DSC 204a Scalable Data Systems

- Haojian Jin

Bio

Haojian Jin (http://haojianj.in/)

Asst. Prof @ UCSD-HDSI

Data Smith Lab:

We study the security and privacy of data systems by researching the people who design, implement, and use these systems.

Ph.D. from CMU Human-Computer Interaction Institute

Before Ph.D.: worked at Yahoo Research, ran a startup

Levels of Abstraction

Computer Designer

Gates, clocks, circuit layout, ...

C programmer

Assembly programmer

Data science

Data science professionals ought to be familiarized with data systems from a **user**'s standpoint, as opposed to the conventional approach of a **system implementer**.

- Relational databases
- NoSQL datastores
- Stream or batch processors
- Message brokers
- Spark, MapReduce, Hadoop, Kafka, HDFS
- Data lakes, column database

•

How to use and operate them more effectively?

- Foundations of data systems
- Scaling distributed systems
- Data Processing and Programming model.

- 3. Programming interface
 - 2. Distributed Systems
 - 1. Data systems

The data sci relevant components in the following course

- Computer organization
- System programming
- Networks
- Operating systems
- Distributed systems
- Cloud computing
- + various data sci tricks

Suggested Textbooks

Computer systems are about carefully layering levels of abstraction.

Scalable data flows

Low-level system software

Suggested Textbooks

- Chapter 3. Storage and retrieval
- Chapter 4. Encoding and evolution
- Chapter 10. Batch processing
- Chapter 11. Stream processing
- Chapter 12. The future of data systems
- The other chapters

Suggested Textbooks

Computer systems are about carefully layering levels of abstraction.

Hands on experience

Background

- Foundations of data systems
 - Data models, big data storage and retrieval, and how to encode information when you store data, etc.
 - Transactions, synchronization, consistency, consensus

- Scaling distributed systems
 - Cluster, cloud, edge, network, replication, partition, consistency,
 ACID, etc.
 - RPC, Caching, Fault tolerance, Paxos, Concurrency

- Data Processing and Programming model.
 - Batch processing, stream processing, MapReduce, Hadoop,
 Spark, Kafka, etc.

Learning outcomes of this corse

- Explain the basic principles of data systems, distributed systems, and data programming model.
- Identify the abstract data access patterns of, and opportunities for parallelism and efficiency gains in data processing at scale.
- Gain hands-on experience in creating end-to-end pipelines for data preparation, feature engineering, and model selection on large-scale datasets.
- Reason critically about practical tradeoffs between accuracy, runtimes, scalability, usability, and total cost.

What this course is **NOT** about

- Not a course on database, relational model, or SQL
 - Take DSC 202 instead (pre-requisite)
- Not a course on how to build scalable data systems
 - Take Distributed Systems, Operating Systems, Cloud Computing,

• • •

- Not a training module for how to use Spark
 - We focus more on principles.
- If you have taken DSC 102 and look for a graduate version
 - Take DSC 204A next Winter.

Why bother learning such low-level computer sciencey stuff in Data Science?

Luxury of "Statisticians"/"Analysts"

- Methods: Sufficed to learn just math/stats, maybe some SQL
- Types: Mostly tabular (relational),
 maybe some time series
- Scale: Mostly small (KBs to few GBs)
- Tools: Simple GUIs for both analysis and deployment; maybe an R-like console

Reality of Today's "Data Scientists"

glassdoor

statistician

O Location

Overview

Industry

Salaries

Interviews

Insights

Employer Size

Career Path

How much does a Statistician make?

Updated Jan 4, 2022

All industries ~

All company sizes

All years of Experience

Experience

~

Very High Confidence

\$88,989_{/yr}

Average Base Pay

2,398 salaries

data scientist

Location

Data Scientist Salaries United States V

Overview

Salaries

Interviews

Insights

Low

Career Path

How much does a Data Scientist make?

Updated Jan 4, 2022

High

Average

— 88,989

18,354 salaries

= 28,223!

Questions?

Prerequisites

- DSC 200, 202 (or equivalent).
- Proficiency in Python programming & Terminals
- Network basics
- For all other cases, email me with proper justification; a waiver can be considered

Components and Grading

- 3 Programming Assignments: 40% (8% + 16% + 16%)
 - No late days! Plan your work well ahead.
- Final Exam (06/14/2023 3pm-6pm): 40% ?
- Peer Instruction Activities: 20%
- Extra Credit Peer Evaluation Activities: 4% (likely)

Peer instruction activity

Example flow

Q1) [3 x 3pts] What is the hexadecimal representation of these numbers in the given bases?

- A. 161 in base 10
- B. 32 in base 4
- C. 64 in base 8

Answers

Q1) [3 x 3pts] What is the hexadecimal representation of these numbers in the given bases?

