

Instrument Science Report WFC3 2003-02

WFC3 UVIS Filters: Measured Throughput and Comparison to Specifications

O. Lupie and R. Boucarut (GSFC) February, 2003

Abstract

We present the filter throughput at the center of each WFC3 UVIS filter as measured by the Jet Propulsion Laboratory team of J. Trauger, N. Raouf, B. Gordon and others. The filter performance is assessed relative to the WFC3 CEI specifications and to the requirements defined in the JPL requirements document (J. Trauger, 2000). Note: The intention of this study is to document the comparison between spec and as-built properties for future reference. Ultimately, the science goals determine the applicability of a specific filter. The WFC3 Science Oversight Committee has reviewed all the measured data, selected the flight candidates, and approved the filter deliveries. Spatial trends will be addressed in a future report.

1. Introduction

We present the filter throughput at the center of each WFC3 UVIS filter as measured by the Jet Propulsion Laboratory team of J. Trauger, N. Raouf, B. Gordon and several descriptive parameters calculated at the STScI. The intention of this study is to document the comparison between spec and asbuilt properties for future reference. Ultimately, the science goals determine the applicability of a specific filter. The WFC3 Science Oversight Committee has reviewed all the measured data, selected the flight candidates, and approved the filter deliveries.

The **structure of this ISR** is as follows: Section 2 presents the throughput data and derived parameters in the form of annotated plots and tables. Definitions of all relevant filter characterization parameters are provided. Section 3 compares the throughput measurements to the specifications. Section 4 describes the requirements and JPL measurements of wavefront, wedge, and focus shift. The document text closes with acknowledgements and references.

The Wide Field Camera 3 UVIS filter development program is complete, the flight filters are bonded into the filter wheel mechanisms and are awaiting ambient and thermal vac ground based calibration activities. The program has spanned 3 years starting with the scientific selection of wavelength ranges of interest followed by the filter definition and requirements phase, the vendor interface phase, receipt and measurement of the filter properties and the final selection of the flight candidates. The scientific

selection process and interim results are documented in several ISRs (WFC3 ISRs 2000-07,08,09 and ISR 2002-10). The team responsible for the entire filter development program included the following:

- WFC3 Science Oversight Committee → recommended the selection of filters and chose the final flight candidates,
- JPL scientists → designed, purchased, and characterized the UVIS filters,
- Barr Associates, Inc and Omega Optical → manufactured the filters,
- Ball Aerospace → provided optical prescriptions and mounted the filters in the housings, and
- STScI/GSFC/Ball Aerospace → provided scientific studies and technical support.

This ISR documents the WFC3 UVIS filter throughput measurements, specifically those taken at the center of the filter. The filter characterization measurements are represented in the SPIE paper, "Characterization of UV-visible Filters for the WFC3 of the Hubble Space Telescope" (Raouf and Trauger, SPIE, Waikoloa August 2002).

2. Filter Throughput Data

The CEI requires 48 selectable spectral defining elements in the WFC3 UVIS channel as listed in the CEI Table 4-6 (see Table 1 in this ISR columns 3 and 4). There are indeed 48 selectable spectral defining elements. Five of those elements are "QUAD" filters composed of 4 quadrants each having a unique filter. Also, a UV grism is included as one of the 48 spectral elements. Grism characteristics as well as Out-of-band-Blocking performance characteristics of the filter will be documented in future ISRs.

Testing procedures, scientific method, and error budget analyses are well established, well documented and consistent with the needs of the WFC3 program. The JPL Optical Filter Acceptance Test Matrix is outlined in Appendix B of the JPL Requirements Document (Trauger, 2001).

2.1 Annotations

Panels 1 through 11 display the measured throughput at the center of each UVIS filter as a function of wavelength. The requirements (referred to as 'spec') and several measured (as-built) and derived parameters are also labeled. Very wide and broad band data were provided by JPL in 10-Angstrom increments and medium and narrow band data in increments of 1 Angstrom.

The extra-wide, wide and medium band filter throughputs were measured at 25 locations on the filter and narrow band data were measured at 9 locations. Small spatial dependent trends in the throughput seen in a few filters will be discussed in a future ISR.

2. 1.1 Requirements Specifications: λ_{+50} , λ_{-50} , λ_{-90} , λ_{+90}

Spectral Performance

The spectral performance requirements are given in terms of the wavelengths at which the transmittance on either side of the passband equals a certain percentage of the peak and remains less than that value for all shortward and longward wavelengths. In each panel, a dotted rectangle outlines the specs for the FWHM defined at the wavelengths where the transmittance is 50% (λ_{-50} and λ_{+50}) or 90% (λ_{-90} and λ_{+90}) for wide/medium and narrow bands, respectively.

A subset of narrow bands were better described using the 50% points instead of the 90% points in the original specifications to the vendors. The 50% spec value is displayed as a dotted box whose width is the FWHM at 50% and height corresponds to the peak throughput of the filter.

The required peak throughput specification is shown using symbol (*--*). The peak throughput is defined as the absolute average transmittance between λ_{-90} and λ_{+90} .

Width

The width, drawn as a dotted line or dotted rectangle (FWHM) is defined as $[\lambda_{-50} - \lambda_{+50}]$. For narrow bands, the $[\lambda_{-90} - \lambda_{+90}]$ width is a more descriptive and stringent requirement for a rectangular filter. The rectangle or line are centered on the central wavelength.

Central Wavelength

The central wavelength as specified in the JPL requirements is defined as the geometric mean $\sqrt[\lambda_{-50}]$ This mean is related to the average wavelength defined as the "geometric center of mass" of the filter.

2.1.2 As-Built Elements

Central Wavelength

In addition to the measured transmittance, several derived parameters are also included in the panels. Three descriptive "central wavelengths" are identified using vertical dash-dot-dash line: *pivot, average, and mean.* Together, these three centralized wavelengths provide information about the filter's symmetry in wavelength space as well as frequency (or energy) space. The *mean wavelength* (originally described in Schneider, Gunn and Hoessel Ap.J 264,337 and used to describe WFPC1 and WFCP2 filters) by indicates the "center of mass" in terms of frequency, i.e., it represents the wavelength halfway between the "frequency" mean of the filter and the wavelength mean (WFPC2 Instrument Handbook – Appendix B, System Throughput Section). The *average wavelength* is the center of mass with respect to the area in the wavelength domain and is most closely related to the geometric mean wavelength specified in the JPL requirements document. The *pivot wavelength* is the center of mass weighted by the inverse of the wavelength.

Widths

Two widths are denoted by horizontal dash-dot-dash lines with end brackets: 1) the full width half maximum of an equivalent Gaussian and 2) the rectangular width of the passband. These are labeled in the figures. The rectangular width is more suited for comparison with the FWHM specified in the requirements documents.

Spectral Performance Parameters

Knowledge of the technique used to manufacture a filter is always infused in the statement of the specifications to the vendors. Modeling of filter coatings and substrate thickness are used to realistically set the performance requirements. This is why the requirements specifications refer to different parameters depending on the type of filter being manufactured. As an example, for some of the wide band filters, one wavelength edge may be defined by the natural blocking of the color glass substrate used for that filter while the other edge may be sculpted by the type and thickness of the coating on the substrate. Hence the specs indicated the color glass label (e.g., UG11) rather than giving a shape for the throughput in wavelength. For most narrow bands, filter peak should be as flat and 'square' as possible. Therefore, the 90% wavelengths are more descriptive to the vendor than providing the 50% FWHM points.

