Apunte Único: Álgebra Lineal Computacional - Práctica 2

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 05/04/25 @ 11:29

Choose your destiny:

(dobleclick en el ejercicio para saltar)

- Notas teóricas
- ⊕ Ejercicios de la guía:

1.	5.	9.	13.	17.	21 .	25.
2.	6.	10.	14.	18.	22.	
3.	7.	11.	15.	19.	23.	
4.	8.	12.	16.	20.	24.	

⊕ Ejercicios de Parciales

****??.

Esta Guía 2 que tenés se actualizó por última vez: $05/04/25 \ @ \ 11:29$

Escaneá el QR para bajarte (quizás) una versión más nueva:

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <.

Notas teóricas:

Transformaciones lineales

* Dados V y W dos K-espacio vectoriales, una $f: V \to W$ es transformación lineal si cumple:

•
$$f(v_1 + v_2) = f(v_1) + f(v_2) \quad \forall v, w \in V$$

•
$$f(\alpha \cdot v_1) = \alpha \cdot f(v_1) \quad \forall \alpha \in K, v \in V$$

* $f: K^n \to K^m$ si transformo:

$$f(x_1, \cdots, x_n) = f\left(\sum_{k=1}^n x_i \underbrace{e_i}_{\in K^{n \times 1}}\right) \stackrel{\text{TL}}{=} \sum_{k=1}^n x_i \underbrace{f(e_i)}_{\in K^{m \times 1}} = \underbrace{\left(\begin{array}{c} f(e_1) \mid \cdots \mid f(e_n) \end{array}\right)}_{A \in K^{m \times n}} \cdot \left(\begin{array}{c} x_i \\ \vdots \\ x_n \end{array}\right) = \underbrace{A \cdot x}_{\in K^{m \times 1}}$$

* Matriz de una transformación lineal:

Dados V y W dos K-espacios vectoriales y $f:V\to W$ una t.l. Sean $B=\{v_1,\cdots,v_2\}$ base de V y $B'=\{w_1,\cdots,w_m\}$ se llama matriz de la transformación lineal de la base B en la base B' a aquella matriz $[f]_{BB'}$ que satisface:

$$[f]_{BB'}[v]_B = [f(v)]_{B'} \quad \forall v \in V$$

- * Sea V un K-espacio vectorial y $B = \{v_1, \ldots, v_n\}$ base de V Podemos definir en forma única una t.l. de V en W definiendo cada $f(v_i) \in W$ con $i = 1, \ldots n$.
- * Sea $A \in K^{m \times n}$, define $f: K^n \to K^m$. El Nu(A) = $\{x \in K^n / Ax = 0\}$
- * Sea $A \in K^{m \times n}$, define $f: K^n \to K^m$. La $\operatorname{Im}(A) = \{Ax \in K^m \text{ con } x \in K^n\} = \langle c_1(A), \dots, c_n(A) \rangle$. También $\operatorname{rg}(A) = \dim(\operatorname{Im}(A))$
- * Propiedades de una transformación lineal:

Sea $f: V \to W$ una t.l. y $B = \{v_1, \ldots, v_n\}$ un conjunto de generadores de V. Entonces $\{f(v_1), \ldots, f(v_n)\}$ es un conjunto generador para la imagen de f.

- f se dice monomorfismo si es inyectiva.
- f se dice epimorfismo si es survectiva.
- f se dice isomorfismo si es mono y epi.
- * Norma Sea $||\cdot||:K^n\to\mathbb{R}\geq 0$. Entonces $||\cdot||$ es norma si cumpe:
 - 1) ||x|| > 0 y $||x|| = 0 \Leftrightarrow x = 0, x \in K^n$
 - 2) $||\alpha x|| = \alpha ||x|| \operatorname{con} \alpha \in K \text{ y } x \in K^n$
 - 3) $||x+y|| \le ||x|| + ||y|| \cos x, y \in K$
- * Ejemplos:
 - Norma 2: $||x||_2 = \sqrt{\sum_{k=0}^{n} |x_k|^2}$
 - Norma p:||x||_p = $\sqrt{\sum_{k=0}^n |x_k|^p}$
 - Norma p: $\lim_{p \to \infty} ||x||_p = \max |x_i|$

Aritmética de punto flotante:

* Escribir 0.25 en base 10:

Base 10 es obviamente nuestra base favorita:

$$\begin{cases}
0.25 \cdot 10 &= 2 + 0.5 \\
0.5 \cdot 10 &= 5 + 0 \\
0 \cdot 10 &= 0 + 0
\end{cases}
\rightarrow (0.25)_{10} = (2 \cdot 10^{-1} + 5 \cdot 10^{-2} + 0 \cdot 10^{-3} + 0)_{10} = 0.25$$

Escribir 0.25 en base 2:

$$\begin{cases} 0.25 \cdot 2 &= 0 + 0.5 \\ 0.5 \cdot 2 &= 1 + 0 \\ 0 \cdot 2 &= 0 + 0 \end{cases} \rightarrow (0.25)_2 = (0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0)_2 = 0.01$$

Escribir 0.3 en base 2:

$$\begin{cases} 0.3 \cdot 2 &= 0 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ \vdots &\vdots &\vdots \end{cases} \rightarrow (0.3)_2 = (0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0 \cdot 2^{-4} + 1 \cdot 2^{-5} + 1 \cdot 2^{-6} + 0 \cdot 2^{-7} + 0 \cdot 2^{-8} + 1 \cdot 2^{-9} + 1 \cdot 2^{-10} + 0 \cdot 2^{-11} + 0 \cdot 2^{-12} \cdots)_2 = 0.01\overline{0011}$$

Para escribir al 0.3 en base 2 voy a necesitar infinitos números en la mantisa, la máquina no puede y ahí aparecen los errores de redondeo o truncamiento.

