Certified AI Practitioner Week 01 Call 01 - Intro to AI/ML

Learning Objectives

- Understand differences between AI, ML, DL, and GenAI
- Identify types of ML (supervised vs unsupervised)
- Recognize underfitting and overfitting
- Understand the ML lifecycle
- Build and evaluate a simple ML model

Al vs ML vs DL vs GenAl

Example: Email Management System

Concept	Definition	Real-World Example
Al	Any system that mimics human intelligence	Filters spam emails and flags suspicious messages
ML	A subset of AI that learns from data	Learns to classify emails as spam or not based on past examples
DL	A subset of ML that uses neural networks	Uses a neural network to analyze email content and detect phishing
GenAl	A subset of DL that generates content based on input	Automatically drafts email replies in your writing style

Supervised vs. Unsupervised Learning

Supervised Learning

- We train the model using **labeled data** (features + known outcomes).
- The goal is to **predict a target** (like a category or number).
- Example: Predict if a loan will be approved based on income and credit score.

Unsupervised Learning

- We train the model using **unlabeled data** (only features, no known outcome).
- The goal is to **find patterns or structure** (like groups or anomalies).
- Example: Group customers based on transaction behavior without knowing what groups exist in advance.

Quick Tip:

If you're **predicting a value**, it's supervised.

If you're just **exploring the data**, it's unsupervised.

```
In [3]: import matplotlib.pyplot as plt
        from sklearn.datasets import make classification, make blobs
        from sklearn.cluster import KMeans
        from sklearn.linear model import LogisticRegression
        from sklearn.preprocessing import StandardScaler
        import numpy as np
        # Generate supervised data (Loan Approval)
        X_class, y_class = make_classification(n_samples=200, n_features=2, n_informative=2, n_redundant=0,
                                                n clusters per class=1, n classes=2, random state=42)
        scaler class = StandardScaler()
        X_class_scaled = scaler_class.fit_transform(X_class)
        # Train Logistic regression model
        clf = LogisticRegression()
        clf.fit(X_class_scaled, y_class)
        # Generate unsupervised data (Transaction Patterns)
        X_unsup, _ = make_blobs(n_samples=200, centers=3, n_features=2, random_state=42)
        X_{unsup}[:, 0] = np.abs(X_{unsup}[:, 0] * 5 + 10) # transaction_frequency
        X_{unsup}[:, 1] = np.abs(X_{unsup}[:, 1] * 50 + 100) # avg_transaction_amount
```

```
scaler unsup = StandardScaler()
X_unsup_scaled = scaler_unsup.fit_transform(X_unsup)
# Cluster using KMeans
kmeans = KMeans(n clusters=3, random state=42)
y_cluster = kmeans.fit_predict(X_unsup_scaled)
# Plottina
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
# Supervised: Loan Approval
axes[0].scatter(X_class_scaled[:, 0], X_class_scaled[:, 1], c=y_class, cmap='coolwarm', edgecolor='k')
axes[0].set_title("Supervised: Loan Approval (Classification)")
axes[0].set_xlabel("Income (scaled)")
axes[0].set_ylabel("Credit Score (scaled)")
# Unsupervised: Transaction Clustering
axes[1].scatter(X_unsup_scaled[:, 0], X_unsup_scaled[:, 1], c=y_cluster, cmap='viridis', edgecolor='k')
axes[1].set_title("Unsupervised: Transaction Pattern Clustering")
axes[1].set_xlabel("Transaction Frequency (scaled)")
axes[1].set_ylabel("Avg. Transaction Amount (scaled)")
plt.tight_layout()
plt.show()
```


Regression vs Classification (Both are Supervised Learning)

Within supervised learning, there are two main types of problems:

Classification

- Goal: Predict a category or label
- Output: Discrete value (e.g., "spam" or "not spam")
- Examples:
 - Is this email spam?
 - Will the passenger survive?
 - What digit is in the image?

Regression

- Goal: Predict a number or quantity
- Output: **Continuous** value (e.g., 152.3)
- Examples:
 - What will the temperature be tomorrow?
 - How much will the house sell for?
 - How many items will be sold next week?

