U.S.N.

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2023 Semester End Main Examinations

Programme: B.E.

Branch: CSE/ISE

Course Code: 22MA3BSSDM

Course: Statistics and Discrete Mathematics

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 10.04,2023

6

7

7

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may be suitably assumed.

3. Use of Statistical tables is permitted.

UNIT - I

- Determine |V| for the following graphs.
 - G has nine edges and all vertices have degree 3. i)
 - ii) G is regular with 15 edges.
 - Define isomorphism of two graphs. Determine whether the two graphs given below are isomorphic or not.

Apply Kruskal's algorithm to find a minimal spanning tree for the weighted graph shown below.

OR

- Prove that a connected graph G remains connected after removing an edge e from G 6 if and only if e is a part of some cycle in G.
 - Obtain the incidence matrix for the graph whose adjacency matrix is given below.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. c) Apply Dijkstra's algorithm to obtain the shortest path from vertex A to each of the other vertices in the weighted, directed network shown below.

UNIT - II

- 3 a) Find the coefficient of i) x^9y^3 in the expansion of $(2x-3y)^{12}$. ii) $a^2b^3c^2d^5$ in the expansion of $(a+2b-3c+2d+5)^{16}$.
 - b) In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?

6

7

c) By using the expansion formula, find the rook polynomial for the labelled board shown below.

et and a second	2	3
4	010	5
6	7	8

UNIT - III

4 a) If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form P = mW + c connecting P and W for the following data:

P	12	15	21	25	
W	50	70	100	120	

where P and W are taken in kg. Compute P when W=150 kg.

b) Obtain the regression lines and hence find the coefficient of correlation for the following data:

X	1	2	3	4	5	6	7
y	10	12	16	28	25	36	41

c) In a normal distribution, 31% of the items are under 45 and 8% are over 64. 7 Find the mean and standard deviation of the distribution.

UNIT - IV

- In a random sample of 100 tube lights produced by company A, the mean 5 lifetime (mlt) of tube light is 1190 hours with standard deviation of 90 hours. Also, in a random sample of 75 tube lights from company B the mean lifetime is 1230 hours with standard deviation of 120 hours. Is there a difference between the mean lifetimes of the two brands of tube lights at a significance level of 0.05?
 - A certain stimulus administered to each of the 12 patients resulted in the following change in blood pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0 and 4. Can it be concluded that the stimulus will increase the blood pressure?
 - According to a theory in genetics, the proportion of beans of four types A. B. C and D in a generation should be 9:3:3:1. In an experiment, among 1600 beans, the frequency of beans of each of the above four types were 882, 313. 287 and 118 respectively. Does the result support the theory?

OR

7

- 6 Two samples of sizes 9 and 8 give the sum of squares of deviations from their respective means is equal to 160 inches² and 91 inches² respectively. Can these be regarded as drawn from the normal population with equal variances?
 - A company claims that the mean thermal efficiency of diesel engines 7 produced by them is 32.3. To test this claim, a random sample of 40 engines were examined which showed the mean thermal efficiency of 31.4 and standard deviation of 1.6. Can the claim be accepted or not at 0.01 level of significance?
 - A random sample of specimens of coal from two mines A and B were drawn 7 and their heat producing capacity (in millions of calories/ton) were measured yielding the following results:

Mine A	8350	8070	8340	8130	8260	-
Mine B	7900	8140	7920	7840	7890	7950

Is there a significant difference between the means of these two samples at 1% level of significance?

UNIT-V

Solve the linear congruence equation $9x \equiv 21 \pmod{30}$.

6 7

- Solve the system of linear congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$ and $x \equiv 2 \pmod{7}$.
- Apply Fermat's Little theorem to find the remainder when 241947 is divided 7 by 17.

