ÁLGEBRA LINEAR EE

Exercícios - Espaços Vetoriais

- 1. Considere o espaço vetorial real \mathbb{R}^3 .
 - (a) Verifique se (1, -4, 5) é combinação linear de (1, -1, 1) e (3, 0, -1).

O vetor (1,-4,5) é combinação linear de (1,-1,1) e (3,0,1) se e só se existem $a,b\in\mathbb{R}$ tais que

$$(1, -4, 5) = a(1, -1, 1) + b(3, 0, -1),$$

i.e., se e só se o sistema

$$\begin{cases} a+3b=1\\ -a=-4\\ a-b=5 \end{cases}$$

é possível.

Seja [A|b] a matriz ampliada do sistema. Aplicando o método de eliminação de Gauss-Jordan à matriz [A|b], tem-se

$$[A|b] = \begin{bmatrix} 1 & 3 & 1 \\ -1 & 0 & -4 \\ 1 & -1 & 5 \end{bmatrix} \xrightarrow{L_2 \leftarrow L_2 + L_1} \begin{bmatrix} 1 & 3 & 1 \\ 0 & 3 & -3 \\ 0 & -4 & 4 \end{bmatrix}$$

$$\xrightarrow{L_3 \leftarrow -\frac{1}{4}L_3} \begin{bmatrix} 1 & 3 & 1 \\ 0 & 3 & -3 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{L_1 \leftarrow L_1 - 3L_3} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

$$\xrightarrow{L_2 \leftrightarrow L_3} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Logo, o sistema anterior é equivalente ao sistema

$$\begin{cases} a = 4 \\ b = -1 \end{cases}$$

O sistema é possível e, portanto, o vetor (1, -4, 5) é combinação linear de (1, -1, 1) e (3, 0, -1). De facto, tem-se (1, -4, 5) = 4(1, -1, 1) - 1(3, 0, -1).

(b) Verifique se (3,0,2) é combinação linear de vetores de $\{(1,0,0), (1,0,1), (-1,0,2), (0,2,1)\}$.

O vetor (3,0,2) é combinação linear de vetores de $\{(1,0,0), (1,0,1), (-1,0,2), (0,2,1)\}$ se e só se existem $a,b,c,d \in \mathbb{R}$ tais que

$$(3,0,2) = a(1,0,0) + b(1,0,1) + c(-1,0,2) + d(0,2,1),$$

i.e., se e só se o sistema

$$\begin{cases} a+b-c=3\\ 2d=0\\ b+2c+d=2 \end{cases}$$

é possível.

Seja [A|b] a matriz ampliada do sistema. Aplicando o método de eliminação de Gauss-Jordan à matriz [A|b], tem-se

$$[A|b] = \begin{bmatrix} 1 & 1 & -1 & 0 & | & 3 \\ 0 & 0 & 0 & 2 & | & 0 \\ 0 & 1 & 2 & 1 & | & 2 \end{bmatrix} \xrightarrow{L_2 \leftrightarrow L_3} \begin{bmatrix} 1 & 1 & -1 & 0 & | & 3 \\ 0 & 1 & 2 & 1 & | & 2 \\ 0 & 0 & 0 & 2 & | & 0 \end{bmatrix}$$

$$L_1 \leftarrow L_1 - L_2 \qquad \begin{bmatrix} 1 & 0 & -3 & 0 & | & 1 \\ 0 & 1 & 2 & 1 & | & 2 \\ 0 & 0 & 0 & 2 & | & 0 \end{bmatrix} \xrightarrow{L_3 \leftarrow \frac{1}{2}L_3} \begin{bmatrix} 1 & 0 & -3 & 0 & | & 1 \\ 0 & 1 & 2 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$L_2 \leftarrow L_2 - L_3 \qquad \begin{bmatrix} 1 & 0 & -3 & 0 & | & 1 \\ 0 & 1 & 2 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Logo, o sistema anterior é equivalente ao sistema

$$\begin{cases} a - 3c = 1 \\ b + 2c = 2 \\ d = 0 \end{cases}$$

Uma vez que car(A) = car([A|b]), o sistema é possível. Portanto, o vetor (3,0,2) é combinação linear de vetores de $\{(1,0,0), (1,0,1), (-1,0,2), (0,2,1)\}$. O conjunto de soluções deste sistema é

$$\{(1+3c, 2-2c, c, 0) \in \mathbb{R}^4 \mid c \in \mathbb{R}\}.$$

Assim, para qualquer $c \in \mathbb{R}$, tem-se:

$$(3,0,2) = (1+3c)(1,0,0) + (2-2c)(1,0,1) + c(-1,0,2) + 0(0,2,1).$$

(c) Determine os valores de k tais que o vetor (2, k, -1) é combinação linear dos vetores (1, 3, 1) e (-1, 2, 1).

O vetor (2, k, -1) é combinação linear dos vetores (1, 3, 1) e (-1, 2, 1) se e só se existem $a, b \in \mathbb{R}$ tais que

$$(2, k, -1) = a(1, 3, 1) + b(-1, 2, 1),$$

i.e., se e só se existem $a, b \in \mathbb{R}$ tais que

$$\begin{cases} a-b=2\\ 3a+2b=k\\ a+b=-1 \end{cases}$$

Seja [A|b] a matriz ampliada do sistema. Aplicando o método de Gauss à matriz [A|b], tem-se

$$[A|b] = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 2 & k \\ 1 & 1 & -1 \end{bmatrix} \xrightarrow{L_2 \leftarrow L_2 - 3L_1} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 5 & k - 6 \\ 0 & 2 & -3 \end{bmatrix}$$

$$L_3 \leftarrow L_3 - \frac{2}{5}L_2$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 5 & k - 6 \\ 0 & 0 & \frac{-2k - 3}{5} \end{bmatrix}$$

Tem-se car(A) = 2. O sistema é possível se e só se car(A) = car([A|b]). Assim, o sistema anterior é possível se e só se $k = -\frac{3}{2}$.

Logo, o vetor (2, k, -1) é combinação linear dos vetores (1, 3, 1) e (-1, 2, 1) se e só se $k = -\frac{3}{2}$.

- 2. Verifique se são subespaços vetoriais de \mathbb{R}^3 os subconjuntos:
 - (a) $\{(x, y, z) \in \mathbb{R}^3 \mid x 2y = 0, y = z\};$

Seja
$$S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y = 0, y = z\}.$$

- (1) Da definição de S_1 é imediato que $S_1 \subseteq \mathbb{R}^3$.
- (2) Tem-se $(0,0,0) \in \mathcal{S}_1$, logo $\mathcal{S}_1 \neq \emptyset$.
- (3) Sejam $u = (x, y, z), v = (a, b, c) \in \mathcal{S}_1$. Então

$$x - 2y = 0, \quad y = z,$$

 $a - 2b = 0, \quad b = c.$

Uma vez que $u + v = (x, y, z) + (a, b, c) = (x + a, y + b, z + c) \in \mathbb{R}^3$,

$$(x+a) - 2(y+b) = (x-2y) + (a-2b) = 0 + 0 = 0,$$

 $y+b=z+c,$

então $u + v \in \mathcal{S}_1$.

