DHT22 library for Arduino 1.0.1

Generated by Doxygen 1.8.14

Contents

1	DHT	22 - AM	2303 tem	perature and humidity sensor library for Arduino	1
2	Clas	s Index			5
	2.1	Class I	_ist		5
3	File	Index			7
	3.1	File Lis	st		7
4	Clas	s Docu	mentatior	1	9
	4.1	DHT22	2 Class Re	eference	9
		4.1.1	Detailed	Description	9
		4.1.2	Construc	ctor & Destructor Documentation	9
			4.1.2.1	DHT22()	9
		4.1.3	Member	Function Documentation	10
			4.1.3.1	available()	10
			4.1.3.2	begin()	10
			4.1.3.3	readHumidity()	11
			4.1.3.4	readTemperature()	11
5	File	Docum	entation		13
	5.1	DHT22	cpp File I	Reference	13
		5.1.1	Detailed	Description	13
	5.2	DHT22	2.h File Re	ference	13
		5.2.1	Detailed	Description	14
		5.2.2	Macro D	efinition Documentation	14
			5.2.2.1	DHT22_MIN_READ_INTERVAL	14
			5.2.2.2	DHT22_NUM_DATA_BITS	14
Inc	dex				15

DHT22 - AM2303 temperature and humidity sensor library for Arduino

This is a calibrated AM2303 digital temperature and relative humidity sensor on a DHT22 breakout PCB.

Library features

- Read 16-bit temperature (synchronous blocking)
- Read 16-bit relative humidity (synchronous blocking)

AM2303 sensor specifications

- Voltage: 3.3 .. 5V
- · Ultra-low power:
 - Typical 15uA dormancy
 - Typical 500uA measuring
- · Single wire digital serial interface
- · Calibrated digital signal
- · Outstanding long term stability
- · No additional electronic components needed
- Humidity:
 - Range: 0 .. 99.9 RH (Relative Humidity)
 - Resolution: 0.1 RH
 - Accuracy: +/-2 RH (at 25 degree Celsius)
- · Temperature:
 - Range: -40 .. +125 degree Celsius
 - Resolution: 0.1 degree Celsius
 - Accuracy: +/- 0.4 degree Celsius
- · Minimum read interval: 2000 ms
- \sim 31ms to synchronous read humidity, temperature and parity data from sensor (5 Bytes)

Hardware

Pull-up resistor DAT pin

- Connect an external 3k3..10k pull-up resistor between the DAT and VCC pins only when:
 - Using a AM2302 sensor without a DT22 breakout PCB and the MCU IO pin has no built-in or external pull-up resistor.
- The DHT22 breakout PCB contains a 3k3 pull-up resistor between DAT and VCC.
- Please refer to the MCU datasheet or board schematic for more information about IO pin pull-up resistors.

External capacitor

• Tip: Connect a 100nF capacitor between the sensor pins VCC and GND when read errors occurs. This may stabilize the power supply.

Connection DHT22 - Arduino

DHT22	Arduino UNO / Nano / Pro Mini / Leonardo / Mega2560
GND	GND
VCC	5V (or 3.3V)
DAT	2 (DIGITAL pin)

Connection DHT22 - ESP8266

Some ESP8266 boards uses Arduino pin 2 -> GPIO4 which is D4 text on the board. Make sure you're using the right pin.

DHT22	ESP8266 / WeMos D1 R2 / ESP12E / NodeMCU
GND	GND
VCC	3.3V
DAT	D4

Connection DHT22 - WeMos LOLIN32

WeMos LOLIN32 requires an additional 100nF capacitor over the GND - VCC pins to prevent parity errors.

Use pin 0 to prevent flash problems.

DHT22	WeMos Lolin32
GND	GND
VCC	3.3V
DAT	0

Other MCU's may work, but are not tested.

Examples

• Examples | Erriez DH22 | Example

Usage

Initialization

```
{c++}
#include <DHT22.h>
// Connect DTH22 DAT pin to Arduino board
// Arduino DIGITAL pin
#define DHT22_PIN
                      2
// Some ESP8266 boards uses D2 instead of 2
// #define DHT22_PIN D2
// LOLIN32 uses another pin
// #define DHT22_PIN 0
DHT22 sensor = DHT22(DHT22_PIN);
void setup()
    // Initialize serial port
    Serial.begin(115200);
    Serial.println(F("DHT22 \text{ temperature and humidity sensor example}\n"));
    // Initialize sensor
    sensor.begin();
```

Read temperature and humidity

```
{c++}
void loop()
     // Check minimum interval of 2000 ms between sensor reads
    if (sensor.available()) {
    // Read temperature from sensor
         int16_t temperature = sensor.readTemperature();
         // Read humidity from sensor
         int16_t humidity = sensor.readHumidity();
         if (temperature == \sim 0) { // Print error (Check hardware connection)
              Serial.print(F("Temperature: Error"));
              // Print temperature
              Serial.print(F("Temperature: "));
              Serial.print(temperature / 10);
              Serial.print(F("."));
              Serial.print(temperature % 10);
              Serial.println(F(" *C"));
         if (humidity == ~0) {
    // Print error (Check hardware connection)
              Serial.print(F("Humidity: Error"));
         } else {
              // Print humidity
              Serial.print(F("Humidity: "));
Serial.print(humidity / 10);
              Serial.print(F("."));
              Serial.print(f('.'),')
Serial.print(humidity % 10);
Serial.println(F(" %"));
         Serial.println();
}
```

Serial output

```
DHT22 temperature and humidity sensor example

Temperature: 17.7 *C

Humidity: 41.0 %

Temperature: 17.8 *C

Humidity: 41.1 %
```

Documentation

- Doxygen online HTML
- Doxygen PDF
- AM2303 datasheet
- DHT22 datasheet

Library dependencies

• None

Library installation

Please refer to the Wiki page.

