

EXHIBIT 18

CA bom by 2003-12(3)/02 NY bon by 2004 1/1/04 CT 10/1/2003

USGC MTBE PHASE OUT ASSESSMENT

රේ

SCOPING OF POTENTIAL ETHANOL LEGISLATIVE PROPOSALS

USGC MTBE PHASE OUT ASSESSMENT KEY OUTCOMES

- MTBE removal from mogas would be costly for XOM
- Total USGC margin impact (3 refineries) estimated at 50-100 M\$/YR primarily due to octane loss
- Options to minimize/mitigate octane/margin impact of MTBE phase out identified
- Ethanol blending, with continued oxygen mandate, reduces octane shortfall; RVP impact manageable
- Conversion of MTBE units to isooctene would further reduce/eliminate octane shortfall ı
 - Ethanol/isooctene complimentary steps -- not necessarily in competition
- In all cases examined, MTBE ban without oxygenate mandate is better for XOM
- Producibility of mogas in USGC refineries can be maintained at roughly current rates with MTBE ban through ethanol/isooctene steps
- With no oxygenate or ethanol mandate, ethanol is rarely imported into the USGC gasoline blending pool in summer
- 3 vol % ethanol mandate on total corporate mogas results in USGC margin loss
- 2 vol% ethanol mandate can probably be contained at Joliet/Torrance without major debits
- Any potential ethanol/oxygenate mandate should provide maximum flexibility (annual balancing, no specific location, etc.)

Refining & Supply Planning 02/02/2001

3ackup Data

BUSINESS STRATEGY STUDY APPROACH USGC MTBE PHASE OUT ASSESSMENT

Assessed potential scenarios for gasoline blending.

- Oxygen mandate with no ether ban (Base Case)
- Oxygen mandate with ether ban (ethanol assumed to be the only viable oxygenate)
 - Vo oxygen mandate with ether ban.

Basis assumptions

- Low Sulfur Mogas (30 ppm) in place.
- Flexible raw material/product slates and unit rates.
- 2000 COP Prices for 2005 (UR \$20.3/B, Octane \$0.35/OIB, RFG Premium 1.8 cpg)
- Ethanol blending assumed to be downstream of refineries; economics evaluated using subsidized price. MTBE unit conversion for Isooctene production using Snamprogetti technology.

n a separate assessment evaluated potential scenarios for ethanol gasoline blends.

- Ethanol mandate of 3.3% of total corporate mogas pool, with no oxygenate mandate
- Oxygen mandate with different amounts of ethanol blended into mogas, volumes per tax regulations

Refining & Supply Planning

7									•							•		
ExxonMobil Proprietary			Mandate	Alkv Exp	240	ָ בַּ	7 (0		1	ŀ	1	47	130		, 20 80 70	(1)	
ExxonMobi		6	Ether Ban/No O2 Mandate	Sportene	240) (4)	, Α	<u>?</u>	٠	!	:	œ	35	25	, ;	- o	53 58	
			Ether	No Inv	233	48) -	_		ļ ·	¦	1	36	Base		(- 0)	3 1	
SSMENT	LTS			Alky Exp	243	35	0	2		¦ u	 o	;	47	135		(3) (2)	? o	_
UT ASSE	NG RESU		ındate	Isooctene	239	36	00) 		ן ער) (യ	35	30	(4)	19 (9)	22	
FHASE O	BAYTOWN SCOPING RESULTS	N	Ether Ban/O2 Mandate	EtOH Only Isooctene Alky Exp.	236	36	14	•	;	្រ)	;	36	ທ	(34)	<u>දි</u> ල	ල	
USGC MTBE PHASE OUT ASSESSMENT	BAYTO		Ether	No Inv./No RFG	231	0	10		•	1		:	35	Base	. (31)	Base	\$ {	
			Current	Base	249	45	19		13		i	;	33	Base	B	- I	1	
		Scenario			Mogas, kBD	% RFG	% UP	Components, KBD	MTBE	Ethanol	anatocos.		Alkylate	Investment, \$M	Net Cash Margin, \$M/Y vs Base	vs No Investment	vs Lower Cost Option	

All cases able to economically maintain base crude/cat rates and aromatics sales.

6.0

0.8

(0.1)

O 3

0.6

15

80

က ဝ

45 55

Indicative DCF, %

vs No Investment

vs Lower Cost Option

Cost vs Base, cpg

Refining & Supply Planning 02/02/2001

Isooctene purchase, to increase UP producibility, breakeven price ~\$31/B; toluene uneconomic/blending limited.

Grassroots alky expansion unattractive vs isooctene; low cost alky debottleneck potentially economic.

Ethanol price/RFG premium parity an issue.

