NARENDRA GUSTIAJI L200170151

F

PRAK DWDM

Langkah-langkah Praktikum

- a. Prediksi Nilai Kelas Atribut dengan Neuron Perceptron
 - 1. Menggunakan DataCuacaTraining dan DataCuacaTesting. Drag masing-masing data dari repository ke area process view.
 - 2. Drag dan masukkan operator perceptron dan apply model ke dalam area process view.
 - 3. Hubungkan port-port inpu dan output masing-masing data dan operator seperti gambar berikut :

- 4. Jalankan proses dengan menekan tombol run
- 5. Muncul pesan error

6. Klik tanda peringatan pada operator perceptron. Klik ganda pada *help me solve the problem* . Tambahkan operator Nominal to Numerical diantar DataCuacaTesting

F

PRAK DWDM

- 7. Jalankan proses dengan menekan tombol run (f11).
- 8. Hasil prediksi data testing menggunakan perceptron.

- b. Mengetahui Nilai Performance Vector pada Jaringan Saraf Tiruan
 - 1. Gunakan DataTraining saja kemudian drag ke area process view. Tujuannya untuk mengetahui performance dari data yang akan digunakan sebagai data pelatihan.
 - 2. Drag dan masukkan operator cross validation ke dalam area process view.

F

PRAK DWDM

3. Klik ganda cross validation, masukkan operator neural net ke dalam area training dan operator apply model dan performance ke dalam area testing. Hubungkan port-portnya. Kemudian tambahkan operator nominal to numeric karna dalam pembelajaran JST tidak dapat mengenali nilai data bertipe nominal. Data yang dikenali hanya bertipe numerik.

- 4. Jalankan proses dengan menekan tombol run
- 5. Tab performance menunjukan tingkat akurasi,presisi,recall

6. Neural Net:

7. Description:

TUGAS

- 1. Gunakan DataSekolahTraining sebagai data training dan DataSekolahTesting sebagai data testing.
- Carilah hasil prediksi terhadap data testing lama studi mahasiswa dengan menggunakan model perceptron.
 Jawab :

Drag data training dan testing yang digunakan, tambahkan operator perceptron, apply model dan nominal to numerical ke dalam area process view seperti pada gambar berikut ini:

Setelah di run, akan ditunjukkan hasil prediksi data testing sebagai berikut :

Row No.	prediction(L	confidence(confidence(Jurusan_S	Jurusan_S	Jurusa
1	TEPAT	0.462	0.538	1	0	0
2	TEPAT	0.385	0.615	0	1	0
3	TERLAMBAT	0.536	0.464	1	0	0
4	TERLAMBAT	0.579	0.421	0	0	1
5	TEPAT	0.465	0.535	1	0	0
6	TEPAT	0.325	0.675	0	1	0
7	TEPAT	0.458	0.542	0	1	0
8	TEPAT	0.455	0.545	0	1	0
9	TERLAMBAT	0.576	0.424	0	0	1
10	TEPAT	0.462	0.538	1	0	0

Hasil prediksi menunjukan bahwa semua data akan memiliki nilai kelas Lama_Studi = TEPAT DAN TERLAMBAT dengan masing-masing confidance terdapat dalam gambar hasil perceptron diatas.

3. Dengan menggunakan performance vector, carilah nilai tingkat akurasi,presisi dan recall!

Jawab:

- Menggunakan data training nya saja, tambahkan operator cross validation.

- kemudian klik ganda operator cross validation, tambahkan neural net, nominal to

numerical kedalam training dan apply model, performance, nominal to numerical ke dalam testing. Hubungkan port-portnya seperti gambar dibawah ini :

- Jalankan proses dengan menekan tombol run

Hasil nilai akurasi:

- Tingkat akurasi: 60.00% +/-31.62%(micro average:60.00%)
- Presisi:
 - a. Untuk prediksi TERLAMBAT yaitu 42.86%
 - b. Untuk prediksi TEPAT yaitu 69.23%
- 4. Berdasarkan soal nomor 2 , gantilah operator perceptron menjadi neural net! Amati perubahan yang terjadi.

Jawab:

Mengganti operator perceptron menjadi neural net seperti pada gambar berikut :

Jalankan proses, akan menghasilkan hasil sbb:

Menghasilkan confidence yang lebih rendah disbanding menggunakan perceptron.

