Linear Discrimination

Machine Learning Chapter 18: Regression & Classification

18.6 REGRESSION AND CLASSIFICATION WITH LINEAR MODELS

n decision trees and lists to a different hypothesis space, one of years: the class of **linear functions** of continuous-valued

 $\mathbf{w} \leftarrow \text{any point in the parameter space}$ \mathbf{loop} until convergence \mathbf{do} $\mathbf{for \ each} \ w_i \ \mathbf{in \ w \ do}$

$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$$

Chapter 18.6

- 18.6.1 Linear Regression with 1 input and 1 output
- 18.6.2 Linear Regression with multiple inputs and 1 output
- 18.6.3 Linear Classifiers
- 18.6.4 Logistic Regression

Likelihood- vs. Discriminant-based Classification

Likelihood-based: Assume a model for $p(x | C_i)$, use Bayes' rule to calculate $P(C_i | x)$

$$g_i(\mathbf{x}) = \log P(C_i | \mathbf{x})$$

- Discriminant-based: Assume a model for $g_i(\mathbf{x} \mid \Phi_i)$; no density estimation
- Estimating the boundaries is enough; no need to accurately estimate the densities inside the boundaries

Linear Discriminant

□ Linear discriminant:

$$g_i(\mathbf{x} \mid \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0} = \sum_{j=1}^d \mathbf{w}_{ij} \mathbf{x}_j + \mathbf{w}_{i0}$$

- Advantages:
 - Simple: O(d) space/computation
 - Knowledge extraction: Weighted sum of attributes; positive/negative weights, magnitudes (credit scoring)
 - Optimal when $p(x \mid C_i)$ are Gaussian with shared cov matrix; useful when classes are (almost) linearly separable

Linear Models

- Linear Regression
- Logistic Regression
- Perceptron
 - Neural Model

- Leads to Multi-Layer Models
 - Neural Nets
 - Deep Learning

Linear Models

- Regression
- Classification

$$g_i(\mathbf{x} \mid \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0} = \sum_{j=1}^a \mathbf{w}_{ij} \mathbf{x}_j + \mathbf{w}_{i0}$$

Linear Models - Historically

Gauss and Method of Least Squares (1795)

- Carl Friedrich Gauss (1777–1855)
- Uses this method to calculate the orbits of celestial bodies

Evaluate Hypothesis $h_w(x)$

 Define Empirical Loss measured by squared loss function summed over all examples:

$$\sum_{1}^{N} (y_j - h_w(x_j))^2$$

Example (3, 4) w/ Noise

- (1, 5.75)
- (2, 15.51)
- (3, 17.32)
- (4, 19.99)
- (5, 19.56)
- (6, 23.56)
- (7, 26.58)
- (8, 38.66)
- (9, 40.01)
- (10, 45.08)

```
1 Noise = lambda eps: np.random.random()*eps - (eps/2)
[20]
      2 F = lambda x: 3 + 4*x
      3 X = list(range(1, 11))
      4 print (X)
      6 Y = [round(F(x) + Noise(10), 2) for x in X]
      8 print (Y)
     10 ### Add a little noise
     11 plt.plot(X,Y,'.')
     12 Hxs = [F(x) \text{ for } x \text{ in } X]
     13
     14 plt.plot(X, Y, '.')
     15 plt.plot(X, Hxs, '-', color="green")
     16 plt.show()
     [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
     [5.75, 15.51, 17.32, 19.99, 19.56, 23.56, 26.58, 38.66, 40.01, 45.08]
      45
      40
      35
      30
      25
      20
      15
      10
```

Univariate Linear Regression

- ASSUME: $h_w(x) = w_1 x + w_0$
- Find the value of the weights that minimize empirical loss!
- Loss function becomes:

$$\sum_{1}^{N} (y_j - h_w(x_j))^2$$

$$\sum_{1}^{N} (y_j - (w_1 x_j + w_0))^2$$

• How do we find $w_0 \& w_1$

Introduce Calculus Loss Function Derivative w/ w_0 & w_1

$$\frac{\partial}{\partial w_0} \left(\sum_{1}^{N} (y_j - (w_1 x + w_0))^2 \right) = 0$$

$$\frac{\partial}{\partial w_1} \left(\sum_{1}^{N} (y_j - (w_1 x + w_0))^2 \right) = 0$$

