# **BUAN 6320**

## **Database Foundations for Business Analytics**

# Assignment 6

# Problem 1

Create the following table in your database with the following schema:

Table: Departments

| +- |        |      | +-  |         | +  |
|----|--------|------|-----|---------|----|
|    | Column | Name | - 1 | Type    |    |
| +- |        |      | +-  |         | -+ |
|    | id     |      | -   | int     |    |
|    | name   |      |     | varchar |    |
| +- |        |      | +-  |         | -+ |

id is the primary key of this table.

The table has information about the id of each department of a university.

Due: 10/27 - 11:59pm

Table: Students

| Column Name                     | -+ <del> </del><br>  Type |
|---------------------------------|---------------------------|
| id<br>  name<br>  department_id | int                       |

id is the primary key of this table.

The table has information about the id of each student at a university and the id of the department he/she studies at.

#### Add the following data to your tables:

#### Input:

Departments table:

|          | id                                               |   | name                                                                     |               |  |  |
|----------|--------------------------------------------------|---|--------------------------------------------------------------------------|---------------|--|--|
|          | 1<br>7<br>13                                     |   | Electrical Engineering   Computer Engineering   Bussiness Administration |               |  |  |
| Students |                                                  | S | table:                                                                   |               |  |  |
|          | id                                               |   | name                                                                     | department_id |  |  |
|          | 23<br>1<br>5<br>2<br>4<br>3<br>6<br>8<br>7<br>11 |   | Alice Bob Jennifer John Jasmine Steve Luis Jonathan Daiana Madelynn      | 1             |  |  |

Write an SQL query to find the id and the name of all students who are enrolled in departments that no longer exist.

Return the result table in any order.

The result should be:

## Output:

| +  | -++     |
|----|---------|
| id | name    |
| +  | -++     |
| 2  | John    |
| 7  | Daiana  |
| 4  | Jasmine |
| 3  | Steve   |
| +  | -+      |

## Explanation:

John, Daiana, Steve, and Jasmine are enrolled in departments 14, 33, 74, and 77 respectively. department 14, 33, 74, and 77 do not exist in the Departments table.

# Problem 2

Create the following table in your database with the following schema:

Table: Employees



id is the primary key for this table.

Each row of this table contains the id and the name of an employee in a company.

Table: EmployeeUNI

```
+-----+
| Column Name | Type |
+-----+
| id | int |
| unique_id | int |
+------+
```

(id, unique\_id) is the primary key for this table.

Each row of this table contains the id and the corresponding unique id of an employee in the company.

Add the following data to your tables:

#### Input:

```
Employees table:
+---+
| id | name |
+---+
| 1 | Alice |
| 7 | Bob |
| 11 | Meir |
| 90 | Winston |
| 3 | Jonathan |
+---+
EmployeeUNI table:
+---+
| id | unique id |
+---+
| 3 | 1 |
| 11 | 2
| 90 | 3 |
+---+
```

Write an SQL query to show the unique ID of each user, If a user does not have a unique ID replace just show null.

Return the result table in any order.

The results should be:

## Output:

| +         | ++       |
|-----------|----------|
| unique_id | name     |
| +         | ++       |
| null      | Alice    |
| null      | Bob      |
| 2         | Meir     |
| 3         | Winston  |
| 1         | Jonathan |
| +         | ++       |

# Explanation:

Alice and Bob do not have a unique ID, We will show null instead.

The unique ID of Meir is 2.

The unique ID of Winston is 3.

The unique ID of Jonathan is 1.

# Problem 3

Create the following table in your database with the following schema:

Table: Products

| Column Name   Type         | į  |
|----------------------------|----|
| +                          | -+ |
| product_id   int           |    |
| product_name   varchar     |    |
| product_category   varchar |    |
| +                          | -+ |

product\_id is the primary key for this table.
This table contains data about the company's products.

Table: Orders

| Column Name                          | ++<br>  Type |
|--------------------------------------|--------------|
| product_id<br>  order_date<br>  unit | int          |

There is no primary key for this table. It may have duplicate rows. product\_id is a foreign key to the Products table. unit is the number of products ordered in order date.