(4) Seja $u=(x,y,z)\in\mathcal{S}_1$. Então x-2y=0 e y=z. Uma vez que $\alpha u=\alpha(x,y,z)=(\alpha x,\alpha y,\alpha z)\in\mathbb{R}^3,$

$$\alpha x - 2\alpha y = \alpha(x - 2y) = 0,$$

 $\alpha y = \alpha z,$

então $\alpha u \in \mathcal{S}_1$.

De (1), (2), (3) e (4) conclui-se que S_1 é um subespaço de \mathbb{R}^3 .

(b) $\{(x, y, z) \in \mathbb{R}^3 \mid 2x + y = 1\};$

Seja $S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y = 1\}$. Uma vez que $(0, 0, 0) \notin S_2$, então S_2 n ão é um subespaço de \mathbb{R}^3 .

(c) $\{(0, 2b - a, 3a) \mid a, b \in \mathbb{R}\}.$

Seja $S = \{(0, 2b - a, 3a) \mid a, b \in \mathbb{R}\}$. O conjunto S é um subespaço de \mathbb{R}^3 , pois:

- (1) $S \subseteq \mathbb{R}^3$ (imediato por definição de S).
- (2) $S \neq \emptyset$; por exemplo, $(0,0,0) \in S$.
- (3) Para quaisquer $x,y\in S,\,x+y\in S.$ De facto, se $x,y\in S,$ então $x=(0,2b_1-a_1,3a_1),$ $y=(0,2b_2-a_2,3a_2),$ para alguns $a_1,a_2,b_1,b_2\in\mathbb{R}.$ então

$$x + y = (0, 2(b_1 + b_2) - (a_1 + a_2), 3(a_1 + a_2)), \text{ com } a_1 + a_2, b_1 + b_2 \in \mathbb{R}.$$

Logo, $x + y \in S$.

(4) Para qualquer $x \in S$ e para qualquer $\lambda \in \mathbb{R}$, $\lambda x \in S$. De facto, se $x \in S$, tem-se $x = (0, 2b_1 - a_1, 3a_1)$, para alguns $a_1, b_1 \in \mathbb{R}$. Logo,

$$\lambda x = (0, 2(\lambda b_1) - \lambda a_1, 3(\lambda a_1)), \text{ com } \lambda a_1, \lambda b_1 \in \mathbb{R},$$

e, portanto, $\lambda x \in S$.

3. Em cada caso, calcule o subespaço vetorial $S_1 \cap S_2$ e indique a forma geral de um vetor de $S_1 \cap S_2$.

(a)
$$S_1 = \{(x_1, \dots, x_4) \in \mathbb{R}^4 \mid x_1 = -x_4, x_2 + x_3 = 2x_1\} \in S_2 = \{(y_1, \dots, y_4) \in \mathbb{R}^4 \mid y_1 = 0, y_2 + y_3 = -y_4\};$$

Seja $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$. então

$$(a_1, a_2, a_3, a_4) \in \mathcal{S}_1 \cap \mathcal{S}_2 \Leftrightarrow \begin{cases} a_1 = -a_4 \\ a_2 + a_3 = 2a_1 \\ a_1 = 0 \\ a_2 + a_3 = -a_4 \end{cases} \Leftrightarrow \begin{cases} a_1 = 0 \\ a_2 = -a_3 \\ a_4 = 0 \end{cases}$$

Assim, $S_1 \cap S_2 = \{(0, -k, k, 0) | k \in \mathbb{R}\}.$

(b)
$$S_1 = \{(b, 2b - a, a + b, c) \mid a, b, c \in \mathbb{R}\}\ e\ S_2 = \{(\alpha, 3\alpha, 0, -\alpha) \mid \alpha \in \mathbb{R}\}.$$

Seja $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$. então $(a_1, a_2, a_3, a_4) \in \mathcal{S}_1$ se e só se existem $a, b, c \in \mathbb{R}$ tais que

$$\begin{cases}
b = a_1 \\
2b - a = a_2 \\
a + b = a_3 \\
c = a_4
\end{cases}$$

Aplicando o método de eliminação de Gauss-Jordan à matriz ampliada do sistema anterior, tem-se

$$\begin{bmatrix} 0 & 1 & 0 & | & a_1 \\ -1 & 2 & 0 & | & a_2 \\ 1 & 1 & 0 & | & a_3 \\ 0 & 0 & 1 & | & a_4 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_3} \begin{bmatrix} 1 & 1 & 0 & | & a_3 \\ -1 & 2 & 0 & | & a_2 \\ 0 & 1 & 0 & | & a_1 \\ 0 & 0 & 1 & | & a_4 \end{bmatrix}$$

$$L_2 \leftarrow L_2 + L_1 \qquad \begin{bmatrix} 1 & 1 & 0 & | & a_3 \\ 0 & 3 & 0 & | & a_2 + a_3 \\ 0 & 1 & 0 & | & a_1 \\ 0 & 0 & 1 & | & a_4 \end{bmatrix} \xrightarrow{L_2 \leftarrow \frac{1}{3}L_2} \begin{bmatrix} 1 & 1 & 0 & | & a_3 \\ 0 & 1 & 0 & | & \frac{a_2 + a_3}{3} \\ 0 & 1 & 0 & | & a_1 \\ 0 & 0 & 1 & | & a_4 \end{bmatrix}$$

$$L_1 \leftarrow L_1 - L_2 \atop L_3 \leftarrow L_3 - L_2 \xrightarrow{L_3 \leftarrow L_3 - L_2} \begin{bmatrix} 1 & 0 & 0 & | & \frac{-a_2 + 2a_3}{3} \\ 0 & 1 & 0 & | & \frac{a_2 + a_3}{3} \\ 0 & 0 & 0 & | & \frac{a_2$$

Da última matriz conclui-se que o sistema anterior é possível se e só se $\frac{3a_1-a_2-a_3}{3}=0$, i.e., se e só se $3a_1-a_2-a_3=0$. Logo,

$$S_1 = \{(a, b, c, d) \in \mathbb{R}^4 : 3a - b - c = 0\}.$$

Por outro lado, $(a_1, a_2, a_3, a_4) \in \mathcal{S}_2$ se e só se existe $\alpha \in \mathbb{R}$ tal que

$$\begin{cases} \alpha = a_1 \\ 3\alpha = a_2 \\ 0 = a_3 \\ -\alpha = a_4 \end{cases}$$

Aplicando o método de eliminação de Gauss-Jordan à matriz ampliada do sistema anterior, tem-se

$$\begin{bmatrix} 1 & a_1 \\ 3 & a_2 \\ 0 & a_3 \\ -1 & a_4 \end{bmatrix} \xrightarrow{L_2 \leftarrow L_2 - 3L_1 \atop L_4 \leftarrow L_4 + L_1} \begin{bmatrix} 1 & a_1 \\ 0 & a_2 - 3a_1 \\ 0 & a_3 \\ 0 & a_4 + a_1 \end{bmatrix}$$

Da última matriz conclui-se que o sistema anterior é possível se e só se $a_2 - 3a_1 = 0$, $a_3 = 0$ e $a_4 + a_1 = 0$. Logo,

$$S_1 = \{(a, b, c, d) \in \mathbb{R}^4 : -3a + b = 0, a + d = 0, c = 0\}.$$

Assim, dado $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$, tem-se

$$(a_1, a_2, a_3, a_4) \in \mathcal{S}_1 \cap \mathcal{S}_2 \Leftrightarrow \begin{cases} 3a_1 - a_2 - a_3 = 0 \\ a_2 - 3a_1 = 0 \\ a_3 = 0 \\ a_4 + a_1 = 0 \end{cases} \Leftrightarrow \begin{cases} a_1 + a_4 = 0 \\ a_2 + 3a_4 = 0 \\ a_3 = 0 \end{cases}$$

Logo,
$$S_1 \cap S_2 = \{(-d, -3d, 0, d) \mid d \in \mathbb{R}\}.$$

Resolução alternativa:

Seja $u \in \mathbb{R}^4$.

