

Comparing Pollen Size Distributions in Northern Brazil to Identify Significant Temporal Changes

Maya Jacob, Michelle Weathersby, Dr. Nezam, Daniel Breininger, Dr. White, Julian David Beltran Pedraza, Dr. McMichael, Dr. Bush

OUTLINE

- Main objective
- Background
- Methods
 - Graphs
 - Statistical analyses
- Results
- Next steps
- Conclusion

Main Objective

 Identify when significant environmental changes occurred in time (turning/tipping points)

GAME PLAN Model and compare distributions of grass pollen sizes throughout time

BACKGROUND

https://goo.gl/maps/KrUWBqmpVrgX4Vbu9

SMAG REU 2022

LOCATIONS

Broader look

Closer look

SNIPPET OF OUR DATA SETS

Lake Indigena:

Pollen Sizes (mm)	Sediment Depth (cm)	Age (Years Before Present)
69.00	2	1
32.00	2	1
29.00	4	58
25.90	4	58
		
35.83	18	635
46.23	18	635

Lake Caracarana:

Pollen Sizes (mm)	Sediment Depth (cm)	Age (Years Before Present)
27.40	2	17
32.00	2	17
29.00	4	103
30.00	4	103
23.72	18	515
21.22	18	515

METHODS

GRAPHS

Created graphical representations of the data

Performed statistical tests on the data

ANALYZE RESULTS

Analyzed the results in order to form conclusions

Compare results to major climatic events and periods of human impact

LAKE CARACARAN DEPTH AND TIME RELATIONSHIP

DISTRIBUTION OF POLLEN SIZES THROUGHOUT TIME – BOX PLOTS

DISTRIBUTION OF POLLEN SIZES THROUGHOUT
TIME – HISTOGRAMS

DISTRIBUTION OF POLLEN SIZES THROUGHOUT TIME – DENSITY CURVES

DISTRIBUTION OF POLLEN SIZES THROUGHOUT TIME – OVERLAPPING DENSITY CURVES

DISTRIBUTION OF POLLEN SIZES THROUGHOUT TIME – OVERLAPPING AREA

METHODS FOR COMPARING DISTRIBUTIONS:

SUMMARY STATISTICS

- MEAN
- MEDIAN
- STANDARD DEVIATION
- MINIMUM
- MAXIMUM
- RANGE
- Q1 & Q3
- IQR

STATISTICAL ANALYSES

- KRUSKAL-WALLIS TEST
- KOLMOGOROV-SMIRNOV
 TEST
- KULLBACK-LEIBLER
 DIVERGENCE TEST
- OVERLAP COEFFICIENT
- SKEWNESS
- KURTOSIS

SUMMARY STATISTICS

MEAN, MEDIAN, AND STANDARD DEVIATION OF POLLEN SIZES OVER TIME

Red – Mean Green - Median Blue – Standard Deviation

FOR EVERY TIME PERIOD...

RECORDED THE:

- MEAN
- MEDIAN
- STANDARD DEVIATION
- SKEWNESS
- KURTOSIS
- MINIMUM
- MAXIMUM
- RANGE
- Q1 & Q3
- IQR

FOR EVERY PAIR OF ADJACENT TIME PERIODS...

RECORDED THE CHANGE IN:

- MEAN
- MEDIAN
- STANDARD DEVIATION
- SKEWNESS
- KURTOSIS

- MINIMUM
- MAXIMUM
- RANGE
- Q1 & Q3
- IQR

SHAPIRO-WILK TEST

Years Before Present	Shapiro Test P-Value		
929	0.000134881		
867	8.10E-06		
782	2.66E-10		
635	2.11E-05		
603	0.002087057		
547	3.41E-06		
515	7.16E-10		
456	7.63E-07		
411	1.80E-05		
343	0.003990711		
302	0.01713536		
284	5.66E-06		
261	0.002958356		
215	0.00052256		
207	0.00038698		
169	0.000115487		
130	0.043785916		
103	0.001188376		
58	0.004946978		
17	0.004397484		
1	0.002159499		

