Hexapod Control Comparison Test Methodology

Overview

This document outlines a comprehensive test methodology for comparing two control approaches in hexapod locomotion:

- Inverse Kinematics (IK) Traditional mathematical approach
- Neural Circuit Spiking neuron-based control

The comparison will be conducted across three distinct terrain environments:

- 1. Obstacle-filled terrain
- 2. Rough terrain (Perlin noise-generated)
- 3. Ramp terrain (variable steepness platforms)

1. Performance Metrics

Primary Metrics

Metric	Description	Units	Measurement Method
Navigation Success Rate	Percentage of successful task completions	%	Binary success/failure per trial
Completion Time	Time to traverse/complete terrain challenge	seconds	Start to finish timing
Energy Efficiency	Total joint torques/forces over time	N∙m∙s	Sum of absolute joint forces
Stability Index	Measure of balance and fall incidents	score	Custom stability algorithm

Secondary Metrics

Metric	Description	Units	Measurement Method
Adaptability	Response time to terrain changes	seconds	Time to adjust after disturbance
Precision	Accuracy in reaching target positions	meters	Distance from target coordinates
Gait Consistency	Variability in step patterns	coefficient	Standard deviation of step timing

2. Test Scenarios by Terrain Type

A. Obstacle Terrain Tests

Scenario 1: Navigation Challenge

- Objective: Navigate from start to end point avoiding obstacles
- Configurations:
 - Low density: 5 obstacles
 - o Medium density: 10 obstacles
 - High density: 15 obstacles
- Success Criteria: Reach target without collision
- Environment Parameters:
 - Area: 28.5m × 29m
 - o minSpacing: 0.3m
 - alturaExtra: 0.1m

Scenario 2: Precision Maneuvering

- Objective: Navigate through narrow passages
- Configurations:
 - Wide passages: minSpacing = 0.8m
 - Medium passages: minSpacing = 0.5m
 - Narrow passages: minSpacing = 0.3m
- Success Criteria: Pass through without contact
- Measurement: Contact detection via collision events

Scenario 3: Dynamic Adaptation

- Objective: Navigate while obstacles are randomly repositioned
- Configuration: Obstacles repositioned every 10 seconds
- Success Criteria: Adapt path in real-time without stopping
- **Duration**: 2 minutes continuous navigation

B. Rough Terrain Tests

Scenario 1: Roughness Progression

- **Objective**: Traverse increasing terrain difficulty
- Configurations:

Level	Roughness Scale	Amplitude	Difficulty
1	0.5	0.3	Easy
2	1.0	0.6	Medium
3	1.5	1.0	Hard
4	2.0	1.5	Extreme

- Success Criteria: Maintain forward progress without falling
- **Distance**: 10m traverse per level

Scenario 2: Endurance Test

- Objective: Continuous locomotion on medium roughness
- Configuration:
 - o roughnessScale = 1.0
 - amplitude = 0.6
 - terrainSize = 10m
- **Duration**: 5 minutes continuous movement
- Success Criteria: Maintain locomotion throughout without manual intervention

Scenario 3: Slope Variation

- Objective: Handle terrain with varying slopes
- Configuration: Multiple noise layers with different frequencies
- Parameters:
 - useMultipleLayers = true
 - o secondLayerStrength = 0.5
 - o thirdLayerStrength = 0.25
- Success Criteria: Adapt gait to terrain variations automatically

C. Ramp Terrain Tests

Scenario 1: Steepness Challenge

- Objective: Climb ramps of increasing steepness
- Configurations:

Height Difference	Approximate Angle	Difficulty
0.5m	~5°	Easy
1.0m	~10°	Medium
1.5m	~15°	Hard
2.0m	~20°	Extreme

- Fixed Parameters:
 - platformSize = 4m
 - rampWidth = 2m
 - rampLength = 10m
- Success Criteria: Successfully climb to second platform

Scenario 2: Precision Approach

- **Objective**: Precise positioning on narrow ramp
- Configurations:
 - Wide ramp: rampWidth = 2.0m
 - Medium ramp: rampWidth = 1.5m
 - o Narrow ramp: rampWidth = 1.0m
- Fixed Parameters: heightDifference = 1.0m
- Success Criteria: Stay on ramp surface without falling off sides

