.py file
.tex file
.pdf file
.lean file

∞ -Spaces

Copyright © October 19th 2023 Elliot Dean Young and Jiazhen Xia. All rights reserved.

We wish to acknowledge the collaborative efforts of E. Dean Young and Jiazhen Xia. Dean Young initially formulated the introduction with twelve goals, posting them on the Lean Zulip in August of 2023. Together the authors are pursuing these plans as a long term project.

1. Introduction

In this document I would like to develop a construction of the classifying space functor which can be applied indefinitely, B^1 . I will write B^n for the n-fold composition of B^1 . In "'TheWhiteheadTheoremandTwoVariations"', we developed two models of ∞ -Grpd_(A) and ∞ -Grpd_(B). These will produce two models on which B^1 can be defined:

- (i) B^1 : OperadicGroup \bullet OperadicGroup ∞ -Grpd_(A) \longrightarrow OperadicGroup \bullet OperadicGroup ∞ -Grpd_(A)
- (ii) B^1 : OperadicGroup OperadicGroup ∞ -Grpd_(B) \longrightarrow OperadicGroup OperadicGroup ∞ -Grpd_(B)

∞-Spaces ... explore derivations and connections.

In this section, which makes use of the previous section concerning Haar integral, I intend to cover the ordinary versions of Poincare duality, Pontrjagin duality, and Fourier duality, as well as versions of these theorems using language enabled by the previous repositories. This won't culminate until far into the future, so for now I have jotted down some sketches.

2. Contents

The contents below reflect most or all of the contents of each chapter, each of which is adds a fairly minimal .

Section	Description			
Unfinished				
Contents				
Unicode				
Introduction				
	PART I: ∞-SPACES			
Chapter 1: Abelian Groups				
abelian_group	The type of abelian groups			
AbelianGroup	The category of abelian groups			
	Chapter 2: ∞-Spaces			
∞-space	spaces are (here) algebras for the little squares operad			
∞-Space	the category of ∞-spaces is the category of algebras for the little squares operad			
	Chapter 3: Tensor Product of Abelian Groups			
- ⊗_(AbelianGroups) -	Mathlib's tensor product of abelian groups			
[-,-]_(AbelianGroups)	Mathlib's hom of abelian groups			
	Chapter 4: Tensor Product of ∞-Spaces			
- ⊗_(∞-Space) -				
[-,-] (∞-Space)				
	Chapter 5: Rings and Commutative Rings			
ring	The type of rings			
Ring	The category of rings			
	Chapter 6: A [∞] -Rings and E [∞] -Rings			
A^{∞} -ring	The type of A^{∞} -rings			
A [∞] -Ring	The category of A^{∞} -Rings			
E^{∞} -ring	The type of E^{∞} -rings			
E^{∞} -Ring	The category of E^{∞} -Rings			
Ch	papter 7: Modules and Modules over Commutative Rings			
	Chapter 8: A^{∞} -Modules and E^{∞} -Modules			
A∞-Mod				
A∞-Mod				
	Chapter 9: Set \rightleftarrows Ab			
S.	The free abelian group functor			
S.	The forgetful functor from abelian groups to sets			
Chapter 10: ∞ -Grpd $ ightleftharpoons$ -Space				
	The free ∞ -space given an ∞ -groupoid			
	The underlying ∞-groupoid of an ∞-space			
П	PART II: DERIVATIONS AND CONNECTIONS			

	Chapter 11: Lie Algebras				
	Chapter 12: Derivations				
derivation	Definition of a derivation				
Chapter 13: L^{∞} Algebras					
Chapter 14: ∞-Derivations					
∞ -derivation	Definition of ???				
Chapter 15: Tensor Product of Lie Algebras					
- ⊗_(∞-Space) -					
[-,-]_(∞-Space)					
	Chapter 16: Tensor Product of L [∞] -Algebras				
ring	The type of rings				
Ring	The category of rings				
Chapter 17: Connections					
connection	Definition of a connection				
Chapter 18: Connections					
∞ -connection	Definition of ???				
Chapter 19: Tensor Product of Lie Algebra Representations					
- ⊗_(∞-Space) -					
[-,-]_(∞-Space)					
Chapter 20: Tensor Product of L [∞] -Representations					
ring	The type of rings				
Ring	The category of rings				

after this we develop chain complexes of these.

The table of contents below reflects the tentative long-term goals of the authors, with the main goal the pursuit of the Whitehead theorem for a point-set model involving Mathlib's predefined homotopy groups.

