Теорема Гёделя-Россера

Мех-мат МГУ, 1-й курс, весна 2008 г.

Л.Д. Беклемишев

1 Теорема Гёделя о неполноте

1.1 Арифметика Пеано и арифметика Робинсона

Мы докажем несколько упрощённый вариант теоремы Гёделя о неполноте. Основное упрощение касается выбора языка формальной арифметики: мы расширим сигнатуру арифметики символами \leq (порядок) и ехр (экспонента), где ехр есть функция $\exp(x) = 2^x$. Таким образом, сигнатура арифметики содержит символы $0, S, +, \cdot, \exp, \leq, =$.

Наличие экспоненты в языке арифметики позволяет очень просто формализовать кодирование слов в данном алфавите. С другой стороны, Гёдель показал, что функция 2^x является определимой в арифметике Пеано, поэтому явное добавление символа ехр в сигнатуру (вместе с соответствующими аксиомами) не меняет, по существу, саму теорию. Поэтому мы сохраним за теорией в расширенном языке название $apu\phi$ -метика Π eaно.

Определение 1.1. *Арифметика Пеано* РА задаётся следующими нелогическими аксиомами:

- 1. аксиомы равенства для сигнатуры $0, S, +, \cdot, \exp, \leq, =;$
- 2. $\neg S(a) = 0$, $S(a) = S(b) \rightarrow a = b$,
- 3. a + 0 = a, a + S(b) = S(a + b),
- $4. \ a \cdot 0 = 0, \quad a \cdot S(b) = a \cdot b + a,$
- 5. $\exp(0) = S(0)$, $\exp(S(a)) = \exp(a) + \exp(a)$
- 6. $a < 0 \leftrightarrow a = 0$
- 7. $a < S(b) \leftrightarrow (a < b \lor a = S(b))$

8. (Схема аксиом индукции)

$$A[a/0] \wedge \forall x \, (A[a/x] \to A[a/S(x)]) \to \forall x \, A[a/x],$$
для любой формулы $A.$

Стандартной моделью арифметики Пеано называем модель

$$(\mathbb{N}; 0, S, +, \cdot, \exp, \leq, =).$$

Следующие лемма и следствие очевидны.

Лемма 1.2. \mathbb{N} ⊨ РА.

Следствие 1.3. РА непротиворечива.

Определение 1.4. *Арифметика Робинсона* **Q** получается из **PA** заменой схемы индукции единственной аксиомой:

$$a < b \lor b < a$$
.

Замечание 1.5. Заметим, что из этой аксиомы следует $a \le a$ (положим b = a) и $a \le b \lor b < a$ (поскольку $\neg a \le b \to \neg a = b$ в силу предыдущего).

Замечание 1.6. Теория Q задаётся конечным числом аксиом.

Упражнение 1.7. *Показать*, что PA ⊢ Q.

Решение. Последовательно докажем индукцией по x:

- (i) $\forall x (a \le x \leftrightarrow a = x \lor S(a) \le x);$
- (ii) $\forall x (a \leq x \lor x \leq a)$.

Заметим, что из (i) следует $a \le a$ и $a \le S(a)$.

Вывод утверждения (і):

Базис индукции: $a \le 0 \leftrightarrow a = 0 \lor S(a) \le 0$.

Импликации $a \le 0 \to a = 0$ и $a = 0 \to a \le 0$ получаем по аксиоме 6. Поэтому достаточно вывести $\neg S(a) \le 0$. По аксиоме 6 формула $S(a) \le 0$ влечет S(a) = 0, что противоречит аксиоме 2.

Шаг индукции: надо показать $a \leq S(x) \leftrightarrow S(a) \leq S(x) \lor a = S(x)$. Пользуясь предположением индукции строим следующую цепочку формул, каждая из которых эквивалентна предыдущей:

- 1. a < S(x)
- 2. $a \le x \lor a = S(x)$ (по аксиоме 7)
- 3. $(a = x \lor S(a) \le x) \lor a = S(x)$ (по предположению индукции)
- 4. $(S(a) = S(x) \lor S(a) \le x) \lor a = S(x)$ (по аксиоме 2)
- 5. $S(a) \le S(x) \lor a = S(x)$ (по аксиоме 7).

Вывод утверждения (ii):

Базис индукции: $a \leq 0 \lor 0 \leq a$. Мы получаем $0 \leq a$ очевидной индукцией по a.

Шаг индукции:

- 1. $a \le x \lor x \le a$ (предположение индукции)
- 2. $a \leq S(x) \lor x \leq a$ (по аксиоме 7)
- 3. $a \le S(x) \lor (S(x) \le a \lor x = a)$ (по утверждению (i))
- 4. $a \leq S(x) \vee (S(x) \leq a \vee a \leq S(x))$ (BY $a \leq S(a)$)
- 5. $a < S(x) \lor S(x) < a$.

Таким образом, теория ${\sf Q}$ представляет собой конечную подтеорию арифметики ${\sf PA}.$

Замечание 1.8. В теории Q не возможны доказательства по индукции, поэтому она не позволяет вывести сколько-нибудь содержательные свойства арифметических операций (см. упражнение ниже). Другими словами, Q является очень слабой подтеорией арифметики PA. Она играет роль минимально достаточной теории, для которой справедливы теоремы Гёделя о неполноте. Выбор такой теории, в отличие от PA, в значительной степени произволен. В частности, сам P. Робинсон обозначал через Q несколько иную теорию (отличия, в основном, связаны с выбранным здесь вариантом языка арифметики).

Упражнение 1.9. Докажите, что в теории Q не выводимы следующие формулы: $\neg a = S(a)$, $a \cdot b = b \cdot a$.

1.2 Формулировки теорем Гёделя о неполноте

Теперь мы можем дать формулировки теорем Гёделя о неполноте.

Теорема 1.10 (первая теорема Гёделя о неполноте). Если теория T

- в арифметическом языке,
- эффективно аксиоматизируема,
- $\mathbb{N} \models T$,

то T неполна, то есть существует арифметическое предложение A такое, что $T \nvdash A$ и $T \nvdash \neg A$.

Следствие 1.11. РА неполна.

Замечание 1.12. Условие корректности $\mathbb{N} \vDash T$ в данном варианте теоремы Гёделя не является оптимальным. Сам Гёдель установил свою теорему при более слабом, но менее естественном, предположении ω -непротиворечивости T. В дальнейшем Дж.Б. Россер усилил теорему Гёделя, доказав неполноту теории T всего лишь при условии её обычной непротиворечивости. Однако при этом возникает дополнительное (но не очень ограничительное) требование $T \vdash \mathbb{Q}$.

