Appunti di Scienza delle Costruzioni

Capitolo 05a Problema elasto-statico

I contenuti del seguente documento sono protetti sotto licenza <u>Creative Commons BY-NC-SA 4.0</u>: sono quindi ammesse la **condivisione**, la **ridistribuzione** e la **modifica** del materiale ivi contenuto, sotto le seguenti condizioni:

- **Attribuzione**: nel documento originale e nelle sue modifiche deve sempre figurare il nome reale o lo pseudonimo dell'autore, nonché la bibliografia originale;
- **Non-Commerciale**: è vietato qualsiasi utilizzo del presente documento e dei suoi contenuti a scopo commerciale e/o pubblicitario; ciò include la rivendita dello stesso o di parte dei suoi contenuti, ma è permessa la vendita a prezzo di stampa;
- **Share-Alike**: (it: "*Condividi allo stesso modo*") qualsiasi ridistribuzione del documento modificato o di parte di esso deve essere reso disponibile sotto la stessa licenza dell'originale, o sotto licenza ad essa compatibile.

Si chiede inoltre, anche se non è espressamente vietato, di non ridistribuire tale documento o parte dello stesso su piattaforme cloud private per pubblicizzare associazioni o eventi.

DISCLAMER GENERALE:

L'autore - <u>PioApocalypse</u> - non si assume alcuna responsabilità per l'uso improprio dei contenuti di questo documento, né si ritiene responsabile della performance - positiva o negativa che sia - dello studente in sede d'esame.

Il materiale didattico qui fornito è da considerarsi come un supplemento al materiale indicato dal docente della materia, e <u>trova le sue utilità principali nel riepilogo di lunghi segmenti del programma e nella spiegazione di determinati argomenti in cui lo studente potrebbe aver riscontrato difficoltà</u>. Alcuni termini e semplificazioni qui utilizzati potrebbero non essere idonei durante la discussione degli argomenti del corso con il docente in sede d'esame, e sono proposti solo al fine di aiutare lo studente con la comprensione della materia.

Si prega, infine, di segnalare eventuali errori trovati all'interno del documento all'indirizzo e-mail indicato sulla <u>repository ufficiale</u>, presso la quale è anche possibile trovare un link per chiunque desiderasse fare una piccola donazione all'autore.

Si ringrazia in anticipo per la cooperazione.

PioApocalypse

HOMENTI FLETTENTI E TORCENTE

$$H_{x}(z) = \int \sigma_{z}(z) \cdot y \cdot d\Sigma = E \int y(E(z) + \Theta_{x}y - \Theta_{y}x) dxdy = E(z)$$

$$= E(E(z) \cdot S_{x} + \Theta_{x} I_{x} - \Theta_{y} J_{xy}) \xrightarrow{\text{Principale Diversion}} E(z)$$

$$H_{x}(z) = E \cdot \Theta_{x} I_{x} \longrightarrow \Theta_{x}(z) = \underbrace{H_{x}(z)}_{E I_{x}}$$

$$Onologonalite: \quad H_{y}(z) = E \cdot \Theta_{y} I_{y} \longrightarrow \Theta_{y}(z) = \underbrace{H_{y}(z)}_{E I_{y}}$$

$$H_{t}(z) = \int (T_{yz} \cdot x - T_{xz} \cdot y) d\Sigma = \int ((Y_{yz} \cdot x - Y_{xz} \cdot y) d\Sigma = ...$$

$$E(z)$$

$$... = G(Y_{y} \cdot S_{y} + \Theta_{z} \cdot I_{y} - Y_{x} \cdot S_{x} + \Theta_{z} \cdot I_{x}) = G \cdot \Theta_{z}(I_{x} + I_{y}) = G \cdot \Theta_{z$$

Giusto per ribadire alcune cose:

- · I momenti statici nella terna centrale d'inerzia sono nulli perché la distanza dell'asse baricentrico dal baricentro è ovviamente nulla;
- · Siccome la sezione retta appartiene al piano x-y, possiamo semplificare i momenti d'inerzia come segue:

Z=0 $I_{x}=\int y^{2}d\Sigma$ $I_{y}=\int x^{2}d\Sigma$ $I_{z}=\int (x^{2}+y^{2})d\Sigma=I_{z}$

