CORRECTION SÉANCES 1 ET 2 (19,26 SEPTEMBRE)

Exercice 1. 1. Par définition, l'ensemble E_1 est l'intervalle]0,1], formé des réels strictement supérieurs à 0 et inférieurs à 1.

2. Soit $(x,y) \in \mathbb{R}^2$. La formule $(x-1)^2 + y^2$ donne le carré de la distance entre le point (x,y) et le point (1,0). L'ensemble E_2 est donc formé des points $(x,y) \in \mathbb{R}^2$ dont le carré de la distance avec le point (1,0) est nulle. Comme $z^2 = 0$ entraı̂ne z = 0, on en déduit que E_2 est l'ensemble des points à distance nulle du point (1,0). Cet ensemble est donc réduit à $\{(1,0)\}$. L'ensemble E'_2 quant à lui est formé des points dont (le carré de) la distance avec le point (1,0) est 1. Il s'agit d'un cercle de centre (1,0) et de rayon 1. Bonus : l'ensemble E'_2 est décrit comme l'image de la courbe paramétrée

$$f: t \mapsto (1 + \cos(t), \sin(t)).$$

3. On sait que, pour tout $x \in \mathbb{R}$, on a $-1 \leqslant \sin(x) \leqslant 1$, donc $E_3 \subset [-1,1]$. On cherche à montrer l'inclusion réciproque. On sait que $\sin(-\pi/2) = -1$ et que $\sin(\pi/2) = 1$. Par le théorème des valeurs intermédiaires, on trouve qu'il existe un $x \in [-\pi/2, \pi/2]$ tel que $\sin(x) = t$. En particulier, on a $t \in E_3$. Comme ceci est vrai pour tout $t \in [-1,1]$, on trouve $[-1,1] \subset E_3$ et donc $[-1,1] = E_3$.

Soit $A := \mathbb{R} \setminus \{\pi/2 + k\pi \mid k \in \mathbb{Z}\}$, de sorte que $E_3' = \{\sin(x) \mid x \in A\}$. Comme $A \subset \mathbb{R}$, on a

$$E_3' = \sin(A) \subset \sin(\mathbb{R}) = E_3 = [-1, 1].$$

On montre ensuite que $-1 \notin E_3'$. On sait (cercle trigonométrique) que les solutions de l'équation $\sin(x) = -1$ sont exactement les $\frac{-\pi}{2} + 2k\pi$ pour $k \in \mathbb{Z}$. Comme ces éléments n'appartiennent pas à A, on a $-1 \notin \sin(A) = E_3'$. De même, on trouve que $1 \notin E_3'$. On a donc $E_3' \subset]-1,1[$. Pour prouver l'inclusion réciproque, soit $t \in]-1,1[$. On a vu précédemment qu'il existe $x \in [-\pi/2,\pi/2]$ tel que $\sin(x) = t$. Comme $\sin(-\pi/2) = -1 \neq t$ et $\sin(\pi/2) = 1 \neq t$, on trouve $x \neq \pm \pi/2$ et donc $x \in]-\pi/2,\pi/2[$. Comme la distance entre x et $\pi/2$ est strictement inférieure à π , on obtient $x \in A$ et donc $\sin(x) = t \in E_3'$. Comme ceci est vrai pour tout $t \in]-1,1[$, on trouve $]-1,1[\subset E_3'$ et donc $]-1,1[=E_3']$.

4. Soit $(a,b) \in \mathbb{R}^2$. Par définition, on a $(a,b) \in E_4$ si et seulement si il existe $x \in \mathbb{R}$ tel que

$$\begin{cases} a = x + 1, \\ b = x \end{cases} \Leftrightarrow a = b + 1 \Leftrightarrow b = a - 1.$$

L'ensemble E_4 est alors donné par $\{(a, a-1) \mid a \in \mathbb{R}\}$, c'est à dire par le graphe de la fonction $f : \mathbb{R} \to \mathbb{R}$ donnée par f(a) = a - 1.

Exercice 2. 1. On montre que le seul sous-ensemble de \varnothing est \varnothing lui même. On a $\varnothing \subset \varnothing$ car \varnothing est inclus dans tout ensemble. Ensuite, pour X un ensemble non vide, on peut considérer $x \in X$. On a $x \notin \varnothing$ et donc $X \not\subset \varnothing$. L'ensemble $\mathcal{P}(\varnothing)$ contient donc un unique élément, étant \varnothing lui-même. On a donc $\mathcal{P}(\varnothing) = \{\varnothing\}$ (cet ensemble n'est pas égal à \varnothing).

