STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

FA1.4: FACTORISATION: DIFFERENCE OF TWO SQUARES

Difference of two squares (DOTS)

Consider the following expansion:

$$(x+5)(x-5) = x^2 + 5x - 5x - 25$$
$$= x^2 - 25$$

Note that:

- the terms in the brackets differ only in the sign of the second term
- the expansion is the difference of two terms, both of which are perfect squares

In general:

$$(a+b)(a-b) = a^2 - b^2$$

This can be used to factorise expressions of the form $a^2 - b^2$

Examples

- 1. $a^2 36 = (a)^2 (6)^2$ $a^2 - 36 = (a+6)(a-6)$
- 2. $4x^{2} y^{2} = (2x)^{2} (y)^{2}$ $4x^{2} y^{2} = (2x y)(2x + y)$
- 3. $3x^2 48 = 3(x^2 16)$ $3x^2 - 48 = 3((x)^2 - (4)^2)$ $3x^2 - 48 = 3(x + 4)(x - 4)$
- 4. $(x+2)^2 9 = (x+2)^2 3^2$ $(x+2)^2 - 9 = ((x+2)-3)((x+2)+3)$ $(x+2)^2 - 9 = (x-1)(x+5)$
- 5. $y^2 + 36$

expression is the difference of two squares

'DOTS' rule (order of the terms on right hand side is not important)

expression is the difference of two squares

'DOTS' rule

not the difference of two squares but to factorise, take out a common factor of 3

factorise using 'DOTS' rule

expression is the difference of two squares

'DOTS' rule

Simplify

this is **not the difference** of two squares. It is the **sum** of two squares.

No real factors

Exercise

Factorise the following using the 'DOTS' rule (if possible).

1.
$$x^2 - 4$$

4.
$$64x^2 - 1$$

7.
$$5x^2 - 20$$

10.
$$(x+2)^2 - y^2$$

2.
$$a^2 - 100$$

5.
$$121x^2 - 49y^2$$

8.
$$4a^2 + 100$$

11.
$$(x-5)^2-36$$

3.
$$49 - x^2$$

6.
$$a^2b^2-25$$

9.
$$x^2y^3 - 36y$$

12.
$$(a+1)^2 - (b-2)^2$$

Answers

1.
$$(x-2)(x+2)$$

4.
$$(8x-1)(8x+1)$$

7.
$$5(x+2)(x-2)$$

10.
$$(x-y+2)(x+y+2)$$

2.
$$(a+10)(a-10)$$

5.
$$(11x+7y)(11x-7y)$$

11.
$$(x-11)(x+1)$$

3.
$$(7+x)(7-x)$$

6.
$$(ab-5)(ab+5)$$

9.
$$y(xy+6)(xy-6)$$

12.
$$(a+b-1)(a-b+3)$$