Funktionentheorie

Jannis Klingler

16. Mai 2019

1 Holomorphe und analytische Funktionen

1.1 Analytische Funktionen

Wiederholung. Setze $\mathbb{C} = \mathbb{R}^2$. Für z = (x, y), w = (u, v) definiere:

$$z+w=(x+u,y+v)$$
 Vektoraddition
 $z\cdot w=(x\cdot u-y\cdot v,x\cdot v+y\cdot u)$
 $0=(0,0)$ neutrales Element (+)
 $1=(1,1)$ neutrales Element (·)
 $i=(0,1)$

Komplexe Konjugation: $z \to \overline{z} = (x, -y)$ ist ein Automorphismus, dh.

$$\overline{z+w} = \overline{z} + \overline{w}$$

$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

$$\overline{0} = 0$$

$$\overline{1} = 1$$

$$\overline{i} = (0,1)$$

Mit diesen Operationen ist \mathbb{C} ein Körper.

$$-z = (-x, -y) \qquad \qquad \frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \left(\frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}\right)$$

wir definieren einen Absolutbetrag $|z| = \sqrt{z\overline{z}} \in \mathbb{R}$, denn $z \cdot \overline{z} \in \mathbb{R} = \{z \in \mathbb{C} \mid z = \overline{z}\} = \{(x,0) \mid x \in \mathbb{R}\} \subset \mathbb{C}$

Jetzt können wir schreiben $z = (x, y) = (x, 0) + (y, 0) = (x, 0) + i \cdot (y, 0) = x + iy$ Graphische Darstellung ("Gaußsche Zahlenebene").

Zur Erinnerung:

Definition 1.1 (Topologischer Raum). Ein topologischer Raum heißt zusammenhängend, wenn er nicht als disjunkte Vereinigung zweier nichtleerer, offener Teilmengen geschrieben werden kann.

Definition 1.2 (Wegzusammenhängend). Ein topologischer Raum X heißt wegzusammenhängend, wenn es zu je zwei Punkten $p, q \in X$ eine stetige Abbildung $\gamma : [0,1] \to X$ mit $\gamma(0) = p, \gamma(1) = q$ gibt.

Satz 1.3. Eine offene Teilmenge von \mathbb{C} ist genau dann zusammenhängend, wenn sie wegzusammenhängend ist.

Beweis. " \(\in \)": Sei X wegzusammenhängend. Seien $U, V \subset X$ offen, $X = U \cup V$, $p \in U$, $q \in V$ (also U, V nicht leer). Dann existiert $\gamma : [0,1] \to X$ stetig mit $\gamma(0) = p$, $\gamma(1) = q$. Dann sind $\gamma^{-1}(U)$, $\gamma^{-1}(V) \subset [0,1]$ offen. Da [0,1] zusammenhängend ist und $0 \in \gamma^{-1}(U)$, $1 \in \gamma^{-1}(V)$, $\gamma^{-1}(U) \cup \gamma^{-1}(V) = \gamma^{-1}(U \cup V) = \gamma^{-1}(X) = [0,1]$ folgt $\gamma^{-1}(U) \cap \gamma^{-1}(V) \neq \emptyset$.

Also existiert $t \in \gamma^{-1}(U) \cap \gamma^{-1}(V)$ und $\gamma(t) \in U \cap V$. Da das für alle offenen, nichtleeren Teilmengen U, V mit $U \cup V = X$ gilt, ist X zusammenhängend.

Einfacher:

Angenommen X ist nicht zusammenhängend. Dann existieren offene, nicht-leere Teilmengen $U, V \subset X$ mit $U \cup V = X$, $U \cap V = \emptyset$. Dann existiert eine stetige Funktion $f: X \to \mathbb{R}$ mit

$$f(x) = \begin{cases} 0 & x \in U \\ 1 & x \in V \end{cases}$$

Wähle jetzt $p \in U$, $q \in V$. Gäbe es einen Weg $\gamma : [0,1] \to X$ mit $\gamma(0) = p$, $\gamma(1) = q$, dann wäre $f \circ \gamma : [0,1] \to \mathbb{R}$ stetig, im Widerspruch zum Zwischenwertsatz.

" \Rightarrow ": Sei $X \subset \mathbb{C}$ (offen) zusammenhängend.

Sei $p \in X$ und sei $U = \{q \in X \mid \exists \gamma : [0,1] \to X \text{ stetig} : \gamma(0) = p, \ \gamma(1) = q\}$

Behauptung: U ist offen, also existiert $\varepsilon > 0$, sd. $B_{\varepsilon}(q) \subset X$. Sei $q' \in B_{\varepsilon}(q)$. Dann existiert $\gamma' : [0,1] \to X$, sd.

$$\gamma'(t) = \begin{cases} \gamma(2t) & 0 \le t \le \frac{1}{2} \\ (2-2t)q + (2t-1)q' & \frac{1}{2} \le t \le 1 \end{cases}$$

 $\Rightarrow B_{\varepsilon}(q) \subset U \Rightarrow U$ offen.

Behauptung: $X \setminus U$ ist offen:

Sei $q \in X \setminus U$. Da X offen, existiert $\varepsilon > 0$ mit $B_{\varepsilon}(q) \subset X$. Wäre $B_{\varepsilon}(q) \cap U \neq \emptyset$, so existiert $q' \in B_{\varepsilon}(q) \cap U$, ein Weg γ von p nach q in X und mit einer ähnlichen Konstruktion auch eine Kurve γ' von p nach q. Also auch $X \setminus U = \emptyset$.

 $\Rightarrow X$ ist wegzusammenhängend.

Definition 1.4 (Gebiet). Ein Gebiet ist eine offene, zusammenhängende Teilmenge von \mathbb{C} .

Erinnerung. Eine (komplexe) Potenzreihe ist ein Ausdruck der Form $R(z) = \sum_{n=0}^{\infty} a_n z^n$ mit $a_n \in \mathbb{C}$ für alle n. Sie hat den Konvergenzradius $\rho = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1} \in [0, \infty]$. Dann:

$$R(z)$$
 konvergiert für alle z mit $|z| < \rho$
 $R(z)$ divergiert für alle z mit $|z| > \rho$

wenn $\rho > 0$ ist, heißt R(z) konvergent und $B_{\rho}(0) \subset \mathbb{C}$ der Konvergenzkreis.

Definition 1.5 (Analytische Funktion). Es sei $\Omega \in \mathbb{C}$ ein Gebiet und $f : \Omega \to \mathbb{C}$ eine Abbildung. Dann heißt f eine analytische Funktion (auf Ω), wenn es zu jedem Punkt $z_0 \in \Omega$ eine Potenzreihe R(z) mit Konvergenzradius $\rho > 0$ existiert, sd. $f(z) = R(z - z_0)$ für alle $z \in \Omega \cap B_{\rho}(z_0)$.

