

BUNDESREPUBLIK DEUTSCHLAND

PCT/EP04/51937
06 OKT 2004

REC'D 14 OCT 2004
WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 58 338.6
Anmeldetag: 12. Dezember 2003
Anmelder/Inhaber: Siemens Aktiengesellschaft, 80333 München/DE
Bezeichnung: Verfahren zum Ersatzschalten von räumlich getrennten Vermittlungssystemen
IPC: H 04 L 29/14

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 1. Oktober 2004
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "Remus".

Remus

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

A 9161
03/00
EDV-L

BEST AVAILABLE COPY

Beschreibung

Verfahren zum Ersatzschalten von räumlich getrennten Vermittlungssystemen

- 5 Zeitgemäße Vermittlungssysteme (Switch) verfügen durch redundantes Bereitstellung wichtiger interner Komponenten über ein hohes Maß an interner Betriebssicherheit. Damit wird im Normalbetrieb eine sehr hohe Verfügbarkeit der vermittelungs-
10 technischen Funktionen erreicht. Treten jedoch massive äußere Einwirkungen auf (z.B. Feuer, Naturkatastrophen, Terroranschläge, kriegerische Einwirkungen etc.), so nutzen die getroffenen Vorkehrungen zur Erhöhung der Betriebssicherheit in der Regel wenig, weil Original- und Ersatzkomponenten des
15 Vermittlungssystems sich am gleichen Ort befinden und damit in einem solchen Katastrophenfall mit hoher Wahrscheinlichkeit beide Komponenten zerstört bzw. funktionsunfähig geworden sind.
- 20 Als Lösung ist eine geographisch separierte 1:1 Redundanz vorgeschlagen worden. Demgemäß ist vorgesehen, jedem zu schützenden Vermittlungssystem einen identischen Klon als Redundanzpartner mit identischer Hardware, Software und Datenbasis zuzuordnen. Der Klon befindet sich im hochgefährten
25 Zustand, ist aber trotzdem vermittlungstechnisch nicht aktiv. Beide Vermittlungssysteme werden von einem im Netz übergeordneten, realzeitfähigen Monitor gesteuert, der die Umschaltvorgänge steuert.
- 30 Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Ersatzschalten von Vermittlungssystemen anzugeben, das im Fehlerfall ein effizientes Umschalten eines ausgefallenen Vermittlungssystems auf einen Redundanzpartner sicherstellt.
- 35 Diese Aufgabe wird ausgehend von den im Oberbegriff von Patentanspruch 1 angegebenen Merkmalen durch die im kennzeichnenden Teil beanspruchten Merkmale gelöst.

- Erfindungsgemäß wird im Zuge einer 1:1 Redundanz von einem übergeordneten Monitor – der in Hardware und/ oder Software realisiert werden kann – eine Kommunikation zu den paarweise angeordneten Vermittlungssystemen (1:1 Redundanz) aufgebaut.
- 5 Bei Kommunikationsverlust zum aktiven Vermittlungssystem schaltet der Monitor mit Unterstützung der zentralen Steuerungen der beiden Vermittlungssysteme in Realzeit auf das redundante Vermittlungssystem um.
- 10 Ein wesentlicher Vorteil der Erfindung ist darin zu sehen, dass beim Umschaltevorgang von einem aktiven Vermittlungssystem auf ein hot-standby Vermittlungssystem keinerlei Netzwerkmanagement benötigt wird, das die Umschaltevorgänge unterstützt. Insofern ist es irrelevant, ob das Netz ein derartiges Netzwerkmanagement aufweist oder nicht. Ferner ist der Monitor über eine fest vorgegebene Anzahl von Interfaces (z. B. jeweils 2) mit den Vermittlungssystemen verbunden. Aus Sicht des Monitors stellt diese fest vorgegebene Anzahl von Interfaces Schnittstellen zu den betreffenden zentralen Steuerungen der Vermittlungssysteme dar. Damit ist der Monitor unabhängig vom Ausbauzustand der beiden Vermittlungssysteme.
- Damit ist diese Lösung in jedem Vermittlungssystem mit IP basierten Schnittstellen mit minimalem Implementierungsaufwand realisierbar. Die Lösung ist umfassend einsetzbar und wirtschaftlich, weil im wesentlichen nur der Aufwand für den Monitor anfällt. Ferner ist sie durch Nutzung einfacher, standardisierter IP Protokolle extrem robust. Fehlsteuerung aufgrund von SW Fehlern können damit annähernd ausgeschlossen werden. Fehlsteuerungen aufgrund von temporären Ausfällen im IP core Netz beheben sich automatisch, nachdem der Ausfall beendet ist. Ein Doppelausfall des Monitors stellt ebenso kein Problem dar.
- 35 Vorteilhafte Weiterbildungen der Erfindungen sind in den Unteransprüchen angegeben.

