1) Av = 9 sp go Im (Mi) = -Jup go lm Mi ⇒ 7.6×10³ = - 986 go In 1- Mpropellent Minitial \Rightarrow 7.6 x 10³ = - 400 x 9.0 lm (1- Mporopulant Minited $\Rightarrow \frac{-19}{9.8} = ln(1-\frac{M_{\text{propolated}}}{M_{\text{initial}}})$ > 0.144 = 1- Mpropellent Munitial = 0.856 > Mpropulant
Minitid factors = lotes + p G & 4) Av = 986 godn (M) $\frac{1}{2000} = \frac{1}{2000} = \frac{$ 2 986 7 400 2 000 × 9,0 × 2000 = Mi(1-1)

=> 15393.78 = Mi(1-d)

3) 8000 × 2000 = Mi (1-d) => 12270,60 = Mi(1-d) As we increase 1986, the 8 lone of the graph description of the graph setwern unitial mass The graph rebtained is nectangular hyperbola. >
and as we increase Ist, the slope of the
graph decreases for same initial mass. B2) of Frotal = From - mg = - C.dm - mg = mdy > mdv = - Cdm - mgdt \Rightarrow dv = $-\frac{c}{m}$ dm - gdt $\Rightarrow v(t)-v_0 = -Gln\left|\frac{m(t)}{Me}\right| - gt$ > v(+) = clm | v - gt | Taking b) Let $b = -\frac{dm}{dt_{m'}} = const.$ $\Rightarrow \int bat = -fdm$ mo · Jake m = final mass ⇒ beto = mo-m' to is the time when rocket is placed in the orbit, = - met) => pt= mo-m(+) $\Rightarrow m(t) = m_0 - (m_0 - m') t$

Retodt z=trodt $\Rightarrow z = \int_{\infty}^{\infty} \left(-c \ln \frac{m(t)}{m_0} - gt \right) dt$ $= -c \int_{0}^{t} \ln \left(\frac{m_{o} - (m_{o} - m) t}{m_{o}} \right) - qt$ = -.ct/m | m(+) + ct - $\frac{gt^2}{2}$ + $\frac{cm_0 + b}{m_0 - m^2}$ $\frac{m(+)}{m_0 - m}$ =>h=-ct lm/pmol +ct-gt cmoto m/p/ + ctlmmo $\Rightarrow h = -ct \ln |p| + ct - gt^2 + \frac{c m_0 t_0}{m_0 - m'} \ln |p|$ $\Rightarrow h = -C + lm \mu \left[t - \frac{m_0 + m_1}{m_0 - m_1} \right] + C t = g r$ =) h= -c+ lm |p| × p(mo) + c+ - gt2 3) Time of flight of the worket
month = month (month) to

month = month (month) to

the worket
month = month (month) to

2) to A het the find coeletal relocity be V. tp-14/mls=V ... > t' = solm | p| - V is the time of flight