

AVALIAÇÃO DE DESEMPENHO PARA CLASSIFICAÇÃO =

AVALIAÇÃO DE DESEMPENHO

UM ALGORITMO DE CLASSIFICAÇÃO É BOM SE PRODUZ HIPÓTESES QUE FAZEM UM BOM TRABALHO DE PREVISÃO DE CLASSIFICAÇÃO DE EXEMPLOS NÃO-VISTOS

AVALIAÇÃO DE DESEMPENHO

MACHINE LEARNING UMA FERRAMENTA

PODEROSA PARA AQUISIÇÃO AUTOMÁTICA

DE CONHECIMENTO, ENTRETANTO, NÃO

EXISTE UM ÚNICO ALGORITMO DE

CLASSIFICAÇÃO QUE APRESENTE MELHOR

DESEMPENHO PARA TODOS PROBLEMAS.

COMO

TESTAR

UMALGORITMO

DE CLASSIFICAÇÃO

PASSOS PARA TESTE DESEMPENHO Soco

- 1 COLETAR UM GRANDE CONJUNTO DE EXEMPLOS;
- 2 DIVIDI-LO EM DOIS CONJUNTOS (TREINO/TESTE);
- 3 TREINAR O ALGORITMO COM O CONJUNTO DE TREINO;
- 4 TESTAR A HIPÓTESE COM O CONJUNTO DE TESTE;
- 5 MEDIR OS ACERTOS DA HIPÓTESE.

ERRO EMCLASSIFICAÇÃO

ERRO NA CLASSIFICAÇÃO

EQUAÇÃO

$$err(h) = \frac{1}{n} \sum_{i=1}^{n} \left\| y_i \neq h(x_i) \right\|$$

Somatório dos objetos Classificados erroneamente

EXEMPLO:

Em um conjunto com 100 objetos de teste 95 foram classificados corretamente e 5 não.

Então o erro será de

5/100= 0.05 ou 5%

ENTRETANTO EM CLASSIFICAÇÃO,
NÃO ENFATIZAMOS OS ERROS DO
ALGORITMOS MAS SIM A TAXA DE
ACERTOS COMO A ACURÁCIA.

É OBTIDA PELA **MATRIZ DE CONFUSÃO**QUE VERMOS MAIS A FRENTE

E TAMBÉM VEREMOS ONDE A ACURÁCIA PODE SER PROBLEMÁTICA.

MAS,

FORMA BEM

SIMPLES

EQUAÇÃO

$$acc(h) = 1 - err(h)$$

EQUAÇÃO

$$acc(h) = 1 - err(h)$$

EXEMPLO:

Em um conjunto com 100 objetos de teste 95 foram classificados corretamente e 5 não.

Então o erro será de 5/100= 0.05 e a acurácia de 1-0.05 = 0.95 ou 95%

SCIKIT LEARN

PARA OBTER A ACURÁCIA DO MODELO USE O MÉTODO SCORE(x_test, y_test)

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.score(X_test,y_test)
```

X_test, y_test -> são obtidos na validação cruzada

QUANDO DIVIDIMOS O CONJUNTO DE DADOS EM DOIS CONJUNTOS, PODEMOS REDUZIR DRASTICAMENTE O NÚMERO DE AMOSTRAS PARA O TREINAMENTO.

O CONCEITO CENTRAL DAS TÉCNICAS DE

VALIDAÇÃO CRUZADA É O

PARTICIONAMENTO DO CONJUNTO DE

DADOS EM SUBCONJUNTOS

MUTUALMENTE EXCLUSIVOS.

BASICAMENTE 3 TIPOS:

HOLDOUT;

K-FOLD;

LEAVE-ONE-OUT.

HOLDOUT

Dividir o conjunto de dados em dois.

Muito comum é considerar 2/3 dos dados

para treinamento e o 1/3 restante para

teste.

SCIKIT LEARN

IMPORTAR TRAIN_TEST_SPLIT PARA DIVIDIR O CONJUNTO DE DADOS EM TREINO E TESTE

from sklearn.model selection import train test split

SCIKIT LEARN

EXECUTAR A DIVISÃO DOS CONJUNTOS

X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.4)

X = Conjunto original das Features

Y = Conjunto original das targets

test_size = porcentagem do conjunto de teste

SCIKIT LEARN

EXECUTAR A DIVISÃO DOS CONJUNTOS

