119148 – Prática de Circuitos Eletrônicos 1

Experimento 09: Circuitos com Amplificador Operacional

1. Objetivos

Neste experimento, serão investigados circuitos com resistores e amplificadores operacionais constituindo as seguintes funções: amplificador inversor, amplificador inversor somador de três entradas e amplificador subtrator. Adicionalmente, serão abordados estudos pré-laboratoriais relacionados à impedância de entrada e de saída de circuitos construídos com amplificadores operacionais. Também serão avaliados alguns comportamentos não-lineares e a resposta em frequência desses circuitos.

2. Estudo pré-laboratorial

Considere os circuitos com amplificador operacional mostrados na Figura 2.1.

Figura 2.1 – Circuitos com Amplificador Operacional

2.1 - Expressões Matemáticas

Obtenha as expressões matemáticas da saída $V_o(t)$ em função das entradas e dos valores (literais) dos resistores para os circuitos A, B e C da Figura 2.1. Quais os nomes dados a cada uma destas configurações de Amp Op?

2.2 - Circuitos Integrados de Amplificadores Operacionais

Pesquise sobre o uso de CIs amplificadores operacionais e consulte o datasheet do uA741, do LM358 e do LM324. Responda:

- a) Quantos amplificadores operacionais estão presentes em cada um dos CIs citados?
- b) Como é feita a alimentação de cada um destes CIs (apresente a pinagem e a voltagem aplicada)?

2.3 - Explique o efeito das principais limitações dos amplificadores operacionais reais

- a) Ganho finito;
- b) Impedância de entrada finita;
- c) Tensão de offset de entrada;
- d) Largura de banda finita;
- e) Capacitância de entrada;
- Saturação;
- g) Slew-rate (ou taxa de subida)

2.4 – Impedâcias

Obtenha as expressões matemáticas para os valores das impedâncias de entrada e de saída dos circuitos A, B e C.

2.5 - Simulações

Para senóides com f = 100 Hz e resistores (em Ohms), respectivamente, RI = 100, R2 = 560, R3 = 220 e R4 = 330, simule os circuitos A, B e C para todas as combinações de V1, V2 e V3 apresentadas na Tabela 1 da Folha de Dados.

3) Experimento:

3.1 - Caracterização de circuitos com resistores e Amplificador Operacional

Monte cada um dos circuitos da Figura 2.1 (A, B e C), com tensões de alimentação $V_{ss}=-10{\rm V}$ e $V_{dd}=+10{\rm V}$. Utilize os valores definidos pelo professor para $R_1,\,R_2,\,R_3$ e R_4 . Estabeleça experimentalmente a relação entre as amplitudes pico-a-pico dos sinais de entrada $V_1(t),\,V_2(t)$ e $V_3(t)$ e a amplitude pico-a-pico do sinal de saída $V_0(t)$ observados no osciloscópio. Use o gerador de funções nas entradas, com sinais senoidais de amplitudes definidas segundo a Tabela 1 da Folha de Dados, e com a frequência arbitrada pelo professor.

Meça com precisão os valores das resistências R_1 , R_2 , R_3 e R_4 com um multímetro e substitua estes valores nas expressões obtidas no item 2.1. Compare os resultados experimentais com os valores teóricos para o ganho de tensão de cada circuito e de cada configuração mostrada na Tabela 1 da Folha de Dados.

3.2 - Efeitos não-lineares

- a) Slew-rate: Determine a maior taxa de variação da tensão por unidade de tempo $(\delta V(t)/dt)$ na saída do circuito A. Utilize uma entrada quadrada com grande amplitude e frequência.
- b) **Saturação:** Verifique qual é a amplitude máxima de excursão da tensão de saída $V_O(t)$ do circuito A. Que fatores limitam na prática a excursão da tensão de saída? Use uma grande amplitude de entrada, em baixa-frequência ($f < 1 \,\text{kHz}$).

