Fonctions Numériques Relations de comparaison MPSI 2

Soit x_0 un élément de $\overline{\mathbb{R}}$.

Définition 0.0.1

Soient f et g deux fonctions définies sur un voisinage V de x_0 , sauf éventuellement en x_0 .

On dit que f est négligeable devant g si il existe une application $\varepsilon: V \to \mathbb{R}^+$ telle que:

$$\begin{cases} \varepsilon(x) \underset{x \to x_0}{\longrightarrow} 0\\ \forall x \in V \setminus \{x_0\}, |f(x)| < \varepsilon(x) |g(x)| \end{cases}$$

Notation: f(x) = o(g(x))

Résultats usuels:

• $\forall \alpha \in \mathbb{R}^{+*}$, $\ln(x) = \underset{x > 0}{=} o(\frac{1}{x^{\alpha}})$

• $\forall \alpha \in \mathbb{R}^{+*}$, $\ln(x) = o(x^{\alpha})$

• $\forall \alpha \in \mathbb{R}^{+*}, \ x^{\alpha} = o(e^x)$

Définition 0.0.2

Soient f et g deux fonctions définies sur un voisinage V de x_0 , sauf éventuellement en x_0 .

On dit que f est dominée par g si:

$$\exists M \in \mathbb{R}^{+*}, \ \forall x \in V \setminus \{x_0\}, \ |f(x)| < M |g(x)|$$

Notation: f(x) = O(g(x))

Définition 0.0.3

Soient f et g deux fonctions définies sur un voisinage V de x_0 , sauf éventuellement en x_0 .

On dit que f et g sont équivalentes en x_0 si il existe une application $h: V \to \mathbb{R}$ telle que:

$$\begin{cases} h(x) \underset{x \to x_0}{\longrightarrow} 1\\ \forall x \in V \setminus \{x_0\}, \ f(x) = h(x) g(x) \end{cases}$$

Notation: $f(x) \underset{x \to x_0}{\sim} g(x)$

Résultats usuels en 0:

- $\sin(x) \sim x$, $\cos(x) \sim 1$, $1 \cos(x) \sim \frac{x^2}{2}$, $\tan(x) \sim x$ $\arcsin \sim x$, $\arctan(x) \sim x$ $\ln(1+x) \sim x$, $(1+x)^{\alpha} \sim 1$, $(1+x)^{\alpha} 1 \sim \alpha x$ $\sinh(x) \sim x$, $\cosh(x) \sim 1$, $\sinh(x) \sim 1$, $\cosh(x) 1 \sim \frac{x^2}{2}$

Propriété 0.0.1

Opérations sur les équivalences

Soient f et g deux fonctions définies au voisinage de x_0 telles que $f(x) \underset{x \to x_0}{\sim} g(x)$.

- ullet Si ϕ est une fonction ne s'annulant pas au voisinage de x_0 , sauf éventuellement en x_0 , Alors $f(x) \phi(x) \underset{x \to x_0}{\sim} g(x) \phi(x)$
- Si $f_1(x) \underset{x \to x_0}{\sim} g_1(x)$, alors $f(x) f_1(x) \underset{x \to x_0}{\sim} g(x) g_2(x)$
- $\forall n \in \mathbb{N}^*, (f(x))^n \underset{x \to x_0}{\sim} (g(x))^n$
- ullet Si f_1 ne s'annule pas au voisinage de x_0 , sauf éventuellement en x_0 , et si $f_1(x) \underset{x \to x_0}{\sim} g_1(x)$

Alors $\frac{f(x)}{f_1(x)} \underset{x \to x_0}{\sim} \frac{g(x)}{g_1(x)}$

• Si f ne s'annule pas au voisinage de x_0 , alors $\forall n \in \mathbb{Z}$, $(f(x))^n \underset{x \to x_0}{\sim} (g(x))^n$

Propriété 0.0.2

- $Si\ f(x) \underset{x \to x_0}{\sim} g(x) \ et \ si\ f(x) \underset{x \to x_0}{\longrightarrow} l \in \overline{\mathbb{R}},$
- $Alors \ g(x) \xrightarrow[x \to x_0]{} l$ $Si \ f(x) \xrightarrow[x \to x_0]{} l \ et \ g(x) \xrightarrow[x \to x_0]{} l \ et \ lin \mathbb{R}^*,$ $Alors \ f(x) \xrightarrow[x \to x_0]{} g(x)$