IMPLÉMENTATION D'UN MODÈLE DU SCORING

Victoire MOHEBI
Janvier 2023

AGENDA

- > Problématique & mission
- Présentation des données
- > Nettoyage de données & EDA
- Modélisation
- > Optimisation du modèle
- > Interprétabilité du modèle
- > Dashboard interactive
- > Conclusion & piste d'amélioration

PROBLÉMATIQUE & MISSION

PROBLÉMATIQUE

Société financière « Prêt à dépenser » propose des crédits à la consommation

➤ Nécessité d'un outil de *scoring* pour savoir si le client rembourse ses dettes

Impératif de transparence vis-à-vis des décisions d'octroi de crédit (explicabilité)

MISSION

- Développer un modèle qui donne la prédiction de défaut d'un client (classification binaire)
- Un modèle de scoring pour calculer la probabilité qu'un client rembourse son crédit ou fasse défaut
- Construire un dashboard interactif pour le chargé de client pour l'interprétabilité du modèle

PRÉSENTATION DES DONNÉES

- > Source de donnée : https://www.kaggle.com/c/home-credit-default-risk/data
- > Le jeu de données est composé de 8 fichiers CSV

Nom de fichier	Description du ficher
application_train.csv Application_test.csv	Les principales données de formation avec des informations sur chaque demande de prêt chez Prêt à dépenser.
Bureau.csv	Données concernant les crédits antérieurs du client auprès d'autres institutions financières
Bureau_balance.csv	Données mensuelles détailles sur les crédits précédents dans le fichier bureau
credit_card_balance.csv	Donnés mensuelles sur les cartes de crédit précédentes que les clients ont eues avec Prêt à dépenser.
Installement_payment.csv	Historique de paiement pour les prêts précédents chez Prêt à dépenser.
Previous application.csv	Demandes précédentes de prêts chez Prêt à dépenser des clients qui ont des prêts dans le fichier application_train
POS_CASH_balance.csv	Données mensuelles sur les clients précédents.

- 7 fichiers sont reliées par des« <u>Primary key</u> »
- 218 variables comportementales et financières sur l'emploi, le cadre de vie, l'historique de crédit, pour chaque client
- > +300000 demandes de crédit sont enregistrées

Modèle de base de données

NETTOYAGE DE DONNÉES & ANALYSE EXPLORATOIRE

ANALYSE EXPLORATOIRE

- La catégorie "Lower Secondary" a le plus fort taux de non remboursement du prêt (~11%).
- ➤ En termes de pourcentage de non-remboursement du prêt, le mariage civil a le pourcentage le plus élevé (~10 %), les veufs étant la plus faible.
- ➤ Les client en congé de maternité ont un taux 40% de prêts non remboursés, suivis des chômeurs (~36%).
- Les hommes sont plus susceptible de ne pas rembourser leurs prêts (10 %), par rapport aux femmes (7 %).
- Les clients jeunes sont plus susceptibles de ne pas rembourser le prêt!
- Le taux d'impayés est supérieur à 10 % pour les trois tranches d'âge les plus jeunes et inférieur à 5
 % pour la tranche d'âge la plus élevée.

PRÉ-TRAITEMENT DES DONNÉES

> Feature engineering :

Les pré-traitements effectués (jointure ente les dataframes, agrégation des variables numériques, encodage des variables catégorielles, rajout des features métier sont inspirés de ce <u>notebook</u>

> Traitement des valeurs aberrantes :

Pour certaines variables catégorielles, des valeurs aberrantes apparaissent comme « XNA » (comme "CODE_GENDER") Pour le variable numériques, DAYS EMPLOYED, les valeur aberrante > 1000 ans ont été remplacées pap NaN.

