Taxi Trajectory Analysis

EDAA - G04

Diogo Rodrigues **Eduardo Correia** João Sousa

Problem recap

Clustering of the **processed data points** in the first part of the project.

Clustering

Two approaches:

k-means

Pseudocode

```
Input:
    D = \{t_1, t_2, ..., t_{\square}\} // Set of elements
                           // Numbers of desired clusters
    K
Output:
                           // Set of clusters
Procedure:
    Assign initial values for m_1, m_2, ..., m\square
    Repeat
        Assign each item t<sub>i</sub> to the clusters which has the closest mean;
        Calculate new mean for each cluster;
    Until convergence criteria is met
```

k-means

Complexity Analysis

Time complexity:

• $O(N \times K \times I)$

Space complexity:

 $\bullet \quad O(N \times (D + K))$

N - Number of points

D - Number of dimensions

K - Number of centroids

I - Number of iterations

k-means

Empirical Analysis

Hierarchical Clustering

- There are many methods to perform hierarchical clustering, each yielding different results for the same distance matrix
- They essential difference is on how they link clusters together

Single-linkage

Complete-linkage

Hierarchical Clustering

Linkage Criteria

Hierarchical Clustering

UPGMA

- Stands for Unweighted Pair Group Method with Arithmetic Mean
- Simple agglomerative (bottom-up) hierarchical clustering method
- Constructs a rooted tree (dendrogram) that reflects the structure present in a pairwise similarity matrix (or a dissimilarity matrix).
- At each step, the nearest two clusters are combined into a higher-level cluster.

UPGMA

Pseudocode

UPGMA

Complexity Analysis

Time complexity:

- $O(n^3)$ Trivial implementation
- $O(n^2 \log n)$ Using a heap for each cluster to keep its distances from other cluster
- $O(n^2)$ Fionn Murtagh implementation

Space complexity:

• $O(n^2)$ - $n \times n$ Distance matrix

UPGMA

Empirical Analysis

Q&A

