## Seleção de Atributos

Prof. Dr. Leandro Balby Marinho



Aprendizagem de Máquina

#### Roteiro

1. Busca Gulosa

3. Solução para o LASSO

## Por que fazer seleção de atributos?

#### Eficiência:

- ► Se size(ŵ)=100B, cada predição fica cara.
- ► Se  $\hat{\mathbf{w}}$  é esparso, então cálculo só depnde das entradas  $\neq 0$ .



**Interpretabilidade:** Quais atributos são mais relevantes para a predição?

# Todos os subconjuntos

- ► Para cada subconjunto possível calcule o erro e escolha o de menor erro.
- ▶ Para escolher a complexidade do modelo:
  - 1. Use um conjunto de validação.
  - 2. Use validação cruzada.
  - 3. Outras métricas como BIC.

**Complexidade:** Para D atributos temos  $2^{D+1}$  subconjuntos (lembre do  $w_0$ ).

# Abordagem Gulosa

#### Forward Selection:

- 1. Comece com o conjunto vazio de atributos  $F_0 = \emptyset$
- 2. Calcule o ajuste do modelo usando o conjunto atual de atributos  $F_t$  para obter  $\hat{\mathbf{w}}^{(t)}$
- 3. Selecione o melhor próximo atributo  $h_{j^*}(\mathbf{x})$
- 4.  $F_{t+1} \to F_t \cup \{h_{j^*}(\mathbf{x})\}$
- 5. Chame o procedimento recursivamente passando  $F_t$
- Itere até que nenhum novo atributo traga ganho significativo em relação ao modelo atual.

Complexidade:  $O(D^2) \ll O(2^{D+1})$ 

#### Roteiro

1. Busca Gulosa

2. Regressão Lasso

3. Solução para o LASSO

# Usando Regularização para Seleção de Atributos

- ► Comece com o modelo completo (todos os atributos possíveis)
- ► Reduza alguns coeficientes a zero.
- ► Coeficientes diferentes de zero são os selecionados.

### Regressão Lasso

Custo total=
$$\underbrace{\text{medida do ajuste}}_{\text{RSS(w)}} + \underbrace{\text{medida da magnitude}}_{||\mathbf{w}||_1}$$

Tarefa: Selecionar ŵ para minimizar

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1$$

- $\rightarrow \lambda = 0$ : problema reduz a achar os mínimos quadrados.
- $\lambda = \infty$ :  $\hat{\mathbf{w}} = 0$
- ▶  $0 < \lambda < \infty$ :

$$0 \le ||\hat{\mathbf{w}}||_1 \le ||\hat{\mathbf{w}}^{MQ}||_1$$

## Exemplo



# Custo Regressão Lasso

Custo total=RSS(w) + 
$$\lambda \sum_{j=0}^{N} |w_j|$$

#### **Problemas:**

- ▶ Quais as derivadas de  $|w_j|$ ?
- Mesmo que pudéssemos calcular todas as derivadas, não há solução fechada.

#### Coordinate Descent

- ▶ Objetivo:  $\min_{\mathbf{w}} g(\mathbf{w})$
- Geralmente difícil para todas as coordenadas, mas simples para cada coordenada.

#### Coordinate-Descent

- 1 initialize w
- 2 while not converged
- 3 pick a coordinate j
- 4  $\hat{w}_j = \min_{\omega} g(w_0, \ldots, w_{j-1}, \omega, w_{j+1}, \ldots, w_D)$

#### Coordinate Descent

- ► Como escolhemos a próxima coordenada?
  - ▶ De forma aleatória, round robin, ...
- Não precisa escolher tamanho do passo da descida.
- Útil para muitos problemas:
  - Converge para o ótimo em alguns casos (e.g. funções fortemente convexas).
  - Converge para a função objetivo do Lasso.

# Normalização de Features

► Aplique a normalização nas colunas (não nas linhas):

$$\qquad \qquad \underline{h}_{j}(\mathbf{x}^{(k)}) = \frac{h_{j}(\mathbf{x}^{(k)})}{\sqrt{\sum_{i=1}^{N} h_{j}(\mathbf{x}^{(i)})^{2}}}$$

► Aplique o mesmo fator de normalização aos atributos de teste:

$$\underline{h}_j(\mathbf{x}^{(k)}) = \frac{h_j(\mathbf{x}^{(k)})}{\sqrt{\sum_{i=1}^N h_j(\mathbf{x}^{(i)})^2}}$$





$$\blacktriangleright RSS(\mathbf{w}) = \sum_{i=1}^{N} \left( y_i - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

ightharpoonup Fixe todas as coordenadas  $\mathbf{w}_{-j}$  e calcule a derivada com relação à  $w_j$ 

$$\blacktriangleright \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{N} \left( y_i - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

ightharpoonup Fixe todas as coordenadas  $\mathbf{w}_{-j}$  e calcule a derivada com relação à  $w_j$ 

$$\frac{\partial}{\partial w_j} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \left( y_i - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)$$

$$\blacktriangleright \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{N} \left( y_i - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

