Inner Minkowski Dimension of a Fractal String

Definition 1

Dimension of
$$\Omega$$
: $D_{\Omega} = \inf \{ \alpha \geq 0 \mid V(\epsilon) = O(\epsilon^{1-\alpha}) \text{ as } \epsilon \to 0^+ \}$

Inner Minkowski Dimension of a Fractal String

Definition 1

Dimension of Ω:
$$D_{\Omega} = \inf \{ \alpha \geq 0 \mid V(\epsilon) = O(\epsilon^{1-\alpha}) \text{ as } \epsilon \to 0^+ \}$$

In other terms: $D_{\Omega} = \text{the smallest } \alpha \text{ st } \lim_{\epsilon \to 0^+} \frac{V(\epsilon)}{\epsilon^{1-\alpha}} = c, \ c \in \mathbb{R}$

Inner Minkowski Dimension of a Fractal String

Definition 1

Dimension of Ω:
$$D_{\Omega} = \inf \{ \alpha \geq 0 \mid V(\epsilon) = O(\epsilon^{1-\alpha}) \text{ as } \epsilon \to 0^+ \}$$

In other terms: $D_{\Omega} = \text{the smallest } \alpha \text{ st } \lim_{\epsilon \to 0^+} \frac{V(\epsilon)}{\epsilon^{1-\alpha}} = c, \ c \in \mathbb{R}$

Cantor String Dimension: $D_{cs} = \log_3 2$

