Math 395

Homework 1

Due: 9/6/2024

Name: Gianluca Crescenzo

Collaborators: Avinash Iyer, Noah Smith, Carly Venenciano, Ben Langer

For these problems F is assumed to be a field.

Exercise 3. Let V be an F-vector space.

- (a) Prove that an arbitrary intersection of subspaces of V is again a subspace of V
- (b) Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

Proof. Let $\{W_i\}_{i\in I}$ be an arbitrary collection of subspaces of V. Let $x,y\in \bigcap_{i\in I}W_i$ and $\alpha\in F$. Then $x,y\in W_i$ for all i. Hence $x+\alpha y\in W_i$ for all i which gives $x+\alpha y\in \bigcap_{i\in I}W_i$, establishing (a).

Let U,W be subspaces of V. Let $u,w\in U\cup W$ and $\alpha\in F$. Without loss of generality suppose $U\subseteq W$ with $u\in U$ and $w\in W$. Then it is also the case that $u\in W$, hence $u+\alpha w\in W\subseteq U\cup W$. Conversely, suppose $U\cup W$ is an F-subspace of V. Assume towards contradiction that $U\not\subseteq W$ and $W\not\subseteq U$. Let $u\in U,u\not\in W$ and $w\in W,w\not\in U$. Since $U\cup W$ is an F-vector space, $u+w\in U\cup W$. Without loss of generality, let $u+w\in U$, then $(-u)+u+w=w\in U$, a contradiction. Hence $U\subseteq W$ or $W\subseteq U$, establishing (b).

Exercise 4. Let $T \in \operatorname{Hom}_F(F, F)$. Prove there exists $\alpha \in F$ so that $T(v) = \alpha v$ for every $v \in F$.

Proof. Let $\beta \in F$, $\beta \neq 0$. Then $\{\beta\}$ forms a basis for F as an F-vector space. Let $v \in F$, then $v = \beta v_0$ for some $v_0 \in F$. Observe that:

$$T(v) = T(\beta v_0)$$

$$= v_0 T(\beta)$$

$$= v\beta^{-1} T(\beta)$$

$$= vT(\beta^{-1}\beta)$$

$$= vT(1).$$

From this, " α " is uniquely determined by where T(1) gets mapped to.

Exercise 9. Let V be a finite dimensional vector space and $T \in \text{Hom}_F(V, V)$ with $T^2 = T$.

- (a) Prove that $\operatorname{im}(T) \cap \ker(T) = \{0\}.$
- (b) Prove that $V = \operatorname{im}(T) \oplus \ker(T)$.

Proof. Let $v \in \operatorname{im}(T) \cap \ker(T)$. Then $v \in \operatorname{im}(T)$ and $v \in \ker(T)$. So there exists an element $w \in V$ such that T(w) = v, and T(v) = 0. Observe that v = T(w) = T(T(w)) = T(v) = 0.

Let $x+y\in \operatorname{im}(T)+\ker(T)$. Since $x\in \operatorname{im}(T)\subseteq V$ and $y\in \ker(T)\subseteq V$, $x+y\in V$. Now let $v\in V$. Then T(v)=w for some $w\in \operatorname{im}(T)$. Let k=v-T(w). Then T(k)=T(v-T(w))=T(v)-T(T(w))=T(v)-T(v)=0, so $k\in \ker(T)$. Hence $v=T(w)+k\in \operatorname{im}(T)+\ker(T)$, which gives $V=\operatorname{im}(T)+\ker(T)$.

We must now show that $\operatorname{im}(T)$ and $\ker(T)$ are independent. If T(w)+k=0, then k=T(-w) implies $k\in\operatorname{im}(T)$. So $k\in\operatorname{im}(T)\cap\ker(T)$, and by (a) it must be that k=0. Similarly, T(T(w)+k)=0 is equivalent to T(T(w))+T(k)=0, which simplifies to T(T(w))=0; i.e., $T(w)\in\ker(T)$. So $T(w)\in\operatorname{im}(T)\cap\ker(T)$, which gives that T(w)=0. Thus $\operatorname{im}(T)$ and $\ker(T)$ are independent, giving $V=\operatorname{im}(T)\oplus\ker(T)$. \square

Exercise 14. Let V be an F-vector space of dimension n. Let $T \in \operatorname{Hom}_F(V, V)$ so that $T^2 = 0$. Prove that the image of T is contained in the kernel of T and hence the dimension of the image of T is at most n/2.