Tem-se

$$u \in \mathcal{S}_1 \cap \mathcal{S}_2 \iff u \in \mathcal{S}_1 \in u \in \mathcal{S}_2$$

$$\Leftrightarrow \text{ existem } a, b, c, \alpha \in \mathbb{R} \text{ tais que}$$

$$b \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 3 \\ 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} b \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 2 & -1 & 0 & -3 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} b \\ a \\ c \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\stackrel{*}{\Leftrightarrow} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} b \\ a \\ c \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} b - \alpha = 0 \\ -a - \alpha = 0 \\ c + \alpha = 0 \\ 0 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} b = \alpha \\ a = -\alpha \\ c = -\alpha \\ 0 = 0 \end{cases}$$

(*) Eliminação de Gauss.

Assim,

$$S_1 \cap S_2 = \{\alpha(1, 2, 1, 0) - \alpha(0, -1, 1, 0) - \alpha(0, 0, 0, 1) : \alpha \in \mathbb{R}\}$$

$$= \{(\alpha, 3\alpha, 0, -\alpha)\}$$

$$= \langle (1, 3, 0, -1) \rangle.$$

- 4. Calcule o conjunto das combinações lineares de:
 - (a) $\{(1,2,-1)\};$ Seja $C = \{(1,2,-1)\}.$ $< C >= \{\alpha(1,2,-1) \mid \alpha \in \mathbb{R}\} = \{(\alpha,2\alpha,-\alpha) \mid \alpha \in \mathbb{R}\}.$
 - (b) $\{(1,-1,1), (2,0,1), (0,2,-1)\};$ Seja $C = \{(1,-1,1), (2,0,1), (0,2,-1)\}.$ $< C > = \{\alpha(1,-1,1) + \beta(2,0,1) + \gamma(0,2,-1) \mid \alpha,\beta,\gamma \in \mathbb{R}\}$ $= \{(\alpha+2\beta,-\alpha+2\gamma,\alpha+\beta-\gamma) \mid \alpha,\beta,\gamma \in \mathbb{R}\}.$
 - (c) $\{(1,1,1), (1,0,1), (1,1,2)\}.$ Seja $C = \{(1,1,1), (1,0,1), (1,1,2)\}.$ $< C > = \{\alpha(1,1,1) + \beta(1,0,1) + \gamma(1,1,2) \mid \alpha,\beta,\gamma \in \mathbb{R}\}$ $= \{(\alpha + \beta + \gamma, \alpha + \gamma, \alpha + \beta + 2\gamma) \mid \alpha,\beta,\gamma \in \mathbb{R}\}.$
- 5. Em cada um dos seguintes casos determine $\langle C \rangle$, identificando o sistema de equações lineares cujo conjunto de soluções é $\langle C \rangle$:
 - (a) $C = \{(1,0,0,0), (1,1,0,0), (0,0,1,0), (0,0,1,1)\};$ Dado $(a_1,a_2,a_3,a_4) \in \mathbb{R}^4$, tem-se $(a_1,a_2,a_3,a_4) \in \langle C \rangle$ se e só se existem $a,b,c,d \in \mathbb{R}$ tais que

$$a(1,0,0,0) + b(1,1,0,0) + c(0,0,1,0) + d(0,0,1,1) = (a_1, a_2, a_3, a_4);$$

i.e., se e só se o sistema seguinte é possível

$$\begin{cases} a+b=a_1\\ b=a_2\\ c+d=a_3\\ d=a_4 \end{cases}$$

Aplicando o método de eliminação de Gauss-Jordan à matriz ampliada do sistema, tem-se

$$\begin{bmatrix} 1 & 1 & 0 & 0 & a_1 \\ 0 & 1 & 0 & 0 & a_2 \\ 0 & 0 & 1 & 1 & a_3 \\ 0 & 0 & 0 & 1 & a_4 \end{bmatrix} \xrightarrow{L_1 \leftarrow L_1 - L_2 \atop L_3 \leftarrow L_3 - L_4} \begin{bmatrix} 1 & 0 & 0 & 0 & a_1 - a_2 \\ 0 & 1 & 0 & 0 & a_2 \\ 0 & 0 & 1 & 0 & a_3 - a_4 \\ 0 & 0 & 0 & 1 & a_4 \end{bmatrix}$$

O sistema anterior é possível, para quaisquer $a_1, a_2, a_3, a_4 \in \mathbb{R}$. Assim, $\langle C \rangle = \mathbb{R}^4$.

O sistema

$$\{ 0x_1 + 0x_2 + 0x_3 + 0x_4 = 0 \}$$

admite como conjunto de soluções o conjunto $\langle C \rangle$.

(b) $C = \{(1,0,0,0), (1,1,0,0), (3,2,-1,-1), (0,0,1,1)\};$

Dado $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$, tem-se $(a_1, a_2, a_3, a_4) \in \langle C \rangle$ se e só se existem $a, b, c, d \in \mathbb{R}$ tais que

$$a(1,0,0,0) + b(1,1,0,0) + c(3,2,-1,-1) + d(0,0,1,1) = (a_1,a_2,a_3,a_4);$$

i.e., se e só se o sistema seguinte é possível

$$\begin{cases} a+b+3c = a_1 \\ b+2c = a_2 \\ -c+d = a_3 \\ -c+d = a_4 \end{cases}$$

Aplicando o método de eliminação de Gauss-Jordan à matriz ampliada do sistema, tem-se

$$\begin{bmatrix} 1 & 1 & 3 & 0 & a_1 \\ 0 & 1 & 2 & 0 & a_2 \\ 0 & 0 & -1 & 1 & a_3 \\ 0 & 0 & -1 & 1 & a_4 \end{bmatrix} \xrightarrow{L_1 \leftarrow L_1 - L_2} \begin{bmatrix} 1 & 0 & 1 & 0 & a_1 - a_2 \\ 0 & 1 & 2 & 0 & a_2 \\ 0 & 0 & -1 & 1 & a_3 \\ 0 & 0 & -1 & 1 & a_4 \end{bmatrix}$$

$$\stackrel{L_3 \leftarrow -L_3}{\longrightarrow} \begin{bmatrix} 1 & 0 & 1 & 0 & a_1 - a_2 \\ 0 & 1 & 2 & 0 & a_2 \\ 0 & 1 & 2 & 0 & a_2 \\ 0 & 0 & 1 & -1 & -a_3 \\ 0 & 0 & -1 & 1 & a_4 \end{bmatrix} \xrightarrow{L_4 \leftarrow L_4 + L_3} \begin{bmatrix} 1 & 0 & 0 & 1 & a_1 - a_2 + a_3 \\ 0 & 1 & 0 & 2 & a_2 + 2a_3 \\ 0 & 0 & 1 & -1 & -a_3 \\ 0 & 0 & 0 & 0 & a_4 - a_3 \end{bmatrix}$$