Теорема 1.13 (теорема Гёделя-Россера). Если

- meopus T codepseum Q,
- Т эффективно аксиоматизируема,
- \bullet T непротиворечива,

 $mo\ T$ неполна.

Замечание 1.14. Теорема Гёделя–Россера также применима к теориям в произвольном языке, в которых интерпретируема Q. К таким теориям относится, в частности, теория множеств ZFC.

Следствие 1.15. ZFC неполна (при условии своей непротиворечивости).

Теорема 1.16 (вторая теорема Гёделя о неполноте). Если

• РА интерпретируема в T,

- Т эффективно аксиоматизируема,
- T непротиворечива,

то $T \nvdash \mathsf{Con}(T)$, где $\mathsf{Con}(T)$ – арифметическая формула, выражающая непротиворечивость T.

Замечание 1.17. Условие интерпретируемости РА в T во второй теореме Гёделя о неполноте было в дальнейшем ослаблено до знакомого нам условия интерпретируемости теории Q в T. Такое ослабление, однако, требует привлечения существенных новых идей в первоначальное доказательство Гёделя. В окончательном виде этот результат был получен чешским математиком Π . Пудлаком (в 1985 году).

Замечание 1.18. Одним из следствий второй теоремы Гёделя о неполноте является то, что непротиворечивость РА нельзя доказать средствами самой теории РА. Подчеркнём, что речь в этой теореме не идёт о том, что непротиворечивость РА может вызывать сомнения, а лишь о том, что обоснование (очевидным образом) верного факта непротиворечивости РА требует допущений, выходящих за рамки этой теории.

Ситуация менее очевидная с теорией ZFC: мы также верим в непротиворечивость ZFC, но предположения, на основании которых мы могли бы обосновать этот факт, не могут быть формализованы внутри самой ZFC, то есть должны выходить за рамки «обычной», общепринятой математики! Поэтому, в частности, в формулировке следствия 1.15 мы сделали оговорку относительно условия о непротиворечивости ZFC.¹

Полное доказательство второй теоремы Гёделя о неполноте выходит за рамки данного курса.

2 Вычислимость и определимость

Первая теорема Гёделя о неполноте и теорема Гёделя—Россера будут выведены нами из одного результата, указывающего на фундаментальную связь между понятиями вычислимости и определимости в арифметике. Мы называем этот результат теоремой о Σ_1 -определимости. Мы введём два класса арифметических формул: ограниченные формулы и Σ_1 -формулы.

 $^{^1{}m B}$ теории множеств рассматриваются дополнительные аксиомы, так называемые аксиомы больших кардиналов, из которых следует непротиворечивость ZFC. Однако эти аксиомы все-таки нельзя считать общепринятыми.

Определение 2.1. *Ограниченными* называются формулы, все вхождения кванторов в которые имеют вид

- $\forall x (x \leq t \rightarrow A(x))$ (сокращённо $\forall x \leq t A(x)$), или
- $\exists x (x \leq t \land A(x))$ (сокращённо $\exists x \leq t A(x)$),

где t — произвольный терм арифметического языка.

Множество всех ограниченных формул обозначаем Δ_0 .

Определение 2.2. Σ_1 -формулами называются формулы вида $\exists \vec{x} \, A(\vec{x}, \vec{a})$, где $A \in \Delta_0$. Множество всех Σ_1 -формул обозначаем Σ_1 .

Нетрудно видеть, что всякая Δ_0 -формула определяет в стандартной модели $\mathbb N$ некоторый разрешимый предикат, а Σ_1 -формула — перечислимый предикат, то есть имеет место следующая лемма.

Лемма 2.3. Пусть список $\vec{a} = (a_1, ..., a_k)$ содержит все свободные переменные формулы $A(\vec{a})$. Тогда

- (i) если $A(\vec{a}) \in \Delta_0$, то множество $\{\vec{n} \in \mathbb{N}^k : \mathbb{N} \models A[\vec{n}]\}$ разрешимо;
- (ii) если $A(\vec{a}) \in \Sigma_1$, то множество $\{\vec{n} \in \mathbb{N}^k : \mathbb{N} \models A[\vec{n}]\}$ перечислимо.

Доказательство. Утверждение (ii) следует из (i) по теореме о проекции разрешимого множества. Утверждение (i) доказывается индукцией по построению A. Атомарные формулы арифметического языка очевидным образом определяют разрешимые множества, и разрешимые множества замкнуты относительно булевых операций.

Рассмотрим формулу $A(\vec{a}) = \forall x \leq t(\vec{a}) \ B(x,\vec{a})$, где мы считаем, что список переменных \vec{a} содержит все свободные переменные формулы B и терма t. Тогда истинностное значение формулы $A[\vec{n}]$ можно узнать, вычислив значение $m = t(\vec{n})$ и проверив полным перебором, что $\mathbb{N} \models B[i,\vec{n}]$ для каждого $i \leq m$. Аналогично рассматривается ограниченный квантор существования. \boxtimes

2.1 Теорема о Σ_1 -определимости и вывод из неё первой теоремы Гёделя

Определение 2.4. Множество $P\subseteq \mathbb{N}^k$ Σ_1 -определимо e \mathbb{N} , если существует $A(a_1,\ldots,a_k)\in \Sigma_1$ такая, что для всех $n_1,\ldots,n_k\in \mathbb{N}$

$$\langle n_1, \dots, n_k \rangle \in P \iff \mathbb{N} \vDash A[n_1, \dots, n_k].$$

Теорема 2.5 (о Σ_1 -определимости). $P \subseteq \mathbb{N}^k$ перечислимо $\iff P$ Σ_1 -определимо в \mathbb{N} .

Из этой теоремы мы получаем ряд важных следствий, включающих первую теорему Гёделя о неполноте.

Теорема 2.6. Множество $Th(\mathbb{N})$ всех предложений A таких, что $\mathbb{N} \models A$, неперечислимо.

Доказательство. Пусть $K \subseteq \mathbb{N}$ перечислимо и неразрешимо. По теореме о Σ_1 -определимости найдётся формула K(a) такая, что

$$n \in K \iff \mathbb{N} \models K[n] \iff \mathbb{N} \models K(\overline{n}).$$

Отсюда получаем

$$n \notin K \iff \mathbb{N} \nvDash K(\overline{n}) \iff \mathbb{N} \vDash \neg K(\overline{n}).$$

Если $Th(\mathbb{N})$ перечислимо, то таково и $\{n \in \mathbb{N} : \mathbb{N} \models \neg K(\overline{n})\}$, так как по n эффективно восстанавливается формула $\neg K(\overline{n})$ (подстановка нумерала в фиксированную формулу является вычислимой операцией). Таким образом, будет перечислимым также и дополнение множества K, что противоречит теореме Чёрча–Поста. \boxtimes

Теорема 2.7. Если T эффективно аксиоматизируема $u \mathbb{N} \models T$, то найдётся предложение A такое, что $T \nvdash A$ $u T \nvdash \neg A$.

