29. a.	Find the value of λ and μ for which $2x+3y+5z=9,7x+3y-2z=8$ and $2x+3y+\lambda z=\mu$ have (i) unique solution (ii) no solution and (iii) infinite number of solution.	12	4	2	
b.	Using LU decomposition method, solve the system of equations $x-2y+z=1, -x+y=-1$ and $y-2z=-1$.	12	4	2	
30. a.	Find QR decomposition of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{bmatrix}$.	12	4	3	
	(OR)				
b.	Determine whether the set $\{(1,1,0),(1,0,1),(0,1,1)\}$ is a basis of \mathbb{R}^3 .	12	4	3	1
31. a.	Find eigen values and eigen vectors of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.	12	3	4	1
	(OR)				
b.	Find the matrix of linear transformation $T: V_2(R) \to V_2(R)$ whose domain basis is $\{(1,0),(0,1)\}$ and range basis is $\{(1,1),(1,-1)\}$.	12	4	4	2
32. a.	Find the singular value decomposition of the matrix $\begin{bmatrix} 5 & 5 \\ -1 & 7 \end{bmatrix}$.	12	4	5	1
b.	Using principal component analysis, reduce the dimension of the data. x: 1 3 5 y: 3 4 5	12			

* * * * *

	-			- 0 0			-	
Reg. No.								

B.Tech. DEGREE EXAMINATION, JUNE 2023

Second Semester

18MAB163T - LINEAR ALGEBRA

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:	
(i)	

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time: 3	hours	ž		Max. N	Marl	cs: 1	.00
	PART – A (20 × 1			Marks	BL	со	PO
	Answer ALL C)uesti	ons		2	1	1
1.	If $2A + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$ then A is		111	1	2	1	1
	$ \begin{pmatrix} A \\ 2 \\ -1 \end{pmatrix} $	(B)	$\begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$				
	(C) $\begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$	(D)	$\begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 5 & 1 \\ 6 & 2 \end{bmatrix}$				
2.	A matrix having only one row is call	ed as		1	1	1	1
	(A) Column matrix		Row matrix				
	(C) Unit matrix	(D)	Triangle matrix	- 1			
3.	If a column of a matrix A is scalar det A is	multi	ple of another column of A then	1	1	1	1
	(A) 2	(B)	1				
	(C) 0	(D)					
4.	Value of A(adj A) is			1	2	1	1
	$(A) A^2$	(B)	A				
	(C) AI	(D)	A I				
5.	If the rank of A is zero, then A is			1	1	2	1
	(A) Diagonal matrix	(B)	Unit matrix				
	(C) Null matrix	(D)	Rectangle matrix				
6.	In the system of n-linear equations AX=B has	AX=E	3, if rank of A is less than n then	1	1	2	1
	(A) No solution	(B)	Infinite number of solutions				
	(C) n-solutions	(D)	n-1 solutions				
7.	In Gaussian elimination method, coe			1	1	2	1
	(A) Diagonal matrix	• /	Lower triangular matrix				
	(C) Upper triangular matrix	(D)	Unit matrix				

	 Gaussian elimination method is a (A) Direct method (C) LUD method An abstract vector space is a set who 	(B) Indirect method (D) QRD method se elements are called as vectors with	1	1	3		19. Photoshop is the example for (A) Image processing (C) Digital sound processing (D) Digital image processing		1	5	2
	two operations. (A) Vector addition and scalar addition (C) Vector addition and scalar	 (B) Vector multiplication and scalar multiplication (D) Vector multiplication and scalar 				÷	20. Trimming set is used in machine learning for (A) Factorization (B) Digital processing (C) Generalization (D) Image process		2	5	2
	multiplication	addition					$PART - B (5 \times 4 = 20 \text{ Marks})$	wire	BL (CO P	DΩ
10.		(B) {(1,0), (0,1)} (D) {(1,1), (-1,-1)}	1	1	3	1	Answer ANY FIVE Questions Answer ANY FIVE Questions Solve $x + y = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$ and $x - y = \begin{bmatrix} 2 & -2 \\ 1 & 0 \end{bmatrix}$.		2	1	1
11.	C March	l number is (B) Unitary space (D) Orthogonal space	1 🕾	2	3	1	22. If $A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ and $B = \begin{bmatrix} b+c & a+c & a+b \\ a+c & a+b & b+c \\ a+b & b+c & a+c \end{bmatrix}$ show that $ B =2 A $.		2	1	1
12.		(B) $\sqrt{10}$ (D) $(1,0,3)$	1	2	3	1	23. Find the rank of the matrix $\begin{bmatrix} 6 & 5 & 1 \\ 2 & 3 & 0 \\ 1 & 6 & 1 \end{bmatrix}$.		2	2	1
13.		A is (B) $A - \lambda I = 0$ (D) $ A = 0$	1	1	4	1	24. Verify whether the set $\{(1,-1,0),(2,-1,1),(3,6,1)\}$ is linearly independent or not in \mathbb{R}^3 .		3	3	1
14.		(B) May not have same eigen values (D) Will have different characteristic equations	1	1	4	1	Find the nature of the matrix $\begin{bmatrix} -3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$.		2	4	1
15.	4 days	(B) $T(v)=0$ (D) $T(v)=v+1$	1	1	4	1	Show that $\begin{pmatrix} \frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{pmatrix}$ is unitary.		2	4]	1
16.		ary matrix is (B) 1 (D) 3	1	2	4	1	27. Discuss about machine learning.	,	4	5 4	2
17.	4 400	or with (B) Highest eigen value (D) Highest singular value	1	1	5	***	PART – C (5 × 12 = 60 Marks) Answer ALL Questions Mark 28. a. Using Cramer's rule, solve $3x + y + 2z = 3, 2x - 3y - z = -3 \text{ and } x + 2y + z = 4.$	ks F	-	со р 1 2	
18.		f the popular algorithm in (B) Topology (D) Human learning	1	1	5	2	b. Find the inverse of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$ using adjoint of a matrix.	į d	3	1 2	2