

DEPARTAMENTO DE MATEMATICA

1^a Lista de Exercícios: Limites

Entregar os itens em vermelho até dia 09/01/22 as 23h.

Exercícios 1 Livro texto, questões: 4, 5, 7, 8 e 9

Exercícios 2 Verifique se existem os seguintes limites:

Itens: a, c, d, e, f, t, x

a)
$$\lim_{x \to 4} (5x^2 - 9x - 8)$$

d) $\lim_{x \to -2} \frac{x^2 + 2x - 3}{x^2 + 5x + 6}$
g) $\lim_{x \to 16} \frac{x - 16}{\sqrt{x} - 4}$
j) $\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^6 - 64}$
m) $\lim_{h \to 0} \frac{4 - \sqrt{16 + h}}{h}$
p) $\lim_{x \to 1} \sqrt{\frac{\sqrt{x^2 + 3} - 2}{x^2 - 1}}$
s) $\lim_{x \to 0} \frac{\sqrt{x^2 + 4x + 5} - \sqrt{5}}{x}$
v) $\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 16}$
b) $\lim_{x \to \frac{1}{2}} \frac{4x^2 - 6x + 3}{16x^3 + 8x - 7}$
e) $\lim_{x \to 0} \frac{\sqrt{x + 2} - \sqrt{2}}{x}$
h) $\lim_{x \to 0} \frac{|x|}{x + 3}$
k) $\lim_{x \to 0} \frac{|x|}{\sqrt{x^4 + 4x^2 + 7}}$
n) $\lim_{x \to 0} \frac{1 - \sqrt{1 + x}}{\sqrt{x - 1} - x}$
e) $\lim_{x \to 0} \frac{|x|}{x + 3}$
h) $\lim_{x \to 0} \frac{|x|}{\sqrt{x^4 + 4x^2 + 7}}$
n) $\lim_{x \to 0} \frac{1 - \sqrt{1 + x}}{\sqrt{x - 1} - x}$
e) $\lim_{x \to 0} \frac{|x|}{x + 3}$
h) $\lim_{x \to 0} \frac{|x|}{\sqrt{x^4 + 4x^2 + 7}}$
n) $\lim_{x \to 0} \frac{1 - \sqrt{1 + x}}{\sqrt{x - 1} - x}$
e) $\lim_{x \to 0} \frac{|x|}{\sqrt{x + 2} - 16}$
i) $\lim_{x \to 0} \frac{x^3 + 8}{x^4 - 16}$
i) $\lim_{x \to 0} \frac{x^3 + 8}{x^4 - 16}$
i) $\lim_{x \to 0} \frac{e^{-x} - e^{2x}}{3}$
l) $\lim_{x \to 0} \frac{e^{-x} - e^{2x}}{3}$
l) $\lim_{x \to 0} \frac{x^3 - \sqrt{2}}{x - 2}$
r) $\lim_{x \to 1} \frac{\sqrt[3]{x + 2} - 1}{x + 1}$
v) $\lim_{x \to 2} \frac{x^2 - 7x + 12}{x^2 - 16}$
w) $\lim_{x \to 2} \frac{(x + 3)|x + 2|}{x + 2}$
u) $\lim_{x \to 1} \frac{\sqrt{2x}(x - 1)}{|x - 1|}$
x) $\lim_{x \to 2} \frac{y}{x - 1}$

$$e) \lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$

$$h) \lim_{x \to 0} \frac{|x^2 + 4x + 3|}{x+3}$$

$$k) \lim_{x \to 0} \frac{|x|}{\sqrt{x^4 + 4x^2 + 7}}$$

$$n) \lim_{x \to 1} \frac{1 - \sqrt{1+x}}{\sqrt{x-1} - x}$$

$$q) \lim_{x \to 1} \frac{(3-x^3)^4 - 16}{x^3 - 1}$$

$$t) \lim_{x \to -2} \frac{(x+3)|x+2|}{x+2}$$

$$w) \lim_{x \to 1} \frac{(x+3)|t+2|}{x+2}$$

c)
$$\lim_{x \to 2} \frac{x}{x^3 - 8}$$

f) $\lim_{x \to -2} \frac{x^3 + 8}{x^4 - 16}$

i) $\lim_{x \to 1} \sqrt[4]{\frac{x + 3}{(x - 1)^2}}$

l) $\lim_{x \to 0} \frac{e^{-x} - e^{2x}}{3}$

o) $\lim_{x \to 2} \frac{\sqrt[3]{x} - \sqrt[3]{2}}{x - 2}$

r) $\lim_{x \to 1} \frac{\sqrt[3]{x + 2} - 1}{x + 1}$

u) $\lim_{x \to 1} \frac{\sqrt{2x}(x - 1)}{|x - 1|}$

x) $\lim_{x \to 2} \frac{y}{x - 1}$

Exercícios 3 Calcule os limites laterais:

Itens: a, b, c, e

a)
$$\lim_{x \to 3^+} \frac{5}{x - 3}$$

$$d) \lim_{x \to 1^+} \frac{x^{\frac{3}{2}} - 1}{x^{\frac{1}{2}} - 1}$$

$$g) \lim_{x \to \pi^+} sec(x)$$

$$j) \lim_{x \to \frac{\pi}{2}^+} tg(x)$$

b)
$$\lim_{x \to -1^-} \frac{|x-1|}{x-1}$$

e)
$$\lim_{x \to -5^-} \frac{|x| - 5}{x^2 - 25}$$

$$h) \lim_{x \to 2\pi^+} \cot g(x)$$

$$k) \lim_{x \to \pi^+} cossec(x)$$

c)
$$\lim_{x\to 0^+} \frac{2x+1}{x^2+x}$$

$$f) \lim_{x \to 1^{-}} \frac{x-1}{\sqrt[3]{x}-1}.$$

$$i) \lim_{x \to 1^+} \frac{5x}{\ln x}.$$

Exercícios 4 Calcule os limites:

a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
 b) $\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$ c) $\lim_{x \to 1} \frac{x^n - 1}{x - 1}$.

Exercícios 5 Calcule os limites:

a)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$
 b) $\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{x - 1}$ c) $\lim_{x \to 1} \frac{\sqrt[n]{x} - 1}{x - 1}$.

Exercícios 6 Verifique se existem os limites das funções nos pontos indicados:

Itens: b, c, d, g, i

a) $f(x) = \begin{cases} x^2, & se \ x \le 0 \\ x, & se \ x > 0 \end{cases}$ $x_0 = 0$ c) $f(x) = \begin{cases} \sqrt{x}, & x < 1 \\ \frac{1}{2}(x+1), & 1 \le x, \\ -2x+5, & se \ x > 1. \end{cases}$ $x_0 = 1$ e) $f(x) = \begin{cases} x^2-4 \\ 6x+2, & se \ x = 2. \end{cases}$ $x_0 = 2$ f) $f(x) = \begin{cases} \frac{x^3-8}{x-2}, & se \ x \ne 2 \\ x+2, & se \ x = 2. \end{cases}$ $x_0 = 2$ g) $f(x) = \begin{cases} \frac{x^3-8}{x-2}, & se \ x \ne 2 \\ x+2, & se \ x = 2. \end{cases}$ $x_0 = 2$ g) $f(x) = \begin{cases} \frac{x^3-8}{x-2}, & se \ x \ne 2 \\ x+2, & se \ x = 2. \end{cases}$ $x_0 = 2$ g) $f(x) = \begin{cases} \frac{x^3-8}{x-2}, & se \ x \ne 2 \\ x+2, & se \ x = 2. \end{cases}$ $x_0 = 2$ g) $f(x) = \begin{cases} \frac{x^3-8}{x-2}, & se \ x \ne 2 \\ x+2, & se \ x = 2. \end{cases}$ $f(x) = \begin{cases} \frac{x^3-1}{x-1}, & x \ne 1 \\ x+2, & x = 1. \end{cases}$ $x_0 = 1$

Exercícios 7 Considere a função f definida por $f(x) = \begin{cases} \frac{|x-3|+8}{3}, & se \quad x \leq 6\\ |k-10|, & se \quad x > 6. \end{cases}$

Sabendo que k é uma constante e que os limites laterais são iguais em $x_0 = 6$. Determine o valor de k e calcule $\lim_{x\to 6} f(x)$. Exercícios 8 Calcule os sequintes limites:

Exercícios 9 Seja f uma função tal que $\lim_{x\to 0} \frac{f(x)}{x} = 1$. Calcule:

$$(a)\lim_{x\to 0}\frac{f(3x)}{x}=3$$

(b)
$$\lim_{x \to 0} \frac{f(x^2)}{x} = 0$$

Exercícios 10 Sabendo que $\lim_{x\to 2} \frac{f(x)-5}{x-2} = 3$, encontre a função f e $\lim_{x\to 2} f(x)$.

Exercícios 11 Sabendo que $\lim_{x\to -1} \frac{f(x)}{x^3} = 2$, calcule $\lim_{x\to -1} f(x)$.

Exercícios 12 Seja f uma função definida por $f(x) = \begin{cases} 1, & se \ x \leq 0 \\ -1, & se \ x > 0. \end{cases}$ Verifique se existem os limites:

$$a) \lim_{x \to 0} f(x);$$

b)
$$\lim_{x\to 0} x^2 f(x)$$
.

Exercícios 13 Seja f uma função tal que $|f(x)| \le x^2, \forall x \in \mathbb{R}$. Mostre que $f \notin continua\ em\ x = 0$.

Exercícios 14 Sabendo que $\lim_{x\to 0} \frac{sen(x)}{x} = 1$, calcule:

$$a) \lim_{x \to 0} \frac{sen(x) - x}{x} \qquad b) \lim_{x \to 0} \frac{sen(-x)}{x} \qquad c) \lim_{x \to 0} \frac{x - sen(x)}{x + sen(x)} \qquad d) \lim_{x \to 0} \frac{tg(x)}{x}$$

$$e) \lim_{x \to 0} \frac{sen(8x)}{x} \qquad f) \lim_{x \to 0} \frac{sen(3x)}{sen(2x)} \qquad g) \lim_{x \to 0} \frac{1 - cos(x)}{x} \qquad h) \lim_{x \to 0} \frac{cos(x) - 1}{x}$$

Exercícios 15 Agora mostre que $\lim_{x\to 0} \frac{sen(x)}{x} = 1$. **Entregar**

Exercícios 16 Seja f uma função definida por $f(x) = \begin{cases} x^2 + 1, & se \quad x \leq 0 \\ -x + k^2, & se \quad x > 0. \end{cases}$ Determine o valor de k de modo que $\lim_{x \to 0} f(x)$ exista.

Entregar

 $\textit{Exercícios 17 Seja f uma função definida por } f(x) = \left\{ \begin{array}{c} -x^2 + x, & se \quad x < 1 \\ k, & se \quad x = 1 \\ x^2 - 3x + k, & se \quad x > 1. \end{array} \right.$ Determine o valor de k de modo que $\lim_{x \to 1} f(x)$ exista.