EE210A: Microelectronics I - Mini-Quiz 5

1

NAME (in capital) Roll No

Time: 15 minutes

1) : Consider $\mu_n C_{ox} = 200 \mu A/V^2$, $I_0 = 2mA$, $V_{tn} = 1V$, $V_B = 2.5V$.

Fig. 1. Problem 1

a): Size M1 and M2 such that under quiescent conditions M1 is in saturation with a margin of 200 mV, and M2 is in saturation with margins of 500 mV. [4]

M2:
$$V_{DM_2} = 25 - 1 + 0.5 = 2V$$

M1: $V_{DM_1} = 2 - 1 + 0.2 = 1.2V$

For M1: $2V = 1V + \sqrt{\frac{2}{M(\omega_M W/L)}}$
 $= > (W/L)_1 = 20$

For M2: $2.5 - 1.2 = 1 + \sqrt{\frac{23}{M(\omega_M W/L)}}$
 $= > (W/L)_2 = \frac{20}{0.09}$

b) : Find v_0 if $v_{in} = V_p \sin(\omega_0 t)$, $R_L = 1k\Omega$ and $R_D = k\Omega$. Assume C_1 and C_2 are large enough to be treated as a short circuit at ω_0 . Find the total currents through M1, M2 and R_L if $V_p = 10mV$ and v_{in} is at its maxima.

$$V_{1} = \frac{1}{2} V_{1} - V_{0} = \frac{1}{2} V_{1} - V_{0} = \frac{1}{2} V_{0} + \frac{1}$$