

CENTRAL SOUTH UNIVERSITY

FINAL WEEK PROJECT

机械设计基础课程设计说明书

Author: Supervisor:
OuYuheng Dr.Zhou YING

目录

$\S 1$	轴的]设计计算	2
	1.1	初算轴的最小直径	2
	1.2	带轮的选择	3
	1.3	联轴器的选择	3
	1.4	键的选择	4
	1.5	确定各轴段直径	4
	1.6	润滑方式选择	5
		1.6.1 轴承的润滑方式选择	5
		1.6.2 齿轮的润滑方式选择	5
§ 2	减速	整器箱体设计	6
	2.1	铸铁减速器箱体结构尺寸	6
	2.2	减速器零件的位置尺寸	6
§ 3	参考	文献	7

§1 轴的设计计算 2

§1 轴的设计计算

1.1 初算轴的最小直径

由于本课程设计中采用了齿轮轴的设计方式,兼并了齿轮与轴的两大传动作用,故齿轮与轴的材料选取同一种材料,因此高速齿轮轴材料为 45 号调质钢,低速齿轮轴材料为 45 号钢采用正火处理,轴的最小直径估算公式为:

$$d_{min} = C\sqrt[3]{\frac{P}{n}}$$

其中,P为轴的输入功率,n为轴的转速,C由轴的材料和承载情况确定,依据 [1]P250 表 14-2,初步暂定C=110,则有

$$d_{min,1} = 110 \times \sqrt[3]{\frac{7.2}{301}} = 31.69$$
mm

$$d_{min,2} = 110 \times \sqrt[3]{\frac{6.77}{98}} = 45.13$$
mm

此时定出的轴径为最小直径,但是由于轴伸处需要切开键槽,需要额外加粗 5%的轴径,加粗后的轴径为:

$$d_{min,1,plus}=d_{min,1}\times 105\%=33.28\mathrm{mm}$$

$$d_{min,2,plus} = d_{min,2} \times 105\% = 47.39$$
mm

图 1: 轴连接示意图

§1 轴的设计计算 3

由图1可以看出,高速轴和低速轴连接的为带轮和联轴器,需要根据标准选择基准直径。高速轴的轴伸连接 V 带轮,需要根据 V 带轮的标准直径选取,查 [3]P227 表 8-15,选取高速轴的基准直径为 35mm;低速轴的轴伸连接联轴器,根据联轴器的标准选取,查 [2]P162 表 17-2,选取低速轴的基准直径为 50mm。

1.2 带轮的选择

考虑到本设计选用 B 型带轮,依据大带轮基准直径,通过查 [2]P64 表 9-1,可得带轮的一系列参数如表1所示。

参数	尺寸值
V 带型号	В 型
d_d	450
轮毂长度1	70
孔径 d	35

表 1: 大带轮选用型号及参数

1.3 联轴器的选择

本设计中低速轴与工作机轴相连接,可采用常见的凸缘联轴器,根据公称扭矩,查 [2]P162 表 17-2,主动端选择 J 型轴孔,从动端选择 J1 型轴孔,主从动端轴伸均选用 C 型键槽,因此可选用联轴器型号为:

YL10 联轴器
$$\frac{JC50 \times 84}{J_1C48 \times 84}GB5843 - 86$$

可以得到联轴器各项参数如表2所示。

参数	参数值
主动端轴孔长度	84
从动端轴孔长度	84
L_0	173
D	160
D_1	130
螺栓数量	4* (铰制孔连接)
螺栓直径	M12

表 2: 联轴器参数

 $\S1$ 轴的设计计算 4

1.4 键的选择

本项目中高低速轴与齿轮轮毂连接处选用 A 型平键作为键连接方式,轴伸与带轮、联轴器连接处选用 C 型平键作为键连接方式,根据轴的直径,查 [2]P140 表 14-1 可得键的型号见表3所示。

轴段	键的类型	键的公称尺寸	键长/mm
高速轴与齿轮轮毂连接	A 型	14×9	111
低速轴与齿轮轮毂连接 高速轴与带轮连接	A 型 C 型	20×12 10×8	101 60
低速轴与联轴器连接	C C 型	10×8 14×9	65

表 3: 各个轴段选取的键连接型号

1.5 确定各轴段直径

接下来需要确定各轴段直径,各轴段序号标注如图2所示:

图 2: 轴段序号标注示意图

其中,轴段 1 的直径为前期计算已经确定的最小基准轴径;轴段 2 则根据密封圈标准件的基准直径确定,且要求 D2 较 D1 大于 6~10mm 通过查表 [2] P158 表 16-9 可得;轴段 3 的直径较 D2 大于1~5mm且需要为 5 的倍数,以此匹配轴承的需要;轴段 4 需要与大齿轮匹配,需要查 [2]P117 表 11-2 查出大齿轮的基准直径;轴段 5 有定位要求,需要较 D4 大 6~10mm;由于同轴上的两轴承内外径大小一致,轴段 6 与轴段 3 直径相等,但同时需要满足轴承安装高度的要求(如表4所示),考虑到在高速轴中,轴承安装高度与 D5 矛盾,需要将 D5 设计成两段阶梯的轴肩,设计出的各轴段直径设计尺寸如表5所示。

