

Lab Report 6

Submitted by: Submitted to:

Nabina Khadka Birodh Rijal

0516 (Artificial Intelligence Lecturer)

2019

1.2.1 Part A

Your task is to read the contents of the file and produce:

1. A table containing 20 most frequent words. The table contains three columns: rank, word and frequency.

First, file read and all the words were inserted in a list. Then, I iterated through the list to create a dictionary where the key was the word and the value was the frequency of the word. Then I displayed the key-value pairs in the descending order of the values (the frequencies).

I have used a library tabulate, so this library must be installed to run the script provided. Its use is to display outputs as included in the figures below.

PART A
Question 1

A table containing 20 most frequent words. The table contains three columns: rank, word and frequency.

Rank	Word	Frequency
1	the	26856
2	and	24116
3	i	22412
4	to	19225
5	of	16018
6	you	14097
7	a	13986
8	my	12283
9	that	11171
10	in	10640
11	is	9271
12	d	8608
13	not	8466
14	it	7783
15	me	7759
16	for	7645
17	3	7264
18	with	7157
19	be	6891
20	your	6756

2. A table, containing list of bottom frequencies. The table contains three columns: frequency, word count and example words. You are supposed to print word counts for frequencies 10 to 1. The rows in this table show how manywords have frequency 10, 9, 8...1 with example of some of the words.

To, solve this question I iterated the dictionary in ascending order of values (the frequencies). The element was added to the example list. Whenever a change in frequency was detected say 1 to 2, then a new list was created which has 3 elements the rank, frequency and the example list. Then I printed the list in ascending order of rank.

Question 2
A table, containing list of bottom frequencies.

Frequency	Word Count	Examples
1	8543	guiltian ,quasi ,combless ,felonious
2	3229	chime ,ribbed ,collied ,invert
3	1831	ild ,talons ,forthcoming ,allure
4	1311	bruit ,bravest ,allons ,soothsayer
5	904	sayings ,approves ,stabbed ,turtles
6	743	syria ,bagot ,rival ,incur
7	530	fog ,caper ,gentlewomen ,od
8	429	posterity ,dealt ,appearing ,certainty
9	373	menas ,mildly ,appeared ,filth
10	322	arrows ,agent ,necks ,dig

3. A table containing 20 most frequent word-pairs (bigrams). The table contains three columns: rank, word pair and frequency.

I used the word list to create a list of bigrams, then I created a dictionary as in question 1. The key part was the bigram and the value was the frequency of the bigram. Then I iterated through the dictionary in descending order of the value (frequency bigram).

Question 3 A table containing 20 most frequent word-pairs (bigrams). The table contains three columns: rank, word pair and frequency.

Rank	Word Pair	Frequency
1	i am	1858
2	i 11	1784
3	my lord	1699
4	i have	1631
5	in the	1585
6	i will	1582
7	to the	1518
8	of the	1380
9	it is	1087
10	to be	971
11	that i	964
12	and i	830
13	i do	829
14	the king	784
15	and the	728
16	you are	724
17	of my	696
18	is the	692
19	i would	674
20	he is	658

1.2.2 Part B

With the frequency counts of the word at our hand we calculate some basic probability estimates

Calculate the relative frequency (probability estimate) of the words: (a) "the" (b)
 "become" (d) "brave" (e) "treason" [Note: P(the) = count(the) / N . Here, count(the) is the
 frequency of "the" and "N" is the total word count.]

The relative frequency of a word is calculated as P(word) = count(word)/total no of word

The count of a word is determined from the dictionary (where the key is the word and the value id the frequency). The total_no_of_words is the length of the wordlist itself.

```
PART B:

Question 1:

Calculate the relative frequency (probability estimate) of the words:

The relative frequency of 'the' is 0.032018236183372836

The relative frequency of 'become' is 0.006264410318875886

The relative frequency of 'brave' is 0.006829947361552182

The relative frequency of 'treason' is 0.004176273545917258
```

Calculate the following word conditional probabilities: (a) P(court | The) (b) P(word | his)
 (c) P(qualities | rare) (d) P(men | young) [Read P(B | A) as "the probability with which word B follows word A". Note: P(B | A) = count(A;B) | count(A)]

The probability is calculated as

```
P(A/B) = count(a,b)/count(a)
```

count(a,b) was extracted from the bigram dictionary and count(a) was extracted from word dictionary.

```
Question 2:
Calculate the following word conditional probabilities:
P(court | The) = 0.001377718200774501
P(word | his) = 0.001377718200774501
P(qualities | rare) = 0.017857142857142856
P(men | young) = 0.026004728132387706
```

3. Calculate the probability: (a) P(have, sent) (b) P(will, look, upon) (c) P(I, am, no, baby) (d) P(wherefore, art, thou, Romeo).

Using Markov assumption, the probability of P(A,B,C,D) is calculated as

```
Question 3
Calculate the probability:

P(have, sent) = 0.005036091992613732
P(will, look, upon) = 9.24793159207516e-07
P(I, am, no, baby) = 1.2479985075725128e-08
P(wherefore, art, thou, Romeo) = 2.2224737028306635e-10
```

P(A,B,C,D) = P(A) * P(B|A) * P(C|B) * P(D|C)

4. Calculate probabilities in Q3 assuming each word is independent of other words (independence assumption).

If the words are considered to be independent the probabilities are given as

```
P(A,B,C,D) = P(A)*P(B)*P(C)*P(D), the result is shone below.
```

```
Question 4

Calculate probabilities in Q3 assuming each word is independent of other words

P(have, sent) = 2.277676449721073e-06

P(will, look, upon) = 1.3496632929942172e-08

P(I, am, no, baby) = 6.284914714326714e-12

P(wherefore, art, thou, Romeo) = 1.7479309085767736e-13
```

5. Find the most probable word to follow this sequence of words: (a) I am no (b) wherefore art thou

To solve this all the words that come after the last words (here 'no' and 'thou') were added to a list. For this the word list was used. Then, conditional probability of those words coming after the given word sequence was calculated and the element having the highest probability was used. The output is illustrated below.

```
Question 5
Find the most probable word to follow this sequence of words:

a. I am no
I am no more
b. wherefore art thou
wherefore art thou art
```