Guía 4 - Lógica Proposicional

Solución de un alumno

Verano 2021

Ejercicio 1

- a. $v \models \neg p_1$ por def de valuación
- b. $v \not\models (p_5 \lor p_3) \to p_1$ porque podemos encontrar la valuación que cumpla $v \models p_5$ y entonces no
- c. $v \models (p_1 \lor p_2) \to p_3$ si porque $(p_1 \lor p_2)$ siempre es falso.
- d. $v \not\models \neg p_4$ porque podemos encontrar la valuación que cumpla $v \models p_4$ como $v \models \neg p_4$
- e. $v \not\models ((p_8 \rightarrow p_5) \rightarrow (p_8 \land p_0))$ porque puede ser que $v(p_5) = v(p_8) = 1$ y $v(p_0) = 0$.

Ejercicio 2

No está bien expresado el enunciado creo.

- $v(p_1) = 1 \circ v(p_3 \vee p_4) = 1$
- $v(p_2) = 0, v(p_3 \land p_1) = 1$ $v(p_3) = 0$ ó $v(p_3) = 1, v(p_2) = 1$ ó $v(p_3) = 1, v(p_2) = 0$
- b. Las mismas pero asignándoles el valor 0 en las variables que no están.

Ejercicio 3

- a. (\Rightarrow) Para toda v valuación, $v \models \alpha$, entonces para toda valuación $v \not\models \neg \alpha$, entonces $\neg \alpha$ no es satisfacible.
- (⇐) Los entonces también son para el otro lado.
 - b. Si para toda v valuación $v \models \alpha \land \beta$ entonces $v \models \alpha$ y $v \models \beta$, entonces ambas son tautologías. El
 - c. Si para toda v valuación $v \not\models \alpha \lor \beta$ entonces $v \not\models \alpha$ y $v \not\models \beta$, entonces ambas son contradicciones. El entonces es sii.
 - d. Si para toda v valuación $v \not\models \alpha \to \beta$ entonces $v \models \alpha$ y $v \not\models \beta$, entonces α es una tautología y β una contradiccion. El entonces es sii.

Ejercicio 4

a.

$$v_1 \models (\alpha \land \beta) \ y \ v_2 \not\models (\alpha \land \beta)$$

$$\Rightarrow (v_1 \models \alpha \ y \ v_1 \models \beta) \ y \ (v_2 \not\models \alpha \ ó \ v_2 \not\models \beta)$$

$$\Rightarrow (v_1 \models \alpha \ y \ v_2 \not\models \alpha) \ ó \ (v_1 \models \beta \ y \ v_2 \not\models \beta)$$

b. La definición de \models es recursiva,

Sea γ una fórmula compuesta por símbolos proposicionales:

•
$$v \models p_1 \rightarrow p_2 \Leftrightarrow v(p_1) = 0 \text{ \'o } v(p_2) = 1 \underset{v(p_i) = v'(p_i)}{\Leftrightarrow} v' \models p_1 \rightarrow p_2$$

• $v \models \neg p_1 \Leftrightarrow v(p_1) = 0 \underset{v(p_i) = v'(p_i)}{\Leftrightarrow} v' \models \neg p_1$

•
$$v \models \neg p_1 \Leftrightarrow v(p_1) = 0 \Leftrightarrow_{v(p_i) \models v'(p_i)} v' \models \neg p_1$$

Entonces, como toda fórmula está constituida por fórmulas o por símbolos proposicionales, entonces $v(p_i) = v'(p_i) \Rightarrow (v \models \alpha \Leftrightarrow v' \models \alpha)$.

c. (\Leftarrow) Directo.

 (\Rightarrow)

$$(\alpha \to \beta) \ tautología \Leftrightarrow (\forall v \ valuación)(v \models (\alpha \to \beta))$$

$$\Leftrightarrow (\forall v \ valuaci\'on) \ v \models \neg \alpha \ \'o \ (v \models \neg \alpha \ y \ v \models \beta) \ \'o \ (v \models \beta)$$

Pero como $Var(\alpha) \cap Var(\beta) = \emptyset$ entonces podemos encontrar una v' tal que:

$$(v \models \neg \alpha \ y \ v \not\models \beta)$$

Entonces tiene que ser α una contradicción o β una tautología.

d.

Ejercicio 5

Veamos para cada caso de fórmula: - Forma p:

$$v \models \neg p \Leftrightarrow v \not\models p$$

• Forma $\neg \varphi$:

$$v \models \varphi \Leftrightarrow v \not\models \neg \varphi$$

• Forma $\varphi \wedge \psi$:

$$v \models \neg \varphi \lor \neg \psi$$

$$\Leftrightarrow v \models \neg (\varphi \land \psi)$$

$$\Leftrightarrow v \not\models \varphi \land \psi$$

• Forma $\varphi \vee \psi$:

$$v \models \neg \varphi \land \neg \psi$$

$$\Leftrightarrow v \models \neg (\varphi \lor \psi)$$

$$\Leftrightarrow v \not\models \varphi \lor \psi$$

Ejercicio 6

Ejercicio 7

a) Sea $\varphi \in \Gamma$, entonces por def. de consecuencia semántica, $\Gamma \models \varphi$, entonces $\varphi \in Con(\Gamma)$.

