

MSc thesis

Søren Lund Hess-Petersen - pws412

Using Model-Based testing to test MCP Instance-Specifications

Rage Against the Finite State Machine

Academic advisor: Michael Kirkedal Thomsen <m.kirkedal@di.ku.dk>

Submitted: January 23, 2020

Using Model-Based testing to test MCP Instance-Specifications

Rage Against the Finite State Machine

Søren Lund Hess-Petersen - pws412

DIKU, Department of Computer Science, University of Copenhagen, Denmark

January 23, 2020

MSc thesis

Author: Søren Lund Hess-Petersen - pws412

Affiliation: DIKU, Department of Computer Science,

University of Copenhagen, Denmark

Title: Using Model-Based testing to test MCP Instance-

Specifications / Rage Against the Finite State Ma-

chine

Academic advisor: Michael Kirkedal Thomsen

<m.kirkedal@di.ku.dk>

Submitted: January 23, 2020

Abstract

Dansk Resumé

Preface

This Master's thesis is submitted in fulfilment of the master programme in Computer Science at the University of Copenhagen for Søren Lund Hess-Petersen.

Contents

Pı	Preface								
1	Introduction								
	1.1	Description of the Project	1						
	1.2	Learning Objectives	2						
	1.3	Scope	2						
	1.4	Limitations	2						
	1.5	Structure	2						
2	Background								
	2.1	The Maritime Connectivity Platform	5						
		2.1.1 Identity Registry	6						
		2.1.2 Service Registry	6						
		2.1.3 Messaging Service	6						
	2.2	Monadic Parsing	6						
	2.3	Property-Based Testing	7						
	2.4	Model-Based Testing	7						
		2.4.1 Finite State Machines (FSM)	9						
3	Ana	Analysis 10							
	3.1	Data	10						
	3.2	Service Specification grammar	11						
	3.3	Testing the MCP	11						
	3.4	Example Model Structure	13						
	3.5	Uses of model-based testing of the MCP	15						
	3.6	Summary: advantages and disadvantages	16						
4	m Work/Design 1								
	4.1	Updated Data	19						
	4.2	Updated Parser Grammars	20						
		12.1 Undated Service Specification Grammar	23						

		4.2.2 Updated General Grammar	23						
	4.3	Implementation in the MCP							
	4.4		23						
		4.4.1 Executing Instructions	23						
	4.5	Testing	24						
5	Res	ults	2 6						
6 Discussion									
7	Conclusion								
	7.1	Conclusions	28						
	7.2	Future work	28						
	7.3	Summary	28						
Bi	bliog	graphy	2 9						
\mathbf{A}	App	pendix	30						
	A.1	ServiceSpecificationSchema	30						
		E2 - NW-NM Service Specification							

Introduction

1

The Maritime Connectivity Platform [1] (MCP) is, as the name suggests a platform that connects maritime services, functioning as a common infrastructure by offering safe and reliable information exchange between various maritime actors. A particular way of utilizing this is that a user of the MCP is able to develop his or her own software, and distribute it across the world. Such digital maritime components, however needs to be thoroughly tested, which often is not adequately done through simple unit testing. Thus, software components, distributed through the MCP need a thorough test-suite, for which the obvious solution is to implement model-based testing. The MCP has provided specifications, which describe rules that software needs to adhere to. These specifications will be used to create the model, that will verify the software. The specifications are provided in xml-format, and are, as of now, not used in any formal degree. Ideally, the provided specifications should be used to automatically generate models, which can be used to verify that a certain piece of software adheres to the specification.

1.1 Description of the Project

In this project, QuickCheck [2] will be utilized in order to verify that instances fulfills the requirements set by specifications in the MCP. QuickCheck is a library, which allows for model-based testing of software. Originally, QuickCheck was written in Haskell, but has since been extended to more than 50 programming languages. The idea behind this method is, as the term model-based testing suggests, to create models which describe the properties that the test-cases need to reflect. This means that in stead of conducting unit-tests, the model should reflect what needs to happen with an arbitrary input- and function-combination, and ideally catch every special case that either has not been accounted for in the model or in the analyzed software. Once an accurate model is created further testing can be streamlined, as a simple test can affirm an entire aspect of the tested software, in stead of just one particular example. The goal of the project is to create an automatic test suite for the MCP, which performs better than a unit-based test suite. In the long run, such a test suite has the capacity to increase reliability, efficiency

and ultimately make way for better distributed, and more uniformly created software components in the Maritime Connectivity Platform.

