

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

5-Chloro-N'-cyclohexylidene-3-methyl-1*H*-indole-2-carbohydrazide

Mehmet Akkurt,^{a*} Muhammet Zopun,^b Gültaze Çapan^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 17 June 2013; accepted 18 June 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.004$ Å; R factor = 0.053; wR factor = 0.129; data-to-parameter ratio = 15.0.

In the title compound, $C_{16}H_{18}ClN_3O$, the cyclohexane ring adopts a distorted chair conformation. In the crystal, pairs of molecules are linked by $N-H\cdots O$ hydrogen bonds into inversion dimers, forming $R_2^2(10)$ ring motifs. These dimers are connected through $C-H\cdots N$ hydrogen bonds into chains along the a axis, forming layers parallel to (101).

Related literature

For the design, synthesis and characterization of some bioactive indole derivatives, see: Akkurt *et al.* (2009, 2010); Cihan-Üstündağ & Çapan (2012); Güzel *et al.* (2006); Kaynak *et al.* (2005). For puckering analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{lll} \text{C}_{16}\text{H}_{18}\text{CIN}_{3}\text{O} & c = 15.2380 \ (15) \ \mathring{\text{A}} \\ M_{r} = 303.78 & \alpha = 102.229 \ (7)^{\circ} \\ \text{Triclinic, } P\overline{1} & \beta = 95.732 \ (8)^{\circ} \\ a = 5.2727 \ (5) \ \mathring{\text{A}} & \gamma = 92.332 \ (7)^{\circ} \\ b = 9.7977 \ (9) \ \mathring{\text{A}} & V = 763.94 \ (13) \ \mathring{\text{A}}^{3} \end{array}$

Z=2 T=296 K Mo $K\alpha$ radiation $0.76\times0.36\times0.02$ mm $\mu=0.25$ mm⁻¹

Data collection

Stoe IPDS 2 diffractometer Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) $T_{\min} = 0.831, T_{\max} = 0.995$ 7177 measured reflections 2929 independent reflections 1684 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.065$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.129$ S = 1.012929 reflections 195 parameters H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.15 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.16 \text{ e Å}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} \hline N1 - H1 \cdots O1^{i} \\ C12 - H12B \cdots N3^{ii} \end{array} $	0.86	2.03	2.826 (3)	153
	0.97	2.59	3.476 (4)	152

Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z.

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA*; data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). This work was supported in part by the Scientific Research Projects Coordination Unit of Istanbul University (project No. 20867).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5335).

References

Akkurt, M., Çelik, Í., Cihan, G., Çapan, G. & Büyükgüngör, O. (2010). Acta Cryst. E66, 0830.

Akkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). *Acta Cryst.* E**65**, o1009–o1010.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Cihan-Üstündağ, G. & Çapan, G. (2012). Mol. Divers. 16, 525–539.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Güzel, O., Terzioğlu, N., Çapan, G. & Salman, A. (2006). *Arkivoc*, **xii**, 98–110.

Kaynak, F. B., Öztürk, D., Özbey, S. & Çapan, G. (2005). J. Mol. Struct. 740, 213–221.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2013). E69, o1137 [doi:10.1107/S1600536813016899]

5-Chloro-N'-cyclohexylidene-3-methyl-1H-indole-2-carbohydrazide

Mehmet Akkurt, Muhammet Zopun, Gültaze Çapan and Orhan Büyükgüngör

Comment

Cyclohexylidenehydrazides are of interest, both as potential intermediates for the synthesis of novel heterocyclic systems and as pharmacologically active agents. We have recently reported on the synthesis, antitituberculosis and anticancer properties of cyclohexylidenehydrazides and spirothiazolidinones with an indole core (Cihan-Üstündağ & Çapan, 2012). As a continuation of our program directed towards the design, synthesis and characterization of bioactive indole derivatives (Akkurt *et al.*, 2009, 2010; Güzel *et al.*, 2006; Kaynak *et al.*, 2005), we report here the synthesis, spectral and analytical data and crystal structure of the title compound.

