(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 07.05.2003 Bulletin 2003/19
- (21) Application number: 01955633.1
- (22) Date of filing: 09.08.2001

- (51) Int CI.7: C07D 213/82, C07D 213/85, C07D 405/12, C07D 405/14, A61K 31/443, A61K 31/444, A61K 31/4436, A61K 31/455, A61K 31/4409, A61P 43/00, A61P 1/00, A61P 1/10, A61P 3/06, A61P 3/10, A61P 27/02, A61P 11/06, A61P 7/10, A61P 9/10, A61P 19/10, A61P 25/28
- (86) International application number: PCT/JP01/06870
- (87) International publication number: WO 02/014282 (21.02.2002 Gazette 2002/08)
- (84) Designated Contracting States:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE TR
- (30) Priority: 11.08.2000 JP 2000245056
- (71) Applicant: Eisai Co., Ltd. Tokyo 112-8088 (JP)
- (72) Inventors:
 - HARADA, Hitoshi
 Ushiku-shi, Ibaraki 300-1232 (JP)
 - ASANO, Osamu Ushiku-shi, ibaraki 300-1232 (JP)

- MIYAZAWA, Shuhel
 Kitasouma-gun, Ibaraki 302-0127 (JP)
- UEDA, Masato
 Tsukuba-shi, Ibaraki 305-0061 (JP)
- Tsukuba-shi, ibaraki 305-0061 (JP)
 YASUDA, Masahiro
- Tsukuba-shi, Ibaraki 305-0035 (JP)

 YASUDA, Nobuyuki
 Tsuchiura-shi, Ibaraki 300-0044 (JP)
- (74) Representative: HOFFMANN EITLE
 Patent- und Rechtsanwälte
 Arabeliastrasse 4
 81925 München (DE)

(54) 2-AMINOPYRIDINE COMPOUNDS AND USE THEREOF AS DRUGS

(57) The present invention provides 2-aminopyridine compound having an excellent adenosine receptor (A₁, A_{2a}, A_{2b} receptors) antagonism, which is represented by the following formula:

(wherein, $\rm R^1$ represents cyano group, carboxyl group or an optionally substituted carbamoyl group; $\rm R^2$ represents hydrogen atom, hydroxyl group, an optionally substituted $\rm C_{1-8}$ alkoxy group, an optionally substituted $\rm C_{6-14}$ aromatic hydrocarbon cyclic group or an optionally substituted 5- to 14-membered aromatic heterocyclic group; and $\rm R^3$ and $\rm R^1$ are the same as or different from each other and each represents a $\rm C_{6-14}$ aromatic hydrocarbon cyclic group, a 5- to 14-membered non-aromatic heterocyclic group or a 5- to 14-membered aromatic heterocyclic group which may be substituted, respectively) or a salt thereof.

Description

Technical Field

5 [0001] The present invention relates to a novel 2-aminopyridine compound, a process for producing it, and use thereof as a medicament.

Prior Art

receptor.

50

S5

- [0002] Adenosine is an important regulatory factor involved in various intracellular metabolisms such as regulation of energy levels and cAMP levels in the living body, opening and closing calcium channels, and inflow of calcium ions into cells, and can exhibit its physiological activity by interaction with G protein-conjugated receptors on the surface of a cell. Adenosine receptors were at first classified into 2 classes, that is, A1 receptor and A2 receptor on the basis of their participation in adenylate cyclase (J. Neurochem., 33, 999-1003 (1979)), and thereafter, the A2 receptor was classified into 2 subtypes, that is, A_{2A} and A_{2B} on the basis of their affinity for NECA and CGS-21680 (Mol. Pharmacol., 29, 331-346 (1986); J. Neurochem., <u>55</u>, 1763-1771 (1990)) which are adenosine A₂ receptor agonists. Thus, 4 receptor subtypes, A1, A2 (A2A, A2A) and A3, have been identified until now. The A1 receptor is a protein conjugated with Gio family protein. By binding of ligands, it inhibits adenylate cyclase to suppress cAMP levels and activates phospholipase C (PLC) to promote production of inositol-1,4,5-triphosphate (IP3) and release of intracellular calcium ions. It is known that similar to the A₁ receptor, the A₃ receptor is a receptor suppressing cAMP levels and activating PLC to promote production of IP3 and release of intracellular calcium ions. On the other hand, the A2A and A2B receptors are those activating adenylate cyclase and promoting production of cAMP levels. It is also reported that A28 is conjugated with PLC via G_d/G₁₁ protein, and promotes production of IP₃ levels and inflow of calcium ions into cells (Clin. Invest., 96, 1979-1986 (1995)). These subtypes are different from one another in their distribution in tissues; that is, the A_1 receptor occurs relatively abundantly in the heart, aorta, bladder, etc., the A_{2A} receptor in the eyeballs, skeletal muscles, etc., 25 and the A_3 receptor in the spleen, uterus, prostate, etc., while the A_{2B} receptor occurs relatively abundantly in proximity to the large intestine and in the eyeballs, tung, uterus and bladder (Br. J. Pharmacol., 118, 1461-1468 (1996)). The reason that adenosine receptor subtypes can exhibit their inherent functions is attributable to a difference in their distribution in tissues, a difference in topical adenosine levels and a difference in affinity of each subtype for ligands. Adenosine is involved in various physiological functions such as platelet agglutination, heartbeats, contraction of smooth muscles, inflammations, release of neurotransmitters, neurotransmission, release of hormones, cellular differentiation, growth of cells, death of cells, biosynthesis of DNA, etc., thus suggesting the relationship of adenosine with diseases in the neutral nerves, cardiovascular diseases, inflammatory diseases, diseases in the respiratory organs, immune diseases, etc., so usefulness of adenosine receptor agonists/antagonists against these diseases is expected. On one hand, important reports have been made in recent years on the relationship between the adenosine A2 receptor and the intestinal tracts. For example, it is reported that a relaxing action on colon longitudinal muscles is mediated by A₂ receptor (Maunyn-Schmiedeberg's Arch. Pharmacol., 359, 140-148 (1999)), and that the relaxing action of adenosine on contraction of guinea pig distant colon longitudinal muscles is mediated by A₁ receptor and A₂₆ receptor in longitudinal muscles (Br. J. Pharmacol., 129, 871-876 (2000)). Heretofore, antagonists for adenosine receptors, particularly for adenosine A_2 receptor, have been noted to be useful as an agent for treating or preventing diabetes, diabetic complications, diabetic retinopathy, obesity or asthma, and expected to be useful as a hypoglycemic agent, an improving agent for impaired glucose tolerance, a potentiating agent for insulin sensitivity, a hypotensive agent, a diuratic, a therapeutic agent for osteoporosis, an anti-Parkinson's disease agent, an anti-Alzheimer's disease agent, a therapeutic agent for inflammatory Intestinal diseases or a therapeutic agent for Crohn's disease, etc. [0003] For example, there are following reports on compounds having an antagonistic action particularly on A28
 - (1) Compounds represented by the formulae:

3-n-Propylxanthine,

Theophylline,

Caffeine,

1,3-Dipropylxanthine,

O CH₃

Enprophylline,

1-Methy1-3-

isobutylxanthine,

Paraxanthine,

8-Phenyltheophylline,

H,C N N N

1,3-Diethyl-8phenylxanthine,

H₂C N N

CH₂

1,3-Dimethyl-8-

OHN HN

Alloxazine,

(p-sulfophenyl) xanthine,

55

50

10

15

20

25

8-[4-[[Methyl-(2-dimethylaminoethyl)amino]sulfonyl]phenyl]-1,3-dipropylxanthine,

1,3-Dipropyl-8-(p-sulfophenyl)xanthine,

10

15

20

25

35

40

45

55

8-[4-[[[(2-Aminoethyl)amino]carbonyl]methyl]oxy]phenyl]-1,3-dipropylxanthine,

- 2,4-Dioxobenzo[g]pteridine
- (2) Purine derivatives represented by the formula:

(wherein R1 means (1) the formula:

(wherein X means hydrogen atom, hydroxyl group, an optionally substituted lower alkyl group, an optionally substituted lower alkoxy group etc.; and R⁵ and R⁶ are the same as or different from each other and each means hydrogen atom, an optionally substituted lower alkyl group, an optionally substituted saturated or unsaturated C₃₋₈ cycloalkyl group etc.) or (2) a 5- to 6-membered aromatic ring which may have a substituent group and a hetero atom; W means the formula -CH₂CH₂-, -CH=CH- or -C=C-; R² means an amino group which may be substituted with an optionally substituted lower alkyl group etc., etc.; R³ means an optionally substituted C₃₋₈ cycloalkyl group,

an optionally substituted anyl group, etc.; and R^4 means an optionally substituted lower alkyl group etc.), or a pharmacologically acceptable salt thereof or a hydrate of them (JP-A 11-263789).

(3) Purine derivatives represented by the formula:

(wherein R¹ represents hydrogen atom, hydroxyl group, a halogen atom, an optionally substituted C₁₋₈ alkyl group, etc.; R² represents an amino group which may be substituted with a C₁₋₈ alkyl group, etc.; R³ represents a C₃₋₈ alkynyl group which may be substituted with a halogen atom, hydroxyl group or a C₁₋₄ alkyl group, etc.; Ar represents an optionally substituted aryl group, an optionally substituted heteroaryl group, etc.; and Q and W are the same as or different from each other and each represents N or CH), a pharmacologically acceptable salt thereof or a hydrate of them.

(4) A_{2B} receptor antagonists described in Drug Development Research, <u>48</u>: 95-103 (1999) and J. Med. Chem., <u>43</u>: 1165-1172 (2000).

[0004] On one hand, as pyridine compounds, for example, there are reports relating to 5,6-aromatic substituted pyridine compound in WO 96/24584, US-A 5686470 and US-A 5916905. Further, in DE-A1 4117802, there are reports relating to 2-amino-3-pyridinecarbonitrile, and relating to the compound in which the 4-, 5- and 6-positions of the pyridine ring are substituted with phenyl groups. However, the relationship of these compounds with an adenosine receptor is not described or suggested, and is not known at all.

[0005] As described above, those compounds having an antagonism to an adenosine receptor, particularly an antagonism to an adenosine A_2 receptor (especially A_2) receptor), are expected to exhibit an excellent action as pharmaceutical preparations and desired to be provided. However, those compounds having an excellent antagonism to an adenosine receptor and also acting effectively as a medicament have never been found. Accordingly, the object of the present invention is to search for, and find, the receptor inhibiting compound which is useful as an agent for treating or preventing a disease to which an adenosine receptor (particularly A_2 receptor) relates.

35 Disclosure of the Invention

10

15

20

[0006] Considering the above-described circumstances, the present inventors made intensive study. As a result, they have succeeded for the first time in synthesizing a compound represented by the formula:

$$\begin{array}{c}
H_2N \\
R^1
\end{array}$$

$$\begin{array}{c}
R^3
\end{array}$$
(1)

(wherein R¹ represents cyano group, carboxyl group or an optionally substituted carbamoyl group; R² represents hydrogen atom, hydroxyl group, an optionally substituted C₁₋₆ alkoxy group, an optionally substituted C₈₋₁₄ aromatic hydrocarbon cyclic group or an optionally substituted S- to 14-membered aromatic heterocyclic group; and R³ and R⁴ are the same as or different from each other and each represents a C₃₋₈ cycloalkyl group, a C₃₋₈ cycloalkenyl group, a C₆₋₁₄ aromatic hydrocarbon cyclic group, a S- to 14-membered non-aromatic heterocyclic group or a S- to 14-membered aromatic heterocyclic group which may have a substituent group, respectively, provided that the cases where (1) R¹ is cyano group, R² is 4-bromo-2-thienyl group, R³ is 3,4-dimethoxyphenyl group and R⁴ is 2-thienyl group, (2) R¹ is cyano group, R² is hydrogen atom, and each of R³ and R⁴ is phenyl group, (3) R¹ is cyano group, R² is 4-chlorophenyl group, R³ is phenyl group and R⁴ is 4-(3,4-dichlorophenyl)-1-oxo-2(1H)-phthalazinyl group, (4) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is a 1-pyridyl group, (6) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group, R³ is hydrogen atom, R³ is 4-pyridyl group and R⁴ is a 1-pyridyl group, (6) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl

group and R⁴ is 4-diphenylmethyl-1-piperazinyl group, (7) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is 4-morpholinyl group, (8) R¹ is cyano group, R² is 4-methylphenyl group, and each of R³ and R⁴ is phenyl group are excluded) or a salt thereof, and they unexpectedly found that the compound and a salt thereof have an excellent antagonistic action on adenosine A₂ receptor, particularly A_{2B} receptor. As a result of further intensive study, they found that the compound or a salt thereof is useful not only as an agent for treating, preventing or improving a disease to which an adenosine receptor, particularly A₂ receptor, especially A_{2B} receptor, relates, for example, constipation, irritable bowel syndrome, constipation accompanying irritable bowel syndrome, organic constipation, constipation accompanying enteroparalytic ileus, constipation accompanying congenital digestive tract dysfunction, constipation accompanying ileus, diabetes, diabetec complications, diabetic retinopathy, obesity, asthma etc., but also useful as a hypoglycemic agent, an improving agent for impaired glucose tolerance, a potentiating agent for insulin sensitivity, hypotensive agent, a diuretic, a therapeutic agent for osteoporosis, an anti-Parkinson's disease agent, an anti-Alzheimer's disease agent, a therapeutic agent for inflammatory intestinal diseases, a therapeutic agent for Crohn's disease etc., and thus completed the present invention.

[0007] That is, the present invention relates to (1) a compound represented by the above formula (I) or a salt thereof; (2) the compound according to the above-mentioned (1) or a salt thereof, in which R¹ is cyano group; (3) the compound according to the above-mentioned (1) or a salt thereof, in which R¹ is a carbamoyl group represented by the formula:

25

(wherein R5 and R6 are the same as or different from each other and each represents hydrogen atom, an optionally substituted C_{1-6} alkyl group, an optionally substituted C_{2-6} alkenyl group, an optionally substituted C_{2-6} alkynyl group, an optionally substituted C₆₋₁₄ aromatic hydrocarbon cyclic group or an optionally substituted 5- to 14-membered aromatic heterocyclic group); (4) the compound according to the above-mentioned (1) or a salt thereof, in which R2 is a C₆₋₁₄ aromatic hydrocarbon cyclic group or 5- to 14-membered aromatic heterocyclic group, each of which may have a substituent group; (5) the compound according to the above-mentioned (1) or a salt thereof, in which R^2 is a phenyl group, naphthyl group, pyridyl group, thienyl group or furyl group, each of which may have a substituent group; (6) the compound according to the above-mentioned (1) or a salt thereof, in which R2 is a phenyl group which may be substituted with a halogen atom; (7) the compound according to the above-mentioned (1) or a salt thereof, in which R2 is hydrogen atom; (8) the compound according to the above-mentioned (1) or a salt thereof, in which R3 and R4 are the same as or different from each other and each represents a C_{6-14} aromatic hydrocarbon cyclic group or a 5- to 14-membered aromatic heterocyclic group, each of which may have a substituent group; (9) the compound according to the above-mentioned (1) or a salt thereof, in which R3 and R4 are the same as or different from each other and each represents a phenyl group, pyrrolyl group, pyridinyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, thienyl group, thiazolyl group, furyl group, naphthyl group, quinolinyl group, isoquinolinyl group, phthalazinyl group, naphthyl ridinyl group, indolyl group or isoindolyl group, each of which may have a substituent group; (10) the compound according to the above-mentioned (1) or a salt thereof, in which each of R3 and R4 represents a phenyl group, pyridyl group, thienyl group or furyl group which may have a substituent group, respectively; (11) the compound according to the above-mentioned (1) or salts thereof, wherein R3 and/or R4 represent a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon cyclic group or a 5- to 14-membered aromatic heterocyclic group, each of which may be substituted with at least one group selected from the following substituent group a.(the above-mentioned "substituent group a" is a group consisting of (1) a hydroxyl group, (2) a halogen atom, (3) a nitrile group, (4) a nitro group, (5) a C_{1-6} alkyl group, C_{2-6} alkenyl group or C_{2-6} alkynyl group, each of which may be substituted with at least one group selected from (i) hydroxyl group, (ii) nitrile group, (iii) halogen atom, (iv) C1-6 alkylamino group, (v) di(C1-6 alkyl)amino group, (vi) C₂₋₆ alkenylamino group, (vii) di(C₂₋₆ alkenyl)amino group, (viii) C₂₋₆ alkynylamino group, (ix) di(C₂₋₆ alkynyl)amino group, (x) N-C₁₋₆ alkyl-N-C₂₋₆ alkenylamino group, (xi) N-C₁₋₆ alkyl-N-C₂₋₆ alkynylamino group, (xii) N-C₂₋₆ alkenyl-N-C₂₋₆ alkynylamino group, (xiii) aralkyloxy group, (xiv) TBDMS oxy group, (xv) C₁₋₆ alkytsulfonylamino group, (xvi) C₁₋₆ alkylcarbonyloxy group, (xvii) C₂₋₆ alkenylcarbonyloxy group, (xviii) C₂₋₆ alkynylcarbonyloxy group, (xix) N-C₁₋₆ alkylcarbamoyi group, (xx) N-C₂₋₆ alkenylcarbamoyi group and (xxi) N-C₁₋₆ alkynylcarbamoyi group, (6) a C_{1-6} alkoxy group, C_{2-6} alkenyloxy group or C_{2-6} alkynyloxy group, each of which may be substituted with at least one group selected from (i) C₁₋₆ alkylamino group, (ii) aralkyloxy group and (iii) hydroxyl group, (7) a C₁₋₆ alkylthio group, C2.8 alkenyithio group or C2.8 alkynyithio group, each of which may be substituted with at least one group selected from (i) hydroxyl group, (ii) nitrile group, (iii) halogen atom, (iv) C₁₋₆ alkylamino group, (v) aralkyloxy group, $\text{(vi) TBDMS oxy group, (vii) C_{1-6} alkylsulfonylamino group, (viii) C_{1-6} alkylcarbonyloxy group and (ix) C_{1-6} alkylcarbamoyles alkylcarbonyloxy group and (ix) C_{1-6} alkylcarbamoyles alkylcarbonyloxy group. }$ group, (8) a carbonyl group substituted with a group selected from (i) C_{1-6} alkoxy group, (ii) amino group, (iii) C_{1-6}

alkylamino group, (iv) di(C_{1-6} alkyl)amino group, (v) $\cdot C_{2-6}$ alkenylamino group, (vi) di (C_{2-6} alkenyl)amino group, (vii) C_{2-6} alkynylamino group, (vii) di(C_{2-6} alkynyl)amino group, (viii) N- C_{1-6} alkyl-N- C_{2-6} alkenylamino group, (ix) N- C_{1-6} alkyl-N-C2-6 alkynylamino group and (x) N-C2-6 alkenyl-N-C2-6 alkynylamino group, (9) an amino group which may be substituted with one or two groups selected from (i) C_{1-6} alkyl group, (ii) C_{2-6} alkenyl group, (iii) C_{2-6} alkynyl group, (iv) C₁₋₆ alkytsulfonyl group, (v) C₂₋₆ alkenylsulfonyl group, (vi) C₂₋₆ alkynylsulfonyl group, (vii) C₁₋₆ alkylcarbonyl group, (viii) C26 alkenylcarbonyl group and (ix) C26 alkynylcarbonyl group, (10) a C16 alkylsulfonyl group, (11) a C26 alkenylsulfonyl group, (12) a C₂₋₆ alkynylsulfonyl group, (13) a C₁₋₆ alkylsulfinyl group, (14) a C₂₋₆ alkenylsulfinyl group, (15) a C₂₋₆ alkynylsulfinyl group, (16) a formyl group, (17) a C₃₋₈ cycloalkyl group or C₃₋₈ cycloalkenyl group, each of which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atom, (iii) nitrile group, (iv) C₁₋₆ alkyl group, (v) C₁₋₆ alkoxy group, (vi) C₁₋₆ alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group, (18) a 5- to 14-membered non-aromatic heterocyclic group which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atom, (iii) nitrile group, (iv) C₁₋₆ alkyl group, (v) C₁₋₆ alkoxy group, (vi) C₁₋₆ alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group, (19) a C₆₋₁₄ aromatic hydrocarbon cyclic group which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogenatom, (iii) nitrilegroup, (iv) C_{1-6} alkyl group, (v) C_{1-6} alkoxy group, (vi) C_{1-6} alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group, and (20) a 5- to 14-membered aromatic heterocyclic group which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atom, (iii) nitrile group, (iv) C₁₋₆ alkyl group, (v) C₁₋₆ alkoxy group, (vi) C₁₋₆ alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group); (12) the compound according to the above-mentioned (1) or a salt thereof, in which R3 and/or R4 represent a phenyl group, pyridyl group, thienyl group or furyl group, each of which may be substituted with at least one group selected from hydroxyl group, a halogen atom, a C1-6 alkyl group and a C1-6 alkoxy group; (13) the compound according to the above-mentioned (1) or a salt thereof, in which R^3 or R^4 is a 6-oxo-1,6-dihydropyridyl group which may have a substituent group;(14) the compound according to the above-mentioned (1) represented by the formula:

$$\begin{array}{c|c}
H_2N & R^6 \\
R^1 & R^2
\end{array}$$

(wherein $\rm R^1$ represents cyano group, carboxyl group or an optionally substituted carbamoyl group; $\rm R^2$ represents hydrogen atom, hydroxyl group, an optionally substituted $\rm C_{1-6}$ alkoxy group, an optionally substituted $\rm C_{1-6}$ alkylthio group, an optionally substituted $\rm C_{6-14}$ aromatic hydrocarbon cyclic group or an optionally substituted 5- to 14-membered aromatic heterocyclic group; $\rm R^7$ represents a group selected from the following substituent group b; $\rm R^8$ represents a $\rm C_{6-14}$ aromatic hydrocarbon cyclic group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group, respectively; and ring A represents a nitrogen-containing 6-membered ring which may be substituted with 1 to 4 groups selected from the following substituent group b.

<substituent group b> a group consisting of hydrogen atom, a halogen atom, hydroxyl group, nitro-group, cyano group, an optionally substituted C_{1-6} alkyl group, an optionally substituted C_{2-6} alkenyl group, an optionally substituted C_{2-6} alkenyl group, an optionally substituted C_{2-6} alkenyl group, an optionally substituted C_{2-6} alkenyloxy group, an optionally substituted carbamoyl group, an optionally substituted C_{2-6} alkenyloxylogroup, an optionally substituted carbamoyl group, an an optionally substituted C_{2-6} alkenyloxylogroup, an optionally substituted C_{2-6} alkenylogroup, an optionally substituted C_{2-6} alkenylogroup, an optionally substituted C_{2-6} alkynyloxylogroup, an optionally substituted C_{3-6} cycloalkylogroup, an optionally

25

in which R5 and R6 have the same meanings as defined above; (18) the compound according to the above-mentioned (14) or a salt thereof, in which R2 is a hydrogen atom; (19) the compound according to the above-mentioned (14) or a salt thereof, in which R7 and the substituent groups other than R7 in the ring A are selected from the above-mentioned substituent group a; (20) the compound according to the above-mentioned (14) or a salt thereof, in which R7 is hydrogen atom, an optionally substituted C_{1-6} alkyl group, an optionally substituted C_{2-6} alkenyl group or an optionally substituted C_{1.6} alkoxy group; (21) the compound according to the above-mentioned (14) or a salt thereof, in which R⁸ is a phenyl group, pyridyl group, furyl group or a thienyl group, each of which may have a substituent group; (22) the compound according to the above-mentioned (14) or a salt thereof, in which R8 is a phenyl group, pyridyl group, furyl group or a thlenyl group, each of which may be substituted with a halogen atom; (23) the compound according to the abovementioned (1), in which the compound is any one selected from 2-amino-6-(2-furyl)-5-(4-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(3-fluorophenyl)-5-(4-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(3-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(3-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(3-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(3-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 3-amino-6-(3-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 3-amino-6-(3-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 3-amino-6-(3-furyl)-3-(3-furyl)-3-pyridyl)-3-pyridinecarbonitrile, 3-amino-6-(3-furyl)-3-amino-6necarbonitrile, 2-amino-6-(2-furyl)-5-(6-oxo-1,6-dihydro-3-pyrldinyl)nicotinonitrile, 2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinonitrile, 2-amino-6-(2-furyl)-5-(1-methyl-6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile, 2-amino-6-(3-fluorophenyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile and 2-amino-6-(3-fluorophenyl)-5-(1-methyl-6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile, or a salt thereof; (24) a pharmaceutical composition comprising a compound represented by the formula:

$$\begin{array}{c}
H_2N \\
R^1
\end{array}$$

$$\begin{array}{c}
R^4 \\
R^3
\end{array}$$
(1)

30

(wherein R1 represents cyano group, carboxyl group or an optionally substituted carbamoyl group; R2 represents hydrogen atom, hydroxyl group, an optionally substituted C1-8 alkoxy group, an optionally substituted C6-14 aromatic hydrocarbon cyclic group or an optionally substituted 5- to 14-membered aromatic heterocyclic group; and R3 and R4 are the same as or different from each other and each represents a C_{3-8} cycloalkyl group, a C_{3-8} cycloalkenyl group, a C₆₋₁₄ aromatic hydrocarbon cyclic group, a 5- to 14-membered non-aromatic heterocyclic group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group, respectively, provided that the cases where (1) R1 is cyano group, R2 is 4-bromo-2-thienyl group, R3 is 3,4-dimethoxyphenyl group and R4 is 2-thienyl group, (2) R^1 is cyano group, R^2 is hydrogen atom and each of R^3 and R^4 is phenyl group, (3) R^1 is cyano group, R^2 is 4-chlorophenyl group, R3 is phenyl group and R4 is 4-(3,4-dichlorophenyl)-1-oxo-2(1H)-phthalazinyl group, (4) R1 is cyano group, R2 is hydrogen atom, R3 is 4-pyridyl group and R4 is 1-piperazinyl group, (5) R1 is cyano group, R2 is hydrogen atom, R3 is 4-pyridyl group and R4 is 1-pyridyl group, (6) R1 is cyano group, R2 is hydrogen atom, R3 is 4-pyridyl group and R4 is 4-diphenylmethyl-1-piperazinyl group, (7) R1 is cyano group, R2 is hydrogen atom, R3 is 4-pyridyl group and R4 is 4-morpholinyl group, (8) R1 is cyano group, R2 is 4-methylphenyl group and each of R3 and R4 is phenyl group, and (9) R1 is cyano group and each of R2, R3 and R4 is phenyl group are excluded) or a salt thereof; (25) the composition according to the above-mentioned (24), which is an agent for treating or preventing a disease to which an adenosine receptor relates; (26) the composition according to the above-mentioned (24), which is an agent for treating or preventing a disease to which an adenosine A2 receptor relates; (27) the composition according to the above-mentioned (24), which is an agent for treating or preventing a disease to which an adenosine A28 receptor relates; (28) the composition according to the above-mentioned (24), which is an adenosine receptor antagonist; (29) the composition according to claim 24, which is an adenosine A2 receptor antagonist; (30) the composition according to the above-mentioned (24), which is an adenosine A28 receptor antagonist; (31) the composition according to the above-mentioned (24), which is used for promoting defecation; (32) the composition according to the above-mentioned (24), which is an agent for treating, preventing or improving constipation; (33) the composition according to the above-mentioned (24), in which the constipation is functional constipation; (34) the composition according to the above-mentioned (24), which is an agent for treating irritable bowel syndrome, constipation accompanying irritable bowel syndrome, organic constipation, constipation accompanying enteroparalytic ileus, constipation accompanying congenital digestive tract dysfunction or constipation accompanying lieus; (35) the composition according to the above-mentioned (24), which is

used for evacuating intestinal tracts at the time of examination of digestive tracts or before and after an operation;-(36) the composition according to the above-mentioned (24), which is an agent for treating or preventing diabetes, diabetic complications, diabetic retinopathy, obesity or asthma; (37) the composition according to the above-mentioned (24), which is a hypoglycemic agent, an improving agent for impaired glucose tolerance and a potentiating agent for insulin sensitivity; (38) the composition according to the above-mentioned (24), which is a hypotensive agent, a diuretic, a therapeutic agent for osteoporosis, an anti-Parkinson's disease agent, an anti-Alzheimer's disease agent, a therapeutic agent for inflammatory intestinal diseases or a therapeutic agent for Crohn's disease, etc.

