Homework 1 - Question #2

Part 1

```
Draw the datapoints and regression curve.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
points = {'x values': [0, 2, 2, 5],
          'y_values': [2, 10, 12, 20],
          'estimation': [3, 11, 11, 23]}
points_dataset = pd.DataFrame(data=points)
points dataset
   x values y values
                       estimation
0
          0
                    2
1
          2
                    10
                                11
          2
2
                   12
                                11
3
          5
                   20
                                23
reg points = \{'reg x': [0, 2, 5],
               'reg_y': [3, 11, 23]}
reg dataset = pd.DataFrame(data=reg points)
reg dataset
   reg_x reg_y
0
       0
1
       2
             11
       5
             23
#SOLUTION APPROACH 1: Regression Line by Enterin Points
x = points_dataset.x_values
y = points dataset.y values
regg x = reg dataset.reg x
regg_y = reg_dataset.reg_y
plt.scatter(x,y)
plt.plot(regg_x, regg_y, color = 'red')
plt.grid()
plt.legend(["Estimated Values", "Datapoints"])
plt.show()
```


#SOLUTION APPROACH 2: Regression Line by Formula
points = np.array([(0,3), (2,11), (5,23)])
get x and y vectors

```
x = points[:, 0]
y = points[:,1]
# calculate polynomial
z = np.polyfit(x, y, 1)
print(z)
a = z[0]
b = z[1]
y_pred = a*x + b
plt.plot(x, y_pred, color = 'red')
x = points dataset.x values
y = points_dataset.y_values
plt.scatter(x,y)
plt.grid()
plt.legend(["Estimated Values", "Datapoints"])
plt.show()
[4. 3.]
```


Part 2

What is the MSE? Calculate error for each instance.

- Instance $1 ---> (2-3)^2 = 1$
- Instance $2 ---> (10 11)^2 = 1$
- Instance $3 ---> (12 11)^2 = 1$
- Instance $4 ---> (20 23)^2 = 9$

MSE (Mean Squared Error) = (1+1+1+9)/4=3