Lemma 4.1.6

Clexma

February 26, 2019

Lemma 1 (4.1.6) A flow f is a s-t path flow iff f satisfies the following conditions:

- If s = t then
 - 1. $\Sigma_{w \in out(v)} f(v, w) = \Sigma_{w \in in(v)} f(w, v)$ for all v
 - 2. F(f) is a s-t support
- If $s \neq t$ then
 - 1. $\Sigma_{w \in out(v)} f(v, w) = \Sigma_{w \in out(v)} f(w, v) \text{ for all } v \in V \{s, t\}$ $\Sigma_{w \in out(s)} f(s, w) = \Sigma_{w \in out(s)} f(w, s) + 1$ $\Sigma_{w \in out(t)} = \Sigma_{w \in out(t)} f(w, t) 1$
 - 2. F(f) is connected.

Proof 0.1 Prove by induction on $n = \sum_{e \in E} f(e)$

- \Rightarrow : By definition direction of path flow the proof is obvious.
- =:
 - 1. s = t, F(f) is connected, we have the conclusion that f is a s-t path flow.
 - case 1: there is a self loop from s to s.
 - case 2: there is no self loop from s to s. In this case we delete an edge from v to s such that $v \neq s$.
 - * subcase 2.1 the resulting graph is still connected let the new flow be f'. By the induction hypothesis f' is a path flow from s to v.
 - * subcase 2.2 the resulting graph is not connected, in this case , there are exactly two connected components such in the resulting graph, we call them C_1 and C_2 and assume they contain s and v respectively.
 - · sub-subcase 2.2.1: C_2 contains no edges.
 - · sub-subcase 2.2.2: C_1 and C_2 both contain at least one edge.