

DATA ANALYSIS

in E-COMMERCE

Presented by group 1

MEMBERS of Group 1

Lê Châu Anh	K214110856		
Phạm Thị Anh Thư	K214111979		
Nguyễn Hoàng Phương Ngân	K214110864		
Phan Quỳnh Trâm	K214110870		
Nguyễn Bảo An Nhiên	K214110865		

00. Project Overview	03. Experimental
01. Theoretical background	04. Visualization
02. Data Preparation	05. Group Evaluation

Project Overview Business Problem

- Customer behavior misunderstanding
- Inaccurate demand forecasting
- Predicting future product demands

BACKGROUND

• Challenge in optimizing and personalizing the online shopping experience

=> Businesses need to deeply understand customer purchasing behavior and then make accurate purchasing suggestions

Business

Objective

Question

Leverage transactional data to identify frequent item sets

Which products are frequently purchased together, and how can we use this information to optimize product placement?

Utilizing market basket analysis to enhance the shopping experience and increase sales

Which slow-moving SKUs can be bundled with popular items to enhance visibility and increase sales?

Bundle less popular items with top-sellers to boost sales of slow-moving SKUs

- Based on a customer's current basket, what additional products can be recommended to optimize sales?
 - How can market basket analysis help create product bundles that appeal to customers and boost sales?

4

PROJECT OVERVIEW

THEORETICAL BACKGROUND

DATA PREPARATION

EXPERIMENTATION

VISUALIZATION

GROUP EVALUATION

Scope

All purchases made for an online gift retail company located in the UK over a thirteen-month duration

BACKGROUND

Experimental method:

- Market-Basket Analysis, a sort of association rule mining
- Apriori and FP-Growth algorithms
- Support, confidence, and lift metrics

=> Implemented in Python and used PowerBI to visualize findings

Chap 1

Theoretical Background

Theoretical Background

Association Rules Mining

Metrics

FP-Growth Algorithm

Apriori Algorithm

Used to identify patterns in large datasets by finding relationships between variables

Support and confidence

Finding frequent items without using candidate generation

Finding frequent items by using candidate generation

GROUP EVALUATION **EXPERIMENTATION** VISUALIZATION DATA PREPARATION

Chap 2

Data Preparation

2.1 Data Understanding

Question	Required data
Which products are frequently purchased together, and how can we use this information to optimize product placement?	Transaction data Detailed product information
How can market basket analysis help create product bundles that appeal to customers and boost sales?	Transaction dataDetailed product information
Based on a customer's current basket, what additional products can be recommended to optimize sales?	 Customer data Detailed product information Transaction data
Which slow-moving SKUs can be bundled with popular items to enhance visibility and increase sales?	Transaction dataDetailed product information

To understand customer behavior and effective forecasting, data must be collected from the sales department and understood

2.2 Data Collection

Dataset was sourced from Kaggle, given by a UK-based, physical retail business with purchases recorded from 01/12//2010 to 09/12/2011. It was established in 1981, with the business field supplying souvenirs

2.3 Data Description

Data Overview

index	0	1	2	2 3	
InvoiceNo	536365	536365	536365	536365	536365
StockCode	85123A	71053	84406B	84029G	84029E
Description	WHITE HANGING HEART T-LIGHT HOLDER	WHITE METAL LANTERN	CREAM CUPID HEARTS COAT HANGER	KNITTED UNION FLAG HOT WATER BOTTLE	RED WOOLLY HOTTIE WHITE HEART.
Quantity	6 6 8		8	6	6
InvoiceDate	12/1/2010 8:26	12/1/2010 8:26	12/1/2010 8:26	12/1/2010 8:26	12/1/2010 8:26
UnitPrice	2.55	3.39	2.75	3.39	3.39
CustomerID	17850.0	17850.0	17850.0 17850.0		17850.0
Country	untry United Kingdom United Kingdom		United Kingdom	United Kingdom	United Kingdom

2.3 Data Description

Data Statistic

	Quantity UnitPrice		CustomerID	
count	541909.000000	541909.000000	406829.000000	
mean	9.552250	4.611114	15287.690570	
std	218.081158	96.759853	1713.600303	
min	-80995.000000	-11062.060000	12346.000000	
25%	1.000000	1.250000	13953.000000	
50%	3.000000	2.080000	15152.000000	
75%	10.000000	4.130000	16791.000000	
max 80995.000000 38970.00		38970.000000	18287.000000	

