

#### Министерство науки и высшего образования Российской Федерации

## Федеральное государственное бюджетное образовательное учреждение

## высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

| ФАКУЛЬТЕТ                                                   | «Информатика и системы управления»                                                              |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| КАФЕДРА                                                     | «Информатика и системы управления»<br>«Программное обеспечение ЭВМ и информационные технологии» |
|                                                             |                                                                                                 |
|                                                             |                                                                                                 |
|                                                             |                                                                                                 |
|                                                             |                                                                                                 |
|                                                             |                                                                                                 |
|                                                             | Лабораторная работа № <u>2</u>                                                                  |
|                                                             |                                                                                                 |
|                                                             |                                                                                                 |
|                                                             |                                                                                                 |
| Тема Прог                                                   | раммно-алгоритмическая реализация метода Рунге-Кутта                                            |
| 4-го порядка точности при решении системы ОДУ в задаче Коши |                                                                                                 |
| _                                                           |                                                                                                 |
|                                                             |                                                                                                 |
|                                                             |                                                                                                 |
|                                                             |                                                                                                 |
| Студент                                                     | Якуба Д. В.                                                                                     |
| Группа                                                      | <u>ИУ7-63Б</u>                                                                                  |
| Оценка (ба.                                                 | ллы)                                                                                            |
| Преподават                                                  | гель <u>Градов В. М.</u>                                                                        |
|                                                             |                                                                                                 |

Москва. 2021 г.

# Лабораторная работа по теме «Программно-алгоритмическая реализация метода Рунге-Кутта 4-го порядка точности при решении системы ОДУ в задаче Коши»

#### Тема:

Программно-алгоритмическая реализация метода Рунге-Кутта 4-го порядка точности при решении системы ОДУ в задаче Коши.

#### Цель работы:

Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием метода Рунге-Кутта 4-го порядка точности.

#### Задание:

Входные данные:

Выходные данные:

#### Описание

#### Результат

1. Графики зависимости от времени импульса  $I(t), U(t), R_p(t), I(t) \cdot R_p(t), T_0(t)$  при заданных выше параметрах.









# 2. График зависимости I(t) при $R_k + R_p = 0$ . Колебания незатухающие.



3. График зависимости I(t) при  $R_k + R_p = const = 2000$ м в интервале значений t 0-20 мкс.



4. Результаты исследования влияния параметров контура  $C_k$ ,  $L_k$ ,  $R_k$  на длительность импульса  $t_{\text{имп}}$  апериодической формы.

Изучение параметра  $C_k$ :

При 
$$C_k = 268 \cdot 10^{-6} \Phi$$



 $0.35I_{max}=276,8006171;$  Соответствует начальному значению t=0,000048 и конечному значению t=0,000614.  $t_{\rm имп}=0,000566.$ 

При 
$$C_k = 500 \cdot 10^{-6} \Phi$$



 $0.35I_{max}=330,765$ ; Соответствует начальному значению t=0,000059 и конечному значению t=0,000853.  $t_{\rm имп}=0,000794$ .

При 
$$C_k = 700 \cdot 10^{-6} \Phi$$



 $0.35I_{max} = 360,8429$ ; Соответствует начальному значению t = 0,000065 и конечному значению t = 0,001024.  $t_{имп} = 0,000959$ .

Вывод: при возрастании  $C_k$  возрастает и  $t_{\text{имп}}$ .

При 
$$L_k = 187 \cdot 10^{-6} \Gamma H$$



 $0.35I_{max}=276,8006171;$  Соответствует начальному значению t=0,000048 и конечному значению t=0,000614.  $t_{\rm имп}=0,000566.$ 

При 
$$L_k = 300 \cdot 10^{-6} \Gamma H$$



 $0.35I_{\rm max}=238,5789;$  Соответствует начальному значению t=0,000065 и конечному значению t=0,000775.  $t_{\rm имп}=0,00071.$ 

При 
$$L_k = 500 \cdot 10^{-6} \Gamma H$$



 $0.35I_{\max}=201,4575;$  Соответствует начальному значению t=0,000091 и конечному значению t=0,000998.  $t_{\text{имп}}=0,000907.$ 

Вывод: при увеличении  $L_k$  увеличивается и  $t_{\text{имп}}$ .

При  $R_k = 0.25 \text{ Ом}$ 



 $0.35I_{max}=276,\!8006171;$  Соответствует начальному значению  $t=0,\!000048$  и конечному значению  $t=0,\!000614.$   $t_{\text{имп}}=0,\!000566.$ 

При 
$$R_k = 0.5 \, \text{Ом}$$



 $0.35I_{max}=238,5942;$  Соответствует начальному значению t=0,000041 и конечному значению t=0,000634.  $t_{\rm имп}=0,000593.$ 





 $0.35I_{max}=187,6424$ ; Соответствует начальному значению t=0,000033 и конечному значению t=0,000712.  $t_{\rm имп}=0,000679$ .

Вывод: при увеличении  $R_k$  увеличивается и  $t_{\text{имп}}$ .

Таким образом, все рассматриваемые параметры при увеличении позволяют «сгладить» кривую, тем самым увеличивая так называемую длительность импульса.

# Контрольные вопросы

1.

Ответ:

*2*.

Ответ:

*3*.

Ответ:

Код программы