שיעור 4 דטרמיננטות וכלל קרמר

4.1 הגדרה של דטרמיננטה של מטריצה ריבועית

נדון רק במטריצה ריבועית.

הדטרמיננטה של מספר ממשי. באופן דומה, תסומן $A\in\mathbb{R}^{n\times n}$, תסומן הדטרמיננטה של מטריצה או לפר מחומן, תסומן לפר מפר מורכב. $A\in\mathbb{C}^{n\times n}$, היא מספר מורכב.

2 imes 2 הגדרה 4.1 דטרמיננטה של מטריצה ריבועית מסדר

 $A \in \mathbb{F}^{2 imes 2}$ נתוונה מטריצה

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

הדטרמיננטה של A מוגדרת

$$|A| = a_{11}a_{22} - a_{12}a_{21} .$$

דוגמה 4.1 דטרמיננטה

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $|A| = 1 \cdot 4 - 2 \cdot 3 = -2$.

3 imes 3 הגדרה 4.2 דטרמיננטה של מטריצה ריבועית מסדר

 $A \in \mathbb{F}^{3 imes 3}$ נתוונה מטריצה

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

ניצן לחשב את הדטרמיננטה של A ע"י כל אחת מהשורות או ע"י כל אחת מהעמודות: שורה A

$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} .$$

:2 שורה

$$|A| = -a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{22} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} .$$

שורה 3:

$$|A| = a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} - a_{32} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} + a_{33} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} .$$

עמודה 1:

$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} .$$

עמודה 2:

$$|A| = -a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - a_{32} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} .$$

עמודה 3:

$$|A| = a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} .$$

דוגמה 4.2 דטרמיננטה

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 6 & 0 & 7 \end{pmatrix},$$

$$|A| = 1 \cdot \begin{vmatrix} 4 & 5 \\ 0 & 7 \end{vmatrix} - 2 \cdot \begin{vmatrix} 0 & 5 \\ 6 & 7 \end{vmatrix} + 3 \cdot \begin{vmatrix} 0 & 4 \\ 6 & 0 \end{vmatrix}$$

$$= 1 \cdot (4 \cdot 7 - 5 \cdot 0) - 2(0 \cdot 7 - 5 \cdot 6) + 3 \cdot (0 \cdot 0 - 4 \cdot 6)$$

$$= 28 + 60 - 72,$$

$$= 16.$$

הגדרה 4.3 המינור

נתונה מטריצה ריבועית $A\in\mathbb{F}^{n\times n}$. המינור ה- (i,j) של A מסומן ב- M_{ij} ומוגדר להיות הדטרמיננטה של . M_{ij} מחיקת שורה i ועמודה i ועמודה i נסמן ב- i נסמן ב- i נסמן ב- i מטריצה הריבועית המתקבלת מ- i ע"י מחיקת שורה i ועמודה i

דוגמה 4.3

$$A=egin{pmatrix} 1 & 2 & 3 \ 0 & 4 & 5 \ 6 & 0 & 7 \end{pmatrix}$$
עבור $A=egin{pmatrix} A & 2 & 3 \ 0 & 4 & 5 \ 0 & 7 \end{pmatrix}$

פתרון:

$$M_{11} = \begin{vmatrix} 4 & 5 \\ 0 & 7 \end{vmatrix} = 28 ,$$

$$M_{12} = \begin{vmatrix} 0 & 5 \\ 6 & 7 \end{vmatrix} = -30 ,$$

$$M_{23} = \begin{vmatrix} 1 & 2 \\ 6 & 0 \end{vmatrix} = -12 ,$$

$$M_{32} = \begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = 5 .$$

הגדרה 4.4 הקופקטור

- נתונה מטריצה ריבועית C_{ij} - מסומן היות המינור ה- הקופקטור ה- $A\in\mathbb{F}^{n\times n}$ ומוגדר להיות המינור ה- נתונה מטריצה ריבועית $A\in\mathbb{F}^{n\times n}$ הקופקטור ה- (i,j)

$$C_{ij} = (-1)^{i+j} \cdot M_{ij} .$$

דוגמה 4.4

$$.C_{32}$$
 , $.C_{23}$, $.C_{12}$, $.C_{11}$ את את $A=egin{pmatrix} 1 & 2 & 3 \ 0 & 4 & 5 \ 6 & 0 & 7 \end{pmatrix}$ עבור

פתרון:

$$C_{11} = (-1)^{2} \cdot M_{11} = \begin{vmatrix} 4 & 5 \\ 0 & 7 \end{vmatrix} = 28 ,$$

$$C_{12} = (-1)^{3} \cdot M_{12} = -\begin{vmatrix} 0 & 5 \\ 6 & 7 \end{vmatrix} = 30 ,$$

$$C_{23} = (-1)^{5} \cdot M_{23} = -\begin{vmatrix} 1 & 2 \\ 6 & 0 \end{vmatrix} = 12 ,$$

$$C_{32} = (-1)^{5} \cdot M_{32} = -\begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = -5 .$$

n imes n דטרמיננטה של מטריצה ריבועית מסדר 4.5 הגדרה

תהי $A \in \mathbb{F}^{n imes n}$ מטריצה ריבועית.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} .$$

הדטרמיננטה של A, מסומנת ב- |A|. ניתן לחשב את הדטרמיננטה לפי שורה i

$$|A| = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij} = \sum_{j=1}^{n} a_{ij} C_{ij}$$
,

A באשר (i,j) -ה המינור ה- (i,j) של המטריצה A של המטריצה M_{ij} המינור ה-

:j ניתן לחשב את הדטרמיננטה לפי עמודה

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij} = \sum_{i=1}^{n} a_{ij} C_{ij}$$
.

למעשה, ניתן לחשב את |A| לפי שורה כלשהי או לפי עמודה כלשהי.

דוגמה 4.5

. מצאו את הדטרמיננטה של המטריצה,
$$A = \begin{pmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{pmatrix}$$
נסמן

פתרון:

$$\begin{split} |A| &\stackrel{\text{diff}}{=} 1 \cdot M_{11} - 5 \cdot M_{12} + 0 \cdot M_{13} \\ &= 1 \cdot \begin{vmatrix} 4 & -1 \\ -2 & 0 \end{vmatrix} - 5 \cdot \begin{vmatrix} 2 & -1 \\ 0 & 0 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & 4 \\ 0 & -2 \end{vmatrix} \\ &= -2 \; . \end{split}$$

נשתעשע....

$$\begin{split} |A| &\stackrel{\text{with}}{=} -2 \cdot M_{21} + 4 \cdot M_{22} - (-1) \cdot M_{23} \\ &= -2 \cdot \begin{vmatrix} 5 & 0 \\ -2 & 0 \end{vmatrix} - 4 \cdot \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 5 \\ 0 & -2 \end{vmatrix} \\ &= -2 \; . \end{split}$$

$$|A| \stackrel{\text{Varth Betwin}}{=} 0 \cdot M_{13} - (-1) \cdot M_{23} + 0 \cdot M_{33}$$

$$= 0 \cdot \begin{vmatrix} 2 & 4 \\ 0 & -2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 5 \\ 0 & -2 \end{vmatrix} + 0 \cdot \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix}$$

$$= -2.$$

:הערה

סימני האיברים הם כך:

$$A = \begin{pmatrix} + & - & + & \dots \\ - & + & - & \dots \\ + & - & + & \\ \vdots & & & \ddots \end{pmatrix}$$

חשבו את הדטרמיננטה של המטריצה הבאה:

$$A = \begin{pmatrix} 3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0 \end{pmatrix}$$

פתרון:

$$\begin{split} |A| &\stackrel{\text{Ричип Синтер 2}}{=} 3 \cdot M_{11} - 0 \cdot M_{21} + 0 \cdot M_{31} - 0 \cdot M_{41} + 0 \cdot M_{51} - 0 \cdot M_{61} \\ &= 3 \cdot \begin{vmatrix} 2 & -5 & 7 & 3 \\ 0 & 1 & 5 & 0 \\ 0 & 2 & 4 & -1 \\ 0 & 0 & -2 & 0 \end{vmatrix} \\ &= 3 \cdot (-1)^{1+1} \cdot 2 \cdot \begin{vmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{vmatrix} \\ &= 6 \cdot (-2) = -12 \; . \end{split}$$

משפט 4.1 דטרמיננטה של מטריצה משולשית

. אם איברי האלכסון איברי האלכסון, $|A|=a_{11}\cdot a_{22}\cdot \cdots \cdot a_{nn}$ אם איברי האלכסון מטריצה משולשית אז

הוכחה: תרגיל בית.

