

Growth Rate of Running Time Changing the hardware/ software environment Affects T(n) by a constant factor, but Does not alter the growth rate of T(n)The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Big-O notation

- - means $f(n) \le C g(n)$ for all $n \ge n_0$
 - C and n_0 are positive constants
 - Read as: "f(n) is big-oh of g(n)"
- We will ignore constants (generally) and lower order terms
- Big-O provides an upper bound on a function (to within a constant factor)

17

Example complexities

$$4n^3 + 20n + 30 = O(n^3)$$

$$n + 10000 = O(n)$$

$$4n^4 + 20n + 30 = O(n^4)$$

$$2^{n} + n^{3} = O(2^{n})$$

19

Common complexity functions

complexity	term
<i>O</i> (1)	constant
O(log n)	logarithmic
<i>O</i> (n)	linear
O(n log n)	n log n
<i>O</i> (n ^b)	polynomia
<i>O</i> (b ⁿ)	exponentia
<i>O</i> (n!)	factorial

Running time of statements

- ◆ Simple statements (i.e., initialization of variables) have a complexity of O(1).
- ♦ Loops have a complexity of O(g(n)f(n)), where g(n) is upper bound on number of loop iterations and f(n) is upper bound on the body of the loop.
 - If g(n) and f(n) are constant, then this is constant time.

21

Running time of statements

- ullet Conditional statements have a complexity of $O(\max(f(n),g(n)))$, where f(n) is upper bound on **if** part and g(n) is upper bound on **else** part.
- ♦ Blocks of statements with complexities $f_1(n)$, $f_2(n)$, ..., $f_k(n)$, have complexity $O(f_1(n) + f_2(n) + ... + f_k(n))$.

22

Running time cin >> total; if (total > 60) cout << "Pass" << endl; else cout << "Fail" << endl;

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- ♦ To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 7n-1 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

24

Relatives of Big-Oh

big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \circ g(n)$ for $n \ge n_0$

big-Theta

f(n) is Θ(g(n)) if there are constants c' > 0 and c" > 0 and an integer constant n₀ ≥ 1 such that c'•g(n) ≤ f(n) ≤ c"•g(n) for n ≥ n₀

little-oh

• f(n) is o(g(n)) if, for any constant c>0, there is an integer constant $n_0\geq 0$ such that $f(n)\leq c \bullet g(n)$ for $n\geq n_0$

little-omega

• f(n) is $\omega(g(n))$ if, for any constant c>0, there is an integer constant $n_0\geq 0$ such that $f(n)\geq c \bullet g(n)$ for $n\geq n_0$

29

Example Uses of the Relatives of Big-Oh

■ $5n^2$ is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c>0 and an integer constant $n_0\geq 1$ such that $f(n)\geq c \cdot g(n)$ for $n\geq n_0$

let c = 5 and $n_0 = 1$

 \blacksquare 5n² is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c>0 and an integer constant $n_0\geq 1$ such that $f(n)\geq c\bullet g(n)$ for $n\geq n_0$

let c = 1 and $n_0 = 1$

 \blacksquare 5n² is $\omega(n)$

f(n) is $\omega(g(n))$ if, for any constant c>0, there is an integer constant $n_0\geq 0$ such that $f(n)\geq c\bullet g(n)$ for $n\geq n_0$

need $5n_0^2 \ge c \cdot n_0 \rightarrow \text{given } c$, the n_0 that satisfies this is $n_0 \ge c/5 \ge 0$

31

Intuition for Asymptotic Notation

30

Big-Oh

• f(n) is O(g(n)) if f(n) is asymptotically **less than or equal** to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater than or equal** to g(n)

big-Theta

• f(n) is $\Theta(g(n))$ if f(n) is asymptotically **equal** to g(n)

little-oh

• f(n) is o(g(n)) if f(n) is asymptotically **strictly less** than g(n)

little-omega

• f(n) is $\omega(g(n))$ if is asymptotically **strictly greater** than g(n)

Ω