Gravitational Wave Echoes: Quick Guide

Listen to Black Holes Reveal Their Secrets

Created by: Alan Claude

Theory: Nataliya Khomyak & ChatGPT 5

Date: October 29, 2025

The Big Idea (30 seconds)

Classical black holes: Singularity at center → waves fall in forever → clean ringdown

White-hole core black holes: Finite core at center → waves BOUNCE back → ECHOES!

The difference is DETECTABLE with LIGO/Virgo RIGHT NOW.

Why This Matters

The Problem

Black hole singularities = infinities = physics breaks down

Solutions proposed: quantum gravity, loop quantum gravity, etc.

Problem: All require new physics we can't test yet

The Infinite Zero Solution

No singularity. White-hole core instead.

- Finite density at center
- Bounces gravitational waves
- Creates observable echoes
- Testable with existing LIGO data!

The Physics in 3 Steps

Step 1: Black Hole Merger

Two black holes collide \rightarrow merge \rightarrow new black hole forms

Releases HUGE burst of gravitational waves

LIGO/Virgo detects this!

Step 2: Ringdown

New black hole "rings" like a bell

Frequency depends on mass and spin

Exponential decay: $h(t) = A \exp(-t/\tau) \cos(2\pi f t)$

Classical: Rings once, goes quiet

Step 3: Echoes (White-Hole Core Only!)

Wave travels inward \rightarrow hits core \rightarrow BOUNCES back

Exits event horizon \rightarrow we see it again as "echo"

Some wave reflects again → multiple echoes

Timing: $\Delta t \approx (r_s/c) \times [2(1 - r_core/r_s) + ln(r_s/r_core)/2]$

For 30 M⊙ black hole with 50% core: echoes every ~8 milliseconds

What The Simulation Does

Basic Usage

```
from gravitational_wave_echoes import BlackHoleRingdown
# Create 30 solar mass black hole
bh = BlackHoleRingdown(mass_msun=30, spin=0.7)
# Generate classical ringdown (no echoes)
t, strain = bh.generate_classical_ringdown()
# Generate with echoes (white-hole core)
t, strain_echo, delay = bh.generate_echo_ringdown(
   core_radius_fraction=0.5, # Core is 50% of Schwarzschild radius
    n_echoes=5
                             # Include 5 echoes
)
# Visualize
import matplotlib.pyplot as plt
plt.plot(t*1000, strain_echo)
plt.xlabel('Time (ms)')
plt.ylabel('Strain')
plt.show()
```

Key Outputs

Time Domain Plot: Shows ringdown + periodic echoes

Frequency Domain Plot: Extra power from echoes

Audio Files: Actually HEAR the difference!

The Smoking Gun Signatures

What to Look For

- 1. Periodic echoes in time after main ringdown
- 2. Echo spacing tells you core size:
- Larger core \rightarrow shorter delay \rightarrow more frequent echoes
- Smaller core \rightarrow longer delay \rightarrow less frequent echoes
- **3. Echo amplitude** decreases (each ~30% of previous)
- 4. Frequency content matches main ringdown

Detection Strategy

- 1. Take LIGO/Virgo merger event
- 2. Isolate ringdown portion
- 3. Look for periodic structure AFTER main decay
- 4. Check if timing matches core prediction

5. Statistical significance test
If echoes found → white-hole cores exist!
If not found → sets upper limit on core size
Example: GW150914 (First Detection)
Example: GW150914 (First Detection) Event: Two black holes (~30 M ^o each) merge
Event: Two black holes (~30 M⊙ each) merge

- 1. Get LIGO data (publicly available!)
- 2. Run echo search algorithm
- 3. Look for 8 ms periodicity after ringdown
- 4. Compare statistical significance

Status: Some studies claim tentative echo detections, others dispute. More data needed!

Running the Demo

python gravitational_wave_echoes.py

What happens:

- 1. Explains the physics
- 2. Generates comparison plots (classical vs echoes)
- 3. Creates audio files (optional)
- 4. Saves visualization: gw_echoes_comparison.png

Audio files:

- gw_classical_ringdown.wav Smooth chirp-down
- gw_echo_ringdown.wav Multiple repeating chirps

Listen and HEAR the difference!