Доказательство. Поскольку $\mathbb{N} \vDash T$ имеем $T \subseteq Th(\mathbb{N})$, значит по теореме 2.6 найдётся $A \in Th(\mathbb{N})$ такое, что $T \nvdash A$. Так как $\mathbb{N} \nvDash \neg A$, имеем $T \nvdash \neg A$. \boxtimes

2.2 Доказательство теоремы о Σ_1 -определимости

Идея доказательства состоит в том, чтобы для каждой машины Тьюринга M выписать Σ_1 -формулу $T_M(\vec{x})$, выражающую тот факт, что на входе, кодирующем \vec{x} , машина M завершает работу. Это достигается путём кодирования машин Тьюринга и описания их вычислений на арифметическом языке.

2.2.1 Обогащение модели с помощью Δ_0 -определений

Искомую формулу удобно строить, обогащая сигнатуру арифметики новыми предикатными и функциональными символами с помощью Δ_0 -определений.

Пусть Σ — сигнатура, содержащая арифметическую, и \mathbb{N}_{Σ} — обогащение стандартной модели арифметики до некоторой модели сигнатуры Σ . Говорим, что модель \mathbb{N}_{Σ} обладает свойством ограниченности, если для любого терма $t(\vec{a})$ сигнатуры Σ найдётся арифметический терм $t'(\vec{a})$ такой, что $\mathbb{N}_{\Sigma} \vDash \forall \vec{x} \, (t(\vec{x}) \leq t'(\vec{x}))$. Ограниченными формулами сигнатуры Σ называем формулы сигнатуры Σ , все вхождения кванторов в которые ограничены термами Σ . Множество всех таких формул обозначаем $\Delta_0(\Sigma)$.

Мы рассматриваем два типа определений:

• Определение предиката P формулой $A \in \Delta_0(\Sigma)$, обозначаемое

$$P(\vec{a}) : \leftrightarrow A(\vec{a}).$$

Сигнатура Σ расширяется новым предикатным символом P. В стандартной модели $\mathbb N$ символу P соответствует предикат

$$P_{\mathbb{N}} \rightleftharpoons \{ \vec{n} \in \mathbb{N}^k : \mathbb{N}_{\Sigma} \vDash A[\vec{n}] \}.$$

• Определение функции f формулой $F \in \Delta_0(\Sigma)$, обозначаемое

$$f(\vec{a}) = b : \leftrightarrow F(\vec{a}, b).$$

Сигнатура Σ расширяется новым функциональным символом f. В стандартной модели $\mathbb N$ символу f соответствует функция $f_{\mathbb N}$ с графиком

$$F_{\mathbb{N}} \rightleftharpoons \{\langle \vec{n}, m \rangle : \mathbb{N}_{\Sigma} \vDash F[\vec{n}, m]\}.$$

Такое определение считается корректным, если

 $-F_{\mathbb{N}}$ действительно задаёт график функции, то есть

$$\mathbb{N}_{\Sigma} \vDash \forall \vec{x} \exists ! y \ F(\vec{x}, y);$$

— функция $f_{\mathbb{N}}$ ограничена некоторым термом $t(\vec{a})$ сигнатуры Σ , то есть

$$\mathbb{N}_{\Sigma} \vDash \forall \vec{x}, y (F(\vec{x}, y) \rightarrow y < t(\vec{x})).$$

Следующие простейшие примеры показывают, как строить одни Δ_0 -определения на основе других.

$$\begin{aligned} x \neq y &: \leftrightarrow & \neg x = y \\ x < y &: \leftrightarrow & x \le y \land x \ne y \\ x \div y = z &: \leftrightarrow & (y \le x \land x = z + y) \lor (\neg y \le x \land z = 0) \end{aligned}$$

Перевод $f\mapsto F,\ P\mapsto A$ задает интерпретацию модели $(\mathbb{N}_\Sigma;P_\mathbb{N},f_\mathbb{N})$ в $\mathbb{N}_\Sigma.$ Такие интерпретации I называем *ограниченными*. Как обычно, всякой формуле A в расширенной сигнатуре соответствует её перевод A^I в сигнатуру $\Sigma.$

Лемма 2.8. Пусть \mathbb{N}_{Σ} обладает свойством ограниченности. Тогда

- (i) $(\mathbb{N}_{\Sigma}; P_{\mathbb{N}}, f_{\mathbb{N}})$ обладает тем же свойством;
- (ii) если A ограниченная формула расширенного языка, то перевод A^I эквивалентен $\Delta_0(\Sigma)$ -формуле в модели \mathbb{N}_{Σ} .

Доказательство. Утверждение (i) получается простой индукцией по построению терма t, с учётом монотонности всех функций сигнатуры арифметики.

Утверждение (ii) очевидно для случая определения предиката P, поскольку формула A^I получается заменой в A всех вхождений вида $P(t_1,\ldots,t_k)$ на $A(t_1,\ldots,t_k)$.

Для случая определения функции f рассуждаем индукцией по построению формулы A.

Сначала докажем утверждение для атомарных формул A. Такие формулы имеют вид $Q(t_1,\ldots,t_k)$, для некоторого предикатного символа Q сигнатуры Σ и некоторых термов t_1,\ldots,t_k расширенной сигнатуры. Применяем индукцию по общему количеству вхождений символа f в термы t_1,\ldots,t_k .

Допустим, например, что f входит в t_1 . Рассмотрим самое внутреннее такое вхождение; тогда t_1 имеет вид $t_1'(f(s_1,\ldots,s_n))$, где термы s_i не содержат символа f, и t_1' имеет на одно вхождение f меньше, чем t_1 . Поскольку функция f ограничена некоторым Σ -термом t, перевод $Q(t_1,\ldots,t_k)^I$ равносилен в \mathbb{N}_{Σ} формуле

$$\exists x \leq t(s_1, \dots, s_n) [(Q(t'_1(x), t_2, \dots, t_k))^I \wedge F(s_1, \dots, s_n, x)],$$

где $(Q(t_1'(x), t_2, \dots, t_k))^I$ эквивалентна ограниченной формуле по предположению индукции.

Если формула A имеет вид $(A_1 \wedge A_2)$, $(A_1 \vee A_2)$, $\neg A_1$ или $(A_1 \to A_2)$, утверждение легко следует из предположения индукции.

