

Multi-Boot User Guide for Nexus Platform

Technical Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Contents	3
Glossary	5
1. Introduction	6
2. Resources	7
3. Dual Boot Mode	14
3.1. Description of the Nexus Device Dual Boot Flow Diagram	15
4. Ping-Pong Boot Mode	16
4.1. Description of the Ping-Pong Boot Flow Diagram	17
5. Multi-Boot Mode	18
5.1. MULTIBOOT Primitive	18
5.2. Booting Flow without MULTIBOOT Primitive	19
5.2.1. Drawback	19
5.3. Booting Flow with MULTIBOOT Primitive	19
5.3.1. Advantage	19
5.3.2. Implementation of Multi-Boot Feature Using MULTIBOOT Primitive	20
6. Creating a PROM File	24
6.1. Using Radiant Deployment Tool to Create a Dual Boot PROM Hex File	24
6.2. Using Radiant Deployment Tool to Create a Ping-Pong Boot PROM Hex File	29
6.3. Using Radiant Deployment Tool to Create a Multi-Boot PROM Hex File	34
7. Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the External SPI Flash Device	41
8. Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the Internal Flash	
9. Corrupting Primary Image to Test Dual Boot, Ping-pong Boot, or Multi-Boot	47
9.1. Corrupting Generated .mcs File using Deployment Tool	
9.2. Example of Corrupting Preamble of Primary Image in Dual Boot	48
10. Use Case Restrictions	50
10.1. Ping-pong Boot Limitation	50
10.2. Soft Error Detection and Correction (SEDC) Use Case	50
References	51
Technical Support Assistance	52
Revision History	53

Figures

Figure 3.1. Nexus Device Dual Boot Flow Diagram	14
Figure 4.1. Ping-Pong Boot Flow Diagram	16
Figure 5.1. MULTIBOOT Primitive, OSC IP, CONFIG_LMMI Primitive and Lmmi Host Connection	20
Figure 5.2. Implementation of Multi-Boot Feature Using MULTIBOOT Primitive Flow	21
Figure 5.3. Launching the Programming File Utility Tool	22
Figure 5.4. Opening the Control Register 0 Editor Window	22
Figure 5.5. Control Register 0 Window	22
Figure 5.6. Default SPIM Bit Setting	23
Figure 5.7. Saving Control Register 0 Bit Settings	
Figure 6.1. Creating New Deployment for Dual Boot PROM Hex File	
Figure 6.2. Select Input Files Window	
Figure 6.3. Dual Boot Options Window	
Figure 6.4. Select Output File Window	
Figure 6.5. Generate Deployment Window	
Figure 6.6. Creating New Deployment for Ping-Pong Boot PROM Hex File	
Figure 6.7. Select Input Files Window	
Figure 6.8. Ping-Pong Boot Options Window	
Figure 6.9. Select Output File Window	
Figure 6.10. Generate Deployment Window	
Figure 6.11. Creating New Deployment for Multi-Boot	
Figure 6.12. Select Input File Window	
Figure 6.13. Advanced SPI Flash Options – Options Tab Window	
Figure 6.14. Advanced SPI Flash Options – Multiple Boot Tab Window	
Figure 6.15. Select Output File Window	
Figure 6.16. Generate Deployment Window	
Figure 7.1. Radiant Programmer – Getting Started Window	
Figure 7.2. Radiant Programmer – Device Properties Window	
Figure 8.1. Radiant Programmer – Device Properties Window	
Figure 9.1. Reading Device Status Register using Radiant Programmer	
Figure 9.2. Device Status Register Value after Fall Back to Golden Image	49
Tables	
	-
Table 1.1. Supported Device Families and Parts	
Table 2.1. Maximum Configuration Bitstream Size – Single Bitstream Boot Mode	
Table 2.2. Maximum Configuration Bitstream Size – Dual Boot Mode/Ping-Pong Mode	
Table 2.3. Maximum Configuration Bitstream Size – Multi-Boot Mode	
Table 3.1. Control Register 1 [3:2] – Master Preamble Timer Retry Value	
Table 4.1. Control Register 1 [3:2] – Master Preamble Timer Retry Value	1/

Table 8.1. Programming Options for Direct FLASH Programming Mode in Radiant Programmer44

Glossary

A glossary of terms used in this document.

Acronym	Definition
Alternative Boot	After the FPGA device has been configured, this pattern is loaded when the PROGRAMN pin is toggled or the Refresh instruction is issued. Up to four Alternative Boot patterns are possible.
Binary Hex Data File (.bin File)	The data image of the Hex data file in binary format. All Hex data files are converted into this format prior to consumption. This type of file is not printable.
Bitstream Data File (.bit File)	The configuration data file, for a single FPGA device, in the format that can be loaded directly into the FPGA device to configure the SRAM cells. The file is expressed in binary Hex format. The file is not printable.
Configure	Write the pattern into the SRAM fuses of the FPGA device and wake up.
Dual Boot	The device has two patterns, a Primary pattern and a Golden pattern, to choose to load.
EBR	Embedded Block RAM
FD-SOI (Fully Depleted Silicon On Insulator)	A process that uses an ultra-thin buried oxide layer.
	The feature provides protection to the Flash fuses against accidental erase or corruption. Most of the SPI Flash devices support Soft Lock. Lock choices include:
Flash Lock	 Whole device Bottom half Bottom quarter
	Last sector Details can be found in the SPI Flash device data sheet.
Golden Boot	The guaranteed good pattern loaded into the FPGA device when booting failure occurs. It is also known as the root boot. Only one Golden Boot pattern is allowed.
Hex Data File (.exo, .mcs, .xtek Files)	The data record files that are in the format commonly known as Intel Hex, Motorola Hex or Extended Tektronix Hex. They are also known as addressed record files. The advantages include its small size and it is printable, and thus good for record keeping. This type of file is not directly consumable by the utilities supporting it.
LRAM	Large RAM
Multi-Boot Multiple Boot	The device has more than two patterns, a Primary pattern, a Golden pattern and some Alternative patterns, to choose to load.
Primary Boot	Upon power cycling, the FPGA device loads this pattern in first. Only one Primary pattern is allowed.
Program	Writes into the selected Flash cells state a logical zero (0) (close fuse).
RAM	Random Access Memory
Refresh	The action loads the pattern from a non-volatile source to configure the FPGA device.
Sector (Block)	The smallest number of bytes of Flash fuses can be erased at the same time by the erase command.
SPI	Stands for the Serial Peripheral Interface defined originally by Motorola.
SRAM	Static Random Access Memory

1. Introduction

CrossLink™-NX, Certus™-NX, CertusPro™-NX, and MachXO5™-NX families of low-power FPGAs can be used in a wide range of applications and are optimized for the bridging and processing needs in the Embedded Vision space. It is built on Lattice Nexus FPGA platform, using low-power 28-nm FD-SOI technology. For the subsequent part of this document, the Nexus devices refer to all CrossLink-NX, Certus-NX, Certus-NX, and MachXO5-NX device families.

The Nexus devices support various booting options for loading the configuration SRAM from a non-volatile memory for configuration flexibility and fail-safe configuration. CrossLink-NX, Certus-NX and CertusPro-NX families use an external memory while MachXO5-NX families only support internal flash memory for storage of configuration bitstreams. See Table 1.1 for details of the supported device families and parts.

Table 1.1. Supported Device Families and Parts

Device Family	Parts included in the Device Family			
CrossLink-NX	LIFCL-17, LIFCL-33, LIFCL-33U, and LIFCL-40			
Certus-NX	LFD2NX-9, LFD2NX-17, LFD2NX-15, LFD2NX-25, LFD2NX-35, LFD2NX-65, LFD2NX-28 and LFD2NX-40			
CertusPro-NX	LFCPNX-50 and LFCPNX-100			
MachXO5-NX	LFMXO5-15D, LFMXO5-25, LFMXO5-55T, LFMXO5-55TD, LFMXO5-100T, LFMXO5-35, LFMXO5-35T, LFMXO5-65 and LFMXO5-65T			

The Nexus devices support various configuration boot modes to mitigate risk during the field upgrade process and to allow flexibility of executing different patterns. Field upgrade disruptions may occur due to power disruption, communication interruption or bitstream pattern corruption. The Nexus devices support the following boot modes:

- Dual Boot mode Switches to load from the second known good (Golden) pattern when the first pattern becomes corrupted.
- Ping-Pong Boot mode Switches between two bitstream patterns based on your choice. If the system fails to boot from one of the bitstreams, it automatically boots from the second bitstream.
- Multi-Boot mode Allows the system to dynamically switch between two to five bitstream patterns while still being protected with a Golden (sixth) pattern. Note that the MachXO5-NX family supports up to 3 bitstream patterns only inclusive of the Golden pattern.

The Nexus devices support these boot modes by combining all the bitstream patterns into a single boot image and storing it in a single external SPI Flash device (internal flash for MachXO5-NX families). This solution decreases cost, reduces board space, and simplifies field upgrades.

Important Note: To enable the Transparent Field Reconfiguration (TransFR™) feature with any of the supported boot modes, the Master SPI port must be persisted or enabled as configuration port after the device entering user mode. These settings can be set in Lattice Radiant Device Constraint Editor, the Global tab.

2. Resources

The Nexus devices are SRAM-based FPGAs. The volatile SRAM configuration memory must be loaded from a non-volatile memory that can store all the configuration data. The size of the configuration data is based on the amount of logic available in the FPGA, number of pre-initialized Embedded Block RAM (EBR) components and number of pre-initialized Large RAM (LRAM) Block components. A design using the largest device, with every EBR and LRAM pre-initialized with unique data values and generated without compression requires the largest amount of storage. The minimum SPI Flash densities required to support the different configuration boot modes are listed in Table 2.1, Table 2.2, and Table 2.3.