Beispiel 1.6. Betrachte die Exponentialreihe

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

 $\limsup \sqrt[n]{\left|\frac{1}{n!}\right|} = 0 \implies \text{Konvergenzradius ist } \rho = \infty. \text{ Mit dem Umordnungssatz zeigt man}$

$$e^{z+w} = e^z \cdot e^w$$

Da die Exponentialreihe reelle Koeffizienten hat, gilt

$$\overline{e^z} = \sum_{n=0}^{\infty} \overline{\left(\frac{z^n}{n!}\right)} = \sum_{n=0}^{\infty} \overline{\frac{z}{n!}} = e^{\overline{z}}$$

Sei jetzt z = x + iy, dann gilt

$$e^z = e^x \cdot e^{iy}$$

und $|e^{iy}|^2 = e^{iy} \cdot \overline{e^{iy}} = e^{iy} \cdot e^{-iy} = e^0 = 1$.

Also definiere $e^{iy} = \cos(y) + i\sin(y)$.

Jetzt kann man komplexe Multiplikation in Polarkoordinaten verstehen.

Schreibe $z=r\cdot e^{i\varphi},\,w=s\cdot e^{i\varphi}$ dann heißt r=|z| der Absolutbetrag und $\varphi\in\mathbb{R}\setminus 2\pi\mathbb{Z}$ das Argument.

Wir repräsentieren φ durch die Funktion $arg: \mathbb{C}^{\times} = \mathbb{C} \setminus \{0\} \to (-\pi, \pi]$. $z \cdot w = r \cdot e^{i\varphi} \cdot s \cdot e^{i\psi} = (rs) \cdot e^{i(\varphi + \psi)}$.

Satz 1.7 (Identitätssatz für Potenzreihen). Es sei $\Omega \subset \mathbb{C}$ Gebiet und $f: \Omega \to \mathbb{C}$ analytisch. Falls es $z_0 \in \Omega$ und eine Folge $(z_n)_{n \in \mathbb{N}}$ in $\Omega \setminus \{z_0\}$ mit $\lim_{n \to \infty} z_n = z_0$ gibt, sd. $f(z_n) = 0$ für alle n, dann ist f = 0 konstant.

Folgerung 1.8. Seien f, g zwei analytische Funktionen auf Ω , z_0 , $(z_n)_{n \in \mathbb{N}}$ wie oben, aber mit $f(z_n) = g(z_n)$ für alle n, dann folgt f = g auf ganz Ω .

Definition 1.9. f heißt analytisch auf Ω , wenn es zu jedem Punkt $z \in \Omega$ eine Umgebung $U \subset \Omega$ von z und eine Potenzreihe R um z gibt, die auf ganz U konvergiert, sd. $R(\omega) = f(\omega)$ für alle $\omega \in \Omega$.

Beweis. Sei zunächst U Umgebung von z, auf der f mit einer Potenzreihe $R(z) = \sum_{n=0}^{\infty} a_n(z - z_n)$ übereinstimmt.

Ohne Einschränkung sei $z_0=0$. Da R konvergiert, gilt $\rho>0$, also $\infty>\frac{1}{\rho}=\limsup_{n\to\infty}\sqrt[n]{|a_n|}$. Also existiert $n_0\in\mathbb{N}_0$ und $C>\frac{1}{\rho}$, sd. $|a_n|< C^n$ für alle $n\geq n_0$. Da nur endlich viele $n\leq n_0$ existieren, können wir C ggf. etwas größer wählen, sd. $|a_n|< C^n$ für alle n. Wir beweisen indirekt, dass alle $a_n=0$ sind, dh. wir nehmen an, es gäbe n mit $a_n\neq 0$. Es sei n_0 das kleinste n mit $a_{n_0}\neq 0$, dh. $a_n=0$ für $n< n_0$. Wir suchen n>0, sd. $|a_nz^{n_0}|>\sum_{n=n_0+1}^\infty |a_nz^n|\left(\geq |\sum_{n=n_0+1}^\infty a_nz^n|\right)$ für alle n>00 mit n>01 für n>02 mit n>03 mit n>04 für n>05 mit n>05 mit n>05 mit n>06 mit n>06 mit n>07 mit n>08 mit n>09 mit

$$\sum_{n=n_0+1}^{\infty} |a_n z^n| \leq \sum_{n=n_0+1}^{\infty} C^n |z^n| \underset{\text{geometrische Reihe}}{=} \frac{C^{n+1} |z|^{n+1}}{1-C|z|}$$

Wir suchen also r > 0, sd.

$$|a_{n_0}|r^{n_0} > \underbrace{\frac{C^{n+1}|z|^{n+1}}{1 - Cr}}_{> 0, \text{ für } r > \frac{1}{C}} \Leftrightarrow |a_n|(r^{n_0} - Cr^{n_0+1}) > C^{n_0+1}r^{n_0+1}$$

$$\Leftrightarrow |a_{n_0}| > r(C^{n_0+1} + |a_{n_0}|C)$$

$$\Leftrightarrow r > \frac{|a_{n_0}|}{C^{n_0+1} + |a_{n_0}|C}$$

Jetzt folgt für alle z mit 0 < |z| < r, dass $R(z) \neq 0$ wie gewünscht, Widerspruch! Also folgt R = 0 und somit $f|_U = 0$. Definiere $W = \{z \in \Omega \mid z \text{ hat Umgebung } U \text{ mit } f|_U = 0\}$ $\Rightarrow W$ ist offen und nichtleer.

Behauptung: W ist auch abgeschlossen. Falls nicht, existiert ein Häufungspunkt z_0 von W in Ω mit $z_0 \in W$. Dann existiert $(z_n)_n$ Folge in $W \setminus \{z_0\}$ mit $\lim_{n\to\infty} z_n = z_0$ und $f(z_n) = 0$ für alle n. Mit den obigen Argumenten folgt: z_0 hat Umgebung $U \subset \Omega$ mit $f|_U = 0$, somit $z_0 \in W$. W offen, abgeschlossen und nichtleer \Rightarrow (da Ω zusammenhängend ist) $\Omega = W$, also f = 0. \square

(Proposition im Kurzskript zum Rechnen mit Potenzreihen)...

1.2 Komplexe Differenzierbarkeit

Definition 1.10. Eine \mathbb{R} -lineare Abbildung $A: \mathbb{C} \to \mathbb{C}$ heißt \mathbb{C} - antilinear, wenn

$$A(zw) = \overline{z} \cdot A(w) \quad \forall w, z \in \mathbb{C}.$$

Jede \mathbb{R} -lineare Abbildung lässt sich zerlegen als A = A' + A'' mit $A'(z) = a' \cdot z$ und $A''(z) = a'' \cdot \overline{z}$, dabei heißen A' der Linearteil und A'' der Antilinearteil von A. Insbesondere ist A genau dann \mathbb{C} -linear, wenn A'' = 0.

