Name: Rafael Luque Merino

Affiliation: Ludwig-Maximilians-Universität (LMU), München

Fakultät für Physik, Center for NanoScience (CeNS) and

Munich Center for Quantum Science and Technology (MCQST),

Geschwister-Scholl-Platz 1, 80539, München

Date of birth: 07/09/1995

Citizenship: Spanish

Email: rafael.luque@lmu.de

Phone: +34 699188548 / +49 (0)15204119455

Website: https://rafaluquemerino.github.io/

Google Scholar: https://scholar.google.com/citations?user=1Eh_xOAAAAJ&hl=es&oi=ao

ORCID: https://orcid.org/0000-0002-5072-4117

Research Interests & Expertise

My current research interests focus on the engineering of novel states of matter in two-dimensional materials. I currently work on the strongly-correlated flat bands of twisted multilayers of graphene, studying their properties through electrical and optical methods. During my PhD and MSc, I gained expertise in the fabrication of complex vdW heterostructures, correlated and topological properties of flat band systems, two-dimensional superconductivity, thermoelectricity, quantum transport and optoelectronics. I have over 6 years of expertise in nanofabrication techniques, including standard cleanroom processes (e-beam and laser lithography, etching, metal deposition, sputtering), fabrication of 2D materials (exfoliation, stacking), fabrication in inert atmosphere (glovebox systems) and advanced patterning techniques (including He-FIB). My key scientific contributions include the demonstration of heavy-fermion physics in MATBG, the observation of ultrafast carrier dynamics and novel e-ph cooling mechanism and the first demonstration of single-photon detection on a high-T_C superconductor.

Research Experience

16/09/19 - 02/09/24 **PhD in Photonics**, Advis

PhD in Photonics, Advisor: Prof. Dr. Dmitri K. Efetov "Optoelectronic studies of strongly correlated 2D materials" LMU, Munich, Germany & ICFO, Barcelona, Spain

- Correlated transport and optoelectronic properties of moiré materials
- Study of the thermoelectric effect in magic-angle twisted bilayer graphene
- Study of the cooling dynamics of hot carriers in magic-angle twisted bilayer graphene
- Developing a high-temperature single-photon detector based on 2D superconductor
- Fabrication of waveguide-integrated, high-T_C superconducting bolometers
- Fabrication of nanostructures in cleanroom environment & other fabrication tools
- Glovebox assembly of vdW heterostructures for air-sensitive materials
- Low-temperature transport and optoelectronic studies of vdW heterostructures
- Data analysis, scientific writing, teaching & mentorship skills

Master Thesis project, Advisor: Dr. Pol Forn Díaz "Coherent control of superconducting quantum bits"

Barcelona Supercomputing Centre, Barcelona, Spain

- Dispersive readout of a capacitively-coupled transmon qubit @ 4.8 GHz
- Calibration of IQ Mixers for heterodyne detection of qubit resonances
- Concepts of quantum optics & circuit quantum electrodynamics

10/12/18 - 15/02/19 **Research Internship**, Advisor: Dr. Sandra Bermejo

"Electro-sprayed nanostructures for thin silicon solar cells"
Universitat Politècnica de Catalunya (UPC) – Barcelona, Spain

- Fabrication of electro-sprayed colloidal crystals based on polystyrene nanospheres
- Characterization of the efficiency for a solar cell (spectro-photometry)
- Concepts on photovoltaic response and solar cell operation

15/08/17 - 15/12/17 **Bachelor Thesis project**, Advisor: Prof. Dr. Michiel de Dood "Characterizing MoSi superconducting single photon detectors" Universiteit Leiden – Leiden, The Netherlands

- Transport in crystalline & amorphous superconducting thin films
- Free-space near-infrared optics at low temperatures (T = 3.3 K)
- Counting statistics and quantum detector tomography for single-photon detection

Education

01/08/2022 - present	PhD in Photonics	(continuation-group move	3)
01/08/2022 – present	PHD III PHOTOINGS	(conunuation-group mov	γt

Ludwig Maximilians Universität (LMU) – Munich, Germany

16/09/2019 - 01/08/2022 **PhD in Photonics**

Institute of Photonic Sciences (ICFO) – Barcelona, Spain

12/09/2018 – 24/07/2019 M.Sc. in Photonics (M2)

Universitat Politècnica de Catalunya – Barcelona, Spain

11/09/2015 - 10/07/2018 B.Sc. in Physics

Universidad de La Laguna – Tenerife, Spain

15/09/2013 – 30/08/2015 **B.Sc. in Physics & Mathematics**

Universidad Complutense – Madrid, Spain

Awards & Scholarships

2022 FI AGAUR National Fellowship for PhD candidates (Catalan Government)

2022 FI AGAUR National Fellowship for PhD candidates (Catalan Government)

Fully-funded fellowship for excellent doctoral candidates.