Table 2.1. Maximum Configuration Bitstream Size - Single Bitstream Boot Mode

Deutee	Comments	Uncompressed ¹	SPI Mode
Device	Scenario	Single Bitstream Size (Mb)	Minimum SPI Flash Size(Mb)
	No LRAM, No EBR	2.817	4
LFD2NX-9	No LRAM, MAX EBR	3.102	4
	MAX LRAM, No EBR	4.437	8
	MAX LRAM, MAX EBR	4.722	8
	No LRAM, No EBR	4.609	8
LFD2NX-15	No LRAM, MAX EBR	6.247	8
LFD2NX-25	MAX LRAM, No EBR	5.264	8
	MAX LRAM, MAX EBR	6.903	8
	No LRAM, No EBR	2.817	4
LIFCL-17	No LRAM, MAX EBR	3.273	4
LFD2NX-17	MAX LRAM, No EBR	5.517	8
	MAX LRAM, MAX EBR	5.873	8
	No LRAM, No EBR	4.453	8
LIECT 22	No LRAM, MAX EBR	5.967	8
LIFCL-33	MAX LRAM, No EBR	7.150	8
	MAX LRAM, MAX EBR	8.667	16
	No LRAM, No EBR	5.430	8
11501 2211	No LRAM, MAX EBR	6.740	8
LIFCL-33U	MAX LRAM, No EBR	8.706	16
	MAX LRAM, MAX EBR	10.017	16
	No LRAM, No EBR,	6.232	8
LEDANIV 20	No LRAM, MAX EBR	7.286	8
LFD2NX-28	MAX LRAM, No EBR	7.281	8
	MAX LRAM, MAX EBR	8.335	16
	No LRAM, No EBR	6.232	8
LIFCL-40	No LRAM, MAX EBR	7.758	8
LFD2NX-40	MAX LRAM, No EBR	7.281	8
	MAX LRAM, MAX EBR	8.807	16
	No LRAM, No EBR	10.611	16
LEDANY SE	No LRAM, MAX EBR	13.233	16
LFD2NX-35	MAX LRAM, No EBR	11.922	16
	MAX LRAM, MAX EBR	14.543	16

		Uncompressed ¹	SPI Mode
Device Scenario		Single Bitstream Size (Mb)	Minimum SPI Flash Size(Mb)
	No LRAM, No EBR	10.611	16
LFD2NX-65	No LRAM, MAX EBR	13.233	16
	MAX LRAM, No EBR	11.922	16
	MAX LRAM, MAX EBR	14.543	16
	No LRAM, No EBR	15.484	16
150DNN 50	No LRAM, MAX EBR	17.466	32
LFCPNX-50	MAX LRAM, No EBR	16.139	32
	MAX LRAM, MAX EBR	18.122	32
	No LRAM, No EBR	17.293	32
	No LRAM, MAX EBR	18.749	32
LFCPNX-100	MAX LRAM, No EBR	18.589	32
	MAX LRAM, MAX EBR	22.333	32
	No LRAM, No EBR,	5.377	NA ²
	No LRAM, MAX EBR	6.817	NA ²
LFMXO5-25	MAX LRAM, No EBR	5.877	NA ²
	MAX LRAM, MAX EBR	7.317	NA ²
	No LRAM, No EBR,	4.494	NA ²
	No LRAM, MAX EBR	5.120	NA ²
LFMXO5-15D	MAX LRAM, No EBR	6.071	NA ²
	MAX LRAM, MAX EBR	6.696	NA ²
	No LRAM, No EBR	10.611	NA ²
LFMXO5-35	No LRAM, MAX EBR	13.233	NA ²
LFMXO5-35T	MAX LRAM, No EBR	11.922	NA ²
	MAX LRAM, MAX EBR	14.543	NA ²
	No LRAM, No EBR	10.611	NA ²
LFMXO5-65	No LRAM, MAX EBR	13.233	NA ²
LFMXO5-65T	MAX LRAM, No EBR	11.922	NA ²
	MAX LRAM, MAX EBR	14.543	NA ²
	No LRAM, No EBR	15.005	NA ²
LFMXO5-55T	No LRAM, MAX EBR	18.749	NA ²
LFMXO5-100T	MAX LRAM, No EBR	18.589	NA ²
	MAX LRAM, MAX EBR	22.333	NA ²
	No LRAM, No EBR	14.353	NA ²
	No LRAM, MAX EBR	18.009	NA ²
LFMXO5-55TD	MAX LRAM, No EBR	17.853	NA ²
	MAX LRAM, MAX EBR	21.509	NA ²

Notes:

- 1. Nexus devices support bitstream compression. Compression ratio depends on the bitstream. Therefore, Table 2.1 only provides uncompressed bitstream data.
- 2. MachXO5-NX family of devices boot from internal flash memory.

Table 2.2. Maximum Configuration Bitstream Size – Dual Boot Mode/Ping-Pong Mode

		Uncompressed ¹	SPI Mode	
Device Scenario		Single Bitstream Size (Mb)	2-Bitstream Size (Mb)	Minimum SPI Flash Size (Mb)
	No LRAM, No EBR	2.817	5.634	8
LFD2NX-9	No LRAM, MAX EBR	3.102	6.204	8
	MAX LRAM, No EBR	4.437	8.874	16
	MAX LRAM, MAX EBR	4.722	9.444	16
	No LRAM, No EBR	4.609	9.218	16
	No LRAM, MAX EBR	6.247	12.495	16
LFD2NX-15	MAX LRAM, No EBR	5.264	10.529	16
	MAX LRAM, MAX EBR	6.903	13.805	16
	No LRAM, No EBR	2.817	5.634	8
JFCL-17	No LRAM, MAX EBR	3.327	6.654	8
LFD2NX-17	MAX LRAM, No EBR	5.517	11.034	16
	MAX LRAM, MAX EBR	5.873	11.746	16
	No LRAM, No EBR	4.453	8.906	16
11501 22	No LRAM, MAX EBR	5.967	11.934	16
LIFCL-33	MAX LRAM, No EBR	7.150	14.300	16
	MAX LRAM, MAX EBR	8.667	17.334	32
	No LRAM, No EBR	5.430	10.859	16
1501 2211	No LRAM, MAX EBR	6.740	13.480	16
IFCL-33U	MAX LRAM, No EBR	8.706	17.413	32
	MAX LRAM, MAX EBR	10.017	20.034	32
	No LRAM, No EBR	6.232	12.464	16
LEDANY 20	No LRAM, MAX EBR	7.286	14.572	16
LFD2NX-28	MAX LRAM, No EBR	7.281	14.562	16
	MAX LRAM, MAX EBR	8.335	16.670	32
	No LRAM, No EBR	6.232	12.464	16
IFCL-40	No LRAM, MAX EBR	7.758	15.516	16
LFD2NX-40	MAX LRAM, No EBR	7.281	14.562	16
	MAX LRAM, MAX EBR	8.807	17.614	32
	No LRAM, No EBR	10.611	21.222	32
EDANY 2E	No LRAM, MAX EBR	13.233	26.465	32
LFD2NX-35	MAX LRAM, No EBR	11.922	23.844	32
	MAX LRAM, MAX EBR	14.543	29.087	32
	No LRAM, No EBR	10.611	21.222	32
EDONY 65	No LRAM, MAX EBR	13.233	26.465	32
FD2NX-65	MAX LRAM, No EBR	11.922	23.844	32
	MAX LRAM, MAX EBR	14.543	29.087	32
	No LRAM, No EBR	15.484	30.968	32
FCPNX-50	No LRAM, MAX EBR	17.466	34.932	64
TI CLINY-30	MAX LRAM, No EBR	16.139	32.278	64
	MAX LRAM, MAX EBR	18.122	36.244	64

		Uncompressed ¹	SPI Mode	
Device	Scenario	Single Bitstream Size (Mb)	2-Bitstream Size (Mb)	Minimum SPI Flash Size (Mb)
	No LRAM, No EBR	17.239	34.478	64
LECONY 100	No LRAM, MAX EBR	18.749	37.498	64
LFCPNX-100	MAX LRAM, No EBR	18.589	37.178	64
	MAX LRAM, MAX EBR	22.333	44.666	64
	No LRAM, No EBR	5.377	10.754	NA ²
LENAVOE DE	No LRAM, MAX EBR	6.817	13.634	NA ²
LFMXO5-25	MAX LRAM, No EBR	5.877	11.754	NA ²
	MAX LRAM, MAX EBR	7.317	14.634	NA ²
	No LRAM, No EBR	4.494	8.988	NA ²
LENAVOE 1ED	No LRAM, MAX EBR	5.120	10.240	NA ²
LFMXO5-15D	MAX LRAM, No EBR	6.071	12.142	NA ²
	MAX LRAM, MAX EBR	6.696	13.392	NA ²
	No LRAM, No EBR	10.611	21.222	NA ²
1 EN AVOE 3 E	No LRAM, MAX EBR	13.233	26.465	NA ²
LFMXO5-35	MAX LRAM, No EBR	11.922	23.844	NA ²
	MAX LRAM, MAX EBR	14.543	29.087	NA ²
	No LRAM, No EBR	10.611	21.222	NA ²
LENAVOE CE	No LRAM, MAX EBR	13.233	26.465	NA ²
LFMXO5-65	MAX LRAM, No EBR	11.922	23.844	NA ²
	MAX LRAM, MAX EBR	14.543	29.087	NA ²
	No LRAM, No EBR	15.005	30.010	NA ²
1514V05 400 T	No LRAM, MAX EBR	18.749	37.498	NA ²
LFMXO5-100T	MAX LRAM, No EBR	18.589	37.178	NA ²
	MAX LRAM, MAX EBR	22.333	44.666	NA ²
	No LRAM, No EBR	14.353	28.706	NA ²
LENAVOE EETS	No LRAM, MAX EBR	18.009	36.018	NA ²
LFMXO5-55TD	MAX LRAM, No EBR	17.853	35.706	NA ²
	MAX LRAM, MAX EBR	21.509	43.018	NA ²

Notes:

- 1. Nexus devices support bitstream compression. Compression ratio depends on the bitstream. Therefore, Table 2.2 only provides uncompressed bitstream data.
- 2. MachXO5-NX family of devices boot from internal flash memory.

