24.	Discuss the flat band condition in a MOS diode with energy band diagram and find the expression for flat band voltage.	4	3	4	1
25.	Write short notes on SOI MOSFET with the help of neat and labelled diagram.	4	2	5	1
26.	Determine the probability that an energy level in the conduction band is occupied by an Electron at $T=300K$. Assume Fermi energy is $0.25eV$ below conduction band (E_c).	4	3	1	2
27.	Draw and compare the electric field and potential profile within space charge region in a diode at Equilibrium, forward biased and reverse biased conditions.	4	2	2	2
	$PART - C (5 \times 12 = 60 Marks)$				
	Answer ALL Questions	Marks	BL		PO
28. a.	A Bar of silicon is doped with Boron at 10^{15}cm^{-3} . It is exposed to light such that electron hole pairs are generated. Throughout the volume of the bar at the rate of $10^{20}/\text{s.cm}^3$. The recombination life time is $10\mu\text{s.}$ Determine: (i) P_o (ii) η_o (iii) Δ_p (iv) Δ_n (v) P_{net} and (vi) η_{net}	12	3	1	2
	(OR)				
b.	Derive the expression for Fermi level for an intrinsic semiconductor and comment on the result obtained.	12	3	1	2
29. a.	Derive the current voltage relation in a PN junction diode with abrupt Junction.	-12	3	2	2
	(OR)				
b.	Derive the expression for the width of the space charge region for abrupt junction at zero bias in terms of potential barrier.	12	3	2	2
30. a.	Derive the EBERS-MOLL model for BJT using suitable expressions and figures.	12	2	3	2
	(OR)				*
b.	Using EBERS-MOLL mode, derive the current gain for common base and common emitter configuration using suitable diagram.	12	3	3	2
31. a.	For MOS capacitor in strong inversion mode, derive the equation of inversion charge.	12	2	4	1
	(OR)				
b.	Derive the expression for the drain current for a N-channel MOSFET. State the assumptions made.	12	3	4	1
32. a.	Explain the following short channel effects of MOSFET in brief with suitable diagrams. i. Drain induced barrier lowering ii. Punch through iii. Hot Electron Effect iv. Velocity Saturation.	12	3	5	1
1	(OR)	12	2	5	1
b.	Discuss different types of scaling in a MOSFET in detail.		_	-	
	* * * *				

|--|

B.Tech. DEGREE EXAMINATION, MAY 2023

Fourth Semester

18ECE203T - SEMICONDUCTOR DEVICE MODELING

	(For the candidates admitte	d from the academic year 2018-2019 to 2021-20	1221			
Note:		a from the deddenie year 2010 2017 to 2021 20	,22)			
 (i) Part - A should be answered in OMR sheet within first 40 minutes and OMR over to hall invigilator at the end of 40th minute. (ii) Part - B & Part - C should be answered in answer booklet. 				ld be	han	de
()	2 40 2 40 2 40 40 40 40 40 40 40 40 40 40 40 40 40					
Time: 3 hours			Max.	Marl	ks: 1	00
	PART – A (20	$0 \times 1 = 20 \text{ Marks}$	Marks	BL	со	P
		LL Questions				
	1. If an intrinsic semiconductor acceptor atoms, the material is	is doped with equal amount of donor an	nd 1	1	1	
	(A) N-type	(B) P-type				
	(C) Compensated	(D) Ionized				

- 2. The phenomenon opposite to complete ionization is called as (A) Freeze out (B) Incomplete ionization
 - (D) Neutralized (C) Bonding
- 3. A typical scattering time of a charge particle is in the range of (A) Pico second (B) Nano second
 - (C) Micro second (D) Milli second
- 4. The conductivity of silicon in intrinsic condition at a room temperature of 300 K for n_i for silicon at 300 K is $1.45 \times 10^{10} cm^{-3}$, $\mu_n = 1200 cm^2 / V_s$, $\mu_p = 600 cm^2 / Vs.$
 - (A) $4.10 \times 10^{-6} / ohm cm$
- (B) $5.10 \times 10^{-6} / ohm cm$
- (C) $6.10 \times 10^{-6} / ohm cm$
- (D) $7.10 \times 10^{-6} / ohm cm$
- 5. In the depletion region of a p-n junction, there is a shortage of
 - (A) Acceptor ions (C) Donor ions
- (B) Holes and electrons
- (D) Holes only
- 6. For an ideal diode model, constant diode model and the model with resistance, the diode can be treated as in the forward biased condition
 - (A) Short circuit, voltage and equivalent voltage with resistance
- equivalent (B) Open circuit, equivalent voltage and equivalent voltage with resistance
 - (C) Open circuit, current and equivalent voltage with resistance
- equivalent (D) Short circuit, equivalent current and equivalent voltage with resistance

