Chapter 21 电荷

一、中英对照

Charge 电荷

Coulomb's law 库仑定律

Conductors 导体

Insulators 绝缘体

二、公式

1、真空介电常数 $arepsilon_0 = 8.85 imes 10^{-12} C^2/N \cdot m^2$

2、库仑定律
$$ec{F}=rac{1}{4\piarepsilon_0}\cdotrac{q_1q_2}{r^2}\hat{r}$$

3、球壳定理:球壳内部的电场强度为0,球壳外部的电场强度等效于点电荷的电场强度。

4、电荷
$$q=ne$$
, $e=1.602 imes 10^{-19}C$

Chapter 22 静电场

一、中英对照

Electric field 电场

electric dipole 电偶极子

electric dipole moment 电偶极矩

二、公式

- 1、电场定义 $ec{E}=rac{ec{F}}{q}$,单位为牛顿/库仑(N/C)
- 2、点电荷的电场 $ec{E}=rac{1}{4\piarepsilon_0}\cdotrac{q}{r^2}\hat{r}$
- 3、电偶极子的电场 $ec{E} = rac{1}{4\piarepsilon_0} \cdot rac{2ec{p}}{z^3}$
 - $ec{p}$ 是电偶极矩, $ec{p}=qec{d}$,方向由负电荷指向正电荷。
 - z是**电偶极子延长线上某一点**到电偶极子中心的距离。
- 4、带电圆环的电场强度 $E=rac{1}{4\piarepsilon_0}\cdotrac{qz}{(z^2+R^2)^{3/2}}$
 - 推导方法: 设圆环电荷线密度为 λ , $dq=\lambda ds$, z 是圆环中心到点P的距离
 - 以圆环所在平面为准,电场的竖直分量 $dE\cos heta$ 有效,水平分量相互抵消

$$egin{align} \circ \ cos heta &= rac{z}{\sqrt{z^2 + R^2}}, \ r &= \sqrt{z^2 + R^2} \ \circ \ dE &= rac{1}{4\piarepsilon_0}rac{dq}{r^2} = rac{1}{4\piarepsilon_0}rac{\lambda ds}{r^2} = rac{1}{4\piarepsilon_0}rac{\lambda ds}{z^2 + R^2} \ \circ \ E &= \int_0^{2\pi R} dE \cos heta &= rac{1}{4\piarepsilon_0}rac{qz}{(z^2 + R^2)^{3/2}} \ \end{array}$$

- 5、带电圆盘的电场强度 $E=rac{\sigma}{2arepsilon_0}(1-rac{z}{\sqrt{z^2+R^2}})$
 - 推导方法:将圆盘分为无穷多个圆环, $dq=\sigma dA=\sigma 2\pi r dr$
- 6、电偶极子的扭矩 $ec{ au}=ec{p} imesec{E}$
- 7、电偶极子的电势能 $U = ec{p} \cdot ec{E}$

