

PVsyst - Simulation report

Grid-Connected System

Project: Kopellis_ Fixed

Variant: 114 kW Fixed Sheds, single array

System power: 114 kWp

Thessaloniki/Livadákion - Greece

PVsyst TRIAL

PVsyst TRIAL

Author

VC1, Simulation date: 17/06/22 00:54

Project: Kopellis_ Fixed

Variant: 114 kW Fixed

Project summary

Geographical Site

Thessaloniki/Livadákion

Greece

with v7.2.15

Situation

Latitude Longitude

Altitude

40.52 °N 22.97 °E

4 m Time zone UTC+2

Project settings

Albedo

0.20

1 unit

Meteo data

Thessaloniki/Livadákion

Meteonorm 8.0 (1994-2006), Sat=14% - Synthetic

System summary

Grid-Connected System Sheds, single array

PV Field Orientation

Fixed plane

Tilt/Azimuth 25 / 0° **Near Shadings**

Linear shadings

User's needs

Unlimited load (grid)

System information

PV Array

Nb. of modules Pnom total

Inverters

216 units Nb. of units 114 kWp Pnom total

111 kWac Pnom ratio 1.031

Results summary

87.50 % 176.3 MWh/year Specific production 1540 kWh/kWp/year Perf. Ratio PR Produced Energy

Table of contents

Table of comments	
Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Horizon definition	5
Near shading definition - Iso-shadings diagram	6
Main results	7
Loss diagram	8
Special graphs	9

VC1, Simulation date: 17/06/22 00:54 with v7.2.15

Project: Kopellis_ Fixed

Variant: 114 kW Fixed

General parameters

Models used

Circumsolar

separate

1.03

Grid-Connected System Sheds, single array

PV Field Orientation

Orientation Sheds configuration

Fixed plane Nb. of sheds 4 units Transposition Perez Tilt/Azimuth 25 / 0 $^{\circ}$ Single array Diffuse Perez, Meteonorm

Sizes

Sheds spacing 10.00 m

Collector width 4.57 m

Ground Cov. Ratio (GCR) 45.7 %

Top inactive band 0.02 m

Bottom inactive band 0.02 m

Shading limit angle

Limit profile angle 18.4 °

HorizonNear ShadingsUser's needsAverage Height7.4°Linear shadingsUnlimited load (grid)

PV Array Characteristics

 PV module
 Inverter

 Manufacturer
 Generic
 Manufacturer
 Generic

Model JKM530M-72HL4-BDVP Model SG111-HV

(Custom parameters definition) (Original PVsyst database)

Unit Nom. Power 530 Wp Unit Nom. Power 111 kWac Number of PV modules 216 units Number of inverters 1 unit 111 kWac Nominal (STC) 114 kWp Total power Modules 8 Strings x 27 In series Operating voltage 780-1450 V

At operating cond. (50°C)

Pmpp

105 kWp

U mpp 995 V I mpp 105 A

Total PV power Total inverter power

Nominal (STC)114 kWpTotal power111 kWacTotal216 modulesNumber of inverters1 unitModule area557 m²Pnom ratio1.03

Cell area 514 m²

Array losses

Array Soiling Losses Thermal Loss factor DC wiring losses

Loss Fraction 1.5 % Module temperature according to irradiance Global array res. 104 m Ω Uc (const) 29.0 W/m²K Loss Fraction 1.0 % at STC

Uv (wind) 0.0 W/m²K/m/s

Module Quality Loss Module mismatch losses

Loss Fraction 0.0 % Loss Fraction 0.6 % at MPP

IAM loss factor

Incidence effect (IAM): User defined profile

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	1.000	1.000	1.000	0.989	0.967	0.924	0.729	0.000

VC1, Simulation date: 17/06/22 00:54 with v7.2.15

Project: Kopellis_ Fixed

Variant: 114 kW Fixed

System losses

Auxiliaries loss

Proportionnal to Power 4.0 W/kW

0.0 kW from Power thresh.

