

Universidade Regional de Blumenau - FURB Centro de Ciências Exatas e Naturais - CCEN Departamento de Sistemas e Computação - DSC

SISTEMAS DISTRIBUÍDOS MARCOS RODRIGO MOMO

marcos.rodrigomomo@gmail.com

Conceitos

"Um sistema distribuído é um conjunto de computadores independentes entre si que se apresenta a seus usuários como um sistema único e coerente" – Tanenbaum/Van Steen

Características

- Compartilhamento de recursos
- Extensibilidade (openness)
- Concorrência
- Escalabilidade (crescimento gradativo suave)
- Tolerância a falhas
- Transparência

Tipos de aplicações

- Aplicações comerciais (reservas de bilhetes, bancos)
- Aplicações Internet (WWW)
- Aplicações de acesso a informações multimídia (Áudio (voz) e vídeo conferência, P2P-TV)
- Groupware (trabalho cooperativo)

Características de SD

- Compartilhamento de recursos
- ☐ Extensibilidade (*openness*)
- Concorrência
- Escalabilidade (crescimento gradativo suave)
- Tolerância a falhas
- Transparência

Roteiro aula

Tipos de SD

Atividades

- 1. Sistemas de computação distribuídos
 - Sistema de computação de Cluster
 - Sistemas de computação em grade

- 2. Sistemas de informação distribuídos
 - Sistemas de processamento de transações
 - Integração de aplicações empresarias

- 3. Sistemas pervasivos distribuídos
 - Sistemas domésticos
 - Sistemas eletrônicos para tratamento de saúde
 - Redes de sensores

- 1. Sistemas de computação distribuídos
 - Sistema de computação de Cluster
 - Sistemas de computação em grade

Sistemas de computação: Cluster

- Hardware consiste em um conjunto de estações de trabalho ou Pcs semelhantes
- Conexão feita através de uma rede local
- Em quase todos os casos, a computação de cluster é usada para programação paralela na qual um único programa é executado em paralelo

Sistemas de computação: Cluster

- Um cluster ou aglomerado de computadores é formado por um conjunto de computadores, que utiliza um tipo especial de sistema operacional classificado como sistema distribuído
- Muitas vezes é construído a partir de computadores convencionais, os quais são ligados em rede e comunicam
- Se através do sistema, trabalhando como se fossem uma única máquina de grande porte
- Há diversos tipos de *cluster*, um tipo famoso é cluster da classe Beowulf, constituído por diversos
 21/08/24ós escravos gerenciados por um só computador

Sistemas de computação: Cluster

Sistemas de computação: Cluster Beowulf

• É um *cluster* voltado para desempenho, normalmente utilizado para processamento científico, ou seja, processamento em larga escala.

- As tarefas típicas do mestre são:
 - manipular a alocação de nós a um determinado programa paralelo,
 - manter uma fila de jobs apresentados e
 - proporcionar uma interface para os usuários do sistema.

Sistemas de computação: Tipos de Clusters

• 1 - Cluster de Alto Desempenho (HPC): Também conhecido como *cluster* de alta performance, ele funciona permitindo que ocorra uma grande carga de processamento com um volume alto de gigaflops em computadores comuns e utilizando sistema operacional;

Sistemas de computação: Tipos de Clusters

 2 - Cluster de Alta Disponibilidade (HAC): São clusters os quais seus sistemas conseguem permanecer ativos por um longo período de tempo e em plena condição de uso.

<u>Estes conseguem detectar erros se protegendo de possíveis falhas;</u>

Sistemas de computação: Tipos de Clusters

• 3 - Cluster para Balanceamento de Carga: Esse tipo de cluster tem como função controlar a distribuição equilibrada do processamento. Requer um monitoramento constante na sua comunicação e em seus mecanismos de redundância

Sistemas de computação: Tipos de Clusters - Objetivos

 High Performance Computing Cluster – por exemplo, 1 gigaflop corresponde a 1 bilhão de instruções de ponto flutuante executadas por segundo;

 High Availability Computing Cluster - por exemplo, soluções de missão crítica que exigem disponibilidade de, pelo menos, 99,999% do tempo a cada ano;

Sistemas de computação: Tipos de Clusters - Objetivos

- Load Balancing por exemplo, um site que receba mil visitas por segundo e que um cluster formado por 20 nós tenha sido desenvolvido para atender a esta demanda.
- Como se trata de uma solução de balanceamento de carga, estas requisições são distribuídas igualmente entre as 20 máquinas, de forma que cada uma receba e realize, em média, 50 atendimentos a cada segundo.

