

Universidade Federal de Uberlândia Faculdade de Engenharia Elétrica Sistemas de Controle Professor Éder Alves de Moura

Roteiro 07

Aluno: Renzo Prats Silva Souza

Matrícula: 11921ECP004

Uberlândia

$$2.0(C(s)) = \frac{5}{5(s+5)} = \frac{1}{5} - \frac{1}{5+5} \Rightarrow C(6) = 1 - e^{-5t}$$

$$T=\frac{1}{5}$$
, $T_{7}=\frac{2}{2}=\frac{2}{5}=0.44$ $T_{5}=\frac{4}{5}=0.8$

$$b)(c(s)) = \frac{20}{5(S+20)} = \frac{1}{5(S+20)} =$$

$$T = \frac{1}{20}$$
 $T_R = \frac{2}{2} = \frac{9}{11}$ $T_S = \frac{4}{20} = \frac{9}{20}$

8.		Polos	Zeron	c(t).
	0)	Polos		A+Bett
	Qy)	-3,-6		A+Be+cet
	C)	-10,-20	-7	AtBe tce
	9)1-	3+131/15), (-3-131/15)		A+Be-36 (3715t+4)
	(le	j3,-33	-Z,	A+Bcos(3++4)
	fl	-10, -10	-5	AtBétt + Cté 10t

$$\frac{x(s)}{T^2(s)} = \frac{1}{Ms^2 + fvs + Ks} = \frac{1}{s^2 + s + 5}$$

$$X(c) = \frac{1}{5(5^{2}+5+5)} = \frac{1}{5} - \frac{1}{5} + \frac{1}{5}$$

$$= \frac{1}{5}(5+\frac{1}{2}) + \frac{1}{5} + \frac{1}{9}$$

$$= \frac{1}{5}(5+\frac{1}{2})^{2} + \frac{19}{9}$$

$$\chi(t) = \frac{1}{6} - \frac{1}{5} e^{-0.50} (\cos \frac{\pi}{3} t + \frac{1}{119} \cos \frac{\pi}{3} t)$$

26.
$$T(s) = (1,07s^2 + 1,53s)\Theta_1(s) - 1,53\Theta_2(s)$$

0 = 1,53 $\Theta_1(s) + (1,53s+1,92)\Theta_2(s)$

$$\theta_{2}(s) = \frac{(1,07s^{2}+1,63s)}{-1,63s} = \frac{0,935T(s)}{5^{2}+1,25s+1,79}$$

$$\frac{\Theta_2(5)}{T(5)} = \frac{0,935}{5^2+1,255+1,98}$$

20.		, ,		1	, , , , ,
$ \omega_{\alpha}$	٤	Wm	Ts	Tp	1.03
a) 16 1/2	0,375	4	4=2,667	0,84725	28,06%
b) 0,047/2	0,05	0,2	400s	15,932	85,45%
6) 1,05·10971	15 0/297	3240	۵,0055	0,0015	44,921
To	L'		W.		3
0) 0,3565				ξ'	
b) 5,265 c) 3,88,10	-45				

$$\frac{-\ln[7.05]}{100} = 0,56; \omega_{m} = \frac{4}{1,92}$$

$$\frac{-\ln[7.05]}{100} = 0,56; \omega_{m} = \frac{4}{5}$$

$$\frac{-\ln[7.05]}{100}$$

$$\frac{-\ln[7.05]}{100} = 0,56; \omega_{m} = \frac{4}{5}$$

$$\frac{-\ln[7.05]}{100} = 0,56; \omega_{m} = \frac{4}{1,00} = 0,56; \omega_{m} = \frac{4}{1,92}$$

$$\frac{-\ln[7.05]}{100} = 0,56; \omega_{m} = \frac{4}{1,00} = 0,56; \omega_{m} = \frac{4}{1,00} = 0,57; \omega_{m} = 0,57;$$

$$\frac{X(s)}{F(s)} = \frac{1/5}{s^2 + s + 28/5}$$