Vývoj informačních systémů

Obecně o informačních systémech 2021-22

Informační systém

 Informační systém je propojení informačních technologií a lidských aktivit směřující k zajištění podpory procesů v organizaci.

• V širším slova smyslu se jedná o interakci mezi lidmi, procesy a daty. Informační systém je určen ke zpracování (*získávání*, *přenos*, *uložení*, *vyhledávání*, *manipulace*, *zobrazení*) informací.

Formalizovaný x počítačový IS

• Ne formalizace ve smyslu matematika...

• S informacemi se dá pracovat na neformální bázi (zejména chybí předdefinovaná a závazná forma práce s informacemi).

• Počítačové informační systémy poskytují podporu pro zvýšení efektivity práce s informacemi (…jak kdy ☺).

Kdy to začalo (a kdy to skončí)

- Mzdy
 - Vysoké náklady na lidskou práci
 - Chybovost
- Aukční servery, internetové obchody,...
 - Efektivita, rychlost, vzdálenost, ...
- Nikdy to neskončí?

Klasifikace

- Např. různé typy agend
 - Ekonomická
 - Personální
 - Skladová
 - Dokumentová (např. spisová služba)
 - Studentská ©
- ERP, CRM, Project management, Supply chain management

Doména informačního systému

• Doménou budeme rozumět skupinu souvisejících "věcí" z pohledu zákazníka či uživatele.

• Do domény patří data, procesy, uživatelé apod., které jsou charakterizovány specifickými pojmy.

• Používáním těchto pojmů určujeme, v jaké doméně se pohybujeme (např. v doméně bankovnictví používáme pojmy jako účet, transakce apod.).

Klíčové otázky spojené s doménou...

- CO? Jde o informace ve smyslu dat.
- JAK? Jde o procesy prováděné s informacemi.
- KDE? Na jakých místech se pracuje s informacemi.
- KDO? Kdo, v jaké roli a v jakém kontextu pracuje s informacemi.
- KDY? Kdy, s jakými událostmi a na základě jakých impulzů se s informacemi pracuje
- PROČ? Jde o cíle a pravidla, jak těchto cílů dosáhnout.

Od obecného ke specifickému

- Rámec, rozsah, vize (strategické rozhodnutí, vizionář, stratég)
- Byznys model (osoba odpovědná za proces, vlastník)
- Systémový model (architekt, návrhář)
- Technologický model (návrhář, technolog)
- Detailní reprezentace (specialista, programátor)
- Provoz (vyčleněný pracovník, správce, uživatel)

The Zachman Framework for Enterprise Architecture

The Enterprise Ontology ™

Jednodušeji

	DATA What	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTIVATION Why
Objective/Scope (contextual) Role: Planner	List of things important in the business	List of Business Processes	List of Business Locations	List of important Organizations	List of Events	List of Business Goa & Strategies
Enterprise Model (conceptual) Role: Owner	Conceptual Data/ Object Model	Business Process Model	Business Logistics System	Work Flow Model	Master Schedule	Business Plan
System Model (logical) Role:Designer	Logical Data Model	System Architecture Model	Distributed Systems Architecture	Human Interface Architecture	Processing Structure	Business Rule Model
Technology Model (physical) Role:Builder	Physical Data/Class Model	Technology Design Model	Technology Architecture	Presentation Architecture	Control Structure	Rule Design
Detailed Reprentation (out of context) Role: Programmer	Data Definition	Program	Network Architecture	Security Architecture	Timing Definition	Rule Speculation
Functioning Enterprise Role: User	Usable Data	Working Function	Usable Network	Functioning Organization	Implemented Schedule	Working Strategy

Životní cyklus

- Vize
- Analýza
- Logický návrh
- Technologický návrh
- Vývoj
- Nasazení a provoz

Architektura

- Základní organizace softwarového systému zahrnující jeho komponenty, jejich vzájemné vztahy a vztahy s okolím systému, principy návrhu takového systému a jeho vývoje
 - ISO/IEC/IEEE 42010:2011 "Systems and software engineering Architecture description "
- Architektura informačního systému leží na vyšší úrovni abstrakce tak, že zahrnuje
 - pohled na aplikační doménu (tj. "pohled zákazníka"),
 - pohled vývojáře na globální strukturu systému a chování jeho částí, jejich propojení a synchronizace,
 - pohled na přístup k datům a toky dat v systému,
 - fyzické rozmístění komponent a další.

