CHANGE OF BASIS AND SIMILARITY

$$T: \mathbb{R}^2 \to \mathbb{R}^2: T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+3y \\ 2x+2y \end{bmatrix}$$

Is it possible to find a basis $\,B$ for $\,\mathbb{R}^{2}$ such that the transformation matrix $\,T$

is diagonal with respect to B?

With respect to a standard basis, $T_E = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$.

We can show that $T_E = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ is diagonalizable into $T_E = S\Lambda S^{-1}$, in which Λ is a diagonal matrix.

$$\Lambda = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}$$

If $T_E = S\Lambda S^{-1}$, then $\Lambda = S^{-1} T_E S$. Let B be the basis in \mathbb{R}^2 consisting of the columns of S, then S is the change-of-basis matrix from B to E. Then

$$T_{p} = S^{-1} T_{p} S = \Lambda$$

Therefore the transformation matrix T with respect to the basis $B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$ is diagonal.

$$T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 3 \\ -2 \end{bmatrix} \quad \text{and} \quad T \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

So the vectors that form the columns of $\ T_{_{R}}$ are

$$\begin{bmatrix} T \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{bmatrix}_{B} = \begin{bmatrix} 4 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \end{bmatrix}_{B} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

 $T_E \sim T_B$ because when $T:V \to W$, changing a basis for V of transformation matrix A would require multiplication AM (multiply by M on the right to come first). Chaging the basis for W would change A to $M^{-1}A$ (to come last). Therefore, to change both bases the same way, the new matrix is $B = M^{-1}AM$. The good basis vectors are thus the eigenvectors of A, and $B = M^{-1}AM$ becomes $B = S^{-1}AS$.

WORKING WITHIN A NON-STANDARD OR NON-EIGEN BASIS

$$T: P_2 \to P_2: T(p(x)) = p(2x-1)$$

Find T with respect to basis $B = 1 + x, 1 - x, x^2$

With respect to a standard basis:

$$T(1) = 1, T(x) = 2x - 1, T(x^{2}) = (2x - 1)^{2} = 1 - 4x + 4x^{2}$$

$$T(1)_{E} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, T(x)_{E} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, [T(x^{2})]_{E} = \begin{bmatrix} 1 \\ -4 \\ 4 \end{bmatrix}$$
Therefore $T_{E} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 4 \end{bmatrix}$

The change of basis matrix from B to E is $\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Therefore it follows that $T_B = M^{-1} T_E M$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ -1 & 2 & \frac{5}{2} \\ 0 & 0 & 4 \end{bmatrix}$$

Find a basis $\it C$ for $\it P_2$ such that $\it T$ $\it _C$ is a diagonal matrix.

T _E has eigenvalues 1, 2, and 4 with eigenvectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

$$S = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

 $S^{-1} \ T_{-E} \, S = \Lambda$, and therefore $\, S$ is a change of basis matrix from a basis $\, C$ to $\, E$.

Therefore
$$C = 1, -1 + x, 1 - 2x + x^2$$