- Are these samples normally distributed? [2]
- ≥ .05 Null hypothesis is normally distributed
- ≤ .05 Alternative hypothesis is not normally distributed
- Alternative accepted

STATISTICAL ANALYSES

Kruskal-Wallis Test

Nonparametric test that compares medians [1]

Kullback-Leibler Divergence Test

Measures how different two distributions are from one another [4]

Kolmogorov-Smirnov Test

 Quantifies the distance between two distributions [3]

Overlap Coefficient

Measures the overlapping area between two probability density functions (PDFs)

TABLE OF TEST RESULTS & CHANGES IN SUMMARY STATISTICS

Time Period (Years Ago)	Difference in Years	Kruskal-Wallis P-Value	Kolmogorov- Smirnov P-Value	Kullback- Leibler Divergence Sum	Overlap Coefficient	Change in Mean
929 v 867	62			0.0439	0.7417	-5.2348
867 v 782	85		0	0.1822	0.5972	5.3723
782 v 635	147	0.6102	0.0002	0.2538	0.6973	0.3795
547 v 515	32			0.4990	0.7032	-5.9841
515 v 456	59			0.5866	0.7466	5.2213

- 5 main statistical comparisons
- 5 pairs of time periods with the most significant changes

Kruskal-Wallis Test P-Value: 1.50×10^{-9}

Smirnov Test P-Value: 9.51×10^{-7}

KL Divergence Sum: 0.044

Overlap Coefficient: 0.742

Change in Mean: -5.235

Kruskal-Wallis Test P-Value: 1.88×10^{-16}

Smirnov Test P-Value: 0

KL Divergence Sum: 0.182

Overlap Coefficient: 0.597

Change in Mean: 5.372

Kruskal-Wallis Test P-Value: 0.610

Smirnov Test P-Value: 0

KL Divergence Sum: 0.254

Overlap Coefficient: 0.69

Change in Mean: 0.380

Kruskal-Wallis Test P-Value: 3.97×10^{-12}

Smirnov Test P-Value: 1.34×10^{-9}

KL Divergence Sum: 0.499

Overlap Coefficient:0.703

Change in Mean: -5.984

Kruskal-Wallis Test P-Value: 1.51×10^{-9}

Smirnov Test P-Value: 3.96×10^{-7}

KL Divergence Sum: 0.587

Overlap Coefficient: 0.747

Change in Mean: 5.221

SIGNIFICANT TIME PERIODS

❖782 years ago

1168 AD

❖515 years ago

1435 AD

- GLOBAL WARMING
- GLOBAL COOLING
- DROUGHTS

COMPARE TO PERIODS OF HUMAN INTERFERENCE

- COLONIZATION
- FIRE USAGE
- AGRICULTURE

SUMMARY:

MAIN OBJECTIVE

GRAPHICAL REPRESENTATIONS

STATISTICAL ANALYSES

3 SIGNIFICANT TIME PERIODS

NEXT STEP: ECOLOGICAL COMPARISONS

REFERENC ES

- 1. Glen, S. (n.d.). *Kruskal Wallis H Test: Definition, Examples, Assumptions, SPSS.* Statistics How To. Retrieved July 1, 2022, from https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/kruskal-wallis/
- 2. How to Report the Shapiro-Wilk Test Quantifying Health. (n.d.). Quantifying Health. Retrieved July 1, 2022, from https://quantifyinghealth.com/report-shapiro-wilk-test/
- 3. Kolmogrov- Smirnov Test. (2008). In *The Concise Encyclopedia of Statistics* (p. 214). Springer. https://doi.org/10.1007/978-0-387-32833-1 214
- 4. Stephanie. (2016, September 17). *How to Report the Shapiro-Wilk Test Quantifying Health*. Quantifying Health. Retrieved July 5, 2022, from https://quantifyinghealth.com/report-shapiro-wilk-test/