16 septembre 2022 CIR 1 et CNB 1

Quiz de Mathématiques

 $\label{eq:Durée:1} \mbox{Durée}: 1 \mbox{ heure.}$ Aucun document ni calculatrice n'est autorisé.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

— Les questions peuvent présenter une ou plusieurs réponses correctes.

_	- Noircir les cases, ne pas faire des croix sur les cases.
_	– En cas d'erreur, utilisez du « blanco ».
_	- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
	BON COURAGE!
	* * * * * * * * * * * * * * * * * * * *
1.	Soit P une assertion vraie et Q une assertion fausse. Quelle(s) est(sont) l(les) assertion(s) vraie(s)?
	${}_{(1)}\square \overline{P} \wedge Q \qquad {}_{(2)}\square \overline{P} \vee Q \qquad {}_{(3)}\square P \wedge Q \qquad {}_{(4)}\blacksquare P \vee Q$
	$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
2.	La négation de $P \Rightarrow Q$ est
	${}_{(1)}\Box \overline{Q} \Rightarrow \overline{P} \qquad {}_{(2)}\Box \overline{P} \Rightarrow \overline{Q} \qquad {}_{(3)}\Box \overline{P} \vee \overline{Q} \qquad {}_{(4)}\blacksquare P \wedge \overline{Q}$
	$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
3.	Étant données deux propositions P et Q , quand on dit que Q est une condition nécessaire de affirme-t-on que
	$(1) \blacksquare \qquad P \Rightarrow Q \text{ est vraie.}$ $(2) \blacksquare \qquad \overline{Q} \Rightarrow \overline{P} \text{ est vraie.}$ $(3) \blacksquare \qquad \text{il faut que } Q \text{ soit vraie, pour que } P \text{ soit vraie.}$ $(4) \square \qquad \text{il suffit que } P \text{ soit vraie, pour que } Q \text{ soit vraie.}$ $(5) \square \qquad \text{aucune des réponses précédentes n'est correcte.}$
4.	Parmi les affirmations suivantes la(les)quelle(s) est(sont) vraie(s)?
	$(1) \blacksquare \qquad \forall x \in \mathbb{R} \exists y \in \mathbb{R} x \leqslant y$ $(2) \square \qquad \exists y \in \mathbb{R} \forall x \in \mathbb{R} x \leqslant y$ $(3) \blacksquare \qquad \forall x \in \mathbb{R} \exists y \in \mathbb{R} x < y$ $(4) \square \qquad \forall y \in \mathbb{R} \forall x \in \mathbb{R} x \leqslant y$ $(5) \square \qquad \text{aucune des réponses précédentes n'est correcte.}$
5.	On considère l'assertion " $\exists a \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = a$ ". En langage courant cela signifie
	$_{(1)}\Box$ f n'est jamais égal à a $_{(2)}\Box$ f ne s'annule jamais $_{(3)}\blacksquare$ f est constante $_{(4)}\Box$ f n'est pas constante $_{(5)}\Box$ f ne s'annule pas en $x=a$

- 6. Je souhaite montrer par récurrence une certaine assertion H_n , pour tout entier $n \ge 0$. Quels sont les débuts valables pour la rédaction de l'étape d'hérédité? Je suppose H_n vraie pour tout $n \ge 0$, et je montre que H_{n+1} est vraie. Je suppose H_{n-1} vraie pour tout $n \ge 1$, et je montre que H_n est vraie. (2)(3) Je fixe $n \ge 0$, je suppose H_n vraie et je montre que H_{n+1} est vraie. Je fixe $n \ge 0$ et je montre que H_{n+1} est vraie. (4) $_{(5)}\square$ aucune des réponses précédentes n'est correcte. 7. Je veux montrer que $\sqrt{13} \notin \mathbb{Q}$ par un raisonnement par l'absurde. Quel schéma de raisonnement est adapté? Je suppose que $\sqrt{13}$ est rationnel et je cherche une contradiction. (1) $_{(2)}\square$ Je suppose que $\sqrt{13}$ est irrationnel et je cherche une contradiction. $_{(3)}\square$ J'écris $13 = \frac{p}{q}$ (avec p, q entiers) et je cherche une contradiction. J'écris $\sqrt{13} = \frac{p}{q}$ (avec p, q entiers) et je cherche une contradiction. (4) $_{(5)}\square$ aucune des réponses précédentes n'est correcte. 8. Soit $A = \{a, b, c\}$ et $B = \{1, 2\}$. Cochez la(les) bonne(s) réponse(s). (a,1) $\subseteq \{a,1\} \in A \times B$ (a,1) $\subseteq \{a,1\} \in A \times B$ (a,1) $\subseteq \{a,1\} \subseteq A \times B$ (a,1) $\subseteq \{a,1\} \subseteq A \times B$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

