39.2 Properties of Derivatives

Proposition 39.3. Given two normed affine spaces E and F, if $f: E \to F$ is a constant function, then Df(a) = 0, for every $a \in E$. If $f: E \to F$ is a continuous affine map, then $Df(a) = \overrightarrow{f}$, for every $a \in E$, the linear map associated with f.

Proof. Straightforward.

Proposition 39.4. Given a normed affine space E and a normed vector space F, for any two functions $f, g: E \to F$, for every $a \in E$, if Df(a) and Dg(a) exist, then D(f+g)(a) and $D(\lambda f)(a)$ exist, and

$$D(f+g)(a) = Df(a) + Dg(a),$$

$$D(\lambda f)(a) = \lambda Df(a).$$

Proof. Straightforward.

Given two normed vector spaces $(E_1, || ||_1)$ and $(E_2, || ||_2)$, there are three natural and equivalent norms that can be used to make $E_1 \times E_2$ into a normed vector space:

- 1. $||(u_1, u_2)||_1 = ||u_1||_1 + ||u_2||_2$.
- 2. $||(u_1, u_2)||_2 = (||u_1||_1^2 + ||u_2||_2^2)^{1/2}$.
- 3. $\|(u_1, u_2)\|_{\infty} = \max(\|u_1\|_1, \|u_2\|_2)$.

We usually pick the first norm. If E_1 , E_2 , and F are three normed vector spaces, recall that a bilinear map $f: E_1 \times E_2 \to F$ is *continuous* iff there is some constant $C \ge 0$ such that

$$||f(u_1, u_2)|| \le C ||u_1||_1 ||u_2||_2$$
 for all $u_1 \in E_1$ and all $u_2 \in E_2$.

Proposition 39.5. Given three normed vector spaces E_1 , E_2 , and F, for any continuous bilinear map $f: E_1 \times E_2 \to F$, for every $(a,b) \in E_1 \times E_2$, $\mathrm{D}f(a,b)$ exists, and for every $u \in E_1$ and $v \in E_2$,

$$Df(a,b)(u,v) = f(u,b) + f(a,v).$$

Proof. Since f is bilinear, a simple computation implies that

$$f((a,b) + (u,v)) - f(a,b) - (f(u,b) + f(a,v)) = f(a+u,b+v) - f(a,b) - f(u,b) - f(a,v)$$

$$= f(a+u,b) + f(a+u,v) - f(a,b) - f(u,b) - f(a,v)$$

$$= f(a,b) + f(u,b) + f(a,v) + f(u,v) - f(a,b) - f(u,b) - f(a,v)$$

$$= f(u,v).$$