Introducción a los Sistemas Operativos

Administración de Archivos - III

I.S.O.

- ✓ Versión: Noviembre 2017
- ☑ Palabras Claves: Archivo, File System, Directorio, UNIX, I-NODO, Windows, FAT

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

UNIX - Manejo de archivos

- ☑Tipos de Archivos
 - ✓ Archivo común
 - ✓ Directorio
 - ✓ Archivos especiales (dispositivos /dev/sda)
 - ✓ Named pipes (comunicación entre procesos)
 - ✓ Links (comparten el i-nodo, solo dentro del mismo filesystem)
 - ✓ Links simbólicos (tiene i-nodo propio, para filesystems diferentes)

UNIX - Estructura del Volumen

- ☑ Cada disco físico puede ser dividido en uno o más volúmenes. Cada volumen o partición contiene un sistema de archivos. Cada sistema de archivos contiene:
 - ☑Boot Block: Código para bootear el S.O.
 - ☑Superblock: Atributos sobre el File System
 - Bloques/Clusters libres
 - ☑I-NODE Table: Tabla que contiene todos los I-NODOS
 - ✓ I-NODO: Estructura de control que contiene la información clave de un archivo
 - ☑ Data Blocks: Bloques de datos de los archivos

UNIX - Estructura del Volumen

UNIX – Información del i-nodo

☑ Un inodo es una estructura de datos del FileSystem que posee información sobre cada archivo, directorio u objeto que se almacene en el sistema de archivos

✓ Notar que el nombre del archivo no se almacena en esta

Table 12.4 Information in a UNIX Disk-Resident Inode

File Mode	16-bit flag that stores access and execution permissions associated with the file. 12-14 File type (regular, directory, character or block special, FIFO pipe 9-11 Execution flags 8 Owner read permission 7 Owner write permission 6 Owner execute permission 5 Group read permission 4 Group write permission 9 Group execute permission 1 Other read permission 1 Other write permission 0 Other execute permission	
Link Count	Number of directory references to this inode	
Owner ID	Individual owner of file	
Group ID	Group owner associated with this file	
File Size	Number of bytes in file	
File Addresses	39 bytes of address information	
Last Accessed	Time of last file access	
Last Modified	Time of last file modification	
Inode Modified	Time of last inode modification	

UNIX - I-NODO

UNIX - Directorios

✓ Los nombres de archivos se almacenan en los directorios.

☑ El directorio es una tabla que tuplas del tipo "Numero de i-nodo, nombre de archivo"

UNIX - Directorios (cont)

Buscar el i-nodo del archivo /usr/ast/mbox

Root directory

1100t dilectory		
1	•	
Ψ	:	
4	bin	
7	dev	
14	lib	
9	etc	
6	usr	
8	tmp	

Looking up usr yields i-node 6 I-node 6 is for /usr

Mode size times	
132	

I-node 6 says that /usr is in block 132 Block 132 is /usr directory

	10
6	•
1	• •
19	dick
30	erik
51	jim
26	ast
45	bal

/usr/ast is i-node 26 I-node 26 is for /usr/ast

	Mode size times
6	406

I-node 26 says that /usr/ast is in block 406 Block 406 is /usr/ast directory

26	•
6	••
64	grants
92	books
60	mbox
81	minix
17	src

/usr/ast/mbox is i-node 60

Windows - File Systems Soportados

- ☑CD-ROM File System (CDFS) ☐ CD
- ☑Universal Disk Format (UDF) □ DVD, Blu-Ray
- **☑** File Allocation Table
 - FAT12 ☐ MS-DOS v3.3 a 4.0 (año 1980), floppy
 - FAT16 ☐ MS-DOS 6.22, nombres cortos de archivo
 - FAT32

 MS-DOS 7.10, nombres largos pero no soportados en MS-DOS
- ✓ New Technology File System (NTFS)

