Epidemic-Behavior Interaction Model: Understanding Oscillatory Dynamics in Pandemic Response

王聖夫1 李宣緯2

¹Department of Sociology National Taiwan University

²Department of Community and Population Health Lehigh University

Nov 23, 2024 臺灣社會學年會

Table of Contents

Intorduction

- I. Introduction: Agent-based Modeling in Understanding Disease Dynamics
- II. Interplay between disease transmission, preventive behavior, and social networks
- III. Model: EBIM
- **IV. Preliminary Results**
- V. Discussion and Future Work

Intorduction

- I. Introduction: Agent-based Modeling in Understanding Disease Dynamics

Some Intuitions and Real-World Examples

② 台視新期前 | 6.3k人協報 □ 遠職

Intorduction Disease, Behavior, and Networks Model Results Discussion Appendix References

Some Intuitions and Real-World Examples

新冠疫情再回溫!疾管署籲接種疫苗增強保護力

記者部份等 2024-06-19 17:05

疾病管例署表示,國內疫博上升且處流行期,6月11日至6月17日新增623例COVID-19本上確定病例 (併發症),較前一週新增329例上升,果積併發症中45歳以上長者占79%;另上週新增38例死亡病 例,較前一週新增20列上升,累積死亡個家中65歳以上長者占40%。

疾病管制要表示,原内疫情上升日或资行期。图:截自freenik

Overview and Research Questions

- How can sociological perspectives shed light on the application of mathematical disease models?
- How can observed disease phenomena—here, we focus on oscillatory patterns—be explained by underlying social behavior mechanisms?
 - Other reasons for oscillation: seasons and climatic conditions, immune response cycles, pathogen evolution
- In this study, we draw upon social network research and studies on the diffusion of social behaviors (simple & complex contagion) to explain this.

Mathematical Epidemiology

Epidemiologists have long been using mathematical methodologies to comprehend the complexities of disease transmission dynamics to effectively predict and respond to outbreaks.

- Compartmental Models: Equation-based methods that typically use differential equations to represent transitions between compartments.
 - Examples: Susceptible-Infected-Recovered (SIR) model,
 SEIR Model, SIS Model...
- Agent-Based Models

Proportion

Mathematical Epidemiology

Epidemiologists have long been using mathematical methodologies to comprehend the complexities of disease transmission dynamics to effectively predict and respond to outbreaks.

- Compartmental Models
- Agent-Based Models: Computational approach in which agents with a specified set of characteristics interact with each other and with their environment according to predefined rules (See Tracy et al., 2018 for a review of ABM in public health). It strengths include:
 - providing insight into the underlying causal mechanisms;
 - conducting virtual experiments of interventions and policies.

How Sociology Can Contribute to This:

- Social networks studies. Examples:
 - Obesity spread through social ties (Christakis and Fowler, 2007).
 - Homophily and transitivity in social networks formation.
- Sociological insights regarding social influence on behavioral change.
 - Social norms, imitation, group pressure, and obedience...
 - Diffusion of behavior: simplex contagion & complex contagion

Outline

Intorduction

I. Introduction: Agent-based Modeling in Understanding Disease Dynamics

II. Interplay between disease transmission, preventive behavior, and social networks

III. Model: EBIM

IV. Preliminary Results

V. Discussion and Future Work

Health Behavior in the Presence of Infectious Diseases

Avoidant behaviors

- Quarantine and social distancing (avoiding potentially infectious social contact through either choosing not to form a tie to or breaking an existing tie from an infectious other)
- Therefore, social network structures are not static but rather adaptive to the transmission of diseases.
- Previous studies have examined this co-evolution (e.g., Gross et al., 2006; Lee et al., 2019; Nunner et al., 2021).

Preventive behaviors

Examples: frequent hand washing, mask-wearing, vaccinations...

