Today's Material

- Breakout #1 and #2
 - □ Review (Chapter 5)
- Parallel Resistors
 - □ Introduction and examples
 - □ Breakout #3
- Kirchhoff's Current Law (KCL)
 - Introduction
 - Examples

Breakout #1

- Find
 - □ The magnitude and direction of current flow
 - □ Vb, Vc, Vd
 - □ Vab, Vcd, Vde

Breakout #2

- Find
 - □ V0, V2, V12, **l**i

Parallel Resistors

The total resistance of a parallel configuration is the reciprocal of the sum of the reciprocals of all the individual resistor values.

$$R_{T} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots + \frac{1}{R_{N}}}$$

٧

Example – Parallel Resistors

Find R_T for the parallel circuit shown below...

$$R_{T} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}} = \frac{1}{\frac{1}{330\Omega} + \frac{1}{680\Omega} + \frac{1}{1.2 \text{ K}\Omega}}$$

$$R_T = 187.47 \Omega$$

Example – Parallel Components

Which Elements are in Parallel? Series?

(1 and 2 in parallel) in series with 3

1 and 2 in parallel

Which Elements are in Parallel? Series?

Conductance in Parallel

Conductance in Parallel - Example

$$G_1 = \frac{1}{3\Omega} = 333.33 \,\text{mS}$$

$$G_2 = \frac{1}{6\Omega} = 166.67 \,\text{mS}$$

$$G_T = G_1 + G_2 = 0.5 S$$

$$R_{T} = \frac{1}{G_{T}} = 2\Omega$$

or, use:
$$R_T = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{18\Omega^2}{9\Omega} = 2\Omega$$

Breakout #3

Find

□ RT and GT for each circuit

ŀ,

Power in a Parallel Circuit (Review)

The total power delivered by the voltage source must equal the total power absorbed by the resistive elements.

Ŋ

Kirchhoff's Current Law

The algebraic sum of the current entering and leaving a node is zero.

$$\Sigma_{C}I_{IN} = \Sigma_{C}I_{OUT}$$

Kirchhoff's Current Law