- ☑ FAT (File Allocation Table) es un sistema de archivos utilizado originalmente por DOS y Windows 9x
- ☑ ¿Porqué Windows aun soporta FAT file systems?:
 - ✓ Por compatibilidad con otro SO en sistemas multiboot
 - Para permitir upgrades desde versiones anteriores
 - ✓ Para formato de dispositivos como diskettes
- Las distintas versiones de FAT se diferencian por un número que indica la cantidad de bits que se usan para identificar diferentes bloques o clusters:
 - FAT12
 - FAT16
 - FAT32

- ☑ Se utiliza un mapa de bloques del sistema de archivos, llamado FAT.
- La FAT tiene tantas entradas como bloques.
- La FAT, su duplicado y el directorio raiz se almacenan en los primeros sectores de la partición

Boot sector

File allocation table 1

File allocation table 2 (duplicate)

Root directory

Other directories and all files

FAT format organization

☑ Se utiliza un esquema de ASIGNACION ENCADENADA.

La única diferencia es que el puntero al proximo bloque está en la FAT y no en los bloques

☑ Bloques libres y dañados tienen codigos Especiales

Los directorios mantienen esta información

Nombre	DIRECTORIO	ler bloque	Tamañ	o
FICH_A		7	4	I
FICH_B		4	1	
FICH_C		2	3	

- ☑ En sistemas FAT12, al utilizarse 12 bits para la identificación del sector, la misma se limita a 2¹² (4096) sectores
 - ✓ Windows utiliza tamaños de sector desde los 512 bytes hasta 8 KB (16 bloques consecutives), lo que limita a un tamaño total de volume de 32 MB ☐ 2¹² * 8 KB
 - ✓ Windows utiliza FAT12 como Sistema de archivos de los disketts de 3,5 y 12 pulgadas que pueden almacenar hasta 1,44 MB de datos

- FAT16 al utilizar 16 bits para identificar cada sector puede tener hasta 2¹⁶ (65.536) sectores en un volúmen
 - ✓ En windows el tamaño de sector en FAT16 varía desde los 512 bytes hasta los 64 KB (128 sectores consecutives), lo que limita a un tamaño máximo de volume de 4 GB.
 - El tamaño de sector dependía del tamaño del volume al formatearlo

- ☑FAT32 fue el Filesystem mas reciente de la línea (posteriormente salió exFAT que algunos lo conocen como FAT64)
- ☑FAT32 utiliza 32 bits para la identificación de sectores, pero reserva los 4 bits superiors, con lo cual efectivamente solo se utiliazan 28 bits para la identificación:
 - ✓ El tamaño de sector en FAT 32 puede ser de hasta 32 KB, con lo cual tiene una capacidad teórica de direccionar volúmenes de hasta 8 TB
 - ✓ El modo de identificación y acceso de los sectores lo hace mas eficiente que FAT16. Con tamaño de sector de 512 bytes, puede direccionar volúmenes de hasta 128 GB.

Block size	FAT-12	FAT-16	FAT-32
0.5 KB	2 MB		
1 KB	4 MB		
2 KB	8 MB	128 MB	
4 KB	16 MB	256 MB	1 TB
8 KB		512 MB	2 TB
16 KB		1024 MB	2 TB
32 KB		2048 MB	2 TB

Windows - NTFS

- ☑ NTFS es el filesystem nativo de Windows desde Windows NT
- ☑ NTFS usa 64-bit para referenciar sectores
 - ✓ Teoricamente permite tener volumenes de hasta 16 Exabytes (16 billones de GB)
- ☑ ¿Porqué usar NTFS en lugar de FAT? FAT es simple, mas rápido para ciertas operaciones, pero NTFS soporta:
 - ✓ Tamaños de archivo y de discos mayores
 - ✓ Mejora performance en discos grandes
 - ✓ Nombres de archivos de hasta 255 caracteres
 - ✓ Atributos de seguridad
 - Transaccional

