Apache CloudStack

https://cloudstack.apache.org/

https://ru.bmstu.wiki/Apache_CloudStack

CloudStack программное обеспечение с открытым исходным кодом, предназначенное для облачных вычислений, управления и развертывания laaS. Может использовать такие гипервизоровы как: Virtual Machine, VMware VSphere и XenServer/XCP. В дополнение к своим собственным API, CloudStack также поддерживает Web Services (AWS) API Amazon и Open Cloud Computing Interface от Open Grid Forum.

Араche CloudStack позволяет автоматизировать развертывание, настройку и поддержание приватной, гибридной или публичной cloud-инфраструктуры (laaS, инфраструктура как сервис). Платформа CloudStack передана Фонду Apache компанией Citrix, которая получила проект после поглощения компании Cloud.com. Установочные пакеты подготовлены для RHEL/CentOS и Ubuntu.

Выбор архитектуры развертывания

Архитектура, используемая в развертывании, зависит от размера и цели развертывания. Далее будут приведены примеры архитектуры развертывания, включая мелкомасштабное развертывание, полезное для тестового и пробного развертывания, и полностью избыточную крупномасштабную установку для производственных развертываний.

Маломасштабное развертывание

Small-Scale Deployment

Маломасштабное развертывание

Эта диаграмма иллюстрирует сетевую архитектуру небольшого развертывания CloudStack.

- Брандмауэр обеспечивает подключение к Интернету. Брандмауэр настроен в режиме NAT. Брандмауэр перенаправляет HTTP-запросы и вызовы API из Интернета на сервер управления. Сервер управления находится в сети управления.
- Коммутатор уровня 2 соединяет все физические серверы и хранилище.
- Один NFS-сервер выполняет функции как основного, так и дополнительного хранилища.
- Сервер управления подключен к сети управления.

Крупномасштабное развертывание

Large-Scale Redundant Deployment

Крупномасштабное развертывание

Эта диаграмма иллюстрирует сетевую архитектуру крупномасштабного развертывания CloudStack.

- Уровень коммутации уровня 3 является ядром центра обработки данных.
 Необходимо использовать протокол резервирования маршрутизатора, такой как VRRP.
- Уровень коммутатора доступа уровня 2 устанавливается для каждого модуля. Несколько коммутаторов могут быть сложены для увеличения количества портов.
- Кластер сервера управления (включая балансировщики внешней нагрузки, узлы сервера управления и базу данных MySQL) подключен к сети управления через пару балансировщиков нагрузки.
- Вторичные серверы хранения подключены к сети управления.
- Каждый модуль содержит серверы хранения и вычисления. Каждый сервер хранения и вычисления должен иметь резервные сетевые карты, подключенные к отдельным коммутаторам доступа уровня 2.

Многоузловой сервер управления

Сервер управления CloudStack развертывается на одном или нескольких интерфейсных серверах, подключенных к одной базе данных MySQL. При желании пара аппаратных балансировщиков нагрузки распределяет запросы из Интернета. Набор серверов управления резервным копированием может быть развернут с использованием репликации MySQL на удаленном сайте для добавления возможностей DR.

Многоузловой сервер управления

Multi-Node Management Server Deployment

Многоузловой сервер управления

Администратор должен решить следующее:

- Будут ли использоваться балансировщики нагрузки.
- Сколько серверов управления будет развернуто.
- Будет ли репликация MySQL развернута для аварийного восстановления.

Хранилища

Apache CloudStack использует два вида хранилищ:

- 1) Primary Storage (первичное хранилище), которое необходимо для хранения томов виртуальных машин;
- 2) Secondary Storage (вторичное хранилище), которое предназначено для хранения снимков, образов, шаблонов виртуальных машин.

Необходимо тщательно осуществлять планирование данных компонентов, от их производительности и надежности работоспособность облака будет зависеть в наибольшей степени.

Первичное хранилище

Первичное хранилище должно обеспечивать следующие важные операционные характеристики:

- 1)высокую производительность для случайного доступа (IOPS);
- 2) высокую пропускную способность по полосе (MB/s);
- 3)высокую надежность хранения данных.

Первичное хранилище

Обычно, одновременно достичь три данных свойства можно либо при использовании специализированных решений, либо при использовании гибридных (SSD+HDD) или полностью SSD хранилищ. В том случае, если хранилище проектируется с использованием программной реализации, рекомендуется использовать хранилище, которое полностью состоит из SSD накопителей с аппаратными или программными RAID 5го или 6го уровня. Также, возможно рассмотреть к применению готовые решения, например FreeNAS, NexentaStor, которые включают поддержку ZFS, что может дать дополнительные бонусы при реализации резервного копирования и включают встроенные механизмы экономии дискового пространства за счет дедупликации и сжатия данных на лету.

