C & A

Chap. II Permutation and Combination

Yuchun Ma(马昱春)
myc@tsinghua.edu.cn

Review of the previous lesson

- Four basic counting principles
 - Addition
 - Multiplication
 - Substraction
 - Division
- Permutation and combination?
 - If the order does matter:
 - Permutation: P(n,r)= n!/(n-r)!
 - If the order doesn't matter:
 - Combination: $C(n,r) = \frac{n!}{r!} \frac{(n-r)!}{(n-r)!}$
- Ordered arrangement
 - Without repeating any objects, distinct: P(n,r)
 - Circular permutation

$$\frac{P(n,r)}{r} = \frac{n!}{r(n-r)!}.$$

Lattice Path

0

- A path composed of connected horizontal and vertical line segments, each passing between adjacent lattice points.
- How many lattice paths from (0,0) to (m,n)?

One-one correspondence

- Each path $(0,0) \rightarrow (m,n)$
- Arrangement with m 'x's and n 'y's
- -C(m+n,m)

(m,n)

Χ

Models of Combination

- Lattice path:
- Walk along the positive directions of x-axis or y-axis from (0,0) to (m,n), 1 unit per step, there are C(m+n,n) routes.

The n^{th} row, k^{th} column : C(n,k) Coefficients of $(a+b)^n$

$$C(n,r) = C(n-1,r) + C(n-1,r-1)$$

Combinatorial Identities

• C(n, r) = C(n-1,r) + C(n-1,r-1)

- Left hand side: All lattice paths from (0,0) to (n-r,r)
- Right hand side:
 - -(0,0) to (n-r-1,r)
 - -(0,0) to (n-r,r-1)

Pascal'formula

For all integers n and r with 1≤ r≤n-1.

$$C(n,r) = C(n-1,r) + C(n-1,r-1)$$

- Proof: choose a₁,a₂,...,a_r from [1,n]
- Partition the combinations by with or without 1
 - With 1, other r-1 numbers from n-1 integers: C(n-1,r-1)
 - Without 1, r numbers from n-1 integers: C(n-1,r)
- Combing two parts: C(n,r)=C(n-1,r)+C(n-1,r-1)

Can you provide the proof for the following formula?

$$2^{m} = C(m,0) + C(m,1) + ... + C(m,m)$$

Pascal' formula

The n^{th} row, k^{th} column : C(n,k) Coefficients of $(a+b)^n$

- JiaXian/Yanghui Triangle
- $(x+y)^m = C(m,0)x^m + C(m,1)x^{m-1}y + ... + C(m,m)y^m$
 - The coefficient of x^ay^{m-a} means how many ways to choose a 'x' from m 'x' and the other m-a elements should be 'y: C(m,a)
- If x=y=1, then
- $2^m = C(m,0) + C(m,1) + ... + C(m,m)$

Chu-Vandermonde Identity

- C(m+n,r)=C(m,0)C(n,r)+C(m,1)C(n,r-1)+...+C(m,r)C(n,0)
- C(m,0)C(n,r)+C(m,1)C(n,r-1)+...+C(m,r)C(n,0)

Examples

Q: There are 6 gates. How many ways to arrange 9 people to enter the gates in sequence?

The arrangement can be expressed as XXffXXfXfXfXXXX

Where X means somebody and f means the doorframe of gates.

 $X \in \{1,2,3,...,9\}$ Five "f"s are same.

Examples XXf_af_bXX f_cXf_dXf_eXXX

A1: Each doorframe can be labeled.

- •The number of permutation of labels is 5!
- The permutations for 14 elements are 14!.
- The total number of arrangements without labels is

A2: There are 14 positions for all the elements.

Choose 5 positions for "f"s: C(14,5)

9 people can choose all the other positions: 9!

