Técnicas de Concepção de Algoritmos (1ª parte): divisão e conquista

R. Rossetti, L. Ferreira, H. L. Cardoso, F. Andrade CAL, MIEIC, FEUP

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

2

Divisão e Conquista (divide and conquer)

Divisão e conquista

- Divisão: resolver recursivamente problemas mais pequenos (até caso base)
- Conquista: solução do problema original é formada com as soluções dos subproblemas
- Há divisão quando o algoritmo tem pelo menos 2 chamadas recursivas no corpo
- Subproblemas devem ser disjuntos
 - > Senão, resolver de forma bottom-up com programação dinâmica
- Divisão em subproblemas de dimensão semelhante é importante para se obter uma boa eficiência temporal
- Algoritmos adequados para processamento paralelo

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Divisão e conquista

 Dada uma instância do problema x, a técnica Divisão-e-Conquista funciona da seguinte maneira:

```
function DAQ( x )

if x é suficientemente pequeno then
    resolver x directamente

else

    dividir x em subinstâncias: x1, ..., xk

for i := 1 to k do yi := DAQ( xi )

y := Σ yi

return y

Técnicas de Concepção de Algoritmos, CAL-MIEIC/FEUP
```

Exemplo: cálculo de xⁿ

- ♦ Resolução iterativa com n multiplicações: T(n) = O(n)
- Resolução mais eficiente, com divisão e conquista:

```
x^{n} = \begin{cases} 1, & \text{se } n = 0 \\ x, & \text{se } n = 1 \end{cases}
x^{n} = \begin{cases} \frac{n}{2} \times \frac{n}{2} \times x^{\frac{n}{2}}, & \text{se } n \text{ par} > 1 \\ \frac{n^{-1}}{2} \times x^{\frac{n-1}{2}}, & \text{se } n' \text{impar} > 1 \end{cases}
double power (double x, int n) {
    if (n == 0) return 1;
    if (n == 1) return x;
    double p = power(x, n / 2);
    if (n % 2 == 0) return p * p;
    else return x * p * p;
}
```

- ◆ Divisão em subproblemas iguais, junção em tempo O(1)
- N° de multiplicações reduzido para ~log₂n
- ♦ $T(n) = O(\log n)$ mas $S(n) = O(\log n)$ (espaço)
- ◆ Nota: classificação como divisão e conquista não é consensual, por os 2 subproblemas serem idênticos (logo só há 1 chamada recursiva)

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Exemplo: ordenação de arrays

- ♦ Mergesort
 - > Ordenar 2 subsequências de igual dimensão e juntá-las
 - > T(n) = O(n log n), tanto no pior caso como no caso médio
- Quicksort
 - > Ordenar elementos menores e maiores que *pivot*, concatenar
 - \rightarrow T(n) = O(n²) no pior caso (1 elemento menor, restantes maiores)
 - > T(n) = O(n log n) no melhor caso e no caso médio (*)
 - > (*) com escolha aleatória do pivot!

Exemplo: Mergesort

- ♦ Seja $S = \{s_1, ..., s_n\}$ um conjunto que se pretenda ordenar.
- Caso base: Se S = {} ou S = $\{s_i\}$, então nada é necessário!
- ◆ <u>Dividir</u> a sequência S em duas subsequências S₁ e S₂, cada uma com ~n/2 elementos
- ◆ Conquistar S₁ e S₂, ordenando-as com mergesort (isto é, aplicando recursivamente o mesmo procedimento)
- ◆ <u>Combinar</u> as sequências ordenadas S₁ e S₂ numa sequência ordenada única S
- ◆ Fazer o mais possível *in-place*.

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Exemplo: Mergesort 17 31 96 50 63 45 24 24 Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Mergesort: Pseudo-código (1/2)

```
// Sorts array A between indices p and r.
Merge-Sort(A, p, r)
  if p < r then
    q ← [ (p + r) /2 ]
    Merge-Sort(A, p, q)
    Merge-Sort(A, q + 1, r)
    Merge(A, p, q, r)</pre>
```

```
Merge(A, p, q, r)

//Take the smallest of the two topmost elements of sequences A[p..q] and A[q+1..r] and put into the resulting sequence. Repeat this, until both sequences are empty. Copy the resulting sequence into A[p..r].

//See next slide...
```

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Mergesort: Pseudo-código (2/2)

```
//Merges sorted subarrays A[p..q] and A[q+1..r]
//into a single sorted subarray A[p..r].

Merge(A, p, q, r)

// Copy the subarrays into auxiliary
// memory with a sentinel

L \leftarrow (A[p],...,A[q], \infty), R \leftarrow (A[q+1],...,A[r], \infty)

// Repeatedly take the smallest leftmost
// element of L and R

i \leftarrow 1, j \leftarrow 1

for k = p to r do

if L[i] \leq R[j] then A[k] \leftarrow L[i], i \leftarrow i+1

else A[k] \leftarrow R[j], j \leftarrow j+1
```

Eficiência temporal

- ◆ Profundidade de recursão (n° de níveis) é 「log 2 n]
- Em cada nível, as várias operações de split podem ser efetuadas em tempo total O(n)
- Em cada nível, as várias operações de merge podem ser efetuada em tempo total Θ(n)
- Logo, tempo total (em qq caso) é T(n) = Θ(n log n)

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Optimizações

Optimizações e ganhos experimentais (*speedup*) conseguidos a ordenar *arrays* aleatórios de tamanho n=10⁷