Table 2.3. Maximum Configuration Bitstream Size – Multi-Boot Mode

		Uncompressed ¹	3-Bitstream (Mb)		4-Bitstream (Mb)		5-Bitstream (Mb)	ı Size	6-Bitstrean	n Size
Device	Scenario	Single Bitstream Size (Mb)	Minimum SPI Flash Size (Mb)							
	No LRAM, No EBR	2.817	8.451	16.000	11.268	16.000	14.085	16.000	16.902	32.000
	No LRAM, MAX EBR	3.102	9.306	16.000	12.408	16.000	15.510	16.000	18.612	32.000
LFD2NX-9	MAX LRAM, No EBR	4.437	13.311	16.000	17.748	32.000	22.185	32.000	26.622	32.000
	MAX LRAM, MAX EBR	4.722	14.166	16.000	18.888	32.000	23.610	32.000	28.332	32.000
	No LRAM, No EBR,	4.609	13.827	16.000	18.436	32.000	23.045	32.000	27.653	32.000
	No LRAM, MAX EBR	6.247	18.742	32.000	24.989	32.000	31.237	32.000	37.484	64.000
LFD2NX-15	MAX LRAM, No EBR	5.264	15.793	16.000	21.057	32.000	26.321	32.000	31.586	32.000
	MAX LRAM, MAX EBR	6.903	20.708	32.000	27.611	32.000	34.513	64.000	41.416	64.000
	No LRAM, No EBR	2.817	8.451	16.000	11.268	16.000	14.085	16.000	16.902	32.000
LIFCL-17,	No LRAM, MAX EBR	3.327	9.981	16.000	13.308	16.000	16.635	32.000	19.962	32.000
LFD2NX-17	MAX LRAM, No EBR	5.517	16.551	32.000	22.068	32.000	27.585	32.000	33.102	64.000
	MAX LRAM, MAX EBR	5.873	17.619	32.000	23.492	32.000	29.365	32.000	35.238	64.000
	No LRAM, No EBR	4.453	13.359	16.000	17.812	32.000	22.265	32.000	26.718	32.000
	No LRAM, MAX EBR	5.967	17.901	32.000	23.868	32.000	29.835	32.000	35.802	64.000
LIFCL-33	MAX LRAM, No EBR	7.150	21.450	32.000	28.600	32.000	35.750	64.000	42.900	64.000
	MAX LRAM, MAX EBR	8.667	26.001	32.000	34.668	64.000	43.335	64.000	52.002	64.000
	No LRAM, No EBR	5.430	16.289	32.000	21.718	32.000	27.148	32.000	32.577	64.000
	No LRAM, MAX EBR	6.740	20.221	32.000	26.961	32.000	33.701	64.000	40.441	64.000
LIFCL-33U	MAX LRAM, No EBR	8.706	26.119	32.000	34.825	64.000	43.532	64.000	52.238	64.000
	MAX LRAM, MAX EBR	10.017	30.051	32.000	40.068	64.000	50.085	64.000	60.102	64.000
	No LRAM, No EBR	6.232	18.696	32.000	24.928	32.000	31.160	32.000	37.392	64.000
LEBONE: 22	No LRAM, MAX EBR	7.286	21.858	32.000	29.144	32.000	36.430	64.000	43.716	64.000
LFD2NX-28	MAX LRAM, No EBR	7.281	21.843	32.000	29.124	32.000	36.405	64.000	43.686	64.000
	MAX LRAM, MAX EBR	8.335	25.005	32.000	33.340	64.000	41.675	64.000	50.010	64.000

		Uncompressed ¹	3-Bitstrean	n Size	4-Bitstrean (Mb)	n Size	5-Bitstream	ı Size	6-Bitstream	ı Size
Device	Scenario	Single Bitstream Size (Mb) (Mb)								
	No LRAM, No EBR	6.232	18.696	32.000	24.928	32.000	31.160	32.000	37.392	64.000
LIFCL-40,	No LRAM, MAX EBR	7.758	23.274	32.000	31.032	32.000	38.790	64.000	46.548	64.000
LFD2NX-40	MAX LRAM, No EBR	7.281	21.843	32.000	29.124	32.000	36.405	64.000	43.686	64.000
	MAX LRAM, MAX EBR	8.807	26.421	32.000	35.228	64.000	44.035	64.000	52.842	64.000
	No LRAM, No EBR	10.611	31.833	32.000	42.444	64.000	53.056	64.000	63.667	64.000
LEDANY 25	No LRAM, MAX EBR	13.233	39.698	64.000	52.930	64.000	66.163	128.000	79.395	128.000
LFD2NX-35	MAX LRAM, No EBR	11.922	35.766	64.000	47.687	64.000	59.609	64.000	71.531	128.000
	MAX LRAM, MAX EBR	14.543	43.630	64.000	58.173	64.000	72.716	128.000	87.260	128.000
	No LRAM, No EBR	10.611	31.833	32.000	42.444	64.000	53.056	64.000	63.667	64.000
1500MV 65	No LRAM, MAX EBR	13.233	39.698	64.000	52.930	64.000	66.163	128.000	79.395	128.000
LFD2NX-65	MAX LRAM, No EBR	11.922	35.766	64.000	47.687	64.000	59.609	64.000	71.531	128.000
	MAX LRAM, MAX EBR	14.543	43.630	64.000	58.173	64.000	72.716	128.000	87.260	128.000
	No LRAM, No EBR	15.484	46.452	64.000	61.936	64.000	77.420	128.000	92.904	128.000
LECONIV FO	No LRAM, MAX EBR	17.466	52.398	64.000	69.864	128.000	87.330	128.000	104.796	128.000
LFCPNX-50	MAX LRAM, No EBR	16.139	48.417	64.000	64.556	128.000	80.695	128.000	96.834	128.000
	MAX LRAM, MAX EBR	18.122	54.366	64.000	72.488	128.000	90.610	128.000	108.732	128.000
	No LRAM, No EBR	17.239	51.717	64.000	68.956	128.000	86.195	128.000	103.434	128.000
LFCPNX-100	No LRAM, MAX EBR	18.749	56.247	64.000	74.996	128.000	93.745	128.000	112.494	128.000
LFCFINX-100	MAX LRAM, No EBR	18.589	55.767	64.000	74.356	128.000	92.945	128.000	111.534	128.000
	MAX LRAM, MAX EBR	22.333	66.999	128.000	89.332	128.000	111.665	128.000	133.998	256.000
	No LRAM, No EBR,	5.377	16.131	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
LFMXO5-25	No LRAM, MAX EBR	6.817	20.451	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
LI IVIAUJ-ZJ	MAX LRAM, No EBR	5.877	17.631	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
	MAX LRAM, MAX EBR	7.317	21.951	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³

		Uncompressed ¹	3-Bitstream (Mb)	n Size	4-Bitstream (Mb)	n Size	5-Bitstream (Mb)	ı Size	6-Bitstream (Mb)	ı Size
Device	Scenario	Single Bitstream Size (Mb)	Minimum SPI Flash Size (Mb)							
	No LRAM, No EBR,	4.494	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³
LEMYOF 1ED	No LRAM, MAX EBR	5.120	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³
LFMXO5-15D	MAX LRAM, No EBR	6.071	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³
	MAX LRAM, MAX EBR	6.696	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³
	No LRAM, No EBR	10.611	31.833	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
15NAVOE 25	No LRAM, MAX EBR	13.233	39.698	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
LFMXO5-35	MAX LRAM, No EBR	11.922	35.766	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
	MAX LRAM, MAX EBR	14.543	43.630	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
	No LRAM, No EBR	10.611	31.833	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
	No LRAM, MAX EBR	13.233	39.698	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
LFMXO5-65	MAX LRAM, No EBR	11.922	35.766	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
	MAX LRAM, MAX EBR	14.543	43.630	NA ³	NA ⁴	NA ³	NA ⁴	NA ³	NA ⁴	NA ³
	No LRAM, No EBR	15.005	45.015	NA ³	60.020	64.000	75.025	128.000	90.030	128.000
	No LRAM, MAX EBR	18.749	56.247	NA ³	74.996	128.000	93.745	128.000	112.494	128.000
LFMXO5-100T	MAX LRAM, No EBR	18.589	55.767	NA ³	74.356	128.000	92.945	128.000	111.534	128.000
	MAX LRAM, MAX EBR	22.333	66.999	NA ³	89.332	128.000	111.665	128.000	133.998	256.000
	No LRAM, No EBR	14.353	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³
LEANOE 55	No LRAM, MAX EBR	18.009	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³
LFMXO5-55TD	MAX LRAM, No EBR	17.853	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³
	MAX LRAM, MAX EBR	21.509	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³	NA ⁵	NA ³

Notes:

- 1. CrossLink-NX/Certus-NX/CertusPro-NX/MachXO5-NX family of devices support bitstream compression. Compression ratio depends on the bitstream. Therefore, Table 2.3 only provides uncompressed bitstream data.
- 2. Includes Golden bitstream pattern.
- 3. MachXO5-NX family of devices boot from internal flash memory.
- 4. MachXO5-NX internal flash memory supports a maximum of three bitstreams.
- 5. LFMXO5-15D and LFMXO5-55TD support a maximum of two bitstreams.

3. Dual Boot Mode

The Nexus Device Dual Boot mode supports booting from two configuration patterns that reside in an external SPI Flash device (internal flash for MachXO5-NX family). One pattern is designated as the Primary pattern, and the second pattern is designated as the Golden pattern. When the device boots up, it attempts to boot from the Primary pattern. If loading of the Primary pattern fails, the device boots from the Golden pattern.

Figure 3.1. Nexus Device Dual Boot Flow Diagram

3.1. Description of the Nexus Device Dual Boot Flow Diagram

This flow is triggered either by power cycle, the PROGRAMN pin being toggled, or by the REFRESH instruction being received.

When the Dual Boot mode is selected, in addition to the standard CRC check, a time-out check is performed while reading the Primary pattern, the Golden pattern, and the JUMP command.

- Time-Out Check the device searches for the preamble code 0xBDCD (0xBDB3 when Byte Wide Bit Mirror is enabled) from the Primary Pattern as part of the configuration protocol. The number of retries the device attempts is defined in Control Register 1 [3:2] (Table 3.1).
- Data Corruption Check After the detection of the preamble code, the CRC engine is turned on to detect whether or not the bitstream is corrupted. This determines whether the Flash device has a corrupted Primary pattern or Golden pattern due to Flash program disruption or data loss.

