Árvores Binárias Estrutura de Dados Avançada — QXD0015

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 1° semestre/2024

Representando uma hierarquia

- Vetores, listas, filas e pilhas são estruturas lineares.
 - A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Representando uma hierarquia

- Vetores, listas, filas e pilhas são estruturas lineares.
 - A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Figura: Hierarquia simplificada do sistema de arquivos de um PC

Representando uma hierarquia

- Vetores, listas, filas e pilhas são estruturas lineares.
 - A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Figura: Hierarquia simplificada do sistema de arquivos de um PC

 As árvores são estruturas de dados mais adequadas para representar hierarquias.

Árvore — Definição Recursiva

Uma árvore T é um conjunto finito de elementos denominados nós, tais que:

Árvore — Definição Recursiva

Uma árvore T é um conjunto finito de elementos denominados nós, tais que:

(a) $T = \emptyset$, e a árvore é dita vazia; ou

Árvore — Definição Recursiva

Uma árvore T é um conjunto finito de elementos denominados nós, tais que:

- (a) $T = \emptyset$, e a árvore é dita vazia; ou
- (b) $T \neq \emptyset$ e ela possui um nó especial r, chamado raiz de T; os nós restantes constituem um único conjunto vazio ou são divididos em $m \geq 1$ conjuntos disjuntos não vazios, as subárvores de r, cada qual por sua vez um árvore.

Diagrama de inclusão

Árvore — Outras Representações

Representação hierárquica

В -			
_			
C			
	D	_	
		G	
		Н	
	Ε	_	
	_		
	F		
		,	

Diagrama de barras

Α

Representação por parênteses aninhados

Uma sequência de nós distintos v_1, v_2, \ldots, v_k , tal que existe sempre entre nós consecutivos a relação "é filho de" ou "é pai de", é denominada um caminho na árvore.

Definições — Profundidade, Nível e Altura

Definições — Profundidade, Nível e Altura

Profundidade de um nó v: Número de nós no caminho de v até a raiz. Dizemos que todos os nós com profundidade i estão no nível i.

Definições — Profundidade, Nível e Altura

Profundidade de um nó v: Número de nós no caminho de v até a raiz. Dizemos que todos os nós com profundidade i estão no nível i.

Altura h de um nó v: Número de nós no maior caminho de v até uma folha descendente.

Árvore Binária — Definição Recursiva

- Uma árvore binária T é um conjunto finito de elementos denominados nós, tal que:
 - o $T = \emptyset$ e a árvore é dita vazia; ou
 - o $T \neq \emptyset$ e existe um nó especial r, chamado raiz de T, e os restantes podem ser divididos em dois subconjuntos disjuntos, T_r^E e T_r^D , a subárvore esquerda e a subárvore direita de r, respectivamente, as quais são também árvores binárias.

• Árvore estritamente binária: todo nó possui 0 ou 2 filhos.

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.

binária completa

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.

binária completa

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.

• Árvore binária cheia: todos os seus nós internos têm dois filhos e todas as folhas estão no último nível da árvore.

Teorema 1 (Jayme e Lilian)

Seja T uma árvore binária completa com n>0 nós. Então T possui altura mínima.

Teorema 1 (Jayme e Lilian)

Seja T uma árvore binária completa com n>0 nós. Então T possui altura mínima.

Prova: Seja T é uma árvore binária completa com n nós, e seja T' uma árvore binária de altura mínima com n nós.

Teorema 1 (Jayme e Lilian)

Seja T uma árvore binária completa com n>0 nós. Então T possui altura mínima.

Prova: Seja T é uma árvore binária completa com n nós, e seja T' uma árvore binária de altura mínima com n nós.

Teorema 1 (Jayme e Lilian)

Seja T uma árvore binária completa com n>0 nós. Então T possui altura mínima.

Prova: Seja T é uma árvore binária completa com n nós, e seja T' uma árvore binária de altura mínima com n nós.

Caso 1: Se T' é também completa, então T e T' possuem a mesma altura, o que implica que T possui altura mínima.

 $\textbf{Caso 2:} \ \, \text{Se} \, T' \, \, \text{n\'ao} \, \, \text{\'e} \, \, \text{completa, efetua-se a seguinte operação: retirar uma folha} \, w \, \, \text{de seu \'ultimo n\'evel e tornar} \, w \, \, \text{o} \, \, \text{filho de algum n\'o} \, v \, \, \text{que possui alguma de suas sub\'arvores vazias, localizado em algum n\'evel acima do penúltimo.}$

Teorema 1 (Jayme e Lilian)

Seja T uma árvore binária completa com n>0 nós. Então T possui altura mínima.

Prova: Seja T é uma árvore binária completa com n nós, e seja T' uma árvore binária de altura mínima com n nós.

Caso 1: Se T' é também completa, então T e T' possuem a mesma altura, o que implica que T possui altura mínima.