Beweis. Setze
$$A'(z) = \frac{A(z) - i \cdot A(iz)}{2}$$
, $A''(z) = \frac{A(z) + i \cdot A(iz)}{2}$. Daraus folgt

$$A'(z) + A''(z) = \frac{A(z) - i \cdot A(iz)}{2} + \frac{A(z) + i \cdot A(iz)}{2} = A(z)$$

$$A'((u+iv) \cdot z) = \frac{A(uz) + A(ivz) - iA(iuz) - iA(-vz)}{2}$$

$$= \frac{uA(z) - iviA(iz) - iuA(iz) + ivA(z)}{2}$$

$$= \frac{(u+iv)(A(z) - iA(iz))}{2}$$

$$= (u+iv)A'(z)$$

Analog dazu ist A'' C-antilinear. Es folgt $A'(z) = A'(z \cdot 1) = z \cdot \underbrace{A'(1)}_{z'}$,

$$A''(z) = A''(z \cdot 1) = \overline{z} \cdot \underbrace{A''(1)}_{a''}.$$

Wiederholung. Sei $U \subset \mathbb{C}$ offen, $f: U \to \mathbb{C} \sim \mathbb{R}^2$ eine Funktion. f heißt total differenzierbar bei $z_0 \in U$, falls eine \mathbb{R} -lineare Abbildung $A: \mathbb{C} \to \mathbb{C}$ existiert, sd.

$$\lim_{z \to z_0} \frac{f(z) - f(z_0) - A(z - z_0)}{|z - z_0|} = 0.$$

Dann ist f auch partiell differenzierbar und die partiellen Ableitungen sind gerade die Einträge der reellen 2×2 -Matrix A.

Definition 1.11 (Komplexe Differenzierbarkeit). Es sei $U \subset \mathbb{C}$ offen. Eine Funktion $f: U \to \mathbb{C}$ heißt komplex differenzierbar bei $z_0 \in U$, falls $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ existiert. Dieser Grenzwert heißt dann die komplexe Ableitung $f'(z_0) \in \mathbb{C}$. Wenn f auf ganz U differenzierbar ist, heißt f auch holomorph auf U.

Definition 1.12. Sei $f: U \to \mathbb{C}$ eine Funktion, $U \subset \mathbb{C}$ offen. Schreibe f = u + iv für Funktionen $u, v: U \to \mathbb{R}$, sowie z = x + iy.

Definiere die Wirtinger-Ableitungen

$$\frac{\partial f}{\partial z} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$
$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

Beispiel 1.13. $\frac{\partial z}{\partial z} = 1$, $\frac{\partial z}{\partial \overline{z}} = 0$, $\frac{\partial \overline{z}}{\partial z} = 0$, $\frac{\partial \overline{z}}{\partial \overline{z}} = 1$

Lemma 1.14 (Definition). Es sei $U \subset \mathbb{C}$ offen, $f: U \to \mathbb{C}$ eine Funktion, $z_0 \in U$. Dann sind äquivalent

- 1. f ist komplex differenzierbar bei z_0
- 2. Es existiert eine stetige Funktion $\varphi: U \to \mathbb{C}$ mit $f(z) = f(z_0) + \varphi(z) \cdot (z z_0)$
- 3. f ist bei z_0 reell, total differenzierbar mit \mathbb{C} -linearer Ableitung
- 4. f ist bei z_0 reell, total differenzierbar und $\frac{\partial f}{\partial \overline{z}}|_{z_0} = 0$

5. f ist bei z_0 reell, total differenzierbar und es gelten die Cauchy-Riemann- Differential-gleichungen (C-R-DGL): $\frac{\partial u}{\partial x}|_{z_0} = \frac{\partial v}{\partial y}|_{z_0}$ und $\frac{\partial u}{\partial y}|_{z_0} = -\frac{\partial v}{\partial x}|_{z_0}$, wobei wieder f = u + iv gelte.

Insbesondere ist f dann auch bei z_0 stetig.

Beweis. $(1)\Rightarrow(2)$: Setze

$$\varphi(z) = \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} & z \neq z_0\\ f'(z_0) & z = z_0 \end{cases}$$

Stetigkeit bei z_0 folgt aus der komplexen Differenzierbarkeit. $(2)\Rightarrow(3)$: Schreibe

$$\lim_{z \to z_0} \frac{f(z) - f(z_0) - \varphi(z_0) \cdot (z - z_0)}{|z - z_0|} = \lim_{z \to z_0} \underbrace{\frac{\varphi(z) - \varphi(z_0)}{\varphi(z_0)}}_{\text{0, da } \varphi \text{ stetig in } z_0.} \underbrace{\frac{z - z_0}{|z - z_0|}}_{\text{beschränkt (Norm 1)}} = 0$$

 \Rightarrow f ist bei z_0 total-reell-differenzierbar. Die Ableitung ist die \mathbb{C} - lineare Abbildung $\omega \mapsto \varphi(z_0) \cdot \omega$. (3) \Rightarrow (4): Da die reelle Ableitung \mathbb{C} -linear ist, folgt $\frac{\partial f}{\partial \overline{z}}(z_0) = 0$ (was nach Definition gerade der Antilinearteil der Ableitung ist) (4) \Rightarrow (5):

$$0 = \underbrace{\frac{\partial f}{\partial \overline{z}}(z_0)}_{\in \mathbb{C}} \stackrel{=}{\underset{\text{Def. 1.12}}{=}} \underbrace{\frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)}_{\text{Realteil}} (z_0) + \underbrace{\frac{i}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)}_{\text{Imaginarteil}} (z_0)$$

hieraus lassen sich die C-R-DGL direkt ablesen.

(5) \Rightarrow (1): Schreibe $z = z_0 + x + iy$ dann gilt

$$f(z) = f(z_0) + \frac{\partial u}{\partial x}x + \frac{\partial u}{\partial y}y + \frac{\partial v}{\partial x}ix + \frac{\partial v}{\partial y}iy + R(x,y)$$

$$\stackrel{\text{C-R-DGL}}{=} f(z_0) + \frac{\partial u}{\partial x}(x+iy) - \frac{\partial v}{\partial x}(y-ix) + R(x,y)$$

$$= f(z_0) + \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) \cdot (x+iy) + R(x,y)$$

mit R(x,y) = o(|(x,y)|), das heißt $\lim_{(x,y)\to 0} \frac{R(x,y)}{|(x,y)|} = 0$ (der Restterm geht schneller gegen Null als (x,y)). Es folgt

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) \cdot (z - z_0) + R(x, y)}{z - z_0}$$

$$= \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} + \lim_{z \to z_{=}} \underbrace{\frac{R(x, y)}{|z - z_0|}}_{\text{beschränkt}} \cdot \underbrace{\frac{|z - z_0|}{|z - z_{=}|}}_{\text{beschränkt}}$$

$$= \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} \in \mathbb{C}$$

Beispiel 1.15. Die komplexe Exponentialfunktion ist holomorph auf ganz \mathbb{C} (Begründung folgt)

Proposition 1.16. Es gelten folgende Differentiationsregeln:

1. <u>Linearität:</u> Seien $f, g: \Omega \to \mathbb{C}$ holomorph, $a, b \in \mathbb{C}$, dann ist $a \cdot f + b \cdot g$ holomorph mit $(a \cdot f + b \cdot g)'(z) = a \cdot f'(z) + b \cdot g'(z)$.

- 2. Kettenregel: Sei $f: \Omega \to \Omega', g: \Omega' \to \mathbb{C}$ holomorph, dann ist $g \circ f: \Omega \to \mathbb{C}$ holomorph mit $g \circ f'(z) = f'(g(z)) \cdot g'(z)$.
- 3. Produktregel: Seien $f, g: \Omega \to \mathbb{C}$ holomorph, dann ist $f \cdot g$ holomorph mit Ableitung $\overline{(f \cdot g)'(z)} = f'(z) \cdot g(z) + f(z) \cdot g'(z)$.

