# **FLAMEm**

#### FLuctuation-based high-order super-resolution Acoustic MicroscopE

#### **FLAME** reconstruction with MATLA

This repository is for our developed FLuctuation-based high-order super-resolution Acoustic MicroscopE (FLAME), and it will be in continued development. It is distributed as accompanying software for publication: Weisong Zhao et al. High-throughput 3D super-resolution ultrasound imaging, Science, submitted (2025). Please cite FLAME in your publications, if it helps your research.

### **FLAME** reconstruction



## Instruction

Load the target mat file using load and change the variable name to input. The FLAME reconstruction requires some parameters.

#### **Necessary Parameters**

Important parameters that must be set according to actual needs.

SVD\_option

Enable SVD filtering. {default: 0}

MB\_option

Enable MB (multi-band) direction filtering. {default: 0}

pixel

Pixel size of input data (µm). {default: 60}

fidelity

Sparsity reconstruction fidelity (controls data fidelity term weight). {default: 200}

sparsity

Sparsity reconstruction strength (controls sparsity term weight). {default: 10}

FWHM2

Full-width half-maximum (FWHM) of post-deconvolution kernel (µm). {default: 240}

iter2

Number of post-deconvolution iterations. {default: 15}

#### **Expert parameters**

Some adjustable parameters that can optimize the reconstruction results.

Stab\_option

Remove unstable frames (e.g., due to breathing/heartbeat). {default: 1} cutoff1

Low threshold for SVD filtering (range: 0–1). {default: 0.25} cutoff2

High threshold for SVD filtering (range: 0-1). {default: 0.8}

BF\_option1

Enable additional background filtering. Note: Significantly reduces speed. {default: 0}

finter1

First upsampling factor. Tips: Improves quality but reduces speed/increases memory.

Increase only with proportional reduction in fidelity/sparsity. {default: 2}

FWHM1

FWHM of pre-deconvolution kernel (µm). {default: 180}

iter1

Number of pre-deconvolution iterations. {default: 10}

hawk\_option

Enable HAWK processing. Note: Improves quality but increases memory usage. *{default: 0}* order

Autocorrelation order.

Tips: Higher values improve resolution but reduce image continuity/linearity. {default: 6}

finter2

Second upsampling factor. {default: 2}

fidelity\_z

Z-axis fidelity weight. Use 1 for isotropic data. {default: 1}

BF\_option2

Secondary background filtering. Note: Significantly reduces speed. {default: 0}

Here are 4 examples:

```
[output_CEUS, output_deconv_n, output_deconv_p] = FLAME(input,'pixel','60 *
10^-6','FWHM2',330 * 10^-6);
[output_CEUS, output_deconv_n, output_deconv_p] =
FLAME(input,'MB_option',1,'fidelity',10,'sparsity',1);
[output_CEUS, output_deconv_n, output_deconv_p] =
FLAME(input,'SVD_option',1'MB_option',1.'cutoff1',0.1,'cutoff2',0.9);
[output_CEUS, output_deconv_n, output_deconv_p] =
FLAME(input,'iter1',5,'iter2',30);
```

### **Fusion**

Generate better quality intensity and flow velocity images using 4 ultra fast SR frames.

```
for k = 1:floor(size(data,4)/120)
[intensity_n, intensity_p, speed] = fusion(SR_volume_n(:,:,:,(k-1)*4+1:(k-1)*4+4),SR_volume_p(:,:,:,(k-1)*4+1:(k-1)*4+4));
end
```

Rolling fusion can also be chosen to obtain fusion results with higher temporal resolution.

```
for k = 1:floor(size(data,4)/30)-3
[intensity_n, intensity_p, speed] =
fusion(SR_volume_n(:,:,:,k:k+3),SR_volume_p(:,:,:,k:k+3));
end
```

## Visualization

Use FLAME's specially designed color encoding to render the final result

```
rendering(intensity_n, intensity_p, speed, output_CEUS,'MB_option',0);
```



You can also export a mat file containing the results and render it using other software

## **Declaration**

This repository contains the MATLAB source code for FLAME .

# **Open source FLAMEm**

This software and corresponding methods can only be used for **non-commercial** use, and they are under Open Data Commons Open Database License v1.0.