15.093 Optimization Methods Final Examination

Instructions:

- 1. There are 5 problems each with 20 points for a maximum of 100 points.
- 2. You are allowed to use class notes, your homeworks, solutions to homework exercises, and the book by Bertsimas and Tsitsiklis. You are not allowed to use any other book.
- 3. You have 3 hours to work in the examination.
- 4. Please explain your work carefully.
- 5. Good luck!

Problem 1 (20 points)

Please answer true or false. No explanation is needed. A correct answer is worth 2 points, no answer 0 points, a wrong answer -1.

- 1. A problem of maximizing a convex, piecewise-linear function over a polyhedron can be formulated as a linear programming problem.
- 2. The dual of the problem min x_1 subject to $x_1 = 0$, $x_1, x_2 \ge 0$ has a nondegenerate optimal solution.
- 3. If there is a nondegenerate optimal basis, then there is a unique optimal basis.
- 4. An optimal basic feasible solution is strictly complementary.
- 5. The convergence of the primal-dual barrier interior point algorithm is affected by degeneracy.
- 6. Given a local optimum \bar{x} for a nonlinear optimization problem it always satisfies the Kuhn-Tucker conditions when the gradients of the tight constraints and the gradients of the equality constraints at the point \bar{x} are linearly independent.
- 7. In a linear optimization problem with multiple solutions, the primaldual barrier algorithm always finds an optimal basic feasible solution.
- 8. In the minimum cost flow problem with integral data all basic feasible solutions have integral coordinates.
- 9. The convergence of the steepest descent method for quadratic problems $\min f(x) = x'Qx$ highly depends on the condition number of the matrix Q. The larger the condition number the slower the convergence.
- 10. The convergence of the steepest descent method highly depends on the starting point.

Problem 2 (20 points)

Let $f(\cdot)$ be a concave function. Consider the problem

minimize
$$\sum_{j=1}^{n} f(x_j)$$
 subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \geq \boldsymbol{0}$.

Let $P = \{ \boldsymbol{x} \in \mathcal{R}^n \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \ \boldsymbol{x} \geq \boldsymbol{0} \}.$

- (a) Prove that if there exists an optimal solution, there exists an optimal solution which is an extreme point of P.
- (b) Suppose we now add the constraints that $x_j \in \{0,1\}$ for all j, i.e., the problem becomes a 0-1 nonlinear integer optimization problem. Show that the problem can be reformulated as a linear integer optimization problem.

Problem 3 (20 points) Let Q, Σ be $n \times n$ matrices. The matrix Σ is positive semidefinite.

minimize
$$c'x + \frac{1}{2}x'Qx$$

subject to $d'x + \frac{1}{2}x'\Sigma x \le a$.

- (a) Write the Kuhn-Tucker conditions.
- (b) Propose an algorithm for the problem based on the Kuhn-Tucker conditions.
- (c) Suppose the matrix Q is also positive semidefinite. Reformulate the problem as a semidefinite optimization problem.

Problem 4 (20 points)

- (a) You are given points (x_i, a_i) , i = 1, ..., m where x_i are vectors in \Re^n and a_i are either 0 or 1. The interpretation here is that point x_i is of category 0 or 1. We would like to decide whether it is possible to separate the points x_i by a hyperplane f'x = 1 such that all points of category 0 satisfy $f'x \le 1$ and all points of category 1 satisfy f'x > 1. Propose a linear optimization problem to find the vector f.
- (b) You are given points (x_i, y_i) , i = 1, ..., m, where x_i are vectors in \Re^n and $y_i \in \Re$ are response variables. We would like to find a hyperplane a'x = 1, such that for all points $a'x_i \leq 1$, $y_i \approx \beta_1'x_i$, while if $a'x_i > 1$, $y_i \approx \beta_2'x_i$. More formally, for all those points x_i with $a'x_i \leq 1$, we will choose β_1 in order to minimize

$$\sum_{i: \; \boldsymbol{a'x}_i \leq 1} |y_i - \boldsymbol{\beta_1'x}_i|,$$

while for all those points \boldsymbol{x}_i with $\boldsymbol{a}'\boldsymbol{x}_i>1$, we will choose $\boldsymbol{\beta_2}$ in order to minimize

$$\sum_{i: \; \boldsymbol{a'x}_i > 1} |y_i - \boldsymbol{\beta_2'x}_i|.$$

Propose an integer programming problem to find the vectors a, β_1, β_2 .

Problem 5 (20 points) Consider the problem

$$Z^* = \min \quad \boldsymbol{c'x}$$

$$s.t. \quad \boldsymbol{a'_1x} \ge b_1$$

$$\boldsymbol{a'_2x} \ge b_2$$

$$\boldsymbol{x} \in \{0,1\}^n$$

with $a_1, a_2, c \geq 0$. We denote by Z_{LP} the value of the LP relaxation.

(a) Consider the relaxation:

$$Z_1 = \max_{\lambda \ge 0} \min \quad \boldsymbol{c'x} - \lambda(b_2 - \boldsymbol{a'_2x})$$
 s.t. $\boldsymbol{a'_1x} \ge b_1$ $\boldsymbol{x} \in \{0, 1\}^n$

Indicate how you can compute the value of Z_1 . What is the relation among Z^*, Z_1, Z_{LP} . Please justify your answer.

(b) Propose a dynamic programming algorithm for computing Z^* .

MIT OpenCourseWare http://ocw.mit.edu

15.093J / 6.255J Optimization Methods Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.