1 Introduction

2 Properties of \mathbb{R}

3 Properties of \mathbb{R} II

4 Properties of ℝ III

Introduction 2/55

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 1 Introduction Monday 7 January 2019

Where to find course information

■ The course web site: http://www.math.mcmaster.ca/earn/3A03

- Click on Course information to download course information as pdf file. You are expected to read and pay attention to every word of this file.
- Let's have a look now...

What is a "real" number?

What is a "real" number?

- The "Reals" (\mathbb{R}) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- Why aren't the rational numbers (ℚ) sufficient?

- How do we know that $\sqrt{2}$ is not rational?
- How can we *prove* this? Approach: "Proof by contradiction."

$\sqrt{2}$ is irrational

$\mathsf{Theorem}$

$$\sqrt{2} \notin \mathbb{Q}$$
.

Proof.

Suppose $\sqrt{2} \in \mathbb{Q}$. Then there exist two positive integers m and n with gcd(m, n) = 1 such that $m/n = \sqrt{2}$.

$$\therefore \left(\frac{m}{n}\right)^2 = \left(\sqrt{2}\right)^2 \quad \Longrightarrow \quad \frac{m^2}{n^2} = 2 \quad \Longrightarrow \quad m^2 = 2n^2.$$

 $\therefore m^2$ is even $\implies m$ is even (\because odd numbers have odd squares).

m=2k for some $k\in\mathbb{N}$.

$$\therefore 4k^2 = m^2 = 2n^2 \implies 2k^2 = n^2 \implies n \text{ is even.}$$

 \therefore 2 is a factor of both m and n. Contradiction! $\therefore \sqrt{2} \notin \mathbb{O}$.

Does $\sqrt{2}$ exist?

- We have established that $\sqrt{2}$ is not rational.
- But do we really know it exists?
- Can we do without it?
- No. Objects with side length $\sqrt{2}$ exist!

So irrational numbers are "real".

What exactly are non-rational real numbers?

- We have solid intuition for what rational numbers are. (Ratios of integers.)
- The number line contains numbers that are not rational.

- Can we construct irrational numbers?(Just as we construct rationals as ratios of integers?)
- Do we need to construct integers first?
- Maybe we should start with 0, 1, 2, ...
- But what exactly are we supposed to construct numbers from?

- Assume we know what a set is.
- Define $0 \equiv \emptyset = \{\}$ (the empty set)
- Define $2 \equiv \{0,1\} = \{\{\},\{\{\}\}\}\}$
- Define $n + 1 \equiv n \cup \{n\}$ (successor function)
- Define **natural numbers** $\mathbb{N} = \{1, 2, 3, \dots\}$
 - Some books define $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$.
 - It is more common to define $\mathbb N$ to start with 1.
- Thus, *n* is defined to be a set containing *n* elements.

Introduction $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \dots$ 10/55

Informal introduction to construction of numbers (\mathbb{N})

Historical note:

- We have defined n to be a set containing n elements.
- Logicians first tried to define n as "the set of all sets containing n elements".
- The earlier definition possibly better captures our intuitive notion of what *n* "really is", but such "sets" are unweildy and create serious challenges for development of mathematical foundations.

Informal introduction to construction of numbers (\mathbb{N})

Order of natural numbers:

Natural numbers defined as above have the right order:

$$m \le n \iff m \subseteq n$$

Note: we *define* " \leq " on natural numbers via " \subseteq " on sets.

Addition and multiplication of natural numbers:

- Still possible to define in terms of sets, but trickier.
- We'll defer this for later, after gaining more experience with rigorous mathematical concepts.
- If you can't wait, see this free e-book:

"Transition to Higher Mathematics" http://openscholarship.wustl.edu/books/10/.

Introduction $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \dots$ 12/5

Informal introduction to construction of numbers (\mathbb{Z})

Integers:

- Need additive inverses for all natural numbers.
- Need to define \cdot , +, -, for all pairs of integers.
- Again, possible to define everything via set theory.
- Again, we'll defer this for later.

