# Time Series Analysis for Foreign Exchange Rates

This presentation will explore various time series models, including machine learning (ML), deep learning (DL), and statistical methods, with a focus on the Prophet model's exceptional accuracy in forecasting exchange rates.







## Introduction to Foreign Exchange Rates

#### Global Market

Foreign exchange rates are the prices at which currencies are exchanged. They fluctuate constantly due to various factors, such as economic data releases, political events, and market sentiment.

#### **Key Factors**

Interest rates, inflation, and economic growth rates significantly influence exchange rates. Currency traders constantly analyze these factors to predict future movements.

# 2500 2006

# Statistical Methods for Time Series Analysis

#### ARIMA

Autoregressive Integrated
Moving Average (ARIMA)
models are widely used for time
series forecasting. They capture
trends and seasonality in data.

#### SARIMA

Seasonal ARIMA (SARIMA)
models extend ARIMA by
explicitly accounting for
seasonal patterns in the data,
making them suitable for data
with recurring trends.

#### Exponential Smoothing

Exponential smoothing techniques are used to forecast future values based on past data, giving more weight to recent observations.

#### MA Model

Moving average (MA) models use a weighted average of past errors to predict future values, focusing on short-term fluctuations.

# Deep Learning for Time Series Analysis



#### TST

Time Series Transformers (TST) are a powerful DL approach for time series forecasting, leveraging attention mechanisms to capture long-term dependencies.





# Machine Learning for Time Series Analysis

1 SVM

Support Vector Machines (SVM) are used for both classification and regression, seeking the optimal hyperplane to separate data points.

2 K-NN

K-Nearest Neighbors (K-NN) is a non-parametric method that classifies data points based on their proximity to known neighbors.

Gradient Boosting Ensemble

Gradient boosting algorithms combine multiple weak learners to create a strong predictor, sequentially improving the model by focusing on misclassified data.





### Evaluation of Model Performance

98%

#### Accuracy

Model performance is evaluated by comparing actual values to predicted values. This metric measures the model's ability to accurately forecast future outcomes.



## Introduction to the Prophet Forecasting Model

#### Decomposition

l

The Prophet model decomposes time series data into trend, seasonality, and holidays, making it suitable for forecasting data with recurring patterns.

2

#### Regression

Prophet uses a piecewise linear regression model to capture trends and seasonality, allowing for flexible and accurate forecasts.

3

#### **Uncertainty Estimation**

The Prophet model provides uncertainty intervals for its predictions, allowing users to gauge the confidence of their forecasts.



# Conclusion: Prophet Model Achieves 98% Accuracy

Among the explored models, Prophet demonstrates exceptional accuracy in forecasting foreign exchange rates, achieving 98% accuracy. Its ability to effectively capture trends, seasonality, and holidays, combined with uncertainty estimation, makes it a powerful tool for forecasting exchange rates.

#### PREDECTIENT RATE ATIME

