The Trapezoidal Rule

For definite integrals such as

$$\int_0^1 \sqrt{1-x^3} \, dx$$
 or $\int_0^1 e^{-x^2} \, dx$

we can't use the Fundamental Theorem of Calculus to evaluate them since there are no elementary functions that are antiderivatives of $\sqrt{1-x^3}$ or e^{-x^2} . The best we can do is to use approximation methods for such integrals.

The trapezoidal rule is a numerical method that approximates the value of a definite integral. We consider the definite integral

$$\int_{a}^{b} f(x) \, dx.$$

We assume that f(x) is continuous on [a, b] and we divide [a, b] into n subintervals of equal length

$$\Delta x = \frac{b-a}{n}$$

using the n+1 points

$$x_0 = a$$
, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$, ..., $x_n = a + n\Delta x = b$.

We can compute the value of f(x) at these points.

$$y_0 = f(x_0), \quad y_1 = f(x_1), \quad y_2 = f(x_2), \quad \dots, \quad y_n = f(x_n)$$

We approximate the integral by using n trapezoids formed by using straight line segments between the points (x_{i-1}, y_{i-1}) and (x_i, y_i) for $1 \le i \le n$ as shown in the figure below.

The area of a trapezoid is obtained by adding the area of a rectangle and a triangle.

$$A = y_0 \Delta x + \frac{1}{2}(y_1 - y_0)\Delta x = \frac{(y_0 + y_1)\Delta x}{2}.$$

By adding the area of the n trapezoids, we obtain the approximation

$$\int_{a}^{b} f(x) dx \approx \frac{(y_0 + y_1)\Delta x}{2} + \frac{(y_1 + y_2)\Delta x}{2} + \frac{(y_2 + y_3)\Delta x}{2} + \dots + \frac{(y_{n-1} + y_n)\Delta x}{2}$$

which simplifies to the trapezoidal rule formula.

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} (y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n)$$

Example 1. Use the trapezoidal rule with n = 8 to estimate

$$\int_{1}^{5} \sqrt{1+x^2} \ dx.$$

Solution. For n=8, we have $\Delta x = \frac{5-1}{8} = 0.5$. We compute the values of $y_0, y_1, y_2, \ldots, y_8$.

x	1	1.5	2	2.5	3	3.5	4	4.5	5
$y = \sqrt{1 + x^2}$	$\sqrt{2}$	$\sqrt{3.25}$	$\sqrt{5}$	$\sqrt{7.25}$	$\sqrt{10}$	$\sqrt{13.25}$	$\sqrt{17}$	$\sqrt{21.25}$	$\sqrt{26}$

Therefore,

$$\int_{1}^{5} \sqrt{1+x^{2}} dx \approx \frac{0.5}{2} \left(\sqrt{2} + 2\sqrt{3.25} + 2\sqrt{5} + 2\sqrt{7.25} + 2\sqrt{10} + 2\sqrt{13.25} + 2\sqrt{17} + 2\sqrt{21.25} + \sqrt{26} \right)$$
$$\approx \boxed{12.76}$$

Example 2. The following points were found empirically.

	2.1	l				
y	3.2	2.7	2.9	3.5	4.1	5.2

Use the trapezoidal rule to estimate $\int_{2.1}^{3.6} y \, dx$.

Solution. By inspection, we see that $\Delta x = 0.3$. Therefore,

$$\int_{2.1}^{3.6} y \, dx \approx \frac{0.3}{2} \left(3.2 + 2(2.7) + 2(2.9) + 2(3.5) + 2(4.1) + 5.2 \right)$$
$$\approx \boxed{5.22}$$