Notion d'équilibre chimique

Exercice 1 : QCM

- 1. Si on dilue 100 fois une solution acide de pH=5, le pH de la solution obtenue est
 - (a) égal à 7
- (b) inférieur à 7
- supérieur à 7
- 2. Votre réponse à la question précédente est motivée par le fait :
 - (a) que la formule $pH = -log[H_3O^+]$ n'est valable que pour pH<6
 - (b) que l'autoprotolyse de l'eau n'est plus négligeable .
 - (c) qu'en diluant suffisamment on obtient de l'eau pur .
- 3. L'eau est une base au sens de Bronsted
 - (a) vrai
- (b) faux

4.

- 5. L'eau est un acide au sens de Bronsted
 - (a) vrai
- (b) faux
- 6. On considère deux solutions de concentrations égales . L'une est une solution d'un monoacide fort , l'autre d'un diacide fort . La solution la plus acide est :
 - (a) la solution de monoacide
- (b) la solution du diacide

Exercice 2

Compléter le tableau suivant :

$[H_3O^+](mol/l)$	$6,0 \times 10^{-5}$	3.9×10^{-4}	5.4×10^{-8}
pН			
рН	3.9	6.8	11.2
$[H_3O^+](mol/l)$			

Exercice 3

L'ammoniac gazeux , $NH_3(g)$, est synthétisé à partir de diazote gazeux et dihydrogène gazeux .

- 1. Écrire l'équation de la réaction de synthèse.
- 2. Un mélange initial contient 0.10mol de diazote et 0,30mol de dihydrogène . Calculer l'avancement maximal de cette réaction .
- 3. En réalité , l'avancement final vaut 0/040mol la réaction est-elle totale ? Déterminer le taux d'avancement final .
- 4. Préciser la composition du mélange dans l'état final . Pourquoi cet état final est-il qualifié d'état d'équilibre .

Exercice 4

On mélange 100ml d'acide chlorhydrique HCl de pH est égal à 3 et 400ml d'acide chlorhydrique de pH est égal à 4 .

Quelle est la valeur du pH final?

Exercice 5

L'acide lactique , de formule $C_3H_6O_3$ noté HA , est utilisé en solution pour ces propriétés bactéricides .

On dispose d'une solution commerciale S_0 d'acide lactique de pourcentage massique p=85% et de masse volumique $\rho=1,20\times 10^3 g/l$. À partir de S_0 on prépare une solution S d'acide lactique de concentration apportée C et de volume V=1,00l.

Pour cela , on verse un volume $V_0 = 5,0ml$ de solution commerciale S_0 dans environ 200ml d'eau contenue dans une fiole jaugée de 1,00l, puis on ajoute la quantité d'eau nécessaire .

- 1. Quelle est la concentration apportée C en acide lactique dans la solution obtenue?
- 2. Écrire l'équation de la réaction de l'acide lactique avec de l'eau.
- 3. On verse un volume V_1 dans un bécher et on mesure le pH de la solution . on obtient pH=2,57
 - (a) Montrer que le taux d'avancement final ne dépend pas de volume V_1
 - (b) Calculer sa valeur . La réaction est-elle totale?

Exercice 6

On dissout une masse m = 8,0 g de nitrate d'ammonium NH_4NO_3 dans l'eau. Le sel (solide) de nitrate d'ammonium se dissout totalement. On obtient ainsi une solution A de volume V = 1,0 L. Le pH de cette solution est pH = 5,1.

- 1. Écrire l'équation de la dissolution de NH_4NO_3 dans l'eau.
- 2. Écrire l'équation de la réaction acido-basique notée (1) entre les couples NH_4^+/NH^3 et H_3O^+/H_2O .
- 3. En tenant compte de la question 2., dresser le tableau davancement de la réaction acido-basique et calculer le taux d'avancement final.
- 4. On augmente le volume de la solution A d'un facteur 3 en complétant avec de l'eau distillée. On mesure la nouvelle valeur du pH et on trouve pH = 5,3.
 - (a) Quel est le volume final de la solution obtenue?
 - (b) Calculer le nouveau taux d'avancement final.
 - (c) La réaction acido-basique est-elle totale?
 - (d) Quel est l'effet de l'ajout de l'eau sur l'équilibre chimique (1)?