Traitement des valeurs manquantes :

Les variables ayant plus de 40% de valeurs manquantes ont été supprimées. Les autres valeur manquantes sont remplacées par le "median". Le dataframe final a 356,251 lignes et 171 colonnes

- Feature scaling : on a eu recours à la Standardisation qui est le processus de transformer une variable en une autre qui répondra à la loi normale.
- > Split Train/Test set: 80% des données pour l'entraînement et la validation du modèle. 20% restantes pour le tester. Dans cette opération les mêmes proportions des différentes classes ont été gardé (avec l'argument stratify)

MODÉLISATION

PROCESSUS DU MODÉLISATION

MÉTRIQUE SPÉCIFIQUE

- L'utilisation de mesures plus simples comme le "Precision" ou "Accuracy" peut être trompeuse.
- Les clients non solvables que l' algorithme ne détectera pas (Faux Négatif, target =0) coûteront plus cher à la société financière que le coût d'un client solvable prédit comme non solvable.
- Minimiser le taux de Faux Négatif

Choix des métriques

- Matrice de confusion
- Métrique technique : AUC_ROC
- Métrique du métier : F5-Score

COMPARAISON DES MODÈLES

	Model	AUC	Accuracy	Precision	Recall	F1	F5	Time
3	LGBMClassifier	0.780642	0.930429	0.516949	0.024572	0.046914	0.025506	5.63856
1	LogisticRegression	0.763982	0.930485	0.545455	0.014502	0.028252	0.015066	4.55621
2	RandomForestClassifier	0.720825	0.930457	1.0	0.002014	0.00402	0.002094	237.468794
0	DummyClassifier	0.5	0.930317	0.0	0.0	0.0	0.0	0.191926

LGBMClassifier a simultanément le meilleurs :

- AUC_ROC (score technique)
- F5 (score métier)
- Temps d'entraînement

DONNÉES DÉSÉQUILIBRÉES, QUOI FAIRE?

Target = 1 : Client ne peut pas payer le crédit Target = 0 : Client peut payer le crédit

Les deux modalités de la variable cible ne sont pas représentées de façon égale dans l'échantillon. La classe 0 est fortement majoritaire.

Tenter de ré-équilibrer l'échantillon pour aider les algorithmes à mieux détecter les individus de la classe minoritaire

- 92 % des prêts ont été remboursés
- 8 % des individus ont été non-solvables.

TECHNIQUE DE RÉÉCHANTILLONNAGE

- Une technique largement adoptée pour traiter des ensembles de données très déséquilibrés est appelée rééchantillonnage.
- Elle consiste à retirer des échantillons de la classe majoritaire (sous-échantillonnage) et/ou à ajouter d'autres exemples de la classe minoritaire (sur-échantillonnage).
 - On utilise SMOTE (Synthetic Minority Oversampling Technique) pour suréchantillonner la classe minoritaire (prêts non remboursés, cible = 1)
- On utilise l'argument class_weight = balanced des modèles LGBMClasssifer

OPTIMISATION DU MODÈLE SMOTE

Optimisation des hyperparamètres avec GridSearchCV pour obtenir le meilleur AUC_ROC (score technique) ou F5 (score métier) Trouver la meilleur seuil de solvabilité avec la méthode Statistique J de Youden: J = TP-FN Choisir la plus grande valeur de J.

OPTIMISATION DU MODÈLE CLASS_WEIGHT

Optimisation des hyperparamètres avec GridSearchCV pour obtenir le meilleur AUC_ROC (score technique) ou F5 (score métier) Trouver la meilleur seuil de solvabilité avec la méthode *Statistique J de Youden*: J = TP-FN Choisir la plus grande valeur de J.

SÉLECTIONER LE MEILLEUR MODÈLE

On constate que le modèle avec class_weight a le meilleur performance : score métier & score technique plus élevés

 On constate que le modèle arrive à détecter 69% des classes 1

Classification	n Report_Cla	ss-weight		
	precision			support
0.0	0.97	0.71	0.82	66286
1.0	0.15	0.69	0.25	4965
accuracy			0.71	71251
macro avg	0.56	0.70	0.53	71251
weighted avg	0.91	0.71	0.78	71251

Classificatio	n Report aft	er SMOTE		
	precision	recall	f1-score	support
0.0	0.96	0.67	0.79	66286
1.0	0.13	0.65	0.21	4965
accuracy			0.67	71251
macro avg	0.54	0.66	0.50	71251
veighted avg	0.90	0.67	0.75	71251

INTERPRÉTABILITÉ DU MODÈLE

FEATURE IMPORTANCE GLOBAL VS LOCAL

- > L'interprétabilité : comprendre les étapes et les décisions prises par le modèle
- La possibilité de comprendre davantage les aspects suivants :
 - Quelles variables sont importants pour le modèle ?
 - Pourquoi le modèle est-il arrivé à cette conclusion ?
- > Local feature importance se concentrent sur la contribution des variable pour une prédiction spécifique
- ➢ Global feature importance prennent en compte toutes les prédictions