In the title compound (I), (Fig. 1), the nine-membered 1*H*-indole ring (N1/C1–C8) is essentially planar with maximum deviations of 0.019 (3) Å for C3, 0.017 (3) Å for C7 and -0.017 (3) Å for C1]. The cyclohexane ring (C11–C16) of (I) adopts a distorted chair conformation [the puckering parameters (Cremer & Pople, 1975) are $Q_T = 0.508$ (4) Å, $\theta = 10.2$ (5)° and $\varphi = 193$ (2)°]. The C7–C8–C10–N2, C7–C8–C10–O1, N1–C8–C10–O1, N1–C8–C10–N2, C8–C10–N2–N3 and C10–N2–N3–C11 torsion angles are -19.5 (5), 158.3 (3), -14.4 (4), 167.7 (3), -179.6 (2) and -172.8 (3)°, respectively.

In the crystal, pairs of N—H···O hydrogen bonds link molecules into inversion dimers, with the $R^2_2(10)$ ring motifs (Table 1, Fig. 2; Bernstein *et al.*, 1995). These dimers connect to each other through C—H···N hydrogen bonds as chains along the *a* axis, forming layers parallel to the (101) plane. In the crystal structure, π - π and C—H··· π interactions were not observed.

Experimental

A mixture of 5-chloro-3-methyl-1*H*-indole-2-carbohydrazide (0.005 mol) and cyclohexanone (0.006 mol) in 15 ml of absolute ethanol was heated under reflux for 3 h. The crude product obtained on cooling was filtered and purified by recrystallization from ethanol. [Yield: 91.4%, m.p.: 505–507 K].

Refinement

H atoms bonded to C atoms were positioned geometrically with C—H = 0.93, 0.96 and 0.97 Å, and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5 U_{eq}(C)$. The H atom (H1) of the one of the two amide groups was positioned geometrically with N—H = 0.86 Å, and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(N)$. The H atom (H2A) of the other amide group was found in a difference Fourier map, restrained with N—H = 0.82 (3) Å and refined with $U_{iso} = 1.2 U_{eq}(N)$.

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acta Cryst. (2013). E69, o1137 Sup-1

Figure 1

The title molecule shown the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

View of the packing of the title compound with the N—H···O dimers, down the *b* axis. H atoms not participating in hydrogen bonding have been omitted for clarity and hydrogen bonds are drawn as dashed lines.

5-Chloro-N'-cyclohexylidene-3-methyl-1H-indole-2-carbohydrazide

Crystal data	
$C_{16}H_{18}CIN_3O$	Z = 2
$M_r = 303.78$	F(000) = 320
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.321 \; {\rm Mg \; m^{-3}}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
a = 5.2727 (5) Å	Cell parameters from 9705 reflections
b = 9.7977 (9) Å	$\theta = 2.1-28.0^{\circ}$
c = 15.2380 (15) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\alpha = 102.229 (7)^{\circ}$	T = 296 K
$\beta = 95.732 (8)^{\circ}$	Plate, colourless
$\gamma = 92.332 \ (7)^{\circ}$	$0.76 \times 0.36 \times 0.02 \text{ mm}$
$V = 763.94 (13) \text{ Å}^3$	

Acta Cryst. (2013). E69, o1137 sup-2

Data collection

Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus

Plane graphite monochromator Detector resolution: 6.67 pixels mm⁻¹

Absorption correction: integration (X-RED32; Stoe & Cie, 2002)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.129$ S = 1.012929 reflections 195 parameters 0 restraints Primary atom site location: structure-invariant direct methods

 $T_{\min} = 0.831, T_{\max} = 0.995$ 7177 measured reflections 2929 independent reflections 1684 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.065$ $\theta_{\text{max}} = 26.0^{\circ}, \, \theta_{\text{min}} = 2.1^{\circ}$ $h = -6 \rightarrow 6$ $k = -12 \rightarrow 12$ $l = -18 \rightarrow 18$

