Ochrana elektronických dokumentov Obhajoba diplomovej práce

Martin Bajaník

Fakulta informatiky Masarykova univerzita martin.bajanik@gmail.com

Brno, 16. februára 2017

Cieľ diplomovej práce

- Poskytnúť ucelený prehľad ochrán, implementovaných v najrozšírenejších formátoch, s dôrazom na ochranu dôvernosti dokumentov založenej na heslách.
- Vytvoriť distribuovaný systém na obnovu zabudnutého hesla.
- Pomocou vytvoreného nástroja zhodnotiť schopnosť formátov odolať útokom hrubou silou a použitelnosť systému na obnovu hesla.

Ochrana elektronických dokumentov

Spôsob ochrany

- Šifrovanie dôvernosť
- Digitálne podpisy autenticita a integrita

Populárne formáty

MS Office Document Cryptography Structure

Binárny formát vs. XML

- Open Office XML (ECMA-376).
- Spätná kompatibilita.

Šifrovanie na základe hesla

- Algoritmus na deriváciu kľúču podobný PBKDF.
- Štandardné vs. agilné šifrovanie.

Ochrana proti zápisu

• Uplatnenie iba z pohľadu UX.

Digitalné podpisy

• XML Signature Syntax and Processing (W3C).

Štandardné vs. agilné šifrovanie

- Binárny formát vs. XML
- Fixné algoritmy a parametre vs. CNG (CryptoAPI: Next Generation)
- Šifrovací kĺúč (tzv. intermediate key)
- Integrita (Encrypt then MAC).

Portable Document Format

Vlastník vs. užívateľ

Šifrovanie na základe hesla

- Derivácia kľúču
- PDF 1.1-1.3 vs. PDF 1.4-1.7 vs. PDF 1.7 r5, r6.
- MD5 + RC4 vs. SHA-256 vs. AES-128 + SHA-2

Šifrovanie pomocou asymetrickej kryptografie

• Dokument šifrovaný pomocou RC4.

Digitalné podpisy

Pokročilá funkcionalita a robustné algoritmy.

Open Document Format

Šifrovanie

- Verzia 1.1 vs. 1.2
- XML Encryption Syntax and Processing (W3C)
- META-INF/manifest.xml.

Digitalné podpisy

XML Signature Syntax and Processing (W3C).

Apache OpenOffice vs. LibreOffice

	LibreOffice	Apache OpenOffice	
checksum-type	SHA-256	SHA-1	
algorithm-name	AES-256	Blowfish CFB	
start-key-derivation-name	SHA-256	SHA-1	
key-derivation-name	PBKDF2	PBKDF2	
iteration-count	1024	1024	
key-size	32	16	

Kľučové vlastnosti

- Klient server architektúra
- Modularita a paralelizmus

Návrh systému na obnovu zabudnutého hesla.

Obnova hesla dokumentov hrubou silou

Priemerná rychlosť verifikácie správnosti hesla (počet pokusov za sekundu).

Obnova hesla dokumentov hrubou silou

	MS Word 2007	LibreOffice Writer 5.2.2	PDF 1.7 V4 R5
3	< 25 seconds	< 9 seconds	< 6 seconds
4	< 10 minutes	< 4 minutes	< 2.5 minutes
5	< 5 hours	< 2 hours	< 1.1 hours
6	< 5 days	< 2 days	< 1.2 days
7	< 17 weeks	< 7 weeks	< 4.2 weeks
8	< 9 years	< 3.5 years	< 2.1 years

Odhadovaný čas na dokončenie procesu obnovy hesla danej dĺžky.

Záver

Hlavné prínosy práce

- Ucelený popis ochrán implemetovaných v populárnych formátoch elektronických dokumentov.
- Vytvorený funkčný distribuovaný systém na obnovu zabudnutého hesla s dôrazom na použiteľnosť a rozšíriteľnosť.

Úvod

Ďakujem za pozornosť.

Pripomienky oponenta

- Diskuze algoritmů dostupných přes API v OS Windows (str. 8) mohla být podrobnější.
- Co je to veřejná část certifikátu X.509?
- Zajímavé by bylo zmínit, proč byla vybrána MS právě tato fixní hesla (strana 11).
- Jsou násobné podpisy (např. v sekci 3.3:2) na stejné úrovni nebo hierarchicky řazené.