Med Sea Photo Survey Analysis

Liad Elkobi, Ohad Gamliel, Noam Levi Avshalom

Our Data - Data collection

Marine Conservation

- 1. New in Israel
- 2. Many anthropogenic threats
- 3. Climate change
- 4. **Good** Data = better conservation

Data source: The Morris Kahn Marine Research Station

Photo Survey - Data collection

Object Recognition Algorithm & Sampling Method

Photo Survey

- Photo-quadrats (25 cm2) every 2 meters along a 25 meter transect line.
- 4 transect lines at each site (& depth).
- Upload photo to Coralnet website for Automated annotation.

Stratified Random Annotation Model

• Using stratified random annotation point generator - 4 x 4 matrix - generate 16 rows for every photo.

Taxa group is automatically classified at 90% confidence level, if not classification entered

manually.

Photo Survey - Data exploration

Data Description

- Sample Date 90 sampling days
- Season Fall, Spring
- Site -5 different sites
- Depth -10,25,45
- Transect 1-4
- Object Name \ Organism 63 different organisms
- Taxonomy Group 11 tax groups

	site_depth	season	depth	sample_date	transect	object_name	taxonomy_group	sample_year	sample_month	site	freq
0	Achziv10	Fall	10	2015-11-18	1	Algae matrix	Algae	2015	2015-11	Achziv	10
1	Achziv10	Fall	10	2015-11-18	1	Amphiroa sp.	Algae	2015	2015-11	Achziv	2
2	Achziv10	Fall	10	2015-11-18	1	CCA	Algae	2015	2015-11	Achziv	1

Photo Survey - Data exploration

Steps and Research Questions

- Data exploration
- Descriptive Statistics
- Is there a correlation between the different organisms?
- How rich Is the organisms diversity along the different sites and years? is there a big difference?
- Which of the sites is the most stable?

Descriptive Statistics

Unique Values in DF

Distribution of Depth in sites

Distributions of Organisms

Freq Distribution of Taxonomy Group

Freq Distribution of Top 10 Organisms (out of 59)

Organism Diversity By Group

• 'Sponge' - High diversity low frequency(<3%).

Example of Sponge species

Potential Bias in the Data

- Ashkelon and Ashdod less sample dates; one depth only.
- Inconsistent number of sample dates along the years.
- Different sample dates between sites & depths .
- Non organism groups (shadow, sand etc.).

Correlations & Drill downs

How rich Is the organisms diversity along the different sites and years?

Diversity Analysis (1)

Is there any differences in the biological diversity between different sites and years?

- Separate between Ashkelon & Ashdod to the rest of the df.
- Sharp Drop in Naharia, 2015-2018; 2018 'Sponge' & Hydrozoa disappeared.
- Absence of hard coral in Naharia , higher % of sponge species in Sdot Yam .

How rich Is the organisms diversity along the different sites and years?

Diversity Analysis (2)

- Changes along the years Ashkelon 2020, Ashdod 2018
- Low % of Algae species compared to other sites.
 - 'Turf' (44% of data) is missing in Ashkelon & Ashdod .
- No corals in Ashkelon

Is there a correlation between the different organisms?

Linear Correlations between organisms

Using pearson correlation function we found:

- Mid-strong correlation in opposite ratio between 'Turf' and 'Bryozoan.
- Strong Positive correlation (>0.7) between 3 pairs of Organisms.
 - ('Codium', 'Padina sp', 0.78)
 - O ('Botryocladia Sp.', 'Ircinia dendroides', 0.80)
 - o ('Petrosia ficiformis', 'Cerianthus sp.', 0.77)

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Pearson corr matrix - corr > 0.7 (cord < -0.7)

Fish survey:

- Manually identified
- The same exact location
- Similar data structure

Eological stability:

Regulation mechanisms:

- Stability
- resilience

Achziv 10				
Achziv 25				
Achziv45				
Sdaot Yam 10				
Sdaot Yam 25				
Sdaot Yam 45				
Naharia 45				

סיכן משויש-Siganus rivulatus

Big changes over time and depth within a site

Delta of population trends across timeline and depth within the sites

PSI is a measure of how much a population has shifted over time or between two different samples of a population in a single number. It does this by bucketing the two distributions and comparing the percents of items in each of the buckets, resulting in a single number you can use to understand how different the populations are. The common interpretations of the PSI result are:

- PSI < 0.1: no significant population change
- PSI < 0.2: moderate population change
- PSI >= 0.2: significant population change

And in other words...

$$PSI = \sum \left(\left(Actual\% - Expected\% \right) imes ln \left(rac{Actual\%}{Expected\%}
ight)
ight)$$

https://github.com/mwburke/population-stability-index/blob/master/walkthrough-example.ipynb

And the most stable site is...

Achziv 10	0.0765	
Achziv 25	0.1316	
Achziv45	0.1993	
Sdaot Yam 10	0.2023	
Sdaot Yam 25	0.3374	
Sdaot Yam 45	0.4114	
Naharia 45	0.3712	