Contents

1	\mathbf{Set}		3
	1.1	Ring	 3
		1.1.1 morphism	 3
2	Seq	iences	5
	2.1	Supremum and infimum	 5
	2.2	Interval	 6
	2.3	Enhanced real line	 7
	2.4	Vector space	 9
		2.4.1 K-module	 9
		2.4.2 sub K-module	 11
		2.4.3 morphism of K-modules	 11
		2.4.4 kernel	 12
	2.5	Monotone mappings	 13
		2.5.1 Def	 13
		2.5.2 Prop	 14
		2.5.3 Def	 14
		2.5.4 Prop	 14
		2.5.5 Prop	 14
		2.5.6 Def	 14
		2.5.7 Prop	 15
		2.5.8 Proof	 15
	2.6	sequence and series	 15
		2.6.1 Def	 15
		2.6.2 Remark	 15
		2.6.3 Prop	15
		2.6.4 proof	 16
		2.6.5 Prop	16
		2.6.6 limit	16

2 CONTENTS

Chapter 1

Set

1.1 Ring

1.1.1 morphism

Def

Let A and B be unitary rings . We call morphism of unitary rings from A to B . only mapping $A \to B$ is a morphism of group from (A,+) to (B,+),and a morphism of monoid from (A,\cdot) to (B,\cdot)

Properties

• Let R be a unitary ting. There is a unique morphism from \mathbb{Z} to R

•

algebra

we call k-algebra any pair(R,f), when R is a unitary ring , and $f:k\to R$ is a morphism of unitary rings such that $\forall (b,x)\in k\times R, f(b)x=xf(b)$

Example: For any unitary ring R,the unique morphism of unitary rings $\mathbb{Z} \to R$ define a structure of $\mathbb{Z} - algebra$ on R (extra: \mathbb{Z} is commutative despite R isn't guaranteed)

Notation: Let k be a commutative unitary ring A, f be a k-algebra. If there is no ambiguity on f, for any $A, a \in A$, we denote $A, a \in A$

Formal power series

reminder: $n \in \mathbb{N}$ is possible infinite , so $\sum_{n \in \mathbb{N}}$ couldn't be executed directly. Def:

(extended polynomial actually) Let k be a commutative unitary ring. Def : Let T be a formal symbol. We denote $k^{\mathbb{N}}$ as k[T] If $(a_n)_{n\in\mathbb{N}}$ is an element

of $k^{\mathbb{N}}$, when we denote $k^{\mathbb{N}}$ as k[T] this element is denote as $\sum_{n\in\mathbb{N}} a_n T^n$ Such element is called a formal power series over k and a_n is called the Coefficient of T^n of this formal power series Notation:

- omit terms with coefficient O
- write T' as T
- omit Coefficient those are 1;
- omit T^0

Example $1T^0 + 2T^1 + 1T^2 + 0T^3 + ... + 0T^n + ...$ is written as $1 + 2T + T^2$ Def Remind that $\mathbf{k}[T] = \{ \sum_{n \in \mathbb{N}} a_n T^n \mid (a_n)_{n \in \mathbb{N}} \in k^{\mathbb{N}} \}$, define two composition laws on $\mathbf{k}[T]$

$$\forall F(T) = a_0 + a_+ 1T + \dots$$
 $G(T) = b_0 + \dots$ let $F + G = (a_0 + b_0) + \dots$
$$FG = \sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n$$

Properties:

- $(k[T], +, \cdot)$ form a commutative unitary ring.
- $k \to k[T]$ $\lambda \mapsto \lambda T$ is a morphism

•
$$(FG)H = \left(\sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n\right) \left(\sum_{n \in \mathbb{N}} c_n T^n\right) = \sum_{n \in \mathbb{N}} \left(\sum_{p,q,l=n} a_p b_q c_l\right) T^n$$
 is a trick applied on integral

Derivative:

let
$$F(T) \in k[T]$$

We denote by $F'(T)$ or $\mathcal{D}(F(T))$ the formal power series $\mathcal{D}(F) = \sum_{n \in \mathbb{N}} (n+1)a_{n+1}T^n$

Properties:

- $\mathcal{D}(k[T],+) \to (k[T],+)$ is a morphism of groups
- $\mathcal{D}(FG) = F'G + FG'$

exp

We denote $exp(T) \in k[T]$ as $\sum_{n \in \mathbb{N}} \frac{1}{n!} T^n$, which fulfil the differential equation $\mathcal{D}(exp(T)) = exp(T)$ (interesting)

