Доказательство:

Пусть $\Phi: I \to \mathbb{R}$ – первообразная функции f на интервале I, то есть $\Phi'(x) = f(x)$, $\forall x \in I$. Тогда $(\Phi(x) - F(x))' = \Phi'(x) - F'(x) = f(x) - f(x) = 0$, $\forall x \in I$. Получили функцию $\Phi(x) - F(x) = C$, где C – произвольная постоянная.

Таким образом, $\Phi(x) = F(x) + C$.

Графики любых двух первообразных для функции f получаются друг из друга путем параллельного переноса вдоль оси Oy (рис. 1.1).

Можно доказать следующую теорему.

Любая функция $f: [a, b] \to \mathbb{R}$, непрерывная на отрезке [a, b], имеет первообразные на этом отрезке.

1.2. Понятие неопределенного интеграла

Пусть $f: I \to \mathbb{R}$ (интервал $I \subseteq \mathbb{R}$) — некоторая функция, имеющая первообразные. Множество первообразных функции f называется **неопределенным интегралом от функции** f.

Обозначается $\int f(x) dx$ и читается: «Интеграл от эф от икс дэ икс».

Символ ∫ называется знаком интеграла.

Итак, $\int f(x) dx = F(x) + C$, где F – одна из первообразных для функции f на интервале I, то есть F'(x) = f(x), $\forall x \in I$, а C – произвольная постоянная.

Нахождение первообразных некоторой функции (имеющей первообразные) называется *интегрированием*. Обозначение $\int f(x) dx$ является неделимым, то есть символам \int и f(x) dx, отдельно взятым, не придают какого-либо смысла. Функция f называется *подынтегральной функцией*, переменная x – *переменной интегрирования*, а C – *постоянной интегрирования*.

Примеры

1
$$\int x^2 dx = \frac{x^3}{3} + C$$
, так как $\left(\frac{x^3}{3} + C\right)' = x^2$.

$$2$$
 $\int \cos x \, dx = \sin x + C$, τακ κακ $(\sin x + C)' = \cos x$.

3
$$\int e^{-2x} dx = -\frac{1}{2}e^{-2x} + C$$
, так как $\left(-\frac{1}{2}e^{-2x} + C\right)' = e^{-2x}$.

 $\frac{dx}{x} = \ln|x| + C$, так как если x > 0, то $\ln|x| = \ln x$ и производная правой части

равна $(\ln |x| + C)' = (\ln x + C)' = \frac{1}{x}$.

Следовательно, она совпадает с подынтегральной функцией.

Если x < 0, то $\ln |x| = \ln(-x)$ и производная правой части равна

$$(\ln |x| + C)' = (\ln(-x) + C)' = -\frac{1}{x}(-x)' = \frac{1}{x}.$$

Итак, формула верна для положительных и отрицательных значений x.