BMS College of Engineering, Bangalore – 560019 (Autonomous Institute, Affiliated to VTU, Belgaum) April 2023 – SEE Examinations

Exam	: BE se: STAT	ICTI (TC X N	n nr	SCDE				E/ISE					Sem		22N	VA 3BSSDM
Total Signa	Number of the 08-05-20	of Pag e Sch	ges su	bmitt	ed: 9		P.S.		TICS				S	ignat	ure o	f the H.05-2023	
Q. No								U	NIT-1	¥							Marks
1.a	Determi (i) (ii)												6M				
Soln	According to handshaking property, $\sum \deg(V) = 2m$ Let there be 'n' vertices (i) Degree of each vertex is 3 and given $m = 9$ Hence $n = 6$ (ii) G is a regular graph with 15 edges $nk = 2X15$ n should be a divisor of 30 i.e. $n = 2,3,5,6,15$ and 30										1M 2M 3M						
1.b	Define is not.	omorj	phism	of tw	o grap	hs. D	eterm	ine w	hether	the tw	o gr	aphs giv	en belo	ow ar	e isor	norphic	
Soln	Definitio The give graphs. Graph 1	en gra	aphs a	are n	ot iso	morp	hic a	s the	re is	no ver	tex (n the tw	3M 4M
1.c	Apply Ki	ruskal 10 7	's algo	orithm	to fin	d a m	inima	l span	ning f	or the v	weigh	nted grap	oh shov	vn be	low.		
Soln	Edge Weight Select	RC 5	RQ 7 Y	PR 7 Y	QB 8 Y	BR 9 N	BC 10 N	AB 10 Y	AQ 11 N	PQ 12 N		В	1	0	A		4M
)	R	5		c	at				3M
						-			OR					+)			

2.a	Prove that a connected graph G remains connected after removing an edge e from G if and only if e is a part of some cycle in G.	6M
Soln	Suppose e is a part of some cycle C in G . Then the end vertices of e are joined by at least two paths, one of which is e and the other C - e . Hence the removal of e from G will not affect the connectivity of G ; because even after the removal of e the end vertices of e remain connected through the path C - e .	3M
	Conversely, suppose e is not a part of any cycle in G . Then the end vertices of e are connected by at most one path. Hence the removal of e from G disconnects these end points. This means that G - e is a disconnected graph. Thus, if e is not a part any cycle in G then G - e is disconnected. This is equivalent to saying that if G - e is connected then e belongs to some cycle in G . Hence proved.	4M
2.b	Obtain the incidence matrix for the graph whose adjacency matrix is given below. a b c d e a 0 1 0 1 0 1 b 1 0 1 0 1 0 1 c 0 1 0 0 1	7M
	$\begin{bmatrix} d & 1 & 0 & 0 & 0 & 1 \\ e & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$	
Soln	ADJACENCY MATRIX	
:-	GRAPH e ₁ e ₂ e ₃ e ₄ e ₅ e ₆ a 1 1 0 0 0 0	of.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3M+4M
2.c	Apply Dijkstra's algorithm to obtain the shortest path from vertex A to each of the other vertices in the weighted network shown below.	7M
2.c Soln	vertices in the weighted network shown below.	7M