Table 3.1. Control Register 1 [3:2] – Master Preamble Timer Retry Value

	Bit 3	Bit 2
No retry	0	0
Retry 1 time	0	1
Retry 3 times	1	0
Reserved	1	1

If the Primary pattern fails one of the two checks above, the device knows that the Primary pattern is not valid. It drives the INITN pin LOW briefly to indicate an error and resets the configuration engine. After clearing all the SRAM fuses, it drives the INITN pin HIGH, and reads the JUMP command that directs it to the location of the Golden pattern in the Flash.

If the JUMP command is corrupted, it also causes a configuration failure. It is important to note that a corrupted Golden pattern is not the only possible cause for Dual Boot configuration failure.

If the JUMP command is valid, the device stops the SPI clock, drives the INITN pin LOW, resets the configuration engine, and performs a Clear All operation. The device then drives the INITN pin HIGH after the completion of the Clear All action, restarts the SPI clock, and reads the Golden pattern from the Flash address designated in the JUMP command.

The device performs the same time-out check and CRC check when searching for the preamble code from the Golden pattern. If the Golden pattern is also corrupted, configuration fails. The device stops driving the SPI clock, and the INITN pin is driven LOW.

4. Ping-Pong Boot Mode

The Nexus Device Ping-Pong Boot mode supports booting from two configuration patterns that reside in an external SPI Flash device (internal flash for MachXO5-NX family). One pattern is designated as the Primary pattern and the second pattern is designated as the Secondary pattern. The device boots from the pattern assigned in the Jump table. The Jump table allows the device to boot from either the Primary pattern or the Secondary pattern without changing the physical location of the patterns within the Flash. Only the Jump table needs to be updated to change the boot pattern. The other pattern, by default, becomes the Golden pattern.

Figure 4.1. Ping-Pong Boot Flow Diagram

4.1. Description of the Ping-Pong Boot Flow Diagram

This flow is triggered either by power cycle, the PROGRAMN pin being toggled, or by the REFRESH instruction being received.

When Ping-Pong Boot mode is selected, in addition to the standard CRC checking, a time-out check is performed while reading the Primary pattern, the Secondary pattern, and the JUMP command.

- Time-Out Check the device searches for the preamble code 0xBDCD (0xBDB3 when Byte Wide Bit Mirror is enabled) from the pattern designated as "First Boot" selection as part of the configuration protocol. The number of retries the device attempts is defined in Control Register 1 [3:2] (Table 4.1).
- Data Corruption Check After the detection of the preamble code, the CRC engine is turned on to detect whether the bitstream is corrupted. This determines whether the Flash device has a corrupted Primary or Secondary Pattern due to Flash program disruption or data loss.

Table 4.1. Control Register 1 [3:2] – Master Preamble Timer Retry Value

	Bit 3	Bit 2
No retry	0	0
Retry 1 time	0	1
Retry 3 times	1	0
Reserved	1	1

If the "First Boot" pattern fails one of the two checks above, the device knows that the pattern is not valid. It drives the INITN pin LOW briefly to indicate an error and resets the configuration engine. After clearing all the SRAM fuses, it drives the INITN pin HIGH, and reads the JUMP command that directs it to the location of the other pattern, acting as the Golden pattern, in the Flash.

If the JUMP command is corrupted, it also causes a configuration failure. It is important to note that a corrupted Golden pattern is not the only possible cause for Ping-ping mode configuration failure.

If the JUMP command is valid, the device stops the SPI clock, drives the INITN pin LOW, resets the configuration engine, and performs a Clear All operation. The device then drives the INITN pin HIGH after the completion of the Clear All action, restarts the SPI clock, and reads the Golden pattern from the Flash address designated in the JUMP command.

The device performs the same time-out check and the CRC check when searching for the preamble code from the Golden Pattern. If the Golden Pattern is also corrupted, configuration fails, stops driving the SPI clock, and the INITN pin is driven LOW.

18

5. Multi-Boot Mode

The Nexus device Multi-Boot supports booting from up to six patterns that reside in an external SPI Flash device (up to three patterns for MachXO5-NX internal flash memory). The patterns include a Primary pattern, a Golden pattern, and up to four Alternate patterns, designated as Alternate pattern 1 to Alternate pattern 4.

The device boots by loading the Primary pattern from the internal or external Flash, depending on the device family. If loading of the Primary pattern fails, the device attempts to load the Golden pattern. In static mode, when a reprogramming of the bitstream is triggered through the toggling of the PROGRAMN pin or receiving a REFRESH command, always Alternate pattern 1 is loaded. Subsequent PROGRAMN/REFRESH event loads the next pattern defined in the Multi-Boot configuration. The bitstream pattern sequence, target address of the Golden pattern, and target addresses of the Alternate patterns are defined during the Multi-Boot configuration process in the Lattice Radiant™ Deployment Tool. The Multi-Boot flow is similar to the Dual Boot flow (Figure 3.1). Each PROGRAMN/REFRESH event becomes a Dual Boot event with the addresses being different depending on the pattern being loaded.

By using MULTIBOOT primitive, it allows the device to operate in dynamic mode. It allows the system to dynamically switch to any of the alternate pattern after the device boots up from the Primary pattern while still being protected by a Golden pattern.

5.1. MULTIBOOT Primitive

Wrapper for Interface for multi-boot functionality

Input Ports

Name	Range	Description
AUTOREBOOT		
MSPIMADDR	31:0	

Parameters

Name	Values	Description
MSPIADDR	0'b00000000000000000000000000000000000	
SOURCESEL	"DIS" (default) "EN"	

Example of code to instantiate and enable the MULTIBOOT primitive.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Notes:

- The AutoReboot port is an unused input port and is recommended to tie it to 0.
- Once this primitive is instantiated, the use model of loading the next pattern defined in the multi-boot configuration using Radiant Deployment Tool does not work.
- MSPIMADDR is a 32-bit wide input for you to supply the boot address.

5.2. Booting Flow without MULTIBOOT Primitive

5.2.1. Drawback

Less flexibility to boot to the desired image freely.

5.3. Booting Flow with MULTIBOOT Primitive

5.3.1. Advantage

Free to load any pattern stored in external/internal SPI flash in any sequence.

20

5.3.2. Implementation of Multi-Boot Feature Using MULTIBOOT Primitive

In a user design, besides the MULTIBOOT primitive, OSC IP and CONFIG_LMMI primitive are required and should be connected as shown in Figure 5.1 to implement the Multi-Boot feature.

Figure 5.1. MULTIBOOT Primitive, OSC IP, CONFIG_LMMI Primitive and Lmmi Host Connection

MULTIBOOT primitive: This primitive is a wrapper for the interface to perform the multi-boot functionality. It
enables the booting to load the desired Alternate pattern through sending the Refresh command to CONFIG_LMMI
block.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice FPGA-TN-02145-2.3

21

- OSC IP: This IP is an oscillator module. It generates clock sources, sys clk and Immi clk, to the Lmmi host controller and CONFIG LMMI primitive. Refer to the OSC Module - Lattice Radiant Software User Guide for more information.
- CONFIG LMMI: Lattice Memory Mapped Interface (LMMI) interfaces to the configuration block. Refer to the Config_Lmmi page in Lattice Radiant Software User Guide for more information.
- Lmmi host controller: This controller implements a state machine controller to send the necessary commands to the CONFIG LMMI block, and sends the boot address to the MULTIBOOT primitive to boot the desired Alternate pattern stored in the internal or external SPI flash. The controller performs the following sequences. Refer to flow diagram below (Figure 5.2) for more details.
 - Start sending 32-bit boot address to MULTIBOOT primitive.
 - Execute ISC ENABLE X Similar to ISC ENABLE, this command puts the device into the transparent mode. Executing this command is essential to enable the device to execute the next command, the LSC_PROG_CNTRL0 command.
 - Execute LSC PROG CNTRLO Set the SPIM bit in Control Register 0 to 1. When this bit is set to 1, and once the REFRESH command is executed, it enables the device to boot from the image stored in the external SPI flash according to the boot address sent to MULTIBOOT primitive. Else, the device boots from address zero. Note: An alternative method to set the SPIM bit is by modifying the .bit file. Refer to the Setting SPIM Bit Using Programming File Utility Tool section for more information. Use this method only if you encounter difficulties implementing the LSC_PROG_CNTRLO command to set the SPIM bit. Otherwise, setting the SPIM bit through the LMMI host is recommended to avoid relying on setting the SPIM bit in the .bit file.
 - Execute ISC DISABLE Exit Transparent mode.
 - Execute LSC REFRESH Equivalent to toggling the PROGRAMN pin. Once this command is executed, the device starts to load the desired alternate pattern from the external SPI flash according to the boot address sent to MULTIBOOT primitive. If loading image fails, the device falls back to load the Golden pattern.

Figure 5.2. Implementation of Multi-Boot Feature Using MULTIBOOT Primitive Flow

Refer to the Lattice Nexus Device Multi-Boot Reference Design (FPGA-RD-02294) for details of the reference design.

5.3.2.1. Setting SPIM Bit Using Programming File Utility Tool

If you need to update or replace an alternate pattern in the configuration memory but the LMMI host cannot be used to set the SPIM bit to 1 during the multi-boot flow, the following is an alternative method to set the SPIM bit to 1 in the .bit file using the Radiant software Programming File Utility tool:

Launch Radiant Programmer and select **Tools > Programming File Utility**.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 5.3. Launching the Programming File Utility Tool

2. In the Programming File Utility, select **Tools > Control Register0 Editor...**.

Figure 5.4. Opening the Control Register 0 Editor Window

3. In the Control Register 0 window, click the ... button, navigate to and select the .bit file, then click Open.

Figure 5.5. Control Register 0 Window

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4. Click **Read** to read the Control Register 0 bit settings. By default, the SPIM bit is set to 0 as shown in the following figure.

Figure 5.6. Default SPIM Bit Setting

- 5. Click the chip value associated with the SPIM bit and set it to 1.
- 6. Click **Save** to save the settings in the selected .bit file or **Save As** to save the settings in a new .bit file. The write to file successful dialog box appears.