[0008] That is, the present invention is a pharmaceutical composition comprising the above-mentioned 2-aminopyridine compound or a pharmacologically acceptable salt thereof and a pharmaceutically acceptable carrier, use of the above-mentioned compound or a pharmacologically acceptable salt thereof for producing an agent for treating or preventing a disease to which an adenosine receptor relates, and a method of treating or preventing a disease to which an adenosine receptor relates, by administering a pharmacologically effective dose of the above-mentioned compound or a pharmacologically acceptable salt thereof to a patient.

15 Detailed Description of the Invention

25

[0009] Hereinafter, the meanings of symbols, terms etc. used in the present specification are described, and the present invention is described in detail.

[0010] The "antagonist" in this specification refers to an agent having affinity for adenosine receptors, particularly adenosine A_2 receptor (most preferably A_{2B} receptor) and inactivating the receptor.

[0011] In this specification, the "disease to which an adenosine receptor relates" means a disease to which an adenosine A_1 receptor, A_{2a} receptor, A_{2b} receptor or A_3 receptor relates. For example, various kinds of constipation, irritable bowel syndrome, constipation accompanying irritable bowel syndrome, organic constipation, constipation accompanying intestinal paralytic ileus, constipation accompanying congenital digestive tract dysfunction, constipation accompanying ileus, diabetes, diabetes complications, diabetic retinopathy, obesity or asthma, or a disease against which a hypoglycemic agent, an improving agent for impaired glucose tolerance, a potentiating agent for insulin sensitivity, a hypotensive agent, a diuretic, a therapeutic agent for osteoporosis, an anti-Parkinson's disease agent, an anti-Alzheimer's disease agent, a therapeutic agent for inflammatory intestinal diseases or a therapeutic agent for Crohn's disease is efficacious.

[0012] The term "and/or" used in this specification refers to both of "and" and "or".

[0013] The structural formulae of the compound in this specification may, for convenience' sake, Indicate a certain isomer, but the present invention encompasses all possible isomers which can occur in the structures of the compound, for example, geometric isomer, optical isomer based on asymmetrical carbon, rotational isomer, stereoisomer and tautomer, as well as a mixture of such isomers, so the compound of the invention may be any isomers or a mixture thereof without limitation to the formulae shown for convenience' sake. Accordingly, the compound of the present invention can have an intramolecular asymmetrical carbon to occur as optically active isomers or racemic modifications, and any of such compounds are included in the present invention without limitation. Further, crystal polymorphism may present also without limitation, and it may be in a single crystal form or a mixed crystal form. The compound (I) according to the present invention or a salt thereof may be anhydrides or hydrates, any of which fall under the claims in the present specification. Metabolites formed by decomposition of the Compound (I) according to the present invention or a salt thereof also fall under the claims in the present specification.

[0014] As the "halogen atom" used in the present specification, for example, atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom etc. may be proposed, and fluorine atom, chlorine atom and bromine atom are preferred.

[0015] The "C₁₋₈ alkyl group" used in this specification refers to an alkyl group containing 1 to 6 carbon groups, and examples thereof include linear or branched alkyl groups such as methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, 2-ethylpropyl group, n-hexyl group, 1-methyl-2-ethylpropyl group, 1-thyl-2-methylpropyl group, 1,1,2-trimethylpropyl group, 1-propylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 1,1,-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-dimethylbutyl group, 2-ethylbutyl group, 2-methylpentyl group or 3-methylpentyl group may be proposed.

[0016] The "C₂₋₆ alkenyl group" used in this specification refers to an alkenyl group containing 2 to 6 carbon atoms. As the preferable examples thereof, for example, vinyl group, allyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 2-methyl-1-propenyl group, 3-methyl-1-propenyl group, 2-methyl-2-propenyl group, 3-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 1-hexenyl group, 1,3-hexanedienyl group, 1,6-hexanedienyl group etc. may be proposed.

[0017] The "C₂₋₆ alkynyl group" used in this specification refers to an alkynyl group containing 2 to 6 carbon atoms. As the preferable examples thereof, for example, ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 3-butynyl group, 3-methyl-1-propynyl group, 1-ethynyl-2-propynyl group, 2-methyl-3-propynyl group, 1-pentynyl group, 1-hexynyl group, 1,3-hexanediynyl group, 1,6-hexanediynyl group etc. may be proposed.

[0018] The "C₁₋₆ alkoxy group" used in this specification refers to an alkoxy group containing 1 to 6 carbon groups, for example, methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, sec-propoxy group, n-butoxy group, iso-butoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, iso-pentyloxy group, sec-pentyloxy group, n-hexoxy group, iso-hexoxy group, 1,1-dimethylpropyloxy group, 1,2-dimethylpropoxy group, 2,2-dimethylpropoxy group, 2-ethylpropoxy group, 1-methyl-2-ethylpropoxy group, 1-ethyl-2-methylpropoxy group, 1,1,2-trimethylpropoxy group, 1,1,2-trimethylpropoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 2,2-dimethylbutoxy group, 2,3-dimethylbutyloxy group, 1,3-dimethylbutyloxy group, 2-methylpentoxy group, 3-methylpentoxy group, hexyloxy group etc.

[0019] The "C₂₋₆ alkenyloxy group" used in this specification refers to an alkenyloxy group containing 2 to 6 carbon atoms. As the preferable group, for example, vinyloxy group, allyloxy group, 1-propenyloxy group, 2-propenyloxy group, isopropenyloxy group, 2-methyl-1-propenyloxy group, 3-methyl-1-propenyloxy group, 2-methyl-2-propenyloxy group, 1-butenyloxy group, 2-butenyloxy group, 3-butenyloxy group, 1-pentenyloxy group, 1-hexenyloxy group, 1,3-hexanedienyloxy group, 1,6-hexanedienyloxy group etc. may be proposed.

[0020] The "C₂₋₆ alkynyloxy group" used in this specification refers to an alkynyloxy group containing 2 to 6 carbon atoms. Preferably, for example, ethynyloxy group, 1-propynyloxy group, 2-propynyloxy group, 1-butynyloxy group, 3-methyl-1-propynyloxy group, 1-ethynyl-2-propynyloxy group, 2-methyl-3-propynyloxy group, 1-hexynyloxy group, 1,3-hexanediynyloxy group, 1,6-hexanediynyloxy group etc. may be proposed.

[0021] The "C₁₋₆ alkylthio group" used in this specification refers to an alkoxy group containing 1 to 6 carbon groups. For example, methylthio group, ethylthio group, n-propylthio group, iso-propylthio group, sec-propylthio group, nbutytthio group, iso-butylthio group, sec-butylthio group, tert-butylthio group, n-pentylthio group, iso-pentylthio group, sec-pentylthio group, n-hexylthio group, iso-hexylthio group, 1,1-dimethylpropylthio group, 1,2-dimethylpropylthio group, 2,2-dimethylpropylthio group, 2-ethylpropylthio group, 1-methyl-2-ethylpropylthio group, 1-ethyl-2-methylpropytthio group, 1,1,2-trimethylpropylthio group, 1,1,2-trimethylpropylthio group, 1,1,-dimethylbutylthio group, 1,2-dimethylbutylthio group, 2,2-dimethylbutylthio group, 2,3-dimethylbutylthio group, 1,3-dimethylbutylthio group, 2-ethylbutylthio group, 1,3-dimethylbutylthio group, 2-methylpentylthio group, 3-methylpentylthio group etc. may be proposed. The "C2-6 alkenyithio group" used in this specification refers to an alkenyithio group containing 2 to 6 carbon atoms. The preferable examples thereof include vinylthio group, allylthio group, 1-propenylthio group, 2-propenylthio group, isopropenylthio group, 2-methyl-1-propenylthio group, 3-methyl-1-propenylthio group, 2-methyl-2-propenylthio group, 3-methyl-2-propenyithio group, 1-butenyithio group, 2-butenyithio group, 3-butenyithio group, 1-pentenyithio group, 1-hexenyithio group, 1,3-hexanedienyithio group, 1,6-hexanedienyithio group, etc. The "C2-6 alkynyithio group" used in this specification refers to an alkynythio group containing 2 to 6 carbon atoms. The preferable examples thereof include ethynylthio group, 1-propynylthio group, 2-propynylthio group, 1-butynylthio group, 2-butynylthio group, 3-butynyithio group, 3-methyl-1-propynyithio group, 1-ethynyl-2-propynyithio group, 2-methyl-3-propynyithio group, 1-pentynyithio group, 1-hexynyithio group, 1,3-hexanediynyithio group, 1,6-hexanediynyithio group, etc.

[0022] The "C₃₋₈ cycloalkyl group" used in this specification refers to a cycloalkyl group containing 3 to 8 carbon atoms, and examples thereof include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group etc.

[0023] The "C₃₋₈ cycloalkenyl group" used in this specification refers to a C₃₋₈ cycloalkenyl group containing 3 to 8 carbon atoms. For example, cyclopropen-1-yl, cyclopropen-3-yl, cyclobuten-1-yl, cyclobuten-3-yl, 1,3-cyclobutadien-1-yl, cyclopenten-1-yl, cyclopenten-3-yl, 1,3-cyclopentadien-1-yl, 1,3-cyclopentadien-2-yl, 1,3-cyclohexadien-1-yl, 1,3-cyclohexadien-1-yl, 1,3-cyclohexadien-2-yl, 1,3-cyclohexadien-3-yl, 1,4-cyclohexadien-3-yl, cyclohepten-1-yl, cyclohepten-3-yl, cyclohepten-3-yl, 1,3-cyclohepten-1-yl, 1,3-cycloheptadien-5-yl, 1,3-cycloheptadien-6-yl, 1,3-cycloheptadien-5-yl, 1,3-cycloheptadien-6-yl, 1,4-cycloheptadien-1-yl, 1,3-cycloheptadien-6-yl, 1,3-cycloheptadien-6-yl, 1,3-cycloheptadien-1-yl, 1,3-cycloheptadien-7-yl, cycloocten-1-yl, cycloocten-1-yl, cycloocten-1-yl, cycloocten-1-yl, 1,3-cyclooctadien-1-yl, 1,3-cyclooctadien-1-yl, 1,3-cyclooctadien-1-yl, 1,3-cyclooctadien-1-yl, 1,3-cyclooctadien-1-yl, 1,4-cyclooctadien-1-yl, 1,4-cyclooctadien-1-yl, 1,4-cyclooctadien-1-yl, 1,4-cyclooctadien-1-yl, 1,4-cyclooctadien-1-yl, 1,4-cyclooctadien-1-yl, 1,3-cyclooctadien-1-yl, 1,3-

[0024] The "5- to 14-membered non-aromatic heterocyclic group" used in this specification refers to a monocyclic, bicyclic or tricyclic, 5- to 14-membered non-aromatic heterocyclic group-containing at least one heteroatom selected from nitrogen atom, sulfur atom and oxygen atom. Specific examples of the group include pyrrolidinyl group, pyrrolyl

group, piperidinyl group, piperazinyl group, imidazolyl group, pyrazolidyl group, imidazolidyl group, morpholyl group, tertrahydrofuryl group, tetrahydropyranyl group, pyrrolinyl group, dihydrofuryl group, dihydropyranyl group, imidazolinyl group, oxazolinyl group, etc. Further, the non-aromatic heterocyclic group also includes a group derived from a pyridone ring or a non-aromatic fused ring (for example, a group derived from a phthalimide ring, succinimide ring, etc.).

[0025] The "C₆₋₁₄ aromatic hydrocarbon cyclic group" and "aryl" used in this specification refer to an aromatic hydrocarbon cyclic group containing 6 to 14 carbon atoms, and include a monocyclic group and a condensed ring such as bicyclic group, tricyclic group etc. Specific examples of this group include phenyl group, indenyl group, 1-naphthyl group, 2-naphthyl group, azulenyl group, heptalenyl group, biphenyl group, indacenyl group, acenaphthyl group, fluorenyl group, phenalenyl group, phenanthrenyl group, anthracenyl group, cyclopentacyclooctenyl group, benzocyclooctenyl group, etc. may be proposed.

[0026] In this specification, the "5- to 14-membered aromatic heterocyclic group" and "heteroary!" refer to a monocyclic, bicyclic or tricyclic, 5- to 14-membered aromatic heterocyclic group containing at least one heteroatom selected from nitrogen atom, sulfur atom and oxygen atom. Specific examples of the group include, for example, 1) nitrogencontaining aromatic heterocyclic groups such as pyrrolyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazolyl group, tetrazolyl group, benzotriazolyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, indolyl group, isoindolyl group, indolizinyl group, purinyl group, indazolyl group, quinolyl group, isoquinolyl group, quinolizyl group, phthalazyl group, naphthyridinyl group, quinoxalyl group, quinazolinyl group, cinnolinyl group, pteridinyl group, imidazotriazinyl group, pyrazinopyridazinyl group, acridinyl group, phenanthridinyl group, carbazolyl group, carbazolinyl group, pyrimidinyl group, phenanthrolinyl group, phenacynyl group, Imidazopyridinyl group, Imidazopyrimidinyl group, pyrazolopyridinyl group, pyrazolopyridinyl group, etc.; 2) sulfur-containing aromatic heterocyclic groups such as thienyl group, benzothienyl group, etc.; 3) oxygen-containing aromatic heterocyclic groups such as furyl group, pyranyl group, cyclopentapyranyl group, benzofuryl group, isobenzofuryl group, etc.; and 4) aromatic heterocyclic group containing two or more heteroatoms, such as thiazolyl group, isothiazolyl group, benzothiazolyl group, benzthiadiazolyl group, phenothiazinyl group, isoxazolyl group, furazanyl group, phenoxazinyl group, oxazolyl group, isoxazolyl group, benzoxazolyl group, oxadiazolyl group, pyrazolooxazolyl group, imidazothiazolyl group, thienofuranyl group, furopyrrolyl group, pyridoxazinyl group, etc.

[0027] The "C₂₋₇ fatty acyl group" used in this specification refers to an atomic group derived by removing an OH group from a carboxyl group of a C₂₋₇ fatty carboxylic acid. As the preferable group thereof, for example, acetyl group, propionyl group, butyroyl group, etc. may be proposed.

[0028] The "arylacyl group" used in this specification refers to a carbonyl group substituted with a C₈₋₁₄ aromatic hydrocarbon cyclic group, and the "heteroarylacyl group" refers to a carbonyl group substituted with a 5- to 14-membered aromatic heterocyclic group. The "C₈₋₁₄ aromatic hydrocarbon cyclic group" and "5- to 14-membered aromatic heterocyclic group" have the same meaning as defined above.

[0029] Preferable examples of the " C_{1-6} alkylsulfonyl group", " C_{2-6} alkenylsulfonyl group" and " C_{2-6} alkynylsulfonyl group, used in this specification include methylsulfonyl group, ethylsulfonyl group, n-propylsulfonyl group, isopropylsulfonyl group, n-butylsulfonyl group, tert-butylsulfonyl group, vinylsulfonyl group, allylsulfonyl group, iso-propenylsulfonyl group, iso-pentenylsulfonyl group, ethynylsulfonyl group etc. Preferable examples of the " C_{1-6} alkylsulfinyl group", " C_{2-6} alkenylsulfinyl group" used in this specification include methylsulfinyl group, ethylsulfinyl group, n-propylsulfinyl group, iso-propylsulfinyl group, n-butylsulfinyl group, tert-butylsulfinyl group, vinylsulfinyl group, group, etc.

[0030] As the "substituent group" in the "optionally substituted amino group" used in this specification, for example, one or two groups selected from a C₁₋₆ alkyl group, C₂₋₆ alkenyl group, C₂₋₆ alkynyl group, C₁₋₆ alkylsulfonyl group, C_{2-6} alkenylsulfonyl group, C_{2-6} alkynylsulfonyl group, C_{1-6} alkylcarbonyl group, C_{2-6} alkenylcarbonyl group and C_{2-6} alkynylcarbonyl group, each of which may have a substituent group may be proposed, and the substituent groups may be bound together to form a 3- to 8-membered nitrogen-containing ring. Preferable examples of the "substituent group" of the above-mentioned C_{1-6} alkyl group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{1-6} alkylsulfonyl group, C_{2-6} alkenylsulfonyl group, C_{2-6} alkynylsulfonyl group, C_{1-6} alkylcarbonyl group, C_{2-6} alkenylcarbonyl group and C_{2-6} alkynylcarbonyl group, C_{2-6} alkyn onyl group include hydroxyl group, a halogen atom, nitrile group, a C₁₋₆ alkoxy group, a C₁₋₆ alkylthio group, etc. Specifically, as the particularly preferable examples of the above-mentioned "amino group which may have a substituent group*, methylamino group, ethylamino group, n-propylamino group, iso-propylamino group, n-butylamino group, isobutylamino group, tert-butylamino group, n-pentylamino group, iso-pentylamino group, neopentylamino group, n-hexylamino group, 1-methylpropylamino group, 1,2-dimethylpropylamino group, 2-ethylpropylamino group, 1-methyl-2-ethylpropylamino group, 1-ethyl-2-methylpropylamino group, 1,1,2-trimethylpropylamino group, 1-methylbutylamino group, 2-methylbutylamino group, 1,1-dimethylbutylamino group, 2,2-dimethylbutylamino group, 2-ethylbutylamino group, 1,3-dimethylbutylamino group, 2-methylpentylamino group, 3-methylpentylamino group, N,N-dimethylamino group, N,N-diethylamino group, N,N-di(n-propyl)amino group, N,N-di(iso-propyl)amino group, N,N-di(n-butyl)amino group, N,N-di(Iso-butyl)amino group, N,N-di(tert-butyl)amino group, N,N-di(n-pentyl)amino group, N,N-di(iso-pentyl) amino group, N,N-di(neopentyl)amino group, N,N-di(n-hexyl)amino group, N,N-di(1-methylpropyl)amino group, N,N-

di(1,2-dimethylpropyl)amino group, N-methyl-N-ethylamino group, N-ethyl-N-(n-propyl)amino group, N-methyl-N-(i-propyl)amino group, vinylamino group, allylamino group, (1-propenyl)amino group, isopropenylamino group, (1-buten-1-yl)amino group, (1-buten-2-yl)amino group, (1-buten-2-yl)amino group, (1-buten-2-yl)amino group, (2-buten-1-yl)amino group, N,N-divinylamino group, N,N-diallylamino group, N,N-di(1-propenyl)amino group, N,N-isopropenylamino group, N-vinyl-N-allylamino group, ethynylamino group, 1-propynylamino group, 2-propynylamino group, butynylamino group, pentynylamino group, hexynylamino group, N,N-diethynylamino group, N,N-(1-propynyl)amino group, N,N-dibutynylamino group, N,N-dipentynylamino group, N,N-dihexynylamino group, hydroxymethylamino group, 1-hydroxyethylamino group, 2-hydroxyethylamino group, 3-hydroxy-n-propyl group, methylsulfonylamino group, ethylsulfonylamino group, n-propylsulfonylamino group, iso-propylsulfonylamino group, iso-propylsulfonylamino group, iso-propylsulfonylamino group, methylcarbonylamino group, n-butylcarbonylamino group, n-propylcarbonylamino group, n-butylcarbonylamino group, n-propylcarbonylamino group, iso-propenylcarbonylamino group, iso-propenylcarbonylamino group, iso-propenylcarbonylamino group, iso-propenylcarbonylamino group, ethynylcarbonylamino group, iso-propenylcarbonylamino group, ethynylcarbonylamino group, etc.

[0031] As the "substituent group" in the "which may have a substituent group" used in this specification, a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom etc.), hydroxyl group, nitro group, cyano group, a C₁₋₆ alkyl group (for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, 2-ethylpropyl group, n-hexyl group, 1-methyl-2-ethylpropyl group etc.), a C26 alkenyl group (for example, vinyl group, allyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 2-methyl-1-propenyl group, 3-methyl-1-propenyl group, 2-methyl-2-propenyl group, 3-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 1-hexenyl group, 1,3-hexanedienyl group, 1,6-hexanedienyl group, etc.), a C₂₋₆ alkynyl group (for example, ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 3-methyl-1-propynyl group, 1-ethynyl-2-propynyl group, 2-methyl-3-propynyl group, 1-pentynyl group, 1-hexynyl group, 1,3-hexanediynyl group, 1, 6-hexanediynyl group, etc.), a C₁₋₈ alkoxy group (for example, methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, sec-propoxy group, nbutoxy group, iso-butoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, iso-pentyloxy group, secpentyloxy group, n-hexoxy group, etc.), a C₂₋₆ alkenyloxy group (for example, vinyloxy group, allyloxy group, 1-propenyloxy group, 2-propenyloxy group, isopropenyloxy group, etc.), a C₂₋₆ alkynyloxy group (for example, ethynyloxy group, 1-propynyloxy group, 2-propynyloxy group, etc.), a C_{1-6} alkylthio group (for example, methylthio group, ethylthio group, n-propylthio group, iso-propylthio group, sec-propylthio group, n-butylthio group, iso-butylthio group, secbutyithio group, tert-butyithio group, etc.), a C2-6 alkenyithio group (for example, vinyithio group, allyithio group, 1-propenylthio group, 2-propenylthio group, etc.), a C28 alkynylthio group (for example, ethynylthio group, 1-propynylthio group, 2-propynylthio group, etc.), a C2-7 fatty acyl group (for example, acetyl group, propionyl group, butyroyl group, etc.), carbamoyl group, arylacyl group, heteroarylacyl group, amino group, a C_{1-6} alkylsulfonyl group, a C_{2-6} alkenylsulfonyl group, a C_{2-6} alkynylsulfonyl group, a C_{1-6} alkylsulfinyl group, C_{2-6} alkenylsulfinyl group, a C_{2-6} alkynylsulfinyl group (for example, methylsulfonyl group, ethylsulfonyl group, n-propylsulfonyl group, iso-propylsulfonyl group, n-butylsulfonyl group, tert-butylsulfonyl group, vinylsulfonyl group, allylsulfonyl group, iso-propenylsulfonyl group, iso-pentenylsulfonyl group, ethynylsulfonyl group, methylsulfinyl group, ethylsulfinyl group, n-propylsulfinyl group, iso-propylsulfinyl group, n-butylsulfinyl group, tert-butylsulfinyl group, vinylsulfinyl group, allylsulfinyl group, iso-propenylsulfinyl group, iso-pentenyisulfinyi group, ethynyisulfinyi group, etc.), formyi group, a C₃₋₈ cycloalkyi group (for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl g C₃₋₈ cycloalkenyl group (for example, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl group, etc.), a 5- to 14-membered non-aromatic heterocyclic group (for example, pyrrolldinyl group, pyrrollyl group, piperidinyl group, piperazinyi group, imidazolyi group, pyrazolidyi group, imidazolidyi group, morpholyi group, tertrahydrofuryi group, tetrahydropyranyl group, pyrrolinyl group, dihydrofuryl group, dihydropyranyl group, imidazolinyl group, oxazolinyl group, a group derived from a pyridone ring, a group derived from a phthalimide ring or succinimide ring, etc.), a C_{6-14} aromatic hydrocarbon cyclic group (for example, phenyl group, indenyl group, 1-naphthyl group, 2-naphthyl group, biphenyl group, indacenyl group etc.), a 5- to 14-membered aromatic heterocyclic ring (for example, pyrrolyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazolyl group, tetrazolyl group, benzotriazolyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, indolyl group, iso-indolyl group, indolizinyl group, purinyl group, indazolył group, quinolył group, iso-quinolył group, quinolizył group, phthalazył group, naphthylidinył group, quinoxalył group, quinazolinyl group, cynnolinyl group, pteridinyl group, imidazotriazinyl group, pyrazinopyridazinyl group, acridinyl group, phenanthridinyl group, carbazolyl group, carbazolinyl group, perimidinyl group, phenanthrolinyl group, phenacinyl group, imidazopyridinyl group, imidazopyrimidinyl group, pyrazolopyridinyl group, pyrazolopyridinyl group, thlenyl group, benzothienyl group, furyl group, pyranyl group, cyclopentapyranyl group, benzofuryl group, iso-benzofuryl group, thiazolyl group, iso-thiazolyl group, benzothiazolyl group, benzthiadiazolyl group, phenothiazinyl group, isoxazolyi group, furazanyi group, phenoxazinyi group, oxazolyi group, isoxazoyi group, benzoxazolyi group, oxadia-

zolyl group, pyrazoloxazolyl group, imidazothiazolyl group, thienofuranyl group, furopyrrolyl group, pyridoxadinyl group etc.), and these substituent groups may further have substituent groups.