Beweis. (1): Additivität ist klar. Multiplikativität siehe (3)

(2): Übung

(3): Schreibe f = u + iv, g = r + is, $u, v, r, s : \Omega \to \mathbb{R}$, dann ist $f \cdot g = (u \cdot r - v \cdot s) + i \cdot (u \cdot s + v \cdot r)$. Jetzt setzen wir mit den reellen Produktregeln fort und sind fertig.

Satz 1.17. Es sei $R(z) = \sum_{n=0}^{\infty} a_n \cdot z^n$ konvergente Potenzreihe mit Konvergenzradius $\rho > 0$, dann ist R(z) auf $B_{\rho}(0)$ holomorph mit Ableitung

$$R'(z) = \sum_{n=0}^{\infty} a_n \cdot n \cdot z^{n-1} = \sum_{m=0}^{\infty} a_{m+1}(m+1)z^m, \quad n-1 = m.$$

Beweis. Siehe Analysis, beruht auf folgendem Satz: Sei $(f_n)_{n\in\mathbb{N}}$ Folge differenzierbarer Funktionen auf U, sd. $(f_n)_n$ punktweise und $(f'_n)_n$ lokal-gleichmäßig konvergiert. $\Rightarrow (\lim_{n\to\infty} f_n)' = \lim_{n\to\infty} f'_n$

1.3 Das komplexe Kurvenintegral

Definition 1.18. Eine stückweise C^1 -Kurve $\gamma:[a,b]\to\mathbb{C}$ ist eine stetige Abbildung, sd. $a=t_0< t_1<\ldots< t_n=b$ existieren, für die $\gamma|_{[t_{i-1},t_i]}\in C^1$ für $i=1,\ldots,n$. Für $t\neq t_i,\ t\in [a,b]$, sei $\dot{\gamma}(t)=\frac{\mathrm{d}\gamma}{\mathrm{d}t}(t)$ der Geschwindigkeitsvektor. γ heißt geschlossen, wenn

$$\gamma(a) = \gamma(b)$$
.

Definition 1.19 (Kurvenintegral). Sei $\Omega \subset \mathbb{C}$ ein Gebiet, $\gamma : [a, b] \to \Omega$ stückweise C^1 , sei $f : \Omega \to \mathbb{C}$ stetig. Definiere das komplexe Kurvenintegral

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \cdot \dot{\gamma}(t) dt \in \mathbb{C}.$$

Dazu bilden wir rechts Real- und Imaginärteil des Integranden und integrieren diese seperat mit dem Riemann-/ Regel-/ Lesegueintegral.

$$\int_{\gamma} f(z) dz = \int_{a}^{b} \underbrace{(u(\gamma(t)) + i \cdot v(\gamma(t)))}_{f(z)} \cdot \underbrace{(\dot{x}(t) + i \cdot \dot{y}(t)) dt}_{dz}$$

,wobei f = u + iv, $u, v : \Omega \to \mathbb{R}$ und $\gamma = x + iy$, $x, y : [a, b] \to \mathbb{R}$ (ausmultiplizieren vgl Kurzskript). Mithin ist $f(z) = f(\gamma(t))$ der "Integrand" und d $z = d(\gamma(t)) = \dot{\gamma}(t) dt$ das "Tangentenelement" des Kurvenintegrals.

Bemerkung 1.

$$\stackrel{\text{ausmult.}}{=} \int_a^b (u(\gamma(t)) \cdot \dot{x}(t) - v(\gamma(t)) \cdot \dot{y}(t) dt + i \cdot \int_a^b (u(\gamma(t)) \cdot \dot{y}(t) + v(\gamma(t)) \cdot \dot{x}(t)) dt$$

Der Realteil ist das Kurvenintegral über $\overline{f} = u - iv$ aus der Analysis (aufgefasst als Vektorfeld $\begin{pmatrix} \operatorname{Re} f \\ \operatorname{Im} f \end{pmatrix}$) und der Imaginärteil das entsprechende "normale" Kurvenintegral.

Proposition 1.20. Es sei $\gamma:[a,b]\to\Omega$ eine stückweise C^1 -Kurve und $\varphi:[c,d]\to[a,b]$ ein stückweiser C^1 -Diffeomorphismus, dann ist $\gamma\circ\varphi:[c,d]\to\Omega$ eine stückweise C^1 -Kurve. $sign(\dot{\varphi})$ lässt sich zu einer konstanten Funktion auf [c,d] fortsetzen und für alle stetigen Funktionen $f:\Omega\to\mathbb{C}$ gilt

$$\int_{\gamma} f(z) dz = sign(\dot{\varphi}) \int_{\gamma \circ \varphi} f(\omega) d\omega$$

Beweis. Übung mit Substitutionsformel.

(Ein stückweise C^1 -Diffeomorphismus $\varphi: [c,d] \to [a,b]$ ist ein Homomorphismus, sd. ein $m \in \mathbb{N}$ und $c = s_0 < s_1 < \ldots < s_m = d$ existieren mit $\varphi|_{[s_{i-1},s_i]} \in C^1([s_{i-1},s_i])$ für $i = 1,\ldots,m$

Folgerung 1.21 (aus Hauptsatz der Differential- und Integralrechnung). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet, $\gamma:[a,b]\to\Omega$ eine stückweise C^1 -Kurve und $f:\Omega\to\mathbb{C}$ holomorph. Dann gilt der Hauptsatz der Differential- und Integralrechnung

$$\int_{\gamma} f'(z)dz = f(\gamma(t))|_{t=a}^{b} = f(\gamma(b)) - f(\gamma(a))$$

Beweis. Es sei $a = t_0 < t_1 < \ldots < t_n = b$, sd. $\gamma_i = \gamma|_{[t_{i-1},t_i]} \in C^1([t_{i-q},t_i])$ für $i = 1,\ldots,n$.

$$[t_{i-1}, t_i] \xrightarrow{\gamma_i} \Omega \xrightarrow{f} \mathbb{C}$$

$$\int_{\gamma_i} f'(z) dz = \int_{t_{i-1}}^{t_i} f'(\gamma_i(t)) \cdot \dot{\gamma}_i(t) dt = \int_{t_{i-1}}^{t_i} (f \circ \gamma_i)'(t) dt$$
$$= (f \circ \gamma_i)(t_i) - (f \circ \gamma_i)(t_{i-1})$$

$$\Rightarrow \int_{\gamma} f'(z) dz = (f(\gamma(t_1)) - f(\gamma(t_0))) + (f(\gamma(t_2)) - f(\gamma(t_1))) + \dots + (f(\gamma(t_n)) - f(\gamma(t_{n-1})))$$

$$= f(\gamma(b)) - f(\gamma(a))$$

Bemerkung 2. Wir möchten uns das komplexe Kurvenintegral als Umkehrung der komplexen Ableitung vorstellen. Wir sehen im nächsten Abschnitt, für welche Funktionen das geht.