O sistema anterior é possível se e só se $a_4 - a_3 = 0$. Assim,

$$\langle C \rangle = \{ (a, b, c, d) \in \mathbb{R}^4 \mid -c + d = 0 \}.$$

O sistema

$$\{0x_1+0x_2-x_3+x_4=0\}$$

admite como conjunto de soluções o conjunto $\langle C \rangle$.

(c) $C = \{(2,1,0,0), (2,0,2,0), (3,1,1,0)\}.$

Dado $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$, tem-se $(a_1, a_2, a_3, a_4) \in \langle C \rangle$ se e só se existem $a, b, c, d \in \mathbb{R}$ tais que

$$a(2,1,0,0) + b(2,0,2,0) + c(3,1,1,0) = (a_1,a_2,a_3,a_4);$$

i.e., se e só se o sistema seguinte é possível

$$\begin{cases} 2a + 2b + 3c = a_1 \\ a + c = a_2 \\ 2b + c = a_3 \\ 0 = a_4 \end{cases}$$

Aplicando o método de eliminação de Gauss-Jordan à matriz ampliada do sistema, tem-se

$$\begin{bmatrix} 2 & 2 & 3 & a_1 \\ 1 & 0 & 1 & a_2 \\ 0 & 2 & 1 & a_3 \\ 0 & 0 & 0 & a_4 \end{bmatrix} \xrightarrow{L_1 \leftarrow \frac{1}{2}L_1} \begin{bmatrix} 1 & 1 & \frac{3}{2} & \frac{a_1}{2} \\ 1 & 0 & 1 & a_2 \\ 0 & 2 & 1 & a_3 \\ 0 & 0 & 0 & a_4 \end{bmatrix}$$

$$\stackrel{L_2 \leftarrow L_2 - L_1}{\longrightarrow} \begin{bmatrix} 1 & 1 & \frac{3}{2} & \frac{a_1}{2} \\ 0 & -1 & -\frac{1}{2} & a_2 - \frac{a_1}{2} \\ 0 & 2 & 1 & a_3 \\ 0 & 0 & 0 & a_4 \end{bmatrix} \xrightarrow{L_3 \leftarrow L_3 + 2L_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -\frac{1}{2} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{a_2 + a_1} \xrightarrow{a_1 + 2a_2 + a_3}$$

$$\stackrel{L_2 \leftarrow -L_2}{\longrightarrow} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{a_1 + 2a_2 + a_3} \xrightarrow{a_1 + 2a_2 + a_3}$$

O sistema anterior é possível se e só se $-a_1 + 2a_2 + a_3 = 0$ e $a_4 = 0$. Assim,

$$\langle C \rangle = \{(a, b, c, d) \in \mathbb{R}^4 \mid -a + 2b + c = 0, d = 0\}.$$

O sistema

$$\begin{cases} -x_1 + 2x_2 + x_3 = 0 \\ x_4 = 0 \end{cases}$$

admite como conjunto de soluções o conjunto $\langle C \rangle$.

6. Determine um conjunto gerador de cada um dos seguintes subespaços de \mathbb{R}^4 :

(a)
$$S = \{(x_1, \dots, x_4) \in \mathbb{R}^4 \mid x_1 = -x_4, x_2 + x_3 = 2x_1\};$$

 $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = -x_4, x_2 + x_3 = 2x_1\}$
 $= \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = -x_4, x_2 = -x_3 - 2x_4\}$
 $= \{(-x_4, -x_3 - 2x_4, x_3, x_4) \in \mathbb{R}^4 \mid x_3, x_4 \in \mathbb{R}\}$
 $= \{x_4(-1, -2, 0, 1) + x_3(0, -1, 1, 0) \mid x_3, x_4 \in \mathbb{R}\}$
 $= \langle (-1, -1, 0, 1), (0, -1, 1, 1) \rangle.$

Logo, $\{(-1, -1, 0, 1), (0, -1, 1, 1)\}$ é um conjunto gerador de S.

(b)
$$S = \{(y_1, \dots, y_4) \in \mathbb{R}^4 \mid y_1 = 0, y_2 + y_3 + y_4 = 0\};$$

$$S = \{(0, -y_3 - y_4, y_3, y_4) \in \mathbb{R}^4\}$$

= \{y_3(0, -1, 1, 0) + y_4(0, -1, 0, 1) \in \mathbb{R}^4\}
= \left<(0, -1, 1, 0), (0, -1, 0, 1) \right>.

Logo, $\{(0,-1,1,0),(0,-1,0,1)\}$ é um conjunto gerador de \mathcal{S} .

(c)
$$S = \{(\alpha, 3\alpha, 0, -\alpha) \mid \alpha \in \mathbb{R}\};$$

$$S = \{(\alpha, 3\alpha, 0, -\alpha) \mid \alpha \in \mathbb{R}\}\$$

= \{\alpha(1, 3, 0, -1) \cong \alpha \in \mathbb{R}\}\
= \left< (1, 3, 0, -1) \right>.

Logo, $\{(1,3,0,-1)\}$ é um conjunto gerador de S.

(d)
$$S = \{(b, 2b - a, a + b, c) \mid a, b, c \in \mathbb{R}\};$$

$$\mathcal{S} = \{ (b, 2b - a, a + b, c) \mid a, b, c \in \mathbb{R} \}$$

$$= \{ b(1, 2, 1, 0) + (0, -1, 1, 0) + c(0, 0, 0, 1) \mid a, b, c \in \mathbb{R} \}$$

$$= \langle (1, 2, 1, 0), (0, -1, 1, 0), (0, 0, 0, 1) \rangle.$$

Logo, $C = \{(1, 2, 1, 0), (0, -1, 1, 0), (0, 0, 0, 1)\}$ é um conjunto gerador de S.

(e)
$$S = \langle (1, 1, 2, 1), (0, -1, 1, 0), (2, 3, 3, 2), (1, 0, -2, 1) \rangle$$
.

Exemplos de conjuntos geradores de S:

-
$$C_1 = \{(1,1,2,1), (0,-1,1,0), (2,3,3,2), (1,0,-2,1)\};$$

-
$$C_2 = \{(1,1,2,1), (0,-1,1,0), (1,0,-2,1)\}$$

(pois
$$(2,3,3,2) = 2(1,1,2,1) - (0,-1,1,0) + 0.(1,0,-2,1)$$
);

-
$$C_3 = \{(1,0,3,1), (0,-1,1,0), (2,3,3,2), (1,0,-2,1)\}$$

(atendendo a que
$$(1,0,3,1) = 1.(1,1,2,1) + 1.(0,-1,1,0) + 0.(2,3,3,2) + 0.(1,0,-2,1)$$
).