[0032] In the formula (I) above, R^1 represents cyano group, carboxyl group or a carbamoyl group which may have a substituent group, and the most preferable group is not particularly limited. As the preferable example of the "substituent group" in the "carbamoyl group which may have a substituent group, a C_{1-6} alkyl group which may have a substituent group, a C_{2-6} alkynyl group which may have a substituent group, a C_{2-6} alkynyl group which may have a substituent group, a C_{3-6} cycloalkyl group which may have a substituent group, a C_{3-6} cycloalkyl group which may have a substituent group, a C_{3-6} cycloalkyl group which may have a substituent group, a C_{3-6} cycloalkyl group which may have a substituent group which may have a substituent group which may have a substituent group etc. may be proposed. The nitrogen atom in the carbamoyl group may be substituted with one or two groups selected from the substituent groups described above. Further, the above-mentioned substituent groups may be bound together to form a 3- to 14-membered nitrogen-containing ring (for example, pyrrolidyl group, pyrrolinyl group, piperidyl group, piperazinyl group, imidazolyl group, pyrazolidyl group, imidazolyl group, pyrrolyl group, pyrrolyl group, pyridyl group, pyrid

[0033] Preferable groups of \mathbb{R}^2 in the formula (I) above are not particularly limited, but more preferable groups include hydrogen atom, a C_{1-6} alkoxy group, phenyl, naphthyl, pyridyl, pyridazyl, pyrimidyl, pyrazyl, thienyl, furyl and imidazolyl groups, each of which may have a substituent group, and further preferably hydrogen atom.

15

30

35

40

45

50

[0034] In the formula (I) above, R3 and R4 are independent of each other and each represents a C3-8 cycloalkyl group, a C₃₋₈ cycloalkenyl group, a C₆₋₁₄ aromatic hydrocarbon cyclic group, a 5- to 14-membered non-aromatic heterocyclic group or a 5- to 14-membered aromatic heterocyclic group, each of which may have a substituent group, and preferable groups include a C₆₋₁₄ aromatic hydrocarbon cyclic group (for example, phenyl group, naphthyl group etc.), a 5- to 14-membered non-aromatic heterocyclic group (for example, pyrrolldinyl group, pyrrolinyl group, piperidinyl group, piperazinyl group, imidazolinyl group, pyrazolidinyl group, imidazolidinyl, morpholinyl group, tetrahydropyranyl group, aziridinyl group, oxiranyl group, oxathiolanyl group, a 6-oxo-1,6-dihydropyridyl group whose nitrogen atom may be substituted etc.) or a 5- to 14-membered aromatic heterocyclic group (for example, pyrrolyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, pyrazolyl group, imidazolyl group, indolyl group, isoindolyl group, indolizinyl group, quinolinyl group, isoquinolinyl group, quinolizinyl group, phthalazinyl group, naphthyridyl group, quinoxalyl group, quinazolyl group, imidazotriazinyl group, pyrazinopyridazinyl group, thienyl group, benzothienyl group, $furyl\ group,\ pyranyl\ group,\ cyclopentapyranyl\ group,\ benzofuryl\ group,\ isobenzofuryl\ group,\ thiazolyl\ group,\ isothiazolyl\ group,\ description and the pyranyl\ group,\ isothiazolyl\ group,\ description and the pyranyl\ group,\ description\ d$ group, benzthiazolyl group, benzthiadiazolyl group, phenothiazyl group, isoxazolyl group, pyrazoloxazolyl group, imidazothiazolyl group, thienofuryl group, furopyrrolyl group, pyridoxazinyl group etc.), and these substituent groups may have substituent groups. As the more preferable examples of R3 and R4, for example, groups represented by the formulae:

which may be substituted, respectively. When the above-mentioned 6-oxo-1,6-dihydropyridyl group has a substituent group, the case where the substituent group is bound to the nitrogen atom is also included.

[0035] As the "substituent" in the " C_{3-8} cycloalkyl group which may have a substituent group", " C_{3-8} cycloalkenyl group which may have a substituent group", " C_{6-14} aromatic hydrocarbon cyclic group which may have a substituent group", "5- to 14-membered non-aromatic heterocyclic group which may have a substituent group" and "5- to 14-membered aromatic heterocyclic group which may have a substituent group" represented by R^3 and R^4 , (1) one or more groups selected from hydroxyl group, a halogen atom, cyano group, nitro group, a C_{1-6} alkyl group which may have a

substituent group, a C2-6 alkenyl group which may have a substituent group, a C2-6 alkynyl group which may have a substituent group, a C_{1-6} alkoxy group which may have a substituent group, a C_{2-6} alkenyloxy group which may have a substituent group, a C₁₋₆ alkylthio group which may have a substituent group, a C₂₋₆ alkenylthio group which may have a substituent group, a C2-6 alkynyithio group which may have a substituent group, a substituted carbonyl group, an amino group which may have a substituent group, a C1-6 alkylsulfonyl group which may have a substituent group, a C_{2-6} alkenyisulfonyl group which may have a substituent group, a C_{2-6} alkynyisulfonyl group which may have a substituent group, a C1-6 alkylsulfinyl group which may have a substituent group, a C2-6 alkenylsulfinyl group which may have a substituent group, a C₂₋₆ alkynylsulfinyl group which may have a substituent group, a formyl group, a C₃₋₈ cycloalkyl group which may have a substituent group, a C3-8 cycloalkenyl group which may have a substituent group, a 5- to 14-membered non-aromatic heterocyclic group which may have a substituent group, a C₆₋₁₄ aromatic hydrocarbon cyclic group which may have a substituent group and a 5- to 14-membered aromatic heterocyclic group which may have a substituent group are preferred; (2) one or more groups selected from 1) hydroxyl group, 2) a halogen atom, 3) cyano group, 4) nitro group, 5) a C₁₋₆ alkyl group, C₂₋₆ alkenyl group or C₂₋₆ alkynyl group, each of which may be substituted with at least one group selected from (i) hydroxyl group, (ii) cyano group, (iii) halogen atom, (iv) C1-8 alkylamino group, (v) di(C_{1-6} alkyl)amino group, (vi) C_{2-6} alkenylamino group, (vii) di(C_{2-6} alkenyl)amino group, (viii) C_{2-6} alkynylamino group, (ix) di(C_{2-6} alkynyl)amino group, (x) N- C_{1-6} alkyl-N- C_{2-6} alkenylamino group, (xi) N- C_{1-6} alkyl-N-C₂₋₆ alkynylamino group, (xii) N-C₂₋₆ alkenyl-N-C₂₋₆ alkynylamino group, (xiii) aralkyloxy group, (xiv) TBDMS oxy group, (xv) C_{1-6} alkylsulfonylamino group, (xvi) C_{1-6} alkylsulfonyloxy group, (xvii) C_{2-6} alkenylsulfonyloxy group, (xviii) C_{2-6} alkynylcarbonyloxy group, (xix) N- C_{1-6} alkylcarbamoyl group, (xx) N- C_{2-6} alkenylcarbamoyl group and (xxi) N-C₁₋₆ alkynylcarbamoyl group, 6) a C₁₋₆ alkoxy group, C₂₋₆ alkenyloxy group or C₂₋₆ alkynyloxy group, each of which may be substituted with at least one group selected from (i) C₁₋₆ alkylamino group, (ii) aralkyloxy group and (iii) hydroxyl group, 7) a C_{1-6} alkylthio group, C_{2-6} alkenylthio group or C_{2-6} alkynylthio group, each of which may be substituted with at least one group selected from (i) hydroxyl group, (ii) nitrile group, (iii) halogen atom, (iv) C₁₋₆ alkylamino group, (v) aralkyloxy group, (vi) TBDMS oxy group, (vii) C_{1-6} alkylsulfonylamino group, (viii) C_{1-6} alkylcarbonyloxy group and (ix) C_{1-6} alkylcarbamoyl group, 8) a carbonyl group substituted with a group selected from (i) C_{1-6} alkoxy group, (ii) amino group, (iii) C_{1-6} alkylamino group, (iv) di(C_{1-6} alkyl)amino group, (v) C_{2-6} alkenylamino group, (vi) di $(C_{2-6}$ alkenyl)amino group, (vii) C2e alkynylamino group, (vii) di(C2e alkynyl)amino group, (viii) N-C1e alkyl-N-C2e alkenylamino group, (ix) N-C₁₋₆ alkyl-N-C₂₋₆ alkynylamino group and (x) N-C₂₋₆ alkenyl-N-C₂₋₆ alkynylamino group, 9) an amino group which may be substituted with one or two groups selected from (i) C₁₋₆ alkyl group, (ii) C₂₋₆ alkenyl group, (iii) C₂₋₆ alkynyl group, (iv) C_{1-6} alkylsulfonyl group, (v) C_{2-6} alkenylsulfonyl group, (vi) C_{2-6} alkynylsulfonyl group, (vii) C_{1-6} alkylcarbonyl group, (viii) C_{2-6} alkenylcarbonyl group and (ix) C_{2-6} alkynylcarbonyl group, 10) a C_{1-6} alkylsulfonyl group, 11) a C_{2-6} alkenylsulfonyl group, 12) a C₂₋₆ alkynylsulfonyl group, 13) a C₁₋₆ alkylsulfinyl group, 14) a C₂₋₆ alkenylsulfinyl group, 15) a C₂₋₆ alkynylsulfinyl group, 16) formyl group, 17) a C₃₋₈ cycloalkyl group or C₃₋₈ cycloalkenyl group, each of which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atom, (iii) nitrile group, (iv) C_{1-6} alkyl group, (v) C_{1-6} alkoxy group, (vi) C_{1-6} alkoxy- C_{1-6} alkyl group and (vii) aralkyl group, 18) a 5- to 14-membered non-aromatic heterocyclic group which may be substituted with at least one group selected from (i) hydroxyl group, (ii) hatogen atom, (iii) nitrile group, (iv) C₁₋₆ alkyl group, (v) C₁₋₆ alkoxy group, (vi) C₁₋₆ alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group, 19) a C₆₋₁₄ aromatic hydrocarbon cyclic group which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atom, (iii) nitrile group, (iv) C_{1-6} alkyl group, (v) C_{1-6} alkoxy group, (vi) C_{1-6} alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group, and 20) a 5- to 14-membered aromatic heterocyclic group which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atom, (iii) nitrile group, (iv) C1-6 alkyl group, (v) C₁₋₆ alkoxy group, (vi) C₁₋₆ alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group are more preferred; and (3) one or more groups selected from hydroxy group, a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), cyano group, nitro group, a C₁₋₆ alkyl group (for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, i-pentyl group, neopentyl group, n-hexyl group, etc.), a C2-6 alkenyl group (for example, vinyl group, allyl group, 1-propenyl group, isopropenyl group, etc.), a C₂₋₆ alkyny! group (for example, ethynyl group, 1-propynyl group, 2-propynyl group, butynyl group, pentynyl group, hexynyl group, etc.), a C₁₋₆ alkoxy group (methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, etc.) and a C₂₋₆ alkenyloxy group (vinyloxy group, allyloxy group, 1-propenyloxy group, isopropenyloxy group, etc.) are the most preferred.

[0036] The preferable mode of the compound represented by the formula (I) above according to the present invention or a salt thereof is not particularly limited, among which more preferable mode is a compound or a salt thereof, wherein R³ is a group represented by the formula:

(wherein R⁷ represents a group selected from the above substituent group b; and ring A represents a nitrogen-containing 6-membered ring which may be substituted with 1 to 4 groups selected from the above substituent group b), and still more preferable mode is a compound represented by the formula:

$$\begin{array}{c|c}
H_2N & N & R^7 \\
\hline
R^1 & R^7
\end{array} (II)$$

(wherein R¹ represents cyano group, carboxyl group or an optionally substituted carbamoyl group; R² represents hydrogen atom, hydroxyl group, a C₁₋₆ alkoxy group which may have a substituent group, a C₁₋₆ alkythio group which may have a substituent group, a C₆₋₁₄ aromatic hydrocarbon cyclic group which may have a substituent group or a 5-to 14-membered aromatic heterocyclic group which may have a substituent group; R² represents a group selected from the above substituent group b; R³ represents a C₆₋₁₄ aromatic hydrocarbon cyclic group or a 5- to 14-membered aromatic heterocyclic group, each of which may have a substituent group; ring A represents a nitrogen-containing 6-membered ring which may be substituted with 1 to 4 groups selected from the substituent group b above) or a salt thereof. The preferable mode of each R¹, R² and R³ are as described above.

[0037] In this specification, the "salt" is not particularly limited insofar as it forms a salt with the compound accroding to the present invenvention and is pharmacologically acceptable. Preferably, hydrogen halides (for example, hydrofluoride, hydrochloride, hydrobromide and hydrolodide), inorganic acid salts (for example, sulfate, nitrate, perchlorate, phosphate, carbonate and bicarbonate), organic carboxylic acid salts (for example, acetate, trifluoroacetate, oxalate, maleate, tartrate, furnarate and citrate), organic sulfonic acid salts (for example, methanesulfonate, trifluoromethanesulfonate, ethanesulfonate, benzenesulfonate, toluenesulfonate and camphor sulfonate), amino acid salts (for example, aspartate and glutamate), quaternary amine salts, alkali metal salts (for example, sodium salt and potassium salt), alkaline earth metal salts (for example, magnesium salt and calcium salt), etc. may be proposed., and hydrochloride, oxalte etc. are more preferred as the "pharmacologically acceptable salt".

Production process

[0038] A typical process for producing the compound according to the present invention represented by the above formula (I) will be shown below. Here, the "room temperature" mentioned below refers to 0 to around 40°C.

Production process 1

[0039]

5

10

15

20

30

35

40

45

50

55

$$R^{4a}\text{-COOR}^{9} \xrightarrow{R^{5a}\text{-CH}_{3}} \xrightarrow{R^{4a}}$$

$$R^{5a}\text{-CH}_{3}$$

$$R^{5a}\text{-CH}_{3}$$

$$R^{5a}\text{-CH}_{3}$$

$$R^{5a}\text{-CH}_{3}$$

[0040] In the formula, R^{3a'} represents a 5- to 14-membered aromatic heterocyclic group which has a nitrogen atom at the 4-position and may have a substituent group (for example, 4-pyridyl group, 4-pyriddinyl group, 4-pyridazinyl group, etc.); R^{4a} represents a C₆₋₁₄ aromatic hydrocarbon cyclic group which may have a substituent group or a 5- to

14-membered aromatic heterocyclic group which may have a substituent group; and R⁹ represents a C₁₋₈ alkyl group. The 1,2-biaryl-1-ethanone compound (ii) as the starting material of the compound represented by the above formula (I) according to the present invention can be produced by reacting the aromatic carboxylate (i) with a 4-methyl aromatic heterocyclic compound represented by the formula R^{3a}-CH₃ in the presence of a base in a solvent, followed by deal-coholic condensation. The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, secondary amine metal salts represented by lithium bis (trimethylsilyl)amide and lithium diisopropylamide may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol may be proposed. The reaction temperature is usually -78°C to room temperature, preferably around 0°C.

Production Process 2

[0041]

10

15

20

25

[0042] In the formula, R^{3a} represents a $C_{6.14}$ aromatic hydrocarbon cyclic group which may have a substituent group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group; R4a has the same meaning as defined above; and X1 represents a halogen atom, an alkylsulfonyloxy group or an arylsulfonyloxy group. The 1,2-biaryl-1-ethanone compound (ii) as the starting material for producing the compound represented by the above formula (I) according to the present invention can also be produced by Production Process 2 instead of the abovementioned Production Process 1. That is, it is produced by allowing an aromatic trialkylsityl cyanohydrin compound prepared from the aromatic aldehyde (iii) to be condensed with a compound represented by the formula R3an-CH₂X1 in the presence of a base; and then allowing a fluorine compound to act, followed by decyanating trialkylsilylation. As the reagent used for preparing the aromatic trialkylsilyl cyanohydrin from (iii), using a trialkylsilyl cyanide compound represented by trimethylsilyl cyanide is preferred. In this case, simultaneously using a metal salt such as zinc (II) iodide as a catalyst is also preferred, and it makes possible to achieve rapid reaction. The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, secondary amine metal salts represented by lithlum bis(trimethylsilyl)amide and lithium diisopropylamide, etc. may be proposed. The fluorine compound used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, hydrofluoric acid, hydrofluoride amine, and more preferably tetrabutylammonium fluoride may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol may be proposed. The reaction temperature is preferably -78°C to room temperature.

Production Process 3

[0043]

45

50

55

[0044] In the formula, R^{3a} and R^{4a} represent a C_{6-14} aromatic hydrocarbon cyclic group which may have a substituent group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group. The 3-(dimethylamino)-2-propen-1-one derivative (iv) is the starting material for producing the compound (I) according to the present invention.

(iv) can be produced by allowing N,N-dimethylformamide dimethylacetal to act on active methylene of (ii) produced in the above-mentioned Production Process 1 or 2. This reaction is carried out most preferably in the absence of a solvent, but preferable results can be achieved even if it is carried out by diluting with a solvent which is inert to the reaction and dissolves the starting material to a certain degree (for example, N,N-dimethylformamide, tetrahydrofuran, dioxane, N,N-methylpyrrolidone, benzene, toluene etc.), etc. The reaction temperature is usually room temperature to 120°C, more preferably around 100°C.

[0045] Using the compounds obtained in the above-mentioned Production Processes 1 to 3, the compound (vii) according to the present invention can be produced as follows.

o Production Process 4

[0046]

30

[0047] In the formula, R^{3a} and R^{4a} have the same meanings as defined above; and X^2 represents a halogen atom. The compound (vii) can be produced via the intermediates (v) and (vi) in this order from the compound (iv) obtained in the above-mentioned Production Process 3 (steps 4-(1) to 4-(3) in the formula). The 2-oxo-1,2-dihydro-3-pyridylcarbonitrile derivative (v) can be produced by reacting (iv) with 2-cyanoacetamide in the presence of a base (step 4-(1)). The base used varies depending on the starting material, the solvent used etc., and is not particularly limited insofar as it is inert to the reaction. Preferably, an alkali metal alkoxide such as sodium methoxide, sodium ethoxide or potassium tert-butoxide may be proposed. Further, also by using alkali metal carbonates such as potassium carbonate or sodium carbonate, a preferable result can be obtained. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, N,N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, methanol, ethanol etc. may be proposed. The reaction temperature is usually room temperature to 120°C, more preferably around 80°C. The 2-halogeno-3-pyridylcarbonitrile derivative (vi) can be produced by converting an oxo group in (v) into a halogen atom (step 4-(2)). The reaction is conducted preferably in the absence of a solvent. Further, when it is conducted by being suspending in a solvent which is inert to the reaction and dissolves the starting material to a certain degree (for example, acetonitrile, dioxane, tetrahydrofuran etc.), a preferable result can be also obtained. The halogenating agent used for converting the oxo group into a halogen atom varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, phosphorus oxychloride, phosphorus oxybromide etc. may be proposed. It is preferably conducted by acting these halogenating agent at a reaction temperature of 70 to 120°C. Further, when a tertiary amine such as tripropylamine, a quaternary amine salt such as tetraethyl ammonium chloride, or N,N-dimethylformamide etc., is added to this reaction system, the reaction is further promoted and a good result can be obtained. The 2-amino-3-pyridylcarbonitrile compound (vii) according to the present invention can be produced by reacting X2 (halogen atom) in (vi) with ammonia (step 4-(3)). The present reaction is carried out usually at 0 to 150°C, more preferably in an autoclave (50 to 100°C). The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, N,N-dimethylformamide, 1-methyl pyrrolidinone etc. may be pro**Production Process 5**

[0048]

 $R^{3b}-X^3 \longrightarrow R^{3b}-SnY_3$ (viii) (ix)

10

15

20

25

30

35

[0049] In the formula, R^{3b} represents a C_{6-14} aromatic hydrocarbon cyclic group which may have a substituent group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group; X^3 represents a halogen atom; and Y represents a C_{1-6} alkyl group. The aryl tin reagent (ix) used in the "step 6-(4)" in Production Process 6 can be produced by lithiation of an aryl halide (viii); and then allowing halogenotrialkyl tin to act. In the lithiation reaction, use of alkyl lithium such as n-butyl lithium, sec-butyl lithium, tert-butyl lithium etc. is preferred. The halogenotrialkyl tin used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, trimethyltin chloride such as chlorotributyltin, or triethyltin bromide etc. may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, an ether such as tetrahydrofuran, diethyl ether etc. may be proposed. The reaction temperature is preferably -100°C to room temperature.

[0050] When the 3-(dimethylamino)-2-propen-1-one derivative obtained by subjecting the compound (acetylated aryl or acetylated heteroaryl represented by the formula R^{4a}_COCH₃) wherein R^{3a} in (ii) was replaced by a hydrogen atom to the reaction in Production Process 3, is further subjected to "step 4-(1)" in Production Process 4, the compound (x) wherein R^{3a} in (v) was replaced by a hydrogen atom is obtained. The method of producing the compound (xiv) according to the present invention from the compound (x) is shown below.

Production Process 6

[0051]

40

$$\frac{\text{Step 6- (2)}}{\text{NC}} = \frac{\text{NC}}{\text{NC}} =$$

55

[0052] In the formula, R^{3b} and R^{4a} have the same meanings as defined above; and X⁴ represents a halogen atom. The compound (xiv) according to the present invention can be produced from (x) through steps:6-(1) to 6-(4) (intermediates (xi) to (xiii)). The compound (xi) can be produced by alkylating an oxygen atom at the 2-position in-(x) with

2-halogenoacetamide in the presence of a base (step 6-(1)). The 2-halogenoacetamide used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is linert to the reaction. The reaction conducted by using 2-chloroacetamide is preferred, and conducted by further adding sodium iodide is more preferred. The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, sodium hydride, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate and potassium carbonate may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is linert to the reaction and dissolves the starting material to a certain degree. Preferably, ketones such as acetone or methyl ethyl ketone, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, N,N-dimethytformamide, dimethyl sulfoxide, 1-methyl pyrrolidinone etc. may be proposed. The reaction temperature is usually 0 to 100°C. The compound (xii) can be produced by transaminating the 2-aminocarbonylmethyloxy-3-cyanopyridine derivative (xi) in the presence of a base in a solvent (step 6-(2)). The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, sodium hydride, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, potassium carbonate etc. may be proposed. The solvent used varies depending on the starting material, reagents etc. and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, ketones such as acetone or methyl ethyl ketone, alcohols such as methanol, ethanol, propanol or butanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1-methyl pyrrolidinone etc. may be proposed. The reaction temperature is usually room temperature to 150°C. The compound (xiii) can be produced by halogenating the 5-position of the pyridine ring in the 2-aminonicotinonitrile derivative (xii) with a halogenating agent in a solvent (step 6-(3)). As the halogenating agent used, N-bromosuccinimide, bromine etc. are preferred. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is linert to the reaction and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, N,N-dimethylformamide, 1-methyl pyrrolidinone etc. may be proposed. The reaction temperature is usually -20°C to room temperature. The compound (xiv) according to the present invention can be produced by allowing the anyl tin reagent obtained in Production Process 5 to act on the 2-amino-5-halogenonicotinonitrile derivative (xiii) in the presence of a palladium catalyst in a solvent to introduce an aromatic group into the 5-position of the pyridine ring in (xiii) (step 6-(4)). The palladium catalyst used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, dichlorobis(triphenylphoshine) palladium (II), palladium (II) acetate, tetrakis(triphenylphosphine) palladium (0), tris(dibenzylidene acetone) dipalladium (0) etc. may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, toluene, xylene, N,N-dimethylformamide, 1-methyl pyrrolidinone etc. may be proposed. The reaction temperature is usually room temperature to 150°C.

[0053] Out of the compounds represented by the above formula (I) according to the present invention, those compounds wherein R^2 , R^3 and/or R^4 represent an α -hydroxy nitrogen-containing aromatic heterocyclic group having a hydroxyl group at the α -position of the nitrogen atom can be produced as follows.

[0054] For example, the compound (xvi) having an α -hydroxy nitrogen-containing aromatic heterocyclic group at the 5-position of the pyridine ring can be produced by hydrolysis of the α -alkoxy nitrogen-containing aromatic heterocyclic compound (xv).

Production Process 7

[0055]

45

10

[0056] In the formula, R^{4a} has the same meaning as defined above; R^{10} represents a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl group etc.; the ring A^1 represents a pyridinyl group, pyrimidyl group and pyrazinyl group; and the ring A^2 represents a dihydrooxopyridinyl group, a dihydrooxopyrimidyl group, a dihydropyrazinyl group or a tetrahydropyrazinyl group. The reaction is carried out preferably in an aqueous solution of a mineral acid such as, for example, hydrochloric acid, hydrobromic acid or sulfuric acid, or in a mixed solvent of the above-mentioned aqueous solution of the mineral acid and acetic acid. The reaction temperature is usually room temperature to 100°C.

[0057] Further, a substituent can be introduced into the α -hydroxy nitrogen-containing aromatic heterocyclic ring in the compound (xvi) according to the present invention obtained by the above-mentioned Production Process 7, by the following method.