Secondary atom site location: difference Fourier Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0554P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.15 \text{ e Å}^{-3}$

Special details

Experimental. UV (EtOH) $\lambda_{\text{max}}(\text{nm})(\varepsilon) = 210.2 \text{ (}11298); 230.6 \text{ (}15341); 303.4 \text{ (}14665). IR(KBr)}v = 3278 \text{ (}N\text{--H)}; 1639 \text{ (}15341); 303.4 \text{ (}14665). IR(KBr)}v = 3278 \text{ (}N\text{--H)}; 1639 \text{ (}15341); 303.4 \text{ (}14665). IR(KBr)}v = 3278 \text{ (}N\text{--H)}; 1639 \text{ (}15341); 303.4 \text{ (}14665). IR(KBr)}v = 3278 \text{ (}N\text{--H)}; 1639 \text{ (}15341); 303.4 \text{ (}14665). IR(KBr)}v = 3278 \text{ (}N\text{--H)}; 1639 \text{ (}15341); 303.4 \text{ (}14665). IR(KBr)}v = 3278 \text{ (}N\text{--H)}; 1639 \text{ (}15341); 303.4 \text{ (}14665). IR(KBr)}v = 3278 \text{ (}N\text{--H)}; 1639 \text{ (}15341); 303.4 \text{ (}14665). IR(KBr)}v = 3278 \text{ (}N\text{--H)}; 1639 \text{ (}N\text{--H)}; 163$ (C=O);1624, 1537, 1514, 1471 (C=N, C=C) cm⁻¹. ¹H-NMR (500 MHz) (DMSO-d₆ / TMS) d =1.56–1.72 (6H, m, CH₂cyc.*), 2.32 (2H, t, J=6.8 Hz, CH₂-cyc.) 2.42–2.48 (5H, m, CH₂-cyc. and 3-CH₃-ind.*), 7.20 (1H, dd, J=8.7, 1.9 Hz, H6ind.), 7.41 (1H, d, J=8.7 Hz, H7-ind.), 7.66 (1H, d, J=1.9 Hz, H4-ind.), 10.30 (1H, s, CONH), 11.50 (1H, s, NH-ind.) p.p.m.. MS (ESI-) m/z (%) = 302 ([M—H], 100). Analysis calculated for $C_{16}H_{18}CIN_3O$: C 63.26, H 5.97, N 13.83%. Found: C 63.12, H 5.97, N 13.86%.(*cyc. = cyclohexylidene, ind. = indole).

 $\Delta \rho_{\min} = -0.16 \text{ e Å}^{-3}$

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.5891 (2)	0.46594 (11)	0.20802 (7)	0.1086 (4)	
O1	0.1519 (4)	0.0786(2)	0.61618 (12)	0.0717 (7)	
N1	0.2262 (4)	0.1409(2)	0.45351 (13)	0.0589 (8)	
N2	0.5585 (5)	0.1489 (3)	0.67430 (15)	0.0597 (8)	
N3	0.5305 (4)	0.1037(2)	0.75354 (15)	0.0628 (8)	
C1	0.2826 (5)	0.2059(3)	0.38687 (17)	0.0538 (8)	
C2	0.1513 (6)	0.1988 (3)	0.30110 (18)	0.0654 (10)	
C3	0.2502 (6)	0.2795 (3)	0.24870 (19)	0.0705 (11)	
C4	0.4744 (6)	0.3636 (3)	0.27889 (19)	0.0691 (11)	
C5	0.6043 (5)	0.3719 (3)	0.3623 (2)	0.0648 (10)	

