LAB EXERCISE - MPLS

By: Arturo Cortés Sánchez

A. CONFIGURATION OF IP ADRESSES OF ROUTERS AND INTERFACES

B. RUNNING OSPF

```
R1#traceroute 5.5.5.5 source 1.1.1.1

Type escape sequence to abort.

Tracing the route to 5.5.5.5

1 10.0.12.2 768 msec 260 msec 20 msec
2 10.0.24.2 1176 msec 184 msec 48 msec
3 10.0.45.2 1696 msec 764 msec 316 msec
```

```
Type escape sequence to abort.
Tracing the route to 3.3.3.3

1 10.0.24.2 4 msec 484 msec 120 msec
2 10.0.34.1 412 msec 200 msec 48 msec
```

C. BASIC MPLS CONFIGURATION

```
R1(config)#ip cef
R1(config)#int e0/0
R1(config-if)#mpls ip
R1(config-if)#e
```

D. VERIFY MPLS/LDP SETUP

I've done the tests on all the routers, but for the sake of brevity I'm only going to put those on router 2:

```
R2#sh ip route 5.5.5.5

Routing entry for 5.5.5.5/32

Known via "ospf 1", distance 110, metric 21, type intra area
Last update from 10.0.24.2 on Ethernet0/1, 00:58:18 ago
Routing Descriptor Blocks:

* 10.0.24.2, from 5.5.5.5, 00:58:18 ago, via Ethernet0/1
Route metric is 21, traffic share count is 1
```

```
R2#show mpls forwarding-table
Local Outgoing
                 Prefix
                                  Bytes tag Outgoing
                                                       Next Hop
      tag or VC or Tunnel Id
                                 switched interface
tag
      Pop tag 1.1.1.1/32
18 3.3.3.3/32
Pop tag 4.4.4/32
16
                                  0
                                            Et0/0
                                                       10.0.12.1
                                           Et0/1
17
                                  0
                                                       10.0.24.2
                                            Et0/1
                                                      10.0.24.2
18
                                  0
19
    19
                5.5.5.5/32
                                 0
                                            Et0/1
                                                     10.0.24.2
      Pop tag 10.0.45.0/30
Pop tag 10.0.34.0/30
                                                      10.0.24.2
20
                                 0
                                             Et0/1
21
                                 0
                                             Et0/1
                                                       10.0.24.2
22
                10.0.35.0/30
                                                       10.0.24.2
      22
                                             Et0/1
```

```
R2#show mpls forwarding-table 10.0.45.0 detail
Local Outgoing
                  Prefix
                                  Bytes tag Outgoing
                                                         Next Hop
      tag or VC
                  or Tunnel Id
                                   switched interface
tag
                  10.0.45.0/30
20
                                              Et0/1
                                                         10.0.24.2
      Pop tag
                                   0
       MAC/Encaps=14/14, MRU=1504, Tag Stack{}
       CC0001660001CC03016600018847
       No output feature configured
    Per-packet load-sharing
```

Here we can see the explanation of an exact connection, with more details than the previous command.

```
R2#show mpls interfaces
Interface
                                 Tunnel
                                         Operational
                    ΙP
Ethernet0/0
                    Yes (ldp)
                                 No
                                         Yes
Ethernet0/1
                    Yes (ldp)
                                No
                                         Yes
Ethernet0/2
                    Yes (1dp)
                                 No
                                         Yes
```

E. CHECK PATHS

```
R1#traceroute 5.5.5.5

Type escape sequence to abort.

Tracing the route to 5.5.5.5

1 10.0.12.2 [MPLS: Label 19 Exp 0] 152 msec 120 msec 68 msec 2 10.0.24.2 [MPLS: Label 19 Exp 0] 184 msec 64 msec 84 msec 3 10.0.45.2 120 msec 76 msec 68 msec
```

The packets take the expected path: R1 - R2 - R4 - R5. And it appears the label of MPLS in the traceroute, for noting that MPLS was used while forwarding

F. CONFIGURE BASIC TRAFFIC ENGINEERING

I. ENABLE TRAFFIC ENGINEERING FOR THE ROUTING PROTOCOL

```
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#router ospf 1
R2(config-router)#mpls traffic-eng area 0
R2(config-router)#mpls traffic-eng router-id loopback0
R2(config-router)#exit
```

