Discrete Logarithm(s) (DLs)

- Fix a prime p. Let a, b be nonzero integers (mod p). The problem of finding x such that $\mathbf{a}^{\mathbf{x}} \equiv \mathbf{b} \pmod{\mathbf{p}}$ is called the discrete logarithm problem. Suppose that n is the smallest integer such that $\mathbf{a}^{\mathbf{n}} \equiv 1 \pmod{\mathbf{p}}$, i.e., $\mathbf{n} = \operatorname{ord}_{\mathbf{p}}(\mathbf{a})$. By assuming $0 \le \mathbf{x} < \mathbf{n}$, we denote $\mathbf{x} = \mathbf{L}_{\mathbf{a}}(\mathbf{b})$, and call it the discrete log of b w.r.t. a (mod p).
- Ex: p=11, a=2, b=9, then $x=L_2(9)=6$
- In the RSA algorithms, the difficulty of factoring a large integer yields good cryptosystems
- In the ElGamal method, the difficulty of solving the discrete logarithm problem yields good cryptosystems
- Given p, a, b, solve $a^x \equiv b \pmod{p}$
- a is suggested to be a primitive root mod p

Here is an example using a nonprime modulus, n = 9. Here $\phi(n) = 6$ and a = 2 is a primitive root. We compute the various powers of a and find

$$2^{0} = 1$$
 $2^{4} \equiv 7 \pmod{9}$
 $2^{1} = 2$ $2^{5} \equiv 5 \pmod{9}$
 $2^{2} = 4$ $2^{6} \equiv 1 \pmod{9}$
 $2^{3} = 8$

This gives us the following table of the numbers with given discrete logarithms (mod 9) for the root a = 2:

To make it easy to obtain the discrete logarithms of a given number, we rearrange the table:

(a) Discrete logarithms to the base 2, modulo 19

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{2,19}(a)$	18	1	13	2	16	14	6	3	8	17	12	15	5	7	11	4	10	9

(b) Discrete logarithms to the base 3, modulo 19

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{3,19}(a)$	18	7	1	14	4	8	6	3	2	11	12	15	17	13	5	10	16	9

(c) Discrete logarithms to the base 10, modulo 19

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{10,19}(a)$	18	17	5	16	2	4	12	15	10	1	6	3	13	11	7	14	8	9

(d) Discrete logarithms to the base 13, modulo 19

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{13,19}(a)$	18	11	17	4	14	10	12	15	16	7	6	3	1	5	13	8	2	9

(e) Discrete logarithms to the base 14, modulo 19

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{14,19}(a)$	18	13	7	8	10	2	6	3	14	5	12	15	11	1	17	16	4	9

(f) Discrete logarithms to the base 15, modulo 19

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{15,19}(a)$	18	5	11	10	8	16	12	15	4	13	6	3	7	17	1	2	14	9

Algorithm 4.2.1 (Shanks' baby-step giant-step algorithm). This algorithm computes the discrete logarithm x of y to the base a, modulo n, such that $y = a^x \pmod{n}$:

- [1] (Initialization) Computes $s = \lfloor \sqrt{n} \rfloor$.
- [2] (Computing the baby step) Compute the first sequence (list), denoted by S, of pairs (ya^r, r) , $r = 0, 1, 2, 3, \dots, s 1$:

$$S = \{(y,0), (ya,1), (ya^2,2), (ya^3,3), \cdots, (ya^{s-1}, s-1) \bmod n\}$$
 (4.1)

and sort S by ya^r , the first element of the pairs in S.

[3] (Computing the giant step) Compute the second sequence (list), denoted by T, of pairs $(a^{ts},ts),\ t=1,2,3,\cdots,s$:

$$T = \{(a^s, 1), (a^{2s}, 2), (a^{3s}, 3), \dots, (a^{s^2}, s) \bmod n\}$$
(4.2)

and sort T by a^{ts} , the first element of the pairs in T.

[4] (Searching, comparing and computing) Search both lists S and T for a match $ya^r = a^{ts}$ with ya^r in S and a^{ts} in T, then compute x = ts - r. This x is the required value of $\log_a y \pmod{n}$.

Example 4.2.1. Suppose we wish to compute the discrete logarithm

$$x = \log_2 6 \bmod 19$$

such that $6 = 2^x \mod 19$. According to Algorithm 4.2.1, we perform the following computations:

- [1] y = 6, a = 2 and n = 19, $s = \lfloor \sqrt{19} \rfloor = 4$.
- [2] Computing the baby step:

$$S = \{(y,0), (ya,1), (ya^2,2), (ya^3,3) \mod 19\}$$

$$= \{(6,0), (6 \cdot 2,1), (6 \cdot 2^2,2), (6 \cdot 2^3,3) \mod 19\}$$

$$= \{(6,0), (12,1), (5,2), (10,3)\}$$

$$= \{(5,2), (6,0), (10,3), (12,1)\}.$$

[3] Computing the giant step:

$$T = \{(a^s, s), (a^{2s}, 2s), (a^{3s}, 3s), (a^{4s}, 4s) \bmod 19\}$$

$$= \{(2^4, 4), (2^8, 8), (2^{12}, 12), (2^{16}, 16) \bmod 19\}$$

$$= \{(16, 4), (9, 8), (11, 12), (5, 16)\}$$

$$= \{(5, 16), (9, 8), (11, 12), (16, 4)\}$$

[4] Matching and computing: The number 5 is the common value of the first element in pairs of both lists S and T with r=2 and st=16, so x=st-r=16-2=14. That is, $\log_2 6 \pmod{19}=14$, or equivalently, $2^{14} \pmod{19}=6$.