Command	Explanation	Notes
anova()	calculates <i>p</i> -value for joint test	
linearHypothesis()	tests a linear (joint) hypothesis	requires "car"
resettest()	performs RESET test	requires "lmtest"
<pre>jarque.bera.test()</pre>	performs Jarque-Bera test	requires "tseries"
vcovHC()	heteroskedasticity-robust calculations	requires "sandwich"
coeftest()	tests regression coefficients	requires "lmtest"
waldtest()	tests overall significance	requires "lmtest"
dwtest()	tests for first-order autocorrelation	requires "lmtest"
bgtest()	tests for higher-order autocorrelation	requires "lmtest"

Example Code

anova(olsu, olsr)

Find *p*-value for unrestricted regression olsu and restricted regression olsr with the same dependent variable (e.g. all zero hypotheses).

linearHypothesis(olsu, c(" $x_2 = -3$ ", " $x_3 = 100$ "))

Find *p*-value for unrestricted regression olsu and restrictions H_0 : $\beta_2 = -3$ and $\beta_3 = 100$.

resettest(ols1)

Test for the relevance of \hat{y}^2 and \hat{y}^3 nonlinear terms for unrestricted regression olsu.

jarque.bera.test(ols1\$residuals)

Tests regression ols1 for heteroskedasticity.

coeftest(ols1, vcov = vcovHC(ols1, type = "HCO"))

To see heteroskedasticity-robust standard errors for regression ols1.

waldtest(ols1, vcov = vcovHC(ols1, type = "HCO"))

To see the heteroskedasticity-robust *F*-statistic for regression ols1.

bgtest(ols1, order=3, type="F")

Tests regression ols1 for third-order autocorrelation.