1.2 Learning Objectives

- Utilizing QuickCheck in creating viable models, that describe the specifications, provided in MCP specifications.
- Interpreting MCP specifications in order to generate relevant tests.
- Parsing MCP specifications in order to generate relevant models.
- Applying property-based testing of functions and specifications in a maritime environment.

1.3 Scope

TODOWRITE

1.4 Limitations

TODOWRITE

1.5 Structure

TODOWRITE

Chapter 1: Introduction

This chapter provides a description of the problem statement, the learning objectives and the project itself, as well as containing this list.

Chapter 2: Background

This chapter describes the techniques, theories, and components that are used or analyzed throughout the thesis.

Chapter 3: Analysis

This chapter examines potential solutions to the problem statement, and how to implement them into the MCP. This chapter contains advantages and disadvantages to each presented solution, which are summed up at the end of the chapter.

Chapter 4: Work/Design

This chapter presents the work that went into implementing the desired functionality in the MCP.

Chapter 5: Results

This chapter includes the results that came from the implementation, described in the previous chapters.

Chapter 6: Discussion

This chapter contains a discussion of the results, described in chapter 5.

Chapter 7: Conclusion

This chapter

 $3~{\rm counter(s)}$ remaining in this chapter

Background

2

2.1 The Maritime Connectivity Platform

The Maritime Connectivity Platform (MCP), which is formally known as the Maritime Cloud is a platform, developed by EfficienSea2 [3], which is led by the Danish Maritime Consortium. MCP is a communication framework, that is to ensure efficient, reliable and secure communication, and exchange of information in the maritime sector. The goal of the platform is to connect maritime stakeholders with maritime information services. A high-level diagram, describing the structure of the MCP can be seen in Figure 2.1. Here it is shown that maritime stakeholders are connected with the maritime services through the Identity Registry, the Service Registry and the Messaging Service.

Figure 2.1: Diagram, describing the structure of MCP. [3]

2.1.1 Identity Registry

Here the relevant information regarding maritime stakeholders are stored. This information needs to be authorized and stored at a safe location in order for the security of the MCP to be sufficient. The Identity Registry on the MCP is equivalent to the Central Person Registry of a country. The Identity Registry is vital to the MCP in it ensures the solution's authenticity, integrity, and confidentiality. Maritime stakeholders are, through the Identity Registry provided with a single login to all Maritime Services. [3]

2.1.2 Service Registry

The Service Registry acts to Maritime Services as the Identity Registry acts to the Maritime Stakeholders. Here all Maritime Services are registered and stored. The Service Registry holds both commercial and non-commercial, as well as authorized and non-authorized services, either free of charge or for a fee. The Service Registry is comparable with the App Store or Google Play in that it distributes services of all kinds to registered users. [3]

2.1.3 Messaging Service

"An information broker that intelligently exchanges information between communication systems connected to the platform, taking into account the current geographical position and communication links available to the recipient." [3]

2.2 Monadic Parsing

Parsing is a widely known tool in computer science. The term expresses a function, taking a string of input, from which it yields a parse tree that it constructs when applying the specific parser logic upon the input string. The parser performs a lexical analysis, meaning that it converts sections of the string to tokens that are ultimately easier to handle by an interpreter. When using Haskel to write parsers a library family known as parser combinators is very popular, in that it allows the programmer to embed domain specific language directly in the parser. The concept of combinatory parsing is using one or more of these libraries of higher-order functions, known as parser combinators. Parser combinators take in parsers of any kind imaginable as input and returns a new set of parsers as an output.

Before 1995, implementation of top-down parsing, using parser combinators ran in and used both exponential time and space complexity when applied to ambiguous, context free grammars. At that time Frost and Szydlowski demonstrated that memoization can enhance parser combinators in order to optimize time complexity to polynomial. One year later through the use of

```
import Test.QuickCheck
import Data.List

qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs
    where lhs = filter (< x) xs
    rhs = filter (>= x) xs

prop_idempotent xs = qsort (qsort xs) == qsort xs
```

Figure 2.2: Example of Property-Based Testing. [4]

monads parser combinators were reconstructed by Frost which introduced systematic and correct threading of memoization throughout execution [6].