	UNIT-2	
3.a	Find the coefficient of (i) x^9y^3 in the expansion of $(2x-3y)^{12}$	6M
	(ii) $a^2b^3c^2d^5$ in the expansion of $(a+2b-3c+2d+5)^{16}$	
Soln	The general term in the expansion of $(2x - 3y)^{12} = \sum_{r=0}^{12} {12 \choose r} (2x)^{12-r} (-3y)^r$	1M
5	For $r = 3$, the coefficient of x^9y^3 is $-2^9X3^3X \binom{12}{3} = 1946$	1M &
	The general term in the expansion of $(a + 2b - 3c + 2d + 5)^{16} =$	
	$\left \binom{16}{n_1, n_2, n_3, n_4, n_5} (a)^{n_1} (2b)^{n_2} (-3c)^{n_3} (2d)^{n_4} (5)^{n_5} \right $	1M
	Comparing the expression with $a^2b^3c^2d^5$, we get	
	$n_1 = 2, n_2 = 3, n_3 = 2, n_4 = 5 \rightarrow n_5 = 4$	1M
	Therefore, the required coefficient is $\binom{16}{2,3,2,5,4}(1)^2(2)^3(-3)^2(2)^55^4$	2M
3.b	In how many ways can the 26 letters of the English alphabets be permuted so that none of the pattern CAR, DOG, PUN or BYTE occurs?	7M
	S – set of all permutations of the letters $\Rightarrow S = 26!$	
	$ A_1 $ -number of permutations of the word CAR $\Rightarrow A_1 = 24!$	1M
	$ A_2 $ -number of permutations of the word DOG $\Rightarrow A_2 = 24!$	
	$ A_3 $ -number of permutations of the word PUN $\Rightarrow A_3 = 24!$	
	$ A_4 $ -number of permutations of the word BYTE $\Rightarrow A_4 = 23!$	27.5
	$ A_1 \cap A_2 = (22)! = A_1 \cap A_3 = A_3 \cap A_2 ; A_1 \cap A_4 = A_{12} \cap A_4 = A_3 \cap A_4 = (21)!$	2M
	$ A_1 \cap A_2 \cap A_3 = (20)! ; A_1 \cap A_4 \cap A_3 = (19)! ; A_1 \cap A_2 \cap A_4 = (19)!;$	
	$ A_2 \cap A_4 \cap A_3 = (19)! \text{ And } A_1 \cap A_2 \cap A_4 \cap A_3 = (17)!$ $ \overline{A_1 \cup A_2 \cup A_3} =$	2M
	$= S - \sum_{i} A_{i} + \sum_{i} A_{i} \cap A_{j} - \sum_{i} A_{1} \cap A_{2} \cap A_{3} + \sum_{i} A_{1} \cap A_{2} \cap A_{3} \cap A_{4} $	
	= 26! -{3X24! + (23!)} + 3{22! + 21!}-{20! + 3X19!}+17!	2 M
3.c	By using the expansion formula, find the rook polynomial for the labelled board shown below:	7M
	1 2 3	
	4 5 6 7	
Soln	Expansion formula: $r(C,x) = xr(D,x) + r(E,x)$ where	1M
	D is the board obtained from C by deleting the row and column containing the * cell and	
	E is the board obtained from C by deleting only the * cell.	
	Thus, for the given board, the rook polynomial is Obtaining $r(D, x)$	
	Obtaining $r(E,x)$	2M
	$r(C,x) = 1 + 8x + 14x^2 + 4x^3$	2M 2M

	UNIT-3	
.a	If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form $P = mW + c$ connecting P and W using the following data. Also, compute P when $W = 150 \text{kg}$	6M
	P 12 15 21 25	
oln	W = 50 = 70 = 100 = 120 $P = mW + c$	-
	Normal Equations: $\sum P = m \sum W + nc$	
	$\sum PW = m \sum W^2 + c \sum W$	1M
	P W W ² PW 12 50 2500 600	
	12 50 2500 600 15 70 4900 1050	
	21 100 10000 2100	3M
	25 120 14400 3000	
	73 340 31800 6750	4
	P = 0.1879W + 2.2759	1M
- 76	P(150) = 30.4635	1M
b	Obtain the regression lines and hence find the correlation co-efficient between x and y for the	7M
	following data.	51 _V
	y 10 12 16 28 25 36 41	
ln	$\overline{x} = \frac{\sum x}{n} = 5.5, \overline{y} = \frac{\sum y}{n} = 30.7$ $\sigma_x^2 = \frac{\sum (x_i - \overline{x})^2}{n} = 8.25 \Rightarrow \sigma_x = 2.8723$	
	$\sum_{i=1}^{n} (x_i - \overline{x})^2$	
	$\sigma_x^2 = \frac{26\pi}{n} = 8.25 \Rightarrow \sigma_x = 2.8723$	
	$\sigma_y^2 = \frac{\sum (y_i - \overline{y})^2}{n} = 196.21 \Rightarrow \sigma_y = 14.007$	
	Th.	
	$b_{yx} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2}} = 4.686$	
	$\sum_{x} (x - \overline{x})(y - \overline{y})$	2M
	$b_{xy} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (y - \overline{y})^2}} = 0.197$	
	Regression equation of y on x is $(y - \overline{y}) = b_{yx}(x - \overline{x}) \rightarrow y = 4.686x + 4.927$	2M
	Regression equation of x on y is $(x - \overline{x}) = b_{xy}(y - \overline{y}) \rightarrow x = 0.197y - 0.548$	2M
	$r^2 = b_{yx} \cdot b_{xy} \rightarrow r = 0.96$	1M