Chapter 23 高斯定理

一、中英对照

Gauss's law 高斯定理

Flux 通量

Gaussian surface 高斯面

Line of charge 线电荷

二、公式

1、(电场)通量定义 $\Phi = \int ec{E} \cdot dec{A}$,单位为 $N \! \cdot \! m^2/C$

2、高斯定理
$$arepsilon_0\oint ec{E}\cdot dec{A}=q_{enc}$$

• 即为
$$arepsilon_0\Phi=q_{enc}$$

3、孤立有空腔导体的外部电场 $E=rac{\sigma}{arepsilon_0}$

- σ 是导体表面的电荷密度
- 内部电场为0

4、无限长线电荷在r处的电场
$$E=rac{\lambda}{2\pi r arepsilon_0}$$

5、面电荷电场
$$E=rac{\sigma}{2arepsilon_0}$$

• 两个面电荷的电场叠加
$$E=rac{\sigma}{arepsilon_0}$$

6、球壳电场

1.
$$E=0~(r < R)$$
2. $E=rac{1}{4\pi arepsilon_0}rac{q}{r^2}~(r > R)$

7、均匀带电球体电场

1.
$$E = rac{1}{4\piarepsilon_0}rac{q}{R^3}r\ (r < R)$$

2. $E=rac{1}{4\piarepsilon_0}rac{q}{r^2}\,(r>R)$,等效于点电荷

Chapter 24 电势

一、中英对照

Electric potential 电势

Potential difference 电势差

Equipotential surfaces 等势面

二、公式

1、电势
$$V=rac{U}{q}$$
,单位为伏特 V

2、电势差
$$\Delta V = rac{\Delta U}{q} = rac{-W}{q}$$

3、电场中的电势差
$$V_f - V_i = -\int_i^f ec{E} \cdot dec{s}$$

4、点电荷的电势
$$V=rac{1}{4\piarepsilon_0}\cdotrac{q}{r}$$

5、多个点电荷在某一点的电势
$$V=rac{1}{4\piarepsilon_0}\sum_{i=1}^nrac{q_i}{r_i}$$

• 电势是标量,可以直接相加。

6、电偶极子的电势
$$V=rac{1}{4\piarepsilon_0}\cdotrac{p\cos heta}{r^2}$$

• 其中电偶极矩 p=qd

7、连续电荷分布的电势
$$V=\int dV=rac{1}{4\piarepsilon_0}\intrac{dq}{r}$$
 (基本公式)

1. 线电荷:
$$V=rac{\lambda}{4\piarepsilon_0}\ln\left(rac{L+\sqrt{L^2+d^2}}{d}
ight)$$

2. 带电圆盘:
$$V=rac{\sigma}{2arepsilon_0}(\sqrt{z^2+R^2}-z)$$

• 建议看书上的推导过程。

8、由电势计算电场强度
$$E_s=-rac{\partial V}{\partial s}$$

•
$$E_x=-rac{\partial V}{\partial x}, E_y=-rac{\partial V}{\partial y}, E_z=-rac{\partial V}{\partial z}$$

9、点电荷的电势能
$$U=W=q_2V=rac{1}{4\piarepsilon_0}rac{q_1q_2}{r}$$

Chapter 25 电容

一、中英对照

Capacitance 电容

二、公式

1、电容 $C=rac{q}{V}$,单位为法[拉](F)

2、平行板电容器 $C=rac{arepsilon_0 A}{d}$

3、圆柱形电容器 $C=2\pi arepsilon_0 rac{L}{\ln(b/a)}$

• a是内半径, b是外半径, L是柱体长度。

4、球形电容器 $C=4\piarepsilon_0rac{ab}{b-a}$

• a是内半径, b是外半径。

5、孤立球形导体的电容 $C=4\pi arepsilon_0 R$

• 令球形电容器的 $a=R,\ b o\infty$, 得到该公式

6、电容并联 $C_{eq} = \sum_{i=1}^n C_i$

7、电容串联 $\dfrac{1}{C_{eq}} = \sum_{i=1}^n \dfrac{1}{C_i}$

8、平行板电容器存储的能量 $U=rac{q^2}{2C}=rac{1}{2}CV^2$

9、平行板电容器的能量密度 $u=rac{1}{2}arepsilon_0 E^2$

10、带有电介质的电容器:

• 计算时,替换 $\varepsilon_0
ightarrow \varepsilon_0 \kappa$

• 电容 $C=\kappa C_{air}$

11、 高斯定理 $arepsilon_0 \oint \kappa ec{E} \cdot dec{A} = q$

Chapter 26 电流与电阻

一、中英对照

Drift speed (电子) 漂移速率 $ec{v}_d$

Resistance 电阻

Resistivity 电阻率

Conductivity 电导率

二、公式

1、电流 $i=rac{dq}{dt}$,单位为安培(A)

