Lógica Combinacional

Mapas de Karnaugh

OdC 2025

Algunas equivalencias que dominar!

Especificación formal o en lenguaje natural de una función lógica

La función F activa su salida cuando las entradas cumplen

Tabla de Verdad

x	у	z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Mapa de Karnaugh

Circuito Combinacional

$$x'y + xy$$

Mapas de Karnaugh

Diagrama o tabla que representa una función lógica.

Es equivalente a una tabla de verdad.

Permite simplificar al mínimo una función lógica en términos de recursos.

Mapas de Karnaugh de 2 y 3 variables (entradas)

- Cada "celda" representa una asignación de estados a las entradas.
- Los mapas/tablas para N entradas o variables tienen 2 a la N celdas.
- 2 celdas adyacentes distan en 1 los valores de sus entradas asociadas (distancia de Hamming).

Mapas de Karnaugh de 4 variables (entradas)

						yz			y
				1	wx	0.0	01	11	10
m_0	m_1	m_3	m_2		00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
n_4	m_5	m_7	m_6		01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
n ₁₂	m_{13}	m ₁₅	m_{14}		11	wxy'z'	wxy'z	wxyz	wxyz'
m_8	m_9	m_{11}	m_{10}	W	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'
	a)					b	Z	

Mapas de Karnaugh de 5 variables (entradas)

FIGURA 3-12 Mapa de cinco variables

Mapas de Karnaugh de 5 variables (entradas)

Pasos del método (Suma de productos)

- 1. Dibujar la tabla de la dimensión correcta, asignar nombre y valor a las filas y columnas.
- 2. Llenar los 1's donde corresponda (según la especificación o tabla de verdad).
- 3. Agrupar los 1's adyacentes en cuadrados/rectángulos lo más grande posible, considerando que la cantidad de 1's agrupados sea potencia de dos:

- 4. Cada grupo representará un término (producto) de la función simplificada.
- 5. El resultado final es la mínima suma de productos

Términos simplificados

- 1. Si el conjunto que estamos describiendo es de tamaño 1, el término asociado es el minitérmino correspondiente a la celda.
- 2. Si el valor de una variable cambia dentro del conjunto, entonces esa variable se elimina del producto.
- 3. Si el valor de una variable en cada celda del conjunto es 1, esta variable es parte del término simplificado.
- 4. Si el valor de una variable en cada celda del conjunto es 0, esta variable negada es parte del término simplificado.

Observaciones del método

- Debe haber la mínima cantidad de grupos contemplando todos los 1.
- 2. Cada grupo debe ser del máximo tamaño posible (aun si "encierra" 1's que ya forman parte de otro grupo).
- 3. Los "extremos" se pueden asociar con su "extremo" opuesto (horizontal o vertical).

Otra representación más evidente de la adyacencia ...

Ejercicio 1 (con mapas de Karnaugh)

Un detector de paridad impar de 4 entradas y una salida funciona de la siguiente manera: si la cantidad de entradas con valor '1' es impar la salida se pone en '1', en el resto de los casos la salida toma valor '0'.

Α	В	C	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Ejercicio 1 (con mapas de Karnaugh)

Α	В	C	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

АВ	CD 00	01	11	10
00		1		1
01	1		1	
11		1		1
10	1		1	

Ejercicio 1 (con mapas de Karnaugh)

Α	В	C	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Otro ejemplo

Simplificar S como suma de productos usando mapas K.

A	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$S = A.C + A'.C'$$

Otro ejemplo

Simplificar S como suma de productos usando mapas K.

A	В	С	s
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$S = A'.C' + A.C$$

Otro ejemplo

Simplificar S como **producto de sumas** usando mapas K.

A	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Pasos del método (Producto de sumas)

- 1. Dibujar la tabla de la dimensión correcta, asignar nombre y valor a las filas y columnas.
- 2. Llenar los **0**'s donde corresponda (según la especificación o tabla de verdad).
- 3. Agrupar los **0**'s adyacentes en **cuadrados/rectángulos lo más grande posible**, considerando que la cantidad de **0**'s agrupados sea potencia de dos:

- 4. Cada grupo representará un término (suma) de la función simplificada.
- 5. El resultado final es la mínima suma de productos

Términos simplificados

- 1. Si el conjunto que estamos describiendo es de tamaño 1, el término asociado es el maxitermino correspondiente a la celda.
- 2. Si el valor de una variable cambia dentro del conjunto, entonces esa variable se elimina de la suma.
- Si el valor de una variable en cada celda del conjunto es 0, esta variable es parte del término simplificado.
- 4. Si el valor de una variable en cada celda del conjunto es 1, esta variable negada es parte del término simplificado.

Último Ejemplo

Para tomar decisiones ...

D	С	В	Α	S
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Último Ejemplo

Para tomar decisiones ...

D	С	В	Α	S
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

$$S = C' + A'$$