2.3 Property-Based Testing

Property based testing, also known as Automation Testing, is the principle of testing properties of code, rather than instances, as is done in manual unit testing. Unit tests are fast and easy to set up and execute, however, in most instances they only provide coverage to a certain degree. Depending on the complexity of the given program, most programmers can come up with tests, covering most of the given program, however many edge-cases are unintuitive and would require extensive testing to determine manually.

Property-based testing solves this problem by setting up test cases that take into account mathematical models, describing the desired behavior of the code. Once such a test case has been created, semi-random execution instances can be run to the point of literal exhaustion, and thus a relatively small program can test for thousands of occurrences at once.

An example of this can be seen in Listing 2.2, that describe a snippet of Haskell quicksort code. A property of quicksort is that a list, sorted once is equivalent to a list, sorted twice, which is what the function prop_idempotent validates.

2.4 Model-Based Testing

The principle of Model-based testing is to check behavior of software against predictions made by a model. Behavior can be described in a variety of manners, including data flow, control flow, dependencies, decision trees/cycles, and state transition machines. Model-based testing is good at describing the behavior of a system, when it reacts to a specific action, which is determined by another specific model. Using this technique, the behavior of a system can

Figure 2.3: Time consumption and complexity restraint of serial model building and testing.

easily be determined and validated. Currently there are two main types of model-based testing-techniques:

Serial model building- and testing is a way of implementing model-based testing that involves predefined models, upon which a number of tests are executed. Creating the model ahead of execution allows the tester to implement an additional layer of complexity to the created models. Depending on the amount of models, this is, however, a significantly slower process than the alternative, in that each model requires a similar amount of time to construct. Figure 2.3 provides a high-level diagram, describing this principle, using arbitrary units of measurement along it's x- and y-axis.

Figure 2.3 shows the time consumption increasing for every model built, while the model complexity is directly matching the requirement, set by each specific model.

Sequential model building- and testing: is a way of implementing model-based testing that involves on-the-fly model creation- and testing. Here a program is designed to take in arguments, describing different model behaviors, upon the basis of which the program tests the models immediately after they are generated. Compared with the implementation described above, this technique scales to a much better degree, as the program will only need to be written once in order to create a virtually infinite amount of models. The created models are, however, constrained to the lowest common complexity level, shared across all of the generated models. Figure 2.4 provides a high-level diagram, describing this principle, using arbitrary units of measurement along it's x- and y-axis. Figure 2.4 shows that the time consumption halts to a stop when one model is built with the drawback that the model complexity constraint is set to the lowest common model.

Figure 2.4: Time consumption and complexity restraint of sequential model building and testing.

Figure 2.5: Example of a finite state machine, describing a turnstile. Furthermore, this figure describes Table 2.6.

2.4.1 Finite State Machines (FSM)

A finite state machine is, as the name suggests, a mathematical machine, consisting of a collection of states. An arbitrary FSM has a start state along with a collection of states that are accessed through various status- and/or input-combinations. An example of this can be seen in Figure 2.5 as well as Table 2.6. These describe the control flow of a turnstile, which allows for one pass through, after which it prompts for a coin before allowing another pass through.

State	action	Next State	Output
Locked	Insert Coin	Unlocked	Unlocks turnstile, allowing passage.
Locked	Push	Locked	Blocks passage.
Unlocked	Insert Coin	Unlocked	Returns coin.
Unlocked	Push	Locked	Allows passage, locks.

Table 2.6: Example of a finite state machine, describing a turnstile. Furthermore, this table describes Figure 2.5.

Analysis

3

In this chapter, I will present and analyze the data made available by the MCP in the three documents E2 - NW-NM DMA Service Instance, E2 - NW-NM REST Service Technical Design, and E2 - NW-NM Service Specification, which represent all data, made available to me. Furthermore, I will explain the necessity of testing the MCP, as well as present a description of a favorable model structure.

3.1 Data

To provide a holistic description of a service instance, three documents are necessarily provided. Below are the descriptions of the documents with the service instance E2 - NW-NM DMA as an example.

E2 - NW-NM DMA Service Instance

The purpose of this service instance document and its xml-defined counterpart is to describe a DMA instance of the REST-based technical design of the MW- NM service specification, according to the guidelines given in the Service Description Guidelines.

E2 - NW-NM REST Service Technical Design

The purpose of this service technical design document and its xml-defined counterpart is to describe a REST-based technical design of the MW-NM service specification, according to the guidelines given in the Service Description Guidelines.

