	$\Delta_{1}^{\#1}{}_{lphaeta}$	$\Delta_{1}^{\#2}{}_{lphaeta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1}^{\#1}{}_{lpha}$	$\Delta_{1}^{\#2}{}_{lpha}$	$\Delta_{1}^{#3}\alpha$	$\Delta_{1}^{\#4}{}_{lpha}$	$\Delta_{1}^{\#5}{}_{lpha}$	$\Delta_{1^{-}lpha}^{ extit{#6}}$
$\Delta_1^{\#1} \dagger^{lphaeta}$	$\frac{4}{3} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} + (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9) \right) $ $ (a_0^2 + (2a_1 + a_2) (2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - $ $ a_9^2 - a_0 (6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)))$	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}+(-2a_0+8a_1+4a_2+6a_3-32a_6+8a_7+4a_9)\right)$ $(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-$ $a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9)))$	$\frac{(2a_1+a_2+a_3)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	0	0	0	0	0
$\Delta_{1}^{\#2}$ † lphaeta	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}+(-2a_0+8a_1+4a_2+6a_3-32a_6+8a_7+4a_9)\right)$ $(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-$ $a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9)))$	$-\frac{2}{3(a_0+4a_1-4a_2)} + (8(a_0-4a_1-2a_2-3a_3+16a_6-4a_7-2a_9))/$ $(3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-$ $a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9)))$	$-((4\sqrt{2}(2a_1+a_2+a_9))/$ $(3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-$ $a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))))$	0	0	0	0	0	0
$\Delta_{1+}^{\#3}\dagger^{\alpha\beta}$	$\frac{4(2a_1+a_2+a_9)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	$-((4\sqrt{2}(2a_1+a_2+a_9)))/$ $(3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-$ $a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))))$	$\frac{4(a_0-2a_1-a_2)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	0	0	0	0	0
$\Delta_1^{#1} \dagger^{lpha}$	0	0	0	$\frac{4}{3} \left(-\frac{2}{2a_0 + 2a_1 + a_2 + 3a_3} + (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9) / (a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0 (6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)) \right)$	$(4\sqrt{2}(3a_0^2 - 4a_1^2 - a_2^2 - 3a_3(3a_3 + 4(-4a_6 + a_7)) - 6a_3a_9 - a_9^2 - 2a_2(3a_3 + a_9) - 4a_1(a_2 + 3a_3 + a_9) - 6a_0(2a_1 + a_2 + a_3 - 8a_6 + 2a_7 + a_9)))/$ $(3(2a_0 + 2a_1 + a_2 + 3a_3)$ $(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)))$	0	0	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	$-((4(2a_1 + a_2 + a_9)))/$ $(3\sqrt{3}(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) -$ $a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9))))$
$\Delta_{1}^{#2}\dagger^{lpha}$	0	0	0	$(4\sqrt{2}(3a_0^2 - 4a_1^2 - a_2^2 - 3a_3(3a_3 + 4(-4a_6 + a_7)) - 6a_3a_9 - a_9^2 - 2a_2(3a_3 + a_9) - 4a_1(a_2 + 3a_3 + a_9) - 6a_0(2a_1 + a_2 + a_3 - 8a_6 + 2a_7 + a_9)))/$ $(3(2a_0 + 2a_1 + a_2 + 3a_3)$ $(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)))$	$-\frac{4}{3(2a_0+2a_1+a_2+3a_3)} + (8(a_0-4a_1-2a_2-3a_3+16a_6-4a_7-2a_9))/$ $(3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-$ $a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9)))$	0	0	$(8(2a_1 + a_2 + a_9))/$ $(3\sqrt{3}(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)))$	$-((4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)))/$ $(3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-$ $a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))))$
$\Delta_1^{\#3} \dagger^{\alpha}$	0	0	0	0	0	$-\frac{5}{18(a_0+4a_6-4a_7)}$	$\frac{\sqrt{5}}{18(a_0 + 4a_6 - 4a_7)}$	0	0
$\Delta_{1}^{\#4} \uparrow^{\alpha}$	0	0	0	0	0	$\sqrt{5}$	$\frac{1}{-18(a_0+4a_6)+72a_7}$	0	0 0
$\Delta_{1}^{\#5} \dagger^{\alpha}$	0	0	0	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	$(8(2a_1 + a_2 + a_9))/$ $(3\sqrt{3}(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)))$	0	0	$\frac{8(a_0-2a_1-a_2)}{9(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	$\frac{4\sqrt{2}(-a_0+2a_1+a_2)}{9(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$
$\Delta_1^{\#6} \uparrow^{\alpha}$	0	0	0	$-((4(2a_1+a_2+a_9))/$ $(3\sqrt{3}(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-$ $a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))))$	$-((4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9))/$ $(3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-$ $a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))))$	0	0	$\frac{4\sqrt{2}(-a_0+2a_1+a_2)}{9(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	$\frac{4(a_0-2a_1-a_2)}{9(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$
${\mathcal T}_1^{\sharp 1} \dagger^{lpha}$	0	0	0	0	0	0	0	0	0