דוגמה 4.7

חשבו

$$\begin{vmatrix} 1 & 5 & 7 \\ 0 & 2 & 19 \\ 0 & 0 & 3 \end{vmatrix} .$$

פתרון:

$$\begin{vmatrix} 1 & 5 & 7 \\ 0 & 2 & 19 \\ 0 & 0 & 3 \end{vmatrix} = 1 \cdot \begin{vmatrix} 2 & 19 \\ 0 & 3 \end{vmatrix} = 1 \cdot 2 \cdot 3 = 6.$$

4.2 משפט

אם איי הפעולה האלמנטרית: $A \in \mathbb{R}^{n imes n}$ אם מטריצה ריבועית ו- B מטריצה ריבועית אם $A \in \mathbb{R}^{n imes n}$

(1) החלפת 2 שורות, אז

$$|B| = -|A|.$$

אז
$$\alpha \neq 0$$
 אז בסקלר שורה בסקלת (2)

$$|B| = \alpha |A|.$$

(3) הוספת כפולה של שורה אחת לשורה אחרת, אז

$$|B| = |A|.$$

הוכחה: תרגיל בית.

דוגמה 4.8

$$\begin{vmatrix} 3 & 6 \\ 8 & 4 \end{vmatrix}$$
 חשבו את

פתרון:

$$\begin{vmatrix} 3 & 6 \\ 8 & 4 \end{vmatrix} = 3 \cdot \begin{vmatrix} 1 & 2 \\ 8 & 4 \end{vmatrix} = 3 \cdot 4 \cdot \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 12 \cdot (1 \cdot 1 - 2 \cdot 2) = 12 \cdot (-3) = -36.$$

דוגמה 4.9

$$egin{bmatrix} 2 & 4 & 6 \\ 12 & 15 & 18 \\ 28 & 32 & 40 \\ \end{bmatrix}$$
 חשבו את

פתרון:

$$\begin{vmatrix} 2 & 4 & 6 \\ 12 & 15 & 18 \\ 28 & 32 & 40 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 12 & 15 & 18 \\ 28 & 32 & 40 \end{vmatrix} = 2 \cdot 3 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 28 & 32 & 40 \end{vmatrix} = 2 \cdot 3 \cdot 4 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{vmatrix}$$

$$\xrightarrow{R_2 \to R_2 - 4R_1} 24 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 10 \end{vmatrix}$$

$$=24 \cdot (-3) = -72$$
.

$$egin{bmatrix} 7 & 14 & 21 \ 28 & 35 & 42 \ 49 & 56 & 70 \ \end{bmatrix}$$
 חשבו את

פתרון:

$$\begin{vmatrix} 7 & 14 & 21 \\ 28 & 35 & 42 \\ 49 & 56 & 70 \end{vmatrix} = 7 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 28 & 35 & 42 \\ 49 & 56 & 70 \end{vmatrix} = 7 \cdot 7 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 49 & 56 & 70 \end{vmatrix} = 7 \cdot 7 \cdot 7 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{vmatrix}$$
$$= 7^{3} \cdot \left(1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 10 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 10 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} \right)$$
$$= 7^{3} \cdot \left(1 \cdot (50 - 48) - 2 \cdot (40 - 42) + 3 \cdot (32 - 35) \right)$$
$$= 7^{3} \cdot (-3) = -1029.$$

4.3 משפט

$$|\alpha A| = \alpha^n \cdot |A|$$

 $n \times n$ מסדר A כאשר

הוכחה: תרגיל בית.

:הערה

כל מטריצה ריבועית A (מסדר $n \times n$) ניתן להעביר למטריצה מדורגת ע"י ביצוע מספר סופי של פעולות שורה ($\alpha \neq 0$ שורות מסוג החלפת 2 שורה אחת לשורה אחת לשורה אחרת (בלי פעולת הכפלת שורה בסקלר לכן

$$|A| = (-1)^k |B|$$

,כאשר B - הוא מספר החלפות השורות שביצענו. כמו כן מאחר ו- B משולשית עליונה

$$|B| = b_{11} \cdot b_{22} \cdot \cdots \cdot b_{nn} .$$

משפט 4.4

תהי $A \in \mathbb{R}^{n \times n}$ מתקיים:

$$|A^t| = |A|$$
.

