

T.C. FATİH SULTAN MEHMET VAKIF ÜNİVERSİTESİ

Engineering Faculty Computer Science

Data Mining Project

Name & Surname	Student ID		
Muhittin AKIN	1821221006		
Dilara ÇELİK	2021221042		
Metin KAĞIT	1821221033		

Introduction

In this project, we will predict visit reason which is order or guest. We analyze relationships between features such as entry time and date, the block and apartment visited, and the individual visitor. To compare classification methods, we train six different models—Logistic Regression, K-Nearest Neighbors, SVM, Decision Trees, Random Forest, and XGBoost, Naive Bayes and MLP (Sklearn). For each model, we perform hyperparameter tuning with five-fold cross-validation (5-CV) to find the best parameter settings. Finally, we evaluate their performance on a held-out test set using accuracy, precision, recall, F1-score, and AUC.

Data Collection and Preprocessing

We collect the data from security checkpoint of residential complex. And anonamize it to privacy. The dataset has 40367 rows and 7 columns. The columns name are:

• NO: Id. TARİH: Visit date.

• ZİYARET EDİLEN: Visited person block and apartmen no.

TEYİT BİLGİSİ: Emty ColumnZİYARET SEBEBİ: Visit reason

GELİŞ SAATİ: Visit TimeÇIKIŞ SAATİ: Empty Colum

1. Cleaning empty cells

After loading the raw data from Excel with pandas, all empty cells (NaN) were removed.

2. Renaming columns

The original column headers were renamed to be more meaningful and consistent (e.g. ZİYARET SEBEBİ \rightarrow visit reason).

3. Removing rows with missing values

Any row containing a missing value in any column was dropped, because these gaps could not be logically or numerically imputed and might harm model performance.

4. Feature Engineering

Since the original dataset had relatively few features, we created new variables:

- **visit_reason_encoded:** Encoded version of visit_reason that include most repeated 4 unique value.
- **visit_reason_Binary:** Encoded version of visit_reason that include 2 value is_order 1 or not 0.
- **block & apartment:** Separate the visited column into two column, one of them just encoded block name and the other one is apartment number.
- day_part: The arrival_time column was split into five time-of-day categories—unknown, morning, afternoon, evening, and night. For each record, the column corresponding to its arrival slot is set to 1, and the others are set to 0.
- **day_type:** A new column day_type was created to classify each record as either weekday or weekend.
- day&month&year: date column separate 3 part which are day, month and year.

Data Visualization

Since there is no linear correlation, the chosen models should be those that handle non-linear relationships well, such as Random Forest.

The graph show the amount of visit from most bigger 4 value.

0:A, 1:B, 2:C

The highest number of flats are B, A and C, respectively. It is observed that this situation also affects the number of visitors.

As we seen, there is a higher number of visitors in the afternoon and evening hours.

Model Construction

In the model construction phase, we implemented six classification algorithms—Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Decision Tree, Random Forest, XGBoost, Naive Bayes and MLP (Sklearn) — within scikit-learn pipelines and optimized their hyperparameters via GridSearchCV with cross-validation to identify the best performer for predicting visit reasons.

Firstly we trained our model without cross validation and tuning and the result can see in the table below.

	more below.						
Model	Set	Accuracy	Error	Precision	Recall	F1-score	AUC
Logistic Regressio n	Train	0.529657089 8980537	0.470342910101946 3	0.53106796116504 85	0.50695088044485 64	0.51872925557136 08	0.54108947851480 54
Logistic Regressio n	Test	0.520755654 9838429	0.479244345016157 1	0.82652043868394 82	0.51204447189623 23	0.63234172387490 46	0.54424843518252 6
KNN	Train	0.860403151 0658017	0.139596848934198 33	0.87168458781362 01	0.84522706209453 2	0.85825197035642 86	0.94262016042592 94
KNN	Test	0.671638081 0340542	0.328361918965945 8	0.81896838602329 45	0.76003705991352 69	0.78840301137273 75	0.56283878150781 13
SVM	Train	0.719763670 0648748	0.280236329935125 15	0.66676434390201 02	0.87866852023478 53	0.75818866415647 6	0.80364655671234 16

