GEIPI-POLYTECH v1 ©EXATECH																					
Nom de famille : (Suivi, s'il y a lieu, du nom d'usage)		\perp	\perp																		
Prénoi	m(s) :	T																			
	méro didat :	Ţ	I									é(e) l	e :		/		/				
(Le numéro est celui qui figure sur la convocation ou la feuille d'émargement)																					
CONSIGNES : /	Remplir soign Ne pas signer Rédiger avec N'effectuer au	r la co un sty	mpositic ylo à end	n et ne re fonc	pas y ée (ble	appor eue ou	ter de noire	signe) ; évite	distind er le s	ctif. tylo pl	ume à	encre	noire			cor Ge	ipi	Po	lyt	ecl	h

Epreuve Sciences de la Vie et de la Terre Document réponses

EXERCICE I (8 points)

EXERCICE II (14 points)

II-1- (4 pt)

En présence de lumière, la chlorelle peut faire de la photosynthèse qui est une réduction du CO_2 (ou production de sucres) et une oxydation de H_2O (et production de O_2), permettant la production d'ATP (énergie chimique) et de composés réduits (NADPH, H^+).

En **l'absence de lumière**, la chlorelle fait de **la respiration** qui **oxyde les nutriments carbonés** (le glucose par exemple) et réduit l'O₂ (en produisant H₂0) en **produisant de l'ATP** (énergie chimique) et des composés réduits (NADPH, H+).

II-2- (10 pt)

<u>Autotrophie</u>: les contenants sont totalement remplis évitant la présence de gaz dans le haut des flacons, et sont hermétiquement fermés: les chlorelles **ne peuvent pas faire de photosynthèse** car **il n'y a pas de CO₂**. Ainsi, il n'y a aucune production de biomasse ni changement majeur de la concentration en O₂.

<u>Hétérotrophie</u>: la **respiration cellulaire démarre** car les chlorelles consomment de l' O_2 (la concentration en O_2 chute), puis **au jour 1, la respiration s'arrête** car il n'y a plus d' O_2 et la production de biomasse s'arrête également.

<u>Mixotrophie</u>: dans ces conditions, les chlorelles réalisent **photosynthèse et respiration simultanément**. Les deux voies s'alimentent l'une l'autre: les chlorelles produisent de l' O_2 grâce à la photosynthèse, et la respiration utilise cet O_2 . Cependant, les **deux voies ne sont pas équilibrées**: la photosynthèse domine sur les 3 premiers jours (production de biomasse et augmentation de la concentration en O_2), puis c'est la respiration qui domine (chute de la concentration en O_2 et baisse de la production de biomasse). Cette modification au jour 3 est due à **une opacification de la culture** induite par l'augmentation de la biomasse dans le flacon. Cette opacification réduit l'entrée de la lumière et donc la photosynthèse.

De plus, il se produit également dans ces conditions une **production de composés oxygénés toxiques**, tels que des radicaux libres qui détruisent les chloroplastes (2 points Bonus).

EXERCICE III (18 points)

III-1- (3 pt)	A - Membrane plasmiq	ue	B- Cytoplasme						
C - Noyau	D - ADN	E - Transcription		F – Pré-ARNm					
G - Maturation		H - ARNm	I - Traduction	J- Protéine					

III-2- (2 pt)

Les pistes de l'électrophorèse correspondant à des témoins sont les pistes 7 et 8.

La piste 7 correspond à des cellules non traitées à l'IDC16. En comparant cette piste aux pistes 1 à 6, on peut observer les effets du traitement à l'IDC16 sur les cellules infectées.

La piste 8 correspond à des cellules qui ne sont pas infectées. En comparant cette piste 8 à la piste 7, on peut observer les effets de l'infection sur les cellules.

La piste 9 n'est pas un témoin, seulement une piste indiquant les marqueurs de taille.

III-3- (6 pt)

Grâce à l'électrophorèse, on observe une disparition progressive des ARNm (pistes 1 à 5 du doc 1b) proportionnellement à la concentration de l'IDC16, jusqu'à une disparition totale de tous les ARNm quand la concentration d'IDC16 est maximale (piste 6 du doc 1b). Le traitement à l'IDC16 semble donc affecter soit la maturation soit la transcription (doc 1b).

Le document 1c montre que **l'IDC16 bloque l'épissage d'exons** dépendant d'une région intronique fixant ASF/SF2 lors de la maturation de l'ARN pré-messager. Or le document 1a indique qu'il existe de **nombreux sites d'épissage**. La disparition des ARNm suite au traitement à l'IDC16 pourrait s'expliquer par **l'inhibition de l'épissage** des ARN pré-messagers par cette molécule.

III-4- (6 pt)

Le document 2 indique que la quantité de protéines p24 **diminue fortement** au bout de 14 jours suite à un traitement à l'IDC16 (elle passe de **90 ng/ml** en l'absence de traitement, à **20 ng/ml** pour un traitement à 1μ M d'IDC16). Le document 1 montre quant à lui que pour un traitement à l'IDC16 dosé **à 5\muM**, l'épissage des ARN pré-messager **est inhibé** par cette molécule. Par conséquent, si l'ARNm n'est pas produit, la **protéine ne l'est pas non plus**.

Pour un traitement à **1μM d'IDC16** (piste 4 du doc 1b), l'inhibition n'est pas totale ou il a **une faible production d'ARNm** (dont ceux issus du gène *gag-pol* à proximité du site d'épissage D1). Cela permet donc **une faible production de protéines p24** (environ **20 ng/ml** selon le doc 2). Les résultats sont donc **cohérents** entre eux.

III-5- (1 pt) L'IDC16 sur la phase de maturation.