

Interpretable Machine Learning for Healthcare

A Comparative Analysis of Model Transparency and Performance

Heart Disease Prediction with Explainable AI

Presented By:

Yeasin Arafat Shampod

Masters of Data Science

Matriculation: 23080363

Agenda

Overview

01	Introduction	07	Visualization
02	Motivation and Research Question	08	Interpretability Analysis
03	Methodology and Experiment	09	Explanation
04	Dataset and Preprocessing	10	Results & Discussion
05	Architectures	11	Recommendations & Future Work
06	Interpretable Models	12	Conclusions

3

Why do we care so much about explainability in machine learning?

John,

A medical patient

Motivation

Interpretable Accurate

Complex model X

 $\sqrt{}$

Simple model

 $\sqrt{}$

X

Interpretable or accurate: choose one!?

Balancing Accuracy & Interpretability

Simple Models

- ✓ High Interpretability
- X Lower Accuracy

Complex Models

- X Low Interpretability
- √ High Accuracy

Finding the balance is key in real-world applications.

Understanding Complex Models

Related Work in Interpretable ML

Model-Agnostic Methods

- SHAP (Lundberg & Lee, 2017): Unified framework for explanations
- LIME (Ribeiro et al., 2016): Local interpretable explanations

Interpretable Models

- Linear models: Inherently interpretable coefficients
- Decision trees: Rule-based transparent decisions

Related Work in Interpretable ML

Healthcare Applications

- Caruana et al. (2015): Intelligible models for healthcare
- Ahmad et al. (2018): Interpretable ML in clinical practice

Performance vs. Interpretability Studies

- Rudin (2019): Stop explaining black-box models
- Molnar (2020): Comprehensive interpretability survey

Research Questions

Q Can interpretable models match black-box performance in healthcare?

\rightarrow How consistent are different interpretability methods?

What are the practical trade-offs between accuracy and interpretability?

Why Healthcare?

- * High-stakes decisions require explainable predictions
- * Regulatory requirements for algorithmic transparency

Research Questions

Why Interpretability Matters?

Clinical Decision Support Requirements:

- Physicians need to understand AI recommendations
- Patients have right to explanation for medical decisions
- Regulatory bodies require algorithmic transparency

Heart Disease: A Critical Application:

- Leading cause of death globally (17.9M deaths/year)
- Early detection saves lives and reduces costs
- Complex multi-factor disease requiring nuanced analysis

Challenges:

- Balance between model accuracy and interpretability
- Multiple stakeholders: doctors, patients, regulators
- Need for both global and local explanations

Methodology

Dataset and Preprocessing

Model Architectures and Pipeline

Interpretable ML Pipeline for Healthcare Decision Support

age, sex, cp, trestbps, chol, fbs, restecg, thalach...

Normalization Feature Selection Correlation Analysis Logistic Regression Linear Coefficients Transparency Heart Disease Risk Score (0-1) Feature Contributions Local Explanations Trust Building

Interpretable Models

Logistic Regression

Interpretable Models

Linear decision boundary

Separates classes using a straight-line decision boundary.

Coefficients interpretable

Model weights can be directly analyzed for feature importance.

Probabilistic output (sigmoid)

Outputs probability scores using the sigmoid function.

Regularization (L2 penalty α =0.01)

Prevents overfitting by penalizing large coefficients.

Interpretable Models

Decision Tree

22

Interpretable Models

Decision Tree

Linear decision boundary

Separates classes using a straight-line decision boundary.

Coefficients interpretable

Model weights can be directly analyzed for feature importance.

Probabilistic output (sigmoid)

Outputs probability scores using the sigmoid function.

Regularization (L2 penalty α =0.01)

Prevents overfitting by penalizing large coefficients.

Rule-based hierarchical decisions

Organizes decisions in a structured, tree-like hierarchy.

Feature thresholds visible

Each node represents a decision based on a specific feature threshold.

Easy to visualize & explain

The flow of decisions is clear and easy for humans to interpret.

Max depth=5, min split=10

Tree is pruned to avoid overfitting and maintain simplicity.

Interpretable Models

Interpretable Models

Model Selection Criteria

Inherent interpretability

No post-hoc explanations needed; models are naturally transparent.

Clinical relevance

Patterns learned by the model align with medical domain knowledge.

Computational efficiency

Optimized to run in real-time for clinical decision support.

