

○——2023上粉笔教资———○

《信息技术》

计算机网络技术 2/4

▶讲师:孙珍珍

Fb 粉笔 教师

第三节 Internet协议及应用

所有连入Internet的计算机都使用相同的通信协议,这个协议就是TCP/IP协议

(一)IPv4地址 (唯一识别网络中不同的主机)

1.IP地址的表示:

✓ 二进制:32b

✓ 十进制:点分十进制(每8位为1组,共4组,用"."隔开)

 32比特IPv4地址:
 00001010111110000000001111110101010

 毎8位分为一组:
 00001010111110000000001111110101010

 写出每组的十进制数:
 10
 240
 15
 170

 写成点分十进制形式:
 10
 240
 15
 170

11000001 00100000 11011000 00001001

(一) IPv4地址

P141

2.IP地址的分类

①固定位: _____

②第一个十进制的范围: _____

③网络号占_____位, 主机号占_____位

④能容纳最多的主机个数:_____

(一) IPv4地址

总结下

IP 地址类型	二进制 固定最高位	二进制 网络位	二进制 主机位	每个网络中最多 可容纳主机数					
A类	0	8位	24 位	$1\sim 126$	$2^{24}-2$				
B类	10	16位	16 位	$128.0 \sim 191.255$	2 ¹⁶ -2				
C类	110	24 位	8 位	28-2					
D类	1110	组播地址							
E类	11110		保留地址						

(一) IPv4地址

3.特殊的IP地址

▶说明:特殊地址不能分配给普通主机使用

	特点	举例
网络地址	网络号不变,主机号全为0 用于标识主机所在的网络	192.168.10.20 的网络地址为:192.168.10.0
广播地址	网络号不变,主机号全为1 用于同时向网络中所有主机发送数据	192.168.10.20 的广播地址为:192.168.10.255
环回地址	127开头的IP地址 用于对本地回路测试	127.0.0.1

1.配置一个网络教室的IP地址时,教师机的IP地址192.168.8.254,学生机设置的IP地址合适的是()。

A.192.168.8.10

B.127.0.0.1

C.192.168.8.254

D.255.255.255.0

2.在给主机设置IP地址时,哪一个能使用()。

A.29.9.255.15

B.127.21.19.109

C.192.5.91.255

D.220.103.256.56

3.某计算机的IP地址为:130.168.10.25。以下代表网络地址的是()。

A.网络地址为130.168.0.0

B.网络地址为130.0.0

C.网络地址为130.168.10.0

D.网络地址为130.168.255.255

1.子网划分的含义

2.子网划分的方法

> 两级结构变三级结构

▶借用n位来划分子网,则可以划分出<mark>2</mark>个子网;主机号剩余m位,则该子网最多容纳2^m-2台主机

3.子网掩码

▶取值:网络号和子网号全部为1,主机号全部为0

▶表示:

地址类型		(默认)子网持	点分十进制	网络前缀		
A类地址	11111111	00000000	00000000	00000000	255.0.0.0	/8
B类地址	11111111	11111111	00000000	00000000	255.255.0.0	/16
C类地址	11111111	11111111	11111111	00000000	255.255.255.0	/24

(2021下·初中)某学校申请到一个C类IP地址,需要设置若干个不同的子网便于管理,其中最大的一个子网有14台计算机,每个子网在一个网段中,若子网掩码是255.255.255.240,可设置的子网数是()。

- **A.5**
- B.7
- C.14
- D.21

(二)子网技术

◆求网络地址:IP地址与子网掩码进行"按位与"

【例1】已知IP地址为168.16.16.51,子网掩码为255.255.0.0,求其网络地址。

【例2】已知IP地址为168.16.16.51,子网掩码为255.255.255.0,求其网络地址。

(2018下·高中)已知某主机的IP地址是132.12.87.23,子网掩码是255.255.192.0,则该主机的网络地址是()。

A.132.12.64.0

B.255.255.0.0

C.132.12.87.0

D.255.255.64.0

(2017下·高中)某学校有三栋楼如图所示,计划使用"192.168.1.0/24"号段作为各设备的IP地址组建校园网络,每栋楼设置一个VLAN。其中,给教学楼分配100个IP地址,办公楼和实验楼各分配60个IP地址。下列选项中可以作为实验楼子网的网络地址和子网掩码的是()。