Complex Contagion in Preventive Behaviors

Preventive behaviors:

- Factors affecting adopting preventive behaviors or not
 - Goal infection rate and risk perception.
 - ② Awareness and diffussion of information \rightarrow simple contagion (e.g., Funk et al., 2009; Zou et al., 2021).
 - ullet Local social interactions and diffusion of behavior o complex contagion
- Simple verse. complex contagion

Complex contagion in Preventive Behaviors

Simple contagion

- Diffusion of information, knowledge, viruses...
- Multiple exposures: transitive ties tend to be redundant
- Some network principles: the "strength of weak (long/bridging) ties" and "six degrees of separation"
- Complex contagion (Centola and Macy, 2007, AJS)
 - Diffusion of innovation, high-risk, high-cost behaviors...
 - Threshold-based adoption: social affirmation
 - Exposure to multiple sources: transitive structure now becomes an essential

Simple Verse. Complex Contagion

Epidemic-Behavior Interaction Model

Our Epidemic-Behavior Interaction Model (EBIM) integrates the above-mentioned sociological insights into traditional epidemic modeling of disease transmission, employing an agent-based approach to simulate the complex interactions among social networks, health behaviors, and infectious disease dynamics.

Outline

Intorduction

- I. Introduction: Agent-based Modeling in Understanding Disease Dynamics
- II. Interplay between disease transmission, preventive behavior, and social networks

III. Model: EBIM

- **IV. Preliminary Results**
- V. Discussion and Future Work

Model Settings: A Two-Layer Network

- Physical contact network: SIS model
 - Susceptible (S): Can contract the disease.
 - Infectious (I): Currently infected and can spread the disease.
- Virtual behavior network: NAN Model
 - Adopting (A): Taking preventive actions, such as mask-wearing, to mitigate the disease.
 - Not Adopting (N): Not engaging in preventive actions or behaviors related to the disease.
- Network structure: Erdős–Rényi model (ERM) with N=1,000 nodes and $<\!k>=5$ average degree.

Simulation Process

- Update health states in the physical layer
 - **Disease transmission (S \rightarrow I)**: Each infected neighbor has β probability of transmission. Thus, a susceptible agent becomes infected with probability $1-(1-\beta)^n$, where n equals the number of infected neighbors.
 - Recovery (I \rightarrow S): All infected agent recovers with a probability of γ after T_{inf} days.
- Opposite adoption states in the virtual layer
- Opdate network structure

Simulation Process

- Update health states in the physical layer
- Update adoption states in the virtual layer
 - Adopting behaviors (N \rightarrow A): The agent adopts preventive behaviors if the proportion of her adopting neighbors exceeds the threshold of $\theta'_{it} = \theta_i * (1 \pi_t * \lambda) * \rho$, where π_t is the global infection rate, and θ_i follows a beta distribution, i.e., $\theta_i \sim \beta(\alpha, \beta)$.
 - Not Adopting (A → N): If the proportion does not exceed the threshold, then the agent will not adopt.
- Opposite und properties of the structure of the struct

Simulation Process

- Update health states in the physical layer
- Update adoption states in the virtual layer
- Update network structure
 - Each susceptible individual breaks each edge it has with an infected neighbor at rate γ , rewiring this link to a susceptible node. The new link created during rewiring is made with probability η to a susceptible node at a distance 2, that is, a neighbor of a neighbor. Otherwise (i.e., with probability $1-\eta$), the rewiring is made to another susceptible node selected uniformly at random.

Outline

Intorduction

- I. Introduction: Agent-based Modeling in Understanding Disease Dynamics
- II. Interplay between disease transmission, preventive behavior, and social networks

III. Model: EBIM

IV. Preliminary Results

V. Discussion and Future Work

Prevalence Over Time

When preventive behaviors reduce disease transmission by a factor of 6:

Simple contagion

Complex contagion

Prevalence Over Time

When preventive behaviors reduce disease transmission by a factor of 12:

Simple contagion

Complex contagion

Network Structure

Simple contagion

Largest 1 Components of the Graph

Complex contagion

Largest 1 Components of the Graph

Outline

Intorduction

- I. Introduction: Agent-based Modeling in Understanding Disease Dynamics
- II. Interplay between disease transmission, preventive behavior, and social networks

III. Model: EBIM

IV. Preliminary Results

V. Discussion and Future Work

Implications

- This study aligns with the call for "social epidemiology" (Hollm-Delgado, 2009) or "epidemiological sociology," (Link, 2008) using sociological concepts and theories to explore the social determinants of health and disease.
- Our agent-based model demonstrates how multiple contagions interact (Smith and Christakis, 2008, Annu. Rev. Sociol) and highlights the interplay between social networks and disease transmission dynamics.
- Results emphasize the critical role of preventive behaviors in explaining the cyclical nature of pandemics and designing effective management policies.