- Minimize Loss
- Solve for First Derivative equaling 0

Least Squares Regression

$$w_1 = \frac{N(\sum x_j y_j) - (\sum x_j)(\sum y_j)}{N(\sum x_j^2) - (\sum x_j)^2}; \quad w_0 = (\sum y_j - w_1(\sum x_j))/N.$$
 (18.3)

- Minimizes loss function
- 18.13b (above) visualizes loss function
 - convex

$$\beta = \frac{cov(x, y)}{var(x)}$$

$$\operatorname{cov}(X,Y) = rac{1}{n} \sum_{i=1}^n (x_i - E(X))(y_i - E(Y)).$$

$$\alpha = \bar{y} - \beta \bar{x}$$

Simple Hypothesis

- 0,0
 - w0 = 0
 - w1 = 0

```
1 # Plot Hypothesis
      2 Hx = lambda w, x: w[0] + w[1]*x
      4 W = 0, 0
      6 \text{ Hxs} = [Hx(w,x) \text{ for } x \text{ in } X]
      7 print (Hxs)
      9 plt.plot(X, Y, '.')
    10 plt.plot(X, Hxs, '-', color="red")
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    [<matplotlib.lines.Line2D at 0x7f85f84ebb00>]
     40
     30
     20
     10
```

10

Least Squares Regression

```
1 cv = np.cov(X, Y, bias=True, rowvar=False)
2 w1 = round(cv[1][0]/cv[0][0],2)
3 w0 = round(np.mean(Y) - w1*np.mean(X),2)
4 print (w0, w1)
5
6 Hxs = [Hx((w0,w1), x) for x in X]
7
8 plt.plot(X, Y, '.')
9 plt.plot(X, Hxs, '-', color="red")
10
11 Hxs = [F(x) for x in X]
12
13 plt.plot(X, Y, '.')
14 plt.plot(X, Hxs, '-', color="green")
15
16 plt.show()
```


Another View: Vectorized

$$Y = X\beta$$

- We know X
- We know Y
- Solve for B.

Solution

$$\beta = (X^T X)^{-1} X^T Y$$

 # In[1]: from numpy.linalg import inv from numpy import dot, transpose

print(dot(inv(dot(transpose(X), X)), dot(transpose(X), R)))

```
1 ones = np.ones([len(X),1])
     2 Xv = np.append(ones, np.array(X).reshape(-1,1),1)
     3 print (Xv)
     4 a0 = np.dot(np.transpose(Xv),Xv)
     5 a1 = np.linalg.inv(a0)
     6 b = np.dot(np.transpose(Xv), Y)
     7 print ([round(v, 2) for v in np.dot(a1,b)])
[→ [[ 1. 1.]
   [ 1. 2.]
    [ 1. 3.]
    [ 1. 4.]
    [ 1. 5.]
    [ 1. 6.]
    [ 1. 7.]
    [ 1. 8.]
    [1. 9.]
    [ 1. 10.]]
    [3.34, 3.98]
```

Alternatively

 # In[1]: from numpy.linalg import lstsq

print(lstsq(X, R)[0])

```
1 print([round(v,2) for v in np.linalg.lstsq(Xv,Y,rcond=None)[0]])
```

[3.34, 3.98]

Gradient Descent

- Closed form difficult with additional variables
- Optimizing weights becomes a search problem
- Hill-Climbing w/ Gradient Descent works well!

Gradient Descent

- Choose arbitrary starting location in weight space
- Move to a neighboring point lower in weight space
- Continue to move to neighboring points lower in weight space till converging.

Gradient-Descent

□ $E(w \mid X)$ is error with parameters w on sample X $w^* = \arg \min_{w} E(w \mid X)$

Gradient

$$\nabla_{w} E = \left[\frac{\partial E}{\partial w_{1}}, \frac{\partial E}{\partial w_{2}}, \dots, \frac{\partial E}{\partial w_{d}} \right]^{T}$$

Gradient-descent:

Starts from random w and updates w iteratively in the negative direction of gradient

Gradient-Descent

Convex Function

 $h_{\theta}(x)$ (for fixed $\,\theta_0, \theta_1 \, {\rm this} \, {\rm is} \, {\rm a} \, {\rm function} \, {\rm of} \, {\rm x})$

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed $\,\theta_0, \theta_1\,$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$, this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

