UNIVERSIDADE PRESBITERIANA MACKENZIE

FACULDADE DE COMPUTAÇÃO E INFORMÁTICA

Marcelo Vironda Rozanti Felipe Stefanelli de Aguiar Silva

Conservabilidade de estados de autômatos celulares elementares com atualizações assíncronas por prioridade da vizinhança

SÃO PAULO 2019

Marcelo Vironda Rozanti Felipe Stefanelli de Aguiar Silva

Conservabilidade de estados de autômatos celulares elementares com atualizações assíncronas por prioridade da vizinhança

Orientador: Prof. Dr. Pedro Paulo Balbi de Oliveira

 $\begin{array}{c} \text{S\~AO PAULO} \\ 2019 \end{array}$

Conservabilidade de estados de autômatos celulares elementares com atualizações assíncronas por prioridade da vizinhança

Marcelo Vironda Rozanti Felipe Stefanelli de Aguiar Silva

8 de novembro de 2019

Resumo

Autômatos Celulares são sistemas computacionais discretos que se têm provado úteis como modelos genéricos de complexidade e representação de diversas dinâmicas em uma varidade de áreas científicas. Estes sistemas podem ser especificados puramente em termos matemáticos e até implementados em estruturas físicas. Muitos deles podem computar funções e resolver problemas algorítmicos. O presente projeto explora um conjunto fundamental deles, chamados Automatos Celulares Elementares com um tipo específico de atualização assíncrona baseada em prioridade da vizinhança com a esperança de encontrar modelos conservativos que podem ser usados em aplicações práticas relativas a .

Palavras-chave: Autômatos celulares elementares, atualização assíncrona por prioridade da vizinhança, New Kind of Science, Sistemas dinâmicos discretos, Conservabilidade

Abstract

Cellular Automata are discrete computational systems that have proved useful as general models of complexity and representations of dynamics on a variety of scientific fields. These systems can be specified in purely mathematical terms and be implemented in physical structures. Many of them can compute functions and solve algorithmic problems. The present project attempts to explore a fundamental subset of them, called Elementary Cellular Automata with a specific kind of neighbourhood-priority-based asynchronous updating in the search of number-conserving models, which can be used for a variety of practical applications.

Keywords: Asynchronous priority based updating, Elementary Cellular Automata, New Kind of Science, Discrete dynamical systems, Number-conserving

Sumário

1	INT	ΓRODUÇÃO	6
	1.1	CONTEXTUALIZAÇÃO E RELEVÂNCIA	6
	1.2	OBJETO DE PESQUISA	8
		1.2.1 PROBLEMA DE PESQUISA	8
		1.2.2 HIPÓTESE BÁSICA	8
		1.2.3 VARIÁVEIS	8
	1.3		8
		1.3.1 OBJETIVO GERAL	
		1.3.2 OBJETIVOS ESPECÍFICOS	8
	1.4	JUSTIFICATIVA	
	1.5		ć G
	1.6	ORGANIZAÇÃO DO ESTUDO	Ć
2	BE	FERENCIAL TEÓRICO	g
_	2.1	•	
	2.1	2.1.1 AUTÔMATOS CELULARES ELEMENTARES	
		2.1.2 REPRESENTAÇÕES	
		2.1.3 TIPOS DE ATUALIZAÇÃO	10
	2.2	CONSERVABILIDADE NUMÉRICA	12
0	N ÆTE	TODOLOGIA DA DEGOLIGA	10
3		TODOLOGIA DA PESQUISA	12
	3.1	ETAPAS DA PESQUISA	12
	2.0	CLASSIFICAÇÃO DA PESQUISA	
	ე.∠	3.2.1 NATUREZA DA PESQUISA	
		3.2.2 ABORDAGEM	
		3.2.3 FINS	
		3.2.4 MEIOS	
		3.2.5 PESQUISA BIBLIOGRÁFICA	
		5.2.5 FESQUISA BIBLIOGRAFICA	14
4	CR	ONOGRAMA	15
$\mathbf{R}_{\mathbf{c}}$	eferê	ncias	15
$\mathbf{L}^{\mathbf{i}}$	ista	de tabelas	
	1	Cronograma de atividades	15
$\mathbf{L}_{\mathbf{i}}$	ista	de ilustrações	
	1	Ilustração das 256 regras elementares	10

