Teoria Sygnałów w zadaniach Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone Wydrukowano w Polsce

Książka współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Zadanie 1. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Wykorzystując sygnały elementarne możemy napisać:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) \tag{1}$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (2)

Do obliczenia całki potrzebujemy jawnej postaci równań opisujących proste na odcinkach $(-t_0, 0)$ oraz $(0, t_0)$

Ogólne równanie prostej to:

$$f(t) = m \cdot t + b \tag{3}$$

Dla pierwszego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: $(-t_0,0)$ oraz (0,A). Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} 0 = m \cdot (-t_0) + b \\ A = m \cdot 0 + b \end{cases}$$

$$\begin{cases} -b = m \cdot (-t_0) \\ A = b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ A = b \end{cases}$$

$$\begin{cases} A = b \\ \frac{A}{t_0} = m \end{cases}$$

Równianie prostej dla t z zakresu $(-t_0, 0)$ to:

$$f(t) = \frac{A}{t_0} \cdot t + A$$

Dla drugiego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: (0, A) oraz $(t_0, 0)$. Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} 0 = m \cdot t_0 + b \\ A = m \cdot 0 + b \end{cases}$$

$$\begin{cases} -b = m \cdot t_0 \\ A = b \end{cases}$$

$$\begin{cases} -\frac{b}{t_0} = m \\ A = b \end{cases}$$

$$\begin{cases} A = b \\ -\frac{A}{t_0} = m \end{cases}$$

Równianie prostej dla t z zakresu $(0, t_0)$ to:

$$f(t) = -\frac{A}{t_0} \cdot t + A$$

Podsumowując, sygnal f(t) możemy opisać jako:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) = \begin{cases} 0 & dla & t \in (-\infty; -t_0) \\ \frac{A}{t_0} \cdot t + A & dla & t \in (-t_0; 0) \\ -\frac{A}{t_0} \cdot t + A & dla & t \in (0; t_0) \\ 0 & dla & t \in (t_0; \infty) \end{cases}$$
(4)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-t_0}^{0} \left(\frac{A}{t_0} \cdot t + A \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &+ \int_{0}^{t_0} \left(-\frac{A}{t_0} \cdot t + A \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot dt + \int_{-t_0}^{0} \frac{A}{t_0} \cdot t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-t_0}^{0} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &+ \int_{0}^{t_0} -\frac{A}{t_0} \cdot t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{0}^{t_0} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot dt \\ &= 0 + \frac{A}{t_0} \cdot \int_{-t_0}^{0} t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + A \cdot \int_{-t_0}^{0} e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &- \frac{A}{t_0} \cdot \int_{0}^{t_0} t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + A \cdot \int_{0}^{t_0} e^{-\jmath \cdot \omega \cdot t} \cdot dt + 0 \\ &= \begin{cases} u &= t \quad dv &= e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ du &= dt \quad v &= \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \end{cases} \\ &= \frac{A}{t_0} \cdot \left(t \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \right) \Big|_{-t_0}^{0} - \int_{-t_0}^{0} \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right) \\ &+ A \cdot \left(\frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \right) \Big|_{-t_0}^{0} \right) \end{split}$$

