4	Thurston a density Opposition of Thurston West definition of the	 												
1.	. Линейные формы. Определения, примеры. Коэффициенты линейных ф	popiv	1.											
	Определение 1.1. Линейной формой на пространстве V называется такая													
	функция $f:V \to \mathbb{K}$, что $\forall v,v_1,v_2 \in V$, $\forall \lambda \in \mathbb{K}$ выполняется:													
	(a) Аддитивность: $f(v_1 + v_2) = f(v_1) + f(v_2)$.													
	(б) Однородность: $f(\lambda v) = \lambda f(v)$.													
									+	+	+	+		
+	Пример 1.1. Пусть E – пространство геометрических векторов (на плоскости								+	+	+	+		
-	или в пространстве) с введенным скалярным произведением (x, y) . Линейную форму $f(v)$ можно задать как								-	_	-	_		
									_	_	-	_		
_	$f(v) = \langle a, v \rangle,$								_	_	-	_		
	где $a \in E$ – фиксированный вектор.								_	_	_	_		
	Пример 1.2. Пусть $V = M_n(\mathbb{K})$ – пространство квадратных матриц n -го по-								_		_	_		
	рядка с коэффициентами из поля К. Линейную форму можно задать как													
	$f(A) = \operatorname{tr} A, \qquad A \in M_n(\mathbb{K})$													
	Пример 1.3. Пусть $V = \mathbb{R}^{\leq n}[x]$ – пространство полиномов степени не выше n .													
	Линейную форму можно задать как													
	$f(p) = p(x)\Big _{x=x_0}$													
	Пример 1.4. Пусть $V = \mathbb{K}^n$ – арифметическое пространство элементов								\top			\top		
	$v=(v_1,v_2,\ldots,v_n)$. Линейную форму можно задать как								\dashv		\top	\pm		
	n								+	+	+	+		
+	$f(v) = \sum_{i=1}^{n} \alpha_i v_i$								+	+	+	+		_
+		-							\dashv	\dashv	\dashv	\dashv	-	
	Определение 1.2. Коэффициентами φ_i линейной формы f называются значения этой линейной формы на базисных векторах пространства.	-										-		
	$f(e_i) = \varphi_i$								_	_	_	_		
									_	_	_	_		
	Теорема 1.1. Задание линейной формы эквивалентно заданию ее значений на базисных формах, т.е. заданию ее коэффициентов.								_	_	_	_		
	Доказательство. Пусть в выбранном базисе $\{e_i\}_{i=1}^n$ линейного простран-										_			
	ства V линейная форма f задана набором коэффициентов $\{\varphi_i\}_{i=1}^n$. Тогда													
	$\forall v = \sum_{i=1}^{n} v^i e_i \in V:$													
	$f(x) = f\left(\sum_{i=1}^{n} x_i x_i\right) = \sum_{i=1}^{n} f(x_i) = \sum_{i=1}^{n} f(x_i) = \sum_{i=1}^{n} f(x_i)$													
	$f(v) = f\left(\sum_{i=1}^{n} v^{i}e_{i}\right) = \sum_{i=1}^{n} f(v^{i}e_{i}) = \sum_{i=1}^{n} v^{i}f(e_{i}) = \sum_{i=1}^{n} v^{i}\varphi_{i}$													
	Таким образом получаем, что образ любого вектора однозначно определен коор-													
	динатами этого векторами и коэффициентами линейной формы, где оба набора													
	 чисел найдены в одном и том же базисе. 													
2	Операции с линейными формами. Сопряженное пространство.													
	Определение 2.1. Линейные формы f и g будем называть равными, если								-		-	+		
	$f = g \Leftrightarrow f(v) = g(v), \forall v \in V$								+	-	+	+		_
	Определение 2.2. Линейная форма θ называется нулевой (нуль-формой), если								+	-	+	+		
	$\theta(v) = 0, \forall v \in V$								-	-	-	-		
+	Очевидно, что мы можем определить действия на множестве форм.								\dashv	-	+	+	-	
+	Определение 2.3. Суммой линейных форм f и g называется отображение $h = f + g$, для которого справедливо								-	-	-	-		
	$h(v) = f(v) + g(v), \forall v \in V$								_	_		_		
	Лемма 2.1. Отображение h является линейной формой.								_	_	_	_		
	Доказательство. Покажем справедливость свойства аддитивности:								_		_	_		
	$h(v_1 + v_2) = f(v_1 + v_2) + g(v_1 + v_2) = f(v_1) + f(v_2) + g(v_1) + g(v_2) =$								_	_	_	4		
	$= (f(v_1) + g(v_1)) + (f(v_2) + g(v_2)) = h(v_1) + h(v_2)$								_		_	_		
	Выполнение свойства однородности показывается аналогично.													
	Определение 2.4. Произведением линейной формы f на число $\alpha \in \mathbb{K}$ на-													
	зывается отображение $l=lpha f$ такое, что													
	$l(v) = \alpha \cdot f(v), \forall v \in V$													
	Доказательство. Аналогично лемме о сумме линейных форм.													
\top	Теорема 2.1. Множество линейных форм V^* , заданных на линейном про-													
	странстве V образует линейное (сопряженное) пространство.											\pm		
	Рассмотрим некоторый базис $\{e_i\}_{i=1}^n$ в пространстве V . Введем набор линейных форм $\{f^j\}_{j=1}^n$ следующим образом:								\dashv	+		+		
+	ных форм $\{f^j\}_{j=1}^p$ следующих образом: $f^j(v)=v_j,$								+		-	-		
+	$f'(v)=v_j,$ которая возвращает j -ю координату вектора $v\in V$ в базисе $\{e_i\}_{i=1}^n.$								\dashv	-	+	+		
+	которая возвращает j -ю координату вектора $v \in v$ в оазисе $\{e_i\}_{i=1}$. Очевидно, что для линейных форм из этого набора справедливо								\dashv	\dashv	+	+		
+	$f^{j}(e_{i}) = \delta_{i}^{j} = \begin{cases} 1, & \text{если } i = j, \\ 0, & \text{если } i \neq j \end{cases}$				+-				\dashv	-	-	+	-	
+	$\{0, \text{ если } i \neq j\}$								_	_		_		
					4				_		_	_		

3.	Базис сопряженного пространства. Сопряженные базисы Лемма 2.2. Набор линейных форм $\{f^j\}_{j=1}^n$ является базисом в сопряженном пространстве V^* .	I.										
	Доказательство. Чтобы показать справедливость утверждения, необходимо доказать полноту и линейную независимость этого набора. Покажем сначала											
	полноту: $f(v) = \sum_{i=1}^{n} \varphi_i v^i = \sum_{i=1}^{n} \varphi_i f^i(v) = \left(\sum_{i=1}^{n} \varphi_i f^i\right)(v)$											
	Аналогично с линейной независимостью. Предположим, что линейная ком-											
	— бинация форм с некоторыми коэффициентами α_i равна нуль-форме. $\sum_{i=1}^{n} \alpha_i f^i = \theta$											
	$\sum_{i=1}^{\alpha_{i} j} \alpha_{i} j = 0$ Применяя эту нуль-форму к произвольному базисному вектору, получим											
	$\left(\sum_{i=1}^{n} \alpha_{i} f^{i}\right)(e_{k}) = \theta(e_{k}) = 0$											
	$\sum_{i=1}^{n}$ Учитывая также свойства линейности и их определение											
	$\sum_{i=1}^{n} \alpha_{i} f^{i}(e_{k}) = 0 \qquad \Rightarrow \qquad \alpha_{k} f^{k}(e_{k}) = 0 \qquad \Rightarrow \qquad \alpha_{k} = 0$											
4.	Преобразование базиса сопряженного пространства и коэффициентов форбазиса.	рм при	пре	обр	азова	хрин						
	Теорема 2.2. Пусть $\{f^i\}_{i=1}^n$ и $\{f^i\}_{i=1}^n$ – базисы V^* , сопряженные соответственно базисам $\{e^j\}_{j=1}^n$ и $\{\bar{e}^k\}_{k=1}^n$. Тогда											
	$\widetilde{f}^l = \sum_{i=1}^{n} \sigma_i^l f^i$											
	где $(\sigma_i^l)=S$ — элементы обратной матрицы перехода, полагая $(\tau_k^j)=T$ —											
	матрица перехода из $\{e^j\}_{j=1}^n$ в $\{\tilde{e}^k\}_{k=1}^n$. Доказательство. По определению сопряженных базисов имеем											
	$\widetilde{f}^l(\widetilde{e}_k) = \sum_{i=1}^n \sigma_i^l f^i \left(\sum_{i=1}^n \tau_k^j e_j \right) = \sum_{i=1}^n \sum_{j=1}^n \sigma_i^l \tau_k^j f^i(e_j) =$											
	Откуда следует, что произведение матрицы, составленной из σ_i^l , на матрицу											
	перехода с элементами τ_k^t должно быть равно единичной матрице. А это есть не что иное как определение обратной матрицы.											
