

TECHNISCHE UNIVERSITÄT MÜNCHEN

Zentrum Mathematik

Prof. Dr. Eric Sonnendrücker, Dr. Stefan Possanner

Computational Plasma Physics, SS 2018

http://www-m16.ma.tum.de/Allgemeines/CompPlasmaPhys18

Exercise sheet 1 (April 9, 2018)

1D Poisson solver with finite differences

The aim is to numerically solve the Poisson equation

$$-\phi''(x) = \rho(x), \qquad x \in (a,b) \subset \mathbb{R}, \tag{1}$$

for given ρ , continuous on the interval (a,b), and suitable boundary conditions. We use finite differences to approximate the equation. The domain [a,b] (for generality with boundary points) is divided into N equally large cells, yielding N+1 grid points $x_i \in [a,b]$, $i=0,\ldots,N$, on which the discrete solution is defined.

1. Dirichlet boundary conditions. The values of ϕ are given at the boundary:

$$\phi(a) = \alpha, \qquad \phi(b) = \beta.$$
 (2)

- (a) Show that the problem (1),(2) has a unique solution. (Hint: suppose ϕ and ψ are both solutions of (1), then formulate the Laplace equation for $\eta := \phi \psi$ (with boundary conditions). Multiply this equation by η and integrate over [a, b]).
- (b) Write a finite difference solver for (1),(2) for arbitrary a, b, α, β, N and ρ by approximating the Laplacian at the grid points i = 1, ..., N-1 via

$$\phi''(x_i) \approx \frac{1}{h^2} \left(\phi_{i+1} - 2\phi_i + \phi_{i-1} \right),$$
 (3)

where $\phi_i = \phi(x_i)$ and h is the cell size (grid spacing). For given N, check the eigenvalues of the system matrix using the MATLAB command eig.

- (c) Set a=0, $b=2\pi$, $\rho(x)=2\sin(x)+x\cos(x)$, $\alpha=0$, $\beta=2\pi$ and solve (1),(2) for N=8,16,32,64,128,256. In each run, compute and save the errors with respect to the true solution $\phi(x)=x\cos(x)$ in the L^1 -, the L^2 and the L^∞ -norm. Plot the numerical solution along with the true solution using the command plot.
- (d) Convergence tests: once you completed all the runs, plot the errors as a function of h. Does the solution converge as $h \to 0$? If so, at the expected rate? Can you compute the expected convergence rate from (3)? (Hint: insert Taylor expansion).
- 2. Mixed boundary conditions. The derivative of ϕ is now given at x = b:

$$\phi(a) = \alpha, \qquad \phi'(b) = \gamma.$$
 (4)

There are now N unknowns to be determined, since $\phi(b)$ is not given. Does the problem (1),(4) have a unique solution (see 1.a)?

- (a) Approximate the derivative at the boundary via $(\phi_{N+1} \phi_{N-1})/(2h) = \gamma$ and implement a finite difference solver for (1),(4). Check the eigenvalues of the system matrix. Launch your solver with the same parameters as in 1.c (except for the β -value) and with $\gamma = 1$. Perform convergence tests as in 1.d and plot the results.
- (b) Approximate the derivative at the boundary via $(\phi_{N+1} \phi_N)/h = \gamma$ and repeat the same tasks as in 2.a. Is there a difference in the convergence rate? If so, explain why.
- 3. **Periodic boundary conditions.** The solution is now defined on \mathbb{R} , assumed in C^{∞} and periodic with period L = b a:

$$\phi(x+L) = \phi(x), \quad \forall x \in \mathbb{R}.$$
 (5)

It is sufficient to compute the solution in [a,b) to know it on whole \mathbb{R} . There are now N unknowns to be determined, since $\phi(b) = \phi(a)$ and thus only one boundary point has to be computed.

- (a) Is there a solvability condition on ρ ? Does the problem (1),(5) have a unique solution (see 1.a)?
- (b) Discretize the problem (1), (5) assuming $\phi_N = \phi_0$ and $\phi_{-1} = \phi_{N-1}$. Check the eigenvalues of the system matrix A. Is it invertible?
- (c) Render the problem well-posed by imposing $\phi(0) = 0$, which leads to a modified system matrix A'. Check the eigenvalues of A'.
- (d) Set $a=0, b=2\pi$ and $\rho=4\sin(2x)$, launch your solver for different values of N and perform the usual convergence tests. The true solution is obviously $\phi(x)=\sin(2x)$. Plot the results.