Figure 5.7. Saving Control Register 0 Bit Settings

- 7. Click **OK** to continue.
- 8. Read the modified .bit file to confirm that the SPIM bit is set to 1.
- 9. Proceed to program the configuration memory with the modified .bit file to update the alternate pattern.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6. Creating a PROM File

The various boot features on the Nexus devices are simple, requiring only one external SPI Flash device (MachXO5-NX uses internal flash), and flexible, due to the intelligent use of the JUMP command or table. The Lattice Radiant software provides a turn-key solution to implement this feature. The Lattice Deployment Tool, part of Lattice Radiant Software, merges the different patterns and the JUMP command and table into one PROM hex file with the .mcs file extension. The PROM hex file can later be programmed into the internal or external Flash device using Radiant Programmer or a third-party programmer.

6.1. Using Radiant Deployment Tool to Create a Dual Boot PROM Hex File

The following steps provide the procedure for generating a Dual Boot PROM hex file using the Radiant Deployment Tool.

- 1. Generate the Golden and Primary bitstream files in Lattice Radiant Software.
 - Primary bitstream file MCCLK_FREQ (SPI Master Clock Frequency) setting should not exceed the external Flash device normal/standard read speed. This is not applicable to MachXO5-NX device that uses internal flash memory.
 - For LFMXO5-55T and LFMXO5-100T parts, the maximum supported FLASH_CLK_FREQ of the primary bitstream file is 56.2 MHz. This limitation is not applicable to the single boot feature.
 - MCCLK_FREQ and FLASH_CLK_FREQ can be configured using the Global tab of the Device Constraint Editor in Lattice Radiant software.
- 2. Invoke Lattice Radiant Deployment Tool from Start > Lattice Radiant Programmer > Deployment Tool.
- 3. In the Radiant Deployment Tool window, select External Memory as the Function Type and select Dual Boot as the Output File Type (Figure 6.1).
 - Note that the External Memory selection is also applicable to MachXO5-NX device that uses internal flash memory.
- 4. Select OK.

Figure 6.1. Creating New Deployment for Dual Boot PROM Hex File

Step 1 of 4: Select Input File(s) window (Figure 6.2)

- Click the File Name fields to browse and select the two bitstream files to be used to create the PROM hex file.
- The **Device Family** and **Device** fields auto populate based on the bitstream files selected.
- Select Next.

Figure 6.2. Select Input Files Window

Step 2 of 4: Dual Boot Options window (Figure 6.3)

- Select the **Output Format** (Intel Hex, Motorola Hex, or Extended Tektronix Hex).
- Select the **SPI Flash Size** (4, 8, 16, 32, 64, 128, 256, 512, or 1024 Mb).
- Select SPI Flash Read Mode (Standard Read, Fast Read, Dual I/O SPI Flash Read or Quad I/O SPI Flash Read).
- The **Radiant Deployment Tool** automatically assigns the bitstream files selected in Step 1 to be used for the Golden pattern and Primary pattern.
 - Change the pattern options by clicking on the drop-down menu of the respective fields.
 - The Starting Address of the Golden pattern is automatically assigned.
 - Change the Starting Address of the Golden pattern by clicking on the drop-down menu.
- Select the following options as required.
 - Byte Wide Bit Mirror Flips each byte in Intel, Extended Tektronix, or Motorola hexadecimal data files. For example, 0xCD (b1100 1101) can become 0xB3 (b1011 0011) when this is selected. You do not need to enable this setting if you program the .mcs file using Radiant Programmer. If you are using a third-party programmer, check with your vendor to understand if the byte wide bit mirror is needed.
 - **Retain Bitstream Header** By default, Radiant Deployment Tool replaces the bitstream header information (name, version number, and date of the file) with 0xFF values.
 - Selecting this option retains the header information that was generated as the header.
- Select Next.

Figure 6.3. Dual Boot Options Window

Step 3 of 4: Select Output File(s) window (Figure 6.4)

- Specify the name of the output PROM hex file in the **Output File 1** field.
- Select Next.

Figure 6.4. Select Output File Window

Step 4 of 4: Generate Deployment window (Figure 6.5)

- Review the summary information.
- If everything is correct, click the **Generate** button.
- The Generate Deployment pane should indicate that the PROM file was generated successfully.
- Save the deployment settings by selecting File > Save.
- To exit, select File > Exit.

Figure 6.5. Generate Deployment Window

6.2. Using Radiant Deployment Tool to Create a Ping-Pong Boot PROM Hex File

The following steps provide the procedure for generating a Ping-Pong boot PROM hex file using the Radiant Deployment Tool.

- 1. Generate the Primary and Secondary bitstream files in Lattice Radiant software.
 - When the Primary or Secondary bitstream is the second boot option, it by default becomes the Golden bitstream.
 - Primary bitstream file MCCLK_FREQ (SPI Master Clock Frequency) setting should not exceed the external Flash device normal/standard read speed. This is not applicable to MachXO5-NX device that uses internal flash memory.
 - For LFMXO5-55T and LFMXO5-100T parts, the maximum supported FLASH_CLK_FREQ of the primary bitstream file is 56.2 MHz. This limitation is not applicable to the single boot feature.
 - MCCLK_FREQ and FLASH_CLK_FREQ can be configured using the Global tab of the Device Constraint Editor in Lattice Radiant software.
- Invoke Lattice Radiant Deployment Tool from Start > Lattice Radiant Programmer > Deployment Tool.
- 3. In the Radiant Deployment Tool window, select External Memory as the Function Type and select Ping-Pong Boot as the Output File Type (Figure 6.6).
 - Note that the External Memory selection is also applicable to MachXO5-NX device that uses internal flash memory.
- 4. Select OK.

Figure 6.6. Creating New Deployment for Ping-Pong Boot PROM Hex File

Step 1 of 4: Select Input File(s) window (Figure 6.7)

- Click the File Name fields to browse and select the two bitstream files to be used to create the PROM hex file.
- The **Device Family** and **Device** fields auto-populate based on the bitstream files.
- Select Next.

Figure 6.7. Select Input Files Window

Step 2 of 4: Ping-Pong Boot Options window (Figure 6.8)

- Select the Output Format (Intel Hex, Motorola Hex, or Extended Tektronix Hex).
- Select the SPI Flash Size (4, 8, 16, 32, 64, 128, 256,512, or 1024 Mb).
- Select SPI Flash Read Mode (Standard Read, Fast Read, Dual I/O SPI Flash Read, or Quad I/O SPI Flash Read).
- The Radiant Deployment Tool automatically assigns the bitstream files selected in Step 1 to be used for Primary and Secondary Patterns.
 - Change the pattern options by clicking on the drop-down menu of the respective field.
 - The Starting Address of the Primary Pattern is automatically assigned and can be modified by clicking on the drop-down menu.
 - The Starting Address of the Secondary Pattern is automatically assigned and can be modified by clicking on the drop-down menu.
- Select the following options as required.
 - **Generate Jump Table Only** Generates a JUMP table to select an image for booting without changing the physical location of the images in the internal or external SPI Flash.
 - For example, a JUMP table file can be created to attempt to load Bitstream_2.bit file first. This new JUMP table file can be programmed to the internal or external Flash to overwrite the previous JUMP table file.
 - The JUMP table is in .mcs format that carry the SPI Flash Read Mode setting, the Primary image boot address and the Secondary/Golden image boot address.
 - Byte Wide Bit Mirror Flips each byte in Intel, Extended Tektronix, or Motorola hexadecimal data files.

 For example, 0xCD (b1100 1101) becomes 0xB3 (b1011 0011) when this is selected. You do not need to enable this setting if you program the .mcs file using Radiant Programmer. If you are using a third-party programmer, check with your vendor to understand if the byte wide bit mirror is needed.
 - **Retain Bitstream Header** By default, Radiant Deployment Tool replaces the bitstream header information (name, version number and date of the file) with 0xFF values.
 - Selecting this option retains the header information that was generated as the header.
- Select Next.

Figure 6.8. Ping-Pong Boot Options Window

Step 3 of 4: Select Output File(s) window (Figure 6.9)

- Specify the name of the output PROM hex file in the **Output File 1** field.
- Select Next.

Figure 6.9. Select Output File Window

Step 4 of 4: Generate Deployment window (Figure 6.10)

- Review the summary information.
- If everything is correct, click the **Generate** button.
- The Generate Deployment pane should indicate the PROM file was generated successfully.
- Save the deployment settings by selecting File > Save.
- To exit, select File > Exit.

Figure 6.10. Generate Deployment Window

6.3. Using Radiant Deployment Tool to Create a Multi-Boot PROM Hex File

The following steps provide the procedure for generating a Multi-Boot PROM hex file using the Radiant Deployment Tool. This procedure is an example for four total bitstreams, Primary Pattern, Golden Pattern, Alternate Pattern 1, and Alternate Pattern 2.

- 1. Generate all the bitstream files needed in Lattice Radiant Software.
 - Primary bitstream file MCCLK_FREQ (SPI Master Clock Frequency) setting should not exceed the external Flash device normal/standard read speed. This is not applicable to MachXO5-NX device that uses internal flash memory.
 - For LFMXO5-55T and LFMXO5-100T parts, the maximum supported FLASH_CLK_FREQ of the primary bitstream file is 56.2 MHz. This limitation is not applicable to the single boot feature.
 - MCCLK_FREQ and FLASH_CLK_FREQ can be configured using the Global tab of the Device Constraint Editor in Lattice Radiant software.
- 2. Invoke Lattice Radiant Deployment Tool from Start > Lattice Radiant Programmer > Deployment Tool.
- 3. In the Radiant Deployment Tool window, select **External Memory** as the **Function Type** and select **Advanced SPI Flash** as the **Output File Type** (Figure 6.11).
 - Note that the External Memory selection is also applicable to MachXO5-NX device that uses internal flash memory.
- 4. Select OK.

Figure 6.11. Creating New Deployment for Multi-Boot

Step 1 of 4: Select Input File(s) window (Figure 6.12)

- Click the File Name field to browse and select the primary bitstream file to be used to create the PROM hex file.
- The Device Family and Device fields auto populates based on the bitstream files selected.
- Select Next.