	Теорема 2.3. Преобразование координат формы в V^* при переходе от базиса $\{f^i\}_{i=1}^n$ к базису $\{\tilde{f}\}_{i=1}^n$ имеет вид											
	$\widetilde{\eta}_l = \sum_{i=1}^n \tau_l^i \eta_i \qquad (\widetilde{\eta}^1, \widetilde{\eta}^2, \dots, \widetilde{\eta}^n) = (\eta^1, \eta^2, \dots, \eta^n) \cdot T$											
	Доказательство.											
	$\widetilde{\eta_t} = f(\widetilde{e_t}) = \sum_{i=1}^n \eta_i f^i \left(\sum_{j=1}^n \tau_l^j e_j \right) = \sum_{i=1}^n \sum_{j=1}^n \eta_i \tau_l^j f^i(e_j) =$											
	$=\sum_{i=1}^n\sum_{j=1}^n\eta_i\tau_l^j\delta_j^i=\sum_{i=1}^n\tau_l^i\eta_i$											
5.	Изоморфизм сопряженных пространств. Второе сопряженное пространств	30.										
	Лемма 3.1. Пространство V и сопряженное пространство V^* изоморфны. Доказательство. Справедливость утверждения следует из того, что $\dim V = \dim V^*$ (мощности базисов равны), а следовательно											
	$V\simeq \mathbb{K}^n\simeq V^*$											
	Изоморфизм устанавливается введенным соответствием между базисами пространств V и V^* .											
	Отметим, что операцию нахождения сопряженного пространства можно применять итеративно.											
	Определение 3.1. Вторым сопряженным пространством называют $V^{**} = (V^*)^*$.											
	Элементами второго сопряженного пространства являются функции, также обладающие линейностью, от линейных форм.											
	Теорема 3.1. Между пространствами V и V^{**} можно установить изоморфизм без использования базиса (канонический изоморфизм).											
	Доказательство. Рассмотрим элементы второго сопряженного пространства $\widehat{v},\widehat{u}\in V^{**}$:											
	$\widehat{v}: V^* \to \mathbb{K}, \qquad \widehat{v}(f) \in \mathbb{K}$ $\widehat{v}(f+g) = \widehat{v}(f) + \widehat{v}(g), \qquad \widehat{v}(\alpha f) = \alpha \widehat{v}(f)$											
	$v(f+g) = v(f) + v(g), \qquad v(\alpha f) = \alpha v(f)$ $(\widehat{v} + \widehat{u})(f) = \widehat{v}(f) + \widehat{u}(f), \qquad (\alpha \widehat{v})(f) = \alpha \widehat{v}(f)$											
	Канонический изоморфизм устанавливается отношением											
	$\widehat{x} \leftrightarrow x: \widehat{v}(f) = f(v) \forall f \in V^*$											

6.	Бил	линейные формы. Определения, примеры.								
		Определение 1.1. Билинейной формой на линейном пространстве $V(\mathbb{K})$ называется такая функция $b:V\times V\to \mathbb{K},$ что $\forall x,x_1,x_2,y,y_1,y_2\in V,$ $\forall \lambda_1,\lambda_2\in \mathbb{K}$								
		выполняется: (а) Линейность по первому аргументу:								
		$b(\lambda_1 x_1 + \lambda_2 x_2, y) = \lambda_1 b(x_1, y) + \lambda_2 b(x_2, y)$								
		(6) Линейность по второму аргументу:								
		$b(x, \lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 b(x, y_1) + \lambda_2 b(x, y_2)$								
		Пример 1.1. Пусть $f,g\in V^*$ – линейные формы в пространстве $V(\mathbb{K})$. Билинейная форма может быть задана как								
		$b: V \times V \to \mathbb{K},$ $b(x, y) = f(x) \cdot g(y)$								
		Пример 1.2. Скалярное произведение геометрических векторов на плоскости (в пространстве) линейно по каждому из аргументов, а следовательно является билинейной формой.								
		Пример 1.3. Пусть $V = \mathbb{K}^n$ — арифметическое пространство. Билинейную форму можно задать как								
		$b(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \xi^{i} \eta^{j},$								
		где $x=(\xi^1,\xi^2,\ldots,\xi^n)^T\in V$ и $y=(\eta^1,\eta^2,\ldots,\eta^n)^T\in V$.								
_7.	Оп	перации с билинейными формами. Линейное пространство билинейных форм.								
	_	Рассмотрим $\mathrm{Bil}_{\mathbb{K}}(V)$ — множество всех билинейных форм с аргументами из							_	
		 Для этого множества справедливо следующее. 							-	
		(а) Билинейные формы $b,b'\in \mathrm{Bil}_{\mathbb{K}}(V)$ равны тогда и только тогда, когда принимают равные значения на одинаковых парах аргументов:								
		$b = b'$ \Leftrightarrow $b(x, y) = b'(x, y) \forall x, y \in V$								
		(6) Существует нулевая билинейная форма $\theta \in \mathrm{Bil}_{\mathbb{K}}(V)$, принимающая $0 \in \mathbb{K}$ на любой паре аргументов.								
		$\theta \in \mathrm{Bil}_{\mathbb{K}}(V): \qquad \theta(x,y) = 0, \forall x,y \in V$								
		(в) Может быть определена сумма билинейных форм $b,b'\in \mathrm{Bil}_{\mathbb{K}}(V)$ как отображение вида								
		$c = b + b'$ \Leftrightarrow $c(x, y) = b(x, y) + b'(x, y), \forall x, y \in V$								
		(r) Может быть определено умножение билинейной формы $b\in \mathrm{Bil}_{\mathbb{K}}(V)$ на скаляр $\lambda\in\mathbb{K}$ как отображение вида								
		$d = \lambda b \Leftrightarrow d(x, y) = \lambda b(x, y), \forall x, y \in V$								
		Лемма 1.1. Отображения с и d являются билинейными формами.								
		Доказательство. Аналогично соответствующим утверждениям для линей-								
		ных форм. Лемма 1.2. Множество $Bil_{\mathbb{K}}(V)$ наделено структурой линейного простран-								
		cmsa.								
		Доказательство. Можно убедиться путем прямой проверки аксиом линейного пространства.								
8.	Си	імметричные и антисимметричные билинейные формы. Определение 1.2. Билинейная форма $b \in \operatorname{Bil}_{\mathbb{K}}(V)$ называется симметрич-								
		определение 1.2. Билинеиная форма $b \in \mathrm{Bil}_{\mathbb{K}}(V)$ называется симметричной, если выполняется $b(x,y) = b(y,x)$. Определение 1.3. Билинейная форма $b \in \mathrm{Bil}_{\mathbb{K}}(V)$ называется антисиммет-								
		определение 1.3. Билиненная форма $b \in \mathrm{Big}(V)$ называется антисимметричной, если выполняется $b(x,y) = -b(y,x)$.								
		Замечание 1.3. Множество симметричных (антисимметричных) билинейных форм образует линейное подпространство $\mathrm{Bil}^S_{\mathbb{K}}(V)$ ($\mathrm{Bil}^{AS}_{\mathbb{K}}(V)$) в $\mathrm{Bil}_{\mathbb{K}}(V)$.								
		Из каждой билинейной формы может быть изготовлена симметричная форма:								
		$b^{S}(x,y) = \frac{1}{2}(b(x,y) + b(y,x)), b^{S} \in \text{Bil}_{\mathbb{K}}^{S}(V)$							_	
		Аналогично может быть изготовлена антисимметричная форма:							+	
		$b^{AS}(x,y) = \frac{1}{2}(b(x,y) - b(y,x)), b^{AS} \in \text{Bil}_{\mathbb{K}}^{AS}(V)$								
		Лемма 1.3. Сумма симметричной и антисимметричной формы, построен- ных согласно процедуре выше, дает исходную билинейную форму.								
