$\alpha (5x_1 + 2x_2) + \beta (5x_1 + 2y_2) = 0$ $\alpha (5x_1 + 2x_2) + \beta (5x_1 + 2y_2) = 0$ $\alpha (5x_1 + 2x_2) + 2x_2 + 53y_1 + 23y_2 = 0$ Lista 16 Tuesday, 27 June 2023 09:51 Zad. podrehie nielomien 2 reste, obligge med i gobered go u posteri af t b g lista16 Lista 16 $x^{5} - 3x^{4} - x^{3} + 7x^{2} - 4 : x^{3} - 3x^{2} + 2x$ **Zadanie 1.** Wyznacz największy wspólny dzielnik par wielomianów (o ile nie jest napisane inaczej: w $\mathbb{R}[x]$) $-\left(x^{5}-3x^{4}+2x^{3}\right)$ • $x^4 - 2x^3 - 19x^2 + 8x + 60$ oraz $x^4 + 5x^3 + 5x^2 - 5x - 6$; • $x^4 + x^3 + 2x^2 + 2x$ oraz $x^4 + 2x^3 + 2x^2 + x$ (w $\mathbb{Z}_3[x]$) • $f = x^p + 1$, g = x + 1 (w $\mathbb{Z}_p[X]$ dla p—pierwszego). $= -3x^3 + 7x^2 - 4$ Wyraź nwd jako kombinację podanych wielomianów. Wskazówka: Do ostatniego: policz, ile wynosi $(x+1)^p$ w \mathbb{Z}_p . $-(-3x^{3}+9x^{2}-6x)$ $=-2x^{2}+6x-4 \leftarrow results$ **Rozwiązanie** Niech $f = x^4 - 2x^3 - 19x^2 + 8x + 60$. $x^4 - 2x^3 - 19x^2 + 8x + 60$ $x^4 + 5x^3 + 5x^2 - 5x - 6$ $-x^4 + 2x^3 + 19x^2 - 8x - 60$ Czyli $f' = f - g = 7x^3 + 24x^2 - 13x - 66$ $\frac{x^{3}-3x^{2}+2x}{-(x^{3}-3x^{2}+2x)} \cdot (-2x^{2}+6x-4) = 0$ = = = wynta enta = 0oraz $\operatorname{nwd}(f,g) = \operatorname{nwd}(f',g)$. $7x^{3} + 24x^{2} - 13x - 66) \xrightarrow{x^{4} - 2x^{3} - 19x^{2} + 8x + 60}$ $-x^{4} - \frac{24}{7}x^{3} + \frac{13}{7}x^{2} + \frac{66}{7}x$ $-\frac{38}{7}x^{3} - \frac{120}{49}x^{2} + \frac{122}{49}x + 60$ $-\frac{38}{7}x^{3} + \frac{912}{49}x^{2} - \frac{494}{49}x - \frac{2508}{49}$ $-\frac{72}{49}x^{2} + \frac{360}{49}x + \frac{432}{49}$ - tever trete polesec NND or poster of + bg $g - (\frac{x}{7} - \frac{38}{49})f' = \frac{72}{49}(x^2 + 5x + 6)$ Przekształcając mamy $(-2x^{2}+6x-4)=(x^{5}-3x^{4}-x^{3}+7x^{2}-4)+(x^{3}-3x^{2}+2x)(-x^{2}+3)$ $x^{2} + 5x + 6 = \frac{1}{72}(49g - (7x - 38)f')$ I dalej $x^2 + 5x + 6$ $7x^3 + 24x^2 - 13x - 66$ $-7x^3 - 35x^2 - 42x$ $-11x^2 - 55x - 66$ $11x^2 + 55x + 66$ **Zadanie 2.** Korzystając z tw. Bezout rozłóż poniższe wielomiany z $\mathbb{Z}_2[x]$ na czynniki nierozkładalne $x^5 + x^3 + x + 1$, $x^4 + x^3 + x^2 + 1$, $x^5 + x^2 + x$, $x^4 + x^2 + 1$, $x^4 + x^2 + x$. Czyli największy wspólny dzielnik to $x^2 + 5x + 6$. Wstawiając wyrażanie na f' dostajemy $\frac{1}{72}(49g - (7x - 38)(f - g)) = \frac{7x + 11}{72}g - \frac{7x - 38}{72}f$ (x^5+x^3+x+1) W drugim przykładzie, oznaczmy pierwszy wielomian przez f a drugi przez g. Wtedy $g' = g - f = x^3 + x$ - many 22, 5gh mod by o o Mb 1 10 05+03+0+1=1 -) ne vozhicklue

