Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1.	Given a corpus A, encoded as $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and corpus B encoded as $\begin{pmatrix} 4 \\ 7 \\ 2 \end{pmatrix}$, What is the euclidean distance between the two documents?	1/1 point
	 5.91608 35 2.43 None of the above 	
	⊙ Correct Yes, this is correct.	
2.	Given the previous problem, a user now came up with a corpus C defined as $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and you want to recommend	1/1 point
	a document that is similar to it. Would you recommend document A or document B? Document A Document B	
	⊙ Correct That is correct	
3.	Which of the following is true about euclidean distance? When comparing similarity between two corpuses, it does not work well when the documents are of different sizes.	1/1 point
	⊙ Correct That is correct.	
	☑ It is the norm of the difference between two vectors. ☑ Correct That is correct.	
	☐ It is a method that makes use of the angle between two vectors ☐ It is the norm squared of the difference between two vectors.	
4.	What is the range of a cosine similarity score, namely s , in the case of information retrieval where the vectors are positive?	1/1 point
	⊙ Correct That is correct.	
	$\Box -1 \leq s \leq 0$	
5.	The cosine similarity score of corpus A = $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and corpus B = $\begin{pmatrix} 2 \\ 8 \\ 1 \end{pmatrix}$ is equal to? ① 0.08512565307587486	1/1 point
	○ 0 ○ 1.251903 ○ -0.3418283	
	○ Correct This is correct.	
6.	We will define the following vectors, USA = $\begin{pmatrix} 5 \\ 6 \end{pmatrix}$. Washington = $\begin{pmatrix} 10 \\ 5 \end{pmatrix}$, Turkey = $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$, Ankara = $\begin{pmatrix} 9 \\ 1 \end{pmatrix}$, Russia = $\begin{pmatrix} 5 \\ 5 \end{pmatrix}$, and Japan = $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$. Using only the following vectors, Ankara is the capital of what country? Please consider the cosine similarity score in your calculations.	1/1 point
	O Japan O Russia O Morocco ■ Turkey	
	 Correct Yes, you should compute (USA - Washington) + Ankara and then compare that vector to the country vectors to decide. 	

7.	Please select all that apply. PCA is	1/1 point
	used to reduce the dimension of your data;	
	⊙ correct This is correct.	
	visualize word vectors;	
	⊙ Correct This is correct.	
	make predictions;	
	☐ label data.	
8.	Please select all that apply. Which is correct about PCA?	1/1 point
	You can think of an eigenvector as an uncorrelated feature for your data.	
	⊙ Correct That is correct.	
	The eigenvalues tell you the amount of information retained by each feature.	
	⊙ correct This is correct.	
	☐ If working with features in different scales, you do not have to mean normalize.	
	Computing the covariance matrix is critical when performing PCA	
	○ Correct This is correct.	
9.	In which order do you perform the following operations when computing PCA?	1/1 point
9.	In which order do you perform the following operations when computing PCA?	1/1 point
9.	$ \textcircled{\mathfrak{p} mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a } $	1/1 point
9.	 mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. mean normalize, perform SVD, get Σ the covariance matrix, then dot product the data, namely X, with a 	1/1 point
9.	 ● mean normalize, get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get ∑ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the 	1/1 point
9.	 ● mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get Σ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize. ○ get Σ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a 	1/1 point
9.	 ● mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get Σ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize. ○ get Σ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ Correct 	1/1 point
	 ● mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get Σ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize. ○ get Σ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ Correct 	1/1 point
	 ● mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get Σ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize. ○ get Σ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ Correct This is correct. 	
	 ● mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get Σ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize. ○ get Σ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ correct This is correct. 	
	 ● mean normalize, get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get ∑ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize. ○ get ∑ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ correct This is correct. ✓ Correct or represent words and documents as vectors. ✓ Correct 	
	 ■ mean normalize, get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get ∑ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize. ○ get ∑ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ correct This is correct. ✓ Correct This is correct. ✓ Correct This is correct. ✓ Sorrect This is correct. 	
	 ■ mean normalize, get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get ∑ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize. ○ get ∑ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ correct This is correct. ✓ Correct This is correct. ✓ correct This is correct. ✓ build useful applications including and not limited to, information extraction, machine translation, and chatbots. ✓ correct 	
	 ■ mean normalize, get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ mean normalize, perform SVD, get ∑ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ get ∑ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize. ○ get ∑ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. ○ Correct This is correct. ✓ Correct This is correct. ✓ Correct This is correct. ✓ build useful applications including and not limited to, information extraction, machine translation, and chatbots. ✓ Correct This is correct. 	