		Доказательство. Убеждаемся непосредственной проверкой:								
		$b^S(x,y) + b^{AS}(x,y) = \frac{1}{2}(b(x,y) + b(y,x)) + \frac{1}{2}(b(x,y) - b(y,x)) = b(x,y)$								
		Лемма 1.4. Пространство билинейных форм представляется в виде пря- мой суммы подпространств симметричных и антисимметричных билиней- ных форм.								
		$\mathrm{Bil}_{\mathbb{K}}(V) = \mathrm{Bil}_{\mathbb{K}}^{S}(V) \oplus \mathrm{Bil}_{\mathbb{K}}^{AS}(V)$								
		Доказательство. Процедура изготовления симметричных (антисимметричных) форм, описанная выше, позволяет заключить, что								
		$\mathrm{Bil}_{\mathbb{K}}(V) = \mathrm{Bil}_{\mathbb{K}}^{S}(V) + \mathrm{Bil}_{\mathbb{K}}^{AS}(V)$								
		Покажем, что сумма будет прямой. Пусть билинейная форма $h(x,y)$ такова, что $h \in \operatorname{Bil}_{\mathbb{K}}^{K}(V) \cap \operatorname{Bil}_{\mathbb{K}}^{AS}(V)$. Тогда имеем								
		$\begin{cases} h(x,y) = h(y,x) \\ h(x,y) = -h(y,x) \end{cases} \Rightarrow h(y,x) = -h(y,x) \Rightarrow h(x,y) = 0 \forall x,y \in V$								
		В пересечении подпространств лежит только нулевая билинейная форма. Следовательно сумма является прямой.								

9. Ko	эффициенты билинейной формы. Матрица билинейной формы.	
	Предположим, что V – конечномерное линейное пространство. Зафиксируем в V базис $\{e_i\}_{i=1}^n$, где $n=\dim V$.	
	Определение 2.1. Коэффициентами β_{ij} билинейной формы $b(x,y)$ называются значения этой линейной формы на базисных векторах пространства.	
	$b(e_i,e_j)=eta_{ij}$ Теорема 2.1. Задание билинейной формы эквивалентно заданию ее значений	
	на базисных векторах, т.е. заданию ее коэффициентов. Доказательство. Пусть в выбранном базисе $\{e_i\}_{i=1}^n$ линейного простран-	
-	доказательство. Пусть в выоранном оазисе $\{e_i\}_{i=1}^n$ линейного пространства V билинейная форма $b(x,y)$ задана набором коэффициентов $\{\beta_{ij}\}_{i,j=1}^n$. Тогда $\forall x = \sum_{i=1}^n \xi^i e_i, y = \sum_{j=1}^n \eta^j e_j$:	
	$b(x,y) = b\left(\sum_{i=1}^n \xi^i e_i, \sum_{j=1}^n \eta^j e_j\right) = \sum_{i=1}^n \sum_{j=1}^n \xi^i \eta^j b(e_i, e_j) = \sum_{i=1}^n \sum_{j=1}^n \xi^i \eta^j \beta_{ij}$	
	По аналогии с линейными формами, коэффициенты которых можно представить в виде вектора-строки, существует аналогичное представление для билинейной формы.	
	Определение 2.2. Матрицей билинейной формы $b(x,y)$ называется матрица $B,$ составленная из ее коэффициентов.	
10. Изо	морфизм пространства билинейных форм и пространства матриц.	
	Лемма 2.1. Пространство билинейных форм $Bil_{\mathbb{K}}(V)$ изоморфно пространству квадратных матриц $M_n(\mathbb{K})$.	
	ству кваоратных матриц $M_n(\mathbb{R})$. Доказательство. Изоморфизм устанавливается следующим образом:	
	$b\leftrightarrow B$ $b'\leftrightarrow B'$	
	$b+b'\leftrightarrow B+B'$	
	$\lambda b \leftrightarrow \lambda B$	
	Соответствие между линейными операциями с билинейными формами и мат- рицами проверяется непосредственной проверкой определений.	
	Замечание 2.1. По этой же самой аналогии мы устанавливали изоморфизм между $V^* \simeq \mathbb{K}^n$, если $\dim V = n$. Мы снова наблюдаем идею "координатиза-	
	между V = м, если сип V = n. мы снова наолюдаем идею координатиза- ции"пространства. В данном случае "координатами"билинейной формы служат коэффициенты ее матрицы.	
	Замечание 2.2. Матрица симметричной (антисимметричной) билинейной формы является симметричной (антисимметричной).	
	$b^S \leftrightarrow B_S$ $B_S = B_S^T$	
	$b^{AS} \leftrightarrow B_{AS} \qquad B_{AS} = -B_{AS}^T$	
	В силу того, что матрица билинейной формы определяется как объект, зависящий от выбора базиса, то и смена базиса должна приводить к изменению матрицы билинейной формы. Действительно аналогичную ситуацию мы опять же уже встречали на примере строки коэффициентов линейной формы.	
_ 11 ∏n	еобразование матрицы билинейной формы при преобразовании базиса	
27.2	Теорема 2.2. Матрицы $B\ u\ B'$ билинейной формы $b(x,y)$, заданные в базисах	
	$\{e_i\}_{i=1}^n \ u \ \{e_j'\}_{j=1}^n \ c$ вязаны соотношением $B' = C^T B C,$	
	где $C = (c_j^i)$ - матрица перехода от базиса $\{e_i\}_{i=1}^n$ к базису $\{e_j'\}_{j=1}^n$.	
	Доказательство. Полагая, что известна матрица перехода $C=(c_j^i)$, компоненты нового базиса можно выразить через векторы старого базиса как	
	$e_j' = \sum_{i=1}^{n} c_j^i e_i$	
	$y = \sum_{i=1}^{n} y^{i}y^{i}$ Воспользуемся этим, чтобы получить компоненты матрицы билинейной формы	
	в новом базисе	
	$\beta'_{ij} = b(e'_i, e'_j) = b\left(\sum_{k=1}^n c^k_i e_k, \sum_{l=1}^n c^l_j e_l\right) = \sum_{k=1}^n \sum_{l=1}^n c^k_i c^l_j b(e_k, e_l) = \sum_{k=1}^n \sum_{l=1}^n c^k_i c^l_j \beta_{kl},$	
	-	
	где $\beta_{kl}=b(e_k,e_l)$ для всех $k,l=1,n$ - коэффициенты матрицы билинейной формы в старом базисе. Данное двойное суммирование означает ничто иное	
	как матричное умножение, которое можно записать в виде	
	$B' = C^T B C$	
45	Данное утверждение легко проверяется прямым раскрытием матричного умно-	
12. KB	адратичные формы. Определения, свойства.	
	Пусть $V(\mathbb{K})$ — линейное пространство над полем \mathbb{K} . Предположим также, что в этом линейном пространстве определена билинейная форма $b: V \times V \to \mathbb{K}$.	Лемма 3.1. Квадратичная форма является однородным полиномом степени
	Определение 3.1. Квадратичной формой на линейном пространстве V на-	2 от координат вектора.
	зывается отображение $q(v)$, построенное из билинейной формы $b(x,y)$ следующим образом:	Доказательство. Справедливы следующие рассуждения:
	$q:V\to\mathbb{K}, \qquad q(v)=b(v,v), \qquad \forall x\in V$	$q(\lambda v) = b(\lambda v, \lambda v) = \lambda^2 b(v, v) = \lambda^2 q(v)$
		Тем самым мы показали, что квадратичная форма является однородной функцией 2-го порядка. Зафиксируем теперь базис $\{e_i\}_{i=1}^n$ в пространстве V . Произвольный вектор можем разложить по этому базису единственным обра-
		3 ом $v=\sum_{i=1}^n v^i e_i$. Тогда квадратичная функция в координатном представлении имеет вид
		$q(v) = q\left(\sum_{i=1}^{n} v^{i}e_{i}\right) = b\left(\sum_{i=1}^{n} v^{i}e_{i}, \sum_{i=1}^{n} v^{j}e_{j}\right) =$
		$= \sum_{i=1}^{n} \sum_{j=1}^{n} v^{i} v^{j} b(e_{i}, e_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} v^{i} v^{j} \beta_{ij},$
		где β_{ij} – коэффициенты билинейной формы, по которой построена квадратичная форма $q(v)$.