The measured wavelengths at which the transmittances are 0.01 absolute, 50% of peak and 90% of peak are denoted on the panels by a large asterisk symbol. (*). The wide and medium bands are best characterized by the elements (λ_{-50} , λ_{+50}) and (λ_{-01} , λ_{+01}). Narrow bands are described using (λ_{-01} , λ_{+01}) and either the 90% or 50% points. The values were calculated used a simple linear interpolation between the two closest points to the specified transmittance.

2.2 Table Descriptions

2.2.1 Requirements Specifications

Table 1 lists the filter performance requirements as stated in the Version D JPL Filter Specifications Document (J. Trauger, 2001). The central wavelength and FWHM from the JPL spec are reproduced in the "WFC3 Contract End Item Specifications" (WFC3 STE-66 Baselined May 31, 2002). Minor differences are highlighted in blue and purple shading. These shaded cells indicate estimated performance requirements only and were not part of the original specifications description. The long pass filters are best described by the wavelength of the 50% declineand the peak transmittance rather than the central wavelength or width. The column definitions are as follows:

Column 1: F number – number designation as stated in requirements document

Column 2: Filter Name

Column 3: Central Wavelength defined as the geometric mean wavelength $\sqrt[4]{\lambda_{-50}}$ * λ_{+50}].

Column 4: FWHM defined as $[\lambda_{-50} - \lambda_{+50}]$ or $[\lambda_{-90} - \lambda_{+90}]$. Non-blank cells for the 50% or 90% wavelengths indicate which type of FWHM is specified.

Columns 5 through 10: the wavelengths at which the transmittance is the specified percentage of the peak $(\lambda_{-01} \lambda_{-50} \lambda_{-90} \lambda_{+90} \lambda_{+50} \lambda_{+90})$. A blank cells indicates that the parameter was not used to assess performance.

Column 11: Out-of-band blocking—Below a certain wavelength the transmittance shall not exceed the specified value.

Column 12: Wavelength pertaining to the out-of-band blocking requirement.

Column 13: The minimum acceptable transmittance between the $[\lambda_{-90}, \lambda_{+90}]$ points.

Column 14: Filter Description.

2.2.2 Measurements

Table 2 contains calculated parameters for each filter. Wavelengths are given in Angstroms.

Columns 1 and 2: Filter name and sample number for the flight filter.

Column 3: Pivot Wavelength – center of mass of the filter weighted by the inverse wavelength according to the following: $\sqrt{[(\int T(\lambda)\lambda d\lambda)/\int (T(\lambda)d\lambda/\lambda)]}$ where T is the transmittance.

Column 4: Bandwidth: RMS bandwidth.

Column 5: Equivalent Gaussian FWHM (note - most filters are not Gaussian in shape).

Column 6: Peak λ - wavelength of the peak transmittance.

Column 7: Peak Transmittance.

Column 8: Average Wavelength – straightforward "center of mass" of the filter according to the following: $\int T(\lambda)\lambda d\lambda / \int T(\lambda)d\lambda$.

Column 9: Rectangular Width – area divided by the peak: $\int [T(\lambda)d\lambda / max(T(\lambda))]$

Column 10: Mean (or *bar*) Wavelength – wavelength of the center of mass in frequency space according to the following: $\exp[(\int T(\lambda)\ln(\lambda)d\lambda/\lambda) / (\int T(\lambda)d\lambda/\lambda)]$.

2.2.3 Comparison: Spec to As-Built

Table 3 provides a comparison of the spec to the as-built performance characteristics of the filters. Note that the specifications in many cases were designed to push the limit of manufacturing capability, i.e., the specs were to be interpreted by the manufacturer as guidelines for the ultimate performance goals. *In these cases, the mutual understanding of best effort was shared by scientists and vendors.* The tolerances on the $[\lambda_{-90}, \lambda_{+90}]$ or the $[\lambda_{-50}, \lambda_{+50}]$ wavelengths are stated as ± 1 Angstrom for the narrow bands and ± 5 Angstroms for the wide band filters. The transmittances were measured in the lab in 10 Angstrom increments for the broad band and in 1 Angstrom increments for the narrow.

Column 1: Filter Name and ID

- Columns 2 though 7: the wavelengths at which the measured transmittance is the specified percentage of the peak $(\lambda_{-01} \lambda_{-50} \lambda_{-90} \lambda_{+90} \lambda_{+50} \lambda_{+90})$. Blank cells indicate that the parameter was not used to assess performance.
- Column 8: Central Wavelength as calculated in the JPL specs: $\sqrt{[\lambda_{-50} * \lambda_{+50}]}$ or $\sqrt{[\lambda_{-90} * \lambda_{+90}]}$. This wavelength is best compared to the "Average Wavelength" of Table 2.
- Column 9: FWHM defined as $[\lambda_{-50} \lambda_{+50}]$ or $[\lambda_{-90} \lambda_{+90}]$
- Column 10: Transmittance at 50% or 90% of peak.
- Columns 11 through 16: The difference between the specified performance and the measured values at $(\lambda_{-01} \lambda_{-50} \lambda_{-90} \lambda_{+90} \lambda_{+50} \lambda_{+90})$ where applicable.
- Column 17: The difference between the spec and as-built central wavelength. The central wavelength was calculated using the formula in the specifications (and most nearly approximates the average wavelength given in Table 2): $\sqrt{[\lambda_{-50} * \lambda_{+50}]}$ or $\sqrt{[\lambda_{-90} * \lambda_{+90}]}$ depending on the original specifications.
- Column 18: The difference between the spec and as-built width.
- Columns 19 and 20: Pass criteria and comments based solely on deduced CEI tolerances. Please see section 4.0 of this ISR for further explanations.

3. As-Built Throughput Conformance

The Contract End Item Specifications for the UVIS Filters are given in sections 4.4.5 of STE-66, version May 31, 2002. The requirement in Section 4.4.5.1 CEI: Number of Spectral Elements states that the channel should include 48 selectable spectral defining elements as listed in the CEI-Table 4-6 (see table 1 in this ISR columns 3 and 4) which includes a central wavelength and width. No tolerances on the values of the central wavelength and the width are specified in the CEI. The JPL Requirements are much more detailed and tolerances are stringent. However, all parties share the understanding that the vendor will perform a best effort at the manufacture of the filter with the stated tolerances. Ultimately, the Science Oversight Committee has determined whether a filter fits the particular science need. As a compromise for the purposes of an overall performance verification, a tolerance has been adopted to identify those filters whose performance spec satisfy the needs of the science community but do not conform completely to the performance specifications.