Gradient Descent

 $\mathbf{w} \leftarrow$ any point in the parameter space

loop until convergence do

for each w_i in w do

$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$$

(18.4)

Update Rule w/ Calculus

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))^2$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - (w_1 x + w_0)), \qquad (18.5)$$

$$\frac{\partial}{\partial w_0} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x)); \qquad \frac{\partial}{\partial w_1} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x)) \times x$$

Batch or Stochastic

Batch update:

- Use all examples to calculate delta update
- May not be possible/practical with huge number of data points

Stochastic update:

- Update weights with each example
- May not converge

Combination:

Use some sample size of data points to calculate delta update

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

Is this really leading to Machine Learning?????

Are we there yet?

More than 1 Input 1 Output

- Simple extension to Gradient Descent
 - Expand to higher dimensions

18.6.2: Multivariate Linear Regression

- $h_{sw}(x) = w_0 + w_1x_1 + w_2x_2 + \dots + w_ix_j$
 - Each example x is now a n-element vector

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
	•••	•••	•••	•••

18.6.2: Multivariate Linear Regression

- $h_{sw}(x_j) = w_0 + w_1 x_{j,1} + w_2 x_{j,2} + \dots + w_i x_{j,i}$
 - Each example x is now a n-element vector
- $h_{sw}(x_j) = \mathbf{w} \cdot x_j = \mathbf{w}^T x_j = \sum_i w_i x_{j,i}$
- Best weights are:
 - $-w^* = \underset{w}{\operatorname{argmin}} \sum_{j} L_2(y_j, \mathbf{w} \cdot x_j)$
 - Like before, Minimize square difference from actual output

Update Rule w/ Calculus

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))^2$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - (w_1 x + w_0)), \qquad (18.5)$$

$$\frac{\partial}{\partial w_0} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x)); \qquad \frac{\partial}{\partial w_1} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x)) \times x$$

Generalizes to Higher Dimensions

$$w_i \leftarrow w_i + \alpha \sum_j x_{j,i} (y_j - h_{\mathbf{w}}(\mathbf{x}_j)) . \tag{18.6}$$

Learning Rate = 0.1

- (x, y), H(x), y-H(x)
- (1, 5.75) 0 5.75
- (2, 15.51) 0 15.51
- (3, 17.32) 0 17.32
- (4, 19.99) 0 19.99
- (5, 19.56) 0 19.56
- (6, 23.56) 0 23.56
- (7, 26.58) 0 26.58
- (8, 38.66) 0 38.66
- (9, 40.01) 0 40.01
- (10, 45.08) 0 45.08
- Average (y-H(x)) = 25.2
- Average (y-H(x)) * 0.1 = 2.52

```
2 learningRate = 0.1
3 Hx = lambda w, x: w[0] + w[1]*x
4
5 w = 0, 0
6 count = 0
7 Hxs = [Hx(w,x) for x in X]
8 deltas = [y-h for y,h in zip(Y, Hxs)]
9 Error = sum([d**2 for d in deltas])
10 plt.plot(X, Y, '.')
11 plt.plot(X, Hxs, '-', color="green")
12 print ("Count = ", count)
13 print ("W = ", w)
14 print ("Initial Error= ", Error)
15
```


Learning Rate = 0.1

- (x, y), H(x), x*(y-H(x))
- (1, 5.75) 0 5.75
- (2, 15.51) 0 31.02
- (3, 17.32) 0 51.96
- (4, 19.99) 0 79.96
- (5, 19.56) 0 97.8
- (6, 23.56) 0 141.36
- (7, 26.58) 0 186.06
- (8, 38.66) 0 309.28
- (9, 40.01) 0 360.09
- (10, 45.08) 0 450.80
- Average (y-H(x))*x = 171.408
- Average (y-H(x))*x*0.1 = 17.1408

```
2 learningRate = 0.1
3 Hx = lambda w, x: w[0] + w[1]*x
4
5 w = 0, 0
6 count = 0
7 Hxs = [Hx(w,x) for x in X]
8 deltas = [y-h for y,h in zip(Y, Hxs)]
9 Error = sum([d**2 for d in deltas])
10 plt.plot(X, Y, '.')
11 plt.plot(X, Hxs, '-', color="green")
12 print ("Count = ", count)
13 print ("W = ", w)
14 print ("Initial Error= ", Error)
15
```


