Nome:	N° Mec.:
DECLARO OUE DESISTO	

11 de setembro de 2020

Duração total: 2 horas

Informações

- 1. Esta prova é constituída por 5 questões.
- 2. Cada folha contém uma questão que deve ser respondida na própria folha (utilize, sempre que necessário, também o verso da folha).
- 3. Caso necessite de folhas de continuação, deve utilizar uma para cada questão e indicar na folha de continuação o número da questão no local indicado para o efeito.
- 4. Receberá também uma folha com o formulário que poderá utilizar durante a prova.
- 5. Assine esta folha e coloque-a em cima da mesa de trabalho de modo a que fique visível, juntamente com um documento com fotografia que permita a sua identificação.
- 6. Caso pretenda desistir desta prova, <u>assinale-o no cabeçalho desta folha</u> assinando no local a isso destinado, entregue todas as folhas de prova que lhe foram distribuídas e coloque-as no local que lhe for indicado pelo professor vigilante da sala.
- 7. Caso não responda a uma das questões escreva isso na respetiva folha.
- 8. Quando terminar a sua prova organize-a de forma a juntar as folhas de continuação (caso as tenha utilizado) à folha da questão respetiva e coloque-as nos locais indicados pelo professor vigilante da sala.
- 9. <u>Justifique</u> todas as suas respostas das questões **1 a 4**, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.
- 10. Não pode ter consigo telemóvel nem qualquer dispositivo eletrónico (ainda que desligado).
- 11. Respeite todas as regras de segurança e mantenha o distanciamento social adequado.
- 12. Só pode levar para a mesa onde vai realizar a prova, material de escrita. Não é permitida a utilização de qualquer tipo de calculadora.

Bom trabalho!

11 de setembro de 2020 Duração total: 2 horas

Nome:	N° Mec.:
Classificação Questão:	

Questão 1 (40pts)

Considere a função
$$f(x,y)=\left\{ \begin{array}{ll} x-y,\ se\ xy=0,\\ \\ 1\ se\ xy\neq 0. \end{array} \right.$$

- (a) Verifique que f não é contínua na origem.
- (b) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- (c) Seja $u=(u_1,u_2)$ um vetor não nulo de \mathbb{R}^2 . Mostre que $D_u f(0,0)$ não existe se ambas as coordenadas do vetor u forem não nulas e calcule $D_u f(0,0)$ nos restantes casos.

11 de setembro de 2020 Duração total: 2 horas

Nome:	N° Mec.:
Classificação Questão:	

Questão 2 (40pts)

Considere a função $f(x, y, z) = x^2 + y^2 + 3z^2 + yz + 2xz - xy$.

- (a) Determine os pontos críticos de f.
- (b) Calcule a matriz hessiana da função f num ponto genérico (x,y,z) de \mathbb{R}^3 .
- (c) Usando um teste da hessiana, estude a natureza dos pontos críticos obtidos na primeira alínea.
- (d) Mostre que f não tem máximo global. Explique, em seguida, porque é que tal não invalida o teorema de Weierstrass (condição suficiente para a existência de extremos globais).

11 de setembro de 2020 Duração total: 2 horas

Nome:	N° Mec.:
Classificação Questão:	

Questão 3 (40pts)

Resolva as seguintes equações diferenciais:

(a)
$$y'' - 2y' = x^2 - 1$$
.

(b)
$$y' + y \cot g(x) = 5 e^{\cos(x)}, \text{ com } x \in]0, \pi[.$$

11 de setembro de 2020 Duração total: 2 horas

Nome:	N° Mec.:
CLASSIFICAÇÃO QUESTÃO:	

Questão 4 (40pts)

Considere
$$f: \left] -\frac{1}{2}, \frac{1}{2} \right[\to \mathbb{R}$$
 definida por $f(x) = \frac{1}{1+x}$.

- (a) Escreva a fórmula de MacLaurin de ordem n com resto de Lagrange $\mathbb{R}^n_0 f$ para a função f.
- (b) Verifique que existe c > 0 tal que

$$|R_0^n f(x)| \le c|2x|^{n+1}, \forall x \in \left] -\frac{1}{2}, \frac{1}{2} \right[.$$

- (c) Mostre que se pode desenvolver f em série de MacLaurin e determine essa série.
- (d) Obtenha a série de MacLaurin para a função $g:\left]-\frac{1}{2},\frac{1}{2}\right[\to\mathbb{R}$ definida por $g(x)=\frac{x}{1-x^2}$.

