${\tt E3DSB}$ miniprojekt 1 - Tidsdomæne
analyse

Janus Bo Andersen ¹

13. september 2019

 $^{^1\}mathrm{ja}67494@\mathrm{post.au.dk}$

Indhold

1	Ind	ledning	1
2	Ana	alyser	1
	2.1	Afspilning af lydklip	1
	2.2	Bestemmelse af antal samples	1
	2.3	Plot af signal	1
	2.4	Min, max, RMS og energi	1
	2.5	Venstre vs. højre kanal (for s_1)	3
	2.6	Nedsampling af signal (for s_1)	3
	2.7	Fade-out med envelopes (for s_2)	3
3	Kor	nklusion	3

1. Indledning

Dette første miniprojekt i E3DSB behandler tre lydsignaler med analyser i tidsdomænet. Opgaven er løst individuelt. Dette dokument er genereret i Matlab med en XSL-template. Matlab-kode og template findes på https://github.com/janusboandersen/E3DSB. Følgende lydklip benyttes

Signal	Skæring	Genre	Samplingsfrekv.
s_1	Spit Out the Bone	Thrash-metal	44.1 kHz
s_2	The Wayfaring Stranger	Bluegrass	96 kHz
s_3	Svanesøen	Klassisk	44.1 kHz

Tabel 1.1: 3 signaler behandlet i analysen

2. Analyser

Før analyser ryddes der op i Workspace.

```
1 clc; clear('all'); close('all');
```

2.1 Afspilning af lydklip

Filen med signaler åbnes med load. Signaler kan afspilles med soundsc(signal, fs). Samplingsfrekvensen f_s sættes efter værdi i tabel 1.1. Samplingsfrekvenser for de tre signaler er inkluderet i .mat-filen.

```
load('miniprojekt1_lydklip.mat');
soundsc(s1, fs_s1); %playback
clear('sound'); %stop playback
```

2.2 Bestemmelse af antal samples

2.3 Plot af signal

2.4 Min, max, RMS og energi

Signalerne er i stereo (2 kanaler / kolonner). Hvis vi har et system med to højttalere, giver det mening at betragte kanalerne separat. Altså vi ser kanalerne i forlængelse, som en mono serie med M=2N samples. Denne løsning bruges, fordi det er sådan et menneske med to ører og sæt hovedtelefoner ville opleve signalet :-)

En sum eller et gennemsnit på tværs af kanalerne ville betyde, at kanaler ude af fase kunne eliminere hinanden. Dette ville give mening som en simpel konvertering til mono, dvs. vi kunne beregne mål på hvad der ville ske i et simpelt mono-system.

Beregning: Minimum og maksimum findes nemt med hhv. min og max. I tidsdomænet er effekten af et signal proportionalt til kvadratet på amplituden. For en sekvens $x(n) \in \mathbb{R}, n = 0, ..., N-1$ defineres $x_{pwr}(n) = |x(n)|^2 = x(n)^2$. I diskret tid er energien i signalet summen af "effekterne", dvs. $E_x = \sum_{n=0}^{N-1} |x(n)|^2$. RMS-værdien kan så beregnes som kvadratroden af middeleffekten, dvs. $x_{RMS} = \sqrt{\frac{1}{N}} E_x$.

```
signaler = {'s1'; 's2'; 's3'};
1
2
   N = [length(s1); length(s2); length(s3)]; % antal diskrete tidsobservat.
   M = 2*N;
                           % beregn samlet antal af datapunkter ~ målinger
3
4
   s1_vec = reshape(s1,1,[]); %reshape matricer til søjlevektorer
5
6
   s2\_vec = reshape(s2,1,[]);
7
   s3\_vec = reshape(s3,1,[]);
8
   minima = [min(s1_vec); min(s2_vec); min(s3_vec)];
9
   maxima = [max(s1_vec); max(s2_vec); max(s3_vec)];
10
   energi = [sum(s1_vec.^2); sum(s2_vec.^2); sum(s3_vec.^2)]; % kvadratsum
11
   rms = [energi(1)/M(1); energi(2)/M(2); energi(3)/M(3)].^(1/2);
12
13
   T = table(signaler, N, M, minima, maxima, energi, rms)
14
```

' =						
3×7 table						
signaler	N	M	minima	maxima	energi	rms
's1'	1.323e+06	2.646e+06	-1.0166	1.0191	2.5336e+05	0.30944
's2'	3.36e+06	6.72e+06	-0.61796	0.62791	34641	0.071797
's3'	1.4112e+06	2.8224e+06	-0.85016	0.76907	5662.2	0.04479

Τ

Signal	Min (1;2)	Max (1;2)	Energi	RMS
s_1	0; 0	0; 0	0	0
s_2	0; 0	0; 0	0	0
s_3	0; 0	0; 0	0	0

Tabel 2.1: Statistik på signalerne

- 2.5 Venstre vs. højre kanal (for s_1)
- 2.6 Nedsampling af signal (for s_1)
- 2.7 Fade-out med envelopes (for s_2)

3. Konklusion