The total number of arrangements is

C(14,5)9! = 14!*9!/5!/9!=14!/5!=726485760

Examples

A3: We can arrange 9 people step by step

- •The 1st people has 6 choices;
- •The 2nd people has 7 choices
 - The same gate with 1st people: before 1 or after 1
 - The other 5 gates
- •The 3rd people has 8 choices;
-
- •The 9th people has 14 choices.
- Totally, the number of arranges are

Permutations of multi-sets

- If S is a multiset, an r-permutation of S is an ordered arrangement of r objects of S. If |S| = n, then an n-permutation of S will also be called a permutation of S.
 - $-S=\{2\cdot a, 1\cdot b, 3\cdot c\}$
 - 4-permutation of S: acbc, cacc
- Let S be a multiset with objects of k
 different types where each has an infinite
 repetition number. Then the number of rpermutations of S is kr.
 - $-S=\{\infty\cdot 0, \infty\cdot 1, \infty\cdot 2\}$
 - The number of 4-permutation of S: 3⁴

The number of permutations of the letters in the word "MISSISSIPPI" is ().

作答

Finite Repetition Numbers

Let S be a multiset with objects of k different types with finite repetition numbers $n_1, n_2, ..., n_k$, respectively. Let the size of S be $n = n_1 + n_2 + ... + n_k$. Then the number of permutations of S equals

$$\overline{n_1!n_2!\cdots n_k!}$$

Specially, when *k*=2

$$\frac{n!}{n_1!n_2!} = \frac{n!}{n_1!(n-n_1)!} = \binom{n}{n_1}$$

The number of permutations of the letters in the word "MISSISSIPPI" is $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$

Examples

- How many possibilities are there for 8 non-attacking rooks on an 8-by-8 chessboard?
- (1) The rooks are indistinguishable for one another;
- The coordinates of rooks: only 1 rook for each row/column
 - -(1,5)(2,3),(3,6),(4,1),(5,4),(6,7),(7,2),(8,8)
 - 8-permutations of {1,2...8}: 8!
- (2) We have 8 distinguished rooks;
 - 8! Color arrangement for each rook arrangement:
 - Total: 8!*8!
- (3) We have 1 red rook, 3 blue rooks and 4 yellow rooks
 - Divided with the repetitions: 8!*8!/(1!3!4!)

Combinations of Multisets

- If S is a multiset, then an r-combination of S is an unordered selection of r of the objects of S. Thus an r-combination is itself a multiset, a submultiset of S.
- Example. If S = {2 a, 1 b, 3 c}
 - 3-combinations of S are {2 a, 1 b}, {2 a, 1 c},{1 a, 1 b, 1 c}, {1 a, 2 c}, {1 b,2 c}, {3 c}.
- How to count the number of r-combinations of a multiset?

r-combinations

Theorem: Let S be a multiset with objects of k different types where each has an infinite repetition number. Then the number of r-combinations of S equals

number of *r*-combinations of *S* equals
$$\begin{pmatrix} r+k-1 \\ r \end{pmatrix} = \begin{pmatrix} r+k-1 \\ k-1 \end{pmatrix}.$$

- Proof. Suppose that $S = \{\infty \cdot a_1, \infty \cdot a_2, ..., \infty \cdot a_k\}$ any r-combination of S is $\{x_1 \cdot a_1, x_2 \cdot a_2, ..., x_k \cdot a_k\}$, where $x_1, x_2, ..., x_k$ are nonnegative integers with $x_1 + x_2 + ... + x_k = r$.
- The number of r-combinations of S equals the number of solutions of the equation
- $x_1+x_2+...+x_k = r$ where $x_1, x_2,...,x_k$ are nonnegative integers The number of '1's is r

1..1 | 1..1 | 1..1 |
$$x_1$$
 | x_2 | x_3 | x_k |

Examples

- A bakery toasts 8 varieties of doughnuts. If a box of doughnuts contains 1 dozen how many different boxes can you buy?
- A: 12 combinations of a multiset with objects of 8 types, each having an infinite repetition number.
 - 12-combination of S={ ∞ -1, ∞ -2,..., ∞ -8}