Пусть A имеет вид $\forall x \leq s \ B(x)$. Воспользуемся частью (i) и рассмотрим арифметический терм s' такой, что

$$(\mathbb{N}_{\Sigma}; P_{\mathbb{N}}, f_{\mathbb{N}}) \vDash s \leq s'.$$

Тогда перевод A^I равносилен формуле

$$\forall x \leq s' ((x \leq s)^I \to B(x)^I).$$

Заметим, что формула $(x \leq s)^I$ ограничена как перевод атомарной формулы, а ограниченность $B(x)^I$ следует из предположения индукции. Случай ограниченного квантора существования рассматривается аналогично. \boxtimes

Следствие 2.9. Композиция ограниченных интерпретаций ограничена.

Теперь мы применим технику Δ_0 -определений к формализации в арифметике вычислений машин Тьюринга.

2.2.2 Кодирование двоичных слов

Любое x > 0 однозначно представляется в виде

$$x = a_n \cdot 2^n + a_{n-1} \cdot 2^{n-1} + \dots + a_1 \cdot 2 + a_0$$

где $a_0, \ldots, a_n \in \{0, 1\}$ и $a_n \neq 0$.

Слово $a_{n-1} \dots a_0$ кодируем числом x, представимым как $1a_{n-1} \dots a_0$ в двоичной записи. Таким образом, пустое слово Λ кодируется числом 1, а 0 не является кодом никакого двоичного слова.

Обозначим $|x| \rightleftharpoons n$. Заметим, что |x| есть длина слова, кодируемого числом x.

Предикат String(x) «быть двоичным словом» и функции |x| (длина слова) и x*y (конкатенация слов) определяются следующим образом.²

$$\begin{split} String(x) &: \leftrightarrow \quad x \neq 0 \\ |x| = y &: \leftrightarrow \quad (x = 0 \land y = 0) \lor (2^y \le x \land x < 2^{y+1}) \\ x * y = z &: \leftrightarrow \quad z = x \cdot 2^{|y|} + (y \div 2^{|y|}) \end{split}$$

 $^{^2}$ Для наглядности, ниже мы игнорируем разницу между алфавитами связанных и свободных переменных и пишем 2^x вместо $\exp(x)$.

Заметим, что значения функций |x| и x * y определены произвольно на аргументах, не являющихся словами (то есть, при x = 0 или y = 0).

2.2.3 Кодирование алфавита Σ

Пусть $\Sigma = \{C_0, \dots, C_n\}$ — конечный алфавит. Зафиксируем некоторую константу c такую, что $2^c \geq n+2$. Символы алфавита Σ и дополнительный символ разделителя «;» кодируем байтами, то есть двоичными словами длины c. Код (или $z\ddot{e}$ делев номер) объекта O будем обозначать по традиции через \Box Положим, например, \Box $C_i \hookrightarrow C_i \hookrightarrow C_i$ для $C_i \hookrightarrow C_i \hookrightarrow C_i$ и $C_i \hookrightarrow C_i$ для $C_i \hookrightarrow C_i$ для $C_i \hookrightarrow C_i$ для $C_i \hookrightarrow C_i$ для $C_i \hookrightarrow C_i$ и множество всех байтов определим следующим образом:

$$\Sigma(x) : \leftrightarrow x = \lceil C_0 \rceil \lor \cdots \lor x = \lceil C_n \rceil$$
$$Byte(x) : \leftrightarrow String(x) \land |x| = \overline{c}$$

2.2.4 Слова в алфавите Σ

В рамках выбранной кодировки будем называть *словом* конечную последовательность байтов. Σ -*словом* называем слово в данном нам алфавите Σ . Определяем последовательно следующие предикаты и функции: Word(x) «x есть слово», ||x|| длина слова x, $x \subseteq_w y$ «x есть подслово y», $x \in_w y$ «x есть элемент слова y», $Word_{\Sigma}(x)$ «x есть Σ -слово».

$$\begin{aligned} Word(x) &: \leftrightarrow \quad String(x) \land \exists k \leq x \ |x| = \overline{c} \cdot k \\ \|x\| = y &: \leftrightarrow \quad (Word(x) \land \overline{c} \cdot y = |x|) \lor (\neg Word(x) \land y = 0) \\ x \subseteq_w y &: \leftrightarrow \quad Word(x) \land Word(y) \land \\ & \quad \exists v, w \leq y \ (Word(v) \land y = v * x * w) \\ x \in_w y & \leftrightarrow \quad Byte(x) \land x \subseteq_w y \\ Word_{\Sigma}(x) &: \leftrightarrow \quad Word(x) \land \forall y \leq x \ (y \in_w x \rightarrow \Sigma(y)) \end{aligned}$$

Заметим, что при выбранном кодировании конкатенация слов совпадает с конкатенацией соответствующих двоичных последовательностей.

2.2.5 Последовательности слов в алфавите Σ

Последовательность $\langle w_1, \dots, w_s \rangle$ Σ -слов кодируем словом $w_1; w_2; \dots; w_s$, где «;» — разделитель. Код пустой последовательности $\langle \ \rangle$ положим равным 0.

Заметим, что для любого слова $w \in \Sigma^*$, $\lceil \langle w \rangle \rceil = \lceil w \rceil$, в частности, $\lceil \langle \Lambda \rangle \rceil = 1$.

Определяем следующие предикаты и функции: $Seq_{\Sigma}(x)$ «x есть последовательность Σ -слов», x;y конкатенация последовательностей x и $y, x \subseteq_s y$ «x есть подпоследовательность y», $x \in_s y$ «x есть элемент последовательности y».

$$Seq_{\Sigma}(x) : \leftrightarrow Word(x) \land \forall y \in_{w} x (\Sigma(y) \lor y = \ulcorner; \urcorner) \lor x = 0$$

$$x; y = z : \leftrightarrow (x = 0 \land z = y) \lor (y = 0 \land z = x) \lor$$

$$(x \neq 0 \land y \neq 0 \land z = x * \ulcorner; \urcorner * y)$$

$$x \subseteq_{s} y : \leftrightarrow Seq_{\Sigma}(x) \land Seq_{\Sigma}(y) \land$$

$$\exists u, v \leq y (Seq_{\Sigma}(u) \land Seq_{\Sigma}(v) \land y = u; x; v)$$

$$x \in_{s} y : \leftrightarrow Word_{\Sigma}(x) \land x \subseteq_{s} y$$

2.2.6 Кодирование Машин Тьюринга

Зафиксируем произвольную машину Тьюринга M с рабочим алфавитом Σ и алфавитом состояний Q. Мы будем кодировать слова и последовательности слов в алфавите $\Sigma \cup Q \cup \{L,N,R\}$ и соответствующим образом фиксируем константу c (см. выше). Конечные множества символов и команд для данной машины легко определить формулами, перечисляющими их поэлементно. Пусть формула $\Sigma(x)$ определяет рабочий алфавит и Q(x) — алфавит состояний. Формула $\Gamma(x) \rightleftharpoons Q(x) \vee \Sigma(x)$ задаёт их объединение.