Production Process 8

[0058]

15

10

20

50

55

$$\begin{array}{c|c} H_2N & N & R^{4a} \\ NC & & & \\ & HN & A^2 \\ \hline & & & \\$$

[0059] In the formula, R^{4a} and ring A² have the same meanings as defined above; R¹¹ represents a C₁₋₆ alkyl group, a C₂₋₆ alkenyl group, a C₂₋₆ alkynyl group etc.; and X⁵ represents a halogen atom. According to this process, (xvi) is reacted with an alkyl halide compound etc. in the presence of a base in a solvent, whereby the compound (xvii) having a substituent group introduced into the nitrogen atom on the ring A² can be produced. The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Prefably, sodiumhydride, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate and potassium carbonate may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1-methyl pyrrolidinone, etc. may be proposed. The reaction temperature is usually 0 to 100°C.

Production Process 9

[0060]

35

50

$$R^{2a} \cdot CHO + R^{4a} \cdot \frac{Step 9 - (1)}{R^{2a}} \cdot \frac{R^{4a}}{R^{4a}}$$

$$Step 9 - (2) + R^{4a} \cdot \frac{Step 9 - (3)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (4) + R^{4a} \cdot \frac{Step 9 - (3)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (4) + R^{4a} \cdot \frac{Step 9 - (5)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (6) + R^{4a} \cdot \frac{Step 9 - (5)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (6) + R^{4a} \cdot \frac{Step 9 - (5)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (6) + R^{4a} \cdot \frac{Step 9 - (5)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (6) + R^{4a} \cdot \frac{Step 9 - (5)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (6) + R^{4a} \cdot \frac{Step 9 - (5)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (6) + R^{4a} \cdot \frac{Step 9 - (5)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (6) + R^{4a} \cdot \frac{Step 9 - (5)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

$$Step 9 - (6) + R^{4a} \cdot \frac{Step 9 - (5)}{R^{2a}} \cdot \frac{R^{4a}}{R^{2a}}$$

[0061] In the formula, R^{3a} , R^{4a} and X^4 have the same meanings as defined above; and R^{2a} represents a C_{8-14} aromatic hydrocarbon cyclic group which may have a substituent group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group. The compound (xxv) according to the present invention can be produced from (xviii) and (xix) through steps 9-(1) to 9-(6) (intermediates (xx) to (xxiv)). The compound (xx) can be produced by dehydrating condensation of (xviii) and (xix) in the presence of a base (step 9-(1)). The base used in the reaction varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, Inorganic salts such as potassium hydroxide or sodium hydroxide may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, a mixed solvent of an alcohol such as ethanol and water may be proposed. The 2-oxo-1,2-dihydro-3-pyridylcarbonitrile derivative (xxi) can be produced by reacting (xx) with 2-cyanoacetamide in the presence of a base (step 9-(2)). The reaction can be promoted in an oxygen atmosphere. The base used varies depending on the starting material, the solvent used etc., and is not particularly limited insofar as the reaction is not inhibited. Preferably, an alkali metal alkoxide such as sodium methoxide, sodium ethoxide or potassium tert-butoxide may be proposed. Otherwise, using alkali metal-carbonates such as potassium carbonate or sodium carbonate can also bring about a preferable result. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, N,N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, methanol, ethanol etc. may be proposed. The reaction temperature is preferably room temperature to 120°C, more preferably around room temperature. The compound (xxii) can be produced by alkylating an oxygen atom at the 2-position in (xxi) with 2-halogenoacetamide in the presence of a base (step 9-(3)). The 2-halogenoacetamide used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. The reaction conducted by using 2-chloroacetamide is preferred, and conducted by further adding sodium iodide is more preferred. The base used varies depending on the starting material, the solvent used etc., and is not

particularly limited so long as it is inert to the reaction. Preferably, sodium hydride, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate and potassium carbonate may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, ketones such as acetone or methyl ethyl ketone, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1-methyl pyrrolidinone etc. may be proposed. The reaction temperature is usually 0 to 100°C. The compound (xxiii) can be produced by transaminating the 2-aminocarbonylmethyloxy-3-cyanopyridine derivative (xxii) in the presence of a base in a solvent (step 9-(4)). The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, for example, sodium hydride, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, potassium carbonate etc. may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, N,N-dimethylformamide, dimethyl sulfoxide, 1-methyl pyrrolidinone etc. may be proposed, other than ketones such as acetone or methyl ethyl ketone, alcohols such as methanol, ethanol, propanol or butanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether may be proposed. The reaction temperature is usually room temperature to 150°C. The compound (xxiv) can be produced by halogenating the 5-position of the pyridine ring in the 2-aminonicotinonitrile derivative (xxiii) with a halogenating agent in a solvent (step 9-(5)). The halogenating agent used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, N-bromosuccinimide, bromine etc. may be proposed. Further, the solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it it inert to the reaction and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, N,N-dimethylformamide, 1-methyl pyrrolidinone etc. may be proposed. The reaction temperature is usually -20°C to room temperature. The compound (xxv) according to the present invention can be produced by reacting the 2-amino-5-halogenonicotinonitrile derivative (xxiv) with the aryl tin reagent obtained in Production Process 5 in the presence of a palladium catalyst in a solvent, to introduce an aromatic group into the 5-position of the pyridine ring in (xxiv) (step 9-(6)). The palladium catalyst used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, dichlorobis(triphenylphoshine) palladium (II), palladium (II) acetate, tetrakis(triphenylphosphine) palladium (0), tris(dibenzylidene acetone) dipalladium (0), dichlorobis(acetonitrile) palladium (II) etc. may be proposed. Further, the solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reacton and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol, ethanol, propanol or butanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, toluene, xylene, N,N-dimethylformamide, 1-methyl pyrrolidinone etc. may be proposed The reaction temperature is usually room temperature to 150°C.

20

40

Production Process 10

[0062]

5

45

50

[0063] In the formula, R3a, R4a and X4 have the same meanings as defined above; R2b represents an optionally substituted alkyl group; and Y represents a lower alkyl group. The compound (xxxiii) according to the present invention can be produced from (xxvii) and (xix) through steps 10-(1) to 10-(7) (intermediates (xxviii) to (xxxiii)). The compound (xxvii) can be produced by condensation of (xxvi) with (xix) (step 10-(1)). The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, potassium tert-butoxide etc. may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree, tert-Butanol is preferred. The reaction temperature is preferably room temperature to 120°C, more preferably around room temperature. The compound (xxxviii) can be produced by alkylating (xxvii) with methyl halide in the presence of a base (step 10-(2)). The base used in the reaction varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, an inorganic base such as potassium carbonate etc. may be proposed. Preferable example of the methyl halide is methyl iodide. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, a ketone such as acetone or methyl ethyl ketone may be proposed. The reaction temperature is preferably room temperature to 120°C, more preferably around room temperature. The 2-oxo-1,2-dihydro-3-pyridyl carbonitrile derivative (xxix) can be produced by reacting (xxxviii) with 2-cyanoacetamide in the presence of a base (step 10-(3)). The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, an alkali metal alkoxide such as sodium methoxide, sodium ethoxide, sodium isopropoxide, potassium tert-butoxide etc. may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, N,N-dimethylformamide, Nmethylpyrrolidone, dimethyl sulfoxide, isopropanol etc. The reaction temperature is preferably 0°C to 120°C. The com-

pound (xxx) can be produced by alkylating an oxygen atom at the 2-position of (xxix) with 2-halogenoacetamide in the presence of a base (step 10-(4)). As the 2-halogenoacetamide used, 2-chloroacetamide is preferred, and the reaction in which sodium lodide is further added is more preferred. The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, sodium hydride, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate and potassium carbonate may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited so long as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, ketones such as acetone or methyl ethyl ketone, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1-methyl pyrrolidinone, etc. may be proposed. The reaction temperature is usually 0 to 100°C. The compound (xxxi) can be produced by transaminating the 2-aminocarbonylmethyloxy-3-cyanopyridine derivative (xxx) in the presence of a base in a solvent (step 10-(5)). The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, sodium hydroxide, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, potassium carbonate etc. may be proposed. The solvent used varies depending on the starting material, the solvent used etc., and is not particularly limited unless it is inert to the reaction. Preferably, ketones such as acetone or methyl ethyl ketone, alcohols such as methanol, ethanol, propanol or butanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1-methyl pyrrolidinone, etc. may be proposed. The reaction temperature is usually room temperature to 150°C. The compound (xxii) can be produced by halogenating the 5-position of the pyridine ring in the 2-aminonicotinonitrile derivative (xxxi) with a halogenating agent in a solvent (step 10-(6)). The halogenating agent used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, N-bromosuccinimide, bromine etc. may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol or ethanol etc., ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether etc., N,N-dimethylformamide, 1-methyl pyrrolidinone etc. may be proposed. The reaction temperature is usually -20°C to room temperature. The compound (xxxiii) according to the present invention can be produced by allowing the aryl tin reagent obtained in Production Process 5 to act on the 2-amino-5-halogenonicotinonitrile derivative (xxxii) in the presence of a palladium catalyst in a solvent, to introduce an aromatic group into the 5-position of the pyridine ring in (xxxii) (step 10-(7)). As the palladium catalyst used is, for example, dichlorobis(triphenylphoshine) palladium (II), palladium (II) acetate, tetrakis(triphenylphosphine) palladium (0), tris(dibenzylidene acetone) dipalladium (0), dichlorobis(acetonitrile) palladium (II) etc. are preferred. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol dimethyl ether, toluene, xylene, N,Ndimethylformamide, 1-methyl pyrrolidinone etc. may be proposed. The reaction temperature is usually room temperature to 150°C.

Production Process 11

[0064]

50

[0065] In the formula, R^{2a} and R^{4a} have the same meanings as defined above; R^{10} represents a C_{1-6} alkyl group, a C_{2-6} alkynyl group etc.; the ring A^1 represents a pyridinyl group, a pyrimidyl group or a pyrazinyl group; and the ring A^2 represents a dihydrooxopyridinyl group, a dihydrooxopyrimidyl group, a dihydropyrazinyl group or a tetrahydropyrazinyl group. The compound (xxxv) having an α -hydroxy nitrogen-containing aromatic heterocyclic group at the 5-position of the pyridine ring can be produced by hydrolyzing the α -alkoxy nitrogen-containing aromatic heterocyclic compound (xxxiv). The solvent used in this reaction varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain

degree. Preferably, an aqueous solution of a mineral acid such as hydrochloric acid, hydrobromic acid or sulfuric acid, or a mixed solvent of the above-mentioned aqueous solution of the mineral acid and acetic acid may be proposed. The reaction temperature is usually room temperature to 100°C.

5 Production Process 12

[0066]

[0067] In the formula, R^{2b}, R^{4a}, the ring A¹ and the ring A² have the same meanings as defined above; and R¹⁰ represents a C₁₋₆ alkyl group, a C₂₋₆ alkenyl group, a C₂₋₆ alkynyl group, etc. The compound (xxxvii) having an α-hydroxy nitrogen-containing aromatic heterocyclic group at the 5-position of the pyridine ring can be produced by hydrolyzing the α-alkoxy nitrogen-containing aromatic heterocyclic compound (xxxvi). The solvent used in this reaction varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, an aqueous solution of a mineral acid such as hydrochloric acid, hydrobromic acid or sulfuric acid, or a mixed solvent of the above-mentioned aqueous solution of the mineral acid and acetic acid may be proposed. The reaction temperature is usually room temperature to 100°C.

Production Process 13

30 [0068]

20

25

40

45

[0069] In the formula, R^{2c} represents hydrogen atom, hydroxyl group, a C_{1-6} alkoxy group which may have a substituent group, a C_{1-6} alkyl group which may have a substituent group, a C_{6-14} aromatic hydrocarbon cyclic group which may have a substituent group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group; R3c represents a C₆₋₁₄ aromatic hydrocarbon cyclic group which may have a substituent group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group; and R4a and X4 have the same meanings as defined above. The compound (xxviii) according to the present invention can be produced by reacting the 2-amino-5-halogenonicotinonitrile derivative (xxxix) with an aryl boron reagent or an aryl tin reagent in the presence of a palladium catalyst and a base in a solvent, to introduce an aromatic group into the 5-position of the pyridine ring in (xxxix). The palladium catalyst used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, dichlorobis(triphenylphoshine) palladium (II), palladium (II) acetate, tetrakis(triphenylphosphine) palladium (0), tris(dibenzylidene acetone) dipalladium (0), dichlorobis(acetonitrile) palladium (II) etc. may be proposed. The base used varies depending on the starting material, the solvent used, etc., and is not particularly limited so long as it is inert to the reaction. Preferably, an inorganic base such as potassium carbonate or calcium phosphate, or an organic amine such as ethyl diisopropyl amine may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, dioxane, dimethoxyethane, diethylene glycol or dimethyl ether, toluene, xylene, N,N-dimethylformamide, 1-methyl pyrrolidinone etc. may be proposed. The reaction temperature is usually room temperature to 150°C.

Production Process 14

[0070]

5

10

$$\begin{array}{c} H_2N \\ NC \\ R^{2e} \\ \end{array} \begin{array}{c} R^{3d} \\ \end{array} \begin{array}{c} H_2N \\ R^{3e} \\ \end{array} \begin{array}{c} N \\ R^{3e} \\ \end{array}$$

[0071] In the formula, R3d represents a C₈₋₁₄ aromatic hydrocarbon cyclic group which may have a substituent group, a 5- to 14-membered aromatic heterocyclic group which may have a substituent group; and R2C and R4a have the same meanings as defined above. The compound (xii) according to the present invention can be produced by hydrolyzing the cyano group of the compound (xi) in the presence of a base in a solvent. The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, an inorganic base such as sodium hydroxide or potassium hydroxide may be proposed. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, alcohols such as methanol or ethanol, or a mixture of such alcohols and water. The reaction temperature is usually room temperature to 150°C.

Production Process 15

[0072]

30

25

35

[0073] In the formula, R1b represents a carbamoyl group which may have a substituent group; and R2c, R3d and R4a have the same meanings as defined above. The carbamoyl derivative (xlii) according to the present invention can be produced by dehydrating condensation of the carboxylic acid derivative (xlii) with an amine in the presence of a condensing agent in a solvent. As the condensing agent used, 3-(3-dimethylaminopropyl)-1-ethylcarbodilmide etc. are preferred. The reaction is promoted by adding 1-hydroxybenzotriazole etc. When the amine to be condensed with the carboxylic acid has formed a salt with hydrogen chloride etc., a suitable amount of tertiary amine such as triethylamine is added. As the solvent used, for example, ethers such as tetrahydrofuran, dioxane, dimethoxyethane or diethylene glycol, N,N-dimethylformamide, 1-methyl pyrrolidinone etc. are preferred. The reaction temperature is usually 0 to 50°C, and more preferably around room temperature.

50

Production Process 16

[0074]

[0075] In the formula, R^{2d} represents hydrogen atom, a C₁₋₆ alkoxy group which may have a substituent group, a C₁₋₆ alkyl group which may have a substituent group, a C₆₋₁₄ aromatic hydrocarbon cyclic group which may have a substituent group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group; the ring A³ represents pyridinyl group, pyrimidyl group or pyrazinyl group; R¹¹ represents a C₁₋₆ alkyl group which may have a substituent group, a C₂₋₆ alkenyl group which may have a substituent group or a C₂₋₆ alkynyl group which may have a substituent group; X⁵ represents an eliminating group such as a halogen atom or a sulfonate group which may have a substituent group; and R^{4a} and ring A² have the same meanings as defined above, respectively. The compounds (xliv) and (xlv) according to the present Invention can be produced by reacting the compound (xliii) with R⁹-X⁵ in the presence of a base in a solvent. The base used varies depending on the starting material, the solvent used etc., and is not particularly limited so long as it is inert to the reaction. Preferably, inorganic bases represented by potassium carbonate, potassium bicarbonate and sodium carbonate may be proposed. The solvent generally used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it it inert to the reacton and dissolves the starting material to a certain degree.

[0076] Preferably, an amide such as N,N-dimethylformamide may be proposed. The reaction temperature is preferably room temperature to 100°C, and more preferably around 65°C.

Production Process 17

[0077]

35

40

$$\begin{array}{c} H_2N \longrightarrow N \longrightarrow R^{4a} \\ NC \longrightarrow HN \longrightarrow A^2 \\ (x) v i) \end{array}$$

[0078] In the formula, R12 represents a C₆₋₁₄ aromatic hydrocarbon cyclic group which may have a substituent group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group; and R2c, R4a and ring A2 have the same meanings as defined above, respectively. The compound (xivii) according to the present invention can be produced by reacting the compound (xivi) with an aryl boron reagent in the presence of a base and a copper catalyst in a solvent. The base used in the reaction varies depending on the starting material, the solvent used etc., and is not particularly limited insofar as it is inert to the reaction. Preferably, a tertiary amine such as pyridine, diisopropyl ethylamine, triethylamine etc. maybe proposed. The copper catalyst used varies depending on the starting material, the solvent used etc., and is not particularly limited insofar as it is inert to the reaction. Preferably, divalent copper such as copper acetate, copper bromide, copper sulfate etc. may be proposed, and copper acetate is more preferred. The solvent used varies depending on the starting material, reagents etc., and is not particularly limited insofar as it is inert to the reaction and dissolves the starting material to a certain degree. Preferably, N,N-dimethylformamide, tetrahydrofuran, ethyl acetate etc. may be proposed. The reaction temperature is preferably around room temperature.

[0079] The foregoing is a typical example of the method of producing the compound (I) according to the present invention, and the starting compound in production of the compound of the present invention may form a salt or a

hydrate and is not particularly limited so long as it is inert to the reaction. Further, when the compound (I) according to the present invention is obtained in a free form, it can be converted into a salt which may be formed by the above-mentioned compound (I), in a usual manner. Further, the various resulting isomers (for example, geometric isomer, optical isomer based on asymmetric carbon, rotational isomer, stereoisomer and tautomer) of the compound (I) according to the present invention can be purified and isolated by using usual separating means, for example, re-crystallization, diastereomer salt method, enzyme fractionation method, and various kinds of chromatography (for example, thin layer chromatography, column chromatography and gas chromatography).

[0080] The compound represented by the above formula (I) according to the present invention, a salt thereof or a hydrate of them can be formed into a pharmaceutical preparation by a conventional method. As the preferable preparation forms, tablets, powders, fine granules, granules, coated tablets, capsules, syrups, troches, inhalations, suppositories, injections, ointments, eye ointments, eye drops, nose drops, ear drops, poultices, lotions etc. may be proposed. In pharmaceutical manufacturing, ordinarily used fillers, binders, disintegrating agents, lubricants, coloring agents, flavoring agents, and as necessary stabilizers, emulsifiers, absorption promoters, surfactants, pH adjusters, preservatives and antioxidants may be used, and it may be prepared in a conventional method by blending ingredients generally used as starting materials for pharmaceutical preparations. As these ingredients, for example, (1) animal and vegetable oils such as soybean oil, tallow or synthetic glyceride; (2) hydrocarbons such as liquid paraffin, squalane or solid paraffin; (3) ester oils such as octyldodecyl myristate or isopropyl myristate; (4) higher alcohols such as-cetostearyl alcohol or behenyl alcohol; (5) silicon resin; (6) silicon oil; (7) surfactants such as polyoxyethylene fatty ester, sorbitan fatty ester, glycerin fatty ester, polyoxyethylene sorbitan fatty ester, polyoxyethylene hydrogenated castor oil or polyoxyethylene-polyoxypropylene block copolymer; (8) water-soluble polymers such as hydroethyl cellulose, polyacrylic acid, carboxyvinyl polymer, polyethylene glycol, polyvinylpyrrolidone or methyl cellulose; (9) lower alcohols such as ethanol or isopropanol; (10) polyhydric alcohols such as glycerin, propylene glycol, dipropylene glycol or sorbitol; (11) sugars such as glucose or sucrose; (12) inorganic powder such as silicic anhydride, aluminum magnesium silicate or aluminum silicate; and (13) pure water may be proposed. 1) As the fillers, for example, lactose, corn starch, white sugar, glucose, mannitol, sorbitol, crystalline cellulose, silicon dioxide etc.; 2) as the binders, for example, polyvinyl alcohol, polyvinyl ether, methyl cellulose, ethyl cellulose, arabic gum, tragacanth, gelatin, shellac, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinylpyrrolidone, polypropylene glycol-polyoxyethylene block polymer, megulumin, calcium citrate, dextrin, pectin etc.; 3) as the disintegrating agents, for example, starch, agar, gelatin powder, crystalline cellulose, calcium carbonate, sodium bicarbonate, calcium citrate, dextrin, pectin, carboxymethyl cellulose calcium etc.; 4) as the lubricants, for example, magnesium stearate, talc, polyethylene glycol, silica, hardened vegetable oil etc.; 5) as the coloring agents, any of which are approved to be added to pharmaceutical preparations; 6) as the flavoring agents, cocoa powder, menthol, aromatic powder, peppermint oil, borneol, cinnamon powder etc.; and 7) as the antioxidants, those which are approved to be added to pharmaceutical preparations, such as ascorbic acid, a-tocopherol etc., may be used, respectively.

[0081] 1) The oral preparation is produced by mixing the compound according to the present invention or a salt thereof with fillers and if necessary with a binder, a disintegrating agent, a lubricant, a coloring agent, a flavoring agent etc., and then forming it in a usual manner into powders, fine granules, granules, tablets, coated tablets, capsules, etc. 2) The tablets and granules may be coated with a sugar or gelatin coating or if necessary with another suitable coating. 3) The liquid preparations such as syrups, injections and eye drops are prepared by mixing the active agent with a pH adjuster, a solubilizer and an isotonizing agent etc., and with a solubilizing aid, a stabilizer, a buffer, a suspension agent, an antioxidant etc. If necessary, followed by forming it into a preparation in a usual manner. The liquid preparation may be formed into a freeze-dried product and the injection can be administered intravenously, subcutaneously or intramuscularly. Preferable examples of the suspension agent include methyl cellulose, Polysorbate 80, hydroxyethyl cellulose, arabic gum, tragacanth powder, sodium carboxymethyl cellulose, polyoxyethylene sorbitan monolaurate etc.; preferable examples of the solubilizing aid include polyoxyethylene hardened castor oil, Polysorbate 80, nicotinamide, polyoxyethylene sorbitan monolaurate etc.; preferable examples of the stabilizer include sodium sulfite, sodium metasulfite, ether etc.; preferable examples of the preservative include methyl p-oxybenzoate, ethyl p-oxybenzoate, sorbic acid, phenol, cresol, chlorocresol etc. 4) The agent for external application can be produced in any conventional method. That is, the starting base material can make use of various starting materials ordinarily used in pharmaceutical preparations, quasi-drug, cosmetics, etc. For example, the material includes animal and vegetable oils, mineral oil, ester oil, waxes, higher alcohols, fatty acids, silicon oil, surfactants, phospholipids, alcohols, polyvalent alcohols, watersoluble polymers, clay minerals, pure water etc. If necessary, a pH adjuster, an antioxidant, a chelating agent, a preservative, a coloring agent, a perfume etc. can further be added. Further, ingredients having a differentiation-inducing action, a blood-stream promoting agent, a sterilizer, an antiinflammatory agent, a cell activator, vitamins, amino acids, a humectant, a keratin solubilizer etc. can also be incorporated as necessity.

[0082] Although the dose of the medicament according to the present invention varies depending on severeness of symptoms, age, sex, body weight, administration form, type of salt, chemical sensitivity, type of disease etc., it is given daily in one portion or in divided portions to an adult in a dose of usually about 30 µg to 10 g, preferably 100 µg to 5

g, more preferably 100 μg to 100 mg for oral administration, or about 30 μg to 1 g, preferably 100 μg to 500 mg, more preferably 100 μg to 30 mg for injection.

[0083] According to the present invention, a novel 2-aminopyridine compound could be provided. The compounds according to the present invention or a salt thereof have an excellent antagonistic action on an adenosine receptor (adenosine A₁, A_{2a}, A_{2b} or A₃ receptor), and are excellent as an antagonist for an adenosine A₂ receptor, particularly for an adenosine A_{2B} receptor. The compounds according to the present invention or a salt thereof are useful as an agent for treating or preventing a disease to which an adenosine receptor (adenosine A₁, A_{2a}, A_{2b} or A₃ receptor) relates, and a disease against which an antagonist for the receptor is efficacious. The compound according to the present invention or a salt thereof is useful not only as an agent for treating, preventing or improving constipation, irritable bowel syndrome, constipation accompanying irritable bowel syndrome, organic constipation, constipation accompanying enteroparalytic ileus, constipation accompanying congenital digestive tract dysfunction, constipation accompanying ileus, diabetes, diabetic complications, diabetic retinopathy, obesity, asthma etc., but also useful as a hypoglycemic agent, an improving agent for impaired glucose tolerance, a potentiating agent for insulin sensitivity, hypotensive agent, a diuretic, a therapeutic agent for osteoporosis, an anti-Parkinson's disease agent, an anti-Alzheimer's disease agent, a therapeutic agent for inflammatory intestinal diseases, a therapeutic agent for Crohn's disease,

Examples

15

20

25

[0084] Reference Examples, Examples and Test Examples shown below are described merely for illustrative purposes, and the compounds of the invention are not limited to the following specific examples in any case. The present invention can be carried out to the maximum by those skilled in the art by making various modifications not only to the following examples but also to the claims in the present specification, and such modifications fall under the claims of the present application.

Reference Example 1

1-(2-Furyl)-2-(4-pyridyl)-1-ethanone

30 [0085]

40

35

[0086] In a nitrogen atmosphere, lithium bis(trimethylsilyf)amide (100 mL, 100 mmol) was added dropwise into a solution of 4-picoline (4.6 g, 49.4 mmol) and ethyl 2-furancarboxylate (7.7 g, 54.9 mmol) in tetrahydrofuran (40 mL) at 0°C over 1 hour, followed by stirring as it was for 2 hours. Hexane (140 mL) was added to the reaction solution, and the resulting crystals were collected by filtration. The resulting crystals were dissolved in ethyl acetate and an aqueous saturated solution of ammonium chloride. The organic layer was washed with an aqueous saturated solution of ammonium chloride (×2) and brine, dried over anhydrous sodium sulfate, and concentrated. Hexane was added to the residue, and the resulting precipitates were collected by filtration and washed with hexane, to give the title-compound (6.5 g, 70%) as a pale yellow solid.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 4. 26 (2H, s), 6. 77 (1H, dd, J = 2. 0, 3. 6 Hz), 7. 31 (2H, dd, J = 1. 6, 4. 4 Hz), 7. 65 (1H, dd, J = 0. 8, 3. 6 Hz), 8. 05 (1H, dd, J = 0. 8, 2. 0 Hz), 8. 51 (2H, dd, J = 1. 6, 4. 4 Hz).