Wide Band

Taking into account the measurement increment of 10 Angstroms, the JPL performance spec of +/- 5 Angstroms, an assumed measurement error and an adjustment factor to take into account the "best effort", the tolerances on the FWHM and central wavelengths as defined by the JPL spec document will be assigned as +/- 12 Angstroms. The central wavelength as defined as $\sqrt{[\lambda_{-50} * \lambda_{+50}]}$ or $\sqrt{[\lambda_{-90} * \lambda_{+90}]}$ will be assigned as tolerance of +/- 7 Angstroms The final two columns in Table 3 indicate the filters that "passed" this criteria and pass/fail comments. The UV filters are unique, very difficult to manufacture, and were understood to be best-effort candidates. The long pass filters with larger tolerances on the cut-on or cut-off wavelengths also pass the criteria. Note that filters not satisfying the "mathematical" representation of the tolerances still satisfied the science requirements.

Narrow Band

The measurement increment is 1 Angstrom, the JPL performance spec is +/- 1 Angstrom, and adjusting for the "best effort" criteria the tolerances are +/- 3 Angstroms on the central wavelength and +/-5 Angstroms on the FWHM. The final two columns in Table 3 indicate the filters that "passed" the "CEI" criteria along with comments. Note that filters not satisfying the "mathematical" representation of the tolerances still satisfied the science requirements.

4. Types of Elements, Image Displacement and Transmitted Wavefront

The Contract End Item Specifications for the UVIS Filter elements given in sections 4.4.5 of STE-66, also include the image quality, parfocality condition, wedge, types of elements and their location in the optical train.

4.1 Section 4.4.5.2 CEI: Types of Spectral Elements

The CEI states that provision must be made to accommodate filters, polarizers, grisms, etc and the optical design must place the filters in the un-aberrated beam. The spectral element suite includes filters and a grism and these are mounted in the Selectable Optical Filter Assembly (SOFA) located in the unaberrated beam (optical prescriptions provided by Ball Aerospace).

4.2 Section 4.4.5.4 CEI: Performance of Spectral Elements - Image Quality, Parfocality, Wedge

Additional performance requirements state that a mounted filter must not displace the image by more than 50% of a pixel size or degrade image quality by more than 0.02 waves at 633 nm of transmitted wavefront. This requirement guarantees positional and performance consistency between measurements obtained with different filters.

The JPL Requirements details the focus shift, wedge, and transmitted wave front. The focus shift of each filter must equal the focus shift of a 5.500mm thick plano/plano fused silica substrate at wavelengths 6330 Angstroms (refractive index 1.457) plus the shift of two fused silica CCD windows (refractive indices 8.382 and 2.540 respectively). The focus shift equation insures the parfocality of the filters. The allowable wedge is specified as 0.0006 inches wedge across a 2.256-inch aperture (i.e., 2 fringes at 6328 Angstroms).

The results of the JPL and vendor measurements of the focus shift, transmitted wavefront, and wedge are given in Tables 2, 3, and 4 respectively in Raouf and Trauger, 2002. The information in these tables are reproduced here for ease of reference.

4.2.2 Transmitted Wavefront Measurements

Table 4 contains the wedge measurements and measured transmitted wavefront as measured by Trauger and Raouf. Each individual substrate wedge was measured prior to the filter manufacturing process. The wavefront accuracy for laminated filters refer to the complete filter and are specified as ½ wave peak to valley over the entire clear aperture of the filter and 1/15 wave peak-to-valley over a 10 mm diameter circle. For single substrate filters, the wavefront accuracy is specified as ¼ wave peak-to-valley over the clear aperture and 1/30 wave in the 10 mm diameter circle. The accuracy is defined as a fraction of a wave at 6330 Angstroms.

Columns 1 and 2: Filter Name and ID.

Column 3: Transmitted Wavefront peak-to-valley over the full clear aperture.

Column 4: Transmitted Wavefront rms over 10mm aperture.

Column 5: Substrate Wedge in inches.

4.2.3 Focus Shift Measurements

Table 5 lists the specification, measured focus shift, tolerance and delta. For those filters measured at JPL, only 4 filters exceed the tolerance and these too are acceptable with respect to the science requirements.

Column 1 and 2: Filter Name and ID

Column 3: The spec in mm for the focus shift.

Column 4: The tolerance for each filter in mm.

Column 5: The measured focus shift in mm.

Acknowledgements: The authors wish to thank the JPL team (Trauger, Raouf, and B. Gordon) for providing the data on the filters and additional supporting information. The authors also thank Sylvia Baggett for advice with the figures, M. Davis (GSFC), R. Boucarut (GSFC), and M. Stiavelli for helpful comments.

References:

- Lupie, O. L. 2002, WFC3 ISR2002-10: WFC3 IR and UVIS Filter Wheel Slot Assignments.
- Lupie, O. L. and Boucarut, R. 2000, WFC3 ISR2000-09: WFC3 Filter Selection Process Part III, IR Filter Requirements.
- Lupie, O., Hanley, C., Nelan, J. 2000, WFC3 ISR2000-08: WFC3 Filter Selection Process Part II, WFC3 Compendium of Community Input.
- Lupie, O., Hanley, C. 2000 WFC3 ISR2000-07: WFC3 Filter Selection Process Part I, HST Historical Filter Usage.
- Mackenty, J., Contract End Item Specifications, STE-66, version May 31, 2002.
- Raouf, N. A. and Trauger, J. T. 2002, "Characterization of UV-Visible Filters for the Wide Field Camera 3 of the Hubble Space Telescope" August 2002, SPIE Proceedings, Hawaii.
- Trauger, J. T. 2001, WFC3 UVIS Filter Specifications, JPL Version D, Nov 2001.

Turner-Valle, J. 1999, SER OPT-015, "WFC3 Optical Filter Requirements."

Table 1: UVIS Filter Performance Specifications from Version D JPL Spec or CEI.