Other Arduino Libraries and Sketches from Erriez

• Erriez Libraries and Sketches

Class Index

_			
2	1	Clace	l iet

Here are the	e classes, structs, unions and interfaces with brief descriptions:	
DHT22	DHT22 sensor class	9

6 Class Index

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

DHT22.cpp	
DHT22 (AM2303) Humidity and Temperature sensor example for Arduino	 13
DHT22.h	
DHT22 (AM2303) Humidity and Temperature sensor example for Arduino	 13

8 File Index

Class Documentation

4.1 DHT22 Class Reference

```
DHT22 sensor class.
```

```
#include <DHT22.h>
```

Public Member Functions

• DHT22 (uint8_t pin)

Constructor DHT22 sensor.

• void begin ()

Initialize sensor.

• bool available ()

Check if new temperature or humidity read is allowed.

• int16_t readTemperature ()

Read temperature from sensor.

• int16_t readHumidity ()

Read humidity from sensor.

4.1.1 Detailed Description

DHT22 sensor class.

Definition at line 59 of file DHT22.h.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 DHT22()

Constructor DHT22 sensor.

10 Class Documentation

Parameters

pin Data pin sensor.	
----------------------	--

Definition at line 38 of file DHT22.cpp.

4.1.3 Member Function Documentation

4.1.3.1 available()

```
bool DHT22::available ()
```

Check if new temperature or humidity read is allowed.

The application should call this function and check if a new temperature and humidity can be read to prevent too fast sensor reads.

Return values

true	Available, interval between sensor reads >= 2000 ms.
false	Not available, interval between sensor reads too short.

Definition at line 87 of file DHT22.cpp.

4.1.3.2 begin()

```
void DHT22::begin ( )
```

Initialize sensor.

Call this function from setup().

- Connect an external 3k3..10k pull-up resistor between the DAT and VCC pins only when:
 - using a AM2302 sensor without a DT22 breakout PCB AND
 - the MCU IO pin has no built-in or external pull-up resistor.
- The DHT22 breakout PCB contains a 3k3 pull-up resistor between DAT and VCC.
- Please refer to the MCU datasheet or board schematic for more information about IO pin pull-up resistors.

Definition at line 68 of file DHT22.cpp.

4.1.3.3 readHumidity()

```
int16_t DHT22::readHumidity ( )
```

Read humidity from sensor.

Return values

Humidity	Signed humidity with last digit after the point.
\sim 0	An error occurred.

Definition at line 130 of file DHT22.cpp.

4.1.3.4 readTemperature()

```
int16_t DHT22::readTemperature ( )
```

Read temperature from sensor.

Returns the actual temperature, or a cached temperature when read interval is too short.

Return values

Temperature	Signed temperature with last digit after the point.
\sim 0	An error occurred.

Definition at line 107 of file DHT22.cpp.

The documentation for this class was generated from the following files:

- DHT22.h
- DHT22.cpp

12 Class Documentation

File Documentation

5.1 DHT22.cpp File Reference

DHT22 (AM2303) Humidity and Temperature sensor example for Arduino.

```
#include "DHT22.h"
```

5.1.1 Detailed Description

DHT22 (AM2303) Humidity and Temperature sensor example for Arduino.

```
Source: https://github.com/Erriez/ErriezDHT22
```

5.2 DHT22.h File Reference

DHT22 (AM2303) Humidity and Temperature sensor example for Arduino.

```
#include <Arduino.h>
```

Classes

• class DHT22

DHT22 sensor class.

Macros

- #define DHT22_MIN_READ_INTERVAL 2000

 Enable debug prints to Serial.
- #define DHT22_NUM_DATA_BITS (5 * 8)
- #define DEBUG_PRINTLN(...) {}

Debug print configuration.

14 File Documentation

5.2.1 Detailed Description

DHT22 (AM2303) Humidity and Temperature sensor example for Arduino.

Source: https://github.com/Erriez/ErriezDHT22

5.2.2 Macro Definition Documentation

5.2.2.1 DHT22_MIN_READ_INTERVAL

```
#define DHT22_MIN_READ_INTERVAL 2000
```

Enable debug prints to Serial.

Minimum interval between sensor reads in milli seconds

Definition at line 41 of file DHT22.h.

5.2.2.2 DHT22_NUM_DATA_BITS

```
#define DHT22_NUM_DATA_BITS (5 * 8)
```

Number of data bits is 5 Bytes * 8 bits: 1 Byte: Humidity high 1 Byte: Humidity low 1 Byte: Temperature high 1 Byte: Temperature low 1 Byte: Parity

Definition at line 49 of file DHT22.h.

Index

```
available
    DHT22, 10
begin
    DHT22, 10
DHT22, 9
    available, 10
    begin, 10
    DHT22, 9
    readHumidity, 10
    readTemperature, 11
DHT22.cpp, 13
DHT22.h, 13
    DHT22_MIN_READ_INTERVAL, 14
    DHT22_NUM_DATA_BITS, 14
DHT22_MIN_READ_INTERVAL
    DHT22.h, 14
DHT22_NUM_DATA_BITS
    DHT22.h, 14
readHumidity
    DHT22, 10
readTemperature
    DHT22, 11
```