Quotient d'une réaction chimique - Constante d'équilibre

Exercice 1:

On mesure le pH d'une solution aqueuse d'acide éthanoïque CH_3COOH de concentration C et de pH = 3,0.

Le volume de la solution est V = 300 mL.

- 1. Préciser les couples acide/base mis en présence, et écrire l'équation de la réaction entre CH_3COOH et H_2O .
- 2. Écrire l'expression du quotient de la réaction.
- 3. En s'aidant d'un tableau d'avancement, calculer l'avancement à l'équilibre x_{eq} , calculer toutes les concentrations à l'équilibre chimique, ainsi que la valeur de C. Calculer ensuite le taux d'avancement τ de la réaction.
- 4. Écrire l'expression de la conductance G de la solution en fonction de la constante de la cellule k, du volume V de la solution, des conductivités molaires ioniques, $\lambda_{CH_3CO_2^-}$ et $\lambda_{H_3O^+}$ et de l'avancement x_{eq} .
- 5. Calculer la valeur de G.

Données:

Constante d'équilibre de la réaction étudiée : $K=10^{-4.8}$. Constante de la cellule conductimétrique : k = 1,0 cm. Conductivités molaires ioniques : $\lambda_{CH_3CO_2^-}=40,9S.cm^2/mol$; $\lambda_{H_3O^+}=349,8S.cm^2/mol$.

Exercice 2:

Une solution aqueuse de volume V est obtenue en introduisant dans l'eau 0,010mol d'acide ascorbique $C_6H_8O_6$ et 0,010mol d'éthanoate de sodium , $Na^+(aq)+CH_3CO_2^-(aq)$.

La constante d'équilibre associée è l'équation de la réaction entre l'acide ascorbique et l'ion éthanoate est égale à 4,9 à $25^{\circ}C$.

Déterminer la valeur de l'avancement de la réaction dans l'état d'équilibre.

Exercice 3:

Une solution aqueuse de volume V=100ml a été obtenue en introduisant en apportant les quantités $n_1=1,00mmol$ de méthylamine CH_3NH_2 et $n_2=1,50mmol$ de chlorure d'ammonium , NH_4Cl .

Sa conductivité σ à 25°C vaut 210, 5mS/m

- 1. Ecrire l'équation de la réaction entre le méthylamine et l'ion ammonium.
- 2. À l'aide d'un tableau d'avancement, déterminer la relation qui existe entre les concentrations molaires d'ion ammonium et méthylaminium $CH_3NH_3^+$
- 3. exprimer la conductivité σ en fonction de la concentration molaire d'ion méthylaminium dans l'état d'équilibre
- 4. Déterminer les concentrations molaires des espèces chimique qui interviennent dans cette réaction .
- 5. Déterminer la constante d'équilibre.

Données :

$$\lambda_{NH_{4}^{+}}=7,43mS.m^{2}/mol\;;\;\lambda_{CH_{3}NH_{3}^{+}}=5,87mS.m^{2}/mol\;;\;\lambda_{Cl^{-}}=7,63mS.m^{2}/mol\;$$

Exercice 4:

On prépare une solution de nitrate de plomb, en dissolvant totalement une masse m = 30.8 g de $Pb(NO_3)_2$ de façon à obtenir une solution aqueuse de volume V = 300 mL.

- 1. Écrire l'équation de de la dissolution du nitrate de plomb.
- 2. Calculer la concentration des espèces dissoutes.
- 3. On ajoute un volume V = 10,0 mL dacide sulfurique $(2H^+ + SO_4^{2-})$ de concentration $C=1,00.10^{-2}mol/l$.

On observe la précipitation d'un solide, le sulfate de plomb $PbSO_4$.

- (a) Écrire léquation de la réaction de précipitation.
- (b) La constante d'équilibre de la réaction de précipitation vaut $K=6,3.10^7$. Calculer la concentration des espèces dissoutes à l'équilibre chimique. Pour calculer les concentrations de Pb^{2+} et SO_4^{2-} à léquilibre, on pourra faire un tableau d'avancement, en considérant que le réactif en défaut a pratiquement disparu.
- (c) Calculer le pH de la solution à léquilibre chimique.

Données : les masses molaires atomiques : M(N) = 14g/mol ; M(O) = 16g/mol ; M(Pb) = 207g/mol .