Презентация по лабораторной работе №8

Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом

Танрибергенов Э.

2024 г.

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Танрибергенов Эльдар
- студент 4 курса из группы НПИбд-02-21
- ФМиЕН, кафедра прикладной информатики и теории вероятностей
- Российский университет дружбы народов

Цели и задачи

Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Задания

Задания

Два текста кодируются одним ключом (однократное гаммирование).
 Требуется не зная ключа и не стремясь его определить, прочитать оба текста.

Указания к работе

Указания к работе

Исходные данные.

Две телеграммы Центра:

Р1 = НаВашисходящийот1204

Р2 = ВСеверныйфилиалБанка

Результаты

- Программа написана на языке программирования С++
- Написаны функции: кодирования в 16-ричный код, декодирования, гаммирования и генерации ключа
- Функции размещены в отдельном файле и подключаются при помощи #include

```
// Кодирует текст в шестнадцатеричную последовальтельность
string encode hex(string norm txt){
 string hex txt:
 stringstream ss;
  string::const iterator cii;
 unsigned char c;
 int cnum:
 char *chr norm txt = new char[norm txt.length()];
 for(cii=norm txt.begin(): cii!=norm txt.end(): cii++){
     c = *cii:
     cnum = int(c):
     ss << hex << cnum;
 hex txt = ss.str();
  return hex txt:
```

Рис. 1: Функция кодирования текста в шестнадцатеричный код

Декодирует шестнадцатеричную последовательность в текст string decode hex(string hex txt){ string norm txt, tmp=""; stringstream ss: string::const iterator cii: char *chr hex txt = new char[hex txt.length()]: int n=0: for(cii=hex txt.begin(); cii!=hex txt.end(); cii++){ tmp += *cii: chr hex txt[n] = *cii; n++: hex txt = tmp; $for(int i=0: i < n: i+=2){}$ tmp="": for(int j=i; j<i+2; j++) tmp += chr hex txt[i]: ss << char(stoi(tmp,nullptr,16)); norm txt = ss.str():delete [] chr hex txt: chr hex txt = nullptr: return norm txt:

Рис. 2: Функция декодирования шестнадцатеричного кода в текст

```
Гаммирование
string one time gamming(string hex txt, string key){
  string gammed txt="", str xor, hex1, hex2;
  stringstream ss;
  bitset<8> bin xor:
 int int xor, int sumndl.int sumnd2;
  string::const iterator cii, cij;
  char *chr message = new char[key.length()];
  char *chr kev = new char[kev.length()]:
  int n=0.m=0:
  for (cii=hex txt.begin(); cii!=hex txt.end(); cii++){
        chr message[n] = *cii;
       n++:
  for (cij=key.begin(); cij!=key.end(); cij++){
       chr key[m] = *cij;
       m++:
```

Рис. 3: Функция однократного гаммирования

```
for(int i=0; i<n; i+=2){
      hex1 = "";
       hex2 = "";
       for(int i=i: i<i+2: i++)
          hex1 += chr message[j];
          hex2 += chr key[i];
       int sumnd1 = stoi(hex1, nullptr, 16);
       int sumnd2 = stoi(hex2, nullptr, 16):
      bin xor = bitset<8>(int sumnd1) ^= bitset<8>(int sumnd2);
       str xor = bin xor.to string():
       int xor = stoi(str xor, nullptr, 2);
       if(int xor < 16)
           ss << hex << 0 << int xor;
       else
           ss << hex << int xor;
gammed txt = ss.str();
delete [] chr message;
delete [] chr kev:
chr message = nullptr;
chr kev = nullptr:
return gammed txt;
```

Рис. 4: Функция однократного гаммирования

```
lab08.cpp
  Open 🕶
                                                                          Save
                  lab08.cpp
#include <iostream>
#include <string>
#include "functions.h"
using namespace std:
int main(){
  srand(time(NULL));
  string open txt1, open txt2, hex txt1, hex txt2, key, encrypted txt1, encrypted txt2,
decrypted txt1, decrypted txt2, decoded txt1, decoded txt2:
  open txt1 = "НаВашисходящийот1204
  open txt2 = "ВСеверныйфилиалБанка";
  cout << "\n Исходные сообщения:\n\n " << open txt1 << endl;
  hex txt1 = encode hex(open txt1);
  cout << " " << hex txt1 << endl;
 cout << "\n " << open txt2 << endl:
  hex txt2 = encode hex(open txt2);
 cout << " " << hex txt2 << endl;
  key = key gen(hex txt1,rand()%10);
 cout << "\n Ключ:\n " << key << endl;
```

Рис. 5: Запускающая программу функция

```
encrypted txt1 = one time gamming(hex txt1, kev):
  encrypted txt2 = one time gamming(hex txt2, key):
  cout << "\n Зашифрованный текст:\n " << encrypted txt1 << "\n " << encrypted txt2 <<
endl:
  cout << "\n\n Расшифровка сообшений без ключа:" << endl:
  decrypted txt1 = one time gamming(encrypted txt1, encrypted txt2);
  decrypted txt1 = one time gamming(decrypted txt1, hex txt1);
  decrypted txt2 = one time gamming(encrypted txt1, encrypted txt2);
  decrypted txt2 = one time gamming(decrypted txt2, hex txt2);
  decoded txt1 = decode hex(decrypted txt1);
  cout << "\n " << decoded txt1 << endl;
  decoded txt2 = decode hex(decrypted txt2);
  cout << "\n " << decoded txt2 << endl << endl;
return 0:
```

Рис. 6: Действия программы

Проверка работы

Рис. 7: Результат

Вывод

Вывод

В результате выполнения работы я освоил на практике применение режима однократного гаммирования.