Lab Report

Lab #1: Analog Simulation

Tiantian Zhong 3200110643

October 7, 2022

1 Prelab Exercises

Ex a.

From Newton's 3rd law, I derive the following equation:

$$f = ma_{tot} + bv + kx$$
$$a_{tot} = \frac{d^2}{dt^2}x$$
$$v = \frac{d}{dt}x$$

thus the ODE should look like this:

$$f(t) = m\ddot{x}(t) + b\dot{x}(t) + kx(t)$$

Substituting the values for m, b, k, and f I obtain

$$f(t) = 2\ddot{x}(t) + 0.7\dot{x}(t) + x(t). \tag{1}$$

Ex b.

Laplace Transform of 2nd-order ODE (with zero initial condition) in Equation 1:

$$f(t) = 2\ddot{x}(t) + 0.7\dot{x}(t) + x(t) \leftrightarrow F(s) = 2s^2X(s) + 0.7sX(s) + X(s)$$

and move s^2X to LHS and F to RHS:

$$s^2X = \frac{0.7}{2}sX + \frac{1}{2}X - \frac{1}{2}F\tag{2}$$

which gives the diagram in Figure 1.

Figure 1: Block diagram for Equation 2

Ex c.

For Figure 2(b) in the manual I can derive a group of equations based on KVL,

$$q_C = Ce_o(t) (3)$$

$$e_i(t) - e_o(t) = i(t)R$$

$$dq_C = i(t)dt$$
(5)

$$dq_C = i(t)dt (5)$$

which gives

$$\begin{aligned} e_i(t) - \frac{q_C}{C} &= i(t)R \\ \Rightarrow e_i(t) - \frac{1}{C} \int i(t) dt - i(t)R &= 0. \end{aligned}$$

2 Lab Exercises

Ex 1: Solving Differential Equations using Analog Computer

Damp Coefficient b = 0.7

Prelab exercise provides a 2nd-order ODE

$$m\ddot{x} + b\dot{x} + kx = F$$

which, using Laplace Transform, can be represented as

$$s^{2}X(s) + \frac{b}{m}sX(s) + \frac{k}{m}X(s) = \frac{F}{m}.$$

For step 2, I found the I/O relationship at adder1 can be represented as

$$Y = -\frac{R_f}{F_1} x_1 - \frac{R_f}{F_2} x_2$$

and substituting x_1, x_2 with its corresponding signals $-\dot{x}, F(t) = 0.5$ I obtain

$$\frac{F(t) - b\dot{x}}{m} = \frac{0.5 - 0.7\dot{x}}{2} = -\dot{x}\frac{10\mathrm{k}}{28.6\mathrm{k}} + 0.5\frac{10\mathrm{k}}{20\mathrm{k}}$$

which matches the original parameter in the SIMUNLINK model.

This step produces a plot of x(t) and x'(t) over time, which is shown in Figure 2 and 3.

Figure 2: Function x(t) and v(t) with the change of t; generated by SIMULINK model

Figure 3: Function x(t) and v(t) with the change of t; plotted by MATLAB

Damp Coefficient b = 1

Let's focus on R_1 in Figure 4.

As is discussed above, the I/O relationship of adder1 is

$$\frac{F(t) - b\dot{x}}{m} = \frac{0.5 - \dot{x}}{2} = -\dot{x}\frac{10k}{R_1} + 0.5\frac{10k}{20k}$$

which yields

$$\frac{1}{2} = \frac{10k}{R_1}.$$

Thus here I take $R_1 = 20 \text{k}\Omega$. The plots for function $x_{b=1}(t)$ and $x'_{b=1}(t)$ is shown in Figure 5 and 6.

Figure 4: Block diagram near adder1

Figure 5: Function $x_{b=1}(t)$ and $x'_{b=1}(t)$ with the Figure 6: Function x(t) and v(t) with the change change of t; generated by SIMULINK model of t; plotted by MATLAB

Discussion about the Changes in Response

For the changes with b, I derived an expression for R_1 in Figure 4:

$$R_1 = 10k \frac{m}{b}$$

which indicates that I can explore the change of functions with different R_1 . It is concluded that with an increasing R_1 , i.e. decreasing b,

- 1. the system will reach its steady state with longer time.
- 2. there will be a higher maximum value of system response.
- 3. frequency remains unchanged.

I plotted function x(t) for different R_1 , which is shown in Figure 7.

For the changes with F(t), the steady state response is exactly the value of F(t). As F(t) changes, the response changes accordingly.

For the changes with k, similar as before I derived an expression for R_2 , which is

$$R_2 = 10k \frac{m}{k}.$$

I plotted x(t) with different value of R_2 as below in Figure 9.

With increasing value of R_2 , i.e. decreasing k,

Figure 7: Function x(t) with different values of $\frac{m}{b}$

Figure 8: Block diagram near adder2

Figure 9: Function x(t) with different values of $\frac{m}{k}$

- $1. \ \,$ The system will reach its steady state with longer time.
- $2. \ \,$ The frequency will decrease.
- 3. The steady state value will increase, as k changes the conditions at equilibrium.

Ex 2: System Identification Experiment

Hardware & Software Setup

After setting up both hardware and software I ran the simulation and obtained the two plots (shown as Figure 10 and 11), following the instructions on lab manual.

Figure 11: Voltage change within 5 seconds, generated by MATLAB

Figure 10: Voltage output of Arduino

Parameter Identification

To get the value of τ , we have to find the time when the response reaches 63.2% of its total changes, i.e. around 3.16V.

From data gathered we find the response at 1.1s is 3.07V, and at 1.2s is 3.19V. Using linear approximation we have

$$V(t) = V(1.1) + \frac{V(1.2) - V(1.1)}{1.2 - 1.1}t = 3.07 + 1.2(t - 1.1), 1.1 \le t \le 1.2$$

Solving $V(\tau)=3.16$ we have $\tau\approx 1.175\mathrm{s}.$