極限順序数が絡む和

橋本 航気

2021年9月15日

概要

任意の順序数 α, γ について γ が極限順序数のときに $\alpha + \gamma = \sup_{\beta < \gamma} (\alpha + \beta)$ が成り立つことはいたるところで紹介されているが、almost everywhere でその証明は省略されている。この pdf はその完全な証明を与えることを目的に書いた。

基本的にキューネン基礎論講義の定義に従う。例えば全順序といえば三分律・非反射律・推移律を指す。また ON は順序数全体の真クラスを表す。

定義 1. (X, <) を整列集合とする。 $x \in X$ について、

$${y \in X | x < y}$$

が空でないとき、その最小元(整列性より存在する)をS(x)とかく。

命題 2. 直前の表記法は順序数の後続者関数の抽象化になっている。すなわち、 α を順序数としたとき、上で定めた S は、 $S(\alpha)=\alpha\cup\{\alpha\}$ を満たす。

証明. まず、本来の順序数の後続者関数を S' と書くことにすると、 $\gamma < S'(\gamma)$ と $\gamma < S'(\beta) \leftrightarrow \gamma \leq \beta$ が任意の順序数 β, γ で成り立つ。よって $S(\alpha)$ の最小性より $S(\alpha) \leq S'(\alpha)$ は明らで、もし $S(\alpha) < S'(\alpha)$ なら $S(\alpha) \leq \alpha$ となるが、これは矛盾。よって $S(\alpha) = S'(\alpha)$

命題 3. X,Y を同型な整列集合とし、 $f:X\to Y$ を同型写像とする。このとき、任意の $x\in X$ について、もし $S(x)\in X$ ならば $S(f(x))\in Y$ であり、さらに

$$S(f(x)) = f(S(x))$$

が成り立つ。

証明. 簡単なのでとりあえず省略 (気が向いたら書くかも)。

命題 4. X,Y を同型な全順序集合とし、 $f:X\to Y$ を同型写像とする。このとき、任意の $A(\neq\varnothing)\in X$ について、もし $\sup(A)\in X$ ならば $\sup(f(A))\in Y$ であり、さらに

$$\sup(f(A)) = f(\sup(A))$$

が成り立つ。

証明. 簡単なのでとりあえず省略(気が向いたら書くかも)。

補題 5. $\alpha \neq 0, \gamma$ を順序数とし、

$$F: \{0\} \times \alpha \cup \{1\} \times \gamma \rightarrow \alpha + \gamma$$

が同型であるとする。このとき、任意の $\delta < \alpha$ について $F(0,\delta) = \delta$ が成り立つ。

証明. 先の命題からいえる。とりあえず省略。

定理 6. 任意の順序数 α, γ について、 γ が極限順序数のとき、以下が成り立つ。

$$\alpha + \gamma = \sup_{\beta < \gamma} (\alpha + \beta)$$

証明.

$$0+\gamma=\gamma=\sup_{\beta<\gamma}(\beta)=\sup_{\beta<\gamma}(0+\beta)$$

より $\alpha = 0$ なら明らかなので $\alpha > 0$ と固定しておき、以下のクラスに関する超限帰納法で示す。

$$\{\gamma \in ON | \gamma$$
は極限順序数で、かつ $\alpha + \gamma \neq \sup_{\beta < \gamma} (\alpha + \beta) \}$ (1)

(1) が空であることを背理法で示す。もし仮に空でなければその最小元 γ がとれる。次に

$$F: \{0\} \times \alpha \cup \{1\} \times \gamma \rightarrow \alpha + \gamma$$

を同型とし、集合Xを

$$X = \{ \beta < \gamma | F(\langle 1, \beta \rangle \neq \alpha + \beta) \}$$

とおく。 $X=\varnothing$ を背理法で示すために $\varepsilon=\min(X)$ とおいたとき(整列性からとれる)、まず $\varepsilon\neq 0$ であることを示そう。 $\alpha=S(\delta)$ だとすると、

$$F(\langle 1,0 \rangle = F(S(\langle 0,\delta \rangle)))$$

= $S(F(\langle 0,\delta \rangle))$ (:: 命題 3)
= $S(\delta)$ (:: 補題 5)
= $\alpha = \alpha + 0$

であり、 α が極限順序数のときは

$$F(\langle 1, 0 \rangle) = F(\sup\{\langle 0, \delta \rangle | \delta \in \alpha\})$$

$$= \sup\{F(\langle 0, \delta \rangle) | \delta \in \alpha\} \qquad (\because 命題 4)$$

$$= \sup\{\delta | \delta \in \alpha\} \} \qquad (\because 補題 5)$$

$$= \alpha = \alpha + 0$$

となり、いずれにせよ $0 \notin X$ であるので $\varepsilon > 0$ だと分かる。次に $\varepsilon = S(\beta)$ だとすると

$$F(\langle 1, \varepsilon \rangle = F(S(\langle 1, \beta \rangle)))$$

= $S(F(\langle 1, \beta \rangle))$ (∵ 命題 3)
= $S(\alpha + \beta)$ (∵ ε の最小性)
= $(\alpha + \beta) + 1 = \alpha + S(\beta)$

である。この時点で $\gamma \neq \omega$ が確定し、最後に ε が極限順序数のときも

$$F(\langle 1, 0 \rangle) = F(\sup\{\langle 1, \beta \rangle | \beta \in \varepsilon\})$$

$$= \sup\{F(\langle 1, \beta \rangle) | \beta \in \varepsilon\}) \qquad (∵ 命題 4)$$

$$= \sup\{\alpha + \beta | \beta \in \varepsilon\} \qquad (∵ \varepsilon \mathcal{O} 最小性)$$

$$= \alpha + \varepsilon \qquad (∵ \gamma \mathcal{O} 最小性)$$

となり $\varepsilon \in X$ に反する。したがって $X = \emptyset$ だと分かる。さて、それではこの γ について

$$\alpha + \gamma = \sup_{\beta < \gamma} (\alpha + \beta) \tag{2}$$

を導こう。ただし、 (\geq) は $\sup_{\beta<\gamma}(\alpha+\beta)=\cup_{\beta<\gamma}(\alpha+\beta)$ から明らかなので逆を示すために $x\in\alpha+\gamma$ を任意に取る。

 $F^{-1}(x) \in \{0\} \times \alpha$ のとき: $\delta < \alpha$ で $F^{-1}(x) = \langle 0, \delta \rangle$ を満たすものがあるので、補題 5 より $F^{-1}(x) = F^{-1}(\delta)$ となり、単射性から $x = \delta \in \alpha = \alpha + 0 \in \sup_{\beta < \gamma} (\alpha + \beta)$ 。

 $F^{-1}(x) \in \{1\} imes \gamma$ のとき: $\beta < \gamma$ で $F^{-1}(x) = \langle 1, \beta \rangle$ を満たすものがあるので、 $X = \emptyset$ より $x = F(F^{-1}(x)) = F(\langle 1, \beta \rangle) = \alpha + \beta$ となり、 $x \in \alpha + (\beta + 1) \in \sup_{\beta < \gamma} (\alpha + \beta)$ が成り立つ。

したがって (2) が成り立つが、これは γ が (1) から取ってきたものであるという仮定に反する。したがって証明が完了した。

参考文献

[1] ケネス・キューネン、"キューネン数学基礎論講義", 藤田博司 訳, 日本評論社, 2016.