1.4 Der Cauchy-Integralsatz

Definition 1.22 (stückweise C^1 -Homotopie). Eine stückweise C^1 -Homotopie, in einem Gebiet $\Omega \subset \mathbb{C}$, zwischen zwei stückweisen C^1 -Kurven $\gamma_0, \gamma_1 : [a, b] \to \Omega$ mit $\gamma_0(a) = \gamma_1(a) = p$, $\gamma_0(b) = \gamma_1(b) = q$ ist eine stetige Abbildung $h : [a, b] \times [0, 1] \to \Omega$, sd. $m, n \in \mathbb{N}$, $a = t_0 < t_1 < \ldots < t_n = b, 0 = s_0 < \ldots < s_m = 1$ existieren, sd. $h|_{[t_{j-1}, t_j] \times [s_{k-1}, s_k]} \in C^1$ ist (auch auf den jeweiligen Randstücken) und $h(t, l) = \gamma_l(t)$ für $l \in [0, 1]$, $t \in [a, b]$ und h(a, s) = p, h(b, s) = q für alle $s \in [0, 1]$.

Definition 1.23 (homotope Kurve). Eine (stückweise C^1 -) Kurve $\gamma_0 : [a,b] \to \Omega$ heißt zu einer (stückweisen C^1 -) Kurve $\gamma_1 : [a,b] \to \Omega$, mit gleichem Anfangs- und Endpunkt, (stückweise C^1 -) homotop in Ω, wenn es eine stückweise C^1 -Homotopie zwischen ihnen in Ω gibt.

Definition 1.24 (nullhomotope Kurve). Eine geschlossene (stückweise C^1 -) Kurve γ heißt (stückweise C^1 -) nullhomotop in Ω , wenn sie C^1 -homotop zu einer konstanten Kurve ist.

Definition 1.25 (einfach zusammenhängend). Das Gebiet Ω heißt einfach zusammenhängend, wenn jede geschlossene (stückweise C^1 -) Kurve in Ω (stückweise C^1 -) nullhomotop in Ω ist.

Bemerkung 3 (Einschub zu Kurvenintegral). Sei $\gamma:[a,b]\to\mathbb{C}$ eine stückweise C^1 -Kurve, dann definieren wir die Bogenlänge (bzw. Länge) als

$$L(\gamma) = \int_{a}^{b} |\dot{\gamma}(t)| dt = \sup_{n, a = t_0 < \dots < t_n = b} \sum_{j=1}^{n} |\gamma(t_j) - \gamma(t_{j-1})|$$

Dann gilt

$$\begin{split} \left| \int_{\gamma} f(z) \mathrm{d}z \right| &= \left| \int_{a}^{b} f(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d}t \right| &\leq \int_{a}^{b} |f(\gamma(t)) \cdot \dot{\gamma}(t)| \mathrm{d}t \\ &= \int_{a}^{b} |f(\gamma(t))| \cdot \dot{\gamma}(t) \mathrm{d}t \\ &\leq \sup_{t \in [a,b]} |f(\gamma(t))| \cdot L(\gamma). \end{split}$$

Satz 1.26 (Cauchy-Integralsatz). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet, $f:\Omega \to \mathbb{C}$ holomorph und γ : $[a,b] \to \Omega$ eine stückweise C^1 -Kurve, die in Ω stückweise C^1 -nullhomotop ist. Dann gilt

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

Beweis. Es reicht zu zeigen, dass für jede stückweise C^1 -Abbildung $h: \underbrace{[a,b] \times [0,1]}_R \to \Omega$ gilt

$$\int_{h(\partial R)} f(z) \mathrm{d}z = 0.$$

Dabei ist $\int_{h(\partial R)}$ eine Abkürzung für $\int_{h(\partial R)} = \int_{h_1} + \int_{h_2} + \int_{h_3} + \int_{h_4}$, wobei $h_1(t) = h(t,0), \ h_2(s) = h(b,s), \ h_3(t) = h(a+b-t,1), \ h_4(s) = h(a,1-s).$

Setze das zu einer stückweisen C^1 -Kurve mit Namen $h(\partial R)$ zusammen.

Annahme: Es gebe eine solche Abbildung $h:[a,b]\times[0,1]\to\Omega,$ sd. $\int_{h(\partial R)}f(z)\mathrm{d}z\neq0.$ Wir zerlegen das Rechteck R in vier gleich große Teile R_1,\ldots,R_4 und sehen, dass

$$\int_{h(\partial R)} f(z) dz = \int_{h(\partial R_1)} f(z) dz + \ldots + \int_{h(\partial R_4)} f(z) dz.$$

Da sich die zusätzlichen Integrale über Strecken im Inneren von R wegen Proposition?? weg-

Jetzt wählen wir das Teilrechteck aus, für den das jeweilige Kurvenintegral über den Rand den größten Absolutbetrag hat, nenne es R_1 . Es folgt

$$\left| \int_{h(\partial R_1)} f(z) dz \right| \ge \frac{1}{4} \left| \int_{h(\partial R)} f(z) dz \right|$$

Wir zerlegen weiter und erhalten so eine Folge von Rechtecken $R_1 \supset R_2 \supset \ldots, R_n$ mit Seitenlängen von R_n proportional zu 2^{-n} , sd.

$$\left| \int_{h(\partial R_n)} f(z) dz \right| \ge 2^{-n} \left| \int_{h(\partial R)} f(z) dz \right|.$$

Nach dem Satz über die Invervallverschachtelung (Analysis) existiert ein eindeutiger Punkt $(t_0, s_0) \in \mathbb{R}^2 \text{ mit } (t_0, s_0) \in \bigcap_{n \in \mathbb{N}} R_n.$

Es sei $z_0 = h(t_0, s_0) \in \Omega$.

Beachte: Da h stückweise C^1 ist, erhalten wir für jedes der endlich vielen Rechtecke aus Definition

1.22 eine obere Schranke für $|\frac{\partial h}{\partial t}|$, $|\frac{\partial h}{\partial s}|$ (wegen der Kompaktheit). Da es nur endlich viele dieser Rechtecke gibt, folgt $|\frac{\partial h}{\partial t}| \leq C$, $|\frac{\partial h}{\partial s}| \leq C$ auf ganz $R = R_0$, für ein festes C > 0. Schreibe nahe z_0 die Funktion f als $f(z) = f(z_0) + f'(z_0) \cdot (z - z_0) + r(z - z_0)$, wobei $\lim_{z \to z_0} |\frac{r(z-z_0)}{z-z_0}| = 0$, da f holomorph ist (vgl. Lemma 1.14). Da $f(z_0) + f'(z_0) \cdot (z - z_0)$ das Differential der holomorphen Funktion $z \mapsto f(z_0) \cdot (z - z_0) + \frac{1}{2}f'(z_0) \cdot (z - z_0)^2$ ist, folgt mit Bemerkung 2, dass das Integral von $f(z_0) + f'(z_0) \cdot (z - z_0)$ über die geschlossenen Kurven $h(\partial R_n)$ verschwindet. Die Länge L von $h(\partial R_n)$, $L(h(\partial R_n))$ können wir abschätzen durch $4 \cdot 2^{-n} \cdot C$. Es folgt

$$\left| \int_{h(\partial R)} f(z) dz \right| \leq \lim_{n \to \infty} 2^{2n} \left| \int_{h(\partial R_n)} f(z) dz \right|$$

$$\stackrel{(I)}{=} \lim_{n \to \infty} 2^{2n} \left| \int_{h(\partial R_n)} r(z - z_0) dz \right|$$

$$\leq \lim_{n \to \infty} \left(2^{2n} \cdot \sup_{h(\partial R_n)} |r(z - z_0)| \cdot \underbrace{L(h(\partial R_n))}_{\leq 4 \cdot C \cdot 2^{-n}} \right)$$

$$\leq \lim_{n \to \infty} \left(2^n \cdot 4 \cdot C \cdot \sup_{h(\partial R_n)} |r(z - z_0)| \cdot \frac{|z - z_0|}{|z - z_0|} \right)$$

$$\stackrel{\leq}{=} \lim_{|z \to z_0|} \frac{|r(z - z_0)|}{|z - z_0|} \cdot 8 \cdot C^2$$

$$= \lim_{z \to z_0} \frac{|r(z - z_0)|}{|z - z_0|} \cdot 8 \cdot C^2$$

$$= 0.$$

Also gilt $|\int_{h(\partial R)} f(z) dz| = 0$ im Widerspruch zur Annahme.

