Davis, California, 22 January 2016

suffix • EN

Suffixes (suffix)

Time limit: 1.0 seconds Memory limit: 256 MiB

Peter has an array a of n integers, $a_1, a_2, ..., a_n$. Having nothing to do, he takes a sheet of paper and writes down m integer values, $b_1, b_2, ..., b_m$ $(1 \le b_i \le n)$. For each number b_i he wants to know how many distinct numbers there are in the vector a from position b_i and on. In other words, given b_i , how many distinct values are there in the subarray $a_{b_i}, a_{b_i+1}, a_{b_i+2}, ..., a_n$. Peter isn't able to solve the problem alone and asks for your help.

Scoring

Your program will be tested on several test cases, gathered in subtasks. To get the maximal score assigned to a subtask, your program needs to solve correctly all the tests related to it.

- Subtask 1 [0 points]: the example tests shown below.
- Subtask 2 [25 points]: $n, m \le 100, 1 \le a_i \le 100.$
- Subtask 3 [25 points]: $n, m \le 500, 1 \le a_i \le 100000$.
- Subtask 4 [30 points]: $1 \le a_i \le 100000$.
- Subtask 5 [20 points]: no limitations.

Input/output's Format

Your program will have to read the following data from standard console input:

- Row 1: contains the integers n and m, the counts of elements in the vectors a and b respectively.
- Row 2: contains n integers, the elements of vector a, in order.
- the next m rows: the i-th row contains the i-th element of vector b.

Your program will have to print on the console the following:

• m rows: the i-th row contains the answer to the above problem, given a and b_i .

Constraints

- $1 \le n \le 100\,000$.
- $1 \le m \le 100000$.
- $1 \le a_i \le 1\,000\,000\,000$.

suffix Page 1 of 2

Davis, California, 22 January 2016

suffix • EN

Examples

stdin	stdout
10 11	6
1 6 3 4 1 6 3 4 512 1024	6
1	6
2	6
3	6
4	5
5	4
6	3
7	2
8	1
9	6
10	
5	
4 4	3
1 2 1 4	3
1	2
2	1
3	
4	

Explanation

In the second example test case:

- For $b_i = 1$ there are 3 distinct numbers among 1, 2, 1 and 4.
- For $b_i = 2$ there are 3 distinct numbers among 2, 1 and 4.
- For $b_i = 3$ there are 2 distinct numbers among 1 and 4.
- For $b_i = 4$ there is only one element in this array, 4.

suffix Page 2 of 2