1 15+13+1+1=0 -> vozhicklue W ostatnim przykładzie zauważmy, że Zauważmy, że $\binom{p}{i}$ dzieli się przez p dla $i \notin \{0, p\}$, czyli I w takim razie $\text{nwd}(x^p + 1, x + 1) = x + 1.$ - holegign merostredalgen jest **Zadanie 2.** Korzystając z tw. Bezout rozłóż poniższe wielomiany z $\mathbb{Z}_2[x]$ na czynniki nierozkładalne (x²+x+1)² = x4+x²+1, cepli (x4+x³+1) yest mensikidly $x^5 + x^3 + x + 1$, $x^4 + x^3 + x^2 + 1$, $x^5 + x^2 + x$, $x^4 + x^2 + 1$, $x^4 + x^2 + x$. Potraktuj powyższe wielomiany jako wielomiany z $\mathbb{Z}_3[x]$ i również rozłóż je na czynniki nierozkładalne. Wskazówka: Być może konieczne też będzie osobne zastanowienie się, które wielomiany drugiego stopnia są **Rozwiązanie** Rozpatrzmy wielomian $x^5 + x^3 + x + 1$ jako wielomian o współczynnikach z \mathbb{Z}_2 . Zauważmy, że jeśli jest on rozkładalny, to ma czynnik stopnia najwyżej 2. Sprawdźmy najpierw czynniki liniowe, czyli policzmy wartość w 0, 1. Łatwo sprawdzić, że wartość w 1 to 1. Wartość w 0 to 0, czyli dzieli się przez x + 1. Można podzielić, albo zauważyć $x^{5} + x^{3} + x + 1 = x^{5} + 2x^{4} + x^{3} + x + 1 = (x+1)(x^{4} + x^{3} + 1)$ Wielomian $x^4 + x^3 + 1$ ma wartość 1 w 1, nie dzieli się więc przez x + 1. Pozostaje sprawdzić, czy dzieli się przez $x^2 + x + 1$ (jedyny nierozkładalny stopnia 2). Jedynym możliwym rozkładem jest $(x^2 + x + 1)^2$: $(x^2 + x + 1)^2 = x^4 + x^2 + 1$ czyli $x^4 + x^3 + 1$ jest nierozkładalny. **Zadanie 3.** Wielomian f ma resztę z dzielenia przez $x-c_1$ równą r_1 oraz resztę z dzielenia przez $x-c_2$ równą r_2 . Ile wynosi reszta z dzielenia f przez $(x-c_1)(x-c_2)$? Wystarczy, że zapiszesz zależność na współczynniki tego wielomianu, nie musisz jej rozwiązywać. Wskazówka: Skorzystaj z tw. Bezout. Rozwiązanie Reszta jest postaci ax + b, tj. $f = (x - c_1)(x - c_2) + ax + b$ Przy czym $f(c_1) = r_1$ $f(c_2) = r_2$ Co daje układ równań liniowych na a, b: $ac_1 + b = r_1 \quad ac_2 + b = r_2$ **Zadanie 4.** Niech f, g, f', g', a będą niezerowymi wielomianami z pierścienia wielomianów $\mathbb{F}[x]$ o współczynnikach z ciała \mathbb{F} . Załóżmy, że f = af' oraz g = ag'. • Jeśli h' = nwd(f', g'), to ile wynosi nwd(f, g)? Jeśli h' = a'f' + b'g' dla pewnych wielomianów $a', b' \in$ $\mathbb{F}[x]$, to jak wyraża się nwd(f,g) poprzez wielomiany f,g? • Jeśli h', r' są ilorazem oraz resztą z dzielenia f' przez g', to ile wynosi iloraz, a ile reszta z dzielenia fprzez g? Rozwiązanie Jeśli f' = h'g' + r'f'a = h'(g'a) + r'aoraz $\deg r'a = \deg r' + \deg a < \deg g' + \deg a = \deg g'a = \deg g$ czyli iloraz to h' a reszta r'a. Zauważmy teraz, że z tego wynika, że nwd(f,g) = a nwd(f',g'): W odpowiadających krokach algorytmu Euklidesa dla f, g oraz f', g' dla f, g wywołujemy dla wielomionów dla f', g' przemnożonych przez a. W szczególnośc na końcu dostajemy nwd(f', g') oraz a nwd(f', g'). **Zadanie 5.