Machine Learning for Big Data: Principal Component Analysis

Lionel Fillatre

fillatre@unice.fr

Examen partiel: jeudi 10 novembre

- 1 heure en TD
- Uniquement sur papier
- Sujet en français
- Questions de cours + exercices à résoudre
- Aucune question Python
- A priori, pas de calculatrice.

Topics

- Introduction
- How does it work?
- PCA
- Practical interpretation
- Conclusion

1 Introduction

PCA Overview

- It is a mathematical tool from applied linear algebra.
- It is a simple, non-parametric method of extracting relevant information from confusing datasets.
- It provides a roadmap for how to reduce a complex data set to a lower dimension.
- We typically have a data matrix of p observations on N correlated variables x_1, x_2, \dots, x_N .
- PCA looks for a transformation of the N variables x_i into N new variables y_i
 that are uncorrelated

Matrix of data $D = (d_{ij})$

	x_1	x_2	•••	x_N
Sample 1 d_1	d_{11}	d_{12}		d_{1N}
Sample 2 d_2	d_{21}	d_{22}		d_{2N}
Sample p d_p	d_{p1}	d_{p2}		d_{pN}

Column 1 d^1 Column 2 d^2

6

Column N d^N

Dimensionality Reduction

- Find a projection that captures the largest amount of variation in data
- Find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Eigenvalues and Eigenvectors

Eigenvectors (for a square N× N matrix S)

• If S is a $N \times N$ symmetric and λ_1 is its largest eigenvalue then

$$\lambda_1 = \sup_{v \in \mathbb{R}^N, ||v|| = 1} v^T S v$$

2 How does it work?

Linear Subspaces in case N=2

- \bar{d} is the mean of the cloud of points D
- Convert d into v_1 , v_2 coordinates

$$d \rightarrow ((d-\bar{d})^T v_1, (d-\bar{d})^T v_2)$$

- What does the v₁ coordinate measure?
- Position along the line
- What does the v₂ coordinate measure?
- Distance to line
- Suppose the data points are arranged as above
 - Ideal case: fit a line
 - We can represent the points with only their v_1 coordinates since v_2 coordinates are all essentially 0
 - This makes it much cheaper to store and compare points
 - A bigger deal for higher dimensional problems

How to choose linear subspaces?

• Consider the variation along direction v among all of the points:

$$var(v) = \sum_{d} ||(d - \bar{d})^{T} v||^{2}$$

• What unit vector v_1 maximizes var(v) $v_1 = max_v var(v)$

Eigenvectors

Technical derivation:

$$\operatorname{var}(v) = \sum_{d} \| (d - \bar{d})^{T} v \|^{2}$$

$$\operatorname{var}(v) = \sum_{d} v^{T} (d - \bar{d}) (d - \bar{d})^{T} v$$

$$\operatorname{var}(v) = v^{T} \left(\sum_{d} (d - \bar{d}) (d - \bar{d})^{T} \right) v$$

$$\operatorname{var}(v) = v^{T} A v$$
with $A = \sum_{d} (d - \bar{d}) (d - \bar{d})^{T}$

- Solution: v₁ is eigenvector of A with largest eigenvalue
- v₂ is the eigenvector of A with 2th largest eigenvalue
- Etc. in higher dimension until v_N that is the eigenvector of A with smallest eigenvalue.

Higher Dimensions

Suppose each data point is N-dimensional: same procedure applies:

$$var(v) = \sum_{d} ||(d - \bar{d})^{T} v||^{2} = (p - 1) v^{T} A v$$

where $A = \frac{1}{p-1} \sum_{d} (d - \bar{d})(d - \bar{d})^{T}$ is called the covariance matrix

- The eigenvectors of A define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among "training" vectors d.
 - eigenvector with smallest eigenvalue has least variation
- We can compress the data by only using the top few eigenvectors
 - corresponds to choosing a "linear subspace"
 - represent points on a line, plane, or "hyper-plane"
 - these eigenvectors are known as the factor axes.

3 PCA

Transformed variables

- Suppose you have p samples of size N, so N variables $x_1, x_2, ..., x_N$
- N factor axes associated to N eigenvectors $v_i = (v_{i1}, v_{i2}, \dots, v_{iN})$
- New variables that $y_1, y_2, ..., y_N$ are linear combination of the original variables $x_1, ..., x_N$:

$$y_i = v_{i1}x_1 + v_{i2}x_2 + \dots + v_{iN}x_N$$
 for $i=1..N$

 The new variables y_i are derived in decreasing order of importance (eigenvalues).