 - 9. Parmi les propositions suivantes la(les)quelle(s) est(sont) vraie(s) pour tous ensembles A, B et C?
 - $A^c \cap B^c = (A \cap B)^c$ (1)
 - $A \setminus B = A \cap B^c$ (2)
 - $\square_{(8)}$ $(A \cup B) \cap C = A \cup (B \cap C)$
 - $_{(4)}\square$ $Card(A \cup B) = Card(A) + Card(B)$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 10. Soit A une partie de l'ensemble E. Parmi les ensembles suivants, le(les)quel(s) représente(nt) le complémentaire de A?

 ${}_{(1)}\square \quad \{x \in E, x \in A\} \qquad {}_{(2)}\blacksquare \quad \{x \in E, x \not \in A\} \qquad {}_{(3)}\blacksquare \quad E \setminus A \qquad {}_{(4)}\square \quad A \setminus E$ (5)□ aucune des réponses précédentes n'est correcte.

11. Parmi les graphes suivants, lequel décrit la fonction identité?

- 12. Soit f une application de E dans F. Si f est surjective . . .
 - (1)deux éléments différents ont toujours des images différentes.
 - si tout élément y de F possède un et un seul antécédent x par f. (2)
 - si tout élément y de F possède au moins un antécédent x par f. (3)
 - (4)si tout élément y de F possède au plus un antécédent x par f.
 - (5)aucune des réponses précédentes n'est correcte.

13. Soit f une application de E dans F. Si f est injective . . .

$$(1) \square \quad \forall y \in F \ \exists x \in E \ y = f(x) \qquad (2) \square \quad \forall y \in F \ \exists ! x \in E \ y = f(x)$$

$$(3) \blacksquare \quad \forall (x,x') \in E^2 \ f(x) = f(x') \Rightarrow \ x = x' \qquad (4) \blacksquare \quad \forall (x,x') \in E^2 \ x \neq x' \Rightarrow \ f(x) \neq f(x')$$

$$(5) \square \quad \text{aucune des réponses précédentes n'est correcte.}$$

- 14. Soit $f: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}$ telle que $f(x) = \frac{x+1}{x-2}$
 - f est une surjection f est une injection f est une injection f f n'existe pas $f^{-1}(y) = \frac{2y+1}{y-1}$ aucune des réponses précédentes n'est correcte.
- 15. On considère l'application $f:[-1.5,1.5]\to\mathbb{R}$ dont la représentation graphique est donnée ci-dessous.

16. On considère l'application $f: \mathbb{R} \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, f(x) = x^2 + 1$$

Cochez les bonnes réponses.

$$f(\mathbb{R}) = \mathbb{R}$$
 $f(\mathbb{R}) = [0, +\infty[$ $f(\mathbb{R}) = [1, +\infty[$ $f(\mathbb{R}) = [1, +\infty[$ aucune des réponses précédentes n'est correcte.

17. On considère deux fonctions :

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \sqrt{2x+1} \end{cases} \qquad g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$$

Cochez les affirmations correctes

18. Soit $f(x) = \ln(x-1)$ et $g(x) = \sqrt{x+1}$. Cochez les affirmations correctes.

19. La somme $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots+\frac{1}{2n-1}-\frac{1}{2n}$ est équivalente à ...

$$\sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} \qquad \text{(2)} \square \quad \sum_{k=1}^{2n} \frac{(-1)^k}{k} \qquad \text{(3)} \square \quad \sum_{k=0}^{2n} \frac{1}{k} \qquad \text{(4)} \square \quad \sum_{k=0}^{2n-1} \frac{(-1)^{k+1}}{k+1}$$

20. La somme $\sum_{k=1}^n 3$ est équivalente à ...

 $_{(1)}\Box$ 3 $_{(2)}\Box$ 3+n $_{(3)}\Box$ 3(n-1) $_{(4)}\blacksquare$ 3n

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.