- For now, we'll assume we "know" what the naturals $\mathbb N$ and the integers $\mathbb Z$ "are".
- We can then *construct* the rationals \mathbb{Q} ...

Properties of \mathbb{R} 13/55

Mathematics and Statistics

$$\int_{M}d\omega=\int_{\partial M}\omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

 $\begin{array}{c} \text{Lecture 2} \\ \text{Properties of } \mathbb{R} \\ \text{Wednesday 9 January 2019} \end{array}$

Where to find course information

- The course web site:
- http://www.math.mcmaster.ca/earn/3A03
- Click on Course information to download pdf file.
 - Read it!!
- Check the course web site regularly!

What we did last class

- The "Reals" (\mathbb{R}) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- The rationals (\mathbb{Q}) have "holes", e.g., $\sqrt{2}$.
- Numbers can be constructed using sets. We will discuss this informally. A more formal approach is taken in Math 4L03 (Mathematical Logic) or in this online e-book.
 - The naturals ($\mathbb{N} = \{1, 2, 3, \dots\}$) can be constructed from \emptyset : $0 = \emptyset$, $1 = \{0\}$, $2 = \{0, 1\}, \dots$, $n + 1 = n \cup \{n\}$.
 - The integers (\mathbb{Z}), and operations on them $(+, -, \cdot)$, can also be constructed from sets and set operations (but we deferred that for later).
 - lacksquare Given $\mathbb N$ and $\mathbb Z$, we can construct $\mathbb Q\dots$

Informal introduction to construction of numbers (\mathbb{Q})

Rationals:

- *Idea:* Associate \mathbb{Q} with $\mathbb{Z} \times \mathbb{N}$
- Use notation $\frac{a}{b} \in \mathbb{Q}$ if $(a,b) \in \mathbb{Z} \times \mathbb{N}$.
- Define equivalence of rational numbers:

$$\frac{a}{b} = \frac{c}{d}$$
 $\stackrel{\text{def}}{=}$ $a \cdot d = b \cdot c$

Define order for rational numbers:

$$\frac{a}{b} \le \frac{c}{d} \quad \stackrel{\text{def}}{=} \quad a \cdot d \le b \cdot c$$

Informal introduction to construction of numbers (\mathbb{Q})

Rationals, continued:

■ Define operations on rational numbers:

$$\frac{a}{b} + \frac{c}{d} \stackrel{\text{def}}{=} \frac{ad + bc}{bd}$$
$$\frac{a}{b} \cdot \frac{c}{d} \stackrel{\text{def}}{=} \frac{a \cdot c}{b \cdot d}$$

- Constructed in this way (ultimately from the empty set),
 Q satisfies all the standard properties we associate with the rational numbers.
- Formally, $\mathbb Q$ is a set of equivalence classes of $\mathbb Z \times \mathbb N$. Extra Challenge Problem: Are "+" and "·" well-defined on $\mathbb Q$?

Addition:

- A1 Closed and commutative under addition. For any $x, y \in \mathbb{Q}$ there is a number $x + y \in \mathbb{Q}$ and x + y = y + x.
- A2 Associative under addition. For any $x, y, z \in \mathbb{Q}$ the identity

$$(x+y)+z=x+(y+z)$$

is true.

A3 Existence and uniqueness of additive identity. There is a unique number $0 \in \mathbb{Q}$ such that, for all $x \in \mathbb{Q}$,

$$x + 0 = 0 + x = x.$$

A4 Existence of additive inverses. For any number $x \in \mathbb{Q}$ there is a corresponding number denoted by -x with the property that

$$x + (-x) = 0.$$

Properties of the rational numbers (\mathbb{Q})

Multiplication:

- M1 Closed and commutative under multiplication. For any $x, y \in \mathbb{Q}$ there is a number $xy \in \mathbb{Q}$ and xy = yx.
- M2 Associative under multiplication. For any $x, y, z \in \mathbb{Q}$ the identity (xy)z = x(yz) is true.
- M3 Existence and uniqueness of multiplicative identity. There is a unique number $1 \in \mathbb{Q} \setminus \{0\}$ such that, for all $x \in \mathbb{Q}$, x1 = 1x = x.
- M4 Existence of multiplicative inverses. For any non-zero number $x \in \mathbb{Q}$ there is a corresponding number denoted by x^{-1} with the property that $xx^{-1} = 1$.