2 1 1

1 1 2

 7. A p-n junction diode allows current flow when (A) The P-type material is more (B) The N-type material is more positive than the n-type positive that the P-type material material (C) Both the n-type and p-type (D) There is no potential on the N materials have the same type or P-type materials potential 	al .	 14. The output characteristics of a MOSFET, is a plot of (A) I_{ds} as a function of V_{GS} with (B) I_{ds} as a function of V_{ds} with V_{ds} as a parameter (B) I_{ds} as a function of V_{ds} with V_{GS} as a parameter (C) I_{gs} as a function of V_{gs} with (D) I_{gs} as a function of V_{ds} with V_{ds} as a parameter 	1	1	4	19
8. The maximum electric field is at (A) At the centre of the p-n (B) Towards p side junction	1 1 2 1	15. The value of thermal voltage at room temperature is (A) 52 mV (B) 127 mV (C) 0.5 V (D) 0.026 V	1	1	4	
(C) Towards n side (D) At the centre of depletion region 9. The central feature of a transistor states	n 1 2 3 1	16. If the gate is biased above threshold means (A) The surface is inverted (B) Channel is not formed (C) Depletion layer does not form (D) Electrons is flowing from drain	1	2	4	
 (A) Output current is a function of (B) Output current is a function of output voltage input voltage (C) Output voltage is a function of (D) Output voltage is a function of input current output current 	of	17. According to Moore's law, after every months, the number of chips will get (A) 18, doubled (B) 12 months, doubled	1	1	5	
10. The BJT is a (A) Symmetric device with emitter (B) Unsymmetrical device with and collector non emitter and collector nor		(C) 24 months, 1.5 times (D) 12 months, 1.5 times 18. Due to Channel Length Modulation (CLM) (A) The drain current increases (B) The drain current decreases	1	1	5	
interchangeable (C) Symmetric device with emitter (D) Unsymmetrical device with and collector interchangeable emitter and collector interchangeable	h	(C) Effective channel length (D) Effective channel width increases 19. As the gate oxide gets thinner	1	2	5	
11. The emitter injection efficiency (EIE) for a BJT can be expressed a and for a $\beta = 800$, EIE has the value of		(A) The transverse electric field (B) The transverse electric field component decreases (C) The transverse electric field (D) None of the above	matrice v			
(A) Emitter is more efficient in (B) Emitter is more efficient in terms of injecting electrons rather than B injecting holes, 0.99 (B) Emitter is more efficient in (B) Emitter is more efficient in terms of accepting electrons rather than B injecting holes 0.99	S	component remains same 20. MOSFETs are intentionally strained (A) To reduce threshold voltage (B) To lower the surface state	i	2	5	-1
(C) Emitter is more efficient in (D) Emitter is more efficient in terms of injecting minority terms of injecting holes rather than B injecting than B injecting electrons, 0.96 holes, 0.96	er ×	variations (C) To decrease series resistance (D) To increase the channel mobility and therefore, drain current	á			
12. For a BJT to work as an amplifier (A) E-B junction is forward biased (B) E-B junction is reverse biase and B-E junction is reversed and B-C junction is forward biased	d	PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions 21. Derive the expression for the carrier concentration in intrinsic semiconductors at equilibrium.	Marks 4	BL 2	co	P(
(C) E-B junction is forward biased (D) The collector-emitter voltage and B-C junction is also has to be larger than 0.2 V forward biased	e	22. Calculate the built-in potential at 300K for an abrupt silicon P-n junction with $N_A = 10^{23}$ per cm ³ and $N_D = 10^{20}$ per cm ³ on the P side and N side respectively.	4	3	2	2
13. Which layer is sandwiched in MOS diode? (A) Metal (B) Semiconductor (C) Insulator (D) Polysilicon	1 1 4 1	 Draw a EBERS MOLL model for a BJT and explain all its component in brief. 	4	3	3	2