Learning Rate = 0.1 1 Update

• Error has gone from 7745 to 65644

5 Updates – Only Worse

Error now 355026474

Learning Rate = 0.03 1 Update

• Error 7745 to 349

Learning Rate = 0.03

- (x, y), H(x), y-H(x)
- (1, 5.75) 0 5.75
- (2, 15.51) 0 15.51
- (3, 17.32) 0 17.32
- (4, 19.99) 0 19.99
- (5, 19.56) 0 19.56
- (6, 23.56) 0 23.56
- (7, 26.58) 0 26.58
- (8, 38.66) 0 38.66
- (9, 40.01) 0 40.01
- (10, 45.08) 0 45.08
- Average (y-H(x)) = 25.2
- Average (y-H(x)) * 0.03 = 0.756

```
2 learningRate = 0.1
3 Hx = lambda w, x: w[0] + w[1]*x
4
5 w = 0, 0
6 count = 0
7 Hxs = [Hx(w,x) for x in X]
8 deltas = [y-h for y,h in zip(Y, Hxs)]
9 Error = sum([d**2 for d in deltas])
10 plt.plot(X, Y, '.')
11 plt.plot(X, Hxs, '-', color="green")
12 print ("Count = ", count)
13 print ("W = ", w)
14 print ("Initial Error= ", Error)
15
```


Learning Rate = 0.03

- (x, y), H(x), x*(y-H(x))
- (1, 5.75) 0 5.75
- (2, 15.51) 0 31.02
- (3, 17.32) 0 51.96
- (4, 19.99) 0 79.96
- (5, 19.56) 0 97.8
- (6, 23.56) 0 141.36
- (7, 26.58) 0 186.06
- (8, 38.66) 0 309.28
- (9, 40.01) 0 360.09
- (10, 45.08) 0 450.80
- Average (y-H(x))*x = 171.408
- Average (y-H(x))*x*0.03 = 5.14

```
2 learningRate = 0.1
3 Hx = lambda w, x: w[0] + w[1]*x
4
5 w = 0, 0
6 count = 0
7 Hxs = [Hx(w,x) for x in X]
8 deltas = [y-h for y,h in zip(Y, Hxs)]
9 Error = sum([d**2 for d in deltas])
10 plt.plot(X, Y, '.')
11 plt.plot(X, Hxs, '-', color="green")
12 print ("Count = ", count)
13 print ("W = ", w)
14 print ("Initial Error= ", Error)
15
```


After 1 Iteration

Now After 5 Iterations

```
0.017400984879974983 0.0028551961702123485
Count = 5
W = (0.711363251777475, 4.353401542310213)
Errors= 104.7282 104.5325 0.1957
 45
 40
 35
 30
 25
 20
 15
 10
 5
```

$$F(x) = 3 + 4x$$

x	F(x)
1	7
2	11
3	15
4	19
5	23

$$F(x) = 3 + 4x$$

x	F(x)	$h_{\boldsymbol{w}}(x)$
1	7	0
2	11	0
3	15	0
4	19	0
5	23	0

$$h_w(x) = w_0 + w_1 x$$
$$w_0 = 0$$
$$w_1 = 0$$

How good is this hypothesis?

$$F(x) = 3 + 4x$$

х	F(x)	$h_{\boldsymbol{w}}(x)$
1	7	4
2	11	6
3	15	8
4	19	10
5	23	12

$$h_w(x) = w_0 + w_1 x$$
$$w_0 = 2$$
$$w_1 = 2$$

How good is this hypothesis?

$$F(x) = 3 + 4x$$

х	F(x)	$h_{\mathbf{w}}(x)$	Error
1	7	4	$(7-4)^2=9$
2	11	6	$(11 - 6)^2 = 25$
3	15	8	$(15 - 8)^2 = 49$
4	19	10	$(19 - 10)^2 = 81$
5	23	12	$(23 - 12)^2 = 121$
	$\frac{1}{m}\sum_i$	$\left(F(x_i) - h_{\theta}(x_i)\right)^2 =$	285

$$h_{\theta}(x) = w_0 + w_1 x$$

$$w_0 = 2$$

$$w_1 = 2$$

How good is this hypothesis?