Properties of the rational numbers (\mathbb{Q})

Addition and multiplication together:

AM1 *Distributive law.* For any $x, y, z \in \mathbb{Q}$ the identity

$$(x+y)z = xz + yz$$

is true.

The 9 properties (A1–A4, M1–M4, AM1) make the rational numbers \mathbb{Q} a **field**.

Note: M3 ensures $0 \neq 1$ to exclude the uninteresting case of a field with only one element.

Standard Mathematical Shorthand

Quantifiers

Logical operands

\forall	for all	\wedge	logical and
\exists	there exists	\vee	logical or
∄	there does not exist	\neg	logical not
∃!	there exists a unique	$\underline{\vee}$	logical exclusive or

Note:
$$A \subseteq B \equiv (A \vee B) \wedge (\neg A \vee \neg B)$$

Other shorthand

	therefore	::	because
)	such that	\iff	if and only if
≡	eguivalent	$\Rightarrow \Leftarrow$	contradiction

Instructor: David Earn

The field axioms (in mathematical shorthand) for field ${\mathbb F}$

Addition axioms

A1 Closed, commutative. $\forall x, y \in \mathbb{F}$, $\exists (x+y) \in \mathbb{F} \land (x+y) = (y+x)$.

A2 Associative.
$$\forall x, y, z \in \mathbb{F}$$
, $(x + y) + z = x + (y + z)$.

A3 *Identity.*
$$\exists !\ 0 \in \mathbb{F}$$
 $+\ \forall x \in \mathbb{F}$, $x + 0 = 0 + x = x$.

A4 Inverses.
$$\forall x \in \mathbb{F}, \ \exists (-x) \in \mathbb{F} + x + (-x) = 0.$$

Multiplication axioms

M1 Closed, commutative.
$$\forall x, y \in \mathbb{F}$$
, $\exists (xy) \in \mathbb{F} \land (xy) = (yx)$.

M2 Associative.
$$\forall x, y, z \in \mathbb{F}$$
, $(xy)z = x(yz)$.

M3 Identity.
$$\exists ! \ 1 \in \mathbb{F} \setminus \{0\}$$
 $\forall x \in \mathbb{F}, \ x1 = 1x = x.$

M4 *Inverses.*
$$\forall x \in \mathbb{F} \setminus \{0\},\ \exists x^{-1} \in \mathbb{F} \} xx^{-1} = 1.$$

Distribution axiom

AM1 Distribution.
$$\forall x, y, z \in \mathbb{F}$$
, $(x + y)z = xz + yz$.

Any collection \mathbb{F} of mathematical objects is called a *field* if it satisfies these 9 algebraic properties.

Examples of fields

Set	Field?	Why?
rationals (\mathbb{Q})	YES	
integers (\mathbb{Z})	NO	no multiplicative inverses
reals (\mathbb{R})	YES	
complexes (\mathbb{C})	YES	
integers modulo 3 (\mathbb{Z}_3)	YES	$2^{-1} = 2$

The integers modulo 3 (\mathbb{Z}_3)

Imagine a clock that repeats after 3 hours rather than 12 hours.