```
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.4)
```

```
X_train = Conjunto de treino das Features
y_train = Conjunto de treino das targets
```

```
    X_test
    Y_test
    Conjunto de teste das Features
    Example 2
    Example 3
    Example 3
    Example 4
    Example 3
    Example 4
    Example 4
    Example 5
    Example 6
    Example 6
    Example 6
    Example 6
    Example 7
    Example 6
    Example 6
    Example 7
    Example 6
    Example 7
    Example 7
    Example 7
    Example 8
    Example 9
    Example 9
```


SCIKIT LEARN

Executando KNN

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)
knn.score(X_test, y_test)
```


SCIKIT LEARN

Executando com árvores de decisão

```
from sklearn import tree

tree = tree.DecisionTreeClassifier()

tree.fit(X_train, y_train)

tree.score(X_test,y_test)
```


UMA MELHOR

DIVIDIR O CONJUNTO TOTAL DE DADOS EM **K** SUBCONJUNTOS MUTUAMENTE EXCLUSIVOS DO MESMO TAMANHO.

K-FOLD

Validation Set

Partir disto, um subconjunto é utilizado para teste e os k-1 para treino. Calcula-se a acurácia do modelo. Este processo é realizado k vezes alternando de forma circular o subconjunto de teste.

K-FOLD

SCIKIT LEARN


```
from sklearn.neighbors import KNeighborsClassifier
from sklearn import model_selection

kfold = model_selection.KFold(n_splits=10, random_state=42)

model = KNeighborsClassifier(n_neighbors=3)

results = model_selection.cross_val_score(model, X, y, cv=10, scoring= 'accuracy')

print(results) ## acurácia de cada fold

print(results.mean())## acurácia total
```


LEAVE-ONE-OUT

É UM CASO ESPECÍFICO DO K-FOLD, COM KIGUAL AO NÚMERO TOTAL DE DADOS N. NESTA ABORDAGEM SÃO REALIZADOS N CÁLCULOS DE ERRO, UM

PARA CADA DADO.

LEAVE-ONE-OUT

APESAR DA INVESTIGAÇÃO COMPLETA
DO MODELO EM RELAÇÃO AOS DADOS
UTILIZADOS, POSSUI ALTO CUSTO
COMPUTACIONAL.

LEAVE-ONE-OUT

SCIKIT LEARN


```
from sklearn.neighbors import KNeighborsClassifier
from sklearn import model_selection

N = X.shape[0] <-Leave-one-out

kfold = model_selection.KFold(n_splits=N, random_state=42)

model = KNeighborsClassifier(n_neighbors=3)

results = model selection.cross val score(model, X, y, cv=kfold, scoring= 'accuracy')</pre>
```


CONFUSAO

MATRIZ DE CONFUSÃO

CUIDADO!!!

A ACURÁCIA PODE SER ENGANOSA.

MATRIZ DE CONFUSÃO

A ACURÁCIA PODE PRODUZIR

RESULTADOS ENGANADORES SE O

CONJUNTO DE DADOS ESTIVER

DESEQUILIBRADO.

MATRIZ DE CONFUSÃO

POR EXEMPLO, SE HOUVESSE 95

EXEMPLOS DE UMA CLASSE A E APENAS

5 DE OUTRA CLASSE B

UM CLASSIFICADOR PARTICULAR

PODERIA CLASSIFICAR TODAS AS

OBSERVAÇÕES COMO CLASSE A,

DADO O DESEQUILÍBRIO

DADO UM EXPERIMENTO

DE INSTÂNCIAS P POSITIVAS E N

INSTÂNCIAS NEGATIVAS A MATRIZ DE

CONFUSÃO SERÁ:

	VALOR PREDITO NA CLASSIFICAÇÃO	
	POSITIVO	NEGATIVO

Digamos que temos duas classes A e B

Se chamarmos a classe A de positivo, então a classe B será negativo

Por exemplo:

Imagens com pneumonia e sem pneumonia **POSITIVO** - Pneumonia

NEGATIVO - Sem pneumonia

É Cachorro ou Gato?