Es zeigen:

Figur 1 die Netzkonfiguration gemäss der Erfindung im Falle eines lokal redundanten Monitors

5

Figur 2 die Netzkonfiguration gemäss der Erfindung im Falle eines geographisch redundanten Monitors

In Fig. 1 ist vorgesehen, jedem zu schützenden Vermittlungssystem (z. B. S₁) einen identischen Klon als Redundanzpartner (z. B. S_{1b}) mit identischer Hardware, Software und Datenbasis zuzuordnen. Der Klon befindet sich im hochgefahrenen Zustand, ist aber trotzdem vermittlungstechnisch nicht aktiv (Betriebszustand "hot standby"). Damit ist eine hochverfügbare, über mehrere Lokationen verteilte 1:1 Redundanz von Vermittlungssystemen definiert.

Die beiden Vermittlungssysteme (Vermittlungssystem S₁ und der Klon oder Redundanzpartner S_{1b}) werden von einem Netzwerkmanagementsystem NM gesteuert. Die Steuerung erfolgt derart, dass der aktuelle Stand von Datenbasis und Software beider Vermittlungssysteme S₁, S_{1b} identisch gehalten wird. Dies wird erreicht, indem jedes betriebstechnische Kommando, jedes Konfigurationskommando und jedes Software-Update inklusive Patches identisch an beide Partner ausgebracht wird. Damit wird ein räumlich abgesetzter, identischen Klon zu einem in Betrieb befindlichen Switch mit identischer Datenbasis und identischem Softwarestand definiert.

Die Datenbasis beinhaltet grundsätzlich alle semipermanenten und permanenten Daten. Hierbei werden unter permanenten Daten die Daten verstanden, die als Code in Tabellen abgelegt sind und die sich nur per Patch oder Software-Update ändern lassen. Unter semipermanenten Daten werden die Daten verstanden, die z. B. über die Bedienerschnittstelle in das System gelangen und die für längere Zeit dort in der Form der Eingabe gespeichert sind. Mit Ausnahme der Konfigurationszustände des

Systems werden diese Daten i.a. vom System nicht selbst verändert. Nicht in der Datenbasis enthalten sind die einen Ruf begleitenden transienten Daten, die das Vermittlungssystem nur kurzzeitig speichert und die über die Dauer eines Calls hinaus i.a. keine Bedeutung haben oder Zustandsinformationen, die transiente Überlagerungen/ Ergänzungen von konfigurativ vorgegebenen Grundzuständen sind. (So könnte ein Port zwar im Grundzustand aktiv sein, aber wegen einer transienten (vorübergehenden) Störung momentan nicht zugreifbar sein.)