2	Nas renderizações, é convenção representar 1s como	
	células em preto e 0s em branco. (WOLFRAM, 2002)	10
3	Ilustração do mapa de transições para a regra 22 na	
	notação de WOLFRAM (1983)	11
4	Ilustração do mapa de transições para a regra 90 na	
	notação de WOLFRAM (1983)	11

1 INTRODUÇÃO

Autômatos Celulares (ACs) são uma categoria de sistemas discretos. Pela sua própria simplicidade, esses sistemas têm ocupado uma posição privilegiada no estudo de complexidade nos mais diversos campos da ciência, de biologia teórica a economia entre muitos outros. O desenvolvimento de ACs é tipicamente atribuído a John von Neumann através de suas tentativas de desenvolver um modelo abstrato de autoreprodução biológica. Ao fim de 1950, foi notado que ACs poderiam ser vistos como computadores paralelos (WOLFRAM, 2002, p. 876). Apesar de falta de investigação científica até 1970, um exemplo de AC se tornou muito famoso por seu comportamento complexo e regras simplesmente descritas inventadas por John Conway, The Game of Life, que se popularizou após sua aparição na revista Scientific American.

Desde então, múltiplos estudos compreensivos foram realizados por cientistas ao redor do mundo, destacando os trabalhos feitos por Stephen Wolfram na década de 1980, culminando na publicação do livro A New Kind of Science em que Wolfram apresenta uma coleção de resultados a respeito de ACs, com uma série de descobertas revolucionárias.

1.1 CONTEXTUALIZAÇÃO E RELEVÂNCIA

A motivação inicial para o estudo de ACs por parte de von Neumann não era matemática mas tinha como diretriz encontrar uma forma viável de tratar do problema de como fazer máquinas se reproduzirem. Hoje é sabido que esses sistemas são aplicáveis para resolver problemas relativos a classificação de densidade, simulação de partículas, compressão de dados, design estrutural, representação de comportamentos dinâmicos como trânsito em cidades ou movimentação de seres vivos entre muitos outros.

Há uma infinitude de ACs possíveis de serem engenhados. Um problema de possível realização através de ACs com propriedades conservativas, como é notado por Yuen e Kay (2009), é na modelagem de trânsito de veículos: "One approach to reducing congestion would be to construct new or widen existing roads to provide additional lanes and hence increase the capacity of the road infrastructure. However, this approach can be very costly and delays may worsen while road works are in progress. Sometimes it is difficult to improve the existing road system due to environmental or social objectives. Another approach may be to control the traffic in such a way that congestion would be

solved with the use of traffic lights or making adjustments to road marking. However, it is not a simple task to decide which approach would be most effective for a particular road network in order to limit traffic congestion. The use of a traffic model is needed to predict the behaviour of vehicles and the interactions between them on the roads."

1.2 OBJETO DE PESQUISA

O objeto de pesquisa deste trabalho consiste em ACEs

1.2.1 PROBLEMA DE PESQUISA

<+>

1.2.2 HIPÓTESE BÁSICA

Dados os esquemas de atualização mencionados na seção 1.2, encontrar quais esquemas apresentaram conservabilidade numérica «isso nao eh uma hipotese».

1.2.3 VARIÁVEIS

A implementação do simulador tem como parâmetros os seguintes itens:

- Largura do espaço celular N, como definido em 2.
- Espaço Celular:
- Regra de transição:
- Timesteps:

1.3 OBJETIVOS DO ESTUDO

<+>

1.3.1 OBJETIVO GERAL

<+>

1.3.2 OBJETIVOS ESPECÍFICOS

<+>

Para alcançar o objetivo geral proposto para a resolução do problema de pesquisa, os seguintes objetivos específicos foram estabelecidos:

• Definição formal da estratégia de atualização.

