CS161 - Quiz 6

Started: Mar 10 at 6:06pm

Quiz Instructions

Question 1	1 pts
$Pr\left(lpha ight) = Pr\left(lpha \wedge eta ight) Pr\left(lpha \wedge eg eta ight) \; extit{for any events $lpha$ and eta}$	
○ True	
False	

Question 2	1 pts
If X and Y are probabilistically independent, then they must continue to be independent given any variable Z.	
True	
○ False	

Question 3	1 pts
The local semantics of Bayesian network says:	
Every node is independent of its parents given its non-descendants	
Every node is independent of its descendants given its parents	
○ None of the others	
Every node is independent of its parents given its descendants	

Every node is independent of its non-descendants given its parents

Question 4	1 p	ots

Consider a Bayesian network $X_1 \longrightarrow X_2 \longrightarrow \ldots \longrightarrow X_n$ (a chain with n nodes). Assume that each variable X_i has only two values x_i and $\overline{x_i}$. Then $Pr\left(x_3 \mid \overline{x_1}\right)$ is equal to:

- $\bigcirc \hspace{0.1cm} Pr\left(x_{3} \mid x_{2}\right) Pr\left(x_{2} \mid \overline{x_{1}}\right) + Pr\left(x_{3} \mid \overline{x_{2}}\right) Pr\left(\overline{x_{2}} \mid \overline{x_{1}}\right)$
- $\bigcirc Pr(x_3,\overline{x_1})Pr(\overline{x_1})$
- O None of the others
- $\bigcirc Pr(x_3)$
- $\bigcirc Pr(x_3 \mid x_2, \overline{x_1}) + Pr(x_3 \mid \overline{x_2}, \overline{x_1})$

Quiz saved at 6:08pm

Submit Quiz