Project: Creditworthiness

Step 1: Business and Data Understanding

What decisions needs to be made?

I need to determine if customers are creditworthy to give a loan to, that is knowing how to systematically evaluate the creditworthiness of new loan applicants coming in.

What data is needed to inform those decisions?

The data used is from the Credit-data-training dataset provided which contains all credit approvals from your past loan applicants the bank has ever completed. These were the variables used:

- 1. Account Balance
- 2. Duration of Credit month
- 3. Payment status of Previous Credit
- 4. Credit Amount
- 5. Purpose
- 6. Value-Savings-Stocks
- 7. Length-of-Current-employment
- 8. Installment per credit
- 9. Most-valuable-available assets
- 10. Age-years
- 11. Type of apartment
- 12. No of Credit at this Bank
- What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

The kind of model to use is a Binary model since it is a Yes or No answer: Creditworthy or not; Approved or not Approved.

Step 2: Building the Training Set

Build your training set given the data provided to you. The data has been cleaned up for you already so you shouldn't need to convert any data fields to the appropriate data types.

• In your cleanup process, which fields did you remove or impute? Please justify why you removed or imputed these fields. Visualizations are encouraged.

From the diagrams below, these decisions were taken:

- 1. Concurrent Credits, Occupation, Guarantors, Foreign Worker and No of Dependents were removed because it shows low variability. This was done in order not to skew our analysis results.
- 2. Duration in Current Address has 69% missing data and was also removed.
- 3. While Age Years has few missing data, I decided to impute the missing data with the median age.
- 4. Finally, Telephone field was also removed due to its irrelevancy to the customer creditworthy.

Figure above showing Alteryx workflow used to build data set.

Figure above showing the field summary of the data set.

Figure above showing the percentage of the missing data in the variable - Age-years

Figure above shows the person correlation table.

Step 3: Train your Classification Models

First, create your Estimation and Validation samples where 70% of your dataset should go to Estimation and 30% of your entire dataset should be reserved for Validation. Set the Random Seed to 1.

Answer these questions for **each model** you created:

• Which predictor variables are significant or the most important? Please show the pvalues or variable importance charts for all of your predictor variables.

From the diagrams as shown below, the significant predictor variables for each of the models are:

- 1. Logistic Regression: Account Balance, Payment status of Previous Credit, Purpose, Credit Amount, Length-of-Current-employment and Installment per credit.
- 2. Decision Tree: Account Balance, Duration of Credit month and Value-Savings-Stocks
- 3. Forest Model: Credit Amount, Age-years, Duration of Credit month and Account Balance.
- 4. Boosted Model: Credit Amount, Account Balance, Duration of Credit month and Payment status of Previous Credit.

Report						
		Report for Logist	ic Regression Mode	l X		
Basic Summary						
		ilt ~ Account.Balance + Pay Ilment.per.cent + Most.valu				
Deviance Residuals:						
	Min	10	Median		3Q	M
4	2.289	-0.713	-0.448		0.722	2.4
Coefficients:						
			Estimate	Std. Error	z value	Pr(> z)
(Intercept)			-2.9621914	6.837e-01	-4.3326	1e-05 ****
Account.BalanceSome Bala	ince		-1.6053228	3.067e-01	-5.2344	1.65e-07 ***
Payment.Status.of.Previou	s.CreditPaid Up		0.2360857	2.977e-01	0.7930	0.42775
Payment.Status.of.Previou	s.CreditSome Prob	ilems	1.2154514	5.151e-01	2.3595	0.0183 "
PurposeNew car			-1.6993164	6.142e-01	-2.7668	0.00566 ***
PurposeOther			-0.3257637	8.179e-01	-0.3983	0.69042
PurposeUsed car			-0.7645820	4.004e-01	-1.9096	0.05618.
Credit.Amount			0.0001704	5.733e-05	2.9716	0.00296 ***
Length.of.current.employm	nent4-7 yrs		0.3127022	4.587e-01	0.6817	0.49545
Length.of.current.employm	nent< 1yr		0.8125785	3.874e-01	2.0973	0.03596 "
Instalment.per.cent			0.3016731	1.350e-01	2.2340	0.02549 *
						0.06289.