Cauchy sequence: $(F_i(T))_{i\in\mathbb{N}}$ be a sequence of elements in k[T],and $F(T) \in k[T]$ We say that $(F_i(T))_{i\in\mathbb{N}}$ is a Cauchy sequence if $\forall l \in \mathbb{N}$, there exists $N(l) \in \mathbb{N}$ such that $\forall (i,j) \in \mathbb{N}^2_{>N(l)}$, $ord(F_i(T) - F_j(T)) \geq l$

Chapter 2

Sequences

2.1 Supremum and infimum

Def:

Let (X,\leq) be a partially ordered set A and Y be subsets of X, such that $A\subseteq Y$

- If the set $\{y \in Y \mid \forall a \in A, a \leq Y\}$ has a least element then we say that A has a Supremum in Y with respect to \leq denoted by $sup_{(y,\leq)}A$ this least element and called it the Supremum of A in Y(this respect to \leq)
- If the set $\{y \in Y \mid \forall a \in A, y \leq a\}$ has a greatest element, we say that A has n infimum in Y with respect to \leq . We denote by $inf_{(y,\leq)}A$ this greatest element and call it the infimum of A in Y
- Observation: $inf_{(Y,\leq)}A = sup_{(Y,\geq)}A$

Notation:

Let (X, \leq) be a partially ordered set, I be a set.

- If f is a function from I to X sup f denotes the supremum of f(I) is X.inf ftakes the same
- If $(x_i)_{i \in I}$ is a family of element in X, then $\sup_{i \in I} x_i$ denotes $\sup\{x_i \mid i \in I\}$ (inX)

If moreover $\mathbb{P}(\cdot)$ denotes a statement depending on a parameter in I then $\sup_{i \in I, \mathbb{P}(i)} x_i$ denotes $\sup\{x_i \mid i \in I, \mathbb{P}(i) \text{ holds}\}$

Example:

Let $A = x \in R \mid 0 \le x < 1 \subseteq \mathbb{R}$ We equip \mathbb{R} with the usual order relation.

$$\{y \in \mathbb{R} \mid \forall x \in A, x \le y\} = \{y \in \mathbb{R} \mid y \ge 1\}$$

So $\sup A = 1$

$$\{y \in \mathbb{R} \mid \forall x \in A, y \le x\} = \{y \in \mathbb{R} \mid y \ge 0\}$$

Hence $\inf A = 0$

Example: For $n \in \mathbb{N}$, let $x_n = (-1)^n \in R$

$$\sup_{n\in\mathbb{N}}\inf_{k\in\mathbb{N},k\geq n}x_k=-1$$

Proposition:

Let (X,\leq) be a partially ordered set, A,Y,Z be subset of X, such that $A\subseteq Z\subseteq Y$

- If max A exists, then is is also equal to $\sup_{(y,\leq)} A$
- If $\sup_{(y,\leq)} A$ exists and belongs to Z, then it is equal to $\sup A$ inf takes the same Prop.

Let X,\leq be a partially ordered set ,A,B,Y be subsets of X such that $A\subseteq B\subseteq Y$

- If $\sup_{(u,<)} A$ and $\sup_{(u,<)} B$ exists, then $\sup_{(u,<)} A \leq \sup_{(u,<)} B$
- If $\inf_{(y,\leq)} A$ and $\inf_{(y,\leq)} B$ exists, then $\inf_{(y,\leq)} A \geq \inf_{(y,\leq)} B$

Prop.

Let (X, \leq) be a partially ordered set ,I be a set and $f,g:I\to X$ be mappings such that $\forall t\in I, f(t)\leq g(t)$

- If $\inf f$ and $\inf g$ exists, then $\inf f \leq \inf g$
- If $\sup f$ and $\sup g$ exists, then $\sup f \leq \sup g$

2.2 Interval

We fix a totally ordered set (X, \leq)

Notation:

If $(a,b) \in X \times X$ such that $a \leq b, [a,b]$ denotes $\{x \in X \mid a \leq x \leq b\}$ Def:

Let $I\subseteq X$. If $\forall (x,y)\in I\times I$ with $x\leq y,$ one has $[x,y]\subseteq I$ then we say that I is a interval in X

Example:

Let $(a,b) \in X \times X$, such that $a \leq b$ Then the following sets are intervals

- $|a, b| := \{x \in X \mid a, x, b\}$
- $[a, b] := \{x \in X \mid a, x, b\}$
- $|a,b| := \{x \in X \mid a, x, b\}$

Prop.