10

Im weiteren verfügen die Vermittlungssysteme S_1 , S_{1b} beide über (in Fig. 1 nicht näher aufgezeigte) aktive, paketorientierte Interfaces zum gemeinsamen Netzwerkmanagementsystem NM. Während aber beim Vermittlungssystem S_1 alle paketorientierten Interfaces $IF_1 \dots IF_n$ aktiv sind, sind beim Vermittlungssystem S_{1b} hingegen die paketorientierten Interfaces im Betriebzustand "idle". Der Zustand "idle" bedeutet, dass die Interfaces keinen vermittlungstechnischen Nachrichtenaustausch erlauben, aber von außen, d.h. durch eine außerhalb von Vermittlungssystem S_1 und Vermittlungssystem S_{1b} gelegenen, übergeordneten realzeitfähigen Monitor aktiviert werden können. Der Monitor kann in Hardware und/oder Software realisiert sein, und schaltet im Fehlerfall in Realzeit auf den Klon um. Realzeit bedeutet hier eine Zeitspanne von wenigen Sekunden. Abhängig von der Qualität des Netzes kann auch eine höhere Zeitspanne zur Erkennung der Notwendigkeit zur Ersatzschaltung definiert werden. Gemäss vorliegendem Ausführungsbeispiel ist der Monitor als Steuereinrichtung SC und aus Sicherheitsgründen gedoppelt (lokale Redundanz) ausgebildet.

30

Die Interfaces I_n sind paketbasiert und stellen somit Kommunikationsschnittstellen zu paketbasierten Peripherieeinrichtungen (wie z. B. IAD, SIP Proxy-Einrichtungen), fernen paketbasierte Switches (S_x), paketbasierten Media Gateways und Servern (MG/ AGW) dar. Sie werden sie mittelbar von der Steuereinrichtung SC (Switch Controller, SC) gesteuert. Dies bedeutet, dass die Steuereinrichtung SC die Interfaces IF_n über

die zentralen Steuerungen CP aktivieren und deaktivieren, und somit beliebig zwischen den Betriebszuständen "act" und "idle" hin- und herschalten kann.

- 5 Die Konfiguration gemäss der Fig. 1 soll als Default Konfiguration gelten. Dies bedeutet, dass Vermittlungssystem S_1 vermittlungstechnisch aktiv ist, während sich Vermittlungssystem S_{1b} in einem Betriebszustand "hot standby" befindet. Dieser Zustand ist durch eine aktuelle Datenbasis und volle Aktivität aller Komponenten bis auf die paketbasierten Interfaces (und eventuell die Bearbeitung vermittlungstechnischer Anreize) geprägt. Das (geographisch redundante) Vermittlungssystem S_{1b} kann somit von der Steuereinrichtung SC durch Aktivierung der Interfaces $IF_{2..n}$ schnell (Realzeit) in den vermittlungstechnisch aktiven Zustand überführt werden. Als wesentlicher Aspekt ist anzusehen, dass die beiden geographisch redundanten Vermittlungssysteme S_1 , S_{1b} sowie das Netzwerkmanagement NM und die gedoppelte Steuereinrichtung SC jeweils räumlich deutlich getrennt sein müssen.
- 10
- 15
- 20
- Die Steuereinrichtung SC übermittelt dem Netzwerkmanagement NM regelmässig oder bedarfsweise auf Anforderung den aktuellen Betriebszustand der Vermittlungssysteme S_1 und S_{1b} (act/standby, Zustand der Interfaces) sowie den eigenen Betriebszustand. Aus Sicherheitsgründen sollte das Netzwerkmanagement NM die Funktion haben, die oben beschriebenen Umschaltungen auch manuell herbeiführen zu können. Optional kann die automatische Umschaltung blockiert werden, so dass die Umschaltung nur manuell durchgeführt werden kann.
- 25
- 30
- Die Paket-Adressen (IP Adressen) der Interfaces $IF_1.., IF_n$ des Vermittlungssystems S_1 und ihrer jeweiligen Partner Interfaces von Vermittlungssystem S_{1b} können identisch sein, müssen es aber nicht. Wenn sie identisch sind, wird das Umschalten nur von vorgeschalteten Routern bemerkt. Für die Partner-Applikation im Netz ist es dagegen völlig transparent. Man spricht in diesem Zusammenhang auch von der IP Failover Funk-
- 35

tion. Falls das Protokoll, das ein Interface bedient, ein Um-schalten des Kommunikationspartners auf eine andere Paket-Adresse erlaubt, wie dies z.B. beim H.248 Protokoll der Fall ist (ein Media Gateway kann selbständig eine neue Verbindung zu einem anderen Media Gateway Controller mit anderer IP Adresse herstellen), können die IP Adressen auch unterschiedlich sein.