Reference Example 2

3-(Dimethylamino)-1-(2-furyl)-2-(4-pyridyl)-2-propen-1-one

5 [0087]

10

N N N

15 [0088] N,N-Dimethylformamide dimethylacetal (5 mL) was added to 1-(2-furyl)-2-(4-pyridyl)-1-ethanone (2.0 g, 10.7 mmol), followed by stirring at 100°C for 2 hours. After cooling as it was, the reaction solution was diluted with ethyl acetate and an aqueous saturated solution of ammonium chloride. The aqueous layer was extracted with ethyl acetate (×6). The combined organic layer was dried over anhydrous sodium sulfate and concentrated, to give the title compound (2.5 g, 97%) as a reddish brown oil.

¹H NMR (400 MHz, DMSO- d_0) δ ppm; 2. 80 (6H, br s), 6. 53 (1H, br), 6. 60 (1H, br), 7. 10 (2H, d, J=4.0 Hz), 7. 65 (1H, br), 7. 75 (1H, s), 8. 44 (2H, d, J=4.0 Hz).

Reference Example 3

6-(2-Furyl)-2-oxo-5-(4-pyridyl)-1,2-dihydro-3-pyridinecarbonitrile

[0089]

30

35

45

25

o H

[0090] Sodium methoxide (1.20 g, 22.2 mmol) was added to a solution of 3-(dimethylamino)-1-(2-furyl)-2-(4-pyridyl)-2-propen-1-one (2.27 g, 9.37 mmol) and 2-cyanoacetamide (950 mg, 11.3 mmol) in N,N-dimethylformamide, followed by stirring at 80°C for 2 hours in a nitrogen atmosphere. After cooling as it was, the reaction solution was concentrated and diluted with water. After neutralized with 6 N hydrochloric acid, the resulting solid was collected by filtration and washed with water, to give the title compound (1.78 g, 72%) as a pale brown solid.

¹H NMR (400 MHz, DMSO- d_8) δ ppm; 6. 64 (1H, dd, J = 1. 6, 4. 0Hz), 6. 92 (1H, d, J = 4. 0 Hz), 7. 24 (2H, dd, J = 1. 6, 4.4 Hz), 7. 75 (1H, dd, J = 0. 8, 1. 6 Hz), 8. 21 (1H, s), 8. 57 (2H, dd, J = 1. 6, 4.4 Hz).

Reference Example 4

2-Chloro-6-(2-furyl)-5-(4-pyridyl)-3-pyridinecarbonitrile

50 [0091]

[0092] A suspension of 6-(2-furyl)-2-oxo-5-(4-pyridyl)-1,2-dihydro-3-pyridinecarbonitrile-(21.0 g, 79.8 mmol) in phosphorus oxychloride (90 g) was stirred in a nitrogen atmosphere at 110°C. After 4 hours, additional phosphorus oxychloride (50 g) was added thereto, followed by heating under stirring for further 5 hours. After cooling as it was, the reaction solution was concentrated. After ice was added to the residue, it was neutralized with saturated sodium bicarbonate. After extracting with ethyl acetate (2 l)-tetrahydrofuran (1 l), the organic layer was washed with brine, dried over anhydrous magnesium sulfate and concentrated. After adding diethyl ether to the residue, the resulting solid was collected by filtration and washed with diethyl ether, to give the title compound (13.6 g, 61%) as a dark yellow solid. ¹H NMR (400 MHz, DMSO- d_6) δ ppm; δ . 62 (1H, dd, J = 1. 6, 3. 6 Hz), δ . 78 (1H, dd, J = 0. 8, 3. 6 Hz), 7. 42 (2H, dd, J = 1. 6, 4.4 Hz), 7. 76 (1H, dd, J = 0. 8, 1. 6 Hz), 8. 48 (1H, s), 8. 69 (2H, dd, J = 1. 6, 4.4 Hz).

Reference Example 5

3-(Dimethylamino)-1-(2-furyl)-2-propen-1-one

5 [0093]

10

20

50

55

[0094] A mixture of 2-acetylfuran (25.0 g, 0.227 mmol) and N,N-dimethylformamide dimethylacetal (40 ml) was stirred at 100°C for 9 hours. After cooling as it was, the reaction solution was concentrated. Diethyl ether and hexane were added to the residue, and the resulting solid was collected by filtration and washed with hexane, to give the title compound (36.5 g, 97%) as a brown solid.

 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm; 2. 88 (3H, br s), 3. 14 (3H, br s), 5. 65-(1H, d, J = 12. 6-Hz), 6. 60(1H, dd, J = 2. 0, 3. 4 Hz), 7. 10 (1H, dd, J = 0. 8, 3. 4 Hz), 7. 68 (1H, d, J = 12. 6 Hz), 7. 79 (1H, dd, J = 0. 8, 2. 0 Hz).

30 Reference Example 6

6-(2-Furyl)-2-oxo-1,2-dihydro-3-pyridinecarbonitrile

100951

NC H

[0096] A suspension of 3-(dimethylamino)-1-(2-furyl)-2-propen-1-one (15.0 g, 90.9 mmol), 2-cyanoacetamide (8.5 g, 101 mmol) and potassium carbonate (38.0 g, 275 mmol) in dimethyl sulfoxide (80 ml) was stirred at 120 to 140°C for 21 hours. After cooling as it was, the reaction mixture was diluted with water. After adjusting to pH 3 with conc. hydrochloric acid, the resulting solid was collected by filtration and washed with water, to give the title compound (13.0 g, 77%) as a brown solid.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 6. 75 (1H, d, J = 8. 0 Hz), 6. 78(1H, dd, J = 1. 6, 3. 6 Hz), 7. 61 (1H, d, J = 3. 6 Hz), 8. 02 (1H, d, J = 1. 6 Hz), 8. 15 (1H, d, J = 8. 0 Hz).

Reference Example 7

2-[[3-Cyano-6-(2-furyl)-2-pyridyl]oxy]acetamide

[0097]

10

25

30

35

[0098] A suspension of 6-(2-furyf)-2-oxo-1,2-dihydro-3-pyridinecarbonitrile (6.0 g, 32.3 mmol), 2-chloroacetamide (3.0 g, 37.7 mmol), sodium iodide (5.7 g, 38.0 mmol) and potassium carbonate (9.0 g, 56.2 mmol) in acetone (100 ml) was stirred at 60°C for 6 hours. After cooling as it was, the reaction solution was diluted with ethyl acetate and water. The organic layer was washed with an aqueous saturated solution of sodium bicarbonate (×2) and an aqueous saturated solution of ammonium chloride, dried over anhydrous sodium sulfate, and concentrated. Diethyl ether was added to the residue, and the resulting precipitates were collected by filtration and washed with diethyl ether, to give the title compound (4.2 g, 54%) as a brown solid.

¹H NMR (400 MHz, DMSO- d_8) δ ppm; 4. 87 (2H, s), 6. 75 (1H, dd, J = 2. 0, 3. 4 Hz), 7. 26 (1H, br), 7. 26 (1H, dd, J = 0. 8, 3. 4 Hz), 7. 45 (1H, d, J = 8. 0 Hz), 7. 61 (1H, br), 7. 96 (1H, dd, J = 0. 8, 2. 0 Hz), 8. 29 (1H, d, J = 8. 0 Hz).

Reference Example 8

2-Amino-6-(2-furyl)nicotinonitrile

[0099]

[0100] A suspension of 2-[[3-cyano-6-(2-furyl)-2-pyridyl]oxy]acetamide (8.0 g, 32.9 mmol) and potassium-carbonate (9.1 g, 65.9 mmol) in N,N-dimethylformamide (80 ml) was stirred at 120°C for 1.5 hours. After cooling as it was, the reaction solution was diluted with water and ethyl acetate, and the insoluble matters were filtered off. The aqueous layer in the filtrate was extracted with ethyl acetate. The combined organic layer was washed with an aqueous saturated solution of ammonium chloride (×2), dried over anhydrous sodium sulfate, and concentrated. The residue was suspended in methanol, and the resulting solid was collected by filtration and washed with methanol, to give the title compound (3.81 g, 63%) as a brown solid.

¹H NMR (400 MHz, DMSO- d_0) δ ppm; 6. 68 (1H, dd, J = 1. 6, 3. 6 Hz), 6. 96 (2H, br s), 7. 02 (1H, d, J = 8. 2 Hz), 7. 13 (1H, dd, J = 0. 8, 3. 6 Hz), 7. 89 (1H, dd, J = 0. 8, 1. 6 Hz), 7. 91 (1H, d, J = 8. 2 Hz).

Reference Example 9

2-Amino-5-bromo-6-(2-furyl)nicotinonitrile

[0101]

[0102] N-Bromosuccinimide (3.5 g, 19.7 mmol) was added to a solution (60 ml) of 2-amino-6- (2-furyl)nicotinonitrile (4.0 g, 21.6 mmol) in N,N-dimethylformamide in a nitrogen atmosphere at 1 to 2°C, followed by stirring as it was. After 30 minutes, the reaction solution was diluted with ethyl acetate and an aqueous saturated solution of potassium carbonate. The organic layer was washed with an aqueous saturated solution of potassium carbonate and an aqueous saturated solution of ammonium chloride, then dried over anhydrous sodium sulfate and concentrated. Methanol was added to the residue, and the resulting solid was collected by filtration and washed with methanol, to give the title compound (3.02 g, 53%) as a brown solid.

¹H NMR (490 MHz, DMSO-d₆) δ ppm; 6. 72 (1H, dd, 1.8, 3.6 Hz), 7.19 (2H, br's), 7.44 (1H, dd, 1.6, 8, 3.6 Hz), 7. 96 (1H, dd, 1.6, 8, 1.8 Hz), 8. 26 (1H, s).

Reference Example 10

5-Bromo-2-methoxypyridine

15 [0103]

10

20

25

35

40

45

50

[0104] After sodium (10 g, 0.435 mol) was dissolved in methanol (500 ml), 2,5-dibromopyridine (50 g, 0.211 mol) was added thereto and the mixture was heated for 2 days under reflux. The reaction solution was cooled as it was, and then concentrated. Then, the residue was diluted with ethyl acetate and an aqueous saturated solution of ammonium chloride. The organic layer was washed with an aqueous saturated solution of ammonium chloride and brine, and then dried over anhydrous sodium sulfate and concentrated, to give the title compound (33 g, 83%) as a pale brown oil

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 3. 84 (3H, s), 6. 72(1H, dd, J = 0. 8, 8. Hz), 7. 89 (1H, dd, J = 2. 4, 8. 8 Hz), 8. 29 (1H, dd, J = 0. 8, 2.4 Hz).

Reference Example 11

2-Methoxy-5-(1,1,1-tributy|stannyl)pyridine

[0105]

[0106] 2.5 M n-butyl lithium solution in hexane (12.0 ml, 30.0 mmol) was added dropwise to a solution of 5-bromo-2-methoxypyridine (5.0 g, 26.6 mmol) in tetrahydrofuran (100 ml) over 30 minutes at -70°C in a nitrogen atmosphere. Then, a solution of tributyltin chloride (10.4 ml, 32.0 mmol) in tetrahydrofuran (20 ml) was added dropwise thereinto over 1 hour. Then, the reaction solution was heated to room temperature and stirred as it was. After 30 minutes, the reaction solution was diluted with an aqueous saturated solution of ammonium chloride and ethyl acetate. The organic layer was washed with an aqueous saturated solution of ammonium chloride and brine, dried over anhydrous sodium sulfate and concentrated. The residue was subjected to silica gel column chromatography (elution solvent; hexane, hexane:ethyl acetate=40:1), to give the title compound (7.9 g, 75%) as a colorless oil.

¹H NMR (400 MHz, DMSO-d₀) δ ppm; 0. 82-0. 90 (9H, m), 1. 02-1. 08 (6H, m), 1. 22-1. 35 (6H, m), 1. 46-1. 54 (6H, m), 3. 82 (3H, s), 6. 80 (1H, dd, J= 0. 8, 8. 0 Hz), 7. 69 (1H, dd, J= 1. 6, 8. 0 Hz), 8. 40 (1H, dd, J= 0. 8, 1. 6 Hz).

Reference Example 12

(E)-1,3-Di(3-fluorophenyl)-2-propen-1-one

5 [0107]

10

15

25

30

35

50

55

[0108] A mixture of 3-fluorobenzaldehyde (7.63 mL, 72.4 mmol), 3-fluoroacetophenone (10 g, 72.4 mmol), potassium hydroxide (5.18g, 92.6 mmol), ethanol (23 mL) and water (47 mL) was stirred overnight at room temperature. After the reaction solution was diluted with water, the solid was collected by filtration and washed with ethanol and diethyl ether, to give the title compound (16.4 g, 93%).

 1 H NMR (400 MHz, DMSO- 4 S) δ ppm; 7. 10-7. 16 (1H, m), 7. 27-7. 37 (2H, m), 7. 39-7. 42 (2H, m), 7. 46 (1H, d, 1 J = 15 Hz), 7. 50 (1H, dd, 1 J = 5. 4, 7. 7 Hz), 7. 68-7. 73 (1H, m), 7. 77 (1H, d, 1 J = 15 Hz), 7. 78-7. 82 (1H, m).

Reference Example 13

4,6-Di(3-fluorophenyl)-2-oxo-1,2-dihydro-3-pyridinecarbonttrile

[0109]

O H F

[0110] (E)-1,3-Di(3-fluorophenyl)-2-propen-1-one (16.4 g, 67.2 mmol), 2-cyanoacetamide (6.21 g, 73.9 mmol), and a solution of potassium t-butoxide (30.2 g, 269 mmol) in dimethyl sulfoxide (131 mL) were stirred overnight at room temperature in an oxygen atmosphere. Water (300 mL) and 6 N hydrochloric acid (390 mL) were added to the reaction solution. The solid was collected by filtration and washed with water, to give the title compound (17.4 g, 84%).

¹H NMR (400 MHz, DMSO-d₈) δ ppm; 6. 81 (1H, s), 7. 28-7. 36 (1H, m), 7. 50-7. 58 (1H, m), 7. 68-7. 88 (2H, m).

Reference Example 14

Isopropyl 3-(2-furyl)-3-oxopropanethioate

[0111]

[0112] A mixture of isopropyl (methylsulfanyl)methanethioate (7.0 g, 46.7 mmol), 2-acetyl furan (5.14 g, 46.7 mmol), potassium t-butoxide (10.5 g, 93.5 mmol) and t-butanol (35 mL) was stirred overnight at room temperature. Ice was added to the reaction solution, followed by acidifying with 5 N hydrochloric acid. The solid was collected by filtration

and washed with water, to give the title compound (3.7 g, 37%).

1H NMR (400 MHz, DMSO- d_0) δ ppm; 1. 38 (6H, d, J = 8. 8 Hz), 5. 58-5. 69 (1H, m), 6. 27 (1H, s), 6. 53 (1H, dd, J = 2.0, 3. 3 Hz), 7.05 (1H, dd, J = 0. 4, 3.3 Hz), 7. 52 (1H, dd, J = 0. 4, 2. 0 Hz).

Reference Example 15

(Z)-1-(2-Furyl)-3-isopropoxy-3-(methylsulfanyl)-2-propen-1-one

[0113]

10

15

SMe SMe

[0114] A mixture of isopropyl 3-(2-furyl)-3-oxopropanethioate (3.7 g, 17.5 mmol), potassium carbonate (7.3 g, 52.4 mmol) and acetone (15 mL) was heated under reflux for 1 hour. After cooling the mixture to 0°C, methyl iodide (2.17 mL, 34.9 mmol) was added thereto, followed by stirring at room temperature for 2 hours. After diluting the reaction solution with ethyl acetate, the insoluble matters were filtered off. The filtrate was concentrated, and then the residue was purified by silica gel column chromatography (elution solvent; ethyl acetate/hexane=1:1), to give the title compound (3.2 g, 81%).

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 1. 42 (6H, d, J = 6. 0 Hz), 2. 28 (3H, s), 4. 72-4. 82 (1H, m), 6. 35 (1H, s), 6. 49 (1H, dd, J = 1. 5, 3. 6 Hz), 7. 10 (1H, dd, J = 1. 0, 3. 6 Hz), 7. 47 (1H, dd, J = 1. 0, 1. 5 Hz).

Reference Example 16

6-(2-Furyl)-4-isopropoxy-2-oxo-1,2-dihydro-3-pyridinecarbonitrile

[0115]

NC TO

40

50

35

[0116] Sodium (309 mg, 13.4 mmol) was dissolved in isopropanol (46 mL). Then, (Z)-1-(2-furyl)-3-isopropoxy-3-(methylsulfanyl)-2-propen-1-one (3.03 g, 13.4 mmol) and 2-cyanoacetamide (1.13 g, 33.4 mmol) were added thereto, followed by stirring overnight at room temperature. Ice-water was added to the reaction solution, and then the solid was collected by filtration, and washed with water and diethyl ether, to give the title compound (2.3 g, 70%).

1H NMR (400 MHz, DMSO- d_6) δ ppm; 1. 35 (6H, d, J=6. 0 Hz), 4. 98-5. 08 (1H, m), 6. 60-6. 66 (1H, m), 6. 77-6. 81 (1H, m), 7. 60-7. 67 (1H, m), 8. 00-8. 05 (1H, m).

Example 1

2-Amino-6-(2-furyl)-5-(4-pyridyl)-3-pyridinecarbonitrile

[0117] A solution of ammonia in ethanol, 30 ml, (ethanol saturated at 0°C with an ammonia gas) was added to 2-chloro-6-(2-furyl)-5-(4-pyridyl)-3-pyridinecarbonitrile (200 mg, 0.710 mmol). Then, it was sealed in a stainless steel autoclave, and heated under stirring at 100°C. After 24 hours, the reaction solution was cooled as it was and concentrated. The residue was subjected to silica gel column chromatography (elution solvent; hexane, hexane:ethyl acetate=2:1, 1:1, 1:2), and then suspended in diethyl ether. The resulting precipitates were collected by filtration and washed with diethyl ether, to give the title compound (50 mg, 27%) as a pale orange solid.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 6. 54(1H, dd, J = 1. 6, 3. 6 Hz), 6. 57(1H, dd, J = 0. 8, 3. 6 Hz), 7. 20 (2H, br s), 7. 24 (2H, dd, J = 1. 8, 4. 4 Hz), 7. 64 (1H, dd, J = 0. 8. 1. 6 Hz), 7. 92 (1H, s), 8. 55 (2H, dd, J = 1. 6, 4. 4 Hz); MS m/e (ESI) 263 (MH⁺).

5 Example 2

2-Amino-6-(fluorophenyl)-5-(4-pyridyl)-3-pyridinecarbonitrile

[0118] The title compound was synthesized in the same manner as in Examples 18 to 20 described below or by its analogous method.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 6. 99-7. 03(1H, m), 7. 09-7. 14 (3H, m), 7. 16-7. 22(1H, m), 7. 28-7. 35 (3H, m), 8. 09 (1H, s), 8. 43 (2H, dd, J=1. 6, 4. 4Hz); MS m/e (ESI) 291 (MH+).

15 Example 3

2-Amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile

[0119] A solution of 2-amino-5-bromo-6-(2-furyf)nicotinonitrile (1.80 g, 6.82 mmol), 2-methoxy-5-(1,1,1-tributyistannyl)pyridine (5.20 g, 13.1 mmol) and dichlorobis(triphenylphosphine) palladium (II) (480 mg, 0.634 mmol) in N,N-dimethylformamide (18 ml) was stirred at 80°C for 2 hours in a nitrogen atmosphere. After cooling as it was, the reaction solution was diluted with ethyl acetate and an aqueous saturated solution of ammonium chloride. The organic layer was washed with an aqueous saturated solution of ammonium chloride (×2), then dried over anhydrous sodium sulfate and concentrated. The residue was subjected to silica gel column chromatography (elution solvent; hexane, hexane: ethyl acetate=8:1, 4:1), and then suspended in diethyl ether. The resulting solid was collected by filtration and washed with diethyl ether, to give the title compound (1.12 g, 56%) as a yellow solid.

1H NMR (400 MHz, DMSO-d₆) δ ppm; 3. 88 (3H, s), 6. 38 (1H, dd, J = 0.8, 3. 6 Hz), 6. 51 (1H dd, J = 1.6, 3. 6 Hz), 6. 83 (1H, d, J = 4. 6 Hz), 7. 08 (2H, br s), 7. 54 (1H, dd, J = 2. 4, 4. 6 Hz), 7. 67 (1H, dd, J = 0.8, 1. 6 Hz), 7. 84 (1H, s), 8. 04 (1H, d, J = 2.4 Hz).

Example 4

30

2-Amino-6-(2-furyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile

[0120] A solution of 2-amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile (1.0 g, 3.42 mmol) in acetic acid (6 ml)-conc. hydrobromic acid (10 ml) was stirred at 100°C for 1.5 hours. After cooling as it was, the reaction solution was adjusted to pH 12 to 13 with 5 N sodium hydroxide and washed with ethyl acetate. The organic layer was extracted with 1 N sodium hydroxide (×2), and then the combined aqueous layer was neutralized with 5 N hydrochloric acid. The resulting solid was collected by filtration, to give the title compound (760 mg) as yellow crude crystals. After suspending the product in methanol, 4 N HCl/ethyl acetate was added thereto to dissolved and it subjected to silica gel column chromatography (elution solvent; dichloromethane, dichloromethane:methanol=40:1, 20:1, 10:1). The resulting crude objective compound was suspended in water, and then neutralized with 5 N sodium hydroxide. The solid was collected by filtration and washed with water, to give the title compound (486 mg, 51%) as a yellow solid.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 6. 30 (1H, d, J = 9. 6 Hz), 6. 57 (1H, dd, J = 1. 8, 3. 4 Hz), 6. 59 (1H, dd, J = 0. 6, 3. 4 Hz), 7. 02 (2H, brs), 7. 20 (1H, dd, J = 2. 8, 9. 6 Hz), 7. 33 (1H, d, J = 2. 8 Hz), 7. 75 (1H, dd, J = 0. 6, 1. 8 Hz), 7. 82 (1H, s); MS m/e (ESI) 279 (MH+).

_ . _

Example 5

2-Amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinonitrile

[0121] Sodium methoxide (155 mg, 2.87 mmol) was added to a suspension of 2-amino-6-(2-furyl)-5-(6-oxo-1,6-di-hydro-3-pyridinyl)nicotinonitrile (400 mg, 1.44 mmol) in methanol (8 ml) at room temperature in a nitrogen atmosphere, followed by stirring. After 15 minutes, iodoethane (0.35 ml, 4.38 mmol) was added thereto, followed by stirring as it was. After 15 hours, additional iodoethane (0.35 ml, 4.38 mmol) was added thereto, and the mixture was further stirred. After 24 hours, the reaction solution was concentrated. The residue was subjected to silica gel column chromatography (elution solvent; hexane, hexane:ethyl acetate=2:1, 1:2, 1:5). The resulting crude objective-compound was suspended

in diethyl ether, and then the solid was collected by filtration and washed with diethyl ether, to give the title compound (149 mg, 34%) as a pale yellow solid.

¹H NMR (400 MHz, DMSO- $d_{\rm S}$) δ ppm; 1. 23 (3H, t, J = 7. 2 Hz), 3. 91 (2H, q, J = 7. 2 Hz), 6. 34 (1H, d, J = 9. 2 Hz), 6. 57 (1H, dd, J = 2. 0, 3. 2 Hz), 6. 62 (1H, dd, J = 0. 8, 3. 2 Hz), 7. 06 (2H, br s), 7. 19 (1H, dd, J = 2. 8, 9. 2 Hz), 7. 71 (1H, d, J = 2. 8 Hz), 7. 75 (1H, dd, J = 0. 8, 2. 0 Hz), 7. 88 (1H, s); MS m/e (ESI) 307 (MH⁺).

Example 6

2-Amino-6-(2-furyl)-5-(1-methyl-6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile

[0122] The title compound was synthesized in the same manner as in Example 30.

¹H NMR (400 MHz, DMSO- d_0) δ ppm; 3. 45 (3H, s), 6. 35 (1H, d, J = 9. 2Hz), 6. 57 (1H, dd, J = 1. 6, 3. 6Hz), 6. 65 (1H, dd, J = 0.8, 3. 6 Hz), 7. 06 (2H, br s), 7. 17 (1H, dd, J = 2. 8, 9. 2 Hz), 7. 75 (1H, d, J = 2.8 Hz), 7. 76 (1H, dd, J = 0. 8, 1. 6 Hz), 7. 84 (1H, s);

MS m/e (ESI) 293 (MH+).

Example 7

20 2-Amino-6-(3-fluorophenyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile

[0123] The title compound was synthesized in the same manner as in Examples 21 to 29.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 6. 19 (1H, d, J=9. 6Hz), 6. 86 (2H, br s), 7. 00 (1H, dd, J=2. 8, 9. 6Hz), 7. 17-7.

28 (4H, m), 7. 37-7. 45 (1H, m), 8.26 (1H, s);
MS m/e (ESI) 307 (MH+).

.

Example 8

30

45

50

2-Amino-6-(3-fluorophenyl)-5-(1-methyl-6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile

[0124] Using 2-amino-6-(3-fluorophenyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile, the title compound was synthesized in the same manner as in Example 30.