הוכחה: תרגיל בית.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 , $|A| = -2$, $A^t = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$, $|A^t| = -2$.

משפט 4.5 משפט המכפלה

. $A,B\in\mathbb{R}^{n imes n}$ מתקיים:

$$|A \cdot B| = |A| \cdot |B| .$$

הוכחה: תרגיל בית.

דוגמה 4.12

|AB| ,|B| ,|A| ,|A| ,|A| ואת הדטרמיננות הבאות: AB מצאו את המטריצה $B=\begin{pmatrix}4&3\\1&2\end{pmatrix}$, $A=\begin{pmatrix}6&1\\3&2\end{pmatrix}$ נסמן

פתרון:

$$AB = \begin{pmatrix} 6 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 25 & 20 \\ 14 & 13 \end{pmatrix} ,$$

$$|A| = 12 - 3 = 9 ,$$

$$|B| = 8 - 3 = 5 ,$$

$$|AB| = 25 \cdot 13 - 20 \cdot 14 = 45 .$$

משפט 4.6

. מתקיים: $A \in \mathbb{R}^{n imes n}$ מתקיים:

$$|A^k| = |A|^k .$$

הוכחה: תרגיל בית.

דוגמה 4.13

$$A^{2020}$$
 נתונה $A = \begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$ ו- $A = \begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$ נתונה

פתרון:

$$|A^{2020}| = \underbrace{|A \cdot A \cdot \dots \cdot A|}_{2020} = \underbrace{|A| \cdot |A| \cdot \dots \cdot |A|}_{2020} = |A|^{2020}$$

 $|A^{2020}| = (-2)^{2020}$ ולכן

הגדרה 4.6 המטריצה של קופקטורים

n imes n נגדיר את המטריצה של קופקטורים מסדר . $A \in \mathbb{F}^{n imes n}$

$$C = \begin{pmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & \ddots & \vdots \\ C_{n1} & \cdots & C_{nn} \end{pmatrix}$$

A של (i,j) -הקופקטור ה- C_{ij} של

הגדרה 4.7 המטריצה המצורפת

ומוגדרת adj(A) שמסומנת n imes n מטריצה מטריצה של A היא מטריצה המצורפת המצורפת אלווית המצורפת של היא

$$\operatorname{adj}(A) = C^t$$

A במטרים של קופקטורים של כאשר C

משפט 4.7 נוסחת קיילי המילטון

תהי $A \in \mathbb{F}^{n imes n}$. נניח ש- $A \in \mathbb{F}^{n imes n}$

$$A^{-1} = \frac{1}{|A|} \cdot C^t = \frac{1}{|A|} \cdot \operatorname{adj}(A) \ .$$

הוכחה: מעבר לקורס הזה.

דוגמה 4.14

$$A^{-1}$$
 את חשבו $A = egin{pmatrix} 1 & 3 & 4 \\ 2 & 4 & 3 \\ 1 & 5 & 0 \end{pmatrix}$ נתונה

פתרון:

$$M_{11} = -15$$
 $C_{11} = 15$

$$M_{12} = -3$$
 $C_{12} = 3$

$$M_{13} = 6$$
 $C_{13} = 6$

$$M_{21} = -20$$
 $C_{21} = 20$

$$M_{22} = -4$$
 $C_{22} = -4$

$$M_{23} = 2$$
 $C_{23} = -2$

$$M_{31} = -7$$
 $C_{31} = -7$

$$M_{32} = -5$$
 $C_{32} = 5$

$$M_{33} = -2$$
 $C_{33} = -2$

$$C = \begin{pmatrix} -15 & 3 & 6 \\ 20 & -4 & -2 \\ -7 & 5 & -2 \end{pmatrix} \quad \Rightarrow \quad \operatorname{adj}(A) = \begin{pmatrix} -15 & 20 & -7 \\ 3 & -4 & 5 \\ 6 & -2 & -2 \end{pmatrix} .$$

$$|A| = 1 \cdot (-15) + 3 \cdot 3 + 4 \cdot 6 = 18$$
.

