Solution to Exercise 7

Simon A. Broda

- 1. (a) If the relative price of oil expressed in units of gold, $\operatorname{oil}_t/\operatorname{gold}_t$, is stationary, then this implies that $\log(\operatorname{oil}_t/\operatorname{gold}_t) = \log(\operatorname{oil}_t) \log(\operatorname{gold}_t)$ is also stationary, so $\log(\operatorname{oil}_t)$ and $\log(\operatorname{gold}_t)$ must be cointegrated with cointegrating vector (1, -1) if the individual series are integrated.
 - (b) We begin by transforming the data to logs and making a plot:

```
genr lgold = log(gold)
genr loil = log(oil)
```

Plotting the data requires opening the two series as a group. The resulting plot is given below.

Then we follow the Engle-Granger procedure.

Step 1: Conduct individual unit root tests to make sure both series are integrated. We include a time trend for both because the data look trending, and choose the lag length automatically by the AIC.

The results is shown below.

Null Hypothesis: LOIL has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.552422	0.3027
Test critical values:	1% level	-3.973847	
	5% level	-3.417533	
	10% level	-3.131184	
*MacKinnon (1996) on	e-sided p-values.		
Null Hypothesis: LGOI Exogenous: Constant, Lag Length: 0 (Automa	Linear Trend	;, maxlag=18)	
		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.820648	0.6937
Test critical values:	1% level	-3.973820	
	5% level	-3.417519	
	10% level	-3.131176	

^{*}MacKinnon (1996) one-sided p-values.

EViews chose to include one lagged difference. Neither test rejects, so the series are I(1). **Step 2**: Estimate the long-run relationship (cointegrating relationship)

$$loil_t = \beta_1 + \beta_2 lgold_t + U_t.$$

The result is

Dependent Variable: LOIL

Method: Least Squares Date: 11/30/20 Time: 16:50 Sample: 1968M04 2017M01 Included observations: 586

Variable	Coefficient	Std Error	t-Statistic	Prob.
Valiable	Coemicient	Stu. Elloi	t-Statistic	FIUU.
С	-2.258963	0.086329	-26.16698	0.0000
LGOLD	0.926232	0.014618	63.36354	0.0000
R-squared	0.873014	Mean dependent var		3.141848
Adjusted R-squared	0.872797	S.D. dependent var		0.929639
S.E. of regression	0.331561	Akaike info criterion		0.633398
Sum squared resid	64.20072	Schwarz criterion		0.648324
Log likelihood	-183.5855	Hannan-Quinn criter.		0.639214
F-statistic	4014.938	Durbin-Watson stat		0.074317
Prob(F-statistic)	0.000000			

The estimated long-run relationship is

$$\mathrm{loil}_t = -2.26 + 0.926 \mathrm{lgold}_t + U_t.$$

The estimated cointegrating vector (provided we find cointegration) is (1, -0.926), i.e.,

$$\mathrm{loil}_t - 0.926\mathrm{lgold}_t = -2.26 + U_t$$

is stationary. We save the residuals for later use and plot them:

Step 3: Conduct an ADF test (with just an intercept, no trend!) for the residuals to test H_0 : No Cointegration. Result:

Null Hypothesis: U has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.724771	0.0040
Test critical values:	1% level	-3.441318	
	5% level	-2.866270	
	10% level	-2.569348	

^{*}MacKinnon (1996) one-sided p-values.

Be careful to use the Engle-Granger critical value of -3.41 at the 5% level. The test rejects the null. Conclusion: there is indeed cointegration.

Alternative to this manual approach: select loil and lgold (click on one, press control, click on the other), and open them as a group. Then do

Result:

Date: 11/30/20 Time: 20:28
Series: LOIL LGOLD
Sample: 1968M04 2017M01
Included observations: 586
Null hypothesis: Series are not cointegrated
Cointegrating equation deterministics: C

Automatic lags specification based on Schwarz criterion (maxlag=18)

Dependent	tau-statistic	Prob.*	z-statistic	Prob.*
LOIL	-3.728235	0.0177	-28.50078	0.0087
LGOLD	-3.488501	0.0346	-25.44978	0.0171

^{*}MacKinnon (1996) p-values.

Same result (first row), and we even get a p-value! Note that EViews does the test "in both directions", once with Y_t as dependent variable and once with X_t . As mentioned in the slides, this doesn't matter asymptotically, but in finite samples it might matter which of the variables we consider endogenous and which one exogenous. In this particular case though, they both give the same answer. Still, it would be better not to have to make a choice here. That's what the Johansen procedure accomplishes.