4.c	In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and S.D. of the distribution.	7M
Soln	$X \sim N(\mu, \sigma^2); f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)^2}, -\infty < x, \mu < \infty$	
	i) $P(x < 45) = 0.31 \rightarrow P(z < a) = 0.31$ where $a = \frac{45 - \mu}{\sigma}$	
	From Normal table, we get	2 M
	$a = -0.5 \text{ hence } \mu - 0.5\sigma = 45$	2111
	ii) $P(x > 64) = 0.08 \rightarrow P(z > b) = 0.08$ where $b = \frac{64 - \mu}{\sigma}$	
	From Normal table, we get	,
	$b = 1.4 \text{ hence } \mu + 1.4\sigma = 64$	2M
	Therefore $\mu = 50$ and $\sigma = 10$	2M
	UNIT-4	
5.a	In a random sample of 100 tube lights produced by company A, the mean lifetime (mlt) of tube	6M
	light is 1190 hours with standard deviation of 90 hours. Also in a random sample of 75 tube	
	lights from company B the mean lifetime is 1230 hours with standard deviation of 120 hours.	
	Is there a difference between the mean lifetimes of the two brands of tube lights at a	
	significance level of 0.05?	
Soln	X_1 —Lifetime of electric bulbs produced by manufacturer A.	
	X_2 – Lifetime of electric bulbs produced by manufacturer B. $H_0: \mu_1 = \mu_2$, there is no difference between the mean lifetime of two brands	17./
	$H_0: \mu_1 = \mu_2$, there is a significant difference between the mean lifetime of two brands. $H_1: \mu_1 \neq \mu_2$, there is a significant difference between the mean lifetime of two brands.	1 M
	The production of the state of	
	Test statistic under H ₀ : $z = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} \sim N(0,1)$	23/1
	Decision Rule: At $\alpha = 5\%$, H ₀ is accepted when $ z < z_{\alpha/2} = 1.96$	2M
	Numerical Computation: $n_1 = 100$, $\overline{x_1} = 1190$, $\widehat{\sigma_1} = s_1 = 90$	2M
	$n_2 = 75, \overline{x_2} = 1230, \widehat{\sigma_2} = s_2 = 120$	Z1VI
	z = -2.4209	1M
	Conclusion: Reject H ₀ there is a significant difference between the mean lifetimes of two	11/1
	brands.	
5.b	A certain stimulus administered to each of the 12 patients resulted in the following change in blood	7M
	pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0 and 4. Can it be concluded that the stimulus will increase the	
	blood pressure?	
Soln	X_1 – BP before administering stimulus.	
	X_2 – BP after administering stimulus.	
	Null Hypothesis: H_0 : $\mu_d \leq 0$ or $\mu_1 \leq \mu_2$	1M
	Alternate Hypothesis $H_{1:} \mu_d > 0 \text{ or } \mu_1 > \mu_2$ Test statistic under $H_{0:} d = 5,2,8,-1,3,0,6,-2,1,5,0,4$	
	$\frac{1 \text{ est statistic under } 10:}{500000000000000000000000000000000000$	
	$\bar{d} = \frac{\sum d_i}{n} = 2.5833, S_d = \sqrt{\frac{\sum (d_i - \bar{d})^2}{n-1}} = 3.088$	2M
	$T + \frac{1}{2} \int_{-\pi}^{\pi} d^{-\mu} d = 2.8979$	3M
	Test statistic: $t = \frac{\bar{d} - \mu_d}{\frac{S_d}{\sqrt{n}}} = 2.8979$	
	Critical value:	
	$\overline{\text{At }\alpha} = 5\%, v = n - 1 = 11 \Rightarrow t_{\alpha,v} = t_{0.05,11} = 2.201$	1M
	At $\alpha = 1\%$, $v = n - 1 = 11 \Rightarrow t_{\alpha, v} = t_{0.01, 11} = 2.718$	

