Bits of Architecture

The Multi-Core Era

We Can't Scale Frequency - Now What?

No More Performance?

- Frequency drove a lot of single-threaded performance
- Transistors are still getting smaller (slowly)
- How do we allocate our silicon?
 - Branch predictors?
 - Reorder buffers?
 - Vector Hardware?
- >1 Core?

Why Multi-Core Works

Exploiting Parallelism

- We often want to run many programs at once
- Our programs often have independent sections
- Multiple cores allow us to exploit these things

Why Multi-Core Is Difficult

Parallel Programming is Performance Programming

- Parallel programming breaks our layers of abstraction
 - Programs need to to know about hardware
- Tricky to get right
 - Functionality
 - Performance
- New problems
 - Coherence

Multi-Core Forever?

Not So Fast...

- Transistors keep getting smaller (for now)
- More transistors = More Cores
 - But wait! What about the end of **Dennard** Scaling?
- More transistors, but we can't turn them all on at once (Dark Silicon)
 - Thermal Design Power constraint

Dark Silicon and the End of Multicore Scaling

Hadi Esmaeilzadeh† Emily Blem‡ Renée St. Amant§ Karthikeyan Sankaralingam‡ Doug Burger°

†University of Washington ‡University of Wisconsin-Madison

§The University of Texas at Austin °Microsoft Research

hadianeh@cs.washington.edu blem@cs.wisc.edu stamant@cs.utexas.edu karu@cs.wisc.edu dburger@microsoft.com