Convex Optimisation

Alessio Zakaria

Convex Optimisation?

- What is it?
 - ► Finding the maxima / minima of convex functions over convex sets with respect to convex or affine constraints
- Why do we care?
 - Convex functions display many theoretical properties that are suited to optimisation
 - Solving convex optimisation allows you to place a lower bound on non-convex functions
 - Many real world optimisations are convex

Convexity

A set $C \subseteq \mathbb{R}$ is convex if $\forall x, y \in C, \forall \theta \in [0, 1]$

$$\theta x + (1 - \theta)y \in C$$

i.e. all points on the line segment between x and y lie in C add affine definition

Convex Functions

A function $f:C\subseteq\mathbb{R}^n\to\mathbb{R}^m$ is convex on some convex set C if $\forall\,x,\,y\in C,\forall\,\lambda\in[0,1]$

$$f(\lambda x + (1 - \lambda)y) \le f(\lambda x) + f((1 - \lambda)y)$$

add picture or better explanation and affine function definition, concave = convex -f

Minima and Maxima

 $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ has a global minimum (maximum resp.) x^* if:

$$\forall x \in S, \ f(x^*) \le f(x), \ (f(x^*) \ge f(x))$$

f has a local minimum (maximum resp.) around x^\star if $\exists\, R\in\mathbb{R}$ such that

$$\forall x \in B(x^*, R), \ f(x^*) \le f(x), \ (f(x^*) \ge f(x))$$

add strict definitions

Convex Optimisation Problem

A convex optimisation problem is a min/maximisation problem in the following form:

Find the
$$\min_{x} f_0(x)$$

such that $f_1(x) \leq 0$
 \vdots
 $f_n(x) \leq 0$
 $g_0(x) = 0$
 \vdots
 $g_m(x) = 0$

Where f_0, \dots, f_n are convex functions and g_0, \dots, g_m are affine

Feasible Set

The feasible set $C \subseteq D = \bigcap_{i=0}^m \operatorname{dom}(f_i) \bigcap_{j=0}^n \operatorname{dom}(g_j)$ is the set of all $x \in D$ such that the constraints are satisfied.

The optimal value of problem is $\inf\{f_0(x) \mid x \in C\}$. If there is no lower bound the optimisation problem has optimal value $-\infty$.

Convexity and Optimality

j++į

8/8