POSITIVO - Cachorro

NEGATIVO - Gato

É email span?

POSITIVO - É span

NEGATIVO - Não Span

VALOR PREDITO NA CLASSIFICAÇÃO	
POSITIVO	NEGATIVO

VERDADEIRO POSITIVO

Quantidade de valores que o Classificador acertou para a Classe A (positivo).

O classificador disse que era A...

...e realmente era A.

	VALOR PREDITO NA CLASSIFICAÇÃO	
	POSITIVO	NEGATIVO

FALSO POSITIVO

Quantidade de valores que o Classificador errou para a Classe A.

O classificador disse que era A...

...mas era B.

	VALOR PREDITO NA CLASSIFICAÇÃO	
	POSITIVO	NEGATIVO

VERDADEIRO NEGATIVO

Quantidade de valores que o Classificador acertou para a Classe B (positivo).

O classificador disse que era B...

...e realmente era B.

FALSO NEGATIVO

Quantidade de valores que o Classificador errou para a Classe B.

O classificador disse que era B...

...mas era A.

EXEMPLO:

NOSSA BASE TEM
52 CACHORROS
15 GATOS

ACURÁCIA

(50+10)/67 = 89%

Classifica melhor cachorro do que gato.

MATRIZ DE CONFUSÃO + K-FOLD Sdoo

SCIKIT LEARN

```
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
kfold = model_selection.KFold(n_splits=10, random_state=42)
y_pred = cross_val_predict(model, X, y, cv=kfold)
matriz = confusion_matrix(y, y_pred)
```


MÉTRICAS GERADAS

A PARTIR DA MATRIZ DE CONFUSÃO

ACURÁCIA

A PROPORÇÃO DE PREDIÇÕES CORRETAS, SEM LEVAR EM CONSIDERAÇÃO O QUE É POSITIVO E O QUE É NEGATIVO. ESTA MEDIDA É ALTAMENTE SUSCETÍVEL A DESBALANCEAMENTOS DO CONJUNTO DE DADOS E PODE FACILMENTE INDUZIR A UMA CONCLUSÃO ERRADA SOBRE O DESEMPENHO DO SISTEMA.

ACURACIA

 $TOTAL\ DE\ ACERTOS\ /N\ DE\ EXEMPLOS$ $(VP + VN)\ /\ (P + N)$

SENSIBILIDADE ou REVOCAÇÃO

A PROPORÇÃO DE VERDADEIROS POSITIVOS:

A CAPACIDADE DO SISTEMA EM PREDIZER

CORRETAMENTE A CONDIÇÃO PARA CASOS QUE

REALMENTE A TÊM.

SENSIBILIDADE ou REVOCAÇÃO

ACERTOS POSITIVOS / TOTAL DE POSITIVOS

VP/(VP + FN)

ESPECIFICIDADE

A PROPORÇÃO DE VERDADEIROS NEGATIVOS.

A CAPACIDADE DO SISTEMA EM PREDIZER

CORRETAMENTE A AUSÊNCIA DA CONDIÇÃO

PARA CASOS QUE REALMENTE NÃO A TÊM.

ESPECIFICIDADE

ACERTOS NEGATIVOS / TOTAL DE NEGATIVOS VN / (VN + FP)

EFICIÊNCIA

A MÉDIA ARITMÉTICA DA SENSIBILIDADE E ESPECIFICIDADE. NA PRÁTICA, A SENSIBILIDADE E A ESPECIFICIDADE VARIAM EM DIREÇÕES OPOSTAS. ISTO É, GERALMENTE, QUANDO UM MÉTODO É MUITO SENSÍVEL A POSITIVOS, TENDE A GERAR MUITOS FALSO-POSITIVOS, E VICE-VERSA. ASSIM, UM MÉTODO DE DECISÃO PERFEITO (100 % DE SENSIBILIDADE E 100% ESPECIFICIDADE) RARAMENTE É ALCANÇADO.

EFICIÊNCIA

(SENS + ESPEC) / 2

VALOR PREDITIVO POSITIVO ou PRECISÃO

A PROPORÇÃO DE VERDADEIROS POSITIVOS EM

RELAÇÃO A TODAS AS PREDIÇÕES POSITIVAS.