INTERPRÉTABILITÉ GLOBALE Feature importance

- 20 plus importantes variables que le classifieur LGBM a utilisé pour prédire la probabilité de remboursement du prêt
- On constate que les variables external sources et les mensualité payé par le client sont plus important pour le modèle

INTERPRÉTABILITÉ GLOBALE Shaply Values

SHAP Summary Plot

- Ensemble des SHAPley valeurs par observation.
- La couleur des points correspond à la valeur de la variable et le positionnement horizontal des points correspond à la SHAPley valeur.
- Pour chaque variable si les SHAPley valeurs sont négatives (situées sur la gauche) donc la variable est en défaveur de la prédiction CLASSE 1.
- Au contraire, pour les point rouge, les SHAPley valeurs sont positives (situées sur la droite) donc en faveur de la prédiction de la CLASSSE 1.

INTERPRÉTABILITÉ LOCALE

- > Ce graphique montre quelles sont les principales variables affectant la prédiction d'une seule observation, et l'ampleur de la valeur SHAP pour chaque variable.
- > En rouge, les variables qui ont un impact positif (contribuent à ce que la prédiction soit 1) et, en vert, celles ayant un impact négatif (contribuent à ce que la prédiction soit 0).
- > Le crédit de cette personne en particulier a été refusé, car elle a été poussée plus haut par tous les facteurs indiqués en rouge.

DASHBOARD INTERACTIF

CONSTRUCTION DE DASHBOARD

Plateforme	Description
♦ git GitHub	- GitHub est un service web pour l'hébergement et la gestion de développement de logiciels - Git qui est un logiciel libre pour le versionnage des projets
	- FastAPI est un framework de back-end moderne et rapide (haute performance) pour la
9 FastAPI	création d'API avec Python 3.6+ - Les APIs contiennent tous les end points pour interagir avec d'autres logiciels.
aws Amazon EC2	Amazon Elastic Compute Cloud ou EC2 est un service proposé par Amazon permettant à des tiers de louer des serveurs sur lesquels exécuter leurs propres applications web.
Streamlit	- Streamlit est une plate-forme open-source de front_end pour créer des applications avec python.

FastAPI:

URL Locale : http://127.0.0.1:8000/docs
URL Network: http://35.180.66.152/

> Dashboard interactif:

URL Local: http://localhost:8501/

URL Network: https://victoire76-projet07-dashboard-dashboard-2sfss9.streamlit.app/

> GitHub repo pour FastAPI:

https://github.com/Victoire76/OC_Project07_API_DASHBOARD

Github repo pour Share Streamlit :

https://github.com/Victoire76/Projet07 Dashboard

- Infos sur le modèle; ex. la métrique et l'importance des variables
- Possibilité de sélectionner un client selon son ID
- Infos principaux sur le client ; ex. Cadre de vie (l'âge, genre, emploi, éducation, le salaire) , le montant du crédit
- Score (la probabilité) entre 0 et 1 que le client ne rembourse pas ses dette
- Explicabilité du modèle en comparer le client avec les autres sur certaine variables

CONCLUSION &

PISTE
D'AMÉLIORATION

Conclusion

- Meilleur modèle : LightGBMClassifier
 - (AUC = 0.76 / F5score = 0.6)
- Métrique spécifique : la modélisation a été effectuée sur la base d'avoir le meilleur F5 score qui donne beaucoup d'importance au rappel (recall)
- Construction d'un Dashboard + API fonctionnels : mieux comprendre le résultat de la prédiction pour chaque client en prenant compte l'impact des variables sur la prédiction

Piste d'amélioration

- > Traiter des valeurs manquantes
- > Echanger avec les experts du métier pour un meilleur *feature selection*
- ➤ Optimiser le temps de calcul
- > Optimiser la performance du modèle en ajustant plus de paramètres
- > Définir une fonction coût métier plus adaptée aux besoin de « Prêt à Dépenser »
- Construire un Dashboard plus complet :
 - Optimiser les performances pour un chargement de données plus rapide
 - Ajouter d'autres onglets pour une analyse complète

MERCI DE VOTRE ATTENTION!