Errores:

Tengo que un número de máquina, número posta que la máquina representa, con la notación mantisa, exponente:

En base
$$10 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 10^{exp}$$
 con $0 \le a_i \le 9(a_1 \ne 0)$
En base $2 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 2^{exp}$ con $0 \le a_i \le 1(a_1 \ne 0)$

Por ejemplo si $m=3 \implies x=0, a_1a_2a_3 \cdot 2^{exp}$. Para cada valor de exp voy a tener un total de $\begin{cases} 1 \cdot 2 \cdot 2 = 4 \\ \downarrow & \downarrow & \downarrow \\ a_1 & a_2 & a_3 \end{cases}$

posibles valores de máquina. La separación entre 2 valores x_1 y x_2 consecutivos es de 2^m , por eso para órdenes grandes la separación entre un número y otro es mayor.

Si el número real, real que quiero es x = 0.3, la máquina no puede representarlo de forma exacta. Puedo acotar el error en forma absoluta como:

$$|x - x^*| \le \frac{1}{2} \frac{1}{2^m} \cdot 2^{exp}$$

Y en forma relativa como:

$$\frac{|x - x^*|}{|x|} \le 5 \cdot 2^{-m}$$

Deducción matriz de rotación 2d (ponele):

Quiero que:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} = \underbrace{\begin{pmatrix} a \\ c \end{pmatrix} \cdot u_0}_{1} + \underbrace{\begin{pmatrix} b \\ d \end{pmatrix} \cdot v_0}_{2} = \begin{pmatrix} u_{\theta} \\ v_{\theta} \end{pmatrix}$$

En el gráfico veo lo que quiero lograr.

♠¡Aportá con correcciones, mandando ejercicios, ★ al repo, críticas, todo sirve. La idea es que la guía esté actualizada y con el mínimo de errores.

Entre el gráfico y ★¹:

$$\begin{pmatrix} a \\ c \end{pmatrix} \cdot u_0 = \begin{pmatrix} u_{x\theta} \\ u_{y\theta} \end{pmatrix} \stackrel{!}{\underset{\text{solicators}}{\rightleftharpoons}} \begin{pmatrix} u_0 \cdot \cos(\theta) \\ u_0 \cdot \sin(\theta) \end{pmatrix} \Leftrightarrow \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$

Entre el gráfico y ★²:

$$\begin{pmatrix} b \\ d \end{pmatrix} \cdot v_0 = \begin{pmatrix} v_{x\theta} \\ v_{y\theta} \end{pmatrix} \stackrel{!}{\underset{\text{solvators}}{\stackrel{!}{=}}} \begin{pmatrix} -v_0 \cdot \sin(\theta) \\ v_0 \cdot \cos(\theta) \end{pmatrix} \Leftrightarrow \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \end{pmatrix}$$

Juntando esos resultados:

$$R_{\theta} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Ejercicios de la guía:

Ejercicio 1. ②... hay que hacerlo! ⑤
Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ⑤.

Ejercicio 2. ②... hay que hacerlo! ⑥

Si querés mandá la solución → al grupo de Telegram 3, o mejor aún si querés subirlo en IATEX→ una pull request al \$\infty\$.

Ejercicio 4. \odot ... hay que hacerlo! \odot Si querés mandá la solución \rightarrow al grupo de Telegram \bigodot , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 5. ②... hay que hacerlo! ❺
Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IAT_EX→ una *pull request* al ♡.

Ejercicio 6. ②... hay que hacerlo! ♥
Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ?

Ejercicio 7. ⊕... hay que hacerlo! �
Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al •

Ejercicio 8. ②... hay que hacerlo! ❺
Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en LATEX→ una pull request al 🎧

Ejercicio 9. \odot ... hay que hacerlo! \odot Si querés mandá la solución \rightarrow al grupo de Telegram \odot , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc .

Ejercicio 10. Si querés mandá la solución \rightarrow al grupo de Telegram , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al .

Ejercicio 11. ②... hay que hacerlo! ☺️
Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ♀️.

Ejercicio 12. ②... hay que hacerlo! ♥

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IAT_EX→ una pull request al ♀

Ejercicio 13. ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IAT_EX→ una pull request al ♀.

Ejercicio 14. S... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en $ext{IATEX} o$ una $ext{pull request}$ al o.

Ejercicio 15. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en IATEXo una pull request al o.

Ejercicio 16. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $extbf{3}$, o mejor aún si querés subirlo en IATEXo una pull request al $extbf{4}$.

Ejercicio 17. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 18. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en IATEXo una pull request al o.

Ejercicio 19. S... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $rac{ extstyle d}{ extstyle d}$, o mejor aún si querés subirlo en IATEXo una pull request al $oldsymbol{Q}$.

Ejercicio 20. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ♡.

Ejercicio 21. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🕢, o mejor aún si querés subirlo en IATEX→ una pull request al 📢

Ejercicio 22. O... hay que hacerlo! 6

Si querés mandá la solución ightarrow al grupo de Telegram $rac{1}{2}$, o mejor aún si querés subirlo en IAT $_{
m EX}
ightarrow$ una pull request al $rac{1}{2}$.

Ejercicio 23. ... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en $ext{MT}_{ ext{EX}} o$ una pull request al o.

Ejercicio 24. S... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🕢, o mejor aún si querés subirlo en IATEX→ una pull request al 📢

Ejercicio 25. Sum hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en LAT $_{
m E}$ Xo una pull request al o.

