CanSat desde Cero

Introducción Arduino

Elena Álvarez Castro

Introducción Programación con Arduino UNO

Programación con Arduino

Ve a https://www.tinkercad.com/ y crea una cuenta de profesor

¡¡Simulador!!

Programación con Arduino

- 1. Ejercicio 1: Parpadeo de LED
 - Con integrado de Arduino: Pin 13
 - Conectando un LED externo
- 2. Ejercicio 2: Cambiar la frecuencia de parpadeo
- 3. Ejercicio 3: Mensaje de SOS
 - Optimizar el código con el bucle for
- Ejercicio 4: Escribir el mensaje de SOS en el puerto serie

Programación con Arduino

- 1. Poner Arduino UNO R3 en el tablero (arrastrar)
- 2. Abrir ventana de código

- 4. Iniciar Simulación
- 5. Ver LED parpadeando cada segundo

DIODO LED

Pin Digital Anode Cathode Realina Epox Cavidad reflectora Vunque Plaqueta Cathode Cathode Anoda*

Lógica positiva (activo a nivel alto)

Resistencia de protección: R (Para 5V) $\begin{array}{c} 220 \ \Omega \\ 330 \ \Omega \\ 470 \ \Omega \end{array}$

Características diodo LED

Caracteristicas diodo LED		
Tipo Receptor	Receptor luminoso Diodo emisor de luz (Light Emitting Diode)	
Tipo actuador Arduino	Salida Digital	
Diámetro:	3 – 5- 10 mm	

Diámetro:	3 – 5- 10 mm	
Símbolo	Ánodo Cátodo	
Polarizado	Sí	

Intensidad:	10 mA ~ 20 mA		
Tensión de trabajo típica: (Caída de tensión en conducción- polarización directa)	Rojo	1,7-1,9V /20 mA	
	Ámbar	2 V /20 mA	
	Verde	2,1 V /20 mA	
	Blanco	3,4 V / 12 mA	
	Azul	4,6 V /10 mA	

Potencia 34 mW ~ 46 mW

Tensión de ruptura 2 V ~ 5 V

(inversa máx.)

Vida útil 30.000 ~ 100.000 h

Pin 12 - cambiar en el código

Ejercicio 2 - Cambiar frecuencia de parpadeo

```
void setup() {
   // initialize digital pin LED BUILTIN as an output.
  pinMode (12, OUTPUT);
. // the loop function runs over and over again forever
! void loop() {
   digitalWrite(12, HIGH); // turn the LED on (HIGH is the voltage level)
  delay(1000);
                                     // wait for a second
  digitalWrite(12, LOW); // turn the LED off by making the voltage LOW
  delay(1000);
                                     // wait for a second
```

¿Cuánto tiempo está encendido y cuánto apagado?

Ejercicio 3 - Mensaje de SOS

Punto: 500 ms encendido 500 ms apagado Raya: 1000 ms encendido 500 ms apagado Señal de inicio (apagar led 2 segundos)


```
1 punto

1 raya
1 punto

digitalWrite(12, HIGH);
delay(500);
digitalWrite(12, Low);
digitalWrite(12, Low);
digitalWrite(12, Low);
delay(500);

x3

1 punto

digitalWrite(12, HIGH);
delay(500);
delay(500);

x3

x3
```

Ejercicio 3 - Mensaje de SOS - Bucle for

```
//s
                                                          //s
                                                         for (int i=1; i<=3; i++) {
for (int i=1; i<=3; i++) {
                             for (int i=1; i<=3; i++) {
                                                            digitalWrite(12, HIGH);
  digitalWrite(12, HIGH);
                               digitalWrite(12, HIGH);
                                                           delay (500);
 delay (500);
                               delay(1000);
                                                           digitalWrite(12, LOW);
 digitalWrite(12, LOW);
                               digitalWrite(12, LOW);
                                                           delay (500);
 delay (500);
                               delay (500);
```

Creamos una variable i=1;

El bucle se repite mientras que i sea menor o igual que 3; incrementamos i una unidad cada vez que se ejecuta el bucle

Ejercicio 4 - Puerto Serie

Ejercicio 4 - Puerto Serie

Iniciar en el Setup

```
void setup() {
  pinMode(12, OUTPUT);
  Serial.begin(9600);
}
```

Escribir S cuando se hayan hecho tres puntos

```
//S
for (int i=1; i<=3; i++) {
    digitalWrite(12, HIGH);
    delay(500);
    digitalWrite(12, LOW);
    delay(500);
}</pre>
Serial.print('S');
```

```
Serial.print("Mensaje a mostrar, siempre en la misma línea");
Serial.println("Mensaje a mostrar, en la siguiente línea");
```

Ejercicios Completos en Tinkercad

https://www.tinkercad.com/things/1gTE3XY15q9-mensajesosbucleforpuertoserie

Empezar con Arduino

- 1. Descargar Arduino IDE
- 2. Conectar Arduino
- 3. Configurar puerto
- 4. Cargar ejemplo

Envía estos ejercicios a tu alumnado con Tinkercad!!

Crear una clase en Tinkercad

Arduino Online también disponible!

THANKS!

Alguna pregunta?

elenaalvarezcastro@gmail.com