Команда
$$q_iS_j \to q_kS_l\nu$$
, где $\nu \in \{L,N,R\}$, кодируется как
$$\lceil q_i \rceil * \lceil S_j \rceil * \lceil q_k \rceil * \lceil S_l \rceil * \lceil \nu \rceil.$$

Формула P(x) определяет множество команд M.

2.2.7 Конфигурации

Конфигурация машины M кодируется словом вида uqv, где u,v — слова в рабочем алфавите, слово v непусто, головка находится в состоянии $q \in Q$ и обозревает первый символ слова v. Таким образом, множество конфигураций определяется как

$$Config(z) : \leftrightarrow Word_{\Gamma}(z) \land \exists u, v, q \leq z$$

 $(Word_{\Sigma}(u) \land Word_{\Sigma}(v) \land Q(q) \land v \neq 1 \land z = u * q * v)$

2.2.8 Переходы

Следующая формула $Step_M(x,y)$ определяет отношение «машина M переходит за один шаг из конфигурации x в конфигурацию y». Тем самым, эта формула описывает применение одной команды из программы P заданной машины Тьюринга.

Пусть некоторая команда имеет вид $pa \to qb\nu$. В зависимости от направления движения головки разбираются один или два случая: если $\nu=N$, то конфигурация upav переходит в uqbv. Если $\nu=L$ и слово слева от головки непусто (имеет вид uc), то конфигурация upav переходит в uqcbv, иначе конфигурация имеет вид pav и переходит в q#bv (слева лента заполнена пробелами). Аналогично описывается движение головки направо, то есть случай $\nu=R$.

```
Step_{M}(x,y) : \leftrightarrow
Config(x) \wedge Config(y) \wedge \exists u, v, p, q, a, b, c \subseteq_{w} x * y
[Word_{\Sigma}(u) \wedge Word_{\Sigma}(v) \wedge Q(p) \wedge Q(q) \wedge \Sigma(a) \wedge \Sigma(b) \wedge \Sigma(c) \wedge
[(x = u * p * a * v \wedge y = u * q * b * v \wedge P(p * a * q * b * \ulcorner N\urcorner))
\vee (x = u * c * p * a * v \wedge y = u * q * c * b * v \wedge P(p * a * q * b * \ulcorner L\urcorner))
\vee (x = p * a * v \wedge y = q * \ulcorner \# \urcorner * b * v \wedge P(p * a * q * b * \ulcorner L\urcorner))
\vee (x = u * p * a * v \wedge v \neq 1 \wedge y = u * b * q * v \wedge P(p * a * q * b * \ulcorner R\urcorner))
\vee (x = u * p * a \wedge y = u * b * q * \ulcorner \# \urcorner \wedge P(p * a * q * b * \ulcorner R\urcorner))
\mid
```

Теперь мы можем определить понятие (протокола) вычисления машины M.

2.2.9 Вычисления

Определим отношения $Init_M(x,z)$ «z есть начальная конфигурация с входом x», $Stop_M(z)$ «z есть заключительная конфигурация», и $Comp_M(x,z)$ «z есть протокол завершающегося вычисления машины M на входе x».

Определения, приводимые ниже, говорят сами за себя.

$$Init_{M}(x,z) : \leftarrow Config(z) \land z = \lceil q_{1} \rceil * \lceil \# \rceil * x$$

$$Stop_{M}(z) : \leftarrow Config(z) \land \exists u, v \subseteq_{w} z \ (z = u * q_{0} * v)$$

$$Comp_{M}(x,z) : \leftarrow Seq_{\Gamma}(z) \land \exists v \in_{s} z \ Stop_{M}(v) \land \forall u, v, w \leq z$$

$$(z = u; v; w \land Word_{\Gamma}(v) \rightarrow$$

$$(Init_{M}(x,v) \lor \exists y \in_{s} u \ Step_{M}(y,v)))$$

2.2.10 Кодирование входа и предикат остановки

Наконец, мы должны вспомнить, что для машины Тьюринга, вычисляющей функцию натуральных аргументов, вместо последовательности чисел $\langle n_1, \ldots, n_k \rangle$ мы подаём на вход слово $1^{n_1} \dots 1^{n_k}$ в алфавите $\{1, \$\}$.

Пусть Σ содержит 1, \$. Положим для любого $n \in \mathbb{N}$

$$code(n) \rightleftharpoons 1^n \rightleftharpoons 1 \dots 1$$
 (n pas).

Функция *code* определяется как

$$code(x) = y : \leftrightarrow Word(y) \land ||y|| = x \land \forall y \in_{w} x \ y = \lceil 1 \rceil$$

Теперь мы можем выразить тот факт, что машина M на входе, кодирующем $\langle x_1, \dots, x_k \rangle$, завершает работу:

$$T_M(x_1,\ldots,x_k):\leftrightarrow \exists z\ Comp_M(code(x_1)* \ulcorner \$ \urcorner * \cdots * \ulcorner \$ \urcorner * code(x_k),z)$$

Имеем:

$$\mathbb{N} \models T_M[n_1,\ldots,n_k] \iff !M(n_1,\ldots,n_k).$$

Тем самым доказательство теоремы о Σ_1 -определимости завершено. Заметим, что построенная нами формула содержит один единственный неограниченный квантор существоваения. \boxtimes

3 Теорема Гёделя-Россера

Теорема Гёделя–Россера базируется на одном принципиальном факте, касающемся теории Q и содержащих её теорий. Как было отмечено выше, теория Q очень слаба для доказательства утверждений с неограниченными кванторами общности. С другой стороны, следующая теорема показывает, что Q достаточно сильна для доказательства всех истинных Σ_1 -утверждений.

3.1 Σ_1 -полнота

Определение 3.1. Теория T в арифметическом языке называется Σ_1 полной, если для любого предложения $A \in \Sigma_1$

$$\mathbb{N} \models A \Rightarrow T \vdash A$$
.

Теорема 3.2. *Теория* Q Σ_1 *-полна.*

Доказательство. Идея доказательства Σ_1 -полноты проста: истинность любого Σ_1 -предложения A может быть эффективно установлена с помощью процедуры, описанной в лемме 2.3. Это вычисление, по существу, представляет собой доказательство A в Q.

Более аккуратное доказательство получается из последовательности простых лемм, приводимой ниже.