 $\textbf{Caso 2:} \ \, \text{Se T' n\~{a}o$ \'e completa, efetua-se a seguinte operaç\~{a}o: retirar uma folha w de seu \'ultimo n\'evel e tornar w o filho de algum n\'o v que possui alguma de suas sub\'arvores vazias, localizado em algum n\'evel acima do penúltimo. }$

Repete-se a operação até que não seja mais possível realizá-la, isto é, até que a árvore $T^{\prime\prime}$, resultante da transformação, seja completa.

Continuação da prova do Teorema 1:

 $T^{\prime\prime}$ não pode ter altura inferior a T^{\prime} , pois T^{\prime} é mínima.

Continuação da prova do Teorema 1:

 $T^{\prime\prime}$ não pode ter altura inferior a T^{\prime} , pois T^{\prime} é mínima.

T'' não pode ter altura superior a T', pois nenhum nó foi movido para baixo.

Continuação da prova do Teorema 1:

 $T^{\prime\prime}$ não pode ter altura inferior a T^{\prime} , pois T^{\prime} é mínima.

 $T^{\prime\prime}$ não pode ter altura superior a T^{\prime} , pois nenhum nó foi movido para baixo.

Então as alturas de T^{\prime} e $T^{\prime\prime}$ são iguais. Ou seja, $T^{\prime\prime}$ tem altura mínima.

Continuação da prova do Teorema 1:

 $T^{\prime\prime}$ não pode ter altura inferior a T^{\prime} , pois T^{\prime} é mínima.

 $T^{\prime\prime}$ não pode ter altura superior a T^\prime , pois nenhum nó foi movido para baixo.

Então as alturas de T^\prime e $T^{\prime\prime}$ são iguais. Ou seja, $T^{\prime\prime}$ tem altura mínima.

Como T'' é completa, conclui-se que as alturas de T e T'' também coincidem. Isto é, T possui altura mínima.

Número mínimo e máximo de nós

Teorema 2

Dada uma árvore binária completa com altura h, seu número mínimo de nós é 2^{h-1} e seu número máximo de nós é 2^h-1 .

Exercício: Provar este teorema. Dica: note que, numa árvore binária completa com altura h, os nós nos primeiros h-1 níveis formam uma árvore cheia e no último nível há k nós adicionais, tal que $1 \le k \le 2^{h-1}$.

Teorema 3

Se T é uma árvore binária completa com n>0 nós, então T possui altura $h=|\lg n|+1.$

Teorema 3

Se T é uma árvore binária completa com n>0 nós, então T possui altura $h=\lfloor \lg n\rfloor +1.$

Prova: Seja T uma árvore binária completa com n>0 nós. Pelo Teorema 2, temos que:

$$2^{h-1} \le n \le 2^h - 1$$
$$2^{h-1} \le n < 2^h$$
$$\lg 2^{h-1} \le \lg n < \lg 2^h$$
$$h - 1 \le \lg n < h$$

Isso implica que $\lfloor \lg n \rfloor = h-1$, o que nos dá $h = \lfloor \lg n \rfloor + 1$.

Seja T uma árvore com altura h qualquer fixa.

• Pergunta: Quantos nós T tem no mínimo (em função de h)?

Seja T uma árvore com altura h qualquer fixa.

- Pergunta: Quantos nós T tem no mínimo (em função de h)?
 - \circ Resposta: T tem no mínimo h nós. Neste caso, ela T é uma árvore caminho.

Seja T uma árvore com altura h qualquer fixa.

- Pergunta: Quantos nós T tem no mínimo (em função de h)?
 - o Resposta: T tem no mínimo h nós. Neste caso, ela T é uma árvore caminho.
- Pergunta: Quantos nós T tem no máximo (em função de h)?

Seja T uma árvore com altura h qualquer fixa.

- Pergunta: Quantos nós T tem no mínimo (em função de h)?
 - o Resposta: T tem no mínimo h nós. Neste caso, ela T é uma árvore caminho.
- Pergunta: Quantos nós T tem no máximo (em função de h)?
 - $\circ \ \, {\bf Resposta:} \ \, T \ \, {\bf tem} \ \, {\bf no} \ \, {\bf maximo} \ \, 2^h-1 \ \, {\bf nós}. \\ \, {\bf Neste} \ \, {\bf caso}, \ \, T \ \, {\bf \acute{e}} \ \, {\bf uma} \ \, {\bf \acute{a}rvore} \ \, {\bf cheia}. \\ \, \,$

Seja T uma árvore com número n de nós fixo.

• Pergunta: Qual a altura máxima de T (em função de n)?

Seja T uma árvore com número n de nós fixo.

- Pergunta: Qual a altura máxima de T (em função de n)?
 - o Resposta: T tem no máximo n. Neste caso, ela T é uma árvore caminho.

Seja T uma árvore com número n de nós fixo.

- Pergunta: Qual a altura máxima de T (em função de n)?
 - o Resposta: T tem no máximo n. Neste caso, ela T é uma árvore caminho.
- Pergunta: Qual a altura mínima de T (em função de n)?

Seja T uma árvore com número n de nós fixo.