1H NMR (400 MHz, DMSO- d_6) δ ppm; 3.40 (3H, s), 6. 17 (1H, d, J = 9. 6Hz), 6. 85 (1H, dd, J = 2. 4, 9. 6 Hz), 7.12 (2H, br s), 7. 14-7. 26 (3H, m), 7. 34-7. 42 (1H, m), 7. 74 (1H, d, J = 2. 4 Hz), 7. 98 (1H, s); MS m/e (ESI) 321 (MH+).

Example 9

2-Amino-5-(4-cyanophenyl)-6-(2-furyl)nicotinonitrile

[0125]

2-Amino-5-bromo-6-(2-furyl)nicotinonitrile (20 mg, 75.7 μmol), 4-cyanophenylboric acid (30 mg, 204 μmol), dichlorobis (acetonitrile) palladium (II) (2 mg, 7.71 μmol), and a solution of 2 M aqueous potassium carbonate (150 μL, 300 μmol) in N,N-dimethylformamide (0.6 mL) was stirred at 80°C for 14 hours. After cooling as it was, the reaction solution was diluted with ethyl acetate and water. After filtering off the insoluble matters, the organic layer in the filtrate was concentrated. A half of the residue was purified by HPLC on a reverse phase-column and using a water-acetonitrile-trifluoroacetic acid system as the elution solvent, to give the title compound (3.33 mg).

	[0126] The title compounds of the following Examples 10 to 76 were synthesized in the same manner as in Example 3 or 9, or by its analogous method.
_	Example 10
5	2-Amino-5,6-di(2-furyl)nicotinonitrile
	Example 11
10	2-Amino-5-(4-cyanophenyl)-6-(2-furyl)nicotinonitrile
	Example 12
	2-Amino-6-(2-furyl)-5-phenylnicotinonitrile
15	Example 13
	2-Amino-6- (2-furyl)-5-(4-methylphenyl)nicotinonitrile
20	Example 14
	2-Amino-6-(2-furyl)-5-(3-methylphenyl)nicotinonitrile
	Example 15
25	2-Amino-6-(2-furyl)-5-(2-methylphenyl)nicotinonitrile
	Example 16
30	2-Amino-6-(2-furyi)-5-(4-methoxyphenyi)nicotinonitrile
	Example 17
	2-Amino-6-(2-furyl)-5-(3-methoxyphenyl)nicotinonitrile
35	Example 18
	2-Amino-5-(2,4-dimethoxyphenyl)-6-(2-furyl)nicotinonitrile
40	Example 19
	2-Amino-5-(3,4-dimethoxyphenyl)-6-(2-furyl)nicotinonitrile
4 5	Example 20
	2-Amino-6-(2-furyl)-5-(3,4,5-trimethoxyphenyl)nicotinonitrile
	Example 21
50	2-Amino-5-(1,3-benzodioxol-5-yl)-6-(2-furyl)nicotinonitrile
	Example 22
:5	2-Amino-5-[4-(benzyloxy)phenyl]-6-(2-furyl)nicotinonitrile
5	Example 23

2-Amino-5-[3-(benzyloxy)phenyl]-6-(2-furyl)nicotinonitrile

	Example 24
	2-Amino-6-(2-furyl)-5-(4-phenoxyphenyl)nicotinonitrile
5	Example 25
	2-Amino-5-(3-ethoxyphenyl)-6-(2-furyl)nicotinonitrile
46	Example 26
10	2-Amino-6-(2-furyl)-5-[4-(trifluoromethoxy)phenyl]nicotinonitrile
	Example 27
15	2-Amino-6-(2-furyf)-5-[3-(trifluoromethoxy)phenyl)nicotinonitrila
	Example 28
20	2-Amino-5-(4-dimethylaminophenyl)-6-(2-furyl)nicotinonitrile
20	Example 29
	2-Amino-6-(2-furyi)-5-[4-(methylsulfanyi)phenyi]nicotinonitrile
25	Example 30
	2-Amino-5-(4-fluorophenyl)-6-(2-furyl)nicotinonitrile
30	Example 31
30	2-Amino-5-(3-fluorophenyl)-6-(2-furyl)nicotinonitrile
	Example 32
35	2-Amino-5-(2-fluorophenyl)-6-(2-furyl)nicotinonitrile
	Example 33
40	2-Amino-5-(2,4-difluorophenyl)-6-(2-furyl)nicotinonitrile
~	Example 34
	2-Amino-6-(2-furyl)-5-(2,3,4,5,6-pentafluorophenyl)nicotinonitril
45	Example 35
	2-Amino-6-(2-furyl)-5-[4-(trifluoromethyl)phenyl]nicotinonitrile
50	Example 36
	2-Amino-6-(2-furyl)-5-[3-(trifluoromethyl)phenyl]nicotinonitrile
	Example 37
55	2-Amino-6-(2-furyl)-5-[2-(trifluoromethyl)phenyl]nicotinonitrile

Example 38

	S-Amino-a-(a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a
	Example 39
5	2-Amino-6-(2-furyl)-5-(4-nitrophenyl)nicotinonitrile
	Example 40
10	2-Amino-6-(2-furyl)-5-(3-nitrophenyl)nicotinonitrile
	Example 41
	2-Amino-6-(2-furyl)-5-(4-methyl-3-nitrophenyl)nicotinonitrile
15	Example 42
	2-Amino-5-(2-fluoro-4-biphenylyl)-6-(2-furyl)nicotinonitrile
20	Example 43
20	2-Amino-6-(2-furyi)-5-(4-methylsulfonylphenyi)nicotinonitrile
	Example 44
25	2-Amino-6-(2-furyl)-5-(4-methylsulfinylphenyl)nicotinonitrile
	Example 45
30	2-Amino-5-(4-biphenylyi)-6-(2-furyi)nicotinonitrile
30	Example 46
	2-Amino-5-(3-biphenylyl)-6-(2-furyl)nicotinonitrile
35	Example 47
	2-Amino-5-(3-cyanophenyl)-6-(2-furyl)nicotinonitrile
40	Example 48
••	5-(4-Acetylphenyl)-2-amino-6-(2-furyl)nicotinonitrile
	Example 49
45	5-(3-Acetylphenyl)-2-amino-6-(2-furyl)nicotinonitrile
	Example 50
50	5-(2-Acetylphenyl)-2-emino-6-(2-furyl)nicotinonitrile
	Example 51
	2-Amino-5-(3-formylphenyl)-6-(2-furyl)nicotinonitrile
5	Example 52
	2 Aming E (2 formulabour) R (2 formulaiseatic outsite

	Example 53
	2-Amino-5-(3-chlorophenyl)-6-(2-furyl)nicotinonitrile
5	Example 54
	2-Amino-5-(2-chlorophenyl)-6-(2-furyl)nicotinonitrile
10	Example 55
	2-Amino-5-(2,4-dichlorophenyl)-6-(2-furyl)nicotinonitrile
	Example 56
15	2-Amino-5-(3,4-dichlorophenyl)-6-(2-furyl)nicotinonitrile
	Example 57
20	2-Amino-5-(2,5-dichlorophenyl)-6-(2-furyl)nicotinonitrile
20	Example 58
	2-Amino-5-(4-tert-butylphenyl)-6-(2-furyl)nicotinonitrile
25	Example 59
	2-Amino-6-(2-furyl)-5-(1-naphthyl)nicotinonitrile
30	Example 60
<i></i>	2-Amino-6-(2-furyl)-5-(2-naphthyl)nicotinonitrile
	Example 61
35	2-Amino-5-benzo[b]furan-2-yl-6-(2-furyl)nicotinonitrile
	Example 62
40	2-Amino-5-dibenzo[b,d]furan-4-yl-8-(2-furyl)nicotinonitrile
	Example 63
	2-Amino-6-(2-furyl)-5-(3-furyl)nicotinonitrile
45	Example 64
	2-Amino-6-(2-furyl)-5-(2-thienyl)nicotinonitrile
50	Example 65
	2-Amino-6-(2-furyl)-5-(3-thienyl)nicotinonitrile
	Example 66
55	2-Amino-6-(2-furyl)-5-(5-methyl-2-thienyl)nicotinonitrile
	Example 67

2-Amino-6-(2-furyl)-5-(4-methyl-2-thienyl)nicotinonitrile

Example 68

5 5-(5-Acetyl-2-thienyl)-2-amino-6-(2-furyl)nicotinonitrile

Example 69

2-Amino-5-(2-formyl-3-thienyl)-6-(2-furyl)nicotinonitrile

Example 70

2-Amino-5-(3-formyl-2-thienyl)-6-(2-furyl)nicotinonitrile

15 Example 71

10

2-Amino-5-(5-chloro-2-thienyl)-6-(2-furyl)nicotinonitrile

Example 72

2-Amino-5-benzo[b]thiophen-2-yi-6-(2-furyl)nicotinonitrile

Example 73

25 2-Amino-5-benzo[b]thiophen-3-yl-6-(2-furyl)nicotinonitrile

Example 74

2-Amino-6-(2-furyl)-5-(3-pyridyl)nicotinonitrile

Example 75

2-Amino-6-(2-furyl)-5-(2-pyridyl)nicotinonitrile

35 Example 76

2-Amino-6-(2-furyl)-5-(4-vinylphenyl)nicotinonitrile

Example 77

2-Amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinic acid

[0127] Ethanol (5 mL) and 5 N aqueous sodium hydroxide (10 mL) were added to 2-amino-5-(1-ethyl-6-oxo-1;6-di-hydro-3-pyridinyl)-6-(2-furyl)nicotinonitrile (308 mg, 1.01 mmol), followed by heating under reflux for 4 hours. After cooling as it was, the reaction solution was neutralized with 5 N hydrochloric acid. The resulting solid was-collected by filtration and then washed with water, to give the title compound (320 mg, 98%) as a yellow solid.

¹H-NMR (400 MHz, DMSO- $d_{\rm B}$) δ ppm; 1. 22 (3H, t, J=7. 2 Hz), 3. 92 (2H, q, J=7. 2 Hz), 6. 35 (1H, d, J=9. 2 Hz), 6. 54-6. 58 (1H, m), 6. 60 (1H, dd, J=0. 8, 3. 6 Hz), 7. 21 (1H, dd, J=2. 4, 9. 2 Hz), 7. 31 (2H, br), 7. 71 (1H, d, J=1)

2. 4 Hz), 7. 73 (1H, dd, J=0. 8, 3. 6 Hz), 7. 93 (1H, s);

[0128] The title compounds of the following Examples 78 and 79 were synthesized in the same manner as in the above-mentioned Example 77 or by its analogous method.

5 Example 78

2-Amino-6-(2-furyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nlcotinic acid

Example 79

10

2-Amino-6-(3-fluorophenyl)-5- (4-pyridyl)nicotinonitrile

Example 80

15 2-Amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide

[0129]

20

H₂N N O

25

[0130] 2-Amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinic acid-(20 mg, 61.5 μmol), 1-hydroxyben-zotriazole (28 mg, 183 μmol), 3-(3'-dimethylaminopropyl)-1-ethyl carbodiimide (29 mg, 187 μmol), ammonium chloride (16 mg, 299 μmol), and a suspension of triethylamine (43 μL, 309 μmol) in N,N-dimethylformamide (1.0 mL) was stirred at room temperature for 18 hours. After diluting the reaction solution with water, the resulting solid was collected by filtration and washed with water, to give the title compound (9 mg, 45%) as a pale yellow solid.

¹H-NMR (400 MHz, DMSO- d_0) δ ppm; 1. 24 (3H, t, J=7. 2 Hz), $\dot{3}$. 92 (2H, q, J=7. 2 Hz), $\dot{6}$. 97 (1H, d, J=9. 2 Hz), $\dot{6}$. 53- $\dot{6}$. 56 (1H, m), $\dot{6}$. 58 (1H, dd, J=0. 8, 3. 2 Hz), 7. 23 (1H, dd, J=2. 8, 9. 2 Hz), 7. 37 (3H, br), 7. 67-(1H, d, J=2. 8 Hz), 7. 70 (1H, dd, J=0. 8, 3. 2 Hz), 7. 93 (1H, s), 7. 99 (1H, br);

[0131] The title compounds of the following Examples 81 to 102 were obtained in the same manner as in the above-mentioned Example 80 or by its analogous method.

40 Example 81

2-Amino-6-(3-fluorophenyl)-5-(4-pyridyl)nicotinamide

Example 82

45

N-(2-Hydroxyethyl)-2-amino-6-(2-furyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl) nicotinamide

Example 83

N-Cyclopropyl-2-amino-6-(2-furyf)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinamide

Example 84

N,N-Dimethyl-2-amino-6-(2-furyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinamide

Example 85

N-Cyclopropylmethyl-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide

	Example 86
	N-(2-Fluoroethyf)-2-amino-5-(1-ethyf-6-oxo-1,6-dihydro-3-pyridinyf)-6-(2-furyf)nicotinamide
5	Example 87
	N-Cyclopropyl-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide
40	Example 88
10	N-(3-Diethylamino)propyl-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-8-(2-furyl)nicotinamide
	Example 89
15	N-Methyl-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide
	Example 90
	N-Phenyl-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide
20	Example 91
	N-Allyl-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide
25	Example 92
	N-(2-Amino-2-oxoethyl)-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide
30	Example 93
	N-Isobutyl-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide
	Example 94
35	N-(5-Cyanopentyl)-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide
	Example 95
40 .	N-[3-(2-Oxotetrahydro-1H-1-pyrrolyl)propyl]-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl nicotinamide
	Example 96
45	N-(2-Pyridylmethyl)-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide
	Example 97
	N-(3-Pyridylmethyl)-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6- (2-furyl)nicotinamide
50	Example 98
	N-[2-(4-Pyridyl)ethyl]-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide
<i>55</i>	Example 99
33	N-[2-(2-Pyridyl)ethyl]-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6- (2-furyl)nicotinamide
	Example 100

N-(2-Propynyl)-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide

Example 101

5 N-(3-Hydroxypropyl)-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide

Example 102

N-Ethyl-2-amino-5-(1-ethyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinamide

Example 103

103-(a):

15 2-Amino-6-(2-furyl)-5-(6-oxo-1-propyl-1,6-dihydro-3-pyridinyl)nicotinonitrile

[0132]

20

25

10

H₂N N O

30 103-(b):

2-Amino-6-(2-furyl)-5-(4-propyl-3-pyridyl)-3-pyridinecarbonitrile

[0133]

35

40

H₂N N O

45 [0134] 2-Amino-6-(2-furyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile (20 mg, 0.072 mmol) and potassium carbonate (30 mg, 0.22 mmol) were introduced into a reaction vessel, dissolved in N,N-dimethylformamide (1 mL). Propyl iodide (52 mg, 0.31 mmol) was added thereto, followed by stirring at 70°C for 18 hours. After the reaction was finished, water was added thereto, and it was extracted with ethyl acetate. After removing the aqueous layer, the organic layer was concentrated and purified by high performance liquid chromatography, to give the title product as a yellow solid (2.6 mg, 11%; 1.8 mg, 7.8%).

103-(a): 2-Amino-6-(2-furyl)-5-(6-oxo-1-propyl-1,6-dihydro-3-pyridinyl)nicotinonitrile

[0135] ¹H-NMR (400 MHz, CDCl₃) δ ppm; 0. 98 (3H, t, J = 7. 4 Hz), 1. 83 (2H, q, J = 7. 4 Hz), 3. 99 (2H, t, J = 7. 4 Hz), 5. 50 (2H, brs), 6. 47 (1H, dd, J = 3. 6, 1. 8 Hz), 6. 73 (1H, dd, J = 3. 6, 0. 8 Hz), 6. 81 (1H, d, J = 9. 2 Hz), 7. 26 (1H, m), 7. 30 (1H, dd, J = 9. 2, 2. 4 Hz), 7. 48 (1H, dd, J = 1. 8, 0. 8 Hz), 7. 58 (1H, s); MS (ESI) m/e 321 (MH+).

103-(b): 2-Amino-6-(2-furyl)-5-(4-propyl-3-pyridyl)-3-pyridinecarbonitrile

[0136] ¹H-NMR (400 MHz, CDCl3) δ ppm; 1. 07 (3H, t, J= 7. 4 Hz), 1. 85 (2H, m), 4. 30 (2H, t, J= 6. 6 Hz), 6. 38-6. 41 (2H, m), 6. 81 (1H, dd, J= 8. 8, 0. 8 Hz), 7. 46-7. 48 (2H, m), 7. 62 (1H, s), 8. 06 (1H, d, J= 0. 8 Hz); MS (ESI) m/e 321 (MH+).

Example 104

2-Amino-5-[1-(4-cyanophenyi)-6-oxo-1,6-dihydro-3-pyridinyi]-6-(2-furyi)nicotinonitrile

[0137]

H₂N N N

25

20

10

15

[0138] 2-Amino-6-(2-furyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile (20 mg, 0.071 mmol), 4-cyanophenylboronic acid (35 mg, 0.24 mmol), copper acetate monohydrate (3.0 mg, 0.015 mmol), pyridine (0.015 mL, 0.19 mmol) and N,N-dimethylformamide (1.0 mL) were introduced into a reaction vessel and stirred at room temperature for 20 hours. Water was added to the reaction solution, followed by extracting with ethyl acetate. The organic layer was dried, and then dissolved in dimethyl sulfoxide (1.0 mL) and purified by high performance liquid chromatography, to give the title compound as a yellow solid (8.32 mg, 62%).

¹H-NMR (400 MHz, DMSO- d_6) δ ppm: 6. 49 (1H, d, J = 9. 6 Hz), 6. 61 (1H, dd, J = 1. 6, 3. 2 Hz), 6. 79 (1H, d, J = 3. 2 Hz), 7. 07 (2H, brs), 7. 30 (1H, dd, J = 2. 6, 9. 6 Hz), 7. 74 (1H, d, J = 2. 6 Hz), 7. 76 (2H, d, J = 8. 6 Hz), 7. 82 (1H, d, J = 1.6 Hz), 7. 98 (1H, s), 8.02 (2H, d, J = 8. 6 Hz); MS (ESI) m/e 380 (MH+).

[0139] The title compounds of the following Examples 105 to 146 were obtained in the same manner as in the above-mentioned Example 5, 103 or 104, or by its analogous methods.

40 Example 105

2-Amino-6-(2-furyl)-5-[6-oxo-1-(3-phenylpropyl)-1,6-dihydro-3-pyrldinyl)nicotinonitrile

Example 108

Ethyl 4-5-[6-amino-5-cyano-2-(2-furyl)-3-pyridyl]-2-oxo-1,2-dihydro-1-pyridinylbutanoate

Example 107

50 2-Amino-5-[1-(3-cyanopropyl)-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinonitrile

Example 108

2-Amino-5-[1-(3-cyanobutylpropyl)-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinonitrile

Example 109

2-Amino-6-(2-furyl)-5-(6-oxo-1-(4,4,4-trifluorobutyl)-1,6-dihydro-3-pyridinyl]nicotinonitrile

	Example 110
	2-Amino-6-(2-furyl)-5-[6-oxo-1-(3,4,4-trifluoro-3-butenyl)-1,6-dihydro-3-pyridinyl]nicotinonitrile
5	Example 111
	2-Amino-6-(2-furyl)-5-[6-oxo-1-(3,3,3-trifluoropropyl)-1,6-dihydro-3-pyridinyl]nicotinonitrile
	Example 112
10	2-Amino-5-(1-butyl-6-oxo-1,6-dihydro-3-pyridinyi)-6-(2-furyl)nicotinonitrile
	Example 113
15	2-Amino-6-(2-furyi)-5-(1-heptyl-6-oxo-1,6-dihydro-3-pyridinyi)nicotinonitrile
	Example 114
	2-Amino-6-(2-furyi)-5-(1-isopentyi-6-oxo-1,6-dihydro-3-pyridinyi)nicotinonitrile
20	Example 115
	5-(1-Allyl-6-oxo-1,6-dihydro-3-pyrldinyl)-2-amino-6-(2-furyl)nicotinonitrile
25	Example 116
	2-Amino-5-[1-(3-butenyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
	Example 117
30	2-Amino-6-(2-furyl)-5-[6-oxo-1-(4-pentenyl)-1,6-dihydro-3-pyridinyl]nicotinonitrile
	Example 118
35	2-Amino-6-(2-furyl)-5-[1-(3-hydroxypropyl)]-6-oxo-1,6-dihydro-3-pyridinyl]nicotinonitrile
	Example 119
40	2-Amino-5-[1-(2,3-dihydroxypropyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
40	Example 120
	2-Amino-5-[1-(3-fluoropropyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
45	Example 121
	2-Amino-5-[1-(3-chloropropyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
50	Example 122
X	2-Amino-5-[1-(4-chlorobutyl)-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinonitrile
	Example 123
55	2-Amino-5-[1-(5-chloropentyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile

Example 124

	2-Amino-5-[1-(cyclohexylmethyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
	Example 125
5	2-Amino-6-(2-furyl)-5-[6-oxo-1-(tetrahydro-2H-2-pyranylmethyl)-1,6-dihydro-3-pyridinyl]nicotinonitrile
	Example 126
10	2-Amino-5-(1-benzyl-6-oxo-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinonitrile
10	Example 127
	2-Amino-5-[1-(2-cyanoethyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
15	Example 128
	2-Amino-6-(2-furyl)-5-[6-oxo-1-(2-propynyl)-1,6-dihydro-3-pyridinyl]nicotinonitrile
	Example 129
20	2-Amino-5-[1-(2-butynyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
	Example 130
25	2-Amino-6-(2-furyl)-5-(6-oxo-1-[3-(1,1,1-trimethylsilyl)-2-propynyl]-1,6-dihydro-3-pyridinyl]nicotinonitrile
	Example 131
30	2-Amino-5-{1-{(6,7-dimethoxy-2-oxo-2H-4-chromenyl)methyl]-6-oxo-1,6-dihydro-3-pyridinyl}nicotinonitrile
30	Example 132
	2-Amino-5-{1-{4-(1,3-dioxo-2,3-dihydro-1H-2-isoindolyi)butyl]-6-oxo-1,6-dihydro-3-pyridinyi)-6-(2-furyl)nicotinonitrile
35	Example 133
	2-Amino-6-(2-furyl)-5-(1-[2-(1H-3-indolyl)ethyl]-6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile
40	Example 134
••	2-Amino-6-(2-furyl)-5-[6-oxo-1-(2-oxopropyl)-1,6-dihydro-3-pyridinyl]nicotlnonitrile
	Example 135
45	2-Amino-6-(2-furyl)-5-{6-oxo-1-2-oxo-2-[4-(trifluoromethyl)phenyl]ethyl-1,6-dihydro-3-pyridinyl}nicotinonitrile
	Example 136
50	2-Amino-6-(2-furyl)-5-(6-oxo-1-phenyl-1,6-dihydro-3-pyridinyl)-6-(2-furyl)nicotinonitrile
	Example 137
	2-Amino-5-[1-(4-cyanophenyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
55	Example 138
	2. Amino. 6. (2. fund). 5. fo. ova. 1. (4. vinudah and). 4. 6. dihudan 2. nunidisullaisatin autoila

	Example 139
	2-Amino-6-(2-furyl)-5-[1-(4-methylphenyl)-6-oxo-1,6-dihydro-3-pyridinyl]nicotinonitrile
5	Example 140
	2-Amino-6-(2-furyl)-5-[1-(2-methylphenyl)-6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile
40	Example 141
10	2-Amino-6-(2-furyl)-5-[1-(4-methoxyphenyl)-6-oxo-1,6-dihydro-3-pyridinyl]nicotinonitrile
	Example 142
15	2-Amino-6-(2-furyl)-5-[1-(3-methoxyphenyl)-6-oxo-1,6-dihydro-3-pyridinyl]nicotinonitrile
	Example 143
~~	2-Amino-6-(2-furyi)-5-[1-(2-methoxyphenyi)-6-oxo-1,6-dihydro-3-pyridinyi]nicotinonitrile
20	Example 144
	2-Amino-5-[1-(4-fluorophenyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
25	Example 145
	2-Amino-5-[1-(3-fluorophenyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
<i>30</i>	Example 148
	2-Amino-5-[1-(2-fluorophenyl)-6-oxo-1,6-dihydro-3-pyridinyl]-6-(2-furyl)nicotinonitrile
<i>3</i> 5	[0140] The title compounds of the following Examples 147 to 175 were obtained in the same manner as in the above mentioned Example 103 or by its analogous method.
	Example 147
	6-Amino-2-(2-furyl)-6'-(3-phenylpropoxy)-[3,3']bipyridinyl-5-carbonitrile
40	Example 148
	Ethyl 4-(6'-amino-5'-cyano-2'-(2-furyl)-[3,3']bipyridinyl-6-yloxy)butyrate
45	Example 149
	6-Amino-6'-(3-cyanopropoxy)-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
	Example 150
50	6-Amino-6'-cyclobutylmethoxy-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
	Example 151
55	6-Amino-2-(2-furyf)-6'-(4,4,4-trifluorobutoxy)-[3,3']bipyridinyl-5-carbonitrile
	Example 152
	6-Amino-2-(2-furyl)-6'-(3,4,4-trifluoro-3-butenyloxy)-{3,3']bipyridinyl-5-carbonitrile

	Example 153
	6-Amino-2-(2-furyl)-6'-(3,3,3-trifluoropropoxy)-[3,3]bipyridinyl-5-carbonitril
5	Example 154
	6-Amino-6'-butoxy-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
10	Example 155
10	6-Amino-2-(2-furyf)-6'-heptyloxy-[3,3']bipyridinyl-5-carbonitrile
	Example 156
15	6-Amino-2-(2-furyl)-6'-(3-methylbutoxy)-[3,3']bipyridinyl-5-carbonitrile
	Example 157
20	6'-Allyloxy-6-amino-2-(2-furyl)-[3,3']blpyridinyl-5-carbonitrile
20	Example 158
	6-Amino-6'-(3-butenyloxy)-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
25	Example 159
	6-Amino-2-(2-furyl)-6'-(4-pentenyloxy)-[3,3']bipyridinyl-5-carbonitrile
30	Example 160
-	6-Amino-2-(2-furyl)-6'-(3-hydroxypropoxy)-[3,3']bipyridinyl-5-carbonitrile
	Example 161
35	6-Amino-6'-(2,3-dihydroxypropoxy)-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
	Example 162
40	6-Amino-6'-(3-fluoropropoxy)-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
	Example 163
	6-Amino-6'-(3-chloropropoxy)-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
45	Example 164
	6-Amino-6'-(4-chlorobutoxy)-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
50	Example 165
	6-Amino-6'-(5-chloropentyloxy)-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
	Example 166
55	6-Amino-6'-cyclohexyloxy-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile
	Example 167

6-Amino-2-(2-furyl)-6'-(2-tetrahydropyranyloxy)-[3,3']bipyridinyl-5-carbonitrile

Example 168

5 6-Amino-2-(2-furyl)-6'-(2-propynyloxy)-[3,3']bipyridinyl-5-carbonitrile

Example 169

6-Amino-6'-(2-butynyloxy)-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrile

Example 170

6-Amino-2-(2-furyl)-6'-(3-trimethylsilanyl-2-propynyloxy)-[3,3']bipyridinyl-5-carbonitrile

15 Example 171

10

20

30

6-Amino-6'-(6,7-dimethoxy-2-oxo-2H-chromen-4-ylmethoxy)-2-(2-furyl)-[3,3]bipyridinyl-5-carbonitrile

Example 172

6-Amino-6'-[4-(1,3-dioxo-1,3-dihydro-2-isoIndolyl)butoxy]-2-(2-furyl)-[3,3']bipyridinyl-5-carbonitrite

Example 173

25 6-Amino-2-(2-furyl)-6'-[2-(1H-3-indolyl)ethoxy]-[3,3']bipyridinyl-5-carbonitrile

Example 174

6-Amino-2-(2-furyl)-6'-(2-oxopropyl)-[3,3']bipyridinyl-5-carbonitrile

Example 175

6-Amino-2- (2-furyl)-6'-[2-[4-(trifluoromethyl]phenyl]ethoxy]-[3,3'] bipyridinyl-5-carbonitrile

35 Example 176

2-Amino-4,6-di(3-fluorophenyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile

40

50

45

[0141] The title compound was obtained in the same manners as in Reference Examples 6 to 9 and Example 3, or by analogous methods of these.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 3, 81 (3H, s), 5. 43 (2H, br s), 6. 41-6. 46 (1H, m), 6. 79-6. 83 (1H, m), 6. 88-7. 04 (6H, m), 7. 17 (1H, dt, J = 2. 4, 5. 9 Hz), 7. 29 (1H, dt, J = 2. 4, 5. 9 Hz), 7. 53-7. 57 (1H, m).

