EEE-6512 Image Processing and Computer Version Homework #5

Wenxuan Wang

UF gatorlink username: wenxuanwang

<u>Ufmail: wenxuanwang@ufl.edu</u>

<u>UFID:64118211</u>

Textbook Question

Prob 7.3 Suppose we wish to construct a Gaussian pyramid with n=3 images per octave (a) What is the downsampling factor? (b) How should or be chosen to ensure that the overall smoothing between octaves is 62 = 1.2? From book page P330 [1] We know that each reduction by a factor of two is known as an octave (a) If the downsampling factor is $\sqrt[n]{2} = 2^{\frac{1}{n}}$, then there are n images per octave [1] From the problem, it is with n=3 images per octave so the dampling factor is 23 = 1.2599 (b) Since repeated convolutions with a Gaussian are equivalent to a single convolution with a Gamesian whose variance is the sum of the individual variances, we define $0^{72} = h \sigma^2$ to ensure that the overall smoothing between octaves is the same as between consecutive levels equation 7.2 (book P329) So the variance o'2 = 302 = 1 × 1.2 = 0.4 Prob. 2.4 Suppose we wish to construct a Laplacian pyramid with n=5 images per octave (a) What Should be the variance ratio P in order to ensure that each octave is convolved with the same sequence of variances, relative to the image size? (b) What variance should be applied for pyramid levels 1,2 and 3 (i.e what are 6.6.6.2)? From book page P332 (a) We know that to ensure that each octave is committed with the same sequence of variances, teletive to the image size, the variance tatio should be set to $f=2^{-\frac{1}{h}}$ [1] So P= 2 = 21.1487 (b) A teasonable choice for the initial variance is 500 = 1 (0.5) So let 502 = 015 = 01 P= (2 5) = 2 5 = 1.3195 50 01 = 12002 = 1.3195 × 0.1 = 0,13195 022 = 1.3195 × 0.13195 = 0,1741

Prob 715 Explain why the casuality criterion is important in computing the scale space
Book Pasa
Casuality criterion is among Scale-space axioms. It can ensure that the number
of local extrema does not increase as we proceed to coarser levels of scale. In
other words, the maxima are flattened while the minima are raised. [1]
That is, all local extrama found by the scale space computation are due to the
image itself.
• •
Prob. >. > Explain why the Canny edge detector fails out the intersection of two lines.
The assumption of the canny edge detector is that a single line within
the immediate heighborhood. When it is at the intersection of two lines,
there are multiple lines, which does not meet the assumption. Therefore, it fails
at the intersection of two lines.
Prob. 7.8 — Perform non-maximal suppression on the following gradient magnitude and phase im-
ages. (Compute results only for the inner 3 v 3 array.)
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
max max
Ovalue 10, angle 0 => horizontal (red), and the neighbors 3 10 9
return Glocalmax [1] -> the maximum value 10 max
Delue 9, angle $-\frac{4\lambda}{8} \Rightarrow -\frac{\lambda}{2} \Rightarrow -\frac{\lambda}{2} \Rightarrow -\frac{\lambda}{2} \Rightarrow \text{ vertical (blue)} \Rightarrow 9 8$
tetura the local maximam 9 max
@ value 5, angle 0 => hotizontal 953 :: Glocalmax \leftarrow 0 [1] @ value 20, angle $\frac{107}{8} = \frac{57}{4} => dun - hight (yellow) 3 20 30 :: 0 max$
(value 20, angle 10x = 3t => down-hight (yellow) 3 20 30 : 0
8.84
O value 8, angle 7 => down-left (green) 5 8 5 => teturn local wax 8
@ value), angle 0 => horizontal (red) &) 3 => Glocalmax < 0
© value 7, angle 0 => horizontal (red) & 73 => Gloculmax \leftarrow 0 D value 5, angle $\frac{4\pi}{8} = \frac{2}{3} \Rightarrow$ Vertical (blue) => $\frac{20}{3}$ 5 3 \Rightarrow Gloculmax \leftarrow 0
() value 40, ungle () -> real 2000 (() -> 1 30 () -> 1 1 1000 () 1000
1 value (0, angle = 2 - down-right (yellow) => 8 (0) => tetura local max
so the computed result is [10 9 0] max 10
0 8 0
D 30 10

