1 Introduction to Spectral Sequences

Definition 1.1 — A **bigraded module** is an indexed collection of modules $E_{s,t}$ for every pair of integers s, t.

A differential of bidegree (-r, r-1) is a collection of homomorphisms $d: E_{s,t} \to E_{s-r,t+r-1}$ s.t. $d^2 = 0$ (where composition makes sense).

The homology of d is

$$H_{s,t}(E,d) := \frac{\ker : E_{x,t} \to E_{s-r,t+r-1}}{\operatorname{im}(d : E_{s+r,t-r+1s,t})}$$

If $E_q = \bigoplus_{s+t=q} E_{s,t}$ then d induces a homomorphism $\partial : E_q \to E_{q-1}$). so (E_q, ∂) is a chain complex. Moreover, $H_q(E_*, \partial) = \bigoplus_{s+t=q} H_{s,t}(E, d)$.

Definition 1.2 — An E^k -spectral sequence is a sequence $\{E^r, d^r\}$ for $r \ge k$ s.t.

- (a) E^r is a bigraded module and d^r is a differential of bidegree (-r, r-1),
- (b) $E^{r+1} = H(E^r, d^r) \ \forall \ r > k$.

Example 1.3

 E^1 .

Definition 1.4 — Suppose for every s, t there exists a #r(s,t) s.t. $\forall r > r(s,t)$

$$d^r: E^r_{s,t} \to E^r_{s-r,t+r-1}$$

is the zero map, then $E_{s,t}^{r+1}$ is just a quotient of $E_{s,t}^r$ we can define $E_{s,t}^{\infty}$ to be the direct limit of $E_{s,t}^r$. In this situation we say the spectral sequence **coverges** to $E_{s,t}^{\infty}$.

Remark 1.5 If $E_{s,t}^r = 0$, s < 0, t < 0 (first quadrant ss), then for each s, t there is some r s.t. $E_{s,t}^r$ is constant in r.

So where do spectral sequences come from? Filtrations.

Definition 1.6 — A filtration F on a module A is a sequence of submodules $\{F_sA\}$ of A s.t.

$$A \supset \ldots \supset F_{s+1}A \supset F_sA \supset \ldots$$

s is the filtration degree, t is the complementary degree, and s + t is the total degree. A filtration is convergent if

$$\bigcap_{s} F_{s} A = 0$$

and

$$\bigcup_{s} F_s A = A$$

We will usually have a finite filtration where $F_{-1}(A) = 0$.

If A is graded $\{A_k\}$ and F respects the grading, then the filtration inherits a grading $F_sA = \{F_sA_k\}$. The **associated graded module** is

$$G(A)_s = F_s A / F_{s-1} A$$

$$G(A) = \bigoplus_{s} G(A)_{s}$$

If A is graded then G(A) is bigraded

$$G(A)_{s,t} = F_s A_{s+t} / F_{s-1} A_{s+t}$$

Example 1.7 (1) $A = F_1 A = \mathbb{Z}/4$, $F_0 A = \mathbb{Z}/2$, $F_{-1} A = 0$, so

$$G(A)_s = \begin{cases} \mathbb{Z}/2 & s = 1, 0 \\ 0 & s \neq 0, 1 \end{cases}$$

So
$$G(A) = \bigoplus_s G(A) = \mathbb{Z}/2 \oplus \mathbb{Z}/2$$
.

(2)
$$A = F_1 A = \mathbb{Z}_2 \oplus \mathbb{Z}_2$$
, $F_0 A = \mathbb{Z}_2$, $F_{-1} A = 0$. Then

$$G(A)_s = \begin{cases} \mathbb{Z}/2 & i = 1, 0 \\ 0 & i \neq 0, 1 \end{cases}$$

(3)
$$A = A_1 = \mathbb{Z}, A_0 = 2\mathbb{Z}, A_{-1} = 0$$
, then

$$G(A) = A_1/A_0 \oplus A_0/A_{-1}$$
$$\cong \mathbb{Z}_2 \oplus \mathbb{Z} \not\cong A$$

But G(A) is "close" to A.

Lemma 1.8

If F is a finite filtration of A_1 then

- (1) If $G(A)_s$ is free for all s then $G(A) \cong A$.
- (2) If $G(A)_s$ is a vector space over a field then $G(A) \cong A$.
- (3) If $G(A)_s$ is finite for all s, then A is finite and order (A) =order G(A).
- (4) If $G(A)_s$ is finitely generated $\forall s$, then A is finitely generated and rank $A = \operatorname{rank}(G(A))$.
- (5) If $G(A)_s = 0$ for all but one s, then $A \cong G(A)$.
- (6) If $G(A)_s = 0$ for all but two s, say $G(A)_k$, $G(A)_\ell$ with $k < \ell$ then

$$0 \to G(A)_k \to A \to G(A)_\ell \to 0$$

is exact.

Proof. (1) We have

$$0 \to F_{n-1}A \to F_nA = A \to F_nA/F_{n-1}A = G(A)_n \to 0$$

Exercise: if $0 \to A \to B \to C \to 0$ is exact and C is free, then $B = A \oplus C$. So

$$A \cong G(A)_n \oplus F_{n-1}(A)$$
. Similarly,

enumi

(2) this is a corollary of 1.

- (3)
- (4)
- (5)

$$G(A)_s = \begin{cases} F_s(A) & s = k \\ 0 & s \neq k \end{cases}$$

So $G(A) = G(A)_k$ and

$$A = F_n(A) = F_{n-1}(A) = \dots = F_k(A) \supseteq F_{k-1}(A) = \dots = F_{-1}A$$

so
$$A = F_k(A) = F_k(A)/F_{k-1}(A) = G(A)_k = G(A)$$
.

6): If

$$G(A)_s = \begin{cases} C, & s = \ell \\ B, & s = k \\ 0, & \text{else} \end{cases}$$

Then

$$A = F_n(A) = \dots F_{\ell}(A) \supseteq F_{\ell-1}(A) = \dots F_k(A) \supseteq F_{k-1}(A) = \dots = F_{-1}(A) = 0$$

So $G(A)_{\ell} = A/F_{\ell-1}(A) \cong C$. and

$$B = G(A)_k = (F_{l-1}A = F_k(A))/(F_{k-1}A = 0) = F_{\ell-1}A$$

So A/B = C iff

$$0 \to B \to A \to C \to 0$$

Exercise: prove 3-4.

If F is a filtration of a chain complex $\{C_*, \partial\}$ s.t. (F_sC_*, ∂) is a subcomplex of (C_*, ∂) , then F induces a filtration on the homology $H_*(C_*, \partial)$

$$F_sH(C_*,\partial) = \operatorname{im}(H(F_sC_*,\partial) \to H_*(C_*,\partial))$$

If F is finite, then it is easy to see

$$H(C_*, \partial) = \bigcup F_s H(C_*, \partial)$$
$$\bigcap (F_s H(C_*, \partial)) = 0$$

Theorem 1.9

Let F be a finite filtration of a chain complex (c_*, ∂) , then there is an E^1 spectral sequence with

- (1) $E_{s,t}^1 = H_{s+t}(F_sC/F_{s-1}C)$
- (2) d^1 is the connecting homomorphism of the triple $(F_sC, F_{s-1}C, F_{s-2}C)$.
- (3) $G(H(C_*,\partial))_{s,t} = E_{s,t}^{\infty}$.

Proof.

$$E_{s,t}^{r} = \frac{\{c \in F_s(C_{s,t}) : \partial c \in F_{s-r}(C_{s+t+1})\}}{F_{s-1}C_{s+t} + \partial(F_{s+r-1}C_{s+t-1})}$$

and $d^n = \partial$ applied to representatives of $E^r_{s,t}$.

For 2, recall

$$0 \rightarrow F_{s-1}C/F_{s-2}C \rightarrow F_sC/F_{s-2}c \rightarrow F_sC/F_{s-1}C \rightarrow 0$$

Third isomorphism theorem, induces a long exact sequence on homology.

$$H_k(F_sC/F_{s-1}C) \xrightarrow{d^1} H_{k-1}(F_{s-1}C/F_{s-2}C)$$

Example 1.10

Computing the homology of T^2 .

Example 1.11

Let $A \subseteq X$ a subspace we get a filtration of $C_*(X)$

$$F_1C = C_*(X)$$

$$F_0C = C_*(A)$$

$$F_{-1}C = 0$$

So we get a spectral sequence with

$$E_{s,t}^{1} = H_{s+t} \left(\frac{F_{s}C_{*}}{F_{s-1}C_{*}} \right) \cong \begin{cases} H_{s+t}(X,A) & s = 1 \\ H_{s+t}(A) & s = 1 \\ 0 & s \neq 0, 1 \end{cases}$$

Note $E^2 = E^{2+k} = E^{\infty}$. So $G(H(C_*(X)))_k = \bigoplus_{s+t=k} E_{s,t}^{\infty} = E_{0,k}^{\infty} \oplus E_{1,k-1}^{\infty}$. Lemma 1 says we get

$$0 \to H_k(A)/\operatorname{im} \partial \to H_k(X) \to \ker \partial \to 0$$

Note this is equivalent to

$$0 \to \operatorname{im}(\partial: H_{k+1}(X, A) \to H_k(A)) \to H_k(A) \xrightarrow{i_8} H_k(X) \to \ker(\partial: H_k(X, A) \to H_{k-1}(A)) \to 0$$

If $i:A\to X$ and $j:X\to (X,A)$ inclusions. The above says im $\partial=\ker i_*$ and $\ker \partial=\operatorname{im} j_*$. This proves the hard part of the long exact sequence for the pair (X,A). So the spectral sequence generalizes long exact sequence.

Example 1.12

We will show for X CW complex , $H^{CW}_*(X) \cong H^{Sing}_*(X)$.

Let $F_kC_*(X) = C_*(X^{(k)})$. This is a finite filtration so there exists a spectral sequence

that converges to $E_{s,t}^{\infty}$.

$$E_{s,t}^{1} = H_{s+t}(F_{s}C/F_{s-1}C)$$

$$= H_{s+t}(C_{*}(X^{(s)})/C_{*}(X^{(s-1)}))$$

$$= H_{s+t}(X^{(s)}, X^{(s-1)})$$
 by defin
$$= \widetilde{H}_{s,t}(X^{(s)}/X^{(s-1)})$$

$$= \widetilde{H}_{s+t}(\text{wedge of s-spheres})$$

$$= \begin{cases} \bigoplus_{s-\text{cells}} \mathbb{Z} & t = 0\\ 0 & t \neq 0 \end{cases}$$

$$= \begin{cases} C_{s}^{CW}(X) & t = 0\\ 0 & t \neq 0 \end{cases}$$

and in sequence $d^1 = \partial$ map of the LES of (F_s, F_{s-1}, F_{s-2}) *i.e.* $H_s(X^{(s)}, X^{(s-1)}) \to H_{s-1}(X^{(s-1)}, X^{(s-2)})$. We know $d^1 = \partial^{CW}$. So

$$E^{2} = E_{s,t}^{\infty} = \begin{cases} H_{s}^{CW}(X) & t = 0\\ 0 & t \neq 0 \end{cases}$$

By Lemma 1 part 5, we have $H_p(X) \cong H_p^{CW}(X)$.