Лемма 3.3. Для любых $m, n \in \mathbb{N}$, в Q доказуемо

- (i) $\overline{m} + \overline{n} = \overline{m+n}$
- (ii) $\overline{m} \cdot \overline{n} = \overline{m \cdot n}$
- (iii) $\exp(\overline{n}) = \overline{\exp(n)}$

Доказательство. Каждое из утверждений доказывается «внешней» индукцией по n. То есть, мы используем индукцию для обоснования выводимости в \mathbb{Q} , а не в рамках самой теории \mathbb{Q} (где индукция не постулируется в качестве аксиомы). Напомним, что $\overline{0}$ есть 0 и $\overline{n+1}$ есть $S(\overline{n})$.

(i) Базис: $\overline{m} + 0 = \overline{m}$, по аксиоме 3.

Шаг индукции. Допустим, что в Q доказуемо $\overline{m} + \overline{n} = \overline{m+n}$. Достроим этот вывод до вывода формулы $\overline{m} + S(\overline{n}) = S(\overline{m+n})$:

- 1. $\overline{m} + \overline{n} = \overline{m+n}$ (гипотеза)
- 2. $S(\overline{m} + \overline{n}) = S(\overline{m+n})$ (по аксиоме равенства)
- 3. $\overline{m} + S(\overline{n}) = S(\overline{m} + \overline{n})$ (по аксиоме 3)
- 4. $\overline{m} + S(\overline{n}) = S(\overline{m+n})$ (из 2, 3)

Доказательства (ii) и (iii) аналогичны. ⊠

Лемма 3.4. Для любого арифметического терма $t(b_1, ..., b_m)$ и любых $k_1, ..., k_m, l \in \mathbb{N}$,

$$\mathbb{N} \vDash t(k_1, \dots, k_m) = l \implies \mathsf{Q} \vdash t(\overline{k}_1, \dots, \overline{k}_m) = \overline{l}.$$

Доказательство. Внешняя индукция по построению t. Если t — переменная или константа 0, утверждение очевидно. Для составных термов утверждение получается из леммы 3.3 по предположению индукции. Например, если t имеет вид t_1+t_2 , то для некоторых $l_1, l_2 \in \mathbb{N}$ формулы $t_1(\overline{k}_1, \ldots, \overline{k}_m) = \overline{l}_1$ и $t_2(\overline{k}_1, \ldots, \overline{k}_m) = \overline{l}_2$ доказуемы. Мы достраиваем эти выводы следующей последовательностью формул:

1.
$$t_1(\overline{k}_1,\ldots,\overline{k}_m)=\overline{l}_1$$
 (гипотеза)

2.
$$t_2(\overline{k}_1,\ldots,\overline{k}_m)=\overline{l}_2$$
 (гипотеза)

3.
$$t_1(\overline{k}_1,...,\overline{k}_m) + t_2(\overline{k}_1,...,\overline{k}_m) = \overline{l}_1 + \overline{l}_2$$
 (по аксиоме равенства)

4.
$$\bar{l}_1 + \bar{l}_2 = \overline{l_1 + l_2}$$
 (лемма 3.3)

5.
$$t_1(\overline{k}_1, ..., \overline{k}_m) + t_2(\overline{k}_1, ..., \overline{k}_m) = \overline{l_1 + l_2}$$
 (по аксиоме равенства)

Функции последователя, умножения и экспоненты рассматриваются аналогично. \boxtimes

Лемма 3.5. Для любых $m, n \in \mathbb{N}$,

- (i) $ecnu \ m \leq n, \ mo \ Q \vdash \overline{m} \leq \overline{n};$
- (ii) если $m \neq n$, то $Q \vdash \neg \overline{m} = \overline{n}$;
- (iii) $ecnu \ m < n, mo \ Q \vdash \neg \overline{n} \leq \overline{m}.$

Доказательство. (i) Внешняя индукция по n.

Базис. Для n=m утверждение сводится к $\mathbb{Q} \vdash \overline{m} \leq \overline{m}$. Последнее легко доказать внешней индукцией по m на основе аксиом 6 и 7.

Шаг индукции. Пусть $m \leq n+1$, тогда $m \leq n$ или m=n+1. Если $m \leq n$, то $\mathbb{Q} \vdash \overline{m} \leq \overline{n}$ по предположению индукции. Если m=n+1, то \overline{m} совпадает графически с $S(\overline{n})$ и тем самым $\mathbb{Q} \vdash \overline{m} = S(\overline{n})$ по аксиоме равенства. Отсюда мы получаем

$$Q \vdash \overline{m} < \overline{n} \lor \overline{m} = S(\overline{n}),$$

откуда следует $Q \vdash \overline{m} \leq S(\overline{n})$ по аксиоме 7.

(ii) Считаем без ограничения общности, что m < n. Рассуждаем индукцией по m. Если m = 0, то \overline{n} совпадает с $S(\overline{n-1})$, и результат следует из аксиом равенства. Если же m > 0, то по предположению индукции найдётся вывод в \mathbf{Q} формулы $\neg \overline{m-1} = \overline{n-1}$. Продолжим этот вывод следующим образом:

- 1. $\neg \overline{m-1} = \overline{n-1}$ (гипотеза)
- 2. $\overline{m} = \overline{n} \rightarrow \overline{m-1} = \overline{n-1}$ (аксиома 2)
- $3. \quad \neg \, \overline{m} = \overline{n}$ (из 1, 2)

и получаем вывод в Q формулы $\neg \overline{m} = \overline{n}$.

(iii) Рассуждаем внешней индукцией по m.

Базис. Допустим 0 = m < n. Тогда $\overline{n} \le 0$ влечёт $\overline{n} = 0$ по аксиоме 6, откуда следует противоречие по утверждению (ii). Значит, $\mathbf{Q} \vdash \neg \overline{n} \le 0$.

Шаг индукции. Допустим m+1 < n. Тогда $\overline{n} \leq S(\overline{m})$ влечёт $\overline{n} \leq \overline{m} \vee \overline{n} = S(\overline{m})$ по аксиоме 7. Однако, $\overline{n} \leq \overline{m}$ влечёт противоречие по предположению индукции, а $\overline{n} = S(\overline{m})$ влечёт противоречие по утверждению (ii). Значит, $Q \vdash \neg \overline{n} \leq S(\overline{m})$. \boxtimes

Лемма 3.6. Для любого $m \in \mathbb{N}$, в Q доказуемо

$$a \leq \overline{m} \leftrightarrow (a = 0 \lor \cdots \lor a = \overline{m}).$$

Доказательство получается из аксиом 6 и 7 внешней индукцией по m. \boxtimes

Лемма 3.7. Для любой ограниченной формулы $A(b_1, ..., b_m)$ и любых $k_1, ..., k_m \in \mathbb{N}$,

- (i) $\mathbb{N} \models A(k_1, \dots, k_m) \Rightarrow \mathbb{Q} \vdash A(\overline{k_1}, \dots, \overline{k_m});$
- (ii) $\mathbb{N} \nvDash A(k_1, \dots, k_m) \Rightarrow \mathbb{Q} \vdash \neg A(\overline{k_1}, \dots, \overline{k_m}).$

Доказательство. Утверждения (i) и (ii) доказываем одновременно индукцией по построению формулы A. Рассмотрим следующие случаи.

