

Figura 1-G3: Malla 2D Triangular

En la Figura 1-G3 vemos una porción de malla 2D compuesta por triángulos. Supongamos que los 3 nodos del **elemento 9** tienen los siguientes desplazamientos expresados en micrones:

$$\begin{bmatrix} 0.1 & 0.1 \\ -0.2 & 0.1 \\ 0.1 & -0.2 \end{bmatrix}$$

siendo sus respectivas coordenadas en metros:

$$\begin{bmatrix} 0.1 & 0.1 \\ 0.2 & 0.2 \\ 0.0 & 0.21 \end{bmatrix}$$

Siendo el modulo de Young del material 180GPa y el coeficiente de Poisson de 0.3 considerando el caso de **Tensión Plana**, calcule la deformación y la tensión a la que se halla sometido dicho elemento.

NOTA:
$$\emph{GPa}$$
 significa giga Pascales y $1\emph{GPa}$ equivale a $10^9 [N/m^2]$

Figura 1-G3: Malla 2D Triangular

En la Figura 1-G3 vemos una porción de malla 2D compuesta por triángulos. Supongamos que los 3 nodos del **elemento 3** tienen los siguientes desplazamientos expresados en micrones:

$$\begin{bmatrix} -0.15 & 0.15 \\ -0.12 & 0.21 \\ 0.1 & -0.25 \end{bmatrix}$$

siendo sus respectivas coordenadas en metros:

$$\begin{bmatrix} 0.2 & 0.2 \\ 0.1 & 0.1 \\ 0.35 & 0.0 \end{bmatrix}$$

Siendo el modulo de Young del material $^{120}[GPa]$ y el coeficiente de Poisson de 0.34 y considerando el caso de **Deformación Plana**, calcule la deformación y la tensión a la que se halla sometido dicho elemento.

Figura 1-G3: Malla 2D Triangular

En la Figura 1-G3 vemos una porción de malla 2D compuesta por triángulos. Supongamos que los 3 nodos del **elemento 8** tienen los siguientes desplazamientos expresados en micrones:

$$\begin{bmatrix} -0.15 & 0.15 \\ 0.2 & 0.21 \\ 0.15 & -0.25 \end{bmatrix}$$

siendo sus respectivas coordenadas en metros:

$$\begin{bmatrix} 0.0 & 0.21 \\ 0.2 & 0.2 \\ 0.05 & 0.25 \end{bmatrix}$$

Siendo el modulo de Young del material 80[GPa] y el coeficiente de Poisson de 0.25 y considerando el caso de **Tensión Plana**, calcule la deformación y la tensión a la que se halla sometido dicho elemento.

NOTA:
$$[GPa]$$
 significa giga Pascales y $_1GPa$ equivale a $_10^9[N/m^2]$

Supongamos que tenemos que resolver la siguiente ecuación diferencial

$$\frac{\partial}{\partial x} \Big(u \, \phi \Big) + c \, \phi = 0$$

usando funciones \mathbb{C}^0 . Es imprescindible recurrir a la forma débil ? (S/N) Justifique (La no justificación invalida una respuesta acertada)

item Supongamos que tenemos que resolver la siguiente ecuación diferencial

$$\frac{\partial}{\partial x} \left(k \frac{\partial^2 \phi}{\partial x^2} \right) + c \phi = 0$$

Es necesario usar funciones C1? (S/N) Justifique (La no justificación invalida una respuesta acertada)

Escriba la matriz que surge de discretizar el término convectivo por elementos finitos en 1D. Se pide que al menos parta de la expresión integral inicial y llegue a la expresión final, pudiendo omitir o no el desarrollo, pero dejando bien claro de dónde parte y a dónde llega.

Escriba la matriz que surge de discretizar el término difusivo por elementos finitos en 1D. Se pide que al menos parta de la expresión integral inicial y llegue a la expresión final, pudiendo omitir o no el desarrollo, pero dejando bien claro de dónde parte y a dónde llega.