Import Libraries

```
In [82]:

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn import metrics
```

```
Data Collection & Analysis
          1 insurance_data = pd.read_csv("insurance.csv")
In [83]:
           2 insurance_data.head()
Out[83]:
                      bmi children smoker region
                                                   charges insuranceclaim
            age sex
                                               16884.92400
                  0 27.900
             18
                  1 33.770
                                1
                                       0
                                                1725.55230
                                                                     1
                                                4449.46200
                                                                     0
             28
                  1 33.000
                                3
                                       0
             33
                  1 22.705
                                0
                                       0
                                             1 21984,47061
                                                                     0
                                                3866.85520
             32
                  1 28.880
                                0
In [84]: 1 # number of rows and columns
           2 insurance_data.shape
Out[84]: (1338, 8)
In [85]: 1 # checking data points
           print(insurance_data.size)
         10704
 In [5]:
          1 # getting some informations about the data
           2 insurance_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1338 entries, 0 to 1337
         Data columns (total 8 columns):
                             Non-Null Count
              Column
                                             Dtype
              -----
                              1338 non-null
              age
                              1338 non-null
                                              int64
          1
              sex
                             1338 non-null
              bmi
                                              float64
              children
                             1338 non-null
                                              int64
              smoker
                             1338 non-null
                                              int64
              region
                             1338 non-null
                                              int64
              charges
                              1338 non-null
                                              float64
              insuranceclaim 1338 non-null
                                              int64
         dtypes: float64(2), int64(6)
         memory usage: 83.8 KB
```

In [86]:

1 # Elucidation of data set
2 insurance_data.describe()

Out[86]:

	age	sex	bmi	children	smoker	region	charges	insuranceclaim
count	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	0.505232	30.663397	1.094918	0.204783	1.515695	13270.422265	0.585202
std	14.049960	0.500160	6.098187	1.205493	0.403694	1.104885	12110.011237	0.492871
min	18.000000	0.000000	15.960000	0.000000	0.000000	0.000000	1121.873900	0.000000
25%	27.000000	0.000000	26.296250	0.000000	0.000000	1.000000	4740.287150	0.000000
50%	39.000000	1.000000	30.400000	1.000000	0.000000	2.000000	9382.033000	1.000000
75%	51.000000	1.000000	34.693750	2.000000	0.000000	2.000000	16639.912515	1.000000
max	64.000000	1.000000	53.130000	5.000000	1.000000	3.000000	63770.428010	1.000000

```
In [87]:
          1 # checking number of null value in the given data
             insurance_data.isnull().sum()
           3
Out[87]: age
                            0
                           0
         sex
         bmi
                           0
         children
         smoker
                           0
         region
                           0
                           0
         charges
         \verb"insuranceclaim"
                           0
         dtype: int64
 In [8]: | 1 # checking if any null value is present or not in the given data
           2 insurance_data.isnull().any()
Out[8]: age
                            False
                            False
         sex
         bmi
                            False
         children
                            False
         smoker
                            False
         region
                            False
         charges
                            False
         insuranceclaim
                            False
         dtype: bool
In [88]:
          oldsymbol{1} # checking value count of male and female in the given data
           2 insurance_data['sex'].value_counts()
           3
Out[88]: 1
              676
              662
         Name: sex, dtype: int64
In [10]:
          1 # Observation
           2 # from the given data we can get the insights that :
           3 # 1. data belongs to middle age people (mostly).
           4 # 2. maximum age of person is 64 where as minimum age is 18.
           5 # 3. maximum bmi is 53.13 which is a deep sign of obesity
           6 # 4. there is no null value in the given data
           7 # 5. There are 676 male and 662 female
In [89]:
          1 | # plotting a bar graph showing about number of male and female
           2 insurance_data.sex.value_counts(normalize=False).plot.barh()
           3 plt.show()
           0 -
```



```
In [90]:
           1 #pie chart: with Label and explode
           2 # Labels make a chart easier to understand because they show details about a data series or its individual data points
           3 \parallel# To "explode" a pie chart means to make one of the wedges of the pie chart to stand out
           4 mylables=["Male","Female"] # here Label is "Male - is 1 where as Female - is 0"
             colors = ['yellow', 'purple']
           6 myexplode=[0.10,0]
             size = [676, 662]
             plt.pie(size,colors = colors,labels =mylables,explode = myexplode, shadow = True)
             plt.title('PIE chart representing share of men and women in insurance data ')
          10 plt.legend()
          11 plt.show()
```