Null deviance: 413.16 on 349 degrees of freedom Residual deviance: 328.55 on 338 degrees of freedom

McFadden R-Squared: 0.2048, Akaike Information Criterion 352.5

Number of Fisher Scoring Iterations: 5 Type II Analysis of Deviance Tests

Decision Tree summary

Summary Report for Decision Tree Model D_T

Call:

rpart(formula = Credit.Application.Result ~ Account.Balance + Duration.of.Credit.Month + Payment.Status.of.Previous.Credit + Purpose + Credit.Amount + Value.Savings.Stocks + Length.of.current.employment + Instalment.per.cent + Most.valuable.available.asset + Age.years + Type.of.apartment + No.of.Credits.at.this.Bank, data = the.data, minsplit = 20, minbucket = 7, xval = 10, maxdepth = 20, cp = 1e-05, usesurrogate = 0, surrogatestyle = 0)

Model Summary

Variables actually used in tree construction:

[1] Account.Balance Duration.of.Credit.Month Purpose Value.Savings.Stocks

Root node error: 97/350 = 0.27714

n= 350

Pruning Table

Level	CP	Num Splits	Rel Error	X Error	X Std Dev
1	0.068729	0	1.00000	1.00000	0.086326
2	0.041237	3	0.79381	0.94845	0.084898
3	0.025773	4	0.75258	0.88660	0.083032

Leaf Summary

node), split, n, loss, yval, (yprob)

" denotes terminal node

- 1) root 350 97 Creditworthy (0.7228571 0.2771429)
- 2) Account.Balance=Some Balance 166 20 Creditworthy (0.8795181 0.1204819) *
- 3) Account.Balance=No Account 184 77 Creditworthy (0.5815217 0.4184783)
- 6) Duration.of.Credit.Month< 13 74 18 Creditworthy (0.7567568 0.2432432) **
- 7) Duration.of.Credit.Month>=13 110 51 Non-Creditworthy (0.4636364 0.5363636)
 - 14) Value. Savings. Stocks = < £100, £100-£1000 34 11 Creditworthy (0.6764706 0.3235294) **
- 15) Value.Savings.Stocks=None 76 28 Non-Creditworthy (0.3684211 0.6315789)
 - 30) Purpose=New car 8 2 Creditworthy (0.7500000 0.2500000) =
 - 31) Purpose=Home Related,Other,Used car 68 22 Non-Creditworthy (0.3235294 0.6764706) **

Variable Importance plot for Forest Model

Variable Importance Plot

Credit.Amount

Age.years

Duration.of.Credit.Month

Account.Balance

Most.valuable.available.asset

Payment.Status.of.Previous.Credit

Instalment.per.cent

Value.Savings.Stocks

Purpose

Length.of.current.employment

Type.of.apartment

No.of.Credits.at.this.Bank

Variable Importance plot for Boost Model

Plots:

Variable Importance Plot

Account.Balance

Credit.Amount

Duration.of.Credit.Month

Payment.Status.of.Previous.Credit

Purpose

Age.years

Most.valuable.available.asset

Instalment.per.cent

Value.Savings.Stocks

Length.of.current.employment

Type.of.apartment

No.of.Credits.at.this.Bank

Validate your model against the Validation set. What was the overall percent accuracy?
 Show the confusion matrix. Are there any bias seen in the model's predictions?

The model comparison function was used to compare models to get their respective overall accuracy and confusion matrix as shown below:

			N	Iodel Comparison Report	
Fit and erro	r measures				
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
X	0.7600	0.8364	0.7306	0.8762	0.488
D_T	0.7467	0.8304	0.7035	0.8857	0.4223
	0.7933	0.8681	0.7368	0.9714	0.3778
BT	0.7867	0.8632	0.7515	0.9619	0.3778
D_T F_T BT				0.9619	0.3778
	0.7867	0.8632		0.9619	0.377
Model: model n	0.7867 ames in the current comp	0.8632 parison.	0.7515		0.3778
Model: model n Accuracy: overa	0.7867 ames in the current comp Il accuracy, number of co	0.8632 parison. prect prediction	0.7515 ons of all classe	s divided by total sample number.	
Model: model n Accuracy: overa Accuracy_[class	0.7867 ames in the current comp Il accuracy, number of co s name]: accuracy of Cla	0.8632 parison. prrect predictions ss [class name	0.7515 ons of all classe i] is defined as	s divided by total sample number. the number of cases that are correctly predicted to be Class [class na	
Model: model n Accuracy: overa Accuracy_[class actually belong to	0.7867 ames in the current comp Il accuracy, number of co s name]: accuracy of Cla o Class [class name], this	0.8632 parison. rrect predictic ss [class name measure is als	0.7515 ons of all classe g is defined as to o known as rec	s divided by total sample number. the number of cases that are correctly predicted to be Class [class na all.	
Model: model n Accuracy: overa Accuracy_[class actually belong to AUC: area under	ames in the current compill accuracy, number of cos name]: accuracy of Clao Class [class name], this the ROC curve, only avai	0.8632 parison. rrect prediction ss [class name measure is als ilable for two-	0.7515 ons of all classe ig is defined as to o known as rec class classificati	s divided by total sample number. the number of cases that are correctly predicted to be Class [class na all. on.	me] divided by the total number of cases that
Model: model n Accuracy: overa Accuracy_[class actually belong to AUC: area under	ames in the current compill accuracy, number of cos name]: accuracy of Clao Class [class name], this the ROC curve, only avai	0.8632 parison. rrect prediction ss [class name measure is als ilable for two-	0.7515 ons of all classe ig is defined as to o known as rec class classificati	s divided by total sample number. the number of cases that are correctly predicted to be Class [class na all.	me] divided by the total number of cases that
Model: model n Accuracy: overa Accuracy_[class actually belong to AUC: area under F1: F1 score, 2 * 1	0.7867 ames in the current compill accuracy, number of compile accuracy of Claso (class flame); accuracy of Claso (class flame), this in the ROC curve, only available precision * recall / (precision the recall / (precisio	0.8632 parison. prect prediction ss [class name measure is als ilable for two- ion + recall). T	0.7515 ons of all classe is defined as to o known as rec class classificati the precision m	s divided by total sample number. the number of cases that are correctly predicted to be Class [class na all. on.	me] divided by the total number of cases that cted to be in that class divided by the total