	0	0		-					40	- 44	40	1 40	44
TDI V. D	2	3 Lam0	4 FWHM	5	6	7	8	9	10	OUT-	12 OUT-	13	14
JPL Ver.D 11/01		CEI *	CEI *							BAND	BAND		
	Enomo	Table 4-6	Table 4-6	lam 01	la 50	lam 00	10.00 00	10	lam : 01	max T	at lam	M: T	Description
	Fname F218W	2175.0	300	lam-01	lam-50 2025	lam-90	1am+90	2325	1am+01	1.E-03	2750	Min T 0.20	Description ISM feature
	F218W F225W	2250.0	500		2023			2500		1.E-03	2750	0.20	UV Wide
	F275W	2750.0	500		2500			3000		1.E-03	3250	0.20	UV Wide
	F336W	3375.0		*UG11		*UG11	3610	3650	3725	1.E-04	4000	0.45	U, Stromgren u
	F390W	3900.0	1000		3400			4400		1.E-04	5000	0.55	Washington C
	F438W	4320.0	695	3915	3970	4040	4595	4665	4755	1.E-04	5300	0.65	WFPC2 B
UVIS 7	F555W	5217.0	1620	4220	4470	*GG455	*BG38	6090	7150	1.E-04	8000	0.90	WFPC2 V
UVIS 8	F606W	5956.0	2340	4590	4785	4925	7020	7125	7340	1.E-04	8500	0.90	WFPC2 Wide V
	F814W	8353.0	2555	6865	7060		9295	9615	10225	1.E-03	11000	0.95	WFPC2 Wide I
	F475W	4750.0	1520	3915	4000		5465	5520	5630	5.E-05	6500	0.90	SDSS g
	F625W	6250.0	1550	5390	5500		6980	7050	7190	5.E-05	8000	0.90	SDSS r
	F775W F850L	7760.0 8320.0	1470	6890 *RG830	7030	7100 *RG830	8415	8500	8670	5.E-05	9500	0.90	SDSS i SDSS z
	F350L	3500.0	7000	*GG375	3500		_	_	_	-		0.95	Long Pass
	F300X	2775.0	1850	00373	1800	00373		3650		1.E-04	4300	0.50	Long Pass
	F475X	3800.0	2200		3800			6000		1.E-04	8000	0.80	Long Pass
	F600L	6000.0	4000	*RG610		*RG610	-	-	-	-	-	0.95	Long Pass
UVIS 18	F390M	3900.0	200		3800			4000		5.E-05	4600	0.70	Long Pass
UVIS 19	F410M	4105.0	190	3930	4010	4040	4170	4200	4300	5.E-05	4800	0.75	Stromgren v
	F467M	4675.0	230	4475	4560		4755	4790	4890	5.E-05	5300	0.80	Stromgren b
	F547M	5475.0		[5007]	5120		5710		6000	5.E-05	6800	0.80	Stromgren y
				[3007]		3233	3/10		0000				
	F621M	6212.0	640		5900			6540		5.E-05	7300	0.85	11%
	F689M	6886.0	710		6540			7250		5.E-05	8000	0.85	11%
UVIS 24	F763M	7630.0	780		7250			8030		5.E-05	8800	0.85	11%
UVIS 25	F845M	8454.0	870		8030			8900		5.E-05	9600	0.85	11%
UVIS 26	F280N	2798.0	42		2777			2819		1.E-04	4000	0.20	MgII 2795/2802?
UVIS 27	F343N	3426.0	228	3198		3312	3540		3654	1.E-06	4000	0.50	[NeV] 3426
	F373N	3732.0	38	3694		3713	3751		3770	1.E-06	4100	0.50	[OII] 3726/29
	F395N	3950.0	61	3890		3920	3981		4011	1.E-06	4500	0.60	CaII H&K
	F469N	4686.0	32	4654		4670			4718	1.E-06	5100	0.65	HeII 4686
	F487N F502N	4867.0 5013.0	45 47	4823 4967		4845 4990	4890 5037		4912 5060	1.E-06 1.E-06	5400 5500	0.65	H-b 4861 [OIII] 5007
	F502N F588N	5886.0	60	5826		5856			5946	1.E-06	6200	0.70	HeI 5876
	F631N	6306.0	54	6252		6279	6333		[6352]	1.E-06	6900	0.80	[OI] 6300
	F645N	6455.0	82	6374	6414			6496	6537	1.E-06	7000	0.85	Continuum
UVIS 36	F656N	6563.0	14	[6553]		6556	6570		[6576]	1.E-06	7000	0.80	H-a 6563
	F658N	6585.0	20			6576	6596		6606	1.E-06	7000	0.80	[NII] 6583
	F665N	6654.0		[6559]		6607	6701		[6749]	1.E-06	7100	0.80	z (Ha +[NII])
UVIS 39	F673N	6731.0	77	[6689]		6694	6771		6820	1.E-06	7200	0.80	[SII] 6717, 31
	F680N	6902.0		[6670]		6756			[7135]	1.E-06	7500	0.80	z (Ha +[NII])
UVIS 41	F953N	9532.0	64	9468		9500	9564		9596	5.E-06	9800	0.80	[SIII] 9532
UVIS 42a	F437N	4368.0	26	4341		4356	4382		4397	1.E-06	4000	0.10	[OIII]4353
UVIS 42b		2326.0			2308			2344		1.E-04	4000		CII] 2326
UVIS 42c		2425.0			2407			2443		1.E-04	4000		[NeIV] 2425
UVIS 42d		3780.0				3740			3860	1.E-06	4100	-	z ([OII] 3727)
UVIS 43a		3869.0		3843	41.00	3856	3882	4274	3895	5.E-06	4400	0.50	[NeIII] 3869
UVIS 43b		4220.0			4166			42/4	4326	5.E-06	4800	0.50	continuum
UVIS 43c		4364.0				4348			4393	1.E-06	4900	0.50	[OIII] 4363
UVIS 43d UVIS 44a		4924.0 5081.0		4841 4969		4880 5025			5007 5193	1.E-06 1.E-06	5400 5500		z (H-b) z ([OIII] 5007)
UVIS 44a		5755.0		5737		5749			5773	1.E-06	6100		[NII] 5755
UVIS 446 UVIS 44c		6716.0		6703		6710			[6731]	1.E-06	6900	0.70	[SII] 6717
UVIS 44d	F674N	6731.0		[6717]		6724			6745	1.E-06	6900		[SII] 6731
UVIS 45a	F889N	8890.0	89		8845			8935		5.E-06	9300	0.80	25/km-agt
UVIS 45b		9060.0			9015			9105		5.E-06	9400		2.5/km-agt
UVIS 45c		9240.0 9370.0	92 94		9194 9323			9286 9417		5.E-06	9600 9800	0.80	0.25/km-agt
UVIS 45d UVIS 46a		6194.0			6163			6225		5.E-06 1.E-06	6700		0.025/km-agt CH4 6194
UVIS 46b		6340.0			6308			6372		1.E-06	0700	0.30	6194 cont.+
UVIS 46c		7270.0			7234			7306		1.E-06	7700	0.80	CH4 7270
UVIS 46d		7504.0			7466			7542		1.E-06	7900	0.80	7270 cont.
UVIS 47	G200	2775.0			1800			3650			4300		UV prism
	F657N	6573.0				6526			6667	1.E-06	7000	0.80	Wide Ha+[NIII]
KEV	*	CEI spec (e	voontion se	o chodod	colle).	1 1	special o	an difficu	ilt roanii	omonte _			

* CEI spec (exception see shaded cells); | 1 special or difficult requirements

UG, RG, GG colored glass types (bandpass defined by glass substrate) estimated, not specified as requirement value provided for long pass only for perspective. KEY

