1.2 7 Let m and n be positive integers such that m+n=57 and [m,n]=680. Find m and n.

Ans m + n = 57 and [m, n] = 680

Let n be represented by m, such that,

$$m \cdot (57 - m) = 680$$

 $\Rightarrow 0 = m^2 - 57m + 680$
 $= \frac{57 \pm \sqrt{57^2 - 4 \cdot 680}}{2}$
 $= \frac{57 \pm 23}{2}$

m=40,17

 $\therefore m = 40$, n = 17

10 Show that $a\mathbb{Z} \cap b\mathbb{Z} = lcm[a, b]\mathbb{Z}$.

Ans Let $x \in lcm[a, b]\mathbb{Z}$

Since, $a \mid lcm[a,b]$ and $b \mid lcm[a,b]$,

 $a \mid x \text{ and } b \mid x$

Therefore, $x \in a\mathbb{Z} \cap b\mathbb{Z}$

Conversely, let $x \in a\mathbb{Z} \cap b\mathbb{Z}$

Then, $x \in a\mathbb{Z}$ and $x \in b\mathbb{Z}$

Then, $x \mid a$ and $x \mid b$

16 A positive integer a is called a **square** if $a = n^2$ for some $n \in \mathbb{Z}$. Show that the integer a > 1 is an integer if and only if every exponent in its prime factorization is even.

Ans Suppose $a = p_1^{r_1} \cdot p_2^{r_2} \cdot \ldots \cdot p_k^{r_k}$, where r_i is even.

Also, let
$$n=p_1^{r_1/2}\cdot p_2^{r_2/2}\cdot\ldots\cdot p_k^{r_k/2}$$

Then, $a=n^2$

	Conversely, suppose $a=n^{-}$.
	Let $n=p_1^{s_1}\cdot p_2^{s_2}\cdot\ldots\cdot p_l^{s_l}$
	Then, $a=p_1^{2s_1}\cdot p_2^{2s_2}\cdot\ldots\cdot p_l^{2s_l}$
	Therefore, all the primes of a have even powers.
20	A positive integer is called square-free if it is a product of distinct primes. Prove that
	every positive integer can be written uniquely as a product of a square and a square-
	free integer.
Δne	F