In einer Ausgestaltung der Erfindung wird vorgesehen, als Steuereinrichtung SC den Zentralrechner eines weiteren Vermittlungssystems zu verwenden. Damit existiert dann eine Steuereinrichtung mit höchster Verfügbarkeit.

In einer Weiterbildung der Erfindung kommt die Etablierung einer unmittelbaren Kommunikationsschnittstelle zwischen Vermittlungssystem S_1 und Vermittlungssystem S_{1b} in Betracht. Diese kann zum Update der Datenbasis z. B. im Hinblick auf SCI -(Subscriber Controlled Input) und Gebühren-Daten genutzt werden sowie auch zum Austausch transienter Daten von einzelnen Verbindungen oder wesentlichen weiteren transienten Daten (z. B. H.248 Association Handle). Damit sind die Störungen des Betriebs aus Teilnehmer- und Betreibersicht minimierbar. Die semipermanenten und transienten Daten können dann von dem jeweiligen aktiven Vermittlungssystem in das redundante standby Vermittlungssystem in einem zyklischen Zeitraster (Update) übertragen werden. Das Update der SCI-Daten hat den Vorteil, dass das zyklische Restore auf dem standby-System vermieden wird und jederzeit Aktualität bzgl. SCI Daten im standby System herrscht. Durch das Update Stack-relevanter Daten, wie dem H.248 association handle, kann der Peripherie die Übernahme der Peripherie durch ein Ersatzsystem verborgen werden, und es können die Ausfallzeiten noch stärker reduziert werden.

Im folgenden sei nun von einem schwerwiegenden Ausfall des Vermittlungssystems S_1 ausgegangen. Aufgrund der geographischen Redundanz ist mit hoher Wahrscheinlichkeit der Klon (Vermittlungssystem S_{1b}) ebenso nicht betroffen wie die Steu-

ereinrichtung SC. Die Steuereinrichtung SC stellt den Ausfall von Vermittlungssystem S_1 fest, da deren Zentralsteuerung CP über eine feste vordefinierte Mehrzahl von Interfaces des Vermittlungssystems S_1 nicht mehr erreicht werden kann und damit Kommunikationsverlust zur Zentralsteuerung CP des Vermittlungssystems S_1 eintritt.

Die Steuereinrichtung SC schaltet nun auf das Bemerken des Ausfalls von Vermittlungssystem S_1 hin das geographisch redundante Vermittlungssystem S_{1b} in einen aktiven Betriebszustand. Das ausgefallenen Vermittlungssystem geht nach Reparatur/ recovery in den "Betriebszustand "hot standby". Gegebenenfalls sind manuelle Eingriffe nötig, um beim Hochfahren von Vermittlungssystem S_1 die aktuelle Datenbasis von Vermittlungssystem S_{1b} zu laden. Das Umschalten kann jederzeit auch vom Network Management System NM aus manuell durchgeführt werden.

Bei vorliegendem Ausführungsbeispiel gemäss der in Fig. 1 aufgezeigten Struktur wird davon ausgegangen, dass die Vermittlungssysteme S_1 und S_{1b} ausschliesslich IP Interfaces aufweisen, Terminierung von TDM-Strecken am Vermittlungssystem sind nicht vorgesehen. Vermittlungssystem S_1 und S_{1b} sind beispielhaft über jeweils genau 2 IP Interfaces IF_1 , IF_2 mit der Steuereinrichtung SC verbunden. Damit dürfte eine hinreichende Redundanz gegeben sein, obwohl diese Verbindung bis auf alls n Interfaces ausdehnbar ist. Die Steuereinrichtung SC selbst ist aufgrund ihrer Doppelung ausfallsicher.