Figure 6.12. Select Input File Window

Note: Figure 6.12 shows the step to select the Primary pattern.

36

Step 2 of 4: Advanced SPI Flash Options window (Figure 6.13)

- Go to the **Options** tab.
- Select the Output Format (Intel Hex, Motorola Hex, or Extended Tektronix Hex).
- Select the **SPI Flash Size** (4, 8, 16, 32, 64, 128, 256, 512, and 1024 Mb).
- Select SPI Flash Read Mode (Standard Read, Fast Read, Dual I/O SPI Flash Read, or Quad I/O SPI Flash Read).
- Select the following options as required:
 - Byte Wide Bit Mirror Flips each byte in Intel, Extended Tektronix, or Motorola hexadecimal data files. For example, 0xCD (b1100 1101) becomes 0xB3 (b1011 0011) when this is selected. You do not need to enable this setting if you program the .mcs file using Radiant Programmer. If you are using a third-party programmer, check with your vendor to understand if the byte wide bit mirror is needed.
 - Retain Bitstream Header By default, Radiant Deployment Tool replaces the bitstream header information (name, version number, and date of the file) with 0xFF values. Selecting this option retains the header information that is generated as the header.
 - Optimize Memory Space By default, the Radiant Deployment Tool uses the worst case file size for SPI Flash memory space allocation.
 - a. Worst case size is an uncompressed bitstream with maximum EBR and PCS. This allows maximum flexibility for field upgrades. If a new Primary Pattern file size grows significantly due to less compression or adding EBR blocks, it is guaranteed to fit in the sectors already allocated for Primary Pattern.
 - b. When this option is selected, the Radiant Deployment Tool uses the actual file size for the address allocation. This reduces wasted SPI Flash space and may allow for a smaller Flash device. If one or more of the new patterns have smaller compression ratio or more EBR/PCS, the new pattern(s) can encroach into another pattern bitstream memory space. If this occurs, the entire SPI Flash needs to be erased/ re-programmed with a new Hex file.
- Go to the **Multiple Boot** tab (Figure 6.14).
- Select the **Multiple Boot** option.
- Click on the Golden Pattern browse button to select the Golden Pattern bitstream.
 - The Starting Address of the Golden Pattern is automatically assigned. Change the Starting Address of the Golden Pattern by clicking on the drop-down menu.
- Select the following option as required:
 - Protect Golden Sector By default, the golden sector, where the Golden Pattern is stored, is located immediately after the primary sector to save SPI Flash space. When this option is selected, the Golden Pattern location is moved to the first sector in the upper half of the SPI Flash. The new location is reflected in the Golden Patten Starting Address field. This protects the Golden Pattern from accidental erase/reprogram by protecting the upper half of the SPI Flash when it is programmed.
- In the Number of Alternate Patterns field, select the number of alternate patterns to include through the drop-down menu.
- In the Alternate Pattern 1 field, click on the browse button to select the first alternate pattern.
 - The Starting Address of Alternate Pattern 1 is automatically populated. You can change the Starting Address of Alternate Pattern 1 by clicking on the drop-down menu.
- The **Next Alternate Pattern to Configure** field is automatically populated.
 - This is the pattern that is loaded during the next PROGRAMN/REFRESH event. You can change the pattern by clicking on the drop-down menu.
 - Note: You can select any available option. Once the MULTIBOOT primitive is instantiated in your design, any option you select does not affect the next pattern loading.
- In the Alternate Pattern 2 field, click on the browse button to select the second alternate pattern.
 - The Starting Address of Alternate Pattern 2 is automatically populated. You can change the Starting Address of Alternate Pattern 2 by clicking on the drop-down menu.

- The Next Alternate Pattern to Configure field is automatically populated.
 - This is the pattern that is loaded during the next PROGRAMN/REFRESH event. You can change the pattern by clicking on the drop-down menu.

Note: You can select any available option. Once the MULTIBOOT primitive is instantiated in your design, any option you select does not affect the next pattern loading.

Select Next.

Figure 6.13. Advanced SPI Flash Options - Options Tab Window

Figure 6.14. Advanced SPI Flash Options - Multiple Boot Tab Window

Step 3 of 4: Select Output File(s) window (Figure 6.15)

- Specify the name of the output PROM hex file in the **Output File 1** field.
- Select Next.

Figure 6.15. Select Output File Window

Step 4 of 4: Generate Deployment window (Figure 6.16)

- Review the summary information.
- If everything is correct, click the **Generate** button.
- The Generate Deployment pane should indicate the PROM file is generated successfully.
- Save the deployment settings by selecting File > Save.
- To exit, select File > Exit.

Figure 6.16. Generate Deployment Window

Refer to Lattice Nexus Multi-Boot Reference Design (FPGA-RD-02294) for more details of the reference design.

7. Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the External SPI Flash Device

The following procedure is for programming a Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the SPI Flash Device using Radiant Programmer:

- 1. Connect power to the board and connect a download cable from the board to the PC.
- 2. Invoke Radiant Programmer using one of the following methods:
 - In Radiant Software window, select Tools > Programmer;
 - In Radiant Software window, select the Programmer icon () in the Radiant toolbar;
 - In the Windows Start menu, select **Start > Lattice Radiant Programmer > Radiant Programmer**;
 - In the Windows Start menu, select Start > Lattice Radiant Software > Radiant Programmer.
- 3. Radiant Programmer Getting Started window opens (Figure 7.1).
 - Select Create a New Project from a Scan, or Create a new blank project, or Select Open an existing programmer project.
 - Select Detect Cable to scan the PC to determine what cable is connected. Or, manually select the type of Cable
 and Port.
 - Select OK.
- 4. Select the Operation field by moving the cursor over it and double clicking the left mouse button.
- 5. The **Device Properties** window opens (Figure 7.2).
 - For Target Memory, select External SPI Flash Memory (SPI Flash).
 - For Port Interface, select JTAG2SPI.
 - CrossLink-NX/Certus-NX/CertusPro-NX and Radiant Programmer automatically takes care of the details to connect the JTAG port pins to the SPI interface pins and to program the external SPI Flash device via the JTAG port.
 - For Access Mode, select Direct Programming.
 - For Operation, select Erase, Program, Verify.
 - For Programming File, browse to select the .mcs file.
 - In the SPI Flash Options field, specify the Family, Vendor, Device, and Package of the Flash device used on the board.
 - For Data File Size (Bytes), click on the Load from File button.
 - Click the **OK** button.
- 6. Program the external Flash device with one of the following methods:
 - In the Radiant Programmer window, select Run > Program Device.
 - In the Radiant Programmer window, click on the Program Device icon () in the toolbar.

Figure 7.1. Radiant Programmer – Getting Started Window

Figure 7.2. Radiant Programmer – Device Properties Window

8. Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the Internal Flash

Radiant Programmer provides the flexibility for you to program various programming files at the different sections of the internal flash for respective purposes. Table 8.1 shows the programming options available for Direct FLASH Programming mode in Radiant Programmer.

Table 8.1. Programming Options for Direct FLASH Programming Mode in Radiant Programmer

Programming Options	Input File	Description
Flash Header/Dual Image ¹	.mcs	 There are 2 type of .mcs files allowed: The *_header.mcs that consists of only JUMP table for Ping-pong boot. Radiant automatically generate *_header.mcs when running Export Bitstream File in a MachXO5-NX project. The primary and secondary location of the *_header.mcs is based on the PRIMARY_BOOT and SECONDARY_BOOT settings in Device Constraint Editor. The .mcs file generated for Dual Boot, Ping-pong Boot or Multi-Boot using Deployment Tool as described in Section 6. When you select this type of .mcs file, the Programmer will disable all other programming options automatically.
CFG0	.jed	The *_0.jed configuration bitstream file that is generated by Radiant automatically when running Export Bitstream File, provided the CUR_DESIGN_BOOT_LOCATION in Device Constraint Editor is set to IMAGE_0.
UFM0	.jed	The *_u0.jed bitstream file that is generated by Radiant automatically when running Export Bitstream File, provided the UFM0 is initialized in Flash Access IP in the design.
CFG1	.jed	The *_1.jed configuration bitstream file that is generated by Radiant automatically when running Export Bitstream File, provided the CUR_DESIGN_BOOT_LOCATION in Device Constraint Editor is set to IMAGE_1.
UFM1	.jed	The *_u1.jed bitstream file that is generated by Radiant automatically when running Export Bitstream File, provided the UFM1 is initialized in Flash Access IP in the design.
CFG2	.jed	The *_2.jed configuration bitstream file that is generated by Radiant automatically when running Export Bitstream File, provided the CUR_DESIGN_BOOT_LOCATION in Device Constraint Editor is set to IMAGE_2.
UFM2	.jed	The *_u2.jed bitstream file that is generated by Radiant automatically when running Export Bitstream File, provided the UFM2 is initialized in Flash Access IP in the design.
UserData0-7 ²	.mcs	The *_ud0-7.mcs file that is generated by Radiant automatically when running Export Bitstream File, provided the USERDATAx is initialized in Flash Access IP in the design.
JUMP Command ¹	.mcs	The *_tail.mcs is generated by Radiant automatically when running Export Bitstream File. The JUMP address is following the SECONDARY_BOOT setting in the Device Constraint Editor.

Notes:

- 1. This option is available for Radiant Programmer version 2023.2 and onwards.
- 2. In Radiant Programmer 2023.1 and older version, UserData is from 0 to 8.

