

Linear Regressions and Optimization

Instructor: Steven C.H. Hoi

School of Information Systems

Singapore Management University

Email: chhoi@smu.edu.sg

Outline

- Supervised Learning
- Linear Regression with One Variable
 - Model Representation
 - Cost Functions
 - Gradient Descent
- Linear Regression with Multiple Variables
 - Learning rate
 - Normal Equation
- Linear Basis Function Models

Supervised Learning

- Supervised (Inductive) Learning
- Formalization
 - Input:

$${f X}$$

$$\mathbf{x} \in \mathcal{X} \mathbb{R}^n$$

$$\mathbb{R}^n$$

$$\in \mathcal{Y}$$

$$\begin{cases} \mathbb{R} \\ \{+1, -1\} \\ \{1, 2, \dots, K \end{cases}$$

 $\mathcal{Y} \in \mathcal{Y} \left\{ egin{array}{ll} \mathbb{R} & ext{regression} \ \{+1,-1\} & ext{binary classification} \ \{1,2,\ldots,K\} & ext{multi-class classification} \end{array}
ight.$

– Target function:
$$f:\mathcal{X} \to \mathcal{Y}$$

$$f: \mathcal{X} \to \mathcal{Y}$$

(unknown)

- Training Data:
$$D = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m)\}$$

– Hypothesis:
$$h:\mathcal{X} \to \mathcal{Y}$$

$$h \approx f$$

– Hypothesis space:
$$h \in \mathcal{H}$$

A Learning Problem

Hypothesis Spaces

Linear models

$$h(x) = ax + b \approx f(x)$$

- Infinite possible hypotheses!
- Any choices of coefficient a and b will result in a possible hypothesis
- Polynomial models

$$h(x) = ax^2 + bx + c \approx f(x)$$

Any nonlinear models

$$h(x) = g(x) \approx f(x)$$

Two Views of Learning

- Learning is the removal of our remaining uncertainty.
 - If we are know that x and y are linearly dependent, then we could use the training data to infer the linear function
- Learning requires guessing a good, small hypothesis class.
 - We could start with a very small / simple class, and enlarge it until it contains a hypothesis that fits the data
- But we could be wrong
 - Our prior knowledge might be wrong
 - Our guess of the hypothesis class could be wrong
 - The smaller the hypothesis class, the more likely we are wrong

Steven Hoi Machine Learning 6

Two Strategies for Machine Learning

Develop Languages for Expressing Prior Knowledge

Rule grammars and stochastic models

Develop Flexible Hypothesis Spaces

 Nested collections of hypotheses, rules, linear models, decision trees, neural networks, etc

For either case, the key is to

 Developing efficient algorithms for finding a Hypothesis that best approximates the target function for fitting the data

Key Issues in Machine Learning

- What are good hypothesis spaces?
 - Which spaces have been useful in practical applications and why?
- What algorithms can work with these spaces?
 - Are there general design principles for machine learning algorithms?
- How can we find the best hypothesis in an efficient way?
 - How to find the optimal solution efficiently ("optimization" question)
- How can we optimize accuracy on future data?
 - Known as the "overfitting" problem (i.e., "generalization" theory)
- How can we have confidence in the results?
 - How much training data is required to find accurate hypothesis? ("statistical" question)

Z SMU

- Are some learning problems computationally intractable? ("computational" question)
- How can we formulate application problems as machine learning problems? ("engineering" question)

Linear Regression with One Variable

Regression with One Variable

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Steven Hoi Machine Learning 10

Regression with One Variable

Training	se	t	of
housing	pr	ic	es
(Portland	d,	0	R)

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	
852	178	
•••	•••	

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

Model Representation

How do we represent *h* ?

$$h(x) = w_0 + w_1 x$$

Linear regression with one variable. "Univariate Linear Regression"

How to choose parameters w_0, w_1 ?

