컴퓨터 공학 기초 실험 2

Assignment 9. Multiplier

1. Multiplier

1.1. Introduction

Multiplier 는 multiplicand (피승수)와 multiplier (승수)를 곱하여 결과값을 도출하는 hardware 이다.

1.2. Features

Multiplicand 와 multiplier 의 각각의 bit length 는 64bits 이며, 곱의 결과값은 128bits 이다.

1.3. Functional description

Figure 1 - Schematic symbol of multiplier

Figure 1 는 multiplier의 schematic symbol을 나타낸다. Multiplier는 multiplicand 와 multiplier를 각각 외부로부터 입력 받아 곱셈을 수행하는 하드웨어이다. 다음은 곱셈기의 동작과정을 나타낸다.

- 1. op_start 의 입력 값이 1'b1 이 될 때의 multiplier 와 multiplication 의 입력을 이용해 곱셈을 시작한다.
- 2. 사용자가 구현한 booth multiplication 의 radix 에 따른 clock delay 만큼 연산이 진행된다. (Radix-2 일 경우 64 clock cycle)

페이지 3 / 4

- 3. 곱셈기의 연산이 완료될 경우 result pin 으로 값이 출력되며 op_done 신호가 1'b1 로 출력된다. op_clear 입력이 들어오기 전까지 이 신호를 유지한다.
- 4. 만일 연산을 진행되는 도중, op_clear 신호가 들어올 경우 곱셈을 멈추고 모든 output 및 내부에 존재하는 register 들의 값을 logical zero 으로 초기화 해 준다.

▶ 구현 조건

- ✓ Code 를 behavioral 하게 구현하는 것은 상관없으나, booth 의 단계 연산을 위하여 shift 당 1 cycle 을 포함한다. 즉, 모든 연산이 1 cycle 만에 종료되면 안된다.
- ✓ 곱셈기의 연산이 진행되는 동안 result 값이 변해도 상관없다.
- ✓ Multiplier 구현은 Radix-2, Radix-4 중 자유롭게 선택한다.

1.4. Pin description

Table 1 은 multiplier 의 pin 을 설명한 것이다. Top module 의 이름은 'multiplier'이다.

Direction	Port name	Description
Input	clk	Clock
	reset_n	Active low reset
	multiplier[63:0]	승수
	multiplicand[63:0]	피승수
	op_start	Start operation
	op_clear	Clear operation
Output	op_done	Done operation
	result[127:0]	Multiplier result

Table 1. Pin description of multiplier

2. Report & Submission

- ▶ 레포트는 공지사항에 올린 보고서 양식에 맞추어 작성하고, 다음의 사항에 대하여서도 추가적으로 작성한다.
- ▶ 제출할 프로젝트: multiplier (multiplier 구현에 필요한 모든 Verilog 파일(*.v) + testbench 포함)
- ▶ 고찰 및 결론에 자신이 구현한 곱셈기가 어떤 곱셈기인지 반드시 언급하며, 구현한 곱셈기의 특징 또는 장점에 대해서 반드시 작성한다.
- ▶ 실습 미수강 학생은 디지털논리회로 2 KLAS 과제 제출에 업로드
- ➤ Source code 압축 시 db, incremental_db, simulation ~.bak 파일 및 폴더는 삭제 (미수행시 감점)

▶ 채점기준

세부사항		점수	최상	상	중	하	최하
소스코드	Source code 가 잘 작성 되었는가?	10	10	8	5	3	0
	(Structural design 으로 작성되었는가?)	10					
	주석을 적절히 달았는가?	20	20	15	10	5	0
	(반드시 영어로 주석 작성)	20 20		20 15	10	5	
설계검증 (보고서)	보고서를 성실히 작성하였는가?	30	30	20	10	5	0
	(보고서 형식에 맞추어 작성)	30					
	합성결과를 설명하였는가?	10	10	8	5	3	0
	검증을 제대로 수행하였는가?	30	30	20	10	5	0
	(모든 입력 조합, waveform 설명)		30	20	10	ن 	U
총점		100					