Integers & Division (Lecture – 2)

Dr. Nirnay Ghosh

GCDs as Linear Combinations

- GCD (*a*, *b*) can be expressed as a **linear combination** with integer coefficients of *a* and *b*.
 - For example, gcd(6, 14) = 2, and 2 = (-2)*6 + 1*14.
- **<u>BÉZOUT'S THEOREM</u>**: If a and b are positive integers, then there exist integers s and t such that gcd(a, b) = sa + tb.
- **<u>Definition</u>**: If a and b are positive integers, then integers s and t such that gcd(a,b) = sa + tb are called $B\acute{e}zout$ coefficients of a and b. Also, the equation gcd(a,b) = sa + tb is called $B\acute{e}zout$'s identity.
- General Method to find linear combination of two integers equal to their gcd:
 - Proceed by working backward through the divisions of the Euclidean algorithm
 - Requires a forward pass and a backward pass through the steps of the Euclidean algorithm
- **LEMMA**: If a, b, and c are positive integers such that gcd(a, b) = 1 and
- $a \mid bc$, then $a \mid c$.

Unique Factorization of Integers

• Every integer can be written as the product of primes in nondecreasing order in at most one way.

Theorem 4.3.5 Unique Factorization of Integers Theorem (Fundamental Theorem of Arithmetic)

Given any integer n > 1, there exist a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k , and positive integers e_1, e_2, \ldots, e_k such that

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_k^{e_k},$$

and any other expression for n as a product of prime numbers is identical to this except, perhaps, for the order in which the factors are written.

- **LEMMA:** If *p* is a prime and $p \mid a_1 a_2 \dots a_n$, where each a_i is an integer, then $p \mid a_i$ for some *i*.
 - Lemma can be used to show that a factorization of an integer into primes is unique. $\frac{11/3}{2020}$

Modular Arithmetic

- In computer science we often care about the remainder of an integer when it is divided by some positive integer.
- **Problem**: Assume that it is a midnight. What is the time on the 24 hour clock after 50 hours?
- **Answer**: Its 2 AM.
 - How did we arrive to the result: Divide 50 with 24. The reminder is the time on the 24 hour clock
 - 50= 2*24 + 2
 - so the result is 2am.

Modular Arithmetic/Congruency

- <u>Definition</u>: If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides (a-b). We use the notation $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$ to denote the congruency. If a and b are not congruent we write $\mathbf{a} \neq \mathbf{b} \pmod{\mathbf{m}}$.
- Theorem #1: If a and b are integers and m a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.
- Theorem #2: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.
- Theorem #3: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Arithmetic Modulo-m

- We can define arithmetic operations on \mathbb{Z}_m , the set of nonnegative integers less than m, that is, the set $\{0, 1, \ldots, m-1\}$.
- The addition of these integers, denoted by $+_m$ (addition modulo-m), is given as:

$$a +_m b = (a + b) \bmod m,$$

where the addition on the right hand side of this equation is the ordinary addition of integers.

• The multiplication of these integers, denoted by $._m$ (multiplication modulo-m) is given as:

$$a_m b = (a.b) \mod m$$

where the multiplication on the right-hand side of this equation is the ordinary multiplication of integers.

11/3/2020

- Pseudorandom number generators: randomly chosen numbers are often needed for computer simulations.
 - Basic problem:
 - Assume outcomes: 0, 1, ... N
 - Generate the random sequences of outcomes
 - Because numbers generated by systematic methods are not truly random, they are called *pseudorandom numbers*.
- The most commonly used procedure for generating pseudorandom numbers is the **linear congruential method**.
- We choose four integers: the **modulus** m, **multiplier** a, **increment** c, and **seed** x_0 with $2 \le a < m$, $0 \le c < m$, and $0 \le x_0 < m$.
- We generate a sequence of pseudorandom numbers $\{x_n\}$, with $0 \le x_n \le m$ for all n, by successively using the recursively defined function:

$$x_{n+1} = (ax_n + c) \bmod m.$$

• Hash Functions:

- A *hash function* is an algorithm that maps data of arbitrary length (also known as *keys*) to data of a fixed length
- The values returned by a hash function are called **hash values** or **hash** codes.

- <u>Problem</u>: Given a large collection of records, how can we store and find records quickly?
- Solution: Use a hash function calculate the location of the record based on the record's ID. A common hash function is h(k) = k mod n, where n is the number of available storage locations.
- Example: Assume we have a database of employees, each with a unique ID a social security number that consists of 8 digits. We want to store the records in a smaller table with *m* entries. Using *h*(*k*) function we can map a social security number in the database of employees to indexes in the table.
- **Assume:** $h(k) = k \mod 111$
- **Then:** $h(064212848) = 064212848 \mod 111 = 14$
- $\mathbf{b}(037149212) = 037149212 \mod 111 = 65$

- Because a hashing function is not one-to-one (because there are more possible keys than memory locations), more than one file may be assigned to a memory location.
- When this happens, we say that a **collision** occurs.

Problem: two documents mapped to the same location

11/3/2020

- Solution 1: move to the next available location
 - Method is represented by a sequence of hash functions to try: $h_0(k) = k \mod n$, $h_1(k) = (k+1) \mod n$, $h_2(k) = (k+2) \mod n$, ..., $h_m(k) = (k+m) \mod n$.

11

• **Solution 2**: remember the exact location in a secondary structure that is searched sequentially

11/3/2020

- Cryptology: encryption of messages using Caesar cipher
- Shift letters in the message by 3, last three letters mapped to the first 3 letters, e.g. *A* is shifted to *D*, *X* is shifted to *A*.
- How to represent the idea of a shift by 3?
 - There are 26 letters in the alphabet.
 - Assign each of them a number from 0,1, 2, 3, .. 25 according to the alphabetical order.
 - The encryption of the letter with an index p is represented as:

$$f(p) = (p + 3) \mod 26$$

- Plaintext: I LIKE DISCRETE MATH
- Ciphertext (encrypted message): L OLNH GLYFUHVH PDVK
- What method would you use to decode the message:

$$f^{-1}(p) = (p-3) \mod 26$$