· Poiché la sezione retta è piana e giace sul piano x-y, gli assi x, y e l'asse ad essi perpendicolare (z) costituiscono la terna principale d'inerzia; per definizione: Jx4=0

Tuttavia, l'ipotesi comportamentale di indeformabilità della sezione retta è contraddetta da un'altra teoria più fedele al comportamento reale della trave: parliamo del MODELLO DI TIMOSHENKO, che presuppone la non-trascurabilità degli scorrimenti angolari dovuti tensioni tangenziali (in altre parole, presuppone che la sezione retta si deformi, non rimanendo più sempre ortogonale all'asse della trave. Sotto questa ipotesi:

EULERO-BERNOULL E TIMOSHENKO

Il MODELLO DI EULERO-BERNOULLI. caso particolare del modello di Timoshenko seppure sviluppato circa due secoli prima assume che, a deformazione avvenuta, la generica sezione retta della trave sia ancora sempre ortogonale all'asse.

Il modello di trave di Eulero-Bernoulli è meno preciso rispetto a quel di Timoshenko, ma generalmente la differenza tra le deformazioni misurate con le due teorie è piccola, ovvero trascurabile, per cui si preferisce il più semplice modello di Eulero-Bernoulli.

Poiché la teoria di Timoshenko rimane la più fedele al comportamento reale della trave, vi sono casi per i quali questa è preferibile all'altra:

- Si usa la teoria di Timoshenko per deformazioni particolarmente elevate della trave, o per travi particolarmente corte;
- Si preferisce la teoria di Eulero-Bernoulli per travi snelle, con rapporto tra lunghezza e diametro della sezione retta pari o superiore a 5 (fissato per convenzione).

Di seguito, un video che ben spiega graficamente la differenza tra i due modelli (copia e incolla): https://www.youtube.com/watch?v=BxymlsgWehY [Euler-Bernoulli vs Timoshenko Beam Theory]

Tpoteri del modello di Eulero-Bernoulli: $(\gamma_{e_{\times}}(z) \approx 0)$ $(\gamma_{e_{$ DISTORSHOMI

Le DISTORSIONI sono azioni esterne dovute a fenomeni non "puramente meccanici", come un gradiente di temperatura, che provocano deformazioni nei corpi. In presenza di distorsioni TERMICHE, ad esempio:

Il METODO DELLA LINEA ELASTICA consiste nell'individuare un campo cinematico degli spostamenti ed esprimere tutto in funzione di esso tramite equazioni differenziali.

Tale metodo è essenziale per lo studio delle travi iperstatiche, le quali ammettono infinite soluzioni al solo problema statico: il PROBLEMA ELASTO-STATICO, invece, ammette sempre una e una sola soluzione, soddisfando le equazioni di congruenza esterna. È applicabile anche a strutture isostatiche.

PROBLEMA ESTENSIONALE 1) Derivo l'equazione di congruenza interna in dz: $\frac{dE^*}{dz} + \frac{dE}{dz} = \frac{d^2w}{dz^2}$ Aggiungo il legame costitutivo: $\frac{dE^*}{dz} + \frac{d}{dz} \left(\frac{N}{EA} \right) = \frac{d^2w}{dz^2} \longrightarrow \frac{dE^*}{dz} + \frac{1}{EA} \frac{dN}{dz} = \frac{d^2w}{dz^2}$

