- Realizar una implementación de un algoritmo multiobjetivo basado en agregación
- Utilizar el problema ZDT3 de la práctica de optimización multiobjetivo del bloque III
- Considerar los casos en que se dispone de un presupuesto de
 - 10000 evaluaciones
 - 4000 evaluaciones
- Comparar con resultados en las mismas condiciones de NSGAII
- En segundo lugar ampliar al problema CF6. Hay que tener en cuenta que este problema tiene restricciones por lo que resolverlo implica tener implementada una técnica de manejo de restricciones.

minimize
$$F(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$$
 $x_{Li} \le x_i \le x_{Ui}, \quad i \in [1, p]$

- Descomponer el problema de optimización multi-objetivo en varios sub-problemas de un único objetivo.
- La función objetivo de cada subproblema debe ser una cierta agregación de los objetivos del problema multi-objetivo:

$$g^{te}(\mathbf{x}|\mathbf{\lambda},\mathbf{z}^*) = \max_{1 \le i \le m} \{\lambda_i | f_i(\mathbf{x}) - \mathbf{z}_i^* | \}$$

$$\mathbf{z}^* = (\mathbf{z}_1^*, \cdots, \mathbf{z}_m^*)^T$$

$$\mathbf{z}_i^* = \min\{f_i(\mathbf{x}) \quad \mathbf{x} \in \Omega \}$$
punto de referencia

Formulación de Tchebycheff

- Tamaño de la población: número de subproblemas: N
- El tamaño de la vecindad: T (recomendado 10-30% del tamaño de la población)
- Espacio de búsqueda: $x_{Li} \le x_i \le x_{Ui}$, $i \in [1, p]$
- Criterio de detención: número de generaciones: G
- Parámetros de control de los operadores evolutivos usados

- Crea una distribución uniforme de N vectores peso ${f \lambda}^1,\cdots,{f \lambda}^N$ tal que $\sum_{i=1}^m \lambda_i^j=1$. No tiene carácter aleatorio.
- Calcula la distancia Euclídea entre cada pareja de vectores peso.
- Para cada subproblema i ($i=1,\cdots,N$) identifica $B(i)=i_1,\cdots,i_T$ donde $\mathbf{\lambda}^{i_1},\cdots,\mathbf{\lambda}^{i_T}$ son los T vectores peso más cercanos a $\mathbf{\lambda}^i$ (la vecindad de cada vector peso).
- Genera aleatoriamente una población de N individuos $\mathbf{x}^1, \cdots, \mathbf{x}^N$ y evalúa sus prestaciones $F(\mathbf{x}^i)$
- Inicializa $\mathbf{z} = (z_1, \dots, z_m)^T$ donde z_i es el mejor valor de valor del objetivo f_i encontrado.
- Almacena en archivo externo EP las soluciones no dominadas (opcional).

Descripción algoritmo propuesto Actualización por cada iteración

Para $i = 1, \dots, N$:

- 1. Reproducción: Selecciona aleatoriamente índices de B(i) y genera una nueva solución \mathbf{y} usando operadores evolutivos.
- **2. Evaluación:** Evalúa F(y)
- 3. Actualización de z: Para $j=1,\cdots,m$, si $z_j>f_j(y)$ entonces $z_j=f_j(y)$
- **4. Actualización de vecinos:** Para cada $j \in B(i)$, si $g^{te}(\mathbf{y}|\lambda^{j},\mathbf{z}) \leq g^{te}(\mathbf{x}^{j}|\lambda^{j},\mathbf{z})$ entonces $\mathbf{x}^{j} = \mathbf{y}$
- **5.** Actualización de EP (opcional): Elimina de EP todas las soluciones dominadas por F(y) y añade F(y) si ninguna solución en EP la domina

Ejecuta la iteración anterior el número de generaciones fijado o utiliza otro criterio de detención

¿Operadores evolutivos? Los que quieras. Sugerencias:

 Operadores mutación y cruce DE (utilizando tres individuos elegidos aleatoriamente de la vecindad) para cada subproblema y aplicado con probabilidad CR

$$v^{(i)}(G+1) = x^{(r1)}(G) + F \cdot (x^{(r2)}(G) - x^{(r3)}(G)) \qquad F \in (0,2]$$

Recomendado:
$$F = 0.5$$
 $CR = 0.5$

+

Operador mutación Gaussiana ejecutado con probabilidad PR

$$x_j' = x_j + N(0, \sigma_j)$$

$$\sigma_j = \frac{x_{Uj} - x_{Lj}}{SIG}$$
 Recomendado: $SIG = 20$ $PR = 1/p$

Nota: Comprueba siempre que las variables no se salen de los márgenes permitidos. Si así fuera fíjalo al valor límite.

Las probabilidades se aplican para cada variable de la solución.

Ensaya operadores, parámetros, modificaciones,...

¿Restricciones? Implementa el criterio de manejo de restricciones que desees. Sé coherente con las comparaciones.

Entrega y presentación de resultados

- Código realizado en el lenguaje elegido
- Descripción de implementación mostrando los criterios y decisiones tomadas y los diferentes caminos explorados (autocontenido). No es una descripción de funciones.
- Resultados comparativos sobre ejemplos de práctica de optimización multiobjetivo con representaciones de frentes, uso de métricas y estadísticas de las mismas. Análisis y discusión crítica. Datos en ficheros independientes (imprescindible)
- Posible entrevista