What about two substrates? Sequential mechanisms

Nomenclature system by:

Can be distinguished by product inhibition studies

How to distinguish sequential mechanisms

Remember mixed inhibition?

E

EB

EAB-EPQ

EP

Two substrates that play ping-pong

Ping Pong Bi Bi:

Remember uncompetitive inhibition?

Enzyme CatalysisVoet & Voet, Chapter 15

Enzymes use a limited number of specific catalytic strategies:

- Acid-base catalysis
- Preferential binding of the transition state
- Electrostatic catalysis
- Metal ion catalysis
- Proximity and orientation effects
- Covalent catalysis

Acid-base catalysis: Two examples

Uncatalyzed: (a)
$$C = 0$$
 $C = 0$ $C =$

General acid catalyzed: (b) $C_{CH_2}^{R} \longrightarrow C_{CH_2}^{R} \longrightarrow C_{CH_$

General base catalyzed: (c) $C_{CH_2}^{R}$ $C_{CH_2}^{R}$

RNase A V Lys41 Asp71

Ser123

Walter, N.G. Mol. Cell 28 (2007) 923-929

01/31/22

Catalysis by preferential binding of the transition state (shape complementarity)

Example: Lysozyme lyses bacterial cell wall

Catalytic antibodies (abzymes)

Related: Electrostatic catalysis?

For Ketosteroid isomerase (KSI) a "...small effect of increased charge localization on affinity occurs...
This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of ~300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution."

