Assignment 2: CS 754

Krushnakant Bhattad	Devansh Jain
190100036	190100044

February 22, 2021

Contents

Question 1	1
Question 2	2
Question 3	3
Question 4	4
Question 5	5
Question 6	6

[In this answer, all norms are ℓ_2 norms unless stated otherwise]

For integer k = 1, 2, ..., n, the restricted isometry constant(RIC) δ_k of a matrix \boldsymbol{A} of size $m \times n$ is the smallest number such that for any k-sparse vector $\boldsymbol{\theta}$, we have:

$$(1 - \delta_k)||\boldsymbol{\theta}||^2 \le ||\boldsymbol{A}\boldsymbol{\theta}||^2 \le (1 + \delta_k)||\boldsymbol{\theta}||^2$$

Let s < t.

Let Q_s be the set of all s-sparse vectors, and Q_t be the set of all t-sparse vectors. As s < t, any s-sparse vector is also a t-sparse vector. Hence, we have $Q_s \subset Q_t$.

 δ_s is the smallest number such that for all $\boldsymbol{\theta} \in Q_s$,

$$(1 - \delta_s)||\boldsymbol{\theta}||^2 \le ||\boldsymbol{A}\boldsymbol{\theta}||^2 \le (1 + \delta_s)||\boldsymbol{\theta}||^2$$

And δ_t is the smallest number such that for all $\theta \in Q_t$,

$$(1 - \delta_t)||\boldsymbol{\theta}||^2 \le ||\boldsymbol{A}\boldsymbol{\theta}||^2 \le (1 + \delta_t)||\boldsymbol{\theta}||^2$$

We have to prove that $\delta_s \leq \delta_t$.

On the contrary, let's assume $\delta_s > \delta_t$. As $Q_s \subset Q_t$, for all $\theta \in Q_s \subset Q_t$, we have

$$(1 - \delta_t)||\boldsymbol{\theta}||^2 \le ||\boldsymbol{A}\boldsymbol{\theta}||^2 \le (1 + \delta_t)||\boldsymbol{\theta}||^2$$

As δ_s was defined to be the smallest number satisfying above, it cannot be the case that $\delta_s > \delta_t$. Hence, it must be the case that $\delta_s \leq \delta_t$.

Fix a $\lambda > 0$ and consider the LASSO Problem:

$$J(x) = ||y - \Phi x||_2^2 + \lambda ||x||_1$$

Suppose r minimizes $J(\cdot)$.

We claim that, if $\epsilon = ||\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{r}||_2$ then, \boldsymbol{r} is also a solution to:

P1: $\min_{x} ||x||_1$ s. t. $||y - \Phi x||_2 \le \epsilon$

To prove this, we do as follows:

Firstly, for all $x \neq r$, we will have: $J(x) \geq J(r)$.

Consider all x for which $||y - \Phi x||_2 \le \epsilon$.

Due to both sides being positive, we also have- $||m{y} - \mathbf{\Phi} m{x}||_2^2 \leq \epsilon^2$

which we can write as: $0 \le \epsilon^2 - ||\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x}||_2^2$

We do know that following holds true for all x, so it does for our constrain too:

$$||y - \Phi x||_2^2 + \lambda ||x||_1 \ge ||y - \Phi r||_2^2 + \lambda ||r||_1$$

$$||y - \Phi x||_2^2 + \lambda ||x||_1 \ge \epsilon^2 + \lambda ||r||_1$$

Now using our constrain, we can write,

$$\lambda(||\boldsymbol{x}||_1 - ||\boldsymbol{r}||_1) \ge \epsilon^2 - ||\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{x}||_2^2 \ge 0$$

As $\lambda > 0$ by definition, we thus have $||\boldsymbol{x}||_1 - ||\boldsymbol{r}||_1 > 0$ for all \boldsymbol{x} for which $||\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x}||_2 \le \epsilon$.

That is, for all x for which $||y - \Phi x||_2 \le \epsilon$, $||r||_1 < ||x||_1$

Thus, r is also a solution to P1 for the value of ϵ stated above. \square