Pour la culture, donnons une preuve plus formelle du même fait : Soit X un ensemble, par définition, on a

$$X \subset \varnothing \Leftrightarrow \forall x \in X, \ x \in \varnothing$$
$$\forall x[x \in X \Rightarrow x \in \varnothing]$$
$$\forall x \neg (x \in X) \lor (x \in \varnothing)$$

Comme \varnothing ne contient aucun élément, $x \in \varnothing$ est toujours faux. L'assertion $\neg(x \in X) \lor (x \in \varnothing)$ est vraie si et seulement si $\neg(x \in X)$ est vraie, i.e. si $x \in X$ est faux. On a donc

$$X \subset \varnothing \Leftrightarrow \forall x, \ x \notin X \Leftrightarrow X = \varnothing$$

d'où $\mathcal{P}(\emptyset) = {\emptyset}.$

Ensuite, on a $\mathcal{P}(\varnothing) = \{\varnothing\}$ contient 1 élément. Une partie de $\mathcal{P}(\varnothing)$ contient donc 0 où 1 élément. Une partie à 0 éléments de $\mathcal{P}(\varnothing)$ est forcément \varnothing (l'unique ensemble à 0 éléments). Une partie à 1 éléments de $\mathcal{P}(\varnothing)$ admet l'unique élément de $\mathcal{P}(\varnothing)$ comme élément, l'unique partie à 1 élément de $\mathcal{P}(\varnothing)$ est donc $\mathcal{P}(\varnothing)$ lui-même. On a donc $\mathcal{P}(\varnothing) = \{\varnothing, \{\varnothing\}\}$.

Comme $\mathcal{P}(\mathcal{P}(\varnothing)) = \{\varnothing, \{\varnothing\}\}\$ contient 2 éléments. Il y a trois possibilités pour une partie X de $\mathcal{P}(\mathcal{P}(\varnothing))$:

- X a 0 éléments, alors $X = \emptyset$
- X a 1 élément, alors $X = \{\emptyset\}$ ou $X = \{\{\emptyset\}\}$ car \emptyset et $\{\emptyset\}$ sont les seuls éléments de $\mathcal{P}(\mathcal{P}(\emptyset))$.
- X a 2 éléments, alors $X = \mathcal{P}(\mathcal{P}(\varnothing))$ car $\mathcal{P}(\mathcal{P}(\varnothing))$ contient lui-même 2 éléments.

On a alors

$$\mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing))) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}$$

On peut résumer cet ensemble dans le diagramme d'inclusion suivant :

(évidemment, on a aussi $\emptyset \subset \{\emptyset, \{\emptyset\}\}\$, mais on retrouve cette inclusion par exemple en faisant $\emptyset \subset \{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}\$).

- 2. l'ensemble E contient 3 éléments, il y a donc quatre possibilités pour une partie X de E:
 - X a 0 éléments, alors $X = \emptyset$
 - X a 1 élément, alors $X = \{0\}$ ou $X = \{1\}$ ou $X = \{2\}$ car 0, 1, 2 sont les éléments de E.
 - X a 2 éléments, alors X contient tous les éléments de E sauf 1, donc soit $X = \{1, 2\}$, soit $X = \{0, 2\}$, soit $X = \{0, 1\}$.
 - X a 3 éléments, alors X = E car E contient lui-même 3 éléments.

On a alors

$$\mathcal{P}(E) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}.$$

On peut résumer cet ensemble dans le diagramme d'inclusion suivant :

Exercice 3. On pose $\overline{\mathbb{R}} = \{\pm \infty\} \cup \mathbb{R}$ (avec l'ordre évident).

1. Un élément $x \in E$ est un majorant de F si l'on a

$$\forall y \in F, y \leqslant x.$$

$$\forall y \in F, x \leqslant y.$$

2. Pour calculer le supremum de \mathbb{R} dans $\overline{\mathbb{R}}$, on commence par calculer l'ensemble des majorants de \mathbb{R} dans $\overline{\mathbb{R}}$. Premièrement, $-\infty$ n'est pas un majorant de \mathbb{R} dans $\overline{\mathbb{R}}$ car $0 \in \mathbb{R}$ est tel que $0 \nleq -\infty$. Ensuite, aucun élément de \mathbb{R} n'est un majorant de \mathbb{R} . En effet, pour $x \in \mathbb{R}$, l'élément $x+1 \in \mathbb{R}$ est tel que $x+1 \nleq x$. Enfin, $+\infty$ est un majorant de \mathbb{R} car c'est le maximum de $\overline{\mathbb{R}}$. Ainsi, l'ensemble des majorants de \mathbb{R} est $\{+\infty\}$. Comme cet ensemble contient un unique élément, son minimum est évidemment $+\infty$, qui est alors le supremum de \mathbb{R} dans $\overline{\mathbb{R}}$.