Funcionamento básico dos clusters

- Máquinas construídas especificamente para funcionar como nós.
- Neste caso, os computadores teriam apenas dispositivos de hardware imprescindíveis ao cluster.

Cluster avançado construído com equipamentos específicos

Funcionamento básico dos clusters

- É possível utilizar computadores "convencionais", como desktops
- Os nós não precisam ser exatamente iguais no que diz respeito ao hardware
- Mas é essencial que todas os computadores utilizem o mesmo so

• 21**四**种和huir a complexidade

Um antigo cluster montado com desktops - Imagem por Wikipedia

Software de Cluster

- o cluster conta ainda com o elemento que faz o papel de middleware
- Um sistema que permite o controle do *cluster* em si e, portanto, está intimamente ligado ao sistema operacional.
- O middleware que lida, por exemplo, com as bibliotecas que fazem toda a comunicação do cluster - uma delas é o padrão MPI (Message Passing Interface)
- Oferece uma interface para o administrador possa configurar o *cluster*
- Ferramentas para manutenção e otimização, recursos ²¹/**6**/**2**4monitoramento

Software de Cluster

- Por padrão, o middleware é instalado em uma máquina chamada de nó controlador (ou nó mestre)
- O nó principal, que efetivamente controla o cluster a partir da distribuição de tarefas
 - Monitoramento
 - Distribuição de cargas
 - Manutenção
 - Atualização

Algumas soluções de Cluster

OpenSSI

- O OpenSSI (http://openssi.org/) é uma solução aberta para *clusters* focada em ambientes Linux.
- Base o conceito de SSI (Single System Image)
- O sistema que considera vários nós, mas se parece, no ponto de vista do usuário, apenas como um único computador.
- Pode lidar tanto com alto desempenho quanto
 com alta disponibilidade, além de possuir
 recursos para balanceamento de carga.

Atividades

- 1) Em que situação é recomendado a solução SD baseada em *cluster*?
- 2) Qual é o principal requisito para uma aplicação ser executado em um *cluster*? Dê um exemplo:

- Computação em Grade foi inspirados pelo sistema de energia elétrica, década de 90
- Os cientistas da computação começaram a explorar o projeto e o desenvolvimento de uma nova infraestrutura computacional pelo acoplamento de recursos distribuídos geograficamente
- Recursos
 - Bases de dados, servidores de armazenamento, redes de alta velocidade, supercomputadores e aglomerados para solucionar problemas de grande

- Levando ao termo popularmente conhecido como Computação em Grade.
- Conceito baseado no uso da energia elétrica, o usuário não precisa saber das complexidades inerentes
- Origem da energia, malhas de linhas de transmissão e distribuição
- Simplesmente ligamos o aparelho em uma tomada

Portanto, seria uma rede na qual o indivíduo se conecta para obter poder computacional:

- Ciclos de processador;
- Armazenamento;
- Software;
- Periféricos,
- Hardware específico
- etc.

- A Computação em Grade objetiva agregar:
 - Recursos diversos de hardware e software
 - Supercomputadores
 - Distribuídos geograficamente para o processamento de grandes massas de dados

Sistemas de computação: *Grade* (grid) - características

- Alto grau de heterogeneidade, nenhuma premissa é adotada em relação:
 - a hardware,
 - sistemas operacionais,
 - redes,
 - domínios administrativos,
 - políticas de segurança
 - e assim por diante;

Sistemas de computação: *Grade* (grid) - características

• Sistema de computação em grade os recursos de diferentes organizações são reunidos para permitir a colaboração de um grupo de pessoas ou instituições (organização virtual).

Sistemas de computação: *Grade*

(grid)

Modelo Operacional

O escalonador de aplicação coleta os resultados e repassa para o usuário

Atividades

1) Qual a diferença entre os HPC cluster e grid?

