· · · · · · · · · · · · · · · · · · ·	Page: Date:
Communication systems	
1) Signol and Systems 2) Amplitude Modulation (AM)	
3 Angle Modulation (PM, FM) 9 Transmission Media	
Trons mitter Receiver	? ^
Voice	1 To.
data / Wire	areal Radion 1-less
Message 22 july 2 Place electrical Signature to Electro may	
miles 1	
Tinco	
trase De Modulais Dec	Aor
	131

.

Page : Date :

Chapter 1: Signals and systems

Tourier Series;

Sine, Cosmodle en Periodic Sign es expesil lella en esta

 $\frac{g_{\text{emperic}}}{g_{\text{p}}(t)} = a_0 + 2 \frac{g_{\text{max}}}{g_{\text{max}}} a_n \cos\left(\frac{2\pi n}{t}\right) + b_n \sin\left(\frac{2\pi n}{t}\right)$

 $A_o = \frac{T_o/2}{T_o} = \frac{\int_{-T_o}^{T_o/2}}{\int_{2}^{T_o}}$

 $\frac{\Delta_{h}}{T_{o}} = \frac{1}{T_{o}} \int_{2}^{T_{o}/2} g_{p}(t) \cdot Cr_{o}\left(\frac{2\pi nt}{T_{o}}\right) dt$

$$t_{n} = \frac{1}{T_{0}} \int_{-T_{0}}^{T_{0}} g_{p}(t) \cdot Sin\left(\frac{2\pi nt}{T_{0}}\right) dt$$

even $\Rightarrow a_n = V$ $b_n = 0$ odd $\Rightarrow a_n = 0$ $b_n = V$

Page:
Expaniated Fourier Series:
$9_{p}(t) = \frac{2}{2} K_{n} e^{j \frac{2\pi nt}{T_{0}}}$
$h=-\omega$
$\frac{1}{2} \leq t \leq \frac{1}{2}$
$C_{h} = \frac{1}{T_{o}} \int_{-T_{o}}^{T_{o}} f(t) dt$ $C_{h} = \frac{1}{T_{o}} \int_{-T_{o}}^{T_{o}} f(t) dt$
Dirichlets Condition: as as there are will by
The function $g_p(t)$ has single-valued within To 2) Integrable absorbately $\int_{-70/2}^{70/2} g_p(t) dt < \infty$
3 gp (+) has a finite number of maximum and minimum
R=1A et cojes in man 1 jul Fourion sons plans et a lus
gp (t) $\rho = \frac{1}{2} C_n ^2$ Porseval's theorem
No. 1) To/2 2 14 12 14
$P = \frac{1}{T_0} \int_{-T_0}^{\infty} \left g_p(t) \right ^{-1} dt$
$\frac{1}{2} C_{n} \theta \frac{32\pi n!}{T_{o}}$

20

Cn

9p (t) =

KHUFU

Page :

$$|g_{p}(t)|^{2} = g_{p}(t) \cdot g_{p}^{*}(t)$$

$$P = \frac{1}{T_0} \int_{2}^{T_0/2} f(t) \int_{n=-\infty}^{\infty} \frac{2\pi nt}{T_0} dt$$

$$P = \frac{1}{10} \frac{3}{10} \frac{1}{10} \frac{1}{1$$

$$C_n = \int_{-T_0}^{T_0} g_p(t) e^{-\int_0^2 2\pi nt}$$

$$C_n = \frac{1}{T_0} \int_{-T_0}^{\pi} \frac{d^2 \pi n}{dt} dt$$

to teo

$$9p(4) \rightarrow p(4)$$

$$P = P.R$$

das