Formulation: Cost Function

Hypothesis:

$$h(x) = w_0 + w_1 x$$

Parameters:

$$w_0, w_1$$

Cost Function: mean squared error (MSE)

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

Goal:

$$\min_{w_0,w_1} J(w_0,w_1)$$

Formulation: Cost Function

Hypothesis:

$$h(x) = w_0 + w_1 x$$

Parameters:

$$w_0, w_1$$

Cost Function:

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

Goal:

$$\min_{w_0, w_1} J(w_0, w_1)$$

Simplified

$$h(x) = w_1 x$$

 w_1

$$J(w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

$$\min_{w_1} J(w_1)$$

Cost Function: Example

For fix w_1 this is a function of x

$$J(w_1)$$

function of the parameter w_1

Cost Function: Example

For fix w_1 this is a function of x

$$J(w_1)$$
 function of the parameter w_1

Cost Function: Example

Steven Hoi Machine Learning 17

Cost Function

Hypothesis: $h(x) = w_0 + w_1 x$

Parameters: w_0, w_1

Cost Function: $J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$

Goal:

 $\min_{w_0, w_1} J(w_0, w_1)$

Cost Function

h(x)

(for fixed w_0, w_1 , this is a function of x)

$$h(x) = 50 + 0.06x$$

 $J(w_0,w_1)$

(function of the parameters w_0, w_1)

Steven Hoi Machine Learning 19

Cost Function

Contour plots

$$J(w_0, w_1)$$

 $J(w_0, w_1)$ h(x)(for fixed w_0, w_1 , this is a function of x) (function of the parameters w_0,w_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 200 200 500 0.2 0.1 $w_{1 - 1}$ 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 $\overset{\scriptscriptstyle{500}}{w}_{0}$ -500 1000 0 1500 2000 Size (feet²)

 $J(w_0, w_1)$ h(x)(for fixed w_0, w_1 , this is a function of x) (function of the parameters w_0,w_1) 700 0.5 0.4 600 0.3 500 0.2 0.1 w_1 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 $\overset{\scriptscriptstyle{500}}{w}_{0}$ -500 1000 0 1500 2000 Size (feet²)

Gradient Descent for Optimization

Given some objective function $\ J(w_0,w_1)$

Want to optimize $\min_{w_0,w_1} J(w_0,w_1)$

Outline:

- Start with some w_0, w_1
- Keep changing w_0, w_1 to reduce $J(w_0, w_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

initialize
$$w_j$$
 $j=0,1$ repeat until convergence {
$$w_j:=w_j-\alpha\frac{\partial}{\partial w_j}J(w_0,w_1) \text{ (simultaneously update } j=0 \text{ and } j=1) }$$

learning rate parameter (rule of thumb: 0.1)

Convex Function

• A real-valued function f is **convex** if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \quad \forall 0 \le \theta \le 1$$

- Function is below a linear interpolation from x to y.
- The negative of a convex function is a concave function
- Convex: Implies that all local minima are global minima.

Convex Function: Examples

Some simple convex functions

$$f(\mathbf{x}) = c$$

$$f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}} \mathbf{x}$$

$$f(\mathbf{x}) = a\mathbf{x}^2 + b \ (for \ a > 0)$$

$$f(\mathbf{x}) = \exp(a\mathbf{x})$$

$$f(\mathbf{x}) = \mathbf{x} \log \mathbf{x} \ (for \ \mathbf{x} > 0)$$

$$f(\mathbf{x}) = \|x\|^2$$

$$f(\mathbf{x}) = \max_{i} \{x_i\}$$

Some other notable examples

$$f(x,y) = \log(e^x + e^y)$$

 $f(X) = \log \det X$ (for X is positive-definite)
 $f(x,Y) = x^{\top}Y^{-1}x$ (for Y is positive-definite)

Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x)$$
 $\theta_1 \ge 0, \theta_2 \ge 0$

Composition with affine mapping:

$$g(x) = f(Ax + b)$$

Pointwise maximum:

$$f(x) = \max_{i} f_i(x)$$

- More about convex optimization
 - Online Convex Optimization book: (Stephen Boyd)
 - https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Non-Convex Function

$$w_1 := w_1 - \alpha \frac{\partial}{\partial w_1} J(w_1)$$

Global minima

The final solution is sensitive to initialization

Gradient Descent for Linear Regression

Gradient descent algorithm

Gradient descent algorithm Linear Regression Model
$$h(x) = w_0 + w_1 x$$
 repeat until convergence
$$\{ w_j := w_j - \alpha \frac{\partial}{\partial w_j} J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^m \left(h(x_i) - y_i \right)^2$$

$$\{ \text{for } j = 1 \text{ and } j = 0 \}$$

$$\{ \frac{\partial}{\partial w_j} J(w_0, w_1) = \frac{\partial}{\partial w_j} \left(\frac{1}{2m} \sum_{i=1}^m \left((w_0 + w_1 x_i) - y_i \right)^2 \right)$$

