Differential program semantics: sub-modular functions and partial metrics

Guillaume Geoffroy, Paolo Pistone

DIAPASoN, Unibo

27 February 2020

Distance between programs $\partial(t,s)$:

Distance between programs $\partial(t,s)$:

Compatible with product and function types,

Distance between programs $\partial(t, s)$:

- Compatible with product and function types,

Distance between programs $\partial(t, s)$:

- Compatible with product and function types,
- Asymmetric,
- ► No triangular inequality.

Differential program semantics

- Step 1: define a notion of approximate program denotation,
- ▶ Step 2: define distances between approximate denotations.

- ▶ Step 1: define a notion of approximate program denotation,
- ▶ Step 2: define distances between approximate denotations.

Example: Programs of type \mathbb{R}

▶ Approximate reals: $[\mathbb{R}] = \{[x, y]; x \leq y\} \cup \{\mathbb{R}\},$

- ▶ Step 1: define a notion of approximate program denotation,
- ► Step 2: define distances between approximate denotations.

Example: Programs of type \mathbb{R}^{l}

- ▶ Approximate reals: $[\mathbb{R}] = \{[x, y]; x \leq y\} \cup \{\mathbb{R}\},$
- ▶ Distance: $\partial(a,b) = \text{diameter}(a \cup b)$

- ▶ Step 1: define a notion of approximate program denotation,
- ► Step 2: define distances between approximate denotations.

Example: Programs of type \mathbb{R}^{l}

- ▶ Approximate reals: $[\mathbb{R}] = \{[x, y]; x \leq y\} \cup \{\mathbb{R}\},\$
- ▶ Distance: $\partial(a, b) = \text{diameter}(a \cup b) = \text{diameter}(a \lor b)$.

Approximate denotations

Definition

An interval space space \mathcal{I} is the data of:

- ightharpoonup a set $|\mathcal{I}|$,
- ▶ a subset $\mathcal{I} \subseteq \mathcal{P}(|\mathcal{I}|) \setminus \{\emptyset\}$ closed under non-empty intersections.

Approximate denotations

Definition

An interval space space \mathcal{I} is the data of:

- ightharpoonup a set $|\mathcal{I}|$,
- ▶ a subset $\mathcal{I} \subseteq \mathcal{P}(|\mathcal{I}|) \setminus \{\emptyset\}$ closed under non-empty intersections.

Example

The interval space $[\mathbb{R}]$

- **▶** |[ℝ]|,
- $\blacktriangleright \ [\mathbb{R}] = \{[x,y]; \ x \leq y\} \cup \{\mathbb{R}\}.$

Approximate functions – wrong definition

Definition?

▶ An approximate function from $[\mathbb{R}]$ to $[\mathbb{R}]$ is a function $\varphi : \mathbb{R} \to [\mathbb{R}]$,

Approximate functions – wrong definition

Definition?

- An approximate function from $[\mathbb{R}]$ to $[\mathbb{R}]$ is a function $\varphi : \mathbb{R} \to [\mathbb{R}]$,
- ightharpoonup Given $\varphi, \psi : \mathbb{R} \to [\mathbb{R}]$,

$$\psi \circ \varphi := x \mapsto \bigvee_{y \in \varphi(x)} \psi(y).$$

Approximate functions – wrong definition

Definition?

- An approximate function from $[\mathbb{R}]$ to $[\mathbb{R}]$ is a function $\varphi : \mathbb{R} \to [\mathbb{R}]$,
- ightharpoonup Given $\varphi, \psi : \mathbb{R} \to [\mathbb{R}]$,

$$\psi \circ \varphi := x \mapsto \bigvee_{y \in \varphi(x)} \psi(y).$$

Problem: not associative

Definition

▶ An approximate function from $[\mathbb{R}]$ to $[\mathbb{R}]$ is a monotone function $\varphi : [\mathbb{R}] \to [\mathbb{R}]$,

Definition

- An approximate function from $[\mathbb{R}]$ to $[\mathbb{R}]$ is a monotone function $\varphi: [\mathbb{R}] \to [\mathbb{R}]$,
- $ightharpoonup \varphi$ is optimal if for all $a \in [\mathbb{R}]$, $\varphi(a) = \bigvee_{x \in a} \varphi(\{x\})$.