Example 177

2-Amino-4,6-di(3-fluorophenyl)-5-(6-oxo-1,6-dihydro-3-pyridyl)nicotinonitrile hydrobromide

5

10

15

[0142] The title compound was obtained in the same manner as in Example 4 or by its analogous method. ¹H NMR (400 MHz, DMSO- d_6) δ ppm; 6. 01 (1H, d, J = 9. 4 Hz), 6. 86 (1H, d, J = 2. 4 Hz), 6. 93 (1H, dd, J = 2. 4, 9.4 Hz), 7. 04-7. 24 (6H, m), 7. 32-7. 39 (1H, m), 7. 40-7. 47 (1H, m).

20 Example 178

2-Amino-6-(2-furyl)-4-isopropoxy-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile

25

30

[0143] Using 6-(2-furyl)-4-isopropoxy-2-oxo-1,2-dihydro-3-pyridinecarbonitrile, the title compound was obtained in the same manner as in Reference Examples 7 to 9 and Example 3, or by its analogous method.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 1. 12 (6H, d, J= 8. 1 Hz), 3. 98 (3H, s), 4. 58-4. 65 (1H, m), 5. 44 (2H, br s), 5. 97 (1H, d, J= 3. 3 Hz), 6. 29 (1H, dd, J= 1. 8, 3. 3 Hz), 6.81 (1H, d, J= 8. 4 Hz), 7. 37-7. 43 (2H, m), 7. 96 (1H, d, J= 1. 8 Hz).

Example 179

0

2-Amino-6-(2-furyl)-4-hydroxy-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile hydrobromide

45

50

[0144] Using 2-amino-6-(2-furyl)-4-isopropoxy-5-(4-methoxy-3-pyridyl)-3-pyridylnecarbonitrile, the title -compound was obtained in the same manner as in Example 4 or by its analogous method.

¹H NMR (400 MHz, DMSO- α_0) δ ppm; 6. 20 (1H, d, J = 3. 7 Hz), 6. 31 (1H, d, J = 9. 3 Hz), 6. 61 (1H, dd, J = 1. 5, 3. 7 Hz), 7. 01 (2H, br s), 7. 08 (1H, dd, J = 2. 4, 9. 3 Hz), 7. 12 (1H, d, J = 2. 4 Hz), 7. 92 (1H, d, J = 1. 5 Hz), 10. 79 (1H, br s).

Example 180

2-Amino-6-(3-fluorophenyl)-4-isopropoxy-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile

H₂N N F

15 [0145] The title compound was obtained in the same manner as in Examples 14 to 16, Reference Examples 7 to 9 and Example 3 or by analogous method of these.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 1. 13 (6H d, J = 8. 1 Hz), 3.95 (3H, s), 4. 44-4. 58 (1H, m), 5. 28 (2H, br s), 6. 66 (1H, d, J = 8. 6 Hz), 6. 89-7. 01 (3H, m), 7. 16 (1H, dt, J = 5. 9, 8.0 Hz), 7. 28 (1H, dd, J = 1. 6, 8. 6 Hz), 7. 79-7. 81 (1H, m).

Example 181

2-Amino-6-(3-fluorophenyl)-4-hydroxy-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile hydrobromide

²⁵ [0146]

10

20

30

35

45

50

H₂N N + F · HBr

[0147] Using 2-amino-6-(3-fluorophenyl)-4-isopropoxy-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, the title compound was obtained in the same manner as in Example 4 or by its analogous method.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 6. 10 (1H, d, J= 9. 6 Hz), 6. 75-6. 80 (1H, m), 6. 89-6. 93-(1H, m), 6. 99 (1H, dd, J= 2. 7, 9. 6 Hz), 7. 12 (1H, d, J= 7. 4 Hz), 7. 22-7. 29 (2H, m), 7. 41-7. 48 (1H, m), 10. 95 (1H, s).

Example 182

2-Amino-6-(3-fluorophenyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile

H₂N N F

55 [0148] The title compound was obtained in the same manners as in Reference Examples 7 to 9 and Example 3 or by its analogous methods.

¹H NMR (400 MHz, DMSO- d_{0}) δ ppm; 3. 82 (3H, s), 6. 71 (1H, d, J= 8. 4 Hz), 6. 99-7. 04 (1H, m), 7. 08-7. 20 (4H, m), 7. 28-7. 35 (1H, m), 7. 36 (1H, dd, J= 2. 5, 8. 4 Hz), 7. 95 (1H, d, J= 2. 5 Hz), 8. 01 (1H, s); MS m/e (ESI) 321-(MH+).

Example 183

5

10

20

25

30

2-Amino-6-(3-fluorophenyl)-5-(6-oxo-1;6-dihydro-3-pyridinyl)nicotinonitrile

H₂N N F

[0149] Using 2-amino-6-(3-fluorophenyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, the title compound was obtained in the same manner as in Example 4 or by its analogous method.

¹H NMR (400 MHz, DMSO- d_6) δ ppm; 6. 15 (1H, d, J = 8. 2 Hz), 6. 94-7. 02 (1H m), 7. 04-7. 28 (6H, m), 7. 34-7. 44 (1H, m), 7. 97 (1H, s);

MS m/e (ESI) 307 (MH+).

Example 184

2-Amino-6-(3-fluorophenyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile

H₂N N F

35 [0150] The title compound was obtained in the same manner as in Reference Examples 1 to 4 and Example 1, or by its analogous method.

 1 H NMR (400 MHz, DMSO- $d_{\rm S}$) δ ppm; 2. 30 (6H, s), 6. 78 (2H, s), 7. 01 (1H, d, J = 8.0 Hz), 7. 10-7. 16 (1H m), 7. 17-7. 23 (1H, m), 7. 26 (2H, s), 7. 29-7. 35 (1H, m), 8. 03 (1H, s); MS m/e (ESI) 319 (MH+).

[0151] The structural formulae of the title compounds of the above-mentioned Examples 1 to 8, 10 to 76, 78, 79, 81 to 102, 105 to 175 are shown below.

EP 1 308 441 A1

Example No.	8	b	G	d
1	ξ-cn	\$-н	\$- _ *	⊱ <∂
2	{-cn	3-H	\$ - ∕C"	,Q,
3	{-cn	\$-H	}—€N 004,	
4	{-cn	\$-н	\$—\$=0	;-{)
5	{-cn	}− H	├	\
6	{-cn	\$-H	}-€N-0	·~]
7	{-cn	}-H	}—(eo	2.O.
8	{-cn ⋅	}-н	, αθ	,O,

1	Example No.	R'	MS m/e(ESI, MH+)
1	10	2-Furyl	366

40 ·

(continued)

]	Example No.	R'	MS m/e(ESI, MH+)
j	11	4-Cyanophenyl	401
	12	Phenyl	262
·	13	4-methylphenyl	276
	14	3-methytphenyl	276
	. 15	2-Methylphenyl	276
	16	4-Methoxyphenyl	292
	17	3-Methoxyphenyl	292
	18	2,4-Dimethoxyphenyl	322
	19	3,4-Dimethoxyphenyl	322
	20	3,4,6-Trimethoxyphenyl	352
	21	3,4-Methylenedioxyphenyl	306
	22	4-Benzyloxyphenyl	368
1	23	3-Benzyloxyphenyl	. 368
	24	4-Phenoxyphenyl	354
	25	3-Ethoxyphenyl	306 ·
j	28	4-Trifluoromethoxyphenyl	346
]	27 •	3-Trifluoromethoxyphenyl	346
·	28	4-Dimethylaminophenyl	305
	29	4-Thiomethylphenyl	308
1	30	4-Fluorophenyl	280
	31	3-Fluorophenyl	280
	32	2-Fluorophenyl	280
	33	2,4-Difluorophenyl	298
ł	34	2,3,4,5-Pentafluorophenyl	352
	35	4-Trifluoromethylphenyl	330
·	36	3-Trifluoromethylphenyl	330
ĺ	37	2-Trifluoromethylphenyl	330
[38	3,5-Bis(trifluoromethyl)phenyl	398
·	39	4-Nitrophenyl	307
[40	3-Nitrophenyl	307
	41	3-Nitro-4-methylphenyl	321
	42	2-Fluoro-4-biphenylyl	356
	43	4-Methanesulfonylphenyl	340
	44	4-Methanesulfinylphenyl	324
Ţ	45	4-Biphenylyl	338
Ī	46	3-Biphenylyl	338
Ī	47	3-Cyanophenyl	287
Ī	48	4-Acetylphenyl	304

(continued)

4 9 3-Acetylphenyl 304 5 0 2-Acetylphenyl 304 5 1 3-Formylphenyl 290 5 2 2-Formylphenyl 290 5 3 3-Chlorophenyl 296 5 4 2-Chlorophenyl 296 5 5 2,4-Dichlorophenyl 330 5 6 3,4-Dichlorophneyl 330 5 7 3,5-Dichlorophneyl 330 5 8 4-tert-Butylpheyl 318 5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 318 7 3 3-Benzothlophenyl 318 <td< th=""><th>Example No.</th><th>R</th><th>MS m/e(ESI, MH+)</th></td<>	Example No.	R	MS m/e(ESI, MH+)
5 1 3-Formylphenyl 290 5 2 2-Formylphenyl 290 5 3 3-Chlorophenyl 296 5 4 2-Chlorophenyl 298 5 5 2,4-Dichlorophenyl 330 5 6 3,4-Dichlorophneyl 330 5 7 3,5-Dichlorophneyl 330 5 8 4-tert-Butylpheyl 318 5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothlophenyl 318 7 4 3-Pyridyl 263	4 9	3-Acetylphenyl	304
5 2 2-Formytphenyl 290 5 3 3-Chlorophenyl 296 5 4 2-Chlorophenyl 298 5 5 2,4-Dichlorophenyl 330 5 6 3,4-Dichlorophneyl 330 5 7 3,5-Dichlorophneyl 330 5 8 4-tert-Butylpheyl 318 5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyrldyl 263	5 0	2-Acetylphenyl	304
5 3 3-Chlorophenyl 296 5 4 2-Chlorophenyl 298 5 5 2,4-Dichlorophenyl 330 5 6 3,4-Dichlorophneyl 330 5 7 3,5-Dichlorophneyl 330 5 8 4-tert-Butylpheyl 318 5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thlenyl 296 7 0 3-Formyl-2-thlenyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263	51	3-Formytphenyl	290
5 4 2-Chlorophenyl 298 5 5 2,4-Dichlorophenyl 330 5 6 3,4-Dichlorophneyl 330 5 7 3,5-Dichlorophneyl 330 5 8 4-tert-Butylpheyl 318 5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyrldyl 263	5 2	2-Formytphenyt	290
5 5 2,4-Dichlorophenyl 330 5 6 3,4-Dichlorophneyl 330 5 7 3,5-Dichlorophneyl 330 5 8 4-tert-Butylpheyl 318 5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 298 7 0 3-Formyl-2-thlenyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	5 3	3-Chiorophenyi	296
5 6 3,4-Dichlorophneyl 330 5 7 3,5-Dichlorophneyl 330 5 8 4-tert-Butylpheyl 318 5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	54	2-Chlorophenyl	296
5 7 3,5-Dichlorophneyl 330 5 8 4-tert-Butylpheyl 318 5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	5.5	2,4-Dichlorophenyl	330
5 8 4-tert-Butylpheyl 318 5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	56	3,4-Dichlorophneyl	330
5 9 1-Naphthyl 312 6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	57	3,5-Dichlorophneyl	330
6 0 2-Naphthyl 312 6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 298 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	58	4-tert-Butylpheyl	318
6 1 2-Benzofuranyl 302 6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	5 9	1-Naphthyl	312
6 2 4-Dibenzofuranyl 352 6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	60	2-Naphthyl	312
6 3 3-Furyl 252 6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	61	2-Benzofuranyl	302
6 4 2-Thienyl 268 6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	62	4-Dibenzofuranyl	352
6 5 3-Thienyl 268 6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chioro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	63	3-Furyl	252
6 6 5-Methyl-2-thienyl 282 6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	64	2-Thienyl	268
6 7 4-Methyl-2-thienyl 282 6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	65	3-Thienyl	268 ·
6 8 5-Acetyl-2-thienyl 310 6 9 2-Formyl-3-thienyl 296 7 0 3-Formyl-2-thienyl 296 7 1 5-Chloro-2-thienyl 302 7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	66	5-Methyl-2-thienyl	282
6 9 2-Formyl-3-thlenyl 298 7 0 3-Formyl-2-thlenyl 296 7 1 5-Chloro-2-thlenyl 302 7 2 2-Benzothlophenyl 318 7 3 3-Benzothlophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	67	4-Methyl-2-thienyl	282
7 0 3-Formyl-2-thlenyl 296 7 1 5-Chloro-2-thlenyl 302 7 2 2-Benzothlophenyl 318 7 3 3-Benzothlophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	6.8	5-Acetyl-2-thienyl	310
7 1 5-Chloro-2-thlenyl 302 7 2 2-Benzothlophenyl 318 7 3 3-Benzothlophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	69	2-Formyl-3-thienyl	296
7 2 2-Benzothiophenyl 318 7 3 3-Benzothiophenyl 318 7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	70	3-Formyl-2-thlenyl	296
7 3 3-Benzothiophenyi 318 7 4 3-Pyridyi 263 7 5 2-Pyridyi 263	71 ;	5-Chloro-2-thienyl	302
7 4 3-Pyridyl 263 7 5 2-Pyridyl 263	72	2-Benzothiophenyl	318
7.5 2-Pyridyl	73	3-Benzothiophenyl	318
	74	3-Pyridyl	263
7 6 4-Vinytphenyl 288	75	2-Pyridyl	263
	76	4-Vinylphenyl	288

55

10

15

EP 1 308 441 A1

Example No.	R	IR'	MS m/e (MH')
7 8		H → o	298 (ESI)
7 9			310 (FAB)

H₂N N R

Example No.	R	R'	R"] R***	MS m/e (MH')
8 1	1-	1-CN	Н	H	309 (FAB)
8 2	1-0	H	├ _он	н	341 (ES1)
8 3		}—{ NH NH	H	H	337 (ESI)
84			Ме	Me	325 (ESI)
8 5	<u>P</u>	-		H	379 (ESI)
8 6		1	}\- <u>-</u> F	Н	371 (ESI)
8 7		- (H	Н	365 (ES1)
8 8		H Nes	N-E1	H	438 (ES1)
8 9			Ne	H	339 (ESI)
9 0			Ph .	н	401 (ESI)

EP 1 308 441 A1

5	9 1	I PO	}	H	365 (ESI)
	9 2) DEI	NH ₂	H	382 (ES1)
10	9 3	⊢ (Net		H	381 (ESI)
15	9 4	EI EI	7-58	Н	420 (ESI)
	9 5	ER	7	Н	450 (ESI)
20 -	96) - EI		H .	416 (ES1)
25	9 7) De		H	416 (ESI)
30	98) De		H	430 (ESI)
	9 9	I———O		H	430 (ESI)
35	100	FEI P		H	363 (ESI)
40	101	NEI EI	OH)	H 	383 (ES1)
{	102	Et	Et	H	353 (ESI)

H₂N N O

EP 1 308 441 A1

	Example No.	R	MS m/e (ESI, MH')
	105	(CH ₂),Ph	397
5	106	(CH,),COOE t	393
	107	(CH ₂) ₂ CN	346
	108	(CH ₂),c-C ₄ H ₂	347
	109	(CH ₂) ₃ CF ₃	389
10	110	(CH ₂),CF=CF ₃	387
	111	(CH,),CF,	375
	112	 	335
15	1 1 3	/	377
	114		349
	115	~	319
20	116		333
,	117	/	347
	118	№	337
25	119	он Он	353
•	120 '	├	339
•	121	/~a	355
30	122	r c	369
•	1 2 3	CI	383
	124	M	375
-	125	$\overset{\textstyle \sim}{\sim}$	377

EP 1 308 441 A1

	1 2 6	10	369
5	1 2 7	→ N	332
	1 2 8		317
10	129		331
	130	SiMe	389
15	131	OMe	497
20	1 3 2	→ NA	480
25	1 3 3		422
30	134		335
•	135	CF.	465
35	136		355
,	1 3 7	}—————————————————————————————————————	380
40	138		381
j	139	}—————————————————————————————————————	369
45	140	Me .	369

EP 1 308 441 A1

141	}—CMe	385
1 4 2	OMe	385
143	MeQ }—	380
144]—(~)—F	373
145		373
146	1-	373

H₂N N O

EP 1 308 441 A1

Example No.	- R	MS E/e (ESI, MH')
147	(CH ₁),Ph	397
148	(CH,),COOE1	393
149	(CH ₂) 1 CN	346
150	(CH ₂) ₁ c-C ₄ H ₂	347
151	(CH ₂) ₄ CF ₄	389
152	(CH ₁) ₁ CF=CF ₁	387
153	(CH ₁),CF ₂	375
154	 	335
155	////	377
156	/	349
157	~	319
158	***	333
159	///	347
160	№ ОН	. 337
161	ОН	353
162	├ ~~F	339
163	/ ∕ α	355
164	1 C	369
165		383

166	10	375
167	M	377
168	M	317
169	1	331
170	SiMe	389
171	OMe OMe	497
172	I NOTE TO SERVICE TO S	480
173		423
174	IV,	335
175	m Car	465

[0152] The compound of the present invention represented by the above formula (i) is useful as an adenosine receptor (A₁, A_{2a}, A_{2b} or A₃ receptor) antagonist, particularly an A_{2b} receptor antagonist. Test Examples showing the usefulness of the compound of the present invention as a medicament are shown below.

Test Example 1

10

15

20

40

50

55

Measurement of the ability to bind to adenosine A₄ receptor

[0153] A human adenosine A₁ receptor cDNA was expressed in excess in CHOK1 cells, and this membrane sample was added at a protein concentration of 66.7 µg/ml to, and suspended in, 20 mM HEPES buffer, pH 7.4.(10 mM MgCl₂, 100 mM NaCl). To 0.45 ml of this membrane sample suspension were added 0.025 ml of 60 nM tritium-labeled chlorocyclopentyl adenosine (³H-CCPA, from NEN Ltd.) and 0.025 ml test compound. This mixture was left at 30°C for 120 minutes, filtered rapidly under suction through a glass fiber filter (GF/B, from Whatman), and immediately washed twice with 5 ml of 50 mM water-cooled Tris-HCl buffer. Thereafter, the glass fiber filter was transferred to a vial, a scintillator was added thereto, and the radioactivity on the filter was measured by a liquid scintillation counter. The inhibition of binding of ³H-CCPA to A₁ receptor by the test compound was determined using the following formula, and from this inhibition, 50 % inhibition concentration (IC₅₀) was calculated (the following equation).

Inhibition (%)=[1-{binding in the presence of the test

compound-non-specific binding)/(total binding-non-specific

binding)}]×100

[0154] In the above formula, the total binding means ³H-CCPA-bound radioactivity in the absence of the test-compound; the non-specific binding means ³H-CCPA-bound radioactivity in the presence of 100 µM RPIA ([R]-[1-methyl-2-phenylethyl] adenosine); and the binding in the presence of the test compound means ³H-CCPA-bound radioactivity in the presence of the test compound at predetermined concentrations. The inhibition-constant (Ki value) in the table was determined from the formula of Cheng-Prusoff.

Test Example 2

10

25

30

50

55

Measurement of the ability to bind to adenosine A2a receptor

[0155] An experiment of inhibition of binding to adenosine A_{2a} receptor was conducted using a membrane sample (Receptor Biology Inc.) where an adenosine A_{2a} receptor cDNA was expressed in excess. This membrane sample was added at a protein concentration of 22.2 µg/ml to, and suspended in, 20 mM HEPES buffer, pH 7.4 (10 mM MgCl₂ and 100 mM NaCl). To 0.45 ml of this membrane sample suspension were added 0.025 ml of 500 nM tritium-labeled 2-p-{2-carboxyethyl]phenetylamino-5'-N-ethylarboxyamide adenosine (³H-CGS21680, from NEN) and 0.025 ml test compound. This mixture was left at 25°C for 90 minutes, filtered rapidly under suction through a glass fiber filter {GF/B, from Whatman), and immediately washed twice with 5 ml of 50 mM water-cooled Tris-HCl buffer. Thereafter, the glass fiber filter was transferred to a vial, a scintillator was added thereto, and the radioactivity on the filter was measured by a liquid scintillation counter. The Inhibition of binding of ³H-CGS21680 to A_{2a} receptor by the test compound was determined using the following formula, and from this inhibition, 50 % Inhibition concentration-{IC₅₀} was-calculated.

Inhibition'(%)=[1-{binding in the presence of the test compound-nonspecific

binding)/(total binding-nonspecific

binding))] \times 100

[0156] Here, the total binding means ³H-CGS21680-bound radioactivity in the absence of the test compound; the nonspecific binding means ³H-CGS21680-bound radioactivity in the presence of 100 µM RPIA; and the binding in the presence of the test compound means ³H-CGS21680-bound radioactivity in the absence of the test compound at predetermined concentrations. The inhibition constant (Ki value) in the table was determined from the formula of Cheng-Prusoff.

35 Test Example 3

Experiment of inhibition of NECA-stimulated production of cAMP in adenosine A26 receptor-expressing cells

[0157] CHOK1 cells where a human adenosine A₂₆ receptor had been expressed in excess were plated onto a 24-well plate at a density of 1.5×10⁵ cells/well, cultured overnight, and used in the experiment. The degree of inhibitory effect of the test compound on the amount of cAMP produced by stimulation with 30 nM 5'-N-ethylcarboxyamide adenosine (NECA from Sigma) was evaluated in terms of affinity for A₂₆ receptor. That is, the adhering cells were washed twice with 2 ml/well Krebs-Ringer buffer solution (containing 0.1 % BSA; pH 7.4) and pre-incubated for 30 minutes in a volume of 0.5 ml/well. Then, a mixed solution containing NECA and the test compound was added in a volume of 0.1 ml/well in the presence of a phosphodiesterase inhibitor Ro-20-1724 (a product of RBI). After pre-incubation for 15 minutes, the reaction was terminated with 0.1 N HCI in a volume of 300 µl/well. Measurement of intracellular cAMP was carried out using a cAMP enzyme immunoassay kit produced by Amersham. The inhibition of NECA-stimulated production of cAMP by the test compound was determined using the following equation:

Inhibition (%)=[1-{(amount of CAMP in the coexistence of NECA and the test compound-amount of cAMP in only the Krebs-Ringer buffer solution)/(amount of cAMP upon stimulation with NECA only-amount of cAMP in only the Krebs-Ringer buffer

solution)}]×100

[0158] The ability of the compound according to the present invention to bind to or the ability to inhibit adenosine receptor are as follows.

Table 1

Test Compound	Ki (nM) A1	Ki (nM) A2a	IC ₅₀ (nM) A2b
Example 1	990	23	2.7
2	66	22	3.7
5	400	7	6.5

15 [0159] The compound according to the present invention or a salt thereof exhibited an excellent inhibitory activity on adenosine receptor.

