Ensemble Methods

Basics

Ensemble Methods

- Several models are trained to solve the task
- At application time, on a new instance, we combine their "votes" to make the final prediction.
- Important we have a diverse set of "voters"
- Main Questions:

2

- How do we obtain several models from same data
- How do we combine the votes

Why use Ensembles?

- · Why do we vote?
- Two ways of presenting the intuition
 - A Theorem (though based on an impractical scenario)
 - Adding to complexity of models

Scenario

- Binary classification task
- Lots of learners (base models) n
- Weak learners sufficient
 - Better than tossing coins (random guess)
 - accuracy > 0.5
 - i.e., error rate < 0.5
 - For each model, error rate = e
- Each model is independent (i.e., errors are not correlated).
 - What if they were all identical?

Probability of k errors

 On a random instance, assuming independence, probability of error for sequence

-1st: $\sqrt{2}$ nd: $\times 3$ rd: $\times ...$

– k errors and (n-k) correct.

• How many such sequences with k errors

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad = \mathrm{nCk}$$

Errors rates

• $E_k = nCk e^k (1-e)^{n-k}$

• Given n, majority?

– Examples n=12 \rightarrow 6 & n=13 \rightarrow 7

• Floor((n+1)/2)

• $E_{ensemble} = \sum_{K=Floor((n+1)/2)}^{n} nCk e^{k} (1-e)^{n-k}$

n = 25; e = 0.35 \rightarrow error rate = 0.06

5

7

10

How do We Obtain Different Models

- Train Different models SVM, MLP, ...
 - Usually not much gain
 - Different Initializations, network topology
- Creating Different Training Sets
 - Bagging and Boosting
- Manipulating Input Features/Attributes
 - Random Forests

12

- Ensemble methods and Unstable classifiers
 - ML methods with high variance

Decision Stumps

• Depth = 1. Only one question asked. Root + leaves.