11 de setembro de 2020 Duração total: 2 horas

Nome:_	N° Mec.:
Classificação Questão:	
Questão 5 (40)	$_{ m pts)}$
Para cada uma das alíneas assinale a <u>única</u> afirmação verd	ladeira.
(a) Considere a EDO $xy'' - (x+1)y' + y = xe^x$.	
 (A) A solução geral da EDO é y = A(x + 1) + Be^x. (B) {x, e^x} é um sistema fundamental de soluções da à equação diferencial dada	a equação diferencial homogénea associada
(C) A solução geral da EDO homogénea associada à $Be^x \operatorname{com} A, B \in \mathbb{R}.$	
(D) Uma solução particular da EDO dada é $y=e^x$	
(b) O intervalo de convergência da série de potências $\sum_{n=0}^{+\infty}$	$\frac{(x-1)^n}{4^n(2n+1)}$ é:
(A)] $-3,5$ [
(B)] $-4,4$ [
(C) R	
(D) {1}	
(c) A transformada de Laplace da função f definida por	$f(t) = t \cos^2 t$ é:
(A) $\frac{1}{s^2} \times \frac{s}{2(s^2+4)}$	
(B) $-\frac{1}{2s^2} - \frac{s^2 - 4}{(s^2 + 4)^2}$	
(C) $\frac{1}{s^2} \times \left(\frac{s}{s^2+4}\right)^2$	
(D) $\frac{1}{2s^2} + \frac{s^2 - 4}{2(s^2 + 4)^2}$	
(d) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função 2π -periódica definida en	$a [0, 2\pi] por$
$f(x) = \begin{cases} 2x + \pi & \text{para} \\ -x & \text{para} \end{cases}$	$0 \le x \le \frac{2\pi}{3}$
(-x) para	$\frac{2\pi}{3} < x \le 2\pi.$
O coeficiente a_0 da série de Fourier associada à funçã	to f é:
$(\mathbf{A}) - \frac{2}{3}$	
(B) $-\frac{1}{3}$	
(C) $-\frac{\pi}{3}$	
(D) $-\frac{2\pi}{3}$	

Formulário Transformada de Laplace

Função	Transformada	Função	Transformada	Função	Transformada
$ \begin{array}{c c} t^n \\ (n \in \mathbb{N}_0) \end{array} $	$\frac{n!}{s^{n+1}}$ $(s>0)$	e^{at} $(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$	$ sen (at) (a \in \mathbb{R}) $	$\frac{a}{s^2 + a^2}$ $(s > 0)$
$ \begin{array}{c} \cos(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 + a^2}$ $(s > 0)$	$ senh(at) (a \in \mathbb{R}) $	$\frac{a}{s^2 - a^2}$ $(s > a)$	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 - a^2}$ $s > a $

Propriedades da transformada de Laplace

$$F(s) = \mathcal{L}{f(t)}(s)$$
, com $s > s_f$

$\mathcal{L}\{f(t) + g(t)\}(s) = F(s) + G(s), \ s > \max\{s_f, s_g\}$	$\mathcal{L}\{\alpha f(t)\}(s) = \alpha F(s), \ s > s_f \in \alpha \in \mathbb{R}$
$\mathcal{L}\lbrace e^{\lambda t} f(t) \rbrace (s) = F(s-\lambda), \ s > s_f + \lambda \ e \ \lambda \in \mathbb{R}$	$\mathcal{L}\{t^n f(t)\}(s) = (-1)^n F^{(n)}(s), \ s > s_f \in \mathbb{N}$
$\mathcal{L}{f(t-a)}(s) = e^{-as}F(s), \ s > s_f \ e \ a > 0$	$\mathcal{L}\lbrace f(at)\rbrace(s) = \frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f \in a > 0$

$$\mathcal{L}\lbrace f^{(n)}(t)\rbrace(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - s^{n-2} f''(0) - \dots - f^{(n-1)}(0)$$
$$com \ s > \max\lbrace s_f, s_{f'}, s_{f''}, \dots, s_{f^{(n-1)}}\rbrace, \ n \in \mathbb{N}$$

Formulário de Primitivas

Função	Primitiva	Função	Primitiva	Função	Primitiva
	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\operatorname{sen} u$	$u' \operatorname{sen} u$	$-\cos u$
$u'\sec^2 u$	$\operatorname{tg} u$	$u'\csc^2 u$	$-\cot g u$	$u' \sec u$	$\ln \sec u + \operatorname{tg} u $
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	$\operatorname{arctg} u$ ou $-\operatorname{arccotg} u$

Algumas fórmulas trigonométricas

$\sec u = \frac{1}{\cos u}$	$\operatorname{sen}(2u) = 2\operatorname{sen}u\operatorname{cos}u$	$\cos^2 u = \frac{1 + \cos(2u)}{2}$	$1 + \operatorname{tg}^2 u = \sec^2 u$
$\csc u = \frac{1}{\sin u}$	$\cos(2u) = \cos^2 u - \sin^2 u$	$\operatorname{sen}^2 u = \frac{1 - \cos(2u)}{2}$	$1 + \cot^2 u = \csc^2 u$