Scenario 3: Bi-directional Test

- **Objective**: Climb up and descend ramp successfully
- Configuration: Medium difficulty (heightDifference = 1.0m)
- Success Criteria: Complete round trip without falling
- **Measurement**: Time for complete cycle

3. Experimental Design

Test Protocol

1. Randomization:

- o Randomize order of control methods per session
- Randomize terrain configurations
- Use Latin square design to control for order effects

2. Repetitions:

- N = 10 trials per scenario per control method
- o Total trials per terrain type: 60-90 trials
- o Total experiment: ~200 trials

3. Baseline Establishment:

- Test both methods on flat terrain first
- o Establish baseline performance parameters
- o Calibrate measurement systems

4. Environmental Controls:

- Same initial robot position and orientation
- Identical environmental parameters
- Reset robot state between trials
- Same Unity physics settings

Trial Procedure

1. **Pre-trial Setup** (30 seconds):

- Reset hexapod to starting position
- o Initialize terrain configuration
- Clear previous trial data
- Verify all systems operational

2. **Trial Execution** (Variable duration):

- Start data recording
- Begin hexapod movement
- Monitor for success/failure conditions

o Record continuous performance data

3. Post-trial Data Collection (10 seconds):

- Stop recording
- Calculate derived metrics
- o Save trial data
- Log any anomalies or observations

4. Specific Test Configurations

Environment Parameters Summary

Obstacle Terrain

```
Terrain Configuration:
    area_size: [28.5m, 29m]
    floor_height: variable
    min_spacing: [0.3m, 0.5m, 0.8m]
    altura_extra: 0.1m

Obstacle Densities:
    low: 5 obstacles
    medium: 10 obstacles
    high: 15 obstacles

Test Variants: 9 configurations
```

Rough Terrain

```
Fixed Parameters:
    terrain_size: 10m
    terrain_resolution: 50
    enable_realtime_update: true

Variable Parameters:
    roughness_scale: [0.5, 1.0, 1.5, 2.0]
    amplitude: [0.3, 0.6, 1.0, 1.5]

Noise Layers:
    use_multiple_layers: true
    second_layer_strength: 0.5
    third_layer_strength: 0.25

Test Variants: 16 configurations
```

Ramp Terrain

```
Fixed Parameters:
   platform_size: 4m
   ramp_width: 2m
   ramp_length: 10m
   enable_realtime_update: true

Variable Parameters:
   height_difference: [0.5m, 1.0m, 1.5m, 2.0m]
   ramp_width_variants: [1.0m, 1.5m, 2.0m]

Test Variants: 12 configurations
```

5. Statistical Analysis Plan

Comparative Analysis Methods

Parametric Tests

- Two-sample t-tests: Compare mean performance between IK and Neural methods
- Paired t-tests: Compare performance within subjects across conditions
- **ANOVA**: Multi-factor analysis (terrain type × control method × difficulty)
- Repeated measures ANOVA: Account for within-subject correlations

Non-parametric Tests

- Mann-Whitney U test: Compare medians when normality assumptions violated
- Wilcoxon signed-rank test: Paired non-parametric comparisons
- Kruskal-Wallis test: Multiple group comparisons

Categorical Analysis

- Chi-square tests: Success rate comparisons
- Fisher's exact test: Small sample categorical comparisons
- McNemar's test: Paired categorical data

Effect Size Measurements

Metric	Effect Size Measure	Interpretation
Continuous variables	Cohen's d	Small: 0.2, Medium: 0.5, Large: 0.8
Success rates	Odds ratio	OR > 2 or < 0.5 considered meaningful
All metrics	Confidence intervals	95% CI for practical significance

Sample Size Justification

• **Power analysis**: 80% power to detect medium effect sizes (d = 0.5)

- Alpha level: 0.05 (two-tailed tests)
- Expected effect size: Based on pilot testing
- Minimum detectable difference: 15% for continuous variables, 20% for success rates

6. Implementation Timeline

Phase 1: Baseline Establishment (Week 1)