## Add the following data to your tables:

#### Input:

Products table:

| +                             | +                                                                                           |                                             | + |
|-------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|---|
| product_id                    | product_name                                                                                | product_category                            |   |
| 1<br>  2<br>  3<br>  4<br>  5 | Leetcode Solutions  <br>  Jewels of Stringology  <br>  HP  <br>  Lenovo  <br>  Leetcode Kit | Book<br>Book<br>Laptop<br>Laptop<br>T-shirt | + |
|                               |                                                                                             |                                             |   |

Orders table:

| +                                                                       | +                                                                                                                                                                                          | ++   |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| product_id                                                              | order_date<br>+                                                                                                                                                                            | unit |
| 1<br>  1<br>  2<br>  2<br>  3<br>  3<br>  4<br>  4<br>  4<br>  5<br>  5 | 2020-02-05<br>  2020-02-10<br>  2020-01-18<br>  2020-02-11<br>  2020-02-17<br>  2020-02-24<br>  2020-03-01<br>  2020-03-04<br>  2020-03-04<br>  2020-02-25<br>  2020-02-27<br>  2020-02-27 | 60   |
| +                                                                       | +                                                                                                                                                                                          | ++   |

Write an SQL query to get the names of products that have at least 100 units ordered in February 2020 and their amount.

Return result table in any order.

The results should be:

#### Output:

| +                  | -+-   |      | + |
|--------------------|-------|------|---|
| product_name       |       | unit |   |
| +                  | -+-   |      | + |
| Leetcode Solutions |       | 130  |   |
| Leetcode Kit       |       | 100  |   |
| +                  | - + - |      | + |

#### Explanation:

```
Products with product_id = 1 is ordered in February a total of (60 + 70) = 130. Products with product_id = 2 is ordered in February a total of 80. Products with product_id = 3 is ordered in February a total of (2 + 3) = 5. Products with product_id = 4 was not ordered in February 2020. Products with product_id = 5 is ordered in February a total of (50 + 50) = 100.
```

# Problem 4

Create the following tables in your database with the following schema:

```
Table: Countries
+-----+
| Column Name | Type |
+-----+
| country_id | int |
| country_name | varchar |
+-----+
```

country\_id is the primary key for this table.

Each row of this table contains the ID and the name of one country.

#### Table: Weather

| + -    |                                    | ٠+٠ |                    | - +                 |
|--------|------------------------------------|-----|--------------------|---------------------|
| <br> - | Column Name                        |     | Туре               |                     |
|        | country_id<br>weather_state<br>day |     | int<br>int<br>date | -+<br> <br> <br> -+ |
|        |                                    |     |                    |                     |

(country\_id, day) is the primary key for this table.

Each row of this table indicates the weather state in a country for one day.

#### Add the following data to your tables:

#### Input:

Countries table:

| +          | +            |
|------------|--------------|
| country_id | country_name |
| +          | ++           |
| 2          | USA          |
| 3          | Australia    |
| 7          | Peru         |
| 5          | China        |
| 8          | Morocco      |
| 9          | Spain        |
| 1          | i i          |

## Weather table:

| Weather table: |                                                                                                                          |                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|
| country_id     | weather_state                                                                                                            | day                |
| +              | 15<br>  15<br>  12<br>  12<br>  -2<br>  0<br>  3<br>  16<br>  18<br>  21<br>  25<br>  22<br>  20<br>  25<br>  27<br>  31 | 1                  |
| 9              | 3<br><del> </del>                                                                                                        | 2019-12-23  <br>++ |
|                |                                                                                                                          |                    |

Write an SQL query to find the type of weather in each country for November 2019.

The type of weather is:

- **Cold** if the average weather\_state is less than or equal 15,
- **Hot** if the average weather\_state is greater than or equal to 25, and
- **Warm** otherwise.

Return result table in any order.

The results should be:

#### Output:

| +            | ++           |
|--------------|--------------|
| country_name | weather_type |
| +            | ++           |
| USA          | Cold         |
| Australia    | Cold         |
| Peru         | Hot          |
| Morocco      | Hot          |
| China        | Warm         |
| +            | ++           |

## Explanation:

Average weather\_state in USA in November is (15) / 1 = 15 so weather type is Cold.

Average weather\_state in Austraila in November is (-2 + 0 + 3) / 3 = 0.333 so weather type is Cold.

Average weather\_state in Peru in November is (25) / 1 = 25 so the weather type is Hot.

Average weather\_state in China in November is (16 + 18 + 21) / 3 = 18.333 so weather type is Warm.

Average weather\_state in Morocco in November is (25 + 27 + 31) / 3 = 27.667 so weather type is Hot.

We know nothing about the average weather\_state in Spain in November so we do not include it in the result table.