- 2、电流密度 J 定义式 $i=\int ec{J}dec{A}$

 - $ec{J}$ 是电流密度,单位为 A/m^2
 - 当 $ec{J}$ 与 $ec{A}$ 同向时,公式变为 $J=rac{i}{A}$
- 3、电流密度 J 的微观式 $ec{J}=(ne)ec{v}_d$
 - n是电荷载流子的数密度(每单位体积的载流子数目)。
 - ne是载流子电荷密度 (每单位体积的载流子电荷数目)。
 - \vec{v}_d 是电子漂移速率。
- 4、电阻 $R=rac{V}{i}$,单位为欧姆(Ω)
- 5、电阻率 $ho = rac{E}{J}$,单位为欧姆-米(Ω ·m)
 - E是电场强度。原式向量形式为 $ec{E}=
 hoec{J}$
 - 电导率 $\sigma=rac{1}{
 ho}$,单位为 $(\Omega \!\cdot m)^{-1}=S/m$
- 6、电阻与电阻率的关系 $R=rac{
 ho L}{A}$
- 7、电阻率与温度的关系 $hoho_0=
 ho_0lpha(T-T_0)$ (approximation)

• lpha是温度系数, ho_0 是参考温度 T_0 下的电阻率,一般 $T_0=293K$

8、功率

- 1. 电能的转换率 P=Vi
- 2. 电阻性耗散 $P=i^2R=V^2/R$
- 仅在纯电阻电路下, 1和2等价

Chapter 27 电路

一、中英对照

emf 电动势

二、公式

- 1、电动势 $arepsilon=-rac{dW}{dt}$
- 2、单回路电流 $i=rac{arepsilon}{R}$
- 3、串联电阻 $R_{eq} = \sum_{i=1}^n R_i$
- 4、并联电阻 $\dfrac{1}{R_{eq}} = \sum_{i=1}^n \dfrac{1}{R_i}$
 - 两个并联电阻的等效电阻 $R_{eq}=rac{R_1R_2}{R_1+R_2}$
- 5、电动势装置的功率 P=iarepsilon
- 6、KCL: 对于一个节点, $\displaystyle\sum_{i=1}^n i_i=0$
- 7、KVL: 对于一个回路, $\sum_{i=1}^n v_i = 0$
- 8、一阶RC电路
 - 1. 充电

•
$$q(t) = C\varepsilon(1 - e^{-t/RC})$$

•
$$i(t) = \frac{dq}{dt} = \frac{\varepsilon}{R}e^{-t/RC}$$

•
$$v_c(t) = \frac{at}{C} = \varepsilon (1 - e^{-t/RC})$$

2. 放电

$$\bullet \ \ q(t) = q_0 e^{-t/RC}$$

•
$$i(t) = \frac{dq}{dt} = -\frac{q_0}{RC}e^{-t/RC}$$

•
$$v_c(t) = \frac{\alpha q}{C}$$

- 3. 时间常数 $\tau = RC$
- 9、一阶RC电路的三要素分析法 (电路与电子技术内容)
 - 1. 将电路转化为一阶RC电路
 - 2. 找 0^+ 时刻状态的电压 $v(0^+)$ $v(0^+) = v(0^-)$
 - 3. 找第二稳态的电压 $v(\infty)$ 将电容器视为**开路**
 - 4. 找时间常数 au = RC
 - 5. 求解电容器的电压 $v(t)=v(\infty)+(v(0^+)-v(\infty))e^{-t/ au}$
 - 或者记这个 $v(t) = v(0^+)e^{-t/\tau} + v(\infty)(1 e^{-t/\tau})$

Chapter 28 磁场

一、中英对照

Hall effect 霍尔效应

Helical path 螺旋路径

Cyclotrons 回旋加速器

Synchrotrons 同步加速器

Magnetic dipole 磁偶极子

• 由于没有发现单独存在的磁单极子,磁偶极子的物理模型是一段封闭回路电流。

Magnetic dipole moment 磁偶极矩

二、公式

- 1、磁场力 $ec{F}_B = qec{v} imesec{B}$,大小 $F_B = qvB\sin heta$
 - B是磁感应强度, θ 是v和B之间的夹角,B的单位是特斯拉(T), $1T=1\frac{N}{4}$ 。
- 2、正交场 qE = qvB
- 3、霍尔效应 $n=rac{Bi}{VI_{P}}$,其中
 - 霍尔电势差 V = Ed
 - n是带电微粒的**数密度**,即单位体积的数目; l是霍尔元件的厚度。
 - 电子漂移速率 $v_d=rac{J}{ne}=rac{i}{neA}$
 - 正交场 $eE = ev_dB$
- 4、带电粒子圆周运动 $|q|vB=rac{mv^2}{r}$

