In [1]:

```
import pandas as pd #Data analysis and manipulation
import matplotlib.pyplot as plt #Data visualization
import plotly.offline as py #creates functions both online and offline mode
import plotly.graph_objs as go #tracing objects
import plotly.express as px #easier and faster to create plotly figures
import plotly.io as pio #display the figure using the current default renderer(s)
import csv
```

In [2]:

```
df = pd.read_csv("covid.csv")
```

In [3]:

```
df.drop(['NewCases', 'NewDeaths', 'NewRecovered'], axis=1,inplace=True)
```

In [4]:

df.columns

Out[4]:

Total Cases vs Continents

In [5]:

px.scatter(df.head(50), x='Continent', y='TotalCases', color='TotalCases', hover_data=['Country/Region', 'Contine
nt'], size='TotalCases', size_max=80)

In [6]:

px.scatter(df.head(50), x='Continent', y='TotalCases', color='TotalCases', hover_data=['Country/Region', 'Contine
nt'], size='TotalCases', size_max=80, log_y=True)

Total Tests vs Continents

In [7]:

px.scatter(df.head(50), x='Continent', y='TotalTests', color='TotalTests', hover_data=['Country/Region', 'Contine
nt'], size='TotalTests', size_max=80)

In [9]:

px.scatter(df.head(50), x='Continent', y='TotalTests', color='TotalTests', hover_data=['Country/Region', 'Contine
nt'], size='TotalTests', size_max=80, log_y=True)

Total Deaths vs Continents

In [8]:

px.scatter(df.head(50), x='Continent', y='TotalDeaths', color='TotalDeaths', hover_data=['Country/Region', 'Continent'], size='TotalDeaths', size_max=80, log_y=True)

Total Cases vs Countries

In [9]:

px.scatter(df.head(100), x='Country/Region', y='TotalCases', color='TotalCases', hover_data=['Country/Region', 'Continent'], size='TotalCases', size_max=80)

Country/Region

In [10]:

px.scatter(df.head(10), x='Country/Region', y='TotalCases', color='Country/Region', hover_data=['Country/Region', 'Continent'], size='TotalCases', size_max=80, log_y=True)

Total Deaths vs countries

In [11]:

px.scatter(df.head(10), x='Country/Region', y='TotalDeaths', color='Country/Region', hover_data=['Country/Region', 'Continent'], size='TotalDeaths', size_max=80)

Total Tests/1M vs Countries

In [12]:

px.scatter(df.head(30), x='Country/Region', y='Tests/1M pop', color='Country/Region', hover_data=['Country/Region', 'Continent'], size='Tests/1M pop', size_max=80)

In [13]:

px.scatter(df.head(30), x='Country/Region', y='Tests/1M pop', color='Tests/1M pop', hover_data=['Country/Region',
'Continent'], size='Tests/1M pop', size_max=80)

Total Cases vs Deaths

In [14]:

px.scatter(df.head(30), x='TotalCases', y='TotalDeaths', color='TotalDeaths', hover_data=['Country/Region', 'Continent'], size='TotalDeaths', size_max=80)

In [17]:

px.scatter(df.head(30), x='TotalCases', y='TotalDeaths', color='TotalDeaths', hover_data=['Country/Region', 'Continent'], size='TotalDeaths', size_max=80, log_y=True, log_y=True)

Total Tests vs Total Cases

In [15]:

px.scatter(df.head(30), x='TotalTests', y='TotalCases', color='TotalTests', hover_data=['Country/Region', 'Continent'], size='TotalTests', size_max=80, log_x=True, log_y=True)