E2 - NW-NM Service Specification

The purpose of this service specification document and its xml-defined counterpart is to provide a holistic overview of the MW-NM service and its building blocks in a technology-independent way, according to the guidelines given in the Service Description Guidelines.

Of the three documents, only the last, Service Specification is to be used to describe specifications of the service, and as such only this will be studied closer.

3.2 Service Specification grammar

The service specification document is constructed using a general xml-format. The majority of the parser grammar of the document can be seen in Listing 3.1 as well as in Listing 3.2, while the latter is in a severely reduced and generalized form. A minority of the grammar has been cut from Figure 3.1 as it was deemed irrelevant, however the parser grammar in its entirety can be seen in Appendix, Figures A.1 and A.2.

As mentioned above, the service specification is to be used to verify the behavior of the maritime service from a technical stand point. At the moment, the xml-document provides a technical description of its corresponding maritime service, but the most commonly used expression method is free text. As this is a very non-technical design choice, a large portion of the obvious technical advantages, provided by the xml-format are lost.

As it is possible to utilize free text though the use of natural language processing [5], no modifications are strictly necessary, however even with utilization of such or similar method, implementation hereof would be unstable in terms of usability. This is due to the fact that free language formulation varies at an unforeseeable degree, and as such creating uniform model based on this would add a great layer of complexity.

For a more sustainable solution to the problem, see Section 4.1.

The xml-version of the service specification can be found in appendix A.2.

3.3 Testing the MCP

The core principle in the MCP is to restructure and streamlining maritime software sharing in a manner that can be done the world over, and the very nature of this statement dictates that the platform must be highly scalable. This adds the necessity of running quality-checks on all of the maritime services that are uploaded to the platform. To accommodate this issue, model-based testing immediately seems like the obvious solution, as this technique covers most of the required desired functionality. If implemented satisfyingly, a model-based testing suite for the MCP would be able to

- Present or verify behavior of maritime services.
 There are many obvious common behavioral traits of maritime services, such as adding ships and maritime stakeholders, as well as removing them, however other behavioral patterns will often vary to the point of lowered manageability. A model, describing the maritime service in question will provide a clear and undeniable description of the service's behavior.
- 2. Visualize functionality of maritime services.

 Just as well as behavioral traits, functionality will differ greatly from

```
ServiceSpecificationSchema ::= specifications
specifications ::= spec specifications
     |\epsilon|
spec ::= name
     status
       id
       version
       description
       keywords
       isSpatialExclusive
       author In fos\\
       requirements
       serviceDataModel
     serviceInterfaces
authorInfos ::= authorInfo authorInfos
authorInfo ::= aSpec authorInfo
     |\epsilon|
aSpec ::= id
       name
       description
     contactInfo
requirements ::= requirement requirements
requirement ::= rSpec requirement
     |\epsilon
\mathsf{rSpec} ::= \mathsf{id}
     name
     text
serviceDataModel ::= definitionAsXSD
serviceInterfaces ::= serviceInterface serviceInterfaces
     |\epsilon|
oSpec ::= name
      description
       return Value Type \\
       parameterTypes
```

Figure 3.1: Snippets of full parser grammar of Service Specification Schema. (Found in appendix A.1, A.2)

```
\begin{tabular}{lll} ServiceSpecificationSchema ::= specifications \\ specifications ::= spec specifications \\ & | \epsilon \\ spec ::= specifications \\ & | spec \\ & | \epsilon \\ spec ::= string \\ \end{tabular}
```

Figure 3.2: Reduced parser grammar of Service Specification Schema.

one maritime service to another, and therefore it is very useful for a model to visualize said functionality, as well as verifying that it works as intended.

3. Present the structures of maritime services.

This trait will be used to visualize the structural components of maritime services. Just as point 1 and two, this functionality will be useful for creating a quick and clear projection of how the maritime service behaves.

4. Increase reliability and efficiency of maritime services.

Through correct implementation of points 1-3 it is possible to elevate the reliability and efficiency of the maritime services found on the MCP. This is due to the same reasoning that all testing is conducted on the basis of: the need for safe, consistent, and correct code.

As stated in Section 2.4 there are two main types of model-based testing techniques: serial and sequential model building-and testing, and as these two techniques both provide different advantages utilizing either one will be a trade-off.