The following procedure is for programming various programming files into the MachXO5-NX device internal flash using Radiant Programmer:

- 1. Connect power to the board and connect a download cable from the board to the PC.
- 2. Invoke Radiant Programmer using one of the following methods:
 - In Radiant Software window, select **Tools > Programmer**;
 - In Radiant Software window, select the Programmer icon () in the Radiant toolbar;
 - In the Windows Start menu, select Start > Lattice Radiant Programmer > Radiant Programmer;
 - In the Windows Start menu, select Start > Lattice Radiant Software > Radiant Programmer.
- 3. Radiant Programmer Getting Started window opens (Figure 7.1).
 - Select Create a New Project from a Scan, or Create a new blank project, or Select Open an existing programmer project.
 - Select **Detect Cable** to scan the PC to determine what cable is connected. Or, manually select the type of Cable
 and Port.
 - Click OK.
- 4. Select the Operation field by moving the cursor over it and double clicking the left mouse button.
- 5. The **Device Properties** window opens (Figure 8.1).
 - For Target Memory, select Flash Configuration Memory.
 - For **Port Interface**, select **JTAG**.
 - For Access Mode, select Direct FLASH Programming.
 - For Operation, select Erase, Program, Verify.
 - For **Other Programming Options**, select the appropriate files according to Table 8.1.
 - Click the **OK** button.
 - Refer to MachXO5-NX Programming and Configuration User Guide (FPGA-TN-02271) for designation of primary boot and secondary boot.
- 6. Program the internal Flash device with one of the following methods:
 - In the Radiant Programmer window, select **Run > Program** Device.
 - In the Radiant Programmer window, click on the **Program** Device icon () in the toolbar.

Figure 8.1. Radiant Programmer - Device Properties Window

9. Corrupting Primary Image to Test Dual Boot, Ping-pong Boot, or Multi-Boot

There are several ways to corrupt the Primary image to test if the device will fall back to the Golden image correctly:

- You can corrupt the .mcs file that is generated using Deployment Tool as described in Creating a PROM File section.
- You can use JTAG2SPI bridge in the Radiant Programmer to write junk data to the address space where Primary image is located in the external flash.
- In the MachXO5-NX design, you can use the Flash Access IP to write a byte in the CFG page where Primary image is located.

9.1. Corrupting Generated .mcs File using Deployment Tool

This section describes the first method of corrupting the .mcs file before programming it to the internal or external flash of Nexus devices.

1. Open the .mcs file. The .mcs file is in Intel Hex format, you can open it with any text editor, each line in an Intel Hex file has the same basic pattern as this:

:NNAAAATT[DDDDDDDDDD]CC

where,

:	Start of a line marker	
NN	Number of data bytes on the line	
AAAA	Address in bytes	
TT	Type:	
	00 indicates data type	
	01 indicates end of file	
	Other types like 02 and 04 for extended address line	
DD	Data bytes, the number of bytes depend on the NN value	
CC	Checksum (2s-complement of number of bytes+address+type+data)	

2. Identify the address location that you want to corrupt in the .mcs file and modify it. For example, below line is the 16 bytes at location 0x01A0, with the checksum 0x88. You can modify any data bytes in the line and recalculate the checksum after the modification.

:1001A000**000000FFFFFFF4700000080F00EC244**88 \rightarrow Original line in .mcs file.

For example, if you corrupt the location 0x01AF from 0x44 to 0xFF, the checksum is calculated by:

- a. Summing up every byte except checksum:
- b. 0x10 + 0x01 + 0xA0 + 0xFF + 0xFF + 0xFF + 0xFF + 0x47 + 0x80 + 0xF0 + 0x0E + 0xC2 +**0xFF (corrupted value)**= 0x833, omit the carry bit, the balance become 0x33.
- c. Invert all the bit of 0x33, the value is 0xCC.
- d. Adding 1 to 0xCC = 0xCD, this is the new calculated checksum.
- 3. Replace the original line with the new line that has the corrupted byte.
 - :1001A000**000000FFFFFFF4700000080F00EC2FF**CD \rightarrow New line to replace the original line in .mcs file.
- 4. Then, you can proceed to program the corrupted .mcs file to the external or internal flash by following the instructions in Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the External SPI Flash Device and Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the Internal Flash sections.

5. After the programming is successful, reconfigure or power cycle the FPGA. You should be able to observe the FPGA is now loading the Golden image instead of the Primary image. You can identify which image is loaded to the FPGA by observing the functionality of the design or using the Radiant Programmer to read the Status Register as shown in Figure 9.1.

Figure 9.1. Reading Device Status Register using Radiant Programmer

9.2. Example of Corrupting Preamble of Primary Image in Dual Boot

This section provides the example of corrupting the preamble of the Primary image in Dual Boot .mcs, and the expected Status Register value after the device falls back to Golden image upon corruption of Primary image is detected during configuration.

The line below shows the preamble value of 0xFFFFBDB3, note that 0xFFFFBDCD in the .mcs is due to the reversed bit order of every byte, this is the expected .mcs format adopted by Radiant Programmer.

Corrupting the preamble:

- Program the corrupted .mcs file to the device as described in Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the External SPI Flash Device and Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the Internal Flash sections.
- 2. Reconfigure or power cycle the FPGA.
- 3. Read the Status Register using Programmer as shown in Figure 9.1.

Figure 9.2 shows the Status Register value after the device falls back to Golden image. The **INITN** and **DONE** set to 1 indicate that the device is in user mode. The **BSE Error 1 Code** is **b0100**, which indicates the preamble error in previous bitstream execution. The **SPIm Fail** set to 1 indicates the failure to load the Primary image from the SPI flash due to the corruption.

Figure 9.2. Device Status Register Value after Fall Back to Golden Image

10. Use Case Restrictions

10.1. Ping-pong Boot Limitation

If the bitstream corruption happens at the 32-bit preamble of the primary image, the configuration engine will not load the secondary image correctly, both the BSE Error Code and BSE Error 1 Code in Device Status Register will show a preamble error. You can recover it by reprogramming the external or internal flash memory with a good image via the JTAG or SSPI port. It is recommended that you use Dual-Boot configuration if your application requires you to update the user image remotely.

10.2. Soft Error Detection and Correction (SEDC) Use Case

If your design is using the SEDC feature, you need to ensure all images are implementing the SEDC feature. Mixing images with and without the SEDC feature in your design (for Dual Boot, Ping-pong Boot or Multi-Boot application) is not supported and will result in failure when reconfiguring the FPGA with another image that is triggered by the user or due to image corruption.

Refer to SED/SEC User Guide for Nexus Platform (FPGA-TN-02076) for more detail.

References

For more information, refer to:

- CrossLink-NX Family Devices Web Page
- Certus-NX Family Devices Web Page
- CertusPro-NX Family Devices Web Page
- MachXO5-NX Family Devices Web Page
- Lattice Nexus Platform Web Page
- MachXO5-NX Programming and Configuration User Guide (FPGA-TN-02271)
- SED/SEC User Guide for Nexus Platform (FPGA-TN-02076)

For Boards, Demos, IP Cores, and Reference Designs for Lattice Nexus Devices, refer to:

- Boards, Demos, IP Cores, and Reference Designs for CrossLink-NX Devices
- Boards, Demos, IP Cores, and Reference Designs for Certus-NX Devices
- Boards, Demos, IP Cores, and Reference Designs for CertusPro-NX Devices
- Boards, Demos, IP Cores, and Reference Designs for MachXO5-NX Devices

Other References:

- Lattice Insights for Training Series and Learning Plans
- Lattice Radiant Software Web Page

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

53

Revision History

Revision 2.3, July 2025

Section	Change Summary
Introduction	Table 1.1. Supported Device Families and Parts:
	added LFD2NX-15, LFD2NX-25, LFD2NX-35 and LFD2NX-65 to Certus-NX device family;
	added LFCPNX-50 to CertusPro-NX device family;
	added LFMXO5-35, LFMXO5-35T, LFMXO5-65 and LFMXO5-65T to MachXO5-NX device family.
Resources	Updated Table 2.1. Maximum Configuration Bitstream Size – Single Bitstream Boot Mode globally, adding LFD2NX-15, LFD2NX-25, LFD2NX-35 and LFD2NX-65, and LFCPNX-50 support.
	 Updated Table 2.2. Maximum Configuration Bitstream Size – Dual Boot Mode/Ping-Pong Mode globally, adding LFD2NX-15, LFD2NX-25, LFD2NX-35 and LFD2NX-65, and LFCPNX- 50 support.
	Updated Table 2.3. Maximum Configuration Bitstream Size – Multi-Boot Mode globally, adding LFD2NX-15, LFD2NX-25, LFD2NX-35 and LFD2NX-65, and LFCPNX-50 support.

Revision 2.2, December 2024

Section	Change Summary
Multi-Boot Mode	In the Implementation of Multi-Boot Feature Using MULTIBOOT Primitive section:
	Added note on alternative method for setting the SPIM bit.
	Added the Setting SPIM Bit Using Programming File Utility Tool section.

Revision 2.1, October 2024

Section	Change Summary
Introduction	Added Important Note at the end of this section.
Multi-Boot Mode	Newl added the MULTIBOOT Primitive, Booting Flow without MULTIBOOT Primitive, and Booting Flow with MULTIBOOT Primitive sections.
Creating a PROM File	 Added For LFMXO5-55T and LFMXO5-100T parts, the maximum supported FLASH_CLK_FREQ of the primary bitstream file is 56.2 MHz. This limitation is not applicable to the single boot feature to the Using Radiant Deployment Tool to Create a Dual Boot PROM Hex File, Using Radiant Deployment Tool to Create a Ping-Pong Boot PROM Hex File, and Using Radiant Deployment Tool to Create a Multi-Boot PROM Hex File sections.
	 Added FLASH_CLK_FREQ to MCCLK_FREQ can be configured using the Global tab of the Device Constraint Editor in Lattice Radiant software in the Using Radiant Deployment Tool to Create a Dual Boot PROM Hex File, Using Radiant Deployment Tool to Create a Ping-Pong Boot PROM Hex File, and Using Radiant Deployment Tool to Create a Multi- Boot PROM Hex File sections.
	 MCCLK_FREQ and FLASH_CLK_FREQ can be configured using the Global tab of the Device Constraint Editor in Lattice Radiant software.
	 Added Note to Step 1 of 4 and Step 2 of 4 in the Using Radiant Deployment Tool to Create a Multi-Boot PROM Hex File section.

Revision 2.0, September 2024

Section	Change Summary
Ping-Pong Boot Mode	Updated Note 3 in Figure 4.1. Ping-Pong Boot Flow Diagram.