1. A — атомарная формула вида $t_1(b_1, \ldots, b_m) = t_2(b_1, \ldots, b_m)$.

Если $\mathbb{N} \models A(k_1,\ldots,k_m)$, то для некоторого $l \in \mathbb{N}$, по лемме 3.4 мы имеем выводы формул $t_1(\overline{k_1},\ldots,\overline{k_m}) = \overline{l}$ и $t_2(\overline{k_1},\ldots,\overline{k_m}) = \overline{l}$ в Q. Отсюда получаем вывод $t_1(\overline{k_1},\ldots,\overline{k_m}) = t_2(\overline{k_1},\ldots,\overline{k_m})$, пользуясь аксиомами равенства.

Если $\mathbb{N} \nvDash A(k_1,\ldots,k_m)$, то для некоторых $l_1 \neq l_2$ имеем выводы формул $t_1(\overline{k_1},\ldots,\overline{k_m})=\overline{l_1}$ и $t_2(\overline{k_1},\ldots,\overline{k_m})=\overline{l_2}$ в Q по лемме 3.4. Лемма 3.5(ii) даёт вывод $\neg \overline{l_1}=\overline{l_2}$, откуда мы получаем вывод

$$\neg t_1(\overline{k_1}, \dots, \overline{k_m}) = t_2(\overline{k_1}, \dots, \overline{k_m})$$

, пользуясь аксиомами равенства.

- 2. A атомарная формула вида $t_1(b_1,\ldots,b_m) \leq t_2(b_1,\ldots,b_m)$. Этот случай рассматривается аналогично, на основе леммы 3.5 (i) и (iii).
 - 3. A имеет вид $B \to C$ или $\neg B$.

В этом случае утверждение получается непосредственно из предположения индукции для формул B и C.

- 4. A имеет вид $\forall v \leq t \ B(v, b_1, \dots, b_m)$.
- (i) Допустим $\mathbb{N} \models A(k_1,\ldots,k_m)$. По лемме 3.4 найдётся $l \in \mathbb{N}$ такое, что в \mathbb{Q} доказуемо $t(\overline{k_1},\ldots,\overline{k_m}) = \overline{l}$. Значит, для всех $k \leq l$ имеем $\mathbb{N} \models B(k,k_1,\ldots,k_m)$, и по предположению индукции получаем выводы формул $B(\overline{k},\overline{k_1},\ldots,\overline{k_m})$ для каждого $k \leq l$. Достроим их до вывода формулы $A(\overline{k_1},\ldots,\overline{k_m})$ следующим образом:
 - 1. $(a=0 \lor \cdots \lor a=\overline{l}) \to B(a,\overline{k_1},\ldots,\overline{k_m})$ (предп. индукции)
 - 2. $a \leq \overline{l} \to B(a, \overline{k_1}, \dots, \overline{k_m})$ (1, лемма 3.6)
 - 3. $a \le t(\overline{k_1}, \dots, \overline{k_m}) \to B(a, \overline{k_1}, \dots, \overline{k_m})$ (2, равенство)
 - 4. $\forall v \ (v \le t(\overline{k_1}, \dots, \overline{k_m}) \to B(v, \overline{k_1}, \dots, \overline{k_m}))$ (3)
 - (ii) Допустим $\mathbb{N} \nvDash A(k_1,\ldots,k_m)$. Тогда для некоторого

$$k \leq l = t(k_1, \dots, k_m)$$

имеем $\mathbb{N} \nvDash B(k, k_1, \dots, k_m)$, а значит

$$\mathsf{Q} \vdash \neg B(\overline{k}, \overline{k_1}, \dots, \overline{k_m})$$

по предположению индукции. Достраиваем этот вывод до вывода формулы $\neg A(\overline{k_1},\dots,\overline{k_m})$:

- 1. $\neg B(\overline{k}, \overline{k_1}, \dots, \overline{k_m})$ (гипотеза)
- 2. $\overline{k} \leq \overline{l} \wedge \neg B(\overline{k}, \overline{k_1}, \dots, \overline{k_m})$ (1, лемма 3.5(i))
- 3. $\overline{k} \leq t(\overline{k_1}, \dots, \overline{k_m}) \wedge \neg B(\overline{k}, \overline{k_1}, \dots, \overline{k_m})$ (2, лемма 3.4)
- 4. $\exists v \ (v \le t(\overline{k_1}, \dots, \overline{k_m}) \land \neg B(v, \overline{k_1}, \dots, \overline{k_m}))$ (3)

Завершим доказательство теоремы 3.2. Рассуждаем индукцией по построению Σ_1 -формулы $A(b_1,\ldots,b_m)$. Если $A\in\Delta_0$, воспользуемся леммой 3.7 (i). Если A имеет вид $\exists vA_0(v,b_1,\ldots,b_m)$ и $\mathbb{N}\vDash A(k_1,\ldots,k_m)$, то для некоторого k имеем $\mathbb{N}\vDash A_0(k,k_1,\ldots,k_m)$. По предположению индукции в Q доказуемо $A_0(\overline{k},\overline{k_1},\ldots,\overline{k_m})$. Отсюда логически следует $\exists vA_0(v,\overline{k_1},\ldots,\overline{k_m})$. \boxtimes

Следствие 3.8.

- 1. Любая арифметическая теория T, содержащая Q, Σ_1 -полна.
- 2. Арифметика РА Σ_1 -полна.

3.2 Доказательство теоремы Гёделя-Россера

Доказательству этой теоремы предпошлём следующую лемму.

Лемма 3.9. Пусть $A, B \subseteq \mathbb{N}$ перечислимы и $A \cap B = \emptyset$. Тогда найдётся Σ_1 -формула $\varphi(a)$ такая, что для любого $n \in \mathbb{N}$

- (i) $n \in A \Rightarrow Q \vdash \varphi(\overline{n}),$
- (ii) $n \in B \Rightarrow Q \vdash \neg \varphi(\overline{n})$.