Pravidla a principy

- Softwarová architektura představuje především strukturu softwarového systému a pravidla jejího vývoje.
 - statická architektura umožňuje zachytit pouze pevnou strukturu softwarového systému bez možnosti změn, struktura systému je daná při návrhu a neměnná za běhu systému
 - *dynamická architektura* oproti statické architektuře navíc podporuje vznik a zánik komponent a vazeb za běhu systému podle pravidel určených při návrhu, struktura systému se dynamicky mění
 - *mobilní architektura* rozšiřuje dynamickou architekturu o mobilní prvky, kdy se komponenty a vazby přesouvají za běhu systému podle stavu výpočtu

Stav struktury systému

- *Komponenty* části dekomponovaného systému s daným rozhraním.
- Konektory komunikační kanály pro propojení komponent s daným rozhraním.
- *Konfigurace* konkrétní způsob vzájemného propojení komponent pomocí konektorů.

Komponenta

Softwarová komponenta je softwarový balík, služba nebo obecně modul zajišťující určitou funkčnost, a tedy zapouzdřující funkce a data.

Architektura x Návrh

- **ARCHITEKTURA** se zabývá především technickými (jinými než funkčními) a částečně funkčními požadavky, zatímco **NÁVRH** vychází z čistě funkčních požadavků.
- Proces definice ARCHITEKTURY využívá zkušenosti, heuristiky a
 postupná upřesnění a zlepšení. Vyžaduje vysokou míru abstrakce
 pro NÁVRH rozdělení logiky systému do samostatně fungujících
 částí (s přesně definovanými kompetencemi).
- Dělat obojí správně znamená mít zkušenost a schopnost oddělovat podstatné od nepodstatného. Nedá se jednoduše naučit ze sebelepší příručky ☺

Jak postupovat?

- Dekompozice
 - Identifikace systémových požadavků
 - Dekompozice systému do komponent
 - Přidělení požadavků k jednotlivým komponentám
 - Ověření, že všechny požadavky byly přiděleny
 - [Standard Systems and software engineering Software life cycle processes ISO/IEC/IEEE 12207:2017]

Návrh x Nasazení

- NÁVRH (design) popisuje systém rozdělený do logických částí, tedy JAK funguje a s ČÍM pracuje (třídy, tabulky, komponenty, služby a vztahy mezi nimi).
- NASAZENÍ (deployment) popisuje KDE systém běží (na jakém HW, SW platformě,...).

Tři klíčové kompetence

- Komunikace s uživatelem (prezentace informací, předání požadavků)
- Zpracování informací a jejich (dočasné) uchování.
- Trvalé uchování informací (dat).
- => Třívrstvá architektura

V širším slova smyslu se jedná o interakci mezi lidmi, procesy a daty. Informační systém je určen ke zpracování (získávání, přenos, uložení, vyhledávání, manipulace, zobrazení) informací.

Zadání a vize

- · Zadání vyjádřeno názvem (popisujícím doménu IS).
- Odpovědi na 6 klíčových otázek.
- Minimální, ale úplný, rozsah.
- Text pochopitelný oběma stranám (zákazník a řešitel).

Úkoly na cvičení

- Seznam funkčních požadavků jako sada use-case diskuze.
- Navrhněte dvě třídy s asociací pro semestrální úlohu a připravte jednoduchou implementaci od rozhraní po uložená data.

Kontrolní otázky 1/2

- 1. Popište, co se rozumí pojmem informační systém, co řeší a uveďte příklady.
- 2. Popište, co se rozumí pojmem doména informačního systému a uveďte příklady.
- 3. Na jaké otázky si musíme odpovědět při realizaci informačního systému? Uveďte příklady odpovědí na jednotlivé otázky v kontextu nějakého konkrétního informačního systému.
- 4. Z jakých pohledů (míry abstrakce) se můžeme dívat na informační systém? A v jakých rolích?
- 5. Co se rozumí architekturou informačního systému a co zahrnuje?
- 6. Jaké jsou rozdíly mezi statickou, dynamickou a mobilní architekturou informačního systému? Uveďte příklady.

Kontrolní otázky 2/2

- 7. Co obsahuje struktura každého informačního systému? Uveďte příklady.
- 8. Popište, co se rozumí pojmem komponenta informačního systému. Uveďte příklady.
- 9. Jaký je rozdíl mezi architekturou a návrhem informačního sytému?
- 10. Jak se správně postupuje při stanovení architektury a návrhu informačního systému?
- 11. Které kompetence obsahuje informační systém? Uveďte příklady těchto kompetencí.

K přečtení...

• Martin Fowler. *Patterns of Enterprise Application Architecture*. Addison-Wesley Professional, 2003 [1-13].