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) = \frac{1}{18} \begin{pmatrix} -15 & 20 & -7 \\ 3 & -4 & 5 \\ 6 & -2 & -2 \end{pmatrix} .$$

משפט 4.8 מטריצה הפיכה

 $A \in \mathbb{R}^{n imes n}$ תהי

אם ורק אם A הפיכה. $|A|\neq 0$

-הוכחה: נניח ש- A הפיכה. אז קיימת A^{-1} כך ש

$$A \cdot A^{-1} = I \ .$$

לכן לפי משפט 4.5:

$$|A \cdot A^{-1}| = |A| \cdot |A^{-1}| = 1$$
.

.|A|
eq 0 לכן $.|A| \cdot |A^{-1}| = 1$ כלומר

 $a^{-1}=rac{1}{|A|}$ נניח ש-a=1. נכיח ש-a=1. מכיוון ש-a=1. מכיוון ש-a=1 מכיוון את הסקלר ומשםט. $|A|\neq 0$ אז ההופכית קיים. לכן לפי נוסחת קיילי המילטון(משםט 4.7) A^{-1} קיימת. לכן לפי נוסחת קיילי המילטון

היעזרו במשפט 4.8 לעיל וקבעו האם המטריצה הבאה הפיכה:

$$\begin{pmatrix}
3 & -1 & 2 & -5 \\
0 & 5 & -3 & -6 \\
-6 & 7 & -7 & 4 \\
-5 & -8 & 0 & 9
\end{pmatrix}$$

פתרון:

$$\begin{vmatrix} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ -6 & 7 & -7 & 4 \\ -5 & -8 & 0 & 9 \end{vmatrix} \xrightarrow{R_3 \to R_3 + 2R_1} \begin{vmatrix} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ 0 & 5 & -3 & -6 \\ -5 & -8 & 0 & 9 \end{vmatrix}$$

=0 .

לכן A לא הפיכה.

משפט 4.9

תהי $A \in \mathbb{R}^{n imes n}$ הפיכה, אז

$$|A^{-1}| = \frac{1}{|A|} \ .$$

|A|
eq 0 ב- $|A| \cdot |A^{-1}| = 1$. נחלק ב- $|A| \cdot |A^{-1}| = 1$. נחלק ב- $|A| \cdot |A^{-1}| = 1$. נחלק ב- $|A| \cdot |A^{-1}| = 1$ ונקבל

$$|A^{-1}| = \frac{1}{|A|} \ .$$

דוגמה 4.16

$$.|A|$$
את את את $.B=\begin{pmatrix} -2 & 3e & \pi\\ 0 & 1 & 23\\ 0 & 0 & -1 \end{pmatrix}$ כאשר כאשר את $A^3=2A^{-1}B$ המקיימת $A\in\mathbb{R}^{3\times 3}$ נתונה $A\in\mathbb{R}^{3\times 3}$

פתרון:

:דרך א

 $A\in\mathbb{R}^{3 imes 3}$. מאחר ו- $|A|^3=|2A^{-1}|\cdot|B|$ מאחר ו- $|A^3|=|2A^{-1}B|$. מפע המכפלה, ולכן $|A|^3=|2A^{-1}B|$. מכאן, מכאן,

$$|A|^3 = 2^3 \cdot \frac{1}{|A|} \cdot |B|$$
,

ולכן

$$|A|^4 = 8 \cdot |B| = 8 \cdot 2 = 16$$
,

 $|A|=\pm 2$. ונקבל

דרך ב:

$$A \cdot (2A^{-1}B) = A \cdot A^{3} \quad \Rightarrow \quad A^{4} = (A \cdot 2A^{-2})B \quad \Rightarrow \quad A^{4} = (2 \cdot AA^{-2})B \quad \Rightarrow \quad A^{4} = (2 \cdot I)B$$
$$A^{4} = 2B \quad \Rightarrow \quad |A^{4}| = |2B| \quad \Rightarrow \quad |A|^{4} = 2^{3} \cdot |B| \quad \Rightarrow \quad |A|^{4} = 8 \cdot 2 = 16 \ .$$

דוגמה 4.17

תהיינה $A,B\in\mathbb{R}^{n imes n}$ הוכח או הפרך:

$$|A + B| = |A| + |B|$$
.

