

EMC Technologies (NZ) Ltd PO Box 68-307, Newton Auckland 1145 New Zealand Phone 09 360 0862 Fax 09 360 0861

E-Mail Address: aucklab@ihug.co.nz Web Site: www.emctech.com.au

TEST REPORT

Tru-Test XRP2-1 Low Frequency Electronic ID (EID) Reader

tested to

47 Code of Federal Regulations

Part 15 - Radio Frequency Devices

Subpart C – Intentional Radiators

for

Tru-Test Ltd

This Test Report is issued with the authority of:

Andrew Cutler - General Manager

Page 1 of 34

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Table of Contents

STATEMENT OF COMPLIANCE	3
RESULTS SUMMARY	3
INTRODUCTION	4
CLIENT INFORMATION	4
DESCRIPTION OF TEST SYSTEM	5
RESULTS	6
TEST EQUIPMENT USED	17
ACCREDITATIONS	17
PHOTOGRAPHS	18
iechnologi	es
	RESULTS SUMMARY INTRODUCTION CLIENT INFORMATION DESCRIPTION OF TEST SYSTEM RESULTS TEST EQUIPMENT USED ACCREDITATIONS

1. STATEMENT OF COMPLIANCE

The **Tru-Test XRP2-1 Low Frequency Electronic ID (EID) Reader** complies with FCC Part 15 Subpart C as an Intentional Radiator when the methods as described in ANSI C63.4 - 2003 are applied.

2. RESULTS SUMMARY

Clause	Parameter	Result
15.201	Equipment authorisation requirement	Certification required.
15.203	Antenna requirement	Complies. Antenna connects externally to the device and has a unique non standard fitting. A Large and Small antenna were tested with this device. Large EID Antenna (87 x 60 cm). Small EID Antenna (43 x 40 cm).
15.204	External PA and antenna modifications	Noted.
15.205	Restricted bands of operation	Complies. Device transmits on 134.2 kHz.
15.207	Conducted limits	Complies with a 4.3 dB margin at 513.0 kHz (Average) when either the Large or Small EID antenna is attached.
15.209	Radiated emission limits - Fundamental	Complies with a 3.1 dB margin at 134.2 kHz (Average and Peak) when the Small EID antenna is used.
15.209	Radiated emission limits - Spurious emissions <30 MHz	Complies with a 20.2 dB margin at 268.4 kHz (Average) when the Large EID antenna is used.
15.209	Radiated emission limits – Spurious emissions >30 MHz	Complies with a 10.8 dB margin at 33.603 MHz (Vertical) when the Large EID antenna is used.

3. INTRODUCTION

This report describes the tests and measurements performed for the purpose of determining compliance with the specification.

The client selected the test sample.

This report relates only to the sample tested.

This report contains no corrections or erasures.

Measurement uncertainties with statistical confidence intervals of 95% are shown below test results. Both Class A and Class B uncertainties have been accounted for, as well as influence uncertainties where appropriate.

4. CLIENT INFORMATION

Company Name	Tru-Test Ltd
Address	PO Box 51078 Pakuranga
City	Auckland 2140
Country	New Zealand
Contact	Mr Jason Crozier echnologies

5. DESCRIPTION OF TEST SYSTEM

Brand Name Tru-Test

Product Low Frequency Electronic ID (EID) Reader System

Model Number XRP2-1

Serial Number 700012

Antenna 1 Large EID Antenna

Serial Number 150002

Antenna 2 Small EID Antenna

Serial Number 150001

Manufacturer Tru-Test Ltd

Country of Origin New Zealand

Power Supply TDC Power SA3A-120-1250

Serial Number Power supply not serialised

FCC ID XOQXRP2-1

The Tru Test XRP2-1 EID Reader is a dual mode FDX-B / HDX low frequency EID reader that is optimized for high performance with animal tags that comply with ISO 11784/11785.

The Reader operates on 134.2 kHz and is designed to operate with read distances of up to 1 m.

The Reader System identifies and reads electronic tags on individual animals when either the Large Antenna or the Small Antenna is attached.

The device also contains a Bluetooth module transmitter that has modular approval.

The FCC ID of this module is FCC ID: POOWML-C40.

6. RESULTS

Standard

The sample was tested in accordance with 47 CFR Part 15 Subpart C.

Methods and Procedures

The measurement methods and procedures as described in ANSI C63.4 - 2003 were used.

Section 15.201: Equipment authorisation requirement

Certification as detailed in Subpart J of Part 2 is required for this device.

Section 15.203: Antenna requirement

This device operates with an external antenna using a unique custom connector that can be seen in the photographs at the rear of this report.

Two antennas were supplied and tested with this device.

The antennas are as follows:

- Large EID Antenna
- Small EID Antenna

Result: Complies.

Section 15.204: External radio frequency power amplifiers and antenna modifications

It is not possible to attach an external power amplifier to this transmitter.

Result: Complies.

Section 15.205: Restricted bands of operation

The EID transmitter transmits on 134.2 kHz.

This falls between the restricted bands of 90-110 kHz and 495-505 kHz.

The Bluetooth transmitter module operates in the 2400.0 – 2483.5 MHz

Result: Complies.

Section 15.107: Conducted limits

Conducted emission testing has been carried out when the device was powered at 120 Vac using a supplied power supply.

The device was operated transmitting continuously while continuously reading two tags.

Conducted emissions testing was carried out over the frequency range of 150 kHz to 30 MHz at the Laboratory's MacKelvie Street premises in a 2.4 m x 2.4 m x 2.4 m screened room.

Testing was carried out in accordance with section 15.207(a) using a measuring receiver and a 50 uH / 50 ohm artificial mains network which is also known as a line impedance stabilisation network (LISN).

Measurements on both the phase and neutral lines were made using either a Quasi Peak or an Average detector with a 9 kHz bandwidth.

The supplied conducted emission plot is a combined plot showing the worst case of the Peak, Quasi Peak and Average levels for both phase and neutral.

The Class B conducted limits have been applied

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

- Conducted emissions tests $(0.15 - 30 \text{ MHz}) \pm 2.2 \text{ dB}$

Conducted Emissions – AC Input Power Port

Setup:

Device powered at 110 volts AC 60 Hz running continuously when attached to a laptop reading RS232 data, and when connected to a second EID Reader unit located remotely. The large antenna was which attached and the Reader was reading 2 tags.

Peak Average Quasi Peak X Average +	ge Quasi Peak X Average +
-------------------------------------	---------------------------

Final Quasi-Peak Measurements

Time Quant Tour Intensarion					
Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Phase	Rechecks dBµV
0.153000	44.60	65.8	21.2	N	
0.516000	43.40	56.0	12.6	N	
1.476000	42.90	56.0	13.1	N	
1.593000	37.20	56.0	18.8	L1	
3.597500	36.70	56.0	19.3	N	

Final Average Measurements

Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Phase	Rechecks dBµV
0.513000	41.70	46.0	4.3	N	
0.708000	38.10	46.0	7.9	L1	
1.155000	38.10	46.0	7.9	N	
1.476000	38.40	46.0	7.6	N	
2.504000	35.50	46.0	10.5	N	
2.954000	36.00	46.0	10.0	N	
3.404000	35.80	46.0	10.2	N	
4.304000	35.00	46.0	11.0	N	

Conducted Emissions – AC Input Power Port

Setup:

Device powered at 110 volts AC 60 Hz running continuously when attached to a laptop reading RS232 data, and when connected to a second EID Reader unit located remotely. The Small antenna which was attached and the Reader was reading 2 tags.

Peak Average Quasi Peak X Average +	Peak	Average	Quasi Peak X	Average +
-------------------------------------	------	---------	--------------	-----------

Final Quasi-Peak Measurements

Frequency	Level	Limit	Margin	Phase	Rechecks
MHz	dΒμV	dΒμV	dB		dBμV
0.153000	44.60	65.8	21.2	N	
0.516000	43.40	56.0	12.6	N	
1.476000	42.90	56.0	13.1	N	
1.593000	37.20	56.0	18.8	L1	
3.597500	36.70	56.0	19.3	N	

Final Average Measurements

Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Phase	Rechecks dBµV
0.513000	41.70	46.0	4.3	N	41.5
0.708000	38.10	46.0	7.9	L1	
1.155000	38.10	46.0	7.9	N	
1.476000	38.40	46.0	7.6	N	38.2
2.504000	35.50	46.0	10.5	N	
2.954000	36.00	46.0	10.0	N	
3.404000	35.80	46.0	10.2	N	
4.304000	35.00	46.0	11.0	N	

817.1 4th December 2013

Section 15.209: Radiated emission limits, general requirements

Radiated emissions testing was carried out over the frequency range of 100 kHz to 1000 MHz.

Testing was carried out at the laboratory's open area test site - located at Driving Creek, Orere Point, Auckland, New Zealand.

This site conforms to the requirements of CISPR 16 and ANSI C63.4 - 2003.

Testing was carried out when the device was powered at 120 Vac 60 Hz using the supplied AC power supply.

Testing was carried out when the reader was continuously reading between two RFID tags with the green LED flashing, the audible tone could be heard and the tag id's output to a laptop computer, that was running Hyper terminal, using the serial port.

The device was placed in the centre of the test table, laying flat, face up with the antenna standing upright facing the test antenna and to the right of the device under test and with the laptop computer placed to the left of the device under test.

Low frequency measurements below 30 MHz were not made on the metallic ground plane but on a grass test site at distances of 30 and 60 metres using a magnetic loop antenna.

The centre of this loop antenna was placed 1 metre above the ground.

Testing was carried out in this position as can be seen from the photographs.

Above 30 MHz testing was carried out at the test site using a metallic ground plane where emissions were measured in both vertical and horizontal antenna polarisations.

When an emission is located, it is positively identified and its maximum level is found by rotating the automated turntable, and by varying the antenna height, where appropriate, with an automated antenna tower.

The emission level was determined in field strength by taking the following into consideration:

Level $(dB\mu V/m) = Receiver Reading (dB\mu V) + Antenna Factor (dB/m) + Coax Loss (dB)$

Fundamental emission:

Measurements were made using a magnetic loop antenna and a receiver with an average detector and a peak detector both using a 9 kHz bandwidth

Initial measurements were made at a distance of 10 metres with the limit being determined by using the extrapolation factor of 40 dB per decade limit, as detailed in section 15.31 f (2) however this showed that the device would exceed the average limit.

Measurements were then made at two points along the highest field strength radial and the level at 300 metres was then calculated using this roll off factor

The average limit at 300 m at 134.2 kHz is 17.8 uV/m or 25 dBuV/m and 45 dBuV/m in peak.

Small Antenna

Frequency	Detector	Distance	Level	Limit	Margin
kHz		metres	dBuV/m	(dBuV/m)	(dB)
134.200	Average	30	72.1		
	Average	60	57.0		
	Calculated	300	21.9	25.0	3.1
134.200	Peak	30	76.4		
	Peak	60	66.0		
A Comment	Calculated	300	41.9	45.0	3.1

Large Antenna

Frequency	Detector	Distance	Level	Limit	Margin
kHz		metres	dBuV/m	dBuV/m	dB
134.200	Average	30	81.2	COK	
	Average	60	61.5		
	Calculated	300	15.8	25.0	9.2
134.200	Peak	30	84.8		
	Peak	60	63.8		
	Calculated	300	15.0	45.0	30.0

The 300 metre field strength has been calculated as follows using the Small antenna average measurements as an example.

The roll off from 30 metres to 60 metres is 0.3010 of a decade ($\log 60 - \log 30$).

The roll off from 30 metres to 300 metres is 1.000 of a decade (log 300 – log 30)

Therefore the proportion of 30 to 60 metres compared to 30 to 300 metres will be 3.322 (1/0.3010)

The field strength roll off from 30 m to 60 m is 15.1 dB (72.1 - 57.0)

Therefore the calculated field strength at 300 metres will be the 30 metre field strength measurement less the distance proportion factor times the roll off attenuation which equals 21.9 dBuV/m (72.1 dBuV/m - (3.322 x 15.1 dB))

Page 11 of 34 Test Report No 130817.1 4th December 2013

This report may not be reproduced except in full.

Testing was carried out at 134.200 kHz to determine the whether a variation in the supply voltage caused any changes in field strength.

The 120 Vac mains voltage was varied by +/- 10% however the field strength did not vary

As a further check the DC supply voltage to the device was varied over the range declared by the manufacturer from 12 Vdc to 24 Vdc.

The following results were recorded using an average detector.

Voltage	Small Antenna	Large Antenna
(Vdc)	(dBuV/m)	(dBuV/m)
12.0	72.1	81.2
18.0	72.1	81.2
24.0	72.1	81.2

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(100 \text{ kHz} - 30 \text{ MHz}) \pm 4.8 \text{ dB}$

Section 15.209: Spurious Emissions (below 30 MHz)

Small Antenna

Frequency	Level	Limit	Margin	Detector	Comment
kHz	dBuV/m	dBuV/m	dB		
268.400	46.0	79.0	33.0	Average	-
268.400	57.0	99.0	42.0	Peak	-
402.600	42.0	75.5	33.5	Average	-
402.600	53.0	95.5	42.5	Peak	-
536.800	< 49	53.0	-	Quasi Peak	Ambient
671.000	< 36	51.1	-	Quasi Peak	Nil observed
805.200	< 44	49.5	-	Quasi Peak	Ambient
939.400	< 42	48.1	-	Quasi Peak	Ambient
1073.600	< 43	47.0	-	Quasi Peak	Ambient
1207.800	< 31	46.0	-	Quasi Peak	Nil observed
1342.000	< 31	45.0	-	Quasi Peak	Nil observed
1476.200	< 40	44.2	-	Quasi Peak	Ambient
1610.400	< 27	43.5	_	Quasi Peak	Nil observed

Large Antenna

Large Amen	11a				
Frequency	Level	Limit	Margin	Detector	Comment
kHz	dBuV/m	dBuV/m	dB		
268.400	58.8	79.0	20.2	Average	
268.400	63.8	99.0	35.2	Peak	
402.600	57.3	75.5	18.2	Average	-
402.600	61.9	95.5	33.6	Peak	-
536.800	< 49	53.0	<u>-</u>	Quasi Peak	Ambient
671.000	< 36	51.1	77	Quasi Peak	Nil observed
805.200	< 44	49.5	1-0	Quasi Peak	Ambient
939.400	< 42	48.1		Quasi Peak	Ambient
1073.600	< 43	47.0	-	Quasi Peak	Ambient
1207.800	< 31	46.0	-	Quasi Peak	Nil observed
1342.000	< 31	45.0	_	Quasi Peak	Nil observed
1476.200	< 40	44.2	-	Quasi Peak	Ambient
1610.400	< 27	43.5	-	Quasi Peak	Nil observed

Magnetic loop measurements were made a distance of 10 metres.

At each frequency the measurement antenna was further adjusted to give the highest field strength.

A receiver with an average detector and a peak detector using a 9 kHz bandwidth was used between 110-490 kHz and a quasi peak detector with a 9 kHz bandwidth was used between 490 kHz -30.0 MHz.

The 300 metre limit between 125 – 490 kHz has been scaled by a factor of 40 dB per decade, as per section 15.31 (f) (2). The 30 metre limit between 490 – 1705 kHz has been scaled by a factor of 40 dB per decade, as per section 15.31 (f) (2).

The limit between 110 – 490 kHz was increased by 20 dB when the peak detector was used.

The spurious emissions observed do not exceed the level of the fundament emission.

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(100 \text{ kHz} - 30 \text{ MHz}) \pm 4.8 \text{ dB}$

Section 15.209: Spurious Emissions (above 30 MHz)

Measurements between 30 –1000 MHz have been made at a distance of 3 metres.

A receiver with a quasi peak detector with a 120 kHz bandwidth was used between 30 – 1000 MHz.

Measurements were carried out as the device contains a digital device that operates on 17.1776 MHz.

The device was tested transmitting continuously on 134.2 kHz while continuously reading 2 animal tags with the Small and Large antennas being attached in turn.

The device was tested when powered at 120 Vac using the supplied AC/DC power supply and was configured as follows;

- a data cable attached to the com port which was attached to a laptop computer that was running hyper terminal
- Small or Large antenna attached to the antenna port
- AC adaptor attached to the power port
- 5 metre data cable from the sync port to a second Reader that was remotely located

The limits as described in Section 15.209 have been applied as follows:

Frequency (MHz)	Limit (uV/m)	Limit (dBuV/m)
30.0 - 88.0	100	40.0
88.0 - 216.0	150	43.5
216.9 - 960.0	200	46.0
Above 960	500	54.0

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 1000 \text{ MHz}) \pm 4.1 \text{ dB}$

Small antenna attached

Frequency	Vertical	Horizontal	Limit	Margin	Antenna
MHz	dBuV/m	dBuV/m	dBuV/m	dB	
32.092	28.1		40.0	11.9	Vertical
74.168	20.3		40.0	19.7	Vertical
112.717	23.1		40.0	16.9	Vertical
123.000	26.3		40.0	13.7	Vertical
126.440	27.8		40.0	12.2	Vertical

Large antenna attached

Frequency MHz		Horizontal dBuV/m		Margin dB	Antenna
33.603	29.2		40.0	10.8	Vertical
70.440	21.8		40.0	18.2	Vertical
78.460	21.0		40.0	19.0	Vertical
79.166		21.1	40.0	18.9	Horizontal
117.619	24.7		40.0	15.3	Vertical
119.540		25.2	40.0	14.8	Horizontal

All other emissions detected had a margin to limit that exceeded 15 dB when measurements were attempted up to 1 GHz using both vertical and horizontal polarisations.

7. TEST EQUIPMENT USED

Instrument	Manufacturer	Model	Serial No	Asset Ref	Cal Due	Interval
Aerial Controller	EMCO	1090	9112-1062	RFS 3710	N/a	N/a
Aerial Mast	EMCO	1070-1	9203-1661	RFS 3708	N/a	N/a
Biconical Antenna	Schwarzbeck	BBA 9106	-	RFS 3613	30 Jan 2015	3 years
Receiver	R & S	ESIB-40	100171	R-27-1	20 Apr 2014	1 year
Receiver	R & S	ESHS 10	828404/005	RFS 3728	22 Aug 2014	1 year
Spectrum Analyser	Hewlett Packard	E7405A	US39150142	3776	26 Feb 2015	1 year
Loop Antenna	EMCO	6502	9003-2485	3798	15 May 2014	3 years
Log Periodic	Schwarzbeck	VUSLP 9111	9111-228	3785	30 Jan 2015	3 years
Mains Network	R & S	ESH2-Z5	881362/034	3628	29 Jul 2014	3 years
Variac	General Radio	1592	-	RFS 3690	N/a	N/a
Turntable	EMCO	1080-1-2.1	9109-1578	RFS 3709	N/a	N/a
VHF Balun	Schwarzbeck	VHA 9103	-	RFS 3613	30 Jan 2015	3 years

8. ACCREDITATIONS

Testing was carried out in accordance with EMC Technologies Ltd registration with the Federal Communications Commission as a listed facility, registration number: 90838, which was updated in July, 2013.

All testing was carried out in accordance with the terms of EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025, 2005.

All measurement equipment has been calibrated in accordance with the terms of the EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025, 2005.

International Accreditation New Zealand has Mutual Recognition Arrangements for testing and calibration with various accreditation bodies in a number of economies. This includes NATA (Australia), UKAS (UK), SANAS (South Africa), NVLAP (USA), A2LA (USA), SWEDAC (Sweden). Further details can be supplied on request.

9. PHOTOGRAPHS

External Photos – Label Close Up

Front View

Rear face including label on product

End view showing unique antenna connector

Large Antenna

Small Antenna

Internal Photos

Radiated Emission Test Set Up - Below 30 MHz

Large Antenna at 60 metres

Large antenna at 30 metres

Small antenna set up that was moved to 30 metres to be tested

Small Antenna at 30 metres (White line is the tape measure)

Small antenna at 60 metres – A stick was needed to keep the antenna upright.

Above 30 MHz - Small Antenna

Conducted Emissions

ENC Technologies