Permit Number 55250

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission R	Emission Rates (6)	
			lbs/hour	TPY (4)	
1	Pecan Receiving No. 1 (5)	РМ	1.32	1.80	
		PM ₁₀	0.66	0.90	
		PM _{2.5}	0.66	0.90	
2	Pecan Receiving No. 2	РМ	1.32	1.80	
	(5)	PM ₁₀	0.66	0.90	
		PM _{2.5}	0.66	0.90	
	Total Pecan Receiving	РМ	-	1.80	
	(5)	PM ₁₀	-	0.90	
		PM _{2.5}	-	0.90	
3	Pecan Silos Nos. 1 through 8 Cyclone Stack	РМ	1.93	8.45	
		PM ₁₀	1.93	8.45	
		PM _{2.5}	1.93	8.45	
4	Pecan Silos Nos. 9 through 16 Bagfilter Stack	РМ	1.20	5.26	
		PM ₁₀	1.20	5.26	
		PM _{2.5}	1.20	5.26	
5	Shelling Dryer No. 1 Stack (1.475 MMBtu/hr)	РМ	0.01	0.05	
		PM ₁₀	0.01	0.05	
		PM _{2.5}	0.01	0.05	
		voc	0.01	0.03	
		NO _x	0.14	0.63	
		СО	0.12	0.53	
		SO ₂	<0.01	<0.01	
6	Shelling Dryer No. 2 Stack (1.475 MMBtu/hr)	РМ	0.01	0.05	
		PM ₁₀	0.01	0.05	

I	1			1
		PM _{2.5}	0.01	0.05
		voc	0.01	0.03
		NO _x	0.14	0.63
		со	0.12	0.53
		SO ₂	<0.01	<0.01
7	Shelling Dryer No. 3 Stack	РМ	0.01	0.05
	(1.475 MMBtu/hr)	PM ₁₀	0.01	0.05
		PM _{2.5}	0.01	0.05
		voc	0.01	0.03
		NO _x	0.14	0.63
		со	0.12	0.53
		SO ₂	<0.01	<0.01
8	Sterilization Dryer Stack	РМ	0.02	0.07
	(2.4 MMBtu/hr)	PM ₁₀	0.02	0.07
		PM _{2.5}	0.02	0.07
		voc	0.01	0.05
		NO _x	0.24	1.03
		СО	0.20	0.86
		SO ₂	<0.01	<0.01
9	Pecan Shell Silos Nos.	РМ	1.29	5.63
	1 and 2 Cyclone Stack	PM ₁₀	1.29	5.63
		PM _{2.5}	1.29	5.63
10	Continuous Oil Roaster No. 1 Stack	РМ	0.86	1.12
	(2 MMBtu/hr)	PM ₁₀	0.01	0.07
		PM _{2.5}	0.01	0.07
		VOC	0.01	0.05
		NO _x	0.20	0.86
		со	0.16	0.72
		SO ₂	<0.01	0.01

11	Continuous Oil	PM	0.86	1.12
	Roaster No. 2 Stack (2 MMBtu/hr)	PM ₁₀	0.01	0.07
		PM _{2.5}	0.01	0.07
		VOC	0.01	0.05
		NO _x	0.20	0.86
		со	0.16	0.72
		SO ₂	<0.01	0.01
12	Continuous Oil Roaster No. 3 Stack	PM	0.86	1.12
	(2 MMBtu/hr)	PM ₁₀	0.01	0.07
		PM _{2.5}	0.01	0.07
		voc	0.01	0.05
		NO _x	0.20	0.86
		СО	0.16	0.72
		SO ₂	<0.01	0.01
14a	Sterilization Chamber Scrubber Stack	C ₃ H ₆ O	1.42	0.28
14b	Sterilization off- gassing Fugitives (Chamber and Warehouse) (5)	C₃H ₆ O	1.48	3.46
15	Tempering Tank No. 1 Vent	РМ	0.01	0.02
	(1.8 MMBtu/hr)	PM ₁₀	0.01	0.02
		PM _{2.5}	0.01	0.02
		voc	0.01	0.01
		NO _x	0.18	0.23
		СО	0.15	0.19
		SO ₂	<0.01	<0.01
16	Tempering Tank No. 2 Vent	PM	0.01	0.02
	(1.8 MMBtu/hr)	PM ₁₀	0.01	0.02
		PM _{2.5}	0.01	0.02
		VOC	0.01	0.01

ı				
		NO _x	0.18	0.23
		СО	0.15	0.19
		SO ₂	<0.01	<0.01
17	Tempering Tank No. 3 Vent	РМ	0.01	0.02
	(1.8 MMBtu/hr)	PM ₁₀	0.01	0.02
		PM _{2.5}	0.01	0.02
		voc	0.01	0.01
		NO _x	0.18	0.23
		со	0.15	0.19
		SO ₂	<0.01	<0.01
18	Tempering Tank No. 4 Vent	РМ	0.01	0.02
	(1.8 MMBtu/hr)	PM ₁₀	0.01	0.02
		PM _{2.5}	0.01	0.02
		voc	0.01	0.01
		NO _x	0.18	0.23
		со	0.15	0.19
		SO ₂	<0.01	<0.01
19	Continuous Tempering Tank Stack	РМ	0.01	0.01
(1 MMBtu/hr)		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
		voc	0.01	0.01
		NO _x	0.10	0.12
		СО	0.08	0.10
		SO ₂	<0.01	<0.01

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM_{10} and $PM_{2.5}$, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

Permit Number 55250 Page

Emission Sources - Maximum Allowable Emission Rates

CO

carbon monoxidemethyl ethylene oxide (propylene oxide) C₃H₆O

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Planned startup and shutdown emissions are included. Maintenance activities are not authorized by this permit.

Date:	May 25, 2017	
Date.	may 20, 2011	