

Examining the Effects of Roadside Vegetation on Near-Road Air Pollution

Rich Baldauf
U.S. Environmental Protection Agency
June 2, 2015
Sacramento, CA

Presentation Overview

- Interest in Roadside Vegetation
- Research Results
- Summary/Recommendations

Why study roadside vegetation?

- Few "short-term" mitigation options for near-road air quality concerns
 - Emission reductions take long to implement (fleet turnover required)
 - Planning and zoning involved in rerouting/VMT reduction programs
 - Buffer/exclusion zones may not be feasible or effective
- Roadside vegetation may already be present
- Roadside vegetation has other positive benefits

Research Methodology

- EPA has initiated research to examine the role roadside vegetation may play in affecting near-road air pollution
 - Field studies
 - Research Triangle Park area (vegetation and noise barriers)
 - Detroit (vegetation)
 - San Francisco (vegetation)
 - Wind tunnel assessments
 - Vegetation removal processes
 - Site-specific configurations
 - Computational Fluid Dynamics (CFD) modeling
 - Generalized vegetative scenarios
 - Site-specific configurations

SEPA

Noise Barrier & Vegetation Effects

Environmental Protection Agency

 Noise barriers reduced PM levels compared with a clearing

Vegetation with noise barriers provided a further reduction of PM concentrations and gradients

- Field data: Mobile and fixed site sampling study at two sites in North Carolina
 - One with primarily pine trees (Chapel Hill)
 - One with primarily hardwoods (Mebane)

Steffans et al. (2011)

- Ultrafine PM number count generally reduced downwind of a vegetation stand
- Higher reductions most often occurred closer to ground-level
- Variable winds caused variable effects

- Lower size fractions of PM most reduced downwind of the vegetation stand
- Effect most evident closer to ground-level

- Smaller size PM have higher removal rate
- Removal increases at lower wind velocities
- Branch/leaf shape and size affects removal

- For thin tree stands, variable results seen under changing wind conditions (e.g. parallel to road, low winds) and larger spatial scales
- Future research looking into effects of lower porosity/wider tree stands

San Francisco Vegetation Study

- On-road and near-road mobile and fixed monitoring with varying vegetation types
 - Bush/tree combinations with varying porosity
 - Manicured hedges

STOP 1

San Francisco Vegetation Study

San Francisco Vegetation Study

Initial results suggest the importance of thickness, porosity and full coverage

- All wind directions
- ~10k data pts/stop
- ~10min/stop/day

Preliminary data: do not cite or quote

San Francisco Vegetation Study

Initial results suggest the importance of thickness, porosity and full coverage

- All wind directions
- ~10k data pts/stop
- ~10min/stop/day

Preliminary data: do not cite or quote

Summary - Vegetation

- Research shows the ability for roadside vegetation to reduce downwind pollutant concentrations near roads
- Design considerations are very important:
 - Generally, the higher and thicker the vegetation, the higher the pollution reduction
 - -Pollutants can meander around edges or through gaps
 - Areas targeted for reductions should avoid edge effects
 - Existing vegetation with gaps may be increasing exposures
- Vegetation should be appropriate for the location of use
- Best practice guidance and case studies needed to fully evaluate potential effectiveness of roadside vegetation and avoid unintended consequences
- Models will be important in designing and evaluating vegetative barriers

Summary - Vegetation

- Areas desired for reduced concentrations should avoid gaps and edge effects
 - Vegetation barrier should provide coverage from the ground to the top of canopy
 - Barrier thickness should be adequate for complete coverage so gaps are avoided
- Pine/coniferous trees and thick bushes may be a good choice
 - No seasonal effects
 - Complex, rough, waxy surfaces

Summary - Vegetation

- Pollutants can meander around edges or through gaps
- Barrier thickness should be adequate for complete coverage to avoid gaps
 - No spaces between or under trees
 - No gaps from dead or dying vegetation;
 maintenance important

Examples of inadequate barriers due to gaps

Summary - Barriers

- Combination of noise and vegetative barriers may provide most benefit
 - Increase potential for pollutant dispersion and removal
 - May be solid barrier with vegetation behind and/or in front
 - Use of climbing vegetation and hedges with solid barrier may also provide additional benefits
 - Field study results mixed
 - Vegetation on solid wall should extend enough to allow air to flow through

Acknowledgements

Academia/NGO

K. Max Zhang
Andrey Khlystov
Tom Cahill
Akula Venkatram
Ye Wu
Tom Whitlow
Doug Eisinger
Kori Titus

California Gov't

Linda Wheaton Earl Withycombe

EPA

Vlad Isakov Sue Kimbrough Gayle Hagler Laura Jackson **David Heist Richard Shores Nealson Watkins Chad Bailey** Rich Cook Steve Perry Bill Mitchell James Faircloth Richard Snow Thomas Long

FHWA

Victoria Martinez Kevin Black Mark Ferroni Adam Alexander

USFS

Greg McPherson David Nowak

NOAA

Dennis Finn Kirk Clawson

For More Information

Websites:

- http://www.epa.gov/nrmrl/appcd/nearroadway/workshop.html
- http://www.epa.gov/ord/ca/quick-finder/roadway.htm

References

- Baldauf, R.W., A. Khlystov, V. Isakov, et al. 2008a. Atmos. Environ. 42: 7502–7507
- Baldauf, R.W., E. Thoma, M. Hays, et al. 2008b. J. Air & Waste Manage Assoc. 58:865–878
- Baldauf, R.W., N. Watkins, D.K. Heist, et al. 2009. J. of Air Quality, Atmosphere, & Health. Vol. 2: 1-9
- Baldauf, R.W., D.K. Heist,, V. Isakov, et al. 2012. Atmos. Environ. 64: 169-178
- Brantley, H., P. Deshmukh, G. Hagler et al. 2014. Atmos. Environ. online
- Finn, D., K.L. Clawson, R.G. Carter et al., 2010. Atmos. Environ. 44: 204-214.
- Hagler, G.S.W., M-Y. Lin, A. Khlystov, et al. 2012. Science of the Total Environment, 419: 7-15
- Heist, D.K., S.G. Perry, L.A. Brixey, 2009. Atmos. Environ. 43: 5101-5111
- Khlystov, A., M-Y Lin, G.S.W. Hagler, et al. 2012. A&WMA Measurements Workshop, Durham, NC
- Steffens, A., Y.J. Wang, K.M Zhang. 2012. Atmos. Environ. 50: 120-128

Contact Information:

Rich Baldauf, PhD, P.E. U.S. Environmental Protection Agency Research Triangle Park, North Carolina 919-541-4386 baldauf.richard@epa.gov