2018 National Fellowship for Post-Bachelor studies (Spanish Government)

Full tuition of M2 master studies for excellence at the Bachelor level.

2018 Highest honors for Bachelor thesis (Universidad de La Laguna)

- **2017** Erasmus + Grant (European Union)
 - Funding for research stay in Leiden, The Netherlands for Bachelor Thesis.
- **2013** Fellowship for Bachelor studies (Spanish government)
 - Full tuition for 1st year of B.Sc. in Physics & Mathematics on the basis of excellence.

Publications in peer-reviewed journals

- 1. **R. L. Merino**, D. Câlugâru, H. Hu, J. Díez-Mérida, A. Díez-Carlón, T. Taniguchi, K. Watanabe, P. Seifert, B. A. Bernevig and D. K. Efetov. Interplay of light and heavy electron bamds in the thermoelectric transport of magic-angle twisted bilayer graphene, *under review Nature Physics*. (2024), arXiv:2402.11749
 - <u>Key observations:</u> First demonstration of heavy-fermion physics in the Seebeck coefficient of MATBG, demonstration of the photo-thermoelectric effect in MATBG
 - <u>Acquired skills:</u> Thermoelectric transport, optoelectronics and transport characterization in graphene p-n junctions, Seebeck coefficient in moiré graphene.
- 2. D. Câlugâru, H. Hu, **R. L. Merino**, N. Regnault, D. K. Efetov and B. A. Bernevig. The Thermoelectric Effect and Its Natural Heavy Fermion Explanation in Twisted Bilayer and Trilayer Graphene, *under review Phys. Rev. Lett.* (2024), arXiv:2402.14057
 - <u>Key observations:</u> Modelling the Seebeck coefficient in the correlated ground states of MATBG, predicting anomalous Seebeck coefficient due to light-heavy insulators.
 - <u>Acquired skills:</u> Concepts on microscopic modelling of MATBG flat bands, concepts on strongly-correlated physics in heavy fermion materials.
- 3. J. D. Mehew, **R. L. Merino**, H. Ishizuka, A. Block, J. Díez-Mérida, A. Díez-Carlón, K. Watanabe, T. Taniguchi, L. Levitov, D. K. Efetov and K. J. Tielrooij. Ultrafast Umklapp-assisted electron-phonon cooling in magic-angle twisted bilayer graphene, *Sci. Adv.* **10** adj1361, (2024)
 - <u>Key observations:</u> Discovery of a novel, moiré-induced mechanism for cooling of hot carriers in MATBG, first study of light-matter interaction in MATBG p-n junctions
 - <u>Acquired skills:</u> Techniques to resolve hot carrier dynamics: CW photomixing and timeresolved photovoltage. Light-matter interaction and e-ph coupling in MATBG.
- 4. **R. L. Merino**, P. Seifert, J. R. Durán-Retamal, R, K. Mech, T. Taniguchi, K. Watanabe, K. Kadowaki, R. H. Hadfield and D. K. Efetov. Two-dimensional cuprate nanodetector with single telecom photon sensitivity at *T* = 20 K, *2D Materials*. **10**, 021001 (2023)
 - <u>Key observations:</u> Demonstration of high- T_C single-photon detector with record operating temperature of T = 20 K. Non-invasive fabrication of cuprate nanowires.
 - <u>Acquired skills:</u> Fabrication in glovebox environment, fabrication using focused-ion beams (Ga-FIB, He-FIB). Transport and optical characterization of high-T_C nanowires.
- 5. S. Yang, A. Díez-Carlón, J. Díez-Mérida, A. Jaoui, I. Das, G. di Battista, **R. L. Merino**, R. K. Mech and D.K. Efetov. Plethora of many body ground states in magic angle twisted bilayer graphene, *Low. Temp. Phys.*, **49**, 631 (2023)
 - Key observations: Review on the various condensed matter phases found in MATBG.
 - <u>Acquired skills:</u> Phenomenology of MATBG and other strongly-correlated systems.
- 6. P. Seifert, J. R. Durán-Retamal, **R. L. Merino**, H. H. Sheinfux, J. Díez-Mérida, J. N. Moore, M. A. Aamir, T. Taniguchi, K. Watanabe, M. Artiglia, M. Romagnoli and D.K. Efetov. A high-Tc van der