13. По	строение билинейной формы из квадратичной. Свойства операции.									
	Пемма 3.2. По квадратичной форме $q(v)$ однозначно восстанавливается симметричная компонента билинейной формы $b(x,y)$.									
	Доказательство. Рассмотрим квадратичную форму от суммы векторов $x,y\in V$:									
	q(x+y) = b(x+y, x+y) = b(x, x) + b(x, y) + b(y, x) + b(y, y) = q(x) + b(x, y) + b(y, x) + q(y) - b(x + y) + b(y + y) +									
	Откуда $b(x,y) + b(y,x) = q(x+y) - q(x) - q(y)$									
	Если билинейную форму полагать симметричной, т.е. $b \in \mathrm{Bil}^S(V)$, то имеем									
	$b(x,y) = \frac{1}{2} (q(x+y) - q(x) - q(y))$									
	Замечание 3.2. Предыдущей леммой определяется взаимно однозначное соответствие между множеством квадратичных форм и множеством симметричных билинейных форм.									
	Замечание 3.3. Любой антисимметричной билинейной форме соответствует — нулевая квадратичная форма.									
	Замечание 3.4. Полагая, что билинейная форма описывается матрицей с коэффициентами β_{ij} , квадратичную форму можно также представить в виде:									
	$q(v) = \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} v^{i} v^{j} = \sum_{i=1}^{n} \beta_{ii} (v^{i})^{2} + 2 \sum_{i < j} \beta_{ij} v^{i} v^{j},$									
	где v^i-i -я координата вектора v в выбранном базисе.									
14. По	лилинейные формы. Основные определения и примеры.		+							
	Определение 1.1. Полилинейной формой на линейном пространстве $V(\mathbb{K})$ назовем отображение вида									
	$A: \underbrace{V \times \ldots \times V}_{p} \times \underbrace{V^{*} \times \ldots \times V^{*}}_{q} \to \mathbb{K}$		-							
	обладающее линейностью по каждому из аргументов									
	$\mathcal{A}(x_1, \dots, \alpha x_i' + \beta x_i'', \dots, x_p; \varphi^1, \dots, \varphi^q) =$ $= \alpha \mathcal{A}(x_1, \dots, x_i', \dots, x_p; \varphi^1, \dots, \varphi^q) + \beta \mathcal{A}(x_1, \dots, x_i'', \dots, x_p; \varphi^1, \dots, \varphi^q),$									
	где $x_i \in V$ и $\varphi^j \in V^*$.									
	Рассмотрим частные случаи полилинейных форм.									
	Определение 1.2. Валентностью полилинейной формы называют пару чисел (p,q) , определяющих количество векторов и ковекторов (линейных форм), являющихся аргументами данного отображения.									
	Пример 1.1. Линейные формы над V — это отображения вида									
	$f:V o \mathbb{K}$									
	Следовательно, линейная форма $\varphi \in V^*$ является ПЛФ валентности $(1,0)$.									
	Пример 1.2. Линейные формы над V^* — это отображения вида									
	$\widehat{x}:V^* o\mathbb{K}$									
	Следовательно, линейная форма $\hat{x} \in V^{**}$ является ПЛФ валентности $(0,1)$. Однако ранее обсуждалось, что между пространствами V и V^{**} существует естественный изоморфизм, определяемый как									
	$x \leftrightarrow \widehat{x}$ $(\widehat{x}, f) = (f, x) \forall f \in V^*$ $x \in V, \widehat{x} \in V^{**}$									
	Следовательно, можно утверждать, что ПЛФ валентности $(0,1)$ однозначно соответствует элемент линейного пространства V в силу обсуждаемого изомор-									
	физма. Пример 1.3. Билинейные формы над V — это отображения вида									
	$g: V imes V o \mathbb{K}$									
	Таким образом, билинейная форма— это ПЛФ валентности (2,0). Примером билинейной формы служит скалярное произведение двух геометрических век-									
	торов $q(x_1,x_2)=(x_1,x_2),$		1							
	а такж все другие примеры билинейных форм, которые рассматривались ранее. —		+	-						
	Пример 1.4. Можно также рассмотреть трилинейные формы как отображения — вида $\psi: V \times V \times V \to \mathbb{K}$ —									
	являющиеся ПЛФ валентности $(3,0)$. Отображения такого вида встречались в геометрии — это смешанное произведение трех векторов.									
	Пусть Ω_q^p — множество полилинейных форм валентности (p,q) .		1							
	Определение 2.1. Полилинейные формы $\mathcal{A}, \mathcal{B} \in \Omega^p_q$ одинаковой валентности будем называть равными, если									
	$\mathcal{A}(x_1,x_2,\ldots,x_p;\varphi^1,\varphi^2,\ldots,\varphi^q)=\mathcal{B}(x_1,x_2,\ldots,x_p;\varphi^1,\varphi^2,\ldots,\varphi^q)$ для любых наборов $x_1,x_2,\ldots,x_p\in V$ и $\varphi^1,\varphi^2,\ldots,\varphi^q\in V^*.$									
	Определение 2.2. Нуль-формой $\Theta \in \Omega^p_q$ называется такая полилинейная									
	форма, что $\Theta(x_1,x_2,\dots,x_p;\varphi^1,\varphi^2,\dots,\varphi^q)=0 \qquad \forall x_i\in V, \forall \varphi^j\in V^*$		_							
	Пусть $\mathcal A$ и $\mathcal B$ - полилинейные формы валентности $(p,q).$ Введем операции с									
	ними.									

15.	Дей	ствия с полилинейными формами: сложение и умножение на скаляр.								
		2.1. Линейные операции								
		Определение 2.3. Отображение $C = A + B$ будем называть суммой полили- нейных форм A и B , если								
		$\mathcal{C}(x_1, x_2, \dots, x_p; \varphi^1, \varphi^2, \dots, \varphi^q) =$								
	_	$= \mathcal{A}(x_1, x_2, \dots, x_p; \varphi^1, \varphi^2, \dots, \varphi^q) + \mathcal{B}(x_1, x_2, \dots, x_p; \varphi^1, \varphi^2, \dots, \varphi^q)$	_							
		для любых наборов $x_1, x_2, \ldots, x_p \in V$ и $\varphi^1, \varphi^2, \ldots, \varphi^q \in V^*.$								
	_	Лемма 2.1. Отображение C , определенное как сумма полилинейных форм $A, B \in \Omega_o^p$ является полилинейной формой из Ω_o^p								
		Доказательство. Доказательство строится также как аналогичное доказательство для линейных и билинейных форм.								
		Определение 2.4. Отображение $\lambda \mathcal{A}$ будем называть произведением полилинейной формы \mathcal{A} на скаляр λ , если								
		$(\lambda \mathcal{A})(x_1, x_2, \dots, x_p; \varphi^1, \varphi^2, \dots, \varphi^q) = \lambda \cdot \mathcal{A}(x_1, x_2, \dots, x_p; \varphi^1, \varphi^2, \dots, \varphi^q)$								
		для любых наборов $x_1, x_2, \ldots, x_p \in V$ и $\varphi^1, \varphi^2, \ldots, \varphi^q \in V^*.$								
		Лемма 2.2. Отображение $\lambda \mathcal{A}$, определенное как произведение полилинейной формы $\mathcal{A} \in \Omega^p_q$ на скаляр $\lambda \in \mathbb{K}$ является полилинейной формой из Ω^p_q								
		Доказательство. Доказательство строится также как аналогичное доказательство для линейных и билинейных форм.								
16.	Сог	пашение о немом суммировании. Принципы. применение.								
		Прежде чем перейдем к дальнейшим рассуждениям, отметим следующий факт. Наличие большого количества индексов в случае анализа линейных объ-								
		ектов нередко приводит к большому количеству суммирований как в теоретиче- ских выкладках, так и в практических приложениях тензоров. По этой причине	+							
		вводится так называемое правило суммирования Эйнштейна, или соглаше-	+							
		ние о немом суммировании. В контексте данной темы договоримся о следующем:	+							
		 (а) Если в одночлене присутствует одинаковый верхний и нижний индекс, то подразумевается суммирование по нему: 								
		$a^ib_i = \sum_i a^ib_i$								
		(б) Индекс, по которому происходит суммирование, называют немым в силу того, что его обозначение не принципиально, т.е.								