PIE chart representing share of men and women in insurance data


```
In [91]:
           1 # checking customer belonging
             insurance_data['region'].value_counts()
           3
Out[91]: 2
              364
         3
              325
         1
              325
```

0 324

Name: region, dtype: int64

```
In [92]:
          1 #plotting a Countplot showing region
          2 sns.countplot("region",data = insurance_data)
          3 plt.show()
```

C:\Users\Aaditya\data science\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explic it keyword will result in an error or misinterpretation. warnings.warn(


```
In [93]: 1 #plotting a countplot showing age
2 plt.figure(figsize = (20,20))
3 sns.countplot("age",data = insurance_data)
4 plt.show()
```

C:\Users\Aaditya\data science\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explic it keyword will result in an error or misinterpretation.

warnings.warn(


```
In [95]: 1 # 6.people belonging residential area from northeast(0) are 324 person; northwest(1)
In [96]: 1 # checking children count
2 insurance_data['children'].value_counts()

Out[96]: 0 574
1 324
2 240
3 157
4 25
5 18
```

Name: children, dtype: int64

```
In [97]: 1 #plotting a countplot showing number of children
2 plt.figure(figsize = (20,10))
3 sns.countplot("children",data = insurance_data)
4 plt.show()
```

C:\Users\Aaditya\data science\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explic it keyword will result in an error or misinterpretation.

warnings.warn(

PIE chart representing share of person per chidren as per given data


```
In [21]: 574; with 1 children are 324; with 2 chidren are 240; with 3 children are 157; with 4 children are 25; with 5 children are 18

In [98]: 1 # checking number of smokers
2 insurance_data['smoker'].value_counts()

Out[98]: 0 1064
1 274
Name: smoker, dtype: int64
```

```
In [23]: 1 #plotting a bar grap showing number of smoker
2 plt.figure(figsize = (20,10))
3 mylables=['Non-Smoker','Non-Smoker']
4 colors = ['yellow','purple']
5 myexplode=[0.10,0.10]
6 size = [1064,274]
7 plt.pie(size,colors = colors,labels =mylables,explode = myexplode, shadow = True)
8 plt.show()
```


In [24]: 1 # 8. count of smokers are represented as 0 which is 1064 where as count of non-smokers are represented as 1 which is 274

```
In [99]: 1 # pairplot
2 plt.figure(figsize = (30,30))
3 sns.pairplot(insurance_data)
```

Out[99]: <seaborn.axisgrid.PairGrid at 0x29c6a6124c0>

<Figure size 3000x3000 with 0 Axes>

Out[26]:

	age	sex	bmi	children	smoker	region	charges
age	1.000000	-0.020856	0.109272	0.042469	-0.025019	0.002127	0.299008
sex	-0.020856	1.000000	0.046371	0.017163	0.076185	0.004588	0.057292
bmi	0.109272	0.046371	1.000000	0.012759	0.003750	0.157566	0.198341
children	0.042469	0.017163	0.012759	1.000000	0.007673	0.016569	0.067998
smoker	-0.025019	0.076185	0.003750	0.007673	1.000000	-0.002181	0.787251
region	0.002127	0.004588	0.157566	0.016569	-0.002181	1.000000	-0.006208
charges	0.299008	0.057292	0.198341	0.067998	0.787251	-0.006208	1.000000

```
In [27]:
             1 # Insights from this Corelation are :
               # The table shows correlation coefficients between variables related to medical insurance charges. Age, BMI, and smoking state
In [28]:
             1 #plot the correlation matrix of salary, balance and age in data dataframe.
                plt.figure(figsize = (20,10))
                sns.heatmap(insurance_data[['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges']].corr(), annot=True,cmap = "Grey
               plt.show()
             4
                                                                                                                                                                1.0
                                         -0.021
                                                            0.11
                                                                              0.042
                                                                                                 -0.025
                                                                                                                    0.0021
                                                                                                                                        0.3
                                                                                                                                                                0.8
                      -0.021
                                                            0.046
                                                                              0.017
                                                                                                  0.076
                                                                                                                    0.0046
                                                                                                                                       0.057
                                         0.046
                                                                              0.013
                                                                                                 0.0038
                                                                                                                    0.16
                                                                                                                                        0.2
            m
                      0.11
                                                                                                                                                               - 0.6
                      0.042
                                         0.017
                                                            0.013
                                                                                                 0.0077
                                                                                                                    0.017
                                                                                                                                       0.068
                                                                                                                                                                0.4
                      -0.025
                                         0.076
                                                           0.0038
                                                                              0.0077
                                                                                                                    -0.0022
                                                                                                                                                               - 0.2
                      0.0021
                                        0.0046
                                                            0.16
                                                                              0.017
                                                                                                 -0.0022
                                                                                                                                       -0.0062
                       0.3
                                         0.057
                                                             0.2
                                                                              0.068
                                                                                                  0.79
                                                                                                                    -0.0062
                                                                                                                                                               - 0.0
                                                            bmi
                                                                              children
                                                                                                 smoker
                                                                                                                    region
                                                                                                                                      charges
                       age
In [29]: 1 insurance_data.columns
Out[29]: Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges',
                    'insuranceclaim'],
                  dtype='object')
In [30]:
             1 # Insigths From this Heat Map :-
                # 1. Smoker Tends to Pay More Insurance Charges;
               # 2. Age is positively correlated with charges, with a correlation coefficient of 0.30. This suggests that as age increases,
             4 # 3.BMI is positively correlated with charges, with a correlation coefficient of 0.20. This suggests that as BMI increases,
             5 # 4.The number of children does not appear to have a strong correlation with charges, with a correlation coefficient of 0.07 6 # 5.Sex and region also do not appear to have strong correlations with charges, with correlation coefficients of 0.06 and -0
```

```
In [31]: 1 # Age vs Charges
2 # the more the age the more will be insurance charge (roughly estimated)
3 plt.figure(figsize = (18, 8))
4 sns.lineplot(x = 'age', y = 'charges', data = insurance_data)
5 plt.title("Age vs Charges")
6 plt.show()
```



```
In [33]: 1 #plot the box plot of sex and charges
2 # as 1 belongs to men : it shows that men are paying more insurance charges then Women
3 #bar plot
4 plt.figure(figsize = (10, 5))
5 sns.barplot(x = 'sex', y = 'charges', data = insurance_data)
6 plt.title('sex vs charges')
7 plt.show()
```



```
In [35]: 1 # region vs charges BAR GRAPh
2 plt.figure(figsize = (10, 5))
3 sns.barplot(x = 'region', y = 'charges', data = insurance_data, palette = 'colorblind')
4 plt.title('Region vs Charges')
5 plt.show()
```


In [36]: 1 # from the graph we can clearly state that region dont play any role in charges it is highly independent should be drop

```
In [37]: 1 # smoker vs charges
2 plt.figure(figsize = (10, 5))
3 sns.barplot(x = 'smoker', y = 'charges', data = insurance_data)
4 plt.title('SMOKERS VS CHARGES')
5 plt.show()
```



```
In []: 1
```

```
In [38]: 1 # BMI vs charges
2 plt.figure(figsize = (40,20))
3 sns.barplot(x = 'bmi', y = 'charges', data = insurance_data)
4 plt.fitle('BMI vs CHARGES')
5 plt.show()
```

Data Cleaning

```
In [39]:
          1 # removing unrequired columns from the insurance data
             # As from the above grph we can clearly state that region dont play any role in charge it is highly independent and should b
           3
             insurance_data = insurance_data.drop('region', axis = 1)
In [40]:
         1 insurance_data.shape
Out[40]: (1338, 7)
           1 #as earlier there was 10704 data point the new one has 9366 data point after removing region
In [41]:
             insurance_data.size
Out[41]: 9366
In [42]:
          1 # seperate out features and target value from dataset
           2 X=insurance_data.drop(["insuranceclaim"],axis=1).values
           3 y=insurance_data["insuranceclaim"].values
In [43]:
          1 X.shape
Out[43]: (1338, 6)
In [44]: 1 y.shape
Out[44]: (1338,)
```

Finding out the outlier

```
In [45]: 1  #bmi outlier
sns.boxplot(insurance_data["bmi"])
plt.show()
```

C:\Users\Aaditya\data science\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explic it keyword will result in an error or misinterpretation.

warnings.warn(


```
In [ ]: 1
```

C:\Users\Aaditya\data science\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyw
ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explic
it keyword will result in an error or misinterpretation.
warnings.warn(


```
In [48]: 1 #Charges outlier
2 sns.boxplot(insurance_data["charges"])
3 plt.show()
```

C:\Users\Aaditya\data science\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explic it keyword will result in an error or misinterpretation.


```
In [49]: 1  # Charges can be More or less as per required by insurance company 3
```

Spliting Data (Training and Testing Data) and Importing Sklearn Modules

```
In []: 1 #spliting data into training and testing data set
2 from sklearn.model_selection import train_test_split
3 X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.27, random_state =4)

In []: 1 print("X_train shape : " , X_train.shape)
2 print("X_test shape : " , X_test.shape)
3 print("y_train shape : " , y_train.shape)
4 print("y_test shape : " , y_test.shape)
```