- Definição de conservabilidade.
- Identificação de conservabilidade.
- Renderização das evoluções temporais.
- Otimização da pesquisa por via de filtragem de esquemas equivalentes.

1.4 JUSTIFICATIVA

<+>

1.5 DELIMITAÇÃO DO ESTUDO

<+>

1.6 ORGANIZAÇÃO DO ESTUDO

Descrição dos capítulos:

1. Introdução

Preâmbulo deste trabalho.

2. Referencial Teórico

Sustentação argumentativa sobre o tema proposto.

3. Metodologia de Pesquisa

Sistematização dos instrumentos e processos de estudo empregados no presente trabalho.

4. Cronograma

Planejamento das tarefas necessárias para a conclusão deste trabalho, bem como suas expectativas de início e conclusão.

2 REFERENCIAL TEÓRICO

Em relação ao referencial teórico estudado neste TCC, foi de suma importância entender os seguintes tópicos:

2.1 AUTÔMATOS CELULARES

Um AC pode ser descrito simplesmente por seu espaço celular e regra de transição. O espaço celular é um conjunto finito d-dimensional ordenado de células onde cada célula pode ter até k estados. As

regras de transição definem o novo estado de uma determinada célula em função de sua vizinhança de tamanho r, dito o raio do AC. O comportamento da aplicação das regras de transição nas bordas do espaço pode ser especificado de várias formas, muitas vezes como conexo com a borda contrária tornando o espaço efetivamente contínuo.

2.1.1 AUTÔMATOS CELULARES ELEMENTARES

Visualização:

Figura 1: Ilustração das 256 regras elementares

2.1.2 REPRESENTAÇÕES

<+>

Então, para ACs de 1 dimensão, elementares, com vizinhança $\{-1,0,1\}$, com conjunto de estados $\{0,1\}$, na ordem lexicográfica $\{w_0, ..., w_7,\}$ em $\{0,1\}^3$, se $\delta(w_i) = s_i, s_0, ...s_7$ representa δ . Analogamente, qualquer inteiro positivo menor que $256 = 2^8$ define um ACE (DELORME, 1999, cap. 2).

Figura 2: Nas renderizações, é convenção representar 1s como células em preto e 0s em branco. (WOLFRAM, 2002)

2.1.3 TIPOS DE ATUALIZAÇÃO

Parte fundamental da regra de transição de um AC é a ordem de atualização das células no espaço celular. Apesar de serem fundamentalmente concebidos com o comportamento de atualização

Figura 3: Ilustração do mapa de transições para a regra 22 na notação de WOLFRAM (1983)

Figura 4: Ilustração do mapa de transições para a regra 90 na notação de WOLFRAM (1983)

síncrona, é possível se utilizar das mais diversas e criativas estratégias de atualização.

No presente trabalho foi empregado um tipo inédito de estratégia de atualização: em função da prioridade da vizinhança, que consiste em cada regra de transição estar associada a uma prioridade no intervalo [1,8]. Esse tipo de atualização requer uma distinção dos timesteps globais e locais (microtimesteps): as prioridades de vizinhanças são iteradas sequencialmente de menor a maior e para cada prioridade, o espaço celular é varrido e atualizam-se apenas as células que tenham vizinhança com a prioridade atual e mantém-se o estado das que não vizinhanças que não estejam na prioridade atual da iteração. Ao fim da varredura do espaço celular, o processo se repete para a próxima prioridade, agora iterando sobre o reticulado gerado no processo descrito anteriormente. O reticulado resultante após iterar sobre todas as prioridades é chamado de timestep global (macrotimestep), e é incluído nas renderizações, o que não acontece com os microtimesteps.

2.2 CONSERVABILIDADE NUMÉRICA

Segundo Boccara e Fukś (2002), "A one-dimensional q-state n-input CA rule f is number-conserving if, for all cyclic configurations of length $L \geq n$, it satisfies":

$$f(x_1, x_2, ..., x_{n-1}, x_n) + f(x_2, x_3, ..., x_n, x_{n+1}) + ...$$

+
$$f(x_L, x_1, ..., x_{n-2}, x_{n-1} = x_1 + x_2 + ... + x_L$$

Como é mencionado no item 1.1, ACs conservativos podem ser usados para modelar ambientes em que há conservabilidade, como trânsito automobilístico.