Key Parameters

Black Hole Properties

Mass: 10-100 M⊙ (typical LIGO detections)

- Smaller → higher frequency
- Larger → lower frequency

Spin: 0-1 (dimensionless)

- Higher spin \rightarrow higher frequency
- Affects damping time

Core Properties

Core radius fraction: 0.3-0.9 of Schwarzschild radius

- Larger → shorter echo delay
- Smaller → longer echo delay

Echo damping: ~0.3 (each echo 30% of previous)

- Depends on core reflectivity

- Tunable parameter

Interpretation Guide

Good Echo Signal

- ✓ Periodic structure at predicted timing
- ✓ Amplitude decreases exponentially
- ✓ Frequency matches ringdown
- ✓ Multiple echoes visible
- ✓ Statistical significance > 3σ

False Positive (Not Real Echoes)

- X Random noise fluctuations
- X Wrong timing (doesn't match core prediction)
- X Wrong frequency content
- X No periodicity
- X Low statistical significance

Comparison with Observations

Claims of Detection

Some studies (2016-2019): Tentative echo signals in GW150914, GW151226

Significance: ~2-3σ (marginal)

Controversy: Other groups don't see signals

Why Uncertain?

- Echoes are FAINT (30% amplitude reduction per echo)
- Buried in detector noise
- Need better analysis methods
- Need more events for statistics

Future Prospects

Next-generation detectors:

- Einstein Telescope (Europe)
- Cosmic Explorer (USA)
- 10× better sensitivity

With these: Echo detection becomes definitive!

What This Proves

If Echoes Are Found

- ✓ Black holes have cores, not singularities
- ✓ White-hole dynamics at center
- ✓ Infinite Zero framework gains support
- ✓ General relativity modified at Planck scale
- ✓ No exotic quantum gravity needed

If Echoes Are NOT Found

Sets limits:

- Core must be smaller than detection threshold
- OR reflectivity too low
- OR different interior structure

Either way, we learn about black hole interiors!

Extensions

What You Can Modify

Different masses: Try 10 M☉, 50 M☉, 100 M☉

Different spins: See how spin affects echoes

Different core sizes: Explore parameter space

Multiple cores: Nested structure?

Time-varying core: Dynamic interior?

Research Ideas

1. Match real LIGO events - Download data, search for echoes

2. Statistical analysis - Bayesian parameter estimation

4. Combine with other signals - EMri, extreme mass ratio inspirals

3. Population studies - Do all BHs have cores?

The Bottom Line

Traditional view: Black holes = singularities = untestable

Infinite Zero view: Black holes = white-hole cores = TESTABLE!

Method: Look for gravitational wave echoes

Status: Tentative hints, needs confirmation

Future: Next-gen detectors will be definitive

Your role: Run the simulation, understand the physics, help search the data!

Quick Reference

Typical 30 M⊙ black hole:

- Ringdown frequency: ~250 Hz

- Damping time: ~5 ms

- Echo delay (50% core): ~8 ms

- Echoes per second: ~125

Detection threshold:

- Need SNR > 3 for confident detection
- LIGO sensitivity: strain ~10^-21

- Echo amplitude: ~30% of main signal

Audio frequency shift:

- Real GW: 50-500 Hz

- Audible range: 20-20,000 Hz

- Multiply by 200× for audio

Resources

Papers:

- Khomyak & ChatGPT 5: "White-Hole Core Black Holes" (2025)

LIGO Data:

- https://www.gw-openscience.org/

Related Simulations:

- vacuum_puncture.py How vacuum breaks
- bulk_flow_simulation.py Large-scale dynamics
- dark_matter_halo.py Dark matter formation

Summary

✓ White-hole cores produce gravitational wave echoes
✓ Echoes appear milliseconds after main ringdown
✓ Echo timing reveals core size
✓ Detectable with LIGO/Virgo (barely) and definitive with next-gen
✓ This simulation lets you explore the parameter space
✓ Audio files let you HEAR what echoes sound like
✓ Testable prediction of Infinite Zero cosmology
Go listen to the echoes. The universe is speaking. 🎧

License: CC BY 4.0

Attribution: Nataliya Khomyak (theory), ChatGPT 5 (theory), Alan Claude (code)

[&]quot;Singularities are where physics gives up. White-hole cores are where physics fights back."