Learn Function:F(x) = 3 + 4x

х	F(x)	$h_w(x)$	Error	$\frac{\partial}{\partial Error} = x(F(x_i) - h_{\mathbf{w}}(x_i))$
1	7	4	$(7-4)^2=9$	1*(7-4) = 3
2	11	6	$(11 - 6)^2 = 25$	2*(11-6) = 10
3	15	8	$(15 - 8)^2 = 49$	3*(15-8) = 21
4	19	10	$(19 - 10)^2 = 81$	4*(19-10) = 36
5	23	12	$(23 - 12)^2 = 121$	5*(23-12) = 55
	$\frac{1}{m}\sum_{i}$	$(F(x_i) - h_i)$	$_{w}(x_{i})\big)^{2}=$	$\frac{1}{m} \sum_{i} x_i \big(F(x_i) - h_w(x_i) \big) =$

$$h_{\theta}(x) = w_0 + w_1 x$$

 $w_0 = 2$
 $w_1 = 2$
Adjust Hypothesis

Learn Function: F(x) = 3 + 4x

х	F(x)	$h_{w}(x)$	Error	$\frac{\partial}{\partial E rror} = x(F(x_i) - h_{\theta}(x_i))$
1	7	6	$(7-4)^2 = 9$	1*(7-4) = 3
2	10	8	$(11 - 6)^2 = 25$	2*(11-6) = 10
3	13	10	$(15 - 8)^2 = 49$	3*(15-8) = 21
4	16	12	$(19 - 10)^2 = 81$	4*(19-10) = 36
5	19	14	$(23 - 12)^2 = 121$	5*(23-12) = 55
	$\frac{1}{m}\sum_{i}$	$(F(x_i) - h_w)$	$(x_i)\big)^2 =$	$\frac{1}{m} \sum_{i} x_i \big(F(x_i) - h_w(x_i) \big) =$

$$h_w(x) = w_0 + w_1 x$$
$$w_0 = 2$$
$$w_1 = 2$$

Adjust Hypothesis w/ Gradient Descent

x_0	X	F(x)	$h_{\mathbf{w}}(x)$	Error	$\frac{\partial}{\partial J(\mathbf{w}_0)} = x(F(x_i) - h_{\mathbf{w}}(x_i))$	$\begin{vmatrix} \frac{\partial}{\partial J(\mathbf{w}_1)} = \\ x(h_{\mathbf{w}}(x) - \mathbf{F}(\mathbf{x})) \end{vmatrix}$	
1	1	7	6	$(7-4)^2=9$	1*(7-4) = 3	1*(7-4) = 3	
1	2	10	8	$(11-6)^2$ = 25	1*(11-6) = 10	2*(11-6) = 10	
1	3	13	10	$(15 - 8)^2$ = 49	1*(15-8) = 21	3*(15-8) = 21	
1	4	16	12	$(19 - 10)^2$ = 81	1*(19-10) = 36	4*(19-10) = 36	
1	5	19	14	$(23 - 12)^2$ = 121	1*(23-12) = 55	5*(23-12) = 55	
	$\frac{1}{m} \sum_{i} (F(x_i) - h_w(x_i))^2 \qquad \frac{1}{m} \sum_{i} 1 * (F(x_i) - h_w(x_i)) \qquad \frac{1}{m} \sum_{i} x_i (F(x_i) - h_w(x_i))$ = 7						
	$h_{\theta}(x) = w_0 + w_1 x$ $w_0 = 2$ $w_1 = 2$						
	Adjust Hypothesis w/ Gradient Descent						

Learning Rate = 1

- $w_0 = 2 + 7 = 9$
- $w_1 = 2 + 25 = 27$
- New Error=33415.0

Learning Rate = 0.1

•
$$w_0 = 2 + 0.7 = 2.7$$

- $w_1 = 2 + 2.5 = 4.5$
- New Error=9.7

Learning Rate = 0.03

- $w_0 = 2 + 0.21 = 2.21$
- $w_1 = 2 + 0.75 = 2.75$
- New Error=118.68

Gradient Descent w/ Feature Scaling

- With Multiple features, scale matters!
- Performance improvement by adjusting features to equal scale.

