This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Союз Советских Социалистических Республик

Государственный комитет Совята Министров СССР по делам изобретений и открытий

ПИСАНИЕ ИЗОБРЕТЕНИ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву

(22) Заявлено 10.08.75 (21)2165624/10

с присоединением заявки № -

(23) Приоритет

(43) Опубликовано 25.03.78. Бюллетень №11 (53) УДК 681.128.8

(45) Дата опубликования описания 25. 03. 78,

(088.8)

(72) Автор изобретения Н. И. Бражников

(71) Заявитель

Всесою зный научно-исследовательский и конструкторский институт "Цветметавтоматика"

(54) УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ жидких сред в закрытых сосудах

Изобретение относится к технике контроля параметров жидкостей в промышленных резервуарах, например их уровня и плотности.

Известны устройства для дискретного контроля уровня жилкости в закрытых резервуарах, содержащие ива преобразователя, включенные в цепь положительной обратной связи усилителя [1]. Эти устройства имеют недостаточную эксплуатационную надежность при контроле суспензий и гидропульп, характеризующихся повышенным затуханием ультразву-

Ближайшим по техническому решению к предлагаемому является устройство, содержащее два устанавливаемых на фиксированном друг от друга на внешней поверхности емкости идентичных клиновых преобразователя, соединенных последовательно один с усилителем мощности и возбудителем, а другой — с усилителем, селективным каскадом, детектором и измерительным каскадом [2].

Недостатком этого устройстви является значительная зависимость точности и надежности контроля от температуры и непостоянство толщины стенок емкости с жидкостью.

Цель изобретения --- повышение точности измерения жидкостей с параболической температурной зависимостью скорости распространения упругих колебаний.

Для этого в предлагаемом устройстве клиновые преобразователи выполнены демпфированными и введены последовательно соединенные синхронизатор, блок задержки, формирователь строб-импульса, подключенные - синхронизатор к входу возбудителя, а формирователь строб-импульса к селекторному каскаду, включенному между усилителем и детектором.

Кроме того, внутренняя полость преобразователя футирована материалом с пониженной теплопроводностью, а демпфированный пьезоэлемент герметично закреплен мембраной, выполненной из материала с акустическим импедансом, близким к импедансу контактной жидкости и снабженной кольцом уплотнения.

На фиг. 1 представлена структурная схема предлагаемого устройства; на фиг. 2 — общий вид преобразователя.

Устройство содержит два идентичных клиновых преобразователя 1 и 2, устанавливаемых встречно на фиксированном расстоянии друг от друга на внешней поверхности емкости 3 с контролируемой жидкостью; усилитель мощности 4, соединенный с преобразователем 1; подключенную к преобразователю 2 последовательно соединенную цепь, состоящую из усилителя 5, детектора 6 огибающей и из измерительно-регистрирующего блока 7; последовательно соединенные возбудитель 8; им-

пульсный синхронизатор 9; блока 10 задержки; подключенный к выходу импульсного синхронизатора, формирователь 11 строб-импульсов и селекторный каскад 12, включенный между выходом усилителя 5 и входом детектора 6 огибающей. В корпус 13 каждого из преобразователей выполненного полым, с герметично закрываемым отверстием 14 для заполнения контактной жидкостью 15 полости 16, которая футерована материалом с пониженной теплопроводностью, установлен демпфированный пьезоэлемент 17 на герметично закрепленной мембране 18, выполненный из материала с акустическим импедансом, близким к импедансу контактной жидкости, например фторопласта. Установочный фланец 19 преобразователя имеет замкнутую выточку, в которой полуутоплено 15 кольцо 20 герметизации.

Мембрана 18 герметично установлена в корпусе 13 посредством резьбового кольца 21, имеющего прорезь, и уплотнительного кольца 22, утапливаемого мембраной в выточку в буртике корпуса. Демпфер 23, установленный на нерабочей поверхности пьезоэлемента 17 с обеспечением акустического контакта, изготовлен из электропроводящего материала, например на основе токопроводящего клея с порошковым наполнителем. Втулка 24 служит для изоляции демпфера от кольца 21 и соответственно от корпуса 13 преобразователя.

Электрическое соединение нулевой обкладки пьезоэлемента 17 с корпусом осуществляется с помощью пружинящего контакта 25 утапливаемого пьезоэлементом в лунку, выфрезерован- 30 ную в мембране 18. Соединение экранной оплетки 26 соединительного коаксиального каоеля 27 с корпусом 13 (следовательно, и с нулевой обкладной пьезоэлемента осуществляется через металлическую резьбовую крышку 28, к торцовой выточке которой оплетка 26 прижата резьбовой изоляционной втулкой 29.

Электрическое соединение потенциальной обкладки пьезоэлемента 17 с токоведущей жилой кабеля 27 осуществляется через электропроводящий демпфер 23, спиральную пружину 30 и контактную втулку 31, в которой распаяна жила кабеля.

Вывод кабеля из крышки 28 герметизирован кольцом 32 полимеризовавшегося эпоксидного клея. Герметизация соединения крышки 28 с корпусом 13 преобразователя обеспечивается уплотнительным кольцом 33.

Возбудитель 8 выполнен по схеме формирователя широкоспектральных импульсов. Запускаемый периодическими сигналами синхронизатора 9 он вырабатывает широкоспектральные импульсы электрического напряжения, которые 50 поступают через усилитель мощности 4 по кабелю 27 в преобразователь 1 на его пьезоэлемент 17. Последний излучает через жидкость 15 в стенку емкости 3 импульсы с расширенным спектром упругих колебаний, имеющими относительную ширину спектра, превышающую относительную величину диапазона толщин стенок закрытых емкостей (с учетом их абразивного или коррознонного износа). .

