Mata Kuliah Dasar Teknik Digital

GERBANG LOGIKA dan

ALJABAR BOOLEAN

penyangkalan dengan kata-kata "tidak" (NOT)

$$1'=0 \text{ dan } 0'=1$$

Tabel Kebenaran NOT

A	$Z=\overline{A}$
0	1
1	0

Gerbang Dasar - AND

• AND: Z = A.B = AB

masukan		keluaran	
Α	В	Z= A.B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

animasi

Gerbang Dasar - OR

• OR: Z = A + B

masukan		keluaran	
Α	В	Z=A+B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

• NOR : Z = (A + B)

NAND	:	Z =	(AB)	

A	В	Z=A+B
0	0	1
0	1	0
1	0	0
1	1	0

A	В	Z = A B
0	0	1
0	1	1
1	0	1
1	1	0

Gerbang Tambahan

• EXOR : Z= A ⊕ B

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

animasi

Logika Kombinasi

- Rangkaian kombinasi adalah rangkaian aplikasi yang terbentuk dari berbagai macam gerbang logika dan dapat merupakan kombinasi dari satu jenis gerbang logika atau lebih.
- Penyederhanaan rangkaian terintegrasi dapat menggunakan aljabar boole atau peta karnaugh

Sistem Digital. Hal 29

CONTOH.

Buatlah rangkaian dengan Gerbang Logika untuk kombinasi sbb.

$$Q = X \cdot (X' + Y)$$

CONTOH.

Buatlah rangkaian dengan Gerbang Logika untuk kombinasi sbb.

$$Q = X \cdot (X' + Y)$$

Jawab.

Contoh 2.

Bagaimana cara mengaplikasikan gerbang OR 4 masukan dengan menggunakan gerbang OR 2 masukan?

Sistem Digital.

Hal 25

Contoh 3.

- Gerbang NAND 4 input menggunakan gerbang AND 2 input dan 1 inverter
- Gerbang NAND 3 input menggunakan gerbang NAND 2 input

Sistem Digital. Hal 27

Contoh 4

- Rangkaian NOT menggunakan 2 input gerbang NAND
- Rangkaian NOT menggunakan 2 input gerbang NOR
- Rangkaian NOT menggunakan 2 input gerbang XOR

Sistem Digital.

Hal 28

Teorema Dasar Boole

1. Operasi dengan 0 dan 1	x + 0 = x $x.0 = 0x + 1 = 1$ $x.1 = x$	
2. Hukum Idempoten	$ \begin{array}{l} $	
3. Hukum Involusi	$\bar{\bar{\mathbf{x}}} = \mathbf{x}$	
4. Hukum Komplement	$x + \overline{x} = 1$ $x.\overline{x} = 0$	
5. Hukum Kumutatif	x + y = y + x x.y = y.x	
6. Hukum Assosiatif	(x+y)+z = x+(y+z) = x+y+z (xy)z = x(yz) = xyz	
7. Hukum Distributif	x(y+z) = xy+xz x+yz = (x+y)(x+z)	

Teorema Tambahan Boole

1. Teorema penyederhanaan:
$$x y + x \overline{y} = x \\ x + x y = x \\ (x + \overline{y}) y = x y$$

$$(x + y)(x + \overline{y}) = x \\ x (x + \overline{y}) = x \\ x \overline{y} + y = x + y$$
 2. Hukum de Morgan:
$$\overline{x + y + z + ...} = \overline{x} \overline{y} \overline{z} ...$$

$$\overline{x \cdot y \cdot z \cdot ...} = \overline{x} + \overline{y} + \overline{z} + ...$$
 3. Teorema Konsensus:
$$xy + yz + \overline{x}z = xy + \overline{x}z \\ (x + y)(y + z)(\overline{x} + z) = (x + y)(\overline{x} + z) \\ (x + y)(\overline{x} + z) = xz + \overline{x}y$$
 4. Dualitas
$$(x + y + z + ...)^D = x y z \\ (x y z ...)^D = x + y + z +$$

$$[f(x_1, x_2, x_3, ..., x_n, 0, 1, +, .)]^D = f(x_1, x_2, x_3, ..., x_n, 0, 1, +, .)$$