lacktriangle Fixe todas as coordenadas lacktriangle e calcule a derivada com relação à  $w_j$ 

$$\frac{\partial}{\partial w_j} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \left( y_i - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right) 
= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \left( y_i - \sum_{k \neq j} w_k \underline{\mathbf{h}}_k(\mathbf{x}^{(i)}) - w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)$$

$$\blacktriangleright \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{N} \left( y_i - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

ightharpoonup Fixe todas as coordenadas  $\mathbf{w}_{-j}$  e calcule a derivada com relação à  $w_j$ 

$$\frac{\partial}{\partial w_{j}} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \left( y_{i} - \sum_{j=0}^{D} w_{j} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \right)$$

$$= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \left( y_{i} - \sum_{k \neq j} w_{k} \underline{\mathbf{h}}_{k}(\mathbf{x}^{(i)}) - w_{j} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \right)$$

$$= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \left( y_{i} - \sum_{k \neq j} w_{k} \underline{\mathbf{h}}_{k}(\mathbf{x}^{(i)}) \right) + 2 w_{j} \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)})^{2}$$

$$\blacktriangleright \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{N} \left( y_i - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

▶ Iguale derivada a 0 e resolva para  $w_j$ :

$$-2p_j + 2\hat{w}_j = 0$$
$$\hat{w}_j = \rho_j$$

#### Coordinate-Descent-OLS

```
1 initialize ŵ
```

- 2 while not converged
- 3 pick a coordinate j

4 
$$p_j = \sum_{i=1}^{N} \underline{h}_j(\mathbf{x}^{(i)})(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j}))$$

5 
$$\hat{\mathbf{w}}_j = p_j$$

#### Roteiro

1. Busca Gulosa

2. Regressão Lasso

3. Solução para o LASSO

## Otimização do Objetivo Lasso

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^{N} \left( y_i - \sum_{j=0}^{D} w_j h_j(\mathbf{x}^{(i)}) \right)^2 + \lambda \sum_{j=0}^{D} |w_j|$$

- ► Fixe todas as coordenadas w<sub>-j</sub> e calcule a derivada parcial com relação à w<sub>j</sub>.
- ► Vamos derivar sem normalizar os atributos.

## Parte 1: Derivada parcial do RSS

$$\blacktriangleright \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{N} \left( y_i - \sum_{j=0}^{D} w_j h_j(\mathbf{x}^{(i)}) \right)^2$$

$$\frac{\partial}{\partial w_{j}} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} h_{j}(\mathbf{x}^{(i)}) \left( y_{i} - \sum_{j=0}^{D} w_{j} h_{j}(\mathbf{x}^{(i)}) \right)$$

$$= -2 \sum_{i=1}^{N} h_{j}(\mathbf{x}^{(i)}) \left( y_{i} - \sum_{k \neq j} w_{k} h_{k}(\mathbf{x}^{(i)}) - w_{j} h_{j}(\mathbf{x}^{(i)}) \right)$$

$$= -2 \sum_{i=1}^{N} h_{j}(\mathbf{x}^{(i)}) \left( y_{i} - \sum_{k \neq j} w_{k} h_{k}(\mathbf{x}^{(i)}) \right) + 2 w_{j} \sum_{i=1}^{N} h_{j}(\mathbf{x}^{(i)})^{2}$$

$$\stackrel{\triangleq}{=} \rho_{j}$$

$$= -2 \rho_{i} + 2 w_{i} z_{i}$$

# Parte 2: Derivada parcial do termo de penalização $L_1$

$$L_1 = \lambda \sum_{j=0}^{D} |w_j|$$

$$\lambda \frac{\partial}{\partial w_j} |w_j| = ???$$

$$\rightarrow \lambda \frac{\partial}{\partial w_i} |w_j| = ???$$





# Parte 2: Subgradiente do termo de penalização $L_1$

$$L_1 = \lambda \sum_{j=0}^{D} |w_j|$$

$$\lambda \partial_{w_j} |w_j| = \begin{cases} -\lambda & \text{se } w_j < 0 \\ [-\lambda, \lambda] & \text{se } w_j = 0 \\ -\lambda & \text{se } w_j < 0 \end{cases}$$

# Juntando as partes

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^{N} \left( y_i - \sum_{j=0}^{D} w_j h_j(\mathbf{x}^{(i)}) \right)^2 + \lambda \sum_{j=0}^{D} |w_j|$$