Mean Normalization

	x_1	Mean Normalized x_1
89		(89-81) = 8
72		(72-81) = -9
94		(94-81) = 13
69		(69-81) = -12
	Total = 324	Total = 0

$$\mu = \frac{324}{4} = 81$$

$$Mean Normalized x_1$$

$$= x_1 - \mu$$

Feature Scaling

x_1	Feature Scaled x_1
89	89/25=3.56
72	72/25=2.88
94	94/25=3.76
69	69/25=2.76
$Max(x_1) - Min(x_1) = 94 - 69 = 25$	

$$Max(x_1) - Min(x_1) = (94 - 69) = 25$$

Feature Scaled
$$x_1 = \frac{x_1}{Max(x_1) - Min(x_1)}$$

Feature Scaled/Mean Normalization

	x_1	Mean Normalized x_1	Feature Scaled/ Mean Normalized x_1
89		(89-81) = 8	8/25=0.32
72		(72-81) = -9	-9/25=-0.36
94		(94-81) = 13	13/25=0.52
69		(69-81) = -12	-12/25=-0.48
	Total = 324	Total = 0	

$$\mu = \frac{324}{4} = 81$$

Mean Normalized
$$x_1 = x_1 - \mu$$

 $Max(x_1) - Min(x_1) = (13 - (-12)) = 25$

Update Rule w/ Calculus

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))^2$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - (w_1 x + w_0)), \qquad (18.5)$$

$$\frac{\partial}{\partial w_0} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x)); \qquad \frac{\partial}{\partial w_1} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x)) \times x$$

Generalizes to Higher Dimensions

$$w_i \leftarrow w_i + \alpha \sum_j x_{j,i} (y_j - h_{\mathbf{w}}(\mathbf{x}_j)) . \tag{18.6}$$

Linear Regression & Overfitting!

We can minimize squared error:

$$-w^* = (X^T X)^{-1} X^T y$$

- Now possibly overfitting in some dimensions
- Regularization: Common approach to overfitting problem
 - Penalize complexity in Cost Function!

Linear Regression & Regularization

- Cost(Hypothesis) = Sum of :
 - + EmpiricalLoss(Hypothesis)
 - + λ *Complexity(Hypothesis)
- Complexity(Hypothesis) =
 - $-L_q(w) = \sum_i |w_i|^q$
 - Sum out the weights!
 - Prefer smaller weights

L₁ versus L₂

L₁ Regularization

Produces Sparse Model

L₂ Regularization

Is this leading to Machine Learning??

- Supervised Learning Classification
 - Set of Examples
 - Predict Class with new examples
- Can Linear Regression Help?????
- How can we Modify Linear Regression to help with Classification?????

18.6.3 Linear Classifiers w/ Hard Threshold

Decision Boundary:
$$-4.9 + 1.7x_1 - x_2$$

- Here we have seismic data
- Need to determine: Earthquake or Explosion
- Decision Boundary is line (or surface in higher dimensions)
- Decision Boundary separates two classes

18.6.3 Linear Classifiers w/ Hard Threshold

• Decision Boundary:

$$-4.9 + 1.7x_1 - x_2 = 0$$

Explosions:

$$-4.9 + 1.7x_1 - x_2 > 0$$

Earthquakes:

$$-4.9 + 1.7x_1 - x_2 < 0$$

Threshold Function

- $h_w(\mathbf{x}) = Threshold(\mathbf{w} \cdot \mathbf{x})$
 - Threshold(z) = 1, if $(z \ge 0)$ else 0

- Now we need to learn these weights!
- Unfortunately, the gradient does not have the nice properties from Linear Regression!
- Fortunately, a simple rule works!

Perceptron Learning Rule

$$w_i \leftarrow w_i + \alpha \left(y - h_{\mathbf{w}}(\mathbf{x}) \right) \times x_i \tag{18.7}$$

Now detour to Perceptrons!

The perceptron convergence procedure: Training binary output neurons as classifiers

- Add an extra component with value 1 to each input vector.
 - The "bias" weight on this component is minus the threshold.
 - Now we can forget the threshold.
- Pick training cases using any policy that ensures all get picked
 - If the output unit is correct, leave its weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a 1, subtract the input vector from the weight vector.
- Guaranteed to find weights getting right answer for all the training cases if any such set exists.

$$w_i \leftarrow w_i + \alpha \left(y - h_{\mathbf{w}}(\mathbf{x}) \right) \times x_i \tag{18.7}$$

Learn Some Perceptrons

Α	В	A or B
0	0	0
1	0	1
0	1	1
1	1	1

Learn The Weights

$$w0 + w_1 * A + w_2 * B \ge 0$$
, True $w0 + w_1 * A + w_2 * B < 0$, False

Question 18.6

18.6 Consider the following data set comprised of three binary input attributes $(A_1, A_2, \text{ and } A_3)$ and one binary output:

Example	A_1	A_2	A_3	Output y
x ₁	1	0	0	0
\mathbf{x}_2	1	0	1	0
X 3	0	1	0	0
\mathbf{x}_4	1	1	1	1
\mathbf{x}_5	1	1	0	1

Use the algorithm in Figure 18.5 (page 702) to learn a decision tree for these data. Show the computations made to determine the attribute to split at each node.

