Bag ම 8මකම් අවර්යව/ආඥාර വളിവന്ത്രമാത്രപ്പെട്ടു/All Rights Reserved]

(තව තිඊදේශය/புதிய பாடத்திட்டம்/New Syllabus)

NEW

අධායන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

්සංයුක්ත ගණිතය

இணைந்த கணிதம்

Combined Mathematics

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

- $11.(a) \ f(x) = x^2 + px + c$ හා $g(x) = 2x^2 + qx + c$ යැයි ගනිමු; මෙහි $p, q \in \mathbb{R}$ හා c > 0 වේ. f(x) = 0 හා g(x) = 0 සඳහා a පොදු මූලයක් ඇති බව දී ඇත. a = p q බව පෙන්වන්න. p හා q ඇසුරෙන් c සොයා,
 - (i) p > 0 නම් p < q < 2p බව,
 - (ii) f(x) = 0 හි විවේචකය $(3p 2q)^2$ බව

අපෝගනය කරන්න.

eta හා γ යනු පිළිවෙළින් f(x)=0 හි හා g(x)=0 හි අනික් මූල යැයි ගනිමු. $eta=2\gamma$ බව පෙන්වන්න. නව ද eta හා γ මූල වන වර්ගජ සමීකරණය $2x^2+3(2p-q)x+(2p-q)^2=0$ මගින් දෙනු ලබන බව පෙන්වන්න.

(b) $h(x) = x^3 + ax^2 + bx + c$ ගැයි <mark>ගනිමු;</mark> මෙහි $a, b, c \in \mathbb{R}$ වේ. $x^2 - 1$ යන්න h(x) හි සාධකයක් බව දී ඇත. b = -1 බව පෙන්වන්න.

h(x) යන්න x^2-2x මගින් බෙදූ විට ශේෂය 5x+k බව ද දී ඇත; මෙහි $k\in\mathbb{R}$ වේ. k හි අගය සොයා h(x) යන්න $(x-\lambda)^2$ $(x-\mu)$ ආකාරයෙන් ලිවිය හැකි බව පෙන්වන්න; මෙහි $\lambda,\,\mu\in\mathbb{R}$ වේ.

12.(a) පියානෝ වාදකයින් පස්දෙනකු, ගිටාර් වාදකයින් පස්දෙනකු, ගායිකාවන් තුන්දෙනකු හා ගායකයින් හත්දෙනකු අතුරෙන් හරියටම් පියානෝ වාදකයින් දෙදෙනකු ද අඩු තරමින් ශිටාර් වාදකයින් හතරදෙනකු ද ඇතුළත් වන පරිදි සාමාජිකයන් එකොළොස්දෙනකුගෙන් සමන්විත සංගීත කණ්ඩායමක් තෝරා ගැනීමට අවශාව ඇත. තෝරා ගත හැකි එවැනි වෙනස් සංගීත කණ්ඩායම් ගණන සොයන්න.

මේවා අතුරෙන් හරියටම ගායිකාවන් දෙදෙනකු සිටින සංගීත කණ්ඩායම් ගණන ද සොයන්න.

(b) $r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{3r-2}{r(r+1)(r+2)}$ හා $V_r = \frac{A}{r+1} - \frac{B}{r}$ යැයි ගනිමු; මෙහි $A, B \in \mathbb{R}$ වේ.

 $r \in \mathbb{Z}^+$ සඳහා $U_r = V_r - V_{r+1}$ වන පරිදි A හා B හි අගයන් සොයන්න.

ඒ නයින්, $n\in\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r=rac{n^2}{(n+1)(n+2)}$ බව පෙන්වන්න.

 $\sum_{r=1}^{\infty} U_r$ අපරිමිත ශ්රණීය අභිසාරී බව පෙන්වා එහි ඓකාස සොයන්න.

 c_l න්, $r \in \mathbb{Z}^+$ සඳහා $W_r = U_{r+1} - 2U_r$ යැයි ගනිමු. $\sum_{r=1}^n W_r = U_{n+1} - U_1 - \sum_{r=1}^n U_r$ බව පෙන්වන්න.

