Reading Summary Appendix A, B

Evan Hughes

January 2023

1 Appendix A: Logic and Proof

Propositions

A **proposition** is a declarative statement that can be either true or false.

EX: 2 is a positive integer

Compound Statements

A **compound statement** is when two or more statements are combined using words like "or" and "and."

P and Q is true when both P and Q are true, otherwise it is false.

P or Q is true when one or both are true and false when both are false.

Negation

Negation(\neg) changes the meaning of a proposition by inverting it. Changing its outcome from false to true and vice versa.

Quantifiers

Universal quantifiers (\forall) are used to state that a statement is true for all values of a variable. EX: For all x, x^2 is a positive integer.

Existential quantifiers (\exists) are used to state that a statement is true for at least one value of a variable. EX: There exists a positive integer x such that x^2 is a perfect square.

The negation of a statement with a universal quantifier is a statement with an existential quantifier.

Conditional Statements

A **conditional statement** is a *if-then* statement.

EX: If x is a positive integer, then x^2 is a positive integer.

Conditional statements are written symbolically as $Q \implies P \ P \implies Q$ is a true statement when both P and Q are true and false when P is true and Q is false. The contrapositive of the conditional statement $P \implies Q$ is the statement $\neg Q \implies \neg P$.

Proofs

There are 3 main types of proofs:

- Direct Proof
- Contrapositive Proof
- Proof by Contradiction

Direct Proof

A **direct proof** is a proof that shows that a statement is true by showing that each of its premises is true. This method relies on the rule of logic called **modus ponens**: If R is a true statement and $R \implies S$ is a true conditional statement, then S is a true statement.

Example: To prove the theorem $P \Longrightarrow Q$ by the direct method, you find a series of statements P_1 , P_2, \ldots, P_n and the verify that each of the implications $P_n \Longrightarrow P_{n+1}$ is true. Then the assumption that P is true and repeated use of **modus ponens** show that Q is true.

Contrapositive Proof

A **contrapositive proof** is a proof that shows that a statement is true by showing that the contrapositive of the statement is true.

р	q	$p \rightarrow q$	$q \rightarrow p$ (converse)	$\sim p \rightarrow \sim q$ (inverse)	$\sim q \rightarrow \sim p$ (contrapositive)
T	Т	Τ	Т	Т	Т
Τ.	F	F	Т	Т	F
F	Τ	Т	F	F	Т
F	F	Т	Т	Т	Т

Figure 1: Contrapositive Truth Table

Proof by Contradiction

A **proof by contradiction** is a proof that shows that a statement is true by showing that the negation of the statement is false.

To prove a multi conditional statement you must prove all parts of it.

2 Appendix B: Sets and Functions

Sets

A **set** is a collection of objects.