Importing and Using Logistic Regression

```
In [52]:
         1 from sklearn.metrics import accuracy score, confusion matrix
         2
           from sklearn.linear_model import LogisticRegression
In [53]:
         1 # Logistics Regression model
         2 logreg = LogisticRegression()
         3 logreg.fit(X_train, y_train)
        C:\Users\Aaditya\data science\lib\site-packages\sklearn\linear_model\_logistic.py:814: ConvergenceWarning: lbfgs failed to conv
        erge (status=1):
        STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
        Increase the number of iterations (max_iter) or scale the data as shown in:
           https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)
        Please also refer to the documentation for alternative solver options:
           ar_model.html#logistic-regression)
         n_iter_i = _check_optimize_result(
Out[53]: LogisticRegression()
```

```
In [54]:
          1 y_pred = logreg.predict(X_test)
           2 accuracy = accuracy_score(y_test, y_pred)
           3 conf_matrix = confusion_matrix(y_test, y_pred)
           4 print("Accuracy: ", accuracy)
           5 print("Confusion matrix: \n", conf_matrix)
6 print("Where; True Positive: is 104; False Positive: is 40; True Negative : is 24; False Negative is 189")
         Accuracy: 0.8646408839779005
         Confusion matrix:
          [[124 24]
          [ 25 189]]
         Where ; True Positive: is 104; False Positive: is 40; True Negative : is 24; False Negative is 189
 In [ ]:
In [55]:
           1 # compute accuracy on training set
             logreg_train= logreg.score(X_train,y_train)
           3 print("Training Data Accuracy by Logistics Regression Algorithm is : " ,logreg_train)
           4 # compute accuracy on testing set
           5 logreg_test= logreg.score(X_test,y_test)
           6 print("Testing Data Accuracy by Logistics Regression is : " , logreg_test)
         Training Data Accuracy by Logistics Regression Algorithm is: 0.8442622950819673
         Testing Data Accuracy by Logistics Regression is : 0.8646408839779005
In [56]:
          1 # Evaluate the model on the test data
           2 score = logreg.score(X_test, y_test)
             print("Accuracy of Logistic Regression is : ",score)
         Accuracy of Logistic Regression is: 0.8646408839779005
In [57]: 1 # calculating the mean squared error
           2 mse = np.mean((y_test - y_pred)**2, axis = None)
           3 print("MSE :", mse)
           4 # Calculating the root mean squared error
           5 rmse = np.sqrt(mse)
           6 print("RMSE :", rmse)
         MSE: 0.13535911602209943
         RMSE: 0.3679118318593457
 In [ ]: 1
```

Importing and Using Random Forest Method with same test size

```
In [58]: 1 from sklearn.ensemble import RandomForestClassifier
In [59]:
             # model = RF Random Forest
             rf = RandomForestClassifier(n_estimators=1000, random_state=45)
           4 #fitting model
           5 rf.fit(X_train,y_train)
Out[59]: RandomForestClassifier(n_estimators=1000, random_state=45)
In [60]:
          1 #predictina
           3 y_pred=rf.predict(X_test)
           5 y_pred
Out[60]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1,
                1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1,
                0,\ 0,\ 1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,
                0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
                1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1,
                0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0,
                1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1,
                0,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,
                1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
                1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0,
                0,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,
                0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0,
                1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
                1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
                1, 1, 1, 0, 1, 1, 0, 0, 1], dtype=int64)
```

```
In [61]:
          1 # compute accuracy on training set
           3 rf_train= rf.score(X_train,y_train)
           4 print("Training Data Accuracy by Random Forest Algorithm is : " , rf_train)
           5 # compute accuracy on testing set
           6 rf_test= rf.score(X_test,y_test)
           7 print("Testing Data Accuracy by Random Forest Algorithm is : " , rf_test)
         Training Data Accuracy by Random Forest Algorithm is : 1.0
         Testing Data Accuracy by Random Forest Algorithm is : 0.9613259668508287
 In [ ]:
          1
In [62]:
          1 # calculating the mean squared error
           2 mse = np.mean((y_test - y_pred)**2, axis = None)
3 print("MSE :", mse)
         MSE: 0.03867403314917127
In [63]:
          1 # Calculating the root mean squared error
           2 rmse = np.sqrt(mse)
           3 print("RMSE :", rmse)
         RMSE : 0.19665714619400756
```