- 7. Em cada um dos seguintes casos diga se os vetores são linearmente dependentes e, em caso afirmativo, escreva um deles como combinação linear dos outros:
 - (a) (0,-1,0),(-1,1,1) e (2,0,1) no espaço vetorial real \mathbb{R}^3 .

Sejam \mathcal{V} um espaço vetorial, $n \in \mathbb{N}$ e $v_1, v_2, \ldots, v_n \in \mathcal{V}$. Diz-se que os vetores v_1, v_2, \ldots, v_n são linearmente independentes se, para quaisquer escalares $\alpha_1, \alpha_2, \ldots, \alpha_n$,

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + v_n = 0_{\mathcal{V}} \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0.$$

Os vetores (0, -1, 0), (-1, 1, 1), (2, 0, 1) são linearmente independentes se e só se, para quaisquer $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$,

$$\alpha_1(0, -1, 0) + \alpha_2(-1, 1, 1) + \alpha_3(2, 0, 1) = (0, 0, 0) \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = 0$$

se e só se o sistema

$$\begin{bmatrix} 0 & -1 & 2 \\ -1 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

é determinado (note-se que o sistema é homogéneo e, portanto, é possível).

Seja A a matriz simples do sistema. Aplicando o método de Gauss à matriz simples do sistema, tem-se

$$A = \begin{bmatrix} 0 & -1 & 2 \\ -1 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \xrightarrow{L_2 \leftarrow L_2 + 2L_1} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 5 \end{bmatrix}.$$

Como $car(A)=3=n^o$ de incógnitas , o sistema é possível e determinado. Logo, os vetores indicados são linearmente independentes.

(b) (0,-1,1),(0,1,-1),(-2,0,1) e (1,-1,0) no espaço vetorial real \mathbb{R}^3 .

Os vetores (0, -1, 1), (0, 1, -1), (-2, 0, 1) e (1, -1, 0) são linearmente independentes se e só se, para quaisquer $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$,

$$\alpha_1(0,-1,1) + \alpha_2(0,-1,1) + \alpha_3(-2,0,1) + \alpha_4(1,-1,0) = (0,0,0) \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$$

se e só se o sistema

$$\begin{bmatrix} 0 & 0 & -2 & 1 \\ -1 & -1 & 0 & -1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

é determinado (note-se que o sistema é homogéneo e, portanto, é possível).

Seja A a matriz simples do sistema. Como $car(A) \leq 3 < 4 = n^o$ de incógnitas, o sistema é possível e indeterminado. Logo, os vetores indicados não são linearmente independentes.

[Observe-se que

$$(0,-1,1) = -1(0,1,-1) + 0(-2,0,1) + 0(1,-1,0)$$

donde segue

$$(0,-1,1) + 1(0,1,-1) + 0(-2,0,1) + 0(1,-1,0) = (0,0,0)$$

Uma vez que existem escalares α_1 , α_2 , α_3 , α_4 não todos nulos tais que

$$\alpha_1(0,-1,1) + \alpha_2(0,-1,1) + \alpha_3(-2,0,1) + \alpha_4(1,-1,0) = (0,0,0),$$

então os vetores não são linearmente independentes.

(c) (0,1,1,0), (-1,0,1,1) e (1,1,0,-1) no espaço vetorial real \mathbb{R}^4 .

Os vetores (0,1,1,0), (-1,0,1,1) e (1,1,0,-1) são linearmente independentes se e só se, para quaisquer escalares $\alpha_1, \alpha_2, \alpha_3$,

$$\alpha_1(0,1,1,0) + \alpha_2(-1,0,1,1) + \alpha_3(1,1,0,-1) = (0,0,0,0) \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = 0.$$

Uma vez que

$$(1, 1, 0, -1) = -1(-1, 0, 1, 1) + 1(0, 1, 1, 0),$$

segue que

$$1(1,1,0,-1) + 1(-1,0,1,1) - 1(0,1,1,0) = (0,0,0,0).$$

Considerando que existem escalares α_1 , α_2 , α_3 , não todos nulos tais que

$$\alpha_1(1,1,0,-1) + \alpha_2(-1,0,1,1) + \alpha_3(0,1,1,0) = (0,0,0,0),$$

então os vetores indicados não são linearmente independentes.

(d) (0,1,1,0), (-1,0,1,1), (1,1,0,-1) e (1,0,0,-1) no espaço vetorial real \mathbb{R}^4 .

Os vetores (0,1,1,0), (-1,0,1,1), (1,1,0,-1), (1,0,0,-1) são linearmente independentes se e só se, para quaisquer $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{R}$,

$$\alpha_1(0,1,1,0) + \alpha_2(-1,0,1,1) + \alpha_3(1,1,0,-1) + \alpha_4(1,0,0,-1) = (0,0,0,0)$$

 $\Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$

se e só se o sistema

$$\begin{bmatrix} 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

é possível e determinado.

Aplicando o método de Gauss à matriz simples do sistema, tem-se

$$A = \begin{bmatrix} 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_3} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

$$\stackrel{L_2 \leftarrow L_2 - L_1}{\Longrightarrow} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \xrightarrow{L_3 \leftarrow L_3 - L_2} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\stackrel{L_4 \leftarrow L_4 + L_3}{\Longrightarrow} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Como $car(A) = 3 < 4 = n^o$ de incógnitas, o sistema é possível e indeterminado. Logo, os vetores indicados não são linearmente independentes.

- 8. Considere o espaço vetorial \mathbb{R}^3 . Calcule as coordenadas de
 - (a) (1,0,0) relativamente à base ((1,1,1), (-1,1,0), (1,0,-1));

Uma vez que ((1,1,1), (-1,1,0), (1,0,-1)) é uma base de \mathbb{R}^3 , cada vetor de \mathbb{R}^3 escreve-se de modo Ãnico como combinação linear dos vetores desta base.

Pretende-se determinar $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tais que

$$(1,0,0) = \alpha_1(1,1,1) + \alpha_2(-1,1,0) + \alpha_3(1,0,-1),$$

ou seja, pretende-se determinar uma solução do sistema

$$\begin{cases} \alpha_1 - \alpha_2 + \alpha_3 = 1\\ \alpha_1 + \alpha_2 = 0\\ \alpha_1 - \alpha_3 = 0 \end{cases}$$

Seja

$$[A|b] = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

a matriz ampliada do sistema. Aplicando o método de Gauss-Jordan à matriz ampliada do sistema, obtem-se a matriz em forma de escada reduzida

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & \frac{1}{3} \\
0 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 1 & \frac{1}{3}
\end{array}\right]$$

O sistema anterior é equivalente ao sistema

$$\begin{cases} \alpha_1 = \frac{1}{3} \\ \alpha_2 = -\frac{1}{3} \\ \alpha_3 = -\frac{1}{3} \end{cases}$$

Portanto,

$$(1,0,0) = \frac{1}{3}(1,1,1) - \frac{1}{3}(-1,1,0) + \frac{1}{3}(1,0,-1).$$

(b) (1,0,0) relativamente à base ((0,-1,1), (0,1,0), (2,0,-1)).