Pour calculer l'infimum de \mathbb{R} dans $\overline{\mathbb{R}}$, on commence par calculer l'ensemble des minorants de \mathbb{R} dans $\overline{\mathbb{R}}$. Premièrement, $+\infty$ n'est pas un minorant de \mathbb{R} dans $\overline{\mathbb{R}}$ car $0 \in \mathbb{R}$ est tel que $-\infty \nleq 0$. Ensuite, aucun élément de \mathbb{R} n'est un minorant de \mathbb{R} . En effet, pour $x \in \mathbb{R}$, l'élément $x - 1 \in \mathbb{R}$ est tel que $x \nleq x - 1$. Enfin, $-\infty$ est un minorant de \mathbb{R} car c'est le minimum de $\overline{\mathbb{R}}$. Ainsi, l'ensemble des minorants de \mathbb{R} est $\{-\infty\}$. Comme cet ensemble contient un unique élément, son maximum est évidemment $+\infty$, qui est alors l'infimum de \mathbb{R} dans $\overline{\mathbb{R}}$.

- 3. Premièrement, $1 \in \mathbb{R} \subset \overline{\mathbb{R}}$ est un majorant de $[0,1] = \{x \in \mathbb{R} \mid 0 \leqslant x \text{ et } x \leqslant 1\}$ par définition. Soit ensuite un majorant m de [0,1]. Comme $1 \in [0,1]$, on a $1 \leqslant m$ par définition d'un majorant. L'élément 1 est donc inférieur à tous les majorants de [0,1], il s'agit donc du supremum de [0,1].
- Ensuite, $1 \in \mathbb{R} \subset \mathbb{R}$ est un majorant de [0,1[, là encore par définition. Ensuite, soit m < 1 dans \mathbb{R} . L'élément $x := \max(0, m + 1/2)$ est un élément de [0,1[tel que m < x, donc m n'est pas un majorant de [0,1[. Par contraposée, on obtient que tout majorant m de [0,1[est tel que $1 \le m$. Comme 1 est un majorant de [0,1[, on conclut qu'il s'agit du plus petit des majorants, et donc du supremum de [0,1[.
- 4. Soit A une partie non vide de \mathbb{R} et soit $x \in A$. Comme inf A est un minorant de A, on a inf $A \leqslant x$. De même, comme sup A est un majorant de x, on a $x \leqslant \sup A$. On a alors inf $A \leqslant x \leqslant \sup A$, et donc en particulier inf $A \leqslant \sup A$.
- 5. Avant de calculer infimum et supremum de \emptyset , nous commençons par calculer les majorants et les minorants de \emptyset . La définition d'un majorant de \emptyset est un $x \in \overline{\mathbb{R}}$ tel que

$$\forall y \in \varnothing, y \leqslant x \Leftrightarrow \forall y [y \in \varnothing \Rightarrow y \leqslant x] \\ \Leftrightarrow \forall y [\neg (y \in \varnothing) \lor (y \leqslant x)].$$

Comme $\neg(y \in \varnothing)$ est vrai pour tout y, l'assertion ci dessus est vraie pour tout y, et donc x est un majorant de \varnothing . L'ensemble des majorants de \varnothing dans $\overline{\mathbb{R}}$ est donc $\overline{\mathbb{R}}$ lui-même, dont le minimum est $-\infty$, qui est donc le supremum de \varnothing . De même, l'ensemble des minorants de \varnothing dans $\overline{\mathbb{R}}$ est $\overline{\mathbb{R}}$, et inf $\varnothing = \{+\infty\}$.

