QF Group Theory CC2022 By Zaiku Group

Lecture 14

Delivered by Bambordé Baldé

Friday, 09/09/2022

Learning Journey Timeline

quantumformalism.com

Left and Right Cosets

Definition 1.0

Let G be a group and H be a subgroup of G. Then for any element $g \in G$, we define the left H- coset of generated by g as $gH = \{gh \mid h \in H\}$.

- It's easy to see that $g \in gH$ right?
- We write |gH| to denote the cardinality of gH.

Definition 1.1

Let G be a group and H be a subgroup of G. Then for any element $g \in G$, we define the right H- coset of generated by g as $Hg = \{hg \mid h \in H\}$.

- It's also easy to see that $g \in Hg$ right?
- We analogously write |Hg| to denote the cardinality Hg.

Natural questions: Are gH and Hg necessarily subgroups of G? If no, under what circumstances are they subgroups of G?

Side note: The notion of coset was invented by Galois! But the terminology introduced by American group theorist George Abram Miller.

Examples of Cosets (A)

Left Cosets

Suppose $G = S_3$ and $H = \{(1), (13)\}$. Now consider the cycles (1), (12) and (13). Then we'll get the following left cosets:

- (1)H = H
- $(12)H = \{(12), (132)\}$
- $(13)H = \{(13), (1)\}$

Right Cosets (Challenge 1)

Suppose again $G = S_3$ and $H = \{(1), (13)\}$. Let consider the same cycles (1), (12) and (13). You're challenged to compute their corresponding right cosets below!

- **1** H(1).
- Θ H(12).
- \bullet H(13).

Examples of Cosets (B)

Left Cosets

Let $G = \mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ under mod 9 addition and $H = \{0, 3, 6\}$. Now, because we're dealing with addition, it's more convenient to write a left coset as g + H instead of gH! We'll then have the following left cosets:

- 0 3 + H = H.
- $\mathbf{2} 1 + H = \{1, 4, 7\}.$

Left Cosets (Challenge 2)

Let us again set $G = \mathbb{Z}_9$ and $H = \{0, 3, 6\}$ as above. You're encouraged to compute the following left cosets:

- 0 + H.
- \circ 5 + H.
- **3** 6 + H.
- $\mathbf{0}$ 7 + H.
- $\mathbf{0}$ 8 + H.
- After the examples above, do you notice anything interesting compared to the previous examples?

Facts about cosets

Theorem 1.0

Let G be a group and H a subgroup of G. Then the following properties hold:

- 2 gH = H iff $g \in H$ for all $g \in G$.
- **3** $g_1H = g_2H$ iff $g_1^{-1}g_2 \in g_2H$ for all $g_1, g_2 \in G$.
- **1** Either $g_1H = g_2H$ or $g_1H \cap g_2H = \emptyset$ for all $g_1, g_2 \in G$.
- **1** $|g_1H| = |g_2H|$ for all $g_1, g_2 \in G$.
- **1** gH is a subgroup of G iff $g \in H$.

Proof: As a challenge, try to prove some of the properties by yourself! **Natural question 3:** Do the properties above hold for right cosets too?

The index of a subgroup

Definition 1.2

Let G be a group and H be a subgroup of G. Then the index of H in G denoted [G:H] is the number of left cosets i.e. [G:H] is the cardinality of the $\{gH \mid g \in G\}$.

- As you'll see in the next couple slides, $\{gH \mid g \in G\}$ is a very special set for certain subgroups!
- Alternative notation for the index is (G : H) or sometimes |G : H|!
- It's obvious that if $H = \{1_G\}$, where 1_G is the group identity, then [G:H] = |G| i.e. the index of the trivial subgroup coincides with the order of the group G!

Theorem 1.1 (Lagrange)

Let G be a finite group and H a subgroup of G. Then |G| = [G : H]|H|.

Curiosity question (homework): Does the theorem above holds if *G* is infinite?

Examples of subgroup index

- Consider $G = \mathbb{Z}$ the group of the integers under ordinary addition. If $H = 2\mathbb{Z}$ then $[\mathbb{Z} : 2\mathbb{Z}] = 2$ right? Also, does $[\mathbb{Z} : n\mathbb{Z}] = n$ hold for any positive integer n?
- Let now $G = \mathbb{R}$ the group of the reals under ordinary addition. If we make If $H = 2\mathbb{Z}$, what is $[\mathbb{R} : n\mathbb{Z}]$? What if $H = \mathbb{Z}$?

Normal subgroups

Definition 1.3

Let G be a group and H be a subgroup of G. We say H is a normal subgroup if for any $h \in H$ we have $ghg^{-1} \in H$ for all $g \in G$.

- We write $H \triangleleft G$ to denote H is a normal subgroup of G.
- It's obvious that if G is abelian, then all the subgroups of G are normal. So things are more interesting when G is nonabelian!

Theorem 1.2

Let $\phi: G_1 \longrightarrow G_2$ be a group homomorphism. Then $Ker(\phi) \lhd G_1$.

Proof: Homework challenge!

 Hence, group homomorphisms are a great source of normal subgroups even if the underlying groups are nonabelian!

Challenge 3

Is it true $H \triangleleft G$ iff gH = Hg for all $g \in G$?

Examples of Normal Subgroups

• Let A_n be the subgroup of even permutations of S_n (aka Alternating group) encountered in lecture 12. A_n is a normal subgroup of S_n ! An easy way to see A_n is normal is to recall that $A_n = Ker(sign)$ where $sign: S_n \longrightarrow \{1, -1\}$ is a group homomorphism. The group operation in $\{1, -1\}$ is the ordinary multiplication. Also, recall that for any permutation $\sigma \in S_n$, the homomorphism sign is defined as follows:

$$sign(\sigma) = \left\{egin{array}{ll} +1 & ext{if} & \sigma ext{ is even} \ & & & \ & & \ & -1 & ext{if} & \sigma ext{ is odd} \end{array}
ight.$$

• Let G be a nonabelian group and Z(G) be the center of G i.e. $Z(G) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$. Then Z(G) is normal!

Normal subgroups challenge

Challenge 5

Let G be a group with normal subgroups $H_1 \triangleleft G$ and $H_2 \triangleleft G$. Is it true $H_1 \cap H_2 \triangleleft G$ i.e. is the intersection of two normal subgroups normal?

• What about $H_1 \cup H_2$?

Challenge 6

Let $G = S_3$ and $H = \{(1), (123), (132)\}$. Is $H \triangleleft G$? Also, what is the index [G : H]?

Quotient groups

Definition 1.4

Let G be a group and H a normal subgroup of G. We define the set $G/H = \{gH \mid g \in G\}$ i.e. G/H is the set of all H— left cosets.

• Now, we can use the group operation in G to define a binary operation in G/H as follows, for g_1H , g_2H we define $(g_1H)(g_2H)=(g_1g_2)H$ where obviously g_1g_2 is the operation in G.

Proposition 1.0

Under the binary operation above, G/H is a group with identity 1_GH and for each coset $gH \in G/H$, the group inverse is $g^{-1}H$.

Proof: Homework challenge!

• As you can guess, G/H is called quotient group! Another alternative name is factor group.

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

LinkedIn: linkedin.com/company/zaikugroup