1. cup and cap product

Ideas for future applications:

- 1. https://arxiv.org/pdf/2206.13563.pdf
- 1. One of the basic things I wanted out of this was homotopy colimit preserving maps $(E^{inf}-Alg A)^{\circ} \longrightarrow \infty$ -Grpd

PART 1: PART 1. ABELIAN GROUPS AND ∞-SPACES

·	Eight Structures			
	Strict			Lax
Unitial	Actional	Unitial		Actional
InternalMonoid	InternalMonoidAction	\mathtt{A}^∞		OperadicMonoidAction
InternalCommutative Monoid	InternalCommutativeMonoidAction	Opera <mark>dicMo</mark> noi	.d	OperadicMonoidAction

Abelian Groups

In this chapter I cover the type of abelian groups as well as the category of abelian groups.

∞ -Spaces

For example, ... is operadic groups in operadic groups in O^2 .

The commutative nature of composition in the little squares operad is interesting.

Could ∞ -spaces be operadic groups in operadic groups? Abelian groups are internal groups in internal groups.

Tensor Product

Smash Product of $\infty ext{-Spaces}$

Rings and Commutative Rings

$\mathtt{A}^\infty ext{-Rings}$ and $\mathtt{E}^\infty ext{-Rings}$

Modules over Rings and Commutative Rings

 $\mathtt{A}^\infty ext{-Modules}$ and $\mathtt{E}^\infty ext{-Modules}$

$\mathtt{Set}_{\ 1} \ \rightleftarrows \ \mathtt{AbelianGroup}$

Abelian groups are internal groups in internal groups in sets.

$\infty ext{-Grpd}_1 \ensuremath{ ightarrow}$ OperadicGroup 2

 ∞ -spaces are algebras for the little squares operad.

 ∞ -Grpd₋₁ \rightleftharpoons OperadicGroup²

- 1. π_n of an ∞ -space arising from an ∞ -groupoid
- 2. H_n of an
- 3. Dold-Thom theorem
- 4.
- 5. B is iterable on this
- 6. Chn ...
- 7. $\mu: \operatorname{Chn} \times \operatorname{Chn} \longrightarrow \operatorname{Chn}$

Derivations

Let A be a ring and suppose that B: Alg A. B.dom.

$$(Alg A)B = Mod B$$

- 1. I would like to first construct the lie-algebra of derivations using the spectrum Ω^{\inf} .obj X. It seems related to coalgebra endomorphisms from Ω^{\inf} .obj X to itself.
- 2. Lie algebras and Der (A,A)

∞ -Derivations

 $\Omega : (E^{\infty} - Alg A)/B \rightleftharpoons E^{\infty} - Mod B : \Lambda$

 $\Omega: (A^{\infty}-Alg A)/B \Rightarrow A^{\infty}-Mod B: \Lambda$

The more typical concept of a free abelian group.

Given an E^{∞} -algebra...., we can form an

Connections

∞ -Connections

	1. I would like to first construct the lie-algebra representation of flat connections using the spectrum ω^{inf} .obj X).obj V.
	2.
	3. Lie algebra representations and
	4.
	5.
	6.
	7. Somehow connections are the dual of the free abelian group action
	Some goals:
	1.
	1. smooth (etale locally ???)
	2. analytic (etale locally ???)
$\mathbb{C}\mathrm{P}^1$, $\mathbb{C}\mathrm{F}$	$\mathbf{p}^1 \cong \mathbb{C}(\mathbf{x})$
	3. Our $\mathbb R$ is 8.obj $\mathbb Z$ regarded as an object in $[\vec{\gamma},\infty_{-}(\infty\text{-Grpd})]$
	4. B.obj det : B.obj $U(n) \longrightarrow B.obj U(1)$
	5. Which E_{∞} Space have a Chern class?
	Cohomology with coefficients in $[-,B\mathbb{C}^{X}]$ plays a.
	1.
	2. d2 is wedge with (representable)
	Given an E^{∞} -algebra, we can form an

Bibliography

- 1. Samuel Eilenberg and Saunders Mac Lane, "On the Groups H(n, n). I", Annals of Mathematics, Second Series, Vol. 58, No. 1 (Jul., 1953), pp. 55-106.
- 2. Samuel Eilenberg and Saunders Mac Lane, "On the Groups H(π, n). II", Annals of Mathematics, Second Series, Vol. 60, No. 1 (Jul., 1954), pp. 49-139.
- 3. Saunders Mac Lane, "On the Homology Theory of Eilenberg-Mac Lane", Proceedings of the National Academy of Sciences of the United States of America, Vol. 35, No. 11 (Nov. 15, 1949), pp. 657-663.
- 4. Eilenberg, S., & MacLane, S. (1945). Relations Between Homology and Homotopy Groups of Spaces. Proceedings of the National Academy of Sciences of the United States of America, 31(2), 83–87.

About the Author

Dean Young is a master's student at New York University, where he studies mathematics.