Table 2: Parameters Calculated from Measured JPL Transmittance Data

1	2	3	4	5	6	7	8	9	10
		Pivot			Lambda		Avg	Rect	Mean
Name	Name/file	Lambda	Bndwidth	FWHM	Tpeak	Peak T	Lambda	Width	Lambda
		(A)	(rms)	(gauss)	(A)		(A)	(A)	(A)
F218W	u_F218W_305_trns.tab	2219.0	124.9	294.2	2139.9	0.36	2222.8	319.0	2204.8
F225W	u_F225W_302_trns.tab u_F275W_304_trns.tab	2284.3 2742.4	178.1	419.4	2150.2	0.32	2291.7 2749.8	445.1 547.5	2256.1
F275W F300X	u_F300X_301_trns.tab	2819.6	199.3 316.5	469.4 745.2	2579.7 2639.8	0.36 0.45	2838.6	824.5	2713.3 2747.4
F336W	u_F336W_302_trns.tab	3361.1	160.2	377.3	3350.4	0.75	3364.9	526.5	
F350L	u_F350LP_306_trns.tab	6812.0	2073.1	4881.9	5730.2	0.98	7185.0	7480.4	5447.6
F390M	u_F390M_301_trns.tab	3893.8	65.1	153.4	3890.0	0.88	3894.3	204.6	3891.5
F390W	u_F390W_301_trns.tab	3904.6	286.8	675.5	3880.3	0.96	3915.2	909.8	
F410M	u_F410M_304_trns.tab	4111.6	63.4	149.3	4104.8	0.66	4112.1	200.9	
F422M	u_F422M_301_trns.tab	4217.7	37.6	88.6	4182.0	0.69	4217.9	111.0	4217.1
F438W F467M	u_F438W_302_trns.tab u_F467M_307_trns.tab	4318.7 4690.2	197.8 73.5	465.8 173.0	4510.0 4714.3	0.84 0.82	4323.2 4690.7	634.6 236.7	4300.5 4687.9
F475W	u_F475W_301_trns.tab	4760.6	423.6	997.5	4889.5	0.92	4779.6	1370.1	4684.9
F475X	u_F475X_302_trns.tab	4917.1	667.4	1571.6	5150.4	0.94	4964.6	2127.0	4732.9
F547M	u_F547M_305_trns.tab	5447.0	206.3	485.9	5287.3	0.88	5451.0	652.8	5431.3
F555W	u_F555W_202_trns.tab	5309.8	520.6	1226.0	5160.5	0.95	5336.6	1581.7	5206.6
F600L	u_F600LP_002_trns.tab	8402.2	1389.7	3272.4	8931.1	1.00	8522.4	4815.9	7933.6
F606W	u_F606W_001_trns.tab u_F621M_303_trns.tab	5932.3 6212.0	663.4 190.6	1562.2 448.9	6080.0 6349.7	0.96 0.94	5970.1 6214.9	2155.2 613.1	5782.6 6200.3
F621M F625W	u_F621W_303_trns.tab	6254.0	455.6	1072.8	5799.6	0.94	6270.7	1494.9	6200.3
F689M	u_F689M_302_trns.tab	6886.0	208.3	490.6	7130.8	0.93	6889.2	685.1	6873.3
F763M	u_F763M_302_trns.tab	7636.3	230.8	543.6	7540.3	0.97	7639.8	770.3	
F775W	u_F775W_301_trns.tab	7733.6	432.0	1017.4	8110.9	0.85	7745.7	1462.0	7685.2
F814W	u_F814W_301_trns.tab	8304.7	733.3	1726.7	7640.7	0.97	8337.5	2490.3	
F845M	u_F845M_303_trns.tab	8468.9	261.5	615.8	8360.0	0.96	8472.8	879.3	
F850L	u_F850LP_203_trns.tab	9756.4	713.6	1680.4	1000.0	0.96	9782.6	2403.0	9652.5
F232N	u_F232N_302_trns.tab	2326.9	11.4	26.9	2332.5	0.12	2327.0	31.7	2326.8
F243N	u_F243N_302_trns.tab	2420.6	11.5	27.1	2420.1	0.15	2420.6	35.0	2420.5
F280N	u_F280N_301_trns.tab	2796.1	13.4	31.5	2794.9	0.21	2796.2	40.7	2796.0
F343N F373N	u_F343N_301_trns.tab u_F373N_302_trns.tab	3438.0 3729.6	87.4 15.3	205.8 36.0	3317.9 3724.1	0.78 0.78	3439.1 3729.6	261.3 49.6	
F378N	u_F378N_302_trns.tab	3790.9	31.6	74.5	3823.5	0.83	3791.1	101.0	
F387N	u F387N 301 trns.tab	3873.0	10.4	24.5	3865.8	0.72	3873.0	33.5	
F395N	u_F395N_302_trns.tab	3953.7	25.7	60.4	3939.6	0.86	3953.8	84.5	3953.3
F436N	u_F436N_301_trns.tab	4366.7	13.4	31.6	4364.5	0.67	4366.7	43.3	
F437N	u_F437N_302_trns.tab	4370.6	9.4	22.1	4363.2	0.70	4370.6	29.9	4370.6
F469N F487N	u_F469N_301_trns.tab u_F487N_302_trns.tab	4687.5 4870.7	15.1 18.5	35.7 43.6	4682.3 4880.9	0.69 0.85	4687.5 4870.7	49.6 60.4	
F492N	u_F492N_301_trns.tab	4932.1	33.9	79.8	4924.0				
	u F502N 301 trns.tab	5009.0	20.4	48.0	5031.9	0.87	5009.1		
F508N	u_F508N_301_trns.tab	5089.7	39.3	92.5	5076.3	0.87	5089.9	130.7	5089.1
F575N	u_F575N_301_trns.tab	5755.9	5.7	13.5	5757.7	0.78	5755.9		
F588N	u_F588N_302_trns.tab	5882.2	22.1	52.1	5900.9	0.88	5882.2		
F619N	u_F619N_301_trns.tab	6197.5	19.7	46.4	6193.6	0.89	6197.5		
F631N F634N	u_F631N_301_trns.tab u_F634N_301_trns.tab	6303.0 6347.5	18.3 21.2	43.2 49.8	6323.2 6352.1	0.86 0.88			6302.9 6347.4
F645N	u_F645N_301_trns.tab	6451.6	27.2	64.0		0.86			
F656N	u_F656N_302_trns.tab	6561.1	5.4	12.8	6557.1	0.86			
F657N	u_F657N_301_trns.tab	6565.1	39.2	92.4	6553.8	0.90	6565.2	121.3	
F658N	u_F658N_303_trns.tab	6587.2	6.9	16.2	6586.2	0.79	6587.2	22.1	
F665N	u_F665N_301_trns.tab	6654.4	40.7	95.9	6620.0	0.90	6654.5		
F672N	u_F672N_301_trns.tab	6716.1 6764.5	6.0 36.7	14.0	6713.4 6756.7	0.89	6716.1	19.4 117.9	
F673N F674N	u_F673N_302_trns.tab u_F674N_301_trns.tab	6764.5	5.6	86.4 13.3	6756.7 6730.2	0.91 0.68	6764.6 6729.5		
F680N	u_F680N_302_trns.tab	6878.6	111.5	262.6	6889.8	0.00			
F727N	u_F727N_301_trns.tab	7274.7	21.3	50.1	7277.6	0.89	7274.7	63.9	
F750N	u_F750N_301_trns.tab	7500.6	23.0	54.1	7498.2	0.85	7500.6		
F889N	u_F889N_303_trns.tab	8891.8	30.5	71.8	8907.6	0.90	8891.9	95.2	
F906N	u_F906N_303_trns.tab	9056.7	34.2	80.6	9083.9	0.92	9056.8		
	u_F924N_303_trns.tab	9246.3	30.5	71.7	9244.9	0.94	9246.3	91.3	
F937N F953N	u_F937N_303_trns.tab	9371.1	31.7 30.8	74.6	9377.2	0.91			9370.9 9529.5
F953N	u_F953N_306_trns.tab	9529.7	30.8	72.6	9496.0	0.90	9529.8	95.7	9529.5

