20

5

WHAT IS CLAIMED IS:

- 1. An IR and UV absorbing soda-lime-silica glass of a neutral tint having, in a nominal 4 mm thickness, a visible light transmittance of at least 70%, a direct solar heat transmission at least twelve percentage points below the visible light transmittance, a dominant wavelength not greater than 560 nm and a color purity of no more than 6%, said glass on a weight basis including as essential ingredients a total iron content expressed as Fe₂O₃ from about 0.3% to 0.7%, from about 0.5 to 10 ppm Se, from about 3 to 25 ppm Co₃O₄, 0 to 50 ppm NiO and 0 to 1.5% TiO₂, and having a ferrous iron to total iron (as Fe₂O₃) ratio in the range of 21 to 34.
- 2. An IR and UV absorbing soda-lime-silica glass as claimed in claim 1, wherein said direct solar heat transmission is at least fifteen percentage points below the visible light transmittance.
- 3. An IR and UV absorbing soda-lime-silica glass as claimed in claim 1, having an ultraviolet radiation transmission less than 55%.
- 4. An IR and UV absorbing soda-lime-silica glass as claimed in claim 3, wherein said ultraviolet radiation transmission is less than 50%.
- 5. An IR and UV absorbing soda-lime-silica glass of a neutral tint having, in a nominal 4 mm thickness, a visible light transmittance of at least 70%, a direct solar heat transmission at least fifteen percentage points below the visible light transmittance, a dominant wavelength not greater than 560 nm and a color purity of no more than 6%, said glass on a weight basis including as essential ingredients a total iron content expressed as Fe₂O₃ from about

20

5

0.45% to 0.65%, from about 1 to 5 ppm Se, from about 8 to 20 ppm Co₃O₄, 0 to 35 ppm NiO and 0 to 1% TiO₂, and having a ferrous iron to total iron (as Fe₂O₃) ratio in the range of 25 to 31.

- 6. An IR and UV absorbing soda-lime-silica glass as claimed in claim 5, wherein said direct solar heat transmission is at least 20 percentage points below the visible light transmittance.
- 7. An IR and UV absorbing soda-lime-silica glass as claimed in claim 5, wherein said color purity is no more than 5%.
- 8. An IR and UV absorbing soda-lime-silica glass as claimed in claim 5, wherein said color purity is no more than 3%.
- 9. An IR and UV absorbing soda-lime-silica glass as claimed in claim 5, having an ultraviolet radiation transmission less than 55%.
- 10. An IR and UV absorbing soda-lime-silica glass as claimed in claim 9, wherein said ultraviolet radiation transmission is less than 50%.
- 11. An IR and UV absorbing soda-lime-silica glass of a neutral tint having a base glass composition comprising in percent by weight:

SiO_2	65 - 80
Na ₂ 2O	10 - 20
CaO	5 - 15
MgO	0 - 10
Al_2O_3	0 - 5
K_2O	0 - 15
BaO	0 - 5
B_2O_3	0 - 5

and traces of melting and refining aids, if any, and colorants consisting essentially of:

5

10

Fe₂O₃ (total iron) 0.3 - 0.7 weight percent; Se 0.5 - 10 ppm; Co₃O₄ 3 - 25 ppm;

TiO₂ 0 - 1.5 weight percent;

NiO 0 - 50 ppm; and

FeO content to provide a ratio of ferrous iron to total iron in the range of 21 to 34, the glass having a visible light transmittance of at least 70%, a direct solar heat transmission at least 12 percentage points below the visible light transmittance, a dominant wavelength not greater than 560 nm and a color purity of no more than 6% at a nominal glass thickness of 4 mm.

12. In a process for producing an IR and UV absorbing soda-lime-silica glass of a neutral tint containing oxides of iron and cobalt and having a ferrous iron to total iron (as Fe₂O₃) ratio in the range of 21 to 34, including admixing, heating and melting a soda-lime-silica float glass batch mixture comprising sand, soda ash, dolomite, limestone, and a sulfate selected from the group consisting of salt cake and gypsum, the improvement comprising including in said batch wuestite as at least a partial source of the iron oxides in the resulting glass.