```
In [1]: import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

In [2]: df=pd.read_csv(r"C:\Users\DELL\Downloads\Income.csv")
df

Out[2]:

Gender	Age	Income(\$)
Male	19	15
Male	21	15
Female	20	16
Female	23	16
Female	31	17
Female	35	120
Female	45	126
Male	32	126
Male	32	137
Male	30	137
	Male Male Female Female Female Female Male Male	Male 21 Female 20 Female 23 Female 31 Female 35 Female 45 Male 32 Male 32

200 rows × 3 columns

```
In [3]: plt.scatter(df["Age"],df["Income($)"])
    plt.xlabel("Age")
    plt.ylabel("Income ($)")
```

Out[3]: Text(0, 0.5, 'Income (\$)')

In [4]: from sklearn.cluster import KMeans

```
In [5]: km=KMeans()
      km
Out[5]:
       ▼ KMeans
       KMeans()
In [6]: y predicted=km.fit predict(df[["Age","Income($)"]])
      y_predicted
      C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
      ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
      xplicitly to suppress the warning
        warnings.warn(
7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 0, 0, 0, 7, 0, 7, 0,
            7, 0, 7, 0, 0, 0, 7, 0, 0, 7, 7, 7, 7, 3, 0, 3, 3, 0, 3, 3, 0,
            0, 3, 0, 0, 3, 3, 3, 3, 4, 3, 0, 4, 3, 3, 0, 3, 3, 4, 3, 3, 4,
            4, 3, 3, 4, 3, 6, 4, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 3, 3,
            3, 4, 6, 4, 4, 4, 3, 3, 3, 4, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6,
            4, 6, 4, 6, 6, 6, 4, 6, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
            1, 1])
In [7]: |df["Cluster"]=y predicted
      df.head()
Out[7]:
```

	Gender	Age	Income(\$)	Cluster
0	Male	19	15	5
1	Male	21	15	5
2	Female	20	16	5
3	Female	23	16	5
4	Female	31	17	5

```
In [8]: df1=df[df.Cluster==0]
    df2=df[df.Cluster==2]
    df3=df[df.Cluster==3]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[8]: Text(0, 0.5, 'Income(\$)')

In [9]: **from** sklearn.preprocessing **import** MinMaxScaler

```
In [10]: scaler=MinMaxScaler()
In [11]:
          scaler.fit(df[["Income($)"]])
          df["Income($)"]=scaler.transform(df[["Income($)"]])
          df.head()
Out[11]:
              Gender Age Income($) Cluster
                      19
                                        5
           0
                Male
                           0.000000
                Male
                      21
                           0.000000
                                         5
                           0.008197
                                         5
           2 Female
                      20
             Female
                           0.008197
                                        5
                                        5
           4 Female
                      31
                           0.016393
In [12]:
          scaler.fit(df[["Age"]])
          df["Age"]=scaler.transform(df[["Age"]])
          df.head()
Out[12]:
              Gender
                         Age Income($) Cluster
                Male 0.019231
                               0.000000
                                            5
           0
                Male 0.057692
                               0.000000
                                             5
           2 Female 0.038462
                               0.008197
                                             5
           3 Female 0.096154
                               0.008197
                                             5
           4 Female 0.250000
                                            5
                               0.016393
In [13]: km=KMeans()
```

C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster_kmeans.py:870: Fut
ureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` e
xplicitly to suppress the warning
warnings.warn(

```
In [15]: df["New Cluster"]=y_predicted
df.head()
```

Out[15]:

	Gender	Age	Income(\$)	Cluster	New Cluster
0	Male	0.019231	0.000000	5	2
1	Male	0.057692	0.000000	5	2
2	Female	0.038462	0.008197	5	2
3	Female	0.096154	0.008197	5	2
4	Female	0.250000	0.016393	5	5

```
In [16]:
    df1=df[df["New Cluster"]==0]
        df2=df[df["New Cluster"]==1]
        df3=df[df["New Cluster"]==2]
        plt.scatter(df1["Age"],df1["Income($)"],color="red")
        plt.scatter(df2["Age"],df2["Income($)"],color="green")
        plt.scatter(df3["Age"],df3["Income($)"],color="blue")
        plt.xlabel("Age")
        plt.ylabel("Income($)")
```

Out[16]: Text(0, 0.5, 'Income(\$)')


```
In [18]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[18]: Text(0, 0.5, 'Income(\$)')


```
In [20]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[20]: Text(0, 0.5, 'Income(\$)')

In [21]: k_rng=range(1,10)
sse=[]

```
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
xplicitly to suppress the warning
  warnings.warn(
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
xplicitly to suppress the warning
  warnings.warn(
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
xplicitly to suppress the warning
  warnings.warn(
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
xplicitly to suppress the warning
  warnings.warn(
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
xplicitly to suppress the warning
  warnings.warn(
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
xplicitly to suppress the warning
  warnings.warn(
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
xplicitly to suppress the warning
  warnings.warn(
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
xplicitly to suppress the warning
  warnings.warn(
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e
xplicitly to suppress the warning
  warnings.warn(
```

Out[22]: Text(0, 0.5, 'Sum of Squared Error')

In []: