Stat 151a Lecture Notes 23

Chae Yeon Lee

April 20, 2023

1 OVERVIEW

Today:

• More Generalized Linear Models

Relevant Readings:

• Fox 15.1 - 15.3 (Skip 15.2.2, 15.3.4)

2 Brief Recap

- If \vec{y} domain is not \mathbb{R} (like if it is binary), we might prefer to assume a different parametric distribution on \vec{y} rather than that \vec{y} is linear and normal.
- GLMs are a framework that allow this
- Now we cover their estimates and inferences.

3 GENERALIZED LINEAR MODELS

GLM is a framework to allow \vec{y} to follow various parametric distribution.

- **Bernoulli:** \vec{y} is binary
- Poisson, Negative Binomial: $\vec{y} \in \mathbb{Z}^+$ (count data)
- Exponential, Gamma: $\vec{y} \in \mathbb{R}^+$ (continuous data)
- Multinomial: \vec{y} is a count of occurences of K different outcomes.

The GLM "recipe":

- 1. Specify the conditional distribution of $y_i | \vec{x_i}^T$ (not necessarily normal; e.g. $y_i \sim \text{Ber}(\pi_i)$
- 2. Consider the parameters of the distribution in 1, their relation to $\mathbb{E}[y_i|\vec{x_i}^T]$, and their domain.
 - e.g. $y_i | \vec{x_i}^T \sim \text{Bernoulli}(\pi_i)$. The mean of Bernoulli RV is π_i . Note that $\pi \in (0,1)$.
- 3. Find a link function g that transforms $\mathbb{E}[y_i|\vec{x_i}^T]$ into the range $(-\infty,\infty)$.

e.g. $y_i \sim \operatorname{Ber}(\pi_i)$. Let g be the <u>logit</u> function. $g(\pi_i) = log(\frac{\pi_i}{1-\pi_i})$

Then $g:(0,1)\to (-\infty,\infty)$ as desired. Here, we are inputting π_i but π_i is what we are actually estimating.

4. $g(\pi_i)$ can be modelled linearly:

$$g(\pi_i) = \vec{x_i}^T \vec{\beta}$$

And, we define the <u>inverse link function</u>, g^{-1} . e.g. $y_i | \vec{x_i}^T \sim \text{Bernoulli}(\pi_i)$

$$g(\pi_{i}) = log(\frac{\pi_{i}}{1 - \pi_{i}}) = \vec{x_{i}}^{T} \vec{\beta}$$

$$\Rightarrow \frac{\pi_{i}}{1 - \pi_{i}} = exp(\vec{x_{i}}^{T} \beta)$$

$$\Rightarrow \pi_{i} = exp(\vec{x_{i}}^{T} \vec{\beta}) - \pi_{i} exp(\vec{x_{i}}^{T} \vec{\beta})$$

$$\Rightarrow \pi_{i} = \frac{exp(\vec{x_{i}}^{T} \vec{\beta})}{1 + exp(\vec{x_{i}}^{T} \vec{\beta})}$$

(Explicit or inverse logit function)

$$\Rightarrow \frac{1}{1 + exp(-\vec{x_i}^T \vec{\beta})}$$
$$:= g^{-1}(\vec{x_i}^T \vec{\beta})$$

Notes:

- A whole variety of Link function could make π_i to $(-\infty,\infty)$
- The logit function is the canonical link; The **canonical link functions** are based on the likelihood function and are the most popular. Canononical link functions can be derived from the likelihood functions.
- if $y_i | \vec{x_i}^T \sim \text{Poisson}(\lambda_i), \lambda_i \in (0, \infty)$.
- Logit link is the framework for logistic regression.

Table 15.2 Canonical Link, Response Range, and Conditional Variance Function for Exponential Families

Family	Canonical Link	Range of Y_i	$V(Y_i \eta_i)$
Gaussian	Identity	$(-\infty, +\infty)$	ϕ
Binomial	Logit	$\frac{0,1,,n_i}{n_i}$	$\frac{\mu_i(1-\mu_i)}{n_i}$
Poisson	Log	0,1,2,	μ_i
Gamma	Inverse	(0,∞)	$\phi \mu_i^2$
Inverse-Gaussian	Inverse-square	(0,∞)	$\phi\mu_i^2 \ \phi\mu_i^3$

NOTE: ϕ is the dispersion parameter, η_i is the linear predictor, and μ_i is the expectation of Y_i (the response). In the binomial family, n_i is the number of trials

3.0.1 GLM vs OLS

Contrast the GLM framework from running OLS on some transformed outcome (via function g)

- OLS: $\mathbb{E}[g(y_i)] = \vec{x_i}^T \vec{\beta}$
- GLM: $g(\mathbb{E}[y_i]) = \vec{x_i}^T \vec{\beta}$ since $\mathbb{E}[y_i] = g^{-1} (\vec{x_i}^T \vec{\beta})$
- Thus, OLS and GLM are not equal if g is nonlinear.
- The variance of y_i is now often tied to its mean, so it can fluctuate. For OLS, we assumed that the variance is constant. Now, it is not.