BACKGROUND

Data Type

Variable Name	Role	Туре	Description		
InvoiceNo	ID	Categorical	A 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'C', it indicates a cancellation		
StockCode	ID	Categorical	A 5-digit integral number uniquely assigned to each distinct product		
Description	Feature	Categorical	Product name		
Quantity	Feature	Integer	The quantities of each product (item) per transaction		
InvoiceDate	Feature	Date	The quantities of each product (item) per transaction		
UnitPrice	Feature	Continuous	Product price per unit		
CustomerID	Feature	Categorical	A 5-digit integral number uniquely assigned to each customer		
Country	Feature	Categorical	The name of the country where each customer resides		

2.4 Exploratory Data Analysis

Column name	Number of missing values		
InvoiceNo	0		
StockCode	0		
Description	1454		
Quantity	0		
InvoiceDate	0		
UnitPrice	0		
CustomerID	135080		
Country	0		

a. Determine missing values in data

c. Skewness and Kurtosis

b. Correlations matrix to identify relationships

	Skewness	Kurtosis
Quantity	-0.2640755761 0510857	119768.054955 38174
UnitPrice	186.50645547 026195	59005.174662 6736

	Quantity	UnitPrice
Quantity	1.0	-0.0012349245 448703343
UnitPrice	-0.0012349245 448703343	1.0

VISUALIZATION GROUP EVALUATION EXPERIMENTATION

2.4 Exploratory Data Analysis

BACKGROUND

Identify Initial Pattern, Trends, or Anomalies

Quantity Outliers: 15574
UnitPrice Outliers: 4792

BACKGROUND

CLEANING AND TRANSFORMING

Step	Step Description	Reason	Affected Observations	
1	Removed duplicated rows	Duplicated rows can cause the error when running the algorithms	10,682 (or 1,97%) of transactions removed	
2	Removed transactions arising from unspecified locations in variable Country	Transactions with unclear locations added nothing to the study of location.	433 (or 0.08%) of transactions removed	
3	Replace missing values with "unknown" in the variable CustomerID	These records made up a sizable amount of all transactions, and they could include important information that ought to be recorded rather than deleted.	134,350 (or 24.79%) of transactions recorded	
4	In variable Description, removed records with null values	There was no information from null descriptions that was helpful for the analysis.	1,454 (or 0.27%) of transactions removed	
5	Removed items sold with zero or negative values in variables UnitPrice and Quantity			
6	Converted InvoiceDate to date format	It ensures that the date format is appropriate for time-series analysis and is consistent.	All transactions included	
7	Create a Sales column by using Quantity multiplied by UnitPrice	The new column will provide revenue information for products in each transaction benefit in calculating the sale volume of the product.	All transactions included	
8	Aggregated transactions by InvoiceNo and CustomerID to create item baskets	In order to do a market basket analysis, it is necessary to examine sets of products that have been acquired in combination.	All transactions included	

BACKGROUND

Relational data model

PROJECT OVERVIEW THEORETICAL **DATA PREPARATION** EXPERIMENTATION VISUALIZATION GROUP EVALUATION

13

Bar Chart of the Top 10 Products with the Highest Sales

BACKGROUND

Purpose:

To highlight the sales performance of the top 10 bestselling products and provide insights for business strategy

Bar and Line Chart of Quantity and Sales by Month

Purpose:

To analyze monthly sales data to inform business strategy

BACKGROUND

Top 10 most common products

Purpose:

To analyze product sales data and provide strategic recommendations for optimizing business operations

Chap 3

Experimentation

3.1 Model Building

- Step 1: Raw data to data preprocessing
- **Step 2**: Experimentation with algorithms

BACKGROUND

- **Step 3**: Evaluation the experimental results with metrics
- **Step 4**: Visualization

Initial Step

Purpose:

Since both of these algorithms aim to find itemsets with support greater than or equal to the minimum support threshold, choosing a high minimum support will result in identifying only the most reliable itemsets

Google Collaboration

BACKGROUND

Min Support	Number of Frequent Itemsets			
0.01	1899			
0.02	379			
0.03	141			
0.04	67			
0.05	33			
0.06	12			
0.07	6			
0.08	4			
0.09	3			
0.1	2			

=> A minimum support of 0.01 was chosen, to find both efficient and potentially popular itemsets

FP-GROWTH ALGORITHM

PROJECT OVERVIEW

BACKGROUND

FINAL RESULT

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift
0	(POPPY'S PLAYHOUSE KITCHEN)	(POPPY'S PLAYHOUSE BEDROOM)	0.021759	0.021107	0.015592	0.716590	33.950360
1	(POPPY'S PLAYHOUSE BEDROOM)	(POPPY'S PLAYHOUSE KITCHEN)	0.021107	0.021759	0.015592	0.738717	33.952060
2	(JAM MAKING SET WITH JARS, SET OF 3 CAKE TINS	(JAM MAKING SET PRINTED)	0.019051	0.058257	0.010328	0.542105	9.305363
3	(JAM MAKING SET PRINTED, SET OF 3 CAKE TINS PA	(JAM MAKING SET WITH JARS)	0.017397	0.056653	0.010328	0.593660	10.478886
4	(ALARM CLOCK BAKELIKE RED)	(ALARM CLOCK BAKELIKE GREEN)	0.052642	0.049133	0.032087	0.609524	12.405675
•••							
890	(SET OF 6 SNACK LOAF BAKING CASES)	(SET OF 12 MINI LOAF BAKING CASES)	0.017748	0.022260	0.011782	0.663842	29.822047
891	(SET OF 6 TEA TIME BAKING CASES)	(SET OF 6 SNACK LOAF BAKING CASES)	0.018951	0.017748	0.010378	0.547619	30.855394
892	(SET OF 6 SNACK LOAF BAKING CASES)	(SET OF 6 TEA TIME BAKING CASES)	0.017748	0.018951	0.010378	0.584746	30.855394
893	(JUMBO BAG VINTAGE DOILY)	(JUMBO BAG RED RETROSPOT)	0.035646	0.104733	0.017848	0.500703	4.780769
894	(HAND WARMER RED LOVE HEART)	(HAND WARMER OWL DESIGN)	0.019904	0.032789	0.010930	0.549118	16.7472711

THEORETICAL DATA PREPARATION **EXPERIMENTATION** VISUALIZATION GROUP EVALUATION

Purpose:

To illustrate and compare the performance of three algorithms (Apriori, Apriori with Low Memory, and FP-Growth) in terms of elapsed time relative to varying minimum support levels

Minimum Support vs Elapsed Time for Apriori and FP-Growth

BACKGROUND

APRIORI AND FP-GROWTH PERFORMANCE COMPARISON

Purpose:

To illustrate and compare the memory usage of three algorithms (Apriori, Apriori with Low Memory, and FP-Growth) as a function of varying minimum support level

Minimum Support vs Memory Usage for Apriori and FP-Growth

BACKGROUND

APRIORI AND FP-GROWTH PERFORMANCE COMPARISON

BACKGROUND

RESULTS BASED ON METRICS COMPARISON

PROJECT OVERVIEW THEORETICAL DATA PREPARATION **EXPERIMENTATION** VISUALIZATION GROUP EVALUATION

23

Chap 4

Visualization

Purpose:

Provide a comprehensive overview of online retail sales, presenting key metrics and visualizations to support datadriven decision-making.

25

Business overview dashboard

BACKGROUND

Top 10 Association Rules According to Lift

Purpose:

BACKGROUND

To analyze product association data and provide recommendations for enhancing sales strategies

Top 10 Association Rules According to Confidence

Purpose:

BACKGROUND

To analyze product purchase confidence levels and provide strategic recommendations for optimizing sales

Top 10 Association Rules According to Support

Purpose:

BACKGROUND

To help businesses optimize their promotion and marketing strategies based on income generated by top association rules

Top 20 antecedent and consequent item frequency, respectively

Purpose:

BACKGROUND

To leverage popular products for improved inventory management and marketing strategies to enhance sales and customer engagement.

Most purchased itemsets each month from December 2010 to December 2011

Purpose:

To provide insights into seasonal sales trends and guide strategies for improving inventory management, marketing, and revenue optimization

BACKGROUND

The most popular itemsets in each country

Purpose:

Use itemset popularity data to optimize business strategies across different countries

Purpose:

BACKGROUND

To analyze association rules to improve sales strategies for both popular and slow-moving items, which help businesses leverage itemset relationships to enhance sales of slow-moving products through strategic combinations and promotions

Customer Insight

- Customers tend to buy related products together
- The purchase of this product may be the result of the purchase of the previous product
- Popular items and itemsets can change due to seasonal demand, especially in holiday season
- Other markets such as France, Germany and EIRE also need to be paid attention to increase market share

Recommendation

- Categorize products that are often purchased together into a separate category
- Create bundles that include products that are often purchased together
- Understand the purchasing trends of customers based on their needs, time and location to promote different combos
- Create combos with slow-selling products and products that are often purchased together

Group Evaluation

Lê Châu Anh	K214110856	100%
Phạm Thị Anh Thư	K214111979	100%
Nguyễn Hoàng Phương Ngân	K214110864	100%
Phan Quỳnh Trâm	K214110870	100%
Nguyễn Bảo An Nhiên	K214110865	100%