Baskent University, Faculty of Engineering BME 222-01 – Electronics (Spring Semester 2004/2005) Quiz 3 – May 16, 2005

Student Name	
Faculty No:	
$R_D = \int_{\mathcal{N}} V_{DD} = 10 \text{ V}$	
$\begin{array}{c c} R_D & \bigvee_{DD} 10 \text{ V} \\ \textbf{2.2 k} \Omega & \gtrless C_2 10 \mu\text{F} \end{array}$	
C ₁ 10 µF	
• -1	
$R_0 \gtrsim 1$	
2.5 MΩ ₹	
⊥ V ₀₀ 5 V	

The JFET of Figure has values of $V_P = -8 \text{ V}$ and $I_{DSS} = 16 \text{ mA}$. Determine the values of V_{GS} , I_{DQ} and V_{DSQ} for the circuit. Hint: Use analytical method.

5 points. **Good Luck!**

The JFET in Figure has values of $V_p = -8V$ and $I_{DSS} = 16mA$. Determine the values of V_{GS} , I_{DQ} and V_{DSQ} for the circuit. Hint: we analytical method

Solution:

1. Since none of Vaq is dropped across the gate resistor Ra, Vas is found as

2. Using this value of Vas and the parameters listed above, the value of I is found as

$$I_{ba} = I_{ass} \left(1 - \frac{V_{GS}}{V_p}\right)^2 = 16.10^3 \left(1 - \frac{-5}{-8}\right)^2 = 2.25 \cdot 10^3 = 2.25 \text{ mA}$$

3. Now, the value of Yos is found as