AC wiring losses

Inv. output line up to MV transfo

Inverter voltage 540 Vac tri
Loss Fraction 0.21 % at STC

Inverter: SG111-HV

Wire section (1 Inv.) Copper 1 x 3 x 240 mm 2 Wires length 70 m

AC losses in transformers

MV transfo

Grid voltage 20 kV

Operating losses at STC

PVsyst TRIAL

PVsyst TRIAL

Project: Kopellis_ Fixed Variant: 114 kW Fixed

VC1, Simulation date: 17/06/22 00:54 with v7.2.15

Horizon definition

Horizon from PVGIS website API, Lat=39°37"58', Long=22°13"41', Alt=153m

Average Height	7.4 °	Albedo Factor	0.73
Diffuse Factor	0.96	Albedo Fraction	100 %

Horizon profile

Azimuth [°]	-180	-173	-165	-158	-143	-135	-128	-120	-113	-105	-98	-90
Height [°]	1.9	3.4	4.6	5.7	7.3	6.5	4.6	4.2	5.3	6.1	5.7	5.3
Azimuth [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	0	8
Height [°]	4.6	4.2	3.4	3.1	2.3	1.9	0.4	1.1	1.5	1.1	1.1	3.4
Azimuth [°]	15	23	38	45	135	143	150	158	165	173	180	
Height [°]	6.5	11.5	11.5	14.9	14.9	8.0	8.0	5.3	1.9	1.5	1.9	

Sun Paths (Height / Azimuth diagram)

Variant: 114 kW Fixed

Near shadings parameter Perspective of the PV-field and surrounding shading scene Zenith East

Variant: 114 kW Fixed

PVsyst V7.2.15

VC1, Simulation date: 17/06/22 00:54 with v7.2.15

Main results

System Production

Produced Energy

176.3 MWh/year

Specific production Performance Ratio PR 1540 kWh/kWp/year

87.50 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	52.6	29.21	4.95	77.1	69.5	8.07	7.80	0.883
February	76.4	39.36	6.71	101.9	95.2	10.91	10.58	0.907
March	118.0	57.36	9.91	142.1	134.9	15.21	14.77	0.908
April	150.3	77.02	13.73	163.7	156.5	17.36	16.87	0.900
May	195.0	84.41	19.52	197.3	189.3	20.44	19.88	0.880
June	218.4	75.24	24.54	214.4	206.4	21.74	21.13	0.861
July	214.7	82.15	27.83	213.9	205.4	21.40	20.80	0.849
August	194.0	76.29	27.71	207.3	199.1	20.77	20.20	0.851
September	144.2	53.93	21.67	170.5	162.8	17.42	16.92	0.867
October	94.1	43.87	16.53	123.7	116.1	12.82	12.44	0.878
November	57.9	29.79	11.46	83.2	76.7	8.67	8.38	0.880
December	43.4	24.96	6.66	64.5	58.6	6.76	6.51	0.882
Year	1559.1	673.58	15.99	1759.8	1670.5	181.56	176.28	0.875

Legends

GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation T_Amb **Ambient Temperature**

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings **EArray** E_Grid PR

Effective energy at the output of the array

Energy injected into grid

Performance Ratio

Variant: 114 kW Fixed

VC1, Simulation date: 17/06/22 00:54

with v7.2.15 Loss diagram 1559 kWh/m² Global horizontal irradiation +12.9% Global incident in coll. plane ÷ -2.65% Far Shadings / Horizon -0.75% Near Shadings: irradiance loss -0.27% IAM factor on global ÷ -1.50% Soiling loss factor 1670 kWh/m2 * 557 m2 coll. Effective irradiation on collectors PV conversion efficiency at STC = 20.56% Array nominal energy (at STC effic.) 191.4 MWh ₹+0.37% PV loss due to irradiance level -4.28% PV loss due to temperature -0.60% Module array mismatch loss **→** -0.64% Ohmic wiring loss 181.6 MWh Array virtual energy at MPP 9 -1.27% Inverter Loss during operation (efficiency) 9 0.00% Inverter Loss over nominal inv. power 9 0.00% Inverter Loss due to max. input current **\(0.00\)** Inverter Loss over nominal inv. voltage 90.00% Inverter Loss due to power threshold 90.00% Inverter Loss due to voltage threshold 7-0.01% Night consumption 179.2 MWh **Available Energy at Inverter Output**) -0.40% Auxiliaries (fans, other)) -0.12% AC ohmic loss **→** -1.13% Medium voltage transfo loss 9 0.00% MV line ohmic loss 176.3 MWh Energy injected into grid

Variant: 114 kW Fixed

Power injected into grid [kW]