Total No. of Questions: 9] PB3586	[6260] 1 F.E.	SEAT No. : [Total No. of Pages : 5
ENGINEERING MATHEMATICS-I (2019 Credit Pattern) (Semester -I/II) (107001)		
Time: 2½Hours] Instructions to the candidates: 1) Q.1 is Compulsory. 2) Answer Q.2 or Q.3, Q.4 or 3) Figures to the right indicated the suitable data, if new to the suitable data and the suitable	Q.5, Q.6 or Q.7, Q.8 or Que full marks. ecessary. wwn wherever necessary.	[Max. Marks :70
Q1) Write the correct option for	r the following MCQs.	[10]
a) If $u = x^3 + y^3$ then $\frac{\partial^2}{\partial x}$	$\frac{\partial^2 u}{\partial y} = \cdots?$	[2]
i) 3		
iii) 2	je)0	
b) If $x = uv$, $y = \frac{u}{v}$ the $\frac{\partial}{\partial x}$	$\frac{\partial(x,y)}{\partial(u,v)} = \cdots?$	[2]
i) $\frac{-2u}{v}$ iii) $\frac{v}{2u}$	ii) uv $iv) \frac{-v}{2u}$	P.T.O.
c) Rank of matrix $A = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	-1 0 1 1 is?	[2]
i) 0 iii) 2	ii) 1 iv) 3	3 100
	19. Ja. J.	P.T.O.

d) Using Cayley Hamilton theorem A for the matrix
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 is given by;
i) $\frac{1}{5}(A+4I)$ ii) $\frac{1}{4}(A-5I)$ iv) $\frac{1}{5}(A-4I)$

i)
$$\frac{1}{5}$$
 (A+4I)

iii)
$$\frac{1}{4}$$
(A-5I) iv) $\frac{1}{5}$ (A-4I)

e) If
$$A^{-1} = A$$
 then matrix A is? [1]

- i) Orthogonal
- ii) Singular
- iii) Non-Singular
- iv) None of above

[2]

f) If
$$u = (x^3 + 4y - 3x)$$
, $\frac{\partial u}{\partial x} =$? [1]
i) 4 ii) $3x^2 - 3$ iv) $3x^2 + 4y$

Q2) a) If
$$u = x^y + y^x$$
, find $\frac{\partial^2 u}{\partial x \partial y}$ [5]

b) If
$$u = \log\left(\frac{x^3 + y^3}{x^2 + y^2}\right)$$
, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ [5]

c) If
$$u = f(y-z, z-x, x-y)$$
, Prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$

Q3) a) If
$$x^2 = au + bv$$
 and $y^2 = au - bv$, prove that $\left(\frac{\partial u}{\partial x}\right) \left(\frac{\partial x}{\partial u}\right) \left(\frac{\partial x}{\partial u}\right)$ [5]

b) If
$$u = \sin^{-1}\left(\frac{y}{x}\right) + \sqrt{x^2 + y^2}$$
, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ [5]

c) If
$$x = \frac{\cos \theta}{u}$$
, $y = \frac{\sin \theta}{u}$ and $z = f(x, y)$, then show that

c) If
$$x = \frac{\cos \theta}{u}$$
, $y = \frac{\sin \theta}{u}$ and $z = f(x, y)$, then show that $u \frac{\partial z}{\partial u} - \frac{\partial z}{\partial \theta} = (y - x) \frac{\partial z}{\partial x} - (y + x) \frac{\partial z}{\partial y}$ [5]

[6260]-1

Q4) a) If
$$x = uv$$
 and $y = \frac{u+v}{u-v}$, find $\frac{\partial(u,v)}{\partial(x,y)}$ [5]

Examine for functional dependence: b)

> $x + \tan^{-1} y$. If dependent find the relation between them. [5]

axima and minima of $f(x, y) = x^3 + y^3 - 3axy$ a > 0. c) [5]

[5]

b) Find the percentage error in computing the parallel resistance r of two resistances r_1 and r_2 from the formula $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$ where r_1 and r_2 are both in error by +2% each. [5]

Prove that JJ'=1 for the transformation $x = u\cos v, y = u\sin v$

- Find maximum value of $u = x^2y^3z^4$ such that 2x + 3y + 4z = a by c) langrange's method
- Find for what values of k, the set of equations **Q6)** a)

has i) No solution

- [5]
- Show that $A = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ is orthogonal. [5]

Q5) a)

Examine for consistency the following set of equations and obtain the **Q7)** a) solution if consistent. [5]

$$2x-y-z=2$$
$$x+2y+z=2$$

$$4x - 7y - 5z = 2$$

- Examine for linear dependence of vectors [5] b) -1,3),(0,1,2).
- Determine the currents in the network given in figure below. [5] c)

Q8) a) Find the eigen values and eigen vectors of the following matrix. [5]

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

Verify Cayley - Hamilton theorem for $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ and use it to Find A^{-1} b)

[5] Find A-1

Find the modal matrix P which transform the matrix

$$A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$
 to the diagonal form. [5]

OR

Q9) a) Find the eigen values and eigen vectors of the following matrix

$$A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}.$$
 [5]

- b) Verify cayley Hamilton theorem for $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$. Hence find A^{-1} .
- c) Reduce the following quadratic form to the Sum of the squares form.

$$3x^2 + 3y^2 + 3z^2 + 2xy + 2xz - 2yz.$$
 [5]