Folgerung 1.27. Es sei $\Omega \subset \mathbb{C}$ Gebiet, γ_0 , γ_1 zwei stückweise C^1 -Kurven in Ω von p nach q, die stückweise C^1 -homotop sind. Dann gilt

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$$

Beweis. Sei h eine stückweise C^1 -Homotopie zwischen γ_0 und γ_1 in Ω . Betrachte $k:[0,1]^2\to [a,b]\times [0,1]$ mit

$$k(u,v) = \begin{cases} (a + (1-v)4u(b-a), 0) & u \in [0, \frac{1}{4}] \\ (a + (1-v)(b-a), 4u - 1) & u \in [\frac{1}{4}, \frac{1}{2}] \\ (a + (1-v)(3-4u)(b-a), 1) & u \in [\frac{1}{2}, \frac{3}{4}] \\ (a, 4-4u) & u \in [\frac{3}{4}, 1] \end{cases}$$

Die Kurve $(h \circ k)(\cdot, 0) : [0, 1] \to \Omega$ ist geschlossen und wegen der Invarianz des Kurvenintegrals unter Umparametrisierung erhalten wir

$$\int_{(h\circ k)(\cdot,0)} f(z)dz = \int_{\gamma_0} f(z)dz + \underbrace{\int_q f(z)dz}_q + \int_{\gamma_1(-\cdot)} f(z)dz + \int_p f(z)dz$$
$$= \int_{\gamma_0} f(z)dz - \int_{\gamma_1} f(z)dz$$

 $(h \circ k)$ ist eine Nullhomotopie dieser Kurve. also verschwindet der obige Ausdruck.

Satz 1.28 (erweiterter Cauchy-Integralsatz). Sei $f:\Omega\to\mathbb{C}$ stetig differenzierbar und $\gamma:[0,1]\to\Omega$ umlaufe eine einfach zusammenhängende Teilmenge $A\subset\Omega$ im mathematischen Drehsinn. Dann gilt

 $\int_{\gamma} f(z) dz = 2i \int_{A} \frac{\partial f}{\partial \overline{z}}(z) \underbrace{dA(z)}_{\text{Flächenelement}}$

(Vergleiche mit dem Satz von Stokes oder dem Gaußschen Divergenzsatz)

Beweis. Beweisskizze: Da A einfach zusammenhängend ist, ist γ in A nullhomotop. Sei $h:[0,1]^2\to A\subset\Omega$ eine Nullhomotopie. Annahme:

$$\left| \int_{\gamma} f(z) dz - 2i \int_{A} \frac{\partial f}{\partial \overline{z}} dA(z) \right| = \varepsilon > 0.$$

Zerlege $[0,1]^2$ in vier gleich große Quadrate R',\ldots,R'''' . Dann gilt für eins der Quadrate:

$$\left| \int_{h(\partial R^?)} f(z) dz - 2i \int_{h(R^?)} \frac{\partial f}{\partial \overline{z}} dA(z) \right| \ge \frac{\varepsilon}{4}$$

Nenne es R_1 und zerlege weiter. Erhalte eine Intervallverschachtelung mit Grenzpunkt $(t_0, s_0) \in [0, 1]^2$; sei $h(t_0, s_0) =: z_0 \in \Omega$. Schreibe

$$f(z) = f(z_0) + \frac{\partial f}{\partial z}(z_0) \cdot (z - z_0) + \frac{\partial f}{\partial \overline{z}}(z_0) \cdot \overline{(z - z_0)} + r(z - z_0).$$

mit $\lim_{z\to z_0} \frac{r(z-z_0)}{|z-z_0|} = 0$. Wir wissen, dass

$$\int_{h(\partial R^n)} \left(f(z_0) + \frac{\partial f}{\partial z}(z_0)(z - z_0) \right) dz = 0.$$

In einer Übung berechnen wir

$$\int_{h(\partial R^n)} \frac{\partial f}{\partial \overline{z}}(z_0) \overline{(z-z_0)} dz = 2i \cdot A(h(R^n))$$

(falls $h(R^n)$ ein Parallelogramm ist — da h stückweise C^1 ist, ist $h(R^n)$ "fast" ein Parallelogramm, sd. die obige Behauptung bis auf einen ausreichend kleinen Rest stimmt.) Außerdem gilt

$$\lim_{n \to \infty} \left| \int_{h(R^n)} \frac{\partial f}{\partial \overline{z}} \mathrm{d}A(z) - \int_{h(R^n)} \frac{\partial f}{\partial \overline{z}}(z_0) \mathrm{d}A(z) \right| \cdot 2^{2n} = 0$$

da $\frac{\partial f}{\partial \overline{z}}$ stetig ist. $\frac{\partial f}{\partial \overline{z}}(z_0) \cdot A(h(R^n))$ Also erhalten wir einen Widerspruch genau wie im Beweis des Integralsatzes.

1.5 Die Potenzreihendarstellung

Ziel:

- "holomorph" und " analytisch" sind gleichbedeutend.
- Man kann Ableitungen als Integrale schreiben.
- Funktionen haben Stammfunktionen genau dann, wenn sie holomorph sind.

Satz 1.29 (Cauchy-Formel). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet. $f: \Omega \to \mathbb{C}$ holomorph, $z_0 \in \Omega$, r > 0 sei so gewählt, dass $\overline{B_r(z_0)} \subset \Omega$. γ beschreibe den Rand von $B_r(z_0)$ im mathematische Drehsinn. Dann gilt für all $z \in B_r(z_0)$, dass

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Beweis. $\frac{f(\zeta)}{\zeta-z}$ ist in ζ holomorph in $\Omega \setminus \{z\}$. Wähle $\varepsilon > 0$ hinreichend klein, sd. $B_{\varepsilon}(z) \subset B_r(z_0)$. Dann lässt sich eine in $\Omega \setminus \{z\}$ nullhomotope Kurve φ finden, sd.

$$0 = \int_{\varphi} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta - \int_{\partial B_{\varepsilon}(z)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Berechne jetzt für $\varepsilon > 0$ klein

$$\int_{\partial B_{\varepsilon}(z)} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{0}^{1} f(\underbrace{z + \varepsilon \cdot e^{2\pi i t}}) \cdot \underbrace{\frac{1}{\varepsilon \cdot e^{2\pi i t}}}_{=\dot{\varphi}(t)} \underbrace{\frac{2\pi i \varepsilon \cdot e^{2\pi i t}}{=\dot{\varphi}(t)}}_{=\dot{\varphi}(t)} dt$$

$$= 2\pi i \int_{0}^{1} f(\underbrace{f(z) + R(\varepsilon e^{2\pi i t})}_{\text{da } f \text{ stetig ist, gilt } R \to 0 \text{ für } \varepsilon \to 0}) dt$$

$$\lim_{\varepsilon \to 0} \int_{\partial B_{\varepsilon}(z)} \frac{f(\zeta)}{\zeta - z} d\zeta = 2\pi i f(z).$$

Folgerung 1.30 (Mittelwertsatz). Es seien Ω , f, z_0 , r wie oben, dann gilt

$$f(z_0) = \int_0^1 f(z_0 + r \cdot e^{2\pi i t}) dt$$

Kein Kurvenintegral und das hier ist nicht der Mittelwertsatz aus Ana 1.

