

REDES NEURONALES ARTIFICIALES – DEEP LEARNING

SUPRESION DEL GRADIENTE – REGULARIZACIÓN – DROPOUT – INTRODUCCIÓN A DEEP LEARNING

LAURA DIAZ DÁVILA

REDES NEURONALES APRENDIZAJE SUPERVISADO – UNIDIRECCIONALES – MULTICAPA

EL PERCEPTRON GENERALIZADO

- 1. MLP BACK PROPAGATION
- 2. DEEP LEARNING

AUTOMATIZAMOS
PROCESOS MENTALES

ANIMAMOS OBJETOS
INHERTES, MÁQUINAS

CAJAS CADA VEZ MÁS NEGRAS

Fashion MNIST

- 70k Images
- 10 Categories
- Images are 28x28
- Can train a neural net!


```
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])
```


Redes Neuronales Artificiales

EL PARADIGMA ESTÁNDAR DEL APRENDIZAJE DE PATRONES: MACHINE LEARNING "TRADICIONAL"

ASÍ TRABAJA DEEP LEARNING

ASÍ ENTRENAN, ASÍ APRENDEN, AUTOMATIZANDO MÁS PROCESOS MENTALES

CONVOLUTIONAL NEURAL NETWORKS

ARQUITECTURA FEED- FORWARD

APRENDIZAJE SUPERVISADO

IMITAN EL SISTEMA VISUAL DE LOS MAMÍFEROS

FUNCIONAN MUY BIEN PARA IMÁGENES

YAN LE CUN (1998) BACKPROPAGATION

APRENDEN EN BASE A EJEMPLOS

FILTRAN LAS IMÁGENES DE MODO QUE SUS CARACTERÍSTICA EMERJAN.

Fuente: Conferencia de Epistemología de Deep Learning – Yann Le Cun -2019

SU "MAGIA" CONSISTE EN QUE APRENDEN, A PARTIR DE MUCHOS EJEMPLOS, "EL FILTRO ADECUADO". A ESTO SE LE DENOMINA "EXTRACCIÓN DE CARACTERÍSTICAS"

CONVOLUTIONAL NEURAL NETWORKS

Fuente: Conferencia de Epistemología de Deep Learning – Yann Le Cun - 2019

```
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation=tf.nn.relu),
    tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
```

Ecosistema de TensorFlow

TensorFlow ofrece una colección de flujos de trabajo para desarrollar y entrenar modelos mediante Python o JavaScript, y poder implementarlos con facilidad en la nube, de forma local, en el navegador o en el dispositivo, más allá del lenguaje que se use.

https://www.tensorflow.org/learn

Fuente: https://www.youtube.com/watch?v=x_VrgWTKkiM

¡GRACIAS!