

II - QUBO

Programação não-linear • Otimização Inteira

Pedro Maciel Xavier

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO PESC/COPPE/UFRJ

Sumário

- 1 Ising Model
- 2 Quadratic Unconstrained Binary Optimization
 - Definição e características
 - Resolvendo
- 3 Satyrus
- 4 Próximos Tópicos
- 5 Referências

Ising Model

Definição (Quadratic Unconstrained Binary Optimization)

Um problema de otimização é assim denominado se pode ser escrito na forma

$$\mathbb{H} = \sum_{i} \mathbf{h}_{i} \left| s_{i} \right\rangle + \sum_{i < j} \mathbf{J}_{i,j} \left| s_{i} \right\rangle \left| s_{j} \right\rangle$$

onde $f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x}$ para $\mathbf{Q} \in \mathbb{R}^{n \times n}$. Mais especificamente, \mathbf{Q} é uma matriz simétrica ou triangular superior.

Pedro II - QUBO 2 de fevereiro de 2021 2 / 8

QUBO

Definição (Quadratic Unconstrained Binary Optimization)

Um problema de otimização é assim denominado se pode ser escrito na forma

minimizar
$$f(\mathbf{x})$$

sujeito a $\mathbf{x} \in \{0,1\}^n$

onde $f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x}$ para $\mathbf{Q} \in \mathbb{R}^{n \times n}$. Mais especificamente, \mathbf{Q} é uma matriz simétrica ou triangular superior.

Pedro II - QUBO 2 de fevereiro de 2021 3 / 8

Annealing

O *Annealing* (ou Têmpera) é um dos processos mais populares para solucionar o *QUBO*. Dentre os principais métodos desta classe estão:

Quantum Annealing

 Pedro
 II - QUBO
 2 de fevereiro de 2021
 4 / 8

Annealing

O *Annealing* (ou Têmpera) é um dos processos mais populares para solucionar o *QUBO*. Dentre os principais métodos desta classe estão:

- Quantum Annealing
- Digital Annealing

 Pedro
 II - QUBO
 2 de fevereiro de 2021
 4 / 8

Annealing

O *Annealing* (ou Têmpera) é um dos processos mais populares para solucionar o *QUBO*. Dentre os principais métodos desta classe estão:

- Quantum Annealing
- Digital Annealing
- Simulated Annealing

Pedro II - QUBO 2 de fevereiro de 2021 4 / 8

Satyrus

No contexto do Satyrus, temos uma equação de energia a minimizar dada por

$$\begin{split} \mathbb{E} &= \mathbb{E}_{\mathsf{opt}} + \mathbb{E}_{\mathsf{int}} \\ &= \sum_{i} \mathcal{H} \left(\varphi_{i} \right) + \sum_{j} \pmb{\lambda}_{j} \mathcal{H} \left(\neg \varphi_{j} \right) \end{split}$$

onde λ_j é a penalidade associada à j-ésima restrição de integridade e $\mathcal{H}\left(\,\cdot\,\,\right)$ é o mapeamento. Portanto, é possível escrever um problema modelado pelo Satyrus como

minimizar
$$f(\mathbf{x}) + \boldsymbol{\lambda} \cdot g(\mathbf{x})$$

sujeito a $\mathbf{x} \in \{0, 1\}^n$

 Pedro
 II - QUBO
 2 de fevereiro de 2021
 5 / 8

Satyrus

Logo, queremos saber se é possível escrever $f(\mathbf{x}) + \boldsymbol{\lambda} \cdot g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x}$

 Pedro
 II - QUBO
 2 de fevereiro de 2021
 6 / 8

Próximos Tópicos

Compreender melhor:

- 1 O princípio da dualidade (e suas demonstrações).
- 2 A relação entre o lagrangeano de um sistema e seu hamiltoniano.
- 3 Modelagem QUBO

Pedro II - QUBO 2 de fevereiro de 2021 7 / 8

Referências

Olga Brezhneva, Alexey A. Tret'yakov, Stephen E. Wright

A short elementary proof of the Lagrange multiplier theorem Optimization Letters.

Springer-Verlag, 2011.

David G. Luenberger, Yiniu Ye Linear and Nonlinear Programming Springer-Verlag, 2008.