Answer to Practice Problem Set-II

ME-231A

PROBLEM NO.	ANSWER
1	$y = c$, $y = c/x$, $y = cx^{-20}$
2	$y = 3x$, $\Delta t = 0.75$ s
3	$y = (\frac{1}{2})x^2$, both lines are same because the flow is steady
4	Pathline- $y = \exp\{(1/2)t^2\}$, steam lines- $y = 1$, $y = x^{1/2}$, $y = (2x-1)^{1/3}$
5	Steak line – $x = x_0 e^{a(t-t_0+b\frac{t-t_0^2}{2})}$, $y = y_0 e^{c(t-t_0)}$ Steam lines – $y = x$, $y = x^{2/3}$, $y = x^{1/2}$
6	Steak line - $x_{st}(t_o) = x_o e^{\frac{a}{2}(t^2 - t_o^2)}, y_{st}(t_o) = y_0 + b(t - t_o)$
	Path line- $x_p(t) = x_o e^{\frac{a}{2}(t^2 - t_o^2)}, y_p(t) = y_0 + b(t - t_o)$
7	2D
8	Incompressible flow, $a = 69.9 \text{ m/s}^2$
9	Incompressible flow ,along x-axis $a = -100/x^3$, along y axis $a = -100/y^3$, along $y = x$ line $a = -100/(x^2 + y^2)^{3/2}$
10	Rotation = -0.5 k rad/s, circulation = -0.5 m ² /s
11	$\vec{V} = (0.1y + f(x))\hat{i}$, rate of rotation = -0.05 k rad/s, $\psi = \frac{1}{2}Ay^2 + c_1y + c_2$
12	Irrotational
13	Rate of linear deformation is zero in all three direction, angular deformation = $= -u_{\text{max}} \frac{2y}{b^2}$, $\vec{\xi} = u_{\text{max}} \frac{2y}{b^2} \hat{k}$, vorticity is maximum at y = b and y = -b
14	Rate of linear deformation is zero in all three direction , angular deformation = $= -V_{\max} \frac{2r}{R^2} \ , \ \vec{\xi} = -V_{\max} \frac{2r}{R^2} \hat{e}_{\theta}$
15	Linear strain = 0(in x direction), 0 (in y direction) shear strain rate = U/b, Vorticity = -(U/b) \hat{k}
16	$ \dot{\mathcal{E}}_{rr} = -\frac{Q}{2\pi r^2}, \dot{\mathcal{E}}_{\theta\theta} = \frac{Q}{2\pi r^2}, \dot{\mathcal{E}}_{zz} = 0, \dot{\gamma}_{r\theta} = 0, \dot{\gamma}_{\theta r} = 0, \dot{\gamma}_{rz} = 0, \dot{\gamma}_{zr} = 0, \dot{\gamma}_{\theta z} = 0 $ $, \dot{\gamma}_{z\theta} = 0 $
17	Rotational velocity $= -w_0 \hat{k}$, vorticity $= -2w_0 \hat{k}$, $\dot{\varepsilon}_{xx} = c$, $\dot{\varepsilon}_{yy} = c$, $\dot{\varepsilon}_{zz} = -2c$ $\dot{\gamma}_{xy} = 2w_o$, $\dot{\gamma}_{yx} = 2w_o$, $\dot{\gamma}_{yz} = 0$, $\dot{\gamma}_{zy} = 0$, $\dot{\gamma}_{zz} = 0$, $\dot{\gamma}_{zz} = 0$
18	The flow field is steady.