How about Perceptron?

18.6.4: Improving Threshold

- Hard Threshold had issues
 - Gradient not well behaved
- Introduce a Soft Threshold
- Logistic Function:

$$Logistic(z) = \frac{1}{1 + e^{-z}}$$

Logistic Function w/ Calculus

Derivative of the Logistic Function

$$g(z) = Logistic(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Logistic Regression

$$h_w(x) =$$

$$Logistic(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

- View as the probability of Class = 1
- If $h_w(x) \ge 0.5$,
 - predict 1,
 - else Predict 0

Gradient w/ Logistic Regression Russell & Norvig 18.6

$$\begin{split} \frac{\partial}{\partial w_i} Loss(\mathbf{w}) &= \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(\mathbf{x}))^2 \\ &= 2(y - h_{\mathbf{w}}(\mathbf{x})) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(\mathbf{x})) \\ &= -2(y - h_{\mathbf{w}}(\mathbf{x})) \times g'(\mathbf{w} \cdot \mathbf{x}) \times \frac{\partial}{\partial w_i} \mathbf{w} \cdot \mathbf{x} \\ &= -2(y - h_{\mathbf{w}}(\mathbf{x})) \times g'(\mathbf{w} \cdot \mathbf{x}) \times x_i \; . \end{split}$$

$$w_i \leftarrow w_i + \alpha \left(y - h_{\mathbf{w}}(\mathbf{x}) \right) \times h_{\mathbf{w}}(\mathbf{x}) \left(1 - h_{\mathbf{w}}(\mathbf{x}) \right) \times x_i . \tag{18.8}$$

Another Option

Instead of Squared Error use Cross-Entropy

Sigmoid (Logistic) Function

Calculate $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ and choose C_1 if $g(\mathbf{x}) > 0$, or Calculate $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + w_0)$ and choose C_1 if y > 0.5

Logistic Discrimination

Two classes: Assume log likelihood ratio is linear

$$\log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} = \mathbf{w}^T \mathbf{x} + w_0^o$$

$$\log \operatorname{it}(P(C_1 \mid \mathbf{x})) = \log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} + \log \frac{P(C_1)}{P(C_2)}$$

$$= \mathbf{w}^T \mathbf{x} + w_0$$
where $w_0 = w_0^o + \log \frac{P(C_1)}{P(C_2)}$

$$y = \hat{P}(C_1 \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + w_0)]}$$

Training: Two Classes

$$\mathcal{X} = \{\mathbf{x}^{t}, r^{t}\}_{t} \quad r^{t} \mid \mathbf{x}^{t} \sim \text{Bernoulli}(y^{t})$$

$$y = P(C_{1} \mid \mathbf{x}) = \frac{1}{1 + \exp\left[-\left(\mathbf{w}^{T}\mathbf{x} + \mathbf{w}_{0}\right)\right]}$$

$$I(\mathbf{w}, \mathbf{w}_{0} \mid \mathcal{X}) = \prod_{t} \left(y^{t}\right)^{(r^{t})} \left(1 - y^{t}\right)^{(1 - r^{t})}$$

$$E = -\log I$$

$$E(\mathbf{w}, \mathbf{w}_{0} \mid \mathcal{X}) = -\sum_{t} r^{t} \log y^{t} + \left(1 - r^{t}\right) \log \left(1 - y^{t}\right)$$

