STILES OFFICE

Lycée BILLES Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

Devoir de mathématiques N°9/TS1/Durée 4h

21 mai 2022

Exercice 1 (4 points)

Devoir de mathématiques N°9/TS1/Durée 4h

21 mai 2022

Exercice 1 (4 points)

- 1. Pour $n \in \{1, 2, 3, 4, 5, 6\}$ calculer le reste de la division euclidienne de la division de 3^n par 7. (0,75 pt)
- 2. a. Démontrer que, pour tout n entier naturel non nul, $3^{n+6} 3^n$ est divisible par 7. (0,5 pt)
 - b. En déduire que 3ⁿ⁺⁶ et 3ⁿ ont le même reste lorsqu'on les divise par 7. (0,25 pt)
 - c. Déterminer le reste de la division de 3¹⁰⁰⁰ par 7.

(0.75 pt)

3. Déterminer les restes de la division de 3ⁿ par 7.

(1 pt)

4. Soit $u_n = 1+3+...+3^{n-1}$; n entier naturel supérieur ou égal à 2.

Montrer que si 7 divise u_n alors 7 divise $3^n - 1$.

(0,75 pt)

Exercice 2 (5,5 points)

Dans le plan orienté (P) on considère un rectangle ABCD tel que AB =2 et BC = 4 cm et

$$(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{2} [2\pi].$$

Soit M le milieu de [BC].Les droites (AB) et (DM) se coupent en I.

- 1. Faire la figure en considérant le côté [AB] horizontal.
 - On complétera la figure au cours de l'exercice.

(0,75 pt)

2. a)Montrer qu'il existe une unique similitude s telle que s(A) = M et s(B) = D.

(0,25 pt)

b) Déterminer le rapport et l'angle de s.

(0.5 pt + 0.5 pt)

- 3. Soit Ω le centre de s.
- a. Démontrer que les points A, Ω , M et I sont cocycliques.

(0,5 pt)

b. En déduire que BM = B Ω = BA.

(0,75 pt)

c. Démontrer que $DM = D \Omega$.

(0,5 pt)

d. En déduire que Ω est le symétrique de M par rapport à la droite (BD).

(0,25 pt)

- 3. Le plan complexe (P) est muni du repère orthonormal direct $(A; \overrightarrow{AB}; \overrightarrow{AD'})$.
 - a) Déterminer l'écriture complexe de s et l'affixe de Ω .

(0.75 pt+0.25 pt)

b) Vérifier que Ω est le symétrique de M par rapport à la droite (BD) en montrant que BM =B Ω et que les droites (Ω M) et (BD) sont perpendiculaires. (0,5 pt)

Problème: (10,5 points)

Pour tout entier naturel n non nul, soit la fonction f_n définie sur IR par : $f_n(x) = x^n e^{-x}$ et C_n sa courbe représentative dans le plan muni d'un repère orthonormal $(0,\vec{1},\vec{j})$ (unité graphique 2 cm).

Partie A: (6,25 points)

- 1. Calculer $f_n'(x)$ pour tout réel x et préciser $f_n'(0)$ lorsque n = 1 puis lorsque $n \ge 2$. (0,5 pt+0,5 pt)
- 2. Dresser le tableau de variation de f_1 et de f_n pour $n \ge 2$.

(0,75+1,25 pt)

3. Montrer que pour tout $n \ge 1$, pour tout réel x de $[0; +\infty[: f_n(x) \le n^n e^{-n}]$. (0,25 pt)

- 4. a) Etudier la position relative des courbes C_1 et C_2 . (0,5 pt)
 - b) Construire C_1 et C_2 sur la même figure. (2,5 pts)

TS1/ Lycée BILLES

MILLES .

Lycée BILLES Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

Partie B (1,25 points)

Pour tout nombre réel x on pose $F_n(x) = \int_0^x f_n(t) dt$

1. a. Déterminer les nombres réels a_0 , a_1 ,..., a_n tels que la fonction G définie par

$$G(x) = e^{-x}(a_n x^n + \dots + a_1 x + a_0), \text{ soit une primitive de } f_n \text{ sur } [0; +\infty[.$$
 (0.5 pt)

b. En déduire que :
$$F_n(x) = -e^{-x}(x^n + nx^{n-1} + n(n-1)x^{n-2} + \dots + n! + n!) + n!$$
. (0,5 pt)

2. L'entier naturel n étant donné, montrer que $F_n(x)$ admet une limite I_n lorsque x tend vers $+\infty$ tel que $I_n = n!$ (0,5 pt)

Partie C (3 points)

On se propose d'encadrer I_n par une méthode directe indépendante des résultats du 1.

1. A l'aide du A) 3. ; montrer que
$$\int_0^{2n} f_n(x) dx \le (2n) n^n e^{-n}$$
. (0,25 pt)

Montrer que pour tout
$$x \ge 2n$$
, $\left(\frac{x}{2}\right)^n e^{-\frac{x}{2}} \le n^n e^{-n}$ et que $f_n(x) \le (2n)^n e^{-n} e^{-\frac{x}{2}}$. (0,25 pt+0,25pt)

2. En déduire que pour tout
$$x \ge 2n$$
, $\int_{2n}^{x} f_n(t) dt \le 2 (2n)^n e^{-2}$. (0,5 pt)

3. Déduire de 1) et 2) une majoration de
$$F_n(x)$$
 lorsque $x \ge 2n$. (0,25 pt)

4. Montrer que
$$I_n \le 2n^n e^{-n} \left[n + \left(\frac{2}{e}\right)^n \right]$$
. (0,25 pt)

5. Montrer que :
$$(n+1)^n e^{-n-1} \le \int_n^{n+1} x^n e^{-x} dx \le I_n$$
. (0,5 pt)

6. Soit
$$(u_n)$$
 la suite définie par : $u_n = \frac{\ln(I_n) - n\ln(n)}{n}$; n non nul.

Déterminer la limite de la suite (u_n) . (0.75 pt)