$$\{ \frac{\partial}{\partial w_j} J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^m \left(h(x_i) - y_i \right)^2 \right)$$

$$h(x) = w_0 + w_1 x$$

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

$$\frac{\partial}{\partial w_j} J(w_0, w_1) = \frac{\partial}{\partial w_j} \left(\frac{1}{2m} \sum_{i=1}^m \left((w_0 + w_1 x_i) - y_i \right)^2 \right)$$

$$\frac{\partial}{\partial w_0} J(w_0, w_1) = \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i)$$

$$\frac{\partial}{\partial w_0} J(w_0, w_1) = \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i)$$

$$\frac{\partial}{\partial w_1} J(w_0, w_1) = \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i) \cdot x_i$$

Gradient descent algorithm $\frac{\partial}{\partial w_0}J(w_0,w_1)$ repeat until convergence $\{w_0:=w_0-\alpha\frac{1}{m}\sum_{i=1}^m\left(h(x_i)-y_i\right)\}$ update w_0 and w_1 simultaneously $w_1:=w_1-\alpha\frac{1}{m}\sum_{i=1}^m\left(h(x_i)-y_i\right)\cdot x_i$

h(x) (for fixed w_0, w_1 , this is a function of x)

$J(w_0,w_1)$ (function of the parameters w_0,w_1)

h(x) (for fixed w_0, w_1 , this is a function of x)

$J(w_0,w_1)$ (function of the parameters w_0,w_1)

Steven Hoi Machine Learning 35

h(x) (for fixed w_0, w_1 , this is a function of x)

$J(w_0,w_1)$ (function of the parameters w_0,w_1)

Steven Hoi Machine Learning 36

h(x)

$J(w_0,w_1)$

h(x)

$J(w_0,w_1)$

(function of the parameters w_0,w_1)

h(x)

$J(w_0,w_1)$ (function of the parameters w_0,w_1)

Steven Hoi Machine Learning 39

h(x)

$J(w_0,w_1)$

h(x)

$J(w_0, w_1)$

(function of the parameters w_0,w_1)

Steven Hoi Machine Learning 41

h(x)

$J(w_0, w_1)$

(function of the parameters w_0,w_1)

Steven Hoi Machine Learning 42

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

repeat until convergence { $w_0 := w_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h(x_i) - y_i \right)$ $w_1 := w_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h(x_i) - y_i \right) \cdot x_i$ }

Linear Regression with Multiple Variables

Multivariate Linear Regression

Multiple features (variables).

 \mathcal{L}

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••	•••	

Notation:

n = number of features

 \mathbf{X}_i = input (features) of i^{th} training example.

 \mathcal{X}_{ij} = value of feature j in i^{th} training example.

Multivariate Linear Regression

Hypothesis:

Previously: $h(x) = w_0 + w_1 x$

$$\mathbf{x} \in \mathbb{R}^n \qquad h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n$$

For convenience of notation, define $x_0=1$.

$$h(\mathbf{x}) = \sum_{j=0}^{n} w_j x_j = \mathbf{w}^T \mathbf{x} = \langle \mathbf{w}, \mathbf{x} \rangle$$

$$\mathbf{x} \in \mathbb{R}^{n+1} \ \mathbf{w} \in \mathbb{R}^{n+1}$$

Gradient Descent for Multivariate Linear Regression

Hypothesis:
$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

Parameters: $\mathbf{w} = (w_0, w_1, \dots, w_n)^T$

Cost function:
$$J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (h(\mathbf{x}_i) - y_i)^2$$

Gradient descent:

Repeat
$$\{ \begin{align*}{c} \begin{align*} $\mathbf{w} := \mathbf{w} - \alpha \nabla J(\mathbf{w}) \ \end{align*} \} & \text{(simultaneously update for every } j = 0, \dots, n) \ \end{align*}$$

$$\nabla J(\mathbf{w}) = \left(\frac{\partial}{\partial w_0} J(\mathbf{w}), \frac{\partial}{\partial w_1} J(\mathbf{w}), \dots, \frac{\partial}{\partial w_n} J(\mathbf{w}) \right)_{\underline{\mathbf{w}}}$$

Steven Hoi Machine Learning

Univariate LR vs. Multivariate LR

Gradient Descent

Previously (n=1):

Repeat {

$$w_{0} := w_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h(x_{i}) - y_{i} \right)$$

$$w_{1} := w_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial w_{0}} J(w_{0}, w_{1})}{\left(h(x_{i}) - y_{i} \right) \cdot x_{i}}$$

$$\nabla J(\mathbf{w}) = \left(\frac{\partial}{\partial w_{0}} J(\mathbf{w}), \frac{\partial}{\partial w_{1}} J(\mathbf{w}), \dots, \frac{\partial}{\partial w_{n}} J(\mathbf{w}) \right)$$

$$\frac{\partial}{\partial w_{0}} J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}_{i}) - y_{i})$$

$$w_1 := w_1 - \alpha \frac{1}{m} \underbrace{\sum_{i=1}^{n} \left(h(x_i) - y_i \right) \cdot x_i}_{\partial}$$

New algorithm $(n \ge 1)$: Repeat {

$$\mathbf{w} := \mathbf{w} - \alpha \nabla J(\mathbf{w})$$

$$\nabla J(\mathbf{w}) = \left(\frac{\partial}{\partial w_0} J(\mathbf{w}), \frac{\partial}{\partial w_1} J(\mathbf{w}), \dots, \frac{\partial}{\partial w_n} J(\mathbf{w})\right)$$

$$\frac{\partial}{\partial w_0} J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}_i) - y_i)$$

$$\frac{\partial}{\partial w_1}J(w_0,w_1) \\ \text{(simultaneously update } \theta_0,\theta_1\text{)} \qquad \frac{\partial}{\partial w_1}J(\mathbf{w}) = \frac{1}{m}\sum_{i=1}^m(h(\mathbf{x}_i)-y_i)x_{i1}$$

Convergence and Learning Rate

$$\mathbf{w} := \mathbf{w} - \alpha \nabla J(\mathbf{w})$$

Example automatic convergence test:

Declare convergence if $J(\mathbf{w})$ decreases by less than 10^{-3} in one iteration.

For sufficiently small α , $J(\mathbf{w})$ should decrease on every iteration. But if α is too small, gradient descent can be slow to converge. If α is too large: $J(\mathbf{w})$ may not decrease on every iteration; may not converge.

Learning Rate

too small constant

too large

gradually decreased $\alpha_t = \frac{\alpha}{t}$

Normal Equation for Linear Regression

Normal Equation

Gradient Descent

Iterative approach

Normal Equation

Analytical method to solve \mathbf{w}

Intuition Example: If 1D

$$J(w) = aw^2 + bw + c$$

$$\mathbf{w} \in \mathbb{R}^{n+1}$$
 $J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (h(\mathbf{x}_i) - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$

$$abla J(\mathbf{w}) = \mathbf{0} \quad \longrightarrow \quad \text{Solve equation to find w}$$

Normal Equation

$$J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 = \frac{1}{2m} (X \mathbf{w} - \mathbf{y})^T (X \mathbf{w} - \mathbf{y})$$

$$(\mathbf{w}^T \mathbf{x}_1 - y_1)$$

$$X \mathbf{w} - \mathbf{y} = \begin{pmatrix} x_{10} & x_{11} & \dots & x_{1n} \\ x_{20} & x_{21} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m0} & x_{n1} & \dots & x_{mn} \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} - \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$m \times (n+1) \qquad (n+1) \times 1$$

$$(n+1) \times 1$$

$$m \times 1$$

Normal Equation

Matrix-vector formulation

$$J(\mathbf{w}) = \frac{1}{2m} (X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y})$$
$$\nabla J(\mathbf{w}) = \nabla_{\mathbf{w}} \left(\frac{1}{2m} (X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y}) \right)$$
$$= X^T X \mathbf{w} - X^T \mathbf{y} = \mathbf{0}$$
$$X^T X \mathbf{w} = X^T \mathbf{y}$$

Analytical solution

$$\mathbf{w} = ((X^T X)^{-1} X^T) \mathbf{y} = X^{\dagger} \mathbf{y}$$
$$X^{\dagger} = (X^T X)^{-1} X^T$$

The Pseudo-inverse X^{\dagger}

$$\mathbf{w} = ((X^T X)^{-1} X^T) \mathbf{y} = X^{\dagger} \mathbf{y}$$
$$X^{\dagger} = (X^T X)^{-1} X^T$$

$$\underbrace{\begin{bmatrix} X^T X \end{bmatrix}}_{(n+1) \times (n+1)}$$

$$\underbrace{\left[\begin{array}{c} X^T \\ (n+1) \times m \end{array}\right]}$$

$$(n+1) \times m$$

Example

Examples: m = 4.

		Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
_	x_0	x_1	x_2	x_3	x_4	y
	1	2104	5	1	45	460
	1	1416	3	2	40	232
	1	1534	3	2	30	315
	1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\mathbf{w} = ((X^T X)^{-1} X^T) \mathbf{y} = X^{\dagger} \mathbf{y}$$

 $\mathbf{w} = \left((X^TX)^{-1}X^T \right) \mathbf{y} = X^\dagger \mathbf{y} \qquad (X^TX)^{-1} \text{is inverse of matrix } X^TX \,.$

m training examples, n features.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large.

Summary

- Supervised Learning
- Linear Models for Regression
 - One Variable
 - Multiple Variables
- Basics of Optimization
 - Convexity
 - Iterative Solution: Gradient Descent
 - Analytical Solution: Normal Equation
- Appendix:
 - Linear Basis Function Models

QUESTIONS?!

Linear Basis Function Models

Linear Regression

Housing prices prediction

$$h(x) = w_0 + w_1 \times frontage + w_2 \times depth$$
 x1 x2

Creating a new variable:

Land Area x = frontage * depth

$$h(x) = w_0 + w_1 \times x$$

Polynomial Regression

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

$$w_0 + w_1 x + w_2 x^2$$

"Polynomial Curve Fitting"

$$h(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

= $w_0 + w_1 (size) + w_2 (size)^2 + w_3 (size)^3$

$$x_1 = (size)$$
$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

Choices of proper features

$$h(x) = w_0 + w_1(size) + w_2(size)^2$$

$$h(x) = w_0 + w_1(size) + w_2\sqrt{(size)}$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Linear Basis Function Models

Linear combination of input variables

$$h(\mathbf{x}) = w_0 + w_1 x_1 + \ldots + w_n x_n$$

 Linear combination of fixed non-linear functions (basis functions) of input variables

$$h(\mathbf{x}) = w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_B \phi_B(\mathbf{x})$$

• where ϕ_j 's are known as *basis functions*.

Linear Basis Function Models (2)

Polynomial basis functions:

$$\phi_j(x) = x^j$$
.

These are global; a small change in x affect all basis functions.

Linear Basis Function Models (3)

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\} \quad {}^{1}_{0.75}$$

These are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (width).

Linear Basis Function Models (4)

Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

Also these are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (slope).

Solutions

Problem: m data points in n dimensions

Hypothesis

$$h(\mathbf{x}) = w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_B \phi_B(\mathbf{x})$$

Objective Function

$$J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (h(\mathbf{x}_i) - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left(\sum_{j=0}^{B} w_j \phi_j(\mathbf{x}_i) - y_i \right)^2$$

Gradient Descent Solution

Gradient Descent

$$\mathbf{w} := \mathbf{w} - \alpha \nabla J(\mathbf{w}) \qquad \mathbf{w} \in \mathbb{R}^{B+1}$$

Repeat until convergence

$$w_j := w_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h(\mathbf{x}_i) - y_i \right) \phi_j(\mathbf{x}_i)$$

(simultaneously update for every j = 0,..., B)

$$\phi_0(\mathbf{x}_i) = 1$$

Normal Equation for Analytical solution

- Normal Equation for Analytical solution
 - Computing the gradient and setting it to zero yields

$$\Theta = (\Phi^{ op}\Phi)^{-1}\Phi^{ op}\mathbf{y}$$

$$\Phi = \begin{pmatrix} \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_B(x_1) \\ \phi_0(x_2) & \phi_1(x_2) & \dots & \phi_B(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(x_m) & \phi_1(x_m) & \dots & \phi_B(x_m) \end{pmatrix}$$

Limitations of Fixed Basis Functions

 B basis functions along each dimension of a n-dimensional input space requires exponential number of basis functions due to the curse of dimensionality.

Example:

Consider n input variables with a general polynomial with coefficients up to order 3 would take the form:

$$h(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=1}^n w_{ij} x_i x_j + \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n w_{ijk} x_i x_j x_k$$

 In later chapters, we shall see how we can get away with fewer basis functions, by choosing these using the training data.

