How to evaluate your prediction

Zhihan Fang

Load your data

Training data: data that is used for training the model, all decision tree, random forest and Ida model

Testing without label: data without incidents, you need to predict the incidents(bite or not bite).

Testing data: sample solution including the right answer to calculate the error rate of the result.

#import training and testing data

lou_training <- read.csv("~/workspace/data_literacy/week10/lou_training.csv")
lou_testing_nolabel <- read.csv("~/workspace/data_literacy/week10/lou_testing_nolabel.csv")

Cross Validation

rpart(): train the relation between INCIDENT and other attributes using decision tree model.

randomForest(): train the relation between INCIDENT and other attributes using random forest model.

Ida(): train the relation between INCIDENT and other attributes using linear discriminant analysis model.

Decision Tree ? Linear Discriminant Analysis? Or random forest? Which one is best for the problem?

How to determine which attributes can be selected to do prediction?

Last challenge?

Find the model with the smallest error.

Problem: we do not have the solution to calculate the error. But we have the solution in the training data set.

Cross Validation

Data is your training data, separate your training data into two data sets.

- 1. One big data set for training
- 2. One small data set for testing

There is no overlap between new training and testing

Cross Validation

Final Accuracy = Average(Round 1, Round 2, ...)

```
#import your package before using it
library(randomForest)
library(MASS)
library(rpart)
#import training data
lou training <- read.csv("~/workspace/data literacy/week11/lou training.csv")</pre>
#set fold number
fold number = 10
n row <- nrow(lou training)</pre>
all index <- 1:n row
#how many rows in each fold
row number each fold <-n row/fold number
```

```
#vector that contains all results from validation
error.tree <- c()
error.lda <- c()
error.forest <- c()</pre>
```

```
# first time, set first fold as testing data; second loop, set second fold as test data, and so on.
for (i in 1:fold number){
        # set start and end index of testing
        start point <- (i-1) * row number each fold +1
        end point <- i * row number each fold
        #get test index
        test index <- start point:end point
        #train index = remove test index from all index
        train index <- all index[-test index]
        #get data based on index
        new testing <- lou training[test index,]</pre>
        new training <- lou training[train index,]</pre>
        #decision tree model
        lou.tree <- rpart(INCIDENT ~ RESULT + GOALS + YEAR+MOON NIGHT BEFORE,data=new training)
        pred.tree <- predict(lou.tree,newdata=new testing,type="class")</pre>
        error.tree[i] <- mean(pred.tree != new testing$INCIDENT)
        #decision tree model
       lou.tree2 <- rpart(INCIDENT ~ PENALTY + VICTIM + LOCATION +WHEN+ RESULT + GOALS + YEAR+MOON NIGHT BEFORE.data=new training)
        pred.tree2 <- predict(lou.tree2,newdata=new testing,type="class")</pre>
        error.tree2[i] <- mean(pred.tree2 != new_testing$INCIDENT)
        #decision tree model
        lou.tree3 <- rpart(INCIDENT ~ PENALTY+LOCATION+WHEN,data=new_training)
        pred.tree3 <- predict(lou.tree3,newdata=new_testing,type="class")
        error.tree3[i] <- mean(pred.tree3 != new testing$INCIDENT)}
```

#calculate the average error

error.tree.mean <- mean(error.tree)</pre>

error.tree2.mean <- mean(error.tree2)

error.tree3.mean <- mean(error.tree3)

Error for numerical value

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

 \hat{Y} Is your prediction value and Y is the real results.