3.4 Example Model Structure

Throughout this report, I will use a mapping service as an example. In this example the maritime service will act as an intermediate, broking between a ship and a company, where the map is being held. The ship will have to submit authentication information to the maritime service in order to get a the requested map. The model, which has been built upon the example protocol has been illustrated in Figure 3.3. The lines numbered 1-6 illustrate interaction between the three entities Ship, Service, and Company, where *1 and *2, respectively illustrate a submitting of authentication information, to

the service, and the service accepts the information and sends this response. *3 and *4 illustrates the service' request of the requested map, and its subsequent receiving hereof. *5 represents the service informing the ship that the information retrieval has been successful, and that the process will terminate shortly, while *6 illustrates the forwarding of requested information to the ship.

Figure 3.3: Rough draft of a model example, where a ship requests information from a service.

Figure 3.4: FSM, describing the Ship entity in Figure 3.3.

Figure 3.4 represents a FSM, illustrating the ship entity in Figure 3.3. The FSM starts in the No map loaded state, and has the three available actions trash map, request map, and await response. Performing trash map or await response in the initial state will yield no results, as no map is available to be trashed and no response is on the way. If request map is performed, the state will be changed to the intermediate state awaiting map,

where await response is the only action that will change the state, as no map can be trashed, and requesting another map will change the state to the same, but where a different map is being waited for. The third and final state map loaded will allow the actions trash map, which will change the state to no map loaded and request map, which will, respectively, trash the loaded map, and request a new one, changing the state to awaiting map.

Figure 3.5: FSM, describing the Service entity in Figure 3.3.

Figure 3.5 represents a FSM, illustrating the service entity in Figure 3.3. The FSM has the two states idle and active, the former being the initial state. Whenever the entity receives a valid response the state changes to the active state, and when the request has been properly handled, the state changes back to idle.

3.5 Uses of model-based testing of the MCP

The main advantage that model-based testing comes from the large variety in testing algorithms which it produces. For a model to be machine readable the techniques which are listed below can be implemented fully automatic - and if not they can still be utilized however manually. The following techniques can be applied to true and fair maritime service-models in the MCP:

Finite state machines

As mentioned in Subsection 2.4.1, a FSM is made up of states, and the ability of a simulating program to change state through a collection of actions. Executable paths are determined, which can be used to create test cases, as well as illustrate the behavior of the system. Furthermore FSMs are closely related to the further techniques, that will be explained in this section.

Proving theorems

Automatic theorem proving is a technique originally produced for proving logical formulas, which is a concept that can be rewritten to suit model-based testing. In order to create test cases, system behavior is assigned to equivalence classes. Following this step, predicates can be

formed from equivalence classes and logical consequences of the equivalence classes.

Symbolic execution

Much in the likes of a FSM, a symbolic execution of a program or system will executable paths, along with symbolic values, describing how they can be accessed. A symbolic execution engine will analyze possible variations of input in order to create a map of the software in case. Said map can subsequently be used to better understand, test, and develop the software in question.

Model checkers

Model checkers, also known as property checkers, are methods of determining if a FSM meets a specific set of requirements. The model checkers detects if requirements are met, either by determining examples or counterexamples. When a path, representing either an example or a counterexample is discovered it is logged as a *witness*, which can be mutated upon when generating test cases.

Markov chains

Markov chains are named after the Russian mathematician Andrew Markov, and are also known as usage models. A Markov chain, or usage model, is made up of two primary components; firstly a FSM, which represents every available action of a given system, and secondly an operational profile, which is a statistical indicator of has been or will be used. The FSM is used by the operational profile in order to generate the statistical analysis, and the operational profile is used by the FSM to derive operational tests.

The scope of which features the above techniques will be able to test will be deemed by the actual maritime service model, however the expansive array of methods will cover maritime services extensively.

3.6 Summary: advantages and disadvantages

Issues will inevitably present themselves with a project such as this, however the scope and nature of these issues will vary with each approach possible. As different approaches offer tailored advantages to circumvent correlating unique concerns, another set of unique concerns will necessarily present themselves. In this section I will sum up the approaches presented throughout Chapter 3, along with their corresponding arising advantages and disadvantages.

Manual model-creation Advantages

- Manual model creation will have a shorter implementation time, as an arbitrary single model is faster to build than its auto-modelgenerator counterpart.
- Built maritime service models can be fully customized at once in order to catch all aspects of its maritime service counterparts.
- Having customized each maritime service model to its corresponding maritime service counterpart allows for an equally customized test suite. Following the techniques, described in Section 3.5 will allow for more exhaustive tests via manual model-creating than automatic model-creation.