- Opção do linker: -Wl,--stack,0xFFFFFFF (para array caber na stack)
- ◆ Opção do compilador: -O3 (optimize most)

	Tempo (ms)	Ganho (speedup)
Merge sort, abordagem base (slides anteriores)	1330	-
Optimização da memória auxiliar	1226	x 1,08
Ordenação por inserção de arrays com n < 20	1078	x 1,14
Percorrer arrays com apontadores em vez de índices, usar register, usar memcpy	977	x 1,10
Processamento paralelo (4 cores, 8 threads)	398	x 2,45
Ganho total		x 3,34
std::sort (quick sort)	769	

◆ Em vez de fazer cópias para memória auxiliar em cada Merge ... ◆ Cria-se inicialmente uma cópia (B) de A ◆ As operações de Merge vão alternadamente colocando os resultados em A e B ◆ O tempo gasto nestas cópias é reduzido de Θ(n log) para Θ(n)

40

Processamento paralelo

- ◆ Com k processadores ou núcleos (cores), executando as chamadas recursivas em paralelo, pode-se ter um ganho de desempenho de até k vezes
 - > Em C++, número de núcleos é dado por

std::thread::hardware_concurrency()

- Execução paralela é conseguida usando múltiplos threads (pois estes executam em paralelo, partilhando o mesmo espaço de endereçamento)
 - > Normalmente, desempenho ótimo com nº threads = nº cores
 - Em processadores com *hyper-threading*, n° ótimo é 2 x n° *cores* (https://en.wikipedia.org/wiki/Hyper-threading)

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Ilustração

- Exemplo com 4 cores
- Divisão de trabalho por 4 threads concorrentes


```
Implementação em C++
                                 N° de threads a usar (potência de 2)
#include <thread>
                                 (inicialmente ~ n° de cores).
template <typename T>
void MergeSort(T A[], int p, int r, int threads) {
 if (p < r) {
                                 1) Lança 1ª chamada recursiva
  int q = (p + r) / 2;
                                 num novo thread t separado.
  if (threads > 1) {
    std::thread t([=](){MergeSort(A,p,q, threads/2);});
    MergeSort(A, q+1, r, threads /2);
    t.join();
                                           2) Executa 2ª chamada
                  3) Espera que o outro
                                           recursiva neste thread.
                   thread termine.
     MergeSort(A, p, q, 1); MergeSort(A, q + 1, r, 1)
  Merge(A, p, q, r);
cas de Concepção de Algoritmos, CAL - MIEIC/FEUP
```


45

Exemplo 3: pesquisa binária

- Seja S=(s₁,...,sn) uma sequência ordenada de n elementos, e x um elemento que se pretende procurar em S.
- Casos bases:
 - > Se S=(), falha!
 - > Se $x=s_m$, c/ $m=\lfloor (1+n)/2 \rfloor$ (elem. médio), retorna-se a posição!
- ♦ <u>Dividir</u> S em duas subsequências, $L=(s_1,, s_{m-1})$ e $R=(s_{m+1},, s_n)$, à esquerda e à direita do elemento médio.
- Conquistar: se $x < s_m (x > s_m)$ continua-se a pesquisa em L (R, resp.)
- \bullet T(n) = O(log n)
- Nota: classificação como divisão e conquista não é consensual, por um dos 2 subproblemas ser vazio (logo basta 1 chamada recursiva).

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

46

Exemplo: pesquisa binária

• Suponha que s_x = 18 e que S e dado por: {10 12 13 14 18 20 25 27 30 35 40 45 47}

termo médio

- ♦ Dividir a sequência: sendo s_x < 25, pequisa-se em {10 12 13 14 18 20}
- Conquistar a subsequência, determinando-se se s_x está presente.
- ♦ Obtém-se a solução para a sequência S, pela solução da pesquisa nas subsequências. R: Sim! $s_x \in S$

ônciac

Referências

- ◆ T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009
 - > Capítulo 4 Divide-and-Conquer
 - > Secção 27.3 Multithreaded Merge Sort
- Mark Allen Weiss. Data Structures & Algorithm Analysis in Java. Addison-Wesley, 1999
- Steven S. Skiena. The Algorithm Design Manual. Springer 1998
- ◆ Robert Sedgewick. Algorithms in C++. Addison-Wesley, 1992

50

Em suma...

- Programação dinâmica (dynamic programming)
 - > Contexto: Problemas de solução recursiva.
 - > Objectivo: Minimizar tempo e espaço.
 - > Forma: Induzir uma progressão iterativa de transformações sucessivas de um espaço linear de soluções.
- Algoritmos gananciosos (greedy algorithms)
 - > Contexto: Problemas de optimização (max. ou min.)
 - > Objectivo: Atingir a solução óptima, ou uma boa aproximação.
 - > Forma: tomar uma decisão óptima localmente, i.e., que maximiza o ganho (ou minimiza o custo) imediato

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

51

Em suma...

- ◆ Algoritmos de retrocesso (backtracking)
 - Contexto: problemas sem algoritmos eficientes (convergentes) para chegar à solução.
 - > Objectivo: Convergir para uma solução.
 - Forma: tentativa-erro. Gerar estados possíveis e verificar todos até encontrar solução, retrocedendo sempre que se chegar a um "beco sem saída".
- ◆ Divisão e conquista (divide and conquer)
 - Contexto: Problemas passíveis de se conseguirem sub-dividir.
 - > Objectivo: melhorar eficiencia temporal.
 - Forma: agregação linear da resolução de sub-problemas de dimensão semelhantes até chegar ao caso-base.