Table 3: Performance Parameters for UVIS Filters – Spec and As-Built

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
								MEAS	MEAS T	DELTA:	DELTA: MEAS-	DELTA: MEAS-	DELTA: MEAS-	DELTA: MEAS-	DELTA: MEAS-	DELTA:			
							MEAS	FWHM	at 50%	MEAS- SPEC	SPEC	SPEC	SPEC	SPEC	SPEC	MEAS- SPEC	DELTA: MEAS-		
	MEAS	MEAS	MEAS	MEAS	MEAS	MEAS	Central	(spec	or 90%	Lambda	Lambda	Lambda	Lambda	Lambda	Lambda	Cent	SPEC		
Name	Lambda (A)	Lambda (A)	Lambda (A)	Lambda (A)	Lambda (A)	Lambda (A)	Lambda (A)	def) (A)	Tpk	(A)	(A)	(A)	(A)	(A)	(A)	Lam	FWHM	CEI	Commonts
Name			90%	90%	50%		(^)	(^)		1%	50%	90%	90%	50%	1%				
E210XX	1%	50%	90%	90%		1%	2202.4	206.0	0.0	1 70		90%	90%		1 70	(A)	_ ` _	Pass	1
F218W	1952.2	2054.0			2361.0	2594.0	2202.1	306.9	0.2		29.0			35.9			6.9		Best effort criteria only
F225W	1930.8	2038.0			2513.3	2759.0	2263.2	475.4	0.2 0.2		38.0			13.3		27.1 5.0	-24.6		Best effort criteria only
F275W F300X	2277.8 2216.6	2464.4 2350.8			3054.4 3178.2	3202.8 3829.4	2743.6	590.0 827.4	0.2		-35.6			54.4		5.0	90.0		Best effort criteria only
F336W	3017.5	3092.7			3646.5		3358.2	553.8	0.2		-7.3			-3.5	-22.3	-5.6	3.8		Best effort criteria only within tol.
F350L	3017.3	3355.3			3070.3	3102.1	3330.2	333.0	0.5		-144.7			-0.0	-22.0	-144.7	5.0	X	Long Pass cut on only
F390M	3722.8	3792.6			4003.1	4050.8	3896.4	210.5	0.4		-7.4			3.1		-2.3	10.5		within tol.
F390W	3253.6	3447.9			4400.9	4468.0	3895.4	953.0	0.5		47.9			0.9		27.6	-47.0		within to:
F410M	3955.4	4011.5			4210.2	4279.7	4109.6	198.7	0.3	25.3	1.5			10.2	-20.3	5.7	8.7	Х	within tol.
F422M	4119.4	4162.3			4275.6		4218.6	113.3	0.3	3.4	-3.7			1.6	-6.6	-1.1	5.3		within tol.
F438W	3894.0	3981.0			4657.8	4708.0	4306.2	676.8	0.4	-21.0	11.0			-7.2	-47.0	2.7	-18.2		
F467M	4526.6	4566.9			4813.6	4861.3	4688.7	246.7	0.4	51.6	6.9			23.6	-28.7	15.1	16.7		
F475W	3941.5	4018.8			5507.7	5580.8	4704.7	1488.9	0.5	26.5	18.8			-12.3	-49.2	5.8	-31.1		
F475X	3729.8	3804.2			6003.8	6926.7	4779.1		0.5		4.2			3.8		4.2	-0.4	Х	Long Pass cut on only
F547M	5040.4	5106.3			5820.3	5906.4	5451.6	714.0	0.4	0.0	-13.7			-9.7	-93.6	-11.8	4.0		
F555W	4379.9	4469.4			6064.5	7061.8	5206.2	1595.1	0.5	159.9	-0.6			-25.5	-88.2	-11.3	-24.9		
F600L	0.0								0.5		74.7					74.7		Х	Long Pass cut on only
F606W	4703.7	4784.6			7129.5	7223.7	5840.5	2345.0		113.7	-0.4			4.5	-116.3	1.6	5.0	Х	within tol.
F621M	5800.8	5890.5			6541.3	6606.9	6207.4	650.8	0.5	0.0	-9.5			1.3	0.0	-4.4	10.8	Х	within tol.
F625W	5413.2	5486.7			7062.1	7139.8	6224.8		0.5	23.2	-13.3			12.1	-50.2	-2.2	25.3		
F689M	6449.9	6530.4			7238.9	7325.3	6875.5	708.6	0.5	0.0	-9.6			-11.1	0.0	-10.3	-1.4		
F763M	7165.5	7243.3			8041.9		7632.2	798.6	0.5	0.0	-6.7			11.9	0.0	2.1	18.6		
F775W	6875.4	7000.2			8486.2	8582.4	7707.5		0.4	-14.6	-29.8			-13.8	-87.6	-22.7	16.0		
F814W	6977.7	7061.8			9605.1	9733.6			0.5	112.7	1.8			-9.9	-491.4	-3.2	-11.7	Х	within tol.
F845M	7898.8	8026.8			8913.5	9026.5	8458.5	886.7	0.5		-3.2			13.5		4.7	16.7		
F850L		8545.7							0.5		225.7					225.7		Х	Long Pass cut on only