	$\Delta^{\#1}_{2^+lphaeta}$	$\Delta^{\#2}_{2^+lphaeta}$	$\Delta^{\#3}_{2^+lphaeta}$	$\mathcal{T}^{\#1}_{2^+lphaeta}$	$\Delta^{\#1}_{2^-lphaeta\chi}$	$\Delta^{\#2}_{2^- \ lphaeta\chi}$
$\Delta_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{4 (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)}{{a_0}^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9)}$	0	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{\sqrt{3} \left(a_{0}^{2} + \left(2 a_{1} + a_{2}\right) \left(2 a_{1} + a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7}\right) - a_{9}^{2} - a_{0} \left(6 a_{1} + 3 a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7} + 2 a_{9}\right)\right)}$	0	0	0
$\Delta_{2}^{\#2} \dagger^{\alpha\beta}$	0	$\frac{1}{-3(a_0+4a_6)+12a_7}$	0	0	0	0
$\Delta_{2}^{#3}$ † $^{\alpha\beta}$	$\frac{4 (2 a_1 + a_2 + a_9)}{\sqrt{3} (a_0^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))}$	0	$\frac{4(a_0-2a_1-a_2)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	0	0
${\mathcal T}_{\mathtt{2}^{+}}^{\mathtt{#1}} t^{lphaeta}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4 (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)}{{a_0}^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9}^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9)}$	$\frac{4 (2 a_1 + a_2 + a_9)}{\sqrt{3} (a_0^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))}$
$\Delta_2^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{\sqrt{3} \left(a_{0}^{2} + \left(2 a_{1} + a_{2}\right) \left(2 a_{1} + a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7}\right) - a_{9}^{2} - a_{0} \left(6 a_{1} + 3 a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7} + 2 a_{9}\right)\right)}$	$\frac{4(a_0-2a_1-a_2)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$

	Γ ₀ ^{#1}	Γ ₀ ^{#2}	Γ ₀ ^{#3}	Γ ₀ ^{#4}	$h_{0}^{\#1}$	$h_0^{\#2}$	Γ ₀ #1
$\Gamma_{0}^{\#1}$ †	$\frac{1}{4}$ (-2 a_0 - 2 a_1 - a_2 - 3 a_3)	0	0	0	0	0	0
Γ ₀ ^{#2} †	0	$-\frac{3}{2}(a_0+4a_6-4a_7)$	$\frac{3}{2}(a_0+4a_6-4a_7)$	0	0	0	0
Γ ₀ ^{#3} †	0	$\frac{3}{2}(a_0+4a_6-4a_7)$	$-\frac{3}{2}(a_0+4a_6-4a_7)$	0	0	0	0
Γ ₀ ^{#4} †	0	0	0	0	0	0	0
$h_{0}^{#1} \dagger$	0	0	0	0	$\frac{a_0 k^2}{4}$	0	0
$h_0^{\#2}$ †	0	0	0	0	0	0	0
Γ ₀ -1 †	0	0	0	0	0	0	$-\frac{a_0}{2} - 2a_1 + 2a_2 - 6c_1 k$

