1

Assignment(matrix theory)

ee24btech11056 - S.Kavya Anvitha

I. A FILL IN THE BLANKS

1) The larger of $\cos(\ln \theta)$ and $\ln(\cos \theta)$ if $e^{\frac{-\pi}{2}} < \theta < \frac{\pi}{2}$ is

(1983 - 1Mark)

2) The function $y = 2x^2 - \ln |x|$ is monotonically increasing for values of $x \neq 0$ satisfying the inequalities and monotonically decreasing for values of x satisfying the inequalities

(1983 - 2Marks)

- 3) The set of all x for which $\ln(1+x) \le x$ is equal to (1987 2Marks)
- 4) Let **P** be a variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci F_1 and F_2 . If A is the area of the triangle PF_1F_2 then the maximum value of A is (1994 2*Marks*)
- 5) Let C be the curve $y^3 3xy + 2 = 0$ If **H** is the set of points on the curve C where the tangent is horizontal and **V** is the set of the point on the curve C where the tangent is vertical then $H = \dots$ and $V = \dots$ (1994 2Marks)

II. B True / False

1) If x - r is a factor of the polynomial $f(x) = a_n x^4 + \cdots + a_0$, repeated m times $(1 < m \le n)$, then r is a root of f'(x) = 0 repeated m times.

(1983 - 1Mark)

2) For 0 < a < x, the minimum value of the function $log_a x + log_x a$ is 2.

(1984 - 1Mark)

III. C MCQs with One Correct Answer

- 1) If a + b + c = 0, then the quadratic equation $3ax^2 + 2bx + c = 0$ has (1983 1*Mark*)
 - a) at least one root in [0, 1]
 - b) one root in [2,3] and other in [-2,-1]
 - c) imaginary roots
 - d) none of these
- 2) AB is a diameter of a circle and C is any point on the circumference of the circle. Then

(1983 - 1Mark)

- a) the area of $\triangle ABC$ is maximum when it is isosceles
- b) the area of $\triangle ABC$ is minimum when it is isosceles
- c) the perimeter of $\triangle ABC$ is minimumwhen it is isosceles
- d) none of these
- 3) The normal to the curve

$$x = a(\cos\theta + \theta\sin\theta)$$

$$y = a(\sin\theta - \theta\cos\theta)$$

at any point ' θ ' is such that

(1983 - 1Mark)

- a) it makes constant angle with the x axis
- b) it passes through the origin
- c) it is at a constant distance from the origin
- d) none of these
- 4) If $y = a \ln x + bx^2 + x$ has its extremum values at $\mathbf{x} = -1$ and $\mathbf{x} = 2$, then (1983 1*Mark*)

a) $a = 2$, $b = -1$ b) $a = 2$, $b = \frac{-1}{2}$		c) $a = -2$, $b = \frac{1}{2}$ d) none of these		
5) Which one of the following curves cut the parabola $y^2 = 4ax$ at right angles?				(1994)
a) $x^2 + y^2 = a^2$ b) $e^{\frac{-x}{2a}}$		c) $y = ax$ d) $x^2 = 4ay$		
6) The function defined by $f(x) = (x + 2)e^{-x}$ is				(1004)
 a) decreasing for all x b) decreasing in (-∞, -1) and increasing in ((-1, ∞)) c) increasing for all x d) decreasing in ((-1, ∞)) and increasing in ((-∞, -1)) 				(1994)
7) The function				
$f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$				
d) decreasing on $(0,$	(∞)) $(\frac{\pi}{e})$, decreasing on $(\frac{\pi}{e}, \infty)$ $(\frac{\pi}{e})$, increasing on $(\frac{\pi}{e}, \infty)$		4 thint	(1995S)
8) On the interval [0, 1] the function $x^{25} (1-x)^{25}$	takes its maximum valu	e at the point	(1995S)
1) 0	2) $\frac{1}{4}$	3) $\frac{1}{2}$	4) $\frac{1}{3}$	