3)	Aggi	ungo	l'equa	zione	indef	inita	di eq	uilib	rio: O	<u>اد*</u> اح	1 EA	p.	= d2n	· ~	955 950	+ ZA EA	p-	de*	: = 0
4)	KISO	iviaiiic	requ	lazion									omoge						
	W	(Z)=	Wo	+ Mb) W	0=1	٦z	: + C	12		CLE	2 62 9	i tro	anov	wan	olo		
) W	ρ = '	Wp ((Z. 1	p) =	?	com	e c.c.	le	29. Co	ngr. e	×t.		
E	SEHA	2,0:				•		•								0			
<u> </u>	SC FII	4				\sum_{0} :	(w	(o) =	၁	Σ	0: 1	N(l)=F		. (-		,	4	
4	Í→→ -	} >>>	>	F			ای کر	(o) =	၁		`{	T (l) = o		PE)= p busion:	روی	ליי	
3		e					14	(o) =	၁			M(l	() = F () = 0 () = 0		MO	DI) IOR	ואסונ		
		dzn	, , + + -	百个	= 0) w	5 = (CLZ	: + (C2	- $+$ $+$ $ +$ $ +$ $ +$ $ -$			p -2	+ C1			
		95	³	A I	_] w	ρ = ((Edi	zdz		W (4	=) = _ 2	EAE	+ 02	Z T	<u>_2</u>	
									J E	A		1							
)w	(0)=	5 -	-> h															
	(N	(٤)=			ε	(e \ =	dn	ا ا	M	<u>e</u>)	dy	S = -	12	+ CL	->	CI=F	+10	<u>Q</u>	
						()	ملك	e	E·1	4	012	:	EA				E·A		
							F.	+ p(2 _	1.		2							
					W	(Z) =	E	·A	- E ·	26	∓ Æ	\forall							
D	a u	٠:		N((n)	_/F	+1	ol	pz	ء ۱ ج	η .	<u>_</u> ,	N	(a) =	- 4	0				
				N(E)	-(-	E·A		EA		\7			(o) = ⁵	7-					
							F	+ 101	0	NZ.			. (0) -	F					
						(2):	: <u>`</u>	- A	{	EA		י כ	<u>:(e) =</u>	EA					
Pa) DB	LETH	1 N	FIE	SSIG	ME	6	TAC	./40										
				1 00	0011), C			T	1)	Der	ivo l'	equazi	one in	defini	ta di eq	uilibr	io in	dz:
16)×=	M _x EI:	-			(}	y =	By	GA	•			d^2i	1 0	T .	dc.	= 0		
	M		X			\ d	H_{-}		<u>-</u>				d2	2	olz	dz			
	<u>dT</u> =	:-q				1 d	2		`		2) Agg	giungo	l'altra	equaz	zione in	def. d	i equ	įl.:
	\ * .	^ -	dqx	d	2	/	* 'u +	Vu ·	= d	~ + (P.		O	CH	+ 04.	+ olc olz	- 0		
1	7× +	0×-	olz		2	(0		0	oli	2)×			2£	7 9	olz			
3)	Aggi	ungia	mo i le	egami	costit	+ i													
		$\frac{g^2}{lz^2}G$) <u>_</u> T		<u>م</u> ـ ـ	dc	- ()		f	ET.	ol	Θ_{x}	+ 0-	, dc	< = ()			
	0	12 ²	L	-X T	4	dz				•		olz	Ę ²	14	olz	;			
4)		ungia							ntern	a:	,,			104	k				
									-6	ET,	(al	<u>-</u> - (EIx'	or Ax	+0	+ dc	= C		
5)	Riso	lviamo	l'equ	azion	e diffe	erenz	iale d	lel qı	uarto		olz	4		olz		olz			
	dine:																		
		00 V	= =) L I×	7	· 01		AID)	K	V ()	Z) =	Vo((2) + V	(Z)					
		U E		十×	CT	x ol	6	બર		(V.	(2)	= (A+ CF	1Z +	A, 7	2+A2	2 3		
											(-)		(-						
									1	/ Vp	(E)	シェク	plz,	(ک, ک	= :				

La DEFORMATA di una struttura è la configurazione che la stessa assume a seguito dell'applicazione dei carichi esterni. Per le strutture snelle, la deformata è rappresentata dalla configurazione della sola linea d'asse della trave. Con l'espressione "a maniera" si intende che il diagramma della deformata va rappresentato qualitativamente, a prescindere da misurazioni accurate - tenendo conto solo di versi delle concavità, flessi e sezioni a spostamento nullo.

STUMO DELLE CONCAVITÀ Ricordiamo da Analisi I che la CONCAVITÀ di una funzione dipende $H_x = E_{\perp x} \frac{dQ}{dz} = -E_{\perp x} \frac{d^2 \sqrt{dz^2}}{dz^2}$ dalla sua derivata seconda: in questo caso la derivata seconda dello spostamento è direttamente proporzionale - a meno del segno - al momento flettente, il che significa che: [pag. successiva]

