Задание №3

Моделирование трехчастотных волновых взаимодействий в средах с квадратичной нелинейностью

I. Изучение параметрической генерации волн при δ_i =0.

Задать следующие начальные условия:

$$R_1 = 0.1, R_2 = 0, R_3 = 1.$$

Определить:

- а) период перекачки энергии, для чего измерить расстояние между максимумом и минимумом функции R_3 (измерение провести для нескольких максимумов и минимумов и найти среднее значение);
- б) максимальный коэффициент преобразования, для чего измерить максимальное значение функции R_i (измерения провести для нескольких максимумов и взять среднее значение), а затем рассчитать КПМ по формуле (11).

II. Изучение влияния затухания на параметрическую генерацию.

Введение затухания приводит к уменьшению амплитуд всех волн по мере распространения в среде.

Задать следующие начальные условия:

$$R_1 = 0.1, R_2 = 0, R_3 = 1.$$

Определить:

а) квазипериод и КПМ перекачки энергии накачки в энергию сигнальной волны функции расстояния, пройденного волнами.

Ввести одинаковое для всех затухание $\delta_1 = \delta_2 = \delta_3 = 0.05$.

Для этого представить в виде графиков:

- 1) зависимость периода перекачки энергии для каждой из волн от номера максимума;
- 2) зависимость КПМ от номера максимума по формуле

$$\eta(n) = \frac{R_{1max}^2(n) + R_{2max}^2(n)}{R_3^2(0)}.$$

- б) величины затухания δ , при котором процесс перекачки становится апериодическим. Изменяя затухание $\delta = 0.02, 0.03, ...$, наблюдать кривые, соответствующие различным δ . Найти такое δ , при котором каждая из функций R_i имеет не более одного максимума.
- в) зависимости КПМ перекачки от затухания волны накачки. Рассматривается случай, когда накачка происходит на частоте характеристического излучения, т. е. $\delta_1 = \delta_2 = 0$, $\delta_3 \neq 0$.

III. Изучение генерации разностной частоты при δ_i =0.

Задать следующие начальные условия:

 $R_1 = 1, R_2 = 0, R_3 = 1$ (падение на границу двух волн равной интенсивности).

Определить:

- а) периоды перекачки энергии для волн R_1 и R_3 ;
- б) максимальный КПМ перекачки энергии в волну разностной частоты по формуле

$$\eta_{max} = \frac{R_{2max}^2}{R_{1max}^2 + R_3^2}.$$