ECE 382V Spring 2004

### Optimization Issues in VLSI CAD

Lecture 1, Jan. 21, 2004

Prof. David Pan dpan@ece.utexas.edu Office: ACES 5.434

#### **Course Objectives**

- · Equip you with fundamental knowledge and optimization techniques with underlying modeling issues to solve modern VLSI CAD problems (mainly in the area of physical design closure and low power)
- · Help you to identify PhD dissertation topics, improve your summer internship or job opportunities by working on relevant problems that industry cares
- Get deep into selected topics of your choice => publishable results
- Get broad into many cutting edge results by reading extensive set of research papers

# What is a good lecture?

- 1. Understandable to everyone
- 2. Understandable to intended audience
- 3. Understandable to experts only, such as the speaker
- 4. Understandable to nobody, including the speaker

### **Course Logistics**

· Lecture Hours: MW 2-:3:30pm

· Location: ENS 116

· Instructor: David Z. Pan

- Email: dpan@ece.utexas.edu (best way to reach me)
- Office: ACES 5.434; Phone: 471-1436
- Office Hour: after class (3:30-4:30pm) & by appointment.
- · Class web page
  - http://www.ece.utexas.edu/~dpan/ee382v\_sp04
  - For class attendees only. Please do not distribute
     UT Direct Blackboard for Discussion Forum (use your EID to login)
- Prerequisites
  - Basic understand of algorithms (EE360C)
  - Basic understand of VLSI (EE360R)

#### Intended Audience

- VLSI CAD (also known as EDA electronic design automation) students, in particular for chip implementation (physical design) and planning
- · Circuit design students to understand how tools work behind the scene
- Process students, to understand optimization to optimize process, such as metal wire width, thickness, and so on
- Mathematical/Computer Science majors who want to find tough problems to solve
  - Lots of VLSI CAD problems can be formulated into combinatorial optimization or mathematical programming
  - Actually, most CAD problems are NP-complete -> heuristics

#### Course Reader

- · No textbook is required
- Some reference books are reserved at the Engineering Library for three-day loan
  - David Chinnery and Kurt Keutzer, Closing the Gap Between ASIC & Custom, Kluwer, Academic Publishers,
  - Roy, Kaushik and Sharat Prasad, Low Power CMOS VLSI Circuit Design, J. Wiley, 2000.
- · However, most of the course material will be based on papers and other collected material
  - The reading assignment will be posted on the class web page before class starts
  - Please read them before the lecture for better discussion

# Course Outline and Approach

- · We will examine 3 key aspects for deep submicron (well, nowadays the buzz word is nano-meter) designs for performance and power constraints
  - Interconnect modeling and optimization
  - Placement which determines interconnect
  - Low power which is an ultimate design limiter
- · Topic-centered, with optimization techniques and modeling issues brought up when needed
  - Every week (or lecture), we will examine one topic
  - Instructor presentation will be complemented by student presentation occasionally
  - Discussion and critics are important in class



# VLSI Optimization Interlock (sample)

| Optimization Techniques                                   | VLSI application          |  |  |
|-----------------------------------------------------------|---------------------------|--|--|
| Graph algorithms                                          | Partition                 |  |  |
| Graph algorithms, mathematical programming                | Placement                 |  |  |
| Plain math. Dynamic programming, Mathematical programming | Interconnect Optimization |  |  |
| Greedy algorithm                                          |                           |  |  |

The most important thing is to find the right problem formulation

**VLSI Design Cycle** 



- Large number of devices
- Optimization requirements for high performance
- Time-to-market competition
- Power (and other) constraints

### **Grading Policy**

- · Class participation: 20%
  - Class attendance expected
  - Class interaction welcomed
  - Student presentation on selected papers (peer reviewed by your
- · Homework and midterm: 40%
  - Mainly to make sure you understand the course material
  - By reading, problem solving, and programming
- · Project: 40%
  - Most important part!
  - Excellent project => conference paper
  - ICCAD submission (due in April 21) => automatic A
  - Will talk about it a bit later
- Bonus points will be given to active class participation

**VLSI Design Cycle** System Specification Functional Design X=(AB\*CD)+(A+D)+(A(B+C))Logic Design Y=(A(B+C))+AC+D+A(BC+D))Circuit Design





### Physical Design

Physical design converts a circuit description into a geometric description. This description is used to manufacture a chip. The physical design cycle consists of

- 1 Partitioning
- 2 Floorplanning and Placement
- 3 Routing
- 4 Compaction



14

### Physical Design

This course is NOT a hard-core classic physical design class (that covers every major step in PD). I will teach it in Fall 2004

Instead, we will be studying emerging topics for nanometer PD related to design closure, low power and so on

- Interconnect
- Placement
- Low power

1-6

### History 101 of Physical Design

- Born in early 60's (board layout)
- Passed teenage in 70's (standard cell place and route)
- Entered early adulthood in 80's (over-the-cell routing)
- Declared dead in late 80's !!!
- Found alive and kicking in 90's
- PD has become a dominant force in overall design cycle,
  - thanks to the deep submicron scaling
  - expand vertically with logic synthesis and interconnect optimization, analysis.... => Design closure!