Disadvantages

- The time consumption of manually creating each model will expand linearly with each maritime service, that is submitted, and subsequently needs a maritime service model.
- Having each maritime service model being created individually and manually will inevitable introduce much diversity both in the sense of the available standard actions and implementation style of the model
- The complexity as well as way of implementing testing techniques explained in Section 3.5 varies to an extent, even without consideration of non-uniform models. Elaborating on the case that each maritime service model differs both in purpose, implementation style and exhaustiveness, creating test suites similar to those described in Section 3.5 for each new maritime service will become an extensive project

Automatic model-creation Advantages

- The first and foremost advantage of automatic model generation is the scalability, which it provides. This comes as the implementation of *one* maritime service model generator module, ideally, will be able to automatically assemble each maritime model without further interference, as opposed to manual model generating.
- As an automatic model generator abides by a set collection of rules and metrics, and would create models following the instructions of an xml specification-file, generated models will never deviate from the uniformity of the generator.
- The uniformity in the generated models will further show advantage, as this will streamline test suite generation either because of the fact that similar models promote similar manual test suite

generation, or because of the fact that it allows for almost total automation.

Disadvantages

- The obvious disadvantage that comes with automatic model generation is the lack of customization in models. As the generator should handle all models, that can be described through the xml specification files it needs to be generalized, which in turn means less specific models, which lowers the ability to custom-fit each model to its maritime specification counterpart.
- Another inevitable downside to having automatically generated however less specific - models is the fact that test suites can become less specific, and in extension hereof less exhaustive of the maritime service.

To sum up, both methods will be advantageous, as they will each allow for extensive testing with the former being more time detailed and exhaustive, while a lot more time consuming in the long run, and the latter being less detailed and a lot less time consuming in the long run.

${f Work/Design}$

4

In this chapter I will describe the work I have done in order to implement model-based testing into the MCP. The workload that is contained in the implementation and description herein includes implementation of a monadic parser that reads the xml-specification files, an update of the fields and contents of fields in the xml-specification files, as well as a model, that is built upon the foundation of aforementioned updated xml-specification.

4.1 Updated Data

As discussed in Section 3.1, in order to create uniform models, upon which to execute tests, the structure of the xml-specification files needs to be altered in a manner that adds uniformity to the xml-specification files. This rules out the use of natural language, for reliable model-generation.

One way to implement these changes is make the user able to assign variables, based on a fixed collection of available options. I will now present three fields, which are designed to be used in order to maximize uniformity in model generation as well as give maximum flexibility in future model design.

Entity

An entity is the most basic component of the models, without which, the models would not be able to exist. These describe the physical real-world objects, which the model is to simulate, and these are also the subjects of all transactions, which will occur throughout execution of the models. At the moment, three entities exist, however support for additional models is possible.

Ship

If comparing the MCP to the App Store or Google Play, a ship would undertake the role of the user. The user can be the one utilizing the maritime service or in other cases other users, which are somehow connected to the user.

Service

The Service entity represents the maritime service, which is being

modeled. Like a ship entity, multiple instances of a service entity can occur. If multiple instances of a service entity occurs, this will correspond to cross app interaction, using the same comparison as above.

Company

Company entities serve as nodes, which hold data or other goods, which can be desired by ship entities for a variety of reasons. Multiple company entities can exist at one time.

Relation

A relation symbolizes a bond between two entities. In the case of Figure 3.3, relations can be seen between 'Ship' and 'Service' as well as 'Service' and 'Company'.

A ship entity can share a relation with other ship entities, as well as service entities, but in order to access data held by the company entity, it will need to consult the service entity.

A service entity needs to be able to share a relation with all other entities in order to act as an intermedium between ship entities and company entities, while also being able to interact with other service entities.

A company entity can share a relation with a service entity as well as other company entities. Two company entities do not necessarily need service entities in order to be able to share information similarly to the real world, where companies use different communication channels, whether communicating with companies or citizens.

Dependency

A dependency is, as the name suggests, a dependency from one entity to another, and so the first argument of a dependency must be a relation, which describes which two entities are in question, as well as which entity depends on the other. The second argument that a dependency must receive is an anonymous function, that describes what the entities require from each other. If two entities co-depend on each other a relation must be made from the first to the second, as well as from the second to the first. As only the anonymous function limits what the dependency entails, an entity can depend on itself.

Figure 4.1 describe which options are excluded at selections of entities, relations, and dependencies. As can be seen, Figure 4.1 coincides with 4.2, and therefor the description given in this section describe both figures.