 \mathbb{Z}_3 contains the three elements $\{0,1,2\},$ with addition and multiplication defined as follows:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Ordered fields

A field \mathbb{F} is said to be **ordered** if the following properties hold:

Order axioms

- O1 For any $x, y \in \mathbb{F}$, exactly one of the statements x = y, x < yor y < x is true ("trichotomy"), i.e., $\forall x, y \in \mathbb{F}, \ ((x = y) \land \neg(x < y) \land \neg(y < x)) \veebar ((x \neq y) \land [(x < y) \veebar (y < x)])$
- O2 For any $x, y, z \in \mathbb{F}$, if x < y is true and y < z is true, then X < Z is true, i.e., $\forall x, y, z \in \mathbb{F}$, $(x < y) \land (y < z) \implies (x < z)$
- O3 For any $x, y \in \mathbb{F}$, if x < y is true, then x + z < y + z is also true for any $z \in \mathbb{F}$, i.e., $\forall x, y \in \mathbb{F}$, $(x < y) \implies x + z < y + z$, $\forall z \in \mathbb{F}$
- O4 For any $x, y, z \in \mathbb{F}$, if x < y is true and z > 0 is true, then xz < yz is also true,

i.e.,
$$\forall x, y, z \in \mathbb{F}$$
, $(x < y) \land (0 < z) \implies (xz < yz)$

Examples of ordered fields

Field	Ordered?	Why?
rationals (\mathbb{Q})	YES	
reals (\mathbb{R})	YES	
integers modulo 3 (\mathbb{Z}_3)	NO	Next slide
complexes (\mathbb{C})	NO	
		Extra Challenge Problem: Prove the field \mathbb{C} cannot
		be ordered.

The field of integers modulo 3 cannot be ordered

Proposition

 \mathbb{Z}_3 is not an ordered field.

Proof.

Approach: proof by contradiction.

If \mathbb{Z}_3 is ordered, then O1 (trichotomy) implies that either 0 < 1 or 1 < 0 (and not both).

Suppose 0 < 1 and $1 \nleq 0$. Then $03 \Longrightarrow 0 + 1 < 1 + 1$, i.e., 1 < 2. \therefore O2 (transitivity) \implies 0 < 2.

Using O3 again, we have 0+1 < 2+1, i.e., 1 < 0. $\Rightarrow \Leftarrow$

Now suppose 1 < 0. Similarly reach a contradiction (check!). \mathbb{Z}_3 cannot be ordered.

Food for thought: Is it possible for any finite field be ordered?

What other properties does \mathbb{R} have?

- \blacksquare \mathbb{R} is an ordered field.
- \mathbb{R} includes numbers that are not in \mathbb{Q} , e.g., $\sqrt{2}$.
- What additional properties does \mathbb{R} have?
- Only one more property is required to fully characterize \mathbb{R} ... It is related to *upper and lower bounds*...

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 3 Properties of \mathbb{R} II Friday 11 January 2019

Announcements and comments arising from Lecture 2

- My office hours will be Mondays 1:30pm-2:20pm going forward. (Or by appointment.)
- Questions for next week's tutorials and some "Logic Notes" are posted on the Tutorials page of the course web site.
- Field Axiom M3 was corrected before posting slides for Lecture 2.
- No claim is being made that the field axioms as stated are absolutely minimal (i.e., that there are no redundancies). In fact, we don't need to assume:
 - Identities are unique.
 - Inverses are unique.
 - Commutivity under addition (!).

Usually a slightly redundant set of axioms is stated to emphasize all the key properties.

An additional online resource

A sequence of 15 short (3–7 minute) videos covering the very basics of mathematical logic and theorem proving has been posted associated with a course at the University of Toronto:

■ Go to http://uoft.me/MAT137, click on the Videos tab and then on Playlist 1.

These videos go at a slower pace than we do, and may be very helpful to you to get your head around the idea of a rigorous mathematical proof.

More comments arising from Lecture 2

- The property that completes the specification of \mathbb{R} has to somehow fill in <u>all</u> the "holes" in \mathbb{Q} .
- It is true that if $x, y \in \mathbb{Q}$ then $\exists r \in \mathbb{R} \setminus \mathbb{Q}$ with x < r < y. But this property is <u>not</u> sufficient to characterize \mathbb{R} , because it is satisfied by subsets of \mathbb{R} .

Definition (Upper Bound)

Let $E \subseteq \mathbb{R}$. A number M is said to be an **upper bound** for E if x < M for all $x \in E$.

