Introducció als Computadors

Tema 8: Unitat de Procés General (UPG)
http://personals.ac.upc.edu/enricm/Docencia/IC/IC8b.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1er quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ (1) (3)

Analogia: UPG com a eina multiusos

[1]

Índex

- Entrada/Sortida (E/S) síncrona a la UPG
- Exemples d'entrada/sortida síncrona
- Exercicis
- Conclusions

Introducció

- Hem iniciat el disseny d'una Unitat de Procés General (UPG)
 - Té una paraula de control de 33 bits i genera 1 bit de condició (z)
 - La UC haurà de generar cada cicle la paraula de control
 - El bit z permet decidir quin és l'estat següent de la UC
- Ja hem vist com passar del codi C al graf d'estats de la UC
- Ara incorporarem l'E/S síncrona del PPE al graf d'estats de la UC
 - El mateix senyal de rellotge sincronitza emissor i receptor
 - Al tema 9 parlarem d'E/S asíncrona
- Adaptarem els PPE's del tema anterior a la UPG amb E/S
 - Crearem el graf d'estats de la UC
 - Potser haurem de modificar el sincronisme d'E/S
 - Per exemple, MCD tenia dos bussos d'entrada de dades

Interfície dels PPE's que utilitzen la UPG

• El PPE té un senyal de control d'entrada (Begin) i un de sortida (End)

Graf d'estats de la UC amb E/S

- Crearem el graf d'estats de la UC
 - Cada estat tindrà dos senyals binàris d'entrada
 - El senyal de control d'entrada Begin
 - El bit de condició z
 - Cada estat generarà 34 senyals binaris de sortida
 - La paraula de control (33 bits) / Mnemotècnic
 - El senyal de control de sortida *End* (1 bit)
- La llegenda de tots els grafs d'estats d'aquest tema serà:

- Si a un arc no apareix el nom d'un senyal d'entrada, indica que la transició és independent del valor d'aquest senyal
- Si el nom apareix sense negar, la transició es realitza si el senyal val "1"
- Si el nom apareix negat, la transició es realitza si el senyal val "0"

Índex

- Entrada/Sortida (E/S) síncrona a la UPG
- Exemples d'entrada/sortida síncrona
 - Suma-4
 - Suma-N
 - MCD
 - Màxim-N
- Exercicis
- Conclusions

Índex

- Entrada/Sortida (E/S) síncrona a la UPG
- Exemples d'entrada/sortida síncrona
 - Suma-4
 - Suma-N
 - MCD
 - Màxim-N
- Exercicis
- Conclusions

Suma-4: especificació

- La mateixa que al tema 7:
 - El cicle en que Begin val "1", a RD-IN també tindrem el primer valor
 - En cicles consecutius es rebran el segon, el tercer i el quart valor
 - El cicle que es mostri el resultat per WR-OUT, End ha de valdre "1"
 - La resta de cicles End ha de valdre "0"
 - El mateix cicle que es mostra el resultat d'una Suma-4, es pot començar a calcular una nova Suma-4
 - S'ignorarà el valor de Begin mentre es realitza una Suma-4
- L'especificació no determina quant de temps triga en donar el resultat
 - Qui utilitzi aquest PPE ha d'esperar fins que *End* valgui "1"

Cicle	0	1	2	3	4	t	t+1
Begin	0	1	Х	Х	Х	 0	0
RD-IN (dec) WR-OUT (dec)	х	23	5	12	18	 X	X
WR-OUT (dec)	х	Х	Х	Х	Х	 58	X
End	0	0	0	0	0	 1	0

Suma-4: UP específica vs. UPG

- A la UP específica, el mateix cicle que rebem una dada de l'exterior podem operar amb ella
 - A la UPG, abans de poder operar amb ella ha de passar pel REGFILE
 - A més, al REGFILE només puc fer una escriptura per cicle

Suma-4: implementació a la UPG

- Com la UPG té 8 registres, podem guardar els 4 valors a 4 registres
- No podrem fer sumes parcials a mesura que rebem els valors perquè no podríem guardar el resultat al banc de registres
 - Ja estem escrivint al REGFILE la dada rebuda pel bus RD-IN
- Un cop rebuts els 4 nombres, podrem sumar-los dos a dos
 - Fent una suma per cicle
- Assumim que al cicle t, Begin="1"

```
R1 = RD-IN(t);

R2 = RD-IN(t+1);

R3 = RD-IN(t+2);

R4 = RD-IN(t+3);

R5 = R1 + R2;  // t+4

R5 = R3 + R5;  // t+5

R5 = R4 + R5;  // t+6

WR-OUT(t+7) = R5;
```