II. ENABLE TRAFFIC ENGINEERING CAPABILITIES

```
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#mpls traffic-eng tunnels
R2(config-if)#mpls traffic
R2(config-if)#mpls traffic-eng tunnels
R2(config-if)#e
R2(config-if)#e
R2(config-if)#mpls traffic-eng tunnels
R2(config-if)#mpls traffic-eng tunnels
R2(config-if)#e
R2(config-if)#e
R2(config-if)#mpls traffic-eng tunnels
R2(config-if)#mpls traffic-eng tunnels
R2(config-if)#mpls traffic-eng tunnels
R2(config-if)#mpls traffic-eng tunnels
R2(config-if)#e
R2(config-if)#e
```

III. ENABLE RSVP

R4(config-if)#e

```
R2(config)#in e0/1
R2(config-if)#ip rsvp bandwidth 64
R2(config-if)#e

R4(config)#in e0/1
R4(config-if)#ip rsvp bandwidth 64
```

IV. SET UP TUNNEL TO BE USED FOR TE

```
R1(config)#interface tunnel1
R1(config-if)#no sh
R1(config-if)#mpls ip
R1(config-if)#ip unnumbered loopback0
R1(config-if)#no ip directed-broadcast
R1(config-if)#tunnel destination 5.5.5.5
R1(config-if)#tunnel mode mpls traffic-eng
R1(config-if)#tunnel mpls traffic-eng autoroute announce
R1(config-if)#tunnel mpls traffic-eng priority 5
R1(config-if)#tunnel mpls traffic-eng bandwidth 256
R1(config-if)#tunnel mpls traffic-eng path-option 2 dynamic
```

```
R5(config)#interface tunnel1
R5(config-if)#
R5(config-if)#no sh
R5(config-if)#mpls ip
R5(config-if)#ip unnumbered loopback0
R5(config-if)#no ip directed-broadcast
R5(config-if)#tunnel destination 1.1.1.1
R5(config-if)#tunnel mode mpls traffic-eng
R5(config-if)#tunnel mpls traffic-eng autoroute announce
R5(config-if)#tunnel mpls traffic-eng priority 5
R5(config-if)#tunnel mpls traffic-eng bandwidth 256
R5(config-if)#tunnel mpls traffic-eng path-option 2 dynamic
R5(config-if)#e
```

```
Name: R1_t1 (Tunnel1) Destination: 5.5.5.5

Status:

Admin: up Oper: down Path: not valid Signalling: Down path option 2, type dynamic

Config Parameters:

Bandwidth: 256 kbps (Global) Priority: 5 5 Affinity: 0x0/0xFFFF Metric Type: TE (default)

AutoRoute: enabled LockDown: disabled Loadshare: 256 bw-based auto-bw: disabled
```

```
History:
Tunnel:
Time since created: 3 minutes, 59 seconds
```

There are no differences, so the route will be the same

```
R1#traceroute 5.5.5.5 source 1.1.1.1

Type escape sequence to abort.

Tracing the route to 5.5.5.5

1 10.0.12.2 [MPLS: Label 19 Exp 0] 192 msec 72 msec 84 msec
2 10.0.24.2 [MPLS: Label 19 Exp 0] 60 msec 64 msec 72 msec
3 10.0.45.2 64 msec 56 msec 60 msec
```

```
R2(config)#int e0/2
R2(config-if)#ip rsvp bandwidth 64
R2(config-if)#e

R3(config)#in e0/2
R3(config-if)#ip rsvp bandwidth 64
R3(config-if)#e
```

V. SET UP EXPLICIT PATH TUNNEL

```
R1(config)#int tunnel2
R1(config-if)#mpls ip
R1(config-if)#ip unnumbered loopback0
R1(config-if)#tunnel destination 5.5.5.5
R1(config-if)#tunnel mode mpls traffic-eng
R1(config-if)#tunnel mpls traffic-eng autoroute announce
R1(config-if)#tunnel mpls traffic-eng priority 2
R1(config-if)#tunnel mpls traffic-eng bandwidth 256
R1(config-if)#tunnel mpls traffic-eng path-option 1 explicit name MyPath
R1(config-if)#ip explicit-path name MyPath enable
R1(cfg-ip-expl-path)#next-address 2.2.2.2
Explicit Path name MyPath:
    1: next-address 2.2.2.2
R1(cfg-ip-expl-path)#next-address 3.3.3.3
Explicit Path name MyPath:
    1: next-address 2.2.2.2
    2: next-address 3.3.3.3
R1(cfg-ip-expl-path)#next-address 4.4.4.4
Explicit Path name MyPath:
    1: next-address 2.2.2.2
    2: next-address 3.3.3.3
    3: next-address 4.4.4.4
R1(cfg-ip-expl-path)#next-address 5.5.5.5
Explicit Path name MyPath:
```

```
1: next-address 2.2.2.2
2: next-address 3.3.3.3
3: next-address 4.4.4.4
4: next-address 5.5.5.5
R1(cfg-ip-expl-path)#exi
```