Resolvendo por um processo análogo ao usado na alínea anterior, obtem-se

$$(1,0,0) = \frac{1}{2}(0,1,1) + \frac{1}{2}(0,1,0) + \frac{1}{2}(2,0,-1).$$

- 9. Sejam u, v e w três vetores linearmente independentes de um espaço vetorial. Verifique se são linearmente independentes os seguintes vetores:
 - (a) u + v, v + w e u + w;

Sejam u, v, w vetores linearmente independentes de um espaço vetorial \mathcal{V} . Os vetores u+v, v+w e u+w são linearmente independentes se e só se, para quaisquer escalares $\alpha_1, \alpha_2, \alpha_3$,

$$\alpha_1(u+v) + \alpha_2(v+w) + \alpha_3(u+w) = 0_{\mathcal{V}} \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = 0$$

Considerando que

$$\alpha_{1}(u+v) + \alpha_{2}(v+w) + \alpha_{3}(u+w) = 0_{\mathcal{V}}$$

$$\Leftrightarrow (\alpha_{1} + \alpha_{3})u + (\alpha_{1} + \alpha_{2})v + (\alpha_{2} + \alpha_{3})w = 0_{\mathcal{V}}$$

$$\stackrel{(1)}{\Leftrightarrow} \begin{cases} \alpha_{1} + \alpha_{3} = 0 \\ \alpha_{1} + \alpha_{2} = 0 \\ \alpha_{2} + \alpha_{3} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha_{1} = 0 \\ \alpha_{1} = 0 \\ \alpha_{2} = 0 \end{cases}$$

conclui-se que os vetores indicados são linearmente independentes.

[(1) Os vetores u, v, w são linearmente independentes.]

(b) u + v + w, u - w, 2v + w, 3u - v - w;

Os vetores u+v+w, u-w, 2v+w, 3u-v-w são linearmente independentes se e só se, para quaisquer escalares $\alpha_1, \alpha_2, \alpha_3, \alpha_4$,

$$\alpha_1(u+v+w) + \alpha_2(u-w) + \alpha_3(2v+w) + \alpha_4(3u-v-w) = 0_{\mathcal{V}} \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0_{\mathcal{V}}$$

Atendendo a que

$$\alpha_{1}(u+v+w) + \alpha_{2}(u-w) + \alpha_{3}(2v+w) + \alpha_{4}(3u-v-w) = 0_{\mathcal{V}}$$

$$\Leftrightarrow (\alpha_{1} + \alpha_{2} + 3\alpha_{4})u + (\alpha_{1} + 2\alpha_{3} - \alpha_{4})v + (\alpha_{1} - \alpha_{2} + \alpha_{3} - \alpha_{4})w = 0_{\mathcal{V}}$$

$$\stackrel{(1)}{\Leftrightarrow} \begin{cases} \alpha_{1} + \alpha_{2} + 3\alpha_{4} = 0 \\ \alpha_{1} + 2\alpha_{3} - \alpha_{4} = 0 \\ \alpha_{1} - \alpha_{2} + \alpha_{3} - \alpha_{4} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha_{1} = -\frac{5}{3}\alpha_{4} \\ \alpha_{2} = -\frac{4}{3}\alpha_{4} \\ \alpha_{3} = \frac{4}{3}\alpha_{4} \end{cases}$$

conclui-se que os vetores não são linearmente independentes.

Para qualquer $\alpha_4 \in \mathbb{R}$, tem-se

$$-\frac{5}{3}\alpha_4(u+v+w) + -\frac{4}{3}\alpha_4(u-w) - \frac{4}{3}\alpha_4(2v+w) + \alpha_4(3u-v-w) = 0_{\mathcal{V}}$$

- [(1) Os vetores u, v, w são linearmente independentes.]
- (c) u w, u + v e v + w.
- 10. Sejam $u=(x,y),\ v=(z,w)\in\mathbb{R}^2$. Verifique que u e v são linearmente indepedentes se e só se $xw-yz\neq 0$.

Os vetores u e v são linearmente independentes se e só se, para quaisquer escalares α_1 e α_2 ,

$$\alpha_1 u + \alpha_2 v = (0,0) \Rightarrow \alpha_1 = \alpha_2 = 0$$

se e só se o sistema

$$\begin{cases} x\alpha_1 + z\alpha_2 = 0 \\ y\alpha_1 + w\alpha_2 = 0 \end{cases}$$

é possível determinado

se e só se det
$$\begin{bmatrix} x & z \\ y & w \end{bmatrix} \neq 0$$

se e só se $xw - yz \neq 0$.

- 11. Caso exista, determine uma base de \mathbb{R}^3 que contém os vetores u e v, sendo:
 - (a) u = (1, 1, 3) e v = (1, 0, 3);

Os vetores u e v são vetores de \mathbb{R}^3 linearmente independentes, logo existe uma base de \mathbb{R}^3 que contém estes vetores.

Seja (e_1, e_2, e_3) a base canónica de \mathbb{R}^3 $(e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1))$. Uma vez que $u = 1e_1 + 1e_2 + 3e_3$, então $\langle \{e_1, e_2, e_3\} \rangle = \langle \{u, e_2, e_3\} \rangle$. Considerando que $v = u - e_2$, tem-se $\langle \{u, e_2, e_3\} \rangle = \langle \{u, v, e_3\} \rangle$.

Atendendo a que dim $\mathbb{R}^3 = 3$ e $\{u, v, e_3\}$ é um conjunto gerador de \mathbb{R}^3 com 3 vetores, conclui-se que (u, v, e_3) é uma base de \mathbb{R}^3 .

(b) u = (1, -2, 3) e v = (-1/6, 1/3, -1/2);

Os vetores u e v são linearmente dependentes $(v = -\frac{1}{6}u)$, logo não existe uma base de \mathbb{R}^3 que contenha estes vetores.

(c) u = (1, 0, -2) e v = (-2, 0, 1).

Os vetores u=(1,0,-2) e v=(-2,0,1) são linearmente independentes, logo existe uma base de \mathbb{R}^3 que inclui estes vetores.

Seja (e_1, e_2, e_3) a base canónica de \mathbb{R}^3 .

Tem-se $u = 1e_1 + 0e_2 - 2e_3$. Logo, $\langle e_1, e_2, e_3 \rangle = \langle u, e_2, e_3 \rangle$.

Uma vez que $v = -2u + 0e_2 - 3e_3$, então $\langle u, e_2, e_3 \rangle = \langle u, e_2, v \rangle$.

Considerando que dim $\mathbb{R}^3 = 3$ e $\{u, e_2, v\}$ é um conjunto gerador de \mathbb{R}^3 com 3 vetores, então (u, e_2, v) é uma base de \mathbb{R}^3 .

12. Considere os subespaços:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$$
 e $S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0\}.$

(a) Verifique que ((0,0,1), (1,-1,2)) é uma base de S_1 .

