DOOM - Bulkens, Gemmer, Gerber

TheFatBot

•••

Ein Doom-Reinforcement-Learning-Approach mit ViZDOOM

Agenda

- 1. Einleitung & ViZDoom
- 2. Szenario erstellen
- 3. Duel Q-Learning & PPO
- 4. Unsere Umsetzung & Hyperparameter Tuning
- 5. Herausforderungen
- 6. Fazit

DOOM - Bulkens, Gemmer, Gerber

To Do

Sepp

PPO Grundlagen Check

SLADE, Szenarios, Scripting Klemens fragen ob er noch Ideen hat was fehlt

Visualisierung Muss noch Herausforderungen Check

Einleitung drüberlesen/anpassen Check
Fazit Muss noch

⊃ Fazı

• Björn

- PPO zum laufen bringen NE
- PPO Kapitel schreiben SEPP
- O DQN zu Ende DONE
- o Code durch kommentieren DONE

Klemens

- Slade & Szenario Folien
- Hyperparameterfolien mit Videobeispielen
- Letztes Model trainieren Done
 Videos aufnehmen und hochladen Done
 Slade und Szenario Kapitel Done?
- Ergebnisse und Herausforderungen Kapitel (Reward challenges, Scripting challenges (Alles mit Slade), Learning challenges auch bzgl mywayhome Done

DOOM - Bulkens, Gemmer, Gerber

Einleitung

Was ist Doom?

ViZDOOM

Erlaubt uns:

- Zugriff auf Screen Buffer
- Zugriff auf In-Game Variablen
- 4 Control Modes
- Erstellen von eigenen Szenarien
 - Maps
 - dynamisches Spielgeschehen
 - speziell für Reinforcement Learning: Rewards definieren

Überblick

Szenarios

Wad Files

Maps

Game Files & Texturen

Slade

Implementierung von Rewards

Aktion Skript Reward

Duel Q-Learning

Wie funktioniert Duel Q-Learning?

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-duelin g-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

Proximal Policy Optimization

Wie funktioniert PPO?

Unsere Umsetzung

Die Ausgangslage

Erste Schritte in ViZDoom

Basic.wad

My Way Home.wad

Challenges from the get go

Sparse Rewards

Balance Rewards

Sensitivity to Parameters

Unsere Map

Unser Reward script

Positive Rewards:

- Gegner Treffer
- Aufsammeln der Waffe

Negative Rewards

- Schießen
- Schaden nehmen
- Game Over

Experimentelle Rewards:

- Negativer Living Reward
- Rewards auf Positionsbasis

Hyper Parameter Tuning und Vergleich

Hyper Parameter

- 1. Anzahl der Epochen
- 2. Learning Rate
- 3. Discount Factor
- 4. Learning Steps per Epoch
- 5. Replay Memory Size
- 6. Batch Size

Hyperparameter Tuning

e=391 lr=0,0005

e=412 lr=0,0002

Bewertung

Gescheiterte Umsetzungen

DOOM - Bulkens, Gemmer, Gerber

Fazit

Fazit

Eher schwache Performance der Modelle

- Zu wenig Rechenleistung
 - Begrenzung durch VMs
- Probleme bei Reward Funktion
- Zeitlich zu aufwändig
- Umsetzung von weiteren RL
 Ansätzen an Bugs gescheitert

Danke für eure Aufmerksamkeit!

Quelle

- Federated Reinforcement Learning for Training Control Policies on Multiple IoT Devices Scientific
 Figure on ResearchGate. Available from:
 https://www.researchgate.net/figure/The-actor-critic-proximal-policy-optimization-Actor-Critic-PPO-algor-ithm-process_fig3_339651408 [accessed 27 Jul, 2021]
- Reinforcement Trained Basic Example: https://www.youtube.com/watch?v=fKHw3wmT_uA
- Reinforcement Trained My Way Home Example: https://www.youtube.com/watch?v=15yZubaTLvw
- Vizdoom Proposal: https://arxiv.org/abs/1605.02097 [accessed 26 Jul, 2021]
- Proximal Policy Optimization Paper: https://arxiv.org/abs/1707.06347 [accessed 26 Jul, 2021]
- Duel Q Learning Proposal: https://arxiv.org/abs/1511.06581 [accessed 26 Jul, 2021]