- Calen tres cicles per sumar els quatre valors
- A l'instant t+7, mostra el resultat per WR-OUT i posa *End* a "1"

Suma-4: graf d'estats UC per a la UPG

Suma-4: paraules de control

		Palabra de Control de 33 bits																				
Mn	emotécnicos	@A		@B		Rb/N	ОР		F		In/Alu @ G			WrD	N (hexa							
IN R1		х	х	х	х	х	Х	х	х	х	х	Х	х	1	0	0	1	1	Х	Χ	Χ	Х
IN R2		х	Х	х	х	х	Х	х	х	х	х	Х	х	1	0	1	0	1	Х	Χ	Χ	Х
IN R3		х	Х	х	х	х	Х	х	х	х	х	Х	х	1	0	1	1	1	Х	Χ	Χ	Х
IN R4		х	х	х	х	х	Х	х	х	х	х	Х	х	1	1	0	0	1	Х	Χ	Χ	X
ADD R5	, R1, R2	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	1	1	Х	Χ	Χ	Х
ADD R5	, R3, R5	0	1	1	1	0	1	1	0	0	1	0	0	0	1	0	1	1	Х	Χ	Χ	Х
ADD R5	, R4, R5	1	0	0	1	0	1	1	0	0	1	0	0	0	1	0	1	1	Х	Χ	Χ	Х
OUT R5	// IN R1	1	0	1	х	х	Х	х	х	х	х	Х	х	1	0	0	1	1	Х	Χ	Χ	Х

Suma-4: mida síntesi UC

• Sintetitzem la UC amb una única ROM i un multiplexor de bussos. Quina serà la seva mida mínima?

Suma-4: mida síntesi UC

Sintetitzem la UC amb una única ROM i un multiplexor de bussos.

- Solució:
 - Parametrització dels busos:
 - bits d'entrada: n = 2 (Begin i el bit de condició z)
 - bits de sortida: m = 34 (els 33 de la paraula de control i *End*)
 - bits d'estat: $k = \lceil log_2 8 \rceil = 3$
 - La ROM tindrà $2^k = 8$ paraules (files)
 - Cada paraula tindrà $2^n \times k + m$ bits, és a dir $2^2 \times 3 + 34 = 46$ bits
 - La mida de la ROM serà 8 paraules \times 46 bits/paraula = 368 bits

Suma-4: observacions

- El PPE Suma-4 del tema 7 triga 4 cicles però el del tema 8 en triga 7
 - La UP específica opera directament amb la dada del bus de dades
 - A la UPG, la dada ha de passar prèviament pel banc de registres
 - El banc de registres només permet una escriptura per cicle
 - Si el disseny de la UPG hagués fet arribar RD-IN a l'entrada de la ALU, també podria fer el càlcul en 4 cicles
- Qualsevol UC de fins a 8 estats que controli la UPG es pot representar amb 368 bits
 - El contingut de la "ROM Q⁺ i sortides"
 - Una matriu de bits de 8 files \times 46 columnes = 368 bits
 - Aquests 368 bits constitueixen el programa que controla la UPG

Índex

- Entrada/Sortida (E/S) síncrona a la UPG
- Exemples d'entrada/sortida síncrona
 - Suma-4
 - Suma-N
 - MCD
 - Màxim-N
- Exercicis
- Conclusions

Suma-N: Especificació

- El mateix cicle que Begin val "1", a RD-IN es rep el valor N
- Els següents N cicles, es rebran els N valors a sumar
- El cicle que es mostri el resultat per WR-OUT, End ha de valdre "1"
 La resta de cicles End ha de valdre "0"
- El mateix cicle que es mostra el resultat d'una Suma-N, es pot començar a tractar una nova Suma-N
- S'ignorarà el valor de Begin mentre es realitza un Suma-N

Cicle	0	1	2	3	4	5	6	t	t+1
					Х			 0	0
RD-IN (dec)	x	5	15	12	18	10	22	 Х	X
WR-OUT (dec) End	x	Х	Х	Х	Х	Х	Х	 77	X
End	0	0	0	0	0	0	0	 1	0

Suma-N: PPE amb UP específica

- Implementació:
 - Dos registres
 - Un conté la suma parcial i l'altre el comptador de nombres pendents
 - Dos blocs aritmètics
 - Un bloc actualitza la suma i l'altre el comptador
 - Els blocs treballen en paral·lel