A set that has an upper bound is said to be **bounded above**.

Definition (Lower Bound)

Let $E \subseteq \mathbb{R}$. A number m is said to be a **lower bound** for E if $m \le x$ for all $x \in E$.

A set that has a lower bound is said to be **bounded below**.

A set that is bounded above and below is said to be **bounded**.

Maxima and Minima

Definition (Maximum)

Let $E \subseteq \mathbb{R}$. A number M is said to be **the maximum** of E if M is an upper bound for E and $M \in E$. If such an M exists we write $M = \max E$.

Definition (Minimum)

Let $E \subseteq \mathbb{R}$. A number m is said to be **the minimum** of E if m is a lower bound for E and $m \in E$. If such an m exists we write $m = \min E$.

We refer to "the" maximum and "the" minimum of *E* because there cannot be more than one of each. (*Proof?*)

Bounds, maxima and minima

Example					
Set	bounded below	bounded above	bounded	min	max
[-1,1]	YES	YES	YES	-1	1
[-1,1)	YES	YES	YES	-1	∄
$[-1,\infty)$	YES	NO	NO	-1	∄
$[-1,-\tfrac14)\cup(\tfrac12,1]$	YES	YES	YES	-1	1
N	YES	NO	NO	1	∄
\mathbb{R}	NO	NO	NO	∄	∄
Ø	YES	YES	YES	∄	∄

Least upper bounds

Definition (Least Upper Bound/Supremum)

A number M is said to be the **least upper bound** or **supremum** of a set E if

- (i) M is an upper bound of E, and
- (ii) if M is an upper bound of E then $M \leq M$.

If M is the least upper bound of E then we write $M = \sup E$.

<u>Note</u>: We can refer to "the" least upper bound of E because there cannot be more than one. (Proof?)

What sets have least upper bounds?

Least upper bounds

Example			
Set	bounded above	sup	
[-1,1]	YES	1	
[-1,1)	YES	1	
Ø	YES	∄	
$\{x \in \mathbb{R} : x^2 < 2\}$	YES	$\sqrt{2}$	
$\{x \in \mathbb{Q} : x^2 < 2\}$	YES	$ otin \mathbb{Q} $	

Instructor: David Earn

Least upper bounds

The property that any set that is bounded above has a least upper bound is what distinguishes the real numbers \mathbb{R} from the rational numbers \mathbb{Q} .

Does this realization allow us to finish constructing \mathbb{R} ?

YES, but we will delay the construction until later in the course.

For now, we will simply annoint the least upper bound property as an axiom:

Completeness Axiom

If $E \subseteq \mathbb{R}$, $E \neq \emptyset$, and E is bounded above, then E has a least upper bound (i.e., $\sup E$ exists and $\sup E \in \mathbb{R}$).

\mathbb{R} is a complete ordered field

- Any field F that satisfies the order axioms and the completeness axiom is said to be a complete ordered field.
- \blacksquare \mathbb{R} is a complete ordered field.
- Are there any other complete ordered fields?
- **Extra Challenge Problem:** Prove that \mathbb{R} is the <u>only</u> complete ordered field.

Greatest lower bounds

Definition (Greatest Lower Bound/Infimum)

A number m is said to be the **greatest lower bound** or **infimum** of a set E if

- (i) m is a lower bound of E, and
- (ii) if \widetilde{m} is a lower bound of E then $\widetilde{m} \leq m$.

If m is the greatest lower bound of E then we write $m = \inf E$.

Greatest lower bounds

- The existence of least upper bounds was taken as an axiom.
- The existence of greatest lower bounds then follows.

Theorem

If $E \subseteq \mathbb{R}$, $E \neq \emptyset$, and E is bounded below, then E has a greatest lower bound (i.e., inf E exists and inf $E \in \mathbb{R}$).

Proof?

