Prior learning – SL and HL

Area of a parallelogram	A = bh, where b is the base, h is the height
-------------------------	--

Area of a triangle
$$A = \frac{1}{2}(bh)$$
, where b is the base, h is the height

Area of a trapezoid
$$A = \frac{1}{2}(a+b)h$$
, where a and b are the parallel sides, h is the height

Area of a circle
$$A = \pi r^2$$
, where r is the radius

Circumference of a circle
$$C = 2\pi r$$
, where r is the radius

Volume of a cuboid
$$V = lwh$$
, where l is the length, w is the width, h is the height

Volume of a cylinder
$$V = \pi r^2 h$$
, where r is the radius, h is the height

Volume of prism
$$V = Ah$$
, where A is the area of cross-section, h is the height

Area of the curved surface of
$$A = 2\pi rh$$
, where r is the radius, h is the height a cylinder

Distance between two points
$$(x_1, y_1)$$
 and (x_2, y_2) $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Coordinates of the midpoint of a line segment with endpoints
$$(x_1, y_1)$$
 and (x_2, y_2) $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Prior learning – HL only

Solutions of a quadratic equation The solutions of $ax^2 + bx + c = 0$ are x	$=\frac{-b\pm\sqrt{b^2-4ac}}{2a}, a\neq 0$
--	--

2

Topic I: Number and algebra – SL and HL

SL 1.2	The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1)d$
	The sum of <i>n</i> terms of an arithmetic sequence	$S_n = \frac{n}{2} (2u_1 + (n-1)d); S_n = \frac{n}{2} (u_1 + u_n)$
SL 1.3	The <i>n</i> th term of a geometric sequence	$u_n = u_1 r^{n-1}$
	The sum of <i>n</i> terms of a finite geometric sequence	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, \ r \neq 1$
SL 1.4	Compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}, \text{ where } FV \text{ is the future value,}$ $PV \text{ is the present value, } n \text{ is the number of years,}$ $k \text{ is the number of compounding periods per year,}$ $r\% \text{ is the nominal annual rate of interest}$
SL 1.5	Exponents and logarithms	$a^x = b \iff x = \log_a b$, where $a > 0, b > 0, a \ne 1$
SL 1.6	Percentage error	$\varepsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\% , \text{where} v_{\rm E} \text{is the exact value and} v_{\rm A} \text{is}$ the approximate value of v

3