4.2 Updated Parser Grammars

The fields described in Section 4.1 furthermore need to be translated into parsable xml, and an example of this is given in Listing 4.2. This parser

Figure 4.1: Available relations and dependencies for ships, services, and companies

grammar serves as an updated version of the parser grammar, described in Listing 3.1, however shaved for information¹, that is irrelevant to the model-generating process. While this information can of course be included in the xml-specification file, it will be deemed irrelevant after parsing, and thus not included further in the model-generating process. The parser grammar presented in Listing 4.2 is designed to form a clear and unambiguous collection of entities, along with a similarly unambiguous description of relations, exchange-patterns, and security precautions. The parser grammar abides by the rules, presented in Section 4.1 and Figure 4.1.

```
ServiceSpecificationSchema ::= specifications
specifications ::= spec specifications
     |\epsilon|
spec ::= name
     status
     id
     | Entities
Entities ::= ESpec Entities
     |\epsilon
ESpec ::= Ship
      Service
     Company
Ship ::= name
     id
     Relations
Service ::= name
     | id
      Relations
     Dependencies
Company ::= name
     | id
     Relations
{\sf Relations} ::= {\sf RSpec} \ {\sf Relations}
\mathsf{RSpec} ::= \mathsf{ESpec} \; \mathsf{ESpec}
Dependencies ::= DSpec Dependencies
     |\epsilon|
DSpec ::= Dependency RSpec
```

Figure 4.2: Updated parser grammar of Service Specification Schema

```
\begin{tabular}{lll} ServiceSpecificationSchema ::= specifications \\ specifications ::= spec specifications \\ & | \ensuremath{\,\epsilon} \\ spec ::= specifications \\ & | \ensuremath{\,spec} \\ & | \ensuremath{\,\epsilon} \\ spec ::= string \\ \ensuremath{\line specifications} \\ \ensuremath{\line specifications} \\ \ensuremath{\line spec} \\ \ensuremath{\line specifications} \\ \ensuremath{\line specification
```

Figure 4.3: Reduced parser grammar of the updated Service Specification Schema

4.2.1 Updated Service Specification Grammar

4.2.2 Updated General Grammar

The updated xml-specification files will be limiting the flexibility of the models in some aspects, as not all maritime services would follow the structure given in Listing 4.2, however the example given is the earliest version of the domain-specific language. Following complex structures of various maritime services, the domain-specific language of the specification files can scale in complexity with the requirements set up by the maritime services.

Listing 4.3 describes a reduced form of Listing 4.2. It can be seen that Listing 4.3 is identical to Listing 3.2, which proves that, after implementation of the model-generating process, there is no direct, urgent need to improve or change the parser.

4.3 Implementation in the MCP

¹aSpec, authorInfo, authorInfos, contactInfo, dataExchangePattern, definitionAsXSD, description, isSpatialExclusive, keywords, oSpec, operation, operations, parameterType, parameterTypes, ptSpec, rSpec, requirement, requirements, returnValueType, serviceDataModel, serviceInterface, serviceInterfaces, siSpec, spec, specifications, status, text, typeReference, version

4.5 Testing

TODOWRITE

counter(s) remaining in this chapter

Results

Discussion

Conclusion

7

- 7.1 Conclusions
- 7.2 Future work
- 7.3 Summary

Bibliography

- [1] Maritime Connectivity Platform, https://maritimeconnectivity.net/
- [2] QuickCheck, http://hackage.haskell.org/package/QuickCheck
- [3] EfficienSea2's website, https://efficiensea2.org/solution/maritime-connectivity-platform/
- [4] Real World Haskell, Bryan O'Sullivan, Don Stewart, and John Goerzen, Chapter 11, http://book.realworldhaskell.org/read/testing-and-quality-assurance.html
- [5] Natural Language Processing, Elizabeth D. Liddy, Syracuse University, liddy@syr.edu http://surface.syr.edu/cgi/viewcontent.cgi?article=1019&context=cnlp
- [6] Monadic Memoization towards Correctness-Preserving Reduction of Search Richard Frost School of Computer Science, University of Windsor Ontario, Canada richard@uwindsor.ca http://richard.myweb.cs. uwindsor.ca/PUBLICATIONS/AI_03.pdf