Let Λ be a non-empty set and $(I_{\lambda})_{{\lambda} \in \Lambda}$ be a family of intervals in X.

- $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X
- If $\bigcap_{\lambda \in \Lambda} I_{\lambda} \neq \emptyset$, $\bigcup_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X

We check that $[a, b] \subseteq I_{\lambda} \cup I_{1}\mu$

- If $b \le x$ $[a, b] \subseteq [a, x] \subseteq I_{\lambda}$ because $\{a, x\} \subseteq I_{\lambda}$
- If $x \leq a$ $[a,b] \subseteq [x,b] \subseteq I_{\mu}$ because $\{b,x\} \subseteq I_{\mu}$
- If a < x < b then $[a,b] = [a,x] \cup [x,b] \subseteq I_{\lambda} \cup I_{\mu}$

Def:

Let (X, \leq) be a totally ordered set .I be a non-empty interval of X. If $\sup I$ exists in X, we call $\sup I$ the right endpoint; inf takes the similar way. Prop.

Let I be an interval in X.

- Suppose that $b = \sup I \text{ exists. } \forall x \in I, [x, b] \subseteq I$
- Suppose that $a = \inf I$ exists. $\forall x \in I,]a, x] \subseteq I$

Prop.

Let I be an interval in X. Suppose that I has supremum b and an infimum a in X.Then I is equal to one of the following sets [a,b] [a,b[]a,b[Def

let (X, \leq) be a totally ordered set . If $\forall (x, z) \in X \times X$, such that $x < z \quad \exists y \in X$ such that x < y < z, than we say that (X, \leq) is thick Prop.

Let (X, \leq) be a thick totally ordered set. $(a, b) \in X \times X$, a < b If I is one of the following intervals [a, b]; [a, b[;]a, b[Then inf I = a sup I = b (for it's thick empty set is impossible)

Proof:

Since X is thick, there exists $x_0 \in]a,b[$ By definition,b is an upper bound of I. If b is not the supremum of I, there exists an upper bound M of I such that M_ib. Since X is thick, there is $M' \in X$ such that $x_0 \leq M, M' < b$ Since $[x,b[\subseteq]a,b[\in I]$ Hence M and M' belong to I, which conflicts with the uniqueness of supremum.

2.3 Enhanced real line

Def:

Let $+\infty$ and -infty be two symbols that are different and don not belong to \mathbb{R} We extend the usual total order $\leq on \mathbb{R} to \mathbb{R} \cup \{-\infty, +\infty\}$ such that

$$\forall x \in \mathbb{R}, -\infty < x < +\infty$$

Thus $\mathbb{R} \cup \{-\infty, +\infty\}$ become a totally ordered set, and $\mathbb{R} =]-\infty, +\infty[$ Obviously,this is a thick totally ordered set. We define:

- $\forall x \in]-\infty, +\infty[$ $x + (+\infty) := +\infty$ $(+\infty) + x := +\infty$
- $\forall x \in [-\infty, +\infty[\quad x + (-\infty) := -\infty \quad (-\infty) + x = -\infty$
- $\forall x \in]0, +\infty[$ $x(+\infty) = (+\infty)x = +\infty$ $x(-\infty) = (-\infty)x = -\infty$
- $\forall x \in [-\infty, 0[\quad x(+\infty) = (+\infty)x = -\infty \quad x(-\infty) = (-\infty)x = +\infty$
- $-(+\infty) = -\infty$ $-(-\infty) = +\infty$ $(\infty)^{-1} = 0$
- $(+\infty) + (-\infty)$ $(-\infty) + (+\infty)$ $(+\infty)0$ $0(+\infty)$ $(-\infty)0$ $0(-\infty)$ ARE NOT DEFINED

Def

Let (X, \leq) be a partially ordered set. If for any subset A of X,A has a supremum and an infimum in X, then we say the X is order complete Example

Let Ω be a set $(\mathscr{P}(\Omega),\subseteq)$ is order complete If \mathscr{F} is a subset of $\mathscr{P}(\Omega)$, sup $\mathscr{F}=\bigcup_{A\subset\mathscr{X}}A$

Interesting tip: $\inf \emptyset = \Omega$ $\sup \emptyset = \emptyset$

AXION:

 $\begin{array}{l} (\mathbb{R} \cup \{-\infty, +\infty\}, \leq) \text{ is order complete} \\ \text{In } \mathbb{R} \cup \{-\infty, +\infty\} \quad \sup \varnothing = -\infty \quad \inf \varnothing = +\infty \end{array}$