Доказательство. По теореме о Σ_1 -определимости найдутся Δ_0 -формулы A_0 и B_0 такие, что

$$n \in A \iff \mathbb{N} \vDash \exists x \, A_0(\overline{n}, x),$$

 $n \in B \iff \mathbb{N} \vDash \exists y \, B_0(\overline{n}, y).$

Для любой формулы C и терма t обозначим

$$\forall x < t \ C(x) \iff \forall x \le t \ (x = t \lor C(x)).$$

Положим теперь

$$\varphi(a) \iff \exists x \ (A_0(a,x) \land \forall y < x \neg B_0(a,y)).$$

Неформально, $\varphi(a)$ утверждает, что работа алгоритма, принимающего множество A, на входе a заканчивается раньше работы алгоритма, принимающего B («Россеровское сравнение свидетелей»).

Если $n \in A$, то для некоторого m истинна формула

$$A_0(\overline{n}, \overline{m}) \land \forall y < \overline{m} \neg B_0(\overline{n}, y).$$

По теореме о Σ_1 -полноте арифметики Q получаем, что эта формула доказуема в Q, откуда Q $\vdash \varphi(\overline{n})$.

Если $n \in B$, то для некоторого m истинна формула

$$B_0(\overline{n}, \overline{m}) \land \forall y \le \overline{m} \, \neg A_0(\overline{n}, y). \tag{*}$$

По теореме о Σ_1 -полноте арифметики Q получаем, что эта формула доказуема в Q. Отсюда следует, что Q $\vdash \neg \varphi(\overline{n})$. Поясним это следующим рассуждением, которое легко преобразовать в формальный вывод противоречия из гипотезы $\varphi(\overline{n})$ в Q:

Допустим $\varphi(\overline{n})$. Тогда для некоторого x

$$A_0(\overline{n}, x) \land \forall y < x \neg B_0(\overline{n}, y).$$

Если $x \leq \overline{m}$, то имеем $\neg A_0(\overline{n}, x)$ в силу (*), что противоречит $A_0(\overline{n}, x)$. Если же $\overline{m} < x$, то имеем $\neg B_0(\overline{n}, \overline{m})$, что противоречит $B_0(\overline{n}, \overline{m})$ из (*). Осталось заметить, что в Q выводимо (в силу аксиомы Q и очевидного $\overline{m} \leq \overline{m}$)

$$\forall x \ (x \leq \overline{m} \vee \overline{m} < x),$$

откуда следует требуемое противоречие.

Доказательство теоремы Гёделя—Россера. Пусть A, B — неотделимая пара перечислимых подмножеств $\mathbb N$. Воспользуемся леммой и рассмотрим соответствующую формулу φ . Для данной теории T рассмотрим множества

$$A' \ \ \rightleftharpoons \ \ \{n \in \mathbb{N} : T \vdash \varphi(\overline{n})\},$$

$$B' \ \ \rightleftharpoons \ \ \{n \in \mathbb{N} : T \vdash \neg \varphi(\overline{n})\}.$$

Поскольку T эффективно аксиоматизируема, оба эти множества перечислимы. Так как T непротиворечива, $A' \cap B' = \emptyset$. По лемме мы также имеем $A \subset A'$ и $B \subset B'$. Докажем, что найдётся $n \notin A' \cup B'$. Действительно, в противном случае A' и B' разбивают $\mathbb N$ (взаимно дополнительны) и по теореме Чёрча–Поста должны быть разрешимыми. Но это невозможно, так как в этом случае они отделяли бы A от B.

Если $n \notin A' \cup B'$, то очевидно $T \nvdash \varphi(\overline{n})$ и $T \nvdash \neg \varphi(\overline{n})$, то есть T неполна. Заметим, что построенное нами независимое утверждение принадлежит классу Σ_1 (а его отрицание классу Π_1). \boxtimes

3.3 Неразрешимость арифметических теорий и исчисления предикатов

Теорема 3.10. Пусть теория T удовлетворяет условиям теоремы Γ ёделя-Pоссера. Тогда множество доказуемых и множество опровержимых в T предложений неотделимы.

Доказательство. Обозначим

$$P_T \ \rightleftharpoons \ \{\varphi : T \vdash \varphi\},$$

$$R_T \ \rightleftharpoons \ \{\varphi : T \vdash \neg \varphi\}.$$

В силу непротиворечивости T эти множества не пересекаются. Допустим, что некоторое разрешимое множество C отделяет P_T от R_T , то есть $P_T \subseteq C$ и $C \cap R_T = \emptyset$.

Как и в теореме Гёделя–Россера, рассмотрим неотделимую пару перечислимых множеств A, B, воспользуемся леммой и рассмотрим соответствующую формулу φ . Если $n \in A$, то $T \vdash \varphi(\overline{n})$, то есть $\varphi(\overline{n}) \in P_T$ и $\varphi(\overline{n}) \in C$. Если же $n \in B$, то $T \vdash \neg \varphi(\overline{n})$, то есть $\varphi(\overline{n}) \in R_T$ и $\varphi(\overline{n}) \notin C$. Значит, множество $\{n \in \mathbb{N} : \varphi(\overline{n}) \in C\}$ отделяет A от B. Это множество разрешимо, поскольку по n эффективно восстанавливается формула $\varphi(\overline{n})$ (для фиксированной φ). \boxtimes

Следствие 3.11. Всякая теория T, удовлетворяющая условиям теоремы Γ ёделя-Pоссера, неразрешима.

Следствие 3.12. Неразрешимы следующие теории: Q, PA, ZFC.

Замечание 3.13. Заметим, что из неразрешимости теории T, удовлетворяющей условиям теоремы Гёделя—Россера, следует её неполнота (поскольку полные эффективно аксиоматизированные теории разрешимы).

Следствие 3.14. Исчисление предикатов в арифметическом языке неразрешимо.

Доказательство. Пусть \tilde{Q} означает конъюнкцию всех нелогических аксиом теории Q (включая аксиомы равенства). Для любого арифметического предложения A, по теореме о дедукции, $Q \vdash A \iff \tilde{Q} \to A$. Таким образом, для проверки выводимости A в Q было бы достаточно проверить выводимость формулы $\tilde{Q} \to A$ в чистом исчислении предикатов, но первое невозможно. \boxtimes

Замечание 3.15. Последнее следствие, полученное американским логиком А. Чёрчем, показывает неразрешимость проблемы, которую Д. Гильберт считал одной из центральных проблем в математической логике (так называемая «Entscheidungsproblem»): не существует алгоритма, проверяющего данную формулу логики первого порядка на общезначимость.

Упражнение 3.16. Докажите, что существует конечная сигнатура без функциональных символов и констант, для которой исчисление предикатов неразрешимо.