

Accelerating vHost Data Plane with DMA in the CPU

JIAYU HU, INTEL

Para-Virtual I/O

- Para-virtual I/O is a virtualization technique to enhance VM I/O performance.
- VirtIO is a standard of para-virtual I/O, which consists of VirtIO front-end in VM and backend in hypervisor. Userspace backend in DPDK is vhost-user.
- vHost-user exchanges data with front-end via copying packet buffers between DPDK and VM memory.

Copying large bulk of data takes a major part of CPU cycles and becomes hotspot inside vhost-user.

DMA Engine in the CPU

- DMA engine in Intel CPU is extremely efficient in performing memory copy.
 - No CPU intervention during data transfer.
- DMA engine in Intel CPU
 - Crystal Beach DMA (CBDMA) in Ice Lake and former CPUs.
 - Data Streaming Accelerator (DSA) in Sapphire Rapids CPUs.

 DPDK provides IOAT driver and copy API for applications to leverage CBDMA and DSA.

https://doc.dpdk.org/guides/rawdevs/ioat.html

Challenge of Using DMA Engine in vHost-User (1)

 CPU and DMA engine working in parallel can significantly improve performance. But enqueue/dequeue API is synchronous.

Ring operations and buffer copy cannot be parallelized.

Asynchronous Enqueue/Dequeue Operation

Asynchronous Operation

DMA Engine Copy buffers

- Separate ring operations and buffer copy.
- CPU and DMA engine can work in parallel.

Asynchronous Enqueue/Dequeue Operation

Engine

Asynchronous Operation

Copy buffers

 For enqueue, ownership of pkts is transferred to vhost-user.

Asynchronous Enqueue/Dequeue Operation

Asynchronous Operation

DMA Engine Copy buffers

 Users cannot reuse pkts until they are completed.

 DMA engine is inefficient in performing small copies, as a result of overhead of launching DMA engine.

Offloading all copies to DMA engine will underutilize DMA resources.

Dynamic Job Assignment

 In asynchronous operations, copies of packets are assigned to DMA engine or the CPU according to copy lengths.

 Copies whose lengths are greater than or equal to a threshold are assigned to DMA engine; others are assigned to the CPU.

 The value of threshold is decided by users according to specific platforms and usage scenarios.

DMA Engine in vHost-User

- DMA operations are abstracted as two callbacks: transfer_data, get_completed_copies.
 - Users provide callback implementations for specific DMA engines.
- Order of packets submitted to transfer_data must be the same as that of get_completed_copies returned.

DMA Engine in vHost-User

- DMA operations are abstracted as two callbacks: transfer_data, get_completed_copies.
 - Users provide callback implementations for specific DMA engines.
- Order of packets submitted to transfer_data must be the same as that of get_completed_copies returned.

DMA Engine in vHost-User

- DMA engines are **managed** by **users**.
 - Users configure/start/stop DMA engines.
- Users assign DMA engines to vhost queues.

Asynchronous APIs in vHost-User

Control plane API

- rte_vhost_async_channel_register(vid, queue_id, ..., ops)
- rte_vhost_async_channel_unregister(vid, queue_id)

Data Plane API

- rte_vhost_submit_enqueue_burst(vid, queue_id, pkts, count, ...)
- rte_vhost_poll_enqueue_completed(vid, queue_id, pkts, count)

Example of Using Asynchronous API

Asynchronous vHost-User Performance

Status and Plan

- DPDK 20.08
 - Supported asynchronous enqueue for split ring.
 - Enabled asynchronous enqueue in vhost example.
- Support asynchronous enqueue for packed ring in DPDK 21.05.
- Related references:
 - https://www.dpdk.org/wpcontent/uploads/sites/35/2018/12/JiayuHu_Accelerating_paravirtio_with_CBDMA.pdf
 - https://www.dpdk.org/wp-content/uploads/sites/35/2019/10/Asynchronous.pdf
 - https://doc.dpdk.org/guides/prog_guide/vhost_lib.html
 - https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator

Thanks

jiayu.hu@intel.com