E.g. Ber(π_i) variance is $\pi_i(1-\pi_i)$, Pois(λ_i) variance is λ_i .

- Some distributions such as Normal, Negative Binomial, and Gamma require that we estimate a separate dispersion parameter, ϕ . For normal GLM, $\phi = \sigma_{\epsilon}^2$. Negative Binomial is equal to Poisson when $\phi = 1$.
- Sometimes, a non-canonical link is a better fit to the data. For example, we might think that the event probability (π_i) is asymmetric in X.

Figure 15.1 Logit, probit, log-log, and complementary log-log links for binomial data. The variances of the normal and logistic distributions have been equated to facilitate the comparison of the logit and probit links [by graphing the cumulative distribution function of $N(0, \pi^2/3)$ for the probit link].

Table 15.1 Some Common Link Functions and Their Inverses

Link	$\eta_i = g(\mu_i)$	$\mu_i = g^{-1}(\eta_i)$
Identity	μ_i	η_i
Log	$\log_{\mathrm{e}}\mu_{i}$	e^{η_i}
Inverse	μ_i^{-1}	$rac{\eta_i^{-1}}{\eta_i^{-1/2}}$
Inverse-square	μ_i^{-2}	$\eta_i^{-1/2}$
Square-root	$\sqrt{\mu_i}$	η_i^2
Logit	$\log_e \frac{\mu_i}{1 - \mu_i}$	$\frac{1}{1+e^{-\eta_i}}$
Probit	$\Phi^{-1}(\mu_i)$	$\Phi(\eta_i)$
Log-log	$-\log_e[-\log_e(\mu_i)]$	$\exp[-\exp(-\eta_i)]$
Complementary log-log	$log_e[-log_e(1-\mu_i)]$	$1-\exp[-\exp(\eta_i)]$

NOTE: μ_i is the expected value of the response, η_i is the linear predictor, and $\Phi(\cdot)$ is the cumulative distribution function of the standard-normal distribution.

Figure 15.1 Annotation: x axis is $\vec{x_i}^T \hat{B}$ and y axis predicted probability associated with that $\vec{x_i}^T \hat{B}$.

3.1 ESTIMATION

The data model for the Bernoulli set up is now $y_i \sim \text{Ber}(g^{-1}(\vec{x_i}^T \vec{\beta}))$

- Bad News is that we this no longer corresponds to a least squares problem so we don't have a closed form solution for $\hat{\beta}$
- Good news is that we can still write the Likelihood $L(\hat{\beta}, \vec{y}, X)$. $log(L(\hat{\beta}, \vec{y}, X))$ is convex for many GLM distributions, so it is straightforward to solve via common numerical methods.
- If dispersion (ϕ) parameter must be estimated, we can do alternating optimization.
 - 1. Init t = 0, $\hat{\phi_0}$ while not converged:
 - 2. $\hat{\beta}_{t+1} = \hat{\phi}_t$
 - 3. $\hat{\phi}_{t+1} = \hat{\phi} | \hat{\beta}_{t+1}$ (can be ϕ_{MLE} or ϕ_{MOM})
 - 4. t = t + 1

3.2 PREDICTION

Once we optimize the GLM for $\hat{\beta}$, prediction is straight forward.

$$\hat{y_i} = \mathbb{E}[y_i | \vec{x_i}^T] = g^{-1}(x_i^T \hat{\beta})$$
e.g. logistic regression $\hat{y_i} = \frac{1}{1 + exp(-\hat{x_i}^T \hat{\beta})}$

3.3 Inference

How do we assess model performance?

1. Residual Deviance (Dm):

$$D_m := 2(logL_s - logL_m)$$

 L_m : Likelihood of our model L_s : Likehood of saturated model. (i.e. model with one parameter for each observation.)

2. Example for logistic regression. For logistic regression, $D_m = -2logL_m$. We will prove this: In saturated model, we can fit the training logits perfectly: (i.e. if $y_i = 1$, then $y^{-1}(\hat{x_i}^Y \hat{\beta}_{MLE}) \approx 1$)

Fact: If $\hat{\beta}_i$ is a MLE estimate, then $\frac{B_i \hat{\beta}_i}{\hat{SE}(\hat{\beta}_i)}$ is asymptotically normal.