查轴承的安装尺寸, 查 [2]P144 表 15-3, 得到高速轴与低速轴选用轴承与相关参数如表4所示。

§1 轴的设计计算 5

型号及参数	高速轴	低速轴
轴承型号	6309 (新标准)	6313 (新标准)
内径 d/mm	45	65
外径 D/mm	100	140
安装尺寸/mm	54	77
轴承宽度/mm	25	33

表 4: 轴承选用型号及参数

直径	轴 1	低速轴
D1/mm	35	50
D2/mm	42	60
D3/mm	45	65
D4/mm	50	67
D5/mm	54(左), 56(右)	77
D6/mm	45	65

表 5: 各轴段直径设计尺寸

1.6 润滑方式选择

1.6.1 轴承的润滑方式选择

本设计通过速度因数dn值对轴承润滑方式选择,根据 [1]P289 图 16-11 选择润滑方式。通过计算,本设计中各个轴承的dn值如表6所示:

轴	轴承内径/mm	转速/(r/min)	速度因数/(r·mm/min)
高速轴	45	301	13545
低速轴	65	98	6370

表 6: 各轴承速度因数值

由于高速轴和低速轴的速度因数均< $(2\sim3)\times10^5$ mm·r/min, 故均选用脂润滑。

1.6.2 齿轮的润滑方式选择

由于本设计中齿轮的轮系速度v < 12m/s, 故齿轮的润滑方式选择油润滑。

§2 减速器箱体设计 6

§2 减速器箱体设计

2.1 铸铁减速器箱体结构尺寸

查阅 [2]P17 表 3-1 对减速器的箱体结构尺寸进行设计,其中螺纹直径查 [2]P126 表 13-1。

名称	符号	尺寸计算公式	设计尺寸/mm
箱座壁厚	δ	$\delta = \max\{0.025a + 1, 8\}$	8
箱盖壁厚	δ_1	$\delta_1 = \max\{0.02a + 1, 8\}$	8
	箱座 b	$b = 1.5\delta$	12
箱体凸缘厚度	箱盖 b_1	$b_1 = 1.5\delta_1$	12
	箱底座 b_2	$b_2 = 2.5\delta$	20
加强肋厚	箱座加	$m = 0.85\delta$	7
	箱盖 m_1	$m_1 = 0.85\delta_1$	7
地脚螺钉直径	d_f	$d_f = 0.036a + 12$	22
地脚螺钉数量	n	$a \le 250, n = 4$	4
轴承旁联接螺栓直径	d_1	$d_1 = 0.75d_f$	18
箱盖、箱座联接螺栓直径	d_2	$d_2 = (0.5 \sim 0.6)d_f$	12
轴承盖螺钉直径	d_3	查 [2]P77 表 9-9	8 (轴 1), 10 (轴 2)
轴承盖螺钉数目	n		4 (轴 1), 6 (轴 2)
轴承盖(轴承座端面)外径	D_2	$D_2 = D + 5d_3$	140 (轴 1), 190 (轴 2)
轴承两侧联接螺栓间距离	s	$s \approx D_2$	140 (轴 1), 190 (轴 2)
观察孔盖螺钉直径	d_4	$d_2 = (0.3 \sim 0.4)d_f$	8
d_f 至箱外壁距离	$C_{1,min}$		30
d_f 至凸缘外缘距离	$C_{2,min}$		26
d_1 至箱外壁距离	$C_{1,min}$	查 [2]P17 表 3-1	24
d_1 至凸缘外缘距离	$C_{2,min}$		22
d ₂ 至箱外壁距离	$C_{1,min}$		18
<u>d</u> 2至凸缘外缘距离	$C_{2,min}$		16

表 7: 减速器箱体结构设计尺寸

2.2 减速器零件的位置尺寸

接下来根据 [2]P24 表 4-1 对减速器零件的位置尺寸进行确定, 经过计算后得到的结果如表8所示。

	符号	设计尺寸/mm
	Δ_1	10
齿轮端面至箱体内壁的距离	Δ_2	10
轴承端面至箱体内壁的距离	Δ_3	11
齿轮顶圆至轴表面距离	Δ_5	12
大齿轮齿顶圆至箱体内壁的距离	Δ_6	40
箱底至箱底内壁的距离	Δ_7	20
减速器中心高	H	238
箱体内壁至轴承座孔端面的距离	L_1	60
轴承端盖凸缘厚度	e	10 (轴 1), 12 (轴 2)

表 8: 减速器零件的位置设计尺寸

§3 参考文献

- [1] 杨可桢,程光蕴。机械设计基础。6 版。北京:高等教育出版社,1979.
- [2] 王昆。机械设计基础课程设计。北京: 高等教育出版社, 1995.
- [3] 唐金松。简明机械设计手册。3 版。上海:上海科学技术出版社,1992.