sup-3 Acta Cryst. (2013). E69, o1137

C6	0.5060 (4)	0.2920(3)	0.41855 (17)	0.0508 (8)
C7	0.5838 (4)	0.2775 (3)	0.50912 (16)	0.0512 (8)
C8	0.4070 (5)	0.1827 (3)	0.52722 (16)	0.0511 (8)
C9	0.8061 (5)	0.3606 (3)	0.5689 (2)	0.0686 (10)
C10	0.3624 (5)	0.1311 (3)	0.60883 (17)	0.0543 (9)
C11	0.7122 (5)	0.1360(3)	0.81721 (18)	0.0597 (9)
C12	0.9530 (6)	0.2231 (4)	0.8204 (2)	0.0866 (13)
C13	1.0168 (7)	0.3247 (4)	0.9086 (2)	0.0993 (16)
C14	1.0052 (7)	0.2603 (4)	0.9900(2)	0.0876 (13)
C15	0.7463 (6)	0.1875 (4)	0.9862 (2)	0.0837 (13)
C16	0.6818 (6)	0.0800 (4)	0.9003 (2)	0.0820 (11)
H1	0.09730	0.08260	0.45020	0.0710*
H2	0.00300	0.14140	0.28090	0.0790*
H2A	0.701 (5)	0.174 (3)	0.6650 (17)	0.054 (8)*
Н3	0.16670	0.27840	0.19180	0.0850*
H5	0.75350	0.42900	0.38110	0.0780*
H9A	0.85040	0.44140	0.54590	0.1030*
H9B	0.94970	0.30360	0.56980	0.1030*
Н9С	0.76010	0.39010	0.62910	0.1030*
H12A	0.93570	0.27410	0.77230	0.1040*
H12B	1.09240	0.16220	0.80990	0.1040*
H13A	0.89910	0.39870	0.91220	0.1190*
H13B	1.18740	0.36690	0.91050	0.1190*
H14A	1.13590	0.19360	0.99100	0.1050*
H14B	1.03740	0.33270	1.04480	0.1050*
H15A	0.74350	0.14270	1.03710	0.1010*
H15B	0.61810	0.25620	0.99110	0.1010*
H16A	0.50660	0.04370	0.89750	0.0980*
H16B	0.79110	0.00290	0.90090	0.0980*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1362 (8)	0.1232 (8)	0.0844 (7)	-0.0039 (6)	0.0217 (6)	0.0607 (6)
O1	0.0767 (12)	0.0851 (14)	0.0498 (11)	-0.0264 (11)	-0.0034(9)	0.0179 (10)
N1	0.0662 (13)	0.0625 (14)	0.0445 (12)	-0.0171 (11)	-0.0010 (10)	0.0109 (10)
N2	0.0590 (13)	0.0774 (16)	0.0448 (13)	-0.0043 (12)	0.0028 (11)	0.0210(11)
N3	0.0722 (14)	0.0709 (15)	0.0491 (13)	-0.0018 (12)	0.0054 (12)	0.0236 (12)
C1	0.0654 (15)	0.0521 (15)	0.0427 (14)	0.0010 (13)	0.0064 (12)	0.0080 (12)
C2	0.0775 (17)	0.0694 (18)	0.0455 (15)	-0.0025 (15)	-0.0039 (14)	0.0102 (13)
C3	0.090(2)	0.077(2)	0.0444 (15)	0.0084 (17)	0.0005 (15)	0.0155 (14)
C4	0.0879 (19)	0.0721 (19)	0.0551 (18)	0.0077 (16)	0.0153 (16)	0.0274 (15)
C5	0.0675 (16)	0.0657 (17)	0.0633 (18)	-0.0028(14)	0.0096 (14)	0.0193 (14)
C6	0.0536 (13)	0.0520 (15)	0.0471 (14)	0.0049 (12)	0.0050 (11)	0.0116 (12)
C7	0.0511 (13)	0.0536 (15)	0.0463 (14)	0.0012 (12)	0.0006 (11)	0.0079 (12)
C8	0.0570 (14)	0.0540 (15)	0.0407 (14)	0.0021 (13)	0.0014 (11)	0.0086 (12)
C9	0.0648 (16)	0.078(2)	0.0613 (17)	-0.0071 (15)	-0.0059 (14)	0.0197 (15)
C10	0.0659 (16)	0.0502 (15)	0.0431 (14)	-0.0023(13)	0.0016 (13)	0.0054 (12)
C11	0.0635 (15)	0.0719 (18)	0.0463 (15)	0.0060 (14)	0.0073 (13)	0.0177 (13)
C12	0.0652 (17)	0.143 (3)	0.0556 (18)	-0.0114(19)	0.0048 (14)	0.0348 (19)