Confusion matrix of BT		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	101	28
Predicted_Non-Creditworthy	4	17
Confusion matrix of D_T		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	93	26
Predicted_Non-Creditworthy	12	19
Confusion matrix of F_T		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	102	28
Predicted_Non-Creditworthy	3	17
Confusion matrix of X		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	92	23
Predicted_Non-Creditworthy	13	22
Performance Diagnostic Plots		

From the above diagram, the Logistic regression has an overall accuracy of 76%. The accuracy to predict Creditworthy is 87% while for Non creditworthy is very low at 48%. Also in the confusion matrix, it shows low accuracy for prediction of Non creditworthy customers showing that there is bias.

In the Decisions tree model, the overall accuracy is quite same as above but at 74%. There is good prediction for the Creditworthy customers but yet low accuracy for Non creditworthiness. Hence there is bias.

Both Forest and Boost model did better with an overall accuracy of 79% and 78% respectively, but yet there is bias in predicting the Actual Credit worthy and Non creditworthy customers.

Step 4: Writeup

Decide on the best model and score your new customers. For reviewing consistency, if Score_Creditworthy is greater than Score_NonCreditworthy, the person should be labeled as "Creditworthy"

Steps I took to come up with the classification model:

- 1. I created the analytical data set, cleaned the data, removed 7 irrelevant columns and imputed the Age year with the median age
- 2. I created 70% estimation sample and 30% validation sample
- 3. I added and set up Logistic regression model with a Stepwise tool
- 4. I added and set up Decision tree model
- 5. I added and set up Forest model
- 6. I added and set up Boosted model
- 7. I joined all the models using the union tool and compared them all with a model comparison tool
- 8. Then used the best model to score and get the number of individuals that are creditworthy.
- Which model did you choose to use? Please justify your decision using **all** of the following techniques. Please only use these techniques to justify your decision:
 - Overall Accuracy against your Validation set

From the model comparison report, Forest Model has the highest overall accuracy of 79%.

- Accuracies within "Creditworthy" and "Non-Creditworthy" segments
 Also Forest model has the highest accuracy for the Creditworthy segment although it has a low accuracy for non credit worthy segment.
 - ROC graph

When comparing the ROC curve of the four models, Forest tree and Boosted model performs better while Decision tree seems to perform worst.

Bias in the Confusion Matrices

Confusion matrix of BT		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	101	28
Predicted_Non-Creditworthy	4	17
Confusion matrix of D_T		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	93	26
Predicted_Non-Creditworthy	12	19
Confusion matrix of F_T		
Confusion matrix of F_T	Actual_Creditworthy	Actual_Non-Creditworthy
Confusion matrix of F_T Predicted_Creditworthy	Actual_Creditworthy	Actual_Non-Creditworthy
_		Actual_Non-Creditworthy 28 17
Predicted_Creditworthy		Actual_Non-Creditworthy 28 17
Predicted_Creditworthy Predicted_Non-Creditworthy		Actual_Non-Creditworthy 28 17 Actual_Non-Creditworthy
Predicted_Creditworthy Predicted_Non-Creditworthy	102 3	28 17

From the above confusion matrix, it is observed that the Forest tree model predicted more than the other models for creditworthy customers. It predicted 102 customers for Creditworthy and 28 for Non creditworthy customers.

Since the boss cares more about prediction accuracy for Creditworthy and Non-Creditworthy segments, Forest tree model will be used because it has the highest accuracy.

How many individuals are creditworthy?

408 individuals are creditworthy.

Altreyx workflow for Project: Creditworthiness

