第七讲虚拟存储:局部页面置换算法 第 5 节页表自映射

向勇、陈渝

清华大学计算机系xyong,yuchen@tsinghua.edu.cn

yong, yuenen etsingnua.euu.en

2020年4月12日

提纲

- 第 5 节页表自映射
 - 页表自映射
 - X86-32 页表自映射
 - riscv32 页表自映射

基于 4KB 页面的 32 位 CPU 二级页表

向勇、陈渝 (清华大学) 9020 年 4 月 12 日

地址转换过程

向勇、陈渝 (清华大学) 2020 年 4 月 12 日

页表自映射机制

向勇、陈渝 (清华大学) 2020 年 4 月 12 日

基于 4KB 页面的 X86-32 二级页表

向勇、陈渝 (清华大学) 9020 年 4 月 12 日

X86-32 页表项结构

向勇、陈渝 (清华大学) 2020 年 4 月 12 日

地址转换中的虚拟地址字段获取 (C 语言)

```
// page directory index
#define PDX(la) ((((uintptr_t)(la)) >> PDXSHIFT) & 0x3FF)
// page table index
#define PTX(la) ((((uintptr_t)(la)) >> PTXSHIFT) & 0x3FF)
// page number field of address
#define PPN(la) (((uintptr_t)(la)) >> PTXSHIFT)
// offset in page
#define PGOFF(la) (((uintptr_t)(la)) & 0xFFF)
```

X86-32 的第一级页表自映射

Virtual Access to PageDirectory[0x300]

向勇、陈渝 (清华大学) 第 7 讲 2020 年 4 月 12 日

X86-32 的第二级页表的自映射

X86-32 自映射页表项初始化 (C 语言)

```
// recursively insert boot_pgdir in itself
// to form a virtual pate table at virtual address VPT
boot_pgdir[PDX(VPT)] = PADDR(boot_pgdir) | PTE_P | PTE_W;
```

基于 4KB 页面的 RISC-V Sv32 二级页表

RISC-V32 页表项结构: Sv32 页表项格式

31 20	19	0 9	8	7	6	5	4	3	2	1	0
PPN[1]	PPN[0]	R	SW	D	A	G	U	X	W	R	V
12	10		2	1	1	1	1	1	1	1	1

- 如果 X, W, R 位均为 0 ,则表示该项包含了下一级页表的物理地址(为页目录项)。
- 否则表示该项包含了页面的物理地址(一般为页表项)。

向勇、陈渝 (清华大学) 第 7 讲 2020 年 4 月 12 日

RISC-V32 页表项结构: 页表项 R/W/X 字段含义

X	W	R	Meaning
0	0	0	Pointer to next level of page table.
0	0	1	Read-only page.
0	1	0	Reserved for future use.
0	1	1	Read-write page.
1	0	0	Execute-only page.
1	0	1	Read-execute page.
1	1	0	Reserved for future use.
1	1	1	Read-write-execute page.

向勇、陈渝 (清华大学) 2020 年 4 月 12 日

rCore 中 riscv-Sv32 自映射

- RISCV 页表项中的 flags,明 确表示它指向的是数据页 (VRW),还是下层页表(V)。
- 在访问一级页表虚地址期间, 将它所对应的二级页表项 flags 置为 VRW。
- 访问二级页表本身,还需要 再加一个自映射的二级页表 项,其 flags 为 VRW。

15 / 15

向勇、陈渝 (清华大学) 2020 年 4 月 12 日