 - 半径 $r=\dfrac{mv}{|q|B}$ 周期 $T=\dfrac{2\pi r}{v}$ 角速度 $\omega=\dfrac{2\pi}{T}=\dfrac{|q|B}{m}$
- 5、螺旋线运动 $v_{\parallel}=vcos\phi,v_{\perp}=v\sin\phi$

- 每个周期的位移 $d=v_{\parallel}T=v\cos\phirac{2\pi m}{|q|B}$,方向沿磁场方向。
- 6、回旋加速器的频率 $f=f_{osc}=rac{qB}{2\pi m}$
 - f_{osc} 是振荡器的频率。
- 7、通电导线所受的磁场力 $ec{F}=iec{L} imesec{B}$
 - \vec{L} 是长度矢量,大小为导线长度,方向沿着电流方向。
- 8、磁偶极矩 $\vec{\mu}$ 大小为 $\mu=NiA$,方向由右手定则给出(线圈平面法向量的方向)
- 9、磁场力矩 $ec{ au}=ec{\mu} imesec{B}$
- 10、磁偶极子在磁场中的势能 $U = -ec{\mu} \cdot ec{B}$
 - 当 $\vec{\mu}$ 和 \vec{B} 同向时,势能最小;反之,势能最大

(类比电场力矩
$$ec{ au} = ec{p} imes ec{E}, U = -ec{p} \cdot ec{E}$$
)

Chapter 29 电流的磁效应

一、中英对照

Permeability of free space 真空磁导率

Biot-Savart law 毕奥-萨伐尔定律

Amperian circuital rule 安培环路定理

Solenoids 螺线管

Toroids 螺绕环

二、公式

1、真空磁导率 $\mu_0 = 4\pi imes 10^{-7} T \cdot m/A pprox 1.26 imes 10^{-6} T \cdot m/A$

2、Biot-Savart定律
$$dec{B}=rac{\mu_0}{4\pi}rac{idec{s} imes\hat{r}}{r^2}$$

3、无限长直导线在点P处的磁感应强度 $B=rac{\mu_0 i}{2\pi R}$

4、圆弧形导线在圆心处的磁感应强度 $B=rac{\mu_0 i \phi}{4\pi R}$

• 当
$$\phi=2\pi$$
 时, $B=rac{\mu_0 i}{2R}$

5、通电平行导线之间的力 $F_{ab}=F_{ba}=rac{\mu_0 i_1 i_2 L}{2\pi d}$

6、安培环路定理
$$\oint ec{B} \cdot dec{s} = \mu_0 i_{enc}$$

- i_{enc} 是环路内的电流代数和。
- 右手沿闭合路径,四指指向环路积分方向,拇指指向的电流方向为正,反之为负。
- 7、长直通电导线外部的磁感应强度 $B(2\pi r)=\mu_0 i$ 或 $B=rac{\mu_0 i}{2\pi r}\,(r>R)$
- 8、长直通电导线内部的磁感应强度 $B(2\pi r)=\mu_0 i rac{\pi r^2}{\pi R^2}$ 或 $B=(rac{\mu_0 i}{2\pi R^2}) r \ (r < R)$
 - $ullet \ i_{enc}=irac{\pi r^2}{\pi R^2}$

- 9、理想螺线管内部的磁感应强度 $B=\mu_0 in$
 - n是线圈密度 (每单位长度的匝数)。
 - 外部磁感应强度约等于0。
- 10、螺绕环内部磁感应强度 $B(2\pi r)=\mu_0 i N$ 或 $B=rac{\mu_0 i N}{2\pi}rac{1}{r}$
- 11、通电线圈作为磁偶极子产生的磁场 $ec{B}=rac{\mu_0}{2\pi}\cdotrac{ec{\mu}}{z^3}$
 - 该公式适用于z轴, 且 $z \gg R$ 。
 - $\vec{\mu}$ 是磁偶极矩。

