Exploratory data analysis (EDA) Part 5: Measures of variation (variance and standard deviation)

By: Noureddin Sadawi, PhD University of London

Measures of variation

- In the previous section we spoke about:
 - range
 - interquartile range
- In this section, we will consider the following measures of variation:
 - variance
 - standard deviation

Variance

The variance is the average of the squared deviations of values from the mean.

Population variance, denoted by σ^2 is given by:

$$\sigma^2 = \frac{\sum (x_{i-\mu})^2}{N}$$

Where N denotes the population size the μ denotes the population mean.

Variance

Sample variance, denoted by s^2 is given by:

$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1}$$

Which simplifies to:2

$$s^2 = \frac{\sum x_1^2 - n\overline{x}^2}{n-1}$$

Where n denotes the sample size the \overline{x} denotes the sample mean.

Notice we divide by n-1 and not n.

This is because we are using the sample mean and not the population mean (more on this later in topic 3).

Standard deviation

- The standard deviation is the most commonly used measure of spread.
- This is because it is expressed in the same unit as the original data whereas the variance is in squared units.
- It is equal to the positive square root of the variance and is denoted by σ for population standard deviation and by s for sample standard deviation. That is:

Standard deviation

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

And

$$s = \sqrt{s^2} = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

The standard deviation shows variation about the mean.

Suppose we want to compute the sample mean, variance and standard deviation of the following data:

Sample Mean = \overline{x} =

$$(11 + 12 + 13 + 16 + 16 + 18 + 19 + 20 + 21)/9 = 146/9$$

To calculate the variance:

X		11	12	13	16	16	18	19	20	21	Total
X	(2	121	144	169	256	256	324	361	400	441	2472

$$s^{2} = \frac{\sum x_{i}^{2} - n\overline{x}^{2}}{n-1} = \frac{2472 - 9 \times \left(\frac{146}{9}\right)^{2}}{9-1} = 12.94 \ (2 \ d. p.)$$

Standard deviation $s = \sqrt{12.94} = 3.60 \ (2 \ d. \ p.)$

Standard deviation $s = \sqrt{12.94} = 3.60 \ (2 \ d. \ p.)$

If data is in frequency table

• If the data is discrete, then:

$$s^{2} = \frac{\sum (f * (x - \overline{x})^{2})}{\sum f - 1} \quad \text{and} \quad \overline{x} = \frac{\sum (f * x)}{\sum f}$$

Here, *f* denotes the frequency.

x	frequency(f)	f * x	$x-\overline{x}$	$(x-\overline{x})^2$	$f * (x - \overline{x})^2$
5	5	25	-3.3	10.89	54.45
6	5	30	-2.3	5.29	26.45
10	2	20	1.7	2.89	5.78
11	5	55	2.7	7.29	36.45
12	3	36	3.7	13.69	41.07
Total	20	166		40.05	164.2

 $\overline{x} = 8.3$

$$\overline{x} = \frac{\sum (f * x)}{\sum f} = \frac{166}{20} = 8.3$$

$$s^{2} = \frac{\sum (f * (x - \overline{x})^{2})}{\sum f - 1} = \frac{164.2}{20 - 1}$$

$$s^2 \approx 8.642$$

$$s^2 = \sqrt{8.642} \approx 2.94$$

Coefficient of variation

- The Coefficient of variation (CV) measures how large the standard deviation is in relation to the mean.
- It it usually given as a percentage and is defined as:

$$CV = \left(\frac{s}{\overline{x}} \times 100\right)\%$$

Coefficient of variation

- It is a dimensionless number, that is, it is independent of the unit of measurement.
- It also shows the extent of variability in relation to the mean of the population.
- For example, in finance investors calculate how much risk
 (i.e. volatility) they can assume in comparison to the amount
 of return they expect from investments.
- The risk-return trade-off: the lower the CV value the better!