Лабораторная работа 3.3.6 Влияние магнитного поля на проводимость полупроводников

Кагарманов Радмир Б01-106 $7\ {\rm Hosfps}\ 2022\ {\rm r}.$

Цель работы: исследовать зависимость напряжения на образце от величины магнитного поля и от ориентации образца в магнитном поле.

В работе используется: стабилизированный источник постоянного тока и напряжения, электромагнит, цифровой вольтметр, амперметр, миллиамперметр, реостат, измеритель магнитной индукции, образцы - монокристаллического антимонида индия n-го типа.

Экпериментальная установка

Схема установки для исследования магнетосопротивления полупроводников и геометрического резистивного эффекта представлена на рис. 1.

Рис. 1: Экспериментальная установка

В зазоре электромагнита (рис. 1a) создаётся постоянное магнитное поле, величину которого можно менять с помощью источника питания электромагнита. Ток электромагнита измеряется амперметром A_1 . Магнитная индукция в зазоре измеряется при помощи милливеберметра или миллитесламетра на основе датчика Холла.

Образец в форме кольца (диск Корбино) или пластинки, смонтированный в специальном держателе, подключается к источнику постоянного напряжения 5 В. При замыкании ключа K_2 сквозь образец течёт ток, величина которого измеряется миллиамперметром A_2 и регулирется реостатом R_2 . Балластное сопротивление R_0 ограничивает ток через образец. Измеряемое напряжение подаётся на вход вольтметра V.

Обработка результатов

1. Построим график $B = f(I_{\scriptscriptstyle \mathrm{M}}).$

Рис. 2: $B = f(I_{\text{m}})$

2. На рис. 2 изображены графики $R = f(I_{\scriptscriptstyle \rm M})$ для диска Корбино и пластины.

Рис. 3: $B = f(I_{\text{м}})$

3. Зная сопротивление образца в отсутствии магнитного поля, можно рассчитать удельное сопротивление образца по формуле $R_0 = \frac{\rho_0}{2\pi rh} ln \frac{r^2}{r^1}$.

$$\rho_0 = 2,9 \cdot 10^{-7} \text{ Om} \cdot \text{M}$$

Вывод: в данной работе мы исследовали заваисимость напряжения на образце от величины магнитного поля и от ориентации образца в магнитном поле, вычислили $\rho_0=2,9\cdot 10^{-7}~{\rm Om\cdot m}.$