Definition

- ▶ An approximate function from $[\mathbb{R}]$ to $[\mathbb{R}]$ is a monotone function $\varphi : [\mathbb{R}] \to [\mathbb{R}]$,
- $ightharpoonup \varphi$ is optimal if for all $a \in [\mathbb{R}]$, $\varphi(a) = \bigvee_{x \in a} \varphi(\{x\})$.

Definition

Let \mathcal{I},\mathcal{J} be interval spaces. An approximate function from \mathcal{I} to \mathcal{J} is a monotone function $\varphi:\mathcal{I}\to\mathcal{J}$.

Definition

Let \mathcal{I}, \mathcal{J} be interval spaces. An approximate function from \mathcal{I} to \mathcal{J} is a monotone function $\varphi: \mathcal{I} \to \mathcal{J}$.

Definition

Let \mathcal{I}, \mathcal{J} be interval spaces. An approximate function from \mathcal{I} to \mathcal{J} is a monotone function $\varphi: \mathcal{I} \to \mathcal{J}$.

Definition

The category \overline{A} of approximate programs is defined by:

- ightharpoonup the objects of \mathcal{A} are the interval spaces,
- ▶ for all \mathcal{I} , \mathcal{J} , $\mathcal{A}(\mathcal{I}, \mathcal{J})$ is the poset of approximate functions from \mathcal{I} to \mathcal{J} .

Exact vs approximate functions Notation For all $\varphi \in \mathcal{A}(\mathcal{I}, \mathcal{J})$,

$$|\varphi| = \{f : |\mathcal{I}| \to |\mathcal{J}|; \ \forall x \ f(x) \in \varphi(\overline{x})\}.$$

Exact *vs* aproximate functions

Notation For all $\varphi \in \mathcal{A}(\mathcal{I}, \mathcal{J})$,

$$|\varphi| = \{f : |\mathcal{I}| \to |\mathcal{J}|; \ \forall x \ f(x) \in \varphi(\overline{x})\}.$$

Definition For all $f: |\mathcal{I}| \to |\mathcal{J}|$, the differential $df \in \mathcal{A}(\mathcal{I}, \mathcal{J})$ is defined by:

$$df(a) = \bigvee_{x \in a} f(x).$$

Exact *vs* aproximate functions

Notation For all $\varphi \in \mathcal{A}(\mathcal{I}, \mathcal{J})$,

$$|\varphi| = \{f : |\mathcal{I}| \to |\mathcal{J}|; \ \forall x \ f(x) \in \varphi(\overline{x})\}.$$

Definition For all $f: |\mathcal{I}| \to |\mathcal{J}|$, the differential $df \in \mathcal{A}(\mathcal{I}, \mathcal{J})$ is defined by:

$$df(a) = \bigvee_{x \in a} f(x).$$

Lemma For all f, φ :

$$df \leq \varphi \Leftrightarrow f \in |\varphi|$$
.

$$ightharpoonup |\mathcal{I} imes \mathcal{J}| = |\mathcal{I}| imes |\mathcal{J}|,$$

- $\blacktriangleright |\mathcal{I} \times \mathcal{J}| = |\mathcal{I}| \times |\mathcal{J}|,$
- $\blacktriangleright \ \mathcal{I} \times \mathcal{J} = \{a \times b; \ a \in \mathcal{I}, b \in \mathcal{J}\},\$

- $\blacktriangleright |\mathcal{I} \times \mathcal{J}| = |\mathcal{I}| \times |\mathcal{J}|,$
- $\blacktriangleright \ \mathcal{I} \times \overline{\mathcal{J}} = \{a \times b; \ a \in \overline{\mathcal{I}}, b \in \overline{\mathcal{J}}\},\$
- \blacktriangleright $\pi_L(a \times b) = a$ and $\pi_R(a \times b) = b$,

- $\blacktriangleright |\mathcal{I} \times \mathcal{J}| = |\mathcal{I}| \times |\mathcal{J}|,$
- $\blacktriangleright \ \mathcal{I} \times \mathcal{J} = \{a \times b; \ a \in \mathcal{I}, b \in \mathcal{J}\},\$
- $ightharpoonup \pi_L(a imes b) = a ext{ and } \overline{\pi_R(a imes b)} = \overline{b},$