Notation:

- For any $A\subseteq \mathbb{R}\cup -\infty, +\infty$ and $c\in \mathbb{R}$ We denote by A+c the set $\{a+c\mid a\in A\}$
- If $\lambda \in \mathbb{R} \setminus \{0\}$, λA denotes $\{\lambda a \mid a \in A\}$
- -A denotes (-1)A

Prop

For any $A \subseteq \mathbb{R} \cup \{-\infty, +\infty\}$, $\sup(-A) = -\inf A$, $\inf(-A) + -\sup A$ Def We denote by (R, \leq) a field \mathbb{R} equipped with a total order \leq , which satisfies the following condition:

- $\forall (a,b) \in \mathbb{R} \times \mathbb{R}$ such that a < b , one has $\forall c \in \mathbb{R}, a+c < b+c$
- $\forall (a,b) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}, ab > 0$
- $\forall A \subseteq \mathbb{R}, \text{if A hsa an upper bound in} \mathbb{R}$, then it has a supremum in \mathbb{R}

Prop.

Let $A \subseteq [-\infty, +\infty]$

- $\forall c \in \mathbb{R}$ $\sup(A+c) = (\sup A) + c$
- $\forall \lambda \in \mathbb{R}_{>0}$ $\sup(\lambda A) = \lambda \sup(A)$
- $\forall \lambda \in \mathbb{R}_{\leq 0}$ $sup(\lambda A) = \lambda \inf(A)$

9

inf takes the same

Theorem:

Let I and J be non-empty sets

$$\begin{array}{l} f:I\rightarrow[-\infty,+\infty],g:J\rightarrow[-\infty,+\infty]\\ a=\sup\limits_{x\in I}f(x)\quad b=\sup\limits_{y\in J}g(y)\quad c=\sup\limits_{(x,y)\in I\times J,\{f(x),g(y)\}\neq\{+\infty,-\infty\}}(f(x)+g(y))\\ \end{array}$$

If $\{a, b\} \neq \{+\infty, -\infty\}$ then c = a + b

inf takes the same if $(-\infty) + (+\infty)$ doesn't happen

Corollary:

Let I be a non-empty set, $f: I \to [-\infty, +\infty], g: J \to [-\infty, +\infty]$ Then $\sup_{x \in I, \{f(x), g(y)\} \neq \{+\infty, -\infty\}} (f(x) + g(x)) \leq (\sup_{x \in I} f(x)) (\sup_{x \in I} g(x))$

inf takes the similar($\leq \rightarrow \geq$) (provided when the sum are defined)

2.4 Vector space

In this section:

K denotes a unitary ring. Let 0 be zero element of K 1 be the unity of K

2.4.1 K-module

Def

Let (V,+) be a commutative group. We call left/right K-module structure: any mapping $\Phi: K \times V \to V$

- $\forall (a,b) \in K \times K, \forall x \in V$ $\Phi(ab,x) = \Phi(a,\Phi(b,x))/\Phi(b,\Phi(a,x))$
- $\forall (a,b) \in K \times K, \forall x \in V, \Phi(a+b,x) = \Phi(a,x) + \Phi(b,x)$
- $\forall a \in K, \forall (x, y) \in V \times V, \Phi(a, x + y) = \Phi(a, x) + \Phi(a, y)$
- $\forall x \in V, \Phi(1, x) = x$

A commutative group (V,+) equipped with a left/right K-module structure is called a left/right K-module.

Remark

Let K^{op} be the set K equipped with the following composition laws:

- $\bullet \ K \times K \to K$
- \bullet $(a,b) \mapsto a+b$
- $\bullet \ K \times K \to K$
- $(a,b) \mapsto ba$

Then K^{op} forms a unitary ring Any left $K^{op} - module$ is a right K-module Any right $K^{op} - module$ is a left K-module $(K^{op})^{op} = K$

Notation

When we talk about a left/right K-module (V,+), we often write its left K-module structure as $K\times V\to V$ $(a,x)\mapsto ax$

The axioms become:

$$\forall (a,b) \in K \times K, \forall x \in V \quad (ab)x = a(bx)/b(ax)$$

$$\forall (a,b) \in K \times K, \forall x \in V \quad (a+b)x = ax+bx$$

$$\forall a \in K, \forall (x,y) \in V \times V \quad a(x+y) = ax+ay$$

$$\forall x \in V \quad 1x = x$$

K-vector space

If K is commutative, then $K^{op}=K$, so left K-module and right K-module structure are the same . We simply call them K-module structure. A commutative group equipped with a K-module structure is called a K-module. If K is a field, a K-module is also called a K-vector space