Beim Hochlauf wird von der Steuereinrichtung SC (Default Konfiguration) das Vermittlungssystem S_1 als vermittlungstechnisch "aktiv" und das Vermittlungssystem S_{1b} als vermittlungstechnisch "standby" definiert, die Vermittlungssysteme S_1 und S_{1b} werden hiervon explizit informiert. Als Folge hiervon wird von der zentralen Steuereinrichtung CP des Vermittlungssystems S_1 alle $n > 2$ Interfaces IF_n in den vermittlungstechnisch aktiven Zustand versetzt, wohingegen alle n

- > 2 Interfaces IF_n des Vermittlungssystems S_{1b} von dessen zentraler Steuereinrichtung CP im Zustand "IDLE" belassen werden. Vermittlungssystem S_{1b} meldet sich unter den ihm zugedachten externen vermittlungstechnisch nutzbaren IP-
- 5 Adressen erst gar nicht beim Edge-Router (für IP fail-over Adressen und/oder non-fail-over Adressen) oder reagiert nicht auf Eingaben aus der Peripherie, also Gateways, IADs, usw. (für non-fail-over Adressen).
- 10 Der Betriebszustand der beiden Vermittlungssysteme S₁ und S_{1b} wird über den Austausch zyklischer Testnachrichten zwischen der Steuereinrichtung SC und den zentralen Steuerungen CP der beiden paarweise angeordneten Vermittlungssysteme S₁, S_{1b} überwacht. Der Austausch der zyklischen Testnachrichten zwischen der Steuereinrichtung SC und der zentralen Steuerung CP des aktiven Vermittlungssystems S₁ erfolgt dadurch, dass sich das aktive Vermittlungssystem S₁ mit Unterstützung seiner zentralen Steuerung CP zyklisch bei der Steuereinrichtung SC meldet und daraufhin eine positive Quittung (z. B. alle 10s)
- 15 erhält. Der Austausch der zyklischen Testnachrichten zwischen der Steuereinrichtung SC und der zentralen Steuerung CP des hot-standby Vermittlungssystems S_{1b} erfolgt, indem sich das hot-standby Vermittlungssystem S_{1b} mit Unterstützung seiner zentralen Steuerung CP zyklisch bei der Steuereinrichtung SC meldet und daraufhin keine oder eine negative Quittung (z. B. alle 10s) erhält.
- 20
- 25

Vermittlungssystem S₁ soll nun ausfallen. Die Steuereinrichtung SC (falls intakt) meldet jeden verifizierten, unzulässig lange währenden Kommunikationsverlust mit der Zentralsteuerung CP des Vermittlungssystems 1 an das Netzwerkmanagement NM, wozu beide Interfaces IF1, IF2 herangezogen werden. Ferner gibt sie Vermittlungssystem S_{1b} den Auftrag zur Inbetriebnahme, indem sie die zentrale Steuereinrichtung CP des Vermittlungssystems S_{1b} über mindestens eines der Interfaces IF1, IF2 veranlasst, seine vermittlungstechnischen Interfaces zu aktivieren. Da die Steuereinrichtung SC die Verfügbarkeit

von Vermittlungssystem S_{1b} in der Vergangenheit überwacht hat, und dieses nicht gestört zu sein scheint, kann dies umgehend erfolgen.

- 5 Das Aktivieren der Interfaces von Vermittlungssystem S_{1b} erfolgt, indem die Steuereinrichtung SC die zyklischen Requests von Vermittlungssystem S_{1b} positiv quittiert. Die zentrale Steuerung CP des Vermittlungssystems S_{1b} schaltet daraufhin die Interfaces IF_n explizit in den vermittlungstechnisch aktiven Zustand. Ferner quittiert die Steuereinrichtung SC zukünftige Requests von Vermittlungssystem S_1 negativ oder lässt sie unquittiert, womit die zentrale Steuerung CP das Vermittlungssystem S_1 explizit die Interfaces IF_n in den vermittlungstechnisch inaktiven Zustand schaltet, was auch nach 10
15 der Wiederinbetriebnahme nach Reparatur sofort erfolgt.