Proof. Let $v \in \operatorname{im}(T)$. Then there exists a $w \in V$ such that T(w) = v. But observe that $T(v) = T(T(w)) = T^2(w) = 0$, hence $v \in \ker(T)$ which establishes the containment $\operatorname{im}(T) \subseteq \ker(T)$. By the rank-nullity theorem $n = \dim_F(\operatorname{im}(T)) + \dim_F(\ker(T))$. If $\operatorname{im}(T) = \ker(T)$ then it must be the case that $\dim_F(\operatorname{im}(T)) = \dim_F(\ker(T)) = n/2$, otherwise (when $\operatorname{im}(T) \subseteq \ker(T)$) $\dim_F(\operatorname{im}(T)) < n/2$.

Exercise 15. Let W be a subspace of a finite dimensional vector space V. Let $T \in \operatorname{Hom}_F(V,V)$ so that $T(W) \subset W$. Show that T induces a linear transformation $\overline{T} \in \operatorname{Hom}_F(V/W,V/W)$. Prove that T is nonsingular (i.e., injective) on V if and only if T is restricted to W and \overline{T} on V/W are both nonsingular.

Proof. Define $\overline{T}:V/W\to V/W$ by $v+W\mapsto T(v)+W$. We must first show that \overline{T} is well-defined. Suppose $v_1+W=v_2+W$, then $v_1=v_2+w$ for some $w\in W$. Observe that:

$$\begin{split} \overline{T}(v_1+W) &= T(v_1) + W \\ &= T(v_2+w) + W \\ &= T(v_2) + T(w) + W \qquad \text{Since } T \in \operatorname{Hom}_F(V,V) \\ &= T(v_2) + W \qquad \qquad \text{Since } T(W) \subset W \\ &= \overline{T}(v_2+W). \end{split}$$

Let $v_1 + W, v_2 + W \in V/W$, and $\alpha \in F$. Then:

$$\begin{split} \overline{T}((v_1 + W) + \alpha(v_2 + W)) &= \overline{T}((v_1 + W) + (\alpha v_2 + W)) \\ &= \overline{T}((v_1 + \alpha v_2) + W) \\ &= T(v_1 + \alpha v_2) + W \\ &= T(v_1) + \alpha T(v_2) + W \\ &= (T(v_1) + W) + \alpha (T(v_2) + W) \\ &= \overline{T}(v_1 + W) + \alpha \overline{T}(v_2 + W), \end{split}$$

hence $\overline{T}\in \operatorname{Hom}_F(V/W,V/W)$. Now consider the maps $V\stackrel{T}{\to}V\stackrel{\pi}{\to}V/W$, where $\pi:V\to V/W$ is the projection map. It can be proved that $\pi\circ T=\overline{T}\circ\pi$ as follows: let $v\in V$ and observe that $\pi(T(v))=T(v)+W$, which is equivalent to $\overline{T}(\pi(v))=\overline{T}(v+W)=T(v)+W$. We've established that the following diagram commutes:

$$\begin{array}{ccc} V & \xrightarrow{T} & V \\ \downarrow^{\pi} & & \downarrow^{\pi} \\ V/W & \xrightarrow{\overline{T}} & V/W \end{array}.$$

Now assume T is injective —by inspection one can see that $T\mid_W:W\to V$ is injective. Since \overline{T} is defined by $v+W\mapsto T(v)+W$, it must be injective as well. Conversely, let $T\mid_W$ and \overline{T} be injective. Let $v\in V$ with $v\in\ker(T)$. Then T(v)=0 is equivalent to $\pi(T(v))=0+W$. Using the fact that the above diagram commutes, we can write $\overline{T}(\pi(v))=0+W$. Since \overline{T} is injective, its kernel is trivial, hence it must be the case that $\pi(v)=0+W$. Thus $v\in W$, giving $T\mid_W(v)=0$. Again, since $T\mid_W$ is injective, its kernel is trivial, establishing that v=0. Thus T is injective.