	$\Gamma^{\#1}_{1}{}^{+}{}_{lphaeta}$	$\Gamma^{\#2}_{1}^{+}{}_{lphaeta}$	Γ ₁ ^{#3} αβ	Γ ₁ ^{#1} α	Γ# ² ₁ α	Γ ^{#,3} α	Γ # 4 _α	Γ ₁ - _α	Γ ₁ ^{#6} α	$h_{1}^{\#1}{}_{\alpha}$
$\Gamma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4}$ (- a_0 - 6 a_1 + 5 a_2	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	0	0	0	0	0	0	0
$\Gamma_{1}^{#2} \dagger^{\alpha\beta}$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{2}(-2a_1+a_2)$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{2}}$	0	0	0	0	0	0	0
$\Gamma_{1}^{#3} \dagger^{\alpha\beta}$	$\frac{1}{4}$ (-2 a_1 - a_2 - a_9)	$\frac{2a_1+a_2+a_9}{2\sqrt{2}}$	$\frac{3}{4} (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9)$	0	0	0	0	0	0	0
$\Gamma_{1}^{#1} \uparrow^{\alpha}$	0	0	0	$\frac{1}{4} \left(-a_0 - 2 a_1 - a_2 - 2 a_3 \right)$	$\frac{a_0 + a_3}{2\sqrt{2}}$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$\frac{2 a_1 + a_2 + a_9}{4 \sqrt{3}}$	0
$\Gamma_{1}^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{a_0 + a_3}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_3 \right)$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{6}}$	0
$\Gamma_{1}^{#3} + \alpha$	0	0	0	0	0	$-\frac{5}{2}(a_0+4a_6-4a_7)$	$\frac{1}{2} \sqrt{5} (a_0 + 4 a_6 - 4 a_7)$	0	0	0
$\Gamma_{1}^{\#4} + ^{\alpha}$	0	0	0	0	0	$\frac{1}{2} \sqrt{5} (a_0 + 4 a_6 - 4 a_7)$	$-\frac{a_0}{2}$ - 2 a_6 + 2 a_7	0	0	0
$\Gamma_{1}^{\#5} \uparrow^{\alpha}$	0	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{2 a_1 + a_2 + a_9}{2 \sqrt{3}}$	0	0	$\frac{1}{2} (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9)$	$\frac{-a_0+4a_1+2a_2+3a_3-16a_6+4a_7+2a_9}{2\sqrt{2}}$	0
$\Gamma_{1}^{\#6} \uparrow^{\alpha}$	0	0	0	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{6}}$	0	0	$\frac{-a_0 + 4a_1 + 2a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9}{2\sqrt{2}}$	$\frac{1}{4} (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9)$	0
$h_1^{\#1} + ^{\alpha}$	0	0	0	0	0	0	0	0	0	0

$2a_{6} \bigcap_{\text{CxyB}} \bigcap_{\text{GBX}} A = \sum_{\text{CxyB}} \bigcap_{\text{GBX}} A = \sum_{\text{CxyB}} \bigcap_{\text{CxB}} A = \sum_{\text{CxyB}} \bigcap_{\text{CxB}} A = \sum_{\text{CxyB}} \bigcap_{\text{CxB}} A = \sum_{\text{CxyB}} \bigcap_{\text{CxB}} A = \sum_{\text{CxB}} A = \sum_{\text{CxB}} \bigcap_{\text{CxB}} A = \sum_{\text{CxB}} \bigcap_{$	Lagrangian density $\frac{2}{3}a_1 \Gamma_{\alpha \ X}^{\ X} \Gamma^{\alpha\beta}_{\ \beta} + \frac{1}{3}a_2 \Gamma_{\alpha \ X}^{\ X} \Gamma^{\alpha\beta}_{\ \beta} + \frac{1}{2}a_3 \Gamma_{\alpha \ X}^{\ X} \Gamma^{\alpha\beta}_{\ \beta} - 2a_6 \Gamma_{\alpha \ X}^{\ X} \Gamma^{\alpha\beta}_{\ \beta} + \frac{1}{3}a_9 \Gamma_{\alpha \ X}^{\ X} \Gamma^{\alpha\beta}_{\ \beta} - \frac{1}{4}a_0 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_1 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{1}{4}a_2 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{4}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} + 2a_6 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} + a_7 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{1}{2}a_9 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{1}{2}a_0 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} - \frac{1}{2}a_1 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_2 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} + \frac{1}{2}a_0 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_2 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} + \frac{1}{2}a_0 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_2 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} + \frac{1}{2}a_0 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_2 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} + \frac{1}{2}a_0 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_2 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} + \frac{3}{2}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} + \frac{3}{2}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} \Gamma^{\alpha\beta X} - \frac{3}{2}a_3 \Gamma_{\alpha\beta X}^{\ \alpha\beta X} - \frac{3}{2}a$
--	---