Let $\Phi: K \times V \to V$ be a left or right K-module structure

$$\forall x \in V, \Phi(\cdot, x) : K \to V \quad (a \in K) \mapsto \Phi(a, x)$$

is a morphism of addition groups. Hence $\Phi(0,x)=0, \Phi(-a,x)=-\Phi(a,x)$ $\forall a\in K, \Phi(a,\cdot):V\to V$ is a morphism of groups. Hence $\Phi(a,0)=0, \Phi(a,-x)=-\Phi(a,x)(\cdot \mbox{ is a } var)$

Association:

 $\forall x \in K$

$$(f(f+g)+h)(x) = (f+g)(x)+h(x) = f(x)+g(x)+h(x)$$
$$(f+(g+h))(x) = f(x)+((g+h)(x)) = f(x)+g(x)+h(x)$$

Let
$$0: I \to K: x \mapsto 0 \quad \forall f \in K^I \quad f + 0 = f$$

Let $-f: f + (-f) = 0$

The mapping $K \times K^I \to K^I : (a, f) \mapsto af \quad (af)(x) = af(x)$ is a left K-module structure

The mapping $K\times K^I\to K^I:(a\in I)\mapsto ((x\in I)\mapsto f(x)a)$ (af)(x)=af(x) is a right K-module structure

Remark:

We can also write an element μ of K^I is the form of a family $(\mu_i)_{i\in I}$ of elements in K (μ_i) is the image of $i\in I$ by μ)
Then

$$(\mu_i)_{i \in I} + (\nu_i)_{i \in I} := (\mu_i + \nu_i)_{i \in I}$$

 $a(\mu_i)_{i \in I} := (a\mu_i)_{i \in I}$
 $(\mu_i)_{i \in I} a = (\mu_i a)_{i \in I}$

2.4.2 sub K-module

Def

Let V be a left/right K-module. If W is a subgroup of V. Such that $\forall a \in K, \forall x \in W \quad ax/xa \in W$, then we say that W is left/right sub-K-module of V.

Example

Let I be a set .Let $K^{\bigoplus I}$ be the subset of K^I composed of mappings $f: I \to K$ such that $I_f = \{x \in I \mid f(x) \neq 0\}$ is finite. It is a left and right sub-K-module of K^I

In fact,
$$\forall (f,g) \in K^{\bigoplus I} \times K^I$$
 $I_{f-g} = x \in I \mid f(x) - g(x) \neq 0 \subseteq I_f \cup I_g$
Hence $f - g \in K^{\bigoplus I}$ So $K^{\bigoplus I}$ is a subgroup of K^I
 $\forall a \in K, \forall f \in K^{\bigoplus I}$ $I_{af} \subseteq I_f, I_{(x \mapsto f(x)a)} \subseteq I_f$

2.4.3 morphism of K-modules

Def

Let V and W be left K-module, A morphism of groups $\phi: V \to W$ is called a morphism of left K-modules if $\forall (a, x) \in K \times V, \phi(ax) = a\phi(x)$

K-linear mapping

If K is commutative, a morphism of K-modules is also called a K-linear mapping. We denote by $\hom_{K-Mod}(V,W)$ the set of all morphism of left-K-module from V to W.This is a subgroup of W^V

Theorem

Let V be a left K-module. Let I be a set. The mapping $\hom_{K-Mod}(K^{\bigoplus I},V) \to V^I: \phi \to (\phi(e_i))_{i \in I}$ is a bijection where $e_i: I \to K: j \mapsto \begin{cases} 1 & j=i \\ 0 & j \neq i \end{cases}$

Remark:column

In the case where I=1,2,3,...,n V^I is denoted as V^n,K^I is denoted as K^n For any $(x_1,...,x_n)\in V^n$, by the theorem, there exists a unique morphism of left K-modules $\phi:K^n\to V$ such that $\forall i\in 1,...,n\phi(e_i)=x_i$

We write this
$$\phi$$
 as a column $\begin{pmatrix} x_1 \\ ... \\ x_n \end{pmatrix}$ It sends $(a_1, ..., a_n) \in K^n$ to $a_1x_1 + ... + a_nx_n$

2.4.4 kernel

Prop

Let G and H be groups and $f: G \to H$ be a morphism of groups

- $I_m(f) \subseteq H$ is a subgroup of H
- $\ker(f) = \{x \in G \mid f(x) = e_H\}$
- f is injection iff $ker(f) = \{e_G\}$