Quick Tip to Tell the Difference

Ask yourself:

"Am I predicting a **number** or a **label**?"

- Number → **Regression**
- Label → Classification

Both are supervised, because we train the model on input/output pairs.

```
# --- Regression: Credit Amount ---
X_reg, y_reg = make_regression(
    n_samples=200, n_features=2, noise=10, random state=42
y_reg = np.clip(y_reg, 0, None) # Clip to simulate non-negative credit amounts
scaler reg = StandardScaler()
X_reg_scaled = scaler_reg.fit_transform(X_reg)
reg = LinearRegression()
reg.fit(X_reg_scaled, y_reg)
y_pred_reg = reg.predict(X_reg_scaled)
# --- Plotting ---
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
# Classification plot
axes[0].scatter(
    X_class_scaled[:, 0], X_class_scaled[:, 1],
    c=y_class, cmap='bwr', edgecolor='k'
axes[0].set_title("Classification: Credit Approved (Yes/No)")
axes[0].set_xlabel("Income (scaled)")
axes[0].set_ylabel("Credit Score (scaled)")
# Regression plot
scatter = axes[1].scatter(
    X_reg_scaled[:, 0], X_reg_scaled[:, 1],
    c=y_reg, cmap='YlGnBu', edgecolor='k'
axes[1].set_title("Regression: Credit Amount Prediction")
axes[1].set xlabel("Income (scaled)")
axes[1].set_ylabel("Credit Score (scaled)")
# Add color bar to show prediction scale
cbar = plt.colorbar(scatter, ax=axes[1])
cbar.set label("Predicted Credit Amount")
plt.tight_layout()
plt.show()
```


Underfitting vs Overfitting

Underfitting (Too Simple)

Like trying to guess someone's job based only on their shoe size.

- The model is too basic and can't capture the underlying pattern.
- It performs poorly on both training and test data.

Overfitting (Too Complex)

Like memorizing every detail of your practice test and failing the real one because it's slightly different.

- The model learns the training data too well, including noise.
- It performs well on training data but poorly on new, unseen data.

Balanced Fit (Just Right)

Like learning the key patterns to recognize a cat in different pictures.

- The model captures the important structure of the data.
- It generalizes well performing consistently on both training and test data.

```
In [5]: import matplotlib.pyplot as plt
        from sklearn.datasets import make classification
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.metrics import accuracy_score
        import numpy as np
        # Create synthetic classification dataset
        X, y = make classification(
            n_samples=300, n_features=2, n_redundant=0, n_informative=2,
            n_clusters_per_class=1, class_sep=1.0, random_state=42
        # Define models with increasing complexity
        models = {
            "Underfitting (Too Simple)": DecisionTreeClassifier(max depth=1, random state=42),
            "Balanced Fit (Just Right)": DecisionTreeClassifier(max depth=3, random state=42),
            "Overfitting (Too Complex)": DecisionTreeClassifier(max depth=None, random state=42)
        # Set up plots
        fig, axes = plt.subplots(1, 3, figsize=(18, 5))
        # Create mesh grid for decision boundary visualization
        x_{min}, x_{max} = X[:, 0].min() - 1, <math>X[:, 0].max() + 1
        y min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
        xx, yy = np.meshgrid(np.linspace(x_min, x_max, 300),
                              np.linspace(y_min, y_max, 300))
        # Plot decision surfaces and scatter plots
        for ax, (title, model) in zip(axes, models.items()):
            model.fit(X, y)
            y pred = model.predict(X)
```

```
acc = accuracy_score(y, y_pred)

# Decision boundary
Z = model.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
ax.contourf(xx, yy, Z, alpha=0.3, cmap='coolwarm')

# Data points
ax.scatter(X[:, 0], X[:, 1], c=y, cmap='coolwarm', edgecolor='k')
ax.set_title(f"{title}\nAccuracy: {acc:.2f}")
ax.set_xlabel("Income")
ax.set_ylabel("Credit Score")

plt.tight_layout()
plt.show()
```


Understanding Class Imbalance

In a binary classification problem, class imbalance occurs when one class has significantly more samples than the other.

