

## Aufgaben zu Riemannsche Flächen - WS 2025/26

1. Blatt

**Aufgabe 1:** Wir betrachten die beiden folgenden Abbildungen auf der Einheitssphäre  $S^2 \subset \mathbb{R}^3$ :

$$h:S^2\setminus\{(0,0,1)\}\to\mathbb{C},\quad (x,y,z)\mapsto\frac{x}{1-z}+i\frac{y}{1-z},$$

$$k:S^2\setminus\{(0,0,-1)\}\to\mathbb{C},\quad (x,y,z)\mapsto\frac{x}{1+z}+i\frac{y}{1+z}.$$

Zeige, dass diese beiden einen holomorphen Atlas auf  $S^2$  ergeben.

**Aufgabe 2:** Sei  $\pi:X\to Y$  eine stetige Abbildung von Hausdorffräumen, die ein lokaler Homöomorphismus ist, d.h. jedes  $x\in X$  hat eine offene Umgebung  $U\subset X$ , so dass  $\pi|_U:U\to\pi(U)$  ein Homöomorphismus auf die offene Teilmenge  $\pi(U)\subset Y$  ist.

Beweise: Ist Y Riemannsche Fläche, so erhält man dadurch eine eindeutige Struktur einer Riemannschen Fläche auf X.

**Aufgabe 3:** Für  $\tau \in \mathbb{H} := \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$  betrachte das Gitter  $\Lambda_{\tau} := \mathbb{Z}1 \oplus \mathbb{Z}\tau \subset \mathbb{C}$ . Betrachte zu jedem dieser Gitter den wie in der Vorlesung konstruierten holomorphen Atlas von  $S^1 \times S^1$ .

Zeige, dass die Vereinigung der beiden Atlanten zu  $\Lambda_i$  und  $\Lambda_{1+i}$  (i bezeichnet hier die imaginäre Einheit) keinen holomorphen Atlas auf  $S^1 \times S^1$  ergibt.