Beweis. Setze $z=z_0$ in der Integralformel

$$f(z_0) = \frac{1}{2\pi i} \int_0^1 f(z_0 + r \cdot e^{2\pi i t}) \cdot \frac{1}{r e^{2\pi i t}} r \cdot 2\pi i \cdot e^{2\pi i t} dt$$

Beispiel 1.31. Wähle $\Omega = \mathbb{C}$, $f(z) = e^z$ $z_0 = 0$, r = 1. Dann gilt

$$1 = e^{0} = \int_{0}^{1} e^{\cos(2\pi t) + i\sin(2\pi t)} dt \quad \varphi = 2\pi t$$
$$= \frac{1}{2\pi} \underbrace{\int_{0}^{2\pi} e^{\cos(\varphi)} \cdot \cos(\sin(\varphi)) d\varphi}_{2\pi} + \frac{1}{2\pi i} \underbrace{\int_{0}^{2\pi} e^{\cos(\varphi)} \cdot \sin(\sin(\varphi)) d\varphi}_{0}$$

Satz 1.32 (Potenzreihenentwicklung). Es sei $f: \Omega \to \mathbb{C}$ holomorph und $z_0 \in \Omega$. Dann konvergiert die Potenzreihe $\sum_{n=0}^{\infty} a_n \cdot (z-z_0)^n$ mit $a_n = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(z)}{(z-z_0)^{n+1}} \mathrm{d}z$ (für ein r > 0, sd. $\overline{B_r(z_0)} \subset \Omega$) mit Konvergenzradius $\varphi \geq \sup\{r | \overline{B_r(z_0)} \subset \Omega\}$ und stellt auf $B_r(z_0)$ die Funktion f dar.

Beweis.

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} \frac{f(\zeta)}{(\zeta - z_{0}) - (z - z_{0})} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} f(\zeta) \cdot \underbrace{\sum_{n=0}^{\infty} \frac{(z - z_{0})^{n}}{(\zeta - z_{0})^{n+1}}}_{\frac{1}{\zeta - z_{0}} \cdot \frac{1}{1 - \frac{z - z_{0}}{\zeta - z_{0}}}} d\zeta = \sum_{n=0}^{\infty} (z - z_{0})^{n} \cdot \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} \frac{f(\zeta)}{(\zeta - z_{0})^{n+1}} d\zeta.$$

Wir dürfen Summation und Integration vertauschen, falls $|z-z_0| < |\zeta-z_0| = r$, da dann Summe und Integral absolut konvergieren. Der Konvergenzradius ist daher mindestens r. Und zwar für jedes r mit $\overline{B_r(z_0)} \subset \Omega$.

Folgerung 1.33. Holomorphe Funktionen sind (komplex) analytisch, insbesondere C^{∞} .

Beweis. Sei $f: \Omega \to \mathbb{C}$ holomorph, $z_0 \in \Omega$, r > 0, sd. $\overline{B_r(z_0)} \subset \Omega$. Dann können wir f auf $B_r(z_0)$ durch eine Potenzreihe darstellen. Insbesondere ist f auf $B_r(z_0)$ analytisch (und C^{∞}). Da das für alle $z_0 \in \Omega$ geht, folgt die Behauptung.

Somit: "holomorph" und "analytisch" sind gleichbedeutend.

<u>Grund:</u> "Holomorphie" ist gleichbedeutend mit den Cauchy-Rieman-Differentialgleichungen (Lemma 1.14). Diese sind "elliptisch" und Lösungen elliptischer Differentialgleichungen sind mindestens so oft differenzierbar, wie ihre Koeffizienten und ihre rechte Seite.

<u>Zur Erinnerung:</u> Wir haben die Rechenregeln für Potenzreihen aus Proposition 1.7 (Kurzskript) nicht bewiesen. Mit Folgerung 1.33 und Proposition 1.16 geht der Beweis recht einfach.

Folgerung 1.34. Es sei Ω einfach zusammenhängend. Dann ist $f:\Omega\to\mathbb{C}$ genau dann holomorph, wenn f eine Stammfunktion F besitzt (das heißt F ist holomorph mit F'=f).

Beweis. " \Leftarrow " Sei F Stammfunktion. Da F holomorph ist, ist F beliebig oft komplex differenzierbar, siehe Folgerung 1.33. Also ist auch f = F' beliebig oft komplex differenzierbar, also insbesondere auch holomorph.

" \Rightarrow " Da Ω einfach zusammenhängend ist, sind je zwei Kurven γ_0, γ_1 von $z_0 \in \Omega$ nach $z \in \Omega$ homotop. Somit gilt

$$\int_{\gamma_0} f(\zeta) d\zeta = \int_{\gamma_1} f(\zeta) d\zeta \quad \text{nach Folgerung 1.27}$$

Fixiere also z_0 und definiere $F = \int_{\gamma} f(\zeta) d\zeta$ für eine Kurve $\gamma : [0,1] \to \Omega$ mit $\gamma(0) = z_0$ und $\gamma(1) = z$. Um F'(z) zu berechnen, betrachte ω nahe z und eine Kurve γ von z_0 nach ω der Form (siehe Skizze Skriptum Niklas) Dann gilt:

$$\lim_{\omega \to z} \frac{F(\omega) - F(z)}{\omega - z} = \lim_{\omega \to z} \frac{1}{\omega - z} \left(\int_{\gamma_{\omega}} f(\zeta) d\zeta - \int_{\gamma_{z}} f(\zeta) d\zeta \right)$$

$$= \lim_{\omega \to z} \frac{1}{\omega - z} \int_{\gamma_{\omega - z}} f(\zeta) d\zeta$$

$$= \lim_{\omega \to z} \frac{1}{\omega - z} \int_{0}^{1} f(\gamma_{\omega - z}(t)) \underbrace{\omega - z}_{=\dot{\gamma}_{\omega - z}(t)} dt$$

$$= f(z).$$

 $\Rightarrow F$ ist eine Stammfunktion.

Zur Erinnerung: Identitätssatz für Potenzreihen.

Folgerung 1.35 (Identitätssatz für holomorphe Funktionen). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet, $f, g : \Omega \to \mathbb{C}$ holomorph. Falls eine Teilmenge $A \subset \Omega$ mit Häufungspunkt $z \in \Omega$ existiert, sd. $f|_A = g|_A$, dann gilt f = g auf ganz Ω .

Beweis. Nach Folgerung 1.33 sind f und g analytisch.