		$a^ib_i=a^jb_j=a^kb_k$								
		(в) Необходимо соблюдение баланса индексов. Если индекс не является немым,								
		то в левой и правой частях равенства должны присутствовать одни и те же индексы, а также должен быть неизменным их порядок, т.е.	+							
		$a_{ik}b^{kl}=c_i^l$								
17.	Дей	іствия с полилинейными формами: произведение ПЛФ.								
		Определение 2.5. Произведением полилинейных форм $\mathcal{A} \in \Omega^{p_1}_{q_1}$ и $\mathcal{B} \in \Omega^{p_2}_{q_2}$ называют отображение $\mathcal{C} = \mathcal{A} \cdot \mathcal{B}$ определяемое как								
		$A(x_1, \dots, x_{p_1}; \varphi^1, \dots, \varphi^{q_1}) \cdot B(x_{p_1+1}, \dots x_{p_1+p_2}; \varphi^{q_1+1}, \dots \varphi^{q_1+q_2}) =$								
		$= \mathcal{C}(x_1, \dots, x_{p_1}, x_{p_1+1}, \dots x_{p_1+p_2}; \varphi^1, \dots, \varphi^{q_1}, \varphi^{q_1+1}, \dots \varphi^{q_1+q_2})$								
		Замечание 2.1. Произведение полилинейных форм валентностей (p_1, q_1) и (p_2, q_2) всегда позволяет получить полилинейную форму валентности $(p_1 + p_2, q_1 +$								
		(р2, q2) всегда позволяет получить полимненную форму валентности (р1+р2, q1+q2). Однако не каждая полилинейная форма валентности (р, q) может быть представлена (разложена) в произведение полилинейных форм валентно-	_							
		представлена (разложена) в произведение полилиненных форм валентностей (p_1,q_1) и (p_2,q_2) , даже если $p_1+p_2=p$ и $q_1+q_2=q$.								
		Лемма 2.3. Отображение С, введенное как произведение полилинейных форм, является полилинейной формой.								
		$\mathcal{C} \in \Omega^{p_1+p_2}_{q_1+q_2}$	+							
		Доказательство. Не теряя общности, мы можем показать линейность по пер-								
		вому векторному аргументу. Для остальных доказательство может быть по- строено аналогичным образом, но его запись при этом усложнится значительно.								
		Пусть произведение полилинейных форм задается следующим образом:								
		$\mathcal{C}(x,\ldots;\ldots)=\mathcal{A}(x,\ldots;\ldots)\cdot\mathcal{B}(\ldots,\ldots;\ldots),$ где через многоточия обозначены остальные аргументы всех полилинейных форм								
		согласно определению выше.								
		При этом, если аргумент x представлен линейной комбинацией $x=\alpha_1x_1+\alpha_2x_2,$ имеем		-						
		$C(\alpha_1 x_1 + \alpha_2 x_2,;) = A(\alpha_1 x_1 + \alpha_2 x_2,;) \cdot B(;) =$ = $(\alpha_1 A(x_1,;) + \alpha_2 A(x_2,;)) \cdot B(;) =$	+							
		$=\alpha_1\mathcal{A}(x_1,\ldots;\ldots)\cdot\mathcal{B}(\ldots;\ldots)+\alpha_2\mathcal{A}(x_2,\ldots;\ldots)\cdot\mathcal{B}(\ldots;\ldots)=$								
		$= \alpha_1 \mathcal{C}(x_1,\ldots;\ldots) + \alpha_2 \mathcal{C}(x_2,\ldots;\ldots),$ где мы воспользовались свойством полилинейности отображения \mathcal{A} . В силу того,	+							
		тде мы воспользовались своиством полилинейности отооражения А. В силу того, что это отображение линейно по каждому из аргументов, данные рассуждения справедливы по набору его аргументов. А также в силу того, что отображение В								
		тоже является полилинейным, свойство линейности отображения ${\mathcal C}$ по каждому								
		из аргументов набора из В.								
			_							
			+							
									-	

18	. Св	ойства произведения полилинейных форм.										
10	-	(а) Некоммутативность										
		$\mathcal{A} \cdot \mathcal{B} eq \mathcal{B} \cdot \mathcal{A}$										
		Данное свойство очевидно вытекает из определения произведения в силу того, что порядок произведения A и B определяет порядок аргументов в C . Однако продемонстрируем это свойство на более простом примере. Рассмотрим следующие полилинейные формы, определенные как произ-										
		ведения обычных линейных форм $f^1, f^2 \in V^*$										
		$C_1 = f^1 \cdot f^2 \qquad \Rightarrow \qquad C_1(x, y) = f^1(x) \cdot f^2(y)$										
		$C_2 = f^2 \cdot f^1 \qquad \Rightarrow \qquad C_2(x, y) = f^2(x) \cdot f^1(y)$										
		(6) Ассоциативность $A \cdot (B \cdot C) = (A \cdot B) \cdot C$										
	_	(в) Нуль-форма										
		$A \cdot \Theta_{(p_2,q_2)} = \Theta_{(p_1,q_1)} \cdot \mathcal{B} = \Theta_{(p_1+p_2,q_1+q_2)}$										
		(г) Законы согласования операций (дистрибутивность)										
		$A \cdot (B + C) = A \cdot B + A \cdot C$									-	
		$(A + B) \cdot C = A \cdot C + B \cdot C$										
10	Tour	$(\alpha \mathcal{A}) \cdot \mathcal{B} = \alpha (\mathcal{A} \cdot \mathcal{B}) = \mathcal{A} \cdot (\alpha \mathcal{B})$. 6								-	
19.	. тен	зор ПЛФ. Определение. Эквивалентность между ПЛФ и ее тензором в пар Зафиксируем в $V(\mathbb{K})$ базис $\{e_i\}_{i=1}^n$ и построим к нему сопряженный базис	e oası	исов		-					-	
		Зафиксируем в V (ж) базис $\{e_i\}_{i=1}^n$ и построим к нему сопраженный базис $\{f^j\}_{j=1}^n$ в пространстве V^* . Вспомним, что эти базисы связаны соотношением				-						
		$f^{j}(e_{i}) = \delta_{i}^{j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$										
		Определение 3.1. Тензором полилинейной формы ${\cal C}$ валентности (p,q) на-										
		зывается набор из n^{p+q} скаляров, определяемых как действие полилинейной формы на всевозможных наборах базисных векторов.										
		$c_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} = \mathcal{C}(e_{i_1}, e_{i_2}, \dots, e_{i_p}; f^{j_1}, f^{j_2}, \dots, f^{j_q}),$										
		где индексы i_1, i_2, \ldots, i_p и j_1, j_2, \ldots, j_q принимают значения $1,, n$, где $n = \dim V$ — это размерность пространства V .										
		Теорема 3.1. Задание тензора эквивалентно заданию его компонент в паре										
		базисов пространств V и V^* .										
		Доказательство. Рассмотрим набор векторов x_1, \dots, x_p и форм $\varphi^1, \dots, \varphi^q$, заданных своими разложениями по базисам										
		$x_k = \sum_{i=1}^n \xi_k^i e_i = \xi_k^i e_i$ $\varphi^l = \sum_{i=1}^n \eta_j^l f^j = \eta_j^l f^j$										
		$i=1$ $j=1$ Применим к ним тензор $\mathcal{C}(x_1,\dots,x_p;\varphi^1,\dots,\varphi^q)$ и воспользуемся его линейными свойствами										
		$C(x_1, \dots, x_p; \varphi^1, \dots, \varphi^q) = C(\xi_1^{i_1} e_{i_1}, \dots, \xi_p^{i_p} e_{i_p}; \eta_{j_1}^1 f^{j_1}, \dots, \eta_{j_q}^q f^{j_q}) =$										
		$= \xi_1^{i_1} \xi_2^{i_2} \dots \xi_p^{i_p} \eta_{j_1}^1 \eta_{j_2}^2 \dots \eta_{j_q}^q \mathcal{C}(e_{i_1}, e_{i_2}, \dots, e_{i_p}; f^{j_1}, f^{j_2}, \dots, f^{j_q}) =$									_	
		$=\xi_1^{i_1}\xi_2^{i_2}\dots\xi_p^{i_p}\eta_{j_1}^1\eta_{j_2}^2\dots\eta_{j_q}^qc_{i_1i_2\dots i_p}^{j_1j_2\dots j_q},$										
		где в данной записи мы как раз воспользовались соглашением о немом суммировании.										