Die IP-fail-over Adressen von Vermittlungssystem S_1 werden nun den vorgelagerten Routern bekannt gemacht. Gleiches gilt für externe non-fail-over Adressen, sofern noch nicht geschehen. Die über die Router eintreffende externe Signalisierung wird fortan durch Vermittlungssystem S_{1b} bearbeitet.
20

Geht der Fehler auf eine Kommunikationsstörung zwischen Vermittlungssystem S_1 und der Steuereinrichtung SC zurück, so 25 detektiert Vermittlungssystem S_1 die Nichtverfügbarkeit der Steuereinrichtung SC und geht davon aus, dass die Steuereinrichtung SC auf Vermittlungssystem S_{1b} umschaltet. Damit deaktiviert Vermittlungssystem S_1 seine Interfaces aufgrund des Kommunikationsverlustes zur Steuereinrichtung SC automatisch.
30 Hierdurch ist gewährleistet, dass jeweils nur eines der beiden Vermittlungssysteme S_1 und S_{1b} aktiv ist.

Nach der Reparatur oder Wiederverfügbarkeit der Kommunikation zwischen der Steuereinrichtung SC und Vermittlungssystem S_1 35 kann wieder auf Vermittlungssystem S_1 zurückgeschaltet werden. Dies ist jedoch nicht zwingend erforderlich, kann aber optional unterstützt werden.

Um auszuschließen, dass ein Kommunikationsverlust zwischen der Steuereinrichtung SC zu Vermittlungssystem S_1 und Vermittlungssystem S_{1b} einen Totalausfall beider Vermittlungssysteme S_1 und S_{1b} verursacht, wird das Netzwerkmanagement NM 5 stets von der Steuereinrichtung SC und den Vermittlungssystemen über eine Ersatzschaltung und die bevorstehende Abschaltung eines Vermittlungssystems informiert und kann dies gegebenenfalls unterbinden. Auch kann ein Bestätigungsmodus für den Bediener an das Netzwerkmanagement NM optional angeboten 10 werden.

Dasselbe Ausfallszenario bezüglich der Vermittlungssysteme soll nun auf einer in Fig. 2 aufgezeigten Konfiguration zum Ablauf gelangen. Der Unterschied zu der in Fig. 1 aufgezeigten Konfiguration liegt im Vorsehen zweier Steuereinrichtungen 15 SC_1 und SC_2 , die an verschiedenen Orten untergebracht sind. Die Steuereinrichtung SC besteht somit aus den beiden Hälften SC_1 und SC_2 .

20 Gemäss Fig. 2 überwachen sich die beiden (räumlich getrennten) Steuereinrichtungen SC_1 und SC_2 gegenseitig. Fällt die Kommunikation zwischen den beiden Steuereinrichtungen SC_1 und SC_2 aus, so gibt es keine von einer Steuereinrichtung ausgehenden automatischen Ersatzschalteaufträge mehr. Während der 25 Isolation der beiden Steuereinrichtungen SC_1 und SC_2 wird der zuletzt in den beiden Steuereinrichtungen SC_1 und SC_2 festgelegte Betriebszustand der Vermittlungssysteme aufrechterhalten. Dies ist möglich, da die beiden Steuereinrichtungen SC_1 und SC_2 noch getrennt aktiv sind. Das schließt aus, dass bei 30 den Steuereinrichtungen SC_1 und SC_2 unabhängig voneinander inkonsistente Einstellungen der Vermittlungssysteme S_1 und S_{1b} vornehmen. Die Zentralteile CP der Vermittlungssysteme S_1 und S_{1b} stehen mit beiden Steuereinrichtungen SC_1 und SC_2 in Kontakt und erhalten von Steuereinrichtung SC_1 und SC_2 explizit 35 Aufträge zur Aktivierung bzw. Deaktivierung ihrer Interfaces. Diese Aufträge sind konsistent, da sich die beiden Steuerein-

richtungen SC_1 und SC_2 diesbezüglich vorher synchronisiert haben.

- Fällt nun Vermittlungssystem S_1 aus, so stellt dies Steuereinrichtung SC_1 und SC_2 fest. Beide synchronisieren sich und schalten Vermittlungssystem S_{1b} ein. Kommt Vermittlungssystem S_1 danach wieder in Betrieb, so wird dies wiederum von Steuereinrichtung SC_1 und SC_2 bemerkt und nach erfolgter interner Synchronisation geht Vermittlungssystem S_1 in den von Steuereinrichtung SC_1 und SC_2 veranlassten standby-Zustand.