This can cause problems:

- A model can achieve **high accuracy** by always predicting the majority class.
- But it may perform **very poorly** on the minority class which is often the more important one (e.g., fraud detection, disease diagnosis).

Example

Suppose we are trying to predict whether a transaction is **fraudulent**:

Class	Count
Not Fraud (0)	950
Fraud (1)	50

A model that always predicts "Not Fraud" would be 95% accurate but completely useless because it detects fraud 0%!

```
In [7]: import matplotlib.pyplot as plt
        from sklearn.datasets import make_classification
        # Generate balanced dataset (50/50)
        X_balanced, y_balanced = make_classification(
            n_samples=500, n_features=2, n_informative=2, n_redundant=0,
            weights=[0.5, 0.5], random_state=42
        # Generate imbalanced dataset (95/5)
        X_imbalanced, y_imbalanced = make_classification(
            n_samples=500, n_features=2, n_informative=2, n_redundant=0,
            weights=[0.95, 0.05], random_state=42
        # Plotting
        fig, axes = plt.subplots(1, 2, figsize=(12, 5))
        # Balanced scatter
        axes[0].scatter(X_balanced[:, 0], X_balanced[:, 1], c=y_balanced, cmap='coolwarm', edgecolor='k')
        axes[0].set_title("Balanced Classes (50/50)")
        axes[0].set_xlabel("Feature 1")
        axes[0].set_ylabel("Feature 2")
        # Imbalanced scatter
        axes[1].scatter(X_imbalanced[:, 0], X_imbalanced[:, 1], c=y_imbalanced, cmap='coolwarm', edgecolor='k')
        axes[1].set_title("Imbalanced Classes (95/5)")
        axes[1].set_xlabel("Feature 1")
```

```
axes[1].set_ylabel("Feature 2")

plt.tight_layout()
plt.show()
```


Machine Learning Lifecycle

Prepare

- Load the dataset (e.g., from sklearn.datasets or a CSV)
- Explore and clean the data
- Split into features (X) and labels (y)
- Split into training and test sets using train_test_split
- (Optional) Normalize or scale the features using tools like StandardScaler

```
In [10]: # Step 1: Load necessary Libraries
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    import pandas as pd

# Step 2: Load dataset
    iris = load_iris()
    X = iris.data # Features
    y = iris.target # LabeLs

# Optional: Convert to DataFrame for inspection
```

```
df = pd.DataFrame(X, columns=iris.feature_names)
df['target'] = y
display(df.head())

# Step 3: Train/test split (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Step 4: Feature scaling (optional but recommended for many models)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# You now have:
# - X_train_scaled, y_train → for training
# - X_test_scaled, y_test → for evaluation
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

```
In [11]:
    import matplotlib.pyplot as plt
    from sklearn.datasets import load_iris
    import pandas as pd

# Load and prepare the dataset
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names)

# Simple scatter plot of petal features
plt.figure(figsize=(8, 6))
for species in df['species'].unique():
    subset = df[df['species'] == species]
    plt.scatter(subset['petal length (cm)'], subset['petal width (cm)'], label=species)
```

```
plt.title("Petal Length vs Petal Width by Species")
plt.xlabel("Petal Length (cm)")
plt.ylabel("Petal Width (cm)")
plt.legend()
plt.grid(True)
plt.show()
```

Petal Length vs Petal Width by Species

Train

plt.show()

• Choose a model (e.g., DecisionTreeClassifier , LogisticRegression)

filled=True, rounded=True, max_depth=2)

plt.title("Decision Tree (Trained on Iris Data)")

• Fit the model on the training data

Decision Tree (Trained on Iris Data)

Predict + Evaluate

- Use .predict() to generate predictions on new or test data
- Use .score() or metrics like accuracy, precision, recall to evaluate

```
In [14]: from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, ConfusionMatrixDisplay