Waals superconductor based photodetector with ultra-high responsivity and nanosecond relaxation time, 2D Materials. 8, 035053 (2021)

- <u>Key observations:</u> Bolometers based on 2D, high- T_C superconductor. Record detection speed (ns) and responsivity (10⁷ V/W). Integration on SiN planar waveguides.
- Acquired skills: Cleanroom fabrication, vdW assembly, optoelectronic techniques

Scientific talks

Invited

1. Swabian Summer School – Stuttgart, Germany

September 2024

"Harnessing 2D superconductivity for quantum sensing"

2. Blas Cabrera Seminar – ULL, Tenerife, Spain

September 2024

"Estudios optoelectrónicos de materiales 2D fuertemente correlacionados"

3. Superconducting Quantum Devices – ARC, Glasgow, UK

July 2023

"Detecting telecom photons using a 2D high-TC superconductor"

Contributed

4. APS March Meeting – Minneapolis, USA

March 2024

"Signatures of heavy electron bands in the thermoelectric response of MATBG pn-junctions"

5. CLEO Europe – Munich, Germany

June 2023

"2D high-temperature superconducting nanodetectors"

6. Internal Seminar CeNS- Munich, Germany

June 2023

"Intrinsic and synthetic correlated electrons in 2D materials and how to use them"

7. ICFO – IMPRS Workshop – Barcelona, Spain

April 2023

"Twist angle control of hot carrier relaxation in magic angle twisted bilayer graphene"

8. APS March Meeting – Chicago, USA

March 2022

"Single-photon detection at T = 20 K in an exfoliated 2D cuprate superconductor"

9. Quantum201 – Bilbao, Spain

November 2021

"Photodetection on an exfoliated two-dimensional cuprate superconductor"

10. COEFIS XII – Tenerife, Spain

March 2019

"Quantum computing: Exploiting quantum properties to solve hard problem"

Internal

11. Visit to Klaus Ensslin's group @ ETH – Zurich, Switzerland

November 2022

"Two-dimensional superconducting bolometers for ultra-sensitive photodetection"

12. Visit to Philip Walther's group @ UniVie - Vienna, Austria

May 2019

"Characterizing an SNSPD based on amorphous MoSi thin films"

Prizes

Best Poster prize at Graphene 2024, Madrid, Spain

June 2024

Other conference contributions

Poster contribution at Graphene 2024, Madrid, Spain

June 2024

Research stays with collaborators

- 2024 Short research stay at Klaas-Jan Tielrooij's group at TU/Eindhoven, The Netherlands
 - <u>Acquired skills:</u> Operation of time-resolved optoelectronic setup using pulsed lasers and optothermal methods for the characterization of 2D materials.
- 2020 Short research stay at Marco Romagnoli's group at CNIT, Pisa, Italy
 - <u>Acquired skills:</u> Operation and testing of integrated photonic circuits. Fabrication of 2D devices coupled to planar photonic waveguides.

Teaching experience

2023 Winter Semester Tutorials in Advanced Solid State Physics, 80 total students M1 level, M.Sc. in Physics, Ludwig Maximilian University (LMU), Munich, Germany

- <u>Acquired skills:</u> Preparation of classes & exercises, communication & dissemination skills, mentorship skills.

Supervision

23/04/24 - present M.Sc. student - Egor Agapov: Study of hot carrier response in moiré graphene *p-n* junctions

10/02/24 - 10/06/24 Intern – Lorenzo Volta: Assembly of Ar-filled glovebox setup for vdW assembly and electrical testing

Participation in International Projects

ERC Starting Grant SuperTwist – Ref: 852927

Funding agency: European Research Council

Total funds: 1.780.000 €

Tasks: Develop novel thermal probes for correlated 2D materials based on the photo-thermoelectric effect

2D-SIPC, Graphene Flagship (2018-2022) – Ref: 820378

Funding agency: European Commission

Total funds: 530.000 €

Tasks: Develop the key enabling technology of high-temperature superconducting single-photon detectors