Def

ker(f) is called the kernel of f

Proof: f is injection iff $ker(f) = \{e_G\}$

Let e_G and e_H be neutral element of G and H respectively

- (1) Let x and y be element of G $f(x)f(y)^{-1}=f(x)f(y)^{-1}=f(xy^{-1})\in Im(f). \text{ So } Im(f) \text{ is a subgroup of } H$
- (2) Let x and y be element of $\ker(f)$ One has $f(xy^{-1})=f(x)f(y)^{-1}=e_H$ $e_H^{-1}=e_H$. So $xy^{-1}\in\ker(f)$ So $\ker(f)$ is a subgroup of G
- (3) Suppose that f is injection. Since $f(E_G) = e_H$ one has $\ker(f) = f^{-1}(\{e_H\}) = \{e_G\}$ Suppose that $\ker(f) = \{e_G\}$ If f(x) = f(y)then $f(xy^{-1}) = f(x)f(y)^{-1} = e_H$ Hence $xy^{-1} = e_G \Rightarrow x = y$

Def

Let (V,+) be a commutative group, I be a set. We define a composition law + on V^I as follows

$$(x_i)_{i \in I} + (y_i)_{i \in I} := (x_i + y_i)_{i \in I}$$

Then V^I forms a commutative group

Remark

Let E and F be left K-modules

 $\hom_{K=Mod}(E,F):=\{\text{morphisms of left K-modules from E to F}\}\subseteq F^E$ is a subgroup of F^E

In fact f and g are elements of $\hom_{K-Mod}(E,F)$, then f-g is also a morphism of left K-module

$$(f-g)(x+y) = f(x+y) - g(x+y) = (f(x) + f(y)) - (g(x) + g(y)) = (f(x) - g(x)) + (f(y) - g(y)) = (f - g)(x) + (f - y)(x)$$

Theorem

Let V be a left K-module, I be a set The mapping
$$\hom_{K-Mod}(K^{\bigoplus I}, V) \to V^I$$
: $\phi \mapsto (\phi(e_i))_i \in I$ is an isomorphism of groups, where $e_i : I \to K : j \mapsto \begin{cases} 1 & j=i \\ 0 & j \neq i \end{cases}$

Proof:

One has
$$(\phi + \psi)(e_i) = \phi(e_I) + \psi(e_i)$$

 $\forall (\phi, psi) \in \text{hom}_{K-Mod}(K^{\bigoplus I}, V)^2$
Hence $\Psi(\phi, \psi) = (\phi(e_i) + \psi(e_i))_{i \in I} = \Psi(\phi) + \Psi(\psi)$
So Ψ is a morphism of groups

injectivity Let
$$\phi \in \text{hom}_{K-Mod}(K^{\bigoplus I}, V)$$
 Such that $\forall i \in I(\forall \phi \in \text{ker}(\Psi)) \quad \phi(e_i) = 0$
Let $a = (a_i)_{i \in I} \in K^{\bigoplus I}$ One has $a = \sum_{i \in I} a_i e_i$
If $\text{fact}, \forall j \in I, a_j = \sum_{i \in I, a_i \neq 0} a_i e_i(j)$
Thus $\phi(a) = \sum_{i \in I, a_i \neq 0} a - I\phi(e_i) = 0$
Hence ϕ is the neutral element.

surjectivity Let
$$x=(x_i)_{i\in I}\in V^I$$
 We define $\phi_x:K^{\bigoplus I}\to V$ such that $\forall a=(a_i)_{i\in I}\in K^{\bigoplus I}, \phi_x(a)=\sum_{i\in I, a_i\neq 0}a_ix_i$
This is a morphism of left K-modules $foralli\in I, \phi_x(e_i)=1x_i=x_i$ So $\Psi(\phi_x)=x$

Suppose that K' is a unitary ring, and V is also equipped with a right K'-module structure, Then $\hom_{K-Mod}(K^{\bigoplus I},V)\subseteq V^{K^{\bigoplus I}}$ is a right sub-k'-module , and Ψ in the theorem is a right K'-module isomorphism

2.5 Monotone mappings

2.5.1 Def

Let I and X be partially ordered sets, $f: I \to X$ be a mapping.

- If $\forall (a,b) \in I \times I$ such that a < b. One has $f(a) \leq f(b)/f(a) < f(b)$, then we say that f is increasing/strictly increasing. decreasing takes similar way.
- If f is (strictly) increasing or decreasing, we say that f is (strictly) monotone.

