

TEST REPORT

APPLICANT: EmdoorVR Technology Co.,Ltd

PRODUCT NAME: Android Virtual Reality Headset

MODEL NAME : AVR2-BK

BRAND NAME: Variety Products,LLC.

FCC ID : 2ANTOR551-C-AVR2-BK

STANDARD(S) : 47CFR 2.1093

IEEE 1528-2013

TEST DATE : 2017-10-27

ISSUE DATE : 2017-11-08

Tested by: Peng Fuwei (Test engineer)

Approved by: Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

d. Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

DIRECTORY

1. Technical Information ······
1.1. Applicant and Manufacturer Information
1.2. Equipment Under Test (EUT) Description
1.3. Summary of Maximum SAR Value
1.4. Applied Reference Documents
2.Device Category and SAR Limits
3. Specific Absorption Rate (SAR)
3.1 Introduction ·····
3.2 SAR Definition
4. SAR Measurement Setup ·······
4.1 The Measurement System ······
4.2 Probe
4.3 Probe Calibration Process1
4.4 Phantom ····································
4.5 Device Holder1
5. Tissue Simulating Liquids ·······1
6. Uncertainty Assessment1
6.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST ··································
6.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK1
7. SAR Measurement Evaluation ····································
7.1 System Setup1
7.2 Validation Results ····································
8. Operational Conditions During Test2
8.1 Body-worn Configurations2
8.2 Measurement procedure2
8.3 Description of interpolation/extrapolation scheme2

9. HOTSPOT MODE EVALUATION PROCEDURE	22
10. Measurement Of Conducted output power	23
11. TEST RESULTS LIST	24
12. Repeated SAR Measurement ·······	26
13. Bluetooth Exclusions applied	27

Change History			
Issue Date Reason for change			
1.0 2017-11-08		First edition	

1. Technical Information

Note: Provide by manufacturer.

1.1. Applicant and Manufacturer Information

Applicant:	EmdoorVR Technology Co.,Ltd				
Applicant Address:	811/F JinFuLai Building,49-1 Dabao Road, Bao An District,				
Applicant Address.	Shenzhen				
Manufacturer:	EmdoorVR Technology Co.,Ltd				
Manufacturer Address	811/F JinFuLai Building,49-1 Dabao Road, Bao An District,				
Manufacturer Address:	Shenzhen				

1.2. Equipment Under Test (EUT) Description

Model Name:	AVR2-BK						
Hardware Version:	EM_R551_MB_V1.3						
Software Version:	VR0746/3.20.0	01					
Frequency Bands:	802.11b/g/n: 24	112 MHz ~ 2462 MHz					
	Bluetooth: 240	2 MHz ~ 2480 MHz					
Modulation Mode:	Bluetooth 2.1+EDR (1Mbps): GFSK						
	Bluetooth 4.0 - LE (1Mbps): GFSK						
	802.11b : DSSS (BPSK / QPSK / CCK)						
	802.11g : OFDM (BPSK / QPSK / 16QAM / 64QAM)						
Antenna type:	FPCB Antenna						
Max Scaled	Dody 0.022\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
SAR-10g(W/Kg)	Войу	Body 0.933W/kg Limit(W/kg): 1.6W/kg					

1.3. Summary of Maximum SAR Value

Mode/Band	Test Position	Measurement SAR-1g(W/kg)	Scaled SAR-1g(W/Kg)	Plot
WLAN 2.4GHz	Body(0mm Gap)	0.807	0.933	7#

Note:

- 1. The SAR limit(1.6W/kg) for general population/uncontrolled exposure is specified in FCC 47 CFR part2(2.1093) and ANSI/IEEE C95.1-1991.
- 2. Since the Bluetooth maximum power is less than P_{Ref} and maximum SAR for others transmitter is less than 1.2W/kg,SAR testing for Bluetooth is not required.

1.4. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title				
1		IEEE Recommended Practice for Determining the Peak				
	IEEE 1528-2013	Spatial-Average Specific Absorption Rate (SAR) in the				
	IEEE 1520-2015	Human Head from Wireless Communications Devices:				
		Measurement Techniques				
2	KDB 447498 D01v06	General RF Exposure Guidance				
3	KDB 248227 D01v02r02	SAR Measurement Guidance for IEEE 802.11				
		Transmitters				
4	KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz				
5	KDB 865664 D02v01r02	SAR Reporting				
6	KDB 616217 D04v01r02	SAR for laptop and Tablets				

Tel: 86-755-36698555

Http://www.morlab.cn

2.Device Category and SAR Limits

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body		Hands, Wrists, Feet and Ankles		
0.4	8.0	20.0		

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4. SAR Measurement Setup

4.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm

 Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

Probe linearity: <0.25 dBAxial Isotropy: <0.25 dB

- Spherical Isotropy: <0.25 dB

- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4 \left(P_{fw} - P_{bw} \right)}{ab\delta} \cos^2 \left(\pi \frac{y}{a} \right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

ı = Skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with aNPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/VIin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)^*(1+V(N)/DCP(N))$$
 (N=1,2,3)

Where DCP is the diode compression point in mV.

4.3 Probe Calibration Process

4.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

4.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

4.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \text{exposure time (30 seconds)},$

C = heat capacity of tissue (brainor muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

4.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°.

Device holder

System Material Permittivity		Loss Tangent		
Delrin	3.7	0.005		

5. Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

Frequency Band (MHz)	2450			
Tissue Type	Head	Body		
Ingredients (% by we	eight)			
Deionised Water	62.70	73.20		
Salt(NaCl)	0.50	0.10		
Sugar	0.00	0.00		
Tween 20	0.00	0.00		
HEC	0.00	0.00		
Bactericide	0.00	0.00		
Triton X-100	36.80	0.00		
DGBE	0.00	26.70		
Diethylenglycol monohexylether	0.00	0.00		
Target dielectric parameters				
Dielectric Constant	39.20	52.70		
Conductivity (S/m)	1.80	1.95		

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Table 1: Dielectric Performance of Tissue Simulating Liquid

Temperature: 22.0~23.8°C, humidity: 54~60%.						
Date	Freq.(MHz)	req.(MHz) Liquid Parameters Meas. Target Delta(%) L			Limit±(%)	
2017/10/27	017/10/27 Head 2450	Relative Permittivity(er):	39.28	39.20	0.20	5
2017/10/27 F		Conductivity(σ):	1.83	1.80	1.67	5
2047/40/27 Pody 2450	Relative Permittivity(er):	52.88	52.70	0.34	5	
2017/10/27 Body 2450		Conductivity(σ):	1.97	1.95	1.03	5

6. Uncertainty Assessment

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

6.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST

а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g Ui	Vi
		(+- %			(1g	(10g)	(+-%)	(+-%)	
)	Dist.)				
Measurement System									
Probe calibration	E.2.1	5.83	N	1	1	1	5.83	5.83	8
Axial Isotropy	E.2.2	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	E.2.2	5.9	R	$\sqrt{3}$	1	1	3.41	3.41	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.5	N	1	1	1	0.5	0.5	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	3.0	3.0	∞
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Probe positioning with respect to Phantom Shell	E.6.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Test sample Related									
Test sample positioning	E.4.2. 1	2.6	N	1	1	1	2.6	2.6	N-1
Device Holder Uncertainty	E.4.1. 1	3.0	N	1	1	1	3.0	3.0	N-1
Output power Power drift -	6.6.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞

SAR drift measurement									
Phantom and Tissue Para	meters								
Phantom Uncertainty									
(Shape and thickness	E.3.1	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
tolerances)									
Liquid conductivity -	E.3.2	2.0	R	$\sqrt{3}$	0.6	0.43	1.69	1.13	∞
deviation from target value	L.J.Z	2.0	IX	η3	4	0.43	1.09	1.13	8
Liquid conductivity -	E.3.3	2.5	N	1	0.6	0.43	3.20	2.15	М
measurement uncertainty	E.3.3	2.5	IN	I	4	0.43	3.20	2.10	IVI
Liquid permittivity -	E.3.2	2.5	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	∞
deviation from target value	L.J.Z	2.5		ν3	0.0	0.40	1.20	1.04	8
Liquid permittivity -	E.3.3	5.0	N	1	0.6	0.49	6.00	4.90	М
measurement uncertainty	E.3.3	5.0	IN	I	0.0	0.49	0.00	4.90	IVI
Liquid conductivity	E.3.4		R	$\sqrt{3}$	0.7	0.41			∞
-temperature uncertainty	E.3.4		N	γο	8	0.41			8
Liquid permittivity	E.3.4		R	$\sqrt{3}$	0.2	0.26			∞
-temperature uncertainty	E.3.4		N	ν3	3	0.20			8
Combined Standard			RSS				11.55	12.0	
Uncertainty								7	
Expanded Uncertainty			K=2				±	±	
(95% Confidence interval)			r\=2				23.20	24.17	

6.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

а	b	С	d	e=	f	g	h=	i=	k
				f(d,k)			c*f/e	c*g/	
								е	
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
		(+-	•		(1g)	(10g)	(+-%)	Ui	
		%)	Dist.					(+-	
								%)	
Measurement System									
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	1	1	1.44	1.4	8
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	1	1	2.31	2.3	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	8

E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
E.2.6	0.02	N	1	1	1	0.02	0.0	∞
E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
							5	
E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
							3	
E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	∞
							9	
1			<u>I</u>			1	ı	
8,E.4.	1.00	N	$\sqrt{3}$	1	1	0.58	0.5	∞
2							8	
8,6.6.	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	∞
2							3	
meters		•						•
E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	∞
							3	
E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	∞
							3	
E.3.3	5.00	N	$\sqrt{3}$	0.64	0.43	1.85	1.2	М
							4	
E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	∞
							4	
E.3.3	10.0	N	$\sqrt{3}$	0.6	0.49	3.46	2.8	М
	0						3	
		RSS				8.83	8.3	
							7	
		K=2				17.66	16.	
							73	
	E.2.6 E.2.7 E.2.8 E.6.1 E.6.2 E.6.3 E.5.2 8,6.6. 2 meters E.3.1 E.3.2 E.3.2	E.2.6 0.02 E.2.7 3.0 E.2.8 2.0 E.6.1 3.0 E.6.2 2.0 E.6.3 0.05 E.5.2 5.0 8,E.4. 1.00 2 8,6.6. 4.04 2 meters E.3.1 0.05 E.3.2 4.57 E.3.3 5.00 E.3.2 3.69 E.3.3 10.0	E.2.6 0.02 N E.2.7 3.0 R E.2.8 2.0 R E.6.1 3.0 R E.6.2 2.0 R E.6.3 0.05 R E.5.2 5.0 R E.5.2 5.0 R E.3.1 0.05 R E.3.1 0.05 R E.3.2 4.57 R E.3.2 3.69 R E.3.3 10.0 N 0 RSS R R R R R R R R	E.2.6 0.02 N 1 E.2.7 3.0 R $\sqrt{3}$ E.2.8 2.0 R $\sqrt{3}$ E.6.1 3.0 R $\sqrt{3}$ E.6.2 2.0 R $\sqrt{3}$ E.6.3 0.05 R $\sqrt{3}$ E.5.2 5.0 R $\sqrt{3}$ 8,E.4. 1.00 N $\sqrt{3}$ 2 8,6.6. 4.04 R $\sqrt{3}$ E.3.1 0.05 R $\sqrt{3}$ E.3.2 4.57 R $\sqrt{3}$ E.3.3 5.00 N $\sqrt{3}$ E.3.2 3.69 R $\sqrt{3}$ E.3.3 10.0 N $\sqrt{3}$ E.3.3 10.0 N $\sqrt{3}$ E.3.3 10.0 N $\sqrt{3}$ E.3.8 0 RSS	E.2.6 0.02 N 1 1 E.2.7 3.0 R $\sqrt{3}$ 1 E.2.8 2.0 R $\sqrt{3}$ 1 E.6.1 3.0 R $\sqrt{3}$ 1 E.6.2 2.0 R $\sqrt{3}$ 1 E.6.3 0.05 R $\sqrt{3}$ 1 E.5.2 5.0 R $\sqrt{3}$ 1 8,E.4. 1.00 N $\sqrt{3}$ 1 8,6.6. 4.04 R $\sqrt{3}$ 1 Immeters E.3.1 0.05 R $\sqrt{3}$ 1 E.3.2 4.57 R $\sqrt{3}$ 0.64 E.3.3 5.00 N $\sqrt{3}$ 0.64 E.3.3 10.0 N $\sqrt{3}$ 0.6 E.3.3 10.0 N $\sqrt{3}$ 0.6 RSS	E.2.6 0.02 N 1 1 1 1 E.2.7 3.0 R $\sqrt{3}$ 1 1 1 E.2.8 2.0 R $\sqrt{3}$ 1 1 1 E.6.1 3.0 R $\sqrt{3}$ 1 1 1 E.6.2 2.0 R $\sqrt{3}$ 1 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 1 E.5.2 5.0 R $\sqrt{3}$ 1 1 1 E.5.2 5.0 R $\sqrt{3}$ 1 1 1 1 E.5.2 E.3.1 0.05 R $\sqrt{3}$ 1 1 1 1 E.3.2 4.57 R $\sqrt{3}$ 0.64 0.43 E.3.3 5.00 N $\sqrt{3}$ 0.64 0.43 E.3.2 3.69 R $\sqrt{3}$ 0.6 0.49 E.3.3 10.0 N $\sqrt{3}$ 0.6 0.49 E.3.3 10.0 N $\sqrt{3}$ 0.6 0.49 C.3.5 C.5 C	E.2.6 0.02 N 1 1 1 0.02 E.2.7 3.0 R $\sqrt{3}$ 1 1 1.73 E.2.8 2.0 R $\sqrt{3}$ 1 1 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.73 E.6.2 2.0 R $\sqrt{3}$ 1 1 0.03 E.6.3 0.05 R $\sqrt{3}$ 1 1 0.03 E.5.2 5.0 R $\sqrt{3}$ 1 1 0.58 8,E.4. 1.00 N $\sqrt{3}$ 1 1 0.58 8,6.6. 2 4.04 R $\sqrt{3}$ 1 1 0.58 meters E.3.1 0.05 R $\sqrt{3}$ 1 1 0.03 E.3.2 4.57 R $\sqrt{3}$ 0.64 0.43 1.85 E.3.2 3.69 R $\sqrt{3}$ 0.6 0.49 1.28 E.3.3 10.0 N $\sqrt{3}$ 0.6 0.49 </td <td>E.2.6 0.02 N 1 1 1 0.02 0.0 E.2.7 3.0 R $\sqrt{3}$ 1 1 1.73 1.7 E.2.8 2.0 R $\sqrt{3}$ 1 1 1.15 1.1 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.73 1.7 E.6.2 2.0 R $\sqrt{3}$ 1 1 1.15 1.1 E.6.3 0.05 R $\sqrt{3}$ 1 1 0.03 0.0 3 E.5.2 5.0 R $\sqrt{3}$ 1 1 0.58 0.5 8 8,6.6. 4.04 R $\sqrt{3}$ 1 1 0.58 0.5 8 8,6.6. 4.04 R $\sqrt{3}$ 1 1 0.58 0.5 8 8,6.6. 4.04 R $\sqrt{3}$ 1 1 0.03 0.5 8 8,6.6. 4.04 R $\sqrt{3}$ 1 1 0.03 0.0 9 </td>	E.2.6 0.02 N 1 1 1 0.02 0.0 E.2.7 3.0 R $\sqrt{3}$ 1 1 1.73 1.7 E.2.8 2.0 R $\sqrt{3}$ 1 1 1.15 1.1 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.73 1.7 E.6.2 2.0 R $\sqrt{3}$ 1 1 1.15 1.1 E.6.3 0.05 R $\sqrt{3}$ 1 1 0.03 0.0 3 E.5.2 5.0 R $\sqrt{3}$ 1 1 0.58 0.5 8 8,6.6. 4.04 R $\sqrt{3}$ 1 1 0.58 0.5 8 8,6.6. 4.04 R $\sqrt{3}$ 1 1 0.58 0.5 8 8,6.6. 4.04 R $\sqrt{3}$ 1 1 0.03 0.5 8 8,6.6. 4.04 R $\sqrt{3}$ 1 1 0.03 0.0 9

7. SAR Measurement Evaluation

7.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the

cable to the dipole, the signal generator is readjusted for the same reading at power meter

7.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency	2450MHz(H)	2450MHz(B)		
Target value	53.34 W/Kg	50.93 W/Kg		
1W (1g)	00.01 W/Kg	00.00 W/Ng		
Test value 1g				
(100 mW	5.339 W/Kg	5.081 W/Kg		
input power)				
Normalized to 1W value(1g)	53.39 W/Kg	50.81 W/Kg		
Deviation	0.10%	0.24%		

Note: System checks the specific test data please see Annex D

8. Operational Conditions During Test

8.1 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

IllustrationforBodyWornPosition

8.2 Measurement procedure

The Following steps are used for each test position

- 1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

8.3 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

Tel: 86-755-36698555

Http://www.morlab.cn

9. HOTSPOT MODE EVALUATION PROCEDURE

The SAR evaluation procedures for Portable Devices with Wireless Router function is according to KDB 941225 D06 HotSpot SAR v02r01.

SAR must be tested for all surfaces and edges (side) with a transmitting antenna with in 2.5 cm from that surface or edge, at a test separation distance of 0 mm, in the wireless mode that support wireless routing.

Edge configurations:

Assessment Hotspot side for SAR								
Test distance: 0mm								
Bottom	Front	Left	Right	Back	Тор			
Yes	Yes	No	Yes	No	Yes			

10. Measurement Of Conducted output power

1. 2.4G WiFi Average output power

Band Channe		Frequency	(Output Power(dBm)					
	Channel	(MHz)	802.11b	802.11g	802.11n20				
		(=)	(DSSS)	(OFDM)	(OFDM)				
	1	2412	15.87	11.24	10.48				
2.4G WiFi	6	2437	16.01	11.47	10.50				
	11	2462	15.45	11.07	10.31				

			Output
Band	Channel	Frequency	Power(dBm)
		(MHz)	802.11n40
			(OFDM)
2.4G WiFi	3	2412	10.31
	6	2437	10.77
	9	2462	10.61

2. BT peak output power

Pand	Channel	Frequency	Output Power(dBm)				
Band	Charmer	(MHz)	GFSK	π/4-DQPSK	8-DPSK		
	0	2402	3.47	4.47	4.81		
BT2.1+EDR	39	2441	4.09	4.92	5.24		
	78	2480	3.99	4.92	5.20		

Band	Channel	Frequency	Output Power(dBm)
		(MHz)	GFSK
BT4.1	0	2402	6.22
	19	2441	6.75
	39	2480	6.50

11. TEST RESULTS LIST

Summary of Measurement Results (WLAN 802.11b Band)

Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Duty Cycle	Scaling Factor (Duty Cycle)	Scaling Factor (Power)	Scaled SAR (W/Kg), 1g
	Front	1	0.226			1.119	0.253
	Тор	I	0.163			1.113	0.182
Body		1	0.807			1.156	0.933
(0mm	Curve	6	0.795	100%	1	1.119	0.890
Separation)		11	0.851			1.012	0.861
	Bottom	1	0.175			4.440	0.196
	Right Edge	l	0.115			1.119	0.129

Notes:

- 1. Adjust SAR for OFDM is 1.084*16.01/15.87=1.094W/Kg<1.2, so SAR is not required for OFDM modes.
- 2. SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:
 - 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is \leq 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
 - 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.
- 4. Justification for test configurations for WLAN per KDB Publication 248227 D01DR02-41929 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.

6. Scaling Factor calculation

Band	Mode	Channel	Tune-up power tolerance(dBm)	SAR test channel Power (dBm)	Scaling Factor
	1		Max output power =16+-0.5	15.87	1.156
802.11b 6	6	Max output power =16+-0.5	16.01	1.119	
	11	Max output power =15+-0.5	15.45	1.012	
		1		11.24	
2.4G Wifi	802.11g	6	Max output power =11+-0.5	11.47	1.007
		11		11.07	1.104
		1	10.48		1.127
	802.11n20	6	Max output power =10.5+-0.5	10.50	1.122
	11		10.31	1.172	

12. Repeated SAR Measurement

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the samehead or body tissue-equivalent medium in a frequency band. The test device should be returned to ambientconditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder forthe repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2)through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% fromthe 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kgand the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

13. Bluetooth Exclusions applied

The BT stand-alone SAR is not required, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

(Max power=4.73 mW; min. test separation distance= 5mm for head; f=2.4GHz)

BT estimated head SAR =0.20W/Kg (1g)

Annex A Photographs of Test Setup

1. EUT Front Position

2. EUT Top Position

4. EUT Bottom Position

5. EUT Right Edge Position

6. Liquid Level Photo

Annex B Plots of SAR Test Results

MEASUREMENT 1

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.10.27

Measurement duration: 13 minutes 46 seconds

A. Experimental conditions.

Area Scan	surf sam plan.txt, h= 5.00 mm
<u>Phantom</u>	Validation plane
<u>Device Position</u>	Body
<u>Band</u>	<u>IEEE 802.11b ISM</u>
<u>Channels</u>	Low
<u>Signal</u>	<u>DSSS</u>

B. SAR Measurement Results

Lower Band SAR (Channel 1):

Frequency (MHz)	2412.000000
Relative permittivity (real part)	39.284446
Conductivity (S/m)	1.836061
Power drift (%)	-0.650000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.7°C
ConvF:	4.82
Crest factor:	1:1

Zoom In/Out

Maximum location: X=-31.00, Y=32.00

SAR Peak: 0.37 W/kg

SAR 10g (W/Kg)	0.074285
SAR 1g (W/Kg)	0.175154

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.3674	0.1861	0.0655	0.0315	0.0093	0.0016	0.0010
(W/Kg)							
	0.37-						
	0.30-	$\lambda \sqcup \bot$					
	0.25	Δ					
	0.20- ¥ 0.20-	\longrightarrow	$\perp \perp \perp$				
	ව අ 0.15- ගි	$+\lambda$					
	ਲੋ 0.10-	$++\lambda$					
	0.05-						
	0.00-			 	_		
	0	.02.55.07.5	12.5 17	.5 22.5 ; Z (mm)	27.5 32.5	40.0	
				7 (IIII)			

MEASUREMENT 2

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.10.27

Measurement duration: 13 minutes 28 seconds

A. Experimental conditions.

Area Scan	surf sam plan.txt, h= 5.00 mm		
<u>Phantom</u>	Validation plane		
Device Position	<u>Body</u>		
<u>Band</u>	<u>IEEE 802.11b ISM</u>		
<u>Channels</u>	<u>Low</u>		
<u>Signal</u>	<u>DSSS</u>		

B. SAR Measurement Results

Lower Band SAR (Channel 1):

Frequency (MHz)	2412.000000
Relative permittivity (real part)	39.284446
Conductivity (S/m)	1.836061
Power drift (%)	-0.650000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.7°C
ConvF:	4.82
Crest factor:	1:1

Maximum location: X=40.00, Y=-7.00

SAR	Peak:	1.52	W/kg
-----	-------	------	------

SAR 10g (W/Kg)	0.393688
SAR 1g (W/Kg)	0.807409

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.6692	0.8415	0.3011	0.1766	0.0683	0.0305	0.0128
(W/Kg)							
	1.7-		<u> </u>				
	1.4-	\longleftrightarrow					
	1.2-	\longrightarrow					
	(¥ 1.0- ≥ 0.8-	\longrightarrow					
		+					
	¥g 0.6-	+N					
	0.4-	$++\lambda$					
	0.2- 0.0-						
		02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
	Z (mm)						

MEASUREMENT 3

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.10.27

Measurement duration: 13 minutes 44 seconds

A. Experimental conditions.

<u>Area Scan</u>	surf sam plan.txt, h= 5.00 mm
<u>Phantom</u>	Validation plane
Device Position	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11b ISM</u>
<u>Channels</u>	Low
<u>Signal</u>	<u>DSSS</u>

B. SAR Measurement Results

Lower Band SAR (Channel 1):

Frequency (MHz)	2412.000000
Relative permittivity (real part)	39.284446
Conductivity (S/m)	1.836061
Power drift (%)	-0.650000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.7°C
ConvF:	4.82
Crest factor:	1:1

Maximum location: X=30.00, Y=48.00 SAR Peak: 0.39 W/kg

SAR 10g (W/Kg)	0.112865
SAR 1g (W/Kg)	0.225769

0.00	4.00	9.00	14.00	19.00	24.00	29.00
0.3512	0.2192	0.1290	0.0832	0.0473	0.0210	0.0022
0.35-						
0.30-	\perp					
0.25-						
A U 2U-						
3						
0.10-						
0.05-						
				+		
0	.02.55.07.5	12.5 17		27.5 32.5	40.0	
Z (mm)						
	0.3512 0.35- 0.30- 0.25- (%)/KB 0.15- 0.05- 0.00-	0.3512 0.2192 0.35- 0.30- 0.25- 0.25- 0.15- 0.05- 0.05- 0.00-	0.3512 0.2192 0.1290 0.35- 0.30- 0.25- 0.25- 0.10- 0.05- 0.00-	0.3512 0.2192 0.1290 0.0832 0.35 0.30 0.25 0.15 0.10 0.05 0.00 0.02.55.07.5 12.5 17.5 22.5	0.3512	0.3512

Tel: 86-755-36698555

Http://www.morlab.cn

MEASUREMENT 4

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.10.27

Measurement duration: 13 minutes 30 seconds

A. Experimental conditions.

Area Scan	surf sam plan.txt, h= 5.00 mm		
<u>Phantom</u> <u>Validation plane</u>			
Device Position	<u>Body</u>		
<u>Band</u>	<u>IEEE 802.11b ISM</u>		
<u>Channels</u>	<u>Low</u>		
<u>Signal</u>	<u>DSSS</u>		

B. SAR Measurement Results

Lower Band SAR (Channel 1):

Frequency (MHz)	2412.000000		
Relative permittivity (real part)	39.284446		
Conductivity (S/m)	1.836061		
Power drift (%)	-0.650000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.7°C		
ConvF:	4.82		
Crest factor:	1:1		

Maximum location: X=7.00, Y=34.00 SAR Peak: 0.39 W/kg

SAR 10g (W/Kg)	0.058434		
SAR 1g (W/Kg)	0.114739		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.3851	0.1530	0.0400	0.0156	0.0234	0.0293	0.0010
(W/Kg)							
	0.39 - 0.35 -	$\downarrow \downarrow \downarrow \downarrow$					
	0.30-	+				_	
	(3) 20.25- 3) 0.20-						
	हु 0.15-	$+\!$					
	0.10-						
	0.05 - 0.00 -		4				
		.'02.'55.'07.'5	12.5 17		27.5 32.5	40.0	
				Z (mm)			

Tel: 86-755-36698555

MEASUREMENT 5

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.10.27

Measurement duration: 13 minutes 33 seconds

A. Experimental conditions.

<u>Area Scan</u>	surf sam plan.txt, h= 5.00 mm		
<u>Phantom</u>	Validation plane		
Device Position	<u>Body</u>		
<u>Band</u>	<u>IEEE 802.11b ISM</u>		
<u>Channels</u>	Low		
<u>Signal</u>	<u>DSSS</u>		

B. SAR Measurement Results

Lower Band SAR (Channel 1):

Frequency (MHz)	2412.000000		
Relative permittivity (real part)	39.284446		
Conductivity (S/m)	1.836061		
Power drift (%)	-0.650000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.7°C		
ConvF:	4.82		
Crest factor:	1:1		

Maximum location: X=-27.00, Y=-33.00

SAR Peak: 0.34 W/kg

SAR 10g (W/Kg)	0.071542		
SAR 1g (W/Kg)	0.163272		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.2971	0.1944	0.0904	0.0566	0.0084	0.0015	0.0186
(W/Kg)							
	0.30-						
	0.25-	$\downarrow \downarrow \downarrow \downarrow$					
	_ 0.20-						
	0.20- ¾ ≥ 0.15-						
		+1					
	뛼 0.10-	++	+++				
	0.05-		\longrightarrow				
	0.00-			$\backslash \downarrow \downarrow \downarrow$	4-4-4-1		
	0	.02.55.07.5	12.5 17		27.5 32.5	40.0	
	Z (mm)						

Tel: 86-755-36698555

Http://www.morlab.cn

MEASUREMENT 6

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.10.27

Measurement duration: 13 minutes 33 seconds

A. Experimental conditions.

<u>Area Scan</u>	surf_sam_plan.txt, h= 5.00 mm		
<u>Phantom</u>	Validation plane		
Device Position	<u>Body</u>		
<u>Band</u>	<u>IEEE 802.11b ISM</u>		
<u>Channels</u>	<u>Middle</u>		
<u>Signal</u>	<u>DSSS</u>		

B. SAR Measurement Results

Middle Band SAR (Channel 6):

Frequency (MHz)	2437.000000		
Relative permittivity (real part)	39.284446		
Conductivity (S/m)	1.836061		
Power drift (%)	-0.650000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.7°C		
ConvF:	4.82		
Crest factor:	1:1		

Maximum location: X=31.00, Y=41.00 SAR Peak: 0.19 W/kg

SAR 10g (W/Kg)	0.440582		
SAR 1g (W/Kg)	0.794501		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.1608	0.1023	0.0535	0.0047	0.0031	0.0033	0.0024
(W/Kg)							
	0.16-						
	0.14-	\longrightarrow	\perp				
	0.12-	\rightarrow	+++				
	ဖြူ 0.10-	\longrightarrow	+++				
	િક્રું 0.10 - ≷ 0.08 -	$+$ \wedge	+++				
	뚌 0.06-	++	+++				
	0.04-	\Box	\longrightarrow		+		
	0.02-		+				
	0.00-		10 - 15			12 2	
	0	.02.55.07.5	12.5 17		27.5 32.5	40.0	
				Z (mm)			

Tel: 86-755-36698555

Http://www.morlab.cn

MEASUREMENT 7

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.10.27

Measurement duration: 13 minutes 33 seconds

A. Experimental conditions.

Area Scan	surf sam plan.txt, h= 5.00 mm		
<u>Phantom</u>	Validation plane		
Device Position	<u>Body</u>		
<u>Band</u>	<u>IEEE 802.11b ISM</u>		
<u>Channels</u>	<u>High</u>		
<u>Signal</u>	<u>DSSS</u>		

B. SAR Measurement Results

Higher Band SAR (Channel 11):

-			
Frequency (MHz)	2462.000000		
Relative permittivity (real part)	39.284446		
Conductivity (S/m)	1.836061		
Power drift (%)	-0.650000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.7°C		
ConvF:	4.82		
Crest factor:	1:1		

Maximum location: X=24.00, Y=48.00 SAR Peak: 0.32 W/kg

SAR 10g (W/Kg)	0.488610		
SAR 1g (W/Kg)	0.851290		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.2943	0.1966	0.0985	0.0666	0.0097	0.0086	0.0111
(W/Kg)							
	0.29-						
	0.25-	$\downarrow \downarrow \downarrow \downarrow$					
	_ 0.20-						
	0.20- % ≥ 0.15-						
		++					
	뛼 0.10-	\longrightarrow	\Box				
	0.05-						
	0.01-				┸		
	0	.02.55.07.5	12.5 17		27.5 32.5	40.0	
	Z (mm)						

Annex C System Check Data

System Performance Check Data(2450MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.10.27

Measurement duration: 13 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	antom Flat			
Device Position				
Band	2450MHz			
Channels				
Signal	CW			

B. SAR Measurement Results

Frequency (MHz)	2450.000000		
Relative permittivity (real part)	39.284446		
Conductivity (S/m)	1.836061		
Power Drift (%)	1.080000		
Ambient Temperature:	22.0°C		
Liquid Temperature:	21.8°C		
ConvF:	4.74		
Crest factor:	1:1		

Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	2.377250
SAR 1g (W/Kg)	5.326074

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	12.9615	6.2096	3.8187	2.4504	1.5036	1.0219
(W/Kg)							

System Performance Check Data(2450MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.10.27

Measurement duration: 13 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat			
Device Position				
Band	2450MHz			
Channels				
Signal	CW			

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450.000000		
Relative permittivity (real part)	52.884446		
Conductivity (S/m)	1.966143		
Power Drift (%)	1.080000		
Ambient Temperature:	22.0°C		
Liquid Temperature:	21.8°C		
ConvF:	4.93		
Crest factor:	1:1		

Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	2.377250
SAR 1g (W/Kg)	5.081074

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	12.9615	6.2096	3.8187	2.4504	1.5036	1.0219
· • • • • • • • • • • • • • • • • • • •							

Tel: 86-755-36698555

Annex D General Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.			
Department:	Morlab Laboratory			
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road,			
	Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R.			
	China			
Responsible Test Lab	Mr. Su Feng			
Manager:				
Telephone:	+86 755 36698555			
Facsimile:	+86 755 36698525			

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab		
	Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road,		
	Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R.		
	China		

3. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Aglient (8960, SN:10752)	2017-5-24	1year
3	Network Emulator	Rohde&Schwarz (CMW500,SN:124534)	2017-5-25	1year
4	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2017-5-25	1year
5	Voltmeter	Keithley (2000, SN:1000572)	2017-7-8	1year
6	Synthetizer	Rohde&Schwarz (SML_03, SN:101868)	2017-8-24	1year
7	Signal Generator	Rohde&Schwarz (SMP_02)	2017-7-8	1year
8	Power Amplifier	PRANA (Ap32 SV125AZ)	2017-7-8	1year
9	Power Meter	Agilent (E4416A, SN:MY45102093)	2017-7-8	1year
10	Power Sensor	Agilent (N8482A, SN:MY41091706)	2017-7-8	1year
11	Power Meter	Rohde&Schwarz (NRVD, SN:101066)	2017-7-8	1year
12	Power Sensor	MA2411B	2017-7-8	1year
13	Directional coupler	Giga-tronics(SN:1829112)	2017-7-24	1year
14	Probe	Satimo (SN:SN 37/08 EP80)	2017-7-5	1year
15	Dielectric Probe Kit	Agilent (85033E)	2017-7-5	1year
16	Phantom	Satimo (SN:SN_36_08_SAM62)	N/A	N/A
17	Liquid	Satimo(Last Calibration: 2017-10-27)	N/A	N/A
18	Dipole 2450MHz	Satimo (SN 30/13 DIP2G450-263)	2017-7-5	1year
19	Thermo meter	KTJ(mode-01)	2017-5-10	1year