Importing and Using Decision Tree (Supervised Learning) Algorithm

```
In [64]: 1 from sklearn.tree import DecisionTreeClassifier
In [65]:
          1 # model
          2 dtc = DecisionTreeClassifier()
          3 #fitting
          4 dtc.fit(X_train,y_train)
Out[65]: DecisionTreeClassifier()
In [66]:
         1 #predicting via Decision Tree Algorithm
          2 y_pred=dtc.predict(X_test)
Out[66]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
               1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1,
               1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1,
               0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
               0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
               0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0,
               1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1,
               0,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,
               1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
               1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1,
               1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0,
               0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0,
               1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0,
               1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0,
               1, 1, 1, 1, 0, 1, 1, 0, 0, 1], dtype=int64)
In [67]:
         1 #Calculating RMSE Root Mean Square Error
            rmse= np.sqrt(metrics.mean_squared_error(y_test,y_pred))
            print("Root Mean Square Error = ",rmse)
```

Root Mean Square Error = 0.23505024736113422

```
In [68]:
           1 y_pred_df=pd.DataFrame(y_pred)
           2 y_pred_df
Out[68]:
          357 1
          358
          359
          360
          361 1
         362 rows × 1 columns
           1 y_pred_df["Actual"]=y_test
In [69]:
           2 y_pred_df
Out[69]:
               0 Actual
                     0
            0 0
               0
                     0
          357
                     0
          359
          360 0
                     0
          361 1
         362 rows × 2 columns
In [70]:
           2 y_pred_df.columns=["Predicated","Actual"]
           3 y_pred_df
Out[70]:
               Predicated Actual
                      0
                            0
                      0
                            0
            2
                      0
                            0
            3
                      0
                      0
                            0
          357
          358
          359
                            0
          360
                      0
                            0
          361
         362 rows × 2 columns
```

Checking Out Training and Testing Data Accuracy (Actual vs Predicted)

```
In [71]:
         1 # compute accuracy on training set
          2 dtc_train= dtc.score(X_train,y_train)
          3 print("Training Data Accuracy by Decision Tree Algorithm is : " , dtc_train)
          4 # compute accuracy on testing set
          5 dtc_test= dtc.score(X_test,y_test)
          6 print("Testing Data Accuracy by Decision Tree Algorithm is : " , dtc_test)
         Training Data Accuracy by Decision Tree Algorithm is : 1.0
         Testing Data Accuracy by Decision Tree Algorithm is : 0.9447513812154696
In [72]:
         1 # calculating the mean squared error
          2 mse = np.mean((y_test - y_pred)**2, axis = None)
          3 print("MSE :", mse)
          5 # Calculating the root mean squared error
          6 rmse = np.sqrt(mse)
          7 print("RMSE :", rmse)
         MSE: 0.055248618784530384
         RMSE: 0.23505024736113422
         Importing and Using Naive Bayes Method
```

```
In [73]: 1 from sklearn.naive_bayes import GaussianNB
In [74]:
       1 #model naive Bayes
        nb = GaussianNB()
       3 nb.fit(X_train,y_train)
       4
Out[74]: GaussianNB()
In [75]: 1 print("Naive Bayes Score : ",nb.score(X test,y test))
      Naive Bayes Score: 0.8011049723756906
In [76]:
       2 #prediction
       3 y_pred= nb.predict(X_test)
       4 print(y_pred)
      0\;1\;0\;1\;0\;0\;1\;0\;1\;0\;0\;1\;0\;1\;0\;1\;0\;1\;0\;0\;1\;1\;1\;0\;1\;1\;0\;0\;1\;0
      01100111101100001101111001001
In [77]: 1 y_pred.size
Out[77]: 362
In [78]:
       1 # compute accuracy on training set
       2 nb_train= nb.score(X_train,y_train)
       3 print("Training Data Accuracy by Random Forest Algorithm is : " ,nb_train)
       4 # compute accuracy on testing set
       5 nb_test= nb.score(X_test,y_test)
       6 print("Testing Data Accuracy by Random Forest Algorithm is : " ,nb_test)
      Training Data Accuracy by Random Forest Algorithm is : 0.7838114754098361
      Testing Data Accuracy by Random Forest Algorithm is : 0.8011049723756906
In [79]:
      1 # calculating the mean squared error
       2 mse = np.mean((y_test - y_pred)**2, axis = None)
       3 print("MSE :", mse)
       4 # Calculating the root mean squared error
       5 rmse = np.sqrt(mse)
       6 print("RMSE :", rmse)
      MSE: 0.19889502762430938
      RMSE: 0.4459764877482998
```

Deciding a Model

In []: 1