

GEETHANJALIINSTITUTEOFSCIENCE&TECHNOLOGY

(ANAUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu)
(Accredited by NAAC with "A" Grade, NBA(EEE,ECE&ME)&ISO9001:2008 Certified Institution)

Regulation: RG23

QUESTION BANK (DESCRIPTIVE)

Subject Name: Software Engineering

Subject Code: 23A3207T

Course & Branch: B.Tech & CSE(DS) Year & Semester: III B.Tech I Semester

Unit-1

	<u> </u>	
S.No	2 Marks Questions (Short)	[BT
		Level][CO][Marks]
1	Define software engineering and mention its importance	L1, CO1, 2 M
2	What is abstraction in software engineering?	L1, CO1, 2 M
3	Define decomposition and give an example	L1, CO1, 2 M
4	List any four SDLC models.	L1, CO1, 2 M
5	Mention two advantages of the iterative waterfall model.	L1, CO1, 2 M
6	What is RAD model in software development?	L1, CO1, 2 M
7	Define project planning in software project management.	L1, CO1, 2 M
8	What is Halstead's Software Science used for?	L1, CO1, 2 M
9	What is risk management in software projects?.	L1, CO1, 2 M
10	What is configuration management?	L1, CO1, 2 M

S.No	Descriptive Questions (Long)	[BT Level] [CO][
		Marks]
1	(a) Explain abstraction vs decomposition with examples.	L2, CO1, 6M
	(b) Discuss the evolution of software engineering techniques	L2, CO1, 6M
	(a) Describe the phases of SDLC with neat diagrams.	L2, CO1, 6M
2	(b) Explain the iterative waterfall model and its	
	merits/demerits.	L2, CO1, 6M
3	Compare prototype, evolutionary, and spiral models.	L2, CO1, 12M
	(a) Explain RAD model and its applications.	L2, CO1, 6M
4	(b) Discuss agile models and their significance in	
	modern development.	L2, CO1, 6M

5	Explain project estimation techniques like COCOMO and	L3, CO1, 12M
	Halstead's metrics.	
6	Describe project scheduling and staffing in software project	L2, CO1, 12M
	management.	
7	(a) Explain various team structures used in software	L2, CO1, 6M
	projects.	
	(b) Discuss the importance of organization in project	L2, CO1, 6M
	planning.	
8	What are the major risk management strategies? Explain	L2, CO1, 12M
	with examples.	
9	Describe configuration management process and tools with	L2, CO1, 12M
	examples.	
10	Discuss software project management activities in detail.	L2, CO1, 12M

UNIT-2

S.No	2 Marks Questions (Short)	[BT
		Level][CO][Marks]
1	What are software myths?	L1, CO1, 2 M
2	Define SRS (Software Requirement Specification).	L1, CO1, 2 M
3	What is traceability in requirements?	L1, CO1, 2 M
4	Mention two characteristics of a good SRS document	L1, CO1, 2 M
5	What are decision tables used for?	L1, CO1, 2 M
6	Define axiomatic specification.	L1, CO1, 2 M
7	What is algebraic specification in SE?	L1, CO1, 2 M
8	Define functional and non-functional requirements.	L1, CO1, 2 M
9	What are formal system development techniques?	L1, CO1, 2 M
10	What are the IEEE 830 guidelines?	L1, CO1, 2 M

Descriptive Questions (Long)	[BT Level] [CO][
	Marks]
Explain the unique nature of WebApps and its impact on	L2, CO2, 12M
requirements gathering.	
(a) Describe requirement analysis activities.	L2, CO2, 6M
	Explain the unique nature of WebApps and its impact on requirements gathering.

	(b) Explain requirement elicitation techniques.	L2, CO2, 6M
3	(a) Discuss the structure and contents of a good SRS	L2, CO2, 6M
	document.	
	(b) Explain IEEE 830 guidelines for SRS	L2, CO2, 6M
	preparation.	
4	Describe decision tables and decision trees with examples.	L3, CO2, 12M
5	Explain traceability and its significance in requirements	L2, CO2, 12M
	engineering.	
6	What are software myths? Explain how they affect	L2, CO2, 12M
	software development	
7	Explain axiomatic and algebraic specification with suitable	L3, CO2, 12M
	examples.	
8	(a) Compare functional vs non-functional	L2, CO2, 6M
	requirements.	
	(b) Explain formal system development techniques.	L2, CO2, 6M
9	Describe requirement gathering and analysis process in	L2, CO2, 12M
	detail.	
10	Explain common problems in requirements specification	L2, CO2, 12M
	and how to overcome them.	