- Pergunta: Qual a altura máxima de T (em função de n)?
 - o Resposta: T tem no máximo n. Neste caso, ela T é uma árvore caminho.
- Pergunta: Qual a altura mínima de T (em função de n)?
 - $\circ \ \, \textbf{Resposta:} \ \, T \ \, \text{altura no mínimo} \, \left\lfloor \lg n \right\rfloor + 1. \\ \, \text{Neste caso,} \, \, T \ \, \text{é uma árvore completa ou pode ser transformada numa}.$

Representação no Computador

Representação com ponteiro para pai

Representação — Decisões de projeto

- Em programação de computadores, os nós de uma árvore binária são definidos como um tipo de dado composto contendo pelo menos três ou quatro atributos:
 - um valor (chave a ser guardada)
 - o um ponteiro para o filho esquerdo do nó
 - o um ponteiro para o filho direito do nó
 - um ponteiro para o pai (obrigatório em algumas implementações)
- Para acessarmos qualquer nó da árvore, basta termos o endereço do nó raiz. Pois podemos usar recursão para fazer todo o trabalho. Portanto, a única informação inicial necessária é um ponteiro para a raiz da árvore.

Implementação do Nó da Árvore em C++

```
1 // Arquivo Node.h
2 #ifndef NODE_H
3 #define NODE_H
4
5 struct Node
6 {
7    int key;
8    Node* left;
9    Node* right;
10 };
11
12 #endif /* NODE_H */
```


 Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.

- Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.
- É comum percorrer uma árvore em uma das seguintes ordens:
 - o pré-ordem:
 - visita raiz, percorre r->left, percorre r->right

- Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.
- É comum percorrer uma árvore em uma das seguintes ordens:
 - o pré-ordem:
 - visita raiz, percorre r->left, percorre r->right
 - o ordem simétrica:
 - percorre r->left, visita raiz, percorre r->right

- Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.
- É comum percorrer uma árvore em uma das seguintes ordens:
 - o pré-ordem:
 - visita raiz, percorre r->left, percorre r->right
 - o ordem simétrica:
 - percorre r->left, visita raiz, percorre r->right
 - o pós-ordem:
 - percorre r->left, percorre r->right, visita raiz

A pré-ordem

A pré-ordem

• primeiro visita (processa) a raiz

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex:

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex:

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5, 3,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5, 3,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Pré-ordem

Algorithm preorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: visit(ptr)
- 3: $preorder(ptr \rightarrow left)$
- 4: preorder(ptr→right)
- 5: end if

A pós-ordem

A pós-ordem

• primeiro visita a subárvore esquerda

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1, 6,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1, 6, 7,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1, 6, 7, 2

Pós-ordem

Algorithm posorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: posorder(ptr→left)
- 3: posorder(ptr→right)
- 4: visit(ptr)
- 5: end if

A ordem simétrica

A ordem simétrica

• primeiro visita a subárvore esquerda

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9, 7,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9, 7, 6

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9, 7, 6

Ordem Simétrica (inorder)

Algorithm inorder(ptr)

Require: ptr (pointer to node)

- 1: if ptr \neq NULL then
- 2: inorder(ptr→left)
- 3: visit(ptr)
- 4: inorder(ptr→right)
- 5: end if

Percurso em largura

O percurso em largura

O percurso em largura

• visita os nós por níveis

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1, 6,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1, 6, 4,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1, 6, 4, 9

Como implementar a busca em largura?

Usamos uma fila

- Usamos uma fila
- Colocamos a raiz na fila e depois

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4 9

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila	2	5	7	3	8	1	6	4	9

Percurso em largura

Algorithm levelTraversal(root)

```
Require: root (ponteiro para a raiz)
 1: Cria uma fila vazia Q de ponteiros para nós
 2: Q.push(root)
 3: while Q \neq \emptyset do
      node = Q.front()
   Q.pop()
 5:
    if node \neq NULL then
 6:
         visit(node)
 7:
         Q.push(node \rightarrow left)
 8.
         Q.push(node \rightarrow right)
 9.
      end if
10:
11: end while
```

 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

 Escreva uma função que calcula a altura de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_height(Node* node);
```

 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

 Escreva uma função que calcula a altura de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_height(Node* node);
```

 Adicione o campo height ao struct Node. O campo height deve ser do tipo int. Implemente a função bt_height(Node* node) de modo que ela preencha o campo height de cada nó com a altura do nó.

- Um caminho que vai da raiz de uma árvore até um nó qualquer pode ser representado por uma sequência de 0s e 1s, do seguinte modo:
 - toda vez que o caminho "desce para a esquerda" temos um 0; toda vez que "desce para a direita" temos um 1.
 - o Diremos que essa sequência de 0s e 1s é o código do nó.

 Suponha agora que todo nó de nossa árvore tem um campo adicional code, do tipo std::string, capaz de armazenar uma cadeia de caracteres de tamanho variável. Escreva uma função que preencha o campo code de cada nó com o código do nó.

FIM