Principal Components

• Considering all the input samples $d_j = (d_{j1}, d_{j2}, \dots, d_{jN})$ for $j=1, \dots, p$, let

$$c_i = (v_i^T(d_1 - \bar{d}), v_i^T(d_2 - \bar{d}), ..., v_i^T(d_N - \bar{d}))$$
 for $i=1,...,N$

- c_i is the projection of the samples on the i-th factor axis
- c_i is called the *i*-th **principal component** (vector of size p).
- The sample d_i is converted into

$$d_j \rightarrow \left((d_j - \bar{d})^T v_1, (d_j - \bar{d})^T v_2, \cdots, (d_j - \bar{d})^T v_N \right)$$

Hence, each sample can be approximated (dimension reduction) by

$$d_j \approx \bar{d} + c_{1j}v_1 + c_{2j}v_2 + \dots + c_{tj}v_t$$

Correlation

- We can show that
 - $var(c_i) = \lambda_i$ for all i=1,...,N (λ_i is the i-th eigenvalue).
 - $\operatorname{corr}(c_i, c_k) = 0 \text{ for } i \neq k.$
 - The principal components are not correlated.
- Let the column vector $d^k = (d_{1k}, d_{2k}, \dots, d_{pk})$ associated to variable x_k . We can show that
 - $\sum_{i=1}^{t} \operatorname{corr}(c_i, d^k)^2 \le 1$ for all $t \le N$ and all k=1,...,N
 - $\sum_{i=1}^{N} \operatorname{corr}(c_i, d^k)^2 = 1$

Singular Value Decomposition

- PCA is often performed via singular value decomposition, because forming $A = \frac{1}{p-1}D^TD = \frac{1}{p-1}\sum_d (d-\bar{d})(d-\bar{d})^T$ would not be required
- Let $D = U\Sigma V^T$ be the SVD of A.
- The columns of *V* are the eigenvectors of *A*.
- The eigenvalues of A are the square of the singular values (up to the scale factor p-1).

4 Practical interpretation

Correlation circle

From the correlation property of principal components, we deduce that

$$M^k = (\operatorname{corr}(c_1, d^k)^2, \operatorname{corr}(c_2, d^k)^2)$$

is inside the unit circle for all samples d^k .

- Hence the unit circle containing all the points M^k is called the correlation circle.
- Interpretation:
 - If M^j is close to the circle border, it means that the variable x_j is well explained by the principal components c_1 and c_2 .
 - If M^j and M^k are close to the circle border and they are almost « orthogonal », it means that the variables x^j and x^k are almost « not correlated ».

The iris data set

Three flowers50 instances of each class, 150 in total

- Attributes
 - Sepal (outermost leaves)
 - length in cm
 - width in cm
 - Petal (innermost leaves)
 - length in cm
 - width in cm
 - Class of flower
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica

Fower ID	Attribute				
	Sepal Length	Sepal Width	Petal Length	Petal Width	
1	5.1	3.5	1.4	0.2	
2	4.9	3.0	1.4	0.2	
3	4.7	3.2	1.3	0.2	
4	4.6	3.1	1.5	0.2	
150	5.9	3.0	5.1	1.8	

Correlation circle for « IRIS data set »

How Many PCs?

- For *N* original dimensions, correlation matrix is *N* x *N*, and has up to *N* eigenvectors. So *N* Principal Components (PC).
- Where does dimensionality reduction come from?
- We only keep *t* PCs.
- Choice based on the explained variance:
 - Total variance = sum of eigenvalues
 - Variance explained = sum of kept eigenvalues
 - Rate of approximation = Variance explained/ Total variance

Screeplot

- Screeplot : show the eigenvalues (so the variance)
- « IRIS dataset »:

Importance of PCA

- In data of high dimensions, where graphical representation is difficult,
 PCA is a powerful tool for analyzing data and finding patterns in it.
- Data compression is possible using PCA
- The most efficient expression of data is by the use of perpendicular components, as done in PCA.
- Do not forget to center and normalize data for interpretation

Limits of PCA

• How to cut the number of factor axes?

- Interpretation of the factor axes (eigenvectors) can be difficult
- Linear spaces might be not accurate enough
- Extensions: Kernel PCA, etc.

5 Conclusion

Conclusion

PCA: a very famous method!

Very useful under suitable conditions and processing

Data cleaning is very important

The cornerstone of more advanced methods