$$\begin{split} &-\frac{A}{t_0} \cdot \left(t \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \Big|_0^{t_0} - \int_0^{t_0} \frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \cdot dt\right) \\ &+ A \cdot \left(\frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \Big|_0^{t_0}\right) \\ &= \frac{A}{t_0} \cdot \left(0 \cdot e^{-j\omega \cdot 0} - (-t_0) \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot (-t_0)} + \frac{1}{j \cdot \omega} \left(\frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \Big|_{-t_0}^{0}\right)\right) \\ &+ \frac{A}{-j \cdot \omega} \cdot \left(e^{-j\omega \cdot 0} - e^{-j\omega \cdot (-t_0)}\right) \\ &- \frac{A}{t_0} \cdot \left(t_0 \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot t_0} - 0 \cdot e^{-j\omega \cdot 0} + \frac{1}{j \cdot \omega} \left(\frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot t} \Big|_0^{t_0}\right)\right) \\ &+ \frac{A}{-j \cdot \omega} \cdot \left(e^{-j\omega \cdot t_0} - e^{-j\omega \cdot 0}\right) \\ &= \frac{A}{t_0} \cdot \left(0 - t_0 \cdot \frac{1}{j \cdot \omega} \cdot e^{j\omega \cdot t_0} - \frac{1}{j^2 \cdot \omega^2} \left(e^{-j\omega \cdot 0} - e^{-j\omega \cdot (-t_0)}\right)\right) \\ &- \frac{A}{j \cdot \omega} \cdot \left(t_0 \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot t_0} - 0 - \frac{1}{j^2 \cdot \omega^2} \left(e^{-j\omega \cdot t_0} - e^{-j\omega \cdot 0}\right)\right) \\ &- \frac{A}{j \cdot \omega} \cdot \left(e^{-j\omega \cdot t_0} - 1\right) \\ &= -\frac{A}{j \cdot \omega} \cdot \left(e^{-j\omega \cdot t_0} - \frac{A}{t_0 \cdot j^2 \cdot \omega^2} + \frac{A}{t_0 \cdot j^2 \cdot \omega^2} \cdot e^{j\omega \cdot t_0} - \frac{A}{j \cdot \omega} \cdot e^{-j\omega \cdot t_0} + \frac{A}{j \cdot \omega} \cdot e^{j\omega \cdot t_0} \right) \\ &= \frac{2 \cdot A}{t_0 \cdot j^2 \cdot \omega^2} + \frac{A}{t_0 \cdot j^2 \cdot \omega^2} \cdot \left(e^{j\omega \cdot t_0} + e^{-j\omega \cdot t_0}\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(e^{j\omega \cdot t_0} + e^{-j\omega \cdot t_0}\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - \cos(\omega \cdot t_0)\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - \cos(\omega \cdot t_0)\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - 1 + 2 \cdot \sin^2(\omega)\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - 1 + 2 \cdot \sin^2(\omega)\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \end{aligned}$$

Transformata sygnału $f(t)=A\cdot\Lambda(\frac{t}{t_0})$ to $F(\jmath\omega)=A\cdot t_0\cdot Sa^2(\frac{\omega\cdot t_0}{2})$

Zadanie 2. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku

$$f(t) = \begin{cases} 0 & dla \quad t \in (-\infty; 0) \\ e^{-a \cdot t} \cdot \sin(\omega_0 \cdot t) & dla \quad t \in (0; \infty) \end{cases}$$
 (5)

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt \tag{6}$$

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{0}^{\infty} e^{-a \cdot t} \cdot \sin(\omega_{0} \cdot t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= \int_{-\infty}^{0} 0 \cdot dt + \int_{0}^{\infty} e^{-a \cdot t} \cdot \left(\frac{e^{\jmath \cdot \omega_{0} \cdot t} - e^{-\jmath \cdot \omega_{0} \cdot t}}{2 \cdot \jmath} \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 0 + \lim_{\tau \to \infty} \frac{1}{2 \cdot \jmath} \left(\int_{0}^{\tau} e^{-a \cdot t} \cdot e^{\jmath \cdot \omega_{0} \cdot t} \cdot e^{-\jmath \cdot \omega_{0} \cdot t} \cdot dt - \int_{0}^{\tau} e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega_{0} \cdot t} \cdot e^{-\jmath \cdot \omega_{0} \cdot t} \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{2 \cdot \jmath} \left(\int_{0}^{\tau} e^{(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t} \cdot dt - \int_{0}^{\tau} e^{(-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t} \cdot dt \right) \\ &= \begin{cases} z = (-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t & w = (-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t \\ dt = \frac{1}{(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot dt & dw = (-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot dt \\ dt = \frac{1}{(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \int_{0}^{\tau} e^{z} \cdot dz - \frac{1}{2 \cdot \jmath \cdot (-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \int_{0}^{\tau} e^{w} \cdot dw \\ &= \frac{1}{2 \cdot \jmath \cdot (-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} e^{z} \Big|_{0}^{\tau} - \frac{1}{2 \cdot \jmath \cdot (-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} e^{w} \Big|_{0}^{\tau} \\ &= \frac{1}{2 \cdot \jmath \cdot (-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} e^{(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t} \Big|_{0}^{\tau} \end{aligned}$$

$$\begin{split} &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \lim_{\tau \to \infty} \left(e^{(-a + j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - e^{(-a + j \cdot \omega_0 - j \cdot \omega) \cdot 0} \right) \\ &- \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \cdot \lim_{\tau \to \infty} \left(e^{(-a - j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - e^{(-a - j \cdot \omega_0 - j \cdot \omega) \cdot 0} \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(j \cdot \omega_0 - j \cdot \omega) \cdot \tau} \right) - \lim_{\tau \to \infty} 1 \right) \\ &- \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} \right) - \lim_{\tau \to \infty} 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(j \cdot \omega_0 - j \cdot \omega) \cdot \tau} \right) - 1 \right) \\ &- \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \right) \cdot \lim_{\tau \to \infty} e^{(j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} + \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \\ &= \frac{-(2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)) + 2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega) \cdot 2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \\ &= \frac{2 \cdot j \cdot a + 2 \cdot j^2 \cdot \omega_0 + 2 \cdot j^2 \cdot \omega - 2 \cdot j \cdot a + 2 \cdot j^2 \cdot \omega_0 - 2 \cdot j^2 \cdot \omega}{4 \cdot j^2 \cdot (a^2 + a \cdot j \cdot \omega_0 - j^2 \cdot \omega_0^2 + j^2 \cdot \omega^2)} \\ &= \frac{4 \cdot j^2 \cdot (a^2 + 2 \cdot a \cdot j \cdot \omega - j^2 \cdot \omega_0^2 + j^2 \cdot \omega^2)}{4 \cdot j^2 \cdot (a^2 + 2 \cdot a \cdot j \cdot \omega - j^2 \cdot \omega_0^2 + j^2 \cdot \omega^2)} \\ &= \frac{\omega_0}{a^2 + 2 \cdot a \cdot j \cdot \omega + \omega_0^2 - \omega^2} \\ &= \frac{\omega_0}{\omega_0^2 + (a^2 + 2 \cdot a \cdot j \cdot \omega - \omega^2)} \\ &= \frac{\omega_0}{\omega_0^2 + (a^2 + 2 \cdot a \cdot j \cdot \omega - \omega^2)} \\ &= \frac{\omega_0}{\omega_0^2 + (a^2 + 2 \cdot a \cdot j \cdot \omega - \omega^2)} \end{aligned}$$

Transformata sygnaluf(t) to $F(\jmath\omega)=\frac{\omega_0}{\omega_0^2+(a+\jmath\cdot\omega)^2}$

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j\omega)|$$

$$= \left| \frac{\omega_0}{\omega_0^2 + (a+j\cdot\omega)^2} \right|$$

$$= \left| \frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot j \cdot \omega + (j \cdot \omega)^2} \right|$$

$$= \left| \frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot j \cdot \omega - \omega^2} \right|$$

$$= \left| \frac{\omega_0}{\omega_0^2 - \omega^2 + a^2 + j \cdot 2 \cdot a \cdot \omega} \right|$$

$$= \left\{ \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \right\}$$

$$= \frac{|\omega_0|}{|\omega_0^2 - \omega^2 + a^2 + j \cdot 2 \cdot a \cdot \omega|}$$

$$= \left\{ |a + \jmath \cdot b| = \sqrt{a^2 + b^2} \right\}$$
$$= \frac{\omega_0}{\sqrt{\left(\omega_0^2 - \omega^2 + a^2\right)^2 + \left(2 \cdot a \cdot \omega\right)^2}}$$

Widmo fazowe obliczamy ze wzoru:

$$\begin{split} &\Phi(\omega) = arg \left(\frac{\omega_0}{\omega_0^2 + (a + \jmath \cdot \omega)^2} \right) \\ &= arg \left(\frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot \jmath \cdot \omega + (\jmath \cdot \omega)^2} \right) \\ &= arg \left(\frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot \jmath \cdot \omega - \omega^2} \right) \\ &= arg \left(\frac{\omega_0}{\omega_0^2 - \omega^2 + a^2 + \jmath \cdot 2 \cdot a \cdot \omega} \right) \\ &= \left\{ arg \left(\frac{z_1}{z_2} \right) = arg \left(z_1 \right) - arg \left(z_2 \right) \right\} \\ &= arg \left(\omega_0 \right) - arg \left(\omega_0^2 - \omega^2 + a^2 + \jmath \cdot 2 \cdot a \cdot \omega \right) \\ &= \left\{ arg \left(a + \jmath \cdot b \right) = arctg \left(\frac{b}{a} \right) \right\} \\ &= arctg \left(\frac{0}{\omega_0} \right) - arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \\ &= arctg \left(0 \right) - arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \\ &= 0 - arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \\ &= -arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \end{split}$$