Вторичное хранилище

Вторичное хранилище должно обеспечивать следующие важные характеристики:

- 1)высокую линейную производительность;
- 2) высокую надежность хранения данных.

Вторичное хранилище

Хранилище максимально утилизируется при создании снимков и конвертации снимков в шаблоны. Именно в этом случае производительность хранилища оказывает существенное влияние на продолжительность выполнения операции. Для обеспечения высокой линейной производительности хранилища рекомендованы к использованию программные и аппаратные RAID-массивы с использованием RAID10, RAID6 и серверными SATA-дисками большого объема — 3 ТВ и больше.

В том случае, если используется программный RAID, лучше остановить выбор на RAID10, при использовании же высокопроизводительных аппаратных контроллеров с элементом BBU возможно использование RAID5, RAID6.

В целом, требования к вторичному хранилищу не настолько критичны как к первичному, однако, в том случае, если планируется интенсивное применение снимков томов виртуальных машин, рекомендуется тщательное планирование вторичного хранилища и проведение тестов, моделирующих реальную нагрузку.

Ключевые возможности

- Встроенный высокой доступности для хостов и виртуальных машин
- Веб-интерфейс для управления AJAX
- Совместимость с API AWS
- Hypervisor agnostic
- Управление Snapshot-ами
- Usage metering
- Управление сетью (VLAN, группы безопасности)
- Виртуальные маршрутизаторы
- Межсетевые экраны
- Балансировки нагрузки

Поддерживаемые гипервизоры

- LXC Host Containers on RHEL 7
- Windows Server 2012 R2 (with Hyper-V Role enabled)
- Hyper-V 2012 R2
- CentOS 6.2+ and 7.1 with KVM
- Red Hat Enterprise Linux 6.2 and 7.1 with KVM
- Ubuntu 14.04 with KVM
- XenServer versions 6.1, 6.2 SP1 and 6.5 with latest hot fixes
- VMware versions 5.0 Update 3a, 5.1 Update 2a, and 5.5 Update 2

Доля рынка

Apache CloudStack имеет ряд пользователей:

- ASG Technologies
- Apple Inc
- Bechtle AG
- Citrix Systems
- China Telecom
- Nokia
- Huawei
- SoftwareONE
- И др.

VMware Cloud Foundation

VMware Cloud Foundation — это платформа гибридного облака. Она предоставляет полный набор программных служб для вычислительных ресурсов, хранилища, сети, системы безопасности и управления облаком и поддерживает выполнение корпоративных приложений (традиционных и контейнерных) в частных и общедоступных средах. Cloud Foundation — это единое интегрированное решение, которое существенно упрощает создание гибридного облака. Этот продукт очень удобен в использовании благодаря встроенному механизму автоматизированного управления жизненным циклом.

Общие сведения

VMware Cloud Foundation — это платформа гибридного облака VMware нового поколения. Платформа является следующим этапом развития ведущего решения VMware по виртуализации серверов, VMware vSphere. В новом продукте базовый гипервизор объединен с программными сетью, хранилищем и системой безопасности, которые можно использовать в локальной среде или как услугу в общедоступном облаке (на базе VMware Cloud on AWS или по программе VMware Cloud Providers). Теперь в состав платформы гибридного облака входят интегрированные возможности управления облаком, благодаря которым платформу можно использовать для управления как частными, так и общедоступными средами. Это комплексное решение предоставляет согласованную модель эксплуатации на базе известных средств и процессов vSphere, а также возможность выполнять приложения в любой среде без необходимости в модификации их кода.

Архитектура

Платформа создана на базе стандартной архитектуры VMware Validated Design и обеспечивает быстрое и воспроизводимое развертывание, а также устраняет риск неправильной настройки.

Архитектура

Архитектура VMware Cloud Foundation включает в себя следующие компоненты:

- VMware vRealize Suite средства управления доставкой ИТ-сервисов в частном и публичном облаке.
- VMware vSphere Integrated Containers средства быстрого развертывания приложений в изолированных контейнерах на базе виртуальных машин.
- VMware Integrated OpenStack средства построения открытой производственной облачной среды OpenStack поверх инфраструктуры VMware SDDC.
- VMware Horizon единое решение для доставки приложений, рабочих столов и конфигураций конечным пользователям в рамках всего предприятия.