Black-Box Models

Random Forest

- Ensemble of 100 decision trees
- Bootstrap aggregating (bagging)
- Feature randomization at each split
- Out-of-bag error estimation

Support Vector Machine

- RBF kernel with $\gamma = 0.1$
- C = 1.0 regularization parameter
- Non-linear decision boundary
- Margin maximization principle

Hyperparameter Optimization

- Grid search with 5-fold cross-validation
- Performance metrics: accuracy, precision, recall, AUC-ROC
- Statistical significance testing (paired t-test)

Visualization

Model Performance Visualization

Analysis

SHAP Analysis - Feature Contributions and Explanations

Analysis

SHAP Analysis: Global Features Importance

Explanation

SHAP Waterfall: Individual Patient Explanation

Explanation

Local Interpretability: LIME VS SHAP

Explanation

Partial Dependencies: Features-Targets Relationship

Results

Hypothesis Testing Results

H1: Performance Comparison ✓ SUPPORTED

H2: SHAP vs LIME Consistency A PARTIALLY SUPPORTED

- Minimal AUC difference: 0.38% (LR: 95.45%, RF: 95.08%)
- Cross-validation confirms comparable performance
- Conclusion: Interpretable models match black-box performance

- Moderate correlation between methods
- SHAP provides more stable explanations
- Instance-specific variations observed

H3: Global-Local Alignment STRONGLY SUPPORTED

- High correlation (r = 0.713) between RF and SHAP importance
- Consensus on top features: ca, thal, cp, thalach
- Global patterns reflected in local explanations

Results

Hypothesis Testing Results (continued)

H4: Complexity-Interpretability Trade-off CONFIRMED

- High interpretability
- Good performance

᠍ Random Forest

- Lower interpretability
- Slightly better performance

Statistical Validation:

- Cross-validation for performance stability
- Correlation analysis for method consistency
- Significance testing for hypothesis validation
- ✓ Confidence intervals for effect sizes

Overall Findings:

- All four hypotheses supported by empirical evidence
- Statistical rigor ensures reliable conclusions
- Results generalizable to similar healthcare applications

Discussion

Discussion & Clinical Insights

Key Clinical Findings:

- ☐ Major vessels (ca) & thalassemia (thal) are strongest predictors
- Exercise-induced angina (exang) highly discriminative
- Maximum heart rate (thalach) shows complex non-linear relationships
- Gender (sex) remains significant predictor

Practical Implications:

- Logistic Regression suitable for clinical decision support
- Direct coefficient interpretation aids physician understanding
- SHAP explanations enhance trust in Random Forest predictions
- Feature consensus across methods increases confidence

Trade-off Analysis:

- 2 3.28% accuracy gain vs. significant interpretability loss
- Clinical context determines optimal choice
- Hybrid approaches possible: LR for explanation, RF for validation

Implication

Clinical Implications and Applications

□ Decision Support Benefits:

- Transparent risk factor identification
- Evidence-based treatment recommendations
- Patient education and communication tools
- Regulatory compliance for medical AI

☐ Clinical Workflow Integration:

- Real-time risk assessment during patient visits
- Explanation generation for patient discussions
- Quality assurance and audit trails
- Continuous learning from clinical feedback

☐ Regulatory Considerations:

- FDA guidance on Al/ML in medical devices
- GDPR 'right to explanation' compliance
- Liability and malpractice implications
- Clinical validation requirements

□ Physician Adoption Factors:

- Trust through transparency
- Workflow integration ease
- Performance reliability
- Training and education support

Recommendations

Recommendations & Best Practices

☐ For High-Stakes Medical Decisions:

- Prioritize Logistic Regression for direct interpretability
- Focus on top 5 consensus features for clinical protocols
- Combine multiple interpretability methods for validation
- Provide both global and local explanations

☐ For Maximum Predictive Performance:

- Use Random Forest when accuracy is paramount
- Apply SHAP for post-hoc explanations
- Validate explanations across multiple instances
- Consider ensemble approaches

@ General Guidelines:

- Always validate interpretability method consistency
- Use statistical testing for hypothesis validation
- Consider stakeholder needs in model selection
- Document trade-offs transparently

Future Work

• Extend to Larger, Multi-Institutional Datasets

Validate model performance across diverse populations, healthcare systems, and data sources to improve generalizability.

• Investigate Deep Learning Interpretability Methods

Explore advanced explainability tools for complex models like CNNs, RNNs, and Transformers.

• Develop Domain-Specific Interpretability Metrics

Create evaluation metrics aligned with clinical needs and decision-making workflows.

Study Long-Term Clinical Adoption and Outcomes

Assess real-world implementation, clinician trust, and patient outcomes.

Enhance Model Robustness and Reliability

Improve model stability under varied conditions and rare events.

• Integrate with Electronic Health Records (EHRs)

Enable seamless deployment in clinical environments.

Conclusions

Key Contributions:

- Demonstrated interpretable models can match black-box performance
- Validated consistency across interpretability methods
- Provided statistical framework for interpretability evaluation
- Generated actionable insights for healthcare applications

Main Conclusions:

- Performance gap between interpretable and black-box models is minimal
- SHAP provides more stable explanations than LIME
- Global and local interpretability methods show strong alignment
- Clear trade-offs exist but can be quantified and managed

References

Technische Fakultät 8. September 2025 38

Thank You Questions & Discussion