- $\blacktriangleright |\mathcal{I} \times \mathcal{J}| = |\mathcal{I}| \times |\mathcal{J}|,$
- $\blacktriangleright \mathcal{I} \times \mathcal{J} = \{a \times b; \ a \in \mathcal{I}, b \in \mathcal{J}\},\$
- $\blacktriangleright \ \pi_L(a \times b) = a \ {
 m and} \ \pi_R(a \times b) = b,$
- ▶ For all φ, ψ , $\pi_L \circ \langle \varphi, \psi \rangle = \varphi$ and $\pi_R \circ \langle \varphi, \psi \rangle = \psi$,

- $\blacktriangleright |\mathcal{I} \times \mathcal{J}| = |\mathcal{I}| \times |\mathcal{J}|,$
- $\blacktriangleright \mathcal{I} \times \mathcal{J} = \{a \times b; \ a \in \mathcal{I}, b \in \mathcal{J}\},\$
- $\blacktriangleright \ \pi_L(a \times b) = a \text{ and } \pi_R(a \times b) = b,$

- For all $arphi, \psi$, $\pi_L \circ \langle arphi, \psi
 angle = arphi$ and $\pi_R \circ \langle arphi, \psi
 angle = \psi$,
- ▶ For all χ , $\langle \pi_L \circ \chi, \pi_R \circ \chi \rangle = \chi$.

Definition For all \mathcal{I}, \mathcal{J} , let:

- $\blacktriangleright |\mathcal{I} \times \mathcal{J}| = |\mathcal{I}| \times |\mathcal{J}|,$
- $\blacktriangleright \mathcal{I} \times \mathcal{J} = \{a \times b; a \in \mathcal{I}, b \in \mathcal{J}\},\$
- \blacktriangleright $\pi_L(a \times b) = a$ and $\pi_R(a \times b) = b$,

This defines a cartesian product in A:

- ▶ For all φ, ψ , $\pi_L \circ \langle \varphi, \psi \rangle = \varphi$ and $\pi_R \circ \langle \varphi, \psi \rangle = \psi$,
- ▶ For all χ , $\langle \pi_L \circ \chi, \pi_R \circ \chi \rangle = \chi$.

Definition For all \mathcal{I}, \mathcal{J} , let:

 $ightharpoonup |\exp(\mathcal{I}, \overline{\mathcal{J}})| = \{\text{functions from } |\overline{\mathcal{I}}| \text{ to } |\overline{\mathcal{J}}|\},$

- $ightharpoonup |\exp(\mathcal{I},\mathcal{J})| = \{\text{functions from } |\mathcal{I}| \text{ to } |\mathcal{J}|\},$
- ightharpoonup $\exp(\mathcal{I},\mathcal{J})=\{|arphi|\,;\,\,arphi\in\mathcal{A}(\mathcal{I},\mathcal{J})\},$

- $ightharpoonup |\exp(\mathcal{I},\mathcal{J})| = \{\text{functions from } |\mathcal{I}| \text{ to } |\mathcal{J}|\},$
- ightharpoonup $\exp(\mathcal{I},\mathcal{J})=\{|arphi|\,;\,\,arphi\in\mathcal{A}(\mathcal{I},\mathcal{J})\},$
- ightharpoonup for all $\varphi \in \mathcal{A}(\mathcal{K}, \exp(\mathcal{I}, \mathcal{J}))$,

- $ightharpoonup |\exp(\mathcal{I},\mathcal{J})| = \{\text{functions from } |\mathcal{I}| \text{ to } |\mathcal{J}|\},$
- ightharpoonup $\exp(\mathcal{I},\mathcal{J})=\{|arphi|\,;\,\,arphi\in\mathcal{A}(\mathcal{I},\mathcal{J})\},$
- \blacktriangleright for all $\varphi \in \mathcal{A}(\mathcal{K}, \exp(\mathcal{I}, \mathcal{J}))$,

$$\operatorname{ev}(\varphi) = c \times a \mapsto \bigvee_{f \in \varphi(c)} \bigvee_{x \in a} \overline{f(x)}$$