Acta Cryst. (2013). E69, o1137 sup-4

	0.112 (3) 0.099 (2)	0.122 (3) 0.112 (3)	0.065 (2) 0.0530 (18)	-0.040 (2) -0.013 (2)	-0.0189 (19) -0.0066 (17)	0.045 (2) 0.0313 (18)
	0.092 (2)	0.116 (3)	0.0491 (17)	0.000 (2)	0.0086 (16)	0.0325 (18)
	0.097 (2)	0.092 (2)	0.0633 (19)	-0.0084 (19)	-0.0014 (17)	0.0386 (18)
Geometric	parameters ((Å, °)				
C11—C4		1.754 (C12—C13		92 (5)
O1—C10		1.230 (<i>'</i>	C13—C14		11 (5)
N1—C1		1.358 (C14—C15		04 (5)
N1—C8		1.378 (·	C15—C16		95 (5)
N2—N3		1.390 (<i>'</i>	C2—H2		300
N2—C10		1.342 (· ·	C3—H3		300
N3—C11		1.272 (C5—H5		300
N1—H1		0.8600		C9—H9A		600
N2—H2A		0.82 (3	<i>'</i>	C9—H9B		600
C1—C2		1.403 (С9—Н9С		600
C1—C6		1.402 (*	C12—H12A		700
C2—C3		1.361 (<i>'</i>	C12—H12B		700
C3—C4		1.393 (<i>'</i>	C13—H13A		700
C4—C5		1.367 (4)	C13—H13B	0.9	700
C5—C6		1.399 (4)	C14—H14A	0.9	700
C6—C7	—C7 1.438 (4)		4)	C14—H14B	0.9700	
C7—C9		1.504 (4) C15—H15A		0.9	700	
C7—C8	· ·		4)	C15—H15B	0.9700	
C8—C10		1.474 (4)	C16—H16A	0.9700	
C11—C16	i	1.503 (4)	C16—H16B	0.9	700
C11—C12		1.492 (4)			
C1—N1—	-C8	109.6 (2)	C3—C2—H2	12	1.00
N3—N2—		120.0 (<i>'</i>	C2—C3—H3	119.00	
N2—N3—		117.5 (<i>'</i>	C4—C3—H3	120.00	
C8—N1—		125.00	1	C4—C5—H5	121.00	
C1—N1—		125.00		C6—C5—H5	121.00	
N3—N2—		118.7 (C7—C9—H9A	109.00	
C10—N2-		120.5 (C7—C9—H9B	109.00	
N1—C1—		107.7 (C7—C9—H9C	109.00	
C2—C1—		122.3 (H9A—C9—H9B	109.00	
N1—C1—		130.0 (·	H9A—C9—H9C		9.00
C1—C2—		117.2 (H9B—C9—H9C		0.00
C2—C3—		121.1 (· *	C11—C12—H12A	109.00	
C11—C4—		118.5 (C11—C12—H12B	109.00	
C11—C4—		119.0 (· ·	C13—C12—H12A	109.00	
C3—C4—		122.5 (C13—C12—H12B	109.00	
C3—C 4 — C4—C5—		118.0 (,	H12A—C12—H12B		8.00
C4—C5— C1—C6—		119.0 (*	C12—C13—H13A		9.00
C1—C0— C5—C6—		133.4 (C12—C13—H13A C12—C13—H13B		9.00
C1—C6—		107.6 (C12—C13—H13B		9.00
				C14—C13—H13A C14—C13—H13B		
C6—C7—C8 105.7 (2)		*	U14—U13—П13В	109.00		