b) $\Gamma_1 \subseteq \Gamma_2$. Sea $\varphi \in Con(\Gamma_1)$. Entonces $\Gamma_1 \models \varphi$. Entonces $\Gamma_2 \models \varphi$ (por definición de \models y que $\Gamma_1 \subseteq \Gamma_2$). Entonces $Con(\Gamma_1) \subseteq Con(\Gamma_2)$

c) $\Gamma_2 \subseteq Con(\Gamma_3) \Rightarrow Con(\Gamma_2) \subseteq Con(Con(\Gamma_3)) = Con(\Gamma_3)$ $\Rightarrow \Gamma_1 \subset Con(\Gamma_3)$

d) Ya sabemos que $Con(\Gamma) \subseteq Con(Con(\Gamma))$.

Sea $\varphi \in Con(Con(\Gamma))$, entonces para toda v valuación pasa que:

$$v \models Con(\Gamma) \Rightarrow v \models \varphi$$

Y como tenemos que para toda v:

$$v \models Con(\Gamma) \Leftrightarrow v \models \Gamma$$

Entonces, para toda v:

$$v \models \Gamma \Rightarrow v \models \varphi$$

Ejercicio 8

a.

$$Con(\{\beta\}) \subseteq Con(\{\alpha\})$$
$$\Leftrightarrow \{\alpha\} \models \beta$$

Por def quiere decir:

$$(\forall v)v \models \alpha \Rightarrow v \models \beta$$

Entonces:

$$(\forall v)v \models \alpha \to \beta$$

b.

1. VERDADERO. Para toda v valuación:

$$v \models \alpha \land \beta \Leftrightarrow v \models \alpha \land v \models \beta$$

Entonces son las mismas valuaciones, entonces las consecuencias semánticas son las mismas.

2. VERDADERO. Para toda v valuación:

$$v \models \alpha \lor \beta \Leftrightarrow v \models \alpha \lor v \models \beta$$

Entonces son las mismas valuaciones, entonces las consecuencias semánticas son las mismas.

3. FALSO. Sea $\alpha = \neg \beta$ y $\beta = p$ siendo p una variable prop. Entonces

$$Con(\alpha \to \beta) = FORM$$

Pero

$$\neg \beta \notin Con(\beta)$$

Entonces no cumple.

Ejercicio 9

a) Γ es satisfacible, entonces existe v_0 tq $v_0 \models \Gamma$. Entonces, como $\Gamma' \subseteq \Gamma$, $v_0 \models \Gamma'$, entonces Γ' es satisfacible.

Ahora veamos que no es cierto la recíproca con un contra ejemplo:

$$\Gamma = \{p, \neg p\} \text{ y } \Gamma' = \{p\}$$

- b) Γ es satisfacible, entonces existe v_0 tq $v_0 \models \Gamma$. Entonces por def de consecuencia semántica, para todo $\varphi \in Con(\Gamma)$, $v_0 \models \varphi$, entonces $v_0 \models Con(\Gamma)$, entonces $Con(\Gamma)$ es satisfacible.
- c) Puede pasar que Γ sea insatisfacible, entonces $\Gamma \models \alpha$ o $\Gamma \models \neg \alpha$. También puede ser que no sea consecuencia semántica.

No puede ser que no sea ninguna de las dos. Por definición de $\Gamma \models \varphi$, se cumple o no se cumple.

Ejercicio 10

 $(a \Rightarrow b)$

$$\neg(\alpha_1 \wedge \dots \wedge \alpha_n) \in Con(\emptyset)$$

$$(\neg \alpha_1 \lor \dots \lor \neg \alpha_n) \in Con(\emptyset)$$

$$\Rightarrow (\forall v : valuaci\acute{o}n)v \models (\neg \alpha_1 \lor ... \lor \neg \alpha_n)$$

$$\Rightarrow (\forall v : valuaci\acute{o}n)(\exists i)_{1 \le i \le n} v \not\models (\alpha_i)$$

 $(b\Rightarrow c)$ (c) nos dice que el conjunto $\{\alpha_1,...,\alpha_n\}$ es insatisfacible. Y está bien porque en (b) dijimos que toda valuación no satisface algún α_i .

 $(c \Rightarrow d)$ Sabemos que $Con(\{\alpha_1,...,\alpha_n\})$ es insatisfacible, entonces por def todas las fórmulas son consecuencia semántica del conjunto.

 $(d \Rightarrow a)$

 $\beta \in Con(\{\alpha_1,...,\alpha_n\})$ para toda fórmula β . Entonces el conjunto $\{\alpha_1,...,\alpha_n\}$ es insatisfacible.

Entonces la fórmula $(\alpha_1 \wedge ... \wedge \alpha_n)$ no es satisfacible para ninguna valuación.

Entonces $\neg(\alpha_1 \wedge ... \wedge \alpha_n)$ es satisfacible para todas las valuaciones.

Entonces $\neg(\alpha_1 \wedge ... \wedge \alpha_n) \in Con(\emptyset)$.