Populating Occupancy Grids from LIDAR Scan Data

Course 4, Module 2, Lesson 2 – Part 1

Bayesian Update Of The Occupancy Grid - Summary

 Bayes' theorem is applied at each update step for each cell

Normalizer constant

There's a problem!

Issue With Standard Bayesian Update

Update a single unoccupied grid cell

- Multiplication of numbers close to zero is hard for computers
- Store the log odds ratio rather than probability

$$bel_t(m) \to (-\infty, \infty)$$

Conversion

$$logit(p) = \log\left(\frac{p}{1-p}\right)$$

$$p = \frac{e^{logit(p)}}{1 + e^{logit(p)}}$$

• Applying Bayes' rule:

Pulling out current measurement y_t from past measurements $y_{1:t-1}$

$$p(m^i|y_{1:t}) = \frac{p(y_t|y_{1:t-1}, m^i)p(m^i|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$
 Current map cell Sensor measurement for given cell

Applying the Markov assumption:

Pulling out current measurement y_t from past measurements $y_{1:t-1}$

$$p(m^{i}|y_{1:t}) = \frac{p(y_{t}|m^{i})p(m^{i}|y_{1:t-1})}{p(y_{t}|y_{1:t-1})}$$

$$p(m^{i}|y_{1:t}) = \frac{p(y_{t}|m^{i})p(m^{i}|y_{1:t-1})}{p(y_{t}|y_{1:t-1})}$$

• Applying Bayes' rule to measurement model:

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

$$p(y_t|m^i) = \frac{p(m^i|y_t)p(y_t)}{p(m^i)}$$

• Yields:

$$p(m^{i}|y_{1:t}) = \frac{p(m^{i}|y_{t})p(y_{t})p(m^{i}|y_{1:t-1})}{p(m^{i})p(y_{t}|y_{1:t-1})}$$

• Denominator: 1 - p

$$p(\neg m^i|y_{1:t}) = 1 - p(m^i|y_{1:t}) = \frac{p(\neg m^i|y_t)p(y_t)p(m^i|y_{1:t-1})}{p(\neg m^i)p(y_t|y_{1:t-1})}$$

Logit function

$$\log it(p) = \log \left(\frac{p}{1-p}\right) \qquad \frac{p(m^{i}|y_{1:t})}{p(\neg m^{i}|y_{1:t})} = \frac{\frac{p(m^{i}|y_{t})p(y_{t})p(m^{i}|y_{1:t-1})}{p(m^{i}|y_{t})p(y_{t})p(m^{i}|y_{1:t-1})}}{\frac{p(\neg m^{i}|y_{t})p(y_{t})p(m^{i}|y_{1:t-1})}{p(\neg m^{i})p(y_{t}|y_{1:t-1})}}$$

• Simplifying like terms results in:

$$\frac{p(m^{i}|y_{1:t})}{p(\neg m^{i}|y_{1:t})} = \frac{p(m^{i}|y_{t})p(\neg m^{i})p(m^{i}|y_{1:t-1})}{p(\neg m^{i}|y_{t})p(m^{i})p(\neg m^{i}|y_{1:t-1})}$$

• Can rewrite by taking $\neg p$ to 1-p:

$$\frac{p(m^{i}|y_{1:t})}{p(\neg m^{i}|y_{1:t})} = \underbrace{\frac{p(m^{i}|y_{t})(1-p(m^{i}))p(m^{i}|y_{1:t-1})}{(1-p(m^{i}|y_{t}))p(m^{i})(1-p(m^{i}|y_{1:t-1}))}}_{p(m^{i}|y_{1:t})}$$

• Finally, taking the log:

$$\log \operatorname{it}\left(p(m^{i}|y_{1:t})\right) = \operatorname{logit}\left(p(m^{i}|y_{t})\right) + \operatorname{logit}\left(p(m^{i}|y_{1:t-1})\right) - \operatorname{logit}\left(p(m^{i})\right)$$

$$\log \operatorname{it}\left(p(m^{i}|y_{t})\right) + \operatorname{logit}\left(p(m^{i}|y_{t})\right) + \operatorname{logit}\left(p(m^{i}|y_{t})\right) + \operatorname{logit}\left(p(m^{i}|y_{t})\right)$$

Bayesian log odds Update

Inverse Measurement Model Previous belief Initial belief $l_{t,i} = \operatorname{logit}\left(p(m^i|y_t)\right) + l_{t-1,i} - l_{0,i} \qquad \text{ Formation}$ we prior information

- Numerically stable (due to light mapping)
- Computationally efficient (addition)

Summary

- Identified issue with the Bayesian probability update
- Presented a solution utilizing log odds
- Bayesian log odds update derivation

Populating Occupancy Grids from LIDAR Scan Data

Course 4, Module 2, Lesson 2 – Part 2

$$l_{t,i} = \text{logit}\left(p(m^i|y_t)\right) + l_{t-1,i} - l_{0,i}$$

- State of the occupancy grid given a measurement
- So far we have only seen the following measurement model:

$$p(y_t|m^i)$$
 probability of g_t given mi

- State of the occupancy grid given a measurement
- A inverse measurement model is needed!

• Scanner bearing:

$$\phi^{s} = \begin{bmatrix} -\phi_{max}^{s} & \dots & \phi_{max}^{s} \end{bmatrix} \qquad \phi_{j}^{s} \in \phi^{s}$$

• Scanner ranges:

Assumption: measurements at the same instant, time

o conforció

Inverse Measurement Module — To be fixed

Closest relative bearing:

$$k = \operatorname{argmin}(|\phi^{i} - \phi_{j}^{s}|)$$
the most relavant

Relative range: $r^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\phi^{i} = \tan^{-1}\left(\frac{m_{y}^{i} - x_{2,t}}{m_{x}^{i} - x_{1,t}}\right) - x_{3,t}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\phi^{i} = \tan^{-1}\left(\frac{m_{y}^{i} - x_{2,t}}{m_{x}^{i} - x_{1,t}}\right) - x_{3,t}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2} + \left(m_{y}^{i} - x_{2,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{x}^{i} - x_{1,t}\right)^{2}}$ $\pi^{i} = \sqrt{\left(m_{$

$$\phi^{i} = \tan^{-1} \left(\frac{m_{y}^{i} - x_{2,t}}{m_{x}^{i} - x_{1,t}} \right) - x_{3,t}$$

- α defines the affected range for high probability
- β defines the affected angle for low and high probability

Inverse Measurement Module - Algorithm

No Information

if
$$r^i > \min(r_{max}^s)$$
 or $\left|\phi^i - \phi_k^s\right| > \beta/2$

• High probability > 0.5

if
$$r_k^s < r_{max}^s$$
 and $|r^i - r_k^s| > \alpha/2$

$$|\psi^i - \psi_k^s| < \beta/2$$

if
$$r^i < r_k^s$$

• Example – red cells denote high probability of occupied, given measurement denoted by red x.

Inverse Measurement Module With Ray Tracing

- Ray tracing algorithm using Bresenham's line algorithm
 - o Rasterized line algorithm
 - Uses very cheap fixed point operations for fast calculations
- Perform update on each beam from the LIDAR rather then each cell on the grid
 - Preforms far fewer updates (ignores no information zone)
 - Much cheaper per operation