Os vetores (0,0,1),(1,-1,2) são elementos de S_1 .

O conjunto $\{(0,0,1), (1,-1,2)\}$ é um conjunto gerador de S_1 , pois

$$S_{1} = \{(x, y, z) \in \mathbb{R}^{3} \mid x + y = 0\}$$

$$= \{(x, y, z) \in \mathbb{R}^{3} \mid x = -y\}$$

$$= \{(-y, y, z) \in \mathbb{R}^{3} \mid y, z \in \mathbb{R}\}$$

$$= \{(z + 2y)(0, 0, 1) - y(1, -1, 2) \mid y, z \in \mathbb{R}\}$$

$$= \langle (0, 0, 1), (1, -1, 2) \rangle.$$

Os vetores (0,0,1),(1,-1,2) são linearmente independentes, uma vez que, para quaisquer escalares $\alpha_1,\alpha_2 \in \mathbb{R}$,

$$\alpha_1(0,0,1) + \alpha_2(1,-1,2) = (0,0,0) \Rightarrow \alpha_1 = \alpha_2 = 0.$$

Do observado anteriormente conclui-se que $\{(0,0,1), (1,-1,2)\}$ é uma base de S_1 .

(b) Verifique que ((0,2,1), (1,1,0)) é uma base de S_2 .

Os vetores (0, 2, 1), (1, 1, 0) são elementos de S_2

O conjunto $\{(0,2,1), (1,1,0)\}$ é um conjunto gerador de S_2 . De facto,

$$S_{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x - y + 2z = 0\}$$

$$= \{(x, y, z) \in \mathbb{R}^{3} \mid x = y - 2z\}$$

$$= \{(y - 2z, y, z) \in \mathbb{R}^{3} \mid y, z \in \mathbb{R}\}$$

$$= \{z(0, 2, 1) + (y - 2z)(1, 1, 0) \mid y, z \in \mathbb{R}\}$$

$$= \langle (0, 2, 1), (1, 1, 0) \rangle.$$

Os vetores (0,2,1), (1,1,0) são linearmente independentes, pois, para quaisquer escalares $\alpha_1, \alpha_2 \in \mathbb{R}$,

$$\alpha_1(0,2,1) + \alpha_2(1,1,0) = (0,0,0) \Rightarrow \alpha_1 = \alpha_2 = 0.$$

Logo, ((0,2,1), (1,1,0)) é uma base de S_2 .

(c) Calcule uma base de $S_1 \cap S_2$.

Tem-se

$$S_{1} \cap S_{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x + y = 0 \text{ e } x - y + 2z = 0\}$$

$$= \{(x, y, z) \in \mathbb{R}^{3} \mid x = -y \text{ e } z = y\}$$

$$= \{(-y, y, y) \in \mathbb{R}^{3} \mid y \in \mathbb{R}\}$$

$$= \{y(-1, 1, 1) \in \mathbb{R}^{3} \mid y \in \mathbb{R}\}$$

$$= \langle (-1, 1, 1) \rangle.$$

Uma vez que $(-1,1,1) \in S_1 \cap S_2$, (-1,1,1) é linearmente independente (pois $(-1,1,1) \neq (0,0,0)$) e $\{(-1,1,1)\}$ é um conjunto gerador de $S_1 \cap S_2$, então ((-1,1,1)) é uma base de $S_1 \cap S_2$.

- 13. Usando o conceito de caraterística de uma matriz, determine a dimensão dos subespaços vetoriais:
 - (a) $\langle (3, -1, 4), (2, 1, 3), (1, 0, 2) \rangle$ do espaço vetorial real \mathbb{R}^3 ;

Seja

$$A = \left[\begin{array}{rrr} 3 & -1 & 4 \\ 2 & 1 & 3 \\ 1 & 0 & 2 \end{array} \right].$$

Uma vez que car(A) = 3, então dim $\langle (3, -1, 4), (2, 1, 3), (1, 0, 2) \rangle = 3$.

(b) $\langle (0,1,1,2), (-2,1,0,1), (-2,0,-1,-1), (1,0,3,-1) \rangle$ do espaço vetorial real \mathbb{R}^4 ; Seja

$$A = \begin{bmatrix} 0 & 1 & 1 & 2 \\ -2 & 1 & 0 & 1 \\ -2 & 0 & -1 & -1 \\ 1 & 0 & 3 & -1 \end{bmatrix}.$$

Uma vez que car(A)=3, então dim $\langle (0,1,1,2), (-2,1,0,1), (-2,0,-1,-1), (1,0,3,-1)\rangle=3$.

14. Determine os valores de α e de β para os quais

$$((0,1,0,1),(-1,1,0,1),(\alpha,1,\beta,1),(1,1,\alpha,\beta))$$

é uma base de \mathbb{R}^4 .

Uma vez que dim $\mathbb{R}^4 = 4$, então $((0,1,0,1),(-1,1,0,1),(\alpha,1,\beta,1),(1,1,\alpha,\beta))$ é uma base de \mathbb{R}^4 se e só se $(0,1,0,1),(-1,1,0,1),(\alpha,1,\beta,1),(1,1,\alpha,\beta)$ são vetores de \mathbb{R}^4 linearmente independentes

se e só se $\alpha, \beta \in \mathbb{R}$ e

$$car \begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 1 & 0 & 1 \\ \alpha & 1 & \beta & 1 \\ 1 & 1 & \alpha & \beta \end{bmatrix} = 4$$

se e só se $\alpha \in \mathbb{R}$ e $\beta \in \mathbb{R} \setminus \{0,1\}$.

- 15. Seja S o espaço gerado pelo conjunto $C = \{(1,1,0), (1,0,-1), (2,1,-1), (0,1,1)\}.$
 - (a) Verifique que v = (4, 3, -1) é combinação linear dos vetores de C.

O vetor (4,3,-1) é combinação linear dos vetores de C se e só se existem escalares $x,y,z\in\mathbb{R}$ tais

$$(4,3,-1) = x(1,1,0) + y(1,0,-1) + z(2,1,-1) + w(0,1,1),$$

i.e., se e só se o sistema

$$\begin{cases} x+y+2z=4\\ x+z+w=3\\ -y-z+w=-1 \end{cases}$$

é possível.

Alicando o método de eliminação de Gauss à matriz ampliada do sistema anterior,

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 4 \\ 1 & 0 & 1 & 1 & 3 \\ 0 & -1 & -1 & 1 & -1 \end{bmatrix} \xrightarrow{\text{Eliminação de Gauss}} \begin{bmatrix} 1 & 1 & 2 & 0 & 4 \\ 0 & -1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

conclui-se que o sistema é possível (e indeterminado). Logo, o vetor v=(4,3,-1) é combinação linear dos vetores de C.

(b) Determine uma base de S.

$$((1,1,0),(1,0,-1)).$$

(c) Escreva v como combinação linear dos vetores da base que calculou na alínea anterior.

$$(4,3,-1) = 3(1,1,0) + (1,0,-1).$$

16. (a) Verifique se u = (3, 2, 1, 1) é combinação linear de $v_1 = (1, 1, 1, 1), v_2 = (0, -1, 2, 0)$ e $v_3 = (1, 0, 1, 0)$.