Chapter 30 电磁感应

一、中英对照

Induction 电磁感应

Inductance 电感

induced emf 感应电动势

Faraday's law 法拉第电磁感应定律

Lenz's law 楞次定律

二、公式

- 1、磁通量的定义 $\Phi = \int ec{B} \cdot dec{A}$
 - $\Phi_B = BA\cos\theta$
- 2、法拉第电磁感应定律 $arepsilon=-rac{d\Phi}{dt}$
 - N匝线圏 $arepsilon = -Nrac{d\Phi}{dt}$
- 3、感应电场 $\oint ec{E} \cdot dec{s} = -rac{d\Phi_B}{dt}$
 - 其中 $arepsilon=\int ec{E}\cdot dec{s}$,积分路径为穿过任意个导线的闭合曲线。
 - 这是对法拉第电磁感应定律的另一种表述: 变化的磁场产生感应电场。
- 4、电感 $L=rac{N\Phi_B}{i}$,单位为亨利(H)
- 5、螺线管的电感 $rac{L}{l}=\mu_0 N^2 A$
 - 其中 l 是螺线管长度,n为**线圈密度**(单位长度的线圈匝数)。
 - 推导: 由 $N\Phi_B=nl\cdot BA$ 和 $B=\mu_0in$ 得L的表达式。
- 6、自感电动势 $arepsilon=-Lrac{di}{dt}$
- 7、RL电路

• 时间常数
$$au=rac{L}{R}$$

• 时间常数
$$au=rac{L}{R}$$
• 充电电流 $i(t)=rac{arepsilon}{R}(1-e^{-t/ au_L})$
• 放电电流 $i(t)=i_0e^{-t/ au_L}$

• 放电电流
$$i(t)=i_0e^{-t/ au_L}$$

8、磁场的能量
$$U_B=rac{1}{2}Li^2$$

• 类比电场的能量
$$U_E=rac{1}{2}CV^2$$

9、磁场能量密度
$$u_B=rac{B^2}{2\mu_0}$$
 (单位体积内的磁场能量)

• 推导: 由
$$U_B=rac{1}{2}Li^2$$
 、 $u_B=rac{U_B}{A\cdot l}$ 和 $B=\mu_0in$ 可得

10、两线圈的互感应电动势

・ 线圏1中
$$arepsilon_1=-Mrac{di_2}{dt}$$
・ 线圏2中 $arepsilon_2=-Mrac{di_1}{dt}$

• 线圈2中
$$arepsilon_2 = -Mrac{ ilde{di}_1}{dt}$$

Chapter 32 麦克斯韦方程组

一、中英对照

Maxwell's equations 麦克斯韦方程组

Gauss's law for magnetism 磁场高斯定理

二、公式

1、麦克斯韦方程组

$$\begin{cases} \iint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_0} & \text{(电流) 高斯定理} \\ \iint \vec{B} \cdot d\vec{A} = 0 & \text{磁场高斯定理} \\ \oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt} & \text{法拉第电磁感应定律} \\ \oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc} + \mu_0 i_d & \text{安培-麦克斯韦环路定理} \end{cases}$$

其中 i_d 是位移电流, $i_d = arepsilon_0 rac{d\Phi_E}{dt}$

- 不是字面意义上的电荷作定向运动产生的电流,它表示电场的变化率。
- 2、圆平行板电容的内外磁场(将电容器视为圆柱导线)
 - 内部磁场 $B=(rac{\mu_0 i_d}{2\pi R^2})r$ 外部磁场 $B=rac{\mu_0 i}{2\pi r}$