Prob >19 Explain the localization-detection tradeoff Book 1337-338 The location-detection tradeoff is a dilemma. [1] The question is how to select filter for computing the gradient or, if the Gaussian derivative is used, what value to choose for the standard deviation. As it turns out, a large signa yields a better SUR, but a smaller signal a more accurate location for the edge (1) In other words. a large region of support allows an edge detector to be robust to hoise, but it distracts the detector from the most important pixels near the edge itself. Prob 2.10 Why is the Marr-Hildreth operator a bad edge detector? Book P340 The primary drawback is that it's isotropic, meaning that it smooths actoss as well as along edges, as opposed to the gradient vector, which can be used to treat pixels differently across and along the edge. (1) This teduces its ability to precisely locate the edge. Prob 7,14 How is the Harris corner detector better than the Moravec interest operator? Book 1344 Horris features are largely invariant to rotation. It is isotropic, but Maravec interest operator is not. Prob). 15 Explain why you would want to perform non-maximum suppression after computing the Harris cornerhess measure on the pixels of an image. How would you madify the non-maximum suppression produce of Algorithm 7.2 to apply to Harris ? *Non-maximum suppression maintains only the pixels with a large coreness measure compared with their neighbors. Pixels with small coreness are generally hot of interest. Modify in two ways: a ignore the direction, this step is required b. this way is optional. Increasing the window size within which pixels are compared.

This aims to reduce the number of pixels retained by the computation

Prob. 7.18 — Given the following directional derivatives, compute Harris and Tomasi-Kanade concruses measures of the central pixel, assuming a 3×3 window and uniform weighting for all the pixels in the window. $I_{s} = \begin{bmatrix} -5 & -9 & 5 \\ -6 & 9 & 3 \end{bmatrix} \qquad I_{y} = \begin{bmatrix} 2 & -7 & -6 \\ -1 & 8 & 9 \\ -5 & 2 & 3 \end{bmatrix}$ 2x = 3x + 8| + 3x + 49 + 9 + 64 + 36 + 8| + 9 = 379 2y = 4 + 49 + 36 + 1 + 64 + 81 + 3x + 4 + 9 = 273 $2xy = -5 \times 2 + [-9|x|-7) + 5 \times [-6] + 7 \times (-1) + 3 \times 8 + (-8) \times 9 + (-6) \times (-5) + 2 \times 9 + 3 \times 3$ = 75 $\text{from } (7.30) \qquad \text{Col-retries} = \det(2) - \frac{1}{2} (\tan (2))^{2} (\tan (3))^{2} ($