$\Delta_{0^{-}}^{#1}$ †	$\mathcal{T}_{0^{+}}^{#2}$ †	$\mathcal{T}_{0^{+}}^{#1}$ †	$\Delta_{0+}^{#4}$ †	$\Delta_{0}^{#3}$ †	$\Delta_{0+}^{#2}$ †	$\Delta_{0}^{#1}$ †	
0	0	0	0	0	0	$-\frac{4}{2a_0+2a_1+a_2+3a_3}$	$\Delta_{0}^{\#1}$
0	0	0	0	$\frac{1}{6a_0 + 24a_6 - 24a_7}$	$\frac{1}{-6 (a_0 + 4 a_6) + 24 a_7}$	0	$\Delta_0^{\#2}$
0	0	0	0	$\frac{1}{-6(a_0+4a_6)+24a_7}$	$\frac{1}{6(a_0 + 4a_6 - 4a_7)}$	0	$\Delta_0^{\#3}$
0	0	0	0	0	0	0	$\Delta_0^{\#4}$
0	0	$\frac{4}{a_0 k^2}$	0	0	0	0	$\Delta_{0+}^{\#4} \mathcal{T}_{0+}^{\#1} \mathcal{T}_{0+}^{\#2}$
0	0	0	0	0	0	0	$\mathcal{T}_{0^{+}}^{#2}$
$-\frac{2}{a_0+4(a_1-a_2+3c_1k^2)}$	0	0	0	0	0	0	$\Delta_{0}^{\#1}$

Total #:	$\Delta_{1}^{\#4\alpha} + \Delta_{1}^{\#3\alpha} == 0$	$\Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#5\alpha} == 0$	$\mathcal{T}_{1}^{\#1\alpha} == 0$	$\Delta_{0+}^{#3} + 3 \Delta_{0+}^{#2} == 0$	$\Delta_{0+}^{\#4} == 0$	$T_{0+}^{#2} == 0$	SO(3) irreps	Source constraints	
12	ω	ω	ω	1	1	1	#	S	

Ţ	ļ	ļ	Į	Į	l	1	I	
				N	⁄lass	ive p	partic	le
	1 P _	_	?	P	ole	resic	lue:	$\frac{1}{6c_1} > 0$
	\mathcal{J}		/ \	_ P	olar	isati	ons:	1
/	$\frac{\sqrt{k}}{k}$	$\vec{\mu}$)—— \	S -	Squa	re m	iass:	$-\frac{a_0+4a_1-4a_2}{12c_1} >$
			``	5	:nin·			0

Unitarity conditions $a_0 < 0 \&\& a_2 > \frac{1}{4} (a_0 + 4 a_1) \&\& c_1 > 0$

4 1) (7 2 32 39 4 (30 31 42) 33 4) 36	c	Û	C	c
-1 /3 /2 /-		O	0	$\Gamma^{\#2} + \alpha\beta\chi$
$\frac{1}{4}(a_0-2a_1-a_2)$	0	0	0	$\Gamma_{2}^{#1} \uparrow^{\alpha\beta\chi}$ 0
	$-\frac{a_0 k^2}{8}$	0	0	$h_{2+}^{\#1} \dagger^{\alpha\beta} \qquad \qquad 0$
0	0	$\frac{3}{4} (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9) 0$	0	$_{2^{+}}^{-\#3} \uparrow^{\alpha\beta} - \frac{1}{4} \sqrt{3} (2a_{1} + a_{2} + a_{9})$
0	0	0	$-3(a_0+4a_6-4a_7)$	$\Gamma_{2+}^{\#2} \uparrow^{\alpha\beta} \qquad \qquad 0$
0	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	$\Gamma_{2+}^{\#1} \dagger^{\alpha\beta}$
$\beta \qquad \qquad \Gamma_{2^{-}}^{\#1} \alpha \beta \chi$	$h_{2}^{\#1} \alpha \beta$	$\Gamma_{2}^{#3} \alpha \beta$	$\Gamma_{2}^{#2}+lphaeta$	$\Gamma_{2}^{\#1}$
		a7	$-3(a_0+4a_6)+12a_7$	-J(40 - +46 - +47)