• TABLICA IZVODA ELEMENTARNIH FUNKCIJA

f(x)	f'(x)	f(x)	f'(x)
$c, c \in R$	0	sinx	cosx
$x^a , a \in Q$	ax^{a-1}	cosx	-sinx
$log_a x$, $a > 0$, $a \neq 1$	$\frac{1}{xlna}$	tgx	$\frac{1}{\cos^2 x}$
lnx	$\frac{1}{x}$	ctgx	$-\frac{1}{\sin^2 x}$
a^x , $a > 0$, $a \neq 1$	$\left \begin{array}{c} a^x lna \end{array} \right $	arcsinx	$\frac{1}{\sqrt{1-x^2}}$
e^x	e^x	arccosx	$-\frac{1}{\sqrt{1-x^2}}$
		arctgx	$\frac{1}{1+x^2}$
		arcctgx	$-\frac{1}{1+x^2}$

• TABLICA INTEGRALA ELEMENTARNIH FUNKCIJA

$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$	$\int e^x dx = e^x + C$
$\int \frac{dx}{x} = \ln x + C$	$\int a^x dx = \frac{a^x}{\ln a} + C$
$\int sinx dx = -cosx + C$	$\int \frac{dx}{a^2 + x^2} = \frac{1}{a}atctg\frac{x}{a} + C = -\frac{1}{a}arcctg\frac{x}{a} + C_1$
$\int cosxdx = sinx + C$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a} + C = -\arccos\frac{x}{a} + C_1$
$\int \frac{dx}{\cos^2 x} = tgx + C$	$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left x + \sqrt{x^2 \pm a^2}\right + C$
$\int \frac{dx}{\sin^2 x} = -ctgx + C$	