Autonomous Steering Agents

Generated by Doxygen 1.8.17

1	Intent	1
	1.1 Dependencies	1
	1.2 Resources	1
2	Hierarchical Index	3
	2.1 Class Hierarchy	3
3	Class Index	5
	3.1 Class List	5
4	File Index	7
	4.1 File List	7
5	Class Documentation	9
	5.1 agent Class Reference	9
	5.1.1 Detailed Description	9
	5.1.2 Constructor & Destructor Documentation	10
	5.1.2.1 agent() [1/2]	10
	5.1.2.2 agent() [2/2]	10
	5.1.2.3 ~agent()	10
	5.1.3 Member Function Documentation	10
	5.1.3.1 setFeatures()	10
	5.1.3.2 updatePosition()	11
	5.1.4 Member Data Documentation	11
	5.1.4.1 acceleration	11
	5.1.4.2 arrive	11
	5.1.4.3 desiredVelocity	11
	5.1.4.4 fillColor	12
	5.1.4.5 force	
	5.1.4.6 id	12
	5.1.4.7 mass	12
	5.1.4.8 maxForce	12
	5.1.4.9 maxSpeed	12
	5.1.4.10 name	13
	5.1.4.11 position	13
	5.1.4.12 r	13
	5.1.4.13 steering	13
	5.1.4.14 targetPoint	13
	5.1.4.15 velocity	13
	5.2 color Class Reference	14
	5.2.1 Detailed Description	14
	5.2.2 Constructor & Destructor Documentation	14
	5.2.2.1 color() [1/2]	14
	5.2.2.2 color() [2/2]	15
	0.E.E.E 000() [2/2]	

5.2.3 Member Function Documentation	15
5.2.3.1 createColors()	15
5.2.3.2 getColor()	15
5.2.4 Member Data Documentation	16
5.2.4.1 B	16
5.2.4.2 colors	16
5.2.4.3 G	16
5.2.4.4 R	17
5.3 evade Class Reference	17
5.3.1 Detailed Description	17
5.3.2 Constructor & Destructor Documentation	17
5.3.2.1 evade()	18
5.3.3 Member Function Documentation	18
5.3.3.1 loop()	18
5.4 flee Class Reference	18
5.4.1 Detailed Description	19
5.4.2 Constructor & Destructor Documentation	19
5.4.2.1 flee()	19
5.4.3 Member Function Documentation	19
5.4.3.1 loop()	19
5.5 flock Class Reference	19
5.5.1 Detailed Description	20
5.5.2 Constructor & Destructor Documentation	20
5.5.2.1 flock()	20
5.5.3 Member Function Documentation	20
5.5.3.1 loop()	20
5.6 flowField Class Reference	21
5.6.1 Detailed Description	21
5.6.2 Constructor & Destructor Documentation	21
5.6.2.1 flowField() [1/2]	21
5.6.2.2 flowField() [2/2]	21
5.6.3 Member Function Documentation	22
5.6.3.1 getField()	22
5.7 graphics Class Reference	22
5.7.1 Detailed Description	23
5.7.2 Member Function Documentation	23
5.7.2.1 drawAgent()	23
5.7.2.2 drawCircle()	24
5.7.2.3 drawLine()	24
5.7.2.4 drawPath()	24
5.7.2.5 drawPoint()	25
5.7.2.6 drawText()	25

5.7.2.7 drawWall()	. 25
5.7.2.8 forceInScreen()	. 26
5.7.2.9 getMousePosition()	. 26
5.7.2.10 handleKeypress()	. 26
5.7.2.11 handleResize()	. 26
5.7.2.12 initGraphics()	. 27
5.7.2.13 mouseButton()	. 27
5.7.2.14 mouseMove()	. 27
5.7.2.15 refreshScene()	. 28
5.7.2.16 timerEvent()	. 28
5.7.3 Member Data Documentation	. 28
5.7.3.1 target_x	. 28
5.7.3.2 target_y	. 28
5.8 mouseFollower Class Reference	. 29
5.8.1 Detailed Description	. 29
5.8.2 Constructor & Destructor Documentation	. 29
5.8.2.1 mouseFollower()	. 29
5.8.3 Member Function Documentation	. 29
5.8.3.1 loop()	. 30
5.9 obstacle Class Reference	. 30
5.9.1 Detailed Description	. 30
5.9.2 Constructor & Destructor Documentation	. 30
5.9.2.1 obstacle() [1/2]	. 31
5.9.2.2 obstacle() [2/2]	. 31
5.9.3 Member Data Documentation	. 31
5.9.3.1 p	. 31
5.9.3.2 r	. 32
5.10 obstacleAvoidance Class Reference	. 32
5.10.1 Detailed Description	. 32
5.10.2 Constructor & Destructor Documentation	. 32
5.10.2.1 obstacleAvoidance()	. 33
5.10.3 Member Function Documentation	. 33
5.10.3.1 createObstacle()	. 33
5.10.3.2 loop()	. 33
5.10.4 Member Data Documentation	. 33
5.10.4.1 obstacles	. 34
5.11 path Class Reference	. 34
5.11.1 Detailed Description	. 34
5.11.2 Constructor & Destructor Documentation	. 34
5.11.2.1 path() [1/2]	. 35
5.11.2.2 path() [2/2]	. 35
5.11.3 Member Function Documentation	35

5.11.3.1 addPoint()	. 35
5.11.4 Member Data Documentation	. 36
5.11.4.1 points	. 36
5.11.4.2 width	. 36
5.12 pathFollower Class Reference	. 36
5.12.1 Detailed Description	. 37
5.12.2 Constructor & Destructor Documentation	. 37
5.12.2.1 pathFollower()	. 37
5.12.3 Member Function Documentation	. 37
5.12.3.1 createPath()	. 38
5.12.3.2 loop()	. 38
5.12.4 Member Data Documentation	. 38
5.12.4.1 myPath	. 38
5.13 point Class Reference	. 38
5.13.1 Detailed Description	. 39
5.13.2 Constructor & Destructor Documentation	. 39
5.13.2.1 point() [1/2]	. 39
5.13.2.2 point() [2/2]	. 39
5.13.3 Member Function Documentation	. 40
5.13.3.1 div()	. 40
5.13.3.2 getNormalPoint()	. 40
5.13.3.3 mul()	. 40
5.13.3.4 operator+() [1/2]	. 40
5.13.3.5 operator+() [2/2]	. 41
5.13.3.6 operator-()	. 41
5.13.3.7 operator==()	. 41
5.13.3.8 print()	. 41
5.13.4 Member Data Documentation	. 41
5.13.4.1 x	. 42
5.13.4.2 y	. 42
5.14 prison Class Reference	. 42
5.14.1 Detailed Description	. 42
5.14.2 Constructor & Destructor Documentation	. 42
5.14.2.1 prison()	. 43
5.14.3 Member Function Documentation	. 43
5.14.3.1 loop()	. 43
5.15 pursuit Class Reference	. 43
5.15.1 Detailed Description	. 44
5.15.2 Constructor & Destructor Documentation	. 44
5.15.2.1 pursuit()	. 44
5.15.3 Member Function Documentation	. 44
5.15.3.1 loop()	. 44

5.16 pvector Class Reference	44
5.16.1 Detailed Description	45
5.16.2 Constructor & Destructor Documentation	45
5.16.2.1 pvector() [1/2]	45
5.16.2.2 pvector() [2/2]	45
5.16.3 Member Function Documentation	46
5.16.3.1 add()	46
5.16.3.2 angleBetween()	46
5.16.3.3 div()	46
5.16.3.4 dotProduct()	46
5.16.3.5 getAngle()	47
5.16.3.6 limit()	47
5.16.3.7 magnitude()	47
5.16.3.8 mul()	47
5.16.3.9 normalize()	48
5.16.3.10 operator+() [1/2]	48
5.16.3.11 operator+() [2/2]	48
5.16.3.12 operator+=()	48
5.16.3.13 operator-() [1/2]	49
5.16.3.14 operator-() [2/2]	49
5.16.3.15 operator==()	49
5.16.3.16 print()	49
5.16.4 Member Data Documentation	49
5.16.4.1 x	50
5.16.4.2 y	50
5.17 random Class Reference	50
5.17.1 Detailed Description	50
5.17.2 Member Function Documentation	50
5.17.2.1 createRandomArray()	51
5.18 scenario Class Reference	51
5.18.1 Detailed Description	52
5.18.2 Constructor & Destructor Documentation	52
5.18.2.1 scenario()	52
5.18.3 Member Function Documentation	52
5.18.3.1 createAgent()	52
5.18.3.2 initGL()	52
5.18.3.3 refresh()	53
5.18.4 Member Data Documentation	53
5.18.4.1 agents	53
5.18.4.2 behavior	53
5.18.4.3 callback	53
5.18.4.4 myColor	53

5.18.4.5 name	54
5.18.4.6 view	54
5.19 steeringBehavior Class Reference	54
5.19.1 Detailed Description	54
5.19.2 Member Function Documentation	55
5.19.2.1 align()	55
5.19.2.2 avoid()	55
5.19.2.3 cohesion()	56
5.19.2.4 evade()	56
5.19.2.5 flee()	57
5.19.2.6 inFlowField()	57
5.19.2.7 pursuit()	57
5.19.2.8 seek()	58
5.19.2.9 separation()	58
5.19.2.10 setAngle()	58
5.19.2.11 stayInArea()	59
5.19.2.12 stayInPath()	59
5.19.2.13 stayInPath_2()	59
5.19.2.14 wander()	60
5.20 wander Class Reference	60
5.20.1 Detailed Description	61
5.20.2 Constructor & Destructor Documentation	61
5.20.2.1 wander()	61
5.20.3 Member Function Documentation	61
5.20.3.1 loop()	61
5.21 windy Class Reference	62
5.21.1 Detailed Description	62
5.21.2 Constructor & Destructor Documentation	62
5.21.2.1 windy()	62
5.21.3 Member Function Documentation	62
5.21.3.1 loop()	63
5.21.4 Member Data Documentation	63
5.21.4.1 flow	63
6 File Documentation	65
6.1 include/agent.h File Reference	
6.2 include/color.h File Reference	
6.2.1 Detailed Description	
6.2.2 Enumeration Type Documentation	
6.2.2.1 num	
6.3 include/evade.h File Reference	
6.4 include/flee.h File Reference	
	. 00

6.5 include/flock.h File Reference	7
6.6 include/flowField.h File Reference	7
6.6.1 Detailed Description	7
6.6.2 Macro Definition Documentation	7
6.6.2.1 GRAVITY	8
6.6.2.2 HEIGHT	8
6.6.2.3 WIDTH	8
6.6.2.4 WIND_WEST	8
6.7 include/graphics.h File Reference	8
6.7.1 Macro Definition Documentation	9
6.7.1.1 ESC	9
6.7.1.2 HEIGHT	9
6.7.1.3 Pl	9
6.7.1.4 WIDTH	9
6.8 include/mouseFollower.h File Reference	9
6.9 include/obstacle.h File Reference	0
6.9.1 Detailed Description	0
6.10 include/obstacleAvoidance.h File Reference	0
6.11 include/path.h File Reference	0
6.11.1 Detailed Description	'1
6.12 include/pathFollower.h File Reference	'1
6.13 include/point.h File Reference	'1
6.14 include/prison.h File Reference	'1
6.15 include/pursuit.h File Reference	2
6.16 include/pvector.h File Reference	2
6.16.1 Macro Definition Documentation	2
6.16.1.1 Pl	2
6.17 include/random.h File Reference	2
6.18 include/scenario.h File Reference	'3
6.18.1 Enumeration Type Documentation	'3
6.18.1.1 types	'3
6.19 include/steeringBehavior.h File Reference	'3
6.19.1 Macro Definition Documentation	'4
6.19.1.1 AVOID_OBSTACLE	'4
6.19.1.2 CIRCLE_DISTANCE	'4
6.19.1.3 CIRCLE_RADIUS	'4
6.19.1.4 EVADE	'4
6.19.1.5 FLEE	'5
6.19.1.6 FLOCK	5
6.19.1.7 FOLLOW_MOUSE	'5
6.19.1.8 IN_FLOW_FIELD	5
6.19.1.9 PURSUIT	'5

6.19.1.10 STAY_IN_FIELD	. 75
6.19.1.11 STAY_IN_PATH	. 76
6.19.1.12 WANDER	. 76
6.20 include/wander.h File Reference	. 76
6.21 include/windy.h File Reference	. 76
6.22 main.cpp File Reference	. 76
6.22.1 Function Documentation	. 77
6.22.1.1 main()	. 77
6.22.1.2 menu()	. 78
6.22.2 Variable Documentation	. 78
6.22.2.1 mode	. 78
6.23 README.md File Reference	. 78
6.24 src/agent.cpp File Reference	. 78
6.25 src/color.cpp File Reference	. 78
6.25.1 Detailed Description	. 79
6.26 src/evade.cpp File Reference	. 79
6.27 src/flee.cpp File Reference	. 79
6.28 src/flock.cpp File Reference	. 79
6.29 src/flowField.cpp File Reference	. 79
6.29.1 Detailed Description	. 80
6.30 src/graphics.cpp File Reference	. 80
6.31 src/mouseFollower.cpp File Reference	. 80
6.32 src/obstacle.cpp File Reference	. 80
6.32.1 Detailed Description	. 80
6.33 src/obstacleAvoidance.cpp File Reference	. 81
6.34 src/path.cpp File Reference	. 81
6.34.1 Detailed Description	. 81
6.35 src/pathFollower.cpp File Reference	. 81
6.36 src/point.cpp File Reference	. 81
6.37 src/prison.cpp File Reference	. 82
6.38 src/pursuit.cpp File Reference	. 82
6.39 src/pvector.cpp File Reference	. 82
6.40 src/random.cpp File Reference	. 82
6.41 src/scenario.cpp File Reference	. 82
6.42 src/steeringBehavior.cpp File Reference	. 83
6.43 src/wander.cpp File Reference	. 83
6.44 src/windy.cpp File Reference	. 83
6.45 test/test_suites.cpp File Reference	. 83
6.45.1 Macro Definition Documentation	. 84
6.45.1.1 BOOST_TEST_MODULE	. 84
6.45.2 Function Documentation	. 84
6.45.2.1 BOOST AUTO TEST CASE() [1/12]	84

	6.45.2.2 BOOST_AUTO_TEST_CASE() [2/12]	84
	6.45.2.3 BOOST_AUTO_TEST_CASE() [3/12]	85
	6.45.2.4 BOOST_AUTO_TEST_CASE() [4/12]	85
	6.45.2.5 BOOST_AUTO_TEST_CASE() [5/12]	85
	6.45.2.6 BOOST_AUTO_TEST_CASE() [6/12]	85
	6.45.2.7 BOOST_AUTO_TEST_CASE() [7/12]	86
	6.45.2.8 BOOST_AUTO_TEST_CASE() [8/12]	86
	6.45.2.9 BOOST_AUTO_TEST_CASE() [9/12]	86
	6.45.2.10 BOOST_AUTO_TEST_CASE() [10/12]	86
	6.45.2.11 BOOST_AUTO_TEST_CASE() [11/12]	87
	6.45.2.12 BOOST_AUTO_TEST_CASE() [12/12]	87
Index		89

Intent

- 1- implementing Craig Raynolds autonomous steering agents
- 2- implementing genetics algorithms
- 3- implementing neural network

1.1 Dependencies

\$sudo apt-get install libglu1-mesa-dev freeglut3-dev mesa-common-dev

https://learnopengl.com/Getting-started/Coordinate-Systems

\$sudo apt-get install libboost-all-dev

1.2 Resources

```
https://natureofcode.com/book/chapter-6-autonomous-agents
https://gamedevelopment.tutsplus.com/series/understanding-steering-behaviors-gamedev-12
https://videotutorialsrock.com/index.php
https://www.opengl.org/resources/libraries/glut/spec3/node1.html
```

2 Intent

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

agent	9
color	14
flowField	21
graphics	22
obstacle	30
path	34
point	38
pvector	44
random	50
scenario	51
evade	17
flee	18
flock	19
mouseFollower	29
obstacleAvoidance	32
pathFollower	36
prison	42
pursuit	43
wander	60
windy	62
ata ada a Dala ada a	

4 Hierarchical Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

agent	9
color	14
evade	17
flee 1	18
flock	19
flowField	21
graphics	22
mouseFollower	29
obstacle	30
obstacleAvoidance	32
path	34
pathFollower	36
point	38
prison	42
pursuit	43
pvector	44
random	50
scenario	51
steeringBehavior	54
wander	60
windy	62

6 Class Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:

main.cpp	76
include/agent.h	65
include/color.h	
Color class used for agent, path, wall etc. color	65
include/evade.h	66
include/flee.h	66
include/flock.h	67
include/flowField.h	
FlowField class, screen can be filled with a force for each pixel	67
include/graphics.h	68
include/mouseFollower.h	69
include/obstacle.h	
Circular obstacles for agent avoidance behaviors	70
include/obstacleAvoidance.h	70
include/path.h	
Path class used for path following steering behaviors	70
include/pathFollower.h	71
include/point.h	71
include/prison.h	71
include/pursuit.h	72
include/pvector.h	72
include/random.h	72
include/scenario.h	73
include/steeringBehavior.h	73
include/wander.h	76
include/windy.h	76
src/agent.cpp	78
src/color.cpp	
Color class implementation	78
src/evade.cpp	79
src/flee.cpp	79
src/flock.cpp	79
src/flowField.cpp	
FlowField class implementation	79
src/graphics.cpp	80

8 File Index

c/mouseFollower.cpp	. 80
c/obstacle.cpp	
Obstacle class implementation	. 80
c/obstacleAvoidance.cpp	. 81
c/path.cpp	
Path class implementation	. 81
c/pathFollower.cpp	. 81
c/point.cpp	. 81
c/prison.cpp	. 82
c/pursuit.cpp	. 82
c/pvector.cpp	. 82
c/random.cpp	. 82
c/scenario.cpp	. 82
c/steeringBehavior.cpp	. 83
c/wander.cpp	. 83
c/windy.cpp	. 83
st/test_suites.cop	. 83

Class Documentation

5.1 agent Class Reference

```
#include <agent.h>
```

Collaboration diagram for agent:

Public Member Functions

- agent (float x, float y)
- agent ()
- ~agent ()
- void updatePosition (bool arrive)
- void setFeatures (float s, float f, float r, float m)

Public Attributes

- string name
- color fillColor
- point position
- · pvector velocity
- point targetPoint
- float maxSpeed
- float maxForce
- pvector steering
- pvector force
- pvector acceleration
- pvector desiredVelocity
- float r
- float mass
- int id
- bool arrive = false

5.1.1 Detailed Description

Definition at line 18 of file agent.h.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 agent() [1/2]

```
agent::agent ( \label{eq:float x, float x, float y, } float y,
```

Definition at line 11 of file agent.cpp.

5.1.2.2 agent() [2/2]

```
agent::agent ( )
```

Definition at line 9 of file agent.cpp.

5.1.2.3 ∼agent()

```
agent::~agent ()
```

Definition at line 49 of file agent.cpp.

5.1.3 Member Function Documentation

5.1.3.1 setFeatures()

Definition at line 42 of file agent.cpp.

```
this->maxSpeed = s;

this->maxForce = f;

this->r = r;

this->mass = m;
```

5.1.3.2 updatePosition()

```
void agent::updatePosition (
                  bool arrive )
Definition at line 22 of file agent.cpp.
22
23
        force.limit(maxForce);
acceleration = force;
24
25
        velocity += acceleration;
        //arriving behavior implementation
       if(arrive == true){
    pvector diff = targetPoint - position;
    if(diff.magnitude() > r)
        velocity.limit(maxSpeed);
28
29
30
31
32
              else
33
                   velocity.limit(maxSpeed * diff.magnitude() / r);
34
35
36
             velocity.limit(maxSpeed);
         position = position + velocity;
39
         force = pvector(0,0);
40 }
```

Here is the call graph for this function:

5.1.4 Member Data Documentation

5.1.4.1 acceleration

```
pvector agent::acceleration
```

Definition at line 34 of file agent.h.

5.1.4.2 arrive

```
bool agent::arrive = false
```

Definition at line 39 of file agent.h.

5.1.4.3 desiredVelocity

```
pvector agent::desiredVelocity
```

Definition at line 35 of file agent.h.

5.1.4.4 fillColor

```
color agent::fillColor
```

Definition at line 26 of file agent.h.

5.1.4.5 force

```
pvector agent::force
```

Definition at line 33 of file agent.h.

5.1.4.6 id

int agent::id

Definition at line 38 of file agent.h.

5.1.4.7 mass

float agent::mass

Definition at line 37 of file agent.h.

5.1.4.8 maxForce

float agent::maxForce

Definition at line 31 of file agent.h.

5.1.4.9 maxSpeed

float agent::maxSpeed

Definition at line 30 of file agent.h.

5.1.4.10 name

string agent::name

Definition at line 25 of file agent.h.

5.1.4.11 position

point agent::position

Definition at line 27 of file agent.h.

5.1.4.12 r

float agent::r

Definition at line 36 of file agent.h.

5.1.4.13 steering

pvector agent::steering

Definition at line 32 of file agent.h.

5.1.4.14 targetPoint

point agent::targetPoint

Definition at line 29 of file agent.h.

5.1.4.15 velocity

pvector agent::velocity

Definition at line 28 of file agent.h.

The documentation for this class was generated from the following files:

- include/agent.h
- src/agent.cpp

5.2 color Class Reference

```
#include <color.h>
```

Collaboration diagram for color:

Public Member Functions

```
· color ()
```

default constructor.

• color (float r, float g, float b)

Constructor.

• void createColors ()

fills colors vector with 8 main colors in color bar

color getColor (int i)

Constructor.

Public Attributes

```
 float R
```

red condiment

float G

green condiment

• float B

blue condiment

vector < color > colors

stores main colors

5.2.1 Detailed Description

Definition at line 20 of file color.h.

5.2.2 Constructor & Destructor Documentation

```
5.2.2.1 color() [1/2]
```

```
color::color ( )
```

default constructor.

Create a new color object.

See also

```
color(float r, float g, float b)
```

Definition at line 25 of file color.cpp.

```
26 {
27
```

28 }

5.2 color Class Reference 15

5.2.2.2 color() [2/2]

Constructor.

Create a new color object.

Parameters

r	red (0-255)
g	green (0-255)
b	blue (0-255)

See also

path()

Definition at line 13 of file color.cpp.

5.2.3 Member Function Documentation

5.2.3.1 createColors()

```
void color::createColors ( )
```

fills colors vector with 8 main colors in color bar

creates main colors for future use

Definition at line 30 of file color.cpp.

5.2.3.2 getColor()

```
\begin{array}{c} {\tt color} \; {\tt color} : {\tt getColor} \; \; ( \\ {\tt int} \; \; i \; ) \end{array}
```

Constructor.

returns specified color from colors vector

Parameters

i gets specified color

Returns

requested pre-created color instance

Definition at line 20 of file color.cpp.

```
21 {
22 return colors.at(i);
23 }
```

Here is the caller graph for this function:

5.2.4 Member Data Documentation

5.2.4.1 B

float color::B

blue condiment

blue color ratio

Definition at line 69 of file color.h.

5.2.4.2 colors

vector<color> color::colors

stores main colors

vector of fundamental colors

Definition at line 75 of file color.h.

5.2.4.3 G

float color::G

green condiment

green color ratio

Definition at line 63 of file color.h.

5.3 evade Class Reference 17

5.2.4.4 R

float color::R

red condiment

red color ratio

Definition at line 57 of file color.h.

The documentation for this class was generated from the following files:

- include/color.h
- src/color.cpp

5.3 evade Class Reference

#include <evade.h>

Inheritance diagram for evade:

Collaboration diagram for evade:

Public Member Functions

• evade ()

Static Public Member Functions

• static void loop ()

Additional Inherited Members

5.3.1 Detailed Description

Definition at line 8 of file evade.h.

5.3.2 Constructor & Destructor Documentation

5.3.2.1 evade()

```
evade::evade ( )
```

Definition at line 23 of file evade.cpp.

5.3.3 Member Function Documentation

5.3.3.1 loop()

```
void evade::loop ( ) [static]
```

Definition at line 8 of file evade.cpp.

The documentation for this class was generated from the following files:

- · include/evade.h
- · src/evade.cpp

5.4 flee Class Reference

```
#include <flee.h>
```

Inheritance diagram for flee:

Collaboration diagram for flee:

Public Member Functions

• flee ()

Static Public Member Functions

static void loop ()

5.5 flock Class Reference 19

Additional Inherited Members

5.4.1 Detailed Description

Definition at line 8 of file flee.h.

5.4.2 Constructor & Destructor Documentation

```
5.4.2.1 flee()
flee::flee ( )
Definition at line 16 of file flee.cpp.
           int agentCount = 196;
name = "fleeing troop";
createAgent(TROOP, &agentCount, nullptr, nullptr);
callback = reinterpret_cast <void(*)()> ( (void *)(&loop) );
17
18
19
```

5.4.3 Member Function Documentation

5.4.3.1 loop()

20

```
void flee::loop ( ) [static]
Definition at line 8 of file flee.cpp.
        for(auto it = agents.begin(); it < agents.end(); it++) {
    (*it).force = behavior.flee((*it), view, view.getMousePosition());</pre>
10
11
13
         refresh();
```

The documentation for this class was generated from the following files:

- include/flee.h
- src/flee.cpp

5.5 flock Class Reference

```
#include <flock.h>
```

Inheritance diagram for flock:

Collaboration diagram for flock:

Public Member Functions

• flock ()

Static Public Member Functions

• static void loop ()

Additional Inherited Members

5.5.1 Detailed Description

Definition at line 8 of file flock.h.

5.5.2 Constructor & Destructor Documentation

5.5.2.1 flock()

5.5.3 Member Function Documentation

5.5.3.1 loop()

```
void flock::loop ( ) [static]
Definition at line 8 of file flock.cpp.
       for(auto it = agents.begin(); it < agents.end(); it++){</pre>
10
             view.forceInScreen((*it));
11
            pvector sep = behavior.separation(agents, *it);
sep.mul(1.5);
13
            pvector ali = behavior.align(agents, *it);
            ali.mul(4);
            pvector coh = behavior.cohesion(agents, *it);
17
            coh.mul(0.1);
18
             (*it).force = sep + ali + coh;
(*it).desiredVelocity = (*it).force + (*it).velocity;
19
20
             (*it).targetPoint = (*it).position + (*it).desiredVelocity;
22
             (*it).arrive = true;
2.3
24
25
       refresh();
26 }
```

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- · include/flock.h
- src/flock.cpp

5.6 flowField Class Reference

```
#include <flowField.h>
```

Collaboration diagram for flowField:

Public Member Functions

```
• flowField ()
```

default constructor.

• flowField (pvector p)

constructor.

pvector getField (int x, int y)

get force for individual pixel

5.6.1 Detailed Description

Definition at line 18 of file flowField.h.

5.6.2 Constructor & Destructor Documentation

5.6.2.1 flowField() [1/2]

```
flowField::flowField ( )
```

default constructor.

Create a new flowField object.

See also

flowField(pvector p)

Definition at line 15 of file flowField.cpp.

15 {}

5.6.2.2 flowField() [2/2]

constructor.

Create a new flowField object.

Parameters

```
p force vector
```

See also

flowField()

Definition at line 10 of file flowField.cpp.

```
11 {
12     createFlowField(p);
13 }
```

5.6.3 Member Function Documentation

5.6.3.1 getField()

get force for individual pixel

get force for a specific position

Parameters

Х	x cprovidesoordinate
У	y coordinate

Returns

returns force at specified position

Definition at line 36 of file flowField.cpp.

```
37 {
38    return uniformField[x][y];
30 }
```

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- include/flowField.h
- src/flowField.cpp

5.7 graphics Class Reference

```
#include <graphics.h>
```

Collaboration diagram for graphics:

Public Member Functions

- void drawWall (float border, color color)
- void drawAgent (agent &agent, color &color)
- void drawLine (point p1, point p2, color cl)
- · void drawPath (path &path, color color)
- void drawPoint (point p)
- void drawCircle (point p, float radius)
- void drawText (string text, point p)
- · void forceInScreen (agent &agent)
- void refreshScene ()
- point getMousePosition ()
- void initGraphics (int *argv, char **argc, void(*callback)())

Static Public Member Functions

- static void timerEvent (int value)
- static void handleKeypress (unsigned char key, int x, int y)
- static void mouseButton (int button, int state, int x, int y)
- static void handleResize (int w, int h)
- static void mouseMove (int x, int y)

Static Public Attributes

- static int target_x = -WIDTH
- static int target_y = HEIGHT

5.7.1 Detailed Description

Definition at line 15 of file graphics.h.

5.7.2 Member Function Documentation

5.7.2.1 drawAgent()

Definition at line 162 of file graphics.cpp.

```
164
           glTranslatef(agent.position.x, agent.position.y, 0.0f);
165
            glRotatef(agent.velocity.getAngle(), 0.0f, 0.0f, 1.0f);
166
            {\tt glBegin\,(GL\_TRIANGLES)\,;}
           glColor3f(color.R, color.G, color.B);
glVertex3f(1.0f, 0.0f, 0.0f);
glVertex3f(-1.0f, 0.5f, 0.0f);
glVertex3f(-1.0f, -0.5f, 0.0f);
167
168
169
170
171
            glEnd();
           glPopMatrix();
172
173 }
```

Here is the call graph for this function:

5.7.2.2 drawCircle()

Definition at line 124 of file graphics.cpp.

```
124
125     glBegin(GL_LINE_STRIP);
126     glLineWidth(2);
127     for (int i = 0; i <= 300; i++) {
128          float angle = 2 * PI * i / 300;
129          float x = cos(angle) * radius;
130          float y = sin(angle) * radius;
131          glVertex2d(p.x + x, p.y + y);
132     }
133     glEnd();
134 }</pre>
```

5.7.2.3 drawLine()

Definition at line 115 of file graphics.cpp.

```
115
116 glColor3f(cl.R, cl.G, cl.B);
117 glLineWidth(2);
118 glBegin(GL_LINES);
119 glVertex2f(pl.x, pl.y);
120 glVertex2f(p2.x, p2.y);
121 glEnd();
122 }
```

5.7.2.4 drawPath()

Definition at line 102 of file graphics.cpp.

Here is the call graph for this function:

5.7.2.5 drawPoint()

Here is the caller graph for this function:

5.7.2.6 drawText()

Definition at line 14 of file graphics.cpp.

Here is the caller graph for this function:

5.7.2.7 drawWall()

Definition at line 144 of file graphics.cpp.

```
144
          point p1 {-border, border};
point p2 { border, border};
145
146
147
          drawLine(p1, p2, color.getColor(BLUE));
148
          p1 = point ( border, border);
p2 = point ( border, -border);
149
150
          drawLine(p1, p2, color.getColor(BLUE));
151
152
          p1 = point ( border, -border);
p2 = point ( -border, -border);
153
154
155
          drawLine(p1, p2, color.getColor(BLUE));
156
          p1 = point (-border, border);
p2 = point (-border, -border);
157
159
          drawLine(p1, p2, color.getColor(BLUE));
160 }
```

Here is the call graph for this function:

5.7.2.8 forceInScreen()

```
void graphics::forceInScreen (
                  agent & agent )
Definition at line 52 of file graphics.cpp.
        if(agent.position.x > WIDTH)
   agent.position.x -= 2 * WIDTH;
53
54
        if (agent.position.x < -WIDTH)</pre>
55
            agent.position.x += 2 * WIDTH;
56
        if(agent.position.y > HEIGHT)
        agent.position.y -= 2 * HEIGHT;
if(agent.position.y < -HEIGHT)</pre>
58
59
           agent.position.y += 2 * HEIGHT;
60
61 }
```

5.7.2.9 getMousePosition()

```
point graphics::getMousePosition ( )

Definition at line 48 of file graphics.cpp.
48
49    return point (graphics::target_x, graphics::target_y);
50 }
```

Here is the call graph for this function:

5.7.2.10 handleKeypress()

```
void graphics::handleKeypress (
          unsigned char key,
          int x,
          int y) [static]
```

Definition at line 99 of file graphics.cpp.

Here is the caller graph for this function:

5.7.2.11 handleResize()

Definition at line 70 of file graphics.cpp.

```
70
71
        glViewport(0, 0, w, h); //Tell OpenGL how to convert from coordinates to pixel values glMatrixMode(GL_PROJECTION); //Switch to setting the camera perspective
        glLoadIdentity(); //Reset the camera
74
        //Set the camera perspective
75
        gluPerspective(45.0,
                                                       //The camera angle
76
                           (double)w / (double)h, //The width-to-height ratio
                                                       //The near z clipping coordinate
                           1.0.
                                                       //The far z clipping coordinate
78
                          200.0);
```

Here is the caller graph for this function:

5.7.2.12 initGraphics()

```
void graphics::initGraphics (
               int * argv,
               char ** argc,
               void(*)() callback )
Definition at line 32 of file graphics.cpp.
33
      glutInit(argv, argc);
      glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
34
      glutInitWindowSize(400, 400);
glutCreateWindow("Autonomous Steering Agents");
35
36
      glClearColor(0.7f, 0.7f, 0.7f, 1.0f); //set background color
37
      glEnable(GL_DEPTH_TEST);
39
      glutDisplayFunc(*callback);
40
      glutMouseFunc(graphics::mouseButton);
      glutPassiveMotionFunc(graphics::mouseMove);
41
42
      glutKeyboardFunc(graphics::handleKeypress);
      glutReshapeFunc(graphics::handleResize);
43
      glutTimerFunc(5, graphics::timerEvent, 0);
45
      glutMainLoop();
46 }
```

Here is the call graph for this function:

5.7.2.13 mouseButton()

```
void graphics::mouseButton (
    int button,
    int state,
    int x,
    int y ) [static]
```

Definition at line 93 of file graphics.cpp.

```
93
94
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) {
95
cout « "zdf";
96
}
97 }
```

Here is the caller graph for this function:

5.7.2.14 mouseMove()

Definition at line 63 of file graphics.cpp.

Here is the caller graph for this function:

5.7.2.15 refreshScene()

5.7.2.16 timerEvent()

Here is the caller graph for this function:

5.7.3 Member Data Documentation

5.7.3.1 target_x

91 }

```
int graphics::target_x = -WIDTH [static]
```

Definition at line 33 of file graphics.h.

5.7.3.2 target_y

```
int graphics::target_y = HEIGHT [static]
```

Definition at line 34 of file graphics.h.

The documentation for this class was generated from the following files:

- include/graphics.h
- src/graphics.cpp

5.8 mouseFollower Class Reference

```
#include <mouseFollower.h>
```

Inheritance diagram for mouseFollower:

Collaboration diagram for mouseFollower:

Public Member Functions

• mouseFollower ()

Static Public Member Functions

• static void loop ()

Additional Inherited Members

5.8.1 Detailed Description

Definition at line 8 of file mouseFollower.h.

5.8.2 Constructor & Destructor Documentation

5.8.2.1 mouseFollower()

```
mouseFollower::mouseFollower ( )
```

Definition at line 17 of file mouseFollower.cpp.

```
int agentCount = 30;
float maxForce = 0.3;
float maxSpeed = 0.6;
name = "mouse following";
createAgent(RANDOM, &agentCount, &maxForce, &maxSpeed);
callback = reinterpret_cast <void(*)() > ((void *)(&loop));
```

5.8.3 Member Function Documentation

5.8.3.1 loop()

```
void mouseFollower::loop ( ) [static]
```

Definition at line 8 of file mouseFollower.cpp.

```
for(auto it = agents.begin(); it < agents.end(); it++){
          (*it).targetPoint = view.getMousePosition();

          (*it).force = behavior.seek(*it);

          (*it).arrive = true;
}

refresh();</pre>
```

The documentation for this class was generated from the following files:

- include/mouseFollower.h
- src/mouseFollower.cpp

5.9 obstacle Class Reference

```
#include <obstacle.h>
```

Collaboration diagram for obstacle:

Public Member Functions

```
• obstacle ()
```

Default constructor.

• obstacle (point p, float r)

Constructor.

Public Attributes

point p

x and y coordinates

float r

the bigger radius the bigger the obstacle

5.9.1 Detailed Description

Definition at line 12 of file obstacle.h.

5.9.2 Constructor & Destructor Documentation

5.9.2.1 obstacle() [1/2]

```
obstacle::obstacle ( )
```

Default constructor.

Create a new obstacle object.

See also

```
obstacle(point p, float r);
```

Definition at line 15 of file obstacle.cpp.

5.9.2.2 obstacle() [2/2]

Constructor.

Create a new obstacle object.

Parameters

р	center of the circular obstacle
r	radius of the obstacle

See also

obstacle(point p, float r);

```
Definition at line 17 of file obstacle.cpp.

this->p = p;
this->r = r;

this->r = r;
```

5.9.3 Member Data Documentation

5.9.3.1 p

```
point obstacle::p
```

x and y coordinates

center point of the obstacle

Definition at line 34 of file obstacle.h.

5.9.3.2 r

float obstacle::r

the bigger radius the bigger the obstacle

radius of the obstacle

Definition at line 40 of file obstacle.h.

The documentation for this class was generated from the following files:

- include/obstacle.h
- src/obstacle.cpp

5.10 obstacleAvoidance Class Reference

#include <obstacleAvoidance.h>

Inheritance diagram for obstacleAvoidance:

Collaboration diagram for obstacleAvoidance:

Public Member Functions

• obstacleAvoidance ()

Static Public Member Functions

- static void loop ()
- static void createObstacle (vector< obstacle > &obstacles)

Static Public Attributes

static vector < obstacle > obstacles

Additional Inherited Members

5.10.1 Detailed Description

Definition at line 9 of file obstacleAvoidance.h.

5.10.2 Constructor & Destructor Documentation

5.10.2.1 obstacleAvoidance()

```
obstacleAvoidance::obstacleAvoidance ( )
```

Definition at line 34 of file obstacleAvoidance.cpp.

```
name = "avoid obstacles";

createAgent(STATIC, nullptr, nullptr, nullptr);

createObstacle(obstacles);

callback = reinterpret_cast <void(*)()> ( (void *)(&loop) );

39 }
```

5.10.3 Member Function Documentation

5.10.3.1 createObstacle()

Definition at line 28 of file obstacleAvoidance.cpp.

```
obstacles.push_back(obstacle(point(0,0), 8));
obstacles.push_back(obstacle(point(-20,0), 3));
obstacles.push_back(obstacle(point(20,-10), 4));
32 }
```

Here is the call graph for this function:

5.10.3.2 loop()

```
void obstacleAvoidance::loop ( ) [static]
```

Definition at line 10 of file obstacleAvoidance.cpp.

```
for(auto it = agents.begin(); it < agents.end(); it++){</pre>
11
            for(auto it = obstacles.begin(); it < obstacles.end(); it++){
    point p = (*it).p;</pre>
12
13
14
                  view.drawCircle(p, (*it).r);
15
17
             (*it).targetPoint = view.getMousePosition();
18
             pvector seek = behavior.seek(*it);
seek.mul(0.5);
19
20
             pvector avoid = behavior.avoid(obstacles, *it);
             (*it).force = avoid + seek;
(*it).arrive = true;
22
2.3
2.4
25
        refresh();
26 }
```

Here is the call graph for this function:

5.10.4 Member Data Documentation

5.10.4.1 obstacles

```
vector< obstacle > obstacleAvoidance::obstacles [static]
```

Definition at line 13 of file obstacleAvoidance.h.

The documentation for this class was generated from the following files:

- include/obstacleAvoidance.h
- src/obstacleAvoidance.cpp

5.11 path Class Reference

```
#include <path.h>
```

Collaboration diagram for path:

Public Member Functions

• path ()

Default constructor.

• path (float width)

Constructor.

void addPoint (point p)

adds a new point to the path

Public Attributes

- vector< point > points
 - points added to the path
- · int width

defines width of the path

5.11.1 Detailed Description

Definition at line 15 of file path.h.

5.11.2 Constructor & Destructor Documentation

5.11.2.1 path() [1/2]

```
path::path ( )
```

Default constructor.

Create a new path object.

See also

path(float width)

Definition at line 16 of file path.cpp.

```
17 +
18
```

5.11.2.2 path() [2/2]

Constructor.

Create a new path object.

Parameters

width	The width of the path.
-------	------------------------

See also

path()

Definition at line 21 of file path.cpp.

```
22 {
23     this->width = width;
24 }
```

5.11.3 Member Function Documentation

5.11.3.1 addPoint()

```
void path::addPoint ( point p)
```

adds a new point to the path

Used when customizing path

Parameters

point	new point to add to the path

Definition at line 11 of file path.cpp.

```
12 {
13     points.push_back(p);
14 }
```

Here is the caller graph for this function:

5.11.4 Member Data Documentation

5.11.4.1 points

```
vector<point> path::points
```

points added to the path

path is created from these points

Definition at line 43 of file path.h.

5.11.4.2 width

```
int path::width
```

defines width of the path

path width

Definition at line 49 of file path.h.

The documentation for this class was generated from the following files:

- include/path.h
- src/path.cpp

5.12 pathFollower Class Reference

```
#include <pathFollower.h>
```

Inheritance diagram for pathFollower:

Collaboration diagram for pathFollower:

Public Member Functions

• pathFollower ()

Static Public Member Functions

- static void loop ()
- static void createPath (path &p)

Static Public Attributes

static path myPath

Additional Inherited Members

5.12.1 Detailed Description

Definition at line 8 of file pathFollower.h.

5.12.2 Constructor & Destructor Documentation

5.12.2.1 pathFollower()

```
pathFollower::pathFollower ( )
```

Definition at line 28 of file pathFollower.cpp.

```
int agentCount = 40;
float maxForce = 0.2;
float maxSpeed = 0.4;
myPath = path(8);
createPath(myPath);
name = "path following";
createAgent(RANDOM, &agentCount, &maxForce, &maxSpeed);
callback = reinterpret_cast <void(*)()> ( (void *)(&loop) );
}
```

5.12.3 Member Function Documentation

5.12.3.1 createPath()

Definition at line 21 of file pathFollower.cpp.

```
22 p.addPoint(point(-40, 5));
23 p.addPoint(point(-14, 15));
24 p.addPoint(point(10, 7));
25 p.addPoint(point(40, 12));
26 }
```

Here is the call graph for this function:

5.12.3.2 loop()

```
void pathFollower::loop ( ) [static]
```

Definition at line 10 of file pathFollower.cpp.

```
for(auto it = agents.begin(); it < agents.end(); it++){
    view.drawPath (myPath, myColor);
    pvector seek = behavior.stayInPath_2(*it, myPath, view);
    pvector seep = behavior.separation(agents, *it);
    sep.mul(5);
    (*it).force = sep + seek;
}
refresh();</pre>
```

Here is the call graph for this function:

5.12.4 Member Data Documentation

5.12.4.1 myPath

```
path pathFollower::myPath [static]
```

Definition at line 12 of file pathFollower.h.

The documentation for this class was generated from the following files:

- · include/pathFollower.h
- src/pathFollower.cpp

5.13 point Class Reference

```
#include <point.h>
```

Collaboration diagram for point:

Public Member Functions

- point (float x, float y)
- point ()
- void div (float d)
- void mul (float d)
- void print (const string &s)
- point operator+ (pvector const &obj)
- point operator+ (point const &obj)
- pvector operator- (point const &obj)
- bool operator== (point const &obj)
- void getNormalPoint (point predicted, point start, point end)

Public Attributes

- float x
- float y

5.13.1 Detailed Description

Definition at line 8 of file point.h.

5.13.2 Constructor & Destructor Documentation

5.13.2.1 point() [1/2]

```
point::point ( \label{eq:float x, float x, float y, flo
```

Definition at line 8 of file point.cpp.

5.13.2.2 point() [2/2]

```
point::point ( )
```

Definition at line 13 of file point.cpp.

13 {

Here is the caller graph for this function:

5.13.3 Member Function Documentation

5.13.3.1 div()

Here is the caller graph for this function:

5.13.3.2 getNormalPoint()

Definition at line 53 of file point.cpp.

```
53
54     pvector a = predicted - start;
55     pvector b = end - start;
56     b.normalize();
57     float a_dot_b = a.dotProduct(b);
58     b.mul(a_dot_b);
59     point normalPoint = start + b;
60     this->x = normalPoint.x;
61     this->y = normalPoint.y;
62 }
```

Here is the call graph for this function: Here is the caller graph for this function:

5.13.3.3 mul()

Here is the caller graph for this function:

5.13.3.4 operator+() [1/2]

5.13.3.5 operator+() [2/2]

5.13.3.6 operator-()

```
46
47 pvector res;
48 res.x = x - obj.x;
49 res.y = y - obj.y;
50 return res;
51 }
```

5.13.3.7 operator==()

5.13.3.8 print()

5.13.4 Member Data Documentation

5.13.4.1 x

```
float point::x
```

Definition at line 10 of file point.h.

5.13.4.2 y

```
float point::y
```

Definition at line 11 of file point.h.

The documentation for this class was generated from the following files:

- include/point.h
- src/point.cpp

5.14 prison Class Reference

```
#include <prison.h>
```

Inheritance diagram for prison:

Collaboration diagram for prison:

Public Member Functions

• prison ()

Static Public Member Functions

• static void loop ()

Additional Inherited Members

5.14.1 Detailed Description

Definition at line 8 of file prison.h.

5.14.2 Constructor & Destructor Documentation

5.14.2.1 prison()

5.14.3 Member Function Documentation

5.14.3.1 loop()

```
void prison::loop ( ) [static]
```

Definition at line 8 of file prison.cpp.

```
for(auto it = agents.begin(); it < agents.end(); it++){
    view.drawWall(WALL, myColor);
    (*it).force = behavior.stayInArea(*it, WALL - DISTANCE);
    (*it).force += behavior.separation(agents, *it);
}
refresh();</pre>
```

The documentation for this class was generated from the following files:

- · include/prison.h
- src/prison.cpp

5.15 pursuit Class Reference

```
#include <pursuit.h>
```

Inheritance diagram for pursuit:

Collaboration diagram for pursuit:

Public Member Functions

• pursuit ()

Static Public Member Functions

• static void loop ()

Additional Inherited Members

5.15.1 Detailed Description

Definition at line 8 of file pursuit.h.

5.15.2 Constructor & Destructor Documentation

5.15.2.1 pursuit()

```
pursuit::pursuit ( )
```

Definition at line 23 of file pursuit.cpp.

5.15.3 Member Function Documentation

5.15.3.1 loop()

```
void pursuit::loop ( ) [static]
```

Definition at line 8 of file pursuit.cpp.

The documentation for this class was generated from the following files:

- · include/pursuit.h
- src/pursuit.cpp

5.16 pvector Class Reference

```
#include <pvector.h>
```

Collaboration diagram for pvector:

Public Member Functions

- pvector ()
- pvector (float x, float y)
- float magnitude ()
- pvector & normalize ()
- void div (float i)
- void mul (float i)
- void add (pvector p)
- · void limit (float limit)
- float getAngle ()
- float dotProduct (pvector v)
- float angleBetween (pvector v)
- pvector operator+= (pvector const &obj)
- pvector operator+ (pvector const &obj)
- pvector operator- (pvector const &obj)
- pvector operator- (point const &obj)
- pvector operator+ (point const &obj)
- bool operator== (pvector const &obj)
- void print (const string &s)

Public Attributes

- float x
- float y

5.16.1 Detailed Description

Definition at line 11 of file pvector.h.

5.16.2 Constructor & Destructor Documentation

5.16.2.1 pvector() [1/2]

```
pvector::pvector ( )
```

Definition at line 25 of file pvector.cpp.

25 {

5.16.2.2 pvector() [2/2]

```
\label{eq:pvector} \begin{tabular}{ll} pvector::pvector ( & float $x$, \\ & float $y$ ) \end{tabular}
```

Definition at line 27 of file pvector.cpp.

```
28 this->x = x;
29 this->y = y;
30 }
```

5.16.3 Member Function Documentation

5.16.3.1 add()

5.16.3.2 angleBetween()

Here is the call graph for this function: Here is the caller graph for this function:

5.16.3.3 div()

Here is the caller graph for this function:

5.16.3.4 dotProduct()

Definition at line 21 of file pvector.cpp.

```
21 return ((x * v.x) + (y * v.y));
23 }
```

Here is the caller graph for this function:

5.16.3.5 getAngle()

```
float pvector::getAngle ( )
```

Definition at line 9 of file pvector.cpp.

```
float angle;
angle = atan2 (this->y, this->x) * 180 / PI;
return angle;
}
```

Here is the caller graph for this function:

5.16.3.6 limit()

Definition at line 64 of file pvector.cpp.

```
64
65 this->normalize();
66 this->mul(limit);
67 }
```

Here is the call graph for this function: Here is the caller graph for this function:

5.16.3.7 magnitude()

```
float pvector::magnitude ( )
```

Definition at line 47 of file pvector.cpp.

```
47 {
48     return sqrt((this->x * this->x) + (this->y * this->y));
49 }
```

Here is the caller graph for this function:

5.16.3.8 mul()

```
void pvector::mul (
          float i )
```

Definition at line 37 of file pvector.cpp.

Here is the caller graph for this function:

5.16.3.9 normalize()

Here is the caller graph for this function:

5.16.3.10 operator+() [1/2]

this->x = 0; this->y = 0;

return *this;

59 60

61 62 }

Definition at line 88 of file pvector.cpp.

5.16.3.11 operator+() [2/2]

Definition at line 69 of file pvector.cpp.

```
70 pvector res;
71 res.x = x + obj.x;
72 res.y = y + obj.y;
73 return res;
74 }
```

5.16.3.12 operator+=()

Definition at line 76 of file pvector.cpp.

5.16.3.13 operator-() [1/2]

5.16.3.14 operator-() [2/2]

5.16.3.15 operator==()

return res;

110

111 }

Definition at line 82 of file pvector.cpp.

5.16.3.16 print()

5.16.4 Member Data Documentation

5.16.4.1 x

float pvector::x

Definition at line 13 of file pvector.h.

5.16.4.2 y

float pvector::y

Definition at line 14 of file pvector.h.

The documentation for this class was generated from the following files:

- include/pvector.h
- src/pvector.cpp

5.17 random Class Reference

#include <random.h>

Collaboration diagram for random:

Static Public Member Functions

• static void createRandomArray (int *arr, int size)

5.17.1 Detailed Description

Definition at line 3 of file random.h.

5.17.2 Member Function Documentation

5.17.2.1 createRandomArray()

srand(time(NULL));
for(int i=0; i<size; i++)
arr[i] = i+1;

for (int i=0; i < size; i++) {
 int r = rand() % size;
 swap(arr[i], arr[r]);
}

16 }</pre>

The documentation for this class was generated from the following files:

- · include/random.h
- src/random.cpp

5.18 scenario Class Reference

```
#include <scenario.h>
```

Inheritance diagram for scenario:

Collaboration diagram for scenario:

Public Member Functions

- scenario ()
- void createAgent (int type, int *count, float *force, float *speed)
- void initGL (int *argv, char **argc)

Static Public Member Functions

• static void refresh ()

Public Attributes

void(* callback)()

Static Public Attributes

- static vector< agent > agents
- · static graphics view
- static steeringBehavior behavior
- · static color myColor
- static string name

5.18.1 Detailed Description

Definition at line 12 of file scenario.h.

5.18.2 Constructor & Destructor Documentation

5.18.2.1 scenario()

5.18.3 Member Function Documentation

5.18.3.1 createAgent()

```
void scenario::createAgent (
    int type,
    int * count,
    float * force,
    float * speed )
```

Definition at line 95 of file scenario.cpp.

```
96 {
       if(type == TROOP){
98
          createTroop(*count);
99
       else if(type == RANDOM){
100
101
          createRandomAgents(*count, *force, *speed);
102
       else if(type == STATIC){
103
104
          createStaticAgents();
105
106
      else{
           //error message
107
108
109 }
```

5.18.3.2 initGL()

Definition at line 13 of file scenario.cpp.

Here is the caller graph for this function:

5.18.3.3 refresh()

```
void scenario::refresh ( ) [static]
```

Definition at line 25 of file scenario.cpp.

Here is the call graph for this function:

5.18.4 Member Data Documentation

5.18.4.1 agents

```
vector< agent > scenario::agents [static]
```

Definition at line 18 of file scenario.h.

5.18.4.2 behavior

```
steeringBehavior scenario::behavior [static]
```

Definition at line 20 of file scenario.h.

5.18.4.3 callback

```
void(* scenario::callback) ()
```

Definition at line 23 of file scenario.h.

5.18.4.4 myColor

```
color scenario::myColor [static]
```

Definition at line 21 of file scenario.h.

5.18.4.5 name

```
string scenario::name [static]
```

Definition at line 22 of file scenario.h.

5.18.4.6 view

```
graphics scenario::view [static]
```

Definition at line 19 of file scenario.h.

The documentation for this class was generated from the following files:

- · include/scenario.h
- src/scenario.cpp

5.19 steeringBehavior Class Reference

```
#include <steeringBehavior.h>
```

Collaboration diagram for steeringBehavior:

Public Member Functions

- pvector stayInArea (agent &agent, int turnPoint)
- pvector inFlowField (agent &agent, flowField &flow)
- pvector stayInPath (agent &agent, path &path)
- pvector stayInPath_2 (agent &agent, path &path, graphics view)
- pvector seek (agent &agent)
- pvector separation (vector< agent > agents, agent & agent)
- pvector cohesion (vector< agent > boids, agent &agent)
- pvector align (vector< agent > boids, agent & agent)
- pvector wander (agent &agent)
- pvector pursuit (vector< agent > boids, agent &pursuer, graphics view)
- pvector evade (vector< agent > boids, agent &evader, graphics view)
- pvector flee (agent &agent, graphics &view, point p)
- pvector avoid (vector< obstacle > obstacles, agent &agent)
- void setAngle (pvector &p, float angle)

5.19.1 Detailed Description

Definition at line 28 of file steeringBehavior.h.

5.19.2 Member Function Documentation

5.19.2.1 align()

```
pvector steeringBehavior::align (
                  vector< agent > boids,
                  agent & agent )
Definition at line 105 of file steeringBehavior.cpp.
105
         float neighborDist = 30; //TODO: magic numer
106
107
         pvector sum {0,0};
108
         int count = 0;
         for(auto it = boids.begin(); it < boids.end(); it++) {
   float d = (agent.position - (*it).position).magnitude();</pre>
109
110
            if( (d >0) && (d < neighborDist) ){
   sum += (*it).velocity;</pre>
111
112
113
                count++;
114
           }
115
116
         if(count>0){
          sum.div(count);
117
118
            sum.normalize().mul(agent.maxSpeed);
           agent.steering = sum - agent.velocity;
return agent.steering;
119
120
121
```

Here is the call graph for this function:

return pvector(0,0);

5.19.2.2 avoid()

122

123 }

```
pvector steeringBehavior::avoid (
                vector< obstacle > obstacles,
                agent & agent )
Definition at line 166 of file steeringBehavior.cpp.
166
167
        float dynamic_length = agent.velocity.magnitude() / agent.maxSpeed;
pvector vel = agent.velocity;
168
        vel.normalize().mul(dynamic_length);
169
170
        pvector ahead = vel + agent.position;
171
        vel.mul(6);
172
        pvector ahead2 = vel + agent.position;
173
        //view.drawPoint(point(ahead.x, ahead.y));
174
        //view.drawPoint(point(ahead2.x, ahead2.y));
175
176
        for(auto it = obstacles.begin(); it < obstacles.end(); it++){</pre>
         float dist = (ahead - (*it).p).magnitude();
float dist2 = (ahead2 - (*it).p).magnitude();
177
178
           if(dist < (*it).r + 2 || dist2 < (*it).r + 2){
    pvector avoidance = ahead - (*it).p;</pre>
179
180
181
               avoidance.normalize().mul(20);
182
              /*a = point(avoidance.x, avoidance.y);
183
               view.drawLine(agent.position, agent.position + a, color(0,1,0));*/
184
               return avoidance;
185
           }
186
187
        return pvector(0,0);
```

Here is the call graph for this function:

188 }

5.19.2.3 cohesion()

```
pvector steeringBehavior::cohesion (
               vector< agent > boids,
               agent & agent )
Definition at line 125 of file steeringBehavior.cpp.
125
126
       float neighborDist = 20; //TODO: magic numer
       point sum {0,0};
int count = 0;
127
128
129
       for(auto it = boids.begin(); it < boids.end(); it++){</pre>
130
        float d = (agent.position - (*it).position).magnitude();
131
          if( (d >0) && (d < neighborDist) ){</pre>
132
              sum = sum + (*it).position;
             count++;
133
         }
134
135
136
       if (count>0) {
137
          sum.div(count);
138
          agent.targetPoint = sum;
139
          return seek(agent);
140
141
       return pvector(0,0);
142 }
```

Here is the call graph for this function:

5.19.2.4 evade()

Definition at line 36 of file steeringBehavior.cpp.

```
36
       agent target;
for(auto it = boids.begin(); it < boids.end(); it++){</pre>
38
39
          if((*it).name == "lion"){
              target = *it;
40
          }
41
       }
42
43
44
       point p = point(evader.position.x + 2, evader.position.y - 2);
       view.drawText(evader.name, p);
p = point(target.position.x + 2, target.position.y - 2);
45
46
       view.drawText(target.name, p);
47
48
       pvector targetVel = target.velocity;
50
       targetVel.mul(5);//TODO: magic number
51
52
       point futurePos = target.position + targetVel;
5.3
       view.drawPoint(futurePos);
54
55
       pvector dist = evader.position - futurePos;
       dist.normalize().mul( 1 / dist.magnitude() );
57
       evader.targetPoint = evader.position + dist;
return flee(evader, view, futurePos);
58
59
60 }
```

Here is the call graph for this function:

5.19.2.5 flee()

26

27 28

29

30

34 }

else{

31 }
32 agent.steering = agent.desiredVelocity - agent.velocity;
33 return agent.steering;

agent.desiredVelocity = agent.targetPoint - agent.position;

agent.desiredVelocity = agent.position - p;

Here is the call graph for this function:

agent.arrive = true;

5.19.2.6 inFlowField()

Definition at line 236 of file steeringBehavior.cpp.

```
236
237   //pos_x, pos_y must be non negative integer
238   int pos_x = abs((int)agent.position.x) % WIDTH;
239   int pos_y = abs((int)agent.position.y) % HEIGHT;
240   //TODO: modification required for non uniform fields
241   return flow.getField(pos_x, pos_y);
242 }
```

Here is the call graph for this function:

5.19.2.7 pursuit()

Definition at line 62 of file steeringBehavior.cpp.

```
64
      for(auto it = boids.begin(); it < boids.end(); it++) {</pre>
6.5
         if((*it).name == "gazelle"){
             target = *it;
66
         }
67
68
69
70
      point p = point(target.position.x + 2, target.position.y - 2);
      view.drawText(target.name, p);
p = point(pursuer.position.x + 2, pursuer.position.y - 2);
71
72
73
      view.drawText(pursuer.name, p);
74
75
      float dist = (target.position - pursuer.position).magnitude();
76
      float t = dist / target.maxSpeed;
77
78
      pvector targetVel = target.velocity;
      targetVel.mul(t);
point futurePos = target.position + targetVel;
79
80
      pursuer.targetPoint = futurePos;
      return seek(pursuer);
83 }
```

Here is the call graph for this function:

5.19.2.8 seek()

5.19.2.9 separation()

Definition at line 144 of file steeringBehavior.cpp.

```
144
145
         float desiredSeparation = 5; //TODO: magic number
146
         pvector sum = pvector(0,0);
147
         int count = 0;
148
         for(auto it = agents.begin(); it < agents.end(); it++){</pre>
            float d = (agent.position - (*it).position).magnitude();
if( (d > 0) && (d < desiredSeparation) ) {
   pvector diff = agent.position - (*it).position;</pre>
149
150
151
152
                 diff.normalize().div(d);
                 sum = sum + diff;
count++;
153
154
155
            }
156
157
         if(count > 0){
            sum.div(count);
158
159
            sum.normalize().mul(agent.maxSpeed);
            agent.steering = sum - agent.velocity;
return agent.steering;
160
161
162
163
         return pvector(0,0);
164 }
```

Here is the call graph for this function:

5.19.2.10 setAngle()

Definition at line 15 of file steeringBehavior.cpp.

```
15
16    p.x = cos ( angle * PI / 180.0 );
17    p.y = sin ( angle * PI / 180.0 );
18 }
```

5.19.2.11 stayInArea()

```
pvector steeringBehavior::stayInArea (
                agent & agent,
                int turnPoint )
Definition at line 244 of file steeringBehavior.cpp.
245
        if(agent.position.x >= turnPoint){
           agent.desiredVelocity = pvector( -agent.maxSpeed, agent.velocity.y );
agent.steering = agent.desiredVelocity - agent.velocity;
246
247
248
           return agent.steering;
249
250
       else if(agent.position.x <= -turnPoint){</pre>
251
          agent.desiredVelocity = pvector( agent.maxSpeed, agent.velocity.y );
252
           agent.steering = agent.desiredVelocity - agent.velocity;
253
          return agent.steering;
254
255
       else if(agent.position.y >= turnPoint){
256
          agent.desiredVelocity = pvector( agent.velocity.x, -agent.maxSpeed );
257
           agent.steering = agent.desiredVelocity - agent.velocity;
258
           return agent.steering;
259
260
       else if(agent.position.v <= -turnPoint){</pre>
          agent.desiredVelocity = pvector( agent.velocity.x, agent.maxSpeed );
261
262
          agent.steering = agent.desiredVelocity - agent.velocity;
263
          return agent.steering;
264
265
       return pvector(0,0);
266 }
```

5.19.2.12 stayInPath()

Definition at line 218 of file steeringBehavior.cpp.

```
218
219
        point start = path.points.at(0);
220
                     = path.points.at(1);
221
        point predictedPos = agent.position + agent.velocity;
222
        point normalPoint;
223
       normalPoint.getNormalPoint(predictedPos, start, end);
pvector b = end - start;
224
225
        b.normalize();
226
       pvector distance = predictedPos - normalPoint;
agent.targetPoint = normalPoint + b;
227
228
229
        //view.drawLine(predictedPos, normalPoint);
230
        //view.drawPoint(targetPoint);
        if(distance.magnitude() > path.width / 8)
231
232
          return seek(agent);
233
        return pvector(0,0);
234 }
```

Here is the call graph for this function:

5.19.2.13 stayInPath_2()

Definition at line 196 of file steeringBehavior.cpp.

```
196
                                                                                                      {
197
        float worldRecord = 1000000; //TODO: magic number
198
        point normalPoint, predictedPos, start, end;
199
        pvector distance;
        for(auto it = path.points.begin(); it < path.points.end()-1; it++) {
    start = point((*it).x, (*it).y);
    end = point((*(it+1)).x, (*(it+1)).y);</pre>
200
201
203
            predictedPos = agent.position + agent.velocity;
204
            normalPoint.getNormalPoint(predictedPos, start, end);
205
            if (normalPoint.x < start.x || normalPoint.x > end.x){
206
               normalPoint = end;
207
           distance = predictedPos - normalPoint;
if (distance.magnitude() < worldRecord){</pre>
208
209
210
                worldRecord = distance.magnitude();
211
                agent.targetPoint = end;
212
            view.drawPoint(agent.targetPoint);
213
214
215
        return seek(agent);
```

Here is the call graph for this function:

5.19.2.14 wander()

Definition at line 85 of file steeringBehavior.cpp.

```
pvector circleCenter = agent.velocity;
circleCenter.normalize().mul(CIRCLE_DISTANCE + CIRCLE_RADIUS);
86
87
88
        int wanderAngle = (rand() % 360);
90
        pvector displacement {0, 1};
91
        setAngle(displacement, wanderAngle);
92
        displacement.mul(CIRCLE_RADIUS);
93
94
        agent.desiredVelocity = displacement + circleCenter;
95
        agent.steering = agent.desiredVelocity - agent.velocity;
96
        //move it to the center when it is out of screen
if(agent.position.x > WIDTH || agent.position.x < -WIDTH ||
   agent.position.y > HEIGHT || agent.position.y < -HEIGHT)
   agent.position = point(0,0);</pre>
97
98
99
100
102
          return agent.steering;
```

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- include/steeringBehavior.h
- src/steeringBehavior.cpp

5.20 wander Class Reference

```
#include <wander.h>
```

Inheritance diagram for wander:

Collaboration diagram for wander:

Public Member Functions

• wander ()

Static Public Member Functions

• static void loop ()

Additional Inherited Members

5.20.1 Detailed Description

Definition at line 8 of file wander.h.

5.20.2 Constructor & Destructor Documentation

5.20.2.1 wander()

```
wander::wander ( )
```

Definition at line 16 of file wander.cpp.

5.20.3 Member Function Documentation

5.20.3.1 loop()

```
void wander::loop ( ) [static]
```

Definition at line 8 of file wander.cpp.

The documentation for this class was generated from the following files:

- include/wander.h
- src/wander.cpp

62 Class Documentation

5.21 windy Class Reference

```
#include <windy.h>
```

Inheritance diagram for windy:

Collaboration diagram for windy:

Public Member Functions

• windy ()

Static Public Member Functions

• static void loop ()

Static Public Attributes

static flowField flow

Additional Inherited Members

5.21.1 Detailed Description

Definition at line 9 of file windy.h.

5.21.2 Constructor & Destructor Documentation

5.21.2.1 windy()

```
windy::windy ( )
```

Definition at line 21 of file windy.cpp.

5.21.3 Member Function Documentation

5.21.3.1 loop()

5.21.4 Member Data Documentation

5.21.4.1 flow

```
flowField windy::flow [static]
```

Definition at line 13 of file windy.h.

The documentation for this class was generated from the following files:

- include/windy.h
- src/windy.cpp

64 Class Documentation

Chapter 6

File Documentation

6.1 include/agent.h File Reference

```
#include "point.h"
#include "color.h"
#include "flowField.h"
#include <vector>
#include <string>
Include dependency graph for agent.h:
```

6.2 include/color.h File Reference

```
color class used for agent, path, wall etc. color
```

```
#include <vector>
```

Include dependency graph for color.h: This graph shows which files directly or indirectly include this file:

Classes

· class color

Enumerations

```
    enum num {
        BLACK =0, BLUE, GREEN, CYAN,
        RED, MAGENDA, YELLOW, WHITE }
        used to get color from colors vector
```

6.2.1 Detailed Description

```
color class used for agent, path, wall etc. color
```

Author

```
Mehmet Rıza Öz - mehmetrizaoz@gmail.com
```

Date

13.05.2021

6.2.2 Enumeration Type Documentation

6.2.2.1 num

enum num

used to get color from colors vector

color names for fundamental colors

Enumerator

BLACK	
BLUE	
GREEN	
CYAN	
RED	
MAGENDA	
YELLOW	
WHITE	

Definition at line 18 of file color.h.

18 { BLACK=0, BLUE, GREEN, CYAN, RED, MAGENDA, YELLOW, WHITE };

6.3 include/evade.h File Reference

```
#include "scenario.h"
#include <vector>
```

Include dependency graph for evade.h: This graph shows which files directly or indirectly include this file:

Classes

• class evade

6.4 include/flee.h File Reference

```
#include "scenario.h"
#include <vector>
```

Include dependency graph for flee.h: This graph shows which files directly or indirectly include this file:

Classes

• class flee

6.5 include/flock.h File Reference

```
#include "scenario.h"
#include <vector>
```

Include dependency graph for flock.h: This graph shows which files directly or indirectly include this file:

Classes

class flock

6.6 include/flowField.h File Reference

flowField class, screen can be filled with a force for each pixel

```
#include "pvector.h"
```

Include dependency graph for flowField.h: This graph shows which files directly or indirectly include this file:

Classes

· class flowField

Macros

- #define WIDTH 34
- #define HEIGHT 34
- #define WIND_WEST 0.1, 0.0
- #define GRAVITY 0.0, -0.1

6.6.1 Detailed Description

flowField class, screen can be filled with a force for each pixel

Author

```
Mehmet Rıza Öz - mehmetrizaoz@gmail.com
```

Date

13.05.2021

6.6.2 Macro Definition Documentation

6.6.2.1 **GRAVITY**

```
#define GRAVITY 0.0, -0.1
```

Definition at line 16 of file flowField.h.

6.6.2.2 HEIGHT

```
#define HEIGHT 34
```

Definition at line 13 of file flowField.h.

6.6.2.3 WIDTH

```
#define WIDTH 34
```

Definition at line 12 of file flowField.h.

6.6.2.4 WIND_WEST

```
#define WIND_WEST 0.1, 0.0
```

Definition at line 15 of file flowField.h.

6.7 include/graphics.h File Reference

```
#include "agent.h"
#include "path.h"
```

Include dependency graph for graphics.h: This graph shows which files directly or indirectly include this file:

Classes

• class graphics

Macros

- #define WIDTH 34
- #define HEIGHT 34
- #define ESC 27
- #define PI 3.14159265

6.7.1 Macro Definition Documentation

6.7.1.1 ESC

#define ESC 27

Definition at line 9 of file graphics.h.

6.7.1.2 HEIGHT

#define HEIGHT 34

Definition at line 7 of file graphics.h.

6.7.1.3 PI

#define PI 3.14159265

Definition at line 10 of file graphics.h.

6.7.1.4 WIDTH

#define WIDTH 34

Definition at line 6 of file graphics.h.

6.8 include/mouseFollower.h File Reference

```
#include "scenario.h"
#include <vector>
```

Include dependency graph for mouseFollower.h: This graph shows which files directly or indirectly include this file:

Classes

· class mouseFollower

6.9 include/obstacle.h File Reference

circular obstacles for agent avoidance behaviors

```
#include "point.h"
```

Include dependency graph for obstacle.h: This graph shows which files directly or indirectly include this file:

Classes

· class obstacle

6.9.1 Detailed Description

circular obstacles for agent avoidance behaviors

Author

```
Mehmet Rıza Öz - mehmetrizaoz@gmail.com
```

Date

12.05.2021

6.10 include/obstacleAvoidance.h File Reference

```
#include "scenario.h"
#include "obstacle.h"
#include <vector>
```

Include dependency graph for obstacleAvoidance.h: This graph shows which files directly or indirectly include this file:

Classes

· class obstacleAvoidance

6.11 include/path.h File Reference

path class used for path following steering behaviors.

```
#include "point.h"
#include <vector>
```

Include dependency graph for path.h: This graph shows which files directly or indirectly include this file:

Classes

class path

6.11.1 Detailed Description

path class used for path following steering behaviors.

Author

```
Mehmet Rıza Öz - mehmetrizaoz@gmail.com
```

Date

12.05.2021

6.12 include/pathFollower.h File Reference

```
#include "scenario.h"
#include <vector>
```

Include dependency graph for pathFollower.h: This graph shows which files directly or indirectly include this file:

Classes

· class pathFollower

6.13 include/point.h File Reference

```
#include "pvector.h"
#include <string>
```

Include dependency graph for point.h: This graph shows which files directly or indirectly include this file:

Classes

class point

6.14 include/prison.h File Reference

```
#include "scenario.h"
#include <vector>
```

Include dependency graph for prison.h: This graph shows which files directly or indirectly include this file:

Classes

· class prison

6.15 include/pursuit.h File Reference

```
#include "scenario.h"
#include <vector>
```

Include dependency graph for pursuit.h: This graph shows which files directly or indirectly include this file:

Classes

· class pursuit

6.16 include/pvector.h File Reference

```
#include <string>
```

Include dependency graph for pvector.h: This graph shows which files directly or indirectly include this file:

Classes

· class pvector

Macros

• #define PI 3.14159265

6.16.1 Macro Definition Documentation

6.16.1.1 PI

#define PI 3.14159265

Definition at line 5 of file pvector.h.

6.17 include/random.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class random

6.18 include/scenario.h File Reference

```
#include "agent.h"
#include "graphics.h"
#include "steeringBehavior.h"
#include <vector>
```

Include dependency graph for scenario.h: This graph shows which files directly or indirectly include this file:

Classes

· class scenario

Enumerations

enum types { RANDOM =0, STATIC, TROOP }

6.18.1 Enumeration Type Documentation

6.18.1.1 types

```
enum types
```

Enumerator

RANDOM	
STATIC	
TROOP	

Definition at line 10 of file scenario.h.

```
10 { RANDOM=0, STATIC, TROOP };
```

6.19 include/steeringBehavior.h File Reference

```
#include "flowField.h"
#include <vector>
#include "graphics.h"
#include "obstacle.h"
```

Include dependency graph for steeringBehavior.h: This graph shows which files directly or indirectly include this file:

Classes

class steeringBehavior

Macros

- #define CIRCLE DISTANCE 0.1
- #define CIRCLE_RADIUS 0.4
- #define FOLLOW_MOUSE 1
- #define STAY_IN_FIELD 2
- #define IN_FLOW_FIELD 3
- #define AVOID_OBSTACLE 4
- #define STAY_IN_PATH 5
- #define FLOCK 6
- #define WANDER 7
- #define FLEE 8
- #define PURSUIT 9
- #define EVADE 10

6.19.1 Macro Definition Documentation

6.19.1.1 AVOID_OBSTACLE

```
#define AVOID_OBSTACLE 4
```

Definition at line 14 of file steeringBehavior.h.

6.19.1.2 CIRCLE_DISTANCE

```
#define CIRCLE_DISTANCE 0.1
```

Definition at line 8 of file steeringBehavior.h.

6.19.1.3 CIRCLE_RADIUS

```
#define CIRCLE_RADIUS 0.4
```

Definition at line 9 of file steeringBehavior.h.

6.19.1.4 EVADE

#define EVADE 10

Definition at line 20 of file steeringBehavior.h.

6.19.1.5 FLEE

#define FLEE 8

Definition at line 18 of file steeringBehavior.h.

6.19.1.6 FLOCK

#define FLOCK 6

Definition at line 16 of file steeringBehavior.h.

6.19.1.7 FOLLOW_MOUSE

#define FOLLOW_MOUSE 1

Definition at line 11 of file steeringBehavior.h.

6.19.1.8 IN_FLOW_FIELD

#define IN_FLOW_FIELD 3

Definition at line 13 of file steeringBehavior.h.

6.19.1.9 PURSUIT

#define PURSUIT 9

Definition at line 19 of file steeringBehavior.h.

6.19.1.10 STAY_IN_FIELD

#define STAY_IN_FIELD 2

Definition at line 12 of file steeringBehavior.h.

6.19.1.11 STAY_IN_PATH

```
#define STAY_IN_PATH 5
```

Definition at line 15 of file steeringBehavior.h.

6.19.1.12 WANDER

```
#define WANDER 7
```

Definition at line 17 of file steeringBehavior.h.

6.20 include/wander.h File Reference

```
#include "scenario.h"
#include <vector>
```

Include dependency graph for wander.h: This graph shows which files directly or indirectly include this file:

Classes

· class wander

6.21 include/windy.h File Reference

```
#include "scenario.h"
#include "flowField.h"
#include <vector>
```

Include dependency graph for windy.h: This graph shows which files directly or indirectly include this file:

Classes

· class windy

6.22 main.cpp File Reference

```
#include <iostream>
#include "mouseFollower.h"
#include "prison.h"
#include "windy.h"
#include "pursuit.h"
#include "flee.h"
#include "scenario.h"
#include "evade.h"
#include "flock.h"
#include "pathFollower.h"
#include dependency graph for main.cpp:
```

Functions

- void menu ()
- int main (int argc, char **argv)

Variables

• int mode

6.22.1 Function Documentation

6.22.1.1 main()

```
int main (
          int argc,
          char ** argv )
```

Definition at line 32 of file main.cpp.

```
33
     menu();
34
35
     scenario* sc;
36
     if (mode == FOLLOW_MOUSE) {
38
       *sc = mouseFollower();
39
     else if(mode == STAY_IN_FIELD){
40
       *sc = prison();
41
42
43
     else if(mode == IN_FLOW_FIELD) {
       *sc = windy();
45
46
     else if(mode == WANDER){
47
       *sc = wander();
48
     else if(mode == PURSUIT) {
49
        *sc = pursuit();
51
     else if(mode == FLEE) {
52
       *sc = flee();
53
54
     else if(mode == EVADE){
     *sc = evade();
55
58
     else if(mode == FLOCK){
     *sc = flock();
59
60
     else if(mode == STAY_IN_PATH) {
61
       *sc = pathFollower();
64
     else if (mode == AVOID_OBSTACLE) {
     *sc = obstacleAvoidance();
}
65
66
68
     sc->initGL(&argc, argv);
70
     return 0;
71 }
```

6.22.1.2 menu()

```
void menu ( )
```

Definition at line 18 of file main.cpp.

```
cout « "Follow Mouse : 1" « endl;
cout « "Stay in Field : 2" « endl;
cout « "In Flow Field : 3" « endl;
        cout « "Follow Mouse
19
20
21
       cout « "OBSTACLE AVOIDANCE : 4" « endl;
22
       cout « "Stay in Path : 5" « endl; cout « "FLOCK : 6" « endl;
23
24
       cout « "WANDER
cout « "FLEE
25
                                             : 8" « endl;
       cout « "FLEE
cout « "PURSUIT
26
                                             : 9" « endl;
: 10" « endl;
27
        cout « "EVADE
28
        cin » mode;
29
```

Here is the caller graph for this function:

6.22.2 Variable Documentation

6.22.2.1 mode

int mode

Definition at line 16 of file main.cpp.

6.23 README.md File Reference

6.24 src/agent.cpp File Reference

```
#include "agent.h"
#include "pvector.h"
#include "graphics.h"
#include "random.h"
#include <iostream>
Include dependency graph for agent.cpp:
```

6.25 src/color.cpp File Reference

color class implementation

```
#include "color.h"
#include <vector>
Include dependency graph for color.cpp:
```

6.25.1 Detailed Description

```
color class implementation
```

Author

```
Mehmet Rıza Öz - mehmetrizaoz@gmail.com
```

Date

13.05.2021

6.26 src/evade.cpp File Reference

```
#include "scenario.h"
#include "evade.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for evade.cpp:
```

6.27 src/flee.cpp File Reference

```
#include "scenario.h"
#include "flee.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for flee.cpp:
```

6.28 src/flock.cpp File Reference

```
#include "scenario.h"
#include "flock.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for flock.cpp:
```

6.29 src/flowField.cpp File Reference

```
flowField class implementation
```

```
#include "flowField.h"
Include dependency graph for flowField.cpp:
```

6.29.1 Detailed Description

```
flowField class implementation
```

Author

```
Mehmet Rıza Öz - mehmetrizaoz@gmail.com
```

Date

13.05.2021

6.30 src/graphics.cpp File Reference

```
#include "graphics.h"
#include <GL/glut.h>
#include <iostream>
#include "math.h"
Include dependency graph for graphics.cpp:
```

6.31 src/mouseFollower.cpp File Reference

```
#include "scenario.h"
#include "mouseFollower.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for mouseFollower.cpp:
```

6.32 src/obstacle.cpp File Reference

obstacle class implementation

```
#include "obstacle.h"
#include "graphics.h"
#include "point.h"
#include <vector>
Include dependency graph for obstacle.cpp:
```

6.32.1 Detailed Description

obstacle class implementation

Author

```
Mehmet Rıza Öz - mehmetrizaoz@gmail.com
```

Date

12.05.2021

6.33 src/obstacleAvoidance.cpp File Reference

```
#include "scenario.h"
#include "obstacleAvoidance.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for obstacleAvoidance.cpp:
```

6.34 src/path.cpp File Reference

```
#include "path.h"
#include "graphics.h"
Include dependency graph for path.cpp:
```

path class implementation

6.34.1 Detailed Description

```
path class implementation

Author

Mehmet Rıza Öz - mehmetrizaoz@gmail.com
```

Date

12.05.2021

6.35 src/pathFollower.cpp File Reference

```
#include "scenario.h"
#include "pathFollower.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for pathFollower.cpp:
```

6.36 src/point.cpp File Reference

```
#include "point.h"
#include "pvector.h"
#include <string>
#include <iostream>
Include dependency graph for point.cpp:
```

6.37 src/prison.cpp File Reference

```
#include "scenario.h"
#include "prison.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for prison.cpp:
```

6.38 src/pursuit.cpp File Reference

```
#include "scenario.h"
#include "pursuit.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for pursuit.cpp:
```

6.39 src/pvector.cpp File Reference

```
#include "pvector.h"
#include "math.h"
#include "point.h"
#include <iostream>
#include <string>
Include dependency graph for pvector.cpp:
```

6.40 src/random.cpp File Reference

```
#include "random.h"
#include <stdlib.h>
#include <iostream>
Include dependency graph for random.cpp:
```

6.41 src/scenario.cpp File Reference

```
#include "scenario.h"
#include "random.h"
#include <iostream>
Include dependency graph for scenario.cpp:
```

6.42 src/steeringBehavior.cpp File Reference

```
#include "steeringBehavior.h"
#include "pvector.h"
#include "agent.h"
#include "path.h"
#include "point.h"
#include "graphics.h"
#include "math.h"
#include "obstacle.h"
#include <GL/glut.h>
Include dependency graph for steeringBehavior.cpp:
```

6.43 src/wander.cpp File Reference

```
#include "scenario.h"
#include "wander.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for wander.cpp:
```

6.44 src/windy.cpp File Reference

```
#include "scenario.h"
#include "windy.h"
#include <iostream>
#include <GL/glut.h>
Include dependency graph for windy.cpp:
```

6.45 test/test_suites.cpp File Reference

```
#include <boost/test/included/unit_test.hpp>
#include "../include/pvector.h"
#include "../include/point.h"
#include <iostream>
Include dependency graph for test suites.cpp:
```

Macros

• #define BOOST_TEST_MODULE test_suites

Functions

```
• BOOST_AUTO_TEST_CASE (s1t1)
```

- BOOST_AUTO_TEST_CASE (s1t2)
- BOOST_AUTO_TEST_CASE (s1t3)
- BOOST_AUTO_TEST_CASE (s1t4)
- BOOST_AUTO_TEST_CASE (s1t5)
- BOOST_AUTO_TEST_CASE (s1t6)
- BOOST_AUTO_TEST_CASE (s1t7)
- BOOST_AUTO_TEST_CASE (s1t8)
- BOOST_AUTO_TEST_CASE (s1t9)
- BOOST_AUTO_TEST_CASE (s2t1)
- BOOST_AUTO_TEST_CASE (s2t2)
- BOOST_AUTO_TEST_CASE (s2t3)

6.45.1 Macro Definition Documentation

6.45.1.1 BOOST_TEST_MODULE

```
#define BOOST_TEST_MODULE test_suites
```

Definition at line 1 of file test_suites.cpp.

6.45.2 Function Documentation

6.45.2.1 BOOST_AUTO_TEST_CASE() [1/12]

```
BOOST_AUTO_TEST_CASE ( s1t1 )
```

Definition at line 11 of file test_suites.cpp.

Here is the call graph for this function:

6.45.2.2 BOOST_AUTO_TEST_CASE() [2/12]

```
BOOST_AUTO_TEST_CASE ( s1t2 )
```

Definition at line 17 of file test_suites.cpp.

6.45.2.3 BOOST_AUTO_TEST_CASE() [3/12]

```
BOOST_AUTO_TEST_CASE ( s1t3 )
```

Definition at line 23 of file test_suites.cpp.

```
23 {
24 pvector p1 = pvector(5, 5);
25 p1.div(5);
26 pvector p2 = pvector(1, 1);
27 BOOST_CHECK(p1 == p2);
28 }
```

Here is the call graph for this function:

6.45.2.4 BOOST_AUTO_TEST_CASE() [4/12]

```
BOOST_AUTO_TEST_CASE ( s1t4 )
```

Definition at line 29 of file test_suites.cpp.

```
29 {
30    pvector p1 = pvector(1, 4);
31    pvector p2 = pvector(3, 2);
32    float dotProduct = p1.dotProduct(p2);
33    BOOST_CHECK(dotProduct == 11);
34 }
```

Here is the call graph for this function:

6.45.2.5 BOOST_AUTO_TEST_CASE() [5/12]

```
BOOST_AUTO_TEST_CASE ( s1t5 )
```

Definition at line 35 of file test_suites.cpp.