- $ightharpoonup |\exp(\mathcal{I},\mathcal{J})| = \{\text{functions from } |\mathcal{I}| \text{ to } |\mathcal{J}|\},$
- ightharpoonup $\exp(\mathcal{I},\mathcal{J})=\{|arphi|\,;\,\,arphi\in\mathcal{A}(\mathcal{I},\mathcal{J})\},$
- \blacktriangleright for all $\varphi \in \mathcal{A}(\mathcal{K}, \exp(\mathcal{I}, \mathcal{J}))$,

$$\operatorname{ev}(\varphi) = c \times a \mapsto \bigvee_{f \in \varphi(c)} \bigvee_{x \in a} \overline{f(x)} = \bigvee_{f \in \varphi(c)} \operatorname{d} f(a),$$

Definition For all \mathcal{I}, \mathcal{J} , let:

- $ightharpoonup |\exp(\mathcal{I},\mathcal{J})| = \{\text{functions from } |\mathcal{I}| \text{ to } |\mathcal{J}|\},$
- ightharpoonup $\exp(\mathcal{I},\mathcal{J})=\{|arphi|\,;\,\,arphi\in\mathcal{A}(\mathcal{I},\mathcal{J})\},$
- ▶ for all $\varphi \in \mathcal{A}(\mathcal{K}, \exp(\mathcal{I}, \mathcal{J}))$,

$$\operatorname{ev}(\varphi) = c \times a \mapsto \bigvee_{f \in \varphi(c)} \bigvee_{x \in a} \overline{f(x)} = \bigvee_{f \in \varphi(c)} \operatorname{d}f(a),$$

▶ for all $\psi \in \mathcal{A}(\mathcal{K} \times \mathcal{I}, \mathcal{J})$,

Definition For all \mathcal{I}, \mathcal{J} , let:

- $ightharpoonup |\exp(\mathcal{I},\mathcal{J})| = \{\text{functions from } |\mathcal{I}| \text{ to } |\mathcal{J}|\},$
- ightharpoonup $\exp(\mathcal{I},\mathcal{J})=\{|\varphi|\,;\; \varphi\in\mathcal{A}(\mathcal{I},\mathcal{J})\},$
- \blacktriangleright for all $\varphi \in \mathcal{A}(\mathcal{K}, \exp(\mathcal{I}, \mathcal{J}))$,

$$\operatorname{ev}(\varphi) = c \times a \mapsto \bigvee_{f \in \varphi(c)} \bigvee_{x \in a} \overline{f(x)} = \bigvee_{f \in \varphi(c)} \operatorname{d} f(a),$$

▶ for all $\psi \in \mathcal{A}(\mathcal{K} \times \mathcal{I}, \mathcal{J})$,

$$\lambda(\psi) = c \mapsto |a \mapsto \psi(c, a)|$$
.

$$\operatorname{ev}(arphi) = \bigvee_{f \in arphi(c)} \operatorname{d}\! f(a) \qquad \qquad \lambda(\psi) = c \mapsto |a \mapsto \psi(c,a)|$$

$$\operatorname{ev}(arphi) = \bigvee_{f \in arphi(c)} \operatorname{d}\! f(a) \qquad \qquad \lambda(\psi) = c \mapsto |a \mapsto \psi(c,a)|$$

$$ightharpoonup$$
 ev $(\varphi \circ \chi) = \text{ev}(\varphi) \circ (\chi \times \text{id})$ and $\lambda(\psi \circ (\chi \times \text{id})) = \lambda(\psi) \circ \chi$,

$$\operatorname{ev}(arphi) = \bigvee_{f \in arphi(c)} \operatorname{d}\! f(a) \qquad \qquad \lambda(\psi) = c \mapsto |a \mapsto \psi(c,a)|$$

- ightharpoonup ev $(\varphi \circ \chi) = \text{ev}(\varphi) \circ (\chi \times \text{id})$ and $\lambda(\psi \circ (\chi \times \text{id})) = \lambda(\psi) \circ \chi$,
- ightharpoonup $\operatorname{ev}(\lambda(\psi)) \leq \psi$,

$$\operatorname{ev}(arphi) = \bigvee_{f \in arphi(c)} \operatorname{d}\! f(a) \qquad \qquad \lambda(\psi) = c \mapsto |a \mapsto \psi(c,a)|$$