2.5.2 Prop.

Let X,Y,Z be partially ordered sets. $f: X \to Y, g: Y \to Z$ be mappings

- If f and g have the same monotonicity, then $g \circ f$ is increasing
- If f and g have different monotonicities, then $g \circ f$ is decreasing

strict monotonicities takes the same

2.5.3 Def

Let f be a function from a partially ordered set I to another partially ordered set .If $f \mid_{Dom(f)} \to X$ is (strictly) increasing/decreasing then we say that f is (strictly) increasing/decreasing

2.5.4 Prop.

Let I and X be partially ordered sets. f be function from I to X.

- ullet If f is increasing/decreasing and f is injection, then f is strictly increasing/decreasing
- ullet Assume that I is totally ordered and f is strictly monotone, then f is injection

2.5.5 Prop

Let A be totally ordered set, B be a partially ordered set, f be an injective function from A to B If f is increasing/decreasing ,then so is f^{-1}

2.5.6 Def

Let X and Y be partially ordered sets. $f: X \to Y$ be a bijection. If both f and f^{-1} are increasing ,then we say that f is an isomorphism of partially ordered sets.

(If X is totally, then a mapping $f: X \to Y$ is an isomorphism of partially ordered sets iff f is a bijection and f is increasing)

2.5.7 Prop.

Let I be a subset of $\mathbb N$ which is infinite. Then there is a unique increasing bijection $\lambda_I:\mathbb N\to I$

2.5.8 Proof

bijection

```
We construct f: \mathbb{N} \to I by induction as follows.

Let f(0) = \min I Suppose that f(0), ..., f(n) are constructed then we take f(n+1) := \min(I \setminus \{f(0), ..., f(n)\})

Since I \setminus \{f(0), ..., f(n-1)\} \supseteq I \setminus \{f(0), ..., f(n)\}. Therefore f(n) \le f(n+1)

Sincef(n+1) \not\in \{f(0), ..., f(n)\}, we have f(n) < f(n+1)

Hence f is strictly increasing and this is injective If f is not surjective, then I \setminus Im(f) has a element \mathbb{N}.

Let m = \min\{n \in \mathbb{N} \mid N \le f(n)\}.

Since N \not\in Im(f), N < f(m).

So m \ne 0. Hence f(m-1) < N < f(m) = \min(I \setminus \{f(0), ..., f(m-1)\})

By definition, N \in I \setminus Im(f) \subseteq I \setminus \{f(0), ..., f(m-1)\}, Hence f(m) \le N, causing contradiction.
```

uniqueness

exercise: Prove that $Id_{\mathbb{N}}$ is the only isomorphism of partially ordered sets from \mathbb{N} to \mathbb{N}

2.6 sequence and series

Let $I \subseteq \mathbb{N}$ be a infinite subset

2.6.1 Def

Let X be a set.We call sequence in X parametrized by I a mapping from I to X.

2.6.2 Remark

If K is a unitary ring and E is a left K-module then the set of sequence E^I admits a left-K-module structure. If $x=(x_n)_{n\in I}$ is a sequence in E, we define a sequence $\sum(x):=(\sum_{i\in I,i\leq n}x_i)_{n\in\mathbb{N}}$, called the series associated with the sequence x.

2.6.3 Prop

 $\sum : E^I \to E^{\mathbb{N}}$ is a morphism of left-K-module

2.6.4 proof

Let
$$x = (x_i)_{i \in I}$$
 and $y = (y_i)_{i \in I}$ be elements of E^I

$$\sum_{i \in I, i \leq n} (x_i + y_i) = (\sum_{i \in I, i \leq n} x_i) + (\sum_{i \in I, i \leq n} y_i), \lambda \sum_{i \in I, i \leq n} x_i = \sum_{i \in I, i \leq n} \lambda x_i$$

2.6.5 Prop

Let I be a totally ordered set . X be a partially ordered set, $f:I\to X$ be a mapping $J\in I$ Assume that J does not have any upper bound in I

- If f is increasing ,then f(I) and f(J) have the same upper bounds in X
- If f is decreasing ,then f(I) and f(J) have the same lower bounds in X

2.6.6 limit

Def

Let $i \subseteq \mathbb{N}$ be a infinite subset. $\forall (x_i)_{n \in I} \in [-\infty, +\infty]^I$ where $[-\infty, +\infty]$ denotes $\mathbb{R} \cup \{-\infty, +\infty\}$, we define:

$$\lim\sup_{n\in I, n\to +\infty} x_n := \inf_{n\in I} (\sup_{i\in I, i\geq n} x_i)$$

$$\liminf_{n \in I, n \to +\infty} x_n := \sup_{n \in I} (\inf_{i \in I, i \ge n} x_i)$$