R1#sh ip int br		
Interface	IP-Address	OK? Method Status
Protocol		
Ethernet0/0	10.0.12.1	YES manual up up
Ethernet0/1	unassigned	YES unset administratively down down
Ethernet0/2	unassigned	YES unset administratively down down
Ethernet0/3	unassigned	YES unset administratively down down
Loopback0	1.1.1.1	YES manual up up
Tunnel1	1.1.1.1	YES TFTP administratively down down
Tunnel2	1.1.1.1	YES TFTP up down

We verify that the link and routing protocol is up for the tunnel interfaces.

VI. ADDITIONAL INFO

```
![2019_12_20 11_05 Office Lens](D:\arturo\Descargas\Telegram Desktop\2019_12_20
11_05 Office Lens.jpg)R1#show ip ospf mpls traffic-eng link
            OSPF Router with ID (1.1.1.1) (Process ID 1)
  Area O MPLS TE not initialized
R1#show ip ospf database opaque-area
            OSPF Router with ID (1.1.1.1) (Process ID 1)
                Type-10 Opaque Link Area Link States (Area 0)
  LS age: 1281
  Options: (No TOS-capability, DC)
  LS Type: Opaque Area Link
  Link State ID: 1.0.0.0
  Opaque Type: 1
  Opaque ID: 0
  Advertising Router: 2.2.2.2
  LS Seq Number: 80000004
  Checksum: 0xDB62
  Length: 140
  Fragment number: 0
    MPLS TE router ID : 2.2.2.2
    Link connected to Point-to-Point network
      Link ID : 1.1.1.1
      Interface Address : 10.0.12.2
      Neighbor Address : 10.0.12.1
      Admin Metric : 10
      Maximum bandwidth: 1250000
      Maximum reservable bandwidth: 64000
```

```
Number of Priority: 8
                          Priority 1 : 64000
Priority 3 : 64000
   Priority 0 : 64000
   Priority 2 : 64000
                           Priority 5 : 64000
   Priority 4 : 64000
   Priority 6 : 64000
                             Priority 7 : 64000
   Affinity Bit : 0x0
   IGP Metric : 10
 Number of Links : 1
LS age: 1283
Options: (No TOS-capability, DC)
LS Type: Opaque Area Link
Link State ID: 1.0.0.1
Opaque Type: 1
Opaque ID: 1
Advertising Router: 2.2.2.2
LS Seg Number: 80000005
Checksum: 0xF537
Length: 132
Fragment number : 1
 Link connected to Point-to-Point network
   Link ID : 4.4.4.4
   Interface Address : 10.0.24.1
   Neighbor Address: 10.0.24.2
   Admin Metric : 10
   Maximum bandwidth: 1250000
   Maximum reservable bandwidth: 64000
   Number of Priority : 8
   Priority 0 : 64000
                           Priority 1 : 64000
   Priority 2 : 64000
                           Priority 3 : 64000
   Priority 4 : 64000
                           Priority 5 : 64000
   Priority 6 : 64000
                            Priority 7 : 64000
   Affinity Bit: 0x0
   IGP Metric: 10
 Number of Links : 1
LS age: 1034
Options: (No TOS-capability, DC)
LS Type: Opaque Area Link
Link State ID: 1.0.0.2
Opaque Type: 1
Opaque ID: 2
Advertising Router: 2.2.2.2
LS Seq Number: 80000004
Checksum: 0xAD5E
Length: 132
Fragment number: 2
 Link connected to Point-to-Point network
   Link ID : 3.3.3.3
   Interface Address : 10.0.23.1
   Neighbor Address : 10.0.23.2
   Admin Metric : 100
   Maximum bandwidth : 1250000
   Maximum reservable bandwidth: 8000
```

Number of Priority : 8

Affinity Bit : 0x0 IGP Metric : 100

Number of Links : 1