O vetor u=(3,2,1,1) é combinação linear de $v_1=(1,1,1,1),\ v_2=(0,-1,2,0)$ e $v_3=(1,0,1,0)$ se e só se existem escalares $x,y,z\in\mathbb{R}$ tais

$$(3,2,1,1) = x(1,1,1,1) + y(0,-1,2,0) + z(1,0,1,0),$$

i.e., se e só se o sistema

$$\begin{cases} x+z=3\\ x-y=2\\ x+2y+z=1\\ x=1 \end{cases}$$

é possível.

Alicando o método de eliminação de Gauss à matriz ampliada do sistema anterior,

$$\begin{bmatrix} 1 & 0 & 1 & 3 \\ 1 & -1 & 0 & 2 \\ 1 & 2 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{Eliminação de Gauss}} \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & -2 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

O sistema é possível (e indeterminado), pelo que u=(3,2,1,1) é combinação linear de v_1,v_2,v_3 .

(b) Diga se u, v_1 , v_2 , v_3 são linearmente independentes. O vetor u pode ser escrito como combinação linear dos vetores v_1 , v_2 e v_3 , logo os vetores u, v_1 , v_2 , v_3 não são linearmente independentes.

(c) Determine o subespaço S gerado por $\{u, v_1, v_2, v_3\}$.

$$S = \langle u, v_1, v_2, v_3 \rangle = \{ \alpha u + \beta v_1 + \gamma v_2 + \delta v_3 \mid \alpha, \beta, \gamma, \delta \in \mathbb{R} \}.$$

(d) Determine uma base de S.

Uma vez que u é combinação linear v_1, v_2 e v_3 , então $< u, v_1, v_2, v_3 > = < v_1, v_2, v_3 >$. Uma vez que v_1, v_2 e v_3 são vetores de S linearmente independentes e $S = < v_1, v_2, v_3 >$, então (v_1, v_2, v_3) é uma base de S.

(e) Classifique os seguintes sistemas de equações lineares:

i.
$$\begin{bmatrix} 1 & 0 & 1 & 3 \\ 1 & -1 & 0 & 2 \\ 1 & 2 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 2 \end{bmatrix};$$

possível indeterminado.

$$\text{item[ii.]} \, \left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 2 & 1 \\ 1 & 0 & 0 \end{array} \right] \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \\ 1 \\ 1 \end{array} \right];$$

possível determinado.

iii.
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \end{bmatrix};$$

possível determinado.

iv.
$$\begin{bmatrix} 1 & 0 & 1 & 3 \\ 1 & -1 & 0 & 2 \\ 1 & 2 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \end{bmatrix}.$$

possível indeterminado.

17. Considere o espaço vetorial real \mathbb{R}^5 e os subespaços vetoriais

$$\mathcal{U} = \langle (0, 3, 0, 0, 6), (1, 0, 0, 2, 0), (3, 2, 0, 6, 4) \rangle,$$

$$\mathcal{W} = \{ (a, b, c, d, e) \in \mathbb{R}^5 \mid a - b = d - 2b = e - 2b = c = 0 \} \text{ e}$$

$$\mathcal{H} = \{ (a, b, c, d, e) \in \mathbb{R}^5 \mid a = b - d \}$$

(a) Calcule uma base de \mathcal{W} .

$$\mathcal{W} = \{(b, b, 0, 2b, 2b) \mid b \in \mathbb{R} \} = \langle (1, 1, 0, 2, 2) \rangle$$
. Base: $((1, 1, 0, 2, 2))$.

(b) Determine um sistema homogéneo de equações lineares cujo conjunto de soluções seja \mathcal{U} .

Dado $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$, tem-se $(x_1, x_2, x_3, x_4, x_5) \in \mathcal{U}$ se e só se existem $a, b, c \in \mathbb{R}$ tais que

$$(x_1, x_2, x_3, x_4, x_5) = a(0, 3, 0, 0, 6) + b(1, 0, 0, 2, 0) + c(3, 2, 0, 6, 4),$$

i.e., se e só se o sistema

$$\begin{cases} b+3c = x_1 \\ 3a+2c = x_2 \\ 0 = x_3 \\ 2b+6c = x_4 \\ 6a+4c = x_5 \end{cases}$$

é possível.

Aplicando o método de eliminação de Gauss à matriz ampliada do sistema anterior

$$\begin{bmatrix} 0 & 1 & 3 & x_1 \\ 3 & 0 & 2 & x_2 \\ 0 & 0 & 0 & x_3 \\ 0 & 2 & 6 & x_4 \\ 6 & 0 & 4 & x_5 \end{bmatrix} \xrightarrow{\text{Eliminação de Gauss}} \begin{bmatrix} 3 & 0 & 2 & x_2 \\ 0 & 1 & 3 & x_1 \\ 0 & 0 & 0 & x_3 \\ 0 & 0 & 0 & x_4 - 2x_1 \\ 0 & 0 & 0 & x_5 - 2x_2 \end{bmatrix}$$

conclui-se que o sistema anterior é possível se e só se

$$\begin{cases} x_3 = 0 \\ x_4 - 2x_1 = 0 \\ x_5 - 2x_2 = 0 \end{cases}$$

Logo, o último sistema tem como conjunto de soluções o conjunto U.

(c) Calcule uma base de $\mathcal{U} \cap \mathcal{H}$.

Considerando a alÃnea anterior tem-se

$$\mathcal{U} = \{(a, b, c, d, e) \in \mathbb{R}^5 \mid d = 2a, e = 2b, c = 0\}.$$

Logo,

$$\begin{array}{lcl} \mathcal{U}\cap\mathcal{H} & = & \{(a,b,c,d,e)\in\mathbb{R}^5\mid d=2a, e=2b, c=0,\ a=b-d\}\\ & = & \{(\frac{1}{6}e,\frac{1}{2}e,0,\frac{1}{3}e,e)\mid e\in\mathbb{R}\}\\ & = & <(1,3,0,2,6)> \end{array}$$

Assim, ((1,3,0,2,6)) é uma base de $\mathcal{U} \cap \mathcal{H}$.

(d) Calcule uma base de \mathcal{H} que contenha os vetores (0,1,0,1,0) e (1,2,0,1,0).

```
 \mathcal{H} = \{ (b-d,b,c,d,e) \in \mathbb{R}^5 \} 
= \{ b(1,1,0,0,0) + d(-1,0,0,1,0) + c(0,0,1,0,0) + e(0,0,0,0,1), b, d, c, e \in \mathbb{R} \} 
= \langle (1,1,0,0,0), (-1,0,0,1,0), (0,0,1,0,0), (0,0,0,0,1) \rangle .
```

Os vetores (1,1,0,0,0), (-1,0,0,1,0), (0,0,1,0,0), (0,0,0,0,1) são linearmente independentes, logo ((0,1,0,1,0), (1,2,0,1,0), (0,0,1,0,0), (0,0,0,0,1)) é uma base de $\mathcal H$ que contém os vetores (0,1,0,1,0) e (1,2,0,1,0).