CLAIMS

What is claimed is:

1	1. An image signal processor comprising:				
2	a local memory to store data; and				
3	a memory command handler including a plurality of memory address				
4	generators, each memory address generator to generate a memory address to the local				
5	memory and to interpret a command to be performed on the data of the local memory				
6 located at the memory address to aid in image processing tasks.					
1	2. The image signal processor of claim 1, further comprising a shared				
2	memory coupled to the plurality of the memory address generators, the shared memory				
3	storing data to be sent to the local memory and commands to be performed by the				
4	1 memory address generators.				
1	3. The image signal processor of claim 2, wherein the shared memory				
2	comprises a plurality of cluster communication registers.				
1	4. The image signal processor of claim 3, further comprising a cluster				
2	communication register interface to couple the plurality of cluster communication				
3	registers to the plurality of memory address generators.				
1	5. The image signal processor of claim 3, wherein the plurality of cluster				
2	communication registers include data cluster communication registers to store data and				
3	command cluster communication registers to store commands.				
1	6. The image signal processor of claim 5, wherein a pair of cluster				
2	communication registers are assigned to each memory address generator.				
1	7. The image signal processor of claim 6, wherein each pair of cluster				
2	communication registers includes a data cluster communication register and a				
3 .	command cluster communication register.				
1	8. The image signal processor of claim 3, further comprising an arbiter to				
2	arbitrate access to the local memory by the memory address generators.				

2	communication registers are at least 16-bit registers.				
1	10. The image signal processor of claim 9, further comprising 16-bit data				
2	paths that couple the cluster communication registers to the memory address				
3	generators, the memory address generators to the arbiter, and the arbiter to the local				
4	memory.				
1	11. The image signal processor of claim 10, wherein the local memory				
2	includes static random access memory (SRAM).				
1	12. A method comprising:				
2	storing data in a local memory of an image signal processor;				
3	generating a memory address to the local memory utilizing a memory address				
4	generator within the image signal processor; and				
5	performing an operation on the data of the local memory located at the memory				
6	address utilizing the memory address generator to aid in image processing tasks.				
1	13. The method of claim 12, further comprising:				
2	storing data to be sent to the local memory in a shared memory of the image				
3	signal processor; and				
4	storing commands in the shared memory to be performed on the data in the				
5	local memory.				
1	14. The method of claim 13, wherein the shared memory comprises a				
2	plurality of cluster communication registers.				
1	15. The method of claim 14, wherein the plurality of cluster communication				
2	registers include data cluster communication registers to store data and command				
3	cluster communication registers to store commands.				
1	16. The method of claim 15, further comprising assigning a pair of cluster				
2	communication registers to one of a plurality of memory address generators, each				
memory address generator to generate a memory address to the local memory					
	20				

9. The image signal processor of claim 8, wherein the plurality of cluster

4	the image signal processor and to perform an operation on the data of the local memory			
5	located at the memory address to aid in image processing tasks.			
1	17. The method of claim 16, further comprising arbitrating access to the			
2	local memory by the plurality of memory address generators.			
1	18. The method of claim 14, wherein the plurality of cluster communication			
2	registers are at least 16-bit registers.			
1	19. The image processor of claim 18, wherein 16-bit data paths couple the			
2	cluster communication registers to the memory address generators and the memory			
3	address generators to the local memory.			
1	20. A machine-readable medium having stored thereon instructions, which			
2	when executed by a machine, cause the machine to perform the following operations			
3	comprising:			
4	storing data in a local memory of an image signal processor;			
5	generating a memory address to the local memory utilizing a memory address			
6	generator within the image signal processor; and			
7	performing an operation on the data of the local memory located at the memory			
8	address utilizing the memory address generator to aid in image processing tasks.			
1	21. The machine-readable medium of claim 20, further comprising:			
2	storing data to be sent to the local memory in a shared memory of the image			
3	signal processor; and			
4	storing commands in the shared memory to be performed on the data in the			
5	local memory.			

- 1 22. The machine-readable medium of claim 21, wherein the shared memory 2 comprises a plurality of cluster communication registers.
- 1 23. The machine-readable medium of claim 22, wherein the plurality of 2 cluster communication registers include data cluster communication registers to store 3 data and command cluster communication registers to store commands.

1	24. The machine-readable medium of claim 23, further comprising				
2	assigning a pair of cluster communication registers to one of a plurality of memory				
3	address generators, each memory address generator to generate a memory address to				
4	the local memory within the image signal processor and to perform an operation on the				
5	data of the local memory located at the memory address to aid in image processing				
6	taṣks.				
1	25. The machine-readable medium of claim 24, further comprising				
2	arbitrating access to the local memory by the plurality of memory address generators.				
1	26. The machine-readable medium of claim 22, wherein the plurality of				
2	cluster communication registers are at least 16-bit registers.				
1	27. The machine-readable medium of claim 26, wherein 16-bit data paths				
2	couple the cluster communication registers to the memory address generators and the				
3	memory address generators to the local memory.				
1	28. An image processor system comprising:				
2	a processor coupled to an image processor; and				
3	a double data rate synchronous dynamic random access memory (DDR				
4	SDRAM) coupled to the image processor, the image processor including a plurality of				
5	image signal processors coupled to one another, each image signal processor including				
6	a local memory to store data, and				
7	a memory command handler including a plurality of memory address				
8	generators, each memory address generator to generate a memory address to the				
9	local memory and to interpret a command to be performed on the data of the				
10	local memory located at the memory address to aid in image processing tasks.				
1	29. The image processor system of claim 28, further comprising a shared				
2	memory coupled to the plurality of the memory address generators, the shared memory				
3	storing data to be sent to the local memory and commands to be performed by the				
4	memory address generators.				

38.

includes static random access memory (SRAM).

1 2

1	30. The i	mage processor system of claim 29, wherein the shared memory			
2	comprises a plurality of cluster communication registers.				
1	31. The i	mage processor system of claim 30, further comprising a cluster			
2.	communication register interface to couple the plurality of cluster communication				
3	registers to the plurality of memory address generators.				
1	32. The i	mage processor system of claim 30, wherein the plurality of cluste			
2	communication registers include data cluster communication registers to store data a				
3	command cluster communication registers to store commands.				
1	22 The i	maga processor existent of alaim 22 wherein a pair of aluster			
1 -	33. The image processor system of claim 32, wherein a pair of cluster				
2	communication regis	sters are assigned to each memory address generator.			
1	34. The i	mage processor system of claim 33, wherein each pair of cluster			
2	communication registers includes a data cluster communication register and a				
3	command cluster communication register.				
1	35. The i	mage processor system of claim 30, further comprising an arbiter t			
2	arbitrate access to the local memory by the memory address generators.				
1	36. The i	mage processor system of claim 35, wherein the plurality of cluste			
2	communication registers are at least 16-bit registers.				
1	37. The i	mage processor system of claim 36, further comprising 16-bit data			
2		cluster communication registers to the memory address			
3	generators, the memory address generators to the arbiter, and the arbiter to the local				
4	memory.	say underess generations to the distrest, and the distrest to the result			
•	·				

The image processor system of claim 37, wherein the local memory