15

### Nanometer Challenges

- · Interconnect-limited designs
  - Interconnect performance limitation
  - Interconnect modeling complexity
  - Interconnect reliability (noise and signal integrity)
- Placement, to large extend, determines interconnect
  - However, still far away from optimal
- Power barrier and other physical effects (such as noise and variability)
- · High degree of on-chip integration
  - Complexity and productivity
  - Limitation of current design abstraction and hierarchy
  - System on a chip

#### Moore's Law

- The minimum transistor feature size decreases by 0.7X every three years (Electronics Magazine, Vol. 38, April 1965)
- · Consequences of smaller transistors:
  - Faster transistor switching
  - More transisters per chip
- · True in the past 38 years!
- And will be true in at least another 10 years, but now is facing lots of red brick walls
  - Need more CAD tools than ever

19



#### International Technology Roadmap for Semiconductor (ITRS'01): Near-Term Years (High Performance MPU)

| Technology (nm)                  | 130  | 115  | 100  | 90   | 80   | 70   | 65   |
|----------------------------------|------|------|------|------|------|------|------|
| Year                             | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| MPU ½ Pitch (nm)                 | 150  | 130  | 107  | 90   | 80   | 70   | 65   |
| MPU Physical Gate<br>Length (nm) | 65   | 53   | 45   | 37   | 32   | 28   | 25   |
| # Transistors (M)                | 276  | 348  | 439  | 553  | 697  | 878  | 1106 |
| Chip Size (mm <sup>2</sup> )     | 310  | 310  | 310  | 310  | 310  | 310  | 310  |
| Chip Frequency<br>(MHz)          | 1684 | 2317 | 3088 | 3990 | 5173 | 5631 | 6739 |
| Max # Wiring Levels              | 7    | 8    | 8    | 8    | 9    | 9    | 9    |
| Power Supply<br>Voltage (V)      | 1.1  | 1.0  | 1.0  | 1.0  | 0.9  | 0.9  | 0.7  |
| Allowable Max<br>Power (W)       | 130  | 140  | 150  | 160  | 170  | 180  | 190  |

http://public.itrs.net/

Impact of Interconnect Optimization on Future Technology Generations

10
10
2 cm BIS
2 cm BISWS
3 cm BISWS
4 c

### International Technology Roadmap for Semiconductor (ITRS'01): Long-Term Years (High Performance MPU)

| Technology (nm)              | 45    | 32    | 22    |
|------------------------------|-------|-------|-------|
| Year                         | 2010  | 2013  | 2016  |
| MPU 1/2 Pitch (nm)           | 45    | 32    | 32    |
| MPU Physical Gate            | 18    | 13    | 9     |
| Length (nm)                  |       |       |       |
| # Transistors (M)            | 2212  | 4424  | 8848  |
| Chip Size (mm <sup>2</sup> ) | 310   | 310   | 310   |
| Chip Frequency<br>(MHz)      | 11511 | 19348 | 28751 |
| Max # Wiring Levels          | 10    | 10    | 10    |
| Power Supply<br>Voltage (V)  | 0.6   | 0.5   | 0.4   |
| Allowable Max<br>Power (W)   | 218   | 251   | 288   |

http://public.itrs.net/

New Paradigm for VLSI Design

Interconnection
Transistors/Cells
Interconnection
New Approach
Interconnect-Driven Design





## Placement Challenge

- Placement, to large extend, determines the overall interconnect
- If it sucks, no matter how well you interconnect optimization engine works, the design will suck
- Placement is a very old problem, but got renewed interest
  - Mixed-size (large macro blocks and small standard cells)
  - Optimality study shows that placement still a bottleneck
  - Not even to mention performance driven, and coupled with buffering, interconnect optimizations, and so on (all you name)