- War nur die Kommunikation zwischen Steuereinrichtung SC_1 und Vermittlungssystem S_1 gestört, wurde das ebenfalls durch die beiden Steuereinrichtungen SC_1 und SC_2 erkannt, und es wurde auf eine Ersatzschaltung verzichtet.

- War die Kommunikation zwischen Vermittlungssystem S_1 und beiden zwei Steuereinrichtungen SC_1 und SC_2 gestört, so haben beide Steuereinrichtungen Vermittlungssystem S_{1b} aktiviert. Vermittlungssystem S_1 deaktivierte sich hierbei durch den Kommunikationsverlust mit beiden Steuereinrichtungen SC_1 und SC_2 selbst.

- Fällt Steuereinrichtung SC_1 aus, so stellt sich das als eine Kommunikationsstörung zwischen beiden Steuereinrichtungen SC_1 und SC_2 dar. Hierauf unternimmt Steuereinrichtungen SC_2 keine weiteren Ersatzschaltungen mehr, da dann die Gefahr bestünde, dass Steuereinrichtung SC_1 ebenfalls Vermittlungssystem S_1 und Vermittlungssystem S_{1b} inkonsistent zu den Einstellungen von Steuereinrichtung SC_2 einstellt. Da weiterhin Kontakt zu SC_2 besteht, schaltet sich Vermittlungssystem $1b$ nicht ab.

- Der Vorteil dieser Konfiguration liegt in einer erhöhten Sicherheit, insbesondere bei automatischer Abschaltung eines isolierten Vermittlungssystems.

Patentansprüche

1. Verfahren zum Ersatzschalten von räumlich getrennten Vermittlungssystemen, die in einer 1:1 Redundanz paarweise angeordnet sind, wobei das eine Vermittlungssystem (S_1) sich in einem aktiven Betriebszustand ("act") und das verbleibende redundante Vermittlungssystem (S_{1b}) sich in einem hot-standby Betriebszustand ("idle") befindet,
dadurch gekennzeichnet,
- 10 dass eine Kommunikation zwischen mindestens einem übergeordneten Monitor (SC) und mindestens einem der paarweise angeordneten Vermittlungssysteme (S_1 , S_{1b}) aufgebaut wird, und dass bei Kommunikationsverlust zu dem aktiven Vermittlungssystem (S_1) mit Unterstützung der zentralen Steuerung (CP) des redundanten Vermittlungssystems (S_{1b}) auf dieses in Realzeit umgeschaltet wird.
- 20 2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass zwischen dem mindestens einem übergeordneten Monitor (SC) und den zentralen Steuerungen (CP) der beiden paarweise angeordneten Vermittlungssysteme (S_1 , S_{1b}) zyklisch Testnachrichten ausgetauscht werden.
- 25 3. Verfahren nach Anspruch 1, 2,
dadurch gekennzeichnet,
dass der Austausch der zyklischen Testnachrichten zwischen dem übergeordneten Monitor (SC) und der zentralen Steuerung (CP) des aktiven Vermittlungssystems (S_1) gesteuert wird, indem sich das aktive Vermittlungssystem (S_1) mit Unterstützung seiner zentralen Steuerung (CP) zyklisch beim Monitor (SC) meldet und daraufhin eine positive Quittung (z. B. alle 10s) erhält.