** Dane są dwa niezerowe wielomiany $f,g\in\mathbb{F}[x]$ z pierścienia wielomianów o współczynnikach z ciała \mathbb{F} . Załóżmy, że f = f'f'' oraz nwd(f', g) = 1. Celem zadania jest pokazanie, jak odtworzyć reprezentację nwd(f,g) jako kombinacji wielomianów f,g z analogicznych reprezentacji dla f'',g oraz f',g. • Pokaż, że nwd(f, g) = nwd(f'', g). • Niech $\operatorname{nwd}(f'',g) = af'' + bg$ oraz $1 = \operatorname{nwd}(f',g) = cf' + dg$ dla odpowiednich wielomianów $a,b,c,d \in$ $\mathbb{F}[x]$. Wyraź nwd(f,g) jako kombinację wielomianów f,g; kombinacja ta może używać kombinacji wielomianów spośród $a,b,c,d,f^{\prime},f^{\prime\prime}$ jako współczynników. Rozwiązanie Z Zadania 10, jeśli $\operatorname{nwd}(f,g) = \prod_i p_i^{\alpha_i}$ gdzie p_i są nierozkładalne, to istnieją α_i', α_i'' takie że $\alpha_i = \alpha_i' + \alpha_i''$ oraz $p_i^{\alpha_i'}|f'$ oraz $p_i^{\alpha_i''}|f''$. Ponieważ nwd(g, f') = 1, to $\alpha_i' = 0$ dla każdego i. Czyli $\alpha_i'' = \alpha_i$ i tym samym nwd(f, g)|f'', czyli też nwd(f, g)| nwd(f'', g). Jako że f''|f to oczywiście $\operatorname{nwd}(f'',g)|\operatorname{nwd}(f,g)$. Czyli $\operatorname{nwd}(f,g)=\operatorname{nwd}(f'',g)$. Niech $nwd(f', g) = 1 = a'f' + b'g \quad nwd(f'', g) = a''f'' + b''g$ Łącząc dostajemy nwd(f'',g) = a''f'' + b''g= (a'f' + b'g)a''f'' + b''g= a'f'f'' + (b'a''f'' + b'')gco daje reprezentację nwd(f, g) w żądanej postaci. Zadanie 6. Oblicz wartości podanych wielomianów w punktach w odpowiednich pierścieniach: $x^4 + 3x^2 - 2x + 1 \le 2$, w \mathbb{Z}_7 ; $2x^3 - x^2 + x - 2 \le 1$, w \mathbb{Z}_3 ; $3x^4 - 3x^3 + 4x - 5 \le 2$, w \mathbb{Z}_6 **Zadanie 7.** Podaj wszystkie nierozkładalne wielomiany stopnia 2 oraz 3 w $\mathbb{Z}_2[x]$ oraz wszystkie nierozkładalne wielomiany stopnia 2 w $\mathbb{Z}_3[x]$. Wskazówka: Jeśli f = gh, to przynajmniej jeden z nich ma stopień 1. **Rozwiązanie** Rozważmy najpierw wielomiany stopnia 2 w $\mathbb{Z}_2[x]$: $x^2, x^2 + 1, x^2 + x, x^2 + x + 1$ Pierwszy dzieli się przez x, drugi to $(x+1)^2$, trzeci to x(x+1). Czwarty jest nierozkładalny: gdyby był rozkładalny, to na czynniki liniowe, czyli musiałby mieć pierwiastek w 0 lub 1, a łatwo sprawdzić, że nie ma. W przypadku wielomianów stopnia 3 zauważmym, że jeśli wielomian stopnia 3 jest rozkładalny, to dzieli się przez wielomian stopnia 1, czyli ma pierwiastek. Jest 8 wielomianów stopnia 3 w $\mathbb{Z}_2[x]$: $x^3, x^3 + 1, x^3 + x, x^3 + x + 1, x^3 + x^2, x^3 + x^2 + 1, x^3 + x^2 + x, x^3 + x^2 + x + 1$. Należy teraz sprawdzić, który ma pierwiastek w 0 lub 1, pozostałe są nierozkładalne. tzn. $x^3 + x + 1, x^3 + x^2 + 1$. są nierozkładalne. W $\mathbb{Z}_3[x]$ jest 9 wielomianów stopnia 2: x^{2} , $x^{2} + 1$, $x^{2} + 2$, $x^{2} + x$, $x^{2} + x + 1$, $x^{2} + x + 2$, $x^{2} + 2x$, $x^{2} + 2x + 1$, $x^{2} + 2x + 2$. Ponownie sprawdzamy, który ma pierwiastek. Pozostają: $x^{2} + 1, x^{2} + x + 2, x^{2} + 2x + 2.$ Zadanie 8 (* Nie liczy się do podstawy). Celem tego zadania jest pokazanie, że wielomiany nierozkładalne w $\mathbb{R}[x]$ są stopnia najwyżej 2. Możesz korzystać z (nie tak prostego) twierdzenia, że wielomiany nierozkładalne nad $\mathbb{C}[x]$ są stopnia najwyżej 1. W tym zadaniu utożsamiamy wielomian z jego wartościowaniem a \overline{x} będzie oznaczać sprzężenie (w \mathbb{C}) liczby zespolonej x.Ustalmy wielomian $f \in \mathbb{R}[x]$. • Pokaż, że dla liczby zespolonej c zachodzi $f(\overline{c}) = \overline{f(c)}$. • Wywnioskuj z tego, że jeśli $c \in \mathbb{C}$ jest miejscem zerowym wielomianu f, to jest nim też \overline{c} . • Pokaż, że wielomian $(x-c)(x-\overline{c})$ ma współczynniki rzeczywiste. • Wywnioskuj z tego, że jeśli f jest nierozkładalny (w $\mathbb{R}[x]$), to jest stopnia najwyżej 2. **Rozwiązanie** Łatwo sprawdzić, że $\overline{a+b} = \overline{a} + \overline{b}$ oraz $\overline{a \cdot b} = \overline{a} \cdot \overline{b}$. Dla wielomianu $f = \sum_{i} f_{i} x^{i}$ zdefinujmy Wtedy $\overline{f \cdot g} = \overline{f} \cdot \overline{g}$. Ponadto $\overline{f}(\overline{a}) = \sum_{i} \overline{f_i} \overline{a^i} = \overline{\sum_{i} f_i a^i} = \overline{f(a)}$ W takim razie, jeśli $f \in \mathbb{R}[x]$ to oczywiście $\overline{f} = f$ i w takim razie $f(\overline{a}) = \overline{f(a)}.$ Jeśli $f(\alpha = 0)$ to $f(\overline{\alpha}^i) = \overline{0} = 0$ Jeśli α jest pierwiastkiem $f \in \mathbb{R}[x]$ to $f = (x - \alpha)g$ i nakładając obustronnie sprzężenie dostajemy f = $(x - \overline{\alpha})\overline{g}$. Czyli $f = (x - \alpha)(x - \overline{\alpha})h$ Ponownie nakładając sprzężenie: $f = \overline{(x - \alpha)(x - \overline{\alpha})}\overline{h} = (x - \alpha)(x - \overline{\alpha})\overline{h}.$ Czyli $h = \overline{h}$ i tym samym ma współczynniki rzeczywiste. Ponadto $\overline{(x-\alpha)(x-\overline{\alpha})} = (x-\overline{\alpha})(x-\alpha)$ czyli ma współczynniki rzeczywiste. Jeśli $f \in \mathbb{R}[x]$ jest nierozkładalny i stopnia większego niż 1, to ma pierwiastek zespolony, powiedzmy α . Ale wtedy $(x-\alpha)(x-\overline{\alpha})|f$, czyli $f=c(x-\alpha)(x-\overline{\alpha})$ dla pewnej stałej c. **Zadanie 9.** Pokaż, że jeśli $\mathbb F$ jest ciałem, to w pierścieniu wielomianów $\mathbb F[x]$ o współczynnikach z ciała $\mathbb F$ zachodzi prawo skreśleń: dla $f, g, h \in \mathbb{F}[x]$, gdzie $f \neq 0$, zachodzi $fg = fh \implies g = h$. Wywnioskuj z tego, że analogiczne prawo zachodzi też dla podzielności: dla $f, g, h \in \mathbb{F}[x]$, gdzie $f \neq 0$, $fg|fh \implies g|h$. Rozwiązanie Przenosząc na jedną stronę dostajemy f(g - h) = 0Jako że $\deg 0 = \deg f + \deg(g - h)$ dostajemy, że g - h = 0, czyli g = h. Zadanie 10. Udowodnij uogólnienia twierdzenia z wykładu: Niech $\mathbb F$ będzie ciałem, f będzie wielomianem nierozkładalnym a p_1,p_2,\ldots,p_ℓ wielomianami w pierścieniu wielomianów $\mathbb{F}[x]$ o współczynnikach z \mathbb{F} oraz $f^k|p_1p_2\dots p_\ell$. Wtedy istnieją liczby n_1, n_2, \ldots, n_ℓ , takie że $\sum_i n_i \geq k$ oraz dla każdego i zachodzi $f^{n_i}|p_i$. Wskazówka: Skorzystaj z Zadania 9, nawet jeśli nie potrafisz go rozwiązać. **Rozwiązanie** Indukcja po k, dla k=1 zostało pokazane na wykładzie. Niech $f^{k+1}|p_1p_2\dots p_\ell$, w szczególności $f^k|p_1p_2\dots p_\ell$. Z założenia indukcyjnego istnieją takie n_1,\dots,n_ℓ , $\dot{z}e\ p_i = f^{n_i}p_i'\ oraz\ \sum_i n_i = k.$ Skoro $f^{k+1}|p_1p_2\dots p_\ell$ to dla pewnego h mamy $f^{k+1}h = f^k p_1' p_2' \dots p_\ell'.$ Po skróceniu (Zadanie 9) dostajemy $fh = p_1' p_2' \dots p_\ell'.$ I teraz dostajemy, że f dzieli ktoreś p'_i m czyli $f^{n_i+1}|p_i$, co daje tezę. **Zadanie 11.** Niech \mathbb{F} będzie ciałem zaś $\mathbb{F}[x]$ pierścieniem wielomianów o współczynnikach z tego ciała. Udowodnij, że każdy wielomian $f \in \mathbb{F}[x]$ da się przedstawić jednoznacznie (z dokładnością do kolejności czynników) w postaci $f = c \cdot f_1 \cdot f_2 \cdots f_k$, gdzie $c \in \mathbb{F}$ jest stałą, a każde $f_i \in \mathbb{F}[x]$ jest wielomianem vietozk
ystać z Zadań 9–10, nawet jeśli nie potrafisz ich udowodnić. Nożesz skorzystać z Zadań 9–10, nawet jeśli nie potrafisz ich udowodnić. współczynnika wiodącego, co prowadzi do "różnych" rozkładów. Wskazówka: Założenie o współczynniku równym 1 jest tylko po to, by uniknąć arbitralności w wyborze