## Juntando as partes

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{1} = \sum_{i=1}^{N} \left( y_{i} - \sum_{j=0}^{D} w_{j} h_{j}(\mathbf{x}^{(i)}) \right)^{2} + \lambda \sum_{j=0}^{D} |w_{j}|$$

$$\lambda \partial_{w_{j}}(\text{custo lasso}) = \underbrace{2z_{j}w_{j} - 2\rho_{j}}_{\text{do RSS}} + \begin{cases} -\lambda & \text{se } w_{j} < 0 \\ [-\lambda, \lambda] & \text{se } w_{j} = 0 \\ \lambda & \text{se } w_{j} > 0 \end{cases}$$

da penalidade  $L_1$ 

## Juntando as partes

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{1} = \sum_{i=1}^{N} \left( y_{i} - \sum_{j=0}^{D} w_{j} h_{j}(\mathbf{x}^{(i)}) \right)^{2} + \lambda \sum_{j=0}^{D} |w_{j}|$$

$$\lambda \partial_{w_{j}}(\text{custo lasso}) = \underbrace{2z_{j}w_{j} - 2\rho_{j}}_{\text{do RSS}} + \begin{cases} -\lambda & \text{se } w_{j} < 0 \\ [-\lambda, \lambda] & \text{se } w_{j} = 0 \\ \lambda & \text{se } w_{j} > 0 \end{cases}$$

da penalidade  $L_1$ 

$$= \begin{cases} 2z_j w_j - 2\rho_j - \lambda & \text{se } w_j < 0\\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0\\ 2z_j w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

$$\lambda \partial_{w_j} (\text{custo lasso}) = \begin{cases} 2z_j w_j - 2\rho_j - \lambda & \text{se } w_j < 0 \\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0 \\ 2z_j w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

**Caso 1:**  $w_i < 0$ 

$$2z_{j}\hat{w}_{j} - 2\rho_{j} - \lambda = 0$$

$$\hat{w}_{j} = \frac{2\rho_{j} + \lambda}{2z_{j}}$$

$$= \frac{\rho_{j} + \frac{\lambda}{2}}{z_{i}}$$

Para  $\hat{w}_j < 0$  precisamos que  $ho_j < -rac{\lambda}{2}$ 

$$\lambda \partial_{w_j} (\text{custo lasso}) = \begin{cases} 2z_j w_j - 2\rho_j - \lambda & \text{se } w_j < 0 \\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0 \\ 2z_j w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

**Caso 2:** 
$$w_j = 0$$
:  $[-2\rho_j - \lambda, -2\rho_j + \lambda]$  deve conter  $0$ 

$$-2\rho_j + \lambda \ge 0 \to \rho_j \le \frac{\lambda}{2}$$

$$-2\rho_j - \lambda \ge 0 \to \rho_j \ge \frac{-\lambda}{2}$$

$$\frac{-\lambda}{2} \le \rho_j \le \frac{\lambda}{2}$$

$$\lambda \partial_{w_j} (\text{custo lasso}) = \begin{cases} 2z_j w_j - 2\rho_j - \lambda & \text{se } w_j < 0 \\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0 \\ 2z_j w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

**Caso 3:**  $w_j > 0$ 

$$\hat{\mathbf{w}}_j = \frac{\rho_j - \frac{\lambda}{2}}{z_j}$$

Para  $\hat{w}_j > 0$  precisamos que  $ho_j > rac{\lambda}{2}$ 

$$\lambda \partial_{w_j} (\text{custo lasso}) = \begin{cases} 2z_j w_j - 2\rho_j - \lambda & \text{se } w_j < 0 \\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0 \\ 2z_j w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

$$\hat{w}_{j} = \begin{cases} \frac{(\rho_{j} + \frac{\lambda}{2})}{z_{j}} & \text{se } \rho_{j} < -\frac{\lambda}{2} \\ 0 & \text{se } \rho_{j} \in \left[-\frac{\lambda}{2}, \frac{\lambda}{2}\right] \\ \frac{(\rho_{j} - \frac{\lambda}{2})}{z_{i}} & \text{se } \rho_{j} > \frac{\lambda}{2} \end{cases}$$

### Interpretação

$$\hat{\mathbf{w}}_{j} = \begin{cases} \frac{\left(\rho_{j} + \frac{\lambda}{2}\right)}{z_{j}} & \text{se } \rho_{j} < -\frac{\lambda}{2} \\ 0 & \text{se } \rho_{j} \in \left[-\frac{\lambda}{2}, \frac{\lambda}{2}\right] \\ \frac{\left(\rho_{j} - \frac{\lambda}{2}\right)}{z_{j}} & \text{se } \rho_{j} > \frac{\lambda}{2} \end{cases}$$



#### Lasso com Coordinate Descent

#### Coordinate-Descent-Lasso( $\lambda$ )

- 1 initialize ŵ
- 2 while not converged
- 3 pick a coordinate j

$$p_{j} = \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)})(y_{i} - \hat{y}_{i}(\hat{\mathbf{w}}_{-j}))$$

$$\hat{w}_{j} = \begin{cases} \frac{\left(\rho_{j} + \frac{\lambda}{2}\right)}{z_{j}} & \text{se } \rho_{j} < -\frac{\lambda}{2} \\ 0 & \text{se } \rho_{j} \in \left[-\frac{\lambda}{2}, \frac{\lambda}{2}\right] \\ \frac{\left(\rho_{j} - \frac{\lambda}{2}\right)}{z_{j}} & \text{se } \rho_{j} > \frac{\lambda}{2} \end{cases}$$

#### Referências

- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer, 2013.
- Emily Fox and Carlos Guestrin. Machine Learning Specialization. Curso online disponível em https://www.coursera.org/specializations/machine-learning. Último acesso: 18/11/2016.