פתרון:

הטענה איננה נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} ,$$

$$A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} ,$$

$$|A| = 0 , \qquad |B| = 0 ,$$

$$|A + B| = |I| = 1 ,$$

$$|A + B| \neq |A| + |B| .$$

דוגמה 4.18

 $|A^{-1}B^2(B^t)^{-1}|$ את חשבו את $A+3B^t=0$ שמתקיים כך אפיכות, הפיכות, $A,B\in\mathbb{R}^{5 imes 5}$

פתרון:

נשים לב שלא נכון לכתוב

$$A + 3B^t = 0 \implies |A + 3B^t| = |0| \implies |A| + |3B^t| = 0$$
.

נחשב

$$|A^{-1}B^2(B^t)^{-1}| = |A^{-1}| \cdot |B^2| \cdot |(B^t)^{-1}| = \frac{1}{|A|} \cdot |B|^2 \cdot \frac{1}{|B^t|} = \frac{1}{|A|} \cdot |B|^2 \cdot \frac{1}{|B|} = \frac{|B|}{|A|} .$$

לפי הנתון $A+3B^t=0$ ולכן

$$A = -3B^t \Rightarrow |A| = |-3B^t| \Rightarrow |A| = (-3)^5 |B^t| \Rightarrow |A| = -243 |B| \Rightarrow \frac{|B|}{|A|} = -\frac{1}{243}$$
.

תהיינה $X,Y \in \mathbb{R}^{3 imes 3}$ תהיינה

$$XY = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

X האם X הפיכה?

$$X: X = egin{pmatrix} 2 & -1 & 0 \ 1 & -1 & 0 \ 4 & 0 & -6 \end{pmatrix}$$
 עבור

פתרון:

(א) נסמן
$$|A|=-6$$
 (שים לב ש- $A=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ ולפי משפט המכפלה, $|X|=|X|$ בפרט, $|X|=|X|$, ולכן $|X|=|X|$ הפיכה.

נקבל X פיכית של בהופכית שני האגפים משמאל הופכית של X הופכית של X הופכית של X הופכית של X בהופכית של

$$X^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -2 & 0 \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{6} \end{pmatrix}$$

לכן

$$Y = X^{-1}A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -2 & 0 \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{6} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & -3 & 0 \\ 1 & -6 & 0 \\ \frac{2}{3} & -2 & \frac{1}{3} \end{pmatrix} .$$

4.2 כלל קרמר

משפט 4.10 כלל קרמר

ינים: אוקטור של ווקטור אוקטור ויהי אפיכה ויהי מטריצה מטריצה אוקטור מטריצה אויהי ווקטור אוקטור מטריצה אויהי $A\in\mathbb{F}^{n\times n}$

$$A = \begin{pmatrix} | & | & & | \\ a_1 & a_2 & \dots & a_n \\ | & | & & | \end{pmatrix} , \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} .$$

לכל AX=b ניתן היחיד למערכת הפתרון היחיד לכל לכל

$$x_i = \frac{|A_{ib}|}{|A|}$$

כאשר

$$A_{ib} = \begin{pmatrix} | & | & & | & | & | & | & | \\ a_1 & a_2 & \dots & a_{i-1} & b & a_{i+1} & \dots & a_n \\ | & | & & | & | & | & | \end{pmatrix} ,$$

b ב- i המעריצה המתקבלת מ- A ע"י החלפת העמודה ה- i

הוכחה: תרגיל בית.

דוגמה 4.20

פתרו את המערכת הבאה בעזרת כלל קרמר:

$$x_1 + 2x_2 = 1$$

 $3x_1 + 4x_2 = 2$.

פתרון:

$$\begin{array}{ccc} x_1 + 2x_2 = & 1 \\ 3x_1 + 4x_2 = & 2 \end{array} \quad \Leftrightarrow \quad \underbrace{\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} 1 \\ 2 \end{pmatrix}}_{b}$$

, ולכן המטריצה הפיכה, $|A|=egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}=-2$

$$|A_1(b)| = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 0 ,$$

$$x_1 = \frac{|A_1(b)|}{|A|} = \frac{0}{-2} = 0 ,$$

$$|A_2(b)| = \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = -1 ,$$

$$x_2 = \frac{|A_2(b)|}{|A|} = \frac{-1}{-2} = \frac{1}{2} .$$