SVM	Test	0.733532189 9080288	0.266467810091971 2	0.81354950781702 37	0.86781964175416 93	0.83980872683801 56	0.57317660897857 06
Decision	Train	0.996022551	0.003977448254556	0.99953332814809	0.99250849552054	0.99600852547955	0.99996819577924
Tree		7454433	704	05	38	82	36
Decision	Test	0.735520755	0.264479244345016	0.84139447236180	0.82736256948733	0.83431952662721	0.59294976453972
Tree		6549839	13	91	79	9	14
Random	Train	0.996022551	0.003977448254556	0.99445684810224	0.99760580784677	0.99602883911015	0.99994114549020
Forest		7454433	704	03	17	15	92
Random	Test	0.783494904	0.216505095699726	0.82720486591097	0.92402717726991	0.87293946024799	0.66481590035525
Forest		3002735	54	6	97	42	58
XGBoost	Train	0.868782823 6021007	0.131217176397899 32	0.95571673983584 65	0.77340129749768 3	0.85494749423717 24	0.97433955899165 2
XGBoost	Test	0.710166542 3813075	0.289833457618692 5	0.89572192513368 99	0.72421247683755 41	0.80088797814207 65	0.74807186161151 62
Gaussian	Train	0.596848934	0.403151065801668	0.59098824553765	0.62905468025949	0.60942760942760	0.62894535772423
NB		1983317	26	78	95	94	6
Gaussian	Test	0.597315436	0.402684563758389	0.82753036437246	0.63125386040765	0.71618780658724	0.55714465562213
NB		2416108	24	96	91	6	04
MLP (Sklearn)	Train	0.749459375 9654	0.2505406240346	0.70515752032520 33	0.85742971887550 2	0.77387425066220 55	0.83073368424387 88
MLP	Test	0.721600795	0.278399204573701	0.81555423122765	0.84527486102532	0.83014861995753	0.57317011759244
(Sklearn)		4262987	26	19	42	72	33

Logistic Regression and Gaussian NB both show low performance, with training and test accuracies around 52–60% and AUC scores of about 0.55. KNN overfits, reaching 86% accuracy on training but dropping to 67% on test. SVM (72–73% accuracy, F1 ~84%, AUC ~0.57) and MLP (75–72% accuracy, F1 ~83%, AUC ~0.57) stay balanced on both training and test, with almost no overfitting.

Decision Tree (99% training, 73% test) and Random Forest (99% training, 78% test) also overfit, but Random Forest gives the best test results with 78% accuracy and F1 \sim 87%. XGBoost (87% training, 71% test) controls overfitting better and, with a test AUC of \sim 0.75, offers the most balanced class separation.

After that, we train the models with hyper parameter optimization and cross validation to improve model performance and stability.

Model	Accuracy	Precision	Recall	F1-score	AUC
Logistic Regression	0.523743	0.824246	0.518966	0.636596	0.537356
KNN	0.687833	0.824358	0.777895	0.800435	0.57098
SVM	0.75317	0.816198	0.894848	0.853701	0.5752
Decision Tree	0.737358	0.847033	0.822131	0.834384	0.605229
Random Forest	0.79459	0.832988	0.931546	0.879513	0.684349
XGBoost	0.706678	0.89694	0.718091	0.797573	0.755434
Gaussian NB	0.592462	0.827852	0.623256	0.711097	0.561607
MLP (Sklearn)	0.731441	0.819947	0.853825	0.836481	0.582883

According to these results, the best model is Random Forest, but XGBoost has the highest AUC score of all. Therefore, if you prioritize overall accuracy and recall, choose Random Forest; if you care more about ranking and discrimination ability, choose XGBoost.

Conclusion

Our comprehensive evaluation compared various classification models using both a single train/test split and 5-fold cross-validation metrics, and we also tuning parameters by hyper parameter optimization and analyzed each model's AUC from the last fold's ROC curves. As a result, The less success model is Logistic Regression because Logistic Regression good to learned from linear relations our data is not contain linear relations. Also, XGBoost emerges as the most balanced model overall, while Random Forest ranks second for having the highest recall and test accuracy. If your goal is to maximize overall discrimination power and AUC, choose XGBoost; if you need to avoid missing any positive cases, Random Forest is the better choice.