CO
ø
÷
ā
ᅙ
-
٦
=
=
bii
lobil
Mobil
nMobil
onMobil
KonMobil
exon Mobil
:xouMobil

USGC MIBE PHASE OUT ASSESSIMENT	W.
3	\vdash
ZΙ	\equiv
2	
4	Ġ.
2	\sim
13	⊦ح
딕	\tilde{z}
二	=
╣	=
1	~
긨	\ddot{c}
اک	
귄	Ċ
ᆁ	
ᆀ	\subseteq
\simeq	\simeq
	Z
2	
ال	RATON ROUGE SCOPING RESULTS
ات	~
2	-
~1	

	Mandate	Alky Exp.	221	45	13		ł	ŀ	ł	45	125	(12)	(4) (4)	3 (()	Ļ	ر د	0	1.5	
င	Ether Ban/No O2 Mandate	Isooctene	214	47	16		;	1	ဖ	34	25	() (-) ((0	8	0.5	
4 4 1	Ether	No Inv.	215	. 46	7		ł	;	ł	32	Base	(86)	(00)	מאפר	l		ł	ì	1.2	
					·															ľ
2	Ether Ban/02 Mandate	Alky Ext	224	45	22		ŀ	3	ŀ	45	130	(18)	0 5	†	(2)	ļ	22	0	1.7	
		Isooctene Alky Exp	218	46	25		1	വ	ဖ	34	30	(19)	(3)	4 U	32	+	100+	82	0.7	
		ı	220	45	17		1	ហ	ł	32	Ŋ	(46)	(45) 47)) [17		100+	100+	4.	
		No Inv./No RFG EtOH Only	220	0	ហ		ŀ	Į	:	35	Base	ć	(29)	nase	1		İ	ţ	8.	
_	Current	Base	220	45	25		12	i	ļ	35	Base	,	case	1	<u> </u>		1	1	i	· -:
Scenario			Mogas, KBD	% RFG	% UP	Components, KBD	MTBE	Ethanol	Isooctene	Alkylate	Investment, \$M	Net Cash Margin, \$M/Y	vs Base	vs No Investment	vs Lower Cost Option	Indicative DCF, %	vs No Investment	vs Lower Cost Option	Cost vs Base, cpg	

All cases able to economically maintain base crude/cat rates and aromatics sales.

Refining & Supply Planning 02/02/2001

Isooctene purchase, to increase UP producibility, breakeven price ~\$27/B; toluene uneconomic/blending limited.

Grassroots alky expansion unattractive vs Isooctene; low cost alky debottleneck potentially economic.

Ethanol price/RFG premium parity an issue.

- 4
ব
ਕ
اید
.의
-
믜
9
~
ᄥ
=
O
51
긤
ᅰ
ଧ
\mathbf{Q}
úil
1

USGC MTBE PHASE OUT ASSESSMENT BEAUMONT SCOPING RESULTS

								-							-				
ന	Mandate	Alky Exp	212	*-	28		i	:	1	0	09	5	<u> </u>	œ	<u>ල</u>		ഹ	Q	6.0
	Ether Ban/No O2 Mandate	Isooctene	209	-	34		1	•	ო	13	15	á	<u>(</u>)	[-		90	20	0.4
	Ether	No Inv.	211	-	25		1	1	}	15	Base	(10)	(6)	Base	1	-	!	!	9.0
		Alky Exp		23	30		ŀ	ო	ŀ	8	65	5	(†)	10	0		ıΩ	0	7.
2	ndate	sooctene	206	23	36		i	က	က	14	20	(*)	(† <u>(</u>	10	12		32	52	. 9.0
	Ether Ban/O2 Mandate	EtOH Only sooctene	206	23	27		ŀ	ო		16	ഹ	90	(07)	(2)	(2)		0	0	6.0
	Ether	No Inv./No RFG	208	0	30		ł	i	:	15	Base	(6)	(47)	Base	1		!	!	0.8
\ <u></u>	Current	Base	205	26	28		4	ì	ŀ	15	Base		ם מא	1	ŀ	-	ł	1	ļ
Scenario			Mogas, kBD	% RFG	% UP	Components, kBD	MTBE	Ethanol	Isoactene	Alkylate	Investment, \$M	Net Cash Margin, \$M/Y	VS Dasa	vs No Investment	vs Lower Cost Option	Indicative DCF, %	vs No Investment	vs Lower Cost Option	Cost vs Base, cpg

All cases able to economically maintain base crude/cat rates and aromatics sales; mogas producibility increase by imported natural gasoline to isom unit a potential opportunity.

sooctene purchase, to increase UP producibility, breakeven price ~\$30/B; toluene uneconomic/blending limited.

Grassroots alky expansion unattractive vs Isooctene; low cost alky debottleneck potentially economic.

Ethanol price/RFG premium parity an issue.

Refining & Supply Planning 02/02/2001