A.192.168.1.0 255.255.255.0

B.192.168.1.64 255.255.255.128

C.192.168.1.128 255.255.255.128

D.192.168.1.192 255.255.255.192

办公楼

实验楼

教学楼

IPv6地址的表示方法

➤二进制:128b

▶十六进制:冒号十六进制(每16位1组,共8组,用":"隔开)

▶简化书写:连续的0可以用::代替,但只允许出现一次

0:0:0:0:0:0:0:1 ::1

✓ 包含IPv4

• IPv4地址61.1.133.1包含在IPv6地址中时表示为0:0:0:0:0:0:61.1.133.1,或者是::61.1.133.1

(2018上·初中)IPv6解决了地址资源不足的问题,将IP地址空间扩展到()。

A.32位

B.64位

C.128位

D.256位

(2018上·高中)下列关于IPv6地址描述正确的是()。

A.IPv6采用主机地址自动配置

B.IPv4地址存放在IPv6地址的高32位

C.IPv6地址为256位,解决了地址资源不足的问题

D.IPv4地址中包容了IPv6地址,从而可保证地址向前兼容

◆作用:网络内部寻址时,使用MAC地址

1.MAC地址的表示

➤ 二进制: 48b

▶十六进制: (每8位为1组,共6组,用"-"或":"隔开)

	组织唯一标识符(OUI) (由IEEE的注册管理机构分配)											网络接口标识符 (由获得OUI的厂商自行随意分配)													
\(\text{\tau}\)	第一字节 第二字节				*\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	第三字节					第四字节		第四字节			第	第五字节		第六字节		5 ;				
	b7 b	6 b5 b	4 b3 b	2 b1 b0	b7 I	b6 b5 b	4 b3	b2 b1 b	b7 b	6 b5	b4 b3	3 b2 b1	ь0 b	7 b6	b5 b4	b3 b	2 b1 b	b7 b	6 b5 l	04 b3 l	o2 b1	b0 b7	b6 b5	b4 b3	b2 b1 t
十六进制		X		X	1	X		X		X	-	X)	K	1	X		X		X		X		X

标准表示法: XX-XX-XX-XX-XX

例如: 00-0C-CF-93-8C-92

其他表示法: XX:XX:XX:XX:XX:XX

例如: 00:0C:CF:93:8C:92

(2018下·初中)下列选项中属于MAC地址的是()。

A.192.168.0.1

B.10-67-08-A2

C.210.22.114.12

D.00-32-07-0A-A6-33

(四)物理地址

2.MAC地址与IP地址对比

- (1)可变性不同:IP可变(但唯一),MAC不变
- (2)长度不同:32位,48位
- (3)分配依据不同:拓扑,厂商
- (4)寻址协议层不同:网络层,数据链路层

(2022下·高中)请分别说明IP地址和MAC地址在OSI参考模型中的工作层名称、地址属性及二进制位数。

【参考答案】

IP地址工作在OSI参考模型的网络层;是Internet中主机的地址,由网络号和主机号共同组成,会跟随所处的网络不同而发生改变;二进制位数为32位。

MAC地址工作在OSI参考模型的数据链路层;是固化在网卡中的地址,是固定不变的,主要用来标识主机所在的位置;二进制位数为48位。

(五)~(六)

ら粉筆

(五)地址解析协议

➤ ARP:将IP地址转为MAC地址

➤ RARP:将MAC地址转为IP地址

(六)网际控制报文协议(ICMP)

1.作用:提供主机或路由器异常的报告

2.ICMP报文的种类

(1) 查询报文: Ping查询

(2)差错报文

二、传输层协议

ら粉筆

- (一)传输控制协议(TCP)
 - ▶特点:面向连接、可靠的、重质量的

- (二)用户数据报协议(UDP)
 - ▶特点:面向非连接、不可靠的、重速度的

(2022上·初中)请简要回答TCP/IP协议中传输层的功能及两种主要协议。

【参考答案】

- (1)传输层的功能是向用户提供透明的、端到端的数据传输,使得用户无须了解网络传输的细节,就能获得相对稳定的数据传输服务。
- (2)两个传输层协议:传输控制协议(TCP)和用户数据报协议(UDP)。其中,TCP是面向连接的、提供可靠服务的协议;UDP则是无连接的,它提供高效但低可靠性的服务