Chapter 33 电磁波

一、中英对照

Electromagnetic wave 电磁波

Poynting vector 波因廷矢量

Polarization 偏振

• 偏振面: 包含 \vec{E} 的平面

Polarnoid 偏振片

• P1为起偏器,用于产生偏振光; P2为检偏器。

二、公式

1、电磁波的定量分析

• 电场
$$ec{E}=ec{E_m}\sin(kx-\omega t)$$

・ 磁场
$$ec{B} = ec{B_m} \sin(kx - \omega t)$$

•
$$\frac{E}{B} = \frac{E_m}{B_m} = c$$

•
$$\dfrac{E}{B}=\dfrac{E_m}{B_m}=c$$
• 波速 $v=c=\dfrac{1}{\sqrt{\mu_0\varepsilon_0}}$

2、Poyniting矢量
$$ec{S} = rac{1}{\mu_0} ec{E} imes ec{B}$$

- 它是电磁场中的能流密度矢量,方向指向电磁波传播的方向。
- 由于 \vec{E} 和 \vec{B} 垂直,所以 $S=\frac{1}{\mu_0}EB$ 。
- 3、波的强度考了我吃。
- 4、透射偏振光的强度
 - 减半定则: 入射光非偏振光, 透射光强度减半

$$\circ \ I = \frac{1}{2}I_0$$

• 余弦平方定则: 入射光为偏振光

$$\circ I = I_0 \cos^2 \theta$$

5、反射定律 $heta_i = heta_r$

- 6、折射定律 $n_2\sin heta_2=n_1\sin heta_1$
- 7、全反射:没有折射光的反射。 $n_1\sin heta_c=n_2\sin90^\circ$
 - 临界角 $heta_c = rcsin rac{n_2}{n_1}$
- 8、布儒斯特角:在入射角为特定角时,反射光为线偏振光,且振动方向垂直于入射面。该特定角为布儒斯特角。
 - $\theta_B = \arctan \frac{n_2}{n_1}$

Chapter 37 相对论

一、中英对照

Lorentz transformation 洛伦兹变换

Simultaneity 同时性

Time dilation 时间膨胀

Length contraction 长度收缩

proper time 固有时间

proper/rest length 固有长度/静止长度

二、公式

1、洛伦兹因子
$$\gamma=rac{1}{\sqrt{1-eta^2}}=rac{1}{\sqrt{1-rac{v^2}{c^2}}}$$

- $eta = rac{v}{c}$ 题目中称之为speed parameter
- 2、相对时间 $\Delta t = \gamma \Delta t_0$ (膨胀)
- 3、相对长度 $L=rac{\Delta L_0}{\gamma}$ (收缩)
- 4、洛伦兹变换:令S'系相对于S系以速度v移动。

在S'系中观测S系:

$$\left\{egin{aligned} x' &= \gamma(x-vt) \ y' &= y \ z' &= z \ t' &= \gamma(t-vx/c^2) \end{aligned}
ight.$$

在S系中观测S'系: (逆变换)

$$egin{cases} x = \gamma(x'+vt') \ y = y' \ z = z' \ t = \gamma(t'+vx'/c^2) \end{cases}$$

5、相对速度:令S'系相对于S系以速度v移动。

设S系中物体速度为u, S'系中物体速度为u', 则

$$u = \frac{u' + v}{1 + u'v/c^2}$$

- 推导: 由洛伦兹变换得到 $\Delta x = \gamma (\Delta x' + v \Delta t')$ 和 $\Delta t = \gamma (\Delta t' + v \Delta x'/c^2)$, 则 $u=rac{\Delta x}{\Delta t}=rac{\Delta x'+v\Delta t'}{\Delta t'+v\Delta x'/c^2}$,上下同除 $\Delta t'$,得到上式。
- 当v很小时,速度变为经典公式 u=u'+v
- 6、光的多普勒效应

・ v远离光源:
$$f=f_0\sqrt{rac{1-eta}{1+eta}}$$
・ v朝向光源: $f=f_0\sqrt{rac{1+eta}{1-eta}}$

• v朝向光源:
$$f=f_0\sqrt{rac{1+eta}{1-eta}}$$

- 7、相对论动量 $p = \gamma m \vec{v}$
- 8、相对论能量
 - 质能 (静止能量) $E_0 = mc^2$
 - 总能量

$$\circ~E=\gamma mc^2$$

$$\circ E = E_0 + K$$

• 动能 $K=mc^2(\gamma-1)$ (由上两式得到)