В жидкостном звукопроводе излученные упругие колебания падают на стенку емкости 3, 60

заполненной контролируемой жидкостью 34 по углом Q, обеспечивающим соотношеним скорости следа С_к/Sin⊖ падающей волны импульсных упругих колебаний и скорости распростра-5 нения С_м, возбуждаемой в стенке моды нормальной волны близким к единице (С . — скорость распространения колебаний в клине 24 преобразователя). Скорость следа устанавливается так, чтобы в диапазонах частот колебаний и толщин стенки в последней возбуждалась только одна мода нормальной волны. Далее принимают другим клиновым преобразователем 2 возбужденную моду нормальной волны после прохождения фиксированного пути в стенке емкости 3 и преобразуют в электрический импульсный сигнал, имеющий период следования и частоту несущей импульсов упругих колеба-

Поскольку при обычно используемой постоянной частоте излучения изменение толщины стенки емкости 3 влечет за собой изменение скорости распространения Си возбужденной моды колебаний, это изменяет интенсивность данной моды в стенке из-за несоблюдения равенства $C_\kappa = C_\kappa / \text{Sin}\Theta$ и соответственно вызывает значительную погрешность измерений.

В предлагаемом устройстве, благодаря наличию спектра частот излученных колебаний, всегда имеется частотная составляющая, для которой выполняется соотношение $C_{M} = C_{N}/\sin\Theta$, вследствие чего амплитуда огибающей принятого сигнала А на демпфированном приемном преобразователе 2 будет иметь весьма слабую зависимость от частоты.

Амплитуда огибающей принятого импульсного сигнала А имеет следующую зависимость от плотности р контролируемой жидкости и пути в распространения волны в стенке емкости: $A = A_0 e^{-\alpha e \rho} (1)$

где 🗛 — амплитуда огибающей принятого сигнала при отсутствии жидкости в емкости; а — абсолютный коэффициент затухания, имеющий размерность, обратную произведению размерностей плотности р и пути 1, зависящий от тила контролируемой среды и частоты упругих колебаний.

Поскольку многократно отраженные сигналы в полости 16 жидкостного преобразователя могут вызывать побочные моды колебаний по стенке емкости 3, поступающие в приемник 2, для исключения их поступления в детектор 6 огибающей используется селекторный каскад 12, отделяющий информативный сигнал от помех. Кроме того, применение каскада 12 обеспечивает функционирование устройства в емкостях с близко расположенной противоположной (относительно места установки устройства), стенкой, селектируя сигнал от отраженной внутри емкости.

Этот каскад запускается формирователем 11 строб-импульсов с задержкой относительно возбуждения преобразователя 1, создаваемой блоком 10. Эта задержка установлена равной времени распространения колебаний между пьезоэлементами преобразователей 1 и 2. Длительность строб-импульса равна длительности информативного импульсного сигнала на преобразователе 2.

20

Увеличение отношения уровня сигнала к уровню отражений и соответственно помехоустойчивость и точность контроля, улучшаются также выполнением мембраны из материала (фторопласта), близкого по импедансу к жидкости 15. В качестве последней используется раствор, имеющий вершину параболической зависимости скорости распространения упругих колебаний при средней рабочей температуре в емкости. В частном случае, если средняя рабочая температура составляет 70—80°C, в качестве такой жидкости используется вода.

После усиления в усилителе 5 детектором 6

выделяют сгибающую сигнала.

Детекторный сигнал на входе измерительно-регистрирующего блока 7 имеет амплитуду, экспоненциально ослабляющуюся с увеличением плотности жидкости. Регистрация в блоке 7 этого ослабления дает информацию с плотности контролируемой среды и тем самым о типе среды, находящейся в резервуаре на заданном уровне (например, жидкость или воздух).

При сигнализации уровня жидкости измерительно-регистрирующий блок выполняется в виде релейного блока с визуальной индикацией и с выходом в систему автоматики.

Формула изобретения

Устройство для контроля физических параметров жидких сред в закрытых емкостях,

содержащее два устанавливаемых на фиксированном расстоянии друг от друга на внешней 5 поверхности емкости идентичных клиновых пре образователя, соединенных последовательно один с усилителем мощности и возбудителем. а другой — с усилителем, селективным каскадом, детектором и измерительным каскадом, отличающееся тем, что, с целью повышения 10 точности измерения жидкостей с параболической температурной зависимостью скорости распространения упругих колебаний, в нем клиновые преобразователи выполнены демпфированными и введены последовательно соединенные синхронизатор. блок задержки, формирователь строб-импульса, подключенные синхронизатор к входу возбудителя, а формирователь строб-импульса к селекторному каскаду, включенному между усилителем и детектором.

2. Устройство по п. 1. отличающееся тем. что, внутренняя полость преобразователя футирована материалом с пониженной теплопроводностью, а демифированный пьезоэлемент герметично закреплен мембраной, выполненный из материала с акустическим импедансом, близким к импедансу контактной жидкости и снабженной кольцом уплотнения.

Источники информации, принятые во внимание при экспертизе:

№ 250481, Авторское свидетельство 1.

кл. G 01 F 23/28, 1968.

№ 343155. свидетельство Авторское кл. G 01 E 23/28, 1971.

Редактор Киселева Заказ 1401/35

Составитель Н. Фомичев Техред О. Луговая Корректор А. Гриценко Гираж 1112 Подписное

ЦНИИПИ Государственного комитета Совета Министров СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская паб. д. 4/5 Филиал. ППП «Патент», г. Ужгород, ул. Проектная, 4