If $\limsup_{n\in I, n\to +\infty} x_n = \liminf_{n\in I, n\to +\infty} x_n = l$, we then say that $(x_n)_{n\in I}$ tends to l and that l is the limit of $(x_n)_{n\in I}$. If in addition $(x_n)_{n\in I} \in \mathbb{R}^I$ and $l \in \mathbb{R}$, we say that $(x_n)_{n\in I}$ converges to l

Remark

If $J \subseteq \mathbb{N}$ is an infinite subset, then:

$$\lim_{n \in I, n \to +\infty} = \inf_{n \in J} (\sup_{i \in I, i \ge n} x_i)$$

$$\lim_{n \in I, n \to +\infty} \inf x_n = \sup_{n \in J} (\inf_{i \in I, i \ge n} x_i)$$

Therefore if we change the values of finitely many terms in $(x_i)_{i \in I}$ the limit superior and the limit inferior do not change.

In fact, if we take $J = \mathbb{N} \setminus \{0, ..., m\}$, then $\inf_{n \in J} (...)$ and $\sup_{n \in J} (...)$ only depends on the values of $x_i, i \in I, i \geq m$

Prop

$$\forall (x_n)_{n \in I} \in [-\infty, +\infty]^I, \ \underset{n \in I, n \to +\infty}{\liminf} x_n \le \limsup_{n \in I, n \to +\infty} x_n$$

Prop

Let
$$(x_n)_{n\in I} \in [-\infty, +\infty]^I$$

$$\forall c \in \mathbb{R}$$

$$\lim\sup_{n\in I, n\to +\infty} (x_n+c) = (\lim\sup_{n\in I, n\to +\infty} x_n) + c$$

$$\lim\inf_{n\in I, n\to +\infty} (x_n+c) = (\lim\inf_{n\in I, n\to +\infty} x_n) + c$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\sup_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\sup_{n\in I, n\to +\infty} x_n$$

$$\lim\inf_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\sup_{n\in I, n\to +\infty} x_n$$

Prop

Let $(x_n)_{n\in I}$ be elements in $[-\infty, +\infty]^I$. Suppose that there exists $N_0 \in \mathbb{N}$ such that $\forall n \in I, n \geq N_0$, one has $x_n \leq y_n$ Then

$$\limsup_{n \in I, n \to +\infty} (x_n) \le \limsup_{n \in I, n \to +\infty} y_n$$

$$\liminf_{n \in I, n \to +\infty} (x_n) \ge \liminf_{n \in I, n \to +\infty} y_n$$

Theorem

Let $(x_n)_{n\in I}, (y_n)_{n\in I}, (z_n)_{n\in I}$ be elements of $[-\infty, +\infty]^I$ Suppose that

- $\exists N N \in \mathbb{N}, \forall n \in I, n \geq N_0$ one has $x_n \leq y_n \leq z_n$
- $(x_n)_{n\in I}$ and $(z_n)_{n\in I}$ tend to the same limit l

Then $(y_n)_{n\in I}$ tends to l

Def

Let I be an infinite subset of \mathbb{N} , and $(x_n)_{n\in I}$ be a sequence in some set X. We call subsequence of $(x_n)_{n\in I}$ a sequence of the form $(x_n)_{n\in J}$, where J is an infinite subset of I

Prop

Let I and J be infinite subset of \mathbb{N} such that $J \subseteq I$ $\forall (x_n)_{n \in I} \in [-\infty, +\infty]^I$, one has

$$\liminf_{n \in I, n \to +\infty} (x_n) \le \liminf_{n \in I, n \to +\infty} y_n$$

$$\limsup_{n \in I, n \to +\infty} (x_n) \ge \limsup_{n \in I, n \to +\infty} y_n$$

In particular, if $(x_n)_{n\in I}$ tends to $l\in [-\infty,+\infty]$, then $(x_n)_{n\in J}$ tends to l

Prop

 $\forall n \in \mathbb{N}, \text{one has}$

$$\liminf_{n \in J, n \to +\infty} (x_n) \ge \liminf_{n \in I, n \to +\infty} y_n$$

$$\limsup_{n \in J, n \to +\infty} (x_n) \le \limsup_{n \in I, n \to +\infty} y_n$$