- 2. Sistemas de informação distribuídos
 - Sistemas de processamento de transações
 - Integração de aplicações empresarias

Sistemas de informação

- Sistemas empresariais desenvolvidos para integrar diversas aplicações individuais, onde a interoperabilidade se mostrou "dolorosa"
 - Sistemas de processamento de Transações
 - Integração de Aplicações Empresariais

Sistemas de informação: Processamento de transações

Requer primitivas especiais que devem ser fornecidas pelo sistema distribuído ou pelo sistema de linguagem

Primitiva	Descrição
BEGIN_TRANSACTION	Marque o início de uma transação
END_TRANSACTION	Termine a transação e tente comprometê-la
ABORT_TRANSACTION	Elimine a transação e restaure os valores antigos
READ	Leia dados de um arquivo, tabela ou de outra forma
WRITE	Escreva dados para um arquivo, tabela ou de outra forma

Tabela 1.3 Exemplos de primitivas para transações.

Sistemas de informação: Processamento de transações

Características

- Atômicas: para o mundo exterior, indivisível
- Consistentes: n\u00e3o viola invariantes de sistema
- Isoladas: transações concorrentes não interferem umas com as outras
- Duráveis: uma vez comprometida uma transação, as alterações são permanentes

Sistemas de informação: Processamento de transações

- Transação Aninhada
 - Transação é construída com base em uma quantidade de subtransações

Figura 1.6 Transação aninhada.

Sistemas de informação: Processamento de transações

- No começo, o componente que manipulava transações distribuídas, ou aninhadas, formava o núcleo para integração de aplicações no nível do servidor ou do banco de dados
- Monitor de processamento de transação: permitir que uma aplicação acessasse vários servidores/bancos de dados

Sistemas de informação: Processamento de transações

Figura 1.7 O papel do monitor TP em sistemas distribuídos.

Sistemas de informação: Integração de Aplicações Empresariais

- Aplicações querem muito mais em termos de comunicação, não somente modelo de requisição/resposta
- Middleware de Comunicação
 - Chamadas de Procedimento Remoto
 - Invocações de Método Remoto
 - Middleware Orientado a Mensagem

Sistemas de informação: Integração de Aplicações Empresariais

Sistemas de informação: Middleware de Comunicação

- Chamadas de Procedimento Remoto (RPC)
 - Componente de aplicação pode enviar a um outro componente de aplicação
 - Requisição e Resposta são empacotadas em mensagens

Sistemas de informação: Middleware de Comunicação

- Invocações de Método Remoto (RMI)
 - Popularidade da Tecnologia de Objetos
- RMI semelhante a RPC, exceto que funciona com objetos em vez de com aplicações

Sistemas de informação: Middleware de Comunicação

- Desvantagens do RPC e RMI:
 - Componentes da comunicação devem estar ligados e em funcionamento
 - Precisam saber exatamente como se referir um ao outro
- Middleware Orientado a Mensagem (MOM)
 - Aplicações enviam mensagens a pontos lógicos de contato
 - O Middleware se encarrega de entregar todas as mensagens destinadas a uma aplicação

Atividades

- Citar sistemas reais baseados em:
 - Sistemas de processamento de transações
 - Integração de aplicações empresarias
- Descreva:
 - O nome
 - A finalidade
 - As suas características

Tipos de Sistemas Distribuídos

- Sistemas pervasivos distribuídos
 - Sistemas domésticos
 - Sistemas eletrônicos para tratamento de saúde
 - Redes de sensores

Sistemas Pervasivos

- Instabilidade é o comportamento esperado destes sistemas
- Dispositivos de computação móveis e embutidos
 - Pequenos
 - Alimentação por bateria
 - Mobilidade
 - Conexão sem fio

Sistemas Pervasivos

- Parte do nosso entorno
- Ausência geral de controle administrativo humano
- Requisitos para as aplicações pervarsivas:
 - Adotar mudanças contextuais
 - Incentivar composição ad hoc
 - Reconhecer compartilhamento como padrão

Sistemas Pervasivos

- Sistemas Domésticos
- Sistemas Eletrônicos para Tratamento de Saúde
- Redes de Sensores

Atividades

- O que significa os requisitos para aplicações pervasivas relacionadas à:
 - Adotar mudanças contextuais
 - Incentivar composição ad hoc
 - Reconhecer e compartilhar como padrão
- Dê exemplos de sistemas pervasivos