Cross-Entropy

Training: Gradient-Descent

$$E(\mathbf{w}, \mathbf{w}_0 \mid \mathcal{X}) = -\sum_{t} r^t \log y^t + (1 - r^t) \log (1 - y^t)$$
If $y = \text{sigmoid}(a)$ $\frac{dy}{da} = y(1 - y)$

$$\Delta \mathbf{w}_j = -\eta \frac{\partial E}{\partial \mathbf{w}_j} = \eta \sum_{t} \left(\frac{r^t}{y^t} - \frac{1 - r^t}{1 - y^t} \right) y^t (1 - y^t) x_j^t$$

$$= \eta \sum_{t} (r^t - y^t) x_j^t, j = 1, ..., d$$

$$\Delta \mathbf{w}_0 = -\eta \frac{\partial E}{\partial \mathbf{w}_0} = \eta \sum_{t} (r^t - y^t)$$
 Derivative Simpler

For
$$j=0,\ldots,d$$
 $w_j \leftarrow \operatorname{rand}(-0.01,0.01)$ Repeat For $j=0,\ldots,d$ $\Delta w_j \leftarrow 0$ For $t=1,\ldots,N$
$$\begin{array}{c} o \leftarrow 0 \\ \text{For } j=0,\ldots,d \\ o \leftarrow 0 \\ \text{For } j=0,\ldots,d \\ o \leftarrow o+w_jx_j^t \\ y \leftarrow \operatorname{sigmoid}(o) \\ \Delta w_j \leftarrow \Delta w_j + (r^t-y)x_j^t \\ \end{array}$$
 For $j=0,\ldots,d$ $w_j \leftarrow w_j + \eta \Delta w_j$ Until convergence

Logistic Regression Example

Learning Rate = 1.0

```
(x), y, H(x), y-H(x)
  (18, 8) 1.0 1.0 0.0
  (-6, -13) 0.0 0.999 -0.999
  (0, 18) 1.0 1.0 0.0
  (-2, 2) 1.0 1.0 0.0
  (-10, -10) 0.0 1.0 -1.0
  (3, 15) 1.0 1.0 0.0
  (19, 3) 1.0 1.0 0.0
  (-18, 1) 0.0 1.0 -1.0
 (-19, 3) 0.0 1.0 -1.0
(9, 17) 1.0 1.0 0.0
  Average (y-H(x)) = -0.4
```

```
[130]
 ₽
       15
       10
        5 ·
       -5
      -10
      -15
      -20
          -20
               -15
                    -10
     Count = 0
     W = (20, 0, 1)
     Initial Error= 4.0
[126] 1 for x, y in zip(X,Y):
      2 print (x, y, round(Hgx(w,x),3), round(y-Hgx(w,x), 3))
 (-6, -13) 0.0 0.999 -0.999
     (0, 18) 1.0 1.0 0.0
     (-2, 2) 1.0 1.0 0.0
     (-10, -10) 0.0 1.0 -1.0
     (3, 15) 1.0 1.0 0.0
     (19, 3) 1.0 1.0 0.0
     (-18, 1) 0.0 1.0 -1.0
     (-19, 3) 0.0 1.0 -1.0
     (9, 17) 1.0 1.0 0.0
```

Learning Rate = 1.0

```
\Box (x), y, H(x), x1*(y-H(x))
(18, 8) 1.0 1.0 0.0
(-6, -13)0.00.9995.995
(0, 18) 1.0 1.0 0.0
(-2, 2) 1.0 1.0 -0.0
(-10, -10) 0.0 1.0 10.0
(3, 15) 1.0 1.0 0.0
 (19, 3) 1.0 1.0 0.0
(-18, 1) 0.0 1.0 18.0
(-19, 3) 0.0 1.0 19.0
(9, 17) 1.0 1.0 0.0
  Average (y-H(x))^*x1 = 5.3
```

Learning Rate = 1.0

 \Box (x), y, H(x), x2*(y-H(x)) (18, 8) 1.0 1.0 0.0 (-6, -13)0.00.99912.988 (0, 18) 1.0 1.0 0.0 (-2, 2) 1.0 1.0 0.0 (-10, -10) 0.0 1.0 10.0 (3, 15) 1.0 1.0 0.0 (19, 3) 1.0 1.0 0.0 (-18, 1) 0.0 1.0 -1.0 (-19, 3) 0.0 1.0 -3.0 (9, 17) 1.0 1.0 0.0 Average $(y-H(x))^*x^2 = 1.9$

New Weights

```
-0.4 5.3 1.9

Count = 1

W = (19.600095645030624, 5.2994079699952525, 2.8987702357723175)

Errors= 3.9981 0.0 3.9981
```