Appendix

A.1 ServiceSpecificationSchema

```
ServiceSpecificationSchema ::= specifications
{\it specifications} ::= {\it spec specifications}
spec ::= name
     status
      id
      version
      description
      keywords
      isSpatialExclusive
      authorInfos
      requirements
      serviceDataModel
      serviceInterfaces
authorInfos ::= authorInfo authorInfos
authorInfo ::= aSpec authorInfo
aSpec ::= id
      name
      description
     contactInfo
requirements ::= requirement requirements
```

Figure A.1: Full parser grammar of Service Specification Schema. (1 of 2)

```
requirement ::= rSpec requirement
     |\epsilon|
rSpec ::= id
     name
     text
{\sf serviceDataModel} ::= {\sf definitionAsXSD}
definitionAsXSD ::= \epsilon
serviceInterfaces ::= serviceInterface serviceInterfaces
serviceInterface ::= siSpec serviceInterface
siSpec ::= name
      description
      dataExchangePattern
     operations
operations ::= operation operations
operation ::= oSpec operation
oSpec ::= name
     description
      returnValueType
      parameterTypes
returnValueType ::= typeReference
parameter Types ::= parameter Type \ parameter Types
parameterType ::= ptSpec \ parameterType
ptSpec ::= typeReference
```

Figure A.2: Full parser grammar of Service Specification Schema. (2 of 2)

A.2 E2 - NW-NM Service Specification

```
<?xml version="1.0" encoding="UTF-8"?>
<ServiceSpecificationSchema:serviceSpecification</pre>
   xmlns:ServiceSpecificationSchema="http://efficiensea2.org/maritime-cloud/
        → service—registry/v1/ServiceSpecificationSchema.xsd"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://efficiensea2.org/maritime-cloud/service-registry/
        → v1/ServiceSpecificationSchema.xsd ServiceSpecificationSchema.xsd "
   xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <name>NW-NM TP Maritime Cloud Service</name>
 <status>provisional</status>
 <id>urn:mrn:mcl:service:specification:dma:nw-nm</id>
 <version>0.3</version>
 <description>The NW-NM service specification defines a combined NW-NM TP
      → model along with the actual service API used for accessing NW-NM data,

→ as registered in the Maritime Cloud service catalogue.
 <keywords>pNW, NM, Navigational Warnings, Notices to Mariners, MSI, Maritime
      → Cloud Service</keywords>
 <isSpatialExclusive>false</isSpatialExclusive>
 <authorInfos>
   <authorInfo>
     <id>urn:mrn:mcl:user:dma:mcb</id>
     <name>Mads Bentzen Billesoe</name>
     <description>Responsible for the NW-NM service</description>
     <contactInfo>mcb@dma.dk</contactInfo>
    </authorInfo>
 </authorInfos>
 <requirements>
    <requirement>
     <id>urn:mrn:mcl:requirement:nw-nm:1</id>
     <name>Combined NW-NM model</name>
     <text>The data model should encapsulate a combined NW-NM model.</text
         \hookrightarrow >
   </requirement>
   <requirement>
     <id>urn:mrn:mcl:requirement:nw-nm:2</id>
     <name>Return all published NW-NM messages.</name>
     <text>The NW-NM service should make it possible to retrieve all published
         → NW-NM messages from the given service provider.</text>
    </requirement>
 </requirements>
 <serviceDataModel>
   <definitionAsXSD>
```

```
<!-- Too extensive - included in the "NW-NM Service Specification"
          \hookrightarrow document, Appendix B -->
    </definitionAsXSD>
  </serviceDataModel>
  <serviceInterfaces>
    <serviceInterface>
      <name>MessageService</name>
      <description>Works according to the request response pattern.</description>
      <\! \mathsf{dataExchangePattern} \!\!>\! \mathsf{REQUEST}_RESPONSE \!<\! / \mathsf{dataExchangePattern} \!>\!
      <operations>
        <operation>
          <name>get</name>
          <description>Retrieves an published NW-NM messages./description>
          <returnValueType>
            <typeReference>Message[]</typeReference>
          </returnValueType>
          <parameterTypes>
            <parameterType>
              <typeReference>String</typeReference>
            </parameterType>
          </parameterTypes>
        </operation>
      </operations>
    </serviceInterface>
  </serviceInterfaces>
</ServiceSpecificationSchema:serviceSpecification>
```

$\ensuremath{\mathsf{TODO}}(\ensuremath{\mathbf{s}})$ remaining in the document:

TODOALL: 8

TODOREG: 2

TODOWRITE: 6