3 METODOLOGIA DA PESQUISA

No que tange à Metodologia empregada neste TCC, o trabalho teve início com uma revisão da literatura específica sobre o tema da pesquisa. Esta pesquisa abrange conceitos fundamentais de teoria da computação e o "estado da arte" em termos de análise de conservabilidade.

Este alicerce teórico foi obtido através de autores como: Wolfram; Oliveira; entre outros, além de pesquisas em periódicos científicos, sites, publicações em empresas, teses e dissertações em universidades e publicações de associações técnicas. A leitura, análise e comparação da fundamentação teórica tiveram início com ACEs síncronos, modificados em seguida para viabilizar o tipo de atualização mencionado no item 2.1.3.

3.1 ETAPAS DA PESQUISA

Para definir as etapas da pesquisa, foi necessário atender às delimitações de estudo (item 1.5), desenvolvendo uma implementação que atendesse à execução dos ACE com esquemas distintos <+>, como descrito no Cronograma apresentado no item 4.

Assim, pode-se dizer que as etapas desenvolvidas neste estudo foram:

- 1. Estudo do estado da arte;
- 2. Implementação do simulador para execuções síncronas;
- 3. Implementação do renderizador;
- 4. Implementação do simulador para execuções assíncronas;
- 5. Implementação do verificador de evoluções conservativas;
- 6. Análise e testes das implementações;
- 7. Análise dos resultados;
- 8. Artigo.

3.1.1 CONCEITOS EMPREGADOS

<+>

•

3.2 CLASSIFICAÇÃO DA PESQUISA

O tempo total previsto para a conclusão desta pesquisa é de 1 ano, como mostrado no capítulo 4.

3.2.1 NATUREZA DA PESQUISA

Esta é uma pesquisa exploratória, dada a natureza desconhecida das propriedades de ACEs com esse tipo de atualização.

3.2.2 ABORDAGEM

Esta pesquisa é baseada em cálculos, medidas objetivas e dados verificáveis.

3.2.3 FINS

Esta pesquisa foi voltada para encontrar caminhos, formas, maneiras e procedimentos para atingir um determinado fim, buscando definir um processo ou uma ferramenta que leve à solução do problema proposto (1.2.1).

3.2.4 **MEIOS**

Quanto aos meios, foram utilizados os recursos mencionados na Bibliografia.

3.2.5 PESQUISA BIBLIOGRÁFICA

<+>

4 CRONOGRAMA

As atividades desta pesquisa se desenvolveram de acordo com o cronograma apresentado a seguir, no prazo de 12 meses:

Tabela 1: Cronograma de atividades

ATIVIDADE		MÊS											
		2	3	4	5	6	7	8	9	10	11	12	
Estudo do estado da arte													
Implementação do simulador para execuções síncronas													
Implementação do renderizador													
Implementação do simulador para execuções assíncronas													
Implementação da verificador de evoluções conservativas													
Análise e testes das implementações													
Análise dos resultados													
Artigo													

Referências

BOCCARA, N.; FUKŚ, H. Number-conserving cellular automaton rules. *Fundamenta Informaticae*, IOS Press, v. 52, n. 1-3, p. 1–13, 2002.

DELORME, M. An introduction to cellular automata. In: *Cellular Automata*. [S.l.]: Springer, 1999. p. 5–49.

OLIVEIRA, G. M. B.; OMAR, N.; OLIVEIRA, P. P. B. de. Computação e evolução em autômatos celulares unidimensionais. Revista Mackenzie de Engenharia e Computação, 2000.

WOLFRAM, S. Cellular automata. Los Alamos Science, v. 9, 1983.

WOLFRAM, S. A new kind of science. [S.l.]: Wolfram media Champaign, IL, 2002. v. 5.

YUEN, A.; KAY, R. Applications of cellular automata. 2009.