- 5. Hasil sama dengan nomor 3
- 6. Gambarlah arsitektur jaringan saraf yg terbentuk

- 7. Berapakah jumlah node masing-masing layer berdasarkan arsitektur JST? Jawab :
 - a. Input layer: 10 node, dan 1 node berbobot 1
 - b. Hidden layer: 8 node hidden dan 1 node berbobot 1
 - c. Output layer: 2node (TERLAMBAT, TEPAT)
- 8. Tulislah nilai-nilai bobot sigmoid masing-masing node pada hidden layer dan output layer.

ImprovedNeuralNet

Hidden 1

Node 1 (Sigmoid)

Jurusan_SMA = IPS: -0.448 Jurusan_SMA = IPA: 0.515 Jurusan_SMA = LAIN: -0.026 Gender = WANITA: 0.439

Gender = WANITA: 0.439 Gender = PRIA: -0.399

Asal_Sekolah = SURAKARTA: 0.268 Asal_Sekolah = LUAR: -0.241 Asisten = TIDAK: -0.661

Asisten = YA: 0.639 Rerata_SKS: 0.940 Bias: -0.033

Annotations

mme

Node 2 (Sigmoid)

Jurusan_SMA = IPS: 0.269 Jurusan_SMA = IPA: 0.178 Jurusan_SMA = LAIN: -0.418 Gender = WANITA: -0.072 Gender = PRIA: 0.065

Asal_Sekolah = SURAKARTA: 0.135 Asal_Sekolah = LUAR: -0.166

Asisten = TIDAK: -0.420 Asisten = YA: 0.379 Rerata SKS: 1.007

Bias: 0.025

Node 3 (Sigmoid)

Jurusan_SMA = IPS: -0.085 Jurusan_SMA = IPA: 0.282 Jurusan_SMA = LAIN: -0.208

Gender = WANITA: 0.195
Gender = PRIA: -0.157

Asal_Sekolah = SURAKARTA: 0.188 Asal Sekolah = LUAR: -0.158

Asisten = TIDAK: -0.492

Asisten = YA: 0.477 Rerata_SKS: 0.863

Bias: -0.060

Node 4 (Sigmoid)

Jurusan_SMA = IPS: -0.486 Jurusan_SMA = IPA: 0.540 Jurusan_SMA = LAIN: -0.004

Gender = WANITA: 0.451 Gender = PRIA: -0.434

Asal_Sekolah = SURAKARTA: 0.251 Asal Sekolah = LUAR: -0.282

Asisten = TIDAK: -0.599

Asisten = YA: 0.644 Rerata_SKS: 1.009

Bias: -0.055

Node 5 (Sigmoid)

Jurusan SMA = IPS: 0.079

Jurusan_SMA = IPA: 0.202

Jurusan_SMA = LAIN: -0.284

Gender = WANITA: 0.085 Gender = PRIA: -0.068

Asal Sekolah = SURAKARTA: 0.150

Asal Sekolah = LUAR: -0.122

Asisten = TIDAK: -0.410

Asisten = YA: 0.448

Rerata_SKS: 0.951

Bias: 0.041

```
Blas: 0.041
```

Node 6 (Sigmoid)

Jurusan_SMA = IPS: -0.173
Jurusan_SMA = IPA: 0.382
Jurusan_SMA = LAIN: -0.133

Gender = WANITA: 0.248
Gender = PRIA: -0.236

Asal_Sekolah = SURAKARTA: 0.201 Asal_Sekolah = LUAR: -0.222

Asisten = TIDAK: -0.587 Asisten = YA: 0.549 Rerata SKS: 0.962

Bias: 0.023

Node 7 (Sigmoid)

Jurusan_SMA = IPS: -0.397 Jurusan_SMA = IPA: 0.486 Jurusan_SMA = LAIN: 0.023 Gender = WANITA: 0.411

Gender = PRIA: -0.430

Asal_Sekolah = SURAKARTA: 0.187 Asal Sekolah = LUAR: -0.217

Asisten = TIDAK: -0.577 Asisten = YA: 0.646 Rerata SKS: 0.878

Bias: -0.036

9. Kesimpulan

Dapat mengetahui output nilai prediksi suata data training dan data testing.s