	<u>Decision:</u> At 5% or 1% L.O.S, H_o is accepted if $t < t_{\alpha,\nu}$. ⇒ 2.8979 > 2.201 or 2.8979 > 2.718	1M 1M			
	<u>Conclusion:</u> H_o is rejected; there is a significant increase in the BP after administering the stimulus.				
5.c	According to a theory in genetics, the proportion of beans of four types A, B, C and D in a general should be 9:3:3:1. In an experiment, among 1600 beans, the frequency of beans of each of the absolute four types were 882, 313, 287, and 118 respectively. Does the result support the theory?	ation 7M			
Soln	Null Hypothesis: H ₀ : Result support theory Alternate Hypothesis H ₁ : Result does not support theory				
	Test statistic under H_0 : $\chi^2 = \sum_i \frac{(o_i - E_i)^2}{N} \sim \chi^2_{(3,0.05)}$				
20	Beans O E $O(D-E)^2$				
	A 882 900 0.36 B 313 300 0.5633	.= 1			
	C 287 300 0.5633				
ï	D 118 100 3.24 1600 1600 4.7266	3M			
	Test statistic: $\chi^2 = \sum \frac{(O-E)^2}{E} = 4.7266$	1M			
	Critical value: Given, $\alpha = 5\%$, $k = 1$, $v = n - k = 3 \Rightarrow \chi^2_{\alpha,v} = \chi^2_{0.05,3} = 7.815$	1M			
	<u>Decision:</u> At 5% L.O.S, H_o is accepted if $\chi^2 < \chi^2_{\alpha,\nu}$. $\Rightarrow 4.7266 < 7.815$ <u>Conclusion:</u> H_o is accepted. Result support theory.	1M			
	OR				
6.a	Two samples of sizes 9 and 8 give the sum of squares of deviations from their respective means is to 160 inches ² and 91 inches ² respectively. Can these be regarded as drawn from the normal popul with equal variances?	equal 6M ation			
Soln					
4	H_0 : $\sigma_1^2 = \sigma_2^2$, Population variances are equal. H_1 : $\sigma_1^2 \neq \sigma_2^2$, Population variances are not equal.	1M			
	Test statistic under H ₀ : $F = \frac{S_1^2}{S_2^2} \sim F_{(n_1 - 1, n_2 - 1)}$ Decision Rule: At $\alpha = 5\%$, H ₀ is accepted when $F < F_{n_1 - 1, n_2 - 1, \alpha} = F_{8,7,0.05} = 3.73$				
	(OR)	2M			
	$F_{n_1-1,n_2-1,1-\alpha} < F < F_{n_1-1,n_2-1,\alpha} \text{ where } F_{8,7,0.95} = \frac{1}{F_{7,8,0.05}} = \frac{1}{3.5} = 0.2857$	2111			
	0.2857 < F < 3.73 Numerical Computation:	2M			
	$S_1^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1} = \frac{160}{8} = 20; \ S_2^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1} = \frac{91}{7} = 13$	1M			
	$F = \frac{S_1^2}{S_2^2} = 1.54$	1M			
	Conclusion: Accept H ₀ , Population variances are equal.	18 H			