Варианты развертывания

Продукт VMware Cloud Foundation предоставляется тремя способами:

- В виде развертывания ПО на базе сертифицированных узлов vSAN ReadyNode и сетевых коммутаторов.
- В виде интегрированной системы. Предварительная установка ПО Cloud Foundation выполняется следующими OEM-поставщиками: Dell EMC, Fujitsu, Hitachi Vantara, HPE и QCT.
- Как услуга в общедоступном облаке на базе VMware Cloud on AWS или по программе VMware Cloud Providers: IBM Cloud, OVH, Rackspace и CenturyLink

Особенности

Интегрированный стек. Cloud Foundation — это инженерное решение, объединяющее весь программный стек VMware. Благодаря гарантированной совместимости организациям не придется тратить время на работу со сложными таблицами совместимости.

Автоматизированное управление жизненным циклом. Cloud Foundation предоставляет уникальные службы управления жизненным циклом, автоматизирующие все процессы от развертывания до текущей эксплуатации, такие как введение в эксплуатацию, настройка, инициализация ресурсов, а также установка исправлений и обновлений.

Особенности

Удобный переход к гибридному облаку. Решение значительно упрощает переход к гибридному облаку за счет предоставления общей платформы для частных и общедоступных облачных сред и обеспечения согласованных условий эксплуатации с использованием имеющихся средств, процессов и специалистов. Обширная экосистема. Cloud Foundation поддерживает гибкое развертывание в локальных средах на сертифицированном оборудовании основных ОЕМ-поставщиков. Кроме того, ее можно использовать как услугу, предоставляемую в облаке VMware Cloud on AWS или в инфраструктурах поставщиков-участников программы VMware Cloud Providers.

Особенности

Автоматизированное управление жизненным циклом. В состав Cloud Foundation входит ПО VMware SDDC ManagerTM — решение по управлению программной платформой, автоматизирующее все процессы от развертывания до текущей эксплуатации.

Быстрое развертывание. Cloud Foundation автоматизирует процесс введения всей программной платформы в эксплуатацию, в том числе развертывание инфраструктуры виртуальных машин, создание кластера управления, настройку виртуальных локальных сетей, хранилища и физической сети, а также создание и инициализацию кластеров.

Инициализация на основе политик. Cloud Foundation упрощает выделение ресурсов отдельным рабочим нагрузкам за счет автоматического создания кластеров с использованием политик.

Достоинства

VMware Cloud Foundation значительно упрощает переход к гибридному облаку и при этом помогает повысить эффективность администрирования и сократить совокупную стоимость владения. Заказчики, развертывающие VMware Cloud Foundation, могут реализовать следующие преимущества по сравнению с использованием традиционных аппаратных центров обработки данных.

Достоинства

- Сокращение времени выхода на рынок. Время выхода на рынок сокращается в 15 раз за счет исключения сложных процессов, связанных с проектированием системы, ее тестированием, введением в эксплуатацию, настройкой и инициализацией.
- Минимизация рисков при развертывании. Поддержка быстрого, воспроизводимого и безопасного развертывания благодаря стандартной архитектуре VMware Validated DesignTM.
- Снижениесовокупнойстоимостивладения. При развертывании на базе vRealize Suite совокупная стоимость владения частным облаком сокращается на 30–40%.
- ИТ-инфраструктура, готовая к будущим потребностям. Поддержка выполнения традиционных и облачных приложений в контейнерах.

Сценарии использования

- Облачная инфраструктура. Воспользуйтесь преимуществами высокой производительности, доступности и масштабируемости Cloud Foundation для поддержки любых важных приложений, в том числе баз данных, вебприложений и инфраструктуры виртуальных компьютеров (VDI).
- Автоматизация ИТ-процессов. Автоматизируйте предоставление инфраструктуры и приложений с помощью поддержки самообслуживания. Инфраструктура виртуальных компьютеров (Virtual Desktop Infrastructure, VDI). Cloud Foundation предоставляет комплексное решение для развертывания среды VDI с возможностью масштабирования. Кроме того, благодаря стандартизации и тестированию решение полностью оптимизировано для рабочих нагрузок VDI, что упрощает планирование и проектирование.
- **Гибридное облако**. Cloud Foundation реализует по-настоящему гибридное облако с общей инфраструктурой и согласованной моделью эксплуатации, которое объединяет локальный и внешний ЦОД в совместимую, масштабируемую и распределенную среду.