- A. 161 in base 10
- B. 32 in base 4
- C. 64 in base 8

- A. A1₁₆ (aka 0xA1)
- B. 0xE
- C. 0x34

Grading Scheme (grade is the better of the two)

Grade	Absolute Cutoff (>=)	Relative Bin (Use strictest)
A+	95	Highest 5%
A	90	Next 10% (5-15)
A-	85	Next 15% (15-30)
B+	80	Next 15% (30-45)
В	75	Next 15% (45-60)
B-	70	Next 15% (60-75)
C+	65	Next 5% (75-80)
C	60	Next 5% (80-85)
C-	55	Next 5% (85-90)
D	50	Next 5% (90-95)
F	< 50	Lowest 5%

Grading Scheme (grade is the better of the two)

	Grade	Absolute Cutoff (>=)	Relative Bin (Use strictest)
	A+	95	Highest 5%
	A	90	Next 10% (5-15)
	A-	85	Next 15% (15-30)
	B+	80	Next 15% (30-45)
	В	75	Next 15% (45-60)
Examp	e, 82 and 33%,	70	Next 15% (60-75)
Dala Da	C+	65	Next 5% (75-80)
Kel: D-;	Abs: B+;	60	Next 5% (80-85)
Final: E	4	55	Next 5% (85-90)
	D	50	Next 5% (90-95)
	F	< 50	Lowest 5%

The structure of the course

Topics

Week 1-3

Foundations of Data Systems

Single Machine:

CompOrg -> OS -> Cloud

Week 4-6

Scaling Distributed Systems

Multiple Machine:

Storage -> Network

Week 7-10

Data Processing and Programming model

Processing:

Batch -> Stream -> Cloud

Programming Assignments

- PA0: Setting up AWS and Dask
 - Apr 10 to Apr 25
- PA1: Data Exploration with Dask
 - Apr 26 to May 10
- PA2: Feature Eng. and Model Selection with Spark
 - May 11 to June 2
- You only have \$50 AWS credit! Close the instance when you finish.

Expectations on the PAs

- Expectations on the PAs:
 - Individual projects; see webpage on academic integrity
- I will cover the concepts and tools' tradeoffs in the lectures
- TAs will explain and demo the tools; handle all Q&A
- You are expected to put in the effort to learn the details of the tools'
 APIs using their documentation on your own!

Respecting TAs' time

- Office hours are for getting ideas on how to debug or better approach your homework.
- Write a description! Try to narrow down your problem area as much as possible.
- If you don't have a description, TA can reject your questions.
- Respect TA's working hours.
 - Respond in 24 hours.
 - Members may send msgs at night or on weekends, but only expect to receive a reply on weekday.

Tentative plan

- Rohit
 - Tuesday 1:30 PM 2:30 PM.
- Megha
 - Thursday TBD.
- Location:
 - CSE building or HDSI building?

Course administrivia

https://haojian.github.io/DSC204A23WI/

DSC 204A - Scalable Data Systems / Winter 2023

Course Description

Data science professionals ought to be familiarized with data systems from a user's standpoint, as opposed to the conventional approach of a system implementer.

The course is organized into three parts, covering the following topics.

- Foundations of Data Systems: Data models, big data storage and retrieval, and how to encode information when you store
 data.
- 2. Scaling Distributed Systems: Cluster, cloud, edge, network, replication, partition, consistency, ACID.
- 3. Data Processing and Programming model: Batch processing, stream processing, MapReduce, Hadoop, Spark, Kafka.

A major component of this course is hands-on Python programming to implement data exploration, data preparation, and model selection pipelines on large real-world data using scalable analytics tools and cloud resources, both Amazon Web Services (AWS) public cloud and SDSC's private cloud.

Administrivia

Lectures: MWF 03:00PM-03:50PM; PETER 104

Instructor: Haojian Jin; Office: SDSC 214E; Office Hours: Tue 2:00-3:00pm

Course Content and Format

- The class meets 3 times a week for 50-minute lectures in person.
 - Attending the lectures is not mandatory. But there are Peer Instruction activities involving discussing questions with peers
 in class only (details below). There will be other interactive activities as well.
 - We will use Piazza for asynchronous discussions and questions.
- · 3 Programming Assignments (PAs).
 - See the PAs page for the PA schedule and details.
 - There are no late days for the PAs. Plan your work accordingly.
- 12 Peer Instruction activities via iClickers.
 - They will be held live in class using iClicker, spread randomly across the quarter.

Course administrivia

- Lectures: MWF 3pm-3:50pm PT at PETER 104
- Instructor: Haojian Jin; haojian@ucsd.edu
 - OHs: Tue 2-3pm PT at SDSC 214E
- TAs: Rohit Ramaprasad; Megha Agarwal
 - TA hours see the course web site.
- Slack for all communications (also see Canvas).
- Canvas for PA submission, Peer Evaluation Activities, Grading.

General Dos and Do NOTs

- Do:
 - Follow all announcements on Piazza
 - Try to join the lectures/discussions live
 - Participate in discussions in class / on Piazza
 - Raise your hand before speaking
 - View/review podcast videos asynchronously by yourself
 - To contact me/TAs, use Slack first; if you really need to email, use "DSC 204:" as subject prefix

General Dos and Do NOTs

- Do NOT:
 - Harass, intimidate, or intentionally talk over others
 - Violate academic integrity on the PAs, exams, or other components; I am very strict on this matter!

Questions?