

位置矢量 运动方程

立移

一、位置矢量

(1)确定质点P某一时刻在坐标系里的位置的物理量称位置 大量,简称位矢*下*.

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

式中 \vec{i} 、 \vec{j} 、 \vec{k} 分别为x、y、z 方向的单位矢量.

一、位置矢量

(3) 位矢 \overrightarrow{r} 的方向余弦

$$\cos \alpha = x/r$$

$$\cos \beta = y/r$$

$$\cos \gamma = z/r$$

二、运动方程

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$

分量式
$$x = x(t)$$
$$y = y(t)$$
$$z = z(t)$$

从中消去参数 t 得轨迹方程

$$f(x, y, z) = 0$$

三、位移

(1)经过时间间隔 Δt 后,质点位置矢量发生变化,由始点 A 指向终点 B 的有向线段 AB 称为点 A 到 B 的位移矢量 $\Delta \vec{r}$. 位移矢量也简称位移.

$$\vec{r}_B = \vec{r}_A + \Delta \vec{r} \quad \therefore \quad \Delta \vec{r} = \vec{r}_B - \vec{r}_A$$

三、位移

$$\mathbf{Z} \ \vec{r}_A = x_A \vec{i} + y_A \vec{j} \qquad \vec{r}_B = x_B \vec{i} + y_B \vec{j}$$

所以位移
$$\Delta \vec{r} = \vec{r}_B - \vec{r}_A$$

$$\Delta \vec{r} = (x_B - x_A)\vec{i} + (y_B - y_A)\vec{j}$$

若质点在三维空间中运动,

$$\Delta \vec{r} = (x_B - x_A)\vec{i} + (y_B - y_A)\vec{j} + (z_B - z_A)\vec{k}$$

$$|\Delta \vec{r}| = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$$

三、位移

位移的物理意义

- ① 确切反映物体在空间位置的变化, 与路径无关, 只决定于质点的始末位置.
- ② 反映了运动的矢量性和叠加性.

$$\Delta \vec{r} = \Delta x \vec{i} + \Delta y \vec{j} + \Delta z \vec{k}$$
 $|\Delta \vec{r}| = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$

(2)路程 (ΔS) : 质点实际运动轨迹的长度.

讨论 (3)位移与路程的区别

- ① P_1P_2 两点间的路程 ΔS 是不唯一的,可以是 ΔS 或 ΔS 而位移 $\Delta \overrightarrow{r}$ 是唯一的.
- ② 一般情况, 位移大小不等于路程.

$$\left|\Delta\vec{\mathbf{r}}\right| \neq \Delta s$$

③ 什么情况 $|\Delta \vec{r}| = \Delta s$?

不改变方向的直线运动; 当 $\Delta t \rightarrow 0$ 时 $|\Delta \vec{r}| = \Delta s$.

4 位移是矢量,路程是标量.

Thanks!