Coding part myCannyEdgeDetector img1

lmg3

myHarrisCornerDetector img 1

lmg2

img3

Coding question

My County Edge Detector
1. Parameters accept: low-bound threshold and high-bound threshold.
Purpose: Both of them help find the edge. If the result < low - bound
threshold, the pixel keep original color 2f the result > Wigh-
bound threshold the pixel turn blue if it is located between the
se two bounds, cheek heighbot.
2. 2 choose Sobol. It can detect edges and their directions. It can provide with
Smoothing (which reduces noise) concurrently. And it's more rabust.
3. Perform well: It has a high running seep. It does not cost much time. It
can find most of the edges. Reason thresholds are good.
Perform bad: Sometimes, it cannot detect the weak edges. Or sometimes,
it makes mistakes to find edges. It may find edges which are
not exactly the edges, Reason. Thresholds may not be so precise.
4. How to improve
Set the value according to the image pixels, so we can get better filtering;
Improve the calculation of gradient's size and direction.
Try the algorithm for more times to test different threshold.
Try the algorithm for more times to test different threshold.
Try the algorithm for more times to test different threshold. my Harris Corner Detector: 1. Parameter accept: K. It is used in Harris coreness calculation
Try the algorithm for more times to test different threshold. My Harri's Corner Detector: 1. Parameter accept: K. It is used in Harri's coreness calculation equation. This equation measures coreness using
Try the algorithm for more times to test different threshold. My Harri's Corner Detector: 1. Parameter accept: K. It is used in Harri's coreness calculation equation. This equation measures coreness using the trace and determinant of the matrix. [1]
Try the algorithm for more times to test different threshold. My Harri's Corner Deteutor: 1. Parameter accept: K. It is used in Harri's coreness calculation equation. This equation measures coreness using the trace and determinant of the matrix. [1] Purpose: It is a small factor whose value is typically recommended
Try the algorithm for more times to test different threshold. My Harri's Corner Deteutor: 1. Parameter accept: K. It is used in Harri's coreness calculation equation. This equation measures coreness using the trace and determinant of the matrix. [1] Purpose: It is a small factor whose value is typically recommended to be the vicinity of 0.04. (And 2 set 0.04). [1]
Try the algorithm for more times to test different threshold. My Harri's Corner Detector: 1. Parameter accept: K. It is used in Harri's coreness calculation equation. This equation measures coreness using the trace and determinant of the matri'x. [1] Purpose: It is a small factor whose value is typically recommended to be the vicinity of 0.04. (And 2 set 0.04). [1] 2. Perform well: The running speed is high. It does not not much time. The
Try the algorithm for more times to test different threshold. My Harri's Corner Detector: 1. Parameter accept: K. It is used in Harri's coreness Calculation equation. This equation measures coreness using the trace and determinant of the matri'x. [1] Purpose: It is a small factor whose value is typically recommended to be the vicinity of 0.04. (And 2 set 0.04). [1] 2. Perform well: The tunning speed is high. It does not ust much time. The changes in brightness and contrast seem to have no effect
Try the algorithm for more times to test different threshold. My Harri's Corner Detector: 1. Parameter accept: K. It is used in Harri's coreness calculation equation. This equation measures coreness using the trace and determinant of the matri'x. [1] Purpose: It is a small factor whose value is typically recommended to be the vicinity of 0.04. (And 2 set 0.04). [1] 2. Perform well: The running speed is high. It does not ust much time. The changes in brightness and contrast seem to have no effect on the corner points. Peson: correct code and constants.
Try the algorithm for more times to test different threshold. My Harris Corner Deteutor: 1. Parameter accept: K. It is used in Harris coreness Calculation equation. This equation measures coreness using the trace and determinant of the matrix. [1] Purpose: It is a small factor whose value is typically recommended to be the vicinity of 0.04. (And 2 set 0.04). [1] 2. Perform well: The running speed is high. It does not cost much time. The changes in brightness and contrast seem to have no effect on the corner points. Perform bod: It seems not to find all the corners. Reason: the filter may
Try the algorithm for more times to test different threshold. My Harri's Corner Detector: 1. Parameter accept: K. It is used in Harri's coreness Calculation equation. This equation measures coreness using the trace and determinant of the matrix. [1] Purpose: It is a small factor whose value is typically recommended to be the vicinity of 0.04. (And 2 set 0.04). [1] 2. Perform well: The tunning speed is high. It does not cost much time. The changes in brightness and contrast seem to have no effect on the corner points. Reson: correct code and constants. Perform bad: It seems not to find all the corners. Reason: the filter may not be built well. Or something working not well with gradient.
Try the algorithm for more times to test different threshold. My Harri's Corner Detector: 1. Parameter accept: K. It is used in Harri's coreness Calculation equation. This equation measures coreness using the trace and determinant of the matrix. [1] Purpose: It is a small factor whose value is typically recommended to be the vicinity of 0.04. (And 2 set 0.04). [1] 2. Perform well: The tunning speed is high. It does not cost much time. The changes in brightness and contrast seem to have no effect on the corner points. Reson: correct code and constants. Perform bad: It seems not to find all the corners. Reason: the filter may not be built well. Or something working not well with gradient.

Reference

[1] B. H. Brown, R. H. Smallwood, D. C. Barber, P. V Lawford, and D. R. Hose, *Image processing and analysis*. 2004.