 $\sum_{r=1}^{\infty}W_{r}$ අපරිමිත ශ්ල්ණිය අභිසාරී බව **අපෝගනය** කර එහි ඓකාස සොයන්න.

[අවවැති පිටුව බලන්න.

$$\mathbf{13.}(a) \ \mathbf{A} = \left(egin{array}{ccc} a+1 & 0 \\ 1 & 1 \\ 0 & 1 \end{array}
ight), \ \mathbf{B} = \left(egin{array}{ccc} 1 & 0 \\ 0 & 1 \\ a & 2 \end{array}
ight)$$
 හා $\mathbf{C} = \left(egin{array}{ccc} a & 1 \\ a & 2 \end{array}
ight)$ යාැයි ගනිමු; මෙහි $a \in \mathbb{R}$ වේ.

 $\mathbf{A}^\mathsf{T}\mathbf{B}-\mathbf{I}=\mathbf{C}$ බව පෙන්වන්න; මෙහි \mathbf{I} යනු ගණය $\mathbf{2}$ වන ඒකක නහාසය වේ.

 ${f C}^{-1}$ පවතින්නේ a
eq 0 ම තම් පමණක් බව ද පෙන්වන්න.

දැන්, a=1 යැයි ගනිමු. ${\bf C}^{-1}$ ලියා දක්වන්න.

CPC = 2I + C වන පරිදි P නසාසය සොයන්න.

- (c) $1+\sqrt{3}i$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r>0 හා $0<\theta<\frac{\pi}{2}$ වේ. $(1+\sqrt{3}i)^m(1-\sqrt{3}i)^n=2^8$ බව දී ඇත; මෙහි m හා n ධන නිඛිල වේ. ද මුවාවර් පුමේයය යෙදීමෙන්, m හා n හි අගයන් නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබා ගන්න.
- 14.(a) $x \neq 3$ සඳහා $f(x) = \frac{x(2x-3)}{(x-3)^2}$ යැයි ගනිමු.

f(x) හි වසුත්පන්නය, f'(x) යන්න $x \neq 3$ සඳහා $f'(x) = \frac{9(1-x)}{(x-3)^3}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ඒ තයින්, f(x) වැඩි වන පුාන්තරය හා f(x) අඩු වන පුාන්තර සොයන්න.

f(x) හි හැරුම් ලක්ෂායේ ඛණ්ඩාංක ද සොයන්න.

$$x \neq 3$$
 සඳහා $f''(x) = \frac{18x}{(x-3)^4}$ බව දී ඇත.

y=f(x) හි පුස්තාරයේ නතිවර්තන ලක්ෂායේ බණ්ඩාංක සොයන්න.

ස්පර්ශෝන්මුඛ, හැරුම් ලක්ෂාය හා නතිවර්තන ලක්ෂාය දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අදින්න.

(b) යාබද රූපයෙන් දූවිලි එකතු කරනයක මීට රහිත කොටස දැක්වේ. සෙන්ටිමීටරවලින් එහි මාන රූපයේ දැක්වේ. එහි පරිමාව x^2h cm³ යන්න 4500 cm³ බව දී ඇත. එහි පෘෂ්ඨ වර්ගඵලය S cm² යන්න $S = 2x^2 + 3xh$ මගින් දෙනු ලැබේ. S අවම වන්නේ x = 15 වන වීට බව පෙන්වන්න.

[තවවැකි පිටුව බලත්ත.

15.(a) සියලු $x \in \mathbb{R}$ සඳහා $x^3 + 13x - 16 = A(x^2 + 9)(x + 1) + B(x^2 + 9) + 2(x + 1)^2$ වන පරිදි A හා B නියන පවතින බව දී ඇත.

A හා B හි අගයන් සොයන්න.

