Provision number	SI-metric stress in MPa	mks-metric stress in kgf/cm ²	U.S. Customary units stress in pounds per square inch (psi)
10.7.6.5.2	$0.33\sqrt{f_c'}\ b_{\scriptscriptstyle W}d$	$1.1\sqrt{f_c'}b_{\scriptscriptstyle W}d$	$4\sqrt{f_c'}b_w d$
11.5.4.2	$0.66\sqrt{f_c'}A_{cv}$	$2.12\sqrt{f_c'}A_{cv}$	$8\sqrt{f_c'}A_{cv}$
11.5.4.3	$V_n = (\alpha_c \lambda \sqrt{f_c'} + \rho_t f_y) A_{cv}$	$V_n = (\alpha_c \lambda \sqrt{f_c'} + \rho_t f_y) A_{cv}$	$V_n = (\alpha_c \lambda \sqrt{f_c'} + \rho_t f_y) A_{cv}$
	$\alpha_c = 0.25 \text{ for } \frac{h_w}{\ell_w} \le 1.5$	$\alpha_c = 0.80 \text{ for } \frac{h_w}{\ell_w} \le 1.5$	$\alpha_c = 3.0 \text{ for } \frac{h_w}{\ell_w} \le 1.5$
	$\alpha_c = 0.17 \text{ for } \frac{h_w}{\ell_w} \ge 2.0$	$\alpha_c = 0.53 \text{ for } \frac{h_w}{\ell_w} \ge 2.0$	$\alpha_c = 2.0 \text{ for } \frac{h_w}{\ell_w} \ge 2.0$
11.5.4.4	$\alpha_c = 0.17 \left(1 + \frac{N_u}{3.5 A_g} \right) \ge 0.0$	$\alpha_c = 0.53 \left(1 + \frac{N_u}{35 A_g} \right) \ge 0.0$	$\alpha_c = 2\left(1 + \frac{N_u}{500A_g}\right) \ge 0.0$
11.6.1	$V_u \leq 0.04 \phi \alpha_c \lambda \sqrt{f_c'} A_{cv}$	$V_u \leq 0.13 \phi \alpha_c \lambda \sqrt{f_c'} A_{cv}$	$V_u \leq 0.5 \phi \alpha_c \lambda \sqrt{f_c'} A_{cv}$
11.6.2	$V_u \ge 0.04 \phi \alpha_c \lambda \sqrt{f_c'} A_{cv}$	$V_u \ge 0.13 \phi \alpha_c \lambda \sqrt{f_c'} A_{cv}$	$V_u \ge 0.5 \phi \alpha_c \lambda \sqrt{f_c'} A_{cv}$
12.5.3.3	$V_n = A_{cv}(0.17\lambda \sqrt{f_c'} + \rho_t f_y)$ $\sqrt{f_c'} \le 8.3 \text{ MPa}$	$V_n = A_{cv}(0.53\lambda \sqrt{f_c'} + \rho_t f_y)$ $\sqrt{f_c'} \le 27 \text{ kgf/cm}^2$	$V_n = A_{cv}(2\lambda \sqrt{f_{c'}} + \rho_t f_y)$ $\sqrt{f_{c'}} \le 100 \text{ psi}$
12.5.3.4	$V_u \le \phi 0.66 A_{cv} \sqrt{f_c'}$ $\sqrt{f_c'} \le 8.3 \text{ MPa}$	$V_u \le \phi 2.1 A_{cv} \sqrt{f_c'}$ $\sqrt{f_c'} \le 27 \text{ kgf/cm}^2$	$V_u \le \phi 8A_{cv} \sqrt{f_c'}$ $\sqrt{f_c'} \le 100 \text{ psi}$
14.5.2.1(a)	$M_n = 0.42\lambda \sqrt{f_c'} S_m$	$M_n = 1.33\lambda \sqrt{f_c'} S_m$	$M_n = 5\lambda \sqrt{f_c'} S_m$
14.5.4.1(a)	$\frac{M_u}{S_m} - \frac{P_u}{A_g} \le \phi 0.42 \lambda \sqrt{f_c'}$	$\frac{M_u}{S_m} - \frac{P_u}{A_g} \le \phi 1.33 \lambda \sqrt{f_c'}$	$\frac{M_u}{S_m} - \frac{P_u}{A_g} \le \phi 5 \lambda \sqrt{f_c'}$
14.5.5.1(a)	$V_n = 0.11\lambda \sqrt{f_c'} b_w h$	$V_n = 0.35\lambda \sqrt{f_c'} b_w h$	$V_n = \frac{4}{3} \lambda \sqrt{f_c'} b_{\scriptscriptstyle W} h$
14.5.5.1(b) and (c)	$V_n = 0.11 \left[1 + \frac{2}{\beta} \right] \lambda \sqrt{f_c} b_o h$	$V_n = 0.35 \left[1 + \frac{2}{\beta} \right] \lambda \sqrt{f_c'} b_o h$	$V_n = \left[1 + \frac{2}{\beta}\right] \frac{4}{3} \lambda \sqrt{f_c'} b_o h$
	$V_n = 0.22 \lambda \sqrt{f_c'} b_o h$	$V_n = 0.71 \lambda \sqrt{f_c'} b_o h$	$V_n = 2\left(\frac{4}{3}\lambda\sqrt{f_c'}b_o h\right)$
15.4.2.3	$2.0\lambda\sqrt{f_c'}A_j$	$6.4\lambda\sqrt{f_c'}A_j$	$24\lambda\sqrt{f_c'}A_j$
	$1.7\lambda\sqrt{f_c'}A_j$	$5.3\lambda\sqrt{f_c'}A_j$	$20\lambda\sqrt{f_c'}A_j$
	$1.3\lambda\sqrt{f_c'}A_j$	$4.0\lambda \sqrt{f_c'} A_j$	$15\lambda\sqrt{f_c'}A_j$
	$1.0\lambda \sqrt{f_c'} A_j$	$3.2\lambda\sqrt{f_c'}A_j$	$12\lambda\sqrt{f_c'}A_j$
16.4.4.1	$\phi(3.5b_vd)$	$\phi(35b_{\nu}d)$	$\phi(500b_{\nu}d)$
	$\lambda \left(1.8 + 0.6 \frac{A_{v} f_{yt}}{b_{v} s}\right) b_{v} d$	$\lambda \left(18 + 0.6 \frac{A_{v} f_{yt}}{b_{v} s}\right) b_{v} d$	$\lambda \left(260 + 0.6 \frac{A_{v} f_{yt}}{b_{v} s}\right) b_{v} d$
16.4.4.2	$3.5b_vd$	$35b_{\nu}d$	$500b_vd$
	$0.55b_{\nu}d$	$5.6b_{\nu}d$	$80b_{\nu}d$