20.		он преобразования компонент тензора при замене базиса. Пусть $V(\mathbb{K})$ — линейное пространство размерности $n=\dim_{\mathbb{K}}V$, а V^* — сопряженное к нему пространство. Определим в этих пространствах по паре базисов — "старый" и "новый":										
		$V: \{e_i\}_{i=1}^n, \{e'_k\}_{k=1}^n$				_						
		$V^*: \{f^j\}_{j=1}^n, \{f'^l\}_{l=1}^n$									4	
		При этом между парами базисов из соответствующих пространств можно определить преобразование при помощи матрицы перехода $T=\{\tau_k^i\}$ и обратной к ней $S=\{\sigma_j^i\}$:										
		$e_k' = e_j \tau_k^i \qquad f'^l = \sigma_j^l f^j,$									T	
		где для записи преобразований мы сразу воспользовались соглашением о немом суммировании.										
		При этом для координат векторов $x = (\xi^1, \dots, \xi^n)$ и коэффициентов линейных форм $f = (\eta_1, \dots, \eta_n)$ вводятся аналогичные преобразования:										
		ных форм $j=(\eta_1,\ldots,\eta_n)$ вводятся аналогичные преобразования: $\xi'^k=\sigma_i^k\xi^i \qquad \eta_i'=\eta_j\tau_i^l,$										
		$\xi^{} = \sigma_i^* \xi^*$ $\eta_l = \eta_j \tau_j^*,$ Откуда мы можем сделать выводы, что в принятых в данном курсе обозначе-										
		ниях, объекты, имеющие верхние индексы преобразуются при помощи обратной				+				+	+	
		матрицы перехода S , а те объекты, что имеют нижние индексы, преобразуются при помощи исходной матрицы перехода T .				+					+	
		Обобщим этот результат на тензор полилинейной формы $\mathcal{A} \in \Omega_q^p$ и закон преобразования его компонент при замене базиса. В согласии с определением										
		из предыдущей лекции, введем тензор в новом базисе.										
		$a'^{l_1 l_2 \dots l_q}_{l_1 l_2 \dots l_q} = A(e'_{l_1}, e'_{l_2}, \dots, e'_{l_p}; f'^{l_1}, f'^{l_2}, \dots, f'^{l_q}) \Longrightarrow$										
		Теперь воспользуемся введенными преобразованиями базиса, чтобы записать				-					+	
		выражение через элементы "старых" базисов:									+	
		$\mapsto = \mathcal{A}(e_{i_1}\tau_{k_1}^{i_1}, e_{i_2}\tau_{k_2}^{i_2}, \dots, e_{i_p}\tau_{k_p}^{i_p}; \sigma_{j_1}^{l_1}f^{j_1}, \sigma_{j_2}^{l_2}f^{j_2}, \dots, \sigma_{j_q}^{l_q}f^{j_q}) =$				-					_	
		$=\tau_{k_1}^{i_1}\tau_{k_2}^{i_2}\dots\tau_{k_p}^{i_p}\sigma_{j_1}^{l_1}\sigma_{j_2}^{l_2}\dots\sigma_{j_q}^{l_q}\mathcal{A}(e_{i_1},e_{i_2},\dots,e_{i_p};f^{j_1},f^{j_2},\dots,f^{j_q})=$									_	
		$= \tau_{k_1}^{i_1} \tau_{k_2}^{i_2} \dots \tau_{k_p}^{i_p} \sigma_{j_1}^{l_1} \sigma_{j_2}^{l_2} \dots \sigma_{j_q}^{l_q} a_{i_1 i_2 \dots i_p}^{i_1 j_2 \dots j_q},$										
		где мы воспользовались тем, что отображение <i>А</i> является линейным по каждому из аргументов, а также то, что в каждом аргументе подразумеваются именно										
		линейные операции (немое суммирование и умножение на скаляры из матриц перехода).										
		перехода). Таким образом доказано следующее утверждение.										
		Теорема 1.1. Тензор полилинейной формы при замене базиса преобразуется										
		no закону: $a_{k_1k_2k_p}^{l_1l_2l_q} = \tau_{k_1}^{i_1}\tau_{k_2}^{i_2}\dots\tau_{k_p}^{i_p}\sigma_{j_1}^{l_1}\sigma_{j_2}^{l_2}\dots\sigma_{j_q}^{l_q}a_{i_1i_2i_p}^{i_1j_2j_q}$										

21	. Операция свертки ПЛФ и тензора.						
	Определение 2.1. Сверткой полилинейной формы $\mathcal{A} \in \Omega^p_q$ называется отобра-	-					
	жение, результатом которого является функция \mathcal{B} от $p-1$ векторного аргумента и $q-1$ ковекторного аргумента, определяемая как						
	$\mathcal{B}(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_p;\varphi^1,\ldots,\varphi^{l-1},\varphi^{l+1},\ldots,\varphi^q)=$						
	$= \mathcal{A}(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_p, \varphi, \dots, \varphi, \varphi^1, \dots, \varphi^q) =$ $= \mathcal{A}(x_1, \dots, x_{k-1}, \mathbf{e_r}, x_{k+1}, \dots, x_p; \varphi^1, \dots, \varphi^{l-1}, \mathbf{f^r}, \varphi^{l+1}, \dots, \varphi^q)$						
	полагая, что в правой части производится суммирование по немому индексу r .						
	Рассмотрим компоненты полученной полилинейной формы и введем для них обозначения в паре базисов $\{e_i\}_{i=1}^n$ и $\{f^j\}_{j=1}^n$						
	$A \longleftrightarrow a^{j_1j_{l-1}j_lj_{l+1}j_q}$						
	$egin{array}{lll} \mathcal{A} & \leftrightarrow & a_{i_1i_{k-1}i_ki_{k+1}i_p}^{j_1j_{l-1}j_lj_{l+1}j_q} \ \mathcal{B} & \leftrightarrow & b_{i_1i_{k-1}i_{k+1}i_p}^{j_1j_{l-1}j_{l+1}j_q} \end{array}$						
	\mathcal{B} Компоненты полилинейной формы \mathcal{B} связаны с компонентами полилинейной						
	формы \mathcal{A} соотношением						
	$b_{i_1i_{k-1}i_{k+1}i_p}^{j_1j_{l-1}j_{l+1}j_q} = a_{i_1i_{k-1}\mathbf{r}i_{k+1}i_p}^{j_1j_{l-1}\mathbf{r}j_{l+1}j_q},$						
	которое получается из рассмотрения определения свертки при подстановке в						
	них базисных векторов в качестве аргументов согласно определению тензора полилинейной формы.						
22.	Символ Кронекера и его связь со скалярным произведением.						
	Определение 3.1. Символ Кронекера δ_{ij} — это дважды ковариантный тензор						
	типа (2,0), компоненты которого задаются как:						
	$\delta_{ij} = egin{cases} 1, & i = j, \ 0, & i eq j. \end{cases}$						
	Замечание 3.2. В случае ДПСК справедливо свойство:	-					
	$\delta_{ij}a^j=a_i,$	-					
		+					
	которое называют операцией поднятия и опускания индекса. Данное свойство справедливо не только в ДПСК и в дальнейших частях курса мы обобщим это						
	свойство для произвольных систем координат.						
	 С учетом этого свойства символ Кронекера оказывается полезным при запи- си скалярного произведения в ДПСК: 						
	$\mathbf{a} \cdot \mathbf{b} = a^i b^j g_{ij} = a^i b_i = \sum_{i=1}^n a^i b_i.$						
23	. Символ Леви-Чивита. Определение, свойства.						
	Определение 3.2. Символ Леви-Чевиты ε_{ijk} — это трижды ковариантный						
	тензор типа (3,0), компоненты которого в ДПСК задаются как:						
	$\varepsilon_{ijk} = \begin{cases} +1, & \text{если } (i,j,k) - \text{чётная перестановка } (1,2,3), \\ -1, & \text{если } (i,j,k) - \text{нечётная перестановка,} \\ 0, & \text{иначе (если есть повторяющиеся индексы).} \end{cases}$						
	0, иначе (если есть повторяющиеся индексы).						