C6—C7—C9

sup-5 Acta Cryst. (2013). E69, o1137

H13A—C13—H13B

108.00

123.9 (2)

C8—C7—C9	130.3 (2)	C13—C14—H14A	110.00
C7—C8—C10	133.6 (2)	C13—C14—H14B	110.00
N1—C8—C7	109.5 (2)	C15—C14—H14A	110.00
N1—C8—C10	116.6 (2)	C15—C14—H14B	110.00
O1—C10—C8	120.5 (2)	H14A—C14—H14B	108.00
N2—C10—C8	116.7 (2)	C14—C15—H15A	109.00
O1—C10—N2	122.8 (3)	C14—C15—H15B	109.00
N3—C11—C12	128.4 (3)	C16—C15—H15A	109.00
N3—C11—C16	116.3 (3)	C16—C15—H15B	109.00
C12—C11—C16	115.3 (2)	H15A—C15—H15B	108.00
C11—C12—C13	112.6 (3)	C11—C16—H16A	109.00
C12—C13—C14	113.9 (3)	C11—C16—H16B	109.00
C13—C14—C15	109.9 (3)	C15—C16—H16A	109.00
C14—C15—C16	111.7 (3)	C15—C16—H16B	109.00
C11—C16—C15	113.3 (3)	H16A—C16—H16B	108.00
C1—C2—H2	121.00		
C1—N1—C8—C10	174.9 (2)	C4—C5—C6—C7	-177.9(3)
C8—N1—C1—C2	-178.3(3)	C5—C6—C7—C9	3.2 (5)
C8—N1—C1—C6	0.0(3)	C5—C6—C7—C8	179.7 (3)
C1—N1—C8—C7	0.5 (3)	C1—C6—C7—C8	0.8 (3)
N3—N2—C10—C8	179.6 (2)	C1—C6—C7—C9	-175.7(2)
N3—N2—C10—O1	1.8 (4)	C6—C7—C8—C10	-173.9(3)
C10—N2—N3—C11	-172.8(3)	C9—C7—C8—C10	2.3 (5)
N2—N3—C11—C16	-177.2(3)	C9—C7—C8—N1	175.4 (3)
N2—N3—C11—C12	2.9 (4)	C6—C7—C8—N1	-0.8(3)
N1—C1—C6—C7	-0.5(3)	N1—C8—C10—N2	167.7 (3)
C6—C1—C2—C3	0.2 (4)	C7—C8—C10—O1	158.3 (3)
N1—C1—C6—C5	-179.6(2)	C7—C8—C10—N2	-19.5 (5)
C2—C1—C6—C7	178.0 (3)	N1—C8—C10—O1	-14.4(4)
C2—C1—C6—C5	-1.1(4)	N3—C11—C12—C13	136.1 (3)
N1—C1—C2—C3	178.2 (3)	C16—C11—C12—C13	-43.7 (4)
C1—C2—C3—C4	1.0 (4)	N3—C11—C16—C15	-134.0(3)
C2—C3—C4—C11	-179.5(2)	C12—C11—C16—C15	45.9 (4)
C2—C3—C4—C5	-1.1(5)	C11—C12—C13—C14	49.1 (4)
C3—C4—C5—C6	0.1 (4)	C12—C13—C14—C15	-55.6 (4)
C11—C4—C5—C6	178.5 (2)	C13—C14—C15—C16	56.2 (4)
C4—C5—C6—C1	1.0 (4)	C14—C15—C16—C11	-52.0 (4)

Hydrogen-bond geometry (Å, o)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.86	2.03	2.826 (3)	153
C12—H12 <i>A</i> ···N2	0.97	2.47	2.842 (4)	102
C12—H12 <i>B</i> ···N3 ⁱⁱ	0.97	2.59	3.476 (4)	152

Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z.

Acta Cryst. (2013). E69, o1137 Sup-6