 $x_1+x_2+...+x_k = r$ where $x_1, x_2,...,x_k$ are nonnegative integers

$$\begin{pmatrix} r+k-1 \\ r \end{pmatrix} = \begin{pmatrix} r+k-1 \\ k-1 \end{pmatrix}.$$

the equation $x_1 + x_2 + x_3 + x_4 = 20$, in which

$$x_1 \ge 3, x_2 \ge 1, x_3 \ge 0$$
 and $x_4 \ge 5$

We introduce the new variables

$$y_1 = x_1 - 3$$
, $y_2 = x_2 - 1$, $y_3 = x_3$ and $y_4 = x_4 - 5$
 $y_1 + y_2 + y_3 + y_4 = 20 - 3 - 1 - 5 = 11$

- y_i is nonnegative, and x_i satisfies the constraints.
- The number of nonnegative solution of the equation is $\binom{r+k-1}{r} = \binom{11+4-1}{11} = \binom{14}{11}$.

20

Putting balls into boxes

Putting 5 balls into 4 boxes:

- 1)5 different balls, 4 different boxes, the number of balls inside a box is not limited, allows empty box, and contains total _____ different solutions.
 - Please calculate the exact number
- 2)5 identical balls, 4 different boxes, allows empty box, and contains total _____ different solutions.
 - Please calculate the exact number

5 identical balls, 4 different boxes, allows empty box, and contains total ____ different solutions.

- A 1024
- B C(8,3)
- C C(8,4)
- D C(9,4)

5 identical balls, 4 different boxes, allows empty box, and contains total _____ different solutions.

Explanation:

It is equivalence to find the solution number of

$$x_1+x_2+x_3+x_4=5$$
,
 $x_1, x_2, x_3, x_4, x_5>=0$.

$$C_{n+r-1}^r = C_{4+5-1}^5 = C_8^5 = C_8^3 = 56$$

Example

- If $S = \{3 \text{ a}, 2 \text{ b}, 4 \text{ c}\}$
 - 8-permutations of S?
 - 8-combinations of S?
- 8-permutations
 - $\{2 \text{ a}, 2 \text{ b}, 4 \text{ c}\}: 8!/(2!2!4!)=420$
 - $\{3 \text{ a}, 1 \text{ b}, 4 \text{ c}\}:8!/(3!1!4!)=280$
 - $\{3 \text{ a}, 2 \text{ b}, 3 \text{ c}\}:8!/(3!2!3!)=560$
 - Total: 420+280+560 = 1260

Example

• If
$$S = \{3 \text{ a}, 2 \text{ b}, 4 \text{ c}\}$$

- 8-permutations of S?
- 8-combinations of S?

$$y_1 = x_1 - 3, y_2 = x_2 - 1, y_3 = x_3 \text{ and } y_4 = x_4 - 5$$

$$-{2 a, 2 b, 4 c}$$

$$-{3 a, 1 b, 4 c}$$

$$-{3 a, 2 b, 3 c}$$

- Total: 3

$$x_1 + x_2 + x_3 + x_4 = 20$$

$$x_1 \ge 3, x_2 \ge 1, x_3 \ge 0$$
 and $x_4 \ge 5$

$$y_1 + y_2 + y_3 + y_4 = 20 - 3 - 1 - 5 = 11$$

$$x_1 + x_2 + x_3 + x_4 = 20$$

$$x_1 \le 5, x_2 \le 10, x_3 \le 11, and x_4 \le 8$$

Complicated!

Inclusion-exclusion principle in Chapter 6

Summary

Sample	Order counts?	Repetition allowed?	Name	Number of ways
Choose 3 balls and put them in a box	No	No	r-combination	C(m,r)
People in a line	Yes	No	r-permutation	P(m,r)
Arrangement of fruits	No	Yes	r-combination of multi-sets	C(m+r-1,r)
4-letter word	Yes	Yes	r-permutation of multi-sets	m ^r

To Do Homework

- Homework sheet
- Pre-class video on RainClass room
 - Generating Permutations
 - OJ task 1: Cellphone passwords (Due on Oct.5)

Is your cell phone password safe?

Which type is better?

OJ task 1: Cellphone passcode

Thanks