Chapter 38 光子与物质波

一、中英对照

Photon 光子

Photoelectric effect 光电效应

Compton effect 康普顿效应

De Broglie wavelength 德布罗意波长(物质波)

二、公式

1、光子能量 E=hf,其中 $h=6.63 imes 10^{-34}J\cdot s$ 是普朗克常数

2、光电效应方程

• 高中写法: $E_k=h
u-W_0$

• 大学写法: $K_{max} = hf - \Phi$

两者等价,选其一记忆即可。其中:

Φ 或 W₀ 是逸出功;

• K_{max} 等价于遏止电压V乘以电子电荷e。

3、光子动量
$$p=rac{h}{\lambda}$$

- 光没有静止质量,但是有动量。
- 4、光子动能 K=pc
- 5、康普顿效应 $\Delta \lambda = rac{h}{mc}(1-\cos\phi)$
 - 建议直接背,因为推导过程很复杂
- 6、物质波的德布罗意波长 $\lambda=rac{h}{p}$
- 7、波动方程 $\Psi(x,y,z,t)=\psi(x,y,z)e^{-i\omega t}$
 - ω 是角频率, $\omega=2\pi f$ 。
 - $|\psi|^2$ 是波函数的概率密度。
 - Ψ^* 是波函数的共轭复数,将i变为-i。

8、一维运动薛定谔方程
$$rac{d^2\psi}{dx^2}+rac{8\pi^2m}{h^2}[E-U(x)]\psi=0$$

9、自由粒子的薛定谔方程
$$rac{d^2\psi}{dx^2}+k^2\psi=0$$

• 自由粒子:悬浮在三维空间中,没有固定运动方向,没有势能,即 U(x)=0。

• 其中
$$k=rac{2\pi}{\lambda}$$
 。由 $U(x)=0$ 可得 $E=K=rac{1}{2}mv^2$,代入7得到8。

10、海森堡不确定性原理(测不准原理)

$$egin{cases} \Delta x \Delta p_x \geq rac{\hbar}{2} \ \ \Delta y \Delta p_y \geq rac{\hbar}{2} \ \ \ \Delta z \Delta p_z \geq rac{\hbar}{2} \end{cases}$$

• 其中
$$\hbar=rac{h}{2\pi}$$
 是约化普朗克常数

11、势垒贯穿透射系数 $T=e^{-2bx}$

• 其中
$$b=\sqrt{rac{8\pi^2m(U_0-E)}{h^2}}$$

拓展(看看就行):如何"凑出"薛定谔方程?

1. 经典波动方程:
$$rac{\partial^2 y}{\partial x^2} = rac{1}{v^2} rac{\partial^2 y}{\partial t^2}$$
 ;

- 2. 利用偏微分方程的分离变量法,分出位置方程 $\dfrac{\partial^2 f(x)}{\partial x^2} = -k^2 f(x)$ 。左侧微分式表示波的曲 率,右侧f(x)表示波的位移。将其改写为 $\dfrac{\partial^2 f(x)}{\partial x^2} + k^2 f(x) = 0$,此为自由粒子的薛定谔方
- 3. 什么f(x)经过两次微分之后会变成 $-k^2f(x)$? 正弦/余弦函数!;
- 4. 我们取 $f(x)=\sin kx$,那么k的含义就是波数,因此有 $k=rac{2\pi}{\lambda}$ 。将 f(x) 改写为 $\psi(x)$,得 到 $\frac{d^2\psi}{dx^2} + k^2\psi = 0$;

$$rac{dx^2}{5}$$
. 将德布罗意波长 $\lambda=rac{h}{p}=rac{h}{mv}$ 代入,得到 $rac{\partial^2 f(x)}{\partial x^2}+rac{4\pi^2m^2v^2}{h^2}\psi=0$;

6. 根据经典动能
$$K=rac{1}{2}mv^2$$
,将其代入,得到 $rac{d^2\psi}{dx^2}+rac{8\pi^2mK}{h^2}\psi=0$;7. 机械能E等于动能K加势能U,将其代入,得到 $rac{d^2\psi}{dx^2}+rac{8\pi^2m}{h^2}[E-U(x)]\psi=0$ 。