Exercice 8. 1. La relation \mathcal{R} est une relation d'ordre sur E. En effet on a :

- Réflexivité : soit $x \in E$, on a $x \mathcal{R} x$ puisque x = x.
- Antisymétrie : soient $x, y \in E$, tels que $x\mathcal{R}y$ et $y\mathcal{R}x$. Par définition, on a x = y et y = x, et donc x = y en particulier.
- Transitivité : soient $x, y, z \in E$ tels que $x\mathcal{R}y$ et $y\mathcal{R}z$. Par définition, on a x = y et y = z, et donc x = z en particulier, soit $x\mathcal{R}z$.

Pour que la relation \mathcal{R} soit totale, il faut et il suffit que, pour tout $x, y \in E$, on ait $x\mathcal{R}y$ où $y\mathcal{R}x$. Autrement dit, pour tout $x, y \in E$, x = y ou y = x (i.e. x = y). Ceci arrive si et seulement si E contient au plus un unique élément.

- 2. La relation \mathcal{R} est une relation d'ordre sur E. En effet on a :
 - Réflexivité : soit $x \in \mathbb{N}$, on a $x \mathcal{R} x$ puisque $x = 1 \times x$.
 - Antisymétrie : soient $x, y \in \mathbb{N}$, tels que $x\mathcal{R}y$ et $y\mathcal{R}x$. Par définition, il existe $k, k' \in \mathbb{N}$ tels que x = ky et y = k'x. On a alors x = kk'x. On a deux cas de figure :
 - soit x = 0 et alors y = 0 = x
 - soit $x \neq 0$ et alors kk' = 1, ce qui entraîne k = k' = 1 car $k, k' \in \mathbb{N}$.

Dans les deux cas, on a x = y en particulier.

— Transitivité : soient $x, y, z \in \mathbb{N}$ tels que $x\mathcal{R}y$ et $y\mathcal{R}z$. Par définition, il existe $k, k' \in \mathbb{N}$ tels que x = ky et y = k'z. On a alors x = kk'z et $x\mathcal{R}z$ par définition.

La relation \mathcal{R} n'est pas totale. En effet, 2,3 sont deux entiers sans que 2|3 ou que 3|2.

- 3. La relation \mathcal{R} est une relation d'ordre sur E. En effet on a :
 - Réflexivité : soit $A \in \mathcal{P}(X)$, on a $A\mathcal{R}A$ puisque A = A.
 - Antisymétrie : soient $A, B \in \mathcal{P}(X)$, tels que $A\mathcal{R}B$ et $B\mathcal{R}A$. Par définition, on a $A \subset B$ et $B \subset A$, d'où A = B par principe de double inclusion.
 - Transitivité : soient $A, B, C \in \mathcal{P}(X)$ tels que $A\mathcal{R}B$ et $B\mathcal{R}C$. Par définition, on a $A \subset B$ et $B \subset C$, et donc $A \subset C$ en particulier, soit $A\mathcal{R}C$.

Pour que la relation \mathcal{R} soit totale, il faut et il suffit que, pour tout $A, B \in \mathcal{P}(X)$, on ait $A\mathcal{R}B$ où $B\mathcal{R}A$. Si X contient au moins 2 éléments $\{x\}, \{y\}$, et on a $\neg(\{x\} \subset \{y\})$ et $\neg(\{y\} \subset \{x\})$, donc la relation n'est pas totale. Si X contient un élément ou moins, la relation \mathcal{R} est totale.

- 4. Si X contient un élément ou moins, la relation \mathcal{R} est en fait la même que celle de la question précédente, et il s'agit d'une relation d'ordre totale sur $\mathcal{P}(X)$. Si X contient deux éléments distincts x, y, alors on a $\{x\}\mathcal{R}\{y\}$ et $\{y\}\mathcal{R}\{x\}$ sans avoir $\{x\}=\{y\}$. La relation \mathcal{R} n'est donc pas antisymmétrique, et il ne s'agit pas d'une relation d'ordre.
- 5. La relation \mathcal{R} est un ordre total : c'est la relation d'ordre classique sur les réels.
- 6. La relation \mathcal{R} n'est pas réflexive : on a par exemple $0 \nleq 0$. Ce n'est donc pas une relation d'ordre sur \mathbb{R} .
- 7. La relation \mathcal{R} est une relation d'ordre sur E. En effet on a :
 - Réflexivité : soit $(x,y) \in \mathbb{R}^2$, on a x=x et $y \leq y$, donc $(x,y)\mathcal{R}(x,y)$.
 - Antisymétrie : soient $(x,y), (x',y') \in \mathbb{R}^2$, tels que $(x,y)\mathcal{R}(x',y')$ et $(x',y')\mathcal{R}(x,y)$. On peut faire de nombreuses disjonctions de cas, où revenir aux quantificateurs. Par définition, on a

