Матлог 3.7

Рассмотим линейно-упорядоченное множество (X,\leqslant) . Раз у нас все элементы X сравнимы между собой, операции $a\cdot b$ и a+b можно реализовать как

$$a \cdot b = \min\{a, b\}$$

$$a + b = \max\{a, b\}$$

Это значит, что (X,\leqslant) образует решетку.

Наличие 0,1 зависит от X. В $\mathbb R$ с $\pm\infty$ есть 0,1. В $\mathbb Z$ их нет.

Дистрибутивность. Проверим

$$a + (bc) = (a+b)(a+c)$$

Другими словами, нужно проверить, что $\max(a, \min(b, c)) = \min(\max(a, b), \max(a, b))$.

- 1. $a\geqslant \min(b,c)$. Тогда обе части равенства вычислятся как a.
- 2. $a < \min(b, c)$. Тогда обе части вычислятся как $\min(b, c)$.

Импликативности в общем случае нет (см. предыдущее задание).