Table 3: Continuation: Performance Parameters: Spec and As-Built

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
							MEAS	MEAS FWHM	MEAS T at 50%	DELTA: MEAS-	DELTA:								
	MEAS	MEAS	MEAS	MEAS	MEAS	MEAS	Central	(spec	or 90%	SPEC	MEAS-								
	Lambda	Lambda	Lambda	Lambda	Lambda	Lambda	Lambda	def)	Tpk	Lambda	Lambda	Lambda	Lambda	Lambda	Lambda	Cent	SPEC		
Name	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)		(A)	(A)	(A)	(A)	(A)	(A)	Lam	FWHM	CEI	Comments
	1%	50%	90%	90%	50%	1%	, ,	, ,		1%	50%	90%	90%	50%	1%	(A)	(A)	Pass	
F232N	2302.8	2310.3			2342.5	2350.3	2326.3	32.2	0.1		2.3			-1.5		-3.8			Best effort criteria only
F243N	2395.9	2403.0			2437.7	2445.1	2420.3	34.8	0.1		-4.0			-5.3		-1.2	-4.7	Х	Best effort criteria only
F280N	2766.3	2776.4			2815.9	2826.6	2796.1	39.5	0.1		-0.7			-3.1		-2.5	-1.9		Best effort criteria only
F343N	3192.3		3308.4	3448.4		3640.0	3377.7	140.0	0.7	-5.7		-3.6	-91.6		-14.0	-88.0	46.4		double peak
F373N	3693.6		3708.6	3747.8		3769.1	3728.1	39.2	0.7	-0.4		-4.4	-3.2		-0.9	1.2	3.8	Х	within tol.
F378N	3724.1		3743.4	3832.6		3869.4	3787.8	89.2	0.8	22.1		3.4	12.6		9.4	9.2	-8.0		
F387N	3849.6		3860.0	3883.1		3896.7	3871.5	23.1	0.7	6.6		4.0	1.1		1.7	-2.9	-2.5	Х	within tol.
F395N	3894.5		3916.5	3989.4		4016.1	3952.8	72.9	0.8	4.5		-3.5	8.4		5.1	11.9	-2.4		
F436N	4334.8		4348.7	4384.4		4399.7	4366.5	35.7	0.6	1.8		0.7	6.4		6.6	5.7	-3.5		
F437N	4348.5		4358.4	4383.0		4392.3	4370.7	24.6	0.6	7.5		2.4	1.0		-4.7	-1.4	-1.7	Х	within tol.
F469N	4653.9		4666.7	4703.9		4721.6	4685.3	37.2	0.6	-0.1		-3.3	1.9		3.6	5.2	0.7	Х	within tol.
F487N	4827.4		4844.8	4893.3		4916.4	4869.0	48.4	0.8	4.4		-0.2	3.3		4.4	3.4	-1.5	Х	within tol.
F492N	4858.6		4880.4	4981.4		5010.5	4930.6	101.0	0.8	17.6		0.4	13.4		3.5	23.0	-6.8		
F502N	4962.9		4979.4	5037.3		5057.2	5008.3	57.8	0.8	-4.1		-10.6	0.3		-2.8	10.8	5.2		
F508N	5002.7		5030.9	5148.8		5178.7	5089.5	117.9	0.8	33.6		5.9	11.8		-14.3	5.9	-8.8		
F575N	5741.4		5749.8	5762.7		5769.8	5756.3	12.9	0.7	4.4		0.8	1.7		-3.2	0.9		Х	within tol.
F588N	5829.7		5851.9	5911.6		5936.5	5881.7	59.7	0.8	3.7		-4.1	-4.4		-9.5	-0.3	4.2		
F619N	6146.5	6166.3			6227.9	6251.5	6197.1	61.6	0.4		3.3			2.9		-0.4	3.1	Х	within tol.
F631N	6262.9		6285.0	6328.0		6345.2	6306.5	43.1	0.8	10.9		6.0	-5.0		-6.8	-10.9			double peak
F634N	6293.1	6313.6			6379.9	6404.8	6346.7	66.2	0.4		5.6			7.9		3.2	6.7		
F645N	6393.8	6409.5			6494.5	6515.4	6451.9	85.0	0.4	19.8	-4.5			-1.5	-21.6	3.0			within tol.
F656N	6548.5		6554.1	6568.0		6573.7	6561.0	13.9	0.8	-4.5		-1.9	-2.0		-2.3	-0.1	2.0	Х	Best Effort - narrow
F657N	6475.0		6509.3	6605.6		6671.3	6557.3	96.3	0.8	-4.0		-16.7	-14.4		4.3	2.3	15.6		
F658N	6571.4		6578.0	6591.7		6602.8	6584.8	13.7	0.7	1.4		2.0	-4.3		-3.2	-20.0	1.2	Х	within tol.
F665N	6552.0		6602.5	6711.5		6753.2	6656.8	109.0	0.8	-7.1		-4.5	10.5		4.2	15.0	-2.9		*d * d
F672N F673N	6701.3 6680.1		6708.6 6709.2	6723.5 6809.7		6730.5 6857.7	6716.0 6759.3	14.9 100.5	0.8	-1.7 -8.9		-1.4 15.2	-0.5 38.7		-0.5 37.7	0.9 23.5	1.0 -26.9	Х	within tol.
-	6716.1		6709.2	6734.5		6742.8	6759.3	100.5	0.8	-8.9 -0.9		0.5	-3.5		-2.2	-4.0	-26.9 1.5	<u>, , , , , , , , , , , , , , , , , , , </u>	5d. t., 7. 1
F674N F680N	6628.7		6724.5	7037.8		7144.4	6874.1	323.6	0.6	-113.3		-41.7	-3.5 -6.2		91.4	35.6	24.4	Х	within tol.
F727N	7216.9	7242.2	07 14.3	1031.8	7306.9	7334.2	7274.5	64.8	0.9	-113.3	8.1	-41.7	-0.2	0.9	91.4	-8.2	4.6		
F727N F750N	7436.2	7466.1			7534.9	7566.8	7500.4	68.8	0.5		0.1			-7.1		-6.2 -6.2	-3.5		
F889N	8792.5	8844.5			8938.3	8997.7	8891.3	93.7	0.4		-0.5			3.3		4.7	-3.5 1.4	Х	within tol.
F906N	8945.1	9010.6			9104.6	9162.3	9057.5	94.0	0.5		-0.5 -4.4			-0.4		3.0		X	within tol.
F924N	9127.0	9201.7			9291.0	9345.0	9246.2	89.2	0.5		7.7			5.0		-2.8			within toi.
F937N	9230.1	9324.9			9416.8	9480.8	9370.7	91.9	0.5		1.9			-0.3		-2.0	0.3	Х	within tol.
F957N	9456.1	3024.8	9488.0	9572.6	∂ -, 10.0	9622.3	9530.2	84.6	0.8	-11.9	1.9	-12.0	8.6	-0.3	26.3	20.6	1.7		withill tol.
F 933IN	₹30.1		34 00.0	3012.0		9022.3	900U.Z	04.0	0.0	-11.9		-12.0	0.0		20.3	20.0	1./		

KEY long pass filters hence most descriptors not applicable

double peaked narrow band

Measured: used measured throughput at center of filter

Accuracy Wide Bands measured in 10A increments (values good to 1A)

Narrow bands measured in 1 A increments (values good to 0.1A)

Table 4: Measured Transmitted Wavefront and Wedge from Raouf and Trauger (2002)

1	2	3	4	5	1	2	3	4	5								
Fnumber	Fname	Transmitted*	Transmitted*	Wedge (inches)*	Fnumber	Fname	Transmitted*	Transmitted*	Wedge (inches)*								
		Wave p-v (full ap)	rms (10mm ap)	(SPEC 0.0006in)			Wave p-v (full ap)	rms (10mm ap)	(SPEC 0.0006in)								
UVIS 1	F218W	0.146		0.0006	UVIS 34	F631N	0.153	0.018	0.00119								
UVIS 2	F225W	0.192		0.0009	UVIS 35	F645N	0.126	0.016	0.00092								
UVIS 3	F275W	0.500		0.0006	UVIS 36	F656N	0.360	0.027	0.00093								
UVIS 4	F336W	0.500		0.0006	UVIS 37	F658N	0.260	0.016	0.00031								
UVIS 5	F390W	0.280	0.012	0.00166	UVIS 38	F665N	0.200	0.03	0.00063								
UVIS 6	F438W	0.282	0.026	0.00103	UVIS 39	F673N	0.120	0.02	0.00064								
UVIS 7	F555W	0.215	0.016		UVIS 40	F680N	0.200	0.025	0.00048								
UVIS 8	F606W	0.222	0.019		UVIS 41	F953N	0.151	0.022	0.00022								
UVIS 9	F814W	0.165	0.027	0.00077	UVIS 42a	F437N	0.500		0.0006								
UVIS 10	F475W	0.176		0.00022	UVIS 42b	F232N	0.500		0.0006								
UVIS 11	F625W	0.199	0.019		UVIS 42c		0.500		0.0006								
UVIS 12	F775W	0.189	0.018	0.00257	UVIS 42d		0.500		0.0006								
UVIS 13	F850L	0.173	0.019	0.00161	UVIS 43a		0.500		0.0006								
UVIS 14	F350L	0.147	0.009	0.00075	UVIS 43b	•	0.140		0.0006								
	F300X	0.170		0.0006	UVIS 43c		0.210		0.0006								
	F475X	0.342	0.023	0.00045	UVIS 43d		0.240		0.0006								
	F600L	0.298	0.026	0.00043	UVIS 44a	-	0.220	0.019									
UVIS 18	F390M	0.234	0.017	0.00064	UVIS 44b		0.270		0.0006								
	F410M	0.210		0.00213	UVIS 44c		0.200	0.026	0.0006								
	F467M	0.330		0.00099	UVIS 44d		0.170		0.0006								
UVIS 21	F547M	0.250		0.00026	UVIS 45a		0.260		0.0006								
UVIS 22	F621M	0.190		0.00015	UVIS 45b		0.310		0.0006								
UVIS 23	F689M	0.176	0.021	0.00049	UVIS 45c		0.160		0.0006								
UVIS 24	F763M	0.281	0.026	0.00018	UVIS 45d		0.130		0.0006								
UVIS 25	F845M	0.258	0.025	0.0002	UVIS 46a		0.170										
UVIS 26	F280N	0.481		0.0006	UVIS 46b		0.240		0.0006								
UVIS 27	F343N	0.343		0.00016	UVIS 46c	•	0.210		0.0006								
UVIS 28	F373N	0.429		0.0006	UVIS 46d		0.350	0.041	0.0006								
UVIS 29	F395N	0.019	0.017	0.00047	UVIS 47	g280	0.510	2.22	0.000								
UVIS 30	F469N	0.340	0.035	0.00044	UVIS 48	F657N	0.210		0.0006								
UVIS 31	F487N	0.237	0.021	0.00011			Accuracy Spec is 0.0		•								
UVIS 32	F502N	0.173	0.022	0.00024		-	nation of numbers: I	0									
UVIS 33	F588N	0.195	0.019	0.00014	Wedge Sp	ec for indi	ividual substrates to	be < 0.0006-in acro	Wedge Spec for individual substrates to be < 0.0006-in across 57.3mm ap.								

