# 基於類神經網路模型預測美國公債殖利率曲線 Prediction of U.S. Treasury Yield Curves based on Neural Network Model



報告人 07355003 許沛萱





## 預測美國公債殖利率曲線

#### 利用類神經網路模型

訓練期間:2007~2017

預測期間:2018



目標:美國公債殖利率曲線

資料來源:https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H15

#### 殖利率曲線倒掛 (Yield Curve Inversion)



#### 景氣變化



#### 殖利率倒掛時間與景氣落入衰退相關性

| 殖利率曲線倒掛日<br>(10 年-3 個月)        | 倒掛天數  | 景氣高峰    | 領先衰退<br>(月數) |
|--------------------------------|-------|---------|--------------|
| 1966/09                        | 145 天 | NA      | 無衰退          |
| 1968/12                        | 55 天  | 1969/12 | 11 個月        |
| 1973/06                        | 385 天 | 1973/11 | 5 個月         |
| 1978/11                        | 520 天 | 1980/01 | 14 個月        |
| 1980/10                        | 317天  | 1981/07 | 8 個月         |
| 1989/05                        | 95 天  | 1990/07 | 13 個月        |
| 2000/07                        | 221天  | 2001/03 | 7個月          |
| 2006/07                        | 316天  | 2007/12 | 16 個月        |
| 平均                             |       |         | 11 個月        |
| 平均(排除極端值)                      |       |         | 11 個月        |
| 資料來源:Bloomberg,國泰投顧整理,2019/4/2 |       |         |              |

圖表來源:國泰投顧







解釋變數1:美國每季GDP

資料來源: https://fred.stlouisfed.org/series/GDP

$$GDP = C + I + G + X - M$$

國內生產毛額 = 民間消費 + 投資 + 政府消費 + 出口 - 進口





解釋變數2:美國每月工業生產指數

資料來源: https://fred.stlouisfed.org/series/INDPRO

因指利用GDP單一指標判斷景氣並不精準, 因此加入工業生產指數





解釋變數3:10年減3個月的公債利差 資料來源: https://fred.stlouisfed.org/series/T10Y3M

短天期公債:受聯準會升降息影響

長天期公債:反映市場對經濟動能及通膨預期





#### 模型結構

#### output layer



#### 激活函數 - ReLU

$$ReLU(x) = \max(0, x)$$



可避免梯度消失,但不能避免梯度爆炸問題

#### 模型訓練結果







## 模型修正(1)

國內生產毛額 (GDP)



GDP成長率

工業生產指數 (INDPRO)



工業生產指數成長率

### 修正模型(1) 訓練結果





#### 最終模型

Loss = 0.0162469

MAE = 0.0773363

(+17.55%)

(+3.74%)

#### 修正模型(2) 訓練結果

#### 將GDP成長率及工業生產指數成長率加入初始模型





(-52.42%)

(-26.6%)





#### 結論

- 1 特徵資料改為成長率並無改善模型,反而得到反效果
- 2 特徵資料同時加入原資料及其成長率能有效改善模型
- 未來可加入其他相關資料(如:遠期利率)使模型更精準
- 4 模型可改成序列相關模型進而改善預測精準度

## THE END