Revision 1.9, August 2024

Section	Change Summary
Introduction	Table 1.1. Supported Device Families and Parts:
	 added LFD2NX-9 and LFD2NX-28 to Certus-NX family;
	• added LFMXO5-15D and LFMXO5-55TD to MachXO5-NX family.
Resources	Table 2.1. Maximum Configuration Bitstream Size – Single Bitstream Boot Mode:
	 added LFD2NX-9 and LFD2NX-28 to related existing devices;
	 added LFMXO5-15D, LFMXO5-55TD, and their related information.
	• Table 2.2. Maximum Configuration Bitstream Size – Dual Boot Mode/Ping-Pong Mode:
	 added LFD2NX-9 and LFD2NX-28 to related existing devices;
	 added LFMXO5-15D, LFMXO5-55TD, and their related information.
	• Table 2.3. Maximum Configuration Bitstream Size – Multi-Boot Mode:
	 added LFD2NX-9 and LFD2NX-28 to related existing devices;
	 added LFMXO5-15D, LFMXO5-55TD, and their related information;
	• updated Note 1 and added Note 5.
Ping-Pong Boot Mode	Figure 4.1. Ping-Pong Boot Flow Diagram:
	• added 0x003F_FF00;
	added Note 3.

Revision 1.8, February 2024

Section	Change Summary	
All	Updated the mentions of CrossLink-NX, Certus-NX, CertusPro-NX, and MachXO5-NX device families as Nexus devices or devices.	
	• Updated the mentions of CrossLink-NX/Certus-NX/CertusPro-NX/MachXO5-NX family as Nexus device or device.	
	Updated the mentions of CrossLink-NX/Certus-NX/CertusPro-NX/MachXO5 NX part to device.	
	Made editorial fixes.	
Introduction	• Added the sentence: For the subsequent part of this document, the Nexus devices refer to all CrossLink-NX, Certus-NX, CertusPro-NX, and MachXO5-NX device families in the first paragraph of this section.	
	Added the sentence: Note that the MachXO5-NX family supports up to 3 bitstream patterns only inclusive of the Golden pattern to the Multi-Boot Mode's description.	
Resources	Removed an external from the sentence: The volatile SRAM configuration memory must be loaded from an external non-volatile memory that can store all the configuration data.	
	• Removed or embedded flash from the sentence: The minimum SPI Flash densities or embedded flash required to support the different configuration boot modes are listed in Table 2.1, Table 2.2, and Table 2.3.	
Dual Boot Mode	Updated section header names and figure caption in this section.	
Ping-Pong Boot Mode	Updated section header names and figure caption in this section.	
Multi-Boot Mode	Updated section header names in this section.	
Creating a PROM File	Added the phrase (MachXO5-NX uses internal flash) to the sentence: The various boot features on the Nexus devices are simple, requiring only one external SPI Flash device (MachXO5-NX uses internal flash), and flexible, due to the intelligent use of the JUMP command or table.	
	Added the phrase with the .mcs file extension to the sentence: The Lattice Deployment Tool, part of Lattice Radiant Software, merges the different patterns and the JUMP command and table into one PROM hex file with the .mcs file extension.	
	 Updated steps 1 and 3 of Using Radiant Deployment Tool to Create a Dual Boot PROM Hex File, Using Radiant Deployment Tool to Create a Ping-Pong Boot PROM Hex File, and Using Radiant Deployment Tool to Create a Multi-Boot PROM Hex File sections. 	

Section	Change Summary
	Updated the description of <i>Byte Wide Bit Mirror</i> in Using Radiant Deployment Tool to Create a Dual Boot PROM Hex File, Using Radiant Deployment Tool to Create a Ping-Pong Boot PROM Hex File, and Using Radiant Deployment Tool to Create a Multi-Boot PROM Hex File sections.
	Replaced the Lattice to Radiant in Using Radiant Deployment Tool to Create a Ping-Pong Boot PROM Hex File section header.
	Updated the description of <i>Generate Jump Table Only</i> in Using Radiant Deployment Tool to Create a Ping-Pong Boot PROM Hex File section.
Programming the Dual Boot,	Replaced Embedded Flash with Internal Flash.
Ping-Pong Boot, or Multi-Boot Pattern into the Internal Flash	 Added the sentences: Radiant Programmer provides the flexibility for you to program various programming files at the different sections of the internal flash for respective purposes. Table 8.1 shows the programming options available for Direct FLASH Programming mode in Radiant Programmer to this section.
	 Added Table 8.1. Programming Options for Direct FLASH Programming Mode in Radiant Programmer.
	 Replaced the phrases a Dual Boot, Ping Pong Boot, or Multi-Boot Pattern with various programming files and embedded Flash, such as a MachXO5-NX device with MachXO5-NX device internal flash in the sentence: The following procedure is for programming various programming files into the MachXO5-NX device internal flash using Radiant Programmer.
	Replaced the sentence: For CFGx Programming Files, browse to select the .jed files with For Other Programming Options, select the appropriate files according to Table 8.1.
	Updated Figure 8.1.
Corrupting Primary Image to Test Dual Boot, Ping-pong Boot, or Multi-Boot	Added this section.
Use Case Restrictions	Added this section.
References	Added references to MachXO5-NX Programming and Configuration User Guide (FPGA-TN-02271) and SED/SEC User Guide for Nexus Platform (FPGA-TN-02076).

Revision 1.7, December 2023

Section	Change Summary	
Disclaimers	Updated this section.	
Inclusive Language	Newly added this section.	
	• In the Using Radiant Deployment Tool to Create a Dual Boot PROM Hex File section, added 1024 Mb support for SPI Flash Size in Step 2 of 4: Dual Boot Options window.	
Creating a PROM File	 In the Using the Lattice Deployment Tool to Create a Ping-Pong Boot PROM Hex File section, added 1024 Mb support for SPI Flash Size in Step 2 of 4: Ping-Pong Boot Options window. 	
	 In the Using Radiant Deployment Tool to Create a Multi-Boot PROM Hex File section, added 1024 Mb support for SPI Flash Size in Step 2 of 4: Advanced SPI Flash Options window. 	

56

Revision 1.6, August 2023

EVISION 1.0, August 2023	
Section	Change Summary
Introduction	Added LIFCL-33U to Table 1.1. Supported Device Families and Parts.
Resources	 Table 2.1. Maximum Configuration Bitstream Size – Single Bitstream Boot Mode: added LIFCL-33U and its data. Table 2.2. Maximum Configuration Bitstream Size – Dual Boot Mode/Ping-Pong Mode: added LIFCL-33U and its data. Table 2.3. Maximum Configuration Bitstream Size – Multi-Boot Mode: added LIFCL-33U and its data.
References	Newly added section

Revision 1.5, March 2023

Section	Change Summary	
Introduction	Added support to the LFMXO5-55T and LFMXO5-100T parts in the description.	
Resources	 Removed MachXO5-NX from the SRAM support. Added embedded flash support for different configuration boot modes. Added LFMXO5-55T and LFMXO5-100T device support in Table 2.1. Maximum Configuration Bitstream Size – Single Bitstream Boot Mode, Table 2.2. Maximum Configuration Bitstream Size – Dual Boot Mode/Ping-Pong Mode, and Table 2.3. Maximum Configuration Bitstream Size – Multi-Boot Mode. 	
Creating a PROM File	Removed MachXO5-NX family from the various boot features support.	
Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the External SPI Flash Device	 Updated the section title adding external. Removed the MachXO5-NX family support from this section. 	
Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the Internal Flash	Newly added section.	
Technical Support Assistance	Added the frequently asked questions website link.	

Revision 1.4, June 2022

Section	Change Summary
Introduction	Added CrossLink-NX-33 (LIFCL-33) device support.
Resources	 Added CrossLink-NX-33 device support. Added CrossLink-NX-33 (LIFCL-33) device and its related data to Table 2.1. Maximum Configuration Bitstream Size – Single Bitstream Boot Mode, Table 2.2. Maximum Configuration Bitstream Size – Dual Boot Mode/Ping-Pong Mode, and Table 2.3. Maximum Configuration Bitstream Size – Multi-Boot Mode.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice FPGA-TN-02145-2.3

Revision 1.3, March 2022

Section	Change Summary
All	Changed the document title to Multi-Boot User Guide for Nexus Platform.
Introduction	Added MachXO5-NX family support.
Resources	 Added MachXO5-NX family support. Added MachXO5-NX device and its related data to Table 2.1. Maximum Configuration Bitstream Size – Single Bitstream Boot Mode, Table 2.2. Maximum Configuration Bitstream Size – Dual Boot Mode/Ping-Pong Mode, and Table 2.3. Maximum Configuration Bitstream Size – Multi-Boot Mode.
Dual Boot Mode	 Added MachXO5-NX device family support. Updated Figure 3.1. Nexus Device Dual Boot Flow Diagram changing to Internal/External Flash.
Ping-Pong Boot Mode	Added MachXO5-NX device family support.
	Updated Figure 4.1. Ping-Pong Boot Flow Diagram changing to Internal/External Flash.
Multi-Boot Mode	
Creating a PROM File	
Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the External SPI Flash Device	Added MachXO5-NX family support.

Revision 1.2, May 2021

Section	Change Summary
Introduction	Added support for CertusPro-NX device family.
Resources	
Dual Boot Mode	
Ping-Pong Boot Mode	
Multi-Boot Mode	
Creating a PROM File	
Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the External SPI Flash Device	
Resources	Added resources details for CertusPro-NX device family to Table 2.1, Table 2.2, and Table 2.3.

Revision 1.1, May 2020

Section	Change Summary
All	Changed the document title to "Multi-Boot Usage Guide for Nexus Platform".
Introduction	
Resources	
Dual Boot Mode	
Ping-Pong Boot Mode	
Multi-Boot Mode	Added support for the Nexus platform including Certus-NX and CrossLink-NX device families.
Creating a PROM File	υτο το τ
Programming the Dual Boot, Ping-Pong Boot, or Multi-Boot Pattern into the External SPI Flash Device	
Resources	Added resources details for Certus-NX device family in Table 2.1, Table 2.2, and Table 2.3.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Revision 1.0, January 2020

Section	Change Summary
All	Initial release.

www.latticesemi.com