- ightharpoonup ev $(\varphi \circ \chi) = \text{ev}(\varphi) \circ (\chi \times \text{id})$ and $\lambda(\psi \circ (\chi \times \text{id})) = \lambda(\psi) \circ \chi$,
- ightharpoonup $\operatorname{ev}(\lambda(\psi)) \leq \psi$,
- $\blacktriangleright \varphi \leq \lambda(ev(\varphi)).$

$$\operatorname{ev}(arphi) = \bigvee_{f \in arphi(c)} \operatorname{d}\! f(a) \qquad \qquad \lambda(\psi) = c \mapsto |a \mapsto \psi(c,a)|$$

- ightharpoonup ev $(\varphi \circ \chi) = \text{ev}(\varphi) \circ (\chi \times \text{id})$ and $\lambda(\psi \circ (\chi \times \text{id})) = \lambda(\psi) \circ \chi$,
- ightharpoonup $\operatorname{ev}(\lambda(\psi)) \leq \psi$,
- $ightharpoonup \varphi \leq \lambda(\operatorname{ev}(\varphi)).$

If
$$f \in |\varphi|$$
 and $\varphi \to_{\beta\eta} \psi$ then $f \in |\psi|$.

Differential program semantics – alternative approach

- ▶ Step 1: define a notion of approximate program denotation,
- ► Step 2: define distances between approximate denotations.

Example: Programs of type $\mathbb R$

- ▶ Approximate reals: $[\mathbb{R}] = \{[x, y]; x \leq y\} \cup \{\mathbb{R}\},$
- ightharpoonup Distance: $\partial(a,b) = \delta(a \lor b)$.

Diameter spaces

Definition

A diameter space is the data of:

- ightharpoonup an interval space \mathcal{I} ,
- ightharpoonup a commutative integral quantale Q (e.g. $[0,\infty]^n$),
- ightharpoonup a monotone function $\delta: \mathcal{I} o Q$

Diameter spaces

Definition

A diameter space is the data of:

- ightharpoonup an interval space \mathcal{I} ,
- ightharpoonup a commutative integral quantale Q (e.g. $[0,\infty]^n$),
- \blacktriangleright a monotone function $\delta: \mathcal{I} \to Q$ such that:

$$\forall a,b \in \mathcal{I}, \ a \land b \neq \emptyset \Rightarrow \delta(a \lor b) + \delta(a \land b) \leq \delta(a) + \delta(b).$$

Sub-modularity

$$\forall a, b \in \mathcal{I}, \ a \land b \neq \emptyset \Rightarrow \delta(a \lor b) + \delta(a \land b) \leq \delta(a) + \delta(b).$$

$$\times$$
 \times \times \times \times \times \times \times

Sub-modularity

$$\forall a, b \in \mathcal{I}, \ a \land b \neq \emptyset \Rightarrow \delta(a \lor b) + \delta(a \land b) \leq \delta(a) + \delta(b).$$

Pseudo-partial metric spaces

Proposition

Let (\mathcal{I}, Q, δ) be a diameter space. For all $a, b \in \mathcal{I}$, let $\partial(a, b) = \delta(a \vee b)$.

Pseudo-partial metric spaces

Proposition

Let (\mathcal{I}, Q, δ) be a diameter space. For all $a, b \in \mathcal{I}$, let $\partial(a, b) = \delta(a \vee b)$. Then (\mathcal{I}, ∂) is a pseudo partial metric space:

Pseudo-partial metric spaces

Proposition

Let (\mathcal{I}, Q, δ) be a diameter space. For all $a, b \in \mathcal{I}$, let $\partial(a, b) = \delta(a \vee b)$. Then (\mathcal{I}, ∂) is a pseudo partial metric space:

- $ightharpoonup \partial(a,b) = \partial(b,a),$

Let (\mathcal{I}, Q, δ) and (\mathcal{J}, R, δ) be diameter spaces.

Definition We define a diameter space $(\mathcal{I} \times \mathcal{J}, Q \times R, \delta)$ by:

Let (\mathcal{I}, Q, δ) and (\mathcal{J}, R, δ) be diameter spaces.

