目標函數Cost Function

損失函數(Loss Function)是定義在單個樣本上的,算的是一個樣本的誤差。 代價函數(Cost Function)是定義在整個訓練集上的,是所有樣本誤差的平均,也就是損失函數的平均。(也被稱作經驗風險)

目標函數(Object Function)定義為:最終需要優化的函數。等於經驗風險+結構風險(也就是代價函數+正則化項)。代價函數最小化,降低經驗風險,正則化項最小化降低。

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

目標函數 loss function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} \frac{(h_{\theta}(x_i) - y_i)^2}{\frac{1}{2m}} \frac{1}{\frac{1}{2m}} \frac{1}{\frac{1}{2m}}$$

$$J(0) > J(1) = \frac{1}{6}((1 \cdot 1 - 1)^{\frac{1}{2}} + (1 \cdot 2 - 2)^{\frac{1}{2}} + (1 \cdot 3 - 2)^{\frac{1}{2}}$$

$$= \frac{1}{6} \cdot 0 = 0$$

X_1	X_2	X_3	X_4	$y_\mathtt{1}$
Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

梯度下降Gradient Descent

梯度下降Gradient Descent