	Замечание 3.3. Символ Леви-Чивиты обладает свойством:						
	$\varepsilon_{ijk} = -\varepsilon_{ijk} = -\varepsilon_{ikj}$,						
	которое называют антисимметричностью тензора. Это свойство напрямую сле-						
	которое называют антисимметричностью тензора. Это своиство напрямую следует из определения.						
24.	Связь символа Леви-Чивита с векторным и смешанным произведением.						
	Перейдем к применению этого тензора в геометрии. Компоненты векторного произведения $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ в ДПСК выражаются через символ Леви-Чевиты:						
	$c_i = (\mathbf{a} \times \mathbf{b})_i = \varepsilon_{ijk} a^j b^k.$						
	$e_i = (\mathbf{u} \wedge \mathbf{b})_i = e_{ijk}\mathbf{u} \cdot \mathbf{b}$. В координатной форме:						
	$\mathbf{c} = \left(\varepsilon_{1jk}a^{j}b^{k}, \varepsilon_{2jk}a^{j}b^{k}, \varepsilon_{3jk}a^{j}b^{k}\right).$						
	Действительно, векторное произведение в ДПСК в полной форме может быть записано следующим образом						
	$\mathbf{a} \times \mathbf{b} = (a^2b^3 - a^3b^2)\mathbf{i} + (a^3b^1 - a^1b^3)\mathbf{j} + (a^3b^2 - a^2b^3)\mathbf{k}$						
	Смешанное произведение трёх векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ в \mathbb{R}^3 :						
	$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (a^i) \cdot (\varepsilon_{ijk} b^j c^k) = \varepsilon_{ijk} a^i b^j c^k.$						
	Наконец перейдем к еще одному обобщению применения символа Леви-Чивиты						
	не только на геометрические задачи. Вспомним, что в ДПСК смешанное про- изведение может быть найдено при помощи определителя:						
	$\begin{pmatrix} a^1 & a^2 & a^3 \end{pmatrix}$						
	$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \det \begin{pmatrix} a^1 & a^2 & a^3 \\ b^1 & b^2 & b^3 \\ c^1 & c^2 & c^3 \end{pmatrix},$						
	но тогда можно предположить, что и определитель произвольной тройки векто-						
	ров может быть найден при помощи операции свертки векторов-столбцов мат-						
	рицы с символом Леви-Чивиты.						

25. Связь символа Леви-Чивита с определителями матриц.	
Определение 3.3. Символ Леви-Чевиты $\varepsilon_{i_1i_2i_n}$ в n -мерном пространстве —	
это полностью антисимметричный тензор типа $(0,n)$ с n индексами. Его компо-	
ненты в любой декартовой системе координат определяются следующим обра- зом:	
$\{+1, \;\; $ если $(i_1,i_2,\ldots,i_n) - $ чётная перестановка чисел $(1,2,\ldots,n),$	
$\varepsilon_{i_1 i_2 \dots i_n} = \begin{cases} +1, & \text{если } (i_1, i_2, \dots, i_n) - \text{чётная перестановка чисел } (1, 2, \dots, n), \\ -1, & \text{если } (i_1, i_2, \dots, i_n) - \text{нечётная перестановка,} \\ 0, & \text{во всех остальных случаях (если есть повторяющиеся индексы).} \end{cases}$	
(0, во всех остальных случаях (если есть повторяющиеся индексы).	
Пояснение:	
• Антисимметричность: Перестановка любых двух индексов меняет знак	
символа:	
$\varepsilon_{ij} = -\varepsilon_{ji}$	
• Ненулевые компоненты: Отличны от нуля только компоненты, где все индексы различны и образуют перестановку чисел $1, 2, \dots, n$.	
• Знак перестановки: Чётность перестановки определяется количеством транспозиций, необходимых для восстановления исходного порядка $(1, 2,, n)$.	
Для квадратной матрицы $A=(A_{ij})$ размера $n \times n$ её определитель выражается как:	
$\det A = \varepsilon_{i_1 i_2 \dots i_n} a_1^{i_1} a_2^{i_2} \dots a_2^{i_2}$	
Учтем, что в силу соглашения Эйнштейна здесь производится суммирование	
по всем индексам i_1, i_2, \ldots, i_n , а сам символ Леви-Чивиты принимает значение только $+1$ или -1 . Это приводит нас к определителю матрицы n -го порядка	
$\det A = \sum_{\sigma(1,\dots,n)} (-1)^{[\sigma]} a_1^{i_1} a_2^{i_2} \dots a_2^{i_2}$	
В данном случае, под σ подразумевается преобразование переупорядочива-	
ния индексов.	
26. Линейные отображения. Основные определения, примеры.	
Определение 1.1. Отображение $\varphi:V o W$ линейного пространства V в	
линейное пространство W называется линейным, если $\forall x, x_1, x_2 \in V, \forall \alpha \in \mathbb{K}$ выполяются следующие свойства	
$\varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2), \qquad \varphi(\alpha x) = \alpha \varphi(x)$	
Замечание 1.1. Множество линейных отображений действующих их $V(\mathbb{K})$ в $W(\mathbb{K})$ будем обозначать $\mathrm{Hom}_{\mathbb{K}}(V,W)$.	
Пример 1.1. Примеры линейных отображений:	
(а) Нулевое отображение:	
$\mathcal{O}: V \to W \qquad \mathcal{O}x = 0_W, \qquad \forall x \in V$	
(б) Тождественное отображение:	
$\mathcal{I}: V \to V \qquad \mathcal{I}x = x, \qquad \forall x \in V$	
(r) Postavious	
(в) Растяжение: $\varphi\colon V\to V \qquad \varphi x=\lambda x, \qquad \forall x\in V$	
(г) Пусть V разбивается в прямую сумму подпространств $V=V_1\oplus V_2$. Тогда	
проектором будем называть отображение:	
$\mathcal{P}_{V_{i}}^{\parallel V_{2}}: V \to V, \qquad \mathcal{P}_{V_{i}}^{\parallel V_{2}} x = x_{1}, \qquad \forall x_{1} \in V_{1}$	
(д) Пусть $\mathbb{R}^{\leq n}[t]$ — пространство полиномов степени не выше n , а символом \mathcal{D} будем обозначать дифференцирование	
$\mathcal{D}p = \frac{dp}{dt}, \qquad \forall p \in \mathbb{R}^{\leqslant n}[t]$	
(е) Пусть $M_n(\mathbb{K})$ — пространство квадратных матриц n -го порядка, на котором введены отображения симметризации Sym и антисимметризации	
Asym	
$\operatorname{Sym}(A) = \frac{1}{2}(A + A^T)$ $\operatorname{Asym}(A) = \frac{1}{2}(A - A^T)$	

27 M	Introduce displayers exceptions and a second											
27.10	атрица линейного отображения.											
	Пусть $\varphi:V\to W$, причем $\dim_{\mathbb{K}}V=n,\dim_{\mathbb{K}}W=m,$ а также $\{e_i\}_{i=1}^n$ и											
	$\{g_j\}_{j=1}^m$ — базисы пространств V и W соответственно.											
	Определение 2.1. Матрицей линейного отображения φ в паре базисов $\{e_i\}_{i=1}^n$											
	и $\{g_j\}_{j=1}^m$ называется матрица $A_{\varphi}=\{\alpha_i^j\}$, в столбцах которой находятся коор-											
	динаты образов векторов базиса $\{e_i\}$ в базисе $\{g_j\}$						-	-				
							-	-	+			
	$\varphi e_i = \sum_{i=1}^{m} \alpha_i^j g_j$						_					
	Пример 2.1. (а) Нулевое отображение											
	$\begin{pmatrix} 0 & 0 & \dots & 0 \end{pmatrix}$											
	$\mathcal{O} o \Theta = \left(egin{array}{cccc} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots \end{array} \right)$											
	$\begin{pmatrix} \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}$											
	(б) Тождественное отображение											
	(1 0 0)											
	$\mathcal{I} \to E = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots \end{pmatrix}$						-	-	+			
							-	-	+			
								_				
	(в) Матрица проектора на $V_1,$ если $V=V_1\oplus V_2,$ найденная в базисе, согласо-							_	-		_	
	ванном с обоими подпространствами						_	_				
	$\mathcal{P}_{V_1}^{\parallel V_2} ightarrow P_1 = egin{pmatrix} E & 0 \ 0 & \Theta \end{pmatrix}$											
	$V_1 \rightarrow V_1 = \begin{pmatrix} 0 & \Theta \end{pmatrix}$											
	Tak kak											
	$\mathcal{P}_{V_1}^{\parallel V_2} x = x, \qquad \mathcal{P}_{V_1}^{\parallel V_2} x = 0, \qquad \forall x \in V_1$											
	Теорема 2.1. Задание линейного отображения φ эквивалентно заданию его											
	матрицы A_{φ} в фиксированной паре базисов.											
