What	is	claimed	is:

1

I	1. In a disk drive control system comprising a micro-controller, a micro-				
2	controller cache system having a plurality of line-cache segments grouped into at least one				
3	line-cache segment-group, and a buffer manager communicating with the micro-controller				
4	cache system and a remote memory, a method for reducing micro-controller access time to				
5	information stored in the remote memory via the buffer manager, the method comprising:				
6	receiving in the micro-controller cache system a current data-request from				
7	the micro-controller;				
8	providing the current requested data to the micro-controller if the current				
9	requested data resides in a first line-cache segment of a first segment-group; and				
10	automatically filling a second line-cache segment of the first segment-group				
11	with data retrieved from the remote memory wherein the retrieved data is sequential				
12	in the remote memory to the provided current requested data.				
1	2. The method of claim 1, wherein the automatically filling further comprises:				
2	filling the second line-cache segment if the second line-cache segment				
3	hosted a most-recently requested data prior to the current requested data.				
1	3. The method of claim 2, wherein the automatically filling further comprises:				
2	filling the second line-cache segment if the current requested data is				
3	sequential to the most-recently requested data.				
1	4. The method of claim 1, wherein the retrieved data comprises a burst of				
2	data in the range of 32 to 64 bytes.				
1	5. The method of claim 1, wherein the plurality of line-cache segments are				
2	grouped into a plurality of line-cache segment-groups.				
1	6. The method of claim 5, further comprising:				
2	selecting a line-cache segment-group if the current requested data does not				
3	reside in the plurality of line-cache segment-groups;				
4	filling a first line-cache segment of the selected line-cache segment-group				
5	with a first set of data from the remote memory location wherein the first set of dat				
6	comprises the current requested data;				

7		providing the current requested data to the micro-controller from the filled				
8	first line-cache segment; and					
9		filling a second line-cache segment of the selected line-cache segment-group				
0	with a	a second set of data from the remote memory location wherein the second set				
1	of dat	a is sequential in the remote memory to the first set of data.				
1	7.	The method of claim 6, wherein the selected line-cache segment-group is a				
2	least recently used line-cache segment-group.					
1	8.	The method of claim 6, wherein the first set of data comprises a first burst				
2	of data in the range of 32 to 64 bytes.					
1	9.	The method of claim 6, wherein the second set of data comprises a second				
2	burst of data in the range of 32 to 64 bytes.					
1	10.	The method of claim 1, wherein the line-cache segment-group comprises				
2	two line-cache segments.					
1	11.	The method of claim 1, wherein the remote memory comprises a dynamic				
2	random acces	ss memory (DRAM).				
1	12.	The method of claim 1, wherein the buffer manager is in communication				
2	with a plurality of control system clients and provides client-requested data to the clients					
3	from the rem	ote memory.				
1	13.	The method of claim 12, wherein the plurality of control system clients				
2	comprises at	least one of a disk subsystem, an error correction code subsystem, and a				
3	host interface subsystem.					

1	14. A disk drive control system comprising a micro-controller, a micro-				
2	controller cache system having a plurality of line-cache segments grouped into at least				
3	one line-cache segment-group, and a buffer manager communicating with the micro-				
4	controller cache system and a remote memory, the disk drive control system				
5	comprising:				
6	the micro-controller cache system is adapted to: a) receive a current data-				
7	request from the micro-controller, b) provide the current requested data to the				
8	micro-controller if the current requested data resides in a first line-cache segment				
9	of a first segment-group, and c) automatically fill a second line-cache segment of				
10	the first segment-group with data retrieved from the remote memory wherein the				
11	retrieved data is sequential in the remote memory to the provided current				
12	requested data.				
1	15. The disk drive control system of claim 14, wherein the micro-controller				
2	cache system automatically fills the second line-cache segment if the second line-cache				
3	segment hosted a most-recently requested data prior to the current requested data.				
1	16. The disk drive control system of claim 15, wherein the micro-controller				
2	cache system automatically fills the second line-cache segment if the current requested data				
3	is sequential to the most-recently requested data.				
1	17. The disk drive control system of claim 14, wherein the plurality of line-				
2	cache segments are grouped into a plurality of line-cache segment-groups.				
1	18. The disk drive control system of claim 17, wherein the micro-controller				
2	cache system is further adapted to a) select a line-cache segment-group if the current				
3	requested data does not reside in the plurality of line-cache segment-groups; b) fill a first				
4	line-cache segment of the selected line-cache segment-group with a first set of data from				
5	the remote memory location wherein the first set of data comprises the current requested				
6	data; c) provide the current requested data to the micro-controller from the filled first line-				
7	cache segment; and d) fill a second line-cache segment of the selected line-cache segment-				

group with a second set of data from the remote memory location wherein the second set of

data is sequential in the remote memory to the first set of data.

8 9

PATENT ATTY. DOCKET K35A1281

- 1 19. The disk drive control system of claim 18, wherein the selected line-cache segment-group is a least recently used line-cache segment-group.
- 1 20. The disk drive control system of claim 19, wherein the line-cache
- 2 segment-group comprises two line-cache segments.