E.g.: After adding two floating-point numbers (using guard bits)

Guard bits

- Guard digits are used to improve accuracy:
 - ▶ FP hardware internally includes additional bits for operations
 - After operation, guard bits are eliminated: rounding
- \triangleright Example: 2.65 x 10⁰ + 2.34 x 10²

	WITHOUT guard bits	WITH guard bits
I equalize exponents	0.02×10^2 + 2.34×10^2	0.0265×10^{2} + 2.3400×10^{2}
2 add	2.36×10^{2}	2.3665×10^{2}
3 round	2.36×10^{2}	2.37×10^{2}

Floating point operations

- ▶ Add
- Subtract
 - Check zero values.
 - 2. Equalize exponents (shift smaller number to the right).
 - 3. Add/subtract mantissa.
 - Normalize the result.
- Multiply
- Divide
 - Check zero values.
 - Add/subtract exponents.
 - 3. Multiply/divide mantissa (taking into account the sign).
 - 4. Normalize the result.
 - 5. Rounding the result.

Additions and subtractions: Z=X+Y y Z=X-Y

Multiplication: Z=X*Y

Division: Z=X/Y

Exercise

Using the IEEE 754 format, add 7.5 and 1.5 step by step.

To binary

1)
$$7.5 + 1.5 =$$

2)
$$1.111*2^{2} + 1.1*2^{0} =$$

Equalize exponents

3)
$$1.111*2^2 + 0.011*2^2 =$$

4)
$$10.010*2^2 =$$

Add

 $1.0010*2^3$

Adjust exponents

Representation of the numbers

> Splitting exponents and mantissas, and adding implicit bit

7.5 → 0 10000001	1.1110000000000000000000000000000000000
1.5 → 0 01111111	1.1000000000000000000000000000000000000

Add mantissas

Normalize result...

There is carry, non-normalized mantissa

Normalize result...

There is carry, non-normalized mantissa

	7.5 → 0 10000001	1.1110000000000000000000000000000000000	
+	1.5 → 0 10000001	0.0110000000000000000000000000000000000	
	9 → 0 10000010	1.0010000000000000000000000000000000000	

▶ Eliminate the implicit bit and store the result

Exercise

Using the IEEE 754 format, multiply 7.5 and 1.5 step by step.

Representation of the numbers

Splitting exponents and mantissas, and adding implicit bit

The implicit bit is included

Multiply: add exponents and multiply mantissas

Multiply: remove one bias from exponent (there are two)

	7.5 →	0	10000001	Ι.	111000000000000000000000000000000000000
X	1.5 →	0	0111111	1.	100000000000000000000000000000000000000
			0000000		110100000000000000000000000000000000000
	l	0	100000000	10	.110100000000000000000
	ſ		01111111		110100000000000000000000000000000000000
		0	10000001	10	110100000000000000000000000000000000000

Multiply: normalize result...

▶ Multiply: normalize result...

	7.5 - >	0	10000001	Ι.	111000000000000000000000000000000000000
X	1.5 ->	0	01111111	Ι.	100000000000000000000000000000000000000
	11.25	0	10000010	1.	0110100000000000000000
		لـــّــا			

Eliminate the implicit bit and store the result

IEEE 754 Evolution

- ▶ 1985 IEEE 754
- ▶ 2008 IEEE 754-2008 (754+854)
- ▶ 2011 ISO/IEC/IEEE 60559:2011 (754-2008)

Name	Common name	Base	Digits	E min	E max	Notes	Decimal digits	Decimal E max
binary16	Half precision	2	10+1	-14	+15	storage, not basic	3.31	4.51
binary32	Single precision	2	23+1	-126	+127		7.22	38.23
binary64	Double precision	2	52+I	-1022	+1023		15.95	307.95
binary128	Quadruple precision	2	112+1	-16382	+16383		34.02	4931.77
decimal32		10	7	-95	+96	storage, not basic	7	96
decimal64		10	16	-383	+384		16	384
decimal 128		10	34	-6143	+6144		34	6144

http://en.wikipedia.org/wiki/IEEE_floating_point

ARCOS Group

uc3m | Universidad Carlos III de Madrid

Lesson 2 (II) Floating point

Computer Structure Bachelor in Computer Science and Engineering