Here is the call graph for this function:

6.45.2.6 BOOST_AUTO_TEST_CASE() [6/12]

```
BOOST_AUTO_TEST_CASE ( s1t6 )
```

Definition at line 41 of file test_suites.cpp.

6.45.2.7 BOOST_AUTO_TEST_CASE() [7/12]

```
BOOST_AUTO_TEST_CASE ( s1t7 )
```

Definition at line 46 of file test suites.cpp.

```
46
47     pvector p1 = pvector(2, 2);
48     pl.normalize();
49     float range = 0.01;
50     BOOST_CHECK_CLOSE_FRACTION(0.707, pl.x, range);
51     BOOST_CHECK_CLOSE_FRACTION(0.707, pl.y, range);
52 }
```

Here is the call graph for this function:

6.45.2.8 BOOST AUTO TEST CASE() [8/12]

```
BOOST_AUTO_TEST_CASE ( s1t8 )
```

Definition at line 53 of file test_suites.cpp.

```
pvector p1 = pvector(2, 2);

p1.limit(3);

float range = 0.01;

BOOST_CHECK_CLOSE_FRACTION(2.12, p1.x, range);

BOOST_CHECK_CLOSE_FRACTION(2.12, p1.y, range);

property of the property
```

Here is the call graph for this function:

6.45.2.9 BOOST_AUTO_TEST_CASE() [9/12]

```
BOOST_AUTO_TEST_CASE ( s1t9 )
```

Definition at line 60 of file test_suites.cpp.

Here is the call graph for this function:

6.45.2.10 BOOST_AUTO_TEST_CASE() [10/12]

```
BOOST_AUTO_TEST_CASE ( s2t1 )
```

Definition at line 76 of file test_suites.cpp.

```
76
77     point p1 = point(1, 1);
78     p1.mul(3);
79     point p2 = point(3, 3);
80     BOOST_CHECK(p1 == p2);
```

6.45.2.11 BOOST_AUTO_TEST_CASE() [11/12]

Here is the call graph for this function:

6.45.2.12 BOOST_AUTO_TEST_CASE() [12/12]

```
BOOST_AUTO_TEST_CASE (
s2t3 )
```

Definition at line 88 of file test_suites.cpp.

Index

\sim agent	BOOST_AUTO_TEST_CASE
agent, 10	test_suites.cpp, 84-87
	BOOST_TEST_MODULE
acceleration	test_suites.cpp, 84
agent, 11	
add	callback
pvector, 46	scenario, 53
addPoint	CIRCLE_DISTANCE
path, 35	steeringBehavior.h, 74
agent, 9	CIRCLE_RADIUS
\sim agent, 10	steeringBehavior.h, 74
acceleration, 11	cohesion
agent, 10	steeringBehavior, 55
arrive, 11	color, 14
desiredVelocity, 11	B, 16
fillColor, 11	color, 14
force, 12	colors, 16
id, 12	createColors, 15
mass, 12	G, 16
maxForce, 12	getColor, 15
maxSpeed, 12	R, 16
name, 12	color.h
position, 13	BLACK, 66
r, 13	BLUE, 66
setFeatures, 10	CYAN, 66
steering, 13	GREEN, 66
targetPoint, 13	MAGENDA, 66
updatePosition, 10	num, 66
velocity, 13	RED, 66
agents	WHITE, 66
scenario, 53	YELLOW, 66
align	colors
steeringBehavior, 55	color, 16
angleBetween	createAgent
pvector, 46	scenario, 52
arrive	createColors
agent, 11	color, 15
avoid	createObstacle
steeringBehavior, 55	obstacleAvoidance, 33
AVOID_OBSTACLE	createPath
steeringBehavior.h, 74	pathFollower, 37
otooning_onationin, / /	createRandomArray
В	random, 50
color, 16	CYAN
behavior	color.h, 66
scenario, 53	001011111, 00
BLACK	desiredVelocity
color.h, 66	agent, 11
BLUE	div
color.h, 66	point, 40
,	F,

pvector, 46	getAngle
dotProduct	pvector, 46
pvector, 46	getColor
drawAgent	color, 15
graphics, 23	getField
drawCircle	flowField, 22
graphics, 23	getMousePosition
drawLine	graphics, 26
graphics, 24	getNormalPoint
drawPath	point, 40
graphics, 24	graphics, 22
drawPoint	drawAgent, 23
graphics, 24	drawCircle, 23
drawText	drawLine, 24
graphics, 25	drawPath, 24
drawWall	drawPoint, 24
graphics, 25	drawText, 25
	drawWall, 25
ESC	forceInScreen, 25
graphics.h, 69	getMousePosition, 26
EVADE	handleKeypress, 26
steeringBehavior.h, 74	handleResize, 26
evade, 17	initGraphics, 26
evade, 17	mouseButton, 27
loop, 18	mouseMove, 27
steeringBehavior, 56	refreshScene, 27
	target_x, 28
fillColor	target_y, <mark>28</mark>
agent, 11	timerEvent, 28
FLEE	graphics.h
steeringBehavior.h, 74	ESC, 69
flee, 18	HEIGHT, 69
flee, 19	PI, 69
loop, 19	WIDTH, 69
steeringBehavior, 56	GRAVITY
FLOCK	flowField.h, 67
steeringBehavior.h, 75	GREEN
flock, 19	color.h, 66
flock, 20	
loop, 20	handleKeypress
flow	graphics, 26
windy, 63	handleResize
flowField, 21	graphics, 26
flowField, 21	HEIGHT
getField, 22	flowField.h, 68
flowField.h	graphics.h, 69
GRAVITY, 67	
HEIGHT, 68	id
WIDTH, 68	agent, 12
WIND_WEST, 68	IN_FLOW_FIELD
FOLLOW_MOUSE	steeringBehavior.h, 75
steeringBehavior.h, 75	include/agent.h, 65
force	include/color.h, 65
agent, 12	include/evade.h, 66
forceInScreen	include/flee.h, 66
graphics, 25	include/flock.h, 67
	include/flowField.h, 67
G	include/graphics.h, 68
color, 16	include/mouseFollower.h, 69

include/obstacle.h, 70	mouseMove
include/obstacleAvoidance.h, 70	graphics, 27
include/path.h, 70	mul
include/pathFollower.h, 71	point, 40
include/point.h, 71	pvector, 47
include/prison.h, 71	•
·	myColor
include/pursuit.h, 72	scenario, 53
include/pvector.h, 72	myPath
include/random.h, 72	pathFollower, 38
include/scenario.h, 73	
include/steeringBehavior.h, 73	name
include/wander.h, 76	agent, 12
include/windy.h, 76	scenario, <mark>53</mark>
inFlowField	normalize
steeringBehavior, 57	pvector, 47
initGL	num
scenario, 52	color.h, 66
initGraphics	,
graphics, 26	obstacle, 30
graphics, 20	obstacle, 30, 31
limit	p, 31
	r, 31
pvector, 47	obstacleAvoidance, 32
loop	
evade, 18	createObstacle, 33
flee, 19	loop, 33
flock, 20	obstacleAvoidance, 32
mouseFollower, 29	obstacles, 33
obstacleAvoidance, 33	obstacles
pathFollower, 38	obstacleAvoidance, 33
prison, 43	operator+
pursuit, 44	point, 40
wander, 61	pvector, 48
windy, 62	operator+=
ay, 02	pvector, 48
MAGENDA	operator-
color.h, 66	point, 41
magnitude	
pvector, 47	pvector, 48, 49
	operator==
main	point, 41
main.cpp, 77	pvector, 49
main.cpp, 76	
main, 77	p
menu, 77	obstacle, 31
mode, 78	path, 34
mass	addPoint, 35
agent, 12	path, 34, 35
maxForce	points, 36
agent, 12	width, 36
maxSpeed	pathFollower, 36
agent, 12	createPath, 37
menu	loop, 38
main.cpp, 77	myPath, 38
mode	pathFollower, 37
	PI
main.cpp, 78	
mouseButton	graphics.h, 69
graphics, 27	pvector.h, 72
mouseFollower, 29	point, 38
loop, 29	div, 40
mouseFollower, 29	getNormalPoint, 40

mul, 40	refreshScene
operator+, 40	graphics, 27
operator-, 41	
operator==, 41	scenario, 51
point, 39	agents, 53
print, 41	behavior, 53
x, 41	callback, 53
y, 42	createAgent, 52
points	initGL, 52
path, 36	myColor, 53
position	name, 53
•	refresh, 52
agent, 13	scenario, 52
print	view, 54
point, 41	scenario.h
pvector, 49	RANDOM, 73
prison, 42	STATIC, 73
loop, 43	TROOP, 73
prison, 42	
PURSUIT	types, 73
steeringBehavior.h, 75	seek
pursuit, 43	steeringBehavior, 57
loop, 44	separation
pursuit, 44	steeringBehavior, 58
steeringBehavior, 57	setAngle
pvector, 44	steeringBehavior, 58
add, 46	setFeatures
angleBetween, 46	agent, 10
div, 46	src/agent.cpp, 78
dotProduct, 46	src/color.cpp, 78
getAngle, 46	src/evade.cpp, 79
limit, 47	src/flee.cpp, 79
	src/flock.cpp, 79
magnitude, 47	src/flowField.cpp, 79
mul, 47	src/graphics.cpp, 80
normalize, 47	src/mouseFollower.cpp, 80
operator+, 48	src/obstacle.cpp, 80
operator+=, 48	src/obstacleAvoidance.cpp, 81
operator-, 48, 49	• • •
operator==, 49	src/path.cpp, 81
print, 49	src/pathFollower.cpp, 81
pvector, 45	src/point.cpp, 81
x, 49	src/prison.cpp, 82
y, 50	src/pursuit.cpp, 82
pvector.h	src/pvector.cpp, 82
PI, 72	src/random.cpp, 82
	src/scenario.cpp, 82
R	src/steeringBehavior.cpp, 83
color, 16	src/wander.cpp, 83
r	src/windy.cpp, 83
agent, 13	STATIC
obstacle, 31	scenario.h, 73
RANDOM	STAY IN FIELD
scenario.h, 73	steeringBehavior.h, 75
random, 50	STAY IN PATH
createRandomArray, 50	steeringBehavior.h, 75
README.md, 78	stayInArea
RED	steeringBehavior, 58
	_
color.h, 66	stayInPath
refresh	steeringBehavior, 59
scenario, 52	stayInPath_2

steeringBehavior, 59 steering agent, 13 steeringBehavior, 54 align, 55 avoid, 55 cohesion, 55 evade, 56 flee, 56 inFlowField, 57 pursuit, 57 seek, 57 separation, 58 setAngle, 58 stayInArea, 58 stayInPath, 59	wander, 60 loop, 61 steeringBehavior, 60 wander, 61 WHITE color.h, 66 WIDTH flowField.h, 68 graphics.h, 69 width path, 36 WIND_WEST flowField.h, 68 windy, 62 flow, 63 loop, 62
stayInPath_2, 59 wander, 60 steeringBehavior.h AVOID_OBSTACLE, 74 CIRCLE_DISTANCE, 74 CIRCLE_RADIUS, 74 EVADE, 74 FLEE, 74 FLOCK, 75 FOLLOW_MOUSE, 75 IN_FLOW_FIELD, 75 PURSUIT, 75 STAY_IN_FIELD, 75 STAY_IN_FIELD, 75 WANDER, 76	windy, 62 x point, 41 pvector, 49 y point, 42 pvector, 50 YELLOW color.h, 66
target_x graphics, 28 target_y graphics, 28 targetPoint agent, 13 test/test_suites.cpp, 83 test_suites.cpp BOOST_AUTO_TEST_CASE, 84–87 BOOST_TEST_MODULE, 84 timerEvent graphics, 28 TROOP scenario.h, 73 types scenario.h, 73 updatePosition agent, 10 velocity agent, 13 view scenario, 54 WANDER steeringBehavior.h, 76	