3.3 - Resposta em frequência

Usando a configuração do circuito A, aumente gradativamente a frequência do sinal de entrada até o limite do gerador (circuito A) e anote os valores correspondentes de ganho. Explique o comportamento do ganho em função da frequência. Use uma entrada com pequena amplitude, para que não ocorra influência significativa do *slew-rate*.

4. Relatório

Em seu relatório, não se esqueça de comparar as respostas do amplificador operacional obtidas experimentalmente com aquelas esperadas segundo seus cálculos teóricos. Discuta e justifique eventuais discrepâncias observadas.

Discuta a respeito das limitações dos amplificadores operacionais e seus efeitos ao usá-los em alguma **aplicação real**. Compare os valores obtidos experimentalmente com os valores disponibilizados pelo fabricante do componente.

Além disso, compare os resultados experimentais com os valores teóricos para o ganho de tensão de cada circuito e de cada configuração mostrada na Tabela 1.

Comente a respeito da maior taxa de variação da tensão por unidade de tempo $(\delta V(t)/dt)$ na saída do circuito A (item 3.2 a).

Discuta a respeito dos fatores que limitam, na prática, a excursão da tensão de saída (item 3.2 b).

Por fim, explique o comportamento do ganho em função da frequência (item 3.3).

2/4

119148 – Prática de Circuitos Eletrônicos 1 – Folha de Dados

Turma:	Data:/
Aluno:	Matrícula:

Experimento 09: Circuitos com Amplificador Operacional

Resistores usados:

$$R_1 = \underline{\qquad} \pm \underline{\qquad} [\Omega] \qquad R_2 = \underline{\qquad} \pm \underline{\qquad} [\Omega]$$

$$R_3 = \underline{\qquad} \pm \underline{\qquad} [\Omega] \qquad R_4 = \underline{\qquad} \pm \underline{\qquad} [\Omega]$$

Procedimento 3.1: Caracterização - Tabela 1

Tabela 1 – Avaliação das características de circuitos com amplificador operacional.

Circuito	Configuração das Entradas Senoide $com f = $ Hz	Saída V _{Opp}	Ganho Experimenltal.	Ganho Teórico	Ganho % de Erro	
A	$V_1 = 0.5V_{pp}$					
	$V_1 = V_2 = V_3 = 0,5V_{pp}$					
В	V1 = V2 = 0.5Vpp e V3 = 0Vpp					
	$V_1 = 0.5V_{pp} \text{ e } V_2 = V_3 = 0V_{pp}$					
С	V1 = V2 = 0,5Vpp					
	$V_1 = 0.5V_{pp} \text{ e } V_2 = 0V_{pp}$			_		
	V1 = 0Vpp e V2 = 0.5Vpp					

Procedimento	3.2 a): Slew-rate
--------------	-------	--------------

Entrada: Onda quadrada com amplitude V= ______ V_{pp} e f= _____ Hz

$$\frac{\delta V(t)}{dt} = \frac{V}{\mu s} = V/\mu s$$

Procedimento 3.2 b): Saturação

$$V_o(t)_{m\acute{a}x} = V_{pp}$$
 $V_o(t)_{m\acute{i}n} = V_{pp}$

Procedimento 3.3): Resposta em frequência - Tabela 2

Tabela 2 – Resposta em frequência do amplificador operacional.

Senoide com	Saída	Ganho
$V_1(t) = V_{pp}$	$V_{o_{pp}}$	Experimental
$10\mathrm{Hz}$		
100 Hz		
500 Hz		
1 kHz		
$10\mathrm{kHz}$		
$20\mathrm{kHz}$		
$30\mathrm{kHz}$		
$40\mathrm{kHz}$		
$50\mathrm{kHz}$		
$75\mathrm{kHz}$		
$100\mathrm{kHz}$		
$500\mathrm{kHz}$		
$1\mathrm{MHz}$		
$5\mathrm{MHz}$		
$10\mathrm{MHz}$		
20 MHz		