WHAT IS CLAIMED IS:

	_	
W	1	1. A method for preparing multicrystalline substrates as handling wafers for
Ph.	2	subsequent bonding to device layer materials, the method comprising the steps of:
	3	providing an initial multicrystalline substrate;
	4	polishing the multicrystalline substrate to reduce surface roughness to
	5	about 5 nm;
	6	forming a filler layer overlying the face of the substrate to a predetermined
	7	thickness, the filler layer comprising a surface that is substantially free from
•	8	indications of the multicrystalline arrangement; and
	9	further polishing the surface of the filler layer to form a substantially
	10	smooth upper surface on the substrate,
	11	wherein the substantially smooth upper surface is characterized by a
	12	surface roughness of twenty Angstroms or less.
j In		in the light to the large test of selected from a
2 P. S.	1	2. The method of claim 1, wherein the initial substrate is selected from a
10 10	2	polycrystalline silicon wafer, a glass substrate, a ceramic substrate, an organic film, a
# 9 # 1	3	metal substrate, and an amorphous wafer.
	1	3. The method of claim, wherein the initial substrate has a typical crystalline
	2	dimension of about 0.5 to 10 millimeters in size.
	1	4. The method of claim 1, wherein the filler layer is selected from a CVD oxide, and
1 12	2	a polycrystalline silicon
		to a thickness of one
	1	5. The method official 1, wherein the filler layer is removed to a thickness of one
	2	half or more of the predetermined thickness.
	1	6. The method of claim 1, wherein the filler layer is a polycrystalline silicon, the
	2	polycrystalline being formed using a low pressure chemical deposition technique.
	1	7. The method of claim 1, wherein the filler layer is chosen from the group
	2	consisting of an insulating layer andor a composite layer.
	1	8. The method of claim 1, wherein the surface roughness is five Angstroms or less.

1	9. The method of claim 1, wherein the filler layer is made by a chemical deposition
2	process or a sputtering process.
1	10. The method of claim 1, wherein the substrate is a ground substrate or unpolished substrate.
2	
1	11. The method of claim 1, wherein the polishing process is a chemical mechanical
2	polishing technique comprising:
3	applying a mechanical fine-grinding step;
4	applying a rough polishing step using a weakly alkaline slurry;
5	changing the composition of the slurry by feeding a neutral polishing
6	slurry to the polishing pad and gradually reducing supply of rough polishing slurry; and
7	wherein surface roughness after polishing is 0.5 nm or less.
	Listing appears is a chamical mechanical
1	12. The method of claim 1, wherein the polishing process is a chemical mechanical
2	polishing comprising:
3	applying a mechanical fine-grinding step;
4	applying a rough polishing step using a weakly alkaline slurry;
5	adding TMAH to the slurry to adjust the alkalinity of the slurry for
6	increased removal rates while maintaining material removal rates relatively constant
7	between various grain regions of the substrate; and
8	effecting a controlled transition to a second slurry composition to obtain
9	microscopically smooth surfaces;
10	wherein surface roughness after polishing is 0.5 nm or less.
1	13. The method of claim 1, wherein the polishing process is a double-sided chemical
2	mechanical polishing technique comprising:
3	applying a mechanical fine-grinding step;
4	applying a rough polishing step using a weakly alkaline slurry;
5	changing the composition of the slurry by feeding a neutral polishing
6	slurry to the polishing pad and gradually reducing supply of rough polishing slurry; and
7	wherein surface roughness after polishing is twenty Angstroms or less.

1	14. The method of claim 1, wherein the polishing process is a double-sided chemical
2	mechanical polishing technique in which polishing is done on a double-sided polishing
3	machine to polish front and back sides of the substrate simultaneously, comprising:
4	applying a mechanical fine-grinding step;
5	applying a rough polishing step using a weakly alkaline slurry;
6	adding TMAH to the slurry to adjust the alkalinity of the slurry for
7	increased removal rates while maintaining material removal rates relatively constant
8	between various grain regions of the substrate;
9	effecting a controlled transition to a second slurry composition to obtain
10	microscopically smooth surfaces;
11	wherein the front and back side each achieve a flatness of 0.5 micron or
12	less; and
13	the front side achieves a roughness of 0.5 nm or less.
1	15. Electronic devices made from bonded assemblies prepared using the method of
2	claim 1.
	(MEMS) made from handed assemblies
1	16. Micro-Electro-Mechanical Structures (MEMS) made from bonded assemblies
2	prepared using the method of claim 1.
1	17. Micro-Opto-Electro-Mechanical Structures (MOEMS) made from bonded
2	assemblies prepared using the method of claim 1.
	18. A method for polishing substrates, the method comprising steps of:
-K	18. A method for polishing substrates, the method comprising steps of: applying a rough polishing step using a weakly alkaline slurry;
2	changing the composition of the slurry by feeding a neutral polishing
3	slurry to the polishing pad and gradually reducing supply of rough polishing slurry; and
4	wherein surface roughness after polishing is 0.5 nm or less.
5	wherein surface roughliess after polishing is 0.5 mm of 1888.
1	The method of claim 18, wherein the polishing is performed on a double-sided
2	polishing machine to polish front and back sides of said substrate simultaneously.
1,	20. Electronic devices made from bonded assemblies prepared using the method of
2	claim 18.

2

- 1 21. Micro-Electro-Mechanical Structures (MEMS) made from bonded assemblies
- 2 prepared using the method of claim 18.
- 1 22. Micro-Opto-Electro-Mechanical Structures (MOEMS) made from bonded
- 2 assemblies prepared using the method of claim 18.
 - 23. A method for detection of hidden bonding flaws in multiple bonded wafers, the method comprising steps of:
- transmitting infrared radiation through a first side of a multiple bonded wafer sample;
- receiving the scattered infrared radiation exiting from a second side of said sample, said second said being opposite from said first side; and
- sample, said second said being opposite from said first side; and
 converting said received radiation into an electronic signal in which
- 8 defects appear as local maxima of said signal.