ESTA MEDIDA É ALTAMENTE SUSCETÍVEL A

DESBALANCEAMENTOS DO CONJUNTO DE DADOS E

PODE FACILMENTE INDUZIR A UMA CONCLUSÃO

ERRADA SOBRE O DESEMPENHO DO SISTEMA.

VALOR PREDITIVO POSITIVO ou PRECISÃO

ACERTOS POSITIVOS / TOTAL DE PREDIÇÕES POSITIVAS

VP / (VP + FP)

VALOR PREDITIVO NEGATIVO

A PROPORÇÃO DE VERDADEIROS NEGATIVAS EM

RELAÇÃO A TODAS AS PREDIÇÕES NEGATIVAS.

ESTA MEDIDA É ALTAMENTE SUSCETÍVEL A

DESBALANCEAMENTOS DO CONJUNTO DE DADOS E

PODE FACILMENTE INDUZIR A UMA CONCLUSÃO

ERRADA SOBRE O DESEMPENHO DO SISTEMA.

VALOR PREDITIVO NEGATIVO

ACERTOS NEGATIVOS / TOTAL DE PREDIÇÕES NEGATIVAS VN/ (VN + FN)

COEFICIENTE DE CORRELAÇÃO DE MATTHEWS - COEFICIENTE (PHI)

O coeficiente de correlação de Matthews é uma medida de qualidade de duas classificações binárias que pode ser usada mesmo se as classes possuem tamanhos bastante diferentes. Retorna um valor entre (-1) e (+1), em que um coeficiente de (+1) representa uma predição perfeita, (0) representa uma predição aleatória media, e (-1) uma predição inversa. Esta estatística é equivalente ao coeficiente phi, e tenta, assim como a eficiência, resumir a qualidade da tabela de contingência em um único valor numérico passível de ser comparado.

VALOR PREDITIVO POSITIVO

(VP*VN - FP*FN) / sqrt((VP + FP)*(VP + FN)*(VN + FP)*(VN + FN))

F-MEASURE

A MEDIDA QUE COMBINA PRECISÃO E

REVOCAÇÃO É A MÉDIA HARMÓNICA DE

PRECISÃO E REVOCAÇÃO, A TRADICIONAL F-

MEASURE OU F-SCORE BALANCEADA

F-MEASURE

2* ((Precisao*revocação) / (Precisao+revocação))

UMA RETRICA MISUAL

A CURVA ROC É UMA FERRAMENTA

PODEROSA PARA MEDIR E ESPECIFICAR

PROBLEMAS DE DESEMPENHO DOS

CLASSIFICADORES.

É BASEADA EM MÉTRICAS DA MATRIZ

DE CONFUSÃO.

SENSIBILIDADE e ESPECIFICIDADE.

QUANTO MAIOR A SENSIBILIDADE DO ALGORITMO DE CLASSIFICAÇÃO AO PROBLEMA, MELHOR ELE SERÁ.

EXEMPLO

- A PONTO IDEAL
- B BOA CLASSIFICAÇÃO
- C RUIM CLASSIFICAÇÃO

ÁREA SOB CURVA ROC

ÁREA SOB CURVA ROC (OU AUC

ABREVIADA) É UMA MÉTRICA DE

DESEMPENHO PARA PROBLEMAS DE

CLASSIFICAÇÃO BINÁRIA.

ÁREA SOB A CURVA ROC

ÁREA SOB A CURVA ROC


```
from sklearn.neighbors import KNeighborsClassifier
from sklearn import model_selection

kfold = model_selection.KFold(n_splits=10, random_state=42)

model = KNeighborsClassifier(n_neighbors=3)

results = model_selection.cross_val_score(model, X, y, cv=kfold, scoring= 'roc_auc')
```


SCIKIT LEARN

K-FOLD

MATRIZ CONFUSÃO + K-FOLD

SCIKIT LEARN

```
from sklearn.model_selection import cross_val_predict

y_pred = model_selection.cross_val_predict(model, X, y, cv=kfold)

matriz = confusion_matrix(y, y_pred)
```

