• Introduce Dark Matter and XENON Collaboration & Experiment

- Give details regarding the physics, historical observations of dark matter, and what it means if we successfully make a direct detection

- * Effects of dark matter were observed through gravitational lensing, cosmic microwave background, and galaxy formation
- * Dark matter is difficult to detect outside of its large scale gravitational effects
- * Requires keV sensitivity if we hope to make a direct detection of it
- * Making a direct detection allows us to learn the mass and match this to theory
- Give details on what the XENON collab. and experiment are.
 - * Detector is a dual phase TPC using 1 ton of xenon
 - * Located at LNGS
 - * 2 science runs (caused by earthquake)
 - * 258 photomultiplier tubes
 - * 1 meter diameter
 - * Most sensitive dark matter direct detection experiment (soon to be overcome by its successor XENONnT)
 - * What is the fiducial volume
 - · Cover where it is (plot)
 - · Cover how big it is (exact volume)
 - · Cover why it is there (volume of most radio-purity and therefore the most confident)

• Introduce observations from XENON1T and project idea

- Example hit pattern from simulation and/or experiment
 - * Simulation can show the true position of an event
 - * Experiment can show noise/background that is difficult to overcome
- What is position reconstruction, why is it important
 - * Based on the signal seen by the photomultiplier tubes, we're trying to figure out where an event originated from
 - * Allows for quick removal of data that is outside the fiducial volume of the detector
- What are the old position reconstruction algorithms

- * Multilayer Perceptron
- * Weighted Sum Position
- * Max PMT Position
- * Problems with these were accuracy and reconstructing positions outside the detector
- Why is it difficult to achieve accurate reconstructions
 - * Difficult for the machine to learn that there is a wall to the detector
 - * There is less information given the to PMTs that are near the wall of the detector
 - * PMTs will break at some point during the science run, so we'll start to receive less information
 - * Each event is not perfect and contains background events that are not easy to filter out

• What is a Neural Network, a Convolutional Neural Network, and a Graph Convolutional Neural Network

- Explain the idea of what a neural network is
 - * How it came about as an analogy to animal brains and the neurons in them
 - * How it can be useful to our problem as shown by the Multi-Layer Perceptron
- Explain what a convolutional neural network is and why we can't use it
 - * Convolutional neural networks have generally been applied to images
 - * For input, they require data in a rectangular format, such as an image matrix where each pixel is a value in a matrix
 - * They are able to preserve locality of pixels when trying to learn about the image
 - * Our data cannot easily be made into a rectangular format; there is no analogous image matrix for out data
 - * How can be preserve locality of PMTs like a convolutional neural network does?
- Explain what a graph convolutional neural network is
 - * Makes use of a graph data structure instead of rectangular data structures, which is a format any dataset can use

* Give a simple example (4-5 nodes) of how a graph convolutional neural network works

- * They have mainly been used for classification, but we will be using it for regression
- * Our PMTs are the nodes in the graph
- * These nodes take the amount of light seen by each PMT for an event as a feature
- * The edges between nodes preserve the locality if we do it correctly
- Explain how our approach to a graph convolutional neural network is
 - * Show the graph structures we considered and chose
 - * Show the network structure that we chose
 - * Came to this network structure based on the successful convolutional neural networks

• Simulation Data

- Optical Simulation
 - * 989,875 events: 791,900 training, 197,975 validation
 - * 0.8:0.2 :: training:validation
 - * 1,000 photons were events
 - * True position of events are a random, uniform distribution within the detector
 - * All PMTs are working
 - * There are no background events, only the main signal is present

• Results

- Many plots of the results of our network on the optical simulation
 - * Resolution histograms for x, y, and R
 - * True positions of events that were reconstructed greater than 1 cm away
 - * 2D resolution histogram
 - * Histogram of poorly reconstructed radius and the true radius
- Identify where it succeeded and where it failed
 - * Success: All events within the detector
 - * Success: Did not normalize the simulation data before inputting

* Success: Outperforms a Multi-Layer Perceptron with similar count of trainable parameters

- * Failure: Still produced positions that were greater than 1 cm away from the true position
- * Failure: These poor position reconstructions are primarily along the wall and is the same as problem as the Multi-Layer Perceptron

• Conclusions & Future Work

- Can we address these failures?
 - * We think that a graph convolutional neural network is not the best answer
 - * A graph neural network in the broader sense could still perform better
- Should graph neural networks see use in other experiments
 - * This is one of the earliest applications of a graph convolutional neural network for regression in particle physics, and it did well
 - * Graph Neural Networks have a place in particle physics for detectors with awkward data structures
 - * The broader graph neural networks can and still should be researched for their applicability
 - * Still possible to research what the most optimal graph structure is for a given detector