7. 机械能E等于动能K加势能U,将其代入,得到
$$rac{d^2\psi}{dx^2}+rac{8\pi^2m}{h^2}[E-U(x)]\psi=0$$
 。

Chapter 39 再论物质波

一、中英对照

traveling wave 行波

standing wave 驻波

trapped electron 被俘获电子

• 即被束缚在势阱内的电子

trap 陷阱

quantum number 量子数

• 每个n对应一个能级

energy level diagram 能级图

ground state 基态 (n=1)

(n-1)th excited state 第n-1激发态 (n>=2)

infinitely deep potential well 无限深势阱

• 或简称为infinite potencial well 无限势阱

二、公式

1、一维无限势阱的势能图

$$U(x) = egin{cases} 0 & 0 \leq x \leq L \ \infty & ext{otherwise} \end{cases}$$

- 2、一维无限势阱中的电子:
 - 波函数 $\psi_n(x) = A \sin(rac{n\pi}{L}x)$, $0 \leq x \leq L, n = 1, 2, 3...$
 - ・ 总能量 $E_n=rac{h^2}{8mL^2}n^2$, n=1,2,3... o 由 $\lambda=rac{h}{p}=rac{h}{\sqrt{2mE}}$ 代入 $L=rac{n\lambda}{2}$ 可得
- 3、量子跃迁 $hf=\Delta E=E_{high}-E_{low}$

4、检测电子位置的概率密度
$$p(x)=\psi_n^2(x)=A^2\sin^2(rac{n\pi}{L}x)$$

5、归一化方程
$$\int_{-\infty}^{\infty}\psi_n^2(x)dx=1$$

• 概率密度函数在R上的积分等于1。而函数仅在0到L上有定义, 故积分区间可改为0到L。

• 该方程可求解振幅A,
$$A=\sqrt{rac{2}{L}}$$
 。求解A的过程叫做归一化。

7、一维有限势阱的势能图

$$U(x) = egin{cases} 0 & 0 \leq x \leq L \ U_0 & ext{otherwise} \end{cases}$$

- U₀ 是阱深
- 当电子能量小于 U_0 时,电子被俘获在势阱内;当电子能量大于 U_0 时,电子无法被俘获。
- 有限势阱的波函数是薛定谔方程的解,但是求解过程较为复杂,不在本章范围内。

8、二维无限势阱

• 波函数
$$\psi_{n_x,n_y}(x,y)=\sqrt{rac{2}{L_x}}\sin(rac{n_x\pi}{L}x)\sqrt{rac{2}{L_y}}\sin(rac{n_y\pi}{L}y)$$

• 总能量
$$E_{n_x,n_y} = rac{h^2}{8m}(rac{n_x^2}{L_x^2} + rac{n_y^2}{L_y^2})$$

9、三维无限势阱 (同理)

• 波函数
$$\psi_{n_x,n_y,n_z}(x,y,z)=\sqrt{rac{2}{L_x}}\sin(rac{n_x\pi}{L}x)\sqrt{rac{2}{L_y}}\sin(rac{n_y\pi}{L}y)\sqrt{rac{2}{L_z}}\sin(rac{n_z\pi}{L}z)$$

• 总能量
$$E_{n_x,n_y,n_z}=rac{h^2}{8m}(rac{n_x^2}{L_x^2}+rac{n_y^2}{L_y^2}+rac{n_z^2}{L_z^2})$$

10、氢原子的能级
$$E_n=-rac{13.6eV}{n^2}$$

• 这是求解薛定谔方程得到的结果

11、氢原子光谱的经验公式
$$\dfrac{1}{\lambda}=R(\dfrac{1}{n_{low}^2}-\dfrac{1}{n_{high}^2})$$

• R是里德伯常数,
$$R = 1.097 \times 10^7 m^{-1}$$

12、基态氢原子径向概率密度
$$P(r)=rac{4}{a^2}r^2e^{-2r/a}$$