ජ කයින්,
$$\frac{x^3 + 13x - 16}{(x+1)^2(x^2+9)}$$
 යන්න හින්න භාගවලින් ලියා දක්වා,

- (b) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int\limits_0^1 e^x \sin^2 \pi x \,\mathrm{d}x$ අගයන්න.
- (c) a නියනයක් වන $\int\limits_0^a f(x)\,\mathrm{d}x=\int\limits_0^a f(a-x)\,\mathrm{d}x$ සූනුය භාවිතයෙන්,

$$\int_{0}^{\pi} x \cos^{6} x \sin^{3} x dx = \frac{\pi}{2} \int_{0}^{\pi} \cos^{6} x \sin^{3} x dx$$
 බව පෙන්වන්න.

ඒ කයින්,
$$\int_{0}^{\pi} x \cos^6 x \sin^3 x \, \mathrm{d}x = \frac{2\pi}{63}$$
 බව පෙන්වන්න.

16. $A \equiv (1, 2)$ හා $B \equiv (3, 3)$ ගැයි ගතිමු.

A හා B ලක්ෂා තරහා යන I සරල රේඛාවේ සමිකරණය සොයන්න.

එක එකක් l සමග $\frac{\pi}{4}$ ක සුළු කෝණයක් සාදමින් A හරහා යන l_1 හා l_2 සරල රේඛාවල සමීතරණ සොයන්න.

l මත පීනෑම ලක්ෂායක බණ්ඩාංක (1+2t,2+t) ආකාරයෙන් ලිවිය හැකි බව පෙන්වත්න; මෙහි $t\in \mathbb{R}$ වේ.

 l_1 හා l_2 යන දෙකම ස්පර්ශ කරන හා කේන්දය l මත වූ මුළුමනින්ම පළමුවන වෘත්ත පාදකයේ පිහිටන අරය $\frac{\sqrt{10}}{2}$ වන, C_1 වෘත්තයේ සමීකරණය $x^2+y^2-6x-6y+\frac{31}{2}=0$ බව ද පෙන්වන්න.

විෂ්කම්භයක අන්ත A හා B වූ C_2 වෘත්තයේ සමීකරණය ලියා දක්වන්න.

 C_1 හා C_2 වෘත්ත පුලම්බව ඡේදනය වේ දැයි නිර්ණය කරන්න.

[දහවැනි පිටුව බලන්න.

- 17. (a) $\sin A$, $\cos A$, $\sin B$ හා $\cos B$ ඇසුරෙන් $\sin (A-B)$ ලියා දක්වන්න.
 - (i) $\sin(90^{\circ} \theta) = \cos\theta$, so
 - (ii) $2\sin 10^\circ = \cos 20^\circ \sqrt{3}\sin 20^\circ$
 - බව **අපෝගනය** කරන්න.
 - (b) සුපුරුදු අංකනයෙන්, ABC ති්කෝණයක් සඳහා **සයින් නීතිය** පුකාශ කරන්න.

රූපයේ දක්වා ඇති ABC තිකෝණයේ $A\hat{B}C=80^\circ$ හා $A\hat{C}B=20^\circ$ වේ. D ලක්ෂාය BC මත පිහිටා ඇත්තේ AB=DC වන පරිදි ය. $A\hat{D}B=\alpha$ යැයි ගනිමු.

පුදුසු තුිකෝණ සඳහා **සගින් නීතිය** භාවිතයෙන්, $\sin 80^\circ \sin (\alpha - 20^\circ) = \sin 20^\circ \sin \alpha$ බව පෙන්වන්න. $\sin 80^\circ = \cos 10^\circ$ වන්නේ ඇයිදැයි පැහැදිලි කර, ඒ නයින්, $\tan \alpha = \frac{\sin 20^\circ}{\cos 20^\circ - 2\sin 10^\circ}$ බව පෙන්වන්න. ඉහත (a)(ii) හි පුතිඵලය භාවිතයෙන් $\alpha = 30^\circ$ බව අපෝගනය කරන්න.

(c) $\tan^{-1}(\cos^2 x) + \tan^{-1}(\sin x) = \frac{\pi}{4}$ සමීකරණය විසඳන්න.

