統計 基礎の基礎

■度数分布表

次のような表を「度数分布表」と呼ぶ。

この表からも、「平均値」、「中央値の階級」、「最頻値」が求められる。

階級(kg)	度数(人)
20 以上 25 未満	4
25~30	5
30~35	9
35~40	4
40~45	2
45~50	1
計	25

(1)平均値を求める

ひとつの階級に入っているデータは、その階級の真ん中の値と考える(階級値) たとえば、20kg 以上 25kg 未満の「階級値」は、

(20+25) /2=22.5kg

となる。この階級値を全ての階級で計算すると、次のようになる。

階級 (kg)	度数(人)	階級値
20 以上 25 未満	4	22.5
25~30	5	27.5
30~35	9	32.5
35~40	4	37.5
40~45	2	42.5
45~50	1	47.5
計	25	

つぎに、全ての階級で「(階級値)×(度数)」を求めて、それらの総和を度数の合計で割れば「平均値」が求められる。

階級(kg)	度数(人)	階級値	階級値×度数
20 以上 25 未満	4	22.5	90.0
25~30	5	27.5	137.5
30~35	9	32.5	292.5
35~40	4	37.5	150.0
40~45	2	42.5	85.0
45~50	1	47.5	47.5
計	25		802.5

したがって、平均値は、

平均值=802.5÷25=32.1kg

(2)中央値の入っている階級

全体で25人いるので、小さい方から並べて13番目が中央値になる。

階級 (kg)	度数(人)	累積度数(人)
20 以上 25 未満	4	4
25~30	5	9
30~35	9	18
35~40	4	22
40~45	2	24
45~50	1	25
計	25	

累積度数から、13番目が含まれる階級は「30~35kg」となる。

(3)最頻値

最頻値は、データの中でもっとも多くあらわれる値。

このデータでは、度数が最も多い階級は 9 人いる「 $30\sim35{\rm kg}$ 」の階級。最頻値は、その「階級値」となるので、「 $32.5{\rm kg}$ 」となる。

◆演習 1

次の表で、平均値、最頻値を求めなさい。

階級 (m)	階級値(m)	度数(人)	階級値×度数
10 以上 14 未満	12	1	12
14~18	16	4	64
18~22	20	6	120
22~26	24	7	168
26~30	28	2	56
計		20	420

■相対度数と累積相対度数

次の度数分布表は、学校までの通学時間に関するもの

階級 (分)	度数(人)クラス	度数(人)学年全体
5 以上 10 未満	1	4
10~15	1	8
15~20	2	12
20~25	2	16
25~30	4	20
30~35	6	12
35~40	3	4
40~45	1	4
計	20	80

ある階級の度数が、全体に対して占める割合を、その階級の「相対度数」とよぶ。 その階級の度数を、全体の度数の合計で割れば求められる。

たとえば、通学時間が 5 分以上 10 分未満の学生の「相対度数」は、相対度数 = その階級の度数 \div 全体の度数の合計したがって、1 (人) \div 20 (人) = 0.05 となる。

次に、「10 分以上 15 分未満」を考えると、同じくクラス内では 1 人であるので、相対度数は 0.05 となる。

さらに、この2つの階級(5分以上15分未満)の相対度数は、このふたつの数値を足せばよい。 したがって、

0.05 + 0.05 = 0.10

となる。

このように、最初の段階からある段階までの相対度数の合計を「累積相対度数」という。

階級(分)	度数 (人)	相対度数	累積相対度数
5 以上 10 未満	1	0.05	0.05
10~15	1	0.05	0.10
15~20	2	0.10	0.20
20~25	2	0.10	0.30
25~30	4	0.20	0.50
30~35	6	0.30	0.80
35~40	3	0.15	0.95
40~45	1	0.05	1.00
計	20	1.00	

したがって、「通学時間30分未満の学生の割合は50%」とわかる。

これを学年全体の場合で考えて見ると、

階級(分)	度数(人)学年全体	相対度数	累積相対度数
5 以上 10 未満	4	0.05	0.05
10~15	8	0.10	0.15
15~20	12	0.15	0.30
20~25	16	0.20	0.50
25~30	20	0.25	0.75
30~35	12	0.15	0.90
35~40	4	0.05	0.95
40~45	4	0.05	1.00
計	80	1.00	

同じく「通学時間が30分未満」までの学生を「累積相対度数」を見ると、0.75 になっている。 クラスの場合と違って、学年では75%の学生が30分未満の通学となる。

◆相対度数折れ線

ヒストグラムと同様に折線で示す。

ここでは、横軸にデータ値、縦軸に相対度数をとる。

階級(分)	度数(人)学年全体	相対度数	度数(人)クラス	相対度数
5 以上 10 未満	4	0.05	1	0.05
10~15	8	0.10	1	0.05
15~20	12	0.15	2	0.1
20~25	16	0.20	2	0.1
25~30	20	0.25	4	0.2
30~35	12	0.15	6	0.3
35~40	4	0.05	3	0.15
40~45	4	0.05	1	0.05
計	80	1.00	20	1.00

◆演習 2

下の表は、あるクラス 20 名の体育測定で「ボール投げ」を計測したものである

階級 (m)	度数(人)	相対度数	累積度数
10 以上 15 未満	1	0.05	0.05
15~20	4	0.20	0.25
20~25	9		
25~30	5		
30~35	1		1.00
計	20	1.00	

- (1) 空欄を計算して埋めなさい
- (2) 25m異様の記録を出した学生の割合は全体の何%に当たるか?

<演習1の解>

平均値= (階級値×度数) の総和÷度数の合計 420÷20=21 (m)

最頻値は、度数が最も多い階級の階級値であるので、もっとも多い階級は「 $22\sim26\,\mathrm{m}$ 」であり、求める最頻値は $24\,\mathrm{m}$

<演習2の解>

(1) 相対度数= (その階級の度数) ÷ (全体の度数)

階級 (m)	度数 (人)	相対度数	累積度数
10 以上 15 未満	1	0.05	0.05
15~20	4	0.20	0.25
20~25	9	0.45	0.70
25~30	5	0.25	0.95
30~35	1	0.05	1.00
計	20	1.00	

(2) 25m 未満の割合が 0.70 であるので、25m 以上の記録を出した学生は 0.30、つまり 30%になる。