Suma-N: implementació a la UPG

- No podrà complir l'especificació original
 - Com hem vist al Suma-4, les dades rebudes per RD-IN s'han de guardar a REGFILE al mateix cicle
 - Però la UPG només té 8 registres!
 - A més, la UPG només pot fer un càlcul per cicle
- Caldrà relaxar la temporització
 - Abans de rebre un nou nombre, caldrà haver processat l'anterior
 - Carregar el nombre en un registre
 - Actualitzar la suma parcial
 - Actualitzar el comptador de nombres pendents
 - Decidir si es continua iterant o si es pot abandonar el bucle

Suma-N: graf d'estats UC per a la UPG

Suma-N: observacions

- Paper dels registres:
 - R1 s'inicialitza amb el valor N i després conté la quantitat de nombres pendents de ser tractats
 - R2 s'inicialitza amb el primer nombre i després conté la suma parcial dels nombres llegits fins ara
 - R3 s'utilitza per llegir la resta de nombres
- Temporització aconseguida:
 - Suposant que en el cicle c Begin="1" i es rep el valor N,
 - al cicle c + 1 es rep el primer nombre
 - al cicle c + 3 es rep el segon
 - a partir d'ara, cada tres cicles es rep un nou nombre
- L'acabament del bucle es detecta quan el comptador arriba al valor 0
 - El bit z ho indica a l'estat on es decrementa el comptador
- Si el codi incrementés el comptador en comptes de decrementar-lo...
 - El final del bucle es detectaria quan el comptador arribés a N
 - Caldria un estat més per fer la comparació del comptador amb N
 - La UPG processaria els nombres a un ritme d'un cada quatre cicles

Suma-N: exercicis

- Determineu les paraules de control corresponents als mnemotècnics del graf d'estats de la UC que calcula Suma-N
- Quants cicles triga el càlcul si N = 5?
 - ullet Des del cicle on Begin=1 fins el cicle on End=1, ambdós inclosos
- Quants cicles triga el càlcul per a un valor arbitrari de N, on $N \ge 2$?
- Com caldria modificar el graf d'estats de la UC si, suposant que en el cicle c Begin="1" i es rep el valor N, al cicle c+3 es rep el primer nombre, al cicle c+6 es rep el segon, al cicle c+9 el tercer, ...?

Índex

- Entrada/Sortida (E/S) síncrona a la UPG
- Exemples d'entrada/sortida síncrona
 - Suma-4
 - Suma-N
 - MCD
 - Màxim-N
- Exercicis
- Conclusions

MCDv1: especificació

- Haurem d'adaptar el protocol d'entrada sortida del PPE
 - El PPE del tema 7 tenia dos bussos d'entrada de dades però la UPG només en té un (RD-IN)
- Quan Begin valgui "1", aquest cicle rebrem el primer nombre a RD-IN
 - El segon nombre es rebrà el cicle següent
- Quan el càlcul estigui complet, End es posarà a "1" i, al mateix cicle, també mostrarà el resultat a WR-OUT

MCDv1: graf d'estats UC per a la UPG

MCDv1: observacions

- A l'estat 0 es carrega RD-IN a R0 per si al final de cicle Begin="1"
 - Si no ho féssim, perdríem el primer operand del MCD
- A l'estat 1 es carrega el segon operand a R1
- Els estats 2 al 5 els vàrem veure com a exemple a l'anterior tema
- A l'estat 6:
 - es mostra el resultat per WR-OUT
 - es posa a "1" el senyal del control *End*
 - es carrega RD-IN a R0 per si al final d'aquest cicle Begin="1"
- L'estat següent a l'estat 6 depèn del valor del senyal Begin
 - Si Begin="1" l'estat següent és 1 perquè s'ha iniciat un nou càlcul
 - Si Begin="0" l'estat següent és 0 per esperar l'inici d'un nou càlcul

MCDv2: especificació

- Modificarem el protocol d'E/S del MCDv1
 - Begin i End estaran un cicle avançades a les dades
- Quan Begin valgui "1" indicarà que al cicle següent rebrem el primer nombre a RD-IN
 - El segon nombre es rebrà dos cicles després
- Quan el càlcul estigui complet End es posarà a "1" i, al cicle següent mostrarà el resultat a WR-OUT

