岐阜大学工学部 電気電子・情報工学科 令和6年度卒業論文

セキュアな V2V アドホックネットワーク ルーティングプロトコルのための EdDSA 署名方式の評価

三嶋研究室

学籍番号:1213033107

永野 正剛

指導教員:三嶋 美和子 教授

目次

はじめに		1
第1章	準備	2
1.1	VANET	2
1.2	GPSR	2
1.3	楕円曲線	2
	1.3.1 EdDSA	2
1.4	デジタル署名	2
	1.4.1 EdDSA	2
第2章	\mathbf{EdDSA}	4
第3章	提案手法	5
第4章	シミュレーション環境	6
第5章	シミュレーション実験	7
第6章	EdDSA に関する実装評価まとめ	8
おわり	K	9
謝辞		10
 参老士i	4站	11

はじめに

第1章 準備

1.1 VANET

vanet 書くよ

1.2 GPSR

GPSR 書くよ

1.3 楕円曲線

1.3.1 EdDSA

1.4 デジタル署名

1.4.1 EdDSA

実験に導入した Ed25519 のプロトコル内で使用されるリトルエンディアン、エンコーディング、プルーニングについて説明する.

リトルエンディアン

(1) 最下位バイトから順に配置する形式. プロトコル内では、秘密スカラーの生成や 公開鍵の生成において、リトルエンディアンの整数を使用する.

エンコーディング

(1) すべての値はオクテット文字列としてコード化され、整数はリトルエンディアン規則を使用してコード化される.

(2) 楕円曲線上の点のエンコード

y 座標をリトルエンディアン形式の 32 オクテット文字列にエンコードし、32 バイト目の最上位ビットを 0 に設定する. x 座標の最下位ビットを y 座標の 32 バイト目の最上位ビットに埋め込む.

プルーニング (ビット操作)

- (1) 最初のバイトの下位3ビットを0にクリアする.
- (2) 最後のバイトの最上位ビットを 0 に設定し、最上位 2 ビット目を 1 に設定する.

EdDSA の3つのアルゴリズムの手順を以下に述べる.

鍵生成 -

- 1. 法とする素数 p、楕円曲線 E、基準点 G、鍵のサイズ b、ハッシュ関数 H、コファクター c、位数 L を定める.
- 2. bバイトのランダムな値 sk を生成し、秘密鍵とする.
- 3. h = H(sk) を計算し、h(オクテット文字列)を前半部分 h[0] から h[31] と後半部分 h[32] から h[63] に分ける.
- 4. 前半部分 s[0] から s[31] を使ってプルーニングしたものをリトルエンディアンの整数 として解釈し、スカラー $s \pmod{L}$ を生成する.
- 5. 基準点 G を使って A = sG を計算し、A のエンコードを公開鍵とする.

署名生成フェーズ -

- 1. 秘密鍵 sk を使って、ハッシュ値 h = H(sk) を計算する.
- 2. h の後半部分 h[32] から h[63] を使って、r = DEC(H()).
- 3.
- 4.

署名検証フェーズ -

- 1.
- 2.

第2章 EdDSA

eddsa 書くよ

第3章 提案手法

第4章 シミュレーション環境

第5章 シミュレーション実験

第6章 EdDSA に関する実装評価まとめ

おわりに

謝辞

参考文献