Real Analysis

Professor Rishi Vyas

Week 1 Due Tuesday, July 30, 2024

Shubhro Gupta

Collaborators: none

QUESTION A 4 Points

Definition. Let $x \in \mathbb{R}$. If $n \in \mathbb{N}$, we define $x^n := \overbrace{x \dots x}^n$. By convention, for n = 0 we interpret this as defining $x^0 := 1$.

To Prove. Let $x, y, z \in \mathbb{R}$.

1. If 0' is an element of \mathbb{R} such that 0' + x = x for all $x \in \mathbb{R}$, then 0' = 0.

$$0' + x = x$$

$$0' + x + (-x) = x + (-x)$$

$$0' + 0 = 0 (Additive Inverse (4))$$

$$0' = 0$$

2. If 1' is an element of \mathbb{R} such that $1' \cdot x = x$ for all $x \in \mathbb{R}$, then 1' = 1.

$$1' \cdot x = x$$

$$1' \cdot x \cdot x^{-1} = x \cdot x^{-1}$$

$$1' \cdot 1 = 1 \qquad \text{(Multiplicative Inverse (8))}$$

$$1' = 1$$

3. $x \neq 0$ and xy = xz. Prove that y = z. Deduce that if xy = 1 then $y = x^{-1}$.

$$xy = xz$$

$$((x)^{-1} \cdot x)y = ((x)^{-1} \cdot x)z$$

$$y = z$$

$$\Box$$

$$xy = 1$$
$$((x)^{-1} \cdot x)y = (x)^{-1} \cdot 1$$

4.
$$-0 = 0$$

$$0 = 0$$
$$0 \times -1 = 0 \times -1$$
$$0 = -0$$

5. If
$$x \neq 0$$
, then $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.

Suppose
$$x^{-1} = 0$$

 $x \cdot x^{-1} = x \cdot 0$
 $1 = 0$ (Multiplicative inverse (8))

$$1 \neq 0 \text{ so } x^{-1} \neq 0.$$

$$6. (-x) \times (-y) = xy.$$

$$(-x) \times (-y) = (-x)(-y) + 0y$$

$$= (-x)(-y) + (x + (-x))y$$

$$= (-x)(-y) + xy + (-x)y \qquad \text{(Distributive Law)}$$

$$= ((-x)(-y) + (-x)y) + xy$$

$$= (-x)(-y + y) + xy$$

$$= (-x)(0) + xy$$

$$= 0 + xy$$

$$(-x) \times (-y) = xy$$

- 7. If $x \neq 0$ and $n \in \mathbb{N}$, then $(-x)^{-1} = -(x^{-1})$ and $(x^{-1})^n = (x^n)^{-1}$.
- 8. If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$.

Suppose
$$xy = 0$$

$$x \cdot x^{-1} \cdot y = 0 \cdot x^{-1}$$

$$1 \cdot y = 0 \cdot x^{-1}$$

$$y = 0$$
*

QUESTION B 3 Points

Definition. Let $x \in \mathbb{R}$, $x \neq 0$. If $n \in \mathbb{N}$, **To Prove.** Let $x, y, z \in \mathbb{R}$.

- 1. If x < y and z > 0, then xz < yz.
- 2. If x < 0 then $x^{-1} < 0$.
- 3. If $x, y \ge 0$ and $n \in \mathbb{Z}_{>0}$, prove that $x \le y$ if and only if $x^n \le y^n$. Deduce that x < y if and only if $x^n < y^n$.

QUESTION D 4 Points

- (a) Let $a, b \in \mathbb{R}$.
 - i. Consider the set $\{a,b\}$. Prove that the supremum of the set $\{a,b\}$ is equal to a if $a \ge b$, and is equal to b if $b \ge a$.
 - ii. Prove that

$$\sup(\{a,b\}) = \frac{a+b+|a-b|}{2}.$$

- iii. Formulate and prove a variant of the above formula describing the infimum of the set $\{a,b\}$.
- (b) Let a_1, \ldots, a_n be elements of \mathbb{R} . Prove that

$$\sup (\{a_1, \dots, a_n\}) = \sup (\{\sup (\{a_1, \dots, a_{n-1}\}), a_n\}).$$

Deduce that $\sup (\{a_1, \ldots, a_n\}) \in \{a_1, \ldots, a_n\}.$

Definition. If a_1, \ldots, a_n are elements of \mathbb{R} , define the maximum of these elements by $\max\{a_1, \ldots, a_n\} := \sup(\{a_1, \ldots, a_n\})$. From the previous question, we then observe that $\max\{a_1, \ldots, a_n\} \in \{a_1, \ldots, a_n\}$. We can define the minimum of a collection of elements in \mathbb{R} in an analogous manner using inf instead of sup.

Definition. Let $S \subseteq \mathbb{R}$. We say that S is bounded if it is bounded above and bounded below.

QUESTION E 3 Points

Let S be a subset of \mathbb{R} .

- (a) Show that S is bounded if and only if there exists an $m \in \mathbb{R}$ such that $|x| \leq m$ for all $x \in S$.
- (b) Deduce that the following three statements are equivalent:
 - i. The S is bounded.
 - ii. There exists $m \in \mathbb{R}$ such that $S \subseteq [-m, m]$.
 - iii. There exist $a, b \in \mathbb{R}$ with $a \leq b$ such that $S \subseteq [a, b]$.

Let $S \subseteq \mathbb{R}$. (1) Let $x, y \in \mathbb{R}$, and suppose x and y both satisfy the definition of an infimum of S. Show that x = y. (2) Let $x \in \mathbb{R}$. Show that $x = \inf(S)$ if and only if it satisfies the following two conditions: a.) The element x is a lower bound for S. b.) Given $\epsilon > 0$, there exists some $y \in S$ such that $y < x + \epsilon$. (3) Let $x \in \mathbb{R}$. Show that $x = \inf(S)$ if and only if it satisfies the following two conditions: a.) The element x is a lower bound for S. b.) Given $n \in \mathbb{Z}_{>0}$, there exists some $y \in S$ such that $y < x + \frac{1}{n}$.