4. Verfahren nach Anspruch 1 bis 3,
dadurch gekennzeichnet,
dass der Austausch der zyklischen Testnachrichten zwischen
dem übergeordneten Monitor (SC) und der zentralen Steuerung
5 (CP) des hot-standby Vermittlungssystems (S_{1b}) gesteuert
wird, indem sich das hot-standby Vermittlungssystem (S_{1b}) mit
Unterstützung seiner zentralen Steuerung (CP) zyklisch beim
Monitor (SC) meldet und daraufhin keine oder eine negative
Quittung (z. B. alle 10s) erhält.
- 10
5. Verfahren nach Anspruch 1 bis 4,
dadurch gekennzeichnet,
dass der verifizierte Kommunikationsverlust zur vermittlungs-
technisch aktiven Vermittlungsstelle vom Monitor (SC) an das
15 Netzwerkmanagement (NM) gemeldet wird, das daraufhin nach
Massgabe der Verfügbarkeit von Vermittlungssystem (S_{1b}) Um-
schaltebefehle an den mindestens einen Monitor (SC) sendet.
- 20
6. Verfahren nach Anspruch 1, 2 oder 3,
dadurch gekennzeichnet,
dass das Umschalten auf das redundante Vermittlungssystem
(S_{1b}) vom Monitor (SC) gesteuert wird, indem er die zyklischen
Anforderungen ("Request") des hot-standby Vermittlungssystems
25 (S_{1b}) mit einer positiver Quittung quittiert, woraufhin
dieses Vermittlungssystem (S_{1b}) von seiner zentralen
Steuerung (CP) explizit in den vermittlungstechnisch aktiven
Zustand gesteuert wird.
- 25
7. Verfahren nach einem der vorstehenden Ansprüche,
30 dadurch gekennzeichnet,
dass nach Behebung des Kommunikationsverlustes ein automatisches
Rückschalten auf die vor dem Kommunikationsverlust bestehende
Konfiguration nicht vorgenommen wird.
- 35
8. Monitor zum Überwachen und Schalten von Vermittlungssystemen, der in mindestens zwei räumlich getrennte Teile aufgeteilt ist, und der bei Ausfall eines Vermittlungssystems in

Realzeit auf ein redundant zugeordnetes Vermittlungssystem umschaltet.

9. Verfahren nach Anspruch 8,
5 dadurch gekennzeichnet,
dass sich die mindestens beiden Teile (SC_1 und SC_2) des Monitors (SC) gegenseitig überwachen,
dass eine Kommunikationsstörung zwischen einem der mindestens
beiden Teile und dem jeweils aktiven Vermittlungssystem (S_1)
10 Anlaß dafür ist,
dass die mindestens beide Teile (SC_1 und SC_2) sich hieraufhin
gegenseitig synchronisieren und das redundante Vermittlungssystem (S_{1b}) aktivieren oder nicht aktivieren.
- 15 10. Verfahren nach Anspruch 8, 9,
dadurch gekennzeichnet,
dass im Falle einer Kommunikationsstörung zwischen den mindestens beiden Teilen (SC_1 , SC_2) selbst der zuletzt in den mindestens beiden Teilen (SC_1 , SC_2) festgelegte Betriebszustand der Vermittlungssysteme (S_1 , S_{1b}) aufrechterhalten wird.
20

Zusammenfassung

Verfahren zum Ersatzschalten von räumlich getrennten Vermittlungssystemen

- 5
- Beim Stand der Technik besteht das Problem, dass zeitgemäße Vermittlungssysteme durch redundantes Bereitstellen wichtiger interner Komponenten zwar über ein hohes Maß an interner Betriebssicherheit verfügen. Treten jedoch massive äußere Einwirkungen auf (z. B. Naturkatastrophen, Terroranschläge, kriegerische Einwirkungen etc.), so nutzen die getroffenen Vorkehrungen in der Regel wenig. Erfindungsgemäß eine 1:1 Redundanz vorgesehen. Demgemäß wird jedem zu schützenden Vermittlungssystem ein identischer Klon als Redundanzpartner mit identischer Hardware, Software und Datenbasis zugeordnet. Die Umschaltung erfolgt schnell, sicher und automatisch durch einen übergeordneten, realzeitfähigen Monitor, der eine Kommunikation zu den paarweise angeordneten Vermittlungssystemen aufbaut. Bei Kommunikationsverlust zu dem aktiven
- 10 Vermittlungssystem wird mit Unterstützung der zentralen Steuerungen der beiden Vermittlungssysteme auf das redundante Vermittlungssystem umgeschaltet.
- 15
- 20

Fig 1