Idea of proof:

 $E \subset \mathbb{R}$

 $L = \{\ell \in \mathbb{R} : \ell \text{ is a lower bound of } E\}$

Greatest lower bounds

$\mathsf{Theorem}$

If $E \subseteq \mathbb{R}$, $E \neq \emptyset$, and E is bounded below, then E has a greatest lower bound (i.e., inf E exists and inf $E \in \mathbb{R}$).

Proof.

Recall graphical idea of proof.

Let $L = \{\ell \in \mathbb{R} : \ell \text{ is a lower bound of } E\}$. Then:

- $L \neq \emptyset$ (: E is bounded below).
- L is bounded above ($\because x \in E \implies x$ an upper bound for L).
- ∴ L has a least upper bound, say $b = \sup L$.

Now show $b = \inf E$. First show $b \in L$ (*i.e.*, $x \in E \implies b \le x$). Suppose $x \in E$ and $b \not\le x$; then by O1 (trichotomy), we must have b > x. Now $b = \sup L$ and x < b, so x is not an upper bound of L, *i.e.*, there is some $\ell \in L$ such that $x < \ell$. But then ℓ is not a lower bound of E. $\Rightarrow \Leftarrow \therefore b \in L$ and b is also max L, *i.e.*, $b = \inf E$. \square

Comment on least upper bounds and greatest lower bounds

■ The proof above shows that:

$$\inf E = \sup \{ x \in \mathbb{R} : x \text{ is a lower bound of } E \}$$

Similarly:

$$\sup E = \inf \{ x \in \mathbb{R} : x \text{ is a upper bound of } E \}$$

Some notational abuse concerning sup and inf

By convention, for convenience, we (and your textbook) sometimes write:

$$\inf \mathbb{R} = -\infty$$

$$\sup \mathbb{R} = \infty$$

$$\inf \emptyset = \infty$$

$$\sup \emptyset = -\infty$$

This is an abuse of notation, since \emptyset and \mathbb{R} do not have least upper or greatest lower bounds in \mathbb{R} . ∞ is not a real number.

If you are asked "What is the least upper bound of \mathbb{R} ?" should you answer?

Correct answer: " \mathbb{R} is not bounded above so it does not have a least upper bound."

Theorem (Archimedean property)

The set of natural numbers \mathbb{N} has no upper bound.

Proof.

Suppose $\mathbb N$ is bounded above. Then it has a least upper bound, say $B=\sup\mathbb N$. Thus, for all $n\in\mathbb N$, $n\leq B$. But if $n\in\mathbb N$ then $n+1\in\mathbb N$, hence $n+1\leq B$ for all $n\in\mathbb N$, i.e., $n\leq B-1$ for all $n\in\mathbb N$. Thus, B-1 is an upper bound for $\mathbb N$, contradicting B being the <u>least</u> upper bound.

Instructor: David Earn

Theorem (Equivalences of the Archimedean property)

- **1** The set of natural numbers \mathbb{N} has no upper bound.
- **2** Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > x.

i.e., No matter how large a real number x is, there is always a natural number n that is larger.

- **3** Given any x > 0 and y > 0, there exists $n \in \mathbb{N}$ such that nx > y.
 - i.e., Given any positive number y, no matter how large, and any positive number x, no matter how small, one can add x to itself sufficiently many times so that the result exceeds y (i.e., nx > y for some $n \in \mathbb{N}$).
- **4** Given any x > 0, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.
 - i.e., Given any positive number x, no matter how small, one can always find a fraction 1/n that is smaller than x.

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 4 Properties of \mathbb{R} III Monday 14 January 2019

Comments arising. . .

- Remember Assignment 1 is due this Friday @ 1:25pm in the appropriate locker.
- NOTE: Typos in question 4 have been corrected (there were missing brackets). Please download the revised question sheet for Assignment 1.
- Last time we ended with some equivalent conditions relating \mathbb{R} and \mathbb{N} .

Theorem (Well-Ordering Property)

Every nonempty subset of \mathbb{N} has a smallest element.

Proof.