MCDv2: graf d'estats UC per a la UPG

MCDv2: observacions

- A aquesta temporització, l'estat 0 no carrega RD-IN a cap registre
 - Els estats 1 i 2, carreguen els operands a R0 i R1
- Quan des de l'estat 3 es detecta que el càlcul ha finalitzat, salta a l'estat 7, on s'activa el senyal End
 - Com a aquest estat no es pot fer res més, la paraula de control serà NOP
 - A l'estat següent a l'estat 7 es mostrarà el resultat per WR-OUT
 - ullet Però com podem encadenar un nou càlcul, l'estat següent pot ser 0 o 1
 - Per tant, a tots dos estats s'haurà de fer OUT
 - No pot portar a confusió a l'exterior del PPE perquè únicament un dels dos OUT's anirà precedit per End="1"
- Les dues accions de l'estat 1 es poden fer en paral·lel

Índex

- Entrada/Sortida (E/S) síncrona a la UPG
- Exemples d'entrada/sortida síncrona
 - Suma-4
 - Suma-N
 - MCD
 - Màxim-N
- Exercicis
- Conclusions

Màxim-N: especificació

- Completeu el disseny de la unitat de control específica d'un PPE que permeti rebre *N* enters i calcular-ne el màxim.
- El primer valor que arriba és N (on $N \ge 1$) i estarà disponible en RD-IN al mateix cicle que el senyal Begin valgui "1" (cicle k).
- El primer nombre pel càlcul arriba al cicle següent (cicle k+1).
- Si n>1, el segon nombre arriba al cicle k+3 i la resta de nombres arriben cada 4 cicles (és a dir, als cicles k+7, k+11, k+15, etc.).
- Una vegada s'ha iniciat un càlcul, s'ha d'ignorar el senyal Begin fins que aquest acabi.
- Al mateix cicle en què el resultat està disponible a la sortida WR-OUT, i per tant el senyal End es posa a "1"
 - Si al final d'aquest cicle Begin val "1", es començarà un nou càlcul.

Completeu el graf d'estats de la UC

Completeu el graf d'estats de la UC

Màxim-*N*: observacions

- Paper dels registres:
 - R0 s'inicialitza amb el valor N i després conté la quantitat de nombres pendents de ser tractats
 - R1 s'inicialitza amb el primer nombre i després conté el valor màxim detectat fins ara
 - R2 s'utilitza per llegir la resta de nombres
- A E2 es decrementa R0 i amb el bit z es decideix la sortida del bucle
- E3 i E4 obtenen un nou nombre i el comparen amb el màxim actual
- Si el nou nombre és el nou màxim, E5 el guarda a R1 i es torna a iterar
- L'estat E6 amb l'acció NOP garanteix que totes les iteracions del bucle triguen exactament 4 cicles
 - Tipus d'iteracions possibles:
 - Si el nombre llegit és nou màxim: $E3 \rightarrow E4 \rightarrow E5 \rightarrow E2$
 - Si el nombre llegit no és nou màxim: $E3 \rightarrow E4 \rightarrow E6 \rightarrow E2$
 - Garanteix sincronisme del PPE Màxim-N amb les dades que arriben de l'exterior a raó d'una cada quatre cicles

Índex

- Entrada/Sortida (E/S) síncrona a la UPG
- Exemples d'entrada/sortida síncrona
- Exercicis
- Conclusions

Exercicis de completar graf d'estats UC

- Cal completar:
 - Mnemotècnics
 - Transicions al graf d'estats
 - Etiquetes de les transicions
- Aspectes a considerar:
 - Descomposar codi C en accions que pugui realitzar la UPG en un cicle
 - A les comparacions,
 - Ens poden forçar qui ha de ser el primer o el segon operand
 - Hem de tenir en compte si les dades són naturals o enters
 - Cal determinar el valor del bit z correspon a TRUE/FALSE al codi font
 - A les accions, ens poden forçar algun caràcter del mnemotècnic
 - Per exemple, cal multiplicar per 2 amb mnemotècnic que comenci per A
 - \bullet SHL R2, R2, +1 \equiv ADD R2, R2, R2
 - Cal pensar en accions sinònimes

Parcial E3 Q1 16-17

- Completeu (arcs, etiquetes i mnemotècnics) el fragment graf d'estats de la UC perquè, juntament amb la UPG, implementi el fragment de codi indicat.
- Les dades són de tipus natural.

```
for (R0=0; R0<128; R0++) {
  R4=R4*2+R5;
  if ((R6>=R2) && (R0!=0))
     R6=not(R2)
}
R3=R3-R4;
```