Definition We define a diameter space $(\mathcal{I} imes \mathcal{J}, \mathcal{Q} imes \mathcal{R}, \delta)$ by:

$$\delta(\mathbf{a}\times\mathbf{b})=(\delta(\mathbf{a}),\delta(\mathbf{b})).$$

Let (\mathcal{I}, Q, δ) and (\mathcal{J}, R, δ) be diameter spaces.

Definition We define a diameter space $(\mathcal{I} \times \mathcal{J}, Q \times R, \delta)$ by:

$$\delta(\mathsf{a}\times\mathsf{b})=(\delta(\mathsf{a}),\delta(\mathsf{b})).$$

Definition We define a diameter space $(\exp(\mathcal{I}, \mathcal{J}), \operatorname{Poset}(\mathcal{I}, R), \delta)$ by:

Let (\mathcal{I}, Q, δ) and (\mathcal{J}, R, δ) be diameter spaces.

Definition We define a diameter space $(\mathcal{I} \times \mathcal{J}, Q \times R, \delta)$ by:

$$\delta(\mathbf{a}\times\mathbf{b})=(\delta(\mathbf{a}),\delta(\mathbf{b})).$$

Definition We define a diameter space $(\exp(\mathcal{I}, \mathcal{J}), \operatorname{Poset}(\mathcal{I}, R), \delta)$ by:

$$\delta(arphi) = a \mapsto \delta\left(igvee_{f \in arphi} \mathsf{d}f(a)
ight).$$

Diameter spaces and approximate functions

Definition

The category \mathcal{A}^{δ} of approximate programs is defined by:

- lacktriangle the objects of \mathcal{A}^δ are the diameter spaces,
- ▶ for all \mathcal{I} , \mathcal{J} , $\mathcal{A}^{\delta}(\mathcal{I}, \mathcal{J})$ is the poset of approximate functions from \mathcal{I} to \mathcal{J} .

Diameter spaces and approximate functions

Definition

The category \mathcal{A}^{δ} of approximate programs is defined by:

- lacktriangle the objects of \mathcal{A}^δ are the diameter spaces,
- ▶ for all \mathcal{I} , \mathcal{J} , $\mathcal{A}^{\delta}(\mathcal{I}, \mathcal{J})$ is the poset of approximate functions from \mathcal{I} to \mathcal{J} .

► A cartesian lax-closed category whose objects are particular pseudo partial metric spaces.

Replacing **Set** with a CCC $\mathcal C$

ightharpoonup A set $|\mathcal{I}| \rightsquigarrow$ An object $|\mathcal{I}|$ of \mathcal{C} ,

Replacing **Set** with a CCC $\mathcal C$

- ightharpoonup A set $|\mathcal{I}| \rightsquigarrow$ An object $|\mathcal{I}|$ of \mathcal{C} ,
- $\triangleright x \in |\mathcal{I}| \rightsquigarrow x \in \mathcal{C}(1, |\mathcal{I}|),$

Replacing **Set** with a CCC ${\cal C}$

- ightharpoonup A set $|\mathcal{I}| \rightsquigarrow$ An object $|\mathcal{I}|$ of \mathcal{C} ,
- \triangleright $x \in |\mathcal{I}| \rightsquigarrow x \in \mathcal{C}(1, |\mathcal{I}|),$

Replacing **Set** with a CCC $\mathcal C$

- \blacktriangleright A set $|\mathcal{I}| \rightsquigarrow$ An object $|\mathcal{I}|$ of \mathcal{C} ,
- \triangleright $x \in |\mathcal{I}| \rightsquigarrow x \in \mathcal{C}(1, |\mathcal{I}|),$
- $\triangleright \varphi \in \mathcal{A}(|\mathcal{I}|, |\mathcal{J}|) \rightsquigarrow \text{Require } |\varphi| \neq \emptyset.$

Replacing **Set** with a CCC $\mathcal C$

- \blacktriangleright A set $|\mathcal{I}| \rightsquigarrow$ An object $|\mathcal{I}|$ of \mathcal{C} ,
- $\triangleright x \in |\mathcal{I}| \rightsquigarrow x \in \mathcal{C}(1, |\mathcal{I}|),$
- $\triangleright \varphi \in \mathcal{A}(|\mathcal{I}|, |\mathcal{J}|) \rightsquigarrow \text{Require } |\varphi| \neq \emptyset.$

Thank you!