Unit-3

S.No	2 Marks Questions (Short)	[BT
		Level][CO][Marks]
1	Define cohesion in software design.	L1, CO3, 2M
2	Define coupling in software design.	L1, CO3, 2M
3	What is control abstraction?	L1, CO3, 2M
4	What is fan-in and fan-out in design?	L1, CO3, 2M
5	Define layered design.	L1, CO3, 2M
6	What are the advantages of object-oriented design?	L1, CO3, 2M
7	What is UML?	L1, CO3, 2M
8	What is a DFD?	L1, CO3, 2M
9	Mention two characteristics of a good user interface.	L1, CO3, 2M
10	What is mode-based interface?	L1, CO3, 2M

S.No	Descriptive Questions (Long)	[BT Level] [CO][
		Marks]
1	Compare object-oriented and function-oriented design	L3, CO3, 12M
	approaches.	
2	Explain various types of cohesion and coupling with	L2, CO3, 12M
	examples.	
3	Explain SA/SD methodology and its steps.	L2, CO3, 12M
4	(a) Explain data flow diagrams and their levels.	L2, CO3, 6M
	(b) Extend DFD technique to real-life system design.	L2, CO3, 6M
5	Describe control hierarchy concepts: layering, control	L2, CO3, 12M
	abstraction, depth & width	
6	Explain detailed design and design review process.	L2, CO3, 12M
7	Discuss GUI design methodology and its phases.	L2, CO3, 12M
8	Explain types of user interfaces and their characteristics.	L2, CO3, 12M
9	(a) Explain UML diagrams used in object-oriented	L2, CO3, 6M
	design.	
	(b) Discuss the importance of structured design.	L2, CO3, 6M
10	Explain principles of good software design and their	L2, CO3, 12M
	significance.	

Unit-4

S.No	2 Marks Questions (Short)	[BT
		Level][CO][Marks]
1	What are coding standards?	L1, CO4, 2M
2	Define code review.	L1, CO4, 2M
3	What is black box testing?	L1, CO4, 2M
4	What is white box testing?	L1, CO4, 2M
5	Define regression testing.	L1, CO4, 2M
6	What is debugging?	L1, CO4, 2M
7	What are program analysis tools?	L1, CO4, 2M
8	Define integration testing.	L1, CO4, 2M
9	What is system testing?	L1, CO4, 2M

What is performance testing?	L1, CO4, 2M
------------------------------	-------------

S.No	Descriptive Questions (Long)	[BT Level] [CO][
		Marks]
1	Explain coding standards and their importance in software	L2, CO4, 12M
	development	
2	Describe different types of code reviews and their	L2, CO4, 12M
	objectives.	
3	(a) Explain black box testing techniques.	L2, CO4, 6M
	(b) Explain white box testing techniques.	L2, CO4, 6M
4	Compare black box and white box testing with examples.	L2, CO4, 12M
5	Explain unit, integration, and system testing with examples	L2, CO4, 12M
6	What are program analysis tools? Explain their role in	L2, CO4, 12M
	testing	
7	Discuss debugging techniques and strategies	L2, CO4, 12M
8	Explain performance and regression testing with example	L2, CO4, 12M
9	Describe testing of object-oriented programs and its	L2, CO4, 12M
	challenges.	
10	Explain testing strategies for large software systems.	L2, CO4, 12M

Unit-5

S.No	2 Marks Questions (Short)	[BT
		Level][CO][Marks]
1	Define software reliability	L1, CO5, 2M
2	What is statistical testing?	L1, CO5, 2M
3	What is ISO 9000 in software quality?	L1, CO5, 2M
4	Define SEI CMM.	L1, CO5, 2M
5	What is PSP (Personal Software Process)?	L1, CO5, 2M
6	Define Six Sigma in software	L1, CO5, 2M
7	What is CASE?	L1, CO5, 2M
8	What is reverse engineering in software	L1, CO5, 2M
9	What is software maintenance?	L1, CO5, 2M

10 What is software reuse? L1, CO5, 21	M
--	---

S.No	Descriptive Questions (Long)	[BT Level] [CO][
		Marks]
1	Explain software quality attributes and metrics.	L2, CO5, 12M
2	Describe software reliability and methods to achieve it.	L2, CO5, 12M
3	(a) Explain ISO 9000 quality standards for software.	L2, CO5, 6M
	(b) Discuss SEI Capability Maturity Model levels.	L2, CO5, 6M
4	Explain PSP and Six Sigma concepts in software quality	L2, CO5, 12M
	improvement.	
5	Describe the role and scope of CASE tools in software life	L2, CO5, 12M
	cycle.	
6	Explain characteristics of software maintenance and its	L2, CO5, 12M
	process models.	
7	Discuss software reverse engineering and its applications.	L2, CO5, 12M
8	Explain estimation of maintenance cost in software projects	L2, CO5, 12M
9	Discuss reuse approaches at organizational level.	L2, CO5, 12M
10	Explain quality management concepts in software	L2, CO5, 12M
	engineering.	

Signature of the Staff:

Signature of Department Academic Committee Member 1:

Signature of Department Academic Committee Member 2:

Signature of Department Academic Committee Member 3: