

A Temporally Coherent Policy for Reinforcement Learning

Ricardo Dominguez-Olmedo | October 29, 2021

- Effective exploration is required to learn optimal behaviours.
- Temporally coherent action trajectories result in more effective exploration.

Uncoherent exploration

Coherent exploration

Gaussian policy

- Stochastic, $\pi(a_t|s_t) = \mathcal{N}(a_t; \mu(s_t), \Sigma(s_t))$
- Actions are not very correlated... $a_t = \mu(s_t) + L(s_t)\epsilon_t$ $\epsilon_t \sim \mathcal{N}(0, I)$, $\epsilon_t \perp \epsilon_{t+k} \ \forall k \neq 0$
- ... particularly in the initial learning stages $\mathbb{C}\left[a_t, a_{t+k}\right] = \mathbb{C}\left[\mu_0 + L_0 e_t, \mu_0 + L_0 e_{t+k}\right] = 0 \quad \forall k \neq 0$

- Plan d steps ahead $\pi(a_{t:t+d}|s_t, \tau_{t-1}) = \mathcal{N}(a_{t:t+d}; \mu, \Sigma)$
- Assume perfectly planning... $\pi(a_{t:t+d}|\tau_{t-1}) = \pi(a_{t:t+d}|s_t,\tau_{t-1})$
- ... then $a_{t+k} \sim \mathcal{N}(\mu_k, \Sigma_{kk})$ and $\mathbb{C}[a_t, a_{t+k}] = \Sigma_{1(k+1)}^t, \ 1 \leq k \leq d$
- Let $\Sigma_{mn} = \alpha^{|m-n|} \sqrt{\Sigma_{mm} \odot \Sigma_{nn}}$ with parameter $\alpha \in (0,1)...$
- Then the correlation coefficient between two actions is $\rho_{a_t,a_{t+k}} = \alpha^{|k|}$ $1 < k \le d$

- Plan d steps ahead $\pi(a_{t:t+d}|s_t, \tau_{t-1}) = \mathcal{N}(a_{t:t+d}; \mu, \Sigma)$
- Assume perfectly planning... $\pi(a_{t:t+d}|\tau_{t-1}) = \pi(a_{t:t+d}|s_t, \tau_{t-1})$
- ... then $a_{t+k} \sim \mathcal{N}(\mu_k, \Sigma_{kk})$ and $\mathbb{C}[a_t, a_{t+k}] = \Sigma_{1(k+1)}^t, \ 1 \leq k \leq d$
- Let $\Sigma_{mn} = \alpha^{|m-n|} \sqrt{\Sigma_{mm} \odot \Sigma_{nn}}$ with parameter $\alpha \in (0,1)...$
- Then the correlation coefficient between two actions is $\rho_{a_t,a_{t+k}} = \alpha^{|k|} \quad 1 < k \leq d$

Our proposed policy

Training the policy

$$\max_{\theta,\phi} \operatorname{RL}_{\operatorname{loss}} - \mathbb{E}_t \left[\lambda_1 P_t^{(1)} + \lambda_2 P_t^{(2)} \right] \tag{1}$$

- Any policy search method which admits recurrent policies could be used (e.g. PPO)
- Penalize large updates to the prior

$$P_t^{(1)} = \mathsf{KL}\left(p(a_{t:t+d}|s_t, \tau_{t-1}) \mid\mid p(a_{t:t+d}|\tau_{t-1})\right)$$

Regularize the posterior variance

$$P_{t}^{(2)} = \mathsf{KL}\left(\mathcal{N}\left(\mu_{t}^{+}, \Sigma_{t}^{+}\right) || \, \mathcal{N}\left(\mu_{t}^{+}, \Sigma_{t}^{*}\right)\right)$$

such that actions are sufficiently correlated
$$\Sigma_{mn}^* = \alpha^{|m-n|} \sqrt{\Sigma_{mm}^+ \odot \Sigma_{nn}^+} \quad m \neq n$$

Experimental setting

- Simple continuous control environment.
- Linear dynamics

$$\begin{bmatrix} x_{t+1} \\ v_{t+1} \end{bmatrix} = \begin{bmatrix} I & \Delta t \\ 0 & I \end{bmatrix} \begin{bmatrix} x_t \\ v_t \end{bmatrix} + \begin{bmatrix} 0 \\ \Delta t \end{bmatrix} a_t$$
 (2)

Reward function

$$r(x_t, v_t, a_t) = \begin{cases} -0.01a_t & \text{if } t \neq T \\ -v_t - \mathcal{R}_T(x_t) & \text{if } t = T \end{cases}$$
 (3)

Two settings: denser reward and semi-sparse

$$\mathcal{R}_T^{\text{DENSE}}(x_T) = x_T - \hat{x}_T \tag{4}$$

$$\mathcal{R}_T^{\text{SPARSE}}(x_T) = \max\{x_T - \hat{x}_T, D_{\text{max}}\}$$
 (5)

Results: temporal coherence

Average Pearson correlation coefficient between subsequent actions throughout policy training.

	Dense reward task		Semi-sparse reward task	
	n=1	n=6	n=1	n=6
Gaussian policy	$\textbf{0.12} \pm \textbf{0.02}$	$\textbf{0.12} \pm \textbf{0.02}$	$\textbf{0.08} \pm \textbf{0.01}$	$\textbf{0.09} \pm \textbf{0.01}$
Our policy	$\textbf{0.20} \pm \textbf{0.09}$	$\textbf{0.80} \pm \textbf{0.12}$	$\textbf{0.25} \pm \textbf{0.18}$	$\textbf{0.63} \pm \textbf{0.07}$

Results: exploration effectiveness

Limitations

- **Right amount of correlation** α **is task-specific.**
- Policy training is...
 - Very fragile to choice of hyperparameters.
 - \blacksquare Numerically unstable for large planing-horizon d or time-horizon d.
 - Computationally expensive.

Future work

- Consider more complex environments.
- Compare with previous approaches on coherent exploration.
- Policy with a latent representation to avoid matrix inverses.

Conclusion

- We propose a recurrent policy parametrizing a distribution over future actions.
- The policy is regularized such that contiguous actions are sufficiently correlated.
- For the environment considered:
 - More effective exploration.
 - More sample-efficient.
 - Better asymptotic performance.

Thank you

Questions?

- Cummulative sum of policy output.
- Motion primitives.
- Hierarchical BL.
- Episode-based exploration in parameter space.
- Step-based exploration in action space.
- Model-based planning.