三、应用层协议及服务

- (一) DNS服务
 - ➤IP和DNS 对应
 - ▶功能:提供域名和IP地址的转换

```
C:\Users\SZZ\ping www.fenbi.com
    Ping www.fenbi.com [60.205.108.1391 具有 32 字节的数据:
    60.205.108.139
                     复: 字节=32 时间=8ms TTL=128
                 的回复: 字节=32 时间=14ms TTL=128
    60.205.108.139
    60.205.108.139 的回复: 字节=32 时间=11ms TTL=128
    60.205.108.139 的回复:字节=32 时间=14ms TTL=128
60.205.108.139 的 Ping 统计信息:
                     已接收 = 4, 丢失 = 0 (0% 丢失),
                             = 11ms
```


1.域名结构

域名	国家或地区	域名	机构类别
.cn	中国	.gov	政府机构
.hk	香港	.edu	教育机构
.tw	台湾	.com	商业机构
.us	美国	.mil	军事部门
.uk	英国	.int	国际组织
.jp	日本	.org	社会组织

2.主机域名

▶格式:四级域名.三级域名.二级域名.顶级域名

P152

3.域名解析

▶作用:实现域名和IP地址的映射

(一) DNS服务

(2019上·初中)请简要回答计算机网络中DNS的含义及其作用。

【参考答案】

DNS即域名系统。

DNS的作用就是把便于人们记忆和使用的域名转换成对应的IP地址。

1.WWW的相关概念

- (1)HTML(超文本标记语言)、Web (2)超文本和超链接 (3)HTTP:超文本传输协议
- (4)统一资源定位符URL 协议名://<主机名:端口号>/<文件路径>
 - ✓ 协议名: http、ftp、telnet
 - ✓ 主机名:域名或IP地址均可
 - ✓ 端口号:http (80)、ftp (20和21)、telnet (23)
 - ✓ 文件路径:资源存放的位置。缺省文件名一般为index.htm

https://www.fenbi.com/page/download

2.WWW服务的工作过程

>用户请求,浏览器传达,服务器响应

(2016下·初高中) OSI参考模型说TCP/IP模型的关系对应如图所示,在TCP/IP 四层模型中, HTTP(超文本传输协议)工作位于()。

OSI参考模型	TCP/IP参考模型
应用层	
表示层	应用层
会话层	
传输层	传输层
网络层	网络层
数据链路层	网络接口层
物理层	网络按口层

A.传输层

B.应用层

C.网络层

D.网络接口层

◆FTP(文件传输服务)

1.相关概念

(1)用户代理(UA):发送和接收邮件的程序

(2)邮件服务器:总称,是一个系统

(3)电子邮件地址:<用户字符组合或代码>@<服务器供应商>

(4)电子邮件协议

✓ SMTP:负责发送

✓ POP3:负责接收

✓ IMAP:负责接收

开启服务: POP3/SMTP服务 (如何使用 Foxmail 等软件收发邮件?)

IMAP/SMTP服务 (什么是 IMAP, 它又是如何设置?)

(四)电子邮件服务

2.工作过程

(2022上·高中)SMTP属于TCP/IP协议体系结构中的哪一层?请列出其通信的三个阶段。

【参考答案】

- (1)应用层;
- (2)SMTP的通信有以下三个阶段:①连接建立②邮件传送③连接释放

(五)远程登录服务(TELNET)

(五)~(六)

- (六)动态主机配置协议(DHCP)
 - ▶ 含义:集中的管理、分配IP地址,使网络环境中的主机动态的获得IP地址、网关地址、DNS服务器 地址等信息,并能够提升地址的使用率。

▶分配方式

- (1)自动分配方式
- (2) 动态分配方式
- (3) 手工分配方式

(2019上·高中)请简要回答何为DHCP以及DHCP服务器为客户机分配IP地址的方式。

【参考答案】

- (1) DHCP 是动态主机配置协议,主要作用是集中管理、分配IP 地址,使网络环境中的主机动态地获得IP 地址、网关地址、DNS 服务器地址等信息,并能够提升地址的使用率。
- (2) DHCP 服务器为主机分配IP 地址的方式有自动分配方式、动态分配方式和手工分配方式三种。

有疑问没?等你吖

下节内容

Fb	

第四节	数据通信技术	158
第五节	局域网技术及网络故障排查 P158 ~ P181	168
第六节	信息安全	179

Fb 粉笔 數师