6.b	A company claims that the mean thermal efficiency of diesel engines produced by them is 32.3. to test	7M
	this claim, a random sample of 40 engines were examined which showed the mean thermal efficiency	
	of 31.4 and standard deviation of 1.6. can the claim be accepted or not at 0.01 level of significance?	
Soln	X – Thermal efficiency of diesel engines.	43.5
	Null Hypothesis: H_0 : $\mu = 32.3$, mean thermal efficiency is 32.3	, 1M
	Alternate Hypothesis: $\mu \neq 32.3$, mean thermal efficiency is not equal to 32.3	
	Test statistic under $H_0: z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	
	Given: $\bar{x} = 31.4$; $\hat{\sigma} = s = 1.6$; $n = 40$	23 A
	z = -3.558	2M
	<u>Critical value:</u> $\alpha = 0.005$; $z_{\alpha/2} = 2.58$	2M
	<u>Decision:</u> At $\alpha = 0.05$, H_o is accepted if $ z < z_{\alpha/2}$.	1N/I
	Conclusion: H_0 is rejected; $\mu \neq 32.3$; claim is false.	1M
6.c	Random samples of specimens of coal from two mines A and B are drawn and their heat producing capacity (in millions of calories/ton) were measured yielding the following results:	7 M
	Mine A 8350 8070 8340 8130 8260 -	
	Mine B 7900 8140 7920 7840 7890 7950	
	Is there significant difference between the means of these two samples at 1% L.O.S.?	
Soln		
Som	X_1 – Heat producing capacity of coal from mine A.	
	X ₂ - Heat producing capacity of coal from mine B.	
	H_0 : $\mu_1 = \mu_2$, Heat producing capacity of coal from mine A and B is same.	1M
	H_1 : $\mu_1 \neq \mu_2$, Heat producing capacity of coal from mine A and B is not same.	
	Test statistic under H ₀ : $t = \frac{(\overline{x_1} - \overline{x_2})}{S\sqrt{\frac{1}{n} + \frac{1}{n_2}}}$	1M
	$S \cdot \left(\frac{1}{2} + \frac{1}{2}\right)$	
	V-12	9
	Decision Rule: At $\alpha = 1\%$, H ₀ is accepted when $ t < t_{\frac{\alpha}{2},n_1+n_2-2} = t_{9,0.005} = 3.25$	2M
	Numerical Computation:	
	$\overline{x}_1 = 8230; \hat{\sigma}_1^2 = s_1^2 = 12600; n_1 = 5$	
	$\bar{x}_2 = 7940; \hat{\sigma}_2^2 = s_2^2 = 9100; n_2 = 6$	
	$S^{2} = \frac{n_{1}s_{1}^{2} + n_{2}s_{2}^{2}}{n_{1} + n_{2} - 2} = 114.3095^{2}; t = 4.1897$	2M
	Conclusion: Reject H_0 , Heat producing capacity of coal from mine A and B is not same.	1M
	UNIT-5	
7.a	Solve the linear congruence $9x \equiv 21 \pmod{30}$.	6M
Soln	a = 9, $b = 21$, $m = 30$ and $gcd(a, m) = gcd(9, 30) = 3$	1M
	Therefore, the given congruence has 3 solutions $3x \equiv 7 \pmod{10}$	
	$3x-7=10k \Rightarrow k=3t-7, t=0,1,2$	3M
	Solutions:	
	$x \equiv 9 \pmod{30}, \ x \equiv 19 \pmod{30}, \ x \equiv 29 \pmod{30}$	2M

7.b	Solve the system of linear congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$.	7M		
Soln	Given, $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$	1M		
	$a_1 = 2, a_2 = 3, a_3 = 2$ and $m_1 = 3, m_2 = 5, m_3 = 7$	IIVI		
	$M = 105, M_1 = 35, M_2 = 21, M_3 = 15$	1M		
	$M_1 x_1 \equiv 1 \pmod{m_1} \Rightarrow 35 x_1 \equiv 1 \pmod{3} \Rightarrow x_1 \equiv 2 \pmod{3}$			
	$M_2 x_2 \equiv 1 \pmod{m_2} \Rightarrow 21 x_2 \equiv 1 \pmod{5} \Rightarrow x_2 \equiv 1 \pmod{5}$	3M		
	$M_3 x_3 \equiv 1 \pmod{m_3} \Rightarrow 15x_3 \equiv 1 \pmod{7} \Rightarrow x_3 \equiv 1 \pmod{7}$	2		
	$x \equiv (M_1 a_1 x_1 + M_2 a_2 x_2 + M_3 a_3 x_3) \pmod{M} \equiv 233 \pmod{105} \equiv 23 \pmod{105}$			
7.c	Apply Fermat's theorem to find the remainder when 24 ¹⁹⁴⁷ is divided by 17.	7M		
Soln	By Fermat's little theorem, $a^{p-1} \equiv 1 \pmod{p} \Rightarrow 24^{16} \equiv 1 \pmod{17}$	2M		
	Express 1947 in terms of $16 \Rightarrow 1947 = 121 \times 16 + 11$	2M		
	$24^{1947} \equiv 24^{11} \pmod{17}$			
	To find the remainder for 24 ¹¹ (mod 17)			
	$24 \equiv 7 \pmod{17} \Rightarrow 24^{11} \equiv 14 \pmod{17}$	3M		
	Therefore, 14 is the remainder when 24 ¹⁹⁴⁷ is divided by 17.			

NOTE: Full marks to be rewarded for alternate methods.