- Implement data collection system
- Test both control methods on flat terrain
- Establish baseline performance parameters
- Calibrate stability and energy metrics

Phase 2: Obstacle Terrain Testing (Week 2)

- Execute 9 configurations × 2 methods × 10 trials = 180 trials
- Daily data backup and preliminary analysis
- Monitor for any systematic issues
- Adjust parameters if necessary

Phase 3: Rough Terrain Testing (Week 3)

- Execute 16 configurations × 2 methods × 10 trials = 320 trials
- Focus on endurance and adaptability metrics
- Document terrain generation consistency
- Analyze real-time adaptation capabilities

Phase 4: Ramp Terrain Testing (Week 4)

- Execute 12 configurations × 2 methods × 10 trials = 240 trials
- Emphasize precision and stability metrics
- Test bi-directional movement capabilities
- Validate angle calculations

Phase 5: Analysis and Validation (Week 5)

- Complete statistical analysis
- Generate performance visualizations
- Identify significant differences
- Conduct targeted validation tests
- Prepare final report

7. Expected Outcomes and Hypotheses

Primary Hypotheses

H1: Terrain-Specific Performance

- Hypothesis: Neural circuit will demonstrate superior performance on rough terrain due to adaptive capabilities
- Prediction: Neural > IK for rough terrain success rates and stability
- Measurement: Success rate difference > 20%, stability score difference > 0.5

H2: Precision Tasks

- Hypothesis: IK will show higher precision in obstacle navigation and narrow passage traversal
- **Prediction**: IK > Neural for precision metrics and path deviation
- Measurement: Path deviation difference > 0.2m, precision difference > 0.1m

H3: Energy Efficiency

- Hypothesis: Energy efficiency will vary significantly between methods and terrain types
- Prediction: Neural circuit more efficient on complex terrain, IK more efficient on simple terrain
- **Measurement**: Energy consumption difference > 15%

H4: Adaptability and Robustness

- Hypothesis: Neural circuit will exhibit faster adaptation to environmental changes
- **Prediction**: Neural < IK for adaptation time, Neural > IK for disturbance recovery
- Measurement: Adaptation time difference > 2 seconds

Secondary Hypotheses

H5: Learning Effects

- Hypothesis: Neural circuit performance will improve over multiple trials
- Prediction: Significant positive correlation between trial number and performance for Neural method
- Analysis: Linear regression of performance vs. trial number

H6: Terrain Complexity Interaction

- Hypothesis: Performance difference between methods will increase with terrain complexity
- Prediction: Interaction effect between control method and difficulty level
- Analysis: Two-way ANOVA with interaction terms

Decision Criteria

Statistical Significance

- **Primary analyses**: p < 0.05 (Bonferroni correction for multiple comparisons)
- Exploratory analyses: p < 0.10
- **Effect size threshold**: Cohen's d > 0.5 for practical significance

Practical Significance Thresholds

- Success rate: Difference > 20%
- Completion time: Difference > 15%

- **Energy efficiency**: Difference > 15%
- Stability: Difference > 0.5 standard deviations
- Path deviation: Difference > 0.2m

8. Data Management and Quality Control

Data Collection Standards

File Naming Convention

```
HexapodTest_[ControlMethod]_[TerrainType]_[Configuration]_[TrialNum]_[Timestamp].c
sv
Example: HexapodTest_IK_Obstacle_Medium_T005_20241201_143022.csv
```

Data Validation Checks

- Verify all metrics within expected ranges
- Check for missing data points
- Validate timestamp consistency
- Confirm trial completion status
- Cross-reference environmental parameters

Backup and Version Control

- Daily backup of all trial data
- Version control for analysis scripts
- Documentation of any parameter changes
- Maintain raw data integrity

Quality Assurance

Pre-trial Checks

- Robot systems functional
- Terrain properly configured
- Data logging systems active
- Environmental conditions stable

During-trial Monitoring

- Real-time data validation
- System performance monitoring
- Anomaly detection and logging
- Manual observation notes

Post-trial Verification

- Data completeness check
- Outlier identification
- Trial validity assessment