Monoidal & - cadegories

Def F: X -> Y a morphism between simplicial sets is an inner fibration .<=> F has the right lifting property w.r.t. $\Lambda_i^n \subset \Lambda_i^n \ \forall orien$

and an trivial fibration (>> F has the right lifting property w.r.t. DA CA

Def fibre product of (simplicial) sets

$$A \times_B C := \{(a,c) \in A \times C \mid f(a) = g(c)\}$$

Def Let $p: X \longrightarrow S$ be an inner fibration between ∞ -categories / simplicial sets and $f: \triangle^1 \longrightarrow X$ an edge with source $x: \triangle^0 \longrightarrow X$ i.e. $\triangle^0 \longrightarrow \triangle^1 \xrightarrow{f} X$

$$(=)$$
 X_{t} $\longrightarrow X_{x} \times_{S_{p(x)}} S_{p(t)}$ is a trivial fibration

unwraping this definition

Def Let $p: X \longrightarrow S$ be a map of simplicial sets

p is called a co-Cartesian fibration

- :(=) (i) p is an inner fibration
 - (ii) For every vertex \tilde{x} of X and every edge $f: x \longrightarrow y$ of S with $P(\tilde{x}) = x$ there is a p-coCartesian edge $\tilde{f}: \tilde{x} \longrightarrow \tilde{y}$ with $P(\tilde{f}) = f$

Remark

The ∞ -category of co-Carlesian fibrations towards on ∞ -category S is equivalent to the ∞ -category of functors from S to the ∞ -category of ∞ -categories.

Def For $p: C \to D$ a morphism between ∞ -categories we can interpret an object of D_0 as simplicial set by using degeneracy morphisms. Then we define the fiber $C_d:=p^{-1}(d)$

Remark. P is an inner fibration \iff the fiber of poverany simplex is an ∞ -category.

Def (The &-category NAP)

A q-simplex of NLOP is a sequence of non-decreasing morphisms [mo] -... - [mg] Face maps remove an [mi] and compose the morphisms and degeneracy maps insed an identity morphism.

Uef A monoidal ∞ -cadegory is a co-Cartesian fibration $P:M^{\otimes} \longrightarrow N\Delta^{\circ p}$ S.t. for each $n \ge 0$ the inclusions $\phi^i : [1] \longrightarrow [n]$ $\{9,1\} \longmapsto \{i-1,i\}$ induce an equivalence $\mathcal{M}_{[n]}^{\otimes} \longrightarrow \mathcal{M}_{\{0,1\}}^{\otimes} \times \dots \times \mathcal{M}_{\{n-1,n\}}^{\otimes} \stackrel{\sim}{\longrightarrow} \left(\mathcal{M}_{[1]}^{\otimes}\right)^{n}$

M:= Men is called the underlying or-codegory

Exa.1

Let G be a group

Define the simplicial set Go as follows:

a q-simplex of G & is a tuple

([mo] 2 [mq], ((90,0, ..., 90,mo), ..., (9q,1,...,9q,mq)))

S.t.: Yorked and Orjem;

 $9_{i,j} = 9_{i-1,\alpha_i(j)} 9_{i-1,\alpha_i(j)-1} \cdots 9_{i-1,\alpha_i(j-1)+1}$

If x; (;-1) = X; (;)

then gij = e & G the identity

Define p: Go - NOP as the projection to the first element

Observation: p-1 ([1]) = G_{[1]} = {([1], ((g_{0,1}))) | g_{0,1} \in G_1} = G_1

because q=0, mo=mq=1

Observation: The preimage of S1: [1] -> [82] gives us the multiplication i

 $P^{-1}(\delta_1) = \left\{ \left([2] \frac{\delta_1}{\epsilon} [1], \left((g_{0,1}, g_{0,2}), (g_{1,1}) \right) \right) \mid g_{0,1}, g_{0,2} \in G, g_{0,1} = g_{0,1} g_{0,2} \right\}$

And $(G_{[1]}^{\otimes})^n = \{([1],((g_{0,1})))|g_{0,1} \in G\}^n \cong \{(\{0,1\},((g_{0,1})))|g_{0,1} \in G\} \times ... \times \{(\{i^{-1},i\},((g_{0,1})))|g_{0,1} \in G\}\}$

{([n], ((30,1,..., 90,1))) | 90,16 G V: } = G[n]

Exa?

Let (X, x) be a pointed topological space Define an ∞ -category ΩX° as follows:

A q-simplex is a taple

2. For every inclusion $I' = (i_0' \leq ... \leq i_{j'}') \leq I \leq [q]$ $h_{I^0}(\Delta_{top}^{j'} \times \Delta_{top}^{m_{i'j'}}) \to \Delta_{top}^{j} \times \Delta_{top}^{m_{ij}}) = h_{I'}$ where $\Delta_{top}^{j'} \to \Delta_{top}^{j}$ is induced by $I' \leq I$ and $\Delta_{top}^{m_{i'j'}} \to \Delta_{top}^{m_{i'j}}$ is induced by $\alpha_{i'j'}(\alpha_{i'j'}) = 1$ $\Omega \times \to N\Delta_{top}^{op}$ is again the projection to the first component.

Observation

A q-simplex of QX [1] is a tuple

and for $I'\subseteq I$ $h_{I'}\circ (\Delta'_{top}\times \Delta_{top})=h_{I'}$ Similarly we can obtain that the fibre ove [n] is the singular simplicial set of a subspace of hom (Δ'_{top},X) where corners get send to x.

This time we get a homotopy equivalence $\Omega \times [n] \longrightarrow (\Omega \times [n])^n$

L.

Def Let $C^{\otimes} \xrightarrow{P} ND^{\circ P}$ and $D^{\otimes} \xrightarrow{q} ND^{\circ P}$ be monoidal ∞ -codegovies

A prim functor $F: C^{\otimes} \longrightarrow D^{\otimes}$ is manoidal

: \Longrightarrow The diagram $C^{\otimes} \xrightarrow{F} D^{\otimes}$ commutes and $P \xrightarrow{Q} Q^{\circ}$

and p-co-Carlesian emorphisms become q-co-Carlesian via F.

Def: A morphism f:[m] - [m] is convex if fis hyceline and the image {f(0), ..., f(m)} = [m] is a convex subset.

F & lax-monoidal (=) Co F Do

and for every p-co-Contesian morphism & it Co 31.: p(a) is a convex morphism

FCalib q-co Catesian

Del For a monoidal so-codegory C.

An algebra object of C is a lax monoidal functor NNOP -> Co