Test Example 4

10

25

40

45

50

55

20 Evaluation of Defecation-Promoting Action

[0160] The defecation-promoting action of the adenosine A_{2b} receptor-inhibiting compound which was identified by measuring the binding ability and inhibitory ability thereof to the adenosine receptor in Test Example 1, a salt thereof, a hydrate of them, or a pharmaceutical composition containing it can be evaluated on the basis of the following method. That is, SD IGS rats (6 weeks-old, from Charles River) were placed in cages (3 animals/cage) and preliminarily allowed food and water ad libitum and raised for 1 week. Then, a tared water-absorbing sheet was placed below each cage, and the animals were fasted but allowed water ad libitum throughout the experiment. After 1.5 hours, the fecal pellets were recovered from each cage and observed for abnormality before the experiment. The compound suspended or dissolved in 0.5 % (w/v) methyl cellulose (MC) was orally administered in a dose of 5 ml/kg. On one hand, 0.5 % (w/v) MC only was orally given to the control group. After administration of the compound, the rats were returned to the cage provided with a new water-absorbing sheet, and 90 minutes after the administration, the fecal pellets on the water-absorbing sheet were recovered from each cage, and the external appearance was observed, and then counted and weighed. The number of fecal pellets is expressed per each cage. After the fecal pellets were recovered, the water-absorbing sheet was weighed, and the weight determined by subtracting the initial weight of the water-adsorbing sheet from the weight after the experiment was regarded as the volume of urine.

Table 2

Example		The number of fecal pellets
Control	-	0.50±0.29
1	1 mg/kg	1.75±1.03
	3 mg/kg	7.25±1.65
}	10 mg/kg	22.25±2.93
2	1 mg/kg	7.80±0.20
	10 mg/kg	18.00±1.30
5	1 mg/kg	7.00±1.23
	3 mg/kg	14.25±3.38

[0161] The compound according to the present invention or a salt thereof exhibited an excellent defecation-promoting action.

Claims

1. A compound represented by the formula:

$$\begin{array}{c|c}
H_2N & R^4 \\
R^1 & R^3
\end{array}$$

(wherein R¹ represents cyano group, carboxyl group or an optionally substituted carbamoyl group; R² represents hydrogen atom, hydroxyl group, an optionally substituted C₁₋₈ alkoxy group, an optionally substituted C₈₋₁₄ aromatic hydrocarbon cyclic group or an optionally substituted 5- to 14-membered aromatic heterocyclic group; and R³ and R⁴ are the same as or different from each other and each represents a C₃₋₈ cycloalkyl group, a C₃₋₈ cycloalkenyl group, a C₆₋₁₄ aromatic hydrocarbon cyclic group, a 5- to 14-membered non-aromatic heterocyclic group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group, respectively, provided that the cases where (1) R¹ is cyano group, R² is 4-bromo-2-thienyl group, R³ is 3,4-dimethoxyphenyl group and R⁴ is 2-thienyl group, (2) R¹ is cyano group, R² is hydrogen atom, and each of R³ and R⁴ is phenyl group, (3) R¹ is cyano group, R² is 4-chlorophenyl group, R³ is phenyl group and R⁴ is 4-(3,4-dichlorophenyl)-1-oxo-2(1H)-phthalazinyl group, (4) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is 1-piperazinyl group, (5) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is a 1-pyridyl group, (6) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is 4-diphenylmethyl-1-piperazinyl group, (7) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is 4-morpholinyl group, (8) R¹ is cyano group, R² is 4-methyl-phenyl group, and each of R³ and R⁴ is phenyl group and R⁴ is cyano group, and each of R³ and R⁴ is phenyl group are excluded) or a salt thereof.

- 25 2. The compound according to claim 1 or a salt thereof, in which R1 is cyano group.
 - 3. The compound according to claim 1 or a salt thereof, in which R1 is a carbamoyl group represented by the formula:

5

10

15

20

30

45

- wherein R⁵ and R⁶ are the same as or different from each other and each represents hydrogen atom, an optionally substituted C₂₋₆ alkyl group, an optionally substituted C₂₋₆ alkynyl group, an optionally substituted C₂₋₆ alkynyl group, an optionally substituted C₆₋₁₄ aromatic hydrocarbon cyclic group or an optionally substituted 5- to 14-membered aromatic heterocyclic group.
- 40 4. The compound according to claim 1 or a salt thereof, in which R2 is a C₆₋₁₄ aromatic hydrocarbon cyclic group or 5 to 14-membered aromatic heterocyclic group, each of which may have a substituent group.
 - 5. The compound according to claim 1 or a salt thereof, in which R² is a phenyl group, naphthyl group, pyridyl group, thienyl group or furyl group, each of which may have a substituent group.
 - The compound according to claim 1 or a salt thereof, in which R2 is a phenyl group which may be substituted with a halogen atom.
 - 7. The compound according to claim 1 or a salt thereof, in which R2 is hydrogen atom.
 - 8. The compound according to claim 1 or a salt thereof, in which R3 and R4 are the same as or different from each other and each represents a C₆₋₁₄ aromatic hydrocarbon cyclic group or a 5- to 14-membered aromatic heterocyclic group, each of which may have a substituent group.
- 9. The compound according to claim 1 or a salt thereof, in which R3 and R4 are the same as or different from each other and each represents a phenyl group, pyrrolyl group, pyridinyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, thienyl group, thiazolyl group, furyl group, naphthyl group, quinolinyl group, isoquinolinyl group, phthalazinyl group, naphthyridinyl group, indolyl group or isoindolyl group, each of which may have a substituent

group.

10

20

30

- 10. The compound according to claim 1 or a salt thereof, in which each of R³ and R⁴ represents a phenyl group, pyridyl group, thienyl group or furyl group which may have a substituent group, respectively.
- 11. The compound according to claim 1 or a salt thereof, in which R3 and/or R4 represent a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon cyclic group or a 5- to 14-membered aromatic heterocyclic group, each of which may be substituted with at least one group selected from the following substituent group a.
 - <substituent group a> a group consisting of (1) hydroxyl group, (2) a halogen atom, (3) cyano group, (4) nitro group, (5) a C_{1-6} alkyl group, C_{2-6} alkenyl group or C_{2-6} alkynyl group, each of which may be substituted with at least one group selected from (i) hydroxyl group, (ii) cyano group, (iii) halogen atom, (iv) C₁₋₆ alkylamino group, (v) di(C₁₋₆ alkyl)amino group, (vi) C₂₋₆ alkenylamino group, (vii) di(C₂₋₆ alkenyl)amino group, (viii) C₂₋₆ alkynylamino group, (ix) di(C₂₋₆ alkynyl)amino group, (x) N-C₁₋₆ alkyl-N-C₂₋₆ alkenylamino group, (xi) N-C₁₋₆ alkyl-N-C₂₋₆ alkynylamino group, (xii) N-C₂₋₆ alkenyl-N-C₂₋₆ alkynylamino group, (xiii) aralkyloxy group, (xiv) TBDMS oxy group, (xv) C₁₋₆ alkylsulfonylamino group, (xvi) C₁₋₆ alkylcarbonyloxy group, (xvii) C₂₋₆ alkenylcarbonyloxy group, (xviii) C₂₋₆ alkynylcarbonyloxy group, (xix) N-C₁₋₆ alkylcarbarnoyl group, (xx) N-C₂₋₆ alkenylcarbarnoyl group and (xxi) N-C₁₋₆ alkynylcarbamoyl group, (6) a C₁₋₆ alkoxy group, C₂₋₆ alkenyloxy group or C₂₋₆ alkynyloxy group, each of which may be substituted with at least one group selected from (i) C_{1-6} alkylamino group, (ii) aralkyloxy group and (iii) hydroxyl group, (7) a C_{1-6} alkylthio group, C_{2-6} alkenylthio group or C_{2-6} alkynylthio group, each of which may be substituted with at least one group selected from (i) hydroxyl group, (ii) nitrile group, (iii) halogen atom, (iv) C1-8 alkylamino group, (v) aralkyloxy group, (vi) TBDMS oxy group, (vii) C₁₋₆ alkylsulfonylamino group, (viii) C₁₋₆ alkylcarbonyloxy group and (ix) C_{1-6} alkylcarbamoyl group, (8) a carbonyl group substituted with a group selected from (i) C_{1-6} alkoxy group, (ii) amino group, (iii) C_{1-6} alkylamino group, (iv) $di(C_{1-6}$ alkyl) amino group, (v) C_{2-6} alkenylamino group, (iii) amino group, (iii) C_{1-6} alkylamino group, (iv) $di(C_{1-6}$ alkyl) amino group, (iii) C_{1-6} alkylamino group, (iv) $di(C_{1-6}$ alkyl) amino group, (iii) C_{1-6} alkylamino group, (iv) $di(C_{1-6}$ alkyl) amino group, (iv) C_{2-6} alkenylamino group, (iv) C_{1-6} alkylamino group, (iv) C_{1-6} no group, (vi) di (C₂₋₆ alkenyl) amino group, (vii) C₂₋₆ alkynylamino group, (vii) di(C₂₋₆ alkynyl)amino group, (viii) N-C₁₋₆ alkyl-N-C₂₋₆ alkenylamino group, (ix) N-C₁₋₆ alkyl-N-C₂₋₆ alkynylamino group and (x) N-C₂₋₆ alkenyl-N-C₂₋₆ alkenyl-N-C₂₋₆ alkenyl-N-C₂₋₆ alkynylamino group, (9) an amino group which may be substituted with one or two groups selected from (i) C_{1.6} alkyl group, (ii) C_{2-6} alkenyl group, (iii) C_{2-6} alkynyl group, (iv) C_{1-6} alkylsulfonyl group, (v) C_{2-6} alkenylsulfonyl group, (vi) C_{2-6} alkynylsulfonyl group, (vii) C_{1-6} alkylcarbonyl group, (viii) C_{2-6} alkenylcarbonyl group and (ix) C_{2-6} alkynylcarbonyl group, (10) a C_{1-6} alkylsulfonyl group, (11) a C_{2-6} alkenylsulfonyl group, (12) a C_{2-6} alkynylsulfonyl group, (13) a C_{1-6} alkylsulfinyl group, (14) a C_{2-6} alkenylsulfinyl group, (15) a C_{2-6} alkynylsulfinyl group, (16) formyl group, (17) a C₃₋₈ cycloalkyl group or C₃₋₈ cycloalkenyl group, each of which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atorn, (iii) nitrile group, (iv) C₁₋₆ alkyl group, (v) C₁₋₆ alkoxy group, (vi) C₁₋₆ alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group, (18) a 5 to 14-membered non-aromatic heterocyclic group which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atom, (iii) nitrile group, (iv) C_{1-6} alkyl group, (v) C_{1-6} alkoxy group, (vi) C_{1-6} alkoxy- C_{1-6} alkyl group and (vii) aralkyl group, (19) a C₈₋₁₄ aromatic hydrocarbon cyclic group which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atorn, (iii) nitrile group, (iv) C₁₋₆ alkyl group, (v) C₁₋₆ alkoxy group, (vi) C₁₋₆ alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group, and (20) a 5- to 14-membered aromatic heterocyclic group which may be substituted with at least one group selected from (i) hydroxyl group, (ii) halogen atom, (iii) nitrile group, (iv) C_{1-6} alkyl group, (v) C₁₋₆ alkoxy group, (vi) C₁₋₆ alkoxy-C₁₋₆ alkyl group and (vii) aralkyl group.
- 12. The compound according to claim 1 or a salt thereof, in which R^3 and/or R^4 represent a phenyl group, pyridyl group, thienyl group or furyl group, each of which may be substituted with at least one group selected from hydroxyl group, a halogen atom, a C_{1-6} alkyl group and a C_{1-6} alkoxy group.
- 13. The compound according to claim 1 or a salt thereof, in which R³ or R⁴ is a 6-oxo-1, 6-dihydropyridyl group which may have a substituent group.
- 14. The compound according to claim 1 represented by the formula:

$$\begin{array}{c|c}
H_2N & R^8 \\
R^1 & R^7
\end{array} (II)$$

(wherein R1 represents cyano group, carboxyl group or an optionally substituted carbamoyl group; R2 represents hydrogen atom, hydroxyl group, an optionally substituted C_{1-6} alkoxy group, an optionally substituted C_{1-6} alkylthio group, an optionally substituted C_{6-14} aromatic hydrocarbon cyclic group or an optionally substituted 5- to 14-membered aromatic heterocyclic group; R7 represents a group selected from the following substituent group b; R8 represents a C₆₋₁₄ aromatic hydrocarbon cyclic group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group, respectively; and ring A represents a nitrogen-containing 6-membered ring which may be substituted with 1 to 4 groups selected from the following substituent group b. <substituent group b> a group consisting of hydrogen atom, a halogen atom, hydroxyl group, nitro group, cyano group, an optionally substituted C_{1-6} alkyl group, an optionally substituted C_{1-6} alkyl group, an optionally substituted C2.6 alkenyl group, an optionally substituted C2.6 alkynyl group, an optionally substituted C1.6 alkoxy group, an optionally substituted C_{2-6} alkenyloxy group, an optionally substituted C_{2-6} alkynyloxy group, an optionally substituted C_{16} alkylthio group, an optionally substituted C_{26} alkenylthio group, an optionally substituted C_{26} alkynylthio group, a C₂₋₇ fatty acyl group, an optionally substituted carbamoyl group, an arylacyl group, a heteroaryl acyl group, an optionally substituted amino group, an optionally substituted C1-6 alkylsulfonyl group, an optionally substituted C_{2-6} alkenylsulfonyl group, an optionally substituted C_{2-6} alkynylsulfonyl group, an optionally substituted C_{1-6} alkylsulfinyl group, an optionally substituted C26 alkenylsulfinyl group, an optionally substituted C26 alkenylsulfinyl group, formyl group, an optionally substituted C_{3-e} cycloalkyl group, an optionally substituted C_{3-e} cycloalkenyl group, an optionally substituted 5- to 14-membered non-aromatic heterocyclic group, an optionally substituted

C₈₋₁₄ aromatic hydrocarbon cyclic group and an optionally substituted 5- to 14-membered aromatic heterocyclic

- 15. The compound according to claim 14 or a salt thereof, in which R1 is cyano group.
- 16. The compound according to claim 14 or a salt thereof, in which R1 is carboxyl group.
- 17. The compound according to claim 14 or a salt thereof, in which R1 is a carbamoyl group represented by the formula:

in which R5 and R6 have the same meanings as defined above.

10

15

20

25

30

45

55

group) or a salt thereof.

- 35 18. The compound according to claim 14 or a salt thereof, in which R2 is hydrogen atom.
 - 19. The compound according to claim 14 or a salt thereof, in which R⁷ and the substituent groups other than R⁷ in the ring A are selected from the above-mentioned substituent group a.
- 40 20. The compound according to claim 14 or a salt thereof, in which R⁷ is hydrogen atom, an optionally substituted C₁₋₆ alkyl group, an optionally substituted C₂₋₆ alkenyl group or an optionally substituted C₁₋₆ alkoxy group.
 - 21. The compound according to claim 14 or a salt thereof, in which R⁸ is a phenyl group, pyridyl group, furyl group or a thienyl group, each of which may have a substituent group.
 - 22. The compound according to claim 14 or a salt thereof, in which R⁶ is a phenyl group, pyridyl group, furyl group or a thienyl group, each of which may be substituted with a halogen atom.
- 23. The compound according to claim 1, in which the compound is any one-selected from 2-amino-6-(2-furyl)-5-(4-py-ridyl)-3-pyridinecarbonitrile, 2-amino-6-(3-fluorophenyl)-5-(4-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(2-furyl)-5-(4-methoxy-3-pyridyl)-3-pyridinecarbonitrile, 2-amino-6-(2-furyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile, 2-amino-6-(2-furyl)-5-(1-methyl-6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile, 2-amino-6-(3-fluorophenyl)-5-(6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile and 2-amino-6-(3-fluorophenyl)-5-(1-methyl-6-oxo-1,6-dihydro-3-pyridinyl)nicotinonitrile, or a salt thereof.
 - 24. A pharmaceutical composition comprising a compound represented by the formula:

$$\begin{array}{c}
H_2N \\
R^1
\end{array}$$

$$\begin{array}{c}
R^3
\end{array}$$
(1)

(wherein R¹ represents cyano group, carboxyl group or an optionally substituted carbamoyl group; R² represents hydrogen atom, hydroxyl group, an optionally substituted C₁₋₈ alkoxy group, an optionally substituted C₆₋₁₄ aromatic hydrocarbon cyclic group or an optionally substituted 5- to 14-membered aromatic heterocyclic group; and R³ and R⁴ are the same as or different from each other and each represents a C₃₋₈ cycloalkyl group, a C₃₋₈ cycloalkenyl group, a C₆₋₁₄ aromatic hydrocarbon cyclic group, a 5- to 14-membered non-aromatic heterocyclic group or a 5- to 14-membered aromatic heterocyclic group which may have a substituent group, respectively, provided that the cases where (1) R¹ is cyano group, R² is 4-bromo-2-thienyl group, R³ is 3,4-dimethoxyphenyl group and R⁴ is 2-thienyl group, (2) R¹ is cyano group, R² is hydrogen atom and each of R³ and R⁴ is phenyl group, (3) R¹ is cyano group, R² is 4-chloro-phenyl group, R³ is phenyl group and R⁴ is 4-(3,4-dichlorophenyl)-1-oxo-2 (1H)-phthalazinyl group, (4) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is 1-pyridyl group, (6) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is 1-pyridyl group, (7) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is 4-diphenylmethyl-1-piperazinyl group, (7) R¹ is cyano group, R² is hydrogen atom, R³ is 4-pyridyl group and R⁴ is 4-morpholinyl group, (8) R¹ is cyano group, R² is 4-methylphenyl group and each of R³ and R⁴ is phenyl group, and (9) R¹ is cyano group and each of R², R³ and R⁴ is phenyl group are excluded) or a pharmacologically acceptable salt thereof and a pharmacologically acceptable carrier.

- 25. The composition according to claim 24, which is an agent for treating or preventing a disease to which an adenosine receptor relates.
 - 26. The composition according to claim 24, which is an agent for treating or preventing a disease to which an adenosine A₂ receptor relates.
 - 27. The composition according to claim 24, which is an agent for treating or preventing a disease to which an adenosine A_{2B} receptor relates.
 - 28. The composition according to claim 24, which is an adenosine receptor antagonist.
 - 29. The composition according to claim 24, which is an adenosine A2 receptor antagonist.
 - 30. The composition according to claim 24, which is an adenosine A28 receptor antagonist.
- 40 31. The composition according to claim 24, which is used for promoting defecation.

10

- 15

20

30

35

- 32. The composition according to claim 24, which is an agent for treating, preventing or improving constipation.
- 33. The composition according to claim 24, in which the constipation is functional constipation.
- 34. The composition according to claim 24, which is an agent for treating irritable bowel syndrome, constipation accompanying irritable bowel syndrome, organic constipation, constipation accompanying enteroparalytic ileus, constipation accompanying congenital digestive tract dysfunction or constipation accompanying ileus.
- 35. The composition according to claim 24, which is used for evacuating intestinal tracts at the time of examination of digestive tracts or before and after an operation.
 - 36. The composition according to claim 24, which is an agent for treating or preventing diabetes, diabetic complications, diabetic retinopathy, obesity or asthma.
 - 37. The composition according to claim 24, which is a hypoglycemic agent, an improving agent for impaired glucose tolerance or a potentiating agent for insulin sensitivity.

- 38. The composition according to claim 24, which is a hypotensive agent, a diuretic, a therapeutic agent for osteoporosis, an anti-Parkinson's disease agent, an anti-Alzheimer's disease agent, a therapeutic agent for inflammatory intestinal diseases or a therapeutic agent for Crohn's disease.
- 5 39. Use of the compound according to claim 1 or a pharmacologically acceptable salt thereof for producing an agent for treating or preventing a disease to which an adenosine receptor relates.

40. A method of treating or preventing a disease to which an adenosine receptor relates, by administering a pharmacologically effective dose of the compound according to claim 1 or a pharmacologically acceptable salt thereof to a patient.

INTERNATIONAL SEARCH REPORT International application No. PCT/JP01/06870 A. CLASSIFICATION OF SUBJECT MATTER CO7D213/82, 85, 405/12, 14, A61K31/443, 444, 4436, 455, 4409, A61P43/00, 1/00, 10, 3/06, 10, 27/02, 11/06, 7/10, 9/10, 19/10, 25/16, 28 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED n documentation searched (classification system followed by classification symbols) C07D213/00-85, 405/00-14, A61E31/00-455 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN), CAPLUS (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category* Relevant to claim No. PX SUGAMA, N.; YAMADA, A.; KAKEHI, A.; KONAKAHARA; T.; 1-12 SAKAI, N. H-silyl-1-azaallyl anions with Michael acceptors as a new Synthetic method of 2,3,5,6-tetra-and 2,3,6 -trisubstituted pyridines. Heterocycles, 01 February, 2001 (01.02.01), Vol.55, No.2, pages 313 to 322 especially, pages 314, 319 to 320, chemical compound Nos.Sah(2-amino-3-cyano-5-(3-methyl-5-isoxazolyl) -6-phenylpyridine), 5bh(2-amino-3-cyano-6-phenyl-5-(2-pyridyl)pyridine) US 6030969 A (ABBOT LABORATORIES), 29 February, 2000 (29.02.00), especially, Scheme 1; column 29, Example 11, 11c, etc. · A 1-39 (Family: none) DE 4117802 A1 (BERLIN - CHEMIE AG), A 1-39 03 December, 1992 (03.12.92), especially, page 12, table, chemical No.7 from the top, etc. (Family: none) Further documents are listed in the continuation of Box C. See patent family somes. Special categories of cited documents: "A" document defining the general state of the set which is not considered to be of particular relevance earlier document but published on or efter the international filing date "I" later document published efter the international filing date or priority data and not in conflict with the application but cited to understand the principle or theory underlying the invention and consense of particular relevance; the chimnel invention cannot be considered novel or cannot be considered to involve an inventive "." document which may throw doubts on priority claim(t) or which is cited to establish the publication date of another citation or other special reason (as specified) step when the document is taken alone "Y" document member of the same patent family "A" document member of the same patent family "A" document member of the same patent family "O" document referring to an oral discionne, use, exhibition or other document published prior to the interestional filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 10 September, 2001 (10.09.01) 25 September, 2001 (25.09.01) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Facsimile No. Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

international application No.

PCT/JP01/06870

		101/0	F01/068/0
C (Continu	dim). DOCUMENTS CONSIDERED TO BE RELEVANT		
Ontegory®	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No
A	QUINTEIRO, M.; MARTIN, N.; SECAMB, C.; SOTO Conversion of 4.5.6-triary1-2-pyranamines at 4.6-diary1-5-bensoy1-2-pyranamines into pyridones and pyridines. Heterocycles, (1986), Vol.24, No.6, pages 1675 to 1682 especially, page 1677, chemical compound X; chemical compound (Xa), (Xb)	nd ones,	1-23
	Chemical Abstracts, (1991), Vol.115, Abstracts, (1991), Vol.115, Abstracts, (1991), Vol.115, Abstracts, (1992), Vol.115, Abstraction of 2-amino-3-cyans (4-pyridyl) pyridines as cardiovascular ages (Akademie der Wissenschaften der DDR, Fed. 1962. (East) DD 287260 A5 19910221 RN 135160-02-0 CN [3,4'-Bipyridine]-5-carbonitrile, 6-amimorpholinyl)- (9CI) (CAINDRX NAME) RN 135160-04-2	nts. Rep. Ger.)	1-39
**************************************	CN [3,4'-Bipyridine]-5-carbonitrile, 6-ami (diphenylmethyl)-1-piperazinyl]- (9CI) (CA I RN 135160-05-3 CN 1,2':3',4''-Terpyridinium, 6'-amino-chloride (9CI) (CA INDEX NAME)	INDEX NAME)	
·	RN 135160-11-1 CN [3,4'-Bipyridine]-5-carbonitrile, 6-ami piperazinyl)- (9CI) (CA INDEX NAMB)	no-2-(1-	
A	Chemical Abstracts, (1994), Vol.121, Abstracts, (1994), Vol.121, Abstracts, (1994), Vol.121, Abstracts, R.; DRNNSTEDT, T. Synthesis of substituted 2-aminonicotinonity Arch. Pharm. (Weinheim, Ger.), (1994), Vol. pages 33 to 40 RN 155952-19-5 CN. 3-Pyridinecarbonitrile, 2-amino-5,6-diphe (CA INDEX NAME)	riles. 327, No.1,	1-23
λ	WO 99/21555 A2 (TAKEDA CHEMICAL INDUSTRIBS, 06 Nay, 1999 (06.05.99), Pull text, & JP 11-193281 A	LTD.),	1-39
A	Chemical Abstracts, (1994), Vol.120, Abstract No. 120:191650 EL-FARARGY, A.; YASSIN, F.; HE Behavior of 1-[4-(3',4'-dichlorophenyl)-1-(2-phthalazinone-2-yl]-3-(4-chlorophenyl)-2-prone towards different nucleophiles. Collect. Czech. Chem. Commun., Vol.58, No.8, pages 1937 to 1943 RN 153682-70-3 CAPLUS CN 3-Pyridinecarbonitrile, 2-amino-4-(4-chlorof-6-[4-(3,4-dichlorophenyl)-1-cxc-2(1H)-phths 5-phenyl-(9CI) (CA INDEX NAME)	AFEZ, T. RH) ropen-1- (1993),	1-23
	.* .*		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

nternational agalication No.

PCT/JP01/06870

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. 🔯 Chrims Nos: 40
because they relate to subject matter not required to be searched by this Authority, namely:
· · · · · · · · · · · · · · · · · · ·
Claim 40 falls under the category of *methods for treatment for human diseases by therapy* as provided for in Rule 39.1(iv) of the Regulations under
the FCT as a subject matter of international application which this
International Searching Authority is not required to search.
taran da araba da ar
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Chillis and no incomment in miximaterial social can be called out a permissily:
·
3. Claima Nos:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rulie 6.4(a).
Box II Observations where unity of invention is backing (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Two investment occurrently tomath tomat manages in the interestinal abbitration as introduc-
·
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
cisions.
<u> </u>
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional foc.
• The section of the
 As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.;
And the second s
•
•
·
No required additional search fees were timely paid by the applicant. Consequently, this international
search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search free were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.
The beam exembered as believe at continues seeke 1009
orm PCT/ISA/210 (continuation of first sheet (1)) (July 1992)