ное число $x<\xi+\delta$ и не существует бесконечного числа $x<\xi-\delta$. Но если бы тогда в Ψ не имелось бесконечного числа x таких, что

$$\xi - \delta < x < \xi + \delta$$
,

то, в силу теоремы 7, в Ψ не имелось бы и бесконечного числа $x < \xi + \delta$.

Теорема 130. Пусть $a < b \ u$

$$a \leqslant \xi_n \leqslant b$$

для всех целых $n \geqslant 1$. (Числа ξ_n — не обязательно различные.) Тогда существует ξ такое, что для каждого $\delta > 0$ бесконечно часто (т.е. для бесконечного числа значений n)

$$\xi - \delta < \xi_n < \xi + \delta$$
.

Предварительное замечание. При этом

$$a \leqslant \xi \leqslant b$$
.

Доказательство. 1) Если имеется бесконечное число различных ξ_n , то требуемым свойством обладает каждое число сгущения ξ ограниченного бесконечного множества различных ξ_n ; а согласно теореме 129 по крайней мере одно такое число сгущения существует;

2) В противном случае, в силу теоремы 8, существует ξ такое, что бесконечно часто

$$\xi_n = \xi$$
,

и требуемым свойством обладает это ξ .

Теорема 131. Пусть множество чисел х ограничено сверху. Тогда существует только одно l такое, что

$$\kappa$$
аэнсдое $x \leq l$,

а для всякого $\delta > 0$

некоторое
$$x > l - \delta$$
.

Доказательство. 1) Может существовать, самое большое, одно такое l. Действительно, если бы l_1 и $l_2>l_1$

оба обладали требуемыми свойствами, то мы имели бы, что

каждое
$$x \leqslant l_1$$

и, следовательно, полагая

$$\delta = l_2 - l_1 (> 0),$$

-что

никакое
$$x$$
 не $> l_1 = l_2 - \delta$.

2) Покажем теперь, что l с требуемыми свойствами существует.

Отнесем α

к первому классу, если некоторое $x \geqslant \alpha$,

ко второму классу, если все $x < \alpha$.

В первом классе содержится некоторое α , а именно, каждое x; согласно предположению, и во втором классе содержится некоторое α . Если α лежит во втром классе и $\beta > \alpha$, то

каждое
$$x < \alpha < \beta$$
,

так что и β лежит во втором классе.

Поэтому существует l такое, что каждое $\alpha < l$ принадлежит первому классу, а каждое $\alpha > l$ — второму.

Это l обладает требуемыми свойствами. Действительно:

а) Если бы существовало

некоторое
$$x > l$$
,

то x принадлежало бы ко второму классу, и мы должны были бы иметь

$$x < x$$
.

Поэтому

каждое
$$x \leqslant l$$
.

b) Для каждого заданного $\delta>0$ число $l-\frac{\delta}{2}$ лежит во втором классе, и поэтому существует

некоторое
$$x \geqslant l - \frac{\delta}{2} > l - \delta$$
,

Примеры. 1) Пусть x- все числа $\leqslant c.$ Тогда l=c