Parcial E3 Q1 16-17

- Completeu (arcs, etiquetes i mnemotècnics) el fragment graf d'estats de la UC perquè, juntament amb la UPG, implementi el fragment de codi indicat.
- Les dades són de tipus natural.

```
for (R0=0; R0<128; R0++) {
  R4=R4*2+R5;
  if ((R6>=R2) && (R0!=0))
     R6=not(R2)
}
R3=R3-R4;
```


Parcial E3 Q2 16-17

- Completeu (arcs, etiquetes i mnemotècnics) el fragment graf d'estats de la UC perquè, juntament amb la UPG, implementi el fragment de codi indicat.
- Les dades són de tipus enter.

```
for(R1=133; R1>-133; R1--) {
   // R1<0> es el bit
   // de menys pes de R1
   if (R1<0>==1)
     R2=R2+R1
}
R2=R2/4;
```


Parcial E3 Q2 16-17

- Completeu (arcs, etiquetes i mnemotècnics) el fragment graf d'estats de la UC perquè, juntament amb la UPG, implementi el fragment de codi indicat.
- Les dades són de tipus enter.

```
for(R1=133; R1>-133; R1--) {
    // R1<0> es el bit
    // de menys pes de R1
    if (R1<0>==1)
        R2=R2+R1
}
R2=R2/4;
```


Parcial E3 Q2 17-18

- Completeu (arcs, etiquetes i mnemotècnics) el fragment graf d'estats de la UC perquè, juntament amb la UPG, implementi el fragment de codi indicat.
- Les dades són de tipus natural.

```
if (R3 > 50) {
  while (R0 >= R2) {
    R0 = R0 / 2;
    R3 = R3 - 1;
  }
} else {
  // | es OR bit a bit
  R3 = R2 | R3;
}
R4 = R0 + R3;
```


Parcial E3 Q2 17-18

- Completeu (arcs, etiquetes i mnemotècnics) el fragment graf d'estats de la UC perquè, juntament amb la UPG, implementi el fragment de codi indicat.
- Les dades són de tipus natural.

```
if (R3 > 50) {
  while (R0 >= R2) {
    R0 = R0 / 2;
    R3 = R3 - 1;
  }
}
else {
  // | es OR bit a bit
  R3 = R2 | R3;
}
R4 = R0 + R3;
```


Exercicis a entregar a Atenea

- Enunciat disponible a Atenea
 - https://atenea.upc.edu/pluginfile.php/3603442/mod_ assign/introattachment/0/Tema%208%20-%20Exercicis%20en% 20paper.pdf?forcedownload=1
- Entrega a Atenea fins el dilluns 16/11
 - Format PDF
 - Per fer els grafs d'estats us pot resultat útil l'editor on-line https://www.cs.unc.edu/~otternes/comp455/fsm_designer/
 - Els esquemes lògics els podeu fer a mà i posteriorment fotografiar-los/escanejar-los o utilitzar alguna eina d'edició de circuits (Logic Works, ...)

Índex

- Entrada/Sortida (E/S) síncrona a la UPG
- Exemples d'entrada/sortida síncrona
- Exercicis
- Conclusions

Conclusions

Esquema UC+UPG amb entrada/sortida

- Donat un problema, resoldre'l amb UPG+UC pot trigar més cicles i tenir un T_p major que si s'hagués resolt amb una UP específica
 - Però podrem reutilitzar la UPG per a d'altres problemes
 - I el cost de desenvolupament serà menor que utilitzat UP específica
- A alguns casos, la UPG rebrà dades de l'exterior (bus RD-IN) a un ritme d'una dada cada N cicles
 - \bullet Pot ser necessari utilitzar l'acció NOP per garantir que cada iteració del bucle triga exactament N cicles
- No oblideu realitzar el qüestionari ET8b i exercicis en paper (slide 39)

Referències I

Llevat que s'indiqui el contrari, les figures, esquemes, cronogrames i altre material gràfic o bé han estat extrets de la documentació de l'assignatura elaborada per Juanjo Navarro i Toni Juan, o corresponen a enunciats de problemes i exàmens de l'assignatura, o bé són d'elaboració pròpia.

[1] [Online]. Available: https://www.victorinox.com/global/en/Products/Swiss-Army-Knives/Medium-Pocket-Knives/Explorer/p/1.6703.

Introducció als Computadors

Tema 8: Unitat de Procés General (UPG)
http://personals.ac.upc.edu/enricm/Docencia/IC/IC8b.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ 🕒 🛇