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow (x < x') \lor (x = x' \land y \leqslant y')$$

$$\Leftrightarrow ((x < x') \lor (x = x')) \land (x < x' \lor y \leqslant y')$$

$$\Leftrightarrow (x \leqslant x') \land (x < x' \lor y \leqslant y')$$

et de même,

$$(x', y')\mathcal{R}(x, y) \Leftrightarrow (x' \leqslant x) \land (x' < x \lor y' \leqslant y).$$

On a alors la chaîne d'équivalence suivante :

$$(x,y)\mathcal{R}(x',y') \wedge (x',y')\mathcal{R}(x,y)$$

$$\Leftrightarrow (x \leqslant x') \wedge (x < x' \lor y \leqslant y') \wedge (x' \leqslant x) \wedge (x' < x \lor y' \leqslant y)$$

$$\Leftrightarrow (x \leqslant x') \wedge (x' \leqslant x) \wedge (x < x' \lor y \leqslant y') \wedge (x' < x \lor y' \leqslant y)$$

$$\Leftrightarrow (x = x') \wedge (x < x' \lor y \leqslant y') \wedge (x' < x \lor y' \leqslant y)$$

$$\Leftrightarrow (x = x') \wedge (y \leqslant y') \wedge (y' \leqslant y)$$

$$\Leftrightarrow (x = x') \wedge (y = y')$$

$$\Leftrightarrow (x,y) = (x',y').$$

On a donc l'antisymétrie de la relation \mathcal{R} .

- Transitivité : soient $(x, y), (x', y'), (x'', y'') \in \mathbb{R}^2$ tels que $(x, y)\mathcal{R}(x', y')$ et $(x', y')\mathcal{R}(x'', y'')$. Cette fois ci, faisont les disjonctions de cas :
 - Si x < x' et x' < x'', alors x < x'' et donc $(x, y)\mathcal{R}(x'', y'')$.
 - Si x < x' et $(x' = x'' \land y' \leqslant y'')$, alors x < x'' et donc $(x, y)\mathcal{R}(x'', y'')$.
 - Si $(x = x' \land y \leqslant y')$ et x' < x'', alors x < x'' et donc $(x, y) \mathcal{R}(x'', y'')$.
 - Si $(x = x' \land y \leqslant y')$ et $(x' = x'' \land y' \leqslant y'')$, alors x = x'' et $y \leqslant y''$ et donc $(x, y) \mathcal{R}(x'', y'')$.

Dans tous les cas, on obtient $(x,y)\mathcal{R}(x'',y'')$ et donc \mathcal{R} est transitive.

Montrons que la relation \mathcal{R} est totale. Soient $(x,y),(x',y')\in\mathcal{R}$. On a

$$(x,y)\mathcal{R}(x',y')\vee(x',y')\mathcal{R}(x,y)$$

$$\Leftrightarrow (x< x')\vee(x=x'\wedge y\leqslant y')\vee(x'< x)\vee(x'=x\wedge y'\leqslant y)$$

$$\Leftrightarrow (x< x')\vee(x'< x)\vee(x=x'\wedge y\leqslant y')\vee(x'=x\wedge y'\leqslant y)$$

$$\Leftrightarrow (x\neq x')\vee(x=x'\wedge y\leqslant y')\vee(x=x'\wedge y'\leqslant y)$$

$$\Leftrightarrow (x\neq x')\vee(x=x')\vee(y\leqslant y'\wedge y'\leqslant y)$$

$$\Leftrightarrow (x\neq x')\vee(x=x')$$

Cette dernière équivalence provenant du fait que l'ordre naturel est total sur \mathbb{R} , ce qui entraı̂ne que $(y \leq y' \wedge y' \leq y)$ est toujours vrai. Comme la dernière assertion obtenue est toujours vraie, la première l'est également, et donc l'ordre \mathcal{R} est un ordre total sur \mathbb{R}^2 .

8. La relation \mathcal{R} n'est pas antisymmétrique : par exemple $1, -1 \in \mathbb{C}$ sont tels que $|-1| \leqslant |1|$ et $|1| \leqslant |-1|$ sans avoir 1 = -1. La relation \mathcal{R} n'est en particulier pas une relation d'ordre sur \mathbb{C} .