EECS, GIST College Undergraduate student 20165190 Seungcheol Han

Newton-Raphson method

1. Environment setting

The equation for this Newton-Raphson method test is below.

$$n_i e^{-\phi} - n_i e^{\frac{\phi}{V_T}} = 0$$
 [1]

Where N^+ is doping density, n_i is intrinsic carrier density, ϕ is electrostatic potential, and V_T is thermal voltage. Also the analytic solution of the equation is below.

$$\phi = - V_T \ln \left(\frac{N^+}{2n_i} + \frac{N^+}{2n_i} \right)^2 + 1$$
 [2]

has same quantities with [1].

I set N^+ is from $10^{10} {\rm cm}^{-3}$ (positive/negative) to $10^{18} {\rm cm}^{-3}$ (positive/negative), $n_i = 10^{10} {\rm cm}^{-3}$, $V_T = 0.026 {\rm V}$, accuracy is 10^{-13} (It means $d\phi/\phi < 10^{-13}$), and start point of electrostatic potential is (positive:1V / negative:-1V).

2. Result

0.4 - 0.3 - 0.3 - 0.1 - 0.0 - N-R method — Analytic solution - 0.1 - 1E15 1E16 1E17 1E18 1E19 1E20 1E21 1E22 1E23 1E24 1E25 N*(m³)

Fig 1. Electrostatic potential When N^+ is negative.

Fig 2. Electrostatic potential When \boldsymbol{N}^+ is positive.

Fig 3. Error

The result said that the error is not larger then 10^{-13} . Therefore N-R method can be used for this function.