Step 4: Estimate the VECM

$$\Delta Y_t = c_1 + \alpha_1 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{1t},$$

$$\Delta X_t = c_2 + \alpha_2 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{2t}.$$

replacing $Y_{t-1} - \beta_1 - \beta_2 X_{t-1}$ by the OLS residual $\hat{u}_{t-1} = Y_{t-1} - \hat{\beta}_1 - \hat{\beta}_2 X_{t-1}$ we saved earlier. Then, we can estimate α_1 and α_2 by OLS. We start with the equation for LOIL:

Dependent Variable: D(LOIL) Method: Least Squares Date: 11/30/20 Time: 20:16 Sample (adjusted): 1968M05 2

Sample (adjusted): 1968M05 2017M01 Included observations: 585 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C U(-1)	0.004870 -0.027903	0.003377 0.010205	1.442012 -2.734171	0.1498 0.0064
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.012660 0.010967 0.081688 3.890354 636.2562 7.475692 0.006444	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.004853 0.082140 -2.168397 -2.153451 -2.162573 1.498327

We notice that there is autocorrelation (look at the DW stat). We can cure this by adding a lagged difference (like the ADF test did automatically when it selected the lag length).

Dependent Variable: D(LOIL) Method: Least Squares Date: 11/30/20 Time: 17:09

Sample (adjusted): 1968M06 2017M01 Included observations: 584 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C U(-1) D(LOIL(-1))	0.003641 -0.034971 0.256547	0.003278 0.009942 0.040092	1.110606 -3.517509 6.399038	0.2672 0.0005 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.077666 0.074491 0.079089 3.634195 654.5578 24.46179 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.004862 0.082210 -2.231362 -2.208914 -2.222613 2.006622

Now it's fine. Let's repeat for the other variable:

Dependent Variable: D(LGOLD)
Method: Least Squares
Date: 11/30/20 Time: 17:17
Sample (adjusted): 1968M05 2017M01
Included observations: 585 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C U(-1)	0.005866 0.008997	0.002342 0.007077	2.504458 1.271298	0.0125 0.2041
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.002765 0.001054 0.056646 1.870743 850.4143 1.616198 0.204130	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.005871 0.056676 -2.900562 -2.885616 -2.894737 1.932704

This one seems fine without any lagged differences. We notice that u_{t-1} is insignificant, so we can stick with a single-equation ECM. The final model is

$$\Delta \text{loil}_t = 0.0036 - 0.035(\text{loil}_{t-1} - 0.926 \text{lgold}_{t-1} + 2.26) + 0.25\Delta \text{loil}_{t-1} + e_{1t}$$

Interpretation: there is an equilibrium relationship between loil and lgold, with cointegrating vector (1, -0.926). In case of a disequilibrium, loil adjusts towards the equilibrium. The adjustment amounts to 3.5% of the disequilibrium per period.

- 2. (a) X_t is a random walk, hence I(1). So no, it is not stationary.
 - (b) Y_t depends on X_t if $\beta_2 \neq 0$, so it cannot be stationary.
 - (c) Yes, because there exists a linear combination of them that is stationary:

$$Y_t - \beta_2 X_t = \beta_1 + U_{1,t}$$
.

The cointegrating vector is $(1, -\beta_2)$.

(d) The goal is to find two equations, one with ΔY_t on the LHS, and one with ΔX_t . Both should have the equilibrium error $Y_{t-1} - \beta_1 - \beta_2 X_{t-1}$ on the RHS. For Y_t , we find

$$Y_{t} = \beta_{1} + \beta_{2}X_{t} + U_{1,t} \qquad | -Y_{t-1}$$

$$\Delta Y_{t} = -Y_{t-1} + \beta_{1} + \beta_{2}X_{t} + U_{1,t} \qquad | \pm \beta_{2}X_{t-1}$$

$$\Delta Y_{t} = -(Y_{t-1} - \beta_{1} - \beta_{2}X_{t-1}) + \beta_{2}\Delta X_{t} + U_{1,t}$$

$$\Delta Y_{t} = \alpha_{1}(Y_{t-1} - \beta_{1} - \beta_{2}X_{t-1}) + \beta_{2}\Delta X_{t} + U_{1,t},$$

where $\alpha_1 = -1$. For X_t ,

$$X_{t} = X_{t-1} + U_{2,t}$$

$$\Delta X_{t} = U_{2,t}$$

$$\Delta X_{t} = 0(Y_{t-1} - aX_{t-1}) + U_{2,t}$$

$$\Delta X_{t} = \alpha_{2}(Y_{t-1} - aX_{t-1}) + U_{2,t}$$

where $\alpha_2 = 0$. This means that we can treat this as a single-equation ECM.