# Interconnect Complexity

| Technology (um)          | 0.25 | 0.18  | 0.13  | 0.10     | 0.07   |
|--------------------------|------|-------|-------|----------|--------|
| Length (m)               | 820  | 1,480 | 2,840 | 5,140    | 10,000 |
| Wiring Levels            | 6    | 6-7   | 7     | 7-8      | 8-9    |
| Opt. # buffers per net   | few  |       |       | <b>→</b> | many   |
| Opt. # wiresizes per net | few  |       |       | <b>→</b> | many   |
| Opt. # buffers per chip  | 5K   | 25K   | 54K   | 230K     | 797K   |

31

#### Class Project

- The purpose is to explore a hot (or cool for low power's sake) research-level topic in depth
- · Project and term paper outline
  - Introduction and motivation
  - Problem statement and/or formulation
  - Previous works (exhaustive search)
  - Your approach (new ideas)
  - Experimental results (implement your idea and show it works or state why if it doesn't work)
  - Summary, conclusion and future work
- Class presentation and term paper at the end of semester

34



# Class Project

- · Rough milestones for class project
  - Proposal by Feb. 16:
    - · Project team and initial proposal on what topic to work on
  - First report by March 10:
    - · Project proposal with initial literature review
    - And your ideas and plan of attack
  - Second report by April 14
    - Comprehensive literature review and
    - Initial implementation results
    - If you can make ICCAD submission deadline (April 21), and the quality of result sounds good to me: Congratulations, you've got A
  - Final project presentation and term paper
    - TBD, around final weeks

35

#### Recap

- Technology scaling according to Moore's Law has been the driving force behind the exponential growth of the semiconductor industry
- Interconnect (esp. global interconnect) performance has become the bottleneck of the overall system performance => interconnect-centric design paradigm
- · Placement has a lot of room to improve
- Power crisis needs to be tackled, together with other nanometer physical effects.
- · Time to market and design productivity
- You can make the change!

33

### Class Project

- Possible topics
  - Interconnect optimization for variability, noise, low power
  - Placement for better variability
  - Mixed size placement (large blocks with lots of dust logics)
  - Simultaneous buffering and placement to handle congestion
  - Detailed placement for voltage island and power island
  - Multiple Vt/Tox/Vdd assignment
  - Pin swapping for gate tunneling leakage reduction
  - Vertical integration of physical design with higher level abstraction (such as architecture)
  - Suggest your own topics
- · We will talk more later

#### Resources

- · Please check the web site for a set of reference, papers and links (will be updated frequently)
  - EE Times (www.eetimes.com) for recent trend/development
- You are encouraged to attend the UT VLSI Seminar
  - http://www.cerc.utexas.edu/vlsi-seminar
- · Unofficial, but lots of useful information for citation and paper search
  - http://citeseer.com/
  - Can go directly to http://citeseer.nj.nec.com/cs to search
- MIT OpenCourseWare
  - If need to make up some classes (like algorithm)
  - http://ocw.mit.edu/index.html

37

# Assignment #1

- · Reading assignment: please get from the web page
- Read ITRS:
  - Get it from
  - http://public.itrs.net/Files/2003ITRS/Home2003.htm
  - Executive Summary and Design (pay most attention to grand challenges related with design, in particular "Logical, Circuit, and Physical Design", page 19-25 of the chapter of *Design*)
- Write one page (or paragraph) summary
  - To identify one or two problems that you find are most interesting to you, which may potentially become your class project topic
  - State the reason why they are interesting to you and how your background and training can equip you to do a further
  - Turn it in class next Monday

#### **VLSI CAD Conferences**

- DAC
- Design Automation Conference
- ICCAD
- Int'l Conference on Computer-Aided Design
- ISPD
- Int'l Symposium on Physical Design
- ASP-DAC
- Asia and South Pacific DAC
- DATE
- Design Automation and Test in Europe **ISCAS**
- Int'l Symposium on Circuits and Systems
- Int'l Conference on Computer Design SLIP
- - Int'l Workshop on System Level Interconnect Prediction

#### Questionnaire

- · Help me to know your background better and thus teach the course more effectively.
- Please complete it and hand it in during/after the class.
- · Thank you for your cooperation.

#### **VLSI CAD Journals**

- IEEE TCAD
  - IEEE Transactions on CAD of Integrated Circuits and Systems
- **ACM TODAES** 
  - ACM Transactions on Design Automation of Electronic Systems
- · Integration, the VLSI Journal
- **IEEE TCAS** 
  - IEEE Transactions on Circuits and Systems
- · IEEE TVLSI
  - IEEE Transactions on VLSI Systems