	Доказательство. Пусть $\varphi \in \operatorname{Hom}_{\mathbb{K}}(V,W)$ — линейное отображение и $\{e_i\}_{i=1}^n$,											
	$\{g_j\}_{j=1}^m$ — базисы пространств V и W соответственно. Рассмотрим элементы $x \in V$ и $y \in W$ такие, что											
	$x = \sum_{i=1}^{n} \xi^{i} e_{i}, y = \sum_{i=1}^{m} \eta^{j} g_{j}, \varphi(x) = y$						-					
	, j-1						-					
	Действие отображения на элемент x можно представить как							_	+			
	$\varphi(x) = \varphi\left(\sum_{i=1}^{n} \xi^{i} e_{i}\right) = \sum_{i=1}^{n} \xi^{i} \varphi(e_{i}) = \sum_{i=1}^{n} \xi^{i} \sum_{j=1}^{m} \alpha_{i}^{j} g_{j} = \sum_{j=1}^{m} \eta^{j} g_{j}$	-					-	_	+			
	$\varphi(x) = \varphi\left(\sum_{i=1}^{j} \zeta^{i} c_{i}\right) = \sum_{i=1}^{j} \zeta^{i} \varphi(c_{i}) = \sum_{i=1}^{j} \zeta^{i} \sum_{j=1}^{j} \zeta^{i} g_{j}$											
	Откуда следует, что											
	$\eta^j = \sum_{i=1}^n \xi^i \alpha_i^j$											
	i = 1											
28. Մ	Іинейное пространство линейных отображений.											
	Определение 3.1. Линейные отображения φ и ψ будем считать равными, если	И										
	$\forall x \in V \qquad \varphi(x) = \psi(x)$											
	Определение 3.2. Отображение $\chi:V o W$ называется суммой линейных	X										
	отображений $\varphi, \psi: V \to W$, если											
	$\forall x \in V \qquad \chi(x) = \varphi(x) + \psi(x)$	+										
	Лемма 3.1. Сумма $\chi = \varphi + \psi$ линейных отображений является линейных	м										
	отображением.											
	Доказательство. Для доказательства необходимо рассмотреть линейные свой	i-										
	ства суммы линейных отображений:	+					-	_				
	$\chi(x_1 + x_2) = \varphi(x_1 + x_2) + \psi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2) + \psi(x_1) + \psi(x_2) = \varphi(x_1 + x_2) + \psi(x_1 + x_2) + \psi(x_1 + x_2) + \psi(x_1 + x_2) = \varphi(x_1 + x_2) + \psi(x_1 + x_2) $	+					-	-				
	$= (\varphi + \psi)(x_1) + (\varphi + \psi)(x_2) = \chi(x_1) + \chi(x_2)$	+							-			
	$\chi(\alpha x) = \varphi(\alpha x) + \alpha \psi(\alpha x) = \alpha \varphi(x) + \alpha \psi(x) = \alpha(\varphi + \psi)(x) = \alpha \chi(x)$	+					_					
		٦ +					_	_				
	Определение 3.3. Отображение ω называется произведением линейного ото	б-					_					
	ражения φ на число $\lambda \in \mathbb{K}$, если											
	$\forall x \in V \qquad \omega(x) = \lambda \varphi(x)$											
	Лемма 3.2. Произведение $\omega = \lambda \varphi$ линейного отображения на скаляр являет линейным отображением.	ся										
		_										
	Теорема 3.1. Множество всех линейных отображений из пространства V о пространство W является линейным пространством над полем К.	6										
	-Доказательство. Доказательство сводится к проверке аксиом линейного про	_	_					_			_	
	_странства.					\vdash	-	_	+	\vdash		

29. Изоморфизм линейных пространств линейных отображений и матриц.	
Замечание 3.1. В силу того, что между отображением и его матрицей в фик-	
сированной паре базисов пространств V и W устанавливается соответствие, ко- торое к тому же сохраняет свойства линейности, можно утверждать, что про-	
странство $\mathrm{Hom}_{\mathbb{K}}(X,Y)$ изоморфно матричному пространству $M_{m\times n}(\mathbb{K})$.	
$\operatorname{Hom}_{\mathbb{K}}(X,Y) \simeq M_{m \times n}(\mathbb{K})$	
30. Композиция линейных отображений и связь с матричными операциями.	
Пусть $\varphi \in \text{Hom}_{\mathbb{K}}(V,U)$ и $\psi \in \text{Hom}_{\mathbb{K}}(U,W)$ — линейные отображения между соответствующими пространствами.	
Определение 3.4. Отображение $\chi:V\to W$ называется композицией линейных отображений ψ и φ , если	
$\forall x \in V: \qquad \chi(x) = (\psi \circ \varphi)(x) = \varphi(\varphi(x))$	
Лемма 3.3. Композиция $\chi=\psi\circ\varphi$ линейных отображений является линейным отображением.	
Доказательство . Рассмотрим образ линейной комбинации векторов из V	
$\chi\left(\sum_{i=1}^k \alpha^i x_i\right) = (\psi \circ \varphi)\left(\sum_{i=1}^k \alpha^i x_i\right) = \psi\left(\sum_{i=1}^k \alpha^i \varphi(x_i)\right) = \sum_{i=1}^k \alpha^i \psi(\varphi(x_i)) = \sum_{i=1}^k \alpha^i \chi(x_i)$	
Следствие 3.1.1. Матрица композиции линейных отображений $\chi=\psi\circ\varphi$	
определяется произведением матриц B_{ψ} и A_{φ} .	
$C_\chi = B_\psi \cdot A_{arphi}$ 31. Преобразование матрицы линейного оператора при преобразовании базиса.	
kan parakan dan kanan kanan dan kanan	
Пусть $\varphi \in \operatorname{Hom}_{\mathbf{K}}(V, W)$, а в пространствах заданы базисы:	
$V: \{e_i\}_{i=1}^n, \{e'_j\}_{j=1}^n$ $W: \{g_k\}_{k=1}^m, \{g'_l\}_{l=1}^m$	
Причем известно, что $T = \{\tau_j^i\}$ — матрица перехода из базиса $\{e\}$ в базис $\{e'\}$, а матрица $S = \{\sigma_l^k\}$ — матрица перехода из базиса $\{g\}$ в базис $\{g'\}$.	
Теорема 4.1. Матрица оператора при замене базисов преобразуется как	
$A'_{\varphi} = S^{-1}A_{\varphi}T$	
Доказательство . Пусть $x \in V$ произвольный элемент пространства V , а y — образ этого элемента. Тогда в паре базисов $\{e\}$ и $\{g\}$	
$\varphi(x) = y \qquad \leftrightarrow \qquad A_{\varphi}x = y$	
В то же время можно утверждать, что в паре базисов $\{e'\}$ и $\{g'\}$ справедливо	
$\varphi(x) = y \qquad \leftrightarrow \qquad A'_{\varphi}x' = y'$	
Однако известно, что при изменении базиса соответствующим образом преобразуются координаты векторов x и y	
$x' = T^{-1}x, \qquad y' = S^{-1}y$	
Подставляя данные преобразования в матричное выражение, получаем	
$A_{\varphi}'T^{-1}x = S^{-1}y$	
Матрицы перехода всегда обратимы, следовательно можно утверждать, что	
$SA'_{\varphi}T^{-1} = A_{\varphi}$	
Или, что тоже самое	
$S^{-1}A_{\varphi}T = A_{\varphi}'$	