Hukum de Morgan

(i) When
$$A = 0$$
, $B = 0$,

$$\overline{A+B} = \overline{0+0} = \overline{0} = 1$$

and
$$\bar{A} \cdot \bar{B} = \bar{0} \cdot \bar{0} = 1 \cdot 1 = 1$$

Hence
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

(ii) When
$$A = 0$$
, $B = 1$,

$$\overline{A+B} = \overline{0+1} = \overline{1} = 0$$

and
$$\overline{A} \cdot \overline{B} = \overline{0} \cdot \overline{1} = 1 \cdot 0 = 0$$

Hence
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

(iii) When
$$A=1$$
, $B=0$,

(iv)

$$\overline{A+B} = \overline{1+0} = \overline{1} = 0$$

and
$$\bar{A} \cdot \bar{B} = \bar{1} \cdot \bar{0} = 0 \cdot 1 = 0$$

Hence
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

When
$$A=1$$
, $B=1$,

$$\overline{A+B} = \overline{1+1} = \overline{1} = 0$$

and
$$\bar{A} \cdot \bar{B} = \bar{1} \cdot \bar{1} = 0 \cdot 0 = 0$$

Hence
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

(i) When
$$A = 0$$
, $B = 0$,

When
$$A=1$$
, $B=0$,

$$\overline{A \cdot B} = \overline{0 \cdot 0} = \overline{0} = 1$$

$$\overline{A \cdot B} = \overline{1 \cdot 0} = \overline{0} = 1$$

and
$$\overline{A} + \overline{B} = \overline{0} + \overline{0} = 1 + 1 = 1$$

and
$$\bar{A} + \bar{B} = \bar{1} + \bar{0} = 0 + 1 = 1$$

Hence
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Hence
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

(ii) When
$$A = 0$$
, $B = 1$,

When
$$A = 1$$
, $B = 1$,

$$B=1$$
,

$$\overline{A \cdot B} = \overline{0 \cdot 1} = \overline{0} = 1$$

$$\overline{A \cdot B} = \overline{1 \cdot 1} = \overline{1} = 0$$

and
$$\bar{A} + \bar{B} = \bar{0} + \bar{1} = 1 + 0 = 1$$

and
$$\bar{A} + \bar{B} = \bar{1} + \bar{1} = 0 + 0 = 0$$

Hence
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Hence
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Penyajian Fungsi Boole

- sukumin (singkatan dari "suku minimum" minterm, minimum term)
- sukumax (singkatan dari "suku maksimum" maxterm, maximum term)
- → Product of sum, nilai 0

$$M_0 M_1 M_2 M_{n-1} = \prod_{i=0}^{n-1} M_i = \prod_{i=0}^{m-1} M(0,1,2,...,n-1)$$

contoh

$$f = \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

$$f = (A + B + C) (A + \bar{B} + C) (\bar{A} + B + \bar{C}) (\bar{A} + \bar{B} + \bar{C})$$

 $f = \sum m (1,3,4,6)$

 $=\Pi M(0,2,5,7)$

Fungsi Tidak Lengkap

• Contoh : $y = \Sigma m (0,3,7) + \Sigma d (1,6)$,

Α	В	С	у
0	0	0	1
0	0	1	X
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	X
1	1	1	1

Latihan

- Gambarkan Gerbang Logika AND, OR, NOT, EXOR dan EXNOR [simbol dan table kebenaran]
- Gambarkan Gerbang Logika NAND, NOR, [simbol dan table kebenaran]
- Buatlah rangkaian dan tabel kebenaran dari soal latihan berikut ini: Z = A + (B.C)
- 4. Buatlah rangkaian dan tabel kebenaran dari soal latihan berikut ini: Z = (A+B). A'

NB:

symbol matematis dari gerbang logika AND diwakili dengan simbol (.)

OR diwakili dengan simbol (+) NOT diwakili dengan simbol (') 20