 \ddot{A} hat Häufungspunkt z" \Leftrightarrow Es existiert eine Folge $(z_n)_{n\in\mathbb{N}}\subset A\setminus\{z\}$, sd. $z_n\xrightarrow{n\to\infty}z$.

Es folgt $(g-f)(z_n)=0$ für alle n und nach dem Identitätssatz für Potenzreihen bzw. analytische Funktionen gilt somit g-f=0 auf ganz Ω .

Der Identitätssatz ermöglicht es manche aus dem reellen bekannten Funktionen auf $\mathbb C$ zu übertragen und ihre Eigenschaften zu verstehen.

Beispiel 1.36. Es gilt für $x \in \mathbb{R}$, dass

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Wir können $z \in \mathbb{C}$ in die Potenzreihenentwicklung einsetzen. Da der Konvergenzradius ∞ ist, erhalten wir eine Funktion sin : $\mathbb{C} \to \mathbb{C}$. Da die Identitäten

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$$

$$\sin''(z) = -\sin(z)$$
(1)

für alle $x \in \mathbb{R}$ gelten, gelten sie nach dem Identitätssatz für alle z, w aus \mathbb{C} .

Zu (1) [Additionstheorem]: Nehme zunächst $w \in \mathbb{R}$ als Konstante an, dann folgt das Additionstheorem für alle $z \in \mathbb{C}$, $w \in \mathbb{R}$. Nehme nun $z \in \mathbb{C}$ konstant an, erhalte Additionstheorem für alle $z, w \in \mathbb{C}$.

Definiere die Hyperbelfunktion cosh, sinh durch

$$\cosh(z) = \cos(iz) = \frac{e^{-z} + e^z}{2}$$
$$\sinh(z) = \frac{\sin(iz)}{i} = \frac{e^{-z} - e^z}{-2} = \frac{e^z - e^{-z}}{2}$$

Auf der anderen Seite verhindert der Identitätssatz die Existenz holomorpher Fortsetzungen von reellen Funktionen mit bestimmten Eigenschaften.

Beispiel 1.37. 1. Es gibt kein Gebiet Ω mit $\mathbb{R} \setminus \{0\} \subset \Omega$ und sich die Funktion $x \mapsto |x|$ auf Ω fortsetzen ließe.

Denn: wäre f eine Fortsetzung, dann wäre f(z) = z auf $(0, \infty) \subset \mathbb{R}$ und daher auf ganz Ω .

2. Betrachte

$$f(x) = \begin{cases} 0 & x \le 0 \\ e^{-\frac{1}{x}} & x > 0. \end{cases}$$

Diese Funktion ist C^{∞} und bei x=0 verschwinden alle Ableitungen. Sie ist nicht analytisch bei x=0 und hat daher keine holomorphe Fortsetzung.

Satz 1.38 (Morera). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet und $f : \Omega \to \mathbb{C}$ stetig, sd. das Kurvenintegral von f über den Rand eines jeden Dreiecks, das ganz in Ω liegt verschwindet. Dann ist f holomorph.

Beweis. Benutze Folgerung 1.34 auf kleinen Bällen $B_r(z_0) \subset \Omega$ für $z_0 \in \Omega$ und r > 0 ausreichend klein

Definiere jetzt $F(z) = \int_{\gamma_z} f(\zeta) d\zeta$, wobei $z \in B_r(z_0)$ und $\gamma(t) = z + t(\omega - z)$. Argumentiere wie in Folgerung 1.34, dass F'(z) = f(z), allerdings benutzen wir diesmal:

$$\int_{\gamma_{\omega}} f(\zeta) d\zeta - \int_{\gamma_{z}} f(\zeta) d\zeta = \int_{\gamma_{z}} f(\zeta) d\zeta + \int_{\gamma_{\omega-z}} f(\zeta) d\zeta - \int_{\gamma_{z}} f(\zeta) d\zeta = \int_{\gamma_{\omega-z}} f(\zeta) d\zeta.$$

 $\Rightarrow F' = f \text{ auf } B_r(z_0).$

Da $z_0 \in \Omega$ und r > 0 beliebig waren, ist f auf Ω holomorph.

Satz 1.39 (Schwarzsches Spiegelungsprinzip). Es sei $\Omega \subset \mathbb{C}$ symmetrisch bezüglich \mathbb{R} (dh. $z \in \Omega \Leftrightarrow \overline{z} \in \Omega$). Schreibe $\Omega_+ = \{z \in \Omega | \text{Im } z > 0\}$, $\Omega_0 = \Omega \cap \mathbb{R}$ und $\Omega_- = \{z \in \Omega | \text{Im } z < 0\}$. Sei $f: \Omega_+ \cup \Omega_0 \to \mathbb{C}$ stetig, sd. $f|_{\Omega_+}$ holomorph und $f|_{\Omega_0}$ reellwertig ist. Dann existiert eine holomorphe Fortsetzung $f: \Omega \to \mathbb{C}$ mit $f(\overline{z}) = \overline{f(z)}$.

Beweis. Definiere $f(z)=\overline{f(z)}$ für $z\in\Omega,$ dann ist f auf ganz Ω stetig. Zeige jetzt, dass die Voraussetzungen des Satzes von Morera gelten.

- 1. Für jedes Dreieck in Ω_+ stimmt die Behauptung
- 2. Sei $\triangle \subset \Omega_+ \cup \Omega_0$ ein Dreieck. Dann betrachte Dreiecke $\triangle_n \subset \Omega_+$, die dagegen konvergieren. Da das Integral stetig vom Integranden abhängt (glm. stetig gilt, da \triangle -Fläche kompakt ist), ist auch das Integral über den Rand von \triangle gleich 0.
- 3. Falls $\triangle \subset \Omega \subset \Omega_- \cup \Omega_0$ liegt, berechne

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \dot{\gamma}(t) dt = \int_{a}^{b} \overline{f(\overline{\gamma(t)})} \, \overline{\dot{\gamma}(t)} dt$$
$$= \int_{a}^{b} f(\overline{\gamma(t)}) \dot{\overline{\gamma}}(t) dt = 0,$$

falls γ den Rand von \triangle beschreibt.

4. \triangle erstreckt sich über alle Dreiecke. Dann zerfällt \triangle in höchstens 3 Dreiecke vom Typ (1)-(3). Jetzt folgt Homotopie aus Satz 1.38.

Beispiel 1.40. sin aus Beispiel 1.36.

Bemerkung 4. Es sei g auf $\partial B_r(z_0)$ stetig. Dan können wir

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{g(\zeta)}{\zeta - z} d\zeta$$

für alle $z \in B_r(z_0)$ definieren.

Frage: Setzt f die Funktion g stetig fort?

(Beachte: $\partial B_r(z_0)$ ist im schlimmsten Fall der Rand des Konvergenzkreises...)

Falls ja, wäre auch $f(z) \cdot (z - z_0)^k$ holomorph für alle $k \ge 0$ und somit hätten wir nach dem Integralsatz

$$\frac{1}{2\pi i} \int_{\partial B_r(z_0)} f(\zeta) \underbrace{(\zeta - z_0)^k}_{z_0 + re^{it}} d\zeta = 0.$$

Das bedeutet, dass "ungefähr die Hälte" der Fourierzerlegung von $t \mapsto g(z_0 + r \cdot e^{it})$ verschwindet.