*KEY: Wavefront Accuracy Spec is 0.02 waves at 6330 Angstroms.

See text for explanation of numbers: Laminated vs single substrate
Wedge Spec for individual substrates to be < 0.0006-in across 57.3mm ap.

Wedge Spec for individual substrates to be < 0.0006-in across 57.3mm ap.

Numbers in Italics supplied by vendor and not measured at JPL

Table 5: Focus Shift Specification and Measurements from Raouf and Trauger (2002)

1	2	3	4	5	6
Fnumber	Fname	SPEC (mm)	MEAS (mm)	Tolerance	Delta
		Focus Shift	Focus Shift	+/- (mm)	(mm)
UVIS 1	F218W	1.366	1.366	0.035	
UVIS 2	F225W	1.395	1.395	0.034	
UVIS 3	F275W	1.530	1.530	0.033	
UVIS 4	F336W	1.612	1.612	0.032	
UVIS 5	F390W	1.652	1.633	0.032	-0.019
UVIS 6	F438W	1.677	1.718	0.032	0.041
UVIS 7	F555W	1.711	1.678	0.031	-0.033
UVIS 8	F606W	1.721	1.754	0.031	0.033
UVIS 9	F814W	1.745	1.754	0.031	0.009
UVIS 10	F475W	1.690	1.647	0.032	-0.043
UVIS 11	F625W	1.724	1.756	0.031	0.032
UVIS 12	F775W	1.742	1.796	0.031	0.054
UVIS 13	F850L	1.748	1.727	0.031	-0.021
UVIS 14	F350L	1.624	1.639	0.032	0.015
UVIS 15	F300X	1.570	1.570	0.033	
UVIS 16	F475X	1.690	1.691	0.032	0.001
UVIS 17	F600L	1.720	1.686	0.031	-0.034
UVIS 18	F390M	1.652	1.652	0.032	
UVIS 19	F410M	1.662	1.663	0.032	
UVIS 20	F467M	1.688	1.706	0.032	0.018
UVIS 21	F547M	1.710	1.743	0.032	0.033
UVIS 22	F621M	1.723	1.775	0.031	0.052
UVIS 23	F689M	1.733	1.758	0.031	0.025
UVIS 24	F763M	1.741	1.765	0.031	0.024
UVIS 25	F845M	1.748	1.782	0.031	0.034
UVIS 26	F280N	1.539	1.539	0.033	
UVIS 27	F343N	1.618	1.618	0.032	
UVIS 28	F373N	1.642	1.642	0.032	
UVIS 29	F395N	1.655	1.655	0.031	
UVIS 30	F469N	1.688	1.716	0.031	0.028
UVIS 31	F487N	1.694	1.742	0.033	0.048
UVIS 32	F502N	1.699	1.723	0.032	0.024
UVIS 33	F588N	1.718	1.769	0.032	0.051
UVIS 48	F657N	1.699	1.699	0.032	

1	2	3	4	5	6
Fnumber	Fname	SPEC (mm)	MEAS (mm)	Tolerance	Delta
		Focus Shift	Focus Shift	+/- (mm)	(mm)
UVIS 34	F631N	1.725	1.754	0.032	0.029
UVIS 35	F645N	1.727	1.783	0.032	0.056
UVIS 36	F656N	1.728	1.689	0.032	-0.039
UVIS 37	F658N	1.729	1.697	0.031	-0.032
UVIS 38	F665N	1.729	1.788	0.031	0.059
UVIS 39	F673N	1.720	1.778	0.031	0.058
UVIS 40	F680N	1.731	1.731	0.031	
UVIS 41	F953N	1.731	1.752	0.031	0.021
UVIS 42a	F437N	1.211	1.211	0.036	
UVIS 42b	F232N	1.421	1.421	0.034	
UVIS 42c	F243N	1.455	1.454	0.034	
UVIS 42d	F378N	1.645	1.645	0.032	
UVIS 43a	F387N	1.651	1.651	0.032	
UVIS 43b	F422M	1.670	1.670	0.032	
UVIS 43c	F436N	1.676	1.676	0.032	
UVIS 43d	F492N	1.696	1.696	0.032	
UVIS 44a	F508N	1.700	1.700	0.032	
UVIS 44b	F575N	1.715	1.715	0.031	
UVIS 44c	F672N	1.730	1.730	0.031	
UVIS 44d	F674N	1.731	1.731	0.031	
UVIS 45a	F889N	1.752	1.752	0.031	
UVIS 45b	F906N	1.753	1.753	0.031	
UVIS 45c	F924N	1.754	1.754	0.031	
UVIS 45d	F937N	1.755	1.755	0.031	
UVIS 46a	F619N	1.723	1.723	0.031	
UVIS 46b	F634N	1.725	1.725	0.031	
UVIS 46c	F727N	1.737	1.737	0.031	
UVIS 46d	F750N	1.740	1.740	0.031	
UVIS 47	g280	1.539	1.539	0.033	
UVIS 48	F657N	1.699	1.699	0.032	

Numbers in italics supplied by vendor (and not measured at JPL)

Panel 1: Wide and Medium Filters

Panel 2: Wide and Medium Filters

Panel 3: Wide and Medium Filters

Panel 4: Wide and Medium Filters

Panel 5: Wide and Medium Filters

Panel 6: Narrow Band Filters

Panel 7: Narrow Band Filters

Panel 8: Narrow Band Filters

Panel 9: Narrow Band Filters

Panel 10: Narrow Band Filters

Panel 11: Narrow Band Filters