# Step 1: Predict on the test set
X_test_scaled = scaler.transform(X_test) # Scale test data just like training
```

```
y_pred = model.predict(X_test_scaled)
# Step 2: Accuracy score
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
# Step 3: Classification report
print("\nClassification Report:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))
# Step 4: Confusion matrices (raw and normalized)
cm_raw = confusion_matrix(y_test, y_pred)
cm_norm = confusion_matrix(y_test, y_pred, normalize='true')
# Step 5: Plot both side-by-side
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
ConfusionMatrixDisplay(confusion_matrix=cm_raw, display_labels=iris.target_names).plot(
    ax=axes[0], cmap='Blues', values_format='d'
axes[0].set_title("Confusion Matrix (Raw Counts)")
# Normalized
ConfusionMatrixDisplay(confusion_matrix=cm_norm, display_labels=iris.target_names).plot(
    ax=axes[1], cmap='Purples', values_format='.2f'
axes[1].set_title("Confusion Matrix (Normalized by Row)")
plt.tight_layout()
plt.show()
```

Accuracy: 1.00

Classification Report:

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

What is Feature Importance?

Feature importance tells us which input features had the most influence on a model's predictions.

- In **tree-based models** (like Decision Trees or Random Forests), it's calculated based on how often and how effectively a feature is used to split the data.
- A higher score means the feature played a bigger role in decision-making.

Why it matters:

- Helps you **interpret the model** and understand what it's learning.
- Can guide **feature selection** for simplifying or improving models.
- Useful for **business insight** reveals what factors drive predictions (e.g., income vs. credit score).

What Happens When We Remove the Most Important Feature?

```
In [22]: from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score, classification_report
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    import numpy as np

# Step 1: Identify most important feature from original model
    most_important_index = np.argmax(model.feature_importances_)
```

```
remaining indices = [i for i in range(X.shape[1]) if i != most important index]
# Step 2: Create reduced feature set
X reduced = X[:, remaining indices]
X_train_red, X_test_red, y_train_red, y_test_red = train_test_split(X_reduced, y, random_state=42, stratify=y)
# Step 3: Scale features
scaler red = StandardScaler()
X train red scaled = scaler_red.fit_transform(X_train_red)
X_test_red_scaled = scaler_red.transform(X_test_red)
# Step 4: Retrain the decision tree
tree model reduced = DecisionTreeClassifier(random state=42)
tree_model_reduced.fit(X_train_red_scaled, y_train_red)
# Step 5: Predict and evaluate
y_pred_red = tree_model_reduced.predict(X_test_red_scaled)
# Evaluation
print("Classification Report (Most Important Feature Removed):\n")
print(classification_report(y_test_red, y_pred_red, target_names=iris.target_names))
# Step 6: Confusion matrices (raw and normalized)
cm_raw_red = confusion_matrix(y_test_red, y_pred_red)
cm_norm_red = confusion_matrix(y_test_red, y_pred_red, normalize='true')
# Step 7: Plot both side-by-side
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
# Raw
ConfusionMatrixDisplay(confusion matrix=cm raw red, display labels=iris.target names).plot(
    ax=axes[0], cmap='Blues', values_format='d'
axes[0].set_title("Confusion Matrix (Raw Counts)")
# Normalized
ConfusionMatrixDisplay(confusion_matrix=cm_norm_red, display_labels=iris.target_names).plot(
    ax=axes[1], cmap='Purples', values_format='.2f'
axes[1].set title("Confusion Matrix (Normalized by Row)")
```

```
plt.tight_layout()
plt.show()
```

Classification Report (Most Important Feature Removed):

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	12
versicolor	0.87	1.00	0.93	13
virginica	1.00	0.85	0.92	13
accuracy			0.95	38
macro avg	0.96	0.95	0.95	38
weighted avg	0.95	0.95	0.95	38

Wrap-Up & Takeaways

• What machine learning actually means

- How different types of models learn
- Why some models fail by doing too little or too much
- How to train a very simple model end-to-end