Let $S \subseteq \mathbb{N}$, $S \neq \emptyset$. Then S is a non-empty set of real numbers that is bounded below (for instance by 0), and hence has a greatest lower bound (in \mathbb{R}). Let $b = \inf S$. If $b \in S$ then $b = \min S$ and we are done.

Suppose $b \notin S$. Then $\exists n \in S$ such that n < b+1 (otherwise b+1 would be a lower bound for S that is greater than b) and, moreover, n > b (since $b \notin S$). $\therefore n \in S \cap (b, b+1)$. But just as b+1 cannot be a lower bound for S, n cannot be a lower bound for S (since it too would be a lower bound greater than $b = \inf S$). $\therefore \exists m \in S \cap (b, n)$. But we now have b < m < n < b+1, which is impossible because m and n are both integers. $\Rightarrow \Leftarrow$ Therefore $b \in S$, so $b = \min S$.

Corollary

Every nonempty subset of $\mathbb Z$ that is bounded below (in $\mathbb R$) has a smallest element.

Proof.

The proof is identical to the proof of the well-ordering property for \mathbb{N} except that we start with a set of integers that is bounded below, rather than having to first identify a lower bound for the set.

Theorem (Principle of Mathematical Induction)

Let $S \subseteq \mathbb{N}$. Suppose that $1 \in S$ and, for every $n \in \mathbb{N}$, if $n \in S$ then $n + 1 \in S$. Then $S = \mathbb{N}$.

Proof.

Let $E = \mathbb{N} \setminus S$ and suppose $E \neq \emptyset$. Since $E \subset \mathbb{N}$ and $E \neq \emptyset$, the well-ordering property implies E has a smallest element, say m. Now $1 \in S$, so $1 \notin E$ and hence m > 1. But m is the least element of E, so the natural number $m - 1 \notin E$, and hence we must have $m - 1 \in S$. But then it follows that $(m - 1) + 1 = m \in S$, which is impossible because $m \in E$. $\Rightarrow \Leftarrow$ $\therefore E = \emptyset$, i.e., $S = \mathbb{N}$.

Definition (Dense Sets)

A set E of real numbers is said to be **dense** (or **dense in** \mathbb{R}) if every interval (a, b) contains a point of E.

Theorem ($\mathbb Q$ is dense in $\mathbb R$)

If $a, b \in \mathbb{R}$ and a < b then there is a rational number in the interval (a, b).

Corollary

Every real number can be approximated arbitrarily well by a rational number.

Given $x \in \mathbb{R}$, consider the interval $\left(x - \frac{1}{n}, x + \frac{1}{n}\right)$ for $n \in \mathbb{N}$.

The metric structure of \mathbb{R} (§1.10)

Definition (Absolute Value function)

For any $x \in \mathbb{R}$,

$$|x| \stackrel{\text{def}}{=} \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Theorem (Properties of the Absolute Value function)

For all $x, y \in \mathbb{R}$:

$$| -|x| \le x \le |x|.$$

$$|xy| = |x||y|.$$

$$|x + y| \le |x| + |y|$$
.

$$|x| - |y| \le |x - y|.$$

The metric structure of \mathbb{R} (§1.10)

Definition (Distance function or metric)

The distance between two real numbers x and y is

$$d(x,y) = |x - y|.$$

Theorem (Properties of distance function or metric)

1 $d(x, y) \ge 0$

d(x,y) = d(y,x)

4 $d(x, y) \le d(x, z) + d(z, y)$

distances are positive or zero

2 $d(x, y) = 0 \iff x = y$ distinct points have distance > 0

distance is symmetric

the triangle inequality

Note: Any function satisfying these properties can be considered a "distance" or "metric".

The metric structure of \mathbb{R} ($\S 1.10$)

Given d(x, y) = |x - y|, the properties of the distance function are equivalent to:

Theorem (Metric properties of the absolute value function)

For all $x, y \in \mathbb{R}$:

- 1 $|x| \ge 0$
- $|x| = 0 \iff x = 0$
- |x| = |-x|
- 4 $|x + y| \le |x| + |y|$ (the triangle inequality)