UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA DEPARTAMENTO DE INFORMÁTICA TEÓRICA

JOAO LUIZ GRAVE GROSS RODRIGO LEITE

TURMA B – G16

Prova 2 – Parte Prática

Trabalho da Disciplina de Teoria da Computação N

Prof. Dr. Tiarajú Asmuz Diverio

Porto Alegre, 18 de maio de 2011.

Questão 1:

1.a) Fluxograma e instruções rotuladas simples do programa monolítico fortemente equivalente ao programa iterativo dado.

Instruções Rotuladas Simples:

- 1: se T1 então vá para 7 senão vá para 2
- 2: faça F1, vá para 3
- 3: faça F2, vá para 4
- 4: se T1 então vá_para 1 senão vá_para 5
- 5: faça F3, vá para 6
- 6: faça F4, vá para 1
- 1.b) Computação do programa monolítico do item 1.a) para os valores de entrada 8 e 6.
- (1,(8,6,1,1)) instrução inicial e valor d entrada armazenado
- (2,(8,6,1,1)) em 1, como D \neq 0, desviou para 2
- (3,(8,6,1,1)) em 2, realizou colocou resulado da divisão inteira entre A e B no registrador C e desvio para 3
- (4,(8,6,1,2)) em 3, colocou o resto da divisão de A por B em D e desviou para 4
- (5,(8,6,1,2)) em 4, como D \neq 0, desviou para 5

(6,(6,6,1,2)) em 5, copiou o conteúdo do registrador B para o registrador A e desviou para 6

(1,(6,2,1,2)) em 6, copiou o conteúdo do registrador D para o registrador B e desviou para 1

(2,(6,2,1,2)) em 1, como D \neq 0, desviou para 2

(3,(6,2,3,2)) em 2, realizou colocou resulado da divisão inteira entre A e B no registrador C e desvio para 3

(4,(6,2,3,0)) em 3, colocou o resto da divisão de A por B em D e desviou para 4

(1,(6,2,3,0)) em 4, como D = 0, desviou para 1

(7,(6,2,3,0)) em 1, como D = 0, desviou para 7 (parada)

1.c) Definição formal da função computada pelo programa.

Definição formal da função computada <mdc, quatro reg>.

Seja quatro_reg = $(N^4, N^2, N, \pi_X, \pi_Y, \Pi_{F_1}\Pi_T)$, onde:

N⁴, representa os quatro registradores A, B, C, D

N², é o conjunto de entrada, onde são introduzidos dois números naturais

N, é o conjunto de saída

 π_X , função de entrada $N^2 \to N^4$, são introduzidos valores nos registradores A, B e atribuído o valor 1 aos demais registradores

 π_Y , função de saída $N^4 \rightarrow N$, é retirado o conteúdo do registrador B

 Π_{F_1} { π_{F_1} , π_{F_2} , π_{F_3} , π_{F_4} }, onde todas as operações são definidas de $N^4 \rightarrow N^4$

$$\begin{split} \pi_{F1}(A,B,C,D) &= (A,B,A/B,D) \\ \pi_{F2}(A,B,C,D) &= (A,B,C,A-C.B) \\ \pi_{F3}(A,B,C,D) &= (B,B,C,D) \\ \pi_{F4}(A,B,C,D) &= (A,D,C,D) \end{split}$$

$$\Pi_T = \{ \ \pi_{T1} \ \} \ onde \ \pi_{T1}(A,B,C,D) = \{ verdadeiro, \ se \ D = 0 \\ falso, \ se \ D \ differente \ de \ 0 \}$$

e mdc o programa iterativo para quatro_reg. A Função Computada pelo Programa Iterativo mdc na Máquina quatro_reg denotado por

$$<$$
 mdc, quatro_reg $>$: $N^2 \rightarrow N$

é uma função parcial definida para n_1 e $n_2 \in N^2$ se a seguinte cadeia é uma computação finita do programa mdc na máquina quatro_reg:

$$(X_0,v_0)(X_1,v_1),...,(X_n,v_n)$$

onde, X_0 até X_n são os estados dos valores de entrada, v_0 até v_n são os estados da memória, o valor inicial da memória é dado pela função de entrada, ou seja, $v_0 = \pi_X(n_1, n_2)$ e $X_n = \checkmark$. Nesse caso a imagem de n_1 e n_2 é dada pela função de saída aplicada ao último valor da memória na computação, ou seja:

$$<$$
 mdc, quatro reg $>$ $(n_1, n_2) = \pi_Y(v_n)$.

Questão 2: Tabela do programa Begin-End para Máquina de Turing

	×	В	E	b	e	В
q0	(q0,×,D)	(q0,B,D)	(q2,e,E)	(q0,b,D)	(q0,e,D)	(q3,8,E)
q2		(q0,b,D)		(q2,b,E)	(q2,e,E)	
q 3	(q4,×,D)			(q3,b,E)	(q3,e,E)	
q4						

Questão 3:

Questão 4: ordena a, b e c em máquina de duas pilhas, simulando nesta 3 pilhas.

Explicação: São utilizados 3 símbolos auxiliares, que são marcadores de topo de pilha, para as pilhas A, B e C. As 3 pilhas são simuladas em duas pilhas, lendo-se os marcadores e realizando as operações de empilha e desempilha entre as duas pilhas a medida que os símbolos da entrada são lidos. Após ser realizada toda a separação dos símbolos de entrada a, b e c, dentre os 3 marcadores, o programa finaliza, consumindo os marcadores, resultando assim a ordenação de caracteres a, b e c, nesta ordem.

Questão 5: ww em autômato com pilhas.