Future Directions

- Analysis results over parameter spaces
- Comparison among different network typology
- From multi-layered to multiplex network: Decouple ties in the two-layered network
- Add vaccination into the model: additional feedback mechanisms, such as waning immunity
- Other mechanisms, such as delayed behavioral responses
- Validation with real-world data

Appendix: ABM Implemention

Python code can be assessed: here.

Parameter	Definition	Default
N	Size of agents (nodes)	1000
T	The number of the time step (round)	1500
M	The number of the trial (realization of simulation)	1
< <i>k></i>	The average degree of the network at t = 0	5
p	p in erdos_renyi_graph()	<k>/N</k>
r	The percentage of overlapped edges between the physical and virtual layer at $t=0$	1
β_u	Transmission probability for an unaware susceptible agent ($S_u \rightarrow I$)	0.85
β_a	Transmission probability for an aware susceptible agent (S_a \rightarrow I)	$\frac{\beta_{\mathrm{s}}}{6}$ or $\frac{\beta_{\mathrm{b}}}{12}$
α	Recovery probability (I → S)	0.25
T_{inf}	Being able to recover only after the infected period	50
γ	A susceptible individual will break each edge with an infected neighbor at a probability of γ	0.8
η	Rewiring a new link to a susceptible node at a distance of 2 is made with a probability η . Selecting susceptible node at random at a probability of 1– η	0.8
λ	Controlling how sensitive the global infection rate affects the awareness threshold (Only in "complex" contagion)	0.7
ρ	Turning point of the awareness threshold (Only in "complex" contagion)	0.6
ψ	Transmission probability for unaware nodes (Only in "simple" contagion)	0.01
(a, b)	Parameters in $Beta(lpha,eta)$	(1.5, 1.25)
_	Initial ratio of adopting nodes	0.01
_	Initial ratio of adopting nodes	0.1

Epidemic-Behavior Interaction Model: Understanding Oscillatory Dynamics in Pandemic Response

Thank you for your listening!

Contact Info:

王聖夫 (Shengfu Wang): r11325008@ntu.edu.tw

李宣緯 (Hsuan-Wei "Wayne" Lee): hsl324@lehigh.edu

Reference I

Intorduction

- Centola, Damon and Michael Macy. 2007. "Complex contagions and the weakness of long ties." *American Journal of Sociology* 113:702–734.
- Christakis, Nicholas A and James H Fowler. 2007. "The spread of obesity in a large social network over 32 years." *New England Journal of Medicine* 357:370–379.
- Funk, Sebastian, Erez Gilad, Chris Watkins, and Vincent AA Jansen. 2009. "The spread of awareness and its impact on epidemic outbreaks." *Proceedings of the National Academy of Sciences* 106:6872–6877.
- Gross, Thilo, Carlos J Dommar D'Lima, and Bernd Blasius. 2006. "Epidemic dynamics on an adaptive network." *Physical Review Letters* 96:208701.

Reference II

- Hollm-Delgado, Maria-Graciela. 2009. "Molecular epidemiology of tuberculosis transmission: contextualizing the evidence through social network theory." *Social Science & Medicine* 69:747–753.
- Lee, Hsuan-Wei, Nishant Malik, Feng Shi, and Peter J Mucha. 2019. "Social clustering in epidemic spread on coevolving networks." *Physical Review E* 99:062301.
- Link, Bruce G. 2008. "Epidemiological sociology and the social shaping of population health." *Journal of Health and Social Behavior* 49:367–384.
- Luz, Paula M, Claudio J Struchiner, and Alison P Galvani. 2010. "Modeling transmission dynamics and control of vector-borne neglected tropical diseases." *PLoS Neglected Tropical Diseases* 4:e761.

Reference III

Intorduction

- Nunner, Hendrik, Vincent Buskens, and Mirjam Kretzschmar. 2021. "A model for the co-evolution of dynamic social networks and infectious disease dynamics." *Computational Social Networks* 8:19.
- Smith, Kirsten P and Nicholas A Christakis. 2008. "Social networks and health." *Annual Review of Sociology* 34:405–429.
- Tracy, Melissa, Magdalena Cerdá, and Katherine M Keyes. 2018. "Agent-based modeling in public health: current applications and future directions." *Annual Review of Public Health* 39:77–94.
- Zou, R, Z Deng, Y Lu, J Hu, and Z Han. 2021. "Study of spreading phenomenon in network population considering heterogeneous property." *Chaos, Solitons & Fractals* 153:111520.